PHY2004: Electromagnetism and Optics

Part 2: Optics

Dr. Fumin Huang

f.huang@qub.ac.uk

Course Contents

- > Polarisation of light
 - Types of polarisation
 - Linear and circular polarisation conditions
 - Stokes polarisation parameters Jones Vector
 - Faraday effect
- > Light reflection and refraction at a planar interface
 - Fresnel formulae
 - Brewster angle, critical angle
 - Total internal reflection
 - Phase changes during reflection
- > Principles of lasers
 - Einstein coefficients
 - Population inversion
 - Three energy level and four energy level laser systems

Suggested Textbooks

- 1. Polarized light, 3rd Edition, Dennis H Goldstein.
- 2. Principles of Optics, Max Born & Emil Wolf
- 3. Lasers: theory and applications, K. Thyagarajan and A.K. Ghatak

Please submit your attendance at:

https://go.qub.ac.uk/mpattendance

Or Scan the QR code below with a mobile device by:
Open the camera app on your device
Point the camera towards the QR code
Login with your QUB credentials

PHY2004: Electromagnetism and Optics

Part 2: Optics

Lecture 1
Polarisation of Light

Electromagnetic Spectrum

Light is an electromagnetic wave ($\lambda \sim 400\text{-}700 \text{ nm}$).

Energy
$$E = hv = \frac{h}{T} = \frac{hc}{\lambda}$$

What is Polarisation?

<u>Polarisation</u>: a fundamental property of EM field, specifying the oscillating orientation of the **E-field** in space and how it evolves with time.

Why Need to Know Polarisation?

Liquid Crystal Display (LCD) PRINCIPLE

Types of Polarisation

Based on the trajectory of the tips of E-field, polarisation can be classified as:

- 1. Linear polarisation
- 2. Circular polarisation
 - Right-handed circular polarisation
 - Left-handed circular polarisation
- 3. Elliptic polarisation

<u>Linear polarisation</u>: E-field oscillates along a *fixed* orientation, which remains unchanged in *time* (could vary in space).

Circular Polarisation

Circular polarisation:

- The *orientation* of E-field rotates circularly with *time*.
- The *magnitude* of the field remains constant.

Right/Left-handed circular light: E-vector rotates clockwise/anticlockwise with time (viewed by the source).

From the Receiver's view, the tip of the E-vector of right-handed circular polarisation forms a shape like a right-handed screw.

Elliptic Polarisation

Elliptic polarisation: in the general case, the tip of E-field moves along an ellipse.

Polarisation Ellipse

$$\mathbf{E}(\mathbf{t}) = E_{x}(t)\hat{\mathbf{x}} + E_{y}(t)\hat{\mathbf{y}}$$

$$E_{x}(t) = E_{0x} \cos(\omega t - kz + \delta_{x})$$

$$E_{y}(t) = E_{0y} \cos(\omega t - kz + \delta_{y})$$
magnitude phase

Ellipse Equation

$$\frac{E_{x}^{2}}{E_{0x}^{2}} + \frac{E_{y}^{2}}{E_{0y}^{2}} - 2\frac{E_{x}}{E_{0x}}\frac{E_{y}}{E_{0y}}\cos\delta = \sin^{2}(\delta)$$

$$\delta = \delta_y - \delta_x$$
 Phase difference

Linear Polarisation

$$\frac{E_x^2}{E_{0x}^2} + \frac{E_y^2}{E_{0y}^2} - 2\frac{E_x}{E_{0x}}\frac{E_y}{E_{0y}}\cos\delta = \sin^2(\delta) \quad \underline{\text{What are the conditions of linear polarisation?}}$$

- 1. Ordinary cases: $E_{0y} = 0$, $\mathbf{E}(\mathbf{t}) = E_{x}(t)\hat{\mathbf{y}}$, Linear horizontal polarisation or $E_{0x} = 0$, $\mathbf{E}(\mathbf{t}) = E_{y}(t)\hat{\mathbf{y}}$, Linear vertical polarisation
- 2. $\frac{E_y}{E_x} = \text{const.}$ This can be achieved when $\delta = 0$ or π

