### Gestion de portefeuille par apprentissage de marché

Quelques notes sur les propriétés algorithmiques et statistiques d'une politique d'investissement obtenue par maximisation d'utilité espérée régularisée

Thierry BAZIER-MATTE

Mémoire présenté en vue de l'obtention du grade

Maître ès sciences

avec spécialisation en

Ingénierie financière

HEC MONTRÉAL Montréal, Canada Été 2017

# Table des matières

| Remerciements 5 |               |                                                       |    |  |  |  |  |
|-----------------|---------------|-------------------------------------------------------|----|--|--|--|--|
| No              | otatio        | n                                                     | 6  |  |  |  |  |
| 1               | Intr          | oduction                                              | 8  |  |  |  |  |
|                 | 1.1           | Avant propos                                          | 8  |  |  |  |  |
|                 | 1.2           | Exposition du problème et hypothèses                  | 9  |  |  |  |  |
|                 | 1.3           | Décision d'investissement et risque de généralisation | 10 |  |  |  |  |
|                 | 1.4           | Espaces de décision et décisions linéaires            | 13 |  |  |  |  |
|                 | 1.5           | Objectifs et contributions                            | 15 |  |  |  |  |
| 2               | Opt           | Optimisation moderne de portefeuille                  |    |  |  |  |  |
|                 | $2.1^{\circ}$ | Approche statistique                                  | 19 |  |  |  |  |
|                 | 2.2           | Approche régularisée                                  | 20 |  |  |  |  |
|                 | 2.3           | Conclusion                                            | 23 |  |  |  |  |
| 3               | Algo          | orithme d'apprentissage                               | 24 |  |  |  |  |
|                 | 3.1           | Formulations primale et duale                         | 24 |  |  |  |  |
|                 | 3.2           | Transformations non linéaires                         | 26 |  |  |  |  |
|                 | 3.3           | Fonctions de noyau                                    | 28 |  |  |  |  |
|                 | 3.4           | Espace de décision vectoriel                          | 28 |  |  |  |  |
|                 | 3.5           | Conclusion                                            | 29 |  |  |  |  |
| 4               | Gar           | anties statistiques                                   | 31 |  |  |  |  |
|                 | 4.1           | Hypothèses et discussion                              | 31 |  |  |  |  |
|                 | 4.2           | Garantie de généralisation                            | 32 |  |  |  |  |
|                 | 4.3           | Bornes de sous optimalité                             | 34 |  |  |  |  |
|                 | 4.4           | Garanties et dimensionalité du problème               | 37 |  |  |  |  |
|                 | 4.5           | Conclusion                                            | 39 |  |  |  |  |
| 5               | Exp           | ériences empiriques                                   | 40 |  |  |  |  |
| •               | 5.1           | Méthodologie                                          | 40 |  |  |  |  |
|                 | 5.2           | n variable, $p$ constant                              | 46 |  |  |  |  |
|                 | 5.3           | n constant, p variable                                | 55 |  |  |  |  |
|                 | 5.4           | n et p variables                                      | 62 |  |  |  |  |
|                 | 5.5           | Conclusion                                            | 68 |  |  |  |  |
| 6               | Con           | clusion                                               | 69 |  |  |  |  |
| Bi              | bliogi        | raphie                                                | 71 |  |  |  |  |
| A               | App           | lication expérimentale                                | 73 |  |  |  |  |
| В               | Dén           | nonstrations                                          | 78 |  |  |  |  |
|                 |               | Lammas                                                | 70 |  |  |  |  |

| C Conjecture sur l'erreur de généralisation |     |                              | 86 |
|---------------------------------------------|-----|------------------------------|----|
|                                             | B.3 | Théorèmes de sous optimalité | 84 |
|                                             | B.2 | Théorèmes de généralisation  | 82 |

# Table des figures

| 1  | Ensemble d'entraînement fictif                                                                     | 11 |
|----|----------------------------------------------------------------------------------------------------|----|
| 2  | Décision "dictionnaire"                                                                            | 14 |
| 3  | Décision linéaire                                                                                  | 16 |
| 4  | Problème XOR                                                                                       | 27 |
| 5  | Solutions quadratique et gaussienne                                                                | 30 |
| 6  | Loi de marché                                                                                      | 43 |
| 7  | Utilité Lipschitz exponentielle (LEU)                                                              | 44 |
| 8  | Fonction LEU et LEU inverse                                                                        | 45 |
| 9  | Quartiles de l'erreur de généralisation                                                            | 48 |
| 10 | Aversion au risque et erreur de généralisation                                                     | 49 |
| 11 | Erreur de généralisation en fonction de $n$                                                        | 50 |
| 12 | Composantes de l'erreur maximale                                                                   | 51 |
| 13 | Erreur de sous optimalité en fonction de $n$ ( $\lambda$ constant)                                 | 53 |
| 14 | Erreur de sous optimalité en fonction de $n$ $(\lambda = \mathcal{O}(n^{-1/4}))$                   | 54 |
| 15 | Erreur de généralisation en fonction de $p$                                                        | 58 |
| 16 | Ajustement des courbes d'erreurs de généralisation                                                 | 59 |
| 17 | Utilité espérée optimale en fonction de $p$                                                        | 60 |
| 18 | Erreur de sous optimalité en fonction de $p \ \dots \dots \dots$                                   | 61 |
| 19 | Progression des trois régimes $p=\mathcal{O}(n^{1/2}), \mathcal{O}(n^{3/4}), \mathcal{O}(n)$       | 62 |
| 20 | Erreur de généralisation – Régimes $p=\mathcal{O}(n^{1/2}), \mathcal{O}(n^{3/4}), \mathcal{O}(n)$  | 65 |
| 21 | Erreur de généralisation – Régime $p=\mathcal{O}(n^{3/2})$                                         | 66 |
| 22 | Erreur de sous optimalité – Régimes $p=\mathcal{O}(n^{1/2}), \mathcal{O}(n^{3/4}), \mathcal{O}(n)$ | 67 |
| 23 | Evolution des variables de marché                                                                  | 73 |
| 24 | Distribution des rendements et de l'utilité                                                        | 75 |
| 25 | Optimisation de $\lambda$                                                                          | 76 |
| 26 | Distribution de l'utilité espérée en et hors échantillon                                           | 77 |

| 27 | Erreur de généralisation – Conjecture | <br>89 |
|----|---------------------------------------|--------|
|    |                                       |        |

### Remerciements

Nunc te, Bacche, canam!

Virgile GÉORGIQUES

Je tiens d'abord à remercier mon directeur Erick Delage et lui exprimer toute ma gratitude. Lorsque j'ai décidé qu'il était temps pour moi de me remettre aux études, j'avais déjà parcouru les professeurs de HEC avec les mots clé machine learning hec et à l'époque c'était sa page personnelle qui arrivait en tête des résultats d'un populaire moteur de recherche. Je n'ai donc pas hésité et dès le début du mois de septembre je l'ai contacté.

J'ai apprécié toute sa rigueur, sa patience, son support financier (merci pour l'invitation au NIPS!), sa vaste expérience mais aussi et surtout son point de vue différent de ce que j'avais pu connaître jusqu'alors : les problèmes convexes, les inégalités, etc. En particulier, la lecture du Convex Optimization, cet excellent livre de Boyd a été une révélation. Écrire cet article pour NIPS a aussi été une expérience des plus enrichissantes. Un jour peut être cet article verra-t-il le jour. En attendant, ce mémoire fera office de résumé de tous les cahiers à spirales que j'ai remplis depuis deux ans.

Maintenant, pour des remerciements plus personnels : d'abord mes parents, Denise et Jean-François. De mon père je tiens son esprit scientifique et généraliste. À ce jour, il demeure un homme dont la culture générale et scientifique ne cessera jamais de m'étonner. De ma mère je tiens le goût de la rigueur mathématique, des problèmes d'esprit et de l'élégance d'un programme bien construit. À tous les deux, je veux leur exprimer mon immense gratitude de m'avoir supporté sans réserve dans mon choix de laisser là "un bon salaire" pour continuer mes études. Véronique et Xavier ont aussi toute mon admiration, ce sont tous deux d'excellents scientifiques destinés, j'en suis certain, à de brillantes carrières.

À Ariadne aussi, je veux lui exprimer une reconnaissance bien particulière de m'avoir encouragé au cours des derniers mois. Il est grand temps d'enfin boire un honnête Medoro en écoutant un film de quatre heures sans être tracassés.

Et finalement à mes amis. Noé bien sûr, nos discussions inébriées sur des napkins au plan B au sujet d'espaces vectoriels, à François, nos discussions inébriées sur le travail, l'argent et la vieillesse. À Manu, nos discussions inébriées de métaphysique. Mais aussi Pat, Max, Charles, Raph, Paradise, Simon, Alex, Imad. Mes amis d'HEC aussi, Edith, Nidhal, JS, Vincent, ces bons vieux 5 à 7.

Merci à tous et maintenant au travail.

# Notation

| Objet                                                                         | Notation                                                                                                                                    |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Constantes du problème                                                        |                                                                                                                                             |  |
| Facteur de régularisation<br>Fonction d'utilité                               | $egin{aligned} \lambda \in \mathscr{R} \ u: oldsymbol{R} 	o \mathscr{R} \end{aligned}$                                                      |  |
| Espaces                                                                       |                                                                                                                                             |  |
| Réels Espace des rendements Espace des variables de marché Espace de décision | $egin{aligned} \mathscr{R} & & & & & & & & & & & & & & & & & & &$                                                                           |  |
| Variables aléatoires et réalisations                                          |                                                                                                                                             |  |
| Variables de marché                                                           | $X \in X$ $x \sim X$                                                                                                                        |  |
| Rendement                                                                     | $R \in \mathbf{R}$ $r \sim R$                                                                                                               |  |
| Loi de marché                                                                 | $(X,R) = M \in \mathbf{M}$<br>$(x,r) \sim M$                                                                                                |  |
| Décisions, transformation $\phi$ ou induite par noyau                         |                                                                                                                                             |  |
| Décision                                                                      | $q: \mathbf{X} \to \mathscr{R}$ $q(x) = \langle q x \rangle$                                                                                |  |
| Transformation non linéaire                                                   | $\phi: \boldsymbol{X} 	o \phi(\boldsymbol{X})$                                                                                              |  |
| Noyau                                                                         | $\kappa: \mathbf{X} \times \mathbf{X} \to \mathcal{R}  \kappa(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle = \langle x_i   x_j \rangle$ |  |

# Notation (2)

| Objet                                 | Notation                                                                                                                                                                                            |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithmes et mesure de performance  |                                                                                                                                                                                                     |
| Ensemble d'entraînement               | $S_n = \{(x_1, r_1), \dots, (x_n, r_n)\}$<br>$S_n \sim M^n$                                                                                                                                         |
| Algoritme d'aprentissage              | $egin{aligned} \mathcal{Q} : oldsymbol{M}^n & ightarrow oldsymbol{Q} \ \mathcal{Q}(\mathcal{S}_n) &= rg \max_{q \in oldsymbol{Q}} \widehat{oldsymbol{EU}}_{\lambda}(\mathcal{S}_n,q) \end{aligned}$ |
| Utilité espérée                       | ${\it EU}(q) = {\it E}u(R\cdot q(X))$                                                                                                                                                               |
| Utilité espérée régularisée           | $EU_{\lambda}(q) = EU(q) - \lambda/2  q  ^2$                                                                                                                                                        |
| Utilité espérée en échantillon        | $\widehat{EU}(S_n, q) = n^{-1} \sum_{i=1}^n u(r_i q(x_i))$                                                                                                                                          |
| Utilité esp. en éch. régularisée      | $\widehat{EU}_{\lambda}(\mathcal{S}_n, q) = \widehat{EU}(\mathcal{S}_n, q) - \lambda/2  q  ^2$                                                                                                      |
| Rendement espéré                      | $EI(q) = E(R \cdot q(X))$                                                                                                                                                                           |
| Rendement espéré en échantillon       | $\widehat{EI}(q) = n^{-1} \sum_{i=1}^{n} r_i  q(x_i)$                                                                                                                                               |
| Erreur de généralisation (utilité)    | $\hat{\zeta}(\mathcal{S}_n) = \widehat{EU}(\mathcal{S}_n, \mathcal{Q}(\mathcal{S}_n)) - EU(\mathcal{Q}(\mathcal{S}_n))$                                                                             |
| Erreur de sous optimalité (utilité)   | $\zeta(\mathcal{S}_n) = \mathbf{E}\mathbf{U}(\mathcal{Q}(\mathcal{S}_n)) - \mathbf{E}\mathbf{U}(q^*)$                                                                                               |
| Équivalent certain en échantillon     | $\widehat{\mathit{CE}}(\mathcal{S}_n, q) = u^{-1} (\widehat{\mathit{EU}}(\mathcal{S}_n, q))$                                                                                                        |
| Équivalent certain hors échantillon   | $\mathbf{CE}(q) = u^{-1} \big( \mathbf{EU}(q) \big)$                                                                                                                                                |
| Erreur de généralisation (eq. cert.)  | $\hat{\zeta}_e(\mathcal{S}_n) = \widehat{\textit{CE}}(\mathcal{S}_n, \mathcal{Q}(\mathcal{S}_n)) - \textit{CE}(\mathcal{Q}(\mathcal{S}_n))$                                                         |
| Erreur de sous optimalité (eq. cert.) | $\zeta_e(\mathcal{S}_n) = \mathbf{CE}(\mathcal{Q}(\mathcal{S}_n)) - \mathbf{CE}(q^*)$                                                                                                               |

# 1 Introduction

For five years, Li's formula, known as a Gaussian copula function, looked like an unambiguously positive breakthrough, a piece of financial technology that allowed hugely complex risks to be modeled with more ease and accuracy than ever before. [...] Then the model fell apart.

Wired Magazine – Recipe for Disaster : The Formula That Killed Wall Street

#### 1.1 Avant propos

Il est maintenant indiscutable que l'intersection des statistiques et de l'informatique joue un rôle fondamental dans la gestion de portefeuille. Ainsi, le *Wall Street Journal*, dans une série consacrée au rôle croissant de l'investissement algorithmique, déclare que

En utilisant des ordinateurs surpuissants pour construire des modèles abscons, ces *traders* quantitatifs sont en mesure d'analyser une quantité de données beaucoup plus vaste que ce qu'un homme ne pourrait jamais assimiler. Ils siphonnent et classent des trillions de gigaoctets de données. Et maintenant, on les entraîne à apprendre de leurs succès et de leurs erreurs. [...] Ces *quants* sont devenus si puissants qu'ils contrôlent maintenant environ un tiers des échanges sur les marchés boursiers américains. <sup>1</sup>

Et pour cause : jamais la puissance de calcul n'a été si impressionnante, ni l'accès à l'information si peu chère. Construire un modèle d'investissement devient presqu'un jeu d'enfant, qu'on peut implémenter à peu de frais. Et puis il n'y a qu'à constater que les plus grands fonds de couverture américains sponsorisent massivement des conférences en apprentissage machine <sup>2</sup>.

Mais alors que chaque fond privé peut y aller de sa propre stratégie, ce ne sont pas là des modèles universels qui garantissent des revenus sans ne prendre aucun risque. Ou si c'est le cas, il y a alors une brèche dans l'hypothèse d'absence d'arbitrage qui devra nécessairement être colmatée par des fonds rivaux. Quoi qu'il en soit, ces *algorithmes d'investissement* peuvent faire des erreurs et sont forcément exposés à toute sorte de risques.

La contribution de ce mémoire est de présenter un *algorithme d'investissement* robuste et souple permettant, non pas de garantir des rendements, mais bien de garantir un intervalle de rendements possibles, tout en tenant compte des préférences de risque d'un investisseur. *Grosso modo* donc, ce mémoire propose une décision d'investissement obtenue par *entraînement* sur des observations du marché qui permet par la suite de

<sup>1.</sup> Traduction de l'auteur. Wall Street Journal, 21 mai 2017. Meet the New Kings of Wall Street - How machines and their masters are rewiring the investment world. Disponible à https://www.wsj.com/articles/the-quants-meet-the-new-kings-of-wall-street-1495389163.

<sup>2.</sup> Par exemple: https://nips.cc/Conferences/2016/Sponsors

suggérer dans quelle proportion un portefeuille devrait être consacré à un certain titre risqué.

Cette section fera office d'introduction aux hypothèses qui seront faites et aux questions qu'on cherchera à résoudre ici. Par la suite, la Section 2 présentera une revue de littérature consacrée à la gestion de portefeuille dans un contexte statistique ou mû par les données (data driven). Puis, la Section 3 présentera en détails l'algorithme permettant de choisir une fonction de décision et les choix qui doivent être posés afin d'obtenir un modèle satisfaisant. La Section 4 enchaînera avec une analyse détaillée des garanties qu'offrent alors une telle fonction de décision. Ces garanties seront finalement éprouvées dans un cadre expérimental à la Section 5. Enfin, la Section 6 sera l'occasion de conclure et d'offrir des idées de travaux supplémentaires permettant d'étoffer le modèle.

# 1.2 Exposition du problème et hypothèses

Ce mémoire vise donc à établir clairement et rigoureusement comment un investisseur averse au risque disposant *d'information complémentaire* au *marché* peut utiliser cette information pour accroître son *utilité espérée*, qu'on peut traduire par son *rendement équivalent certain*.

Nous entendrons ici par marché n'importe quel type d'actif financier ou spéculatif dans lequel un investisseur peut investir une partie de sa fortune dans l'espoir de la voir fructifier au cours d'une période de temps arbitraire. Ainsi, tout au long de l'exposé théorique qui suivra, il peut être pertinent d'avoir en tête les rendements quotidiens issus des grands indices boursiers (par exemple les 500 plus grandes capitalisations américaines). Cependant, le traitement qui sera développé pourrait tout aussi bien s'appliquer à une action cotée en bourse dont on considère les rendements mensuels. Mathématiquement, l'idée de marché peut ainsi être réduite à celle d'un processus aléatoire R(t) décrivant l'évolution du rendement de l'actif en question.

Relativement à l'idée de marché, nous ferons également l'hypothèse que l'environnement a une influence sur les réalisations de ces rendements. Il serait par exemple raisonnable de croire que le cours du pétrole ou le mouvement de certains facteurs économiques puissent affecter les aléas boursiers d'une compagnie aérienne. De la même façon, l'annonce d'un scandale industriel pourrait à son tour avoir des répercussions fâcheuses sur la valeur boursière d'une firme. En outre, il a été montré par Fama et French (voir Fama and French (1996)) que le rendement d'une action pouvait s'expliquer comme une combinaison linéaire de quelques facteurs fondamentaux (la taille de l'entreprise, le risque de marché et le ratio cours/valeur). On peut alors considérer un vecteur aléatoire d'information  $X(t) = (X_1(t), X_2(t), \dots)$  dont chaque composante représente une information particulière qu'on appellera variable de marché. D'un point de vue probabiliste, il est donc naturel de considérer la loi jointe entre les rendements  $\{R(\tau)|\tau < t\}$  d'une part et  $\{X(\tau) \mid \tau < t\}$  l'ensemble des réalisation des évènements antérieurs à t d'autre part. Le processus joint de ces deux évènements sera désormais défini comme la loi de marché, ou simplement le marché et sera noté M(t).

Mais bien qu'un tel modèle permette de représenter de façon très générale l'évolution d'un marché, une hypothèse supplémentaire sera formulée : le caractère *identiquement et indépendamment distribué* (*i.i.d.*) *de la loi de marché*.

C'est une hypothèse contraignante qui évacue complètement la notion de temporalité. Les réalisations antérieures de M n'ont alors plus aucune influence sur ses réalisations futures. Dans un cadre appliqué, il serait toutefois possible de modifier le vecteur aléatoire d'information X afin de lui incorporer, par exemple, les réalisations des  $\tau$  périodes de temps précédentes. En choisissant adéquatement  $\tau$ , un processus saisonnier pourrait donc être adapté pour respecter les hypothèses de stationnarité.

La nature i.i.d. de M implique également l'absence de probabilité de faillite, puisqu'elle exclut d'emblée la présence d'un temps d'absorption. De plus, le marché ne peut pas non plus être conçu comme un environnement adversariel qui réagirait aux décisions de l'investisseur. Ceci vient notamment mettre en cause la théorie des marchés efficients selon laquelle une brèche dans l'absence d'arbitrage serait colmatée par des agents du marché par effet d'autorégulation. Nous aurons toutefois l'occasion de revenir plus en détail sur les liens à faire entre cet exposé et l'efficience des marché.

Formellement, nous supposerons que le vecteur d'information X est formé de p variables aléatoires réelles  $(X_1,\ldots,X_p)$  et est supporté par un domaine  $\mathbf{X}\subseteq \mathscr{R}^p$ . Les réalisations de X seront notées  $x\sim X$ . La variable de rendement aléatoire R sera supportée par  $\mathbf{R}\subseteq \mathscr{R}$  et une réalisation particulière sera notée  $r\sim R$ . La loi de marché sera ainsi supportée par  $\mathbf{M}:=\mathbf{R}\times \mathbf{X}$  et pourra être exprimée par

$$M = (R, X_1, \dots, X_p). \tag{1}$$

On fera également l'hypothèse qu'un investisseur aura accès à un jeu de données  $S_n \sim M^n$  formé de n réalisations de M. Ce jeu de données, aussi appelé ensemble d'entraînement, sera composé d'une matrice d'information  $\Xi \sim X^n$  telle que  $\Xi \in X^n \subseteq \mathscr{R}^{p \times n}$  et d'un vecteur de rendement  $r \sim R^n$  tel que  $r \in R^n \subseteq \mathscr{R}^n$ .

La Figure 1 présente une illustration graphique d'un ensemble d'entraînement fictif qui serait formé de deux variables de marché : le taux de chômage et le prix du pétrole, et comment celles-ci viendraient influencer les rendements d'une compagnie aérienne. On y constate que lorsque ces deux variables sont à la hausse, les rendements de la compagnie chutent, et inversement lorsque les deux variables sont à la baisse. Par contre, dans la situation où l'une des deux variable augmente et que l'autre diminue, le résultat est moins évident.

#### 1.3 Décision d'investissement et risque de généralisation

Selon le modèle ici proposé, un investisseur souhaitant investir dans le marché procéderait de la façon suivante. Dans un premier temps, il prend connaissance des réalisation des diverses variables de marché  $x \sim X$ . À partir de cette information, il décide d'investir une fraction q(x) de sa fortune dans le marché. Puis, le marché annonce un



FIGURE 1 – Ensemble d'entraînement fictif sur deux variables de marché : le taux de chômage et le prix du pétrole. La taille des points est proportionelle à l'intensité des rendements. Cet ensemble est formé des treize observations suivantes :

$$\Xi = \begin{pmatrix} -1.5 & -1.5 \\ -1.0 & -0.5 \\ -0.6 & -1.3 \\ 1.6 & -1.0 \\ -0.8 & 1.0 \\ -1.6 & -0.1 \\ 0.5 & 0.4 \\ 1.1 & 1.7 \\ 1.8 & 1.0 \\ 0.6 & 1.25 \\ 0.2 & -0.8 \\ 0.9 & -1.4 \\ -1.4 & 1.5 \end{pmatrix}, \quad r = \begin{pmatrix} 2. \\ 1. \\ 1.3 \\ 0.3 \\ 0.2 \\ 1. \\ -1. \\ -1.3 \\ -0.8 \\ -2. \\ -0.2 \\ -0.25 \\ -0.5 \end{pmatrix}$$

rendement  $r \sim R$ . L'investisseur a ainsi réalisé un rendement r q(x). A priori, l'investisseur peut donc espérer réaliser un rendement égal à  $\mathbf{E}_M(R \cdot q(X))$ .

