

(2)

AD-A159 203

20000727276

The Structural Chemistry of Energetic Compounds

ONR Annual Report

Oct 1 1983 to Oct 1 1984

Richard Gilardi and Clifford George

Laboratory for the Structure of Matter

Code 6030

The Naval Research Laboratory

Washington, D.C. 20375

DTIC EDITION

This document has been approved
for public release and sale; its
distribution is unlimited.

Reproduced From
Best Available Copy

DTIC
ELECTED
SEP 17 1985
S D

85 09 13 008

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER N001484WR24060-1984A	2. GOVT ACCESSION NO. AD-A159203	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Structural Chemistry of Energetic Compounds		5. TYPE OF REPORT & PERIOD COVERED Annual Progress Report 1 October 1983-October 1984
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Richard Gilardi and Clifford George (Drs.)		8. CONTRACT OR GRANT NUMBER(s) N0001484WR24060
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory (Code 6030) Washington, D. C. 20375-5000		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N-RR024-02-01
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Code 432 Arlington, VA 22217		12. REPORT DATE
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES Reproduction in whole or part is permitted for any purpose of the United States Government.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) X-ray diffraction; homocubane; oxetanes; nitropyrrole; nitramines; tetranitrobicyclooctane.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Structural characterization of 12 energetic materials and precursors by x-ray diffraction was performed. The materials examined include: 6,6,10,10-tetranitropentacyclo[5.3.0 ^{2,7} .0 ^{8,9}]decane; 2,6-Diamono-3,5-dinitro-1,4-pvrazine; 4,4,8,8-tetranitro-bicyclooctane; 2,3,4-Trinitropyrrole; 1,3,5-Trinitro-1,3,5-triazacyclohexane; 3,3-Bis(methyl-nitroaminomethyl)oxetane; 3,3-Bis(nitratomethyl)-oxetane; 3-Methoxy-2,4-dinitro-2,4-diazapentane; Tribenzyliatiazawurtzitane; 3-Cyano-4,4,5,5-tetramethylisoxazoline-n-oxide; (OVER)		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE

S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Cont'd

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

C U M M

5-Aza-6-methoxyiracil; and N-(4-amino-1,2,5-triazolo)-N'-methoxy-trichloroacetimidine. The compounds studied range in density from 1.175 mg/mm³ (tri-benzyl-triazawurtzitane) to 1.856 mg/mm³ (tripropyrrole) and four have crystal densities in the range 1.717 to 1.856 mg/mm³. Original
Supplied Keywords include:

See DD14731

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
PTIC TAB	<input type="checkbox"/>
Announced	<input type="checkbox"/>
Justification	
Distribution/	
Availability Codes	
Avail and/or	
Pict	Special
A-1	

S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

	Page
1. Structural Diagrams	1
2. Individual Structure Reports	
(a) tetranitrobishomocubane	2
(b) 2,6-Diamino-3,5-dinitro-1,4-pyrazine	4
(c) 4,4,8,8-Tetranitrobucyclooctane	7
(d) 2,3,4-Trinitropyrrole	9
(e) 1,3,5-Trinitro-1,3,5-trizacyclohexane	11
(f) 3,3-Bis(methylnitroaminomethyl)oxetane	13
(g) 3,3-Bis(nitratomethyl)oxetane	15
(h) 3-methoxy-2,4-dinitro-2,4-diazapentane	17
(i) Tribenzyltriazawurtzitane	17
(j) 3-Cyano-4,4,5-tetramethylisoxazoline	20
(k) 5-Aza-6-methoxyuracil	20
(l) N-(4-Amino-1,2,5-triazolo)-N'-methoxy-trichloroacetamidine	23
3. Appendix A - Bond Distances and Angle Tables	

Structural diagrams of molecules included.

Introduction

This report summarizes the work conducted under contract No. N0001484-WR24060 for the period Oct. 1, 1983 to Oct. 1, 1984 under the sponsorship of the Office of Naval Research, Code 432P (Dr. R. S. Miller). The task is to provide prompt structural characterization of new energetic compounds, or their synthetic precursors, developed in the ONR energetics materials synthesis program. The results of the investigations also provide structural parameters for energetic groups used to model hypothetical target compounds by methods of conformational energy analysis and quantum chemistry. This work is a continuation of previous work. Results of the examination of twelve energetic materials and precursors are included.

a) Tetranitrobishomocubane

This polynitro cage compound was provided by A. P. Marchand and D. S. Reddy of North Texas State University. The material crystallized in the monoclinic space group Pc , $a = 7.751(1)\text{\AA}$, $b = 11.500(2)$, $c = 14.277(2)\text{\AA}$, and $\beta = 108.63(3)^\circ$. The calculated density is 1.717 Mg mm^{-3} . In Fig. (1) the two molecules in the asymmetric unit are shown. The primary difference between the two molecules is the orientation of NO_2 groups; corresponding C-C-N-O and O-N-C-N torsion angles have values that differ from one molecule to the other by amounts ranging from 8 to 30° . Bond distances and angles are given in Table (1). The primed molecule in Fig. (1) corresponds to Molecule 2 in Table (1).

There are no unusual intermolecular contacts and no hydrogen bonds, nearest contacts are $O(2)'--H(3) = 2.488(33)\text{\AA}$ and $O(6)--H(3)' = 2.673(31)\text{\AA}$. The molecules pack with the oxygens of Molecule 1 opposing those of Molecule 2. Nearest O--O approaches are in the range of 2.84 to 3.26\AA for each of the oxygen atoms in the asymmetric unit.

Fig. (1)

Tetranitrobishomocubane

$d = 1.717$

b) 2,6-Diamino-3,5-dinitro-1,4-pyrazine (ANPZ)

This compound is a very stable di-aza analog of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and was provided by C. L. Coon of Lawrence Livermore Laboratories. The material crystallized in the monoclinic space group $P2_1/c$, $a = 9.030(1)\text{\AA}$, $b = 12.977(1)\text{\AA}$, $c = 6.405(1)\text{\AA}$, $\beta = 100.76(1)^\circ$. The calculated density is 1.803 Mg mm^{-3} . The molecule is shown in Fig. (2) and bond distances, bond angles, and selected torsion angles are given in Table (2) and (3). The molecules of ANPZ are essentially planar with a maximum deviation from a least squares plane through all atoms of $0.07(1)\text{\AA}$. The atom planes are coincident with the crystallographic $Z = 1/4$ and $3/4$ planes with an unusually close interplanar spacing of 3.146\AA .

The graphite-like layers which have been observed in the crystal structures of both ANPZ & TATB are held together within each layer by intermolecular hydrogen bonds, and ANPZ, like TATB, decomposes before melting at temperatures greater than 300°C . It is also insoluble in most common solvents. In Fig. (3), which illustrates the hydrogen bonding, two of the hydrogen bonds are bifurcated; i.e., these two hydrogen atoms each participate in one intra- and one intermolecular H-bond. The other two hydrogen bonds are intermolecular with one being long ($O-H = 2.49\text{\AA}$). While ANPZ has 2 fewer intermolecular H-bonds and a lower density than TATB, its similar thermal and solubility properties suggest that dipole/dipole and dipole-induced dipole interactions between layers may be important in explaining the extreme stability of this class of materials.

Fig. (2)

2,6-Diamino-3,5-dinitro-1,4-pyrazine

d = 1.803

Fig. (3)

**Crystal packing for ANPZ illustrating
intermolecular hydrogen bonding**

c) 4,4,8,8-Tetranitrobicyclooctane.

This polynitroaliphatic compound was synthesized by K. Baum of Fluorochem, Inc., Azusa, California. The compound crystallized in the monoclinic space group $P2_1$ with $a = 9.631(1)\text{\AA}$, $b = 11.539(2)\text{\AA}$, $c = 10.205(1)\text{\AA}$, and $\beta = 105.31(1)^\circ$. The calculated density is 1.786 Mg mm^{-3} . There are two chemically identical but crystallographically distinct molecules in the asymmetric unit; bond distances and angles for both are given in Table (4). Molecule 1 is shown in Fig. (4). Molecule 2 is similar in conformation, but exhibits a ring-pucker disorder. In approx. 30% of the unit cells, ring atom C(3)' takes an alternate position, C(3)"'. The dihedral angle between the O(2)'-C(3)'-O(4)' and the O(2)'-C(3)"'-O(4)' planes is 68° . The nitro groups bonded to C(4)' also occupy alternate positions. Torsion angle O(1a)'-N(1)'-C(4)'-C(5)' = 23° , while O(1a)"-N(1)"-C(4)"-C(5)' = 35° for the lower occupancy position. The relative orientation of the disordered nitro groups also changes, with the torsion angles O(1a)'-N(1)'-C(4)'-N(2)' = 144.1 and O(1a)"-N(1)"-C(4)'-N(2)" = 92.1° .

