Redes Neurais Artificiais Pedro H A Konzen 27 de junho de 2023

Licença

CA 94042, USA.

ii

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View,

Prefácio

Nestas notas de aula são abordados tópicos introdutórios sobre redes neurais artificiais Como ferramenta computacional de apoio, vários exemplos de aplicação de códigos Python+PyTorch são apresentados.

Agradeço a todas e todos que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

50

Conteúdo

Capa			j
Li	cença		ii
Prefácio			
Sı	ımário		v
1 Introdução			1
2 Perceptron		3	
	2.1 Unida	de de Processamento	3
	2.1.1	Um problema de classificação	4
	2.1.2	Problema de regressão	10
	2.1.3	Exercícios	13
	2.2 Algori	tmo de Treinamento	14
	2.2.1	Método do Gradiente Descendente	15
	2.2.2	Método do Gradiente Estocástico	18
	2.2.3	Exercícios	20
3	Perceptro	n Multicamadas	21
	3.1 Mode	lo MLP	
	3.1.1	Treinamento	
	3.1.2	Aplicação: Problema de Classificação XOR	
	3.1.3	Exercícios	
	3.2 Aplica	ação: Aproximação de Funções	
	3.2.1	Função unidimensional	
	3.2.2	Função bidimensional	29

iv

CONTEÚDO	V	
3.2.3 Exercícios		
Respostas dos Exercícios	37	
Referências Bibliográficas	38	
Notas de Aula - Pedro Konzen */* Licença CC-BY	Y-SA 4.0	

Capítulo 1

Introdução

Uma rede neural artificial é um modelo de aprendizagem profunda (deep learning), uma área da aprendizagem de máquina (machine learning). O termo tem origem no início dos desenvolvimentos de inteligência artificial, em que modelos matemáticos e computacionais foram inspirados no cérebro biológico (tanto de humanos como de outros animais). Muitas vezes desenvolvidos com o objetivo de compreender o funcionamento do cérebro, também tinham a intensão de emular a inteligência.

Nestas notas de aula, estudamos um dos modelos de redes neurais usualmente aplicados. A unidade básica de processamento é data do modelo de neurônio de McCulloch-Pitts (McCulloch and Pitts, 1943), conhecido como perceptron (Rosenblatt, 1958, 1962), o primeiro com um algoritmo de treinamento para problemas de classificação linearmente separável. Um modelo similiar é o ADALINE (do inglês, adaptive linear element, Widrow and Hoff, 1960), desenvolvido para a predição de números reais. Pela questão histórica, vamos usar o termo perceptron para designar a unidade básica (o neurônio), mesmo que o modelo de neurônio a ser estudado não seja restrito ao original.

Métodos de aprendizagem profunda são técnicas de treinamento (calibração) de composições em múltiplos níveis, aplicáveis a problemas de aprendizagem de máquina que, muitas vezes, não têm relação com o cérebro ou neurônios biológicos. Um exemplo, é a rede neural que mais vamos explorar nas notas, o **perceptron multicamada** (PMC, em inglês *multilayer per*-

pt 100 150 200 250 300 350 400 450 500 550 600

Capítulo 2

Perceptron

2.1 Unidade de Processamento

A unidade básica de processamento (neurônio artificial) que exploramos nestas notas é baseado no **perceptron** (consultemos a Fig. 2.1). Consiste na composição de uma **função de ativação** $f: \mathbb{R} \to \mathbb{R}$ com a **pré-ativação**

$$z = \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.1}$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \tag{2.2}$$

onde, $\boldsymbol{x} \in \mathbb{R}^n$ é o vetor de entrada, $\boldsymbol{w} \in \mathbb{R}^n$ é o vetor de pesos e $b \in \mathbb{R}$ é o bias. Escolhida uma função de ativação, a saída do neurônio é dada por

$$y := \mathcal{N}\left(\boldsymbol{x}; (\boldsymbol{w}, b)\right) \tag{2.3}$$

$$= f(z) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b) \tag{2.4}$$

O treinamento (calibração) consiste em determinar os parâmetros (\boldsymbol{w},b) de forma que o neurônio forneça as saídas y esperadas com base em algum critério predeterminado.

Figura 2.1: Esquema de um perceptron: unidade de processamento.

Uma das vantagens deste modelo de neurônio é sua generalidade, i.e. pode ser aplicado a diferentes problemas. Na sequência, vamos aplicá-lo na resolução de um problema de classificação e noutro de regressão.

2.1.1 Um problema de classificação

Vamos desenvolver um perceptron que faça a operação \land (e-lógico). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R=A_1 \land A_2$. Consultemos a seguinte tabela verdade:

$$\begin{array}{c|cccc} A_1 & A_2 & R \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

Modelo

Nosso modelo de neurônio será um perceptron com duas entradas $\boldsymbol{x} \in \{-1,1\}^2$ e a função sinal

$$f(z) = \operatorname{sign}(z) = \begin{cases} 1 & , z > 0 \\ 0 & , z = 0 \\ -1 & , z < 0 \end{cases}$$
 (2.5)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

n+

00

50 |

00 |--

50 ----

300 -

350

-400

450-

-500

-550 -

000

como função de ativação, i.e.

$$\mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = \operatorname{sign}(\boldsymbol{w} \cdot \boldsymbol{x} + b), \tag{2.6}$$

onde $\boldsymbol{w} \in \mathbb{R}^2$ e $b \in \mathbb{R}$ são parâmetros a determinar.

