

ЛЕКЦИЯ 8. ЗАДАЧА КЛАССИФИКАЦИИ В ОСК

Обработка аудиовизуальной информации Бакалавры, 6 семестр. Магистры, 9 семестр

План лекции

- Постановка задачи классификации
- Алгоритмы Data mining для классификации символов
- □ Алгоритмы коррекции распознанных текстов

Задача классификации

Классификация

Обучение классификатора

Анализ полноты и точности

Задача классификации

- □ Задано конечное множество объектов и конечное множество классов.
- Для каждого объекта известно к какому классу он относится.
- □ Требуется построить алгоритм, способный *классифицировать* (соотносить с классом) произвольный объект.
- □ Подходят методы обучения с учителем.
- □ Обычно объекты представляются точками в признаковом пространстве.

Задача кластеризации

- Задано конечное множество объектов.
- Множество классов не задано.
- □ Требуется *кластеризовать* объекты сопоставить объекты с кластерами объектов.
- Методы обучения без учителя подходят, а методы обучения с учителем нет.

Признаковое пространство

- □ *Признаком* называется отображение f: $X \rightarrow D_f$, где D_f множество допустимых значений признака.
- \square Если заданы признаки $f_1, f_2, ..., f_n$, то
 - вектор $(f_1(x), ..., f_n(x))$ называется признаковым описанием объекта x и таким образом может задавать объект.
 - Множество $X = D_{f_1} \times D_{f_2} \times ... \times D_{f_n}$ называют признаковым пространством.
- Признаки делятся на следующие типы:
 - бинарный признак: D_f = {0; 1};
 - признак: D_f конечное множество;
 - порядковый признак: D_f конечное упорядоченное множество;
 - □ *количественный* признак: D_f множество действительных чисел.

Разновидности задачи

- Двухклассовая классификация. Наиболее простой в техническом отношении случай, который служит основой для решения более сложных задач.
- Многоклассовая классификация. Число классов может достигать многих тысяч. Например, при распознавании иероглифов или слитной речи.
- Непересекающиеся классы. Объект относится строго к одному классу.
- Пересекающиеся классы. Объект может относиться одновременно к нескольким классам.
- □ Нечёткие классы. Объект относится к каждому классу с некоторой степенью принадлежности в интервале от 0 до 1.

База образцов

- Каждый класс задаётся кодом Unicode и набором образцов.
- □ Например, класс «А» с кодом u0410 будет задан набором:

A: u0410		10			11			12			14			16	
Calibri	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Courier New															
Times new roman	A	A	A	Α	A	A	A	A	\boldsymbol{A}	A	${\bf A}$	\boldsymbol{A}	A	\mathbf{A}	A
Arial	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

□ А класс «а» с кодом u0430 набором:

a: u0430		10)		1	1		1	2		1	4		16	5
															а
Courier New	a	a	a	a	a	a	а	a	a	а	a	а	а	a	а
Times new roman	a	a	а	a	a	а	а	a	а	a	a	а	a	a	а
Arial	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а

 Для каждого образца рассчитывается признаковое описание и сохраняется в базе.

Простейший алгоритм классификации

- 1. Для изображения неизвестного символа строится признаковое описание.
- 2. Рассчитывается мера близости неизвестного символа с каждым образцом каждого класса.
- з. Среди образцов каждого класса отбирается ближайший образец. Его мера близости соответствует степени принадлежности этому классу.
- 4. Среди всех классов выбирается класс с наивысшей степенью принадлежности.

Пример результата классификации

- Результаты классификации отсортированы по убыванию степени принадлежности образца классам:
 - 1. П: 0.99, Л: 0.95, Д: 0.76, ...
 - 2. p: 1.0, o: 0.68, ъ: 0.55, ...
 - з. и: 0.97, н: 0.82, п: 0.79, ...
 - 4. в: 0.96, я: 0.77, б: 0.67, ...
 - e: 0.98, c: 0.96, o: 0.88, ...
 - 6. т: 1.0, г: 0.92, п: 0.56, ...
- □ В первом столбце читается распознанный текст

Колоночный текст

Сегментированная строка Все возможные в 0.96 e 0.98 и 0.97 т 1.0 П 0.99 p 1.0 гипотезы по Л 0.95 o 0.68 н 0.82 я 0.77 c 0.96 г 0.92 убыванию меры б 0.67 Д 0.76 ъ 0.55 п 0.79 o 0.88 п 0.56 схожести • • •

□ Удобно для визуализации и оценки гипотез

Бывает и не так хорошо:

□ Правильные гипотезы не всегда самые первые

Генерация выходного текста

- Выходная строка инициализируется пустой строкой.
- □ Для каждого классифицированного образца:
 - □ Определяется лучшая гипотеза и извлекается код символа.
 - □ Выходная строка наращивается символом с этим кодом.
- Результат выводится пользователю.

