les polynômes

þage

Approche sur les polynômes – égalité de deux polynômes :

A. Approche sur les polynômes :

a. Activité:

Une usine de carton décide de construire une boite de carton de la forme d'un parallélépipède droit pour une usine de jus d'orange dont les dimensions sont : pour le hauteur

et pour sa base (15-x) cm de longueur et x cm de largeur tel que 0 < x < 15. (voir figure).

- 1. Soit V(x) le volume de la boite exprimer en x vérifier que : $V(x) = 2x^3 60x^2 + 450x$.
- Quel est le volume (exprimée en litre) de la boite si on donne à x les valeurs suivants : x=5; x=10.

b. Vocabulaire:

- L'expression : $2x^3 60x^2 + 450x$ est appelée polynôme de degré 3.
- On note les polynômes par P(x) ou Q(x) ou R(x)
- Pour le degré on note $d^{\circ}V = 3$
- Les nombres 2 et _-60 et 450 sont appelés les coefficients du polynômes

<u>c.</u> <u>Définition</u>:

x variable de \mathbb{R} . n de \mathbb{N}^* .

 a_0 , a_1 , a_2 , a_3 ,, a_{n-2} , a_{n-1} et a_n sont des nombres réels donnés avec $a_n \neq 0$.

- L'expression : $a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$ est appelée polynôme de degré n (écrit dans le sens croisant) .
- L'expression : $a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ est appelée polynôme de degré n (écrit dans le sens décroisant) .
- Chaque terme de cette somme est appelé monôme (exemple a_2x^2 est un monôme de degré 2)
- On note un polynôme par : P(x) ou Q(x) ou R(x).
- Le degré n du polynôme est noté $d^{\circ}P = n$
- \bullet Les réels $\mathbf{a_0}$, $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_3}$,....., $\mathbf{a_{n-2}}$, $\mathbf{a_{n-1}}$ et $\mathbf{a_n}$ sont appelés les coefficients du polynômes
- Si $P(x) = a_0$ et avec $a_0 \neq 0$ on a deg(P) = 0.
- Si $a_n = a_{n-1} = \cdots = a_2 = a_1 = a_0 = 0$ alors P(x) = 0 d'où P(x) n'a pas de degré le polynôme est appelé le polynôme nul .

d. Cas particulier:

- P(x) = ax (avec $a \ne 0$) ce polynôme est appelé monôme de 1^{er} degré.
- $P(x) = ax^2$ (avec $a \neq 0$) ce polynôme est appelé monôme de $2^{ième}$ degré.
- P(x) = ax + b (avec $a \ne 0$) ce polynôme est appelé binôme de 1^{er} degré.
- $P(x) = ax^2 + bx + c$ (avec $a \ne 0$) ce polynôme est appelé trinôme de $2^{ième}$ degré.

B. Egalite de deux polynômes :

page 2

a. Activité:

On considère les deux polynômes suivants $P(x) = 3x^2 - 4x + 7$ et $Q(x) = ax^3 + (b-2)x^2 + 3cx + d$.

- 1. Déterminer a et b et c et d tel que Q(x) = P(x).
- 2. Donner la propriété.

b. Propriété:

P(x) et Q(x) deux polynômes sont égaux si et seulement si deg(P) = deg(Q) et les coefficients des monômes de même degré sont égaux.

c. Exercice

- P(x) est un trinôme de $2^{ième}$ degré tel que $3x^2-5x+8$ et P(x) leur coefficient de deuxième de degré sont égales .
- P(0) = -1 et P(1) = 0.

Déterminer le polynôme P(x).

La somme et le produit de deux polynômes :

a. Activité:

Calculer la somme P(x)+Q(x) pour chaque cas :

- $P(x) = 3x^2 5x + 1$ et $Q(x) = 4x^2 + 7x 8$.
- $P(x) = 3x^2 5x + 1$ et $Q(x) = -3x^2 + 7x 8$.

Calculer le produit $P(x) \times Q(x)$ pour chaque cas :

- P(x) = 5x + 1 et Q(x) = 7x 8.
- P(x) = -5x + 1 et $dQ(x) = 5x^2 8$.
- Que peut-on dire pour P(x)+Q(x) et de deg(P+Q).
- Même question pour $P(x) \times Q(x)$.

<u>b.</u> Propriété :

La somme de deux polynôme P(x) et Q(x) est un polynôme noté par

P(x)+Q(x)=(P+Q)(x) tel que le degré de P(x)+Q(x) est inferieur ou égal au degré de chacun d'eux. (ou $d^{\circ}(P+Q) \le \sup(d^{\circ}P;d^{\circ}Q)$)

Le produit de deux polynôme P(x) et Q(x) est un polynôme noté par

$$P(x)\times Q(x) = (P\times Q)(x)$$
 tel que : $d^{\circ}(P\times Q) = d^{\circ}P\times d^{\circ}Q$.

Racine d'un polynôme – division d'un polynôme par le binôme x-a avec $a \in \mathbb{R}$:

A. Racine d'un polynôme :

a. Activité

On considère le polynôme suivant : $P(x) = x^2 - 5x + 6$.