Le problème qui se pose d'emblée est alors de déterminer comment choisir cette *fonction de décision*  $q: X \to \mathcal{R}$ .

Avant d'aborder ce problème, il faut comprendre que l'investisseur peut disposer d'une aversion au risque qui lui fait préférer des rendements plus modestes mais sûrs à des rendements en moyenne plus élevés, mais affichant un étalement plus important. Suivant von Neumann and Morgenstern (1944), cette préférence sera modélisée à l'aide d'une fonction d'utilité  $u: \mathbf{R} \to \mathbf{U}$  dont le rôle est d'attribuer une valeur numérique exprimant la satisfaction d'un investisseur à l'égard d'un certain rendement  $r \in \mathbf{R}$ .

En elle même, une utilité de u(r) n'a aucune signification et c'est à l'investisseur de déterminer une échelle exprimée en utils. Par exemple, s'il est averse au risque, il pourrait accorder à un rendement de -2% une satisfaction de -10 utils et à un rendement de 10% une satisfaction que de 2 utils. De façon absolument équivalente, son utilité pourrait être calibrée de façon à avoir u(-2%) = -1 et u(10%) = 0.2. L'utilité est donc une notion foncièrement affine et adimensionelle (deux fonctions d'utilité u et u' sont équivalentes si u'(r) = ku(r) + b pour deux constante k > 0 et b).

Pourvu d'une telle fonction, on supposera alors que l'objectif de l'investisseur sera de maximiser son utilité espérée. Autrement dit, sa fonction de décision q devrait être choisie de façon à

maximiser 
$$EU(q) := E_M u(R \cdot q(X)).$$
 (2)

L'investisseur peut alors espérer réaliser un rendement équivalent ou équivalent certain de  $u^{-1}(EU(q))$ , où  $u^{-1}: U \to R$  est la fonction d'utilité inverse  $^3$ .

Typiquement, établir la fonction d'utilité d'un investisseur demande toujours beaucoup de doigté et peut également exiger une connaissance approfondie des moments de la loi de R. De plus, nous ferons désormais l'hypothèse généralement acceptée que l'investisseur est pourvu d'une utilité concave et monotone sur R. La Section 2 présentera comment ces hypothèses s'arriment avec certaines théories classiques d'optimisation de portefeuille. La Section 4 formalisera l'hypothèse de concavité sur u.

Par contre, étant donné que la forme précise de M n'est pas connue, le problème (2) ne peut pas être résolu. Il peut néanmoins être approximé en utilisant un ensemble d'entraînement  $\mathcal{S}_n = \{(r_1, x_1), \dots, (r_n, x_n)\}$  constitué de n observations du marché. L'investisseur cherchera alors à maximiser son utilité espérée en échantillon :

maximiser 
$$\widehat{EU}(q) := n^{-1} \sum_{i=1}^{n} u(r_i q(x_i)).$$
 (3)

La justification théorique d'une telle approximation est la suivante. En notant  $q^* =$ 

<sup>3.</sup> On suppose ici que u est inversible. C'est une hypothèse plutôt forte puisqu'elle exclut des formes courantes d'utilité, telle l'utilité quadratique de Markowitz.

arg max EU(q) la décision optimale hors échantillon et  $\hat{q} = \arg\max \widehat{EU}(q)$  la décision optimale en échantillon, l'investisseur s'assure alors que  $\hat{q} \leadsto q^*$ , à mesure que l'investisseur recueille de nouvelles observations sur le marché (voir Shapiro et al. (2009) pour un traitement rigoureux de l'optimisation stochastique).

L'ennui avec la décision optimale en échantillon, c'est qu'elle souffre d'un important risque de généralisation  $\hat{\zeta}$  défini par

$$\hat{\zeta} := \widehat{EU}(\hat{q}) - EU(\hat{q}). \tag{4}$$

Autrement dit,  $\hat{q}$  peut mener à une utilité espérée hors échantillon beaucoup plus faible qu'anticipé par l'utilité moyenne en échantillon.

Considérons par exemple la situation illustrée à la Figure 2. Il suffirait simplement de définir une fonction  $q: X \to \mathcal{R}$  préconisant un investissement positif aux réalisations déjà observées et dont le rendement a été positif et un investissement négatif dans le cas contraire. Autrement dit, avec  $\alpha>0$ , cette décision serait construite de la façon suivante :

$$q(x) = \begin{cases} \alpha & \exists x_i \in \mathcal{S}_n : [x_i = x \land r_i \ge 0] \\ -\alpha & \exists x_i \in \mathcal{S}_n : [x_i = x \land r_i < 0] \\ 0 & x \notin \mathcal{S}_n \end{cases}$$
 (5)

Or, si la fonction utilité de l'investisseur n'est pas bornée, une telle fonction de décision aura nécessairement une utilité moyenne en échantillon arbitrairement élevée à mesure que  $\alpha$  est grand. Par contre, si  $\boldsymbol{X}$  le support de X est dense dans  $\mathscr{R}^p$ , alors l'utilité hors échantillon sera simplement  $\boldsymbol{EU}(q) = u(0)$ . Le risque de généralisation  $\hat{\zeta}$  de q est ainsi arbitrairement grand.

On peut alors faire appel au principe du *rasoir d'Occam* pour éviter que des fonctions de décision comme celle-ci ne soient favorisées. *Ceteris paribus*, ce principe suggère en effet qu'une hypothèse trop complexe devrait être découragée au profit d'une hypothèse plus simple (voir Vapnik (1998) pour une discussion approfondie). Intuitivement, si  $\mathscr{C}(q) \in \mathscr{R}$  mesure la *complexité* d'une fonction de décision q, on pourrait *régulariser* l'objectif pour que l'investisseur cherche plutôt à

$$\text{maximiser} \quad \widehat{EU}_{\lambda}(q) \coloneqq \widehat{EU}(q) - \lambda \mathscr{C}(q). \tag{6}$$

Différentes valeurs de  $\lambda$  favorisent alors des solutions plus ou moins complexes. En utilisant une technique de *validation croisée* (voir par exemple Bishop (2006)), il y a alors moyen de déterminer le niveau de complexité permettant de minimiser le risque de généralisation.

#### 1.4 Espaces de décision et décisions linéaires

Ce mémoire étudiera les décisions d'investissement obtenues à partir d'un produit scalaire entre un vecteur de décision q et une observation x; le scalaire d'investissement



FIGURE 2 – Fonction de décision "dictionnaire". À tout rendement positif on associe un investissement positif  $q(x)=+\alpha$  et vice versa. On obtient ainsi une utilité espérée en échantillon arbitrairement élevée. Par contre une telle fonction offre un énorme risque de généralisation puisqu'aucune décision n'est prescrite à l'extérieur de l'ensemble  $\cup_{i=1}^n \{x_i\}$  des points déjà observés. Si  $\boldsymbol{X}$  est dense dans  $\mathscr{R}^2$ , alors q(X)=0 presque sûrement.

est alors donné par  $q^Tx$ . Le problème de maximisation d'utilité espérée s'exprime alors comme

$$\underset{q \in \mathscr{R}^p}{\text{maximiser}} \quad n^{-1} \sum_{i=1}^n u(r_i \, q^T x_i) - \frac{\lambda}{2} \|q\|^2, \tag{7}$$

c'est-à-dire que la *norme* du vecteur de décision q représente la complexité qu'on lui associe. On comprend alors le rôle que joue alors le facteur de régularisation  $\lambda$ . Plus ce facteur est faible et plus la norme de q peut être élevée. Or, comme le scalaire d'investissement  $q^Tx = \|q\| \|x\| \cos \theta$  est directement proportionnel à cette norme, un facteur de régularisation faible entraînera intuitivement des décisions d'investissement plus importantes.

Un tel espace de décision est cependant inutilement rigide puisque toute solution ne peut qu'être linéaire en X, *i.e.* q(0) = 0. Cette restriction peut être facilement levée en considérant plutôt des décisions *affines*; il suffit pour ce faire d'ajouter un terme de "biais", *i.e.* de déplacement constant au problème d'optimisation :

$$\underset{b \in \mathcal{R}, q \in \mathcal{R}^p}{\text{maximiser}} \quad n^{-1} \sum_{i=1}^n u(r_i \left( b + q^T x_i \right) \right) - \frac{\lambda}{2} \|q\|^2. \tag{8}$$

On peut aussi tout simplement ajouter une nouvelle variable de marché  $X_{p+1} \sim \delta(1)$  (loi de Dirac constante à 1), qui permet d'optimiser q directement sur un espace à p+1 dimension.

Finalement, on remarquera que si la fonction u est concave, la présence du terme de régularisation quadratique fait en sorte que la solution est unique. De plus, le problème est alors convexe et peut ainsi être résolu numériquement par un solveur standard (par exemple Grant and Boyd (2014, 2008)).

À des fins d'illustration, la Figure 3 présente trois courbes d'investissement (-100%, 0%, +100%) de la solution optimale  $\hat{q}$  obtenues à partir de l'ensemble d'entraînement de la Figure 1. La géométrie linéaire de  $\hat{q}$  entraîne que certaines observations dont le rendement est négatif se voient attribuer un investissement positif. On verra à la Section 3 comment régler ce problème.

# 1.5 Objectifs et contributions

Ce mémoire cherche donc à dégager les principales caractéristiques de cet algorithme d'apprentissage appliqué à la gestion de portefeuille. Les contributions apportées sont nombreuses.

D'abord, et c'est son but, cette méthode est parfaitement adaptée pour tenir compte des informations de marché dont la valeur ajoutée est *a priori* inconnue. Une analyse de covariance entre ces variables d'information et les réalisations du rendement permettrait certainement d'en avoir une certaine idée, mais une telle analyse ne tiendrait pas compte de l'utilité de l'investisseur et ne serait pas régularisée. De plus une simple analyse en covariance présuppose une dépendance *linéaire* entre les rendements et les



FIGURE 3 – Trois courbes d'investissement (-100%, 0%, +100%) de la solution linéaire optimale  $\hat{q}$  obtenue avec une fonction d'utilité  $u(r)=-e^{-r}+1$  et un facteur de régularisation  $\lambda=0.3$ . La géométrie rigide imposée par la forme linéaire de  $\hat{q}$  attribue à certaines observations dont le rendement est négatif un investissement positif.

variables de marché. La méthode par noyaux proposée à la Section 3 offre au contraire une richesse supplémentaire au modèle permettant d'exprimer des situations non linéaires.

Mais c'est aussi le faible nombre d'hypothèses sur la forme de loi de marché (voir Section 4) qui permet à ce modèle de s'éloigner radicalement de l'approche couramment employée en finance. Par exemple, dans le domaine de la tarification d'instruments financiers, les rendements sont souvent modélisés selon une distribution particulière : on peut penser par exemple à l'exemple classique du modèle Black Scholes où le rendement est distribué selon une simple loi normale (voir Shreve (2004)), mais également à des modèles plus sophistiqués qui incluent des processus à saut (voir par exemple Madan et al. (1998)).

De plus, ce modèle est d'une grande flexibilité puisqu'il accepte toute forme d'utilité monotone concave et fournit à l'investisseur des garanties probabilistes exprimées en rendement équivalent sur les erreurs de généralisation et de sous optimalité encourues. En fait, non seulement ces erreurs sont connues, mais leurs ordres asymptotiques de convergence le sont eux aussi. Ainsi, un investisseur est en mesure de prédire de combien peut décroître ou augmenter l'erreur maximale hors échantillon lorsque de nouveaux échantillons ou de nouvelles variables de marché sont ajoutés pour la prise de décision.

Notons par ailleurs que ce mémoire a aussi le mérite de s'inscrire dans la recherche en apprentissage statistique en explorant de nouvelles formes de fonction de perte. Deux classes de problèmes sont traditionnellement considérées : la régression et la classification. Notre problème emprunte des éléments propres à ces deux classes de problèmes. D'abord avec la régression puisqu'on cherche dans les deux cas à obtenir une quantité scalaire. Notre problème en diffère toutefois puisque, contrairement à la régression où on cherche à *minimiser* la distance entre un estimateur et les données du problème, l'algorithme d'investissement proposé ici cherche plutôt à *amplifier* (positivement ou négativement selon le cas) les valeurs (les rendements) du problème.

On se rapproche également du problème de classification puisque son objectif (non régularisé) est de la forme

$$\underset{q}{\text{minimiser}} \quad n^{-1} \sum_{i=1}^{n} \ell(y_i \, q^T x_i) \tag{9}$$

où  $y_i \in \{-1, +1\}$  est la cible du problème et  $\ell: \mathscr{R} \to \mathscr{R}$  mesure l'adéquation entre  $y_i$  et  $q^Tx_i$ . Typiquement  $\ell(z)$  est nul lorsque  $z \geq 0$ , *i.e.* lorsque  $y_i$  et  $q^Tx_i$  sont du même signe, et est positif (constant ou croissant) dans la région où z < 0, *i.e.* lorsque  $y_i$  et  $q^Tx_i$  sont de signes opposés. En fait, la théorie des machines à vecteurs de support est un cas particulier de notre problème d'optimisation d'utilité lorsqu'on ne considère que le signe des rendements et qu'on emploie une fonction d'utilité u nulle sur l'intervalle  $[1,\infty]$ . Voir Mohri et al. (2012) pour une introduction générale aux problèmes de régression et de classification.

Finalement, ce travail apporte également une modeste contribution au domaine des

statistiques multivariées puisqu'une façon de concevoir le problème de maximisation d'utilité est comme celui des périls inhérents à l'estimation d'un vecteur de covariance non centrée entre une variable aléatoire scalaire et un vecteur aléatoire. En effet, dans le cas limite où l'utilité est neutre au risque, i.e. u(x) = x, le problème de maximisation d'utilité revient à

$$\underset{q}{\text{maximiser}} \quad E(R \, q^T X) - \frac{\lambda}{2} \|q\|^2, \tag{10}$$

dont la solution est donnée par  $q=\lambda^{-1} E(RX)$ , *i.e.* la covariance non centrée entre R et X. Ainsi, tous les résultats dérivés dans ce travail s'appliquent aussi à ce problème d'estimation statistique.

# 2 Optimisation moderne de portefeuille

Je connais quelques hommes qui lisent avec le profit maximum, cent pages de mathématiques, de philosophie, d'histoire ou d'archéologie en vingt minutes.

> Louis Pauwels et Jacques Bergier LE MATIN DES MAGICIENS

L'objet de cette section est de présenter une brève introduction à quelques textes fondamentaux à l'intersection des statistiques et de la gestion financière de portefeuille.

# 2.1 Approche statistique

Une revue de littérature sur la théorie du portefeuille serait fondamentalement incomplète sans l'article fondateur de Markowitz, publié en 1952 Markowitz (1952). Le cadre théorique développé par Markowitz peut être considéré comme un cas particulier de notre algorithme, pour autant que l'on considère un portefeuille à un seul actif.

Soit un portefeuille à k actifs d'espérance de rendement  $\mu \in \mathscr{R}^k$  et de covariance  $\Sigma \in \mathscr{R}^{k \times k}$ . Si  $q \in \mathscr{R}^k$  représente la répartition du portefeuille à optimiser, alors un investisseur markowitzien souhaite

$$\underset{q}{\text{maximiser}} \quad \mu^T q - \gamma \, q^T \Sigma q. \tag{11}$$

Littéralement, il cherche à maximiser le rendement espéré du portefeuille pondéré (premier terme) tout en minimisant, pour un certain niveau de risque  $\gamma>0$ , sa covariance totale. En ne considérant qu'un seul actif dont la variance de rendement est notée  $\sigma^2$ , le problème devient alors

$$\underset{q}{\text{maximiser}} \quad \mu^T q - \gamma \, \sigma^2 q^2. \tag{12}$$

En recalibrant le terme de régularisation pour tenir compte de la variance  $\sigma^2$ , ce problème devient un cas particulier du problème exposé dans ce mémoire (utilité risque neutre, décision linéaire et une seule variable de marché constante à 1).

Mais le problème de Markowitz à un actif peut aussi être considéré comme une maximisation d'utilité sans régularisation. En effet, en définissant

$$u(r) = r - \frac{\gamma}{\sigma^2 + \mu^2} \sigma^2 r^2,\tag{13}$$

on obtient

$$\mathbf{E}\mathbf{U}(q\,R) = q\,\mathbf{E}\,R - \frac{\gamma}{\sigma^2 + \mu^2}\sigma^2 q^2\,\mathbf{E}\,R^2,\tag{14}$$

et donc, puisque  $\sigma^2 + \mu^2 = \boldsymbol{E} R^2$ , le problème de Markowitz s'exprime aussi comme

un problème d'utilité espérée :

$$\underset{q}{\text{maximiser}} \quad EU(qR). \tag{15}$$

Par contre, les garanties sur le rendement équivalent hors échantillon, qu'on développera à la Section 4, ne s'appliquent qu'à des fonctions d'utilité monotones. Or, comme l'utilité de Markowitz est quadratique, elle ne peut donc pas bénificer des mêmes garanties, quand bien même on la régulariserait avec un terme  $\lambda ||q||^2$ .

Nous suggérons au lecteur intéressé par l'équivalence des diverses formulations d'optimisation de portefeuille dans un univers de Markowitz Bodnar et al. (2013) et Markowitz (2014), tous deux publiés à l'occasion du soixantième anniversaire de Markowitz (1952).

L'article Brandt et al. (2009) se rapproche d'une des contributions de ce mémoire puisqu'il considère l'optimisation d'un portefeuille à k actifs disposant de p variables de marché. Avec  $X_t \in \mathscr{R}^{k \times p}$  une matrice aléatoire représentant la réalisation au temps tdes diverses variables de marché, la composition  $w_t \in \mathscr{R}^k$  du portefeuille sera donnée par

$$w_t = \bar{w}_t + X_t q. ag{16}$$

La décision  $q \in \mathcal{R}^p$  agit donc linéairement sur les variables de marché et globalement sur tous les actifs. Le terme de biais  $\bar{w}_t$  représente dans l'article original une composition de référence, par exemple un index lorsqu'il est question de gestion active de fonds. L'objectif de l'investisseur sera alors de

maximiser 
$$\boldsymbol{E}_t u(\boldsymbol{w}_t^T \boldsymbol{r}_t),$$
 (17)

autrement dit de choisir une décision q permettant de

$$\underset{q \in \mathscr{R}^p}{\text{maximiser}} \quad \boldsymbol{E}_t \, u(\bar{\boldsymbol{w}}_t^T \boldsymbol{r}_t + \boldsymbol{r}_t^T \boldsymbol{X}_t q). \tag{18}$$

On obtient donc un objectif très proche de ce qui est proposé dans ce mémoire. Cependant, l'absence de régularisation dans le vecteur de décision ne permet pas de fournir à l'investisseur des garanties sur la performance du portefeuille. Pire, sous certaines formes d'utilité (par exemple risque neutre), il est évident que la solution de l'objectif peut avoir une amplitude non bornée!

Néanmoins, une telle approche demeure simple à implémenter, laisse une grande liberté dans la forme paramétrique de l'utilité et évite d'avoir à calculer les deux premiers moments statistiques d'un univers à k actifs.

#### 2.2 Approche régularisée

D'une certaine façon, Markowitz (1952) et Brandt et al. (2009) approchent le problème de gestion de portefeuille un peu trop brusquement en ne laissant pas suffisamment de

place aux garanties statistiques. Autrement dit, ils présentent tous un risque de généralisation élevé. La question est particulièrement bien documentée dans le cas du portefeuille de Markowitz, voir par exemple Michaud (1989). Cependant, à l'instar de la méthode proposée par ce mémoire, d'autres travaux ont cherché à étudier l'importance de la régularisation des décisions dans la gestion de portefeuille.

Par exemple Olivares-Nadal and DeMiguel (2015) étudie l'idée selon laquelle les coûts de transaction inhérents à la gestion de portefeuille peuvent être modélisés comme une régularisation dans l'objectif de maximisation de rendement – minimisation de variance. Le problème de Markowitz (11) devient alors

maximiser 
$$\mu^T q - \gamma q^T \Sigma q - \kappa \|\Lambda(q - q_0)\|_p^p$$
, (19)

le troisième terme représentant les coûts de transaction comme la p-norme du rebalancement du portefeuille linéarisé par un opérateur symétrique  $\Lambda \in \mathscr{R}^{k \times k}$  et paramétré par un scalaire  $\kappa$ . Bien que la régularisation soit ici appliquée au vecteur de poids et non à une décision linéaire sur des observations, les auteurs parviennent empiriquement à la même conclusion, c'est-à-dire que les résultats hors échantillons sont mieux contrôlés. Intuitivement, un tel résultat s'explique par le fait qu'un gestionnaire de portefeuille soumis à des contraintes de coûts de transaction évitera une politique d'investissement trop ambitieuse.

Cependant, l'argument demeure empirique et ne bénéficie donc pas comme ici de véritables garanties théoriques sur les performances hors échantillon. En outre, le modèle suggéré reste essentiellement markowitzien et se limite donc à maximiser une utilité quadratique, alors que notre modèle permet d'optimiser sur une fonction d'utilité de forme arbitraire.

Plus récemment, Ban et al. (2016) explore l'importance de la régularisation dans une gestion de portefeuille où le risque est représenté par une fonction  $\mathcal{R}: \mathscr{R}^k \to \mathscr{R}$  agissant sur le vecteur de poids  $q \in \mathscr{R}^k$ . Comment définir ce risque est laissé à la discrétion de l'investisseur, mais pourrait être représenté par exemple par  $\mathcal{R}(q) = q^T \Sigma q$  la variance totale du portefeuille ou par sa valeur à risque conditionnelle  $\mathcal{R}(q) = \mathrm{CVar}(q)$ . L'argument offert est essentiellement le même que celui présenté à la section 1 : si on sait que le problème empirique

$$\underset{q}{\text{maximiser}} \quad \hat{\mu}^T q - \lambda_0 \widehat{\mathcal{R}}(q) \tag{20}$$

converge asymptotiquement vers la solution optimale régularisée, l'absence de régularisation implique l'absence de garantie sur la qualité des résultats lorsque l'optimisation a lieu sur un nombre de points finis. La régularisation est alors exprimée comme la variance empirique du risque, i.e. l'objectif devient

$$\underset{q}{\text{maximiser}} \quad \hat{\mu}^T q - \lambda_0 \widehat{\mathcal{R}}(q) - \lambda_1 \operatorname{\textit{Var}}(\widehat{\mathcal{R}}(q)). \tag{21}$$

<sup>4.</sup> La valeur à risque conditionnelle paramétrée par  $\beta \in (0,1)$  d'une variable aléatoire R (en l'occurrence le rendement pondéré par q) est une mesure de l'étalement dans les régions défavorables à l'investisseur et est donné par  $E(R \mid R \leq \beta^e$  quantile de R).

