概率论与数理统计

是一门研究随机现象数量规律的学科

概率论的起源

人类关于概率(偶然事件发生的可能性有大小之分)的思想由来已久,但涉及概率的计算和推理起源于并不高尚的赌博和机会游戏。

法国大数学家拉普拉斯曾说:"虽然它是从考虑某一低级的赌博开始,但它已成为人类知识中最重要的领域。"

P.Laplace,1749-1827

概率论的起源

历史上有文字记载的第一个概率问题——分赌本问题出现在意大利数学家帕乔里(Luca Pacioli,1445-1509)出版于1494年的书里。问题如下:

A, B两人玩一种赌博(意大利中世纪的一种叫balla赌博)二人各出赌本10元, 共有20元。规则是: 谁先赢6局则得到全部赌本20元并结束赌博. 在进行过程中因故停止下来, 停止时A赢了5局, B赢了3局, 问如何分赌本?

1494年帕乔里: 5:3

1558年G.F.Pererone: 6:1

1556年N.Tartalia: 2:1

1654年帕斯卡: 7:1

怡台 甘□ 上 7.1

课程▼

所谓"慕课"(MOOC),顾名思义,"M"代表Massive(大规模),与传统课程只有几十个或几百个学生不同,一门MOOCs课程动辄上万人,最多达16万人;第二个字母"O"代表Open(开放),以兴趣导向,凡是想学习的,都可以进来学,不分国籍,只需一个邮箱,就可注册参与;第三个字母"O"代表Online(在线),学习在网上完成,无需旅行,不受时空限制;第四个字母"C"代表Course,就是课程的意思。[1]

这一大规模在线课程掀起的风暴始于2011年秋天,被誉为"印刷术发明以来教育最大的革新",呈现"未来教育"的曙光。2012年,被《纽约时报》称为"慕课元年"。^[2]多家专门提供慕课平台的供应商纷起竞争,Coursera、edX和Udacity是其中最有影响力的"三巨头",前两个均进入中国。

3 主要特点

≥ 编辑

- 1、大规模的:不是个人发布的一两门课程:"大规模网络开放课程"(MOOC)是指那些由参与者发布的课程,只有这些课程是大型的或者叫大规模的,它才是典型的的MOOC。 2、开放课程:尊崇创用共享(CC)协议,只有当课程是开放的,它才可以成之为MOOC。
- 3、网络课程:不是面对面的课程;这些课程材料散布于互联网上。人们上课地点不受局限。无论你身在何处,都可以花最少的钱享受美国大学的一流课程,只需要一台电脑和网络联接即可。

概率论与数理统计 国家福品

重庆大学 荣腾中、刘琼荪、黎雅莲、胥斌、李曼曼

本课程将引导你学习概率建模、统计推断、数据分析和科学预测,是你进一步学习现代统计方法和软件的起点。

概率论与数理统计

厦门大学 曾华琳、郑旭玲、吴德文

想要了解人工智能,概率统计是必经之路。信息学科的老师将带大家走进概率世界,我们重理论,重模型,轻计 **篁,轻推导,更具工程数学的特色。只要你了解一些微积分的知识,那就来吧。与...**

A 2857人参加 () 进行至第6周

概率论与数理统计

天津大学 关静、王凤雨、杨玲玲、赵慧

法国数学家拉普拉斯说:"生活中最重要的问题,其中绝大多数在实质上只是概率的问题"。在这里我们将带领大 家去感知变化多端的随机现象,探索其内在的变化规律,处理随机数据,对所研究的问题给出更...

A 15422人参加 ① 已结束,可查看内容

概率论与数理统计 国家福品

浙江大学 张铜奋、张奕、黄炜、赵敏智、吴国桢

概率论与数理统计是研究"随机现象"数量规律的一门学科。概率论与数理统计的应用非常广泛,几乎遍及自然科 学, 社会科学, 工程技术, 军事科学及生活实际等各领域。通过学习"....

A 26466人参加 · 进行至第7周

概率论部分

第一章 随机事件与概率

第二章 随机变量及其分布

第三章 多维随机变量及其分布

第四章 随机变量的数字特征

第五章 大数定律与中心极限定理

统计部分

第六章 统计的基本概念

第七章 参数估计

第八章 假设检验

第九章 回归分析

第一章 随机事件及其概率

第一节 随机事件

第二节 概率

第三节 条件概率

第四节 独立性

§ 1.1 随机试验与随机事件

自然界与社会生活中的两类现象:

- » 确定性现象: 结果确定
- > 不确定性现象: 结果不确定

例:

- ◆ 向上抛出的物体会掉落到地上 ——确定
 - ◆ 明天的天气状况 ——不确定
 - ◆ 买了彩票会中奖 ——不确定

"生活是不确定的,概率是<mark>不确定性的逻辑</mark>,帮助人们避免常见错误, 充分理解巧合,做出更好的判断"

一、随机试验

定义1 如果某试验满足以下三个特点

(1) 重复性: 在相同条件下,试验可重复进行;

(2) 明确性: 试验的所有可能结果事先均已知;

(3) 随机性:每次试验的具体结果,在试验前无法预知.

就称此试验为随机试验,记为 E.

