СОДЕРЖАНИЕ 1

Содержание

Ι	Интегральное исчисление функций одной переменной	2
1.	Первообразная и неопределенный интеграл	2
2.	Определенный интеграл	4
3.	Свойства интеграла	7
4.	Приложения формулы интегрирования по частям	10
5 .	Интегральные суммы	12
6.	Несобственные интегралы	17

Часть І

Интегральное исчисление функций одной переменной

1. Первообразная и неопределенный интеграл

Определение 1. $f:\langle a,b\rangle\to\mathbb{R}$, функция $F:\langle a,b\rangle\to\mathbb{R}$ – первообразная функции f, если $F'(x)=f(x)\ \forall x\in(a,b).$

Теорема 1. Непрерывная на промежутке функция имеет первообразную.

Доказательство. Позже.

3амечание. $\sin x = egin{cases} 1 & x>0 \\ 0 & x=0 \ \mathrm{He} \ \mathrm{имеет} \ \mathrm{первообразной}. \\ -1 & x<0 \end{cases}$

Пусть F — первообразная sign x.

 $F'(-1) = \operatorname{sign}(-1) = -1$, $F'(1) = \operatorname{sign}(1) = 1$; по теореме Дарбу на (-1,1) F' принимает все значения между -1 и 1. Это не так.

Теорема 2. $f,F:\langle a,b\rangle \to \mathbb{R}\ u\ F$ — первообразная f, тогда:

- 1. F + C первообразная f.
- 2. Если $\Phi: \langle a,b \rangle \to \mathbb{R}$ первообразная f, то $\Phi = F + C$.

Доказательство.

1.
$$(F(x) + C)' = F'(x) = f(x)$$
.

2.
$$(\Phi(x) - F(x))' = \Phi'(x) - F'(x) = f(x) - f(x) = 0 \Rightarrow \Phi - F = const.$$

Определение 2. Множество всех первообразных функции f — неопределенный интеграл. $\int f(x)dx = \{F(x) + C : C \in \mathbb{R}, F - \text{первообразная } f\} = \{F : F - \text{первообразная } f\}$

Обозначение 1. $\int f(x)dx = F(x) + C$

3амечание. Для справедливости равенства достаточно показать, что F'(x) = f(x).

Утверждение 1. Таблица интегралов:

1.
$$\int 0 dx = C$$

2.
$$\int x^p dx = \frac{x^{p+1}}{p+1} + C \ npu \ p \neq 1$$

3.
$$\int \frac{1}{x} dx = \ln|x| + C$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + C \text{ npu } a > 0 \text{ u } a \neq 1$$

5.
$$\int \sin x \, dx = -\cos x + C$$

6.
$$\int \cos x \ dx = \sin x + C$$

7.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

8.
$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$

9.
$$\int \frac{dx}{\sqrt{1-x^2}} = -\arcsin x + C$$

10.
$$\int \frac{dx}{1+x^2} = -\arctan x + C$$

11.
$$\int \frac{dx}{\sqrt{x^2 \pm 1}} = -\ln|x + \sqrt{x^2 + 1}| + C$$

12.
$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$

Доказательство.

3. Если
$$x > 0$$
: $\int \frac{1}{x} dx = \ln x + C$

Если
$$x < 0$$
: $\int \frac{1}{x} dx = \ln(-x) + C$, $(\ln(-x))' = \frac{1}{-x} \cdot (-x)' = \frac{1}{x}$

11.
$$(\ln|x+\sqrt{x^2+1}|)' = \frac{1}{x+\sqrt{x^2+1}} \cdot (x+\sqrt{x^2+1})' = \frac{1}{x+\sqrt{x^2+1}} \cdot (1+\frac{x}{\sqrt{x^2+1}}) = \frac{1}{\sqrt{x^2+1}}$$

12.
$$(\frac{1}{2}\ln|\frac{1+x}{1-x}|)' = (\frac{1}{2}\ln|1+x| - \frac{1}{2}\ln|1-x|)' = \frac{1}{2}(\frac{1}{1+x} + \frac{1}{1-x}) = \frac{1}{1-x^2}$$

 Теорема 3. Теорема об арифметических действиях с неопределенными интегралами

 $f,g:\langle a,b\rangle \to \mathbb{R}$ имеют первообразную, тогда:

- 1. f+g имеет первообразную и $\int (f+g) = \int f + \int g$.
- 2. $\alpha \cdot f$ имеет первообразную и $\int (\alpha \cdot f) = \alpha \cdot \int f$, если $\alpha \neq 0, \alpha \in \mathbb{R}$.
- 3. Линейность интеграла: $\alpha, \beta \in \mathbb{R}, \ |\alpha| + |\beta| \neq 0, \ mor \partial a \ \int (\alpha f + \beta g) = \alpha \cdot \int f + \beta \cdot \int g dx$

Доказательство.

- 1. Пусть F и G первообразные f и g, тогда $(F+G)'=F'+G'=f+g \Rightarrow F+G$ первообразная для f и g.
- 2. $(\alpha F)' = \alpha F' = \alpha f \Rightarrow \alpha F$ первообразная для αf .

Теорема 4. Теорема о замене перменной в неопределенном интеграле

 $f:\langle a,b \rangle \to \mathbb{R}, \varphi:\langle c,d \rangle \to \langle a,b \rangle; \ \varphi$ дифференцируема, f имеет первообразную F, тогда: $\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + C.$

Доказательство.
$$F(\varphi(t))' = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$$

Следствие 1. $\int f(\alpha x + \beta) dx = \frac{F(\alpha x + \beta)}{\alpha} + C$

Пример 1.
$$\int \frac{t}{1+t^4} dt = \frac{1}{2} \int \frac{\varphi'(t)}{1+(\varphi(t))^2} dt = \frac{1}{2} \int \frac{dx}{1+x^2} = \frac{1}{2} \arctan(t^2) + C$$
 $\varphi(t) = t^2, \ \varphi'(t) = 2t$

Теорема 5. Формула интегрирования по частям

 $f,g: \langle a,b \rangle \to \mathbb{R}; \ f,g \ \partial u \phi \phi u p e н ц u p y e мы, \ f'g \ u м e e m \ nep в o o б p аз н y ю u \ \ f'g = f g - \ \ f g'.$

Доказательство.
$$H$$
 — первообразная $f'g;$ (!) $\int fg' = fg - H + C$
$$(fg - H)' = f'g + fg' - H' = f'g + fg' - fg' = f'g$$

Пример 2. $\int \ln x \, dx = \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx = x \cdot \ln x - \int \frac{1}{x} \cdot x \, dx = x \cdot \ln x - x + C$ $f(x) = \ln x, \ g(x) = \frac{1}{x}$

2. Определенный интеграл

Определение 3. \mathcal{F} — ограниченные множества на \mathbb{R}^2 ; $\sigma: \mathcal{F} \to \mathbb{R}$ — площадь, если:

- 1. $\sigma(\mathcal{F}) \geq 0$.
- 2. $\sigma([a,b] \times [c,d]) = (b-a)(d-c)$.
- 3. Если $F_1 \cap F_2 = \emptyset$, то $\sigma(F_1 \cup F_2) = \sigma(F_1) + \sigma(F_2)$.

Утверждение 2. Свойство площади:

Ecau
$$\tilde{F} \subset F$$
, mo $\sigma(\tilde{F}) \ge \sigma(F)$.

$$\sigma(\tilde{F}) = \sigma(F) + \underbrace{\sigma(\tilde{F} \setminus F)}_{\ge 0} \ge \sigma(F)$$

Определение 4. $\sigma: \mathcal{F} \to \mathbb{R}$ – квазиплощадь, если:

1.
$$\sigma(\mathcal{F}) > 0$$
.

- 2. $\sigma([a,b] \times [c,d]) = (b-a)(d-c)$.
- 3. Если $\tilde{F} \subset F$, то $\sigma(\tilde{F}) > \sigma(F)$.
- 4. Пусть l горизонтальная или вертикальная прямая; F_- левее, F_+ правее и $F_- \cup F_+ = F$; тогда $\sigma(F) = \sigma(F_-) + \sigma(F_+)$.

Утверждение 3. Свойства квазиплощади:

- 1. Если F подмножество вертикального или горизонтального отрезка, то $\sigma(F) = 0$. Следует из 2 и 3 пунктов, $\sigma(F) \le \sigma(\text{отрезка}) = 0$.
- $2.\,\,B\,4$ не важно, где лежат точки с l:

Пусть Δ — множество отрезка, тогда $\sigma(F_- \setminus \Delta) = \sigma(F \cup \Delta)$, $\sigma(F_- \setminus \Delta) = \sigma(F_- \setminus \Delta) + \sigma(\Delta)$.

