Basic transformer architecture

AP & MF

Tokens, vocabulary, language models

- $\mathcal{V} = \{t_1, \dots, t_{n_{\mathcal{V}}}\}$ is the vocabulary
 - finite set of *tokens* of cardinality $n_{\mathcal{V}}$
 - vocabulary is ordered by the bijective indexing function Ind: $V \to \{1, \dots, n_V\}$
 - Ind(t) is the (token) index of t
- ▶ A *token sequence* of length $n \in V$ is a vector $\mathbf{t} \in V^n$ of n tokens from the vocabulary.
- ▶ The set of all finite token sequences forms the *language* $\mathfrak{L} = \{\mathbf{t} \in \mathcal{V}^n \mid n \in \mathbb{N}\}.$
- ▶ A (generative / decoder) language model is a function $\mathcal{M}_{\theta} \colon X \to \Delta(\mathfrak{L})$, parameterized on a set of model parameter values $\theta \in \Theta$, which maps some input set X onto a probability distribution over all (finite) sequences of tokens.

Autoregressive vs. masked LMs

- An autoregressive (next-token prediction) language model is a function $\mathcal{M}_{\theta} \colon \mathfrak{L} \to \Delta(\mathcal{V})$ which maps a token sequence onto a next-token probability distribution.
 - We write $P_{\mathcal{M}}(t \mid \mathbf{t}; \theta)$ or, omitting the model's parameters, $P_{\mathcal{M}}(t \mid \mathbf{t})$ for the model's prediction of the next-token probability for token t.
- ► A masked (missing-token prediction) language model is a function that predicts selected tokens inside of a given sequence of tokens.
 - The next-token prediction LMs can be considered a special case of the missing-token language models.

General transformer architecture

- ▶ The transformer model processes an input token sequence in parallel across all positions using a chain -stack- of $n_{\mathcal{L}}$ transformer blocks.
 - We refer to the ℓ^{th} element in the chain as the ℓ^{th} layer.

Embeddings, model size, transformer block

- ▶ An embedding $\mathbf{x} \in \mathbb{R}^{d_{\mathcal{M}}}$ is an $d_{\mathcal{M}}$ -dimensional vector.
 - \cdot $d_{\mathcal{M}}$ the dimensionality of the embedding space, aka. the model size
- ► The transformer block $T^{(\ell)}$ for the ℓ^{th} layer is a function $T^{(\ell)}: \{1,\ldots,n_{\mathcal{C}}\} \times \left(\mathbb{R}^{d_{\mathcal{M}}}\right)^{n_{\mathcal{C}}} \to \mathbb{R}^{d_{\mathcal{M}}}$ which maps a the i^{th} input position of context C (1 ≤ i ≤ $n_{\mathcal{C}}$) and a sequence of context embeddings to a single embedding as output, such that:

$$T^{(\ell)}: \langle \underbrace{i}_{\text{index of token}}, \underbrace{\langle \mathbf{x}_1^{(\ell-1)}, \dots, \mathbf{x}_{n_{\mathcal{C}}}^{(\ell-1)} \rangle}_{\text{embeddings at previous layer}} \rangle \mapsto \underbrace{\mathbf{x}_i^{(\ell)}}_{\text{embedding of } i \text{ at current layer}}$$

• For $\ell = 1$, input zero-layer token embeddings defined next.

Zero-layer, initial token embeddings

▶ The zero-layer, initial token embedding, $\mathbf{x}_i^{(0)} \in \mathbb{R}^{d_{\mathcal{M}}}$, of input token i is computed as:

$$\mathbf{x}_{i}^{(0)} = F\left(\mathbf{W}_{E_{\mathsf{Ind}(i)}}, \mathsf{PosEmbed(i)}\right)\,, \; \mathsf{where}$$

- $\mathbf{W}_{E} \in \mathbb{R}^{n_{\mathcal{V}},d_{\mathcal{M}}}$ is the embedding matrix
 - the values of \mathbf{W}_E are part of the model's trainable parameters
- PosEmbed(i) $\in \mathbb{R}^{d_{\mathcal{M}}}$ is a positional embedding function
- $F: \mathbb{R}^{d_{\mathcal{M}}} \times \mathbb{R}^{d_{\mathcal{M}}} \to \mathbb{R}^{d_{\mathcal{M}}}$ implements some way of combining the information from the (non-positional, fixed) embedding matrix with the positional information
 - F can be as simple as mere addition

