『多様体上の最適化理論』第1版第2刷の正誤表(2025年1月6日)

訂正箇所	誤	正
p.61, 8 行目	$t_k \coloneqq 1/(k+1)$	$oldsymbol{e}\coloneqq oldsymbol{d}/\ oldsymbol{d}\ _2,\ t_k\coloneqq 1/(k+1)$
p.61, 8 行目	$d\sin t_k$	$oldsymbol{e}\sin t_k$
p.61, 10 行目	d	e (3 箇所)
p.61, 11 行目	$oldsymbol{d} \in \mathcal{T}_{S^{n-1}}(oldsymbol{x})$	$m{e}\in\mathcal{T}_{S^{n-1}}(m{x})$ であり, $\mathcal{T}_{S^{n-1}}(m{x})$ が錐であることから $m{d}=\ m{d}\ _2m{e}\in\mathcal{T}_{S^{n-1}}(m{x})$
p.295, 下から 2 行目	$\boldsymbol{\mu}^{\top} \boldsymbol{g}(\boldsymbol{x}) = 0$	$oldsymbol{\mu}^{ op}oldsymbol{g}(x)=0$ (x のボールドを解除)

以上

『多様体上の最適化理論』第1版第1刷の正誤表(2025年1月6日)

訂正箇所	誤	正
p.39, 2 行目・3 行目	x _{K+1} (3 箇所)	$oldsymbol{x}_K$
p.44, 16 行目	(2.31)	(2.32)
p.56, 下から 2 行目	$oldsymbol{d}_k$ に対する	$oldsymbol{d}_k$ が降下方向であるとき,
p.58, 下から 5 行目	$g_i(\boldsymbol{x}) = 0$	$g_i(\boldsymbol{x}) \leq 0$
p.77, 下から 11 行目	$\mathrm{D}g_{\mathcal{A}(ar{oldsymbol{x}})}[oldsymbol{d}]$	$\mathrm{D}g_{\mathcal{A}(ar{oldsymbol{x}})}(ar{oldsymbol{x}})[oldsymbol{d}]$
p.134, 定義 5.3.4 の 3 行目	$(\mathcal{V}; y_1, y_2, \dots, y_n)$	$(\mathcal{V},\psi)=(\mathcal{V};y_1,y_2,\ldots,y_n)$
p.153, 5 行目	$X \in \mathbb{R}^n$	$X \in \mathbb{R}^{n \times n}$
p.173, 脚注 4	任意の \mathcal{H}_x	$T_xar{\mathcal{M}}$ の任意の線形部分空間 H_x
p.178, 下から 7 行目	$\mathrm{grad}f(m{x})$	$\operatorname{grad} f$
p.202, 5 行目	$c \in (a, b)$	$c \in (0,1)$
p.202, 定義 6.9.1 の 4 行目	$\gamma \colon [0,1] \in \mathcal{M}$	$\gamma \colon [0,1] o \mathcal{M}$
p.220, 下から 7 行目	M上の	<i>所</i> 上の
p.229, 下から 10 行目	x^{\star}	x * (x をボールドに)
p.248, 下から 12 行目	g の最小点	η
p.249, 定理 8.1.1 の 4 行目	仮定 7.7.1 が成り立つ	仮定 $7.7.1$ が成り立つとし, f は下に有界
p.250, 下から 5 行目	$1/\sqrt{K+2}$	$1/\sqrt{K}$
p.250, 下から 4 行目	$1/\sqrt{K+1}$	$1/\sqrt{K}$
p.257, 定理 8.2.1 の 6 行目	仮定 7.7.1 が成り立つ	仮定 $7.7.1$ が成り立つとし, f は下に有界
p.260, 定理 8.2.2 の 5 行目	仮定 7.7.1 が成り立つ	仮定 $7.7.1$ が成り立つとし, f は下に有界
p.260, 下から 12 行目	0 <	0 ≤
p.260, 下から 9 行目	$\ \eta_k\ _{x_{k+1}}^2$	$\ \eta_k\ _{x_k}^2$
p.270, 13 行目	$\rho' \le \rho < 1/4$	$\rho' < \rho < 1/4$
p.270, 下から 1 行目	(8.4)	(アルゴリズム 8.4)
p.271, 13 行目	$-\ Xv\ _2^2$ ε	$-\ Xoldsymbol{v}\ _2^2 \ \mathcal{O}$
p.276, 下から 3 行目	$T_x \mathcal{M} = T_{x_1} \mathcal{M}_1 \times T_{x_2} \mathcal{M}_2$	$T_x\bar{\mathcal{M}} = T_{x_1}\bar{\mathcal{M}}_1 \times T_{x_2}\bar{\mathcal{M}}_2$
p.281, 図 9.3	$\ \operatorname{grad} f(x_k)\ _2$ (グラフの縦軸)	$\ \operatorname{grad} f([X_k])\ _{[X_k]}$
p.283, 13 行目	$\nabla_{(\xi,\eta)}(U,V)$	$\nabla_{(\xi,\eta)}\mathrm{grad}f$
p.286, 6 行目・8 行目	(式番号)	(6 行目でなく 8 行目の式を (9.21) とする)
p.286, 10 行目	Т	Т
p.288, 下から 5 行目	(\mathbb{R}^K)	$(\mathbb{R}^N)^K$
p.289, 5 行目	\mathbb{R}^{K}	\mathbb{R}_{++}^{K}
p.290, 8 行目・11 行目	(式番号)	(8 行目を (9.28),11 行目を (9.29) とする)
p.290, 13 行目	(9.27) と (9.28)	(9.28) と (9.29)
p.291, 下から 8 行目	w_1, w_2, w_3	$\hat{w}_1, \hat{w}_2, \hat{w}_3$
p.291, 下から 1 行目	w = [0.2 0.3 0.5]	$\boldsymbol{w} = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}^{T}$
p.295, 下から 2 行目	$\boldsymbol{\mu}^{\top} \boldsymbol{g}(\boldsymbol{x}) = 0$	$\boldsymbol{\mu}^{T} \boldsymbol{g}(x) = 0 (x $ のボールドを解除)

