Unique Solutions of Contractions, CCS, and their HOL Formalisation

Chun Tian ¹ Davide Sangiorgi ²

¹Fondazione Bruno Kessler (FBK), Italy

²Università di Bologna, Italy and INRIA, France

September 3, 2018

Project Motivation

- Concurrency Theory is important for understanding concurrent and reactive systems;
- Milner's Calculus of Communicating Systems (CCS) is simple, elegant process calculi widely adopted in Concurrency Theory courses, yet textbooks cannot provide all proof details;
- The CCS formalisation project is a good chance for learning Interactive Theorm Proving (ITP), with minimal dependencies on other formal theories.

Project summary

- 20,000 lines of Standard ML code;
- 500 manually proved lemmas/theorems.

Availabile in HOL official examples: https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/CCS

Calculus of Communicating Systems (CCS)

Definition (Actions and CCS processes)

Definition (Structural Operational Semantics)

$$\frac{P \xrightarrow{\mu} P'}{\mu. P \xrightarrow{\mu} P} \qquad \frac{P \xrightarrow{\mu} P'}{P + Q \xrightarrow{\mu} P'} \qquad \frac{Q \xrightarrow{\mu} Q'}{P + Q \xrightarrow{\mu} Q'} \qquad \frac{P \xrightarrow{\mu} P'}{P \mid Q \xrightarrow{\mu} P' \mid Q}$$

$$\frac{Q \xrightarrow{\mu} Q'}{P \mid Q \xrightarrow{\mu} P \mid Q'} \qquad \frac{P \xrightarrow{a} P'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \qquad \frac{P \xrightarrow{\mu} P'}{(\nu a) P \xrightarrow{\mu} (\nu a) P'} \qquad \mu \neq a, \overline{a}$$

$$\frac{P \xrightarrow{\mu} P'}{P \mid rf \mid \frac{rf(\mu)}{P} P' \mid rf \mid} \forall a. \quad rf(\overline{a}) = \overline{rf(a)} \qquad \frac{P\{\text{rec } A. P/A\} \xrightarrow{\mu} P'}{\text{rec } A. P \xrightarrow{\mu} P'}$$

Bisimulation and Bisimiarity

Definition

A process relation \mathcal{R} is a strong bisimulation if, whenever $P \mathcal{R} Q$, we have:

- 2 $Q \xrightarrow{\mu} Q'$, implies that there is P' such that $P \xrightarrow{\mu} P'$ and $P' \mathcal{R} Q'$.

P and Q are bisimilar (P \sim Q), if P \mathcal{R} Q for some bisimulation \mathcal{R} .

Definition

A process relation $\mathcal R$ is a *weak bisimulation* if, whenever $P \mathcal R \mathcal Q$, we have:

- 2 $Q \xrightarrow{\mu} Q'$, implies that there is P' such that $P \stackrel{\widehat{\mu}}{\Longrightarrow} P'$ and $P' \mathrel{\mathcal{R}} Q'$.

P and Q are weakly bisimilar (P \approx Q), if P \mathcal{R} Q for some bisimulation \mathcal{R} .

Rooted Bisimiarity (Observation Congruence)

Definition

Two processes P and Q are **rooted bisimilar** $(P \approx^{c} Q)$, if we have:

- $P \xrightarrow{\mu} P'$ implies that there is Q' such that $Q \xrightarrow{\mu} Q'$ and $P' \approx Q'$;
- ② $Q \xrightarrow{\mu} Q'$ implies that there is P' such that $P \stackrel{\mu}{\Longrightarrow} P'$ and $P' \approx Q'$.

