Al and superchips

Andrea Parra-2210062, Christian Orduz-2152104, Milton Monsalve-2204004, Cristian Orduz-2211877-, Oscar Mongui 2215104 Grupo A2

Universidad Industrial de Santander - Arquitectura de computadores

Arquitectura y solución planteada

El sistema usando el superchip Nvidia gh200 hopper, que aborda problemas avanzados de IA y HPC. Este superchip integra la arquitectura NVIDIA Grace con 72 núcleos ARM Neoverse V2, cuyo diseño optimiza el flujo de datos intensivo y seguros en entornos de servidor. Conectado a una GPU GPU NVIDIA H100 mediante NVIDIA NVLink-C2C, maximiza la eficiencia y rendimiento de comunicación entre chips, con la GPU capaz de manejar complejas aplicaciones de inteligencia artificial.

Para el almacenamiento, se optó por un sistema NAS con SSDs NVMe de 2 TB en configuración RAID 6. Esta configuración proporciona acceso multiusuario simultáneo, administración centralizada y alta tolerancia a fallos, esencial para manejar grandes volúmenes de datos. Se determinó que se requerían 30 discos para alcanzar 50 TB de almacenamiento utilizable, con una capacidad operacional de aproximadamente 52.08 TB.

Resumen

Como ingenieros de sistemas es de suma importancia adaptarse e informarse sobre las nuevas tecnologías que entran al mercado y la academia. En vista del gran boom de las inteligencias artificiales y la creciente demanda de recursos de hardware para su entrenamiento, el presente artículo evaluará una posible solución a un problema relevante con su funcionamiento; haciendo uso de un superchip NVIDIA GH200 Grace-Hopper con cincuenta terabytes de almacenamiento, y analizando las necesidades en términos de procesamiento, almacenamiento, energía y demás, con los conocimientos discutidos en el curso.

Sistema de Archivado

ZFS fue la opción elegida debido a los siguientes factores:

- Permite añadir dispositivos de almacenamiento y obtener instantáneamente más espacio en todos los sistemas de archivos existentes.
- Protección avanzada contra la corrupción de datos mediante checksums.
- Compresión eficiente de datos, snapshots y clones mediante la técnica copy-on-write.
- Funcionalidades integradas de LVM y RAID

Evaluación de costos e idoneidad

Para evaluar utilizamos los siguientes parámetros:

- Rendimiento en operaciones de IA(FLOPS, latencia).
- Consumo energético (W)
- Costo total de propiedad (TCO)
- Escalabilidad

Es esencial no solo evaluar el rendimiento técnico, sino también los costos operativos a largo plazo, la facilidad de integración en tu infraestructura existente, y la capacidad de satisfacer las demandas específicas de tu aplicación de inteligencia artificial.

Lenovo vs HPE

- -Las principales ventaja de lenovo son su diseño modular y flexibilidad asi como sus bajos costos (ejemplo HG650N)
- -HPE por su lado tiene ventaja en la innovacion de su interconexion y eficienca energetica, ademas de presentar infraestructura componible, sus desventajas son sus altos costos y complejidad de implementacion (ejemplo Ex254n)

Sistema de enfriamiento

El enfriamiento es crucial para el rendimiento de equipos en aplicaciones intensivas como la inteligencia artificial. Enfriamiento por Aire: Utiliza ventiladores y disipadores. Ejemplos incluyen Noctua NH-D15 (\$90 USD) y Cooler Master Hyper 212 EVO (\$40 USD). Es más económico, fácil de instalar, pero es menos eficiente, más ruidoso y requiere más espacio.

Enfriamiento por Agua: Usa líquidos refrigerantes y radiadores. Ejemplos son Corsair Hydro Series H150i PRO RGB (\$160 USD), NZXT Kraken X62 (\$150 USD). Es más eficiente y compacto, y produce menos ruido, aunque tiene un costo inicial alto, requiere mantenimiento especializado y presenta riesgo de fugas.

Conclusiones

- Para manejar un sistema NAS con SSDs NVMe de 2TB en una configuración RAID 6 para un almacenamiento de 50 TB, se garantiza una capacidad operativa adecuada
- La recomendación es optar por un sistema de enfriamiento por agua, debido a su mayor eficiencia en la gestión térmica y la capacidad de soportar aplicaciones intensivas de inteligencia artificial.
- ZFS es un muy buen candidato debido a las capacidades que le entrega RAID-Z.

Referencias

[1] Al fever drives Nvidia's rise to world's most valuable company. (s. f.). Reuters. https://www.reuters.com/technology/artificial-intelligence/ai-fever-drives-nvidias-rise-worlds-most-valuable-company-2024-06-18/
[2] Lavarian, R. (2022, 12 enero). What Is a File System? Types of Computer File Systems and How they Work – Explained with Examples. freeCodeCamp.org. https://www.freecodecamp.org/news/file-systems-architecture-explained/
[3] Pompeu, O. (2022a, octubre 25). BTRFS, ZFS, XFS, EXT4: What Difference & Which File System to Use?

- EXT4: What Difference & Which File System to Use?
 SalvageData. https://www.salvagedata.com/btrfs-zfs-xfs-ext4-how-are-they-different/
- [4] NVIDIA Grace Hopper Superchip Data Sheet. (s. f.). NVIDIA. https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip
- [5] Nvidia. (s. f.). Nvidia Grace Performance Tuning Guide. https://docs.nvidia.com/grace-performance-tuning-guide.pdf
 [6] Nvidia. (s. f.). Nvidia Grace Hopper.

<u>https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper</u>