# aws re: Invent

#### CON421-R

### Amazon EKS under the hood

#### **Eswar Bala**

Sr. Software Development Manager Amazon Web Services

#### **Richard Sostheim**

Principal Engineer Amazon Web Services

#### **Ahmed El Baz**

Software Engineer Snap Inc





# Agenda

Amazon EKS architectural overview

Amazon EKS under the hood

Amazon EKS operations

Amazon EKS enhancements

Snap Service Mesh

# Amazon EKS architectural overview





### Amazon Elastic Kubernetes Service (Amazon EKS)



# EKS Service / Kubernetes Logical Overview





### Amazon EKS Cluster

| aws | AWS Cloud                                       |                     |                     |                     |  |
|-----|-------------------------------------------------|---------------------|---------------------|---------------------|--|
|     |                                                 | Availability Zone 1 | Availability Zone 2 | Availability Zone 3 |  |
|     | <u> </u>                                        |                     |                     |                     |  |
|     | EKS Managed VPC Single Tenant EKS Control Plane |                     |                     |                     |  |
|     |                                                 |                     |                     |                     |  |
|     |                                                 |                     |                     |                     |  |
|     | (a) Custome                                     | r Managed VPC       |                     |                     |  |
|     |                                                 | Instances           | Instances           | Instances           |  |
|     |                                                 | Spot Instance       | Spot Instance       | Spot Instance       |  |
|     |                                                 |                     | Spot instance       | Spot instance       |  |



# Single Tenant EKS Control Plane



# EKS Under the Hood





### EKS Cellular Architecture

EKS Service Failure Domains – isolated failure domains designed to limit the blast radius of events

- Region top level of isolation
  - Force majeure, hurricane, asteroid (space junk), earthquake, other significant event
- Availability Zone subdivides region geographically
  - Localized event, natural disasters, lightning, tornado, power grid failure, civil unrest
- AWS Account subdivides region by resource ownership
  - Security isolation, limit management, load partitioning (shard)

### 1 cell = 1 AWS account

# EKS Logical Single Highly Available Service







Frontend



**Cluster Events** 



Control Plane Management





# EKS Regional Cellular Architecture



# EKS Operations





# EKS Region Deployment Safety



# EKS Region Deployment Safety







### **EKS Components**



# EKS Components





# EKS Enhancements: What we've been up to





### The year in review

#### **Security & Reliability**

ISO, SOC 123, and PCI compliance
99.9% Service Level Agreement
Cluster creation limit raised to 50 per region
API Server Endpoint Access Control
Control Plane Logs in Amazon CloudWatch
AWS IAM authenticator integration
EKS v1.10 and 1.11 end of life
Amazon ECR PrivateLink support
Kubernetes pod security policies
AWS IAM for Service Accounts
Cluster tagging

#### **Regions & Versions**

Seoul, Mumbai, London, Paris, Ohio, Frankfurt, Singapore, Sydney, Tokyo, Hong Kong, São Paulo, Bahrain Support for Kubernetes versions 1.11, 1.12, 1.13, and 1.14

#### **Nodes**

Windows Node Support (GA)
A1 (ARM) instance support (preview)
EKS-Optimized AMI AWS Systems Manager parameters

#### **Storage & Networking**

Alpha CSI Driver for Amazon FSx for Lustre

Beta CSI Drivers for Amazon EBS and Amazon EFS Support for Public IP Addresses Within Cluster VPCs AWS ALB Ingress Controller Amazon VPC CNI plugin v1.3, 1.4, 1.5

#### **Tooling**

AWS App Mesh controller
Managed Cluster Version Updates
CloudWatch Container Insights
eksctl as the official EKS CLI
AWS Node Termination Handler
Mixed instance policy support and GPU-provider for Cluster Autoscaler

#### **Machine Learning**

Deep Learning Benchmark Utility
AWS in official Kubeflow documentation
Support for P3dn and G4dn instances
Escalator autoscaler one-click capacity

All since re:Invent 2018

### The year in review

#### **Security & Reliability**

ISO, SOC 123, and PCI compliance 99.9% Service Level Agreement Cluster creation limit raised to 50 per region API Server Endpoint Access Control Control Plane Logs in Amazon CloudWatch

