Sample Size for 2016 Chinook Tagging Study: Supplemental Release

Prepared for:

Pat Brandes
U.S. Fish and W U.S. Fish and Wildlife Service
Stockton, CA

Prepared by:

Rebecca Buchanan
University of Washington
Seattle, WA

2 December 2015

Summary of Recommendations

Assume

- Barrier is installed at head of Old River
- Approximately 25% of fish reaching the Turner Cut Junction enter Turner Cut
- The survival probability from Turner Cut to Chipps Island is 0.05 for fish entering Turner Cut
- A primary release at Durham Ferry is paired with a supplemental release in the San Joaquin River downstream of the Old River flow split
- Total sample size = 648

Recommend

- To estimate route selection probability at the head of Old River: Release scenario II
- To estimate route selection probability at Turner Cut: Release scenario I
- To estimate survival from through the Old River route to Chipps Island: Release scenario II
- To estimate survival from the lower San Joaquin River or Turner Cut to Chipps Island: Release scenario I
- To estimate survival from Mossdale to the Turner Cut junction: Release scenario II

Where

- Release scenario I = release 324 fish at Durham Ferry, 324 fish in supplemental release
- Release scenario II = release 500 fish at Durham Ferry, 148 fish in supplemental release
- "Low" or "Low Mixed" survival was assumed

Introduction

This analysis updates previous sample size analyses for Chinook salmon acoustic tagging studies in the South Delta. It uses data simulation to select between two scenarios using a primary release at Durham Ferry paired with a supplemental release in the San Joaquin River downstream of the Old River flow split. Scenario I uses equal release sizes at the two release locations: 324 fish released both at Durham Ferry and in the supplemental release. Scenario II uses 500 fish released at Durham Ferry and 148 fish released in the supplemental release. Both scenarios use a total release size of 648. Data were simulated under the "Low" and "Low Mixed" survival scenarios from a previous sample size analysis (Buchanan 2014). Primary focus is on estimating survival from various points to Chipps Island

Methods

Analysis methods were based on the methods described in Buchanan (2014). Detection data were simulated 10,000 times from a simplified survival model using 48 parameter sets and two candidate release scenarios, as described above. For each simulated data set, parameter estimates were computed using Method of Moments. For each parameter set and release size combination, the mean, maximum, and standard deviation of the sampling distribution of parameter estimates was computed, as well as the number of simulations in which each parameter was estimable. The preferred release scenario of the two scenarios considered was identified based on several criteria on the estimability of parameters and validity of estimates.

Parameters estimated in the survival model were (Figure 1):

- Overall survival from Durham Ferry to Chipps Island (s_R)
- Survival from Durham Ferry to the head of Old River (s_{R0})
- Survival from the head of Old River to Chipps Island in both the San Joaquin River route and the Old River route (s_A, s_B)
- Survival from the head of Old River to Turner Cut in the San Joaquin River (SA1)
- Survival from the Turner Cut junction to Chipps Island in both the San Joaquin River route and the Turner Cut route (SA2, SF)
- Route selection at the head of Old River and at Turner Cut (ψ_{A1}, ψ_{A2})
- Detection probabilities at the dual arrays at the 5 detection sites

The supplemental release located downstream of the Old River flow split contributed to estimation of parameters s_{A2} , s_F , ψ_{A2} , and detection probabilities at 3 detection sites, when combined with data from the primary release at Durham Ferry. The survival model is described in more detail in Buchanan (2014).

Figure 1. Schematic of model used in data simulations, with parameters: survival from Durham Ferry to Chipps Island (S_R), survival from head of Old River/Mossdale in the San Joaquin River route (S_A) and Old River route (S_B), probability of survival from head of Old River/Mossdale to Turner Cut (S_{A1}), survival from Turner Cut to Chipps Island in the San Joaquin River route (S_{A2}) and Turner Cut route (S_F), and the probabilities of remaining in the San Joaquin River at the head of Old River (ψ_{A1}) and at Turner Cut (ψ_{A2}). Other parameters are survival from Durham Ferry to the head of Old River/Mossdale (S_{R0}), and detection probabilities on the upstream and downstream arrays at Lathrop (P_{A1a} , P_{A1b}), Old River (P_{B1a} , P_{B1b}), Turner Cut in the San Joaquin (P_{A2a} , P_{A2b}) and in Turner Cut (P_{F1a} , P_{F1b}), and at Chipps Island (P_{G2a} , P_{G2b}).

The total release size was assumed to be 648. Two candidate release scenarios were considered (Table 1), to determine the preferred distribution of the total release size over the two release locations (primary release at Durham Ferry, supplemental release downstream).

Table 1. Release scenarios considered, for a total release size of 648.

Scenario	Durham Ferry Release Size	Supplemental Release Size
	(R1)	(R2)
1	324	324
	500	148

Parameters Sets

Parameter values were selected from a subset of the parameters considered in a previous analysis (Buchanan 2014, Tables 2 and 3). The "Low" and "Low Mixed" parameter scenarios were considered for this analysis (scenarios 2 and 3 from Buchanan 2014), based on survival estimates from recent years combined with the possible expectation of higher water than in recent years. These two parameter scenarios both assume that survival from the Durham Ferry release site to Mossdale is s_{R0} =0.4, survival from Mossdale to the Turner Cut junction (sites A2 and F1) is s_{A1} =0.3, and 98% of the fish reaching the Old River junction remain in the San Joaquin, as expected if a barrier is installed in Old River (Table 2). Survival from site A2 to Chipps Island (site G2) was modeled as either 0.07 or 0.15, survival from Turner Cut to Chipps Island was assumed to be 0.05, and survival from the head of Old River to Chipps Island via the Old River route was assumed to be either 0.07 or 0.2 (Table 2). The probability of entering Turner Cut upon reaching the Turner Cut junction was assumed to be 0.25. Detection probabilities for each line of the dual arrays were assumed to be either 0.9 or 0.85 at the upriver sites (A1, B1), 0.85 at sites A2 and F1, and either 0.5 or 0.9 at site G2 (Chipps Island). Results for alternative values of the route selection parameters (ψ_{A1} and ψ_{A2}) and S_F are provided in Appendix A.

Table 2. Parameter sets used in data simulations to estimate survival to Turner Cut and Chipps Island and route selection at Old River and Turner Cut. Values of S_R and S_A were computed from values of other parameters. For each scenario, S_F =0.05, ψ_{A2} =0.75, p_{G2a} = p_{G2b} =0.5 or 0.9 (equivalent to p_{G2} =0.75 or 0.99), and p_{A2a} = p_{A2b} = p_{F1a} = p_{F1b} =0.85.

Scenario	S_{R0}	S _{A1}	S _{A2}	S_B	Ψ _{A1}	S_R	S _A	p _{A1a} , p _{A1b} , p _{B1a} , p _{B1b}
2: Low	0.4	0.3	0.07	0.07	0.98	0.008	0.020	0.9
3: Low Mixed	0.4	0.3	0.15	0.2	0.98	0.016	0.038	0.85

Criteria

Four criteria were used to assess the candidate release scenarios (Table 3). These criteria are the same as those used in previous analyses (e.g., Buchanan 2014), except that the maximum standard error considered for criterion C3 was reduced from 0.10 to 0.05.

Table 3. Criteria used for identification of minimum sample size necessary to estimate a model parameter, assuming 10,000 simulations. The standard error in Criterion C3 is calculated as the standard deviation of the observed parameter estimates over all simulations.

Criterion	Definition
C1	Parameter is estimable in at least 95% of simulations (9500 or more)
C2	Probability estimate is not greater than 1.1 in 95% of simulations (9500 or more)
C3	Standard error on parameter estimate is not greater than 0.05
C4	Difference between average of parameter estimates and true parameter value is not greater than 0.05

Results

Results for the four criteria from simulations using the "Low" and "Low Mixed" survival scenarios, and assuming that the probability of remaining in the San Joaquin River at the head of Old River is 0.98, are shown in Table 4. Simulation results indicate that many parameters can be estimated with confidence using either release scenario I (equal split of 324 at both release locations) or release scenario II (500 released at Durham Ferry, 148 released downstream). Release scenario I favors estimation of downstream parameters such as S_{A2} , S_F , and ψ_{A2} , whereas release scenario II favors estimation of upstream parameters such as S_{R0} , as well as S_B . Giving priority to estimation of downstream parameters such as S_{A2} , S_F , and ψ_{A2} , release scenario I is recommended. This recommendation is based on the assumption that a physical barrier will block the majority of access to Old River.

Table 5 presents results for the same survival scenarios but assuming that the probability of remaining in the San Joaquin River at the head of Old River is 0.4 (e.g., if the barrier is either absent or ineffective). Under this assumption, all parameters are expected to be estimable (Criterion C1) using either release scenario (I or II). The only criterion that is sometimes unmet is C3, which requires a standard error < 0.5. Release scenario I is recommended to meet this criterion for downstream San Joaquin River and Turner Cut parameters (S_{A2} , S_F , ψ_{A2}), whereas release scenario II is recommended to meet this criterion for upstream San Joaquin River and Old River parameters (S_{A1} , S_B , ψ_{A1}).

Simulation results for all parameter sets are presented in Appendix A.

Summary

Using a primary release at Durham Ferry and a supplemental release in the San Joaquin River downstream of the Old River flow split, and a total release size of 648, the following recommendations are made:

- To estimate route selection probability at the head of Old River: Release scenario II
- To estimate route selection probability at Turner Cut: Release scenario I
- To estimate survival from through the Old River route to Chipps Island: Release scenario II
- To estimate survival from the lower San Joaquin River or Turner Cut to Chipps Island: Release scenario I
- To estimate survival from Mossdale to the Turner Cut junction: Release scenario II

Where

- Release scenario I = release 324 fish at Durham Ferry, 324 fish in supplemental release
- Release scenario II = release 500 fish at Durham Ferry, 148 fish in supplemental release
- "Low" or "Low Mixed" survival was assumed

Table 4. Release scenario selected for estimation of each parameter based on the four criteria defined in Table 3, assuming that a 98% probability of remaining in the San Joaquin River at the head of Old River. Release scenarios are: I = (R1 = R2 = 324), and II = (R1 = 500, R2 = 148), where R1 = release size at Durham Ferry, and R2 = size of supplemental release. Release scenarios identified in [brackets] indicate the preferred release scenario in the case when neither release scenario satisfied the criterion. Parameter set numbers refer to Table 6.

