Course Natural Language Process 2021II_INT3406_1

TRANSFORMERS IN SEQUENCE TO SEQUENCE TRANSLATION Report

Phân công công việc:

- Implement:
 - Nguyễn Kim Đức Hoàng Gia Anh Đức
- Report:

Trần Thanh Trà

Phạm Thanh Đạt

Git: https://github.com/nkdvp/Transformer

1. Đặt vấn đề:

Sequence-to-Sequence Learning (phương pháp học chuỗi liên tiếp) sử dụng Neural Networks là một kỹ thuật rất mạnh được sử dụng để giải quyết rất nhiều vấn đề trong Machine Learning, trong đó có vấn đề về dịch thuật từ một đoạn văn bản trong ngôn ngữ này sang đoạn văn bản tương ứng trong ngôn ngữ khác.

2. Các cách tiếp cận:

• RNN:

Phương pháp truyền thống cho mô hình Seq2Seq là sử dụng RNN cho cả phần encoder (mã hóa input) và phần decoder (giải mã input đưa ra output tương ứng)

Mỗi phần tử của mạng RNN nhận đầu vào là x_t, đầu ra h_t, đồng thời thông tin xử lý ở mỗi bước (mỗi từ) là đầu vào cho bước xử lý sau (từ tiếp sau)

Tính chất này giúp cho RNN có thể xử lý các đầu vào liên quan đến chuỗi hoặc danh sách. Theo cách này, nếu ta muốn dịch một văn bản, đầu vào sẽ là các từ xuất hiện trong văn bản đó. Thông tin từ đầu chuỗi có thể được truyền và sử dụng khi xử lý các từ tiếp theo.

Vấn đề về sự phục thuộc dài hạn:

Khi phải dịch một câu quá dài mà trong đó nghĩa của một từ lại phụ thuộc vào từ được dịch trước đó rất xa, RNN không đem lại hiệu quả. Đó là hệ quả của hiện tượng Vanishing Gradient - thông tin được truyền qua càng nhiều bước thì sẽ càng bị mất mát về mặt giá trị và mạng cũng không thể cập nhật được thông tin ban đầu. Để giải quyết vấn đề này, phương pháp LSTM là phiên bản cải tiến của RNN được sinh ra.

• LSTM (Long-Short Term Memory):

Trong cuộc sống hàng ngày, khi sắp xếp công việc, chúng ta thường ưu tiên những việc quan trọng. Các việc không phục vụ mục tiêu của chúng ta có thể bỏ qua được. Nhưng RNN không làm như vậy, toàn bộ đầu vào đều được xử lý và biến đổi qua mọi bước mà không quan tâm thông tin nào là quan trọng, thông tin nào là không.

LSTM sử dụng một vài phép nhân chia trong kiến trúc của mình để giải quyết vấn đề này. Với LSTM, thông tin được truyền qua một cơ chế mang tên ô nhớ. Nó có thể lựa chọn các thông tin quan trọng và quên đi các thông tin khác.

Cụ thể bên trong một phần tử LSTM được mô tả như hình dưới đây:

Mỗi phần tử nhận đầu vào là x_t (từ tiếp theo trong câu nguồn), trạng thái của phần tử trước và đầu ra của h_t. Những dữ liệu đầu vào này được tình toán và đầu ra là từ được dịch trong câu đích và trạng thái của bước vừa thực hiện.

Với việc lưu lại trạng thái ở mỗi bước, những thông tin được coi là quan trọng khi dịch từ trong một câu xác định sẽ được truyền đi xuyên suốt chuỗi LSTM

Nhưng LSTM vấn còn tồn tại vấn đề như đã nêu ở RNN, là khi câu quá dài thì LSTM vẫn sẽ đưa ra kết quả không chính xác. Lý do là bởi trạng thái của mỗi LSTM khi truyền đi xa vẫn sẽ bị giảm thông tin theo hàm mũ.

Một vấn đề khác của RNN và LSTM là chỉ dịch word by word mà không thể xử lý song song được.

3. Phân tích thiết kế Transformer

Figure 1: The Transformer - model architecture.

Attention

Để giải quyết vấn đề đó, các nhà nghiên cứu tạo ra một cơ chế giúp mô hình tập trung chú ý vào các từ cụ thể. Điều này khá phù hợp với cách làm việc của con người. Cơ chế này mang tên Attention.

Khi dịch một câu, chúng ta sẽ chú ý tới từng từ đang được dịch. Vậy thì neural network có thể đạt được điều này bằng cơ chế 'attention', tập trung vào một phần thông tin đưa ra trong câu. Ở mỗi bước khác nhau, nó sẽ tập trung vào nhiều vị trí khác nhau của các RNN khác

Với RNN, thay vì mã hóa toàn bộ câu vào một trạng thái ẩn, mỗi từ có một trạng thái ẩn riêng. Sau khi mã hóa, tất cả chúng được truyền vào decoder.

