A general non-Markovian master equation for time-dependent Hamiltonians with coupling that is weak, strong, or anything in between

Nike Dattani* Harvard-Smithsonian Center for Astrophysics

> Camilo Chaparro Sogamoso[†] National University of Colombia

I. THE HAMILTONIAN

We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B,$$
 (1)

$$H_{S}(t) = \varepsilon_{0}(t) |0\rangle\langle 0| + \varepsilon_{1}(t) |1\rangle\langle 1| + V_{10}(t) |1\rangle\langle 0| + V_{01}(t) |0\rangle\langle 1|,$$
(2)

$$H_I = |0\rangle\langle 0| \sum_{\mathbf{k}} \left(g_{0\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^* b_{\mathbf{k}} \right) + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(g_{1\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^* b_{\mathbf{k}} \right), \tag{3}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{4}$$

For the states $|0\rangle, |1\rangle$ we have the ortonormal condition:

$$\langle i|j\rangle = \delta_{ij}.\tag{5}$$

II. UNITARY TRANSFORMATION INTO THE VARIATIONALLY OPTIMIZABLE FRAME

We will apply to $H\left(t\right)$, the unitary transformation defined by $e^{\pm V\left(t\right)}$ where is the variationally optimizable anti-Hermitian operator:

$$V(t) \equiv |0\rangle\langle 0| \sum_{\mathbf{k}} \left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right) + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right).$$
 (6)

in terms of the variational scalar parameters $v_{i\mathbf{k}}(t)$ defined as:

$$v_{i\mathbf{k}}(t) = \omega_{\mathbf{k}} \alpha_{i\mathbf{k}}(t). \tag{7}$$

which will soon be optimized in order to give the most accurate possible master equation for the system's dynamics in the presence of this bath. We define the following notation for the function (6):

$$\hat{\varphi}_{i}\left(t\right) \equiv \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}\right),\tag{8}$$

$$V(t) = |0\rangle\langle 0|\hat{\varphi}_0(t) + |1\rangle\langle 1|\hat{\varphi}_1(t). \tag{9}$$

Here * denotes the complex conjugate. Expanding $e^{\pm V(t)}$ using the notation (6) will give us the following result:

$$e^{\pm V(t)} = e^{\pm (|0\rangle\langle 0|\hat{\varphi}_0(t) + |1\rangle\langle 1|\hat{\varphi}_1(t))}$$
(10)

$$= \mathbb{I} \pm (|0\rangle\langle 0|\hat{\varphi}_{0}(t) + |1\rangle\langle 1|\hat{\varphi}_{1}(t)) + \frac{(\pm (|0\rangle\langle 0|\hat{\varphi}_{0}(t) + |1\rangle\langle 1|\hat{\varphi}_{1}(t)))^{2}}{2!} + \dots$$
(11)

$$= |0\rangle\langle 0| + |1\rangle\langle 1| \pm (|0\rangle\langle 0|\hat{\varphi}_0(t) + |1\rangle\langle 1|\hat{\varphi}_1(t)) + \frac{|0\rangle\langle 0|\hat{\varphi}_0^2(t)}{2!} + \frac{|1\rangle\langle 1|\hat{\varphi}_1^2(t)}{2!} + \dots$$
 (12)

$$= |0\rangle\langle 0| \left(\mathbb{I} \pm \hat{\varphi}_0(t) + \frac{\hat{\varphi}_0^2(t)}{2!} \pm \ldots \right) + |1\rangle\langle 1| \left(\mathbb{I} \pm \hat{\varphi}_1(t) + \frac{\hat{\varphi}_1^2(t)}{2!} \pm \ldots \right)$$
(13)

$$= |0\rangle\langle 0|e^{\pm\hat{\varphi}_0(t)} + |1\rangle\langle 1|e^{\pm\hat{\varphi}_1(t)} \tag{14}$$

$$= |0\rangle\langle 0|e^{\pm\sum_{\mathbf{k}}\left(\alpha_{0\mathbf{k}}(t)b_{\mathbf{k}}^{\dagger} - \alpha_{0\mathbf{k}}^{*}(t)b_{\mathbf{k}}\right)} + |1\rangle\langle 1|e^{\pm\sum_{\mathbf{k}}\left(\alpha_{1\mathbf{k}}(t)b_{\mathbf{k}}^{\dagger} - \alpha_{1\mathbf{k}}^{*}(t)b_{\mathbf{k}}\right)}$$

$$\tag{15}$$

$$= |0\rangle\langle 0|B_0^{\pm}(t) + |1\rangle\langle 1|B_1^{\pm}(t), \qquad (16)$$

$$B_i^{\pm}(t) \equiv e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right)}. \tag{17}$$

Let's recall the Zassenhaus formula:

$$e^{r(X+Y)} = e^{rX} e^{rY} e^{-\frac{r^2}{2}[X,Y]} e^{\frac{r^3}{6}(2[Y,[X,Y]] + [X,[X,Y]])} e^{\frac{-r^4}{24}([[X,Y],X],X] + 3[[X,Y],X] + 3[[X,Y],Y] + 3[[X,Y],Y])} \cdots$$
(18)

Since $\left[\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}, \frac{v_{j\mathbf{k}'}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}^{\dagger} - \frac{v_{j\mathbf{k}'}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}^{\dagger} - \frac{v_{j\mathbf{k}'}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}^{\dagger}\right] = 0$ for all \mathbf{k}' , \mathbf{k} and i,j we can show making r=1 in (18) the following result:

$$e^{\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right) + \left(\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)} = e^{\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{\omega_{\mathbf{k}}$$

$$=e^{\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{-\frac{1}{2}0}\cdots$$
(20)

$$=e^{\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}.$$
(21)

By induction of this result we can write an expresion of $B_i^{\pm}(t)$ (shown in equation (17)) as a product of exponentials, which we will call "displacement" operators $D(\pm v_{i\mathbf{k}}(t))$:

$$D\left(\pm v_{i\mathbf{k}}\left(t\right)\right) \equiv e^{\pm \left(\frac{v_{i\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)},\tag{22}$$

$$B_i^{\pm}(t) = \prod_{\mathbf{k}} D\left(\pm \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right). \tag{23}$$

this will help us to write operators O(t) transformed in the variational frame as:

$$\overline{O(t)} \equiv e^{V(t)} O(t) e^{-V(t)}. \tag{24}$$

We will use the following identities:

(25)

(26)

(62)

```
= (|0\rangle\langle 0|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|0\rangle\langle 0|B_1^+(t)) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (27)
                              = |0\rangle\langle 0|B_0^+(t) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (28)
                              = |0\rangle\langle 0|0\rangle\langle 0|B_0^+(t) B_0^-(t) + |0\rangle\langle 0|1\rangle\langle 1|B_0^+(t) B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                            (29)
                              = |0\rangle\langle 0|,
                                                                                                                                                                                                                                                                                                                                                                                                            (30)
\overline{|1\rangle\langle 1|(t)|} = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))|1\rangle\langle 1|(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (31)
                              = (|0\rangle\langle 0|1\rangle\langle 1|B_0^+(t) + |1\rangle\langle 1|1\rangle\langle 1|B_1^+(t)))(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (32)
                              = |1\rangle\langle 1|B_1^+(t) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (33)
                              = |1\rangle\langle 1|0\rangle\langle 0|B_1^+(t)|B_0^-(t) + B_1^+(t)|1\rangle\langle 1|1\rangle\langle 1|B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                            (34)
                              = B_1^+(t) |1\rangle\langle 1|1\rangle\langle 1|B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                            (35)
                              =|1\rangle\langle 1|,
                                                                                                                                                                                                                                                                                                                                                                                                            (36)
\overline{\left|0\middle\backslash1\right|(t)}=e^{V(t)}|0\middle\backslash1|e^{-V(t)}
                                                                                                                                                                                                                                                                                                                                                                                                            (37)
                              = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))|0\rangle\langle 1|(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                             (38)
                              = (|0\rangle\langle 0|0\rangle\langle 1|B_0^+(t) + |1\rangle\langle 1|B_1^+(t)|0\rangle\langle 1|) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (39)
                              = (|0\rangle\langle 0|0\rangle\langle 1|B_0^+(t) + |1\rangle\langle 1|0\rangle\langle 1|B_1^+(t)) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (40)
                              = |0\rangle 1|B_0^+(t) (|0\rangle 0|B_0^-(t) + |1\rangle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (41)
                              = |0\rangle\langle 1|0\rangle\langle 0|B_0^+(t)B_0^-(t) + |0\rangle\langle 1|1\rangle\langle 1|B_0^+(t)B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                            (42)
                              = |0\rangle\langle 1|B_0^+(t)B_1^-(t),
                                                                                                                                                                                                                                                                                                                                                                                                            (43)
\overline{|1\rangle\langle 0|(t)|} = e^{V(t)}|1\rangle\langle 0|e^{-V(t)}|
                                                                                                                                                                                                                                                                                                                                                                                                            (44)
                              = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))|1\rangle\langle 0|(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (45)
                              = (|0\rangle\langle 0|1\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t)|1\rangle\langle 0|) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (46)
                              = (|0\rangle\langle 0|1\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|1\rangle\langle 0|B_1^+(t)) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (47)
                              = |1\rangle\langle 0|0\rangle\langle 0|B_1^+(t) B_0^-(t) + |1\rangle\langle 0|1\rangle\langle 1|B_1^+(t) B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                            (48)
                              = |1\rangle\langle 0|B_1^+(t)B_0^-(t),
                                                                                                                                                                                                                                                                                                                                                                                                            (49)
         \overline{b_{\mathbf{k}}\left(t\right)}=e^{V\left(t\right)}b_{\mathbf{k}}e^{-V\left(t\right)}
                                                                                                                                                                                                                                                                                                                                                                                                            (50)
                              = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))) b_{\mathbf{k}} (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (51)
                              = |0\rangle\langle 0|B_0^+(t)b_{\mathbf{k}}B_0^-(t)|0\rangle\langle 0| + |0\rangle\langle 0|B_0^+(t)b_{\mathbf{k}}|1\rangle\langle 1|B_1^-(t) + |1\rangle\langle 1|B_1^+(t)b_{\mathbf{k}}|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^+(t)b_{\mathbf{k}}B_1^-(t)|1\rangle\langle 1|
                                                                                                                                                                                                                                                                                                                                                                                                            (52)
                              = |0\rangle\langle 0|0\rangle\langle 0|B_0^+(t) b_{\mathbf{k}} B_0^-(t) + |0\rangle\langle 0|1\rangle\langle 1|B_0^+(t) b_{\mathbf{k}} B_1^-(t) + |1\rangle\langle 1|0\rangle\langle 0|B_1^+(t) b_{\mathbf{k}} B_0^-(t) + |1\rangle\langle 1|B_1^+(t) b_{\mathbf{k}} B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                            (53)
                             = |0\rangle\langle 0| \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1| \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right)
                                                                                                                                                                                                                                                                                                                                                                                                            (54)
                             = (|0\rangle\langle 0| + |1\rangle\langle 1|) b_{\mathbf{k}} - |1\rangle\langle 1| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - |0\rangle\langle 0| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}
                                                                                                                                                                                                                                                                                                                                                                                                             (55)
                             =b_{\mathbf{k}}-|1\rangle\langle 1|\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}-|0\rangle\langle 0|\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}},
                                                                                                                                                                                                                                                                                                                                                                                                            (56)
      \overline{b_{\mathbf{k}}\left(t\right)}^{\dagger}=e^{V\left(t\right)}b_{\mathbf{k}}^{\dagger}e^{-V\left(t\right)}
                                                                                                                                                                                                                                                                                                                                                                                                            (57)
                              = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t)) b_{\mathbf{k}}^{\dagger} (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                            (58)
                              =|0\rangle\langle 0|B_0^+(t)b_{\mathbf{k}}^{\dagger}B_0^-(t)|0\rangle\langle 0|+|0\rangle\langle 0|B_0^+(t)b_{\mathbf{k}}^{\dagger}|1\rangle\langle 1|B_1^-(t)+|1\rangle\langle 1|B_1^+(t)b_{\mathbf{k}}^{\dagger}|0\rangle\langle 0|B_0^-(t)+|1\rangle\langle 1|B_1^+(t)b_{\mathbf{k}}^{\dagger}B_1^-(t)|1\rangle\langle 1|B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)
                                                                                                                                                                                                                                                                                                                                                                                                            (59)
                              =|0\rangle\!\langle 0|0\rangle\!\langle 0|B_0^+(t)b_{\mathbf{k}}^{\dagger}B_0^-(t)+|0\rangle\!\langle 0|1\rangle\!\langle 1|B_0^+(t)b_{\mathbf{k}}^{\dagger}B_1^-(t)+|1\rangle\!\langle 1|0\rangle\!\langle 0|B_1^+(t)b_{\mathbf{k}}^{\dagger}B_0^-(t)+|1\rangle\!\langle 1|1\rangle\!\langle 1|B_1^+(t)b_{\mathbf{k}}^{\dagger}B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                          (60)
                             =|0\rangle\langle 0|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{0\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}\right)+|1\rangle\langle 1|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}\right)
                                                                                                                                                                                                                                                                                                                                                                                                             (61)
```

 $\overline{|0\rangle\langle 0|(t)|} = e^{V(t)}|0\rangle\langle 0|e^{-V(t)}$

 $=b_{\mathbf{k}}^{\dagger}-|1\rangle\langle 1|\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}-|0\rangle\langle 0|\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}.$

 $= (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))|0\rangle\langle 0|(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))$

We have used the following results as well to obtain the transformed $b_{\mathbf{k}}$ and $b_{\mathbf{k}}^{\dagger}$:

$$B_i^+(t) b_{\mathbf{k}} B_i^-(t) = b_{\mathbf{k}} - \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}, \tag{63}$$

$$B_i^+(t) b_{\mathbf{k}}^{\dagger} B_i^-(t) = b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}}.$$
 (64)

We therefore have the following relationships:

$$\overline{\varepsilon_0(t)|0\rangle\langle 0|(t)} = \varepsilon_0(t)|0\rangle\langle 0|, \tag{65}$$

$$\overline{\varepsilon_1(t)|1\rangle\langle 1|(t)} = \varepsilon_1(t)|1\rangle\langle 1|, \tag{66}$$

$$\overline{V_{10}(t)|1\rangle\langle 0|(t)} = V_{10}(t)|1\rangle\langle 0|B_1^+(t)B_0^-(t), \tag{67}$$

$$\overline{V_{01}(t)|0\rangle\langle 1|(t)} = V_{01}(t)|0\rangle\langle 1|B_0^+(t)B_1^-(t), \tag{68}$$

$$\overline{\left(g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{i\mathbf{k}}^{*}b_{\mathbf{k}}\right)(t)} = g_{i\mathbf{k}}\left(|0\rangle\langle 0|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}\right)\right) + g_{i\mathbf{k}}^{*}\left(|0\rangle\langle 0|\left(b_{\mathbf{k}}-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1|\left(b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)\right) \right) \tag{69}$$

$$=g_{i\mathbf{k}}\left((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\right)+g_{i\mathbf{k}}^{*}\left((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\right) \tag{70}$$

$$=g_{i\mathbf{k}}\Big((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\Big)+g_{i\mathbf{k}}^{*}\Big((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\Big)$$
(71)

$$=g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{i\mathbf{k}}^{*}b_{\mathbf{k}}-g_{i\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|-g_{i\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|-g_{i\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-g_{i\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|$$
(72)

$$=g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{i\mathbf{k}}^{*}b_{\mathbf{k}}-\left(g_{i\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}+g_{i\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)|0\rangle\langle 0|-\left(g_{i\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}+g_{i\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)|1\rangle\langle 1|, \quad (73)$$

$$\overline{\left|0\rangle\langle0|\left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)(t)}\right| = \left(\left|0\rangle\langle0|B_{0}^{+}(t)+|1\rangle\langle1|B_{1}^{+}(t)\right)\left|0\rangle\langle0|\left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)\left(|0\rangle\langle0|B_{0}^{-}(t)+|1\rangle\langle1|B_{1}^{-}(t)\right)\right) \tag{74}$$

$$= |0\rangle\langle 0|B_0^+(t)|0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^*b_{\mathbf{k}}\right) |0\rangle\langle 0|B_0^-(t)$$
(75)

$$= |0\rangle\langle 0|B_0^+(t) \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^*b_{\mathbf{k}}\right)B_0^-(t)$$
(76)

$$= |0\rangle\langle 0| \left(g_{0\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) + g_{0\mathbf{k}}^{*} \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right), \tag{77}$$

$$\overline{|1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1k}^{*}b_{\mathbf{k}}\right)(t)} = \left(|0\rangle\langle 0|B_{0}^{+}(t) + |1\rangle\langle 1|B_{1}^{+}(t)\right) |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1k}^{*}b_{\mathbf{k}}\right) \left(|0\rangle\langle 0|B_{0}^{-}(t) + |1\rangle\langle 1|B_{1}^{-}(t)\right)$$
(78)

$$= |1\rangle\langle 1|B_1^+(t)|1\rangle\langle 1|\left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1k}^*b_{\mathbf{k}}\right)|1\rangle\langle 1|B_1^-(t)$$
(79)

$$= |1\rangle\langle 1|B_1^+(t) \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^*b_{\mathbf{k}}\right)B_1^-(t)$$
(80)

$$=|1\rangle\langle 1|\left(g_{1\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}\right)+g_{1\mathbf{k}}^{*}\left(b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right)\right),\tag{81}$$

$$\overline{\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}(t)} = \omega_{\mathbf{k}} \left(|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t) \right) b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} \left(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t) \right)$$

$$\tag{82}$$

$$=\omega_{\mathbf{k}}\left(|0\rangle\langle 0|\prod_{\mathbf{k'}}D\left(\frac{v_{0\mathbf{k'}}(t)}{\omega_{\mathbf{k'}}}\right)+|1\rangle\langle 1|\prod_{\mathbf{k'}}D\left(\frac{v_{1\mathbf{k'}}(t)}{\omega_{\mathbf{k'}}}\right)\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\left(|0\rangle\langle 0|\prod_{\mathbf{k'}}D\left(-\frac{v_{0\mathbf{k'}}(t)}{\omega_{\mathbf{k'}}}\right)+|1\rangle\langle 1|\prod_{\mathbf{k'}}D\left(-\frac{v_{1\mathbf{k'}}(t)}{\omega_{\mathbf{k'}}}\right)\right)(83)$$

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0|B_0^+(t) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} B_0^-(t) + |1\rangle\langle 1|B_1^+(t) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} B_1^-(t) \right)$$
(84)

$$= \omega_{\mathbf{k}} \sum_{j} |j\rangle\langle j| D\left(\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D\left(-\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}' \neq \mathbf{k}} \left(D\left(\frac{v_{j\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right) D\left(-\frac{v_{j\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right)\right)$$
(85)

$$=\omega_{\mathbf{k}}\bigg(|0\rangle\langle 0|D\left(\frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}D\left(-\frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right)\mathbb{I}+|1\rangle\langle 1|D\left(\frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}D\left(-\frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right)\mathbb{I}\bigg) \tag{86}$$

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right)$$
(87)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} + \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} + \left| \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \right) \right)$$
(88)

$$=\omega_{\mathbf{k}}\left(|0\rangle\langle 0|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|1\rangle\langle 1|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|1\rangle\langle 1|\left(\left|\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^{2}-\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right)+|0\rangle\langle 0|\left(\left|\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^{2}-\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right)\right) (89)$$

$$= \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\left| \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 - \frac{v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 - \frac{v_{0\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) \right)$$
(90)

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \omega_{\mathbf{k}} \left(|1\rangle\langle 1| \left(\left| \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) \right)$$
(91)

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - v_{1\mathbf{k}}^*(t) b_{\mathbf{k}} - v_{1\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - v_{0\mathbf{k}}^*(t) b_{\mathbf{k}} - v_{0\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right)$$

$$(92)$$

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{\left| v_{1\mathbf{k}}\left(t\right) \right|^{2}}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^{*}\left(t\right) b_{\mathbf{k}} + v_{1\mathbf{k}}\left(t\right) b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{\left| v_{0\mathbf{k}}\left(t\right) \right|^{2}}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^{*}\left(t\right) b_{\mathbf{k}} + v_{0\mathbf{k}}\left(t\right) b_{\mathbf{k}}^{\dagger} \right) \right). \tag{93}$$

So all parts of H(t) can be written in the variationally optimizable frame now:

$$\overline{H_S(t)} = \overline{\varepsilon_0(t)|0\rangle\langle 0|} + \overline{\varepsilon_1(t)|1\rangle\langle 1|} + \overline{V_{10}(t)|1\rangle\langle 0|} + \overline{V_{01}(t)|0\rangle\langle 1|}$$

$$(94)$$

$$= \varepsilon_0(t) |0\rangle\langle 0| + \varepsilon_1(t) |1\rangle\langle 1| + V_{10}(t) |1\rangle\langle 0| B_1^+(t) B_0^-(t) + V_{01}(t) |0\rangle\langle 1| B_0^+(t) B_1^-(t),$$

$$(95)$$

$$\overline{H_I} = \overline{\sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^* b_{\mathbf{k}}\right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^* b_{\mathbf{k}}\right)}$$

$$(96)$$

$$= \overline{\sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)} + \overline{\sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^{*}b_{\mathbf{k}}\right)}$$
(97)

$$= \sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) + g_{0\mathbf{k}}^{*} \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) + g_{1\mathbf{k}}^{*} \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right)$$
(98)

$$= \sum_{\mathbf{k},i} |i\rangle\langle i| \left(g_{i\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{i\mathbf{k}}^{*} b_{\mathbf{k}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right), \tag{99}$$

$$\overline{H_B} = \overline{\sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}} \tag{100}$$

$$=\sum_{\mathbf{k}}\left(\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|1\rangle\langle1|\left(\frac{|v_{1\mathbf{k}}\left(t\right)|^{2}}{\omega_{\mathbf{k}}}-\left(v_{1\mathbf{k}}^{*}\left(t\right)b_{\mathbf{k}}+v_{1\mathbf{k}}\left(t\right)b_{\mathbf{k}}^{\dagger}\right)\right)+|0\rangle\langle0|\left(\frac{|v_{0\mathbf{k}}\left(t\right)|^{2}}{\omega_{\mathbf{k}}}-\left(v_{0\mathbf{k}}^{*}\left(t\right)b_{\mathbf{k}}+v_{0\mathbf{k}}\left(t\right)b_{\mathbf{k}}^{\dagger}\right)\right)\right)$$

$$(101)$$

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{\mathbf{k}} \left(|1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^*(t) b_{\mathbf{k}} + v_{1\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^*(t) b_{\mathbf{k}} + v_{0\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right) \right). \quad (102)$$

Finally merging these expressions gives the transformed Hamiltonian:

$$\overline{H(t)} = \sum_{j} \varepsilon_{j}(t)|j\rangle\langle j| + \sum_{j\neq j'} V_{jj'}(t)|j\rangle\langle j'|B_{j}^{+}(t)|B_{j'}^{-}(t) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{j\mathbf{k}} |j\rangle\langle j| \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) \right)^{*} b_{\mathbf{k}} + \frac{\left| v_{j\mathbf{k}}(t) \right|^{2}}{\omega_{\mathbf{k}}} - \left(g_{j\mathbf{k}} \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{j\mathbf{k}}^{*} \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right). \quad (103)$$

Also we may write this transformed Hamiltonian as a sum of the form:

$$\overline{H\left(t\right)} = \overline{H_{\bar{S}}}\left(t\right) + \overline{H_{\bar{I}}}\left(t\right) + \overline{H_{\bar{B}}}.\tag{104}$$

Let's define:

$$R_{i}(t) \equiv \sum_{\mathbf{k}} \left(\frac{\left| v_{i\mathbf{k}}(t) \right|^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right), \tag{105}$$

$$B_{iz}(t) \equiv \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^* b_{\mathbf{k}} \right), \tag{106}$$

$$\chi_{ij}(t) \equiv \sum_{\mathbf{k}} \frac{1}{2} \left(\frac{v_{i\mathbf{k}}^{*}(t) v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t) v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}^{2}} \right). \tag{107}$$

 $\chi_{ij}(t)$ is an imaginary number so $e^{\chi_{ij}(t)}$ is the phase associated to $B_{ij}(t)$ as we will show. We can summarize these definitions with other that we will proof later and use from now in the following matrix:

$$\begin{pmatrix}
B_{iz}(t) & B_{i}^{\pm}(t) \\
B_{x}(t) & B_{i}(t) \\
B_{y}(t) & B_{ij}(t)
\end{pmatrix} \equiv \begin{pmatrix}
\sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - v_{i\mathbf{k}}(t)) b_{\mathbf{k}}^{\dagger} + (g_{i\mathbf{k}} - v_{i\mathbf{k}}(t))^{*} b_{\mathbf{k}} \right) & e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right)} \\
\frac{B_{1}^{+}(t)B_{0}^{-}(t) + B_{0}^{+}(t)B_{1}^{-}(t) - B_{10}(t) - B_{01}(t)}{2} & e^{-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \coth(\beta\omega_{\mathbf{k}}/2)} \\
\frac{B_{0}^{+}(t)B_{1}^{-}(t) - B_{1}^{+}(t)B_{0}^{-}(t) + B_{10}(t) - B_{01}(t)}{2i} & e^{-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{i\mathbf{k}}(t) - v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} e^{\chi_{ij}(t)} \end{pmatrix}, (108)$$

$$(\cdot)^{\Re} \equiv \Re\left(\cdot\right),\tag{109}$$

$$(\cdot)^{\Im} \equiv \Im(\cdot). \tag{110}$$

We reduced the length of the expression for the real and imaginary part as shown before. We assume that the bath is at equilibrium with inverse temperature $\beta = \frac{1}{k_{\rm B}T}$, considering the stationary bath state as reference written in the following way:

$$\rho_B = \frac{e^{-\beta H_B}}{\text{Tr}\left(e^{-\beta H_B}\right)}.\tag{111}$$

We can show using the coherence representation of the creation and annihilation operators that:

$$b^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & \dots \\ \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ 0 & 0 & 0 & \dots & \sqrt{n} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \tag{112}$$

$$b = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ 0 & 0 & 0 & 0 & \ddots & \vdots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \sqrt{n} & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & \ddots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}. \tag{113}$$

So the product of the matrix representation of b^{\dagger} and b with $-\beta$ is:

$$-\beta \omega b^{\dagger} b = -\beta \omega \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & \dots \\ 0 & 1 & 0 & \dots & 0 & \dots \\ 0 & 0 & 2 & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ 0 & 0 & 0 & \dots & n & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
(114)

$$=\sum_{j=0}^{\infty} -j\beta\omega |j\rangle\langle j|, \qquad (115)$$

So the density matrix ρ_B written in the coherence representation can be obtained using the Zassenhaus formula and the fact that $[|j\rangle\langle j|, |i\rangle\langle i|] = 0$ for all i, j.

$$e^{-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}} = \sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}} |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|,, \qquad (116)$$

$$e^{-\beta \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}} = \prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}} |j_{\mathbf{k}} \rangle |j_{\mathbf{k}}|.$$
(117)

The value of ${\rm Tr}\left(e^{-\beta\sum_{\bf k}\omega_{\bf k}b_{\bf k}^{\dagger}b_{\bf k}}\right)$ is:

$$\operatorname{Tr}\left(e^{-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}}\right) = \operatorname{Tr}\left(\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}} |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right)$$
(118)

$$= \sum_{j_{\mathbf{k}}} \left(e^{-\beta \omega_{\mathbf{k}}} \right)^{j_{\mathbf{k}}} \tag{119}$$

$$= \frac{1}{1 - e^{-\beta\omega_{\mathbf{k}}}}$$
 (by geometric series) (120)

$$\equiv f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right), \tag{121}$$

$$\operatorname{Tr}\left(e^{-\beta\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}}\right) = \operatorname{Tr}\left(\prod_{\mathbf{k}}\sum_{j_{\mathbf{k}}}e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}}|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right)$$
(122)

$$= \prod_{\mathbf{k}} \operatorname{Tr} \left(\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}} |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}| \right)$$
 (123)

$$= \prod_{\mathbf{k}} f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right). \tag{124}$$

So the density matrix of the bath is:

$$\rho_B = \frac{e^{-\beta H_B}}{\text{Tr}\left(e^{-\beta H_B}\right)} \tag{125}$$

$$= \frac{\prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}} |j_{\mathbf{k}} \rangle |j_{\mathbf{k}}|}{\prod_{\mathbf{k}} f_{\text{Bose-Einstein}} (-\beta \omega_{\mathbf{k}})}$$
(126)

$$= \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}} |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}} (-\beta\omega_{\mathbf{k}})}.$$
(127)

Now, given that creation and annihilation satisfy:

$$b_{\mathbf{k}} \mid j_{\mathbf{k}} \rangle = \sqrt{j_{\mathbf{k}}} \mid j_{\mathbf{k}} - 1 \rangle,$$
 (128)

$$b_{\mathbf{k}}^{\dagger} | j_{\mathbf{k}} \rangle = \sqrt{j_{\mathbf{k}} + 1} | j_{\mathbf{k}} + 1 \rangle. \tag{129}$$

Then we can prove that $\langle B_{iz}\rangle_{\overline{H}_{\bar{B}}}=0$ using the following property based on (128)-(129):

$$\langle B_{iz}(t)\rangle_{\overline{H_{\overline{B}}}} = \operatorname{Tr}\left(B_{iz}\left(t\right)\rho_{B}\right)$$
 (130)

$$=\operatorname{Tr}\left(\left(\sum_{\mathbf{k}}\left(\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\left(t\right)\right)b_{\mathbf{k}}^{\dagger}+\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\left(t\right)\right)^{*}b_{\mathbf{k}}\right)\right)\rho_{B}\right)$$
(131)

$$= \sum_{\mathbf{k}} \operatorname{Tr} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \left(t \right) \right) b_{\mathbf{k}}^{\dagger} \rho_{B} \right) + \sum_{\mathbf{k}} \operatorname{Tr} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \left(t \right) \right)^{*} b_{\mathbf{k}} \rho_{B} \right)$$
(132)

$$= \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \left(t \right) \right) \operatorname{Tr} \left(b_{\mathbf{k}}^{\dagger} \rho_{B} \right) + \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \left(t \right) \right)^{*} \operatorname{Tr} \left(b_{\mathbf{k}} \rho_{B} \right)$$
(133)

$$= \sum_{\mathbf{k}} \operatorname{Tr} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}} |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right)} \right) + \sum_{\mathbf{k}} \operatorname{Tr} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^* b_{\mathbf{k}} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}} |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right)} \right)$$
(134)

$$= \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}(t)) \operatorname{Tr} \left(b_{\mathbf{k}}^{\dagger} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}} |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}} (-\beta\omega_{\mathbf{k}})} \right) + \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}(t))^* \operatorname{Tr} \left(b_{\mathbf{k}} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}} |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}} (-\beta\omega_{\mathbf{k}})} \right), (135)$$

$$\operatorname{Tr}\left(b_{\mathbf{k}}^{\dagger} \sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}} |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right) = \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}}\right) b_{\mathbf{k}}^{\dagger} |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right) \quad \text{(by cyclic permutivity of trace, move } b_{\mathbf{k}}^{\dagger})$$

$$= \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}}\right) \sqrt{j_{\mathbf{k}} + 1} |j_{\mathbf{k}} + 1\rangle\langle j_{\mathbf{k}}|\right)$$
(137)

$$=0,$$

$$\operatorname{Tr}\left(b_{\mathbf{k}}\sum_{j_{\mathbf{k}}}e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}}|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right) = \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}}e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}}\right)b_{\mathbf{k}}|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right) \text{ (by cyclic permutivity of trace, move } b_{\mathbf{k}})$$

$$= \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}} e^{-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}}\right) \sqrt{j_{\mathbf{k}}} |j_{\mathbf{k}} - 1\rangle\langle j_{\mathbf{k}}|\right)$$
(140)

$$=0. (141)$$

we therefore find that:

$$\langle B_{iz}\left(t\right)\rangle_{\overline{H_{B}}}=0. \tag{142}$$

Another important expected value is $B\left(t\right)=\langle B^{\pm}\left(t\right)\rangle_{\overline{H_{B}}}$, where $B^{\pm}\left(t\right)=e^{\pm\sum_{\mathbf{k}}\left(\frac{v_{\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}-\frac{v_{\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)}$ is given by:

$$\langle B^{\pm}(t)\rangle_{H_B} = \text{Tr}\left(\rho_B B^{\pm}(t)\right) = \text{Tr}\left(B^{\pm}(t)\rho_B\right)$$
 (143)

$$= \operatorname{Tr}\left(e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}\right)} \rho_{B}\right)$$
(144)

$$= \prod_{\mathbf{k}} \operatorname{Tr} \left(D \left(\pm \alpha_{\mathbf{k}} \left(t \right) \right) \rho_{B} \right) \tag{145}$$

$$= \prod_{\mathbf{k}} \langle D(\pm \alpha_{\mathbf{k}}(t)) \rangle. \tag{146}$$

Given that we can write a density operator as:

$$\rho = \int P(\alpha) |\alpha\rangle\langle\alpha| d^2\alpha. \tag{147}$$

where $P(\alpha)$ satisfies $\int P(\alpha) d^2 \alpha = 1$ and describes the state. It follows that the expectation value of an operator A with respect to the density operator described by $P(\alpha)$ is given by:

$$\langle A \rangle = \text{Tr} (A\rho)$$
 (148)

$$= \int P(\alpha) \langle \alpha | A | \alpha \rangle d^2 \alpha. \tag{149}$$

We are typically interested in thermal state density operators, for which it can be shown that $P\left(\alpha\right)=\frac{1}{\pi N}e^{-\frac{|\alpha|^2}{N}}$ where $N=\left(e^{\beta\omega}-1\right)^{-1}$ is the average number of excitations in an oscillator of frequency ω at inverse temperature $\beta=\frac{1}{k_{\rm B}T}$.

