PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-332517

(43) Date of publication of application: 30.11.2001

(51)Int.CI.

H01L 21/304 B24B 37/00 C09K 3/14 C09K 13/00 G11B 5/31

(21)Application number: 2000-149134

(71)Applicant:

OKAMOTO MACHINE TOOL WORKS

LTD

(22)Date of filing:

22.05.2000

(72)Inventor:

YAMADA TSUTOMU

KUBO TOMIO

(54) CHEMICAL MECHANICAL POLISHING METHOD FOR SUBSTRATE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a chemical mechanical polishing method by which the throughput time of a CMP scratch-free chemically mechanically polished substrate can be shortened.

SOLUTION: In this chemical mechanical polishing method, at least part of a metallic film or insulating film formed on the surface of the substrate is removed by sliding the substrate and a polishing pad, while a polishing liquid is interposed between the surfaces of the metallic film or insulating film and polishing pad. This method includes a rough polishing step using a polishing pad on which abrasive grains are fixed and a polishing liquid containing free abrasive grains, and a finish polishing step which is performed after the rough polishing step by using a polishing pad on which abrasive grains are not fixed. The polishing liquid used in the finish polishing step contains solid lubricant particles.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号 特開2001 — 332517 (P2001 — 332517A)

(43)公開日 平成13年11月30日(2001.11.30)

(51) Int.CL7	識別配号	FI	ラーマユード(参考)
HO1L 21/304	6 2 2	HOIL 21/304	622D 3C058
			622E 5D033
			622F
	6 2 1		6 2 1 D
B 2 4 B 37/00	•	B 2 4 B 37/00	C
	泉底立審	未菌求 請求項の数5 OL	(全 9 頁) 最終頁に続く
(21)出職番号	特曜2000-149134(P2000-149134)	(71)出顧人 391011102 株式会社開考	工作機械製作所
(22)出窗日 平成12年5月22日(2000.5.22)			rn上依知3009番並
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,,	(72) 発明者 山田 勉	
		1	r市上依知3009番池 株式会社
	•	岡本工作機械	
		(72) 発明者 久保 富美夫	•••••
		1	、 c市上做知3009番地 株式会社
		岡本工作機构	••
		ドターム(参考) 3C058 A	
		1	B10 DA12 DA17
		}	405 D401 D431
		3,000	ero travi bible

# (54) 【発明の名称】 基板の化学機械研磨方法

## (57)【要約】

【課題】 スクラッチ傷のない CMP加工基 板をスループット時間を短くして得る化学機械研磨方法 の提供。

【解決手段】 基板の金属膜面または絶縁膜面と、研磨パッド面との間に研磨液を介在させつつ、基板と研磨パッドを摺動させて基板表面の金属膜または絶縁膜の少なくとも一部を除去する化学機械研磨方法であって、前記化学機械研磨方法は、砥粒が固定された研磨パッドと遊離砥粒が含有された研磨液を用いる粗研磨工程と、該粗研磨工程の後で行われる砥粒が固定されていない研磨パッドを用いる仕上研磨工程の2つの研磨工程を経て行われ、仕上研磨工程の際に用いられる研磨液には、固形の潤滑剤粒子が含有されていることを特徴とす

る。墓板の化学機械研磨方法。

#### 【特許請求の簡用】

【請求項1】 華板の金属勝面または絶縁膜面と、研磨 パッド面との間に研磨液を介在させつつ、基板と研磨パ ッドを摺動させて基板表面の金属膜または絶縁膜の少な くとも一部を除去する化学機械研磨方法であって。 前記化学機械研磨方法は、砥粒が固定された研磨バッド と遊解砥粒が含有された研磨液を用いる粗研磨工程と、 該組研磨工程の後で行われる砥粒が固定されていない研 磨パッドを用いる仕上研磨工程の2つの研磨工程を経て 行われ、仕上研磨工程の際に用いられる研磨液には、固 10 形の潤滑剤粒子が含有されていることを特徴とする、基 板の化学機械研磨方法。

【請求項2】 基板の金属鰻面または絶縁膜面と、研磨

パッド面との間に研磨液を介在させつつ、基板と研磨パ ッドを摺動させて基板表面の金属膜または絶縁膜の少な くとも一部を除去する化学機械研磨方法であって、 前記化学機械研磨方法は、硬質の砥粒が固定された研磨 パッドと遊離砥粒が含有された研磨液を用いる組研磨工 程と、該租研磨工程の後で行われる軟質の砥粒が固定さ れた研磨パッドを用いる中仕上研磨工程と、該中仕上研 20 磨工程の後で行われる砥粒が固定されていない研磨パッ ドを用いる仕上研磨工程の3つの研磨工程を経て行わ れ、前記中仕上研磨工程および仕上研磨工程の際に用い られるどちらかの研磨液には、固形の潤滑剤粒子が含有 されていることを特徴とする、基板の化学機械研磨方 佉.

