2018级《高等数学 I(2)》期中考试卷参考答案

1. (本题 10 分) 求过点(2,1,3) 且与两平面 3x-y+z+6, x+2y-3z-7=0 都平行的直线的方程。

解: 所求直线的方向向量为

$$s = (3, -1, 1) \times (1, 2, -3) = \begin{vmatrix} i & j & k \\ 3 & -1 & 1 \\ 1 & 2 & -3 \end{vmatrix} = (1, 10, 7).$$

故所求的直线为 $\frac{x-2}{1} = \frac{y-1}{10} = \frac{z-3}{7}$.

2. (本题 10 分) 求球面 $x^2 + y^2 + z^2 = 9$ 与平面 x + z = 1 的交线在 xOy 面上的投影曲线的方程。

解: 消去 z 得到母线平行于 z 轴的投影柱面的方程

$$x^2 + y^2 + (1-x)^2 = 9$$

即 $2x^2 - 2x + y^2 = 8$,从而所求的投影曲线的方程为 $\begin{cases} 2x^2 - 2x + y^2 = 8, \\ z = 0. \end{cases}$

3. (本题 10分) 已知函数 $f(x,y) = \frac{e^x}{x-y}$, 求 $f_x + f_y$.

解:

$$f_x' = \frac{e^x (x - y) - e^x}{(x - y)^2}, f_y' = \frac{0 + e^x}{(x - y)^2} = \frac{e^x}{(x - y)^2}$$
$$\therefore f_x' + f_y' = \frac{e^x (x - y) - e^x + e^x}{(x - y)^2} = \frac{e^x}{x - y} = f$$

4. (本题 10 分)设 w = f(u,v) 具有二阶连续偏导数,且 u = x - cy, v = x + cy,其中 c 为非零常数。求 $w_{xx} - \frac{1}{2}w_{yy}$.

解: $W_x = f_1 + f_2$, $W_{xx} = f_{11} + 2f_{12} + f_{22}$, $W_y = c(f_2 - f_1)$,

$$w_{yy} = c \frac{\partial}{\partial y} (f_2 - f_1) = c (c f_{11} - c f_{12} - c f_{21} + c f_{22}) = c^2 (f_{11} - 2 f_{12} + f_{22}).$$

所以 $w_{xx} - \frac{1}{c^2} w_{yy} = 4 f_{12}$.

5. (本题 10 分) 求函数 $f(x,y,z) = x + y^2 + z^3$ 在球面 $x^2 + y^2 + z^2 = 3$ 上点 (1,-1,1) 处沿内法线方向的方向导数。

解:
$$\nabla f \Big|_{(1,-1,1)} = (1,2y,3z) \Big|_{(1,-1,1)} = (1,-2,3)$$

$$n = \frac{(-1,1,-1)}{\sqrt{3}}$$

$$\frac{\partial f}{\partial n} \Big|_{(1,-1,1)} = (1,-2,3) \cdot \frac{(-1,1,-1)}{\sqrt{3}} = -2\sqrt{3}$$

6 (本题 10 分) 求过点 A(1,0,0) 和 B(0,1,0) 且与 $z = x^2 + y^2$ 相切的平面方程。

解: 显然 z = 0 是一个,设切点为 $(x, y, z) = (x, y, x^2 + y^2)$,该点处的切平面的法向量为 n = (2x, 2y, -1) ,于是

 $n \perp AB \Rightarrow n \cdot AB = 0 \Rightarrow (2x, 2y, -1) \cdot (-1, 1, 0) = 0 \Rightarrow -2x + 2y = 0 \Rightarrow x = y.$

因此切点可设为 $(x_0,x_0,2x_0^2)$,故切平面方程为

$$2x_0(x-x_0) + 2x_0(y-x_0) - (z-2x_0^2) = 0$$

平面经过点 A(1,0,0), 故

$$2x_0(1-x_0) + 2x_0(0-x_0) - (0-2x_0^2) = 0 \Rightarrow x_0 = 0, \ x_0 = 1$$

于是再代入平面方程可得所求的平面为z=0和

$$2(x-1) + 2(y-1) - (z-2) = 0 \Rightarrow 2x + 2y - z = 2$$

7. (本题 10 分) 设函数 f(u,v) 可微, z=z(x,y) 由方程 $(x+1)z-y^2=x^2f(x-z,y)$ 确定,求 $dz|_{(0,1)}$

