MEDIE

		definizione	distribuzioni di freq.
armonica	m ₋₁	$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$	$\frac{\sum_{i=1}^{k} n_i}{\sum_{i=1}^{k} \frac{1}{x_i} n_i}$
geometrica	m ₀	$\sqrt[n]{\prod_{i=1}^n x_i}$	$\sum_{i=1}^k n_i \sqrt{\prod_{i=1}^k \boldsymbol{X}_i^{n_i}}$
aritmetica	m_1	$\frac{\sum_{i=1}^{n} x_{i}}{n}$	$\frac{\sum_{i=1}^{k} x_i n_i}{\sum_{i=1}^{k} n_i}$
quadratica	m ₂	$\sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$	$\sqrt{\frac{\sum_{i=1}^k x_i^2 n_i}{\sum_{i=1}^k n_i}}$
nb : la media geometrica risulta più semplice passando ai logaritmi		$\log m_0 = \frac{\sum_{i=1}^n \log x_i}{n}$	$\log m_0 = \frac{\sum_{i=1}^{k} (\log x_i) n_i}{\sum_{i=1}^{k} n_i}$
nb:		$m_{-1} \le m_0 \le m_1 \le m_2$	

Indici di Variabilità

		definizione	distribuzioni di fre	eq. proprietà
scostamento semplice medio dalla media aritmetica	S_{m1}	$\frac{\sum_{i=1}^{n} \left x_i - m_1 \right }{n}$	$\frac{\sum_{i=1}^{k} x_i - m_1 n_i}{\sum_{i=1}^{k} n_i}$	$\sum_{i=1}^{n} (x_i - m_1) = 0$
scostamento semplice medio dalla mediana	S_{Me}	$\frac{\sum_{i=1}^{n} x_i - Me }{n}$	$\frac{\sum_{i=1}^{k} x_i - Me n}{\sum_{i=1}^{k} n_i}$	$\sum_{i=1}^{n} x_i - Me = \text{minimo}$
scostamento quadratico medio	σ	$\sqrt{\frac{\sum_{i=1}^{n} (x_i - m_1)^2}{n}}$	$\sqrt{\frac{\sum_{i=1}^{n} (x_i - m_1)^2}{\sum_{i=1}^{k} n_i}}$	$\sum_{i=1}^{n} (x_i - m_1)^2 = \text{minimo}$
centri	Ų	$\int_{i=1}^{n} x_i - C_r ^r = \min_{r=1}^{n} x_i - C_r ^r = \min_{r=2}^{n} x_i - C_r ^r = $	qu	$\sum_{i=1}^{k} x_i - C_0 ^0 n_i = \text{minimo}$ ando C_0 è X corrispondente $n_{\text{max}} (= \text{moda}, r = 0)$
nh :		ς < ς < σ	-	

nb:
$$S_{Me} \leq S_{m_1} \leq \sigma$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - m_1)^2}{n}$$
 nb: devianza
$$n\sigma^2 = \sum_{i=1}^n (x_i - m_1)^2$$

$$\sigma^2 = M(x - M(x))^2 \text{ oppure } M(x^2) - (M(x))^2 \text{ con M valor medio}$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - A)^2 - (A - m_1)^2$$

$$\sigma^2 = m_2^2 - m_1^2 \text{ se A} = 0$$

differenza media semplice	$\Delta = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} x_i - x_j }{n(n-1)}$	differenza quadratica semplice	${}_{2}\Delta = \sqrt{\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i} - x_{j})^{2}}{n(n-1)}}$
differenza media con ripetizione	$\Delta_r = \frac{\sum_{i=1}^n \sum_{j=1}^n x_i - x_j }{n^2}$	differenza quadratica con ripetizione	$_{2}\Delta_{r} = \sqrt{\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i} - x_{j})^{2}}{n^{2}}}$

$$nb: ({}_{2}\Delta_{r})^{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i} - x_{j})^{2}}{n^{2}} = \frac{1}{n^{2}} \left(2\sum_{i} x_{i}^{2} - 2(\sum_{i} x_{i})^{2} \right) = 2 \cdot \left(\frac{\sum_{i} x_{i}^{2}}{n} - \left(\frac{\sum_{i} x_{i}}{n} \right)^{2} \right) = 2\sigma^{2}$$