Circular Polarisation

Conditions for circular polarisation:

$$\delta = \pm \frac{\pi}{2} \quad \text{AND} \quad E_{0x} = E_{0y} = E_0$$

$$\frac{E_x^2}{E_0^2} + \frac{E_y^2}{E_0^2} = 1 \qquad \underline{\text{circle}}$$

(1) Case:
$$\delta = \delta_y - \delta_x = +\frac{\pi}{2}$$

$$E_{y}(t) = E_{0} \cos \left(\omega t - kz + \delta_{x} + \frac{\pi}{2}\right)$$

$$= E_0 \sin \left[\frac{\pi}{2} - \left(\omega t - kz + \delta_x + \frac{\pi}{2} \right) \right]$$
$$= E_0 \sin(kz - \delta_x - \omega t)$$

$$E_{x}(t) = E_{0} \cos(\omega t - kz + \delta_{x})$$

= $E_{0} \cos(kz - \delta_{x} - \omega t)$

$$\theta(t) = kz - \delta_x - \omega t$$

$$E_{x}(t) = E_{0} \cos \theta(t)$$

$$E_{v}(t) = E_{0} \sin \theta(t)$$

 $\theta(t)$ decreases with time, *clockwise rotation*: **right-handed** circular polarisation

(2)Left – handed circular:
$$\delta = \delta_y - \delta_x = -\frac{\pi}{2}$$

Polarisation Ellipse

$$\frac{E_x^2}{E_{0x}^2} + \frac{E_y^2}{E_{0y}^2} - 2\frac{E_x}{E_{0x}} \frac{E_y}{E_{0y}} \cos \delta = \sin^2(\delta)$$

The ellipse can be described by the orientation Ψ and ellipticity χ angles.

$$0 \le \Psi < \pi, -\frac{\pi}{4} \le \chi \le \frac{\pi}{4}$$

$$tan(2\Psi) = tan(2\alpha) \cos \delta$$

$$\sin(2\chi) = \sin(2\alpha)\sin\delta$$

$$a^2 + b^2 = E_{0x}^2 + E_{0y}^2$$

$$\alpha = \tan^{-1} \left(\frac{E_{0y}}{E_{0x}} \right)$$

Ellipticity angle χ : $\tan \chi = \pm \frac{b}{a}$

(1)
$$\alpha = 0 (E_{0y} = 0), \frac{\pi}{2} (E_{0x} = 0)$$

or

(2)
$$\delta = 0$$
, π

• Circle:
$$\chi = \pm \frac{\pi}{4}$$

(1)
$$\alpha = \frac{\pi}{4} (E_{0x} = E_{0y})$$
 and

(2)
$$\delta = \pm \frac{\pi}{2}$$

Polarisation Ellipse

- Linear polarisation
 - 1) $E_{0x} = 0$ or $E_{0y} = 0$, or
 - 2) $\delta = 0$ or π
- Circular polarisation
 - 1) $E_{0x} = E_{0y}$, and
 - 2) $\delta = \frac{\pi}{2}$ (right), or $\delta = -\frac{\pi}{2}$ (left),
- Other conditions: elliptic polarisation

$$\delta = 0 \qquad \delta = \frac{\pi}{4} \qquad \delta = \frac{\pi}{2} \qquad \delta = \frac{3\pi}{4} \qquad \delta = \pi \ \delta = \frac{5\pi}{4} \ \delta = \frac{3\pi}{2} \qquad \delta = \frac{7\pi}{4} \ \delta = 2\pi$$

Examples of Questions

1. $E_x(t) = A\cos(kz - \omega t)$, $E_y(t) = A\sin(\omega t - kz + \frac{\pi}{4} + \delta)$. Describe the conditions of δ ($0 \le \delta < 2\pi$) for linear, right- and left-circular polarisation, respectively.

