# Módulo 1: Espectrometria de Massas



Jniversidade Federa de São João del-Rei

Lucas Raposo Carvalho

E-mail: lraposo@ufsj.edu.br

Departamento de Ciências Naturais – DCNAT Métodos Físicos em Química Orgânica, 2025.2



#### Sumário

- 1. Informações a partir de fórmula molecular e massa molar
  - 2. O espectrômetro de massas e base teórica da técnica
    - 3. A interpretação do espectro de massas
    - 4. Fragmentações e rearranjos principais
      - 5. Espectros representativos

#### 1. Informações a partir de fórmula molecular e massa molar

Índice de Deficiência de Hidrogênio (IDH): indicativo do número de insaturações e/ou ciclos presentes na molécula.

IDH = 
$$C - H/2 + (Grupo 15)/2 - (Grupo 17)/2 + 1$$
  
N, P F, Cl, Br, I

Ex. 1: Determine o **IDH** do composto  $C_7H_{14}O_2$ .

$$IDH = 7 - \frac{14}{2} + 0 - 0 + 1 = 1$$
 Uma insaturação ou um ciclo

Ex. 2: Determine o **IDH** do composto  $C_{10}H_{14}N_2$ .

$$1DH = 10 - 14/2 + 2/2 - 0 + 1 = 5$$
 Combinação de 5 elementos

Compostos com IDH ≥ 4 costumam possuir **anéis benzenóides** 

#### 1. Informações a partir de fórmula molecular e massa molar

Regra dos treze: Determinação de fórmulas moleculares possíveis a partir da massa molecular.

1. **Divisão** da massa molecular (M) por **13** 

$$\frac{M}{13} = n + \frac{r}{13}$$
 Resto Quociente

2. A fórmula molecular **base** é  $C_nH_{n+r}$ 

$$IDH = C - H/2 + 1$$

3. Substituições de átomos: massas equivalentes

**N** 
$$(M = 14)$$
: CH<sub>2</sub>

**N** 
$$(M = 14)$$
: CH<sub>2</sub> **O**  $(M = 16)$ : CH<sub>4</sub> **F**  $(M = 17)$ : CH<sub>5</sub>

**F** 
$$(M = 17)$$
: CH<sub>5</sub>

#### 1. Informações a partir de fórmula molecular e massa molar

Ex. 3: Possíveis fórmulas moleculares para um composto de massa 94 u.m.a.:

1. **Divisão** da massa molecular (M) por **13**:

$$\frac{M}{13} = n + \frac{r}{13}$$

$$\frac{(94)}{13} = 7 + \frac{(3)}{13}$$

2. A fórmula molecular **base** é  $C_nH_{n+r}$ ,  $C_{(7)}H_{(7+3)}=C_7H_{10}$ 

$$IDH = 7 - \frac{10}{2} + 1 = 3$$

3. Substituição por um **oxigênio** 

$$M(O) = M(CH_4) \quad C_7H_{10} \rightarrow C_6H_6O$$
  
 $IDH = 6 - 6/2 + 1 = 4$ 

4. Substituição por um **nitrogênio** 

$$M(N) = M(CH_2) \quad C_7H_{10} \rightarrow C_6H_8N$$

$$IDH = 6 - 8/2 + 1/2 + 1 = 11/2$$

IDH < 0 é impossível e IDH ∈ Q\Z é altamente improvável

#### 2. O espectrômetro de massas e base teórica da técnica

Espectrômetro de massas realiza três funções principais:

Conversão de **moléculas** em **ions** (**ionização**)

Aceleração e **separação** dos íons com diferentes **razões** massa/carga (m/z)

Detecção do **número** de íons e amplificação

Ionização em gás (EI \_ Electron Impact, CI)

Ionização por dessorção (MALDI)



## 2. O espectrômetro de massas e base teórica da técnica

Espectrômetro de massas realiza três funções principais:

Conversão de **moléculas** em **ions** (**ionização**)

Aceleração e **separação** dos íons com diferentes **razões** massa/carga (m/z)

Detecção do **número** de íons e amplificação

Ionização em gás (EI – Electron Impact, CI)

lonização por dessorção (MALDI)

Ionização por evaporação (ESI – Electron Spray Ionization)



#### 2. O espectrômetro de massas e base teórica da técnica

Aceleração do íon depende da sua razão massa/carga (m/z):



Quanto maior m, maior o r. Como r é fixo, varia-se B ou V para **varrer** diferentes valores de m/z.

#### Força de Lorentz

$$\mathbf{F} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

$$F_{\text{Lorentz}} = F_{\text{cent}}$$

$$qvB = \frac{mv^2}{r} \therefore \frac{m}{q} = \frac{rB}{v}$$

$$\frac{1}{2}mv^2 = qV \quad \therefore \frac{m}{q} = \frac{r^2B^2}{2V}$$

Resultado: gráfico de abundância iônica  $\times m/z$ .



Pico mais intenso: pico base  $(106) \rightarrow 100 \%$ 

Íon molecular (M+):

Pico mais pesado\*: pico do íon molecular

Espectros de massas refletem abundâncias isotópicas.

| Nuclídeo         | Abundância<br>isotópica (%) |
|------------------|-----------------------------|
| <sup>1</sup> H   | 99,98                       |
| $^2$ H           | 0,0115                      |
| <sup>12</sup> C  | 98,93                       |
| <sup>13</sup> C  | 1,11                        |
| <sup>35</sup> Cl | 75,78                       |
| <sup>37</sup> Cl | 24,22                       |
| <sup>79</sup> Br | 50,69                       |
| <sup>81</sup> Br | 49,31                       |
|                  |                             |

Além do pico do íon molecular,  $M^+$ , os picos M + 1 e M + 2 podem revelar informações importantes sobre a presença de certos átomos na estrutura.



