Análisis del medio abiótico

Oscar Inostroza-Michael

2024-04-15

Este tutorial está diseñado para aprender a realizar análisis básicos sobre datos del *medio abiótico* utilizando nuestro programa de R **limnoHOLON**. Los análisis implementados a la fecha son:

- 1. Tabla de estadísticos descriptivos.
- 2. Gráfico barra de concentración/niveles de parámetros de laboratorio analizados.
- 3. Correlograma (i.e. gráfico de correlaciones pareadas).
- 4. Gráfico PCA.
- 5. Gráfico de granulometría (solo para sedimentos).

Datos de entrada

Como en cualquier otro tipo de análisis, los datos de entrada son **fundamentales**. Si no representan la información pretendida adecuadamente, los resultados y conclusiones posteriores podrían ser erróneos. Como regla general, los datos deben cumplir con ciertas condiciones mínimas de formato:

1. Cada entrada de datos implica un gasto considerable de recursos (tiempo, plata, etc). Así que, hay que asegurarse de que cada entrada represente un valor definido y correcto. Las celdas vacías, típicamente son interpretados como casos NA (*Not available*). Sin embargo, para quien hizo la base datos esa celda no la relleno por ser una valor = 0. Por ejemplo:

```
vec1 <- c(1, 2, 3, 4, 5)  # vector con los valores reales
vec2 <- c(1, 2, 3, 4, 0)  # vector con la última entrada con NA
vec3 <- c(1, 2, 3, 4, NA)  # vector con la última entrada con 0
avg1 <- mean(vec1)
avg2 <- mean(vec2)
avg3 <- mean(vec3)
print(avg1)
#> [1] 3
print(avg2)
#> [1] 2
print(avg3)
#> [1] NA
```

El vector vec3, al tener un NA en su ultima posición, se produce un error y entrega un NA como resultado. Dicho error puede ser fácilmente corregido con:

```
avg3 <- mean(vec3, na.rm = TRUE)
print(avg3)
#> [1] 2.5
```

Pero el resultado no es el correcto.

- 2. Formato long; es decir, una variable por columna y en las filas cada caso.
- 3. Nombres de las variables concisos, no repetidos, sin tildes, espacios ni caracteres especiales. Generalmente, se usa notaciones tales como : camelCase (nombreVariable), snakecase (nombre_variable), flatcase

(nombrevariable).

4. Generalmente y para no incurrir en errores involuntarios en la lectura de datos, se recomiendan los formatos .csv (comma separated values) o .tsv (tab sepatared values). Este último es es más sencillo ya que solo hay que copiar la hoja de Excel y pegarla en un documento de texto plano. Copiar y pegar en un documento de texto plano tiene la ventaja adicional de ver si se están colando caracteres inesperados.