Unembedding and token predictions

Model predictions for position i are derived by applying the model's unembedding matrix $U \in \mathbb{R}^{n_{\mathcal{V}}, d_{\mathcal{M}}}$ to $\mathbf{x}_{i}^{(n_{\mathcal{L}})}$ (final layer embedding at position i) to obtain a vector of output logits logits, $(\mathbf{t}) \in \mathbb{R}^{n_{\mathcal{V}}}$:

$$logits_i(\mathbf{t}) = U \mathbf{x}_i^{(n_{\mathcal{L}})}$$

Logits are transformed into probabilities using softmax:

$$P_{\mathcal{M}}(t \mid \mathbf{t}, i) = \frac{\exp\left(\mathsf{logits}_{i}(\mathbf{t})_{\mathsf{Ind}(t)}\right)}{\sum_{j=1}^{n_{\mathcal{V}}} \exp\left(\mathsf{logits}_{i}(\mathbf{t})_{j}\right)}$$

- (autoregressive) next-token prediction models predict the next token at i+1
- (masked) missing-token prediction models (may) predict the the current token at i

Anatomy of a transformer block

Anatomy of a transformer block

• a transformer for layer ℓ at position i is a function $T^{(\ell)}: \langle i, \langle \mathbf{x}_1^{(\ell-1)}, \dots, \mathbf{x}_{n_c}^{(\ell-1)} \rangle \rangle \mapsto \mathbf{x}_i^{(\ell)}$ that maps a token index and a sequence of embeddings to a new embedding.

$$\mathbf{x}_{i}^{(\ell-1,*)} = \text{LayerNorm}^{(\ell,1)} \left(\mathbf{x}_{i}^{(\ell-1)} + \text{Attention}_{i}^{(\ell)} \left(\mathbf{x}_{1}^{(\ell-1)}, \dots, \mathbf{x}_{n_{C}}^{(\ell-1)} \right) \right)$$

$$\mathbf{x}_{i}^{(\ell)} = \text{LayerNorm}^{(\ell,2)} \left(\mathbf{x}_{i}^{(\ell-1,*)} + \text{FFN}^{(\ell)} \left(\mathbf{x}_{i}^{(\ell-1,*)} \right) \right)$$

• adding a residual connection to an operation or function F applied to input x, is to compute the (parameter-free) function $G(x): x \mapsto x + F(x)$

Layer normalization

► The *layer-normalization function* LayerNorm: $\mathbb{R}^{d_{\mathcal{M}}} \to \mathbb{R}^{d_{\mathcal{M}}}$ is included for training efficiency and defined as:

$$\mathsf{LayerNorm}(\mathbf{x})^{(\ell,k)} = \gamma^{(\ell,k)} \odot \frac{\mathbf{x} - \mu(\mathbf{x})}{\sigma(\mathbf{x})} + \beta^{(\ell,k)},$$

where:

- $\mu(\mathbf{x}) = \frac{1}{d} \sum_{i=1}^{d_{\mathcal{M}}} x_i$ is the mean of the values in the embedding,
- $\sigma(\mathbf{x}) = \sqrt{\frac{1}{d} \sum_{i=1}^{d_{\mathcal{M}}} (x_i \mu(\mathbf{x}))^2} + \epsilon$ is the standard deviation with a small constant $\epsilon > 0$ for numerical stability,
- $\gamma^{(\ell,k)}, \beta^{(\ell,k)} \in \mathbb{R}^{d_{\mathcal{M}}}$ are learned parameters (scale and shift), one for each layer ℓ and occurrence k of the layer-normalization operation in the transformer block, and
- ∙ odenotes elementwise multiplication.

Feed-forward network

▶ The feed-forward network FFN^(ℓ): $\mathbb{R}^{d_{\mathcal{M}}} \to \mathbb{R}^{d_{\mathcal{M}}}$ usually has one hidden layer of size d_{FFN} (≈ $2d_{\mathcal{M}}$):

$$\mathsf{FFN}^{(\ell)}\left(\mathbf{x}_{i}^{(\ell,*)}\right) = \mathbf{W}_{out}^{(\ell)}\left(\phi\left(\mathbf{W}_{in}^{(\ell)}\ \mathbf{x}_{i}^{(\ell,*)}\right) + \beta^{(in,\ell)}\right) + \beta^{(out,\ell)},$$

where

- $\mathbf{W}_{in}^{(\ell)} \in \mathbb{R}^{d_{\mathsf{FFN}} \times d_{\mathcal{M}}}$ is the mapping from the input layer to the hidden layer
- $\mathbf{W}_{out}^{(\ell)} \in \mathbb{R}^{d_{\mathcal{M}} \times d_{\mathsf{FFN}}}$ is the mapping from hidden layer to output layer,
- $\beta^{(in,\ell)}$ and $\beta^{(out,\ell)}$ are bias vectors, and
- ϕ is some (non-linear) activation function.