Ý tưởng đằng sau kỹ thuật này là thông tin liên quan có thể xuất hiện ở bất kỳ vị trí nào trong câu, không phụ thuộc vào khoảng cách. Do đó để giải mã một cách chính xác, nó cần tính đến tất cả các từ và sử dụng attention. Hình ở dưới thể hiện cách decoder tập trung vào các từ với các mức độ chú ý khác nhau.

Ví dụ khi dịch câu "**Je suis étudiant"** sang tiếng Anh, mô hình cần nhìn vào các từ khác nhau để dịch nó.

Màu càng đậm thì mức độ chú ý càng lớn.

Hình phía dưới thể hiện mức độ chú ý của mô hình khi dịch "L'accord sur la zone économique européenne a été signé en août 1992." từ tiếng Pháp sang tiếng Anh. Các ô càng sáng biểu thị rằng 1 từ A từ ngôn ngữ E1 "chú ý" hay có tương quan hơn (correlation) với 1 từ B từ ngôn ngữ E2

Cụ thể về Attention

Attention sử dụng tất cả các output của từng cell qua từng timestep, kết hợp với hidden state của từng cell để "tổng hợp" ra 1 context vector (attention vector) và dùng nó làm đầu vào cho từng cell trong Decoder

Sau đây là minh họa cơ chế RNN khi không áp dụng Attention:

Mô hình encoder phải nén tất cả thông tin của một câu lại thành một vector biểu diễn duy nhất, chứa toàn bộ thông tin cần thiết để mô hình decoder có thể dịch thành câu đích. Vấn đề nằm ở chỗ, những câu dài sẽ không được dịch chính xác vì thông tin không được lưu trữ đủ trong một vector biểu diễn duy nhất.

Và khi áp dụng Attention:

Mặc dù Attention đã giải quyết được vấn đề phụ thuộc giữa các từ trong RNN, nó vẫn chưa giúp tính toán song song. Đây là bất lợi đáng kể khi làm việc với các tâp dữ liệu lớn.

Convolutional Neural Network

Mạng tích chập CNN là giải pháp cho tính toán song song. Một số mạng nổi tiếng trong biến đổi chuỗi sử dụng CNN có thể kể đến như Wavenet và Bytenet.

Lý do CNN có thể tính toán song song là các từ được xử lý cùng lúc và không cần chờ đợi nhau. Không chỉ có vậy, khoảng cách giữa một từ đầu ra với một từ đầu vào là log(N), thay vì N như trong RNN. Bạn có thể thấy rõ trong mô hình của Wavenet tại hình dưới đây.

Wavenet có mô hình là Convolutional Neural Network (CNN).

Vấn đề của CNN là nó không giải quyết bài toán phụ thuộc trong câu. Đó là lý do Transformer được tạo ra, kiến trúc này kết hợp CNN với Attention.

Transformer

Word Embedding

Trước hết, chúng ta tìm hiểu về cơ chế word embedding - một cơ chế sử dụng vector được tính toán để biểu diễn quan hệ tương đồng giữa các từ.

Đầu tiên, các từ được biểu diễn bằng một vector sử dụng một ma trận word embedding có số dòng bằng kích thước của tập từ vựng. Sau đó các từ trong câu được tìm kiếm trong ma trận này, và được nối nhau thành các dòng của một ma trận 2 chiều chứa ngữ nghĩa của từng từ riêng biệt.

Positional Encoding

Một chi tiết quan trọng khác của Transformer là mã hóa vị trí (positional encoding). Encoder của Transformer không có sự lặp lại tuần tự như RNN, chúng ta phải đưa thông tin về vị trí vào vectơ đầu

vào. Các tác giả của Transformer thực hiện một mánh rất thông minh sử dụng sin và cos.

$$PE_{(pos,2i)}=sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Trong đó: pos là vị trí của từ trong câu, PE là giá trị phần tử thứ i trong embeddings có độ dài d*model* Chúng ta không đi sâu vào khía cạnh toán học của kỹ thuật này, nhưng về cơ bản, với các bước thời gian lẻ, ta dùng hàm cos, với bước thời gian chẵn, ta dùng hàm sin. Sau đó ta cộng các vectơ vào embedding của đầu vào. Việc này giúp mô hình nhận biết được vị trí của mỗi véctơ. Kết hợp của hàm sin và cos có những thuộc tính tuyến tính mà mô hình có thể dễ dàng học được.

Như đã giới thiệu ở trên, Transformer kết hợp sức mạnh của CNN và Attention. Cụ thể hơn, kiến trúc này sử dụng self-attention. Trong kiến trúc đang xét, Transformer chứa 6 encoder và 6 decoder.

