ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ

Χειμερινό εξάμηνο 2024-25 (ΜΥΥ104-ΠΛΥ104)

Κωνσταντίνος Σκιάνης Επίκουρος Καθηγητής

<u>ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ</u> <u>ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ</u>

- 🛮 Ιδιοτιμές Ιδιοδιανύσματα Ιδιόχωροι
- 🗹 Πολυώνυμα Πινάκων
- 🗹 Διαγωνοποίηση

Ορισμός

Ένα διάνυσμα $x \in M_{n \times 1}(\mathbb{F})$, $x \neq \mathcal{O}$, καλείται **ιδιοδιάνυσμα** (eigenvector) με ιδιοτιμή (eigenvalue) $\lambda \in \mathbb{F}$ για τον τετραγωνικό πίνακα $A \in M_n(\mathbb{F})$, αν ισχύει ότι:

$$Ax = \lambda x$$
.

Τα ιδιοδιανύσματα και οι ιδιοτιμές καλούνται χαρακτηριστικά μεγέθη ή χαρακτηριστικά ποσά του πίνακα.

ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ

Ο πίνακας Α επιδρά ως μετασχηματισμός στα διανύσματα.

Τα ιδιοδιανύσματα του A είναι εκείνα τα διανύσματα που δεν αλλάζουν φορέα παρά μόνο μήκος ή/και φορά. Η ιδιοτιμή καθορίζει πόσο θα αλλάξει το μήκος και η φορά (αν είναι αρνητική). Π.χ. Το y δεν είναι ιδιοδιάνυσμα, ενώ το x που παραμένει στον φορέα του, είναι.

4 / 27

lackbox Έστω ο πίνακας $A=\left(egin{array}{cc} 5 & 2 \\ -1 & 2 \end{array}
ight)\in M_2(\mathbb{R})$ και τα διανύσματα,

$$x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad y = \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

Έχουμε:

$$Ay = \lambda y \Leftrightarrow \left(\begin{array}{cc} 5 & 2 \\ -1 & 2 \end{array}\right) \left(\begin{array}{c} -1 \\ 2 \end{array}\right) = \lambda \left(\begin{array}{c} -1 \\ 2 \end{array}\right) \Leftrightarrow \left(\begin{array}{c} -1 \\ 5 \end{array}\right) = \lambda \left(\begin{array}{c} -1 \\ 2 \end{array}\right).$$

Εύκολα παρατηρούμε ότι δεν υπάρχει $\lambda \in \mathbb{R}$ για το οποίο να ισχύει η παραπάνω σχέση. Άρα το y δεν είναι ιδιοδιάνυσμα του A.

Αντίθετα, για το x έχουμε:

$$Ax = \lambda x \Leftrightarrow \begin{pmatrix} 5 & 2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 \\ -3 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Η σχέση αυτή ισχύει για $\lambda=3$. Άρα το x είναι ιδιοδιάνυσμα του A με ιδιοτιμή $\lambda=3$.

◆ロト ◆団ト ◆差ト ◆差ト 差 めなべ

Υπολογισμός ΙΔΙΟΤΙΜΩΝ - ΙΔΙΟΔΙΑΝΥΣΜΑΤΩΝ

Για να βρούμε τις ιδιοτιμές και τα ιδιοδιανύσματα ενός πίνακα $A\in M_n(\mathbb{F})$, εργαζόμαστε ως εξής:

Σχηματίζουμε το τετραγωνικό σύστημα:

$$Ax = \lambda x \Leftrightarrow Ax - \lambda x = \mathcal{O} \Leftrightarrow (A - \lambda \mathcal{I})x = \mathcal{O}.$$

Το σύστημα αυτό είναι τετραγωνικό $n \times n$, ομογενές, με παράμετρο λ .

② Υπολογίζουμε όλες τις τιμές του λ για τις οποίες το σύστημα έχει μη-μηδενικές λύσεις. Αυτό μπορεί να συμβεί μόνο όταν,

$$\det(A - \lambda \mathcal{I}) = 0,$$

και αυτές οι τιμές του λ είναι οι ιδιοτιμές.

