

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de São José dos Campos Instituto de Ciência e Tecnologia

MATLAB: Noções Básicas

Prof. Dr. Rogério Galante Negri

- MAtrix LABoratory é um software otimizado para cálculos
 - Criado no fim dos anos 1970 por Cleve Moler (Univ. Novo México)
 - Jack Little (Univ. Stanford), reconhecendo o seu potencial comercial do MATLAB, juntou-se a Moler e Steve Bangert
 - Em 1984, Moler, Bangert e Litte reescreveram o MATLAB em C
 - As bibliotecas reescritas ficaram conhecidas como LAPACK

MATLAB implementa a linguagem de programação MATLAB

Vantagens	Desvantagens	
Facilidade de uso		
Independência de plataforma	Linguagem interpretada: execução mais lenta	
Funções predefinidas		
Desenhos independente do dispositivo	Custo de aquisição é de 5 a 10 vezes maior	
Interface gráfica de usuário	que um compilador convencional C ou	
Compilação independente de dispositivo	Fortran (mas o custo é compensado pelo tempo de programação)	

Ambiente

Ambiente + Exemplo

Outro exemplo

Conceitos

- Variáveis (matrizes), declarações e inicialização
- Operadores Relacionais e Lógicos
- Estruturas condicionais (if)
- Estruturas de repetição (while e for)
- Funções de entrada/saída

Variáveis

- Em MATLAB, a unidade fundamental é a matriz (tudo é matriz)
- Os elementos da matriz são acessados a partir do nome da matriz e de seus índices (como em qualquer linguagem)

A linguagem C é "fortemente tipada" (o tipo das var. deve ser definida) MATLAB é "fracamente tipada"

Variáveis

Exemplos

Comentário

Inicializações:

Atalhos de inicialização

Operador "dois-pontos"

primeiro:incremento:ultimo

```
>> x = 1 : 2 : 10; %gera x = [1, 3, 5, 7, 9]  
>> ang = (0.1 : 0.1 : 1.0) * pi; %gera valores de 0.1 a 1.0, incrementados em 0.1, multiplicados por \pi
```

Transposição

```
>> m = [1, 2];
>> n = m'; %gera [1/2]
```

Combinação

$$\Rightarrow$$
 p = [m' m']; %gera $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

Funções úteis de inicialização

Função	Ação
zeros(n);	Gera uma matriz $n \times n$ de 0
zeros(n,m);	Gera uma matriz $n \times m$ de 0
<pre>zeros(size(var));</pre>	Gera uma matriz de 0 do mesmo tamanho de var
ones(n);	Gera uma matriz $n \times n$ de 1
ones(n,m);	Gera uma matriz $n \times m$ de 1
<pre>ones(size(var));</pre>	Gera uma matriz de 1 do mesmo tamanho de var
eye(n)	Gera uma matriz identidade $n \times n$
eye(n,m)	Gera uma "matriz identidade" $n \times m$
lenght(var)	Retorna o comprimento de um vetor var ou a dimensão maior de uma matriz var
size(var)	Retorna o numero de linhas e de colunas de var

Entrada pelo teclado — input

• O comando input permite que uma informação seja inserida via teclado

```
>> leia_num = input('Informe algo: ');
>> leia_car = input('Informe algo: ','s');
```


Matrizes multidimensionais

 Ao contrário do acostumado, podemos definir matrizes com mais de duas dimensões

```
Command Window

    New to MATLAB? Watch this Video, see Examples, or read Getting Started.

  >> mat = zeros(2,2,2);
  >> mat(:,:,1) = [1 2 ; 3 4];
                                                  Atenção à sintaxe!
  >> mat(:,:,2) = [6 7 : 8 9]:
  >> mat
  mat(:,:,1) =
  mat(:,:,2) =
fx >>
```

 As funções zeros, ones, eye podem ser generalizadas para quantas dimensões desejadas

Função end

- A função end é muito útil na manipulação de matizes
- Retorna o maior índice de uma matriz, segundo a dimensão observada
- Desempenha ainda utilidade na definição de submatrizes

