

Relatório de Progresso

DISTRIBUIÇÃO DE VACINAS PARA A SARS-COV-2

Agradecimentos

Na realização do presente projeto, contamos com o apoio direto ou indireto de múltiplas pessoas às quais estamos profundamente gratos. Correndo o risco de injustamente não mencionar algum dos contributos quero deixar expresso os meus agradecimentos:

- Aos Professores Paulo Teixeira, Joaquim Peixoto e Maria Cunha pela sua disponibilidade

nos trabalhos, pelo seu incentivo e igualmente pelo seu apoio na elaboração deste trabalho

Pretendemos demonstrar o meu agradecimento, a todos aqueles que, de um modo ou de outro, tornaram possível a realização do presente projeto.

A todos o nosso sincero e Muito Obrigado!

Introdução

Com este documento pretendemos mostrar o progresso e desempenho do projeto aplicando a técnica EVM.

A gestão de valor agregado ou EVM é uma metodologia utilizada para integrar scope, cronogramas e recursos na gestão de projetos, que consiste em medir objetivamente o desempenho e o progresso do projeto comparando custos e valor agregado.

A técnica do valor agregado, consiste na comparação de três curvas de desempenho:

- PV (Planned Value)
- EV (Earned Value)
- AC (Actual Cost)

Planned Value PV

O PV é o valor estimado do trabalho planejado a realizar até uma certa data.

Earned Value EV

O EV é o valor planejado do trabalho realmente completado até uma certa data.

O montante do EV de um projeto é medido pela soma do EV de cada tarefa em função da sua percentagem de conclusão.

Atual Cost AC

O AC representa o custo efetivo do trabalho realizado até ao momento.

Budget at completion

Orçamento total do projeto.

Cost Variance CV

O CV é a variação do orçamento planejado, considerando a diferença entre o valor agregado (*earned value*) e o custo real (*actual cost*). O valor positivo indica um bom desempenho.

$$CV = EV - AC$$

Schedule Variance SV

O SV é a variação do prazo planejado, considerando a diferença entre o valor agregado (earned value) e o valor planejado (planned value). O valor positivo indica que a entrega do valor é antecipada.

$$SV = EV - PV$$

Cost Performance Index CPI

O CPI é o Índice de Desempenho de Custo e verifica se os recursos estão a ser usados com eficiência. Considera a razão entre o valor agregado (*earned value*) e o custo real (*actual cost*). O CPI maior ou igual a 1 indica bom desempenho.

$$CPI = EV / AC$$

Schedule Performance Index

O SPI é o Índice de Desempenho de Prazos e verifica se o avanço no cronograma está a acontecer com eficiência. Considera a razão entre o valor agregado (*earned value*) e o valor planejado (*planned value*). O SPI maior ou igual a 1 indica bom desempenho.

$$SPI = EV / PV$$

RELATÓRIO DE PROGRESSO DO PROJETO DISTRIBUIÇÃO DE VACINAS PARA A SARS-COV-2

No caso do nosso projeto de distribuição de vacinas para a Sars-Cov-2 e tendo em conta os seguintes índices de desempenho:

Índices de Desempenho

- CPI $< 1 \Rightarrow$ Projeto está com custo maior que o previsto no orçamento.
- CPI > 1 \Rightarrow Projeto está com custo menor que o previsto no orçamento.
- CPI = $1 \Rightarrow$ Projeto está com os custos iguais aos previstos no orçamento.
- SPI < 1 ⇒ Projeto está com o cronograma atrasado em relação ao previsto.
- SPI > 1 ⇒ Projeto está com o cronograma adiantado em relação ao previsto.
- SPI = 1 ⇒ Projeto está com o cronograma em dia em relação ao previsto.

Após a aplicação da técnica EVM podemos concluir que o desempenho do projeto foi abaixo do esperado, que o custo do projeto também foi abaixo do esperado e que o retorno monetário do projeto foi de encontro com o esperado. Sendo que o CPI teve constantemente valores abaixo de 1 sabemos que o projeto está a gastar mais recursos do que os que produz, já o SPI manteve-se sempre com valores a rondar o 1 o que significa que foi eficiente na gestão do tempo. Também sabemos através do TSPI que o tempo de duração do projeto foi o previsto e que a equipa ainda deveria aumentar um pouco o seu nível de eficiência devido ao TCPI apresentar valores pouco acima de 1.

		PV	AC	EV	SV = AV =		CV = CPI =		SPI =	CSI =	TCPI = (BAC - EV) TSPI = (BAC - EV	
					EV - PV	PV - AC	EV - AC	EV / AC	EV / PV	CPI * SPI	/ (BAC - AC)	/ (BAC - PV)
	Jan	9 050	12 000	9 000	-50	-2 950	-3 000	0,75	0,99	0,75	1,06	1,00
	Fev	11 340	15 000	11 000	-340	-3 660	-4 000	0,73	0,97	0,71	1,09	1,01
	Mar	15 678	21 000	17 047	1 369	-5 322	-3 953	0,81	1,09	0,88	1,10	0,97
	Total	36.068	48 000	37.047	979	-11 032	-10 053	0.77	1 02	0.70	1 01	0.96

CPI »» Cost Performance Index				
SPI »» Schedule Performance Index				
CSI »» Cost-Schedule Index				
TCPI »» To-Complete Performance Index				
TSPI »» To-Complete Schedule Performan	ice Index			
TAC (Término Projetado, Time at Completi	on) = PAC (Té	rmino Previst	o, Plan at Com	pletion) / SPI
EAC = AC + (BAC - EV)				
EAC = BAC / CPI				
EAC = AC + (BAC - EV) / (CPI * SPI)				

Conclusão

O presente relatório é o progresso do projeto realizado no âmbito da unidade curricular do 2º e 3º ano do curso de Engenharia de Sistemas Informáticos lecionado no Instituto Politécnico Cávado do Ave. Com a realização deste trabalho conseguimos obter uma maior aprendizagem no que diz respeito às unidades curriculares de Armazenamento e Acesso a Dados, Projeto de Engenharia de Software e Análise e Modelação de Software