Indice di concentrazione del Gini:
$$G = \sum_{i=1}^{n-1} (P_i - Q_i) = \frac{n-1}{2} - \sum_{i=1}^{n-1} Q_i$$

indice di concentrazione del Gini :
$$G = \sum_{i=1}^{n-1} (P_i - Q_i) = \frac{n-1}{2} - \sum_{i=1}^{n-1} Q_i$$
 rapporto di concentrazione del Gini :
$$g = \frac{\sum_{i=1}^{n-1} (P_i - Q_i)}{\sum_{i=1}^{n-1} P_i} = 1 - \frac{2}{n-1} \sum_{i=1}^{n-1} Q_i$$

dove:

- Qi è il rapporto fra l'ammontare del carattere posseduto dalle i unità più povere e l'ammontare complessivo del carattere
- Pi è il rapporto delle i untà più povere sul totale delle unità

considerando la curva diconcetrazione, nasce un'altro rapporto di concentrazione del Gini:

$$R = \frac{\frac{1}{2} - \frac{1}{2} \sum_{i=0}^{n-1} (P_{i+1} - P_i)(Q_{i+1} - Q_i)}{\frac{1}{2}} = 1 - \sum_{i=0}^{n-1} (P_{i+1} - P_i)(Q_{i+1} - Q_i)$$

dove si considera il triangolo di base e altezza unitarie come termine di confronto rispetto l'area che delimitata fra la spezzatta di concentrazione e il segmento di equidistribuzione (v. somma di trapezi)

MOMENTI

		definizione	distribuzioni di freq.
momento di origine A e ordine r	$_{_A}m_{_r}$	$\sum_{i=1}^k (x_i - A)^r$	$\sum_{i=1}^{k} (x_i - A)^r n_i$
se $A = 0$ momenti dall'orignine se $A = m_1$ momenti centrali m		n	$\sum_{i=1}^{n} n_i$

r	A = 0	$A = m_1$	
1	$\frac{\sum_{i=1}^{n} x_i}{n} = m_1$	$\sum_{i=1}^{n} (x_i - m_1) = 0$	primo momento
2	$\frac{\sum_{i=1}^{n} x_i^2}{n} = m_2^2$	$\frac{\sum_{i=1}^{n}(x_i-m_1)^2}{n}=\sigma^2$	secondo momento
3	$\frac{\sum_{i=1}^{n} x_i^3}{n} = m_3^3$	$\frac{\sum_{i=1}^{n}(x_i-m_1)^3}{n}$	terzo momento
4	$\frac{\sum_{i=1}^{n} x_i^4}{n} = m_4^4$	$\frac{\sum_{i=1}^{n} (x_i - m_1)^4}{n} = curtosi$	quarto momento nb : nella distrib. di Gauss $\overline{m}_4 = 3\sigma^4$
r	$\sqrt[r]{\frac{\sum_{i=1}^n x_i^4}{n}} = m_r$	detta anche media potenziata di ordine r	

$$\overline{m}_{r} = \frac{\sum_{i=1}^{n} (x_{i} - m_{1})^{r}}{n} = \frac{\sum_{i=1}^{n} \sum_{s=0}^{r} {r \choose s} x_{i}^{r-s} (-m_{1})^{s}}{n} = \sum_{s=0}^{r} {r \choose s} m_{r-s}^{momento dall'origine}$$

r = 2
$$m_2 = m_2^2 - m_1^2 (= \sigma^2) \Leftrightarrow medie$$

$$m_2 - m_1^2 \Leftrightarrow momenti$$
r = 3
$$m_3 = m_3^3 - 3m_2^2m_1 + 2m_1^3 \Leftrightarrow medie$$