Обозначение 2. P — прямоугольник $[a,b] \times [c,d]; \ |P| = (d-c)(b-a).$

Пример 3. Примеры квазиплощадей:

1.
$$\sigma_1(F) := \inf\{\sum_{k=1}^n |P_k| : P_k - \text{прямоугольник, } F \subset \bigcup_{k=1}^n P_k\}$$

2.
$$\sigma_2(F) := \inf\{\sum_{k=1}^{\infty} |P_k| : P_k - \text{прямоугольник, } F \subset \bigcup_{k=1}^{\infty} P_k\}$$

Замечание. $\sigma_1(F) \geq \sigma_2(F)$ (множество $\{...k\} \supset \{...\infty\}$)

Теорема 6.

- 1. $\sigma_1 \kappa$ вазиплощадь.
- 2. σ_1 инвариантна относительно сдвига.

Доказательство. 2. Докажем, что $\sigma_1(F) = \sigma_1(F+a)$, где a- произвольный вектор.

Действительно: $F \subset \bigcup_{k=1}^n P_k \Leftrightarrow F + a \subset \bigcup_{k=1}^n (P_k + a)$

- 1. Проверим определение:
 - 1) $\sigma_1(F) \ge 0$ очевидно (инфимум множества неотрицательных чисел).
 - 3) $\tilde{F} \supset F \Rightarrow \sigma(\tilde{F}) \geq \sigma(F)$ $F \subset \tilde{F} \subset \bigcup_{k=1}^n P_k \Rightarrow F \subset \bigcup_{k=1}^n P_k \Rightarrow \text{y } F$ больше множество сумм \Rightarrow inf меньше.
 - 2) $\sigma([a,b]\times[c,d])=(b-a)(d-c),$ необходимо доказать \leq и \geq

≤: поскольку прямоугольник покрывает сам себя

 \geq : продлим каждую сторону каждого прямоугольника и получим разбиение на маленькие прямоугольники. Поскольку при подсчете $\sum\limits_{k=1}^{n}|P_k|$ площадь маленьких прямоугольников считается несколько раз, то $F\subset\bigcup_{k=1}^{n}P_k\geq (d-c)(b-a)$ \Rightarrow inf $\geq (d-c)(b-a)$

4)
$$\sigma_1(F_-) + \sigma_1(F_+) = \sigma_1(F)$$
, необходимо доказать $\leq \mathbf{u} \geq$
 $\geq : F_- \subset \bigcup_{k=1}^n P_k \ \mathbf{u} \ F_+ \bigcup_{j=1}^m Q_j; \ F \subset \bigcup_{k=1}^n P_k \ \mathbf{u} \ \bigcup_{j=1}^m Q_j$
 $\sigma_1(F) \leq \sum_{k=1}^n |P_k| + \sum_{j=1}^m |Q_j|$

Зафиксируем Q_j . Если заменить $\sum_{k=1}^n P_k$ на $\inf: \sigma_1(F) \leq \sigma_{F_-} + \sum_{j=1}^m |Q_j|$ тоже самое верно для $\inf \sigma_1(F) < \sigma_1(F_-) + \sigma_1(F_+)$

 \geq : берем $F \subset \bigcup_{k=1}^n P_k$

Проведем вертикальную прямую l и обозначим $P_k^- + P_k^+ : P_k = P_k^- + P_k^+, \; |P_k| = |P_k^-| + |P_k^+|$

$$F_{-} \subset \bigcup_{k=1}^{n} P_{k}^{-} \Rightarrow \sigma_{1}(F_{-}) \leq \sum_{k=1}^{n} |P_{k}^{-}| \ F_{+} \subset \bigcup_{k=1}^{n} P_{k}^{+} \Rightarrow \sigma_{1}(F_{-}) \leq \sum_{k=1}^{n} |P_{k}^{+}|$$
$$\Rightarrow \sigma_{1}(F_{-}) + \sigma_{1}(F_{+}) \leq \sum_{k=1}^{n} |P_{k}^{-}| + \sum_{k=1}^{n} |P_{k}^{+}| = \sum_{k=1}^{n} |P_{k}| \Rightarrow \sigma_{1}(F_{-}) + \sigma_{1}(F_{+}) \leq \sigma_{1}(F)$$

Определение 5. $f:[a,b] \to \mathbb{R}$; тогда:

$$f_{+}(x) = \max\{f(x),0\} \ f_{-}(x) = \max\{-f(x),0\}$$

Утверждение 4. Свойства:

- 1. $f_{+}(x), f_{-}(x) > 0$.
- 2. $f(x) = f_{+}(x) f_{-}(x)$.
- 3. $|f(x)| = f_{+}(x) + f_{-}(x)$.
- 4. $f_{+}(x) = \frac{|f(x)| + f(x)}{2}, f_{-}(x) = \frac{|f(x)| f(x)}{2}$
- 5. $f \in C[a,b], mo f_{\pm} \in C[a,b]$

Определение 6. $f:[a,b] \to \mathbb{R}$ неоттрицательная; подграфик $\mathcal{P}_f:=\{(x,y)\in \mathbb{R}^2: a\leq x\leq b,\ o\leq y\leq f(x)\}$

Замечание. $\mathcal{P}_f, f \in C[a,b]$ — ограниченное множество.

Доказательство. $f \in C[a,b] \stackrel{\text{Б.-В.}}{\Rightarrow} f$ — ограниченная $\Rightarrow \mathcal{P}_f \subset [a,b] \times [m,M] \ (m - \min; M - \max)$

Определение 7. Зафиксируем σ — квазиплощадь и положим $\int_a^b f := \sigma(\mathcal{P}_{f_+}) - \sigma(\mathcal{P}_{f_-})$ — определенный интеграл.

Утверждение 5. Свойства определенного интеграла:

f — непрерывная функция.

$$1. \int_{a}^{a} f = 0.$$

2.
$$\int_{a}^{b} 0 = 0$$
.

3. Ecau
$$f \leq 0$$
, mo $\int_a^b f = \sigma(\mathcal{P}_f)$.

Комментарий: $f_- \equiv 0 \Rightarrow \sigma(\mathcal{P}_{f_-}) = 0$

4.
$$\int_{a}^{b} (-f) = -\int_{a}^{b} f$$
.

Комментарий: $(-f)_{+} = f_{-} \Rightarrow \mathcal{P}_{f_{+}} = \mathcal{P}_{(-f)_{-}}$

$$(-f)_{-} = f_{+} \Rightarrow \mathcal{P}_{f_{-}} = \mathcal{P}_{(-f)_{+}}$$

$$5. \int_{a}^{b} c = c \cdot (b - a)$$

Комментарий: если c > 0, то $\mathcal{P} = [a,b] \times [0,c]$.

6. Пусть
$$f \geq 0$$
 и $\int\limits_a^b f = 0$, тогда $f \equiv 0$.

Доказательство. От противного.

Пусть
$$f(x_0) > 0 \Rightarrow \exists \delta > 0 : f(x) \geq \frac{f(x_0)}{2}$$
 при $x \in (x_0 - \delta, x_0 + \delta) \Rightarrow \mathcal{P}_f \supset [x_0 - \frac{\delta}{2}, x_0 + \frac{\delta}{2}] \Rightarrow \sigma(\mathcal{P}_f) \geq |...| = \delta \cdot \frac{f(x_0)}{2} > 0$??

3. Свойства интеграла

Теорема 7. Аддитивность интеграла

$$f \int C[a,b] \ u \ c \in [a,b]; \ mor \partial a \int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f.$$

Обозначение 3. $\mathcal{P}_f(E) = \mathcal{P}_{f|_E}$

Доказательство.
$$\int_{a}^{b} f = \sigma(\mathcal{P}_{f_{+}}[a,b]) - \sigma(\mathcal{P}_{f_{-}}[a,b]) =$$

$$= \left(\sigma(\mathcal{P}_{f_{+}}[a,b]) = \sigma(\mathcal{P}_{f_{+}}[a,c]) + \sigma(\mathcal{P}_{f_{+}}[c,b])\right) - \left(\sigma(\mathcal{P}_{f_{-}}[a,b]) = \sigma(\mathcal{P}_{f_{-}}[a,c]) + \sigma(\mathcal{P}_{f_{-}}[c,b])\right) =$$

$$= \left(\sigma(\mathcal{P}_{f_{+}}[a,c]) - \sigma(\mathcal{P}_{f_{-}}[a,c])\right) + \left(\sigma(\mathcal{P}_{f_{+}}[c,b]) - \sigma(\mathcal{P}_{f_{-}}[c,b])\right) = \int_{a}^{c} f + \int_{c}^{b} f$$

Следствие 2.
$$f \in C[a,b], \ a \leq c_1 \leq ... \leq c_n \leq b; \ mor \partial a \int\limits_a^b f = \int\limits_a^{c_1} f + ... + \int\limits_{c_n}^b f.$$

Доказательство. Индукция.

