Lista 2: Análise II

A. Ramos *

27 de março de 2017

Resumo

Lista em constante atualização.

- 1. Teorema Fundamental do Cálculo
- 2. Caracterização de funções integráveis
- 3. Integrais improprias.

1 Teorema Fundamental do Cálculo e medida nula

- 1. Faça os problemas 7-13 do capítulo IX do livro texto.
- 2. Prove que toda função monótona é integrável.
- 3. Calcule a derivada de $F(x) = \int_{\sin x}^{x^3} e^{-t} dt$
- 4. Seja f uma função integrável em [a,b] cuja integral não é nula. Mostre que existe um $c \in (a,b)$ tal que $\int_a^c f(x)dx = \int_c^b f(x)dx$.
- 5. Seja f uma função positiva, continua e estritamente crescente em [a, b]. Prove que

$$\int_{a}^{b} f(x)dx + \int_{f(a)}^{f(b)} f^{-1}(s)ds = bf(b) - af(a).$$

Com essa identidade, calcule $\int_0^1 \sin^{-1}(x) dx$.

- 6. Seja f uma função periódica com período m e integrável em [0,m]. Defina $g(x)=\int_0^x f(t)dt$. Mostre que g pode não ser periódica mas existe um $c\in\mathbb{R}$ tal que g(x)-cx é periódica com período m
- 7. Seja f uma função contínua em [a,b]. Assuma que existe constantes α e β tal que

$$\alpha \int_a^c f(x)dx + \beta \int_c^b f(x)dx = 0$$
, para todo $c \in [a, b]$.

Mostre que f dever ser a função nula.

- 8. Se f>0 e f contínua em $[0,\infty)$. Mostre que se $\int_1^x f(t)dt \le f(x)^2$. Então, $f(x) \ge 1/2(x-1)$.
- 9. Mostre que

$$\int_{a}^{b} x f^{''}(x) dx = (bf^{'}(b) - b) - (af^{'}(a) - a),$$

onde assumimos que f'' é contínua em [a, b].

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- 10. Se $f:[0,1]\to\mathbb{R}$ é contínua. Prove que $\int_0^1 f(x)dx=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f(\frac{i}{n})$. Assim, a integral pode ser interpretada como uma $m\acute{e}dia$ de f em [a,b].
- 11. Seja f continuamente diferenciável. Defina $a_n := \int_a^b f(t) \sin(nt) dt$. Prove que a_n converge a 0. Dica: Integração por partes.
- 12. Seja f limitada em [a,b]. Suponha que existe uma sequencia de partições P_n tais que $S(f,P_n)-s(f,P_n) \to 0$. Mostre que f é integrável. É necessário que $|P_n| \to 0$?
- 13. Use o teorema de valor médio para provar que para todo $-1 < a \le 1$, $a_n := \int_0^a \frac{x^n}{1+x} dx$ converge para 0, quando $n \to \infty$.
- 14. Mostre que a função f é integrável onde f é a função $f:[0,1]\to\mathbb{R}$ definida como $f(x)=2^{-n}$, se $x=j/2^n$ com $j\in\mathbb{N},\ 0\leq j<2^n$ e f(x)=0 caso contrário.
- 15. Demonstre a fórmula de Euler. Seja $f:[a,b]\to\mathbb{R}$ de classe C^1 . Então:

$$\sum_{a \le n \le b} f(n) = \int_a^b f(x)dx + \int_a^b \{x\}f'(x)dx + \{x\}f(x)|_a^b,$$

onde $\{x\} := x - [x]$ a parte não inteira de x.

