13/6/15 21.

COMP - 3-4 (RC)

S.E. (Comp.) (Semester – III) (RC) Examination, May/June 2015 COMPUTER ORIENTED NUMERICAL TECHNIQUES

Duration: 3 Hours Total Marks: 100

Instruction: Attempt **any five** questions by selecting atleast **one** question from **each** Module.

MODULE-1

a) Using Bisection Method find the smallest positive root of 3x³ + 2x³ - 7 = 0, correct to two decimal places.
b) What are transcendental equations? How are they different from algebraic equations?

c) Use Gauss-Jordan's Method to find inverse of Matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$. 7

a) Develop an algorithm, flowchart and write a program to find the root of a non linear equation by Secant Method.

 Find the cube root of 24, correct to three decimal places by Newton Raphson's Method.

c) Explain various sources of errors in numerical computing.

MODULE-2

 a) The following data gives marks obtained by 100 students in a subject for an examination. Use Newton's Backward Interpolation formula, to find number of students who have scored 45 marks and above.

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	25	32	22	11	07

7

6 4

b) Find the largest eigen value and corresponding eigen vector of Matrix

$$A \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

6

c) Use Stirlings formula to compute f(12.2)

x	10	11	12	13	14
y	0.23967	0.28060	0.31788	0.35209	0.38368

7

4. a) Determine f(x) as a polynomial in x for the following data:

7

 b) Using Newton's Divided Difference Interpolation formula, compute y at x = 5.2 given

7

c) Use Jacobi's method to solve :

$$2x_1 + x_2 + x_3 = 5$$

$$3x_1 + 5x_2 + 2x_3 = 15$$

$$2x_1 + x_2 + 4x_3 = 8$$

6

MODULE - 3

5. a) Derive Newton-Cotes quadrature formula.

7

b) Use Simpson's $\frac{3}{8}^{th}$ rule to evaluate $\int_{1}^{3} \frac{x}{\sin x \cdot e^{x}} dx$ taking 6 intervals. 6

c) Write a program to implement Simpsons $\frac{1}{3}$ rd rule.

7

6. a) Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ numerically using Trapezoidal rule by taking h = 0.5

and 0.25. Use Romberg's Method to improve the result.

7

b) Use Shooting method to solve the following differential equation.

$$\frac{d^2y}{dx^2} + \frac{2dy}{dx} - \frac{y}{2} - 2.5 = 0 \text{ y(0)} = 10 \text{ and y(10)} = 6.$$

7

c) State Simpson's $\frac{1}{3}$ rd rule, derive its total error.

6

MODULE-4

7. a) Write a program to implement Euler's method.

7

6

b) Use R K method to estimate y at x = 0.5 given $\frac{dy}{dx} = \frac{x}{y}$, y(0) = 1.

c) Solve
$$\frac{dy}{dx} = x + y^2 + 1$$
, $y(0) = 0$ using Picard's Method, Hence compute y at $x = 0.1, 0.2$.

200

7

8. a) Draw a flow chart to implement RK method.

6

b) Use Euler's Predictor Corrector formula to compute y(0.2) and y(0.3) given that $dy/dx = y^2 + xy$, y(0) = 1.

7

c) State if the following piece wise polynomials are splines or not

$$f_1(x) = x + 1$$
 $-1 \le x < 0$

$$f_2(x) = 2x + 1$$
 $0 \le x < 1$

$$f_3(x) = 4 - x$$
 $1 < x < 2$

7