2. Determine the polarisation states of the following cases (A > 0)

(a)
$$E_x(t) = A\cos(\omega t - kz)$$
, $E_y(t) = 2A\cos(\omega t - kz)$

(b)
$$E_x(t) = A\sin(\omega t - kz)$$
, $E_y(t) = A\sin(\omega t - kz + \frac{\pi}{2})$

(c)
$$E_x(t) = A\cos(\omega t - kz)$$
, $E_y(t) = A\sin(\omega t - kz)$

(d)
$$E_x(t) = A \sin(\omega t - kz)$$
, $E_y(t) = A \cos(\omega t - kz)$

(e)
$$E_x(t) = A\cos(\omega t - kz)$$
, $E_y(t) = 2A\sin(\omega t - kz)$

Stokes Polarisation Parameters

How to measure and characterize the polarisation state of light?

In 1852, Lord George Stokes discovered that any polarisation state of light can be completely described by four *measurable* real quantities (S_0 , S_1 , S_2 , S_3), which are called Stokes polarisation parameters.

$$\begin{split} S_0 &= \langle E_x(t) E_x^*(t) \rangle + \left\langle E_y(t) E_y^*(t) \right\rangle = E_{0x}^2 + E_{0y}^2 \\ S_1 &= \langle E_x(t) E_x^*(t) \rangle - \left\langle E_y(t) E_y^*(t) \right\rangle = E_{0x}^2 - E_{0y}^2 \\ S_2 &= \left\langle E_x(t) E_y^*(t) \right\rangle + \left\langle E_y(t) E_x^*(t) \right\rangle = 2 E_{0x} E_{0y} \cos \delta \\ S_3 &= i \left(\left\langle E_x(t) E_y^*(t) \right\rangle - \left\langle E_y(t) E_x^*(t) \right\rangle \right) = 2 E_{0x} E_{0y} \sin \delta \\ \langle \quad \rangle \text{ means average, } \left\langle E_i(t) E_j^*(t) \right\rangle = \frac{1}{T} \int_0^T E_i(t) E_j^*(t) dt \end{split}$$

T: Period of EM field; *: complex conjugate

Only three of the four parameters are independent 18

$$E_{x}(t) = E_{0x}e^{i(\omega t - kz + \delta_{x})}, E_{y}(t) = E_{0y}e^{i(\omega t - kz + \delta_{y})}$$

$$\langle E_{\mathbf{x}}(t)E_{\mathbf{x}}^{*}(t)\rangle = E_{0\mathbf{x}}^{2}, \quad \langle E_{\mathbf{y}}(t)E_{\mathbf{y}}^{*}(t)\rangle = E_{0\mathbf{y}}^{2}$$

$$S_{0} = \langle E_{x}(t)E_{x}^{*}(t)\rangle + \langle E_{y}(t)E_{y}^{*}(t)\rangle = E_{0x}^{2} + E_{0y}^{2}, S_{1} = \langle E_{x}(t)E_{x}^{*}(t)\rangle - \langle E_{y}(t)E_{y}^{*}(t)\rangle = E_{0x}^{2} - E_{0y}^{2}$$

$$S_2 = \langle E_x(t)E_y^*(t) \rangle + \langle E_y(t)E_x^*(t) \rangle = 2E_{0x}E_{0y}\cos\delta$$

$$\left\langle E_{\mathbf{x}}(t)E_{\mathbf{y}}^{*}(t)\right\rangle = \frac{1}{T} \int_{0}^{T} E_{0\mathbf{x}} e^{i(\omega t - k\mathbf{z} + \delta_{\mathbf{x}})} E_{0\mathbf{y}} e^{-i(\omega t - k\mathbf{z} + \delta_{\mathbf{y}})} dt$$

$$= \frac{E_{0x}E_{0y}}{T} \int_{0}^{T} e^{-i\delta} dt = E_{0x}E_{0y}e^{-i\delta}$$