Các encoder đều rất giống nhau, có cùng kiến trúc. Mỗi encoder chứa hai lớp: Self-attention và mạng truyền thẳng (FNN).

Self-attention giúp encoder nhìn vào các từ khác trong lúc mã hóa một từ cụ thể. Đầu ra của self-attention được truyền vào một mạng nơ ron truyền thẳng (feed-forward). Tất cả các vị trí khác nhau đều sử dụng chung một mạng truyền thẳng. Các decoder cũng có kiến trúc giống

như vậy nhưng giữa chúng có một lớp attention để nó có thể tập trung vào các phần liên quan của đầu vào.

Self-Attention

Bước đầu tiên để tính self-attention là tạo ra bộ 3 vecto từ các vecto đầu vào của encoder. Tại encoder đầu tiên, vécto đầu vào là word embedding của từ. Như vậy với mỗi từ, ta sẽ có 3 vecto

Query - vector dùng để chứa thông tin của từ được tìm kiếm, so sánh

Key - vector dùng để biểu diễn thông tin các từ được so sánh với từ cần tìm kiếm ở trên

Value - vector biểu diễn nội dung, ý nghĩa của các từ.

Các vectơ này được tạo nên bởi phép nhân ma trận giữa véctơ đầu vào và 3 ma trận trọng số chúng ta sử dụng trong quá trình huấn luyện. 3 vectơ này đóng vai trò khác nhau và đều quan trọng đối với attention.

Bước thứ hai là tính điểm. Với mỗi từ, ta cần tính điểm của các từ khác trong câu đối với từ này. Giá trị này giúp quyết định từ nào cần chú ý và chú ý bao nhiều khi mã hóa một từ.

Điểm được tính bằng tích vô hướng giữa vécto *Query* của từ đang xét với lần lượt các vecto *Key* của các từ trong câu. Ví dụ, khi ta tính self-attention trên từ có vị trí 1, điểm của nó với chính nó là q1.k1, điểm của nó với từ thứ hai là q1.k2, v..v..

Bước tiếp theo là chuẩn hóa điểm. Trong bài báo gốc, điểm được chia cho 8 (căn bậc 2 của 64 – số chiều của vecto *Key*). Điều này giúp cho độ dốc trở nên ổn định hơn. Tiếp theo, giá trị này được truyền qua hàm softmax để đảm bảo các giá trị điểm đều dương và có tổng không vượt quá 1.

Bước tiếp theo là nhân vecto *Value* với mỗi giá trị điểm đã tính phía trên rồi cộng lại với nhau. Ý đồ của việc này là bảo toàn giá trị vecto của các từ cần được chú ý và loại bỏ vecto của các từ không liên quan (bằng cách nhân nó với một số rất nhỏ, ví dụ như 0.001).

Multihead attention

Trên thực tế, có một vài chi tiết nữa giúp cho kiến trúc này hoạt động hiệu quả hơn. Ví dụ như thay vì sử dụng một bộ giá trị self-attention, mô hình có thể sử dụng nhiều bộ QKV khác nhau. Kỹ thuật này mang tên Multihead attention.

Ý tưởng đằng sau kỹ thuật này là một từ có thể có nhiều nghĩa hoặc nhiều cách thể hiện khác nhau khi dịch ra một ngôn ngữ khác. Ngoài ra, mức độ liên hệ giữa các từ có thể thay đổi khi ta quan tâm đến các khía canh khác nhau của một câu nói.

Nó mang lại cho lớp attention nhiều không gian con để biểu diễn. Với multi-headed attention chúng ta không chỉ có một mà nhiều bộ ma trận trọng số Query/Key/Value (Transformer sử dụng tám đầu attention, do đó ta sẽ có 8 bộ cho mỗi encoder hoặc decoder). Mỗi bộ được khởi tạo ngẫu nhiên. Sau đó, kết thúc huấn luyện, mỗi bộ được dùng để phản ánh embedding đầu vào (hoặc vector từ các encoder/decoder phía dưới) trong một không gian con riêng biệt

Nếu ta thực hiện self-attention như đã vạch ra bên trên, với 8 lần tính với các ma trận khác nhau, ta có 8 ma trận Z khác nhau.

Điều này mang lại một khó khăn nhỏ. Mạng truyền thẳng không phù hợp để nhận vào 8 ma trận, thay vào đó nó cần 1 ma trận duy nhất (mỗi từ một véc tơ). Do đó, ta cần biến đổi 8 ma trận về 1 ma trận duy nhất bằng cách nối các ma trận lại và nhân chúng với một ma trận trọng số được bổ sung WO.