Survival Scenario	Parameter	Value	Criterion C1	Criterion C2	Criterion C3	Criterion C4
Low survival, low	S _{RO}	0.4	II	l or II	l or II	l or II
detection	S _{A1}	0.3	l or II	l or II	l or II	l or II
probability at	S _{A2}	0.07	[1]	l or II	l or II	l or II
Chipps Island –	S_B	0.07	[1]	l or II	[11]	l or II
Parameter Set 6	S_{F}	0.05	[1]	l or II	[1]	l or II
	ΨΑ1	0.98	II	l or II	[11]	l or II
	ΨA2	0.75	l or II	l or II	l or II	l or II
	P_{G1a}	0.5	l or II	l or II	[1]	l or II
	P_G2b	0.5	l or II	l or II	[1]	l or II
	S _A	0.020	[1]	l or II	l or II	l or II
	S _R	0.008	[11]	l or II	l or II	l or II
Low survival,	S _{RO}	0.4	ll l	l or II	l or II	l or II
high detection	S _{A1}	0.3	l or II	l or II	l or II	l or II
probability at	S _{A2}	0.07	l or II	l or II	l or II	l or II
Chipps Island	S _B	0.07	II	l or II	[11]	l or II
_	S _F	0.05	l or II	l or II	l or II	l or II
Parameter Set 18	ΨA1	0.98	II	l or II	[11]	l or II
	ΨΑ2	0.75	l or II	l or II	رس I or II	l or II
	P_{G1a}	0.9	l or II	l or II	[1]	l or II
	P _{G2b}	0.9	l or II	l or II	[1]	l or II
	S _A	0.020	l or II	l or II	ניז I or II	l or II
	S _R	0.020	II	l or II	l or II	l or II
Low Mixed	SRO	0.4		l or II	l or II	l or II
survival, low	S _{A1}	0.4	l or II	l or II	l or II	l or II
detection	S _{A2}	0.15	l or II	l or II	[1]	l or II
probability at	S _B	0.13	II	l or II	[II]	l or II
Chipps Island	S _F	0.2	l or II	l or II	[I]	l or II
_		0.03	II	l or II	ניז [II]	II
Parameter Set 30	ΨA1	0.75	l or II	l or II	رיי _ا I or II	l or II
	ΨA2	0.73	l or II	l or II		
	P _{G1a}	0.5 0.5	l or II	l or II	[1]	l or ll
	P _{G2b}				[1]	l or ll
	S _A	0.038	l or ll	l or ll	l or ll	l or ll
N. A	S _R	0.016	[]	l or II	l or II	l or II
Low Mixed	S _{RO}	0.4	[]	l or ll	l or ll	l or II
survival, high	S _{A1}	0.3	l or II	l or ll	l or ll	l or ll
detection	S _{A2}	0.15	l or ll	l or ll	l or II	l or ll
probability at	S _B	0.2		l or ll	[11]	l or ll
Chipps Island	SF	0.05	l or ll	l or II	l or II	l or II
- Darameter Set 42	ΨΑ1	0.98		l or II	[II]	l or II
Parameter Set 42	ΨA2	0.75	l or II	l or II	l or II	l or II
	P _{G1a}	0.9	l or II	l or II	[1]	l or II
	P _{G2b}	0.9	l or II	l or II	[I]	l or II
	S _A	0.038	l or ll	l or II	l or II	l or II
	S _R	0.016	[11]	l or ll	l or ll	l or II

Table 5. Release scenario selected for estimation of each parameter based on the four criteria defined in Table 3, assuming that a 40% probability of remaining in the San Joaquin River at the head of Old River. Release scenarios are: I = (R1 = R2 = 324), and II = (R1 = 500, R2 = 148), where R1 = release size at Durham Ferry, and R2 = size of supplemental release. Release scenarios identified in [brackets] indicate the preferred release scenario in the case when neither release scenario satisfied the criterion. Parameter set numbers refer to Table 6.

Survival Scenario	Parameter	Value	Criterion C1	Criterion C2	Criterion C3	Criterion C4
Low survival, low	S _{RO}	0.4	l or II	l or II	l or II	l or II
detection	S _{A1}	0.3	l or II	l or II	[11]	l or II
probability at	S _{A2}	0.07	l or II	l or II	I	l or II
Chipps Island –	S_B	0.07	l or II	l or II	l or II	l or II
Parameter Set 2	S_{F}	0.05	l or II	l or II	[1]	l or II
	ΨΑ1	0.4	l or II	l or II	l or II	l or II
	ΨA2	0.75	l or II	l or II	I	l or II
	P_{G1a}	0.5	l or II	l or II	[11]	l or II
	P_{G2b}	0.5	l or II	l or II	[11]	l or II
	SA	0.020	l or II	l or II	l or II	l or II
	S_R	0.008	l or II	l or II	l or II	l or II
Low survival,	S _{RO}	0.4	l or II	l or II	l or II	l or II
high detection	S _{A1}	0.3	l or II	l or II	[11]	l or II
probability at	S _{A2}	0.07	l or II	l or II	l or II	l or II
Chipps Island	S_B	0.07	l or II	l or II	l or II	l or II
_	S_F	0.05	l or II	l or II	I	l or II
Parameter Set 14	ΨΑ1	0.4	l or II	l or II	l or II	l or II
	ΨA2	0.75	l or II	l or II	ı	l or II
	P_{G1a}	0.9	l or II	l or II	[1]	l or II
	P_{G2b}	0.9	l or II	l or II	[l or ll]	l or II
	S _A	0.020	l or II	l or II	l or II	l or II
	S _R	0.008	l or II	l or II	l or II	l or II
Low Mixed	S _{RO}	0.4	l or II	l or II	l or II	l or II
survival, low	S _{A1}	0.3	l or II	l or II	[11]	l or II
detection	S _{A2}	0.15	l or II	l or II	[1]	l or II
probability at	S _B	0.2	l or II	l or II	[11]	l or II
Chipps Island	S_{F}	0.05	l or II	l or II	[1]	l or II
_	ΨΑ1	0.4	l or II	l or II	l or II	l or II
Parameter Set 26	ΨA2	0.75	l or II	l or II	ı	l or II
	P_{G1a}	0.5	l or II	l or II	[11]	l or II
	P _{G2b}	0.5	l or II	l or II	[11]	l or II
	SA	0.038	l or II	l or II	l or II	l or II
	S_R	0.016	l or II	l or II	l or II	l or II
Low Mixed	S _{RO}	0.4	l or II	l or II	l or II	l or II
survival, high	S _{A1}	0.3	l or II	l or II	[11]	l or II
detection	S _{A2}	0.15	l or II	l or II	ı,	l or II
probability at	S _B	0.2	l or II	l or II	l or II	l or II
Chipps Island	S_{F}	0.05	l or II	l or II	I	l or II
_	ΨΑ1	0.4	l or II	l or II	l or II	l or II
Parameter Set 38	ΨA2	0.75	l or II	l or II	I	l or II
	P_{G1a}	0.9	l or II	l or II	[11]	l or II
	P_{G2b}	0.9	l or II	l or II	[11]	l or II
	SA	0.038	l or II	l or II	l or II	l or II
	S_R	0.016	l or II	l or II	l or II	l or II

References

Buchanan, R. A. 2014. Sample Size for 2015 Chinook Tagging Study, prepared for Pat Brandes, 11 December 2014.

Appendix A

Table 6. Simulation results for survival parameter sets (s_{R0} =0.4, s_{A1} =0.3, s_{A2} = 0.07 or 0.15, s_{B} = 0.07 or 0.2, p_{A1a} = p_{B1a} = p_{B1b} = 0.90 or 0.85, and p_{A2a} = p_{A2b} = p_{F1a} = p_{F1b} = 0.85). Parameter sets 6 and 18 correspond to the "Low" survival scenario; parameter sets 30 and 42 correspond to the "Low Mixed" survival scenario (see Table 2). C1 = % of simulations in which parameter was successfully estimated. C2 = % of simulations in which parameter was estimated \leq 1.1. C3 = standard error of estimate (standard deviation of sampling distribution). C4 = absolute difference between average estimate and true value. Mean = average estimate. Max = maximum estimate. Statistics are calculated over all 10,000 simulations. Highlighted results are summarized in Table 4 and Table 5.

	Parai	meter			R1 = R2	2 = 324					R1 = 500,	R2 = 148		
Set	Name	Value	C1	C2	С3	C4	Mean	Max	C1	C2	С3	C4	Mean	Max
1	S _{RO}	0.4	100	0	0.028	0.008	0.408	0.534	100	0	0.023	0.007	0.407	0.489
	S _{A1}	0.3	100	0	0.065	0.005	0.295	0.538	100	0	0.052	0.006	0.294	0.494
	S _{A2}	0.07	95	0	0.046	0.006	0.076	0.486	95	0	0.053	0.006	0.076	0.525
	S _B	0.07	95	0	0.046	0.006	0.076	0.503	95	0	0.040	0.006	0.076	0.378
	S_{F}	0.01	95	0	0.026	0.001	0.011	0.344	95	0	0.034	0.001	0.011	0.400
	ΨΑ1	0.4	100	0	0.044	0.005	0.405	0.596	100	0	0.035	0.006	0.406	0.538
	ΨA2	0.75	100	0	0.042	0.007	0.757	0.911	100	0	0.055	0.014	0.764	0.970
	P _{G1a}	0.5	99.7	0	0.231	0.001	0.501	1.000	99.7	0	0.228	0.002	0.498	1.000
	P _{G2b}	0.5	99.7	0	0.230	0.000	0.500	1.000	99.7	0	0.227	0.003	0.497	1.000
	SA	0.016	95	0	0.011	0.002	0.018	0.126	95	0	0.013	0.002	0.018	0.115
	S _R	0.019	95	0	0.012	0.005	0.021	0.125	95	0	0.011	0.005	0.021	0.100
2	S _{R0}	0.4	100	0	0.028	0.008	0.408	0.523	100	O	0.023	0.008	0.408	0.510
	S _{A1}	0.3	100	0	0.065	0.005	0.295	0.603	100	O	0.052	0.004	0.296	0.535
	S _{A2}	0.07	<mark>96</mark>	0	0.046	0.006	0.076	0.535	<mark>96</mark>	O	0.053	0.005	0.075	0.552
	S _B	0.07	<mark>96</mark>	0	0.047	0.006	0.076	0.467	<mark>96</mark>	O	0.040	0.006	0.076	0.473
	S _F	0.05	<mark>96</mark>	0	0.058	0.004	0.054	0.597	<mark>96</mark>	O	0.076	0.005	0.055	0.700
	ΨΑ1	0.4	100	0	0.044	0.006	0.406	0.578	100	O	0.035	0.005	0.405	0.554
	Ψ _{A2}	0.75	<mark>100</mark>	0	0.042	0.008	0.758	0.907	100	O	0.054	0.016	0.766	0.946
	P _{G1a}	0.5	99.8	0	0.221	0.000	0.500	1.000	99.8	<mark>0</mark>	0.217	0.001	0.499	1.000
	P _{G2b}	0.5	99.8	0	0.222	0.000	0.500	1.000	99.8	<mark>0</mark>	0.219	0.001	0.499	1.000
	SA	0.020	<mark>96</mark>	0	0.013	0.001	0.021	0.155	96	<mark>0</mark>	0.014	0.001	0.021	0.166
	S _R	0.020	<mark>96</mark>	0	0.012	0.002	0.022	0.141	<mark>96</mark>	<mark>0</mark>	0.011	0.002	0.022	0.121
3	S _{R0}	0.4	100	0	0.029	0.009	0.409	0.530	100	0	0.023	0.009	0.409	0.492
	S _{A1}	0.3	100	0	0.053	0.005	0.295	0.532	100	0	0.042	0.005	0.295	0.461
	S _{A2}	0.07	93	0	0.045	0.006	0.076	0.538	92	0	0.051	0.006	0.076	0.463
	S _B	0.07	93	0	0.053	0.006	0.076	0.495	92	0	0.046	0.006	0.076	0.551

