

D4

И. И. КИТАЙГОРОДСКИЙ, Н. Н. КАЧАЛОВ, В. В. ВАРГИН, К. С. ЕВСТРОПЬЕВ,
Д. Б. ГИНЗБУРГ, М. С. АСЛАНОВА, И. Е. ГУРФИНКЕЛЬ, А. П. ЗАК, А. Е. КОТЛЯР,
Н. М. ПАВЛУШКИН, Г. Г. СЕНТИЮРИН, С. И. СИЛЬВЕСТРОВИЧ, Ф. Г. СОЛИНОВ,
Н. В. СОЛОМИН, Б. С. ТЕМКИН

ТЕХНОЛОГИЯ СТЕКЛА

Под общей редакцией
И. И. КИТАЙГОРОДСКОГО

Издание третье, переработанное

Д о п у щ е н о
Министерством высшего и среднего специального
образования СССР в качестве учебника для
технологических вузов

ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО
ЛИТЕРАТУРЫ ПО СТРОИТЕЛЬСТВУ, АРХИТЕКТУРЕ
И СТРОИТЕЛЬНЫМ МАТЕРИАЛАМ
Москва — 1961

Раздел второй
Основы технологии стекла

Глава IV

Теоретические основы стекловарения
Введение

Процесс стекловарения протекает в сложной обстановке, создаваемой рядом химических, физических и технологических факторов.

В реальных производственных условиях отдельные этапы этого процесса трудно выделить изолированно. Однако для ясного освоения процесса стекловарения в целом, знание элементов, из которых он слагается, необходимо и важно.

Процесс стекловарения состоит из пяти стадий.

Первая стадия — **силикатообразование** — характеризуется тем, что к концу ее: а) в шихте не остается отдельных составляющих ее компонентов (нет отдельно песка, соды, сульфата, мела и пр.); б) большинство газообразных шихты улетучивается; в) основные химические реакции в твердом состоянии между компонентами шихты закончены.

Для обычных натриево-кальциевых стекол эта стадия завершается при 800—900°. Фриттование шихты, которое практиковалось в древности и рекомендовалось еще в прошлом веке, есть, собственно говоря, осуществление стадии силикатообразования.

Вторая стадия — **стеклообразование** — характеризуется тем, что к ее концу масса становится прозрачной, т. е. в ней отсутствуют непропаренные частицы шихты, однако она пронизана большим количеством пузырей и свищей, т. е. неоднородна. Для обычных стекол эта стадия завершается при 1150—1200°.

Третья стадия — **дегазация** — характеризуется тем, что к ее концу стекломасса освобождается от видимых газовых включений, и тем, что устанавливается равновесное состояние между стекломассой (жидкой фазой) и газами, остающимися в самой стекломассе (газовая фаза).

Для обычных стекол этот этап завершается при 1400—1500°. Вязкость стекломассы составляет около 100 пуз.

Четвертая стадия — **томогенизация** — характеризуется тем, что к ее концу стекломасса освобождается от свищей и становится однородной. Колебания в показателях преломления отдельных частей стекломассы минимальные. Так, в оптическом стекле эти колебания не превышают $\pm 0,0005$.

Для обычных стекол, эта стадия может быть завершена при темп-

что уже при 600° образовавшаяся двойная соль $\text{CaNa}_2(\text{CO}_3)_2$ при взаимодействии с SiO_2 начинает выделять CO_2 .

Это подтверждает кривая нагревания двойной смеси $\text{CaNa}_2(\text{CO}_3)_2 + 4\text{SiO}_2$, первый эндотермический эффект на которой наблюдается также при температуре 600°.

Таким образом, при постепенном нагревании содовой шихты сначала образуется двойная соль $\text{CaNa}_2(\text{CO}_3)_2$, которая взаимодействует с SiO_2 при более низких температурах (около 600°).

Разложение двойной соли сопровождается выделением CO_2 по реакции

Эта реакция протекает в температурном интервале 600—830°. При 740—780° плавится эвтектика $\text{CaNa}_2(\text{CO}_3)_2 - \text{Na}_2\text{CO}_3$.

