

Polynômes – Suites numériques Le 27 février 2016

Vous pouvez vous contenter de reporter sur votre copie la référence $[q_j]$ de la question que vous traitez.

Exercice 1

Soit *P* le polynôme défini par : $P = 2X^7 + 6X^6 + 8X^5 + 8X^4 + 6X^3 + 2X^2$.

- $[q_1]$ **1.** Trouver une racine évidente de P.
- $[q_2]$ **2.** Montrer que -1 est racine de P et déterminer sa multiplicité.
- $[q_3]$ **3.** Montrer que i est racine de P (on ne cherchera pas à déterminer sa multiplicité).
- $[q_4]$ **4.** En déduire la factorisation de P.

Exercice 2

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N} \quad u_{n+1} = u_n + 1 + \frac{1}{(n+1)u_n} \end{cases}$$

- [q₅] **1.** Montrer que pour tout entier naturel k: «Le réel u_k est bien défini et $u_k \ge k + 1$ ».
- [q_6] **2.** En déduire la nature de la suite (u_n) et donner sa limite le cas échéant.
- **3.** Étudier la monotonie de la suite (u_n) . La suite (u_n) est-elle bornée?
 - **4.** Dans cette question, on cherche un équivalent de u_n .
- [q₈] **a)** Montrer que pour tout entier naturel $n \ge 1$:

$$u_n = u_0 + n + \sum_{k=0}^{n-1} \frac{1}{(k+1)u_k}$$

[q₉] **b)** Montrer que pour tout entier naturel $k \ge 1$:

$$\frac{1}{(k+1)^2} \le \frac{1}{k} - \frac{1}{k+1}$$

[q₁₀] **c)** En déduire que pour tout entier naturel $n \ge 1$:

$$u_n \le n + 3 - \frac{1}{n}$$

(indication: utiliser aussi 1.)

 $[q_{14}]$

 $[q_{15}]$

 $[q_{16}]$

 $[q_{17}]$

Polynômes – Suites numériques Le 27 février 2016

[q₁₁] **d)** Établir pour tout entier naturel $n \ge 1$ l'encadrement :

$$n+1 \le u_n \le n+3$$
.

- [q₁₂] **e)** En déduire que $u_n \underset{n \infty}{\sim} n$
 - **5.** Dans cette question on cherche un équivalent de l'erreur commise en remplaçant u_n par son équivalent. On considère la suite (ε_n) définie par :

$$\forall n \in \mathbb{N} \quad \varepsilon_n = u_n - n$$

- [q_{13}] **a)** Étudier la monotonie de la suite (ε_n).
 - **b)** En déduire que (ε_n) est convergente et déterminer un encadrement de sa limite M.
 - **6. a)** Écrire en Python le script d'une fonction liste_suite(n) qui prend en entrée un entier n et retourne en sortie la liste [u0,u1,...,un]
 - **b)** Écrire alors une fonction erreur (n) qui prend en entrée un entier n et retourne en sortie la liste $[\varepsilon_0, \dots, \varepsilon_n]$
 - **c)** Parmi les quatre tracés suivants, lequel peut correspondre au tracé de ε_n en fonction de n? Justifier.

 $[q_{19}]$

 $[q_{25}]$

 $[q_{26}]$

 $[q_{29}]$

Polynômes – Suites numériques Le 27 février 2016

Exercice 3

On considère la fonction f définie sur \mathbf{R} par :

$$f(x) = 1 - x^2$$
.

et la suite (u_n) définie par :

$$\begin{cases} u_0 \in \mathbf{R} \\ \forall n \in \mathbf{N}, \quad u_{n+1} = f(u_n). \end{cases}$$

Partie 1

1. a) Déterminer le signe de f(x) - x. On vérifiera que l'équation f(x) - x = 0 admet deux solutions réelles distinctes que l'on calculera. Dans la suite on notera α et β ces deux solutions avec $\alpha < \beta$.

2. Dans cette question, on étudie le cas $u_0 = -2$.

a) Représenter sur la feuille annexe les premiers termes de la suite (u_n) .

[q₂₀] **b)** Montrer que : $\forall n \in \mathbb{N}, u_n \leq -2$.

 $[q_{21}]$ **c)** Étudier la monotonie de la suite (u_n) .

[q_{22}] **d)** Conclure quant à la convergence et la limite éventuelle de la suite (u_n) .

Partie 2

Dans cette partie, on étudie le cas $u_0 = \frac{1}{2}$.

Pour tout entier naturel n, on pose $v_n = u_{2n}$ et $w_n = u_{2n+1}$. Les suites (v_n) et (w_n) vérifient donc :

$$\begin{cases} v_0, w_0 \in \mathbf{R} \\ \forall n \in \mathbf{N}, \quad v_{n+1} = g(v_n) \quad \text{et} \quad w_{n+1} = g(w_n) \end{cases}$$

où g est la fonction définie sur \mathbf{R} par : $g = f \circ f$.

[q_{23}] **1.** Représenter sur la feuille annexe les premiers termes de la suite (u_n). Formuler une conjecture quant à sa convergence.

[q_{24}] **2. a)** Calculer la valeur de g(x) pour tout réel x.

b) Montrer que : $\forall x \in \mathbb{R}, g(x) - x = -x(x-1)(f(x) - x).$

c) En déduire le tableau de signe de g(x) - x.

[q₂₇] **3.** a) On suppose que (v_n) converge vers un réel ℓ . Quelles sont les valeurs possibles de ℓ ?

[q₂₈] **b)** Montrer que : $\forall n \in \mathbb{N}, v_n \in [0, \beta]$.

c) Déterminer alors la monotonie de la suite (v_n) .

[q_{30}] **d)** En déduire la nature de la suite (v_n) et calculer sa limite éventuelle.

4. Formuler, sans démonstration, des résultats pour la suite (w_n) analogues à ceux de la question précédente.

[q_{32}] **5.** Conclure quant à la convergence et la limite éventuelle de la suite (u_n).