	S _F	0.01	93	0	0.024	0.001	0.011	0.250	92	0	0.030	0.001	0.011	0.286
	ΨΑ1	0.6	100	0	0.044	0.004	0.604	0.746	100	0	0.035	0.005	0.605	0.738
	ΨΑ2	0.75	100	0	0.041	0.009	0.759	0.599	100	0	0.050	0.017	0.767	0.979
	P_{G1a}	0.5	99	0	0.251	0.001	0.501	1.000	99	0	0.253	0.000	0.500	1.000
	P _{G2b}	0.5	99	0	0.248	0.001	0.499	1.000	99	0	0.254	0.000	0.500	1.000
	SA	0.016	93	0	0.011	0.003	0.018	0.118	92	0	0.012	0.003	0.018	0.122
	S _R	0.015	93	0	0.010	0.000	0.017	0.094	92	0	0.009	0.000	0.017	0.086
4	S _{R0}	0.4	100	0	0.028	0.009	0.409	0.521	100	0	0.023	0.009	0.409	0.496
	S _{A1}	0.3	100	0	0.053	0.005	0.295	0.511	100	0	0.043	0.005	0.295	0.456
	S _{A2}	0.07	95	0	0.044	0.006	0.076	0.671	94	0	0.051	0.005	0.075	0.479
	S _B	0.07	95	0	0.053	0.006	0.076	0.677	94	0	0.045	0.006	0.076	0.524
	SF	0.05	95	0	0.056	0.006	0.055	0.583	94	0	0.067	0.004	0.054	0.750
	ΨΑ1	0.6	100	0	0.043	0.006	0.606	0.770	100	0	0.035	0.005	0.605	0.723
	ΨA2	0.75	100	0	0.040	0.010	0.760	0.885	100	0	0.050	0.017	0.767	0.938
	P _{G1a}	0.5	99.7	0	0.231	0.004	0.504	1.000	99.6	0	0.241	0.006	0.506	1.000
	P _{G2b}	0.5	99.6	0	0.234	0.005	0.505	1.000	99.6	0	0.240	0.002	0.502	1.000
	SA	0.020	95	0	0.012	0.005	0.021	0.166	94	0	0.013	0.005	0.021	0.135
	SR	0.016	95	0	0.010	0.002	0.017	0.111	94	0	0.009	0.002	0.017	0.101
5	S _{R0}	0.4	88	0	0.029	0.013	0.413	0.524	96	0	0.023	0.012	0.412	0.511
	S _{A1}	0.3	100	0	0.041	0.005	0.295	0.461	100	0	0.033	0.005	0.295	0.423
	S _{A2}	0.07	85	0	0.042	0.006	0.076	0.524	77	0	0.046	0.005	0.075	0.479
	S _B	0.07	79	1.3	0.231	0.006	0.076	2.500	76	0.4	0.177	0.005	0.075	1.800
	SF	0.01	85	0	0.022	0.001	0.011	0.200	77	0	0.024	0.001	0.011	0.242
	ΨΑ1	0.98	91	0	0.171	0.033	0.947	0.994	97	0	0.105	0.012	0.968	0.996
	ΨA2	0.75	100	0	0.038	0.012	0.762	0.904	100	0	0.044	0.021	0.771	0.922
	P _{G1a}	0.5	98	0	0.295	0.002	0.498	1.000	95	0	0.331	0.001	0.501	1.000
	P _{G2b}	0.5	98	0	0.294	0.000	0.500	1.000	95	0	0.327	0.001	0.499	1.000
	SA	0.016	85	0	0.010	0.011	0.018	0.138	77	0	0.011	0.011	0.018	0.112
	S _R	0.007	75	0	0.005	0.009	0.008	0.065	74	0	0.005	0.009	0.008	0.042
<mark>6</mark>	S _{R0}	0.4	<mark>88</mark>	0	<mark>0.029</mark>	<mark>0.014</mark>	0.414	0.519	<mark>96</mark>	0	<mark>0.023</mark>	<mark>0.013</mark>	0.413	0.495
	S _{A1}	0.3	<mark>100</mark>	0	<mark>0.041</mark>	<mark>0.005</mark>	0.295	0.465	<mark>100</mark>	0	<mark>0.033</mark>	<mark>0.005</mark>	0.295	0.413
	S _{A2}	0.07	<mark>90</mark>	0	0.042	<mark>0.006</mark>	0.076	0.412	<mark>82</mark>	0	<mark>0.046</mark>	<mark>0.005</mark>	0.075	0.463
	S _B	0.07	<mark>83</mark>	<mark>1</mark>	<mark>0.239</mark>	0.011	0.081	2.667	<mark>81</mark>	<mark>1</mark>	<mark>0.193</mark>	<mark>0.005</mark>	0.075	3.000
	S _F	0.05	<mark>90</mark>	0	<mark>0.053</mark>	<mark>0.004</mark>	0.054	0.477	<mark>82</mark>	0	<mark>0.059</mark>	0.003	0.053	0.635
	ΨΑ1	0.98	<mark>91</mark>	0	<mark>0.157</mark>	<mark>0.028</mark>	0.952	0.994	<mark>97</mark>	<mark>0</mark>	<mark>0.110</mark>	<mark>0.013</mark>	0.967	0.996
	Ψ _{A2}	0.75	<mark>100</mark>	<mark>0</mark>	<mark>0.038</mark>	<mark>0.012</mark>	0.762	0.894	<mark>100</mark>	<mark>0</mark>	<mark>0.044</mark>	<mark>0.021</mark>	0.771	0.934

	P _{G1a}	0.5	<mark>99</mark>	0	<mark>0.267</mark>	<mark>0.004</mark>	0.496	1.000	<mark>97</mark>	0	<mark>0.308</mark>	0.001	0.499	1.000
	P _{G2b}	0.5	<mark>99</mark>	0	<mark>0.268</mark>	<mark>0.002</mark>	0.498	1.000	<mark>97</mark>	0	<mark>0.307</mark>	<mark>0.005</mark>	0.495	1.000
	SA	0.020	<mark>90</mark>	0	<mark>0.011</mark>	<mark>0.013</mark>	0.021	0.123	<mark>82</mark>	<mark>0</mark>	<mark>0.012</mark>	<mark>0.013</mark>	0.021	0.136
	SR	0.008	<mark>78</mark>	<mark>0</mark>	<mark>0.005</mark>	<mark>0.010</mark>	0.009	0.055	<mark>79</mark>	<mark>0</mark>	<mark>0.005</mark>	<mark>0.010</mark>	0.009	0.054
7	S _{R0}	0.4	100	0	0.028	0.008	0.408	0.530	100	0	0.023	0.007	0.407	0.495
	S _{A1}	0.3	98	0	0.065	0.004	0.296	0.563	92	0	0.053	0.004	0.296	0.529
	S _{A2}	0.07	96	0	0.043	0.006	0.076	0.560	96	0	0.048	0.006	0.076	0.490
	S _B	0.07	96	0	0.048	0.007	0.077	0.465	96	0	0.040	0.007	0.077	0.489
	SF	0.01	96	0.02	0.067	0.002	0.012	1.667	92	0.2	0.094	0.003	0.0123	1.800
	ΨΑ1	0.4	100	0	0.043	0.005	0.405	0.584	100	0	0.035	0.005	0.405	0.538
	ΨΑ2	0.95	98	0	0.043	0.004	0.954	1.008	92	0	0.082	0.005	0.955	1.033
	P _{G1a}	0.5	99.8	0	0.219	0.002	0.498	1.000	99.9	0	0.218	0.000	0.500	1.000
	P _{G2b}	0.5	99.9	0	0.220	0.003	0.497	1.000	99.8	0	0.218	0.001	0.499	1.000
	SA	0.020	94	0	0.013	0.002	0.022	0.178	88	0	0.015	0.002	0.022	0.146
	S _R	0.020	94	0	0.012	0.002	0.022	0.135	88	0	0.011	0.002	0.022	0.150
8	S _{R0}	0.4	100	0	0.028	0.008	0.408	0.516	100	0	0.023	0.007	0.407	0.498
	S _{A1}	0.3	98	0	0.066	0.004	0.296	0.609	92	0	0.052	0.003	0.297	0.487
	S _{A2}	0.07	97	0	0.041	0.005	0.075	0.596	96	0	0.050	0.006	0.076	0.552
	S _B	0.07	97	0	0.046	0.006	0.076	0.560	96	0	0.040	0.006	0.076	0.490
	SF	0.05	96	0.2	0.133	0.002	0.052	1.731	93	0.4	0.178	0.006	0.056	2.909
	ΨΑ1	0.4	100	0	0.044	0.006	0.406	0.566	100	0	0.035	0.006	0.406	0.541
	ΨΑ2	0.95	98	0	0.038	0.005	0.955	1.008	92	0	0.075	0.007	0.957	1.033
	P _{G1a}	0.5	99.9	0	0.213	0.002	0.502	1.000	99.8	0	0.215	0.003	0.503	1.000
	P _{G2b}	0.5	99.9	0	0.214	0.002	0.502	1.000	99.9	0	0.214	0.002	0.498	1.000
	SA	0.021	95	0	0.013	0.002	0.022	0.281	88	0	0.015	0.002	0.022	0.188
	S _R	0.020	95	0	0.012	0.001	0.022	0.163	88	0	0.011	0.001	0.022	0.115
9	S _{R0}	0.4	100	0	0.028	0.010	0.410	0.515	100	0	0.023	0.009	0.409	0.494
	S _{A1}	0.3	99	0	0.053	0.004	0.296	0.504	95	0	0.043	0.003	0.297	0.470
	S _{A2}	0.07	95	0	0.041	0.006	0.076	0.467	94	0	0.046	0.006	0.076	0.492
	S _B	0.07	95	0	0.053	0.006	0.076	0.556	94	0	0.046	0.006	0.076	0.473
	S _F	0.01	95	0.01	0.060	0.001	0.011	1.375	92	0.04	0.067	0.000	0.010	1.312
	ΨΑ1	0.6	100	0	0.044	0.005	0.605	0.761	100	0	0.035	0.005	0.605	0.731
	ΨΑ2	0.95	99	0	0.051	0.006	0.956	1.014	95	0	0.079	0.010	0.960	1.033
	P _{G1a}	0.5	99.6	0	0.230	0.000	0.500	1.000	99.5	0	0.239	0.000	0.500	1.000
	P _{G2b}	0.5	99.7	0	0.229	0.001	0.499	1.000	99.5	0	0.239	0.001	0.501	1.000
	SA	0.020	94	0	0.012	0.006	0.022	0.140	89	0	0.014	0.006	0.022	0.137