【請求項3】 組研磨工程に用いられる研磨パッドは、 シリカ、アルミナ、炭酸カルシウム、ダイアモンド、窒 化珪素、炭化珪素、塩化硼素、二酸化マンガンおよびガ ラス紛より選ばれた硬質の砥粒を含有するものであり、 中仕上研磨工程に用いられる研磨パッドは、コロイダル シリカ、ベーマイト、酸化セリウムおよび炭酸カルシウ ムより選ばれた軟質の砥粒を含有するものであることを 特徴とする、請求項2に記載の基板の化学機械研磨方 抾。

【請求項4】 組研磨工程に用いられる研磨パッドは、 (a)シリカ、アルミナ、炭酸カルシウム、ダイアモン ド、窒化珪素、炭化珪素、窒化硼素、二酸化マンガンお よびガラス粉より選ばれた硬質の砥粒と、(り)コロイ ダルシリカ、ベーマイト、酸化セリウムおよび炭酸カル 40 シウムより選ばれた軟質の砥粒を含有するものであり、 硬質の砥粒 (a) と軟質の砥粒 (b) の重量比は3/7 ~7/3であることを特徴とする、請求項1に記載の基 板の化学機械研磨方法。

【請求項5】 潤滑剤粒子は、粒径がり、01~0.3 umであり、硫化モリブテン、酸化モリブテン。メラミ ンシアヌレート、尿素、メラミン、シアヌル酸より選ち ばれたものである、請求項1または2に記載の基板の化 学機械研磨方法。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、研磨速度が遠く、 化学機械研磨された基板表面にスクラッチ傷のない基板 を与えることができる化学機械研磨方法に関する。本発 明の化学機械研磨方法は、AITIC基板の上にバーマ ロイ層が形成され、その上に絶縁皮膜の形成された磁気 ヘッド基板や、シリコン基板の絶縁層の上に形成された 金属機の除去、金属膜のバターン模様の上に絶縁層膜が 施された基板表面の絶縁層膜の除去。STi(Shallow Trench Insulator)のP-TEOS層の除去等に有 用である。

[0002]

【従来の技術】スピンドル軸に軸承された研磨バッドを 用い、該研磨バッド面に研磨剤スラリーを供給しながら チャックに保持された基板を圧接し、研磨パッドと基板 を同一方向または逆方向に回転摺動させつつ、かつ、研 磨パッドを基板上で一方向に往復移動(揺動)させて基 板を化学機械研磨(CMP研磨する)する化学機械研磨 装置は知られている(特開平10-303152号、特 開平11-156711号, 特許第2968784号、 英国公開特許第2331948号公報等)。図1. 図 2. 図3および図4にその化学機械研磨装置を示す。 【0003】図1は、化学機械研磨装置の一例を示す料 視団、図2は研磨パッドの移送機構を示す斜視図、図3 は研磨パッドとコンディショニング装置の部分断面図、 図4は研磨ヘッドの断面図である。

【0004】図1、図2および図3に示すインデックス 型化学機械研磨装置1において、2は研磨ヘッド、2a は組研磨用研磨ヘッド、2 bは仕上研磨用ヘッド、3, 30 3は回転軸、3 a はモーター、3 b は歯草、3 c はブー リー、3 d は歯車、4、4 は研磨パッド、5、5 はパッ ドコンディショニング機構、5 a はドレッシングディス ク、5 b は噴射ノズル、5 c は保護カバー、6、6 は回 転可能な洗浄ブラシ、7は研磨ヘッドの移送機構、7 a はレール、7 b は送りネジ、7 c は送りネジに螺着させ た移動体で研磨ヘッド2を具備させる。7d,7eは歯 車、7 f はモーター、8 はヘッドの昇降機構であるエヤ ーシリンダー、9はウエハW収納力セット、10はロー ディング鍛送用ロボット、11はウエハ仮置台、12は **輪12eを輪芯として同一円周上に等間隔に設けられた** 回転可能な4基のウエハチャック機構128,12り, 12c, 12dを備えるインデックステーブルで、テー ブル12はs1のウエハローディングゾーン、s2の粗 研磨ゾーン、 s 3のウエハ仕上研磨ゾーン、 s 4のウエ ハアンローディングゾーンに仕分けされている。 【0005】13はアンローデディング用鍛送ロボッ ト、14aはチャックドレサー、14bはチャック洗浄 機構、15はウエハ仮置台、16はベルトコンベア、1