Dans ces conditions, les auteurs démontrent que le risque encouru par la décision empirique régularisée  $\hat{q}$  converge elle aussi vers le risque optimal. Cependant, aucune borne finie n'est donnée, contrairement à ce qui est proposé dans ce mémoire.

Plus près de l'objectif de ce mémoire, Rudin and Vahn (2014) a le mérite d'appliquer plusieurs théorèmes issus de l'apprentissage statistique dans un contexte de gestion. L'idée est en fait de coupler le problème classique du vendeur de journaux  $^5$  à une situation ou la décision est prise à partir d'un grand nombre de variables  $X \in \mathcal{R}^p$  liées au problème. Sous un noyau linéaire, l'objectif est alors de déterminer q de façon à

minimiser 
$$\mathbf{E} c(q^T X, D)$$
. (22)

où  $c: \mathscr{R} \times \mathbf{D} \to \mathscr{R}$  est la fonction du coût correspondant à l'achat de  $q^Tx$  journaux si une demande aléatoire  $D \in \mathbf{D} \subseteq \mathscr{R}$  a lieu. La convexité de c permet alors d'obtenir des garanties hors échantillon lorsqu'un terme de régularisation quadratique est ajouté à l'objectif :

minimiser 
$$\mathbf{E} c(q^T X, D) + \lambda ||q||^2$$
. (23)

De plus, ce papier cherche également à établir le rôle de la dimension p de X dans la qualité des résultats. Ainsi, à bien des égards, son objectif est très semblable au nôtre.

Tous les travaux présentés jusqu'à présent font l'hypothèse que les variables aléatoires d'intérêt (rendement et variables de marché) sont stationnaires dans le temps. À l'inverse, Cover (1991) considère un univers ou les rendements sont distribués selon un processus arbitraire et possiblement adversariel. L'idée est alors de minimiser le regret encouru par une décision scalaire d'investissement  $q_t \in \mathcal{R}$ , où le regret est calculé comme étant la fortune finale obtenue en appliquant une décision  $q_t$  par rapport à la fortune finale qui aurait été obtenue en appliquant une politique optimale constante  $q^*$ . Autrement dit,

$$\operatorname{Regret}(T) \coloneqq \max_{q^*} \sum_{t=1}^{T} \log(q^* r_t) - \sum_{t=1}^{T} \log(q_t r_t). \tag{24}$$

En choisissant  $q_t$  à partir d'une descente de gradient (voir par exemple Hazan (2015) pour un contexte plus général d'apprentissage en ligne) on peut alors garantir un regret dont la progression est de  $\mathcal{O}(\sqrt{T})$ . Un tel algorithme induisant un regret sous linéaire, *i.e.* dominé par  $\mathcal{O}(T)$ , est appelé portefeuille universel.

<sup>5.</sup> Le problème du vendeur de journaux (ou newsvendor problem) cherche à minimiser les coûts de gestion d'inventaire  $c(p,D)=\alpha_1(D-p)^++\alpha_2(p-D)^+$  où p est la quantité de journaux à commander,  $D\in \mathscr{R}$  la demande aléatoire et  $\alpha_1,\alpha_2\in \mathscr{R}_+$  sont respectivement les coûts liés à la rupture de stock et au maintien des invendus. Sous sa forme classique, le problème revient aussi à une estimation de quantile. Voir par exemple Shapiro et al. (2009) pour une introduction au problème du vendeur de journaux dans un contexte d'optimisation stochastique.

### 2.3 Conclusion

En conclusion, la nature générale de notre modèle (impliquée par la forme arbitraire de la fonction d'utilité) permet donc de le positionner comme une version flexible des travaux présentés ici. Plusieurs avantages sont ainsi regroupés : le terme de risque arbitraire, la stabilité des résultats consolidée par la présence de régularisation et l'admission de variables de marché quelconques. Cependant, notre algorithme a le désavantage de ne considérer un portefeuille qu'à un seul actif, contrairement à ce qui ce fait généralement en gestion classique de portefeuille.

# 3 Algorithme d'apprentissage

The word "algorithm" itself is quite interesting; at first glance it may look as though someone intended to write "logarithm" but jumbled up the first four letters.

Donald Knuth

THE ART OF COMPUTER PROGRAMMING, VOLUME I

Cette section sera l'occasion d'étudier l'algorithme  $Q:M^n\to Q$  permettant d'obtenir une politique d'investissement empirique  $\hat{q}$  à partir d'un ensemble d'entraînement  $\mathcal{S}_n=\{(r_1,x_1),\ldots,(r_n,x_n)\}$  échantilloné de la loi de marché M.

Les formulations primale et duale seront d'abord présentées dans le cas où l'espace des variables de marché X ne subit aucune transformation. Ces deux formulations seront ensuite généralisées au cas non linéaire obtenu par application  $x\mapsto \phi(x)$ . Finalement l'"astuce du noyau", qui permet de représenter des situations complexes où  $\phi(x)$  est possiblement de dimension infinie, sera introduite.

#### 3.1 Formulations primale et duale

Tel que discuté en introduction, les décisions d'investissement considérées dans ce mémoire seront données par produit scalaire. Le cas le plus simple pour un espace de décision est alors celui où l'espace  $\boldsymbol{X}$  des variables de marché ne subit aucune transformation. L'espace  $\boldsymbol{Q}$  correspond  $^{6\,7}$  alors à  $\boldsymbol{X}$  et le scalaire de décision q(x) est obtenu par produit scalaire  $q^Tx$ . On obtient donc ici le problème sous la forme primale :

$$\begin{array}{|c|c|c|c|c|c|}
\hline
\text{maximiser} & n^{-1} \sum_{i=1}^{n} u(r_i \, q^T x_i) - \frac{\lambda}{2} \|q\|^2
\end{array} \tag{25}$$

Formulation primale I

Par la théorie de l'optimisation convexe (voir par exemple le Lemme 6 de Nesterov (2009)) on sait qu'une solution  $\hat{q}$  existe et qu'elle est unique. En supposant que  $p = \dim X$ , on peut alors exprimer  $\hat{q}$  comme une combinaison de p coordonnées.

Cependant,  $\hat{q}$  peut aussi être exprimé comme une combinaison linéaires des n observations  $\{x_1,\ldots,x_n\}$ . Autrement dit, il existe un vecteur  $\hat{\alpha}\in\mathscr{R}^n$  tel que  $\hat{q}=\Xi^T\hat{\alpha}$ , où  $\Xi\in\mathscr{R}^{n\times p}$  est la matrice des observations.

<sup>6.</sup> En fait, pour être exact,  $q: X \to \mathscr{R}$  étant une fonction, il est plus exact de faire correspondre Q à l'espace dual  $X^*$ . Mais par le théorème de Riez, à tout vecteur  $v \in V$  d'un espace vectoriel, il existe un unique vecteur dual  $v^* \in V^*$  (noté  $v^T$  en dimension finie). On peut donc se contenter de faire correspondre Q à X.

<sup>7.</sup> Ici aussi on fait une approximation : Q ne correspond pas nécessairement à X, mais bien à  $\mathcal{R}^p$  où  $p = \dim X$ . En effet, X représente le support du vecteur aléatoire de marché et est possiblement borné, alors qu'on ne veut pas imposer une telle restriction à Q. Cependant la notation demeure plus claire ainsi.

Il suffit en effet de remarquer que l'espace Q = X peut être décomposé comme la somme directe du sous-espace vectoriel  $\hat{X}$  engendré par  $\Xi^T$  et son complément orthogonal  $\hat{X}^{\perp}$ , *i.e.*  $Q = \hat{X} \oplus \hat{X}^{\perp}$ . Ainsi, tout vecteur de décision  $q \in Q$  s'exprime comme la somme de  $\hat{x} \in \hat{X}$  et  $\hat{x}^{\perp} \in \hat{X}^{\perp}$ , deux vecteurs orthogonaux (voir les appendices de Boyd and Vandenberghe (2004) ou Mohri et al. (2012)). La fonction objectif  $EU_{\lambda}$  évaluée au point  $q = \hat{x} + \hat{x}^{\perp}$  choisi arbitrairement se simplifie alors ainsi:

$$EU_{\lambda}(q) = EU_{\lambda}(\hat{x} + \hat{x}^{\perp}) \tag{26}$$

$$= n^{-1} \sum_{i=1}^{n} u(r_i (\hat{x} + \hat{x}^{\perp})^T x_i) - \frac{\lambda}{2} ||\hat{x} + \hat{x}^{\perp}||^2$$
 (27)

$$\leq n^{-1} \sum_{i=1}^{n} u(r_i \,\hat{x}^T x_i) - \frac{\lambda}{2} \|\hat{x}\|^2 \tag{28}$$

$$= EU_{\lambda}(\hat{x}), \tag{29}$$

puisque, par définition,  $(\hat{x}^{\perp})^T x_i = 0$  pour toute observation  $x_i$  et que d'autre part  $\|\hat{x}\|^2 \leq \|\hat{x}\|^2 + \|\hat{x}^{\perp}\|^2 = \|q\|^2$ . Ainsi, toute solution  $\hat{q}$  repose bien dans l'espace colonne de  $\Xi^T$ .

Cette observation (qui correspond en fait au célèbre théorème de la représentation : voir Scholkopf and Smola (2001) pour un traitement rigoureux de l'apprentissage par noyau) peut se révéler très utile car elle permet de changer le domaine d'optimisation de X à  $\mathcal{R}^n$  par l'identité  $\hat{q} = \Xi^T \hat{\alpha}$ . Autrement dit, le problème d'optimisation devient

$$\underset{\alpha \in \mathcal{R}^n}{\text{maximiser}} \quad n^{-1} \sum_{i=1}^n u(r_i \, \alpha^T \Xi x_i) - \frac{\lambda}{2} \alpha^T \Xi \Xi^T \alpha. \tag{30}$$

On peut simplifier cette expression en posant  $K \coloneqq \Xi\Xi^T \in \mathscr{R}^{n \times n}$ :

$$\underset{\alpha \in \mathcal{R}^n}{\text{maximiser}} \quad n^{-1} \sum_{i=1}^n u(r_i K_i \alpha) - \frac{\lambda}{2} \alpha^T K \alpha,$$
 (31)

Formulation duale I

où  $\sum_{j=1}^{n} x_{j}^{T} x_{i} = K_{i} \in \mathscr{R}^{n}$  représente la  $i^{e}$  colonne (ou rangée car K est alors symétrique) de K. En fait K correspond à la *matrice gramienne*, *i.e.* la matrice des produits scalaires de toutes les observations  $x_{i}$ .

On peut par ailleurs remarquer que ce résultat était déjà annoncé par le cas spécial où l'utilité de l'investisseur est risque neutre. On a souligné en introduction que dans un tel cas, la solution optimale pouvait effectivement s'exprimer comme une moyenne pondérée des n observations (voir aussi le Lemme 1 en Appendice B.1):

$$\hat{q} = \frac{1}{n\lambda} \sum_{i=1}^{n} r_i x_i \tag{32}$$

et on obtient donc  $\hat{\alpha} = (n\lambda)^{-1}r$ .

#### 3.2 Transformations non linéaires

Le cas  ${m Q}={m X}$  est cependant trop simple pour rendre compte de certaines géométries de problème. En fait, certaines géométries du problème peuvent donner lieu à des situations où aucune solution n'est vraiment satisfaisante. Par exemple, le panneau a) de la Figure 4 présenterait à l'investisseur un dilemme de taille puisqu'aucune fonction de décision affine ne permet d'attribuer un investissement positif aux rendements positifs ou un investissement négatif aux rendements négatifs. Il s'agit du problème XOR bien connu en apprentissage machine.

Il est alors naturel de définir une transformation non linéaire de l'espace X par une fonction  $\phi: X \to \phi(X)$ . Par exemple, si  $X \in \mathcal{R}$ , *i.e.* une seule variable de marché n'est considérée, alors on peut chercher une solution polynômiale en posant la transformation suivante :

$$\phi: x \mapsto \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^k \end{pmatrix}. \tag{33}$$

Cette transformation se généralise en plusieurs dimensions en considérant aussi les termes croisés.

En notant  $\langle \cdot, \cdot \rangle$  le produit scalaire de l'espace  $\phi(X)$ , le problème consiste alors à trouver un vecteur optimal  $q \in Q = \phi(X)$  de façon à

$$\operatorname{maximiser}_{q \in \phi(\boldsymbol{X})} \quad n^{-1} \sum_{i=1}^{n} u(r_i \langle q, \phi(x_i) \rangle) - \frac{\lambda}{2} \|q\|^2.$$
(34)

Formulation primale II

Mais puisque le théorème de représentation s'applique encore,  $\hat{q}$  peut aussi s'exprimer comme une combinaison linéaire  $\alpha$  des observations  $\{\phi(x_1), \dots, \phi(x_n)\}$ :

$$\max_{\alpha \in \mathcal{R}^n} \inf n^{-1} \sum_{i=1}^n u(r_i K_i \alpha) - \frac{\lambda}{2} \alpha^T K \alpha.$$
(35)

Formulation duale II

Cette fois par contre  $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$ ; chaque élément de K représente le produit scalaire des éléments  $\phi(x_i)$ . Une fois qu'une solution  $\hat{\alpha}$  est obtenue, la décision optimale est donnée par  $\hat{q}(x) = \sum_{i=1}^n \alpha_i \langle \phi(x_i), \phi(x) \rangle$ .

Le panneau b) de la Figure 4 illustre comment une transformation quadratique permet



FIGURE 4 – Ensemble d'entraînement XOR. Au paneau a), aucune décision linéaire ne permet d'attribuer à des rendements positifs une décision d'investissement positive, et de la même façon pour les rendements positifs. Le panneau b) présente la solution optimale avec transformation quadratique lorsque  $u(r)=-e^{-r}+1$  et  $\lambda=0.1$ .

de résoudre le problème XOR.

#### 3.3 Fonctions de noyau

Ainsi, pour toute transformation  $\phi: X \to \phi(X)$ , quelle que soit la dimension de l'espace  $\phi(X)$ , on peut exprimer la décision optimale à partir d'une optimisation sur n dimensions. En outre, ce programme d'optimisation ne dépend plus que du produit scalaire entre ces observations transformées. De plus, on peut dans bien des cas court-circuiter le calcul de ce produit scalaire par une fonction  $noyau \ \kappa: X \times X \to \mathscr{R}$  telle que  $\kappa(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ .

Par exemple, dans l'exemple à une dimension discuté plus haut, il suffirait de poser

$$\kappa(x_i, x_j) = 1 + x_i x_j + (x_i x_j)^2 + \dots + (x_i x_j)^k.$$
(36)

Évidemment, dans un pareil cas le gain est assez faible puisqu'on a uniquement réarrangé l'ordre des opérations. Mais, il est alors possible de circonvenir complètement la transformation  $\phi$  et de ne représenter sa non linéarité qu'à partir de  $\kappa$ . Par exemple, le noyau gaussien

$$\kappa(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right) \tag{37}$$

permet de calculer directement le produit scalaire  $\langle \phi(x_i), \phi(x_j) \rangle$  d'observations  $\phi(x_i)$  et  $\phi(x_i)$  de dimension infinie (Mohri et al. (2012); Scholkopf and Smola (2001)).

Choisir adéquatement le noyau est alors une tâche cruciale du modèle puisque tout noyau  $\kappa$  induit une géométrie particulière du modèle; il peut alors être impossible de déterminer une fonction de décision q pourvue de bonne performance si le noyau ne correspond pas à la géométrie de la loi de marché M.

Il faut par ailleurs imposer une contrainte supplémentaire à la classe des noyaux possibles. En effet  $\kappa(x_i,x_j)$  représente un produit scalaire dans  $\phi(\boldsymbol{X})$  et est donc tenu de respecter les popriétés algébriques de celui-ci. Notamment,  $\kappa$  doit satisfaire l'inégalité de Cauchy-Schwartz :

$$\kappa(x_i, x_j)^2 = \langle \phi(x_i), \phi(x_j) \rangle^2 \tag{38}$$

$$\leq \|\phi(x_i)\| \|\phi(x_j)\|$$
 (39)

$$= \kappa(x_i, x_i)\kappa(x_j, x_j). \tag{40}$$

Mais plus précisément, le noyau  $\kappa$  doit être une forme symétrique bilinéaire définie positive sur X (voir encore Mohri et al. (2012); Scholkopf and Smola (2001)).

### 3.4 Espace de décision vectoriel

Enfin, cette fonction noyau est également en mesure d'induire un espace de décision par la relation  $Q = \kappa(X, \cdot)$ . L'espace de décision ainsi obtenu est alors un espace de

Hilbert à noyau reproduisant, et donc un espace vectoriel. Autrement dit, les opérations comme la norme, l'addition ou le produit scalaire sont supportés et peuvent être appliquées sur des fonctions de décision  $q \in Q$ . Dans le cas linéaire, on revient au cas où Q correspond au dual de X.

On peut de surcroît introduire une nouvelle notation qui offre une symétrie avec le cas linéaire. En notant

$$|\cdot\rangle: X \to Q$$
 (41)

$$|x\rangle \coloneqq \kappa(x,\cdot)$$
 (42)

la transformation d'un point  $x \in X$  vers sa fonction dans Q et

$$\langle \cdot | : \mathbf{Q} \to \mathbf{Q}^*$$
 (43)

$$\langle q | \coloneqq q^*$$
 (44)

l'élément dual d'un élément de Q, on peut obtenir l'identité

$$q(x) = \langle q|x\rangle,\tag{45}$$

c'est à dire le produit scalaire entre q et  $|x\rangle$ . Par exemple, on peut alors exprimer la solution du problème à utilité neutre au risque simplement comme

$$\hat{q} = \frac{1}{n\lambda} \sum_{i=1}^{n} r_i |x_i\rangle,\tag{46}$$

quel que soit le noyau ou la transformation employé.

#### 3.5 Conclusion

La méthode des noyaux, qui permet de généraliser toute transformation non linéaire  $\phi$ , est d'une importance capitale dans ce travail puisqu'elle rend compte de situations complexes, tout en conservant les avantages offerts par un algorithme de maximisation d'utilité espérée convexe qui seront présentés à la section suivante.

Enfin, la Figure 5 offre à titre d'exemple les solutions quadratiques et gaussiennes obtenues sur l'ensemble d'entraînement fictif de la Figure 1. Notamment, bien que la transformation quadratique du panneau a) ne soit toujours pas en mesure de suggérer un investissement cohérent avec toutes les observations, on constate cependant que la transformation gaussienne b) y parvient sans problème.



FIGURE 5 – Deux solutions au problème de la Figure 1. En utilisant un noyau quadratique (panneau a)), on obtient une plus grande complexité, mais certains points demeurent mal "classés". Par contre, au panneau b), le noyau gaussien offre une flexiblité suffisante pour bien classer toutes les observations. Dans les deux cas, une utilité de  $u(r)=-e^{-r}+1$  et une régularisation  $\lambda=0.1$  ont été employés. Le noyau gaussien a une bande passante  $\sigma=1/2$ .

# 4 Garanties statistiques

Et nous avons aussi des Maisons consacrées aux Erreurs des Sens [...] Ce sont là, ô mon fils, les richesses de la Maison de Salomon

> Francis Bacon NEW ATLANTIS

La section précédente était dédiée à l'approche algorithmique du problème : comment, donnés un ensemble d'entraînement et un espace de décision Q induit par un noyau  $\kappa$ , une fonction de décision  $\hat{q}: X \to \mathcal{R}$  permettant de prescrire un investissment pouvait être déterminée. Cette section sera consacrée aux garanties statistiques de cette décision  $\hat{q}$ . Afin de parvenir à ces garanties, certaines hypothèses devront être formulées afin de garantir qu'une solution  $\hat{q}$  donne lieu à une erreur bornée. On pourra ainsi énoncé un théorème sur l'erreur de généralisation maximale, exprimée en terme d'utilité et d'équivalent certain. Par la suite, le problème sera approché d'un point probabiliste (en terme de variables aléatoires) afin de comparer les performances de la décision optimale d'investissement sur M par rapport à la décision empirique, ce qui permettra deux autres théorèmes (l'un en util, l'autre en équivalent certain) sur l'erreur de sous optimalité. Enfin, la Section 4.4 portera sur l'influence de la dimensionalité de l'espace Q sur la qualité des bornes alors obtenues.

# 4.1 Hypothèses et discussion

Certaines bornes devront d'abord être posées afin d'être en mesure d'obtenir des résultats finis : ce sera en fait le prix à payer pour l'absence de contraintes sur la forme de la loi de marché M, notamment sur l'amplitude de ses moments.

**Hypothèse 1.** La norme d'une observation est bornée : pour tout  $x \in X$ ,  $\kappa(x,x) \le \xi^2$ .

**Hypothèse 2.** Le rendement aléatoire est borné :  $|R| \leq \bar{r}$ .

**Hypothèse 3.** Un investisseur est doté d'une fonction d'utilité u concave, monotone et standardisée, c'est-à-dire que u(0)=0 et  $1\in\partial u(0)^8$ . De plus, u est défini sur l'ensemble de  $\mathscr{R}$ . Enfin, u est  $\gamma$ -Lipschitz, c'est-à-dire que pour tout  $r_1, r_2\in\mathscr{R}$ ,  $|u(r_1)-u(r_2)|\leq \gamma|r_1-r_2|$ .

Avant d'aller plus loin, il convient de discuter de la plausiblité de ces contraintes. Cependant, compte tenu de l'aspect central de la première hypothèse, une discussion ap-

<sup>8.</sup> Ici,  $\partial u(r)$  signifie l'ensemble des sur-gradients de u. Dans le cas dérivable, cela revient à la notion de gradient (ou de dérivée dans le cas à une dimension). Dans le cas continu,  $\partial u(r)$  est l'ensemble des gradients de fonctions affines "touchant" à u(r) et supérieures à u(r) pour tout r du domaine). Voir Boyd and Vandenberghe (2004); Rockafellar (1970)

profondie ne sera abordée qu'à la section 4.4.

Pour ce qui est de la seconde hypothèse, si on définit les rendements selon l'interprétation usuelle d'un changement de prix p, i.e.,  $r = \Delta p/p$ , on constatera que r est nécessairement borné par -100%. De plus, selon la période de temps pendant laquelle  $\Delta p$  est mesuré, il y a forcément moyen de limiter l'accroissement dans le prix, pour autant que  $\Delta t$  soit suffisament court.

La troisième hypothèse est davantage contraignante. Elle exclut d'emblée plusieurs fonctions d'utilité courantes ; par exemple l'utilité logarithmique et racine carrée puisqu'elles ne sont définies que pour  $\mathcal{R}_+$ . Une utilité quadratique, comme celle de Markowitz est également inadmissible puisqu'elle est non-monotone. Les utilités de forme exponentielle inverse  $u(r) = \mu(-\exp(-r/\mu) + 1)$  de paramètre  $\mu > 0$  violent quant à elles la condition Lipschitz. On peut cependant définir une utilité exponentielle à pente contrôlée, c'est à dire dont la pente devient constante lorsque  $r \le r_0$ . La Section 5 emploiera une telle fonction d'utilité pour illustrer numériquement ces résultats. En outre, une utilité qui serait définie par morceaux linéaires serait parfaitement acceptable.