Теорема 8. Монотонность интеграла

$$f,g \int C[a,b], \ ecnu \ f(x) \le g(x) \ \forall x \in [a,b], \ mo \int_a^b f \le \int_a^b g.$$

Доказательство. $f_+(x) = \max\{f(x), 0\} \le \max\{g(x), 0\} = g_+(x) \Rightarrow \mathcal{P}_{f_+} \subset \mathcal{P}_{g_+} \Rightarrow \sigma(\mathcal{P}_{f_+}) \le \sigma(\mathcal{P}_{g_+})$

$$f_{+}(x) \geq g_{+}(x) \Rightarrow \mathcal{P}_{f_{-}} \supset \mathcal{P}_{g_{-}} \Rightarrow \sigma(\mathcal{P}_{f_{-}}) \geq \sigma(\mathcal{P}_{g_{-}})$$

Следовательно $\int_{a}^{b} f = \sigma(\mathcal{P}_{f_{+}}) - \sigma(\mathcal{P}_{f_{-}}) \leq \sigma(\mathcal{P}_{g_{+}}) - \sigma(\mathcal{P}_{g_{-}}) = \int_{a}^{b} g$

Следствие 3.

1.
$$f \in C[a,b] \Rightarrow \min_{x \in [a,b]} f(x) \cdot (b-a) \le \int_{a}^{b} f \le (b-a) \cdot \max_{x \in [a,b]} f(x)$$

$$2. \left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

Доказательство.

1.
$$m := \min f$$
, $M := \max f \Rightarrow m \le f(x) \le M \ \forall x \in [a,b] \Rightarrow (b-a) \cdot m = \int_a^b m \le \int_a^b f \le \int_a^b M = (b-a) \cdot M$

2.
$$-|f(x)| \le f(x) \le |f(x)| \Rightarrow -\int_a^b |f| = \int_a^b (-|f(x)|) \le \int_a^b f \le \int_a^b |f|$$

Теорема 9. Интегральная теорема о среднем

$$f \in C[a,b]; \ mor\partial a \ \exists c \in [a,b]: \int\limits_a^b f(b-a) \cdot f(c).$$

Доказательство.
$$m:=\min f,\, M:=\max f\Rightarrow m\cdot (b-a)\leq \int\limits_a^b f\leq M\cdot (b-a)\Rightarrow \frac{1}{b-a}\cdot \int\limits_a^b f\in [m,M]$$
 Любое значение между m и M достигается $\Rightarrow \exists c\in [a,b]: \frac{1}{b-a}\cdot \int\limits_a^b f=f(c)$

Определение 8. Среднее значение функции на [a,b] $I_f := \frac{1}{b-a} \cdot \int_a^b f$.

Определение 9. $f:[a,b] \to \mathbb{R}$ непрерывная; $\Phi:[a,b] \to \mathbb{R}$ называется интегралом с переменным верхним пределом, если $\Phi(x) := \int\limits_a^x f$.

Определение 10. $f:[a,b]\to\mathbb{R}$ непрерывная; $\Psi:[a,b]\to\mathbb{R}$ называется интегралом с переменным нижним пределом, если $\Psi(x):=\int\limits_x^bf.$

Замечание.
$$\Phi(x) + \Psi(x) = \int_a^b f$$

Теорема 10. Теорема Барроу

Если $f \in C[a,b]$ и $\Phi(x) = \int_a^x f$, то Φ — первообразная f.

Доказательство. Надо доказать, что $\lim_{y \to x} \frac{\Phi(y) - \Phi(x)}{y - x} = f(x)$.

Проверим для предела справа y > x; $R(y) := \frac{\Phi(y) - \Phi(x)}{y - x} = \frac{1}{y - x} \cdot \left(\int\limits_a^y f - \int\limits_a^x f\right) = \frac{1}{y - x} \cdot \int\limits_x^y f$ по th о среднем f(c), где x < c < y (c зависит от y)

Надо доказать, что $\lim_{y\to x} R(y) = f(x)$. Берем последовательность $y_n\to$, $y_n>x$

$$R(y_n) = f(c_n)$$
, где $x < c_n < y \Rightarrow c_n \to x$ и f непрерывна в точке $x \Rightarrow R(y_n) = f(c_n) \to f(c) \Rightarrow \lim_{y \to x} R(y) = f(x)$

Следствие 4.

1.
$$\Psi'(x) = -f(x)$$

2. Если $f \in C(\langle a,b \rangle)$, то у f есть первообразная.

Доказательство.

1.
$$\Psi(x) = \int_{a}^{b} f - \Phi(x) = const - \Phi(x) \Rightarrow \Psi'(x) = -f(x)$$

2. Возьмем
$$c \in (a,b)$$
 и определим $F(x) := \begin{cases} \int\limits_{c}^{x} f, & \text{если } x > c \\ -\int\limits_{x}^{c} f, & \text{если } x < c \end{cases}$

Теорема 11. Теорема Ньютона-Лейбница

Если $f \in C[a,b]$, F — первообразная f, то $\int_a^b f = F(b) - F(a)$.

Доказательство. $\Phi(x):=\int\limits_a^x f$ — первообразная f и все первообразные отличаются друг на друга на const $\Rightarrow \Phi(x)=F(x)+C \Rightarrow \int\limits_a^b f=\Phi(b)=F(b)+C,\, 0=\Phi(a)=F(a)+C \Rightarrow \int\limits_a^b f=F(b)-F(a)$

Обозначение 4. $\int\limits_a^b f = f|_a^b := F(b) - F(a)$.

Теорема 12. Линейность интеграла

$$f,g \in C[a,b]; \ \alpha,\beta \in \mathbb{R}; \ mor\partial a \int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g.$$

 \mathcal{A} оказательство. Знаем, что если F и G — первообразные f и g, то $\alpha F + \beta G$ — первообразная $\alpha f + \beta g \Rightarrow \int\limits_a^b (\alpha f + \beta g) = (\alpha F + \beta G)|_a^b = \alpha F|_a^b + \beta G|_a^b = \alpha \int\limits_a^b f + \beta \int\limits_a^b g$

Теорема 13. Формула интегрирования по частям

$$u,v \in C^{1}[a,b]; \ mor\partial a \int_{a}^{b} uv' = uv|_{a}^{b} - \int_{a}^{b} u'v.$$

Доказательство. Знаем, что если H — первообразная uv', то uv - H — первообразная для uv'.

$$\int_{a}^{b} uv' = (uv - H)|_{a}^{b} = uv|_{a}^{b} - H|_{a}^{b} = uv|_{a}^{b} - \int_{a}^{b} u'v$$

Теорема 14. Теорема о замене переменной

$$f:\langle a,b\rangle\to\mathbb{R},\;f\in C(\langle a,b\rangle);\;\phi:\langle c,d\rangle\to\langle a,b\rangle,\;\phi\in C^{-1}(\langle a,b\rangle);\;p,q\in\langle c,d\rangle;\;\mathit{morda}\;\int\limits_p^q f(\phi(t))\cdot$$

$$\phi'(t)dt = \int_{\phi(p)}^{\phi(q)} f(x)dx.$$

<u>Соглашение:</u> если a > b, то $\int_{\cdot}^{b} f := -\int_{\cdot}^{a} f$.

Доказательство. Пусть F — первообразная для f; тогда $F \circ \phi$ — первообразная для $f(\phi(t)) \cdot \phi'(t)$.

$$\int_{p}^{q} f(\phi(t)) \cdot \phi'(t) dt = F \circ \phi|_{q}^{p} = F(\phi(q))F(\phi(q)) - F(\phi(p)) = F|_{\phi(p)}^{\phi}(q) = \int_{\phi(p)}^{\phi(q)} f(x) dx \qquad \Box$$

Пример 4.
$$\int_{1}^{3} \frac{x}{1+x^4} dx = \left[t = x^2; \ dt = 2x dx\right] = \frac{1}{2} \int_{1}^{9} \frac{dt}{1+t^2} = \frac{1}{2} \arctan t \Big|_{1}^{9} = \frac{1}{2} (\arctan 9 - \arctan 1)$$

Приложения формулы интегрирования по частям 4.

