

Aula 1 – Decisão sob incerteza Prof. E. A. Schmitz

Teoria da decisão

Investimentos envolvem tomada de decisões

Decidir qual a melhor alternativa:

Usando a informação disponível

Baseada num procedimento calculável

Feita por um agente racional

Elementos de um problema de decisão

- 1-objetivo
 - -escolher o carro mais econômico
- 2-alternativas
 - -gasolina, flex, diesel
- 3-estados da natureza
 - -preços dos combustíveis ao longo do tempo
- 4-payoffs
 - -custo total de operação em 5 anos

Exemplo para discussão

Vc. acabou de receber uma herança, em dinheiro, no valor de R\$1.000.000. Problema de decisão: o que fazer com o dinheiro?

- 1. Objetivo:
- 2. Alternativas:
- 3. Estados da natureza:
- 4. Payoffs:

1-Incerteza

Tomador de decisão identifica os possíveis estados da natureza mas não consegue associar uma chance a cada um deles.

2-Risco

Tomador de decisão possui informação suficiente para estimar a probabilidade dos possíveis estados da natureza.

Estimativa (quase sempre) subjetiva.

Decisões *one-time* e sequenciais

1-One-time

A alternativa está associada a um ponto no tempo que, vamos assumir, é irreversível.

2-Sequenciais

Envolve uma série de decisões inter-relacionadas formando uma estratégia.

Decisão sob incerteza

Critérios de decisão sob incerteza

- Maximax (Hurvicz)
- Maximin (Wald)
- Minimax (Savage)
- Média (Laplace)

Critérios de tomada de decisão sob incerteza

- Maximax (Hurvicz)
 - Tomador de decisão é otimista
 - Tenta maximizar lucro, sem se importar com risco
 - Go-for-broke strategy
- Maximin (Wald)
 - Tomador de decisão é pessimista
 - Tenta minimizar a perda sem se importar com lucro
 - Escolhe opção com menor perda

Critérios de tomada de decisão sob incerteza

Minimax (Savage)

- Tomador de decisão é sempre perdedor
- Tenta minimizar o "remorso" ou críticas posteriores
- Sejam:
 - a_i : alternativas ($i \in 1..n$)
 - e_i : estado da natureza ($j \in 1..m$)
 - L(a_i, e_j): lucro da alternativa a_i no estado e_j
 - Max (e_i): máximo lucro obtenível no estado e_i
 - $\operatorname{Rem}(a_i, e_i) = \operatorname{Max}(e_i) \operatorname{L}(a_i, e_i)$
 - Rem(a_i)=max (Rem(a_i,ej) "maior remorso da alternativa a_i"
- Critério de decisão: selecionar k tal que Rem (a_k) seja mínimo.

Critérios de tomada de decisão sob incerteza

- Média (Principio da razão insuficiente de Laplace)
 - Na falta de maiores informações, todos os estados do mundo apresentam a mesma chance de ocorrência
 - Tenta maximizar o valor esperado ou a média
 - Escolhe opção com maior valor esperado

Exercício de análise de decisão (1): qual fábrica construir?

- A empresa está introduzindo um novo produto e precisa construir uma nova fábrica dedicada especialmente a esse novo produto. São 3 alternativas de plantas: pequena, média ou grande; cada uma mais eficiente em determinada escala de produção.
- O problema aparece porque o dono não consegue saber qual será a demanda para o novo produto. Na falta de maiores informações, assume-se que a demanda pode ser: baixa, moderada ou alta.
- Verifique qual seria a decisão a ser tomada, quando cada um dos critérios de decisão é aplicado aos dados da empresa.

Exercício de análise de decisão (1): qual fábrica construir?

		Demanda		
		Baixa	Moderada	Alta
	Pequena	250	-40	0
Alternativa	Média	-50	350	60
	Grande	-100	80	400

Decisão sob risco

Critérios de decisão sob risco (1)

A: $\{a_i\}$ i \in 1...N conjunto de alternativas.

La_i: lucros gerados pela alternativa i.

pdfL a_i : L $a_i \rightarrow [0..1]$ a função de probabilidade do lucro gerado pela alternativa i.

Problema: qual a alternativa traz o melhor resultado?

Critérios de decisão sob risco (1)

- 1. Escolha direta
 - 1. Dominância
 - 2. Dominância estocástica de primeira ordem
 - 3. Uso de medidas resumo

2. Uso do equivalente de certeza

Forma de representação: árvore de decisão

Critérios de decisão sob risco (1)

1. Dominância de resultado:

Se a alternativa A é, no mínimo, preferível a alternativa B para qualquer estado da natureza e A é estritamente preferível a alternativa B em ao menos um caso, então dizemos que: A domina B (A > B)

Critérios de decisão sob risco (2)

1. Dominância estocástica (de primeira ordem)
Se para quaisquer valores da unidades de avaliação (onde mais é melhor) a probabilidade da alternativa A atingir valores maiores ou iguais a alternativa B então dizemos que A domina estocasticamente B.

Exemplo: dominancia estocástica (1)

Exemplo: dominancia estocástica (2)

- 1. Desenhe a distribuição de probabilidade dos ganhos das duas alternativa
- 2. Desenha a distribuição de probabilidade cumulativa dos ganhos das duas alternativas
- 3. Identifique a alternativa estocasticamente dominante

Definição formal para a dominância estocástica

- 1. La_i: variável aleatória do lucro da alternativa a_i.
- 2. $pdfLa_i : R \rightarrow [0..1]$ função de probabilidade de La_i .
- 3. $\operatorname{cdfLa_i}(x) \stackrel{\text{def}}{=} \operatorname{prob} (\operatorname{La_i} \leq x)$ Donde: $\operatorname{prob}(\operatorname{La_i} > x) = 1 \operatorname{-cdf} \operatorname{La_i}(x)$
- 4. $a_i > a_j \rightarrow \forall x \mid (1-\text{cdfLa}_i(x)) > (1-\text{cdfLa}_j(x))$
- 5. $a_i > a_j \rightarrow \forall x \mid cdfL \ a_i(x) < cdfLa_j(x)$

Lista para casa (1): qual produto a produzir?

Produto	Preço/unidade	Custo/unidade	Contribuição/unidade
۸	2.50	1.50	1.00
Α	2,50	1,50	1,00
В	6,00	4,00	2,00
С	3,75	2,25	1,50
A			
Vendas	Probabilidade		
2.000	0,1		
3.000	0,1		
4.000	0,2		
5.000	0,6		
В			
Vendas	Probabilidade		
-	0,1		
1.000	0,2		
2.000	0,2		
3.000	0,4		
4.000	0,1		
Α			
Vendas	Probabilidade		
-	0,1		
1.000	0,3		
2.000	0,3		
3.000	0,2		
4.000	0,1		