Pré-processamento

Uma vez que nosso modelo recebe valores $\boldsymbol{x} \in \{-1,1\}^2$ e retorna $\boldsymbol{y} \in \{-1,1\}$, precisamos (pre)processar os dados do problema de forma a utilizálo. Uma forma, é assumir que todo valor negativo está associado ao valor lógico F (falso) e positivo ao valor lógico V (verdadeiro). Desta forma, os dados podem ser interpretados como na seguinte tabela

Treinamento

Agora, nos falta treinar nosso neurônio para fornecer o valor de y esperado para cada dada uma entrada x. Isso consiste em um método para escolhermos os parâmetros (\boldsymbol{w},b) que sejam adequados para esta tarefa. Vamos explorar mais sobre isso na sequência do texto e, aqui, apenas escolhemos

$$\boldsymbol{w} = [1, 1] \tag{2.7}$$

$$b = -1 \tag{2.8}$$

Com isso, nosso perceptron é

$$\mathcal{N}(\mathbf{x}) = \operatorname{sign}(x_1 + x_2 - 1) \tag{2.9}$$

Verifique que ele satisfaz a tabela verdade acima!

Implementação

Código 2.1: perceptron.py

1 import torch

```
2
3
   # modelo
   class Perceptron(torch.nn.Module):
        def __init__(self):
6
             super().__init__()
 7
             self.linear = torch.nn.Linear(2,1)
 8
9
        def forward(self, x):
10
            z = self.linear(x)
11
            y = torch.sign(z)
12
            return y
13
14 model = Perceptron()
  W = torch.Tensor([[1., 1.]])
16 b = torch.Tensor([-1.])
   with torch.no_grad():
        model.linear.weight = torch.nn.Parameter(W)
18
        model.linear.bias = torch.nn.Parameter(b)
19
20
21 # dados de entrada
22 X = torch.tensor([[1., 1.],
                        [1., -1.],
23
                        [-1., 1.],
24
                        [-1., -1.]])
25
26
   print(f"\nDados de entrada\n{X}")
27
28
29
30 # forward (aplicação do modelo)
31
  y = model(X)
32
33 print(f"Valores estimados\n{y}")
   Interpretação geométrica
     Empregamos o seguinte modelo de neurônio
        \mathcal{N}(\mathbf{x}; (\mathbf{w}, b)) = \text{sign}(w_1 x_1 + w_2 x_2 + b)
                                                               (2.10)
   Observamos que
        w_1x_1 + w_2x_2 + b = 0
                                                               (2.11)
```

corresponde à equação geral de uma reta no plano $\tau: x_1 \times x_2$. Esta reta divide o plano em dois semiplanos

$$\tau^{+} = \{ \boldsymbol{x} \in \mathbb{R}^{2} : w_{1}x_{1} + w_{2}x_{2} + b > 0 \}$$
(2.12)

$$\tau^{-} = \{ \boldsymbol{x} \in \mathbb{R}^2 : w_1 x_1 + w_2 x_2 + b < 0 \}$$
(2.13)

O primeiro está na direção do vetor normal a reta $\mathbf{n} = (w_1, w_2)$ e o segundo na sua direção oposta. Com isso, o problema de treinar nosso neurônio para nosso problema de classificação consiste em encontrar a reta

$$w_1 x_1 + w_2 x_2 + b = 0 (2.14)$$

de forma que o ponto (1,1) esteja no semiplano positivo τ^+ e os demais pontos no semiplano negativo τ^- . Consulte a Figura 2.2.

Figura 2.2: Interpretação geométrica do perceptron aplicado ao problema de classificação ralacionado à operação lógica \land (e-lógico).

Algoritmo de treinamento: perceptron

O algoritmo de treinamento perceptron permite calibrar os pesos de um neurônio para fazer a classificação de dados linearmente separáveis. Trata-se de um algoritmo para o **treinamento supervisionado** de um neurônio, i.e. a calibração dos pesos é feita com base em um dado **conjunto de amostras de treinamento**.

Seja dado um **conjunto de treinamento** $\{x^{(s)}, y^{(s)}\}_{s=1}^{n_s}$, onde n_s é o número de amostras. O algoritmo consiste no seguinte:

```
1. \boldsymbol{w} \leftarrow \boldsymbol{0}, b \leftarrow 0.

2. Para e \leftarrow 1, \dots, n_e:

(a) Para s \leftarrow 1, \dots, n_s:

i. Se y^{(s)} \mathcal{N} \left( \boldsymbol{x}^{(s)} \right) \leq 0:

A. \boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(s)} \boldsymbol{x}^{(s)}

B. b \leftarrow b + y^{(s)}
```

onde, n_e é um dado número de épocas¹.

Código 2.2: perceptron_train.py

```
1
   import torch
2
3
   # modelo
4
5
   class Perceptron(torch.nn.Module):
6
       def __init__(self):
7
            super().__init__()
8
            self.linear = torch.nn.Linear(2,1)
9
       def forward(self, x):
10
            z = self.linear(x)
11
12
            y = torch.sign(z)
13
            return y
14
15
   model = Perceptron()
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Ĭ

) U

00 -

.50 -

00

50

300

 $\frac{1}{350}$

400

450

500 -

-550 —

-600

 $^{^1\}mathrm{N}$ úmero de vezes que as amostrar serão per
corridas para realizar a correção dos pesos.