	S _R	0.016	94	0	0.010	0.002	0.018	0.123	89	0	0.009	0.002	0.018	0.100
10	S _{R0}	0.4	100	0	0.029	0.009	0.409	0.521	100	0	0.023	0.009	0.409	0.487
	S _{A1}	0.3	99	0	0.053	0.004	0.296	0.516	94	0	0.043	0.004	0.296	0.465
	S _{A2}	0.07	95	0	0.041	0.006	0.076	0.505	94	0	0.047	0.006	0.076	0.529
	S _B	0.07	95	0	0.054	0.006	0.076	0.656	94	0	0.046	0.006	0.076	0.535
	SF	0.05	94	0.1	0.132	0.005	0.055	2.143	92	0.4	0.166	0.006	0.056	2.800
	ΨΑ1	0.6	100	0	0.043	0.005	0.605	0.755	100	0	0.035	0.005	0.605	0.735
	ΨΑ2	0.95	99	0	0.051	0.005	0.955	1.012	95	0	0.070	0.012	0.962	1.043
	P _{G1a}	0.5	99.8	0	0.230	0.000	0.500	1.000	99.6	0	0.239	0.002	0.502	1.000
	P _{G2b}	0.5	99.8	0	0.230	0.000	0.500	1.000	99.6	0	0.237	0.001	0.501	1.000
	SA	0.021	93	0	0.013	0.006	0.022	0.159	89	0	0.014	0.006	0.022	0.142
	S _R	0.016	93	0	0.010	0.003	0.018	0.109	89	0	0.009	0.003	0.018	0.094
11	S _{R0}	0.4	88	0	0.029	0.014	0.414	0.513	96	0	0.023	0.013	0.413	0.493
	S _{A1}	0.3	99	0	0.041	0.004	0.296	0.466	98	0	0.034	0.004	0.296	0.440
	S _{A2}	0.07	90	0	0.039	0.005	0.075	0.401	84	0	0.042	0.005	0.075	0.460
	S _B	0.07	83	1.3	0.237	0.008	0.078	3.000	82	4.1	0.180	0.004	0.074	2.000
	S_F	0.01	90	0	0.051	0.000	0.010	0.781	83	0.01	0.057	0.000	0.010	1.429
	ΨΑ1	0.98	90	0	0.162	0.030	0.950	0.994	97	0	0.116	0.015	0.965	0.996
	Ψ А2	0.95	99	0	0.040	0.010	0.960	1.018	98	0	0.060	0.019	0.969	1.034
	P _{G1a}	0.5	99	0	0.265	0.000	0.500	1.000	97	0	0.302	0.000	0.500	1.000
	P _{G2b}	0.5	99	0	0.267	0.001	0.501	1.000	97	0	0.302	0.001	0.499	1.000
	SA	0.020	89	0	0.012	0.013	0.021	0.123	82	0	0.012	0.013	0.022	0.135
	S _R	0.008	78	0	0.005	0.011	0.009	0.052	78	0	0.005	0.011	0.009	0.058
12	S _{R0}	0.4	89	0	0.029	0.013	0.413	0.544	96	0	0.023	0.013	0.413	0.501
	S _{A1}	0.3	99	0	0.042	0.005	0.295	0.455	98	0	0.034	0.003	0.297	0.423
	S _{A2}	0.07	91	0	0.039	0.005	0.075	0.494	84	0	0.042	0.005	0.075	0.409
	S _B	0.07	84	1.2	0.221	0.002	0.072	2.286	84	0.5	0.184	0.005	0.075	2.000
	SF	0.05	91	0.07	0.123	0.004	0.054	1.604	84	0.2	0.141	0.004	0.054	1.600
	ΨΑ1	0.98	91	0	0.151	0.026	0.954	0.994	98	0	0.109	0.013	0.967	0.996
	ΨΑ2	0.95	99	0	0.038	0.010	0.960	1.021	98	0	0.061	0.019	0.969	1.037
	P _{G1a}	0.5	99	0	0.264	0.000	0.500	1.000	98	0	0.296	0.004	0.504	1.000
	P _{G2b}	0.5	99	0	0.261	0.001	0.499	1.000	98	0	0.297	0.006	0.506	1.000
	SA	0.021	90	0	0.012	0.013	0.022	0.171	83	0	0.012	0.013	0.022	0.119
	SR	0.009	80	0	0.005	0.011	0.010	0.058	80	0	0.005	0.011	0.010	0.046
13	S _{R0}	0.4	100	0	0.028	0.008	0.408	0.537	100	0	0.023	0.007	0.407	0.492
	S _{A1}	0.3	100	0	0.065	0.004	0.296	0.569	100	0	0.052	0.005	0.295	0.526

	S _{A2}	0.07	100	0	0.029	0.000	0.070	0.190	100	0	0.037	0.001	0.071	0.244
	S _B	0.07	100	0	0.029	0.000	0.070	0.196	100	0	0.024	0.000	0.070	0.165
	SF	0.01	100	0	0.019	0.000	0.010	0.150	100	0	0.025	0.000	0.010	0.222
	ΨΑ1	0.4	100	0	0.044	0.005	0.405	0.576	100	0	0.035	0.006	0.406	0.543
	ΨΑ2	0.75	100	0	0.041	0.008	0.758	0.907	100	0	0.054	0.014	0.764	0.938
	P _{G1a}	0.9	100	0	0.096	0.002	0.902	1.000	100	0	0.095	0.001	0.901	1.000
	P _{G2b}	0.9	100	0	0.099	0.002	0.898	1.000	100	0	0.095	0.000	0.900	1.000
	SA	0.016	100	0	0.008	0.003	0.016	0.062	100	0	0.009	0.003	0.017	0.061
	S _R	0.019	100	0	0.007	0.003	0.020	0.053	100	0	0.006	0.003	0.020	0.046
14	S _{R0}	0.4	100	0	0.028	0.008	0.408	0.510	100	O	0.023	0.007	0.407	0.492
	S _{A1}	0.3	<mark>100</mark>	0	0.065	0.005	0.295	0.563	<mark>100</mark>	O	0.052	0.004	0.296	0.525
	S _{A2}	0.07	100	0	0.028	0.000	0.070	0.206	<mark>100</mark>	0	0.036	0.000	0.070	0.224
	S _B	0.07	100	0	0.030	0.000	0.070	0.209	<mark>100</mark>	0	0.024	0.000	0.070	0.184
	S _F	0.05	100	0	0.042	0.001	0.049	0.304	<mark>100</mark>	0	0.056	0.001	0.051	0.377
	ΨΑ1	0.4	<mark>100</mark>	0	0.044	0.005	0.405	0.594	<mark>100</mark>	<mark>0</mark>	0.035	0.005	0.405	0.532
	ΨΑ2	0.75	100	0	0.042	0.007	0.757	0.903	100	O	0.055	0.014	0.764	0.968
	P _{G1a}	0.9	100	0	0.093	0.001	0.899	1.000	100	O	0.094	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.093	0.001	0.899	1.000	100	O	0.093	0.000	0.900	1.000
	SA	0.020	<mark>100</mark>	0	0.008	0.001	0.019	0.058	100	O	0.010	0.001	0.019	0.068
	SR	0.020	<mark>100</mark>	0	0.007	0.001	0.020	0.053	<mark>100</mark>	O	0.006	0.001	0.020	0.047
15	S _{R0}	0.4	100	0	0.029	0.010	0.410	0.509	100	0	0.023	0.009	0.409	0.495
	S _{A1}	0.3	100	0	0.053	0.005	0.295	0.530	100	0	0.042	0.005	0.295	0.506
	S _{A2}	0.07	100	0	0.028	0.000	0.070	0.182	100	0	0.034	0.000	0.070	0.240
	S _B	0.07	100	0	0.036	0.001	0.071	0.275	100	0	0.029	0.000	0.070	0.217
	S _F	0.01	100	0	0.018	0.000	0.010	0.158	100	0	0.024	0.000	0.010	0.312
	ΨΑ1	0.6	100	0	0.043	0.005	0.605	0.764	100	0	0.035	0.005	0.605	0.746
	ΨΑ2	0.75	100	0	0.040	0.009	0.759	0.890	100	0	0.051	0.016	0.766	0.935
	P _{G1a}	0.9	100	0	0.104	0.000	0.900	1.000	100	0	0.106	0.001	0.599	1.000
	P _{G2b}	0.9	100	0	0.105	0.001	0.901	1.000	100	0	0.105	0.002	0.902	1.000
	SA	0.016	100	0	0.007	0.001	0.016	0.051	100	0	0.008	0.001	0.017	0.057
	S _R	0.015	100	0	0.006	0.001	0.015	0.044	100	0	0.005	0.001	0.015	0.042
16	S _{RO}	0.4	100	0	0.029	0.009	0.409	0.533	100	0	0.023	0.009	0.409	0.491
	S _{A1}	0.3	100	0	0.053	0.005	0.295	0.513	100	0	0.042	0.005	0.295	0.466
	S _{A2}	0.07	100	0	0.027	0.000	0.070	0.215	100	0	0.033	0.000	0.070	0.238
	S _B	0.07	100	0	0.037	0.000	0.070	0.229	100	0	0.029	0.0000	0.070	0.190
	SF	0.05	100	0	0.041	0.000	0.050	0.286	100	0	0.051	.000	0.050	0.300

	ΨΑ1	0.6	100	0	0.043	0.005	0.605	0.770	100	0	0.035	0.005	0.605	0.733
	Ψ _{A2}	0.75	100	0	0.040	0.010	0.760	0.908	100	0	0.050	0.017	0.767	0.930
	P _{G1a}	0.9	100	0	0.099	0.000	0.900	1.000	100	0	0.102	0.001	0.899	1.000
	P _{G2b}	0.9	100	0	0.098	0.001	0.901	1.000	100	0	0.103	0.002	0.898	1.000
	SA	0.020	100	0	0.008	0.003	0.019	0.054	100	0	0.009	0.004	0.019	0.068
	SR	0.016	100	0	0.006	0.003	0.016	0.046	100	0	0.005	0.003	0.016	0.043
17	S _{RO}	0.4	88	0	0.029	0.013	0.413	0.535	96	0	0.023	0.013	0.413	0.511
	S _{A1}	0.3	100	0	0.041	0.005	0.295	0.46*9	100	0	0.033	0.005	0.295	0.408
	S _{A2}	0.07	99.8	0	0.026	0.000	0.070	0.203	99	0	0.030	0.001	0.071	0.190
	S _B	0.07	92	0.03	0.167	0.005	0.065	1.333	97	0.02	0.149	0.000	0.070	1.125
	SF	0.01	99.8	0	0.018	0.000	0.010	0.154	99	0	0.021	0.000	0.010	0.192
	ΨΑ1	0.98	90	0	0.162	0.030	0.950	0.994	97	0	0.108	0.013	0.967	0.996
	ΨA2	0.75	100	0	0.038	0.011	0.761	0.891	100	0	0.044	0.021	0.771	0.913
	P _{G1a}	0.9	100	0	0.129	0.000	0.900	1.000	99.5	0	0.145	0.001	0.901	1.000
	P _{G2b}	0.9	99.9	0	0127	0.000	0.900	1.000	99.6	0	0.145	0.001	0.901	1.000
	SA	0.016	99.8	0	0.006	0.009	0.016	0.045	99	0	0.007	0.010	0.017	0.052
	SR	0.007	87	0	0.003	0.009	0.007	0.023	95	0	0.003	0.009	0.007	0.022
<mark>18</mark>	S _{RO}	0.4	<mark>88</mark>	0	<mark>0.029</mark>	<mark>0.013</mark>	0.413	0.522	<mark>96</mark>	0	<mark>0.023</mark>	<mark>0.012</mark>	0.412	0.508
	S _{A1}	0.3	<mark>100</mark>	0	<mark>0.041</mark>	<mark>0.005</mark>	0.295	0.458	<mark>100</mark>	0	<mark>0.033</mark>	<mark>0.004</mark>	0.296	0.444
	S _{A2}	0.07	<mark>99.9</mark>	<mark>0</mark>	<mark>0.026</mark>	0.001	0.071	0.207	<mark>99.6</mark>	<mark>0</mark>	<mark>0.030</mark>	0.000	0.070	0.214
	S _B	0.07	<mark>92</mark>	<mark>0</mark>	<mark>0.178</mark>	<mark>0.001</mark>	0.069	1.089	<mark>98</mark>	<mark>0.01</mark>	<mark>0.149</mark>	0.000	0.070	1.111
	SF	0.05	<mark>99.9</mark>	<mark>0</mark>	<mark>0.039</mark>	0.000	0.050	0.245	<mark>99.6</mark>	<mark>0</mark>	<mark>0.045</mark>	<mark>0.001</mark>	0.051	0.295
	ΨΑ1	0.98	<mark>90</mark>	0	<mark>0.159</mark>	<mark>0.029</mark>	0.951	0.994	<mark>97</mark>	<mark>0</mark>	<mark>0.097</mark>	<mark>0.010</mark>	0.970	0.996
	Ψ А2	0.75	<mark>100</mark>	0	<mark>0.038</mark>	<mark>0.012</mark>	0.762	0.892	<mark>100</mark>	0	<mark>0.044</mark>	<mark>0.021</mark>	0.771	0.916
	P _{G1a}	0.9	<mark>99.9</mark>	0	<mark>0.115</mark>	0.001	0.899	1.000	<mark>99.8</mark>	0	<mark>0.133</mark>	0.000	0.900	1.000
	P _{G2b}	0.9	<mark>100</mark>	0	<mark>0.115</mark>	0.001	0.899	1.000	<mark>99.8</mark>	0	<mark>0.132</mark>	0.002	0.902	1.000
	SA	0.020	<mark>99.9</mark>	<mark>0</mark>	<mark>0.007</mark>	<mark>0.011</mark>	0.019	0.051	<mark>99.6</mark>	<mark>0</mark>	<mark>0.008</mark>	<mark>0.011</mark>	0.019	0.058
	SR	0.008	<mark>88</mark>	<mark>0</mark>	<mark>0.003</mark>	<mark>0.011</mark>	0.008	0.026	<mark>96</mark>	<mark>0</mark>	<mark>0.003</mark>	<mark>0.011</mark>	0.008	0.025
19	S _{RO}	0.4	100	0	0.029	0.008	0.408	0.514	100	0	0.023	0.008	0.408	0.497
	S _{A1}	0.3	99	0	0.066	0.004	0.296	0.569	92	0	0.053	0.004	0.296	0.493
	S _{A2}	0.07	100	0	0.025	0.000	0.070	0.178	100	0	0.033	0.000	0.070	0.251
	S _B	0.07	100	0	0.029	0.000	0.070	0.202	100	0	0.024	0.000	0.070	0.171
	S _F	0.01	99.6	0	0.046	0.001	0.009	1.048	96	0	0.067	0.001	0.011	1.071
	ΨΑ1	0.4	100	0	0.044	0.005	0.405	0.560	100	0	0.036	0.006	0.406	0.542
	ΨΑ2	0.95	99	0	0.034	0.005	0.955	1.012	92	0	0.089	0.004	0.954	1.030
	P _{G1a}	0.9	100	0	0.092	0.001	0.901	1.000	100	0	0.091	0.001	0.901	1.000

