- When we interested in whether two sample came from the same population, we may examine if they have the same population mean or variance?
- -When examining the whether the variances are the same:

F-test=
$$\frac{S_1^2}{S_2^2}$$
~ F_{n_1,n_2} , the F distribution with degree of freedom n_1 and n_2

-When examining the whether the means are the same:

T test

• If there are extreme values or violations of the normality assumption for the data, then the Fisher's exact test may be more suitable for determining whether two samples come from the same population.

Consider there a 2X2 table with n<20.

Sample										
treatment	1.	2	Sum							
	A	β	A+B							
2	C	P	C+D							
	Atc 11	BtD 11	N=n+n							
	n_{i}	Na								

$$= \frac{(A+B)! (C+D)! (A+C)! (B+D)!}{N!A!B!C!P!}$$

P-value:

Sample

Therefore: P-value

$$= \begin{cases} (0,00007 + 0.0016 + 0.0138) \times 2^{\frac{1}{2}} \\ 0.00007 + 0.0016 + 0.0138 \end{cases}$$

20 0.25974 0,00007 0,16246 0, 00/6 (0 17 0,06212 0.0138 0.06212 0.0138 10 16 0.0016 0, 16246 15 0,0000/

• Two products were evaluated by a total of 19 individuals, and the results are recorded as follows:

	0	1		p-vall	ne		
	'βγα 1 Δ	suct R	word	·	5	4	= 0,0464
	73		total	1-1-14	l	9	2 0,0 10 1
we.	5	4	9	Probability (6	3	
Tis like	1	9	/0		0	(0)	=
* of of	6	13	T 19				

• H_0 : Two products are favored by the same preferences

Drug manufacturers claim they have developed a new pesticide that is more powerful than the old ones

Pesticide

New Old Sum

350 100 450

50 20 76

400 120 520 Total

 H_0 : New and old pesticide have the same effect

When $n \ge 20$

$$\hat{P} = A/h_1$$

$$\hat{P} = B/h_2$$

$$\hat{P} = A+B/h$$

Under Ho:
$$P = P_2$$
 V.S. $Ha^2 = \hat{P}_1 \neq \hat{P}_3$

Hence
$$(\hat{P} - \hat{P}_2) - (P - P_3)$$

$$Z = \frac{1}{NP(1-P)} \frac{n_1 + n_2}{n_1 + n_3}$$

• If two independent categorical datasets cannot be organized into a 2×2 table, the Chi-square test for homogeneity can be used to examine whether they come from the same population.

	Treatment	
	1 2	Sum Oij: observation for
ategory	1 01 021 2 01 02 : K 0k 02	Ri th. category and jth. **reatment $Ri = \sum_{j=1}^{2} O_{i,j}$, i.e. $\{1,2,\dots,k\}$ $C_{j} = \sum_{i=1}^{k} O_{i,j}$, jefla! Rt
Sum		$\frac{1}{n}$

$$\chi = \frac{2}{5} \frac{1}{1} \frac{1}{5} \frac{1}{5}$$

$$\chi_{c} = \sum_{i=1}^{2} \frac{K}{j^{-1}} \frac{\left(\left| 0_{ij} - \overline{b_{ij}} \right| - 0.5 \right)}{\overline{E_{ij}}}$$

• If we are wondering whether males with higher body weight have a higher heart

rate than those with normal weight.

	numbe	r	$ \begin{bmatrix} $
heart	normal	overweight	Sum
<172	51 (4516)	43 (48.4)	94
12-80	64 (62.6)	65 (66.4)	129
80>	50 (56.8)	6) (60.2)	//7
Sum	(65	175	346

number

heart	mormed	overweight	sum
<172	51 (45,6)	43 (48.4)	94
12-80	64 (62.6)	65 (66.4)	[129
80>	50 (56.8)	6) (60.2)	117
Sam	(65	175	346
94/	6.165	340.175	

$$\frac{(51-45.6)^{2}}{45.6} + \frac{(64-60.6)^{2}}{60.6} + \frac{(50-56.8)^{2}}{56.8}$$

$$+\frac{(43-48.4)^{2}}{48.4}+...=2.885=\chi$$

$$\chi = 2.885 < \chi_{0.05,(k-1)}^2 = 5.991$$

• Small sample correction:

Under the small sample Wilks proposed a statistics obtained from the likelihood ratio approach:

$$G_{1} = 2 \left[\sum_{i=1}^{K} \sum_{j=1}^{K} O_{ij} \log O_{ij} - \sum_{j=1}^{K} \sum_{j=1}^{K} O_{ij} \log F_{ij} \right]$$

• < If we are interested in determining whether the number of individuals who violate traffic laws differs between those over and under the age of 25, we can analyze the data as follows

# of	Age			6 191	1 . 100
vio lation (ser year)	425	25<			,
0	23 (30.8)	38 (30.2)	61		1 a
1	18 (247)	31 (243)	49		98 . 98
2	45 (35,4)	25(34,6)	70	•	
3	14 (90)	4(8.9)	18		
	100	98	198		

• < If we are interested in determining whether the number of individuals who violate traffic laws differs between those over and under the age of 25, we can analyze the data as follows

# of	Age			> 23(log 23 - log 30,8)
vio lation (ser year)	125	92<		+ 38 (log 38-log 30.2)
0	23 (30.8)	38 (30.2)	61	38 (25)
1	18 (247)	31 (243)	49	
\hat{a}	45 (35,4)	25(346)	70	
3	14 (9,1)	4(8.9)	18	+ 4 (log 4 - log 8.9)
	100	98	198	$= 18.144 > \chi_{0.05, (27)(37)}^{2} 1815$

KOLMOGOROV-SMIRNOV

- Kolmogorov-Smirnov also can be adopted under the two samples problem.
- Assume there are two groups with their independent outcomes.

Moreover, $x_1, x_2, ... x_m$ are the data from the group 1; $y_1, y_2, ... y_n$ are the data from the group 2.

$$H_0$$
: $F_X(\cdot) = F_Y(\cdot)$

- Denote that $S_X(t)$ and $S_Y(t)$ are the empirical CDF for X and Y, respectively.
- The testing statistics can be obtained by $D = \max_{t} |S_X(t) S_Y(t)|$

KOLMOGOROV-SMIRNOV

Example

If the course is conducted by two teachers, the quality of the course is evaluated by a total of 50 students before the end of the semester. A comprehensive evaluation using 5 levels (very bad(1), bad(2), normal(3), good(4), very good(5)) is designed for sampling.

.1	ena lucation		J	3	4 5	Suml
A.	A	1	10	16	15 8	50
V Sag	В	2	4	10	24 10	50

 H_0 : The popularity of the two teachers is the same.

KOLMOGOROV-SWIRNOV

	Tea	cher (A)	· T	each (45)			
moisseulaus (X)	counts	cumu laci se	Counts	cumulative	SA(x)	SB(X)	P
1	1	l	a	a	y _{so}	2/50	150
٦	10	11	4	6	11/53	6/50	5/50
3	14	27	(0	16	anl	16/10	
4	15	42	94	40	U.S.	40/_	1/50
5	8	50	10	50	1	150	3/50
_ 1					•	-	0

There fore

$$D = \max_{x} |S_{A}(x) - S_{B}(x)| = |S_{0} = 0.5 < D_{0.05}, so = \frac{1.92}{150} = 0.5)$$

KOLMOGOROV-SMIRNOV

• If we want to examine the amount of lead in the soil between two areas, A and B.

A: 3.25,3.92,3.81,3.41,2.91,4.18,2.43,3.24,3.26

B: 3.91,4.12,4.52,4.62,4.84,4.87,5.50,4.06,4.72

 H_0 : The amount of lead in the soil are the same between A and B.

