Mathematik für Informatik 3

Klausurvorbereitung Marvin Borner 0 1

Dies ist meine WIP Zusammenfassung, welche hauptsächlich mir dienen soll. Ich schreibe außerdem ein inoffizielles Skript, welches auf https://marvinborner.de/mathe3.pdf zu finden ist.

0 Inhalt

T	n	h	_	14
1	n	n	а	ш

1	Sinnvolle Rechenregeln 1.1 Potenzregeln	444
2	Euklidischer Algorithmus	4
3	Erweiterter Euklidischer Algorithmus	4
4	Inverse prüfen	4
5	Zykel	5
6	Fundamentalsatz	5
7	Chinesischer Restsatz	5
8	Reduzibilität	5
9	Lösen von $a^b \pmod{n}$	5
10	Eulersche φ -Funktion	5
11	RSA-Verfahren	5
12	Konvergenz	6
13	Eigenschaften von Mengen	6
14	Stetigkeit 14.1 Polarkoordinaten 14.2 Prüfen	7
15	Weierstraß Minimax-Theorem	7
16	TODO: Zeug?	7
17	Differenziation 17.1 Prüfen	7
18	Ableitungsregeln	8
19	Richtungsableitung	8
2 0	Satz von Schwarz	8
21	Definitheit 21.1 Matrix	8
22	Extrema	ç
23	Taylor	ç
24	Höhenlinien	ç

0 Inhalt	3
25 Implizite Funktionen	9
26 Umkehrfunktionen	9
27 Lagrange	9

0 Inhalt 4

1 Sinnvolle Rechenregeln

1.1 Potenzregeln

- $a^n \cdot a^m = a^{n+m}$
- $a^n \cdot b^n = (a \cdot b)^n$
- $(a^n)^m = a^{n \cdot m}$
- $\frac{a^n}{l^n} = \left(\frac{a}{l}\right)^n$
- \bullet $\frac{a^n}{lm} = a^{n-m}$

1.2 Toll

• $\sin^2(x) + \cos^2(x) = 1$

2 Euklidischer Algorithmus

Zur Berechnung des ggT.

Beispiel

Berechnung von ggT(48, -30):

$$48 = -1 \cdot -30 + 18$$
$$-30 = -2 \cdot 18 + 6$$
$$18 = 3 \cdot 6 + 0$$

$$ggT(48, -30) = 6$$

TODO: kgV mit Primfaktorzerlegung

3 Erweiterter Euklidischer Algorithmus

Zur Berechnung von s, t, da:

$$0 \neq a, b \in \mathbb{Z} \implies \exists s, t \in \mathbb{Z} : ggT(a, b) = sa + tb$$

ggT gleichsetzen, rückwärts einsetzen und je ausmultiplizieren.

Beispiel

Mit vorigem Beispiel:

$$6 = -30 + 2 \cdot 18$$

$$= -30 + 2 \cdot (48 + 1 \cdot -30)$$

$$= 2 \cdot 48 + 3 \cdot -30$$

TODO: Polynome.

4 Inverse prüfen

$$a \in \mathbb{Z}_n$$
 invertierbar $\iff \operatorname{ggT}(a, n) = 1$

 a^{-1} ist dann s aus sa + tn = 1 des EEA.

Zykel 5

Zykel 5

• zyklische Gruppe, von a erzeugt: $\langle a \rangle := \{a^n \mid n \in \mathbb{Z}\}$

Fundamentalsatz

Mit $2 \leq n \in \mathbb{N}$ gibt es endlich viele paarweise verschiedene $p_1, ..., p_k \in \mathbb{P}$ und $e_1, ..., e_k \in \mathbb{N}$, sodass

$$n = p_1^{e_1} \cdot \dots \cdot p_k^{e_k}.$$

7 Chinesischer Restsatz

Lösen von simultaner Kongruenz.

TODO: Beispiel.