例: 下列试验均为随机试验

 E_1 : 抛一枚硬币,观察其出现正面和反面的情况;

 E_2 : 同时掷两枚骰子,观察其出现的点数;

 E_3 :考查在一定时间段内某电话的呼叫次数;

 E_4 : 考查某机械部件的抗压强度.

二、样本点、样本空间与随机事件

定义2 随机试验E的每一个可能出现的结果称为随机试验 E 的样本点,记为 ω .

随机试验E的所有样本点的全体称为随机试验E的样本空间,记为 Ω .

随机试验E的样本空间 Ω 即为随机试验E的所有可能出现的结果(样本点)组成的集合.

定义3 称样本点的集合为<mark>随机事件</mark>,简称为事件, 记为*A*, *B*, *C*等. 由一个样本点构成的单点集称为基本事件.

例: ΔE_1 中, $A_1 = \{\omega_1\}$;

在
$$E_2$$
中, $B_1 = \{(6,6)\}, B_2 = \{(1,1),(1,2),(2,1)\};$

在 E_4 中, $C_1 = (10,20)$ 均为随机事件;

其中 E_1 中的 A_1 和 E_2 中的 B_1 为基本事件.

由定义3知随机事件是样本空间 Ω 的子集.

当随机试验E中所出现的样本点属于集合A时,就称随机事件A发生,否则就称随机事件A不发生.

(例 E2举例发生、不发生)

在每次试验中,

必然发生的事件称为必然事件,从集合角度看,必然事件为全集,即样本空间 Ω .

不可能发生的事件称为不可能事件,从集合角度看,不可能事件为空集 Ø.

(例 E_2 举例必然事件、不可能事件)

三、事件间的关系及其运算

1. 事件的包含(子事件)

如果事件A发生,则事件B一定发生,就称事件A包含于事件B,或称事件B包含了事件A,记为 $A \subset B$ 或 $B \supset A$.

从集合角度来讲,A为B的子集,故也称事件A为事件B的子事件. 显然有 $\emptyset \subset A \subset \Omega$.

2. 事件的相等

如果事件A和事件B相互包含, 即 $A \subset B$, 且 $B \subset A$,

就称事件A, B为相等事件,记为A=B.

从集合角度来讲,两个集合完全相等.

3. 并事件

事件 "A, B中至少发生一个" 称为事件A和事件B的并事件,记为 $A \cup B$.

从集合角度来讲, $A \cup B$ 为 $A \cap B$ 的并集.

4. 交事件(积事件)

事件 "A, B都发生" 称为事件A和事件B的交事件或积事件,记为 _____ 或 AB.

从集合角度来讲,AB为A和B的交集.显然有 $AB \subset A \subset A \cup B$, $AB \subset B \subset A \cup B$.

5. 差事件

事件 "A发生,且B不发生"称为事件A与事件B的差事件,记为 A-B.

从集合角度来讲,

6. 互不相容事件(互斥事件)

如果事件A与B不可能都发生,即 $AB = \emptyset$,就称事件A和事件B互不相容或互斥。

从集合角度来讲,A和B互不相容指A与B没有共同的元金(上数学课、上体育课)

素. 7. 对立事件

如果事件A与B满足 $A \cup B = \Omega$, 且 $AB = \emptyset$, 就称事件A和事件B互为对立事件,或称事件B为事件A的对立事件,记为 $B = \overline{A}$.

从集合角度来讲, \bar{A} 为A的余集, 即 $\bar{A} = \Omega - A$.

(上课、下课)

图1 事件的关系及运算示意图

例1 掷一枚骰子,设事件 $A = \{1,3,5\}, B = \{1,2\}, 求$ $A \cup B, AB, A-B, B-A, \overline{A}.$

$$A \cup B = \{1, 2, 3, 5\}, \quad AB = \{1\}, \quad A - B = \{3, 5\},$$

$$B - A = \{2\}, \quad \overline{A} = \{2, 4, 6\}.$$

例2 设有随机事件A和B,试用A, B表示事件 "A和B中 恰好发生一个".

 \mathbf{M} 事件 "A和B恰好发生一个"有多种表示形式 $A \cup B - AB$; $(A - B) \cup (B - A)$; $A\bar{B} \cup B\bar{A}$.

事件的运算律

(1) 交換律
$$A \cup B = B \cup A$$
, $AB = BA$.

(2) 结合律
$$(A \cup B) \cup C = A \cup (B \cup C)$$
, $(AB)C = A(BC)$.

(3) 分配律
$$(A \cup B)C = (AC) \cup (BC),$$
 $(AB) \cup C = (A \cup C)(B \cup C).$

(4) 德. 摩根律 $\overline{A \cup B} = \overline{A}\overline{B}$, $\overline{AB} = \overline{A} \cup \overline{B}$.

思考:事件运算律的作用。

注意: (1) 事件B-A= "B发生,且A不发生",因此

$$A - B \neq B - A$$

(2) 可以证明,对任意的事件A和B,恒有

$$A - B = A\overline{B} = A - AB$$

(3) $\overline{A \cup B} = \overline{A}\overline{B}$ 表示事件 $A \cap B$ 都不发生;

 $\overline{AB} = \overline{A} \cup \overline{B}$ 表示事件A和B中至少有一个不发生.