7はウエハ洗浄機構である。

50 【0006】図4に示す研磨ヘッド2において、ヘッド

2は基板21の張り出し録21aが加圧シリンダー20 のフランジ部分20 a に支えられ、研磨パッド(環状研 磨布) 4は研磨布取付板22を介して基板21に保持さ れている。加圧シリンダー20内の加圧室20b内には ダイヤフラム23が張り渡され、スピンドル輪3内を通 じて加圧室20b内に圧縮空気が圧入され、その圧力に よって基板21は3次元(X, Y, Z) 方向に揺動自在 に支えられ、研磨パッド4はウエハ表面に対して平行に 保もたてられる。研磨ヘッド2の中央に研磨液または洗 巻波供給パイプ24が設けられ、パイプの先は研磨パッ 10 ドの中央刳り貫き部4 a を避けて研磨バッド環状体裏面 に臨み、躁状体を経由して基板の金属層表面に研磨液度 たはエッチング液が供給される。

【①①07】前記の化学機械研磨装置1を用いて絶縁層 の上に金属膜を有するウエハ(基板)を研磨する工程 は、次のように行われる。

1)ウエハ(蟇板)w1は、鍛送ロボット10のアーム によりカセット9より取り出され仮置台11上に金属膜 面を上向きにして献せられ、ここで裏面を洗浄され、つ エハローディングゾーンSIに移送され、チャック機構 12aにより吸着される。

【0008】2)インデックステーブル12を90度時 計回り方向に回動させてウエハwlを第1研磨ゾーンS 2に導き、スピンドル軸3を下降させてヘッド2aに取 り付けられた研磨パッド4をウエハw1に押圧し、スピ ンドル軸3とチャック機構の軸を回転させることにより ウエハの化学機械研磨を行う。この間、新たなウエハマ 2が仮置台の上に載せられ、ウエハローディングゾーン slに移送され、チャック機構l2bにより吸着され る。ウェハのCMP加工時、スピンドル軸3の中空部に 設けた供給管24より環状体4裏面に研磨剤液が10~ 100m!/分の割合で供給される。チャックテーブル に吸着されたウエハの回転数は、200~800rp m. 好ましくは200~600 rpm. 研磨パッドの回 転数は400~3000rpm、好ましくは400~1 000rpm、基板にかかる圧力は1.2~3psiで

【0009】CMP加工中、研磨パッド4をボールネジ でウエハの中心点より左へ墓板の半径の8分点ないし2 40 分点(200mm径のウエハで、外径150mmの研磨 バッドのときは4分点の25mm前後)の位置を援助関 始点とし、この開始点位置より左方向(ウエハ外周方) 向) に約10~50mm帽、好ましくは20~40mm のところを揺動回帰点とし、この間の距離を左右方向 (X軸方向)に往復緩励させる。

【0010】第一研磨ゾーンs2での化学機械研磨が所 ഇ時間行なわれると、スピンドル輪3を上昇させ、右方 向に後退させ、研磨パッド洗浄機構5上に導き、とこで 高圧ジェット水をノズル5 bより吹き付けながら回転プ 50 ッドを往復緩動させて基板表面の金属機または絶縁膜の

ラン5で研磨バッド表面に付着した砥粒、金属研磨屑を 取り除き、再び右方向に研磨パッドを移送し、研磨ゾー ンs 2上に待機させる。

【① ① 1 1 】 3 ) インデックステーブルを時計回り方向 に90度回動させ、研磨されたウエハW1を第二研磨ゾ -ンs3に導き、スピンドル輪3を下降させて研磨へっ ド2 bに取り付けられた研磨パッド4 を粗研磨されたウ エハw1に押圧し、スピンドル軸3とチャック機構の軸 を回転させることによりウエハの化学機械仕上研磨を行 う。仕上げ研略終了後は、スピンドル軸3を上昇、右方 向に後退させ、ヘッド2カに取り付けられた研磨パッド を洗浄機構5で洗浄し、再び右方向に移送し、第二研磨 ゾーン83上に待機させる。この間、新たなウエハw3 が仮置台の上に截せられ、ウェハローディングゾーンS 1に移送され、チャック機構12cにより吸着される。 また。第一研磨ゾーンs2ではウエハw2の化学機械租 研磨が実施される。

【0012】4)インデックステーブル12を時計回り 方向に90度回動させ、研磨されたウエハw1をアンロ いで搬送ロボットによりインデックステーブル12のウ 20 ーディングゾーン 54に導く。ついで、アンローディン グ搬送ロボット13で仕上研磨されたウエハを仮置台1 5へ搬送し、裏面を洗浄した後、更に搬送ロボット13 でベルトコンベアを利用した移送機構へと導き、研磨さ れたウエハのバターン面に洗浄液をノズル17より吹き 付け洗浄し、さらにウエハを次工程へと導く。この間、 新たなウエハw4が仮置台の上に載せられ、ウエハロー ディングゾーンS1に移送され、チャック機構12dに より吸着される。また、第一研磨ゾーン§2ではウエハ w3の化学機械組研磨が、第二研磨ゾーンs3ではウエ 30 ハw2の化学機械仕上研磨が実施される。