#### 4.2 Garantie de généralisation

Soit Q un espace de décision induit par un noyau  $\kappa: X \times X \to \mathcal{R}$  et soit un ensemble d'entraînement  $\mathcal{S}_n = \{(x_i, r_i)\}_{i=1}^n \sim M^n$  échantilloné à partir de la distribution de marché. Alors on peut définir *l'algorithme de décision*  $\mathcal{Q}: M^n \to Q$  par

$$Q(S_n) = \underset{q \in Q}{\arg \max} \widehat{EU}_{\lambda}(S_n, q)$$
(47)

où

$$\widehat{EU}_{\lambda}(\mathcal{S}_n, q) := \widehat{EU}(\mathcal{S}_n, q) - \frac{\lambda}{2} \|q\|^2$$
(48)

et

$$\widehat{EU}(\mathcal{S}_n, q) := n^{-1} \sum_{i=1}^n u(r_i \, q(x_i)). \tag{49}$$

L'erreur de généralisation  $\hat{\zeta}:M^n o\mathscr{R}$  de cet ensemble d'entraı̂nement est alors définie par

$$\widehat{\zeta}(\mathcal{S}_n) := \widehat{EU}(\mathcal{S}_n, \mathcal{Q}(\mathcal{S}_n)) - EU(\mathcal{Q}(\mathcal{S}_n)). \tag{50}$$

Ainsi, plus l'erreur de généralisation  $\hat{\zeta}$  est élevée, plus l'investisseur sera déçu par l'utilité espérée de la fonction de décision  $\hat{q}$  par rapport à ce qu'il aura observé en échantillon. Le théorème suivant établit de façon probabiliste la différence maximale de ces deux mesures de performance :

Théorème 1 (Borne sur l'erreur de généralisation (util)). Avec probabilité d'au

moins  $1 - \delta$ ,

$$\hat{\zeta}(\mathcal{S}_n) \le \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n} + \frac{(4\gamma^2 + \gamma + 1)\bar{r}^2 \xi^2}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}}.$$
 (51)

Tel que discuté, un investisseur sera avant tout concerné par l'erreur de généralisation hors échantillon exprimée en *équivalent certain* :

$$\hat{\zeta}_e(S_n) := \widehat{CE}(S_n, \mathcal{Q}(S_n)) - CE(\mathcal{Q}(S_n))$$
(52)

où  $\widehat{CE} = u^{-1} \circ \widehat{EU}$  et  $CE = u^{-1} \circ EU$  dénotent l'équivalent certain en et hors échantillon. Le Théorème 2 fournit alors à l'investisseur la déviation maximale que peut subir l'équivalent certain hors échantillon par rapport au rendement équivalent en échantillon.

**Théorème 2 (Borne sur l'erreur de généralisation (rendement)).** Avec probabilité d'au moins  $1 - \delta$ ,

$$\hat{\zeta}_e(\mathcal{S}_n) \le \frac{1}{\partial u(\widehat{CE})} \left( \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n} + \frac{(4\gamma^2 + \gamma + 1)\bar{r}^2 \xi^2}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}} \right)$$
(53)

où 
$$\widehat{CE} = \widehat{CE}(S_n, \mathcal{Q}(S_n)).$$

Ces deux théorèmes sont démontrés à l'Annexe B.2.

Le rythme de décroissance de  $\mathcal{O}(n^{-1/2})$  permet tout d'abord d'appréhender dans quelle mesure un large échantillonage est nécessaire pour obtenir un degré de confiance suffisament élevé sur l'erreur hors échantillon. On notera de plus l'influence de plusieurs facteurs sur la qualité de la borne (la discussion sur l'influence du terme  $\xi^2$  est repoussé à la Section 4.4).

Ainsi, la constante  $\gamma$  et le terme du sur-gradient inverse  $\partial u^{-1}(\widehat{CE})$  sont tous deux susceptibles de dégrader considérablement la borne, particulièrement lorsque l'investisseur est doté d'une utilité très averse au risque; dans des cas extrêmes, par exemple une utilité exponentielle inverse, ces deux valeurs divergeront très rapidement. Il convient cependant de prendre note que la constante Lipschitz est globalement plus importante puisqu'on considère son carré. Il devient alors essentiel de contrôler l'agressivité de l'algorithme en choisissant des valeurs élevées pour la régularisation  $\lambda$  de manière à chercher une utilité espérée relativement proche de u(0).

On constate par ailleurs le rôle de premier plan que joue le terme de régularisation. Avec une régularisation élevée, on obtiendra sans surprise une borne très serrée. Cependant, une valeur trop élevée de  $\lambda$  risque d'entraîner des décisions d'investissement possiblement trop modestes. En pratique, il est donc primordial de faire une validation croisée sur  $\lambda$  pour déterminer le meilleur compromis entre la variance des résultats et l'objectif à atteindre. Cela dit, la question du rythme de décroissance approprié pour  $\lambda$  sera abordé à la prochaine sous-section.

# 4.3 Bornes de sous optimalité

Jusqu'ici, les efforts théoriques ont été déployés pour déterminer comment se comportait la fonction de décision  $\hat{q} = \mathcal{Q}(\mathcal{S}_n)$  dans un univers probabiliste par rapport à l'univers statistique dans lequel elle avait été construite. Notre attention va maintenant se tourner vers la performance de  $\hat{q}$  dans l'univers probabiliste par rapport à la meilleure décision disponible, c'est à dire la solution  $q^*$  au problème de

$$\underset{q \in \mathbf{Q}}{\text{maximiser}} \quad \mathbf{E}\mathbf{U}(q) \tag{54}$$

où

$$\mathbf{E}\mathbf{U}(q) \coloneqq \mathbf{E}\,u(R\,q(X)). \tag{55}$$

Il convient cependant de réaliser que l'existence d'une décision optimale  $q^*$  finie n'est pas assurée. En effet, supposons d'une part que l'on dispose d'une utilité neutre au risque  $u_1$ , telle que  $u_1(r) = r$ . On pourrait alors définir la décision suivante :

$$q = \alpha \mathbf{E}(R|X\rangle) \tag{56}$$

où on rappelle que  $|X\rangle=\kappa(X,\cdot).$  On aurait alors, du fait de la linéarité du produit scalaire,

$$\mathbf{E}1(q) \coloneqq \mathbf{E}(R\,q(X))\tag{57}$$

$$= \mathbf{E}\langle q|(R|X\rangle) \tag{58}$$

$$= \langle q | \mathbf{E}(R|X\rangle) \tag{59}$$

$$=\alpha||q||^2 \ge 0. \tag{60}$$

On peut alors obtenir une utilité espérée non bornée à mesure que  $\alpha \to \infty$ . Pour empêcher une telle situation de se produire, on introduit l'hypothèse suivante. Elle exclut toute forme d'utilité à pente constante pour  $r \geq r_0$ , notamment l'utilité risque neutre.

**Hypothèse 4.** L'utilité croît sous-linéairement, ie. u(r) = o(r).

Une autre hypothèse est maintenant nécessaire pour s'assurer que  $q^*$  soit borné : l'absence d'arbitrage. D'un point de vue strictement financier, cela fait certainement du sens en vertu de l'efficience des marchés, version semi-forte (voir Fama (1970)). Cette hypothèse précise en effet qu'un investisseur doté de toute l'information publique disponible au sujet d'un titre risqué ne devrait pas pouvoir être en mesure de "battre" le marché sans prendre de risque. D'un point de vue théorique, ceci exige en fait qu'il n'y ait pas de région dans X telle que tous les rendements s'y produisant soient nécessairement positifs ou négatifs. Ainsi, même en ayant une conaissance parfaite du monde, il subsistera toujours un terme de bruit rendant incertain la réalisation des rendements.

<sup>9.</sup> Mathématiquement, on exige donc que  $u(r)/r \to 0$ .

**Hypothèse 5.** Pour toute région  $\mathcal{X} \subseteq X$ ,

$$P\{R \le 0 = R < 0 \lor R > 0 \mid X \in \mathcal{X}\} < 1.$$
(61)

Ces deux hypothèses supplémentaires permettent alors de montrer que  $q^\star$  est bien borné, *i.e.* que  $\|q^\star\|$  est fini. En effet, on peut alors décomposer  $q=s\theta$ , tel que  $\|\theta\|=1$  et s>0; si s=0 alors la décision est déjà bornée. Ainsi, on peut poser notre problème d'optimisation comme la recherche d'une "direction"  $\theta \in \mathbf{Q}$  et d'une magnitude  $s \in \mathcal{R}$ .

En premier lieu, l'hypothèse 5 entraı̂ne en particulier qu'il existe  $\delta>0$  et  $\varrho>0$  tels que

$$P\{R \cdot \theta(X) \le -\delta\} > \varrho \tag{62}$$

pour tout  $\theta$  et s. Définissons maintenant une variable aléatoire à deux états :  $B=-\delta$  avec probabilité  $\varrho$  et  $B=\bar{r}\xi$  avec probabilité  $1-\varrho$ . Puisque  $R\cdot\theta(X)\leq\bar{r}\xi$ , on a alors que, pour tout  $r\in R$ ,

$$P\{B \ge r\} \ge P\{R \cdot \theta(X) \ge r\} \tag{63}$$

Mais puisque par hypothèse u est concave et puisque que B domine stochastiquement  $R \cdot \theta(X)$ , on a nécessairement que  $Eu(sB) \geq Eu(R \cdot s\theta(X))$ , pour tout s > 0 (voir Eeckhoudt et al. (2005)). Or, par hypothèse de sous-linéarité on obtient que

$$\lim_{s \to \infty} \mathbf{E} u(R \cdot s\theta(X)) \le \lim_{s \to \infty} u(sB) \tag{64}$$

$$= \lim_{s \to \infty} (\varrho u(-s\delta) + (1 - \varrho)u(s\bar{r}\xi))$$
 (65)

$$\leq \lim_{s \to \infty} -\varrho s\delta + (1 - \varrho)o(s) = -\infty, \tag{66}$$

ce qui démontre bien que s est borné et donc que  $q^*$  est fini.

On est alors en mesure de définir *l'erreur de sous optimalité en util*  $\zeta(S_n)$  par

$$\zeta(\mathcal{S}_n) := \mathbf{E}\mathbf{U}(\mathcal{Q}(\mathcal{S}_n)) - \mathbf{E}\mathbf{U}(q^*) \tag{67}$$

et l'erreur de sous optimalité en rendement  $\zeta_e(\mathcal{S}_n)$  par

$$\zeta_e(\mathcal{S}_n) = \mathbf{CE}(\mathcal{Q}(\mathcal{S}_n)) - \mathbf{CE}(q^*). \tag{68}$$

Ces deux notions d'erreur indiquent alors, en terme d'util ou de rendement, à quel point la performance hors échantillon est éloignée de la performance suivant la politique optimale  $q^\star$ . Il faut bien comprendre que, puisque  $\hat{q}$  est déterminé suivant un objectif régularisé, même lorsque  $n\to\infty$  jamais cette erreur de sous optimalité ne pourra être nulle. En fait, il faudrait décroître le facteur de régularisation  $\lambda$  pour que  $\zeta$  puisse converger vers une erreur nulle.

Les deux théorèmes suivant précisent comment se comporte l'erreur de sous optimalité de la solution  $\hat{q} = \mathcal{Q}(\mathcal{S}_n)$ .

**Théorème 3 (Erreur de sous optimalité (util)).** Avec probabilité d'au moins  $1 - \delta$  sur l'ensemble d'entraînement  $S_n$ , l'erreur de sous optimalité en util est bornée par

$$\zeta(S_n) \le \frac{8\gamma^2 \xi^2 (32 + \log(1/\delta))}{\lambda n} + \frac{4\gamma \bar{r} \xi^2}{\lambda} \sqrt{\frac{32 + \log(1/\delta)}{n}} + \frac{\lambda}{2} \|q^*\|^2$$
 (69)

**Théorème 4 (Erreur de sous optimalité (équivalent certain)).** Avec probabilité d'au moins  $1 - \delta$  sur l'ensemble d'entraînement  $S_n$ , l'erreur de sous optimalité exprimée en équivalent certain est bornée par

$$\zeta_{e}(\mathcal{S}_{n}) \leq \frac{1}{\partial u(CE)} \left( \frac{8\gamma^{2}\xi^{2}(32 + \log(1/\delta))}{\lambda n} + \frac{4\gamma\bar{r}\xi^{2}}{\lambda} \sqrt{\frac{32 + \log(1/\delta)}{n}} + \frac{\lambda}{2} \|q^{\star}\|^{2} \right), \tag{70}$$

où  $CE = CE(Q(S_n))$  représente l'équivalent certain de la politique  $\hat{q} = Q(S_n)$  hors échantillon. Cette quantité étant inconnue, on lui substituera son approximation  $\widehat{CE}(S_n, Q(S_n))$ .

Voir l'Annexe B.2 pour une démonstration.

Les bornes de sous-optimalité convergent ainsi environ à la même vitesse que celle de généralisation, c'est-à-dire à un rythme de  $\mathcal{O}(1/\sqrt{n})$ . Bien sûr, une différence majeure est la présence du terme  $\|q^\star\|^2$  qui est a priori impossible à déterminer, dans la mesure où aucune hypothèse n'est faite sur la distribution de M. En fait, ces bornes de sous optimalité établissent rigoureusement de quelle façon la régularisation devrait être décrue afin de s'assurer de converger vers la solution optimale tout en contrôlant l'erreur de généralisation. De façon schématisée, l'erreur de sous optimalité progresse de la façon suivante :

$$\zeta \le \mathcal{O}(\lambda^{-1}n^{-1/2}) + \mathcal{O}(\lambda),\tag{71}$$

et il y a alors un choix à faire. Le premier terme, qu'on retrouve aussi dans l'erreur de généralisation, quantifie l'amplitude possible d'erreur dûe à un échantillonage limité, alors que le deuxième terme quantifie la sous optimalité dans une situation asymptotique  $n \to \infty$ . Un investisseur prudent pourrait alors vouloir être dans une situation proche de  $\lambda = \mathcal{O}(1)$  qui offre de meilleures garanties hors échantillon. À l'inverse, un investisseur compétitif et soucieux d'obtenir une faible erreur de sous optimalité cherchera plutôt à décroître  $\lambda$  à un rythme de l'ordre de  $\lambda = o(n^{-1/2})$ . Son erreur de généralisation restera à peu près constante, mais il se rapprochera rapidement de la solution optimale. La Section 5 sera l'occasion de mesurer en pratique la validité de ces ordres de convergence.

En dernier lieu, il convient peut être de discuter rapidement de cette solution optimale  $q^*$ . Car il ne faut pas la confondre avec la *meilleure* décision compte tenu du marché M: il s'agit plutôt de la meilleure décision donnée par l'espace Q capable d'optimiser l'utilité non-régularisée. Autrement dit,  $q^*$  sera limité par la complexité de l'espace Q. Par exemple, la décision optimale pour une loi de marché semblable à l'exemple XOR présenté à la figure 4 sera de faible qualité si le noyau choisi est linéaire. Tel que discuté, il est donc particulièrement important de choisir avec soin un noyau capable

d'exploiter la loi de marché. Malheureusement, il revient à l'investisseur de conduire cette tâche.

## 4.4 Garanties et dimensionalité du problème

Toutes les bornes considérées jusqu'à présent ont été dérivées sans faire apparaître explicitement la relation qui les lient avec avec la dimension p de l'espace Q; autrement dit, on a implicitement considéré que cette dimension était constante. Cependant, à mesure qu'on ajoute de nouvelles variables de marché, on s'expose en fait à un risque de généralisation et de sous optimalité croissant puisque Q dispose alors de degrés de liberté supplémentaires.

La première chose à prendre en considération est l'effet du noyau  $\kappa$  ou de la projection  $\phi: X \to \phi(X)$  sur la dimension de Q lorsqu'on ajoute à X de nouvelles variables de marché. Dans le cas le plus simple où Q = X, alors nécessairement la dimension des deux espaces concordent :

$$\dim \mathbf{Q} = \dim \mathbf{X} = p. \tag{72}$$

Par contre, si on considère par exemple un noyau polynômiale de degré 2 tel que  $\kappa(x_i,x_j)=(x_i^Tx_i)^2$ , alors dim  $\boldsymbol{Q}=(p+1)(p+2)/2$ . En fait, (voir Mohri et al. (2012) ou Bishop (2006)), si un noyau polynômial de degré k est utilisé, alors

$$\dim \mathbf{Q} = {p+k \choose k} = \frac{1}{k!} \prod_{j=1}^{k} (p+j) = \mathcal{O}(n^k). \tag{73}$$

Néanmoins, on a vu à la Section 3 que la solution  $\hat{q}$  d'un problème donné pouvait être obtenue indépendamment de la dimension de Q. Toutefois, cette dimension jouera un rôle dans la borne  $\kappa(x,x) \leq \xi^2$  qu'on retrouve dans les bornes de généralisation et de sous optimalité des Théorèmes 1, 2, 3 et 4.

Si on prend le cas simple d'un noyau linéaire, cette variable correspond alors simplement à la norme maximale du vecteur d'information :  $\xi^2 = \operatorname{ess\,sup} \|X\|^2$ . Par contre, si on avait plutôt employé un noyau polynômial de degré k, en supposant que  $\|X\|^2 \leq \nu^2$ , la borne à employer serait donnée par

$$\kappa(X, X) = (X^T X + 1)^k \le (\nu^2 + 1)^k. \tag{74}$$

Par contre, les noyaux de forme  $\kappa(x_i, x_j) = \kappa(\|x_i - x_j\|)$  (comme par exemple le noyau gaussien) auront nécessairement une borne  $\xi^2$  constante puisque  $\kappa(x, x) = \kappa(0)$  peu importe la dimension initiale de X.

On comprend cependant de cette discussion que dans le cas où  $\kappa$  n'impose aucune borne naturelle au produit scalaire des transformations  $\phi$ , il est nécessaire de prendre les mesures nécessaires pour faire respecter la contrainte  $\kappa(x,x) \leq \xi^2$ . Mais il y a en fait plusieurs façons d'y parvenir. Pour ce faire, nous allons considérer à des fins de simplification uniquement le cas linéaire où  $\kappa(x_i,x_j)=x_i^Tx_j$ .

D'abord, on peut décider d'imposer une borne rigide à chaque variable de marché :  $X_i^2 \le \nu_i^2$ . On alors

$$\kappa(X, X) = \sum_{j=1}^{p} X_j^2 \le \|\nu\|^2.$$
 (75)

Pour ce faire, on peut supposer que les variables sont déjà bornées naturellement : en utilisant notre connaissance de du domaine, on peut juger que chacune de ces variables ne peut qu'avoir des réalisations dans un intervalle fini. Mais on peut également saturer les variables de marché par une certaine borne  $\nu_j$ . Par exemple, une variable de marché  $X_j$  dont l'amplitude est incertaine pourrait être ainsi remplacée par la variable  $\tilde{X}_j$ :

$$\tilde{X}_j = \begin{cases} X_j & |X_j| \le \nu_j \\ \operatorname{signe}(X_j)\nu_j & |X_j| > \nu_j, \end{cases}$$
(76)

quitte à introduire une nouvelle variable de marché indiquant si  $\tilde{X}_j$  est saturée ou non.

Il y a également une autre façon d'obtenir une borne sur  $\|X\|^2$  sans limiter individuellement le support de chaque variable de marché. Plusieurs théorèmes, en utilisant des hypothèses plus ou moins fortes, permettent en effet d'affirmer qu'un phénomène de concentration de la norme aléatoire  $\|X\|^2$  autour de  $E\|X\|^2$  aura lieu à mesure que p croît.

Par exemple, si les variables de marché  $X_j$  sont indépendantes l'une à l'autre et que  $X_j^2$  a une distribution sous exponentielle  $^{10}$ , l'inégalité de Bernstein implique qu'avec probabilité  $1-\delta$ ,

$$|\|X\|^2 - E\|X\|^2| \le \sqrt{\frac{2\omega \log(1/\delta)}{p}}$$
 (77)

où  $\omega$  caractérise  $\|X\|^2$ . Autrement dit, à mesure que p croît, la norme  $\|X\|^2$  sera fortement concentrée autour de son espérance. En supposant que chaque variable est standardisée, alors  $E\|X\|^2 = \sum_{j=1}^p X_j^2 = p$ , puisque les composantes  $X_j$  sont indépendantes. Ainsi,  $\xi^2 \approx p$  avec haute probabilité.

En fait, on peut parvenir au même type de constat en n'utilisant que l'inégalité de Markov. Ainsi, quelle que soit la loi de M, on aura

$$P\{\|X\|^2 \ge tE\|X\|^2\} \le \frac{1}{t} \tag{78}$$

et on retrouve donc une fois de plus, dans des conditions beaucoup plus générales, une concentration autour de  $E \, \|X\|^2$ .

En fait, le point à retenir est que  $\xi^2 = \mathcal{O}(p)$  dans un contexte d'hypothèses assez faibles sur la loi de marché. C'est à dire que les bornes dérivées aux Théorèmes 1, 2,

<sup>10.</sup> Tel est le cas par exemple de  $Z^2$  lorsque  $Z \sim \mathcal{N}(0,1)$ . Précisément, une variable aléatoire Z est sous exponentielle s'il existe deux paramètres  $\nu$  et  $\beta$  non négatifs tels que  $\mathbf{E}\,e^{\lambda(Z-\mathbf{E}\,Z)} \leq e^{\nu^2\lambda^2/2}$  pour tout  $|\lambda| \leq \beta^{-1}$ . Voir Boucheron et al. (2013).

3 et 4, qu'on croyait  $\mathcal{O}(n^{-1/2})$  sont en fait  $\mathcal{O}(p\,n^{-1/2})$ . Ces bornes exposent donc un danger potentiel à un investisseur. Par exemple, dans un régime qu'on pourrait qualifier de *big data* où  $p = \mathcal{O}(n)$ , les bornes sur l'erreur de généralisation et de sous optimalité seraient en fait *divergentes!* à un rythme  $\mathcal{O}(n^{1/2})$ . Il faut en fait imposer un rythme  $p = \omega(n^{1/2})$  pour s'assurer d'une convergence vers une erreur nulle.

Nous verrons cependant à la Section 5 le comportement de l'erreur empirique par rapport à ces ordres de grandeur asymptotiques. En particulier, il faut bien comprendre que ces garanties forment une borne supérieure impliquant qu'au plus l'erreur croît à un rythme  $\mathcal{O}(p)$ . Cependant, cette discussion n'est valide que dans le cas particulier des noyaux linéaires. Les noyaux gaussiens conservent quant à eux une indépendance par rapport à la dimensionalité, alors que les noyaux polynomiaux l'exacerbent; pour un noyau de degré k il devient plus juste d'indiquer

$$\hat{\zeta} \le \mathcal{O}(p^k/\lambda\sqrt{n}). \tag{79}$$

#### 4.5 Conclusion

Cette section a permis d'obtenir des garanties probabilistes sur les erreurs de généralisation et de sous optimalité de l'équivalent certain. Dans les deux cas, une décroissance de  $\mathcal{O}(\xi^2/n^{-1/2})$  a lieu. On a également indiqué de quelle façon devrait être réduit le facteur de régularisation  $\lambda$  pour conserver ces garanties tout en convergeant vers une erreur de sous optimalité nulle.

