

Mock exam 2 PHYS-101(en) 5 December 2023

## Problem booklet

## Problems

Problem 1-5 points – page 2

Mock exam 2 1/4



## 1. Box on the Metro (5 points)



You are traveling to EPFL by metro and are carrying a box. The box has mass M and a square cross-section with sides of length L. You sit the box down on an empty forward-facing seat. As you approach the station, the train decelerates at a constant value of  $-a_T$ . In this problem, we will analyze the range of possibilities for what happens to the box.

You may assume that

- the box has a uniform mass distribution,
- the seat is flat and horizontal,
- the coefficient of static friction between the box and seat is  $\mu_s$ ,
- the coefficient of kinetic friction between the box and seat is  $\mu_k$  (which is less than  $\mu_s$ ),
- the constant  $a_T$  represents the magnitude of the deceleration,
- the deceleration is constant and sustained for a very long time,
- air drag is negligible, and
- the acceleration due to gravity is  $-g\hat{y}$ .

Two Cartesian coordinates system are shown above (which you may use if you wish): one system  $O_F$  is in the laboratory frame watching the train move by and one system  $O_N$  is in the frame moving with the train. Note that in both  $\hat{x}$  points in the direction of travel and  $\hat{y}$  points up. Note that "deceleration" means a negative acceleration (i.e. slowing down).

All answers below should be expressed in terms of M, L, g,  $\hat{x}$ ,  $\hat{y}$ ,  $\hat{z}$ , and/or any quantities specified in the individual question.

Mock exam 2 2/4

First, we will assume that the coefficient of static friction  $\mu_s$  is sufficiently *small* such that we are concerned the box may start to slide.

- a. Calculate the smallest magnitude of the deceleration  $a_T$  for which the box will slide. Note that you may include the variables  $\mu_s$  and  $\mu_k$  in your answer.
- b. If the box begins to slide, what will be the magnitude of the box's acceleration  $a_b$  as viewed in the frame of reference of the train  $O_N$ ? Note that you may include the variables  $\mu_s$ ,  $\mu_k$ , and  $a_T$  in your answer.
- c. What is the smallest possible value of  $a_b$ ? Note that you may include the variables  $\mu_s$ ,  $\mu_k$ , and  $a_T$  in your answer.

Next, we will assume that the coefficient of static friction  $\mu_s$  is sufficiently *large* that it will not slide, but instead potentially tip over.

- d. Calculate the smallest magnitude of the acceleration  $a_T$  for which the box will *start* to tip over. Note that you may include the variables  $\mu_s$  and  $\mu_k$  in your answer.
- e. What is the critical value of the coefficient of static friction  $\mu_s$  that separates when the box tips versus slides? Note that you may include the variables  $a_T$  and  $\mu_k$  in your answer.
- f. Calculate the smallest magnitude of the acceleration  $a_T$  for which the box will tip all the way over (i.e. rotate from flat on the seat to past 45°). Note that you may include the variables  $\mu_s$  and  $\mu_k$  in your answer.

Mock exam 2 3/4

THIS PAGE IS INTENTIONALLY LEFT BLANK

Mock exam 2 4/4