> 【()()13】5) インデックステーブル12を時計方向 に90度回転させ、以下前記2)から4)の工程と同様 の操作を繰り返し、ウエハの化学機械研磨を行う。

> 【①①14】上記例において、化学機械研磨加工を第一 粗研磨と第二仕上研磨の二段に分けたのは、スループッ ト時間を短縮するためであるが、CMP加工を一段で行 うとともあるし、粗研磨、中仕上研磨、仕上研磨と三段 階に分け、よりスループット時間を短縮することも行わ れる。三段階のCMP加工工程をとるときは、slをウ エハローディングとウエハアンローディングの兼用ゾー ンとし、s2を第一研磨ゾーン、s3を第二研磨ゾー ン 8.4 を第三研磨ゾーンとする(図5に示すCMP袋 置の例)。

> 【①①15】このようなインデックステーブルのチャッ クテーブルに基板の金属膜面または絶縁層面(両者が促 在する面も含む)を上向きにして保持し、該基板に対し て軸芯を鉛直方向に有するスピンドル軸に軸承された取 付板に貼付された研磨バッド面を遊艇研磨砥粒を介して 押圧し、該基板と研磨パッドを摺動させ、かつ、研磨パ

少なくとも一部を除去するインデックステーブル型化学 機械研磨装置の他に、トップリングやキャリアに基板を 固定し、これを比較的目が組の第一研磨プラテンに押圧 し、プラテンと基板の間に遊離砥粒を含有する研磨剤ス ラリーを介在させつつ、両者を回転させて基板を組研磨 した後、基板表面を洗浄し、ついで、組研磨された基板 を比較的目の細かい第二研磨プラテンに押圧し、プラテ ンと華板の間に遊離砥粒を含有しない研磨液を介在させ つつ。両者を回転させて基板を仕上研磨する2プラテン を備えるCMP装置(特開平8-66865号 同10 10 -58317号、特闕2000-94317号) もCM P研磨される基板のスループット時間を短縮する装置と して提案されている。

【0016】墓板の径が200mmから300mm、4 ○○mmと拡径するにつれて、またはより高集債化につ れて、ますますスループット時間を短縮することが要求 されている。研磨時間を短縮するために研磨パッド、研 磨プラテン(以下、両者を纏めて研磨パッドという。) として、シリカ、アルミナ、炭酸カルシウム、酸化セリ ウム等の固定砥粒をパッド内に固定(含有)する研磨パ 20 ッドを使用することが提案されている(USP6022 807号)。

#### $\{0017\}$

【発明が解決しようとする課題】しかしながら、シリ カ、アルミナ等の硬質の砥粒を研磨バッドに固定させる と、研磨速度は大幅に改良されるが、CMP研磨された 基板にはスクラッチ傷が残る欠点があり、スクラッチ傷 を消滅させるために基板の研磨面をエッチングする必要 がある。一方、炭酸カルシウム、酸化セリウム等の軟質 の砥粒を研磨パッドに固定させると、CMP研磨された 30 基板にはスクラッチ偏は残らないが研磨速度の改良効果 が充分でない。本発明は、スクラッチ傷が残らない、研 磨速度の改良効果が大きい基板の化学機械研磨方法の提 供を目的とする。

#### [0018]

【課題を解決するための手段】本発明の1は、墓板の金 属膜面または絶縁膜面と、研磨パッド面との間に研磨液 を介在させつつ、基板と研磨パッドを摺動させて基板表 面の金属膜または絶縁膜の少なくとも一部を除去する化 学機械研磨方法であって、前記化学機械研磨方法は、砥 40 粒が固定された研磨パッドと遊離砥粒が含有された研磨 液を用いる粗研磨工程と、該租研磨工程の後で行われる 砥粒が固定されていない研磨パッドを用いる仕上研磨工 程の2つの研修工程を経て行われ、仕上研修工程の際に 用いられる研磨液には、固形の潤滑剤粒子が含有されて いることを特徴とする、基板の化学機械研磨方法を提供 するものである。

【①①19】組研磨工程で研磨速度を認めるために用い **られた研磨液中の遊離砥粒や研磨パッド中の硬質の砥粒** が基板表面に突き刺さっていてスクラッチ傷発生の原因 50 ~7/3であることを特徴とする。

となるので、仕上研磨工程の際には砥粒が固定されてい ない研磨パッドおよび固形の潤滑剤粒子が含有されてい る硫醛液を用い、基板表面に突き刺さっていている硬質 の砥粒を除去し、仕上研磨された基板にはスクラッチ傷 が発生しないようにする。