$$\langle E_{y}(t)E_{x}^{*}(t)\rangle = E_{0x}E_{0y}e^{i\delta}$$

$$S_2 = \langle E_x(t)E_y^*(t) \rangle + \langle E_y(t)E_x^*(t) \rangle = E_{0x}E_{0y}(e^{-i\delta} + e^{i\delta}) = 2E_{0x}E_{0y}\cos\delta$$

$$S_3 = i(\langle E_x(t)E_y^*(t) \rangle - \langle E_y(t)E_x^*(t) \rangle) = 2E_{0x}E_{0y}\sin\delta$$

Stokes Polarisation Parameters

1. Linear horizontal polarisation (LHP): $E_{0y} = 0$

$$S_0 = S_1 = E_{0x}^2, S_2 = S_3 = 0$$

$$S_0 = S_1 = E_{0y}^2, S_2 = S_3 = 0$$

- 5. Right-handed circular polarisation (RCP): $E_{0x} = E_{0y} = E_0$, $\delta = \frac{\pi}{2}$ $S_0 = 2E_0^2$, $S_1 = 0$, $S_2 = 0$, $S_3 = 2E_0^2$
- 6. Left-handed circular polarisation (LCP): $E_{0x} = E_{0y} = E_0$, $\delta = -\frac{\pi}{2}$ $S_0 = 2E_0^2$, $S_1 = 0$, $S_2 = 0$, $S_3 = -2E_0^2$

Unpolarised Light

$$\begin{split} E_x(t) &= E_0 e^{i[\omega t - kz + \delta_x(t)]} \\ E_y(t) &= E_0 e^{i[\omega t - kz + \delta_y(t)]} \end{split} \quad \text{Random phases} \\ \left\langle E_x(t) E_y^*(t) \right\rangle &= \frac{1}{T} \int_0^T E_0 e^{i(\omega t - kz + \delta_x(t))} E_0 e^{-i(\omega t - kz + \delta_y(t))} dt \\ &= \frac{E_0^2}{T} \int_0^T e^{-i\delta(t)} dt \quad \delta(t) = \delta_y(t) - \delta_x(t) \\ &= \text{random function of } t \end{split} \\ \left\langle E_x(t) E_y^*(t) \right\rangle &= 0 \quad \text{Similarly, } \left\langle E_y(t) E_x^*(t) \right\rangle = 0 \\ &= S_2 = S_3 = 0 \end{split} \\ \text{As} \quad \left\langle E_x(t) E_x^*(t) \right\rangle &= \left\langle E_y(t) E_y^*(t) \right\rangle = E_0^2 \\ \text{So } S_1 &= \left\langle E_x(t) E_x^*(t) \right\rangle - \left\langle E_y(t) E_y^*(t) \right\rangle = E_{0x}^2 - E_{0y}^2 = 0 \end{split}$$

Degree of Polarisation

In general:
$$S_0^2 \ge S_1^2 + S_2^2 + S_3^2$$

Intensity of polarized light:
$$I_p = \sqrt{S_1^2 + S_2^2 + S_3^2}$$

Intensity of unpolarized light:
$$I_u = S_0 - \sqrt{S_1^2 + S_2^2 + S_3^2}$$

$$I_{tot} = S_0 = I_p + I_u$$

Degree of polarisation:
$$P = \frac{I_p}{I_{tot}} = \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0} \quad (0 \le P \le 1)$$

