

Chordal generators and the hydrodynamic normalization for the unit ball

Sebastian Schleißinger*

January 20, 2015

Abstract

Let $c \geq 0$ and denote by $\mathcal{K}(\mathbb{H}, c)$ the set of all infinitesimal generators $G : \mathbb{H} \rightarrow \mathbb{C}$ on the upper half-plane \mathbb{H} such that $\limsup_{y \rightarrow \infty} y \cdot |G(iy)| \leq c$. This class is related to univalent functions $f : \mathbb{H} \rightarrow \mathbb{H}$ with hydrodynamic normalization and appears in the so called chordal Loewner equation.

In this paper, we generalize the class $\mathcal{K}(\mathbb{H}, c)$ and the hydrodynamic normalization to the Euclidean unit ball in \mathbb{C}^n . The generalization is based on the observation that $G \in \mathcal{K}(\mathbb{H}, c)$ can be characterized by an inequality for the hyperbolic length of $G(z)$.

Keywords: Semigroups of holomorphic mappings, infinitesimal generators, hydrodynamic normalization, chordal Loewner equation

2010 Mathematics Subject Classification: 20M20, 32A40, 37L05.

Contents

1	Introduction	2
1.1	One-parameter semigroups	2
1.2	The hydrodynamic normalization in one dimension	3
2	Chordal generators in higher dimensions	4
2.1	Invariant formulation for $\mathcal{K}(\mathbb{D}, c)$ and $\mathcal{K}(\mathbb{H}, c)$	4
2.2	Chordal generators in the unit ball	4
3	Slices	5
3.1	Normalized geodesics and slices	5
3.2	Some explicit formulas	6
3.3	Slices of generators in $\mathcal{K}(\mathbb{H}_n, c)$ and examples	7
4	Univalent functions with hydrodynamic normalization	8
4.1	Basic properties of \mathfrak{P}_n	8
4.2	Semigroups with generators in $\mathcal{K}(\mathbb{H}_n, c)$	10
4.3	On the behavior of iterates	12
5	Appendix	13

*Supported by the ERC grant “HEVO - Holomorphic Evolution Equations” n. 277691.

1 Introduction

1.1 One-parameter semigroups

Let $\mathbb{B}_n = \{z \in \mathbb{C}^n \mid \|z\| < 1\}$ be the Euclidean unit ball in \mathbb{C}^n . In one dimension we write $\mathbb{D} := \mathbb{B}_1$ for the unit disc.

Definition 1.1. A continuous one-real-parameter semigroup of holomorphic functions on \mathbb{B}_n is a map $[0, \infty) \ni t \mapsto \Phi_t \in \mathcal{H}(\mathbb{B}_n, \mathbb{B}_n)$ satisfying the following conditions:

- (1) Φ_0 is the identity,
- (2) $\Phi_{t+s} = \Phi_t \circ \Phi_s$ for all $t, s \geq 0$,
- (3) Φ_t tends to the identity locally uniformly in \mathbb{B}_n when t tends to 0.

Given such a semigroup $\{\Phi_t\}_{t \geq 0}$ and a point $z \in \mathbb{B}_n$, then the limit

$$G(z) := \lim_{t \rightarrow 0} \frac{\Phi_t(z) - z}{t}$$

exists and the vector field $G : \mathbb{B}_n \rightarrow \mathbb{C}^n$, called the *infinitesimal generator*¹ of Φ_t , is a holomorphic function (see, e.g., [Aba92]). We denote by $\text{Inf}(\mathbb{B}_n)$ the set of all infinitesimal generators of semigroups in \mathbb{B}_n . For any $z \in \mathbb{B}_n$, the map $w(t) := \Phi_t(z)$ is the solution of the initial value problem

$$\frac{dw(t)}{dt} = G(w(t)), \quad w(0) = z. \quad (1.1)$$

There are various characterizations of holomorphic functions $G : \mathbb{B}_n \rightarrow \mathbb{C}^n$ that are infinitesimal generators; see [RS05] (Section 7.3), [BCDM10] (Theorem 0.2), [BES14] (p. 193).

The set $\text{Inf}(\mathbb{D})$, i.e. all infinitesimal generators in the unit disc, can be characterized completely by the Berkson-Porta representation formula (see [BP78]):

$$\text{Inf}(\mathbb{D}) = \{z \mapsto (\tau - z)(1 - \bar{\tau}z)p(z) \mid \tau \in \overline{\mathbb{D}}, p \in \mathcal{H}(\mathbb{D}, \mathbb{C}) \text{ with } \operatorname{Re}(p(z)) \geq 0 \text{ for all } z \in \mathbb{D}\}. \quad (1.2)$$

Remark 1.2. Let $F : \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic self-map. Recall the Denjoy-Wolff theorem (see, e.g., [RS05], Theorem 5.1): If F is not an elliptic automorphism (i.e. an automorphism with exactly one fixed point in \mathbb{D}), then there exists one point $\tau \in \overline{\mathbb{D}}$ (the Denjoy-Wolff point of F) such that the iterates F^n converge locally uniformly in \mathbb{D} to the constant map τ .

If $\{\Phi_t\}_{t \geq 0}$ is a semigroup on \mathbb{D} , then we call $\tau \in \overline{\mathbb{D}}$ the Denjoy-Wolff point of $\{\Phi_t\}_{t \geq 0}$ if τ is the Denjoy-Wolff point of Φ_1 , which is equivalent to $\lim_{t \rightarrow \infty} \Phi_t = \tau$ locally uniformly.

If an infinitesimal generator in the unit disc does not generate a semigroup of elliptic automorphisms of \mathbb{D} , then the point $\tau \in \overline{\mathbb{D}}$ from formula (1.2) is exactly the Denjoy-Wolff point of the semigroup.

There are two special cases of infinitesimal generators in \mathbb{D} that have been studied intensively and turned out to be quite useful in Loewner theory and its applications. The two different cases arise from certain normalizations of the Berkson-Porta data τ and p from formula (1.2). In the *radial* case, one considers those elements $G \in \text{Inf}(\mathbb{D})$ whose Berkson-Porta data τ and p satisfy

$$\tau = 0 \quad \text{and} \quad p(0) = 1,$$

i.e. $G(z) = -zp(z)$.

This class plays a central role in studying the class S of all univalent functions $f : \mathbb{D} \rightarrow \mathbb{C}$ with $f(0) = 0$, $f'(0) = 1$, by the powerful tools of Loewner's theory; see, e.g., [Pom75], Chapter 6. The class of radial generators as well as the class S have been generalized in this context to the polydisc \mathbb{D}^n , see [Por87a, Por87b], and to the unit ball \mathbb{B}_n , see [GK03] for a collection of several results and references.

The second class, the set of all *chordal* generators², consists of all $G \in \text{Inf}(\mathbb{D})$ whose Berkson-Porta data τ and p satisfy

$$\tau = 1 \quad \text{and} \quad \angle \lim_{z \rightarrow 1} \frac{p(z)}{z - 1} \quad \text{is finite.}$$

The aim of this paper is to introduce a generalization of the chordal class for the unit ball \mathbb{B}_n .

¹There is no standard convention in the literature and often $-G$ is called the infinitesimal generator of the semigroup.

²Note that there is no standard use of the words “radial” and “chordal” in the literature. In [CDMG10], e.g., an element $G \in \text{Inf}(\mathbb{D})$ is called *radial* if $\tau \in \mathbb{D}$ and *chordal* if $\tau \in \partial\mathbb{D}$.

1.2 The hydrodynamic normalization in one dimension

Instead of fixing an interior point, like in the class S , it can be of interest to investigate univalent self-mappings of \mathbb{D} that fix a boundary point. In this case, one usually passes from \mathbb{D} to the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$.

A class of such mappings that is easy to describe and that appears in several applications is the set of all univalent mappings $f : \mathbb{H} \rightarrow \mathbb{H}$ that fix the boundary point ∞ and have the so called *hydrodynamic normalization*. Basic properties of this class can be found in [GB92], see also [Bau05] and [CDMG10]. One of its main applications is the chordal Loewner equation, see [ABCDM10], Section 4, for further references.

A univalent function $f : \mathbb{H} \rightarrow \mathbb{H}$ has *hydrodynamic normalization* (at ∞) if f has the expansion

$$f(z) = z - \frac{c}{z} + \gamma(z),$$

where $c \geq 0$, which is usually called *half-plane capacity*, and γ satisfies $\angle \lim_{z \rightarrow \infty} z \cdot \gamma(z) = 0$.

We denote by \mathfrak{P} the set of all these functions. Then \mathfrak{P} is a semigroup and the functional $l : \mathfrak{P} \rightarrow [0, \infty)$, $l(f) = c$, is additive: If $f_1, f_2 \in \mathfrak{P}$, then $f_1 \circ f_2 \in \mathfrak{P}$ and $l(f_1 \circ f_2) = l(f_1) + l(f_2)$.

Remark 1.3. Let $f \in \mathfrak{P}$ with $l(f) = c$. If we transfer f to the unit disc by conjugation by the Cayley transform, then we obtain a function $\tilde{f} : \mathbb{D} \rightarrow \mathbb{D}$ having the expansion

$$\tilde{f}(z) = z - \frac{c}{4}(z-1)^3 + \tilde{\gamma}(z),$$

where $\angle \lim_{z \rightarrow 1} \frac{\tilde{\gamma}(z)}{(z-1)^3} = 0$.

If $\{\Phi_t\}_{t \geq 0}$ is a one-real-parameter semigroup contained in \mathfrak{P} with $l(\Phi_1) = a$, then it is easy to see that $l(\Phi_t) = a \cdot t$. If H is the generator of this semigroup, then we also define $l(H) := a$.

We will be interested in the following set of chordal generators.

Definition 1.4. By $\mathcal{K}(\mathbb{H}, c)$ we denote the set of all infinitesimal generators H of one-real parameter semigroups $\{\Phi_t\}_{t \geq 0}$ contained in \mathfrak{P} with $l(H) \leq c$.

