SREE DATTHA INSTITUTE OF ENGINEERING AND SCIENCE

COMPUTER NETWORKS Lab Manual

Department of Computer Science and Engineering III year B. Tech Semister-1

Course Objectives:

- 1. To understand the working principle of various communication protocols.
- 2. To understand the network simulator environment and visualize a network topology and observe its performance.
- 3. To analyze the traffic flow and the contents of protocol frames

Course Outcomes:

- 1. Implement data link layer farming methods
- 2. Analyze error detection and error correction codes.
- 3. Implement and analyze routing and congestion issues in network design.
- 4. Implement Encoding and Decoding techniques used in presentation layer.
- 5. To be able to work with different network tools.

List of experiments Computer Networks

- 1. Implement Character Stuffing and Bit Stuffing on Given Data.
- 2. Implement CRC Techniques on Given Data.
- 3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-Nmechanism.
- 4. Implement Dijkstra's Algorithm to Compute the Shortest Path through a Graph.
- 5. Take an example subnet of hosts and Obtain broad cast tree for it.
- 6. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 7. Take a 64-bit plain text and encrypt the same using DES algorithm.
- 8. Write a program for congestion control using Leaky bucket algorithm.
- 9. Write a program for frame sorting technique used in buffers.

Text Books

1. WEB TECHNOLOGIES: A Computer Science Perspective, Jeffrey C. Jackson, Pearson Education.

References

- 1. Deitel H.M. and Deitel P.J., "Internet and World Wide Web How to program", Pearson International, 2012, 4th Edition.
- 2. J2EE: The complete Reference By James Keogh, McGraw-Hill
- 3. Bai and Ekedhi, The Web Warrior Guide to Web Programming, Thomson
- 4. Paul Dietel and Harvey Deitel," Java How to Program", Prentice Hall of India, 8th Edition
- 5. Web technologies, Black Book, Dreamtech press.
- 6. Gopalan N.P. and Akilandeswari J., "Web Technology", Prentice Hall of India

Index page

S.No	Computer Networks Experiments	
1.	Implement Character Stuffing and Bit Stuffing on Given Data.	
2.	Implement CRC Techniques on Given Data.	
3.	Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-Nmechanism.	
4.	Implement Dijkstra's Algorithm to Compute the Shortest Path through a Graph.	
5.	Take an example subnet of hosts and Obtain broad cast tree for it.	
6.	Implement distance vector routing algorithm for obtaining routing tables at each node.	
7.	Take a 64-bit plain text and encrypt the same using DES algorithm.	
8.	Write a program for congestion control using Leaky bucket algorithm.	
9.	Write a program for frame sorting technique used in buffers.	

Sree Dattha Institute of Engineering and Science	Department of CSE
COMPUTER NETWORKS EXPERIMENTS	

Aim: To Implement Character Stuffing and Bit Stuffing on Given Data

a) Implement Character Stuffing on Given Data

```
#include<stdio.h>
#include<string.h>
main()
  inti,j,k,l,count=0,n;
  char s[100],cs[50];
  clrscr();
  printf("\n ENTER THE BIT STRING:");
  gets(s);
  n=strlen(s);
  printf("\nTHE STRING IS\n");
  for(i=0;i< n;)
         if(s[i]==s[i+1])
               count=2;
               i++;
               while(s[i]==s[i+1])
                      i++;
                      count++;
               if(count > = 5)
                      printf("$");
                      if(count<10)
                      printf("0");
                      printf("%d%c",count,s[i]);
                      i++;
                }
               els
               e
                      for(j=0;j< count;j++)
                {
                      printf("%c",s[i]);
                      i++;
```

THE STRING IS

123\$10ATYKKK\$05P

b) Implement Bit Stuffing on Given Data

Department of CSE

Sree Dattha Institute of Engineering and Science

```
for(j=i;j<i+5;j++)
{
    t[p++]=a[j];
}
t[p]=\0';
if(strcmp(t,"11111")==0)
    {
    strcat(fs,"111110");
    i=j-1;
}
else
{
    r[0]=a[i];
    r[1]=\0';
    strcat(fs,r);
}
p=0;</pre>
```

```
for(q=i;q<strlen(a);q++)
{
          t[p++]=a[q];
     }
     t[p]='\0';
     strcat(fs,t);
}
strcat(fs,"01111110");
printf("After stuffing: %s",fs);
getch();
}</pre>
```

