FCC PART 22/24/27 TEST REPORT

FCC Part 22/24/27

Report Reference No...... LCS180930006AEG

Testing Laboratory Name Shenzhen LCS Compliance Testing Laboratory Ltd.

Bao'an District, Shenzhen, Guangdong, China

Applicant's name...... Shenzhen KVD Communication Equipment Limited

Address Lenovo R&D Center 2F-B, South First Road, High-tech Park,

Nanshan District, Shenzhen, Guangdong, China

Test specification:

FCC CFR Title 47 Part 2, Part 22, Part 24, Part 27

Standard ANSI/TIA-603-E-2016

KDB 971168 D01

Test Report Form No...... LCSEMC-1.0

TRF Originator Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF...... Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description LTE GSM/WCDMA Smartphone

Trade Mark DOOGEE

Model/Type reference.....: X60L

Listed Models /

Modulation Type QPSK, 16QAM

Rating DC 3.8V by Rechargeable Li-ion Battery(3300mAh)

Recharged by DC 5V/2A TRAVEL CHARGER

Hardware version T596_MAIN_PCB_V1.2

Software version...... DOOGEE X60L Android 8.1 20180831

Frequency...... FDD band 2, FDD band 4, FDD band 5, FDD band 7, FDD band 17

Result..... PASS

Compiled by:

Supervised by:

Approved by:

Calvin Weng/File administrators

Leo Lee/Technique principal

Gavin Liang/ Manager

TEST REPORT

Test Report No. : LCS180930006AEG Oct 22, 2018

Date of issue

Equipment under Test : LTE GSM/WCDMA Smartphone

Model /Type : X60L

Listed Models : /

Applicant : Shenzhen KVD Communication Equipment Limited

Address : Lenovo R&D Center 2F-B, South First Road, High-tech

Park, Nanshan District, Shenzhen, Guangdong, China

Manufacturer : Shenzhen KVD Communication Equipment Limited

Address : Lenovo R&D Center 2F-B, South First Road, High-tech

Park, Nanshan District, Shenzhen, Guangdong, China

Factory : Shenzhen KVD Communication Equipment Limited

Address : Lenovo R&D Center 2F-B, South First Road, High-tech

Park, Nanshan District, Shenzhen, Guangdong, China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	Oct 22, 2018	Initial Issue	Gavin Liang

Contents

<u>1</u>	TEST STANDARDS	<u> 5</u>
<u>2</u>	SUMMARY	<u> 6</u>
2.1	General Remarks	6
2.2	Product Description	6
2.3	Equipment under Test	7
2.4	Short description of the Equipment under Test (EUT)	7
2.5	Internal Identification of AE used during the test	7
2.6	Normal Accessory setting	7
2.7	EUT configuration	7
2.8	Related Submittal(s) / Grant (s)	8
2.9	Modifications	8
2.10	General Test Conditions/Configurations	8
<u>3</u>	TEST ENVIRONMENT	9
3.1	Address of the test laboratory	9
3.2	Test Facility	9
3.3	Environmental conditions	9
3.4	Test Description	9
3.5	Equipments Used during the Test	12
3.6	Measurement uncertainty	13
<u>4</u>	TEST CONDITIONS AND RESULTS	14
4.1	Output Power	14
4.2	Peak-to-Average Ratio (PAR)	23
4.3	Occupied Bandwidth and Emission Bandwidth	24
4.4	Band Edge compliance	25
4.5	Spurious Emssion on Antenna Port	26
4.6	Radiated Spurious Emssion	28
4.7	Frequency Stability under Temperature & Voltage Variations	51
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	54
<u>6</u>	EXTERNAL PHOTOS OF THE EUT	54
<u>7</u>	INTERNAL PHOTOS OF THE EUT	54

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22 (10-1-17 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-17 Edition): PUBLIC MOBILE SERVICES

FCC Part 27(10-1-17 Edition): MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

<u>971168 D01 Power Meas License Digital Systems v03</u>: Measurement Guidance For Certification of Licensed Digital Transmitters

FCC Part 2: Frequency Allocations And Radio Treaty Matters: General Rules And Regulations.

ANSI C63.26:2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Sep 30, 2018
Testing commenced on	:	Oct 19, 2018
Testing concluded on	:	Oct 22, 2018

2.2 Product Description

The **Shenzhen KVD Communication Equipment Limited**'s Model: X60L or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	LTE GSM/WCDMA Smartphone
Test Model	X60L
Modulation Type	GMSK for GSM/GPRS; 8-PSK for EDGE; QPSK for UMTS, QPSK, 16QAM for LTE
Antenna Gain	0 dBi (max.) For GSM 850, PCS 1900; 0 dBi (max.) For WCDMA Band II, V; 0 dBi (max.) For LTE Band 2, 4, 5, 7, 17; -1 dBi (max.) For BT and WLAN
Hardware version	T596_MAIN_PCB_V1.2
Software version	DOOGEE_X60L_Android 8.1_20180831
GSM/EDGE/GPRS Operation Frequency Band	GSM850/PCS1900/GPRS850/GPRS1900/EDGE850/EDGE1900
UMTS Operation Frequency Band	UMTS FDD Band II/V
LTE Operation Frequency Band	LTE Band 2, 4, 5, 7, 17
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM Release Version	R99
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/ PCS1900:Power Class 1
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
GPRS operation mode	Class B
WCDMA Release Version	R8
HSDPA Release Version	Release 8
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
LTE Release Version	Release 9
LTE/UMTS Power Class	Class 3
WLAN FCC Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
WLAN FCC Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz IEEE 802.11n HT40:2422-2452MHz
Antenna Type	PIFA Antenna
BT Modulation Type	GFSK, π/4-DQPSK, 8-DPSK (BT V4.0)
Extreme temp. Tolerance	-20°C to +55°C
GPS function	Support and only RX
FM function	Support and only RX
NFC Function	Not Supported
Extreme vol. Limits	3.40VDC to 4.35VDC (nominal: 3.80VDC)

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V/ 60 Hz	0	115V/60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below)		

DC 3.80V

2.4 Short description of the Equipment under Test (EUT)

2.4.1 GeneralDescription

X60L is subscriber equipment in the LTE/WCDMA/GSM system. The HSPA/UMTS frequency band is Band II/V, LTE frequency band isband 2,band 4,band 5,band 7, band 17. The GSM/GPRS/EDGE frequency band includes GSM850 and PCS1900. The LTE GSM/WCDMA Smartphone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service and etc. Externally it provides micro SD card interface and SIM card interface.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery (3300mAh)
AE2	TRAVEL CHARGER

AE2

Model: HJ-0502000W2-US

INPUT: AC 100-240V, 50Hz 0.3A Max.

OUTPUT: DC 5V/2A

2.6 Normal Accessory setting

Fully charged battery was used during the test.

2.7 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No. :	/

^{*}AE ID: is used to identify the test sample in the lab internally.

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID:2ADTE-X60L** filing to comply with FCC Part 22, Part 24&FCC Part 27 Rules

2.9 Modifications

No modifications were implemented to meet testing criteria.

2.10 General Test Conditions/Configurations

2.10.1 Test Environment

EnvironmentParameter	SelectedValuesDuringTests				
Relative Humidity	Ambient				
Temperature	TN	Ambient			
	VL	3.40V			
Voltage	VN	3.80V			
	VH	4.35V			

NOTE:VL=lower extreme testvoltageVN=nominalvoltage VH=upperextreme testvoltageTN=normaltemperature

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

3.4.1 PCSBand (1850-1910MHz pairedwith 1930-1990MHz)(band 2)

Test Item	FCC Rule No.	Requirements	Verdict		
Effective(Isotropic) Radiated Output Power	§2.1046, §24.232	EIRP ≤ 2W	Pass		
Peak-Average Ratio	§2.1046, §24.232	FCC:Limit≤13dB	Pass		
Modulation Characteristics	§2.1047	Digital modulation	N/A		
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass		
Band Edges Compliance	§2.1051, §24.238	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass		
Spurious Emission at Antenna Terminals	§2.1051, §24.238	≤-13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	Pass		
Field Strength of Spurious Radiation	§2.1053, §24.238	≤ -13dBm/1MHz.	Pass		
Frequency Stability	§2.1055, §24.235	FCC: within authorized frequency block.	Pass		
NOTE 1:For the verdict, the "N/A" denotes "not applicable", the "N/T" de notes "not tested".					

3.4.2 AWS Band (1710-1755MHz pairedwith 2110-2155MHz)(band 4)

Test Item	FCC RuleNo.	Requirements	Verdict
Effective(Isotropic)Radiate dPowerOutputData	§2.1046, §27.50(d)	EIRP ≤ 1W;	Pass
Peak-AverageRatio	§2.1046, §27.50(d)	Limit≤13dB	Pass
ModulationCharacteristics	§2.1047	Digitalmodulation	N/A
Bandwidth	§2.1049	OBW: Nolimit. EBW: Nolimit.	Pass
BandEdgesCompliance	§2.1051, §27.53(h)	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
SpuriousEmissionatAnten naTerminals	§2.1051, §27.53(h)	≤ -13dBm/1MHz, from9kHzto10thharmonicsbutoutsideauthorized operatingfrequency ranges.	Pass
Frequency Stability	§2.1055, §27.54	Withinauthorizedbands of operation/frequency block.	Pass
Radiatedspurious emission	§2.1053, §27.53(h)	≤ -13dBm/1MHz.	Pass
NOTE 1: For the verdict, the	e "N/A" denotes	"not applicable", the "N/T" de notes "not tested"	

3.4.3 CellularBand (824-849MHz pairedwith 869-894MHz)(band 5)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913	FCC: ERP ≤ 7W.	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §22.917	≤-≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emissionat AntennaTerminals	§2.1051, §22.917	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, the	ne"N/A"denotes"r	not applicable",the"N/T"de notes "not tested".	

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-X60L Report No.: LCS180930006AEG

3.4.4 Band 7 (2500-2570MHz pairedwith 2620-2690MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §27.50(h)	FCC: ERP ≤ 3W.	Pass
Peak-AverageRatio	§2.1046, §27.50(a)	Limit≤13dB	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §27.53(m4)	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emissionat AntennaTerminals	§2.1051, §27.53(m)	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §27.53(m)	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §27.53(g)	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, th	ne"N/A"denotes"r	not applicable",the"N/T"de notes "not tested".	

3.4.5 Band 17(704-716MHz pairedwith 734-746MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §27.50c(10)	FCC: ERP ≤ 3W.	Pass
Peak-AverageRatio	§2.1046, §27.50(c)	Limit≤13dB	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §27.53(g)	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emissionat AntennaTerminals	§2.1051, §27.53(g)	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1051, §27.53(g)	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §27.53(g)	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, the	ne"N/A"denotes"r	not applicable",the"N/T"de notes "not tested".	

3.5 Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R&S	NRVS	100444	2018-06-16	2019-06-15
2	Power Sensor	R&S	NRV-Z81	100458	2018-06-16	2019-06-15
3	Power Sensor	R&S	NRV-Z32	10057	2018-06-16	2019-06-15
4	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2018-06-16	2019-06-15
6	SPECTRUM ANALYZER	R&S	FSP	100503	2018-06-16	2019-06-15
7	MXG Vector Signal Generator	Agilent	N5182A	MY47071151	2017-11-17	2018-11-16
8	ESG VECTOR SIGNAL GENERATOR	Agilent	E4438C	MY42081396	2017-11-17	2018-11-16
9	PSG Analog Signal Generator	Agilent	E8257D	MY4520521	2017-11-17	2018-11-16
10	Universal Radio Communication Tester	R&S	CMU 200	105788	2018-06-16	2019-06-15
11	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2018-06-16	2019-06-15
12	RF Control Unit	Tonscend	JS0806-1	158060009	2018-06-16	2019-06-15
13	DC Power Supply	Agilent	E3642A	N/A	2017-11-17	2018-11-16
14	WCDMA Test Software	Tonscend	JS1120-3	N/A	N/A	N/A
15	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2018-10-10	2019-10-9
16	DC Source	CHROMA	62012P-80-60	34782951	2018-10-10	2019-10-9
17	RF Filter	Micro-Tronics	BRC50718	S/N-017	2018-06-16	2019-06-15
18	RF Filter	Micro-Tronics	BRC50719	S/N-011	2018-06-16	2019-06-15
19	RF Filter	Micro-Tronics	BRC50720	S/N-011	2018-06-16	2019-06-15
20	RF Filter	Micro-Tronics	BRC50721	S/N-013	2018-06-16	2019-06-15
21	RF Filter	Micro-Tronics	BRM50702	S/N-195	2018-06-16	2019-06-15
22	Splitter/Combiner	Micro-Tronics	PS2-15	CB11-20	2018-06-16	2019-06-15
23	Splitter/Combiner	Micro-Tronics	CB11-20	N/A	2018-06-16	2019-06-15
24	Attenuator	Micro-Tronics	PAS-8-10	S/N23466	2018-06-16	2019-06-15
25	Exposure Level Tester	Narda	ELT-400	N-0713	2018-04-02	2019-04-01
26	B-Field Probe	Narda	ELT-400	M-1154	2018-04-10	2019-04-09
27	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
28	Positioning Controller	MF	MF-7082	1	2018-06-16	2019-06-15
29	EMI Test Software	AUDIX	E3	N/A	2018-06-16	2019-06-15
30	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
31	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
32	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-06-22	2019-06-21
33	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-01	2019-04-30
34	Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-1925	2018-07-02	2019-07-01
35	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2018-09-20	2019-09-19
36	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2018-09-20	2019-09-19
37	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
38	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15
Note: All	equipment is calibrated through GUANG	ZHOU LISAI CALIBR	ATION AND TEST (CO.,LTD.	•	

3.6 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.10 dB	(1)
Radiated Emission	1~18GHz	3.80 dB	(1)
Radiated Emission	18-40GHz	3.90 dB	(1)
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occuiped Bandwidth	9KHz~40GHz	-	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4 TEST CONDITIONS AND RESULTS

4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display CMW500, and then test.

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.1
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.1
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.1
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.1
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.1

4.1.2. Radiated Output Power

<u>LIMIT</u>

This is the test for the maximum radiated power from the EUT.

Per §22.913(2) Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Per Part 27.50(d) (4) specifies, Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band are limited to 1W EIRP. Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in this band must employ a means for limiting power to the minimum necessary for successful communications.

According to § 27.50 C(10): Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP."

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).

- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)= P_{Mea} P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Radiated Measurement:

Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2,LTE FDD Band 4,LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17; recorded worst case for each Channel Bandwidth of LTE FDD Band 2,LTE FDD Band 4,LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- 5. We test the H direction and V direction recorded worst case

LTE FDD Band 2 Channel Bandwidth 1.4MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.70	-19.76	4.03	8.38	35.51	20.10	33.01	-12.91	V
1880.00	-19.27	4.08	8.33	35.56	20.54	33.01	-12.47	V
1909.30	-19.91	4.14	8.26	35.63	19.84	33.01	-13.17	V

LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1851.50	-19.69	4.03	8.38	35.51	20.17	33.01	-12.84	V
1880.00	-20.31	4.08	8.33	35.56	19.50	33.01	-13.51	V
1908.50	-20.48	4.14	8.26	35.63	19.27	33.01	-13.74	V

LTE FDD Band 2 Channel Bandwidth 5MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.50	-20.37	4.03	8.38	35.51	19.49	33.01	-13.52	V
1880.00	-20.11	4.08	8.33	35.56	19.70	33.01	-13.31	V
1907.50	-20.17	4.14	8.26	35.63	19.58	33.01	-13.43	V

LTE FDD Band 2 Channel Bandwidth 10MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1855.00	-21.19	4.03	8.38	35.51	18.67	33.01	-14.34	V
1880.00	-20.67	4.08	8.33	35.56	19.14	33.01	-13.87	V
1905.00	-21.16	4.14	8.26	35.63	18.59	33.01	-14.42	V

SHENZHEN LC	<u> S COMPLIAN</u>	<u>√CE TESTING</u>	G LABORATORY	YLTD. FO	CC ID: 2ADTE	-X60L R	Report No.: LCS	<u>3180930006AE</u>
LTE FDD Ba	ınd 2_Chanı	nel Bandwic	dth 15MHz_Q	⊋PSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1857.50	-21.38	4.03	8.38	35.51	18.48	33.01	-14.53	V
1880.00	-21.27	4.08	8.33	35.56	18.54	33.01	-14.47	V
1902.50	-21.99	4.14	8.26	35.63	17.76	33.01	-15.25	V
LTE FDD Ba	nd 2_Chan	nel Bandwic	dth 20MHz_C	⊋ <i>PSK</i>				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1860.00	-22.26	4.03	8.38	35.51	17.60	33.01	-15.41	V
1880.00	-21.95	4.08	8.33	35.56	17.86	33.01	-15.15	V
1900.00	-21.86	4.14	8.26	35.63	17.89	33.01	-15.12	V
LTE FDD Ba	and 2 Chan	nel Bandwic	dth 1.4MHz_1	16QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizati
1850.70	-20.13	4.03	8.38	35.51	19.73	33.01	-13.28	V
1880.00 1909.30	-20.03 -19.96	4.08 4.14	8.33 8.26	35.56 35.63	19.78 19.79	33.01 33.01	-13.23 -13.22	V
Frequency	P _{Mea}	P _{cl}	dth 3MHz_16 G _a	P_{Ag}	Peak	Limit	Margin	Dolorizati
(MHz)	(dBm)	(dB)	Antenna Gain(dB)	(dB)	EIRP (dBm)	(dBm)	(dB)	Polarizati
1851.50	-20.92	4.03	8.38	35.51	18.94	33.01	-14.07	V
1880.00	-20.28	4.08	8.33	35.56	19.53	33.01	-13.48	V
1908.50	-20.10	4.14	8.26	35.63	19.65	33.01	-13.36	V
LTE FDD Ba	and 2_Chan	nel Bandwic	dth 5MHz_16	GAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizati
1852.50	-21.19	4.03	8.38	35.51	18.67	33.01	-14.34	V
1880.00	-21.13	4.08	8.33	35.56	18.68	33.01	-14.33	V
1907.50	-21.47	4.14	8.26	35.63	18.28	33.01	-14.73	V
LTE FDD Ba	and 2_Chan	nel Ban <u>dwi</u> c	dth 10MHz_1	6QAM				
Frequency	P _{Mea}	P _{cl}	Ga	P _{Ag}	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Antenna Gain(dB)	(dB)	EIRP (dBm)	(dBm)	(dB)	Polarizati
1855.00	-21.82	4.03	8.38	35.51	18.04	33.01	-14.97	V
1880.00	-21.53	4.08	8.33	35.56	18.28	33.01	-14.73	V
1905.00	-21.47	4.14	8.26	35.63	18.28	33.01	-14.73	V
LTE FDD <u>B</u> a	and 2_Chan	nel Band <u>wi</u> c	dth 15MHz_1	6QAM		_		
Frequency	P _{Mea}	P _{cl} (dB)	G _a Antenna	P _{Ag} (dB)	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizati
(MHz)	(dBm)	((10)	Gain(dB)		(dBm)			