⑤ Για καθεμιά από τις παραπάνω τιμές του λ , υπολογίζουμε τις αντίστοιχες λύσεις x που είναι τα ιδιοδιανύσματα. Προφανώς αυτές οι λύσεις είναι άπειρες για κάθε λ , δηλαδή θα έχουμε οικογένειες ιδιοδιανυσμάτων.

lacktriangle Θα υπολογίσουμε τα χαρακτηριστικά μεγέθη του πίνακα $A=\left(egin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}
ight)$ στα $\mathbb R$ και $\mathbb C$. Αρχικά σχηματίζουμε το σύστημα,

$$(A - \lambda \mathcal{I}) x = \mathcal{O} \Leftrightarrow \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Υπολογίζουμε την ορίζουσα του συστήματος:

$$\left| \begin{array}{cc} -\lambda & 1 \\ -1 & -\lambda \end{array} \right| = \lambda^2 + 1.$$

Aν ο πίνακας ορίζεται στο \mathbb{R} , τότε,

$$\lambda^2+1>0,\quad\forall\,\lambda\in\mathbb{R}.$$

Αφού το σύστημα έχει μη-μηδενική ορίζουσα, θα έχει μοναδική λύση.

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

Αφού το σύστημα είναι και ομογενές, η μοναδική λύση θα είναι η τετριμμένη,

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right).$$

Όμως, εκ του ορισμού, τα ιδιοδιανύσματα δεν μπορεί να είναι μηδενικά, άρα ο πίνακας A δεν έχει ιδιοδιανύσματα στο $\mathbb R$.

Αντίθετα, στο σύνολο $\mathbb C$ έχουμε:

$$\lambda^2 + 1 = 0 \Leftrightarrow \lambda = \pm i$$
.

Για αυτά τα λ το σύστημα έχει μη-μηδενικές λύσεις, άρα είναι οι ιδιοτιμές του πίνακα A. Ελέγχουμε καθεμιά ανεξάρτητα για να βρούμε τα ιδιοδιανύσματα:

(α) Για την ιδιοτιμή $\lambda_1 = i$ το σύστημα γίνεται:

$$\left(\begin{array}{ccc} -\mathrm{i} & 1 \\ -1 & -\mathrm{i} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{ccc} 0 \\ 0 \end{array}\right) \Leftrightarrow \left\{\begin{array}{cccc} -\mathrm{i}\,x_1 & + & x_2 & = & 0 \\ -x_1 & - & \mathrm{i}\,x_2 & = & 0 \end{array}\right. \Leftrightarrow -\mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_1 + x_2 = 0 \Leftrightarrow x_2 = \mathrm{i}\,x_2 = 0 \Leftrightarrow x_2 = 0 \Leftrightarrow x_2$$

Άρα οι λύσεις του συστήματος, δηλαδή η οικογένεια ιδιοδιανύσματων, για την ιδιοτιμή λ_1 είναι,

$$x = \begin{pmatrix} x_1 \\ i x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ i \end{pmatrix}, \quad x_1 \in \mathbb{C}.$$

(β) Για την ιδιοτιμή $\lambda_2 = -i$ το σύστημα γίνεται:

$$\begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} i x_1 + x_2 = 0 \\ -x_1 + i x_2 = 0 \end{cases} \Leftrightarrow$$
$$\Leftrightarrow i x_1 + x_2 = 0 \Leftrightarrow x_2 = -i x_1$$

Άρα οι λύσεις του συστήματος, δηλαδή η οικογένεια ιδιοδιανύσματων, για την ιδιοτιμή λ_2 είναι,

$$x = \begin{pmatrix} x_1 \\ -i x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ -i \end{pmatrix}, \quad x_1 \in \mathbb{C}. \quad \blacksquare$$

Ορισμός

Ιδιοχώρος (eigenspace) μιας ιδιοτιμής λ_i ενός πίνακα $A\in M_n(\mathbb{F})$ καλείται το σύνολο,

$$V(\lambda_i) = \{x \in M_{n \times 1}(\mathbb{F}); \ (A - \lambda_i \mathcal{I}) x = \mathcal{O}\},\$$

δηλαδή ο δ.χ. των ιδιοδιανύσματων της λ_i . Το σύνολο αυτό είναι μη-τετριμμένος υπόχωρος του $M_{n\times 1}(\mathbb{F})$. Επιπλέον, η διάστασή του είναι,

$$\dim V(\lambda_i) = n - \operatorname{rank}(A - \lambda_i \mathcal{I})$$

και καλείται γεωμετρική πολλαπλότητα της ιδιοτιμής λ_i . Για αυτή ισχύει ότι,

$$1 \leqslant \dim V(\lambda_i) \leqslant \nu_i$$

όπου ν_i η αλγεβρική πολλαπλότητα της ιδιοτιμής λ_i .

