# 

Universidad Tecnológica de México

piensa actúa avanza



#### **TAREA 12**

Para los siguientes diagramas termodinámicos, realiza se descripción enunciativa del proceso que representa cada uno, de tallando cada etapa de los ciclos:



#### **DESCRPCIÓN 1**

En el diagrama se puede observar en la primera línea (4-5) proceso isocórico, de igual manera de la línea (2-3). Se repite un proceso isocórico. Estas etapas están constituidas por dos líneas adiabáticas las cuales son (2-1) y (3-4) cumpliendo el ciclo. También podemos observar la presión de 0.2 a 50 atm. Y el volumen de 15 a 157 L.

#### **DESCRIPCIÓN 2**

De 1 a 2 se tiene un proceso isotérmico, el volumen se comprime de 157L a 15L y la presión aumenta de 5atm a 50atm. De 2 a 3 es isocórico a volumen constante y la presión disminuye a 5atm. De 3 a 4 es adiabático el volumen se expande a 157L y la presión disminuye a 0.2atm de 4 a 5 es isocórico a volumen constante y la presión aumenta a 5atm.



#### **TAREA 9**

Para los siguientes diagramas termodinámicos, realiza se descripción enunciativa del proceso que representa cada uno, de tallando cada etapa de los ciclos:



#### **DESCRPCIÓN 1**

En el estado inicial tenemos 27.22 atm y 2.1 L, mediante un proceso isotérmico disminuye la presión a 5.5 atm y aumenta el volumen a 10.5 L. Con un proceso isométrico vuelve a disminuir la presión hasta 3 atm. El siguiente proceso es isobárico en el que disminuye el volumen a 9.8 L. Después con un proceso isotérmico disminuye el volumen a 2.2 L y aumenta la presión a 27.21 atm, lo siguiente es un proceso isobárico donde disminuye el volumen a 2.1 L, y por último regresa al estado inicial.

#### **DESCRIPCIÓN 2**

De 1 a 2 es un proceso isotérmico, el volumen se expande de 2.1L a 10.5L y la presión disminuye de 27.22atm a 5.5atm. De 2 a 3 es isocórico a volumen constante y la presión disminuye. De 3 a 4 es isobárico a presión constante y su volumen se comprime a 9.8L. De 4 a 5 es isotérmico, el volumen se comprime a 2.2L y la presión aumenta a 27.21atm. De 5 a 6 es isobárico a una presión constante y el volumen se comprime a 2.1L



#### TAREA 9

Para los siguientes diagramas termodinámicos, realiza se descripción enunciativa del proceso que representa cada uno, de tallando cada etapa de los ciclos:



#### **DESCRPCIÓN 1**

En la entrada del sistema ingresan 10267.536 J de calor, mediante un proceso isobárico disminuye el volumen para pasar al siguiente proceso, el cual es isotérmico donde se realizan 1066.896 J de trabajo para aumentar el volumen hasta 60 L, mediante un proceso isométrico se liberan 25862.7266 J de calor para aumentar la presión, y por último se liberan 7299.4901 J de trabajo para regresar al estado inicial.

#### **DESCRIPCIÓN 2**

De 1 a 2 es un proceso isobárico a presión constante y el volumen se comprime. De 2 a 3 es un proceso isotérmico, el volumen se expande y la presión disminuye. De 3 a 4 es isocórico a volumen constante y la presión aumenta. De 4 a 5 es isotérmico, el volumen se comprime y la presión aumenta.

# PROCESOS DE TERMODINÁMICA (IM8601)

CLASE 15. Análisis de Ciclos

Termodinámicos

**CICLO ESCOLAR: 22-2** 

DOCENTE: M. en I. José Ulises Cedillo Rangel





#### **Ejemplo 1**

Calcular el valor de  $\Delta E$  para la conversión a 100°C y 1 atm de presión de 1 mol de agua ( $H_2O$ ) líquida en vapor, si el calor necesario para llevar a cabo este proceso es de 40 760 J/mol y la densidad de  $H_2O_{liq}$  es de 1 g/mL



