Cheatsheet on linear algebra.

Author/s: Róbert Jurčo

Date: 27.7.2020

Last modified at: 28.2.2020

I. Notes

- 1. **Def.** = definition, **St.** = statement, **Lemma.** = Lemma, **Th.** = theorem, **Note.** = note
- 2. $m, n \in \mathbb{N}, R^{m \times n}$ is always written only as $R^{m \times n}$.

II. Matrices

- 1. **St.** (Associativity of matrix multiplication). Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times q}$. Then (AB) C = A(BC).
- 2. **St.** (Distributivity of matrix multiplication). Let $A, B \in \mathbb{R}^{m \times n}, C, D \in \mathbb{R}^{n \times p}$. Then (A + B)C = AB + AC, A(C + D) = AC + AD.
- 3. St. If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, then $(AB)^T = B^T A^T$.
- 4. **St.** Let $A, B, C \in \mathbb{R}^{n \times n}$ so that BA = AC = E. Then B = C.
- 5. **St.** Let $A, B \in \mathbb{R}^{n \times n}$, then $(AB)^{-1} = B^{-1}A^{-1}$.
- 6. **St.** Let $A \in \mathbb{R}^{n \times n}$, then $(A^T)^{-1} = (A^{-1})^T$.
- 7. **Def.** Let $A \in \mathbb{C}^{m \times n}$, then $A^+ = \bar{A}^T$ is called the *hermitian conjugate* of A. If $A = A^+$ the matrix A is called a *hermitian matrix*.
- 8. St. Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times p}$, then $(AB)^+ = B^+A^+$.
- 9. **St.** Let $A \in \mathbb{C}^{n \times n}$, then $(A^+)^{-1} = (A^{-1})^+$.
- 10. **St.** If $A \in \mathbb{R}^{m \times n}$, then $\text{Ker} A \leq \mathbb{R}^n$.
- 11. **St.** The map $f_A : \mathbb{R}^n \to \mathbb{R}^m$ is bijective if and only if A is a square matrix and there exists a matrix X, such that AX = E.

III. Vector spaces

- 1. **Def.** Group: Let $\circ: G \times G \to G$ be a binary operation over the set G. Then (G, \circ) is a group if:
 - (a) $\forall a, b, c \in G : (a \circ b) \circ c = a \circ (b \circ c)$ (associaticity)
 - (b) $\exists e \in G : \forall a \in G : a \circ e = e \circ a = a \text{ (identity element)}$
 - (c) $\forall a \in G : \exists a^{-1} \in G : a \circ a^{-1} = a^{-1} \circ a = e$ (inverse element).
- 2. **Def.** If (G, \circ) is a group and $\forall a, b \in G : a \circ b = b \circ a$, then it is an abelian (commutative) group.
- 3. **Def.** Commutative field: Set \mathbb{F} is a commutative field if there are two operations + and \cdot defined on that set, such that:

- (a) $(\mathbb{F}, +)$ is a commutative group.
- (b) If 0 is an identity element of $(\mathbb{F}, +)$, then $(\mathbb{F} \setminus \{0\}, \cdot)$ is a commutative group.
- (c) $\forall a.b.c \in \mathbb{F} : a \cdot (b+c) = a \cdot b + a \cdot c$ (distributivity).
- 4. **Def.** Vector space:
- 5. **Def.** Let V be a vector space over \mathbb{F} and $W \subset V$, $W \neq \emptyset$, such that $\forall \boldsymbol{v}, \boldsymbol{w} \in W, \forall r, s \in \mathbb{F} : r\boldsymbol{v} + s\boldsymbol{w} \in W$. Then W is a subspace of V ($W \leq V$).
- 6. Let V be a vector space over $\mathbb F$ and $M\subset V$. Then $\langle M\rangle\leq V$.
- 7. Let V be a vector space over \mathbb{F} . Then following holds:
 - (a) $M \subset V$ having at least two elements is lineary dependent if and only if there exist $v \in M$, which can be written as a linear combination of M other elements.
 - (b) Let M be generating V. Then M is lineary dependent, if and only if there exists $N \subset M$ that is generating V.

IV. Basis and dimension

- 1. **Def.** Basis: Let V be a vector space over \mathbb{F} . Set that is generating V and is lineary independent is called basis of V.
- 2. **St.** Let V be a vector space over \mathbb{F} . Set M is a basis of V if and only if every vector from V can be written as only one linear combination of M elements.
- 3. **Def.** Vector space V over \mathbb{F} is called a vector space of a finite dimension if there exists a finite basis.
- 4. Let V be a vector space over \mathbb{F} . Then following statements are equivalent:
 - (a) V is of finite dimension.
 - (b) In V exists a finite set of generators.
 - (c) From every set of V's generators is possible to take out a V's finite basis.
- 5. **Th.** Given a vector space V of finite dimension, then all the bases of the vector space have the same number of elements.
- 6. **Lemma.** Steinitz exchange lemma: Let V be a vector space over \mathbb{F} , M it's n-element set of generators and $N = \{v_1, \ldots, v_k\}$ a lineary independet set in V. Then $k \leq n$ and elemets of M is possible to reorder into $\{u_1, u_2, \ldots, u_n\}$ so that $\{v_1, \ldots, v_k, u_{k+1}, \ldots, u_n\}$ generates V.
- 7. St. Let V be a vector space over \mathbb{F} of dimension n and

 $M \subset V$.

- (a) If M is lineary independent, then $|M| \leq n$.
- (b) If M generates V, then $|M| \ge n$.
- (c) If |M| = n, then M is a basis of V.
- 8. **St.** Let V be a vector space of dimension n and W its subspace. Then W is a space of finite dimension and $\dim W \leq n$.
- 9. **St.** Let V be a vector space of dimension n and W its subspace, N a basis of W. Then there exists a set $M \supset N$, which is basis of V.

