学年	学科	学科 学籍番号							フリガナ				
									氏名				
部年科	工学部 情報通信工学科 3年								実施日	令和元年6月24日(月)2時限目			
科目目	計測制御工学								担当教員	鈴	木 剛	採点	
備考	解答欄が足りない場合は、その旨を明記し裏面の余白を使用すること											休息	

1. RC 回路の微分方程式,

$$e_i(t) = R \cdot C \cdot \frac{de_o(t)}{dt} + e_o(t)$$

より、出力電圧と目標値 E_d との偏差x(t)を $x(t) = E_d - e_o(t)$ として、RC 回路の式をバイアスも含めた適切な比例制御入力 $e_i(t)$ を与えて、

$$\frac{dx(t)}{dt} = a \cdot x(t)$$

の形になるように変形しなさい.

2. 操作量を決める式 (6-10) 【講義スライド 24】 において,

$$I(t) = -K_p \cdot x(t) + \frac{D + \Delta D}{K + \Delta K} \cdot \omega_d$$

のように D, K に誤差が含まれている場合は, $t \to \infty$ で $x(t) \to 0$ に収束せず,

$$t \rightarrow \infty \, \mathfrak{T} x(t) \rightarrow \frac{K \cdot \varDelta D - D \cdot \varDelta K}{\left(D + K \cdot K_p\right) \cdot \left(K + \varDelta K\right)} \cdot \omega_d$$

となることを, $t \to \infty$ で dx(t)/dt = 0 となる (一定値に収束するため) ことから x(t)について解いて確かめなさい.