Shell Sort, Heap, Heap Sort & Heap Variants

Kuan-Yu Chen (陳冠宇)

Sorting

- Sorting means arranging the elements of an array so that they are placed in some relevant order which may be either ascending or descending
- A sorting algorithm is defined as an algorithm that puts the elements of a list in a certain order, which can be either numerical order, lexicographical order, or any userdefined order
 - Bubble, Insertion, Tree
 - **Selection**, **Merge**, Shell
 - Quick, Radix, Heap

Shell Sort.

- Shell sort, invented by Donald Shell in 1959, is a sorting algorithm that is a generalization of insertion sort
 - First, insertion sort works well when the input data is "almost sorted"
 - Second, insertion sort is quite inefficient to use as it moves the values just one position at a time

Example.

• Sort the 15 elements using shell sort

63, 19, 7, 90, 81, 36, 54, 45, 72, 27, 22, 9, 41, 59, 33

- The first pass:
$$gap = \frac{15+1}{2} = 8$$

Arrange the elements of the array in the form of a table and sort the columns.

The elements of the array can be given as:

Example..

- The second pass:
$$gap = \frac{8+1}{2} = 4.5$$

					Re	sult:			
63	19	7	9	41	22	19	7	9	27
36	33	45	72	27	36	33	45	59	41
22	90	81	59	54	63	90	81	72	54

The elements of the array can be given as:

- The third pass:
$$gap = \frac{5+1}{2} = 3$$

		_			
			Res	ult:	
22	19	7	9	19	7
9	27	36	22	27	36
33	45	59	33	45	54
41	63	90	41	63	59
81	72	54	81	72	90

The elements of the array can be given as:

Example...

- The last step: gap = 1

```
Result:
    9
                   7
    19
                   9
    7
                   19
    22
                   22
    27
                   27
    36
                   33
    33
                   36
    45
                   41
    54
                   45
    41
                   54
    63
                   59
    59
                   63
    81
                   72
    72
                   81
    90
                   90
Finally, the elements of the array can be given as:
  7, 9, 19, 22, 27, 33, 36, 41, 45, 54, 59, 63, 72, 81, 90
```

Shell Sort.

```
Shell_Sort(Arr, N)

Step 1: SET GAP_SIZE=N
Step 2: Repeat Steps 3 to 5 while GAP_SIZE > 1
Step 3: SET GAP_SIZE = (GAP_SIZE + 1) / 2
Step 4: for I = 0 to I < GAP_SIZE
Step 5: insertion sort()
Step 6: END
```


The elements of the array can be given as:

22, 19, 7, 9, 27, 36, 33, 45, 59, 41, 63, 90, 81, 72, 54

Shell Sort..

gap = 5

gap = 3

gap = 1

								Res	ult:			
	63	19	7	9	41			22	19	7	9	27
	36	33	45	72	27			36	33	45	59	41
	22	90	81	59	54			63	90	81	72	54
- T-1												

The elements of the array can be given as:

22, 19, 7, 9, 27, 36, 33, 45, 59, 41, 63, 90, 81, 72, 54

Shell Sort...

```
Shell Sort(Arr, N)
Step 1: SET FLAG = 1, GAP SIZE = N
Step 2: Repeat Steps 3 to 6 while FLAG = 1 OR GAP_SIZE > 1
Step 3:
           SET FLAG = 0
Step 4: SET GAP SIZE = (GAP SIZE + 1) / 2
Step 5: Repeat Step 6 for I = 0 to I < (N - GAP_SIZE)
                  IF Arr[I + GAP SIZE] < Arr[I]</pre>
Step 6:
                        SWAP Arr[I + GAP_SIZE], Arr[I]
                        SET FLAG = 1
Step 7: END
 - Gap = 5
```

The elements of the array can be given as:

```
22, 19, 7, 9, 27, 36, 33, 45, 59, 41, 63, 90, 81, 72, 54
```

Binary Heap

- A binary heap is a **complete binary tree** in which every node satisfies the heap property
 - Min Heap

If B is a child of A, then $key(B) \ge key(A)$

Max Heap

If B is a child of A, then $key(A) \ge key(B)$

Binary Heap – Insertion

- Inserting a new value into a binary heap is done in the following two steps:
 - Consider a max heap *H* with *n* elements
 - 1. Add the new value at the bottom of *H*
 - 2. Let the new value rise to its appropriate place in H

