Input: A sequence of training examples (x_1, y_1) , (x_2, y_2) , \cdots where all $x_i \in \Re^n$, $y_i \in \{-1,1\}$

- Initialize $\mathbf{w}_0 = 0 \in \Re^n$
- For each training example (x_i, y_i) :
 - Predict $y' = \operatorname{sgn}(\mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{i})$
 - If $y_i \neq y'$:
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r (y_i \ \mathbf{x}_i)$
- Return final weight vector

Input: A sequence of training examples (x_1, y_1) , (x_2, y_2) , \cdots where all $x_i \in \Re^n$, $y_i \in \{-1,1\}$

- Initialize $\mathbf{w}_0 = 0 \in \Re^n$
- For each training example (x_i, y_i) :
 - Predict $y' = \operatorname{sgn}(\mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{i})$
 - If $y_i \neq y'$:
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r \left(y_i \ \mathbf{x}_i \right)$
- Return final weight vector

Remember:

Prediction = $sgn(\mathbf{w}^T\mathbf{x})$

There is typically a bias term also $(\mathbf{w}^T\mathbf{x} + \mathbf{b})$, but the bias may be treated as a constant feature and folded into \mathbf{w}

Input: A sequence of training examples $(x_1, y_1), (x_2, y_2), \cdots$

where all $x_i \in \Re^{\mathsf{n}}$, $y_i \in \{\text{-1,1}\}$

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + r \ \mathbf{x}_{i}$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - r \ \mathbf{x}_{i}$

- Initialize $\mathbf{w}_0 = 0 \in \Re^n$
- For each training example (x_i, y_i) :
 - Predict $y' = \operatorname{sgn}(\mathbf{w}_{t}^{\mathsf{T}} x_{i})$
 - If $y_i \neq y'$:
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r (y_i \ \mathbf{x}_i)$
- Return final weight vector

Input: A sequence of training examples $(x_1, y_1), (x_2, y_2), \cdots$

where all $x_i \in \Re^{\mathsf{n}}$, $y_i \in \{\text{-1,1}\}$

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + r \mathbf{x}_{i}$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - r \mathbf{x}_{i}$

- Initialize $\mathbf{w}_0 = 0 \in \Re^n$
- For each training example (x_i, y_i) :
 - Predict $y' = \operatorname{sgn}(\mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{i})$
 - If $y_i \neq y'$:
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r (y_i \ \mathbf{x}_i)$
- Return final weight vector

r is the learning rate, a small positive number less than 1

Input: A sequence of training examples $(x_1, y_1), (x_2, y_2), \cdots$

where all $x_i \in \Re^{\mathsf{n}}$, $y_i \in \{\text{-1,1}\}$

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + r \ \boldsymbol{x}_{i}$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - r \ \boldsymbol{x}_{i}$

- Initialize $\mathbf{w}_0 = 0 \in \Re^n$
- For each training example (x_i, y_i) :
 - Predict $y' = \operatorname{sgn}(\mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{i})$
 - If $y_i \neq y'$:
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r \left(y_i \ \mathbf{x}_i \right)$
- Return final weight vector

r is the learning rate, a small positive number less than 1

Update only on error. A mistakedriven algorithm

Input: A sequence of training examples $(x_1, y_1), (x_2, y_2), \cdots$

where all $x_i \in \Re^{\mathsf{n}}$, $y_i \in \{\text{-1,1}\}$

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + r \ \boldsymbol{x}_{i}$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - r \ \boldsymbol{x}_{i}$

- Initialize $\mathbf{w}_0 = 0 \in \Re^n$
- For each training example (x_i, y_i) :
 - Predict $y' = \operatorname{sgn}(\mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{i})$
 - If $y_i \neq y'$:
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r \left(y_i \ \mathbf{x}_i \right)$
- Return final weight vector

r is the learning rate, a small positive number less than 1

Update only on error. A mistakedriven algorithm

This is the simplest version. We will see more robust versions at the end

Input: A sequence of training examples $(x_1, y_1), (x_2, y_2), \cdots$

where all $x_i \in \Re^{\mathsf{n}}$, $y_i \in \{\text{-1,1}\}$

- Initialize $\mathbf{w}_0 = 0 \in \Re^n$
- For each training example (x_i, y_i) :
 - Predict $y' = \operatorname{sgn}(\mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{i})$
 - If $y_i \neq y'$:
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r (y_i \ \mathbf{x}_i)$
- Return final weight vector

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + r \, \mathbf{x}_{i}$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - r \, \mathbf{x}_{i}$

r is the learning rate, a small positive number less than 1

Update only on error. A mistakedriven algorithm

This is the simplest version. We will see more robust versions at the end

Mistake can be written as $y_i \mathbf{w}_t^\mathsf{T} \mathbf{x}_i \leq 0$

Intuition behind the update

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + r \ \mathbf{x}_{i}$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - r \ \mathbf{x}_{i}$

Suppose we have made a mistake on a positive example That is, y = +1 and $\mathbf{w}_{t}^{\mathsf{T}}x < 0$

Call the new weight vector \mathbf{w}_{t+1} .

The update means $\mathbf{w}_{t+1} = \mathbf{w}_t + x$ (say r = 1)

The new dot product will be $\mathbf{w}_{t+1}^{\mathsf{T}}x = (\mathbf{w}_t + x)^{\mathsf{T}}x = \mathbf{w}_t^{\mathsf{T}}x + x^{\mathsf{T}}x \geq \mathbf{w}_t^{\mathsf{T}}x$

For a positive example, the Perceptron update will increase the score assigned to the same input

Similar reasoning for negative examples

1. The "standard" algorithm

Given a training set D = {(\mathbf{x}_i , y_i)}, $\mathbf{x}_i \in \Re^n$, $y_i \in \{-1,1\}$

- 1. Initialize $\mathbf{w} = 0 \in \Re^n$
- 2. For epoch = 1 ... T:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i \leq 0$, update $\mathbf{w} \leftarrow \mathbf{w} + \underline{r} y_i \mathbf{x}_i$
- 3. Return w

Prediction: sgn(w^Tx)