Heurističko rešavanje problema rutiranja vozila korišćenjem SIMPGEN okoline

Kristina Kotić 18. septembar 2018.

Opis problema

(Capacitated Vehicle Routing Problem - CVRP)

Pretpostavimo da imamo n klijenata sa odgovarajućim potrebama koje treba uslužiti. Na raspolaganju je m vozila jednakih kapaciteta Q i jedno skladište S.

Odrediti rutu svakog vozila tako da ukupni transportni trošak bude minimalan, poštujući sledeća ograničenja:

- svaki klijent mora biti uslužen od strane jednog vozila
- suma potreba svih korisnika koje uslužuje isto vozilo ne sme biti veća od Q
- svako vozilo svoju rutu započinje i završava u skladištu S
 - ✓ NP težak problem kombinatorne optimizacije

Testirane metaheurističke metode

- Lokalna pretraga (LS)
- Simulirano kaljenje (SA)
- Osnovna metoda promenljivih okolina (BVNS)

pretražuju jednu ili više okolina tekućeg rešenja u cilju nalaženja lokalnog ili globalnog optimuma

Izbor okoline koja se pretražuje ima najveći uticaj na efikasnost ovih metoda (vreme izvršavanja i kvalitet dobijenog rešenja).

SIMPGEN okolina

Generička transformacija liste

- izaberi dve spoljne pozicije A i B
- invertuj podlistu od A do B
- izaberi dve unutrašnje pozicije C i D
- invertuj podlistu od C do D

Klasične transformacije kao specijalni slučajevi:

- ✓ umetanje A = C , D i B su na uzastopnim pozicijama
- ✓ zamena A, C i D, B su na uzastopnim pozicijama
- ✓ invertovanje $C = D, C \neq A, D \neq B$

Reprezentacija i generisanje početnog rešenja

Rešenje je predstavljeno vektorom dužine n+m oblika:

$$[v_1 k_{i1} k_{i2} ... k_{ij} v_2 k_{ij+1} k_{ij+2} ... v_m ... k_{in}]$$

Pogodnosti ovakve reprezentacije:

- 1. lako računanje funkcije cilja
- 2. laka primena SIMPGEN transformacije
- 3. ispunjena su 2 od 3 ograničenja (treba paziti na kapacitet vozila)

Početno dopustivo rešenje generisano je funkcijom to_constant_volume() binpacking modula.

Pseudokodovi - LS, SA i BVNS

Algorithm 1. Simulated Annealing Algorithm

```
Data: Cooling ratio r and length L
   Result: approximate solution S
 1 Initialize solution S;
 2 Initialize temperature T > 0;
 3 while not yet frozen do
        for i \leftarrow 1 to L do
            Pick a random neighbor S' of S;
            \Delta \leftarrow (cost(S') - cost(S));
           if \Delta \leq 0 // downhill move
            then
                S \leftarrow S';
            end
10
            if \Delta \geq 0 // uphill move
11
            then
                S \leftarrow S' with probability e^{-\Delta/T};
            end
14
        end
15
       T \leftarrow rT (reduce temperature);
17 end
```

```
L_0 = 10
SA: L_i = 1.05·L
prihvata lošije rešenje sa verovatnoćom e^{-\Delta/KT}
```

```
Алгоритам 8 Локална претрага procedure LS (Neighborhood structure N, Initial solution S) while S is not local optimum do Find S' \in N(S) with f(S') < f(S); S \leftarrow S'; return S;
```

```
Алгоритам 1 Основна метода променљивих околина

1: procedure BVNS

2: Generate initial solution S;

3: repeat

4: r \leftarrow 1;

5: while r \leq r_{max} do

6: S' \leftarrow Shaking(S, r);

7: S'' \leftarrow Local\ search(S');

8: if f(S'') < f(S) then

9: S \leftarrow S'';

10: r \leftarrow 1;

11: else

12: r \leftarrow r + 1;

13: until Stopping criterion satisfied return Best solution found
```

