2021F-T1 AISC1006 — Step Presentation 01 (M07 Group 1)

Student Name(s) ↓	Student IDs ↓						
Shivam Patel	500201461						
Jaydeep Bhalala	500198056						
Pratik Domadiya	500199494						

2021F-T1 AISC1006 - Step Presentation (Step 1) 01 (M07 Group 1)

Dataset Preparation

Name: Pratik Domadiya

Loyalist ID: 500199494

pratikdomadiya@loyalistcollege.com

2021F-T1 AISC1006 - Step Presentation (Step 1) 01 (M07 Group 1)

Data Cleaning and Modelling

Name: Jaydeep Bhalala

Student ID-500198056

jaydeepbhalala@loyalistcollege.com

2021F-T1 AISC1006 - Step Presentation (Step 1) 01 (M07 Group 1)

Data Visualization

Name: Shivam Patel

Student ID-500201461

shivampatel@loyalistcollege.com

ROAD MAP

Approach and source code

Visualization & Presentation

Analysis & Experience

1. Approach and source code

Data Preparation

Concept

- We have created our own dataset.
- WebScraping

Technology

- Python
- Beautiful soup 4
- Requests library
- Selenium web driver

Data Source

sample data on zolo website

Ask About this Home Property Suite Status: Sale Kitchens Plus: 1 Full Name 2 Type: Detached Email Address Parking Style: 11/2 Storey Area: Toronto Driveway: Private Phone Number (Mobile) Community: Cliffcrest Garage: None Parking Places: 2 I would like more information regarding a Inside property at 203 Scarboro Crescent Toronto Parking Total: 2.0 Bedrooms: 3 Covered Parking Places: 0.0 Bedrooms Plus: 3 Fees Bathrooms: 4 Go Tour This Home Kitchens: 1 Taxes: 4431.82 Rooms: 6 Tax Year: 2020 Rooms Plus: 4 Tax Legal Description: Plan 1566 Lot 169 Den/Family Room: N Air Conditioning: Central Air Land Fireplace: N Fronting On: E Building Frontage: 50.00 Lot Depth: 125.00 Basement: Finished Lot Size Units: Feet Basement: Sep Entrance Pool: None Heating: Gas Sewer: Sewers Heating: Forced Air Cross Street: S. Of Kingston Rd/S.Of Midland Water supply: Municipal Municipality District: Toronto E08

Exterior: Alum Siding Exterior Features: Brick

Scrapping Result

 Output stored in excel file. Please have a look on features.