Valores especiais

Função	Ação
pi	Armazena π com 15 dígitos significativos
i, j	Contém o valor $\sqrt{-1}$
Inf	Infinito de máquina (e.g., resultado de divisão por 0)
NaN	"Not a Number" (e.g., resultado de op. indefindas)
clock	Vetor [ano, mês, dia, hora, minuto, segundo]
date	Cadeia de caracteres da data corrente em Dia-Mês-Ano
eps	Menor diferença possível entre dois números no comp.
ans	Variável especial que armazena o resultado de uma expressão, caso não seja atribuída a outra

Função disp

- Uma forma de exibir dados é a função disp
 - Aceita como argumento um vetor/matriz
 - Como resultado a exibição da informação na janela de comandos
- O argumento deve ser do tipo char
- Usualmente está associado a num2str e int2str
 - num2str converte numero em cadeia de caracteres
 - int2str converte inteiro em cadeia de caracteres

```
>>str = [' Pi é igual a ' ,num2str(pi)];
>>disp(str);
```

Função fprintf

- Exibe um ou mais valores junto com textos relacionados
- Usa códigos de formatação da linguagem C
- Sua sintaxe é:

ullet Exemplo:>>fprintf('O valor de Pi é %5.4f \n', pi);

Código	Ação
%d	Exibe como valor inteiro
%e	Exibe na forma exponencial
%f	Exibe em ponto flutuante
%g	Exibe em exponencial ou ponto flutuante (o mais curto)
\n	Muda de linha

Arquivos – save

- O comando save grava dados da área de variáveis em um arquivo em disco
- A sintaxe é:

```
>>save nome_arquivo var1 var2 ... varN
```

- O arquivo salvo será escrito no formato MAT
- Este arquivo contém as variáveis salvas
- Pode ser lido apenas pelo MATLAB
- Para acessar os dados por outros programas, é usado -ascii
 >>save nome arquivo var1 var2 ... varN -ascii

Arquivos – load

- Em oposição ao save, existe o comando load
- A sintaxe é:

>>load nome_arquivo

 Como resultado, as variáveis armazenadas em nome_arquivo são importadas para a área de variáveis do MATLAB

Operações com escalares

Operação	Rep. algébrica	Rep. MATLAB
Soma	a + b	a + b
Subtração	a - b	a – b
Multiplicação	$a \times b$	a * b
Divisão	$\frac{a}{b}$	a / b
Exponenciação	a^b	a ^ b

· A atribuição possui a seguinte forma geral:

- Ordem de prioridade convencional
- Alteração da ordem de prioridade via uso de parênteses

Operações com matrizes

- MATLAB suporte:
 - Operações estruturais "elemento a elemento"
 - Operações matriciais segue a Álgebra Linear

Operação	MATLAB	Descrição
Soma estrutural	a+b	Soma duas matrizes de mesma dimensão
Subtração estrutural	a-b	Subtrai duas matrizes de mesma dimensão
Multiplicação estrutural	a.*b	Multiplica elementos de a e b dois a dois
Multiplicação matricial	a*b	Multiplica as matrizes a por b
Divisão à direita estrutural	a./b	Divide elementos de a por b dois a dois
Divisão à esquerda estrutural	a.\b	Divide elementos de b por a dois a dois
Divisão matricial à direita	a/b	Divisão matricial equiv. a*inv(b)
Divisão matricial à esquerda	a\b	Divisão matricial equiv. inv(a)*b
Exponenciação estrutural	a.^b	Exponenciação de a e b dois a dois

Funções	MATLAB	Descrição
	abs(x)	Módulo de x
	cos(x)	Cosseno de x, com x em radianos
	sin(x)	Seno de x, com x em radianos
as	tan(x)	Tangente de x, com x em radianos
Matemáticas	log(x)	Logaritmo natural de x
Cema	exp(x)	Exponencial natural de x
Mat	<pre>[val,ind]=max(x)</pre>	Valor máximo e posição (vetorial) de x
	<pre>[val,ind]=min(x)</pre>	Valor mínimo e posição (vetorial) de x
	mod(x,y)	Resto da divisão de x por y
	sqrt(x)	Raiz quadrada de x
Ç	ceil(x)	Teto de x
Aprox.	floor(x)	Piso de x
Ą	round(x)	Arredondamento de x
	char(x)	Converte o número x em cadeia de caractere ($x \le 127$)
s ã O	<pre>double(x)</pre>	Converte a cadeia de caractere x em uma matriz
Conversão	<pre>int2str(x)</pre>	Converte o número inteiro x em cadeia de caractere
Con	num2str(x)	Converte o número decimal x em cadeia de caractere
	str2num(x)	Converte a cadeia de caractere x em um número