訂正箇所	誤	Œ
p.298, 1 行目	\mathbb{R}^n	\mathbb{R}
p.299, 5 行目	$ar{x}$	$ar{x}$ $(x$ のボールドを解除)
p.305, 脚注 4	$T_{\varphi(\bar{x})}\mathcal{U} = \mathbb{R}^r$	$T_{arphi(ar{x})}arphi(\mathcal{U})=\mathbb{R}^n$
p.312, 下から 3 行目	-2x+ (2 箇所)	-2Ax $-$
p.312, 下から 1 行目	$(I_n - \boldsymbol{x} \boldsymbol{x}^\top) \max \{ \boldsymbol{0}, \boldsymbol{\mu}_k - \rho_k \boldsymbol{x} \}$	$-(I_n - \boldsymbol{x} \boldsymbol{x}^{\top}) (2A\boldsymbol{x} + \max\{\boldsymbol{0}, \boldsymbol{\mu}_k - \rho_k \boldsymbol{x}\})$
p.323, 12 行目	$\sum_{i=1}^{m}$	$\sum_{i=1}^{n}$
p.332, 式 (A.13)	x_j	e_j
p.337, 下から 13 行目	$A \in \mathbb{R}$	$A \subset \mathbb{R}$
p.350, 14 行目	線形部分空間	線形部分空間全体
p.351, 2 行目	$A, B \in \mathbb{R}^n$	$A,B \in \mathbb{R}^{n \times n}$
p.362, 1 行目	$\left. c_j(p) rac{\partial}{\partial x_i} \right _p$	$c_j(p) \frac{\partial}{\partial x_j} \bigg _p$
p.367, 9 行目	r^{2^k}	$\{r^{2^k}\}$
p.374, 1 行目	$\langle ilde{ abla}_{m{U}}m{V},m{W} angle_x$	$\langle ilde{ abla}_{m{U}} m{V}, m{W} angle_{m{x}} \; (x をボールドに)$
p.375, 18 行目・21 行目	$D(D\Phi(x))$ (2 箇所)	$D(D\Phi(x))(0_x)$
p.377	(演習問題 7.8 の解答例)	(後述)
p.379, 下から 3 行目から p.380, 2 行目	R_{x_1} (3 箇所)	$R_{x_1}^{(1)}$
p.379, 下から 3 行目から p.380, 2 行目	R_{x_2} (3 箇所)	$R_{x_2}^{(2)}$

演習問題 7.8 の解答例において,p.377 の 10 行目から 12 行目:

ここで、 $\mathbf{c} \coloneqq [C_i] \in \mathbb{R}^n$ に対して $C \coloneqq \|\mathbf{c}\|_{\varphi}$ とおくと、 $\|\mathbf{h}\|_{\varphi} < r_0$ なる任意の \mathbf{h} に対して、 $\|\mathbf{G}(\mathbf{h}) - \mathbf{G}(\mathbf{0}) - \mathbf{D}\mathbf{G}(\mathbf{0})[\mathbf{h}]\|_{\varphi} \le \left\| \|\mathbf{h}\|_{\varphi}^2 \mathbf{c} \right\|_{\varphi} = C\|\mathbf{h}\|_{\varphi}^2 = C\|\mathbf{d}\|^2$ となる.

を以下のように訂正:

ここで、ノルムの同値性からある定数 $\gamma>0$ が存在して、任意の ${m a}\in \mathbb{R}^n$ に対し $\|{m a}\|_{\varphi}\leq \gamma\|{m a}\|_2$ となるので、 ${m c}\coloneqq [C_i]\in \mathbb{R}^n$ に対して $C\coloneqq \gamma\|{m c}\|_2$ とおくと、 $\|{m h}\|_{\varphi}< r_0$ なる任意の ${m h}$ に対して、 $\|{m G}({m h})-{m G}({m 0})-{\bf D}{m G}({m 0})[{m h}]\|_{\varphi}\leq \gamma\|\|{m h}\|_{\varphi}^2{m c}\|_2=\gamma\|{m c}\|_2\|{m h}\|_{\varphi}^2=C\|{m h}\|_{\varphi}^2=C\|{m d}\|^2$ となる.

以上