Пример 5.
$$W_n := \int_0^{\frac{\pi}{2}} \cos^n x \ dx = \int_0^{\frac{\pi}{2}} \sin^n x \ dx$$

Доказательство.
$$\cos(\frac{\pi}{2} - t) = \sin t, \ \phi(t) = \frac{\pi}{2} - t, \ \phi'(t) = -1$$

Доказательство.
$$\cos(\frac{\pi}{2} - t) = \sin t$$
, $\phi(t) = \frac{\pi}{2} - t$, $\phi'(t) = -1$

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} t \ dt = -\int_{0}^{\frac{\pi}{2}} \cos^{n}(\phi(t))\phi'(t) \ dt = -\int_{\phi(0)}^{\phi(\frac{\pi}{2})} \cos^{n} x \ dx = -\int_{\frac{\pi}{2}}^{0} \cos^{n} x \ dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \ dx$$

Утверждение 6.
$$W_0 = \frac{\pi}{2}, \ W_1 = \int\limits_0^{\frac{\pi}{2}} \sin x \ dx = -\cos x|_0^{\frac{\pi}{2}} = 1$$

$$W_0 \ge W_1 \ge \dots \ge W_n$$

Доказательство.
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x \ dx = \left[u = \sin^{n-1} x \rightarrow u' = (n-1) \cdot \sin^{n-2} x \cdot \cos x \ \middle| \ v' = \sin x \rightarrow u' \right]$$

$$v = -\cos x \bigg] = \int_{0}^{\frac{\pi}{2}} uv' = uv \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} u'v = \underbrace{-\sin^{n-1}x\cos x\Big|_{0}^{\frac{\pi}{2}}}_{=0} + \int_{0}^{\frac{\pi}{2}} (n-1)\sin^{n-2}x\cos^{2}x \ dx = (n-1)\sin^{n-2}x\cos^{n}x \ dx = (n-1)\sin^{n-2}x \ dx = (n-1)\sin^{n-2}x \ dx = (n-1)\sin^{n-2}x \ dx = (n-1)\sin^{n}$$

$$1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^{2} x) dx = (n-1) \left(\int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \, dx - \int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx \right) = (n-1)(W_{n-2} - W_{n})$$

$$W_{n} = (n-1)(W_{n-2} - W_{n}) \Rightarrow W_{n} = \frac{n-1}{n} \cdot W_{n-2}$$

Следствие 5.
$$W_{2n}=\frac{2n-1}{2n}\cdot\frac{2n-3}{2n-2}\cdot\ldots\cdot\frac{1}{2}\cdot W_0=\frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2}\ W_{2n+1}=\frac{2n}{2n+1}\cdot\frac{2n-2}{2n-1}\cdot\ldots\cdot\frac{2}{3}\cdot W_1=\frac{(2n)!!}{(2n+1)!!}\cdot\frac{\pi}{2}$$

Теорема 15. Формула Валлиса

$$\lim \frac{(2n)!!}{(2n+1)!!} \cdot \frac{1}{\sqrt{2n-1}} = \sqrt{\frac{\pi}{2}}$$

Доказательство.
$$W_{2n+2} \le W_{2n+1} \le W_{2n}$$

$$\frac{(2n+1)!!}{(2n+2)!!} \cdot \frac{\pi}{2} \le \frac{(2n)!!}{(2n+1)!!} \le \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} \mid : \frac{(2n-1)!!}{(2n)!!}$$

$$\frac{\pi}{2} \leftarrow \frac{2n+1}{2n-1} \cdot \frac{\pi}{2} \le \frac{((2n)!!)^2}{(2n+1)((2n-1)!!)^2} \le \frac{\pi}{2} \Rightarrow \lim_{n \to \infty} \left(\frac{(2n)!!}{(2n-1)!!} \right) \cdot \frac{1}{2n+1} = \frac{\pi}{2}$$

Следствие 6. $C_{2n}^n = \frac{(2n-1)!!}{(2n)!!} \cdot 4^n \sim \frac{4^n}{\sqrt{\pi n}}$

Доказательство.
$$C_{2n}^n = \frac{(2n)!}{(n!)^2} = \frac{(2n)!!(2n-1)!!}{(n!)^2} = \frac{(2n)!!(2n-1)!!}{(2n)!!)^2} \cdot 4^n = \frac{(2n-1)!!}{(2n)!!} \cdot 4^n$$

$$(2n)!! = 2^n \cdot n! \quad \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{2n+1}} \sim \sqrt{\frac{\pi}{2}} \quad \frac{(2n-1)!!}{(2n)!!} \cdot \sqrt{2n+1} \sim \frac{2}{\pi} \Rightarrow frac(2n-1)!!(2n)!! \sim \frac{1}{\sqrt{\pi n}}$$

Теорема 16. Формула Тейлора с остатком в интегральной формуле

$$f \in C^{n+1}(\langle a, b \rangle); mor \partial a \ f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt \ x, x_0 \in \langle a, b \rangle.$$

Доказательство. Индукция по n; база n=0: $f(x)=f(x_0)+\int\limits_{x_0}^x f'(t)dt$

Переход: $n \to n+1$

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x) = T_n(x) + R_n(x)$$

$$n! \cdot R_n(x) = \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt = \left[v' = (x-t)^n \to v = -\frac{(x-t)^{n+1}}{n+1} \, \middle| \, u = f^{(n+1)}(t) \to u' = f^{(n+2)}(t) \right] = uv \Big|_{x_0}^x = \int_{x_0}^x u' v = -\frac{(x-t)^{n+1}}{n+1} f^{(n+1)}(t) \Big|_{x_0}^x - \int_{x_0}^x (-\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+2)}(t) dt = \frac{(x-x_0)^{n+1}}{n+1} \cdot f^{(n+2)}(x_0) + \frac{1}{n+1} \int_{x_0}^x (x-t)^{n+1} f^{(n+2)}(t) dt$$

$$R_n(x) = \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + \underbrace{\frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} f^{(n+2)}(t) dt}_{R_{n+1}(x)}$$

Пример 6.
$$H_j := \frac{1}{j!} \int_{0}^{\frac{\pi}{2}} ((\frac{\pi}{2})^2 - x^2)^j \cos dx$$

Утверждение 7. Свойства:

1.
$$0 < H_j \le \frac{1}{j!} \cdot \int_{0}^{\frac{\pi}{2}} (\frac{\pi}{2})^{2j} \cos x dx = \frac{(\frac{\pi}{2})^{2j}}{j!}$$

2. Ecnu
$$c > 0$$
, mo $c^j H_j \to 0$, $0 < c^j H_j < \frac{((\frac{\pi}{2})^2 c)^j}{i!} \to 0$

3.
$$H_0 = 1, H_1 = 2$$

4.
$$H_j = (4j-2) \cdot H_{j-1} - \pi^2 H_{j-2}$$

$$j!H_{j} = \int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^{2} - x^{2} \right)^{j} (\sin x)' dx = \underbrace{\left((\frac{\pi}{2})^{2} - x^{2} \right)^{j} \sin x}_{=0} \bigg|_{0}^{\frac{\pi}{2}} + 2j \int_{0}^{\frac{\pi}{2}} x \left((\frac{\pi}{2})^{2} - x^{2} \right)^{j-1} \underbrace{\sin x}_{=(-\cos x)'} dx = \underbrace{\left((\frac{\pi}{2})^{2} - x^{2} \right)^{j} \sin x}_{=0} \bigg|_{0}^{\frac{\pi}{2}}$$

$$=2j\underbrace{\left(\left((\frac{\pi}{2})^2-x^2\right)^{j-1}\cdot x(-\cos x)\right)}_{=0} \left| \int_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \cos x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \sin x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \sin x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \sin x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \sin x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1} \cdot \sin x \ dx - \frac{\pi}{2} \right) \left(\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^2-x^2\right)^{j-1}$$

$$-2(j-1)\int_{0}^{\frac{\pi}{2}} \left((\frac{\pi}{2})^{2} - x^{2} \right)^{j-2} \underbrace{x^{2}}_{(\frac{\pi}{2})^{2} - ((\frac{\pi}{2})^{2} - x^{2})} \cos x \, dx =$$

$$= 2j((j-1)!H_{j-1} - 2(j-1)(\frac{\pi}{2})^{2}(j-2)!H_{j-2} + 2(j-1)(j-1)!H_{j-1}) =$$

$$= 2j!H_{j-1} - \pi^{2}j!H_{j-2} + 4j!(j-1)H_{j-1} = j!((4j-2)H_{j-1} - \pi^{2}H_{j-2})$$

5. Существует многочлен P_j степени $\leq j$ с целыми коэффициентами, для которых $H_j := P_j(\pi^2)$.

Доказательство. $P_0(x) \equiv 1, P_1(x) \equiv 2, P_j(x) = (4j-2) \cdot P_{j-1}(x) - x \cdot P_{j-2}(x) -$ подходит \square

Теорема 17. Теорема Ламберта

 π и π^2 иррациональны.

Доказательство. (Эрмит)

От противного. Пусть $\pi^2 = \frac{m}{n} \Rightarrow 0 < H_j = P_j(\frac{m}{n}) = \frac{\text{целое}}{n^j}$ $n^j H_j \geq 1$ (это положительное целое) но $n^j H_j \rightarrow 0$ (по свойству 2) ??

5. Интегральные суммы

Определение 11. $f: E \to \mathbb{R}$; f равномерно непрерывна, если $\forall \varepsilon \ \exists \delta(\varepsilon) > 0: \ \forall x,y \in E: |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$

Замечание. $f:E\to\mathbb{R};\ f$ непрерывна во всех точках, если $\forall x\in E\ \forall \varepsilon>0\ \exists \delta(x,\varepsilon)>0: \forall y\in E:$ $|x-y|<\delta\Rightarrow |f(x)-f(y)|<\varepsilon$

Утверждение 8. $f: E \to \mathbb{R}$ равномерно непрерывна $\Rightarrow f$ непрерывна на E.