Using the integral representation (149) we could obtain that the expected value for the displacement operator D(h) with $h \in \mathbb{C}$ is equal to:

$$\langle D(h) \rangle = \frac{1}{\pi N} \int e^{-\frac{|\alpha|^2}{N}} \langle \alpha | D(h) | \alpha \rangle d^2 \alpha$$
 (150)

$$=\frac{1}{\pi N} \int e^{-\frac{|\alpha|^2}{N}} \langle 0|D(-\alpha)D(h)D(\alpha)|0\rangle d^2\alpha, \tag{151}$$

$$D(h)D(\alpha) = D(h+\alpha)e^{\frac{1}{2}(h\alpha^* - h^*\alpha)},$$
(152)

$$D(-\alpha)(D(h)D(\alpha)) = D(-\alpha)D(h+\alpha)e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(153)

$$= D(h) e^{\frac{1}{2}(-\alpha(h+\alpha)^* + \alpha^*(h+\alpha))} e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(154)

$$= D(\alpha) e^{\frac{1}{2}(-\alpha h^* - |\alpha|^2 + \alpha^* h + |\alpha|^2)} e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(155)

$$= D(\alpha) e^{(h\alpha^* - h^*\alpha)}, \tag{156}$$

$$\langle D(h)\rangle = \frac{1}{\pi N} \int e^{-\frac{|\alpha|^2}{N}} \langle 0|D(h) e^{(h\alpha^* - h^*\alpha)}|0\rangle d^2\alpha$$
(157)

$$= \frac{1}{\pi N} \int e^{-\frac{|\alpha|^2}{N}} e^{(h\alpha^* - h^*\alpha)} \langle 0|D(h)|0\rangle d^2\alpha$$
(158)

$$= \frac{1}{\pi N} \int e^{-\frac{|\alpha|^2}{N}} e^{(h\alpha^* - h^*\alpha)} \langle 0|h\rangle d^2\alpha, \tag{159}$$

$$|\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle, \tag{160}$$

$$\langle D(h)\rangle = \frac{1}{\pi N} \int e^{-\frac{|\alpha|^2}{N}} e^{(h\alpha^* - h^*\alpha)} \langle 0| e^{-\frac{|h|^2}{2}} \sum_{n=0}^{\infty} \frac{h^n}{\sqrt{n!}} |n\rangle d^2\alpha$$
 (161)

$$= \frac{1}{\pi N} \int e^{-\frac{|\alpha|^2}{N}} e^{(h\alpha^* - h^*\alpha)} e^{-\frac{|h|^2}{2}} d^2\alpha$$
 (162)

$$= \frac{e^{-\frac{|h|^2}{2}}}{\pi N} \int e^{-\frac{|\alpha|^2}{N} + h\alpha^* - h^*\alpha} d^2\alpha,$$
 (163)

$$\alpha = x + iy, \tag{164}$$

$$\langle D(h) \rangle = \frac{e^{-\frac{|h|^2}{2}}}{\pi N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2 + y^2}{N} + h(x - iy) - h^*(x + iy)} dxdy$$
 (165)

$$= \frac{e^{-\frac{|h|^2}{2}}}{\pi N} \int_{-\infty}^{\infty} e^{-\frac{x^2}{N} + hx - h^* x} dx \int_{-\infty}^{\infty} e^{-\frac{x^2}{N} + hx - h^* x} dy,$$
 (166)

$$-\frac{x^2}{N} + hx - h^*x = -\frac{1}{N} \left(x^2 - Nhx + Nh^*x \right)$$
 (167)

$$= -\frac{1}{N} \left(x + \frac{(Nh^* - Nh)}{2} \right)^2 + \frac{N(h^* - h)^2}{4}, \tag{168}$$

$$-\frac{y^2}{N} - ihy - ih^*y = -\frac{1}{N} \left(y^2 + iNhy + iNh^*y \right)$$
 (169)

$$= -\frac{1}{N} \left(y^2 + \frac{iN(h+h^*)}{2} \right) - \frac{N(h+h^*)^2}{4}, \tag{170}$$

$$\sqrt{2\pi}\sigma = \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx,$$
(171)

$$\langle D(h) \rangle = \frac{e^{-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}}}{\pi N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{N} \left(x + \frac{\left(Nh^* - Nh\right)}{2}\right)^2 - \frac{1}{N} \left(y^2 + \frac{iN(h + h^*)}{2}\right)} dx dy, \tag{172}$$

$$\langle D(h) \rangle = \frac{e^{-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}}}{\pi N} \int_{-\infty}^{\infty} e^{-\frac{\left(x + \frac{\left(Nh^* - Nh\right)}{2}\right)^2}{2\left(\sqrt{\frac{N}{2}}\right)^2}} dx \int_{-\infty}^{\infty} e^{-\frac{\left(y^2 + \frac{iN(h + h^*)}{2}\right)}{2\left(\sqrt{\frac{N}{2}}\right)^2}} dy$$
(173)

$$=\frac{e^{-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}}}{\pi N} \left(\sqrt{2\pi}\sqrt{\frac{N}{2}}\right)^2 \tag{174}$$

$$=e^{-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}}$$
(175)

$$=e^{-\frac{|h|^2}{2} + \frac{N(h^{*2} - 2hh^* + h^2) - N(h^2 + 2hh^* + h^{*2})}{4}}$$
(176)

$$=e^{-|h|^2\left(N+\frac{1}{2}\right)} \tag{177}$$

$$=e^{-|h|^2\left(\frac{1}{e^{\beta\omega}-1}+\frac{1}{2}\right)}\tag{178}$$

$$=e^{-\frac{|h|^2}{2}\left(\frac{e^{\beta\omega}+1}{e^{\beta\omega}-1}\right)}\tag{179}$$

$$=e^{-\frac{|h|^2}{2}\coth\left(\frac{\beta\omega}{2}\right)}. (180)$$

In the last line we used $\frac{e^{\beta\omega}+1}{e^{\beta\omega}-1}=\coth\left(\frac{\beta\omega}{2}\right)$. So the value of (145) using (??) is given by:

$$B = e^{-\sum_{\mathbf{k}} \frac{|\alpha_{\mathbf{k}}|^2}{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}.$$
(181)

We will now force $\langle \overline{H_I}(t) \rangle_{\overline{H_B}} = 0$. We will also introduce the bath renormalizing driving in $\overline{H_S}(t)$ to treat it non-perturbatively in the subsequent formalism, we associate the terms related with $B_i^+(t) \, \sigma^+$ and $B_i^-(t) \, \sigma^-$ with the interaction part of the Hamiltonian $\overline{H_I}(t)$ and we subtract their expected value in order to satisfy $\langle \overline{H_I}(t) \rangle_{\overline{H_B}} = 0$.

A final form of the terms of the Hamiltonian $\overline{H}(t)$ is:

$$\overline{H(t)} = \sum_{j} \varepsilon_{j}(t)|j\rangle\langle j| + \sum_{j\neq j'} V_{jj'}(t)|j\rangle\langle j'|B_{j}^{+}(t)B_{j'}^{-}(t) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{j\mathbf{k}} |j\rangle\langle j| \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) \right)^{*} b_{\mathbf{k}} + \frac{\left| v_{j\mathbf{k}}(t) \right|^{2}}{\omega_{\mathbf{k}}} - \left(g_{j\mathbf{k}} \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{j\mathbf{k}}^{*} \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{j} \varepsilon_{j}(t)|j\rangle\langle j| + \sum_{j} V_{j}(t)|j\rangle\langle j'|B_{j}(t) + \sum_{j} V_{j}(t)|D_{j}(t) + \sum_{j} V_{j}(t)|D_{j}(t)|D_{j}(t) + \sum_{j} V_{j}(t)|D_{j}(t) + \sum_{j} V_{j}(t)|D_{j}(t)|D_{j}(t) + \sum_{j} V_{j}(t)|D_{j}(t)|D_{j}(t)|D_{j}(t) + \sum_{j} V_{j}(t)|D_{j}(t)|D_{j}(t)|D_{j}(t)|D_{j}(t) + \sum_{j} V_{j}(t)|D_{j}(t)|D_{j}(t)|D_{j}(t)|D_{j}(t) + \sum_$$

$$= \sum_{j} \varepsilon_{j}(t)|j\rangle\langle j| + \sum_{j\neq j'} V_{jj'}(t)|j\rangle\langle j'|B_{jj'}(t) + \sum_{j} |j\rangle\langle j|B_{jz}(t) + \sum_{j\neq j'} V_{jj'}(t)|j\rangle\langle j'| \left(B_{j}^{+}(t) B_{j'}^{-}(t) - B_{jj'}(t)\right) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \quad (183)$$

$$\equiv \overline{H_{\bar{S}}\left(t\right)} + \overline{H_{\bar{I}}}\left(t\right) + \overline{H_{\bar{B}}}.\tag{184}$$

The parts of the Hamiltonian splitted are obtained using the following expected value:

$$\langle B_i^+(t) B_j^-(t) \rangle = B_{ij}(t) \tag{185}$$

$$= \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}} D\left(-\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \right\rangle$$
(186)

$$= \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) D\left(-\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) \right\rangle \tag{187}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right) \right\rangle$$
(188)

$$= \prod_{\mathbf{k}} \left\langle D\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \right\rangle e^{\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}$$
(189)

$$= \prod_{\mathbf{k}} e^{-\frac{1}{2} \left| \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} e^{\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}$$
(190)

$$=e^{-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} \prod_{\mathbf{k}} e^{\frac{1}{2}\left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}.$$
(191)

From the definition $B_{01}(t) = \langle B_0^+(t) B_1^-(t) \rangle$ using the displacement operator we have:

$$\langle B_0^+(t) B_1^-(t) \rangle = B_{01}(t)$$
 (192)

$$= \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}} D\left(-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \right\rangle \tag{193}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) D\left(-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) \right\rangle \tag{194}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right) \right\rangle$$
(195)

$$= \prod_{\mathbf{k}} \left(\left\langle D \left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right\rangle e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right)$$
(196)

$$= \prod_{\mathbf{k}} \left(e^{-\frac{1}{2} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)} \right)$$
(197)

$$=e^{-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} \prod_{\mathbf{k}} e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}.$$
(198)

We can check:

$$\langle B_0^+(t) B_1^-(t) \rangle = B_{01}(t)$$
 (199)

$$=e^{-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} \prod_{\mathbf{k}} e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}$$
(200)

$$=e^{-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}\prod_{\mathbf{k}}e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}(t)v_{0\mathbf{k}}(t)-v_{1\mathbf{k}}(t)v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}^{2}}\right)^{*}}$$
(201)

$$= \langle B_1^+(t) B_0^-(t) \rangle^*$$
 (202)

$$=B_{10}^{*}(t). (203)$$

The parts of the splitted Hamiltonian are:

$$\overline{H_{\bar{S}}(t)} \equiv (\varepsilon_0(t) + R_0(t)) |0\rangle\langle 0| + (\varepsilon_1(t) + R_1(t)) |1\rangle\langle 1| + V_{10}(t) B_{10}\sigma^+ + V_{01}(t) B_{01}\sigma^-,$$
(204)

$$\overline{H_{\bar{I}}} \equiv V_{10}(t) \left(B_1^+(t) B_0^-(t) - B_{10}(t) \right) \sigma^+ + V_{01}(t) \left(B_0^+(t) B_1^-(t) - B_{01}(t) \right) \sigma^- + |0\rangle\langle 0| B_{0z}(t) + |1\rangle\langle 1| B_{1z}(t) , \quad (205)$$

$$\overline{H_{\bar{B}}} \equiv \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \tag{206}$$

$$= H_B. (207)$$

Note that $\overline{H_B}$, which is the bath acting on the effective "system" \overline{S} in the variational frame, is just the original bath, H_B , before transforming to the variational frame.

For the Hamiltonian (205) we can verify the condition $\langle \overline{H_{\bar{I}}} \rangle_{\overline{H_{\bar{R}}}} = 0$ in the following way:

$$\left\langle \overline{H_{\bar{I}}} \right\rangle_{\overline{H_{\bar{B}}}} = \left\langle \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right)^{*} b_{\mathbf{k}} \right) |n\rangle\langle n| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| \left(B_{j}^{\dagger}(t) B_{j'}^{-}(t) - B_{jj'}(t) \right) \right\rangle_{\overline{H_{\bar{B}}}}$$

$$= \left\langle \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right)^{*} b_{\mathbf{k}} \right) |n\rangle\langle n| \right\rangle_{\overline{H_{\bar{B}}}}
+ \left\langle \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| \left(B_{j}^{\dagger}(t) B_{j'}^{-}(t) - B_{jj'}(t) \right) \right\rangle_{\overline{H_{\bar{B}}}}$$

$$= \sum_{n\mathbf{k}} \left(\left\langle \left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{\bar{B}}}}
+ \left\langle \left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right)^{*} b_{\mathbf{k}} \right\rangle_{\overline{H_{\bar{B}}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| \left(\left\langle V_{jj'}(t) B_{j}^{\dagger}(t) B_{j'}^{-}(t) \right\rangle_{\overline{H_{\bar{B}}}}
- \left\langle V_{jj'}(t) B_{jj'}(t) \right\rangle_{\overline{H_{\bar{B}}}}$$

$$= \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{\bar{B}}}}
+ \left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right)^{*} \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{\bar{B}}}}
\right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'}(t) \left(\left\langle B_{j}^{\dagger}(t) B_{j'}^{-}(t) \right\rangle_{\overline{H_{\bar{B}}}}
- \left\langle B_{jj'}(t) \right\rangle_{\overline{H_{\bar{B}}}}$$

$$= \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{\bar{B}}}}
+ \left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right)^{*} \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{\bar{B}}}}
\right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'}(t) \left(B_{jj'}(t) - B_{jj'}(t) \right)$$

$$= \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{\bar{B}}}}
+ \left(g_{n\mathbf{k}} - v_{n\mathbf{k}}(t) \right)^{*} \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{\bar{B}}}}
\right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'}(t) \left(B_{jj'}(t) - B_{jj'}(t) \right)$$
(211)

=0. (213)

We used (142) and (??) to evaluate the expression. Let's consider the following Hermitian combinations:

$$B_x(t) = B_x^{\dagger}(t) \tag{214}$$

$$=\frac{B_{1}^{+}(t)B_{0}^{-}(t)+B_{0}^{+}(t)B_{1}^{-}(t)-B_{10}(t)-B_{01}(t)}{2},$$
(215)

$$B_y(t) = B_y^{\dagger}(t) \tag{216}$$

$$=\frac{B_0^+(t)B_1^-(t)-B_1^+(t)B_0^-(t)+B_{10}(t)-B_{01}(t)}{2i},$$
(217)

$$B_{iz}\left(t\right) = B_{iz}^{\dagger}\left(t\right) \tag{218}$$

$$= \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^* b_{\mathbf{k}} \right). \tag{219}$$

Writing the equations (204) and (205) using the previous combinations we obtain that:

$$\overline{H_{\bar{S}}}(t) = \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) |j\rangle\langle j| + V_{10}(t) B_{10}(t) \sigma^+ + V_{01}(t) B_{01}(t) \sigma^-$$
(220)

$$= \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) |j\rangle\langle j| + V_{10}(t) B_{10}(t) \frac{\sigma_x + i\sigma_y}{2} + V_{01}(t) B_{01}(t) \frac{\sigma_x - i\sigma_y}{2}$$
(221)

$$= \sum_{j \in \{0,1\}} \left(\varepsilon_{j}\left(t\right) + R_{j}\left(t\right) \right) |j\rangle\langle j| + V_{10}\left(t\right) \left(B_{10}^{\Re}\left(t\right) + iB_{10}^{\Im}\left(t\right) \right) \frac{\sigma_{x} + i\sigma_{y}}{2} + V_{01}\left(t\right) \left(B_{10}^{\Re}\left(t\right) - iB_{10}^{\Im}\left(t\right) \right) \frac{\sigma_{x} - i\sigma_{y}}{2}$$
(222)

$$= \sum_{j \in \{0,1\}} \left(\varepsilon_j(t) + R_j(t) \right) |j\rangle\langle j| + B_{10}^{\Re}(t) \left(V_{10}(t) \frac{\sigma_x + i\sigma_y}{2} + V_{01}(t) \frac{\sigma_x - i\sigma_y}{2} \right) + iB_{10}^{\Im}(t) \left(V_{10}(t) \frac{\sigma_x + i\sigma_y}{2} - V_{01}(t) \frac{\sigma_x - i\sigma_y}{2} \right)$$
(223)

$$= \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) |j\rangle\langle j| + B_{10}^{\Re}(t) \left(\sigma_x \frac{V_{10}(t) + V_{01}(t)}{2} + i\sigma_y \frac{V_{10}(t) - V_{01}(t)}{2}\right) + iB_{10}^{\Im}(t) \left(\sigma_x \frac{V_{10}(t) - V_{01}(t)}{2} + i\sigma_y \frac{V_{10}(t) + V_{01}(t)}{2}\right)$$
(224)

$$= \sum_{j \in \{0,1\}} \left(\varepsilon_{j}(t) + R_{j}(t) \right) |j\rangle\langle j| + B_{10}^{\Re}(t) \left(\sigma_{x} V_{10}^{\Re}(t) - \sigma_{y} V_{10}^{\Im}(t) \right) + i B_{10}^{\Im}(t) \left(i \sigma_{x} V_{10}^{\Im}(t) + i \sigma_{y} V_{10}^{\Re}(t) \right)$$
(225)

$$=\left(\varepsilon_{0}\left(t\right)+R_{0}\left(t\right)\right)|0\rangle\langle 0|+\left(\varepsilon_{1}\left(t\right)+R_{1}\left(t\right)\right)|1\rangle\langle 1|+B_{10}^{\Re}\left(t\right)\left(\sigma_{x}V_{10}^{\Re}\left(t\right)-\sigma_{y}V_{10}^{\Im}\left(t\right)\right)+\mathrm{i}B_{10}^{\Im}\left(t\right)\left(\mathrm{i}\sigma_{x}V_{10}^{\Im}\left(t\right)+\mathrm{i}\sigma_{y}V_{10}^{\Re}\left(t\right)\right)$$

$$(226)$$

$$=\left(\varepsilon_{0}(t)+R_{0}(t)\right)|0\rangle\langle 0|+\left(\varepsilon_{1}(t)+R_{1}(t)\right)|1\rangle\langle 1|+\left(\sigma_{x}B_{10}^{\Re}(t)\,V_{10}^{\Re}(t)-\sigma_{y}B_{10}^{\Re}(t)\,V_{10}^{\Im}(t)\right)-\left(\sigma_{x}B_{10}^{\Im}(t)\,V_{10}^{\Im}(t)+\sigma_{y}B_{10}^{\Im}(t)\,V_{10}^{\Re}(t)\right)$$

$$=\left(\varepsilon_{0}(t)+R_{0}(t)\right)|0\rangle\langle 0|+\left(\varepsilon_{1}(t)+R_{1}(t)\right)|1\rangle\langle 1|+\sigma_{x}\left(B_{10}^{\Re}(t)\,V_{10}^{\Re}(t)-B_{10}^{\Im}(t)\,V_{10}^{\Im}(t)\right)-\sigma_{y}\left(B_{10}^{\Re}(t)\,V_{10}^{\Im}(t)+B_{10}^{\Im}(t)\,V_{10}^{\Re}(t)\right)\tag{228}$$

$$\begin{split} &= (\epsilon_0 (t) + R_0 (t)) |0\rangle (0| + (\epsilon_1 (t) + R_1 (t)) |1\rangle (1| + \sigma_x \left(B_{10}^{R_0} (t) V_{10}^{R_0} (t) - B_{10}^{R_0} (t) V_{10}^{R_0} (t) \right) - \sigma_y \left(B_{10}^{R_0} (t) V_{10}^{R_0} (t) + B_{10}^{R_0} (t) V_{10}^{R_0} (t) \right), \\ &= I_1 = V_{10} (t) \left(\sigma^* B_1^+ (t) B_0^- (t) - \sigma^* B_{10} (t)\right) + V_{01} (t) \left(\sigma^- B_0^+ (t) B_1^- (t) - \sigma^- B_{01} (t)\right) + |0\rangle (0| B_{0z} (t) + |1\rangle (1| B_{1z} (t)) \\ &= |0\rangle (0| B_{0z} (t) + |1\rangle (1| B_{1z} (t) + \left(V_{10}^{R_0} (t) + iV_{10}^{R_0} (t)\right) \left(\sigma^* B_1^+ (t) B_0^- (t) - \sigma^* B_{10} (t)\right) + \left(V_{10}^{R_0} (t) - iV_{10}^{R_0} (t)\right) \left(\sigma^- B_0^+ (t) B_1^- (t) - \sigma^- B_{01} (t)\right) \\ &= \sum_i B_{iz} (t) |i\rangle (i| + V_{10}^{R_0} (t) \left(\sigma^* B_1^+ (t) B_0^- (t) - \sigma^* B_{10} (t)\right) + \sigma^- B_0^+ (t) B_1^- (t) - \sigma^- B_{01} (t)\right) + iV_{10}^{R_0} (t) \left(\sigma^* B_1^+ (t) B_0^- (t) - \sigma^- B_{01} (t)\right) \\ &= \sum_i B_{iz} (t) |i\rangle (i| + V_{10}^{R_0} (t) \left(\sigma^* B_1^+ (t) B_0^- (t) - \sigma^* B_{10} (t)\right) + \sigma^- B_0^+ (t) B_1^- (t) - \sigma^- B_{01} (t)\right) + iV_{10}^{R_0} (t) \left(\sigma^* B_1^+ (t) B_0^- (t) - \sigma^- B_0^+ (t) B_1^- (t) - \sigma^- B_{01} (t)\right) \\ &= \sum_i B_{iz} (t) |i\rangle (i| + V_{10}^{R_0} (t) \left(\sigma^* A_1^{-i} \sigma_y B_1^+ (t) B_0^- (t) - \frac{\sigma_x + i\sigma_y}{2} B_{10} (t) + \frac{\sigma_x - i\sigma_y}{2} B_0^+ (t) B_1^- (t) - \frac{\sigma_x - i\sigma_y}{2} B_0^+ (t)\right) \\ &= \sum_i B_{iz} (t) |i\rangle (i| + V_{10}^{R_0} (t) \left(\sigma^* A_1^{-i} \sigma_y B_1^+ (t) B_0^- (t) - \frac{\sigma_x + i\sigma_y}{2} B_{10} (t) - \frac{\sigma_x - i\sigma_y}{2} B_0^+ (t) B_1^- (t) - \frac{\sigma_x - i\sigma_y}{2} B_0^+ (t)\right) \\ &= \sum_i B_{iz} (t) |i\rangle (i| + V_{10}^{R_0} (t) \left(\sigma^* A_1^{-i} \sigma_y B_1^+ (t) B_0^- (t) + B_0^+ (t) B_1^- (t) - B_{10} (t) + i\sigma_y B_1^+ (t) B_0^- (t) - B_0^+ (t) B_1^- (t) - B_{10} (t)\right) \\ &= \sum_i B_{iz} (t) |i\rangle (i| + V_{10}^{R_0} (t) G_x B_x (t) + \sigma_y B_y (t) + V_{10}^{R_0} (t) \left(\sigma^* A_1^{-i} \sigma_y B_1^+ (t) B_0^- (t) + B_0^+ (t) B_1^- (t) - B_{10} (t) + B_0^+ (t) B_1^- (t) - B_{10} (t)\right) \\ &= \sum_i B_{iz} (t) |i\rangle (i| + V_{10}^{R_0} (t) G_x B_x (t) + \sigma_y B_y (t) + V_{10}^{R_0} (t) \left(\sigma^* A_1^{-i} \sigma_y B_1^+ (t) B_0^- (t) - B_0^+ (t) B_1^- (t) - B_0 (t) + B_0^+ (t) B_0^- (t) - B_0^+ (t) B_0^- (t) - B_0^+ (t) B_0^- (t) - B_0^+ (t$$

III. FREE-ENERGY MINIMIZATION

The true free energy A is bounded by the Bogoliubov inequality:

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\operatorname{Tr} \left(e^{-\beta \left(\overline{H_{\bar{S}}}(t) + \overline{H_{\bar{B}}} \right)} \right) \right) + \left\langle \overline{H_{\bar{I}}} \right\rangle_{\overline{H_{\bar{S}}}(t) + \overline{H_{\bar{B}}}} + O\left(\left\langle \overline{H_{\bar{I}}}^2 \right\rangle_{\overline{H_{\bar{S}}}(t) + \overline{H_{\bar{B}}}} \right). \tag{243}$$

We will optimize the set of variational parameters $\{v_{i\mathbf{k}}(t)\}$ in order to minimize A_{B} (i.e. to make it as close to the true free energy A as possible). Neglecting the higher order terms and using $\langle \overline{H_{\bar{I}}} \rangle_{\overline{H_{\bar{S}}}(t)+\overline{H_{\bar{B}}}} = 0$ we can obtain the following condition to obtain the set $\{v_{i\mathbf{k}}(t)\}$:

$$\frac{\partial A_{\rm B}}{\partial v_{i\mathbf{k}}(t)} = 0. \tag{244}$$

Using this condition and given that $\left[\overline{H_{\bar{S}}}\left(t\right),\overline{H_{\bar{B}}}\right]=0$, we have:

$$e^{-\beta\left(\overline{H}_{\bar{S}}(t) + \overline{H}_{\bar{B}}\right)} = e^{-\beta\overline{H}_{\bar{S}}(t)}e^{-\beta\overline{H}_{\bar{B}}}.$$
(245)

Then using the fact that $\overline{H}_{\overline{S}}(t)$ and $\overline{H}_{\overline{B}}$ relate to different Hilbert spaces, we obtain:

$$\operatorname{Tr}\left(e^{-\beta \overline{H_{\bar{S}}}(t)}e^{-\beta \overline{H_{\bar{B}}}}\right) = \operatorname{Tr}\left(e^{-\beta \overline{H_{\bar{S}}}(t)}\right)\operatorname{Tr}\left(e^{-\beta \overline{H_{\bar{B}}}}\right). \tag{246}$$

So Eq. (244) becomes:

$$\frac{\partial A_{\rm B}}{\partial v_{i\mathbf{k}}(t)} = -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \left(\overline{H}_{\bar{S}}(t) + \overline{H}_{\bar{B}} \right)} \right) \right)}{\partial v_{i\mathbf{k}}(t)}
= -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H}_{\bar{S}}(t)} \right) \operatorname{Tr} \left(e^{-\beta \overline{H}_{\bar{B}}} \right) \right)}{\partial v_{i\mathbf{k}}(t)} \tag{248}$$

$$= -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_S}(t)} \right) \operatorname{Tr} \left(e^{-\beta \overline{H_B}} \right) \right)}{\partial v_{i\mathbf{k}} \left(t \right)}$$
 (248)

$$= -\frac{1}{\beta} \frac{\partial \left(\ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_S}(t)} \right) \right) + \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_B}} \right) \right) \right)}{\partial v_{i\mathbf{k}}(t)}$$
(249)

$$= -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right) \right)}{\partial v_{i\mathbf{k}}(t)} - \frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{B}}}} \right) \right)}{\partial v_{i\mathbf{k}}(t)}$$
(250)

$$= 0$$
 (by Eq. (244)). (251)

But since $\bar{H}_{\bar{B}} = H_B$ which doesn't contain any $v_{i\mathbf{k}}(t)$, a derivative of any function of H_B that does not introduce new $v_{i\mathbf{k}}(t)$ will be zero. We therefore require the following:

$$\frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_S}(t)} \right) \right)}{\partial v_{i\mathbf{k}}(t)} = \frac{1}{e^{-\beta \overline{H_S}(t)}} \frac{\partial \operatorname{Tr} \left(e^{-\beta \overline{H_S}(t)} \right)}{\partial v_{i\mathbf{k}}(t)} = 0.$$
(252)

This means we need to impose:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H}_{\bar{S}}(t)}\right)}{\partial v_{i\mathbf{k}}(t)} = 0. \tag{254}$$

First we look at:

$$-\beta \overline{H_{\bar{S}}}(t) = -\beta \left((\varepsilon_0(t) + R_0(t)) |0\rangle\langle 0| + (\varepsilon_1(t) + R_1(t)) |1\rangle\langle 1| + V_{10}(t) B_{10}(t) \sigma^+ + V_{01}(t) B_{01}(t) \sigma^- \right). \tag{255}$$

Then the eigenvalues of $-\beta \overline{H_{\bar{S}}}(t)$ satisfy the following relationship deduced from the Caley-Hamilton theorem:

$$\lambda^{2} - \operatorname{Tr}\left(-\beta \overline{H_{\bar{S}}}(t)\right) + \operatorname{Det}\left(-\beta \overline{H_{\bar{S}}}(t)\right) = 0.$$
(256)

Let's define:

$$\varepsilon(t) \equiv \text{Tr}\left(\overline{H_{\bar{S}}}(t)\right),$$
 (257)

$$\eta \equiv \sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}}(t)\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}}(t)\right)}.$$
(258)

The solutions of the equation (256) are:

$$\lambda = \beta \frac{-\text{Tr}\left(\overline{H_{\bar{S}}}(t)\right) \pm \sqrt{\left(\text{Tr}\left(\overline{H_{\bar{S}}}(t)\right)\right)^{2} - 4\text{Det}\left(\overline{H_{\bar{S}}}(t)\right)}}{2}$$
(259)

$$=\beta \frac{-\varepsilon \left(t\right) \pm \eta \left(t\right) }{2}\tag{260}$$

$$=-\beta \frac{\varepsilon \left(t\right) \mp \eta \left(t\right) }{2}. \tag{261}$$

The value of $\operatorname{Tr}\left(e^{-\beta \overline{H_S}(t)}\right)$ can be written in terms of this eigenvalues as (since there's only 2 eigenvalues of a 2×2 matrix):

$$\operatorname{Tr}\left(e^{-\beta \overline{H_{S}}(t)}\right) = \exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right) \exp\left(\frac{\eta\left(t\right)\beta}{2}\right) + \exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right) \exp\left(-\frac{\eta\left(t\right)\beta}{2}\right)$$
(262)

$$=2\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\cosh\left(\frac{\eta\left(t\right)\beta}{2}\right). \tag{263}$$

Given that $v_{i\mathbf{k}}(t)$ is a complex number then we will optimize in the real and complex parts of this element, this can be seen in the following reasoning.

