Mischungsverhalten und Eigenfunktionen

Alexander Schlüter

18. Januar 2016

1 Einleitung

Wir haben schon die Leitfähigkeit einer Markovkette als eine Möglichkeit zur Abschätzung ihrer Mischzeit kennengelernt. In diesem Vortrag soll die Spektrallücke einer Markovkette anhand der Eigenwerte ihrer Übergangsmatrix definiert werden. Das Hauptresultat ist eine Abschätzung der Spektrallücke mithilfe der Leitfähigkeit.

1.1 Erinnerungen

Im Folgenden sei Ω ein endlicher Zustandsraum, P eine irreduzible Übergangsmatrix auf Ω mit stationärer Verteilung π .

Definition 1.1. Schreibe für $x, y \in \Omega$

$$Q(x, y) := \pi(x)P(x, y).$$

Für $A, B \subset \Omega$ sei das **Randmaß** Q definiert durch

$$Q(A,B) \coloneqq \sum_{x \in A, y \in B} Q(x,y).$$

Die **Leitfähigkeit** einer Menge $S \subset \Omega$ ist

$$\phi(S) \coloneqq \frac{Q(S, S^{\mathsf{c}})}{\pi(S)}$$

und die Leitfähigkeit der ganzen Kette

$$\phi_{\star} \coloneqq \min \left\{ \phi(S) \mid S \subset \Omega, \ 0 < \pi(S) \le \frac{1}{2} \right\}.$$

Wir haben gesehen, dass die Leitfähigkeit die Mischzeit der Markovkette beeinflusst. Markovketten mit einer geringen Leitfähigkeit mischen langsamer, d.h. sie konvergieren langsamer gegen die stationäre Verteilung. Man kann sich auch vorstellen, dass die Leitfähigkeit die "engste Stelle" der Kette misst, daher der Name "Flaschenhals-Quotient".

2 Eigenwerte und die Spektrallücke

Die Verteilung einer Markovkette wird im Wesentlichen durch ihre Übergangsmatrix charakterisiert, deshalb ist es sinnvoll, sich diese mithilfe der Linearen Algebra genauer anzuschauen.

Sei im Folgenden P reversibel bezüglich π .

Definition 2.1. Seien $f, g \in \mathbb{R}^{\Omega}$. Definiere

$$\langle f, g \rangle_{\pi} := \sum_{x \in \Omega} f(x) g(x) \pi(x)$$

Bemerkung 2.2. Da für alle $x \in \Omega$ $\pi(x) > 0$ gilt, wird hierdurch ein Skalarprodukt auf \mathbb{R}^{Ω} definiert und $\ell^2(\pi) := (\mathbb{R}^{\Omega}, \langle \cdot, \cdot \rangle_{\pi})$ ist ein Hilbertraum.

Lemma 2.3. Sei P eine Übergangsmatrix.

- (i) Ist λ ein Eigenwert von P, dann gilt $|\lambda| \leq 1$.
- (ii) Ist P irreduzibel, dann ist der Eigenraum zum Eigenwert 1 eindimensional und er wird aufgespannt durch $(1, 1, ..., 1)^T$.
- (iii) Ist P irreduzibel und aperiodisch, so ist -1 kein Eigenwert.

Beweis. (i) Sei f Eigenfunktion zu λ und $x \in \Omega$ mit $|f(x)| = \max_{y \in \Omega} |f(y)|$. Dann gilt

$$|\lambda f(x)| = |\sum_{y \in \Omega} P(x, y) f(y)| \le |f(x)| \sum_{y \in \Omega} P(x, y) = |f(x)|$$

und da f nicht konstant 0 ist, folgt $|\lambda| \leq 1$.

(ii) Da die Zeilensumme 1 ist, ist $(1,1,\ldots,1)^T$ offensichtlich Eigenfunktion zum Eigenwert 1. Sei f Eigenfunktion zu 1 und $x \in \Omega$ mit $|f(x)| = \max_{y \in \Omega} |f(y)|$. Dann

$$\sum_{y \in \Omega} P(x, y) \frac{f(y)}{f(x)} = 1$$

mit $\frac{f(y)}{f(x)} \leq 1$. Es muss also für alle $y \in \Omega$ mit P(x,y) > 0 $\frac{f(y)}{f(x)} = 1$ gelten. Ist $y \in \Omega$ beliebig, so existiert $t \in \mathbb{N}$ mit $P^t(x,y) > 0$, denn P ist irreduzibel. f ist auch Eigenfunktion von P^t zum Eigenwert 1 und mit dem gleichen Argument wie oben für P^t folgt f(y) = f(x).