Пример 7.

- 0. f(x) = x
- 1. $f(x) = \sin x$ равномерно непрерывна на \mathbb{R} : $|\sin x \sin y| \le |x y|$, $\delta = \varepsilon$ подходит
- 2. $f:E\to\mathbb{R}$ липшицева с константой L, если $\forall x,y\in E\ |f(x)-f(y)|\le L\cdot |x-y|$ f равномерно непрерывна на $E:\ \delta=\frac{\varepsilon}{L}$ подходит
- 3. $f(x) = x^2$ не равномерно непрерывна на \mathbb{R}

Возьмем $\varepsilon=1$ и проверим, что никакое $\delta>0$ не подходит:

$$y=x+rac{\delta}{2},\ |x-y|<\delta;\ f(x)-f(y)=y^2-x^2=(x+rac{\delta}{2})^2-x^2=x\delta+rac{\delta^2}{4}>x\delta>1$$
 при $x>rac{1}{\delta}$

4. $f(x) = \frac{1}{x}$ на $(0, +\infty)$ не равномерно непрерывна

Возьмем $\varepsilon=1$ и проверим, что никакое $\delta>0$ не подходит:

$$y=rac{\delta}{2}$$
 и $x=\delta,\,|x-y|<\delta;\,\,f(y)-f(x)=rac{2}{\delta}-rac{1}{\delta}=rac{1}{\delta}>1$ при $\delta<1$ не подходит.

Если
$$\delta \geq 1$$
, то $y = \frac{1}{2}$, $x = 1$, то $f(y) - f(x) = 1$.

Теорема 18. Теорема Кантора

 $f:[a,b]\to\mathbb{R}$ непрерывна во всех точках; тогда f равномерно непрерывна на [a,b].

Доказательство. Зафиксируем $\varepsilon > 0$ и предположим, что никакое $\delta > 0$ не подходит. В частности, $\delta = 1$ не подходит $\Rightarrow \exists x_1, y_1 \in [a,b]: |x_1 - y_1| < \delta$ и $|f(x_1) - f(y_1)| \ge \varepsilon$

$$\delta=\frac{1}{2}$$
 не подходит $\Rightarrow \exists x_2,y_2\in [a,b]: |x_2-y_2|<\delta$ и $|f(x_2)-f(y_2)|\geq \varepsilon$

• • •

$$\delta = \frac{1}{n}$$
 не подходит $\Rightarrow \exists x_n, y_n \in [a,b] : |x_n - y_n| < \delta$ и $|f(x_n) - f(y_n)| \ge \varepsilon$

 x_n — ограниченная последовательность $\stackrel{\text{Б.-В.}}{\Rightarrow}$ можно выбрать сходящуюся подпоследовательность $x_{n_k} \to c$

$$a \le x_{n_k} \le b \Rightarrow c \in [a,b]; \ f$$
 непрерывна в $c \Rightarrow f(x_{n_k}) \to f(c)$

$$c \leftarrow x_{n_k} - \frac{1}{n_k} < y_{n_k} < x_{n_k} + \frac{1}{n_k} \to c \Rightarrow y_{n_k} \to c \Rightarrow f(y_{n_k}) \to f(c)$$

Следовательно $f(x_{n_k}) - f(y_{n_k}) \to f(c) - f(c) = 0$, но $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$, получили противоречие.

Определение 12. $f: E \to \mathbb{R}; \ \omega_f(\delta) := \sup\{|f(x) - f(y)| : x,y \in E \ \text{и} \ |x - y| < \delta\}$ для $\delta \ge 0$. $\omega_f(\delta)$ — модуль непрерывности.

Утверждение 9. Свойства:

- 1. $\omega_f(0) = 0$.
- 2. $\omega_f > 0$.
- 3. ω_f нестрого возрастает.
- 4. $|f(x) f(y)| \le \omega_f(|x y|)$.
- 5. Если f липшицева c константой L, то $\omega_f(\delta) \leq L\delta$.

 $(|f(x) - f(y)| \le L|x - y| \le L\delta$, если $|x - y| \le \delta$; то есть все числа (и \sup в том числе) не превышают $L\delta$)

6. f равномерно непрерывна на $E \Leftrightarrow \omega_f$ непрерывна в нуле (то есть $\lim_{\delta \to 0_+} \omega_f(\delta) = 0$).

Доказательство. \Rightarrow : f равномерно непрерывна; возьмем $\varepsilon > 0 \Rightarrow \exists \delta > 0 \forall x,y \in E$ и $|x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon \Rightarrow$ если $|x-y| \leq \frac{\delta}{2}$, то $|f(x)-f(y)| < \varepsilon \Rightarrow \omega_f(\frac{\delta}{2}) \leq \varepsilon \Rightarrow \omega_f(\alpha) \leq \varepsilon \forall \alpha < \frac{\delta}{\delta} \Rightarrow \lim_{\delta \to 0_+} \omega_f(\delta) = 0$

7.
$$f \in C[a,b] \Leftrightarrow \lim_{\delta \to 0_+} \omega_f(\delta) = 0$$

(⇒: th Kантора; ←: 6 свойство)

Определение 13. [a,b]: $a = x_0 < x_1 < ... < x_n = b$; $\tau = \{x_0,...,x_n\}$ τ — дробление (разбиение, пунктир) отрезка [a,b].

Определение 14. Ранг дробления $|\tau| := \max\{x_1 - x_0, ..., x_n - x_{n-1}\}$ (самый длинный отрезок дробления).

Определение 15. Оснащение дробления $\xi = \{\xi_1,...,\xi_n\}, \, \xi_k \in [x_{k-1},x_k] \,\, \forall k.$

Определение 16. Интегральная сумма (сумма Римана): $S(f,\tau,\xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$

Теорема 19. Теорема об интегральных суммах

$$f \in C[a,b]; \ mor \partial a \left| \int_a^b f - S(f,\tau,\xi) \right| \leq (b-a) \cdot \omega_f(|\tau|)$$

Доказательство.
$$\Delta := \int_{a}^{b} f - S(f,\tau,\xi) = \int_{a}^{b} f - \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f - \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f - f(\xi_{k})(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(f(t) - f(\xi_{k})) dt$$

$$|\Delta| \leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} \left| \int_{x_{k-1}}^{x_{k}} f(f(t) - f(\xi_{k})) dt \right| \leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} \omega_{f}(|\tau|) = \omega_{f}(|\tau|) \sum_{k=1}^{n} (x_{k} - x_{k-1}) = \omega_{f}(|\tau|)(b - a) \quad \Box$$

Следствие 7.

1.
$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \;$$
дробления ранга $< \delta \; u \; \forall \;$ его оснащения: $\left| \int\limits_a^b f - S(f, \tau, \xi) \right| < \varepsilon.$

2.
$$\tau_n$$
 — последовательность дроблений, т.ч. если $|\tau_n| \to 0$, то $S(f,\tau,\xi) \to \int\limits_a^b f$.

Пример 8.
$$S_p(n) := 1^p + 2^p + ... + n^p, \ p \ge 0$$

Хотим посчитать $\lim \frac{S_p(n)}{n^{p+1}} = \frac{1}{p+1}$.

Возьмем непрерывную $f(x) = x^p$ и воспользуемся теоремой для нее:

$$\frac{S_p(n)}{n^{p+1}} = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) = S(f, \tau, \xi) \to \int_0^1 f(x) \, dx = \int_0^1 x^p \, dx = \left. \frac{x^{p+1}}{p+1} \right|_0^1 = \frac{1}{p+1}$$
$$x_k = \frac{k}{n}, \ [a, b] = [0, 1], \ x_k - x_{k+1} = \frac{1}{n}. \ \xi_k = x_k$$

Определение 17. $f:[a,b]\to\mathbb{R},\ f$ — интегрируема по Риману и I — ее интеграл, если $\forall \varepsilon>0$ $\exists \delta>0: \forall$ дробления ранга $<\delta$ и \forall оснащения $\left|S(f,\tau,\xi)-I\right|<\varepsilon.$

Замечание. Любая непрерывная функция — такая.