35.56

35.63

33.01

33.01

33.01

18.25

18.16

17.45

-14.76

-14.85

-15.56

٧

٧

٧

1857.50

1880.00

1902.50

4.03

4.08

4.14

8.38

8.33

8.26

-21.61

-21.65

-22.30

SHENZHEN LC	<u>CS COMPLIAN</u>	VCE TESTING	G LABORATORY	YLTD.	FCC ID: 2ADTE	<i>E-X60L</i>	Report No.: LCS	<u>\$18</u> 0930006AEC
LTE FDD Ba	ınd 2_Chanı	nel Bandwi	dth 20MHz_1	6QAM				
Frequency	P_{Mea}	P _{cl}	Ga	P_{Ag}	Peak	Limit	Margin	1
(MHz)	(dBm)	(dB)	Antenna	(dB)	EIRP	(dBm)		Polarization
` '		` '	Gain(dB)	` ,	(dBm)	, ,	· · ·	
1860.00	-22.62	4.03	8.38	35.51	17.24	33.01	-15.77	V
1880.00	-22.42	4.08	8.33	35.56	17.39	33.01	-15.62	V
1900.00	-22.40	4.14	8.26	35.63	17.35	33.01	-15.66	V
TF FDD Ba	and 4 Chan	nel Bandwi	dth 1.4MHz (OPSK				
	_		G _a		Peak			T
Frequency	P _{Mea}	P _{cl}	Antenna	P _{Ag}	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Gain(dB)	(dB)	(dBm)	(dBm)	(dB)	1 Oldings
1710.7	-19.15	3.93	9.05	34.96	20.93	30.00	-9.07	V
1732.5	-19.13	3.93	8.89	35.01	20.93	30.00		V
1754.3	-18.85	3.94	8.76	35.08	21.05	30.00	-9.33 -8.95	V
1704.0	-10.00	J.ਹ - ਜ	0.70	30.00	21.00	30.00	-0.55	v
LTE FDD Ba	ınd 4_Chanı	nel Bandwi	dth 3MHz_QF	PSK				
Frequency	P_{Mea}	P _{cl}	Ga	P_{Ag}	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Antenna	(dB)	EIRP	(dBm)		Polarizatio
` '	` ,	, ,	Gain(dB)		(dBm)	` '	· · ·	
1711.50	-19.06	3.93	9.05	34.96	21.02	30.00	-8.98	V
1732.50	-19.77	3.93	8.89	35.01	20.20	30.00	-9.80	V
1753.40	-19.10	3.94	8.76	35.08	20.80	30.00	-9.20	V
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
1712.50	-18.90	3.93	9.05	34.96	21.18	30.00	-8.82	V
1712.50	-19.43	3.93	8.89	35.01	20.54	30.00	-9.46	V
1752.50	-19.43	3.94	8.76	35.08	20.81	30.00	-9.40	V
1	Į.		- 1			00.00		
	_		dth 10MHz_Q G _a		Peak	T		
Frequency	P _{Mea}	P _{cl}	Antenna	P _{Ag}	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Gain(dB)	(dB)	(dBm)	(dBm)	(dB)	Foldingatio
1715.00	-19.18	3.93	9.05	34.96	20.90	30.00	-9.10	V
1713.00	-19.16	3.93	8.89	35.01	21.02	30.00		V
1750.00	-18.92	3.94	8.76	35.08	20.98	30.00	-9.02	V
					20.00	00.00	-0.02	V
	_		dth 15MHz_Q G _a		Peak	Т		Т
Frequency	P _{Mea}	P _{cl}	Antenna	P_{Ag}	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Gain(dB)	(dB)	(dBm)	(dBm)	(dB)	FUIGITEGGG
1717.50	-18.80	3.93	9.05	34.96	21.28	30.00	-8.72	V
						1		V
1732.50	-19.08	3.93	8.89	35.01	20.89	30.00		
1747.50	-18.92	3.94	8.76	35.08	20.98	30.00	-9.02	V
LTE FDD Ba	ınd 4_Chanı	nel Bandwi	dth 20MHz_Q	}PSK	7 71-	т		
Frequency	P _{Mea}	P _{cl}	Ga	P_{Ag}	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Antenna	(dB)	EIRP	(dBm)		Polarizatio
` '	` ′	` '	Gain(dB)	` '	(dBm)	` ′	` ′	<u> </u>
1720.00	-19.41	3.93	9.05	34.96	20.67	30.00		V
	10.40	2 02	0 00	25.01	20.40	20.00	0.52	1/

35.08

20.48

20.21

30.00

30.00

-9.52

-9.79

1732.50

1745.00

-19.49

-19.69

3.93

3.94

8.89

8.76

٧

<u>SHENZHEN L</u>	<u>CS COMPLIAI</u>	NCE TESTIN	G LABORATOR	Y LTD. F	<u>CC ID: 2ADTE</u>	E-X60L R	eport No.: LCS	S180930006AEG
LTE FDD B	and 4_Chan	nel Bandwi	dth 1.4MHz_1	16QAM	1	·	1	т-
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1710.70	-19.55	3.93	9.05	34.96	20.53	30.00	-9.47	V
1732.50	-19.20	3.93	8.89	35.01	20.77	30.00	-9.23	V
1754.30	-19.50	3.94	8.76	35.08	20.40	30.00	-9.60	V
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 3MHz_16	QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1711.50	-19.00	3.93	9.05	34.96	21.08	30.00	-8.92	V
1732.50	-18.93	3.93	8.89	35.01	21.04	30.00	-8.96	V
1753.40	-18.55	3.94	8.76	35.08	21.35	30.00	-8.65	V
			dth 5MHz_16		Peak		l	
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.50	-19.66	3.93	9.05	34.96	20.42	30.00	-9.58	V
1732.50	-19.79	3.93	8.89	35.01	20.18	30.00	-9.82	V
1752.50	-19.37	3.94	8.76	35.08	20.53	30.00	-9.47	V
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 10MHz 1	6QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.00	-19.50	3.93	9.05	34.96	20.58	30.00	-9.42	V
1732.50	-18.81	3.93	8.89	35.01	21.16	30.00	-8.84	V
1750.00	-19.40	3.94	8.76	35.08	20.50	30.00	-9.50	V
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 15MHz_1	6QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.50	-19.52	3.93	9.05	34.96	20.56	30.00	-9.44	V
1732.50	-19.35	3.93	8.89	35.01	20.62	30.00	-9.38	V
1747.50	-19.14	3.94	8.76	35.08	20.76	30.00	-9.24	V
LTE FDD Ba	and 4 Chan	nel Bandwi	dth 20MHz_1	6QAM				
	<u> </u>				Peak			

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1720.00	-19.07	3.93	9.05	34.96	21.01	30.00	-8.99	V
1732.50	-19.19	3.93	8.89	35.01	20.78	30.00	-9.22	V
1745.00	-19.31	3.94	8.76	35.08	20.59	30.00	-9.41	V

LTE FDD Band 5 Channel Bandwidth 1.4MHz QPSK

LILIDDD	ana o <u> </u>	arrici Dai	iawiatii i. t i	VII IZ_QI OI					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.70	-16.27	3.45	8.45	2.15	33.79	20.37	38.45	-18.08	V
836.50	-16.05	3.49	8.45	2.15	33.85	20.61	38.45	-17.84	V
848.30	-15.70	3.55	8.36	2.15	33.88	20.84	38.45	-17.61	V

<u>SHENZHEN L</u>	<u>CS COMPLI</u>	ANCE TES	STING LABOR	RATORY LTD.	FCC ID:	2ADTE-X60	L Rep	ort No.: LCS	180930006AEG
LTE FDD B	and 5_Che	annel Bar	าdwidth 3MF	Hz_QPSK					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
825.50	-16.07	3.45	8.45	2.15	33.79	20.57	38.45	-17.88	V
836.50	-15.87	3.49	8.45	2.15	33.85	20.79	38.45	-17.66	V
847.50	-15.62	3.55	8.36	2.15	33.88	20.92	38.45	-17.53	V
LTE FDD Ba	and 5 Cha	annel Bar	ndwidth 5Mł	Hz QPSK					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.50	-16.16	3.45	8.45	2.15	33.79	20.48	38.45	-17.97	V
836.50	-16.17	3.49	8.45	2.15	33.85	20.49	38.45	-17.96	V
846.50	-16.12	3.55	8.36	2.15	33.88	20.42	38.45	-18.03	V
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
829.00	-15.60	3.45	8.45	2.15	33.79	21.04	38.45	-17.41	V
836.50	-16.11	3.49	8.45	2.15	33.85	20.55	38.45	-17.90	V
844.00	-15.95	3.55	8.36	2.15	33.88	20.59	38.45	-17.86	V
LTE FDD B	and 5_Cha	annel Bar	ndwidth 1.4l	MHz_16QAM					1
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.70	-16.90	3.45	8.45	2.15	33.79	19.74	38.45	-18.71	V
836.50	-17.19	3.49	8.45	2.15	33.85	19.47	38.45	-18.98	V
848.30	-17.39	3.55	8.36	2.15	33.88	19.15	38.45	-19.30	V
LTE FDD Ba	and 5 Che	annel Bar	ndwidth 3MF	Hz 16QAM					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
825.50	-17.04	3.45	8.45	2.15	33.79	19.60	38.45	-18.85	V
836.50	-17.42	3.49	8.45	2.15	33.85	19.24	38.45	-19.21	V
847.50	-17.23	3.55	8.36	2.15	33.88	19.31	38.45	-19.14	V

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.50	-16.66	3.45	8.45	2.15	33.79	19.98	38.45	-18.47	V
836.50	-16.61	3.49	8.45	2.15	33.85	20.05	38.45	-18.40	V
846.50	-17.26	3.55	8.36	2.15	33.88	19.28	38.45	-19.17	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.00	-16.68	3.45	8.45	2.15	33.79	19.96	38.45	-18.49	V
836.50	-16.85	3.49	8.45	2.15	33.85	19.81	38.45	-18.64	V
844.00	-16.65	3.55	8.36	2.15	33.88	19.89	38.45	-18.56	V

LTE FDD Band 7 Channel Bandwidth 5MHz	OPSK
---------------------------------------	------

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-18.79	4.32	6.8	36.14	19.83	33.01	-13.18	V
2535.0	-18.19	4.32	6.61	36.17	20.27	33.01	-12.74	V
2567.5	-18.33	4.33	6.57	36.22	20.13	33.01	-12.88	V

LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505.0	-18.86	4.32	6.8	36.14	19.76	33.01	-13.25	V
2535.0	-18.92	4.32	6.61	36.17	19.54	33.01	-13.47	V
2565.0	-18.19	4.33	6.57	36.22	20.27	33.01	-12.74	V

LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-18.67	4.32	6.8	36.14	19.95	33.01	-13.06	V
2535.0	-18.13	4.32	6.61	36.17	20.33	33.01	-12.68	V
2562.5	-18.31	4.33	6.57	36.22	20.15	33.01	-12.86	V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
ſ	2510.0	-18.82	4.32	6.8	36.14	19.80	33.01	-13.21	V
ſ	2535.0	-18.36	4.32	6.61	36.17	20.10	33.01	-12.91	V
	2560.0	-18.62	4.33	6.57	36.22	19.84	33.01	-13.17	V

LTE FDD Band 7_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-19.56	4.32	6.8	36.14	19.06	33.01	-13.95	V
2535.0	-19.07	4.32	6.61	36.17	19.39	33.01	-13.62	V
2567.5	-19.51	4.33	6.57	36.22	18.95	33.01	-14.06	V

LTE FDD Band 7_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505.0	-19.42	4.32	6.8	36.14	19.20	33.01	-13.81	V
2535.0	-19.12	4.32	6.61	36.17	19.34	33.01	-13.67	V
2565.0	-19.72	4.33	6.57	36.22	18.74	33.01	-14.27	V

LTE FDD Band 7_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-19.20	4.32	6.8	36.14	19.42	33.01	-13.59	V
2535.0	-19.62	4.32	6.61	36.17	18.84	33.01	-14.17	V
2562.5	-19.57	4.33	6.57	36.22	18.89	33.01	-14.12	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2510.0	-19.89	4.32	6.8	36.14	18.73	33.01	-14.28	V
2535.0	-19.56	4.32	6.61	36.17	18.90	33.01	-14.11	V
2560.0	-19.32	4.33	6.57	36.22	19.14	33.01	-13.87	V

LTE FDD Band 17_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
706.5	-16.25	3.02	8.29	2.15	33.52	20.39	34.77	-14.38	V
710.0	-15.53	3.06	8.29	2.15	33.52	21.07	34.77	-13.70	V
713.5	-16.37	3.06	8.29	2.15	33.52	20.23	34.77	-14.54	V

LTE FDD Band 17_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
709.0	-15.72	3.06	8.29	2.15	33.52	20.88	34.77	-13.89	V
710.0	-15.50	3.06	8.29	2.15	33.52	21.10	34.77	-13.67	V
711.0	-16.05	3.06	8.29	2.15	33.52	20.55	34.77	-14.22	V

LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
706.5	-16.86	3.02	8.29	2.15	33.52	19.78	34.77	-14.99	V
710.0	-16.97	3.06	8.29	2.15	33.52	19.63	34.77	-15.14	V
713.5	-17.25	3.06	8.29	2.15	33.52	19.35	34.77	-15.42	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
709.0	-16.95	3.06	8.29	2.15	33.52	19.65	34.77	-15.12	V
710.0	-17.21	3.06	8.29	2.15	33.52	19.39	34.77	-15.38	V
711.0	-16.61	3.06	8.29	2.15	33.52	19.99	34.77	-14.78	V

4.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.2
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.2
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.2
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.2
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.2

4.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.3
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.3
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.3
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.3
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.3

4.4 Band Edge compliance

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- \bigcirc 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- \bigcirc 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.Translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowestand highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.4
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.4
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.4
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.4
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.4

4.5 Spurious Emssion on Antenna Port

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- \bigcirc 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- \bigcirc 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

SH	ENZHEN LCS COMPLIAN	NCE TESTING LABORATORY	LTD. FCC ID: 2Al	DTE-X60L Report N	o.: LCS180930006AEG
	Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 2	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 4	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 5	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 7	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 17	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.5
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.5
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.5
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.5
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.5

4.6 Radiated Spurious Emssion

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- \bigcirc 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- ○55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]
- In addition, the attenuation factor (fixed limit) shall not be less than:
- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated

- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
110400103	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
1.TE EDD D10	2~5	1 MHz	3 MHz	3
LTE FDD Band 2	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
LTE FDD Band 4	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 5	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~9	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 7	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3

SH	ENZHEN LCS COMPLIAN	CE TESTING LABORATO	ORY LTD. FCC ID: 2.	ADTE-X60L Report	No.: LCS180930006AEG
		11~14	1 MHz	3 MHz	3
		14~18	1 MHz	3 MHz	3
		18~20	1 MHz	3 MHz	2
		20~26	1 MHz	3 MHz	2
		0.00009~0.15	1KHz	3KHz	30
		0.00015~0.03	10KHz	30KHz	10
	LTE FDD Band 17	0.03~1	100KHz	300KHz	10
	LIE FUU Ballu II	1~2	1 MHz	3 MHz	2
		2~5	1 MHz	3 MHz	3
		5~8	1 MHz	3 MHz	3

TEST LIMITS

According to 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz -20GHz	PASS
LTE FDD Band 2	Middle	9KHz -20GHz	PASS
	High	9KHz -20GHz	PASS
	Low	9KHz -18GHz	PASS
LTE FDD Band 4	Middle	9KHz -18GHz	PASS
	High	9KHz -18GHz	PASS
	Low	9KHz -9GHz	PASS
LTE FDD Band 5	Middle	9KHz -9GHz	PASS
	High	9KHz -9GHz	PASS
	Low	9KHz -26GHz	PASS
LTE FDD Band 7	Middle	9KHz -26GHz	PASS
	High	9KHz -26GHz	PASS
	Low	9KHz -8GHz	PASS
LTE FDD Band 17	Middle	9KHz -8GHz	PASS
	High	9KHz -8GHz	PASS

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band
- 2, LTE FDD Band 4, LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17;
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. We were not recorded other points as values lower than limits.
- 4. Margin = EIRP Limit

LTE FDD Band 2 Channel Bandwidth 1.4MHz QPSK Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3701.4	-40.68	5.26	3.00	9.88	-36.06	-13.00	-23.06	Н
5552.1	-44.04	6.11	3.00	11.36	-38.79	-13.00	-25.79	Н
3701.4	-28.50	5.26	3.00	9.88	-23.88	-13.00	-10.88	V
5552.1	-34.69	6.11	3.00	11.36	-29.44	-13.00	-16.44	V

LTE FDD Band 2_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-37.77	5.32	3.00	10.03	-33.06	-13.00	-20.06	Н
5640.0	-45.78	6.19	3.00	11.41	-40.56	-13.00	-27.56	Н
3760.0	-31.28	5.32	3.00	10.03	-26.57	-13.00	-13.57	V
5640.0	-33.96	6.19	3.00	11.41	-28.74	-13.00	-15.74	V

LTE FDD Band 2 Channel Bandwidth 1.4MHz QPSK High Channel

					· · · · · · · · · · · · · · · · · · ·			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3806.6	-39.70	5.36	3.00	9.62	-35.44	-13.00	-22.44	Н
5709.9	-46.12	6.24	3.00	11.46	-40.90	-13.00	-27.90	Н
3806.6	-28.27	5.36	3.00	9.62	-24.01	-13.00	-11.01	V
5709.9	-33.95	6.24	3.00	11.46	-28.73	-13.00	-15.73	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-X60L Report No.: LCS180930006AEG LTE FDD Band 2 Channel Bandwidth 3MHz QPSK Low Channel Peak G_a Limit Frequency P_{cl} Margin P_{Mea} Polarization Diatance Antenna **EIRP** (MHz) (dB) (dBm) (dBm) (dB) Gain(dB) (dBm) 3703.0 -38.36 5.26 -20.74 3.00 9.88 -33.74-13.00 Н 5554.5 -45.55 6.11 3.00 11.36 -40.30 -13.00 -27.30Н 3703.0 -28.83 5.26 3.00 9.88 -13.00 -11.21 V -24.215554.5 -36.78 6.11 3.00 11.36 -31.53 -13.00 -18.53 V LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK_ Middle Channel Peak G_a $\mathsf{P}_{\mathsf{Mea}}$ Frequency P_{cl} Limit Margin Diatance **EIRP** Polarization Antenna (dB) (dBm) (MHz) (dBm) (dB) (dBm) Gain(dB) 3760.00 -37.61 5.32 -13.00 -19.90 3.00 10.03 -32.90 Н 5640.00 -43.74 6.19 3.00 11.41 -38.52-13.00 -25.52Η 3760.00 -30.87 5.32 3.00 10.03 -26.16 -13.00 -13.16 V 5640.00 -35.29 3.00 11.41 -13.00 -17.07 ٧ 6.19 -30.07LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK_ High Channel Peak G_a Frequency Limit P_{Mea} P_{cl} Margin Diatance Antenna **EIRP** Polarization (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3817.0 -37.88 5.36 -33.62 -13.00 -20.62 3.00 Н 9.62

LTE EDD Rand 2 Channel Bandwidth 5MHz OPSK Low Channel

3.00

3.00

3.00

6.24

5.36

6.24

5725.5

3817.0

5725.5

-45.85

-28.32

-36.13

LIEFUU B	anu z_Cnan	nei banuwiu	IIII SIVII IZ_QI	F3K_ LOW C	Hallici			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3705.0	-40.18	5.26	3.00	9.88	-35.56	-13.00	-22.56	Н
5557.5	-45.00	6.11	3.00	11.36	-39.75	-13.00	-26.75	Н
3705.0	-30.55	5.26	3.00	9.88	-25.93	-13.00	-12.93	V
5557.5	-33.81	6.11	3.00	11.36	-28.56	-13.00	-15.56	V

11.46

9.62

11.46

-40.63

-24.06

-30.91

-13.00

-13.00

-13.00

-27.63

-11.06

-17.91

Н

V

V

LTE FDD Band 2_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-38.93	5.32	3.00	10.03	-34.22	-13.00	-21.22	Н
5640.0	-44.47	6.19	3.00	11.41	-39.25	-13.00	-26.25	Н
3760.0	-30.99	5.32	3.00	10.03	-26.28	-13.00	-13.28	V
5640.0	-34.97	6.19	3.00	11.41	-29.75	-13.00	-16.75	V

LTE FDD Band 2 Channel Bandwidth 5MHz QPSK High Channel

LILIDDD	and z_onan	nei Banawia	itii oivii iz_ Qi	Or _ riigir c	niannei			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3815.0	-39.88	5.36	3.00	9.62	-35.62	-13.00	-22.62	Н
5722.5	-45.08	6.24	3.00	11.46	-39.86	-13.00	-26.86	Н
3815.0	-30.87	5.36	3.00	9.62	-26.61	-13.00	-13.61	V
5722.5	-34.81	6.24	3.00	11.46	-29.59	-13.00	-16.59	V

LTE FDD Band 2 Channel Bandwidth 10MHz QPSK Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3710.0	-38.19	5.26	3.00	9.88	-33.57	-13.00	-20.57	Н
5565.0	-44.43	6.11	3.00	11.36	-39.18	-13.00	-26.18	Н
3710.0	-31.43	5.26	3.00	9.88	-26.81	-13.00	-13.81	V
5565.0	-35.62	6.11	3.00	11.36	-30.37	-13.00	-17.37	V