BIT STUFFING OUTPUT

Enter bit string: 10101111110

After stuffing: 011111101010111111010011111110

Enter bit string: 1011111011110111110

Aim: To Implement CRC Techniques on Given Data

```
#include<stdio.h>
const char * bindiv(const char *,const char *);
const char * binsub(const char *,const char *);
int f=0.11=0;
main()
{
   char *a,p[13]="1100000001011",g[30],g1[30],yy[30]="",td[30],*aa;
  int l=0,i;
  clrscr();
  printf("enter transfered data: ");
  scanf("%s",g);
  printf("enter received data : ");
  scanf("%s",td);
  strcpy(g1,g);
  strcat(g,"000000000000");
  printf("\ns %s ",p,g);
  a=bindiv(g,p);
  if(strlen(a)<12)
         for(i=strlen(a);i<12;i++)
               yy[1++]='0';
         yy[1]='\0';
  strcat(yy,a);
  strcat(g1,yy);
  printf("\ncrc is %s",yy);
  printf("\n_____
  strcat(td,yy);
  printf("\n\n\%s) \%s (",p,td);
  11=0;
  aa=bindiv(td,p);
  strcpy(a,aa);
  printf("\n %s",a);
                           _");
  printf("\n_____
```

```
if(f==1)
  printf("\ndatatransfered correctly");
  else
  printf("\ndatatransfered incorrectly");
  getch();
const char * bindiv(const char *s,const char *d)
  inti,j,k=0,x=13,h,p=0,1;
  char q[15]="",b[30],*w;
  for(i=0;i<strlen(s);i++)
         if((i+x)>strlen(s))
         x=(i+x)-strlen(s)+1;
         for(j=i;j<(i+x);j++)
          {
                b[k++]=s[j];
         b[k]='\0';
         if(11!=0)
         printf("\n \% s",b);
         11=1;
         if(strlen(b)==12)
                break;
         printf("\n %s",d);
         printf("\n____
          w=binsub(b,d);
         k=0; i=j-1;
         for(l=0;l<strlen(w);l++)
          {
                if(w[1]=='1')
                break;
         if(l==strlen(w))
                f=1;
                return(w);
```

```
for(h=l;h<strlen(w);h++)
          {
                q[p++]=w[h];
          q[p]='\setminus 0';
          x=13-strlen(q);
         strcpy(b,"");
         strcat(b,q);
         k=strlen(q); p=0;
  return(b);
const char * binsub(const char *x,const char *y)
  inti,j=0;
   char w[15]="",e[3],f[3],n[3];
  e[0]='1';
  e[1]='\0';
  f[0]='0';
  f[1]='\0';
  for(i=0; i < strlen(x); i++)
   {
         if((x[i]=='1')\&\&(y[i]=='1'))
         strcat(w,f);
         else
         if((x[i]=='0')\&\&(y[i]=='0'))
         strcat(w,f);
         else
         strcat(w,e);
  n[0]='\0';
  n[1]='\0';
  strcat(w,n);
  return(w);
```

CRC-12 OUTPUT:

Enter transferred data: 10101 Enter received data: 10101 1100000001011) 101010000000000000 (1100000001011 _____ 1101000010110 1100000001011 1000011101000 1100000001011 crc is 100011100011 1100000001011) 10101100011100011 (1100000001011 -----1101100001010 1100000001011 1100000001011 1100000001011

