16 Order / Product / Subspace

Exercise 16.1. Show that if Y is a subspace of X and $A \subseteq Y$, then the subspace topology of A in X is the same as in Y.

Solution. The subspace topology of A in Y is the sets $U \cap A$, where U is open in Y. These are just the sets $(V \cap Y) \cap A = V \cap A$ where V is open in X, which are the same sets in the subspace topology of A in X.

Exercise 16.2. If $\mathcal{T}, \mathcal{T}'$ are topologies on X and \mathcal{T}' is strictly finer than \mathcal{T} , what can be said about the corresponding subspace topologies of $Y \subseteq X$?

Solution. The subspace topology with respect to \mathcal{T} is clearly finer than the one in \mathcal{T}' , but not necessarily strictly finer. For example, let Y be the empty set. \square

Exercise 16.3. Consider the set Y = [-1, 1] as a subspace of \mathbb{R} . Which of the following sets are open in Y? Which are open in \mathbb{R} ?

- $A = \{x \mid 1/2 < |x| < 1\}$
- $B = \{x \mid 1/2 < |x| \le 1\}$
- $C = \{x \mid 1/2 \le |x| < 1\}$
- $D = \{x \mid 1/2 \le |x| \le 1\}$
- $E = \{x \mid 0 < |x| < 1 \text{ and } 1/x \notin \mathbb{Z}_+\}$

Solution. A, B, E are open in Y, and A, E are open in \mathbb{R} .

Exercise 16.4. A map $f: X \to Y$ is called an **open map** if f(U) is open in Y for each U open in X. Show that the projection maps π_1 and π_2 are open.

Solution. I will only do π_1 . Let U be open in $X \times Y$, and choose $x \in \pi_1(U)$. Then we have $(x,y) \in U$ for some $y \in Y$, so $(x,y) \in (A \times B) \subseteq U$ for some basis set $A \times B$. Then

$$A = \pi_1(A \times B) \subseteq \pi_1(U)$$
.

Since x was arbitrary, $\pi_1(U)$ is open.

Exercise 16.5. Let X and X' denote a single set in the topologies \mathcal{T} and \mathcal{T}' respectively; let Y and Y' denote a single set in the topologies \mathcal{U} and \mathcal{U}' respectively. Assume these sets are nonempty. Show that if $\mathcal{T}' \supseteq \mathcal{T}$ and $\mathcal{U}' \supseteq \mathcal{U}$, then the product topology on $X' \times Y'$ is finer than the product topology on $X \times Y$. Does the converse hold?

Solution. This is clearly true because the basis of $X \times Y$ is a subset of the basis of $X' \times Y'$.

For the converse, we will just show $\mathcal{T}' \supseteq \mathcal{T}$. Let U be open in X and choose $x \in U$. Since Y is nonempty, pick an arbitrary $y \in Y$. Then we have $U \times Y$ is open in $X \times Y$, so it's also open in $X' \times Y'$. We can pick a basis

set $A \times B \subseteq X' \times Y'$ contained within $U \times Y$ which contains the point (x, y). Therefore, we have $x \in A \subseteq U$, where A is open in X'. Since x was arbitrary, we have shown that $\mathcal{T}' \supseteq \mathcal{T}$

Exercise 16.6. Show that the countable collection

$$\{(a,b)\times(c,d)\mid a,b,c,d\in\mathbb{Q}\}$$

is a basis for \mathbb{R}^2

Solution. We've shown in a previous exercise that $\{(a,b) \mid a,b \in \mathbb{Q}\}$ is a basis for \mathbb{R} , so we can just apply Theorem 15.1

Exercise 16.7. Let X be an ordered set. If $Y \subset X$ is convex in X, does it follow that Y is an interval or ray?

Solution. It does not. For example, the set $\{x \mid x^2 < 2\}$ is not expressible as an interval in \mathbb{Q} . The key property required for this to hold is completeness. \square

Exercise 16.8. If L is a straight line in the plane, describe the topology L inherits as a subspace of $\mathbb{R}_{\ell} \times \mathbb{R}$ and as a subspace of $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$.

Solution. The results are summarized below:

	$\mathbb{R}_{\ell} imes \mathbb{R}$	$\mathbb{R}_{\ell} imes \mathbb{R}_{\ell}$
\uparrow	\mathbb{R}	\mathbb{R}_ℓ
7	\mathbb{R}_ℓ	\mathbb{R}_ℓ
\rightarrow	\mathbb{R}_{ℓ}	\mathbb{R}_ℓ
\searrow	\mathbb{R}_ℓ	discrete

Exercise 16.9. Show that the dictionary order topology on the set $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_d \times \mathbb{R}$, where \mathbb{R}_d denotes \mathbb{R} in the discrete topology. Compare this topology with the standard topology on \mathbb{R}^2 .

Solution. Every basis element of $\mathbb{R}_d \times \mathbb{R}$ is also a basis element of $\mathbb{R} \times \mathbb{R}$ in the dictionary ordering. Now let $((a \times b), (c \times d))$ be a basis interval in the dictionary ordering. If a = c and b < d, then this is also a basis set of $\mathbb{R}_d \times \mathbb{R}$. Now suppose that a < c. Then we have

$$((a \times b), (c \times d)) = (\{a\} \times (a, \infty)) \cup ((a, c) \times \mathbb{R}) \cup (\{c\} \times (-\infty, d)),$$

which is open in $\mathbb{R}_d \times \mathbb{R}$ as the union of 3 open sets. Therefore, the topologies are indeed the same.

By Exercise 16.5, this topology is finer than the standard topology on \mathbb{R}^2 . \square

Exercise 16.10. Let I = [0,1]. Compare the product topology of $I \times I$, the dictionary order topology of $I \times I$, and the topology of $I \times I$ inherited as a subspace of the dictionary order in \mathbb{R}^2 .

Solution. • $[0,1] \times (1/2,1]$ is open in the product topology, but not the dictionary order (consider the point (0×1)).

- $\{1/2\} \times (0,1)$ is open in the dictionary order or the space inherited from dictionary order of \mathbb{R}^2 , but not the product topology.
- From Exercise 16.9, we know the dictionary topology in \mathbb{R}^2 is finer than the standard topology. Reducing to $I \times I$ via subspaces, the space inherited from the dictionary topology in \mathbb{R}^2 is finer than the product.
- $\{1/2\} \times [0,1]$ is open in the inherited space, but not the dictionary space.
- To conclude, the only comparison is that the inherited space is strictly finer than the other two.