V. Rank

- 1. **St.** Let $A = (\boldsymbol{a}_1 | \dots | \boldsymbol{a}_n) \in \mathbb{F}^{m \times n}$, where $\boldsymbol{a}_i \in \mathbb{F}^m$. Then $\operatorname{Ker} A = \{\boldsymbol{x} \in \mathbb{F}^n | A\boldsymbol{x} = \boldsymbol{o}\} \leq F^n$, $\operatorname{Im} A = \langle \boldsymbol{a}_1, \dots, \boldsymbol{a}_n \rangle \leq \mathbb{F}^m$.
- 2. **St.** Let $A = (a_1 | \dots | a_n) \in \mathbb{F}^{m \times n}$ and $R \in \mathbb{F}^{m \times m}$ be regular. Then (a) $\operatorname{Ker}(RA) = \operatorname{Ker}A$, (b) $\operatorname{Im}(RA)^T = \operatorname{Im}A^T$.
- 3. **St.** Let $A = (a_1 | \dots | a_n) \in \mathbb{F}^{m \times n}$ and $Q \in \mathbb{F}^{n \times n}$ be regular. Then (a) $\operatorname{Ker}(AQ)^T = \operatorname{Ker}A^T$, (b) $\operatorname{Im}(AQ) = \operatorname{Im}A$.
- 4. **Lemma.** Let $A = (\boldsymbol{a}_1|\dots|\boldsymbol{a}_n) \in \mathbb{F}^{m \times n}$ and $R \in \mathbb{F}^{m \times m}$ be regular. Let $RA = A' = (\boldsymbol{a}'_1|\dots|\boldsymbol{a}'_n)$. If $(s_1,\dots,s_n) \in \mathbb{F}^n$, then $\sum_{i=1}^n s_i \boldsymbol{a}_i = \boldsymbol{o} \iff \sum_{i=1}^n s_i \boldsymbol{a}'_i = \boldsymbol{o}$.
- 5. **Th.** If $A \in \mathbb{F}^{m \times n}$ then dim Im $A = \dim \operatorname{Im} A^T$.
- 6. **Def.** Let $A \in \mathbb{R}^{m \times n}$. Then rank of A is defined as $\operatorname{rank} A = \dim \operatorname{Im} A = \dim \operatorname{Im} A^T$.
- 7. **St.** Let $A \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{p \times m}$, $Q \in \mathbb{R}^{n \times q}$. Then
 - (a) $\operatorname{rank}(RA) \leq \operatorname{rank}(A)$, (b) $\operatorname{rank}(AQ) \leq \operatorname{rank}(A)$,
 - (c) $\operatorname{rank}(A) = \operatorname{rank}(A^T)$,
 - (d) if p = m and R is regular rank(RA) = rank(A),
 - (e) if n = q and Q is regular rank(AQ) = rank(A).
- 8. **Th.** Rank-nullity theorem: Let $A \in \mathbb{R}^{m \times n}$. Then $\dim \operatorname{Ker} A + \dim \operatorname{Im} A = n$.
- 9. **St.** Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{Ker} A^T A = \operatorname{Ker} A$ and $\operatorname{rank} A^T A = \operatorname{rank} A$.
- 10. **Th.** Frobenius theorem: Let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{F}^m$. System $A\mathbf{x} = \mathbf{b}$ has a solution if $\operatorname{rank} A = \operatorname{rank}(A|b)$.

VI. Vector representation and linear maps

1. **St.** Let V be a vector space over \mathbb{F} of finite dimension, B its basis, $\boldsymbol{u}, \boldsymbol{v} \in V, r, s \in \mathbb{F}$. Then $[r\boldsymbol{u} + s\boldsymbol{v}]^B = r[\boldsymbol{u}]^B + s[\boldsymbol{v}]^B$.

- 2. **Def.** Definition of linear map: Let V, W be two vector spaces over \mathbb{F} , and $f: V \to W$ such that $\forall r, s \in \mathbb{F}, \forall \boldsymbol{u}, \boldsymbol{v} \in V: f(r\boldsymbol{u} + s\boldsymbol{v}) = rf(\boldsymbol{u}) + sf(\boldsymbol{v})$. Then f is a linear map.
- 3. **Def.** Matrix of linear map: Let V, W be two vector spaces over \mathbb{F} , $f: V \to W$ is a linear map, $B = (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n)$ basis of $V, C = (\boldsymbol{w}_1, \dots, \boldsymbol{w}_m)$ basis of W. Then matrix $[f]_B^C = ([f(\boldsymbol{v}_1)]^C | \dots | [f(\boldsymbol{v}_n)]^C)$ is called matrix of linear map in respect to basis B and C.
- 4. **Def.** Let V, W be two vector spaces over \mathbb{F} , $f: V \to W$ is a linear map, B basis of V, C basis of W, $v \in V$. Then $[f(v)]^C = [f]_B^C[v]^B$.
- 5. **Def.** Let $f: V \to W$ be a linear map. Then $\operatorname{Ker} f = \{ \boldsymbol{v} \in V | f(\boldsymbol{v}) = \boldsymbol{o} \}$ and $\operatorname{Im} f = \{ \boldsymbol{w} \in W | \exists \boldsymbol{v} \in V : f(\boldsymbol{v}) = \boldsymbol{w} \}$.
- 6. **St.** Let V, W be two vector spaces over \mathbb{F} , $f: V \to W$ is a linear map, $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ basis of $V, C = (\mathbf{w}_1, \dots, \mathbf{w}_m)$ basis of W. Then $[\operatorname{Ker} f]^B = \operatorname{Ker} [f]^C_B$ and $[\operatorname{Im} f]^C = \operatorname{Im} [f]^C_B$.
- 7. **Def.** Let V be a vector space over \mathbb{F} of dimension n, B, C its basis. Matrix $[\operatorname{Id}]_B^C \in \mathbb{F}^{n \times n}$ is called matrix of transform from basis C to basis B.
- 8. **St.** Let V, W be two vector spaces over \mathbb{F} , $f, g : V \to W$ are linear maps, B basis of V, C basis of W, $r, s \in \mathbb{F}$. Then $[rf + sg]_{B}^{C} = r[f]_{B}^{C} + s[g]_{B}^{C}$.
- 9. **St.** Let U, V, W be three vector spaces over \mathbb{F} , $f: U \to V$, $g: V \to W$ are linear maps, B basis of U, C basis of V and D basis of W. Then $[g \circ f]_B^D = [g]_C^D [f]_B^C$.
- 10. **St.** Let V, W be two vector spaces of finite dimension over \mathbb{F} , $f: V \to W$ is a linear map, B, B' bases of V, C, C' bases of W. Then $[f]_{B'}^{C'} = [\operatorname{Id}]_{B}^{C'} [f]_{B}^{C} [\operatorname{Id}]_{B'}^{C}$.
- 11. **Def.** Homomorphism = linear morphism, monomorphism = injective hom., epimorphism = surjective hom., isomorphism = bijective hom., endomorphism = hom. into itself, automorpism = injective monomorhism.
- 12. **St.** Let U, V, W be three vector spaces over \mathbb{F} , $f \in \text{Hom}(V, W)$, $g \in \text{Hom}(U, V)$. Then
 - (a) f is a monomorphism \iff Ker $f = \emptyset$,
 - (2) f is an epimorphism \iff Im f = W,
 - (3) f, g are monomorphisms $\Longrightarrow f \circ g$ is a monomorph.,
 - (4) f, g are epimorphisms $\Longrightarrow f \circ g$ is an epimorphism,
 - (5) $f \circ g$ is monomorphism $\Longrightarrow g$ is a monomorphism,
 - (6) $f \circ g$ is an epiomorphism $\Longrightarrow f$ is a epimorphism