(4)
$$\overline{A-B} = \overline{A} \cup B$$
 $\text{MI:} \quad \overline{(A \cup B) - C} = (\overline{A} \cap \overline{B}) \cup C$

(5) 没有消去律
$$AB = AC \Rightarrow B = C$$
? $AB \supset AC \Rightarrow B \supset C$?

(6) 推广(3)

$$A_1 \cup A_2 \cup \cdots \cup A_n = "A_1, A_2, \cdots, A_n$$
 中至少有一个发生".

$$A_1A_2\cdots A_n="A_1,A_2,\cdots,A_n$$
都发生".

$$\overline{A_1 \cup A_2 \cup \dots \cup A_n} = \overline{A_1} \overline{A_2} \cdots \overline{A_n} = "A_1, A_2, \dots, A_n \text{ 都不发生"}.$$

$$\overline{A_1 A_2 \cdots A_n} = \overline{A_1} \cup \overline{A_2} \cdots \cup \overline{A_n} = A_1, A_2, \cdots, A_n \quad \underline{至少有一个}$$

不发生".

例3 试用随机事件A, B, C表示下列事件

- (1) "A, B, C中至少发生一个"; $A \cup B \cup C$
- (2) "A, B, C都发生"; ABC
- (3) "A, B, C中恰好发生一个"; $A\overline{B}\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}\overline{B}C$
- (4) "A, B, C中至少发生两个"; $ABC \cup AB\overline{C} \cup A\overline{B}C \cup \overline{A}BC$
- (5) "A发生,且B, C至少有一个不发生";

$$A(\overline{B} \bigcup \overline{C}) = A \overline{BC} = A - BC$$

注意:分解以及"转化"能力

例4

投掷一枚硬币10次,请表示以下事件:

- (1) 第一次为正面;
- (2) 至少有一次是正面;
- (3) 至少有两个连续的正面。

例5 设A,B,C为三个事件,则事件 $(A-B)\cup(B-C)$ 等于事件

- (A) A C.
- $(B)A \cup (B-C)$.
- $(C)(A \cup B) C.$
- $(D)(A \cup B) BC$.

§1.2 频率与概率

- 一、等可能概型(古典概型)
- 二、几何概型
- 三、频率和统计概率
- 四、公理化的概率

一、古典概型(1812年法国数学家Laplace)

- 1. 定义1: 若随机试验具有以下特征:
 - ① 样本空间中样本点的个数有限
 - ② 每个基本事件出现的可能性相同

则称此试验是古典概型,也叫等可能概型.

2、古典概型求法

若样本空间 Ω 中样本点的总数为 n, 事件A所

包含的样本点个数为 k,则 $P(A) = \frac{k}{n}$.

此处为概率的朴素定义,注意其限制条件。

$$P(\overline{A}) = \frac{n-k}{n} = 1 - p(A)$$

一种策略:求解一个事件概率时,考虑直接确定事件的概率容易还是确定它的对立事件的概率容易。 例如,后面介绍在一个班级求有同一天生日的概率问题。

介绍: 利用乘法法则进行计数

介绍:有放回与无放回抽样时 计数的不同

例1. (重复计数问题)一个四人构成的小团队,

- (1) 选两人组成会员会,有多少种选法?
 - (2) 将这四个人分成每两个人一组,有多少分法?

组合数
$$\binom{n}{k} = C_n^k = \frac{n(n-1)\cdots(n-k+1)}{k!}$$

例2. (最早期的概率活动)

将一枚骰子连掷二次,求

- (1) 两次点数之和为 8 的概率.
- (2) 两次点数中较大的一个不超过 3 的概率.

5/36, 1/4

例3. 超几何分布(序贯抽样)

设有一批产品共 100 件, 其中有 5 件是次品, 求

- (1) 任取 10 件全部是合格品的概率.
- (2) 任取 10 件其中恰有两件是次品的概率.

$$\frac{{\color{red}C_{95}^{10}}}{{\color{red}C_{100}^{10}}}, \frac{{\color{red}C_5^2 {\color{red}C_{95}^8}}}{{\color{red}C_{100}^{10}}}.$$

例4. 设有m个不同的质点,每个质点以等可能落于 $N(N \ge m)$ 个盒子中的每一个盒子里(设每个盒子能容纳的质点数没有限制),求

- (1) 某预先指定的 m 个盒子各含一个质点的概率.
- (2) 每个盒子中至多含一个质点的概率.

$$\frac{m!}{N^m}, \frac{C_N^m m!}{N^m}$$

注:分房子问题,生日模型

我们班同学在一年365天中至少有两人生日相同的概率是多少?

m个人在一年N=365天中至少有两人生日相同的概率:

人数	至少有两人生日相同的 概率
10	0.11694817771107765187
20	0.41143838358057998762
30	0.70631624271926865996
40	0.89123180981794898965
50	0.97037357957798839992
60	0.99412266086534794247
70	0.99915957596515709135
80	0.99991433194931349469
90	0.99999384835612360355
100	0.99999969275107214842
110	0.9999998947129430621
120	0.9999999975608521895
130	0.999999999624032317
140	0.999999999996210395
150	0.99999999999997549
160	0.999999999999999

A="每一天(盒子)中至多,有一个人出生(质点)", \Rightarrow

$$P(\overline{A}) = 1 - \frac{C_N^m m!}{N^m}.$$

二、几何概型(1777年法国科学家Buffon)

定义2:设试验的样本空间 Ω 为某一区域, 其测度 $m(\Omega)$ 为有限值, 若任一事件A发生的概率与A的测度 m(A)成正比, 则称此试验为几何概型试验,事件A的概率(也称为几何概率)定义为

 $P(A) = \frac{m(A)}{m(\Omega)}$

注:几何区域可以是一维区域(直线),二维区域(平面),三维区域(空间)等.