Ορισμός

Ιδιοτιμή μιας απεικόνισης $f:V\to V$ ενός δ.χ. V με $\dim V=n$, καλείται μια τιμή $\lambda\in\mathbb{F}$ αν υπάρχει διάνυσμα $x\in V$, $x\ne \mathcal{O}$, τέτοιο ώστε, $f(x)=\lambda x$. Σε αυτή την περίπτωση το x καλείται **ιδιοδιάνυσμα της απεικόνισης** f. Αν A ο πίνακας αναπαράστασης της f, οπότε και f(x)=Ax, οι ιδιοτιμές της f είναι οι ιδιοτιμές του A.

Προτάσεις

Έστω ο πίνακας $A \in M_n(\mathbb{F})$.

$$\det A = \lambda_1 \, \lambda_2 \cdots \lambda_n = (-1)^n \, b_0,$$

όπου b_0 ο σταθερός όρος του χαρακτηριστικού πολυωνύμου.

- ② Ο Α αντιστρέφεται ανν δεν έχει μηδενικη ιδιοτιμή ή ισοδύναμα ο σταθερός όρος του χαρακτηριστικού πολυωνύμου είναι μη-μηδενικός.
- **3** Οι πίνακες A και A^{\top} έχουν ίδιες ιδιοτιμές.
- Φ Αν λ και x μια ιδιοτιμή και το αντίστοιχο ιδιοδιάνυσμα του A, τότε τα λ^k και x είναι τα αντίστοιχα μεγέθη για τον A^k , $k\in\mathbb{N}$, ενώ τα λ^{-1} και x είναι τα αντίστοιχα μεγέθη για τον A^{-1} .
- Ιδιοδιανύσματα που αντιστοιχούν σε διακεκριμένες ιδιοτιμές είναι μεταξύ τους γραμμικώς ανεξάρτητα.

ightharpoonup Να βρεθούν τα χαρακτηριστικά μεγέθη του πίνακα $A=\left(egin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}
ight)\in M_3(\mathbb{R}).$

Αρχικά υπολογίζουμε τις ιδιοτιμές του πίνακα, επιλύοντας την χαρακτηριστική εξίσωση:

$$\det(A-\lambda\,\mathcal{I}) = \left| \begin{array}{ccc} 1-\lambda & 1 & 0 \\ 1 & -\lambda & 1 \\ 0 & 1 & 1-\lambda \end{array} \right| = (1-\lambda) \left| \begin{array}{ccc} -\lambda & 1 \\ 1 & 1-\lambda \end{array} \right| - \left| \begin{array}{ccc} 1 & 0 \\ 1 & 1-\lambda \end{array} \right| =$$

$$= (1-\lambda)\left[-\lambda(1-\lambda)-1\right]-(1-\lambda)=(1-\lambda)(\lambda^2-\lambda-2)=(1-\lambda)(\lambda+1)(\lambda-2).$$

Άρα οι ιδιοτιμές του A είναι οι $\lambda_1=1,~\lambda_2=-1,~\lambda_3=2,$ με αλγεβρικές πολλαπλότητες $\nu_1=\nu_2=\nu_3=1.$ Διακρίνουμε περιπτώσεις:

(α) Για $\lambda_1=1$ έχουμε:

$$(A - \lambda_1 \mathcal{I}) x = \mathcal{O} \Leftrightarrow \begin{pmatrix} 1 - \lambda_1 & 1 & 0 \\ 1 & 0 - \lambda_1 & 1 \\ 0 & 1 & 1 - \lambda_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{ccc} 0 \\ 0 \\ 0 \end{array}\right) \Leftrightarrow \left\{\begin{array}{cccc} x_2 & = & 0 \\ x_1 & - & x_2 & + & x_3 & = & 0 \\ x_2 & = & 0 & \Leftrightarrow \left\{\begin{array}{cccc} x_2 = 0 \\ x_3 = -x_1 \end{array}\right.$$

Άρα η οικογένεια ιδιοδιανυσμάτων για την $\lambda_1=1$ είναι:

$$\left(\begin{array}{c} x \\ 0 \\ -x \end{array}\right), \quad x \in \mathbb{R},$$

και ο αντίστοιχος ιδιοχώρος είναι:

$$V(\lambda_1) = \left\{ x \left(1, 0, -1\right)^\top; \ x \in \mathbb{R} \right\} = \operatorname{span}\left(\left(1, 0, -1\right)^\top\right).$$

Προφανώς μια βάση του ιδιοχώρου και η διάστασή του (γεωμετρική πολλαπλότητα της λ_1) είναι, αντίστοιχα, οι εξής,

$$B_1 = \left\{ (1,0,-1)^{ op}
ight\}, \qquad \operatorname{\mathsf{dim}} V(\lambda_1) = 1 \leqslant v_1 = 1.$$

Σύμφωνα με γνωστό θεώρημα, πρέπει να ισχύει ότι, dim $V(\lambda_1)=n-\mathrm{rank}(A-\lambda_1\,\mathcal{I}).$ Έχουμε:

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{array}\right) \ \cdots (\text{grammarfáxeig}) \cdots \\ \left(\begin{array}{cccc} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right) \ (\text{κλιμαχωτή μορφή})$$

Άρα $\operatorname{rank}(A-\lambda_1\,\mathcal{I})=2$ και από το θεώρημα έχουμε,

$$\dim V(\lambda_1) = n - \operatorname{rank}(A - \lambda_1 \mathcal{I}) = 3 - 2 = 1,$$

που επαληθεύει αυτό που βρήκαμε παραπάνω.

(β) Για $\lambda_2 = -1$ έχουμε:

$$(A - \lambda_2 \mathcal{I}) x = \mathcal{O} \Leftrightarrow \begin{pmatrix} 1 - \lambda_2 & 1 & 0 \\ 1 & 0 - \lambda_2 & 1 \\ 0 & 1 & 1 - \lambda_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 \\ 0$$

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 2x_1 + x_2 & = 0 \\ x_1 + x_2 + x_3 = 0 \\ x_2 + 2x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 = x_3 \\ x_2 = -2x_3 \end{cases}$$

Άρα η οικογένεια ιδιοδιανυσμάτων για την $\lambda_2=-1$ είναι:

$$\left(\begin{array}{c} x \\ -2x \\ x \end{array}\right), \quad x \in \mathbb{R},$$

και ο αντίστοιχος ιδιοχώρος είναι:

$$V(\lambda_2) = \left\{ x \left(1, -2, 1\right)^{\top}; \ x \in \mathbb{R} \right\} = \operatorname{span}\left(\left(1, -2, 1\right)^{\top}\right).$$

Προφανώς μια βάση του ιδιοχώρου και η διάστασή του (γεωμετρική πολλαπλότητα της λ_2) είναι, αντίστοιχα, οι εξής,

$$B_2 = \left\{ (1, -2, 1)^{\top} \right\}, \qquad \operatorname{\mathsf{dim}} V(\lambda_2) = 1 \leqslant v_2 = 1.$$

Να κάνετε επαλήθευση του θεωρήματος, dim $V(\lambda_2)=n-\mathrm{rank}(A-\lambda_2\,\mathcal{I})$, όπως παραπάνω.