P = 1 Completely polarised light

P = 0 Unpolarised light

0 < P < 1 Partially polarised light

Stokes Polarisation Parameters

$$\begin{split} S_0 &= \langle E_x(t) E_x^*(t) \rangle + \left\langle E_y(t) E_y^*(t) \right\rangle = E_{0x}^2 + E_{0y}^2 \\ S_1 &= \langle E_x(t) E_x^*(t) \rangle - \left\langle E_y(t) E_y^*(t) \right\rangle = E_{0x}^2 - E_{0y}^2 \\ S_2 &= \left\langle E_x(t) E_y^*(t) \right\rangle + \left\langle E_y(t) E_x^*(t) \right\rangle = 2 E_{0x} E_{0y} \cos \delta \\ S_3 &= i \Big(\left\langle E_x(t) E_y^*(t) \right\rangle - \left\langle E_y(t) E_x^*(t) \right\rangle \Big) = 2 E_{0x} E_{0y} \sin \delta \end{split}$$
 Intensity of polarized light:
$$I_p = \sqrt{S_1^2 + S_2^2 + S_3^2}$$
 Intensity of unpolarized light:
$$I_u = S_0 - \sqrt{S_1^2 + S_2^2 + S_3^2}$$

Degree of polarisation:
$$P = \frac{I_p}{I_{tot}} = \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0}$$

Measurement of Stokes Parameters

The retardation plate (a waveplate) provides a phase difference of ϕ for E-field vectors parallel and perpendicular to its *fast axis*. The intensity of transmitted beam after the polarizer is:

$$I(\alpha, \phi) = \frac{1}{2} [S_0 + S_1 \cos 2\alpha + (S_2 \cos \phi + S_3 \sin \phi) \sin 2\alpha]$$

Measurement of Stokes Parameters

The E-field component measured by the detector is:

$$E_D(t) = E'_x \cos \alpha + E'_y \sin \alpha = E_x e^{i\phi} \cos \alpha + E_y \sin \alpha$$

Measured intensity

$$\begin{split} &I_{D}(\alpha,\varphi) = \langle E_{D}(t)E_{D}^{*}(t)\rangle \\ &= \frac{1}{2} \begin{bmatrix} \langle E_{x}(t)E_{x}^{*}(t) + E_{y}(t)E_{y}^{*}(t)\rangle + \langle E_{x}(t)E_{x}^{*}(t) - E_{y}(t)E_{y}^{*}(t)\rangle \cos 2\alpha \\ + \langle E_{x}(t)E_{y}^{*}(t) + E_{y}(t)E_{x}^{*}(t)\cos \varphi \sin 2\alpha + i\langle E_{x}(t)E_{y}^{*}(t) - E_{y}(t)E_{x}^{*}(t)\sin \varphi \sin 2\alpha \end{bmatrix} \\ &= \frac{1}{2} (S_{0} + S_{1}\cos 2\alpha + S_{2}\cos \varphi \sin 2\alpha + S_{3}\sin \varphi \sin 2\alpha) \\ &I_{D}(0^{\circ}, 0^{\circ}) = \frac{1}{2} (S_{0} + S_{1}) \qquad S_{0} = I_{D}(0^{\circ}, 0^{\circ}) + I_{D}(90^{\circ}, 0^{\circ}) \\ &I_{D}(45^{\circ}, 0^{\circ}) = \frac{1}{2} (S_{0} + S_{2}) \qquad S_{1} = I_{D}(0^{\circ}, 0^{\circ}) - I_{D}(90^{\circ}, 0^{\circ}) \end{split}$$

$$I_D(90^\circ, 0^\circ) = \frac{1}{2}(S_0 - S_1)$$

$$S_2 = 2I_D(45^{\circ}, 0^{\circ}) - I_D(0^{\circ}, 0^{\circ}) - I_D(90^{\circ}, 0^{\circ})$$

$$I_D(45^\circ, 90^\circ) = \frac{1}{2}(S_0 + S_3)$$

$$S_3 = 2I_D(45^\circ, 90^\circ) - I_D(0^\circ, 0^\circ) - I_D(90^\circ, 0^\circ)$$

Determine the polarisation states from Stokes parameters

1. Intensity of unpolarized light:
$$I_u = S_0 - \sqrt{S_1^2 + S_2^2 + S_3^2}$$

Intensity of polarized light: $I_p = \sqrt{S_1^2 + S_2^2 + S_3^2}$
Degree of polarisation: $P = \frac{I_p}{I_{tot}} = \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0}$

