

וט	latzziffer:
	atzziii ei.

Punkte:

Note:

Fakultät Elektro- und Medientechnik

Kurs: Mathematik 1

Semester: WS 2013/2014

Studiengang: Angewandte Informatik/Infotronik

Prüfungsdauer: 90 Minuten (ges.)

Prüfer: Prof. Dr. Peter Ullrich

Prüfungsdatum: 27.01.2014

Hilfsmittel: 4 DIN A4 Seiten handgeschr., TR

Uhrzeit: 11:00 – 12:30

Prüfungsart: Schriftliche Prüfung

Anzahl d. Blätter: 13

Bewertung: Aufgabe 1: von 15 Punkten

Aufgabe 2: von 16 Punkten

Aufgabe 3: von 14 Punkten

Aufgabe 4: von 17 Punkten

Aufgabe 5: von 13 Punkten

Summe: von 75 Punkten

Wichtige Hinweise:

- 1. Überprüfen Sie, ob Sie auf dem zugewiesenen Platz sitzen und tragen Sie als erstes Ihre Platzziffer in das graue Feld ein.
- 2. Legen Sie Ihren Studentenausweis gut sichtbar auf den Tisch.
- 3. Beachten Sie die jeweilige Fragestellung beim Lösen der Aufgaben genau.
- 4. Die Aufgaben sind grundsätzlich auf den Angabenblättern an den dafür vorgesehenen Stellen, in Ausnahmefällen auf der Rückseite des vorhergehenden Blattes, zu bearbeiten.
- 5. Das Geheft darf nicht getrennt werden.
- 6. Auf eine saubere und übersichtliche Darstellung wird besonderer Wert gelegt.

Viel Erfolg!

Aufgabe 1 (15 Punkte):

(a) Berechnen Sie:

$$|3-4i| \cdot \frac{\overline{5+5i}}{(-1+2i)^2}$$

 $\sum (a)$ Punkte

(b) Bestimmen Sie alle 4-ten komplexen Wurzeln von $w=-8-8\sqrt{3}i$ und geben Sie Arg(z) (im Bogen- und Gradmaß) für jede 4-te Wurzel z an.

 $\sum (b)$ Punkte

(c) Es sei $y(t)=y_1(t)+y_2(t)$ die Überlagerung der beiden Schwingungen

$$y_1(t) = 2\sin(\pi t + \frac{\pi}{6})$$
 $y_2(t) = 4\sin(\pi t + \frac{\pi}{3}).$

Für die Überlagerung gilt $y(t)=a\sin(\omega t+\varphi)$. Berechnen Sie a, ω und φ , indem Sie die Schwingungen $y_1(t)$ und $y_2(t)$ zunächst durch komplexe Größen darstellen.

 $\sum (c)$ Punkte

 $\sum \sum (a) - (c)$ Punkte

Aufgabe 2 (16 Punkte):

(a) Berechnen Sie in $\mathbb{Z}/8\mathbb{Z}$.

$$\left(\frac{5^4}{7} - \frac{1}{3} + 1\right)^2$$

 $\sum (a)$ Punkte

(b) Bestimmen Sie unter Anwendung des erweiterten Euklidischen Algorithmus das multiplikative Inverse von 49 in $\mathbb{Z}/125\mathbb{Z}$. Begründen Sie zuvor ohne Rechnung, wieso 49 ein Inverses in $\mathbb{Z}/125\mathbb{Z}$ besitzt.

 $\sum (b)$ Punkte

 $\sum \sum (a) - (b)$ Punkte

Aufgabe 3 (14 Punkte):

Bestimmen Sie die Lösungsmengen folgender Gleichungen bzw. Ungleichungen.

(a)

$$\frac{1}{x^2 - x} + \frac{2}{x^2} = \frac{2}{x}$$

 $\sum (a)$ Punkte

(b)

$$(x-1)^2 > 7 - x$$

 $\sum (b)$ Punkte

(c)
$$\sqrt{x+1} - \sqrt{x-4} = 1$$

 $\sum (c)$ Punkte

 $\sum \sum (a) - (c)$ Punkte

Aufgabe 4 (17 Punkte):

Gegeben ist die gebrochenrationale Funktion

$$f(x) = \frac{x^3 - 7x^2 + 15x - 9}{x^2 - 9}.$$

(a) Bestimmen Sie die Definitionslücken und den max. Definitionsbereich.

 $\sum (a)$ Punkte

(b) Bestimmen Sie die Nullstellen mit Vielfachheiten.

 $\sum (b)$ Punkte

(c) Bestimmen Sie die Pole mit entsprechender Ordnung und die hebbaren Definitionslücken.

 $\sum (c)$ Punkte

(d) Berechnen Sie den Grenzwert $\lim_{x\to 3} f(x)$.

 $\sum (d)$ Punkte

(e) Bestimmen Sie alle Asymptoten.

 $\sum (e)$ Punkte

 $\sum \sum (a) - (e)$ Punkte

Aufgabe 5 (13 Punkte):

(a) Berechnen Sie folgendes unbestimmtes Integral.

$$I = \int \frac{x+1}{x^2 - 4x + 4} \, dx$$

 $\sum (a)$ Punkte

(b) Durch Rotation des Graphen der Funktion

$$g:[0,h]\to\mathbb{R},x\mapsto \frac{r}{h}x$$

um die x-Achse entsteht ein Rotationskörper. Skizzieren Sie den Körper in einem Koordinatensystem. Berechnen Sie das Volumen des Körpers durch Integration. Wie heißt dieser Körper?

$$\sum (b)$$
 Punkte

$$\sum \sum (a) - (b)$$
 Punkte