			G LABORATOR		CC ID: 2ADTE	E-X60L Re	eport No.: LCS	S180930006AEC
LTE FDD Ba	and 2_Chan	nel Bandwi	dth 10MHz_C	QPSK_ Middl	le Channel		_	
Eroguenev	D	P_{cl}		G_a	Peak	Limit	Margin	
Frequency	P _{Mea}		Diatance	Antenna	EIRP			Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3760.0	-40.75	5.32	3.00	10.03	-36.04	-13.00	-23.04	Н
5640.0	-43.10	6.19	3.00	11.41	-37.88	-13.00	-24.88	Н
3760.0	-29.96	5.32	3.00	10.03	-25.25	-13.00	-12.25	V
5640.0	-33.95	6.19	3.00	11.41	-28.73	-13.00	-15.73	V
						10100		-
LTE FDD Ba	and 2_Chan	nel Bandwi	dth 10MHz_C	QPSK_ High	Channel			
Frequency	D	P_{cl}		G_a	Peak	Limit	Margin	
Frequency	P _{Mea}		Diatance	Antenna	EIRP		_	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3810.0	-38.45	5.36	3.00	9.62	-34.19	-13.00	-21.19	Н
5715.0	-43.69	6.24	3.00	11.46	-38.47	-13.00	-25.47	Н
3810.0	-31.05	5.36	3.00	9.62	-26.79	-13.00	-13.79	V
5715.0	-35.15	6.24	3.00	11.46	-29.93	-13.00	-16.93	V
37 13.0	-55.15	0.24	3.00	11.40	-29.93	-13.00	-10.33	
TE FDD Ba	and 2 Chan	nel Bandwid	dth 15MHz (QPSK_Low	Channel			
	_		_	Ga	Peak	1 224	N.A '	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Biatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
3715.0	-38.20	5.26	3.00	9.88	-33.58	-13.00	-20.58	Н
5572.5	-45.64	6.11	3.00	11.36	-40.39	-13.00	-27.39	H
								V
3715.0	-30.03	5.26	3.00	9.88	-25.41	-13.00	-12.41	
5572.5	-35.71	6.11	3.00	11.36	-30.46	-13.00	-17.46	V
I TE END B	and 2 Chan	nal Bandwii	4th 15111⊔- (QPSK_Middl	lo Channal			
	and Z_Chain	liei balluwii I					1	1
Frequency	P_{Mea}	P_{cl}	Distance	Ga	Peak	Limit	Margin	Dalaria
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
, ,	, ,	` '		Gain(dB)	(dBm)	` ′	` ′	
3760.0	-39.95	5.32	3.00	10.03	-35.24	-13.00	-22.24	Н
5640.0	-46.04	6.19	3.00	11.41	-40.82	-13.00	-27.82	Н
3760.0	-31.74	5.32	3.00	10.03	-27.03	-13.00	-14.03	V
5640.0	-34.75	6.19	3.00	11.41	-29.53	-13.00	-16.53	V
					.			
LIE FDD Ba	and 2_Chan	nel Bandwi	<u>dth 15MHz_(</u>	QPSK_ High		T	1	1
Frequency	P_{Mea}	P_{cl}	D	Ga	Peak	Limit	Margin	.
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ′	, ,	` ′		Gain(dB)	(dBm)		` ′	
3805.0	-39.29	5.36	3.00	9.62	-35.03	-13.00	-22.03	Н
5707.5	-46.73	6.24	3.00	11.46	-41.51	-13.00	-28.51	Н
3805.0	-29.32	5.36	3.00	9.62	-25.06	-13.00	-12.06	V
5707.5	-33.08	6.24	3.00	11.46	-27.86	-13.00	-14.86	V
				2001/	01 1			
LIE FUU Ba	and 2_Chan	nei Bandwid	atn 20MHz_(QPSK_ Low (1
Frequency	P_{Mea}	P_{cl}	Dietara	Ga	Peak	Limit	Margin	Delani
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ,	, ,	` '		Gain(dB)	(dBm)	, ,	` ′	
3715.0	-39.84	5.26	3.00	9.88	-35.22	-13.00	-22.22	Н
5572.5	-44.61	6.11	3.00	11.36	-39.36	-13.00	-26.36	Н
3715.0	-28.48	5.26	3.00	9.88	-23.86	-13.00	-10.86	V
5572.5	-33.33	6.11	3.00	11.36	-28.08	-13.00	-15.08	V
LTE FDD B	and 2_Chan	nel Bandwid	dth 20MHz_C	QPSK_ Middl		T	1	T
Frequency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
			Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
	(dRm)							
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	` '	(d <i>D</i>)	
	-38.41	5.32	3.00	Gain(dB) 10.03	(dBm) -33.70	-13.00	-20.70	Н

10.03

11.41

5580.0

3720.0

5580.0

-46.96

-30.29

-33.33

6.19

5.32

6.19

3.00

3.00

3.00

-41.74

-25.58

-28.11

-13.00

-13.00

-13.00

-28.74

-12.58

-15.11

Н

٧

٧

Margin M	I TE END D			G LABORATOR		CC ID: 2ADTE	E-X60L R	eport No.: LCS	S180930006AE
Page Page Page Page Page Page Diatance Gain(dB) (dBm) (dBm		_							
Margin M	Frequency	P_{Mea}	P _{cl}	Diatance			Limit	Margin	Polarizatio
3800.0	(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polarizatio
	2000.0	20.64	F 26	2.00	. ,		12.00	24.25	11
S800.0 -31.70 5.36 3.00 9.62 -27.44 -13.00 -14.44									H
ST00.0									Н
Trequency									V
Frequency (MHz)	5700.0	-36.89	6.24	3.00	11.46	-31.67	-13.00	-18.67	V
Frequency (MHz)	LTE FDD Ba	and 2 Chan	nel Bandwid	dth 1.4MHz	16QAM Lo	w Channel			
Polar		_		_			,		
Ministrict Min				Diatance				_	Polarizatio
3701.4	(MHz)	(dBm)	(dB)	Diatarioc			(dBm)	(dB)	1 Glarizatio
1.5552.1	2704.4	40.00	F 26	2.00			12.00	22.26	- 11
3701.4									Н
Section									Н
Terpuncy									V
Polar	5552.1	-41.94	6.11	3.00	11.36	-36.69	-13.00	-23.69	V
Polar	TE FDD Ba	and 2 Chan	nel Bandwid	dth 1.4MHz	16QAM Mid	ddle Channe	e/		
Prequency (MHz)		_		_					
MHz				Diatance					Polarizatio
3760.0	(MHz)		(dB)	Diataile			(dBm)	(dB)	i Glarizatio
Sequency Columbia	2700.0	40.00	F 00	2.00	` ,		40.00	05.00	
3760.0									Н
Temporary Temp									Н
Polar	3760.0	-32.93	5.32			-28.22		-15.22	V
Prequency (MHz) (ABm)	5640.0	-40.86	6.19	3.00	11.41	-35.64	-13.00	-22.64	V
STO9.9				Diatance					Polarizatio
3806.6	3806.6	-41.21	5.36	3.00	9.62	-36.95	-13.00	-23.95	Н
Tequency PMea Pcl Diatance Channel Bandwidth 3MHz 16QAM Low Channel Limit Channel Chan	5709.9	-46.80	6.24	3.00	11.46	-41.58	-13.00	-28.58	Н
Tequency P _{Mea} P _{cl} Diatance Gain(dB) Cash Cash	3806.6	-34.79		3.00		-30.53	-13.00	-17.53	V
Frequency (MHz) (dBm) (dB) Diatance (Antenna Gain(dB) (dBm)									V
Pack			nal Dandui	-44- 2141- 47	20444 / 4	Observe al			
Prequency (MHz) (dBm) (dB)	LIE FUU B	ana 2_Cnan	nei Bandwid	<i>XIII 3IVI⊓Z_ I G</i> │				I	T
(MHz) (dBm) (dB) Diatalice Gain(dB) Alternal Gain(dB) (dBm) (dBm) (dBm) (dBm) Polar Gain(dB) 3703.0 -42.77 5.26 3.00 9.88 -38.15 -13.00 -25.15 5554.5 -48.35 6.11 3.00 11.36 -43.10 -13.00 -30.10 3703.0 -31.46 5.26 3.00 9.88 -26.84 -13.00 -13.84 5554.5 -41.09 6.11 3.00 11.36 -35.84 -13.00 -22.84 LTE FDD Band 2 Channel Bandwidth 3MHz_16QAM_Middle Channel Frequency (MHz) PMea (dBm) Pcl (dB) Diatance Gain(dB) (dBm) Limit (dBm) Margin (dB) Polar (dBm) Margin (dBm) Polar (dBm)	Frequency	PMea	Pa	D: 1			Limit	Margin	.
3703.0	i i Caucillov			Diatance	i Antenna i	EIRP			Polarizatio
S554.5		' (ubiii)	i (ub)				(ubiii)	i (ub)	
3703.0	(MHz)	, ,	` ′		Gain(dB)	(dBm)	` ′		
Terpo	(MHz) 3703.0	-42.77	5.26		Gain(dB) 9.88	(dBm) -38.15	-13.00	-25.15	Н
Tequency	(MHz) 3703.0 5554.5	-42.77 -48.35	5.26 6.11	3.00	Gain(dB) 9.88 11.36	(dBm) -38.15 -43.10	-13.00 -13.00	-25.15 -30.10	H
Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) Diatance G _a Antenna Gain(dB) (dBm) Peak (dBm) (dBm) Limit (dBm) (dBm) Margin (dBm) Polar (dBm) 3760.00 -41.16 5.32 3.00 10.03 -36.45 -13.00 -23.45 5640.00 -46.15 6.19 3.00 11.41 -40.93 -13.00 -27.93 3760.00 -32.32 5.32 3.00 10.03 -27.61 -13.00 -14.61 5640.00 -39.98 6.19 3.00 11.41 -34.76 -13.00 -21.76 LTE FDD Band 2_Channel Bandwidth 3MHz_16QAM_ High Channel Frequency (MHz) P _{Mea} (dBm) P _{Cl} (dB) Diatance Antenna Gain(dB) (dBm) EIRP (dBm) Limit (dBm) (dB) Margin (dB)	(MHz) 3703.0 5554.5	-42.77 -48.35	5.26 6.11	3.00	Gain(dB) 9.88 11.36	(dBm) -38.15 -43.10	-13.00 -13.00	-25.15 -30.10	Н
Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) Diatance G _a Antenna Gain(dB) (dBm) Peak (dBm) (dBm) Limit (dBm) (dBm) Margin (dBm) Polar (dBm) 3760.00 -41.16 5.32 3.00 10.03 -36.45 -13.00 -23.45 5640.00 -46.15 6.19 3.00 11.41 -40.93 -13.00 -27.93 3760.00 -32.32 5.32 3.00 10.03 -27.61 -13.00 -14.61 5640.00 -39.98 6.19 3.00 11.41 -34.76 -13.00 -21.76 LTE FDD Band 2_Channel Bandwidth 3MHz_16QAM_ High Channel Frequency (MHz) P _{Mea} (dBm) P _{Cl} (dB) Diatance Antenna Gain(dB) (dBm) EIRP (dBm) Limit (dBm) (dB) Margin (dB)	3703.0 5554.5 3703.0	-42.77 -48.35 -31.46	5.26 6.11 5.26	3.00 3.00	Gain(dB) 9.88 11.36 9.88	(dBm) -38.15 -43.10 -26.84	-13.00 -13.00 -13.00	-25.15 -30.10 -13.84	H
Prequency (MHz)	(MHz) 3703.0 5554.5 3703.0 5554.5	-42.77 -48.35 -31.46 -41.09	5.26 6.11 5.26 6.11	3.00 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36	(dBm) -38.15 -43.10 -26.84 -35.84	-13.00 -13.00 -13.00	-25.15 -30.10 -13.84	H H V
(MHz) (dBm) (dB) Blatance Gain(dB) Attentia Gain(dB) (dBm) Polar (MHz) (dBm) (dBm) (dBm) (dBm) (dBm) Polar	(MHz) 3703.0 5554.5 3703.0 5554.5 LTE FDD Ba	-42.77 -48.35 -31.46 -41.09	5.26 6.11 5.26 6.11 nel Bandwid	3.00 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36	(dBm) -38.15 -43.10 -26.84 -35.84	-13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84	H H V
3760.00	(MHz) 3703.0 5554.5 3703.0 5554.5 LTE FDD Ba	-42.77 -48.35 -31.46 -41.09	5.26 6.11 5.26 6.11 nel Bandwid	3.00 3.00 3.00 3th 3MHz_16	Gain(dB) 9.88 11.36 9.88 11.36 6QAM_Midd	(dBm) -38.15 -43.10 -26.84 -35.84 fle Channel Peak	-13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84	H H V V
5640.00 -46.15 6.19 3.00 11.41 -40.93 -13.00 -27.93 3760.00 -32.32 5.32 3.00 10.03 -27.61 -13.00 -14.61 5640.00 -39.98 6.19 3.00 11.41 -34.76 -13.00 -21.76 LTE FDD Band 2_Channel Bandwidth 3MHz_16QAM_High Channel Ga Peak Limit (dBm) Margin (dB) Polar (dBm) Polar (dBm	(MHz) 3703.0 5554.5 3703.0 5554.5 <i>LTE FDD Ba</i> Frequency	-42.77 -48.35 -31.46 -41.09	5.26 6.11 5.26 6.11 nel Bandwid	3.00 3.00 3.00 3th 3MHz_16	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Middo Ga Antenna	(dBm) -38.15 -43.10 -26.84 -35.84 fle Channel Peak EIRP	-13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin	H H V V
3760.00	(MHz) 3703.0 5554.5 3703.0 5554.5 LTE FDD Barrequency (MHz)	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm)	5.26 6.11 5.26 6.11 nel Bandwid Pcl (dB)	3.00 3.00 3.00 ath 3MHz_16 Diatance	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Middo Ga Antenna Gain(dB)	(dBm) -38.15 -43.10 -26.84 -35.84 He Channel Peak EIRP (dBm)	-13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm)	-25.15 -30.10 -13.84 -22.84 Margin (dB)	H H V V
5640.00 -39.98 6.19 3.00 11.41 -34.76 -13.00 -21.76 LTE FDD Band 2_Channel Bandwidth 3MHz_16QAM_ High Channel Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) Diatance Diatance Gain(dB) Peak Antenna Gain(dB) Limit (dBm) Margin (dB) Polar	(MHz) 3703.0 5554.5 3703.0 5554.5 <i>LTE FDD Ba</i> Frequency (MHz) 3760.00	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16	5.26 6.11 5.26 6.11 nel Bandwid P _{cl} (dB) 5.32	3.00 3.00 3.00 3.00 ath 3MHz_16 Diatance 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Midda Ga Antenna Gain(dB) 10.03	(dBm) -38.15 -43.10 -26.84 -35.84 ### Channel Peak EIRP (dBm) -36.45	-13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45	H H V V V Polarizatio
Terpoon	3703.0 5554.5 3703.0 5554.5 LTE FDD Barrequency (MHz) 3760.00 5640.00	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15	5.26 6.11 5.26 6.11 nel Bandwid P _{cl} (dB) 5.32 6.19	3.00 3.00 3.00 3.00 ath 3MHz_16 Diatance 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Midda Ga Antenna Gain(dB) 10.03	(dBm) -38.15 -43.10 -26.84 -35.84 ### Channel Peak EIRP (dBm) -36.45 -40.93	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93	H H V V V Polarizatio
Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) Diatance Antenna (dBm) (dBm) (dBm) Diatance Gain(dB) (dBm) (dBm) Polar	3703.0 5554.5 3703.0 5554.5 LTE FDD Bate (MHz) 3760.00 5640.00	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15	5.26 6.11 5.26 6.11 nel Bandwid P _{cl} (dB) 5.32 6.19	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM_Midd Ga Antenna Gain(dB) 10.03 11.41	(dBm) -38.15 -43.10 -26.84 -35.84 ### Channel Peak EIRP (dBm) -36.45 -40.93	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93	H H V V V Polarizatio
Frequency P_{Mea} (dBm) P_{cl}	3703.0 5554.5 3703.0 5554.5 LTE FDD Bate Frequency (MHz) 3760.00 5640.00 3760.00	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15 -32.32	5.26 6.11 5.26 6.11 nel Bandwid P _{cl} (dB) 5.32 6.19 5.32	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Midda Ga Antenna Gain(dB) 10.03 11.41 10.03	(dBm) -38.15 -43.10 -26.84 -35.84 ### Channel Peak EIRP (dBm) -36.45 -40.93 -27.61	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93 -14.61	H H V V V Polarizatio
(MHz) (dBm) (dB) (dB) Diatance Antenna EIRP (dBm) (dBm) (dB) Polar	(MHz) 3703.0 5554.5 3703.0 5554.5 LTE FDD Ba Frequency (MHz) 3760.00 5640.00 3760.00 5640.00	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15 -32.32 -39.98	5.26 6.11 5.26 6.11 nel Bandwid (dB) 5.32 6.19 5.32 6.19	3.00 3.00 3.00 3.00 ath 3MHz_16 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Middo Ga Antenna Gain(dB) 10.03 11.41 10.03 11.41	(dBm) -38.15 -43.10 -26.84 -35.84 Sle Channel Peak EIRP (dBm) -36.45 -40.93 -27.61 -34.76	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93 -14.61	H H V V Polarizatio
(MHZ) (dBm) (dB) Gain(dB) (dBm) (dBm) (dB)	(MHz) 3703.0 5554.5 3703.0 5554.5 LTE FDD Barrequency (MHz) 3760.00 5640.00 3760.00 5640.00 LTE FDD Barrey LTE FDD	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15 -32.32 -39.98 and 2_Chan	5.26 6.11 5.26 6.11 nel Bandwid (dB) 5.32 6.19 5.32 6.19	3.00 3.00 3.00 3.00 ath 3MHz_16 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Middle Gale Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM _ High	(dBm) -38.15 -43.10 -26.84 -35.84 **Ile Channel Peak EIRP (dBm) -36.45 -40.93 -27.61 -34.76 Channel	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93 -14.61 -21.76	H H V V Polarization
	3703.0 5554.5 3703.0 5554.5 3703.0 5554.5 LTE FDD Ba Frequency (MHz) 3760.00 5640.00 3760.00 5640.00 LTE FDD Ba Frequency	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15 -32.32 -39.98 and 2_Chan P _{Mea}	5.26 6.11 5.26 6.11 nel Bandwid P _{cl} (dB) 5.32 6.19 5.32 6.19	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Middle Gale Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM _ High Gale Gale Gale Gale Gale Gale Gale Gale	(dBm) -38.15 -43.10 -26.84 -35.84 **Ile Channel Peak EIRP (dBm) -36.45 -40.93 -27.61 -34.76 Channel Peak	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93 -14.61 -21.76 Margin	H H V V V Polarization H H V V V
3017.0 -40.77 3.30 3.00 9.02 -30.51 -13.00 -23.51	3703.0 5554.5 3703.0 5554.5 LTE FDD Bate of the second	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15 -32.32 -39.98 and 2_Chan P _{Mea}	5.26 6.11 5.26 6.11 nel Bandwid P _{cl} (dB) 5.32 6.19 5.32 6.19	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Gain(dB) 9.88 11.36 9.88 11.36 6QAM _ Midda Ga Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM _ High Ga Antenna	(dBm) -38.15 -43.10 -26.84 -35.84 ### He Channel Peak EIRP (dBm) -36.45 -40.93 -27.61 -34.76 Peak EIRP	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93 -14.61 -21.76 Margin	H H V V V
F70F F 40 F7 0 04 0 00 1440 1450 1550 1550	(MHz) 3703.0 5554.5 3703.0 5554.5 LTE FDD Barrequency (MHz) 3760.00 5640.00 5640.00 LTE FDD Barrequency (MHz)	-42.77 -48.35 -31.46 -41.09 and 2_Chan P _{Mea} (dBm) -41.16 -46.15 -32.32 -39.98 and 2_Chan P _{Mea} (dBm)	5.26 6.11 5.26 6.11 nel Bandwid P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid P _{cl} (dB)	3.00 3.00 3.00 3.00 ath 3MHz_16 Diatance 3.00 3.00 3.00 3.00 ath 3MHz_16 Diatance	Gain(dB) 9.88 11.36 9.88 11.36 6QAM_Midd Ga Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_High Ga Antenna Gain(dB)	(dBm) -38.15 -43.10 -26.84 -35.84 ### Channel Peak EIRP (dBm) -36.45 -40.93 -27.61 -34.76 Channel Peak EIRP (dBm)	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.15 -30.10 -13.84 -22.84 Margin (dB) -23.45 -27.93 -14.61 -21.76 Margin (dB)	H H V V Polarizatio

