Osnove matematičke logike

Matematička logika je disciplina koja proučava iskaze, njihovu istinitost i manipulaciju sa iskazima u cilju formiranja složenijih iskaza. Matematička logika se dijeli na **logiku iskaza**, i **logiku predikata**.

1 Osnove logike iskaza

- Pod **iskazom** podrazumjevamo svaki misaoni odraz neke činjenice u obliku izjavne rečenice nekog prirodnog jezika za koji možemo nedvojbeno utvrditi da li je tačna ili ne Stoga, iskaze dijelimo na **tačne** (oznaka \top , T, 1) i **netačne** (oznaka \bot , F, N, 0)
- Primjer tačnih iskaza: "Berlin je glavni grad Njemačke", "Ovo je 21. stoljeće"
 Primjer netačnih iskaza: "2+2=5", "Kiša čita papir"
 Nisu iskazi: "Ko to tamo hoda?" jer nije izjavna rečenica (niti su sve izjavne rečenice iskazi)
 Nisu iskazi: "x je djeljivo sa y" jer su zavisni od varijable i ovo su zapravo predikati
- Složeni iskazi su iskazi sastavljeni od drugih prostijih iskaza koristeći operacije nad iskazima
- Primjenjujući jednu unarnu ili neku od pet binarnih operacija nad iskazima kažemo:

negacija($\neg A$, A', \overline{A})(č. "ne A" ili "nije A") — je tačan akko 1 A nije tačan konjukcija($A \land B$ ili AB)(č. "A i B") — je tačan akko su tačna oba iskaza A i B disjunkcija($A \lor B$)(č. "A ili B") — je tačan akko je tačan jedan od iskaza ekskluzivna disjunkcija($A \lor B$)(č. "ili A, ili B") — je tačan akko je tačan ili iskaz A ili iskaz B ali ne oba istovremeno

implikacija $(A \Rightarrow B)$ (č. "iz A slijedi B", "ako je A onda je B") — je tačan u svim slučajevima osim ako je A tačan a B nije

ekvivalencija $(A \Leftrightarrow B)$ (č. "A je ekvivalentno sa B" ili "B je ako i samo ako je A") — je tačan ako i samo ako su oba iskaza A i B istovremeno ili tačna ili netačna

- Iskazi koji su uvijek tačni tj. imaju vrijednost \top , nazivamo **tautologija** npr. $x = y \lor x \neq y$ ili "ili je lopta zelena ili nije zelena" ili $A \lor \neg A$
- Iskzai koji su uvijek netačni se nazivaju kontradikcija
- Redoslijed **prioriteta operacija**: zagrade, negacija, konjukcija, disjunkcija i ekskluzivna disjunkcija (isti prioritet), implikacija i ekvivalencija npr. izraz $A \vee B \wedge C$ se interpretira kao $(A \vee (B \wedge C))$

2 Tablica istinitosti

A	B	$\neg A$	$A \wedge B$	$A \lor B$	$A \underline{\vee} B$	$A \Rightarrow B$	$A \Leftrightarrow B$
	Ι Ι	T				Т	Т
	T	T		Т	Т	Т	
T				Т	Т		
Т	Т		Т	Т		Т	Т

¹akko se čita: ako i samo ako

3 Pravila logike iskaza

1. Komutativnost: XY = YX

 $X \vee Y = Y \vee X$

2. Asocijativnost: X(YZ) = (XY)Z

 $X \lor (Y \lor Z) = (X \lor Y) \lor Z$

3. Distributivnost: $X(Y \lor Z) = XY \lor XZ$

 $X \vee (YZ) = (X \vee Y)(X \vee Z)$

4. Prva De Morganova teorema: $\overline{XY} = \overline{X} \vee \overline{Y}$

5. Druga De Morganova teorema: $\overline{X \vee Y} = \overline{X} \wedge \overline{Y}$

6. Pravilo dvostruke negacije: $\overline{\overline{X}} = X$

3.1 Istoznačnost logičkih iskaza

Ako imamo dva složena iskaza X i Y čije su tablice istinitosti iste, kažemo da su ta dva iskaza **logički ekvivalentna** ili **istoznačna** i pišemo X = Y. Tako npr. iskaz $X = (A\overline{B} \vee \overline{C(\overline{A} \vee B)})$ i iskaz $Y = (A \underline{\vee} B) \vee \overline{C}$ imaju iste tablice istinitosti te możemo reći da su oni istoznačni.