	P _{G2b}	0.9	100	0	0.092	0.001	0.899	1.000	100	0	0.092	0.000	0.900	1.000
	SA	0.020	99	0	0.009	0.000	0.020	0.064	91	0	0.010	0.000	0.020	0.082
	SR	0.020	99	0	0.007	0.000	0.020	0.060	91	0	0.006	0.000	0.020	0.046
20	S _{R0}	0.4	100	0	0.028	0.007	0.407	0.520	100	0	0.022	0.007	0.407	0.496
	S _{A1}	0.3	98	0	0.065	0.003	0.297	0.612	92	0	0.052	0.003	0.297	0.491
	S _{A2}	0.07	100	0	0.025	0.000	0.070	0.189	100	0	0.032	0.000	0.070	0.239
	S _B	0.07	100	0	0.029	0.000	0.070	0.194	100	0	0.024	0.000	0.070	0.171
	SF	0.05	99.6	0	0.104	0.001	0.051	1.024	97	0.01	0.134	0.000	0.050	1.250
	ΨΑ1	0.4	100	0	0.044	0.006	0.406	0.578	100	0	0.035	0.006	0.406	0.537
	Ψ А2	0.95	99	0	0.044	0.004	0.954	1.010	92	0	0.083	0.005	0.955	1.035
	P _{G1a}	0.9	100	0	0.092	0.000	0.900	1.000	100	0	0.092	0.001	0.899	1.000
	P _{G2b}	0.9	100	0	0.090	0.000	0.900	1.000	100	0	0.091	0.001	0.901	1.000
	S _A	0.021	98	0	0.009	0.001	0.021	0.070	92	0	0.010	0.000	0.020	0.085
	SR	0.020	98	0	0.007	0.000	0.020	0.052	92	0	0.006	0.000	0.020	0.051
21	S _{R0}	0.4	100	0	0.029	0.009	0.409	0.516	100	0	0.023	0.009	0.409	0.499
	S _{A1}	0.3	99	0	0.054	0.004	0.296	0.515	95	0	0.043	0.003	0.297	0.486
	S _{A2}	0.07	100	0	0.024	0.000	0.070	0.188	100	0	0.030	0.000	0.070	0.208
	S _B	0.07	100	0	0.036	0.000	0.070	0.225	100	0	0.029	0.001	0.071	0.190
	S_F	0.01	99.7	0	0.049	0.001	0.011	1.013	98	0	0.057	0.000	0.010	1.018
	ΨΑ1	0.6	100	0	0.043	0.005	0.605	0.803	100	0	0.035	0.004	0.605	0.758
	ΨΑ2	0.95	99	0	0.038	0.007	0.957	1.016	95	0	0.071	0.012	0.962	1.039
	P_{G1a}	0.9	100	0	0.099	0.002	0.898	1.000	100	0	0.101	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.099	0.000	0.900	1.000	100	0	0.100	0.000	0.900	1.000
	SA	0.020	99	0	0.008	0.000	0.020	0.076	95	0	0.009	0.000	0.020	0.073
	S _R	0.016	99	0	0.006	0.000	0.016	0.045	95	0	0.005	0.000	0.016	0.037
22	S _{RO}	0.4	100	0	0.029	0.009	0.409	0.526	100	0	0.023	0.009	0.409	0.498
	S _{A1}	0.3	99	0	0.053	0.004	0.296	0.498	95	0	0.042	0.003	0.297	0.462
	S _{A2}	0.07	100	0	0.024	0.000	0.070	0.188	100	0	0.030	0.000	0.070	0.195
	S _B	0.07	100	0	0.036	0.000	0.070	0.263	100	0	0.029	0.000	0.070	0.197
	S _F	0.05	99.7	0	0.100	0.001	0.049	1.046	98	0	0.127	0.000	0.050	1.091
	ΨΑ1	0.6	100	0	0.044	0.005	0.605	0.767	100	0	0.035	0.005	0.605	0.736
	Ψ А2	0.95	99	0	0.041	0.006	0.956	1.012	95	0	0.075	0.011	0.961	1.032
	P _{G1a}	0.9	100	0	0.096	0.000	0.900	1.000	100	0	0.100	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.096	0.001	0.901	1.000	100	0	0.100	0.001	0.901	1.000
	SA	0.021	99	0	0.008	0.000	0.020	0.059	95	0	0.009	0.000	0.021	0.068
	S _R	0.016	99	0	0.006	0.000	0.016	0.051	95	0	0.005	0.000	0.016	0.037

23	S _{R0}	0.4	88	0	0.029	0.014	0.414	0.552	96	0	0.023	0.013	0.413	0.509
	S _{A1}	0.3	99	0	0.042	0.005	0.4295	0.468	98	0	0.034	0.003	0.297	0.426
	S _{A2}	0.07	100	0	0.023	0.000	0.070	0.179	99.7	0	0.026	0.000	0.070	0.184
	S _B	0.07	93	0.04	0.179	0.001	0.069	1.250	98	0.02	0.150	0.001	0.071	1.125
	S _F	0.01	99.7	0	0.045	0.001	0.011	1.037	99	0	0.051	0.000	0.010	1.000
	ΨΑ1	0.98	91	0	0.165	0.031	0.949	0.994	97	0	0.109	0.013	0.967	0.996
	ΨΑ2	0.95	99	0	0.043	0.010	0.960	1.017	98	0	0.068	0.018	0.968	1.038
	P _{G1a}	0.9	99.9	0	0.113	0.000	0.900	1.000	99.8	0	0.130	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.112	0.000	0.900	1.000	99.9	0	0.132	0.002	0.898	1.000
	SA	0.020	99	0	0.007	0.000	0.020	0.052	97	0	0.008	0.000	0.020	0.056
	S _R	0.008	87	0	0.003	0.000	0.009	0.031	93	0	0.003	0.000	0.009	0.023
24	S _{R0}	0.4	88	0	0.029	0.013	0.413	0.515	96	0	0.023	0.013	0.413	0.503
	S _{A1}	0.3	99	0	0.041	0.003	0.297	0.477	97	0	0.034	0.004	0.296	0.432
	S _{A2}	0.07	100	0	0.023	0.000	0.070	0.162	99.7	0	0.026	0.000	0.070	0.192
	S _B	0.07	93	0.08	0.187	0.004	0.074	1.200	98	0.01	0.151	0.002	0.072	1.111
	S _F	0.05	99.8	0	0.093	0.000	0.050	1.029	99	0	0.110	0.000	0.050	1.059
	ΨΑ1	0.98	91	0	0.168	0.032	0.948	0.994	97	0	0.104	0.012	0.968	0.996
	ΨΑ2	0.95	99.5	0	0.037	0.010	0.960	1.018	98	0	0.065	0.018	0.968	1.038
	P _{G1a}	0.9	100	0	0.109	0.000	0.900	1.000	99.8	0	0.129	0.001	0.899	1.000
	P _{G2b}	0.9	100	0	0.110	0.001	0.899	1.000	99.8	0	0.127	0.002	0.902	1.000
	S _A	0.021	99	0	0.007	0.000	0.021	0.056	97	0	0.008	0.000	0.021	0.063
	S _R	0.009	87	0	0.003	0.000	0.009	0.028	93	0	0.003	0.000	0.009	0.029
25	S _{R0}	0.4	100	0	0.029	0.013	0.413	0.540	100	0	0.023	0.013	0.413	0.508
	S _{A1}	0.3	100	0	0.064	0.005	0.295	0.564	100	0	0.052	0.005	0.295	0.521
	S _{A2}	0.15	99.9	0	0.064	0.008	0.158	1.063	100	0	0.073	0.008	0.158	0.932
	S _B	0.2	99.9	0.01	0.078	0.011	0.211	1.286	100	0	0.064	0.009	0.209	1.065
	S _F	0.01	99.9	0	0.024	0.000	0.010	0.257	100	0	0.031	0.001	0.011	0.321
	ΨΑ1	0.4	100	0	0.044	0.000	0.400	0.583	100	0	0.035	0.000	0.400	0.547
	Ψ А2	0.75	100	0	0.041	0.008	0.758	0.915	100	0	0.055	0.014	0.764	0.963
	P _{G1a}	0.5	100	0	0.138	0.000	0.500	1.000	100	0	0.129	0.001	0.499	1.000
	P _{G2b}	0.5	100	0	0.138	0.001	0.499	1.000	100	0	0.129	0.002	0.498	1.000
	SA	0.034	99.9	0	0.017	0.002	0.036	0.265	100	0	0.018	0.002	0.036	0.239
	S _R	0.054	99.9	0	0.021	0.005	0.058	0.335	100	0	0.017	0.004	0.058	0.296
26	S _{R0}	0.4	<mark>100</mark>	0	0.029	0.013	0.413	0.521	100	O	0.023	0.013	0.413	0.502
	S _{A1}	0.3	<mark>100</mark>	0	0.064	0.006	0.294	0.552	<mark>100</mark>	0	0.053	0.006	0.294	0.491

