Pertemuan ke_11 Mesin Moore dan Mealy

Tim pengampu

2022

Outline

Pengantar FSA dengan Output

Mesin Moore

Mesin Mealy

Ekuivalensi Mesin Moore dan Mealy

FSA dengan Output

FSA Accepter	FSA Tranducer
 FSA yang sudah kita pelajari selama ini. Keputusanya hanya terbatas pada diterima atau ditolak Contoh String "aa" diterima atau tidak FSA seperti itu disebut ACCEPTER 	 FSA tipe baru yang dapat mengeluarkan keputusan. Keputusan yang dihasilkan berupa keluaran/output.

Mesin Moore

- FSA (Finite State Automata) yang mempunyai keputusan sebagai output, Automata ini disebut TRANSDUCER.
- Salah satu contoh FSA yang termasuk Transducer atau FSA yang mempunyai output adalah Mesin MOORE
- Pada Mesin Moore outputnya berasosiasi dengan state, atau tertulis pada setiap state
- Sehingga Jumlah State sama dengan jumlah Output

Mesin Moore

- Pada mesin moore, output akan berasosiasi dengan state.
- Mesin Moore memiliki 6 tupel :

Mesin Moore

 $M = (Q, \Sigma, \delta, S, \Delta, \lambda)$

Q: himpunan state

 Σ : himpunan simbol input

δ : fungsi transisi

S: state awal $S \in Q$

 Δ : himpunan output

 λ : fungsi output untuk setiap **state**

Perhatikan:

Komponen Final state pada DFA/NFA dihilangkan, karena disini keputusan dimunculkan sebagai output

Contoh penerapan Mesin Moore

- Contoh kasus:
- Carilah sisa pembagian atau modulus bilangan 3 pada suatu bilangan Biner.
- Analisis:
- Input dalam bentuk biner (0,1)
- Berikan analisis bilangan 5 ubalah menjadi Biner 2⁸ 2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰ sehingga
- 0. 0 0 0 0 0 1 0 1

Sehingga 5 mod 3 adalah 2 karena mod adalah sisa hasil bagi sehingga 5/3= 1 dan sisanya adalah 2

Kita menerepkan rumus n mod x n= bilangan yang akan di bagi x =bilangan modulo

Desimal (X x 2)	Mod/Output	state	Biner	Transisi
0	0	q_0	q_0	$\lambda(q_0,0) = q_0$
1	1	q_1	0001	$\lambda(q_0, 1) = q_1$
2	2	q_2	0010	$\lambda(q_1,0) = q_2$
3	0	q_0	0011	$\lambda(q_1, 1) = q_0$
4	1	q_1	0100	$\lambda(q_2,0) = q_1$
5	2	q_2	0101	$\lambda(q_2, 1) = q_2$

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0,1\}$$

$$\Delta = \{0,1,2\}$$

$$S = q_0$$

$$\lambda(q_0) = 0$$

$$\lambda(q_1) = 1$$

$$\lambda(q_2) = 2$$

$5 \mod 3 = ?$

Input 5 dalam bentuk biner 0101

Bila kita memasukan string 0101 kedalam mesin, urutan state yang di capai adalah = q_0 , q_1 , q_2 , q_2 Perhatikan state terakhir yang di capai adalah q_2 , $\lambda(q_2)=2$ maka 5 $mod\ 3=2$

Ayo Kita latihan :D

- 1. Buatlah mesin moore untuk mencari sisa hasil bagi/modulo 4, dengan inputan berupa bilangan biner
- 2. Buatlah mesin moore untuk mencari sisa hasil bagi/modulo 5, dengan inputan berupa bilangan biner

Mesin Mealy

 Pada Mesin Moore Output berasosiasi dengan State, tetapi pada Mesin Mealy output berasosiasi dengan transisi, sehingga dalam fungsi output :

λ (State,Input)=Output

Tidak ada aturan yang jelas dalam membentuk graph transisinya

Mesin Mealy

Mesin ini memiliki 6 tuple sama seperti mesin moore:

 $\mathbf{M} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{\delta}, \mathbf{S}, \mathbf{\Delta}, \lambda)$

Q: himpunan state

 Σ : himpunan simbol input

δ : fungsi transisi

S: state awal $S \in Q$

 Δ : himpunan output

 $\boldsymbol{\lambda}$: fungsi output untuk setiap \boldsymbol{state}

- Eqivalensi mesin Moore ke mesin Mealy adalah merubah mesin Moore menjadi mesin Mealy dengan kemampuan yang sama
- Caranya:
- 1. Menghapus label Output pada setiap state.
- 2. Menambahkan label Output pada setiap inputan dalam sebuah transisi.

Ekuivalensi Mesin Moore ke Mesin Mealy

Ekuivalensi Mesin Moore ke Mesin Mealy

Moore

Mealy

$$\lambda(B,1)=1$$

$$\delta(B,1)=B$$

$$\delta(B,1)=B$$

Ekuivalensi Mesin Moore ke Mesin Mealv Moore Mealy

$$λ(A)=0, λ(B)=1$$

 $δ(A,1)=B$

$$\lambda(A,1)=1$$
 $\delta(A,1)=B$

Conton soal Ubalah mesin moore ke dalam mesin mealy

Diubah menjadi

2. Tambahkanlah label output ke setiap transisi dan menghapus label Output pada setiap state Otomata dan Teori Bahasa

Mesin. Moore $Q = \{q_0, q_1, q_2\}$ $\Sigma = \{0,1\}$ $\Delta = \{0,1,2\}$ $S = q_0$ $\lambda(q_0) = 0$ $\lambda(q_1) = 1$ $\lambda(q_2) = 2$

Ayo Latihan

- 1. Buatlah Mesin Mealy yang ekuivalen dengan mesin Moore untuk Modulus 4! Dengan inputan biner
- 2. Buatlah Mesin Mealy yang ekuivalen dengan mesin Moore untuk Modulus 5! Dengan inputan biner

- Eqivalensi mesin Mealy ke Moore adalah merubah mesin Mealy menjadi mesin Moore dengan kemampuan yang sama
- Caranya :
 - state pada mesin moore yang terbentuk diperoleh dari kombinasi antara state mesin mealy dengan output mesin mealy
 - 2. selanjutnya ditelusuri

Misalkan ada mesin Mealy

```
Q={A, B, C} dan \Delta={0,1}
```

jadi jumlah state pada mesin moore yang akan

terbentuk ada $3 \times 2 = 6$ buah state, yaitu:

sehingga:

$$\lambda(A0)=0$$
, $\lambda(A1)=1$, $\lambda(B0)=0$, $\lambda(B1)=1$, $\lambda(C0)=0$,

$$\lambda$$
(C1)=1,

Contoh :
 Misalkan ada mesin Mealy

Ubah ke dalam mesin Moore

Diketahui

 $Q=\{A, B\} dan \Delta=\{0,1\}$

maka state pada mesin moore:

Q={A0, A1, B0, B1}

catatan: A0 dan A1 berasal dari state A

sehingga:

 $\lambda(A0)=0$, $\lambda(A1)=1$, $\lambda(B0)=0$, $\lambda(B1)=1$,

Didapat

$$\delta(A0,0)=\delta(A1,0)=A0, \delta(A0,1)=\delta(A1,1)=B1$$

$$\delta(B0,0)=\delta(B1,0)=A0, \delta(B0,1)=\delta(B1,1)=B1$$

 Karena state A1 dan B0 tidak punya jalur masuk, maka state ini dapat dihapus

Contoh 2:

Diketahui Mesin Mealy tentukan mesin Moore yang

Eqivalen

Contoh 3:

Diketahui Mesin Mealy tentukan mesin Moore yang

Eqivalen

VIDEO REFERENSI

https://www.youtube.com/watch?v=WubGwQGXPWE&list=PLRh5ykdCNEH3G RYC8S 1znK0FLV9GTV5 &index=6