There are no unusual intermolecular contacts; nearest contacts are O(1b)'--H(7b) = 2.50\AA , O(2b)--H(3a)' = 2.56\AA , and O(2b)"--H(5)' = 2.64\AA . The nearest nonhydrogen contact is O(2b)'--O(1a)' = 2.73\AA .

Fig. (4)

4,4,8,8-Tetrinitrobicyclooctane

$d = 1.786$

d) 2,3,4-Trinitropyrrole

This polynitroheterocyclic compound was provided by J. C. Hinshaw of Morton Thiokol. This compound crystallized in the orthorhombic space group $Pca2_1$ with $a = 10.113(3)\text{\AA}$, $b = 9.686(2)\text{\AA}$, and $c = 14.767(3)\text{\AA}$. The calculated density is 1.856 Mg mm^{-3} . One of the two molecules in the asymmetric unit is shown in Fig. (5), and bond distances and angles are given in Table (5). In the crystal the ring nitrogen is in position 1 in both molecules of the asymmetric unit. Interchange of the C and N atoms between the chemically equivalent ring positions 1 and 5, however, affects the residual only modestly. Table (5) gives the bond distances and angles of each of the two molecules in the asymmetric unit as well as the average. The two molecules are observed to have a range of values for the individual bond distances and angles and large standard deviations while the average of the two is closer to the distances and angles normally expected, indicating a disorder with respect to the ring nitrogen site. The pyrrole ring is planar and the 2 and 4 nitro groups are very nearly coplanar with the ring while the plane of the 3-nitro group is perpendicular to the ring.

There are no unusual intermolecular contacts, nearest contacts are $H(1)--O(8B)' = 2.34\text{\AA}$ and $H(1)--O(7B)' = 2.42\text{\AA}$.

Fig. (5)

2,3,4-Trinitropyrrole

d = 1.856

e) 1,3,5-Trinitroso-1,3,5-triazaacyclohexane

Crystals of this material, commonly known as R-salt, were supplied by J. Boyer of the University of Illinois at Chicago. The observed space group is $P2_1/c$, with $a = 9.060(1)\text{\AA}$, $b = 6.236(1)\text{\AA}$, $c = 12.874(2)\text{\AA}$, and $\beta = 92.47(1)^\circ$. The calculated density is 1.573 Mg mm^{-3} . Bond distances and angles are given in Table (6) with the molecular geometry shown in Fig. (6). Not shown in the figure are the disordered atoms. There is a multiple disorder of the nitroso group at N(5) and indications of a disorder of the nitroso group at N(1). The occupation percentages of the nitroso group at N(5) and its two disordered positions, N(11)-O(11), N(11A)-O(11A), and N(11B)-O(11B), are 47%, 28% and 24%, respectively. In both major and minor forms of R-salt, the nitroso groups are all on one side of the chair shaped hexane ring. Aza nitrogens within the ring are pyramidal with the N-N vector making an angle in the range of 8.5 to 13.5° with the plane through the aza nitrogen and its two neighboring ring carbons except for the N(11A)-N(5) vector which is calculated at -2° with respect to the C(6)-N(5)-C(4) plane.

There are no intermolecular contacts, nearest contacts are O(12B)--H(4A), O(12)--H(4A)' = 2.55\AA , and O(10)--H(6A) = 2.56\AA .

This material was also observed to crystallize in the trigonal space group $R\bar{3}$ when grown from CCl_4 or CHCl_3 , $a = c = 36.340\text{\AA}$, $b = 6.089\text{\AA}$, $\gamma = 120^\circ$. The solvent which is disordered occupies a channel along the $\bar{3}$ axis.

Fig. (6)

1,3,5-Trinitroso-1,3,5-triazacyclohexane

$$d = 1.573$$

f) 3,3-Bis(methylnitroaminomethyl)oxetane

Interest in this compound stems from its potential use as a monomeric precursor in producing energetic polymers or copolymers. Crystals of the monomer were provided by G. Manser of Morton Thiokol. The space group is monoclinic, $P2_1/c$, with unit cell $a = 14.106(4)\text{\AA}$, $b = 6.472(2)\text{\AA}$, $c = 11.963(3)\text{\AA}$, and $\beta = 99.50(1)^\circ$, and a calculated density of 1.444 Mg mm^{-3} . Bond distances and angles are given in Table (7). Fig. (7) shows the molecular geometry and gives the numbering scheme. Table (7) also includes a selected set of torsion angles defining the geometry of the methylnitroaminomethyl arms. In this molecule the oxetane ring is puckered such that the dihedral angle between C(2)-C(3)-C(4) and the C(2)-O(1)-C(4) planes is 20.6° . Bonding for nitrogens N(7) and N(12) is pyramidal with the N-N vector making an angle of 22.6 and 13.6° with the N-C-C plane including the two methyl carbons.

Intermolecular contacts are at normal van der Waals separations. Nearest contacts are O(16)'—H(2B)' = 2.44\AA , O(15)'—H(6B)' = 2.63\AA , O(1)'—H(5B)' = 2.64\AA , and H(13A)'—H(13A)' = 2.58\AA .

Fig. (7)

3,3-Bis(methylaminomethyl)oxetane

d = 1.444

g) 3,3-Bis(nitratomethyl)oxetane

This energetic monomer, provided by G. Manser of Morton Thiokol, crystallizes in the space group C2/c with $a = 15.120(4)$, $b = 6.163(1)$, $c = 12.958(4)\text{\AA}$, and $\beta = 132.76(2)^\circ$. The calculated density is 1.556 Mg mm^{-3} . The bond distances, angles, and a selected set of torsion angles are given in Table (8). Fig. (8), drawn from experimental coordinates, gives the atom numbering system. The molecule has C_2 symmetry about the cross ring O(1)--C(3) axis (coincident with the b crystal axis) so that only the unprimed atoms in Fig. (3) are independent. In this molecule the oxetane ring is planar. Orientation of the nitratomethyl arm with respect to the oxetane ring is defined by the torsion angles given in Table (8) as is the orientation of the nitrato group.

Intermolecular contacts are at normal van der Waals separations. Nearest contacts are H(4A)--O(3)' = 2.68\AA , H(23)--O(7)' = 2.71\AA and O(8)--H(4B)' = 2.72\AA .

Fig. (8)

3,3-Bis(nitratomethyl)oxetane

$d = 1.556$

b) 3-Methoxy-2,4-dinitro-2,4-diazapentane

This compound was provided by H. Adolph of NSWC. The material crystallized in the monoclinic space group $P2_1/c$, $a = 7.964(1)$, $b = 8.320(1)$, $c = 14.767(2)\text{\AA}$, and $\beta = 119.73(1)^\circ$. The calculated density is 1.518 Mg mm^{-3} . Bond distances, angles, and torsion angles are given in Table (9), and the atom numbering is given in Fig. (9). In this compound the amino nitrogens are nearly planar. The N-N vector makes an angle of 1.0° at N(2) with the C(1)-N(2)-C(3) plane and 8.5° at N(4) with the C(5)-N(4)-C(3) plane.

There are no unusual intermolecular contacts in this molecule.

Nearest approaches are H(1A)-H(1A)' = $2.41(4)\text{\AA}$, O(6B)-H(9A)' = $2.57(3)\text{\AA}$, O(7A)-H(9A)' = $2.60(3)\text{\AA}$ and H(9c)-O(6B)' = $2.64(3)\text{\AA}$.

i) Tribenzyltriazawurtzitane

This cage compound was provided by A. Nielson, China Lake. It is a possible precursor of the hypothetical target compound hexa-azahexanitrowurtzitane; the target compound is a higher mol. wt. analog of RDX which is predicted to be 5-10% denser than RDX. The precursor material crystallized in the monoclinic space group $P2_1/c$, with $a = 10.968(1)$, $b = 11.965(1)$, $c = 18.857(2)\text{\AA}$, and $\beta = 95.77(1)^\circ$. The calculated density is 1.175 Mg mm^{-3} . Bond distances and angles are given in Table (10). The crystal is disordered (contains two conformations of the molecule). The major conformer (70% occupancy) is shown in Fig. (10). In the minor conformer, benzyl ring C is rotated to an alternate position, C' (30% occupancy). In this compound the aza nitrogens are pyramidal with an average angle between the N-methylene carbon vector and the C-N-C ring plane of 40.8° ; this is essentially tetrahedral (sp^3) geometry.