Theorem

- $oldsymbol{arphi} \sim ext{and} pprox^{ ext{c}} ext{ are preserved by all CCS operators;}$ (Congruence)
- $oldsymbol{\circ}$ pprox is preserved by all CCS operators but direct sums; ("Congruence")
- $P \approx^{c} Q \Leftrightarrow (\forall R. \ P + R \approx Q + R).$ (Coarsest Congruence in \approx)

Unique Solution of Equations (Robin Milner, 1989)

Theorem (for \sim)

Let \widetilde{E} be weakly guarded with free variables at most \widetilde{X} , and let $\widetilde{P} \sim \widetilde{E}\{\widetilde{P}/\widetilde{X}\}$, $\widetilde{Q} \sim \widetilde{E}\{\widetilde{Q}/\widetilde{X}\}$, then $\widetilde{P} \sim \widetilde{Q}$.

Theorem (for \approx , not explicitly appeared)

Let \widetilde{E} be guarded and sequential with only guarded sums and free variables at most \widetilde{X} , and let $\widetilde{P} \approx \widetilde{E}\{\widetilde{P}/\widetilde{X}\}$, $\widetilde{Q} \approx \widetilde{E}\{\widetilde{Q}/\widetilde{X}\}$, then $\widetilde{P} \approx \widetilde{Q}$.

Theorem (for \approx^c)

Let \widetilde{E} be guarded and sequential with free variables at most \widetilde{X} , and let $\widetilde{P} \approx^{\mathrm{c}} \widetilde{E}\{\widetilde{P}/\widetilde{X}\}, \ \widetilde{Q} \approx^{\mathrm{c}} \widetilde{E}\{\widetilde{Q}/\widetilde{X}\}, \ \text{then } \widetilde{P} \approx^{\mathrm{c}} \widetilde{Q}.$

Conditions required by Milner's theorems (for \sim , $\approx^{\rm c}$)

Definition

X is weakly guarded in E if each occurrence of X is within some subexpression μ . F of E.

Definition

X is (strongly) guarded in E if each occurrence of X is within some subexpression I, F of E.

X is sequential in E if every subexpression of E which contains X, apart from X itself, is of the form μ . F or $\Sigma \widetilde{F}$.

- \bigcirc Any P (without X) is guarded and sequential;
- ② If E is sequential, then I. E is guarded and sequential;
- 3 If E is guarded and sequential, so is μ . E;
- **4** If E_1 and E_2 are both guarded and sequential, so is $E_1 + E_2$.

Conditions required by Milner's theorem (for \approx)

Definition

X is sequential with only guarded sums in E if every subexpression of E which contains X, apart from X itself, is of the form μ . F or $\Sigma \mu_i$. F_i .

- Any P (without X) is guarded and "sequential";
- ② If E is "sequential", then I. E is guarded and "sequential";
- **3** If E is guarded and "sequential", so is μ . E;
- **①** If E_1 and E_2 are guarded and "sequential", so is τ . $E_1 + \tau$. E_2 ;
- **5** If E_1 is guarded and "sequential", E_2 is "sequential", then τ . $E_1 + I$. E_2 is guarded and "sequential";
- **1** If E_1 is "sequential", E_2 is guarded and "sequential", then I. $E_1 + \tau$. E_2 is guarded and "sequential";
- **1** If E_1 and E_2 are "sequential", I_1 . $E_1 + I_2$. E_2 is guarded and "sequential".

A refinement of Milner's technique (D. Sangiorgi, 2015)

Definition (Contraction)

A process relation $\mathcal R$ is a (bisimulation) contraction if whenever $P \ \mathcal R \ Q$,

- 2 $Q \xrightarrow{\mu} Q'$ implies there is P' such that $P \stackrel{\widehat{\mu}}{\Longrightarrow} P'$ and $P' \approx Q'$.

Bisimilarity contraction, written as $P \succeq_{\text{bis}} Q$, if $P \mathcal{R} Q$ for some contraction \mathcal{R} .

Lemma (Precongruence of $\succeq_{\rm bis}$ in CCS)

 $\succeq_{
m bis}$ is a preorder (reflexive, transitive) and is preserved by all CCS operators but direct sums.

Theorem (Unique Solution of Contractions)

Let \widetilde{E} be weakly guarded with only guarded sums and free variables at most \widetilde{X} , and let $\widetilde{P} \succeq_{\operatorname{bis}} \widetilde{E}\{\widetilde{P}/\widetilde{X}\}$, $\widetilde{Q} \succeq_{\operatorname{bis}} \widetilde{E}\{\widetilde{Q}/\widetilde{X}\}$, then $\widetilde{P} \approx \widetilde{Q}$.

