

OV7675 照相模组

硬件应用指南

修改日期: 2010-08-17

版本: 1.03

OmniVision Technologies, Inc. 保留对文件的修改权,为提高产品的可靠性、功能、设计,进行修改,可不给出过多注释.

这个文件包含版权信息. 文件只能给那些获得 OmniVision Technologies, Inc. 批准的员工、组织、团体使用。

1.OmniVision 认证快组列表(米用 OV/6/5)	3
1.1 认证模组	3
1.2 镜头资源	3
2. OV7675 模组参考设计	5
2.1 原理图参考设计	5
2.2 FPC/PCB layout 设计参考	6
3. OV7675 模组接口参考设计	7
3.1 引脚定义	7
3.2 电源供给	
4. OV7675 照相模组操作	
4.1 节电模式	
4.2 照相模组工作在不断电的节电模式	
4.2.1 上电,软件复位	
4.2.2 由不断电的节电模式恢复工作	
4.2.3 不断电的节电模式	
4.3 照相模组工作在断电的节电模式	
4.3.1 上电	
4.3.2 打开摄像头, 软件复位	
4.3.3 关闭摄像头	
5.SCCB 总线共享	
6.手机上 PCB 设计时序的考虑	
6.1 PCLK 采样	
6.2 用 EMI/ESD 器件	
7. 硬件检测	
7.1 检查硬件设计	
7.1.1 模组功能	
7.1.2 检查手机 Camera 接口	
7.2 检查 Camera 模组是否工作	
7.3 检查 SCCB	
7.4 检查照相模组接口	
7.5 常见问题	
7.6 图片方向	
7.6.1 摄像头 4:3, LCD 3:4	
7.6.2 摄像头 3:4, LCD 3:4 7.7 检查颜色	
7.7 检查颜色 7.8 检测图像中心	
/.0 型奶舀隊宇心	19

1.OmniVision 认证模组列表(采用 OV7675)

1.1 认证模组列表 (2009 年 7 月 30 日)

OV7675版本	模组尺寸	镜头型号	模组厂	模组型号	接口
R1A	6.5*6.5*3.8	S3028	Sunny	8079J	标准PIN
R1A	6.0*6.0*3.8	S3028	Sunny	8079G	标准PIN
R1A	6.0*6.0*3.8	S3028	A-Kerr	7675FSL R1.0(090423)	标准PIN
R1A	6.0*6.0*3.8	CA513	Darling	DL030-OV7675A	标准PIN
R1A	6.0*6.0*3.8	CA513	Truly	8190	标准PIN
R1A	6.0*6.0*3.8	CA513	Sunrise	PCV767501A	标准PIN
R1A	6.0*6.0*3.8	CA513	Foxconn	1059	标准PIN

1.2 推荐镜头列表 (2009 年7月30日)

镜头厂	镜头型号	镜头结构	螺牙	相对孔径	光学总长	视场角	最大像面	模组尺寸
Hokuang	CA513	2P+IR CUT	M5*0.35P	2.8	3.1	60	2.3	6.0*6.0*3.8
Sunny	S3028	2P+IR CUT	M5*0.35P	2.8	3.1	62	2.2	6.0*6.0*3.8
Largan	9240A	2P+IR CUT	M3.5*0.35P	2.8	2.04	65	2.3	4.5*4.5*2.8
BASO	LM002	2P+IR CUT	M4*0.25P	2.8	3	59	2.32	6.0*6.0*3.7

2. OV7675 模组参考设计

2.1 原理图参考设计

注:

- 1. 上电的时候需要控制 PWDN 引脚.
- 2. DOVDD 应在 1.7V~3.0V 范围内. AVDD 应在 2.6V~3.0V 范围内.
- 3. AGND 和 DGND 在模组内应分开, 在模组外手机 PCB 上连到一点.

