

Sistemas Urbanos Inteligentes

Redes convolucionales para grafos

Hans Löbel

No olvidemos lo que buscamos

$$f(\mathcal{O}) = \mathcal{O}$$

Si queremos utilizar redes neuronales para parametrizar f, necesitamos que esta sea differenciable, componible y escalable.

Ni por qué es difícil

Los grafos son estructuras complejas: tamaño arbitrario, no existe el concepto de orden ni de punto de referencia, dinámicos, etc.

Hacia dónde vamos

Idea principal: pasar mensajes entre nodos y combinarlos

Otra perspectiva más ML: pasar mensajes entre nodos para refinar la representación

Recordemos la idea detrás de las convoluciones

Si descomponemos la convolución, tenemos una parte que actúa de forma local y otra sobre el vecindario

¿En qué se diferencian las imágenes de los grafos?

La clave es fijarse en la estructura local

Tiene sentido la localidad (vecindario)

X Tamaño del vecinario es fijo

X Orden del vecindario es fijo

Convoluciones en grafos (versión simplificada)

Es importante notar que acá solo podemos aprender una transformación que no depende del orden/posición del vecino

Operación sobre vecinos (dados por matriz de adyacencia)

Convoluciones en grafos (versión simplificada)

Consider this undirected graph:

Calculate update for node in red:

Update rule:

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$

Desirable properties:

- Weight sharing over all locations
- Invariance to permutations
- Linear complexity O(E)
- Applicable both in transductive and inductive settings

Scalability: subsample messages [Hamilton et al., NIPS 2017]

 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant

¿Qué pasa si tenemos/queremos más capas?

Capas sucesivas amplían la "visión" del vecindario de cada nodo

También podemos hacer clasificación semi-supervisada

Setting:

Some nodes are labeled (black circle)
All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

 \mathcal{Y}_L set of labeled node indices

Y label matrix

Z GCN output (after softmax)

Veamos como funciona esto

Veamos como funciona esto

Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional networks.

Veamos como funciona esto

Sistemas Urbanos Inteligentes

Redes convolucionales para grafos

Hans Löbel