DTP2_PROJ_5

Direct Digital Synthesis (DDS)

Basic Principle

Implementation Example

Cumulator-Length and Increment Calculation

Block Partitioning

VHDL Tips

DDS: Basic Principle

Synthesizing a Sinus

DDS: Basic Principle

How to generate a sinus signal with different frequencies using:

- a counter
- a table with the values of one period of a sine wave (look-up-table : LUT)

desired signal:

 $\sin(\varphi)$ mit $\varphi \in [0; 2\pi]$

use the counter to increment the value of φ

$$\varphi[k] = (\varphi[k-1] + \Delta\varphi) \mod 2\pi$$

Then varying $\Delta \varphi$ you can vary the frequency of the sine wave

DDS: Basic Principle

Consider the LUT below with L values (L=20). The values stored in the LUT correspond to

n = Lookup Table Address

The counter increments the value of n, and let us call the increment $\Delta n = M$

$$n[k] = (n[k-1] + \Delta n) \mod L$$

 $\rightarrow \sin\left(\frac{2\pi}{20} \cdot n\right) \qquad mit \quad n \in [0; 19]$

using $M=\Delta n=4$

Sinus Look-up-Table (LUT)

LUT Adress Generation with Modulo Counter

Example when LUT Length L=20

School of Engineering

The counter increment value ($M=\Delta n$) can be varied!

using $M=\Delta n=1$

Lookup Table Address $n = 0 \quad 1 \quad 2 \quad 3 \quad 4 \dots$

19 0 ...

using $M=\Delta n=2$

Lookup Table Address n = 0 2 4 6 4

18 0 ...

using $M=\Delta n=4$

Lookup Table Address $n = 0 \ 4 \ 8 \ 12 \ 16 \ 0 \ \dots$

Controlling Frequency of f_{sig}

How to choose the value of M for a desired fsig (frequency of the generated sine wave)?

 \triangleright Analog sinus signal x(t) and digital sinus signal x[n] (approx with time step T_s)

$$x(t) = A \cdot \sin(2\pi \cdot f_{sig} \cdot t) \approx A \cdot \sin(2\pi \cdot f_{sig} \cdot \frac{n}{F_s}) = A \cdot \sin(n \cdot 2\pi \cdot \frac{f_{sig}}{F_s}) = x[n]$$

Comparing with digital sinus signal we can generate with DDS, and calculating M for a desired f_{siq} value

$$x[n] = A \cdot \sin\left(n \cdot 2\pi \cdot \frac{f_{sig}}{F_s}\right) \approx A \cdot \sin\left(n \cdot 2\pi \cdot \frac{M}{L}\right) = x_{DDS}[n]$$

$$\Rightarrow$$
 $M \approx L \cdot \frac{f_{sig}}{F_s}$ with $M \in Z^+$

Proposal for LUT Implementation

 $N_LUT = 8$ bits $L = 2^8$ $N_RESOL = 13$ bits

number of bits to address LUT
length of LUT
resolution of values stored in LUT
(values are in 2'complement format)

Resulting Frequency Steps

12

Which frequency is synthesised with update on phase cumulator every F_s = 48kHz and:

$$f_{sig} = \frac{F_s}{L} \cdot M = \frac{48k}{256} \cdot M$$
 \Rightarrow M=1 ... $\Rightarrow f_{sig} = 187,5Hz$ \Rightarrow M=2 ... $\Rightarrow f_{sig} = 375Hz$ \Rightarrow M=3 ... $\Rightarrow f_{sig} = 562,5Hz$

DDS: Implementation Example

So far with integer values of M, we can get a minimum frequency step of:

$$\Delta f = \frac{F_s}{2^{N_L LUT}} = \frac{F_s}{L} = \frac{48k}{256} = 187,5Hz$$

How can one improve the precision of the signal frequency? (get a finer freq. step)

By using a fractional M value (with some bits after the comma).

This is equivalent to counting M with N_CUM bits (N_CUM > N_LUT), but taking only the MSB part (N_LUT bits) to address the LUT.

Making Counter Bits > N_LUT

$$\Delta f = \frac{F_s}{2^{N_-CUM}} = \frac{48k}{2^{19}} = 0,0916Hz$$

Frequency steps when N_LUT = 19 bits

Available Memory Bits in 4CE-115 FPGA = 3'888'000 bits

Which frequency is synthesised when phase cumulator works with F_s = 48kHz and N_LUT = 19 bits?

$$f_{sig} = \frac{f_s}{L} \cdot M = \frac{48k}{2^{19}} \cdot M$$

...
$$\Rightarrow f_{sig} = 0.092Hz$$

...
$$\Rightarrow f_{sig} = 0.183Hz$$

Tone Generator

DDS VHDL Code – Tips 1/3

- ➤ Use the strobe signal from i2s_master to enable the update of phase cumulator;

 The signal strobe should have 1 pulse every cycle of 1/48kHz
- Package tone_gen_pkg.vhd contains definition of constants plus a type for the declaration of the LUT

```
-- Constant Declaration

CONSTANT N_CUM: natural :=19; -- number of bits in phase cumulator CONSTANT N_LUT: natural :=8; -- number of bits in LUT address CONSTANT L: natural := 2**N_LUT; -- length of LUT CONSTANT N_RESOL: natural := 13; -- Attention:1 bit reserved for sign

-- Type Declaration

SUBTYPE t_audio_range IS integer RANGE-(2**(N_RESOL-1)) TO (2**(N_RESOL-1))-1; -- range: [-2^12; +(2^12)-1]

TYPE t_lut_rom IS ARRAY(0 to L-1) OF t_audio_range; CONSTANT LUT: t_lut_rom :=(0,101,201,301,401,501,601,700,799,897,995, ...);
```

DDS VHDL Code – Tips 2/3

Syntax to grab N_LUT MSBs and use as address to search value in LUT remember to convert address to integer before using it as index!

```
CONSTANT N_AUDIO: natural :=16; --width audio data in codec
...

SIGNAL phicum_reg: unsigned(N_CUM-1 downto 0);

SIGNAL addr : integer range 0 to L-1;

...

-- take N_LUT MSBs as address to select value in LUT

addr <= to_integer( phicum_reg (N_CUM-1 DOWNTO N_CUM - N_LUT) );

...

-- convert to signed with 16 bits to match settings in codec for audio data resolution
-- conversion with to_signed takes care of sign extension

dacdat_g_o <= std_logic_vector(to_signed (LUT(addr),N_AUDIO ) );
```

DDS VHDL Code – Tips 3/3

Increment values are pre-calculated and coded as constants in tone_gen_pkg.vhd

- -- Piano Mid-Octave (white keys)
- -- DO-C4 tone ~261.63Hz
- -- RE D4 tone ~293.66Hz
- -- MI E4 tone ~329.63Hz
- -- FA F4 tone ~349.23Hz
- -- SOL G4 tone ~392.00Hz
- -- LA A4 tone ~440.00Hz
- -- SI B4 tone ~493.88Hz
- -- DO_C5 tone ~523.25Hz
- -- Piano Mid-Octave (black keys)
- -- DOS C4S tone ~277.18Hz
- -- RES D4S tone ~311.13Hz
- -- FAS F4S tone ~369.99Hz
- -- SOLS G4S tone ~415.30Hz
- -- LAS_A4S tone ~466.16Hz

Example:

```
CONSTANT M_LA_A4: unsigned(N_CUM-1 downto 0):= to_unsigned(4806, N_CUM));
-- LA_A4 tone ~440.00Hz
-- M = 2<sup>19</sup> * 440/48000
```