Practical Machine Learning - Week 3 - Random Forests

Jeff Leek, notes by Bruno Fischer Colonimos 24 juin 2017

Contents

2	Random forests principles					
3 Auxiliairy material						
Ĺ	Iris Example					
	4.1	data	- 			
	4.2	Train	a Random forests model			
	4.3	Gettir	ng a single tree from the model			
	4.4	Gettir	g Class "centers"			
	4.5	Predic	eting new values			
			testing sample			
			Predicting new values: plot and check if true			

1 Install first

randomForest, e1071

2 Random forests principles

- 1. Bootstrap samples
- 2. At each split, bootstrap variables
- 3. Grow multiple trees and **vote**

Pros:

1. Accuracy

Cons:

- 1. Speed
- 2. Interpretability
- 3. Overfitting

3 Auxiliairy material

4 Iris Example

4.1 data

4.2 Train a Random forests model

```
set.seed(975)
modFit <- train(Species~ ., data=training,method="rf", prox=TRUE) # prox?</pre>
modFit
## Random Forest
##
## 105 samples
     4 predictor
##
     3 classes: 'setosa', 'versicolor', 'virginica'
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 105, 105, 105, 105, 105, 105, ...
## Resampling results across tuning parameters:
##
##
    mtry Accuracy
                      Kappa
    2
           0.9601194 0.9394334
##
           0.9611181 0.9409730
##
    3
##
    4
           0.9600655 0.9393591
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 3.
```

4.3 Getting a single tree from the model

```
treetwo <- getTree(modFit$finalModel,k=2) # Tree no 2
# treetwo
kable(treetwo, row.names = TRUE, caption = "Tree 2")</pre>
```

Table 1: Tree 2

	left daughter	right daughter	split var	split point	status	prediction
1	2	3	4	1.75	1	0
2	4	5	4	0.75	1	0
3	0	0	0	0.00	-1	3
4	0	0	0	0.00	-1	1
5	6	7	3	5.05	1	0
6	8	9	4	1.60	1	0
7	10	11	4	1.55	1	0
8	0	0	0	0.00	-1	2
9	12	13	2	2.75	1	0
10	0	0	0	0.00	-1	3
11	0	0	0	0.00	-1	2
12	0	0	0	0.00	-1	3
13	0	0	0	0.00	-1	2

next tree

treethree <- getTree(modFit\$finalModel, $\underline{k}=3$) # Tree no 3 kable(treethree, row.names = TRUE, caption = "Tree 3")

Table 2: Tree 3

	left daughter	right daughter	split var	split point	status	prediction
1	2	3	3	2.35	1	0
2	0	0	0	0.00	-1	1
3	4	5	4	1.75	1	0
4	6	7	3	5.05	1	0
5	0	0	0	0.00	-1	3
6	0	0	0	0.00	-1	2
7	8	9	1	6.05	1	0
8	0	0	0	0.00	-1	2
9	0	0	0	0.00	-1	3

```
# library(rattle)
# library(rpart)
# fancyRpartPlot(treetwo,
# main = "Tree 2",
# palettes=c("Greys", "Oranges", "Reds") ) #==> Does not work
# These trees are differents
```

4.4 Getting Class "centers"

```
# get centers
irisP <- classCenter(training[,c(3,4)], training$Species, modFit$finalModel$prox) # return
irisP <- as.data.frame(irisP)
irisP$Species <- rownames(irisP)</pre>
```


4.5 Predicting new values

4.5.1 testing sample

```
pred <- predict(modFit,testing)
testing$predRight <- pred == testing$Species
# table(pred,testing$Species)
kable(table(pred,testing$Species), caption = "predicted (rows) vs species (columns)")</pre>
```

Table 3: predicted (rows) vs species (columns)

	setosa	versicolor	virginica
setosa	15	0	0
versicolor	0	14	1
virginica	0	1	14

4.5.2 Predicting new values: plot and check if true

scale_color_manual(values = cbbPalette) +
labs(title="newdata Predictions")

5 Notes and further resources

Notes:

- Random forests are usually one of the two top performing algorithms along with boosting in prediction contests.
- Random forests are difficult to interpret but often very accurate.
- Care should be taken to avoid overfitting (see rfcv funtion)

Further resources:

- Random forests
- Random forest Wikipedia
- Elements of Statistical Learning