Using the chain rule on the function $\operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right) = A\left(\varepsilon\left(t\right),\eta\left(t\right)\right)$ to calculate $\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right)}{\partial v_{i\mathbf{k}}^{\Re}(t)}$ can lead to:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{\bar{S}}}(t)}\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} = \frac{\partial \left(2\exp\left(-\frac{\varepsilon(t)\beta}{2}\right)\cosh\left(\frac{\eta(t)\beta}{2}\right)\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} \\
= 2\left(-\frac{\beta}{2}\frac{\partial \varepsilon(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)}\right)\exp\left(-\frac{\varepsilon(t)\beta}{2}\right)\cosh\left(\frac{\eta(t)\beta}{2}\right) + 2\left(\frac{\beta}{2}\frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)}\right)\exp\left(-\frac{\varepsilon(t)\beta}{2}\right)\sinh\left(\frac{\eta(t)\beta}{2}\right) \quad (265)$$

$$= -\beta\exp\left(-\frac{\varepsilon(t)\beta}{2}\right)\left(\frac{\partial \varepsilon(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)}\cosh\left(\frac{\eta(t)\beta}{2}\right) - \frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)}\sinh\left(\frac{\eta(t)\beta}{2}\right)\right). \quad (266)$$

Making the derivate equal to zero make us suitable to write:

$$\frac{\partial \varepsilon\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} \cosh\left(\frac{\eta\left(t\right)\beta}{2}\right) - \frac{\partial \eta\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} \sinh\left(\frac{\eta\left(t\right)\beta}{2}\right) = 0. \tag{267}$$

The derivates included in the expression given are related to:

$$\langle B_0^+(t) B_1^-(t) \rangle = \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right) e^{-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}$$
(268)

$$= \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*(t) v_{0\mathbf{k}}(t) - v_{1\mathbf{k}}(t) v_{0\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right)^* e^{-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)}$$
(269)

$$= \langle B_1^+(t) B_0^-(t) \rangle^*, \tag{270}$$

$$R_{i}(t) = \sum_{\mathbf{k}} \left(\frac{\left| v_{i\mathbf{k}}(t) \right|^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right)$$
(271)

$$= \sum_{\mathbf{k}} \left(\frac{\left| v_{i\mathbf{k}}(t) \right|^2}{\omega_{\mathbf{k}}} - g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}} - g_{i\mathbf{k}}^* \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right), \tag{272}$$

$$\langle B_0^+(t) B_1^-(t) \rangle = \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right) e^{-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}$$
(273)

$$= \left(\prod_{\mathbf{k}} \exp \left(\frac{v_{0\mathbf{k}}^{*}(t) v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) v_{1\mathbf{k}}^{*}(t)}{2\omega_{\mathbf{k}}^{2}} \right) \right) e^{-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right)}, \quad (274)$$

$$v_{0\mathbf{k}}^{*}(t) v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) v_{1\mathbf{k}}^{*}(t) = \left(v_{0\mathbf{k}}^{\Re}(t) - iv_{0\mathbf{k}}^{\Im}(t)\right) \left(v_{1\mathbf{k}}^{\Re}(t) + iv_{1\mathbf{k}}^{\Im}(t)\right) - \left(v_{0\mathbf{k}}^{\Re}(t) + iv_{0\mathbf{k}}^{\Im}(t)\right) \left(v_{1\mathbf{k}}^{\Re}(t) - iv_{1\mathbf{k}}^{\Im}(t)\right)$$
(275)

$$= \left(v_{0\mathbf{k}}^{\Re}(t) \, v_{1\mathbf{k}}^{\Re}(t) + \mathrm{i}v_{0\mathbf{k}}^{\Re}(t) \, v_{1\mathbf{k}}^{\Im}(t) - \mathrm{i}v_{0\mathbf{k}}^{\Im}(t) \, v_{1\mathbf{k}}^{\Re}(t) + v_{0\mathbf{k}}^{\Im}(t) \, v_{1\mathbf{k}}^{\Im}(t) \right) \tag{276}$$

$$-\left(v_{0\mathbf{k}}^{\Re}\left(t\right)v_{1\mathbf{k}}^{\Re}\left(t\right)-\mathrm{i}v_{0\mathbf{k}}^{\Re}\left(t\right)v_{1\mathbf{k}}^{\Im}\left(t\right)+\mathrm{i}v_{0\mathbf{k}}^{\Im}\left(t\right)v_{1\mathbf{k}}^{\Re}\left(t\right)+v_{0\mathbf{k}}^{\Im}\left(t\right)v_{1\mathbf{k}}^{\Im}\left(t\right)\right)$$
(277)

$$=2\mathrm{i}\left(v_{0\mathbf{k}}^{\Re}\left(t\right)v_{1\mathbf{k}}^{\Im}\left(t\right)-v_{0\mathbf{k}}^{\Im}\left(t\right)v_{1\mathbf{k}}^{\Re}\left(t\right)\right),\tag{278}$$

$$|v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)|^2 = (v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)) (v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t))^*$$
(279)

$$= |v_{1\mathbf{k}}(t)|^2 + |v_{0\mathbf{k}}(t)|^2 - (v_{1\mathbf{k}}(t)v_{0\mathbf{k}}^*(t) + v_{1\mathbf{k}}^*(t)v_{0\mathbf{k}}(t))$$
(280)

$$= \left(v_{1\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t)\right)^{2} + \left(v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{0\mathbf{k}}^{\Im}(t)\right)^{2} - \left(v_{1\mathbf{k}}^{\Re}(t) + iv_{1\mathbf{k}}^{\Im}(t)\right)\left(v_{0\mathbf{k}}^{\Re}(t) - iv_{0\mathbf{k}}^{\Im}(t)\right)$$
(281)

$$-\left(v_{1\mathbf{k}}^{\Re}\left(t\right) - \mathrm{i}v_{1\mathbf{k}}^{\Im}\left(t\right)\right)\left(v_{0\mathbf{k}}^{\Re}\left(t\right) + \mathrm{i}v_{0\mathbf{k}}^{\Im}\left(t\right)\right) \tag{282}$$

$$= \left(v_{1\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t)\right)^{2} + \left(v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{0\mathbf{k}}^{\Im}(t)\right)^{2} - 2\left(v_{1\mathbf{k}}^{\Re}(t)v_{0\mathbf{k}}^{\Re}(t) + v_{1\mathbf{k}}^{\Im}(t)v_{0\mathbf{k}}^{\Im}(t)\right)$$
(283)

$$= \left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)^{2}. \tag{284}$$

Rewriting in terms of real and imaginary parts.

$$R_{i}\left(t\right) = \sum_{\mathbf{k}} \left(\frac{\left(v_{i\mathbf{k}}^{\Re}\left(t\right)\right)^{2} + \left(v_{i\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{\Re}\left(t\right) - iv_{i\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}^{\Re}\left(t\right) + iv_{i\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}}\right) \right)$$

$$(285)$$

$$= \sum_{\mathbf{k}} \left(\frac{\left(v_{i\mathbf{k}}^{\Re}\left(t\right) \right)^{2} + \left(v_{i\mathbf{k}}^{\Im}\left(t\right) \right)^{2}}{\omega_{\mathbf{k}}} - v_{i\mathbf{k}}^{\Re}\left(t\right) \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} - i v_{i\mathbf{k}}^{\Im}\left(t\right) \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right), \tag{286}$$

$$\langle B_0^+(t) B_1^-(t) \rangle = \left(\prod_{\mathbf{k}} \exp \left(\frac{v_{0\mathbf{k}}^*(t) v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) v_{1\mathbf{k}}^*(t)}{2\omega_{\mathbf{k}}^2} \right) \right) \left(\exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right)$$
(287)

$$= \left(\prod_{\mathbf{k}} \exp \left(\frac{2i \left(v_{0\mathbf{k}}^{\Re}(t) \, v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t) \, v_{1\mathbf{k}}^{\Re}(t) \right)}{2\omega_{\mathbf{k}}^{2}} \right) \right) \left(\exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t) \right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t) \right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right) (288)$$

$$= \left(\prod_{\mathbf{k}} \exp \left(\frac{i \left(v_{0\mathbf{k}}^{\Re}(t) \, v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t) \, v_{1\mathbf{k}}^{\Re}(t) \right)}{\omega_{\mathbf{k}}^{2}} \right) \right) \left(\exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t) \right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t) \right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right), (289)$$

Calculating the derivates respect to $\alpha^{\Re}_{i{\bf k}}$ and $\alpha^{\Im}_{i{\bf k}}$ we have:

$$\frac{\partial \varepsilon(t)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} = \frac{\partial \left(\varepsilon_{1}\left(t\right) + R_{1} + \varepsilon_{0}\left(t\right) + R_{0}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} \tag{290}$$

$$= \frac{\partial \left(\left(\frac{\left(v_{i\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{i\mathbf{k}}^{\Im}(t)\right)^{2}}{\omega_{\mathbf{k}}} - v_{i\mathbf{k}}^{\Re}(t) \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} - iv_{i\mathbf{k}}^{\Im}(t) \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)}{\partial v_{i\mathbf{k}}^{\Re}(t)}$$
(291)

$$= \frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^*}{\omega_{\mathbf{k}}},\tag{292}$$

$$\frac{\partial |B_{10}(t)|^{2}}{\partial v_{i\mathbf{k}}^{\Re}(t)} = \frac{\partial \left(\exp\left(-\sum_{\mathbf{k}} \frac{\left(v_{i\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{i\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \right)}{\partial v_{i\mathbf{k}}^{\Re}(t)} \\
= -\frac{2\left(v_{i\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial \left(v_{i\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)}{\partial v_{i\mathbf{k}}^{\Re}(t)} \exp\left(-\sum_{\mathbf{k}} \frac{\left(v_{i\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{i\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) (294)$$

$$= -\frac{2\left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial\left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)}{\partial v_{i\mathbf{k}}^{\Re}(t)} \exp\left(-\sum_{\mathbf{k}} \frac{\left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) (294)$$

$$= -\frac{2\left(v_{1\mathbf{k}}^{\Re}\left(t\right) - v_{0\mathbf{k}}^{\Re}\left(t\right)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial\left(v_{1\mathbf{k}}^{\Re}\left(t\right) - v_{0\mathbf{k}}^{\Re}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} \left|B_{10}\left(t\right)\right|^{2}, \tag{295}$$

$$\frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)} = \frac{\partial \sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}(t)}\right)}}{\partial v_{i\mathbf{k}}^{\Re}(t)}$$
(296)

$$\frac{\partial v_{i\mathbf{k}}^{\Re}(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)} = \frac{2\operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right) \frac{\partial \operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right)}{\partial v_{i\mathbf{k}}^{\Re}(t)} - 4 \frac{\partial \operatorname{Det}\left(\overline{H_{\bar{S}}(t)}\right)}{\partial v_{i\mathbf{k}}^{\Re}(t)}}{2\sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}(t)}\right)}} \tag{297}$$

$$= \frac{\varepsilon\left(t\right)\left(\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right) - 2\frac{\partial\left(\left(\varepsilon_{1}(t) + R_{1}(t)\right)\left(\varepsilon_{0}(t) + R_{0}(t)\right) - |V_{10}(t)|^{2}|B_{10}(t)|^{2}\right)}{\partial v_{i\mathbf{k}}^{\Re}(t)}}{\eta\left(t\right)}$$
(298)

$$=\frac{\varepsilon\left(t\right)\left(\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right) - 2\left(\left(\varepsilon\left(t\right) - \varepsilon_{i}\left(t\right) - R_{i}\left(t\right)\right)\left(\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right) + \frac{2\left(v_{i\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial\left(v_{i\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)}{\partial v_{i\mathbf{k}}^{\Re}(t)} \left|B_{10}\left(t\right)\right|^{2} \left|V_{10}\left(t\right)\right|^{2} \left|\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\eta\left(t\right)}$$

$$= \frac{\varepsilon\left(t\right)\left(\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right) - 2\left(\left(\varepsilon\left(t\right) - \varepsilon_{i}\left(t\right) - R_{i}\left(t\right)\right)\left(\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right) + \frac{2\left(v_{i\mathbf{k}}^{\Re}(t) - v_{i\mathbf{k}}^{\Re}(t)\right)}{\omega_{\mathbf{k}}^{2}} \left|B_{10}\left(t\right)\right|^{2} \left|V_{10}\left(t\right)\right|^{2} \left|\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\eta\left(t\right)}$$

$$= \frac{v_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}}\left(\frac{2\varepsilon\left(t\right) - 4\left(\varepsilon\left(t\right) - \varepsilon_{i}\left(t\right) - R_{i}\left(t\right)\right) - \frac{4}{\omega_{\mathbf{k}}}\left|B_{10}\left(t\right)\right|^{2} \left|V_{10}\left(t\right)\right|^{2} \left|\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\eta\left(t\right)}\right) + \frac{1}{\eta\left(t\right)}\left(-\frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\varepsilon\left(t\right) + 2\left(\varepsilon\left(t\right) - \varepsilon_{i}\left(t\right) - R_{i}\left(t\right)\right)}{\omega_{\mathbf{k}}}\frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}\right)$$

$$+4\frac{v_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}^{2}}\left|B_{10}\left(t\right)\right|^{2} \left|V_{10}\left(t\right)\right|^{2} \left|\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$

$$(302)$$

From the equation (267) and replacing the derivates obtained we have:

$$\tanh\left(\frac{\beta\eta\left(t\right)}{2}\right) = \frac{\frac{\partial\varepsilon\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}}{\frac{\partial\eta\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}} = \frac{\frac{2v_{i\mathbf{k}}^{\Re}\left(t\right)}{\partial\eta_{i\mathbf{k}}^{\Im}\left(t\right)}}{\frac{2v_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}} - \frac{2g_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}}}{\frac{2v_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}}} = \frac{\frac{2v_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}}}{\frac{2v_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}}} \left(2\frac{\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\eta(t)}}{\frac{2v_{i\mathbf{k}}^{\Re}\left(t\right)}{\omega_{\mathbf{k}}}} + 2\frac{\frac{(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t))}{\omega_{\mathbf{k}}^{\Im}\left(t\right)}}{\frac{2v_{i\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}^{\Im}\left(t\right)}}{\eta(t)}}{\frac{2v_{i\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}^{\Im}\left(t\right)}} . \quad (304)$$

Rearrannging this equation will lead to:

$$\tan \left(\frac{\beta \eta(t)}{2}\right) = \frac{\left(2v_{i\mathbf{k}}^{\Re}(t) - g_{i\mathbf{k}} - g_{i\mathbf{k}}^{*}\right) \eta(t)}{v_{i\mathbf{k}}^{\Re}(t) \left(2\varepsilon(t) - 4(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \left(g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}\right) \left(\varepsilon(t) - 2(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t))\right) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)\right) \\
= \frac{\left(2v_{i\mathbf{k}}^{\Re}(t) - 2g_{i\mathbf{k}}^{\Re}\right) \eta(t)}{v_{i\mathbf{k}}^{\Re}(t) \left(2\varepsilon(t) - 4(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}\varepsilon(t) - 2(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t))\right) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)\right) \\
= \frac{\left(2v_{i\mathbf{k}}^{\Re}(t) - 2g_{i\mathbf{k}}^{\Re}\right) \eta(t)}{v_{\mathbf{k}}} \\
= \frac{\left(2v_{i\mathbf{k}}^{\Re}(t) - 2g_{i\mathbf{k}}^{\Re}\right) \eta(t)}{v_{i\mathbf{k}}^{\Re}(t) \left(2\varepsilon(t) - 4(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)) - \frac{4|V_{10}(t)|^{2}|B_{10}|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{v_{i\mathbf{k}}^{\Re}(t) \left(2\varepsilon(t) - 4(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{v_{i\mathbf{k}}^{\Re}(t) \left(2\varepsilon(t) - 4(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\Re}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{v_{i\mathbf{k}}^{\Re}(t) \left(2\varepsilon(t) - \varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\Re}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)) + 2\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right) - g_{i\mathbf{k}}^{\Re}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)) + 2\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta \omega \mathbf{k}}{2}\right) - g_{i\mathbf{k}}^{\Re}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)) + 2\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}($$

Separating (307) such that the terms with v_{ik} are located at one side of the equation permit us to write

$$\begin{split} \frac{\left(v_{i\mathbf{k}}^{\Re}(t) - s_{i\mathbf{k}}^{\Re}\right)\eta(t)}{\tanh\left(\frac{\beta\eta(t)}{2}\right)} &= v_{i\mathbf{k}}^{\Re}(t) \left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - s_{i\mathbf{k}}^{\Re}\left(2\left(\varepsilon_{i}(t) + R_{i}(t)\right) - \varepsilon(t)\right) + 2\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} \left|B_{10}(t)V_{10}(t)\right|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right), \quad (309) \\ v_{i\mathbf{k}}^{\Re}(t) - s_{i\mathbf{k}}^{\Re}(t) - s_{i\mathbf{k}}^{\Re}(t) \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2|V_{10}(t)|^{2}|B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} s_{i\mathbf{k}}^{\Re}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) \\ + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} \left|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right), \quad (310) \\ + 2\frac{\sinh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} \left|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right), \\ v_{i\mathbf{k}}^{\Re}(t) = \frac{s_{i\mathbf{k}}^{\Re}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\right) \left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)\omega_{\mathbf{k}}} \frac{v_{i\mathbf{k}}^{\Re}(t)}{s_{i\mathbf{k}}^{\Re}} \left|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\omega_{\mathbf{k}}}, \quad (312) \\ v_{i\mathbf{k}}^{\Re}(t) = \frac{s_{i\mathbf{k}}^{\Re}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\right) \left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)\omega_{\mathbf{k}}} \frac{v_{i\mathbf{k}}^{\Re}(t)}{s_{i\mathbf{k}}^{\Re}} \left|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\omega_{\mathbf{k}}}, \quad (312) \\ v_{i\mathbf{k}}^{\Re}(t) = \frac{s_{i\mathbf{k}}^{\Re}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\right) \left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)\omega_{\mathbf{k}}} \frac{v_{i\mathbf{k}}^{\Re}(t)}{s_{i\mathbf{k}}^{\Re}} \left|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\omega_{\mathbf{k}}}, \quad (312) \\ v_{i\mathbf{k}}^{\Re}(t) = \frac{s_{i\mathbf{k}}^{\Re}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)\omega_{\mathbf{k}}} \frac{v_{i\mathbf{k}}^{\Re}(t)}{s_{i\mathbf{k}}^{\Re}} \left|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\omega_{\mathbf{k}}}, \quad (312) \\ v_{i\mathbf{k}}^{\Re}(t) = \frac{s_{i\mathbf{k}}^{\Re}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)\omega_{\mathbf{k}}} \frac{v_{i\mathbf{k}}^{\Re}\left(1 - \frac{\lambda\eta(t)}{2}\right)}{\eta(t)}} \frac{v_{i\mathbf{k}}^{\Re}\left(1 - \frac{\lambda\eta(t)}{2}\right)}$$

The imaginary part can be found in the following way:

$$\frac{\partial \varepsilon\left(t\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} = \frac{\partial\left(\varepsilon_{1}\left(t\right) + R_{1}\left(t\right) + \varepsilon_{0}\left(t\right) + R_{0}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} \tag{314}$$

$$= \frac{\partial \left(\left(\frac{\left(v_{i\mathbf{k}}^{\Re}(t) \right)^{2} + \left(v_{i\mathbf{k}}^{\Im}(t) \right)^{2}}{\omega_{\mathbf{k}}} - v_{i\mathbf{k}}^{\Re}\left(t \right) \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} - i v_{i\mathbf{k}}^{\Im}\left(t \right) \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t \right)}$$

$$(315)$$

$$=2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-\mathrm{i}\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}},\tag{316}$$

$$\frac{\partial |B_{10}(t)|^{2}}{\partial v_{i\mathbf{k}}^{\Im}(t)} = \frac{\partial \left(\exp\left(-\sum_{\mathbf{k}} \frac{\left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}(t)} = -\frac{2\left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial \left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)}{\partial v_{i\mathbf{k}}^{\Im}(t)} \exp\left(-\sum_{\mathbf{k}} \frac{\left(v_{1\mathbf{k}}^{\Re}(t) - v_{0\mathbf{k}}^{\Re}(t)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \tag{318}$$

$$=-\frac{2\left(v_{1\mathbf{k}}^{\Im}\left(t\right)-v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\omega_{\mathbf{k}}^{2}}\frac{\partial\left(v_{1\mathbf{k}}^{\Im}\left(t\right)-v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)}\exp\left(-\sum_{\mathbf{k}}\frac{\left(v_{1\mathbf{k}}^{\Re}\left(t\right)-v_{0\mathbf{k}}^{\Re}\left(t\right)\right)^{2}+\left(v_{1\mathbf{k}}^{\Im}\left(t\right)-v_{0\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}^{2}}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
(318)

$$= -\frac{2\left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial\left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} \left|B_{10}\left(t\right)\right|^{2},\tag{319}$$

$$\frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)} = \frac{\partial \sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}(t)}\right)}}{\partial v_{i\mathbf{k}}^{\Re}(t)}$$
(320)

$$= -\frac{2\left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial\left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} \left|B_{10}\left(t\right)\right|^{2},$$

$$\frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} = \frac{\partial\sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}}\left(t\right)\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}}\left(t\right)\right)}}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)}$$

$$= \frac{2\operatorname{Tr}\left(\overline{H_{\bar{S}}}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} \frac{\partial\operatorname{Tr}\left(\overline{H_{\bar{S}}}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} - 4\frac{\partial\operatorname{Det}\left(\overline{H_{\bar{S}}}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)}}$$

$$= \frac{2\sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}}\left(t\right)\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}}\left(t\right)\right)}}$$

$$(321)$$

$$= \frac{\varepsilon(t) \left(2 \frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}} - i \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - 2 \frac{\partial((\varepsilon_{1}(t) + R_{1}(t))(\varepsilon_{0}(t) + R_{0}(t)) - |V_{10}(t)|^{2}|B_{10}(t)|^{2})}{\partial v_{i\mathbf{k}}^{\Im}(t)}}{\eta(t)}$$

$$= \frac{\varepsilon(t) \left(2 \frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}} - i \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - 2\left((\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t))\left(2 \frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}} - i \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + \frac{2\left(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial(v_{1\mathbf{k}}^{\Im}(t) - v_{0\mathbf{k}}^{\Im}(t))}{\partial v_{i\mathbf{k}}^{\Im}(t)}|B_{10}(t)|^{2}|V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\eta(t)}$$

$$(323)$$

$$=\frac{\varepsilon(t)\left(2\frac{v_{i\mathbf{k}}^{\mathfrak{I}}(t)}{\omega_{\mathbf{k}}}-i\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)-2\left(\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)\left(2\frac{v_{i\mathbf{k}}^{\mathfrak{I}}(t)}{\omega_{\mathbf{k}}}-i\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)+\frac{2\left(v_{1\mathbf{k}}^{\mathfrak{I}}(t)-v_{0\mathbf{k}}^{\mathfrak{I}}(t)\right)}{\omega_{\mathbf{k}}^{2}}\frac{\partial\left(v_{1\mathbf{k}}^{\mathfrak{I}}(t)-v_{0\mathbf{k}}^{\mathfrak{I}}(t)\right)}{\partial v_{i\mathbf{k}}^{\mathfrak{I}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\eta(t)}$$

$$=\frac{\varepsilon(t)\left(2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-\mathrm{i}\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)-2\left(\left(\varepsilon\left(t\right)-\varepsilon_{i}\left(t\right)-R_{i}\left(t\right)\right)\left(2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-\mathrm{i}\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)+\frac{2\left(v_{i\mathbf{k}}^{\Im}(t)-v_{i'\mathbf{k}}^{\Im}(t)\right)|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}^{2}}\right)}{\eta\left(t\right)}$$

$$(324)$$

$$= \frac{v_{i\mathbf{k}}^{\mathfrak{F}}(t)}{\omega_{\mathbf{k}}} \frac{4\left(\varepsilon_{i}(t) + R_{i}(t)\right) - 2\varepsilon(t) - \frac{4\left|B_{10}(t)V_{10}(t)\right|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}}{\eta(t)} + \frac{1}{\eta(t)} \left(2\frac{g_{i\mathbf{k}}^{\mathfrak{F}}(t)}{\omega_{\mathbf{k}}}\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right)\frac{g_{i\mathbf{k}}^{\mathfrak{F}}(t)}{\omega_{\mathbf{k}}} + 4\frac{v_{i'k}^{\mathfrak{F}}(t)\left|B_{10}(t)V_{10}(t)\right|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}^{2}}\right). \tag{325}$$

From the equation (267) and replacing the derivatives obtained we have:

$$\frac{\frac{\partial \varepsilon(t)}{\partial v_{i\mathbf{k}}^{\mathfrak{A}}(t)}}{\frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\mathfrak{A}}(t)}} = \tanh\left(\frac{\beta \eta(t)}{2}\right) \tag{326}$$

$$= \frac{2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}} - i\frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}}}{v_{i\mathbf{k}}^{\Im}(t)\left(\frac{2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\eta(t)\omega_{\mathbf{k}}}\right) + \frac{2}{\eta(t)}\left(\frac{g_{i\mathbf{k}}^{*\Im}}{\omega_{\mathbf{k}}}\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right)\frac{g_{i\mathbf{k}}^{*\Im}}{\omega_{\mathbf{k}}} + 2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}^{2}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{u_{i\mathbf{k}}^{\Im}(t)}\right)}.$$
(327)

Rearranging this equation will lead to:

$$\frac{\left(2v_{i\mathbf{k}}^{\Im}(t)-i\left(g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}\right)\right)\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-i\left(g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}\right)\left(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)\right)+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{\dagger})}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} = \frac{2\left(v_{i\mathbf{k}}^{\Im}(t)-g_{i\mathbf{k}}^{\Im}\right)\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-2g_{i\mathbf{k}}^{\Im}(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right))+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{\dagger})}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} = \frac{2\left(v_{i\mathbf{k}}^{\Im}(t)-g_{i\mathbf{k}}^{\Im}\right)\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-2g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{\dagger})}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} = \frac{\left(v_{i\mathbf{k}}^{\Im}(t)-g_{i\mathbf{k}}^{\Im}\right)\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-2g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{\dagger})}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} = \frac{\left(v_{i\mathbf{k}}^{\Im}(t)-g_{i\mathbf{k}}^{\Im}\right)\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{2|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+2\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{\dagger})}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} + \frac{v_{i\mathbf{k}}^{\Im}(t)}{v_{i\mathbf{k}}^{\Im}(t)}\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)\right)+2\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{\dagger})}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} + \frac{v_{i\mathbf{k}}^{\Im}(t)}{v_{i\mathbf{k}}^{\Im}(t)}\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)\right)+2\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{\dagger})}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)} + \frac{v_{i\mathbf{k}}^{\Im}(t)}{v_{i\mathbf{k}}^{\Im}(t)}\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)\right)+2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}^{\Im}(t)}\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)\right)}{v_{i\mathbf{k}}^{\Im}(t)}\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)\right)+2\frac{v_{i\mathbf{k}}^{\Im}(t)}{v_{i\mathbf{k}}^{\Im}(t)}\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon(t)\right)+2\frac{v_{i\mathbf{k}}^{\Im}(t)}{v_{i\mathbf{k}}^{\Im}(t)}\left(2\varepsilon(t)-\varepsilon(t)-\varepsilon(t)-\varepsilon($$

Separating (331) such that the terms with v_{ik} are located at one side of the equation permit us to write

$$\frac{\left(\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t) - \mathbf{s}_{i\mathbf{k}}^{\mathfrak{S}}\right)\eta(t)}{\tanh\left(\frac{\beta\eta(t)}{2}\right)} = \mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t)\left(\varepsilon(t) - \varepsilon_{i}(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2|V_{10}(t)B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\mathfrak{S}}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)) + 2\frac{\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right), \tag{332}$$

$$\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}} - g_{i\mathbf{k}}^{\mathfrak{S}} = \mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t)\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2|V_{10}(t)B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}g_{i\mathbf{k}}^{\mathfrak{S}}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) \tag{333}$$

$$+ 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right), \tag{344}$$

$$\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t) = \frac{g_{i\mathbf{k}}^{\mathfrak{S}}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}, \tag{335}$$

$$\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t) = \frac{g_{i\mathbf{k}}^{\mathfrak{S}}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{\mathbf{v}_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}, \tag{335}$$