 (γ) Για $\lambda_3=2$ έχουμε:

$$(A - \lambda_3 \mathcal{I}) x = \mathcal{O} \Leftrightarrow \begin{pmatrix} 1 - \lambda_3 & 1 & 0 \\ 1 & 0 - \lambda_3 & 1 \\ 0 & 1 & 1 - \lambda_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -x_1 + x_2 & = 0 \\ x_1 - 2x_2 + x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x_1 = x_2 \\ x_2 = x_3 \Leftrightarrow x_1 = x_2 = x_3.$$

Άρα η οικογένεια ιδιοδιανυσμάτων για την $\lambda_3=2$ είναι:

$$\left(\begin{array}{c} x \\ x \\ x \end{array}\right), \quad x \in \mathbb{R},$$

και ο αντίστοιχος ιδιοχώρος είναι:

$$V(\lambda_3) = \left\{ x (1,1,1)^\top; \ x \in \mathbb{R} \right\} = \operatorname{span}\left((1,1,1)^\top \right).$$

Προφανώς μια βάση του ιδιοχώρου και η διάστασή του (γεωμετρική πολλαπλότητα της λ_3) είναι, αντίστοιχα, οι εξής,

$$B_3 = \left\{ (1,1,1)^{ op}
ight\}, \qquad \operatorname{\mathsf{dim}} V(\lambda_3) = 1 \leqslant \mathsf{v}_3 = 1.$$

Να κάνετε επαλήθευση του θεωρήματος, dim $V(\lambda_3)=n-\mathrm{rank}(A-\lambda_3\,\mathcal{I})$, όπως παραπάνω. \blacksquare

Ορισμός

Πολυώνυμο ενός πίνακα $A\in M_n(\mathbb{F})$ καλείται ένας πίνακας της μορφής,

$$\rho(A) = a_k A^k + a_{k-1} A^{k-1} + \cdots + a_1 A + a_0 \mathcal{I}, \quad a_i \in \mathbb{F}, \forall i.$$

Ο πίνακας A είναι **ρίζα** του πολυωνύμου αν $\rho(A) = \mathcal{O}$.

Θεώρημα Cayley-Hamilton

Για κάθε πίνακα $A\in M_n(\mathbb{F})$ ισχύει ότι $\chi_A(A)=\mathcal{O}$, δηλαδή κάθε τετραγωνικός πίνακας αποτελεί ρίζα του χαρακτηριστικού πολυωνύμου του.

Ορισμός

Ελάχιστο πολυώνυμο $m_A(A)$ ενός πίνακα $A\in M_n(\mathbb{F})$ καλείται το πολυώνυμο του A με τις ακόλουθες ιδιότητες:

- Ο συντελεστής του μεγιστοβάθμιου όρου είναι ίσος με 1.
- $2 m_A(A) = \mathcal{O}$
- ③ Το $m_A(A)$ είναι το πολυώνυμο με τον μικρότερο βαθμό από όλα τα πολυώνυμα που πληρούν τις ιδιότητες (1) και (2).

Προτάσεις

Έστω ένας πίνακας $A \in M_n(\mathbb{F})$.

- **1** Το ελάχιστο πολυώνυμο $m_A(\lambda)$ είναι μοναδικό.
- ② Αν $\chi_A(\lambda)$ το χαρακτηριστικό πολυώνυμο του A, τότε,

$$\chi_A(\lambda) = m_A(\lambda) \pi(\lambda),$$

όπου $\pi(\lambda)$ κάποιο πολυώνυμο. Δηλαδή, το χαρακτηριστικό πολυώνυμο διαιρείται ακριβώς με το ελάχιστο πολυώνυμο.

- ③ Το ελάχιστο πολυώνυμο $m_A(\lambda)$ έχει ακριβώς τις ίδιες ρίζες με το χαρακτηριστικό πολυώνυμο $\chi_A(\lambda)$. Οι ρίζες αυτές είναι οι ιδιοτιμές του A.
- 4 Αν $\chi_A(\lambda) = (\lambda \lambda_1)^{\nu_1} \cdots (\lambda \lambda_s)^{\nu_s}$ είναι το χαρακτηριστικό πολυώνυμο του A, τότε το ελάχιστο πολυώνυμο είναι,

$$m_A(\lambda) = (\lambda - \lambda_1)^{k_1} \cdots (\lambda - \lambda_s)^{k_s},$$

με $1\leqslant k_i\leqslant \nu_i,\ i=1,\ldots,s$. Προφανώς αν ο A έχει n διακεκριμένες ιδιοτιμές, τότε $m_A(\lambda)=\chi_A(\lambda).$