(iii) Zeige die Kontraposition: Sei f Eigenfunktion zum Eigenwert -1. Sei $x \in \Omega$ mit $|f(x)| = \max_{y \in \Omega} |f(y)|$.

$$|-f(x)| = |\sum_{y \in \Omega} P(x,y)f(y)| \leq \sum_{y \in \Omega} P(x,y)|f(y)| \leq |f(x)|$$

und da $|f(y)| \le |f(x)|$ folgt für alle $y \in \Omega$ mit P(x,y) > 0, dass |f(y)| = |f(x)|. Ohne Beträge sieht man, dass

$$-f(x) = \sum_{y \in \Omega} P(x, y) f(y)$$

was nur möglich ist, wenn für $y \in \Omega$ mit P(x,y) > 0 gilt: f(y) = -f(x). Sei $t \in \mathcal{T}(x) \coloneqq \{ s \in \mathbb{N} \mid P^s(x,x) > 0 \}$. Es existiert ein Pfad

$$x = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_{t-1} \rightarrow v_t = x,$$

mit $v_i \in \Omega$, $P(v_i, v_{i+1}) > 0$ $(0 \le i \le t-1)$. Nach obiger Betrachtung ist

$$f(x) = -f(v_{t-1}) = \cdots = (-1)^t f(x)$$

Also muss t gerade sein und $ggT(\mathcal{T}(x)) \geq 2$, d.h. P ist nicht aperiodisch.

Lemma 2.4. Sei P reversibel bezüglich π . Dann hat $\ell^2(\pi)$ eine Orthonormalbasis $f_1, \ldots, f_{|\Omega|}$, wobei f_i Eigenfunktion von P zum Eigenwert λ_i $(1 \le i \le |\Omega|)$ ist.

Beweis. Aus Reversibilität folgt, dass die Matrix

$$A(x,y) := \pi(x)^{1/2} \pi(y)^{-1/2} P(x,y)$$

symmetrisch ist. Die Behauptung folgt mittels des Spektralsatzes für symmetrische Matrizen. Für den vollen Beweis siehe [LPW08, Lemma 12.2(i)].

Definition 2.5. Für eine reversible Übergangsmatrix P nummerieren wir ihre Eigenwerte in absteigender Ordnung:

$$1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_{|\Omega|} \ge -1.$$

Definiere

$$\lambda_{\star} \coloneqq \max \left\{ \, |\lambda| \mid \lambda \text{ ist Eigenwert von } P, \, \lambda \neq 1 \, \right\}.$$

Die Differenz $\gamma_{\star} := 1 - \lambda_{\star}$ heißt absolute Spektrallücke.

Die **Spektrallücke** ist definiert durch $\gamma := 1 - \lambda_2$.

Bemerkung 2.6. Nach Lemma 2.3.(iii) ist für eine irreduzible aperiodische Übergangsmatrix $\gamma_{\star} > 0$.

3 Die Dirichletform

Bis jetzt ist noch nicht klar, was die Spektrallücke mit der Leitfähigkeit zu tun hat. Die Verbindung wird über die Dirichletform hergestellt:

Definition 3.1. Sei P eine Übergangsmatrix mit stationärer Verteilung π . Die Abbildung

$$\mathcal{E} \colon \mathbb{R}^{\Omega} \times \mathbb{R}^{\Omega} \to \mathbb{R}$$

$$(f,g) \longmapsto \langle (I-P)f,g \rangle_{\pi}$$

heißt **Dirichletform** zu (P, π) .

Lemma 3.2. Sei P nun reversibel bezüglich π und definiere für $f \in \mathbb{R}^{\Omega}$

$$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \Omega} (f(x) - f(y))^2 \pi(x) P(x,y). \tag{1}$$

Dann gilt $\mathcal{E}(f) = \mathcal{E}(f, f)$.

Literatur

[LPW08] David A. Levin, Yuval Peres und Elizabeth L. Wilmer. *Markov Chains and Mixing Times*. American Mathematical Society, 2008. URL: http://pages.uoregon.edu/dlevin/MARKOV/.