Vorkurs Mathematik 2019 | Aufgaben zum Thema

Funktionen und Abbildungen II

× Aufgabe 1: Umkehrabbildungen

Bearbeite für die folgenden Abbildungen (1) bis (3) jeweils die folgenden Aufgaben:

- (a) Prüfe, ob die Umkehrabbildung definiert ist.
- (b) Wenn möglich, gib eine explizite Formel für die Umkehrabbildung an.
- (c) Wenn die Umkehrabbildung existiert, bestimme ihre Funktionswerte an den angegebenen Stellen.
- $(1) \ \ f:\mathbb{R}\to\mathbb{R}, \ x\mapsto 5x+3 \quad \ \quad \text{Falls } f^{-1} \text{ existiert, bestimme } f^{-1}(8) \text{ und } f^{-1}(-3).$
- (2) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto 4x^2 x$ Falls f^{-1} existient, bestimme $f^{-1}(1)$ und $f^{-1}(15)$.
- $!\,(3)\ \ f:\mathbb{R}_+\to\mathbb{R},\ x\mapsto \ln(x^2) \quad \quad \text{Falls } f^{-1} \text{ existiert, bestimme } f^{-1}(1) \text{ und } f^{-1}(0).$

Aufgabe 2: Exponentialfunktion

Vereinfache so weit wie möglich:

1.
$$\exp(3) \cdot \exp(-6)$$

2.
$$\left(\frac{1}{\exp_5(4)}\right)^8$$

3.
$$\frac{\exp(2)^{-3}}{\exp(-4)}$$

4.
$$\left(\frac{\exp(-2)}{\exp(-3)}\right)^2 \cdot \exp\left(\frac{8}{9}\right)$$

5.
$$\left(\exp\left(\frac{5}{2}\right) \cdot \exp\left(-\frac{1}{3}\right) \cdot \exp\left(\frac{1}{2}\right)\right)^{-1}$$

Aufgabe 3: Logarithmus

Vereinfache so weit wie möglich:

1.
$$\ln(5) - \ln(4)$$

2.
$$3\ln(2) + 2\ln(\frac{1}{4})$$

3.
$$\ln(3) + \ln(5) - 2\ln(3) - \ln(\frac{5}{3})$$

4.
$$4\ln(2\exp(\frac{1}{2})) - \ln(8)$$

5.
$$\exp(\ln(7) - 3\ln(2))$$

! Aufgabe 4: Beweis der Rechenregeln

1. Beweise die folgenden Rechenregeln für die Exponentialfunktion. Benutze dazu nur die Definition der Exponentialfunktion und die Rechenregeln für allgemeine Potenzen. Es sei $a \in \mathbb{R}_{>0}$.

E2: $\forall x, y \in \mathbb{R} : \exp(x+y) = \exp(x) \cdot \exp(y)$

E3: $\forall x, y \in \mathbb{R} : \exp_a(x \cdot y) = (\exp_a(x))^y$

E4: $\forall x \in \mathbb{R} : \exp(-x) = \frac{1}{\exp(x)}$

2. Beweise die folgenden Rechenregeln für den Logarithmus. Benutze dazu nur die Rechenregeln für die Exponentialfunktion, die Definition des Logarithmus und Satz 12.2.

L3: $\forall x \in \mathbb{R}_+, z \in \mathbb{R} : z \cdot \ln(x) = \ln(x^z)$

L4: $\forall x \in \mathbb{R} : -\ln(x) = \ln(\frac{1}{x})$

Aufgabe 5: Polynomfunktionen dritten Grades

Wir betrachten eine Polynomfunktion dritten Grades $f: \mathbb{R} \to \mathbb{R}$ der Form

$$f(x) = ax^3 + bx^2 + cx + d$$
, $a, b, c, d \in \mathbb{R}, a \neq 0$.

- (a) Bestimme die Nullstellen von f, falls a = 1, b = 2, c = -1 und d = -2 ist.
- (b) Leite die Funktion ab und bringe die Ableitung in Scheitelpunktsform.
 - (i) Was sagt das Vorzeichen von a über den Graphen der Funktion f aus?
 - (ii) Falls a>0 ist, wann wird die Ableitung der Funktion minimal? Falls a<0 ist, wann wird die Ableitung der Funktion maximal?
- (c) Gegeben seien die folgenden drei Funktionsgraphen von Ableitungen dreier Polynomfunktionen dritten Grades.

