CS 660: Mathematical Foundations of Analytics

Dr. Francis Parisi

Pace University

Spring 2018

Definition

A sequence is a set of numbers a_1, a_2, a_3, \ldots in a correspondence with the natural numbers $\mathbb N$ and formed according to a definite rule

- ▶ Each number in the sequence is called a term; a_n is called the n^{th} term
- A sequence is either finite or infinite
- ▶ The sequence $a_1, a_2, a_3, ...$ is also designated by $\{a_n\}$

Example

The set of numbers 1, 1/3, 1/5, 1/7, ... is an infinite sequence whose n^{th} term is $a_n = \frac{1}{2n-1}$, where n = 1, 2, 3, ...

- ▶ A number l is called the limit of an infinite sequence a_1, a_2, a_3, \ldots if for any positive number ϵ we can find a positive number N depending on ϵ such that $a_n l < \epsilon$ for all integers n > N. In such case we write $\lim_{n \to \infty} a_n = l$
- ► In other words, if a sequence has a limit l its terms get closer and closer to l
- If the limit of a sequence exists, the sequence is called convergent; otherwise, it is called divergent
- If a limit exists, it is unique

- ▶ If $a_n \le M$ for n = 1, 2, 3, ..., where M is a constant (independent of n), we say that the sequence $\{a_n\}$ is bounded above and M is called an upper bound
- ▶ If $a_n \ge m$, the sequence is bounded below and m is called a lower bound If $m \le a_n \le M$ the sequence is called bounded and is often indicated by $a_n \le P$
- Every convergent sequence is bounded, but the converse is not necessarily true
- ▶ If $a_{n+1} \ge a_n$ the sequence is called monotonic increasing; if $a_{n+1} > a_n$ it is called strictly increasing
- ▶ Similarly, if $a_{n+1} \le a_n$ the sequence is called monotonic decreasing, while if $a_{n+1} < a_n$ it is strictly decreasing

Example

- 1. The sequence 1, 1.1, 1.11, 1.111, ... is bounded and monotonic increasing. It is also strictly increasing.
- 2. The sequence $1, -1, 1, -1, 1, \ldots$ is bounded but not monotonic increasing or decreasing.
- 3. The sequence $-1, -1.5, -2, -2.5, -3, \dots$ is monotonic decreasing and not bounded. However, it is bounded above.

- ▶ \underline{M} is called the least upper bound (lub) of the sequence $\{a_n\}$ if $a_n \leq \underline{M}$, $n = 1, 2, 3, \ldots$ while at least one term is greater than $\underline{M} \epsilon$ for any $\epsilon > 0$
- ▶ \overline{m} is called the greatest lower bound (glb) of the sequence $\{a_n\}$ if $a_n \geq \overline{m}, n = 1, 2, 3, \ldots$ while at least one term is greater than $\overline{m} + \epsilon$ for any $\epsilon > 0$
- ► The lub of a sequence is also called the supremum
- ► The glb of a sequence is also called the infimum

Limit Supremum and Limit Infimum

- ▶ A number \bar{l} is called the *limit supremum*, ($\limsup \operatorname{or} \overline{\lim}$) of the sequence $\{a_n\}$ if infinitely many terms of the sequence are greater than $\bar{l} \epsilon$ while only a finite number of terms are greater than $\bar{l} + \epsilon$, where ϵ is any positive number
- ▶ A number \underline{l} is called the *limit infimum*, (\liminf or $\underline{\lim}$) of the sequence $\{a_n\}$ if infinitely many terms of the sequence are less than $\overline{l} + \epsilon$ while only a finite number of terms are less than $\overline{l} \epsilon$, where ϵ is any positive number
- These correspond to least and greatest limiting points of general sets of numbers

Definition

We say a sequence $\{a_n\}$ is *Cauchy*, if for any $\epsilon > 0$, there is an N such that $|a_n - a_m| < \epsilon$, if $n, m \ge N$.