【0020】本発明の請求項2は、基板の金属膜面また は絶縁膜面と、研磨パッド面との間に研磨液を介在させ つつ、基板と研磨パッドを摺動させて基板表面の金属膜 または絶縁膜の少なくとも一部を除去する化学機械研磨 方法であって、前記化学機械研磨方法は、硬質の砥粒が 固定された研磨バッドと遊離砥粒が含有された研磨液を 用いる粗研磨工程と、該組研磨工程の後で行われる軟質 の砥粒が固定された研磨バッドを用いる中仕上研磨工程 と、該中仕上研磨工程の後で行われる砥粒が固定されて いない研磨パッドを用いる仕上研磨工程の3つの研磨工 程を経て行われ、前記中仕上研磨工程および仕上研磨工 程の際に用いられるどちらかの研磨液には、固形の潤滑 剤粒子が含有されていることを特徴とする、基板の化学 機械研磨方法を提供するものである。

【0021】組研磨工程で研磨速度を返めるために用い られた研磨液中の遊離砥粒や研磨パッド中の硬質の砥粒 が基板表面に突き刺さっていてスクラッチ傷発生の原因 となるので、中仕上工程または仕上研磨工程の際には固 形の潤滑剤粒子が含有されている研磨液を用い、基板表 面に突き刺さっていている硬質の砥粒を除去し、仕上研 磨された基板にはスクラッチ傷が発生しないようにす る。中仕上工程では研磨ハッドに固定されている砥粒は **軟質であり、仕上研磨工程では砥粒が固定されていない** 研磨パッドを用いるのでスクラッチ傷発生の原因となる 硬質の砥粒が基板表面に突き刺ささることはない。

【0022】本発明の請求項3は、前記化学機械研磨方 法において、組研磨工程に用いられる研磨パッドは、シ リカ、アルミナ、炭酸カルシウム、ダイアモンド、窒化 **珪素、炭化珪素、窒化硼素、二酸化マンガンおよびガラ** ス紛より選ばれた硬質の砥粒を含有するものであり、中 仕上研磨工程に用いられる研磨パッドは、コロイダルシ リカ、ベーマイト、酸化セリウムおよび炭酸カルシウム より遺ばれた軟質の砥粒を含有するものであることを特

【()()23】観覧の砥粒は研磨速度を向上させる効果を 有し、軟質の紙錠は基板を平坦化する効果を有する。 【①①24】本発明の請求項4は、前記化学機械研磨方 法において、組研磨工程に用いられる研磨パッドは、 (a) シリカ、アルミナ、炭酸カルシウム、ダイアモン 下、窒化珪素、炭化珪素、窒化硼素、二酸化マンガンお よびガラス粉より選ばれた硬質の砥粒と、(り)コロイ ダルシリカ、ベーマイト、酸化セリウムおよび炭酸カル シウムより選ばれた軟質の砥粒を含有するものであり、

硬質の砥粒 (a) と軟質の砥粒 (b) の重量比は3/7

7

【0025】組研磨工程の際、硬質の砥粒は研磨速度を 向上させる効果を有し、軟質の配粒は基板を平坦化する 効果を有する。仕上研磨工程の際、研磨液中の潤滑剤に より基板表面に突き刺さっていている硬質の砥粒を除去 し、仕上研磨された基板にはスクラッチ傷が発生しない ようにする。

【0026】本発明の請求項5は、前記化学機械研磨方 法において、週滑剤粒子として、粒径が0.01~0. 3μmであり、硫化モリブテン、酸化モリブテン、メラ ミンシアヌレート、尿素、メラミン、シアヌル酸より強 10 ては、(a)コロイダルアルミナ、フェムドシリカ、酸 らばれたものを使用する。

【①027】粒径の細かい固体潤滑剤を用い、基板に突 き刺さっている硬質の砥粒の除去を容易とする。

#### [0028]

【発明の実施の形態】以下、本発明を詳細に説明する。 研磨パッド:組研磨工程。中仕上研磨工程に用いられる 研磨パッドは、固定砥粒を5~50重量%、好ましくは 8~35重置%含有するもので、パッド素材としては、 硬質発泡ウレタンシート、ポリ弗化エチレンシート、ボ - ル徽推不織布。ナイロン徽推不織布。これら不線布上 に発泡性ウレタン樹脂溶液を流延させ、ついで発泡・硬 化させたもの等が使用される。仕上研磨工程に用いられ る研磨パッドは、固定砥粒を含有しない。固定砥粒を含 有させる手段としては、発泡性ウレタン溶液に固形砥粒 を均一に分散させて発泡硬化させるか、固形砥粒を均一 に分散したウレタン樹脂溶液あるいは架橋型アクリル径 樹脂エマルジョンを不縫布上に逾延させ、硬化させる。 【0029】研磨工程が3工程の場合は、租研磨工程で 程では軟質の砥粒が固定された研磨バッドを、仕上研磨 工程では配粒が固定されていない研磨パッドを用いる。 硬質の砥粒(a)としては、粒径が0.003~0.5 **μωのシリカ、アルミナ、炭酸カルシウム、ダイアモン** ド、窒化珪素、炭化珪素、窒化硼素、二酸化マンガンお よびガラス粉より選ばれた砥粒が単独で、または2種以 上混合して使用される。軟質の砥粒(b)としては、粒 径がり、003~0、5µmのコロイダルシリカ、ベー マイト、酸化セリウムおよび炭酸カルシウムより選ばれ た砥粒が単独で、または2種以上混合して使用される。 租研磨工程で使用される研磨パッドは軟質の固定砥粒を 固定砥粒中、30重量%以下で含有していてもよい。