Gráficos planos – Exemplo

```
Atenção aos comandos:
x = 0:0.1:10;
                                grid on/off - x/ylabel
y = x.^2 + 2.*x;
z = x.^3 + 1;
                               title - subplot - legend
subplot(2,2,1);
plot(x,y,'r--',x,z,'b-'); xlabel('X'); ylabel('Y'); title('Linear');
grid on; legend('f(x)=x^2+2x','g(x)=x^3+1',2);
                                              Posição da legenda
subplot(2,2,2);
semilogx(x,y,'r--',x,z,'b-'); xlabel('X'); ylabel('Y'); title('semilogx');
grid on; legend('f(x)','g(x)',2);
subplot(2,2,3);
semilogy(x,y,'r--',x,z,'b-'); xlabel('X'); ylabel('Y'); title('semilogy');
grid on; legend('f(x)','g(x)',4);
subplot(2,2,4);
loglog(x,y,'r--',x,z,'b-'); xlabel('X'); ylabel('Y'); title('loglog');
grid on; legend('f(x)','g(x)',4);
```

Gráficos planos – Resultado

Styling!

	Cor	Marcador			Linha		
У	Amarelo	•	Ponto	<	Δ p/ esq.	-	Sólido
m	Magenta	0	Circulo	>	Δ p/ dir	•	Pontilhado
С	Ciano	X	X	V	Δ p/ baixo		Ponto-traço
r	Vermelho	+	Mais	^	Δ p/ cima		Tracejado
g	Verde	*	Asterisco	р	Pentágono		
b	Azul	S	Quadrado	h	Hexágono		
W	Branco	D	Losango				
k	Preto						

Códigos de posição da legenda

Valor	Significado	Valor	Significado
0	Automático	3	Inf. esquerdo
1	Sup. direito	4	Inf. direito
2	Sup. esquerdo	-1	À direita do desenho

Operadores relacionais

Valores lógicos em MATLAB (assim como em C):

1 – Verdadeiro

2 - Falso

• Operadores relacionais atuam sobre dois operandos (numéricos ou caracteres) e produzem um valor lógico

Operador	Operação
==	Igual a
~=	Diferente de
>	Maior que
>=	Maior ou igual a
<	Menor que
<=	Menor ou igual a

- Operadores relacionais podem ser usados para compara um escalar com uma matriz
- O resultado é uma matriz de mesma dimensão com o resultado lógicos das comparações
- É possível compara ainda duas matrizes de mesma dimensão ("elemento a elemento")

Operadores lógicos

 Operam sobre valores/expressões lógicas e retornam valores lógicos

Operador	Operação
&&	"E" lógico (conjunção)
П	"OU" lógico (disjunção)
xor	"OU Ex." (disjunção exclusiva)
~	"NÃO" (negação)

Entr	adas	"E"	"OU"	"OU Ex."	"NÃO"
а	b	a&&b	a b	xor(a,b)	~a
0	0	0	0	0	1
0	1	0	1	1	1
1	0	0	1	1	0
1	1	1	1	0	0

Estrutura condicional – if

• Permite o desvio de fluxo de execução

• Sintaxe:

```
if expr1
Bloco1
else
Bloco2
end
```

```
Editor - testelF.m
                                         💎 🗙 🌠 Variables - mat
  testelF.m.
       valor = input('Informe um valor numérico inteiro: ');
       paridade = mod(valor,2);
       if (paridade == 0)
            fprintf('0 valor %d é um número par.\n', valor)
           val_mult = 2 * valor:
       else
            fprintf('0 valor %d é um número ímpar.\n', valor)
           val_mult = 3 * valor:
10 -
       end
11
       disp(['Veja só que coisa! ',int2str(val_mult)]);
Command Window
  >> testeIF
                                                       1<sup>a</sup> execução
  Informe um valor numérico inteiro: 30
  O valor 30 é um número par.
  Veja só que coisa! 60
  >> testeIF
                                                      2ª execução
  Informe um valor numérico inteiro: 31
  O valor 31 é um número impar.
 Veja só que coisa! 93
fx >>
```