2. For the completely polarised component

$$\begin{split} I_p &= \sqrt{S_1^2 + S_2^2 + S_3^2} = E_{0x}^2 + E_{0y}^2 \\ S_1 &= E_{0x}^2 - E_{0y}^2 \\ S_2 &= 2E_{0x}E_{0y}\cos\delta \\ S_3 &= 2E_{0x}E_{0y}\sin\delta \end{split}$$

 E_{0x} , E_{0y} and δ can be completely determined, hence the polarisation ellipse.

$$E_{0x} = \sqrt{\frac{\sqrt{S_1^2 + S_2^2 + S_3^2} + S_1}{2}}$$

$$E_{0y} = \sqrt{\frac{\sqrt{S_1^2 + S_2^2 + S_3^2} - S_1}{2}}$$

$$\tan \delta = \frac{S_3}{S_2}$$

Waveplate

Polarisation Transformation

Linear polarization ⇔ Circular polarisation

$$\delta = 0, \pi \iff \delta = \pm \frac{\pi}{2} \text{ And } E_{0x} = E_{0y}$$

Quarter wave plate introduces $\frac{\pi}{2}$ phase change between E_y and E_x

The Faraday Effect

The **Faraday effect** or **Faraday rotation** is a magneto-optical phenomenon discovered by Faraday in 1845.

A linearly-polarised plane wave will rotate its plane-of-polarisation after passing through a piece of material, when a magnetic field along the light propagation direction is applied.

The rotation is **linearly proportional** to the magnetic field and the thickness of the material.

Rotated polarisation angle

 $\theta = VBd$

V: Verdet constant

Magneto-Optic Effect

A linear polarisation can be decomposed into equal proportion of right- and left-circular polarisation

Assuming the forces pointing towards the circle centre is positive

Forces experienced by electrons

(1) E-field force
$$F_e = -e(-E) = eE$$

(2) Restoring force
$$F_R = kr = m\omega_0^2 r$$

(3) Lorentz force
$$\mathbf{F}_{\mathbf{B}} = -\mathbf{e}\mathbf{v} \times \mathbf{B}$$

$$F_B^{R,L} = \pm evB = \pm eB\omega r$$

$$eE_{R,L} \pm e\omega Br + m\omega_0^2 r = m\omega^2 r$$

$$r_{R,L} = \frac{eE_{R,L}/m}{\omega^2 - \omega_0^2 \mp e\omega B/m}$$

With applied magnetic field, electrons move on circles of different radius for right and left circular polarisations

Circular Birefringence

Total induced dipole moment per unit volume

Number of electrons per unit volume

$$P = Ner = \frac{Ne^2 E_{R,L}/m}{\omega^2 - \omega_0^2 \mp e\omega B/m}$$

Relative permittivity

$$\epsilon_{r}^{R,L} = 1 + \frac{P}{\epsilon_{0} E_{R,L}} = 1 + \frac{\frac{Ne^{2}}{m\epsilon_{0}}}{\omega^{2} - \omega_{0}^{2} \mp e\omega B/m}$$

$$=1+\frac{\omega_{\rm p}^2}{\omega^2-\omega_0^2\mp{\rm e}\omega{\rm B/m}}$$

$$\omega_p = \sqrt{\frac{Ne^2}{m\epsilon_0}}$$
 Plasma frequency

Refractive index

$$n = \sqrt{\epsilon_r}$$

$$n_{R} = \sqrt{1 + \frac{\omega_{p}^{2}}{\omega^{2} - \omega_{0}^{2} - e\omega B/m}}$$

$$n_{L} = \sqrt{1 + \frac{\omega_{p}^{2}}{\omega^{2} - \omega_{0}^{2} + e\omega B/m}}$$

$$n_R \neq n_L$$

The refractive indices of right and left-circular polarisation are different, which is called **circular birefringence**.

