

NON MACHINE LEARNING NAILFOLD CAPILLARY DETECTION AND COUNTING METHOD

GRACE SEVILLANO C.

1. AIM

WE PROPOSE AND IMPLEMENT A METHOD FOR COUNTING THE NUMBER OF C APILLARIES IN IMAGES. THE METHOD IN VO LVES SEVERAL STEPS, INCLUDING REGION OF INTEREST (ROI) DETECTION, IMAGE ENHANCEMENT, AND CAPILLARY DETECTION.

2. DATA

• OUR DATASET IS COMPOSED OF 4 CLASSES OF PERSONS: IMAGES OF THE CAPILLARIES OF 2 PERSONS WITHOUT DISEASE (N1 AND N2) AND IMAGES OF THE CAPILLARIES OF 2 PERSONS WITH DISEASE (S1 AND S2). IN TOTAL WE HAVE 30 IMAGES WITH DIFFERENT ILLUMINATIONS, ROTATIONS, ETC. THAT IS WHY IT IS SO CHALLENGING TO DETECT AND COUNT EACH OF THE CAPILLARIES IN THIS DATASET.

S2a jpg S2b jpg S2c jpg S2d jpg S2e jpg S2f jpg S3a jpg S3b jpg S3c jpg S3d jpg S3e jpg S3t jpg S3d jpg S3b jpg S3h jpg S3d jpg S3e jpg S3t jpg S3d jpg S3h jpg

3. METHODS PREPROCESSING

STEP 1: FIRST WE MUST

DETECT THE REGION AND

INTEREST.

To do so, a combination of Gaussian blur, Canny edge detection and combination of Gaussian blur, Canny edge detection and Hough's line transform is used.

The longest line detected by the Hough transform is used to rotate the image and extract the ROI. The ROI is extracted from the image

• full color image and only the green channel is selected for further processing.

STEP 2 : ONCE THE ROLIS DETECTED, THE IMAGE IS ENHANCED TO IMPROVE THE VISIBILITY OF THE CAPILLARIES. THIS IS DONE BY APPLYING HISTOGRAM EQUALIZATION AND C O N T R A S T L I M I T E D A D A P T I V E HISTOGRAM EQUALIZATION (CLAHE). THE PARAMETERS FOR THESE O P E R A T I O N S A R E A D J U S T E D BASED ON THE LUMINANCE OF THE IMAGE. SPECIFIC ALLY, IF THE LUMINANCE

OF THE IMAGE IS LESS
THAN 88, A MORE
AGGRESSIVE
ENHANCEMENT IS
APPLIED TO MAKE THE
CAPILLARIES MORE
VISIBLE

4. METHODS - PROCESSING

STEP 3 :THE PROCESS OF CAPILLARY

DETECTION INVOLVES A SERIES OF
MORPHOLOGICAL OPERATIONS AND
THRESHOLDING TECHNIQUES APPLIED TO THE
ENHANCED IMAGE. THIS PROCESS ALLOWS US
TO IDENTIFY AND ANALYZE THE CONTOURS
PRESENT IN THE IMAGE.

A CONTOUR IS CLASSIFIED AS A CAPILLARY
BASED ON TWO MAIN CRITERIA. FIRST, IT MUST
EXHIBIT A TUBULAR SHAPE. SECOND, IT SHOULD
NOT BE HORIZONTAL. THESE CONDITIONS ARE
DETERMINED BY FITTING AN ELLIPSE TO THE
CONTOUR AND EXAMINING THE ANGLE OF THE
ELLIPSE'S MAJOR AXIS. IF THIS ANGLE IS CLOSE
TO 90 DEGREES, THE CONTOUR IS DEEMED
HORIZONTAL AND THUS, IT IS NOT COUNTED AS
A CAPILLARY.

