

Worin liegen die zukünftigen Einsatzgebiete von Wasserstoff?

Wichtige Fragen:

- ► Warum wird dieses Gas, das eigentlich so leicht und scheinbar einfach ist, als "Brennstoff der Zukunft" betrachtet?
- Warum werden Milliarden von Euro in ihn investiert?
- ► Wie hoch schätzen Sie die Zahl?

www.kahoot.it

KufsteinTirol
UNIVERSITY OF APPLIED SCIENCES

1766 von Henry Cavendish entdeckt

- Farblos
- Geruchlos
- Ungiftig
- Leichtestes Element

Der Name "Wasserstoff"
kommt vom Griechischen
"hydro" (Wasser) und
"genes" (erzeugen).

▶ bei sehr niedrigen Temperaturen flüssig und brennt leicht (−253 °C)

Hochentzündlich, bildet mit Luft explosive Gemische!

Die Entwicklung der wissenschaftlichen Publikationen zum Thema Wasserstoffproduktion

Quelle: https://observatory.clean-hydrogen.europa.eu/index.php/hydrogen-landscape/research-and-innovation-activity/publications?utm_source=chatgpt.com

Methoden zur Gewinnung von Wasserstoffbrennstoff

- ✓ Vorteile:
 - keine CO₂-Emissionen
- nachhaltiger Prozess
- ideal für die Energiewende

Herstellung von grünem Wasserstoff

Die Herstellung von grünem Wasserstoff erfolgt durch Elektrolyse mit erneuerbarem Strom

Klassifikation von Wasserstoff

Wasserstofffarbe	Quelle / Herstellungsverfahren	CO ₂ -Bilanz / Umweltfreundlichkeit
Grauer	Dampfreformierung von Methan (aus Erdgas)	★ Hohe CO₂-Emissionen
Schwarzer/Brauner	Vergasung von Kohle oder Braunkohle	X Sehr hohe CO₂-Emissionen
Grüner H2	Elektrolyse mit erneuerbaren Energien	✓ Emissionsfrei
Blauer	Wie grauer, aber mit CO ₂ -Abscheidung	Potenziell kohlenstoffarm, aber nicht vollständig emissionsfrei
Rosa	Elektrolyse mit Kernenergie	Reduzierte Emissionen, aber nicht vollständig emissionsfrei
Türkiser	Methanpyrolyse mit fester Kohlenstoffbildung	& Kohlenstoffarm (umstritten) nicht vollständig emissionsfrei

Produktionskosten verschiedener Wasserstoffarten

Wasserstofftyp	Herstellungsverfahren	Durchschnittliche Kosten
Grau Wasserstoff	Aus Erdgas ohne CO2-Abscheidung	c.a. 1 - 2 € pro kg
Blau Wasserstoff	Aus Erdgas mit CO2-Abscheidung	c.a. 3 - 4 € pro kg
Grüner Wasserstoff	Elektrolyse von Wasser unter Verwendung erneuerbarer Energien	c.a. 5 - 7 € pro kg

Warum Wasserstoff nicht nur eine mögliche Alternative, sondern eine echte Notwendigkeit für die Energiewende ist?

der Anstieg des Meeresspiegels

Ouelle: Alle Bilder stammen aus dem Internet

Vor diesem Hintergrund steht der weltweite Energiesektor vor einer doppelten Herausforderung:

- die Energieversorgungssicherheit zu gewährleisten
- die Emissionen zu reduzieren

Anwendungsgebiete von Wasserstoff

1. Industrie: Metallurgie und Chemie als Schwergewichte der CO₂-Emissionen

2. Verkehrssektor

3. Energie und Energiespeicherung

Beispiele für Wasserstoffanwendungen

Österreich: Grüner Wasserstoff für die Stahlindustrie

Deutschland: Wasserstoffzüge in Niedersachsen

https://www.rechargenews.com/transition/worlds-largest-green-hydrogen-plant-begins-operation-in-austria/2-1-708381?utm=

Norwegen: Wasserstofffähre MF Hydra

Perspektiven

€ , pro kg

Gro Karlem Brundtland

Ehemalige Ministerpräsidentin von Norwegen

"Nachhaltigkeit ist keine Last, sondern eine Chance eine Chance, Innovation voranzutreiben,
Verantwortung zu übernehmen und eine bessere
Zukunft für alle zu gestalten."

Vielen Dank für Ihre Aufmerksamkeit

Quelle*:

*Alle Bilder stammen aus dem Internet:

- 1 https://www.databridgemarketresearch.com/ru/whitepaper/accelerating-sustainable-development-the-role-of-the-african
- 2 https://delprof.ru/upload/iblock/e7b/Analitika_DELOVOY-PROFIL_Vodorodnaya-energetika.pdf
- 3 https://afdc.energy.gov/vehicles/how-do-fuel-cell-electric-cars-work
- 4 https://observatory.clean-hydrogen.europa.eu/index.php/hydrogen-landscape/research-and-innovation-activity/publications?utm_source=chatgpt.com
- 5 https://www.ndr.de/nachrichten/hamburg/Airbus-verschiebt-Entwicklung-von-Wasserstoff-Flugzeug,airbus2120.html

*Wissenschaftliche Artikel:

- 1. Kut, P.; Pietrucha-Urbanik, K.; Zele `náková, M. Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering. Energies 2024, 17, 1862. https://doi.org/10.3390/en17081862
- 2. Maganza, A.; Gabetti, A.; Pastorino, P.; Zanoli, A.; Sicuro, B.; Barcelò, D.; Cesarani, A.; Dondo, A.; Prearo, M.; Esposito, G. Toward Sustainability: An Overview of the Use of Green Hydrogen in the Agriculture and Livestock Sector. Animals 2023, 13, 2561. https://doi.org/10.3390/ani13162561
- 3. J. Braz. Chem. Soc., Vol. 33, No. 8, 824-843, 2022 Sociedade Brasileira de Quimica, https://dx.doi.org/10.21577/0103-5053.20220026
- 4. https://www.enbw.com/unternehmen/themen/klimaschutz/dekarbonisierung.html
- 5. https://observatory.clean-hydrogen.europa.eu

*Andere nützliche Links:

https://www.hycenta.at/

https://www.enbw.com/unternehmen/themen/klimaschutz/dekarbonisierung.html

Dr. Oksana Lunova