Ruby Basics

15 January 2019

Higher Order Functions:

- Ruby (Rebecca)
- map n func : (n=items in array)
- Map n [f,g] : parallel composition
 - o Don't worry about data flow direction

Component Classification:

- \$wire vs \$rel
- current = VAR x . <input> \$rel (output) .
- Order of I/O
 - Bottom-Up / Left-Right rule
- Duplicate Input
 - o 'fork'
- Series -;
- Parallel [,]
- Law [(P;Q), (R;S)] = [P,R]; [Q,S]

Compile:

rc file.rby

• compile file.rby into current.rbs

Evaluate:

re "sim-data"

- simulate current.rbs
- · input sim-data with actual data

Notes

- many examples can be found in course homepage, e.g.
 https://www.doc.ic.ac.uk/~wl/teachlocal/cuscomp/rebecca/egs.rby
- make sure you get the brackets (the types) right
 e.g. the domain/range for [[P,Q,[R,S]],T]: <<p,q,<r,s>>,t>
- if **R** is a function, then $\mathbf{x} \mathbf{R} \mathbf{y}$ can be written as $\mathbf{y} = \mathbf{R} \mathbf{x}$
- in Rebecca, use `R` x only when R is a function
 e.g. inc3' = VAR x . ('inc; inc; inc' x) \$rel x (there is a more concise way of defining inc3')
- (((x))) = x but (x, x) is illegal; use $\langle x, x \rangle$
- LET cannot be used in \$rel or \$wire definitions
 - also cannot have local functions using LET:
 g = LET both f = fork; f IN ... is illegal

More Ruby

22 January 2019

Constants:

- · Function takes in input
- Outputs constant

$$x \leftarrow c \rightarrow y$$
 $x = y = c$

Converse:

- $xR^{-1}y \ll yRx$
- Rebeca: $R^{\wedge} \sim 1$

- · Laws of Converse

 - $\circ \ \left(R^{-1} \right)^{-1} = R \\ \circ \ \left(Q; R \right)^{-1} = R^{-1}; Q^{-1}$
 - $\circ [Q, R]^{-1} = [Q^{-1}, R^{-1}]$ $\circ R; R^{-1} \neq id$

Repeated Series Composition:

- Rebeca: R^n
- R^n = IF (n \$eq 0) THEN id

ELSE (R; R^(n-1)).

Wiring Patterns:

- append m n
- M fork n
- **apl** n
 - o append 1 element to left
- **apr** n
 - o to right of list
- zip n
- **tran** m n
 - transpose

Conjugate:

• $P^{-1}; Q; P$ $\circ Q \setminus P$

Repeated Parallel Composition:

- Rebecca: map n R
- $map_{n+1} R = apl_n^{-1}$; $[R, map_n R]$; apl_n
 - o input n+1
 - split
 - o output n+1
- $map_{n+1}R = [R, map_nR] \setminus apl_n$

Types:

• Series Composition

$$\circ$$
 $R: X \sim X, R^n: X \sim X$

Parallel

$$\circ R: X \sim Y, map_n R: \langle X \rangle_n \sim \langle Y \rangle_n$$

$$\circ << X>_m, < X>_n> \sim < X>_{m+n}$$

- want $btree_nR: \langle X \rangle_m \sim X$, $m = 2^n$
- $half: \langle X \rangle_{2n} \sim \langle \langle X \rangle_{n}, \langle X \rangle_{n} >$ o in prelude.rby
- $btree_{n+1}R = half_{m}$; $[btree_{n}R, btree_{n}R]$; R
- examples for uses
 - o sum a list of numbers
 - $\circ \ \ \text{find max in a list of numbers}$

Triangular Arrays:

- $\bullet \ \Delta_n R = [R^0, R^1, \dots, R^{n-1}]$

< <LEFT>, <TOP> >~< <BOTTOM>, <RIGHT> >

Beside:

- Q < -> R
- fsth , sndh

Below:

- $Q < | > R = (Q^{-1} < > R^{-1})^{-1}$ fstv, sndv

Laws:

- (P < | > Q) < -> (R < | > S)• = (P < -> R) < | > (Q < -> S)

Transposed Conjugate:
• $\mathbf{R} \setminus [\mathbf{P}, \mathbf{Q}] = ^{def} [Q, P]^{-1}; R; [P, Q]$ o Conect in rows/columns/grid

Row: Repeated beside

• create list with one element

$$\circ x[-] < x >$$

- $row_1R = ^{def} snd[-]^{-1}; R; fst[-]$ $\circ = R \setminus fst[-]$
- $row_{n+1} = ^{def} snd apl_n^{-1}$; $(R < > row_n R)$; $fst apl_n$ $\circ = (R < - > row_n R) \setminus fst apl_n$