Remark 1.5. The set $\mathcal{K}(\mathbb{H}, c)$ can be characterized in various ways; see [GB92], Section 1 and [Maa92], Proposition 2.2.

It is known that $H \in \mathcal{K}(\mathbb{H}, c)$ for some $c \geq 0$ if and only if H maps \mathbb{H} into $\overline{\mathbb{H}}$ and

$$\limsup_{y \rightarrow \infty} y|H(iy)| \leq c. \quad (1.3)$$

In fact, $l(H) = \limsup_{y \rightarrow \infty} y|H(iy)|$.

Furthermore, this is equivalent to: H maps \mathbb{H} into $\overline{\mathbb{H}}$ and

$$|H(z)| \leq \frac{c}{\operatorname{Im}(z)} \quad (1.4)$$

for all $z \in \mathbb{H}$. The number $l(H)$ is the smallest constant such that this inequality holds.

Finally, it is known that this property is equivalent to the fact that $-G$ is the Cauchy transform of a finite, non-negative Borel measure μ on \mathbb{R} , i.e.

$$H(z) = \int_{\mathbb{R}} \frac{\mu(du)}{u-z}. \quad (1.5)$$

The number $l(H)$ can be calculated by $l(H) = \mu(\mathbb{R})$.

Remark 1.6. It is easy to see that the following holds: if $f \in \mathfrak{P}$ with $c = l(f)$, then $H := f - id \in \mathcal{K}(\mathbb{H}, c)$ with $l(H) = c$.

Let $C : \mathbb{H} \rightarrow \mathbb{D}$, $C(z) = \frac{z-i}{z+i}$, be the Cayley map. We define $\mathcal{K}(\mathbb{D}, c)$ by

$$\mathcal{K}(\mathbb{D}, c) = \{C'(C^{-1}) \cdot (H \circ C^{-1}) \mid H \in \mathcal{K}(\mathbb{H}, c)\}.$$

The rest of this paper is organized as follows: In Section 2 we look for an invariant characterization of chordal generators, i.e. of the sets $\mathcal{K}(\mathbb{H}, c)$ and $\mathcal{K}(\mathbb{D}, c)$, and we introduce the class $\mathcal{K}(\mathbb{B}_n, c)$ for the higher dimensional unit ball. It will turn out to be quite useful to study “slices” of this class, which is done in Section 3. In Section 4 we introduce and study the class \mathfrak{P}_n , a higher dimensional analog of the class \mathfrak{P} .

³If $\{\Phi_t\}_{t \geq 0}$ is a semigroup in \mathbb{H} with generator H , then $\{C \circ \Phi_t \circ C^{-1}\}_{t \geq 0}$ is a semigroup in \mathbb{D} and its generator is given by $C'(C^{-1}) \cdot (H \circ C^{-1})$.

2 Chordal generators in higher dimensions

2.1 Invariant formulation for $\mathcal{K}(\mathbb{D}, c)$ and $\mathcal{K}(\mathbb{H}, c)$

For $R > 0$ we let $E_{\mathbb{D}}(1, R)$ be the horodisc in \mathbb{D} with center 1 and radius R , i.e.

$$E_{\mathbb{D}}(1, R) = \left\{ z \in \mathbb{D} \mid \frac{1}{|u_{\mathbb{D}}(z)|} < R \right\},$$

where $u_{\mathbb{D}}(z) = -\frac{1-|z|^2}{|1-z|^2}$ is the Poisson kernel in \mathbb{D} with respect to 1.

By using the Cayley map we define analogously $E_{\mathbb{H}}(\infty, R) = C^{-1}(E_{\mathbb{D}}(1, R)) = \{z \in \mathbb{H} \mid \frac{1}{\text{Im}(z)} < R\}$. For $z \in \mathbb{D}$ and a tangent vector $v \in \mathbb{C}$ we denote by $|v|_{\mathbb{D}, z}$ the hyperbolic length of v (with curvature -1), i.e.

$$|v|_{\mathbb{D}, z} := \frac{2|v|}{1 - |z|^2}.$$

Furthermore, we let $R_{\mathbb{D}}(z)$ be the radius R of the horodisc $E_{\mathbb{D}}(1, R)$ that satisfies $z \in \partial E(1, R)$; in short $R_{\mathbb{D}}(z) = \frac{1}{|u_{\mathbb{D}}(z)|}$. Analogously, for $z \in \mathbb{H}$ and $v \in \mathbb{C}$, we define $R_{\mathbb{H}}(z) := 1/\text{Im}(z)$ and the hyperbolic length $|v|_{\mathbb{H}, z} := |v|/\text{Im}(z)$.

According to (1.4) we know that $H \in \mathcal{K}(\mathbb{H}, c)$ if and only if H maps \mathbb{H} into $\overline{\mathbb{H}}$ and $|H(z)| \leq c/\text{Im}(z)$ for all $z \in \mathbb{H}$. By using the Berkson-Porta formula it is easy to see that we can rephrase this to: $H \in \mathcal{K}(\mathbb{H}, c)$ if and only if $H \in \text{Inf}(\mathbb{H})$ and $|H(z)| \leq c/\text{Im}(z)$ for all $z \in \mathbb{H}$.

The last inequality is equivalent to $|H(z)|/\text{Im}(z) \leq c/\text{Im}(z)^2$ or

$$|H(z)|_{\mathbb{H}, z} \leq \frac{c}{\text{Im}(z)^2} = c \cdot R_{\mathbb{H}}(z)^2.$$

If we pass from \mathbb{H} to \mathbb{D} and transform H into $G = C'(C^{-1}) \cdot (H \circ C^{-1})$, then G satisfies $|G(C(z))|_{\mathbb{D}, C(z)} = |H(z)|_{\mathbb{H}, z}$ and we immediately get the following characterization.

Proposition 2.1. Let $G \in \text{Inf}(\mathbb{D})$. Then

$$G \in \mathcal{K}(\mathbb{D}, c) \iff |G(z)|_{\mathbb{D}, z} \leq c \cdot R_{\mathbb{D}}(z)^2 \quad \text{for all } z \in \mathbb{D}.$$

Let $H \in \text{Inf}(\mathbb{H})$. Then

$$H \in \mathcal{K}(\mathbb{H}, c) \iff |H(z)|_{\mathbb{H}, z} \leq c \cdot R_{\mathbb{H}}(z)^2 \quad \text{for all } z \in \mathbb{H}.$$

2.2 Chordal generators in the unit ball

For $n \in \mathbb{N}$, let u_n be the pluricomplex Poisson kernel in \mathbb{B}_n with pole at $e_1 := (1, 0, \dots, 0)$, i.e.

$$u_{\mathbb{B}_n, p} = -\frac{1 - \|z\|^2}{|1 - z_1|^2}.$$

The level sets of $u_{\mathbb{B}_n}$ are exactly the boundaries of horospheres with center e_1 , more precisely, the set

$$E_{\mathbb{B}_n}(e_1, R) := \{z \in \mathbb{B}_n \mid |u_{\mathbb{B}_n}(z)|^{-1} < R\}, R > 0,$$

is the horosphere with center e_1 and radius R .

Furthermore, for $z \in \mathbb{B}_n$ and $v \in \mathbb{C}^n$ we denote by $|v|_{\mathbb{B}_n, z}$ the Kobayashi-hyperbolic length of the vector v with respect to z .

Motivated by Proposition 2.1, we make the following definition.

Definition 2.2. Let $c \geq 0$. We define the class $\mathcal{K}(\mathbb{B}_n, c)$ to be the set of all infinitesimal generators G on \mathbb{B}_n such that for all $z \in \mathbb{B}_n$ the following inequality holds:

$$\|G(z)\|_{\mathbb{B}_n, z} \leq \frac{c}{u_{\mathbb{B}_n}(z)^2}. \tag{2.1}$$

Remark 2.3. $\mathcal{K}(\mathbb{B}_n, c)$ is a compact family: Montel's theorem and the definition of $\mathcal{K}(\mathbb{B}_n, c)$ immediately imply that it is a normal family. If a sequence $(G_n) \subset \mathcal{K}(\mathbb{B}_n, c)$ converges locally uniformly to $G : \mathbb{B}_n \rightarrow \mathbb{C}^n$, then G is holomorphic and also an infinitesimal generator which can be seen by using the characterization given in [BCDM10], Theorem 0.2. Of course, G also satisfies (2.1) and we conclude $G \in \mathcal{K}(\mathbb{B}_n, c)$.

Just as we passed from \mathbb{D} to \mathbb{H} in one dimension, we can pass from the unit ball \mathbb{B}_n to the Siegel upper half-space $\mathbb{H}_n = \{(z_1, \tilde{z}) \in \mathbb{C}^n \mid \text{Im}(z_1) > \|\tilde{z}\|^2\}$ in order to get simpler formulas:

The Cayley map

$$C : \mathbb{H}_n \rightarrow \mathbb{B}_n, \quad C(z) = (C_1(z), \dots, C_n(z)) = \left(\frac{z_1 - i}{z_1 + i}, \frac{2z_2}{z_1 + i}, \dots, \frac{2z_n}{z_1 + i} \right),$$

maps \mathbb{H}_n biholomorphically onto \mathbb{B}_n . It extends to a homeomorphism from the one-point compactification $\widehat{\mathbb{H}}_n = \mathbb{H}_n \cup \partial \mathbb{H}_n \cup \{\infty\}$ of $\mathbb{H}_n \cup \partial \mathbb{H}_n$ to the closure of \mathbb{B}^n .

