Machine Learning

Abdelhak Mahmoudi abdelhak.mahmoudi@um5.ac.ma

INPT- 2020

Content

- 1. The Big Picture
- 2. Supervised Learning
 - Linear Regression, Logistic Regression, Support Vector
 Machines, Trees, Random Forests, Boosting, Artificial Neural Networks
- 3. Unsupervised Learning
 - Principal Component Analysis, K-means, Mean Shift

Unsupervised Learning

- Dimensionality Reduction
 - Principal Component Analysis (PCA)
- Clustering
 - K-Means
 - Mean-Shift

Unsupervised Learning

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

- Curse of dimensionality (n >> m)
 - Data are at risk of being very sparse in high dimensional space
 - High risk of overfitting

- Transforms feature space from n to k (k<n)
 - Some features are probably corelated (dependent)
 - Some features are almost constant
 - Transform but preserve the maximum of variance

3/23/20

- Transforms feature space from n to k
 - Some features are probably corelated (dependent)
 - Some features are almost constant
 - Transform but preserve the maximum of variance
- MNIST Example
 - Dropping some pixels without losing much information
 - Two neighboring pixels are often highly correlated -> use their average.

MNIST

- Transforms feature space from n to k
 - Some features are probably corelated (dependent)
 - Some features are almost constant
 - Transform but preserve the maximum of variance
- EOCD example

Country	GDP (trillions of US\$)	Per capita GDP (thousands of intl. \$)	Human Dev Index	Life expectancy	
Canada	1.577	39.17	0.908	80.7	
China	5.878	7.54	0.687	73	
India	1.632	3.41	0.547	64.7	
Russia	1.48	19.84	0.755	65.5	
Singapore	0.223	56.69	0.866	80	•••

Country	z1	z2
Canada	1.6	1.2
China	1.7	0.3
India	1.6	0.2
Russia	1.4	0.5
Singapore	0.5	1.7

- Often
 - Not necessarily lead to better performance
 - Not the better way to address overfitting!
- Always
 - Speed up training
 - Allow data compression
 - Allow data exploration
 - Allow data visualization (DataViz)

3/23/20 Abdelhak Mahmoudi

 x_3

Don't be confused!

Maximum loss Less variance Minimum loss More variance

12 Abdelhak Mahmoudi 12

- Singular Value Decomposition
 - $X = U\Sigma V^T$
 - Σ is diagonal, composed of ordered positive singular values
 - U and V form a basis (are orthonormal)
- k Principal Components
 - k first vectors of U
 - Corresponds to the first k singular values
- Explained Variance
 - Sum of the first k singular values
- Reconstruction
 - $\hat{X} = \hat{U}\hat{\Sigma}\hat{V}^T$

- Singular Value Decomposition (SVD) (very costly)
 - Parallelization: Incremental PCA (fast), Randomized PCA (faster)
- PCA assumes that the dataset is centered around the origin
- How many dimensions to preserve?
 - Reduce dimensions that add up to a sufficiently large portion of the variance (e.g., 99%)
- Kernel PCA (kPCA): use the kernel trick like SVM
- In practice, use kPCA to transform the feature space, then perform classification or regression.

- Hyper-Parameters Tuning
 - d: polynomial Kernel
 - γ : RBF kernel
 - K: Number of retained principal components
 - Etc.

Other Dimensionality Reduction Methods

- Multidimensional Scaling (MDS)
- Isomap
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Manifold Learning
 - Locally Linear Embedding (LLE)
- Etc.