9.62

11.46

-13.00

-13.00

-13.00

-28.35

-15.69

-21.94

Н

٧

٧

-41.35

-28.69

-34.94

3.00

3.00

3.00

5725.5

3817.0

5725.5

-46.57

-32.95

-40.16

6.24

5.36

6.24

I TE EDD Ra			<u>GLABORATOR</u> dth 5MHz 16		<u>CC ID: 2ADTE</u> Channel	E-X60L R	eport No.: LCS	S180930006AE0
	_		1	G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Folarizatio
0705.0	14.70	5.00	0.00	Gain(dB)	(dBm)	40.00	04.40	
3705.0	-41.72	5.26	3.00	9.88	-37.10	-13.00	-24.10	H
5557.5	-49.51	6.11	3.00	11.36	-44.26	-13.00	-31.26	Н
3705.0	-32.72	5.26	3.00	9.88	-28.10	-13.00	-15.10	V
5557.5	-40.54	6.11	3.00	11.36	-35.29	-13.00	-22.29	V
TE FDD Ba	and 2 Chan	nel Bandwi	dth 5MHz 16	6QAM_ Midd	lle Channel			
	_		_	G _a	Peak	Linait	N. A. a. a. a. i. a.	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	2.0.00	Gain(dB)	(dBm)	(dBm)	(dB)	
3760.0	-40.75	5.32	3.00	10.03	-36.04	-13.00	-23.04	Н
			1					
5640.0	-46.91	6.19	3.00	11.41	-41.69	-13.00	-28.69	Н
3760.0	-34.38	5.32	3.00	10.03	-29.67	-13.00	-16.67	V
5640.0	-39.32	6.19	3.00	11.41	-34.10	-13.00	-21.10	V
TE FDD Ba	and 2 Chan	nel Bandwi	dth 5MHz 16	6QAM_ High	Channel			
	_			G _a	Peak			
requency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
2045.0	44.70	F 26	2.00			12.00	24.44	11
3815.0	-41.70	5.36	3.00	9.62	-37.44	-13.00	-24.44	H
5722.5	-46.75	6.24	3.00	11.46	-41.53	-13.00	-28.53	Н
3815.0	-34.69	5.36	3.00	9.62	-30.43	-13.00	-17.43	V
5722.5	-39.09	6.24	3.00	11.46	-33.87	-13.00	-20.87	V
TE FDD B	and 2_Chan	nel Bandwi	dth 10MHz_1	6QAM_Lov	v Channel			_
requency	P_{Mea}	P _{cl}		G_a	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3710.0	-40.39	5.26	3.00	9.88	-35.77	-13.00	-22.77	Н
5565.0	-47.77	6.11	3.00	11.36	-42.52	-13.00	-29.52	Н
3710.0	-32.43	5.26	3.00	9.88	-27.81	-13.00	-14.81	V
5565.0	-40.21	6.11	3.00	11.36	-34.96	-13.00	-21.96	V
5505.0	-40.21	0.11	3.00	11.30	-54.90	-13.00	-21.90	l v
_TE FDD Ba	and 2_Chan	nel Bandwi	dth 10MHz_1	6QAM_ Mic			1	_
requency	D	D		G_a	Peak	Limit	Margin	
	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP			Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3760.0	-43.74	5.32	3.00	10.03	-39.03	-13.00	-26.03	Н
5640.0		6.19		11.41	-42.02		-29.02	H
	-47.24		3.00			-13.00		
3760.0	-33.18	5.32	3.00	10.03	-28.47	-13.00	-15.47	V
5640.0	-40.24	6.19	3.00	11.41	-35.02	-13.00	-22.02	V
TE FDD Ba	and 2_Chan	nel Bandwi	dth 10MHz_1		h Channel		.	
requency	Þ	P _{cl}		G_a	Peak	Limit	Margin	
	P _{Mea}		Diatance	Antenna	EIRP			Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3810.0	-41.03	5.36	3.00	9.62	-36.77	-13.00	-23.77	Н
5715.0		6.24		11.46	-41.36	-13.00	-28.36	H
	-46.58		3.00					
3810.0	-31.12	5.36	3.00	9.62	-26.86	-13.00	-13.86	V
5715.0	-38.25	6.24	3.00	11.46	-33.03	-13.00	-20.03	V
TE	and 2_Chan	nel Bandwi	dth 15MHz_1	6QAM_Lov			T	1
LIE FDD B		P _{cl}		G_a	Peak	Limit	Margin	
	D		1			∟IIIIIL	ı ıvıaı YIII	1 - 1 - 11
requency	P _{Mea}		Diatance	Antenna	EIRP	۱ - ۱۰ (۱۱ ام)	_	Polarization
	Р _{меа} (dBm)	(dB)	Diatance			(dBm)	(dB)	Polarizatio
requency (MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	` '	(dB)	
requency (MHz) 3715.0	(dBm) -40.31	(dB) 5.26	3.00	Gain(dB) 9.88	(dBm) -35.69	-13.00	(dB) -22.69	Polarizatio
Frequency (MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	` '	(dB)	

11.36

-30.02

-33.62

-13.00

-13.00

-17.02

-20.62

٧

٧

3.00

3.00

-34.64

-38.87

3715.0

5572.5

5.26

6.11

			<u>GLABORATOR</u> dth 15MHz 1		<u>CC ID: 2ADTE</u> Idle Channe		eport No.: LCS	S180930006AE
	-		1011112_1	G _a	Peak			
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Biatario	Gain(dB)	(dBm)	(dBm)	(dB)	. Glarizatio
3760.0	-41.67	5.32	3.00	10.03	-36.96	-13.00	-23.96	Н
5640.0	-47.94	6.19	3.00	11.41	-42.72	-13.00	-29.72	Н
								V
3760.0	-32.19	5.32	3.00	10.03	-27.48	-13.00	-14.48	V
5640.0	-41.47	6.19	3.00	11.41	-36.25	-13.00	-23.25	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 15MHz_1	16QAM_ Hig	h Channel			
Fraguanay	D	D		Ga	Peak	Limit	Morgin	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3805.0	-42.09	5.36	3.00	9.62	-37.83	-13.00	-24.83	Н
5707.5	-49.91	6.24	3.00	11.46	-44.69	-13.00	-31.69	H
								V
3805.0	-33.42	5.36	3.00	9.62	-29.16	-13.00	-16.16	
5707.5	-39.42	6.24	3.00	11.46	-34.20	-13.00	-21.20	V
TE FDD Ba	and 2 Chan	nel Bandwid	dth 20MHz 1	16QAM Lov	v Channel			
	_		_	Ga	Peak	,		
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	Janzan
2715.0	12.50	E 26	2.00			12.00	25.00	ш
3715.0	-43.50	5.26	3.00	9.88	-38.88	-13.00	-25.88	H
5572.5	-48.70	6.11	3.00	11.36	-43.45	-13.00	-30.45	Н
3715.0	-31.93	5.26	3.00	9.88	-27.31	-13.00	-14.31	V
5572.5	-40.51	6.11	3.00	11.36	-35.26	-13.00	-22.26	V
TE FDD Barrequency	and 2_Chan P _{Mea}	<i>nel Bandwid</i> P _{cl}		G _a Antenna	<i>ldle Channe</i> Peak EIRP	<i>l</i> Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance	Gain(dB)	(dBm)	(dBm)	(dB)	Folalizatio
3720.0	-41.73	5.32	3.00	10.03	-37.02	-13.00	-24.02	Н
5580.0	-49.89	6.19	3.00	11.41	-44.67	-13.00	-31.67	Н
3720.0	-33.39	5.32	3.00	10.03	-28.68	-13.00	-15.68	V
5580.0	-40.93	6.19	3.00	11.41	-35.71	-13.00	-22.71	V
0000.0	+0.00	0.10	0.00	11.71	00.71	10.00	<i>LL</i> ./ 1	
TE FDD B	and 2_Chan	nel Bandwid	dth 20MHz_1	16QAM_ Hig			1	1
requency	P_{Mea}	P _{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP		_	Polarization
(IVITIZ)	(ubiii)	(ub)		Gain(dB)	(dBm)	(dBm)	(dB)	
3800.0	-41.18	5.36	3.00	9.62	-36.92	-13.00	-23.92	Н
5700.0	-49.81	6.24	3.00	11.46	-44.59	-13.00	-31.59	H
				9.62				V
3800.0	-34.48 38.08	5.36	3.00		-30.22 33.76	-13.00	-17.22 -20.76	V
5700.0	-38.98	6.24	3.00	11.46	-33.76	-13.00	-20.76	V
TE FDD B	and 4_Chan	nel Bandwid	dth 1.4MHz_	QPSK_ Low			1	1
Frequency	P_{Mea}	P _{cl}		Ga	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3421.4	-43.46	4.62	3.00	9.81	-38.27	-13.00	-25.27	Н
5132.1	-48.62	5.94	3.00	10.86	-43.70	-13.00	-30.70	Н
3421.4	-34.47	4.62	3.00	9.81	-29.28	-13.00	-16.28	V
	-39.71	5.94	3.00	10.86	-34.79	-13.00	-21.79	V
5132.1		nel Randwii	dth 1.4MHz	OPSK Mido	lle Channel			
<u>'</u>	and 4 Chan			<u> </u>				
<u>'</u>	and 4_Chan	l Dandwid	_	C	Dools			
<u>'</u>			_	Ga	Peak	Limit	Margin	Doloni
TE FDD Ba	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		Margin (dB)	Polarizatio
TE FDD Barrequency	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	
LTE FDD Ba	P _{Mea}	P _{cl}	_	Antenna	EIRP			Н
LTE FDD Ba Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	

10.86

-31.51

-35.55

-13.00

-13.00

-18.51

-22.55

٧

٧

3465.0

5197.5

-36.72

-40.47

4.63

5.94

3.00

3.00

			G LABORATOR dth 1.4MHz_0	YLTD. FO	CC ID: 2ADTE Channel	Z-X60L Re	eport No.: LCS	S180930006AEG
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3508.6	-41.76	4.65	3.00	9.9	-36.51	-13.00	-23.51	Н
5262.9	-47.09	5.95	3.00	10.91	-42.13	-13.00	-29.13	Н
3508.6	-35.30	4.65	3.00	9.9	-30.05	-13.00	-17.05	V
5262.9	-39.19	5.95	3.00	10.91	-34.23	-13.00	-21.23	V
LTE FDD Ba	and 4 Chani	nel Bandwi	dth 3MHz Qi	DSK LOWC	hannal			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	P _{Mea}	P _{cl}		G _a Antenna	Peak EIRP	(dBm) -13.00	_	Н
(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	(dBm)	(dB)	
(MHz) 3423.0	P _{Mea} (dBm) -43.82	P _{cl} (dB) 4.62	Diatance 3.00	G _a Antenna Gain(dB) 9.81	Peak EIRP (dBm) -38.63	(dBm) -13.00	(dB) -25.63	Н
(MHz) 3423.0 5134.5	P _{Mea} (dBm) -43.82 -48.21	P _{cl} (dB) 4.62 5.94	3.00 3.00	Ga Antenna Gain(dB) 9.81 10.86	Peak EIRP (dBm) -38.63 -43.29	(dBm) -13.00 -13.00	(dB) -25.63 -30.29	H H
(MHz) 3423.0 5134.5 3423.0 5134.5	P _{Mea} (dBm) -43.82 -48.21 -34.58 -38.87	P _{cl} (dB) 4.62 5.94 4.62 5.94	3.00 3.00 3.00 3.00 3.00	Ga Antenna Gain(dB) 9.81 10.86 9.81	Peak EIRP (dBm) -38.63 -43.29 -29.39 -33.95	(dBm) -13.00 -13.00 -13.00	(dB) -25.63 -30.29 -16.39	H H V

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-41.49	4.63	3.00	9.84	-36.28	-13.00	-23.28	Н
5197.50	-46.32	5.94	3.00	10.86	-41.40	-13.00	-28.40	Н
3465.00	-34.06	4.63	3.00	9.84	-28.85	-13.00	-15.85	V
5197.50	-38.82	5.94	3.00	10.86	-33.90	-13.00	-20.90	V

LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3507.0	-43.60	4.65	3.00	9.9	-38.35	-13.00	-25.35	Н
5260.5	-45.18	5.95	3.00	10.91	-40.22	-13.00	-27.22	Н
3507.0	-34.17	4.65	3.00	9.9	-28.92	-13.00	-15.92	V
5260.5	-38.74	5.95	3.00	10.91	-33.78	-13.00	-20.78	V

LTE FDD Band 4 Channel Bandwidth 5MHz QPSK Low Channel

	aaoa		o <i>~</i> .	O. (O O				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3425.0	-41.43	4.62	3.00	9.81	-36.24	-13.00	-23.24	Н
5137.5	-48.06	5.94	3.00	10.86	-43.14	-13.00	-30.14	Н
3425.0	-35.66	4.62	3.00	9.81	-30.47	-13.00	-17.47	V
5137.5	-40.68	5.94	3.00	10.86	-35.76	-13.00	-22.76	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.0	-40.14	4.63	3.00	9.84	-34.93	-13.00	-21.93	Н
5197.5	-45.99	5.94	3.00	10.86	-41.07	-13.00	-28.07	Н
3465.0	-33.04	4.63	3.00	9.84	-27.83	-13.00	-14.83	V
5197.5	-38.88	5.94	3.00	10.86	-33.96	-13.00	-20.96	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3505.0	-42.22	4.65	3.00	9.9	-36.97	-13.00	-23.97	Н
5257.5	-47.42	5.95	3.00	10.91	-42.46	-13.00	-29.46	Н
3505.0	-35.82	4.65	3.00	9.9	-30.57	-13.00	-17.57	V
5257.5	-41.61	5.95	3.00	10.91	-36.65	-13.00	-23.65	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-X60L Report No.: LCS180930006AEG LTE FDD Band 4 Channel Bandwidth 10MHz QPSK Low Channel Peak G_a Limit Frequency P_{Mea} P_{cl} Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) -13.00 3430.0 -40.72 -22.53 4.62 3.00 9.81 -35.53Η 5145.0 -47.39 5.94 3.00 10.86 -42.47-13.00 -29.47Н 3.00 3430.0 -36.55 4.62 -13.00 -18.36 V 9.81 -31.36 5145.0 -39.87 5.94 3.00 10.86 -34.95 -13.00 -21.95 V LTE FDD Band 4 Channel Bandwidth 10MHz QPSK Middle Channel Ga Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin Diatance Antenna **EIRP** Polarization (dB) (dBm) (MHz) (dBm) (dB) (dBm) Gain(dB) 3465.0 -40.84 4.63 3.00 -35.63 -13.00 -22.63 9.84 Н 5197.5 -46.945.94 3.00 10.86 -42.02 -13.00-29.02Η 3465.0 -33.66 4.63 3.00 9.84 -28.45 -13.00 -15.45٧ -40.91 5.94 3.00 10.86 -35.99 -13.00 -22.99 V 5197.5 LTE FDD Band 4_Channel Bandwidth 10MHz_QPSK_ High Channel G_a Peak Frequency Limit P_{Mea} P_{cl} Margin Diatance Antenna **EIRP** Polarization (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) 3500.0 -41.09 4.65 9.9 -13.00 -22.84 3.00 -35.84 Н 5250.0 -45.05 5.95 3.00 10.91 -40.09-13.00-27.09Н -36.33 V 3500.0 4.65 3.00 9.9 -31.08 -13.00 -18.085250.0 -41.39 5.95 3.00 10.91 -36.43-13.00 -23.43 V LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK_ Low Channel G_a Peak $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Frequency Margin Polarization Diatance Antenna **EIRP** (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 3435.0 -41.49 4.62 -13.00 -23.30 3.00 9.81 -36.30Н 5152.5 -46.65 5.94 3.00 10.86 -41.73-13.00-28.73Н -36.83 3.00 -13.00 -18.64 V 3435.0 4.62 9.81 -31.64 5152.5 -41.37 5.94 3.00 10.86 -36.45 -13.00 -23.45 V LTE FDD Band 4 Channel Bandwidth 15MHz QPSK Middle Channel Peak G_a Frequency P_{cl} Limit Margin P_{Mea} Antenna **EIRP** Polarization Diatance (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) -42.03 -23.82 3465.0 4.63 3.00 9.84 -36.82-13.00 Η -45.30 5197.5 5.94 3.00 10.86 -40.38 -13.00 -27.38Н -36.61 -13.00 -18.40 V 3465.0 4.63 3.00 9.84 -31.40 -38.17 5.94 3.00 10.86 -33.25-13.00 -20.25V 5197.5 LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK_ High Channel G_a Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ Limit Margin **EIRP** Polarization Diatance Antenna (MHz) (dB) (dBm) (dBm) (dB) Gain(dB) (dBm) 3495.0 -41.08 4.65 3.00 9.9 -35.83-13.00 -22.83Н -47.82 -13.00 5242.5 5.95 3.00 10.91 -42.86 -29.86Н 3495.0 -35.64 4.65 3.00 9.9 -30.39 -13.00 -17.39 ٧ V -41.99 3.00 10.91 -37.03 -13.00 -24.03 5242.5 5.95 LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK_ Low Channel G_a Peak Frequency P_{cl} Limit P_{Mea} Margin Diatance Antenna **EIRP** Polarization (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3440.0 -41.25 4.62 -13.00 -23.06 3.00 -36.06 Н 9.81

10.86

9.81

10.86

-41.50

-30.65

-34.18

-13.00

-13.00

-13.00

-28.50

-17.65

-21.18

Н

V V

5160.0

3440.0

5160.0

-46.42

-35.84

-39.10

5.94

4.62

5.94

3.00

3.00

	01		LABORATOR		CC ID: 2ADTE	L-XOUL K	eport No.: LC	\$180930006AE
LIE FDD Ba	and 4_Chan	nel Bandwid	th 20MHz_C	PSK_ Middi		Т	T	T
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	1
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1711 12)	(dDIII)	(GD)		Gain(dB)	(dBm)	(dDIII)	(GD)	
3465.0	-42.55	4.63	3.00	9.84	-37.34	-13.00	-24.34	Н
5197.5	-45.46	5.94	3.00	10.86	-40.54	-13.00	-27.54	Н
3465.0	-34.79	4.63	3.00	9.84	-29.58	-13.00	-16.58	V
5197.5	-39.36	5.94	3.00	10.86	-34.44	-13.00	-21.44	V
3181.3	-39.30	3.94	3.00	10.00	-54.44	-13.00	-21.44	V
TE FDD Ba	and 4_Chan	nel Bandwid	th 20MHz_C	QPSK_ High	Channel			
	J	0		Ga	Peak	Lingit	Marain	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3490.0	-40.59	4.65	3.00	9.9	-35.34	-13.00	-22.34	Н
								H
5235.0	-46.25	5.95	3.00	10.91	-41.29	-13.00	-28.29	
3490.0	-35.38	4.65	3.00	9.9	-30.13	-13.00	-17.13	V
5235.0	-40.04	5.95	3.00	10.91	-35.08	-13.00	-22.08	V
TE END B	and 1 Chan	nal Bandwid	dth 1.4MHz_	160AM La	w Channel			
. <i>I E F D D B</i>	and 4_Chain	nei banuwic		G _a	Peak		1	1
requency	P_{Mea}	P_{cl}	Dietones	-		Limit	Margin	Dolori-otic
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` '	, ,	, ,		Gain(dB)	(dBm)	` ′	` '	
3421.4	-44.68	4.62	3.00	9.81	-39.49	-13.00	-26.49	Н
5132.1	-51.75	5.94	3.00	10.86	-46.83	-13.00	-33.83	Н
3421.4	-36.54	4.62	3.00	9.81	-31.35	-13.00	-18.35	V
5132.1	-41.21	5.94	3.00	10.86	-36.29	-13.00	-23.29	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
3465.0	-44.74	4.63	3.00	9.84	-39.53	-13.00	-26.53	Н
5197.5	-48.87	5.94	3.00	10.86	-43.95	-13.00	-30.95	Н
3465.0	-39.78	4.63	3.00	9.84	-34.57	-13.00	-21.57	V
5197.5	-44.31	5.94	3.00	10.86	-39.39	-13.00	-26.39	V
3197.3	-44.51	J.9 4	3.00	10.00	-39.39	-13.00	-20.59	
TE FDD B	and 4_Chan	nel Bandwid	th 1.4MHz_	16QAM_ Hi	f	T	1	1
requency	P_{Mea}	P_{cl}	5	Ga	Peak	Limit	Margin]
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,	, ,	(42)		Gain(dB)	(dBm)	` ′	` '	
3508.6	-44.98	4.65	3.00	9.9	-39.73	-13.00	-26.73	Н
5262.9	-48.07	5.95	3.00	10.91	-43.11	-13.00	-30.11	Н
3508.6	-39.77	4.65	3.00	9.9	-34.52	-13.00	-21.52	V
5262.9	-41.02	5.95	3.00	10.91	-36.06	-13.00	-23.06	V
						1	•	•
I E FUU Ba	ana 4_Chan	nei Bandwid	<u>มก 3MHZ_</u> 16	QAM_Low		T	1	1
requency	P_{Mea}	P_{cl}]	Ga	Peak	Limit	Margin]
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(1711 12)	(4011)	(GD)		Gain(dB)	(dBm)	(GDIII)	(45)	
3423.0	-44.03	4.62	3.00	9.81	-38.84	-13.00	-25.84	Н
5134.5	-49.92	5.94	3.00	10.86	-45.00	-13.00	-32.00	Н
3423.0	-38.93	4.62	3.00	9.81	-33.74	-13.00	-20.74	V
5134.5	-42.31	5.94	3.00	10.86	-37.39	-13.00	-24.39	V
						10.00	1.00	v
TE FDD B	and 4_Chan	nel Bandwid	th 3MHz_16	QAM _ Midd		T	1	1
_	P_{Mea}	P_{cl}	1	Ga	Peak	Limit	Margin	
-reguency							i ivicai GIII	
requency (MHz)			Diatance	Antenna	EIRP			Polarization
requency (MHz)	(dBm)	(dB)	Diatance	Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	Polarizatio
			Diatance 3.00					Polarization