【①①30】研磨工程が2工程の場合は、粗研磨工程に 用いられる固定砥粒を含有する研磨パッドは、(a)硬 質の砥粒を単独で含有するものであってもよいが、

(a)硬質の砥粒と、(b)軟質の砥粒を重置比で3/ 7~7/3の割合で含有するものの方が仕上研磨時間を 短くできる利点を有する。

【0031】バッド形状としては、円板状、ドーナッツ 状、楕円状のものが用いられ、厚み3~7mmのものが 50 化水素水、および粒径0.1μmのメラミンシアヌレー

アルミニウム板やステンレス板などの取付板に貼付され て使用される。バッド径と基板の大きさは用いるCMP 研磨装置の種類に依存し、いずれが大きくてもよい。

【10032】研磨液:研磨液は、粗研磨工程では遊離砥 粒を含有する研磨液が、仕上研磨工程では遊離砥粒を含 有しない研磨液が使用される。研磨工程が3工程の場合 における中仕上研磨工程においては、研磨液は、遊離砥 粒を含有していても、含有していなくてもよい。

【0033】組研磨工程で使用される研磨液の一例とし 化セリウム、チタニア、コロイダルシリカ、二酸化マン ガン等の砥粒を(). () 1~2() 重置%. () ) 硝酸銅、 硝酸アルミニウム、クエン酸鉄、過酸化マンガン。エチ レンジアミンテトラ酢酸、ヘキサシアノ鉄、フッ化水素 酸、フルオロチタン酸、ヘキサメタリン酸ソーダ、ジベ ルサルフェート、フッ化アンモニウム、二フッ化水素ア ンモニウム、過硫酸アンモニウム、過酸化水素、等の酸 化剂 1~15重量%、(c)界面活性剂().3~3重量 %. (d) p H調整剤、(e) 分散溶媒 残余などを含 リエステル繊維不織布、フェルト、ポリビニールアルコ 20 有するスラリーが使用される(特闘平6-313164 号. 特闘平8-197414号、特表平8-51043 7号, 特開平10-67986号、特開平10-226 784号等)。銅、銅ーチタン、銅ータングステン、チ タン-アルミニウム等の金属研磨に適した研磨剤スラリ ーは、株式会社フジミインコーポレーテッド、ロデール ・ニッタ株式会社、米国のキャボット社、米国ロデール 性、米国オーリン アーチ (Olin Arch) 社等 より入手できる。

【0034】仕上研磨工程で使用される固体瀕滑剤含有 は硬質の砥粒が固定された研磨パッドを、中仕上研磨工 30 研磨液の例としては、固体潤滑剤().5~1.5重量%を 界面活性剤あるいは保護コロイド剤 ①. ①5~1 重置 %を用いて市販の研磨液、例えばの純水、②過酸化水素 水の塩酸、硫酸、硝酸等の酸含有水の酸含有過酸化 水素水、OKOH、テトラメチルアンモニウム。アンモ ニア等のアルカリ含有水など、に分散させたものが用い **ちれる。研磨液の種類は、研磨される対象が金属層か、** 絶縁層かにより適宜選択される。

> 【0035】固体潤滑剤としては、粒径が0.01~ O. 3 µ mであり、硫化モリブテン、酸化モリブテン、 メラミンシアヌレート、尿素、メラミン、シアヌル酸な どが単独で、または2種以上混合して使用される。 100361

#### 【実施例】実施例1

総水 4060g、粒径0.25μmのα-アルミナ 100g、硝酸アルミニウム 5g. コロイダルアルミ ナ (ベーマイト) 固形分量で10gおよびヘキサメタ 燐酸ソーダ 10gを混合・繊栓し、pH 4.8、粘 度 1.1cps、此重 1.015の磁気ヘッド基板 粗研磨用研磨剤スラリーを調製した。純水に35%過酸

10

トを混合し、過酸化水素濃度(). 5重量%、メラミンシ アヌレート5重量%の仕上研磨用研磨液を調製した。 【りり37】研磨される磁気ヘッド基板として、AIT ·C基盤の表面に鉄ーニッケルーリンパーマロイ層を、 そのバーマロイ層の上に銅篦極を、更にパーマロイ層も よび銅電極の表面に蒸着された酸化アルミニウム絶縁層 を有する基板を用いた。

【0038】化学機械研磨装置として、アルミナを5重 置%含有するショア硬度94の表面層ウレタンバッドに ショア硬度65のウレタン支持層を積層した積層物をア 10 ルミニウム板に貼付した第一プラテンと、ショア硬度9 2の表面圏ウレタンパッドにショア硬度65のウレタン 支持層を積層した積層物をアルミニウム板に貼付した第 ニプラテンを備え、前記磁気ヘッド基板をインデックス ヘッドに備えられたキャリアで保持するCMP装置を用 いた用いた。

【①①39】前記研磨剤スラリーを第一研磨プラテン上 に適下しつつ磁気ヘッド基板を下降させてブラテンに基 板を押し当て、第一研磨プラテンの回転数と基板の回転 数を次の条件で基板を研磨し、酸化アルミニウム層の― 20 部を剥離し、銅電極を露出させた。 部を剥離し、銅電極を露出させた。

ブラテン回転数

50 r.p.m.

