ENS Cachan, DPT Maths

Optimisation numérique M1 – TD6 – Optimisation sous contraintes 2

Florian De Vuyst, Adrien Le Coënt - CMLA UMR 8536, ENS Cachan
03 Novembre

Analyse variationnelle de la factorisation polaire d'une matrice

Soit $\mathcal{M}_n(\mathbb{R})$ structuré en espace euclidien grâce au produit scalaire usuel $\langle U, V \rangle := tr(U^\top V)$; on note $\|\cdot\|$ la norme matricielle associée. Étant donné $M \in \mathcal{M}_n(\mathbb{R})$, on considère le problème d'optimisation suivant :

$$(\mathcal{P})$$
 Minimiser $||M - \Omega||, \ \Omega \in \mathcal{O}_n(\mathbb{R}),$

- où $\mathcal{O}_n(\mathbb{R})$ désigne l'ensemble des matrices orthogones de taille n.
 - 1. Montrer que (\mathcal{P}) a une solution.
 - 2. a. Soit $h: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{S}_n(\mathbb{R})$ qui à $A \in \mathcal{M}_n(\mathbb{R})$ associe $h(A) := AA^{\top} I_n$. Vérifier que h est de classe C^{∞} sur $\mathcal{M}_n(\mathbb{R})$ et que, pour tout $A \in \mathcal{O}_n(\mathbb{R})$, la différentielle Dh(A) est surjective.
 - b. Soit Ω_0 une solution de (\mathcal{P}) .
 - Montrer à l'aide des conditions d'optimalité du premier ordre de Lagrange qu'il existe $S_0 \in \mathcal{S}_n(\mathbb{R})$ telle que :

$$\forall H \in \mathcal{M}_n(\mathbb{R}), \ \langle \Omega_0 - M, H \rangle + \langle S_0, \Omega_0 H^\top + H \Omega_0^\top \rangle = 0.$$

— En déduire qu'il existe une matrice symétrique Σ_0 telle que $M=\Sigma_0\Omega_0$.

Lemme de Farkas-Minkowski

Rappel: Théorème (Lemme de Farkas-Minkowski). Soit a_i , $i \in I$, où I est un ensemble fini d'indices, et b des éléments d'un espace de Hilbert V, de produit scalaire (.,.). Alors l'inclusion

$$\{w \in V; (a_i, w) \ge 0, i \in I\} \subset \{w \in V; (b, w) \ge 0\}$$

est satisfaite si et seulement si :

Il existe $\lambda_i \geq 0$, $i \in I$, tels que $b = \sum_{i \in I} \lambda_i a_i$.

- On définit l'ensemble $C = \{ \sum_{i \in I} \lambda_i a_i \in V; \ \lambda_i \geq 0, \ i \in I \}$. 1. Montrer que C est fermé dans le cas où les a_i sont linéairement indépendants.
- 2. Dans le cas où les a_i sont linéairement dépendants, montrer que l'on peut écrire C comme une union finie de cônes associés à des vecteurs a_i linéairement indépendants. En déduire que C est fermé.

Indication : remarquer que l'on peut écrire tout vecteur $v = \sum_{i \in I} \lambda_i a_i$ sous la forme $v = \sum_{i \in I} (\lambda_i + t\mu_i) a_i$ avec $(\lambda_i + t\mu_i) \ge 0$ pour $i \in I$.