Further refinements (C. Tian, 2017; the current paper)

Definition (Rooted contraction)

Two processes P and Q are in rooted contraction, written as $P \succeq_{\text{bis}}^{\text{c}} Q$, if

- **1** $P \xrightarrow{\mu} P'$ implies that there is Q' with $Q \xrightarrow{\mu} Q'$ and $P' \succeq_{\text{bis}} Q'$;
- ② $Q \xrightarrow{\mu} Q'$ implies that there is P' with $P \stackrel{\mu}{\Longrightarrow} P'$ and $P' \approx Q'$.

Lemma (Precongruence of $\succeq_{\mathrm{bis}}^{\mathrm{c}}$ in CCS)

 \succeq_{bis} is a preorder (reflexive, transitive) and is preserved by all CCS operators.

Theorem (Unique Solution of Rooted Contractions)

Let \widetilde{E} be weakly guarded with free variables at most \widetilde{X} , and let $\widetilde{P}\succeq_{\mathrm{bis}}^{\mathrm{c}}\widetilde{E}\{\widetilde{P}/\widetilde{X}\}$, $\widetilde{Q}\succeq_{\mathrm{bis}}^{\mathrm{c}}\widetilde{E}\{\widetilde{Q}/\widetilde{X}\}$, then $\widetilde{P}\approx^{\mathrm{c}}\widetilde{Q}$ (thus also $\widetilde{P}\approx\widetilde{Q}$).

CCS Formalisation in HOL (Monica Nesi and Chun Tian)

Name	Summary	
CCSTheory	Basic CCS definitions, SOS rules	
CCSConv	Decision procedure of CCS transitions	
StrongEQTheory	Strong bisimulation and bisimilarity (\sim)	634
StrongLawsTheory	Algebraic laws of \sim ; expansion law	2002
WeakEQTheory	Weak bisimulation and bisimilarity	1974
WeakLawsTheory	Algebraic laws of $pprox$	335
ObsCongrTheory	Observation congruence $(pprox^{ m c})$	697
ObsCongrLawsTheory	Algebraic laws of $pprox^{ m c}$	402
BisimulationUptoTheory	Bisimulation up to \sim , $pprox$ and $pprox^{ m c}$	1180
CongruenceTheory	Context, guardedness and congruence	1457
CoarsestCongrTheory	Deep results between $pprox$ and $pprox^{ m c}$	872
TraceTheory	Trace and relationship with weak transition	
ExpansionTheory	Expansion preorder, precongruence	
ContractionTheory	Contraction preorder, precongruence	
UniqueSolutionTheory	Unique solution of equations/contractions	

Higher Order Logic (HOL)

Definition (Type in HOL)

Definition (Term in HOL)

Primitive rules

- Assumption introduction [ASSUME],
 - Reflexivity [REFL],
 - β -conversion [BETA CONV].
- Substitution [SUBST].
 - Abstraction [ABS],
 - Type instantiation [INST_TYPE],
 - Discharging an assumption [DISCH].
 - Modus Ponens [MP]

Logical constants

```
\vdash T = ((\lambda x_{bool}. \ x) = (\lambda x_{bool}. \ x))\vdash \forall = \lambda P_{\alpha \to bool}. \ P = (\lambda x. \ T)

\exists = \lambda P_{\alpha \to bool}

F = \forall b_{bool}

      \neg = \lambda b : b \Rightarrow F
\vdash \land = \lambda b_1 \ b_2. \ \forall b. \ (b_1 \Rightarrow (b_2 \Rightarrow b)) \Rightarrow b
\vdash \lor = \lambda b_1 \ b_2. \ \forall b. \ (b_1 \Rightarrow b) \Rightarrow ((b_2 \Rightarrow b) \Rightarrow b)
```

Axioms

BOOL_CASES_AX $\vdash \forall b. \ (b = T) \lor (b = F)$ ETA_AX SELECT_AX INFINITY AX

Syntax of CCS operators, constant and actions

New types: "(α , β) CCS", " β Action", " β Label" and " β Relabeling".