Column:

- fst apr_n⁻¹; < | >; snd apr_n
 or conjugate of row

Reasoning & Proof

29 January 2019 09:23

Algebraic law: pointwise proof

- involves introducing I/O variables
- make use of
 - o def //el
 - o def;
 - o other algebra laws

Inductive Step: pointfree

- Base case: 0 or 1
- Use binary operator for case(n+1)
 - assuming case(n)

Reduction:

- rdl n
 - o left reduction
 - o drop left/bottom signal
- rdr n
 - o right reduction
 - o drop top/right signal

Sequential Design & Pipelining

29 January 2019 09:24

Systolic Array:

M: Memory

P : Pipelined Processor

Relate streams:

$$< \cdots, x_{t-1}, x_t, x_{t+1}, \dots > inc < \cdots, y_{t-1}, y_t, y_{t+1}, \dots > < \cdots, < x_t, y_t >, \dots > add < \cdots, x_t + y_t, \dots >$$

Delay:

•
$$< \cdots, x_{t-1}, x_t, x_{t+1}, \dots > D < \cdots, x_{t-2}, x_{t-1}, x_t, \dots > C$$

- Rebecca
 - \circ D
- initialised delay
 - ∘ DI C
 - $\circ y_0 = C$
- anti-delay

$$\circ AD = D^{^{\wedge}} \sim 1$$

Pipelining:

- increase throughput
- reduce power consumption
 - o less glitches
- may increase
 - o area
 - clock power consumption
 - latency

Graphical Method:

- domain connection put a D
- range connection put a D^{-1}
- make sure R is timeless

$$\circ D; R = R; D \text{ or } R = D^{-1}RD$$

- internal D implementable
- I/O D's can be non-implementable
- contours
 - o row
 - horizontal contour
 - o column
 - vertical contour
 - o grid
 - diagonal contour
- Final design
 - \circ cancel out $D^{-1}'s$
 - o stick $max(\#D_0^{-1})$
 - onto every output

Distribute L
Add x to left of each element in a list

Design Tree:

- relate designs by transformation
- root
 - o obvious, but inefficient
- leaves
 - o efficient, not obvious

Characterise Designs

- features and components
- cells and registers
 - o size, power, latency
- latency
 - longest path from any input to any output
- critical path
 - o slowest combinatorial circuit
- problems
 - o ignoring wire length and word-size

Control Pipelining:

- clustering
 - \circ if R is timeless

$$\circ R^{KN} = \left(\frac{R^K}{R}; D \right)^N; D^{-N}$$

- o fully-pipelined
 - K = 1 , N = KN
 - 1 'K'-luster
- o non-pipelined
- K = KN, N = 1
- connect cluster in rows
 - $\circ row_{KN}R = row_K(row_NR) \setminus (group_{KN}^{-1})$
 - $\circ < x >_{mn} group_{mn} \ll x >_n >_m$

Slowdown:

- $\bullet \ \ replace \ each \ D \ with \ D^N$
- sampler
 - $\circ \ x \, ev_n y \Rightarrow \forall t, y_n = x_{nt}$
 - o properties
 - ev_n^{-1} ; $ev_n = id$
 - $x(ev_n; ev_n^{-1})y \Rightarrow \forall t, x_{nt} = y_{nt}$
 - ev_n ; $D = D^n$; ev_n
- slow
 - $\circ slow_n R = ev_n; R; ev_n^{-1} = R \backslash ev_n^{-1}$
 - $\circ \ \ \text{if R combinatorial}$
 - $slow_n R = R$
 - \circ $slow_n D = D^n$
 - \circ $slow_n(Q; R) = slow_nQ; slow_nR$
 - $\circ \ slow_n[Q,R] = [slow_nQ, slow_nR]$
 - o can use before adding pipeline

Pipeline Strategies

05 February 2019 17:

Design:

- increase regularity at bit-level
- able to repeat components
- leads to grid design for word level

Cluster a grid:

• $grid_{mp \ nq}R$

$$= \left(\operatorname{grid}_{mn} \left(\operatorname{grid}_{nq} R \right) \right) \backslash \backslash \left[\operatorname{group}_{mn}, \operatorname{group}_{nq} \right]^{-1}$$

- <u>pipeline</u>
 - o around the sub-grids
 - o through the sub-grids
 - lead grid

Lead and trail arrays:

- lead main diagonal different block
 - \circ lead n R Q

Summary: Clustering and Pipelining

- given $R = R \setminus D^{-1}$
- general form:

- CC1 R =
$$\theta$$
1; CC2 (CC3 P); θ 2 clustering
- CC2 (CC3 P) = τ 1; CC2 Q; τ 2 pipelining

CC1 R	CC2 (CC3 p)	Q	θ1	θ2	τ1	τ2
R^{kn}	$(R^k)^n$	R^k ; D	id	id	id	D-n
$\operatorname{row}_{kn} R$	$\operatorname{row}_k(\operatorname{row}_n R)$	$row_n R$; snd D	snd group _{k n}	fst group _{k n} -1	$\Delta \left(\Delta D \right)$	$[\Delta \mathrm{D}^{\text{-1}},\mathrm{D}^{\text{-n}}]$
$\operatorname{grid}_{\operatorname{mp}\operatorname{nq}} R$	$ \frac{\operatorname{grid}_{mn}}{(\operatorname{grid}_{pq}R)} $	$\operatorname{grid}_{p q} R ; D$	$[\operatorname{group}_{n q}, \\ \operatorname{group}_{m p}]$	$[group_{m p}^{-1}, group_{n q}^{-1}]$	$[\tilde{\Delta}D, \Delta D]$	$\begin{array}{c} [\Delta D;D^{n},\\ \tilde{\Delta}D;D^{m}]^{\text{-}1} \end{array}$
$\operatorname{grid}_{\operatorname{mk}\operatorname{nk}} R$	$ \begin{array}{c} \operatorname{grid}_{mn} \\ (\operatorname{trail}_k R\ R) \end{array} $	$\begin{array}{c} \operatorname{trail}_k R \\ (R;D) \end{array}$	$[\operatorname{group}_{nk},\\\operatorname{group}_{mk}]$	$[group_{m k}^{-1}, group_{n k}^{-1}]$	$[\tilde{\Delta}D, \Delta D]$	$\begin{array}{c} [\Delta D;D^{n},\\ \tilde{\Delta}D;D^{m}]^{\text{-}1} \end{array}$

State Machines

11 February 2019 20:58

Loop:

• $x(loopR)y : \langle x, s \rangle R \langle s, y \rangle$

Simples State Machines:

• counter: $loop(add; DI \ 0; fork)$

Looping a Row:

• $loop (row_k R; fst(map_k Q))$

Decomposing a Loop:

- loop(P < -> Q) = loopP; loopQ
- $loop(row_n R) = (loop R)^n$

Steps:

- Start with S1
- Transform S1 to S2 so that
 - \circ loop (S2; fstD)
 - o computes desired function
- Initialise registers
- Decompose into smaller state machines
- Pipeline the design

Intro

15 February 2019 10:23

SIMD vs vector:

- Array one instruction to many FUs
- Vector instruction applied to vector registers
 e.g. VR3 = VR2 VOP VR1

SoC Interconnect:

- Traditional bus
- Network on chip

Product cost:

- $K = K_f + 0.1K_f \sqrt[3]{n} + K_v n$
- Fixed costs
- Support costs
- Variable costs

Die Cost

15 February 2019 10:49

Yield:

Wafer of diameter d, single chip area of A:

$$N = \frac{\pi d^2}{4A} \ [Gross Yield]$$

$$N_G$$
 — good dice
 N_D — number of defects on a **wafer**

$$[\underline{Yield}] = \frac{N_G}{N} = e^{-\frac{N_D}{N}} = \frac{e^{-\rho_D A}}{e^{-\rho_D A}}$$

$$N_D = \rho_D AN : \rho_D = defects/cm^2$$

Area:

- Min feature size $f = 2\lambda (e.g.2*7nm)$
- Smallest transistor
 - \circ $4\lambda^2$ within a $25\lambda^2$ region

Min Feature size	f	2λ
Register Bit Equiv.	rbe	$2700\lambda^2 = 675f^2$
Α	Α	$f^2x10^6 = 1481 rbe$

Add padding to net area - giving Gross Die Area

Power

15 February 2019 11:31

$$P_{total} = \frac{CV^2 freq}{2} + I_{leakage}V$$

- Smaller C enables higher frequency
- Frequency linearly proportional to voltage

$$\frac{freq_1}{freq_2} = \sqrt[3]{\frac{P_2}{P_1}}$$

- Halving voltage
 - Halves frequency
 - Reduces power by **1/8**

Mean-Rate:

- Maximum-Rate:
 - Mask the service latency
 - Often full (expected high request rates / fixed data rate)
 - Sized to avoid *runout*