- 13. **Th.** Two vector spaces V, W of finite dimension over \mathbb{F} are isomorphic if and only if they have same dimension.
- 14. **Th.** Let V, W be two vector spaces. Then $\dim V = n \wedge \dim W = m \iff \dim \operatorname{Hom}(V, W) = mn$.
- 15. **Th.** Homomorphism given by values of basis: Let V, W be two vector spaces over \mathbb{F} , $f: V \to W$ is a linear map, $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ basis of $V, C = (\mathbf{w}_1, \dots, \mathbf{w}_m)$ basis of W. Then there exists just one $f \in \operatorname{Hom}(V, W)$ such that $f(\mathbf{v}_i) = w_i$. Furthemore, f is monomorphism if and only if C is lineary independent and f is epimorphism if and only if C generates W.
- 16. **Th.** Rank-nullity theorem: Let V, W be two vector spaces over \mathbb{F} , dim V = n, $f \in \operatorname{Hom}(V, W)$. Then dim $\operatorname{Ker} f + \dim \operatorname{Im} f = n$.
- 17. **St.** Let V be a vector space of finite dimension over \mathbb{F} , $f \in \operatorname{End}(V)$. If f is mono- or epimorphism, then it is also an automorphism.

VII. Permutations, determinant

- 1. **Def.** The symmetric group S_n is a group of all bijective functions from $M = \{1, 2, ..., n\}$ to M.
- 2. **Def.** Let $A \in \mathbb{F}^{n \times n}$, then a determinant of a matrix A is defined as det $A = \sum_{\pi \in S_n} \operatorname{sgn} \pi a_{1\pi(1)} a_{2\pi(2)} \dots a_{n\pi(n)}$.
- 3. Th. Let $A \in \mathbb{F}^{n \times n}$, then det $A = \det A^T$ and det $A^+ = \det A$.
- 4. St. Let $i \in \{1, \ldots, n\}, \boldsymbol{a}_1, \ldots, \boldsymbol{a}_n, \boldsymbol{a}_i' \in \mathbb{F}^n, r, r' \in \mathbb{F}, \rho \in S_n$. Then
 - (a) $\det(\boldsymbol{a}_{1}|\ldots|r\boldsymbol{a}_{i}+r'\boldsymbol{a}'_{i}|\ldots|\boldsymbol{a}_{n}) =$ $= r \det(\boldsymbol{a}_{1}|\ldots|\boldsymbol{a}_{i}|\ldots|\boldsymbol{a}_{n})+r'\det(\boldsymbol{a}_{1}|\ldots|\boldsymbol{a}'_{i}|\ldots|\boldsymbol{a}_{n}),$ (b) $\det(\boldsymbol{a}_{\rho(1)}|\ldots|\boldsymbol{a}_{\rho(n)}) = \operatorname{sgn}(\rho)\det(\boldsymbol{a}_{1}|\ldots|\boldsymbol{a}_{n}).$
- 5. **St.** Let $A \in \mathbb{F}^{n \times n}$, then if A has two equal columns/rows or one zero column/row, then det A = 0.
- 6. **St.** Let $A \in \mathbb{F}^{n \times n}$, then for elementary column/row operation of (a) column/row switching the sign of determinant is changed, (b) column/row multiplication by $r \in \mathbb{F}$ the determinant of A is multiplied by r, (c) addition of multiple of column/row to another column/row does not change determinant.
- 7. **Th.** Matrix $A \in \mathbb{F}^{n \times n}$ is regular if and only if det $A \neq 0$.
- 8. **Def.** Let $A \in \mathbb{F}^{m \times n}$ and $k \in \mathbb{N} : 0 < k \leq m, k \leq n$. A minor of order k of A is the determinant of a $k \times k$ matrix obtained from A by deleting m-k rows and n-k columns.
- 9. **Th.** Let $A \in \mathbb{F}^{m \times n}$. Then rank (A) = k if and only if