Взаимодействие эвтектического сплава с SiO_2 можно представить следующим образом:

При 855° плавится Na_2CO_3 . При 912° диссоциирует CaCO_3 , а при 1010° непрореагировавшая CaO образует с SiO_2 CaSiO_3 .

Если шихта сплавляется на кварцевой муке при температуре около 1200°, то получается сплав, который при охлаждении образует стекло.

Ниже приводятся реакции, протекающие в трехкомпонентной шихте ($\text{Na}_2\text{CO}_3 + \text{CaCO}_3 + \text{SiO}_2$) при постепенном ее нагревании до 1200°.

Реакции	Температура в град.
Образование $\text{CaNa}_2(\text{CO}_3)_2$	ниже 600
$\text{CaNa}_2(\text{CO}_3)_2 + 2\text{SiO}_2 \rightleftharpoons \text{Na}_2\text{SiO}_3 + \text{CaSiO}_3 + 2\text{CO}_2$	600—830
$\text{Na}_2\text{CO}_3 + \text{SiO}_2 = \text{Na}_2\text{SiO}_3 + \text{CO}_2$	720—900
Образование и плавление эвтектики $\text{CaNa}_2(\text{CO}_3)_2 - \text{Na}_2\text{CO}_3$	740—800
Плавление двойного карбоната $\text{CaNa}_2(\text{CO}_3)_2$	813
Плавление Na_2CO_3	855
Диссоциация $\text{CaCO}_3 \rightleftharpoons \text{CaO} + \text{CO}_2$	912
$\text{CaNa}_2(\text{CO}_3)_2 \rightleftharpoons \text{CaO} + \text{Na}_2\text{O} + 2\text{CO}_2$	960
$\text{CaO} + \text{SiO}_2 \rightleftharpoons \text{CaSiO}_3$	1010

На рис. 45—48 даны микроснимки шлифов с образцов содовой шихты, подвергнутой нагреванию при температурах 1100 (рис. 45), 1200 (рис. 46), 1300 (рис. 47) и 1400° (рис. 48).

Сульфатная шихта ($\text{SiO}_2 + \text{Na}_2\text{SO}_4 + \text{C} + \text{CaCO}_3$).

Реакции силикато- и стеклообразования в сульфатной шихте протекают значительно сложнее, чем в содовой. Выделение CO_2 начинается при температуре 620° и обусловлено восстановлением сульфата натрия до сульфида по реакции

Образовавшийся сульфид натрия, взаимодействуя с углекислым кальцием, образует углекислый натрий и сульфид кальция:

Эти реакции протекают весьма энергично при 740—800°.

Образовавшийся углекислый натрий, реагируя с углекислым кальцием, образует двойной кальциево-натриевый карбонат $\text{CaNa}_2(\text{CO}_3)_2$.

который, как и в содовой шихте, реагируя с SiO_2 , образует метасиликат кальция и метасиликат натрия с выделением углекислоты

Рис. 45. Микрофотография содовой шихты для оконного стекла (выдержка 1 час при 1100°)

Рис. 46. Микрофотография содовой шихты для оконного стекла (выдержка 1 час при 1200°)

Рис. 47. Микрофотография содовой шихты для оконного стекла (выдержка 1 час при 1300°)

Рис. 48. Микрофотография содовой шихты для оконного стекла (выдержка 1 час при 1400°)

При температуре 865° сульфат натрия и сульфид кальция, взаимодействуя с SiO_2 , образуют метасиликат натрия, метасиликат кальция, сернистый ангидрид и серу:

Восстановление сульфата натрия полностью заканчивается при температуре, близкой к температуре его плавления 884°, так как эвтектика