8 Reduzibilität

• TODO: Nullstellen und so

• TODO: Mit Primzahlen ez

Lösen von $a^b \pmod{n}$ 9

- falls n groß: Primfaktorzerlegung von n und für jeden Faktor durchführen.
- Modulo in Potenzen aufnehmen (Trick: $2 \pmod{3} = -1$)
- Satz von Euler: $a^{\varphi(n)} \equiv 1 \pmod{n}$
- sonst schlau Potenzregeln anwenden

10 Eulersche φ -Funktion

- $\varphi(p) = p 1$ für $p \in \mathbb{P}$
- $\varphi(M) = m_1 \cdot \dots \cdot m_n$ mit $m_i \in \mathbb{N}$ paarweise teilerfremd (bspw. über chinesischen Restsatz) $\varphi(M) = (p_1 1)p_1^{a_1 1} \cdot \dots \cdot (p_k 1)p_k^{a_k 1}$, mit Primfaktorzerlegung $M = p_1^{a_1} \cdot \dots \cdot p_k^{a_k}$

Beispiel

$$\varphi(100) = \varphi(4 \cdot 5^2) = \varphi(4) \cdot \varphi(5^2) = 2 \cdot (5-1) \cdot 5^{2-1} = 40$$

RSA-Verfahren 11

Bob (Schlüsselerzeugung)

- 1. wählt zwei große $p, q \in \mathbb{P} : p \neq q$ und bildet n = pq
- 2. berechnet $\varphi(n) = (p-1)(q-1)$
- 3. wählt e teilerfremd zu $\varphi(n)$
- 4. bestimmt $0 < d < \varphi(n)$ mit $e \cdot d \pmod{\varphi(n)} = 1$. Verwendet dazu EEA: $ed \pmod{\varphi(n)}$
- 5. Public key: (e, n). Private key: d

Alice (Verschlüsselung)

1. kodiert Nachricht als Zahl und zerlegt sie anschließend in Blöcke gleicher Länge, sodass jeder Block m_i als Zahl $0 \le m_i < n$ ist. Blöcke werden einzeln verschlüsselt. Sei m ein solcher Block.

11 RSA-Verfahren 6

- 2. berechnet $c = m^e \pmod{n}$
- 3. sendet c an Bob.

Bob (Entschlüsselung)

1. berechnet $c^d \pmod{n} = m$ für alle Blöcke

Beispiel

Gegeben (n, e) = (33, 3) public key

- 1. Verschlüsseln Sie die Nachricht m=6. $c=m^e \pmod n = 6^3 \pmod {33} = 3 \cdot 6 = 18$
- 2. Faktorisieren Sie n = 33, berechnen Sie $\varphi(n)$ und d. $\varphi(n) = 2 \cdot 10 = 20$, $ed \pmod{20 = 1}$. Man erkennt d = 7.
- 3. Entschlüsseln Sie die Nachricht c=2: $m=c^d\pmod n=2^7\pmod 33=2^5\cdot 2^2\pmod 33=-4\pmod 33=29$.

12 Konvergenz

Sei $(x_k)_{k\in\mathbb{N}}$ eine Folge im \mathbb{R}^n . $(x_k)_{k\in\mathbb{N}}$ konvergiert gegen $a\in\mathbb{R}^n$ $(x_k\to a \text{ oder } \lim_{k\to\infty}x_k=a)$ wenn gilt

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall k \ge N : ||x_k - a|| < \varepsilon.$$

