Homework 4

Mark Petersen

Sections 6 and 7

6. DIRECT PROOFS

Exercise 6.1. Let $x \in \mathbb{R}$. Prove that if $x \neq 3$, then $x^2 - 2x + 3 \neq 0$. (Would this result be true if we took $x \in \mathbb{C}$).

Proof: We assume that $x \neq 3$. Let $x = 3 + \delta$ where $\delta \in \mathbb{R} - \{0\}$. Substituting x into the polynomial yields

$$x^{2} - 2x + 3 \neq 0$$
$$(3 + \delta)^{2} - 2(3 + \delta) + 3 \neq 0$$
$$9 + \delta^{2} + 6\delta - 2\delta - 6 + 3 \neq 0$$
$$\delta^{2} + 4\delta + 6 \neq 0.$$

The roots of the polynomial $\delta^2 + 4\delta + 6$ are complex, which means $\forall x \in \mathbb{R}, x^2 - 2x + 3 \neq 0$, thus the statement is trivially true.

Exercise 6.2. Let $n \in \mathbb{N}$. Prove that if 2 < n < 3, then 7n + 3 is odd.

Proof: We assume that 2 < n < 3 where $n \in \mathbb{N}$. This premise is always false since there is no natural number in the open interval (2,3), thus the statement is vacuously true.

Exercise 6.3. Prove that if x is an odd integer, then x^2 is odd.

Proof: We assume that x is an odd integer. This implies that $\exists k \in \mathbb{Z}, x = 2k+1$, which implies

$$x^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

$$= 2y + 1,$$

where $y \in \mathbb{Z}$. Thus x^2 is odd.

Exercise 6.4. Prove that if x is an even integer, then 7x - 5 is odd.

Proof: We assume that x is an even integer. This implies that $\exists k \in \mathbb{Z}, x = 2k$, which implies

$$7x - 5 = 7(2k) - 5$$

$$= 14k - 5$$

$$= 14k - 6 + 1$$

$$= 2(7k - 3) + 1$$

$$= 2y + 1,$$

where $y \in \mathbb{Z}$. Thus 7x - 5 is odd.

Exercise 6.5. Let $a, b, c \in \mathbb{Z}$. Prove that if a and c are odd, then ab+bc is even.

Proof: We assume that a and c are odd. This implies that a=2k+1 and c=2j+1 for some $k,j\in\mathbb{Z}$, which implies

$$ab + bc = (2k + 1) b + b (2j + 1)$$

$$= b (2k + 2j + 2)$$

$$= 2b (k + j + 1)$$

$$= 2u.$$

where $y = b(k + j + 1) \in \mathbb{Z}$. Thus ab + bc is even.

Exercise 6.6. Let $n \in \mathbb{Z}$. Prove that if |n| < 1, then 3n - 2 is an even integer.

Proof: Let |n| < 1 such that $n \in \mathbb{Z}$, then n = 0 since 0 in the only integer in the interval (-1,1). Since n = 0, the term 3n-2 simplifies to -2 which can be written as 2(-1) which is an even integer. Thus 3n-2 is an even integer if the premise holds.

Exercise 6.7. Prove that every odd integer is a difference of two square integers. In other words, if x is odd integer, then $\exists y, z \in \mathbb{Z}, x = y^2 - z^2$.

Proof: By definition of being an odd integer, let x=2k+1 for some $k \in \mathbb{Z}$. Also let y=k+1 and z=k. Substituting this into $x=y^2-z^2$ yields

$$2k + 1 = (k + 1)^{2} - k^{2}$$
$$= k^{2} + 2k + 1 - k^{2}$$
$$= 2k + 1,$$

which shows that every odd integer is a difference of two square integers.

7. Contrapositive

Exercise 7.1. Let $a \in \mathbb{Z}$. Prove that if $a^2 + 3$ is odd, then a is even.

Proof: We work this contrapositively. Assume that a is odd so that $\exists k \in \mathbb{Z}, a = 2k + 1$, and substitute the expression for a into $a^2 + 3$ to get

$$a^{2} + 3 = (2k + 1)^{2} + 3$$
$$= 4k^{2} + 4k + 1 + 3$$
$$= 2(2k^{2} + 2k + 2),$$

which shows that it is even. Thus if $a^2 + 3$ is odd, then a is even.

Exercise 7.2. Prove the following: Let $x, y \in \mathbb{Z}$. If $xy + y^2$ is even, then x is odd or y is even.

Proof: We work this contrapositively by proving when x is even and y is odd, then $xy+y^2$ is odd. The integers x and y can be written as x=2k and y=2j+1 for some $k,j\in\mathbb{Z}$. Substituting in these expressions for x and y into $xy+y^2$ yields

$$xy + y^{2} = 2k (2j + 1) + (2j + 1)^{2}$$

$$= 2kj + 2k + 4j^{2} + 2j + 1$$

$$= 2(kj + k + 2j^{2} + j) + 1$$

$$= 2n + 1,$$

where $n=kj+k+2j^2+j\in\mathbb{Z}$. Thus showing that $xy+y^2$ is odd when x is even and y is odd.