9.84

10.86

-44.29

-33.37

-39.83

-13.00

-13.00

-13.00

-31.29

-20.37

-26.83

Н

٧

٧

3.00

3.00

3.00

5.94

4.63

5.94

5197.50

3465.00

5197.50

-49.21

-38.58

-44.75

			G LABORATOR		CC ID: 2ADTE	Z-X60L R	eport No.: LCS	S180930006AE
LIE FDD B	and 4_Chan	nei Bandwid	ath 3MHz_16	QAM _ High			T	1
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
3507.0	-46.25	4.65	3.00	Gain(dB) 9.9	(dBm) -41.00	-13.00	-28.00	Н
5260.5	-51.83	5.95	3.00	10.91	-46.87	-13.00	-33.87	Н
3507.0	-37.40	4.65	3.00	9.9	-32.15	-13.00	-19.15	V
5260.5	-44.44	5.95	3.00	10.91	-39.48	-13.00	-26.48	V
	•	•	1			10.00	20.10	<u> </u>
LTE FDD B	and 4_Chan	nel Bandwid	dth 5MHz_16	SQAM_Low	Channel Peak		1	1
requency	P_{Mea}	P _{cl}	Dietones	Ga	EIRP	Limit	Margin	Dolorizatio
(MHz)	(dBm)	(dB)	Diatance	Antenna		(dBm)	(dB)	Polarizatio
` ,	, ,	` '		Gain(dB)	(dBm)	, ,	` '	
3425.0	-46.15	4.62	3.00	9.81	-40.96	-13.00	-27.96	Н
5137.5	-51.74	5.94	3.00	10.86	-46.82	-13.00	-33.82	Н
3425.0	-38.86	4.62	3.00	9.81	-33.67	-13.00	-20.67	V
5137.5	-42.75	5.94	3.00	10.86	-37.83	-13.00	-24.83	V
TE END B	and 1 Chan	nol Bandwi	4th 51/14 16	SQAMMida	lla Channal			
.TE FUU B	and 4_Chan	Tiel Balluwig			Peak		ı	
requency	P _{Mea}	P _{cl}	Distance	Ga		Limit	Margin	Dalaminatia
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
, ,	, ,	` '		Gain(dB)	(dBm)	, ,	` '	
3465.0	-46.81	4.63	3.00	9.84	-41.60	-13.00	-28.60	Н
5197.5	-50.41	5.94	3.00	10.86	-45.49	-13.00	-32.49	Н
3465.0	-36.97	4.63	3.00	9.84	-31.76	-13.00	-18.76	V
5197.5	-41.69	5.94	3.00	10.86	-36.77	-13.00	-23.77	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
2505.0	, ,	` '	2.00	Gain(dB)	(dBm)	, ,	` '	11
3505.0	-43.52	4.65	3.00	9.9	-38.27	-13.00	-25.27	H
5257.5	-50.73	5.95	3.00	10.91	-45.77	-13.00	-32.77	Н
3505.0	-36.07	4.65	3.00	9.9	-30.82	-13.00	-17.82	V
5257.5	-44.47	5.95	3.00	10.91	-39.51	-13.00	-26.51	V
TE END B	and 1 Chan	nol Bandwi	4th 101/14= 1	6QAM_Lov	v Channal			
	III 4_CHAIL	Tiel Balluwid			Peak		1	1
requency	P_{Mea}	P _{cl}	Distance	Ga		Limit	Margin	Dalamin atta
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,	, ,	` '		Gain(dB)	(dBm)		` '	
3430.0	-44.48	4.62	3.00	9.81	-39.29	-13.00	-26.29	Н
5145.0	-49.76	5.94	3.00	10.86	-44.84	-13.00	-31.84	Н
3430.0	-37.35	4.62	3.00	9.81	-32.16	-13.00	-19.16	V
5145.0	-44.58	5.94	3.00	10.86	-39.66	-13.00	-26.66	V
TE EDD R	and 4 Chan	nel Randwii	dth 10MHz_1	IGOAM Mic	ldle Channe	ı		
	_			G _a	Peak			
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polatizatio
, ,	, ,	` ,		Gain(dB)	(dBm)	` ′	` '	1
3465.0	-43.73	4.63	3.00	9.84	-38.52	-13.00	-25.52	Н
5197.5	-50.37	5.94	3.00	10.86	-45.45	-13.00	-32.45	Н
3465.0	-39.48	4.63	3.00	9.84	-34.27	-13.00	-21.27	V
5197.5	-41.81	5.94	3.00	10.86	-36.89	-13.00	-23.89	V
	and 4 Chan	nel Bandwii	dth 10MHz 1	16QAM Hin	h Channel			
TF FNN R:	za i_Onun	Darravin		G _a	Peak			1
		_				1 : :4	1 N/	
	P _{Mea}	P _{cl}	Diatanco			Limit	Margin	Polarizatio
	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
requency (MHz)	(dBm)	(dB)		Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	
requency (MHz) 3500.0	(dBm) -46.17	(dB) 4.65	3.00	Antenna Gain(dB) 9.9	EIRP (dBm) -40.92	(dBm) -13.00	(dB) -27.92	Н
, ,	(dBm)	(dB)		Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	Polarizatio H H V

10.91

-32.49

-39.86

-13.00

-13.00

-19.49

-26.86

٧

٧

3.00

3.00

-37.74

-44.82

4.65

5.95

3500.0

			G LABORATOR		CC ID: 2ADTE	E-X60L R	eport No.: LCS	\$180930006AE
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 15MHz_1		v Channel		1	1
Frequency	P_{Mea}	P_{cl}	D. (Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` '	. , ,	` '		Gain(dB)	(dBm)	, ,	` ,	
3435.0	-43.56	4.62	3.00	9.81	-38.37	-13.00	-25.37	Н
5152.5	-51.44	5.94	3.00	10.86	-46.52	-13.00	-33.52	Н
3435.0	-37.79	4.62	3.00	9.81	-32.60	-13.00	-19.60	V
5152.5	-41.86	5.94	3.00	10.86	-36.94	-13.00	-23.94	V
TE FDD Ba	and 4 Chan	nel Bandwi	dth 15MHz 1	16QAM_ Mic	ddle Channe	I		
			_	G _a	Peak			
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3465.0	-45.51	4.63	3.00	9.84	-40.30	-13.00	-27.30	Н
5197.5	-48.54	5.94	3.00	10.86	-43.62	-13.00	-30.62	H
								V
3465.0	-36.09	4.63	3.00	9.84	-30.88	-13.00	-17.88	
5197.5	-41.89	5.94	3.00	10.86	-36.97	-13.00	-23.97	V
TE FDD Ba	and 4_Chan	nel Bandwi	dth 15MHz_1	16QAM_ Hig	h Channel			
roguessi				Ga	Peak	Limit	Marain	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3495.0	-44.71	4.65	3.00	9.9	-39.46	-13.00	-26.46	Н
5242.5	-49.84	5.95	3.00	10.91	-44.88	-13.00	-31.88	H
3495.0	-38.62	4.65	3.00	9.9	-33.37	-13.00	-20.37	V
5242.5	-41.52	5.95	3.00	10.91	-36.56	-13.00	-23.56	V
TE FDD Ba	and 4 Chan	nel Bandwi	dth 20MHz 1	16QAM_Lov	v Channel			
	_		_	Ga	Peak	1		
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3440.0	-43.43	4.62	3.00	9.81	-38.24	-13.00	-25.24	Н
5160.0	-51.08	5.94	3.00	10.86	-46.16	-13.00	-33.16	H
3440.0		4.62	3.00	9.81	-34.78		-21.78	V
	-39.97					-13.00		V
5160.0	-44.77	5.94	3.00	10.86	-39.85	-13.00	-26.85	V
TE FDD Ba	and 4_Chan	nel Bandwi	dth 20MHz_1	16QAM_ Mic	ddle Channe	I		
_				Ga	Peak	,		
requency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glanzatio
2465.0	40.54	4.63	2.00	, ,	, , , , , , , , , , , , , , , , , , , ,	12.00	25.20	- 11
3465.0	-43.51		3.00	9.84	-38.30	-13.00	-25.30	H
5197.5	-50.75	5.94	3.00	10.86	-45.83	-13.00	-32.83	Н
3465.0	-37.17	4.63	3.00	9.84	-31.96	-13.00	-18.96	V
5197.5	-43.06	5.94	3.00	10.86	-38.14	-13.00	-25.14	V
.TE FDD Ba	and 4_Chan	nel Bandwi	dth 20MHz 1	16QAM_ Hig	h Channel			
		-		Ga	Peak	L Sear 14	NA-mail:	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3490.0	-46.09	4.65	3.00	9.9	-40.84	-13.00	-27.84	Н
5235.0	-48.34	5.95	3.00	10.91	-43.38	-13.00	-30.38	Н
3490.0	-38.45	4.65	3.00	9.9	-33.20	-13.00	-20.20	V
5235.0	-41.71	5.95	3.00	10.91	-36.75	-13.00	-23.75	V
TE FDD Ba	and 5_Chan	nel Bandwi	dth 1.4MHz_	QPSK_ Low			_	
requency	D	ь		Ga	Peak	Limit	Margin	
	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
,				. \ ' /	. , /		1	-
1649.40	-41.95	3.86	3.00	8.56	-37.25	-13.00	-24.25	Н
1649.40 2474.10	-41.95 -44.56	3.86 4 29	3.00	8.56 6.98	-37.25 -41.87	-13.00 -13.00	-24.25 -28.87	H
1649.40 2474.10 1649.40	-41.95 -44.56	3.86 4.29 3.86	3.00 3.00 3.00	8.56 6.98 8.56	-37.25 -41.87 -29.14	-13.00 -13.00	-24.25 -28.87 -16.14	H H V

8.56

6.98

-29.14

-37.25

-13.00

-13.00

-16.14

-24.25

٧

٧

1649.40

2474.10

3.86

4.29

-33.84

-39.94

3.00

I TE ENN P			GLABORATOR	<u>YLTD. FO</u> QPSK Midd	CC ID: 2ADTE	E-X60L R	eport No.: LCS	S180930006AEC
LIE FUU B	and 5_Chan	nei banuwii 	1. 4 V 2_		Peak			1
Frequency	P _{Mea}	P_{cl}	Dietones	Ga		Limit	Margin	Dolovinotio
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
, ,	, ,	` ′		Gain(dB)	(dBm)	` '	, ,	
1673.00	-38.38	3.9	3.00	8.58	-33.70	-13.00	-20.70	Н
2509.50	-45.44	4.32	3.00	6.8	-42.96	-13.00	-29.96	Н
1673.00	-35.28	3.9	3.00	8.58	-30.60	-13.00	-17.60	V
2509.50	-37.27	4.32	3.00	6.8	-34.79	-13.00	-21.79	V
	0		•					Ш
_IE FDD B	and 5_Chan	nel Bandwid	dth 1.4MHz_	QPSK_ High			ı	1
requency	P _{Mea}	P _{cl}		Ga	Peak	Limit	Margin	
			Diatance	Antenna	EIRP		_	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1696.60	-41.82	3.91	3.00	9.06	-36.67	-13.00	-23.67	Н
2544.90	-44.53	4.32	3.00	6.65	-42.20	-13.00	-29.20	H
1696.60				9.06		-13.00	-17.34	V
	-35.49	3.91	3.00		-30.34			
2544.90	-39.24	4.32	3.00	6.65	-36.91	-13.00	-23.91	V
TE EDD B	and 5 Chan	nel Randwid	dth 3MHz O	PSK Low Ci	hannel			
	_			G _a	Peak			
requency	P _{Mea}	P _{cl}	Diotopoo	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polalizatio
	, ,	` ,		Gain(dB)	(dBm)	` '	` ′	
1651.00	-39.60	3.86	3.00	8.56	-34.90	-13.00	-21.90	Н
2476.50	-46.10	4.29	3.00	6.98	-43.41	-13.00	-30.41	Н
1651.00	-33.21	3.86	3.00	8.56	-28.51	-13.00	-15.51	V
2476.50	-36.44	4.29	3.00	6.98	-33.75	-13.00	-20.75	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
, ,	, ,	` ′		Gain(dB)	(dBm)	` '	` ′	
1673.00	-38.09	3.9	3.00	8.58	-33.41	-13.00	-20.41	Н
2509.50	-44.56	4.32	3.00	6.8	-42.08	-13.00	-29.08	Н
1673.00	-33.94	3.9	3.00	8.58	-29.26	-13.00	-16.26	V
2509.50	-36.07	4.32	3.00	6.8	-33.59	-13.00	-20.59	V
TE EDD B	and 5 Chan	nel Randwid	dth 3MHz O	PSK High C	:hannel			
	_			G _a	Peak			
requency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatalice			(dBm)	(dB)	Folalizatio
	00.40	0.04	0.00	Gain(dB)	(dBm)	40.00	00.04	
	-38.46	3.91	3.00	9.06	-33.31	-13.00	-20.31	Н
1695.00							04.46	· 🗆
2542.50	-46.49	4.32	3.00	6.65	-44.16	-13.00	-31.16	Н
	-46.49 -35.27	4.32 3.91	3.00	6.65 9.06	-44.16 -30.12	-13.00 -13.00	-31.16	V
2542.50 1695.00								
2542.50 1695.00 2542.50	-35.27 -38.21	3.91 4.32	3.00 3.00	9.06 6.65	-30.12 -35.88	-13.00	-17.12	V
2542.50 1695.00 2542.50	-35.27 -38.21 and 5_Chan	3.91 4.32 nel Bandwid	3.00 3.00	9.06 6.65 PSK_ Low C	-30.12 -35.88 hannel	-13.00 -13.00	-17.12 -22.88	V
2542.50 1695.00 2542.50 TE FDD Ba	-35.27 -38.21	3.91 4.32	3.00 3.00 ath 5MHz_Q	9.06 6.65 PSK_ Low Cl	-30.12 -35.88 hannel Peak	-13.00	-17.12	V
2542.50 1695.00 2542.50 .TE FDD Ba	-35.27 -38.21 and 5_Chan	3.91 4.32 nel Bandwid	3.00 3.00	9.06 6.65 PSK_ Low Co Ga Antenna	-30.12 -35.88 hannel Peak EIRP	-13.00 -13.00	-17.12 -22.88	V
2542.50 1695.00 2542.50 .TE FDD Barrequency (MHz)	-35.27 -38.21 and 5_Chan P _{Mea} (dBm)	3.91 4.32 nel Bandwid P _{cl} (dB)	3.00 3.00 ath 5MHz_Q	9.06 6.65 PSK_ Low Co Ga Antenna Gain(dB)	-30.12 -35.88 hannel Peak EIRP (dBm)	-13.00 -13.00 Limit (dBm)	-17.12 -22.88 Margin (dB)	V V
2542.50 1695.00 2542.50 .TE FDD Barrequency (MHz) 1653.00	-35.27 -38.21 and 5_Chan P _{Mea} (dBm) -40.20	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86	3.00 3.00 6th 5MHz_Qi Diatance 3.00	9.06 6.65 PSK_ Low Co Ga Antenna Gain(dB) 8.56	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50	-13.00 -13.00 Limit (dBm) -13.00	-17.12 -22.88 Margin (dB) -22.50	V V Polarizatio
2542.50 1695.00 2542.50 .TE FDD Barrequency (MHz)	-35.27 -38.21 and 5_Chan P _{Mea} (dBm)	3.91 4.32 nel Bandwid P _{cl} (dB)	3.00 3.00 ath 5MHz_Q	9.06 6.65 PSK_ Low Co Ga Antenna Gain(dB)	-30.12 -35.88 hannel Peak EIRP (dBm)	-13.00 -13.00 Limit (dBm)	-17.12 -22.88 Margin (dB)	V V Polarizatio
2542.50 1695.00 2542.50 -TE FDD Barrequency (MHz) 1653.00	-35.27 -38.21 and 5_Chan P _{Mea} (dBm) -40.20	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86	3.00 3.00 6th 5MHz_Qi Diatance 3.00	9.06 6.65 PSK_ Low Co Ga Antenna Gain(dB) 8.56	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50	-13.00 -13.00 Limit (dBm) -13.00	-17.12 -22.88 Margin (dB) -22.50	V V Polarizatio
2542.50 1695.00 2542.50 .TE FDD Barrequency (MHz) 1653.00 2479.50 1653.00	-35.27 -38.21 and 5_Chan P _{Mea} (dBm) -40.20 -44.37	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86 4.29	3.00 3.00 ath 5MHz_Q Diatance 3.00 3.00	9.06 6.65 PSK_ Low Cl G _a Antenna Gain(dB) 8.56 6.98	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50 -41.68	-13.00 -13.00 Limit (dBm) -13.00 -13.00	-17.12 -22.88 Margin (dB) -22.50 -28.68	V V Polarizatio
2542.50 1695.00 2542.50 TE FDD Barrequency (MHz) 1653.00 2479.50 2479.50	-35.27 -38.21 and 5_Chan. P _{Mea} (dBm) -40.20 -44.37 -36.26 -38.25	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86 4.29 3.86 4.29	3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	9.06 6.65 PSK_ Low Co G _a Antenna Gain(dB) 8.56 6.98 8.56 6.98	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50 -41.68 -31.56 -35.56	-13.00 -13.00 Limit (dBm) -13.00 -13.00	-17.12 -22.88 Margin (dB) -22.50 -28.68 -18.56	V V Polarizatio
2542.50 1695.00 2542.50 TE FDD Barrequency (MHz) 1653.00 2479.50 2479.50	-35.27 -38.21 and 5_Chan. P _{Mea} (dBm) -40.20 -44.37 -36.26 -38.25 and 5_Chan.	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86 4.29 3.86 4.29	3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	9.06 6.65 PSK_ Low Co G _a Antenna Gain(dB) 8.56 6.98 8.56 6.98	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50 -41.68 -31.56 -35.56 Channel	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	-17.12 -22.88 Margin (dB) -22.50 -28.68 -18.56 -22.56	Polarizatio H H V
2542.50 1695.00 2542.50 TE FDD Barrequency (MHz) 1653.00 2479.50 1653.00 2479.50	-35.27 -38.21 and 5_Chan. P _{Mea} (dBm) -40.20 -44.37 -36.26 -38.25	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86 4.29 3.86 4.29 nel Bandwid	3.00 3.00 3.00 dth 5MHz_Qi Diatance 3.00 3.00 3.00 3.00	9.06 6.65 PSK_ Low Co G _a Antenna Gain(dB) 8.56 6.98 8.56 6.98 PSK_ Middle G _a	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50 -41.68 -31.56 -35.56 Channel Peak	-13.00 -13.00 Limit (dBm) -13.00 -13.00	-17.12 -22.88 Margin (dB) -22.50 -28.68 -18.56	Polarizatio H H V
2542.50 1695.00 2542.50 -TE FDD Barrequency (MHz) 1653.00 2479.50 1653.00 2479.50	-35.27 -38.21 and 5_Chan. P _{Mea} (dBm) -40.20 -44.37 -36.26 -38.25 and 5_Chan.	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86 4.29 3.86 4.29	3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	9.06 6.65 PSK_ Low Cl Ga Antenna Gain(dB) 8.56 6.98 8.56 6.98 PSK_ Middle Ga Antenna	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50 -41.68 -31.56 -35.56 Channel Peak EIRP	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	-17.12 -22.88 Margin (dB) -22.50 -28.68 -18.56 -22.56	V V Polarizatio
2542.50 1695.00 2542.50 -TE FDD Barrequency (MHz) 1653.00 2479.50 1653.00 2479.50 -TE FDD Barrequency (MHz)	-35.27 -38.21 and 5_Chan P _{Mea} (dBm) -40.20 -44.37 -36.26 -38.25 and 5_Chan P _{Mea} (dBm)	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86 4.29 3.86 4.29 nel Bandwid P _{cl} (dB)	3.00 3.00 3.00 ath 5MHz_Qi Diatance 3.00 3.00 3.00 3.00 3.00 ath 5MHz_Qi Diatance	9.06 6.65 PSK_ Low Cl Ga Antenna Gain(dB) 8.56 6.98 8.56 6.98 PSK_ Middle Ga Antenna Gain(dB)	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50 -41.68 -31.56 -35.56 Channel Peak EIRP (dBm)	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-17.12 -22.88 Margin (dB) -22.50 -28.68 -18.56 -22.56 Margin (dB)	Polarizatio H H V V
2542.50 1695.00 2542.50 LTE FDD Barrequency (MHz) 1653.00 2479.50 1653.00 2479.50 LTE FDD Barrequency	-35.27 -38.21 and 5_Chan P _{Mea} (dBm) -40.20 -44.37 -36.26 -38.25 and 5_Chan P _{Mea}	3.91 4.32 nel Bandwid P _{cl} (dB) 3.86 4.29 3.86 4.29 nel Bandwid	3.00 3.00 3.00 dth 5MHz_Qi Diatance 3.00 3.00 3.00 3.00	9.06 6.65 PSK_ Low Cl Ga Antenna Gain(dB) 8.56 6.98 8.56 6.98 PSK_ Middle Ga Antenna	-30.12 -35.88 hannel Peak EIRP (dBm) -35.50 -41.68 -31.56 -35.56 Channel Peak EIRP	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	-17.12 -22.88 Margin (dB) -22.50 -28.68 -18.56 -22.56	Polarizatio H H V