Fig. (9)

3-Methoxy-2,4-dinitro-2,4-diazapentane

$d = 1.518$

Fig. (10)

Tribenzyltriazawurtzitane

$d = 1.175$

j) 3-Cyano-4,4,5,5-tetramethylisoxazoline-N-oxide

Crystals of this material were provided by J. Boyer of the University of Illinois at Chicago. This compound was synthesized from a starting material which contained a cyclopropane ring (an energetic moiety). During the nitration reaction, the three-membered ring opens, and a five-membered ring forms, incorporating two atoms of the nitro group.

The compound crystallizes in the orthorhombic space group $Pna2_1$, $a = 10.283(3)$, $b = 12.389(4)$, and $c = 7.262(3)\text{\AA}$. The calculated density is 1.207 Mg mm^{-3} . Bond distances and angles are given in Table (11) and the molecular geometry is illustrated in Fig. (11). The ring geometry is described by torsion angles $O(1)-N(2)-N(3)-C(4) = 3.4(15)^\circ$, $C(5)-C(4)-C(3)-N(2) = -20.6(1.3)^\circ$, and $C(3)-N(2)-O(1)-C(5) = 16.1(1.4)^\circ$.

Intermolecular contacts at normal van der Waals separations. Nearest contacts are $O(6)--H(7A)' = 2.69\text{\AA}$.

k) 5-Aza-6-methoxyuracil

Samples of this material were provided by C. Coon of Lawrence Livermore Laboratory. The material crystallized in the monoclinic space group $P2_1/c$, $a = 9.994(5)\text{\AA}$, $b = 4.316(1)\text{\AA}$, $c = 15.891(8)\text{\AA}$, and $\beta = 115.4(3)^\circ$. The calculated density is 1.557 Mg mm^{-3} . Bond distances and angles are given in Table (12) and the molecular geometry is shown in Fig. (12). The puckered triaza ring geometry is described by the selected list of torsion angles given in Table (12).

In this material each of the nitrogens participate in an intermolecular hydrogen bond; N(1) acts as a donor to $O(6)'$, $(1-x,y-.5,.5-z)$, N(3) is a donor to $O(2)'$, $(1-x,-y,-z)$, and N(5) is a donor to $O(4)'$, $(-x,y-.5,.5-z)$. The respective $H--O'$, $N--O'$ distances and $N-H--O$ angle are; 2.08\AA , 2.82\AA , and 145.2° , 2.02\AA , 2.86\AA , and 166.3° , and 2.01\AA , 2.81\AA , and 157.2° .

Fig. (11)

3-Cyano-4,4,5,5-tetramethylisoxazoline-

N -oxide

d = 1.207

Fig. (12)

5-Aza-6-methoxyuracil

d = 1,557

2) N-(4-amino-1,2,5-triazolo)-N'-methoxy-trichloracetamidine

Crystals of this material, provided by C. Coon of Lawrence Livermore Laboratory, formed in the monoclinic space group P2₁/c, $a = 9.287(1)\text{\AA}$, $b = 9.493(1)\text{\AA}$, $c = 13.208(2)\text{\AA}$, and $\beta = 108.47(1)^\circ$ with a calculated density of 1.494 Mg m^{-3} . Bond distances and angles are given in Table (13) as well as a selected set of torsion angles. Fig. (13) shows the molecular geometry and the atom numbering. In this compound the furazan ring is planar. Orientation of the methoxy and trichloracetamidine groups are described by the torsion angles given in Table (13).

There are no unusual intermolecular contacts, nearest contacts are N(2)—H(6)' = 2.30\AA, H(12B)—y(5)' = 2.37\AA, and H(12A)—N(8)' = 2.50\AA.

Fig. (13)

**N-(4-amino-1,2,5-triazolo)-N'-methoxy-
trichloroacetamidine**

$d = 1.494$

Appendix A

Table (1) Bond distances (\AA) and angles (deg.) for Tetra-nitrobishomocubane with e.s.d.'s in parenthesis

	Molecule 1	Molecule 2
C(1)-C(4)	1.565(4)	1.564(4)
C(1)-C(6)	1.529(4)	1.529(4)
C(1)-C(9)	1.501(4)	1.516(4)
C(2)-C(3)	1.549(4)	1.552(4)
C(2)-C(7)	1.549(4)	1.554(4)
C(2)-C(9)	1.541(3)	1.524(4)
C(3)-C(4)	1.558(4)	1.561(4)
C(3)-C(10)	1.527(3)	1.519(3)
C(4)-C(5)	1.569(4)	1.571(4)
C(5)-C(6)	1.549(5)	1.547(4)
C(5)-C(8)	1.541(5)	1.535(5)
C(6)-C(7)	1.562(4)	1.569(4)
C(7)-C(8)	1.565(4)	1.566(4)
C(8)-C(10)	1.505(4)	1.504(4)
C(9)-N(1)	1.520(4)	1.517(4)
C(9)-N(2)	1.522(4)	1.521(4)
C(10)-N(3)	1.514(4)	1.534(4)
C(10)-N(4)	1.526(4)	1.513(4)
N(1)-O(1)	1.204(4)	1.196(5)
N(1)-O(2)	1.193(4)	1.202(5)
N(2)-O(3)	1.196(4)	1.188(5)
N(2)-O(4)	1.208(3)	1.175(4)
N(3)-O(5)	1.203(4)	1.181(4)
N(3)-O(6)	1.214(4)	1.187(4)
N(4)-O(7)	1.202(4)	1.202(4)
N(4)-O(8)	1.204(4)	1.205(4)

Bond angles

C(4)-C(1)-C(6)	87.7(2)	87.5(2)
C(4)-C(1)-C(9)	103.8(2)	104.6(2)
C(6)-C(1)-C(9)	105.6(3)	104.8(3)
C(3)-C(2)-C(7)	99.7(2)	99.9(2)
C(3)-C(2)-C(9)	100.0(2)	101.4(2)
C(7)-C(2)-C(9)	104.2(2)	104.6(2)
C(2)-C(3)-C(4)	100.2(2)	100.0(2)
C(2)-C(3)-C(10)	103.5(2)	102.3(2)
C(4)-C(3)-C(10)	102.1(2)	102.5(2)
C(1)-C(4)-C(3)	105.2(2)	104.9(2)
C(1)-C(4)-C(5)	89.8(2)	90.2(2)
C(3)-C(4)-C(5)	103.7(2)	103.4(2)
C(4)-C(5)-C(6)	86.9(2)	86.6(2)
C(4)-C(5)-C(8)	103.0(2)	103.8(2)

	Molecule 1	Molecule 2
C(1)-C(6)-C(5)	91.9(2)	92.4(2)
C(1)-C(6)-C(7)	103.8(2)	104.1(2)
C(5)-C(6)-C(7)	87.0(2)	86.7(2)
C(2)-C(7)-C(6)	103.9(2)	102.9(2)
C(2)-C(7)-C(8)	105.5(2)	105.7(2)
C(6)-C(7)-C(8)	90.5(2)	90.3(2)
C(5)-C(8)-C(7)	87.2(2)	87.3(2)
C(5)-C(8)-C(10)	103.6(2)	103.6(2)
C(7)-C(8)-C(10)	106.1(2)	104.7(2)
C(1)-C(9)-C(2)	98.1(2)	97.7(2)
C(1)-C(9)-N(1)	113.4(3)	115.4(3)
C(1)-C(9)-N(2)	113.3(2)	111.2(2)
C(2)-C(9)-N(1)	112.3(2)	112.0(2)
C(2)-C(9)-N(2)	115.1(2)	114.8(3)
N(1)-C(9)-N(2)	104.9(2)	106.0(2)
C(3)-C(10)-C(8)	97.8(2)	99.0(2)
C(3)-C(10)-N(3)	112.4(2)	113.2(2)
C(3)-C(10)-N(4)	114.2(2)	111.6(2)
C(8)-C(10)-N(3)	112.7(2)	112.8(2)
C(8)-C(10)-N(4)	115.5(3)	115.7(2)
N(3)-C(10)-N(4)	104.6(2)	105.0(2)
O(1)-N(1)-C(9)	117.1(3)	117.3(3)
O(2)-N(1)-C(9)	117.7(3)	116.2(3)
O(1)-N(1)-O(2)	125.3(3)	126.5(3)
O(3)-N(2)-C(9)	116.0(2)	118.2(2)
O(4)-N(2)-C(9)	118.5(3)	117.7(3)
O(3)-N(2)-O(4)	125.4(3)	123.6(3)
O(5)-N(3)-C(10)	118.7(2)	118.2(2)
O(6)-N(3)-C(10)	116.8(3)	116.3(3)
O(5)-N(3)-O(6)	124.5(3)	125.4(3)
O(7)-N(4)-C(10)	117.8(3)	116.9(3)
O(8)-N(4)-C(10)	116.1(2)	117.6(2)
O(7)-N(4)-O(8)	126.1(3)	125.3(3)

ANPZ

Table 2. Bond Lengths and Corrections for Libration* (\AA).