Υπολογισμός ΕΛΑΧΙΣΤΟΥ ΠΟΛΥΩΝΥΜΟΥ

Για να βρούμε το ελάχιστο πολυώνυμο ενός πίνακα $A \in M_n(\mathbb{F})$, εργαζόμαστε ως εξής:

Τπολογίζουμε το χαρακτηριστικό πολυώνυμο,

$$\chi_A(\lambda) = (\lambda - \lambda_1)^{\nu_1} (\lambda - \lambda_2)^{\nu_2} \cdots (\lambda - \lambda_i)^{\nu_i}.$$

Ελέγχουμε ένα προς ένα όλα τα πολυώνυμα,

$$m(A) = (A - \lambda_1 \mathcal{I})^{k_1} (A - \lambda_2 \mathcal{I})^{k_2} \cdots (A - \lambda_i \mathcal{I})^{k_i},$$

με $1\leqslant k_i\leqslant \nu_i$, ξεκινώντας από τον μικρότερο βαθμό προς τον μεγαλύτερο.

Το πολυώνυμο με τον μικρότερο βαθμό για το οποίο ισχύει η ιδιότητα,

$$m(A) = \mathcal{O},$$

είναι το ελάχιστο πολυώνυμο του Α (και είναι μοναδικό).

▶ Να βρεθεί το ελάχιστο πολυώνυμο του πίνακα $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 2 & 0 \\ 3 & 4 & 0 & 2 \end{pmatrix}$.

Υπολογίζουμε αρχικά το χαρακτηριστικό πολυώνυμο του Α:

$$\chi_A(\lambda) = \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & 0 & 0 \\ 0 & \lambda - 1 & 0 & 0 \\ -1 & -2 & \lambda - 2 & 0 \\ -3 & -4 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)^2.$$

Άρα το ελάχιστο πολυώνυμο είναι ένα εκ των ακόλουθων πολυωνύμων:

$$m_1(\lambda) = (\lambda - 1)(\lambda - 2), \qquad m_2(\lambda) = (\lambda - 1)^2(\lambda - 2),$$

$$m_3(\lambda)=(\lambda-1)\,(\lambda-2)^2, \qquad m_4(\lambda)=(\lambda-1)^2\,(\lambda-2)^2.$$

Ξεκινούμε να τα ελέγχουμε με την παραπάνω σειρά (από τον χαμηλότερο προς τον μεγαλύτερο βαθμό). Έχουμε:

$$m_1(A) = (A - \mathcal{I})(A - 2\mathcal{I}) = \cdots$$
 (πράξεις πινάχων) $\cdots = \mathcal{O}$.

Άρα το ελάχιστο πολυώνυμο του A είναι το $m_A(\lambda)=(\lambda-1)(\lambda-2)$.

Ορισμός

Διαγωνοποιήσιμος καλείται ένας πίνακας $A \in M_n(\mathbb{F})$ αν υπάρχει αντιστρέψιμος πίνακας $P \in M_n(\mathbb{F})$ τέτοιος ώστε,

$$D = P^{-1} A P,$$

όπου D διαγώνιος πίνακας. Με άλλα λόγια, ένας πίνακας είναι διαγωνοποιήσιμος αν είναι όμοιος με έναν διαγώνιο πίνακα.

Πρόταση

Ο πίνακας $A \in M_n(\mathbb{F})$ διαγωνοποιείται avv έχει n γραμμικώς ανεξάρτητα ιδιοδιανύσματα. Επιπλέον, ο διαγώνιος πίνακας $D = P^{-1} A P$ θα έχει στην κύρια διαγώνιο τις ιδιοτιμές του A και ο πίνακας P θα έχει σε στήλες τα αντίστοιχα ιδιοδιανύσματα που συνιστούν βάσεις των ιδιοχώρων.

lackbreak Θα ελέγξουμε αν διαγωνοποιείται ο πίνακας $A=\left(egin{array}{cc} 0 & 2 \ -3 & 5 \end{array}
ight)\in M_2(\mathbb{R}).$