例5. 会面问题

甲乙二人相约在南大门8点到9点会面,先到者等候10分钟,过时离去,求两人能会面的概率.

11/36

例6. 蒲丰Buffon投针问题(1777)

平面上有一组平行线,其中任何相邻的两条线的距离都是a,向此平面上任投一长度为 l(l < a) 的针,求针与任一平行线相交的概率.

$$\Omega = \{0 \le x \le \frac{a}{2}, 0 \le \theta \le \pi\}, A = \{0 \le x \le \frac{l}{2}\sin\theta, 0 \le \theta \le \pi\},$$

$$P(A) = \frac{2l}{\pi a}$$

方法:蒙特卡洛(Monte-Carlo)模拟

投针n次,统计针与平行线相交的次数 k,再以比值 k/n 作为P(A)的近似值代入式中,求出 π 的近似值.

1. "贝特朗悖论"

(了解)

1899年, 法国科学家贝特朗提出了针对古典概率中的含糊与矛盾的所谓"贝特朗悖论".

问题: 在半径为r的圆内随机选择弦长, 求弦长超过圆内接 正三角形的边长之概率.

(1) 弦长只跟它与圆心的距离有关,而与方向无关。因此可以假定它垂直于某一直径,而且当且仅当它与圆心的距离小于1/2时,其弦长才大于 $\sqrt{3}$,因此所求的概率p=1/2. (样本空间可视为直径上的点)

(11) 任何弦交圆周两点,不失一般性,先固定其中一点A于圆周上,已此点为顶点做一等边三角形,显然只有落入此三角形内的弦才满足要求,这种弦的另一端B跑过的弦长为整个圆周的1/3,故所求概率为p=1/3(样本空间可视为圆周上的点,或与过A点的切线夹角)

(111) 圆内的弦被自己的中点惟一确定。当且仅当其中点属于半径为1/2的同心圆内时,弦长才会大于 $\sqrt{3}$,此时小圆面积为大圆面积的1/4,故所求概率p=1/4(样本空间可视为以点O为中心的同心圆)

思考:这里所谓悖论的原因。

三、频率与概率的统计定义

1. 定义3 如果在n次重复试验中事件A发生了 n_A 次,称 $\frac{n_A}{n}$ 为事件A在n次试验中发生的频率,记为 $f_n(A)$,即

$$f_n(A) = \frac{n_A}{n}.$$

- \rightarrow 频率 $f_n(A)$ 反映了事件A发生的频繁程度,具有波动性.
- 2. 频率的稳定性

实验者	N	n_A	$f_n(A)$
蒲丰	4040	2048	0.5070
K.皮尔逊	12000	6019	0.5016
K.皮尔逊	24000	12012	0.5005

3. 统计概率的定义

随机事件A发生的可能性大小称为事件A的概率,记作 P(A),用频率的稳定值来定义事件的概率称为概率的统 计定义或统计概率,即 $f_n(A) \longrightarrow P(A)$.

1713年贝努里(Bernoulli)大数定律.(P168)

4. 频率的性质

(1)
$$0 \le f_n(A) \le 1$$
 (2) $f_n(\Omega) = 1$

(3) $若A_1, A_2, ..., A_n$ 两两互不相容,则

$$f_n(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n f_n(A_k)$$

四、概率的公理化定义

为了克服古典概率与统计概率的缺点,1905年法国数学家波莱尔用他创立的测度论语言来表达概率论,为克服古典概率打开了大门. 从1920年起,苏联的大数家柯尔莫哥洛夫从测度论的途径来改造概率论,1933年以德文出版经典名著《概率论基础》,建立了公理化概率论.

Андре́й Никола́евич Колмого́ров 1903年4月-1987年10月

他在概率论、射影几何、数理统计、函数论、拓扑学、逼近论、 微分方程、数理逻辑、生物数学、哲学、数学方法论、经典力学、 遍历理论、算法理论等方面发表了多篇论文。 所涉及范围之广泛,内容之深刻,无不令人称奇。

"百科全书"

- 1. 公理化定义 1. 定义4 设函数P为定义在样本空间上的函数且满足
 - (1) 对 $\forall A \in \Omega$, 有 $P(A) \ge 0$ (非负性)
 - (规范性) (2) $P(\Omega) = 1$
 - (3) 若 $A_1, A_2, \cdots A_n$, ···是两两不相容事件,则

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i).$$
 (可列可加性)

则称P为样本空间 Ω 上的概率函数,称P(A)为事件A发生

的概

了解概率空间概念 (Ω, F, P)

注意: (1) - (3) 是概率函数必须要 满足的条件。

2. 概率的性质

性质1 $P(\emptyset) = 0$

性质2 (有限可加性)

$$P(A_1 + A_2 + \dots + A_n) = P(A_1) + P(A_2) + \dots + P(A_n).$$

其中 A_1 , A_2 , ..., A_n 是两两互不相容的事件.