基板回転数

50r. p. m.

基板加圧

400g/cm²

粗研密時間

1.5分間

【0040】ついで、この組研磨された磁気ヘッド基板 を第二プラテン上に移動させ、前記研磨液を第二研磨プ ラテン上に適下しつつ磁気ヘッド基板を下降させてブラ テンに基板を押し当て、第二研磨プラテンの回転数と基 板の回転数を次の条件で基板を仕上研磨した。

プラテン回転数

50 r.p.m.

基板回転数

50r. p. m.

基板加圧

100g/cm³

仕上研磨時間

1.0分間

【①①41】仕上研磨後、研磨基板をスクラブ洗浄し、 研磨基板の露出された複数の銅電極の表面を観察した。 いずれの銅電極表面にも銅スカムおよび砥粒残滓は見い 出されなかった。仕上研磨後、レーザー光による表面欠 陥解析装置で銅電極の表面を測定し、帽1~3μm、長 さ20 µm以下のスクラッチの数を測定したところ、マ 40 ろ、マイクロスクラッチは検出されなかった。 イクロスクラッチは検出されなかった。

#### 【0042】実施例2

絶水 4060g、粒径0.25μmのα-アルミナ 100g、硝酸アルミニウム 5g コロイダルアルミ ナ (ベーマイト) 固形分量で10gおよびヘキサメタ 燐酸ソーダ 10gを混合・繊維し、pH 4.8、粘 度 1.1cps、比重 1.015の磁気ヘッド基板 租研磨用研磨剤スラリーを調製した。純水に35%過酸 化水素水、および粒径()、1μmのメラミンシアヌレー

アヌレート5重量%の仕上研磨用研磨液を調製した。 【0043】研磨される磁気ヘッド基板として、A!T 1C基盤の表面に鉄ーニッケルーリンパーマロイ層を、 そのバーマロイ層の上に銅電極を、更にパーマロイ層も よび銅電極の表面に蒸着された酸化アルミニウム絶縁層 を有する基板を用いた。

【①①4.4】化学機械研磨装置として、アルミナー5重 置%および酸化セリウム3重量%を含有するショア硬度 93の表面層ウレタンパッドにショア硬度65のウレタ ン支持層を積層した積層物をアルミニウム板に貼付した 第一プラテンと、ショア硬度92の表面層ウレタンパッ ドにショア硬度65のウレタン支持層を積層した積層物 をアルミニウム仮に貼付した第二プラテンを備え、前記 磁気ヘッド基板をインデックスヘッドに値えられたキャ リアで保持するCMP装置を用いた。

【0045】前記研磨剤スラリーを第一研磨プラテン上 に満下しつつ磁気ヘッド基板を下降させてプラテンに基 板を押し当て、第一研磨プラテンの回転数と基板の回転 数を次の条件で基板を研磨し、酸化アルミニウム層の一

ブラチン回転数 50 r.p.m.

基板回転数 50r. p. m.

基板加圧 400g/cm

相研究時間 1.5分間

【0046】ついで、この組研磨された磁気ヘッド基板 を第二プラテン上に移動させ、前記研磨液を第二研磨プ ラテン上に適下しつつ磁気ヘッド基板を下降させてブラ テンに基板を押し当て、第二研磨プラテンの回転敷と基 板の回転数を次の条件で基板を仕上研磨した。

30 プラテン回転数 50 r.p.m.

基板回転数 50 r. p. m.

基板加圧 100g/cm²

仕上研磨時間 0.5分間 【10047】仕上研磨後、研磨基板を純水でスクラブ洗

**浄し、研磨基板の露出された複数の銅電極の表面を観察** した。いずれの銅筐極衰面にも銅スカムおよび砥粒残滞 は見い出されなかった。仕上研磨後、レーザー光による 表面欠陥解析装置で銅電極の表面を測定し、幅1~3μ m. 長さ20 m 以下のスクラッチの数を測定したとこ