Operator	CCS Notation	HOL term	HOL (abbrev.)
nil	0	nil	nil
prefix	u. P	prefix u P	uP
sum	P+Q	sum P Q	P + Q
parallel	$P \mid Q$	par P Q	$P \parallel Q$
restriction	(ν L) P	restr L P	ν L P
recursion	rec A. P	rec A P	rec A P
relabeling	P [rf]	relab P rf	relab <i>P rf</i>
constant	Α	var A	var A
invisible action	τ	tau	au
input action	a	label (name a)	In a
output action	a	label (coname a)	Out a

CCS transitions: an inductive relation

3-ary inductive relation TRANS: "TRANS P u Q" or " $P - u \rightarrow Q$ ".

$$\vdash P - u \rightarrow Q \Rightarrow \texttt{relab} \ P \ \textit{rf} \ - \texttt{relabel} \ \textit{rf} \ u \rightarrow \texttt{relab} \ Q \ \textit{rf} \qquad \qquad \texttt{[RELABELING]}$$

$$\vdash$$
 CCS_Subst P (rec A P) A $-u \rightarrow P'$ \Rightarrow rec A P $-u \rightarrow P'$ [REC]

Relabeling and Substution

```
Is_Relabeling (f:\beta Label \rightarrow \beta Label) \iff
\forall (s : \beta). f \text{ (coname } s) = \text{COMPL } (f \text{ (name } s))
relabel rf \tau = \tau
relabel rf (label /) = label (REP_Relabeling rf /)
CCS Subst nil E' X = nil
CCS_Subst(u..E) E' X = u..CCS_Subst E E' X
CCS Subst (E_1 + E_2) E' X =
CCS_Subst E_1 E' X + CCS_Subst E_2 E' X
CCS_Subst (E_1 \parallel E_2) E' X =
CCS_Subst E_1 E' X \parallel CCS_Subst E_2 E' X
CCS_Subst (\nu L E) E' X = \nu L (CCS_Subst E E' X)
CCS_Subst (relab E f) E' X = relab (CCS_Subst E E' X) f
CCS Subst (var Y) E' X = if Y = X then E' else var Y
CCS_Subst (rec Y E) E' X =
if Y = X then rec Y \in F
else rec Y (CCS_Subst E E' X)
```

[CCS_Subst_def]

Bisimulation and Bisimilarity

Definition

- **1** $E \stackrel{\epsilon}{\Rightarrow} E'$ (EPS E E'), EPS = $(\lambda E E' . E \tau \rightarrow E')^*$
- $\begin{tabular}{lll} \hline \textbf{3} & \texttt{WEAK_BISIM} & \textit{Wbsm} & \Longleftrightarrow \\ & \forall \textit{E} & \textit{E'}. \\ & \textit{Wbsm} & \textit{E} & \textit{E'} & \Rightarrow \\ & (\forall \textit{I}. & & & & \\ & & \textit{E} & -\texttt{label} & \textit{I} \rightarrow \textit{E}_1 & \Rightarrow \\ & & & \exists \textit{E}_2. & \textit{E'} & -\texttt{label} & \textit{I} \Rightarrow \textit{E}_2 \land \textit{Wbsm} & \textit{E}_1 & \textit{E}_2) \land \\ & \forall \textit{E}_2. & & & & & \\ & & & \textit{E'} & -\texttt{label} & \textit{I} \rightarrow \textit{E}_2 \Rightarrow \exists \textit{E}_1. & \textit{E} & -\texttt{label} & \textit{I} \Rightarrow \textit{E}_1 \land \textit{Wbsm} & \textit{E}_1 & \textit{E}_2) \land \\ & (\forall \textit{E}_1. & \textit{E} & -\tau \rightarrow \textit{E}_1 \Rightarrow \exists \textit{E}_2. & \textit{E'} & \Rightarrow \textit{E}_2 \land \textit{Wbsm} & \textit{E}_1 & \textit{E}_2) \land \\ & \forall \textit{E}_2. & \textit{E'} & -\tau \rightarrow \textit{E}_2 \Rightarrow \exists \textit{E}_1. & \textit{E} & \Rightarrow \textit{E}_1 \land \textit{Wbsm} & \textit{E}_1 & \textit{E}_2 \\ \hline \end{tabular}$
- $E \approx E' \iff \exists Wbsm. Wbsm E E' \land WEAK_BISIM Wbsm$