解: 将 $(x+1)z-y^2=x^2f(x-z,y)$ 两边分别关于 x,y 求导可得: $z+(x+1)z_x=2xf(x-z,y)+x^2f_1(x-z,y)(1-z_x)$,

 $(x+1)z_{y}^{'}-2y=x^{2}[f_{1}^{'}(x-z,y)(-z_{y}^{'})+f_{2}^{'}(x-z,y)\cdot 1]$

将 x = 0, y = 1代入原式可得 z = 1,因此将 x = 0, y = 1, z = 1代入关于 x 求导的式子可得: $1 + z_x = 0$,因此 $z_x = -1$,代入关于 y 求导的式子可得: $z_y - 2 = 0$,因此有 $z_y = 2$,故可得 $dz|_{0}$ y = -dx + 2dy.

8. (本题 10 分) 求函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值。

解: 令 $\begin{cases} f_x = 2x(2+y^2) = 0\\ f_y = 2x^2y + \ln y + 1 = 0 \end{cases}$ 得驻点 $(0, e^{-1})$ 。

$$\mathbb{X}\begin{bmatrix} f_{xx}(P_0) & f_{xy}(P_0) \\ f_{xy}(P_0) & f_{yy}(P_0) \end{bmatrix} = \begin{bmatrix} 2 + e^{-2} & 0 \\ 0 & e \end{bmatrix},$$

由定理可知, $(0,e^{-1})$ 是函数的极小值点, $f(0,e^{-1}) = -e^{-1}$ 。

9. (本题 12 分) 已知函数 f(x,y) = x + y + xy, 曲线 $C: x^2 + y^2 + xy = 3$, 求 f(x,y)在曲线 C上的最大方向导数.

解: 因为 f(x,y) 沿着梯度的方向的方向导数最大,且最大值为梯度的模.

$$f_x'(x,y) = 1 + y, f_y'(x,y) = 1 + x,$$

故 $gradf(x,y) = \{1+y,1+x\}$,模为 $\sqrt{(1+y)^2 + (1+x)^2}$,

此题目转化为对函数 $g(x,y) = \sqrt{(1+y)^2 + (1+x)^2}$ 在约束条件 $C: x^2 + y^2 + xy = 3$ 下的最大 值.即为条件极值问题.

为了计算简单,可以转化为对 $d(x,y) = (1+y)^2 + (1+x)^2$ 在约束条件 $C: x^2 + y^2 + xy = 3$ 下 的最大值.

构造函数:
$$F(x,y,I) = (1+y)^2 + (1+x)^2 + I(x^2+y^2+xy-3)$$

$$\begin{cases} F'_x = 2(1+x) + I(2x+y) = 0 \\ F'_y = 2(1+y) + I(2y+x) = 0 \end{cases}, \notin M_1(1,1), M_2(-1,-1), M_3(2,-1), M_4(-1,2).$$

$$\{F_y^* = 2(1+y) + I(2y+x) = 0$$
, 得到 $M_1(1,1), M_2(-1,-1), M_3(2,-1), M_4(-1,2)$

$$F_1' = x^2 + y^2 + xy - 3 = 0$$

$$d(M_1) = 8, d(M_2) = 0, d(M_3) = 9, d(M_4) = 9$$

所以最大值为 $\sqrt{9} = 3$.

10. (本题 8 分) 讨论设函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 则在 $(0, 0)$ 点的连续性

和偏导数的存在性。

解: 取
$$y=x^2$$
, : $\lim_{x\to 0} f(x,y) = \lim_{x\to 0} \frac{x^4}{x^4+x^4} = \frac{1}{2} \neq f(0,0) = 0$, $y=x^2\to 0$: $f(0,0)$ 在 $(0,0)$ 点处不连续,而 $f_x(0,0) = f_y(0,0) = 0$.

$$f(0,0)$$
 在 $f(0,0)$ 点处不连续,而 $f(0,0) = f(0,0) = 0$