Attention module

► The attention module maps a position index and a sequence of embeddings to another embeddingC

Attention<sup>(
$$\ell$$
)</sup>: $\{1, \ldots, n_C\} \times (\mathbb{R}^{d_{\mathcal{M}}})^{n_C} \to \mathbb{R}^{d_{\mathcal{M}}}$

such that:

Attention<sup>(
$$\ell$$
)</sup> $\left(i, \mathbf{x}_{1}^{(\ell-1)}, \dots, \mathbf{x}_{n_{\mathcal{C}}}^{(\ell-1)}\right) = \mathbf{W}_{\mathcal{O}}\mathbf{z}$, with

$$\mathbf{z} = \underbrace{\mathsf{AH}^{\ell,1}\left(i,\mathbf{x}_1^{(\ell-1)},\ldots,\mathbf{x}_{n_\mathcal{C}}^{(\ell-1)}\right) \|\cdots\|\mathsf{AH}^{\ell,n_\mathcal{H}}\left(i,\mathbf{x}_1^{(\ell-1)},\ldots,\mathbf{x}_{n_\mathcal{C}}^{(\ell-1)}\right)}_{}$$

concatenation of outputs of $n_{\mathcal{H}}$ attention heads

where $\mathbf{W}_O \in \mathbb{R}^{d_{\mathcal{M}} \times n_{\mathcal{H}} \ d_h}$ is an output mapping, where d_h is the dimension of the output of a single attention head.

Attention head

▶ The attention head h for is a function $AH^{\ell,h}$: $\{1,\ldots,n_{\mathcal{C}}\}\times (\mathbb{R}^{d_{\mathcal{M}}})^{n_{\mathcal{C}}}\to \mathbb{R}^{d_{h}}$:

$$\mathsf{AH}^{\ell,h}\left(i,\mathbf{x}_1^{(\ell-1)},\ldots,\mathbf{x}_{n_\mathcal{C}}^{(\ell-1)}\right) = \sum_{j=1}^{n_\mathcal{C}} \mathsf{Weight}^{(\ell,h)}\left(\mathbf{x}_i^{(l-1)},\mathbf{x}_j^{(l-1)}\right) \mathsf{Value}^{(\ell,h)}\left(\mathbf{x}_j^{(l-1)}\right)$$

▶ The value function Value: $\mathbb{R}^{d_{\mathcal{M}}} \to \mathbb{R}^{d_{\mathcal{V}}}$ maps an embedding of size $d_{\mathcal{M}}$ to a value vector of size $d_{\mathcal{V}}$:

$$\mathsf{Value}^{(\ell,h)}(\mathbf{x}) = \mathbf{W}_V^{(\ell,h)}\mathbf{x}$$

▶ The attention weight function is defined as a softmax over numerical scores (where we assume that $\exp(-\infty) = 0$ and d_k is the size of key / query vectors):

$$\mathsf{Weight}^{(\ell,h)}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \frac{\exp\left(d_{k}^{-1/2}\mathsf{Score}^{(\ell,h)}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)\right)}{\sum_{j'=1}^{C}\exp\left(d_{k}^{-1/2}\mathsf{Score}^{(\ell,h)}\left(\mathbf{x}_{i},\mathbf{x}_{j'}\right)\right)}$$

Key, query, scores, masking

► The key and query functions map embeddings from $\mathbb{R}^{\mathcal{M}}$ to vectors of type \mathbb{R}^{d_k} for some dimensionality d_k :

$$\mathsf{Key}^{(\ell,h)}\left(\mathbf{x}
ight) = \mathbf{W}_{K}^{(\ell,h)}\mathbf{x}$$
 $\mathsf{Query}^{(\ell,h)}\left(\mathbf{x}
ight) = \mathbf{W}_{Q}^{(\ell,h)}\mathbf{x}$

▶ The score function maps to embeddings from $\mathbb{R}^{\mathcal{M}}$ onto a non-normalized score, taking information from non-masked tokens into account:

$$\mathsf{Score}^{(\ell,h)}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \begin{cases} -\infty & \text{if token } j \text{ is masked for } i \\ \mathsf{Query}^{(\ell,h)}\left(\mathbf{x}_{i}\right) \cdot \mathsf{Key}^{(\ell,h)}\left(\mathbf{x}_{j}\right) & \text{otherwise.} \end{cases}$$