STAT853: Assignment 1

1. Genetic Linkage Model

Assume that 197 animals are distributed into four categories as $Y = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34)$ with cell probabilities $(\frac{1}{2} + \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4})$. We assume that $\theta \sim \mathcal{U}[0, 1]$, i.e. we set a uniform prior on [0, 1] for θ .

- Design and implement an accept/reject procedure to sample from the posterior $p(\theta|y)$.
- Design and imperent an importance sampling method to sample from the posterior $p(\theta|y)$.
 - Compare the efficiency of both algorithms.

2. MIXTURE OF POISSON DISTRIBUTIONS

The data in Table 1 were extracted from The London Times during the years 1910-1912. The two columns labeled "Deaths i" refer to the number of deaths to women 80 years and older reported by day. The columns labeled "Frequency n_i " referer to the number of days with i deaths.

Deaths i	Frequency i	Deaths i	Frequency i
0	162	5	61
1	267	6	27
2	271	7	8
3	185	8	3
4	111	9	1

A Poisson distribution gives a poor fit to these data, possibly because of different patterns of deaths in winter and summer. A mixture of two Poisson distributions provides a much better fit. Under such a model, the likelihood of the N observations is given by

$$p(y_{1},...,y_{N}|\theta) = \prod_{i=1}^{N} \left[\alpha \exp(-\lambda_{1}) \frac{\lambda_{1}^{y_{i}}}{y_{i}!} + (1-\alpha) \exp(-\lambda_{2}) \frac{\lambda_{2}^{y_{i}}}{y_{i}!} \right]$$

$$= \prod_{i=0}^{\max_{j} y_{j}} \left[\alpha \exp(-\lambda_{1}) \frac{\lambda_{1}^{y_{i}}}{y_{i}!} + (1-\alpha) \exp(-\lambda_{2}) \frac{\lambda_{2}^{y_{i}}}{y_{i}!} \right]^{n_{i}}$$

where $\theta=(\alpha,\lambda_1,\lambda_2)$. $\alpha\in[0,1]$ is the mixture parameter, λ_1 and λ_2 are the means of the two components, N is the total numbers of days, $n_i=\sum\limits_{j=1}^N 1\,(y_j=i)$ is the total number of days with i deaths, and $\max_j y_j=9$ for this example. We use the following prior $\alpha\sim\mathcal{U}\left[0,1\right]$ (uniform distribution on [0,1]) and $\lambda_i\sim\mathcal{G}\left(0.1,0.1\right)$ (Gamma distribution with the shape parameter 0.1 and rate parameter 0.1) for i=1,2.

- a) Propose and implement a Metropolis-Hastings algorithm to sample from $p\left(\theta | y_{1},...,y_{N}\right)$. b) Propose a Gibbs sampler to sample from $p\left(\theta | y_{1},...,y_{N}\right)$ [Hint: It requires introducing some missing data].
 - c) Present meaningful point estimates of λ_1 and λ_2 .