3амечание. Берем дробления на равные отрезки $x_k-x_{k-1}=\frac{b-a}{n}$: $x_k=a+k\cdot\frac{b-a}{n}$ и $\xi_k=x_k$.

$$S(f,\tau,\xi) = \sum_{k=1}^{n} f(x_k) \cdot \frac{b-a}{n} = \frac{b-a}{n} \cdot \sum_{k=1}^{n} f(x_k) \to \int_{a}^{b}$$

Теперь рассмотрим $\xi'_k = x_{k-1} : S(f, \tau, \xi') = \sum_{k=1}^n f(x_{k-1}) \cdot \frac{b-a}{n} = \frac{b-a}{n} \cdot \sum_{k=0}^{n-1} f(x_k) \to \int_a^b f(x_k) dx_k$

Сумма площадей трапеций: $\sum_{k=1}^{n} \frac{f(x_{k-1}+x_k)}{2} (x_k - x_{k-1}) = \frac{b-a}{n} \cdot \sum_{k=1}^{n} \frac{f(x_{k-1}+x_k)}{2} = \frac{b-a}{n} \cdot \left(\frac{f(x_0)}{2} + \frac{x_n}{2} + \frac{x_n}{2} + \frac{b-a}{n} \right)$

$$\sum_{k=1}^{n-1} f(x_k)$$

Лемма 1. $f \in C^2[\alpha, \beta]$; тогда $\int\limits_{\alpha}^{\beta} f - \frac{f(\alpha) + f(\beta)}{2} (\beta - \alpha) = -\frac{1}{2} \int\limits_{\alpha}^{\beta} f''(t) (t - \alpha) (\beta - t) dt$

Доказательство.
$$\gamma := \frac{\alpha+\beta}{2}$$
; $\int_{\alpha}^{\beta} f'(t)(t-\gamma)dt = \underbrace{\int_{\beta}^{\alpha} f(t)(t-\gamma)|_{\alpha}^{\beta}}_{f(\beta)\cdot\frac{\beta-\alpha}{2}-f(\alpha)\cdot(-\frac{\beta-\alpha}{2})=\frac{f(\beta)+f(\alpha)}{2}(\beta-\alpha)} - \int_{\alpha}^{\beta} f'(t)(t-\gamma)dt$

Рассмотрим
$$\left((t-\alpha)(\beta-t)\right)' = \left(-t^2+(\beta+\alpha)t-\alpha\beta\right)' = -2t+(\beta+\alpha) = -2(t-\gamma)$$

$$\Delta = -\int_{\alpha}^{\beta} f'(t)(t-\gamma)dt = \frac{1}{2}\int_{\alpha}^{\beta} f'(t)\left((t-\alpha)(\beta-t)\right)'dt = \underbrace{\frac{1}{2}f'(t)(t-\alpha)(\beta-t)}_{0} - \underbrace{\frac{1}{2}\int_{\alpha}^{\beta} f''(t)(t-\alpha)(\beta-t)}_{0}$$

 \Box

Теорема 20. Оценка погрешности в формуле трапеций

$$f \in C^2[a,b]; \ mor \partial a \ \left| \int\limits_{\alpha}^{\beta} f - \sum\limits_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leq \frac{|\tau|^2}{8} \cdot \int\limits_{\alpha}^{\beta} |f''|$$

Доказательство. $\Delta = \int_{\alpha}^{\beta} - \sum_{k=1}^{n} = \sum_{k=1}^{n} \left(\int_{x_{k-1}}^{x_k} f - \frac{f(x_k) + f(x_{k-1})}{2} \cdot (x_k - x_{k-1}) \right) = -\frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f''(t)(t - x_k) dt$

$$x_{k-1})(x_k - t)dt$$

$$|\Delta| \leq \frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f''(t)|(t-x_{k-1})(x_k-t)dt \leq \frac{|\tau|^2}{8} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f''(t)|dt = \frac{|\tau|^2}{8} \int_{a}^{b} |f''(t)|dt$$

$$(t-x_{k-1})(x_k-t) \leq (\frac{x_k-x_{k-1}}{2})^2 = \frac{1}{4}(x_k-x_{k-1})^2 \leq \frac{|\tau|^2}{4}$$

Теорема 21. Формула Эйлера-Маклорена для второй производной

$$f \in C^2[m,n]; \ mor\partial a \sum_{k=m}^n f(k) = \frac{f(m)+f(n)}{2} + \int_m^n f(t)dt + \frac{1}{2} \int_m^n f''(t) \cdot \{t\} \cdot (1-\{t\})dt$$

Доказательство.
$$\int\limits_{k-1}^{k}f(t)dt-\frac{f(k-1)+f(k)}{2}=-\frac{1}{2}\int\limits_{k-1}^{k}f''(t)\underbrace{\left(t-(k-1)\right)}_{\{t\}}\underbrace{\left(k-t\right)}_{1-\{t\}}dt=-\frac{1}{2}\int\limits_{k-1}^{k}f''(t)\cdot\{t\}\cdot\{t\}$$

$$(1-\{t\})dt$$

Суммирование по
$$k$$
 от $m+1$ до n :
$$\underbrace{\sum_{k=m+1}^n \int\limits_{k-1}^k f(t)dt}_{\sum_{m=0}^n f(t)dt} - \underbrace{\sum_{k=m+1}^n \frac{f(k-1)+f(k)}{2}}_{\sum_{k=m}^n f(k)-\frac{f(m)+f(n)}{2}} = \underbrace{\sum_{k=m+1}^n f(k)}_{\sum_{m=0}^n f(k)} = \underbrace{\sum_{k=m+1}^n f(k)}_{\sum_{m=0}^n f(k)} = \underbrace{\sum_{k=m+1}^n f(k)}_{\sum_{m=0}^n f(k)} = \underbrace{\sum_{m=0}^n f(k)}_{\sum_{m=0}^n$$

$$= -\frac{1}{2} \underbrace{\sum_{k=m+1}^{n} \int_{k-1}^{k} f''(t) \cdot \{t\} \cdot (1 - \{t\}) dt}_{\int_{m}^{n} f''(t) \cdot \{t\} \cdot (1 - \{t\}) dt}$$

Пример 9.

$$1. \ \, S_p(n) := 1^p + 2^p + \ldots + n^p, \ f(t) = t^p, \ p > -1, \ m = 1, \ n = n, \ f''(t) = p(p-1) \cdot t^{p-2}$$

$$S_p(n) = \frac{f(1) + f(n)}{2} + \int\limits_1^n f(t) dt + \frac{1}{2} \int\limits_1^n f''(t) \cdot \{t\} \cdot (1 - \{t\}) dt = \frac{1}{2} + \frac{n^p}{2} + \int\limits_1^n t^p dt + \frac{1}{2} \int\limits_1^n p(p-1) \cdot t^{p-2} dt + \int\limits_1^n t^p dt + \int\limits_1$$

$$1)t^{p-2}(t)(1-\{t\})dt$$

$$\circ$$
 Случай $p \in (-1,1)$: $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(1)$ $0 < \int\limits_1^n t^{p-2}\underbrace{\{t\}(1-\{t\})}_{\leq \frac{1}{4}} dt \leq \frac{1}{4}$ $\int\limits_{t=1}^n t^{p-2} dt$, то есть интеграл оценивается кон-

стантой

$$\circ$$
 Случай $p>(-1,1)$: $S_p(n)=\frac{n^{p+1}}{p+1}+\frac{n^p}{2}+o(n^{p-1})$
$$0<\int\limits_1^nt^{p-2}\cdot\{t\}\cdot(1-\{t\})dt\leq \frac{t^{p-1}}{p-1}\Big|_1^n=\frac{n^{p-1}-1}{p-1}$$

2. Гармонические числа $H_n := 1 + \frac{1}{2} + ... + \frac{1}{n}$

$$f(t) = \frac{1}{t}, m = 1, n = n, f''(t) = \frac{2}{t^3}$$

$$H_n = \frac{1+\frac{1}{n}}{2} + \int_{1}^{n} \frac{dt}{t} + \frac{1}{2} \int_{1}^{n} \frac{2\{t\}(1-\{t\})}{t^3} dt$$

$$\lim_{t \to \infty} t|_{1}^{n} = \ln n$$

$$H_n = \ln n + \frac{1}{2} + \frac{1}{2n} + a_n$$

 a_n — возрастающая последовательность; $a_n \leq \int\limits_1^n \frac{1}{4} \frac{dt}{t^3} = \frac{1}{4} (-\frac{1}{2t^2}) \Big|_1^n = \frac{1}{4} (\frac{1}{2} - \frac{1}{2n^2}) \leq \frac{1}{8}$

 a_n возрастающая и ограниченная $\Rightarrow \exists \lim a_n = a \leq \frac{1}{8} \Rightarrow a_n = a + o(1)$

$$H_n = \ln n + \underbrace{\left(a + \frac{1}{2}\right)}_{=:\gamma} + o(1)$$

 γ — постоянная Эйлера, $\gamma \approx 0.5772156649...$

3. Формула Стирлинга: $n! \sim n^n \cdot e^{-n} \sqrt{2\pi n}$

$$\ln n! = \sum_{k=1}^{n} \ln k, \ f(t) = \ln t, \ f''(t) = -\frac{1}{t^2}, \ m = 1, \ n = n$$

$$\ln n! = \underbrace{\frac{\ln 1 + \ln n}{2}}_{=\frac{1}{2}\ln n} + \underbrace{\int_{1}^{n} \ln t \ dt}_{=n \cdot \ln n - n*} = \underbrace{\frac{1}{2} \int_{1}^{n} \frac{\{t\}(1 - \{t\})}{t^{2}} dt}_{=:b_{n}} \Rightarrow$$

$$* \int_{1}^{n} \ln t \ dt = t \cdot \ln t \mid_{1}^{n} - \int_{1}^{n} t \frac{1}{t} dt = n \cdot \ln n - n$$

$$\Rightarrow \ln n! = n \cdot \ln n - n + \frac{1}{2} \ln n - b_n$$

$$b_n$$
 — возрастающая последовательность: $b_{n+1}-b_n=rac{1}{2}\int\limits_{n}^{n+1}rac{\{t\}(1-\{t\})}{t^2}dt>0$

$$b_n$$
 — ограниченная последовательность: $b_n \leq \frac{1}{8} \int_1^n \frac{dt}{t^2} = \frac{1}{8} (-\frac{1}{t}) \mid_1^n = \frac{1}{8} - \frac{1}{8n} < \frac{1}{8}$

