MTL766: Key Formulas and Concepts

A Quick Reference Guide

September 13, 2025

1 Descriptive Statistics for Multivariate Data

Let **X** be an $n \times p$ data matrix, where n is the number of samples and p is the number of variables. The i-th observation is $\mathbf{x}_i^T = [x_{i1}, x_{i2}, \dots, x_{ip}]$.

• Sample Mean Vector ($\bar{\mathbf{x}}$): The vector of sample means for each variable.

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} = \begin{pmatrix} \bar{x}_{1} \\ \bar{x}_{2} \\ \vdots \\ \bar{x}_{p} \end{pmatrix}$$

• Sample Covariance Matrix (S): A symmetric $p \times p$ matrix where the (j, k)-th element is the sample covariance between variable j and variable k.

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

The diagonal elements s_{jj} are the sample variances, and off-diagonal elements s_{jk} are the sample covariances.

• Sample Correlation Matrix (R): A symmetric $p \times p$ matrix where the (j, k)-th element is the sample correlation coefficient r_{jk} .

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}}\sqrt{s_{kk}}}$$

$$\mathbf{R} = \mathbf{D}^{-1/2}\mathbf{S}\mathbf{D}^{-1/2}$$
 where $\mathbf{D} = \mathrm{diag}(s_{11}, s_{22}, \dots, s_{pp})$

- Generalized Sample Variance: The determinant of the sample covariance matrix, |S|. It measures the overall spread of the data.
- Total Sample Variance: The trace of the sample covariance matrix, $tr(S) = \sum_{j=1}^{p} s_{jj}$. It's the sum of the individual variances.

2 Geometric Concepts and Distances

• Mahalanobis Distance: The statistical distance of a point \mathbf{x} from a group with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$. It accounts for the correlation between variables.

$$D^2 = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

• Constant Density Ellipsoid: For a multivariate normal distribution $N_p(\mu, \Sigma)$, the points of constant probability density form an ellipsoid defined by:

$$(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = c^2$$

The axes of the ellipsoid are in the direction of the eigenvectors of Σ , and their lengths are proportional to the square roots of the corresponding eigenvalues.

3 The Multivariate Normal (MVN) Distribution

A random vector **X** follows an MVN distribution, denoted $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its probability density function is:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Key Properties:

1. Linear Combinations: If $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then for a constant matrix \mathbf{A} $(q \times p)$ and vector \mathbf{b} $(q \times 1)$:

$$\mathbf{AX} + \mathbf{b} \sim N_q(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$$

2. Quadratic Form: The Mahalanobis distance from the mean follows a chi-square distribution:

$$(\mathbf{X} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi_p^2$$

3. Conditional Distributions: If **X** is partitioned as $\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \sim N_p \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{pmatrix}$, the conditional distribution of \mathbf{X}_1 given $\mathbf{X}_2 = \mathbf{x}_2$ is also normal:

$$\mathbf{X}_1|\mathbf{X}_2 = \mathbf{x}_2 \sim N(\boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2})$$

where

$$egin{aligned} m{\mu}_{1|2} &= m{\mu}_1 + m{\Sigma}_{12} m{\Sigma}_{22}^{-1} (\mathbf{x}_2 - m{\mu}_2) \ m{\Sigma}_{1|2} &= m{\Sigma}_{11} - m{\Sigma}_{12} m{\Sigma}_{22}^{-1} m{\Sigma}_{21} \end{aligned}$$

4 Sampling Distributions

• Distribution of Sample Mean: For a random sample $X_1, ..., X_n$ from $N_p(\mu, \Sigma)$, the sample mean vector \bar{X} is also normally distributed:

$$ar{\mathbf{X}} \sim N_p\left(oldsymbol{\mu}, rac{1}{n}oldsymbol{\Sigma}
ight)$$

• Central Limit Theorem: For a large sample size n from any population with mean μ and covariance Σ :

$$\sqrt{n}(\bar{\mathbf{X}} - \boldsymbol{\mu}) \xrightarrow{d} N_p(\mathbf{0}, \boldsymbol{\Sigma})$$

- Wishart Distribution: The distribution of the sample covariance matrix. Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be i.i.d. from $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. The matrix $\mathbf{A} = (n-1)\mathbf{S} = \sum_{i=1}^n (\mathbf{X}_i \bar{\mathbf{X}})(\mathbf{X}_i \bar{\mathbf{X}})^T$ follows a Wishart distribution with n-1 degrees of freedom, denoted $\mathbf{A} \sim W_p(n-1, \boldsymbol{\Sigma})$.
 - Expectation: $\mathbb{E}(\mathbf{A}) = (n-1)\Sigma$.