The variational parameters are:

$$v_{i\mathbf{k}}(t) = v_{i\mathbf{k}}^{\Re}(t) + iv_{i\mathbf{k}}^{\Im}(t)$$

$$= \frac{g_{i\mathbf{k}}^{\Re}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}v_{i\mathbf{k}}^{\Re}(t)} \frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} \left|B_{10}(t)\right|^{2} \left|V_{10}(t)\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2\left|V_{10}(t)\right|^{2}\left|B_{10}(t)\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}$$

$$+ i\frac{g_{i\mathbf{k}}^{\Im}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}v_{i\mathbf{k}}^{\Im}\left(\omega_{\mathbf{k}}\right)}\frac{v_{i\mathbf{k}}^{\Im}\left(\omega_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}} \left|B_{10}\right|^{2}\left|V_{10}(t)\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2\left|V_{10}(t)\right|^{2}\left|B_{10}(t)\right|^{2} \cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}$$

$$= \frac{g_{i\mathbf{k}}\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \left|B_{10}(t)\right|^{2}\left|V_{10}(t)\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2\left|V_{10}(t)\right|^{2}\left|B_{10}(t)\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}.$$
(340)

Let's obtain the explicit form of $v_{0\mathbf{k}}(\omega_{\mathbf{k}},t)$ and $v_{1\mathbf{k}}(\omega_{\mathbf{k}},t)$, at first we have:

$$a_{i}\left(\omega_{\mathbf{k}},t\right) = \frac{\left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}\left(t\right) + 2R_{i}\left(t\right) - \varepsilon\left(t\right)\right)\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon\left(t\right) - 2\left(\varepsilon\left(t\right) - \varepsilon_{i}\left(t\right) - R_{i}\left(t\right)\right) - \frac{2|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth(\beta\omega_{\mathbf{k}}/2)}{\omega_{\mathbf{k}}}\right)}{\omega_{\mathbf{k}}},$$
(341)

$$b_{i}\left(\omega_{\mathbf{k}},t\right) = \frac{2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{1}{\omega_{\mathbf{k}}}\left|B_{10}\left(t\right)\right|^{2}\left|V_{10}\left(t\right)\right|^{2}\coth\left(\beta\omega_{\mathbf{k}}/2\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon\left(t\right) - 2\left(\varepsilon\left(t\right) - \varepsilon_{i}\left(t\right) - R_{i}\left(t\right)\right) - \frac{2|B_{10}(t)|^{2}\left|V_{10}(t)\right|^{2}\coth\left(\beta\omega_{\mathbf{k}}/2\right)}{\omega_{\mathbf{k}}}\right)}{\omega_{\mathbf{k}}}.$$
(342)

So the equation (337) written in explicit form is:

$$v_{0\mathbf{k}}(\omega_{\mathbf{k}}, t) = g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) + v_{1\mathbf{k}}(\omega_{\mathbf{k}}, t) b_0(\omega_{\mathbf{k}}, t), \qquad (343)$$

$$v_{1\mathbf{k}}(\omega_{\mathbf{k}}, t) = g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) + v_{0\mathbf{k}}(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t).$$
(344)

This system of equations has the following solutions:

$$v_{0\mathbf{k}}(\omega_{\mathbf{k}}, t) = g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) + v_{1\mathbf{k}}(\omega_{\mathbf{k}}, t) b_0(\omega_{\mathbf{k}}, t)$$
(345)

$$= g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) + (g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) + v_{0\mathbf{k}}(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t)) b_0(\omega_{\mathbf{k}}, t)$$
(346)

$$= g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) + g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) b_0(\omega_{\mathbf{k}}, t) + v_{0\mathbf{k}}(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t) b_0(\omega_{\mathbf{k}}, t)$$
(347)

$$v_{0\mathbf{k}}(\omega_{\mathbf{k}}, t)(1 - b_1(\omega_{\mathbf{k}}, t)b_0(\omega_{\mathbf{k}}, t)) = g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) + g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) b_0(\omega_{\mathbf{k}}, t)$$

$$(348)$$

$$v_{0\mathbf{k}}(\omega_{\mathbf{k}}, t) = \frac{g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) + g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) b_0(\omega_{\mathbf{k}}, t)}{1 - b_0(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t)},$$
(349)

$$v_{1\mathbf{k}}(\omega_{\mathbf{k}}, t) = g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) + \frac{g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) + g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) b_0(\omega_{\mathbf{k}}, t)}{1 - b_0(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t)} b_1(\omega_{\mathbf{k}}, t)$$
(350)

$$= \frac{g_1(\omega_{\mathbf{k}}) a_1(\omega_{\mathbf{k}}, t) + g_0(\omega_{\mathbf{k}}) a_0(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t)}{1 - b_0(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t)}.$$
(351)

For a shorter representation let's define:

$$r_i(\omega_{\mathbf{k}}, t) = \frac{a_i(\omega_{\mathbf{k}}, t)}{1 - b_0(\omega_{\mathbf{k}}, t) b_1(\omega_{\mathbf{k}}, t)},$$
(352)

$$s_i\left(\omega_{\mathbf{k}},t\right) = \frac{a_{(i+1)\bmod 2}\left(\omega_{\mathbf{k}},t\right)b_{i\bmod 2}\left(\omega_{\mathbf{k}},t\right)}{1 - b_0\left(\omega_{\mathbf{k}},t\right)b_1\left(\omega_{\mathbf{k}},t\right)}.$$
(353)

So the variational parameter are:

$$\begin{pmatrix} v_{0\mathbf{k}} \left(\omega_{\mathbf{k}}, t\right) \\ v_{1\mathbf{k}} \left(\omega_{\mathbf{k}}, t\right) \end{pmatrix} \equiv \begin{pmatrix} r_{0} \left(\omega_{\mathbf{k}}, t\right) & s_{0} \left(\omega_{\mathbf{k}}, t\right) \\ r_{1} \left(\omega_{\mathbf{k}}, t\right) & s_{1} \left(\omega_{\mathbf{k}}, t\right) \end{pmatrix} \begin{pmatrix} g_{0} \left(\omega_{\mathbf{k}}\right) \\ g_{1} \left(\omega_{\mathbf{k}}\right) \end{pmatrix}. \tag{354}$$

Given that $v_{i\mathbf{k}}(\omega_{\mathbf{k}},t) \equiv g_i(\omega_{\mathbf{k}}) F_i(\omega_{\mathbf{k}},t)$ then we can write:

$$F_0(\omega_{\mathbf{k}}, t) = r_0(\omega_{\mathbf{k}}, t) + \frac{g_1(\omega_{\mathbf{k}})}{g_0(\omega_{\mathbf{k}})} s_0(\omega_{\mathbf{k}}, t)$$
(355)

$$F_1(\omega_{\mathbf{k}}, t) = \frac{g_0(\omega_{\mathbf{k}})}{g_1(\omega_{\mathbf{k}})} r_1(\omega_{\mathbf{k}}, t) + s_1(\omega_{\mathbf{k}}, t)$$
(356)

In the continuous limit we have:

$$F_0(\omega, t) = r_0(\omega, t) + \frac{L_1(\omega)}{L_0(\omega)} s_0(\omega, t)$$
(357)

$$F_1(\omega, t) = \frac{L_0(\omega)}{L_1(\omega)} r_1(\omega, t) + s_1(\omega, t)$$
(358)

IV. MASTER EQUATION

In order to describe the dynamics of the QD under the influence of the phonon environment, we use the time-convolutionless projection operator technique. The initial density operator is $\rho_T(0) = \rho_S(0) \otimes \rho_B^{\text{Thermal}}$, where $\rho_B^{\text{Thermal}} \equiv \rho_B(0) \equiv \rho_B$, so the transformed density operator is equal to:

$$\overline{\rho_T(0)} \equiv e^{V(0)} \rho_T(0) e^{-V(0)} \tag{359}$$

$$= (|0\rangle\langle 0|B_0^+(0) + |1\rangle\langle 1|B_1^+(0)) (\rho_S(0) \otimes \rho_B) (|0\rangle\langle 0|B_0^-(0) + |1\rangle\langle 1|B_1^-(0)), \tag{360}$$

for
$$\rho_S(0) = |0\rangle\langle 0|: |0\rangle\langle 0|0\rangle B_0^+(0)\langle 0|\rho_B|0\rangle\langle 0|B_0^-(0)$$
 (361)

$$= |0\rangle B_0^+(0)\langle 0|\rho_B|0\rangle\langle 0|B_0^-(0)$$
(362)

$$= |0\rangle\langle 0| \otimes B_0^+(0) \rho_B B_0^-(0),$$
 (363)

for
$$\rho_S(0) = |1\rangle\langle 1|: |1\rangle\langle 1|B_1^+(0)|1\rangle\langle 1|\rho_B|1\rangle\langle 1|B_1^-(0)$$
 (364)

$$= |1\rangle\langle 1|B_1^+(0)\,\rho_B B_1^-(0) \tag{365}$$

$$= |1\rangle\langle 1| \otimes B_1^+(0) \rho_B B_1^-(0), \tag{366}$$

for
$$\rho_S(0) = |0\rangle\langle 1| : |0\rangle\langle 0|B_0^+(0)|0\rangle\langle 1|\rho_B|1\rangle\langle 1|B_1^-(0)$$
 (367)

$$= |0\rangle 1|B_0^+(0)\,\rho_B|1\rangle 1|B_1^-(0) \tag{368}$$

$$= |0\rangle\langle 1|1\rangle\langle 1|B_0^+(0)\,\rho_B B_1^-(0) \tag{369}$$

$$= |0\rangle\langle 1| \otimes B_0^+(0) \rho_B B_1^-(0), \tag{370}$$

for
$$\rho_S(0) = |1\rangle\langle 0| : |1\rangle\langle 1|B_1^+(0)|1\rangle\langle 0|\rho_B|0\rangle\langle 0|B_0^-(0)$$
 (371)

$$= |1\rangle\langle 0| \otimes B_1^+(0) \rho_B B_0^-(0). \tag{372}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O}(t) \equiv U^{\dagger}(t) O(t) U(t), \qquad (373)$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_{\bar{S}}}(t')\right). \tag{374}$$

Here \mathcal{T} denotes a time ordering operator. Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t) \, \overline{\rho_S}(t) \, U(t)$$
, where (375)

$$\overline{\rho_S}(t) = \text{Tr}_B(\overline{\rho}_T(t)). \tag{376}$$

. In order to separate the Hamiltonian we define the matrix $\Lambda(t)$ such that $\Lambda_{1i}(t) = A_i$, $\Lambda_{2i}(t) = B_i$ and $\Lambda_{3i}(t) = C_i(t)$ written as:

$$\begin{pmatrix}
A(t) \\
B(t) \\
C(t)
\end{pmatrix} = \begin{pmatrix}
\sigma_x & \sigma_y & \frac{I - \sigma_z}{2} & \sigma_x & \sigma_y & \frac{I + \sigma_z}{2} \\
B_x(t) & B_y(t) & B_{1z}(t) & B_y(t) & B_x(t) & B_{0z}(t) \\
V_{10}^{\Re}(t) & V_{10}^{\Re}(t) & 1 & V_{10}^{\Im}(t) & -V_{10}^{\Im}(t) & 1
\end{pmatrix}.$$
(377)

In this case $|1\rangle\langle 1|=\frac{I-\sigma_z}{2}$ and $|0\rangle\langle 0|=\frac{I+\sigma_z}{2}$ with $\sigma_z=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}=|0\rangle\langle 0|-|1\rangle\langle 1|.$

The previous notation allows us to write the interaction Hamiltonian $\overline{H_{\bar{I}}}(t)$ as pointed in the equation (??):

$$\overline{H_{\bar{I}}}(t) = \sum_{i} B_{iz}(t) |i\rangle\langle i| + V_{10}^{\Re}(t) \left(\sigma_{x} B_{x}(t) + \sigma_{y} B_{y}(t)\right) + V_{10}^{\Im}(t) \left(\sigma_{x} B_{y}(t) - \sigma_{y} B_{x}(t)\right)$$

$$(378)$$

$$=B_{0z}\left(t\right)\left|0\right|\left|0\right|\left|0\right|+B_{1z}\left(t\right)\left|1\right|\left|1\right|+V_{10}^{\Re}\left(t\right)\sigma_{x}B_{x}\left(t\right)+V_{10}^{\Re}\left(t\right)\sigma_{y}B_{y}\left(t\right)+V_{10}^{\Im}\left(t\right)\sigma_{x}B_{y}\left(t\right)-V_{10}^{\Im}\left(t\right)\sigma_{y}B_{x}\left(t\right)$$
(379)

$$=\sum_{i}C_{i}\left(t\right)\left(A_{i}\otimes B_{i}\left(t\right)\right). \tag{380}$$

As the combined system and environment is closed, within the interaction picture the system-environment density operator evolves according to:

$$\frac{\mathrm{d}\widetilde{\widetilde{\rho_T}}(t)}{\mathrm{d}t} = -\mathrm{i}[\widetilde{H_{\bar{I}}}(t), \widetilde{\widetilde{\rho_T}}(t)]. \tag{381}$$

This equation has the formal solution

$$\widetilde{\overline{\rho_T}}(t) = \overline{\rho_T}(0) - i \int_0^t [\widetilde{\overline{H_{\bar{I}}}}(t'), \widetilde{\overline{\rho_T}}(t')] dt'.$$
(382)

Replacing the equation (382) in the equation (381) gives us:

$$\frac{\mathrm{d}\widetilde{\rho_{T}}(t)}{\mathrm{d}t} = -\mathrm{i}[\widetilde{\overline{H}_{\bar{I}}}(t), \overline{\rho_{T}}(0)] - \int_{0}^{t} [\widetilde{\overline{H}_{\bar{I}}}(t), [\widetilde{\overline{H}_{\bar{I}}}(t'), \widetilde{\overline{\rho_{T}}}(t')]] \mathrm{d}t'. \tag{383}$$

This equation allow us to iterate and write in terms of a series expansion with $\overline{\rho_T}(0)$ the solution as:

$$\widetilde{\overline{\rho_T}}(t) = \overline{\rho_T}(0) + \sum_{n=0}^{\infty} (-\mathrm{i})^n \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \dots \int_0^{t_{n-1}} \mathrm{d}t_n \left[\widetilde{\overline{H_I}}(t_1), \left[\widetilde{\overline{H_I}}(t_2), \cdots, \left[\widetilde{\overline{H_I}}(t_n), \overline{\rho_T}(0)\right]\right] \cdots\right].$$
(384)

Taking the trace over the environmental degrees of freedom, we find

$$\widetilde{\overline{\rho_S}}(t) = \overline{\rho_S}(0) + \sum_{n=1}^{\infty} (-\mathrm{i})^n \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \dots \int_0^{t_{n-1}} \mathrm{d}t_n \mathrm{Tr}_B[\widetilde{\overline{H_I}}(t_1), [\widetilde{\overline{H_I}}(t_2), \cdots [\widetilde{\overline{H_I}}(t_n), \overline{\rho_S}(0)\rho_B]] \dots]. \tag{385}$$

here we have assumed that $\overline{\rho_T}(0) = \overline{\rho_S}(0) \otimes \rho_B$. Consider the following notation:

$$\widetilde{\overline{\rho_S}}(t) = (1 + W_1(t) + W_2(t) + \dots) \overline{\rho_S}(0)$$
(386)

$$=W\left(t\right) \overline{\rho_{S}}\left(0\right) . \tag{387}$$

in this case

$$W_n(t) = (-\mathrm{i})^n \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \dots \int_0^{t_{n-1}} \mathrm{d}t_n \operatorname{Tr}_B[\widetilde{\overline{H}_{\bar{I}}}(t_1), [\widetilde{\overline{H}_{\bar{I}}}(t_2), \dots [\widetilde{\overline{H}_{\bar{I}}}(t_n), (\cdot) \rho_B]] \dots]. \tag{388}$$

are superoperators acting on the initial system density operator. Differentiating with respect to time, we have:

$$\frac{\mathrm{d}\widetilde{\rho_{S}}\left(t\right)}{\mathrm{d}t} = \left(\dot{W}_{1}\left(t\right) + \dot{W}_{2}\left(t\right) + ...\right)\overline{\rho_{S}}\left(0\right) \tag{389}$$

$$= (\dot{W}_1(t) + \dot{W}_2(t) + ...) W(t)^{-1} W(t) \overline{\rho_S}(0)$$
(390)

$$= \left(\dot{W}_{1}(t) + \dot{W}_{2}(t) + ...\right) W(t)^{-1} \widetilde{\rho_{S}}(t). \tag{391}$$

where we assumed that W(t) is invertible. Usually, it is convenient (and possible) to define the interaction Hamiltonian such that $\operatorname{Tr}_B[\widetilde{\overline{H_I}}(t)\,\rho_B]=0$ so $W_1(t)=0$. Thus, to second order and approximating $W(t)\approx\mathbb{I}$ then the equation (389) becomes:

$$\frac{\mathrm{d}\widetilde{\rho_S}(t)}{\mathrm{d}t} = \dot{W_2}(t)\,\widetilde{\rho_S}(t) \tag{392}$$

$$= -\int_{0}^{t} dt_{1} \operatorname{Tr}_{B} \left[\widetilde{\overline{H}_{\bar{I}}}(t), \left[\widetilde{\overline{H}_{\bar{I}}}(t_{1}), \widetilde{\rho_{S}}(t) \rho_{B} \right] \right]. \tag{393}$$

Replacing $t_1 \rightarrow t - \tau$

$$\frac{\mathrm{d}\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}\left(t\right), \overline{\rho_{S}}\left(t\right)\right] - \int_{0}^{t} \mathrm{d}\tau \mathrm{Tr}_{B}\left[\overline{H_{\bar{I}}}\left(t\right), \left[\widetilde{\overline{H_{\bar{I}}}}\left(-\tau\right), \overline{\rho_{S}}\left(t\right)\rho_{B}\right]\right]. \tag{394}$$

From the interaction picture applied on $\overline{H_{\bar{I}}}(t)$ we find:

$$\widetilde{\overline{H}_{\bar{I}}}(t) = U^{\dagger}(t) e^{iH_B t} \overline{H_{\bar{I}}}(t) e^{-iH_B t} U(t).$$
(395)

we use the time-ordering operator \mathcal{T} because in general $\overline{H_{\bar{S}}}(t)$ doesn't conmute with itself at two different times. We write the interaction Hamiltonian as:

$$\widetilde{\overline{H_{\bar{I}}}}(t) = \sum_{i} C_{i}(t) \left(\widetilde{A_{i}}(t) \otimes \widetilde{B_{i}}(t) \right), \tag{396}$$

$$\widetilde{A}_{i}(t) = U^{\dagger}(t) e^{iH_{B}t} A_{i} e^{-iH_{B}t} U(t)$$
(397)

$$=U^{\dagger}(t) A_i U(t) e^{iH_B t} e^{-iH_B t}$$
(398)

$$=U^{\dagger}\left(t\right) A_{i}U\left(t\right) \mathbb{I} \tag{399}$$

$$=U^{\dagger}\left(t\right) A_{i}U\left(t\right) ,\tag{400}$$

$$\widetilde{B_i}(t) = U^{\dagger}(t) e^{iH_B t} B_i(t) e^{-iH_B t} U(t)$$
(401)

$$= U^{\dagger}(t) U(t) e^{iH_B t} B_i(t) e^{-iH_B t}$$
(402)

$$= \mathbb{I}e^{iH_B t} B_i(t) e^{-iH_B t} \tag{403}$$

$$= e^{iH_B t} B_i(t) e^{-iH_B t}. (404)$$

Here we have used the fact that $\left[\overline{H}_{\bar{S}}\left(t\right),H_{B}\right]=0$ because these operators belong to different Hilbert spaces, so $\left[U\left(t\right),\mathrm{e}^{\mathrm{i}H_{B}t}\right]=0$.

Using the expression (396) to replace it in the equation (393)

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{\overline{H_{I}}}(t), \left[\widetilde{\overline{H_{I}}}(t'), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] dt'$$
(405)

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j} C_{j}\left(t\right)\left(\widetilde{A_{j}}\left(t\right) \otimes \widetilde{B_{j}}\left(t\right)\right), \left[\sum_{i} C_{i}\left(t'\right)\left(\widetilde{A_{i}}\left(t'\right) \otimes \widetilde{B_{i}}\left(t'\right)\right), \widetilde{\rho_{S}}\left(t\right) \rho_{B}\right]\right] dt'$$

$$(406)$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B} \left[\sum_{i} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t) \right), \sum_{i} C_{i}(t') \left(\widetilde{A_{i}}(t') \otimes \widetilde{B_{i}}(t') \right) \widetilde{\rho_{S}}(t) \rho_{B} - \widetilde{\rho_{S}}(t) \rho_{B} \sum_{i} C_{i}(t') \left(\widetilde{A_{i}}(t') \otimes \widetilde{B_{i}}(t') \right) \right] dt'$$

$$(407)$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) \sum_{i} C_{i}\left(t'\right) \left(\widetilde{A_{i}}(t') \otimes \widetilde{B_{i}}(t')\right) \widetilde{\rho_{S}}(t) \rho_{B} - \sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) \widetilde{\rho_{S}}(t) \rho_{B} \sum_{i} C_{i}\left(t'\right) \left(\widetilde{A_{i}}(t') \otimes \widetilde{B_{i}}(t')\right) \right. \tag{408}$$

$$-\sum_{i}C_{i}\left(t'\right)\left(\widetilde{A_{i}}\left(t'\right)\otimes\widetilde{B_{i}}\left(t'\right)\right)\widetilde{\widetilde{\rho_{S}}}(t)\rho_{B}\sum_{j}C_{j}(t)\left(\widetilde{A_{j}}(t)\otimes\widetilde{B_{j}}(t)\right)+\widetilde{\widetilde{\rho_{S}}}(t)\rho_{B}\sum_{i}C_{i}\left(t'\right)\left(\widetilde{A_{i}}\left(t'\right)\otimes\widetilde{B_{i}}\left(t'\right)\right)\sum_{j}C_{j}(t)\left(\widetilde{A_{j}}(t)\otimes\widetilde{B_{j}}(t)\right)\right)\mathrm{d}t'. \tag{409}$$

In order to calculate the correlation functions we define:

$$\mathscr{B}_{ij}(t,t') = \operatorname{Tr}_{B}\left(\widetilde{B}_{i}(t)\widetilde{B}_{j}(t')\rho_{B}\right). \tag{410}$$

An useful property is

$$\mathscr{B}_{ji}^{*}\left(t,t'\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(t'\right)\rho_{B}\right)^{\dagger} \tag{411}$$

$$= \operatorname{Tr}_{B} \left(\rho_{B}^{\dagger} \widetilde{B}_{i}^{\dagger} \left(t' \right) \widetilde{B}_{j}^{\dagger} \left(t \right) \right) \tag{412}$$

$$=\operatorname{Tr}_{B}\left(\rho_{B}\widetilde{B}_{i}\left(t'\right)\widetilde{B}_{j}\left(t\right)\right)\tag{413}$$

$$=\operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(t'\right)\widetilde{B_{j}}\left(t\right)\rho_{B}\right)\tag{414}$$

$$=\mathscr{B}_{ij}\left(t',t\right).\tag{415}$$

The correlation functions relevant that appear in the equation (409) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(t'\right)\rho_{B}\right) = \left\langle \widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(t'\right)\right\rangle_{B} \tag{416}$$

$$=\mathscr{B}_{ji}\left(t,t'\right)\tag{417}$$

$$=\mathscr{B}_{ii}^*\left(t',t\right) \tag{418}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\rho_{B}\widetilde{B_{i}}\left(t'\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(t'\right)\widetilde{B_{j}}\left(t\right)\rho_{B}\right)$$

$$= \mathscr{B}_{ij}\left(t',t\right)$$
(419)
$$(420)$$

$$=\mathscr{B}_{ij}\left(t',t\right)\tag{420}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(t^{\prime}\right)\rho_{B}\widetilde{B_{j}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(t^{\prime}\right)\rho_{B}\right) \tag{421}$$

$$=\mathscr{B}_{ij}^{*}\left(t',t\right)\tag{422}$$

$$\operatorname{Tr}_{B}\left(\rho_{B}\widetilde{B_{i}}\left(t'\right)\widetilde{B_{j}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(t'\right)\widetilde{B_{j}}\left(t\right)\rho_{B}\right) \tag{423}$$

$$=\mathscr{B}_{ij}\left(t',t\right)\tag{424}$$

The cyclic property of the trace was use widely in the development of equations (416) and (424). Replacing in (409)

$$-\sum_{i} C_{i}(t') \left(\widetilde{A_{i}}(t') \otimes \widetilde{B_{i}}(t')\right) \widetilde{\rho_{S}}(t) \rho_{B} \sum_{i} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) + \widetilde{\rho_{S}}(t) \rho_{B} \sum_{i} C_{i}(t') \left(\widetilde{A_{i}}(t') \otimes \widetilde{B_{i}}(t')\right) \sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) dt'. \tag{426}$$

$$= -\int_0^t \operatorname{Tr}_B\left(\sum_{ji} C_j(t) C_i(t') \left(\widetilde{A_j}(t) \widetilde{A_i}(t') \widetilde{\rho_S}(t) \widetilde{B_j}(t) \widetilde{B_i}(t') \rho_B - \widetilde{A_j}(t) \widetilde{\rho_S}(t) \widetilde{A_i}(t') \widetilde{B_j}(t) \rho_B \widetilde{B_i}(t')\right)\right)$$

$$(427)$$

$$+\sum_{ij}C_{i}(t')C_{j}(t)\left(\widetilde{\rho_{S}}(t)\widetilde{A_{i}}(t')\widetilde{A_{j}}(t)\rho_{B}\widetilde{B_{i}}(t')\widetilde{B_{j}}(t)-\widetilde{A_{i}}(t')\widetilde{\rho_{S}}(t)\widetilde{A_{j}}(t)\widetilde{B_{i}}(t')\rho_{B}\widetilde{B_{j}}(t)\right)\right)dt'$$

$$(428)$$

$$= -\int_0^t \operatorname{Tr}_B\left(\sum_{ji} C_j(t) C_i(t') \left(\widetilde{A_j}(t) \widetilde{A_i}(t') \widetilde{\rho_S}(t) \widetilde{B_j}(t) \widetilde{B_i}(t') \rho_B - \widetilde{A_j}(t) \widetilde{\rho_S}(t) \widetilde{A_i}(t') \widetilde{B_j}(t) \rho_B \widetilde{B_i}(t')\right)\right)$$

$$(429)$$

$$+\sum_{ij}C_{i}(t')C_{j}(t)(\widetilde{\rho_{S}}(t)\widetilde{A_{i}}(t')\widetilde{A_{j}}(t)\rho_{B}\widetilde{B_{i}}(t')\widetilde{B_{j}}(t)-\widetilde{A_{i}}(t')\widetilde{\rho_{S}}(t)\widetilde{A_{j}}(t)\widetilde{B_{i}}(t')\rho_{B}\widetilde{B_{j}}(t)))dt'$$

$$(430)$$

$$=-\int_0^t \mathrm{Tr}_B\Big(\sum_{ij} C_j(t) C_i\big(t'\big) \Big(\widetilde{A_j}(t) \widetilde{A_i}\big(t'\big) \widetilde{\widetilde{\rho_S}}(t) \widetilde{B_j}(t) \widetilde{B_i}\big(t'\big) \rho_B - \widetilde{A_j}(t) \widetilde{\widetilde{\rho_S}}(t) \widetilde{A_i}\big(t'\big) \widetilde{B_j}(t) \rho_B \widetilde{B_i}\big(t'\big)\Big) \text{ (by permuting i and j because i,j e.j.)} \tag{431}$$

$$+\sum_{ij}C_{i}(t')C_{j}(t)(\widetilde{\rho_{S}}(t)\widetilde{A_{i}}(t')\widetilde{A_{j}}(t)\rho_{B}\widetilde{B_{i}}(t')\widetilde{B_{j}}(t)-\widetilde{A_{i}}(t')\widetilde{\rho_{S}}(t)\widetilde{A_{j}}(t)\widetilde{B_{i}}(t')\rho_{B}\widetilde{B_{j}}(t)))dt'$$

$$(432)$$

$$= -\int_0^t \operatorname{Tr}_B\left(\sum_{ij} C_j(t) C_i(t') \left(\widetilde{A_j}(t) \widetilde{A_i}(t') \widetilde{\rho S}(t) \widetilde{B_j}(t) \widetilde{B_i}(t') \rho_B - \widetilde{A_j}(t) \widetilde{\rho S}(t) \widetilde{A_i}(t') \widetilde{B_j}(t) \rho_B \widetilde{B_i}(t')\right)$$

$$\tag{433}$$

$$+\widetilde{\rho_S}(t)\widetilde{A_i}(t')\widetilde{A_j}(t)\rho_B\widetilde{B_i}(t')\widetilde{B_j}(t)-\widetilde{A_i}(t')\widetilde{\rho_S}(t)\widetilde{A_j}(t)\widetilde{B_i}(t')\rho_B\widetilde{B_j}(t)))dt'$$
(434)

$$= -\int_{0}^{t} \left(\sum_{ij} C_{j}(t) C_{i}(t') \left(\widetilde{A}_{j}(t) \widetilde{A}_{i}(t') \widetilde{\overline{\rho_{S}}}(t) \mathcal{B}_{ji}(t,t') - \widetilde{A}_{j}(t) \widetilde{\overline{\rho_{S}}}(t) \widetilde{A}_{i}(t') \mathcal{B}_{ij}(t',t) \right) \right)$$

$$(435)$$

$$+\widetilde{\widetilde{\rho_S}}(t)\widetilde{A_i}(t')\widetilde{A_j}(t)\mathscr{B}_{ij}(t',t) - \widetilde{A_i}(t')\widetilde{\widetilde{\rho_S}}(t)\widetilde{A_j}(t)\mathscr{B}_{ji}(t,t')))dt'$$

$$(436)$$

$$+\rho_{S}(t)A_{i}(t)A_{j}(t)\mathscr{B}_{ij}(t,t)-A_{i}(t)\rho_{S}(t)A_{j}(t)\mathscr{B}_{ji}(t,t)))dt$$

$$+\frac{t}{2}\int_{-\infty}^{\infty} \left(-\frac{1}{2}\left(-\frac{1}\left(-\frac{1}{2}\left(-$$

$$= -\int_{0}^{t} \left(\sum_{ij} C_{j}(t) C_{i}(t') \left(\mathscr{B}_{ji}(t,t') \left[\widetilde{A}_{j}(t), \widetilde{A}_{i}(t') \widetilde{\rho}_{S}(t) \right] + \mathscr{B}_{ij}(t',t) \left[\widetilde{\rho}_{S}(t) \widetilde{A}_{i}(t'), \widetilde{A}_{j}(t) \right] \right) \right) dt'$$

$$(437)$$

$$=-\int_0^t \left(\sum_{ij} C_i(t) C_j(t') \left(\mathscr{B}_{ij}\left(t,t'\right) \left[\widetilde{A_i}(t),\widetilde{A_j}\left(t'\right) \widetilde{\rho_S}(t)\right] + \mathscr{B}_{ji}\left(t',t\right) \left[\widetilde{\rho_S}(t)\widetilde{A_j}\left(t'\right),\widetilde{A_i}(t)\right]\right)\right) \mathrm{d}t' \text{ (exchanging i and j)} \tag{438}$$

$$=-\int_{0}^{t}\left(\sum_{ij}C_{i}\left(t\right)C_{j}\left(t'\right)\left(\mathscr{B}_{ij}\left(t,t'\right)\left[\widetilde{A_{i}}\left(t\right),\widetilde{A_{j}}\left(t'\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\right]+\mathscr{B}_{ij}^{*}\left(t,t'\right)\left[\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{j}}\left(t'\right),\widetilde{A_{i}}\left(t\right)\right]\right)\right)\mathrm{d}t'$$

$$(439)$$

$$=-\int_{0}^{t}\left(\sum_{ij}C_{i}\left(t\right)C_{j}\left(t'\right)\left(\mathscr{B}_{ij}\left(t,t'\right)\left[\widetilde{A}_{i}\left(t\right),\widetilde{A}_{j}\left(t'\right)\widetilde{\rho_{S}}\left(t\right)\right]-\mathscr{B}_{ij}^{*}\left(t,t'\right)\left[\widetilde{A}_{i}\left(t\right),\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A}_{j}\left(t'\right)\right]\right)\right)\mathrm{d}t'$$

$$(440)$$

We could identify the following commutators in the equation deduced:

$$\mathscr{B}_{ij}(t,t')\widetilde{A}_{i}(t)\widetilde{A}_{j}(t')\widetilde{\rho_{S}}(t) - \mathscr{B}_{ij}(t,t')\widetilde{A}_{j}(t')\widetilde{\rho_{S}}(t)\widetilde{A}_{i}(t) = \mathscr{B}_{ij}(t,t')\left[\widetilde{A}_{i}(t),\widetilde{A}_{j}(t')\widetilde{\rho_{S}}(t)\right], \tag{441}$$

$$\mathscr{B}_{ij}^{*}\left(t,t'\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j}}\left(s\right)\widetilde{A_{i}}\left(t\right)-\mathscr{B}_{ij}^{*}\left(t,t'\right)\widetilde{A_{i}}\left(t\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j}}\left(s\right)=\mathscr{B}_{ij}^{*}\left(t,t'\right)\left[\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j}}\left(t'\right),\widetilde{A_{i}}\left(t\right)\right].$$
(442)