Análisis del medio abiótico

Tabla de estadísticos descriptivos

Habiendo revisado los puntos anteriores, proseguiremos con el análisis del medio abíotico. Para esto utilizaremos los datos de XXX junto a nuestro paquete de R

```
# instalación Para que funcione, se necesitan instalar previamento los
# paquetes: RColorBrewer, corrplot, ggpubr, grDevices, Knitr, patchwork, rlang,
# rstatix, scales, tidyverse, vegan (ejemplo :
# install.packages('RColorBrewer')) Una vez listo, instalamos y cargamos
# limnoHOLON devtools::install_github('oscarIM/limnoHOLON')
library(tidyverse)
#> -- Attaching core tidyverse packages ------ tidyverse 2.0.0 --
#> v dplyr 1.1.4
                       v readr
                                   2.1.5
#> v forcats 1.0.0
                                  1.5.1
                        v stringr
#> v ggplot2 3.4.4
                       v tibble 3.2.1
#> v lubridate 1.9.3
                       v tidyr
                                   1.3.1
#> v purrr
             1.0.2
#> -- Conflicts ----- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(scales)
#>
#> Attaching package: 'scales'
#>
#> The following object is masked from 'package:purrr':
#>
#>
      discard
#>
#> The following object is masked from 'package:readr':
#>
#>
      col_factor
library(RColorBrewer)
library(grDevices)
library(vegan)
#> Loading required package: permute
#> Loading required package: lattice
#> This is vegan 2.6-4
library(limnoHOLON)
# Para ver las funciones con sus páginas de ayuda
help(package = "limnoHOLON")
data <- readr::read_tsv("data_agua_VEN.tsv")</pre>
#> Rows: 450 Columns: 6
#> -- Column specification ---
#> Delimiter: "\t"
```

```
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(data)
#> # A tibble: 6 x 6
   Sitio zonas nombre_par
                             Unidad Valor Param
#> <chr> <chr> <chr>
                              <chr> <dbl> <chr>
\#> 1 P-1 Q1 Aceites y Grasas mg/L 0.992 AyG
\#> 2 P-10 Q3 Aceites y Grasas mg/L 2.18 AyG
\#>3 P-11 Q3 Aceites y Grasas mg/L 1.89 AyG
\#>4 P-12 L Aceites y Grasas mg/L 1.15 AyG
#> 5 P-13 L
             Aceites y Grasas mg/L 2.3 AyG
#> 6 P-14 L
             Aceites y Grasas mq/L 0.5 AyG
col_pars <- "Param"</pre>
data_pars <- readr::read_tsv("tabla_pars_master.tsv")</pre>
#> Rows: 52 Columns: 3
#> -- Column specification -----
\#> Delimiter: "\t"
#> chr (3): nombre_par, Param, cats_pars
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col valor <- "Valor"</pre>
matriz <- "agua"</pre>
round <- 4
fn_stats(data = data, col_pars = col_pars, col_valor = col_valor, data_pars = data_pars,
   matriz = matriz, round = round)
#>
#> Table: Tabla parámetros
#>
#> | Siqla | Nobs | min | max | prom | desvest | cv% |
#> |:----:|:----:|:----:|:----:|
#> | Cond | 25 | 67.900 | 306.000 | 153.1760 | 81.8245 | 53% |
#> | Redox | 25 | 1.222 | 63.490 | 27.9412 | 14.3364 | 51% |
#> | Temp | 25 | 11.670 | 19.660 | 14.6456 | 2.9690 | 20% |
#> | Turb | 25 | 1.610 | 28.000 | 9.0844 | 8.5858 | 95% |
#> | pH | 25 | 5.822 | 8.603 | 7.3503 | 0.5506 | 7%
#> | DB05 | 25 | 2.000 | 4.900 | 2.5880 | 0.7412 | 29% |
#> | DQO | 25 | 2.400 | 103.000 | 11.0400 | 19.3979 | 176% |
#> | Odis | 25 | 1.454 | 9.176 | 7.4278 | 1.9638 | 26% |
#> | SST
         | 25 | 5.000 | 66.000 | 20.2400 | 18.8199 | 93%
#> | NH4
         | 25 | 0.100 | 1.000 | 0.2144 | 0.1794 | 84% |
#> | NO2
         | 25 | 0.030 | 0.030 | 0.0300 | 0.0000 | 0% |
#> | NO3
          | 25 | 0.300 | 2.000 | 0.8720 | 0.4730 | 54% |
#> / NT
          | 25 | 0.720 | 3.490 | 1.5064 | 0.6841 | 45%
          | 25 | 0.150 | 2.690 | 0.6332 | 0.5374 | 85% |
#> / NTK
#> | PT
          | 25 | 0.003 | 0.183 | 0.0228 | 0.0438 | 192% |
#> | AyG
          | 25 | 0.500 | 2.460 | 1.2993 | 0.6073 | 47% |
#> | ColFec | 25 | 1.800 | 20.000 | 3.6360 | 5.1304 | 141% |
#> | ColTot | 25 | 1.800 | 45.000 | 5.4640 | 9.6907 | 177% |
```

Gráfico barra de concentración/niveles de parámetros

```
# Sin grupos
data <- readr::read_tsv("data_agua_VEN.tsv")</pre>
#> Rows: 450 Columns: 6
#> -- Column specification -----
#> Delimiter: "\t"
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_pars <- "Param"</pre>
col_sitio <- "Sitio"</pre>
col_valor <- "Valor"</pre>
col unidad <- "Unidad"
matriz <- "agua"
code sitio <- "P-"
ord_sitio <- "asc" # 'desc o asc'
data_pars <- readr::read_tsv("tabla_pars_master.tsv")</pre>
#> Rows: 52 Columns: 3
#> -- Column specification ------
#> Delimiter: "\t"
#> chr (3): nombre_par, Param, cats_pars
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
width <- 12
height <- 11
fn_plot_bar_abiotic(data = data, col_pars = col_pars, col_sitio = col_sitio, col_valor = col_valor,
    aspect_ratio = 1, col_unidad = col_unidad, code_sitio = code_sitio, matriz = matriz,
    data_pars = data_pars, ord_sitio = ord_sitio, width = width, height = height)
# Con un grupo (generalmente son zonas para agrupar puntos, campañas, etc.) en
# donde los niveles de este se ordenen de forma alfanumérica.
data <- readr::read_tsv("data_agua_VEN.tsv")</pre>
#> Rows: 450 Columns: 6
#> -- Column specification ------
#> Delimiter: "\t"
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_pars <- "Param"</pre>
col_sitio <- "Sitio"</pre>
col_valor <- "Valor"</pre>
col_unidad <- "Unidad"</pre>
col_grupo <- "zonas"</pre>
matriz <- "agua"
code_sitio <- "P-"</pre>
ord sitio <- "asc" # 'desc o asc'
data_pars <- readr::read_tsv("tabla_pars_master.tsv")</pre>
#> Rows: 52 Columns: 3
```


Figure 1: Gráfico de concentración/nivel de parámetros a lo largo de las estaciones de muestreo.

Figure 2: Gráfico de concentración/nivel de parámetros a lo largo de las estaciones de muestreo por grupo.

