Seminar 1

- 1. Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ?
- **2.** What algebraic structures with one operation (groupoid, semigroup, monoid or group) are the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} together with addition or multiplication?
 - **3.** Give examples of:
 - (i) a groupoid which is not a semigroup.
 - (ii) a semigroup which is not a monoid.
 - (iii) a monoid which is not a group.
- **4.** Give example of a groupoid with identity element in which there exists an element having two different symmetric elements.
 - **5.** Let $A = \{a_1, a_2, a_3\}$ be a set. Determine the number of:
 - (i) operations on A;
 - (ii) commutative operations on A;
 - (iii) operations on A with identity element.

Generalization for a set A with n elements $(n \in \mathbb{N}^*)$.

6. Let "*" be the operation on \mathbb{R} defined by:

$$x * y = x + y + xy.$$

Show that:

- (i) $(\mathbb{R}, *)$ is a commutative monoid.
- (ii) The interval $[-1, \infty)$ is a stable subset of $(\mathbb{R}, *)$.
- **7.** Let "*" be the operation on \mathbb{N} defined by x * y = g.c.d.(x, y).
- (i) Prove that $(\mathbb{N}, *)$ is a commutative monoid.
- (ii) Show that $D_n = \{x \in \mathbb{N} \mid x/n\}$ $(n \in \mathbb{N}^*)$ is a stable subset of $(\mathbb{N}, *)$ and $(D_n, *)$ is a commutative monoid.
 - (iii) Fill in the table of the operation "*" on D_6 .
 - **8.** Determine the finite stable subsets of (\mathbb{Z},\cdot) .
- **9.** Let A be a set and let $\mathcal{P}(A)$ be the power set of A (that is, the set of all subsets of A). What algebraic structure with one operation (groupoid, semigroup, monoid or group) is $\mathcal{P}(A)$ together with the operation " \cup " or " \cap "?
- **10.** Let (A, \cdot) be a groupoid and $X, Y \subseteq A$. Let " \cdot " be the operation on the power set $\mathcal{P}(A)$ defined by:

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\}.$$

Show that:

- (i) If (A, \cdot) is commutative, then $(\mathcal{P}(A), \cdot)$ is commutative.
- (ii) If (A, \cdot) is a semigroup, then $(\mathcal{P}(A), \cdot)$ is a semigroup.
- (iii) If (A, \cdot) is a monoid, then $(\mathcal{P}(A), \cdot)$ is a monoid.
- (iv) If (A, \cdot) is a group, then in general $(\mathcal{P}(A), \cdot)$ is not a group (for $A \neq \emptyset$).