13 Eigenschaften von Mengen

- Sei $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$. $K_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n \mid ||x x_0|| < \varepsilon\}$ heißt offene ε -Kugel um x_0 .
- $D \subseteq \mathbb{R}^n$ beschränkt : $\iff \exists K > 0 : ||x|| < K \quad \forall x \in D$
- $U \subseteq \mathbb{R}^n$ offen : $\iff \forall x \in U \exists \varepsilon > 0 : K_{\varepsilon}(x) \subseteq U$
- $A \subseteq \mathbb{R}^n$ abgeschlossen : $\iff A^C = \mathbb{R}^n \setminus A$ offen
- Sei (x_k) Folge in $A \subseteq \mathbb{R}^n$ mit Grenzwert $a \in \mathbb{R}^n$. A abgeschlossen $\iff a \in A$.
- $x \in \mathbb{R}^n$ Randpunkt von $D \subseteq \mathbb{R}^n : \iff K_{\varepsilon}(x) \cap D \neq \emptyset$ und $K_{\varepsilon}(x) \cap D^C \neq \emptyset$ $\forall \varepsilon > 0$.
- ∂D ist die (abgeschlossene) Menge aller Randpunkte von D.
- $D \subseteq \mathbb{R}^n$ kompakt : \iff Jede Folge in D besitzt eine in D konvergente Teilfolge.
- $D \subseteq \mathbb{R}^n$ kompakt $\iff D$ beschränkt und abgeschlossen.
- $\bar{D} := D \cup \partial D$ ist abgeschlossen und heißt **Abschluss** von D.
- $\check{D} := D \setminus \partial D$ ist offen und heißt **Innneres** von D.

14 Stetigkeit

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$.

- f stetig in $a \in D :\iff \lim_{x \to a} f(x) = f(a)$
- f stetig auf $D :\iff f$ stetig in $a \quad \forall a \in D$

Mit $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^n, v \subseteq f(0), V$ offen:

$$f$$
 stetig $\iff f^{-1}(V)$ offen.

TODO: Stetige Fortsetzbarkeit

14 Stetigkeit 7

14.1 Polarkoordinaten

- $x = r \cdot \cos(\alpha)$
- $y = r \cdot \sin(\alpha)$
- statt (x, y) (r, α) gegen a laufen lassen (TODO!)

14.2 Prüfen

- In Punkt: $\lim_{v\to v_0} f(v) = f(v_0)$
 - bspw. mit Polarkoordinaten
 - oder mit $0 \le |f(x,y)| \le \dots \implies \lim_{(x,y)\to(0,0)} f(x,y) = 0$ * bspw. x aus Nenner nehmen

15 Weierstraß Minimax-Theorem

 $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ stetig, D kompakt.

$$\implies \exists x_{\star}, x^{\star} \in D : \underbrace{f(x_{\star})}_{\min} \leq f(x) \leq \underbrace{f(x^{\star})}_{\max} \quad \forall x \in D$$

Beispiel

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = xy$$

$$S = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\}$$

$$\implies f \text{ hat Maximum und Minimum auf } S$$

16 TODO: Zeug?

17 Differenziation

Sei $D \subseteq \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^m$, $f(x) = (f_1(x), ..., f_m(x))$ und $a = (a_1, ..., a_n)^\top \in D$.

• Jacobimatrix:

$$f'(a) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{R})$$

• Gradient:

$$f'(a)^{\top} = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix} =: \nabla f(a) = \operatorname{grad}(f(a)) \in \mathbb{R}^n$$

Sei $D \subseteq \mathbb{R}^n$ offen, $a \in D$, $f: D \to \mathbb{R}^m$.

• f heißt in $a \in D$ (total) differenzierbar, wenn f geschrieben werden kann als

$$f(x) = \underbrace{f(a)}_{\in \mathbb{R}^m} + \underbrace{A}_{\in \mathcal{M}_{m,n}(\mathbb{R})} \cdot \underbrace{(x-a)}_{\in \mathbb{R}^m} + \underbrace{R(x)}_{\in \mathbb{R}^m},$$

wobei $A\in\mathcal{M}_{m,n}(\mathbb{R})$ und $R:D\to\mathbb{R}^m$ mit $\lim_{x\to a}\frac{R(x)}{\|x-a\|}=0$

• f heißt (total) differenzierbar, wenn in jedem Punkt von D differenzierbar.

Anderes:

• $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ differenzierbar in $a \in D$ (D offen) $\Longrightarrow f$ stetig in a.

