Nome e mail	Almahna O	11 Luciio 2017	
Nome e man	Algebra 2	11 Luglio 2017	
Matricola			
Esercizio 1 Sull'insieme $G = \mathbb{Z}_4$		un'operazione · ponendo per ogni $(x, u), (y, v) \in G,$ = $(x + uy, uv).$	
 (1) Si dimostri che G con questa operazione é un gruppo non abeliano. (2) Si trovi un sottogruppo di G che non sia normale. 			
			\perp
			4
			_
			_
			-
			+
			+
			+
			+
			+
			+
			+
			+
			1

Esercizio 2 Sia S un insieme. Nell'insieme $\mathcal{P}(S)$ definiamo l'operazione Δ , chiamata differenza simmetrica,

 $X\Delta Y=(X\cup Y)\setminus (X\cap Y),$

per ogni coppia di sottoinsiemi di S.

- (1) Provare che la struttura algebrica $(\mathcal{P}(S), \Delta, \cap)$ definisce un anello commutativo unitario e che ogni sottoinsieme proprio di S é un divisore dello zero di A.
- (2) Sia $Y \in \mathcal{P}(S)$: provare che l'applicazione $\varphi : \mathcal{P}(S) \to \mathcal{P}(S)$, definita da $\varphi(X) = X \setminus Y$ é un omomorfismo di anelli e determinare $\ker \varphi \in Im\varphi$.
- (3) Sia $Y \in \mathcal{P}(S)$: determinare l'ideale (Y).
- (4) Se S finito, provare che ogni ideale di $\mathcal{P}(S)$ é principale.