- 16. Verifique que:
 - $\frac{1}{n}\sum_{i=1}^n \sin(\frac{i\pi}{n}) \to \frac{2}{\pi}$, quando $n \to \infty$.
 - $\frac{1}{n^{p+1}}\sum_{i=1}^n i^p \to \frac{1}{n+1}$, quando $n \to \infty$ para todo $p \neq -1$. O que acontece se p = -1?
 - $\sum_{i=1}^{n} \frac{1}{i^s} = \frac{1}{n^{s-1}} + s \int_{1}^{n} \frac{[x]}{x^{s+1}} dx$, para qualquer $s \neq 1$, onde [x] é o maior inteiro menor ou igual a x.
- 17. Se $X \subset [a,b]$ tem medida nula então f(X) tem medida nula, se f é localmente Lipschitz em [a,b] (em particular, se f é de classe C^1). Dê um exemplo que f(X) não seja de medida nula mesmo que X seja de medida nula.
- 18. Seja f contínua em [a,b] e g uma função integrável em [c,d] com $g([c,d]) \subset [a,b]$. Mostre que $f \circ g$ é integrável.
- 19. Sabemos que o conjunto de Cantor $\mathcal C$ tem medida nula. Podemos construir um conjunto de Cantor com medida não nula.
- 20. Considere f uma função contínua em [a,b] e de classe C^1 em (a,b). Assuma que $f'(x) \neq 0$, $\forall x \in (a,b)$. Mostre que $g \circ f$ é integrável, se $g : [c,d] \to \mathbb{R}$ é integrável e $f[a,b] \subset [c,d]$.

Integral impróprias em intervalos ilimitados

• Integral impróprias sobre $[a, \infty)$. Seja f contínua em $[a, \infty)$. Definimos

$$\int_{a}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} f(x)dx,$$

quando o limite existir. Neste caso, a integral converge, caso contrário, dizemos que a integral diverge. Caso $\int_a^\infty |f(x)| dx$ convergir, dizemos que a integral é absolutamente convergente. Quando $\int_a^\infty f(x) dx$ converge mas $\int_a^\infty |f(x)| dx$ diverge, dizemos que a integral imprópria é condicionalmente convergente. Similarmente para as seguinte definições.

• Integral impróprias sobre $(-\infty, b]$. Seja f contínua em $(-\infty, b]$. Definimos

$$\int_{-\infty}^{b} f(x)dx := \lim_{a \to -\infty} \int_{a}^{b} f(x)dx,$$

quando o limite existir. Neste caso, a integral converge, caso contrário, dizemos que a integral diverge.

• Integral impróprias sobre $(-\infty, \infty)$. Seja f contínua em \mathbb{R} . Definimos

$$\int_{-\infty}^{\infty} f(x)dx := \lim_{a,b \to \infty} \int_{-a}^{b} f(x)dx,$$

quando o limite existir. Neste caso, a integral converge, caso contrário, dizemos que a integral diverge. Observe que $\int_{-\infty}^{\infty} f(x)dx$, não é necessariamente igual a $\lim_{c\to\infty} \int_c^c f(x)dx$, por exemplo, no caso $\int_{-\infty}^{\infty} xdx$. O limite $\lim_{c\to\infty} \int_c^c f(x)dx$ (caso existir) é chamado *Valor médio de Cauchy* é denotado por $PV \int_{-\infty}^{\infty} f(x)dx$.

Integral impróprias em intervalos finitos

• Seja f contínua em (a, b] e $|\lim_{x\to a^+} f(x)| = \infty$. Definimos

$$\int_{a}^{b} f(x)dx := \lim_{\delta \to a^{+}} \int_{\delta}^{b} f(x)dx,$$

quando o limite existir. Neste caso, a integral converge, caso contrário, dizemos que a integral diverge. Caso $\int_a^\infty |f(x)| dx$ convergir, dizemos que a integral é absolutamente convergente.

• Seja f contínua em [a,b) e $|\lim_{x\to b^-} f(x)| = \infty$. Definimos

$$\int_{a}^{b} f(x)dx := \lim_{\delta \to b^{-}} \int_{a}^{\delta} f(x)dx,$$

quando o limite existir. Neste caso, a integral converge, caso contrário, dizemos que a integral diverge. Caso $\int_a^\infty |f(x)| dx$ convergir, dizemos que a integral é absolutamente convergente.

ullet Seja f contínua em [a,b] exceto num ponto $c\in(a,b)$ e se um ou ambos limites laterais são infinitos. Definimos

$$\int_{a}^{b} f(x)dx := \int_{a}^{c} f(x)dx + \int_{a}^{c} f(x)dx,$$

desde que ambas integrais impróprias à direitas sejam convergentes.