Cl e Br: Espectros com um pico M + 2 de 1/3 e igual intensidade, respectivamente.

Tempo de vida de **íon molecular** <u>alto</u> ( $> 10^{-5}$  s): *Aceleração* e *detecção* 



Íon com tempo de vida suficiente para ser detectado.

#### Problema 1

Massa detectada: massa real (isótopos)

#### Problema 2

70 eV → Fragmentos × íon molecular?

# 1. **Picos isotópicos**: baixa intensidade



2. M<sup>+</sup> possui número **ímpar** de elétrons

$$H_3C-OH$$

$$m/z = 32$$

$$e^- (70 \text{ eV})$$

$$+ \cdot$$

$$H_3C-OH$$

$$m/z = 32$$

#### Cátion-radical

Número <u>ímpar</u> de elétrons

3. M+ deve formar os fragmentos vistos por perdas neutras



**Tempo de vida** –  $t(M^+)$  – varia para **funções orgânicas** diferentes.



#### Correspondência massa-fórmula pela regra do nitrogênio:

Massa impar

Número **ímpar** de átomos de nitrogênio

Massas inteiras

Massa par

Número **par ou zero** átomos de nitrogênio

$$C_2H_5NH_2$$

$$H_3C-CH_3$$

$$\#N = 1$$
 (impar)

$$\#N = 2 (par)$$

$$\#N = 0$$
 (zero)

$$M = 45,\underline{0} \text{ (impar)}$$

$$M = 60,0 (par)$$

$$M = 30, 0 \text{ (par)}$$

Espectrometria de massas de alta resolução: casas decimais

*e.r.* entre 0 e 1 **ppm**!

Fórmulas possíveis para M = 60?



Quando M+ é observado, picos isotópicos diferenciam possíveis fórmulas



$$C_2H_6$$
 M = 30,0

$$\begin{array}{c} ^{12}\text{C} \rightarrow ^{13}\text{C} \\ \text{M} = 32,\underline{0} \end{array}$$

Abundância isotópica = 1,08 %(1,08 %) × (1,08 %) = 0,011 %

Pico M + 2
não é observado
para o etano

$$^{1}H \rightarrow ^{2}H$$
 $M = 32,\underline{0}$ 

Abundância isotópica = 0,012 %  $C(6,2) \times (0,012\%)^2 = 0,00002 \%$ 

$$p(M = 32,0) = 0.011 \%$$

Intensidade relativa (M + 2) = 0,011 %

#### Casos importantes para o pico M + 2: Cloro e Bromo

| Isótopo          | Massa<br>(u) | Abundância<br>isotópica<br>(%) |
|------------------|--------------|--------------------------------|
| <sup>35</sup> Cl | 34,9689      | 75,76                          |
| <sup>37</sup> Cl | 36,9659      | 24,24                          |
| <sup>79</sup> Br | 78,9183      | 50,69                          |
| <sup>81</sup> Br | 80,9163      | 49,31                          |

CI M+2: 32,0 % Br M+2: 97,3 %



Impacto de 70 eV: **Ionização** pelo OM  $\pi$  ou  $n \rightarrow$  **Cátion radical** 





Representação: ionização do composto pela abstração do elétron no **HOMO** 

Fragmentações: Cisão homolítica ou heterolítica de uma ou mais ligações.

- 1. Fragmentações são processos unimoleculares ( $p \sim 10^{-6} \text{ mmHg}$ )
- 2. Estabilidade de **fragmentos catiônicos** ~ estabilidade em **solução**

$$CH_3^+$$
  $RCH_2^+$   $R_2CH^+$   $R_3C^+$   $R_4$  Estabilidade

3. Fragmentações que geram fragmentos neutros estáveis são favorecidas

$$H_2O$$
 HCN  $NO_2$   $H_2C=CH_2$   $H=---$ 

Rearranjos: Fragmentações com uma estrutura de transição

#### Rearranjo de McLafferty

Heteroátomo ou sistema  $\pi$  com um hidrogênio abstraível em  $\gamma$ 

#### 5. Espectros representativos – Alcanos

## Fragmentação: Estabilidade de carbocátions $\rightarrow \Delta = 15/14$ u.m.a



$$I\left(\mathbf{pico}\right) \propto \underline{\text{estabilidade}} \text{ do C}^+$$
 $I\left(\mathbf{M}^+\right) \propto 1/(\text{ramificações})$ 

#### 5. Espectros representativos – Alcenos

Fragmentação: Carbocátion alílico  $\rightarrow \Delta = 15$  u.m.a





Formação de carbocátion alílico é **altamente favorecida** 

Alcinos terminais: carbocátion propargílico

#### 5. Espectros representativos – Aromáticos

Fragmentação: **Tropílio** (91) na presença de cadeia lateral



# 5. Espectros representativos – Álcoois

## Fragmentação: Clivagem-α e desidratação



a. Clivagem- $\alpha$  (ion **oxônio**):



b. Desidratação:



#### 5. Espectros representativos – Aldeídos

#### Fragmentação: Clivagem-α e Clivagem-β



## 5. Espectros representativos – Aldeídos