Bond	uncorrected	corrected	
N(1) - C(2)	1.334(3)	1.337	
N(1) - C(6)	1.336(3)	1.340	
C(2) - C(3)	1.438(3)	1.444	
C(5) - C(6)	1.439(3)	1.445	
C(2) - N(7)	1.319(3)	1.323	
C(6) - N(10)	1.326(3)	1.329	
C(3) - N(4)	1.305(3)	1.309	
C(5) - N(4)	1.311(3)	1.314	
C(3) - N(8)	1.458(3)	1.462	
C(5) - N(9)	1.441(3)	1.445	
N(8) - O(11)	1.217(3)	1.247**	
N(9) - O(14)	1.233(2)	1.264**	
N(8) - O(12)	1.216(2)	1.247**	
N(9) - O(13)	1.222(2)	1.253**	
N(7) - H7A	0.82(3)	N(7) - H10A	0.89(3)
N(10) - H7B	0.78(3)	N(10) - H10B	0.80(3)
Hydrogen bonds - Intermolecular			
N(10)...O(13)'	2.902(3)	H10A...O(13)'	2.02(3)
N(10)...O(12)'	2.986(3)	H10B...O(12)'	2.32(3)
N(7)...O(14)'	2.909(3)	H7A...O(14)'	2.32(3)
N(7)...O(12)"	3.221(3)	H7B...O(12)"	2.49(3)
Intramolecular			
N(10)...O(14)	2.652(3)	H10B...O(14)	2.06(3)
N(7)...O(11)	2.673(3)	H7A...O(11)	2.10(3)

* The nitro oxygens did not fit an overall rigid-body model and their thermal factors were excluded from the libration/translation tensor determination. The method of Schomaker & Trueblood (1968) was used.

** Nitro distances corrected by assuming riding-motion correlation approximation (Johnson, 1970).

ANPZ

Table 3. Bond Angles (degrees). All unstated estimated standard deviations are 0.2° . Values in left and right columns are related by non-crystallographic molecular symmetry.

C(2)C(3)N(4)	122.1	C(6)C(5)N(4)	121.9
N(4)C(3)N(8)	115.3	N(4)C(5)N(9)	115.6
C(2)C(3)N(8)	122.6	C(6)C(5)N(9)	122.5
N(1)C(2)N(7)	116.8	N(1)C(6)N(10)	116.8
C(3)C(2)N(7)	124.7	C(5)C(6)N(10)	124.8
N(1)C(2)C(3)	118.5	N(1)C(6)C(5)	118.4
O(12)N(8)O(11)	122.3	O(13)N(9)O(14)	121.9
O(12)N(8)C(3)	119.3	O(13)N(9)C(5)	120.1
O(11)N(8)C(3)	118.4	O(14)N(9)C(5)	118.0
C(2)N(1)C(6))	120.4		
C(3)N(4)C(5)	118.7		

Hydrogen Bond Angles

Intermolecular		Intramolecular	
N(10)H(10A)O13'	174(2)	N(10)H(10B)O(14)	130(2)
N(10)H(10B)O12'	141(2)	N(7)H(7A)O(11)	127(2)
N(7)H(7A)O14'	129(2)		
N(7)H(7B)O12"	156(3)		

Table (4). Bond distances (Å) and valence angles (deg.) for tetranitrobicyclooctane with e.s.d.'s in parentheses

<u>Bond Distances (Å)</u>	Molecule 1	Molecule 2	Disorder (Molecule 2)
C(1)-O(2)	1.423(4)	1.427(4)	-
O(2)-C(3)	1.413(4)	1.438(7)	1.360(17)
C(3)-C(4)	1.523(5)	1.538(6)	1.573(14)
C(4)-C(5)	1.520(6)	1.541(5)	-
C(5)-C(1)	1.524(4)	1.518(4)	-
C(5)-O(6)	1.430(4)	1.426(4)	-
O(6)-C(7)	1.420(5)	1.437(4)	-
C(7)-C(8)	1.521(4)	1.516(5)	-
C(8)-C(1)	1.529(5)	1.522(5)	-
C(4)-N(1)	1.508(5)	1.500(7)	1.563(13)
C(4)-N(2)	1.518(4)	1.481(6)	1.485(13)
C(8)-N(3)	1.522(5)	1.514(5)	-
C(8)-N(4)	1.505(5)	1.504(4)	-
N(1)-O(1A)	1.215(4)	1.195(8)	1.188(16)
N(1)-O(1B)	1.207(5)	1.192(11)	1.220(30)
N(2)-O(2A)	1.207(5)	1.215(7)	1.170(16)
N(2)-O(2B)	1.212(5)	1.215(9)	1.209(17)
N(3)-O(3A)	1.210(5)	1.199(5)	-
N(3)-O(3B)	1.215(5)	1.196(6)	-
N(4)-O(4A)	1.204(5)	1.216(5)	-
N(4)-O(4B)	1.210(5)	1.192(6)	-
<u>Bond Angles (deg.)</u>			
O(2)-C(1)-C(5)	107.3(2)	107.3(3)	-
C(5)-C(1)-C(8)	103.1(3)	103.1(3)	-
O(2)-C(1)-C(8)	109.4(3)	109.2(3)	-
C(1)-O(2)-C(3)	111.5(3)	110.9(3)	-
O(2)-C(3)-C(4)	104.5(3)	103.0(4)	104.9(10)
C(3)-C(4)-C(5)	104.2(3)	102.5(3)	102.0(7)
C(1)-C(5)-C(4)	103.2(3)	103.3(2)	-
C(1)-C(5)-O(6)	107.3(3)	107.7(3)	-
C(4)-C(5)-O(6)	109.3(2)	109.7(3)	-
C(5)-O(6)-C(7)	111.1(3)	110.1(2)	-
O(6)-C(7)-C(8)	104.4(3)	103.9(3)	-
C(1)-C(8)-C(7)	103.9(3)	103.7(3)	-
C(3)-C(4)-N(1)	109.9(3)	108.8(4)	107.8(3)
C(3)-C(4)-N(2)	114.8(3)	116.3(4)	113.7(8)
C(5)-C(4)-N(1)	111.4(3)	113.6(4)	109.9(5)
C(5)-C(4)-N(2)	110.8(3)	111.0(3)	116.4(6)
N(1)-C(4)-N(2)	105.9(3)	105.0(4)	106.8(7)
C(1)-C(8)-N(3)	110.1(3)	111.4(3)	-
C(1)-C(8)-N(4)	112.1(3)	111.1(3)	-
C(7)-C(8)-N(3)	110.4(3)	110.3(3)	-
C(7)-C(8)-N(4)	114.7(3)	114.2(3)	-
N(3)-C(8)-N(4)	105.7(3)	106.1(3)	-
C(4)-N(1)-O(1A)	114.4(3)	115.8(5)	117.6(12)

C(4)-N(1)-O(1B)	118.7(3)	117.8(8)	115.4(18)
O(1A)-N(1)-O(1B)	126.7(4)	126.2(9)	126.9(20)
C(4)-N(2)-O(2A)	117.9(3)	116.9(5)	112.9(14)
C(4)-N(2)-O(2B)	115.9(3)	120.2(5)	112.1(10)
O(2A)-N(2)-O(2B)	126.1(3)	122.9(6)	134.8(17)
C(8)-N(3)-O(3A)	118.7(3)	116.9(3)	-
C(8)-N(3)-O(3B)	115.1(3)	117.1(4)	-
O(3A)-N(3)-O(3B)	126.2(4)	126.0(4)	-
C(8)-N(4)-O(4A)	117.1(3)	115.1(4)	-
C(8)-N(4)-O(4B)	116.5(3)	118.4(3)	-
O(4A)-N(4)-O(4B)	126.4(4)	126.4(4)	-

