

Reconnaissance de pièces

MÉTHODE AGILE

21/12/2018

LANOUE MARIE, YELLES KARAM, AUBRY CLÉMENT, OBAME JEAN-HILAIRE

Sommaire

- Présentation du projet
 - Méthode SCRUM
 - Présentation du projet
- Réalisation
 - Création de l'interface
 - Acquisition d'images et sauvegarde
 - Reconnaissance de pièces
- Perspectives d'amélioration
- Conclusion

Présentation projet

Contexte professionnel:

Difficulté de comptage de pièce de monnaies par les bénévoles d'une association .

Perte de temps dans le comptage des pièces

Besoin:

Conception d'un logiciel facilitant le comptage de pièces

Simple et rapide d'utilisation pour les bénévoles de l'association

Méthode SCRUM

Les clients

Explique les besoins métiers

Product Owner

Product Backlog

(user-story)

Scrum Master

Cadrage du projet

Equipe Scrum

Scrum Master

Product Owner

Développeur

Développeur

Analyse QQOQCCP

QUOI?

 Difficulté de comptage d'un grand nombre de pièces de monnaies

POURQUOI?

 Pas de matériel adapté pour ce type de comptage

COMMENT?

Une perte de temps importante dans le comptage de pièces de monnaies

OU?

QUI?

 Au sein de l'association

•Les bénévoles chargés

pièces de monnaies

du comptage des

COMBIEN?

•Sur tous les postes de comptage de monnaie

OUAND 3

 Au moment of comptage de monnaie

Organisation du projet

Planning:

- Programmation de l'application
- Conception graphique
- Rédaction documentaire

Sprint 2:

- Assemblage de toutes les parties du code
- Conception du support caméra
- © Commenter le code
- Finalisation du rapport + PowerPoint

Logiciels utilisés

ArgoUML: Diagramme des classes

Diagramme des cas d'utilisations

QT creator (bibliothèque OpenCV) : Rédaction du code

Conception graphique

GitHub: Echanges de documents

Gestion des versions du programme

Trello: Organisation des tâches

Suivie du planning projet

SolidWorks: Conception d'un prototype de support caméra

Diagramme de cas d'utilisation

Les diagrammes de cas d'utilisation sont des diagrammes UML utilisés pour donner une vision globale du comportement fonctionnel d'un système.

Interface : les Maquettes

Imberface 1		Interface 2.		
Compteur de pièce Logo CFI		Détail du traitement de l'image:		
	l'embre de pièce:	Traitement 1	Trailement 2	Trailement 3
	(0,01) = (0,7c) = (0,5c) = (0,5c) = (0,5c)			
	(0,e 5): 1 1 = 1	Trailtomont 4	Traitement S	Traitement 6
	©10 = 2 = 2			
Soura:	Complex			
Acqueric	Afficie le 2 e la 11 du Traileach			Telminer

Interface

Acquisition d'image et sauvegarde

Organigramme:

Acquisition d'image et sauvegarde

MainWindow			- 0 X
Compteur de pièce Compteur de pièce			
	Nombre de	Nombre de pièce :	
	=	=	
	=	=	
	=	=	
	=	=	
Source:	Somme :		
		Compter	
Index caméra : 0 Acquerir		Afficher le détail du traitement d'image	

Acquisition d'image dans l'interface

Diagramme de classes

Reconnaissance des Pièces

Image source

Niveaux de gris

Filtre médian

Transformée de hough

Image finale

COMPTEUR DE PIECE

Nombre de pièce :

Somme : 17.49

Compter

Afficher le détail du traitement d'image

rce : pieces_support_2.jpg

Index caméra :

Acquerir

Optimisation de la mesure des diamètres.

- Optimisation de la mesure des diamètres.
- Détection des pièces autre que des euros.

- Optimisation de la mesure des diamètres.
- Détection des pièces autre que des euros.
- Donner l'accès à l'administrateur pour modifier quelques paramètres.

- Optimisation de la mesure des diamètres.
- Détection des pièces autre que des euros.
- Donner l'accès à l'administrateur pour modifier quelques paramètres.
 - Distance entre les centres des pièces.
 - Diamètres des pièces minimale / maximale.
 - Hauteur du support de la caméra.

Dessin de conception support

Plan de fabrication support

Conclusion

Gestion de projet :

- Travail en équipe
- Travail en méthode agile
- Répartition de tâches
- Tenue des délai
- Outils de gestion de projet : TRELLO, GitHub, diagramme de Gantt

Technique:

- Outils: C++, Qt, Opencv, ArgoUML, SolidWorks
- Interfaçage de différent outils : C++, Qt, Opencv
- Traitement d'image

MERCI POUR VOTRE ATTENTION