•
$$BF = 1 + \left[s. \frac{access\ time(cycles)}{p} \right]$$

- o s: items consumed per cycle
- p: items fetched in an acces

- Minimize probability of overflowing
- $Q = mean \ occupancy = mean \ rate * mean \ time \ to \ service$
- $BF = \min(Q/p, Q + \sigma/\sqrt{p})$
- $p_{overflow} = \min(Q/BF, \sigma^2/(BF Q)^2)$

Intro & Streaming

03 March 2019 23:07

Host Code

- C
- calls functions generated by tools

Manager

- Java
- links kernel to IO

Kernel

• Design

Kernel:

- DFEVar
- io.input("label", type)
- io.output("label", DFEVar, type)
- Conditional choice
 - ternary operator
- Constants
 - constant.var(value, type)
- Java loops
 - o unroll into series
 - $\circ \ \ \text{or use to make parallel system}$

More advanced Designs

09 March 2019 23:04

Loop Counters:

- control.count.simpleCounter(N, bits)
- · Complex counter
 - o stride
 - o wrap point
 - o triggers
- Chained Counters
 - o use for nested-loop behaviour
 - CounterChain chain = control.count.makeCounterChain();
 - DFEVar i = chain.addCounter(M, 1)
 - DFEVar j = chain.addCounter(N, 1)

Scalar Inputs:

- io.scalarInput("label", type)
- loaded once per stream
 - o when calling function in C

Mapped ROMs/RAMs:

- Memory<DFEVar> mappedROM = mem.alloc(size, type)
- mappedROM.mapToCPU("mappedROM")

Stream Offsets:

- buffer stream on-chip for random access
- offset works on available stream inputs
 - DFEVar prev = stream.offset(x,-1)
- Boundary cases
 - o using a counter, set conditional variables
 - o use ternary to deal with edge cases
 - use above variables to select correct case

Vectors:

• DFEVectorType myVec = **new** DFEVectorType(size, Type)

Scheduling

09 March 2019

Stream scheduling algorithm:

- transform an abstract dataflow graph into one that produces the correct results given the latencies of the operations
- Can try to optimise for
 - Latency
 - Amount of buffering
 - o Area

ASAP:

- Start from input
- Add buffering as soon as latency mismatch

ALAP:

- Start from output
 - Negative latencies
- Can change cycle inputs come in

Stream offsets:

- Wires with negative or positive latency
- Scheduler adds buffers to preserve correct functionality

Performance

09 March 2019 23:05

High-level Model:

• Speedup =
$$\frac{T_{old}}{T_{new}}$$

•
$$T_{new} = a.\frac{T_{old}}{S} + (1-a).T_{old}$$

•
$$T_{accel} = T_{init} + T_{stream}$$

- T_{stream} dominates for large data streams
- T_{init}
 - o SW time
 - Config
 - Scalar inputs, ROMs
 - o Prepare streams

$$T_{stream} = \max \left(T_{compute}, T_{memory}, T_{bus}, T_{net} \right)$$

•
$$T_{compute} = \frac{Cycles}{frequency}$$

•
$$T_{bus} = \frac{size}{bus\ BW}$$

- o Speed depends on transfer size
 - Small size lower speed

•
$$T_{memory} = \frac{reads + writes}{mem \ BW}$$

$$\circ mem_{BW} = \frac{Bytes}{DIMM} * No.DIMMs * Freq * effc$$

- *effc* depends on
 - □ Transfer size
 - □ Access pattern

How to Improve:

- Compute papalism $Area_{chip} = Area_{Manager} + (Area_{kernel}.P)$
- Bus
 - Use on-card memory
 - o Compression, data representation trades compute area for BW area
- Memory
 - o Compression, data representation

Loops

09 March 2019 23:05

Loop Attributes:

- array access pattern
- loop-carried dependencies

Loop performance metrics:

- ratio of computation:memory
- bottleneck CPU/mem/IO

Outer loop is implied in MaxJ kernels

Nested Loops:

- use a CounterChain
 - outer loop is first counter
- unrolling inner loops
 - o if dependence
 - generate HW in series

Variable Length Loops:

- while or variable for
- find max number of executions
- HW for loop with max N
 - o use conditional execution within loop

Loops with dependence:

- need to deal with pipeline initialisation
- Use simpleCounter
 - DFEVar count = control.count.simpleCounter(32, C)
 - DFEVar carry = scalarType.newInstance(this);
 - o use counter to sum += (count<C)? 0 : carry</pre>
 - carry.connect(stream.offset(sum, -C))
- **Depth** and Loop-Carry dependence
 - need to avoid mixing dependence when previous still in pipeline
 - o loop interchange to keep pipeline full