2.2 FPC/PCB Layout □ □ 参考

- 2.2.1 AVDD, DOVDD 和 GND 走线的宽度在 0.2mm 以上, DGND 需要包地;
- 2.2.2 PCLK,MCLK,D0~D7 走线的宽度在 0.1~0.15mm, 如果 FPC 太长 (>5cm)

走线的宽度在 0.15~0.2mm 以上;

- 2.2.3 VREF,HREF,VSYNC, SCL,SDA 走线的宽度在 0.1mm,
- 2.2.4 AVDD 和 DOVDD 需要和时钟线(MCLK,PCLK), I2C (SCL,SDA)要尽量隔开,上下层布线也需要注意
- 2.2.5 MCLK, PCLK 尽量与 DGND 或 Vsync, Href, SCL, SDA 相□□ 避免与数据□相□□包括背面□□ 如果与数据□相□□要□隔3 个□□□包括背面□□□
- 2.2.6 □ 源都需要加 (0.1u)□ 波□ 容
- 2.2.7 从□接器或金手指位置到 sensor 之□ 信号□ 的□ 孔数尽量相等,从□接器或金手指位置到 sensor 之□ 的地□ 最短路径的□ 孔数量不能□ 多□(建□ 不能超□ 3 个)

3. OV7675 模组接口参考设计

3.1 引脚定义

OV7675 视频口有八根数据线, D[7:0], 它支持的数据格式有 8 位 RGB raw 输出, 8 位 YcbCr 输出, 8 位 RGB 565, 8 位 ITU656 输出。

行同步信号 Href 和 Hsyn 是用同一引脚 (Href pin)输出,通过写 SCCB 寄存器,可选择这个引脚作为 Href 或 hsyn 信号。

SCCB 总线 SIO C 和 SIO D应外加上拉电阻,典型值是 4.7K。

3.2 电源供给

如果 DOVDD 和 AVDD 用不同的电压,应该用两路稳压电源:

如果 DOVDD 和 AVDD 用相同电压,只要一路稳压电源,用 R/C 过滤器把 DOVDD 和 AVDD 隔开。

注:

a. AGND 和 DGND 在模组内部应分开。在手机 PCB 上离模组连接器最近的地方,把它们连到一起。

4. OV7675 照相模组操作

4.1 节电模式

有两种节电模式:不断电的节电模式和断电的节电模式。

采用不断电的节电模式时,模组所有的电源不切断,把 PWDN 脚拉高来进入节电模式。 采用断电的节电模式时,切断供给模组所有的电源。

4.2 照相模组工作在不断电的节电模式

注:如果使用不断电的节电模式,针对不同的 DOVDD 电压,需要设置不同的寄存器值。

If
$$0xC2[2] = 1$$

1. For DOVDD = 2.8V Reg0xB8 should be 0x0a For DOVDD = 1.8V Reg0xB8 should be 0x12

If 0xC2[2] = 0

For DOVDD = 2.8V Reg0xDA should be 0x41 For DOVDD = 1.8V Reg0xDA should be 0x42

4.2.1 上电, 软件复位

OV7675 不支持硬件复位。上电后必须做软件复位。

- t0: 从 DOVDD 稳定到 AVDD 稳定, >= 0ms.
- t1: 从 AVDD 稳定到上电稳定, >= 5ms
- t2: 软件复位到写 SCCB 初始化代码, >= 3ms

如果上电期间不使用 PWDN,那么必须在 t0+t1 之后才能访问 SCCB。

步骤 1:

DOVDD 和 AVDD 两路同时上电。 如分开上电, 上电顺序是 DOVDD 先, AVDD 后。

步骤 2:

上电 5ms 后,写 SCCB 对 OV7675 模组软件复位. write_SCCB(0x12, 0x80); //Set register 0x12 to 0x80

步骤 3:

3ms 后,写 OV7675 初始化代码,该代码可从 "OV7675 照相模组软件应用指南"中得到或联系 OmniVision 当地 FAE。也可以仅仅写 DOVDD 寄存器(4.2).

步骤 4:

PWDN 脚置"1", OV7675 进入低功耗节电模式。

步骤 5:

XCLK 置低。

上电后,让模组进入不断电的节电模式,功耗最小。为使模组功耗最小,模组应先初始化,再让它进入不断电的节电模式。若模组不初始化,就进入不断电的节电模式,这样功耗较大。

4.2.2 由不断电的节电模式恢复工作

步骤 1:

供 XCLK

步骤 2:

after 10ms 后, PWDN 置"0"

步骤 3:

初始化。

初始化代码可从"0V7675 模组软件应用指南"中得到或联系 OmniVision 当地 FAE。

4.2.3 不断电的节电模式

步骤 1:

PWDN 脚置"1".

