Gradient-Based Optimization Wrap Up

Lecture 21

ME EN 575 Andrew Ning aning@byu.edu

Outline

Multiobjective Optimization

Other Techniques

Multiobjective Optimization

Multiobjective Optimization

First, ask if it should be multiobjective:

- Is there a higher-level objective that you are actually after?
- Are some of your objectives actually constraints?

Good reasons to pursue multiobjective:

- Explore tradeoffs between potential objectives
- You aren't making the decision and want to present options

Point C is dominated by Point A

The dashed line represents the Pareto front and points on the front are called Pareto optimal.

Weighted Sum

Combine the two objectives as a weighted sum:

$$J(x) = J_1(x) + kJ_2(x)$$

vary k to define the Pareto front.

Pros: Simple

Cons: Difficult to determine appropriate weightings, nonuniform spacing, yields only the convex portion of the Pareto front.

Constraint Epsilon

Set the other objectives as constraints, but vary their limits:

$$c(x) \le c_{max}$$

Pros: Simple, constraint limits are more intuitive.

Cons: Nonuniform spacing.

Normal Boundary Interface or Normal Constraint Method

Pros: Uniform spacing

Cons. Can waste time resolving portions of the

Smart Pareto Method

Pros: Uniform spacing, avoids resolving unimportant regions.

Hancock and Mattson, 2014

Gradient-free Approach

Use a multiobjective gradient-free method like an evolutionary algorithm.

Pros: Easy to use Cons: Very slow and inefficient

Nick Antoine, Aircraft Optimization for Minimal Environmental Impact, PhD Dissertation, 2004.

Some line search techniques use a filter method. This is a multiobjective problem with two objectives:

$$J_1(x) = f(x)$$

 $J_2(x) = ||c_{vio}(x)||_1$

Other Techniques

Scaling

Last time we discussed an example where scaling the design variables was important.

Scaling objectives and constraints is also important. Consider an infeasible point where ∇f is very large and ∇c is very small.

Rule of thumb:

Scale objectives, constraints, and design variables to all be of $\mathcal{O}(1)$.

Sometimes, intentionally skewed scaling is desirable.

$$0 \le \phi \le 120^{\circ}$$

$$0 \le \frac{\phi}{1000} \le \frac{120^{\circ}}{1000}$$

Reformulation

- absolute value, max/min
- mathematically equivalent formulations
- example: distance to barrier
- example: delegates per vote

Local Optima

Gradients

Parallelization

What opportunities have you noticed for parallelization?