Relatório Técnico Pablo Duarte da Silva

Resumo do Projeto

O Relatório técnico apresentado, refere-se a descrição dos conceitos, métodos e soluções utilizados para a resolução da primeira avaliação de Estruturas de Dados II.

1. Introdução

As estruturas de dados são amplamente utilizadas em softwares complexos, principalmente aqueles que necessitam realizar intensas operações de busca e inserção. Esse relatório técnico apresenta um experimento comparativo entre estruturas de dados baseadas em árvores, unicamente com o propósito de medir a eficiência em realizar operações computacionais em tais estruturas. Esse relatório técnico está organizado da seguinte forma. Na Seção 2 serão apresentados alguns conceitos básicos dos assuntos abordados. A Seção 3 contém a metodologia implementada para a realização dos experimentos. A seção 4 aborda os resultados e os dados comparativos. A seção 5 apresenta as conclusões do relatório.

2. Seções Específicas

2.1. Estrutura de Árvore

As estruturas de dados de árvores são estruturas nomeadas assim por apresentarem um aspecto representativo semelhante a árvores da vida real. Diferente das estruturas de listas encadeadas, aqui as informações não são dispostas em forma sequencial.

2.2. Árvore Binária

Em Ciência da computação, uma árvore binária de busca (ou árvore binária de pesquisa) é uma estrutura de dados de árvore binária baseada em nós, onde todos os nós da subárvore esquerda possuem um valor numérico inferior ao nó raiz e todos os nós da subárvore direita possuem um valor superior ao nó raiz (esta é a forma padrão, podendo as subárvores serem invertidas, dependendo da aplicação).

2.3. Árvore AVL

É uma árvore binária de busca balanceada, ou seja, uma árvore balanceada (árvore completa) são as árvores que minimizam o número de comparações efetuadas no pior caso para uma busca com chaves de probabilidades de ocorrências idênticas. Contudo, para garantir essa propriedade em aplicações dinâmicas, é preciso reconstruir a árvore para seu estado ideal a cada operação sobre seus nós (inclusão ou exclusão), para ser alcançado um custo de algoritmo com o tempo de pesquisa tendendo a O(log n).

3. Metodologia

Essa seção apresenta a metodologia e ambiente utilizados para realizar a análise e comparação das estruturas de dados citadas. Para o ambiente de testes, foi utilizado um computador para a execução de algoritmos e medição de dados. As configurações de hardware do dispositivo são apresentadas na Tabela 1.

Dispositivo	Processador	Memória RAM	Sistema Operacional
Notebook Acer	AMD A12-9720P 2.7GHz	8 GB	Ubuntu Linux 18.04 LTS

Tabela 1. Configurações de Hardware

O experimento consistiu em submeter o dispositivo a execução de 4 algoritmos de estruturas de dados em árvores Binárias e árvores AVL. Dois algoritmos eram voltados a inserção e busca de valores inteiros, enquanto que os outros dois algoritmos tinham como objetivo inserção e busca em uma árvore de strings.

3.1. Funcionalidades Utilizadas

Algumas das funções implementadas aos algoritmos:

- 1. treeInitialize: Função que inicializa uma árvore;
- **2. treeInsert:** Recebe a raiz e um novo elemento, insere o novo elemento em seu devido lugar na árvore;
- **3. treeSearch:** Recebe o valor de elemento e verifica se o mesmo existe na árvore;
- 4. treeHeigth: Recebe a raiz da árvore e retorna a sua altura;
- **5. treeRemove:** Recebe a raiz da árvore
- **6.** treeRotationLL / treeRotationRR / treeRotationLR / treeRotationRL: Funções utilizadas pelos algoritmos de árvore AVL para rotacionar a árvore;
- 7. **treeHeightOf** / **treeBalancingFactor** / **treeMin:** Funções auxiliares utilizadas pelo algoritmo de árvore AVL para balancear a árvore;

4. Resultados da Execução do Programa

Essa seção apresenta os resultados obtidos nos experimentos que tiveram como objetivo comparar a eficácia na utilização nas estruturas de dados de árvores apresentadas.

4.1 Programa de Busca de Inteiros

Neste experimento, foi utilizado como métrica: a variação de tempo(em nanosegundos) de busca de elementos numa árvore preenchida aleatoriamente.

	Altura 15		Altura 20	
N Buscados	Árvore Binária	Árvore AVL	Árvore Binária	Árvore AVL
# 2252	2,73E+08	2,65E+08	2,68E+06	2,39E+08
# 46445	4,70E+06	2,90E+08	3,10E+06	3,70E+06
# 57861	1,90E+06	4,10E+06	3,00E+06	3,30E+06
# 97962	1,80E+06	2,10E+06	2,30E+06	3,00E+06
# 64556	1,80E+06	2,00E+06	2,60E+06	2,80E+06
# 6229	1,80E+06	1,50E+06	2,10E+06	2,30E+06
# 41059	1,60E+06	6,70E+06	2,20E+06	5,60E+06
# 11870	1,50E+06	1,60E+06	2,20E+06	2,60E+06
# 45857	1,50E+06	1,60E+06	2,00E+06	2,20E+06
# 101761	1,60E+06	1,70E+06	2,20E+06	2,80E+06

4.2 Programa de Referência Cruzada

Neste experimento, foi realizado para analisar a quantidade de passos necessários para encontrar elementos dentro de uma árvore binária de busca em uma árvore AVL. A medição foi realizada em um programa de referência cruzada, onde o conteúdo da árvore é formado por strings, inseridas a partir da leitura de um arquivo de texto.

	Árvore Binária	Árvore AVL	
Palavras Buscadas	Passos Percorridos	Passos Percorridos	
querer	7	6	
doer	10	7	
descontente	8	5	
servir	10	7	
preso	7	5	
ver	6	3	
pode	8	6	
mesmo	10	7	
amor	1	4	
amizade	4	7	

Tabela 3. Tempos de Busca nas Árvores

5. Conclusão

Esse relatório apresentou uma análise relativa às estruturas de dados baseadas em árvores Binária de Busca e AVL, com o objetivo de comparar a eficácia de ambas as estruturas nas situações apresentadas. Na primeira etapa foi observado o tempo de busca em árvores de valores inteiros. O segundo experimento foi realizado visando medir o número de passos para buscar elementos em árvores de string. Em ambos os casos os resultados relacionados a árvore AVL se mostraram mais estáveis, apresentando um range de variação de tempo e número de passos menor que na árvore Binária de Busca, levando em conta que a árvore AVL há muito mais elementos até alcançar a altura 15 ou 20, por balancear a árvore a cada novo elemento inserido. Com base nos dados apresentados, é possível afirmar que a árvore AVL é uma opção viável para tratar de grandes volumes de dados, dada sua estabilidade. A árvore binária, por sua vez, apesar da sua instabilidade é uma opção recomendável para volumes de dados menores e que necessitam de um tempo de busca menor.

6. Apêndice

Todo código-fonte apresentado para as soluções das questões propostas seguem em anexo com a documentação.

7. Referências

ÁRVORE AVL. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: https://pt.wikipedia.org/w/index.php?title=%C3%81rvore_AVL&oldid=59445504. Acesso em: 25 set. 2020.

ÁRVORE BINÁRIA DE BUSCA. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2021. Disponível em: https://pt.wikipedia.org/w/index.php?title=%C3%81rvore_bin%C3%A1ria_de_busca&oldid=60629462>. Acesso em: 11 mar. 2021.