Рис. 104. Общий вид ванной стекловаренной печи для листового стекла

Рис. 105. Схемы ванных печей

а — с протоком и самостоятельными газовыми пространствами; б — с протоком и общим газовым пространством, разделенным регулируемыми перегородками; в — с несколькими протоками и решетчатой ширмой в газовом пристройстве; г — с регулируемым протоком; д — рекуперативная со ступенчатым зоном, подковообразное вертикальное направление факсса; е — с приемником нагрева с противоточным движением газов; ж — с зонами, загущающими протоком; з — с зонами, перегородкам и снижением скорости газов; и — то же, но без перегородок; к — с трехзональной зоной стекла; м — с трехзональной зоной стекла и зоной для освещения; н — с дычками для засыпки стекла; о — рекуперативная с плавающим потоком для регулирования потока газомассы; п — то же, с плавающим потоком; р — проток; 2 — горелка; 3 — регулируемый перегородкой; 4 — приемник нагрева в стекломассе; 5 — горизонтальный проток с переменным сечением для факсса из жидкого топлива; 6 — двойной газ; 7 — газ; 8 — охлаждаемая воздушной трубой; 11 — сплошная секция свода; 12 — бассейн для парки; 13 — лоток для стекломассы; 14 — бассейн для освещения; 15 — плавающее пространство; 16 — рекуператор; 9 — засыпка; 10 — охлаждаемая воздушной трубой; 17 — порог-выступ дна; 18 — порог-стенка

Раздел пятый
Сырье и шихта

Глава XII

Сырьевые материалы

1. Общие положения

Сырьевые материалы для производства стекла делятся на две группы.

Первая группа содержит главные материалы, посредством которых в стекломассу вводятся кислотные, щелочные и щелочноземельные окислы для получения стекол с определенными физико-химическими свойствами.

Вторая группа содержит вспомогательные материалы, применяемые для придания стекломассе тех или иных необходимых свойств и для ускорения варки. К ним относятся осветлители, обесцвечиватели, красители, глушители, окислители, восстановители и ускорители варки.

В стеклоделии применяют также горные щелочесодержащие породы, каолин, полевые шпаты и пегматиты, силикат натрия, стекольный бой и отходы производств, содержащие одновременно кислотные и основные окислы.

Кроме сырьевых материалов, непосредственно применяемых в стекловарении, используют также материалы, предназначенные для обработки разных видов стеклянных изделий.

2. Главные материалы

Кислотные окислы

Кремнезем (двуокись кремния) SiO_2 . Молекулярный вес 60,06. Удельный вес 2,65.

Кремнезем — важнейшая составная часть промышленных стекол; он встречается в природе в кристаллической и аморфной формах. Кристаллический кремнезем существует главным образом в виде кварца, представляющего собой бесцветные кристаллы, плавящиеся при $1713^\circ \pm 5$. Температура кипения SiO_2 2590° .

Встречаются следующие разновидности кварца: горный хрусталь, представляющий собой прозрачные призматические кристаллы с удельным весом 2,65; дымчатый топаз, окрашенный в темно-коричневый цвет; аметист, окрашенный окислами марганца и железа в лилово-красный или розовый цвета. К тоннокристаллическим разновидностям кварца, смешанного с некоторыми другими веществами, относятся яшма, агат и др. Кремнезем встречается также в виде минералов — тридимита (удельный вес 2,32) и кристобалита (удельный вес 2,3). Из аморфных разновидностей известны трепел, опал, диатомит.

Широко распространенные в земной коре кварцевые горные породы, полевые шпаты и др. под действием различных природных факторов и главным образом воды и содержащейся в ней некоторого количества угольного ангидрида, изменений температуры и др. постепенно разрушаются (выветриваются) с образованием кварца. В частности, процесс разрушения полевого шпата может быть представлен следующей схемой:

Нерастворимыми продуктами разрушения являются кварц и каолин. Кварц либо оседает в виде песка на месте образования, либо под действием потоков воды переносится с места на место, при этом сначала оседают более крупные частицы песка, а затем — более мелкие. Каолин, состоящий главным образом из каолинита, является основной составной частью глин как белых, так и окрашенных в бурый цвет примесями окиси железа. Поташ растворяется и уносится водой.

