МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА

> Факультет "'Фундаментальные науки"' Кафедра "'Прикладная математика"'

Применение различных вариантов метода декомпозиции для численного решения задач деформирования упругих тел

Исполнитель: Научный руководитель: Матвеев Михаил канд. физ.-мат. наук Родин Александр Сергеевич

Цель

Исследование сходимости итерационного цикла при решении задач деформирования упругих тел различными методами декомпозиции области

Задачи

- применение МКЭ для решения задач теории упругости;
- реализация различных методов Шварца;
- анализ применения мультипликативного, аддитивного и двухуровневого аддитивного методов Шварца при решении ряда задач упругого деформирования тела;

Постановка задачи механики твёрдого деформируемого тела

Уравнения равновесия в деформируемом теле, занимающем область G с границей ∂G :

$$L\mathbf{u} = -\nabla \boldsymbol{\sigma}(\boldsymbol{u}) = \mathbf{f}(\mathbf{x}), \ x \in G$$

с кинематическими и силовыми граничными условиями

$$u(x) = u_0, x \in \partial G_D,$$

$$\sigma(\mathbf{u}) \cdot \mathbf{n} = \mathbf{p}(\mathbf{x}), \ x \in \partial G_N,$$

где $\partial\,G_D$ - участок границы области G, на котором заданы кинематические условия, $\partial\,G_N$ - участок границы области G, на котором заданы силовые условия.

Основные положения для метода Шварца

Рассмотрим произвольную область G, разделённую на конечное число подобластей $G=\bigcup_{i=1}^M G_i$ с внутренними границами $\partial G_1,\dots,\partial G_M$.

Данные подобласти пересекаются, необходимо ввести дополнительные обозначения граничных значений:

$$\begin{aligned} \partial G_{N,i} &= \partial G_N \cap \partial G_i \\ \partial G_{D,i} &= \partial G_D \cap \partial G_i \\ \partial \tilde{G}_i &= G \setminus ((G_i \setminus \partial G_i) \cap \partial G_{N,i}) \end{aligned}$$

Рис. 1: Схема декомпозиции расчётной области

Мультипликативный и аддитивный методы Шварца

Основные формулы мультипликативного метода Шварца:

$$L\left(u^{n+\frac{i}{M}}\right) = f(x), \qquad x \in G_{i}$$

$$\sigma(u^{n+\frac{i}{M}}) \cdot n = p(x), \qquad x \in \partial G_{N,i}$$

$$u^{n+\frac{i}{M}}(x) = 0, \qquad x \in \partial G_{D,i}$$

$$u^{n+\frac{i}{M}}(x) = u^{n+\frac{(i-1)}{M}}(x), \quad x \in \partial \tilde{G}_{i}$$

Мультипликативный метод Шварца последователен, решение на каждой итерации зависит от решения на предыдущей подобласти.

Основные формулы аддитивного метода Шварца:

$$L(u^{n+\frac{i}{M}}) = f(x), \quad x \in G_i$$

$$\sigma(u^{n+\frac{i}{M}}) \cdot n = p(x), \quad x \in \partial G_{N,i}$$

$$u^{n+\frac{i}{M}}(x) = 0, \quad x \in \partial G_{D,i}$$

$$u^{n+1}(x) = u^n(x), \quad x \in \partial \tilde{G}_i$$

В конце каждой итерации решение вычисляется по формуле:

$$u^{n+1} = u^n + \alpha \sum_{i=1}^{M} (u_i^{n+1} - u^n),$$

где коэффициент α - итерационный параметр, от которого зависит скорость сходимости итерационного процесса.

Двухуровневый аддитивный метод Шварца

Для улучшения сходимости метода Шварца используются двухуровневые методы, заключающиеся в наличии помимо основной сетки грубой сетки. Для двухуровневого аддитивного метода Шварца решение на каждой итерации ищется по формуле

$$u^{n+1} = u^n + \alpha \sum_{i=1}^{M} (u_i^{n+1} - u^n) + \alpha \Delta \hat{u}_0^{n+1},$$

где $\Delta \hat{u}_0^{n+1}$ - решение задачи, полученное на грубой сетке и пересчитанное на узлы основной сетки путём интерполяции. Решение в узлах грубой сетки ищется по формуле

$$\mathbf{K_c} \Delta u_0^{n+1} = \mathbf{R_c}^{n+1}$$

Рис. 2: Схема расчётной области с прямоугольной областью в качестве грубой области

Вектор правой части для грубой сетки вычисляется по формуле

$$\mathbf{R_c^{n+1}} = \mathbf{Ar^n},$$

где ${f r^n}$ - вектор невязки в узлах базовой сетки, ${f A}$ - интерполяционная матрица.

$$\Delta \hat{u}_0^{n+1} = \mathbf{F} \Delta u_0^{n+1}$$

Первая тестовая задача

Основные сведения и таблицы

Расчётная область - прямоугольник, закреплённый с левой стороны по оси ОХ и с нижней стороны по оси ОҮ. Внешнее давление $p=50\,$ МПа, ширина тела $a=2\,$ см, высота тела $b=1\,$ см.

Рис. 3: Распределение перемещений во всей расчётной области

МДО	M	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625			
	2	23	23	23	22			
Мульт	4	102	100	99	99			
	8	401	386	385	383			
	2	80	79	79	78			
Адд	4	346	338	336	334			
	8	1303	1254	1251	1250			
	2	15	15	14	15			
2Адд	4	14	14	16	15			
	8	1	16	17	17			

Таблица 1: Таблица количества итераций в зависимости от количества подобластей и шага мелкой сетки

	Количество подобл-тей	H = 1	H = 0.5	H = 0.25	H = 0.125
	2	17	15	14	14
ĺ	4	29	19	16	16
İ	8	42	26	17	17

Таблица 2: Таблица количества итераций в зависимости от количества подобластей и шага грубой сетки

Вторая тестовая задача

Основные сведения и таблицы

Расчётная область - сектор поперечного сечения толстостенной трубы, нагруженной внешним давлением. Внутренний радиус $r_a=1$ см, внешний радиус $r_b=2$ см, внешнее давление p=5 МПа.