- the highest order of nonzero minor of A is k.
- 10. **Def.** The i, j cofactor of the matrix $A \in \mathbb{F}^{n \times n}$ is the scalar C_{ij} defined by $C_{ij} = (-1)^{i+j} M_{ij}$, where M_{ij} is the i, j minor of A, that is, the determinant of the $(n-1) \times (n-1)$ matrix that results from deleting the i-th row and the j-th column of A.
- 11. **Def.** Let $A \in \mathbb{F}^{m \times n}$. Then the matrix formed by all of the cofactors of A is called the cofactor matrix C.
- 12. **Th.** Laplace expansion: Suppose $A \in \mathbb{F}^{n \times n}$ and fix any $i, j \in \{1, 2, \dots, n\}$. Then $\det A = \sum_{j'=1}^n a_{ij'} C_{ij'} = \sum_{i'=1}^n a_{i'j} C_{i'j}$.
- 13. **Th.** Cramer's rule: Let $A \in \mathbb{F}^{n \times n}$ be a regular matrix, $\boldsymbol{b} \in \mathbb{F}^n$. Then the system $A\boldsymbol{x} = \boldsymbol{b}$ has a unique solution, and *i*-th value of \boldsymbol{x} is given by $x_i = \det A_{i,\boldsymbol{b}}/\det A$, where $A_{i,\boldsymbol{b}}$ is the matrix formed by replacing the *i*-h column of A by the column vector \boldsymbol{b} .
- 14. **Def.** Let $A \in \mathbb{F}^{m \times n}$. Then the adjugate of A is the transpose of the cofactor matrix C of A, $adj(A) = C^T$.
- 15. **Th.** Let $A \in \mathbb{F}^{m \times n}$ be regular. Then $A^{-1} = \operatorname{adj}(A)/\operatorname{det}(A)$.
- 16. **Th.** Let $A, B \in \mathbb{F}^{m \times n}$. Then det $AB = \det A \det B$.
- 17. **St.** Let $A, R \in \mathbb{F}^{m \times n}$, where R is regular. Then $\det(R^{-1}) = 1/\det(R)$, and $\det(R^{-1}AR) = \det(A)$.
- 18. **St.** Let V be a vector space of finite dimension over \mathbb{F} , B it's basis and $f \in \operatorname{End}(V)$. Then $\det[f]_B^B$ is called determinant of endomorphism f, and is for every base B equal.
- 19. **Def.** Let $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ be a base of \mathbb{R}^n . The base B is positively oriented (right-handed) if $\det(\boldsymbol{b}_1|\dots|\boldsymbol{b}_n) > 0$, otherwise it's negatively oriented (left-handed).
- 20. **Def.** Let $A \in \mathbb{F}^{n \times n}$. Then $\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}$ is called a trace of A.
- 21. **St.** Let $A \in \mathbb{F}^{n \times p}$, $B \in \mathbb{F}^{p \times q}$, $C \in \mathbb{F}^{q \times n}$. Then $\operatorname{Tr} ABC = \operatorname{Tr} BCA$.
- 22. **St.** Let $A, R \in \mathbb{F}^{n \times n}$ and R be regular. Then $\operatorname{Tr} R^{-1} A R = \operatorname{Tr} A$.

VIII. Diagonalization

- 1. **Def.** Let V be a vector space over \mathbb{F} and $f \in \operatorname{End}(V)$ and \boldsymbol{v} be a nonzero vector in V, then v is an eigenvector of f if $f(\boldsymbol{v}) = \lambda \boldsymbol{v}$ where $\lambda \in \mathbb{F}$, known as the eigenvalue associated with \boldsymbol{v} .
- 2. **Def.** The characteristic polynomial of matrix $A \in \mathbb{F}^{n \times n}$

is the polynomial defined by $p_A(\lambda) = \det(A - \lambda E)$. The characteristic polynomial of endomorphism f is $\det(f - \lambda E)$, or the characteristic polynomial of its arbitrary matrix $[f]_B^B$.

- 3. St. Let $A \in \mathbb{F}^{n \times n}$. Then its characteristic polynomial can be written as $p_A(\lambda) = (-\lambda)^n + \text{Tr}(A)(-\lambda)^{n-1} + \dots +$ $\det(A)$.
- 4. **Th.** Every non-constant polynomial with complex coeficients has at least one root in \mathbb{C} .
- 5. **St.** Let p(x) be a polynome with complex coefficients of degree n > 0. Then it has together n roots with theirs multiplicities.
- 6. **Def.** Set of all eigenvalues of matrix A is called spectrum of A, denoted $\sigma(A)$. For $\lambda_i \in \sigma(A)$ is it's algebraic multiplicity defined as multiplicity of root λ_i of $p_A(\lambda)$, and it's geometric multiplicity defined as dim Ker $(A - \lambda_i E)$. These concepts are defined similary for endomorphisms.
- 7. **Lemma.** Let V be a vector space over \mathbb{F} of dimension n, $f \in \text{End}(V)$ and for all elements of set $M = \{\lambda_1, \dots, \lambda_k\}$ let be chosen an arbitrary base B_i of eigenspace V_{λ_i} . Then the set $B = B_1 \cup \ldots \cup B_n$ is lineary independent.
- 8. St. Let $A \in \mathbb{C}^{n \times n}$ be a hermitian matrix. Then all of its eigenvalues are real.
- 9. St. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, λ, μ two different eigenvalues of A, $v \in V_{\lambda}$, $w \in V_{\mu}$. Then $v \perp w$.
- 10. St. Let $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ be an ortonormal base of \mathbb{R}^n , $U = [\mathrm{Id}]_{P}^{K}$. Then $U^{T} = U^{-1}$.
- 11. **Def.** Let $U \in \mathbb{F}^{n \times n}$. If $U^T U = E$ then U is called an ortonormal matrix.

IX. Direct sum

- 1. **Def.** Let V be a vector space over \mathbb{F} and $W_1, W_2 \leq V$. Then the sum of subspaces W_1, W_2 , denoted as $W_1 + W_2$, is the set of all vectors that could be written as $w_1 + w_2$, where $\boldsymbol{w}_i \in W_i$. Moreover, if $W_1 \cap W_2 = 0$, $W_1 + W_2$ is called the direct sum of subspaces, denoted as $W_1 \oplus W_2$. If $W_1 \oplus W_2 = V$, then W_2 is a complement of W_1 into V.
- 2. St. Every element of $W_1 \oplus W_2$ is possible to write as combination of vector $\mathbf{w}_1 \in W_1$ and vector $\mathbf{w}_2 \in W_2$ with only one way.
- 3. St. If V is a vector space over \mathbb{F} and $W_1, W_2 \leq V$, then $W_1 + W_2 = \langle W_1 + W_2 \rangle$, hence the sum of subspaces is also a subspace. If M_1 and M_2 are sets of generators of

