

## Classes of studies Ethical research How to publish research Basic stats Reading and interpreting papers

# Types of Papers + Invited + Review + Original research

### **Invited Paper**

- + Author(s) are experts/at cutting edge in field
- + Editor of journal asks them to submit paper on their
- + Largely summarizes their past work and looks to the "state of the art" in a particular area
- + Beware the author that thinks a little too highly of himself

### **Review Paper**

- + Authors extensively summarize current and past research on a particular topic
- + Can have well over 100 references
- + Author(s) often experts in particular area
  - + Often invited
- + Extremely useful for getting up to speed in a particular field

### Original Research Paper

- + Authors are presenting information on original data they have collected
- $\textcolor{red}{+} \ \, \text{Including development of tool/treatment}$ 
  - + In this type of study, the methodology may be more interesting than the results

### Types of Original Research Studies + Retrospective

- - + Chart review
- + Prospective
- + Randomized vs. paired (matched)
- + Blinded vs. non-blinded
- + The gold standard
  - + Prospective, double-blind randomized study

### **Retrospective Studies**

- + Study of already-existing data
- + Relatively easy to perform
  - + Data are already there, just have to look it up
  - + Chart review
    - + Pull out charts on former/current patients, look up required information, test results, etc.

### Problems with Retrospective Studies

- + No co
- + Need
  - + Nt

| nems with Retrospective Studies                                            |
|----------------------------------------------------------------------------|
| ontrol over confounding variables                                          |
| A lots of data to show any kind of population effect urses study           |
| Huge dataset has over 100,000 respondents  Lots of good science  And       |
| + Correlation between french fry consumption as a child and breast cancer? |
|                                                                            |
|                                                                            |
|                                                                            |

### **Prospective Studies**

- + Examine the effect of a treatment vs a group receiving different/no/placebo treatment
  - + Treatments decided ahead of time
  - ullet Protocol for all subjects determined
- + Can be difficult
  - + People must consent to participating
  - + All treatments (or lack thereof) must be ethical

10

### **Advantages of Prospective Studies**

- + Designed to answer a particular question
- $\mbox{+}$  Design should eliminate factors that may confound the issue

11

### **Randomized Studies**

- $\mbox{+}$  Subjects are randomly assigned to groups
- + Keeps investigators from choosing subjects who are more/less likely to respond to treatment
- + Should lead to a relatively equal distribution of subjects between groups
  - + Roughly same age range in groups
  - + Roughly same body types
  - + But, it may not

### **Matching Subjects**

- + Eliminate chance of demographics of one group being different from demographics of another
- + Not easy to match large groups for
  - + Gender
  - + Height
  - + Weight
  - + Fitness level
  - + Etc.

13

### Blinding of Investigators

- + Investigators examining subjects should not be aware of their treatment status
  - + Could lead to biasing results of their examinations
  - + It's hard to be *completely* objective

14

### **Double-Blind Studies**

- + Both investigators and subjects are unaware of which subjects belong to which group
  - + Control for placebo effects
    - + Can be 30%

### The Research Gold Standard

- + Prospective, double-blinded randomized study
  - + Best way to show an effect of treatment, etc.
  - + Designed to eliminate confounding factors, control
  - + Randomization should avoid bias in selection of
  - + Blinding of investigators and subjects should ensure integrity of results, account for placebo effects

16

### Hydroxychloroquine [Plaquenil] and COVID-19 Controversy

- + Many positive reports
- + Is it an effective treatment for COVID-19?
- + Most studies had no control group
- + In most positive studies it was used in conjunction with a kitchen sink of other treatments
  - + Azithromycin [antibiotic, "Z pack"]
  - + Corticosteroids [powerful anti-inflammatory drugs]
- + FYI, hydroxychloroquine is NOT a useful treatment for

17

### **Ethical Research**

- + Research should not compromise treatment
  - + Difficult to challenge the "gold standard" for treatment
  - + Nor should study participants receive more attention
- + Built-in protections for subjects
  + HIPAA

  - + Informed consent
  - + Institutional review board
  - + Often required by journals in order to publish results of research

### **HIPAA**

- $\mbox{+}$  Health insurance portability and accountability act
  - + Passed in 1996
  - + Been to the doctor in the past 25 years?
- + Mainly deals with how your medical records may be exchanged/discussed among medical professionals, insurance companies, etc.
- + Any subject data in a study must be de-identified
  - + No way to link study data to a particular person
  - + Data must be kept secure

19

### **Informed Consent**

- + Research subjects must be aware of and *understand*:
  - + All possible consequences of their participation
  - + Any benefits they may accrue
  - + Should be written and signed