BVNS: okoline za razmrdavanje: umetanje, zamena, invertovanje okolina za lokalnu pretragu: SIMPGEN

Rezultati LS

kriterijum zaustavljanja: maksimalan broj iteracija bez poboljšanja (1000)

Instanca	Opt. rešenje	LS rešenje	mean_gap (%)	std	t _{total} (s)
P-n16-k8	450	opt	1.47	2.86	1.1
P-n19-k2	212	opt	8.08	4.12	0.5
P-n20-k2	216	opt	6.34	6.29	0.52
P-n21-k2	211	opt	4.38	3.42	0.47
P-n22-k2	216	opt	5.58	5.96	0.55
E-n22-k4	375	opt	7.03	6.67	1.2
P-n22-k8	603	opt	8.18	5.44	2.2
E-n23-k3	569	opt	1.94	2.43	0.5
P-n23-k8	529	537	13.2	5.71	2.6
E-n30-k3	534	539	4.54	3.07	1.36
E-n33-k4	835	838	6.05	2.79	1.78
P-n40-k5	458	465	7.4	3.56	3.06
P-n45-k5	510	514	8.53	3.48	4.51
E-n76-k7	682	789	22.07	5.32	8.2
P-n101-k4	681	858	37.62	10.0	7.0

Rezultati SA

parametri:

- $T_0 = 30$
- $T_f = 0.1$
- alpha= 0.98
- K=0.1

Instanca	Opt. rešenje	SA rešenje	mean_gap (%)	std	t _{total} (s)
P-n16-k8	450	opt	0.00	0.00	50.88
P-n19-k2	212	opt	2.36	2.69	16.0
P-n20-k2	216	opt	1.36	2.03	16.47
P-n21-k2	211	opt	0.39	1.02	14.2
P-n22-k2	216	opt	0.00	0.00	15.9
E-n22-k4	375	opt	1.3	1.69	41.8
P-n22-k8	603	opt	4.57	4.20	78.6
E-n23-k3	569	opt	0.14	0.06	11.4
P-n23-k8	529	opt	5.36	3.33	112.1
E-n30-k3	534	opt	1.23	0.97	27.3
E-n33-k4	835	opt	1.41	1.12	36.0
P-n40-k5	458	opt	2.79	3.17	39.5
P-n45-k5	510	513	3.23	2.05	56.1
E-n76-k7	682	711	6.37	1.6	61.8
P-n101-k4	681	750	14.64	2.9	36.4

Rezultati BVNS

kriterijum zaustavljanja: maksimalan broj iteracija (300)

Instanca	Opt. rešenje	BVNS rešenje	mean_gap (%)	std	t _{total} (s)
P-n16-k8	450	opt	0.00	0.00	212.82
P-n19-k2	212	opt	0.00	0.00	87.5
P-n20-k2	216	opt	0.00	0.00	94.2
P-n21-k2	211	opt	0.00	0.00	88.1
P-n22-k2	216	opt	0.00	0.00	93.3
E-n22-k4	375	opt	0.47	0.81	209.7
P-n22-k8	603	opt	0.64	2.49	336.3
E-n23-k3	569	opt	0.00	0.00	79.5
P-n23-k8	529	opt	2.63	2.57	460.1
E-n30-k3	534	opt	0.27	0.31	208.9
E-n33-k4	835	opt	0.61	1.00	257.9
P-n40-k5	458	opt	0.89	1.32	314.4
P-n45-k5	510	opt	1.14	0.1	435.9
E-n76-k7	682	698	4.74	1.37	759.5
P-n101-k4	681	731	11.48	2.5	292.3

Literatura:

- Yu, V. F, Lin S. W, Lee W, Ting C. J. (2010), "A simulated annealing heuristic for the capacitated location routing problem"
- Karlo Bala, Dejan Brcanov, Nebojša Gvozdenović (2015), "Sloving vehicle routing problems via single generic transformation approach"

