SEMESTER END EXAMINATION, APRIL-MAY, 2025

Course Name: - B.Tech (CSE, CE, ECE, EE, ME)

Semester:-2nd

Paper Name: - Engineering Mathematics-II

Paper Code:- NBS-202

Time - 3 Hrs + 20 minutes per hour extra time for V.I. & examinees with writer.

Max Marks-70

Additional 30 Minutes for Mid-Test.

समय— 3 घण्टे + 20 मिनट प्रति घंटे अतिरिक्त—दृष्टिबाधित एवं सह लेखक परीक्षार्थियों के लिए। 30 मिनट अतिरिक्त मिड—टेस्ट के लिए। अधिकतम अंक-70

Instructions:

- The question paper consists of three sections namely A, B, C. All sections are compulsory.
- Section A- Each question carries 3 mark. All questions are compulsory.
- Section B- Answer any 5 out of 7 given questions. Each question carries 7 marks.
- Section C- Answer any 2 out of 3 given questions. Each question carries 10 marks.
- Section D- Each question carries 02 mark. All questions are compulsory.

निर्देश:

- प्रश्न पत्र में तीन खण्ड अ. ब. व स हैं। सभी खण्ड अनिवार्य हैं।
- खण्ड-अ में प्रत्येक प्रश्न तीन अंक का है। सभी प्रश्न अनिवार्य हैं।
- खण्ड—ब में सात प्रश्नों में से किन्हीं पाँच प्रश्नों के उत्तर दें। प्रत्येक प्रश्न सात अंक का है।
- खण्ड-स में तीन प्रश्नों में से किन्हीं दो प्रश्नों के उत्तर दें। प्रत्येक प्रश्न 10 अंक का है।
- खण्ड-द में प्रत्येक प्रश्न 02 अंक का है। सभी प्रश्न अनिवार्य हैं।

Section - A (खण्ड–अ)

Objective Questions(वस्तुनिष्ठ प्रशन)

1. Answer all the following questions.

5x3 = 15

निम्नलिखित सभी प्रश्न अनिवार्य हैं।

- i) The irregular singular point of $(x-1)(x-2)^3 \frac{d^2 y}{dx^2} + (x-1)^2 \frac{dy}{dx} + 3(x-1)y = 0$ is
- a) 0
- b) 1
- c) 2
- X
- d) None of these
- ii) The inverse Laplace transform of $\frac{e^{-3p}}{p^3}$, is
 - a) $(t-3)u_3(t)$
- *b) $(t-3)^2 u_3(t)$
 - c) $(t-3)^2 u_3(t)$
- d) $(t+3)u_3(t)$
- iii) The complementary function of $r 7s + 6t = e^{x+y}$ is:
 - a) $f_1(y-x) + f_2(y-6x)$
 - b) $f_1(y+x) + f_2(y-6x)$
- +3
- c) $f_1(y-x) + f_2(y+6x)$
- $f_1(y+x) + f_2(y+6x)$
- iv) The partial differential equation $y \frac{\partial^2 u}{\partial x^2} + 2x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = 0$ is elliptic if
 - a) $x^2 > y^2$
- (b) $x^2 < y^2$
- x3
- c) $x^2 + y^2 > 1$
- d) $x^2 + y^2 = 1$

- v) Fourier transform of the function $f(x) = e^{-ax^2}$, a > 0 is
- a) $\sqrt{\frac{\pi}{a}} e^{-(p^2/2a)}$
- b) $\sqrt{\frac{\pi}{a}} e^{-(p^2/4a)}$ c) $\sqrt{\frac{\pi}{a}} e^{(p^2/4a)}$
- d) $\sqrt{\frac{\pi}{a}} e^{(p^2/2a)}$

Section - B (खण्ड-ब) Short Answer Questions (लघुउत्तरीय प्रश्न)

5x7=35

- 2. Answer any five of the following questions. निम्नलिखित में से किन्हीं पाँच प्रश्नों के उत्तर दें।
 - ैवसअम $(D^3 3D^2D' 4DD'^2 + 12D'^3)Z = \sin(y + 2x) + e^{(x+2y)_{0}}$
 - Find $L\{erf\sqrt{t}\}\$ and hence prove that $L\{t.erf\ 2\sqrt{t}\}=\frac{3p+8}{p^2(p+4)^{3/2}}$. ii.
 - Find the Fourier transform of $e^{-a|x|}$. iii.
 - Prove that $(n + 1)P_{n+1} = (2n + 1)xP_n + nP_{n-1}$ iv.
 - Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expression of f(x). Deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$
 - Prove that $J_{-n}(x) = (-1)^n J_n(x)$, where n is a positive integer. vi.

Solve $(x^2 - y^2 - z^2)p + 2xyq = 2xz$.