Bisimilarity as a fixed point

The actual definition of \approx is automatically built by HOL4's Hol_coreln, coinducitve relation package:

Hol_coreln returns 3 theorems:

- WEAK_EQUIV_rule: input "rules" proved as a theorem.
- WEAK_EQUIV_coind: the resulting relation is maximal.
- WEAK_EQUIV_cases: the resulting relation is a fix point.

Multi-hole contexts: inductive unary relation

Definition

```
CONTEXT (\lambda t. t)

CONTEXT (\lambda t. p)

CONTEXT e \Rightarrow CONTEXT (\lambda t. a..e t)

CONTEXT e_1 \land CONTEXT e_2 \Rightarrow CONTEXT (\lambda t. e_1 t + e_2 t)

CONTEXT e_1 \land CONTEXT e_2 \Rightarrow CONTEXT (\lambda t. e_1 t \parallel e_2 t)

CONTEXT e \Rightarrow CONTEXT (\lambda t. \nu L (e t))

CONTEXT e \Rightarrow CONTEXT (\lambda t. relab (e t) rf) [CONTEXT_rules]
```

The composition of two contexts is still a context:

```
\vdash CONTEXT c_1 \land CONTEXT c_2 \Rightarrow CONTEXT (c_1 \circ c_2) [CONTEXT_combin]
```

Examples

$$E[X] = a. X + b. X$$
 is presented as " $\lambda t. \quad a..t + b..t$ " (a. [] + b. [])).

Multi-hole contexts with only direct sums

Definition

```
GCONTEXT (\lambda t. t)

GCONTEXT (\lambda t. p)

GCONTEXT e \Rightarrow GCONTEXT (\lambda t. a...e t)

GCONTEXT e_1 \land GCONTEXT e_2 \Rightarrow GCONTEXT (\lambda t. a_1...e_1 t + a_2...e_2 t)

GCONTEXT e_1 \land GCONTEXT e_2 \Rightarrow GCONTEXT (\lambda t. e_1 t \parallel e_2 t)

GCONTEXT e \Rightarrow GCONTEXT (\lambda t. \nu L (e t))

GCONTEXT e \Rightarrow GCONTEXT (\lambda t. relab (e t) rf) [GCONTEXT_rules]
```

(GCONTEXT can be also seen as a normal context under special CCS syntax with only guarded sums $\Sigma \mu_i$, p_i .)

Congruence and precongruence

```
\vdash PreOrder R \iff reflexive R \land transitive R
\vdash equivalence R \iff reflexive R \land symmetric R \land transitive R
\vdash precongruence R \iff
  PreOrder R \wedge
  \forall x \ y \ ctx. CONTEXT ctx \Rightarrow R \ x \ y \Rightarrow R \ (ctx \ x) \ (ctx \ y)
\vdash precongruence1 R \iff
   PreOrder R ∧
  \forall x \ y \ ctx. \ GCONTEXT \ ctx \Rightarrow R \ x \ y \Rightarrow R \ (ctx \ x) \ (ctx \ y)
\vdash congruence R \iff
   equivalence R \wedge
  \forall x \ y \ ctx. \ CONTEXT \ ctx \Rightarrow R \ x \ y \Rightarrow R \ (ctx \ x) \ (ctx \ y)
\vdash congruence1 R \iff
   equivalence R \wedge
  \forall x \ y \ ctx. \ GCONTEXT \ ctx \Rightarrow R \ x \ y \Rightarrow R \ (ctx \ x) \ (ctx \ y)
⊢ congruence STRONG_EQUIV
⊢ congruence1 WEAK_EQUIV
⊢ congruence OBS_CONGR
```