La Section suivante illustrera empiriquement le comportement de ces garanties. En employant un environnement contrôlé, il sera possible d'établir si ces bornes sont serrées ou non, et si elles permettent bien de déduire l'ordre de décroissance de l'erreur.

# 5 Expériences empiriques

L'expérience instruit plus sûrement que le conseil.

André Gide Les faux monnayeurs

Cette section sera l'occasion de valider numériquement les garanties présentées à la Section 4 quant aux erreurs de généralisation et de sous optimalité inhérentes à l'algorithme d'investissement présenté dans ce mémoire.

Il va sans dire que le cadre théorique général qui a été développé jusqu'à maintenant présente plusieurs paramètres (dimensionalité du problème, loi de marché, fonction d'utilité, noyau employé, etc.); tous les décrire représenterait une tâche titanesque, aussi certains choix devront être faits pour restreindre la quantité de paramètres étudiés; la Section 5.1 énumérera le choix fait pour chacun de ces paramètres.

Par la suite, les Sections 5.2, 5.3 et 5.4 étudieront la qualité des garanties de généralisation et de sous optimalité dans un contexte où, respectivement, la taille de l'échantillonage augmente (n variable, p constant), la taille de l'échantillonage est fixe mais la dimensionalité du problème augmente (n constant, p variable) et enfin, la taille de l'échantillonage et de la dimensionalité augmentent toutes les deux, mais à des rythmes différents.

## 5.1 Méthodologie

**Noyau** Le noyau employé dans nos expériences sera linéaire, *i.e.*  $q(x) = q^T x$ . En particulier, c'est avec un tel noyau que la dépendance entre la dimensionalité du problème et les erreurs de sous optimalité et de généralisation se caractérise le plus facilement (voir Section 4.4).

Fonctions d'utilité Chaque expérience sera conditionnée par une fonction d'utilité exponentielle Lipschitz  $LEU_{\mu}$  définie algébriquement par

$$LEU_{\mu}(r) = \begin{cases} r & r < 0\\ \mu(1 - e^{-r/\mu}) & r \ge 0 \end{cases}$$
 (80)

pour  $\mu \geq 0$  (voir la Figure 7). Cette famille de fonctions d'utilités est intéressante pour deux raisons : de telles fonctions ont toutes un coefficient Lipschitz  $\gamma = 1$  et leur paramètre  $\mu \geq 0$  permet de quantifier facilement l'aversion au risque qu'elles convoient,  $\mu = \infty$  correspondant à une attitude neutre au risque et  $\mu = 0$  correspondant à l'attitude extrêmement averse où aucune utilité n'est accordée aux rendements supérieurs à zéro (semblable aux fonctions de perte *hinge loss* en classification).

La fonction d'utilité inverse  $LEU_{\mu}^{-1}:U\to R$ , nécessaire pour exprimer en terme de rendement équivalent les erreurs exprimées en util, est illustrée à la Figure 8. On peut

vérifier algébriquement que

$$LEU_{\mu}^{-1}(r) = \begin{cases} r & r < 0 \\ -\mu \log(1 - r/\mu) & r \ge 0 \end{cases}$$
 (81)

Finalement, les bornes d'erreur de généralisation et de sous optimalité, lorsqu'elles sont exprimées en équivalent certain, font intervenir l'inverse multiplicatif  $1/\partial_r u(r)$  du sous-gradient de la fonction d'utilité. Dans le cas d'une utilité  $LEU_\mu$ , cet inverse correspond simplement à l'inverse de la dérivée de  $LEU_\mu$  et est donc donné par

$$\left(\frac{d}{dr}LEU_{\mu}(r)\right)^{-1} = \begin{cases} 1 & r < 0\\ e^{r/\mu} & r \ge 0 \end{cases}$$
(82)

**Régularisation** Sauf exception, le facteur de régularisation  $\lambda=1$  sera employé au cours de toutes les expériences.

**Loi de marché** La loi de marché M sera construite en deux temps. D'abord, une loi de marché théorique  $\tilde{M} \in \mathscr{R}^{\tilde{p}+1 \times \tilde{p}+1}$  sera construite selon la méthode présentée au prochain paragraphe. Puis, un échantillon fini  $M \sim \tilde{M}^{5000}$  de 5000 points en sera tiré afin de former une loi de marché discrète M à partir de laquelle toutes les expériences seront réalisées. En quelque sorte, M fournit alors une approximation à  $\tilde{M}$ , mais permet de déterminer exactement des statistiques qui ne pourraient autrement n'être qu'estimées, comme l'utilité hors échantillon EU(q) d'une politique q, la décision optimale  $q^*$  ou l'utilité espérée optimale  $EU^*$  de la loi de marché.

Pour construire la loi théorique  $\tilde{M}$ , chacune de ses lois marginales  $X_1,\ldots,X_{\bar{p}}$  et R sera décrite par une variable aléatoire Rademacher (retournant  $\pm 1$  avec probabilité 1/2). La dépendance entre ces lois marginales sera modélisée par une copule gaussienne dont la matrice de corrélation  $\Sigma$  sera de la forme

$$\Sigma = \begin{array}{cccc} X_{1} & \cdots & X_{\bar{p}} & R \\ X_{1} & \ddots & & | \\ & \ddots & & | \\ & I_{\bar{p} \times \bar{p}} & \rho \\ & & \ddots & | \\ & R & - \rho & - 1 \end{array}, \tag{83}$$

avec

$$\rho = \left(\sqrt{\frac{1-\epsilon}{\bar{p}}} \quad \cdots \quad \sqrt{\frac{1-\epsilon}{\bar{p}}}\right) \tag{84}$$

sauf exception.

Le paramètre  $\epsilon>0$  permet de quantifier l'idée que cette loi de marché n'admet pas d'arbitrage puisque R conserve alors une faible indépendance par rapport aux variables de marché  $X_j$ . La Figure 6 présente 1000 réalisations de cette loi de marché  $\tilde{M}$  lorsque

 $\bar{p}=2$ . Chaque point indique une réalisation de la loi normale multivariée de matrice de corrélation  $\Sigma$ . Les lois marginales Rademacher de  $\tilde{M}$  font s'"effondrer" ces valeurs à leur signe; les quatre histogrammes donnent la fréquence d'un rendement positif ou négatif selon la valeur des deux variables de marché.

Par ailleurs, pour ce cas particulier de loi de marché théorique, on peut établir que la corrélation entre  $X_j$  et R correspond au tau de Kendall, i.e.  $Corr(X_j, R) = \frac{2}{\pi} \arcsin \rho$ . Voir Rémillard (2013) pour des précisions.

La valeur  $\epsilon=0.05$  sera employé au cours de toutes les expériences. De plus, on obtient dans de telles conditions trivialement  $\|X\| \le \xi = \sqrt{p}$  et  $\bar{r}=1$ .

Validation des garanties Les garanties énoncées à la dernière section s'appliquaient de façon probabiliste à l'ensemble des réalisations hors échantillon. Les expériences suivantes mesureront, sauf exception, le  $95^{\rm e}$  percentile d'erreur en employant m=150 échantillons d'erreur. Le paramètre  $\delta$  de confiance des deux bornes sera fixé à 95%.

Plus précisément, m échantillons  $S_n$  seront tirés indépendamment et identiquement de  $M^n$ . Chacun de ces m échantillons fournira une politique de décision  $\hat{q} = \mathcal{Q}(S_n)$  dont l'erreur de généralisation et de sous optimalité pourra alors être calculée. Puis, de ces m observations d'erreur, le 95e percentile d'erreur pourra finalement être calculé.

**Progression de l'erreur** Bien que les garanties sur l'erreur de généralisation et de sous optimalité donnent une borne "numérique", elles suggèrent aussi une progression de l'erreur  $\mathcal{O}(p/\sqrt{n})$ . On cherchera donc à vérifier cette "suggestion" en dévoilant progressivement de nouveaux échantillons et/ou de nouvelles variables de marché afin de vérifier l'évolution de l'erreur par rappport aux garanties théoriques.

Au début de chaque expérience, un ensemble d'entraînement formé de  $\bar{n}$  réalisation de  $\bar{p}$  variables de marché seront tiré de M. Puis, on exposera progressivement à l'algorithme n des  $\bar{n}$  points et p des  $\bar{p}$  variables de marché de cette ensemble d'entraînement afin d'obtenir peu à peu une meilleure représentation de M. Le tout sera répété m fois (donc sur m ensembles d'entraînement) afin de pouvoir mesurer le 95e percentile des deux types d'erreur.

Le premier ensemble d'expériences (Section 5.2) conservera p=2 fixe et fera varier n de 2 à 110. À la Section 5.3, ce sera la dimensionalité du problème qui variera, donc avec n=10 fixe et p variant de 1 à 50. Enfin, à la section 5.4, la situation sera un mélange des deux précédentes : plus en plus de points provenant d'un même échantillon sont présentés à l'algorithme, leur dimension dévoilée progressant en fonction de n.

**Environnement de calcul** L'identification numériques des politiques optimales  $\hat{q}$  se fera à partir de l'implémentation CVXPYDiamond and Boyd (2016) et du solveur ECOSDomahidi et al. (2013). Les calculs numériques se feront à partir de la librairie BLAS et de l'interface NUMPY.



FIGURE 6 – Loi de marché théorique pour  $\bar{p}=2$ . Les points bleus et rouges indiquent 500 réalisations d'une loi normale multivariée avec matrice de corrélation  $\Sigma$ . Les lois marginales Rademacher de la loi de marché entraînent un "effondrement" des réalisations en  $\check{X}_0$ ,  $\check{X}_1$  et  $\check{R}$  à leur signe. Les quatre histogrames présentent la distribution de R par rapport à  $X_0=\pm 1$  et  $X_1=\pm 1$ . On constate par ailleurs l'absence d'arbitrage d'une telle loi de marché puisqu'aucune région ne contient uniquement des rendements positifs ou uniquement des rendements négatifs.



FIGURE 7 – Comportement des fonctions d'utilité exponentielles Lipschitz  $LEU_{\mu}$  selon le paramètre  $\mu$ . L'abscisse est l'axe des rendements, alors que l'ordonnée est celui des utils. Le paramètre  $\mu$  de chacune des instances  $LEU_{\mu}$  permet de quantifier l'aversion au risque : un paramètre  $\mu \to \infty$  indique une attitude neutre au risque, alors qu'à l'autre extrême, un paramètre  $\mu \to 0$  modélise une indifférence (utilité constante) aux rendement positifs. Sur la branche négative, l'utilité correspond à la fonction identité, sur la branche positive,  $LEU_{\mu}(r) = \mu(1-e^{-r/\mu})$ .



FIGURE 8 – Utilité et utilité inverse. La fonction d'utilité permet de caractériser en utils le rendement observé. L'util est cependant une notion abstraite qu'on peut réexprimer en rendement à partir de la fonction utilité inverse. Une fonction  $LEU_{\mu}(r)$  tend asymptotiquement vers  $\mu$  à mesure que  $r\to\infty.$  Inversement,  $LEU_{\mu}^{-1}(r)\to\infty$  à un rythme logarithmique lorsque  $r\to\mu$ . En effet, sur sa branche négative  $LEU_{\mu}^{-1}$  correspond à la fonction identité, alors que sur la branche négative,  $LEU_{\mu}^{-1}(r)=-\mu\log(1-r/\mu).$ 

## 5.2 n variable, p constant

L'objet de cette section est l'étude du cas canonique où la taille n de l'ensemble d'entraînement  $S_n$  augmente progressivement afin de donner une meilleure représentation de M.

#### 5.2.1 Erreur de généralisation

On rappelle tout d'abord que l'erreur de généralisation d'une politique d'investissement q consiste à mesurer la différence entre l'utilité (resp. l'équivalent certain) espérée observée en échantillon et l'utilité (resp. l'équivalent certain) espérée hors échantillon, ou, mathématiquement, de déterminer  $\widehat{EU}(q) - EU(q)$  (resp.  $\widehat{CE}(q) - CE(q)$ ).

Avant de rentrer dans le vif du sujet, il peut être intéressant de voir graphiquement comment se comportent différents quantiles de l'erreur de généralisation à mesure que de nouveaux échantillons sont fournis à l'algorithme (i.e. à mesure que n augmente). La Figure 9 illustre précisément ce comportement, en présentant l'erreur en util et en rendement. Puisque la variable de rendement R est bornée entre -1 et 1 et que son espérance marginale est nulle, le panneau b) indique qu'avec un échantillon d'entraînement formé de n=10 observations de marché, l'erreur maximale sera d'environ 40%. Par ailleurs, comme la courbe du  $1^{\rm er}$  quartile correspond à une erreur nulle, on peut conclure que dans environ 75% des cas, la performance hors échantillon sera moindre que celle observée en échantillon. Finalement, sans surprise, plus n est élevé, moins l'erreur de généralisation sera importante et tous ses quantiles finiront par converger vers une erreur nulle.

La Figure 10 illustre quant à elle la relation entre l'aversion au risque (caractérisée par le paramètre  $\mu$  de la fonction d'utilité LEU) et le 95° percentile d'erreur de généralisation en util et en équivalent certain. On constate en particulier qu'une faible aversion au risque, toutes choses étant égales par ailleurs, entraîne une plus grande erreur de généralisation. On peut expliquer cette observation d'un point de vue géométrique, puisqu'une aversion plus prononcée au risque vient ajouter de la courbure à la fonction d'utilité, et qu'en ce sens, cette courbure a le même effet que l'ajout d'un terme de régularisation  $\lambda \|q\|^2$  dans la fonction objectif de l'algorithme. Or, comme l'idée même de la régularisation est de permettre d'établir des politiques d'investissement plus conservatrices qui favorisent des investissement moins importants, on comprend donc qu'une aversion au risque élevée aura le même genre d'effet et entraînera donc une erreur hors échantillon moins importantes.

À la Figure 11, c'est le 95° percentile d'erreur et sa borne théorique ( $\delta=5\%$ ) en fonction de n qui sont illustrés, ce qui permet donc de constater la pertinence des garanties théoriques offertes par l'algorithme d'investissement. Ce qui frappe le plus, c'est surtout que la borne n'est pas exactement serrée, les deux courbes différant l'une de l'autre d'un ordre de grandeur (soit d'un facteur d'environ 10). Par exemple, il faut attendre d'avoir environ n=150 observations avant de pouvoir garantir une erreur inférieure à 100%, alors que le  $95^{\circ}$  percentile d'erreur empirique n'y est que de 5%.

Néanmoins, il faut d'abord conserver à l'idée que ces bornes sont valides pour toute loi de marché M telle que  $\xi \leq \sqrt{2}$  et  $\bar{r} \leq 1$  et toute courbe d'utilité u de coefficient Lipschitz 1. C'est toutefois avec cette forme particulière de M (marges Rademacher) qu'on a pu observer les bornes plus serrées. Mais d'autre part, si les bornes ne sont en tant que telles pas particulièrement fortes, l'ordre  $\mathcal{O}(n^{-1/2})$  qu'elles indiquent semble bien respecté empiriquement. Cette propriété est très importante puisqu'elle permet à un investisseur de savoir de quelle façon et à quel rythme décroît son risque d'erreur de généralisation en fonction de la taille de son ensemble d'entraînement  $\mathcal{S}_n$ .

Il peut en outre être intéressant de décomposer ce 95° percentile d'erreur de généralisation en sa composante de performance en échantillon  $\widehat{EU}(\hat{q})$  et hors échantillon  $EU(\hat{q})$  (Figure 12). Cette figure permet de constater que bien que la composante hors échantillon possède une utilité espérée positive, elle sera cependant beaucoup plus faible que ce qui était anticipé par l'utilité espérée en échantillon. De plus, la composante hors échantillon demeure relativement stable et c'est la composante en échantillon qui converge vers elle. De plus, cette figure permet de comprendre comment on peut passer d'une représentation en util à une représentation en rendement suite à l'application de la fonction utilité inverse  $LEU_{\mu}^{-1}:U\to R$  (voir Figure 8). Puisque  $\mu=1$  ici, cette utilité inverse a un effet plus prononcé pour des utilités proches de 1, et son effet décroit pour des utilités plus faibles. Bien entendu, cette amplification est plus prononcée à mesure que l'investisseur est averse au risque, ce qui dégrade alors la qualité des garanties offertes par l'algorithme.



FIGURE 9 – Progression des quartiles de l'erreur de généralisation en util et en équivalent certain en fonction de la taille n de l'échantillonage. Dans environ 75% des cas, la performance hors échantillon sera moindre que celle observée en échantillon.





FIGURE 10 – Progression du 95e percentile d'erreur de généralisation en fonction de la taille de l'échantillon n pour trois niveaux d'aversion au risque. Plus l'aversion au risque est faible (avec comme cas limite l'attitude neutre au risque  $\mu=\infty$ ), plus l'erreur de généralisation est importante, et inversement pour une forte aversion au risque.



FIGURE 11 – Progression du 95e percentile l'erreur de généralisation et borne théorique (paramètre de confiance  $\delta=5\%$ ) en fonction de la taille d'échantillon n, exprimés en util et en rendement. Dû à la différence d'ordre, les deux figures font intervenir deux ordonnées : celle de gauche quantifie l'erreur empirique alors que celle de droite quantifie la borne théorique. Ainsi, la borne théorique est environ 10 fois supérieure à l'erreur empirique.



FIGURE 12 – Progression sur la même échelle des composantes de performance en échantillon et hors échantillon, exprimées en util et en rendement, du 95° percentile d'erreur de généralisation de la Figure 11 a). Plus une valeur d'utilité est grande, plus l'amplification de l'utilité inverse se fera ressentir. L'erreur de généralisation est donc plus importante lorsqu'elle est mesurée en unités de rendement qu'en unités d'utils.

#### 5.2.2 Erreur de sous optimalité

Contrairement à l'erreur de généralisation, l'erreur (en util) de sous optimalité  $EU(q^*)-EU(\hat{q})$  (resp.  $CE(q^*)-CE(\hat{q})$  dans le domaine des rendements) ne bénéficie pas d'une convergence vers zéro du fait de la présence du terme de régularisation dans l'algorithme  $\mathcal{Q}(\mathcal{S}_n)$ . En fait, la meilleure garantie offerte par le Théorème 3, lorsque  $n\to\infty$ , correspond à  $\lambda/2\|q^*\|^2$  dans le domaine des utils.

Ainsi, la Figure 13 présente la progression du 95° percentile de l'erreur empirique de sous optimalité et de la borne théorique  $\delta=5\%$  selon la taille n de l'échantillon. En particulier, le facteur de régularisation constant  $\lambda=1$  fait en sorte que, exprimés en utils, la borne théorique converge vers  $\|q^\star\|^2/2$  (évaluée numériquement à 3.16) alors que le 95° percentile d'erreur semble converger vers une utilité espérée aux alentours de 0.24.

D'autre part, la borne théorique de sous optimalité du  $95^{\rm e}$  percentile d'erreur empirique est relâchée d'environ deux ordres de grandeur  $(10^{-1}$  pour l'erreur empirique vs  $10^2$  pour la garantie théorique). En fait, ce qui est particulièrement déconcertant, c'est que même dans la limite  $n \to \infty$ , la borne théorique est supérieure à la plus grande erreur empirique observée (i.e. lorsque n=10)! Cela étant, même si la borne de sous optimalité est particulièrement relâchée, elle suggère en revanche un ordre de convergence  $\mathcal{O}(n^{-1/2})$  qui lui semble être en adéquation avec le  $95^{\rm e}$  percentile de l'erreur de sous optimalité empirique.

Néanmoins, un investisseur ayant à cœur une faible erreur de sous optimalité devra nécessairement faire converger son paramètre de régularisation vers zéro à mesure que de nouvelles observations de la loi de marché sont disponibles. De plus, il a été démontré au cours de la section précédente qu'on doit avoir  $\lambda = \omega(1/\sqrt{n})$ , *i.e.* une décroissance moins rapide que  $\mathcal{O}(1/\sqrt{n})$  pour bénéficier d'une convergence vers une erreur nulle. En particulier, si  $\lambda = \mathcal{O}(n^{-k})$ , alors la garantie théorique sera composée de trois termes :  $\mathcal{O}(n^{k-1}) + \mathcal{O}(n^{k-1/2}) + \mathcal{O}(n^{-k})$ . Dans de telles conditions, une constante k = 1/4 semble bien adaptée pour balancer les deux derniers termes.

Ainsi, la Figure 14 présente la progression du 95° percentile d'erreur de sous optimalité empirique et de sa garantie théorique en fonction de n lorsque  $\lambda = (10/n)^{1/4}$ . Ainsi défini, lorsque n=10,  $\lambda$  est identique au facteur de régularisation employé pour produire la Figure 13. On constate effectivement que l'erreur de sous optimalité est initialement la même pour les deux figures. Cependant, alors qu'elle paraîssait stagner vers une erreur de 34% avec une régularisation constante, la décroissance  $\lambda = \mathcal{O}(n^{-1/4})$  permet ici d'obtenir une erreur de 26% lorsque n=150. Par contre, il faut être bien conscient que la borne théorique ne décroît plus qu'à un rythme  $\mathcal{O}(n^{1/4})$ .





FIGURE 13 – Progression du 95° percentile l'erreur empirique de sous optimalité et de la borne théorique ( $\delta=5\%$ ) selon la taille n de l'échantillonage. Le facteur de régularisation constant  $\lambda=1$  fait en sorte que, exprimés en utils, la borne théorique planche à  $\lambda/2\|q^\star\|^2$  (évaluée numériquement à 3.16) alors que le 95° percentile d'erreur semble plancher aux alentours de 0.24. En plus d'être dégagée de près d'un ordre de grandeur de la courbe empirique, même la limite de la borne théorique est supérieure aux plus hautes valeurs observées. Cependant, l'ordre  $\mathcal{O}(n^{-1/2})$  théorique se manifeste ici aussi dans le domaine empirique.



FIGURE 14 – Progression du 95° percentile de l'erreur de sous optimalité empirique exprimée en util et de la borne théorique  $\delta=5\%$  selon la taille n de l'échantillonage avec un facteur de régularisation  $\lambda=(10/n)^{1/4}$ . Le panneau a) indique la progression de la borne théorique alors que le panneau b) indique sa limite de la borne dans le cas  $n\to\infty$ . Contrairement au cas présenté à la Figure 13, cette situation offre une garantie théorique d'une erreur nulle puisque le facteur de régularisation converge vers 0. Le rythme de convergence théorique n'est toutefois que de  $\mathcal{O}(n^{-1/4})$ .

## 5.3 *n* constant, *p* variable

Cette section sera consacrée à l'étude du rapport qu'entretient les erreurs de généralisation et de sous-optimalité de notre algorithme lorsque sont incorporées à la prise de décision de nouvelles variables de marché indépendantes des précédantes, tout en conservant la taille d'échantillonnage constante.