KOLMOGOROV-SMIRNOV

treatment	A	В	SA	SB	P
(2.4, 2.8)	1	O	1/10	%	10
(د.د , عد)	1	D	7/10	•	%
(3.2, 3.6)	3	0	•	%	5/10
(3.6, 4.0)	7	0	7/2	0/	Vio
(4.0 , 4.4)	3	3	(%)	5/10 8/10	Wo
(4.4, 4.8)	0	2	1	5/10	5/10
(48,62)	٥	3	1	8/10	afo
(52, 5.6)	0	2	1	1	O

Table ST8. Critical Values of the Kolmogorov–Smirnov Test Statistic for Two Samples of Equal Size a

One-Si	ded Tes	st:									
$\alpha =$	0.10	0.05	0.025	0.01	0.005	$\alpha =$	0.10	0.05	0.025	0.01	0.005
Two-Si	ded Tes	st:									
$\alpha =$	0.20	0.10	0.05	0.02	0.01	$\alpha =$	0.20	0.10	0.05	0.02	0.01
n = 3	2/3	2/3				n = 20	6/20	7/20	8/20	9/20	10/20
4	3/4	3/4	3/4			21	6/21	7/21	8/21	9/21	10/21
5	3/5	3/5	4/5	4/5	4/5	22	7/22	8/22	8/22	10/22	10/22
6	3/6	4/6	4/6	5/6	5/6	23	7/23	8/23	9/23	10/23	10/23
7	4/7	4/7	5/7	5/7	5/7	24	7/24	8/24	9/24	10/24	11/24
8	4/8	4/8	5/8	5/8	6/8	25	7/25	8/25	9/25	10/25	11/25
9	4/9	5/9	5/9	6/9	6/9	26	7/26	8/26	9/26	10/26	11/26
10	4/10	5/10	6/10	6/10	7/10	27	7/27	8/27	9/27	11/27	11/27
11	5/11	5/11	6/11	7/11	7/11	28	8/28	9/28	10/28	11/28	12/28
12	5/12	5/12	6/12	7/12	7/12	29	8/29	9/29	10/29	11/29	12/29
13	5/13	6/13	6/13	7/13	8/13	30	8/30	9/30	10/30	11/30	12/30
14	5/14	6/14	7/14	7/14	8/14	31	8/31	9/31	10/31	11/31	12/31
15	5/15	6/15	7/15	8/15	8/15	32	8/32	9/32	10/32	12/32	12/32
16	6/16	6/16	7/16	8/16	9/16	34	8/34	10/34	11/34	12/34	13/34
17	6/17	7/17	7/17	8/17	9/17	36	9/36	10/36	11/36	12/36	13/36
18	6/18	7/18	8/18	9/18	9/18	38	9/38	10/38	11/38	13/38	14/38
19	6/19	7/19	8/19	9/19	9/19	40	9/40	10/40	12/40	13/40	14/40
					Appro	ximation	1.52	1.73	1.92	2.15	2.30
					for $n >$	× 40:	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}
								•		•	,

Source: Adapted by permission from Tables 2 and 3 of Z. W. Birnbaum and R. A. Hall, Small sample distributions for multisample statistics of the Smirnov type, *Ann. Math. Stat.* 31 (1960), 710–720.

^aThis table gives the values of $D_{n,n,\alpha}^+$ and $D_{n,n,\alpha}$ for which $\alpha \ge P\{D_{n,n}^+ > D_{n,n,\alpha}^+\}$ and $\alpha \ge P\{D_{n,n} > D_{n,n,\alpha}\}$ for some selected values of n and α .

Table ST9. Critical Values of the Kolmogorov–Smirnov Test Statistic for Two Samples of Unequal Size a

One-Sided Test:	$\alpha =$	0.10	0.05	0.025	0.01	0.005
Two-Sided Test:	$\alpha =$	0.20	0.10	0.05	0.02	0.01
$N_1 = 1$	$N_2 = 9$	17/18				
	10	9/10				
$N_1 = 2$	$N_2 = 3$	5/6				
	4	3/4				
	5	4/5	4/5			
	6	5/6	5/6			
	7	5/7	6/7			
	8	3/4	7/8	7/8		
	9	7/9	8/9	8/9		
	10	7/10	4/5	9/10		
$N_1 = 3$	$N_2 = 4$	3/4	3/4			
	5	2/3	4/5	4/5		
	6	2/3	2/3	5/6		
	7	2/3	5/7	6/7	6/7	
	8	5/8	3/4	3/4	7/8	
	9	2/3	2/3	7/9	8/9	8/9
	10	3/5	7/10	4/5	9/10	9/10
	12	7/12	2/3	3/4	5/6	11/12
$N_1 = 4$	$N_2 = 5$	3/5	3/4	4/5	4/5	
	6	7/12	2/3	3/4	5/6	5/6
	7	17/28	5/7	3/4	6/7	6/7
	8	5/8	5/8	3/4	7/8	7/8
	9	5/9	2/3	3/4	7/9	8/9
	10	11/20	13/20	7/10	4/5	4/5
	12	7/12	2/3	2/3	3/4	5/6
	16	9/16	5/8	11/16	3/4	13/16
$N_1 = 5$	$N_2 = 6$	3/5	2/3	2/3	5/6	5/6
	7	4/7	23/35	5/7	29/35	6/7
	8	11/20	5/8	27/40	4/5	4/5
	9	5/9	3/5	31/45	7/9	4/5
	10	1/2	3/5	7/10	7/10	4/5
	15	8/15	3/5	2/3	11/15	11/15
	20	1/2	11/20	3/5	7/10	3/4