Критерий уверенного распознавания

- □ Варианты:
 - □ Оценки гипотез для одного символа близки
 - □ Оценки гипотез для одного символа сильно различаются
- □ Что значит «близки»?
- □ Что значит «сильно различны»?

Лингвистическая коррекция текста

- □ Проверка получившихся слов по словарю
- □ Выбор лучшей цепочки гипотез из колоночного текста
 - □ Алгоритм Витерби + корпус n-грамм + хранилище MARISA-Trie.
 - N-граммы цепочки из п символов. Например:
 - Биграммы: би, иг, гр, ра, ам, мм, мы, ы:
 - Триграммы: три, риг, игр, гра, рам, амм, ммы, мы:
 - Квадрограммы и т.д.
 - Учитывается встречаемость n-грамм в текстах и оценки полученных гипотез. Среди возможных цепочек выбирается статистически наиболее правдоподобная

Оценка качества классификатора

- При классификации объектов из обучающей выборки нам всегда известен верный ответ.
- Для каждого объекта по отношению к каждому классу имеется 4 варианта:

	Принадлежн классу, пре, классифи		
Фактическая принадлежность	Верно отнесён	Неверно отброшен	Пропуск цели Ошибка II рода
объекта классу	Неверно отнесён	Верно отброшен	
	<u> </u>		
	Ложная тревога Ошибка I рода		

Точность и полнота

 ■ Точность — число образцов, верно отнесённых классификатором к данному классу, по отношению к общему числу образцов, отнесённых классификатором к этому классу:

$$Precision = P = \frac{BерноОтнесённые}{BерноОтнесённые + 3ряОтнесённые}$$

 Полнота — число образцов, верно отнесённых классификатором к данному классу, по отношению к общему числу образцов, принадлежащих этому классу:

$$Recall = R = \frac{BерноОтнесённые}{BерноОтнесённые + 3ряОтброшенные}$$

F-мера Ван Ризбергена

Мера Ван Ризбергена (F-мера) — среднее гармоническое точности и полноты по этому классу, где точность имеет вес α, а полнота — вес 1–α:

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

$$F = (\beta^{2} + 1) \frac{Precision \times Recall}{\beta^{2} Precision + Recall}, \quad \beta^{2} = \frac{1 - \alpha}{\alpha}$$

Матрица неточностей

- □ *Матрица неточностей* это матрица размера N на N, где N количество классов.
- Столбцы соответствуют фактическим данным, а строки предсказаниям классификатора.
- □ Для каждого образца из тестовой выборки:
 - □ В столбцах разыскивается класс, к которому образец фактически относится;
 - □ В строках находится класс, предсказанный классификатором;
 - □ Значение элемента матрицы на пересечении увеличивается на 1.
- Матрица неточностей позволяет определить наиболее проблемные классы.

Матрица неточностей. Пример для 26 классов, точность 0.8, полнота 0.91.

Улучшение классификатора

- □ С чем бороться в первую очередь?
 - □ С большим количеством ошибок по классу
 - □ С большим количеством ошибок в одной ячейке
 - С остальными ошибками
- Как бороться?
 - Добавлять признаки, которые потенциально могут разделить часто путаемые символы
 - □ Добавить признаки пачками наудачу, оценивая их влияние на матрицу неточности

Построение классификаторов методом обучения с учителем

Обучение с учителем

- □ Размеченные данные входные данные, для которых указаны выходные данные.
- При обучении с учителем набор размеченных данных разбивается на две выборки:
 - Обучающая выборка (training set) используется для обучения (конструирования)
 модели.
 - Тестовая выборка (test set) используется для проверки работы построенной модели.

