Notes

January 23, 2015

E is measurable if ...

irrational numbers have a measure because rationals have measure 0 and the complement of a measurable set is 0

today

explain why any open interval is measurable

if E_1 and E_2 are disjoint and measurable then $m*(A\cap (E_1\cup E_2)=m*(A\cap E_1)+m*(A\cap E_2)$ for any

$$E_1, E_2, E_3, \dots, E_n$$
 disjoint and measurable then $m * (A \cap (\bigcup_{i=1}^n E_i)) = \sum_{i=1}^n m * (A \cap E_i)$

theorem

if $\{E_i\}_{i=1}^{\infty}$ are measurable, countable then

- 1. $\bigcup_{i=1}^{\infty}$ measurable
- 2. $\bigcap_{i=1}^{\infty}$ measurable

3.
$$m * (\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} m * (E_i)$$

4. if
$$E_i \cap E_j = \emptyset$$
 for all i, j

$$m * (\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m * (E_i)$$

proof

case 1

$$E_i \cap E_j = \emptyset, i \neq j$$

$$F_n = \bigcup_{i=1}^n E_i$$

we know that F_n is measurable so $m * (A \cap F_n) = \sum_{i=1}^n m * (A \cap E_i)$

$$m*(A) = m*(A \cap F_n) + m*(A \cap F_n^C)$$

for all n

for all n

$$m*(A) = m*(A \cap F_n) + m*(A \cap F_n^C)$$

$$\geq m * (A \cap F_n) + m * (A \cap (\bigcup_{i=1}^{\infty} E_i)^C)$$

 $m * (A \cap F_n^C)$ contains $m * (A \cap (\bigcup_{i=1}^{\infty} E_i)^C)$

$$= \sum_{i=1}^{n} m * (A \cap E_{i}) + m * (A \cap (\bigcup_{i=1}^{\infty} E_{i})^{C})$$

$$m * (A) \ge \sum_{i=1}^{n} m * (A \cap E_{i}) + m * (A \cap (\bigcup_{i=1}^{\infty} E_{i})^{C})$$

$$\ge m * (A \cap \bigcup_{i=1}^{\infty} E_{i}) + m * (A \cap (\bigcup_{i=1}^{\infty} E_{i})^{C})$$

case 2 not disjoint

$$E_1 = \Omega_1 \text{ and } E_2 \setminus \Omega_1 = \Omega_2 \text{ and } E_3 \setminus (\Omega_1 \cup \Omega_2) = \Omega_3$$

 $\{E_i\}_{i=1}^{\infty} \to \{\Omega_i\}_{i=1}^{\infty} \text{ and } \Omega_i \cap \Omega_j = \emptyset \forall i \neq j$

$$1. \bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} \Omega_i$$

- 2. Ω_i is measurable $(A \setminus B = A \cap B^C)$
- 3. use case one to get $\bigcup_{i=1}^{\infty} \Omega_i$ is measurable and imply that $\bigcup_{i=1}^{\infty} E_i$ is measurable
- 1. union of countable measurable sets is measurable
- 2. $\{E_i\}_{i=1}^{\infty}$ with E_i measurable

$$\bigcap_{i=1}^{\infty} E_i = \left(\bigcup_{i=1}^{\infty} (E_i)^C\right)^C$$

- 3. we already knew that $m * (\bigcup_{i=1}^{\infty} E_i \leq \sum_{i=1}^{\infty} m * (E_i))$
- 4. $\{E_i\}_{i=1}^{\infty}$ disjoint and measurable $m * (\bigcup_{i=1}^{\infty} \infty E_i)$

(a)
$$m * (\bigcup_{i=1}^{\infty} E_i \leq \sum_{i=1}^{\infty} m * (E_i)$$

 $m * (\bigcup_{i=1}^{n} E_i = \sum_{i=1}^{n} m * (E_i)$
 $m * (\bigcup_{i=1}^{\infty} E_i) \geq m * (\bigcup_{i=1}^{n} E_i = \sum_{i=1}^{n} m * (E_i)$
and then
 $m * (\bigcup_{i=1}^{\infty} E_i) \geq = \sum_{i=1}^{\infty} m * (E_i)$

theorem

any open set is measurable

proof

based on homework we know that (a, ∞) is measurable

- 1. need to show that $[b,\infty)$ is measurable for any b $[b,\infty)=\bigcap_{n=1}^\infty(b-\frac{1}{n},\infty)$
- 2. $(-\infty,c)$ is measurable because it's the complement of $[c,\infty)$
- 3. (a,d) is measurable for any a < d $(a,d) = (a,\infty) \cap (-\infty,d)$
- 4. any open interval \mathbb{O} is measurable $\mathbb{O} = \bigcup_{i=1}^{\infty} (a_i, b_i)$ Lindlfs theorem or any closed set is measurable

cantor set is the intersection of a countable number of closed sets

proposition

if
$$E_i \supseteq E_{i+1}$$
 in $\{E_i\}_{i=1}^{\infty}$ and $m*(E_1)$ is finite then $m*(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} m*(E_n)$ $\{n, n+1\}_{n=1}^{\infty}$ will not work, why? $\bigcap_{i=i}^{\infty} E_i \subseteq E_n$ for all n . $m*(\bigcap_{i=1}^{\infty} E_i \le m*(E_n)$ for all n