Returning to the Schroedinger picture we have:

$$U\left(t\right)\widetilde{A_{i}}\left(t\right)\widetilde{A_{j}}\left(t^{\prime}\right)\widetilde{\rho_{S}}\left(t\right)U^{\dagger}\left(t\right)=U\left(t\right)\widetilde{A_{i}}\left(t\right)U^{\dagger}\left(t\right)U\left(t\right)\widetilde{A_{j}}\left(t^{\prime}\right)U^{\dagger}\left(t\right)U\left(t\right)\widetilde{\rho_{S}}\left(t\right)U^{\dagger}\left(t\right),\tag{443}$$

$$= \left(U\left(t\right)\widetilde{A_{i}}\left(t\right)U^{\dagger}\left(t\right)\right)\left(U\left(t\right)\widetilde{A_{j}}\left(t'\right)U^{\dagger}\left(t\right)\right)\left(U\left(t\right)\widetilde{\rho_{S}}\left(t\right)U^{\dagger}\left(t\right)\right),\tag{444}$$

$$=A_{i}\left(t\right) \widetilde{A_{j}}\left(t^{\prime},t\right) \overline{\rho_{S}}\left(t\right) . \tag{445}$$

This procedure applying to the relevant commutators give us:

$$U\left(t\right)\left[\widetilde{A_{i}}\left(t\right),\widetilde{A_{j}}\left(t'\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\right]U^{\dagger}\left(t\right) = \left(U\left(t\right)\widetilde{A_{i}}\left(t\right)\widetilde{A_{j}}\left(t'\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)U^{\dagger}\left(t\right) - U\left(t\right)\widetilde{A_{j}}\left(t'\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{i}}\left(t\right)U^{\dagger}\left(t\right)\right)$$
(446)

$$= A_i(t) \widetilde{A_i}(t',t) \overline{\rho_S}(t) - \widetilde{A_i}(t',t) \overline{\rho_S}(t) A_i$$
(447)

$$= \left[A_i(t), \widetilde{A}_j(t', t) \overline{\rho_S}(t) \right]. \tag{448}$$

Introducing this transformed commutators in the equation (440) allow us to obtain the master equation of the system written as an integro-differential equation with the correlation functions $\mathcal{B}_{ij}(\tau)$ as defined before, this equations has the following form:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t)\right] - \sum_{ij} \int_{0}^{t} \mathrm{d}s C_{i}(t) C_{j}(t') \left(\mathcal{B}_{ij}(t,t') \left[A_{i}(t), \widetilde{A_{j}}(t',t) \overline{\rho_{S}}(t)\right] + \mathcal{B}_{ij}^{*}(t,t') \left[\overline{\rho_{S}}(t)\widetilde{A_{j}}(t',t), A_{i}\right]\right), \quad (449)$$

$$t' = t - \tau$$
 (Change of variables in the integration process), (450)

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t)\right] - \sum_{i,j} \int_{0}^{t} \mathrm{d}\tau C_{i}(t) C_{j}(t') \left(\mathscr{B}_{ij}(t,t') \left[A_{i}(t), \widetilde{A_{j}}(t',t)\overline{\rho_{S}}(t)\right] + \mathscr{B}_{ij}^{*}(t,t') \left[\overline{\rho_{S}}(t)\widetilde{A_{j}}(t',t), A_{i}(t)\right]\right). \tag{451}$$

where $i, j \in \{1, 2, 3, 4, 5.6\}$ and $t' = t - \tau$.

Here $A_j(t-\tau,t)=U(t)U^{\dagger}(t-\tau)A_j(t)U(t-\tau)U^{\dagger}(t)$ where U(t) is given by (374). The equation obtained is a non-Markovian master equation which describes the QD exciton dynamics in the variational frame with a general time-dependent Hamiltonian, and valid at second order in $H_I(t)$. In order to write in a simplified way we define the following notation:

$$\mathscr{B}_{ij}(t,t') = \operatorname{Tr}_{B}\left(\widetilde{B}_{i}(t)\widetilde{B}_{j}(t')\rho_{B}\right) \tag{452}$$

$$= \operatorname{Tr}_{B} \left(e^{iH_{B}t} B_{i} \left(t \right) e^{-iH_{B}t} e^{iH_{B}t'} B_{j} \left(t' \right) e^{-iH_{B}t'} \rho_{B} \right)$$
(453)

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \tag{454}$$

$$e^{-iH_B t'} e^{-\beta H_B} = \sum_{m=0}^{\infty} \frac{(-iH_B t')^m}{m!} \sum_{n=0}^{\infty} \frac{(-\beta H_B)^n}{n!}$$
(455)

$$=\sum_{m,n} \frac{\left(-iH_B t'\right)^m}{m!} \frac{\left(-\beta H_B\right)^n}{n!} \tag{456}$$

$$= \sum_{m,n} \frac{(-it')^m}{m!} \frac{(-\beta)^n}{n!} H_B^m H_B^n$$
 (457)

$$= \sum_{m,n} \frac{(-it')^m}{m!} \frac{(-\beta)^n}{n!} H_B^n H_B^m \text{ (because the powers of a matrix commute)}$$
 (458)

$$= \sum_{m,n} \frac{(-\beta)^n}{n!} H_B^n \frac{(-it')^m}{m!} H_B^m \tag{459}$$

$$= \sum_{m,n} \frac{(-\beta H_B)^n}{n!} \frac{(-it'H_B)^m}{m!}$$
 (460)

$$= \sum_{n=0}^{\infty} \frac{(-\beta H_B)^n}{n!} \sum_{m=0}^{\infty} \frac{(-iH_B t')^m}{m!}$$
 (461)

$$=e^{-\beta H_B}e^{-iH_Bt'} \tag{462}$$

$$0 = e^{-iH_B t'} e^{-\beta H_B} - e^{-\beta H_B t'} \text{ (then } e^{-iH_B t'} \text{ and } \rho_B \text{ commute)}$$

$$(463)$$

$$\mathscr{B}_{ij}(t,t') = \operatorname{Tr}_{B}\left(e^{iH_{B}t}B_{i}(t)e^{-iH_{B}t}e^{iH_{B}t'}B_{j}(t')\rho_{B}e^{-iH_{B}t'}\right) \text{ (by permuting } e^{-iH_{B}t'} \text{ and } \rho_{B})$$

$$\tag{464}$$

$$=\operatorname{Tr}_{B}\left(\left(e^{iH_{B}t}B_{i}\left(t\right)e^{-iH_{B}t}e^{iH_{B}t'}B_{j}\left(t'\right)\right)\rho_{B}e^{-iH_{B}t'}\right) \text{ (by associative property)}$$
(465)

$$=\operatorname{Tr}_{B}\left(e^{-iH_{B}t'}\left(e^{iH_{B}t}B_{i}\left(t\right)e^{-iH_{B}t}e^{iH_{B}t'}B_{j}\left(t'\right)\right)\rho_{B}\right)\text{ (by cyclic property of the trace)}\tag{466}$$

$$=\operatorname{Tr}_{B}\left(\left(e^{-iH_{B}t'}e^{iH_{B}t}\right)B_{i}\left(t\right)\left(e^{-iH_{B}t}e^{iH_{B}t'}\right)B_{j}\left(t'\right)\rho_{B}\right)\text{ (by associative property)}\tag{467}$$

$$[iH_Bt, -iH_Bt'] = iH_Bt(-iH_Bt') - (-iH_Bt')iH_Bt$$
 (468)

$$= tt'H_B^2 - tt'H_B^2 (469)$$

$$= 0 \text{ (so } iH_B t \text{ and } -iH_B t' \text{ commute)}$$

$$\tag{470}$$

$$e^{-iH_Bt'}e^{iH_Bt} = e^{iH_Bt - iH_Bt'}$$
 (by the Zassenhaus formula because iH_Bt and $-iH_Bt'$ commute) (471)

$$=e^{iH_B(t-t')} \tag{472}$$

$$=e^{iH_B\tau} \tag{473}$$

$$e^{iH_Bt'}e^{-iH_Bt} = e^{-iH_Bt + iH_Bt'}$$
 (by the Zassenhaus formula because $-iH_Bt$ and iH_Bt' commute) (474)

$$=e^{iH_B\left(-t+t'\right)}\tag{475}$$

$$=e^{-iH_B\tau} ag{476}$$

$$\mathscr{B}_{ij}(t,t') = \operatorname{Tr}_{B}\left(e^{iH_{B}\tau}B_{i}(t)e^{-iH_{B}\tau}B_{j}(t')\rho_{B}\right) \tag{477}$$

$$B_i(t,\tau) \equiv e^{iH_B\tau} B_i(t) e^{-iH_B\tau} \tag{478}$$

$$\mathscr{B}_{ij}(t,t') = \operatorname{Tr}_{B}\left(e^{iH_{B}(t-t')}B_{i}(t)e^{-iH_{B}(t-t')}B_{j}(t')\rho_{B}\right)$$

$$\tag{479}$$

$$t' = t - \tau \tag{480}$$

$$\mathscr{B}_{ij}(t,t') = \operatorname{Tr}_{B}\left(e^{iH_{B}\tau}B_{i}(t)e^{-iH_{B}\tau}B_{j}(t')\rho_{B}\right)$$

$$\tag{481}$$

$$=\operatorname{Tr}_{B}\left(B_{i}\left(t,\tau\right)B_{j}\left(t',0\right)\rho_{B}\right)\tag{482}$$

Calculating the correlation functions allow us to obtain:

$$\left\langle \widetilde{B_{jz}}(t)\widetilde{B_{jz}}(t')\right\rangle_{p} = \text{Tr}_{B}\left(B_{jz}(t,\tau)B_{jz}(t',0)\rho_{B}\right) \tag{483}$$

$$= \int d^{2}\alpha P(\alpha) \left\langle \alpha \left| B_{jz}(t,\tau) B_{jz}(t',0) \right| \alpha \right\rangle$$
(484)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \left\langle \alpha \left| B_{jz}\left(t,\tau\right) B_{jz}\left(t',0\right) \right| \alpha \right\rangle d^2 \alpha \tag{485}$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \left\langle \alpha \left| B_{jz}\left(t,\tau\right) B_{jz}\left(t',0\right) \right| \alpha \right\rangle d^2 \alpha, \tag{486}$$

$$B_{jz}(t,\tau) = \sum_{\mathbf{k}} \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} e^{\mathbf{i}\omega_{\mathbf{k}}\tau} + \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) \right)^* b_{\mathbf{k}} e^{-\mathbf{i}\omega_{\mathbf{k}}\tau} \right), \tag{487}$$

$$B_{jz}\left(t',0\right) = \sum_{\mathbf{k}'} \left(\left(g_{j\mathbf{k}'} - v_{j\mathbf{k}'}\left(t'\right)\right) b_{\mathbf{k}'}^{\dagger} + \left(g_{j\mathbf{k}'} - v_{j\mathbf{k}'}\left(t'\right)\right)^* b_{\mathbf{k}'} \right), \tag{488}$$

$$\left\langle \widetilde{B_{jz}}(t)\widetilde{B_{jz}}(t')\right\rangle_{B} = \text{Tr}_{B}\left(B_{jz}\left(t,\tau\right)B_{jz}\left(t',0\right)\rho_{B}\right) \tag{489}$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}(t)\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}(t)\right)^{*}b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right)\sum_{\mathbf{k}'}\left(\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}(t')\right)b_{\mathbf{k}'}^{\dagger}+\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}(t')\right)^{*}b_{\mathbf{k}'}\right)\rho_{B}\right)$$

$$(490)$$

$$\left\langle \widetilde{B_{jz}}(t)\widetilde{B_{jz}}(t')\right\rangle_{B} = \text{Tr}_{B}\left(B_{jz}\left(t,\tau\right)B_{jz}\left(t',0\right)\rho_{B}\right) \tag{491}$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t\right)\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t\right)\right)^{*}b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right)\sum_{\mathbf{k}'}\left(\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\left(t'\right)\right)b_{\mathbf{k}'}^{\dagger}+\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\left(t'\right)\right)^{*}b_{\mathbf{k}'}\right)\rho_{B}\right)$$

$$(492)$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}\neq\mathbf{k}'}\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t\right)\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t\right)\right)^{*}b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right)\left(\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\left(t'\right)\right)b_{\mathbf{k}'}^{\dagger}+\left(g_{j\mathbf{k}'}-v_{j\mathbf{k}'}\left(t'\right)\right)^{*}b_{\mathbf{k}'}\right)\rho_{B}\right)$$

$$(493)$$

$$+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t\right)\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t\right)\right)^{*}b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right)\left(\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t'\right)\right)b_{\mathbf{k}}^{\dagger}+\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(t'\right)\right)^{*}b_{\mathbf{k}}\right)\rho_{B}\right),\quad(494)$$

$$g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) = q_{j\mathbf{k}}(t) \tag{495}$$

$$\left\langle \widetilde{B_{jz}}(t)\widetilde{B_{jz}}(t')\right\rangle_{B} = \operatorname{Tr}_{B}\left(\sum_{\mathbf{k}\neq\mathbf{k}'} \left(q_{j\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^{*}(t) b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right) \left(q_{j\mathbf{k}'}(t') b_{\mathbf{k}'}^{\dagger} + q_{j\mathbf{k}'}^{*}(t') b_{\mathbf{k}'}\right) \rho_{B}\right)$$

$$(496)$$

$$+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}\left(q_{j\mathbf{k}}\left(t\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}+q_{j\mathbf{k}}^{*}\left(t\right)b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right)\left(q_{j\mathbf{k}}\left(t'\right)b_{\mathbf{k}}^{\dagger}+q_{j\mathbf{k}}^{*}\left(t'\right)b_{\mathbf{k}}\right)\rho_{B}\right)$$

$$(497)$$

$$0 = \operatorname{Tr}_{B} \left(\sum_{\mathbf{k} \neq \mathbf{k}'} \left(q_{j\mathbf{k}} \left(t \right) b_{\mathbf{k}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^{*} \left(t \right) b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \left(q_{j\mathbf{k}'} \left(t' \right) b_{\mathbf{k}'}^{\dagger} + q_{j\mathbf{k}'}^{*} \left(t' \right) b_{\mathbf{k}'} \right) \rho_{B} \right)$$

$$(498)$$

$$\left\langle \widetilde{B_{jz}}(t)\widetilde{B_{jz}}(t')\right\rangle_{B} = 0 + \operatorname{Tr}_{B}\left(\sum_{\mathbf{k}} \left(q_{j\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^{*}(t) b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right) \left(q_{j\mathbf{k}}(t') b_{\mathbf{k}}^{\dagger} + q_{j\mathbf{k}}^{*}(t') b_{\mathbf{k}}\right) \rho_{B}\right)$$

$$(499)$$

$$= \operatorname{Tr}_{B} \sum_{\mathbf{k}} \left(q_{j\mathbf{k}}(t) q_{j\mathbf{k}}(t') b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}(t) q_{j\mathbf{k}}^{*}(t') b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^{*}(t) q_{j\mathbf{k}}(t') b_{\mathbf{k}} b_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^{*}(t) q_{j\mathbf{k}}(t') b_{\mathbf{k}} b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^{*}(t) q_{j\mathbf{k}}^{*}(t') b_{\mathbf{k}} b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \rho_{B}$$
 (500)

$$=\sum_{\mathbf{k}}\operatorname{Tr}_{B}\left(q_{j\mathbf{k}}\left(t\right)q_{j\mathbf{k}}\left(t'\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}^{\dagger}e^{i\omega_{\mathbf{k}}\tau}\rho_{B}\right)+\operatorname{Tr}_{B}\left(q_{j\mathbf{k}}\left(t\right)a_{j\mathbf{k}}^{*}\left(t'\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}e^{i\omega_{\mathbf{k}}\tau}\rho_{B}\right)+\operatorname{Tr}_{B}\left(q_{j\mathbf{k}}^{*}\left(t\right)a_{j\mathbf{k}}\left(t'\right)b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}e^{-i\omega_{\mathbf{k}}\tau}\rho_{B}\right)$$
(501)

$$+\operatorname{Tr}_{B}\left(q_{j\mathbf{k}}^{*}\left(t\right)q_{j\mathbf{k}}^{*}\left(t'\right)b_{\mathbf{k}}b_{\mathbf{k}}e^{-i\omega_{\mathbf{k}}\tau}\rho_{B}\right)\tag{502}$$

$$=\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}q_{j\mathbf{k}}\left(t\right)q_{j\mathbf{k}}^{*}\left(t'\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\rho_{B}\right)+\operatorname{Tr}_{B}\left(\sum_{\mathbf{k}}q_{j\mathbf{k}}^{*}\left(t\right)q_{j\mathbf{k}}\left(t'\right)b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\rho_{B}\right)$$
(503)

$$= \sum_{\mathbf{k}} q_{j\mathbf{k}}(t) q_{j\mathbf{k}}^{*}(t') e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \mathrm{Tr}_{B}\left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \rho_{B}\right) + \sum_{\mathbf{k}} q_{j\mathbf{k}}^{*}(t) q_{j\mathbf{k}}(t') e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \mathrm{Tr}_{B}\left(b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} \rho_{B}\right)$$

$$(504)$$

$$= \sum_{\mathbf{k}} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left(q_{j\mathbf{k}}(t) \, q_{j\mathbf{k}}^*\left(t'\right) e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left\langle \alpha_{\mathbf{k}} \left| b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \right| \alpha_{\mathbf{k}} \right\rangle + q_{j\mathbf{k}}^*\left(t\right) q_{j\mathbf{k}}\left(t'\right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left\langle \alpha_{\mathbf{k}} \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right| \alpha_{\mathbf{k}} \right\rangle \right) \mathrm{d}^2 \alpha_{\mathbf{k}}$$
(505)

$$= \sum_{\mathbf{k}} q_{j\mathbf{k}} \left(t \right) q_{j\mathbf{k}}^{*} \left(t' \right) \left(e^{i\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{\left| \alpha_{\mathbf{k}} \right|^{2}}{N} \right) \left\langle 0 \left| D \left(-\alpha_{\mathbf{k}} \right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D \left(\alpha_{\mathbf{k}} \right) \right| 0 \right\rangle d^{2} \alpha_{\mathbf{k}} \right)$$

$$(506)$$

$$+\sum_{\mathbf{k}}q_{j\mathbf{k}}^{*}\left(t\right)q_{j\mathbf{k}}\left(t'\right)\left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right)\left\langle 0\left|D\left(-\alpha_{\mathbf{k}}\right)b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}D\left(\alpha_{\mathbf{k}}\right)\right|0\right\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right)$$
(507)

$$= \sum_{\mathbf{k}} q_{j\mathbf{k}}(t) q_{j\mathbf{k}}^{*}(t') \left(e^{i\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \left\langle 0 \left| D\left(-\alpha_{\mathbf{k}}\right) b_{\mathbf{k}}^{\dagger} D\left(\alpha_{\mathbf{k}}\right) D\left(-\alpha_{\mathbf{k}}\right) b_{\mathbf{k}} D\left(\alpha_{\mathbf{k}}\right) \right| 0 \right\rangle d^{2}\alpha_{\mathbf{k}} \right)$$
(508)

$$+\sum_{\mathbf{k}}q_{j\mathbf{k}}^{*}\left(t\right)q_{j\mathbf{k}}\left(t'\right)\left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right)\left\langle 0\left|D\left(-\alpha_{\mathbf{k}}\right)b_{\mathbf{k}}D\left(\alpha_{\mathbf{k}}\right)D\left(-\alpha_{\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger}D\left(\alpha_{\mathbf{k}}\right)\right|0\right\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right)$$
(509)

$$= \sum_{\mathbf{k}} q_{j\mathbf{k}} \left(t \right) q_{j\mathbf{k}}^* \left(t' \right) \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N} \right) \left\langle 0 \left| \left(b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^* \right) \left(b_{\mathbf{k}} + \alpha_{\mathbf{k}} \right) \right| 0 \right\rangle \mathrm{d}^2 \alpha_{\mathbf{k}} \right)$$
(510)

$$+\sum_{\mathbf{k}} q_{j\mathbf{k}}^{*}(t) q_{j\mathbf{k}}(t') \left(e^{-i\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \left\langle 0 \left| (b_{\mathbf{k}} + \alpha_{\mathbf{k}}) \left(b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^{*} \right) \right| 0 \right\rangle d^{2}\alpha_{\mathbf{k}} \right), \tag{511}$$

$$= \sum_{\mathbf{k}} \left(q_{j\mathbf{k}} \left(t \right) q_{j\mathbf{k}}^* \left(t' \right) e^{\mathbf{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp \left(-\frac{\left| \alpha_{\mathbf{k}} \right|^2}{N} \right) \left\langle 0 \left| b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + b_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + b_{\mathbf{k}} \alpha_{\mathbf{k}}^* + \left| \alpha_{\mathbf{k}} \right|^2 \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(512)

$$+q_{j\mathbf{k}}^{*}\left(t\right)q_{j\mathbf{k}}\left(t'\right)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right)\left\langle 0\left|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}+b_{\mathbf{k}}^{\dagger}\alpha_{\mathbf{k}}+b_{\mathbf{k}}\alpha_{\mathbf{k}}^{*}+\left|\alpha_{\mathbf{k}}\right|^{2}\right|0\right\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right)$$
(513)

$$= \sum_{\mathbf{k}} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left(q_{j\mathbf{k}}(t) \, q_{j\mathbf{k}}^*(t') \, e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left\langle 0 \left| b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |\alpha_{\mathbf{k}}|^2 \right| 0 \right\rangle + q_{j\mathbf{k}}(t) \, q_{j\mathbf{k}}^*(t') \, e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left\langle 0 \left| b_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + b_{\mathbf{k}} \alpha_{\mathbf{k}}^* \right| 0 \right\rangle$$
(514)

$$+q_{j\mathbf{k}}^{*}\left(t\right)q_{j\mathbf{k}}\left(t'\right)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left\langle 0\left|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}+\left|\alpha_{\mathbf{k}}\right|^{2}\right|0\right\rangle +q_{j\mathbf{k}}^{*}\left(t\right)q_{j\mathbf{k}}\left(t'\right)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left\langle 0\left|b_{\mathbf{k}}^{\dagger}\alpha_{\mathbf{k}}+b_{\mathbf{k}}\alpha_{\mathbf{k}}^{*}\right|0\right\rangle \right)\mathrm{d}^{2}\alpha_{\mathbf{k}}$$
(515)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \sum_{\mathbf{k}} \left(\left\langle 0 \left|q_{j\mathbf{k}}(t) q_{j\mathbf{k}}^{*}(t') e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \left|\alpha_{\mathbf{k}}\right|^{2}\right) + q_{j\mathbf{k}}^{*}(t) q_{j\mathbf{k}}(t') e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + \left|\alpha_{\mathbf{k}}\right|^{2}\right) \right| 0\right) \right) d^{2}\alpha_{\mathbf{k}}$$
(516)

$$= \sum_{\mathbf{k}} q_{j\mathbf{k}}(t) q_{j\mathbf{k}}^*(s) \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| |\alpha_{\mathbf{k}}|^2 \left| 0 \right\rangle \mathrm{d}^2 \alpha_{\mathbf{k}} \right) + \sum_{\mathbf{k}} q_{j\mathbf{k}}(t) q_{j\mathbf{k}}^*(s) \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \right| 0 \right\rangle \mathrm{d}^2 \alpha_{\mathbf{k}} \right)$$

$$(526)$$

$$+\sum_{\mathbf{k}}q_{j\mathbf{k}}^{*}(t)q_{j\mathbf{k}}(s)\left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right)\left\langle 0\left|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}\right|0\right\rangle\mathrm{d}^{2}\alpha_{\mathbf{k}}\right)+\sum_{\mathbf{k}}q_{j\mathbf{k}}^{*}(t)q_{j\mathbf{k}}(s)\left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int\exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right)\left\langle 0\left|\left|\alpha_{\mathbf{k}}\right|^{2}\left|0\right\rangle\mathrm{d}^{2}\alpha_{\mathbf{k}}\right)\right\rangle$$
(527)

$$1 = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) d^2 \alpha_{\mathbf{k}},\tag{528}$$

$$b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\left|0\right\rangle = 0,$$
 (529)

$$b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}\left|0\right\rangle =\left|0\right\rangle ,$$
 (530)

$$\left\langle \widetilde{B_{jz}}(t)\widetilde{B_{jz}}(s)\right\rangle_{B} = \sum_{\mathbf{k}} q_{j\mathbf{k}}(t)q_{j\mathbf{k}}^{*}(s) \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \left\langle 0 \left| |\alpha_{\mathbf{k}}|^{2} \left| 0 \right\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right) + \sum_{\mathbf{k}} q_{j\mathbf{k}}^{*}(t)q_{j\mathbf{k}}(s) \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right) \left\langle 0 \left| |\alpha_{\mathbf{k}}|^{2} \left| 0 \right\rangle \mathrm{d}^{2}\alpha_{\mathbf{k}}\right) \right\rangle \right\rangle d^{2}\alpha_{\mathbf{k}} d^{2}\alpha_{\mathbf{$$

$$+\sum_{\mathbf{k}} q_{j\mathbf{k}}^{*}(t) q_{j\mathbf{k}}(s) \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N} \right) \left\langle 0 \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right| 0 \right\rangle d^{2} \alpha_{\mathbf{k}} \right)$$

$$(532)$$

$$=\sum_{\mathbf{k}}\left(q_{j\mathbf{k}}(t)q_{j\mathbf{k}}^{*}(s)e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\frac{1}{\pi N}\int|\alpha_{\mathbf{k}}|^{2}\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)d^{2}\alpha_{\mathbf{k}}+q_{j\mathbf{k}}^{*}(t)q_{j\mathbf{k}}(s)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{1}{\pi N}\int|\alpha_{\mathbf{k}}|^{2}\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)d^{2}\alpha_{\mathbf{k}}+\frac{1}{\pi N}\int\exp\left(-\frac{|\alpha_{\mathbf{k}}|^{2}}{N}\right)d^{2}\alpha_{\mathbf{k}}\right)\right)$$
(533)

$$= \sum_{\mathbf{k}} \left(\left(q_{j\mathbf{k}}(t) q_{j\mathbf{k}}^*(s) e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^*(t) q_{j\mathbf{k}}(s) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \frac{1}{\pi N} \int |\alpha_{\mathbf{k}}|^2 \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N} \right) d^2\alpha_{\mathbf{k}} + q_{j\mathbf{k}}^*(t) q_{j\mathbf{k}}(s) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N} \right) d^2\alpha_{\mathbf{k}} \right)$$

$$(534)$$

$$\frac{1}{\pi N} \int_0^{2\pi} \int_0^{\infty} r^2 \exp\left(-\frac{r^2}{N}\right) r dr d\theta = \frac{1}{\pi N} \int |\alpha_{\mathbf{k}}|^2 \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) d^2 \alpha_{\mathbf{k}}$$

$$(535)$$

$$=N \tag{536}$$

$$\left\langle \widetilde{B_{jz}}(t)\widetilde{B_{jz}}(s)\right\rangle_{B} = \sum_{\mathbf{k}} \left(\left(q_{j\mathbf{k}}(t) \, q_{j\mathbf{k}}^{*}(s) e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + q_{j\mathbf{k}}^{*}(t) \, q_{j\mathbf{k}}(s) \, e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) N + q_{j\mathbf{k}}^{*}(t) \, q_{j\mathbf{k}}(s) \, e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right)$$

$$(537)$$

(548)

$$\begin{split} \left\langle \widetilde{B_{jz}}(t) \widetilde{B_{j'z}}(s) \right\rangle_{B} &= \operatorname{Tr}_{B} \left(B_{jz} \left(t, \tau \right) B_{j'z} \left(s, 0 \right) \rho_{B} \right) \\ &= \int \mathrm{d}^{2} \alpha P \left(\alpha \right) \left\langle \alpha \left| B_{jz} \left(t, \tau \right) B_{j'z} \left(s, 0 \right) \right| \alpha \right\rangle \\ &= \frac{1}{\pi N} \int \exp \left(-\frac{|\alpha|^{2}}{N} \right) \left\langle \alpha \left| B_{jz} \left(t, \tau \right) B_{j'z} \left(s, 0 \right) \right| \alpha \right\rangle \mathrm{d}^{2} \alpha \end{aligned} \tag{540} \\ &= \frac{1}{\pi N} \int \exp \left(-\frac{|\alpha|^{2}}{N} \right) \left\langle \alpha_{k} \left| \sum_{\mathbf{k} \in \mathbb{N}_{k}^{\prime} \setminus \mathbb{N}_{k}^{\prime} + \left(s_{jk} - v_{jk} \left(t \right) \right)^{n} \mathbf{k}_{k}^{n-i\omega_{k}^{*}} \right) \sum_{\mathbf{k}^{\prime}} \left(\left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} + \left(s_{j'k'} - v_{j'k'} \left(s \right) \right)^{n} \mathbf{k}_{k}^{\dagger} \right) \left(\mathbf{k}_{k}^{\dagger} \right) \left($$

$$\frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}} | b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} | \alpha_{\mathbf{k}} \rangle d^2 \alpha_{\mathbf{k}} = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle 0 | D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}}^{\dagger} D(\alpha_{\mathbf{k}}) D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}} D(\alpha_{\mathbf{k}}) | 0 \rangle d^2 \alpha_{\mathbf{k}}$$

$$(549)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left| D\left(-\alpha_{\mathbf{k}}\right) b_{\mathbf{k}}^{\dagger} D\left(\alpha_{\mathbf{k}}\right) D\left(-\alpha_{\mathbf{k}}\right) b_{\mathbf{k}} D\left(\alpha_{\mathbf{k}}\right) \right| 0 \right\rangle d^{2} \alpha_{\mathbf{k}}$$
 (550)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left| \left(b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^{*}\right) \left(b_{\mathbf{k}} + \alpha_{\mathbf{k}}\right) \right| 0 \right\rangle d^{2} \alpha_{\mathbf{k}}$$
(551)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) |\alpha_{\mathbf{k}}|^2 d^2 \alpha_{\mathbf{k}}$$
 (552)

$$=N,$$
(553)

$$\frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}} | b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} | \alpha_{\mathbf{k}} \rangle d^2 \alpha_{\mathbf{k}} = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle 0 | D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}} D(\alpha_{\mathbf{k}}) D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}}^{\dagger} D(\alpha_{\mathbf{k}}) | 0 \rangle d^2 \alpha_{\mathbf{k}}$$

$$(554)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left| (b_{\mathbf{k}} + \alpha_{\mathbf{k}}) \left(b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^{*}\right) \right| 0 \right\rangle d^{2} \alpha_{\mathbf{k}}$$
 (555)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \alpha_{\mathbf{k}}^* + |\alpha_{\mathbf{k}}|^2 \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(556)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + |\alpha_{\mathbf{k}}|^2 \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(557)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| \alpha_{\mathbf{k}} \right|^2 \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}} + \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(558)

