Word embedding

(Some slides come from Geoffrey Hinton's lectures)

Outline

Motivation

• What is word embedding?

A semantic task

Bias in word embedding

N-gram LM

- Given a sentence $w_1 w_2 ... w_n$, how to estimate $P(w_1 ... w_n)$?
- The Markov independence assumption: $P(w_n \mid w_1, ..., w_{n-1})$ depends only on the previous k words.

```
• P(w_1... w_n)
= P(w_1) * P(w_2|w_1) * ... P(w_n | w_1, ..., w_{n-1})
\approx P(w_1) * P(w_2|w_1) * ... P(w_n | w_{n-k+1}, ..., w_{n-1})
```

- 0th order Markov model: unigram model
- 1st order Markov model: bigram model
- 2nd order Markov model: trigram model
- ...

Limitation of n-gram LM

- It does not understand the similarities between words:
 - Ex: cat/dog, garden/yard, Friday/Monday, Seattle/LA, king/queen
 - → Represent each word as a feature vector
- We cannot use a bigger context (i.e., large n) because there are too many parameters to store and most ngrams will be unseen.
 - → Represent the context as a vector

Sentences have structures.

• ...

What is word embedding?

- Word embedding: Represent a word as a vector
 - Similar words should have similar embeddings.
- Pretrained word embeddings: word embeddings learned in one task and then used for other tasks.
 - Pretrained vs. learned from scratch: Learning word embedding requires a large amount of data and can be very expensive.
- Transfer learning: transferring the learnings of one task to another
 - Learning could be weights or embedding.
 - Pretrained word embeddings are a form of Transfer Learning

Part of a 2-D map of the 2500 most common words

```
winner
player
                    nf1
  team
club sport
                               baseball
                                  wrestling
                      olympic
 league
                                   sports
                 champion
            finals championships
                 olympics
                            matches
                       races games
                             clubs
    medal
                             players
```


Many studies on neural network

• Early studies: (Hinton 1986), (Pollack 1990), (Elman 1991), etc.

• Feed-forward networks: (Bengio et al., 2003; 2006)

• Recurrent neural networks: (Mikolov et al., 2010; 2011; 2013)

Now: tons of papers in 2014-now

Where is the word embedding used?

- Answer semantic questions: e.g., A:B is like C:D
- LM
- Classification
- Sequence labeling: POS tagging, chunking, NER, etc.
- Structure prediction: parsing
- Question answering
- ...

Outline

Motivation

What is word embedding?

A semantic task

Bias in word embedding

A semantic task (Mikolov et al., 2013)

- Task: "A:B C:D"
 - Training: given a corpus of text, learn word embedding
 - Test: given A, B, and C, find D
 - Evaluation: percentage of examples with the correct D.

Examples:

- Good:better rough:
- Year:years law:____
- See:sees return:
- come:go borrow:____

Algorithm

• A:B is like C:D

$$\rightarrow$$
 $x_b - x_a = x_d - x_c$

$$\rightarrow$$
 $x_b - x_a + x_c = x_d$

- Represent each word w as a word vector x_w
- Compute $y = x_b x_a + x_c$
- Find $w^* = arg max_w sim(x_w, y)$

Results

Method	Adjectives	Nouns	Verbs	A11
LSA-80	9.2	11.1	17.4	12.8
LSA-320	11.3	18.1	20.7	16.5
LSA-640	9.6	10.1	13.8	11.3
RNN-80	9.3	5.2	30.4	16.2
RNN-320	18.2	19.0	45.0	28.5
RNN-640	21.0	25.2	54.8	34.7
RNN-1600	23.9	29.2	62.2	39.6

Bias in word embedding

 (Bolukbasi et al., 2016): Man is to computer programmer as woman is to homemaker? Debiasing word embeddings

• Ex: man: woman = king: queen

• But man: woman = programmer: homemaker

 Many studies on the bias in word embedding. For more, see the Bias/Discrimination papers at

https://faculty.washington.edu/ebender/2021 575/

Extreme she 1. homemaker 2. nurse 3. receptionist 4. librarian 5. socialite 6. hairdresser	Extreme he 1. maestro 2. skipper 3. protege 4. philosopher 5. captain 6. architect	sassy-snappy	Gender stereotype she-he ar registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar	nalogies housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant	
7. nanny8. bookkeeper9. stylist	nanny 7. financier bookkeeper 8. warrior		volleyball-football cupcakes-pizzas lovely-brilliant Gender appropriate she-he analogies queen-king sister-brother mother-father waitress-waiter ovarian cancer-prostate cancer convent-monastery		

Summary

• Word embedding is to represent a word as a vector, and it is often used in the input layer of neural networks.

 Pretrained word embeddings are used in many NLP systems; however, be aware of the bias in the embeddings.

There are many algorithms for learning word embeddings.