

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

CSE472: MACHINE LEARNING SESSIONAL

Report on Text Classification

Submitted by-Md Salman Shamil Student ID: 1505021

Contents

1	Output on Validation Set	2	
	1.1 k-Nearest Neighbor	2	
	1.2 Naive Bayes	2	
2	Output on Test Set		
3	Results and t-statistic	4	

1 Output on Validation Set

1.1 k-Nearest Neighbor

	k=1	k=3	k=5
Hamming distance	$41 \cdot 090909$	$41 \cdot 090909$	$40 \cdot 818182$
Euclidean distance	$57 \cdot 227273$	$57 \cdot 045455$	$57 \cdot 045455$
Cosine similarity with TF-IDF	$81 \cdot 045455$	$83 \cdot 272727$	$83 \cdot 954545$

Table 1: Validation accuracy (in percentage) for different combinations of the distance measure and the values of hyperparameter k. The validation accuracy is highest for Cosine similarity with TF-IDF as distance measure with k=5.

1.2 Naive Bayes

α	Accuracy
$1 \cdot 0$	$91 \cdot 454545$
$0 \cdot 5$	$91 \cdot 863636$
$0 \cdot 25$	$92 \cdot 136364$
$0 \cdot 1$	$92 \cdot 0$
$0 \cdot 0625$	$92 \cdot 227273$
$0 \cdot 05$	$92 \cdot 181818$
$0 \cdot 03125$	$92 \cdot 363636$
$0 \cdot 025$	$92 \cdot 227273$
$0 \cdot 0125$	$92 \cdot 136364$
$0 \cdot 00625$	$92 \cdot 090909$

Table 2: Validation accuracy (in percentage) for different values for smoothing factor(α). The validation accuracy is highest for $\alpha = 0 \cdot 03125$

2 Output on Test Set

Hyperparameters used for test set prediction:

- k-NN: k=5, distance measure: Cosine similarity with TF-IDF
- NB: $\alpha = 0.03125$

Iteration	k-NN	NB
1	86 · 36363636363636	$92 \cdot 72727272727272$
2	89 · 0909090909091	$94 \cdot 54545454545455$
3	84 · 54545454545455	96 · 36363636363636
4	82 · 72727272727273	$90 \cdot 0$
5	86 · 36363636363636	$94 \cdot 54545454545455$
6	87 · 27272727272727	$93 \cdot 6363636363636364$
7	87 · 27272727272727	$95 \cdot 45454545454545$
8	87 · 27272727272727	91 · 818181818183
9	80 · 9090909090909	91 · 818181818183
10	84 · 54545454545455	90 · 9090909090909
11	83 · 63636363636363	$93 \cdot 6363636363636364$
12	86 · 36363636363636	$95 \cdot 45454545454545$
13	77 · 27272727272727	88 · 181818181819
14	81 · 818181818183	89 · 0909090909091
15	81 · 818181818183	91 · 818181818183
16	77 · 27272727272727	87 · 27272727272727
17	79 · 0909090909091	90 · 9090909090909
18	78 · 181818181819	91 · 818181818183
19	$76 \cdot 36363636363637$	90 · 9090909090909
20	78 · 181818181819	88 · 181818181819
21	80 · 0	86 · 36363636363636
22	88 · 181818181819	$94 \cdot 54545454545455$
23	86 · 36363636363636	91 · 818181818183
24	81 · 818181818183	93 · 63636363636364
25	84 · 54545454545455	$89 \cdot 0909090909091$
26	83 · 63636363636363	$90 \cdot 0$
27	81 · 818181818183	$87 \cdot 27272727272727$
28	78 · 181818181819	90 · 9090909090909
29	81 · 818181818183	89 · 0909090909091
30	80 · 0	$94 \cdot 54545454545455$
31	85 · 45454545454545	$90 \cdot 0$
32	80 · 9090909090909	$92 \cdot 72727272727272$
33	84 · 54545454545455	$92 \cdot 72727272727272$
34	82 · 72727272727273	$94 \cdot 54545454545455$
35	80 · 9090909090909	89 · 0909090909091
36	80 · 0	$90 \cdot 0$
37	80 · 9090909090909	89 · 0909090909091
38	78 · 181818181819	91 · 818181818183

Iteration	k-NN	NB
39	88 · 181818181819	$97 \cdot 27272727272728$
40	87 · 27272727272727	$95 \cdot 45454545454545$
41	77 · 27272727272727	89 · 0909090909091
42	88 · 181818181819	96 · 36363636363636
43	81 · 818181818183	88 · 181818181819
44	80 · 9090909090909	89 · 0909090909091
45	83 · 63636363636363	$92 \cdot 72727272727272$
46	84 · 54545454545455	93 · 63636363636364
47	83 · 63636363636363	90 · 9090909090909
48	80 · 0	89 · 0909090909091
49	81 · 818181818183	89 · 0909090909091
50	85 · 45454545454545	$94 \cdot 54545454545455$

Table 3: Test accuracy for 50 iterations with k-NN and Naive Bayes. Each iteration contains 10 documents from each topic.

3 Results and t-statistic

Accuracy values on test set with 50 iterations showed the following results: $\mathbf{k}\text{-}\mathbf{N}\mathbf{N}$

• Mean: 82 · 781818181818

• Standard Deviation: 3 · 3986385217691044

Naive Bayes

• Mean: 91 · 63636363636364

• Standard Deviation: 2 · 7029215904215462

t-statistic was calculated using SciPy function scipy.stats.ttest_rel(a, b, axis=0, nan_policy='propagate'). The results for t-statistic calculation are as follows:

• *t*-statistic: 23 · 64796533269011

• p-value: $1 \cdot 8721014627256132e - 28$

Here p-value is less than all the values of significance level α (0·005, 0·01 and 0·05). Consequently, p-value $\leq \alpha$ implies that we can reject the null hypothesis that the means are equal. It suggests that the output difference between the two algorithms is statistically significant and the higher accuracy of Naive Bayes is not because of

some random fluke.

So from the mean test accuracy and t-statistic, it can be decided that Naive Bayes algorithm performed better than k-NN.