FURTHERMORE, THE ALGORITHM ALSO TAKES INTO ACCOUNT THE PROXIMITY AND ORIENTATION OF THE CONTOURS. IF TWO CONTOURS ARE FOUND TO BE CLOSE TO EACH OTHER AND LIE ALONG THE SAME DIAGONAL, THEY ARE CONSIDERED TO BE PART OF THE SAME CAPILLARY. THIS IS DETERMINED BY CALCULATING THE SLOPE AND DISTANCE BETWEEN THE CENTROIDS OF THE TWO CONTOURS. IF THE ABSOLUTE VALUE OF THE SLOPE FALLS BETWEEN 0.5 AND 1.5, AND THE DISTANCE IS LESS THAN A PREDEFINED THRESHOLD, THE CONTOURS ARE CONSIDERED TO BE IN THE SAME DIAGONAL. THIS ENSURES THAT THE ALGORITHM DOES NOT OVERCOUNT CAPILLARIES THAT ARE CLOSE TO EACH OTHER AND ALIGNED ALONG THE SAME DIRECTION.

5. RESULTS AND CONCLUSION

Image	Number of Capillaries
N1a_Natif.jpg	6 capillaries
N1b_Natif.jpg	6 capillaries
N1c_Natif.jpg	9 capillaries
N1d_Natif.jpg	9 capillaries
N1e_Natif.jpg	9 capillaries
N1f_Natif.jpg	3 capillaries
N1g_Natif.jpg	3 capillaries
N1h_Natif.jpg	7 capillaries
N1i_Natif.jpg	5 capillaries
N1j_Natif.jpg	10 capillaries
N2b_Natif.jpg	10 capillaries
N2c_Natif.jpg	10 capillaries
N2d_Natif.jpg	7 capillaries
S2a_Natif.jpg	9 capillaries
S2b_Natif.jpg	4 capillaries
S2c_Natif.jpg	8 capillaries
S2d_Natif.jpg	6 capillaries
S2e_Natif.jpg	6 capillaries
S2f_Natif.jpg	7 capillaries
S2g_Natif.jpg	6 capillaries
S3a_Natif.jpg	1 capillaries
S3b_Natif.jpg	5 capillaries
S3c_Natif.jpg	8 capillaries
S3d_Natif.jpg	8 capillaries
S3e_Natif.jpg	6 capillaries
S3f_Natif.jpg	3 capillaries
S3g_Natif.jpg	6 capillaries
S3h_Natif.jpg	4 capillaries
S3i_Natif.jpg	5 capillaries
S3j_Natif.jpg	3 capillaries

- ACCURACY:13.33333333333334%
- STANDARD DEVIATION:
 3.8616346567512343

- THE PROPOSED METHOD

 PROVIDES A RELIABLE WAY

 TO COUNT THE NUMBER OF

 CAPILLARIES IN IMAGES.

 THE RESULTS SHOW THAT
- THE METHOD IS ABLE TO
 DETECT CAPILLARIES
 EFFECTIVELY, EVEN IN
 IMAGES WITH VARYING
 LUMINANCE LEVELS. THE
 METHOD
- ALSO TAKES INTO ACCOUNT
 THE ORIENTATION AND
 PROXIMITY OF THE
 CAPILLARIES, WHICH HELPS
 TO AVOID OVER-COUNTING

5. RESULTS

7. ADVANTAGES

• NON - IN VASIVE DETECTION TECHNIQUE

• SCALABLE: THE METHOD CAN BE ADAPTED AND FINE-TUNED FOR OTHER MEDICAL IMAGE ANALYSIS TASKS FOR EXAMPLE: VESSELS

8. DRAWBACKS

- DUE TO THE VARIABILITY OF THE IMAGES IN LUMINANCE, AS WELL AS

 IN THE SHAPE OF THE CAPILLARIES (TUBULAR FOR NORMAL AND

 CIRCULAR, DEFORMED FOR DISEASED ONES), IT WAS DIFFICULT TO

 CREATE A PERFECT CLASSIFICATION OF THE CAPILLARIES.
- LABELING ERRORS: THE LABELING PROVIDED TO US MAY BE INACCURATE, IT IS FOR REFERENCE ONLY.
- USING ONLY IMAGE PROCESSING TECHNIQUES LIMITS OUR WORK WHEN LOOKING FOR HIGH "ACCURACY".

9. FUTURE WORK

- INCREASE DATASET SIZE AND DIVERSITY
- INVESTIGATE OTHER TECHNIQUES LIKE DEEP LEARNING ARCHITECTURES OR MACHINE LEARNING.
- EVALUATE THE METHOD IN REAL-WORLD CLINICAL SETTINGS.