Weakly-guarded contexts: with and without direct sums

```
WG (\lambda t. p)
CONTEXT e \Rightarrow WG (\lambda t. a...e t)
WG e_1 \wedge WG e_2 \Rightarrow WG (\lambda t. e_1 t + e_2 t)
WG e_1 \wedge WG e_2 \Rightarrow WG (\lambda t. e_1 t \parallel e_2 t)
WG \ e \Rightarrow WG \ (\lambda \ t. \ \nu \ L \ (e \ t))
WG \ e \Rightarrow WG \ (\lambda \ t. \ relab \ (e \ t) \ rf)
                                                                                        [WG rules]
WGS (\lambda t. p)
GCONTEXT e \Rightarrow WGS(\lambda t. a..e t)
GCONTEXT e_1 \wedge GCONTEXT e_2 \Rightarrow WGS (\lambda t. a_1..e_1 t + a_2..e_2 t)
WGS e_1 \wedge WGS e_2 \Rightarrow WGS (\lambda t. e_1 t \parallel e_2 t)
WGS e \Rightarrow WGS (\lambda t, \nu \mid (e t))
WGS e \Rightarrow WGS (\lambda t. \text{ relab } (e t) rf)
                                                                                      [WGS rules]
```

(Strongly) guarded contexts

```
\begin{array}{lll} \operatorname{SG} \ (\lambda\,t. \ p) \\ \operatorname{CONTEXT} \ e \ \Rightarrow \ \operatorname{SG} \ (\lambda\,t. \ \operatorname{label} \ I..e \ t) \\ \operatorname{SG} \ e \ \Rightarrow \ \operatorname{SG} \ (\lambda\,t. \ a..e \ t) \\ \operatorname{SG} \ e_1 \ \wedge \ \operatorname{SG} \ e_2 \ \Rightarrow \ \operatorname{SG} \ (\lambda\,t. \ e_1 \ t \ + \ e_2 \ t) \\ \operatorname{SG} \ e \ \Rightarrow \ \operatorname{SG} \ (\lambda\,t. \ \nu \ L \ (e \ t)) \\ \operatorname{SG} \ e \ \Rightarrow \ \operatorname{SG} \ (\lambda\,t. \ \operatorname{relab} \ (e \ t) \ \mathit{rf}) \end{array} \qquad \begin{array}{ll} \left[\operatorname{SG} \ \operatorname{rules}\right] \end{array}
```

There's no need to define special version of SG with only guarded sums, as "guarded and sequential" always appears together (but a single relation definition is too complex).

Sequential contexts: with and without direct sums

"X is sequential in E if every subexpression of E which contains X, apart from X itself, is of the form μ . F or $\Sigma \widetilde{F}$."

```
SEQ (\lambda t. t)

SEQ (\lambda t. p)

SEQ e \Rightarrow SEQ (\lambda t. a...e t)

SEQ e_1 \land SEQ e_2 \Rightarrow SEQ (\lambda t. e_1 t + e_2 t) [SEQ_rules]

GSEQ (\lambda t. t)

GSEQ (\lambda t. p)

GSEQ e \Rightarrow GSEQ e_2 \Rightarrow GSEQ e_2 \Rightarrow GSEQ e_2 \Rightarrow GSEQ e_3 \land e_4 \land e_5 \land e_6 \land e_7 \land e_8 \land e_8 \land e_8 \land e_9 \land e_9
```