```
16 with torch.no_grad():
17
       W = model.linear.weight
       b = model.linear.bias
18
19
20 # dados de treinamento
21 X_train = torch.tensor([[1., 1.],
22
                       [1., -1.],
23
                       [-1., 1.],
24
                      [-1., -1.]]
25 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
26
27 ## número de amostras
28 ns = y_train.size(0)
29
30 print("\nDados de treinamento")
31 print("X_train =")
32 print(X_train)
33 print("y_train = ")
34 print(y_train)
35
36 # treinamento
37
38 ## num max épocas
39 nepochs = 100
40
   for epoch in range(nepochs):
41
42
43
       # forward
44
       y_est = model(X_train)
45
46
       # update
       not_updated = True
47
48
       for s in range(ns):
49
            if (y_est[s]*y_train[s] <= 0.):</pre>
50
                with torch.no_grad():
51
                    W += y_train[s]*X_train[s,:]
52
                    b += y_train[s]
53
                    not_updated = False
54
       if (not_updated):
55
```

 pt

2.1.2 Problema de regressão

Vamos treinar um perceptron para resolver o problema de regressão linear para os seguintes dados

Modelo

Vamos determinar o perceptron²

$$\tilde{y} = \mathcal{N}(x; (w, b)) = wx + b \tag{2.15}$$

que melhor se ajusta a este conjunto de dados $\{(x^{(s)}, y^{(s)})\}_{s=1}^{n_s}, n_s = 4.$

Treinamento

A ideia é que o perceptron seja tal que minimize o erro quadrático médio $(EQM)^3$, i.e.

$$\min_{w,b} \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.16}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

 $00 \longrightarrow$

50 -

00 -

250

sho L

-350

400

450

500

-550

-600

²Escolhendo f(z) = z como função de ativação.

³Em inglês, mean squared error (MSE).

Vamos denotar a **função erro**⁴ por

$$\varepsilon(w,b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.17}$$

$$= \frac{1}{n_s} \sum_{s=1}^{n_s} \left(wx^{(s)} + b - y^{(s)} \right)^2$$
 (2.18)

Observamos que (2.16) é equivalente a um problema linear de mínimos quadrados. A solução é obtida resolvendo-se a equação normal⁵

$$M^T M \boldsymbol{c} = M^T \boldsymbol{y}, \tag{2.19}$$

onde $\boldsymbol{c}=(w,p)$ é o vetor dos parâmetros a determinar e M é a matriz $n_s\times 2$ dada por

$$M = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \tag{2.20}$$

Implementação

Código 2.3: perceptron_mq.py

```
import torch
2
   # modelo
3
   class Perceptron(torch.nn.Module):
5
6
       def __init__(self):
            super().__init__()
            self.linear = torch.nn.Linear(1,1)
8
9
       def forward(self, x):
10
11
                 self.linear(x)
12
            return z
13
   model = Perceptron()
   with torch.no_grad():
15
16
       W = model.linear.weight
```

⁴Em inglês, loss function.

⁵Consulte o Exercício 2.1.2.