- W_1 and W_2 , then $M_1 \cup M_2$ is generating $W_1 + W_2$.
- 4. Let W be a set of subspaces in V. Then thiers sum is defined as $\sum_{W \in \mathcal{W}} W := \langle \cup_{W \in \mathcal{W}} W \rangle$.
- 5. **Th.** (About dimension of sum and intersection). Let $W_1, W_2 < V$ be both of finite dimension. Then $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$
- 6. **Def.** Let $W_1, \ldots, W_k \leq V$. Then sum $W = W_1 + \ldots +$ W_k is direct, if every vector $\boldsymbol{w} \in W$ is possible to write as $w_1 + \ldots + w_k$, where $w_i \in W_i$, only one way. We denote it then as $W = W_1 \oplus \ldots \oplus W_k = \bigoplus_{i=1}^k W_i$.
- 7. **Th.** Let $W_1, \ldots, W_k \leq V$ be subspaces of finite dimesion. Then $\dim(W_1 \oplus \ldots \oplus W_k) = \dim W_1 + \ldots + \dim W_k$.
- 8. St. Let $n = n_1 + n_2$, $m = m_1 + m_2$, $p = p_1 + p_2$, $A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times p}$ with blocks $A_{ij} \in \mathbb{F}^{m_i \times n_j}$, $A_{ij} \in \mathbb{F}^{n_i \times p_j}$. Then product C := AB has a block notation $C_{ij} = A_{i1}B_{ij} + A_{i2}B_{2j}$.
- 9. St. Let $A = \operatorname{diag}(A_{11}, \ldots, A_{kk})$ be a block diagonal matrix. Then (a) $\forall p \in \mathbb{N} : A^p = \operatorname{diag}(A_{11}^p, \dots, A_{kk}^p)$ and if are all A_{ii} regular then also $A^{-p} = \operatorname{diag}(A_{11}^{-p}, \dots, A_{LL}^{-p}),$ (b) $rank(A) = rank(A_{11}) + ... + rank(A_{kk}),$ (c) $Tr(A) = Tr(A_{11}) + ... + Tr(A_{kk}),$ (d) $\det(A) = \det(A_{11}) \dots \det(A_{kk}),$
 - (e) $\sigma(A) = \sigma(A_{11}) \cup \ldots \cup \sigma(A_{kk})$.
- 10. St. Let $A, B \in \mathbb{F}^{n \times n}$. Then $\sigma(AB) = \sigma(BA)$ including multiplicativity.

X. Scalar (dot) product

- 1. **Def.** Let V be a vector space over \mathbb{F} . A map g: $V \times V \to \mathbb{F}$ is called an inner product on V, if for $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V, r, s \in \mathbb{F}$ it satisfies following:
 - (a) conjugate symmetry $g(\mathbf{u}, \mathbf{v}) = g(\mathbf{v}, \mathbf{u})$
 - (b) $q(r\boldsymbol{u} + s\boldsymbol{v}, \boldsymbol{w}) = \bar{r}q(\boldsymbol{u}, \boldsymbol{w}) + \bar{s}q(\boldsymbol{v}, \boldsymbol{w}),$
 - (c) $\forall \boldsymbol{u} \in V, \boldsymbol{u} \neq 0 : q(\boldsymbol{u}, \boldsymbol{u}) > 0.$
- 2. **Def.** Form $g: V \times V \to \mathbb{F}$ is called a *billinear form* if it is linear in both arguments. If it is linear in first argument and antilinear in second it is called an sesquilinear form. If $forall \mathbf{u} \in V, \mathbf{u} \neq 0 : g(\mathbf{u}, \mathbf{u}) > 0$ it is called a possitively definite form.
- 3. **Def.** Standard inner product on \mathbb{C}^n is defined as $q(\boldsymbol{u}, \boldsymbol{u}) = \boldsymbol{u}^{+}\boldsymbol{v}$ and is denoted as $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$.
- 4. Let (V, \langle , \rangle) be an inner product space of a finite dimension, $C = (\boldsymbol{w}_i)_1^n$ its ortonormal base, $\boldsymbol{u}, \boldsymbol{v} \in V, \boldsymbol{x} =$ $[\boldsymbol{u}]^C, \boldsymbol{y} = [\boldsymbol{v}]^C$. Then $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^n \bar{x}_i y_i$.
- 5. Note. If $B = (\boldsymbol{u}_i)_1^n$ is a basis of (V, g) then $[g]_B$ can be

