Matthias Danner Blatt 2

Ferienkurs Elektrodynamik - WS 08/09

1 Energieberechnung

Eine Vollkugel mit Radius R trägt die Ladungsdichte $\rho(r) = k r$ und befinde sich in einem ansonsten Ladungsfreien Raum. Berechnen Sie die Energie des Systems auf zwei verschiedene Arten und verifizieren Sie damit ihr Ergebnis.

Lösung

Zunächst bestimmt man mit dem Satz von Gauss das Elektrische Feld:

$$\varepsilon_0 \int_{\partial V} d\mathbf{A} \cdot \mathbf{E} = \int_V dV \, \rho$$

$$4\pi \varepsilon_0 \, r^2 \, E(r) = 4\pi \int dr \, k \, r^3 = \begin{cases} k\pi \, r^4 \,, & r < R \\ k\pi \, R^4 \,, & r > R \end{cases}$$

$$\iff E(r) = \begin{cases} \frac{k}{4\varepsilon_0} \, r^2 \,, & r < R \\ \frac{k}{4\varepsilon_0} \, \frac{R^4}{r^2} \,, & r > R \end{cases}$$

Eine Möglichkeit die Energie zu berechnen ist folgende:

$$\begin{split} W &= \frac{\varepsilon_0}{2} \int dV \; \pmb{E}^2 \\ &= \frac{\varepsilon_0}{2} \, \frac{k^2}{16\varepsilon_0^2} \, 4\pi \; (\int_0^R dr \; r^6 \; + \; \int_R^\infty dr \; \frac{R^8}{r^2} \;) \\ &= \frac{\pi k^2}{8\varepsilon_0} \, (\frac{R^7}{7} + R^7) \\ &= \frac{\pi k^2 R^7}{7\varepsilon_0} \end{split}$$

Die andere Möglichkeit ist:

$$W = \frac{1}{2} \int d^3x \; \rho(\boldsymbol{x}) \, \Phi(\boldsymbol{x})$$

Dazu benötigt man jedoch zunächst das Potential.

$$\Phi(r) = -\int_{\infty}^{r} ds E$$

$$= \int_{r}^{R} ds E + \int_{R}^{\infty} ds E$$

$$= \frac{k}{4\varepsilon_{0}} \left(\frac{r^{3}}{3}|_{r}^{R} - \frac{R^{4}}{r}|_{R}^{\infty}\right)$$

$$= \frac{k}{3\varepsilon_{0}} \left(R^{3} - \frac{r^{3}}{4}\right)$$

Damit lässt sich nun ebenfalls die Energie berechnen.

$$W = \frac{1}{2} 4\pi \frac{k^2}{3\varepsilon_0} \int_0^R dr \left(R^3 r^3 - \frac{1}{4} r^6 \right)$$
$$= \frac{2\pi k^2}{3\varepsilon_0} \left(\frac{R^7}{4} - \frac{1}{28} R^7 \right)$$
$$= \frac{\pi k^2 R^7}{7\varepsilon_0}$$

2 Kugel mit vorgegebenem Potential

Auf einer Kugelschale mit Radius R ist folgendes Potential vorgegeben:

$$\Phi(R, \theta, \phi) = \Phi_0 \sin \theta \cos \phi$$

In den Bereichen r < R und r > R gibt es keine Ladungen. Für $r \to \infty$ ist das elektrische Feld $\mathbf{E} = E_0 \mathbf{e}_z$. Bestimmen Sie das Potential im Inneren und Äußeren der Kugel.

Hinweis: Verwenden Sie die allgemeine Lösung der LAPLACE-Gleichung und drücken Sie die Randbedingungen durch Kugelflächenfunktionen aus.

$$Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta, \quad Y_{1,\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\phi}$$

Lösung

Die allgemeine Lösung der Laplace-Gleichung lautet

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (a_{lm} r^{l} + \frac{b_{lm}}{r^{l+1}}) Y_{lm}(\theta,\phi)$$

Die erste Randbedingung lässt sich wiefolgt darstellen:

$$\Phi_0 \sin \theta \cos \phi = \Phi_0 \sqrt{\frac{2\pi}{3}} (Y_{1,-1} - Y_{1,1})$$

Im Folgenden sei r < R.

Damit Φ im Ursprung existiert, müssen alle b_{lm} verschwinden (die b_{lm} beschreiben punktförmige Multipole im Urpsrung; natürlich nur, sofern dieser Element des betrachteten Gebietes ist und dort auch welche sitzen).

Die a_{lm} können nun abgelesen werden:

$$a_{1,\pm 1} = \mp \sqrt{\frac{2\pi}{3}} \frac{\Phi_0}{R}$$
, (alle anderen sind gleich Null)

Einsetzen in die allgemeine Lösung ergibt:

$$\Phi(r, \theta, \phi) = \Phi_0 \frac{r}{R} \sin \theta \cos \phi, \quad r < R$$

Im Folgenden sei r > R.