```
b = model.linear.bias
17
18
  # dados de treinamento
19
20 X_train = torch.tensor([0.5,
21
                             1.0,
22
                             1.5,
23
                            [2.0]).reshape(-1,1)
24 y_train = torch.tensor([1.2,
25
                            2.1,
26
                            2.6,
27
                            3.6]).reshape(-1,1)
28
29 ## número de amostras
30 ns = y_train.size(0)
31
32 print("\nDados de treinamento")
33 print("X_train =")
34 print(X_train)
35 print("y_train = ")
36 print(y_train)
37
38 # treinamento
39
40 ## matriz
41 M = torch.cat((X train,
42
                   torch.ones((ns,1))), dim=1)
43 ## solucão M.Q.
44 c = torch.linalg.lstsq(M, y_train)[0]
45 with torch.no_grad():
46
       W = c[0]
       b = c[1]
47
48
49 # verificação
50 print(f'W =\n{W}')
51 print(f'b =\n{b}')
52 y = model(X_train)
53 print(f'y =\n{y}')
```

Þг

-00+

50 -

nhn 🗕

 $_{250}$ —

-30

-350

400

450

00

550

-600

Resultado

Nosso perceptron corresponde ao modelo

$$\mathcal{N}(x;(w,b)) = wx + b \tag{2.21}$$

com os pesos treinados w=1.54 e b=0.45. Ele corresponde à reta que melhor se ajusta ao conjunto de dados de $\left\{x^{(s)},y^{(s)}\right\}$. Consulte a Figura 2.3.

Figura 2.3: Interpretação geométrica do perceptron aplicado ao problema de regressão linear.

2.1.3 Exercícios

[[tag:construcao]]

Exercício 2.1.1. Assumindo o modelo de neurônio (2.15), mostre que (2.17) é função convexa.

Exercício 2.1.2. Mostre que a solução do problema (2.16) é dada por (2.19).

2.2 Algoritmo de Treinamento

Na seção anterior, desenvolvemos dois modelos de neurônios para problemas diferentes, um de classificação e outro de regressão. Em cada caso, utilizamos algoritmos de treinamento diferentes. Agora, vamos estudar algoritmos de treinamentos mais gerais⁶, que podem ser aplicados a ambos os problemas.

Ao longo da seção, vamos considerar o modelo de neurônio

$$\mathcal{N}(\boldsymbol{x};(\boldsymbol{w},b)) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b), \tag{2.22}$$

com dada função de ativação $f: \mathbb{R} \to \mathbb{R}$, sendo os vetores de entrada \boldsymbol{x} e dos pesos \boldsymbol{w} de tamanho n_{in} . A pré-ativação do neurônio é denotada por

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.23}$$

Fornecido um conjunto de treinamento $\{(\boldsymbol{x}^{(s)}, y^{(s)})\}_{1}^{n_s}$, com n_s amostras, o objetivo é calcular os parâmetros (\boldsymbol{w}, b) que minimizam a função erro quadrático médio

$$\varepsilon(\boldsymbol{w}, b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2$$
 (2.24)

$$=\frac{1}{n_s}\sum_{s=1}^{n_s}\varepsilon^{(s)} \tag{2.25}$$

onde $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}; (\boldsymbol{w}, b)\right)$ é o valor estimado pelo modelo para a s-ésima amostra e $\varepsilon^{(s)} := \left(\tilde{y}^{(s)} - y^{(s)}\right)^2$. I.e., queremos resolver o seguinte problema de otimização

$$\min_{(\boldsymbol{w},b)} \varepsilon(\boldsymbol{w},b) \tag{2.26}$$

Para resolver este problema de otimização, vamos empregar o Método do Gradiente Descendente.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

+++1

200 -

50

300 -

-350

400

-450 —

500 -

-550---

-600

⁶Aqui, vamos explorar apenas algoritmos de treinamento supervisionado.

2.2.1 Método do Gradiente Descendente

O Método do Gradiente Descendente⁷ (GD) é um método de declive. Aplicado ao nosso modelo de perceptron consiste no seguinte algoritmo:

- 1. \boldsymbol{w}, b aproximações iniciais.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)}$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem**⁸ e o gradiente é

$$\frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)} := \left(\frac{\partial \varepsilon}{\partial w_1}, \dots, \frac{\partial \varepsilon}{\partial w_{n_{in}}}, \frac{\partial \varepsilon}{\partial b}\right)$$
(2.27)

O cálculo do gradiente para os pesos \boldsymbol{w} pode ser feito como segue

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left[\frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \right]$$
 (2.28)

$$=\frac{1}{ns}\sum_{s=1}^{ns}\frac{\partial\varepsilon^{(s)}}{\partial\tilde{y}^{(s)}}\frac{\partial\tilde{y}^{(s)}}{\partial\boldsymbol{w}}$$
(2.29)

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial \boldsymbol{w}}$$
(2.30)

Observando que

$$\frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} = 2\left(\tilde{y}^{(s)} - y^{(s)}\right) \tag{2.31}$$

$$\frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} = f'\left(z^{(s)}\right) \tag{2.32}$$

$$\frac{\partial z^{(s)}}{\partial \boldsymbol{w}} = \boldsymbol{x}^{(s)} \tag{2.33}$$

obtemos

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \boldsymbol{x}^{(s)}$$
(2.34)

⁷Em inglês, Gradiente Descent, GD Method.

⁸Em inglês, learning rate.

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial b}$$
(2.35)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \cdot 1 \tag{2.36}$$

Aplicação: Problema de Classificação

Na Subseção 2.1.1, treinamos um Perceptron para o problema de classificação do e-lógico. Usamos f(x) = sign(x) como função de ativação. Ocorre, que para o Método do Gradiente, esta função de ativação não é apropriada, pois $f'(x) \equiv 0$ para $x \neq 0$. Aqui, vamos usar

$$f(x) = \tanh(x). \tag{2.37}$$

Código 2.4: perceptron_gd.py

```
1
   import torch
2
3
   # modelo
4
5
   class Perceptron(torch.nn.Module):
6
       def __init__(self):
7
            super().__init__()
8
            self.linear = torch.nn.Linear(2,1)
9
10
       def forward(self, x):
            z = self.linear(x)
11
12
            y = torch.tanh(z)
13
            return y
14
15
   model = Perceptron()
16
17
   # treinamento
18
19
   ## optimizador
   optim = torch.optim.SGD(model.parameters(), lr=1e-1)
20
21
22
   ## função erro
23
   loss_fun = torch.nn.MSELoss()
24
```

```
25 ## dados de treinamento
26 X_train = torch.tensor([[1., 1.],
27
                       [1., -1.],
28
                       [-1., 1.],
29
                       [-1., -1.]
30 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
31
32 print("\nDados de treinamento")
33 print("X_train =")
34 print(X_train)
35 print("y_train = ")
36 print(y_train)
37
38 ## num max épocas
39 nepochs = 5000
40 \text{ tol} = 1e-3
41
42 for epoch in range (nepochs):
43
44
       # forward
       y_est = model(X_train)
45
46
47
       # erro
48
       loss = loss_fun(y_est, y_train)
49
       print(f'{epoch}: {loss.item():.4e}')
50
51
52
        # critério de parada
       if (loss.item() < tol):</pre>
53
54
            break
55
56
       # backward
57
       optim.zero_grad()
       loss.backward()
58
59
       optim.step()
60
61
62 # verificação
63 y = model(X_train)
64 \text{ print}(f'y_est = \{y\}')
```

pt

2.2.2 Método do Gradiente Estocástico

O Método do Gradiente Estocástico é um variação do método anterior. A ideia é atualizar os parâmetros do modelo com base no gradiente do erro de cada amostra. A estocasticidade é obtida da randomização com que as amostras são escolhidas a cada época. O algoritmos consiste no seguinte:

- 1. w, b aproximações inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:
 - 1.1. Para $s \leftarrow \mathtt{random}(1, \ldots, n_s)$:

$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon^{(s)}}{\partial (\boldsymbol{w}, b)}$$
 (2.38)

Aplicação: Problema de Classificação

Código 2.5: perceptron_sgd.py