Zeichne in jede Skizze je eine mögliche Polynomfunktion, deren Ableitung der jeweils abgebildete Funktionsgraph sein könnte.

Aufgabe 6: Sinus und Kosinus

Wir wollen uns in dieser letzten Aufgabe noch mit zwei Funktionen beschäftigen, welche sich geometrisch sehr schön veranschaulichen lassen: der Sinus- und Kosinusfunktion.

Aus der Schule ist sicherlich noch bekannt, dass man einen Winkel in Grad (°) messen. So bezeichnen wir einen Winkel von 90° als rechten Winkel. Ein anderes verbreitetes Winkelmaß ist das Bogenmaß. Das Bogenmaß eines Winkels α beschreibt genau diejenige Strecke, die ein Zeiger auf einem Kreis mit Radius 1 zurücklegt, um den Winkel α zu überstreichen. Dieser Zusammenhang ist in der folgenden Abbildung dargestellt:

Abbildung 1: Einige Winkel im Bogenmaß (ausgehend von der positiven x-Achse)

So entspricht ein Winkel von 45° einem Bogenmaß von $\frac{1}{4}\pi$ – oder anders ausgedrückt: Die Winkel $\alpha=45^\circ$ und $\beta=\frac{1}{4}\pi$ sind gleich groß:

Abbildung 2: Einige Winkel im Bogenmaß (ausgehend von der positiven x-Achse)

Wie können wir allgemein wissen, wie groß ein gewisser Winkel im Bogenmaß in Grad ist? Dazu können wir ausnutzen, dass der Umfang eines Kreises mit Radius 1 genau 2π beträgt. Somit entspricht ein Winkel von 180° gerade π oder ein Winkel von $\frac{\pi}{3}$ (dies ist

 $\frac{1}{6}$ des Kreisumfangs 2π) gerade $\frac{1}{6}$ von 360° , also 60° . Mit diesen Überlegungen kann man die folgende Umrechnungsformel zwischen Gradzahl und Bogenmaß aufschreiben:

$$\frac{\alpha (\text{in Grad})}{360^{\circ}} = \frac{\alpha (\text{in Bogenmaß})}{2\pi}$$

Wir werden im weiteren Verlauf hauptsächlich mit dem Bogenmaß arbeiten.

Erinnerung 1 (Sinus und Kosinus)

Gegeben sei ein rechtwinkliges Dreieck. Betrachten wir einen Winkel $\alpha \neq 90^\circ$ (d.h. $\alpha \neq \frac{\pi}{2}$) des Dreiecks, so gilt für diesen

$$\sin(\alpha) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
$$\cos(\alpha) = \frac{\text{Ankathete}}{\text{Hypotenuse}}$$

(a) Betrachten wir die folgende Abbildung eines Kreises mit Radius 1. Der eingezeichnete Pfeil schließe mit der waagerechten Achse einen Winkel von $\alpha = \frac{\pi}{3}$ ein.

- (i) Finde in obiger Abbildung ein rechtwinkliges Dreieck und zeichne in dieses Dreieck $\sin(\alpha)$ und $\cos(\alpha)$ ein.
- (ii) Bestimme mittels deiner Skizze die ungefähren Werte von $\sin(\alpha)$ und $\cos(\alpha)$ für $\alpha = \frac{\pi}{3}$.
- (b) Wir betrachten Abbildung 1 und bezeichnen das Bogenmaß mit x. Wenn wir x varieren (dies entspricht dem Drehen der Zeigers), so erhalten wir für jedes Bogenmaß x einen Wert $\sin(x)$ und einen Wert $\cos(x)$. Zeichne mit Hilfe deiner Erkenntnisse aus Aufgabenteil (a) die beiden Funktion, welche $\sin(x)$ in Abhängigkeit von x und welche $\cos(x)$ in Abhängigkeit von x beschreibt. Dieses sind gerade die beiden trigonometrischen Funktionen Sinus und Kosinus.