(561)

$$= N + 1,$$

$$\langle \widetilde{B_{jz}}(t)\widetilde{B_{j'z}}(s) \rangle_{B} = \sum_{\mathbf{k}} (g_{j\mathbf{k}} - v_{j\mathbf{k}}(t))(g_{j'\mathbf{k}} - v_{j'\mathbf{k}}(s))^{*}e^{i\omega_{\mathbf{k}}\tau}N + \sum_{\mathbf{k}} (g_{j\mathbf{k}} - v_{j\mathbf{k}}(t))^{*}(g_{j'\mathbf{k}} - v_{j'\mathbf{k}}(s))e^{-i\omega_{\mathbf{k}}\tau}(N + 1)$$

$$(560)$$

$$= \sum_{\mathbf{k}} ((g_{j\mathbf{k}} - v_{j\mathbf{k}}(t))(g_{j'\mathbf{k}} - v_{j'\mathbf{k}}(s))^{*}e^{i\omega_{\mathbf{k}}\tau} + (g_{j\mathbf{k}} - v_{j\mathbf{k}}(t))^{*}(g_{j'\mathbf{k}} - v_{j'\mathbf{k}}(s))e^{-i\omega_{\mathbf{k}}\tau})N + \sum_{\mathbf{k}} (g_{j\mathbf{k}} - v_{j'\mathbf{k}}(s))e^{-i\omega_{\mathbf{k}}\tau}$$

$$= \sum_{\mathbf{k}} 2N \left(q_{j\mathbf{k}} \left(t \right) q_{j'\mathbf{k}}^* \left(s \right) e^{\mathrm{i}\omega_{\mathbf{k}\tau}} \right)^{\Re} + \sum_{\mathbf{k}} q_{j\mathbf{k}}^* \left(t \right) q_{j'\mathbf{k}} \left(s \right) e^{-\mathrm{i}\omega_{\mathbf{k}\tau}}$$
(562)

$$D(h')D(h) = \exp\left(\frac{1}{2}(h'h^* - h'^*h)\right)D(h' + h),$$
(563)

$$\langle D(h') D(h) \rangle_B = \operatorname{Tr}_B \left(\exp \left(\frac{1}{2} \left(h' h^* - h'^* h \right) \right) D(h' + h) \rho_B \right)$$
(564)

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \operatorname{Tr}_B\left(D\left(h' + h\right)\rho_B\right)$$
(565)

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \frac{1}{\pi N} \int d^2 \alpha P\left(\alpha\right) \left\langle \alpha \left| D\left(h' + h\right) \right| \alpha \right\rangle$$
 (566)

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \exp\left(-\frac{|h + h'|^2}{2}\coth\left(\frac{\beta\omega}{2}\right)\right),\tag{567}$$

$$h' = h \exp(i\omega \tau), \tag{568}$$

$$\langle D\left(h \exp\left(\mathrm{i}\omega\tau\right)\right) D\left(h\right)\rangle_{B} = \exp\left(\frac{1}{2}(hh^{*} \exp\left(\mathrm{i}\omega\tau\right) - h^{*} h \exp\left(-\mathrm{i}\omega\tau\right)\right)\right) \exp\left(-\frac{|h + h \exp\left(\mathrm{i}\omega\tau\right)|^{2}}{2} \coth\left(\frac{\beta\omega}{2}\right)\right), \quad (569)$$

$$\frac{1}{2}|h|^2(\exp(i\omega\tau) - \exp(-i\omega\tau)) = \frac{1}{2}\left(hh^*\exp(i\omega\tau) - h^*h\exp(-i\omega\tau)\right)$$
(570)

$$= \frac{1}{2} |h|^2 \left(\cos(\omega \tau) + i\sin(\omega \tau) - \cos(\omega \tau) + i\sin(\omega \tau)\right)$$
(571)

$$=\frac{1}{2}\left|h\right|^2\left(2\mathrm{i}\sin\left(\omega\tau\right)\right)\tag{572}$$

$$= i |h|^2 \sin(\omega \tau), \qquad (573)$$

$$-\frac{|h + h\exp(i\omega\tau)|^2}{2} = -|h|^2 \frac{|1 + \exp(i\omega\tau)|^2}{2}$$
 (574)

$$= -|h|^2 \frac{\left(1 + 2\cos\left(\omega\tau\right) + \cos^2\left(\omega\tau\right)\right) + \sin^2\left(\omega\tau\right)}{2} \tag{575}$$

$$= -|h|^2 \frac{2 + 2\cos(\omega \tau)}{2} \tag{576}$$

$$= -|h|^2 (1 + \cos(\omega \tau)), \tag{577}$$

$$\langle D(h\exp(\mathrm{i}\omega\tau))D(h)\rangle_B = \exp\left(\mathrm{i}|h|^2\sin(\omega\tau)\right)\exp\left(-|h|^2(1+\cos(\omega\tau))\coth\left(\frac{\beta\omega}{2}\right)\right) \tag{578}$$

(579)

(580)

$$= \exp\left(-|h|^2\left(-\operatorname{isin}(\omega\tau) + \cos\left(\omega\tau\right) \coth\left(\frac{\beta\omega}{2}\right)\right)\right) \exp\left(-|h|^2 \coth\left(\frac{\beta\omega}{2}\right)\right) \tag{580}$$

$$= \langle D\left(h\right)\rangle_B \exp\left(-\phi\left(\tau\right)\right), \tag{581}$$

$$\exp\left(-\phi\left(\tau\right)\right) = \exp\left(-|h|^2\left(\cos\left(\omega\tau\right) \coth\left(\frac{\beta\omega}{2}\right) - \operatorname{isin}\left(\omega\tau\right)\right)\right), \tag{582}$$

$$\phi\left(\tau\right) = |h|^2\left(\cos\left(\omega\tau\right) \coth\left(\frac{\beta\omega}{2}\right) - \operatorname{isin}\left(\omega\tau\right)\right), \tag{583}$$

$$\langle D\left(h'\right)D\left(h\right)\rangle_B = \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \exp\left(-\frac{|h + h'|^2}{2} \coth\left(\frac{\beta\omega}{2}\right)\right), \tag{583}$$

$$\langle D\left(h'\right)D\left(h\right)\rangle_B = \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \exp\left(-\frac{|h + h'|^2}{2} \coth\left(\frac{\beta\omega}{2}\right)\right), \tag{584}$$

$$h' = v \exp\left(i\omega\tau\right), \tag{585}$$

$$\Rightarrow \langle B_1(t,\tau)B_1(s,0)\rangle_B \tag{586}$$

$$= \langle B_1(t,\tau)B_1(s,0)\rangle_B \tag{585}$$

$$= \operatorname{Tr}_B\left(B_{10}(t,\tau)B_{10}(s,0))_B \tag{585}$$

$$= \operatorname{Tr}_B\left(B_{10}(t,\tau)B_{10}(s,0))_B \tag{588}$$

$$= \operatorname{Tr}_B\left(B_{10}(t,\tau)B_{10}(s,0))_B (\cos\left(\frac{\gamma}{2}\right))_B \left(\frac{\gamma}{2}\left(\frac{\gamma}{2$$

 $= \exp\left(i |h|^2 \sin(\omega \tau) - |h|^2 (1 + \cos(\omega \tau)) \coth\left(\frac{\beta \omega}{2}\right)\right)$

$$= \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha | D(-\alpha) D(h) b D(\alpha) | \alpha \rangle$$
(597)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \langle 0 | D(-\alpha) D(h) b D(\alpha) | 0 \rangle$$
(598)

$$= \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle 0 | D(-\alpha) D(h) D(\alpha) D(-\alpha) bD(\alpha) | 0 \rangle$$
(599)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \langle 0 | D(-\alpha) D(h) D(\alpha) (b+\alpha) | 0 \rangle$$
(600)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0 | D(h)(b+\alpha) | 0 \rangle$$
(601)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle 0|D(h)b|0\rangle + \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle 0|D(h)\alpha|0\rangle \tag{602}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0 | D(h) \alpha | 0 \rangle \tag{603}$$

$$= \frac{1}{\pi N} \int \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \exp\left(-\frac{|h|^2}{2}\right) d^2\alpha \tag{604}$$

$$=hN\left\langle D\left(h\right) \right\rangle _{B},$$
 (605)

$$\langle D(h) b^{\dagger} \rangle_{B} = \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha |D(h) b^{\dagger} |\alpha \rangle$$
 (606)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \left\langle 0 \left| D(-\alpha) D(h) b^{\dagger} D(\alpha) \right| 0 \right\rangle$$
 (607)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \left\langle 0 \left| D(-\alpha) D(h) b^{\dagger} D(\alpha) \right| 0 \right\rangle$$
 (608)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \left\langle 0 \left| D(-\alpha) D(h) D(\alpha) D(-\alpha) b^{\dagger} D(\alpha) \right| 0 \right\rangle$$
 (609)

$$= \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \left\langle 0\left|D\left(-\alpha\right)D\left(h\right)D\left(\alpha\right)\left(b^{\dagger} + \alpha^{*}\right)\right| 0 \right\rangle \tag{610}$$

$$= \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \exp\left(h\alpha^{*} - h^{*}\alpha\right) \left\langle 0\left|D\left(h\right)\left(b^{\dagger} + \alpha^{*}\right)\right| 0\right\rangle \tag{611}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \left\langle 0 \left| D(h)b^\dagger \right| 0 \right\rangle + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \left\langle 0 \left| D(h)\alpha^* \right| 0 \right\rangle \tag{612}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle 0|D(h)|1\rangle + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha^* \langle 0|D(h)|0\rangle \tag{613}$$

$$= \frac{1}{\pi^N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle -h|1\rangle + \frac{1}{\pi^N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha^* \langle 0|D(h)|0\rangle, \tag{614}$$

$$\langle -h| = \exp\left(-\frac{|-h^*|^2}{2}\right) \sum_n \frac{(-h^*)^n}{\sqrt{n!}} \langle n|, \qquad (615)$$

$$\langle -h|1\rangle = \exp\left(-\frac{\left|-h^*\right|^2}{2}\right)(-h^*)\,,\tag{616}$$

$$\left\langle D(h)b^{\dagger}\right\rangle_{B} = \frac{1}{\pi N} \int \mathrm{d}^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \exp(h\alpha^{*} - h^{*}\alpha) \exp\left(-\frac{|-h^{*}|^{2}}{2}\right) (-h^{*}) + \frac{1}{\pi N} \int \mathrm{d}^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \exp(h\alpha^{*} - h^{*}\alpha)\alpha^{*} \exp\left(-\frac{|-h^{*}|^{2}}{2}\right)$$
(617)

$$=-h^{*}\left\langle D\left(h\right) \right\rangle _{B}\left(N+1\right) , \tag{618}$$

$$\langle bD(h)\rangle_{B} = \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha |bD(h)|\alpha \rangle \tag{619}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \exp\left(-\frac{|h|^2}{2}\right) h + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha \exp\left(-\frac{|h|^2}{2}\right)$$
(620)

$$= h \left\langle D\left(h\right)\right\rangle_{B} \left(N+1\right),\tag{621}$$

$$\left\langle b^{\dagger}D\left(h\right)\right\rangle _{B}=\frac{1}{\pi N}\int\mathrm{d}^{2}\alpha\mathrm{exp}\left(-\frac{\left|\alpha\right|^{2}}{2}\right)\left\langle \alpha\left|b^{\dagger}D\left(h\right)\right|\alpha\right\rangle \tag{622}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \exp\left(-\frac{|h|^2}{2}\right) h + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha \exp\left(-\frac{|h|^2}{2}\right)$$
 (623)

$$=-h^{*}\left\langle D\left(h\right) \right\rangle _{B}N,\tag{624}$$

$$B_{1}^{+}B_{0}^{-}\left(t,\tau\right) = \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}}\left(t\right) - v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\right) \exp\left(\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}\left(t\right)v_{0\mathbf{k}}\left(t\right) - v_{1\mathbf{k}}\left(t\right)v_{0\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}^{2}}\right)\right)\right),\tag{625}$$

$$B_{0}^{+}B_{1}^{-}(t,\tau) = \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}}(t) - v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau} \right) \exp\left(\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^{*}(t) v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}^{2}} \right) \right) \right), \tag{626}$$

$$B_{10}\left(t\right) = \left(\prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}\left(t\right) v_{0\mathbf{k}}\left(t\right) - v_{1\mathbf{k}}\left(t\right) v_{0\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}^{2}}\right)\right)\right) \left(\exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \left|\frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right). \tag{627}$$

$$B_x(t,\tau) = \frac{B_1^+ B_0^-(t,\tau) + B_0^+ B_1^-(t,\tau) - B_{10}(t) - B_{01}(t)}{2},$$
(628)

$$B_{y}(t,\tau) = \frac{B_{0}^{+}B_{1}^{-}(t,\tau) - B_{1}^{+}B_{0}^{-}(t,\tau) + B_{10}(t) - B_{01}(t)}{2i},$$
(629)

$$B_{iz}(t,\tau) = \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} e^{i\omega_{\mathbf{k}\tau}} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^* b_{\mathbf{k}} e^{-i\omega_{\mathbf{k}\tau}} \right), \tag{630}$$

$$\left\langle \widetilde{B_{iz}}(t)\widetilde{B_{jz}}(s)\right\rangle_{B} = \left\langle B_{iz}(t,\tau)B_{jz}(s,0)\right\rangle_{B}$$
 (631)

$$= \left\langle \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \left(t \right) \right) b_{\mathbf{k}}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \left(t \right) \right)^{*} b_{\mathbf{k}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \sum_{\mathbf{k}} \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \left(s \right) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{j\mathbf{k}} - v_{jk} \left(s \right) \right)^{*} b_{\mathbf{k}} \right) \right\rangle_{B}$$

$$(632)$$

$$=\sum_{\mathbf{k}}\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\left(t\right)\right)\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(s\right)\right)^{*}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}N_{\mathbf{k}}+\sum_{\mathbf{k}}\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\left(t\right)\right)^{*}\left(g_{j\mathbf{k}}-v_{j\mathbf{k}}\left(s\right)\right)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(N_{\mathbf{k}}+1\right),$$

$$\left\langle \widetilde{B}_{x}(t)\widetilde{B}_{x}(s)\right\rangle_{B} = \left\langle B_{x}(t,\tau)B_{x}(s,0)\right\rangle_{B}$$

$$= \left\langle \left(\frac{B_{1}^{+}B_{0}^{-}(t,\tau) + B_{0}^{+}B_{1}^{-}(t,\tau) - B_{10}(t) - B_{01}(t)}{2}\right) \left(\frac{B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) - B_{10}(s) - B_{01}(s)}{2}\right)\right\rangle_{B}$$
(634)

$$=\frac{1}{4}\left\langle \left(B_{1}^{+}B_{0}^{-}\left(t,\tau\right)+B_{0}^{+}B_{1}^{-}\left(t,\tau\right)-B_{10}\left(t\right)-B_{01}\left(t\right)\right)\left(B_{1}^{+}B_{0}^{-}\left(s,0\right)+B_{0}^{+}B_{1}^{-}\left(s,0\right)-B_{10}\left(s\right)-B_{01}\left(s\right)\right)\right\rangle _{B}$$
(636)

$$= \frac{1}{4} \left\langle B_{1}^{+} B_{0}^{-}(t,\tau) B_{1}^{+} B_{0}^{-}(s,0) + B_{1}^{+} B_{0}^{-}(t,\tau) B_{0}^{+} B_{1}^{-}(s,0) - B_{1}^{+} B_{0}^{-}(t,\tau) B_{10}(s) - B_{1}^{+} B_{0}^{-}(\tau) B_{01}(s) + B_{0}^{+} B_{1}^{-}(t,\tau) B_{1}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{1}^{-}(s,0) - B_{0}^{+} B_{1}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) - B_{0}^{+} B_{0}^{-}(s,0) + B_{0}^{+} B_{0}^{-}(s$$

 $B_{0}^{+}B_{1}^{-}(t,\tau)B_{01}(s) - B_{10}(t)B_{1}^{+}B_{0}^{-}(s,0) - B_{10}(t)B_{0}^{+}B_{1}^{-}(s,0) + B_{10}(t)B_{10}(s) + B_{10}(t)B_{10}(s) - B_{01}(t)B_{1}^{+}B_{0}^{-}(s,0) - B_{01}(t)B_{0}^{+}B_{1}^{-}(s,0) + B_{01}(t)B_{10}(s) +$

$$=\frac{1}{4}\langle B_{1}^{+}B_{0}^{-}(t,\tau)B_{1}^{+}B_{0}^{-}\left(s,0\right)+B_{1}^{+}B_{0}^{-}(t,\tau)B_{0}^{+}B_{1}^{-}\left(s,0\right)+B_{0}^{+}B_{1}^{-}(t,\tau)B_{1}^{+}B_{0}^{-}\left(s,0\right)\tag{639}$$

$$+B_0^+B_1^-(t,\tau)B_0^+B_1^-(s,0)\rangle - \frac{(B_{01}(t)+B_{10}(t))(B_{01}(s)+B_{10}(s))}{4},$$
 (640)

$$U_{10}\left(t,s\right) = \prod_{\mathbf{k}} \exp\left(i\left(\frac{\left(v_{1\mathbf{k}}\left(t\right) - v_{0\mathbf{k}}\left(t\right)\right)\left(v_{1\mathbf{k}}\left(s\right) - v_{0\mathbf{k}}\left(s\right)\right)^{*} \exp\left(i\omega_{\mathbf{k}}\tau\right)}{\omega_{\mathbf{k}}^{2}}\right)^{\Im}\right)$$
(641)

$$\left\langle B_1^+ B_0^-(t,\tau) B_1^+ B_0^-(s,0) \right\rangle_B = \exp(\chi_{10}(t) + \chi_{10}(s)) U_{10}(t,s) \prod_{\mathbf{k}} \exp\left(-\frac{|(v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)) \exp(i\omega_{\mathbf{k}}\tau) + v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s)|^2}{2\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \tag{642}$$

$$\left\langle B_0^+ B_1^-(t,\tau) B_0^+ B_1^-(s,0) \right\rangle_B = \exp(\chi_{01}(t) + \chi_{01}(s)) U_{10}(t,s) \prod_{\mathbf{k}} \exp\left(-\frac{|(v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)) \exp(i\omega_{\mathbf{k}}\tau) + v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s)|^2}{2\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \tag{643}$$

$$\left\langle B_1^+ B_0^-(t,\tau) B_0^+ B_1^-(s,0) \right\rangle_B = \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^*(t) v_{0\mathbf{k}}(t) - v_{1\mathbf{k}}(t) v_{0\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right) \right) \right) \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}}(s) - v_{1\mathbf{k}}(s)}{\omega_{\mathbf{k}}} \right) \exp\left(\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(s) v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s) v_{1\mathbf{k}}^*(s)}{\omega_{\mathbf{k}}^2} \right) \right) \right) \right)$$

$$(644)$$

$$= \exp(\chi_{10}(t) + \chi_{01}(s)) \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau} \right) \right) \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}}(s) - v_{1\mathbf{k}}(s)}{\omega_{\mathbf{k}}} \right) \right) \right\rangle_{B}$$

$$(645)$$

$$= \exp(\chi_{10}(t) + \chi_{01}(s)) \prod_{\mathbf{k}} \left\langle \left(D\left(\frac{v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau} \right) D\left(\frac{v_{0\mathbf{k}}(s) - v_{1\mathbf{k}}(s)}{\omega_{\mathbf{k}}} \right) \right) \right\rangle_{B}$$

$$(646)$$

$$=\exp(\chi_{10}(t)+\chi_{01}(s))U_{10}^*\left(t,s\right)\prod_{\mathbf{k}}\exp\left(-\frac{\left|\left(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t)\right)\exp\left(i\omega_{\mathbf{k}}\tau\right)-\left(v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)\right)\right|^2}{2\omega_{\mathbf{k}}^2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \tag{647}$$

(665)

$$\begin{split} & \langle B_0^+ B_1^-(t,\tau) B_1^+ B_0^-(s,0) \rangle_{tt} = \left\langle \prod_k \left(D\left(\frac{\cos(\epsilon(t) - v_1 k(t) - v_2 k(t) - v_3 k(t))}{v_k} \right) \exp\left(\frac{1}{2}\left(\frac{\sin(\epsilon(t) - v_1 k(t) - v_3 k(t) - v_3 k(t))}{v_k^2}\right)\right) \right\rangle \prod_k \left(D\left(\frac{v_2 k(t) - v_3 k(t)}{v_k} \right) \exp\left(\frac{1}{2}\left(\frac{v_2 k(t) - v_3 k(t) - v_3 k(t)}{v_k^2}\right) \exp\left(\frac{1}{2}\left(\frac{v_2 k(t) - v_3 k(t)}{v_k^2}\right)\right) \right\rangle \prod_{t \in A} \left(648\right) \\ & = \prod_k \exp\left(\frac{1}{2}\left(\frac{v_2 k(t) - v_3 k(t) - v_3 k(t)}{v_k^2}\right)\right) \exp\left(\frac{1}{2}\left(\frac{v_2 k(t) - v_3 k(t)}{v_k^2}\right)\right) \right) \left\langle D\left(\frac{v_2 k(t) - v_3 k(t)}{v_k}\right) \exp\left(\frac{1}{v_k^2}\right)\right) \right\rangle \prod_{t \in A} \left(649\right) \\ & = \exp\left(\chi_{01}\left(t\right) + \chi_{10}\left(s\right)\right) \prod_{t \in A} \left(\frac{1}{2}\left(\frac{v_3 k(t) - v_3 k(t)}{v_k}\right)\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k}\right)\right) \right\rangle \prod_{t \in A} \left(650\right) \\ & = \exp\left(\chi_{01}\left(t\right) + \chi_{10}\left(s\right)\right) \prod_{t \in A} \left(\frac{1}{2}\left(\frac{v_3 k(t) - v_3 k(t)}{v_k}\right)\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right)\right) \left(\frac{1}{2}\left(\frac{v_3 k(t) - v_3 k(t)}{v_k}\right)\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right)\right) \left(\frac{1}{2}\left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right)\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right)\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right)\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_k^2}\right) \left(\frac{v_3 k(t) - v_3 k(t)}{v_3^2}\right) \left(\frac{v_3 k(t) - v_3 k(t)$$

(666)

(667)

(685)

(686)

$$\begin{split} &-B_{10}(t)B_{01}(s)-B_{01}(t)B_{0}^{1}\mathbf{E}_{1}^{-}(s,0)+B_{01}(t)B_{1}^{+}B_{0}^{-}(s,0)-B_{01}(t)B_{10}(s)+B_{01}(t)B_{01}(s)) & (668) \\ &=-\frac{1}{4}(B_{0}^{+}B_{1}^{-}(t,\tau)B_{0}^{+}B_{1}^{-}(s,0)-B_{0}^{+}B_{1}^{-}(t,\tau)B_{1}^{+}B_{0}^{-}(s,0)-B_{1}^{+}B_{0}^{-}(t,\tau)B_{1}^{+}B_{0}^{-}(s,0)+B_{1}^{+}B_{0}^{-}(t,\tau)B_{1}^{+}B_{0}^{-}(s,0) & (669) \\ &+(B_{01}(t))^{3}(B_{10}(s))^{3} & (670) & (670) \\ &=-\frac{1}{4}\left(\exp(\chi_{01}(t)+\chi_{01}(s))U_{10}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t))\exp(i_{\mathbf{k}\mathbf{k}^{+}})+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s))^{2}}{2v_{\mathbf{k}^{+}}^{2}} \coth\left(\frac{\beta v_{2}}{2}\right)\right) & (671) \\ &-\exp(\chi_{01}(t)+\chi_{10}(s))U_{10}^{-}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t))\exp(i_{\mathbf{k}\mathbf{k}^{+}})+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s))^{2}}{2v_{\mathbf{k}^{+}}^{2}}} \coth\left(\frac{\beta v_{2}}{2}\right)\right) & (673) \\ &+\exp(\chi_{10}(t)+\chi_{10}(s))U_{10}^{-}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t))\exp(i_{\mathbf{k}\mathbf{k}^{+}})+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s))^{2}}{2v_{\mathbf{k}^{+}}^{2}}} \coth\left(\frac{\beta v_{2}}{2}\right)\right) & (674) \\ &+\left(\exp(\chi_{01}(t))\left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}|\frac{v_{1\mathbf{k}}(t)}{w_{\mathbf{k}}}-\frac{v_{0\mathbf{k}}(t)}{2w_{\mathbf{k}}}|^{2} \coth\left(\frac{\beta v_{2}}{2}\right)\right)\right)\right)^{3}\left(\exp(\chi_{10}(s))\left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}|\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)}{2w_{\mathbf{k}}}|^{2} \coth\left(\frac{\beta v_{2}}{2}\right)\right)\right) & (674) \\ &+\left(\exp(\chi_{01}(t))\left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}|\frac{v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t)-v_{0\mathbf{k}}(t)-v_{0\mathbf{k}}(t)}{2w_{\mathbf{k}}}\right)\right)\right)^{3}\left(\exp(\chi_{10}(s))\left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}|\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)}{2w_{\mathbf{k}}}\right)\right) & (675) \\ &=-\frac{1}{2}\left((\exp(\chi_{01}(t)+\chi_{01}(s)))^{3}U_{10}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t)-v_{0\mathbf{k}}(t)-v_{0\mathbf{k}}(s))}{2v_{\mathbf{k}^{2}}^{2}}} \coth\left(\frac{\beta v_{2}}{2}\right)\right)\right)\right)^{3}\left(\exp(\chi_{10}(s))\left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}|\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)}{2w_{\mathbf{k}}}\right)\right)\right) & (676) \\ &-(\exp(\chi_{10}(t)+\chi_{01}(s)))^{3}U_{10}^{*}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t)-v_{0\mathbf{k}}(s))}{2v_{\mathbf{k}^{2}}^{2}}} \coth\left(\frac{\beta v_{2}}{2}\right)\right)\right) & (677) \\ &+\left(\exp(\chi_{10}(t)+\chi_{01}(s))\right)^{3}U_{10}^{*}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(s))-v_{0\mathbf{k}}(s))}{2v_{\mathbf{k}^{2}}^{2}} \coth\left(\frac{\beta v_{2}}{2}\right)\right) & (676) \\ &-(\exp(\chi_{10}(t)+\chi_{01}(s))\right)^{3}U_{10}^{*}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)$$

 $-B_{10}(t)B_0^+B_1^-(s,0) + B_{10}(t)B_1^+B_0^-(s,0) - B_{10}(t)B_{10}(s) + B_{10}(t)B_{01}(s)$

 $-B_{01}(t)B_0^+B_1^-(s,0) + B_{01}(t)B_1^+B_0^-(s,0) - B_{01}(t)B_{10}(s) + B_{01}(t)B_{01}(s)\rangle_B$

 $=-\frac{1}{4}\langle B_0^+B_1^-(t,\tau)B_0^+B_1^-(s,0)-B_0^+B_1^-(t,\tau)B_1^+B_0^-(s,0)+B_0^+B_1^-(t,\tau)B_{10}(s)-B_0^+B_1^-(\tau)B_{01}(s)-B_1^+B_0^-(t,\tau)B_0^+B_1^-(s,0)$