Find the solution of $\frac{\partial^2 u}{\partial x^2} = h^2 \frac{\partial u}{\partial t}$ for which u(0,t) = u(l,t) = 0, $u(x,0) = \sin \frac{\pi x}{l}$ by method of vii. variable separable.

Using Laplace transforms, find the solution of the initial value problem

$$y'' - 4y' + 4y = 64 \sin 2t$$
; $y(0) = 0, y'(0) = 1$.

Section - C (खण्ड-स) Descriptive Questions (विवरणात्मक प्रश्न)

3. Answer any two of the following question.

2x10=20

निम्नलिखित में से किन्हीं दो प्रश्नों के उत्तर दें।

- (a) Find the Laplace transform of $te^{-t} cosht$.
 - (b) Find the general solution of $x(z^2 y^2)p + y(x^2 z^2)q = z(y^2 x^2)$.
- ii) (a) Solve px + qy = pq.
 - (b) Express the polynomial $f(x) = 4x^3 2x^2 3x + 8$ in terms of Legendre Polynomial.
- (a) Find the solution of wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y = P_0 \cos pt$ (P_0 is a constant), when iii) x = l & y = 0 when x = 0.
 - (b) Define the Dirichlet's condition for Fourier series and Fourier series.

SEMESTER END EXAMINATION, APRIL-MAY, 2025

Mid-Test

Course Name: - B.Tech (CSE, CE, ECE, EE, ME)

Paper Name: - Engineering Mathematics-II

Time - 30 minutes.

Semester:-2nd Paper Code:- NBS-202 Max Marks-20

2×10=20

All questions are compulsory. सभी प्रश्न अनिवार्य है।

Objective Questions.

बहुविकल्पीय प्रश्न।

- 1) Degree and order of this equation $\frac{\partial^2 z}{\partial x^2} = (1 + \frac{\partial z}{\partial y})^2/3$ is
 - (a) 3,2 b) 2,2

 - c) 2,3
 - d) None of these
- 2) Which of the following represents the steady state behaviour of heat flow

a)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

b)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = c^2$$

c)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

- A) None of these
- 3) Solution of the equation px + qy = z 3pq is

a)
$$z = ax - by - 3ab$$

a)
$$z = ax + by - 3ab$$

b) $z = ax + by - 3ab$

c)
$$z = ax - by + 3ab$$

d)
$$z = ax + by + 3ab$$

4)
$$\frac{1}{D-2D'}e^{2x+y}$$
 is equal to

a)
$$2^{2x+y}$$

b)
$$\frac{1}{2}xe^{2x+y}$$

a)
$$\frac{1}{2}xe^{2x+y}$$

b) $\frac{1}{2}xe^{2x+y}$
c) $\frac{1}{2}x^2e^{2x+y}$

d)
$$xe^{2x+y}$$

- 5) The integral of this function $\int_0^\infty e^{-3t} \cdot \sin 4t \ dt$ is
- 6) The integral of this function $\int_0^\infty t e^{-4t} \cdot \sin t \ dt$ is

 - b) $\frac{8}{289}$ c) $\frac{6}{289}$ d) $\frac{8}{279}$

es with w

V, APRIL

pulsor

a)
$$k = 2^n . n!$$

b)
$$k = \frac{2^n}{n!}$$

a)
$$k = 2^n \cdot n!$$

b) $k = \frac{2^n}{n!}$
c) $k = \frac{1}{2^n \cdot n!}$
d) $k = \frac{n!}{2^n}$

d)
$$k = \frac{n!}{2^n}$$

8) If $\int_{-1}^{1} P_n(x) dx = 2$, then n is a) 1

9) The Inverse Fourier sine transform of a function F(s) is
a) $f(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty F(s) \cdot \sin sx \, ds$ b) $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty F(s) \cdot \sin sx \, ds$

a)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty F(s) \cdot \sin sx \, ds$$

b)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) \cdot \sin sx \, ds$$

c)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty F(s) \cdot \sin sx \, ds$$

d)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F(s) \cdot \sin sx \, ds$$

10) Which one is true recurrence relation for Bessel's function $J_n(x)$

a)
$$\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$$

a)
$$\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$$

b) $\frac{d}{dx}[x^{-n}J_n(x)] = -x^nJ_{n+1}(x)$
c) $\frac{d}{dx}[x^{-n}J_n(x)] = x^{-n}J_{n+1}(x)$

c)
$$\frac{d}{dx}[x^{-n}J_n(x)] = x^{-n}J_{n+1}(x)$$

d)
$$J_n(x) = \frac{x}{2n} [J_{n-1}(x) - J_{n+1}(x)]$$

SEMESTER END EXAMINATION, APRIL-MAY, 2025

Course Name: - B.Tech. Hons (CSE-AIFM, CSE-AIDS)

Semester:-2nd

Paper Name: - Engineering Mathematics-II

Paper Code:- NBS-202

Time - 3 Hrs + 20 minutes per hour extra time for V.I. & examinees with writer.