Table (5). Bond distances (Å) and valence angles (deg.) for 2,3,4-trinitropyrrole with e.s.d.'s in parentheses

<u>Bond Distance (Å)</u>	<u>Molecule (1)</u>	<u>Molecule (2)</u>	<u>Average</u>
N(1)-C(2)	1.360(9)	1.386(10)	1.373
C(2)-C(3)	1.367(9)	1.383(9)	1.375
C(3)-C(4)	1.379(9)	1.423(10)	1.401
C(4)-C(5)	1.393(10)	1.351(11)	1.372
C(5)-N(1)	1.351(10)	1.339(10)	1.345
C(2)-N(6)	1.378(9)	1.434(9)	1.406
C(3)-N(7)	1.429(9)	1.461(8)	1.445
C(4)-N(8)	1.429(9)	1.430(9)	1.430
N(6)-O(6A)	1.198(8)	1.238(8)	1.218
N(6)-O(6B)	1.265(8)	1.148(8)	1.207
N(7)-O(7A)	1.249(8)	1.181(8)	1.215
N(7)-O(7B)	1.182(8)	1.216(8)	1.199
N(8)-O(8A)	1.180(8)	1.252(8)	1.216
N(8)-O(8B)	1.210(8)	1.233(8)	1.222

<u>Bond Angles (deg.)</u>			
C(2)-N(1)-C(5)	109.2(6)	108.3(6)	108.8
N(1)-C(2)-C(3)	108.7(6)	108.9(6)	108.8
C(2)-C(3)-C(4)	106.7(6)	104.4(5)	105.6
C(3)-C(4)-C(5)	108.3(6)	109.0(6)	108.7
C(4)-C(5)-N(1)	106.5(7)	108.8(7)	107.7
N(1)-C(2)-N(6)	119.4(6)	124.3(6)	121.8
C(3)-C(2)-N(6)	131.8(6)	126.8(6)	129.3
C(2)-C(3)-N(7)	124.9(6)	127.1(6)	126.0
C(4)-C(3)-N(7)	128.4(6)	128.2(6)	128.3
C(3)-C(4)-N(8)	127.5(6)	125.7(7)	126.6
C(5)-C(4)-N(8)	124.0(6)	125.0(7)	124.5
C(2)-N(6)-O(6A)	121.7(6)	115.6(6)	118.7
C(2)-N(6)-O(6B)	115.5(6)	117.7(6)	116.6
C(3)-N(7)-O(7A)	116.7(6)	119.2(5)	117.9
C(3)-N(7)-O(7B)	121.0(6)	113.3(5)	117.2
C(4)-N(8)-O(8A)	119.2(6)	117.2(6)	118.2
C(4)-N(8)-O(8B)	117.6(6)	117.8(6)	117.7
O(6A)-N(6)-O(6B)	122.8(6)	126.7(7)	124.8
O(7A)-N(7)-O(7B)	122.4(6)	127.5(6)	124.9
O(8A)-N(8)-O(8B)	123.1(6)	124.9(6)	124.0

Table (6). Bond distances Å and angles for 1,3,5-Trinitroso-1,3,5-triazacyclohexane

N(1)-C(2)	1.428(3)	N(5)-N(11)	1.367(14)
N(1)-C(6)	1.460(3)	N(5)-N(11A)	1.357(11)
N(1)-N(7)	1.333(3)	N(5)-N(11B)	1.382(13)
C(2)-N(3)	1.431(4)	N(7)-O(8)	1.179(4)
N(3)-C(4)	1.444(4)	N(9)-O(10)	1.209(4)
N(3)-N(9)	1.352(4)	N(11)-O(12)	1.207(18)
C(4)-N(5)	1.444(5)	N(11A)-O(12A)	1.211(14)
N(5)-C(6)	1.449(4)	N(11B)-O(12B)	1.211(29)

Bond Angles

C(2)-N(1)-C(6)	117.7(2)	C(4)-N(5)-N(11B)	135.8(9)
C(2)-N(1)-C(7)	124.1(2)	C(6)-N(5)-N(11)	107.5(7)
C(6)-N(1)-N(7)	124.1(2)	C(6)-N(5)-N(11A)	144.2(5)
N(1)-C(2)-N(3)	109.0(2)	C(6)-N(5)-N(11B)	105.9(9)
C(2)-N(3)-C(4)	116.8(2)	N(1)-C(6)-N(5)	106.7(2)
C(2)-N(3)-N(9)	116.7(2)	N(1)-N(7)-O(8)	115.6(3)
C(4)-N(3)-N(9)	125.6(2)	N(3)-N(9)-O(10)	113.4(3)
N(3)-C(4)-N(5)	108.5(2)	N(5)-N(11)-O(12)	107.3(14)
C(4)-N(5)-C(6)	117.6(3)	N(5)-N(11A)-O(12A)	105.6(10)
C(4)-N(5)-N(11)	133.9(8)	N(5)-N(11B)-O(12B)	108.1(13)
C(4)-N(5)-N(11A)	98.1(5)		

Table (7). Bond distances (Å) and valence angles for 3,3-Bis (methylnitroaminomethyl) oxetane with e.s.d.'s in parentheses

Bond Lengths (Å)

O(1)-C(2)	1.443(3)	O(1)-C(4)	1.431(3)
C(2)-C(3)	1.531(3)	C(3)-C(4)	1.542(3)
C(3)-C(5)	1.515(2)	C(3)-C(6)	1.525(2)
C(5)-N(7)	1.462(2)	C(6)-N(12)	1.456(2)
N(7)-C(8)	1.447(2)	N(7)-N(9)	1.336(2)
N(9)-O(10)	1.231(2)	N(9)-O(11)	1.228(2)
N(12)-C(13)	1.452(3)	N(12)-N(14)	1.336(2)
N(14)-O(15)	1.235(3)	N(14)-O(16)	1.223(3)

Bond Angles (deg.)

C(2)-O(1)-C(4)	90.8(2)	O(1)-C(2)-C(3)	91.0(2)
C(2)-C(3)-C(4)	83.5(1)	C(2)-C(3)-C(5)	119.9(2)
C(4)-C(3)-C(5)	118.3(1)	C(2)-C(3)-C(6)	109.3(1)
C(4)-C(3)-C(6)	113.4(1)	C(5)-C(3)-C(6)	110.1(1)
O(1)-C(4)-C(3)	90.9(2)	C(3)-C(5)-N(7)	115.0(1)
C(3)-C(6)-N(12)	114.8(1)	C(5)-N(7)-C(8)	121.2(1)
C(5)-N(7)-N(9)	117.3(1)	C(8)-N(7)-N(9)	116.8(1)
N(7)-N(9)-O(10)	118.1(2)	N(7)-N(9)-O(11)	117.9(1)
O(10)-N(9)-O(11)	123.9(2)	C(6)-N(12)-C(13)	122.2(2)
C(6)-N(12)-N(14)	120.2(2)	C(13)-N(12)-N(14)	115.9(2)
N(12)-N(14)-O(15)	117.8(2)	N(12)-N(14)-O(16)	117.9(2)
O(15)-N(14)-O(16)	124.3(2)		

Torsion Angles (deg.)

C(2)-C(3)-C(5)-N(7)	-43.8(2)	C(5)-N(7)-N(9)-O(10)	-17.6(2)
C(6)-C(3)-C(5)-N(7)	-171.9(1)	C(6)-N(12)-N(14)-O(16)	7.5(2)
C(4)-C(3)-C(6)-N(12)	83.1(2)	C(3)-C(6)-N(12)-C(13)	94.2(2)
C(5)-C(3)-C(6)-N(12)	-52.0(2)	C(3)-C(5)-N(7)-C(8)	-105.2(2)

Table (8). Bond distances (Å) and valence angles for
3,3-Bis(nitratomethyl)oxetane with e.s.d.'s in parentheses

<u>Bond Lengths (Å)</u>		<u>Bond Angles (deg.)</u>	
C(1)-C(2)	1.437(2)	C(2)-O(1)-C(2)'	91.6(2)
C(2)-C(3)	1.532(2)	O(1)-C(2)-C(3)	91.9(2)
C(3)-C(4)	1.514(3)	C(2)-C(3)-C(2)'	84.5(2)
C(4)-C(5)	1.454(2)	C(2)-C(3)-C(4)	115.9(1)
O(5)-N(6)	1.386(3)	C(4)-C(3)-C(4)'	112.0(2)
N(6)-O(7)	1.181(3)	C(3)-C(4)-O(5)	104.2(1)
N(6)-O(8)	1.196(2)	C(4)-O(5)-N(6)	113.7(1)
		O(5)-N(6)-O(7)	119.6(2)
		O(5)-N(6)-O(8)	111.2(2)
		O(7)-N(6)-O(8)	129.2(3)
<u>Torsion Angles (deg.)</u>			
C(4)-C(3)-C(2)-O(1)	113.0(2)	C(4)-O(5)-N(6)-O(7)	-0.1(3)
C(2)-C(3)-C(4)-O(5)	62.3(2)	C(4)-O(5)-N(6)-O(8)	179.6(3)
N(6)-O(5)-C(4)-C(3)	172.7(2)		

Table (9). Bond distances (Å) and valence angles (deg.) for
3-Methoxy-2,4-dinitro-2,4-diazapentane.