Вместе с зернами кварцевого песка осаждаются также глиноzemистые частицы и минералы: полевой шпат, слюда, роговая обманка, рутил, циркон, магнетит и др. Таким образом, кварцевый песок, являющийся продуктом механического разрушения и химического разложения горных пород, обычно загрязнен различными примесями.

Для большинства стеклянных изделий кварцевый песок является основным сырьевым компонентом. Содержание его в шихте составляет 60—70% и выше. Качество кварцевого песка характеризуется химическим, зерновым и минералогическим составом.

Исходным материалом для введения кремнезема в стекло, кроме кварцевого песка, может быть также молотый кварц, содержащий меньшее количество окислов железа, чем песок. Горный хрусталь — наиболее чистый материал.

Кварцевые пески широко распространены по всему Советскому Союзу, по качеству и мощности запасов они вполне удовлетворяют требованиям нашей стекольной промышленности.

Наиболее известные следующие месторождения песка: Люберецкое (ст. Люберецы, Ленинской ж. д., Московской обл.); Часов-Ярское (ст. Часов-Яр, Южно-Донецкой ж. д., Сталинской обл.); Новоселовское (Южной ж. д. Харьковской обл.); Попаснянское (Луганской обл.); Латинское (ст. Латная, Московско-Донбасской ж. д.); Будское (д. Буды, Орловской обл.); Гашлинское (Ульяновской обл.); Неболчинское (ст. Неболи, Кировской ж. д., Ленинградской обл.); Лоевское (Гомельской обл.).

Химический состав. Качество кварцевого песка определяется количественным содержанием кремнезема и примесей. Высокосортные квар-

шает склонность к кристаллизации; несколько повышает вязкость настриево-кальциевые стекла при замене SiO_2 и более значительно при замене Na_2O или CaO . Глиноzem вводят в состав промышленных стекол — листового, бутылочного и сортового в количестве 2—3%, а также вместе с борным ангидридом — в состав термометрического стекла, жароупорной и химической посуды.

Оксиды щелочных металлов $R_2\text{O}$

Оксид натрия Na_2O

Молекулярный вес 62, удельный — 2,27.

Оксид натрия вводят в состав шихты посредством сульфата и соды.

Сульфат натрия Na_2SO_4 . Молекулярный вес 142,06, удельный — 2,7. Различают два вида сульфата: природный и искусственный. Искусственный сульфат является побочным продуктом в производстве соляной кислоты на заводах химической промышленности.

Природный сульфат встречается чаще в виде мирабилита — десятиводной соли состава $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$, а также тенардита — безводного кристаллического сульфата натрия Na_2SO_4 и астраханита — двойной соли сульфатов натрия и магния $\text{Na}_2\text{SO}_4 \cdot \text{MgSO}_4 \cdot 4\text{H}_2\text{O}$.

Природный сульфат должен быть белого цвета (допускается зеленовато-желтый оттенок), в 1-м сорте (на сухое вещество) должно содержаться: Na_2SO_4 не менее 96,5%, Fe_2O_3 не более 0,01%, NaCl не более 1%, сернокислого кальция не более 0,8%, влаги не более 3%, нерастворимого в воде остатка не более 1,5%.

Крупнейшие сульфатные месторождения расположены в Прикаспийском и Приаральском районах и в Кулундинской степи (озеро Кучук). Ряд менее богатых или менее исследованных месторождений находится в Западной Сибири (озера Эйбеты, Анж-Булат, Морышанское), Казахстане (Прибалхашское), Грузии и др.

Мирабилит выделяется в виде прозрачных, бесцветных, иногда крупных кристаллов моноклиннической системы, содержащих 10 молекул воды при пониженной температуре, из насыщенных рассолов соляных водоемов, содержащих сернокислый магний, хлористый натрий и относительно небольшое количество хлористого магния. Мирабилит, содержащий 19,2% Na_2O , 24,8% SO_3 , 56% H_2O , почти не применяют на стекольных заводах вследствие значительного количества содержащейся в нем воды.