20

### Institutional Review Board (IRB)

- + Should review and approve all research at an institution before it is carried out
  - + Including the informed consent form
- + Made up of a combination of people
  - + Scientists familiar with the topic
  - + Other scientists
  - $\mbox{\Large +}\,$  Non-scientific members of the institution
  - ullet Members of the community

### **Publishing Your Research**

- $\mbox{\ \, +\ \, }$  Carry out a quality study with a significant result
- + Find the appropriate journal
  - + Quality, well-respected
  - + Read by people in the field with which you are dealing
- + Write up research in the appropriate format
- + Submit to journal editor for review

22

### Peer Review

- + Editor will send paper to several reviewers who should be experts in the field
  - + Should be blind to the source of the paper
    - + Not always possible
    - + Reviewers often familiar with other researchers in the field
  - + Accept as-is
  - + Accept pending revisions
  - + Revise and re-submit
  - + Reject

23

### Problems With Peer Review

- + Can be hard to publish controversial, but correct findings
  - + People may have trouble accepting something that goes against theory that they believe (or espouse)
- + Dependent on ethics of reviewers
- + Best system available

### Writing Your Paper

- + Know the relevant literature
- + Write for the appropriate audience
- $\mbox{+}$  Always define acronyms before using them
- + Use appropriate grammar
- + Know the relevant literature

25

### Suggestion for Paper Structure

- + Abstract
- + Introduction
- + Materials and methods
- + Results
- + Discussion and conclusions

26

### Writing Your Paper: The Abstract

- + Short summary
  - + Usually around 150 words
- + Should include:
  - + Purpose of study
  - + Overview of methodology + Overview of results

  - + Statement of what study showed
- + The sales pitch
  - "What's it going to take to get you to read my paper?"
    Often the only text publically-available
- + Usually, the last thing written

### Writing Your Paper: Introduction

- + Summarize what is currently known about the topic
  - + Cite all appropriate literature
  - ullet Make sure you've actually read it as well
- + Why is your project needed?
- + What question does your project answer?
- + State purpose at end
  - + Along with any hypotheses

28

### Writing Your Paper: Materials and Methods

- + Describe what was done
  - The reader should be able to reproduce your study
- + Subjects involved

  - + Demographics
     + Inclusion/exclusion criteria
     + How were they divided into groups?
- + Apparatus used
  - + Hardware + Software
- + Describe how analysis performed
- + What statistics were used

29

### Writing Your Paper: Results

- + Charts and tables often the best
  - $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- + Text should elaborate on interesting results
- + Do not speculate about the meaning of the results
  - + Just state them

### Writing Your Paper: Discussion and Conclusions

- + Summarize results and provide interpretation + What's it mean?
- $\mbox{\Large +}$  Include how your results relate to the existing literature on the topic

  - + Hopefully in agreement with previous work
    + If not in agreement, explain why
    + How do your results extend current knowledge?
- Did you answer your research question?Hypotheses proven/disproven?
- + Weaknesses of your study
- + Recommendations for further work

31



32

### Sensitivity

- + Probability of detecting disease/symptom, given that person has disease/symptom
- + (number with positive test) / (total number of people with disease)
- ullet True positive rate

### Specificity

- + Probability of not detecting disease/symptom given that person does not have disease/symptom
- + (number with negative test) / (total number of people without disease)
- ullet True negative rate

34

### **Related Terms**

- Positive predictive value
   Probability that a person has disease/condition given a positive test
- Negative predictive value
   Probability that a person does not have disease/condition given a negative test
- + False positive
  - + Person who tests positive but is really negative
- + False negative
  - + Person who tests negative but is really positive

35

### An Example

|                 | Positive Test | Negative Test |
|-----------------|---------------|---------------|
| Disease Present | 150           | 30            |
| Disease Absent  | 60            | 260           |

- + Sensitivity = 150 / 180 = 0.83
- + Specificity = 260 / 320 = 0.81
- + Positive predictive value = 150 / 210 = 0.71
- + Negative predictive value = 260 / 290 = 0.90

## + Mammography + 75-90% sensitive + 90-95% specific + PPV: + 20%, women < 50 + 60-80%, women 50-69

37

## + With a completely new, highly infectious contagion, is a sensitive or specific test more important to prevent spread? + What are consequences of a false negative vs a false positive? + Very non-theoretical issue: if people can have the virus and be asymptomatic, how does one determine the true positive rate?