8.58

6.8

-13.00

-13.00

-13.00

-45.49

-30.54

-37.05

-32.49

-17.54

-24.05

Н

٧

٧

2509.50

1673.00

2509.50

-47.97

-35.22

-39.53

4.32

3.9

4.32

3.00

3.00

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-X60L Report No.: LCS180930006AEG LTE FDD Band 5 Channel Bandwidth 5MHz QPSK High Channel Peak G_a Limit Frequency P_{Mea} P_{cl} Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dB) (dBm) Gain(dB) (dBm) 1693.00 -41.49 -23.34 3.91 3.00 9.06 -36.34-13.00Η -46.01 2539.50 4.32 3.00 6.65 -43.68-13.00 -30.68 Н 3.00 1693.00 -36.06 3.91 -13.00 -17.91 V 9.06 -30.912539.50 -38.42 4.32 3.00 6.65 -36.09 -13.00 -23.09 V LTE FDD Band 5 Channel Bandwidth 10MHz QPSK Low Channel G_a Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) -21.74 1658.00 -39.44 3.86 3.00 8.56 -34.74-13.00 Η 2487.00 -46.59 4.29 3.00 6.98 -43.90-13.00-30.90Η -13.00 1658.00 -36.31 3.86 3.00 8.56 -31.61 -18.61 ٧ 2487.00 -39.49 4.29 3.00 6.98 -36.80 -13.00 -23.80 ٧ LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ Middle Channel $\,G_a\,$ Peak $\mathsf{P}_{\mathsf{Mea}}$ Frequency P_{cl} Limit Margin Antenna **EIRP** Polarization Diatance (MHz) (dBm) (dBm) (dB) (dB) (dBm) Gain(dB) -40.34 1673.00 3.9 -13.00 -22.66 3.00 8.58 -35.66Н 2509.50 -45.89 4.32 3.00 6.8 -43.41 -13.00-30.41Н V 1673.00 -34.66 3.9 3.00 8.58 -29.98 -13.00 -16.982509.50 -39.42 4.32 3.00 6.8 -36.94-13.00 -23.94 V LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ High Channel G_a Peak P_{cl} $\mathsf{P}_{\mathsf{Mea}}$ Limit Frequency Margin Polarization Diatance Antenna **EIRP** (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) -19.86 1688.00 -38.01 -13.00 3.91 3.00 9.06 -32.86 Н 2532.00 -44.63 4.32 3.00 6.65 -42.30-13.00-29.30Н -34.83 3.00 9.06 -13.00 -16.68 V 1688.00 3.91 -29.68 2532.00 -38.06 4.32 3.00 6.65 -35.73 -13.00 -22.73 V LTE FDD Band 5 Channel Bandwidth 1.4MHz 16QAM Low Channel Peak G_a $\mathsf{P}_{\mathsf{Mea}}$ Frequency P_{cl} Limit Margin Antenna **EIRP** Polarization Diatance (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 1649.40 -44.06 3.86 3.00 -13.00 -26.36 8.56 -39.36Η 2474.10 -48.59 4.29 3.00 6.98 -45.90-13.00 -32.90Н 1649.40 -38.35 3.86 3.00 8.56 -33.65 -13.00 -20.65 ٧ 4.29 -13.00 V 2474.10 -40.01 3.00 6.98 -37.32-24.32LTE FDD Band 5 Channel Bandwidth 1.4MHz 16QAM Middle Channel Peak G_a $\mathsf{P}_{\mathsf{Mea}}$ Frequency P_{cl} Limit Margin **EIRP** Polarization Diatance Antenna (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) 1673.00 -43.74 3.9 3.00 8.58 -39.06-13.00 -26.06 Н -48.71 -13.00 2509.50 4.32 3.00 6.8 -46.23 -33.23Н 1673.00 -39.91 3.9 3.00 8.58 -35.23 -13.00 -22.23 ٧ V -41.14 4.32 3.00 -13.00 -25.66 2509.50 6.8 -38.66 LTE FDD Band 5 Channel Bandwidth 1.4MHz 16QAM High Channel G_{a} Peak Frequency P_{cl} Limit P_{Mea} Margin Diatance Antenna **EIRP** Polarization (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm)

9.06

6.65

9.06

6.65

-13.00

-13.00

-13.00

-13.00

-26.58

-32.36

-21.38

-27.11

Н

Н

V V

-39.58

-45.36

-34.38

-40.11

1696.60

2544.90

1696.60

2544.90

-44.73

-47.69

-39.53

-42.44

3.91

4.32

3.91

4.32

3.00

3.00

3.00

			G LABORATOR		CC ID: 2ADTE	E-X60L R	eport No.: LCS	S180930006AEC
LIE FDD Ba	and 5_Chan	nei Bandwid	ath 3MHz_16	SQAM_Low			1	
Frequency	P_{Mea}	P _{cl}	Dietopos	Ga	Peak	Limit	Margin	Dolorization
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,	, ,	, ,		Gain(dB)	(dBm)	, ,	` '	
1651.00	-44.28	3.86	3.00	8.56	-39.58	-13.00	-26.58	Н
2476.50	-49.19	4.29	3.00	6.98	-46.50	-13.00	-33.50	Н
1651.00	-36.94	3.86	3.00	8.56	-32.24	-13.00	-19.24	V
2476.50	-39.83	4.29	3.00	6.98	-37.14	-13.00	-24.14	V
LTE FDD Ba	and 5 Chan	nel Bandwid	dth 3MHz 16	6QAM_Midd	lle Channel			
	_			G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
1672.00	44.20	2.0	2.00	. ,		12.00	-26.71	ш
1673.00	-44.39	3.9	3.00	8.58	-39.71	-13.00	_	Н
2509.50	-49.07	4.32	3.00	6.8	-46.59	-13.00	-33.59	Н
1673.00	-37.14	3.9	3.00	8.58	-32.46	-13.00	-19.46	V
2509.50	-40.55	4.32	3.00	6.8	-38.07	-13.00	-25.07	V
TE FDD Ba	and 5 Chan	nel Bandwid	dth 3MHz 16	6QAM_ High	Channel			
	_			G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
1005.00	44.04	2.04	2.00	_ ` /		12.00	25.00	- 11
1695.00	-44.01	3.91	3.00	9.06	-38.86	-13.00	-25.86	H
2542.50	-47.89	4.32	3.00	6.65	-45.56	-13.00	-32.56	Н
1695.00	-38.21	3.91	3.00	9.06	-33.06	-13.00	-20.06	V
2542.50	-40.76	4.32	3.00	6.65	-38.43	-13.00	-25.43	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	GQAM _ Low G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
1653.00	-43.23	3.86	3.00	8.56	-38.53	-13.00	-25.53	Н
2479.50	-47.00	4.29	3.00	6.98	-44.31	-13.00	-31.31	H
								V
1653.00	-37.03	3.86	3.00	8.56	-32.33	-13.00	-19.33	V
2479.50	-40.89	4.29	3.00	6.98	-38.20	-13.00	-25.20	l V
TE FDD B	and 5_Chan	nel Bandwid	dth 5MHz_16	QAM_ Midd				T
Frequency	P_{Mea}	P _{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1711 12)	(dBiii)	(GD)		Gain(dB)	(dBm)	(dDIII)	(GD)	
1673.00	-42.31	3.9	3.00	8.58	-37.63	-13.00	-24.63	Н
2509.50	-47.63	4.32	3.00	6.8	-45.15	-13.00	-32.15	Н
1673.00	-36.37	3.9	3.00	8.58	-31.69	-13.00	-18.69	V
2509.50	-40.08	4.32	3.00	6.8	-37.60	-13.00	-24.60	V
TE END R	and 5 Chan	nel Randwii	Hth 5MH= 16	GQAM High	Channel			
	_			G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatanas			Limit	Margin	Polorizatio
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` '	` ,	` '		Gain(dB)	(dBm)	` ′	` '	
1693.00	-42.14	3.91	3.00	9.06	-36.99	-13.00	-23.99	Н
2539.50	-48.30	4.32	3.00	6.65	-45.97	-13.00	-32.97	Н
1693.00	-36.19	3.91	3.00	9.06	-31.04	-13.00	-18.04	V
	-41.51	4.32	3.00	6.65	-39.18	-13.00	-26.18	V
2539.50				1604M La	v Channel			
	and 5 Chan	nel Randwii	1111 1111111111					
	_	nel Bandwid I	λίη ΤΟΙΝΙΠΖ <u>΄</u> Ι					
2539.50 LTE FDD Ba Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
<i>LTE FDD Ba</i> Frequency	P _{Mea}	P _{cl}	_	Ga	Peak		_	Polarizatio

8.56

6.98

-44.45

-31.97

-39.87

-13.00

-13.00

-13.00

-31.45

-18.97

-26.87

Н

٧

٧

2487.00

1658.00

2487.00

-47.14

-36.67

-42.56

4.29

3.86

4.29

3.00

3.00

			G LABORATOR		CC ID: 2ADTE		eport No.: LC	S180930006AEC
LTE FDD Ba	and 5_Chan	nei Banawi	dth 10MHz_1	_	Idle Channe	1		1
Frequency	P_{Mea}	P_{cl}	Dieteres	Ga	Peak	Limit	Margin	Dolovinotio
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,		` '		Gain(dB)	(dBm)	` ′	` '	
1673.00	-42.59	3.9	3.00	8.58	-37.91	-13.00	-24.91	H
2509.50	-49.80	4.32	3.00	6.8	-47.32	-13.00	-34.32	Н
1673.00	-36.76	3.9	3.00	8.58	-32.08	-13.00	-19.08	V
2509.50	-41.63	4.32	3.00	6.8	-39.15	-13.00	-26.15	V
LTE FDD Ba	and 5 Chan	nel Bandwi	dth 10MHz_1	16QAM Hig	h Channel			
	_		_	Ga	Peak	l insit	Manain	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1688.00	-44.52	3.91	3.00	9.06	-39.37	-13.00	-26.37	Н
2532.00	-48.25	4.32	3.00	6.65	-45.92	-13.00	-32.92	Н
								V
1688.00	-38.86	3.91	3.00	9.06	-33.71	-13.00	-20.71	
2532.00	-40.15	4.32	3.00	6.65	-37.82	-13.00	-24.82	V
TE FDD B	and 7_Chan	nel Bandwi	dth 5MHz_Qi	PSK_ Low C	hannel			
requency	P _{Mea}	P _{cl}		Ga	Peak	Limit	Margin	
			Diatance	Antenna	EIRP		_	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5005.0	-38.32	5.88	3.00	10.77	-33.43	-13.00	-20.43	Н
7507.5	-44.39	7.12	3.00	12.26	-39.25	-13.00	-26.25	H
		5.88						V
5005.0	-34.03		3.00	10.77	-29.14	-13.00	-16.14	V
7507.5	-39.77	7.12	3.00	12.26	-34.63	-13.00	-21.63	V
TE FDD Ba	and 7_Chan	nel Bandwi	dth 5MHz_Q	PSK_ Middle				
Frequency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5070.0	-41.70	5.9	3.00	10.81	-36.79	-13.00	-23.79	Н
7605.0	-46.29	7.19	3.00	12.32	-41.16	-13.00	-28.16	Н
5070.0	-35.15	5.9	3.00	10.81	-30.24	-13.00	-17.24	V
7605.0	-38.13	7.19	3.00	12.32	-33.00	-13.00	-20.00	V
LTE FDD B	and 7_Chan	nel Bandwi	dth 5MHz_Qi	PSK_ High C			1	
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1711 12)	(dDIII)	(GD)		Gain(dB)	(dBm)	(dDiii)	(GD)	
5135.0	-39.41	5.94	3.00	10.86	-34.49	-13.00	-21.49	Н
7702.5	-44.31	7.25	3.00	12.98	-38.58	-13.00	-25.58	Н
5135.0	-34.56	5.94	3.00	10.86	-29.64	-13.00	-16.64	V
7702.5	-39.55	7.25	3.00	12.98	-33.82	-13.00	-20.82	V
								<u> </u>
LIE FUU B	ana /_Chan	riei Bandwi	utn TUMHZ_(QPSK_ Low		1	T	
Frequency	P_{Mea}	P_{cl}	1	Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1711 14)	(dDIII)	(ub)	<u> </u>	Gain(dB)	(dBm)	(dDIII)	(45)	1
5010.0	-40.80	5.88	3.00	10.77	-35.91	-13.00	-22.91	Н
7515.0	-46.09	7.12	3.00	12.26	-40.95	-13.00	-27.95	Н
5010.0	-35.23	5.88	3.00	10.77	-30.34	-13.00	-17.34	V
		7.12						V
7515.0	-38.08	7.12	3.00	12.26	-32.94	-13.00	-19.94	V
LTE FDD Ba	and 7_Chan	nel Bandwi	dth 10MHz_0	QPSK_ Middl		1	1	
	P_{Mea}	P_{cl}	1	Ga	Peak	Limit	Margin	
-regnency i	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
	(UDIII)	(ub)	1	Gain(dB)	(dBm)	(ubill)	(ub)	1
requency (MHz)	(==)	, ,		Call (ab)	(abiii)			
(MHz)	<u> </u>	5.9	3.00			-13.00	-21.72	Н
(MHz) 5070.0	-39.63	5.9 7 19	3.00	10.81	-34.72	-13.00 -13.00	-21.72 -29.61	H
(MHz) 5070.0 7605.0	-39.63 -47.74	7.19	3.00	10.81 12.32	-34.72 -42.61	-13.00	-29.61	Н
5070.0	-39.63			10.81	-34.72			

7605.0

-36.19

7.19

3.00

-31.06

-13.00

-18.06

٧

LTE FDD Ba			<u>GLABORATOR</u> dth 10MHz (<u>YLTD. F</u> QPSK_High	<u>CC ID: 2ADTE</u> Channel	C-X60L R	eport No.: LCS	S180930006AE
	_			G _a	Peak	,		
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5130.0	-38.98	5.94	3.00	10.86	-34.06	-13.00	-21.06	Н
7695.0	-45.52	7.25	3.00	12.98	-39.79	-13.00	-26.79	Н
5130.0	-33.91	5.94	3.00	10.86	-28.99	-13.00	-15.99	V
7695.0	-37.51	7.25	3.00	12.98	-31.78	-13.00	-18.78	V
TE FDD Ba	and 7_Chan	nel Bandwi	dth 15MHz_0	QPSK_ Low (Channel			
-roguenes/	D	D		Ga	Peak	Limit	Morgin	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5015.0	-40.45	5.88	3.00	10.77	-35.56	-13.00	-22.56	Н
7522.5	-44.31	7.12	3.00	12.26	-39.17	-13.00	-26.17	Н
5015.0	-33.69	5.88	3.00	10.77	-28.80	-13.00	-15.80	V
7522.5	-37.39	7.12	3.00	12.26	-32.25	-13.00	-19.25	V
TE FDD Ba	and 7 Chan	nel Bandwi	dth 15MHz (QPSK Middl	e Channel			
	_			G _a	Peak			1
requency	P_{Mea}	P_{cl}	Diotopos		EIRP	Limit	Margin	Polorizotic
(MHz)	(dBm)	(dB)	Diatance	Antenna		(dBm)	(dB)	Polarization
` ,	, ,	` '		Gain(dB)	(dBm)	, ,	` '	
5070.0	-40.71	5.9	3.00	10.81	-35.80	-13.00	-22.80	Н
7605.0	-46.92	7.19	3.00	12.32	-41.79	-13.00	-28.79	Н
5070.0	-34.12	5.9	3.00	10.81	-29.21	-13.00	-16.21	V
7605.0	-39.82	7.19	3.00	12.32	-34.69	-13.00	-21.69	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
5405.0		5.04	0.00	Gain(dB)	(dBm)	40.00	04.05	.
5125.0	-39.77	5.94	3.00	10.86	-34.85	-13.00	-21.85	H
7687.5	-47.57	7.25	3.00	12.98	-41.84	-13.00	-28.84	Н
5125.0	-35.44	5.94	3.00	10.86	-30.52	-13.00	-17.52	V
7687.5	-38.70	7.25	3.00	12.98	-32.97	-13.00	-19.97	V
TF FDD Ba	and 7 Chan	nel Bandwii	dth 20MHz (QPSK Low(Channel			
				G _a	Peak			
requency	P_{Mea}	P_{cl}	Diotopoo	u	EIRP	Limit	Margin	Dolorizatio
(MHz)	(dBm)	(dB)	Diatance	Antenna		(dBm)	(dB)	Polarization
` ′	` ′	` '		Gain(dB)	(dBm)	` ′	` ′	
5020.0	-40.38	5.88	3.00	10.77	-35.49	-13.00	-22.49	Н
7530.0	-44.10	7.12	3.00	12.26	-38.96	-13.00	-25.96	Н
5020.0	-33.40	5.88	3.00	10.77	-28.51	-13.00	-15.51	V
7530.0	-37.83	7.12	3.00	12.26	-32.69	-13.00	-19.69	V
TE END R	and 7 Chan	nel Randwii	dth 20MHz (QPSK_ Middl	e Channel			
	_			G _a	Peak			
requency	P_{Mea}	P_{cl}	Dictorio			Limit	Margin	Delani
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ′		` '		Gain(dB)	(dBm)	` ′	` ′	1
5070.0	-38.50	5.9	3.00	10.81	-33.59	-13.00	-20.59	Н
7605.0	-46.21	7.19	3.00	12.32	-41.08	-13.00	-28.08	Н
5070.0	-36.13	5.9	3.00	10.81	-31.22	-13.00	-18.22	V
7605.0	-37.92	7.19	3.00	12.32	-31.22	-13.00	-19.79	V
								<u> </u>
	_Channel Ba	ndwidth 20	<u>MHz_QPSK_</u>	_ High Chani			1	1
<u>.TE FDD 7_</u>	ı .			Ga	Peak	Limit	Margin	
1	D					∟IIIIIL	ı ıvıaı UIII	1
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	(dD\		Polarization
1	P _{Mea} (dBm)	(dB)	Diatance			(dBm)	(dB)	Polarizatio
requency (MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	, ,	(dB)	
requency (MHz) 5120.0	(dBm) -40.81	(dB) 5.94	3.00	Gain(dB) 10.86	(dBm) -35.89	-13.00	(dB) -22.89	Н
Frequency (MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	, ,	(dB)	

