Somith Das

Assignment ASN4 due 10/09/2019 at 04:59pm PDT

2019W1_ELEC_201_101102

1. (12 points)

(a) In the figure, $R = 17 \Omega$. Find, V_{th} and R_{th} , for the Thevenin equivalent seen by the 9 Ω resistor at the bottom, as per the figure below the circuit.

$$V_{th} = \underline{\hspace{1cm}} V$$

$$R_{th} = \underline{\hspace{1cm}} \Omega$$

Figure:

(b) Replace the 9 Ω resistor for a resistance that will drain maximum power off the circuit. What is the value of that resistance, R_X in ohms, and of that P_{MAX} in watts.

$$R_X = \underline{\hspace{1cm}} \Omega$$

$$P_{MAX} = \underline{\hspace{1cm}} W$$

Correct Answers:

- 69.0814
- 8.85222
- 8.85222
- 134.775

2. (12 points)

What is V_{th} and R_{th} 'seen' by R_x when $I_s = 20 A$, $R = 17 \Omega$ and $R_x = 5 \Omega$. Determine this, by simple observation, do not use calculator, nor pen or paper.

Figure:

$$V_{th} = \underline{\hspace{1cm}} V$$

$$R_{th} = \underline{\hspace{1cm}} \Omega$$

Correct Answers:

- 340
- 34

3. (12 points)

At the port 'ab' find the V_{oc} , in volts, the open circuit voltage; and also find I_{sc} , the shortcircuit current, in amps. And determine V_{TH} and R_{TH} for its Thevenin equivalent circuit, as per the figure below. R_1 is 27, R_2 is 17, R_3 is 29 all in ohms. V is 7 volts, and I is 20 amps.

Figure:

$$V_{th} = V$$

$$R_{th} = \underline{\hspace{1cm}} \Omega$$

$$V_{oc} = \underline{\hspace{1cm}} V$$

$$I_{sc} = \underline{\hspace{1cm}} A$$

Correct Answers:

- 582.705
- 39.4318
- 582.705
- 14.7775

4. (12 points)

For the circuit shown, what are the open circuit voltage, V_{oc} , and the short circuit current, Isc. V_{TH} is 29 volts, and R_{TH} is 41 ohms

Figure:

 $V_{oc} = \underline{\hspace{1cm}} V$

 $I_{sc} = \underline{\hspace{1cm}} A$

Correct Answers:

- 29
- 0.707317

5. (13 points)

The values of the elements in the circuit shown are: V_s is 9 volts, I_s is 29 amps, R_1 is 8 Ω , R_2 is 38 Ω and R_3 is 14 Ω . Find the open circuit voltage and the short circuit current at the port ab and then report the Norton equivalent parameters I_N and R_N .

Figure:

 $I_{SC} = \underline{\hspace{1cm}} A$

 $V_{OC} = \underline{\hspace{1cm}} V$

 $I_N = \underline{\hspace{1cm}} A$

$$R_N = \underline{\hspace{1cm}} \Omega$$

Correct Answers:

- −23.7609
- −255.033
- -23.7609
- 10.7333

6. (13 points)

When a 4 *A* current source is connected from (**b**) to (**a**), the voltage that appears across it is $V_{ab} = 59.6 \ V$. If you replace the current source by another with 18 A, the voltage becomes 233.2 *V*. Find the Thevenin V_{th} and R_{th} . After that, determine the value of the resistor *R* in ohms.

Figure:

 $V_{th} = \underline{\hspace{1cm}} V$

 $R_{th} = \underline{\hspace{1cm}} \Omega$

 $R = \underline{\hspace{1cm}} \Omega$

Correct Answers:

- 10
- 12.4
- 25

7. (13 points)

For the circuit in the figure, all resistors are in ohms as follows. R_1 = 15, R_2 = 14 Ω , R_3 = 16 Ω , R_4 = 7 Ω . The values of the sources are V_a = 5 volts and I_s = 6 amps. Find the Norton equivalent at port ab and also at port cd R_{Nab} , I_{ab} , R_{Ncd} , I_{cd} .

Figure:

 $R_{Nab} = \underline{\hspace{1cm}} \Omega$

 $R_{Ncd} = \underline{\hspace{1cm}} \Omega$

 $I_{ab} = \underline{\hspace{1cm}} A$

 $I_{cd} = \underline{\hspace{1cm}} A$

Correct Answers:

• 7.53478

• 5.3797

−2.77966

• 6.10386

8. (13 points)

The resistor $R_2 = 4.44444$ ohms is absorbing the maximum power that can be extracted out of the rest of the circuit. What is the value of the resistor R_1 , in ohms, and what is the mentioned maximum power in R_2 , in watts. $R_3 = 8$ ohms, $V_1 = 6$ volts, $V_2 = 6$ volts.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Figure:

$$R_1 = \underline{\hspace{1cm}} \Omega$$

$$P_{\text{max}} = \underline{\hspace{1cm}} W$$

Correct Answers:

- 10
- 0.625