Example 7.3. Let $s \in \mathbb{Z}$. Prove that s is odd if and only if s^3 is odd.

Proof: We begin by showing that if s is odd then s^3 is odd. Since s is odd, then $\exists k \in \mathbb{Z}, s = 2k + 1$. Substituting this into s^3 gives

$$s^{3} = (2k+1)^{3}$$

$$= (4k^{2} + 4k + 1) (2k + 1)$$

$$= 8k^{3} + 4k^{2} + 8k^{2} + 4k + 2k + 1$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{2} + 6k^{2} + 3k) + 1,$$

which is odd. Next we show that if s^3 is odd, then s is odd. We work this contrapositively by proving that if s is even then s^3 is even. The integer s can be written as s=2j for some $j\in\mathbb{Z}$. Substituting this into the equation s^3 yields

$$s^{3} = (2j)^{3}$$
$$= 8j^{3}$$
$$= 2(4j^{3})$$

which shows that s^3 is an even number. Thus if s^3 is odd, then s is odd.

Exercise 7.4. Consider the following situation. A student is asked to prove the statement: "Given $x \in \mathbb{Z}$, if $2 \mid x$, then x is even." The student writes: "Assume, contrapositively, that x is even. Then x = 2k for some $k \in \mathbb{Z}$. Hence $2 \mid x$." Identify what is wrong with this students proof and write a correct proof.

When proving the implication $x \in S$, $P(x) \Longrightarrow Q(x)$ contrapositively, we are proving the implication $x \in S$, $\neg Q(x) \Longrightarrow \neg P(x)$. The student didn't negate the premise P(x) when writing the proof. This proof can easily be proven using a direct or contrapositive approach. We will prove it directly.

Proof: We assume that $2 \mid x$ which by definition means that x = 2k for some $k \in \mathbb{Z}$ which is the definition of an integer being even.

Exercise 7.5. Let $a, b, c, d \in \mathbb{Z}$. Prove that if $a \mid c$ and $b \mid d$ then $ab \mid cd$.

Proof: Since $a \mid c$ and $b \mid d$, c and d can be written as c = ak and d = bj for some $k, j \in \mathbb{Z}$. Using these definitions in the expression $ab \mid cd$ yields

$$ab \mid cd = ab \mid akbj$$

= $ab \mid abkj$.

By definition of $ab \mid abjk$ we get abjk = abm for some $m \in \mathbb{Z}$, which reduces to jk = m. Thus proving that if $a \mid c$ and $b \mid d$ then $ab \mid cd$.

Exercise 7.6. State the contrapositive of the implication in the previous exercise.

Let $a, b, c, d \in \mathbb{Z}$. If $ab \nmid cd$ then $a \nmid c$ or $b \nmid d$.

Exercise 7.7. Let $a \in \mathbb{Z}$. Prove that if $4 \nmid a^2$, then a is odd.

Proof: We prove this contrapositively by showing that if a is even, then $4 \mid a^2$. Assuming that a is even, we can write it as a = 2k for some $k \in \mathbb{Z}$. Substituting this into the expression $4 \mid a^2$ yields

$$4 \mid a^2 = 4 \mid 4k^2$$
.

which shows that 4 is a divisor of $4k^2$; therefore, 4 is a divisor of a^2 .

Exercise 7.8. Prove the following implication two ways (directly and contrapositively): Given $x \in \mathbb{Z}$, then 5x - 1 is even only if x is odd. In other words 5x - 1 is even $\implies x$ is odd.

Proof: (Direct) We assume that 5x-1 is even which means 5x-1=2j for some $j\in\mathbb{Z}$. Let j=5k+2 for some $k\in\mathbb{Z}$, then we get

$$5x - 1 = 2j$$

= $2(5k + 2)$
= $10k + 4$,

and solving for 5x gives us

$$5x = 10k + 5.$$

Since $5 \mid 10k + 5$, we can solve for x and get the solution

$$x = 2k + 1,$$

which shows that x is an odd integer.

Proof: (Contrapositively) We prove this contrapositively by showing that if x is even then 5x-1 is odd. Since x is even, it can be written as x=2k for some $k \in \mathbb{Z}$. Substituting this into the term 5x-1 yields

$$5x - 1 = 5(2k) - 1$$

$$= 10k - 1$$

$$= 2(5k) - 1$$

$$= 2(5k) - 1 - 2 + 2$$

$$= 2(5k - 1) + 1$$

$$= 2y + 1,$$

where $y = 5k - 1 \in \mathbb{Z}$. Therefore, 5x - 1 is odd if x is even.

Remark 7.9. When I say we in the proofs, I really mean I. I am just use to saying we when writing papers.