- find using $[g_{ij}]_B = ([\boldsymbol{u}_i]^B)^T [g]_B [\boldsymbol{u}_j]^B$.
- 6. **Def.** A base B in V we called a *polar base of form* g, if $[q]_B$ is diagonal.
- 7. Th. Every symetric billinear or hermitian sequilinear form on vector space V of finite dimension has a polar base.
- 8. **Def.** If B is a polar base of (V, q) then we call it an ortogonal base. Moreover if $[g]_B = E$, we say that B is an ortonormal base.
- 9. St. If q is hermitian sequilinear form on vector space V over \mathbb{C} , then $\forall \boldsymbol{u}, \boldsymbol{v} \in V$ holds following (1) $\Re g(\boldsymbol{u}, \boldsymbol{v}) = \frac{1}{2} \left(g(\boldsymbol{u} + \boldsymbol{v}, \boldsymbol{u} + \boldsymbol{v}) - g(\boldsymbol{u}, \boldsymbol{u}) - g(\boldsymbol{v}, \boldsymbol{v}) \right)$ (2) $\Im g(\boldsymbol{u}, \boldsymbol{v}) = \frac{1}{2} (g(i\boldsymbol{u} + \boldsymbol{v}, i\boldsymbol{u} + \boldsymbol{v}) - g(\boldsymbol{u}, \boldsymbol{u}) - g(\boldsymbol{v}, \boldsymbol{v})).$
- 10. **Def.** Orthogonal projection $P_{\boldsymbol{v}}: V \to V$ of $\boldsymbol{u} \in V$ onto nonzero vector $\mathbf{v} \in V$ is defined as $P_{\mathbf{v}}(\mathbf{u}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{||\mathbf{v}||^2} \mathbf{v}$.
- 11. **Def.** Orthogonal projec. onto orthogonal complement v^{\perp} is defined as $P_{v^{\perp}} = \operatorname{Id} - P_{v}$ or $P_{v^{\perp}}(u) = u - \frac{\langle v, u \rangle}{||v||^2} v$.
- 12. St. Let (V, \langle, \rangle) be an inner product space over \mathbb{F} , $u, v \in$ $V, v \neq 0$. Then $P_v, P_{v\perp}$ are linear maps, $P_v(v) = v$, $\operatorname{Ker} P_{\boldsymbol{v}} = \boldsymbol{v}^{\perp}, \operatorname{Im} P_{\boldsymbol{v}} = \langle \boldsymbol{v} \rangle, \operatorname{Ker} P_{\boldsymbol{v}^{\perp}} = \langle \boldsymbol{v} \rangle, \operatorname{Im} P_{\boldsymbol{v}^{\perp}} = \boldsymbol{v}^{\perp},$ $P_{\boldsymbol{v}} \circ P_{\boldsymbol{v}} = P_{\boldsymbol{v}} \text{ and } P_{\boldsymbol{v}^{\perp}} \circ P_{\boldsymbol{v}^{\perp}} = P_{\boldsymbol{v}^{\perp}}.$
- 13. **Def.** Let (V, \langle, \rangle) be an inner product space, $(\boldsymbol{w}_i)_1^k$ an ortonormal sequence in V, W its span. Then a projection onto a subspace $P_W: V \to V$ is defined as $P_W(\boldsymbol{u}) = \sum_{i=1}^k P_{\boldsymbol{w}_i}(\boldsymbol{u}).$
- 14. St. Let (V,\langle,\rangle) be an inner product space, $(\boldsymbol{w}_i)_1^k$ an ortonormal sequence in V, W its span. Then $u \in$ $W \iff P_W(\mathbf{u}) = \mathbf{u}, \text{ Im} P_W = W, P_W \circ P_W = P_W,$ $\boldsymbol{u} - P_W(\boldsymbol{u}) \in W^{\perp}, \ \forall \boldsymbol{u} \in V : ||P_W(\boldsymbol{u})|| \leq ||\boldsymbol{u}|| \text{ and }$ $\forall \boldsymbol{u} \in V, \forall \boldsymbol{v} \in W : ||\boldsymbol{u} - P_W(\boldsymbol{u})|| \le ||\boldsymbol{u} - \boldsymbol{v}||.$
- 15. **St.** Let (V, \langle, \rangle) be an inner product space, $W \leq V$ a subspace of a finite dimension. Then $W \oplus W^{\perp} = V$, $\operatorname{Ker} P_W = W^{\perp}, (W^{\perp})^{\perp} = W$ and if V is of a finite ddimension, then $\dim W = \dim V - \dim W^{\perp}$.
- 16. **Th.** (Pythagora's). If $\boldsymbol{u} \perp \boldsymbol{v}$, then $||\boldsymbol{u} + \boldsymbol{v}||^2 =$ $||u||^2 + ||v||^2$.
- 17. **Th.** (Schwarz inequality). Let (V, \langle, \rangle) be an inner product space, $u, v \in V$. Then $|\langle u, v \rangle| \leq ||u|| ||v||$, while equality holds if u and v are collinear.
- 18. **Th.** (Triangle inequality). Let (V, \langle , \rangle) be an inner product space, $u, v \in V$. Then $||u + v|| \le ||u|| + ||v||$.