38

### An Example for a Very Contagious Disease with No Good Treatment

|                 | Positive Test | Negative Test |
|-----------------|---------------|---------------|
| Disease Present | 180           | 0             |
| Disease Absent  | 100           | 220           |

- + Sensitivity = 180 / 180 = 1.0
- + Specificity = 220 / 320 = 0.69
- + Positive predictive value = 180 / 280 = 0.64
- + Negative predictive value = 220 / 220 = 1.0

### Summary

- + Useful to know specificity/sensitivity/etc. in order to understand the purpose of a given test
- + Need to establish these values when developing new tests and procedures

40

### Controversy: Whole-Body CAT Scan

- + Whole-body CAT scan for healthy people to pick up any possible disease
- + Problems:
  - + CAT scan sensitive, but not specific
  - + Findings often equivocal, require lots of follow up testing to confirm
  - + Causes lots of unnecessary worry
  - + Stress on already-burdened health care system

41

### Type I Error

- + Detecting a difference between two groups when none really exists
  - + False positive
- + P value of a calculation
  - + Expresses chance of a type I error
  - $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

### A Word About P-Values

- + P < 0.05 an arbitrary threshold
  - + Means 95% certain result is not just a statistical fluke
  - + Is this "good enough?"
- $\mbox{+}\,$  This means that 1 of 20 "statistically significant" results is result of random error
  - + What happens when dozens of medical journals become hundreds?
- + Sterne, Smith. Sifting the evidence—what's wrong with significance tests? British Medical Journal 322:226-231, 2001.
  - + http://bmj.bmjjournals.com

43

### Type II Error

- + Not detecting a difference between two groups that does, in fact, exist
  - + False negative
- + Tends to occur with small sample sizes
- + Statistical power
  - + Power of 80% usually used
  - + Requires knowledge of your test population
    - + How variable measurements will be
    - + Good guessing

44

### Sources of Error

- + Bias
  - $\mbox{+}$  Measurement always erroneously high or low
  - + Human tendencies
  - + Other systemic effects
    - + Calibration of measuring device
- + Random error
  - + Difficulty in reproducing test conditions
  - + Noisy measurement tools
  - + Noisy measures
    - + Biological systems tend to have large tolerances

### Comparing Sets of Data Independent data Dependent (paired) data Normally distributed! "If there's any justice in the world, everything is Gaussian." - F. Fontaine, many times Comparing means

46

### Independent t-test

- + Comparing two different things + Independent
- + Comparing the means of two different populations
- + Standard deviation/standard error give an idea of how spread about the mean data are
  - + Variance

47

### Paired t-test

- + Comparing data that are paired
  - $\buildrel +$  e.g., leg strength before and after rehab in same person
  - ullet Data are not statistically independent
- + Mean, std dev/err of groups are *not* interesting for this comparison
- + Interested in the mean/std dev of the difference between the pairs

### + Compare pain scores (scale of 1-100) in subjects + Comparison of people with arthritis to people without arthritis + Independent t-test + Comparison of people with arthritis to the same people before they had arthritis + Paired t-test

49

### Comparing More Than Two Things

- + Example: subjects with ACL reconstruction (anterior cruciate ligament, in the knee)
  - ullet Involved (injured) side vs. uninvolved side
  - + Test knee flexion strength at different speeds: 30, 60, 90, 120 deg/sec
  - + Two sides, four speeds = lots of t-tests (paired or unpaired in this case?)
- + ANOVA (repeated measures)

50

### **ANOVA**

- + Analysis of variance
- + Way of performing many comparisons
- + Main effects
- + Interactions

## + Previous example: + 2 x 4 ANOVA + 2: uninvolved, involved leg + 4: different speeds + Main effects [possible explanations]: + Leg + ACL leg weaker (?) + Speed + Lower strength at higher speed (regardless of which leg) (?) + Interaction [possible explanations]: + Between leg and speed + Involved leg weaker at some speeds but not others (?)

52

### Types of ANOVA + Repeated measures + Previous example + All data being compared are dependent + Mixed model + Some comparisons independent + Example: + Test strength prior to and after some intervention + Also compare between genders + 2 x 2 mixed model ANOVA

53

# + Use post-hoc t-tests to illustrate differences + Mean and std dev of all tests with involved leg vs uninvolved leg + Use P-value for t-tests + This is unneeded if there are only two levels to the variable: e.g., pre vs post, since there is only one comparison to make + Beware multiple comparisons!

### **Multiple Comparisons**

- + Comparing variables all day increases chances of finding a significant result
- + Correct for multiple comparisons in *post-hoc* t-tests
  - + Strict: *Bonferroni* correction
  - + Multiply P-value by number of comparisons made
    - $\buildrel +$  If three comparisons, need P < 0.017 for significance
- + Some studies do this, some do not!

55

### Another ANOVA Issue

- + Sphericity
  - + Variance of effect (SD of difference) is different between different levels of a variable
  - + There exist corrections for this
    - + e.g., Greenhouse-Geisser
  - + Very few studies do this!