步骤 2:

XCLK 脚置"0".

4.3 照相模组工作在断电的节电模式

4.3.1 上电

不做任何操作,模组全部断电。

4.3.2 打开摄像头, 软件复位

t0:从DOVDD稳定到AVDD稳定,>=0ms.

t1: 从 AVDD 稳定到上电稳定, >= 5ms

t2: 软件复位到写 SCCB 初始化代码, >= 3ms

如果上电期间不使用 PWDN,那么必须在 t0+t1 之后才能访问 SCCB。

步骤 1:

DOVDD 和 AVDD 同时上电. 如分开上电, 上电顺序是 DOVDD 先, AVDD 后。

步骤 2:

上电 5ms 后,对 OV7675 模组写 SCCB 软件复位. write_SCCB(0x12, 0x80); //Set register 0x12 to 0x80

步骤 3:

3ms 后,写 OV7675 初始化代码,该代码可从"OV7675 照相模组软件应用指南"中得到或联系 OmniVision 当地 FAE.也可以仅仅写 DOVDD 寄存器(4.2).

4.3.3 关闭摄像头

步骤 1.

XCLK 置低。

步骤 2.

切断 AVDD 和 DOVDD。应同时切断。若不能同时切断,应先关 AVDD,再关 DOVDD。

步骤 3.

PWDN 置低。

关闭摄像头后,除 SCCB 以外的所有输入端必须保持低电平。否则,保持高电平的输入端会向关闭的电源漏电。

5.SCCB 总线共享

0V7675 模组可和其它设备共享 SCCB 总线。当 0V7675 工作时,通过设备地址来进行读/写操作。0V7675 模组的写地址是 0X42,读地址是 0X43。只要和其它设备用不同的 SCCB 读/写地址,就不会影响 0V7675 的读/写操作。

0V7675 模组 SCCB 总线和其它设备共享时,推荐使用不断电一节电模式。当 0V7675 模组进入不断电一节电模式时,SCCB 总线是处于空闲状态,不会影响其它设备 SCCB 读/写操作.

注:

OV7675 camera 模组 SCCB 总线和其它设备共享时,不推荐使用断电一节电模式。

6.手机上 PCB 设计时序的考虑

OV7675 模组有两个时钟信号。一个是主时钟(输入)XCLK,另一个是模组输出的像素时钟PCLK。一些后端/基带芯片可能用 XCLK 作为采样时钟,一些后端/基带芯片有可能用 PCLK 作为采样时钟,因为 PCLK 的相位和 XCLK 的相位是不同的,一般不允许用 XCLK 来采样图像数据。

请看以下时钟分配图:.

视频数据的延迟对后端/基带芯片的时序设计是非常危险的。如果这个延迟超过了后端/基带芯片的允许范围,后端/基带芯片会得不到正确的视频数据,不正确的视频数据会使得到的图像颜色不对,有固定或滚动的横条纹。

从以上的时钟分配图,延迟时间的计算如下:

Delay XCLK = 0

Delay_PCLK = PCB_Delay_XCLK + Internal_Delay + PLL_Delay + PCB_Delay_PCLK

Delay Data = PCB Delay XCLK + Internal Delay + PLL Delay + PCLK to Data Delay + PCB Delay Data

6.1 PCLK 采样

如果后端/基带芯片用 PCLK 采样, 时钟的延迟如下:

clock_data_delay = Delay_Data - Delay_PCLK

= PCLK to Data Delay + PCB Delay Data - PCB Delay PCLK

时钟数据的延迟和 PCB 上 XCLK 的延迟无关

如果仔细设计 PCB 使 PCLK 和数据线的走线长度相同,那么 PCB_Delay_Data = PCB_Delay_PCLK, 时钟数据的延迟: clock_data_delay = PCLK_to_Data_Delay, 和 PCB layout 无关。