$$m_3 - 3m_2m_1 + 2m_1^3 \Leftrightarrow momenti$$

TRASFORMAZIONI LINEARI

$$y = a + bx \Rightarrow M(y) = M(a + bx) = M(a) + M(bx) = a + bM(x)$$

$$\sigma^{2}(y) = M(y - m(y))^{2} = b^{2}M(x - M(x))^{2} = b^{2}\sigma^{2}(x) \Rightarrow$$
dato che $\sigma^{2} = m_{2}$ sarà $m_{2}(y) = b^{2}m_{2}(x) \Rightarrow m_{r}(y) = b^{r}m_{r}(x)$

$$z = a + bx + cy \Rightarrow M(z) = a + bM(x) + cM(y)$$

$$\sigma^{2}(z) = M(a + bx + cy - a - bM(x) - cM(x))^{2} = M[b(x - M(x)) + c(y - M(y))]^{2} =$$

$$= b^{2}M(x - M(x))^{2} + c^{2}M(y - M(y))^{2} + 2bcM(x - M(x))(y - M(y)) = b^{2}\sigma^{2}(x) + c^{2}\sigma^{2}(y) + 2bc\cos(xy)$$

$$y = a + bx_{1} + cx_{2} + ... + nx_{n} \Rightarrow posti \ a = 0, \ b = c = ... = n = 1 \quad si \ ha \ y = x_{1} + x_{2} + ... + x_{n}$$

$$M(y) = M(x_{1}) + M(x_{2}) + ... + M(x_{n})$$

$$\sigma^{2}(y) = \sigma^{2}(x_{1}) + \sigma^{2}(x_{1}) + ... + \sigma^{2}(x_{1}) + cov(x_{1}x_{2}) + cov(x_{1}x_{3}) + ... + cov(x_{2}x_{j}) + ... + cov(x_{n-1}x_{n})$$

nb : nella variabile binomiale le covarianze sono tutte nulle perchè le variabili sono stocasticamente indipendenti

INDICI DI VARIABILITÀ (continua)

Indici di Variabilità (sono >0)	$\frac{S_{m_1}}{m_1}$	$\frac{S_{Me}}{Me}$	$\frac{\sigma}{m_1}$	$\frac{\sigma^2}{{m_1}^2}$	
Indici Normalizzati (sono 0<1>1)	$\frac{S_{m_1}}{S_{m_1\mathrm{max}}}$	$rac{S_{Me}}{S_{Me ext{max}}}$	$rac{\sigma}{\sigma_{ ext{max}}}$	$rac{\sigma^2}{{\sigma_{ ext{max}}}^2}$	$rac{\Delta}{\Delta_{ m max}}$

$$\begin{array}{lll} \text{nb}: & \textit{dicesi coefficiente di variazione}: & \frac{\sigma}{m_1} \cdot 100 \\ \\ \text{nb}: & \textit{dicesi indice normalizzato, in generale}: & I_{\mathit{rel}} = \frac{I_{\mathit{effettivo}} - I_{\min}}{I_{\max} - I_{\min}} \\ \\ \\ \text{nelle distibuzioni} & \\ \\ \text{massimanti, cioè dove il} & \\ \\ \text{nb}: & fenomeno è concentrato in} & \\ \\ un \textit{solo elemento, si ha}: & \\ \\ & \frac{\sigma}{m_1 \max} = \frac{2m_1(n-1)}{n} \\ \\ & \sigma_{\max}^2 = m_1^2(n-1) \\ \\ & \sigma_{\max} = m_1\sqrt{(n-1)} \end{array}$$