#### **Ejemplo 1**

Calcular el valor de  $\Delta E$  para la conversión a 100°C y 1 atm de presión de 1 mol de agua ( $H_2O$ ) líquida en vapor, si el calor necesario para llevar a cabo este proceso es de 40 760 J/mol y la densidad de  $H_2O_{liq}$  es de 1 g/mL

# 1. Partiendo de la Primeta Ley de la Termodinâmica: $\Delta E = Q + W$ $Q = 40760 \quad J \quad (1 \text{ mol}) = 40760 \text{ J}$

$$W=p(V_2-V_1)$$
 De las condiciones proporcionadas se indica que:  
 $V_i \rightarrow liquido$   
 $V_2 \rightarrow das$ 



# Ejemplo 1

$$P_2 V_2 = nRT_2$$

$$V_2 = \frac{nRT_2}{P_2}$$

$$= (1 \text{mol})(0.08205 \frac{\text{atm L}}{\text{mu K}})(373.15 \text{ K})$$

$$= 30.61 \text{ L} \left(\frac{1 \text{m}^3}{1000 \text{ L}}\right) = 0.031 \text{ m}^3$$

Para determinar el volumen de agua liquida:

$$Q = \frac{m}{V_i} \rightarrow doroidad$$

$$V_i = \frac{m}{e}$$

$$V_i = \frac{m}{e}$$

$$V_{1} = \frac{180}{19/mL} = 18mL \left(\frac{1L}{1000mL}\right) \left(\frac{1m^3}{1000L}\right)$$
  
= 1.8 × 10 m<sup>3</sup>



**Ejemplo 1** 

El diagrama termodinámico P-V





#### Ejemplo 2

Un mol de un gas ideal que está encerrado a una presión constante de 2 atm, se enfría y la temperatura varía desde 100°C hasta 25°C. ¿Cuál es el valor de las variables termodinámicas si el  $C_v = 3$  cal/mol K?



#### Ejemplo 2

Un mol de un gas ideal que está encerrado a una presión constante de 2 atm, se enfría y la temperatura varía desde  $100^{\circ}$ C hasta  $25^{\circ}$ C. ¿Cuál es el valor de las variables termodinámicas si el  $C_v = 3$  cal/mol K?

1. Se construye una tabla con los datos proporcionados, la que se llamará, condiciones de estado:

| Estado | Presión<br>CatmI | Volumen<br>CLI | Temperatura<br>CKI | Proceso         |
|--------|------------------|----------------|--------------------|-----------------|
| 1      | 2                |                | 313.15             | 150barroo (1-2) |
| 2      | 2                |                | 298.15             |                 |



# Ejemplo 2

2. Se calcula el volumen del estado 1 a partir de la ecuación de gases ideales:

$$V_{i} = \frac{nRT_{i}}{P_{i}} = \frac{(1mol)(0.08205 \frac{alm L}{rnd K})(573.15 K)}{2 alm} = 15.31L$$

3. Aplicando la Ley de Charles se calcula el volumon del estado 2:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$V_2 = V_1 \left(\frac{T_2}{T_1}\right) = 15.31 L \left(\frac{298.15 K}{373.15 K}\right) = 12.23 L$$



# Ejemplo 2

| Estado | Presión<br>CatmI | Volumen<br>[L] | Temperatura<br>CKI | Proceso       |
|--------|------------------|----------------|--------------------|---------------|
| 1      | 2                | 15.31          | 313.15             | Sobarco (1-2) |
| 2      | 2                | 12.23          | 298.15             |               |

4. Se elabora la tabla de datos termodinâmicos.

| Proceso         | E13 | [N] | CII | AE<br>CJ |
|-----------------|-----|-----|-----|----------|
| 150bárico (1-2) |     |     |     |          |



#### Ejemplo 2

$$C_{V} = 3 \frac{\text{cal}}{\text{mol K}} \left( \frac{4.186 \text{ J}}{1 \text{ cal}} \right) = 12.558 \frac{\text{J}}{\text{mol K}}$$