12.98

-31.56

-33.80

-13.00

-13.00

-18.56

-20.80

5120.0

7680.0

-36.48

-39.53

5.94

7.25

3.00

3.00

٧

٧

I TE EDD R	CS COMPLIA			GQAM_Low	<u>CC ID: 2ADTE</u> Channel	E-X60L R	eport No.: LCS	S180930006AEC
	_		1011 51411 12_10	G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Biatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glanzation
5005.0	-42.85	5.88	3.00	10.77	-37.96	-13.00	-24.96	Н
7507.5	-48.31	7.12	3.00	12.26	-43.17	-13.00	-30.17	H
5005.0	-36.43	5.88	3.00	10.77	-31.54	-13.00	-18.54	V
		7.12	1		-31.54			V
7507.5	-41.47	7.12	3.00	12.26	-30.33	-13.00	-23.33	l v
TE FDD B	and 7_Chan	nel Bandwid	dth 5MHz_16	QAM _ Mida			T	Т
Frequency	P_{Mea}	P _{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1711 12)	, ,	, ,		Gain(dB)	(dBm)	, ,	` '	
5070.0	-42.29	5.9	3.00	10.81	-37.38	-13.00	-24.38	Н
7605.0	-46.10	7.19	3.00	12.32	-40.97	-13.00	-27.97	Н
5070.0	-38.68	5.9	3.00	10.81	-33.77	-13.00	-20.77	V
7605.0	-40.46	7.19	3.00	12.32	-35.33	-13.00	-22.33	V
TE EDD P	and 7 Chan	nal Pandwi	NH 51111- 16	6QAM_ High	Channal			
	_		1011 51411 12_10	G _a	Peak	1		
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Biatario	Gain(dB)	(dBm)	(dBm)	(dB)	. Glanzano
5135.0	-42.38	5.94	3.00	10.86	-37.46	-13.00	-24.46	Н
7702.5	-49.52	7.25	3.00	12.98	-43.79	-13.00	-30.79	H
								V
5135.0	-37.61	5.94	3.00	10.86	-32.69	-13.00	-19.69	
7702.5	-41.75	7.25	3.00	12.98	-36.02	-13.00	-23.02	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
5010.0	-44.76	5.88	3.00	10.77	-39.87	-13.00	-26.87	Н
7515.0	-46.47	7.12	3.00	12.26	-41.33	-13.00	-28.33	Н
5010.0	-39.77	5.88	3.00	10.77	-34.88	-13.00	-21.88	V
7515.0	-42.66	7.12	3.00	12.26	-37.52	-13.00	-24.52	V
	and 7 Chair	nal Dandui	HL 10111- 1	160 AM Min	Idla Chama	ı		
TE FUU B	and /_Chan		itn TUIVI⊓Z_T 	GAM _ Mid G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diataile	Gain(dB)		(dBm)	(dB)	Folanzalic
E070.0	4445		2.00	. ,	(dBm)	40.00	00.04	11
5070.0	-44.15	5.9	3.00	10.81	-39.24	-13.00	-26.24	H
7605.0	-47.81	7.19	3.00	12.32	-42.68	-13.00	-29.68	H
5070.0	-37.74	5.9	3.00	10.81	-32.83	-13.00	-19.83	V
	-39.59	7.19	3.00	12.32	-34.46	-13.00	-21.46	V
7605.0		7.10	0.00	12.02	-54.40	.0.00		
				6QAM_ Hig	h Channel			
LTE FDD Ba	and 7_Chan	nel Bandwid	oth 10MHz_1	6QAM_ Hig Ga	<i>h Channel</i> Peak		<u> </u>	
TE FDD Ba	and 7_Chan	nel Bandwid		6QAM _ Hig G _a Antenna	<i>h Channel</i> Peak EIRP	Limit	Margin	Polarizatio
TE FDD Ba	and 7_Chan	nel Bandwid	oth 10MHz_1	6QAM_ Hig Ga	<i>h Channel</i> Peak		<u> </u>	Polarizatio
LTE FDD Ba	and 7_Chan	nel Bandwid	oth 10MHz_1	6QAM _ Hig G _a Antenna	<i>h Channel</i> Peak EIRP	Limit	Margin	Н
LTE FDD Ba Frequency (MHz)	and 7_Chan P _{Mea} (dBm)	nel Bandwid P _{cl} (dB)	th 10MHz_1 Diatance	6QAM_ Hig G _a Antenna Gain(dB)	h Channel Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	
Erequency (MHz) 5130.0 7695.0	P _{Mea} (dBm) -44.67	P _{cl} (dB) 5.94 7.25	Diatance 3.00 3.00	Ga Hig Ga Antenna Gain(dB) 10.86 12.98	h Channel Peak EIRP (dBm) -39.75 -40.87	Limit (dBm) -13.00 -13.00	Margin (dB) -26.75 -27.87	Н
LTE FDD Ba Frequency (MHz) 5130.0	P _{Mea} (dBm)	nel Bandwid P _{cl} (dB) 5.94	th 10MHz_1 Diatance 3.00	GaAM_Hig Ga Antenna Gain(dB) 10.86	h Channel Peak EIRP (dBm) -39.75	Limit (dBm) -13.00	Margin (dB) -26.75	H H
Erequency (MHz) 5130.0 7695.0 5130.0 7695.0	P _{Mea} (dBm) -44.67 -46.60 -39.21 -40.51	P _{cl} (dB) 5.94 7.25 5.94 7.25	Diatance 3.00 3.00 3.00 3.00 3.00 3.00	GaAM_ Hig Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98	h Channel Peak EIRP (dBm) -39.75 -40.87 -34.29 -34.78	Limit (dBm) -13.00 -13.00 -13.00	Margin (dB) -26.75 -27.87 -21.29	H V
Errequency (MHz) 5130.0 7695.0 5130.0 7695.0	P _{Mea} (dBm) -44.67 -46.60 -39.21 -40.51	nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25	Diatance 3.00 3.00 3.00 3.00 3.00 3.00	GQAM _ Hig G _a Antenna Gain(dB) 10.86 12.98 10.86 12.98	h Channel Peak EIRP (dBm) -39.75 -40.87 -34.29 -34.78	Limit (dBm) -13.00 -13.00 -13.00	Margin (dB) -26.75 -27.87 -21.29 -21.78	H H V
Erequency (MHz) 5130.0 7695.0 5130.0 7695.0 T695.0	P _{Mea} (dBm) -44.67 -46.60 -39.21 -40.51 and 7_Chan	nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mel Bandwid Pcl	1th 10MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00 3.00	GQAM _ Hig G _a Antenna Gain(dB) 10.86 12.98 10.86 12.98	h Channel Peak EIRP (dBm) -39.75 -40.87 -34.29 -34.78 v Channel Peak	Limit (dBm) -13.00 -13.00 -13.00 -13.00	Margin (dB) -26.75 -27.87 -21.29 -21.78	H H V V
ETE FDD Base Frequency (MHz) 5130.0 7695.0 5130.0 7695.0	P _{Mea} (dBm) -44.67 -46.60 -39.21 -40.51	nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25	Diatance 3.00 3.00 3.00 3.00 3.00 3.00	GQAM_Hig Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98	h Channel Peak EIRP (dBm) -39.75 -40.87 -34.29 -34.78 v Channel Peak EIRP	Limit (dBm) -13.00 -13.00 -13.00	Margin (dB) -26.75 -27.87 -21.29 -21.78	H H V
Errequency (MHz) 5130.0 7695.0 5130.0 7695.0	P _{Mea} (dBm) -44.67 -46.60 -39.21 -40.51 and 7_Chan	nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mel Bandwid Pcl	1th 10MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00 3.00	GQAM _ Hig G _a Antenna Gain(dB) 10.86 12.98 10.86 12.98	h Channel Peak EIRP (dBm) -39.75 -40.87 -34.29 -34.78 v Channel Peak	Limit (dBm) -13.00 -13.00 -13.00 -13.00	Margin (dB) -26.75 -27.87 -21.29 -21.78	H H V V

10.77

12.26

-13.00

-13.00

-13.00

-31.46

-21.49

-24.08

Н

٧

٧

-44.46

-34.49

-37.08

3.00

3.00

3.00

7.12

5.88

7.12

7522.5

5015.0

7522.5

-49.60

-39.38

-42.22

			<u> LABORATOR</u> Ith 15MHz 1		<u>CC ID: 2ADTE</u> Idle Channe		eport No.: LCS	S180930006AEC
	_		1011112_1	G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatario	Gain(dB)	(dBm)	(dBm)	(dB)	. Granzatio
5070.0	-41.71	5.9	3.00	10.81	-36.80	-13.00	-23.80	Н
7605.0	- 4 1.71	7.19	3.00	12.32	-42.58	-13.00	-29.58	Н
								V
5070.0	-36.33	5.9	3.00	10.81	-31.42	-13.00	-18.42	V
7605.0	-40.52	7.19	3.00	12.32	-35.39	-13.00	-22.39	V
LTE FDD Ba	and 7 Chan	nel Bandwid	th 15MHz 1	16QAM_ Hig	h Channel			
				Ga	Peak	l ivanit	Manain	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5125.0	-41.20	5.94	3.00	10.86	-36.28	-13.00	-23.28	Н
7687.5	-49.72	7.25	3.00	12.98	-43.99	-13.00	-30.99	H
				10.86				V
5125.0	-38.30	5.94	3.00		-33.38	-13.00	-20.38	
7687.5	-40.81	7.25	3.00	12.98	-35.08	-13.00	-22.08	V
TE FDD Ba	and 7 Chan	nel Bandwid	ith 20MHz 1	16QAM_Lov	v Channel			
	_		_	G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
5020.0	44.24	E 00	2.00			12.00	26.25	ш
5020.0	-44.24	5.88	3.00	10.77	-39.35	-13.00	-26.35	H
7530.0	-46.52	7.12	3.00	12.26	-41.38	-13.00	-28.38	Н
5020.0	-39.44	5.88	3.00	10.77	-34.55	-13.00	-21.55	V
7530.0	-39.45	7.12	3.00	12.26	-34.31	-13.00	-21.31	V
	and /_Chan	nei Bandwid	IIN 20MHZ_ I	6QAM_ Mic	ale Channe	!	T	1
	P _{Mea}	P _{cl}	Diatance	G _a Antenna	Peak EIRP	Limit	Margin	Polarizatio
requency (MHz)	P_{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
				Antenna	EIRP (dBm)			
(MHz) 5070.0	(dBm) -43.88	(dB) 5.9	3.00	Antenna Gain(dB) 10.81	EIRP (dBm) -38.97	(dBm) -13.00	(dB) -25.97	Н
(MHz) 5070.0 7605.0	(dBm) -43.88 -49.62	(dB) 5.9 7.19	3.00 3.00	Antenna Gain(dB) 10.81 12.32	EIRP (dBm) -38.97 -44.49	(dBm) -13.00 -13.00	(dB) -25.97 -31.49	H
(MHz) 5070.0 7605.0 5070.0	(dBm) -43.88 -49.62 -36.75	(dB) 5.9 7.19 5.9	3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81	EIRP (dBm) -38.97 -44.49 -31.84	(dBm) -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84	H H V
(MHz) 5070.0 7605.0	(dBm) -43.88 -49.62	(dB) 5.9 7.19	3.00 3.00	Antenna Gain(dB) 10.81 12.32	EIRP (dBm) -38.97 -44.49	(dBm) -13.00 -13.00	(dB) -25.97 -31.49	H
(MHz) 5070.0 7605.0 5070.0 7605.0	(dBm) -43.88 -49.62 -36.75 -41.36	(dB) 5.9 7.19 5.9 7.19	3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81	EIRP (dBm) -38.97 -44.49 -31.84 -36.23	(dBm) -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84	H V
5070.0 7605.0 5070.0 7605.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan	(dB) 5.9 7.19 5.9 7.19	3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23	H H V
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Base Frequency	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea}	(dB) 5.9 7.19 5.9 7.19 nel Bandwid P _{cl}	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin	H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Ba	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan	(dB) 5.9 7.19 5.9 7.19	3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23	H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Batering (MHz)	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm)	(dB) 5.9 7.19 5.9 7.19 nel Bandwid P _{cl} (dB)	3.00 3.00 3.00 3.00 3.00 tth 20MHz_1	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna Gain(dB)	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 -1dmit (dBm)	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB)	H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94	3.00 3.00 3.00 3.00 3.00 tth 20MHz_1 Diatance	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna Gain(dB) 10.86	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42	H H V V V Polarizatio
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Bateries (MHz) 5120.0 7680.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25	3.00 3.00 3.00 3.00 3.00 tth 20MHz_1 Diatance 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna Gain(dB) 10.86 12.98	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25	H H V V V Polarization
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5120.0 7680.0 5120.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94	3.00 3.00 3.00 3.00 3.00 th 20MHz_1 Diatance 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna Gain(dB) 10.86 12.98 10.86	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90	H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Bateries (MHz) 5120.0 7680.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25	3.00 3.00 3.00 3.00 3.00 tth 20MHz_1 Diatance 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna Gain(dB) 10.86 12.98	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25	H H V V V Polarization
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93	(dB) 5.9 7.19 5.9 7.19 mel Bandwid P _{cl} (dB) 5.94 7.25 5.94 7.25	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Hig Ga Antenna Gain(dB) 10.86 12.98 10.86	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90	H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Higher Garrian Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low (EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20	H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 LTE FDD Barrequency (MHz)	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Chan P _{Mea}	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Higher) Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low (Ga)	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin	H H V V V
(MHz) 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Hightary Hightary Hight	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20	H H V V V
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 TE FDD Barrequency (MHz)	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm)	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB)	3.00 3.00 3.00 3.00 3.00 tth 20MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00 idth 5MHz_0 Diatance	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Hightary Hightary Hight	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB)	H H V V V Polarization
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 TE FDD Barrequency (MHz) 1413.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -44.72	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low Ga Antenna Gain(dB) 9.04	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40	Polarization H H V V V Polarization H H H H H H H H H H H H H H H H H H H
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 TE FDD Barrequency (MHz) 1413.0 2118.9	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -44.84 -46.98	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mel Bandw Pcl (dB) 3.72 4.23	3.00 3.00 3.00 3.00 3.00 3.00 th 20MHz_1 Diatance 3.00 3.00 3.00 3.00 idth 5MHz_0 Diatance 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Hightary Hightary Hight	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47	Polarization Polarization H H V V V Polarization H H H H H H H H H H H H H H H H H H H
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 TE FDD Barrequency (MHz) 1413.0	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -44.72	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 6QAM_Hig Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low Ga Antenna Gain(dB) 9.04	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40	Polarization H H V V V Polarization H H H H H H H H H H H H H H H H H H H
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 TE FDD Barrequency (MHz) 1413.0 2118.9	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -44.84 -46.98	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mel Bandw Pcl (dB) 3.72 4.23	3.00 3.00 3.00 3.00 3.00 3.00 th 20MHz_1 Diatance 3.00 3.00 3.00 3.00 idth 5MHz_0 Diatance 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Hightary Hightary Hight	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47	H H V V V Polarization H H H H H H H H H H H H H H H H H H H
(MHz) 5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 TE FDD Barrequency (MHz) 1413.0 2118.9 1413.0 2118.9	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -45.84 -39.60	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72 4.23 3.72 4.23	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 10.81 12.32 (6QAM_Hightarrow) Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low (Ga Antenna Gain(dB) 9.04 8.6 9.04 8.6	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47 -27.82 -35.23	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47 -14.82	Polarization H H V V V Polarization H H V V V
(MHz) 5070.0 7605.0 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 LTE FDD Barrequency (MHz) 1413.0 2118.9 1413.0 2118.9	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -45.84 -39.60	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72 4.23 3.72 4.23	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 (6QAM_Hightary Hightary Hight	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47 -27.82 -35.23	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47 -14.82	Polarization Polarization H H V V Polarization H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 LTE FDD Barrequency (MHz) 1413.0 2118.9 1413.0 2118.9	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -45.84 -33.14 -39.60 and 17_Cha	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72 4.23 nnel Bandw	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 10.81 12.32 (6QAM_Hightarrow) Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low (Ga Antenna Gain(dB) 9.04 8.6 9.04 8.6 QPSK_Middle Ga	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47 -27.82 -35.23	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47 -14.82 -22.23	Polarization H H V V V Polarization H H V V V V
(MHz) 5070.0 7605.0 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 LTE FDD Barrequency (MHz) 1413.0 2118.9 LTE FDD Barrequency LTE FDD Barrequency 1413.0 2118.9 LTE FDD Barrequency	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -45.84 -33.14 -39.60 and 17_Cha	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72 4.23 3.72 4.23 mnel Bandw Pcl	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 10.81 12.32 (6QAM_Hightarrow) Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low (Ga Antenna Gain(dB) 9.04 8.6 9.04 8.6 QPSK_Middle Ga Antenna Antenna	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47 -27.82 -35.23 he Channel Peak EIRP	(dBm) -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47 -14.82 -22.23	Polarization Polarization H H V V Polarization H H V V
(MHz) 5070.0 7605.0 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 LTE FDD Barrequency (MHz) 1413.0 2118.9 LTE FDD Barrequency (MHz)	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -40.72 -45.84 -33.14 -39.60 and 17_Cha P _{Mea} (dBm)	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72 4.23 nnel Bandw	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 10.81 12.32 (6QAM_Hightarrow) Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low (Ga Antenna Gain(dB) 9.04 8.6 9.04 8.6 QPSK_Middle Ga	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47 -27.82 -35.23	(dBm) -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47 -14.82 -22.23	Polarization H H V V V Polarization H H V V V V
(MHz) 5070.0 7605.0 5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5120.0 7680.0 5120.0 7680.0 LTE FDD Barrequency (MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Barrequency	(dBm) -43.88 -49.62 -36.75 -41.36 and 7_Chan P _{Mea} (dBm) -44.34 -46.98 -36.82 -40.93 and 17_Cha P _{Mea} (dBm) -45.84 -33.14 -39.60 and 17_Cha	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mnel Bandw Pcl (dB) 3.72 4.23 3.72 4.23 mnel Bandw Pcl	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 10.81 12.32 (6QAM_Hightarrow) Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low (Ga Antenna Gain(dB) 9.04 8.6 9.04 8.6 QPSK_Middle Ga Antenna Antenna	EIRP (dBm) -38.97 -44.49 -31.84 -36.23 h Channel Peak EIRP (dBm) -39.42 -41.25 -31.90 -35.20 Channel Peak EIRP (dBm) -35.40 -41.47 -27.82 -35.23 he Channel Peak EIRP	(dBm) -13.00	(dB) -25.97 -31.49 -18.84 -23.23 Margin (dB) -26.42 -28.25 -18.90 -22.20 Margin (dB) -22.40 -28.47 -14.82 -22.23	Polarization H H V V V Polarization H H V V V V