----- 000000000000

Data transfered correct

Aim: To Implement CRC - 16 on Given Data

```
#include<stdio.h>
const char * bindiv(const char *,const char *);
const char * binsub(const char *,const char *);
int f=0,11=0;
main()
{
  char *a,p[20]="10001000000100001", g[30],g1[30],yy[30]="",td[30],*aa;
  int l=0,i;
  clrscr();
  printf("enter transfered data : ");
  scanf("%s",g);
  printf("enter received data : ");
  scanf("%s",td);
  strcpy(g1,g);
  strcat(g,"0000000000000000");
  printf("\n%s %s ",p,g);
  a=bindiv(g,p);
  if(strlen(a)<16)
         for(i=strlen(a);i<16;i++)
               yy[1++]='0';
         yy[1]='\0';
      strcat(yy,a);
  strcat(g1,yy);
  printf("\n_____
  printf("\ncrc is %s",yy);
  strcat(td,yy);
  printf("\n\n\%s) \%s (",p,td);
  11=0;
  aa=bindiv(td,p);
  strcpy(a,aa);
  printf("\n \% s",a);
  printf("\n_____");
```

```
if(f==1)
  printf("\ndatatransfered correctly");
  else
  printf("\ndatatransfered incorrectly");
  getch();
const char * bindiv(const char *s,const char *d)
  inti,j,k=0,x=17,h,p=0,1;
  char q[25]="",b[30],*w;
  for(i=0;i<strlen(s);i++)
         if((i+x)>strlen(s))
         x=(i+x)-strlen(s)+1;
         for(j=i;j<(i+x);j++)
          {
                b[k++]=s[i];
         b[k]='\0';
         if(11!=0)
         printf("\n \% s",b);
         11=1;
         if(strlen(b)==16)
          {
                break;
         printf("\n %s",d);
                                   ");
         printf("\n__
         w=binsub(b,d);
         k=0; i=j-1;
         for(l=0;l < strlen(w);l++)
          {
                if(w[1]=='1')
                break;
         if(l==strlen(w))
          {
                f=1;
                return(w);
         for(h=l;h<strlen(w);h++)
```

```
q[p++]=w[h];
          q[p]='\setminus 0';
          x=17-strlen(q);
         strcpy(b,"");
         strcat(b,q);
         k=strlen(q); p=0;
  return(b);
const char * binsub(const char *x,const char *y)
  inti,j=0;
   char w[25]="",e[3],f[3],n[3];
  e[0]='1';
  e[1]='(0';
  f[0]='0';
  f[1]='0';
  for(i=0;i<strlen(x);i++)
         if((x[i]=='1')\&\&(y[i]=='1'))
         strcat(w,f);
          else
         if((x[i]=='0')\&\&(y[i]=='0'))
         strcat(w,f);
         else
         strcat(w,e);
  n[0]='\setminus 0';
  n[1]='\0';
  strcat(w,n);
  return(w);
```

CRC-16 OUTPUT:

Enter transferred data: 11011 Enter received data: 11011

10001000000100001

10100000001000010

10001000000100001

10100000110001100

10001000000100001

1010001101011010

crc is 1010001101011010

10001000000100001

10101010000101001

10001000000100001

10001000000100001

10001000000100001

0000000000000000000

Data transferred correctly

Aim:

ToDevelopasimpledatalinklayerthatperformstheflowcontrolusingtheslidingwindowprotocol , and loss recovery using the Go-Back-Nmechanism.

```
#include<stdio.h>
    int main()
      intw,i,f,frames[50];
      printf("Enter window size: ");
      scanf("%d",&w);
      printf("\nEnter number of frames to transmit: ");
      scanf("%d",&f);
      printf("\nEnter %d frames: ",f);
      for(i=1;i<=f;i++)
         scanf("%d",&frames[i]);
      printf("\nWith sliding window protocol the frames will be sent in the
following manner (assuming no corruption of frames)\n\n");
      printf("After sending %d frames at each stage sender waits for
acknowledgement sent by the receiver\n', w;
      for(i=1;i<=f;i++)
         if(i\%w==0)
           printf("%d\n",frames[i]);
           printf("Acknowledgement of above frames sent is received by
sender\n'");
         else
           printf("%d ",frames[i]);
```

```
Sree Dattha Institute of Engineering and Science
```