Αρχικά, υπολογίζουμε με τον γνωστό τρόπο τις ιδιοτιμές του πίνακα. Το χαρακτηριστικό πολυώνυμο είναι:

$$\chi_A(\lambda) = \det(\lambda \, \mathcal{I} - A) = \left| egin{array}{cc} \lambda & -2 \ 3 & \lambda - 5 \end{array} \right| = \cdots = (\lambda - 3) \, (\lambda - 2).$$

Αφου ο πίνακας έχει 2 διακεκριμένες ιδιοτιμές, θα έχει υποχρεωτικά και 2 γραμμικώς ανεξάρτητα ιδιοδιανύσματα και άρα διαγωνοποείται σύμφωνα με την γνωστή πρόταση.

(α) Για την $\lambda_1=3$ υπολογίζεται με τον γνωστό τρόπο ο ιδιοχώρος,

$$V(\lambda_1) = \{x (1, 3/2)^{\top}; x \in \mathbb{R}\},$$

με προφανή βάση την $B_1 = \Big\{ (1, 3/2)^ op \Big\}.$

(β) Για την $\lambda_2=2$ υπολογίζεται με τον γνωστό τρόπο ο ιδιοχώρος,

$$V(\lambda_2) = \left\{ x \ (1,1)^\top ; \ x \in \mathbb{R} \right\},$$

με προφανή βάση την $B_2 = \left\{ \left(1,1\right)^{ op}
ight\}$.

Σύμφωνα με την πρόταση, ο διαγώνιος πίνακας και ο πίνακας ομοιότητας θα δίνονται ως εξής:

$$D = \left(\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array}\right), \qquad P = \left(\begin{array}{cc} 1 & 1 \\ 3/2 & 1 \end{array}\right).$$

Πράγματι, εύκολα επαληθεύεται ότι ο P είναι αντιστρέψιμος με αντίστροφο,

$$P^{-1} = \left(\begin{array}{cc} -2 & 2 \\ 3 & -2 \end{array} \right),$$

και,

$$D = P^{-1} A P = \begin{pmatrix} -2 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 3/2 & 1 \end{pmatrix} = \dots = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \quad \blacksquare$$

Προτάσεις

Έστω ο πίνακας $A \in M_n(\mathbb{F})$.

- **①** Αν ο A έχει n διακεκριμένες ιδιοτιμές τότε διαγωνοποιείται (το αντίστροφο δεν ισχύει).
- **2** Αν ο Α διαγωνοποιείται και έχει ιδιοτιμές $\lambda_1, \dots, \lambda_n$, τότε η k-δύναμή του δίνεται ως:

$$A^k = P \left(\begin{array}{cccc} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{array} \right) P^{-1}, \quad \forall \, k \in \mathbb{N},$$

όπου P ο πίνακας ομοιότητας.

③ Ο πίνακας Α διαγωνοποιείται ανν το ελάχιστο πολυώνυμό του είναι γινόμενο πρωτοβάθμιων παραγόντων,

$$m_A(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_k),$$

όπου $\lambda_1,\ldots,\lambda_k$, είναι οι διακεκριμένες ιδιοτιμές του A.

① Το ίχνος του A με χαρακτηριστικό πολυώνυμο $\chi_A(\lambda)=(\lambda-\lambda_1)^{\nu_1}\cdots(\lambda-\lambda_k)^{\nu_k}$, δίνεται ως,

$$\operatorname{tr}(A) = (\nu_1 \, \lambda_1)(\nu_2 \, \lambda_2) \cdots (\nu_k \, \lambda_k).$$

lackbox Θα υπολογίσουμε την δύναμη A^5 για τον πίνακα $A=\left(egin{array}{ccc} 2&2&1\\1&3&1\\1&2&2 \end{array}
ight)\in M_3(\mathbb{R}).$

Αρχικά, υπολογίζουμε με τον γνωστό τρόπο τις ιδιοτιμές και τα ιδιοδιανύσματα του πίνακα. Το χαρακτηριστικό πολυώνυμο είναι:

$$\chi_A(\lambda) = \det(\lambda \mathcal{I} - A) = \cdots = (\lambda - 1)^2 (\lambda - 5),$$