XI. Orthogonalization, orthogonal diagonalization

- 1. **Th.** (Gram–Schmidt process). Let (V, \langle , \rangle) be an inner product space and $B = (\boldsymbol{u}_1, \ldots, \boldsymbol{u}_n)$ its base. Then there exists an ortonormal base $C = (\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n)$ of V, such that $\forall k \in \{1, \ldots, n\} : \langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_k \rangle = \langle \boldsymbol{w}_1, \ldots, \boldsymbol{w}_k \rangle$.
- 2. **Note.** (Gram–Schmidt process). First we ortogonalize the base using $\mathbf{v}_k = \mathbf{u}_k \sum_{i=1}^{k-1} P_{\mathbf{v}_i}(\mathbf{u}_k)$ and then we ortonormalize using $\mathbf{w}_i = \mathbf{v}_i/||\mathbf{v}_i||$.
- 3. **St.** (Fourier's coefficients). Let $C = (\boldsymbol{w}_i)_1^n$ be an ortonormal base of an inner product space (V, \langle, \rangle) . Then every vector $\in V$ can be represented in respect to C as $[\boldsymbol{u}]^C = (\langle \boldsymbol{w}_1, \boldsymbol{u} \rangle, \dots, \langle \boldsymbol{w}_n, \boldsymbol{u} \rangle)^T \in \mathbb{C}^n$, where $\langle \boldsymbol{w}_i, \boldsymbol{u} \rangle$ are called a Fourier's coefficient.
- 4. **Th.** (Parselval's equality). Let (V, \langle, \rangle) be an inner product space of a finite dimension, $C = (\boldsymbol{w}_i)_1^n$ its ortonormal base and $\boldsymbol{u} \in V$. Then $\sum_{i=1}^n |\langle \boldsymbol{w}_i, \boldsymbol{u} \rangle|^2 = ||\boldsymbol{u}||^2$.
- 5. **Th.** (QR decomposition). Let $A \in \mathbb{C}^{m \times n}$ is a matrix with lineary independent columns. Then there exists just one $Q \in \mathbb{C}^{m \times n}$ and one $R \in \mathbb{C}^{m \times n}$ such, that A = QR where Q is an ortonormal set with respect to a standard scalar product on \mathbb{C}^n , and where R is an upper triangular matrix with possitive numbers on diagonal (note that R is formed from Fourier's coeff.).
- 6. **Def.** Square matrix $U \in \mathbb{C}^{n \times n}$, such that $U^+U = UU^+ = E$ is called an *unitary matrix*. If U is real then its called an *orthogonal matrix*.
- 7. **St.** If $U, V \in \mathbb{C}^{n \times n}$ are unitary matrices, then also $U^+ = U^{-1}$ and UV are unitary matrices.
- 8. **St.** Let (V, \langle, \rangle) be an inner product space, $B = (v_i)_1^n$, $C = (w_i)_1^n$ its ortonormal basis. Then $U := [\mathrm{Id}]_B^C$ is an unitary matrix.
- 9. **Def.** Linear operator is linear map defined as $\mathbb{A}: V \to W$. An adjoint operator to A, denoted as $A^*: W \to V$, is an operator such that $\forall \boldsymbol{v} \in V, \boldsymbol{w} \in W : \langle \boldsymbol{w}, \mathbb{A}\boldsymbol{v} \rangle_W = \langle \mathbb{A}^*\boldsymbol{w}, \boldsymbol{v} \rangle_V$.
- 10. **St.** Let $B = (v_i)_1^n$ be an ortonormal base of V and $C = (\boldsymbol{w}_i)_1^n$ of W, $A = [\mathbb{A}]_B^C \in \mathbb{C}^{m \times n}$. Then there exists \mathbb{A}^* and $[\mathbb{A}^*]_C^B = A^+ \in \mathbb{C}^{n \times m}$.
- 11. **St.** Let V, W, U be inner product spaces, $\mathbb{A}, \mathbb{B}: V \to W, \mathbb{G}: U \to V$ an operators, for which there exists an adjoint operators, $\alpha, \beta \in \mathbb{C}$. Then $(\alpha \mathbb{A} + \beta \mathbb{B}) = \bar{\alpha} \mathbb{A}^* + \bar{\beta} \mathbb{B}^*$, $(\mathbb{A}\mathbb{G})^* = \mathbb{G}^*\mathbb{A}^*$, $(\mathbb{A}^*)^* = \mathbb{A}$, $\operatorname{Ker}\mathbb{A} = (\operatorname{Im}\mathbb{A}^*)^{\perp}$, $\operatorname{Ker}\mathbb{A}^* = (\operatorname{Im}\mathbb{A})^{\perp}$, $\operatorname{Ker}\mathbb{A} = \operatorname{Ker}\mathbb{A}^*\mathbb{A}$. Moreover if $\dim V = n \in \mathbb{N}$, then $\operatorname{rank}(\mathbb{A}) = \operatorname{rank}(\mathbb{A}^*)$ and $\operatorname{rank}(\mathbb{A}) = \operatorname{rank}(\mathbb{A}^*\mathbb{A})$.
- 12. **Def.** An operator $\mathbb{A}:V\to V$ is called *self-adjoint* if

- $\mathbb{A}=\mathbb{A}^*,\ unitary\ \text{if}\ \mathbb{A}\mathbb{A}^*=\mathbb{A}^*\mathbb{A}=\text{Id}\ \text{and}\ normal\ \text{if}\ \mathbb{A}\mathbb{A}^*=\mathbb{A}^*\mathbb{A}.$
- 13. **Lemma.** Let V be an inner product space of dimension n and $(\boldsymbol{w}_1, \ldots, \boldsymbol{w}_k)$ an ortonormal sequence in V. Then this sequence can be completed into an ortonormal base $(\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n)$ of V.
- 14. **Th.** (Schur decomposition/triangulation). Let V be an inner product space of a finite dimension, $\mathbb{A}: V \to V$ such that $A := [\mathbb{A}]_K^K \in \mathbb{C}^{n \times n}$. Then there exists an ortonormal basis B in V such, that $R := [\mathbb{A}]_B^B$ is an upper triangular matrix, $A = URU^+$, where $U = [\mathrm{Id}]_B^K$.
- 15. **Th.** (Ortonormal diagonalization of a normal operator). Let V be an inner product space of a finite dimension. Then for an operator $\mathbb{A}:V\to V$ there exists an ortonormal basis of V, with respect to it is matrix of \mathbb{A} diagonal, if and only if \mathbb{A} is normal.
- 16. **Th.** (Spetral decomposition). Let $\mathbb{A}: V \to V$ be a normal operator, $\mathbb{P}_{\lambda}: V \to V$ be an operator of orthogonal projection onto an eigenspace asiciated with eigenvalue λ . Then $\mathbb{A} = \sum_{\lambda \in \sigma(\mathbb{A})} \lambda \mathbb{P}_{\lambda}$.
- 17. **Th.** An operator $\mathbb{A}: V \to V$ is self-adjoint if and only if all its eigenvalues are real.
- 18. **St.** If $\mathbb{A} \in \mathbb{R}^{n \times n}$ is symmetric or $\mathbb{A} \in \mathbb{C}^{n \times n}$ is hermitian, then there exists an ortogonal matrix U, such that U^+AU is diagonal.
- 19. **St.** Let V over \mathbb{C} be an inner product space of a dimension n and $\mathbb{U}: V \to V$ be an unitar operator. Then $\forall \boldsymbol{v} \in V: ||\mathbb{U}\boldsymbol{v}|| = ||\boldsymbol{v}||, \ \forall \boldsymbol{v}, \boldsymbol{u} \in V: \langle \mathbb{U}\boldsymbol{v}, \mathbb{U}\boldsymbol{u} \rangle = \langle \boldsymbol{v}, \boldsymbol{u} \rangle.$ If B is an ortonormal basis of V then $U := [\mathbb{U}]_B^B$ is an unitar matrix. If $(\boldsymbol{w}_i)_1^n$ is an ortonormal basis of V then also $(\mathbb{U}\boldsymbol{w}_i)_1^n$ is. \mathbb{U} is an normal operator whose eigenvalues lies on an unit circle.