6. Se calculan las variables termodinâmicas del proceso isobarico:

$$W=nR(T_2-T_1)$$
= Imd (8.314  $\frac{U}{mol\ K}$ ) (298.15 - 373.15) K
= -633.55 J



$$\Delta E = n C_V (T_2 - T_1)$$

$$= 1 \mod (12.558 \frac{J}{\mod K}) (298.15 - 373.15) K$$

$$= -941.85 J$$

$$\Delta H = n C_P (T_2 - T_1)$$

$$= 1 \mod (20.872 \frac{J}{\mod K}) (298.15 - 343.15) K$$

$$= -1565.4 J$$

$$Q_P = \Delta H = -1565.4 J$$



#### Ejemplo 2

| Proceso         | CU3     | [1]<br>W | CIJ      | AE<br>CJ |
|-----------------|---------|----------|----------|----------|
| 150bárico (1-2) | -1565.4 | - 623,55 | -1,565.4 | -9.4L85  |

7. Se realiza el diagrama P-V





#### Ejemplo 3

Al enfriar un gas de 140°C a 20°C de manera isocórica, se liberan -4800 J en forma de calor, con una presión inicial de 10 atm. Enseguida se comprime el gas hasta una presión de 1 atm, a temperatura constante, y luego se expande adiabáticamente hasta 10 atm y por último se enfría isobáricamente hasta 140°C, el  $C_p = 20$  J/mol K. Calcule las variables termodinámicas para cada punto, y el valor de la energía interna, entalpía, calor y trabajo para cada proceso y para el ciclo.



**Ejemplo 3.** Al enfriar un gas de 140°C a 20°C de manera isocórica, se liberan -4800 J en forma de calor, con una presión inicial de 10 atm. Enseguida se comprime el gas hasta una presión de 1 atm, a temperatura constante, y luego se expande adiabáticamente hasta 10 atm y por último se enfría isobáricamente hasta 140°C, el  $C_p = 20$  J/mol K. Calcule las variables termodinámicas para cada punto, y el valor de la energía interna, entalpía, calor y trabajo para cada proceso y para el ciclo.

1. Se construye una tabla con los datos proporcionados originalmente que describe las condiciones de estado:

| Estado | Presion<br>[atm.] | C L ] | Temperatura<br>[K] | Proceso          |
|--------|-------------------|-------|--------------------|------------------|
| l      | 10                |       | 413.15             | Isométrico (1-2) |
| 2      |                   |       | 293.15             | Isotérmico (2-3) |
| 3      | ı                 |       | 293.15             | Acliabático 3-1  |
| 4      | 10                |       |                    |                  |
| 5      |                   |       | 913.15             | Isobárico (4-5)  |



### Ejemplo 3

2. La cantidad de sustancia inicial puede obtenerse del proceso 1-2 (V=cte)

$$n = \frac{\Delta E}{C_v (T_2 - T_i)}$$



### Ejemplo 3

3. Je determina el volumel del estado inicial considerando la ecuación de los gases ideales

Como el Proceso 1-2 es isocónico Vi=V2

9. Aplicando la Ley de Gay-Lussac 
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$P_2 = \left(\frac{T_2}{T_1}\right)P_1 = \left(\frac{293.15 \text{ K}}{413.15 \text{ K}}\right) 10 \text{ atm} = 7.09 \text{ atm}$$

5. Para el proceso 2-3 que es isotérmico  $T_2=T_3$ , consideramos:

$$P_2V_2 = P_3V_3$$
  
 $V_3 = V_2 \left(\frac{P_2}{P_3}\right) = 11.59 L \left(\frac{7.09 atm}{1 atm}\right) = 82.33 L$ 



### Ejemplo 3

6. Para el proceso 3-4 que es adiabatico Q=0, se tiene:

$$P_{3}^{V_{3}} = P_{4}^{V_{4}^{N}}$$

$$V_{4} = V_{4}^{N} \left(\frac{P_{3}}{P_{4}}\right) V_{3}^{N} = V_{4}^{N} \left(\frac{10 \text{ atm}}{10 \text{ atm}}\right) \left(\frac{12.33 \text{ L}}{10.33 \text{ L}}\right)^{1.31} = 21.42 \text{ L}$$

$$\frac{T_{4}}{T_{3}} = \left(\frac{V_{3}}{V_{4}}\right)^{N-1}$$

$$T_4 = T_3 \left( \frac{V_3}{V_9} \right)^{8-1} = 293.15 \, \text{K} \left( \frac{82.33 \, \text{L}}{21.42 \, \text{L}} \right)^{1.71-1} = 762.53 \, \text{K}$$