με ιδιοτιμές $\lambda_1=1$ (με αλγεβρική πολλαπλότητα 2) και $\lambda_2=5$ (με αλγεβρική πολλαπλότητα 1). Οι αντίστοιχοι ιδιόχωροι υπολογίζονται κατά τα γνωστά:

(α) Για την ιδιοτιμή $\lambda_1 = 1$ έχουμε το σύστημα:

$$(A - \lambda_1 \mathcal{I}) = \mathcal{O} \Leftrightarrow \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow x_1 + 2x_2 + x_3 = 0 \Leftrightarrow x_3 = -x_1 - 2x_2.$$

Άρα η οικογένεια ιδιοδιανυσμάτων είναι η ακόλουθη:

$$\left(\begin{array}{c}x_1\\x_2\\-x_1-2\,x_2\end{array}\right)=x_1\,\left(\begin{array}{c}1\\0\\-1\end{array}\right)+x_2\,\left(\begin{array}{c}0\\1\\-2\end{array}\right),\quad x_1,x_2\in\mathbb{R}.$$

◆□▶◆□▶◆■▶◆■▶ ■ かくで

Συνεπώς ο ιδιοχώρος της λ_1 είναι ο ακόλουθος:

$$V(\lambda_1) = \left\{ x (1, 0, -1)^\top + y (0, 1, -2)^\top; \ x, y \in \mathbb{R} \right\},$$

με βάση την ακόλουθη (να αποδείξετε ότι είναι βάση),

$$B_1 = \left\{ (1, 0, -1)^\top, (0, 1, -2)^\top \right\}.$$

και διάσταση dim $V(\lambda_1)=2$.

(β) Όμοια, για την ιδιοτιμή $\lambda_2 = 5$ έχουμε το σύστημα:

$$(A - \lambda_2 \mathcal{I}) \ x = \mathcal{O} \Leftrightarrow \left(\begin{array}{rrr} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{array} \right) \left(\begin{array}{r} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(\begin{array}{r} 0 \\ 0 \\ 0 \end{array} \right) \Leftrightarrow x_1 = x_2 = x_3.$$

Άρα η οικογένεια ιδιοδιανυσμάτων είναι η ακόλουθη:

$$\left(\begin{array}{c} x_1 \\ x_1 \\ x_1 \end{array}\right) = x_1 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right), \quad x_1 \in \mathbb{R}.$$

Συνεπώς ο ιδιοχώρος της λ2 είναι ο ακόλουθος:

$$V(\lambda_2) = \left\{ x (1, 1, 1)^\top; \ x \in \mathbb{R} \right\},$$

με προφανή βάση την $B_2=\left\{(1,1,1)^{ op}
ight\}$ και διάσταση dim $V(\lambda_2)=1$

Αφού ο πίνακας έχει 3 γραμμικώς ανεξάρτητα ιδιοδιανύσματα, διαγωνοποιείται με,

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{array}\right), \quad P = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -2 & 1 \end{array}\right),$$

και εύκολα υπολογίζουμε (με οποιαδήποτε μέθοδο θέλουμε) ότι,

$$P^{-1} = \left(\begin{array}{ccc} 3/4 & -1/2 & -1/4 \\ -1/4 & 1/2 & -1/4 \\ 1/4 & 1/2 & 1/4 \end{array} \right).$$

Έτσι, κατά τα γνωστά, θα έχουμε:

$$A^{5} = P D^{5} P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1^{5} & 0 & 0 \\ 0 & 1^{5} & 0 \\ 0 & 0 & 5^{5} \end{pmatrix} \begin{pmatrix} 3/4 & -1/2 & -1/4 \\ -1/4 & 1/2 & -1/4 \\ 1/4 & 1/2 & 1/4 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3125 \end{pmatrix} \begin{pmatrix} 3/4 & -1/2 & -1/4 \\ -1/4 & 1/2 & -1/4 \\ 1/4 & 1/2 & 1/4 \end{pmatrix} = \dots =$$

$$= \begin{pmatrix} 782 & 1562 & 781 \\ 781 & 1563 & 781 \\ 781 & 1562 & 782 \end{pmatrix} \blacksquare$$