SAMPLE DATASET

	A1499	- (f ₃	Comm	ercial/Re	etail																
	А	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V
1	Туре	Walk Score	Age	Listed By	Size (sq ft)	Bedrooms	Bathrooms	Kitchens	Rooms	Area	/Family Ro	atio Terrac	suite Laund	Conditioni	Fireplace	Stories	arking Tota	1aintenanc	Taxes	Community	Basement	nouse_price
2	Condo Townhouse		No Data	Royal Lep	1400-1599	3	3	1	8	Toronto	N	Terr	Υ	Central Ai		2		446.40	3250.59	Dovercou	None	999900
3	Condo Apt		No Data	Royal Lep	900-999	2	1	1	6	Toronto	N	Open	Υ	Central Ai	N	15		697.42	1255.60	Flemingd	None	525000
4	Condo Apt		No Data	Homelife	600-699	1	1	1	5	Toronto	N	Open	Υ	Central Ai		19	0.0	435.14	2480.71	Church-Yo	None	499999
5	Condo Townhouse		No Data	Re/max N	1000-1199	3	2	1	5	Toronto	N	Terr	Υ	None		1		649.93	1438.29	Elms-Old	Crawl Spa	529800
6	Detached		No Data	First Clas	3500-5000	4	6	1	10	Toronto	Y	NO	N	Central Ai		0		0.0	15617.00	St. Andrev	Walk-Up	4280000
7	Condo Apt		No Data	Right At H	500-599	1	1	1	4	Toronto	N	Open	Υ	Central Ai		20		512.11	1619.18	Islington-	None	535000
8	Condo Apt		0-5	Living Rea	700-799	1	2	1	5	Toronto	N	Open	Υ	Central Ai		9			2309.63	Waterfror	None	778000
9	Detached		No Data	Right At H	ome Real	3	2	1	9	Toronto	N	NO	N	Central Ai		0		0.0	3531.65	Keelesda	Walk-Up	998888
10	Condo Apt		No Data	Century 2:	600-699	1	1	1	4	Toronto	N	Open	Υ	None	N	10			212.20	Black Cree	None	149900
11	Condo Apt		No Data	Re/max R	1000-1199	2	2	1	5	Toronto	N	None	Υ	Central Ai	N	14			1115.45	Mount OI	None	579000
	Detached		No Data	Tailored F	Realty Inc.	2	2	2	4	Toronto	N	NO	N	None		0		0.0	3298.38	The Beacl	Sep Entra	1399999
13	Att/Row/Twnhouse	91	51-99	Harvey Ka	1500-2000	3	3	2	7	Toronto	Y	NO	N	Central Ai		0		0.0	4998.00	Kensingto	Full	1279000
	Condo Apt		No Data	Right At H	500-599	1	1	1	4	Toronto	N	Open	Υ	Central Ai		16		417.12	2529.59	Waterfror	None	599000
15	Condo Townhouse	72	No Data	Bay Stree	1400-1599	4	4	1	7	Toronto	N	None	N	Central Ai		1	2.0	398.00	2419.00	Agincourt	Finished	699900
16	Detached		No Data	Exp Realt	2000-2500	4	4		8	Toronto	Y	NO	N	Central Ai		0		0.0	4668.12	Steeles	Finished	1288888
17	Detached		No Data	Homecom	fort Realt	5	6		10	Toronto	Υ	NO	N	Central Ai		0		0.0	4264.87	L'Amorea	Finished	999000
18	Condo Apt		No Data	Re/max R	600-699	1	1	1	5	Toronto	N	Open	Υ	Central Ai	N	18	1.0	420.22	2348.07	Waterfror	None	724900
19	Detached		No Data	Ipro Real	1100-1500	3	2	1	6	Toronto	N	NO	N	Central Ai	N	0	3.0	0.0	3372.80	Dorset Pa	Finished	899000
20	Condo Apt		0-5	Royal Lep	700-799	2	2	1	5	Toronto	N	Open	Υ	Central Ai	N	6	1.0	689.58	3116.16	Waterfror	None	829900
21	Condo Apt		No Data	Right At H	800-899	2	1	1	6	Toronto	Υ	Open	Υ	Central Ai		24	1.0	485.48	1655.85	West Hun	None	569900
22	Detached	91	100+	Sutton Gr	2500-3000	5	4	2	11	Toronto	Υ	NO	N	Central Ai		0	2.0	0.0	7008.32	Moss Parl	Finished	1799000
23	Condo Apt	97	0-5	Homelife	600-699	1	1	1	4	Toronto	N	Open	Υ	Central Ai		4	0.0	414.33	2767.89	University	None	729900
24	Condo Apt	97	New	Re/max H	500-599	1	1	1	4	Toronto	N	Open	Υ	Central Ai		52		420.00	238.06	Bay Stree	None	729800
25	Condo Townhouse	66	No Data	Century 2:	1500-2000	3	4	1	7	Toronto	Υ	None	Υ	Central Ai		1		152.00	3200.00	Dorset Pa	W/O	799000
26	Semi-Detached	76	No Data	Royal Lep	age Terre	3	1	1	6	Toronto	N	NO	N	Central Ai		0	0.0	0.0	4307.64	Greenwoo	Unfinishe	899999
27	Condo Apt	68	No Data	Bay Stree	1000-1199	2	2	1	6	Toronto	N	Open	Υ	Central Ai	N	2	1.0	708.26	2810.60	Bayview \	None	620000
28	Condo Apt	-	16-30	Re/max C	700-799	1	1	1	4	Toronto	N	Open	Υ	Central Ai		8	_		3103.95	Waterfror	None	849999
		-				-	•		•			-,				-	-		•			

2. Visualization & Analysis

Data Cleaning

- Purpose of the Data cleaning
 - Data cleaning is the process of removing data that is wrong, inaccurate, incomplete, poorly structured, duplicated, or simply unrelated to the dataset's goal.

Cleaning the data

Cleaning of Type Column of the data

```
# checking the unique values available in 'type' column
 df['Type'].nunique(),df['Type'].unique()
 # Some unique values are merged as they are having the same meaning
 # "condoxxxxxx" -> condo
 # co-op apt, Apartments, Co-Ownership Apt -> Apartments
 # twnhouse -> town house
 # triplex, multiplex, duplex, Fourplex -> multiplex
 # Single Family, House/Single Family-> Single Family
 # Office, Store W/Apt/Office' -> office
 # Link, Parking Space, Locker, Parking, Land, Vacant Land -> ohters
 # retail, Commercial/Retail -> retail
 (33, array(['Condo Townhouse', 'Condo Apt', 'Detached', 'Att/Row/Twnhouse',
         'Semi-Detached', 'Comm Element Condo', 'Co-Op Apt', 'Investment',
         'Det Condo', 'Vacant Land', 'Apartments', 'Condominium', 'Triplex',
         'Link', 'Multiplex', 'Condo/Apt Unit', 'Other', 'Co-Ownership Apt',
         'Duplex', 'Parking Space', 'Locker', 'Single Family',
         'Commercial/Retail', 'Industrial', 'Land', 'Office',
         'Row / Townhouse', 'Leasehold Condo', 'Fourplex',
         'House/Single Family', 'Retail', 'Store W/Apt/Office', 'Parking'],
        dtype=object))
```

After applying Filters

Cleaning of Walk Score Column of the data

- Taking average of walk score by grouping the community.
- Filling null values of walk score based on the mean value of the community

```
#removing the '-' from walk score
temp_df = df.copy()
temp_df['Walk Score'] = pd.to_numeric(temp_df.where(temp_df['Walk Score'] != '-')['
temp_df = temp_df.groupby('Community')[['Walk Score', 'Bedrooms']].mean().astype('in
for i in range(0,len(df.index)):
    if df.iloc[i]['Walk Score'] == '-':
        df.loc[i, 'Walk Score'] = temp_df.loc[df.iloc[i]['Community']]['Walk Score']

df.drop(labels=['Community'],axis=1,inplace=True) #We no longer need the 'Community'
```