	S _{A2}	0.15	100	<mark>o</mark>	0.060	0.007	0.157	0.751	<mark>100</mark>	0.01	0.073	0.006	0.156	1.195
	S _B	0.2	100	0.02	0.075	0.009	0.209	1.243	<mark>100</mark>	O	0.065	0.010	0.210	0.990
	S _F	0.05	100	0	0.054	0.003	0.053	0.533	<mark>100</mark>	O	0.071	0.003	0.053	0.808
	ΨΑ1	0.4	100	0	0.044	0.000	0.400	0.570	100	O	0.035	0.001	0.399	0.556
	ΨA2	0.75	100	0	0.041	0.007	0.757	0.907	100	0	0.054	0.015	0.765	0.963
	P _{G1a}	0.5	100	0	0.134	0.002	0.502	1.000	100	O	0.130	0.003	0.497	1.000
	P _{G2b}	0.5	100	0	0.135	0.002	0.502	1.000	100	O	0.129	0.001	0.499	1.000
	SA	0.038	100	0	0.017	0.001	0.039	0.205	<mark>100</mark>	O	0.019	0.001	0.039	0.210
	S _R	0.054	100	0	0.020	0.004	0.058	0.381	<mark>100</mark>	O	0.018	0.004	0.058	0.271
27	S _{R0}	0.4	100	0	0.029	0.012	0.412	0.527	100	0	0.023	0.013	0.413	0.504
	S _{A1}	0.3	100	0	0.053	0.005	0.295	0.511	100	0	0.042	0.004	0.296	0.451
	S _{A2}	0.15	99.7	0	0.065	0.009	0.159	0.909	99.8	0	0.070	0.008	0.158	0.847
	S _B	0.2	99.7	0	0.091	0.014	0.214	1.043	99.8	0	0.079	0.011	0.211	1.028
	S _F	0.01	99.7	0	0.024	0.001	0.011	0.245	99.8	0	0.029	0.000	0.010	0.407
	ΨΑ1	0.6	100	0	0.044	0.000	0.600	0.759	100	0	0.035	0.001	0.599	0.730
	Ψ А2	0.75	100	0	0.041	0.009	0.759	0.923	100	0	0.050	0.017	0.767	0.951
	P _{G1a}	0.5	100	0	0.150	0.003	0.497	1.000	100	0	0.147	0.003	0.503	1.000
	P _{G2b}	0.5	100	0	0.150	0.000	0.500	1.000	100	0	0.147	0.001	0.501	1.000
	SA	0.034	99.7	0	0.016	0.002	0.036	0.215	99.8	0	0.017	0.002	0.037	0.215
	SR	0.040	99.7	0	0.017	0.004	0.044	0.224	99.8	0	0.015	0.004	0.044	0.233
28	S _{R0}	0.4	100	0	0.029	0.013	0.413	0.529	100	0	0.023	0.013	0.413	0.493
	S _{A1}	0.3	100	0	0.052	0.005	0.295	0.488	100	0	0.043	0.005	0.295	0.455
	S _{A2}	0.15	99.9	0	0.064	0.008	0.158	0.804	99.7	0	0.073	0.008	0.158	1.067
	S _B	0.2	99.9	0.03	0.092	0.011	0.211	1.250	99.7	0.01	0.079	0.012	0.212	1.106
	SF	0.05	99.9	0	0.053	0.002	0.052	0.515	99.7	0	0.065	0.003	0.053	0.891
	ΨΑ1	0.6	100	0	0.044	0.000	0.600	0.769	100	0	0.035	0.000	0.600	0.733
	Ψ А2	0.75	100	0	0.040	0.010	0.760	0.896	100	0	0.050	0.017	0.767	0.942
	P _{G1a}	0.5	100	0	0.147	0.001	0.501	1.000	100	0	0.147	0.002	0.498	1.000
	P _{G2b}	0.5	100	0	0.149	0.003	0.503	1.000	100	0	0.147	0.001	0.499	1.000
	SA	0.038	99.9	0	0.017	0.002	0.039	0.188	99.7	0	0.018	0.002	0.039	0.290
	S _R	0.041	99.9	0	0.017	0.004	0.045	0.269	99.7	0	0.016	0.004	0.045	0.248
29	S _{R0}	0.4	95	0	0.029	0.013	0.413	0.545	94	0	0.024	0.013	0.413	0.508
	S _{A1}	0.3	100	0	0.042	0.005	0.295	0.449	100	0	0.033	0.005	0.295	0.436
	S _{A2}	0.15	98	0	0.070	0.013	0.163	0.794	96	0	0.079	0.014	0.164	1.014
	S _B	0.2	91	4.4	0.384	0.017	0.217	4.267	94	2.6	0.318	0.018	0.218	3.273
	SF	0.01	98	0	0.024	0.001	0.011	0.312	96	0	0.027	0.001	0.011	0.328

	ΨΑ1	0.98	90	0	0.218	0.055	0.925	0.994		97	0	0.150	0.025	0.955	0.996
	Ψ _{A2}	0.75	100	0	0.038	0.011	0.761	0.892		100	0	0.045	0.020	0.770	0.932
	P _{G1a}	0.5	100	0	0.190	0.001	0.501	1.000		99.8	0	0.221	0.000	0.500	1.000
	P _{G2b}	0.5	100	0	0.190	0.000	0.500	1.000	9	99.8	0	0.220	0.002	0.498	1.000
	SA	0.034	98	0	0.017	0.003	0.037	0.205		96	0	0.019	0.004	0.038	0.231
	SR	0.015	83	0	0.008	0.002	0.017	0.107		90	0	0.009	0.002	0.017	0.101
<mark>30</mark>	S _{RO}	0.4	<mark>85</mark>	0	<mark>0.029</mark>	<mark>0.014</mark>	0.414	0.518		<mark>96</mark>	0	<mark>0.024</mark>	<mark>0.013</mark>	0.413	0.497
	S _{A1}	0.3	<mark>100</mark>	0	<mark>0.041</mark>	<mark>0.005</mark>	0.295	0.469		100	0	<mark>0.034</mark>	<mark>0.004</mark>	0.296	0.429
	S _{A2}	0.15	<mark>99</mark>	0	<mark>0.072</mark>	<mark>0.012</mark>	0.162	0.953		<mark>97</mark>	0	<mark>0.077</mark>	0.013	0.163	0.860
	S _B	0.2	<mark>91</mark>	<mark>4.6</mark>	<mark>0.390</mark>	<mark>0.024</mark>	0.224	4.267		<mark>95</mark>	<mark>2.2</mark>	<mark>0.313</mark>	<mark>0.017</mark>	0.217	3.273
	SF	0.05	<mark>99</mark>	0	<mark>0.054</mark>	<mark>0.004</mark>	0.054	0.735		<mark>97</mark>	0	<mark>0.061</mark>	<mark>0.004</mark>	0.054	0.625
	ΨΑ1	0.98	<mark>90</mark>	0	<mark>0.208</mark>	<mark>0.050</mark>	0.930	0.994		<mark>97</mark>	0	<mark>0.141</mark>	<mark>0.022</mark>	0.958	0.996
	ΨΑ2	0.75	<mark>100</mark>	0	<mark>0.038</mark>	<mark>0.012</mark>	0.762	0.886		100	0	<mark>0.045</mark>	<mark>0.021</mark>	0.771	0.934
	P _{G1a}	0.5	<mark>100</mark>	0	<mark>0.183</mark>	<mark>0.001</mark>	0.499	1.000	9	<mark>99.9</mark>	0	<mark>0.210</mark>	0.003	0.503	1.000
	P _{G2b}	0.5	<mark>100</mark>	0	<mark>0.183</mark>	<mark>0.003</mark>	0.497	1.000		<mark>100</mark>	0	<mark>0.208</mark>	0.000	0.500	1.000
	SA	0.038	<mark>99</mark>	0	<mark>0.019</mark>	<mark>0.003</mark>	0.040	0.261		<mark>97</mark>	0	<mark>0.019</mark>	0.003	0.041	0.222
	SR	0.016	<mark>84</mark>	0	<mark>0.009</mark>	<mark>0.002</mark>	0.018	0.092		<mark>92</mark>	0	<mark>0.008</mark>	0.002	0.018	0.085
31	S _{R0}	0.4	100	0	0.029	0.013	0.413	0.525		100	0	0.023	0.013	0.413	0.501
	S _{A1}	0.3	98	0	0.065	0.004	0.296	0.554		92	0	0.052	0.004	0.296	0.506
	S _{A2}	0.15	100	0	0.055	0.007	0.157	0.770		100	0.01	0.064	0.006	0.156	1.212
	S _B	0.2	100	0.01	0.072	0.009	0.209	1.189		100	0.01	0.062	0.007	0.207	1.345
	SF	0.01	99.6	0.04	0.063	0.001	0.011	1.560		97	0.10	0.080	0.001	0.011	2.333
	ΨΑ1	0.4	100	0	0.044	0.000	0.400	0.585		100	0	0.036	0.000	0.400	0.549
	ΨΑ2	0.95	99	0	0.049	0.003	0.953	1.017		92	0	0.079	0.005	0.955	1.032
	P _{G1a}	0.5	100	0	0.129	0.002	0.498	1.000		100	0	0.125	0.001	0.501	1.000
	P _{G2b}	0.5	100	0	0.132	0.000	0.500	1.000		100	0	0.126	0.002	0.502	1.000
	SA	0.043	98	0	0.019	0.002	0.044	0.284		92	0	0.020	0.002	0.044	0.305
	SR	0.055	98	0	0.019	0.004	0.059	0.289		92	0	0.017	0.004	0.059	0.390
32	S _{R0}	0.4	100	0	0.029	0.013	0.413	0.520		100	0	0.023	0.013	0.413	0.507
	S _{A1}	0.3	99	0	0.065	0.005	0.295	0.556		91	0	0.052	0.004	0.296	0.500
	S _{A2}	0.15	100	0	0.057	0.007	0.157	0.755		100	0	0.063	0.005	0.155	0.799
	S _B	0.2	100	0.03	0.076	0.009	0.209	1.414		100	0	0.062	0.007	0.207	1.024
	S _F	0.05	99.6	0.2	0.149	0.004	0.054	5.400		96	0.6	0.175	0.006	0.056	1.965
	ΨΑ1	0.4	100	0	0.044	0.001	0.401	0.568		100	0	0.035	0.000	0.400	0.522
	Ψ А2	0.95	99	0	0.039	0.004	0.954	1.011		92	0	0.085	0.005	0.955	1.030
	P _{G1a}	0.5	100	0	0.131	0.000	0.500	1.000		100	0	0.125	0.002	0.502	0.917

