TE1 AA09/10 (Teoria delle Equ	uazioni)			APPI	ELLC	A (S	Scritte	o)		Roma, 18 Giugno 2010
COGNOME	esercizi accom ETTANO RIS	npagnan SPOSTE	do le r S <i>SCRI</i>	ispost <i>TTE</i>	$\begin{array}{c} {\rm e con} \\ {\it SU A} \end{array}$	$rac{ ext{spieg}}{LTRI}$	gazion I <i>FOC</i>	ni chia GLI. S	are ed esse Scrivere il	enziali. Inserire le risposte negl proprio nome anche nell'ultimo
	FIRMA	1 2	3	4	5	6	7	8	TOT.	
1. Rispondere alle sequenti do	mande forner	ndo una	giustif	icazio	ne di	una 1	riga:			
a. È vero che $\cos \pi/40$ è u	in numero cos	struibile	?							
b. E' vero che tutti i polin	nomi di grado	4 a coe	fficient	ti real	i sono	risol	lubili	per i	adicali?	
									• • • • • • • •	
c. È vero che i campi fini	ti sono sempr	e estens	ioni no	ormali	dei le	oro so	ottoca	ampi	fondamen	ıtali?
r	1									

d. È vero che esistono estensioni di grado infinito ma algebriche?

2.	Dopo aver dato la campo è sempre un	definizione di chiusun campo infinito.	ıra algebrica di ı	ın campo, dimostr	are che una chiusura	a algebrica di un qualsias:
3.	Sia q un numero p due sottocampi no	primo tale che $p=2q$ n banali. Determinar	+1 è primo. Din li.	mostrare che il can	npo ciclotomico $\mathbf{Q}(\zeta_p)$) ammette esclusivamente

Calcolare il gruppo di Galois del polinomio $f(X) = X^4 - 2X^3 + 2X^2 + 2 \in \mathbf{Q}[X]$.	
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari
Dimostrare che il Gruppo di Galois di un polinomio irriducibile a coefficienti razionali è costituito da permutazioni p delle radici se e solo se il discriminante del polinomio è un quadrato perfetto.	ari

7. Calcolare il grado del campo di spezzamento di
$$(X^{2^{11}}-X)(X^{16}+X^8+1)\in \mathbf{F}_2[X].$$

8. Determinare il polinomio minimo di
$$\sqrt{2+\sqrt{5}}$$
 su $\mathbf{Q}[\sqrt{5}]$.