5 Inference on the Mean Vector

• Hotelling's T^2 Statistic (One-Sample): Used to test $H_0: \mu = \mu_0$.

$$T^2 = n(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^T \mathbf{S}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)$$

Under H_0 , the statistic has a scaled F-distribution:

$$\frac{n-p}{(n-1)p}T^2 \sim F_{p,n-p}$$

Test Procedure:

- 1. State hypotheses: $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ vs. $H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$.
- 2. Calculate the T^2 value from the sample.
- 3. Find the critical value $F_{p,n-p}(\alpha)$.
- 4. Reject H_0 if $T^2 > \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$.
- 100(1- α)% Confidence Ellipsoid for μ : The set of all μ vectors for which the null hypothesis $H_0: \mu = \mu_{test}$ would not be rejected. It is defined by the inequality:

$$n(\bar{\mathbf{x}} - \boldsymbol{\mu})^T \mathbf{S}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) \le \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$$

6 Maximum Likelihood Estimation (MLE)

For a random sample $\mathbf{x}_1, \dots, \mathbf{x}_n$ from $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the likelihood function is:

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} f(\mathbf{x}_{i} | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

The maximum likelihood estimators for μ and Σ are:

- \bullet $\hat{\mu} = \bar{\mathbf{x}}$
- $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \bar{\mathbf{x}}) (\mathbf{x}_i \bar{\mathbf{x}})^T = \frac{n-1}{n} \mathbf{S}$ (Note: This is a biased estimator of Σ).

3

7 Descriptive Statistics & Properties

Let **X** be an $n \times p$ data matrix with observations $\mathbf{x}_i^T = [x_{i1}, \dots, x_{ip}]$.

- Sample Mean Vector ($\bar{\mathbf{x}}$): $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$
- Sample Covariance Matrix (S): $S = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i \bar{\mathbf{x}}) (\mathbf{x}_i \bar{\mathbf{x}})^T$
 - **S** is positive definite if the mean-corrected data matrix $(\mathbf{X} \mathbf{1}\bar{\mathbf{x}}^T)$ has linearly independent columns (requires n > p).
- Sample Correlation Matrix (R): $r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}s_{kk}}}$. The matrix form is $\mathbf{R} = \mathbf{D}^{-1/2}\mathbf{S}\mathbf{D}^{-1/2}$, where $\mathbf{D} = \mathrm{diag}(s_{11}, \ldots, s_{pp})$.
- Generalized Sample Variance: |S|.
 - **Geometric Meaning:** Proportional to the squared volume of the parallelepiped formed by the deviation vectors $(\mathbf{x}_i \bar{\mathbf{x}})$.
 - **Property:** $|\mathbf{S}| = 0$ if and only if the deviation vectors are linearly dependent.
- Total Sample Variance: $tr(S) = \sum_{j=1}^{p} s_{jj}$.

8 Geometric Concepts & Distances

• Mahalanobis Distance: The distance from a point \mathbf{x} to the center of a distribution $\boldsymbol{\mu}$, accounting for covariance $\boldsymbol{\Sigma}$.

$$D^2 = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

This value is a unitless scalar and is non-negative since Σ is positive definite.

- Constant Density Ellipsoid: For $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the surface of constant density is an ellipsoid. The equation $(\mathbf{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu}) = c^2$ defines this surface.
 - To find an ellipse containing $100(1-\alpha)\%$ of the probability, set $c^2=\chi_p^2(\alpha)$.
 - The half-lengths of the axes are $\sqrt{\lambda_i c^2} = \sqrt{\lambda_i \chi_p^2(\alpha)}$, and their directions are given by the corresponding eigenvectors \mathbf{e}_i of Σ .
- Constellation Graph: A visualization technique for multivariate data.
 - 1. For each variable (e.g., subject), draw a ray from the origin, with equal angles between rays.
 - 2. For each observation (e.g., student), plot its value on the corresponding ray.
 - 3. Connect the points for a single observation to form a polygon (star). The shape and size of the star represent the student's profile.

9 The Multivariate Normal (MVN) Distribution

The PDF is $f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$.

- Linear Combinations: If $X \sim N_p(\mu, \Sigma)$:
 - For matrix \mathbf{A} , $\mathbf{A}\mathbf{X} \sim N_q(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$.
 - The covariance between two linear combinations $\mathbf{a}^T \mathbf{X}$ and $\mathbf{b}^T \mathbf{X}$ is $\mathbf{a}^T \mathbf{\Sigma} \mathbf{b}$.
 - The covariance between a variable X_i and a linear combination $\mathbf{a}^T \mathbf{X}$ is the *i*-th element of the vector $\Sigma \mathbf{a}$.
- Unbiased Estimator for Covariance of a Linear Combination: To estimate $Cov(\mathbf{AX}) = \mathbf{A}\Sigma\mathbf{A}^T$, use the unbiased estimator \mathbf{ASA}^T .
- Conditional Distributions: If $\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}$, then the distribution of \mathbf{X}_1 given $\mathbf{X}_2 = \mathbf{x}_2$ is normal with mean $\boldsymbol{\mu}_{1|2} = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_2 \boldsymbol{\mu}_2)$ and covariance $\boldsymbol{\Sigma}_{1|2} = \boldsymbol{\Sigma}_{11} \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$.