Aus der zweiten Randbedingung folgt mit $\boldsymbol{E} = -\nabla \Phi$:

$$\lim_{r \to \infty} \Phi(r, \theta, \phi) = -E_0 z = -E_0 r \cos \theta = -E_0 r \sqrt{\frac{4\pi}{3}} Y_{10}(\theta, \phi)$$

Wiederum können die a_{lm} abgelesen werden:

$$a_{10} = -E_0 \sqrt{\frac{4\pi}{3}}$$
, (alle anderen sind gleich Null)

Die erste Randbedingung ist dann durch die b_{lm} zu erfüllen:

$$b_{1,\pm 1} = \mp \Phi_0 R^2 \sqrt{\frac{2\pi}{3}}, \qquad a_{10} R + \frac{b_{10}}{R^2} = 0 \iff b_{10} = E_0 R^3 \sqrt{\frac{4\pi}{3}}$$

Damit erhält man schließlich

$$\Phi(r,\theta,\phi) = E_0 r \left(\frac{R^3}{r^3} - 1\right) \cos \theta + \Phi_0 \frac{R^2}{r^2} \sin \theta \cos \phi, \quad r > 0$$

3 Entladung eines Kondensators

Ein Plattenkondensator aus zwei parallelen Kreisscheiben mit Radius r und Abstand d wird über einen Widerstand R entladen. Die Anfangsladungen auf den Platten sind dabei $\pm Q_0$. Bestimmen Sie zunächst die Ladungen $\pm Q(t)$ und anschließend das Magnetfeld sowie den Poynting-Vektor am Rand der Platten.

Lösung

Es gilt

$$U_C(t) + U_R(t) = \frac{Q(t)}{C} + R\dot{Q}(t) = 0 \iff \dot{Q} + \frac{1}{RC}Q = 0$$

Unter Berücksichtigung der Anfangsbedingungen lautet die Lösung hiervon:

$$Q(t) = Q_0 e^{-t/RC}$$

Mit dem Satz von Stokes sowie aus der Symmetrie des Systems folgt:

$$\int_{\partial A} d\mathbf{s} \cdot \mathbf{B} = 2\pi r B_{\phi} = \varepsilon_{0} \mu_{0} \int_{A} d\mathbf{A} \cdot \dot{\mathbf{E}} = \varepsilon_{0} \mu_{0} r^{2} \pi \frac{\dot{Q}}{Cd}$$

Dabei wurde verwendet, dass $\mathbf{E} = (Q/Cd) \mathbf{e}_z$.

$$m{B} \; = \; -rac{arepsilon_0 \mu_0 r}{2RC^2 d} \, Q(t) \, m{e}_\phi \quad \Longrightarrow \quad m{S} \; = \; rac{1}{\mu_0} m{E} \wedge m{B} \; \propto \; Q^2 \, m{e}_
ho$$

4 Punktladung vor Metallplatte

Eine Punktladung q befinde sich im Abstand a über einer unendlich ausgedehnten Metallplatte. Bestimmen Sie die Oberflächenladung σ und die auf der Metallplatte influenzierte Ladungsmenge. Wie lange dauert es, bis die Punktladung die Platte erreicht?

$$\int dx \, \frac{x^2}{\sqrt{\alpha - x^2}} = -\frac{x}{2} \, \sqrt{\alpha - x^2} + \frac{a}{2} \tan^{-1} \frac{x}{\sqrt{\alpha - x^2}}$$

Lösung

Durch Hinzufügen einer Spiegelladung bei (0, -a, 0) erhält man folgendes Potential:

$$\Phi(\boldsymbol{x}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\|\boldsymbol{x} - a\,\boldsymbol{e}_y\|} - \frac{1}{\|\boldsymbol{x} + a\,\boldsymbol{e}_y\|} \right)$$

Für die Oberflächenladung $\sigma = -\varepsilon_0 \partial_n \Phi$ erhält man:

$$\begin{split} \sigma(x,z) &= -\varepsilon_0 \, \partial_y \Phi(x,0,z) \\ &= \frac{q}{4\pi} \big(\frac{y-a}{\|\boldsymbol{x} - a\,\boldsymbol{e}_y\|^3} - \frac{y+a}{\|\boldsymbol{x} + a\,\boldsymbol{e}_y\|^3} \big) \mid_{y=0} \\ &= -\frac{qa}{2\pi} \, \frac{1}{(\rho^2 + a^2)^{3/2}} \,, \qquad \rho^2 \, = \, x^2 + z^2 \end{split}$$

Die gesamte influenzierte Ladung erhält man durch Integration über die Metallplatte.

$$q_{infl} = \int dA \, \sigma = -qa \int_0^\infty d\rho \, \frac{\rho}{(\rho^2 + a^2)^{3/2}} = -q$$

Die Stammfunktion ist dabei $-1/\sqrt{\rho^2 + a^2}$.

Zur Berechnung der Flugzeit stellt man zunächst das Kraftgesetz für die Punktladung auf.

$$m\ddot{y} = -\frac{1}{4\pi\varepsilon_0} \frac{q^2}{4y^2} \iff \ddot{y} = -\frac{c}{y^2}, \qquad c = \frac{q^2}{16\pi\varepsilon_0 m}$$

Für diesen Typ Differentialgleichung gibt es einen Standardtrick, nämlich mit \dot{y} multiplizieren:

$$\ddot{y}\,\dot{y} = -c\,\frac{\dot{y}}{y^2} \iff \frac{1}{2}\,\frac{d}{dt}\dot{y}^2 = \frac{d}{dt}\frac{c}{y}$$

Es gilt also:

$$\dot{y}^2 = \frac{2c}{y} + \text{const.},$$
 Randbedingung: $\dot{y}(0) = 0 \iff \text{const.} = \frac{2c}{a}$

$$\iff \dot{y} = \sqrt{\frac{2c}{a}} \sqrt{\frac{a-y}{y}}$$

Der Ausdruck für die Flugzeit ist

$$t \; = \; \int_a^0 \frac{dy}{\dot{y}} \; = \; \sqrt{\frac{a}{2c}} \; \int_a^0 dy \; \frac{\sqrt{y}}{\sqrt{a-y}} \; = \; \sqrt{\frac{2a}{c}} \underbrace{\int_{\sqrt{a}}^0 dx \; \frac{x^2}{\sqrt{a-x^2}}}_{a\pi/4} \; = \; \frac{1}{q} \; \sqrt{2\pi^3 a^3 \varepsilon_0 m}$$