#### **Ejemplo 3**

7. Para el proceso 4-5 como es isobárico

y considerando que el proceso es reversible  $V_1=V_5$   $V_5=11.59$  atm

| Estado | Presion<br>[atm] | Volumen<br>[L] | Temperatura<br>[K] | Proceso          |
|--------|------------------|----------------|--------------------|------------------|
| 1      | 10               | 11.59          | 413.15             | Isométrico (1-2) |
| 2      | 7.09             | 11.59          | 293.15             | Isotérmico (23)  |
| 3      | ı                | 82.33          | 293.15             | Acliabático(3-1) |
| 4      | 10               | 21.42          | 762.53             |                  |
| 5      | 10               | 11.59          | 913.15             | Isobárico (4-5)  |



# **Ejemplo 3**

8. Se elabara la tabla de clatos termodinâmicos:

| Preceso          | [1] | [0] | [U] | [7]<br>VE |
|------------------|-----|-----|-----|-----------|
| loométrico (1-2) |     |     |     |           |
| Isotérmico(2:3)  |     |     |     |           |
| Adiabētico (3-1) |     |     |     |           |
| Isobanico (4+1)  | t e |     |     |           |
| Total            | 19  |     |     |           |



### **Ejemplo 3**

9. Para el proceso isométrico o isocónico (1-2) que es a volumen constainte:

10. Para el proceso isotérmico (2-3)



11. Para el proceso acliabático (3-4)

Q=0

$$\Delta H = n C_{p} (T_{q} - T_{3}) = 3.42 \text{mol} (20 \frac{J}{\text{mol} \, K}) (762.53 - 293.15) k$$
 $= 32 105.6 \, J$ 
 $\Delta E = n C_{v} (T_{q} - T_{3}) = 3.42 \text{mol} (11.69 \frac{J}{\text{mol} \, K}) (762.53 - 293.15) k$ 
 $= 18 765.72 \, J$ 
 $V = -\Delta E = -18 765.72 \, J$ 

12. Para el proceso isobárico 4-5

 $V = n R (T_{5} - T_{4}) = 3.42 \text{mol} (8.314 \frac{J}{\text{mol} \, K}) (413.15 - 762.53) k$ 
 $= -9934.23 \, J$ 
 $\Delta E = n C_{v} (T_{5} - T_{4}) = 3.42 \text{mol} (11.686 \frac{J}{\text{mol} \, K}) (413.15 - 762.53) k$ 
 $= -13963.36 \, J$ 
 $\Delta H = n C_{p} (T_{5} - T_{4}) = 3.42 \text{mol} (20 \frac{J}{\text{mol} \, K}) (413.15 - 762.53) k$ 
 $= -23.891.59 \, J$ 
 $Q = \Delta H = -23.897.59 \, J$ 



# Ejemplo 3

13. El diagrama correspondiente P-V para este proceso es:

| Preceso          | [1]               | [0]<br>M  | [U]              | [7]<br>VE |
|------------------|-------------------|-----------|------------------|-----------|
| loométrico (1-2) | -4800             | 0         | -8208            | -4800     |
| Isotérmico(2:3)  | 16334.45          | 16334.45  | 0                | ٥         |
| Adiabātico (3-1) | 0                 | -18765.72 | 32,105.6         | 18765.72  |
| lsobárico (4+)   | <b>~23897.5</b> 9 | -993413   | <b>-23891≲</b> 9 | → 13963.¥ |
| Total            | -12363.H          | -12,365,5 | 0                | ٥         |





