

회귀분석을 이용한 배추 가격 변동 예측

2018-1 Datamining & Machine Learning

201420874 소프트웨어 이성훈 201420907 소프트웨어 안우일 201420969 소프트웨어 김영운 201421120 소프트웨어 김필선

01 주제 선정 동기 Motivation

02 데이터 전처리 Data Processing

03 구현 및 결과 Implementation & Result 04 개선사항 Challenge

''날씨 때문에''…농산물 밥상 물가크게 올랐다

폭염에 따른 농산물 가격상승 추석까지 불안...공급대책 세워야

긴 폭염에 농산물 가격 비상 폭염에 폭우까지...추석 농산물값 비상

한파 폭설에 무 등 농산물 가격 급등…생산자물가 3년만에

최고

기사입력 2018-03-20 10:40 최종수정 2018-03-20 16:13 기사원문 스크랩 😓 본문듣기 • 설정

농산물의 공급량, 가격은 기상 조건에 의해 많은 영향을 받고, 그 영향으로 인해 수요량까지 영향을 받게 됨

Machine Learning을 이용해 농산물 가격을 예측하여 변화에 대비 할 수 있다!

농산물 가격의 등락폭을 예측해 해당 년도의 농산물 공급량을 안정적으로 유지

2008년 ~ 2018년 Data

https://data.kma.go.kr/cmmn/main.do

각종 농산물 가격

2008년 ~ 2018년 Data

https://www.kamis.or.kr/customer/main/main.do

01. 기상청에서 쓰는 데이터의 종류(2008~2018年)

평균기온(°C)	최저기온(°C)	최고기온(°C)	일 강수량(mm)	평균 이슬점온도(°C)
최대 풍속(m/s)	최대 순간 풍속(m/s)	평균 풍속(m/s)	최소 상대습도(%)	평균 상대습도(%)
평균 증기압(hPa)	평균 현지기압(hPa)	최고 해면기압(hPa)	최저 해면기압(hPa)	평균 해면기압(hPa)
합계 일조 시간(hr)	평균 지면온도(°C)	최저 초상온도(°C)	일 최심신적설(cm)	일 최심적설(cm)

02. 유통센터에서 쓰는 데이터의 종류 (2008~2018年)

(도매가격 - 기간별) 채소류 (배추 / 전체, 등급 : 상품, 단위 : 10kg

(단위:원)

구분	11/22	11/23	11/26	11/27	11/28	11/29	11/30
평균	7,000	7,500	7,000	6,400	6,600	6,600	6,800

배추는 모종을 한 뒤 초기 2주의 기간이 중요하다. 모종부터 판매까지 걸리는 시간은 4달

Y-label	X-label(feature)			
가격	4달 전 2주 기상 데이터의 Mean OR Median 값			

2008.01.02부터 2018.02.28까지 총 2298개의 데이터를 사용(휴일 제외)

Train 2008.01 ~ 2016.12년 data 사용

Test 2017.01 ~2018.02년 data 사용

Missing value들은 이전 날짜의 값을 채택. (fillna(method='ffill', inplace=true))

✓ 거의 모든 날이 0값인 일 최심신적설(cm)과 일 최심적설(cm)은 제외

✓ 각 Feature마다 크기의 편차가 커서 Feature 별로 정규분포화를 시행

$$Z = \frac{X - \mu}{\sigma}$$

Threshold를 20,000원으로 하여 Outlier를 제거

Regression을 위해 사용한 기법

- (1) Linear Regression
- (2) Lasso Regression
- (3) Ridge Regression
- (4) Elastic-Net Regression
- (5) Support Vector Regression(SVR)
 - kernel: linear, RBF, poly

Evaluation

(1) (adjusted) R Square score

$$\bar{R}^2 = \left(R^2 - \frac{p}{n-1}\right) \left(\frac{n-1}{n-p-1}\right)$$

(2) 상승 하락 예측

1년 단위의 Feature Selection을 위해 Scikit-learn의 RFE를 사용 (Backward 방식)

Recursive Feature Elimination

3개	[평균온도, 최고풍속, 이슬점온도]
4개	[평균온도, 최고온도, 최고풍속, 일조량]
5개	[평균온도, 최저기온, 평균 증기압, 일 강수량, 최저 초상온도]
	•••••
8개	[평균온도, 최고온도, 최저온도, …, 이슬점온도, 평균 풍속, 최저 초상온도]
9개	[평균온도, 최고온도, 최저온도, …, 이슬점온도, 평균 풍속, 최고풍속, 최대 순간 풍속]
10개	[평균온도, 최고풍속, 이슬점온도, 평균 상대습도, …, 최고풍속, 최대 순간 풍속, 최고 초상온도]

RFE를 사용하여 최대로 연관 있는 Feature 3~10개를 Select

 \checkmark CV를 통해 Lasso/Ridge/Elastic α 와 SVR의 γ 에 따른 변화를 측정함.

 \checkmark α 와 γ 에 따른 변화가 크지 않아 default값인 1.0으로 고정하여 사용함

Implementation & Result

03 구현 및 결과

1년 Feature Testing

(ex)

	3개	4개	•••	8개	9개	10개
Ridge	0.234	0.761	•••	0.763	0.125	0.432
Lasso	0.344	0.542	•••	0.234	0.235	0.412
Elastic	0.127	0.664	•••	0.563	0.174	0.653
SVR(Linear)	0.431	0.454	•••	0.903	0.127	0.555
SVR(RBF)	0.332	-0.234	•••	0.546	0.165	0.322

(Adjusted) R^2 를 사용하여 가장 결과가 좋은 Feature 수를 찾음

W.