Безводный сульфат Na_2SO_4 , получаемый преимущественно из мирабилита путем естественного или искусственного обезвоживания, состоит из 43,7% Na_2O и 56,3% SO_3 . Из 100 вес. ч. безводного сульфата в стекло переходит 43,7 вес. ч. Безводный сульфат плавится без разложения при 884° и разлагается при 1 200—1 220°.

Тенардит Na_2SO_4 представляет собой бесцветные или окрашенные в сероватый цвет кристаллы (с удельным весом 2,68). В нем обычно содержатся примеси поваренной соли (5—7%), сернокислого кальция (4%) и магния (5%). Месторождения тенардита встречаются в ряде озер Средней Азии.

Астраханит $\text{Na}_2\text{SO}_4 \cdot \text{MgSO}_4 \cdot 4\text{H}_2\text{O}$ — бесцветный или окрашенный в желтоватый и красноватый цвет минерал, содержащий значительное количество MgSO_4 (около 34%), NaCl (до 8%) и CaSO_4 (до 4%).

Для разложения Na_2SO_4 в шихту вводят восстановитель (углерод) в виде кокса, антрацита, древесного угля в измельченном виде, а также древесных опилок и стружки. Теоретически для восстановления сульфата натрия требуется 4,22% углерода; практически же вводят 6,5% и больше.

Отходы производства. В стекольном производстве применяют доменные шлаки, отходы марганцевых руд и другие отходы различных производств.

Доменные шлаки содержат (в %): SiO_2 — 35—65, CaO — 30—45, Al_2O_3 — 5—20, Fe_2O_3 — до 5, S — 2—4, марганца — до 2 и щелочей — до 2. Доменные шлаки иногда являются готовым стеклообразным материалом с температурой плавления в зависимости от химического состава — от 1100 д 1350°. Их можно использовать для производства тары зеленого и оранжевого цветов.

Отходы марганцевых руд имеют следующий химический состав (в %): MnO_2 — 38—50, Al_2O_3 — 0,85—3, Fe_2O_3 — 3,5, CaO — 1,7—4,3 и Na_2O — 2,5—3,3, нерастворимый остаток — 31—44.

Эти отходы можно использовать в производстве окрашенного стекла, а также марблита.

3. Вспомогательные материалы

Осветлители

Осветлители — материалы, вводимые в шихту и способствующие при высоких температурах освобождению стекломассы от крупных и мелких пузырей, т. е. ее осветлению. К таким материалам относятся сульфат натрия, хлористый натрий, трехокись мышьяка, селитра, фтористые и аммонийные соли.

Сульфат натрия Na_2SO_4 вводят в шихту в количестве 0,5—1%; действие его как осветлителя зависит от температуры и продолжительности варки.

Хлористый натрий NaCl (молекулярный вес 58,45, удельный — 1,5). Вводится в шихту в количестве 0,5—1%.

Трехокись мышьяка As_2O_3 (молекулярный вес 197,82, удельный — 3,7). Получается из мышьяковистой руды — мышьяковистого пирита FeAsS способом взогонки. Благоприятно влияет на осветление стекломассы трехокись мышьяка при погружении ее в виде куска в расплавленную стекломассу. Мышьяк As_2O_3 при этом частично взогоняется, и выделяющиеся пары вызывают энергичное бурление стекломассы и освобождение ее от пузырей.

Трехокись мышьяка применяют также для устранения красноватого оттенка, появляющегося в результате избыточного количества обесцвечивателей — сelenита или перекиси марганца.

При действии трехокиси мышьяка на стекломассу, окрашенную перекисью марганца, она переходит в окись марганца: $4\text{MnO}_2 = 2\text{Mn}_2\text{O}_3 + \text{O}_2$; затем окись марганца восстанавливается трехокисью мышьяка в бесцветную закись марганца.

Селитра NaNO_3 (молекулярный вес 85, удельный — 2,25). Температура плавления 318°. При введении в шихту в количестве 1—1,5% содействует осветлению стекломассы.