Polarisation Rotation

$$\begin{split} \mathbf{E}_{\mathbf{R}}'(\mathbf{t}) &= \frac{1}{2} E_0 \left\{ \cos(\omega t - k_R d) \, \hat{\mathbf{x}} + \cos\left(\omega t - k_R d + \frac{\pi}{2}\right) \hat{\mathbf{y}} \right\} \\ &= \frac{1}{2} E_0 \left\{ \cos(\omega t - n_R k_0 d) \, \hat{\mathbf{x}} + \cos\left(\omega t - n_R k_0 d + \frac{\pi}{2}\right) \hat{\mathbf{y}} \right\} \\ \mathbf{E}_{\mathbf{L}}'(\mathbf{t}) &= \frac{1}{2} E_0 \left\{ \cos(\omega t - n_L k_0 d) \, \hat{\mathbf{x}} + \cos\left(\omega t - n_L k_0 d - \frac{\pi}{2}\right) \hat{\mathbf{y}} \right\} \end{split}$$

$$\begin{aligned} \mathbf{E}'(\mathbf{t}) &= \mathbf{E}_{R}'(\mathbf{t}) + \mathbf{E}_{L}'(\mathbf{t}) \\ &= E_{0} \cos \left(\omega t - \frac{k_{R} + k_{L}}{2} d \right) \{ \cos \left(\frac{n_{R} - n_{L}}{2} k_{0} d \right) \hat{\mathbf{x}} \\ &+ \sin \left(\frac{n_{R} - n_{L}}{2} k_{0} d \right) \hat{\mathbf{y}} \} \end{aligned}$$

$$\theta = \frac{n_{R} - n_{L}}{2} k_{0} d = VBd$$

$$V = \frac{n_{R} - n_{L}}{2B} k_{0} = \frac{\pi (n_{R} - n_{L})}{B\lambda}$$

Verdet Constant

$$V = \frac{n_R - n_L}{2B} k_0$$

$$n_{R,L}(\omega) = \sqrt{1 + \frac{\omega_p^2}{\omega^2 - \omega_0^2 \mp e\omega B/m}}$$

$$\approx \sqrt{1 + \frac{\omega_p^2}{\left(\omega \mp \frac{eB}{2m}\right)^2 - \omega_0^2}} = n(\omega \mp \Delta\omega)$$

$$\Delta\omega = \frac{eB}{2m}$$
 $n(\omega) = \sqrt{1 + \frac{\omega_p^2}{\omega^2 - \omega_0^2}}$

$$n(\omega \mp \Delta\omega) \approx n(\omega) \mp \Delta\omega \frac{dn}{d\omega}$$

$$n_R - n_L = -2\Delta\omega \frac{dn}{d\omega} = -\frac{eB}{m}\frac{dn}{d\omega}$$

$$V = \frac{\pi(n_R - n_L)}{B\lambda} = -\frac{e\pi}{m\lambda} \frac{dn}{d\omega}$$

$$\omega = \frac{2\pi c}{\lambda}$$

$$\frac{\mathrm{dn}}{\mathrm{d}\omega} = \frac{\frac{\mathrm{dn}}{\mathrm{d}\lambda}}{\frac{\mathrm{d}\omega}{\mathrm{d}\lambda}} = -\frac{\lambda^2}{2\pi c} \frac{\mathrm{dn}}{\mathrm{d}\lambda}$$

$$V = \frac{e\lambda}{2mc} \frac{dn}{d\lambda}$$

Optical Isolator

Optical isolator is an optical element which allows light transmit, but blocks the back-reflection light. It is used to prevent hazardous back-reflection beam.

Mirror back-reflection beam.

B

Polarizer B

- Two polarisers are orientated 45° to each other. A magnetic field is applied to rotate the polarisation of linearly-polarized light by 45° so that light can completely transmit through the second polariser.
- When the reflected light passes through the Faraday rotator, its polarisation is rotated by another 45° so that it is 90° to the axis of the first polariser, hence is blocked.