<u>Bond Lengths (Å)</u>		<u>Bond Angles (deg.)</u>	
C(1)-N(2)	1.451(3)	N(2)-C(3)	1.466(2)
N(2)-N(6)	1.350(3)	C(3)-N(4)	1.446(2)
C(3)-O(8)	1.385(2)	N(4)-C(5)	1.446(2)
N(4)-N(7)	1.356(2)	N(6)-O(6A)	1.223(2)
N(6)-O(6B)	1.228(2)	N(7)-O(7B)	1.221(2)
N(7)-O(7A)	1.225(2)	O(8)-C(9)	1.440(2)
<u>Torsion Angles</u>			
C(1)-N(2)-C(3)-N(4)	125.2(2)	C(1)-N(2)-N(6)	117.9(2)
C(1)-N(2)-C(3)-O(8)	116.9(1)	N(2)-C(3)-N(4)	110.8(1)
N(2)-C(3)-O(8)	109.3(1)	N(4)-C(3)-O(8)	107.2(1)
C(3)-N(4)-C(5)	122.4(1)	C(3)-N(4)-N(7)	118.1(1)
C(5)-N(4)-N(7)	118.8(1)	N(2)-N(6)-O(6A)	118.1(2)
N(2)-N(6)-O(6B)	117.2(1)	O(6A)-N(6)-O(6B)	124.7(2)
N(4)-N(7)-O(7B)	118.6(1)	N(4)-N(7)-O(7A)	116.7(1)
O(7B)-N(7)-O(7A)	124.7(1)	C(3)-O(8)-C(9)	112.8(1)
C(1)-N(2)-C(3)-N(4)	93.4(2)	N(2)-C(3)-N(4)-N(7)	117.4(2)
C(1)-N(2)-C(3)-O(8)	-24.5(2)	O(8)-C(3)-N(4)-C(5)	66.2(2)
N(6)-N(2)-C(3)-N(4)	-85.6(2)	O(8)-C(3)-N(4)-N(7)	-123.4(2)
N(6)-N(2)-C(3)-O(8)	156.4(2)	N(2)-C(3)-O(8)-C(9)	-78.4(1)
C(1)-N(2)-N(6)-O(6A)	-177.2(1)	N(4)-C(3)-O(8)-C(9)	161.5(1)
C(1)-N(2)-N(6)-O(6B)	3.2(2)	C(3)-N(4)-N(7)-O(7B)	15.1(3)
C(3)-N(2)-N(6)-O(6A)	2.0(2)	C(3)-N(4)-N(7)-O(7A)	-165.8(2)
C(3)-N(2)-N(6)-O(6B)	-177.7(1)	C(5)-N(4)-N(7)-O(7B)	-174.2(2)
N(2)-C(3)-N(4)-C(5)	-52.9(2)	C(5)-N(4)-N(7)-O(7A)	4.9(3)

Table (10). Bond distances (Å) and valence angles (deg.) for tri-benzyltriazawurtzitane with e.s.d.'s in parentheses

Bond Distances (Å)

N(1)-C(2)	1.1463(2)	C(8)-C(9)	1.515(3)
N(1)-C(6)	1.471(2)	C(9)-C(10)	1.523(3)
C(2)-N(3)	1.466(2)	C(10)-C(11)	1.528(3)
C(2)-C(9)	1.563(3)	C(11)-C(12)	1.525(3)
N(3)-C(4)	1.467(2)	N(1)-C(7A)	1.449(2)
C(4)-N(5)	1.459(2)	N(3)-C(7B)	1.448(2)
C(4)-C(11)	1.568(3)	N(5)-C(7C)	1.453(2)
N(5)-C(6)	1.469(2)	C(7A)-C(1A)	1.515(3)
C(6)-C(7)	1.566(3)	C(7B)-C(1B)	1.505(3)
C(7)-C(8)	1.530(3)	C(7C)-C(1C)	1.557(3)
C(7)-C(12)	1.516(3)	C(7C')-C(1C')	1.414(6)
Benzene ring distances			
C(1)-C(2)	1.381(3)		1.369(3)
C(1)-C(6)	1.381(3)		1.378(3)
C(2)-C(3)	1.373(3)	Ring A	1.387(4)
C(3)-C(4)	1.368(4)		1.383(5)
C(4)-C(5)	1.367(4)		1.355(5)
C(5)-C(6)	1.392(4)		1.371(4)

* Rings C and C' fixed at C-C 1.395 and C-C-C = 120°.

Bond Angles (deg.)

C(2)-N(1)-C(6)	108.4(1)	N(5)-C(6)-C(7)	107.5(1)
C(2)-N(1)-C(7A)	113.6(1)	C(6)-C(7)-C(8)	110.0(1)
C(6)-N(1)-C(7A)	116.8(1)	C(6)-C(7)-C(12)	110.0(2)
N(1)-C(2)-N(3)	108.2(1)	C(8)-C(9)-C(12)	108.7(2)
N(1)-C(2)-C(9)	108.1(1)	C(7)-C(8)-C(9)	107.5(2)
N(3)-C(2)-C(9)	114.6(1)	C(2)-C(9)-C(8)	110.0(2)
C(2)-N(3)-C(4)	108.8(1)	C(2)-C(9)-C(10)	109.7(2)
C(2)-N(3)-C(7B)	118.8(1)	C(8)-C(9)-C(10)	109.0(2)
C(4)-N(3)-C(7B)	117.7(1)	C(9)-C(10)-C(11)	107.3(2)
N(3)-C(4)-N(5)	109.1(1)	C(4)-C(11)-C(10)	110.6(2)
N(3)-C(4)-C(11)	113.4(1)	C(4)-C(11)-C(12)	109.4(2)
N(5)-C(4)-C(11)	108.1(1)	C(10)-C(11)-C(12)	108.7(2)
C(4)-N(5)-C(6)	108.3(1)	C(7)-C(12)-C(11)	107.6(2)
C(4)-N(5)-C(7C)	113.7(1)	N(1)-C(7A)-C(1A)	111.7(1)
C(6)-N(5)-C(7C)	116.5(1)	N(3)-C(7B)-C(1B)	113.1(2)
N(1)-C(6)-N(5)	115.3(1)	N(5)-C(7C)-C(1C)	108.1(2)
N(1)-C(6)-C(7)	107.7(1)	N(5)-C(7C)-C(1C')	121.9(3)

Table (11). Bond distances (Å) and valence angles for 3-Cyano-4,4,5,5-tetramethylisoxazoline-N-oxide with e.s.d.'s in parentheses

Bond distances (Å)

O(1)-N(2)	1.390(15)	C(4)-C(5)	1.532(16)
O(1)-C(5)	1.511(15)	C(4)-C(7)	1.552(16)
N(2)-C(3)	1.302(18)	C(4)-C(8)	1.520(14)
N(2)-O(6)	1.238(15)	C(5)-C(9)	1.480(19)
C(3)-C(4)	1.511(17)	C(5)-C(10)	1.539(16)
C(3)-C(11)	1.416(20)	C(11)-N(12)	1.148(21)

Bond Angles (deg.)

