DATA BOSSES

Christine Domercant (acd201)
Truc Hoang (tth46)
Tasnim Quayum (tnq3)

Descriptive Analytics

Wind Speed vs Wind Power

Wind Speed (m/s)

Visualization

Created various plots to visually analyze the relationship between the variables

Correlation

Computed the correlation to strength visual analysis

Pseudocode

Brainstormed how parts mentioned above can be used to implement prediction

> cor(data_new)

Speed ms Temperature C Humidity Solar_Irradiance_Wm2 Power_scaled

0.

0.4

0.2

0.0

Wind Power (scaled) 9.0

> Wind Power vs Solar Irradiance Solar Irradiance (W/m^2) 400 0.4 0.8 0.2 0.6

> > Wind Power (scaled)

5

Analysis

Wind Power Prediction Modeling Efforts

Linear

Exponential -

Random Forest

Knn

High correlation between wind power and wind speed Scatter plot showed slight curvature

Capture the nonlinear relationship

Polynomial

Model the complex relationship in prediction

Investigate non parameter approach

Regression Model	Train_RMSE Test_RMSE	
Linear	0.042	0.042
Exponential	0.064	0.073
Polynomial	0.029	0.029
Random Forest	0.015	0.031
Knn	0.025	0.032

Wind Speed Forecasting Modeling Efforts

O1 ARIMA

Use historical wind speed data to forecast - assume time series data to be stationary (removing trend and seasonality)

O3 SES

Use a weighted average of past observations to forecast future values

O2 ARFIMA

Use historical wind speed data to forecast - handle non-stationary data by introducing a fractionally integrated component.

04 ARIMAX

Extend ARIMA by allowing the inclusion of exogenous variables in the model (Temperature and Solar Irradiance)

Final Model Description

ARFIMA

Polynomial

Power_scaled ~ Temperature_C + I(Speed_ms^2) + I(Speed_ms^3)

Forecast Model	RMSE Wind speed	RMSE PowerScale (Linear Regression)	RMSE PowerScale (Polynomial Regression)
Naive	0.6380118	0	0
ARIMA	0.5599901	0.0596	0.0544
ARFIMA	0.5599882	0.0596	0.0544
Exponential Smoothing	0.6157661	0.0605	0.0603
ARIMAX	0.6009415	0.06	0.058

Table: RMSE of wind speed from different time series forecast models and its RMSE of Wind Scaled power by Polynomial regression model.

Wind speed is predicted using ARFIMA model.

Wind power is predicted using polynomial model.

All historical data was used to train models.

Recommendations & Takeaways

Recommendations:

- Continue to improve forecasting and regression model.
- Use larger data set to better understand trends over time.

Takeaways:

- There are many ways to predict future events.
- It is a continuous process.

