

MECHANICAL ENGINEERING

Advisor: Dr. Jason Lee

ME Team 68 Design of an Articulating Ankle for Enhanced Performance

UNIVERSITY OF HARTFORD

DEPARTMENT OF REHABILITATION SCIENCES

Sponsor: University of Hartford Rachael Crow, Eric Brodeur, Kevin Cayo of Rehabilitation Sciences

Introduction/Motivation

Objective: Design and develop a functioning articulating prosthetic ankle that can be utilized both on land and in subsurface environments for rehabilitation purposes

Scope: Research, design, fabricate, and test an articulating ankle that allows for effective and comfortable use both on land and for SCUBA Diving without adjustment to ankle position when switching

environments

Parties of Interest:

- Transtibial amputees
- Ex Military & Veterans

Metrics:

- Ankle range of motion
- Recovery & Down stroke

Critical Design Features:

- Obtaining "ideal" ankle range of motion
 - 65 degrees from the vertical
- Limit Energy Exertion
- Weather and water resistant

Design/Methodology

VS.

- Goal: Create a device that allows for a balanced stroke while not locked in a fixed position
 - Prosthetic ankle produces similar stroke as able ankle - focus on recovery & down stroke
- Inspirational Research
 - Rampro "Swimankle"
 - Nakashima Design
 - **Human Anatomy**

Rampro "Swimankle"

Test Rig Setup

Motor Set Up:

- 1800 rpm motor
- Gear box of 40:1 ratio
 - Allowed for 45 kicks per minute
- Motor stand to fit over the tank 80/20 stand
- Arm configuration
 - 2 aluminum pieces 508 mm
 - 1 wooden piece 1219.2 mm
 - 1 aluminum piece 482.6 mm
 - Key cut out for motor attachment
 - Hole location for wooden arm connection

Tank Construction:

- 80/20 frame was used for frame
- Plexi glass was used for the sides and bottom of tank
- Water leakage prevention
 - Gasket & Caulk
 - Flex tape & Spray
- Wooden supports
 - Reduce bowing of plexiglass due to pressure of water

Initial Drawing

Drawing with Motor Set Up

CAD Model

Final Design

Design 1: Tension Spring & Elastic Band

Design Components:

- **Spring Constant Range:** .1 1.5 N/mm Previous research has
 - 0.1 N/mm, 0.5 N/mm & 1.3 N/mm
- Elastic Band Length: 50.8 mm
 - **1**, 5, 10
- o Pin: 10.5 mm diameter

• Initial Concerns:

- Longevity
 - Solution Decrease pin diameter

Attractions:

- been conducted
- Variation of design has been used
- Allows for variation in type of component used
 - Spring or band

Initial **Drawing**

Initial CAD Model

Final Design - Tension Spring

Final Design - Rubber Band

Results & Analysis Design 1

Tension Spring 1 (1.3N/mm) Vertical Displacer -300-400 -500 1.0 0.0 0.2 0.8 1.2 Time (s)

- Strongest recovery stroke Narrowest peak

 - Weakest downstroke
 - Lacks full ankle extension

- Good downstroke
 - Near full extension of foot
- Good recovery stroke
 - Narrow peak
- Most balanced design of three tension springs

- Weakest recovery
- Thickest peak
- Strong downstroke
 - Full ankle extension