Chaves

Chave aberta ideal:

Chave fechada ideal:

 A resistência (R) mede o grau de oposição que um corpo apresenta à passagem de corrente elétrica.

Símbolo

- Algumas aplicações da resistência elétrica:
 - Produção de calor;
 - Redução da corrente elétrica em circuitos;

Acionamentos e controle de motores.

- O físico alemão George S. Ohm foi pioneiro nos estudos para caracterização do fenômeno da resistência elétrica.
 - Em suma, seus experimentos consistiam em aplicar uma d.d.p em um dado material e observar a variação da corrente elétrica.

George S. Ohm 1789-1854

"A **tensão** em um resistor é diretamente proporcional à **corrente** que passa pelo mesmo."

$$R=\frac{V}{I}$$

O resistor ôhmico, nada mais é do que um resistor, cuja resistência varia linearmente

 Na prática, não existem elementos perfeitamente lineares. A natureza é não-linear.

 Todavia, a menos que se diga o contrário, imaginase que todos os elementos estão operando dentro da faixa de linearidade, sendo considerados lineares por faixa.

Resistores Variáveis

Potenciômetro de filme

Resistividade de alguns condutores

$$R = \rho \frac{L}{A}$$

Material	Resistividade ρ (Ω.mm²/m)	Coef. de Temperatura α _r (°C ⁻¹) ⁽¹⁾	Densidade δ (g/cm³)
Aço	0,0971	11 x 10 ⁻⁶	7,70
Alumínio	0,0265	0,0039	2,70
Carbono (grafite)	35,00	- 0,0005	11,34
Cobre	0,0168	0,0 06 8	8,89
Constanta (2)	0,4900	10-5	8,90
Germánio	4,6 x 10 ⁻⁵	- 0,05	2,27
Manganina ⁽³⁾	0,4820	2 x 10 ⁻⁸	8,40
Nicromo (4)	1,500	0,0004	8,20
Silício	6,4 x 10 ⁻⁸	- 0,07	2,40
Ouro	0,0244	0,0034	19,30
Prata	0,0038	0,0038	10,50

Variação da Resistividade

 A resistividade varia com a temperatura sob a qual o material está submetido sendo dada por:

$$\rho_f = \rho_i \cdot (1 + \alpha \cdot \Delta T)$$

- Onde:
 - ρ_f coeficiente de temperatura final.
 - ρ_i coeficiente de temperatura inicial
 - α constante cujo valor depende somente do material considerado
 - △T variação da temperatura

Resistores em Série

$$R_{eq} = R_1 + R_2 + R_3$$

Para n resistores em série:

 V_T R_{eq}

$$R_{eq} = \sum_{i=1}^{n} R_i$$

A resistência equivalente de uma associação de resistores em série é sempre **maior** que qualquer resistência da associação

Resistores em Paralelo

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Expressão geral

Para 2 resistores

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$\frac{1}{R_{eq}} = \sum_{i=1}^{n} \frac{1}{R_i}$$

A resistência equivalente de uma associação de resistores em paralelo é sempre **menor** que qualquer resistência da associação.

Exemplo

Encontre a tensão V_c e a potência dissipada pela resistência interna se a carga for um resistor de 13 Ω .

Solução:

$$I_C = \frac{30 \text{ V}}{2 \Omega + 13 \Omega} = \frac{30 \text{ V}}{15 \Omega} = 2 \text{ A}$$

$$V_C = V_{SC} - I_C R_{\text{int}} = 30 \text{ V} - (2 \text{ A})(2 \Omega) = 26 \text{ V}$$

$$P_{\text{dissipada}} = I_C^2 R_{\text{int}} = (2 \text{ A})^2 (2 \Omega) = (4)(2) = 8 \text{ W}$$

Fontes de Alimentação

- Uma **fonte de alimentação** é um elemento capaz de entregar (alimentar) energia a um circuito elétrico.
- A alimentação é feita através da tensão que a fonte apresenta entre seus terminais de saída (fonte de tensão).

Fontes de Alimentação

- Tradicionalmente, atribui-se o termo fonte de alimentação a uma fonte de tensão. Todavia, não se pode esquecer que um circuito pode possuir fontes de corrente.
- Qual é a diferença entre elas?
 - Fonte de tensão (ideal): a tensão se mantém para qualquer variação de corrente.
 - Fonte de corrente (ideal): a corrente se mantém para qualquer variação de tensão.

Fontes de Tensão Ideal

 Entende-se por fonte de tensão ideal, a fonte de tensão que é capaz de manter o seu valor de tensão para qualquer carga, i.e., a quantidade de corrente elétrica drenada desta fonte pode ser infinita.

Fontes de Tensão Real

 Em uma fonte de tensão real, a tensão nominal fornecida se mantém até uma determinada carga.

Associação de Fontes de Tensão

• Em série: aumento da tensão nos terminais da associação.

Em qualquer um dos casos é importante verificar a polaridade das fontes.

Em paralelo: estabilização da tensão nos terminais da associação.

Curvas Características

Fonte de tensão ideal: resistência nula na saída.

• Fonte de tensão real: resistência em série na saída da fonte.

$$V=-RI+V_B$$

Curvas Características

• Fonte de corrente ideal: resistência nula na saída.

 Fonte de corrente real: resistência em paralelo na saída da fonte.

3.6 – TRANSFORMAÇÃO DE FONTES

- DEPENDENDO DO TIPO DE ANÁLISE, UM CIRCUITO APENAS COM FONTES DE CORRENTE OU APENAS COM FONTES DE TENSÃO PODE SER PREFERÍVEL.
- POR ISSO, TORNA-SE CONVENIENTE, ÀS VEZES, A CONVERSÃO DE UMA FONTE DE CORRENTE EM UMA FONTE DE TENSÃO EQUIVALENTE OU VICE-VERSA.
- PARA A TRANSFORMAÇÃO, CADA **FONTE DE TENSÃO** DEVE TER UMA RESISTÊNCIA INTERNA EM **SÉRIE**, E CADA **FONTE DE CORRENTE** DEVE TER UMA RESISTÊNCIA INTERNA EM **PARALELO**.
- A FIGURA A SEGUIR MOSTRA A TRANSFORMAÇÃO DE UMA **FONTE DE TENSÃO** EM UMA **FONTE DE CORRENTE** EQUIVALENTE.

3.6 – TRANSFORMAÇÃO DE FONTES

- NA TRANSFORMAÇÃO DE UMA FONTE DE TENSÃO EM UMA FONTE DE CORRENTE EQUIVALENTE, O MESMO RESISTOR DA FONTE DE TENSÃO ESTÁ EM PARALELO COM A FONTE DE CORRENTE IDEAL, E O VALOR DA FONTE DE CORRENTE IDEAL É IGUAL AO VALOR DA FONTE DE TENSÃO IDEAL DIVIDIDO POR ESSE RESISTOR.
- A SETA DA FONTE DE CORRENTE É EM DIREÇÃO AO TERMINAL POSITIVO DA FONTE DE TENSÃO.

 ESSA EQUIVALÊNCIA É APLICADA APENAS A CIRCUITOS EXTERNOS CONECTADOS A ESSAS FONTES – AS TENSÕES E CORRENTES NESSE CIRCUITO EXTERNO SERÃO AS MESMAS PARA AMBAS AS FONTES, MAS INTERNAMENTE ESSAS FONTES NÃO SÃO EQUIVALENTES.