

3. Checking the Markov property

Problem 3. Checking the Markov property

7/7 points (ungraded)

For each one of the following definitions of the state X_k at time k (for $k=1,2,\ldots$), determine whether the Markov property is satisfied by the sequence X_1,X_2,\ldots

- 1. A fair six-sided die (with sides labelled $1, 2, \ldots, 6$) is rolled repeatedly and independently.
 - (a) Let X_k denote the largest number obtained in the first k rolls. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

(b) Let X_k denote the number of 6's obtained in the first k rolls, up to a maximum of ten. (That is, if ten or more 6's are obtained in the first k rolls, then $X_k = 10$.) Does the sequence X_1, X_2, \ldots satisfy the Markov property?

(c) Let Y_k denote the result of the $k^{ ext{th}}$ roll. Let $X_1=Y_1$, and for $k\geq 2$, let $X_k=Y_k+Y_{k-1}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

No ▼ **✓ Answer:** No

(d) Let $Y_k=1$ if the $k^{ ext{th}}$ roll results in an odd number; and $Y_k=0$ otherwise. Let $X_1=Y_1$, and for $k\geq 2$, let $X_k=Y_k\cdot X_{k-1}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

Yes ▼ **Answer:** Yes

- 2. Let Y_k be the state of some Markov chain at time k (i.e., it is known that the sequence Y_1, Y_2, \ldots satisfies the Markov property).
 - (a) For a fixed integer r>0, let $X_k=Y_{r+k}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

(b) Let $X_k = Y_{2k}$. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

(c) Let $X_k = (Y_k, Y_{k+1})$. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

Solution:

1. (a) Since the state X_k is the largest number obtained in k rolls, the set of states is $S = \{1, 2, 3, 4, 5, 6\}$. Given the largest number obtained in the first k rolls, the probability distribution of the largest number obtained in the first k+1 rolls no longer depends on what the largest number obtained was in the first k-1 rolls (or in the first k-2 rolls, etc.). Therefore the Markov property is satisfied.

For $i, j \in \{1, 2, 3, 4, 5, 6\}$, the transition probabilities are

$$p_{ij} = \left\{ egin{array}{ll} 0, & ext{if } j < i, \ rac{i}{6}, & ext{if } j = i, \ rac{1}{6}, & ext{if } j > i. \end{array}
ight.$$

(b) Since the state X_k is the number of ${\bf 6}$'s in the first ${\bf k}$ rolls, the set of states is $S=\{0,1,2,\dots 10\}$. The probability of getting a ${\bf 6}$ in a given trial is $1/{\bf 6}$. Given the number of ${\bf 6}$'s in the first ${\bf k}$ rolls, the probability distribution of the number of ${\bf 6}$'s in the first ${\bf k}+{\bf 1}$ rolls no longer depends on the number of ${\bf 6}$'s in the first ${\bf k}-{\bf 1}$ rolls (or in the first ${\bf k}-{\bf 2}$ rolls, etc.). Therefore the Markov property is satisfied.

Thus, $p_{10,10}=1$, and for $i\leq 9$, the transition probabilities are

$$p_{ij} = egin{cases} rac{1}{6}, & ext{if } j=i+1, \ rac{5}{6}, & ext{if } j=i, \ 0, & ext{otherwise}. \end{cases}$$

(c) We have

$$\mathbf{P}(X_3 = 2 \mid X_2 = 3, X_1 = 1) = \mathbf{P}(Y_2 + Y_3 = 2 \mid Y_1 = 1, Y_2 = 2)$$
 $= \mathbf{P}(Y_3 = 0 \mid Y_1 = 1, Y_2 = 2)$
 $= 0.$

but

$$\mathbf{P}(X_3=2 \mid X_2=3, X_1=2) = \mathbf{P}(Y_2+Y_3=2 \mid Y_1=2, Y_2=1)$$
 $= \mathbf{P}(Y_3=1 \mid Y_1=2, Y_2=1)$
 $= \mathbf{P}(Y_3=1)$
 $= 1/6,$

and therefore the Markov property is violated.

