CLASE 08 - INTRODUCCIÓN ANÁLISIS MULTIVARIANTE

OCE 313 - Técnicas de análisis no paramétricos.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

22 May 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son los análisis mulvariantes?.
- Estudios de caso: Análisis de cluster, análisis de componentes principales.
- Matriz de distancia: cálculo manual
- 2). Práctica con R y Rstudio cloud.
 - Matriz de distancia: cálculo con R

INRRODUCCIÓN ANÁLISIS MULTIVARIANTE

¿Qué son los análisis multivariantes?

Son un conjunto diverso de métodos que estudian y examinan el efecto simultáneo de múltiples variables.

Sitio	а	b	С	d	е	Depth	Pollution	Temp.	Sediment
s1	0	2	9	14	2	72	4.8	3.5	S
s2	26	4	13	11	0	75	2.8	2.5	С
s3	0	10	9	8	0	59	5.4	2.7	С
s4	0	0	15	3	0	64	8.2	2.9	S
s5	13	5	3	10	7	61	3.9	3.1	С
s6	31	21	13	16	5	94	2.6	3.5	G

TIPOS DE MÉTODOS MULTIVARIANTES (MM)

Fuente: Multivariate Statistic, 2014

MÉTODOS MULTIVARIANTES SEGÚN TIPO DE VARIABLE

Fuente: Multivariate Statistic, 2014

EJEMPLO: ZOOGEOGRAFÍA DE CRUSTACEOS

Agrupamiento jerarquico.

Figure 8. Dendogram of inland water Copepoda considered in the present study.

Fuente: De los Ríos-Escalante et al, 2013

EJEMPLO: POLIQUETOS

Escalamiento multidimensional no métrico (NMDS).

Fuente: Sanchis, Soto y Quiroga, 2021

MATRIZ DE DISTANCIA O SIMILARIDAD

¿Qué es y para que sirve?

- Las matrices de distancia o similaridad están en la base de todos los análisis multivariados de estructura.

Algunas consideraciones

- Las matrices de distancia se pueden elaborar tanto para variables cuantitativas continuas, como discrertas.
 - Debido a que las variables pueden tener diferente escala o magnitud es necesario muchas veces tansformar o estandarizar las variables antes de calcular las matrices de distancia.
 - Cuando una variable tiene muchos ceros también es conveniente transformarla.

TIPOS DE MATRICES DE DISTANCIA

Euclideana Para variables cuantitativas continuas.
 Con base en el teorema de pitágoras

$$c^{2} = a^{2} + b^{2}$$

$$a = \sqrt{c^{2} - b^{2}}$$

$$b = \sqrt{c^{2} - a^{2}}$$

$$c = \sqrt{c^{2} + b^{2}}$$

▶ No euclideana: Para variables cuantitativas discretas (conteos).

Diferentes alternativas: Bray-Curtis.

DISTANCIA EUCLIDEANA

Evaluemos efecto de escala de las variables.

Sitio	Depth	Pollution	Temp.
s29	51	6.0	3.0
s30	99	1.9	2.9

$$s29 - s30 = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}.$$

$$s29 - s30 = \sqrt{(51 - 99)^2 + (6.0 - 1.9)^2 + (3.0 - 2.9)^2}.$$

$$s29 - s30 = \sqrt{(2304) + (18.81) + (0.01)} = 48.17$$

ESTANDARIZACIÓN

	Depth	Pollution	Temperature
Mean	74,43	4,52	3,06
sd	15,61	2,14	0,28

Valor estandarizado : (valor original — mean) / sd Valor estandarizado s29 : (51 — 74,43) / 16,61 = -1,501

Sitio	Depth	Pollution	Temperature
s29	-1,501	0,693	-0,201
s30	1,573	-1,222	-0,557

DISTANCIA EUCLIDEANA ESTANDARIZADA

Sitio	Depth	Pollution	Temperature
s29	-1,501	0,693	-0,201
s30	1,573	-1,222	-0,557

$$s29 - s30 = \sqrt{(-1,50-1,57)^2 + (0,69-1,22)^2 + (0,20-0,55)^2}.$$

Distancia estandarizada.

$$s29 - s30 = \sqrt{(9,499) + (3,667) + (0,127)} = 3,639.$$
 Distancia no estandarizada.

$$s29 - s30 = \sqrt{(2304) + (18.81) + (0.01)} = 48.17$$

DISTANCIA NO EUCLIDEANA

Sitio	a	b	С	d	е
s29	11	0	7	8	0
s30	24	37	5	18	1

$$s29 - s30 = \frac{\sum |n_i - n_j|}{\sum n_i + \sum n_j}.$$

$$s29 - s30 = \frac{|11 - 24| + |0 - 37| + |7 - 5| + |8 - 18| + |0 - 1|}{26 + 85} = \frac{63}{111} = 0,568$$

RESUMEN DE LA CLASE

- ▶ Revisión e importancia de análisis multivariantes.
- Estudios de caso: analisis de cluster jerarquico (dendograma) y análisis de .
- Calculo de matriz de distancia manual
- Calculo de matriz de distancia con R