On rappelle donc que les expériences suivantes dévoileront une à une les 50 variables de marché  $X_j$  à partir desquelles le rendement aléatoire R est construit sur une copule gaussienne. Trois situations différentes seront par ailleurs considérées, chacune d'elles représentée respectivement par les vecteurs de corrélation  $\operatorname{{\it Corr}}(\tilde{X},\tilde{R})\in \mathscr{R}^{\bar{p}}$  (dans le domaine de la copule gaussienne) suivants :

$$\rho = \left(\sqrt{\frac{1-\epsilon}{\bar{p}}} \quad \cdots \quad \sqrt{\frac{1-\epsilon}{\bar{p}}}\right); \tag{85}$$

$$\rho = \left(\sqrt{1 - \epsilon} \quad 0 \quad \cdots \quad 0\right) ; \tag{86}$$

$$\rho = \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}. \tag{87}$$

La première situation sera donc celle où chacune des variables de marché a une influence égale sur le rendement, la seconde celle où seule la première variable vient influencer la réalisation du rendement et enfin la dernière celle où toutes les variables de marché sont indépendantes au rendement, *i.e.* elle ne forment qu'un "bruit". Ces trois situations seront désignées respectivement par *information dispersée*, *information concentrée* et *aucune information*.

#### 5.3.1 Erreur de généralisation

La figure 15 présente donc pour ces trois situations comment progresse leur  $95^{\rm e}$  percentile d'erreur de généralisation (avec  $\bar{n}=10$  observations du marché) et leur garantie théorique (ici commune aux trois cas) à mesure que de nouvelles variables de marché sont dévoilées à l'algorithme. Intialement, lorsque p=1, la courbe Information concentrée affiche sans surprise une erreur beaucoup plus faible que les autres, puisque l'algorithme est déjà en mesure d'inférer la meilleure politique d'investissement. Au contraire, la courbe Information dispersée ne détecte qu'un faible lien entre cette variable de marché et R. À mesure que de nouvelles variables sont dévoilée, la situation où l'information concentrée continue de présenter une erreur plus faible aux autres cas, bien que la courbe d'erreur dans la courbe Information dispersée semble finir par la rejoindre. C'est de plus lorsqu'aucune information n'est présente que le risque d'erreur de généralisation est le plus grand, puisque toute décision d'investissement non nulle se traduit forcément par une utilité hors échantillon plus faible qu'en échantillon.

En outre, la garantie sur l'erreur de généralisation, dans le cas d'un apprentissage par noyau linéaire et d'une taille constante d'échantillonnage, suggère une progression de l'erreur à un rythme linéaire  $\mathcal{O}(p)$  (voir Section 4.4). Or, les trois courbes d'erreur empirique semblent indiquer qu'il se pourrait que ce ne soit que le cas que dans une

limite asymptotique, non observée dans ce cas ci. En effet, leur forme est loin d'être linéaire et semble plutôt posséder une composante racine carrée. Il se pourrait donc que le comportement de l'erreur de généralisation soit plutôt de  $\mathcal{O}(p^{1/2}) + \mathcal{O}(p)$ .

Afin de confirmer cette idée, la figure 16 présente un ajustement des 25 derniers points des trois courbes d'erreurs empiriques à deux fonctions polynômiales  $f(x) = a_0 x + a_1 x^{1/2} + b$  et  $f(x) = a_0 x^{1/2} + b$  par méthode des moindres carrés. Il faut garder à l'esprit qu'estimer numériquement un ordre polynômial n'est pas forcément simple, particulièrement lorsqu'on ne dispose que de si peu de points ( $\bar{p} = 50$  dans ce cas-ci). Cela dit, dans les trois cas, l'hypothèse où l'erreur de généralisation serait de nature  $\mathcal{O}(p^{1/2}) + \mathcal{O}(p)$  semble plus convaincante puisqu'elle suit de plus proche les vingt cinq premiers points des trois courbes. Cette conclusion reste cependant spéculative.

#### 5.3.2 Sous optimalité

Dans le cas où on ajoute de l'information, la sous optimalité, contrairement à l'erreur de généralisation, peut référer à deux types d'erreur. Soit on compare la performance hors échantillon de  $\hat{q}$  à celle de la politique optimale qui ne dispose que de  $p \leq \bar{p}$  variables d'information, soit à la politique optimale qui dispose des  $\bar{p}$  variables d'information nécessaires pour décrire M. Cependant, le développement théorique qui a été mené au cours de la dernière section ne s'est implicitement préoccupé que de la première situation.

La Figure 17 indique le comportement de l'utilité espérée optimale  $EU^{\star}$  en fonction du nombre de variables de marché connues de l'algorithme. Naturellement, le cas où toute l'information est disponible dès p=1 affiche une utilité espérée optimale constante, alors qu'il s'agit plutôt d'une progression à peu près linéaire lorsqu'on dévoile progressivement des variables d'information chacunes faiblement corrélées à R, mais indépendantes l'une à l'autre. Enfin, l'utilité espérée optimale est bien entendu nulle dans le cas où toutes les variables de marché sont indépendantes à R.

La Figure 18 elle, indique la progression du  $95^{\rm c}$  percentile des erreurs de sous optimalité des trois situations et de leur garantie théorique pour  $\delta=5\%$  à mesure que de nouvelles variables de marché sont dévoilées à l'algorithme, avec  $\bar{n}=10$  constant. Initialement, l'erreur de sous optimalité des courbes *Information dispersée* et *Aucune information* est très faible alors que la courbe *Information concentrée* dispose déjà de suffisament d'information pour permettre une erreur élevée. Puis, à mesure que p se rapproche de  $\bar{p}$ , on observe pour la courbe *Information dispersée* une progression qui correspond environ à la progression de l'utilité espérée optimale. Cela signifie donc que l'erreur de sous optimalité serait maximisée lorsque l'utilité espérée hors échantillon est nulle. Les deux autres courbes d'erreur empirique progressent beaucoup plus lentement, possiblement à un rythme  $\mathcal{O}(\sqrt{p})$ . Dans le cas de la courbe *Information concentrée*, puisque sa courbe de référence  $EU^*$  est constante, on en conclut que l'utilité espérée hors échantillon minimale augmente selon  $\mathcal{O}(\sqrt{p})$ .

De plus, le caractère linéaire annoncé n'est empiriquement pas très clair, sauf dans le cas particulier où l'information est dispersée. Mais comme c'état le cas pour l'erreur

de généralisation, il n'est pas non plus impossible que l'erreur de sous optimalité ait un ordre de progression  $\mathcal{O}(\sqrt{p})+\mathcal{O}(p)$ : cela permettrait d'expliquer pourquoi la courbe *Information dispersée* est linéaire alors que les deux autres affichent plutôt un caractère de progression racine carrée.



FIGURE 15 – Progression du 95° percentile de l'erreur de généralisation exprimée en util et en équivalent certain à mesure que de nouvelles variables de marché sont dévoilées à l'algorithme, pour une taille d'échantillonnage constante  $\bar{n}=10$ . Dans le domaine des utils, illustré par le panneau a), la borne théorique est commune aux trois situations et progresse linéairement. Lorsque p=1, la courbe Information concentrée affiche sans surprise une erreur initialement plus faible que les autres, puisque l'algorithme est déjà en mesure d'inférer la meilleure politique d'investissement. Les courbes Aucune information et Information dispersée présentent une erreur similaire lorsque p est faible (donc peu de variables connues) mais se distancent l'une de l'autre à mesure que p converge vers  $\bar{p}$ .



FIGURE 16 – Ajustement des 25 derniers points des courbes d'erreur présentées à la Figure 15 à deux polynômes  $f(p) = a_0 p + a_1 p^{1/2} + b$  et  $f(p) = a_0 p + b$ . Entre les deux, l'hypothèse où l'erreur aurait une progression  $\mathcal{O}(p^{1/2}) + \mathcal{O}(p)$  serait ainsi la plus probable.



FIGURE 17 – Progression de l'utilité espérée optimale  $EU^{\star}$  en fonction du nombre de variables de marché connues. Naturellement, le cas où toute l'information est disponible dès p=1 affiche une utilité espérée optimale constante, alors qu'il s'agit plutôt d'une progression à peu près linéaire lorsqu'on dévoile progressivement des variables d'information chacunes faiblement corrélées à R, mais indépendantes l'une à l'autre. Enfin, l'utilité espérée optimale est bien entendu nulle dans le cas où toutes les variables de marché sont indépendantes à R. Les bornes théoriques exprimées en util se confondent car elles sont numériquement très rapprochées.



FIGURE 18 – Progression du 95° percentile des erreurs de sous optimalité et de leur garantie théorique à mesure que de nouvelles variables de marché sont dévoilées à l'algorithme, avec  $\bar{n}=10$  constant. Initialement, l'erreur de sous optimalité des courbes Information dispersée et Aucune information est très faible alors que la courbe Information concentrée dispose déjà de suffisament d'information pour permettre une erreur élevée. Puis, à mesure que p se rapproche de  $\bar{p}$ , on observe pour la courbe Information dispersée une progression linéaire, alors que l'erreur plafonne dans les deux autres cas. Les garanties en util donnent une progression qui elle est linéaire en util.

### 5.4 n et p variables

Finalement, cette section cherche à illustrer le comportement de l'erreur de généralisation et de sous optimalité lorsqu'on est en présence de régimes dynamiques entre n et en p, i.e. lorsque  $p=\mathcal{O}(n^k)$ . Trois régimes seront étudiés : celui où  $p=\mathcal{O}(n^{1/2})$ ,  $p=\mathcal{O}(n^{3/4})$  et  $p=\mathcal{O}(n)$ . La façon de procéder restera la même que celle employée aux sections précédentes. Les percentiles d'erreur seront déterminés à partir d'un échantillon formé de m=150 ensembles d'entraînement de taille n, n variant de 9 à 50. Le nombre de variables de marché dévoilées sera ensuite donné à partir d'une des trois relations suivantes : p=2n,  $p=3.5n^{3/4}$  et  $p=6n^{1/2}$ , selon le régime. Le marché sera constitué de  $\bar{p}=100$  variables, ce qui correspond à  $p(\bar{n})$  dans le régime  $p=\mathcal{O}(n)$ . Ces relations ont été déterminées afin que les valeurs initiales de p soient identiques et qu'elles conservent le même ordre de grandeur sur toute l'expérience (voir Figure 19).



FIGURE 19 – En fonction de n, trois de cas de figure seront étudiés où le nombre p de variables de marché dévoilées à l'algorithme dépend de n. Dans les expériences de cette section, n variera de 9 à 50. La relation entre p et n sera alors respectivement donnée par  $p=2n,\,p=3.5n^{3/4}$  et  $p=6n^{1/2}$ .

Les propriétés mathématiques des deux types d'erreur établies à la Section 4.4 suggérait un ordre asymptotique  $\mathcal{O}(p\,n^{-1/2})$ . Les résultats empiriques de la Section 5.2 (n variable, p constant) ont d'abord permis de confirmer l'ordre  $\mathcal{O}(1/\sqrt{n})$  avec p constant. Puis à la Section 5.3 (n constant, p variable), la progression qu'on aurait pu anticiper être linéaire s'est révélée comporter possiblement une composante racine carrée, i.e.  $\mathcal{O}(p) + \mathcal{O}(\sqrt{p})$ . Ainsi, uniquement à partir de ces observations, on pourrait conjecturer que l'erreur se comporte en fait comme  $\mathcal{O}(p/\sqrt{n}) + \mathcal{O}(\sqrt{p/n})$ . Du fait de la dominance de  $1/\sqrt{n}$  sur 1/n, rien n'empêcherait non plus que l'ordre soit  $\mathcal{O}(p/n) + \mathcal{O}(\sqrt{p/n})$ .

#### 5.4.1 Erreur de généralisation

La Figure 20 présente la progression du 95° percentile de l'erreur de généralisation et de la garantie théorique ( $\delta=5\%$ ) des trois régimes de p en fonction de la taille d'échantillonage n. Ce qui frappe surtout, c'est comment les ordres théoriques n'ont rien à voir avec les ordres empiriques. Soit par exemple le cas où  $p=\mathcal{O}(\sqrt{n})$ . La courbe de la garantie demeure constante alors qu'en fait c'est plutôt une décroissance qui est observée. Si on a plutôt une progression  $p=\mathcal{O}(n)$ , il aurait été raisonnable de penser que l'erreur de généralisation augmenterait, alors que même dans ce cas, elle continue de décroître!

La Figure 21 présente le  $95^{\rm e}$  percentile de l'erreur de généralisation suivant un autre régime où  $p=0.0016n^{3/2}$ . Si l'erreur est alors bien croissante, il faut être prudent et éviter de généraliser cette observation puisque la valeur de départ p=1 lorsque n=9 n'est pas la même que pour les trois régimes de la Figure 20 où p=18 lorsque n=9. Mais de toute façon, les résultats de la Section 5.3 confirment qu'il existe un point où si p domine suffisament p l'erreur de généralisation devra croître. Il n'est cependant pas clair quel est ce point, ni comment il dépend de p ou de p.

#### 5.4.2 Erreur de sous optimalité

La Figure 22 présente quant à elle la progression du 95° percentile de l'erreur de sous optimalité de la borne de généralisation selon les trois régimes à l'étude,  $p = \mathcal{O}(n^{1/2}), p = \mathcal{O}(n^{3/4})$  et  $p = \mathcal{O}(n)$ . L'ordre  $\mathcal{O}(p/\sqrt{n})$  de la borne théorique semble ici respecté, puisque l'erreur de sous optimalité demeure constante dans le cas  $p = \mathcal{O}(\sqrt{n})$ , alors qu'elle augmente dans les deux autres cas. Cependant, les courbes théoriques décroissent, excepté lorsque  $p = \mathcal{O}(n)$ !

Pour expliquer ce phénomène contre intuitif, il suffit de réaliser que la borne théorique a en fait une croissance  $\mathcal{O}(p/\sqrt{n}) + \mathcal{O}(\sqrt{p/n}) + \mathcal{O}(1)$ . Donc si  $p = \mathcal{O}(\sqrt{n})$ , l'ordre asymptotique de l'erreur sera alors  $\mathcal{O}(1)$ , *i.e.* constant mais le deuxième terme forcera une décroissance  $\mathcal{O}(\sqrt{n})$  vers cette constante, et c'est précisément cette décroissance qu'on observe dans la Figure 22.

De plus, il ne faut pas oublier que la norme de la décision optimale  $\lambda \|q^\star\|^2$  entre aussi dans la composition de la borne théorique, et donc possiblement dans celle de l'erreur empirique de sous optimalité. Hélas, l'ordre de grandeur de cette décision optimale est inconnue.

Cette figure illustre en fait assez bien le problème à réduire la progression des erreurs en ordres asymptotiques. En effet, si l'erreur est polynômiale, alors même si un certain ordre doit émerger asymptotiquement, lorsque n est fini, il est tout à fait possible que ce soit un terme d'un autre ordre qui domine la progression. Avec les paramètres choisis pour l'expérience de la Figure 22, si l'ordre de l'erreur de sous optimalité est effectivement de  $\mathcal{O}(p/\sqrt{n}) + \mathcal{O}(\sqrt{p/n})$ , alors il est clair que seule la première composante joue sur la progression de l'erreur. À la Section 5.3 où le cas où n étant constant était

étudié, il semblait pourtant que l'erreur progresse en  $\mathcal{O}(\sqrt{p})+\mathcal{O}(p)$ , ce qui laisse donc finalement assez incertain l'ordre véritable de l'erreur de sous optimalité.



FIGURE 20 – Progression du 95e percentile d'erreur de généralisation et des garanties théorique en fonction de n, selon le régime de p. Une forte disparité entre la courbe des garanties théoriques et celle de l'erreur empirique est observée. Les courbes théoriques suggérant une progression de l'erreur  $\mathcal{O}(p/n^{1/2})$ , on se serait attendu à une amplification de l'erreur dès que p domine  $n^{1/2}$ , i.e. si  $p=\omega(n^{1/2})$ . Pourtant, cette figure indique que même si p est de l'ordre de n, i.e.  $p=\mathcal{O}(n)$ , l'erreur de généralisation empirique décroit tout de même.



FIGURE 21 – Progression du 95° percentile de l'erreur de généralisation et de sa borne théorique ( $\delta=5\%$ ) en fonction de la taille de l'échantillonage n. La relation entre n et p est donnée par la partie entière de  $p=0.0016n^{3/2}$ . On observe bien une croissance de l'erreur de généralisation, cependant il serait trompeur de comparer ce résultat à celui présenté à la Figure 20 puisque le nombre p de variables de marché est initialement beaucoup moins élevé dans ce cas-ci.



FIGURE 22 – Progression du 95° percentile de l'erreur de sous optimalité et de sa garantie théorique ( $\delta=5\%$ ) selon les trois régimes à l'étude,  $p=\mathcal{O}(n^{1/2}), p=\mathcal{O}(n^{3/4})$  et  $p=\mathcal{O}(n)$ . L'ordre  $\mathcal{O}(p/\sqrt{n})$  de la borne semble ici respecté, puisque l'erreur de sous optimalité demeure constante dans le cas  $p=\mathcal{O}(\sqrt{n})$ , alors qu'elle augmente dans les deux autres cas. Cependant, les courbes théoriques décroissent, excepté lorsque  $p=\mathcal{O}(n)$ !

#### 5.5 Conclusion

Cette section a permis d'illustrer le comportement des erreurs de généralisation et de sous optimalité dans un cas relativement simple, où l'algorithme de décision ne disposait que d'un noyau linéaire et où les variables de marché et le rendement étaient toutes distribuées selon une loi Rademacher, liées les unes autres par une copule gaussienne.

Il a pu être établi assez clairement que pour un nombre constant de variables de marché, l'erreur décroît bien à un rythme  $\mathcal{O}(1/\sqrt{n})$ , ce qui d'une certaine façon est sans surprise au su du théorème limite centrale ou de la théorie de la programmation stochastique (voir Shapiro et al. (2009)).

Les choses se compliquent sensiblement lorsqu'on fait intervenir un nombre croissant de variables de marché. Néanmoins, avec n constant, les expériences menées plus haut ont permis de constater que l'ordre des deux types d'erreur est probablement  $\mathcal{O}(p)$ , bien que ce régime puisse mettre du temps à apparaître et qu'il serait en fait plus précis de parler d'un régime  $\mathcal{O}(p) + \mathcal{O}(\sqrt{p})$ .

La théorie par contre ne permet pas d'expliquer les courbes d'erreur de généralisation observées dans des régimes dynamiques où  $p=\mathcal{O}(n^k)$ , où, pour  $k\leq 1$ , celles-ci étaient toutes décroissantes alors qu'elles auraient dû être croissantes. Ceci dit, l'étude faite sur l'erreur de sous optimalité viendrait supporter l'idée que sa progression serait bien de  $\mathcal{O}(p/\sqrt{n})$ .

### 6 Conclusion

I would hate to die twice, it's so boring.

Richard. P. Feynmann

En conclusion, nous jugeons que l'algorithme d'investissement présenté dans ce mémoire est d'un grand intérêt et ce, pour plusieurs raisons.

En premier lieu, il permet de représenter naturellement le niveau de risque auquel un investisseur est prêt à s'exposer grâce à la maximisation de la fonction d'utilité. Cet algorithme permet de plus de traiter de façon relativement simple toute sorte de variables de marché que l'investisseur pourrait estimer intéressantes. Par apprentissage, on s'attend alors à ce que l'algorithme décide de lui même sur quelles variables de marché devraient reposer les décisions d'investissement. De plus, la méthode de noyaux permet de rendre compte de situations complexes non linéaires dans la relation entre ces variables de marché et le rendement aléatoire.

Finalement, les garanties statistiques sur l'erreur de généralisation de l'équivalent certain, au delà de l'aspect purement numérique, et d'ailleurs souvent extrêmement relâchée, offrent néanmoins une bonne idée de leur comportement en fonction de la taille de l'échantillon employé et du nombre de variables de marché considérées. En particulier, nous avons tenté de mettre en lumière comment l'interaction entre ces deux quantités peut donner lieu à des situations périlleuses. Nous avons également établi rigoureusement un intervalle de vitesse dans lequel un investisseur peut chercher à réduire son erreur de sous optimalité, tout en maintenant de garanties hors échantillon.

D'un point de vue théorique aussi, ce mémoire a cherché à illustrer comment la gestion de portefeuille peut donner lieu à une autre forme d'optimisation où la fonction objectif n'est pas une régression aux moindres carrés sur certains paramètres d'un modèle donné, mais bien la fonction utilité elle même. À notre avis, il s'agit là d'une différence profonde de ce qui est typiquement observé en statistiques ou dans des problèmes d'inférence classiques.

Cependant, ces résultats sont obtenus au prix de plusieurs hypothèses, certaines assez contraignantes. On peut penser à la stationnarité de la loi de marché. Bien que ce soit une hypothèse couramment faite dans un contexte théorique, elle n'en demeure pas moins problématique aussitôt qu'on cherchera à mettre en œuvre les idées présentées dans ce mémoire dans un contexte appliqué. Les idées assez proposées dans Kuznetsov and Mohri (2017) nous semblent de cette façon dignes d'intérêt, puisqu'elles offrent le même genre de garantie de généralisation à des processus mélangés (mixing processes) non stationnaires. Il s'agit en fait de limiter la façon dont la loi de  $M_t$  peut changer au cours d'un intervalle de temps  $\delta$  donné.

Mais au delà de ces considérations théoriques, notre algorithme souffre évidemment du fait qu'il ne considère que les portefeuilles dotés d'un seul actif. On peut néanmoins généraliser assez facilement la fonction objectif à un portefeuille à k actifs dans le cas

d'une décision matricielle Q:

$$\underset{Q \in \mathcal{R}^{k \times p}}{\text{maximiser}} \quad n^{-1} \sum_{i=1}^{n} u(r_i^T Q x_i) - \frac{\lambda}{2} \|Q\|_F^2. \tag{88}$$

Par contre, il n'est pas clair quel rôle le nombre d'actifs k viendrait jouer dans l'erreur de généralisation. Ceci étant dit, il y a probablement moyen de s'inspirer des SVM multiclasses qui disposent justement de telles garanties. On peut noter au passage que ces garanties se dégradent généralement selon  $\mathcal{O}(k^2)$  où k représente le nombre de classes possibles. Il est donc possible qu'un tel portefeuille multi-actifs soit exposé au même type de risque de généralisation.

Enfin, l'Appendice C présente une conjecture sur l'erreur de généralisation. Rapidement, celle-ci repose d'abord sur l'observation empirique que pour un ensemble d'entraînement  $S_n$  donné, on aura l'inégalité

$$|\hat{\zeta}_u(\mathcal{S}_n)| \le |\hat{\zeta}_1(\mathcal{S}_n)|. \tag{89}$$

où  $\hat{\zeta}_u$  est l'erreur de généralisation en employant une fonction d'utilité quelconque et  $\hat{\zeta}_1$  l'erreur de généralisation avec une attitude risque neutre. Doté d'une telle inégalité, il suffirait alors de borner l'erreur de généralisation dans le cas d'une utilité neutre au risque. Or, si l'inégalité de McDiarmid se généralise à des vecteurs aléatoires (deuxième conjecture), il y aurait moyen d'obtenir une borne beaucoup plus serrée sur l'erreur de généralisation, illustré par la Figure 27.