INDICI ADIMENSIONALI DI ASIMMETRIA

NB:	$m_3 > 0$ $m_3 = 0$ $m_3 < 0$	simm dx o positiva simm simm sx o negativa	$\begin{aligned} & moda \leq Me \leq m_1 \\ & coindidono \ tutte \\ & m_1 \leq Me \leq moda \end{aligned}$
(Pearson)	$\frac{moda-m_1}{\sigma}$	simm dx simm simm sx	> 0 = 0 < 0
Pearson	$\beta_1 = \frac{(\overline{m}_3)^2}{(\sigma^2)^3}$	simm no simm	= 0 > 0
Fisher	$\gamma_1 = \frac{\overline{m}_3}{\sigma^3}$	simm dx simm simm sx	> 0 = 0 < 0
Pearson	$\beta_2 = \frac{\overline{m}_4}{\sigma^4}$	= 3 > 3 < 3	distrib. normale distrib. leptocurtica (curtosi ipernormale) distrib. platicurtica (curtosi iponormale)
Fisher	$\gamma_2 = \beta_2 - 3$	= 0 > 0 < 0	distrib. normale distrib. leptocurtica (curtosi ipernormale) distrib. platicurtica (curtosi iponormale)

VARIABILI DOPPIE

 $\hat{y} = a + bx_i + cx_i^2 \qquad g(a, b, c) = \sum (y_i - a - bx_i - cx_i^2)^2$

derivate parziali poste a sistema:

 $\begin{cases}
-2\sum_{i}(y_{i}-a-bx_{i}-cx_{i}^{2})=0 \\
-2\sum_{i}(y_{i}-a-bx_{i}-cx_{i}^{2})x_{i}=0 \\
-2\sum_{i}(y_{i}-a-bx_{i}-cx_{i}^{2})x_{i}^{2}=0
\end{cases} \Rightarrow \begin{cases}
\sum_{i}y_{i}=na+b\sum_{i}x_{i}+c\sum_{i}x_{i}^{2} \\
\sum_{i}x_{i}y_{i}=a\sum_{i}x_{i}+b\sum_{i}x_{i}^{2}+c\sum_{i}x_{i}^{3} \\
\sum_{i}x_{i}^{2}y_{i}=a\sum_{i}x_{i}^{2}+b\sum_{i}x_{i}^{3}+c\sum_{i}x_{i}^{4}
\end{cases}$

per ridurre la varianza residua :

retta di regressione, quindi di II grado, allora coefficiente di determinazione ρ^2 (diventa R^2) di II grado, perché varianza residua di II grado ; se la rettà di regressione è di III grado, lo sarà anche il coefficiente di determinazione R^2 e la varianza residua, e così via.

$$nb: \rho^2 \le R_{II}^2 \le R_{III}^2$$

NELLA TAVOLA A DOPPIA ENTRATA ...

covarianza $\frac{\sum_{i=1}^{r} \sum_{j=1}^{c} (x_j - m_1(x))(y_i - m_1(y))n_{ij}}{N}$

varianza totale $\sigma^{2}(y) = \frac{\sum_{i=1}^{r} (y_{i} - M(y))^{2} n_{i\bullet}}{n} = \frac{\sum_{j=1}^{c} \sum_{i=1}^{r} (y_{i} - \hat{y}_{i})^{2} n_{ij}}{n} + \frac{\sum_{j=1}^{c} (\hat{y}_{i} - M(y))^{2} n_{i\bullet}}{n}$ varianza totale = varianza residua + varianza spiegata varianza totale = varianza within + varianza between

 $\begin{array}{ll} \textit{coefficiente di} \\ \textit{determinazione} \end{array} \quad \eta^2 = 1 - \frac{\textit{varianza residua}}{\textit{varianza totale}} = \frac{\textit{varianza spiegata}}{\textit{varianza totale}} \\ \end{array}$

NB: la varianza residua che interessa η^2 è minore di quella che interessa ρ^2 , quindi sarà $\eta^2 \ge \rho^2$; se $\eta^2 = \rho^2$ allora le medie condizionate sono tutte allineate sulla stessa retta