H(2)-O(1)-C(5)	105.4(9)	C(5)-C(4)-C(7)	111.4(8)
O(1)-N(2)-C(3)	111.5(11)	C(5)-C(4)-C(8)	114.9(9)
O(1)-N(2)-O(6)	117.8(10)	C(7)-C(4)-C(8)	109.9(9)
C(3)-N(2)-O(6)	130.7(12)	C(4)-C(5)-O(1)	103.0(11)
N(2)-C(3)-C(4)	112.1(11)	C(4)-C(5)-C(9)	116.6(10)
N(2)-C(3)-C(11)	120.4(13)	C(4)-C(5)-C(10)	117.1(11)
C(4)-C(3)-C(11)	127.2(11)	O(1)-C(5)-C(9)	104.3(10)
C(3)-C(4)-C(5)	98.9(9)	O(1)-C(5)-C(10)	102.7(9)
C(3)-C(4)-C(7)	112.0(9)	C(9)-C(5)-C(10)	110.7(12)
C(3)-C(4)-C(8)	109.3(7)	C(3)-C(11)-N(12)	179.0(15)

Table (12). Bond distances (Å) and valence angles for 5-aza-6-methoxyuracile with e.s.d.'s in parentheses

Bond Distance (Å)

N(1)-C(2)	1.352(4)	C(4)-N(5)	1.350(5)
N(1)-C(6)	1.435(5)	C(4)-O(4)	1.277(5)
C(2)-N(3)	1.366(5)	N(5)-C(6)	1.424(5)
C(2)-O(2)	1.225(3)	C(6)-O(6)	1.428(4)
N(3)-C(4)	1.374(4)	O(6)-C(7)	1.445(3)

Bond Angles (deg.)

C(2)-N(1)-C(6)	121.7(3)	O(4)-C(4)-N(5)	124.1(3)
N(1)-C(2)-N(3)	115.1(2)	C(4)-N(5)-C(6)	122.4(3)
N(1)-C(2)-O(2)	122.1(3)	N(1)-C(6)-N(5)	109.4(3)
O(2)-C(2)-N(3)	122.7(3)	N(1)-C(6)-O(6)	107.1(3)
C(2)-N(3)-C(4)	125.2(3)	N(5)-C(6)-O(6)	112.4(3)
N(3)-C(4)-N(5)	114.5(3)	C(6)-O(6)-C(7)	113.8(2)
N(3)-C(4)-O(4)	121.4(3)		

Torsion Angles

N(1)-C(6)-N(5)-C(4)	-36.5(4)	O(2)-C(2)-N(3)-C(4)	157.4(3)
O(6)-C(6)-N(5)-C(4)	82.4(3)	C(2)-N(3)-C(4)-N(5)	11.0(5)
N(5)-C(6)-O(6)-C(7)	69.4(3)	N(3)-C(4)-N(6)-C(6)	15.5(4)
C(6)-N(1)-C(2)-N(3)	-13.9(5)		

Table (13). Bond distances (\AA) and valence angles (deg.) for
N-(4-amino-1,2,5-triazolo)-N'-methoxy-trichloroacetamidine
with e.s.d.'s in parentheses

Bonds Distances (\AA)

O(1)-N(2)	1.382(3)	C(7)-C(11)	1.525(5)
O(1)-N(5)	1.402(3)	C(8)-O(9)	1.396(4)
N(2)-C(3)	1.301(4)	O(9)-C(10)	1.411(5)
C(3)-C(4)	1.435(4)	C(11)-CL(1)	1.766(3)
C(3)-N(6)	1.377(4)	C(11)-CL(2)	1.768(3)
C(4)-N(5)	1.306(4)	C(11)-CL(3)	1.752(3)
C(4)-N(12)	1.360(4)		
N(6)-C(7)	1.34(4)		
C(7)-N(8)	1.273(4)		

Bond Angles (deg.)

N(5)-O(1)-N(2)	110.2(2)	C(7)-N(8)-O(9)	110.8(2)
O(1)-N(2)-C(3)	106.1(2)	N(8)-O(9)-C(10)	110.6(3)
N(2)-C(3)-C(4)	109.4(3)	C(7)-C(11)-CL(1)	110.2(2)
N(2)-C(3)-N(6)	121.6(2)	C(7)-C(11)-CL(2)	108.5(2)
C(4)-C(3)-N(6)	128.7(3)	C(7)-C(11)-CL(3)	111.7(3)
C(3)-C(4)-N(5)	108.7(2)	CL(1)-C(11)-CL(2)	108.7(2)
C(3)-C(4)-N(12)	123.1(3)	CL(2)-C(11)-CL(3)	109.1(2)
N(5)-C(4)-N(12)	123.1(3)	CL(3)-C(11)-CL(1)	108.4(2)
C(4)-N(5)-O(1)	105.7(2)		
C(3)-N(6)-C(7)	124.3(3)		
N(6)-C(7)-N(8)	127.6(3)		
N(6)-C(7)-C(11)	115.0(3)		
N(8)-C(7)-C(11)	117.2(3)		

Torsion Angles

O(1)-N(2)-C(3)-N(6)	172.7(3)	C(3)-N(6)-C(7)-C(11)	147.1(3)
C(7)-N(6)-C(3)-C(4)	-44.0(5)	N(6)-C(7)-N(8)-O(9)	-5.2(4)
C(3)-N(6)-C(7)-N(8)	-29.0(5)	C(11)-C(7)-N(8)-O(9)	178.8(2)

(SYN)

DISTRIBUTION LIST

Dr. R.S. Miller
Office of Naval Research
Code 432P
Arlington, VA 22217
(10 copies)

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, DC 20380

JHU Applied Physics Laboratory
ATTN: CPIA (Mr. T.W. Christian)
Johns Hopkins Rd.
Laurel, MD 20707

Dr. Kenneth D. Hartman
Hercules Aerospace Division
Hercules Incorporated
Alleghany Ballistic Lab
P.O. Box 210
Washington, DC 21502

Mr. Otto K. Heiney
AFATL-DLJC
Elgin AFB, FL 32542

Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22312

Dr. R.L. Lou
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. R. Olsen
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. J. Pastine
Naval Sea Systems Command
Code 06R
Washington, DC 20362

Dr. Henry P. Marshall
Dept. 93-50, Bldg 204
Lockheed Missile & Space Co.
3251 Hanover St.
Palo Alto, CA 94304

Dr. Ingo W. May
Army Ballistic Research Lab.
ARRADCOM
Code DRXBR - 1BD
Aberdeen Proving Ground, MD 21005

Dr. R. McGuire
Lawrence Livermore Laboratory
University of California
Code L-324
Livermore, CA 94550

P.A. Miller
736 Leavenworth Street, #6
San Francisco, CA 94109

Dr. W. Moniz
Naval Research Lab.
Code 6120
Washington, DC 20375

Dr. K.F. Mueller
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

Prof. M. Nicol
Dept. of Chemistry & Biochemistry
University of California
Los Angeles, CA 90024

(SYN)

DISTRIBUTION LIST

Dr. Randy Peters
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. D. Mann
U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park, NC 27709-2211

Mr. R. Geisler
ATTN: DY/MS-24
AFRPL
Edwards AFB, CA 93523

Naval Air Systems Command
ATTN: Mr. Bertram P. Sobers
NAVAIR-320G
Jefferson Plaza 1, RM 472
Washington, DC 20361

R.B. Steele
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813

Mr. M. Stosz
Naval Surface Weapons Center
Code R10B
White Oak
Silver Spring, MD 20910

Mr. E.S. Sutton
Thiokol Corporation
Elkton Division
P.O. Box 241
Elkton, MD 21921

Dr. Grant Thompson
Morton Thiokol, Inc.
Wasatch Division
MS 240 P.O. Box 524
Brigham City, UT 84302

Mr. L. Roslund
Naval Surface Weapons Center
Code R10C
White Oak, Silver Spring, MD 20910

Dr. David C. Sayles
Ballistic Missile Defense
Advanced Technology Center
P.O. Box 1500
Huntsville, AL 35807

Director
US Army Ballistic Research Lab.
ATTN: DRXER-IBD
Aberdeen Proving Ground, MD 21005

Commander
US Army Missile Command
ATTN: DRSMI-RKL
Walter W. Wharton
Redstone Arsenal, AL 35898

T. Yee
Naval Weapons Center
Code 3265
China Lake, CA 93555

Dr. E. Zimet
Office of Naval Technology
Code 071
Arlington, VA 22217

Dr. Ronald L. Derr
Naval Weapons Center
Code 389
China Lake, CA 93555

T. Boggs
Naval Weapons Center
Code 389
China Lake, CA 93555

Lee C. Estabrook, P.E.
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, LA 71130

(SYN)

DISTRIBUTION LIST

Dr. R.F. Walker
Chief, Energetic Materials Division
DRSMC-LCE (D), B-3022
USA ARDC
Dover, NJ 07801