As the following theorem states, the Cauchy property is a necessary and sufficient condition for the convergence of a sequence

Theorem

Let $\{a_n\}$ be a sequence. Then $\{a_n\}$ converges if and only if $\{a_n\}$ is Cauchy.

Infinite Series

Let $\{an\}$ be a sequence of real numbers

The corresponding infinite series is $\sum_{i=1}^{n} a_i$

The sequence of partial sums $\{Sn\}$ is given by

$$S_n = \sum_{i=1}^n a_i$$

If $S_n \to S$, as $n \to \infty$, then we say the series $\sum_{i=1}^n a_i$ converges to S and write S as the infinite series,

$$S = \sum_{i=1}^{n} a_i \tag{2.1}$$

Infinite Series

Assume that the series $\sum_{i=1}^{n} a_i$ converges to S. Then, using (2.1), for any $\epsilon > 0$, there exists an N such that

$$\left|\sum_{n=N+1}^{\infty} a_n\right| = \left|S - \sum_{j=1}^n a_j\right| < \epsilon \tag{2.2}$$

In other words, the tail of a convergent series becomes arbitrarily small as n gets large

Partial sums can be obtained easily in some cases like for the geometric series

Example (Geometric Series)

For $a \in \mathbb{R}$ consider the sequence of partial sums given by

$$S_n = \sum_{i=0}^n a^i$$

We can write this as

$$(1-a)S_n = 1 - a^{n+1}$$

so that

$$S_n = \frac{1 - a^{n+1}}{1 - a}$$

Example (Geometric Series Cont'd...)

If |a| < 1 then $a^{n+1} \to 0$ as $n \to \infty$ and the geometric series converges to $(1-a)^{-1}$ or

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \tag{2.3}$$

A series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges

Absolute convergence implies convergence

Let f(x) be a real valued function defined on an interval (a,b) of real numbers, including $(-\infty,\infty)$

f is differentiable at x with derivative f'(x) if the following limit exists

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x)$$

We often write $f'(x) = \frac{d}{dx}f(x)$

If f is differentiable then f is continuous

Graphical Representation

In the previous graph, The line connecting points Q and P is the secant line

 $\frac{\Delta y}{\Delta x}$ is the $\it average\ rate\ of\ change\ and\ the\ slope\ of\ the\ secant\ line$

We get the *instantaneous rate of change* when calculate the derivative

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x)$$

As Q approaches P ie, $\Delta x \to 0$, the secant line approaches the tangent line and $\frac{dy}{dx}$ is the slope of the tangent line

Example

EXAMPLE 2: Find the derivative of $y = f(x) = x^2 + 3x$ with respect to x at $x = x_0$. Use this to find the value of the derivative at (a) $x_0 = 2$ and (b) $x_0 = -4$.

$$y_{0} = f(x_{0}) = x_{0}^{2} + 3x_{0}$$

$$y_{0} + \Delta y = f(x_{0} + \Delta x) = (x_{0} + \Delta x)^{2} + 3(x_{0} + \Delta x)$$

$$= x_{0}^{2} + 2x_{0} \Delta x + (\Delta x)^{2} + 3x_{0} + 3 \Delta x$$

$$\Delta y = f(x_{0} + \Delta x) - f(x_{0}) = 2x_{0} \Delta x + 3 \Delta x + (\Delta x)^{2}$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x} = 2x_{0} + 3 + \Delta x$$

The derivative at $x = x_0$ is

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} (2x_0 + 3 + \Delta x) = 2x_0 + 3$$

- (a) At $x_0 = 2$, the value of the derivative is 2(2) + 3 = 7.
- (b) At $x_0 = -4$, the value of the derivative is 2(-4) + 3 = -5.

Exercise Find $\frac{dy}{dx}$, given $y = x^3 - x^2 - 4$ using the definition of the derivative.