The pluricomplex Poisson kernel transforms as follows:

$$u_{\mathbb{H}_n}(z) := u_{\mathbb{B}_n}(C(z)) = -\text{Im}(z_1) + \|\tilde{z}\|^2.$$

Thus, we define the horosphere $E_{\mathbb{H}_n}(\infty, R)$ with center ∞ and radius $R > 0$ by

$$E_{\mathbb{H}_n}(\infty, R) := \{z \in \mathbb{H}_n \mid \text{Im}(z_1) - \|\tilde{z}\|^2 > \frac{1}{R}\}.$$

For $v \in \mathbb{C}^n$ and $z \in \mathbb{H}_n$ we let $\|v\|_{\mathbb{H}_n, z}$ be the Kobayashi hyperbolic length of v .

Let $c \geq 0$. We define the class $\mathcal{K}(\mathbb{H}_n, c)$ to be the set of all infinitesimal generators H on \mathbb{H}_n satisfying the inequality

$$\|H(z)\|_{\mathbb{H}_n, z} \leq \frac{c}{u_{\mathbb{H}_n}(z)^2}$$

for all $z \in \mathbb{H}_n$. Then we have

$$\mathcal{K}(\mathbb{B}_n, c) = \{C'(C^{-1}) \cdot (H \circ C^{-1}) \mid H \in \mathcal{K}(\mathbb{H}_n, c)\}.$$

From now on we will stay in the upper half-space \mathbb{H}_n , where most of the computations we need take a simpler form.

3 Slices

3.1 Normalized geodesics and slices

For any $H \in \text{Inf}(\mathbb{H}_n)$ one can consider one-dimensional slices by using the so called *Lempert projection devices*; see [BS14], Section 3.

If $w \in \mathbb{H}_n$, then there exists a unique complex passing through w and ∞ . Let us choose a parametrization $\varphi : \mathbb{H} \rightarrow \mathbb{H}_n$ of this geodesic. There exists a unique holomorphic map $P : \mathbb{H}_n \rightarrow \mathbb{H}_n$ with $P^2 = P$ and $P \circ \varphi = \varphi$. Define $\tilde{P} = \varphi^{-1} \circ P$. Then

$$h_\varphi : \mathbb{H} \rightarrow \mathbb{C}, \quad h_\varphi(\zeta) = d\tilde{P}(\varphi(\zeta)) \cdot H(\varphi(\zeta)),$$

is an infinitesimal generator on \mathbb{H} ; see [BS14], p. 6.

We will need special parametrizations of these geodesics: In [BP05], p. 516, it is shown that for any complex geodesic $\varphi : \mathbb{H} \rightarrow \mathbb{H}_n$ with $\varphi(\infty) = \infty$, there exists $a_\varphi > 0$ such that

$$u_{\mathbb{H}_n}(\varphi(\zeta)) = a_\varphi \cdot u_{\mathbb{H}}(\zeta)$$

for all $\zeta \in \mathbb{H}$. Call a geodesic $\varphi : \mathbb{H} \rightarrow \mathbb{H}_n$ *normalized* if $\varphi(\infty) = \infty$ and $a_\varphi = 1$.

Lemma 3.1. *Let $a \in \mathbb{C}$ and $\gamma \in \mathbb{C}^{n-1}$ such that $(a, \gamma) \in \mathbb{H}_n$. Then the map*

$$\varphi_\gamma : \mathbb{H} \rightarrow \mathbb{H}_n, \quad \varphi_\gamma(\zeta) := (\zeta + i\|\gamma\|^2, \gamma),$$

is a normalized geodesic through (a, γ) . Furthermore, if $H = (H_1, \tilde{H}) \in \text{Inf}(\mathbb{H}_n)$, then the slice $h_\gamma := h_{\varphi_\gamma}$ of H with respect to φ_γ is given by

$$h_\gamma(\zeta) = H_1(\varphi_\gamma(\zeta)) - 2i\bar{\gamma}^T \cdot \tilde{H}(\varphi_\gamma(\zeta)). \tag{3.1}$$

Proof. Let $\psi : \mathbb{D} \rightarrow \mathbb{B}_n$ be a complex geodesic with $\psi(1) = e_1$. As a parametrization for ψ one can choose (see Section 3 in [BS14]) $\psi(\zeta) = (\alpha^2(\zeta - 1) + 1, \alpha(\zeta - 1)\beta)$, where $\alpha > 0$ and $\beta \in \mathbb{C}^{n-1}$ such that $\|\beta\|^2 = 1 - \alpha^2$. Then $C^{-1}(\psi(\zeta)) = (i\frac{2+\alpha^2(\zeta-1)}{\alpha^2(1-\zeta)}, i\beta/\alpha)$ and

$$\zeta \mapsto C^{-1}(\psi(C_1(\zeta))) = (-i + \frac{\zeta + i}{\alpha^2}, i\beta/\alpha) = (\frac{\zeta}{\alpha^2} + i\frac{1 - \alpha^2}{\alpha^2}, i\beta/\alpha) = (\frac{\zeta}{\alpha^2} + i\left\|\frac{\beta}{\alpha}\right\|^2, i\beta/\alpha)$$

is a complex geodesic from \mathbb{H} to \mathbb{H}_n . A reparametrization $[\zeta/\alpha^2$ to $\zeta]$ and setting $\gamma = i\beta/\alpha$ gives the geodesic

$$\varphi_\gamma(\zeta) = (\zeta + i\|\gamma\|^2, \gamma). \quad (3.2)$$

This complex geodesic is normalized because it satisfies $\varphi_\gamma(\infty) = \infty$ and

$$u_{\mathbb{H}_n}(\varphi_\gamma(\zeta)) = \text{Im}(\zeta + i\|\gamma\|^2) - \|\gamma\|^2 = \text{Im}(\zeta) = u_{\mathbb{H}}(\zeta).$$

The projection onto $\varphi_\gamma(\mathbb{H})$ is given by

$$P(z_1, \tilde{z}) = (z_1 - 2i\bar{\gamma}^T \cdot \tilde{z} + 2i\|\gamma\|^2, \gamma). \quad (3.3)$$

Clearly, P is holomorphic and maps \mathbb{H}_n onto $\varphi_\gamma(\mathbb{H})$ because

$$\begin{aligned} \text{Im}(z_1 - 2i\bar{\gamma}^T \cdot \tilde{z} + 2i\|\gamma\|^2) &= \text{Im}(z_1) - 2\text{Im}(i\bar{\gamma}^T \cdot \tilde{z}) + 2\|\gamma\|^2 \\ &\geq \|\tilde{z}\|^2 - 2\|\gamma\|\|\tilde{z}\| + \|\gamma\|^2 + \|\gamma\|^2 = (\|\gamma\| - \|\tilde{z}\|)^2 + \|\gamma\|^2 \geq \|\gamma\|^2. \end{aligned}$$

Furthermore,

$$(P \circ P)(z_1, \tilde{z}) = (z_1 - 2i\bar{\gamma}^T \tilde{z} + 2i\|\gamma\|^2 - 2i\bar{\gamma}^T \gamma + 2i\|\gamma\|^2, \gamma) = (z_1 - 2i\bar{\gamma}^T \tilde{z} + 2i\|\gamma\|^2, \gamma) = P(z_1, \tilde{z}).$$

Thus, the inverse $\tilde{P} : \mathbb{H}_2 \rightarrow \mathbb{H}$, $\tilde{P} = \varphi_\gamma^{-1} \circ P$, is given by $\tilde{P}(z_1, \tilde{z}) = (z_1 - 2i\bar{\gamma}^T \tilde{z} + i\|\gamma\|^2)$.

If $H(z) = (H_1(z), \tilde{H}(z))$ is a generator on \mathbb{H}_n , we get the slice reduction

$$h_{\varphi_\gamma}(\zeta) = d\tilde{P}(\varphi_\gamma(\zeta)) \cdot H(\varphi_\gamma(\zeta)) = H_1(\varphi_\gamma(\zeta)) - 2i\bar{\gamma}^T \cdot \tilde{H}(\varphi_\gamma(\zeta)).$$

□

3.2 Some explicit formulas

Later on we will need explicit formulas of the Kobayashi norms of $dP(z)H(z)$ and $H(z) - dP(z) \cdot H(z)$. The following lemma is proven in the Appendix.

Lemma 3.2. *Let $a \in \mathbb{C}, p, v \in \mathbb{C}^{n-1}$ and $z = (z_1, \tilde{z}) \in \mathbb{H}_n$. Then the following formulas hold:*

$$\left\| \begin{pmatrix} a \\ 0 \end{pmatrix} \right\|_{\mathbb{H}_n, z} = \frac{|a|}{|u_{\mathbb{H}_n}(z)|}, \quad (3.4)$$

$$\left\| \begin{pmatrix} 2i\bar{p}^T v \\ v \end{pmatrix} \right\|_{\mathbb{H}_n, z} = 2 \frac{\sqrt{\|v\|^2 |u_{\mathbb{H}_n}(z)| + |(p - \tilde{z})^T v|^2}}{|u_{\mathbb{H}_n}(z)|}, \quad (3.5)$$

$$\left\| \begin{pmatrix} a - 2i\bar{z}^T v \\ 0 \end{pmatrix} + \begin{pmatrix} 2i\bar{z}^T v \\ v \end{pmatrix} \right\|_{\mathbb{H}_n, z}^2 = \left\| \begin{pmatrix} a - 2i\bar{z}^T v \\ 0 \end{pmatrix} \right\|_{\mathbb{H}_n, z}^2 + \left\| \begin{pmatrix} 2i\bar{z}^T v \\ v \end{pmatrix} \right\|_{\mathbb{H}_n, z}^2. \quad (3.6)$$

By using Lemma 3.2 we obtain the following explicit expressions.