Pour la postérité, un mot devrait également être consigné dans cette conclusion au sujet d'efforts ayant été déployés afin de tester notre algorithme dans un véritable contexte empirique, *i.e.* avec de véritables variables de marché. L'idée était la suivante. En employant l'algorithme *doc2vec* (tel que décrit par Le and Mikolov (2014)) sur les dépêches de presses Reuters <sup>11</sup>, il nous apparaissait possible d'obtenir une représentation numérique des nouvelles ayant eu lieu au cours de chaque journée d'activité financière. Cependant, les résultats obtenus furent assez décevant et finalement le projet a été abandonné. Néanmoins, la plupart du code écrit pour ce projet reste accessible à l'adresse https://github.com/thierry-bm/MEMOIRE/tree/master/cd/data.

À ce sujet, l'essentiel du code employé pour la production de ce mémoire, tant pour les figures que pour le document est disponible sur https://github.com/thierry-bm/MEMOIRE.

\* \* \*

 $<sup>11. \ \</sup> Disponibles \ \grave{a} \ l'adresse \ \texttt{http://www.reuters.com/resources/archive/us/}.$ 

## Références

- Gah-Yi Ban, Noureddine El Karoui, and Andrew EB Lim. Machine learning and portfolio optimization. *Management Science*, 2016.
- Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Information Science and Statistics. Springer, 2006.
- Taras Bodnar, Nestor Parolya, and Wolfgang Schmid. On the equivalence of quadratic optimization problems commonly used in portfolio theory. *European Journal of Operational Research*, 229(3):637–644, 2013.
- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration Inequalities : A Nonasymptotic Theory of Independence*. Oxford University Press, 2013.
- Olivier Bousquet and André Elisseeff. Stability and generalization. *Journal of Machine Learning Research*, 2(Mar):499–526, 2002.
- Stephen P. Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge uniVersity Press, 2004.
- Michael W. Brandt, Pedro Santa-Clara, and Rossen Valkanov. Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns. *Review of Financial Studies*, 22(9):3411–3447, 2009.
- Thomas M. Cover. Universal portfolios. *Mathematical Finance*, 1(1):1–29, 1991.
- Steven Diamond and Stephen P. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. *Journal of Machine Learning Research*, 17(83):1–5, 2016.
- A. Domahidi, E. Chu, and Stephen P. Boyd. ECOS: An SOCP solver for embedded systems. In *European Control Conference (ECC)*, pages 3071–3076, 2013.
- Louis Eeckhoudt, Christian Gollier, and Harris Schlesinger. *Economic and Financial Decisions Under Risk*. Princeton University Press, 2005.
- Eugene F. Fama. Efficient capital markets: A review of theory and empirical work. *The Journal of Finance*, 25(2):383–417, 1970.
- Eugene F. Fama and Kenneth R. French. Multifactor explanations of asset pricing anomalies. *The Journal of Finance*, 51(1):55–84, 1996.
- Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, *Recent Advances in Learning and Control*, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph\_dcp.html.
- Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, March 2014.

- Elad Hazan. Introduction to online convex optimization. *Foundations and Trends in Optimization*, 2(3-4):157–325, 2015.
- Vitaly Kuznetsov and Mehryar Mohri. Generalization bounds for non-stationary mixing processes. *Machine Learning*, 106(1):93–117, 2017.
- Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 1188–1196, 2014.
- Dilip B. Madan, Peter P. Carr, and Eric C. Chang. The variance gamma process and option pricing. *European Finance Review*, 2(1):79–105, 1998.
- Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.
- Harry Markowitz. Mean-variance approximations to expected utility. *European Journal of Operational Research*, 234(2):346–355, 2014.
- Richard O Michaud. The markowitz optimization enigma: Is optimized optimal? *ICFA Continuing Education Series*, 1989(4):43–54, 1989.
- Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*. MIT press, 2012.
- Yurii Nesterov. Primal-dual subgradient methods for convex problems. *Mathematical programming*, 120(1):221–259, 2009.
- Alba V. Olivares-Nadal and Victor DeMiguel. A robust perspective on transaction costs in portfolio optimization. Technical report, Working Paper, 2015.
- Bruno Rémillard. Statistical Methods for Financial Engineering. CRC Press, 2013.
- Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
- Cynthia Rudin and Gah-Yi Vahn. The big data newsvendor: Practical insights from machine learning. Article submitted to Operations Research, 2014.
- Bernhard Scholkopf and Alexander J. Smola. *Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.* MIT press, 2001.
- Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. *Lectures on Stochastic Programming: Modeling and Theory*. SIAM, 2009.
- Steven E. Shreve. *Stochastic Calculus for Finance II: Continuous-Time Models*. Springer Finance, 2004.
- Karthik Sridharan, Shai Shalev-Shwartz, and Nathan Srebro. Fast rates for regularized objectives. In *Advances in Neural Information Processing Systems*, pages 1545–1552, 2009.
- Vladimir Vapnik. Statistical Learning Theory, volume 1. Wiley New York, 1998.
- John von Neumann and Oskar Morgenstern. *Theory of Games and Economic Behavior*. Princeton University Press, 1944.

# A Application expérimentale

Le monde est tout ce qui a lieu.

Ludwig Wittgenstein TRACTACUS LOGICO-PHILOSOPHICUS

Pour conclure ce mémoire, nous offrons au lecteur une brève application de la méthode algorithmique présentée à la Section 3. Le but ici n'est pas nécessairement d'offrir une intuition sur le comportement fondamental des marchés, mais plutôt d'illustrer de quelle façon un technicien pourrait mettre en œuvre un algorithme d'investissement simple.

Le cadre expérimental sera le suivant : le rendement aléatoire R sera celui du titre AMZN et es variables de marché  $X_j$  seront obtenues à partir de la valeur à la fermeture des marchés des indices NASDAQ et VVIX (voir Figure 23). Ces valeurs seront obtenues à partir du 1<sup>er</sup> janvier 2004 jusqu'au 15 août 2017, ce qui représente un échantillon de 3429 points. Ces données brutes seront d'abord normalisées sur toute la période considérée puis transformées en considérant les moyennes et les écarts type ces variables des cinq jours précédants de façon à avoir dix variables de marché (incluant le biais). La Table 1 précise la nature de chacune de ces variables.



FIGURE 23 – Evolution temporelle de valeur à la fermeture du titre AMZN et des indices VIX et NASDAQ sur un échelle commune.

En second lieu, l'utilité employée au cours de cette expérience sera de type Lipschitz exponentielle (voir Section 5) avec paramètre d'échelle  $\mu=3$ . La Figure 24 présente

| Variable       | Signification                      |
|----------------|------------------------------------|
| $\overline{R}$ | Rendement d'AMZN à $t+1$           |
| $X_0$          | Terme de biais constant à 1        |
| $X_1$          | Rendement normalisé du NASDAQ à t  |
| $X_2$          | Rendement normalisé du VIX à t     |
| $X_3$          | Rendement normalisé d'AMZN à t     |
| $X_4$          | Moyenne de $R$ sur $[t-5,t]$       |
| $X_5$          | Moyenne de $X_1$ sur $[t-5,t]$     |
| $X_6$          | Moyenne de $X_2$ sur $t[t-5,t]$    |
| $X_7$          | Ecart type de $R$ sur $[t-5,t]$    |
| $X_8$          | Ecart type de $X_1$ sur $[t-5,t]$  |
| $X_9$          | Ecart type de $X_2$ sur $t[t-5,t]$ |

TABLE 1 – Variables de marché employée dans le cadre de cette expérience.

cette fonction d'utilité par rapport à la distribution des rendements normalisés d'AMZN ainsi que la distribution u(R) de l'utilité appliquée à ce rendement aléatoire. On obtient alors une utilité moyenne sur l'intervalle  $\hat{\boldsymbol{E}}\,R=-0.087$ . Par ailleurs, pour des raisons computationnelles, nous nous limiterons à un noyau linéaire. Notons que le choix de ces paramètres est tout à fait arbitraire, mais souhaite représenter le type d'utilité dont un véritable investisseur pourrait souhaiter se voir doter.

D'emblée, on peut dire que les performances hors échantillon obtenues par un noyau linéaire ne sont pas convaincantes. Bien qu'on obtienne parfois des résultats relativement encourageant, on se rend vite compte que ceux ci sont liés de proche aux ensembles d'entraînement et de validation et subissent donc de forte variation selon l'échantillonage. Néanmoins on parvient parfois à obtenir des résultats intéressants comme celui illustré à la Figure 25 qui présente le diagramme classique d'optimisation de paramètre.

En procédant par validation croisée, on trouve par ailleurs une régularisation optimale de  $\lambda=7.262\times10^{-3}$ . À partir de cette valeur, on est alors en mesure d'établir une utilité espérée en échantillon et hors échantillon. Cependant, les résultats ainsi obtenus dépendent alors fortement des ensembles d'entraînement et de test, tel qu'illustré à la Figure 26. En fait, cette figure semble indiquer que l'hypothèse centrale sur laquelle repose ce mémoire, *i.e.* le caractère i.i.d. de la loi de marché M n'est peut être pas respectée! En effet, si M était vraiment i.i.d., on s'attendrait à ce que les performances en échantillon et hors échantillon ne dépendent pas autant de l'échantillonage employé.

Toutefois, il faut bien comprendre que rien ne garantit que cette approche purement technique (au sens d'analyse financière) n'est pas nécessairement ce qu'il y a de plus efficace. En fait, on entre ici dans le vieux débat analyse fondamental vs technique. Pour faire un travail appliqué plus complet, il serait clairement nécessaire d'avoir d'abord une bonne intuition et une bonne expérience des facteurs fondamentaux qui viennent affecter les mouvements de marché. Ceci dépasse cependant le cadre de ce travail, qui se veut avant tout intéressant sur le plan théorique.



FIGURE 24 – Utilité Lipschitz exponentielle  $LEU_3$ , distribution des rendements et effet de l'utilité sur ces rendements.



FIGURE 25 – Figure d'optimisation de paramètre de régularisation. En fixant l'ensemble d'entraı̂nement et de validation, on fait varier  $\lambda$  sur une échelle logarithmique afin de déterminer la meilleure régularisation à appliquer.



FIGURE 26 – Distribution de l'utilité espérée en échantillon et hors échantillon avec paramètre de régularisation constant à  $\lambda=7.262\times10^{-3}$ . Plus précisément, un ensemble d'entraı̂nement aléatoire formé de quatre cinquièmes des données et d'abord formé, duquel on détermine une fonction d'investissement q. L'utilité moyenne hors échantillon est ensuite calculé sur le cinquième des données restantes. Les deux croix indiquent la moyenne des utilité espérées en et hors échantillon, respectivement de  $0.014\,164$  et de  $-0.001\,349$ .

Cela étant dit, il est également possible que ces résultats décevants soient dûs à la forme d'utilité employée ici. Car il faut bien dire que le problème avec une utilité  $LEU_{\mu}$  c'est qu'elle sature assez rapidement à  $\mu$  et encourage ainsi un comportement très défensif. Il pourrait donc être intéressant de faire d'autres expériences en utilisant une utilité log Lipschitz, c'est à dire qui serait linéaire sur les rendements négatifs et de progression logarithmique sur sa branche de droite.

### **B** Démonstrations

Bad coffee is better than no coffee.

David Lynch

#### **B.1** Lemmes

Lemme 1 (Décision neutre au risque). La solution au problème

$$\underset{q \in \mathbf{Q}}{\text{maximiser}} \quad \widehat{\mathbf{EI}}(q) - \frac{\lambda}{2} \|q\|^2 \tag{90}$$

est donnée par

$$\hat{q}_1 = \frac{1}{n\lambda} \sum_{i=1}^n r_i |x_i\rangle. \tag{91}$$

On en déduit par ailleurs que

$$\widehat{EI} = \lambda \, \hat{q}_1 \tag{92}$$

et donc que

$$\widehat{EI}(\hat{q}_1) = \lambda \|\hat{q}_1\|^2 \tag{93}$$

et

$$\widehat{EI}_{\lambda}(\hat{q}_1) = \frac{\lambda}{2} \|\hat{q}_1\|^2. \tag{94}$$

Démonstration. Si on considère un déplacement de décision  $\hat{q}_1 + \Delta q$ , alors par linéarité le premier terme de l'objectif devient  $\widehat{EI}(\hat{q}_1 + \Delta q) = \widehat{EI}(\hat{q}_1) + \widehat{EI}(\Delta q)$  et le terme de régularisation devient

$$-\lambda/2\|\hat{q}_1 + \Delta q\|^2 = -\lambda/2\|\hat{q}_1\|^2 - \lambda \langle \hat{q}_1 | \Delta q \rangle - \lambda/2\|\Delta q\|^2.$$
 (95)

On a donc

$$\widehat{EI}_{\lambda}(\hat{q}_1) - \widehat{EI}_{\lambda}(\hat{q}_1 + \Delta q) = -\widehat{EI}(\Delta q) + \lambda \langle \hat{q}_1 | \Delta q \rangle + \lambda / 2 ||\Delta q||^2$$
(96)

$$= -\lambda \langle \hat{q}_1 | \Delta q \rangle + \lambda \langle \hat{q}_1 | \Delta q \rangle + \lambda / 2 ||\Delta q||^2$$
 (97)

$$= \lambda/2||\Delta q||^2 \ge 0, (98)$$

Ce qui entraı̂ne 
$$\widehat{EI}_{\lambda}(\hat{q}_1) \geq \widehat{EI}_{\lambda}(\hat{q}_1 + \Delta q)$$
 pour tout déplacement  $\Delta q \in Q$ .

Lemme 2 (Forte concavité de l'objectif). Soit  $S_n$  un ensemble d'entraînement et  $\hat{q} = \arg \max EU_{\lambda}(q)$  la décision régularisée optimale. Alors pour toute décision  $q \in Q$ ,

$$\frac{\lambda}{2}\|\hat{q} - q\|^2 \le \widehat{EU}_{\lambda}(\hat{q}) - \widehat{EU}_{\lambda}(q). \tag{99}$$

Remarque. Naturellement, ce résultat s'applique aussi à l'opérateur d'utilité espérée hors échantillon hors échantillon  $EU_{\lambda}$  autour de  $q_{\lambda}^{\star}$ , où  $q_{\lambda}^{\star} = \arg\max_{q} EU_{\lambda}(q)$ . La démonstration demeure en effet identique dans les deux cas.

Lemme 3 (Forte concavité II). L'objectif est fortement concave, que ce soit sous sa version statistique  $\widehat{EU}_{\lambda}$  ou probabiliste  $EU_{\lambda}$ . Autrement dit, pour tout  $\alpha \in [0, 1]$ , on a

$$EU_{\lambda}(tq_1 + (1-\alpha)q_2) \ge \alpha EU_{\lambda}(q_1) + (1-\alpha)EU_{\lambda}(q_2) + \lambda \alpha (1-\alpha) \|q_1 - q_2\|^2$$
, (100)

et de même pour  $\widehat{EU}_{\lambda}$ . Effectivement, puisque u est concave et  $\|\cdot\|^2$  est convexe, on a successivement :

$$EU_{\lambda}(\alpha q_{1} + (1 - \alpha)q_{2})$$

$$= E u(R \cdot (\alpha q_{1} + (1 - \alpha)q_{2})(X)) - \lambda \|\alpha q_{1} + (1 - \alpha)q_{2}\|^{2}$$

$$= E u(\alpha(R \cdot q_{1}(X)) + (1 - \alpha)(R \cdot q_{2}(X))) - \lambda \|\alpha q_{1} + (1 - \alpha)q_{2}\|^{2}$$

$$\geq E(\alpha u(R \cdot q_{1}(X)) + (1 - \alpha)u(R \cdot q_{2}(X))) - \lambda \|\alpha q_{1} + (1 - \alpha)q_{2}\|^{2}$$

$$= \alpha EU(q_{1}) + (1 - \alpha)EU(q_{2}) - \lambda \|\alpha q_{1} + (1 - \alpha)q_{2}\|^{2}$$

$$= \alpha EU_{\lambda}(q_{1}) + (1 - \alpha)EU_{\lambda}(q_{2}) - \lambda (\|\alpha q_{1} + (1 - \alpha)q_{2}\|^{2} - \alpha \|q_{1}\|^{2} - (1 - \alpha)\|q_{2}\|^{2}).$$

Mais d'autre part,

$$-\lambda \|\alpha q_1 + (1-\alpha)q_2\|^2 + \lambda \alpha \|q_1\|^2 + \lambda (1-\alpha)\|q\|^2$$
 (107)

$$= \lambda \alpha (1 - \alpha) (\|q_1\|^2 + \|q_2\|^2 - 2\langle q_1, q_2 \rangle)$$
 (108)

$$= \lambda \alpha (1 - \alpha) \|q_1 - q_2\|^2, \tag{109}$$

Ce qui complète la démonstration. La dérivation demeure exactement la même lors-qu'on considère  $\widehat{EU}_{\lambda}$ .

**Lemme 4 (Sigma admissibilité).** Soit  $q, q' \in Q$  deux vecteurs de décision et  $(x, r) \in M$  deux points quelconques du support de la loi de marché. Alors

$$|u(r\,q(x)) - u(r\,q'(x))| \le \gamma \bar{r}\xi ||q - q'||.$$
 (110)

 ${\it D\'emonstration}.~$  D'abord avec la propriété Lipschitz de u puis par l'hypothèse  $|r| \leq \bar{r},$  on obtient

$$|u(r\,q(x)) - u(r\,q'(x))| \le \gamma \bar{r}|(q(x) - q'(x))|. \tag{111}$$

Puis en notation vectorielle on obtient

$$= \gamma \bar{r} |\langle q|x\rangle - \langle q'|x\rangle| \tag{112}$$

$$= \gamma \bar{r} |\langle q - q' | x \rangle| \tag{113}$$

$$\leq \gamma \bar{r} \xi \| q - q' \| \tag{114}$$

successivement par Cauchy Schwartz et par l'hypothèse  $\kappa(x,x) \leq \xi$ , ce qui complète la démonstration.

**Lemme 5 (Stabilité).** Soit  $S_n$  et  $S'_n$  deux ensembles d'entraînement ne différant qu'à leur  $j^e$  point :

$$S_n = \{(x_1, r_1), \dots, (x_j, r_j), \dots, (x_n, r_n)\}$$
(115)

$$S'_n = \{(x_1, r_1), \dots, (x'_i, r'_i), \dots, (x_n, r_n)\},$$
(116)

et soit  $\hat{q} = \mathcal{Q}(\mathcal{S}_n)$  et  $\hat{q}' = \mathcal{Q}(\mathcal{S}'_n)$  les deux décisions optimales correspondantes. Alors

$$\|\hat{q} - \hat{q}'\| \le \frac{2\gamma\xi\bar{r}}{\lambda n}.\tag{117}$$

*Remarque*. Cette propriété a été démontrée par Bousquet and Elisseeff (2002). Nous en donnons ici une version simplifiée et adaptée à la situation. Voir aussi Mohri et al. (2012) pour une démonstration dans un contexte général.

 $D\acute{e}monstration$ . Posons  $\widehat{EU}=\widehat{EU}(\mathcal{S}_n,\cdot)$  et  $\widehat{EU}'=\widehat{EU}(\mathcal{S}'_n,\cdot)$ . Du Lemme 2, on obtient

$$\lambda \|\hat{q} - \hat{q}'\|^2 \le \widehat{EU}_{\lambda}(\hat{q}) - \widehat{EU}_{\lambda}(\hat{q}') + \widehat{EU}_{\lambda}'(\hat{q}') - \widehat{EU}_{\lambda}'(\hat{q}). \tag{118}$$

Les termes de régularisation s'annulent et on obtient donc :

$$\lambda \|\hat{q} - \hat{q}'\|^2 \le \widehat{EU}(\hat{q}) - \widehat{EU}(\hat{q}') + \widehat{EU}'(\hat{q}') - \widehat{EU}'(\hat{q})$$
(119)

Ces deux différences font disparaître tous les termes, excepté le  $j^e$ :

$$\lambda \|\hat{q} - \hat{q}'\|^2 \le n^{-1}(u(r_j\hat{q}(x_j)) - u(r_j\hat{q}'(x_j))) + \tag{120}$$

$$n^{-1}(u(r_i'\hat{q}'(x_i')) - u(r_i'\hat{q}'(x_i'))). \tag{121}$$

D'autre part, cette somme est positive par le terme de gauche, on peut donc successivement appliquer l'opérateur valeur absolue, l'inégalité du triangle et le résultat du Lemme 4 pour obtenir

$$\lambda \|\hat{q} - \hat{q}'\|^2 \le \frac{2}{n} \gamma \bar{r} \xi \|\hat{q} - \hat{q}'\|,$$
 (122)

d'où on tire le résultant annoncé.

**Lemme 6 (Décision limite).** Soit  $S_n$  un ensemble d'entraînement,  $\hat{q}_u = \arg\max_q \widehat{EU}_{\lambda}(q)$  la solution au problème pour une utilité u quelconque (respectant les hypothèses) et  $\hat{q}_1 = \arg\max_q \widehat{EI}_{\lambda}(q)$  la solution au problème risque neutre. Alors

$$\|\hat{q}_u\| \le \|\hat{q}_1\| \le \frac{\bar{r}\xi}{\lambda}.\tag{123}$$

 $D\acute{e}monstration$ . D'abord, par la propriété de forte concavité de  $\widehat{EU}_{\lambda}(\hat{q}_u)$  (Lemme 2), en posant q=0, on obtient,  $\frac{\lambda}{2}\|\hat{q}_u\|^2 \leq \widehat{EU}_{\lambda}(\hat{q}_u)$ , ou encore  $\lambda\|\hat{q}_u\|^2 \leq \widehat{EU}(\hat{q}_u)$ .