 Table ST9.
 (Continued)

One-Sided Test:	α	= 0.10	0.05	0.025	0.01	0.005
Two-Sided Test:	$\alpha = 0.20$		0.10	0.05	0.02	0.01
$N_1 = 6$	$N_2 = 7$	23/42	4/7	29/42	5/7	5/6
	8	1/2	7/12	2/3	3/4	3/4
	9	1/2	5/9	2/3	13/18	7/9
	10	1/2	17/30	19/30	7/10	11/15
	12	1/2	7/12	7/12	2/3	3/4
	18	4/9	5/9	11/18	2/3	13/18
	24	11/24	1/2	7/12	5/8	2/3
$N_1 = 7$	$N_2 = 8$	27/56	33/56	5/8	41/56	3/4
	9	31/63	5/9	40/63	5/7	47/63
	10	33/70	39/70	43/70	7/10	5/7
	14	3/7	1/2	4/7	9/14	5/7
	28	3/7	13/28	15/28	17/28	9/14
$N_1 = 8$	$N_2 = 9$	4/9	13/24	5/8	2/3	3/4
	10	19/40	21/40	23/40	27/40	7/10
	12	11/24	1/2	7/12	5/8	2/3
	16	7/16	1/2	9/16	5/8	5/8
	32	13/32	7/16	1/2	9/16	19/32
$N_1 = 9$	$N_2 = 10$	7/15	1/2	26/45	2/3	31/45
	12	4/9	1/2	5/9	11/18	2/3
	15	19/45	22/45	8/15	3/5	29/45
	18	7/18	4/9	1/2	5/9	11/18
	36	13/36	5/12	17/36	19/36	5/9
$N_1 = 10$	$N_2 = 15$	2/5	7/15	1/2	17/30	19/30
	20	2/5	9/20	1/2	11/20	3/5
	40	7/20	2/5	9/20	1/2	
$N_1 = 12$	$N_2 = 15$	23/60	9/20	1/2	11/20	7/12
	16	3/8	7/16	23/48	13/24	7/12
	18	13/36	5/12	17/36	19/36	5/9
	20	11/30	5/12	7/15	31/60	17/30
$N_1 = 15$	$N_2 = 20$		2/5	13/30	29/60	31/60
$N_1 = 16$	$N_2 = 20$		31/80	17/40	19/40	41/80
Large-sample approximation		$1.07\sqrt{\frac{m+n}{mn}}$	$\frac{1}{m} 1.22\sqrt{\frac{m+n}{mn}}$	$1.36\sqrt{\frac{m+n}{mn}}$	$1.52\sqrt{\frac{m+n}{mn}}$	$1.63\sqrt{\frac{m+n}{mn}}$

Source: Adapted by permission from F. J. Massey, Distribution table for the deviation between two sample cumulatives, *Ann. Math. Stat.* 23 (1952), 435–441.

^aThis table gives the values of $D_{m,n,\alpha}^+$ and $D_{m,n,\alpha}$ for which $\alpha \ge P\{D_{m,n}^+ > D_{m,n,\alpha}^+\}$ and $\alpha \ge P\{D_{m,n} > D_{m,n,\alpha}\}$ for some selected values of N_1 = smaller sample size, N_2 = larger sample size, and α .