#### Ejemplo 3

1. Se construye una tabla con los datos proporcionados originalmente que describe las condiciones de estado:

| Estado | Presion<br>[atm] | C L ] | Temperatura<br>[K] | Proceso          |
|--------|------------------|-------|--------------------|------------------|
| 1      | 10               | 11.59 | 413.15             | Isométrico (1-2) |
| 2      | 7.09             | 11.59 | 293.15             | Isotérmico (23)  |
| 3      | 1                | 82.33 | 293.15             | Acliabático 3-1  |
| 4      | 10               | 21.42 | 762.53             |                  |
| 5      | 10               | 11.59 | 913.15             | Jabanico (4-5)   |





#### **Ejemplo 4**

La temperatura al principio del proceso de compresión en un ciclo Otto de aire estándar  $(N_2 \ y \ O_2)$  es de 300K, con una relación de compresión de  $V_1/V_2 = 8 \ y \ V_3/V_4 = 0.125$ ; una presión inicial de 1 atm, con un volumen del cilindro de 0.6 dm³. La temperatura máxima durante el ciclo es de 2000 K. Considere que para los gases diatómicos se considera  $\gamma = 1.4$ ,  $C_p = 29.099 \ J/mol \ K$ ,  $C_v = 20.785 \ J/mol \ K$ . Con esta información determine:

- a. Las temperaturas y presiones finales de cada proceso del ciclo
- b. El Q, W,  $\Delta$ H,  $\Delta$ E para cada proceso



# **Ejemplo 4**

1. Se construye la table de condiciones de estado con las variables iniciales

| Estado | Presión<br>[atm] | Volumen<br>[L] | Temperatura<br>[K] | . Proceso        |
|--------|------------------|----------------|--------------------|------------------|
| 1      | ı                |                | 300                | Adiabático (1-2) |
| 2      |                  |                |                    | Isacónico (2-3)  |
| 3      |                  |                | 5000               |                  |
| 41     |                  |                |                    | Adiabatico(3-4)  |
| 5      | ı                |                | 300                | 10000rico (4-5)  |



# **Ejemplo 4**

2. Para el estado I determinar en L las unidades de volumen:

3. El volumen del estado e, el cálculo parte de la relación de compresión:

$$\frac{V_1}{V_2} = 8$$
  $V_2 = \frac{V_1}{8} = \frac{0.6 L}{8} = 0.075 L$ 

9. Ahora se calcula p con el aire considerado como un gas diatómico y=1.4

$$P_2 = P_1 \left(\frac{V_1}{V_2}\right)^{\gamma} = 1 \text{atm} \left(\frac{0.6 \text{ L}}{0.075 \text{ L}}\right)^2 = 18.38 \text{ atm}$$



### **Ejemplo 4**

5. Para la Tz :

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{N-1} \qquad T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{N-1} = 500 \text{K} \left(\frac{0.6 \text{ L}}{0.075 \text{ L}}\right)^{1.9-1} = 689.22 \text{ K}$$

6. Para el estado 3 aplicando la Ley de Gay-Lussac:

$$\frac{P_3}{T_3} = \frac{P_2}{T_2}$$
  $P_3 = P_2 \left(\frac{T_3}{T_2}\right) = 18.38 \text{ atm} \left(\frac{2000 \text{ K}}{689.21 \text{ K}}\right) = 53.34 \text{ atm}$ 

7. Las variables termodinâmicas del estado 9:

$$\frac{V_3}{V_4} = 0.125$$
  $V_4 = \frac{V_3}{0.125} = \frac{0.075L}{0.125} = 0.6L$ 
 $P_4 V_4^N = P_3 V_3^M$ 
 $P_4 = P_3 \left(\frac{V_3}{V_4}\right)^N = 53.33 \text{ atm} \left(\frac{0.075}{0.6}\right)^{1.9} = 2.90 \text{ atm}$ 

$$\frac{T_{9}}{T_{3}} = \left(\frac{V_{3}}{V_{4}}\right)^{N-1}$$

$$T_{9} = T_{3} \left(\frac{V_{3}}{V_{4}}\right)^{N-1} = 2000 \text{ K} \left(\frac{0.075 \text{ L}}{0.6 \text{ L}}\right)^{1.9.1} = 870.55 \text{ K}$$