Department of CSE

Enter 5 frames: 12 5 89 4 6

Aim: To Implement Dijkstra's Algorithm to Compute the Shortest Path through a Graph


```
#include<stdio.h>
struct node
{
    unsigneddist[20];
    unsigned from[20];
}
rt[10];
int main()
{
    intdmat[20][20];
    intn,i,j,k,count=0;
    printf("\nEnter the number of nodes:");
    scanf("%d",&n);
    printf("Enter the cost matrix:\n");
    for(i=0;i<n;i++)
    for(j=0;j<n;j++)
    {
}</pre>
```

```
scanf("%d",&dmat[i][j]);
         dmat[i][i]=0;
         rt[i].dist[j]=dmat[i][j];
         rt[i].from[j]=j;
  do
         count=0;
         for(i=0;i<n;i++)
         for(j=0;j< n;j++)
         for(k=0;k< n;k++)
         if(rt[i].dist[j]>dmat[i][k]+rt[k].dist[j])
                rt[i].dist[j]=rt[i].dist[k]+rt[k].dist[j];
               rt[i].from[j]=k;
                count++;
  while(count!=0);
  for(i=0;i< n;i++)
         printf("\nState value for router %d is \n",i+1); for(j=0;j< n;j++)
                printf("\nnode %d via %d
         Distance%d",j+1,rt[i].from[j]+1,rt[i].dist[j]);
  printf("\n");
OUTPUT:
Enter the number of nodes: 2
Enter the cost matrix:
1 2
1 2
State value for router 1 is
node 1 via 1 Distance0
node 2 via 2 Distance2
State value for router 2 is
node 1 via 1 Distance1
node 2 via 2 Distance0
```

Aim: To Take an example subnet of hosts and Obtain broad cast tree for it

```
#include<stdio.h>
intp,q,u,v,n;
int min=99,mincost=0;
int t[50][2],i,j;
int parent[50],edge[50][50];
main()
  clrscr();
  printf("\n Enter the number of nodes");
  scanf("%d",&n);
  for(i=0;iedge[i][j])
         min=edge[i][j];
         u=i;
         v=j;
  p=find(u);
  q = find(v);
  if(p!=q)
  {
         t[i][0]=u;
         t[i][1]=v;
        mincost=mincost+edge[u][v];
         sunion(p,q);
  els
  e
        t[i][0]=-1;
   {
         t[i][1]=-1;
  min=99;
  printf("Minimum cost is %d\n Minimum spanning tree is\n", mincost);
```

Sree Dattha Institute of Engineering and Science

Department of CSE

```
for(i=0;i0) l=parent[l];
return l;
}
OUTPUT:
Enter the number of nodes3
ABC
A1 2 3 4
B1 2 3 4
C4 5 6 7
```

Minimum cost is 3

Minimum spanning tree is

C A 3

Aim: To implement distance vector routing algorithm for obtaining routing tables at eachnode.

```
#include<stdio.h>
#include<math.h>
#include<conio.h>
main()
  inti,j,k,nv,sn,noadj,edel[20],tdel[20][20],min;
  charsv,adver[20],ch;
  clrscr();
  printf("\n ENTER THE NO.OF VERTECES:");
  scanf("%d",&nv);
  printf("\n ENTER THE SOURCE VERTEX NUM,BER AND NAME:");
  scanf("%d",&sn);
  flushall();
  sv=getchar();
  printf("\n NETER NO.OF ADJ VERTECES TO VERTEX %c",sv);
  scanf("%d",&noadj);
  for(i=0;i<noadj;i++)
        printf("\n ENTER TIME DELAY and NODE NAME:");
        scanf("%d %c",&edel[i],&adver[i]);
  for(i=0;i< noadj;i++)
        printf("\n ENTER THE TIME DELAY FROM %c to ALL OTHER
       NODES: ",adver[i]);
        for(j=0;j< nv;j++)
       scanf("%d",&tdel[i][j]);
  printf("\n DELAY VIA--VERTEX \n ");
  for(i=0;i<nv;i++)
        min=1000;
        ch=0:
        for(j=0;j< noadj;j++)
```

INPUT/OUTPUT:

ENTER THE NO.OF VERTECES:12

ENTER THE SOURCE VERTEX NUMBER AND NAME:10 J

ENTER NO.OF ADJ VERTECES TO VERTEX 4

ENTER TIME DELAY and NODE NAME:8 A

ENTER TIME DELAY and NODE NAME:10 I

ENTER TIME DELAY and NODE NAME:12 H

ENTER TIME DELAY and NODE NAME:6 K

ENTER THE TIME DELAY FROM A to ALL OTHER NODES: 0 12 25 40 14 23 18 17 21 9 24 29

ENTER THE TIME DELAY FROM I to ALL OTHER NODES: 24 36 18 27 7 20 31 20 0 11 22 33

ENTER THE TIME DELAY FROM H to ALL OTHER NODES: 20 31 19 8 30 19 6 0 14 7 22 9

ENTER THE TIME DELAY FROM K to ALL OTHER NODES: 21 28 36 24 22 40 31 19 22 10 0 9

Department of CSE

DELAY VIA--VERTEX

8 a

20 a

28 i

20 h

17 i

30 i

18 h

12 h

10 i

0 -

6 k

15 K

Aim: Take a 64-bit plain text and encrypt the same using DES algorithm. **Program** importjava.util.*; importjava.io.BufferedReader; importjava.io.InputStreamReader; importjava.security.spec.KeySpec; importjavax.crypto.Cipher; importjavax.crypto.SecretKey; importjavax.crypto.SecretKeyFactory; importjavax.crypto.spec.DESedeKeySpec; import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder; public class DES { private static final String UNICODE_FORMAT = "UTF8"; public static final String DESEDE ENCRYPTION SCHEME = "DESede"; privateKeySpecmyKeySpec; privateSecretKeyFactorymySecretKeyFactory; private Cipher cipher; byte[] keyAsBytes; private String myEncryptionKey; private String myEncryptionScheme; SecretKey key;

```
staticBufferedReaderbr = new BufferedReader(new InputStreamReader(System.in));
public DES() throws Exception {
      TODO code application logic here myEncryptionKey =
"ThisIsSecretEncryptionKey"; myEncryptionScheme =
DESEDE_ENCRYPTION_SCHEME; keyAsBytes =
myEncryptionKey.getBytes(UNICODE_FORMAT); myKeySpec = new
DESedeKeySpec(keyAsBytes);
mySecretKeyFactory = SecretKeyFactory.getInstance(myEncryptionScheme); cipher =
Cipher.getInstance(mvEncryptionScheme):
key = mySecretKeyFactory.generateSecret(myKeySpec);
}
public String encrypt(String unencryptedString) { String encryptedString = null;
try {
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] plainText = unencryptedString.getBytes(UNICODE_FORMAT); byte[]
encryptedText = cipher.doFinal(plainText);
BASE64Encoder base64encoder = new BASE64Encoder();
encryptedString = base64encoder.encode(encryptedText); }
catch (Exception e) {
e.printStackTrace(); }
returnencryptedString; }
public String decrypt(String encryptedString) { String decryptedText=null;
try {
cipher.init(Cipher.DECRYPT_MODE, key);
```

```
BASE64Decoder base64decoder = new BASE64Decoder(); byte[] encryptedText =
base64decoder.decodeBuffer(encryptedString); byte[] plainText =
cipher.doFinal(encryptedText); decryptedText= bytes2String(plainText); }
catch (Exception e) {
e.printStackTrace(); }
returndecryptedText; }
private static String bytes2String(byte[] bytes) { StringBufferstringBuffer = new
StringBuffer(); for (inti = 0; i<bytes.length; i++) { stringBuffer.append((char) bytes[i]); }
returnstringBuffer.toString(); }
public static void main(String args []) throws Exception { System.out.print("Enter the
string: ");
DES myEncryptor= new DES();
String stringToEncrypt = br.readLine();
String encrypted = myEncryptor.encrypt(stringToEncrypt);
String decrypted = myEncryptor.decrypt(encrypted); System.out.println("\nString To
Encrypt: " +stringToEncrypt); System.out.println("\nEncrypted Value : " +encrypted);
System.out.println("\nDecrypted Value : " +decrypted); System.out.println("");
}
OUTPUT:
Enter the string: Welcome
String To Encrypt: Welcome
Encrypted Value: BPQMwc0wKvg=
Decrypted Value: Welcome
```