Cleaning of Patio Terrace Column of the data

Before the cleaning

```
[61] # unique values in Patio Terrace column
df['Patio Terrace'].unique()

array(['Terr', 'Open', 'NO', 'None', 'Jlte', 'Encl', 4], dtype=object)

↑ ↓ ⇔ ■ ❖ ☑ ■ :
```

After the cleaning

```
df['Patio Terrace'] = df['Patio Terrace'].apply(process_patio)
df['Patio Terrace'].unique()
array(['Yes', 'No'], dtype=object)
```

Cleaning of Air Conditioning Column of the data

• If present then 'Y' else 'N'

Before the cleaning

After the cleaning

```
df['Air Conditioning'] = df['Air Conditioning'].apply(process_conditioning)
df['Air Conditioning'].unique()
array(['Y', 'N'], dtype=object)
```

Cleaning of Stories Column of the data

Converting every code into numbers

```
# replacing values with below list
    zero = ['Ph','Lph','Th']
    one = ['P1','0-1','1&2','A','Low','1st','L15','M']
    three = ['3&4']
    def process stories(stroy):
      if stroy in zero:
        return 0
      elif stroy in one:
        return 1
      elif stroy in three:
        return 3
      else:
        return stroy
    df['Stories'] = df['Stories'].apply(process stories)
    df['Stories'].unique()
r<sub>2</sub> array([ 2, 15, 19, 1, 0, 20, 9, 10, 14, 16, 18, 6, 24, 4, 52, 8, 17,
          11, 7, 34, 3, 37, 27, 13, 12, 5, 28, 21, 44, 42, 26, 30, 32, 74,
          25, 40, 23, 36, 22, 29, 38, 50, 31, 39, 46, 64, 35, 45, 33, 51, 47,
          54, 48, 65, 59, 41, 53, 56, 49, 79, 58, 69, 60, 57, 43])
```

Cleaning of Basement Column of the data

• If present then it then 'Y' else 'N'

Before the cleaning

After the cleaning

```
df['Basement'] = df['Basement'].apply(process_basement)
df['Basement'].unique()
array(['N', 'Y'], dtype=object)
```

Cleaning of Size Column of the data

 We will use four features ('Bedrooms', 'Bathrooms', 'Kitchens', 'Rooms') to predict the null values of size column by linear regression model.

Null values Before the cleaning

```
df['Size (sq ft)'].isnull().sum()
```

Null values After filling it

Null values in the data after cleaning

```
# checking null values if there is any
df.isnull().sum()
Type
                    0
Walk Score
Size (sq ft)
Bedrooms
Bathrooms
Kitchens
Rooms
Den/Family Room
Patio Terrace
Ensuite Laundry
Air Conditioning
Fireplace
                    0
Stories
Parking Total
Maintenance
Taxes
Basement
                    0
house_price
dtype: int64
```

Data Visualization

Sample Coding and Output

 Whole data visualization coding file is submitted with the ppt named AISC1005-Presentation3-Data_Visualization.ipynb

Model Preparation

• We have use 2844 samples for training the linear **regression model** and 948 samples for validating model. For each sample we are providing features that are given below.

Metrics uses to measure Regression model

3. Analysis & Experience

Personal Analysis – Data Preparation

- We have created our own dataset instead of using just toy dataset which
 gives always a high accuracy. By doing so we have learned how web
 scraping concepts have been used for developing dataset, organizing
 dataset and how to extract critical features which takes the model accuracy
 at high level.
- The one thing I have observed that by doing such a project, data preprocessing takes too much time when you deal with the completely unknown data. This is because of you don't know actually what values are stored in each feature columns, how much missing values are existed and so on, so you have to identify missing and unique values are present in each column and then remove unnecessary data values. In our case out of total time taken by the whole project, only 60-70 % taken by the data preparation and preprocessing task.

Personal Analysis – Data Cleaning and Modelling

- After completing this project, I learn lot about data cleaning and modelling.
- We can improve this by using feature Selection, which help us in finding the most relevant feature to the house price.
- To improve accuracy, we can try some more regression techniques such as Support vector regression, Decision trees and Deep learning models.
- Further, we can deploy our project on any free server and make basic
 UI which takes all the parameters from the user and predicts the price of the house.

Personal Analysis – Data Visualization

- As we have created our own toy dataset, after data cleaning process, we analyzed the data and performed data visualization on it.
- We visualized the main information in form of pie charts, boxplot, scatterplot, histogram, etc.
- We found popular insights while performing data visualization on the dataset.
- We compared different features of houses accordingly to obtain accurate results.
- While doing this project, we understood that data visualization can make the audience understand the data in an effective way.
- In short, we cut the noise in our data and use only the useful patterns and values that can impact the business.

Thank You