Um teorema útil para decidir se certa integral imprópria converge, é o teste de comparação.

Teorema de Comparação: Sejam dois funções contínuas f e g tais que $0 \le f(x) \le g(x)$, para todo $x \in [a, \infty)$, onde $a \in \mathbb{R}$.

- Se $\int_a^\infty g(x)dx$ converge, então $\int_a^\infty f(x)dx$ converge.
- Se $\int_a^\infty f(x) dx$ diverge, então $\int_a^\infty g(x) dx$ diverge.

Verifique que as seguinte integrais impróprias são convergentes ou não.

- 1. $\int_0^2 x^{-3} dx$ (diverge), $\int_0^\infty (1+x^2)^{-1} dx$ (converge, $\pi/2$)
- 2. Para quais valores de $\alpha,$ a integral converge $\int_1^\infty x^{-\alpha} dx?$ (converge, $\alpha>1)$
- 3. $\int_1^\infty \frac{dx}{x^2(1+e^x)}$ (converge), $\int_1^\infty \frac{(x+1)}{\sqrt{x^3}} dx$ (diverge), $\int_0^\infty x \sin x dx$ (diverge)
- 4. $\int_0^\infty e^{-ax} \sin(bx) dx$ (converge, valor $b/(a^2+b^2)$)
- 5. Determine o valor de k, para que $\int_{-\infty}^{\infty} e^{k|x|} dx = 0.5$, (k = -4).

O Critério de Dirichlet é um teste para provar a convergência de séries numéricas ou integrais impróprias da forma $\sum_{n=1}^{\infty} a_n b_n$ ou $\int_a^{\infty} f(x)g(x)dx$.

Critério de Dirichlet para integrais Sejam f e g funções tais que

- $\bullet \ f$ é contínua em $[a,\infty)$ e existe um M>0tal que $|\int_a^x f(s)ds|\leq M,$ para todo x>a
- $g \in C^1[a, \infty) \text{ com } g(x) > 0, g'(x) \le 0, \forall x > a$
- $\lim_{x\to\infty} g(x) = 0$.

Então, a integral imprópria converge $\int_a^\infty f(x)g(x)dx = \lim_{b\to\infty} \int_a^b f(x)g(x)dx$. Obs A prova é baseada em integração por partes.

Responda

- 1. Mostre que $\int_1^\infty x^{1/5} \sin x dx$ diverge, e como consequência prove que $\int_0^\infty x^2 \sin x^{5/2} dx$ também diverge. Compare com o teste de Dirichlet.
- 2. Prove que $\int_0^\infty \frac{\cos x}{\sqrt{x}} dx$ converge condicionalmente (Use o critério de Dirichlet).
- 3. Mostre que a integral imprópria $\int_0^\infty \frac{\sin x}{x} dx$ converge condicionalmente (Critério de Dirichlet). Ainda mais, $\int_0^\infty \frac{\sin x}{x} dx = \pi/2$.
- 4. Seja $f:[a,\infty)\to\mathbb{R}$ contínua tal que exista a integral imprópria $\int_a^\infty f(x)dx$.
 - Necessariamente $\lim_{x\to\infty} f(x) = 0$? Caso seja falso, mostre um contra-exemplo.
 - Se f(x) > 0, para x > a. É verdade que $\lim_{x \to \infty} f(x) = 0$? Caso seja falso, encontre um contraexemplo.
 - Mostre que se f é não-crescente com f(x) > 0, para x > a, então $\lim_{x \to a} f(x) dx = 0$.
- 5. Prove que $\int_{-\infty}^{\infty} (\frac{\sin x}{x})^2 dx$