On a par ailleurs,

$$\widehat{EU}(\hat{q}_u) \le u(\widehat{EI}(\hat{q}_u)) \le \widehat{EI}(\hat{q}_u)$$
 (124)

en appliquant successivement l'inégalité de Jensen et l'inégalité  $u(x) \leq x$ . Ainsi, en appliquant Cauchy Schwartz et le résultat du Lemme 1,

$$\lambda \|\hat{q}_u\|^2 \le \widehat{EI}(\hat{q}_u) = \lambda \langle \hat{q}_1 | \hat{q}_u \rangle \le \lambda \|\hat{q}_1 \| \|\hat{q}_u \| \tag{125}$$

pour obtenir  $\|\hat{q}_u\| \leq \|\hat{q}_1\|$ . On obtient la deuxième inégalité simplement avec la définition de  $\hat{q}_1 = \lambda^{-1} \sum_{i=1}^n r_i |x_i\rangle$  et en appliquant les hypothèses  $r_i \leq \bar{r}$  et  $|x_i\rangle \leq \xi$ .  $\square$ 

**Lemme 7 (Domaine d'utilité limite).** Soit  $\hat{q} = \mathcal{Q}(\mathcal{S}_n)$  et  $\hat{q} = \mathcal{Q}(\mathcal{S}'_n)$  deux décision obtenues à partir de deux ensembles d'entraînement  $\mathcal{S}_n, \mathcal{S}'_n \sim M^n$ , et soit  $(x,r), (x',r') \in M$  deux points du domaine de marché. Alors

$$|u(r\,q(x)) - u(r'\,q'(x'))| \le \lambda^{-1}(\gamma + 1)\bar{r}^2\xi^2. \tag{126}$$

Démonstration. Du Lemme 6 et par hypothèse, on sait que pour tout  $(x,r) \in M$ ,  $|r\,\hat{q}(x)| \leq \lambda^{-1}\bar{r}^2\xi^2$ . De plus,  $u(x) \leq x$  sur tout le domaine de u et  $\gamma x \leq u(x)$  si x < 0 par hypothèse Lipschitz. On en déduit donc que

$$\lambda^{-1} \gamma \bar{r}^2 \xi^2 \le u(r \, \hat{q}(x)) \le \lambda^{-1} \bar{r}^2 \xi^2. \tag{127}$$

Donc au plus, deux valeurs d'utilité ne peuvent différer que de  $\lambda^{-1}(\gamma+1)\bar{r}^2\xi^2$ .  $\Box$ 

**Lemme 8 (Théorème de McDiarmid).** Soit  $S_n$  et  $S'_n$  deux ensembles d'entraînement échantillonés à partir d'une quelconque variable aléatoire réelle D supportée par D et ne différant que d'un seul point, et soit  $g: D^n \to \mathcal{R}$  telle que

$$|q(\mathcal{S}_n) - q(\mathcal{S}_n')| < c. \tag{128}$$

Alors pour tout  $\epsilon > 0$  et pour tout échantillon aléatoire  $S_n \sim D^n$ ,

$$P\{g(S_n) - Eg(S_n) \ge \epsilon\} \le \exp\left(-\frac{2\epsilon^2}{nc^2}\right).$$
 (129)

Remarque. De façon équivalente, en posant

$$\delta = \exp\left(-\frac{2\epsilon^2}{nc^2}\right),\tag{130}$$

alors on aura, avec probabilité au moins  $1 - \delta$ ,  $g(S_n) < \epsilon + E g(S_n)$ . Autrement dit, avec probabilité au moins  $1 - \delta$ , l'évènement suivant aura lieu :

$$g(S_n) \le E g(S_n) + \sqrt{\frac{nc^2 \log(1/\delta)}{2}}.$$
 (131)

*Démonstration*. Consulter Mohri et al. (2012) ou Boucheron et al. (2013). □

**Lemme 9 (Inégalité de Shalev-Schwartz).** La forte concavité de  $EU_{\lambda}$  (voir Lemme 2) fait en sorte que pour toute solution  $\hat{q} = \mathcal{Q}(\mathcal{S}_n)$ , la sous optimalité dans l'objectif sera bornée avec probabilité d'au moins  $1 - \delta$  par

$$EU_{\lambda}(\hat{q}_{\lambda}^{\star}) - EU_{\lambda}(\hat{q}) \le \frac{8\gamma^2 \xi^2 (32 + \log(1/\delta))}{\lambda n}$$
(132)

où  $\hat{q}_{\lambda}^{\star}$  est la solution de

$$\underset{q \in \mathbf{Q}}{\text{maximiser}} \quad \mathbf{E} \mathbf{U}_{\lambda}(q). \tag{133}$$

Démonstration. Voir le résultat principal de Sridharan et al. (2009).

Lemme 10 (Borne sur l'équivalent certain). Soient  $CE_1 = u^{-1}(EU_1)$  et  $CE_2 = u^{-1}(EU_2)$  et soit une borne  $\Omega_u$  telle que

$$EU_1 \ge EU_2 - \Omega_u. \tag{134}$$

Par définition du sur-gradient, pour tout  $r \in \mathcal{R}$ ,  $u(r + \Delta) \le u(r) + \Delta \cdot \partial u(r)$ . Donc en posant  $\Delta = CE_1 - CE_2$  et  $r = CE_2$ , on obtient ces deux inégalités :

$$-\Omega_u \le EU_1 - EU_2 = u(CE_1) - u(CE_2) \le \partial u(CE_2)(CE_1 - CE_2). \tag{135}$$

On trouve ainsi:

$$CE_1 \ge CE_2 - \Omega_u \cdot \partial u^{-1}(CE_2). \tag{136}$$

Typiquement,  $CE_1$  et  $EU_1$  seront des quantités inobservables, alors que  $CE_2$  et  $EU_2$  seront des quantités calculables. De plus, si  $\partial u^{-1}(CE_2)$  comporte plusieurs éléments (e.g. si la dérivée de u est discontinue à  $CE_2$ ), on choisira l'élément le plus favorable ; la plupart du temps ce sera équivalent à  $\lim_{r\to CE_2^-} 1/u'(r)$  dans la région où 1/u'(r) est défini. Enfin, on note que cette limite existe puisque u est strictement monotone, et donc sa pente ne s'annule nulle part.

#### **B.2** Théorèmes de généralisation

**Théorème 1.** On rappelle qu'on veut démontrer que pour tout ensemble d'entraı̂nement, avec probabilité  $1-\delta$ ,

$$\zeta(\mathcal{S}_n) = \mathbf{E}\mathbf{U}(\mathcal{Q}(\mathcal{S}_n)) - \widehat{\mathbf{E}\mathbf{U}}(\mathcal{S}_n, \mathcal{Q}(\mathcal{S}_n)) \le \Omega_u.$$
(137)

Démonstration. L'idée est en fait d'appliquer le théorème de McDiarmid (énoncé au Lemme 8) à l'erreur de généralisation  $\hat{\zeta}(\mathcal{S}_n)$ . Pour ce faire, on va donc d'abord chercher à borner la différence d'erreur entraînée par deux fonctions de décision  $\hat{q} = \mathcal{Q}(\mathcal{S}_n)$  et  $\hat{q}' = \mathcal{Q}(\mathcal{S}_n')$ , où  $\mathcal{S}_n$  et  $\mathcal{S}_n$  ne diffèrent que d'un seul point qu'on supposera être le  $j^e$ .

Formellement, si on pose

$$S_n = \{(x_1, r_1), \dots, (x_i, r_i), \dots, (x_n, r_n)\}$$
(138)

$$S'_n = \{(x_1, r_1), \dots, (x'_i, r'_i), \dots, (x_n, r_n)\}.$$
(139)

Alors

$$|\hat{\zeta}(\hat{q}) - \hat{\zeta}(\hat{q}')| = |\mathbf{E}\mathbf{U}(\hat{q}) - \widehat{\mathbf{E}\mathbf{U}}(\hat{q}) - \mathbf{E}\mathbf{U}(\hat{q}') + \widehat{\mathbf{E}\mathbf{U}}'(\hat{q}')|$$
(140)

$$\leq |\boldsymbol{E}\boldsymbol{U}(\hat{q}) - \boldsymbol{E}\boldsymbol{U}(\hat{q}')| + |\widehat{\boldsymbol{E}\boldsymbol{U}}(\hat{q}) - \widehat{\boldsymbol{E}\boldsymbol{U}}'(\hat{q}')|$$
 (141)

Par le théorème de Jensen appliqué à la fonction valeur absolue, on obtient du premier terme que

$$|\mathbf{E}\mathbf{U}(\hat{q}) - \mathbf{E}\mathbf{U}(\hat{q}')| = |\mathbf{E}(u(R \cdot \hat{q}(X)) - u(R \cdot \hat{q}'(X)))| \tag{142}$$

$$\leq \mathbf{E} |u(R \cdot \hat{q}(X)) - u(R \cdot \hat{q}'(X))| \tag{143}$$

$$\leq \gamma \bar{r} \xi \|\hat{q} - \hat{q}'\| \tag{144}$$

$$\leq \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n},$$
(145)

en appliquant successivement les Lemmes 4 et 5. Quant au deuxième terme de (141) on peut le borner de la façon suivante :

$$|\widehat{EU}(\hat{q}) - \widehat{EU}'(\hat{q}')| = \frac{1}{n} \left| u(r_j \hat{q}(x_j)) - u(r'_j \hat{q}'(x'_j)) + \sum_{\substack{i=1\\ i \neq j}}^{n} \left( u(r_i \hat{q}(x_i)) - u(r_i \hat{q}'(x_j)) \right) \right|, \quad (146)$$

qu'on peut décomposer en deux termes en appliquant l'inégalité du triangle. Le premier terme:

$$n^{-1}|u(r_j\hat{q}(x_j)) - u(r_j'\hat{q}'(x_j'))| \le \frac{(\gamma+1)\bar{r}^2\xi^2}{\lambda n}$$
(147)

en appliquant le résultat du Lemme 7. En appliquant une deuxième fois les Lemmes 4 et 5, le deuxième terme est borné par

$$\frac{1}{n} \left| \sum_{\substack{i=1\\i\neq j}}^{n} \left( u(r_i \hat{q}(x_i)) - u(r_i \hat{q}'(x_j)) \right) \right| \le \frac{n-1}{n} \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n} \le \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n}.$$
 (148)

Une fois toutes réunies, ces inégalités donnent donc

$$|\hat{\zeta}(\hat{q}) - \hat{\zeta}(\hat{q}')| \le \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n} + \frac{(\gamma + 1)\bar{r}^2 \xi^2}{\lambda n} + \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n}$$

$$= \frac{(4\gamma^2 + \gamma + 1)\bar{r}^2 \xi^2}{\lambda n}.$$
(149)

$$=\frac{(4\gamma^2+\gamma+1)\bar{r}^2\xi^2}{\lambda n}.$$
 (150)

On peut alors directement appliquer le corrolaire du Théorème de McDiarmid (Lemme 8). On trouve donc qu'avec probabilité au moins  $1-\delta$ , on aura

$$\hat{\zeta}(S_n) \le E \,\hat{\zeta}(S_n) + \frac{(4\gamma^2 + \gamma + 1)\bar{r}^2 \xi^2}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}}$$
(151)

Mais (voir Mohri et al. (2012) pour une preuve technique mais complète),

$$E\,\hat{\zeta}(\mathcal{S}_n) \le \frac{2\gamma^2\bar{r}^2\xi^2}{\lambda n} \tag{152}$$

et donc,

$$\hat{\zeta}(\mathcal{S}_n) \le \frac{2\gamma^2 \bar{r}^2 \xi^2}{\lambda n} + \frac{(4\gamma^2 + \gamma + 1)\bar{r}^2 \xi^2}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}}$$
(153)

ce qui correspond au résultat annoncé.

**Théorème 2.** Le Lemme 10 permet alors directement d'inverser le domaine des résultats afin de l'exprimer en rendement et non pas en unités *d'util*.

### **B.3** Théorèmes de sous optimalité

De l'inégalité de Shalev-Schwartz (Lemme 9), on sait qu'avec une probabilité d'au moins  $1-\delta$ , avec  $0<\delta<1$ , l'évènement suivant aura lieu :

$$EU_{\lambda}(q_{\lambda}^{\star}) - EU_{\lambda}(\hat{q}) \le \frac{8\gamma^2 \xi^2 (32 + \log(1/\delta))}{\lambda n}.$$
 (154)

Donc de façon équivalente, on aura également

$$EU(q_{\lambda}^{\star}) - EU(\hat{q}) \le \frac{8\gamma^2 \xi^2 (32 + \log(1/\delta))}{\lambda n} + \frac{\lambda}{2} ||q_{\lambda}^{\star}||^2 - \frac{\lambda}{2} ||\hat{q}||^2$$
 (155)

$$= \frac{\lambda n}{2^{n2\lambda n}} \frac{2^{n2\lambda n}}{2^{n2\lambda n}} \frac{2^{n2\lambda n}}{2^{n2\lambda n}} = \frac{8\gamma^2 \xi^2 (32 + \log(1/\delta))}{\lambda n} + \frac{\lambda}{2} \langle q_{\lambda}^{\star} - \hat{q} | q_{\lambda}^{\star} + \hat{q} \rangle$$
 (156)

$$\leq \frac{8\gamma^{2}\xi^{2}(32 + \log(1/\delta))}{\lambda n} + \frac{\lambda}{2} \|q_{\lambda}^{\star} - \hat{q}\| \|q_{\lambda}^{\star} + \hat{q}\|$$
(157)

$$\leq \frac{8\gamma^{2}\xi^{2}(32 + \log(1/\delta))}{\lambda n} + \frac{\lambda}{2} \|q_{\lambda}^{\star} - \hat{q}\| (\|q_{\lambda}^{\star}\| + \|\hat{q}\|). \tag{158}$$

Cette expression peut être bornée par des constantes si on considère d'abord le Lemme 6 duquel on sait que  $\|\hat{q}\|$  et  $\|q_{\lambda}^{\star}\|$  sont bornés par  $\bar{r}\xi/\lambda$ . D'autre part, en combinant la propriété de forte convexité de  $EU_{\lambda}$  (Lemme 2) et l'inégalité de Shalev Schartz, on aura, toujours avec le même  $\delta$ ,

$$\frac{\lambda}{2} \|\hat{q} - q_{\lambda}^{\star}\|^2 \le \frac{8\gamma^2 \xi^2 (32 + \log(1/\delta))}{\lambda n},\tag{159}$$

ou encore

$$\|\hat{q} - q_{\lambda}^{\star}\| \le \frac{4\gamma\xi}{\lambda} \sqrt{\frac{32 + \log(1/\delta)}{n}}.$$
 (160)

Ainsi, en simplifiant,

$$\boldsymbol{E}\boldsymbol{U}(q_{\lambda}^{\star}) - \boldsymbol{E}\boldsymbol{U}(\hat{q}) \le \frac{8\gamma^{2}\xi^{2}(32 + \log(1/\delta))}{\lambda n} + \frac{4\gamma\bar{r}\xi^{2}}{\lambda}\sqrt{\frac{32 + \log(1/\delta)}{n}}.$$
 (161)

Mais d'autre part, par définition de  $q_\lambda^\star, EU_\lambda(q^\star) \leq EU_\lambda(q_\lambda^\star),$  i.e.,

$$EU(q^*) - EU(q^*_{\lambda}) \le \frac{\lambda}{2} \|q^*\|^2 - \frac{\lambda}{2} \|q^*_{\lambda}\|^2 \le \frac{\lambda}{2} \|q^*\|^2$$
 (162)

Et donc en combinant les inégalités (161) et (162) :

$$EU(q^{*}) - EU(\hat{q}) \le \frac{8\gamma^{2}\xi^{2}(32 + \log(1/\delta))}{\lambda n} + \frac{4\gamma\bar{r}\xi^{2}}{\lambda}\sqrt{\frac{32 + \log(1/\delta)}{n}} + \frac{\lambda}{2}\|q^{*}\|^{2},$$
(163)

ce qui correspond bien au résultat annoncé. De plus, le Lemme 10 permet une fois de plus d'exprimer ce résultat en terme d'équivalent certain.

# C Conjecture sur l'erreur de généralisation

**Lemme 11** (**Généralisation du lemme de Hoeffding**). Ce lemme généralise le lemme de Hoeffding à un espace vectoriel de dimension arbitraire Q. Soit un vecteur aléatoire  $Q \in Q$  tel que  $||Q|| \le \beta$  et EQ = 0. Alors pour tout  $t \in Q$ ,

$$\mathbf{E}\,e^{\langle t,Q\rangle} \le \exp\left(\frac{\beta^2 \|t\|^2}{2}\right). \tag{164}$$

En effet, on sait que par définition de la convexité de la fonction exponentielle, pour tout  $s \in [0,1]$ ,

$$\exp(sa + (1-s)b) \le s \exp a + (1-s) \exp b. \tag{165}$$

Donc en définissant  $g:\{q\in {\pmb Q}:\|q\|\le \beta\}\to [0,1]$  par

$$g(q) = \frac{1}{2} \left( \frac{\langle t, q \rangle}{\beta ||t||} + 1 \right) \tag{166}$$

et en posant  $a = \beta ||t||$  et  $b = -\beta ||t||$ , alors pour tout  $q \in \mathbf{Q}$ ,

$$ag(q) = \frac{1}{2}(\langle t, q \rangle + \beta ||t||), \tag{167}$$

$$b(1 - g(q)) = -\frac{1}{2}(\beta ||t|| - \langle t, q \rangle), \tag{168}$$

et donc

$$\exp(ag(q) + (1 - g(q))b) = e^{\langle t, q \rangle}. \tag{169}$$

La branche droite de l'inégalité devient quant à elle

$$\left(\frac{\langle t, q \rangle}{\beta \|t\|} + 1\right) e^{\beta \|t\|} + \left(1 - \frac{\langle t, q \rangle}{\beta \|t\|}\right) e^{-\beta \|t\|}$$
(170)

et donc, puisque  $\mathbf{E}\langle t,Q\rangle=\langle t,\mathbf{E}\,Q\rangle=0$ ,

$$\boldsymbol{E} e^{\langle t, Q \rangle} \le \boldsymbol{E} \left( \left( \frac{\langle t, Q \rangle}{\beta \|t\|} + 1 \right) e^{\beta \|t\|} + \left( 1 - \frac{\langle t, Q \rangle}{\beta \|t\|} \right) e^{-\beta \|t\|} \right) \tag{171}$$

$$= e^{\beta \|t\|} + e^{-\beta \|t\|} \tag{172}$$

$$=e^{\phi(\beta||t||)}\tag{173}$$

où  $\phi(x) = \log(e^x + e^{-x})$ . Or, avec le résultat de Mohri et al. (2012), p. 370, on a  $\phi(x) \le x^2/2$ , d'où on tire le résultat annoncé.

Lemme 12 (Généralisation de la borne de Chernoff). Ce lemme généralise la borne de Chernoff à un espace vectoriel de dimension arbitraire Q. Soit un vecteur aléatoire  $Q \in Q$ . Alors l'évènement  $||Q|| \ge \epsilon$  aura lieu si et seulement s'il existe  $t \in Q$ , ||t|| = 1

tel que  $\langle t, Q \rangle \geq \epsilon$ . Ainsi, pour tout s > 0, en employant l'inégalité de Markov,

$$P\{\|Q\| \ge \epsilon\} = P\{s\langle t, Q\rangle \ge s\epsilon\} = P\{e^{s\langle t, X\rangle} \ge e^{s\epsilon}\}$$
(174)

$$\leq e^{-s\epsilon} \mathbf{E} \, e^{\langle t, Q \rangle}. \tag{175}$$

Conjecture 1 (Généralisation de l'inégalité de McDiarmid). L'inégalité de McDiarmid peut également se généraliser à des fonctions prenant leurs valeurs dans des espaces vectoriels.

Plus précisément, soit une distribution  $\mathscr{F}$  à valeur dans un espace quelconque F, un espace vectoriel Q et une fonction  $f: F^n \to Q$ . S'il existe une constante  $c \in \mathscr{R}$  telle que pour deux ensembles d'échantillons i.i.d.  $\mathcal{S}_n \sim \mathscr{F}^n$  et  $\mathcal{S}'_n$ , où  $\mathcal{S}_n$  et  $\mathcal{S}'_n$  ne diffèrent que d'un seul point rééchantilloné de  $\mathscr{F}$ , on a

$$||f(\mathcal{S}_n) - f(\mathcal{S}'_n)|| \le c, \tag{176}$$

alors pour tout échantillon aléatoire  $S_n \sim \mathscr{F}^n$ ,

$$P\{\|f(\mathcal{S}_n) - Ef(\mathcal{S}_n)\| \ge \epsilon\} \le \exp\left(-\frac{2\epsilon^2}{nc^2}\right).$$
 (177)

Conjecture 2 (Borne sur la décision). Considérons le cas d'une utilité neutre au risque puisqu'on sait que toute solution à  $\max_q EU_\lambda(q)$  sera bornée par celle de  $\max_q EI_\lambda(q)$ . La stabilité de l'algorithme  $\mathcal Q$  fournie par Bousquet and Elisseeff (2002) établit que pour deux échantillons  $\mathcal S_n$  et  $\mathcal S_n'$  tirés de  $M^n$  et ne différant que d'un seul point,

$$\|\mathcal{Q}(\mathcal{S}_n) - \mathcal{Q}(\mathcal{S}'_n)\| \le \frac{\bar{r}\xi}{\lambda n}.$$
 (178)

En posant  $\hat{q} \sim \mathcal{Q}(M^n)$ , on peut donc appliquer directement le résultat de l'inégalité de McDiarmid (Lemme 1) pour obtenir avec probabilité  $1 - \delta$  que

$$\|\hat{q} - \boldsymbol{E} \mathcal{Q}(\mathcal{S}_n)\| \le \frac{\bar{r}\xi}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}}.$$
 (179)

Or,  $\mathcal{Q}$  est un estimateur non-biaisé de  $q_{\lambda}^{\star}$ . En effet, pour une utilité neutre au risque,

$$\boldsymbol{E}\,\mathcal{Q}(\mathcal{S}_n) = \boldsymbol{E}_{M^n} \left( \frac{1}{2n\lambda} \sum_{i=1}^n r_i |x_i\rangle \right) \tag{180}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2\lambda} \boldsymbol{E}_{M}(R|X\rangle) \tag{181}$$

$$=\frac{1}{n}\sum_{i=1}^{n}q_{\lambda}^{\star}\tag{182}$$

$$=q_{\lambda}^{\star}.\tag{183}$$

On obtient ainsi

$$\|\hat{q} - q_{\lambda}^{\star}\| \le \frac{\bar{r}\xi}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}}.$$
 (184)

**Conjecture 3.** Pour tout ensemble d'entraînement  $S_n$ , on a

$$|\hat{\zeta}_u(\mathcal{S}_n)| \le |\hat{\zeta}_1(\mathcal{S}_n)|. \tag{185}$$

où  $\hat{\zeta}_u$  est l'erreur de généralisation en employant une fonction d'utilité quelconque et  $\hat{\zeta}_1$  l'erreur de généralisation avec une attitude risque neutre.

*Remarque*. Il est probable que la preuve soit simplement un argument de forte convexité dûe à la régularisation, mais aussi un phénomène plus complexe comme une généralisation multivariée de l'inégalité de Jensen.

Conjecture 4. On a, avec probabilité  $1 - \delta$  sur l'échantillonage de l'ensemble d'entraînement  $S_n$ ,

$$\hat{\zeta}_1(S_n) \le \frac{\bar{r}^2 \xi^2}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}}.$$
 (186)

Démonstration. On a la chaîne d'inégalités suivantes :

$$\widehat{\zeta}_1(\widehat{q}) = \widehat{EI}(\widehat{q}) - EI(\widehat{q})$$
(187)

$$= \langle \widehat{EI} - EI | \hat{q} \rangle \tag{188}$$

$$= \lambda \langle \hat{q} - q_{\lambda}^{\star} | \hat{q} \rangle \tag{189}$$

$$\leq \lambda \|\hat{q} - q_{\lambda}^{\star}\| \|\hat{q}\| \tag{190}$$

$$\leq \frac{\bar{r}^2 \xi^2}{\lambda} \sqrt{\frac{\log(1/\delta)}{2n}} \tag{191}$$

en utilisant les résultats de la Conjecture 2 et du Lemme 1.



FIGURE 27 – Progression de l'erreur maximale de généralisation sur m=150 ensembles d'entraı̂nement et p=5. On constate que la borne théorique issue de la conjecture de l'Annexe C est beaucoup plus serrée que les figures dérivées à partir des Théorèmes 1 et 2.