性质3
$$P(\overline{A}) = 1 - P(A)$$

性质4 若A是B的子事件,即若 $A \subset B$,则

(1)
$$P(B-A) = P(B) - P(A)$$

(2) $P(A) \leq P(B)$ (概率的单调性)

性质5 $\forall A \in \Omega$,有 $0 \le P(A) \le 1$

定理1(减法公式) P(A-B) = P(A) - P(AB)

定理2 (加法公式) $P(A \cup B) = P(A) + P(B) - P(AB)$

推论1 对任意三个事件A, B, C, 有 $P(A \cup B \cup C) =$

$$P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

推论2 对任意 n 个事件 A_1 , A_2 , ..., A_n , 有

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le 1} P(A_i A_j) + \sum_{1 \le i < j \le$$

$$\sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$$
 Jordan 公式

容斥原理-先算累加,再减去重叠部分

例7 设A,B为两个随机事件,已知 P(A) = 0.5,P(B) = 0.4, $P(A \cup B) = 0.6$, 试分别计算 P(AB), $P(A\overline{B})$, $P(\overline{A} \cup \overline{B})$, $P(A \cup B)$.

$$P(AB) = 0.3, P(A\overline{B}) = P(A) - P(AB) = 0.2,$$

$$P(\overline{A} \cup \overline{B}) = 1 - P(AB) = 0.7,$$

$$P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A\overline{B}) = 0.9.$$

例8 设A,B,C为三个随机事件,已知 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{16}$,求事件A,B,C都不发生的概率. $P(\bar{A}\bar{B}\bar{C}) = 1 - P(A \cup B \cup C) = \frac{3}{8}.$

2015数学一、三

$$(A) P(AB) \le P(A)P(B)$$

$$(B) P(AB) \ge P(A)P(B)$$

$$(C) P(AB) \le \frac{P(A) + P(B)}{2}$$

$$(D) P(AB) \ge \frac{P(A) + P(B)}{2}$$

解法一 由于
$$AB \subseteq A$$
, $AB \subseteq B$, 有 $P(AB) \le P(A)$,

$$P(AB) \le P(B)$$
,从而 $P(AB) \le \frac{P(A) + P(B)}{2}$.

解法二
$$\frac{P(A) + P(B)}{2} - P(AB) = \frac{P(A) + P(B) - 2P(AB)}{2}$$
$$= \frac{P(A\overline{B}) + P(\overline{A}B)}{2} \ge 0.$$

(1991年)

$$P(A) = P(B) = \frac{1}{2}, P(A \cup B) = 1, 则必有 ()$$

$$(A)A \cup B = \Omega$$
, $(B)AB = \Phi$,

$$(C)P(\overline{A}\cup\overline{B})=1, (D)P(A-B)=0,$$

★ § 1.3 条件概率

- > 条件概率
- > 概率的乘法公式
- > 全概率公式
- ➤ 贝叶斯公式 (Bayes公式)

引例: 男孩女孩

设某家庭有两个小孩,并且已知至少有一个男孩, 问另外一个为女孩的概率为多少?

分析 一般而言,有两个小孩时共有4种情况 (男,男)(男,女)(女,男)(女,女) 由题意可知,不可能出现(女,女),故知可能为 (男,男)(男,女)(女,男) 因此另外一个为女孩的概率为 2/3.

注意: 根据新的条件缩减样本空间

解 设A表示有一个男孩, B表示有一个为女孩,则

$$\Omega = \{(男男)(男女)(女男)(女女)\}$$

$$A = \{ (男男) (男女) (女男) \}$$

$$B = \{ (男女) (女男) (女女) \}$$

有
$$P(A) = \frac{3}{4} = 0.75$$
, $P(AB) = \frac{2}{4} = 0.5$,

故
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{0.5}{0.75} = \frac{2}{3}$$
.

一、条件概率

1. 定义 设A, B是两个事件,且P(B) > 0,称

$$P(A|B) = \frac{P(AB)}{P(B)}$$

为在事件B发生条件下事件A发生的条件概率. (直观解释)

先验 $P(A) \xrightarrow{B}$ 后验P(A|B),根据条件(证据)对概率进行更新。 事实上,条件概率对于医学、法律、等科学的推理至关重要。

2. 条件概率的计算方法

$$ightharpoonup 公式法 $P(A|B) = \frac{P(AB)}{P(B)}$$$

> 缩减样本空间法

容易验证条件概率仍然是概率:

$$(1)P(A \mid B) \ge 0,$$

$$(2)P(\Omega | B) = 1.$$

因此,条件概率也有如下公式:

$$(4)P(A | B) = 1 - P(A | B),$$

$$(5)P(A - B \mid C) = P(A \mid C) - P(AB \mid C),$$

$$(6)P(A+B \mid C) = P(A \mid C) + P(B \mid C) - P(AB \mid C).$$

二、乘法公式

定理1 设P(B) > 0,则P(AB) = P(B)P(A|B).