МДО	М	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625				
	2	44	44	44	43				
Мульт	4	178	169	169	168				
	8	528	497	494	488				
	2	68	38	40	42				
Адд	4	128	170	110	120				
	8	463	408	393	398				
	2	15	15	14	15				
2Адд	4	14	14	16	15				
	8	16	16	17	17				

Таблица 3: Таблица количества итераций в зависимости от количества подобластей и шага мелкой сетки

	Количество подобл-тей	H = 0.5	H = 0.25	H = 0.125
	2	17	16	15
	4	21	19	15
İ	8	23	19	17

Таблица 4: Таблица количества итераций в зависимости от количества подобластей и шага грубой сетки

Вторая тестовая задача

Аналитические решения

Для толстостенного цилиндра известно аналитическое решение:

$$u = \frac{(1-2\nu)(1+\nu)}{E} \frac{(p_a \cdot r_a^2 - p_b \cdot r_b^2)}{(r_b^2 - r_a^2)} r + \frac{1+\nu}{E} \frac{(r_a r_b)^2}{r} \frac{(p_a - p_b)}{(r_b^2 - r_a^2)},$$

$$\sigma_{rr} = \frac{(p_a \cdot r_a^2 - p_b \cdot r_b^2)}{b^2 - a^2} - \frac{a^2 b^2}{r^2} \frac{(p_a - p_b)}{b^2 - a^2},$$

$$\sigma_{\varphi\varphi} = \frac{(p_a \cdot r_a^2 - p_b \cdot r_b^2)}{b^2 - a^2} + \frac{a^2 b^2}{r^2} \frac{(p_a - p_b)}{b^2 - a^2}.$$

Шаг сетки	u_r	σ_r	σ_{arphi}
0.05	1.39×10^{-4}	2.93×10^{-2}	1.13×10^{-2}
0.025	3.50×10^{-5}	1.42×10^{-2}	5.60×10^{-3}
0.0125	8.72×10^{-6}	7.04×10^{-3}	2.84×10^{-3}

Таблица 5: Ошибки численного решения

Шаг сетки	u_r	σ_r	σ_{arphi}
0.05	1	1	1
0.05	4.1	2.5	2.02
0.05	16.21	4.46	4.28

Таблица 6: Отношение ошибок численного решения

Вторая тестовая задача Дополнительные графики

Рис. 4: Распределение узловых перемещений во всей области

Рис. 5: Распределение узловых радиальных напряжений во всей области

Третья тестовая задача

Основные сведения и таблицы

Расчётная область - сектор поперечного сечения модели подшипника, нагруженной внешним давлением. Внутренний радиус $r_a=1$ см, внешний радиус $r_b=2$ см, внешнее давление p=5 МПа.

МДО	М	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625			
	2	42	44	45	48			
Мульт	4	220	231	245	261			
	8	409	509	550	592			
	2	52	36	49	50			
Адд	4	194	184	183	182			
	8	647	566	546	550			
	2	17	18	18	19			
2Адд	4	24	26	24	24			
	8	29	30	28	28			

Таблица 7: Таблица количества итераций в зависимости от количества подобластей и шага мелкой сетки

Количество подобл-тей	H = 0.5	H = 0.25	H = 0.125
2	23	20	18
4	39	31	24
8	52	42	28

Таблица 8: Таблица количества итераций в зависимости от количества подобластей и шага грубой сетки

Третья тестовая задача Дополнительные графики

Рис. 6: Распределение узловых перемещений во всей области

Рис. 7: Распределение узловых радиальных напряжений во всей области

Третья тестовая задача

Анализ временных затрат

Размерность задачи	Базовый метод	Двухуровневый	Двухуровневый	Двухуровневый	Двухуровневый
		аддитивный	аддитивный	аддитивный	аддитивный
		метод (M = 2)	метод (M = 4)	метод (M = 8)	метод (М = 16)
9142	1.54	6.01	7.47	9.4	14.86
33272	6.84	25.36	30.98	38.01	51.98
127674	49.28	153.99	149.7	179.16	211.52
497796	423.57	1319.15	1284.39	919.38	931.23

Таблица 9: Таблица временных затрат

Размерность	Отношение	Теория	Базовый	Двухуровневый	Двухуровневый	Двухуровневый	Двухуровневый
задачи	размерностей		метод	аддитивный	аддитивный	аддитивный	аддитивный
				метод (М = 2)	метод (М = 4)	метод (М = 8)	метод (М = 16)
9142	1	1	1	1	1	1	1
33272	3.63	6.91	4.44	4.21	4.14	4.04	3.49
127674	13.96	52.15	32	25.62	20.04	19.05	14.23
497796	54.45	401.78	275.05	219.5	171.93	97.81	62.6

Таблица 10: Таблица отношений временных затрат

Рис. 8: График отношений временных затрат

Заключение

- Применён МКЭ для решения упругих задач
- реализованы мультипликативный, аддитивный и двухуровневый аддитивный методы Шварца для численного решения задачи упругости;
- проведены серии расчётов для ряда тестовых задач;
- исследована зависимость сходимости путём сравнения количества итераций для мультипликативного, аддитивного и двухуровневого аддитивного методов Шварца от шага сетки и количества вводимых подобластей;
- изучены скорости роста итераций и временных затрат при решении задачи методом сопряженных градиентов.

Спасибо за внимание!