Differenziation 8

- Tangentialebene: $g(x) = f(a) + f'(a) \cdot (x a)$
- f differenzierbar in $a \in D \iff f_i$ differenzierbar in $a \in D \quad \forall i \in \{1, ..., n\}.$

17.1Prüfen

- ob in Punkt p partiell differenzierbar: partielle Ableitungen bilden
 - falls bspw. Fallunterscheidung und (0,0)-Punkt: h-Definition für x/y anwenden
 - Richtungsableitung: $f_v(x,y) = \frac{(x+hv_1,0+hv_2)-f(0,0)}{h}$
- total differenzierbar
 - je partiell ableiten und prüfen ob Ableitungen stetig
 - mit Richtungsleitung versuchen Gegenteil zu beweisen (TODO)

18 Ableitungsregeln

- $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$
- (f+g)'(a) = f'(a) + g'(a)
- $(\lambda f)'(a) = \lambda f'(a)$
- $(f^{\top}g)'(a) = f(a)^{\top}g'(a) + g(a)^{\top}f'(a)$

TODO: lhopital

Anderes:

- $(\ln x)' = \frac{1}{x}$ $(\frac{g}{h})' = \frac{h \cdot g' g \cdot h'}{h^2}$
- $\left(\frac{a}{x^k}\right)' = -\frac{ka}{x^{k+1}}$ bzw. unten Kettenregel

19 Richtungsableitung

Sei $D \subseteq \mathbb{R}^n$ offen, $f: D \to \mathbb{R}$, $v \in \mathbb{R}^n$ mit ||v|| = 1.

f heißt in $a \in D$ differenzierbar in Richtung v, falls $\lim_{h\to 0} \frac{f(a+hv)-f(a)}{h}$ exisitert. Der Grenzwert heißt Richtungsableitung von f in Richtung v in a, $\frac{\partial f}{\partial v}(a)$.

20 Satz von Schwarz

TODO.

21 Definitheit

- 1. Partielle Ableitungen
- 2. Gradienten mit 0 gleichsetzen
- 3. Hessematrix und Punkte einsetzen (falls x/y vorhanden)
- 4. Über Eigenwerte oder Determinante bestimmen

21.1 Matrix

Eine symmetrische Matrix $A \in \mathcal{M}_n(\mathbb{R})$ ist

- positiv definit $\iff \det(A_k) > 0 \quad \forall k \in \{1,...,n\}$ negativ definit $\iff \det(A_k) \begin{cases} < 0 & k \text{ ungerade} \\ > 0 & k \text{ gerade} \end{cases}$ (-+-+..)

Definitheit 9

TODO: über Eigenwerte

22 Extrema

Sei $D \subseteq \mathbb{R}^n$ offen, $f \in \varphi^2(D, \mathbb{R}), a \in D, \nabla f(a) = 0.$

- $H_f(a)$ positiv definit $\implies a$ Stelle eines lokalen Minimums.
- $H_f(a)$ negativ definit $\implies a$ Stelle eines lokalen Maximums.
- $H_f(a)$ indefinit $\implies a$ ist Sattelpunkt
- Ist $H_f(a)$ positiv/negativ semidefinit, so ist keine Aussage möglich.

23 **Taylor**

- Taylorpolynom: $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x x_0)^k$ Satz: $f(x) = T_n(x) + R_n(x)$ $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x x_0)^{n+1}$

24 Höhenlinien

- f(x,y) = c setzen
- nach $y = \dots$ umformen
- entweder verschiedene c einsetzen oder geg. $N_c(f)$

25 Implizite Funktionen

TODO.

Umkehrfunktionen 26

TODO.

27 Lagrange

- 1. Nebenbedingung mit 0 gleichsetzen
- 2. Lagrange-Funktion, bspw. $\mathcal{L}(x,y,\lambda) = f(x,y) + \lambda g(x,y)$ mit g Nebenbedingung
- 3. Erste partielle Ableitungen der Lagrange Funktion ($\mathcal{L}_{\lambda} = g$)
- 4. Ableitungen mit 0 gleichsetzen und lösen (Additionsverfahren gut)
- 5. Mehrere Ergebnisse dann Extrempunkte
- 6. Definitheit überprüfen (geränderte Matrix TODO?)