1. Kernel Support Vector Machines. In class (and in one of your homeworkj questions), we saw that if we wished to fit a classifier based on a (potentially nonlinear) feature mapping $\varphi : \mathbf{R}^n \to \mathbf{R}^N$, the classification rule (i.e., prediction on an input x) is

$$\hat{y} = \mathbf{sign}(\theta^T \varphi(x)).$$

Let $K(x,z) = \varphi(x)^T \varphi(z)$ be the kernel function associated with feature mapping φ . Given a collection of pairs $(x_i, y_i) \in \mathbf{R}^n \times \{-1, 1\}$, we find a classifier θ by solving

minimize
$$\sum_{i=1}^{m} f(y_i \varphi(x_i)^T \theta) + \frac{\lambda}{2} \|\theta\|_2^2, \qquad (1)$$

where $f: \mathbf{R} \to \mathbf{R}$ is a convex, non-increasing function and $\lambda \geq 0$ is a regularization parameter. Equivalent to problem (1) is to solve the dual problem

maximize
$$-\sum_{i=1}^{m} f^{*}(\alpha_{i}) - \frac{1}{2\lambda} \alpha^{T} \operatorname{\mathbf{diag}}(y) G \operatorname{\mathbf{diag}}(y) \alpha$$
 (2)

with variable $\alpha \in \mathbf{R}^m$, where $G \in \mathbf{S}^m$ is the *Gram matrix*, whose entries are $G_{ij} = K(x_i, x_j)$. To recover the optimal θ^* for problem (1) given an optimal dual variable α^* , we may set

$$\theta^* = -\frac{1}{\lambda} \sum_{i=1}^m y_i \varphi(x_i) \alpha_i^* = \sum_{i=1}^m \varphi(x_i) \nu_i^*,$$

where $\nu^* = -\frac{1}{\lambda} \operatorname{diag}(y) \alpha^*$.

Now, given a $\theta \in \mathbf{R}^N$ taking the form $\theta = \sum_{i=1}^m \nu_i \varphi(x_i)$, we can define the prediction function $p_\theta : \mathbf{R}^n \to \mathbf{R}$ by

$$p_{\theta}(x) = \theta^{T} \varphi(x) = \sum_{i=1}^{m} \nu_{i} \varphi(x_{i})^{T} \varphi(x) = \sum_{i=1}^{m} K(x_{i}, x) \nu_{i},$$

where K is the kernel function for φ . To make a prediction on an input x, we simply take the sign $\hat{y} = \mathbf{sign}(p_{\theta}(x))$, and we view the magnitude of $p_{\theta}(x)$ as the "confidence" the classifier gives to its prediction.

Using the kernel $K(x,z)=(1+x^Tz)^6$ and objective $f(t)=(1-t)_+=\max\{0,1-t\}$, implement the dual problem (2) for the problem data in kernel_svm_data.*. Solve the resulting problem with regularization multipliers $\lambda=10^{-3},10^{-2},1,10$. For each λ , plot a contour plots of the resulting prediction function $p_{\theta}(x)$ as a function of $x \in [-1.5,1.5]^2 \subset \mathbf{R}^2$. What does increasing/decreasing the regularization λ do?

A few notes on implementation: numerical instability issues mean that in your code, the Gram matrix G may be slightly indefinite; in this case, you should replace G with $G + \epsilon I$ for $\epsilon = 10^{-6}$ or some other small constant. Different solvers may experience instability, so if one solver does not work (e.g. SCS) try another. In our solution, we also plotted the datapoints in a scatterplot to give some intuition. Be sure to include your code and the four contour plots. Hint. You may use that $f^*(s) = s$ for $s \in [-1,0]$ and $f^*(s) = +\infty$ otherwise.