6.2 用 EMI/ESD 器件

如果手机设计中用 EMI/ESD 器件, PCB 引起的延迟会增加很多。需很小心的调整这个延迟以符合后端/基带芯片的时序要求。

- 1、用PCLK来采样视频数据。
- 2、XCLK和PCLK不要和其它信号共用ESD/EMI器件。
- 3、对于双摄像头模组的设计,应对 PCLK 和 XCLK 使用单独的 ESD/EMI 器件或单独的 R/C 滤波器,减小时钟的延迟。
- 4、仔细做 PCB layout, 使 XCLK 的布线尽可能短, PCB 上 PCLK 线和数据线尽可能一样长。
- 5、模组 FPC 应尽量短。

7. 硬件检测

7.1 检查硬件设计

7.1.1 模组功能

用 USB 2.0 测试板测试模组功能(可能要用到转接板,联系模组制造商),在 PC 上应有正确图像显示。

检查模组原理图,引脚定义是否和手机 camera 接口相符,在模组内部 AGND 和 DGND 是否分开。

7.1.2 检查手机 Camera 接口

引脚定义是否和手机 camera 接口相符。

AVDD 应用单独的稳压电源,DVDD 和 DOVDD 也应用单独的稳压电源或和其它电路 共享,每个电源电压应符合模组要求。

如果用一根很长并弯曲的电缆把模组连到手机主板上,请不要把模组的地和其它电路相连。对于翻盖手机,模组地和LCD模块地相连会产生很大的电源噪声。

7.2 检查 Camera 模组是否工作

camera 模组是否工作的依据

PCLK 有输出 HREF, VSYNC 有输出 D[9:0] 有输出

检查过程:

- a. 检查电源电压符合图像传感器芯片数据手册要求
- b.输入 XCLK 正确
- c. 所有输入信号是否处于正确状态

PWDN = L, Reset = H, SIO D = H, SIO C = H

如果这些都是对的,模组仍不能工作,请检查模组好坏或联系 OmniVision 当地 FAE。

7.3 检查SCCB

- a. 检查 SCCB 连接,是否有上拉电阻,推荐值大约是 4.7K.
- b. 检查 SCCB 写的速度是否太快. 建议开始测试时不要超过 100K. 最大可到 400K.
- c. 检查 SCCB 简单方法

读寄存器 0x0a, 0x0b (version)来检测 SCCB 的读是否正确.

写寄存器 0x11, 检测 PCLK 频率, 以判断 SCCB 写的好坏.

- d. 为保证 SCCB read/write 是正确的, 请用示波器抓下整个写 SCCB 初始化代码的 SCCB 波形
 - e. SCCB 读/写地址正确

SCCB address is 0x42/0x43 for VGA sensors

f.如果用 SCCB 软件复位、请在复位 2-5ms 后, 进行初始化操作.

7.4 检查照相模组接口

- a. 检查 HREF(HSYCN), VSYNC, PCLK 的极性, 和后端/基带芯片相匹配
- b. 检查采数时钟. 如果采数时钟是用 MCLK,内部的分频器不能打开,请注意第五部分以讲过的时序问题.
 - 1. 检查窗口位置

如果用 HREF 作为行同步信号,窗口位置是由图像传感器决定. 如果用 HSYNC 作为行同步信号,窗口位置是由后端/基带芯片决定.

7.5 常见问题

时序错误

7.6 图片方向

7.6.1 摄像头 4:3, LCD 3:4

全屏显示时,不能得到全视角 若要全视角,就不能全屏显示

全视角预览

全屏预览

照相模组输出

7.6.2 摄像头 3:4, LCD 3:4

在照相模组内部图像传感器旋转 90 度 图片的行扫描方向由手机来改变 在 LCD 上可实现全屏全视角

全视角和全屏预览

改变照相模输出的扫描线方向

7.7 检查颜色

- a. 图片上只有红色和绿色 Y和U/V交换.
- b. 红色和蓝色反

U/V 交换 c.颜色/亮度不连续 检查 d[9:0]的连接

7.8 检测图像中心

请放一物体在手机的前方,检测图片是否在LCD的中心,若不在 ,照相模组输出的窗口位置不正确。

OV7675 照相模组硬件应用指南

Revision History

Rev1.02

更新 1.OmniVision 认证模组列表(采用 OV7675)