Aim: To Write a program for congestion control using Leaky bucketalgorithm.

```
importjava.io.*;
importjava.util.*;
classLeakybucket {
  publicstaticvoidmain (String[] args) {
    intno_of_queries,storage,output_pkt_size;
     intinput_pkt_size,bucket_size,size_left;
     //initial packets in the bucket
     storage=0;
    //total no. of times bucket content is checked
     no_of_queries=4;
    //total no. of packets that can
     // be accomodated in the bucket
     bucket_size=10;
    //no. of packets that enters the bucket at a time
     input_pkt_size=4;
     //no. of packets that exits the bucket at a time
     output pkt size=1;
     for(inti=0;i<no_of_queries;i++)
       size_left=bucket_size-storage; //space left
        if(input pkt size<=(size left))</pre>
         storage+=input_pkt_size;
         System.out.println("Buffer size= "+storage+
            " out of bucket size= "+bucket size);
       else
         System.out.println("Packet loss = "
                 +(input_pkt_size-(size_left)));
            //full size
         storage=bucket_size;
         System.out.println("Buffer size= "+storage+
```

```
" out of bucket size= "+bucket_size);

}
storage-=output_pkt_size;
}
}
Output
Buffer size= 4 out of bucket size= 10
Buffer size= 7 out of bucket size= 10
Buffer size= 10 out of bucket size= 10
Packet loss = 3
Buffer size= 10 out of bucket size= 10
```

Aim: To Write a program for frame sorting technique used in buffers.

```
#include<stdio.h>
#include<string.h>
#define FRAM_TXT_SIZ 3
#define MAX NOF FRAM 127
char str[FRAM TXT SIZ*MAX NOF FRAM];
struct frame // structure maintained to hold frames
{ char text[FRAM_TXT_SIZ];
int seg no:
}fr[MAX_NOF_FRAM], shuf_ary[MAX_NOF_FRAM];
int assign seq no() //function which splits message
{ int k=0,i,j; //into frames and assigns sequence no
for(i=0; i < strlen(str); k++)
\{ fr[k].seq\_no = k; \}
for(j=0; j < FRAM_TXT_SIZ && str[i]!='\0'; j++)
fr[k].text[j] = str[i++];
printf("\nAfter assigning sequence numbers:\n");
for(i=0; i < k; i++)
printf("%d:%s ",i,fr[i].text);
return k; //k gives no of frames
void generate(int *random ary, const int limit) //generate array of random nos
\{ int r, i=0, j; \}
while(i < limit)
{ r = random() % limit;
for(j=0; j < i; j++)
if(random_ary[j] == r)
break;
if( i==j ) random_ary[i++] = r;
void shuffle( const int no_frames ) // function shuffles the frames
int i, k=0, random ary[no frames];
generate(random ary, no frames);
for(i=0; i < no_frames; i++)
shuf ary[i] = fr[random ary[i]];
printf("\n\nAFTER SHUFFLING:\n");
for(i=0; i < no_frames; i++)
printf("%d:%s",shuf ary[i].seq no,shuf ary[i].text);
```

```
void sort(const int no_frames) // sorts the frames
int i,j,flag=1;
struct frame hold;
for(i=0; i < no_frames-1 && flag==1; i++) // search for frames in sequence
flag=0;
for(j=0; j < no_frames-1-i; j++) //(based on seq no.) and display
if(shuf_ary[j].seq_no > shuf_ary[j+1].seq_no)
hold = shuf_ary[j];
shuf_ary[j] = shuf_ary[j+1];
shuf_ary[j+1] = hold;
flag=1;
int main()
int no_frames,i;
printf("Enter the message: ");
gets(str);
no frames = assign seq no();
shuffle(no_frames);
sort(no frames);
printf("\n\nAFTER SORTING\n");
for(i=0;i<no frames;i++)
printf("%s",shuf ary[i].text);
printf("\n\n");
OUTPUT
[root@localhostnwcn]# ./a.out
Enter the message: Welcome To Acharya Institute of Technology
After assigning sequence numbers:
0:Wel 1:com 2:e T 3:o A 4:cha 5:rya 6: In 7:sti 8:tut 9:e o 10:f T 11:ech 12:nol 13:ogy
AFTER SHUFFLING:
1:com 4:cha 9:e o 5:rya 3:o A 10:f T 2:e T 6: In 11:ech 13:ogy 0:Wel 8:tut 12:nol 7:sti
AFTER SORTING
Welcome To Acharya Institute of Technology
```