NAME	Signature:
545/2	
Chemistry	
Paper 2	
2 Hours	

Uganda Certificate of Education

Chemistry

Paper 2

2 Hours

INSTRUCTIONS

Section \boldsymbol{A} consists of $\boldsymbol{10}$ structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaces provided.

Section **B** consists of 4 semi – structured questions. Answer any **two** questions from this section. Answers to the questions **must** be written in the answer sheets provided. In both sections, all working **must** be clearly shown and must be in blue or black ink. Any work done in pencil will **not** be marked except drawings.

Mathematical tables and silent non - programmable calculators may be used.

FOR EXAMINERS' USE ONLY														
1	2	13	4	5	16	17	18	9	10	11 1	2 13	3 14	Total	
	į	i	İ	i		i	i			4,5	1.			
	1				1		,			1 1			1	

SECTION A (50 MARKS)

Answer all Questions in this Section

1. (a) Name one process by which the components of the following mixtu separated(i) three water-soluble dyes	(01mark)
(ii) two miscible liquids with boiling points of 78 % and 100 % c	(01mark)
(iii) water containing an insoluble solid	(01mark)
(iv) water containing a dissolved solid	(01mark)
(b) State the principle behind the process named in (a)(i)	(01mark)
 2. Y is the ion of an element X. Y contains 13 protons, 14 neutrons and (a) State the; (i) electronic configuration of X 	
(ii) nucleon number of Y	(½ mark)
(b) Predict the formula of the compound that contains Y and the oxid	
(c) State with the reason whether the compound formed in (b electricity in molten state or not	(1 ½ marks)
······································	

(d) In the space below draw the structure adopted by atom W at atom T atomic number 17	omic number 11 and (1½marks)

3. The figure below was set to show the reaction between Copper(I when strongly heated.	I) oxide with carbon
Mixture of copper (II) oxide and ground charcoal	
Alternation agreement vehicle because reaching to a different and the contract of	
Heat Calcium hydroxide solution	
(a) State what was observed;	
(i) in the test tube containing the mixture	(01mark)
	(O I III al K)
······	
(ii) in the test tube containing calcium hydroxide solution	(½ mark)
······································	
(b) Explain your observation in (a)(i) above	(01mark)
(c) Write the equation for the reaction taking place in the test tube hydroxide solution	containing calcium (1½marks)

(d) Identify the; (i) Oxidizing agent	(½ mark)
(i) Oxidizing agent	(½ mark)
(ii) Reducing agent	
4. A student reacted hydrochloric acid with iron filings. A gas X was	evolved during the
reaction. (a) (i) name gas X	(½ mark)
(ii) Write down the ionic equation for the reaction that took place	(1½marks)
(b) To the resultant solution of the above reaction, was added dilute a solution dropwise until in excess.	queous ammonia
(i) State what was observed.	(01mark)
(ii) Explain the above observation in (b) (i)	(½ mark)
(iii) write an equation for the reaction that took place	(01mark)
(c) State one large scale use of gas X	(½ mark)
When a mixture of liquid Y and Lead(II) oxide was heated, a greenish-ye was evolved.	ellow gas W
(a) Identify;	
(i) liquid Y	(½ mark)
/**\	
(ii) gas W	(½ mark)
(b) Write the	
(b) Write the equation for the reaction leading to the formation of gas $oldsymbol{w}$	(1½ marks)

5.

(b) What is the charge on the terminals A and B ?	(01mark)
B	(01mark)
(d) Give the name of this cell set-up?	(01mark)
9. A compound L , when heated melts and decomposes to form broa glowing splint and a white residue, M on cooling. M dissolv acid on warming to form a colourless solution, N , when sodiwas added dropwise until in excess to a portion of N , a white pexcess ammonia solution to form a colourless solution, R was of	um hydroxide solution orecipitate Q soluble in
(a) Identify; (i) compound L	(½ mark)
(ii) solution N	(½ mark)
(b) (i) Write equation for the reaction that takes place when mag	gnesium is heated with (01mark)
(ii) State why the reaction in (b) (i) cannot take place when so magnesium	ilver is used instead of (½ mark)
(c) Briefly explain the reaction that convert N to Q to R	(2 ½ marks)
0. (a) Write, (i) the molecular formula of butane	
(1) the molecular formula of butane	(01mark

(ii) equation for	the com	plete combu	stion of buta	ine	(1 ½ marks
(iii) equation to						
(b) Calculate the	amount	of heat that	would be ev	volved if 840	of bu	itane gas w
completely burnt i	n air, at	room tempe	rature and p	ressure		
(Enthalpy of comb	ustion of	butane is -	3062.5kjmol	-1)		(2 ½ mark
					HE THAT HE	ration in