Добавки трехокиси мышьяка в количестве 0,15—0,25% и селитры 1—1,5% следует рекомендовать для осветления натриево-кальциевых стекол.

Фтористые соединения. Введение 2—4% плавикового шпата CaF_2 вместо CaO из известняка улучшает осветление стекломассы.

Аммонийные соли. В качестве осветлителей применяют: азотнокислый аммоний NH_4NO_3 (молекулярный вес 80,05, удельный — 1,73; температура плавления 169,6°);

Фосфорнокислые соединения известны в следующем виде:

Фосфорнокальциевая соль $\text{Ca}_3(\text{PO}_4)_2$. (молекулярный вес 310,19, удельный — 3,18) — белый аморфный порошок.

Для глушения стекла наиболее распространенным материалом является костяная зола из фосфорнокислых соединений. Она содержит от 67 до 85% $\text{Ca}_3(\text{PO}_4)_2$, от 2 до 3% фосфорномагниевой соли, небольшие количества фтористого кальция и известки;

кислый фосфорнокислый кальций $\text{CaHPO}_4 \cdot 2\text{H}_2\text{O}$ (молекулярный вес 172,1, удельный — 2,32);

кислая фосфорнатариевая соль $\text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O}$ (молекулярный вес 358,17, удельный — 1,5).

Преимущество искусственно изготовленной фосфорнокислой соли перед костяной золой заключается в постоянстве состава.

Известен также апатит — натуральная фосфорнокальциевая соль $\text{Ca}_4(\text{CaF})(\text{PO}_4)_3$ или $\text{Ca}_4(\text{CaCl})(\text{PO}_4)_3$, содержащая до 3% фтора, до 6% хлора, около 41% P_2O_5 и около 50% CaO . Апатит применяется для производства глущенного стекла.

Для глушения стекла также применяют:

окись олова SnO_2 (молекулярный вес 150,7, удельный — 6,6—6,9);

трехокись мышьяка As_2O_3 (молекулярный вес 197,82, удельный — 3,9);

окись циркония ZrO_2 (молекулярный вес 123,22, удельный — 5,7);
тальк $3\text{MgO} \cdot 4\text{SiO}_2 \cdot \text{H}_2\text{O}$ (молекулярный вес 379,34, удельный — 2,6—2,8) — минерал белого или зеленоватого цвета, нередко содержит примеси — окисли железа и марганца.

Оксилители и восстановители

Цветные стекла варят как в окислительных, так и в восстановительных условиях. Соответствующие условия варки достигаются регулированием характера пламени в печи, а также добавлением в шихту оксилителей или восстановителей.

Оксилители. К числу оксилителей относятся натриевая и калиевая селитры. Сильное окислительное действие достигается при совместном применении селитры и трехокиси мышьяка; последняя переходит в пятиокись, которая является оксилителем для некоторых красителей. Калиевая селитра имеет преимущество перед натриевой; она разлагается при более высокой температуре, что способствует более эффективному окислительному действию.

Восстановители. К числу восстановителей относятся:
углерод, который вводят в шихту в виде **кокса**, **антрацита**, **древесного угля**, **древесных опилок** и разных углеродистых соединений;

винный камень $\text{KHC}_2\text{H}_4\text{O}_6$ или **виннокаменная кислота** $\text{C}_6\text{H}_5\text{O}_6$, применявшаяся при изготовлении медного рубина, при серебрении зеркал и др.;

соединение олова в виде зажигания олова SnO_2 , двуххлористого олова $\text{SnCl}_2 \cdot 2\text{H}_2\text{O}$ и словянских опилок Sn, применяемых при изготовлении рубинов;

соединение сурьмы в виде трехокиси Sb_2O_3 и металлической сурьмы;

трехокись мышьяка As_2O_3 — по отношению к некоторым красителям (CrO_3 , Mn_2O_3) является хорошим восстановителем;

металлические алюминий и магний, являющиеся сильными восстановителями.