RECEIVED CENTRAL FAX CENTER

DEC 20 2005

AMENDMENTS TO THE CLAIMS

1-30. (Cancelled)

31. (Currently Amended)

1	A child-resistant closure and container package that includes:
2	a container having a finish with at least one external thread, at least one
3	pocket in an undersurface of said external thread, and an axially facing end surface
4	surrounding a container mouth, and
5	a closure having a base wall, a skirt with an axis, at least one Internal thread
6	and at least one lug on said internal thread for receipt in said pocket, and a spring
7	disposed between said base wall and said end surface of said finish to bias said closure
8	away from said finish and urge said lug into said pocket,
9	said spring comprising a progressive spring that includes at least two
10	circumferentially continuous concentric flexible resilient conical spring rings extending from
11	said base wall at identical angles to said axis,
12	said spring rings being radially spaced from each other, and a first of said
13	spring rings having a greater axial dimension than a second of said spring rings and axially
14	and radially overlapping said second spring ring,
15	such that, upon threaded application of said closure to said finish, said first
16	spring ring is engaged by said end surface and, upon further application of said closure to
17	said finish, said first spring ring is bent into engagement with said second spring ring such
18	that forces applied by said first spring ring to said end surface, both to seal said package

19	and to bias said closure away from said finish, is a progressive sum of forces generated
20	in said first and second spring rings,
21	said first spring ring but not said second spring ring contacting said end
22	surface,
23	wherein said spring rings are of differing thicknesses, said first spring ring
24	being thinner than said second spring ring, and
25	wherein said progressive spring includes a third conical circumferentially
26	continuous flexible resilient spring ring concentric with said first and second spring rings
27	and extending from said base wall at an angle to said axis identical to that of said first and
28	second spring rings.
29	said third spring ring being disposed adjacent to sald second spring ring and
30	remote from said first spring ring.
31	said third spring ring being of lesser axial dimension than said second spring
32	ring.
33	said second spring ring axially and radially overlapping said third spring ring
34	such that, upon continued threaded application of said closure to said finish, forces applied
35	to said second spring ring by said first spring ring bend said second spring ring into
36	engagement with sald third spring ring and said spring forces applied by said first spring
37	ring to said end surface are a progressive sum of forces generated in said first, second and
38	third spring rings.
39	said first spring ring but not said second spring ring or said third spring ring
40	contacting said end surface.

Dec 20 2005 12:08

32-33 (Cancelled)

34. (Currently Amended)

A closure for application to a container neck finish having an end surface, which includes:

a base wall, a skirt with an axis, at least one internal thread for receipt on the container neck finish, and a spring to bias said closure away from the finish, said spring comprising a progressive spring that includes at least two

circumferentially continuous concentric flexible resilient conical spring rings extending from said base wall at identical angles to said axis,

said spring rings being radially spaced from each other, and a first of said spring rings having a greater axial dimension than a second of said spring rings and axially and radially overlapping said second spring ring,

such that, upon threaded application of said closure to a container finish, said first spring ring is positioned to be engaged by an end surface of the container finish and, upon further application of said closure to the finish, said first spring ring is bent into engagement with said second spring ring such that forces applied by said first spring ring to the finish end surface, both to seal the container and to bias said closure away from the container finish, is a progressive sum of forces generated in said first and second spring rings,

said first spring ring but not said second spring ring being disposed to contact the end surface of the container finish.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Dec 20 2005 12:09

wherein said spring rings are of differing thicknesses, said first spring ring being thinner than said second spring ring, and wherein said progressive spring includes a third conical circumferentially continuous flexible resilient spring ring concentric with said first and second spring rings and extending from said base wall at an angle to said axis identical to that of said first and second spring rings. said third spring ring being disposed adjacent to said second spring ring and remote from said first spring ring. said third spring ring being of lesser axial dimension than said second spring ring. said second spring ring axially and radially overlapping said third spring ring such that, upon continued threaded application of said closure to the container finish, forces applied to said second spring ring by said first spring ring bend said second spring ring into engagement with said third spring ring and said spring forces applied by said first spring ring to the finish end surface are a progressive sum of forces generated in said first. second and third spring rings. said first spring ring but not said second spring ring or said third spring ring

35-36 (Cancelled)

being disposed to contact the finish end surface.