The *right-hand* derivative of f(x) at $x = x_0$ is defined as

$$f'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}$$

if the limit exists – Δx approaches 0 from above

The *left-hand* derivative of f(x) at $x = x_0$ is defined as

$$f'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}$$

if the limit exists $-\Delta x$ approaches 0 from below

A function f has a derivative at $x = x_0$ if and only if $f'_+(x_0) = f'_-(x_0)$

Some useful formulæ for differentiation

$$\frac{d}{dx}x = 1; \frac{d}{dx}x^r = rx^{r-1} \text{ (not differentialble at 0 for } r < 1)$$

$$\frac{d}{dx}\left[af(x) + b\ g(x)\right] = af'(x) + b\ g'(x)$$

$$\frac{d}{dx}\left[f(x)g(x)\right] = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}\left[f(x)/g(x)\right] = \left[f'(x)g(x) + f(x)g'(x)\right]/g(x)^2$$

$$\frac{d}{dx}f(x)^a = af'(x)^{a-1}$$

$$\frac{d}{dx}f\left[g(x)\right] = f'\left[g(x)\right]g'(x)$$

$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$$

If a function f(x) is strictly increasing or decreasing onan interval (a,b), its inverse function $f^{-1}(y)$ exists on (a,b) and its derivative is

$$\frac{d}{dy}f^{-1}(y) = \frac{1}{f'[f^{-1}(y)]}$$

Theorem (Mean Value Theorem)

Let f(x) be continuous n the interval [a,b] and differentiable on (a,b). Then there is a point xi such that $a < \xi < b$ and

$$f(b) = f(a) + (b - a)f'(\xi)$$
(2.4)

Mean Value Theorem

If f(x) is differentiable in an open neighborhood of x_0 and f'(x) is continuous at x_0 then for some ξ between x and x_0 we can write (2.4) as

$$f(x) = f(x_0) + (x - x_0)f'(\xi)$$

$$= f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\left[f'(\xi) - f'(x_0)\right]$$

$$= f(x_0) + (x - x_0)f'(x_0) + o(x - x_0)$$
(2.5)

the little o notation is defined by

$$a = o(b)$$
 iff $\frac{a}{b} \to 0$ as $b \to 0$

Given a function f(x) with derivative f'(x), if f'(x) is differentiable then

$$\frac{d}{dx}f'(x) = \frac{d^2}{dx^2}f(x) = f''(x) = f^{(2)}(x)$$

is the second derivative of f(x)

In general, the n^{th} derivative $f^{(n)}(x)$ is found by repeated differentiation

Derivatives Partial Derivatives

In the case of a function of two or more variables we introduce the concept of **partial derivatives**

These derivatives are taken with respect to one variable while the other variables are held fixed

For the *partial* derivative with respect to x, we use the notation $\frac{\partial}{\partial x}$

Partial Derivatives

Example

Let
$$f(x,y)=2x^2\exp\left\{-x^2-y^2\right\}$$
. Then
$$\frac{\partial}{\partial x}f(x,y)=4x\exp\left\{-x^2-y^2\right\}-4x^3\exp\left\{-x^2-y^2\right\}$$

$$\frac{\partial}{\partial y}f(x,y)=-4x^2y\exp\left\{-x^2-y^2\right\}$$

Higher order partial derivatives are found from repeated partial differentiation, where the variables may be mixed, ie.,

$$\frac{\partial^2}{\partial xy}$$
, $\frac{\partial^2}{\partial y^2}$, $\frac{\partial^2}{\partial x^2}$, $\frac{\partial^2}{\partial yx}$

We motivate our discussion of integrals by considering the classic geometric approach and Riemann sums

Let F(x) be a function defined on ,[a,b], and we partition [a,b] into n subintervals

$$[a + (i-1)\Delta x, a + i\Delta x]$$

where $i = 1, 2, 3, \ldots, n$ and $\Delta x = \frac{b-a}{n}$

Let ξ_i represent the midpoint of the i^{th} interval, then the Riemann sum is

$$R_n = R_n(f, a, b, \Delta) = \sum_{i=1}^n f(\xi_i) \Delta x$$

which is an average

If f(x) is continuous then R_n converges to a limit as $n \to \infty$ and is denoted

$$\lim_{n\to\infty} R_n = \int_a^b f(x)dx$$

and is known as the **definite interval** of f(x) over [a,b]