10 Key Sampling Distributions

- Distribution of $\bar{\mathbf{X}}$: For a sample from $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\bar{\mathbf{X}} \sim N_p(\boldsymbol{\mu}, \frac{1}{n}\boldsymbol{\Sigma})$.
- Central Limit Theorem: For large n, $\sqrt{n}(\bar{\mathbf{X}} \boldsymbol{\mu})$ is approximately $N_p(\mathbf{0}, \boldsymbol{\Sigma})$.
- Chi-Square Distributions:
 - For $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}), (\mathbf{X} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu}) \sim \chi_p^2$.
 - Asymptotically, for large $n, n(\bar{\mathbf{X}} \boldsymbol{\mu})^T \mathbf{S}^{-1}(\bar{\mathbf{X}} \boldsymbol{\mu}) \to \chi_p^2$
- Wishart Distribution $(W_n(m, \Sigma))$:
 - **Definition:** If $\mathbf{Z}_1, \dots, \mathbf{Z}_m$ are i.i.d. $N_p(\mathbf{0}, \mathbf{\Sigma})$, then $\mathbf{A} = \sum_{i=1}^m \mathbf{Z}_i \mathbf{Z}_i^T \sim W_p(m, \mathbf{\Sigma})$. The expectation is $\mathbb{E}(\mathbf{A}) = m\mathbf{\Sigma}$.
 - From a Sample: The matrix of sum of squares and cross-products $(n-1)\mathbf{S} = \sum_{i=1}^{n} (\mathbf{X}_i \bar{\mathbf{X}})(\mathbf{X}_i \bar{\mathbf{X}})^T$ follows a $W_p(n-1, \Sigma)$ distribution.

11 Inference for the Mean Vector

- One-Sample Hotelling's T^2 Test:
 - For $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0: T^2 = n(\bar{\mathbf{x}} \boldsymbol{\mu}_0)^T \mathbf{S}^{-1}(\bar{\mathbf{x}} \boldsymbol{\mu}_0)$. Reject H_0 if $T^2 > \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$.
 - For Contrasts H_0 : $\mathbf{C}\boldsymbol{\mu} = \mathbf{0}$: Use the test statistic $T^2 = n(\mathbf{C}\bar{\mathbf{x}})^T(\mathbf{C}\mathbf{S}\mathbf{C}^T)^{-1}(\mathbf{C}\bar{\mathbf{x}})$, where \mathbf{C} is a $q \times p$ matrix of rank q. The critical value is based on the $F_{q,n-q}$ distribution.
- Two-Sample Hotelling's T^2 Test (for $H_0: \mu_1 = \mu_2$):

- Pooled Covariance: $S_{pooled} = \frac{(n_1-1)S_1 + (n_2-1)S_2}{n_1 + n_2 2}$.
- Test Statistic: $T^2 = \left(\frac{n_1 n_2}{n_1 + n_2}\right) (\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2)^T \mathbf{S}_{pooled}^{-1} (\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2).$
- Distribution: $\frac{n_1+n_2-p-1}{(n_1+n_2-2)p}T^2 \sim F_{p,n_1+n_2-p-1}$.

• Confidence Regions:

- Confidence Ellipsoid for μ : The set of μ satisfying $n(\bar{\mathbf{x}} \mu)^T \mathbf{S}^{-1}(\bar{\mathbf{x}} \mu) \leq \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$.
- Simultaneous T^2 Confidence Intervals: The intervals for all linear combinations $\mathbf{a}^T \boldsymbol{\mu}$ are given by:

$$\mathbf{a}^T \bar{\mathbf{x}} \pm \sqrt{\frac{p(n-1)}{n(n-p)} F_{p,n-p}(\alpha)} \sqrt{\mathbf{a}^T \mathbf{S} \mathbf{a}}$$

For a single component μ_i , **a** is a vector of zeros with a 1 in the *i*-th position.

12 Inference for the Covariance Matrix

- Maximum Likelihood Estimators (MLEs): For a sample from $N_p(\mu, \Sigma)$:
 - $-\hat{\mu}=ar{\mathbf{x}}$
 - $-\hat{\Sigma} = \frac{n-1}{n}\mathbf{S}$ (This is biased).
- Likelihood Ratio Test for $H_0: \Sigma = \Sigma_0$:
 - Test Statistic (large sample): The test statistic is $-2 \ln \Lambda = (n-1)[\operatorname{tr}(\mathbf{S}\boldsymbol{\Sigma}_0^{-1}) \ln(|\mathbf{S}\boldsymbol{\Sigma}_0^{-1}|) p].$
 - **Distribution:** Under H_0 , this statistic is approximately distributed as $\chi^2_{p(p+1)/2}$.
 - **Procedure:** Reject H_0 if the calculated statistic is greater than the critical value $\chi^2_{p(p+1)/2}(\alpha)$.