Тогда существует $\lim b_n = b$ и $b_n = b + o(1)$.

$$\ln n! = n \cdot \ln n - b + \frac{1}{2} \ln n - b + o(1) \Rightarrow n! = n^n \cdot e^{-n} \cdot \sqrt{n} \cdot e^{-b} \cdot \underbrace{e^{o(1)}}_{1 + o(1) \sim 1} \sim n^n \cdot e^{-n} \cdot \sqrt{n} \cdot C$$

Найдем
$$C$$
. Рассмотрим $\frac{4^n}{\sqrt{\pi n}} \sim \binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{(2n)^{2n} \cdot e^{-2n} \cdot \sqrt{2n} \cdot C}{(n^n \cdot e^{-n} \sqrt{n} \cdot C)^2} = \frac{2^{2n \cdot \sqrt{2n} \cdot C}}{\sqrt{n} \cdot \sqrt{n} \cdot C^2} = \frac{4^n \cdot \sqrt{2n}}{\sqrt{n} \cdot C}$

Тогда
$$\frac{4^n}{\sqrt{\pi n}} \sim \frac{4^n \cdot \sqrt{2}}{\sqrt{n} \cdot C} \Leftrightarrow \frac{1}{\sqrt{\pi}} \sim \frac{\sqrt{2}}{C} \Rightarrow C = \sqrt{2\pi}$$

4. Если $\int\limits_{a}^{b}f$ сходится, то $\lim\limits_{c \to b_{-}}\int\limits_{c}^{b}f=0.$

Доказательство.
$$\int_a^b f = \int_c^c f + \int_c^b f \Rightarrow \int_c^b \to 0$$

$$\longrightarrow \int_a^b f$$

6. Несобственные интегралы

Определение 18. $-\infty < a < b \le +\infty, \, f \in C[a,b)$. Тогда несобственный интеграл:

$$\int\limits_a^{ o b}f:=\lim\limits_{B o b-}\int\limits_a^Bf,$$
 если предел существует.

Определение 19. $-\infty \le a < b < +\infty, \ f \in C(a,b]$. Тогда несобственный интеграл:

$$\int\limits_{
ightarrow a}^{b}f:=\lim_{A
ightarrow a+}\int\limits_{A}^{b}f,$$
 если предел существует.

Определение 20. Если предел существует и конечен, то соответствующий интеграл назовем **сходящимся**. В остальных случаях назовем интеграл **расходящимся**.

Замечание.

1. Если
$$b \neq -\infty$$
 и $f \in C[a,b]$, то $\int_a^{\to b} f = \int_a^b f$.

Комментарий:
$$\int\limits_a^{\to b} f = \lim\limits_{B \to b_-} \int\limits_a^b f, \ \left| \int\limits_a^b f - \int\limits_a^B \right| = \left| \int\limits_B^b \right| \le (b-B)M,$$
 где $M - \max|f|$.

2. Если
$$f$$
 имеет первообразную F в $[a,b)$, то $\int\limits_a^{\to b}=\lim\limits_{B\to b_-}F(b)-F(a).$

$$\underline{\text{Комментарий:}} \int\limits_{b}^{B} = F(b) - F(a)$$
 и написать пределы.

Теорема 22. Критерий Коши для несобственных интегралов

$$-\infty < a < b \le +\infty, \ f \in C[a,b); \ mor \partial a \int_{a}^{\to b} f \ cxo \partial umc s \Leftrightarrow \forall \varepsilon > 0 \ \exists C \in (a,b): \ \forall A,B \in (c,b) \left| \int_{A}^{B} f \right| < \varepsilon.$$

 \mathcal{A} оказательство. Пусть $F:[a,b)\to\mathbb{R}$ — первообразная f. Тогда $\int\limits_a^{\to b}f$ сходится $\Leftrightarrow \exists$ конечный $\lim_{B\to b}F(b)$.

$$\lim_{B\to b_-} F(b).$$
 Если $b\neq +\infty \Leftrightarrow \forall \varepsilon>0 \; \exists \delta>0 \; \forall A,B\in (\underbrace{b-\delta}_{=c};b) \; \underbrace{|F(A)-F(B)|}_{=c}<\varepsilon$

Если
$$b=+\infty \Leftrightarrow \forall \varepsilon>0$$
 $\exists E \ \forall A,B\supset \underbrace{E}_{=c}\underbrace{|F(A)-F(B)|}_{=\int\limits_A^B}<\varepsilon$

$$3$$
амечание. Если $\exists A_n,\ B_n\in[a,b),$ т.ч. $A_n,\ B_n\to b$ и $\int\limits_{\stackrel{B_n}{\underset{i=C_n}{\longrightarrow}}} \to 0,$ то $\int\limits_a^{\stackrel{\rightarrow}{\longrightarrow}} f$ расходится.

Найдется подпоследовательность C_{n_k} , т.ч. $|C_{n_k}| > \varepsilon \Rightarrow \left| \int\limits_{B_n}^{A_n} f \right| \ge \varepsilon$?! (противоречие с критерием Коши).

Пример 10.

1.
$$\int\limits_{1}^{+\infty} \frac{dx}{x^p} = \lim_{x \to +\infty} F(x) - F(1)$$
, где $F(x)$ — первообразная $\frac{1}{x^p}$.

Если p=1, то $F(x)=\ln x$ и $\lim_{x\to +\infty}\ln x=+\infty$ \Rightarrow интеграл расходится.

Если
$$p \neq 1$$
, то $F(x) = -\frac{1}{(p-1)\cdot x^{p-1}}$ и $\lim_{x \to +\infty} \frac{1}{x^{p-1}} = \begin{cases} 0, & \text{если } p > 1 \Rightarrow \text{интеграл сходится} \\ +\infty & \text{если } p < 1 \Rightarrow \text{интеграл расходится} \end{cases}$

Итог:
$$\int_{1}^{+\infty} \frac{dx}{x^p}$$
 сходится $\Leftrightarrow p > 1$ и в этом случае $\int_{1}^{+\infty} \frac{dx}{x^p} = \frac{1}{p-1}$.

2.
$$\int_{0}^{1} \frac{dx}{x^{p}} = F(1) - \lim_{x \to 0_{+}} F(x)$$
, где $F(x)$ — первообразная $\frac{1}{x^{p}}$.

Если p=1, то $F(x)=\ln x$ и $\lim_{x\to 0_+}\ln x=-\infty$ \Rightarrow интеграл расходится.

Если
$$p \neq 1$$
, то $F(x) = -\frac{1}{(p-1)\cdot x^{p-1}}$ и $\lim_{x\to 0_+} \frac{1}{x^{p-1}} = \lim_{x\to 0_+} x^{1-p} = \begin{cases} 0, & \text{если } p < 1 \Rightarrow \text{интеграл сходится} \\ +\infty & \text{если } p > 1 \Rightarrow \text{интеграл расходится} \end{cases}$

<u>Итог:</u> $\int\limits_0^1 \frac{dx}{x^p}$ сходится $\Leftrightarrow p < 1$ и в этом случае $\int\limits_0^1 \frac{dx}{x^p} = \frac{1}{1-p}$.

Определение 21. f непрерывно на [a,b] за исключением точек $c_1,...,c_n$.

Рассмотрим $\int_{a}^{d_1} f$, $\int_{d_1}^{c_1} f$, $\int_{c_1}^{d_2} f$,..., $\int_{d_{n+1}}^{b} f$.

Если все интегралы сходятся, то $\int_a^b f$ сходится и $\int_a^b f = \int_a^{d_1} f + \int_{d_1}^{c_1} f + \int_{c_1}^{d_2} f + \dots + \int_{d_{n+1}}^b f$.

В противном случае интеграл расходится.