【0048】実施例3

絶水 4060g、粒径0.25μmのα-アルミナ 100g、硝酸アルミニウム 5g、コロイダルアルミ ナ (ベーマイト) 固形分量で10gおよびヘキサメタ 燐酸ソーダ 10gを混合・微控し、pH 4.8、粘 度 1.1cps、此章 1.015の磁気ヘッド基板 粗研磨用研磨剤スラリーを調製した。純水に35%過酸 化水素水、および粒径() 05μmの硫化モリブテンを 混合し、過酸化水素濃度(). 5重置%、硫化モリブテン トを開合し、過酸化水素濃度(). 5重量%、メラミンシ 50 濃度 8 重置%の中仕上研磨用研磨液を調製した。仕上研

12

磨波として純水を用いた。

【0049】研磨される磁気ヘッド基板として、AIT 1C基盤の表面に鉄ーニッケルーリンパーマロイ層を、 そのパーマロイ層の上に銅電極を、更にパーマロイ層も よび銅電極の表面に蒸着された酸化アルミニウム絶縁層 を有する基板を用いた。

11

【0050】化学機械研磨装置として、アルミナを8重 置%含有するショア硬度95の裏面層ウレタンパッドに ショア硬度65のウレタン支持層を積層した積層物をア 5重量%含有するショア硬度92の表面層ウレタンパッ 下にショア硬度65のウレタン支持層を綺麗した積層物 をアルミニウム板に貼付した第二プラテンと、ショア硬 度92の表面層ウレタンバッドにショア硬度65のウレ タン支持層を積層した積層物をアルミニウム板に貼付し た第三プラテンを備え、前記磁気へッド基板をインデッ クスヘッドに備えられたキャリアで保持するCMP装置 を用いた用いた。

【0051】前記研磨剤スラリーを第一研磨プラテン上 に適下しつつ磁気ヘッド基板を下降させてブラチンに基 20 【図1】 2基の研磨ヘッドを備えるインデックス型C 板を押し当て、第一研磨プラテンの回転数と基板の回転 数を次の条件で基板を研磨し、酸化アルミニウム層の一 部を訓離させた。

プラチン回転数

50 r.p.m.

基板回転数

50 r. p. m.

基板前圧

400g/cm2

研磨時間

1.2分間

【0052】ついで、この組研磨された磁気ヘッド基板 を第二プラテン上に移動させ、前記研磨液を第二研磨プ ラテン上に資下しつつ磁気ヘッド基板を下降させてブラ 30 1 テンに基板を押し当て、第二研磨プラテンの回転数と基 板の回転数を次の条件で基板を申仕上研磨し、酸化アル ミニウム層の一部を剥離し、銅電極を認出させた。

プラテン回転数

50 r.p.m.

基板回転数

50 r. p. m.

基板加圧

100g/cm

副報適福

1.0分間

【0053】更に、この中仕上研磨された磁気ヘッド基 板を第三プラテン上に移動させ、純水を第三研磨プラテ

ン上に適下しつつ磁気ヘッド基板を下降させてプラテン に基板を押し当て、第三研磨プラテンの回転数と基板の 回転数を次の条件で基板を中仕上研磨した。

プラテン回転数

50 r.p.m.

基板回転数

50r. p. m. 100g/cm²

基板加圧 間網換稿

0.5分間

【① 054】仕上研磨後、研磨基板を純水を用いてスク ラブ洗浄し、研磨基板の窓出された複数の銅電極の表面 ルミニウム板に貼付した第一プラテンと、ベーマイトを 10 を観察した。いずれの銅電極表面にも銅スカムおよび砥 粒残滓は見い出されなかった。仕上研磨後、レーザー光 による表面欠陥解析装置で銅電極の表面を測定し、幅1 ~3 μm、長さ20 μm以下のスクラッチの数を測定し たところ、マイクロスクラッチは検出されなかった。 [0055]

> 【発明の効果】本発明の化学機械研磨方法は、基板のス ループット時間を短縮でき、スクラッチ傷のない研磨加 工芸板を与える。

【図面の簡単な説明】

MP装置の斜視図である。

【図2】 図1に示すCMP装置の研磨ヘッドの移動機 機を示す斜視図である。

【図3】 図1に示すCMP装置の研磨ヘッドとコンデ ィショニング機構との位置関係を示す断面図である。

【図4】 研磨ヘッドの断面図である。

【図5】 3基の研磨ヘッドを備えるインデックス型C MP装置のインデックステーブルの平面図である。

#### 【符号の説明】

- 化学機械研磨装置
- 基板 w
- 2 研磨ヘッド
- 3 スピンドル軸
- 研磨バッド
- 7 研磨ヘッド移送機構
- 研磨ヘッド昇降機構 8
- インデックステーブル 12
- 12a, 12b. 12c. 12d #+v2







[22]





フロントページの	続き		
(51) Int.Cl.'	識別記号	Fi	テーマニード(容考)
B24B 37/	0-0	B 2 4 B 37/00	Н
C 0 9 K 3/	14 550	CO9K 3/14	5 5 0 D
			5 5 0 Z
13/	G-0	13/00	
G11B 5/	31	G11B 5/31	М