	P _{G2b}	0.5	100	0	0.130	0.000	0.500	1.000	100	0	0.125	0.002	0.498	1.000
	SA	0.044	99	0	0.019	0.001	0.045	0.323	91	0	0.020	0.001	0.045	0.216
	S _R	0.055	99	0	0.021	0.004	0.059	0.372	91	0	0.017	0.004	0.059	0.256
33	S _{RO}	0.4	100	0	0.029	0.013	0.413	0.523	100	0	0.024	0.013	0.413	0.506
	S _{A1}	0.3	99	0	0.053	0.004	0.296	0.508	95	0	0.043	0.003	0.297	0.478
	S _{A2}	0.15	99.9	0	0.057	0.008	0.158	0.984	99.8	0.01	0.066	0.007	0.157	1.186
	S _B	0.2	99.9	0	0.086	0.010	0.210	0.868	99.8	0	0.077	0.009	0.209	1.027
	S _F	0.01	99.6	0.01	0.055	0.000	0.010	1.250	98	0.03	0.066	0.000	0.010	1.500
	ΨΑ1	0.6	100	0	0.043	0.000	0.600	0.770	100	0	0.035	0.001	0.599	0.735
	ΨΑ2	0.95	99	0	0.039	0.007	0.957	1.013	95	0	0.079	0.010	0.960	1.040
	P _{G1a}	0.5	100	0	0.139	0.000	0.500	1.000	100	0	0.142	0.000	0.500	1.000
	P _{G2b}	0.5	100	0	0.140	0.001	0.501	1.000	100	0	0.141	0.000	0.500	1.000
	S _A	0.043	99	0	0.018	0.002	0.045	0.277	95	0	0.020	0.002	0.045	0.253
	S _R	0.042	99	0	0.017	0.003	0.046	0.181	95	0	0.015	0.004	0.046	0.207
34	S _{RO}	0.4	100	0	0.029	0.013	0.413	0.529	100	0	0.024	0.013	0.413	0.504
	S _{A1}	0.3	99	0	0.053	0.005	0.295	0.518	94	0	0.043	0.003	0.297	0.478
	S _{A2}	0.15	99.9	0	0.056	0.007	0.157	0.922	100	0	0.064	0.009	0.159	0.913
	S _B	0.2	99.9	0.03	0.087	0.009	0.209	1.445	100	0.01	0.076	0.011	0.211	1.141
	S_F	0.05	99.8	0.1	0.128	0.004	0.054	1.670	98	0.5	0.166	0.005	0.055	3.000
	ΨΑ1	0.6	100	0	0.045	0.001	0.601	0.763	100	0	0.035	0.000	0.600	0.736
	Ψ _{A2}	0.95	99	0	0.047	0.006	0.956	1.013	95	0	0.079	0.010	0.960	1.035
	P _{G1a}	0.5	100	0	0.138	0.000	0.500	1.000	100	0	0.141	0.001	0.501	1.000
	P _{G2b}	0.5	100	0	0.138	0.001	0.501	1.000	100	0	0.139	0.001	0.499	1.000
	SA	0.044	99	0	0.018	0.002	0.045	0.302	94	0	0.020	0.003	0.046	0.277
	S _R	0.042	99	0	0.017	0.003	0.046	0.317	94	0	0.015	0.004	0.046	0.214
35	S _{RO}	0.4	85	0	0.029	0.013	0.413	0.521	95	0	0.023	0.013	0.413	0.506
	S _{A1}	0.3	99	0	0.042	0.004	0.296	0.475	98	0	0.034	0.004	0.296	0.414
	S _{A2}	0.15	99	0.01	0.064	0.011	0.161	1.130	98	0	0.070	0.013	0.163	0.990
	S _B	0.2	92	3.9	0.366	0.005	0.205	4.529	96	2.3	0.318	0.019	0.219	3.765
	S _F	0.01	99	0.01	0.056	0.001	0.011	2.032	97	0.03	0.063	0.000	0.010	1.296
	ΨΑ1	0.98	90	0	0.211	0.051	0.929	0.994	97	0	0.146	0.024	0.956	0.996
	ΨΑ2	0.95	99	0	0.048	0.009	0.959	1.018	98	0	0.063	0.018	0.968	1.037
	P _{G1a}	0.5	100	0	0.169	0.004	0.504	1.000	99.9	0	0.194	0.002	0.498	1.000
	P _{G2b}	0.5	100	0	0.167	0.002	0.502	1.000	100	0	0.194	0.002	0.498	1.000
	SA	0.043	99	0	0.020	0.003	0.046	0.355	95	0	0.021	0.004	0.047	0.287
	S _R	0.018	84	0	0.009	0.002	0.021	0.141	90	0	0.009	0.003	0.021	0.115

36	S _{RO}	0.4	85	0	0.029	0.013	0.413	0.521	95	0	0.023	0.013	0.413	0.502
	S _{A1}	0.3	99	0	0.042	0.004	0.296	0.476	98	0	0.034	0.003	0.297	0.440
	S _{A2}	0.15	99	0	0.062	0.011	0.161	0.916	98	0	0.070	0.012	0.162	0.833
	S _B	0.2	92	3.9	0.364	0.009	0.209	3.500	96	2.5	0.325	0.023	0.223	3.462
	S _F	0.05	99	0.04	0.123	0.004	0.054	2.000	97	0.2	0.143	0.004	0.054	2.000
	ΨΑ1	0.98	90	0	0.205	0.048	0.932	0.994	97	0	0.147	0.024	0.956	0.996
	ΨΑ2	0.95	99	0	0.046	0.009	0.959	1.027	98	0	0.067	0.018	0.968	1.034
	P _{G1a}	0.5	100	0	0.167	0.000	0.500	1.000	100	0	0.194	0.002	0.502	1.000
	P _{G2b}	0.5	100	0	0.167	0.001	0.499	1.000	100	0	0.194	0.000	0.500	1.000
	SA	0.044	99	0	0.019	0.003	0.046	0.221	96	0	0.021	0.004	0.047	0.226
	SR	0.019	84	0	0.009	0.002	0.021	0.116	91	0	0.009	0.002	0.021	0.120
37	S _{R0}	0.4	100	0	0.029	0.013	0.413	0.522	100	0	0.023	0.013	0.413	0.506
	S _{A1}	0.3	100	0	0.064	0.005	0.295	0.560	100	0	0.052	0.005	0.295	0.482
	S _{A2}	0.15	100	0	0.040	0.000	0.150	0.318	100	0	0.051	0.001	0.151	0.376
	S _B	0.2	100	0	0.046	0.000	0.200	0.403	100	0	0.037	0.000	0.200	0.365
	SF	0.01	100	0	0.019	0.000	0.010	0.151	100	0	0.026	0.001	0.011	0.251
	ΨΑ1	0.4	100	0	0.043	0.001	0.401	0.571	100	0	0.036	0.000	0.400	0.533
	ΨA2	0.75	100	0	0.041	0.007	0.757	0.895	100	0	0.055	0.014	0.764	0.945
	P _{G1a}	0.9	100	0	0.060	0.001	0.901	1.000	100	0	0.057	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.061	0.001	0.899	1.000	100	0	0.056	0.000	0.900	1.000
	S _A	0.034	100	0	0.012	0.000	0.034	0.108	100	0	0.013	0.000	0.035	0.108
	SR	0.054	100	0	0.013	0.002	0.055	0.105	100	0	0.010	0.002	0.055	0.110
38	S _{R0}	0.4	<mark>100</mark>	0	0.029	0.013	0.413	0.541	100	0	0.023	0.013	0.413	0.501
	S _{A1}	0.3	100	0	0.064	0.006	0.294	0.584	100	0	0.052	0.004	0.296	0.493
	S _{A2}	0.15	100	0	0.040	0.000	0.150	0.343	100	0	0.051	0.001	0.149	0.352
	S _B	0.2	100	0	0.046	0.000	0.200	0.409	100	0	0.037	0.000	0.200	0.348
	SF	0.05	<mark>100</mark>	0	0.042	0.000	0.050	0.306	100	0	0.055	0.000	0.050	0.303
	ΨΑ1	0.4	100	0	0.044	0.000	0.400	0.571	100	0	0.035	0.000	0.400	0.544
	ΨΑ2	0.75	100	0	0.042	0.007	0.757	0.892	100	0	0.054	0.015	0.765	0.958
	P _{G1a}	0.9	100	0	0.060	0.001	0.899	1.000	100	0	0.056	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.060	0.000	0.900	1.000	100	0	0.056	0.000	0.900	1.000
	SA	0.038	100	0	0.013	0.001	0.037	0.113	100	0	0.014	0.000	0.037	0.102
	S _R	0.054	100	0	0.012	0.002	0.056	0.107	100	0	0.010	0.002	0.056	0.100
39	S _{R0}	0.4	100	0	0.029	0.013	0.413	0.521	100	0	0.024	0.013	0.413	0.508
	S _{A1}	0.3	100	0	0.053	0.006	0.294	0.501	100	0	0.043	0.004	0.296	0.473
	S _{A2}	0.15	100	0	0.038	0.001	0.151	0.354	100	0	0.047	0.000	0.150	0.357

	S _B	0.2	100	0	0.057	0.001	0.201	0.434	100	0	0.046	0.000	0.200	0.374
	SF	0.01	100	0	0.019	0.000	0.010	0.138	100	0	0.023	0.000	0.010	0.182
	ΨΑ1	0.6	100	0	0.044	0.001	0.599	0.778	100	0	0.036	0.000	0.600	0.729
	Ψ _{A2}	0.75	100	0	0.041	0.010	0.760	0.894	100	0	0.050	0.017	0.767	0.948
	P _{G1a}	0.9	100	0	0.066	0.001	0.899	1.000	100	0	0.065	0.001	0.599	1.000
	P _{G2b}	0.9	100	0	0.066	0.000	0.900	1.000	100	0	0.065	0.000	0.900	1.000
	SA	0.034	100	0	0.011	0.000	0.034	0.084	100	0	0.012	0.000	0.035	0.100
	SR	0.040	100	0	0.011	0.001	0.042	0.086	100	0	0.009	0.001	0.042	0.081
40	S _{RO}	0.4	100	0	0.029	0.013	0.413	0.528	100	0	0.023	0.013	0.413	0.514
	S _{A1}	0.3	100	0	0.053	0.004	0.296	0.503	100	0	0.042	0.004	0.296	0.457
	S _{A2}	0.15	100	0	0.038	0.000	0.150	0.329	100	0	0.047	0.001	0.149	0.356
	S _B	0.2	100	0	0.057	0.000	0.200	0.475	100	0	0.046	0.000	0.200	0.420
	S _F	0.05	100	0	0.041	0.000	0.050	0.267	100	0	0.050	0.000	0.050	0.336
	ΨΑ1	0.6	100	0	0.044	0.001	0.599	0.762	100	0	0.035	0.000	0.600	0.729
	ΨA2	0.75	100	0	0.040	0.010	0.760	0.895	100	0	0.050	0.017	0.767	0.929
	P _{G1a}	0.9	100	0	0.064	0.000	0.900	1.000	100	0	0.063	0.001	0.901	1.000
	P _{G2b}	0.9	100	0	0.064	0.001	0.901	1.000	100	0	0.064	0.001	0.901	1.000
	SA	0.038	100	0	0.011	0.000	0.037	0.088	100	0	0.012	0.000	0.037	0.101
	SR	0.041	100	0	0.011	0.001	0.042	0.103	100	0	0.009	0.001	0.042	0.081
41	S _{R0}	0.4	84	0	0.029	0.014	0.414	0.520	95	0	0.023	0.013	0.413	0.501
	S _{A1}	0.3	100	0	0.041	0.004	0.296	0.449	100	0	0.033	0.005	0.295	0.438
	S _{A2}	0.15	100	0	0.036	0.000	0.150	0.302	100	0	0.042	0.001	0.151	0.333
	S _B	0.2	92	0.02	0.290	0.005	0.205	1.333	98	0.03	0.235	0.001	0.201	1.200
	SF	0.01	100	0	0.018	0.000	0.010	0.127	100	0	0.020	0.000	0.010	0.175
	ΨΑ1	0.98	89	0	0.216	0.053	0.927	0.994	97	0	0.147	0.024	0.956	0.996
	ΨΑ2	0.75	100	0	0.038	0.012	0.762	0.908	100	0	0.044	0.021	0.771	0.931
	P _{G1a}	0.9	100	0	0.082	0.001	0.899	1.000	100	0	0.094	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.082	0.000	0.900	1.000	100	0	0.094	0.002	0.898	1.000
	S _A	0.035	100	0	0.010	0.000	0.035	0.085	100	0	0.011	0.000	0.035	0.088
	S _R	0.015	84	0	0.005	0.001	0.016	0.043	95	0	0.005	0.001	0.016	0.037
<mark>42</mark>	S _{R0}	0.4	<mark>85</mark>	<mark>0</mark>	<mark>0.029</mark>	<mark>0.013</mark>	0.413	0.535	<mark>94</mark>	0	<mark>0.023</mark>	<mark>0.013</mark>	0.413	0.517
	S _{A1}	0.3	<mark>100</mark>	0	<mark>0.041</mark>	<mark>0.005</mark>	0.295	0.456	<mark>100</mark>	0	<mark>0.034</mark>	<mark>0.005</mark>	0.295	0.429
	S _{A2}	0.15	<mark>100</mark>	0	<mark>0.036</mark>	<mark>0.000</mark>	0.150	0.306	<mark>100</mark>	0	<mark>0.042</mark>	<mark>0.000</mark>	0.150	0.343
	S _B	0.2	<mark>92</mark>	0.01	<mark>0.283</mark>	<mark>0.000</mark>	0.200	1.800	<mark>98</mark>	<mark>0.01</mark>	<mark>0.234</mark>	<mark>0.001</mark>	0.201	1.111
	S _F	0.05	<mark>100</mark>	0	<mark>0.039</mark>	0.000	0.050	0.311	<mark>100</mark>	0	<mark>0.044</mark>	<mark>0.000</mark>	0.050	0.404
	ΨΑ1	0.98	<mark>89</mark>	<mark>0</mark>	<mark>0.207</mark>	<mark>0.049</mark>	0.931	0.994	<mark>96</mark>	<mark>0</mark>	<mark>0.147</mark>	<mark>0.024</mark>	0.956	0.996

