ASSIGNMENT-1

1

(1995S)

d) $\frac{6}{1}$

EE24BTECH11057-SHIVAM SHILVANT*

9) The slope of tangent to curve y=f(x) at [x, f(x)] is 2x + 1. If the curve passes through the point (1, 2), then the area bounded by curve, the x axis and the line

b) $\frac{6}{5}$ c) $\frac{1}{6}$

10) If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$, where $0 < x \le 1$, then in this interval (1997 – 2*Marks*)

x = 1 is

a) $\frac{5}{6}$

b) both $f(x)$ and c) $f(x)$ is an incr	-						
d) $g(x)$ is an incr 11) The function $f(x)$	$\sin^4 x + \cos^4 x \text{ incl}$	reases if	(1999 – 1	2Marks)			
		c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$					
 12) Consider the following statements in S and R S: Both sin x and cos x are decreasing functions in the interval (π/2, π) R: If a differentiable function decreases in a interval (a, b), then its derivative also decreases in (a, b). Which of the following is true ? a) Both S and R are wrong. b) Both S and R are correct, but R is not the correct explanation of S. c) S is correct and R is correct explanation for S. d) S is correct and R is wrong. 							
13) Let $f(x) = \int e^x (x-1)(x-2) dx$. Then f decreases in the interval (2000)							
a) $(-\infty, -2)$	b) (-2, -1)	c) (1,2)	d) $(2, +\infty)$				
14) If normal to curv x -axis, then $f'(3)$		nt (3,4) makes an angle	$\frac{3\pi}{4}$ with the	positive (2000S)			
a) -1	b) $-\frac{3}{4}$	c) $\frac{4}{3}$	d) 1				
15) Let $f(x) = \begin{cases} x , \\ 1, \end{cases}$	for $0 < x \le 2$ then a for $x = 0$	at $x = 0$, f has		(2000S)			

(2000S)

(2001S)

18)		the triangle formed by tangent to curve $f(x) = x^2 + bx - b$ at the point (1, 1) and the coordinate axes, lies in the first quadrant. If its area is 2, then the value of b (2001S)						
	a) -1	b) 3	c) -3	d) 1				
19)	Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let $m(b)$ be the minimum value of $f(x)$. As b varies, the range of $m(b)$ is (2001S)							
	a) [0, 1]	b) $(0, \frac{1}{2}]$	c) $\left[\frac{1}{2},1\right]$	d) (0,1]				
20)	0) The length of a longest interval in which the function $3 \sin x - 4 \sin^3 x$ is increasi is (2002)							
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{2}$	c) $\frac{3\pi}{2}$	d) π				
21)	The point(s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical, is(are) (2002S)							
	a) $\left(\pm\frac{4}{\sqrt{3}}, -2\right)$	b) $\left(\pm\sqrt{\frac{11}{3}},1\right)$	c) (0,0)	d) $\left(\pm\frac{4}{\sqrt{3}},2\right)$				
	a) $f(x) = \begin{cases} \frac{1}{2} - x, x \\ \left(\frac{1}{2} - x\right)^2 \end{cases}$ b) $f(x) = \begin{cases} \frac{\sin x}{x}, x \neq 1 \\ 1, x = 0 \end{cases}$ c) $f(x) = x $ d) $f(x) = x $ Tangent is drawn to	Mean Value theorem $< \frac{1}{2}$, $x \ge \frac{1}{2}$ 0 ellipse $\frac{x^2}{27} + y^2 = 1$ at that sum of intercepts	$(3\sqrt{3}\cos\theta,\sin\theta)$ (wh	(2003S) Here $\theta \in \left(0, \frac{\pi}{2}\right)$. Then tangent is minimum, (2003S)				

c) a local minimum

c) increasing on \mathbb{R} d) decreasing on $\left[-\frac{1}{2},1\right]$

d) no extremum

a) $e^x < 1 + x$ b) $\log_e (1 + x) < x$ c) $\sin x > x$ d) $\log_e x > x$

a) a local maximumb) no local maximum

17) If $f(x) = xe^{x(1-x)}$, then f(x) is

a) increasing on $\left[-\frac{1}{2}, 1\right]$ b) decreasing on \mathbb{R}

16) For all $x \in (0, 1)$