记住口诀

推论1 设P(A) > 0, 则P(AB) = P(A)P(B|A).

推论2 对任意正整数 $n \ge 2$, 且 $P(A_1 A_2 \cdots A_{n-1}) > 0$, 则有 $P(A_1A_2\cdots A_{n-1}A_n)=$

$$P(A_1)P(A_2|A_1)P(A_3|A_2A_1)\cdots P(A_n|A_{n-1}\cdots A_2A_1)$$

 \uparrow 一般来说,如果随机试验E具有链式结构特征(一种 多阶段的试验),即试验的过程一环扣一环,如同串 联形式,此时适合应用乘法公式计算有关事件的概率. 例1 设50个晶体管中有2个次品,每次从中任取一个测试,测试后不放回,求2个次品分别在第2次测试和第4次测试时出现的概率.

分析: 多次测试(试验),
$$\frac{48}{50} \times \frac{2}{49} \times \frac{47}{48} \times \frac{1}{47} = \frac{1}{1225}$$

例2 设袋中有10个球,其中8个白球和2个红球,现不放回地将球逐个取出,求前两次所取球不同颜色的概率.

分析: 多次测试(试 验),测试不放回(串 联)。

三、全概率公式 贝叶斯公式

定义 如果事件组 A_1, A_2, \dots, A_n 两两互不相容,且 $A_1 \cup A_2 \cup \dots \cup A_n = \Omega$,就称事件组 A_1, A_2, \dots, A_n 构成 样本空间的一个完备事件组,简称完备组.

定理1 设事件组 A_1, A_2, \dots, A_n 为样本空间的一个完备事件组,

且 $P(A_i) > 0, i = 1, 2, \dots, n$, 则对任何事件B有

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$$

全概率公式

理解

A_i看成原因, B|Ai,原因发生时导致的结果。

注: 当随机试验*E*的过程具有并列结构特征时,即并联形式时,适合应用全概率公式计算有关事件的概率.

关键是寻找一个合适的完备事件组,使得计算较为简单。

"抓阄"中与不中与 先后次序是否有关?

例3 设袋中有10个球,其中8个白球和2个红球,现不放回地将球逐个取出,求第二次取到红球的概率?

区别: 直到第二次抓到红球。

问 第一次取到红球的概率?

第二次取到红球的概率?

第 i 次取到红球的概率?

Polya 模型

抓阄问题

以上结果表明 10 个人无论摸球顺序如何,每个人摸到红球的机会相等. 这也说明 10 个人抓阄,只要每个人在抓之前不知道他前边那些已经抓完的结果,无论先后, 抓到的机会是均等的.

例4 已知甲乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品,从甲箱中任取3件产品放入乙箱后,求从乙箱中任取一件产品是次品的概率.

1/4

关键是寻找一个合适的完备事件组,使得计算较为简单。

定理2 设事件组 A_1, A_2, \dots, A_n 为样本空间的一个完备事件组,

且 $P(A_i) > 0, i = 1, 2, \dots, n$, 则对任何事件B有

(1)
$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$$

全概率公式

理解: 已知原因找结果

(2) 若P(B) > 0, 则

$$P(A_{j}|B) = \frac{P(A_{j})P(B|A_{j})}{\sum_{i=1}^{\infty} P(A_{i})P(B|A_{i})}, j = 1, 2, \dots, n$$
 贝叶斯公式

理解: 己知结果找原因

在试验之前,所求概率 $P(A_1),P(A_2),\cdots,P(A_n)$ 称为先验概率. 当试验结束后,发现B发生了,此信息有助于探讨事件 A_1,A_2,\cdots,A_n 发生的原因,故所求条件概率 $P(A_1|B),P(A_2|B),\cdots,P(A_n|B)$ 称为后验概率.

贝叶斯公式可以分为两个步骤:

第一步: 先用全概率公式求出P(B);

第二步: 计算

$$P(A_j | B) = \frac{P(A_j)P(B|A_j)}{P(B)}, \ j = 1, 2, \dots, n$$

例5 假定用血清甲蛋白法诊断肝癌,设事件A表示被检查者已患有肝癌,事件B表示被检验者被诊断出患有肝癌,又在自然人群中调查得知

$$P(A) = 0.0004, P(B|A) = 0.95, P(\overline{B}|\overline{A}) = 0.90,$$

现有一人被此检验法诊断为患有肝癌,求此人已患有肝癌的概率.

 \mathbf{M} 由于 \mathbf{A} 和 $\overline{\mathbf{A}}$ 构成完备组,故由贝叶斯公式

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}$$
$$= \frac{0.0004 \times 0.95}{0.0004 \times 0.95 + 0.9996 \times (1 - 0.9)} = 0.0038.$$

例5中,先验概率为0.0004,后验概率为0.0038是一种对先验概率的修正。 (针对此人患有肝癌概率的修正)

课本P19 例1.5.5,自

习题

(2012)
$$A, B, C$$
为随机事件, A, C 不相容, $P(AB) = \frac{1}{2}, P(C) = \frac{1}{3}$,则 $P(AB|\overline{C}) = ?$

(2017)A,B为随机事件0 < p(A) < 1,0 < P(B) < 1, $P(A \mid B) > P(A \mid B)$ 的 充要条件是()

$$(A)P(B \mid A) > P(B \mid A) \quad (B)P(B \mid A) < P(B \mid A)$$

$$(C)P(\overline{B} \mid A) > P(B \mid \overline{A}) \quad (D)P(\overline{B} \mid A) < P(B \mid \overline{A})$$

设甲袋中含有2白球,3黑球,乙袋中一半白球一半黑球,现在从甲袋中任意取2球和乙袋中任意取球混合后,再从中任取一球为白球的概率?