1년 단위로 Regression을 시행

Lasso, Ridge, Elastic Net (Median)

사용 feature 개수: 10개

Regression	상승/하락	R ²	Adj R ²
Ridge	35.68%	0.101	0.062
Lasso	35.68%	0.097	0.058
Elastic Net	39%	0.115	0.076

사용 feature 개수 : 10개

Regression	상승/하락	R ²	Adj R ²
SVR(RBF)	35.5%	0.073	0.028
SVR(Linear)	36%	0.022	0.022

3개월 간격으로 Feature Selection을 위해 Scikit-learn의 RFE를 사용 (Backward 방식)

Recursive Feature Elimination

1월 ~ 3월	3개 : [평균온도, 최고풍속, 이슬점온도] …, 10개 : [평균온도 , 일 강수량]
2월 ~ 4월	3개 : [평균온도, 최고풍속, 일조량] …, 10개 : [평균온도 , 일조량]
3월 ~ 5월	3개 : [평균온도, 최저기온, 평균 증기압] …, 10개 : [평균온도 , 일 강수량]
	•••••
10월 ~ 12월	3개 : [평균온도, 최고풍속, 이슬점온도] …, 10개 : [평균온도 , 평균 풍속]
11월 ~ 1월	3개 : [평균온도, 최고풍속, 최대 순간 풍속] …, 10개 : [평균온도 , 최고 기온]
12월 ~ 2월	3개 : [평균온도, 최고풍속, 이슬점온도] …, 10개 : [평균온도 , 평균 상대습도]

각 분기마다 RFE를 사용하여 최대로 연관 있는 Feature 3~10개를 Select

3개월 Feature Testing (각 개월마다 시행)

(ex)

	3개	4개	•••	8개	9개	10개
Ridge	0.234	0.761	•••	0.763	0.125	0.432
Lasso	0.344	0.542	•••	0.234	0.235	0.412
Elastic	0.127	0.664	•••	0.563	0.174	0.653
SVR(Linear)	0.431	0.454	•••	0.903	0.127	0.555
SVR(RBF)	0.332	-0.234	•••	0.546	0.165	0.322

(Adjusted) R^2 를 사용하여 가장 결과가 좋은 Feature 수를 찾음

3개월 단위로 Regression을 시행(3~5월)

Lasso, Ridge, Elastic Net (Median)

사용 feature 개수 : 9개

Regression	상승/하락	R ²	Adj R ²
Ridge	28%	0.596	0.524
Lasso	28.3%	0.597	0.526
Elastic Net	26.7%	0.338	0.221

사용 feature 개수: 9개

Regression	상승/하락	R ²	Adj R ²
SVR(RBF)	26.6%	-0.290	-0.290
SVR(Linear)	26.7%	0.650	0.650

Implementation & Result

03 구현 및 결과

3개월 단위로 Regression을 시행(6~8월)

Lasso, Ridge, Elastic Net (Median)

사용 feature 개수: 3개

Regression	상승/하락	R ²	Adj R ²
Ridge	55.55%	0.289	0.254
Lasso	55.55%	0.289	0.254
Elastic Net	53.96%	0.292	0.257

사용 feature 개수: 5개

Regression	상승/하락	R ²	Adj R ²
SVR(RBF)	55.6%	0.025	0.011
SVR(Linear)	48.0%	0.053	0.023

3개월 단위로 Regression을 시행(9~11월)

Lasso, Ridge, Elastic Net (Median)

사용 feature 개수: 7개

Regression	상승/하락	R ²	Adj R ²
Ridge	44%	0.615	0.583
Lasso	44%	0.614	0.583
Elastic Net	48%	0.644	0.592

사용 feature 개수: 8개

Regression	상승/하락	R ²	Adj R ²
SVR(RBF)	48%	-0.150	-0.175
SVR(Linear)	55%	0.285	0,268

Implementation & Result

03 구현 및 결과

3개월 단위로 Regression을 시행(12~2월)

Lasso, Ridge, Elastic Net (Median)

사용 feature 개수: 8개

Regression	상승/하락	R ²	Adj R ²
Ridge	51.73%	-0.110	-0.293
Lasso	51.76%	-0.110	-0.295
Elastic Net	51.78%	0.092	-0.149

SVR(kernel = linear, RBF) (Median)

사용 feature 개수: 8개

Regression	상승/하락	R ²	Adj R ²
SVR(RBF)	48%	-2.097	-2.613
SVR(Linear)	50%	-2.483	-3.603

RNN 결과 - epoch 100

ML lab12-6: RNN with Time Series Data

RNN 결과 - epoch 200

ML lab12-6: RNN with Time Series Data

RNN 결과 - epoch 300

ML lab12-6: RNN with Time Series Data

RNN 결과 - epoch 400

ML lab12-6: RNN with Time Series Data

01

1년 전체의 데이터를 한번에 회귀하는 것보다 3개월 간격으로 데이터를 나눠 회귀할 때, 더 정확했다. 02

농산물 가격변동을 예측할 때 Mean값보다는 Median 값을 사용해서 회귀를 하는 것이 더 정확했다.

03

Max R square Score : 0.644 (9월 ~ 11월 Elastic Net 사용 시)

Max adj R square Score : 0.592 (9월 ~ 11월 Elastic Net 사용 시)

Max predict Up/Down: 60% (6월 ~ 8월 Ridge/Lasso 사용 시)

04 개선사항

01

Feature Selection을 다른 방법을 통해서 해보면 정확도가 올라갈 수 있다.

예) Exhaustive, Forward

02

기상청에 존재하지 않는 다른 요인들을 섞는다면 정확도가 올라갈 수 있다.

예) 물가변동률, 생산량, 태풍여부 등

THANK YOU

Q&A