XII. Singular value decomposition

- 1. **Def.** If $(v_1, ..., v_n)$ is a set of vectors in an inner product space (V, \langle , \rangle) over \mathbb{F} then a *Gram matrix* of this set is $G \in \mathbb{F}^{n \times n}$, the Hermitian matrix of inner products, whose entries are given by $G_{ij} = \langle v_i, v_j \rangle$.
- 2. **St.** Gram matrix of a set (v_1, \ldots, v_n) is regular if and only if is this set lineary independent.
- 3. **Def.** Let $A \in \mathbb{C}^{m \times n}$, then a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ is called *Moore-Penrose pseudoinverse* of A, if $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$ and if AA^{\dagger} and $A^{\dagger}A$ are hermitian.
- 4. St. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with lineary independent columns, then $A^{\dagger} = (A^+A)^{-1}A^+$ and A^{\dagger} constitutes a

- left inverse $A^{\dagger}A = E$. However, if $A \in \mathbb{C}^{m \times n}$ is a matrix with lineary independent rows, then $A^{\dagger} = A^{+}(AA^{+})^{-1}$ and A^{\dagger} constitutes a right inverse $AA^{\dagger} = E$.
- 5. **St.** Let $A \in \mathbb{C}^{m \times n}$ be a matrix with lineary independent columns and K a kanonical basis, then $[P_{\mathrm{Im}A}]_K^K = AA^{\dagger}$. However, if $A \in \mathbb{C}^{m \times n}$ is a matrix with lineary independent rows and K a kan. basis, then $[P_{\mathrm{Im}A^+}]_K^K = A^{\dagger}A$.
- 6. **St.** Let $A \in \mathbb{C}^{m \times n}$ and matrices $B, C \in \mathbb{C}^{n \times m}$ be Moore–Penrose pseudoinverses of A. Then B = C.
- 7. **Th.** Let $A \in \mathbb{C}^{m \times n}$, $\mathbf{b} \in \mathbb{C}^m$. Then vector $A^{\dagger}\mathbf{b}$ is an approximated solution of system $A\mathbf{x} = \mathbf{b}$ which has the smallest possible norm.
- 8. **Def.** An operator is called a *possitively semidefinite* operator if all its eigenvalues are not negative.
- 9. **St.** An operator \mathbb{B} is possitively semidefinite if and only if $\langle \boldsymbol{v}, \mathbb{B} \boldsymbol{v} \rangle \geq 0$ for every $\boldsymbol{v} \in V$.
- 10. **Def.** Let $\mathbb{B}: V \to V$ be a possitively semidefinite operator, C an ortonormal basis of V and $D = U^+[\mathbb{B}]^C_C U = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ where $\lambda_i \in \sigma([\mathbb{B}])$. Then a possitively semidefinite square root of \mathbb{B} is defined as $[\sqrt{\mathbb{B}}]^C_C = U\operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})U^+$.
- 11. **St.** Let $\mathbb{A}: V \to V$ be an operator. Then $\mathbb{A}^*\mathbb{A}$ is a possitively semidefinite operator.
- 12. **Def.** A modul of operator is defined as $|\mathbb{A}| := \sqrt{\mathbb{A}^* \mathbb{A}}$.

XIII. Quadratic forms, quadrics

- 1. **Def.** Let g be a billinear form on V. The map $Q_g:V\to\mathbb{R}$, defined by $Q_g(\boldsymbol{u})=g(\boldsymbol{u},\boldsymbol{u})$, is called quadratic form associated with g.
- 2. **Def.** Let g be a billinear form on V. Its symmetrization and antisymmetrization are defined $\forall \boldsymbol{u}, \boldsymbol{v} \in V$ by $g_S(\boldsymbol{u}, \boldsymbol{v}) := \frac{1}{2}(g(\boldsymbol{u}, \boldsymbol{v}) + g(\boldsymbol{v}, \boldsymbol{u}))$ and $g_A(\boldsymbol{u}, \boldsymbol{v}) := \frac{1}{2}(g(\boldsymbol{u}, \boldsymbol{v}) g(\boldsymbol{v}, \boldsymbol{u}))$. Then $g(\boldsymbol{u}, \boldsymbol{v}) = g_S(\boldsymbol{u}, \boldsymbol{v}) + g_A(\boldsymbol{u}, \boldsymbol{v})$.
- 3. **St.** The quadratic form Q_g is conclusively deifned by symmetric part g_S of g.
- 4. **Th.** (Sylvester's law of inertia). Let B, C be two polar bases of quadratic form Q_g on V. Then number of possitive, negative values and zeros are same on diagonals of $[g]_B, [g]_C$.
- 5. **Def.** (Signature). For quadratic form Q_g we define the signature as $\operatorname{sign}Q_g = (p,q,n)$, where p,q,n is a number of possitive, negative numbers and zeros on diagonal in any poalr basis of Q_g .
- 6. **Def.** Let $G \in \mathbb{R}^{n \times n}$. We denote $G_k \in \mathbb{R}^{k \times k}$ a matrix

created form G by deleting last n-k rows and columns.

- 7. **Th.** (Jacobi-Sylvester theorem). Let g be a symmetric billinear form on V, $B = (\boldsymbol{u}_i)_1^m$ a basis ov V, such that $\forall k \in \{1, \dots, m\}, G := [g]_B : \det G_k \neq 0$. Then g has a polar basis $C = (\boldsymbol{v}_i)_1^m$ such, that $\boldsymbol{v}_k \sum_{j=1}^k r_{jk} \boldsymbol{u}_j$ where $R \in \mathbb{R}^{m \times m}$ is an upper triangular matrix, and $[g]_C = \operatorname{diag}(\frac{1}{\det G_1}, \frac{\det G_1}{\det G_2}, \dots, \frac{\det G_{m-1}}{\det G_m})$. Therefore, a signature of g is (p,q,0) where q is number of sign changes in $(1, \det G_1, \dots, \det G_m)$.
- 8. **Note.** By knowing a signature of a symmetric

form Q_g , we can determine it polar form as $[Q_g] = diag(1, ..., 1, -1, ..., -1, 0, ...)$.

- 9. **Def.** Null set of quadratic form Q_g is a set defined by $N_q := \{ v \in V | Q_q(v) = 0 \}.$
- 10. **Def.**
- 11. **Def.**
- 12. **Def.**
- 13. **Def.**
- 14. **St.**

15. **Def.**

16. **Th.**

XIV. Jordan normal form

1.

XV. Tenzors

1.

XVI. Others

1.