```
import torch
1
   import numpy as np
3
4
   # modelo
5
6
   class Perceptron(torch.nn.Module):
7
       def __init__(self):
8
            super().__init__()
            self.linear = torch.nn.Linear(2,1)
9
10
11
       def forward(self, x):
12
            z = self.linear(x)
13
            y = torch.tanh(z)
14
            return y
15
16
   model = Perceptron()
17
18
   # treinamento
19
20
   ## optimizador
21
   optim = torch.optim.SGD(model.parameters(), lr=1e-1)
22
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рь

L00 -

 $50 \longrightarrow$

00 -

250 -

40

50

500

550

-600

```
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
25
26 ## dados de treinamento
27 X_train = torch.tensor([[1., 1.],
                       [1., -1.],
29
                       [-1., 1.],
                       [-1., -1.]
30
31 \ y_{train} = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
32
33 ## num de amostras
34 \text{ ns} = y_{train.size}(0)
36 print("\nDados de treinamento")
37 print("X_train =")
38 print(X_train)
39 print("y_train = ")
40 print(y_train)
41
42 ## num max épocas
43 nepochs = 5000
44 \text{ tol} = 1e-3
45
46 for epoch in range (nepochs):
47
48
       # forward
49
       y_est = model(X_train)
50
       # erro
51
52
       loss = loss_fun(y_est, y_train)
53
       print(f'{epoch}: {loss.item():.4e}')
54
55
56
        # critério de parada
57
       if (loss.item() < tol):</pre>
58
            break
59
60
        # backward
61
       for s in torch.randperm(ns):
62
            loss_s = (y_est[s,:] - y_train[s,:])**2
```

2.2.3 Exercícios

[[tag:construcao]]

Exercício 2.2.1. Calcule a derivada da função de ativação

$$f(x) = \tanh(x). \tag{2.39}$$

Exercício 2.2.2. Use o Método do Gradiente para treinar um Perceptron para o problema de classificação estudado na Subseção 2.1.2.

Exercício 2.2.3. Refaça o Exercício 2.2.2 usando o Método do Gradiente Estocástico como otimizador.

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

Pь

00 -

50+

00

250 -

300

-35₀

-400

-450-

-500

-600

Capítulo 3

Perceptron Multicamadas

3.1 Modelo MLP

Uma Perceptron Multicamadas (MLP, do inglês, *Multilayer Perceptron*) é um tipo de Rede Neural Artificial formada por composições de camadas de perceptrons. Consulte a Figura 3.1.

Figura 3.1: Estrutura de uma rede do tipo Perceptron Multicamadas (MLP).

Denotamos uma MLP de n camadas por

$$\boldsymbol{y} = \mathcal{N}\left(\boldsymbol{x}; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.1}$$

onde $(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)})$ é a tripa de pesos, bias e função de ativação da l-ésima camada da rede, $l=1,2,\ldots,n$.

A saída da rede é calculada por iteradas composições das camadas, i.e.

$$\boldsymbol{a}^{(l)} = f^{(l)} \underbrace{\left(W^{(l)} \boldsymbol{a}^{(l-1)} + \boldsymbol{b}^{(l-1)}\right)}_{\boldsymbol{z}^{(l)}}, \tag{3.2}$$

para $l=1,2,\ldots,n,$ denotando $\boldsymbol{a}^{(0)}:=\boldsymbol{x}$ e $\boldsymbol{a}^{(n)}:=\boldsymbol{y}$

3.1.1 Treinamento

Fornecido um conjunto de treinamento $\{\boldsymbol{x}^{(s)}\}_{s=1}^{n_s}$, com n_s amostras, o treinamento da rede consiste em resolver o problema de minimização

$$\min_{(W,b)} \varepsilon \left(\boldsymbol{y}^{(s)} \right) \tag{3.3}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

onde ε é uma dada função erro.

O problema de minimização pode ser resolvido por um Método de Declive e, de forma geral, consiste em:

- 1. \boldsymbol{w}, b aproximações iniciais.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(W, \boldsymbol{b}) \leftarrow (W, \boldsymbol{b}) - l_r \boldsymbol{d}$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem**¹ e o vetor direção \boldsymbol{d} depende dos gradientes

$$\nabla_{W,\boldsymbol{b}}\varepsilon := \left(\frac{\partial \varepsilon}{\partial W}, \frac{\partial \varepsilon}{\partial \boldsymbol{b}}\right). \tag{3.4}$$

O cálculo dos gradientes pode ser feito de trás para frente, i.e. para os pesos da última camada, temos

$$\frac{\partial \varepsilon}{\partial W^{(n)}} = \frac{\partial \varepsilon}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z^{(n)}}} \frac{\partial \mathbf{z^{(n)}}}{\partial W^{(n)}},\tag{3.5}$$

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f' \left(W^{(n)} \boldsymbol{a}^{(n-1)} + \boldsymbol{b}^{(n)} \right) \boldsymbol{a}^{(n-1)}. \tag{3.6}$$

Para os pesos da penúltima, temos

$$\frac{\partial \varepsilon}{\partial W^{(n-1)}} = \frac{\partial \varepsilon}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z^{(n)}}} \frac{\partial \mathbf{z^{(n)}}}{\partial W^{(n-1)}},\tag{3.7}$$

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n)}\right) \frac{\partial \boldsymbol{z}^{(n)}}{\partial \boldsymbol{a}^{(n-1)}} \frac{\partial \boldsymbol{a}^{(n-1)}}{\partial \boldsymbol{z}^{(n-1)}} \frac{\partial \boldsymbol{z}^{(n-1)}}{\partial W^{(n-1)}}$$
(3.8)

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{v}} f'\left(\boldsymbol{z}^{(n)}\right) W^{(n)} f'\left(\boldsymbol{z}^{(n-1)}\right) \boldsymbol{a}^{(n-2)}$$
(3.9)

e assim, sucessivamente para as demais camadas da rede. Os gradientes em relação aos biases podem ser analogamente calculados.