Lemma 3.3. *Let $H = (H_1, \tilde{H}) \in \text{Inf}(\mathbb{H}_n)$ and fix $z \in \mathbb{H}_n$. Denote by P the projection onto the complex geodesic through z and ∞ . Then the following formulas hold:*

$$dP(z) \cdot H(z) = (H_1(z) - 2i\bar{z}^T \tilde{H}(z), 0), \quad H(z) - dP(z) \cdot H(z) = (2i\bar{z}^T \tilde{H}(z), \tilde{H}(z)). \quad (3.7)$$

Furthermore,

$$\|H(z)\|_{\mathbb{H}_n, z}^2 = \|dP(z) \cdot H(z)\|_{\mathbb{H}_n, z}^2 + \|H(z) - dP(z) \cdot H(z)\|_{\mathbb{H}_n, z}^2, \quad (3.8)$$

$$\|dP(z)H(z)\|_{\mathbb{H}_n, z} = \frac{|H_1(z) - 2i\bar{z}^T \tilde{H}(z)|}{|u_{\mathbb{H}_n}(z)|}, \quad (3.9)$$

$$\|H(z) - dP(z) \cdot H(z)\|_{\mathbb{H}_n, z} = 2 \frac{\|\tilde{H}(z)\|}{\sqrt{|u_{\mathbb{H}_n}(z)|}}. \quad (3.10)$$

Proof. The formulas for $dP(z)H(z)$ and $H(z) - dP(z)H(z)$ follow from the explicit form (3.3). Equation (3.8) follows from (3.6) with $a = H_1(z)$ and $v = \tilde{H}(z)$.

Furthermore, equation (3.9) follows directly from (3.4) with $a = H_1(z) - 2i\bar{z}^T \tilde{H}(z)$ and equation (3.10) from (3.5) by setting $p = \tilde{z}$ and $v = \tilde{H}$. □

3.3 Slices of generators in $\mathcal{K}(\mathbb{H}_n, c)$ and examples

Proposition 3.4. Let $c \geq 0$ and $H \in \mathcal{K}(\mathbb{H}_n, c)$. Then every normalized slice h_γ of H belongs to $\mathcal{K}(\mathbb{H}, c)$.

Proof. Fix $\gamma \in \mathbb{C}^{n-1}$ and $\zeta \in \mathbb{H}$ and let $z = \varphi_\gamma(\zeta)$.

Furthermore, let P be the projection onto $\varphi_\gamma(\mathbb{H})$. Now we write $H(z)$ as

$$H(z) = dP(z) \cdot H(z) + (H(z) - dP(z)H(z)).$$

As $H \in \mathcal{K}(\mathbb{H}_n, c)$, equation (3.8) implies

$$\|H(z)\|_{\mathbb{H}_n, z}^2 = \|dP(z) \cdot H(z)\|_{\mathbb{H}_n, z}^2 + \|H(z) - dP(z)H(z)\|_{\mathbb{H}_n, z}^2 \leq \frac{c^2}{u_{\mathbb{H}_n}(z)^4}.$$

In particular,

$$\|dP(z) \cdot H(z)\|_{\mathbb{H}_n, z} \leq \frac{c}{u_{\mathbb{H}_n}(z)^2}. \quad (3.11)$$

By the definition of the slice h_γ we have

$$dP(\varphi_\gamma(\zeta)) \cdot H(\varphi_\gamma(\zeta)) = (d\varphi_\gamma)(\zeta) \cdot h_\gamma(\zeta)$$

and consequently

$$\|dP(\varphi_\gamma(\zeta)) \cdot H(\varphi_\gamma(\zeta))\|_{\mathbb{H}_n, \varphi_\gamma(\zeta)} = \|(d\varphi_\gamma)(\zeta) \cdot h_\gamma(\zeta)\|_{\mathbb{H}_n, \varphi_\gamma(\zeta)} = |h_\gamma(\zeta)|_{\mathbb{H}, \zeta}.$$

The last equality holds as φ_γ is a complex geodesic. Equation (3.11) implies

$$|h_\gamma(\zeta)|_{\mathbb{H}, \zeta} \leq \frac{c}{u_{\mathbb{H}_n}(\varphi_\gamma(\zeta))^2} = \frac{c}{u_{\mathbb{H}}(\zeta)^2},$$

where the last equality holds as φ_γ is normalized. Hence, $h_\gamma \in \mathcal{K}(\mathbb{H}, c)$. \square

Remark 3.5. If two holomorphic functions $H_1, H_2 : \mathbb{H}_n \rightarrow \mathbb{C}^n$ have the same slices, i.e. $dP(z)H_1(z) = dP(z)H_2(z)$ for all $z \in \mathbb{H}_n$, then $H_1 = H_2$; see the proof of Theorem 3.2 in [Cas10].

Example 3.6. The family $\{\Phi_t(z) = (z_1, e^{-it/z_1}z_2)\}_{t \geq 0}$ is a semigroup on \mathbb{H}_2 . Its generator H is given by

$$H(z_1, z_2) = (0, -i\frac{z_2}{z_1}).$$

Thus, for $\gamma \in \mathbb{C}$ the slice h_γ has the form

$$h_\gamma(z) = -2i\bar{\gamma} \cdot -i\frac{\gamma}{z + i|\gamma|^2} = \frac{-2|\gamma|^2}{z + i|\gamma|^2}.$$

Consequently, the limit $\lim_{y \rightarrow \infty} y \cdot |h(iy)| = 2|\gamma|^2$ exists, but does not have an upper bound that is independent of γ . Proposition 3.4 implies that for any $c \geq 0$, $H \notin \mathcal{K}(\mathbb{H}_2, c)$. \star

Example 3.7. Let

$$H : \mathbb{H}_2 \rightarrow \mathbb{C}^2, \quad H(z_1, z_2) = \begin{pmatrix} \frac{-1}{z_1} \\ \frac{z_2}{2z_1^2} \end{pmatrix}.$$

For $\gamma \in \mathbb{C}$ the slice h_γ is given by

$$h_\gamma(\zeta) = \frac{-1}{\zeta + i|\gamma|^2} - 2i\bar{\gamma} \cdot \frac{\gamma}{2(\zeta + i|\gamma|^2)^2} = \frac{-\zeta - 2i|\gamma|^2}{(\zeta + i|\gamma|^2)^2} = \frac{(-\zeta - 2i|\gamma|^2)(\bar{\zeta}^2 - 2i|\gamma|^2\bar{\zeta} - |\gamma|^4)}{|\zeta + i|\gamma|^2|^4}.$$

Let us write $\zeta = x + iy$; $x \in \mathbb{R}, y \in (0, \infty)$. Then a small calculation gives

$$\operatorname{Im}(h_\gamma(\zeta)) = \frac{y(x^2 + y^2) + 4y^2|\gamma|^2 + 5y|\gamma|^4 + 2|\gamma|^6}{|\zeta + i|\gamma|^2|^4} > 0.$$

Furthermore,

$$\limsup_{y \rightarrow \infty} y|h_\gamma(iy)| = 1.$$

Hence, $h_\gamma \in \mathcal{K}(\mathbb{H}, 1)$. So each slice is an infinitesimal generator in \mathbb{H} and by [BS14], Proposition 3.8, the function H is an infinitesimal generator in \mathbb{H}_2 .

Now let $(z_1, z_2) \in \mathbb{H}_2$ and write $z_1 = x + iy$, $x, y \in \mathbb{R}$. Then we get (an explicit formula of the Kobayashi metric is given in the appendix)

$$u_{\mathbb{H}_2}(z)^4 \cdot \|H(z)\|_{\mathbb{H}_2, z}^2 = (y - |z_2|^2)^2 \cdot \frac{x^2 + y^2 + 3|z_2|^2 y}{(x^2 + y^2)^2} \underset{y \geq |z_2|^2}{\leq} y^2 \cdot \frac{x^2 + y^2 + 3y^2}{(x^2 + y^2)^2} \leq \frac{x^2 + 4y^2}{x^2 + y^2} \leq 4.$$

Consequently, $H \in \mathcal{K}(\mathbb{H}_2, 2)$. ★

Question 3.8. Let $H : \mathbb{H}_n \rightarrow \mathbb{C}^n$ be an infinitesimal generator. Assume there exists $c \geq 0$ such that $h_\gamma \in \mathcal{K}(\mathbb{H}, c)$ for every $\gamma \in \mathbb{C}^{n-1}$. Does this imply that $H \in \mathcal{K}(\mathbb{H}_n, C)$ for some $C \geq c$?

4 Univalent functions with hydrodynamic normalization

Motivated by Remark 1.6 we define the following generalization of the class \mathfrak{P} , where id stands for the identity mapping on \mathbb{H}_n .

Definition 4.1.

$$\mathfrak{P}_n := \{f : \mathbb{H}_n \rightarrow \mathbb{H}_n \mid f \text{ is univalent and } f - id \in \mathcal{K}(\mathbb{H}_n, c) \text{ for some } c \geq 0\}.$$

Remark 4.2. It is important to note that if $f : \mathbb{H}_n \rightarrow \mathbb{H}_n$ is a holomorphic self-mapping, then the map $f - id$ is automatically an infinitesimal generator; see [RS05], p. 207.

4.1 Basic properties of \mathfrak{P}_n

The following proposition summarizes some basic properties of \mathfrak{P}_n .

Proposition 4.3.

- a) \mathfrak{P}_n contains no automorphism of \mathbb{H}_n except the identity.
- b) Let $\alpha : \mathbb{H}_n \rightarrow \mathbb{H}_n$ be an automorphism of \mathbb{H}_n with $\alpha(\infty) = \infty$. If $f \in \mathfrak{P}_n$, then $\alpha^{-1} \circ f \circ \alpha \in \mathfrak{P}_n$.
- c) Let $f \in \mathfrak{P}_n$. Then $f(E_{\mathbb{H}_n}(\infty, R)) \subset E_{\mathbb{H}_n}(\infty, R)$ for every $R > 0$.
- d) Let $f \in \mathfrak{P}_n$ and write $f(z) = z + H(z)$ with $H = (H_1, \tilde{H}) \in \mathcal{K}(\mathbb{H}_n, c)$. Then

$$\|\tilde{H}(z)\|^2 \leq |H_1(z) - 2i\bar{z}^T \tilde{H}| \text{ for all } z = (z_1, \tilde{z}) \in \mathbb{H}_n. \quad (4.1)$$

- e) Let $f \in \mathfrak{P}_n$. Then there exists $R > 0$ such that $E_{\mathbb{H}_n}(\infty, R) \subset f(\mathbb{H}_n)$.