Gráfico de correlaciones pareadas (correlograma)

```
data <- readr::read_tsv("data_agua_VEN.tsv")
#> Rows: 450 Columns: 6
#> -- Column specification ------
#> Delimiter: "\t"
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_pars <- "Param"</pre>
```


Figure 3: Gráfico de concentración/nivel de parámetros a lo largo de las estaciones de muestreo por grupo.

```
col_sitio <- "Sitio"</pre>
col_valor <- "Valor"</pre>
matriz <- "agua"
code_sitio <- "P-"
data_pars <- readr::read_tsv("tabla_pars_master.tsv")</pre>
#> Rows: 52 Columns: 3
#> -- Column specification
#> Delimiter: "\t"
#> chr (3): nombre_par, Param, cats_pars
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
width <- 6
height <- 6
fn_plot_correlogram(data = data, col_pars = col_pars, col_sitio = col_sitio, matriz = matriz,
    code_sitio = code_sitio, data_pars = data_pars, width = width, height = width)
#> pdf
#> 2
```


Figure 4: Gráfico de correlaciones pareadas.

Gráfico de PCA.

```
# figura sin factor de agrupamiento
data <- readr::read_tsv("data_agua_VEN.tsv")</pre>
```

```
#> Rows: 450 Columns: 6
#> -- Column specification
#> Delimiter: "\t"
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
\#>i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_pars <- "Param"</pre>
col_sitio <- "Sitio"</pre>
col_valor <- "Valor"</pre>
matriz <- "agua"
data_pars <- readr::read_tsv("tabla_pars_master.tsv")</pre>
#> Rows: 52 Columns: 3
#> -- Column specification ---
#> Delimiter: "\t"
#> chr (3): nombre_par, Param, cats_pars
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
width <- 8
height <- 6
fn_plot_pca(data = data, col_pars = col_pars, col_sitio = col_sitio, col_valor = col_valor,
    data_pars = data_pars, width = width, height = height, matriz = matriz)
```


Figure 5: Gráfico PCA sin factor de agrupamiento

```
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_pars <- "Param"</pre>
col_sitio <- "Sitio"</pre>
col valor <- "Valor"</pre>
matriz <- "agua"
code_sitio <- "P-"</pre>
data_pars <- readr::read_tsv("tabla_pars_master.tsv")</pre>
#> Rows: 52 Columns: 3
#> -- Column specification ---
#> Delimiter: "\t"
#> chr (3): nombre_par, Param, cats_pars
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_grupo <- "zonas"</pre>
ord_grupo <- c("L", "Q1", "Q2", "Q3", "Q4", "Q5")
width <-7
height <- 5
dist <- "euc"
fn_plot_pca(data = data, col_pars = col_pars, col_sitio = col_sitio, col_valor = col_valor,
    data_pars = data_pars, width = width, height = height, matriz = matriz, col_grupo = col_grupo,
    ord_grupo = ord_grupo, dist = dist)
#> Too few points to calculate an ellipse
#> Too few points to calculate an ellipse
```


Figure 6: Gráfico PCA sin factor de agrupamiento

Gráfico de granulometría.

Obviamente, este gráfico tiene sentido solo si se usa sobre datos de sedimentos, y que contengan las fracciones : "LIM", "AMF", "AF", "AM", "AG", "AMG", "GRAN"

```
# gráfico sin factor o grupo
data <- readr::read_tsv("data_sedimentos_VEN.tsv")</pre>
#> Rows: 300 Columns: 6
#> -- Column specification -
#> Delimiter: "\t"
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
#>
\# i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_pars <- "Param"</pre>
col sitio <- "Sitio"
col_valor <- "Valor"</pre>
code_sitio <- "P-"
ord_sitio <- "asc" # 'desc o asc'
width <- 8
height <- 7
fn_plot_granulometria(data = data, col_pars = col_pars, col_sitio = col_sitio, col_valor = col_valor,
    ord_sitio = ord_sitio, width = width, height = height, aspect_ratio = 2, code_sitio = code_sitio)
```


Figure 7: Gráfico de granulometría sin factor de agrupamiento

```
# gráfico con 1 factor o grupo
data <- readr::read_tsv("data_sedimentos_VEN.tsv")</pre>
#> Rows: 300 Columns: 6
#> -- Column specification ---
#> Delimiter: "\t"
#> chr (5): Sitio, zonas, nombre_par, Unidad, Param
#> dbl (1): Valor
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
col_pars <- "Param"</pre>
col_sitio <- "Sitio"</pre>
col_valor <- "Valor"</pre>
ord_sitio <- "asc" # 'desc o asc'
width <- 8
height <- 7
col_grupo <- "zonas"</pre>
code_sitio <- "P-"</pre>
# ord_grupo <- c('Q1', 'Q2', 'Q3','Q4','Q5', 'L')
fn_plot_granulometria(data = data, col_pars = col_pars, col_sitio = col_sitio, col_valor = col_valor,
    ord_sitio = ord_sitio, width = width, height = height, col_grupo = col_grupo,
    ord_grupo = NULL, code_sitio = code_sitio, aspect_ratio = 2)
```


Figure 8: Gráfico de granulometría con factor de agrupamiento