 $^{^{1}}$ Em inglês, learning rate.

3.1.2 Aplicação: Problema de Classificação XOR

Vamos desenvolver uma MLP que faça a operação xor (ou exclusivo). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R = A_1xorA_2$. Consultamos a seguinte tabela verdade:

$$\begin{array}{c|cccc} A_1 & A_2 & R \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \end{array}$$

Assumindo V = 1 e F = -1, podemos modelar o problema tendo entradas $\mathbf{x} = (x_1, x_2)$ e saída y como na seguinte tabela:

Modelo

Vamos usar uma MLP de estrutura 2-2-1 e com funções de ativação $f^{(1)}(\boldsymbol{x}) = \tanh(\boldsymbol{x})$ e $f^{(2)}(\boldsymbol{x}) = id(\boldsymbol{x})$. Ou seja, nossa rede tem duas entradas, uma camada escondida com 2 unidades (função de ativação tangente hiperbólica) e uma unidade de saída (função de ativação identidade).

Treinamento

Para o treinamento, vamos usar a função erro quadrático médio

$$\varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \left| \tilde{y}^{(s)} - y^{(s)} \right|^2, \tag{3.10}$$

onde os valores estimados $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}\right)$ e $\left\{\boldsymbol{x}^{(s)}, y^{(s)}\right\}_{s=1}^{n_s}$, $n_s = 4$, conforme na tabela acima.

Implementação

O seguinte código implementa a MLP e usa o Método do Gradiente Descendente (DG) no algoritmo de treinamento.

```
Código 3.1: mlp_xor.py
1 import torch
2
3 # modelo
4
5 model = torch.nn.Sequential(
       torch.nn.Linear(2,2),
       torch.nn.Tanh(),
7
8
       torch.nn.Linear(2,1)
9
10
  # treinamento
11
12
13 ## optimizador
14 optim = torch.optim.SGD(model.parameters(), lr=1e-2)
15
16 ## função erro
17 loss_fun = torch.nn.MSELoss()
18
19 ## dados de treinamento
20 \text{ X\_train} = \text{torch.tensor([[1., 1.],}
                       [1., -1.],
21
22
                       [-1., 1.],
                       [-1., -1.]
23
24 \ y_{train} = torch.tensor([-1., 1., -1.]).reshape(-1,1)
25
26 print("\nDados de treinamento")
27 print("X_train =")
28 print(X_train)
29 print("y_train = ")
30 print(y_train)
31
32 ## num max épocas
33 nepochs = 5000
34 \text{ tol} = 1e-3
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

ot

```
35
36
   for epoch in range (nepochs):
37
38
        # forward
39
        y_est = model(X_train)
40
41
        # erro
        loss = loss_fun(y_est, y_train)
42
43
        print(f'{epoch}: {loss.item():.4e}')
44
45
46
        # critério de parada
        if (loss.item() < tol):</pre>
47
48
            break
49
50
        # backward
        optim.zero_grad()
51
        loss.backward()
52
53
        optim.step()
54
55
   # verificação
56
   y = model(X_train)
   print(f'y_est = {y}')
```

3.1.3 Exercícios

[[tag::construcao]]

3.2 Aplicação: Aproximação de Funções

Redes Perceptron Multicamadas (MLP) são aproximadoras universais. Nesta seção, vamos aplicá-las na aproximação de funções uni- e bidimensionais.

3.2.1 Função unidimensional

Vamos criar uma MLP para aproximar a função gaussiana

$$y = e^{-x^2}, (3.11)$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рı

0

+ 25

300

-350

40

-450

500

-550

<u> 6</u>00

```
para x \in [-1,1].
                    Código 3.2: mlp_gaussiana_1d.py
1 import torch
2 import matplotlib.pyplot as plt
4 # modelo
5
6 model = torch.nn.Sequential(
7
       torch.nn.Linear(1,25),
       torch.nn.Tanh(),
       torch.nn.Linear(25,1)
9
10
11
12 # treinamento
13
14 ## fun obj
15 fobj = lambda x: torch.exp(-x**2)
16 \ a = -1.
17 b = 1.
18
19 ## optimizador
20 optim = torch.optim.SGD(model.parameters(),
21
                             lr=1e-2, momentum=0.9)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
25
26 ## num de amostras por época
27 \text{ ns} = 100
28 ## num max épocas
29 nepochs = 5000
30 ## tolerância
31 \text{ tol} = 1e-5
32
33 for epoch in range (nepochs):
34
35
       # amostras
36
       X_{train} = (a - b) * torch.rand((ns,1)) + b
37
       y_train = fobj(X_train)
```

pt

100

50 -

00

-35

-40

450

500 —

550

-600

```
38
39
        # forward
        y_est = model(X_train)
40
41
42
        # erro
43
        loss = loss_fun(y_est, y_train)
44
45
        print(f'{epoch}: {loss.item():.4e}')
46
47
        # critério de parada
        if (loss.item() < tol):</pre>
48
49
            break
50
        # backward
51
52
        optim.zero_grad()
53
        loss.backward()
54
        optim.step()
55
56
57 # verificação
  fig = plt.figure()
   ax = fig.add_subplot()
59
60
61 x = torch.linspace(a, b,
62
                         steps=50).reshape(-1,1)
63
64 \text{ y_esp} = \text{fobj(x)}
65
  ax.plot(x, y_esp, label='fobj')
66
67 \text{ y_est} = \text{model(x)}
68 ax.plot(x, y_est.detach(), label='model')
69
70 ax.legend()
71 ax.grid()
72 ax.set_xlabel('x')
73 ax.set_ylabel('y')
74 plt.show()
```

Þь

.00+

0

30

-350

-400 —

-450 -

500

50

-60

3.2.2 Função bidimensional

Vamos criar uma MLP para aproximar a função gaussiana