1. Calculer P(3) déterminer les réels a et b tel que : P(x) = (x-3)(ax+b).

On considère le polynôme suivant : $Q(x) = x^3 - 5x + 2$.

les polynômes

2. Calculer Q(2) déterminer les réels a et b et c tel que : $Q(x) = (x-2)(ax^2 + bx + c)$.

b. Vocabulaire:

- On a P(3) = 0 on dit que 3 est racine du polynôme P(x). (ou 3 est zéro du polynôme P(x).
- On a Q(2) = 0 on dit que 2 est racine du polynôme Q(x) . (ou 3 est zéro du polynôme Q(x) .

c. Définition :

On dit un réel α est un racine (ou zéro) d'un polynôme P(x) si et seulement si $P(\alpha) = 0$.

B. division d'un polynôme par le binôme x-a avec $a \in \mathbb{R}$.

a. Activité:

On considère le polynôme suivant : $P(x) = x^2 - 5$, on prend a = 2.

1. Calculer
$$P(2)$$
.

2. Vérifier que
$$x^2-5=(x-2)(x+2)-1=(x-2)(x+2)+P(2)$$
.

3. Comparer que :
$$\frac{x^2-5}{x-2}$$
 et $x+2-\frac{1}{x-2}$.

b. Vocabulaire:

Pour l'écriture
$$x^2-5=(x-2)(x+2)-1$$

- Le polynôme x + 2 est appelé le quotient de la division euclidienne de $x^2 5$ par x 2.
- Le réel -1 (ou le polynôme -1) est appelé le reste de la division euclidienne de x^2-5 par x-2. De même :
- Le polynôme x-2 est appelé le quotient de la division euclidienne de x^2-5 par x+2.
- Le réel -1 (ou le polynôme -1) est appelé le reste de la division euclidienne de x^2-5 par x+2.

c. Définition et propriété :

Soit
$$[a]$$
 un polynôme de degré n $(n \in \mathbb{N}^*)$, a est un réel $(a \in \mathbb{R})$.

Le polynôme P(x) s'écrit de la forme P(x) = (x-a)Q(x) + P(a) avec deg(Q) = n-1.

Le polynôme Q(x) le quotient de la division euclidienne de P(x) par x-a.

Le réel P(a) (ou le polynôme P(a)) est appelé le reste de la division euclidienne de P(x) par x-a.

d. Cas particulier :

Si P(a) = 0 (a est un zéro ou racine du polynôme) on obtient P(x) = (x-a)Q(x)

dans ce cas on dit:

- Le polynôme P(x) est divisible par x-a.
- Le polynôme P(x) est factorisé par x-a.

<u>e.</u> Exercice :

- 1. Montrer que : 3 est racine du polynôme $P(x) = x^2 5x + 6$.
- 2. Est-ce que P(x) est divisible par x-2.
- 3. Ecrire le polynôme P(a) sous la forme de deux polynômes de 1^{er} degré.

$\underline{\mathbf{C}}$. Méthode pour déterminer le quotient $\mathbf{Q}(\mathbf{x})$ et le reste $\mathbf{P}(\mathbf{a})$ dans la division de $\mathbf{P}(\mathbf{x})$ par $\mathbf{x} - \mathbf{a}$:

a. 1ère méthode:

les polynômes

On considère que : $P(x) = 6x^3 - 5x^2 + 4$ et x - 2 .donc a = 2

D'après la propriété on a : P(x) = (x-2)Q(x)+P(2) avec $d^{\circ}(Q)=2$ et P(2)=32.

Donc: $Q(x) = ax^2 + bx + c$.

Par suite :

$$P(x) = 6x^{3} - 5x^{2} + 4$$

$$= (x-2)Q(x) + P(2)$$

$$= (x-2)(ax^{2} + bx + c) + 32$$

$$= ax^{3} + (b-2a)x^{2} + (c-2b)x - 2c + 32$$

Donc:
$$\begin{cases} 6 = a \\ -5 = b - 2a \\ 0 = c - 2b \\ 4 = -2c + 32 \end{cases}$$
 par suite on obtient $a = 6$ et $b = 7$ et $c = 14$.

Conclusion: $P(x) = (x-2)(6x^2+7x+14)+32$

 $\underline{C}_{...}$ 2^{ième} méthode : la division euclidienne : de $P(x) = 6x^3 - 5x^2 + 4$ par x - 2.

$$6x^{3}-5x^{2}+0x+4$$

$$6x^{3}-12x^{2}$$

$$- 7x^{2}+0x+4$$

$$\frac{x-2}{6x^2+7x+14}$$

$$7x^{2} + 0x + 4$$

$$7x^{2} - 14x$$

$$- \frac{14x + 4}{14x - 28}$$

$$- \frac{32}{32}$$

D. 3^{ième} méthode Schéma de Horner:

<u>a.</u> Exemple :

Prenant l'exemple précédent : $P(x) = 6x^3 - 5x^2 + 4$ et x - 2 . donc a = 2 . On utilise le tableau suivant :

	\mathbf{x}^3	X ²		X		\mathbf{x}^0	
Coefficient de $P(x) \rightarrow$	6	-5		0		4	
		12	+/	×2 14 —	+	<u>+</u> 28 — +	
Coefficient de $Q(x) \rightarrow$	6	7	(14	(32	
Q(x)	6x ²	7x ²		14		Le reste	
P(x)	$P(x) = (6x^2 + 7x^2 + 14)(x-2) + 32$						
Même résultat avec la division euclidienne (2ième méthode)							