AWS IAM authenticator integration EKS v1.10 and 1.11 end of life Amazon ECR PrivateLink support Kubernetes pod security policies AWS IAM for Service Accounts Cluster tagging

#### **Regions & Versions**

Seoul, Mumbai, London, Paris, Ohio, Frankfurt, Singapore, Sydney, Tokyo, Hong Kong, São Paulo, Bahrain Support for Kubernetes versions 1.11, 1.12, 1.13, and 1.14

#### **Nodes**

Windows Node Support (GA)
Managed Node Groups

A1 (ARM) instance support (preview) EKS-Optimized AMI AWS Systems Manager parameters

Alpha CSI Driver for Amazon FSx for Lustre

Beta CSI Drivers for Amazon EBS and Amazon EFS

Support for Public IP Addresses Within Cluster VPCs

AWS ALB Ingress Controller

Amazon VPC CNI plugin v1.3, 1.4, 1.5

#### **Tooling**

AWS App Mesh controller
Managed Cluster Version Updates
CloudWatch Container Insights
eksctl as the official EKS CLI
AWS Node Termination Handler
Mixed instance policy support and GPU-provider for Cluster Autoscaler

#### **Machine Learning**

Deep Learning Benchmark Utility AWS in official Kubeflow documentation Support for P3dn and G4dn instances Escalator autoscaler one-click capacity

**Storage & Networking** 

All since re:Invent 2018

### AWS IAM Roles for Service Accounts

#### Secure

IAM policy restrictions can restrict roles to Service Accounts or Namespaces

Enables isolated AWS permissions per Service Account

Credentials are automatically rotated

The cluster's signing key is automatically rotated

### **Easy Integration**

Annotate the Service Account

Built into the default credential chains in the AWS SDKs and CLI

### Auditable

Service Account names are logged in AWS CloudTrail

### AWS IAM Roles for Service Accounts



# Security

Reliability



### Investments in security and reliability

- Cellular Architecture
- Version qualification and release
- Security Patching
- Operations tooling

# EKS Enhancements: Things you're gonna love





### AWS Fargate for Amazon EKS



Fargate is a serverless compute platform for containers on AWS



The differences between using EKS and ECS with Fargate are driven by the orchestration system.

### AWS Fargate for Amazon EKS







### **Bring existing pods**

You don't need to change your existing pods.

Fargate works with existing workflows and services that run on Kubernetes.

### **Production Ready**

Launch pods quickly. Easily run pods across multiple AZs for high availability.

Each pod runs in an isolated VM compute environment.

### **Right-Sized and Integrated**

Only pay for the resources you need to run your pods.

Includes native AWS integrations for networking and security.

### EKS Cluster Architecture



EKS Managed Control Plane





EKS Data Plane

### EKS Fargate profile template

```
"status": "ACTIVE",
"subnets": [
                                                                                                   Subnets to launch the pods
   "subnet-0de8355bc4ds45af3",
   "subnet-0det555b36hdy67d3"
                                                                                                   in
"clusterName": "FargateCluster",
"fargateProfileArn": "arn:aws:eks:us-west-2:123456789:fargateprofile/FargateCluster/FargateProfileCatchAll/4cg3303c-539e-a202-5b75-bb1dd3dd0590",
"selectors": [
                                                                                                   Selection criteria into
       "namespace": "default"
                                                                                                   Fargate
    },
       "namespace": "kube-system"
       "labels": {
           "foo": "bar"
       "namespace": "mynamespace"
"fargateProfileName": "FargateProfileCatchAll",
"podExecutionRole": "arn:aws:iam::123456789:role/FargateCluster-SERVICE-ROLE-AWSServiceRoleFargateCluster-1PLJY3220ID6I",
"createdAt": 1573039680.227
                                     IAM Role to be associated to the kubelet
```

### EKS Fargate flow at 33,000 feet



### EKS Fargate Architecture







EKS Data Plane

### EKS Fargate Data Plane



#### Recap: EKS Fargate UX changes

# Things you no longer need to do

- Manage Kubernetes worker nodes
- Pay for unused capacity
- Use K8s Cluster

  Autoscaler (CA)