Max Marks-70

Additional 30 Minutes for Mid-Test.

समय- 3 घण्टे + 20 मिनट प्रति घंटे अतिरिक्त-दृष्टिबाधित एवं सह लेखक परीक्षार्थियों के लिए। 30 मिनट अतिरिक्त मिड-टेस्ट के लिए।

अधिकतम अंक-70

Instructions:

- The question paper consists of three sections namely A, B, C. All sections are compulsory.
- Section A- Each question carries 3 mark. All questions are compulsory.
- Section B- Answer any 5 out of 7 given questions. Each question carries 7 marks.
- Section C- Answer any 2 out of 3 given questions. Each question carries 10 marks.
- Section D- Each question carries 02 mark. All questions are compulsory.

Section - A (खण्ड-अ)

Objective Questions(वस्तुनिष्ठ प्रशन)

1. Answer all the following questions. निम्नलिखित सभी प्रश्न अनिवार्य हैं।

5x3 =15

- For the differential equation $(x-1)\frac{d^2y}{dx^2} + (\cot \pi x)\frac{dy}{dx} + (\csc^2\pi x)y = 0$ which of the i) following statement is true
 - . a), 0 is regular and 1 is irregular
 - b) 0 is irregular and 1 is regular
 - c) Both 0 and 1 are regular
 - d) Both 0 and 1 are irregular
- The inverse Laplace transform of $\frac{2s}{2s^2+8}$, is ii)
 - a) sin 2t
 - b) sinh 2t
 - c) cosh 2t ·
 - d) cos 2t
- The complementary function of $(D^4 a^4)y = 0$ is iii)
 - a) $y = c_1 e^{ax} + c_2 e^{-ax}$
 - b) $y = c_1 e^{ax} + c_2 e^{-ax} + c_3 \cos ax + c_4 \sin ax$
 - c) $y = (c_1 + x c_2)e^{ax} + (c_3 + x c_4)e^{-ax}$
 - d) None of these

- Fourier transform of a function $f(x) = e^{-\frac{x^2}{2}}$ is iv)
 - a). $\sqrt{\pi}e^{-(p^2/4)}$
 - b) $\sqrt{\frac{\pi}{2}} e^{-(p^2/4)}$ c) $\sqrt{\frac{\pi}{2}} e^{(p^2/4)}$

- Classify the differential equation $\frac{\partial^2 u}{\partial t^2} 4 \frac{\partial^2 u}{\partial x \partial t} + 4 \frac{\partial^2 u}{\partial x^2}$ V)
 - a) elliptic
 - b) hyperbolic
 - ·c) parabolic
 - d) None of these

Section - B (खण्ड-ब) Short Answer Questions (लघुउत्तरीय प्रश्न)

2. Answer any five of the following questions.

निम्नलिखित में से किन्हीं पाँच प्रश्नों के उत्तर दें।

- Solve $r 3s + 2t = e^{2x-y} + e^{x+y} + \cos(x + 2y)$.
- Find the Laplace transform of i) ii)
 - a) $(t-1)^2 u(t-1)$
 - b) t sin²3t
- Find the Fourier transform of e^{-ax^2} iii)
- Prove that $(2n+1)xP_n = (n+1)P_{n+1} nP_{n-1}$ iv)
- Fourier series for $f(x) = 4 x^2, -2 \le x \le 2$.
- Prove that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$, where n is a positive integer. v) vi)

Solve $px(z-2y^2) = (z-qy)(z-y^2-2x^3)$.

Find the solution of wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y = P_0 \cos pt$ (P_0 is a constant), when vii) x = l & y = 0 when x = 0.

Using Laplace transforms, find the solution of the initial value problem

$$y'' - 3y' + 2y = 4t + e^{3t}$$
; $y(0) = 1, y'(0) = -1$.

Section - C (खण्ड-स)

Descriptive Questions (विवरणात्मक प्रश्न)

3. Answer any two of the following question.

2x10=20

निम्नलिखित में से किन्हीं दो प्रश्नों के उत्तर दें।

- (a) Find the Laplace transform of $F(t) = \begin{bmatrix} \cos t & 0 < t < \pi \\ 0 & t > \pi \end{bmatrix}$. i)
 - (b) Find the general solution of (mz ny)p + (nx lz)q = ly mx.
- (a) Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, where $u(x, 0) = 6e^{-3x}$. ii)
 - (b) Express the following polynomial in terms of Legendre Polynomial $1 2x + x^2 + 5x^3$.
- (a) Find the inverse Laplace transform of $\frac{6}{2p-3} \frac{3+4p}{9p^2-16} + \frac{8-6p}{16p^2+9}$ iii)
 - (b) Find the inverse Fourier transform of $f(p) = e^{-|p|y}$.

