

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

System definition, control problem formulation, examples of system modeling

Outline

- What is a system?
- Simple examples of systems
- Systems modeling
- State-plane analysis
- Phase portraits
- The method of isoclines

System Definition (Text—page 1)

- A system is a combination of components that act together
- A system is a collection of objects that are related by interactions and produce various outputs in response to different inputs

Two Properties of a System

- the interrelations between the components that are contained within the system
- the system boundaries that separate the components within the system from the components outside

Control Problem—page 2 in Text

- A specified **objective** for the system
- A **model** of the system to be controlled
- A set of admissible controllers
- A means of measuring the performance of any given control strategy to evaluate its effectiveness—optimal control

Simple Examples of System Modeling Example 2.2 on page 50 in Text—rigid satellite

Mechanical Systems

 Linear rotational systems are analogous to linear translational systems

Very simple model of the rigid satellite

$$au = I\ddot{\theta}$$

Rigid Satellite Model

Define state variables

$$x_1 = \theta$$
 and $x_2 = \dot{\theta} = \dot{x}_1$

- Hence, $\dot{x}_2 = \ddot{\theta} = \frac{1}{I}\tau$
- State-space model

$$\begin{array}{rcl}
\dot{x}_1 & = & x_2 \\
\dot{x}_2 & = & \frac{1}{I}\tau = u
\end{array}$$

Satellite Model in Matrix Format

$$\left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right] = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] + \left[\begin{array}{c} 0 \\ 1 \end{array}\right] u$$

• The above is a special case of

$$\dot{x} = Ax + Bu,$$

which is a special case of

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(t, \boldsymbol{x}, \boldsymbol{u})$$

2D Model Analysis

In our model

$$oldsymbol{x}(t) = \left[egin{array}{c} x_1(t) \ x_2(t) \end{array}
ight] \in \mathbb{R}^2$$

- We can plot x_1 vs. t and x_2 vs. t
- We can also plot x_2 vs. x_1 using t as a parameter
- The plane with coordinate axes x_1 , x_2 is called the *state plane* or *phase plane*

State-Plane Analysis

- To each state x(t) of the system there corresponds a point in the state-space
- This point is called the *representative point* (RP)
- As *t* varies the RP describes a curve in the state plane, called a *trajectory*
- A family of trajectories is a *phase portrait*

Method of Isoclines—p. 53 in Text

$$\begin{cases} \dot{x}_1 = \frac{dx_1}{dt} = f_1(x_1, x_2) \\ \dot{x}_2 = \frac{dx_2}{dt} = f_2(x_1, x_2) \end{cases}$$

$$\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}$$

We eliminated the independent variable *t*

Consider the case when

$$\frac{dx_2}{dx_1} = m(x_1, x_2) = m = \text{constant}$$

What is Isocline?

The set of points satisfying

$$\frac{dx_2}{dx_1} = m(x_1, x_2) = m = \text{constant}$$

is called the *isocline*

• Another form of the eqn of the isocline corresponding to a specific m,

$$f_2(x_1,x_2) = mf_1(x_1,x_2)$$

• Example: $\ddot{y} + y = 0$

Constructing Isoclines

Let

$$x_1 = y$$
 and $x_2 = \dot{x}_1$

• We represent $\ddot{y} = -y$ as

$$\begin{cases} \dot{x}_1 = x_2 = f_1(x_1, x_2) \\ \dot{x}_2 = -x_1 = f_2(x_1, x_2) \end{cases}$$

Construct

$$\frac{dx_2}{dx_1} = -\frac{x_1}{x_2} = m$$

Isoclines' Equation

0

$$x_2 = -\frac{1}{m}x_1$$

- The isoclines for this example are a family of straight lines that pass through the origin
- The line that satisfies the above equation is an isocline corresponding to the trajectories' slope *m* because a trajectory crossing the isocline will have its slope equal to *m*

The Isocline Method

- Construct several isoclines in the state plane
- Construct a field of local tangents *m*
- The trajectory passing through any given point in the state plane is obtained by drawing a continuous curve following the directions of the field

The Isocline Method—Example

Interactive Phase Portrait—Prep

```
t0=0;tf=20;tspan=tf-t0;
x0=[-4 -4]';
button=1;
p=4*[-1 0;1 0];
clf;plot(p(:,1),p(:,2))
hold on
plot(p(:,2),p(:,1))
axis(4*[-1 1 -1 1])
```

Interactive Phase Portrait

```
while(button==1)
[t,x]=ode45(@my_xdot,tspan,x0);
plot(x(:,1),x(:,2))
[x1,x2,button]=ginput(1);
x0=[x1 x2]';
end
```

Interactive Phase Portrait—ODE

```
function xdot=Diff_eq(t,x)
xdot=[x(2);-2*x(2)-x(1)];
```