Proof. The statements a) and b) can easily be shown by using the explicit form of automorphisms of \mathbb{H}_n ; see Proposition 2.2.4 in [Aba89].

The statement c) is just Julia's lemma: Write $f(z) = z + H(z)$ and let us pass to the unit ball and define $\tilde{f} : \mathbb{B}_n \rightarrow \mathbb{B}_n$, $\tilde{f} = C \circ f \circ C^{-1}$. Then

$$\tilde{f} = \frac{1}{2i + H_1(C^{-1}(z)) - z_1 H_1(C^{-1}(z))} \left[\begin{pmatrix} (1 - z_1) H_1(C^{-1}(z)) \\ 2(1 - z_1) \tilde{H}(C^{-1}(z)) \end{pmatrix} + 2iz \right].$$

By taking the sequence $z_n = (1 - 1/n, 0)$ it is easy to see that

$$\lim_{n \rightarrow \infty} \tilde{f}(z_n) = e_1 \quad \text{and} \quad \lim_{n \rightarrow \infty} \frac{1 - \|\tilde{f}(z_n)\|}{1 - \|z_n\|} = 1,$$

i.e. e_1 is a boundary regular fixed point of \tilde{f} with boundary dilatation coefficient ≤ 1 . Julia's lemma (see Theorem 2.2.21 in [Aba89]) implies that $\tilde{f}(E_{\mathbb{B}_n}(e_1, R)) \subset E_{\mathbb{B}_n}(e_1, R)$ for any $R > 0$.

Inequality d) follows directly from c): Let $z = (z_1, \tilde{z}) \in \mathbb{H}_n$. Another formulation of c) is $-u_{\mathbb{H}_n}(z + H(z)) \geq -u_{\mathbb{H}_n}(z)$, or more explicitly

$$\begin{aligned} & \operatorname{Im}(z_1) + \operatorname{Im}(H_1(z)) - \|\tilde{z} + \tilde{H}(z)\|^2 \geq \operatorname{Im}(z_1) - \|\tilde{z}\|^2 \\ \iff & \operatorname{Im}(H_1(z)) \geq \|\tilde{z} + \tilde{H}(z)\|^2 - \|\tilde{z}\|^2 = 2\operatorname{Re}(\bar{z}^T \tilde{H}(z)) + \|\tilde{H}(z)\|^2 \\ \iff & \operatorname{Im}(H_1(z) - 2i\bar{z}^T \tilde{H}(z)) \geq \|\tilde{H}(z)\|^2. \end{aligned}$$

From this inequality it follows that $\|\tilde{H}(z)\|^2 \leq |H_1(z) - 2i\bar{z}^T \tilde{H}|$ for all $z \in \mathbb{H}_n$.

Finally we prove e):

Let $f \in \mathfrak{P}_n$ and write $f(z) = z + H(z)$ with $H \in \mathcal{K}(\mathbb{H}_n, c)$. Because of c) f maps the horosphere $E_{\mathbb{H}_n}(\infty, 1)$ into itself. Hence the statement is proven if we can show that $u_{\mathbb{H}_n}$ is bounded on $f(\partial E_{\mathbb{H}_n}(\infty, 1))$.

Let $z \in \mathbb{H}_n$ with $z \in \partial E_{\mathbb{H}_n}(\infty, 1)$, i.e. $|u_{\mathbb{H}_n}(z)| = 1$. Furthermore, we choose $\zeta \in \mathbb{H}$ and $\gamma \in \mathbb{C}$ such that $\varphi_\gamma(\zeta) = z$. Note that this implies $|u_{\mathbb{H}}(\zeta)| = \text{Im}(\zeta) = 1$.

Let P be the projection onto $\varphi_\gamma(\mathbb{H})$.

Then we have $|u_{\mathbb{H}_n}(f(z))| = |u_{\mathbb{H}_n}(z + H(z))| = |u_{\mathbb{H}_n}(\underbrace{z + dP(z)H(z)}_{=:w} + \underbrace{H(z) - dP(z)H(z)}_{=:v})|$. As $dP(z) \cdot dP(z) = dP(z)$, we have $dP(z) \cdot v = 0$. A small calculation (see also Lemma 3.1 in [Cas10]) gives $v \in T_z^{\mathbb{C}} \partial E_{\mathbb{H}_n}(\infty, 1)$. Furthermore, also $w \in \varphi_\gamma(\mathbb{H})$ and $dP(z) = dP(w)$ and we get $v \in T_w^{\mathbb{C}} \partial E_{\mathbb{H}_n}(\infty, |u_{\mathbb{H}_n}(w)|^{-1})$. As $E_{\mathbb{H}_n}(\infty, |u_{\mathbb{H}_n}(w)|^{-1}) = \{z \in \mathbb{H}_n \mid |u_{\mathbb{H}_n}(z)| > |u_{\mathbb{H}_n}(w)|\}$ is convex this implies

$$\begin{aligned} |u_{\mathbb{H}_n}(w + v)| &\leq |u_{\mathbb{H}_n}(w)| = |u_{\mathbb{H}_n}(z + dP(z)H(z))| \stackrel{\text{Lemma 3.3}}{=} |u_{\mathbb{H}_n}(z + (h_\gamma(\zeta), 0))| \\ &= \text{Im}(z_1) - \|\tilde{z}\|^2 + \text{Im}(h_\gamma(\zeta)) \leq \text{Im}(z_1) - \|\tilde{z}\|^2 + |h_\gamma(\zeta)| \\ &= |u_{\mathbb{H}_n}(z)| + |h_\gamma(\zeta)| = 1 + |h_\gamma(\zeta)| \leq 1 + \frac{c}{\text{Im}(\zeta)} = 1 + c. \end{aligned}$$

Consequently, $f(\mathbb{H}_n) \supset f(E_{\mathbb{H}_n}(\infty, 1)) \supset E_{\mathbb{H}_n}(\infty, 1 + c)$. \square

Theorem 4.4. \mathfrak{P}_n is a semigroup: If $f, g \in \mathfrak{P}_n$, then $f \circ g \in \mathfrak{P}_n$.

Proof. Let $f, g \in \mathfrak{P}_n$ with $F = (F_1, \tilde{F}) := f - id$, $G = (G_1, \tilde{G}) := g - id$ and

$$\|F(z)\|_{\mathbb{H}_n, z} \leq \frac{c}{u_{\mathbb{H}_n}(z)^2}, \quad \|G(z)\|_{\mathbb{H}_n, z} \leq \frac{d}{u_{\mathbb{H}_n}(z)^2}$$

for all $z \in \mathbb{H}_n$. Let $z = (z_1, \tilde{z}) \in \mathbb{H}_n$ and $p = (p_1, \tilde{p}) := z + G(z)$.

From Remark 4.2 we know that $f \circ g - id$ is an infinitesimal generator on \mathbb{H}_n . It remains to estimate the hyperbolic metric of this generator. We have

$$\begin{aligned} &\|(f \circ g)(z) - z\|_{\mathbb{H}_n, z} = \|G(z) + F(z + G(z))\|_{\mathbb{H}_n, z} \\ &\leq \|G(z)\|_{\mathbb{H}_n, z} + \|F(z + G(z))\|_{\mathbb{H}_n, z} \leq \frac{d}{u_{\mathbb{H}_n}(z)^2} + \|F(p)\|_{\mathbb{H}_n, z} \\ &\leq \frac{d}{u_{\mathbb{H}_n}(z)^2} + \|(F_1(p) - 2i\tilde{p}^T \tilde{F}(p), 0)\|_{\mathbb{H}_n, z} + \|(2i\tilde{p}^T \tilde{F}(p), \tilde{F}(p))\|_{\mathbb{H}_n, z}. \end{aligned}$$

Note that $F_1(p) - 2i\tilde{p}^T \tilde{F}(p)$ corresponds to the slice of F with respect to the geodesic through p and infinity. Because of Proposition 3.4 we know that

$$|F_1(p) - 2i\tilde{p}^T \tilde{F}(p)| \leq \frac{c}{|u_{\mathbb{H}_n}(p)|} \leq \frac{c}{|u_{\mathbb{H}_n}(z)|},$$

where the second inequality follows from Proposition 4.3 c). Together with equation (3.4), this implies

$$\|(F_1(p) - 2i\tilde{p}^T \tilde{F}(p), 0)\|_{\mathbb{H}_n, z} = \frac{|(F_1(p) - 2i\tilde{p}^T \tilde{F}(p))|}{|u_{\mathbb{H}_n}(z)|} \leq \frac{c}{u_{\mathbb{H}_n}(z)^2}. \quad (4.2)$$

It remains to show that there exists a constant $C > 0$ such that

$$\|(2i\tilde{p}^T \tilde{F}(p), \tilde{F}(p))\|_{\mathbb{H}_n, z} \leq \frac{C}{u_{\mathbb{H}_n}(z)^2}.$$

First, equation (3.5) gives

$$\begin{aligned} &\|(2i\tilde{p}^T \tilde{F}(p), \tilde{F}(p))\|_{\mathbb{H}_n, z} = 2 \sqrt{\frac{\|\tilde{F}(p)\|^2 |u_{\mathbb{H}_n}(z)| + |(\tilde{p} - \tilde{z})^T \tilde{F}(p)|^2}{|u_{\mathbb{H}_n}(z)|}} \\ &\leq 2 \sqrt{\frac{\|\tilde{F}(p)\|^2 |u_{\mathbb{H}_n}(z)| + \|(\tilde{p} - \tilde{z})\|^2 \cdot \|\tilde{F}(p)\|^2}{|u_{\mathbb{H}_n}(z)|}} = 2 \frac{\|\tilde{F}(p)\|}{|u_{\mathbb{H}_n}(z)|} \sqrt{|u_{\mathbb{H}_n}(z)| + \|\tilde{F}(p)\|^2}. \end{aligned} \quad (4.3)$$

Now we differentiate between two cases. Case 1: $|u_{\mathbb{H}_n}(z)| \geq 1$.