If $f(x) \ge 0$ on the interval then R_n approximates the area under the curve y = f(x) between a and b

Oftentimes the bounds may be infinite as occurs frequently in probability theory, $\int_a^\infty f(x)dx$ where f(x) is a density function, so the integral is given by the limit

$$\lim_{h \to \infty} \int_{a}^{h} f(x)dx = \int_{a}^{\infty} f(x)dx$$

Theorem (Fundamental Theorem of Calculus)

Let the function F(x) be differentiable on the interval [a,b] with derivative f(x). If f(x) is continuous on [a,b] then

$$F(b) - F(a) = \int_{a}^{b} f(x)dx$$

.

Example

Since x^n is the derivative of $x^{n+1}/(n+1)$ we have

$$\int_{a}^{b} x^{n} dx = \frac{x^{n+1}}{n+1} \bigg|_{a}^{b} = \frac{1}{n+1} \left[b^{n+1} - a^{n+1} \right]$$

Some properties of integrals

$$\int_{a}^{b} \left[c f(x) + d g(x) \right] dx = c \int_{a}^{b} f(x) dx + d \int_{a}^{b} g(x) dx$$
 (2.6)

$$a < c < b \Rightarrow \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (2.7)

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$
 (2.8)

$$f(x) \ge g(x) \text{ on } [a,b] \Rightarrow \int_a^b f(x)dx \ge \int_a^b g(x)dx$$
 (2.9)

Change-of-Variable Technique

- Suppose g(x) is differentiable on [a, b] and that F(x) is differentiable on the range of g(x)
- From the chain rule we have

$$D_x F[g(x)] = F'[g(x)]g'(x)$$

We get

$$\int_{a}^{b} F'[g(x)] g'(x) = F[g(x)] \Big|_{a}^{b} = F[g(b)] - F[g(a)] = \int_{g(a)}^{g(b)} F'(u) du$$

Change-of-Variable Technique

To simplify the notation we typically write u = g(x) and du = g'(x)dx

Exercise

Use the change-of variable technique to find the following

$$\int_2^3 x \exp\left\{-x^2\right\}.$$

What is u? What is du? Evaluate the integral.

Integration by parts

Suppose u(x) and v(x) are differentiable functions on [a,b] whose second derivatives exist

The product rule for differentiation gives

$$\frac{d}{dx}\left[u(x)v(x)\right] = u'(x)v(x) + u(x)v'(x)$$

If we solve for u(x)v'(x) and integrate we get

$$\int_{a}^{b} u(x)v'(x) = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} u'(x)v(x)d(x)$$

This is Integration by Parts

Exercise

1. Evaluate

$$\int (x+2)\sin(x^2+4x-6)dx$$

2. Determine

$$\int_{e}^{e^2} \frac{dx}{x(\ln x)^3}$$

3. Evaluate

$$\int 3^{\sqrt{2x+1}} dx$$

Multiple Integration

- ▶ We can extend the concept of integration to *n*-dimensions
- Consider the two dimensional case

Let f(x, y) be a continuous funciton of two variables, x and y, defined on a bounded rectangle A

We partition A into mn sub-rectangles and sum over all the sub-rectangles

$$R_{m,n} = R_{m,n}(f, A, \Delta x, \Delta y) = \sum_{i=1}^{m} \sum_{i=1}^{n} f(x_i, y_i) \Delta x_i \Delta y_i$$

where (x_i, y_i) is an interior point

Multiple Integration

If the largest sub-rectangle converges to 0 as $m, n \to \infty$ then $R_{m,n}$ has a limit which is the double integral of f over A

$$\iint\limits_A f(x,y)dxdy$$

Multiple Integrals

Multiple integrals can be computed as *iterated* integrals Integrate with respect to one variable then integrate the result wrt the other variable