8. Se determina el número de moles:



| Estado | Presión<br>[atm] | Volumen<br>[L] | Temperatura<br>[K] | . Proceso        |
|--------|------------------|----------------|--------------------|------------------|
| 1      | ı                | 0.6            | 300                | Adiabático (1-2) |
| 2      | 18.38            | 0.015          | 689.22             | Isocónico (2-3)  |
| 3      | 53.34            | 0.075          | 2,000              |                  |
| 41     | 2.90             | 0.6            | 870.55             | Adlabatico (3-4) |
| 5      | ı                | 0.6            | 300                | 10000rico (4-5)  |



# Ejemplo 4

9. Se elabora la tabla de datos Termodinâmicos

| Proceso          | [0] | [U] | HA<br>[U] | [J] |
|------------------|-----|-----|-----------|-----|
| Adiabatico (u-2) |     |     |           |     |
| Isocórico (2-3)  |     |     |           |     |
| Adiabātico(3-4)  |     |     |           |     |
| loométrico(45)   |     |     |           |     |
| Total            |     |     |           |     |



10. Para el proceso actialo ático 1-2:

Q = 0

$$\Delta H = nC_{p}(T_{2}-T_{1}) = 0.0244 \text{ mol} (29.099 \frac{J}{\text{mol} \, K})(689.22^{2}-300) K$$
 $= 276.35 J$ 
 $\Delta E = nC_{v}(T_{2}-T_{1}) = 0.0244 \text{ mol} (20.785 \frac{J}{\text{mol} \, K})(689.22-300) K$ 
 $= 197.39 J$ 
 $W = -\Delta E = -197.39 J$ 

II. Para el proceso isocórico (2-3)

 $V = 0$ 
 $\Delta H = nC_{p}(T_{3}-T_{2}) = 0.0244 \text{ mol} (29.099 \frac{J}{\text{mol} \, K})(2000-689.22) K$ 
 $= 930.67 J$ 
 $\Delta E = nC_{v}(T_{3}-T_{2}) = 0.0244 \text{ mol} (20.785 \frac{J}{\text{mol} \, K})(2000-689.22) K$ 
 $= 664.17 J$ 
 $\Delta V = \Delta E = 664.77 J$ 



12. Para el proceso adiabático (3-4)

Q=0

$$\Delta H= nCp (T_1-T_3)=0.0244 \text{ mol } (29.099 \frac{J}{mol k}) (810.55-2000) \text{ K}$$
 $= -801.93$ 
 $\Delta E= nC_v (T_1-T_3)=0.0244 \text{ mol } (20.185 \frac{J}{mol k}) (870.55-2000) \text{ K}$ 
 $= -572.80$ 
 $W=-\Delta E= 572.80$ 

13. Para el proceso isométrico (9-1)

 $V=0$ 
 $\Delta H= nCp (T_3-T_4)=0.0244 \text{ mol } (29.099 \frac{J}{mol k}) (800-870.55) \text{ K}$ 
 $= -405.10 \text{ J}$ 
 $\Delta E= nC_v (T_5-T_4)=0.0244 \text{ mol } (20.785 \frac{J}{mol k}) (300-870.55) \text{ K}$ 
 $= -289.36 \text{ J}$ 
 $\Delta V=\Delta E= -289.36 \text{ J}$ 
 $\Delta V=\Delta E= -289.36 \text{ J}$ 



| Proceso          | [0]     | L1]     | HA<br>[U] | [1]             |
|------------------|---------|---------|-----------|-----------------|
| Adiabatico (u-2) | 0       | -197.39 | 276.35    | 197.39          |
| 150córico (2-3)  | 664.77  | ٥       | 930.67    | 664.77          |
| Adiabātico(3-4)  | ٥       | 572.80  | -801.93   | <b>~572.8</b> 0 |
| loométrico (4-5) | -289.36 | 0       | -405.10   | -28936          |
| Total            | 375.41  | 375.41  | 0         | 0               |



# 

Universidad Tecnológica de México

piensa actúa avanza