Primjer: Preko tablice istinitosti pokazati da je prva De Morganova teorema tačna.

4 Logički predikati

- Logika iskaza je nedovoljna da se opišu iskazi poput "x je prost broj" ili "x je veće od y" jer istinost iskaza zavisi od samih vrijednosti promjenjivih
- Predikati su iskazi vezani za jednu ili više promjenjivih vrijednosti

Pišu se sa P(x) ili Q(x) ili P(x,y) ili R(x,y,z), itd...

npr. P(x): x je prost broj

npr. P(x, y) : x > y

- Kvanotri: P(x) je predikat koji govori neku tvrdnju o x dok korištenjem kvantora tu tvrdnju pretvaramo u iskaz. Npr.:
 - Iskaz: $\forall x P(x)$ čitamo: predikat P(x) vrijedi za svako x.

Ili radi bolje čitljivosti: $(\forall x)P(x)$

– Iskaz: $\exists x P(x)$ čitamo: predikat P(x) vrijedi za barem jedno x.

Ili radi bolje čitljivosti: $(\exists x)P(x)$

– Iskaz: $\exists !x P(x)$ čitamo: predikat P(x) vrijedi za tačno jedno x.

Ili radi bolje čitljivosti: $(\exists!x)P(x)$

• Kvantori imaju viši prioritet od ostalih logičkih operatora

npr. $\forall x P(x) \lor Q(x)$ se interpretira kao $(\forall x P(x)) \lor Q(x)$

osim ako nije zagradama drugačije navedeno: $\forall x (P(x) \lor Q(x))$

Kvantore i predikate možemo kombinovati

npr. $\forall x \exists y (P(x) \land Q(y))$ — za svako x postoji barem jedno y za koje vrijedi iskaz $P(x) \land Q(y)$

• Npr. $P(x,y): x^2 + y^2 = 9$

iskaz: $(\forall x)(\forall y)P(x,y)$ je \bot jer ako je x=5 i $y=0,\,P(x,y)$ ne vrijedi, dok

iskaz: $(\exists x)(\exists y)P(x,y)$ je tačan jer možemo pronaći barem jedno x i y za koje vrijedi P(x,y) dok,

npr. $P(x,y): x^2 + y^2 = 9 i Q(x): x > 5$

iskaz $(\exists x)(\exists y)(P(x,y) \land Q(x)) = \bot$ jer ne postoji x i y koji odgovaraju traženim kriterijima.

5 Ponavljanje

- 1. Koja je razlika izmedju operacija konjukcije i ekvivalencije?
- 2. Koju operaciju možemo koristiti da modeliramo iskaz "Ako bude sunčano ići ćemo na plažu"?
- 3. Opisati redoslijed prioriteta operacija u sljedećem iskazu: $\neg X \land \neg (Y \Leftrightarrow Z) \Rightarrow \overline{Z} \lor X$
- 4. Formirati tablicu istinitosti za izraz $A \vee \overline{B} \Rightarrow AB \vee C$
- 5. Formirati tablicu istinitosti za izraz $(A\overline{B} \vee \overline{C(\overline{A} \vee B)}) \vee C\overline{A \vee \overline{B}C}$
- 6. Pokazati tačnost druge De Morganove teoreme.
- 7. Korištenjem kvantora napiši sljedeći predikat: postoji samo jedno x za koje vrijedi $\frac{x}{3}=6$
- 8. Ako su dati predikati: P(x,y): x>y $Q(x,y): x\leq y$ R(x): x-7=2 pronaći istinitost sljedećih iskaza:
 - (a) $\exists x R(x)$
 - (b) $(\forall x)(\exists y)P(x,y)$
 - (c) $(\exists y)(\forall x)Q(x,y)$
 - (d) $(\forall x)(\forall y)[P(x,y) \lor Q(x,y)]$