Contraction: formal definition

```
 \begin{array}{l} \vdash \text{ CONTRACTION } \textit{Con} \iff \\ \forall \textit{E} \textit{E'}. \\ \textit{Con } \textit{E} \textit{E'} \Rightarrow \\ (\forall \textit{I}. \\ & \textit{E} - \text{label } \textit{I} \rightarrow \textit{E}_1 \Rightarrow \\ & \exists \textit{E}_2. \textit{ E'} - \text{label } \textit{I} \rightarrow \textit{E}_2 \land \textit{Con } \textit{E}_1 \textit{E}_2) \land \\ \forall \textit{E}_2. \\ & \textit{E'} - \text{label } \textit{I} \rightarrow \textit{E}_2 \Rightarrow \exists \textit{E}_1. \textit{ E} = \text{label } \textit{I} \Rightarrow \textit{E}_1 \land \textit{E}_1 \approx \textit{E}_2) \land \\ (\forall \textit{E}_1. \\ & \textit{E} - \tau \rightarrow \textit{E}_1 \Rightarrow \textit{Con } \textit{E}_1 \textit{E'} \lor \exists \textit{E}_2. \textit{E'} - \tau \rightarrow \textit{E}_2 \land \textit{Con } \textit{E}_1 \textit{E}_2) \land \\ \forall \textit{E}_2. \textit{E'} - \tau \rightarrow \textit{E}_2 \Rightarrow \exists \textit{E}_1. \textit{E} \stackrel{\epsilon}{\Rightarrow} \textit{E}_1 \land \textit{E}_1 \approx \textit{E}_2 & \text{[CONTRACTION]} \\ \vdash \textit{P} \succeq_\textit{bis} \textit{Q} \iff \exists \textit{Con. Con P Q \land CONTRACTION Con} & \text{[contracts\_thm]} \end{array}
```

 \succeq_{bis} is preorder and precongruence:

```
⊢ PreOrder (contracts)⊢ precongruence1 (contracts)
```

[contracts_PreOrder]
[contracts_precongruence]

[contracts IMP WEAK EQUIV]

 $\vdash P \succ_{bis} Q \Rightarrow P \approx Q$

Rooted contraction: formal definition

Inspired by the definition rooted bisimilarity (not recursive, built upon non-rooted relation), with candidates quickly checked by theorem prover on its transitivity)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < で

All five unique solution theorems

STRONG_UNIQUE_SOLUTION:

$$\vdash$$
 WG $E \Rightarrow \forall P$ Q . $P \sim E$ $P \wedge Q \sim E$ $Q \Rightarrow P \sim Q$

② WEAK_UNIQUE_SOLUTION:

$$\vdash$$
 SG $E \land$ GSEQ $E \Rightarrow \forall P$ Q . $P \approx E$ $P \land Q \approx E$ $Q \Rightarrow P \approx Q$

OBS_UNIQUE_SOLUTION:

$$\vdash \text{ SG } E \ \land \ \text{SEQ } E \ \Rightarrow \ \forall \, P \ Q. \ P \ \approx^c E \ P \ \land \ Q \ \approx^c E \ Q \ \Rightarrow \ P \ \approx^c Q$$

O UNIQUE_SOLUTION_OF_CONTRACTIONS:

$$\vdash$$
 WGS $E \Rightarrow \forall P \ Q. \ P \succeq_{\mathit{bis}} E \ P \ \land \ Q \succeq_{\mathit{bis}} E \ Q \Rightarrow P \approx Q$

5 UNIQUE_SOLUTION_OF_ROOTED_CONTRACTIONS:

$$\vdash$$
 WG $E \Rightarrow \forall P \ Q. \ P \succeq_{bis}^{c} E \ P \land Q \succeq_{bis}^{c} E \ Q \Rightarrow P \approx^{c} Q$

Coarsest congruence contained in \approx

Theorem

Assumping p and q do not use all labels, i.e. $\operatorname{fn}(p) \cup \operatorname{fn}(q) \neq \mathscr{L}$,

$$p \approx^{c} q \iff (\forall r. \ p + r \approx q + r)$$
.