 $+B_{1}^{+}B_{0}^{-}(t,\tau)B_{1}^{+}B_{0}^{-}(s,0) - B_{1}^{+}B_{0}^{-}(t,\tau)B_{10}(s) + B_{1}^{+}B_{0}^{-}(t,\tau)B_{01}(s) + B_{10}(t)B_{0}^{+}B_{1}^{-}(s,0) - B_{10}(t)B_{1}^{+}B_{0}^{-}(s,0) + B_{10}(t)B_{10}(s) + B_{10}(t)B_{10}^{+}B_{10}^{-}(s,0) - B_{10}(t)B_{10}^{+}B_{10}^{-}(s,0) + B_{10}(t)B_{10}(s) + B_{10}(t)B_{10}^{+}B_{10}^{-}(s,0) - B_{10}(t)B_{10}^{+}B_{10}^{-}(s,0) + B_{10}(t)B_{10}(s) + B_{10$

$$= \frac{1}{4i} \left\langle B_1^+ B_0^-(t,\tau) B_0^+ B_1^-(s,0) - B_1^+ B_0^-(t,\tau) B_1^+ B_0^-(s,0) + B_1^+ B_0^-(t,\tau) B_{10}(s) - B_1^+ B_0^-(t,\tau) B_{01}(s) \right\rangle$$
(687)

$$+B_{0}^{+}B_{1}^{-}\left(t,\tau\right)B_{0}^{+}B_{1}^{-}\left(s,0\right)-B_{0}^{+}B_{1}^{-}\left(t,\tau\right)B_{1}^{+}B_{0}^{-}\left(s,0\right)+B_{0}^{+}B_{1}^{-}\left(t,\tau\right)B_{10}\left(s\right)-B_{0}^{+}B_{1}^{-}\left(t,\tau\right)B_{01}\left(s\right)\tag{688}$$

$$-B_{10}(t)B_{0}^{+}B_{1}^{-}(s,0) + B_{10}(t)B_{1}^{+}B_{0}^{-}(s,0) - B_{10}(t)B_{10}(s) + B_{10}(t)B_{01}(s)$$

$$(689)$$

$$-B_{01}(t)B_{0}^{+}B_{1}^{-}(s,0) + B_{01}(t)B_{1}^{+}B_{0}^{-}(s,0) - B_{01}(t)B_{10}(s) + B_{01}(t)B_{01}(s)\rangle_{B}$$

$$(690)$$

$$= \frac{1}{4i} \left\langle B_1^+ B_0^-(t,\tau) B_0^+ B_1^-(s,0) - B_1^+ B_0^-(t,\tau) B_1^+ B_0^-(s,0) + B_0^+ B_1^-(t,\tau) B_0^+ B_1^-(s,0) \right\rangle$$
(691)

$$-B_0^+ B_1^-(t,\tau) B_1^+ B_0^-(s,0) + \frac{1}{4i} (B_{10}(t) + B_{01}(t)) (B_{10}(s) - B_{01}(s))$$
(692)

$$= \frac{1}{4i} \langle B_1^+ B_0^-(t,\tau) B_0^+ B_1^-(s,0) - B_1^+ B_0^-(t,\tau) B_1^+ B_0^-(s,0) + B_0^+ B_1^-(t,\tau) B_0^+ B_1^-(s,0)$$
 (693)

$$-B_0^+ B_1^-(t,\tau) B_1^+ B_0^-(s,0) + \frac{1}{4i} (B_{10}(t) + B_{01}(t)) (B_{10}(s) - B_{01}(s))$$

$$(694)$$

$$= \frac{1}{4i} \langle B_1^+ B_0^-(t,\tau) B_0^+ B_1^-(s,0) - B_1^+ B_0^-(t,\tau) B_1^+ B_0^-(s,0) + B_0^+ B_1^-(t,\tau) B_0^+ B_1^-(s,0)$$
 (695)

$$-B_{0}^{+}B_{1}^{-}(t,\tau)B_{1}^{+}B_{0}^{-}(s,0)\rangle + (B_{10}(t))^{\Re}(B_{10}(s))^{\Im}$$
(696)

$$=\frac{1}{4i}\left(\exp(\chi_{10}(t)+\chi_{01}(s))U_{10}^*(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{\left|\left(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t)\right)\exp\left(i\omega_{\mathbf{k}}\tau\right)-\left(v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)\right)\right|^2}{2\omega_{\mathbf{k}}^2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
(697)

$$-\exp(\chi_{10}(t)+\chi_{10}(s))U_{10}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t))\exp(i\omega_{\mathbf{k}}\tau)+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)|^{2}}{2\omega_{\mathbf{k}}^{2}}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$

$$(698)$$

$$+\exp(\chi_{01}(t)+\chi_{01}(s))U_{10}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t))\exp(i\omega_{\mathbf{k}}\tau)+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)|^{2}}{2\omega_{\mathbf{k}}^{2}}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \tag{699}$$

$$-\exp(\chi_{01}(t) + \chi_{10}(s))U_{10}^*(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{\left|\left(v_{0\mathbf{k}}(t) - v_{1\mathbf{k}}(t)\right)\exp\left(i\omega_{\mathbf{k}}\tau\right) + \left(v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s)\right)\right|^2}{2\omega_{\mathbf{k}}^2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) + (B_{10}(t))^{\Re}(B_{10}(s))^{\Im}$$
(700)

$$= \frac{1}{4i} \left(2i \left(\exp(\chi_{10}(t) + \chi_{01}(s)) \right)^{\Im} U_{10}^{*}(t,s) \prod_{\mathbf{k}} \exp\left(-\frac{\left| \left(v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) \right) \exp\left(i\omega_{\mathbf{k}}\tau \right) - \left(v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s) \right) \right|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2} \right) \right)$$

$$(701)$$

$$+2i(\exp(\chi_{01}(t)+\chi_{01}(s)))^{\Im}U_{10}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t))\exp(i\omega_{\mathbf{k}}\tau)+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)|^{2}}{2\omega_{\mathbf{k}}^{2}}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)+(B_{10}(t))^{\Re}(B_{10}(s))^{\Im}$$

$$(702)$$

$$= \frac{1}{2} \left(\left(\exp(\chi_{10}(t) + \chi_{01}(s)) \right)^{\Im} U_{10}^{*}(t,s) \prod_{\mathbf{k}} \exp\left(-\frac{\left| \left(v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) \right) \exp\left(i\omega_{\mathbf{k}}\tau \right) - \left(v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s) \right) \right|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2} \right) \right)$$

$$(703)$$

$$+(\exp(\chi_{01}(t)+\chi_{01}(s)))^{\Im}U_{10}(t,s)\prod_{\mathbf{k}}\exp\left(-\frac{|(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t))\exp(i\omega_{\mathbf{k}}\tau)+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)|^{2}}{2\omega_{\mathbf{k}}^{2}}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)+(B_{10}(t))^{\Re}(B_{10}(s))^{\Im}$$

$$(704)$$

(716)

(717)

(718)

(719)

(720)

(721)

(722)

$$\begin{split} \left\langle \widetilde{B}_{y}(t) \, \widetilde{B}_{x}(s) \right\rangle_{B} &= \left\langle \left(\frac{B_{0}^{+}B_{1}^{-}(t,\tau) - B_{1}^{+}B_{0}^{-}(t,\tau) + B_{10}(t) - B_{01}(t)}{2i} \right) \left(\frac{B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) - B_{10}(s) - B_{01}(s)}{2} \right) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(t,\tau) - B_{1}^{+}B_{0}^{-}(t,\tau) + B_{10}(t) - B_{01}(t) \right) \left(B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) - B_{10}(s) - B_{01}(s) \right) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(t,\tau) - B_{1}^{+}B_{0}^{-}(t,\tau) + B_{10}(t) - B_{01}(t) \right) \left(B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) - B_{10}(s) - B_{01}(s) \right) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(t,\tau) B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(t,\tau) B_{0}^{+}B_{1}^{-}(s,0) - B_{0}^{+}B_{1}^{-}(t,\tau) B_{01}(s) - B_{0}^{+}B_{1}^{-}(t,\tau) B_{01}(s) - B_{01}(s) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(t,\tau) B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) - B_{0}^{+}B_{1}^{-}(s,0) - B_{0}^{+}B_{1}^{-}(t,\tau) B_{01}(s) - B_{1}^{+}B_{0}^{-}(t,\tau) B_{0}^{+}B_{0}^{-}(s,0) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(s,0) + B_{1}^{+}B_{0}^{-}(t,\tau) B_{0}^{+}B_{1}^{-}(s,0) - B_{0}^{+}B_{1}^{-}(t,\tau) B_{10}(s) - B_{0}^{+}B_{1}^{-}(t,\tau) B_{01}(s) - B_{10}^{+}B_{0}^{-}(s,0) + B_{01}^{+}B_{01}^{-}(s,0) + B_{01}(t) B_{01}^{+}B_{0}^{-}(s,0) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) + B_{1}^{+}B_{0}^{-}(s,0) - B_{1}^{+}B_{0}^{-}(s,0) + B_{01}(t) B_{01}(s) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(t,\tau) B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) - B_{1}^{+}B_{0}^{-}(s,0) + B_{01}(t) B_{01}(s) \right\rangle_{B} \\ &= \frac{1}{4i} \left\langle \left(B_{0}^{+}B_{1}^{-}(t,\tau) B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) - B_{1}^{+}B_{0}^{-}(s,0) + B_{01}(t) B_{01}(s) \right\rangle_{B} \\ &= \frac{1}{4i} \left(\left(B_{0}^{+}B_{1}^{-}(t,\tau) B_{1}^{+}B_{0}^{-}(s,0) + B_{0}^{+}B_{1}^{-}(s,0) + B_{01}(t) B_{01}(s) \right\rangle_{B} \\ &= \frac{1}{4i} \left(\left(B_{0}^{+}B_{1}^{-}(t,\tau) B_{1}^{+}B_{0}^{-}(t,\tau) B_{0}^{+}B_{1}^{-}(s,0) + B_{01}(t) B_{10}(s) \right\rangle_{B} \\ &= \frac{1}{4i} \left(\left(B_{0}^{+}B_{1}^{-}(t,\tau) B_{1}^{+}B_{0}^{-}(t,\tau) B_{0$$

 $= \frac{1}{2} \left(\left(\exp(\chi_{01}(t) + \chi_{10}(s)) \right)^{\Im} U_{10}^*(t,s) \prod_{\mathbf{k}} \exp\left(-\frac{\left| \left(v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) \right) \exp\left(i\omega_{\mathbf{k}}\tau \right) - \left(v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s) \right) \right|^2}{2\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right)$

 $\langle b^{\dagger}D(h)\rangle_{B} = -h^{*}\langle D(h)\rangle_{B}N$

 $\langle D(h) b \rangle_B = h \langle D(h) \rangle_B N$

 $\langle bD(h)\rangle_B = h \langle D(h)\rangle_B (N+1)$

 $\langle D(h) b^{\dagger} \rangle_{B} = -h^{*} \langle D(h) \rangle_{B} (N+1)$

 $+(\exp(\chi_{01}(t)+\chi_{01}(s)))^{\Im}U_{10}(t,s)\prod_{\mathbf{k}}\exp\biggl(-\frac{|\left(v_{1\mathbf{k}}(t)-v_{0\mathbf{k}}(t)\right)\exp\left(i\omega_{\mathbf{k}}\tau\right)+v_{1\mathbf{k}}(s)-v_{0\mathbf{k}}(s)|^{2}}{2\omega_{\mathbf{k}}^{2}}\coth\biggl(\frac{\beta\omega_{\mathbf{k}}}{2}\biggr)\biggr)\biggr)+(B_{10}(t))^{\Im}(B_{10}(s))^{\Re}(B_{10}(s))^{$

$$\left\langle B_{1}^{+}B_{0}^{-}(t,\tau)\left(g_{0k'}-v_{0k'}(s)\right)b_{k'}^{+}\right\rangle_{H} = \prod_{k}\exp\left(\frac{1}{2}\left(\frac{v_{1k}^{+}(t)v_{0k}^{+}(t)-v_{0k'}(t)v_{0k}^{+}(t)}{v_{0k}^{+}}\right)\right)\left\langle g_{0k'}-v_{0k'}(s)\right)b_{k'}^{+}\right\rangle_{H} \left(\frac{1}{2}\left(\frac{v_{1k}^{+}(t)-v_{0k'}(t)}{v_{0k}}\right)\left(g_{0k'}-v_{0k'}(s)\right)b_{k'}^{+}\right)\left\langle g_{0k'}-v_{0k'}(s)\right)b_{k'}^{+}\right\rangle_{H} \left(\frac{1}{2}\left(\frac{v_{1k}^{+}(t)-v_{0k'}(t)}{v_{0k}}\right)\left(\frac{v_{0k'}^{+}(t)-v_{0k'}(t)}{v_{0k}}\right)\right)$$

$$=\exp\left(\chi_{10}(t)\right)g_{0k'}\left(s\right)\left\langle D\left(\frac{v_{1k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)b_{k'}^{+}\right)\left\langle \prod_{k}\left(D\left(\frac{v_{1k}(t)-v_{0k'}(t)}{v_{0k}}e^{i\omega_{k'}\tau}\right)\left(\frac{v_{0k'}^{+}(t)-v_{0k'}(t)}{v_{0k}}e^{i\omega_{k'}\tau}\right)\right)\right\rangle$$

$$=\exp\left(\chi_{10}(t)\right)g_{0k'}\left(s\right)\left(-\frac{v_{1k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)^{*}\left(N_{k'}+1\right)\exp\left(\chi_{10}(t)\right)\left\langle \prod_{k}\left(D\left(\frac{v_{1k}(t)-v_{0k'}(t)}{v_{0k}}e^{i\omega_{k'}\tau}\right)\left(\frac{v_{0k'}^{+}(t)-v_{0k'}(t)}{v_{0k}}e^{i\omega_{k'}\tau}\right)\right)\right\rangle$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)^{*}\left(N_{k'}+1\right)\exp\left(\chi_{10}(t)\right)\left\langle \prod_{k}\left(D\left(\frac{v_{1k}(t)-v_{0k'}(t)}{v_{0k}}e^{i\omega_{k'}\tau}\right)\left(\frac{v_{0k'}^{+}(t)-v_{0k'}(t)}{v_{0k}}e^{i\omega_{k'}\tau}\right)\right)\right\rangle$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)-v_{0k'}(t)}{v_{0k'}}e^{i\omega_{k'}\tau}\right)^{*}\left(N_{k'}+1\right)B_{10}\left(t\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)-v_{0k'}(t)-v_{0k'}(t)}{v_{0k'}\tau}e^{i\omega_{k'}\tau}}\right)^{*}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k'}(t)-v_{0k'}(t)-v_{0k'}(t)}{v_{0k'}\tau}e^{i\omega_{k'}\tau}}\right)$$

$$=g_{0k'}\left(s\right)\left(\frac{v_{1k'}(t)-v_{0k$$

$$\langle B_{iz}(t,\tau)B_{x}(s,0)\rangle_{R} = \left\langle \sum_{\mathbf{k}'} \left((g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'}s} + (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^{\dagger} b_{\mathbf{k}'} e^{-i\omega_{\mathbf{k}'}s} \right) \frac{B_{1}^{\dagger}B_{1}^{-}(s,0) + B_{0}^{\dagger}B_{1}^{-}(s,0) - B_{10}(s) - B_{10}($$

 $=\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}(t)\right)^*e^{-\mathrm{i}\omega}\mathbf{k'}^{\tau}\prod_{\mathbf{k}}\exp\left(\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^*(s)v_{0\mathbf{k}}(s)-v_{1\mathbf{k}}(s)v_{0\mathbf{k}}^*(s)}{\omega_{\mathbf{k}}^2}\right)\right)\frac{v_{1\mathbf{k'}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\left(N_{\mathbf{k'}}+1\right)\left\langle D\left(\frac{v_{1\mathbf{k'}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k}}}\right)\right)\frac{v_{1\mathbf{k'}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k}}}\right)\right)\frac{v_{1\mathbf{k'}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\frac{v_{1\mathbf{k'}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\frac{v_{1\mathbf{k'}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}}\right)\right\rangle_{B}\left\langle \prod_{\mathbf{k}\neq\mathbf{k'}}\left(D\left(\frac{v_{1\mathbf{k}}(s)-v_{0\mathbf{k'}}(s)}{\omega_{\mathbf{k'}}$

$$\begin{split} \langle B_{S}(t,\tau) B_{lr}(s,0) \rangle_{B} &= \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) + B_{10}(t) - B_{01}(t) \right) \sum_{k'} \left\langle \left(g_{kk'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{kk'} - v_{kk'}(s) \right)^{s} b_{k'} \right\rangle \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) + B_{10}(t) - B_{01}(t) \right) \left(g_{kk'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{kk'} - v_{kk'}(s) \right)^{s} b_{k'} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) \right) \left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{0k'} - v_{kk'}(s) \right)^{s} b_{k'}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) \right) \left(\left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{0k'} - v_{kk'}(s) \right)^{s} b_{k'}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) \right) \left(\left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{0k'} - v_{kk'}(s) \right)^{s} b_{k'}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) \right) \left(\left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{0k'} - v_{kk'}(s) \right)^{s} b_{k'}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) \right) \left(\left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{0k'} - v_{kk'}(s) \right)^{s} b_{k'}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) \right) \left(\left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{0k'} - v_{kk'}(s) \right)^{s} b_{k'}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{-}(t,\tau) \right) \left(\left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} + \left(g_{0k'} - v_{kk'}(s) \right)^{s} b_{k'}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{\dagger} \left(t,\tau \right) \right) \left(\left(g_{0k'} - v_{kk'}(s) \right) b_{k'}^{\dagger} B_{0}^{\dagger} B_{0}^{\dagger} \right) \right\rangle_{B} \\ &= \frac{1}{2!} \sum_{k'} \left\langle \left(B_{0}^{\dagger} B_{1}^{-}(t,\tau) - B_{1}^{\dagger} B_{0}^{\dagger} B_{$$

 $= \frac{1}{2\mathrm{i}} \sum_{\mathbf{k}'} \left\langle e^{\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t)) \left\langle b_{\mathbf{k}'}^{\dagger} B_0^{+} B_1^{-}(s,0) \right\rangle - e^{\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t)) \left\langle b_{\mathbf{k}'}^{\dagger} B_1^{+} B_0^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}'^{\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left\langle b_{\mathbf{k}'} B_0^{+} B_1^{-}(s,0) \right\rangle + e^{-\mathrm{i}\omega} \mathbf{k}' (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}(t))^* \left$

$$\begin{split} &+e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t))^*\left(\left(\frac{v_{\mathbf{k}'}(s)-v_{\mathbf{k}'}(s)}{w_{\mathbf{k}'}}\right)(N_{\mathbf{k}'}+1)B_{01}(s)\right)-e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t))^*\left(\left(\frac{v_{\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{w_{\mathbf{k}'}}\right)(N_{\mathbf{k}'}+1)B_{10}(s)\right)\right) \\ &=\frac{1}{2\mathrm{i}}\sum_{\mathbf{k}'}\left(e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(-(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t))\left(\frac{v_{\mathbf{0}\mathbf{k}'}(s)-v_{\mathbf{1}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)^*B_{01}(s)N_{\mathbf{k}'}+(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t))\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)^*B_{10}(s)N_{\mathbf{k}'}\right) \\ &+e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}\left((g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t))^*\left(\frac{v_{\mathbf{0}\mathbf{k}'}(s)-v_{\mathbf{1}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)(N_{\mathbf{k}'}+1)B_{01}(s)-(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t))^*\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)(N_{\mathbf{k}'}+1)B_{10}(s)\right) \\ &=\frac{1}{2\mathrm{i}}\sum_{\mathbf{k}'}\left(e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)^*(B_{10}(s)+B_{01}(s))N_{\mathbf{k}'}\right) \\ &=\frac{1}{2\mathrm{i}}\sum_{\mathbf{k}'}\left(e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)^*B_{10}(s)+B_{01}(s))N_{\mathbf{k}'}\right) \\ &=\frac{1}{2\mathrm{i}}\sum_{\mathbf{k}'}\left(e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)^*B_{10}(s)N_{\mathbf{k}'}-e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)^*\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)B_{10}^{\Re}(s)N_{\mathbf{k}'}-e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)B_{10}^{\Re}(s)N_{\mathbf{k}'}-e^{-\mathrm{i}\omega_{\mathbf{k}'\tau}}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)B_{10}^{\Re}(s)N_{\mathbf{k}'}-e^{-\mathrm{i}\omega_{\mathbf{k}'\tau}}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)B_{10}^{\Re}(s)N_{\mathbf{k}'}-e^{-\mathrm{i}\omega_{\mathbf{k}'\tau}}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)B_{10}^{\Re}(s)N_{\mathbf{k}'}-e^{-\mathrm{i}\omega_{\mathbf{k}'\tau}}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}'}(t)\right)\left(\frac{v_{\mathbf{1}\mathbf{k}'}(s)-v_{\mathbf{0}\mathbf{k}'}(s)}{\omega_{\mathbf{k}'}}\right)B_{10}^{\Re}(s)N_{\mathbf{k}'}-e^{-\mathrm{i}\omega_{\mathbf{k}'\tau}}\left(g_{\mathbf{i}\mathbf{k}'}-v_{\mathbf{i}\mathbf{k}$$

$$\begin{split} \left\langle \widetilde{B}_{x}(t)\widetilde{B}_{ys}(s) \right\rangle_{B} &= \sum_{\mathbf{k}} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) \right) \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(s) \right) e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right), \\ & (824) \\ \left\langle \widetilde{B}_{x}(t)\widetilde{B}_{x}(s) \right\rangle_{B} &= \frac{1}{2} \left(\left(\exp\left(\chi_{10}(t) + \chi_{10}(s) \right) \right)^{B} U_{10}(s, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t)) \exp\left((v_{2k}(t) - v_{0k}(t)) - v_{0k}(s) \right)^{2}}{2c_{\mathbf{k}}^{2}} \cosh\left(\frac{dv_{2k}}{2} \right) \right) \\ & (825) \\ &+ \left(\exp\left(\chi_{10}(t) + \chi_{10}(s) \right) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t)) \exp\left((v_{2k}(t) - v_{0k}(t)) - v_{0k}(s) \right)^{2}}{2c_{\mathbf{k}}^{2}} \cosh\left(\frac{dv_{2k}}{2} \right) \right) \\ & (826) \\ &- \left(\exp\left(\chi_{10}(t) + \chi_{01}(s) \right) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t)) \exp\left((v_{2k}(t) - v_{0k}(t)) - v_{0k}(s) \right)^{2}}{2c_{\mathbf{k}}^{2}}} \cosh\left(\frac{dv_{2k}}{2} \right) \right) \right)^{B} \\ &+ \left(\exp\left(\chi_{10}(t) + \chi_{01}(s) \right) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t)) \exp\left((v_{2k}(t) - v_{0k}(t)) - v_{0k}(s) \right)^{2}}{2c_{\mathbf{k}}^{2}}} \coth\left(\frac{dv_{2k}}{2} \right) \right) \right)^{B} \\ &+ \left(\exp\left(\chi_{10}(t) + \chi_{01}(s) \right) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t)) \exp\left((v_{2k}(t) - v_{0k}(t)) - v_{0k}(s) \right)^{2}}{2c_{\mathbf{k}}^{2}}} \coth\left(\frac{dv_{2k}}{2} \right) \right) \right)^{B} \\ &+ \left(\exp\left(\chi_{10}(t) + \chi_{01}(s) \right) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t)) \exp\left((v_{1k}(t) - v_{0k}(t)) - v_{0k}(s) \right)^{2}}{2c_{\mathbf{k}}^{2}}} \coth\left(\frac{dv_{2k}}{2} \right) \right) \right)^{B} \\ &+ \left(\exp\left(\chi_{10}(t) + \chi_{01}(s) \right) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t)) \exp\left((v_{1k}(t) - v_{0k}(t)) - v_{0k}(s) \right)^{2}}{2c_{\mathbf{k}}^{2}}} \coth\left(\frac{dv_{2k}}{2} \right) \right) \right) + \left(\exp\left(\chi_{10}(t) + \chi_{10}(s) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t) + v_{0k}(t) - v_{0k}(t) - v_{0k}(t) \right)^{2}}{2c_{\mathbf{k}}^{2}}} \right) \right) \right) \right) \\ &+ \left(\exp\left(\chi_{10}(t) + \chi_{10}(s) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t) + v_{0k}(t) - v_{0k}(t) - v_{0k}(t) \right)^{2}}{2c_{\mathbf{k}^{2}}} \right) \right) \right) + \left(\exp\left(\chi_{10}(t) + \chi_{10}(s) \right)^{B} U_{10}(t, s) \prod_{\mathbf{k}} \exp\left(-\frac{\left((v_{1k}(t) - v_{0k}(t) + v_{0k}(t) - v_{0k}(t) - v_{0k}(t) - v_{0k}(t) - v_{0k}(t) \right)}{2c_{\mathbf{k}^{2}}} \right)$$

The spectral density is defined in the usual way:

$$J_i(\omega) \equiv \sum_{\mathbf{k}} |g_{i\mathbf{k}}|^2 \delta(\omega - \omega_{\mathbf{k}}), \qquad (849)$$

$$v_{i\mathbf{k}}(t) = g_{i\mathbf{k}} F_i(\omega_{\mathbf{k}}, t). \tag{850}$$

it takes account of the density of states, dispersion relation and interaction mechanism with the environment. In the continuous case a way to measure the strength of the system-environment coupling is:

$$\lambda_i = \int_0^\infty \frac{J_i(\omega)}{\omega} d\omega. \tag{851}$$

The integral version of the correlation functions are given by:

$$\begin{split} \chi_{10}\left(t\right) &= \int_{0}^{\infty} \frac{\sqrt{J_{1}^{*}\left(\omega\right)J_{0}\left(\omega\right)F_{1}^{*}\left(\omega,t\right)F_{0}\left(\omega,t\right) - \sqrt{J_{1}\left(\omega\right)J_{0}^{*}\left(\omega\right)F_{1}\left(\omega,t\right)F_{0}^{*}\left(\omega,t\right)}}{2\omega^{2}} \mathrm{d}\omega \\ U_{10}\left(t,s\right) &= \exp\left(i\left(\int_{0}^{\infty} \frac{\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}}\right)^{2}} \mathrm{coth}\left(\frac{\beta\omega}{2}\right) \mathrm{d}\omega\right), \\ B_{10}\left(t\right) &= \exp\left(\chi_{10}\left(t\right)\right) \exp\left(-\frac{1}{2}\int_{0}^{\infty} \left|\frac{\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}}{\omega}\right|^{2} \mathrm{coth}\left(\frac{\beta\omega}{2}\right) \mathrm{d}\omega\right), \\ \xi^{+}\left(t,s\right) &= \exp\left(-\int_{0}^{\infty} \frac{\left|\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\exp\left(i\omega\tau\right) + \sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,s\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,s\right)}\right|^{2}}}{2\omega^{2}} \mathrm{coth}\left(\frac{\beta\omega}{2}\right) \mathrm{d}\omega\right), \\ \xi^{-}\left(t,s\right) &= \exp\left(-\int_{0}^{\infty} \frac{\left|\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\exp\left(i\omega\tau\right) - \left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,s\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,s\right)}\right|^{2}}}}{2\omega^{2}} \mathrm{coth}\right) \\ \xi^{-}\left(t,s\right) &= \exp\left(-\int_{0}^{\infty} \frac{\left|\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\exp\left(i\omega\tau\right) - \left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,s\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,s\right)}\right|^{2}}}}{2\omega^{2}} \mathrm{coth}\right) \\ \xi^{-}\left(t,s\right) &= \exp\left(-\int_{0}^{\infty} \frac{\left|\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\exp\left(i\omega\tau\right) - \left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,s\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,s\right)}\right)^{2}}}} \mathrm{coth}\right) \\ \xi^{-}\left(t,s\right) &= \exp\left(-\int_{0}^{\infty} \frac{\left|\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\exp\left(i\omega\tau\right) - \left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,s\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,s\right)}\right)^{2}}}} \mathrm{coth}\right) \\ \xi^{-}\left(t,s\right) &= \exp\left(-\int_{0}^{\infty} \frac{\left|\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\exp\left(i\omega\tau\right) - \left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,s\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,s\right)}\right)^{2}}}} \mathrm{coth}\right) \\ \xi^{-}\left(t,s\right) &= \exp\left(-\int_{0}^{\infty} \frac{\left|\left(\sqrt{J_{1}\left(\omega\right)F_{1}\left(\omega,t\right) - \sqrt{J_{0}\left(\omega\right)F_{0}\left(\omega,t\right)}\right)\exp\left(i\omega\tau\right) - \left(\sqrt{J_{1}\left(\omega\right)F_{0}\left(\omega,s\right)}\right)\exp\left(i\omega\tau\right) - \left(\sqrt{J_{1}\left(\omega\right)F_{0}\left(\omega,s\right)}\right)^{2}}} \mathrm{coth}\right) \\ \xi^{-}\left(t,s\right) &= \frac{1}{2}\left(\exp\left(\chi_{01}\left(t\right) + \chi_{01}\left(s\right)\right)^{2}} \mathrm{coth}\right) \\ \left(\widetilde{B}_{s}\left(t\right)\widetilde{B}_{g}\left(s\right)\right)_{B}^{B}} &= \frac{1}{2}\left(\exp\left(\chi_{01}\left(t\right) + \chi_{01}\left(s\right)\right)^{2}} \mathrm{coth}\right) \\ \left(\widetilde{B}_{s}\left(t\right)\widetilde{B}_{g}\left(s\right)\right)_{B}^{B}} &= \frac{1}{2}\left(\exp\left(\chi_{01}\left(t\right) + \chi_{01}\left(s\right)\right)^{2$$

$$\begin{split} \left\langle \overline{B}_{ix}(t)\overline{B}_{jz}(s) \right\rangle_{B} &= \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(s) \right)^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^{*} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(s) \right) e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right), \\ &= \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}}, t) \right) \left(g_{j\mathbf{k}} - g_{j\mathbf{k}}F_{j}(\omega_{\mathbf{k}}, s) \right)^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + \left(g_{i\mathbf{k}} - g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}}, t) \right)^{*} \left(g_{j\mathbf{k}} - g_{j\mathbf{k}}F_{j}(\omega_{\mathbf{k}}, s) \right) e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right) \\ &= \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} (1 - F_{i}(\omega_{\mathbf{k}}, t)) g_{j\mathbf{k}}^{*} (1 - F_{j}(\omega_{\mathbf{k}}, s) \right)^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + g_{i\mathbf{k}}^{*} (1 - F_{i}(\omega_{\mathbf{k}}, t))^{*} g_{j\mathbf{k}} (1 - F_{j}(\omega_{\mathbf{k}}, s) e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right) \\ &\approx \int_{0}^{\infty} \left(\sqrt{J_{i}(\omega)J_{j}^{*}(\omega)} (1 - F_{i}^{*}(\omega, t)) \left(1 - F_{j}^{*}(\omega, s) \right) e^{i\omega_{\tau}} N_{\mathbf{k}} + g_{i\mathbf{k}}^{*} (1 - F_{i}(\omega_{\mathbf{k}}, t))^{*} g_{j\mathbf{k}} (1 - F_{j}(\omega_{\mathbf{k}}, s) e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right) \right. \\ &\approx \int_{0}^{\infty} \left(\sqrt{J_{i}(\omega)J_{j}^{*}(\omega)} (1 - F_{i}(\omega, t)) \left(1 - F_{j}^{*}(\omega, s) \right) e^{i\omega_{\tau}} N_{\mathbf{k}} + g_{i\mathbf{k}}^{*} (1 - F_{i}(\omega_{\mathbf{k}}, t))^{*} g_{j\mathbf{k}} (1 - F_{j}(\omega_{\mathbf{k}}, s) e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right) \right. \\ &\approx \int_{0}^{\infty} \left(\sqrt{J_{i}^{*}(\omega)J_{j}^{*}(\omega)} (1 - F_{i}(\omega, t)) \left(1 - F_{j}^{*}(\omega, s) \right) e^{-i\omega_{\tau}\tau} \left(N_{\mathbf{k}} + 1 \right) \right. \\ &\left. \left(854 \right) \right. \\ &= \sum_{\mathbf{k}} \frac{1}{2} \left(\frac{g_{i\mathbf{k}}^{*} F_{i}^{*}(\omega_{\mathbf{k}}, t) g_{0\mathbf{k}} F_{0}(\omega_{\mathbf{k}}, t) - g_{1\mathbf{k}} F_{1}^{*}(\omega_{\mathbf{k}}, t) g_{0\mathbf{k}} F_{0}^{*}(\omega_{\mathbf{k}}, t)}{\omega_{\mathbf{k}}^{*}} \right) \right. \\ &\left. \left(855 \right) \right. \\ &= \sum_{\mathbf{k}} \frac{1}{2} \left(\frac{g_{i\mathbf{k}}^{*} F_{i}^{*}(\omega_{\mathbf{k}}, t) g_{0\mathbf{k}} F_{0}(\omega_{\mathbf{k}}, t) - g_{1\mathbf{k}} F_{0}^{*}(\omega_{\mathbf{k}}, t) g_{0\mathbf{k}}^{*} F_{0}^{*}(\omega_{\mathbf{k}}, t)}{\omega_{\mathbf{k}}^{*}} \right) \right. \\ &\left. \left(857 \right) \right. \\ &= \sum_{\mathbf{k}} \frac{1}{2} \left(\frac{g_{i\mathbf{k}}^{*} F_{i}^{*}(\omega_{\mathbf{k}}, t) F_{0}^{*}(\omega_{\mathbf{k}}, t) - g_{1\mathbf{k}} F_{0}^{*}(\omega_{\mathbf{k}}, t) g_{0\mathbf{k}}^{*} F_{0}^{*}(\omega_{\mathbf{k}}, t)}{\omega_{\mathbf{k}}^{*}} \right) \right. \\ &\left. \left(859 \right) \right. \\ &\left. \left(\frac{1}{2} \int_{\mathbf{k}} \frac{g_{i\mathbf{k}} F_{i}^{*}(\omega_{\mathbf{k}}, t) g_{0\mathbf{k}} F_{0}$$

$$\approx \exp \left(i \left(\int_{0}^{\infty} \frac{\left(\sqrt{J_{1}(\omega)} F_{1}(\omega, t) - \sqrt{J_{0}(\omega)} F_{0}(\omega, t) \right) \left(\sqrt{J_{1}(\omega)} F_{1}(\omega, s) - \sqrt{J_{0}(\omega)} F_{0}(\omega, s) \right)^{*} \exp(i\omega\tau)}{\omega^{2}} d\omega \right)^{\Im} d\omega \right)^{\Im}$$

(864)(865)

(869)

 $B_{10}\left(t\right) = \left(\prod_{\mathbf{k}} \exp\left(\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}\left(t\right)v_{0\mathbf{k}}\left(t\right) - v_{1\mathbf{k}}\left(t\right)v_{0\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}^{2}}\right)\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right),$ (866)

$$= \exp\left(\chi_{10}(t)\right) \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}, t) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}}, t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right) \right)$$
(867)

$$\approx \exp\left(\chi_{10}(t)\right) \exp\left(-\frac{1}{2} \int_{0}^{\infty} \left| \frac{\sqrt{J_{1}(\omega)} F_{1}(\omega, t) - \sqrt{J_{0}(\omega)} F_{0}(\omega, t)}{\omega} \right|^{2} \coth\left(\frac{\beta\omega}{2}\right) d\omega\right) \tag{868}$$

 $\xi^{+}\left(t,s\right) = \prod_{\mathbf{k}} \exp\left(-\frac{\left|\left(v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)\right) \exp\left(i\omega_{\mathbf{k}}\tau\right) + v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s)\right|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$ (870)

$$= \exp\left(-\sum_{\mathbf{k}} \frac{|\left(v_{1\mathbf{k}}\left(t\right) - v_{0\mathbf{k}}\left(t\right)\right) \exp\left(i\omega_{\mathbf{k}}\tau\right) + v_{1\mathbf{k}}\left(s\right) - v_{0\mathbf{k}}\left(s\right)|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
(871)

The eigenvalues of the Hamiltonian $\overline{H}_{\bar{S}}$ are given by the solution of the following algebraic equation:

$$\lambda^2 - \text{Tr}\left(\overline{H_{\bar{S}}}\right)\lambda + \text{Det}\left(\overline{H_{\bar{S}}}\right) = 0. \tag{910}$$

The solutions of this equation written in terms of η and ξ as defined in the previous section are given by $\lambda_{\pm} = \frac{\xi \pm \eta}{2}$ and they satisfy $H_S |\pm\rangle = \lambda_{\pm} |\pm\rangle$. Using this notation is possible to write $H_{\bar{S}} = \lambda_{+} |+\rangle + |+\lambda_{-}|-\rangle -|$.