The equations (3.8) and (3.10) imply $\frac{2\|\tilde{F}(p)\|}{\sqrt{|u_{\mathbb{H}_n}(p)|}} \leq \|\tilde{F}(p)\|_{\mathbb{H}_n,p} \leq \frac{c}{u_{\mathbb{H}_n}(p)^2}$, thus

$$\|\tilde{F}(p)\| \leq \frac{c}{2|u_{\mathbb{H}_n}(p)|^{3/2}} \leq \frac{c}{2|u_{\mathbb{H}_n}(z)|^{3/2}}. \quad (4.4)$$

In the same way we get

$$\|\tilde{G}(z)\| \leq \frac{d}{2|u_{\mathbb{H}_n}(z)|^{3/2}}. \quad (4.5)$$

Combining (4.4) with (4.3) gives

$$\begin{aligned} & \| (2i\bar{p}^T \tilde{F}(p), \tilde{F}(p)) \|_{\mathbb{H}_n,z} \leq \frac{c}{|u_{\mathbb{H}_n}(z)||u_{\mathbb{H}_n}(z)|^{3/2}} \sqrt{|u_{\mathbb{H}_n}(z)| + \|\tilde{G}(z)\|^2} \\ &= \frac{c}{|u_{\mathbb{H}_n}(z)|^2} \sqrt{1 + \frac{\|\tilde{G}(z)\|^2}{|u_{\mathbb{H}_n}(z)|}} \stackrel{(4.5)}{\leq} \frac{c}{|u_{\mathbb{H}_n}(z)|^2} \sqrt{1 + \frac{d^2}{4|u_{\mathbb{H}_n}(z)|^4}} \leq \frac{c\sqrt{1 + \frac{d^2}{4}}}{|u_{\mathbb{H}_n}(z)|^2}. \end{aligned}$$

Case 2: $|u_{\mathbb{H}_n}(z)| \leq 1$.

From equation (4.2) we know that $|F_1(p) - 2i\bar{p}^T \tilde{F}(p)| \leq \frac{c}{|u_{\mathbb{H}_n}(z)|}$ and equation (4.1) implies

$$\|\tilde{F}(p)\| \leq \frac{\sqrt{c}}{\sqrt{|u_{\mathbb{H}_n}(z)|}}.$$

Similarly we get

$$\|\tilde{G}(z)\| \leq \frac{\sqrt{d}}{\sqrt{|u_{\mathbb{H}_n}(z)|}}.$$

Hence, we obtain with (4.3):

$$\begin{aligned} & \| (2i\bar{p}^T \tilde{F}(p), \tilde{F}(p)) \|_{\mathbb{H}_n,z} \leq 2 \frac{\sqrt{c}}{|u_{\mathbb{H}_n}(z)|^{3/2}} \sqrt{|u_{\mathbb{H}_n}(z)| + \|\tilde{G}(z)\|^2} \\ &\leq 2 \frac{\sqrt{c}}{|u_{\mathbb{H}_n}(z)|^{3/2}} \sqrt{|u_{\mathbb{H}_n}(z)| + \frac{d}{|u_{\mathbb{H}_n}(z)|}} = 2 \frac{\sqrt{c}}{|u_{\mathbb{H}_n}(z)|^2} \sqrt{|u_{\mathbb{H}_n}(z)|^2 + d} \\ &\leq 2 \frac{\sqrt{c}}{|u_{\mathbb{H}_n}(z)|^2} \sqrt{1 + d}. \end{aligned}$$

□

4.2 Semigroups with generators in $\mathcal{K}(\mathbb{H}_n, c)$

Theorem 4.5. Let $\{\Phi_t\}_{t \geq 0}$ be a semigroup on \mathbb{H}_n with generator $H \in \mathcal{K}(\mathbb{H}_n, c)$. Then $\Phi_t \in \mathfrak{P}_n$ for every $t \geq 0$.

Proof. Firstly, for every $t \geq 0$ and $R > 0$, the map Φ_t maps the horosphere $E_{\mathbb{H}_n}(\infty, R)$ into itself, i.e.

$$|u_{\mathbb{H}_n}(\Phi_t(z))| \geq |u_{\mathbb{H}_n}(z)| \quad (4.6)$$

for every $z \in \mathbb{H}_n$. This can be seen as follows:

Let G be the corresponding generator in the unit ball, i.e. $G = C'(C^{-1}) \cdot (H \circ C^{-1})$. Then G satisfies the inequality

$$\|G(z)\| \leq \|G(z)\|_{\mathbb{B}_n,z} \leq \frac{c}{u_{\mathbb{B}_n}(z)^2} = \frac{c|1-z_1|^4}{(1-\|z\|^2)^2}.$$

Putting $z = r \cdot e_1$ gives

$$\|G(re_1)\| \leq \frac{c(1-r)^4}{(1-r^2)^2} = \frac{c(1-r)^2}{(1+r)^2}.$$

From this it follows immediately that

$$\lim_{(0,1) \ni r \rightarrow 1} G(re_1) = 0 \quad \text{and} \quad \lim_{(0,1) \ni r \rightarrow 1} \frac{G(re_1)}{r-1} = 0.$$

Theorem 0.3 in [BCDM10] implies that e_1 is a boundary regular fixed point for the generated semigroup with boundary dilatation coefficient 1. Hence we can apply Julia's lemma.

Let $z = (z_1, z_2) \in \mathbb{H}_n$ and write $\Phi_t = (\Phi_{1,t}, \tilde{\Phi}_t)$, $H = (H_1, \tilde{H})$. The semigroup Φ_t satisfies the integral equation

$$\Phi_t(z) = z + \int_0^t H(\Phi_s(z)) ds.$$

Similarly to the proof of Theorem 4.4, equation (4.4), we deduce from the fact that $H \in \mathcal{K}(\mathbb{H}_n, c)$ and equations (3.8) and (3.10) that

$$\|\tilde{H}(\Phi_t(z))\| \leq \frac{c}{2|u_{\mathbb{H}_n}(z)|^{3/2}} \quad (4.7)$$

for every $z \in \mathbb{H}_n$ and $t \geq 0$; and similarly to equation (4.2) we deduce that

$$\|(H_1(\Phi_t(z)) - 2i\bar{\tilde{\Phi}}_t^T \tilde{H}(\Phi_t(z)), 0)\|_{\mathbb{H}_n, z} \leq \frac{c}{u_{\mathbb{H}_n}(z)^2} \quad (4.8)$$

for every $z \in \mathbb{H}_n$ and $t \geq 0$.

First we get

$$\|\tilde{\Phi}_t - \tilde{z}\| \leq \int_0^s \|\tilde{H}(\Phi_\tau(z))\| d\tau \leq \int_0^s \frac{c}{2|u_{\mathbb{H}_n}(z)|^{3/2}} d\tau = \frac{cs}{2|u_{\mathbb{H}_n}(z)|^{3/2}}. \quad (4.9)$$

Case 1: $|u_{\mathbb{H}_n}(z)| \geq 1$. Then we have:

$$\begin{aligned} & \|\Phi_t(z) - z\|_{\mathbb{H}_n, z} \leq \int_0^t \|H(\Phi_s(z))\|_{\mathbb{H}_n, z} ds \\ & \leq \int_0^t \left\| \begin{pmatrix} H_1(\Phi_s(z)) - 2i\bar{\tilde{\Phi}}_s^T \tilde{H}(\Phi_s(z)) \\ 0 \end{pmatrix} \right\|_{\mathbb{H}_n, z} ds + \int_0^t \left\| \begin{pmatrix} 2i\bar{\tilde{\Phi}}_s^T \tilde{H}(\Phi_s(z)) \\ \tilde{H}(\Phi_s(z)) \end{pmatrix} \right\|_{\mathbb{H}_n, z} ds \\ & \stackrel{(4.8), (5.2)}{\leq} \int_0^t \frac{c}{u_{\mathbb{H}_n}(z)^2} ds + \int_0^t \frac{2\|\tilde{H}(\Phi_s(z))\|}{|u_{\mathbb{H}_n}(z)|} \sqrt{|u_{\mathbb{H}_n}(z)| + \|\tilde{\Phi}_s - \tilde{z}\|^2} ds \\ & \stackrel{(4.7), (4.9)}{\leq} \int_0^t \frac{c}{u_{\mathbb{H}_n}(z)^2} ds + \int_0^t \frac{c}{|u_{\mathbb{H}_n}(z)|^{5/2}} \sqrt{|u_{\mathbb{H}_n}(z)| + \frac{c^2 s^2}{4|u_{\mathbb{H}_n}(z)|^3}} ds \\ & = \frac{ct}{u_{\mathbb{H}_n}(z)^2} + \int_0^t \frac{c}{|u_{\mathbb{H}_n}(z)|^2} \sqrt{1 + \frac{c^2 s^2}{4|u_{\mathbb{H}_n}(z)|^4}} ds \\ & \leq \frac{ct}{u_{\mathbb{H}_n}(z)^2} + \int_0^t \frac{c}{|u_{\mathbb{H}_n}(z)|^2} \sqrt{1 + c^2 s^2} ds \\ & = c \cdot \frac{t + \int_0^t \sqrt{1 + c^2 s^2} ds}{u_{\mathbb{H}_n}(z)^2}. \end{aligned}$$

The case $|u_{\mathbb{H}_n}(z)| \leq 1$ is treated similarly, compare with the proof of Theorem 4.4, and we conclude that for every $t \geq 0$, there exists $C > 0$ such that $\|\Phi_t(z) - z\|_{\mathbb{H}_n} \leq \frac{C}{u_{\mathbb{H}_n}(z)^2}$ for all $z \in \mathbb{H}_n$. Together with Remark 4.2, this implies that $\Phi_t \in \mathfrak{P}_n$. \square

Remark 4.6. Let $H : [0, \infty) \times \mathbb{H}_n \rightarrow \mathbb{C}^n$ be a $\mathcal{K}(\mathbb{H}_n, c)$ -Herglotz vector field, i.e. $H(t, \cdot) \in \mathcal{K}(\mathbb{H}_n, c)$ for almost every $t \geq 0$ and H satisfies certain regularity conditions, see Definition 1.2 in [AB11]. In this case, one can solve the non-autonomous version of equation (1.1), namely the Loewner equation

$$\frac{\partial \Phi_t(z)}{\partial t} = H(t, \Phi(t)), \quad \Phi_0(z) = z \in \mathbb{H}_n, \quad (4.10)$$

which gives a family $\{\Phi_t\}_{t \geq 0}$ of univalent self-mappings of \mathbb{H}_n , see Theorem 1.4 in [AB11]. A slight variation of the proof of Theorem 4.5 shows that $\Phi_t \in \mathfrak{P}_n$ for all $t \geq 0$ also in this case.

