Final Syllabus

Exam time- 6 hours (10AM-4PM)

Total- 4 set questions (8 questions)

Time- 30 minutes per questions (4 hours)

(20 minutes- organize/search, 10minutes- write answer)

Complete exam → 10AM-2PM

Scan, revise → 2-2:44PM

Submit by 2:45 PM

Computer Networks

Date: 02/08/2021

Almost 2 set question from subnetting

Logical things more than theory

Lec-1 (done)

- → Network Security and Cryptography
 - 1. Public Key Encryption
 - 2. RSA Algorithm

Lec-2(done)

- → Routing Protocols
 - 1. About RP
 - 2. Broadcast and Multicast Routing
 - 3. Broadcast routing algorithms (source duplication vs in-network duplication)
 - 4. Flooding (Uncontrolled and controlled flooding)
 Broadcast storm

Lec-3

- → Routing Protocols
 - 1. The Distance-Vector (DV) Routing Algorithm

2. Subnetting

Lec-4

Subnetting

- 1. Subnetting Math
- 2. CIDR
- 3. VLSM math

<u>Lec-5</u>(done)

→ Wireless and Mobile Networks

- 1. Wireless Network
- 2. Elements of a wireless network
- 3. The IEEE 802.11 wireless LAN
- 4. The 802.11 Architecture
- 5. Channels and Association

Lec-6

→ Wireless and Mobile Networks

- 1. Hidden terminal problem
- 2. RTS and CTS (to solve hidden terminal problem)
- 3. Collation avoidance using RTS and CTS frames
- 4. The IEEE 802.11 frame

<u>Lec-7</u>

→ Computer network a top down approach

- 1. Network address translation (NAT)
- 2. Address translation protocol

AI and Expert Systems

Date: 04/08/2021

Lec-1 (done)

Most of the question will come from predicate logic.

Definition of modus ponens and find a conclusion from a symbolic expression.

→ Foundation of logic

- 1. What is logic?
- 2. Why is logic important?
- 3. What is argument?
- 4. Deduction and Interference. (examples)

5. Two logical systems:

- i. Propositional logic
- ii. Predicate logic

Propositions in propositional logic

- 6. Some popular Boolean operators
- 7. Different types of operator:
 - i. The Negation Operator
 - ii. The Conjunction Operator
 - iii. The Exclusive or Operator
 - iv. The Implication Operator
- 8. Implications between real sentences.
- 9. Biconditional Truth Table
- 10. Converse/Contrapositive

11. Logical Equivalence

12. Predicate logic

- i. For all
- ii. For some

13. Application of predicate logic (very important) *

14. Modus Ponens and Modus Toluene *

Lec-2 (done)

Must 1 question in exam.

→ First-order logic

- 1. Pros of First-Order Logic.
- 2. Logics in General.
- 3. Syntax of First-Order Logic.
- 4. Components of First-Order Logic.
- 5. Examples.
- 6. Properties of Quantifiers.
- 7. Nesting Quantifiers. (examples)*
- 8. Fun with sentences
- 9. Other comments about quantification.

Lec-3

Must 1 question in exam.

→ Genetic Algorithm

- 1. Introduction to GA
- 2. Main steps of GA
- 3. Genetic Operator: Cross-over
- 4. Genetic Operator: Mutation
- 5. GA Examples*

Lec-4

Must 1 question in exam.

→ Evolutionary Computation (GA Calculation)

- 1. Can evolution be intelligent?
- 2. Simulation of natural evaluation.
- 3. How is a population with increasing fitness generated?
- 4. Basic genetic algorithms.
- 5. Genetic algorithms: case study. *

Must 1 question in exam. *

See the text book.

Parallel example will come (as like slide example).

→) Bayes rule (done)

- 1. Terminology/Notation Primer.
- 2. Predicted Probability example.
- 3. Apply Bayes' rule. *
- 4. How to apply Bayes' theorem to data mining and datasets?
- 5. Naïve Bayes Classifier.
- 6. Conditional Independence formula.

Lec-6 (done)

See the text book.

→) Artificial Neural Network.

- 1. Artificial Neuron and Rosenblatt's Single Layer Perception.
- 2. Perceptron's Learning Algorithm.
- 3. Activation Function. (Result depend on this).
- 4. Learning. *

Types of learning:

- i. The supervised learning.
- ii. The unsupervised learning.

Lec-7 (done)

See the text book.

At least 10 marks question will come from this lecture.

→) Artificial Neural Network.

1. Rosenblatt's Perceptron (details). *

- i. Single layer perceptron.
- ii. Multilayer perceptron.
- Linearly separable classes and linearly non-separable classes.

Last Lecture

→) Introduction to Bayesian Networks

Computer Graphics

Date: 09/08/2021

- 1 set question from lec- 1,2

Theoretical questions- 1 set

Mathematical questions- 3 set

Lec-1

→ Geometric 2D transformation

Book: Chapter-5

- 1. Basic Two-Dimensional Geometric Transformations
- 2. Geometric transformations details:
 - i. 2D Translation
 - ii. 2D Rotation
 - iii. 2D Scaling

Lec-2

→ Geometric 2D transformation

Book: Chapter-5

1. Math solutions (4.5, 4.9, 4.10, 4.11)

Lec-3

→ Illumination II – Global Models

- 1. What transmission looks like.
- 2. Global Illumination.
- Test Scene
 Locally illuminated test scene
 Solutions to Gouraud artefacts.
- 4. Use local illumination
- 5. Adaptive tree depth control
- 6. Global vs local illumination

Lec-4

At least 5 marks from this lecture.

Slide up to 28

→ Illumination and Shading

- 1. Discrete Illumination Models
- 2. Illumination Models
- 3. Elements of Lighting at a point
- 4. Reflection
 - Specular reflection
- 5. The hall Illumination Model, Components of Hall model
- 6. Diffuse Reflection of Light Sources
- 7. Ambient light, Implementation
- 8. Diffuse Reflection of Light Sources
- 9. Doing this in code
- 10. Reflection Angles, Implementations
- 11. Spectacular Reflection from other surfaces.

Lec-5

1 question.

Slide up to 23

→ Viewing and Projection

- 1. Objectives
- 2. Classical viewing
- 3. Perspective vs Parallel
- 4. Advantages and disadvantages
- 5. Orthographic projection
- 6. Multiview Orthographic Projection
- 7. Axonometric Projections and types (dimeric, trimetric, Isometric), advantages and disadvantages.
- 8. Oblique Projection
- 9. Perspective Foreshortening
- 10. Vanishing points
- 11. Three-point perspective
- 12. Two-point perspective
- 13. Homogeneous coordinate representation, Homogeneous coordination form

<u>Lec-6</u>

→ Representing Curves and Surfaces

Slide page- 28,29,30

- 1. Find out M of H and G of H from Hermit Curves. (Prove).
- 2. Book page: 144, problem no- 7.1