Twists

Reading: Modern Robotics 3.3.2

This Lecture

- How do we represent linear and angular velocity?
- How are twists related to transformation matrices?
- What are the two types of twists?

Transformation *T* captures where {*b*} is **right now**.

But if the ball is moving, how do we write its velocity?

How can we go from position and rotation to linear and angular velocity?

Twists

A twist is a 6-dimensional **vector**:

$$V = \begin{bmatrix} \omega \\ v \end{bmatrix}$$

Where $\omega \in \mathbb{R}^3$ is the **angular velocity** and $v \in \mathbb{R}^3$ is the **linear velocity**

Twists

We often write twists as a 4×4 matrix:

$$[V] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}$$

Remember that $[\omega]$ is skew-symmetric matrix

$$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

The formula for the body twist is $[V_b] = T^{-1}\dot{T}$

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix}$$

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} R^T\dot{R} & R^T\dot{p} \\ 0 & 0 \end{bmatrix}$$

The formula for the body twist is $[V_b] = T^{-1}\dot{T}$

Let's see why:

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix}$$

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} R^T\dot{R} & R^T\dot{p} \\ 0 & 0 \end{bmatrix}$$

From our lecture on angular velocity, we know that $R^T \dot{R} = [\omega_b]$

The formula for the body twist is $[V_b] = T^{-1}\dot{T}$

Let's see why:

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} R^T & -R^Tp \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix}$$

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} [\omega_b] & R^T\dot{p} \\ 0 & 0 \end{bmatrix}$$

 \dot{p} is the linear velocity of $\{b\}$ expressed in $\{s\}$, and $R^T = R_{bs}$ rotates this vector into frame $\{b\}$

The formula for the body twist is $[V_b] = T^{-1}\dot{T}$

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix}$$

$$[V_b] = T^{-1}\dot{T} = \begin{bmatrix} [\omega_b] & v_b \\ 0 & 0 \end{bmatrix}$$

$$[\omega_b] = R^T \dot{R}$$
 $v_b = R^T \dot{p}$
angular velocity linear velocity of a point at $\{b\}$
expressed in $\{b\}$

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

$$\omega_b = \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}$$

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

$$v_b = R^T \dot{p}$$

$$= \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ \beta \\ 0 \end{bmatrix} = \begin{bmatrix} -\beta \\ 0 \\ 0 \end{bmatrix}$$

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

$$V_b = \begin{bmatrix} 0 \\ 0 \\ \alpha \\ -\beta \\ 0 \\ 0 \end{bmatrix}$$

The formula for the spatial twist is $[V_s] = \dot{T}T^{-1}$

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix}$$

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} \dot{R}R^T & -\dot{R}R^Tp + \dot{p} \\ 0 & 0 \end{bmatrix}$$

The formula for the spatial twist is $[V_s] = \dot{T}T^{-1}$

Let's see why:

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix}$$

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} \dot{R}R^T & -\dot{R}R^Tp + \dot{p} \\ 0 & 0 \end{bmatrix}$$

From our lecture on angular velocity, we know that $\dot{R}R^T = [\omega_s]$

The formula for the spatial twist is $[V_s] = \dot{T}T^{-1}$

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix}$$

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} [\omega_S] & \omega_S \times (-p) + \dot{p} \\ 0 & 0 \end{bmatrix}$$

The formula for the spatial twist is $[V_s] = \dot{T}T^{-1}$

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix}$$

$$[V_S] = \dot{T}T^{-1} = \begin{bmatrix} [\omega_S] & \omega_S \times (-p) + \dot{p} \\ 0 & 0 \end{bmatrix}$$

$$[\omega_s] = \dot{R}R^T$$
 $v_s = \omega_s \times (-p) + \dot{p}$
angular velocity linear velocity of a point at $\{s\}$
expressed in $\{s\}$

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

$$\omega_{s} = \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}$$

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

$$v_{\scriptscriptstyle S} = \omega_{\scriptscriptstyle S} \times (-p) + \dot{p}$$

$$= \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ -4 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \beta \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \beta \\ -4\alpha \end{bmatrix}$$

Ball rotates around z_b axis at α rad/s, and moves right at β m/s.

$$V_{S} = \begin{bmatrix} \alpha \\ 0 \\ 0 \\ 0 \\ \beta \\ -4\alpha \end{bmatrix}$$

This Lecture

- How do we represent linear and angular velocity?
- How are twists related to transformation matrices?
- What are the two types of twists?

Next Lecture

• How can we use twists to describe the motion of robot joints?