Question 4.7. Let $f \in \mathfrak{P}_1$. In [GB92], Section 4, it is shown that there exists a $\mathcal{K}(\mathbb{H}, c)$ -Herglotz vector field H and a time $T \geq 0$ such that $f = \Phi_T$, where $\{\Phi_t\}_{t \geq 0}$ is the solution of equation (4.10). What can be said in the higher dimensional case?

4.3 On the behavior of iterates

Let $F : \mathbb{B}_n \rightarrow \mathbb{B}_n$ be holomorphic. We say that $p \in \overline{\mathbb{B}_n}$ is the Denjoy-Wolff point of F if $F^n \rightarrow p$ for $n \rightarrow \infty$ locally uniformly. The basic results about the behavior of the iterates F^n for $n \rightarrow \infty$ can be found in [Aba89], Chapter 2.2. In particular we have (Theorem 2.2.31):

$$F \text{ has a Denjoy-Wolff point on the boundary } \partial\mathbb{B}_n \iff F \text{ has no fixed points.} \quad (4.11)$$

Now let $f \in \mathfrak{P}_n$. For $n = 1$, f has the Denjoy-Wolff point ∞ if f is not the identity: As f is not an elliptic automorphism, the classical Denjoy-Wolff theorem implies that f has a Denjoy-Wolff point. This point has to be ∞ , e.g. because of Proposition 4.3 c).

Next we will show that this is also true in higher dimensions, provided that f extends smoothly to the boundary point ∞ . There are different possible definitions of smoothness of f near ∞ . We will use the following one: Let $H(z) = f(z) - z$, and denote by $G : \mathbb{B}_n \rightarrow \mathbb{C}^n$ the corresponding generator on \mathbb{B}_n , i.e. we have $H(z) = (C^{-1})'(C(z)) \cdot G(C(z))$ and a small computation shows

$$H_1(z) = -\frac{i}{2}(z_1 + i)^2 \cdot G_1(C(z)).$$

Our smoothness condition will be that G_1 has a C^3 -extension to e_1 , i.e. we can write

$$G_1(z) = \sum_{\substack{k_1+\dots+k_n \leq 3 \\ k_1, \dots, k_n \geq 0}} a_{k_1, \dots, k_n} (z_1 - 1)^{k_1} \cdot z_2^{k_2} \cdot \dots \cdot z_n^{k_n} + \mathcal{O}(\|z - e_1\|^3),$$

which translates to

$$H_1(z) = -\frac{i}{2}(z_1 + i)^2 \cdot \sum_{k_1+\dots+k_n \leq 3} a_{k_1, \dots, k_n} \left(\frac{-2i}{z_1 + i} \right)^{k_1} \cdot \left(\frac{2z_2}{z_1 + i} \right)^{k_2} \cdot \dots \cdot \left(\frac{2z_n}{z_1 + i} \right)^{k_n} + \mathcal{O}(\|C(z) - e_1\|^3),$$

or

$$\begin{aligned} H_1(z) &= b_{0, \dots, 0} \cdot (z_1 + i)^2 + (z_1 + i) \cdot \sum_{k_1+\dots+k_n=1} b_{k_1, \dots, k_n} z_2^{k_2} \cdot \dots \cdot z_n^{k_n} \\ &\quad + \sum_{k_1+\dots+k_n=2} b_{k_1, \dots, k_n} z_2^{k_2} \cdot \dots \cdot z_n^{k_n} + (z_1 + i)^{-1} \cdot \sum_{k_1+\dots+k_n=3} b_{k_1, \dots, k_n} z_2^{k_2} \cdot \dots \cdot z_n^{k_n} \\ &\quad + \mathcal{O}(|z_1 + i|^{-1} \cdot \|(1, z_2, \dots, z_n)\|^3) \end{aligned} \quad (4.12)$$

for some coefficients $b_{k_1, \dots, k_n} \in \mathbb{C}$.

Theorem 4.8. *Let $f \in \mathfrak{P}_n$, $f \neq id$, and assume that (4.12) is satisfied. Then ∞ is the Denjoy-Wolff point of f .*

Proof. Write $f(z) = z + H(z)$, where $H \in \mathcal{K}(\mathbb{H}_n, c)$ and $H = (H_1, \tilde{H})$. Let $\gamma \in \mathbb{C}^{n-1}$. If we can show that the slice $h_\gamma(\zeta) = H_1(\varphi(\zeta)) - 2i\bar{\gamma}^T \tilde{H}(\varphi_\gamma(\zeta))$ has no zeros, then we are done:

This implies that H has no zeros because of (3.7) and (3.8). Hence, f has no fixed points and (4.11) implies that f has a Denjoy-Wolff point. This point has to be ∞ because of Proposition 4.3 c).

Similarly to the proof of Theorem 4.4, equation (4.4), we have

$$\|\tilde{H}(z)\| \leq \frac{c}{2|u_{\mathbb{H}_n}(z)|^{3/2}},$$

and thus

$$\|\tilde{H}(\varphi_\gamma(\zeta))\| \leq \frac{c}{2|u_{\mathbb{H}_n}(\varphi_\gamma(\zeta))|^{3/2}} = \frac{c}{2\text{Im}(\zeta)^{3/2}}.$$

Consequently, $\lim_{y \rightarrow \infty} y|\bar{\gamma}^T \tilde{H}(\varphi_\gamma(iy))| = 0$. On the other hand, we know from Proposition 3.4 that $h_\gamma \in \mathcal{K}(\mathbb{H}, c)$ which implies (see Remark 1.5)

$$\limsup_{y \rightarrow \infty} y|h_\gamma(iy)| = \limsup_{y \rightarrow \infty} y|H_1(\varphi(iy)) - 2i\bar{\gamma}^T \tilde{H}(\varphi_\gamma(iy))| \leq c,$$

which gives us

$$\limsup_{y \rightarrow \infty} |iy \cdot H_1(\varphi_\gamma(iy))| \leq c. \quad (4.13)$$

Now we use the assumption of the smoothness of H_1 :

Because of (4.13), all coefficients b_{k_1, \dots, k_n} from (4.12) with $k_1 + \dots + k_n \leq 2$ have to be 0. Thus, $\lim_{y \rightarrow \infty} iy \cdot H_1(\varphi_\gamma(iy)) =: K(\gamma)$ exists and is a polynomial in $\gamma = (\gamma_2, \dots, \gamma_n)$:

$$K(\gamma) = \sum_{k_1 + \dots + k_n = 3} b_{k_1, \dots, k_n} \gamma_2^{k_2} \cdot \dots \cdot \gamma_n^{k_n}.$$

As $K(\gamma)$ is bounded, it has to be constant.

If $K(\gamma) \equiv 0$, then all slices of H are zero, hence $H = 0$ by Remark 3.5 and f is the identity, a contradiction.

Hence $K(\gamma)$ is a non-zero constant and $h_\gamma(\zeta)$ is not identically zero, which implies (e.g. by using the representation (1.5)) that $h_\gamma(\zeta)$ has no zeros. \square

Question 4.9. Is ∞ the Denjoy-Wolff point for every $f \in \mathfrak{P}_n$?

5 Appendix

Here we prove Lemma (3.2):

Let $a \in \mathbb{C}, p, v \in \mathbb{C}^{n-1}$ and $z = (z_1, \tilde{z}) \in \mathbb{H}_n$. Then the following formulas hold:

$$\left\| \begin{pmatrix} a \\ 0 \end{pmatrix} \right\|_{\mathbb{H}_n, z} = \frac{|a|}{|u_{\mathbb{H}_n}(z)|}, \quad (5.1)$$

$$\left\| \begin{pmatrix} 2i\bar{p}^T v \\ v \end{pmatrix} \right\|_{\mathbb{H}_n, z} = 2 \frac{\sqrt{\|v\|^2 |u_{\mathbb{H}_n}(z)| + |\overline{(p - \tilde{z})}^T v|^2}}{|u_{\mathbb{H}_n}(z)|}, \quad (5.2)$$

$$\left\| \begin{pmatrix} a - 2i\bar{z}^T v \\ 0 \end{pmatrix} + \begin{pmatrix} 2i\bar{z}^T v \\ v \end{pmatrix} \right\|_{\mathbb{H}_n, z}^2 = \left\| \begin{pmatrix} a - 2i\bar{z}^T v \\ 0 \end{pmatrix} \right\|_{\mathbb{H}_n, z}^2 + \left\| \begin{pmatrix} 2i\bar{z}^T v \\ v \end{pmatrix} \right\|_{\mathbb{H}_n, z}^2. \quad (5.3)$$

Proof. We write $\tilde{z} = (z_2, \dots, z_n), v = (v_2, \dots, v_n), p = (p_2, \dots, p_n)$.

