Série de révision

Ex1

Soit X et Y deux variables aléatoires avec $E(Y) = \mu$ et $EY^2 < \infty$.

a-Montrer que la constante c qui minimise $E(Y-c)^2$ est $c=\mu$.

b-En déduire que la variable aléatoire f(X) qui minimise $E((Y - f(X))^2 / X)$ est f(X) = E(Y/X).

c-En déduire que la variable aléatoire f(X) qui minimise $E((Y - f(X))^2)$ est encore f(X) = E(Y/X).

$\mathbf{Ex2}$

Soit Y_t un processus stationnaire de moyenne 0 et soit a et b deux constantes.

a-On pose $X_t = a + bt + s_t + Y_t$, où s_t est une composante saisonnière de période 12.

Montrer que $(1-L)(1-L^{12})X_t$ est stationnaire.

b-Soit $X_t = (a + bt) s_t + Y_t$. Montrer que $(1 - L^{12})^2 X_t$ est stationnaire.

Ex3

La densité spectrale de la série temporelle X_t définie sur $[0,\pi]$ par

$$f(\omega) = \begin{cases} 100 & \text{si } \frac{\pi}{6} - 0.01 < \omega < \frac{\pi}{6} + 0.01 \\ 0 & \text{sinon} \end{cases}$$

a-Calculer $\gamma_0(X)$ et $\gamma_1(X)$.

b-Trouver la densité spectrale du processus Y_t définie par

$$Y_t = \left(1 - L^{12}\right) X_t.$$

c-Calculer la variance de Y_t .

$\mathbf{Ex4}$

I) Soit le modèle suivant

$$Y_t = 5 + \varepsilon_t + 0.5\varepsilon_{t-1}, \quad \text{où } \varepsilon_t \backsim N(0, 1).$$

Donner l'intervalle de confiance prévisionnelle de Y_{t+1} et Y_{t+2} , sachant que les dernières observations sont: 5.654; 4.686; 5.965.

II) Les valeurs -0.753; -0.954; 0.576 sont les valeurs simulées de X_8 , X_9 , X_{10} où X_t est le processus ARMA(2,1) suivant:

$$X_t - 0.1X_{t-1} - 0.12X_{t-2} = \varepsilon_t - 0.7\varepsilon_{t-1},$$

où ε_t est un bruit blanc N(0,1).

a-Calculer les prévisions de X_{11} et X_{12} .

b-Construire l'intervalle de confiance prévisionelle à 95% de X_{11} et X_{12} .

III) Donnez la prévision $\widehat{X}_n(2)$ du modèle SARIMA $(1,0,0)(0,1,1)_{12}$.

Remarque: Les ex 1,2,3 du livre Brockwell and Davis.