Théorème de Lucas

Partie I: Parties convexes du plan complexes

Etant donnés $a,b \in \mathbb{C}$, on appelle segment d'extrémités a et b, l'ensemble $[a,b] = \{\lambda a + (1-\lambda)b/\lambda \in [0,1]\}$.

1. Soit $a, b \in \mathbb{C}$. Montrer que [a, b] = [b, a].

Une partie C de \mathbb{C} est dite convexe ssi : $\forall a,b \in C, [a,b] \subset C$.

- 2. Exemples de parties convexes :
- 2.a Soit $a,b \in \mathbb{C}$. Montrer que [a,b] est une partie convexe de \mathbb{C} .
- 2.b Soit $D = \{z \in \mathbb{C}/|z| \le 1\}$. Montrer que D est une partie convexe de \mathbb{C} .
- 3. Deux propriétés :
- 3.a Soit $(C_i)_{i\in I}$ une famille de parties convexes de $\mathbb C$. Montrer que $C=\bigcap_{i\in I}C_i$ est une partie convexe de $\mathbb C$.
- 3.b Soit C une partie convexe de $\mathbb C$. Montrer, en raisonnant par récurrence, que : pour tout $n\in\mathbb N^*$, tout $a_1,\ldots,a_n\in C$ et tout $\lambda_1,\ldots,\lambda_n>0$, on a $a=\frac{\lambda_1a_1+\cdots+\lambda_na_n}{\lambda_1+\cdots+\lambda_n}\in C$
- 4. Soit A une partie de $\mathbb C$ et S l'ensemble des parties convexes de $\mathbb C$ contenant A. On pose $\mathrm{Conv}(A) = \bigcap_{C \in S} C$.
- 4.a Justifier que Conv(A) est une partie convexe de $\mathbb C$ contenant A.
- 4.b Observer que si C est une partie convexe de $\mathbb C$ contenant A alors $\operatorname{Conv}(A) \subset C$.

 Ainsi, $\operatorname{Conv}(A)$ apparaît comme étant le plus petit convexe de $\mathbb C$ qui contient A, on l'appelle enveloppe convexe de A.
- 4.c Soit $a,b \in \mathbb{C}$ et $A = \{a,b\}$. Déterminer Conv(A).
- 4.d Soit $U = \{z \in \mathbb{C}/|z| = 1\}$. Déterminer Conv(U).

Partie II : Théorème de Lucas

Soit $P \in \mathbb{C}[X]$ un polynôme non constant et $a_1, \dots, a_n \in \mathbb{C}$ ses racines deux à deux distinctes.

Notons, pour tout $i \in \{1,...,n\}$, α_i la multiplicité de a_i en tant que racine de P.

- 1.a Déterminer les pôles de la fraction rationnelle $\frac{P'}{P}$ ainsi que leurs multiplicités.
- 1.b Justifier que $\frac{P'}{P} = \sum_{i=1}^{n} \frac{\alpha_i}{X a_i}$.
- 2.a Soit a une racine du polynôme P' qui ne soit pas racine de P . Montrer que $\sum_{i=1}^n \frac{\alpha_i}{|a-a_i|^2} (a-a_i) = 0$.
- 2.b En déduire l'existence de réels positifs $\lambda_1, \dots, \lambda_n \in \mathbb{R}^{+*}$ tel que $a = \frac{\lambda_1 a_1 + \dots + \lambda_n a_n}{\lambda_1 + \dots + \lambda_n}$.
- 3. Conclure que les racines de P' appartiennent à $\operatorname{Conv}\left\{a_1,\ldots,a_n\right\}$, c'est à dire à l'enveloppe convexe de l'ensemble formé des racines de P.