An explicit formula of the Kobayashi metric for the unit ball is given in [AFH⁺04], Theorem 3.4.⁴ It coincides with the Bergman metric and by using the Cayley map we get the following formula for the upper half-space:

$$\|w\|_{\mathbb{H}_n, z}^2 = w^T \cdot (g_{j,k})_{j,k} \cdot \overline{w},$$

where $w \in \mathbb{C}^n$ and $(g_{j,k})_{j,k}$ is an $n \times n$ -matrix with

$$g_{j,k} = -4 \frac{\partial^2}{\partial z_j \partial \bar{z}_k} \log(\operatorname{Im}(z_1) - \sum_{l=2}^n |z_l|^2),$$

and we get for $j, k \geq 2$:

$$\begin{aligned} g_{1,1} &= \frac{1}{u_{\mathbb{H}_n}(z)^2}, & g_{1,k} &= \frac{2iz_k}{u_{\mathbb{H}_n}(z)^2}, & g_{j,1} &= \frac{-2i\bar{z}_j}{u_{\mathbb{H}_n}(z)^2}, \\ g_{j,j} &= 4 \frac{\operatorname{Im}(z_1) - \sum_{l=2, l \neq j}^n |z_l|^2}{u_{\mathbb{H}_n}(z)^2}, & g_{j,k} &= \frac{4z_k \bar{z}_j}{u_{\mathbb{H}_n}(z)^2}, & k &\neq j. \end{aligned}$$

The formulas (5.1) and (5.2) are now straightforward calculations. We obtain

$$\|(a, 0)\|_{\mathbb{H}_n, z} = \sqrt{(a, 0) \cdot (g_{j,k})_{j,k} \cdot (a, 0)^T} = \sqrt{a \cdot g_{1,1} \cdot \overline{a}} = \frac{|a|}{|u_{\mathbb{H}_n}(z)|},$$

and

⁴Note, however, that the Kobayashi metric in [AFH⁺04] differs by a factor of 2 from the one we are using here.

$$\begin{aligned}
& u_{\mathbb{H}_n}(z)^2 \cdot \| (2i\bar{p}^T v, v) \|_{\mathbb{H}_n, z}^2 = u_{\mathbb{H}_n}(z)^2 \cdot (2i\bar{p}^T v, v^T) \cdot (g_{j,k})_{j,k} \cdot \overline{(2i\bar{p}^T v, v^T)^T} \\
&= u_{\mathbb{H}_n}(z)^2 \cdot \left(\sum_{j=2}^n g_{j,j} |v_j|^2 + g_{1,1} |2i\bar{p}^T v|^2 + \sum_{j=2}^n g_{j,1} v_j \overline{2i\bar{p}^T v} + \sum_{k=2}^n g_{1,k} \overline{v_j} 2i\bar{p}^T v + \sum_{j,k \geq 2, j \neq k}^n g_{j,k} v_j \overline{v_k} \right) \\
&= 4 \sum_{j=2}^n (\text{Im}(z_1) - \|\tilde{z}\|^2) \cdot |v_j|^2 + 4 \sum_{j=2}^n |z_j|^2 \cdot |v_j|^2 \\
&+ 4 \sum_{j,k \geq 2}^n p_j \overline{p_k} v_j \overline{v_k} - 4 \sum_{j,k \geq 2}^n \overline{z_j} p_k v_j \overline{v_k} - 4 \sum_{j,k \geq 2}^n z_j \overline{p_k} \overline{v_j} v_k + 4 \sum_{j,k \geq 2, j \neq k}^n \overline{z_j} z_k v_j \overline{v_k} \\
&= 4\|v\|^2 \cdot |u_{\mathbb{H}_n}(z)| + 4 \sum_{j=2}^n z_j \overline{z_j} v_j \overline{z_j} \\
&+ 4 \sum_{j,k \geq 2}^n (p_j \overline{p_k} v_j \overline{v_k} - \overline{z_j} p_k v_j \overline{v_k} - z_j \overline{p_k} \overline{v_j} v_k) + 4 \sum_{j,k \geq 2, j \neq k}^n \overline{z_j} z_k v_j \overline{v_k} \\
&= 4\|v\|^2 \cdot |u_{\mathbb{H}_n}(z)| + 4 \sum_{j,k \geq 2}^n (p_j \overline{p_k} v_j \overline{v_k} - \overline{z_j} p_k v_j \overline{v_k} - z_j \overline{p_k} \overline{v_j} v_k + \overline{z_j} z_k v_j \overline{v_k}) \\
&= 4\|v\|^2 \cdot |u_{\mathbb{H}_n}(z)| + 4 |\overline{(p - \tilde{z})^T v}|^2.
\end{aligned}$$

For formula (5.3) we just need to show that $(2i\bar{z}^T v, v^T) \cdot (g_{j,k})_{j,k} \cdot \overline{(a - 2i\bar{z}^T v, 0)}^T = 0$. Indeed, we have

$$u_{\mathbb{H}_n}(z)^2 \cdot (g_{j,k})_{j,k} \cdot \overline{(a - 2i\bar{z}^T v, 0)}^T = (\bar{a} + 2i\bar{z}^T \bar{v}, -2i\bar{z}_2 \bar{a} + 4\bar{z}_2 \bar{z}^T \bar{v}, \dots, -2i\bar{z}_n \bar{a} + 4\bar{z}_n \bar{z}^T \bar{v})^T$$

and

$$\begin{aligned}
& (2i\bar{z}^T v, v^T) (\bar{a} + 2i\bar{z}^T \bar{v}, -2i\bar{z}_2 \bar{a} + 4\bar{z}_2 \bar{z}^T \bar{v}, \dots, -2i\bar{z}_n \bar{a} + 4\bar{z}_n \bar{z}^T \bar{v})^T \\
&= 2i\bar{a}\bar{z}^T v - 4|\bar{z}^T \bar{v}|^2 - 2i\bar{a}\bar{z}^T v + 4|\bar{z}^T \bar{v}|^2 = 0.
\end{aligned}$$

□

References

- [AB11] Leandro Arosio and Filippo Bracci, *Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds*, Anal. Math. Phys. **1** (2011), no. 4, 337–350.
- [Aba89] Marco Abate, *Iteration theory of holomorphic maps on taut manifolds*, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989.
- [Aba92] ———, *The infinitesimal generators of semigroups of holomorphic maps*, Ann. Mat. Pura Appl. (4) **161** (1992), 167–180.
- [ABCDM10] M. Abate, F. Bracci, M. D. Contreras, and S. Díaz-Madrigal, *The evolution of Loewner’s differential equations*, Eur. Math. Soc. Newsl. (2010), no. 78, 31–38.
- [AFH⁺04] M. Abate, J. E. Fornæss, X. Huang, J.-P. Rosay, and A. Tumanov, *Real methods in complex and CR geometry*, Lecture Notes in Mathematics, vol. 1848, Springer-Verlag, Berlin, 2004, Lectures given at the C.I.M.E. Summer School held in Martina Franca, June 30–July 6, 2002, Edited by D. Zaitsev and G. Zampieri.
- [Bau05] Robert O. Bauer, *Chordal Loewner families and univalent Cauchy transforms*, J. Math. Anal. Appl. **302** (2005), no. 2, 484–501.
- [BCDM10] Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal, *Pluripotential theory, semigroups and boundary behavior of infinitesimal generators in strongly convex domains*, J. Eur. Math. Soc. (JEMS) **12** (2010), no. 1, 23–53.
- [BES14] Filippo Bracci, Mark Elin, and David Shoikhet, *Growth estimates for pseudo-dissipative holomorphic maps in Banach spaces*, J. Nonlinear Convex Anal. **15** (2014), no. 1, 191–198. MR 3184757
- [BP78] Earl Berkson and Horacio Porta, *Semigroups of analytic functions and composition operators*, Michigan Math. J. **25** (1978), no. 1, 101–115.
- [BP05] Filippo Bracci and Giorgio Patrizio, *Monge-Ampère foliations with singularities at the boundary of strongly convex domains*, Math. Ann. **332** (2005), no. 3, 499–522.
- [BS14] Filippo Bracci and David Shoikhet, *Boundary behavior of infinitesimal generators in the unit ball*, Trans. Amer. Math. Soc. **366** (2014), no. 2, 1119–1140.
- [Cas10] Tiziano Casavecchia, *A rigidity condition for generators in strongly convex domains*, Complex Var. Elliptic Equ. **55** (2010), no. 12, 1131–1142.
- [CDMG10] Manuel D. Contreras, Santiago Díaz-Madrigal, and Pavel Gumenyuk, *Geometry behind chordal Loewner chains*, Complex Anal. Oper. Theory **4** (2010), no. 3, 541–587.
- [GB92] V. V. Goryainov and I. Ba, *Semigroup of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity*, Ukrain. Mat. Zh. **44** (1992), no. 10, 1320–1329.
- [GK03] I. Graham and G. Kohr, *Geometric function theory in one and higher dimensions*, Pure and Applied Mathematics, Taylor & Francis, 2003.
- [Maa92] Hans Maassen, *Addition of freely independent random variables*, J. Funct. Anal. **106** (1992), no. 2, 409–438.
- [Pom75] Ch. Pommerenke, *Univalent functions*, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [Por87a] T. Poreda, *On the univalent holomorphic maps of the unit polydisc in \mathbf{C}^n which have the parametric representation. I. The geometrical properties*, Ann. Univ. Mariae Curie-Skłodowska Sect. A **41** (1987), 105–113 (1989).
- [Por87b] ———, *On the univalent holomorphic maps of the unit polydisc in \mathbf{C}^n which have the parametric representation. II. The necessary conditions and the sufficient conditions*, Ann. Univ. Mariae Curie-Skłodowska Sect. A **41** (1987), 115–121 (1989).
- [RS05] Simeon Reich and David Shoikhet, *Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces*, Imperial College Press, London, 2005.