# Things you get out of the box

- VM isolation at pod level
- Pod level billing
- Easy chargeback in multi tenant scenarios

# Things you can't do

(for now)

- Deploy
  Daemonsets
- Use service type
  LoadBalancer (CLB/NLB)
- Running privileged containers
- Run stateful workloads

#### EKS Fargate Availability

#### Available today for all <u>new</u> 1.14 clusters

- Create a new cluster
- Update a 1.13 cluster to 1.14

#### Use EKS with Fargate in

- Virginia (us-east-1)
- Ohio (us-east-2)
- Dublin (eu-west-1)
- Tokyo (ap-northeast-1)

# EKS Enhancements: What's Next?





## Our vision for EKS











Globally available

Easy to use

Production ready

Cost-effective

Highperformance



# Snap Service Mesh on EKS





# Snap service mesh ... Infrastructure layer providing foundation for SOA enables core capabilities by default at the platform level

- Security by default
- Standardized traffic management and routing policies:
  - Service discovery—Just call <service>.snap
  - Zonal affinity and regional proximity to favor closest endpoints
  - Traffic splitting, mirroring, and failover
  - Automatic resilience and circuit breakers
- Observability by default

# Standardizing service infrastructure across clouds



Amazon EKS: Compute, application, and sidecar management



Envoy Data plane operations:

Load-balancing, traffic routing, observability, and security controls



Switchboard:

In-house control plane for managing services, routes, and security policies



Spinnaker: Deployment orchestration and safe rollouts



## Architectural design choices for AWS

#### Accounts

- One shared account for compute and network
- Service data is isolated into separate accounts
- Compute: Amazon EKS
  - One EKS cluster per group of correlated services
  - ~300 EKS clusters in 4 mesh regions (as large as ~3K nodes)
- Network: > 4M QPS in AWS Regions
  - One VPC/Region, with subnets in 3 AZs
  - Security perimeter at the edge
  - Network-level protection: Security groups, network ACLs, resource access policy



## Tooling for common service requirements

### Resource management:

- Automate Amazon EKS cluster provisioning, and version upgrades
- Standardize cluster add-ons: Cluster Auto Scaler, CoreDNS, and CNI
- Per-service AWS Identity and Access Management (IAM) roles and granular access controls



# Tooling for common service requirements

### Standardize service deployments

- Injection and upgrades of common sidecar containers
- Default best practices through Spinnaker pipelines:
  - Uniform pod distribution per zone
  - Safe rollouts with integrated health checks



# Looking ahead—Amazon EKS features to consume

- IAM roles for service accounts:
  - Least privilege: Scope permissions at the pod level instead of worker nodes
  - Access isolation between pods
- Managed worker node groups:
  - Node draining and graceful node shutdown
  - Integrated cluster Auto-Scaling (with multi-AZ node group)
  - Simplified cluster upgrade experience
- Managed cluster add-ons
  - Metrics server
  - CoreDNS auto-scaling

# More Information at re:Invent





## Related breakouts

- CON203 Getting started with Kubernetes on AWS
- CON205 Deploying applications using Amazon EKS
- CON206 Management and operations for Amazon EKS
- CON212 Running Kubernetes at Amazon scale using Amazon EKS
- CON306 Building ML infrastructure on Amazon EKS with Kubeflow
- CON310 Achieving zero-downtime deployments with Amazon EKS
- CON316 Adopting CSI for stateful workloads on Amazon EKS
- CON317 Securing your Amazon EKS cluster
- CON327 Oversubscription at scale: Running tons of containers with Kubernetes
- CON334 Running high-security workloads on Amazon EKS
- CON411 Advanced network resource management on Amazon EKS
- CON413 Move your machine learning workloads to Amazon EKS



# Thank you!

#### **Eswar Bala**

Sr. Software Development Manager Amazon Web Services Twitter: @bala\_eswar

#### **Richard Sostheim**

Principal Engineer Amazon Web Services

#### **Ahmed El Baz**

Software Engineer Snap Inc







# Please complete the session survey in the mobile app.