```
y = e^{-(x_1^2 + x_2^2)},		(3.12)
```

para $\mathbf{x} = (x_1, x_2) \in [-1, 1]^2$.

Código 3.3: mlp_gaussiana_2d.py

```
1 import torch
2 import matplotlib.pyplot as plt
   # modelo
4
6
   model = torch.nn.Sequential(
       torch.nn.Linear(2,50),
7
8
       torch.nn.Tanh(),
9
       torch.nn.Linear(50,25),
10
       torch.nn.Tanh(),
       torch.nn.Linear(25,5),
11
12
       torch.nn.Tanh(),
13
       torch.nn.Linear(5,1)
14
15
16
  # treinamento
17
18 ## fun obj
19 \ a = -1.
20 \, b = 1.
21 \text{ def fobj(x)}:
       y = torch.exp(-x[:,0]**2 - x[:,1]**2)
22
23
       return y.reshape(-1,1)
24
25 ## optimizador
26 optim = torch.optim.SGD(model.parameters(),
27
                             lr=1e-1, momentum=0.9)
28
29 ## função erro
30 loss_fun = torch.nn.MSELoss()
31
32 ## num de amostras por eixo por época
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

```
33 \text{ ns} = 100
34 ## num max épocas
35 nepochs = 5000
36 ## tolerância
37 \text{ tol} = 1e-5
38
39
  for epoch in range(nepochs):
40
41
        # amostras
42
        x0 = (a - b) * torch.rand(ns) + b
        x1 = (a - b) * torch.rand(ns) + b
43
44
       X0, X1 = torch.meshgrid(x0, x1)
45
        X_train = torch.cat((X0.reshape(-1,1),
46
                               X1.reshape(-1,1)),
47
                              dim=1)
48
        y_train = fobj(X_train)
49
50
        # forward
51
        y_est = model(X_train)
52
53
        # erro
54
        loss = loss_fun(y_est, y_train)
55
56
        print(f'{epoch}: {loss.item():.4e}')
57
        # critério de parada
58
59
        if (loss.item() < tol):</pre>
            break
60
61
62
        # backward
        optim.zero_grad()
63
64
        loss.backward()
65
        optim.step()
66
67
68 # verificação
  fig = plt.figure()
70 ax = fig.add_subplot()
71
72 n = 50
```

Ьr

```
73 \times 0 = \text{torch.linspace}(a, b, \text{steps=n})
74 	ext{ x1 = torch.linspace(a, b, steps=n)}
75 X0, X1 = torch.meshgrid(x0, x1)
76 	ext{ X = torch.cat}((X0.reshape(-1,1),
                      X1.reshape(-1,1)),
77
78
                     dim=1)
79
80 \text{ y_esp} = \text{fobj(X)}
81 Y = y_{esp.reshape((n,n))}
82 levels = torch.linspace(0., 1., 10)
83 c = ax.contour(X0, X1, Y, levels=levels, colors='white')
84 ax.clabel(c)
86 \text{ y_est} = \text{model(X)}
87 	ext{ Y = y_est.reshape}((n,n))
88 ax.contourf(X0, X1, Y.detach(), levels=levels)
89
90 \text{ ax.grid()}
91 \text{ ax.set}_xlabel('x_1')
92 \text{ ax.set_ylabel('x_2')}
93 plt.show()
```

3.2.3 Exercícios

[[tag::construcao]]

3.3 Aplicação: Equação de Laplace

Vamos criar uma MLP para resolver

$$-\Delta u = f, \quad \boldsymbol{x} \in D = (-1, 1)^{2},$$

$$u = 0, \quad \boldsymbol{x} \in \partial D.$$
(3.13a)
(3.13b)

Para validação, vamos considerar um problema com solução manufaturada

$$u(\mathbf{x}) = \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2) \tag{3.14}$$

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

Pь

```
o que nos fornece
        f = \pi^2 \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2).
                                                               (3.15)
                       Código 3.4: mlp_eqlaplace.py
1 import torch
2 import matplotlib.pyplot as plt
3
4 # modelo
5
6 model = torch.nn.Sequential(
7
        torch.nn.Linear(2,500),
8
        torch.nn.Tanh(),
9
        torch.nn.Linear(500,250),
10
        torch.nn.Tanh(),
11
        torch.nn.Linear (250,50),
12
        torch.nn.Tanh(),
13
        torch.nn.Linear(50,1)
14
15
16 # treinamento
17
18 ## fun obj
19 \ a = -1.
20 b = 1.
21
   def exact(x):
        y = torch.sin(torch.pi*x[:,0])*torch.sin(torch.pi*x[:,1])
23
        return y.reshape(-1,1)
24
25 \text{ def } rhs(x):
26
        y = torch.pi**2*torch.sin(torch.pi*x[:,0])*torch.sin(torch.pi*x[:
27
        return y.reshape(-1,1)
28
29 ## optimizador
  optim = torch.optim.SGD(model.parameters(),
31
                               lr=1e-2, momentum=0.85)
32 ## scheaduler
33
   scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
34
                                                                  factor = 0.6,
35
                                                                  min_lr = 1e-6,
```