Example

• Consider a max heap and insert 99 in it

Binary Heap – Deletion

- An element is always deleted from the root of the heap
- Consider a max heap *H* having *n* elements, deleting an element from the heap is done in the following three steps:
 - 1. Replace the root node's value with the last node's value
 - 2. Delete the last node
 - 3. Sink down the new root node's value so that *H* satisfies the heap property

Example

• Delete an element from the given **max** heap *H*

Heap Sort

- Given an array ARR with *n* elements, the heap sort algorithm can be used to sort ARR in two phases
 - In phase 1, build a binary heap *H* using the elements of ARR
 - In phase 2, repeatedly delete an element from the heap

Example

- Sort the given elements using heap sort algorithm
 - -5, 4, 2, 3, 1
 - Step 1: build a minimum heap

Binomial Tree

- A binomial tree is an ordered tree
 - A binomial tree B_i with order i has 2^i nodes
 - It contains a root node whose children are the root nodes of binomial trees of order $i-1,\ i-2,\cdots$, 2, 1, and 0
 - The height of a binomial tree B_i is i
 - A binomial tree of order 0 has a single node

Binomial Heap

- A binomial heap *H* is a set of binomial trees
 - Every binomial tree in *H* satisfies the **minimum heap** property

Binomial Heap with Linked List

Minimum Value in Binomial Heap

• Since a binomial heap is heap-ordered, the node with the minimum value in a particular binomial tree will appear as a root node in the binomial heap

Fibonacci Heaps.

- A Fibonacci heap is a collection of trees
 - It is loosely based on binomial heaps
 - Fibonacci heaps differ from binomial heaps as they have a more relaxed structure
 - The trees in a Fibonacci heap are **not** constrained to be binomial trees

Fibonacci Heaps..

- Fibonacci heap H is generally accessed by a pointer called min[H] which points to the root that has a minimum value
 - If the Fibonacci heap H is empty, then min[H] = NULL

Review.

Bubble Sort

- Best/Worst/Average Case: $\mathbf{O}(n^2)$
- Insertion Sort

- Best Case: $\mathbf{O}(n)$
- Average/Worst Case: $\mathbf{O}(n^2)$

Review...

- Selection Sort
 - Average/Best/Worst Case: $\mathbf{O}(n^2)$

PASS	ARR[0]	ARR[1]	ARR[2]	ARR[3]	ARR[4]	ARR[5]	ARR[6]	ARR[7]
1	9	39	81	45	90	27	72	18
2	9	18	81	45	90	27	72	39
3	9	18	27	45	90	81	72	39
4	9	18	27	39	90	81	72	45
5	9	18	27	39	45	81	72	90
6	9	18	27	39	45	72	81	90
7	9	18	27	39	45	72	81	90

- Merge Sort
 - Average/Best/Worst Case: **O**(nlogn)
 - It needs an additional memory space

Review....

Quick Sort

- Best Case: $\mathbf{O}(n \log n)$
- Average Case: **O**(*n*log*n*)
- Worst Case: $\mathbf{O}(n^2)$
- Tree Sort
 - Best Case: $\mathbf{O}(n \log n)$
 - Add a node is $O(\log n)$
 - Worst Case: $\mathbf{O}(n^2)$
 - Add a node is $\mathbf{O}(n)$

Review.....

- Radix Sort
 - Best/Worst/Average Case: $\mathbf{O}(kn)$
 - *k* is the number of digits of the largest element

Number	0	1	2	3	4	5	6	7	8	9
911		911								
472								472		
123			123							
654						654				
924			924							
345					345					
555						555				
567							567			
808	808									

- Shell Sort
 - Best Case: ?
 - The best case for Insertion Sort is $\mathbf{O}(n)$
 - Average/Worst Case: $\mathbf{O}(n^2)$
 - Insertion Sort
- Heap Sort
 - Average/Best/Worst Case: **O**(nlogn)
 - A Complete Binary Tree
 Balance Tree

Stable Sorting Algorithms.

- Stable sort algorithms sort equal elements in the same order that they appear in the input
 - https://en.wikipedia.org/wiki/Sorting_algorithm#Stability

Stable Sorting Algorithms...

Why is the property important?

Please sort the four cards by referring to their numbers and

suits

• First, sort by suits

- Then, sort by numbers
 - For unstable sorting algorithm, we may get:

Comparison & Non-comparison

- Comparison sorts
 - A comparison sort cannot perform better than $\mathbf{O}(n \log n)$ on average
 - Bubble, Insertion, Tree, Selection, Merge, Shell, Quick, Heap sorts

- Non-comparison sort
 - Radix sort

Questions?

kychen@mail.ntust.edu.tw