Residuals

Một chi tiết nữa trong kiến trúc của encoder cần phải nhắc đến là trong mỗi lớp con (self-attention, mạng truyền thẳng) của encoder có kết nối residual xung quanh chúng, và sau đó là bước chuẩn hóa lớp.

Nếu trực quan hóa vector và phép chuẩn hóa lớp liên quan đến self-attention, nó sẽ trông như sau:

Điều này cũng được thực hiện ở decoder. Nếu ta coi Transformer là 2 ngăn xếp encoder và decoder, nó sẽ trông như sau:

Decoder

Kết quả của encoder trên cùng được chuyển thành một bộ các véc tơ attention K và V. Chúng được sử dụng bởi mỗi decoder trong lớp

"encoder-decoder attention" để giúp decoder tập trung vào phần quan trọng trong chuỗi đầu vào.

4. Thử nghiệm

Nhóm đã chạy thực nghiệm mô hình Transformer theo code mẫu trên Google Colab

Kết quả:

```
[57] model = model.to(opt['device'])
  model.eval()
  sentence="this is the first book i've ever read."
  trans_sent = translate_sentence(sentence, model, SRC, TRG, opt['device'], opt['k'], opt['max_strlen'])
  trans_sent
  'dây là cuốn sách đấu tiên mà tôi đã từng dọc.'
```

Encoder Visualize

Dùng heatmap để visualize giá trị attention, sẽ cho biết khi encode một câu mô hình chú ý từ ở lân cận

Ở đây visualize giá trị attention của encoder layer số 2 và 4, tại các head 0,1,2,3. Nhìn vào các heatmaps ở trên, ta có thể thấy được rằng khi encode một từ mô hình sẽ nhìn vào các từ liên quan xung quanh. Ví dụ từ **book** có thể được mã hóa bằng 2 từ liên quan như **the** và **book**.

Decoder Visualize

Ở decoder, có 2 loại visualization

- self attention: giá trị attention khi mô hình decoder mã hóa câu đích lúc dich
- src attention: giá trị attention khi mô hình decoder sử dụng câu src lúc dịch

Decoder Self Layer 2

Decoder Src Layer 2

Ở ví dụ này visualize decoder layer số 2, tại 4 heads 0,1,2,3. Ta có thể quan sát được khi encode từ **sách** mô hình sẽ nhìn vào các từ kế cạnh là **đây** và **cuốn**, (và còn nhiều kiểu pattern khác nữa nhé). Còn khi dự đoán từ **tôi** mô hình sẽ nhìn vào từ **i**.

5. Đánh giá

Mô hình chạy nhanh và triển khai tốt hơn khi so sánh với RNN. Dù dữ liệu train còn nhỏ nhưng đã dịch được gần đúng ý nghĩa của các câu thử nghiệm. Nhưng không xử lý tốt unknown words.

6. Kết luận

Vậy ta có thể có một số kết luận cho mô hình transformer: Ưu điểm:

- Có khả năng thực hiện song song trong quá trình encoder
- Cho kết quả tốt với dữ liệu câu dài

Nhược điểm:

• Khó xử lý unknown word.

7. Tài liệu tham khảo:

https://towardsdatascience.com/transformers-141e32e69591

https://github.com/huggingface/transformers/blob/master/READ ME.md?fbclid=IwAR2Nme1sUxmRoAJriPgzFtN4Iu7pp44b7Jq xC1bhAwqv Y-0H21 n7PQeH4

https://viblo.asia/p/transformers-nguoi-may-bien-hinh-bien-doi-the-gioi-nlp-924lJPOXKPM?fbclid=IwAR3w8PeK5xDWzLC2kH4YZ8g-uqc4MKMUfz261kw-jPldrSLuc0B3fzXdzQ

https://viblo.asia/p/scene-text-recognition-su-dung-mo-hinh-tran sformer-Qbq5Q0PElD8?fbclid=IwAR09jPP7EdWnq3epAXfsD UUSDkkt_svsvP-f-SZ2q6-GtjKWQtt_9YPdU1A

https://viblo.asia/p/transformerxl-leverage-transformer-for-language-modeling-aWj53WeQ56m?fbclid=IwAR1jIQ1sD6UXWJruyHHXGpuhkHDwFbhjRfZMVKGPopuKPyTuxVp74WhtrE

https://www.youtube.com/watch?v=iDulhoQ2pro

https://www.youtube.com/watch?v=OyFJWRnt AY

http://jalammar.github.io/illustrated-transformer/?fbclid=IwAR1 oRmZOHf4DkMc4j8rO5HnFLp2W4DxP2QJWgmUyCtM4Byj RL5qo3vN-7Jk

https://trituenhantao.io/tin-tuc/minh-hoa-transformer/?fbclid=Iw AR1yZerPCC-T7hPzBPAJ_oO6Xx-J4hZjHQxEVij-JCHPULmc F1duXcv4oEI