Exercise

Find the volume of the region bounded by

$$z = x + y, z = 6, x = 0, y = 0, z = 0$$

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a rectangular array of numbers usually presented in the following form:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Matrices are denoted by uppercase bold letters A
- A matrix A having m rows and n columns is an $m \times n$ matrix
- ► To emphasize the *size* of the matrix we can write $A = [m \times n]$, for a matrix with m rows and n columns
- ▶ A is a square matrix if m = n
- ▶ We specify an element of A by a_{ij} , i = 1, ..., m, and j = 1, ..., n, and $A = (a_{ij})$
- ▶ The inverse of a (nonsingular) matrix is denoted A^{-1}
- ▶ The transpose of a matrix is denoted A^T

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Let and $A = [a_{ij}]$ and $B = [b_{ij}]$ be two matrices with the same size, say $m \times n$ matrices. The sum of A and B, written A + B, is the matrix obtained by adding corresponding elements from A and B. That is,

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{11} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

The product of the matrix A by a scalar k, written $k \times A$ or simply kA, is the matrix obtained by multiplying each element of A by k. That is,

$$k\mathbf{A} = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{bmatrix}$$

Example (Matrix Addition)

$$\left[\begin{array}{ccc} -2 & 1 & 0 \\ 3 & -4 & 2 \end{array}\right] + \left[\begin{array}{ccc} 5 & -4 & 3 \\ -1 & 2 & 6 \end{array}\right] = \left[\begin{array}{ccc} (-2) + 5 & 1 + (-4) & 0 + 3 \\ 3 + (-1) & (-4) + 2 & 2 + 6 \end{array}\right] = \left[\begin{array}{ccc} 3 & -3 & 3 \\ 2 & -2 & 8 \end{array}\right]$$

A **row matrix** has a single row and a **column matrix** has a single column

Definition

Let A be a row matrix and B be a column matrix, each with n entries. Hence A is a $1 \times n$ matrix and B is an $n \times 1$ matrix. The **inner product** or **dot product** $A \cdot B$ of A and B is obtained by adding the products of the corresponding elements of A and B. That is, if

$$A = [\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array}] \text{ and } B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

then

$$\mathbf{A} \cdot \mathbf{B} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i$$

The product AB of two matrices A and B is defined if the number of columns of A equals the number of rows of B

Definition

Let A be an $m \times n$ matrix and B an $n \times p$ matrix, where $A = [a_{ij}]$ with $1 \le i \le m$ and $1 \le j \le n$, and $B = [b_{jk}]$, with $1 \le j \le n$ and $1 \le k \le p$. Then the **product** C = AB of A and B is the $m \times p$ matrix, where $C = [c_{ik}]$ where $1 \le i \le m$ and $1 \le k \le p$ such that

$$c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \cdots + a_{in}b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}.$$

To calculate the (i, k)-entry c_{ik} of C, we compute the inner product of row i of A (which has n columns) and column k of B (which has n rows).

Definition

For an $n \times n$ square matrix A, the **powers** of A are defined by

$$A^1 = A$$
 and $A^k = \underbrace{AA \cdots A}_{k \text{ factors}}$ for each integer $k \ge 2$.

For example, if
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$
, then

$$A^1 = A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, A^2 = AA = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}, \text{ and}$$

$$A^3 = AAA = AA^2 = \begin{bmatrix} 5 & 6 \\ 3 & 2 \end{bmatrix}.$$

► The identity matrix is denoted by *I* or *I_n* to emphasize the dimension

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

▶ The $n \times n$ matrix of ones is denoted U_n

$$U_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- ► All vectors are column vectors and are denoted by lowercase bold letters, *a*
- There are exceptions
 - ⇒ J denotes a column vector of ones
 - ⇒ and 0 denotes either a column vector or matrix of zeros
- We may write J_m , 0_m , or $0_{m,n}$ to emphasize the dimensions
- Transposing a column vector gives a row vector, a^T

In general, we may partition a matrix A into a set of rectangular matrices, provided they are of appropriate dimensions

$$A = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}$$

Example

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ \hline a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{bmatrix}$$

Definition

The **determinant** of a matrix A is a scaling factor of the transformation the matrix

$$det(\mathbf{A}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

For a 3×3 matrix we have

$$det(\mathbf{A}) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Definition

A matrix A is singular if its determinant is zero. A singular matrix does not have an inverse.