Dr. Janet Wall
Code 012
Director, Research Administration
Naval Postgraduate School
Monterey, CA 93943

R.E. Shenton
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mike Barnes
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. Lionel Dickinson
Naval Explosive Ordnance
Disposal Tech. Center
Code D
Indian Head, MD 20340

Prof. J.T. Dickinson
Washington State University
Dept. of Physics 4
Pullman, WA 99164-2814

M.H. Miles
Dept. of Physics
Washington State University
Pullman, WA 99164-2814

Dr. T.F. Davidson
Vice President, Technical
Morton Thiokol, Inc.
Aerospace Group
110 North Wacker Drive
Chicago, IL 60606

Dr. D.D. Dillehay
Morton Thiokol, Inc.
Longhorn Division
Marshall, TX 75670

G.T. Bowman
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Brian Wheatley
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mr. G. Edwards
Naval Sea Systems Command
Code 62R32
Washington, DC 20362

C. Dickinson
Naval Surface Weapons Center
White Oak, Code R-13
Silver Spring, MD 20910

Prof. John Deutch
MIT
Department of Chemistry
Cambridge, MA 02139

Dr. E.H. deButts
Hercules Aerospace Co.
P.O. Box 27408
Salt Lake City, UT 84127

David A. Flanigan
Director, Advanced Technology
Morton Thiokol, Inc.
Aerospace Group
110 North Wacker Drive
Chicago, IL 60606

(SYN)

DISTRIBUTION LIST

Mr. J. Consaga
Naval Surface Weapons Center
Code R-16
Indian Head, MD 20640

Naval Sea Systems Command
ATTN: Mr. Charles M. Christensen
NAVSEA62R2
Crystal Plaza, Bldg. 6, Rm 806
Washington, DC 20362

Mr. R. Beauregard
Naval Sea Systems Command
SEA 64E
Washington, DC 20362

Dr. Anthony J. Matuszko
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric
Sciences
Bolling Air Force Base
Washington, DC 20332

Dr. Michael Chaykovsky
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

J.J. Rocchio
USA Ballistic Research Lab.
Aberdeen Proving Ground, MD 21005-5066

G.A. Zimmerman
Aerojet Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

B. Swanson
INC-4 MS C-346
Los Alamos National Laboratory
Los Alamos, NM 87545

Dr. L.H. Caveny
Air Force Office of Scientific
Research
Directorate of Aerospace Sciences
Bolling Air Force Base
Washington, DC 20332

W.G. Roger
Code 5253
Naval Ordnance Station
Indian Head, MD 20640

Dr. Donald L. Bell
Air Force Office of Scientific
Research
Directorate of Chemical &
Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332

Dr. H.G. Adolph
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

U.S. Army Research Office
Chemical & Biological Sciences
Division
P.O. Box 12211
Research Triangle Park, NC 27709

G. Butcher
Hercules, Inc.
MS X2H
P.O. Box 98
Magna, Utah 84044

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

(SYN)

DISTRIBUTION LIST

Dr. James T. Bryant
Naval Weapons Center
Code 3205B
China Lake, CA 93555

Dr. L. Rothstein
Assistant Director
Naval Explosives Dev. Engineering Dept.
Naval Weapons Station
Yorktown, VA 23691

Dr. M.J. Kamlet
Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III
Manager, Chemical Sciences Branch
ATTN: Code 5063
Crane, IN 47522

Dr. R.S. Valentini
United Technologies Chemical Systems
P.O. Box 50015
San Jose, CA 95150-0015

Administrative Contracting
Officer (see contract for
address)
(1 copy)

Defense Technical Information Center
Bldg. 5, Cameron Station
Alexandria, VA 22314
(12 copies)

Arpad Junasz
Code DRDAR-IBD
Ballistic Research Lab
Aberdeen, MD 21005

Mr. C. Gotzmer
Naval Surface Weapons Center
Code R-11
White Oak
Silver Spring, MD 20910

Dr. John S. Wilkes, Jr.
FJSRL/NC
USAF Academy, CO 80840

Dr. H. Rosenwasser
Naval Air Systems Command
AIR-320R
Washington, DC 20361

Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555

Dr. Joyce J. Kaufman
The Johns Hopkins University
Department of Chemistry
Baltimore, MD 21218

Dr. J.R. West
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, LA 71130

Director
Naval Research Laboratory
Attn: Code 2627
Washington, DC 20375
(6 copies)

Dr. Robert J. Schmitt
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Michael D. Coburn
Los Alamos National Lab
M-1, Explosives Technology
Mail Stop, C920
Los Alamos, NM 87545

(SYN)

DISTRIBUTION LIST

Dr. G. Neece
Office of Naval Research
Code 413
Arlington, VA 22217

Mr. C.M. Havlik
0/83-10, B/157-3W.
Lockheed Missiles & Space Co., Inc.
P.O. Box 504
Sunnyvale, CA 94086

Dr. Philip Howe
Ballistic Research Laboratory
Code DRXBR-TBD
Aberdeen Proving Ground, MD 21005

Prof. C. Sue Kim
Department of Chemistry
California State University, Sacramento
Sacramento, California 95819

Mr. J. Moniz
Naval Ordnance Station
Code 5253L
Indian Head, MD 20640

Dr. R. Reed Jr.
Naval Weapons Center
Code 38904
China Lake, CA 93555

L.H. Sperling
Materials Research Center #32
Lehigh University
Bethlehem, PA 18015

Dr. Kurt Baum
Fluorochem, Inc.
680 South Ayon Ave.
Azusa, CA 91702

Dr. Andrew C. Victor
Naval Weapons Center
Code 3208
China Lake, CA 93555

Dr. J.C. Hinshaw
Morton Thiokol Inc.
P.O. Box 524
Mail Stop 240
Brigham City, Utah 84302

Dr. V.J. Keenan
Anal-Syn Lab. Inc.
P.O. Box 547
Paoli, PA 19301

G.E. Manser
Morton Thiokol
Wasatch Division
P.O. Box 524
Brigham City, Utah 84302

P. Politzer
Chemistry Department
University of New Orleans
New Orleans, Louisiana 70148

Mr. David Siegel
Office of Naval Research
Code 253
Arlington, VA 22217

Dr. Rodney L. Willer
Morton Thiokol, Inc.
P.O. Box 241
Elkton, MD 21921

Dr. R. Atkins
Naval Weapons Center
Code 3852
China Lake, CA 93555

(SFT)

DISTRIBUTION LIST

Prof. J.H. Boyer
University of Illinois
Department of Chemistry
Box 4348
Chicago, Illinois 60680

Prof. J.C. Chien
University of Massachusetts
Department of Chemistry
Amherst, MA 01003

Dr. B. David Halpern
Polysciences, Inc.
Paul Valley Industrial Park
Warrington, PA 18976

Dr. M.S. Frankel
Rockwell International
Rocketdyne Division
4633 Canoga Avenue
Canoga Park, CA 91304

Dr. R.A. Earl
Hercules, Inc.
Magna, Utah 84109

Mr. C. Bedford
SRI International
3211 Pennewood Avenue
Menlo Park, CA 94025

Dr. Robert R. Ryan
INC-4, MS C346
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dr. Robert D. Chapman
AFRL/LKLR
Edwards AFB, CA 93525

Dr. L. Erwin
MIT
Room 35-003
Cambridge, MA 02139

Dr. M. Farber
Space Sciences, Inc.
135 W. Maple Avenue
Menlovia, CA 91016

Dr. W.E. Graham
Morton Thiokol, Inc.
Hunstville Division
Hunstville, AL 35807-7501

Dr. C. Coon
Lawrence Livermore Lab.
University of California
P.O. Box 808
Livermore, CA 94550

Dr. R. Gilardi
Naval Research Laboratory
Code 6030
Washington, DC 20375

Dr. Alan Marchand
Dept. of Chemistry
North Texas State University
NTSU Station, Box 3068
Denton, Texas 76202

T.B. Brill
Department of Chemistry
University of Delaware
Newark, Delaware 19715

Dr. A.A. Defusco
Code 3852
Naval Weapons Center
China Lake, CA 93555

Dr. Richard A. Hollins
Naval Weapons Center
Code 3853
China Lake, CA 93555

Dr. R. Armstrong
MIT
Room 66-305
Cambridge, MA 02139

Professor Philip E. Eaton
Department of Chemistry
University of Chicago
5735 South Ellis Avenue
Chicago, IL 60637