	.,,,,,,,,,,					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			••••••			
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			

		••••••		••••••		
	ST	ECTION B (20MADKO)			
	GI	d MOITSE	SUMARKS)			
Ansı	wer any i	two questior	ns from this S	ection.		
A hot liquid X	was allow	wed to cool i	in air. The te	mperature v	vas measu	red every fi
seconds. The table	e below s	shows variat	ion in tempe	rature with	time when	liquid X w
allowed to cool.	Y					F - 12 11
Temperature (°c)	70	50	50	23	23	
Time (s)	0	5	15	25	30	
		No. 102 - 102 -				
(a) (i) Dia:						
(a) (i) Plot a graph	of temp	erature agai	inst time			(4 ½ marks
(ii) Explain the			4.0			(4 ½ mark
(iii) What is th	e melting	g point of su	bstance X			(1/2 marks)
/1.\ .						
(b) X has a boiling	point of	128°c. expl	lain, in terms	s of the kine	tic particle	theory, wh
nappens to the	particle	of X as it is	heated from	1000c to 15	00c	
(c) Sketch a grap	n of tem	perature ag	gainst time f	or substance	e X being	heated fro
30° c to 140° c						(02marks)

...

Air was passed through two wash bottles one containing calcium hydroxide and 12. the other containing concentrated sulphuric acid, then the combustion tube containing heated copper. (a) (i) State what was observed in the bottle that contained calcium hydroxide (01mark) solution. (ii) Write equation(s) for the reaction(s) that took place (03marks) (iii) State what was observed in the bottle that contained concentrated sulphuric acid. State the purpose of passing air through a wash bottle containing (iv) (01mark) concentrated sulphuric acid. (1/2 marks) (v) State the property of sulphuric acid being investigated.

(b) (i) State what was observed in the combustion tube. (01mark)

(ii) Write an equation for the reaction that took place in the combustion tube.

(1 ½ mark)

(iii) Name the gas that comes out of the tube.

(01mark)

(c) Burning magnesium was plunged into a gas jar of the gas in (b) (iii).

(i) State what was observed

(01mark)

(ii) Write an equation for the reaction that took place

(1 ½ marks)

- (iii) State what would be observed and write equation for the reaction when the product in (c) above is shaken with water and resultant solution tested with litmus paper.

 (2 ½ marks)
- 13. (a) Describe how a pure dry sample of ammonia gas can be prepared in the laboratory. (No diagram is required) (5 ½ marks)
 - (b) With the help of equation, give the reasons why ammonia gas cannot be dried using concentrated sulphuric acid and fused calcium chloride. (05marks)
 - (c) Ammonia is prepared on large scale by the Haber process in the presence of catalyst **P**.
 - (i) Identify the catalyst P

(½ mark)

(ii) Write an equation leading to the formation of ammonia in the Haber process.

(1 ½ marks)

(d) Write down the equation for the reaction;

(i) When lead(II) oxide is treated with ammonia

(1 ½ marks)

(ii) Between ammonia and oxygen in the presence of hot platinum foil (1 1/2 marks)

14. (a) Describe briefly how sodium can be obtained from a named ore.
(No diagram is required) (07marks)

(b) A piece of sodium was heated and dropped into a jar of chlorine.

(i) State what was observed

(01mark)

(ii) Write equation for the reaction that took place

(01mark)

(c) Name a place in Uganda where a plant for the extraction of sodium can be constructed. Give a reason for your answer. (01mark)

(d) Chlorine can be prepared by the action of potassium manganate(VII) Crystals on hydrochloric acid according to the following equation. $2KMnO_{4(s)} + 16HCl_{(aq)} + 2KCl_{(aq)} + 2MnCl_{2(aq)} + 8H_2O_{(l)} + 5Cl_{2(g)}$

State:

(i) the condition(s) for the reaction

(01mark)

(ii) how the gas produced can be purified

(½ mark)

(e) Describe briefly how chlorine in (d) can be tested in the laboratory. (01mark)

- (f) A sample of chlorine from the reaction in (d) was collected and bubbled through 8cm³ of distilled water in a boiling tube. To the resultant solution was added 2cm long magnesium ribbon.
 - (i) State what was observed

(½ mark).

(ii) Write an ionic equation for the reaction that took place

(01mark)

(g) Calculate the mass of potassium manganate (VII) that would be required to react with hydrochloric acid to produce 112.0cm³ of chlorine, measured at s.t.p. (1 mole of potassium manganate weighs 158g, 1 mole of gas occupies 22.4dm³ at s.tp) (02marks)

END BY TR. GUIDE N.H.S