t 100 150 200 250 300 350 400 450 500 550 600

```
36
37 ## num de amostras pts internos
38 \, n_{in} = 200
39 ## num de amostras pts fronteira
40 \text{ n_bound} = 50
41 ## num max épocas
42 nepochs = 5000
43 ## tolerância
44 \text{ tol} = 1e-5
45 ## output freq
46 \text{ eout} = 100
47
48 def loss_fun(X_in, X_bound, model=model):
49
50
        ## pontos internos
51
        n_{in} = X_{in.size}(0)
52
        1_{in} = 0.
53
        for s in range(n_in):
54
            x = X_{in}[s:s+1,:].detach()
            x.requires_grad = True
55
            u = model(x)
56
            grad_u = torch.autograd.grad(u, x,
57
58
                                             create_graph = True,
59
                                             retain_graph = True)[0]
60
            u_x = grad_u[0,0]
61
            u_y = grad_u[0,1]
62
63
            u_xx = torch.autograd.grad(u_x, x,
64
                                          create_graph = True,
65
                                          retain_graph = True)[0][0,0]
66
            u_yy = torch.autograd.grad(u_y, x,
67
                                          create_graph = True,
68
                                          retain_graph = True)[0][0,1]
69
            l_{in} = torch.add(l_{in}, (u_{xx} + u_{yy} + rhs(x))**2)
70
        1_in /= n_in
71
72
        ## pontos de contorno
73
74
        n_bound = X_bound.size(0)
        1 bound = 0.
75
```

 \mathbf{pt}

TÀN

150 +

00

3

-450

-500

550 —

```
76
        for s in range(n_bound):
77
             x = X_bound[s:s+1,:]
78
             u = model(x)
79
             1_bound = torch.add(1_bound, u**2)
80
        l_bound /= n_bound
81
82
        return l_in + l_bound
83
84
85
   # pts de fronteira
86 X_{bound} = torch.empty((4*n_bound, 2))
87 # pts internos
88 X_{in} = torch.empty((n_{in}, 2))
89
90 # épocas
91
   for epoch in range(nepochs):
92
93
        # amostras: pts internos
94
        for s in range(n_in):
95
             X_{in}[s,:] = (a-b)*torch.rand(2) + b
         # amostras: pst fronteira
96
97
98
        for i in range(n_bound):
99
             \# \ a <= x0 <= b, x1 = 0
100
             X \text{ bound } [s,0] = (a-b)*torch.rand(1) + b
101
             X_bound[s,1] = a
102
             s += 1
103
             # x0 = b, a <= x1 <= b
104
105
             X bound[s,0] = b
106
             X_{bound}[s,1] = (a-b)*torch.rand(1) + b
107
             s += 1
108
109
             # x0 = a, a \le x1 \le b
110
             X_bound[s,0] = a
111
             X_{bound}[s,1] = (a-b)*torch.rand(1) + b
112
             s += 1
113
114
             \# \ a <= x0 <= b, x1 = b
             X \text{ bound } [s,0] = (a-b)*torch.rand(1) + b
115
```

```
116
             X_bound[s,1] = b
117
             s += 1
118
119
        # erro
120
        loss = loss_fun(X_in, X_bound)
121
122
        print(f'{epoch}: loss = {loss.item():.4e}, lr = {optim.param_groups[0]["
        if ((epoch+1) % eout == 0):
123
124
             # verificação
             fig = plt.figure()
125
             ax = fig.add_subplot()
126
127
128
             ns = 50
129
             x0 = torch.linspace(a, b, steps=ns)
130
             x1 = torch.linspace(a, b, steps=ns)
131
             X0, X1 = torch.meshgrid(x0, x1)
132
             X = torch.cat((X0.reshape(-1,1),
133
                             X1.reshape(-1,1)),
134
                            dim=1)
135
             y_{esp} = exact(X)
136
             Y = y_esp.reshape((ns,ns))
137
             c = ax.contour(X0, X1, Y, levels=10, colors='white')
138
139
             ax.clabel(c)
140
141
             y_{est} = model(X)
             Y = y_est.reshape((ns,ns))
142
             cf = ax.contourf(X0, X1, Y.detach(), levels=10, cmap='coolwarm')
143
             plt.colorbar(cf)
144
145
146
             # amostras
             ax.plot(X_in[:,0].detach(), X_in[:,1].detach(), ls='', marker='*', c
147
148
             ax.plot(X_bound[:,0].detach(), X_bound[:,1].detach(), ls='', marker=
149
150
             ax.grid()
             ax.set_xlabel('$x_1$')
151
             ax.set_ylabel('$x_2$')
152
153
             plt.show()
154
155
```

t 100 150 200 250 300 350 400 450 500 550 600

```
# critério de parada
156
        if (loss.item() < tol):</pre>
157
158
             break
159
         # backward
160
        optim.zero_grad()
161
         loss.backward()
162
        optim.step()
163
         scheduler.step(loss)
164
```

3.3.1 Exercícios

[[tag::construcao]]

Resposta dos Exercícios

Exercício 2.1.1. Dica: verifique que sua matriz hessiana é positiva definida.

Exercício 2.1.2. Dica: consulte a ligação Notas de Aula: Matemática Numérica: 7.1 Problemas lineares.

Exercício 2.2.1. $(\tanh x)' = 1 - \tanh^2 x$

Bibliografia

[1] I. Goodfellow, Y. Bengio, and A. Courville. *Deep learning*. MIT Press, Cambridge, MA, 2016.