# Classification

#### Classification

- In many applications, the response is not a quantitative value and instead represents a class, e.g.,  $y \in \{\text{student, non-student}\}$ ,  $y \in \{\text{while, yellow, green}\}$
- Yet based on the observation of some features, we would like to predict the class (what we refer to as the classification)
- Regression vs classification



#### Classification

**Example.** Predicting default cases on the credit card (unable to pay the credit card), based on the income and current balance



(one immediate observation is probably balance is a more useful feature)

# **Binary Classification**

- In simple regression for a single feature x we fitted a line  $y = \beta_0 + \beta_1 x$  to the data
- In binary classification with only one feature, we don't have values any more, but two classes (say class 0 and class 1)
- Can we do the fit in a way that the sign of  $\beta_0 + \beta_1 x$  becomes an indicator of the class for us?
- In other words, for a given feature  $x_t$ , we make a decision based on the following:

$$y_t = \begin{cases} 1 & \beta_0 + \beta_1 x_t > 0 \\ 0 & \beta_0 + \beta_1 x_t < 0 \end{cases},$$

 A smooth function (called Sigmoid – also inverse Logit) that takes almost binary values 0, 1 based on the sign of the input z is

Signoid for 
$$\frac{e^z}{1+e^z} \approx \left\{ \begin{array}{ll} 1 & z >> 0 \\ 0 & z << 0 \end{array} \right.$$
 continuous

Simple Example input (feciture): X E IR sutput (response): y E \ o , 1} problem: J= Sign ( Po + B, X) Sign Function is Regression: Y= Po + B, X not continuous  $(\chi_1, \chi_1) \dots (\chi_n, \chi_n)$  fit  $\beta_0, \beta_1$ such that y = Sign (\$0+\$, Xi) , i=1..., n  $\sum_{i=1}^{n} \left( \forall_{i} - S_{igh} \left( \beta_{o} + \beta_{i} \chi_{i} \right) \right)^{2}$ minimize y= Sign(x) Sigmoid  $Sign(\beta_0 + \beta_1 x)$  $Sigmoid(\beta_0 + \beta_1 x)$ P(4=1/x) = 6 (B,+B,x)  $P(y=0|x) = 1 - 6(\beta_0 + \beta_1 x)$ B.: offset Bi: Slope

## **Binary Classification**

– When we have a smooth approximation of the sign function, learning the parameters  $\beta_0$  and  $\beta_1$  is numerically easier



# **Binary Classification**



Trying to treat the classification problem as a regression problem does not produce reasonable results!

# Steps to solve problem



# **How Does Binary Classification Work?**

- We somehow learn  $\beta_0$  and  $\beta_1$  from the training data (will be explained soon)
- We are given a test point  $x_t$ , for which we evaluate  $\beta_0 + \beta_1 x_t$
- We pass this quantity to our smooth sign approximation

$$p(x_t) = \frac{e^{\beta_0 + \beta_1 x_t}}{1 + e^{\beta_0 + \beta_1 x_t}}$$

- If  $p(x_t)$  was closer to 1 our prediction of the class for  $x_t$  is class one (e.g.,  $p(x_t) = 0.7$ ) and if  $p(x_t)$  was closer to 0 our prediction of the class for  $x_t$  is class zero (e.g.,  $p(x_t) = 0.3$ )
- Now that  $p(\cdot)$  generates some value between zero and one for us, one immediate interpretation for it is being the probability of label 1

$$p(x_t) = \mathbb{P}(y = 1|x_t) = 1 - \mathbb{P}(y = 0|x_t)$$

so if  $p(x_t) = 0.7$ , then the test label is 1 with probability 0.7, and 0 with probability 0.3

# How to Do the Training for the Simple Logistic Regression?

 Many of the classification techniques you see in this course only differ in the way that we model

$$\mathbb{P}(Y = \ell | x_t)$$

- We observe samples  $(x_1, y_1), \cdots (x_n, y_n)$ , where  $y_i \in \{0, 1\}$
- We want to determine  $\beta_0$  and  $\beta_1$  such that the probability of assigning the right labels is maximized

$$\arg\max_{\beta_0,\beta_1} \ \mathbb{P}\big(Y_1=y_1,\cdots Y_n=y_n|X_1=x_1,\cdots,X_n=x_n,\beta_0,\beta_1\big)$$

– Basically, we want to find the ML estimates for  $\beta_0$  and  $\beta_1$ 

Model: 
$$P(Y=1|X) = \sigma(\beta_0 + \beta_1 X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

$$P(Y=0|X) = |-6|P_0+P_1X) = |-6|P_0+P_1X$$

only estimates B, B,

not Xi

Since independent =  $\prod_{i=1}^{n} P(Y_i = y_i | x_i \beta_0, \beta_i)$ 

- Since our samples are independent, we get

$$\mathbb{P}(Y_1 = y_1, \dots Y_n = y_n | x_1, \dots, x_n, \beta_0, \beta_1) = \prod_{i=1}^n \mathbb{P}(Y_i = y_i | x_i, \beta_0, \beta_1)$$

$$= \prod_{i:y_i=1}^n p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

$$= \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$$

where the first equality is thanks to

$$p(x_i) = \mathbb{P}(Y = 1|x_i) = 1 - \mathbb{P}(y = 0|x_i)$$

– So we ultimately want to find  $\beta_0$  and  $\beta_1$  that maximize

$$\prod_{i=1}^{n} p(x_i)^{y_i} (1-p(x_i))^{1-y_i} = \prod_{i=1}^{n} \left( \frac{e^{\beta_0+\beta_1 x_i}}{1+e^{\beta_0+\beta_1 x_i}} \right)^{y_i} \left( 1 - \frac{e^{\beta_0+\beta_1 x_i}}{1+e^{\beta_0+\beta_1 x_i}} \right)^{1-y_i}$$