8.26

-31.99

-34.01

-13.00

-13.00

-18.99

-21.01

٧

٧

1420.0

2130.0

-36.12

-38.02

4.78

4.25

3.00

Margin M				G LABORATOR		CC ID: 2ADTE	C-X60L R	eport No.: LCS	S180930006AEC
Prequency Press	LIE FUU B	and 17_Cha	nnei Banaw	<u>llatin SMHZ_C</u>					1
MHz (dBm) (dB) Dilatance Gain(dB) (dBm) (dBm) (dB) 1427.0 -39.70 4.78 3.00 8.91 -35.57 -13.00 -22.57 1427.0 -33.33 4.78 3.00 8.91 -35.57 -13.00 -22.58 1427.0 -33.33 4.78 3.00 8.91 -29.20 -13.00 -16.20 1427.0 -33.33 4.78 3.00 8.91 -29.20 -13.00 -16.20 1427.0 -38.94 4.25 3.00 8.26 -34.93 -13.00 -21.93 1427.0 -38.94 4.25 3.00 8.26 -34.93 -13.00 -21.93 1427.0 -38.94 4.25 3.00 8.26 -34.93 -13.00 -21.93 1427.0 -46.05 4.23 3.00 8.26 -34.93 -13.00 -23.68 1418.0 -41.34 3.72 3.00 9.04 -36.02 -13.00 -23.68 1418.0 -33.19 3.72 3.00 9.04 -27.87 -13.00 -23.68 1418.0 -33.19 3.72 3.00 9.04 -27.87 -13.00 -14.87 -2127.0 -36.46 4.23 3.00 8.6 -41.68 -13.00 -23.68 1418.0 -33.97 4.78 3.00 8.6 -32.09 -13.00 -19.09 1420.0 -39.77 4.78 3.00 8.26 -41.15 -13.00 -22.64 -42.13 -22.13 -	Frequency	P_{Mea}	P _{cl}	Diotopoo			Limit	Margin	Dolorizatio
1427.0 -39.70 4.78 3.00 8.91 -35.57 -13.00 -22.57	(MHz)		(dB)	Diatance			(dBm)	(dB)	Polarization
Polar	1407.0	, ,	` '	0.00	` ,		, ,	` '	
1427.0									H
Temporary Phase Part Diatance Canada									Н
Terpuancy									V
Frequency P _{Neas} P _d (dBm)	2140.5	-38.94	4.25	3.00	8.26	-34.93	-13.00	-21.93	V
Frequency (MHz) P _{Mea} (dBm) P _d (dB) Diatance (dBm) Class (dBm) (d	LTE FDD Ba	and 17 Cha	nnel Bandw	ridth 10MHz	QPSK Low	Channel			
Perequency Per		_							
Margin M				Diatance				_	Polarizatio
1418.0	(MHz)	(dBm)	(dB)	Diatarioc			(dBm)	(dB)	1 Glarizatio
12127.0	1410.0	44.24	2.72	2.00	` '		12.00	22.02	ш
1418.0									H
Color									Н
TEFDD Band 17_Channel Bandwidth 10MHz									V
Pack Pack Pack Pack Pack Diatance Antenna Gain(dB) (dBm) (2127.0	-36.46	4.23	3.00	8.6	-32.09	-13.00	-19.09	V
Pack Pack Pack Pack Pack Diatance Antenna Gain(dB) (dBm) (TE FDD Ba	and 17 Cha	nnel Bandw	ridth 10MHz	QPSK Midd	dle Channel			
Prequency (MHz)									
MHz				Diatance					Polarizatio
1420.0	(MHz)		(dB)	Diataile			(dBm)	(dB)	i Giarizatio
2130.0	4400.0	20.77	4.70	2.00			42.00	00.04	
1420.0									Н
Columbia									Н
Company Comp	1420.0	-36.10			8.91	-31.97		-18.97	V
Pack	2130.0	-36.40	4.25	3.00	8.26	-32.39	-13.00	-19.39	V
2133.0				Diatance	Antenna	EIRP			Polarizatio
1422.0	1422.0	-40.61	4.78	3.00	8.91	-36.48	-13.00	-23.48	Н
1422.0	2133.0	-47.67	4.25	3.00	8.26	-43.66	-13.00	-30.66	Н
Columbia									V
Company Part									V
Frequency (MHz) (dBm) (dB) Diatance (Antenna Gain(dB) (dBm)				П					1
Pola	LIE FUU B	and 17_Cha	nnei Banaw	<u> atn 5 MHZ_1</u>					
(MHz) (dBm) (dB) Diatance Gain(dB) Afficilita Gain(dB) (dBm) -20.89 2118.9 -47.97 4.23 3.00 8.6 -43.60 -13.00 -30.60 2118.9 -36.58 3.72 3.00 9.04 -31.26 -13.00 -18.26 2118.9 -36.20 4.23 3.00 8.6 -31.83 -13.00 -18.26 2118.9 -36.20 4.23 3.00 8.6 -31.83 -13.00 -18.26 2118.9 -36.20 4.23 3.00 8.6 -31.83 -13.00 -18.83 LTE FDD Band 17 Channel Bandwidth 5MHz 16QAM Manual M			_		(🛋				
1413.0	Frequency	' PMaa	l Pa		u		l imit	Margin	
2118.9				Diatance	Antenna	EIRP			Polarizatio
1413.0	(MHz)	(dBm)	(dB)		Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	
1413.0	(MHz) 1413.0	(dBm) -39.21	(dB) 3.72		Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	Н
TE FDD Band 17_Channel Bandwidth 5MHz_16QAM_Middle Channel Frequency (MHz)	(MHz) 1413.0	(dBm) -39.21	(dB) 3.72	3.00	Antenna Gain(dB) 9.04	EIRP (dBm) -33.89	(dBm) -13.00	(dB) -20.89	
Frequency (MHz)	(MHz) 1413.0 2118.9	(dBm) -39.21 -47.97	(dB) 3.72 4.23	3.00 3.00	Antenna Gain(dB) 9.04 8.6	EIRP (dBm) -33.89 -43.60	(dBm) -13.00 -13.00	(dB) -20.89 -30.60	Н
Frequency (MHz) P _{Mea} (dBm) P _{CI} (dB) Diatance G _a Antenna Gain(dB) (dBm) Peak EIRP (dBm) (dBm) Limit (dBm) (dBm) Margin (dB) Pola (dBm) 1420.0 -41.96 4.78 3.00 8.91 -37.83 -13.00 -24.83 2130.0 -46.73 4.25 3.00 8.26 -42.72 -13.00 -29.72 1420.0 -36.50 4.78 3.00 8.91 -32.37 -13.00 -19.37 2130.0 -37.39 4.25 3.00 8.26 -33.38 -13.00 -20.38 LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM _ High Channel Frequency (MHz) P _{Mea} (dBm) P _{CI} (dB) Diatance Ga Antenna EIRP (dBm) (dBm) Limit (dBm) (dBm) Pola (dBm)	(MHz) 1413.0 2118.9 1413.0	(dBm) -39.21 -47.97 -36.58	(dB) 3.72 4.23 3.72	3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04	EIRP (dBm) -33.89 -43.60 -31.26	(dBm) -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26	H
Polation	(MHz) 1413.0 2118.9 1413.0 2118.9	(dBm) -39.21 -47.97 -36.58 -36.20	(dB) 3.72 4.23 3.72 4.23	3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6	EIRP (dBm) -33.89 -43.60 -31.26 -31.83	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26	H V
(MHz) (dBm) (dB) Diatance Gain(dB) (dBm) Antenna Gain(dB) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) Polation 1420.0 -41.96 4.78 3.00 8.91 -37.83 -13.00 -24.83 2130.0 -46.73 4.25 3.00 8.26 -42.72 -13.00 -29.72 1420.0 -36.50 4.78 3.00 8.91 -32.37 -13.00 -19.37 2130.0 -37.39 4.25 3.00 8.26 -33.38 -13.00 -20.38 LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM_High Channel Frequency (MHz) Polation Polation Antenna Gain(dB) EIRP (dBm) Limit (dBm) Margin (dB) Polation	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Ba	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha	(dB) 3.72 4.23 3.72 4.23 nnel Bandw	3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6	EIRP (dBm) -33.89 -43.60 -31.26 -31.83	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26 -18.83	H H V
1420.0 -41.96 4.78 3.00 8.91 -37.83 -13.00 -24.83 2130.0 -46.73 4.25 3.00 8.26 -42.72 -13.00 -29.72 1420.0 -36.50 4.78 3.00 8.91 -32.37 -13.00 -19.37 2130.0 -37.39 4.25 3.00 8.26 -33.38 -13.00 -20.38 LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM_High Channel Frequency (MHz) P _{Mea} (dBm) P _{Cl} (dB) Diatance Gain(dB) EIRP (dBm) Limit (dBm) Margin (dB) Pola	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Ba	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha	(dB) 3.72 4.23 3.72 4.23 nnel Bandw	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 Idle Channe Peak	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26 -18.83	H H V V
2130.0 -46.73 4.25 3.00 8.26 -42.72 -13.00 -29.72 1420.0 -36.50 4.78 3.00 8.91 -32.37 -13.00 -19.37 2130.0 -37.39 4.25 3.00 8.26 -33.38 -13.00 -20.38 LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM_High Channel Ga Peak Limit (dBm) Margin (dB) Frequency (MHz) P _{Mea} (dBm) P _{Cl} (dB) Diatance Gain(dB) EIRP (dBm) Limit (dBm) Margin (dB)	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Baterrequency	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea}	(dB) 3.72 4.23 3.72 4.23 nnel Bandw P _{cl}	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 6QAM_Mid Ga Antenna	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 ddle Channe Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26 -18.83	H H V V
1420.0 -36.50 4.78 3.00 8.91 -32.37 -13.00 -19.37 2130.0 -37.39 4.25 3.00 8.26 -33.38 -13.00 -20.38 TE FDD Band 17_Channel Bandwidth 5MHz_16QAM_High Channel Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) Diatance Ga Antenna Gain(dB) Limit (dBm) (dBm) Margin (dB) Pola	(MHz) 1413.0 2118.9 1413.0 2118.9 TE FDD Bateriequency (MHz)	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm)	(dB) 3.72 4.23 3.72 4.23 nnel Bandw Pcl (dB)	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 GAM_ Mid Ga Antenna Gain(dB)	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 Idle Channe Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 / Limit (dBm)	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB)	H H V V
2130.0 -37.39 4.25 3.00 8.26 -33.38 -13.00 -20.38 LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM _ High Channel Frequency (MHz) P _{Mea} (dBm) P _{Cl} (dB) Diatance (dB) Feak Antenna (dBm) Limit (dBm) Margin (dB) Pola (dBm) Pola (dBm) <td>(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Barrequency (MHz) 1420.0</td> <td>(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P_{Mea} (dBm) -41.96</td> <td>(dB) 3.72 4.23 3.72 4.23 nnel Bandw Pcl (dB) 4.78</td> <td>3.00 3.00 3.00 3.00 3.00 idth 5MHz_1 Diatance</td> <td>Antenna Gain(dB) 9.04 8.6 9.04 8.6 Gam_ Mid Ga Antenna Gain(dB) 8.91</td> <td>EIRP (dBm) -33.89 -43.60 -31.26 -31.83 ddle Channe Peak EIRP (dBm) -37.83</td> <td>(dBm) -13.00 -13.00 -13.00 -13.00 (dBm) -13.00 Limit (dBm) -13.00</td> <td>(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83</td> <td>H H V V V Polarizatio</td>	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Barrequency (MHz) 1420.0	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96	(dB) 3.72 4.23 3.72 4.23 nnel Bandw Pcl (dB) 4.78	3.00 3.00 3.00 3.00 3.00 idth 5MHz_1 Diatance	Antenna Gain(dB) 9.04 8.6 9.04 8.6 Gam_ Mid Ga Antenna Gain(dB) 8.91	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 ddle Channe Peak EIRP (dBm) -37.83	(dBm) -13.00 -13.00 -13.00 -13.00 (dBm) -13.00 Limit (dBm) -13.00	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83	H H V V V Polarizatio
LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM _ High Channel Frequency P _{Mea} P _{cl} Diatance G _a Peak Limit Margin (dBm) (dBm) (dBm) (dBm) Pola	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Barrequency (MHz) 1420.0	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96	(dB) 3.72 4.23 3.72 4.23 nnel Bandw Pcl (dB) 4.78	3.00 3.00 3.00 3.00 3.00 idth 5MHz_1 Diatance	Antenna Gain(dB) 9.04 8.6 9.04 8.6 Gam_ Mid Ga Antenna Gain(dB) 8.91	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 ddle Channe Peak EIRP (dBm) -37.83	(dBm) -13.00 -13.00 -13.00 -13.00 (dBm) -13.00 Limit (dBm) -13.00	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83	H H V V V Polarizatio
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Base Frequency (MHz) 1420.0 2130.0	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96 -46.73	(dB) 3.72 4.23 3.72 4.23 nnel Bandw P _{cl} (dB) 4.78 4.25	3.00 3.00 3.00 3.00 <i>idth 5MHz_1</i> Diatance 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 9.04 6QAM_Mid Ga Antenna Gain(dB) 8.91 8.26	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 ddle Channe Peak EIRP (dBm) -37.83 -42.72	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83 -29.72	H H V V Polarizatio
Frequency P_{Mea} (dBm) P_{cl}	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Bateries (MHz) 1420.0 2130.0 1420.0	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96 -46.73 -36.50	(dB) 3.72 4.23 3.72 4.23 nnel Bandw P _{cl} (dB) 4.78 4.25 4.78	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 9.04 Ga Antenna Gain(dB) 8.91 8.26 8.91	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 Idle Channe Peak EIRP (dBm) -37.83 -42.72 -32.37	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83 -29.72 -19.37	H H V V V Polarization
(MHz) (dBm) (dB) (dB) Diatance Antenna (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm)	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Ba Frequency (MHz) 1420.0 2130.0 1420.0 2130.0	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96 -46.73 -36.50 -37.39	(dB) 3.72 4.23 3.72 4.23 nnel Bandw P _{cl} (dB) 4.78 4.25 4.78 4.25	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 9.04 8.6 Gan Antenna Gain(dB) 8.91 8.26 8.91 8.26	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 ddle Channe Peak EIRP (dBm) -37.83 -42.72 -32.37 -33.38	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83 -29.72 -19.37	H H V V Polarizatio
(MHz) (dBm) (dB) Diatance Antenna Entry (dBm) (dB) Total	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Barrier Frequency (MHz) 1420.0 2130.0 1420.0 2130.0 LTE FDD Barrier LTE FDD Bar	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96 -46.73 -36.50 -37.39 and 17_Cha	(dB) 3.72 4.23 3.72 4.23 nnel Bandw P _{cl} (dB) 4.78 4.25 4.78 4.25 nnel Bandw	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 9.04 8.6 Gan Gan Antenna Gain(dB) 8.91 8.26 8.91 8.26 8.91 8.26	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 Idle Channe Peak EIRP (dBm) -37.83 -42.72 -32.37 -33.38 In Channel	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83 -29.72 -19.37 -20.38	H H V V Polarization H H V V
	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Bate of the second of the se	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96 -46.73 -36.50 -37.39 and 17_Cha	(dB) 3.72 4.23 3.72 4.23 nnel Bandw P _{cl} (dB) 4.78 4.25 4.78 4.25 nnel Bandw P _{cl}	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 9.04 8.6 Ga Antenna Gain(dB) 8.91 8.26 8.91 8.26 8.91 GAM_Hig Ga	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 Idle Channe Peak EIRP (dBm) -37.83 -42.72 -32.37 -33.38 In Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00 / Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -Limit	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83 -29.72 -19.37 -20.38 Margin	H H V V V
1421.0 -41.04 4.70 3.00 8.91 -37.31 -13.00 -24.51	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Ba Frequency (MHz) 1420.0 2130.0 1420.0 2130.0 LTE FDD Ba Frequency	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96 -46.73 -36.50 -37.39 and 17_Cha	(dB) 3.72 4.23 3.72 4.23 nnel Bandw P _{cl} (dB) 4.78 4.25 4.78 4.25 nnel Bandw P _{cl}	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.04 8.6 9.04 8.6 9.04 8.6 Ga Antenna Gain(dB) 8.91 8.26 8.91 8.26 8.91 8.26 Antenna Gain(dB)	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 Idle Channe Peak EIRP (dBm) -37.83 -42.72 -32.37 -33.38 In Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 / Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -Limit	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83 -29.72 -19.37 -20.38 Margin	H H V V V Polarization H H V V V
0440 5 40.00 4.05 0.00 0.00 40.07 40.00 00.07	(MHz) 1413.0 2118.9 1413.0 2118.9 LTE FDD Bate of the second of the se	(dBm) -39.21 -47.97 -36.58 -36.20 and 17_Cha P _{Mea} (dBm) -41.96 -46.73 -36.50 -37.39 and 17_Cha P _{Mea} (dBm)	(dB) 3.72 4.23 3.72 4.23 nnel Bandw Pcl (dB) 4.78 4.25 4.78 4.25 nnel Bandw Pcl (dB)	3.00 3.00 3.00 3.00 3.00 idth 5MHz_1 Diatance 3.00 3.00 3.00 3.00 idth 5MHz_1 Diatance	Antenna Gain(dB) 9.04 8.6 9.04 8.6 9.04 8.6 Gaa Antenna Gain(dB) 8.91 8.26 8.91 8.26 8.91 8.26 Antenna Gain(dB) 8.91 8.26	EIRP (dBm) -33.89 -43.60 -31.26 -31.83 ddle Channe Peak EIRP (dBm) -37.83 -42.72 -32.37 -33.38 th Channel Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 / Limit (dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm)	(dB) -20.89 -30.60 -18.26 -18.83 Margin (dB) -24.83 -29.72 -19.37 -20.38 Margin (dB)	H H V V Polarizatio

8.91

8.26

-42.37

-30.54

-34.69

-13.00

-13.00

-13.00

-29.37

-17.54

-21.69

Н

٧

٧

2140.5

1427.0

2140.5

-46.38

-34.67

-38.70

4.25

4.78

4.25

3.00

3.00

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-X60L Report No.: LCS180930006AEG LTE FDD Band 17 Channel Bandwidth 10MHz 16QAM Low Channel

				<u> </u>				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1418.0	-38.08	3.72	3.00	9.04	-32.76	-13.00	-19.76	Н
2127.0	-44.45	4.23	3.00	8.6	-40.08	-13.00	-27.08	Н
1418.0	-34.85	3.72	3.00	9.04	-29.53	-13.00	-16.53	V
2127.0	-36.95	4.23	3.00	8.6	-32.58	-13.00	-19.58	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM _ Middle Channel

Frequency	P _{Mea}	P _{cl}	Diatance	G _a Antenna	Peak EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1420.0	-38.66	4.78	3.00	8.91	-34.53	-13.00	-21.53	Н
2130.0	-45.32	4.25	3.00	8.26	-41.31	-13.00	-28.31	Н
1420.0	-33.98	4.78	3.00	8.91	-29.85	-13.00	-16.85	V
2130.0	-37.81	4.25	3.00	8.26	-33.80	-13.00	-20.80	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1427.0	-41.79	4.78	3.00	8.91	-37.66	-13.00	-24.66	Н
2140.5	-45.29	4.25	3.00	8.26	-41.28	-13.00	-28.28	Н
1427.0	-33.72	4.78	3.00	8.91	-29.59	-13.00	-16.59	V
2140.5	-36.58	4.25	3.00	8.26	-32.57	-13.00	-19.57	V

4.7 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 4, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° increments from -30° to $+50^{\circ}$. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50℃.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17;

LTE Band 2, 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

	LTE FDD Band 2									
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict					
3.40	20	2	0.001	2.50	PASS					
3.80	20	3	0.002	2.50	PASS					
4.35	20	-12	-0.006	2.50	PASS					
3.80	-30	5	0.003	2.50	PASS					
3.80	-20	1	0.001	2.50	PASS					
3.80	-10	-8	-0.004	2.50	PASS					
3.80	0	7	0.004	2.50	PASS					
3.80	10	-12	-0.006	2.50	PASS					
3.80	20	9	0.005	2.50	PASS					
3.80	30	-12	-0.006	2.50	PASS					
3.80	40	15	0.008	2.50	PASS					
3.80	50	-5	-0.003	2.50	PASS					

LTE Band 4, 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

	LTE FDD Band 4									
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict					
3.40	20	-12	-0.007	2.50	PASS					
3.80	20	-9	-0.005	2.50	PASS					
4.35	20	4	0.002	2.50	PASS					
3.80	-30	-5	-0.003	2.50	PASS					
3.80	-20	-1	-0.001	2.50	PASS					
3.80	-10	5	0.003	2.50	PASS					
3.80	0	-7	-0.004	2.50	PASS					
3.80	10	1	0.001	2.50	PASS					
3.80	20	4	0.002	2.50	PASS					
3.80	30	-12	-0.007	2.50	PASS					
3.80	40	-8	-0.005	2.50	PASS					
3.80	50	-1	-0.001	2.50	PASS					

LTE Band 5, 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

	LTE FDD Band 5										
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict						
3.40	20	-6	-0.008	2.50	PASS						
3.80	20	-10	-0.014	2.50	PASS						
4.35	20	-13	-0.018	2.50	PASS						
3.80	-30	-5	-0.007	2.50	PASS						
3.80	-20	-12	-0.017	2.50	PASS						
3.80	-10	-10	-0.014	2.50	PASS						
3.80	0	-1	-0.001	2.50	PASS						
3.80	10	-14	-0.020	2.50	PASS						
3.80	20	5	0.007	2.50	PASS						
3.80	30	3	0.004	2.50	PASS						
3.80	40	-4	-0.006	2.50	PASS						
3.80	50	2	0.003	2.50	PASS						

LTE Band 7, 5MHz bandwidth(worst case of all bandwidths and modulation type)

	,	LTE FDI	D Band 7	··· • / [/	
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	-8	-0.011	2.50	PASS
3.80	20	-12	-0.017	2.50	PASS
4.35	20	-15	-0.021	2.50	PASS
3.80	-30	-9	-0.013	2.50	PASS
3.80	-20	-5	-0.007	2.50	PASS
3.80	-10	4	0.006	2.50	PASS
3.80	0	2	0.003	2.50	PASS
3.80	10	-5	-0.007	2.50	PASS
3.80	20	-3	-0.004	2.50	PASS
3.80	30	1	0.001	2.50	PASS
3.80	40	-11	-0.015	2.50	PASS
3.80	50	-4	-0.006	2.50	PASS

LTE Band 17, 5MHz bandwidth (worst case of all bandwidths and modulation type)

	LTE FDD Band 17									
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict					
3.40	20	-8	-0.011	2.50	PASS					
3.80	20	-12	-0.017	2.50	PASS					
4.35	20	-15	-0.021	2.50	PASS					
3.80	-30	-9	-0.013	2.50	PASS					
3.80	-20	-5	-0.007	2.50	PASS					
3.80	-10	4	0.006	2.50	PASS					
3.80	0	2	0.003	2.50	PASS					
3.80	10	-5	-0.007	2.50	PASS					
3.80	20	-3	-0.004	2.50	PASS					
3.80	30	1	0.001	2.50	PASS					
3.80	40	-11	-0.015	2.50	PASS					
3.80	50	-4	-0.006	2.50	PASS					