

智能老人看护系统 技术 文档

任课	教帅	杨波
学	院	计算机学院
专	业	计算机科学与技术
组	别	第二组
组	长	曾灵杰
成	员	陈治杰,刘子鸣

2025年4月21日

目录

1	系统	既述 ····································	2			
2	总体设计					
	2.1	系统架构	2			
	2.2	系统组成(软、硬件)	2			
		2.2.1 硬件组成	2			
		2.2.2 软件组成	2			
	2.3	数据设计	3			
3	功能设计					
	3.1	视频采集与处理功能	3			
	3.2	行为识别功能	3			
	3.3	风险评估功能	3			
	3.4	数据可视化功能	3			
4	接口设计					
	4.1	外部接口设计	4			
		4.1.1 硬件接口	4			
		4.1.2 第三方服务接口	4			
	4.2	内部接口设计	4			
		4.2.1 模块间接口	4			
	4.3	人机接口设计	4			
		4.3.1 移动应用界面	4			
5	性能	旨标设计	4			
6	其它	设计	5			
	6.1	安全性设计	5			

1 系统概述

目前中国老龄化现象严重,60 周岁以上公民近 3 亿,而 90% 以上的养老需求依托于居家养老,因而家庭养老的智慧化改造是解决老人急难愁盼的关键因素.数据表明,随着老年人的身体协调性和反应速度下降,发生跌倒等意外的风险增加,独居老人特别是失能老人面临较高的生活风险,但是现有的视觉识别方案存在性能开销大,对特定场景的优化不佳缺陷.因此,本项目提出了一种基于行为识别的老人危险检测方案,通过视觉技术和机器识别,面向家庭和养老机构提供智慧解决方案,并建立以 app、小程序为基础的可视化交互方案,极大减小老人照料的人力开支.

2 总体设计

2.1 系统架构

本系统采用分层架构设计,分为数据采集层、数据处理层、业务逻辑层和用户 交互层四部分:

- 数据采集层: 通过摄像头等传感设备实时采集老人生活空间内的视频数据.
- 数据处理层: 包含图像预处理、人体姿态识别和行为分析三个模块, 负责从原始视频流中分析老人的行为状态.
- 业务逻辑层: 根据识别结果进行风险评估, 实现危险行为检测、报警触发和数据存储等核心功能.
- 用户交互层: 包含网页和桌面应用, 为家属和护理人员提供远程监护和告警接收服务.

2.2 系统组成(软、硬件)

2.2.1 硬件组成

- 摄像设备: 低功耗高清摄像头, 支持夜视功能
- 计算设备: 具有模型推理能力的计算机, 用于本地行为识别与初步分析
- 网络设备: 支持 Wi-Fi 和 4G 通信的网络模块, 确保数据传输稳定性

2.2.2 软件组成

- 视频采集与处理模块: 包含视频流获取、图像处理和人体检测功能
- 行为识别模型: 基于深度学习的人体姿态估计和行为分析模型
- 服务器后端: 提供数据存储、预测结果分析和 API 接口服务

• 客户端: 包括网页和桌面应用, 支持远程监控

2.3 数据设计

系统主要涉及以下几类数据:

- 视频数据: 实时采集的原始视频流和处理后的关键帧
- 行为数据: 检测到的行为类型、发生时间和持续时长等信息
- 告警数据: 告警记录, 包括告警类型、时间、处理状态和相关图像证据
- 配置数据: 系统参数设置, 如检测灵敏度、告警阈值等

系统采用关系型数据库存储用户信息和预测记录,使用对象存储保存视频片段和图像数据,实时行为数据通过时序数据库进行存储和分析.

3 功能设计

3.1 视频采集与处理功能

视频采集模块负责从摄像头获取连续视频流,并进行预处理以适应后续分析需求

3.2 行为识别功能

基于深度学习的行为识别模块是系统预测的核心,包括:

- 视频片段的分割,针对不同的场景需求采取不同的切片细粒度
- 对视频片段的预测进行交叉验证, 提高预测的准确性

3.3 风险评估功能

风险评估模块对检测到的行为进行智能判断,结合环境因素和用户设定的参数 阈值进行风险评估

3.4 数据可视化功能

移动端提供多种数据可视化功能:

- 实时监控视图: 展示当前老人活动状态和重要指标
- 行为统计报表: 分析老人日常活动规律和异常情况
- 告警历史记录: 查看历史告警详情和处理结果

4 接口设计

4.1 外部接口设计

4.1.1 硬件接口

- 网络接口: 支持以太网、Wi-Fi 进行局域网连接, 确保数据传输稳定
- 视频输入接口(可选): 支持标准协议, 兼容多种摄像头设备

4.1.2 第三方服务接口

• 短信服务 API: 用于紧急情况下发送短信通知

4.2 内部接口设计

4.2.1 模块间接口

- 视频处理模块 API: 提供视频帧获取和预处理功能
- 行为识别模型 API: 接收处理后的图像, 返回行为分析结果
- 数据存储服务 API: 提供数据库插入和查询功能

4.3 人机接口设计

4.3.1 移动应用界面

- 实时监控界面: 展示老人当前状态和活动情况
- 告警提示界面: 显示告警详情和处理选项
- 历史记录界面: 查看历史活动和告警记录

其中,考虑到老年用户的使用习惯,界面设计应简洁明了,操作流程应尽量简化,避免复杂的交互.

5 性能指标设计

鉴于本系统的主要工作环境是在家庭使用场景, 所以模型应该需要在算力较低的情况下运行 (TFLOPs \leq 30), 同时需要保证模型的推理速度大于 30FPS. 同时考虑到传输的实时性, 视频流的传输延迟应该小于 100ms, 网络带宽应该大于 1Mbps.

6 其它设计

6.1 安全性设计

对于预测结果的网络传输,采用 HTTPS 协议进行加密,确保数据传输的安全性.