玻璃杯成箱出售,每箱20只,设每箱有0,1,2只次品的概率为0.8,0.1和0.1.顾客购买时,售货员随意取出一箱,而顾客随意查看四只,若四只中无次品,则买下,否则退回。

- (1) 售货员随意取一箱, 顾客买下的概率;
- (2) 在顾客买下的一箱中,没有次品的概率。

§ 1.4 独立性

一、两个事件的独立性

定义1 对事件 $A \setminus B$,若P(AB)=P(A)P(B),则称它们是相互独立的,简称为独立.

- 注》事件A和B相互独立的直观理解为:事件A和B之间不 提供任何发生、不发生的信息。 理解
 - 不可能事件和必然事件与任何事件A相互独立.
- → 事件相互独立与事件互不相容是两个完全不同的概念.

结论1 设P(B)>0,则A与B相互独立的充分必要条件是 P(A)=P(A|B). 理解

结论2 设0 < P(B) < 1,则A = B相互独立的充分必要条件是 $P(A|B) = P(A|\overline{B}).$ 理解

结论3 设A,B为两事件,则下列各对事件相互独立是等价的: A与B \bar{A} 与B \bar{A}

记忆方法: 两个事件独立,拔与不拔 没关系。 例1 设随机事件A与B相互独立,已知A发生B不发生的概率 和B发生A不发生的概率相等,且A, B都不发生的概率为1/9, 求P(A).

2/3

例2(1) 设随机事件A与B相互独立,P(A)=0.5,P(B)=0.4, 求 $P(A\bar{B} \cup \bar{A}B | A \cup B)$.

5/7

例2(2) 2018 数学一

设随机事件A和B独立,A和C独立,且 $BC = \emptyset$, $P(A) = P(B) = \frac{1}{2}$, $P(AC|AB \cup C) = \frac{1}{4}, \text{ 则 } P(C) = \underline{\hspace{1cm}}.$

$$P(AC|AB \cup C) = \frac{P(AC \cap (AB \cup C))}{P(AB \cup C)} = \frac{P(ABC \cup AC)}{P(AB \cup C)}$$

$$= \frac{P(ABC) + P(AC) - P(ABC)}{P(AB) + P(C) - P(ABC)}$$

由于 $BC = \emptyset$, 从而 $ABC = \emptyset$, 故上式为 $= \frac{P(AC)}{P(AB) + P(C)} = \frac{P(A)P(C)}{P(A)P(B) + P(C)} = \frac{1}{4}.$

二、多个事件的两两独立与相互独立

定义2 若随机事件A, B, C满足下列条件

$$P(AB) = P(A)P(B)$$

$$P(AC) = P(A)P(C)$$

$$P(BC) = P(B)P(C)$$

则称随机事件A, B, C两两独立.

定义3 如果随机事件A, B, C两两独立,且

$$P(ABC) = P(A)P(B)P(C)$$

则称随机事件A, B, C相互独立.

注意: A,B,C相互独立的等价条件: 两者的交与第三者独立。

例3(S.N.Bernstein,1917)

一个质地均匀的正四面体,第1面染红色,第2面染黄色,第3面染蓝色,第4面染红、黄、蓝三色(各占一部分).在桌上将此四面体任意抛掷一次,考察和桌面接触的那一面上出现什么颜色.设事件A="出现红色",B="出现黄色", C="出现蓝色",试讨论随机A,B,C的独立性.

A,B,C两两独立,不相互独立

例4 设随机事件A分别与B, C独立,且 $C \subset B$,证明 A与B-C相互独立.

- 注 \rightarrow 当随机事件A, B, C相互独立时,则A与下列事件 $B \cup C$, B C, $B \cup C$, $B \cup C$
- \rightarrow 随机事件A、B、C相互独立当且仅当A、B、 \overline{C} 相互独立
 - \triangleright 当随机事件A分别与B, C独立时,则A与以上事件不一定独立.

记忆方法:

三个事件相互独立时,其中一个与另外两个事件的并、交、差、等等均独立。

例5 设随机事件A, B, C两两独立, $P(A), P(B), P(C) \in (0,1)$

则必有()

- (A) C与A-B独立
- (B) C与A-B不独立
- (C) $A \cup C$ 与 $B \cup \overline{C}$ 独立
- $A \cup C$ 与 $B \cup \overline{C}$ 不独立

解 如果 $A \cup C$ 与 $B \cup \overline{C}$ 独立,则 $A \cup C = \overline{A}\overline{C}$ 与 $B \cup \overline{C} = \overline{B}C$

独立, $P((\bar{A}\bar{C})(\bar{B}C)) = P(\bar{A}\bar{C})P(\bar{B}C)$, 由于

 $P((\overline{A}\overline{C})(\overline{B}C)) = 0, P(\overline{A}\overline{C})P(\overline{B}C) = P(\overline{A})P(\overline{C})P(\overline{B})P(C),$

进而得 $P(\bar{A})P(\bar{C})P(\bar{B})P(C) = 0$,

与题设 $P(A), P(B), P(C) \in (0,1)$ 矛盾.

