	Ans. to the Ques, No- 7										
	, 1	1	Âd	B'	1e1	AB	1+BA	1 BC	1 of CI	37 F	
Α	00	C	A	1	0	0	0	O	0	0	
0	0	0		1	1	0	6	0	1	1	
0	0	0	1	0	0	0	1	0	0	1	
0	1	1	1.	0	1	0	1	1	0	1	
1	0	0	0	1	0	1	0	0	0	1	
1	0	1	0	1	1	1	0	0	1 1	1	
1	1	0	0	0	0	Ó	0	0	0	0	
1	1	1 ,	0	0.	1	0	0				

from the above perceptron network we can see that it has 2 layers we can see that it is a multilayer so, we can see that it is a multilayer perceptron perceptron network. We know multilayer perceptron classifies non linear boolean function. Therefore, classifies non linear boolean function. Therefore, this function is non to linearly seperable.

Ans, to the Ques No. -2 8.61 Sp, Sf 4-layer: Sfi = e+ \$\psi(\vec{v}_f)\$ Sm = \frac{38E}{2\sqr} \frac{3\sqr}{2\sqr} \frac{3\sqr}{3\sqr} \f DE = Det Dyff Dyff e= 2 & ef

$$\frac{\partial f}{\partial x} = \frac{\partial (d - yf)}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial (d - yf)}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial (d - yf)}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial (f - yf)}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = (-1)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{$$

$$\delta m = \phi''(V_m) \cdot \underbrace{\leq}_{e_f} \phi''(V_f) \cdot W_{fh} \phi''(V_h) W_{hp}$$

$$\delta m = \phi''(V_m) \cdot \underbrace{\leq}_{e_f} e_f \phi''(V_f) \cdot W_{fh} \phi''(V_h) W_{pm}$$