Estrutura condicional – switch

- Permite escolher um fluxo de execução
- Sintaxe:

```
switch (exp_switch)
case (exp case1)
   Bloco1
case (exp_case2)
   Bloco2
otherwise
   BlocoContrario
end
```

```
valor = input('Informe um valor de
1 a 10: ');
switch valor
case {1, 3, 5, 7, 9}
   disp('É impar')
case {2, 4, 6, 8, 10}
   disp('É par')
otherwise
   disp('Inválido')
end
>> testeSwitch
Informe um valor de 1 a 10: 4
É par
>> testeSwitch
Informe um valor de 1 a 10: 19
Inválido
```

Estrutura de repetição – while

• Repete indefinidamente um bloco de códigos, enquanto a condição é satisfeita

```
%Série de Fibonacci até número definido
num = input('Informe um limite superior (>1): ');
n1 = 1; n2 = 1;

fprintf('%d - %d',n1,n2);
while (n1+n2) <= num
    aux = n1+n2;
    n1 = n2;    n2 = aux;
    fprintf(' - %d', aux);
end</pre>

    Sintaxe:
    while expr
        Bloco
    end
```

```
>>Informe um limite superior (>1): 56
1 - 1 - 2 - 3 - 5 - 8 - 13 - 21 - 34 - 55>>
```

Estrutura de repetição – for

 Repete um bloco de códigos durante um número específico de vezes

```
disp('Soma dos X primeiros multiplos menores que Y');
Y = input('Informe o multiplo: ');
X = input('Informe o valor superior: ');
soma = 0;
for ind = 0:Y:X
    soma = soma + ind;
    fprintf('+ %d ',ind);
end
fprintf('= %d\n',soma);
• Sintaxe:

for indice = expr
Bloco
end
```

```
Soma dos X primeiros multiplos menores que Y
Informe o multiplo: 3
Informe o valor superior: 17
+ 0 + 3 + 6 + 9 + 12 + 15 = 45
```

Funções

- O uso de funções permite:
 - Fragmentar o problema em sub-tarefas
 - Podem ser testadas independentementes
 - Código reutilizável
 - Uma mesma sub-tarefa pode ser usada em diferentes partes
 - Isolamento de efeitos colaterais indesejados
 - Erros dentro das funções devem afetar somente as mesmas
- No MATLAB, cada função é salva em um arquivo separado, cujo nome é igual ao da função.

Funções - Exemplo

```
Editor - /home/rogerio/Matlab.Workspace/dist2.m.
Documentação
             \Box function distance = dist2(v1,v2)
             ∃%DIST2 Calcula a distância entre dois v<del>eto</del>
                                                                                   Nome da função
               %Pois é, calcula mesmo...
               %Calling sequence:
               % resultado = dist2(Vec1,Vec2)
                                                                                  Variável
              % onde VecN = [xN, yN]
                                                                                 de retorno
               %Destes comentários em diante não entra na documentação...
               %Perecebeu?
       10
       11
               distance = sqrt((v1(1) - v2(1)).^2 + (v1(2) - v2(2)).^2);
       12 -
               end
       13
       Command Window
         >> val = dist2([0,0],[1,2])
         val =
                                                      Consulta sobre a
             2.2361
                                                      documentação da função
         >> help dist2
          dist2 Calcula a distância entre dois vetores 2d
          Pois é, calcula mesmo...
          Calling sequence:
             resultado = dist2(Vec1, Vec2)
             onde VecN = [xN, yN]
       f_{\underline{x}} >>
```

Sugestão interessante!

- Dúvida?
- Antes de qualquer coisa, procure na DOCUMENTAÇÃO

Bibliografia da aula

 CHAPMAN, S. J. Programação em MATLAB para engenheiros. 2ª Ed. Cengage, 2010.

