Space Complexity U DSPACE (n°) PSPACE := -0 N PSPACE := UNSPACE (n°) -D L = LOGSPACE := DSPACE (log n) NL := NSPACE (log n) Lemma: LENLE PE PSPACE E NPSPACE Lemma !- SPACE (f(n)) & NSPACE (f(n)) & DTIME(2) Configuration graphs? TM M, Configurations encode

runs in space f(n) = input symbol being read

> locations of the take

head

> Contents of the work take # bits that sneeded to encode a configuration $= c \cdot f(n) = O(f(n))$ WLOG, unique accepting configuration.

configuration graph: Space f(n) O(f(n))= 2M accepts a string xiff I a path in GM,x from Coccept. P PSPACE / NPSPACE Karp - reduction; poly-time reduction reduction :-

 $\rightarrow \exists x_1 \forall x_2 (x_1 \land x_2) \lor (7x_1 \land 7x_2)$ 3 x, ∈{0,1} + x2 ∈ {0,1} (2, x2) v (7x, x7x2) $\exists x_1 \ \forall x_2 \ [x_1 = x_2] \qquad x_1 = x_2$ $\downarrow False \ \not\in TQBF$ 1,20, 1,20 7,50, X251 ∀ x₁ ∃x₂ [x₁ = x₂] = Statement ∈ TQBF TRUE x=0, x=0 $x_1 = 1$, $x_2 = 1$ = Recoding = TX, TX2 [X,= N2] <- SAT as QBF GBF us BF with free Vars. +x, +nz +z +z p p(x,, xn) - TAUTOLOGY TOBF := { True & BFs } Thm: - TQBF is PSPACE- Complete. TOBF E PSPACE.

QBF y = Q, x, Q, x, - ... Qn xn \(\varphi(x_1,...,x_n)\) Size (4) := 10(= m. certere Qi E { 7, H } the variables $x_1, ..., x_n$. Evaluate ((z,,-, Zn). How much space? Space = (m+n) Y':== x, +x2 = x3 ((x,, x2, x3) Ψ'& TQBF. Y'E TQBF? Pseudo-Ago: (A (Y) For i in 1 to n.

if
$$Q_i = \exists$$
 then $A(Y|_{x_i=0}) \vee A(Y|_{x_i=1})$

if $Q_i = \forall$ then $A(Y|_{x_i=0}) \wedge A(Y|_{x_i=1})$
 $S(n, m) \leq S(n \cdot \cdot \cdot \cdot m) + O(m)$
 $S(n, m) = O(n \cdot m)$
 $TQBF$ is $PSPACE - Hard$.

 $L \in PSPACE = L \leq p \mid TQBF$.

 $CHESS := Does player with Black pieces has a cuainning $Sfrafegy ?$
 $\exists B \forall W \not\exists B \forall W - - - \psi (B_x w, - w)$
 $encodes \ Chess \ Configuration, to auxiliary then, to auxiliary then, the substitution, the substitution, the substitution, the substitution $T \in \{0,1\}^n$ where $T \in TQBF$
 $TSPACE = TQBF$$$

GIM,x n Configuration graph Configurations = $2^{C_{10}}$ # bits needed to represent a configuration $= O(n^k)$ XEL (=) Z a path from Colont to Caccept in GIMIX Ci, C; -> Can you go from Ci -> Cj in one Step? Ci Lin 1919/6 + 11 S(9,6) => (9,, c, R) c; [" a c 9 4" $\varphi_{\text{move}}(C_i, C_j) = \text{True iff } C_i \rightarrow C_j$ $in G_{M, x}$ $\left(\varphi_{\text{move}}(C_i, C_j) \leq O(n^k)\right)$

Ans: 7C, 7C, 7C, 7C, 81.
Prove (Cstart, C1) A Prove (C1, C2) A Procu (C2, C3)
· · · · · · · · · · · · · · · · · · ·
l = ? How many vertices can be in a path forom Cotal to Coccept ir Games all vertices = 20(nk)
Second Affent! want to check that I a path of length < 20(01k)
forom Cofart to Caccept.
I Cmid [7 a path of length [I a path of length &
Ve (Ci, Cj) := 7 path of length < 2°
between Ci and S.

F Cmid Y (Ci, Cmid) A Ver (Smid, Ci) $V_o(c_i,c_j) = P_{move}(c_i,c_j) \vee [c_i=c_j]$:= Output of the (Csfut, Caccepf) $\left|Y_{O(nk)}\right| \stackrel{?}{=} O(nk)$ 140 = 0 (nh) Ye(Ci,Cj) = F Cmid Ye(Ci,Cmid) Ny (Cmid,G) $|\psi_{\varrho}| \leq O(n^{k}) + 2 \cdot |\psi_{\varrho-1}|$ $\left| \psi_{o(nk)} \right| = O\left(2^{o(nk)}, nk \right)$ Attempt 3: $\Psi_{\ell}(c_i, c_j) =$ I Cmid & D. & D2 $(D_1,D_2) = (C_1, C_{mid}) \lor (D_1,D_2) = (C_{mid}, C_j)$

 $F \Rightarrow T/F$ (D_1, D_2) $\begin{bmatrix} B(0, \ldots) \land B(1, \ldots) \end{bmatrix} \leq$ $\forall x_1 \quad B(x_1, \dots)$ (a=) b = 79 V b $|\psi_{\ell}| \leq O(n^k) + |\psi_{\ell-1}|$ \Rightarrow $|\psi_{nk}| \leq O(n^{2k})$ Vo(nh) (Cstart, Caccept) < OBF $\left| \psi_{O(n^k)} \right| \leq O(n^{2k}) < poly.$ =) x e L (=> V e TQBF Comment :

1) Does it matter if M was non-det
M0 i
=) TOBF is NPSPACE-hard.
-) NPSPACE = PSPACE.
Also follows Savitch's thur.
$NSPACE(f(n)) \subseteq SPACE(f(n)^2)$
=) NPSAACE = CO NPSPACE
CONPSPACE = {L L E NPSPACE
LECONPSPACE =) [E NPSPACE
=) T E PSPACE
=) L E PSPAEE
Don't expect
NP = CONP.

NP = GNP =) P=NP.

1