Конструирование модели

- На основе сопоставленных входных и выходных данных с помощью некоторого алгоритма строится модель.
- Модель, как правило, обобщает имеющиеся в виде обучающей выборки знания и может быть представлена:
 - □ Классифицирующими правилами,
 - □ Деревом (деревьями) решений,
 - Математической формулой.
- Полученная модель должна максимально точно и полно классифицировать образцы обучающей выборки.

Оценка модели

- С помощью тестовой выборки можно предсказать поведение модели на неизвестных данных.
- Благодаря тому, что тестовая выборка также размечена, получают количественные оценки качества модели:
 - Интегральные оценки: точность, полнота, F-мера
 - Количество ошибок I и II рода по каждому классу.

Некоторые алгоритмы построения классификаторов

- □ ID3 алгоритм построения дерева принятия решений, основанный на оценке энтропии признаков.
- С4.5 усовершенствованный ID3 с отсечением ветвей, возможностью работы с числовыми атрибутами, возможностью построения дерева из неполной обучающей выборки, в которой отсутствуют значения некоторых атрибутов.
- □ C5 усовершенствованный C4.5, детали реализации которого не раскрываются.

Джон Росс Куинлан

Пример модели, построенной С5

Дерево решений:

```
noise3 <= 9e-005: Excellent (8)
noise3 > 9e-005:
:...noise2 > 0.05643: Satisfactory (4/2)
  noise2 \leq 0.05643:
  :...crosses whites \leq 0: Good (14/2)
    crosses whites > 0:
    :...noise3 <= 0.00048: Excellent (4)
      noise3 > 0.00048:
      :...isolated blacks <= 0.000544: Good (10)
        isolated blacks > 0.000544:
        :...crosses blacks <= 6e-006: Excellent (4)
          crosses blacks > 6e-006: Good (6/1)
```

Образцов отнесено/ число ошибок

Пример оценки классификатора

- 🗖 4 класса
- 50 образцов в тестовой выборке
- □ Количество ошибок: 5/50
- Построена матрица неточностей 4х4, где видны все ошибки
- Посчитан процент использования каждого признака при классификации

```
Evaluation on training data (50 cases):
              Decision Tree
         Size Errors
                           Cost
                5(10.0%) 0.10
                                  <<
          (a) (b) (c) (d)
                                  <-classified as
                                  (a): class Excellent
                                  (b): class Good
                                  (c): class Satisfactory
                                  (d): class Poor
       Attribute usage:
           100% noise3
            84% noise2
            76% crosses whites
            40% isolated blacks
            20% crosses blacks
```

Что почитать

- Маннинг К.Д., Рагхаван П., Шютце Х. Введение в информационный поиск. Пер. с англ. М.: ООО «И.Д. Вильямс», 2011. 528 с.
- Алгоритм Витерби
 <a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%B2%D0%B2.%D0%92%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/%D0%90%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/MD0%92%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/MD0%92%D0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/MD0%B8%D1%82%D0%B5%D1%80%D0%B1%D0%B8
 <a href="https://ru.wikipedia.org/wiki/MD0%B8%D1%80%D0%B8
 <a href="https://ru.wikipedia.org/wiki/MD0%B8%D1%B0%B0%D0%B8
 <a href="https://ru.wikipedia.org/wiki/MD0%B8%D1%80%D0%B8
 <a href="https://ru.wiki/MD0%B8%D1%80%D0%B8
 <a href="https://ru.wiki/MD0%B8%D1%80%D0%B8
 <a href="https://ru.wiki/MD0%B8%D1%80%D0%B8
 <a href="https://ru.wiki/MD0%B8%D1%80%D0%B8
 <a href="https://ru.wiki/MD0%B8%D1%80%D0%B8
 <a href="https://ru.wiki/MD0%B8%D0%B8</a
- Viterbi AJ (April 1967). "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm". IEEE Transactions on Information Theory. 13 (2): 260–269. doi:10.1109/TIT.1967.1054010
- Алгоритм ID3 https://en.wikipedia.org/wiki/ID3_algorithm
- Quinlan J. R. Improved Use of Continuous Attributes in C4.5 (англ.) // Journal of Artificial Intelligence Research. 1996. Vol. 4. P. 77-90. ISSN 1076-9757
- □ Алгоритм C4.5 https://en.wikipedia.org/wiki/C4.5_algorithm
- Алгоритм C5 https://www.rulequest.com/see5-info.html
- Хранилище MARISA-Trie https://www.s-yata.jp/marisa-trie/docs/readme.en.html