	Ψ А2	0.75	<mark>100</mark>	0	0.038	0.012	0.762	0.892	<mark>100</mark>	0	<mark>0.044</mark>	0.021	0.771	0.920
	P _{G1a}	0.9	<mark>100</mark>	0	<mark>0.079</mark>	<mark>0.001</mark>	0.899	1.000	<mark>100</mark>	0	<mark>0.088</mark>	<mark>0.001</mark>	0.901	1.000
	P _{G2b}	0.9	<mark>100</mark>	0	<mark>0.079</mark>	<mark>0.000</mark>	0.900	1.000	<mark>100</mark>	0	<mark>0.089</mark>	<mark>0.001</mark>	0.901	1.000
	SA	0.038	<mark>100</mark>	0	<mark>0.010</mark>	0.000	0.037	0.082	<mark>100</mark>	0	0.011	0.000	0.038	0.087
	S _R	0.016	<mark>85</mark>	0	<mark>0.005</mark>	0.001	0.017	0.043	<mark>94</mark>	0	<mark>0.005</mark>	<mark>0.001</mark>	0.017	0.039
43	S _{R0}	0.4	100	0	0.029	0.014	0.414	0.525	100	0	0.023	0.013	0.413	0.525
	S _{A1}	0.3	98	0	0.065	0.004	0.296	0.536	92	0	0.052	0.004	0.296	0.498
	S _{A2}	0.15	100	0	0.035	0.000	0.150	0.304	100	0	0.045	0.000	0.150	0.333
	S _B	0.2	100	0	0.046	0.001	0.199	0.412	100	0	0.037	0.000	0.200	0.346
	S _F	0.01	99.5	0	0.046	0.001	0.009	1.012	97	0	0.058	0.001	0.009	1.014
	ΨΑ1	0.4	100	0	0.044	0.000	0.400	0.584	100	0	0.035	0.000	0.400	0.543
	Ψ А2	0.95	98	0	0.044	0.004	0.954	1.009	93	0	0.082	0.005	0.955	1.039
	P _{G1a}	0.9	100	0	0.057	0.001	0.899	1.000	100	0	0.056	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.057	0.000	0.900	1.000	100	0	0.056	0.000	0.900	1.000
	SA	0.043	98	0	0.014	0.000	0.043	0.129	92	0	0.015	0.000	0.043	0.120
	S _R	0.055	98	0	0.013	0.002	0.057	0.117	92	0	0.010	0.002	0.056	0.096
44	S _{R0}	0.4	100	0	0.029	0.013	0.413	0.526	100	0	0.023	0.013	0.413	0.508
	S _{A1}	0.3	98	0	0.065	0.004	0.296	0.584	92	0	0.053	0.003	0.297	0.492
	S _{A2}	0.15	100	0	0.035	0.000	0.150	0.287	100	0	0.045	0.001	0.151	0.324
	S _B	0.2	100	0	0.046	0.000	0.200	0.429	100	0	0.037	0.000	0.200	0.347
	SF	0.05	99.6	0	0.106	0.000	0.050	1.026	97	0	0.140	0.002	0.052	1.073
	ΨΑ1	0.4	100	0	0.044	0.000	0.400	0.573	100	0	0.035	0.000	0.400	0.547
	Ψ А2	0.95	98	0	0.039	0.005	0.955	1.015	92	0	0.081	0.005	0.955	1.034
	P _{G1a}	0.9	100	0	0.057	0.000	0.900	1.000	100	0	0.056	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.057	0.001	0.901	1.000	100	0	0.055	0.001	0.899	1.000
	SA	0.044	98	0	0.014	0.000	0.043	0.118	92	0	0.015	0.000	0.044	0.144
	S _R	0.055	98	0	0.013	0.002	0.057	0.113	92	0	0.010	0.002	0.057	0.103
45	S _{RO}	0.4	100	0	0.029	0.013	0.413	0.517	100	0	0.023	0.013	0.413	0.494
	S _{A1}	0.3	99	0	0.053	0.003	0.297	0.512	94	0	0.043	0.003	0.297	0.464
	S _{A2}	0.15	100	0	0.034	0.000	0.150	0.303	100	0	0.042	0.000	0.150	0.331
	S _B	0.2	100	0	0.056	0.000	0.200	0.439	100	0	0.045	0.000	0.200	0.382
	S _F	0.01	99.7	0	0.045	0.001	0.009	1.008	98	0	0.053	0.001	0.009	1.033
	ΨΑ1	0.6	100	0	0.044	0.000	0.600	0.777	100	0	0.035	0.000	0.600	0.730
	Ψ А2	0.95	99	0	0.048	0.006	0.956	1.011	95	0	0.079	0.010	0.960	1.044
	P _{G1a}	0.9	100	0	0.061	0.001	0.899	1.000	100	0	0.062	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.062	0.000	0.900	1.000	100	0	0.062	0.001	0.899	1.000

	SA	0.043	99	0	0.013	0.000	0.043	0.096	94	0	0.014	0.000	0.043	0.108
	S _R	0.042	99	0	0.011	0.001	0.044	0.092	94	0	0.009	0.001	0.044	0.083
46	S _{RO}	0.4	100	0	0.029	0.013	0.413	0.517	100	0	0.023	0.012	0.412	0.509
	S _{A1}	0.3	99	0	0.053	0.002	0.298	0.520	95	0	0.043	0.003	0.297	0.475
	S _{A2}	0.15	100	0	0.035	0.001	0.151	0.317	100	0	0.041	0.001	0.151	0.326
	S _B	0.2	100	0	0.057	0.001	0.199	0.447	100	0	0.045	0.000	0.200	0.371
	S _F	0.05	99.8	0	0.099	0.001	0.049	1.064	98	0	0.125	0.001	0.049	1.051
	ΨΑ1	0.6	100	0	0.044	0.002	0.598	0.763	100	0	0.036	0.000	0.600	0.728
	Ψ А2	0.95	99	0	0.039	0.007	0.957	1.013	95	0	0.074	0.011	0.961	1.035
	P _{G1a}	0.9	100	0	0.061	0.002	0.898	1.000	100	0	0.061	0.001	0.901	1.000
	P _{G2b}	0.9	100	0	0.061	0.001	0.899	1.000	100	0	0.061	0.000	0.900	1.000
	SA	0.044	99	0	0.013	0.000	0.044	0.103	95	0	0.014	0.000	0.044	0.112
	S _R	0.042	99	0	0.011	0.001	0.044	0.090	95	0	0.009	0.001	0.044	0.080
47	S _{RO}	0.4	85	0	0.029	0.014	0.414	0.527	95	0	0.023	0.013	0.413	0.513
	S _{A1}	0.3	99	0	0.041	0.004	0.296	0.443	98	0	0.034	0.003	0.297	0.453
	S _{A2}	0.15	100	0	0.032	0.000	0.150	0.309	100	0	0.037	0.000	0.150	0.292
	S _B	0.2	93	0.01	0.284	0.007	0.207	1.122	98	0	0.233	0.001	0.201	1.083
	S _F	0.01	99.9	0	0.043	0.000	0.010	0.513	99	0	0.050	0.000	0.010	1.048
	ΨΑ1	0.98	90	0	0.210	0.051	0.929	0.994	97	0	0.136	0.021	0.959	0.996
	ΨΑ2	0.95	99	0	0.037	0.010	0.960	1.021	98	0	0.058	0.019	0.969	1.041
	P _{G1a}	0.9	100	0	0.074	0.000	0.900	1.000	100	0	0.084	0.001	0.899	1.000
	P _{G2b}	0.9	100	0	0.073	0.000	0.900	1.000	100	0	0.084	0.000	0.900	1.000
	SA	0.043	99	0	0.011	0.000	0.043	0.088	98	0	0.012	0.000	0.043	0.098
	S _R	0.018	85	0	0.005	0.001	0.019	0.042	93	0	0.005	0.001	0.019	0.043
48	S _{RO}	0.4	85	0	0.029	0.014	0.414	0.532	95	0	0.023	0.014	0.414	0.502
	S _{A1}	0.3	99	0	0.041	0.004	0.296	0.465	97	0	0.034	0.004	0.296	0.429
	S _{A2}	0.15	100	0	0.032	0.000	0.150	0.283	100	0	0.037	10.000	0.150	0.332
	S _B	0.2	92	0	0.282	0.000	0.200	1.096	98	0	0.233	0.002	0.202	1.100
	S _F	0.05	99.9	0	0.093	0.001	0.051	1.011	99	0	0.107	0.001	0.049	1.032
	ΨΑ1	0.98	89	0	0.211	0.051	0.929	0.994	97	0	0.145	0.024	0.956	0.996
	ΨΑ2	0.95	99.5	0	0.047	0.009	0.959	1.021	98	0	0.061	0.019	0.969	1.034
	P _{G1a}	0.9	100	0	0.073	0.001	0.901	1.000	100	0	0.084	0.000	0.900	1.000
	P _{G2b}	0.9	100	0	0.072	0.000	0.900	1.000	100	0	0.084	0.001	0.899	1.000
	SA	0.044	99	0	0.011	0.000	0.043	0.097	97	0	0.012	0.000	0.044	0.100
	S _R	0.019	84	0	0.005	0.001	0.019	0.050	92	0	0.005	0.001	0.019	0.043