Утверждение 10. Свойства несобственных интегралов:

1. Аддитивность

$$c \in (a,b); \ ec$$
ли $\int\limits_a^b f \ cxoдится, \ mo \int\limits_c^b f \ cxoдится \ u \int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f.$

Доказательство. F — первообразная f; $\int\limits_a^b f = \lim\limits_{B o b_-} F(b) - F(a)$

Сходимость $\int\limits_a^b f \Leftrightarrow \lim_{B \to b_-} F(b)$ существует и конечен.

$$\int_{b}^{c} f = \lim_{B \to b_{-}} F(b) - F(c) = \int_{a}^{b} f - \underbrace{\left(F(c) - F(a)\right)}_{\int_{a}^{c} f}$$

2. Линейность

$$\mathit{Если}\int\limits_a^b f\ u\int\limits_a^b g\ \mathit{cxodsmcs},\ \alpha,\beta\in\mathbb{R},\ \mathit{mo}\int\limits_a^b (\alpha f+\beta g)\ \mathit{cxodumcs}\ u\int\limits_a^b (\alpha f+\beta g)=\alpha\int\limits_a^b f\beta\int\limits_a^b g.$$

Доказательство. F и G — первообразные для f и g; по условию $\lim_{B \to b_-} F(B)$ и $\lim_{B \to b_-} G(B)$ существуют и конечные $\Rightarrow \alpha F + \beta G$ — первообразные для $\alpha f + \beta g$ и $\lim_{B \to b_-} (\alpha \cdot F(B) + \beta \cdot F(B))$

$$G(B)) = \alpha \lim_{B \to b_{-}} F(B) + \beta \lim_{B \to b_{-}} G(B) \Rightarrow \int_{a}^{b} (\alpha f + \beta g)$$
 сходится

$$\operatorname{H}\int\limits_{a}^{b}(\alpha f+\beta g)=\alpha\lim_{B\to b_{-}}F(B)+\beta\lim_{B\to b_{-}}G(B)-\alpha\cdot F(A)-\beta\cdot G(A)=\alpha\cdot\int\limits_{a}^{b}f+\beta\cdot\int\limits_{a}^{b}g\qquad \qquad \square$$

Замечание. Если $\int_a^b f$ сходится и $\int_a^b g$ расходится, то $\int_a^b (f+g)$ расходится.

Комментарий: g = (f + g) - f

3. **Монотонность** Если $\int\limits_a^b f\ u\int\limits_a^b g\ cyществуют\ в\ \overline{\mathbb{R}}\ u\ f\leq g\ во\ всех\ точках\ от\ a\ до\ b,\ то$ $\int\limits_a^b f\leq \int\limits_a^b g.$

$$\mathcal{A}$$
оказательство. $\int\limits_a^B f \leq \int\limits_a^B g$ и перейти к пределу.

4. Формула интегрирования по частям

Если
$$f,g \in C^1[a,b)$$
, то $\int\limits_a^b fg' = fg \mid_a^{b \leftarrow mym \ npeden} - \int\limits_a^b f'g$.

Если существует два конечных предела, то существует и третий и есть равенство.

$$\mathcal{A}$$
оказательство. $\int\limits_a^B fg' = fg\mid_a^B - \int\limits_a^B f'g$ и перейти к пределу. \square

5. Замена переменной

$$\varphi: [\alpha,\beta) \to [a,b), \ \varphi \in C^{-1}[\alpha,\beta), \ \exists \lim_{\gamma \to \beta_-} \varphi(\gamma) =: \varphi(\beta_-), \ f \in C[a,b), \ \mathit{morda}:$$

 $\int\limits_{\alpha}^{\beta}f(\varphi(t))\varphi'(t)dt=\int\limits_{\varphi(\alpha)}^{\varphi(\beta-)}f(x)dx\ (ecли\ cyществует\ oдин\ \int,\ mo\ cyществует\ u\ другой\ u\ они равны).$

Доказательство.
$$F(y):=\int\limits_{\varphi(x)}^y f(x)dx,\ \Phi(\gamma):=\int f(\varphi(t))\varphi'(t)dt,\ Phi(\gamma)=F(\varphi(y))$$
 при $\alpha<\gamma<\beta.$

Далее рассмотрим следующие случаи:

I. Если $\exists \lim_{y \to \varphi(\beta_-)} F(y)$.

Возьмем
$$\gamma_n \uparrow \beta \Rightarrow \varphi(\gamma_n) \rightarrow \varphi(\beta_-) \Rightarrow \int\limits_{\alpha}^{\gamma_n} f(\varphi(t)) \varphi'(t) dt = \Phi(\gamma_n) = F \varphi(\varphi(\gamma_n)) = \lim_{y \rightarrow \varphi(\beta_-)} F(y) \int\limits_{\varphi(\alpha)}^{\varphi(\beta_-)} f(x) dx$$

II. Если $\exists \lim_{\gamma \to \beta_-} \Phi(\gamma)$.

Проверим, что $\exists \lim_{y \to \varphi(\beta_{-})} F(y)$.

При $\varphi(\beta_{-}) < b$ очевидно, поскольку $F \in C[a,b)$. Пусть $\varphi(\beta_{-}) = b$. Возьмем $b_n \uparrow b$. Считаем, что $b_n \in [\varphi(\alpha),b)$. Тогда $\exists \gamma_n \in [\alpha,\beta)$ т.ч. $\varphi(\gamma_n) = b)n$.

Докажем, что $\gamma_n \to \beta$.

От противного. Найдется $\gamma_{n_k} \to \tilde{\beta} < \beta \Rightarrow b_{n_k} = \varphi(\gamma_n) \to \varphi(\tilde{\beta}) < b \ (\varphi$ непрерывна в $\tilde{\beta}$). Противоречие с тем, что $b_n \to b$. Следовательно $\gamma_n \to \beta$.

$$F(b_n) = F(\varphi(\gamma_n)) = \Phi(\gamma_n)$$
 имеет предел $\stackrel{\text{по }}{\Rightarrow}$ $\exists \lim_{y \to b} F(y)$

3амечание. $\int\limits_a^b f$ заменой $x=b-rac{1}{t}$ сводится к $\int\limits_{rac{1}{b-a}}^{+\infty} f(b-rac{1}{t})rac{1}{t^2}dt.$

Теорема 23. Пусть $f \in C[a,b]$ и $f \geq 0$. Тогда сходимость $\int\limits_a^b f$ равносильна ограниченности сверху функции $F(y) := \int\limits_a^y .$

Доказательство. Если $f \ge 0$, то F — возрастающая функция: $F(y) - F(x) = \int\limits_x^y f \ge 0$

 $\int\limits_a^b f-$ сходится $\Leftrightarrow \lim\limits_{y\to b_-} F(y)$ существует и конечен, а так как F возрастает, то это равносильно ограниченности F сверху.

Следствие 8. Признак сравнения $f,g\in C[a,b],\ f,g\geq 0\ u\ f\leq g,\ mor\partial a$:

- 1. Если $\int_a^b g$ сходится, то $\int_a^b f$ сходится.
- 2. Если $\int_{a}^{b} f$ расходится, то $\int_{a}^{b} g$ расходится.

Доказательство. F и G первообразные. Знаем, что $F(x) \leq G(x)$: $F(x) = \int\limits_a^x f \leq \int\limits_a^x g = G(x)$.

Если $\int_a^b g$ сходится, то G ограничена сверху \Rightarrow F ограничена сверху $\stackrel{\text{по th}}{\Rightarrow} \int_a^b f$ сходится. Второй пункт = отрицание первого.

Замечание.

- 1. Неравенство $f \leq g$ может выполняться лишь при аргументах, близких к b.
- 2. Неравенство $f \leq g$ можно заменить на f = o(g).
- 3. Если $f\in C[a,+\infty),\, f=\mathcal{O}(\frac{1}{x^{1+\varepsilon}})$ при $\varepsilon>0,\,$ то $\int\limits_a^{+\infty}f$ сходящийся.

Следствие 9. Пусть $f,g \in C[a,b), f,g \geq 0$ и $f(x) \sim g(x)$ при $x \to b_-$. Тогда $\int\limits_a^b f$ и $\int\limits_a^b g$ ведут себя одинаково (либо оба сходятся, либо оба расходятся).

Доказательство. $f(x)=\varphi(x)g(x)$, где $\varphi(x)\to 1\Rightarrow$ при x близких к $b;\frac{1}{2}\le \varphi(x)\le 2\Rightarrow$ $\begin{cases} f(x)\le 2g(x) & \text{при } x \text{ близких к } b\Rightarrow \text{если } \int\limits_a^b g \text{ сходящийся, то и } \int\limits_a^b f \text{ сходящийся} \\ g(x)\le 2f(x) & \text{при } x \text{ близких к } b\Rightarrow \text{если } \int\limits_a^b f \text{ сходящийся, то и } \int\limits_a^b g \text{ сходящийся} \end{cases}$

3амечание. Если $\int\limits_a^{+\infty} f$ сходящийся и $f \geq 0$, то необязательно, что $\lim\limits_{x \to +\infty} f(x) = 0$. $\frac{1}{2} \sum\limits_{n=0}^{\infty} \frac{1}{2^n} = 1$