Definition

Let u_1, u_2, \ldots, u_n be vectors representing the columns of matrix A. Then the u_i are linearly dependent if there exist scalars k_i not all zeros such that

$$k_1\mathbf{u_1} + k_2\mathbf{u_2} + \cdots + k_n\mathbf{u_n} = 0$$

- The rank of a matrix A is the number of linearly independent rows or columns and is denoted by r(A)
- ▶ A square matrix is a matrix with the same number of rows and columns
- ► The trace of a square matrix is the sum of its diagonals denoted by tr(modA)

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

► For to matrices A and B, tr(AB) = tr(BA)

If A is a square matrix of size n, the scalar, λ, is called an eigenvalue of A if it is a root of the polynomial defined by

$$|\boldsymbol{A} - \lambda \boldsymbol{I}| = 0$$

where |.| is the determinant of a matrix

Associated with each eigenvalue is and eigenvector p determined by the equation

$$Ap = \lambda p$$

The trace, rank, and determinant of A can be found by its eigenvalues:

1.
$$tr(A) = \sum_{i} \lambda_i$$

- 2. r(A) = the number of nonzero eigenvalues
- 3. $|A| = \prod_i \lambda_i$

The function

$$q(\mathbf{y}) = \mathbf{y}^{\mathrm{T}} A \mathbf{y} = \sum_{i} \sum_{j} a_{ij} y_{i} y_{j}$$

is called a quadratic form defined by the matrix A

- A quadratic form is **positive definite** if q(y) > 0 for all nonzero vectors y
- ▶ If $q(y) \ge 0$ and q(y) = 0 for some nonzero y then q(y) is positive semi-definite

A square matrix is said to be **orthogonal** if and only if $P^{-1} = P^{T}$. Orthogonal matrices have the following properties

1. The rows and columns of *P* are orthogonal and have length one, so

$$\mathbf{P}^{\mathrm{T}}\mathbf{P} = \mathbf{P}\mathbf{P}^{\mathrm{T}} = \mathbf{I}$$

- **2**. $|P| = \pm 1$
- 3. $-1 \le p_{ii} \le 1$

The matrix of eigenvectors of a symmetric matrix is orthogonal

An $n \times n$ matrix A is **idempotent** if AA = A. Idempotent matrices have the following properties

- 1. r(A) = n implies that A = I
- 2. The nonzero eigenvalues of A are equal to one
- 3. The trace of A equals the rank
- 4. If *A* is symmetric and idempotent then *A* is at least positive semi-definite
- 5. Suppose that the matrices A_i , i = 1, 2, ..., m are symmetric

$$A = \sum A_i$$
, $r(A_i) = r_i$, and $r(A) = r_i$

Diagonalization

Let A be any n-square matrix. Then A can be represented by (or is similar to) a diagonal matrix $D = \operatorname{diag}(k_1, k_2, \ldots, k_n)$ if and only if there exists a basis S consisting of (column) vectors $u_1, u_2 \ldots u_n$ such that

$$Au_1 = k_1 u_1$$

$$Au_2 = k_2 u_2$$

$$\dots$$

$$Au_n = k_n u_n$$

In such a case, A is said to be diagonalizable. Furthermore, $D = P^{-1}AP$, where P is the nonsingular matrix whose columns are, respectively, the basis vectors u_1, u_2, \ldots, u_n .

Theorem

An n-square matrix A is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. In this case, the diagonal elements of D are the corresponding eigenvalues and $D = P^{-1}AP$, where P is the matrix whose columns are the eigenvectors.

Example

Let

$$\pmb{A} = \left[egin{array}{cc} 3 & 1 \ 2 & 2 \end{array}
ight] ext{ and let } \pmb{v}_1 = \left[egin{array}{cc} 1 \ -2 \end{array}
ight] ext{ and } \pmb{v}_2 = \left[egin{array}{cc} 1 \ 1 \end{array}
ight].$$

Then

$$Av_1 = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} = v_1$$

and

$$Av_2 = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4v_2$$

Example (Continued...)

