Clean-Up and Wrap-Up

CS242

Lecture 18

The Final

• Final exam will be 12:15-3:15 next Thursday (Dec. 15)

- Open note, and electronic devices are OK
 - But no internet or computation, only use to read your notes
- Invariants (lecture 17) could be on the exam
 - But not invariant inference

The Untyped and Simply Typed Lambda Calculi

Untyped lambda calculus:

$$e \rightarrow x \mid \lambda x.e \mid e e$$

Simply typed lambda calculus:

```
e \rightarrow x \mid \lambda x: t.e | e e | i
t \rightarrow \alpha \mid t \rightarrow t \mid int
```

Extension 1: Algebraic Data Types

General form

```
DataType A(var<sub>1</sub>,...,var<sub>n</sub>):
...

Constructor<sub>i</sub>: t_1 \rightarrow ... \rightarrow t_k \rightarrow A (var<sub>1</sub>,...,var<sub>n</sub>)
...
```

Each constructor defines a pure lambda term.

Example: Lists

Consider the list data type:

```
List(A):

nil: List(A)

cons: A -> List(A) -> List(A)
```

nil: λn.λc.n

cons: λh.λt.λn.λc.c h (t n c)

Other Examples

- Non-negative integers
- Pairs
- Booleans
- Binary trees

• In general, any tree-shaped data structure

Extension 2: Constants

We can extend the lambda calculus with additional functions and constants

- Example
 - Add all integers ..., -1, 0, 1, ...
 - And addition. $+: int \rightarrow int \rightarrow int$
- Other typical built-ins:
 - Floating point numbers
 - Booleans
 - Characters
 - Strings
 - Arrays

Control Constructs: If and Recursion

We can also extend the calculus with control constructs

if: Bool \rightarrow t \rightarrow t

Usage: if $e_1 e_2 e_3$

Typing Checking for If

```
A \vdash e_1 : Bool
```

$$A \vdash e_2 : t$$

$$A \vdash e_3 : t$$

 $A \vdash if e_1 e_2 e_3 : t$

[lf]

Typing Inference for If

```
A \vdash e_1 : Bool
```

 $A \vdash e_2 : t_1$

 $A \vdash e_3 : t_2$

 $t_1 = t_2$

 $A \vdash if e_1 e_2 e_3 : t_1$

[If]

Recursion

Recall

let $x = e_1$ in e_2 is equivalent to $(\lambda x.e_2) e_1$

Extend to recursive definitions

letrec $f = \lambda x.e_1$ in e_2 is equivalent to $(\lambda f.e_2)$ $(Y \lambda f.\lambda x.e_1)$

Typing Checking for Recursive Definitions

A, f:
$$t_1 \rightarrow t_2 \vdash \lambda x.e_1 : t_1 \rightarrow t_2$$

A, f: $t_1 \rightarrow t_2 \vdash e_2 : t$

[Letrec]

 $A \vdash letrec f = \lambda x.e_1 in e_2 : t$

Typing Inference for Recursive Definitions

```
A, f: \alpha \rightarrow \beta \vdash \lambda x.e_1 : t_1 \rightarrow t_2

A, f: \alpha \rightarrow \beta \vdash e_2 : t

\alpha = t_1 \quad \beta = t_2

[Letrec]

A \vdash \text{letrec } f = \lambda x.e_1 \text{ in } e_2 : t
```

Extension 3: Polymorphic Types

```
e \rightarrow x \mid \lambda x.e \mid e e \mid let f = \lambda x.e in e \mid i
t \rightarrow \alpha \mid t \rightarrow t \mid int
o \rightarrow \forall \alpha.o \mid t
```

Subtyping: A Subtle Topic

[If]

 $A \vdash e_1 : Bool$

 $A \vdash e_2 : t_1$

 $A \vdash e_3 : t_2$

 $t_1 = t_2$

 $A \vdash if e_1 e_2 e_3 : t_1$

 $A \vdash e_1 : Bool$

 $A \vdash e_2 : t_1$

 $A \vdash e_3 : t_2$

 $t_1 < t$ $t_2 < t$

 $A \vdash if e_1 e_2 e_3 : t$

[lf]

Java's Type Rule for ? (Approximately ...)

```
A \vdash e_1 : Bool
A \vdash e_2 : t_1
A \vdash e_3 : t_2
t_3 = lub(t_1, t_2)
A \vdash e_1 ? e_2 : e_3 : t_3
[If]
```

What Else Didn't We Talk About?

- Traditional overloading
- Having multiple functions of different types with the same name
- $+: int \rightarrow int \rightarrow int$
- +: float \rightarrow float \rightarrow float
- +: string \rightarrow string \rightarrow string

Overloading rules in languages with subtyping are complicated.