5xx3 Jourse Warne: Engine Paper Warne: Engin Time 30 minutes. All duestons are

Mid-Test

Course Name: - B.Tech. Hons (CSE-AIFM, CSE-AIDS)

Paper Name: - Engineering Mathematics-II

Time - 30 minutes.

Semester:-2nd Paper Code:- NBS-202 Max Marks-20

2×10=20

All questions are compulsory.

सभी प्रश्न अनिवार्य हैं।

Objective Questions. बह्विकल्पीय प्रश्न।

- Order and degree of this equation $\frac{\partial^2 z}{\partial x^2} = (1 + \frac{\partial z}{\partial y})^2/3$ is
 - a) 3, 2 b) 2, 2

 - c) 2,3
 - d). None of these
 - 2) Two-dimensional wave equation is

$$\sqrt{a}$$
) $\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$

b)
$$\frac{\partial^2 u}{\partial z^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

b)
$$\frac{\partial^2 u}{\partial z^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
c)
$$\frac{\partial^2 u}{\partial x^2} = c^2 \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$
d) None of these

- 3) Solution of the equation px + qy = z + sin(pq) is

a)
$$z = ax - by - sin(pq)$$

$$\sim$$
 b) \cdot z = ax + by - sin (pq)

c)
$$z = ax - by + sin(pq)$$

d)
$$z = ax + by + sin(pq)$$

4) $\frac{1}{D-2D'}e^{2x-y}$ is equal to

a)
$$e^{2x-y}$$

b)
$$= \frac{1}{2}xe^{2x-3}$$

c)
$$\frac{1}{2}x^2e^{2x-y}$$

b)
$$\frac{1}{2}xe^{2x-y}$$

c) $\frac{1}{2}x^2e^{2x-y}$
d). $\frac{1}{4}e^{2x-y}$

5) Which one is wrong $\int_0^\infty e^{-3t} \cdot \sin 4t \ dt$ is

a)
$$L\{erf(\sqrt{t})\} = \frac{1}{s\sqrt{(s+1)}}$$

$$\searrow b) L\{erf(\sqrt{t})\} = \frac{1}{s\sqrt{(s-1)}}$$

c)
$$L\{J_0(\sqrt{t})\} = \frac{1}{s}e^{\frac{-1}{4s}}$$

d)
$$L\{J_0(2\sqrt{t})\} = \frac{1}{s}e^{\frac{-1}{s}}$$

6) The integral of this function $\int_0^\infty t e^{-4t} \cdot \cos t \ dt$ is

a)
$$\frac{15}{279}$$

a)
$$\frac{15}{279}$$
 \checkmark b) $\frac{15}{289}$
c) $\frac{17}{289}$
d) $\frac{17}{279}$

c)
$$\frac{1}{289}$$

d)
$$\frac{17}{279}$$

7) The Rodrigue formula for $P_n(x) = \frac{1}{2^n n!} k$, the Legendre polynomial of degree n is

e)
$$k = \frac{d^n}{dx^n} (x^2 - 1)^{n-1}$$

e)
$$k = \frac{d^n}{dx^n} (x^2 - 1)^{n-1}$$

f) $k = \frac{d^n}{dx^n} (x^2 - 1)^n$
g) $k = \frac{d^n}{dx^n} (x^2 + 1)^n$
h) $k = \frac{d^n}{dx^n} (x^2 + 1)^{n-1}$

g)
$$k = \frac{d^n}{dx^n} (x^2 + 1)^n$$

h)
$$k = \frac{dx^n}{dx^n} (x^2 + 1)^{n-1}$$

8) For which value of n this result $\int_{-1}^{1} P_n(x) dx = 0$, is wrong

d) All above

9) Which one is true recurrence relation for Bessel's function $J_n(x)$

a)
$$\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$$

b) $\frac{d}{dx}[x^{-n}J_n(x)] = -x^nJ_{n+1}(x)$

b)
$$\frac{d}{dx}[x^{-n}J_n(x)] = -x^nJ_{n+1}(x)$$

c)
$$\frac{d}{dx}[x^{-n}J_n(x)] = x^{-n}J_{n+1}(x)$$

d)
$$J_n(x) = \frac{x}{2n} [J_{n-1}(x) - J_{n+1}(x)]$$

d) $J_n(x) = \frac{x}{2n} [J_{n-1}(x) - J_{n+1}(x)]$ 10) The Inverse Fourier cosine transform of a function F(s) is
e) $f(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty F(s) \cdot \cos sx \, ds$

e)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty F(s) \cdot \cos sx \, ds$$

f)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) \cdot \cos sx \, ds$$

g)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty F(s) \cdot \cos sx \, ds$$

h)
$$f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F(s) \cdot \cos sx \, ds$$