# Some Notes on The Logistic Regression

 In logistic regression, we end up with a more complex cost function to optimize (after applying the negative log we get)

$$\begin{split} L(\beta_0,\beta_1) &= -\log \left( \prod_{i=1}^n \left( \frac{1}{1+e^{-\beta_0-\beta_1 x_i}} \right)^{y_i} \left( \frac{1}{1+e^{\beta_0+\beta_1 x_i}} \right)^{1-y_i} \right) \\ &= -\sum_{i=1}^n -y_i \log \left( 1+e^{-\beta_0-\beta_1 x_i} \right) - (1-y_i) \log \left( 1+e^{\beta_0+\beta_1 x_i} \right) \\ &= \sum_{i=1}^n y_i \log \left( 1+e^{-\beta_0-\beta_1 x_i} \right) + (1-y_i) \log \left( 1+e^{\beta_0+\beta_1 x_i} \right) \end{split}$$

 This function is convex and can be nicely minimized using gradient descent. You may see examples in the homework! Turns out that

$$f(z) = y \log (1 + e^{-z}) + (1 - y) \log (1 + e^{z})$$
 is convex in z

$$Z = \beta_0 + \beta_1 \chi$$

$$= \{ \beta_0 + \beta_1 \} = \{ \beta_1 + \beta_2 \} = \{ \beta_1 +$$

 $f(p_0, p_1) = 4 - \log(1 + e^{-p_0 - Ax}) + (1 - y_0) \log(1 + e^{p_0 + p_0 x})$  3 canvex 70  $p_0, p_0$ 

# What Happens for More than One Feature?

- In case of multiple features, only minor modification is required
- We still try to maximize  $\prod_{i=1}^n p(x_i)^{y_i} (1-p(x_i))^{1-y_i}$ , but now we have

$$p(x_t) = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}$$

- We run the maximization to estimate  $\beta_0, \beta_1, \cdots, \beta_p$
- In practice you never have to do the maximization and most software such as R, Python and Matlab have packages to do that numerically

① Only one feature 
$$X, Y \in \{0,1\} \Rightarrow ML$$
 formula is on P.32  
② Multiple features,  $X_1, X_2...X_n$ ,  $Y \in \{0,1\}$ 

$$P(Y=1|X) = S(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)$$

## What Happens for More than Two Classes?

- Example, based on some features such as city, year of education and number of publications, classify the students of a class into undergrads, Masters, and PhDs
- Recall our method of classification in the binary case, we evaluated  $p(x_t)$  which was technically  $\mathbb{P}(Y=1|x_t)$  and if it was closer to 1 then our class prediction was 1, if it was small, then  $\mathbb{P}(Y=0|x_t)=1-\mathbb{P}(Y=1|x_t)$  would be large and our prediction is class zero
- One way of interpreting this is evaluating  $\mathbb{P}(Y=k|x_t)$  for k=0,1 and the k that produces the largest value for  $\mathbb{P}(Y=k|x_t)$  is our predicted label
- Now for K labels, we evaluate  $\mathbb{P}(Y=k|x_t)$  for  $k=1,2,\cdots,K$  and the k that produces the largest value for  $\mathbb{P}(Y=k|x_t)$  is our predicted label

#### What Happens for More than Two Classes?

- For K labels, we evaluate  $\mathbb{P}(Y=k|x_t)$  for  $k=1,2,\cdots,K$  and the k that produces the largest value for  $\mathbb{P}(Y=k|x_t)$  is our predicted label
- When we have K > 2 labels (e.g.,  $y \in \{\text{while, yellow, green}\}$ ) and p features  $x_1, x_2, \dots, x_p$ , we fit K models parametrized by

Label 1: 
$$\{\beta_0^{(1)}, \beta_1^{(1)}, \cdots, \beta_p^{(1)}\}$$
  
Label 2:  $\{\beta_0^{(2)}, \beta_1^{(2)}, \cdots, \beta_p^{(2)}\}$   
:  
Label K:  $\{\beta_0^{(K)}, \beta_1^{(K)}, \cdots, \beta_p^{(K)}\}$ 

- For this problem we consider the following form:

$$p_k(\mathbf{x}) = \mathbb{P}(Y = k | \mathbf{x}) = \frac{e^{\beta_0^{(k)} + \dots + \beta_p^{(k)} x_p}}{e^{\beta_0^{(1)} + \dots + \beta_p^{(1)} x_p} + \dots + e^{\beta_0^{(K)} + \dots + \beta_p^{(K)} x_p}}$$

- What is the sum of all  $\mathbb{P}(Y = k | x)$  for a fixed x?

$$P(Y=L|X)$$
 lethe class labels

$$=2 \mid X$$
):  $\beta_0^{(2)}$ ,  $\beta_1^{(1)}$ , ...  $\beta_p^{(2)}$ 

$$\begin{cases}
P(Y=1|X): \beta_{o}^{(1)}, \beta_{1}^{(1)}, \dots \beta_{p}^{(l)} \\
P(Y=2|X): \beta_{o}^{(2)}, \beta_{1}^{(l)}, \dots \beta_{p}^{(2)}
\end{cases}$$

$$\vdots$$

$$P(Y=L|X): \beta_{o}^{(L)}, \beta_{1}^{(L)}, \dots \beta_{p}^{(L)}$$

Then Make Sure

$$\sum_{i=1}^{L} P(Y=Q|X) = 1$$

#### Some R Simulations

- Let's preform some basic classification tasks in  $\ensuremath{\mathsf{R}}!$