(d) At each stage, Y_k has equal probability of being 0 or 1. Since $X_k = Y_k \cdot X_{k-1}$, and we assume independent rolls, clearly X_k depends only on the k^{th} roll and the value of X_{k-1} . Therefore the Markov property is satisfied.

The transition probabilities are $p_{00}=1$, $p_{01}=0$, $p_{10}=1/2$, and $p_{11}=1/2$.

2. (a) For $X_k = Y_{r+k}$, and because the sequence $\{Y_k\}$ satisfies the Markov property,

$$egin{aligned} \mathbf{P}(X_{k+1} = j \mid X_k = i, X_{k-1} = i_{k-1}, \dots, X_1 = i_1) \ &= \ \mathbf{P}(Y_{r+k+1} = j \mid Y_{r+k} = i, Y_{r+k-1} = i_{k-1}, \dots, Y_{r+1} = i_1) \ &= \ \mathbf{P}(Y_{r+k+1} = j \mid Y_{r+k} = i) \ &= \ \mathbf{P}(X_{k+1} = j \mid X_k = i) \end{aligned}$$

Thus, the sequence $\{X_k\}$ satisfies the Markov property.

(b) For $X_k = Y_{2k}$, and because the sequence $\{Y_k\}$ satisfies the Markov property,

$$egin{aligned} \mathbf{P}(X_{k+1} = j \mid X_k = i, X_{k-1} = i_{k-1}, \dots, X_1 = i_1) \ &= \ \mathbf{P}(Y_{2k+2} = j \mid Y_{2k} = i, Y_{2k-2} = i_{k-1}, \dots, Y_2 = i_1) \ &= \ \mathbf{P}(Y_{2k+2} = j \mid Y_{2k} = i) \ &= \ \mathbf{P}(X_{k+1} = j \mid X_k = i) \end{aligned}$$

Thus, X_k satisfies the Markov property. The transition probabilities p_{ij} are given by

$$egin{array}{ll} p_{ij} &=& \mathbf{P}(X_{k+1}=j \mid X_k=i) \ &=& \mathbf{P}(Y_{2k+2}=j \mid Y_{2k}=i) \ &=& r^y_{ij}(2), \end{array}$$

where $r_{ij}^y(n)$ are the n-step transition probabilities of the Markov chain $\{Y_k\}$.

(c) Note that

$$\mathbf{P}(X_{k+1} = (n, \ell) \mid X_1 = (i_1, i_2), X_2 = (i_2, i_3), \dots, X_k = (i_k, n))$$

$$egin{array}{lll} &=& \mathbf{P}(Y_{k+1}=n,Y_{k+2=\ell}\mid Y_1=i_1,Y_2=i_2,Y_3=i_3,\ldots,Y_k=i_k,Y_{k+1}=n) \ &=& \mathbf{P}(Y_{k+2}=\ell\mid Y_1=i_1,Y_2=i_2,\ldots,Y_k=i_k,Y_{k+1}=n) \ &=& \mathbf{P}(Y_{k+2}=\ell\mid Y_k=i_k,Y_{k+1}=n) \ &=& \mathbf{P}(Y_{k+1}=n,Y_{k+2}=\ell\mid Y_k=i_k,Y_{k+1}=n) \ &=& \mathbf{P}(X_{k+1}=(n,\ell)\mid X_k=(i_k,n)). \end{array}$$

Therefore the Markov property is satisfied.

Letting $i=(i_k,i_{k+1})$ and $j=(n,\ell)$, the transition probabilities p_{ij} are given by

$$p_{ij} = \mathbf{P}(X_{k+1} = (n,\ell) \mid X_k = (i_k,i_{k+1})) = egin{cases} q_{n\ell}, & ext{if } i_{k+1} = n, \ 0, & ext{if } i_{k+1}
eq n, \end{cases}$$

where $q_{n\ell}$ are the transition probabilities associated with the Markov chain $\{Y_k\}$.

提交

你已经尝试了2次(总共可以尝试3次)

• Answers are displayed within the problem

讨论

主题: Unit 10 / Problem Set / 3. Checking the Markov property

© 保留所有权利

显示讨论