$$\mathbb{CP}^2$$
 versus $\mathbb{S}^2 \vee \mathbb{S}^4$

$$ightharpoonup \mathbb{CP}^2 = (0\text{-cell}) \cup (2\text{-cell}) \cup_{\eta} (4\text{-cell})$$

\mathbb{CP}^2 versus $\mathbb{S}^2 \vee \mathbb{S}^4$

- $ightharpoonup \mathbb{CP}^2 = (0\text{-cell}) \cup (2\text{-cell}) \cup_{\eta} (4\text{-cell})$
- ▶ Question: What is the difference between $\mathbb{S}^2 \vee \mathbb{S}^4$ and \mathbb{CP}^2 ?
- ▶ How can we prove that they are **not** homotopy equivalent?

$$\mathbb{CP}^2$$
 versus $\mathbb{S}^2 \vee \mathbb{S}^4$

- $ightharpoonup \mathbb{CP}^2 = (0\text{-cell}) \cup (2\text{-cell}) \cup_{\eta} (4\text{-cell})$
- ▶ Question: What is the difference between $\mathbb{S}^2 \vee \mathbb{S}^4$ and \mathbb{CP}^2 ?
- How can we prove that they are **not** homotopy equivalent?

$$\begin{array}{c|c} \mathbb{CP}^2 & \mathbb{S}^2 \vee \mathbb{S}^4 \\ \hline \mathbb{Z}[x]/x^3 & \Lambda[\alpha, \beta] \\ |x| = 2 & |\alpha| = 2, |\beta| = 4 \\ \end{array}$$

Table 1: Cup product structures on $H^*(\underline{}; \mathbb{Z})$.

The Hopf map

► The attaching map of the 4-cell,

$$\eta \colon \partial \mathbb{D}^4 = \mathbb{S}^3 \to \mathbb{S}^2 = 2\text{-skeleton of } \mathbb{CP}^2$$

is called the Hopf map.

The Hopf map

The attaching map of the 4-cell,

$$\eta: \partial \mathbb{D}^4 = \mathbb{S}^3 \to \mathbb{S}^2 = 2$$
-skeleton of \mathbb{CP}^2

is called the Hopf map.

- ▶ In other words, $\mathbb{CP}^2 = \mathsf{Cone}(\eta)$ is the mapping cone of the Hopf map.
- ▶ The argument on the last slide shows that η is not nullhomotopic, $0 \neq [\eta] \in \pi_3(\mathbb{S}^2)$, because if it were zero its mapping cone would be homotopy equivalent to $\mathbb{S}^2 \vee \mathbb{S}^4$.

The Hopf map

The attaching map of the 4-cell,

$$\eta \colon \partial \mathbb{D}^4 = \mathbb{S}^3 \to \mathbb{S}^2 = 2$$
-skeleton of \mathbb{CP}^2

is called the Hopf map.

- ▶ In other words, $\mathbb{CP}^2 = \mathsf{Cone}(\eta)$ is the mapping cone of the Hopf map.
- ▶ The argument on the last slide shows that η is not nullhomotopic, $0 \neq [\eta] \in \pi_3(\mathbb{S}^2)$, because if it were zero its mapping cone would be homotopy equivalent to $\mathbb{S}^2 \vee \mathbb{S}^4$.
- One explicit way to think of this map is by writing it as

$$\mathbb{C}^2 \supset \mathbb{S}^3 \to \mathbb{C} \cup \{\infty\} = \mathbb{CP}^1$$
$$(z_0, z_1) \mapsto \frac{z_0}{z_1}$$

Hopf fibration

Figure 1: Some fibres of $\eta\colon\mathbb{S}^3\to\mathbb{S}^2$ drawn in $\mathbb{S}^3=\mathbb{R}^3\cup\{\infty\}$ Source: https://nilesjohnson.net/hopf-production.html

▶ What about $\Sigma \mathbb{CP}^2 = (0\text{-cell}) \cup (3\text{-cell}) \cup_{\Sigma \eta} (5\text{-cell})$?

- ▶ What about $\Sigma \mathbb{CP}^2 = (0\text{-cell}) \cup (3\text{-cell}) \cup_{\Sigma_n} (5\text{-cell})$?
- ▶ Is $\Sigma \mathbb{CP}^2$ homotopy equivalent to $\mathbb{S}^3 \vee \mathbb{S}^5$?

- ▶ What about $\Sigma \mathbb{CP}^2 = (0\text{-cell}) \cup (3\text{-cell}) \cup_{\Sigma_{\eta}} (5\text{-cell})$?
- ▶ Is $\Sigma \mathbb{CP}^2$ homotopy equivalent to $\mathbb{S}^3 \vee \mathbb{S}^5$?
- Cup products are of no help here since they are trivial on a suspension! (Why?)

- ▶ What about $\Sigma \mathbb{CP}^2 = (0\text{-cell}) \cup (3\text{-cell}) \cup_{\Sigma_{\eta}} (5\text{-cell})$?
- ▶ Is $\Sigma \mathbb{CP}^2$ homotopy equivalent to $\mathbb{S}^3 \vee \mathbb{S}^5$?
- Cup products are of no help here since they are trivial on a suspension! (Why?)

We will also look at the (iterated) suspensions:

$$\eta \colon \mathbb{S}^3 \to \mathbb{S}^2 \in \pi_3(\mathbb{S}^2)$$

$$\leadsto \Sigma \eta \colon \mathbb{S}^4 \to \mathbb{S}^3 \in \pi_4(\mathbb{S}^3)$$

$$\leadsto \Sigma^2 \eta \colon \mathbb{S}^5 \to \mathbb{S}^4 \in \pi_5(\mathbb{S}^4)$$

$$\leadsto \dots$$

Homotopy groups of spheres

$\pi_i(S^n)$													
		$i \rightarrow$											
		1	2	3	4	5	6	7	8	9	10	11	12
n	1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0
1	2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2^-	\mathbb{Z}_2^-	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2^-	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2
	5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}
	6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}	\mathbb{Z}_2
	7	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0
	8	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0

Figure 2: Source: Hatcher, Algebraic Topology, Section 4.1, p.339