UNIVERSITY T.W.I.P. OF TWENTE.

TWO-WHEELER INDICATOR PANEL

GROUP 42

IN THIS PRESENTATION:

T.W.I.P. offers an advanced personal interface for cycling progress.

Multiple users & performance tracking

Target audience → professional & hobby cyclists

There was a MVP, but not a bike → close to completion

Solve bugs

Authentication

(security) testing not sufficient

3. REQURENTS UNIVERSITY OF TWENTE. T.W.I.P

Functional requirements

The system should...

- display current & average speeds.
- display current & previous pacing.
- keep track of total distance.
- keep track of trip distance of cycling session.
- automatically turn on/off lights depending on ambient light.
- calculate distance travelled.

The user should be able to...

log in using the touchscreen.

Non-Functional requirements

- Speed measure accurately within 1 km/h between 5 km/h and 25 km/h.
- Pacing should be comprehensible at a glance while cycling.
- Distances calculated accurate within 1%.
- Not draw user attention away from road.
- Comprehend data on the screen within 2 seconds of looking.
- Lights shouldn't randomly flash when LDR is covered.
- LDR output should be consistent for 5 seconds before switching state of lights.
- Users should be able to delete their personal data.
- Complex functions should lock while bike is in motion
- Differentiate between users.

UNIVERSITY OF TWENTE. T.W.I.P Minimal distraction interface

Information at glance

Additional features

Isolated system

5. PROGRAMMING UNIVERSITY OF TWENTE.

Front-end

Functionality:

- User input
- User display
- Human-Computer Interaction

Used technologies:

- HTML/CSS
 - Jquery

Faced challenges:

Modals

Solved problems:

 Connection Front-end with Back-end

- Low complexity
- High quality

Back-end

Functionality:

- Data requests
- User authentication
- Hardware readout
- Data forwarding

Used technologies:

- Rust
 - Rocket
 - Sha2
 - chrono
 - postgres
 - hex
 - O ...

Faced challenges:

- Rust
- Database
- Authentication

Solved problems:

All of the above

- High complexity
- Average quality

Database

Functionality:

- Storing security data
- Storing user data

Used technologies:

Postgresql

Faced challenges:

Accessing database

Solved problems:

All of the above

- Low complexity
- High quality

Hardware

Functionality:

- Speed calculation
- light detection

Used technologies:

- Rust
 - o gpio

Faced challenges:

- Sensor Flutter
- Unreliable connection
- On-screen keyboard

Solved problems:

Sensor Flutter

- Low complexity
- Medium quality

API Testing

Hardware Testing

Authentication Testing

System Testing

8. PROJECT PROCESS UNIVERSITY OF TWENTE. T.W.I.P

Conflict resolution:

- Warning
- Talk with TA's

Motivation:

- Medium
- Other priorities

Communication:

Medium but functional

Additional casing

Better clamp

Higher quality sensor

On screen keyboard