56

### Linear Regression and Correlation

- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$ 
  - + Let's hope it is
  - + We are not good at explaining non-linear things
  - + Exponential isn't so bad
- + Correlation coefficient explains how much variance in one variable is accounted for by another variable

## Pearson correlation Pearson R R Correlation between two variables: The value R² tells how much one variable explains variance in another Correlations may be statistically significant but not particularly useful

58

### Multiple Regression

- + Model some data as a linear combination of several other variables
  - + E.g., body fat from skinfold measurements
- + Can be very useful
- + Can be horribly misapplied

59

### Limits of Agreement

- + Where can data be expected to live?
- + 68% within 1 st dev of mean
- + 95% within 2 st devs of mean



# Pain + Outcome after a treatment/procedure + Patient/subject satisfaction + Mood ring?

# Outcome Measurements + Questionnaire + Score for each question + Must be validated + "How do you feel?" scale of 1 to 10 + Not continuous + Visual analog scale + Mark pain/satisfaction on [10 cm] line + Measure distance from start of line to mark

# My Data Aren't Normally Distributed!!! + Few samples + Difficult to create a bell-shaped curve with five subjects + Non-continuous data + Categorical data + "yes", "no", "sometimes" + Use non-parametric statistics

64

# Non-Parametric Statistics + Non-parametric versions of parametric tests + Independent t-test: Mann-Whitney test + Paired t-test: Wilcoxon test + Etc... + Chi-square test + More yes replies in group 1 than group 2

65

# A Word About Statistical Significance Not necessarily clinically significant! Is effect smaller than something that can be measured reliably? + e.g., Group 1 has 0.5° more knee flexion than group 2

## Important Medical Research Trivia + Do not compare right vs left + Why? + What part of the body is referred to as the "leg"?

67

### Reading and Interpreting Papers

- + Read with a critical eye!
  - + Appropriate prior research cited in introduction?
  - + Used correct tools?
  - + Measuring devices
  - + Stats
  - + Used tools properly?
  - + Electromagnetic tracker in room with metal studs in walls
  - + Correct interpretation of statistics

68

### Reading and Interpreting Papers

- + Beware the abstract!
  - + Sales pitch for the paper
  - ullet Often good to read last rather than first
    - + Did authors, in fact, demonstrate what they claim in abstract?

### Sample Study

- + Effects of remote, retroactive intercessory prayer on outcomes in patients with bloodstream infection: randomised controlled trial
  - + Leonard Leibovici
  - + British Medical Journal 2001; 323:1450-1451
- $\textcolor{red}{+}\ \text{http://bmj.bmjjournals.com/cgi/content/full/323/732}$

70

### Sample Study

- + Population
  - + All adult patients admitted to a university hospital with bloodstream infection from 1990-1996
  - + 3393 patients
- + Randomized into two groups
  - + 1691 in intervention group
  - + 1702 in control group

71

### Sample Study

- + Intervention
  - $\mbox{\ \, + \ \, }$  List of first names of patients in intervention group given to a person
  - + Person said short prayer for the well-being and full recovery of this group as a whole
- + Variables compared
  - + Number of deaths in hospital (mortality)
    + Length of hospital stay

  - + Duration of fever

### Sample Study

- + Results
  - + Mortality not different between groups
    - + 28.1% vs 30.2%, P = 0.4
  - + Length of stay in hospital shorter in intervention group + P = 0.01

  - + Duration of fever shorter in intervention group
  - + P = 0.04
- - + "...This intervention is cost effective, probably has no adverse effects, and should be considered for clinical

73

### Sample Study Strengths and Weaknesses

- + Prayer said long after illness
  - + Is this useful?
  - Does it affect the way patient will be treated in hospital if it is known that s/he will be prayed for afterwards?
     Perhaps it doesn't matter as long as the prayer is said?
- + Why not pray when they come into hospital?
  - + Prospective study
  - + But, presumably, a supreme being is not limited by causality
- + What flavor of prayer?
  - + Performed in Israel
  - + Christians/Muslims/Buddhists/Druids/Pastafarians et al. are wrong?

74

### Sample Study Conclusion

- + Proof of existence of divine?
- + Proof of existence of Type I error?
- + Note: published in December issue
  - + BMJ often publishes *interesting/ironic* papers in the "Christmas" or April issues

## + Many databases available + Some pay + Some free + PubMed: + https://www.ncbi.nlm.nih.gov/PubMed/ + Free access to MEDLINE and several other databases + Google Scholar + https://scholar.google.com + Often leads to PDFs the author may have uploaded