Ciencias de la Computación l Tópicos de Teoría de Números

Eduardo Contrera Schneider

Universidad de la Frontera

12 de octubre de 2016

Divisibilidad

Números Primos

O División Euclidiana

Divisibilidad

Divisibilidad

Si $a, b \in \mathbb{Z}$ y $b \neq 0$, decimo que b divide a a, y lo denotamos b|a, si existe un entero n tal que a = bn. Cuando esto ocurre, decimos que b es un divisor de a, o que a es un múltiplo de b.

Esta definición nos permite hablar de división sin tener que extender el conjunto a los números racionales. Además, cuando ab=0 para $a,b\in\mathbb{Z}$ entonces a=0 o b=0; decimos entonces que \mathbb{Z} no tiene divisores propios de 0. Esta propiedad permite cancelar en \mathbb{Z}

Propiedades de la División

Propiedades

Para cualesquiera $a, b, c \in \mathbb{Z}$

- 1|a y a|0.
- ② Si a|b y b|a entonces $a = \pm b$.
- \odot Si a|b y b|c entonces a|c.
- Si a|b entonces a|bx para todo $x \in \mathbb{Z}$.
- **3** Si x = y + z para $x, y, z \in \mathbb{Z}$ y a divide a dos de los enteros x, y, z, entonces a divide al entero restante.
- **1** Si a|b y a|c entonces a|(bx + cy), para todos $x, y \in \mathbb{Z}$.
- **⊘** Para $1 \le i \le n$, sea $c_i \in \mathbb{Z}$. Si $a | c_i$ para todo i, entonces $a | (c_1x_1 + c_2x_2 + ... + c_nx_n)$ donde $x_i \in \mathbb{Z}$ para todo $1 \le i \le n$.

Ejemplos

- ¿Existen enteros x, y, z (positivos, negativos o cero) tales que 6x + 9y + 15z = 107?
- Sean $a, b \in \mathbb{Z}$ tales que 2a + 3b sea un múltiplo de 17. Demuestre que 17 divide 9a + 5b.

Números Primos

Cuando observamos detenidamente el conjunto \mathbb{Z}^+ , nos damos cuenta que cualquier número mayor a 1 tiene al menos dos divisores.

Números Primos

Sea $n \in \mathbb{Z}^+$ y n > 1. Decimos que n es un número **primo** tiene exactamente dos divisores positivos. De lo contrario, el número se llama **compuesto**.

El siguiente lema relaciona los dos tipos de números.

Lema

Si $n \in \mathbb{Z}^+$ y n es compuesto, entonces existe un primo p tal que p|n.

Cardinalidad de los Números Primos

Euclides en los pergaminos con conforman su más célebre obra *Ele*mentos, demostró por primera vez el siguiente resultado.

Teorema

Existe una infinitud de números primos.

División Euclidiana

Si $a, b \in \mathbb{Z}$, con b > 0, entonces existen $q, r \in \mathbb{Z}$ únicos tales que a = qb + r, con $0 \le r < b$.

Además, llamamos al entero b el divisor y a a el dividendo.