Our formalised version (with slightly weaker assumptions):

$$\vdash$$
 free_action $p \land$ free_action $q \Rightarrow$ ($p \approx^c q \iff \forall r. \ p+r \approx q + r$) [COARSEST_CONGR_THM]

where

free_action $p \iff \exists a. \ \forall p'. \ \neg(p = label \ a \Rightarrow p')$ [free_action_def]

Coarsest congruence contained in \approx (van Glabbeek's method)

Lemma

Given processes p and q, if there's a special process k(p,q), then the hard part (\leftarrow) of "coarsest congruence" theorem holds without classic assumption.

$$\vdash \forall p \ q. \ (\exists k. \ \text{STABLE} \ k \ \land \ (\forall p' \ u. \ p = u \Rightarrow p' \Rightarrow \neg (p' \approx k)) \ \land \ \forall q' \ u. \ q = u \Rightarrow q' \Rightarrow \neg (q' \approx k)) \Rightarrow (\forall r. \ p + r \approx q + r) \Rightarrow p \approx^c q$$
 [PROP3_COMMON]

STABLE
$$E \iff \forall u \ E'. \ E \ -u \rightarrow E' \Rightarrow u \neq \tau$$

[STABLE]

Definition (Arbitrary non-bisimir processes (Klop) - finite version)

KLOP_def:

 \vdash ($\forall a$. KLOP a 0 = nil) $\land \forall a$ n. KLOP a (SUC n) = KLOP a n + label a..KLOP a n KLOP_PROP2':

 $\vdash m < n \Rightarrow \neg (KLOP \ a \ m \approx KLOP \ a \ n)$

Lemma

Coarsest precongruence contained in $\succeq_{\mathrm{bis}}^{\mathrm{c}}$

Theorem

Thus the current definition of \succeq_{bis}^{c} is the best possible one.

Another version following van Glabbeek's proof:

```
\vdash finite_state p \land finite_state q \Rightarrow (p \succeq_{bis}^{c} q \iff \forall r. p + r \succeq_{bis} q + r) [COARSEST_PRECONGR_FINITE]
```

```
finite_state p \iff \text{FINITE (NODES } p) [finite_state_def] NODES p = \{q \mid \text{Reach } p \mid q\} [NODES_def] Reach = (\lambda E \mid E' . \exists u. \mid E \mid -u \rightarrow E')^* [Reach_def]
```

Toward multi-variable equations

The multi-variable case is a "routine" adaptation in informal proofs; theorems on multi-variable equation cannot be proved by their single-variable version. Current idea: reuse the guardedness definition of single-variable equation (i.e. multi-hole contexts)

Examples

$$E[X; Y] = a. X + b. X + c. Y + d. Y$$

$$E_{1}[\cdot] = a. [] + b. X + c. Y + d. Y$$

$$E_{2}[\cdot] = a. X + b. [] + c. Y + d. Y$$

$$E_{3}[\cdot] = a. [] + b. [] + c. Y + d. Y$$

$$E[X; Y] = E_{1}[X] = E_{2}[X] = E_{3}[X]$$

Definition

Future directions

- Formalizing unique-solution theorems under multi-variable equations/contractions (represented as CCS terms with free variables).
- ② Formalizing CCS theorems related to free/bound names and free/bound variables. (learning from experiences from π -calculi formalisations)
- Formalizing Sangiorgi's 2017 work (Divergence and Unique Solution of Equations) and other CCS results in frontier.
- Decision procedure for various bisimilarity. (Concurrency Workbench in HOL4)
- CCS with arbitrary sums; Deeper look at the "coarsest (pre)congruence" theorem without classic assumptions.
- Connecting CCS Theory with Graph Theory (LTS as digraph) and Probability Theory.

Conclusions

- Now we have a *more* complete formalisation of CCS with an archive of rigous formal proofs of related theorems and lemmas in textbook.
- Sangiorgi's theorem on unique solution of contractions is formally verified and slightly extended. (frontier)
- Sometimes formalising a theory helps in finding new interesting results or refining previously known results.
- This work could be a template or working basis for CCS extensions or other process calculi, even in other theorem provers than HOL.

This CCS formalisation will be continuously maintained as part of HOL4 official examples to make sure its long-term availability.