因此(C)必不正确,选(D).

请自己验证(A)和(B)均不可选.

例6 设随机事件A, B, C相互独立, P(A)=0.3, P(B)=0.4, P(C)=0.5, 分别求

- (1) A, B, C至少发生一个的概率;
- (2) A, B, C恰好发生一个的概率.

0.79, 0.44

2014数学一、三

设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3, 则P(B-A)=(

解 因为事件A与B相互独立, 所以 $P(A-B) = P(A)P(\overline{B})$,

又
$$P(\overline{B}) = 1 - P(B) = 0.5$$
,故 $P(A) = 0.6$, $P(\overline{A}) = 0.4$,

因此
$$P(B-A) = P(B)P(\overline{A}) = 0.5 \cdot 0.4 = 0.2.$$

例7 (小概率事件)设随机试验E中事件A为小概率事件,

 $P(A) = \varepsilon > 0$,其中 ε 为小正数,试证不断独立地重复进行这项试验,小概率事件A迟早会发生.

多次重复试验,A至少发生一次的概率趋向于1.。

可靠性问题

可靠性问题是第二次世界大战后开始提出,当时军事装备已大量采用电子产品,但由于产品不可靠,造成重大损失,因此,50年代初人们开始有组织地、系统地研究电子产品的可靠性问题.

对一个元件或系统,它能正常工作的概率称为它的可靠度。可靠性的研究随着电子技术、社会经济及保险事业的发展而发展,已经称为一门新学科——可靠性理论.

例8 设某类元件的可靠度均为 r 属于(0,1), 且各元件能否正常工作是相互独立的. 现在将 2n 个元件组成如下图所示的两种系统, 试比较两系统的可靠性.

分析: a系统先串联后并联, b系统先并联后串联。

分赌本问题

甲乙两人玩一种赌博(意大利中世纪的一种叫balla赌博) 二人各出赌本10元,共有20元。规则时:谁先赢6局则得到 全部赌本20元并结束赌博。在进行过程中因故停止下来,停 止时甲赢了5局,乙赢了3局,问如何分赌本?

【分析】设事件Ai 表示第i局甲赢,

且假定在每局中甲贏得概率为 $\frac{1}{2}$,则在目前情况下,甲可能赢的概率为

$$P(A_6 \cup \overline{A}_6 A_7 \cup \overline{A}_6 \overline{A}_7 A_8) = P(A_6) + P(\overline{A}_6 A_7) + P(\overline{A}_6 \overline{A}_7 A_8)$$

$$= P(A_6) + P(\overline{A}_6)P(A_7) + P(\overline{A}_6)P(\overline{A}_7)P(A_8) = \frac{7}{8}.$$

1654年帕斯卡: 7:1

拉普拉斯配对问题

n个绅士每人抛出各自的帽子,欢呼一项胜利.假设欢呼之后帽子经充分混合之后,绅士们还是想要顶帽子,遂随机取一顶帽子戴到头上,问至少有一人取到自己帽子的概率 P_n ,当n趋于无穷时,这个概率会趋于0吗?

拉普拉斯配对

n个绅士每人抛出各自的帽子,欢呼一项胜利. 假设欢呼之后帽子经充分混合之后,绅士们还是想要顶帽子,遂随机取一顶帽子戴到头上,问至少有一人取到自己帽子的概率 p_n ,当n趋于无穷时,这个概率会趋于0吗?

其中 $s_1 = \sum_{i=1}^n P(A_i), s_2 = \sum_{i=1}^n P(A_i A_j), \cdots, s_n = P(A_1 A_2 \cdots A_n)$ 显然 $P(A_1) = \frac{1}{n}$,由抓阄问题(或用全概率公式可证), $P(A_i) = \frac{1}{n}$.故 $s_1 = 1$.

如果第i个人拿走自己的帽子,则第j个人(j不等于i) 在余下n-1中随机抽取,由于他的帽子仍在其中,故 条件概率

$$P(A_j|A_i) = \frac{1}{n-1}, P(A_iA_j) = P(A_i)P(A_j|A_i) = \frac{1}{n} \cdot \frac{1}{n-1}.$$

$$S_2 = \sum_{1 \le i \le j \le n} P(A_i A_j) = \frac{C_n^2}{n(n-1)} = \frac{1}{2!}$$

类似地得到一般结果 $S_k = \frac{1}{l}$.

于是
$$p_n = \sum_{k=1}^n (-1)^{k+1} s_k = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!}$$

故n趋于无穷大时,该无穷级数可视为 $f(x)=1-e^{-x}$ 的麦克 劳林展开式在x=1取值,故n趋于无穷大时,至少有 一人拿到自己帽子的概率为 $1-e^{-1} \approx 0.64$.