Functional Languages

• Lambda calculus + primitive functions + algebraic data types

- These features are the core of all functional languages
 - Lisp, Scheme, Racket

- Plus polymorphic types for typed functional languages
 - ML, OCaml, Haskell

Monads

- Plumbs generalized "state" through a computation
 - Makes implicit arguments (like global variables and state) explicit
 - Does the sequencing through higher-order functions
- Many language features can be expressed as monads
 - State
 - Continuations
 - Exceptions
 - (Some kinds of) threads
- All except pure functional languages have some built-in monads
 - Typically state and exceptions, continuations and threads are less common
 - Haskell exposes monads to the programmer define your own language features!

Objects

- Objects are something different
 - Typed object-oriented languages are not easily translated into typed functional languages
- Unrestricted method override is difficult to deal with in typed systems
- Solutions
 - Restrict method override: Java, C++ limit it to inheritance between classes
 - Use core functional language + records to get most of OO: OCaml, Haskell
 - Go to an untyped language: Python, Javascript
 - Use traits, mixins: Scala

Big Picture

- All mainstream languages have converged on supporting
 - Objects
 - First-class functions
- The details vary
 - Because the theory suggests there is no one best design
- But why did this happen?

Object Oriented vs Functional Languages

Functional language example:

```
f cons(a,b) = a
f nil = nil
```

Adding a new function is a local change.

Adding a new kind of data, such as a new constructor to a data type, requires updating every function that uses that type.

Object Oriented vs Functional Languages

Object-oriented language example:

```
Class List of

method cons(x,y) ...

method nil ...
end
```

Adding a new kind of data type is a local change.

Adding a new function (method) may require updating many classes with a definition of that method (modulo inheritance).

Adding Objects to Functional Languages

- Type classes are Haskell's way of providing object-like features
 - But really much closer to Java's interfaces than objects
- Examples

Any type a that supports equality should be part of the Eq class

Any type a that supports ordering should be part of the Ord class

Type Classes

(<) :: Ord a => a -> a -> bool

Idea: Code that requires certain functionality can require a value of the appropriate type class, without saying how it is implemented.

Example: A generic sorting function can take a comparison function < in the Ord type class as an argument.

Adding Functions to OO Languages

- C++ has had lambdas since C++14
 - Involves explicitly naming captured variables
 - And whether they are captured by value or reference
- Java has had lambdas since Java 8

- And both have polymorphic types
 - C++ has templates
 - Java has generics

Bottom Line

 There is no single best way to combine functional and object-oriented features.

• Emphasizing some features requires restricting other features.

Approaches to Proving Properties of Programs

Inductive (Loop) Invariants

```
Pre \rightarrow I
while (B)
                                                        I \wedge B
                                                        { code }
 ... code ...
                           Post
                                                        1 \land \neg B \rightarrow Post
```

A Loop Invariant Example

```
int A[10];
i = 1
// i = 1
while i < 11 {
     // \ \forall 1 \le j < i. \ A[j] = 0
     A[i] = 0;
     i += 1
// \ \forall 1 \le i \le 10. \ A[j] = 0
```

Three conditions:

$$i = 1 \rightarrow \forall 1 \le j < i. \ A[j] = 0$$

$$\forall 1 \le j < i. \ A[j] = 0$$

$$\{A[i] = 0; i = i + 1\}$$

$$\forall 1 \le j < i. \ A[j] = 0$$

$$((\forall 1 \le j < i. \ A[j] = 0) \land \ i \ge 11) \rightarrow 0$$

$$\forall 1 \le j \le 10. \ A[j] = 0$$

Types As Propositions

```
\begin{array}{c} A \vdash e_1 \colon t \to t' \\ \\ \hline A \vdash e_2 \colon t \\ \hline \\ A \vdash e_1 e_2 \colon t' \end{array} \qquad \begin{array}{c} A, x \colon t \vdash e \colon t' \\ \\ \hline \\ A \vdash \lambda x.e \colon t \to t' \end{array} \qquad [Abs] \end{array}
```

From a proof of $t \rightarrow t'$ and and a proof of t, we can prove t'. If assuming t we can prove t', then we can prove $t \rightarrow t'$.

Here we regard the types as propositions: If we can prove certain propositions are true, then we can prove that other propositions are true.

Approaches to Proving Properties of Programs

Automatic, Low complexity

Automatic, High complexity Automatic or Semi-automatic Often undecidable

Manual, Undecidable

Gradual Types

Simply Typed Lambda Calculus

Every typed language

Static Analysis

Every optimizing compiler

Invariant Inference

Still figuring this part out ...

Dependent Types

Emerging from the lab ...

Other topics ...

Concurrency and parallelism

Particularly parallelism ala the Pi Calculus

- Very different from sequential languages
 - Not well-modeled by lambda calculus, object calculus, etc.
 - Requires entirely different approaches that makes concurrency primitive
- Will be an increasingly important aspect of programming languages

The End ... and Thanks!