

Algebraic Integer Encoding and Applications in Discrete Cosine Transform

Minyi Fu

Supervisors: Dr. G. A. Jullien

Dr. M. Ahmadi

Department of Electrical and Computer Engineering
University of Windsor

Feb. 3rd, 2004

OUTLINE

- Algebraic Integer DCT Encoding
- DCT IP Core Design and Fabrication
- Simulation Results and Chip Testing

Conclusion

DCT

DCT:

1-D DCT:
$$F(k) = \sum_{n=0}^{N-1} x(n) \cdot \cos\left(\frac{(2n+1)k}{2N}\pi\right) \quad 1 \le k \le N-1;$$

2-D DCT:
$$F(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} x(m,n) \cdot \cos\left(\frac{(2n+1)k}{2N}\pi\right) \cos\left(\frac{(2m+1)l}{2N}\pi\right)$$
$$1 \le k \le N-1 \quad 1 \le l \le N-1$$

Properties and Applications:

- DCT has energy packing capabilities and also approaches the statistically optimal transform in de-correlating a signal governed by Markov Process.
- DCT is orthogonal and separable, it leads to the reduction of spatial redundancy for the input signal and has found wide applications in speech and image processing.
- The 2-Dimensional DCT, over a small block of pixels, has been widely used as a frequency analysis and compression algorithm in image processing standard like MPEG-2.

Algebraic Integer DCT Encoding

$$Z_1 = 2\cos(1 \cdot \pi / 16)$$

$$f(Z_1) = \sum_{i=0}^{7} a_i Z_1^{i}$$

	a ₀	a_1	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇	Error
$2\cos(0\cdot\pi/16)$	2	0	0	0	0	0	0	0	0
$2\cos(1\cdot\pi/16)$	0	1	0	0	0	0	0	0	0
$2\cos(2\cdot\pi/16)$	-2	0	1	0	0	0	0	0	0
$2\cos(3\cdot\pi/16)$	0	-3	0	1	0	0	0	0	0
$2\cos(4\cdot\pi/16)$	2	0	-4	0	1	0	0	0	0
$2\cos(5\cdot\pi/16)$	0	5	0	-5	0	1	0	0	0
$2\cos(6\cdot\pi/16)$	-2	0	9	0	-6	0	1	0	0
$2\cos(7\cdot\pi/16)$	0	-7	0	14	0	-7	0	1	0

Table I: 1D Algebraic Integer Encoding for 8 Point DCT

$$z_1 = 2\cos(\pi/16)$$
 $z_2 = 2\cos(4\pi/16)$

$$f(z_1, z_2) = \sum_{i=0}^{3} \sum_{j=0}^{1} a_{ij} z_1^{i} z_2^{j}$$

$$\begin{bmatrix} 2\cos(0\cdot\pi/16) & \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} & 2\cos(1\cdot\pi/16) & \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ 2\cos(2\cdot\pi/16) & \begin{bmatrix} -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} & 2\cos(3\cdot\pi/16) & \begin{bmatrix} 0 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ 2\cos(4\cdot\pi/16) & \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} & 2\cos(5\cdot\pi/16) & \begin{bmatrix} 0 & 3 & 0 & -1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \\ 2\cos(6\cdot\pi/16) & \begin{bmatrix} 2 & 0 & -1 & 0 \\ -2 & 0 & 1 & 0 \end{bmatrix} & 2\cos(7\cdot\pi/16) & \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & -3 & 0 & 1 \end{bmatrix}$$

Table II: 2D Algebraic Integer Encoding for 8 Point DCT

Exploiting Redundancy – Zero Pattern

$$F(k) = \sum_{n=0}^{N-1} x(n) \cdot \cos\left(\frac{(2n+1)k}{2N}\pi\right)$$

$$F(2k') = \sum_{n=0}^{N-1} x(n) \cdot \cos\left(\frac{(2n+1)2k'}{2N}\pi\right), \quad F(2k'+1) = \sum_{n=0}^{N-1} x(n) \cdot \cos\left(\frac{(2n+1)(2k'+1)}{2N}\pi\right),$$

$$\left\{\cos\left(\frac{0\pi}{16}\right),\cos\left(\frac{2\pi}{16}\right),\cos\left(\frac{4\pi}{16}\right),\cos\left(\frac{6\pi}{16}\right)\right\} \qquad \left\{\cos\left(\frac{1\pi}{16}\right),\cos\left(\frac{3\pi}{16}\right),\cos\left(\frac{5\pi}{16}\right),\cos\left(\frac{7\pi}{16}\right)\right\}$$

F(1,3,5,7)

$$\left\{\cos\left(\frac{1\pi}{16}\right),\cos\left(\frac{3\pi}{16}\right),\cos\left(\frac{5\pi}{16}\right),\cos\left(\frac{7\pi}{16}\right)\right\}$$

Exploiting Redundancy – Zero Pattern

2D implementation:

1D implementation:

Zero Pattern:

15 layers of algebraic integer representation

<u>8</u> layers of algebraic integer representation

<u>4</u> layers of algebraic integer representation

Chip Layout

- Function
- Inputs / Outputs
- Internal Word-length
- Accuracy
- Technology
- Core Size
- Power Dissipation
- Throughput
- Latency

two-dimensional 8x8 DCT

9 bit signed(pixel)/12 bit signed (DCT)

10-13 (algebraic integer), 16 (binary)

IEEE Standard 1180-1990

TSMC CMOS $0.18\mu m$

 $1.8mm \times 1.2mm$

7.5*mW* @ 75M*Hz/*1.2*V*

75M pixel/second

80 clock cycles

Algebraic Integer 8x8 DCT Chip Micrograph and Highlights

Simulation Results - numerical characteristics

input range	[-256 255]	[-300 300]	[-5 5]	IEEE std.
mppe	<=1	<=1	<=1	<=1
mpmse/mpme	0.055	0.056	0	<=0.06
ome/omse	0.00072	0.00084	0	<=0.0015
zero_test	0	0	0	0

Simulation Results According to IEEE Standard 1180-1990 Using Algebraic Integer Representations

Simulation Results – Power Estimation

Power Consumption for	Processing Input Image	Blocks of 128x128
	3 1 3	

Global Operating Voltage = 1.6/1.2 V					
Operating Speed: 75 MHz Power Unit: mW					
Image \ Design	ICFWRDCT	DCT_lnc_Compile	clock_gating1	clock_gating2	
Gauss-random	24.346/13.695	16.766/9.431	17.015/9.571	12.135/6.826	
Peppers	8.591/4.832	6.186/3.493	5.099/2.868	4.635/2.607	
Lena	8.536/4.802	6.139/3.453	5.034/2.832	4.584/2.579	
Bridge	8.500/4.781	6.132/3.449	5.025/2.827	4.577/2.575	
Goldh	8.437/4.746	6.081/3.421	4.970/2.796	4.533/2.550	
Camera	7.914/4.452	5.707/3.210	4.632/2.606	4.249/2.390	
Bird	7.570/4.258	5.442/3.061	4.377/2.462	4.084/2.297	

CMC DUT Testing Board on the CMC TH1000 Test Head

Testing Environment

- •CMC TH1000 Test Head
- •HP 9000/745i workstation with HP-UX A09.01 Operating System
- •HP 75000D20, VXI Digital Test System
- •HP 6621A DC Power Supplies
- •Tektronix 11402 Digital Oscilloscope

Simulation Results and Chip Testing

HP Veetest Digital Testing Software Environment

Simulation Results and Chip Testing

IMS Digital Testing System Environment

Simulation Results and Chip Testing

•Functional: Works.

•Test Frequency: 50MHz.

•Power Consumption: 1.8V*0.0063mA = 11.34mW @ 50MHz

scaling: 1.2V*0.0042mA = 5.04mW @ 50MHz

7.56mW @ 75MHz

Design	Core Size / Technology	Scaled Power Consumption (mJ/Mpixels)	
Xanthopoulos [5]	14.5 <i>mm</i> ² / 0.6μ <i>m</i> CMOS	0.313	
Chang et al. [6]	$7.85 \times 6.45~mm^2$ / $0.6 \mu m$ CMOS	1.38	
August et al. [7]	0.35μ <i>m</i> CMOS	0.156	
Masera et al. [8]	Xilinx XCV100E	0.527	
Proposed Alg_int DCT	1.8 <i>mm</i> × 1.2 <i>mm</i> / 0.18μ <i>m</i> CMOS	0.1	

Testing Results and Power Consumption Comparisons

Conclusion

- The error-free 2D algebraic integer encoding scheme for DCT basis function provide an alternative for DCT computing
- The multiplier-less high-precision feature of the algebraic integer encoding combined with selected suitable DCT algorithm enable an efficient implementation of the 8 x 8 DCT IP core

Publications

- [1] Minyi Fu, V.S. Dimitrov and G.A. Jullien, "An Efficient Technique for Error-free Algebraic-integer Encoding for High Performance Implementation of the DCT and IDCT", in Proc. IEEE International Symposium on Circuits and Systems, Sydney Australia, May 2001, pp. 906-909.
- [2] M. Fu, M. Ahmadi and W.C.Miller, V.Dimitrov, G.A.Jullien, "Implementation of an Error-free DCT Using Algebraic Integers", Micronet Annual Workshop, Hull Quebec Canada. April, 2002.
- [3] Minyi Fu, G.A.Jullien, V.S.Dimitrov, M.Ahmadi, W.C.Miller, "The Application of 2D Algebraic Integer Encoding to a DCT IP Core", The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, Calgary, AB Canada, June 30 July 2, 2003, pp. 66-69.
- [4] Minyi Fu, G. A. Jullien, V. S. Dimitrov, M. Ahmadi, "A Low-Power DCT IP Core Based on 2D Algebraic Integer Encoding", Sumbitted to ISCAS2004.