Thus, v_1 and v_2 are eigenvectors of A belonging, respectively, to the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 4$.

 v_1 and v_2 are linearly independent and form a basis of \mathbb{R}^2 .

Accordingly, A is diagonalizable. Furthermore, let P be the matrix whose columns are the eigenvectors v1 and v2. That is, let

$$\mathbf{P} = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$
 and $\mathbf{P}^{-1} = \begin{bmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{bmatrix}$

Example (Continued...)

Then A is similar to the diagonal matrix

$$\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

As expected, the diagonal elements 1 and 4 in D are the eigenvalues corresponding, respectively, to the eigenvectors v_1 and v_2 , which are the columns of P. Thus A has the factorization

$$A = PDP^{-1} = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{bmatrix}$$

Diagonalization Algorithm

An algorithm for computing eigenvalues and eigenvectors for a given square matrix A and for determining whether or not a nonsingular matrix P exists such that $P^{-1}AP$ is diagonal.

First we must define the characteristic polynomial

Definition

Let $A=[a_{ij}]$ be an n-square matrix. The matrix $\mathbf{M}=\mathbf{A}-t\mathbf{I}_n$, where \mathbf{I}_n is the n-square identity matrix and t is an indeterminate, may be obtained by subtracting t down the diagonal of \mathbf{A} . The negative of \mathbf{M} is the matrix $t\mathbf{I}_n-\mathbf{A}$, and its determinant $\Delta(t)=\det(t\mathbf{I}_n-\mathbf{A})=(-1)^n\det(\mathbf{A}-t\mathbf{I}_n)$ which is a polynomial in t of degree n and is called the *characteristic polynomial* of \mathbf{A} .

Diagonalization Algorithm

For a characteristic polynomial of degree 2 the equation becomes

$$\Delta(t) = t^2 - tr(\mathbf{A}) + \det(\mathbf{A})$$

Diagonalization Algorithm

- Step1. Find the characteristic polynomial $\Delta(t)$ of A.
- Step2. Find the roots of $\Delta(t)$ to obtain the eigenvalues of A.
- Step3. For each eigenvalue λ of A, repeat (a) and (b) below
 - (a) Form the matrix $M = A \lambda I$ by subtracting λ down the diagonal of A.
 - (b) Find a basis for the solution space of the homogeneous system MX = 0. (These basis vectors are linearly independent eigenvectors of A belonging to λ .)
- Step4. Consider the collection $S = \{v_1, v_2, \dots, v_m\}$ of all eigenvectors obtained in Step 3.
 - (a) If $m \neq n$, then A is not diagonalizable.
 - (b) If m=n, then A is diagonalizable. Specifically, let P be the matrix whose columns are the eigenvectors v_1, v_2, \ldots, v_n . Then

$$D = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

where λ_i is the eigenvalue corresponding to the eigenvector v_i .

Diagonalization Algorithm

Exercise

Apply the diagonalization algorithm to

$$A = \left[\begin{array}{cc} 4 & 2 \\ 3 & -1 \end{array} \right]$$

to find the eigenvalues, eigenvectors, and a nonsingular matrix ${\it P}$ to diagonalize ${\it A}$.

References

Hocking, R. R. (1996).

Methods and Applications of Linear Models.

John Wiley & Sons, Inc., New York.

Hogg, R. V., McKean, J. W. and Craig, A. T. (2018). Introduction to Mathematical Statistics. Pearson, Boston, eighth edition.

Kabacoff, R. I. (2015).

R in Action.

Manning, Shelter Island, NY, second edition.

Lipschutz, S. and Lipson, M. L. (2009).Linear Algebra.Schaum's Outline. McGraw-Hill, New York, fourth edition.

Wrede, R. and Spiegel, M. R. (2010).

Advanced Calculus.

Schaum's Outline. McGraw-Hill, New York, third edition.

References (cont.)

Wu, J. and Coggeshall, S. (2012). Foundations of Predictive Analytics. CRC Press, Boca Raton, FL.