The time-dependence of the system operators $\widetilde{A}_i(t)$ may be made explicit using the Fourier decomposition, in the case for time-independent $\overline{H}_{\overline{S}}$ we will obtain:

$$\widetilde{A}_{i}(\tau) = e^{i\overline{H}_{\overline{S}}\tau} A_{i} e^{-i\overline{H}_{\overline{S}}\tau}$$

$$(911)$$

$$=\sum_{w}e^{-\mathrm{i}\mathrm{w}\tau}\mathscr{A}_{i}\left(w\right).\tag{912}$$

Where the sum is defined on the set of all the differences between the eigenvalues of the system, in our case $w \in \{0, \pm \eta\}$.

In order to use the equation (912) to descompose the equation (374) we need to consider the time ordering operator \mathcal{T} , it's possible to write using the Dyson series or the expansion of the operator of the form $U(t) \equiv \mathcal{T}\exp\left(-\mathrm{i}\int_0^t \mathrm{d}t' \overline{H_{\bar{S}}}\left(t'\right)\right)$ like:

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_{0}^{t} dt' \overline{H_{\bar{S}}}(t')\right)$$
(913)

$$= \mathbb{I} + \sum_{n=1}^{\infty} (-i)^n \int_0^t dt_1 \int_0^{t_1} dt_2 ... \int_0^{t_{n-1}} dt_n H(t_1) H(t_2) ... H(t_n).$$
(914)

Here $0 < t_1 < t_2 < ... < t_{n-1} < t_n = t$ is a partition of the set [0,t]. We will use a perturbative solution to the exponential of a time-varying operator, this can be done if we write an effective hamiltonian $H_E(t)$ such that $\mathcal{T}\exp\left(-\mathrm{i}\int_0^t \mathrm{d}t' \overline{H_{\bar{S}}}\left(t'\right)\right) \equiv \exp\left(-\mathrm{i}tH_E(t)\right)$. The effective Hamiltonian is expanded in a series of terms of increasing order in time $H_E(t) = H_E^{(0)}(t) + H_E^{(1)}(t) + H_E^{(2)}(t) + ...$ so we can write:

$$U(t) = \exp\left(-it\left(H_E^{(0)}(t) + H_E^{(1)}(t) + H_E^{(2)}(t) + \dots\right)\right). \tag{915}$$

The terms can be found expanding $\mathcal{T}\exp\left(-\mathrm{i}\int_0^t\mathrm{d}t'\overline{H_{\bar{S}}}\left(t'\right)\right)$ and $U\left(t\right)$ then equating the terms of the same power. The lowest terms are:

$$H_E^{(0)}(t) = \frac{1}{t} \int_0^t \overline{H_{\bar{S}}}(t') \, \mathrm{d}t', \tag{916}$$

$$H_E^{(1)}(t) = -\frac{\mathrm{i}}{2t} \int_0^t \mathrm{d}t' \int_0^{t'} \mathrm{d}t'' \left[\overline{H_{\bar{S}}}(t'), \overline{H_{\bar{S}}}(t'') \right], \tag{917}$$

$$H_{E}^{(2)}(t) = \frac{1}{6t} \int_{0}^{t} dt' \int_{0}^{t'} dt'' \int_{0}^{t''} dt''' \left(\left[\left[\overline{H_{\bar{S}}}(t'), \overline{H_{\bar{S}}}(t'') \right], \overline{H_{\bar{S}}}(t''') \right] + \left[\left[\overline{H_{\bar{S}}}(t'''), \overline{H_{\bar{S}}}(t''') \right], \overline{H_{\bar{S}}}(t'') \right] \right). \tag{918}$$

In this case the Fourier decomposition using the expansion of $H_E(t)$ is:

$$\widetilde{A}_{i}(t) = U^{\dagger}(t) A_{i}(t) U(t)$$
(919)

$$\widetilde{A}_i(t) = e^{iH_E(t)t} A_i(t) e^{-iH_E(t)t}$$
(920)

$$=\sum_{w(t)}e^{-\mathrm{i}w(t)t}\mathscr{A}_{i}\left(t,w\left(t\right)\right). \tag{921}$$

w(t) belongs to the set of differences of eigenvalues of $H_E(t)$ that depends of the time. As we can see the decomposition matrices are time-dependent as well.

Extending the Fourier decomposition to the matrix $\widetilde{A}_i(t-\tau,t)$ using the Magnus expansion generates:

$$\widetilde{A_{j}}(t-\tau,t) = U(t)U^{\dagger}(t-\tau)A_{j}(t)U(t-\tau)U^{\dagger}(t)$$
(922)

$$= e^{-itH_E(t)}e^{i(t-\tau)H_E(t-\tau)}A_i(t)e^{-i(t-\tau)H_E(t-\tau)}e^{itH_E(t)}$$
(923)

$$=e^{-\mathrm{i}tH_{E}(t)}\left(\sum_{w'(t-\tau)}e^{-\mathrm{i}(t-\tau)w(t-\tau)}\mathscr{A}_{j}\left(t,w\left(t-\tau\right)\right)\right)e^{\mathrm{i}tH_{E}(t)}$$
(924)

$$= \sum_{w(t), w'(t-\tau)} e^{iw'(t)t} e^{-i(t-\tau)w(t-\tau)} \mathcal{A}_{j}(t, w(t-\tau), w'(t))$$
(925)

$$= \sum_{w(t),w'(t-\tau)} e^{iw'(t)t} e^{-i(t-\tau)w(t-\tau)} \mathscr{A}_{j}(t, w(t-\tau), w'(t))$$

$$= \sum_{w(t),w'(t-\tau)} e^{iw'(t)t} e^{-i(t-\tau)w(t-\tau)} \mathscr{A}_{j}(t, w(t-\tau), w'(t))$$
(925)
(926)

$$= \sum_{w(t),w'(t-\tau)} e^{i\tau w(t-\tau)} e^{-it(w(t-\tau)-w'(t))} \mathscr{A}_{j}(t, w(t-\tau), w'(t))$$
(927)

where $w'(t-\tau)$ and w(t) belongs to the set of the differences of the eigenvalues of the Hamiltonian $\overline{H_E}(t-\tau)$ and $\overline{H_E}(t)$ respectively.

In order to show the explicit form of the matrices present in the RHS of the equation (912) for a general 2×2 matrix in a given time let's write the matrix A_i in the base $V = \{ |+\rangle, |-\rangle \}$ in the following way:

$$A_i = \sum_{\alpha, \beta \in V} \langle \alpha | A_i | \beta \rangle | \alpha \rangle \langle \beta |. \tag{928}$$

Given that $[|+\rangle + |, |-\rangle - |] = 0$, then using the Zassenhaus formula we obtain:

$$e^{i\overline{H_E}\tau} = e^{i(\lambda_+|+\lambda_+|+\lambda_-|-\lambda_-|)\tau}$$
(929)

$$=e^{i\lambda_{+}|+|\chi|+\tau}e^{i\lambda_{-}|-|\chi|-\tau} \tag{930}$$

$$= (|-\langle -| + e^{i\lambda_{+}\tau}|+\langle +|) (|+\langle +| + e^{i\lambda_{-}\tau}|-\langle -|)$$
(931)

$$=e^{i\lambda_{+}\tau}|+\chi+|+e^{i\lambda_{-}\tau}|-\chi-|. \tag{932}$$

Calculating the transformation (912) directly using the previous relationship we find that:

$$U^{\dagger}\left(\tau\right)A_{i}\left(\tau\right)U\left(\tau\right) = \left(e^{\mathrm{i}\lambda_{+}\tau}|+\rangle + |+e^{\mathrm{i}\lambda_{-}\tau}|-\rangle - |\left(\sum_{\alpha,\beta\in\mathsf{V}}\langle\alpha|A_{i}\left(\tau\right)|\beta\rangle|\alpha\rangle\beta|\right)\left(e^{-\mathrm{i}\lambda_{+}\tau}|+\rangle + |+e^{-\mathrm{i}\lambda_{-}\tau}|-\rangle - |\left(-|+\rangle|\right)$$

$$(933)$$

$$=\mathscr{A}_{i}(0) + \mathscr{A}_{i}(-w)e^{\mathrm{i}w\tau} + \mathscr{A}_{i}(w)e^{-\mathrm{i}w\tau}$$
(935)

Here $w = \lambda_+ - \lambda_-$. Comparing the RHS of the equations (912) and the explicit expression for $\widetilde{A}_i(\tau)$ in (920), we obtain the form of the expansion matrices of the Fourier decomposition for a general 2×2 matrix:

$$\mathscr{A}_{i}(0) = \langle +|A_{i}(\tau)|+\rangle + |+\rangle + |+\langle -|A_{i}(\tau)|-\rangle - |-\rangle - |, \tag{936}$$

$$\mathscr{A}_{i}(-w) = \langle +|A_{i}(\tau)|-\rangle + \langle -|, \tag{937}$$

$$\mathscr{A}_{i}(w) = \langle -|A_{i}(\tau)|+\rangle |-\rangle +|. \tag{938}$$

For a decomposition of the interaction Hamiltonian in terms of Hermitian operators, i.e. $\widetilde{A_i}(\tau) = \widetilde{A_i}^{\dagger}(\tau)$ and $\widetilde{B_i}(\tau) = \widetilde{A_i}^{\dagger}(\tau)$ $\widehat{B_i}^\dagger(au)$ we can use the equation (912) to write the master equation in the following neater form:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_{S}}(t)\right] - \sum_{ij} \int_{0}^{t} \mathrm{d}\tau C_{i}(t)C_{j}(t-\tau) \left(\mathcal{B}_{ij}(\tau)\left[A_{i},\widetilde{A_{j}}(t-\tau,t)\,\overline{\rho_{S}}(t)\right] + \mathcal{B}_{ji}(-\tau)\left[\overline{\rho_{S}}(t)\widetilde{A_{j}}(t-\tau,t),A_{i}\right]\right)$$
(939)

$$=-\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_{S}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\!\!\!\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\!\!\left(\mathcal{B}_{ij}(\tau)\!\!\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}\!\!e^{-\mathrm{i}t\!\left(w(t-\tau)-w'(t)\right)}\!\!\mathcal{A}_{j}(w(t-\tau),w'(t))\overline{\rho_{S}}(t)\right]\right]$$

$$-\mathcal{B}_{ji}\left(-\tau\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)e^{\mathrm{i}\tau w\left(t-\tau\right)}e^{-\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)}\mathcal{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)\right]\right)\tag{941}$$

Given that $\mathscr{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)=\mathscr{A}_{j}^{\dagger}\left(-w\left(t-\tau\right),-w'\left(t\right)\right)$ from the Fourier decomposition (912) then we can re-arrange the precedent sum in the following way with the trace respect to the bath:

$$\mathscr{B}_{ij}\left(\tau\right) = \operatorname{Tr}_{B}\left(\widetilde{B}_{i}\left(t\right)\widetilde{B}_{j}\left(s\right)\rho_{B}\right) \tag{942}$$

$$=\operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(\tau\right)\widetilde{B_{j}}\left(0\right)\rho_{B}\right).\tag{943}$$

Let's define:

$$\mathscr{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)=\mathscr{A}_{jww'}\left(t-\tau,t\right)\tag{944}$$

The master equation can be re-written in the following form:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{S}}(t),\overline{\rho_{S}}(t)\right] - \sum_{ijww'} \int_{0}^{t} \mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathscr{B}_{ij}(\tau) \left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}(t-\tau,t)\overline{\rho_{S}}(t)\right]$$
(945)

$$+\sum_{ijww'} \mathscr{B}_{ji}\left(-\tau\right) \left[A_i, \overline{\rho_S}\left(t\right) e^{i\tau w(t-\tau)} e^{-it\left(w(t-\tau)-w'(t)\right)} \mathscr{A}_{jww'}\left(t-\tau,t\right) \right]$$
(946)

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}(t),\overline{\rho_{\overline{S}}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\!\!\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathscr{B}_{ij}(\tau)\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}\left(t-\tau,t\right)\overline{\rho_{\overline{S}}}(t)\right] \quad (947)$$

$$+\sum_{ijww'} \mathcal{B}_{ji}\left(-\tau\right) \left[A_i, \overline{\rho_S}\left(t\right) e^{-i\tau w(t-\tau)} e^{it\left(w(t-\tau)-w'(t)\right)} \mathcal{A}_{jww'}\left(t-\tau,t\right) \right]$$
(948)

$$=-\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_{S}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\!\!\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathscr{B}_{ij}(\tau)\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}\left(t-\tau,t\right)\overline{\rho_{S}}(t)\right]$$
(949)

$$+\sum_{ijww'} \mathcal{B}_{ji}\left(-\tau\right) \left[A_i, \overline{\rho_S}\left(t\right) e^{-i\tau w(t-\tau)} e^{it\left(w(t-\tau)-w'(t)\right)} \mathcal{A}_{jww'}\left(t-\tau,t\right) \right]$$

$$(950)$$

$$=-\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_{S}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathscr{B}_{ij}(\tau)\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}(t-\tau,t)\overline{\rho_{S}}(t)\right]$$
(951)

$$-\mathcal{B}_{ji}\left(-\tau\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)e^{-\mathrm{i}\tau w\left(t-\tau\right)}e^{\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)}\mathcal{A}_{jww'}\left(t-\tau,t\right)\right]\right)\tag{952}$$

$$= -i \left[\overline{H_{\overline{S}}}(t), \overline{\rho_{\overline{S}}}(t) \right] - \sum_{ijww'} \int_{0}^{t} d\tau C_{i}(t) C_{j}(t-\tau) \operatorname{Tr}_{B} \left(\left[A_{i}, \widetilde{B_{i}}(\tau) \widetilde{B_{j}}(0) \rho_{B} e^{i\tau w(t-\tau)} e^{-it \left(w(t-\tau) - w'(t) \right)} \mathscr{A}_{jww'}(t-\tau, t) \overline{\rho_{\overline{S}}}(t) \right]$$

$$(953)$$

$$-\left[A_{i},\widetilde{B_{j}}(-\tau)\widetilde{B_{i}}(0)\rho_{B}\overline{\rho_{S}}(t)e^{-i\tau w(t-\tau)}e^{it\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}(t-\tau,t)\right]\right) \tag{954}$$

Given that if we define:

$$D_{ijww'}(t-\tau,t) = C_i(t) C_j(t-\tau) \mathcal{B}_{ij}(\tau) e^{i\tau w(t-\tau)} e^{-it(w(t-\tau)-w'(t))} \mathcal{A}_{jww'}(t-\tau,t)$$

$$(955)$$

then

$$D_{ijww'}^{\dagger}(t-\tau,t) = \left(C_i(t)C_j(t-\tau)\mathcal{B}_{ij}(\tau)e^{i\tau w(t-\tau)}e^{-it\left(w(t-\tau)-w'(t)\right)}\mathcal{A}_{jww'}(t-\tau,t)\right)^{\dagger}$$

$$(956)$$

$$= \mathscr{B}_{ij}^{*}\left(\tau\right) C_{i}\left(t\right) C_{j}\left(t-\tau\right) e^{-\mathrm{i}\tau w\left(t-\tau\right)} e^{\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)} \mathscr{A}_{jww'}^{\dagger}\left(t-\tau,t\right) \tag{957}$$

We used the fact that $C_i(t)$, $C_j(t-\tau)$ are real. Now let's consider the following trace recalling that $\text{Tr}(A)^* = \text{Tr}(A^{\dagger})$ so:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(-\tau\right)\widetilde{B_{i}}\left(0\right)\rho_{B}\right) = \operatorname{Tr}_{B}\left(e^{-\mathrm{i}\tau H_{B}\left(\tau\right)}B_{j}e^{\mathrm{i}\tau H_{B}\left(\tau\right)}B_{i}\rho_{B}\right) \tag{958}$$

=
$$\operatorname{Tr}_{B}\left(B_{j}e^{\mathrm{i}\tau H_{B}(\tau)}B_{i}\rho_{B}e^{-\mathrm{i}\tau H_{B}(\tau)}\right)$$
 (by cyclic permutivity of trace) (959)

$$= \operatorname{Tr}_{B} \left(B_{j} e^{i\tau H_{B}(\tau)} B_{i} e^{-i\tau H_{B}(\tau)} \rho_{B} \right) \text{ (by commutativity of } e^{-i\tau H_{B}(\tau)} \text{ and } \rho_{B})$$
 (960)

$$= \operatorname{Tr}_{B} \left(B_{j} \widetilde{B_{i}} \left(\tau \right) \rho_{B} \right)$$
 (by definition of time evolution) (961)

$$=\operatorname{Tr}_{B}\left(B_{j}\widetilde{B}_{i}\left(\tau\right)\rho_{B}\right)\tag{962}$$

$$=\operatorname{Tr}_{B}\left(\rho_{B}B_{j}\widetilde{B}_{i}\left(\tau\right)\right)\tag{963}$$

$$= \operatorname{Tr}_{B} \left(\left(\widetilde{B}_{i} \left(\tau \right) B_{j} \rho_{B} \right)^{\dagger} \right)$$
 (by definition of adjoint) (964)

$$=\operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(\tau\right)B_{j}\rho_{B}\right)^{*}\tag{965}$$

$$=\mathscr{B}_{ij}^{*}\left(\tau\right)\tag{966}$$

So we can write the master equation like:

$$\frac{\mathrm{d}\overline{\rho_S}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_S}(t)\right] - \sum_{ijww'} \int_0^t \mathrm{d}\tau C_i(t)C_j(t-\tau) \left(\mathcal{B}_{ij}(\tau)\left[A_i,e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathcal{A}_j(w(t-\tau),w'(t))\overline{\rho_S}(t)\right]\right)$$
(967)

$$-\mathscr{B}_{ij}^{*}\left(\tau\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)e^{-\mathrm{i}\tau w\left(t-\tau\right)}e^{\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)}\mathscr{A}_{j}^{\dagger}\left(w\left(t-\tau\right),w'\left(t\right)\right)\right]\right)\tag{968}$$

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}(t),\overline{\rho_{S}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\mathrm{d}\tau\left(\left[A_{i},D_{ijww'}(t-\tau,t)\overline{\rho_{S}}(t)\right]-\left[A_{i},\overline{\rho_{S}}(t)D_{ijww'}^{\dagger}(t-\tau,t)\right]\right)$$
(969)

Let's define the response matrix in the following way.

$$\mathscr{D}_{ijww'}(t) = \int_0^t d\tau D_{ijww'}(t - \tau, t)$$
(970)

Then the master equation can be written as:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t)\right] - \sum_{ijww'} \left(\left[A_{i}, \mathcal{D}_{ijww'}(t)\,\overline{\rho_{S}}(t)\right] - \left[A_{i}, \overline{\rho_{S}}(t)\,\mathcal{D}_{ijww'}^{\dagger}(t)\right]\right) \tag{971}$$

If we extend the upper limit of integration to ∞ in the equation (970) then the system will be independent of any preparation at t = 0, so the evolution of the system will depend only on its present state as expected in the Markovian approximation.

Applying the inverse transformation we will obtain that:

$$e^{-V}\frac{\mathrm{d}\overline{\rho}_{S}(t)}{\mathrm{d}t}e^{V} = \frac{\mathrm{d}\left(e^{-V}\overline{\rho}_{S}e^{V}\right)}{\mathrm{d}t}$$
(972)

$$=\frac{\mathrm{d}\rho_S}{\mathrm{d}t}\tag{973}$$

$$=-\mathrm{i}\mathrm{e}^{-\mathrm{V}}\left[\overline{H_{S}}(t),\overline{\rho_{S}}(t)\right]e^{V}-\sum_{i,i,w,w'}\int_{0}^{t}\mathrm{d}\tau\left(e^{-V}[A_{i},D_{ijww'}(t-\tau,t)\overline{\rho_{S}}(t)]e^{V}-e^{-V}\left[A_{i},\overline{\rho_{S}}(t)D_{ijww'}^{\dagger}(t-\tau,t)\right]e^{V}\right). \tag{974}$$

For a product we have the following:

$$e^{-V}\overline{AB}e^{V} = e^{-V}\overline{A\mathbb{I}B}e^{V} \tag{975}$$

$$= e^{-V} \overline{A} e^{V} e^{-V} \overline{B} e^{V} \tag{976}$$

$$= \left(e^{-V}\overline{A}e^{V}\right)\left(e^{-V}\overline{B}e^{V}\right) \tag{977}$$

$$=AB. (978)$$

We can use this to prove the following property for the inverse transformation of a commutator:

$$e^{-V}\overline{[A,B]}e^{V} = e^{-V}\overline{(AB-BA)}e^{V}$$
(979)

$$= e^{-V} \overline{AB} e^{V} - e^{-V} \overline{BA} e^{V} \tag{980}$$

$$= AB - BA \tag{981}$$

$$= [A, B]. \tag{982}$$

So we will obtain that

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}e^{-V} \left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t) \right] e^{V} - e^{-V} \sum_{ijww'} \left(\left[A_{i}, \mathcal{D}_{ijww'}(t) \overline{\rho_{S}}(t) \right] - \left[A_{i}, \overline{\rho_{S}}(t) \mathcal{D}_{ijww'}^{\dagger}(t) \right] \right) e^{V}$$

$$(983)$$

$$=-\mathrm{i}e^{-V}\left[\overline{H_{\overline{S}}}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]e^{V}-\sum_{ijww'}\left(e^{-V}\left[A_{i},\mathscr{D}_{ijww'}\left(t\right)\overline{\rho_{S}}\left(t\right)\right]e^{V}-e^{-V}\left[A_{i},\overline{\rho_{S}}\left(t\right)\mathscr{D}_{ijww'}^{\dagger}\left(t\right)\right]e^{V}\right)\tag{984}$$

$$=-\mathrm{i}\left[H_{\bar{S}}\left(t\right),\rho_{S}\left(t\right)\right]-\sum_{ijww'}\left(\left[e^{-V}A_{i}e^{V},e^{-V}\mathscr{D}_{ijww'}\left(t\right)\overline{\rho_{S}}\left(t\right)e^{V}\right]-\left[e^{-V}A_{i}e^{V},e^{-V}\overline{\rho_{S}}\left(t\right)\mathscr{D}_{ijww'}^{\dagger}\left(t\right)e^{V}\right]\right) \tag{985}$$

$$=-\mathrm{i}\left[H_{\bar{S}}(t),\rho_{S}(t)\right]-\sum_{ijww'}\left(\left[e^{-V}A_{i}e^{V},e^{-V}\mathcal{D}_{ijww'}(t)\,e^{V}\,e^{-V}\overline{\rho_{S}}(t)e^{V}\right]-\left[e^{-V}A_{i}e^{V},e^{-V}\overline{\rho_{S}}(t)e^{V}e^{-V}\mathcal{D}_{ijww'}^{\dagger}(t)e^{V}\right]\right) \quad (986)$$

$$=-i\left[H_{\bar{S}}\left(t\right),\rho_{S}\left(t\right)\right]-\sum_{ijww'}\left(\left[e^{-V}A_{i}e^{V},e^{-V}\mathcal{D}_{ijww'}\left(t\right)e^{V}\rho_{S}\left(t\right)\right]-\left[e^{-V}A_{i}e^{V},\rho_{S}\left(t\right)e^{-V}\mathcal{D}_{ijww'}^{\dagger}\left(t\right)e^{V}\right]\right). \tag{987}$$

V. LIMIT CASES

In order to show the plausibility of the master equation (971) for a time-dependent Hamiltonian we will show that this equation reproduces the following cases under certain limits conditions that will be pointed in each subsection.

A. Time-independent variational quantum master equation

At first let's show that the master equation (971) reproduces the results of the reference [1], for the latter case we have that $i, j \in \{1, 2, 3\}$ and $\omega \in (0, \pm \eta)$. The Hamiltonian of the system considered in this reference written in the same basis than the Hamiltonian (1) is given by:

$$H = \left(\delta + \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right) |1\rangle\langle 1| + \frac{\Omega}{2} \sigma_x + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}.$$
(988)

After performing the transformation (24) on the Hamiltonian (988) it's possible to split that result in the following set of Hamiltonians:

$$\overline{H_S} = (\delta + R)|1\rangle\langle 1| + \frac{\Omega_r}{2}\sigma_x, \tag{989}$$

$$\overline{H_I} = B_z |1\rangle\langle 1| + \frac{\Omega}{2} \left(B_x \sigma_x + B_y \sigma_y \right), \tag{990}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{991}$$

The Hamiltonian (989) differs from the transformed Hamiltonian H_S of the reference written like $H_S = \frac{R}{2}\mathbb{I} + \frac{\epsilon}{2}\sigma_z + \frac{\Omega_r}{2}\sigma_x$ by a term proportional to the identity, this can be seen in the following way taking $\epsilon = \delta + R$

$$(\delta + R)|1\rangle\langle 1| - \frac{\delta}{2}\mathbb{I} = \left(\frac{\delta}{2} + R\right)|1\rangle\langle 1| - \frac{\delta}{2}|0\rangle\langle 0| \tag{992}$$

$$=\frac{R}{2}\mathbb{I} + \frac{\delta + R}{2}\sigma_z \tag{993}$$

$$=\frac{R}{2}\mathbb{I}+\frac{\epsilon}{2}\sigma_z. \tag{994}$$

In this Hamiltonian we can write $A_i = \sigma_x$, $A_2 = \sigma_y$ and $A_3 = \frac{I+\sigma_z}{2} = |1\rangle\langle 1|$ with $\sigma_z = |1\rangle\langle 1| - |0\rangle\langle 0|$. In order to find the decomposition matrices of the Fourier decomposition let's obtain the eigenvalues and eigenvectors of the matrix $\overline{H_{\bar{S}}}$. Given that $\overline{H_{\bar{S}}} = \frac{R}{2}\mathbb{I} + \frac{\epsilon}{2}\sigma_z + \frac{\Omega_r}{2}\sigma_x$ then $\mathrm{Tr}\left(\overline{H_{\bar{S}}}\right) = R$ and $\mathrm{Det}\left(\overline{H_{\bar{S}}}\right) = \frac{R^2-\epsilon^2}{4} - \frac{\Omega_r^2}{4}$ then by the Caley-Hamilton theorem then we will have that the equations of the eigenvalues and it's values are given by::

$$0 = \lambda^2 - R\lambda + \frac{R^2 - \epsilon^2 - \Omega_r^2}{4},\tag{995}$$

$$\lambda_{\pm} = \frac{R \pm \sqrt{(-R)^2 - 4\left(\frac{R^2 - \epsilon^2 - \Omega_r^2}{4}\right)}}{2} \tag{996}$$

$$= \frac{R \pm \sqrt{R^2 - (R^2 - \epsilon^2 - \Omega_r^2)}}{2} \tag{997}$$

$$=\frac{R\pm\sqrt{\epsilon^2+\Omega_r^2}}{2}\tag{998}$$

$$\eta = \sqrt{\epsilon^2 + \Omega_r^2},\tag{999}$$

$$\lambda_{\pm} = \frac{R \pm \eta}{2}.\tag{1000}$$

For $\lambda_+=\frac{R+\eta}{2}$ we will obtain the associated eigenvector like:

$$\begin{pmatrix}
\frac{R}{2} - \frac{\epsilon}{2} - \frac{R+\eta}{2} & \frac{\Omega_r}{2} \\
\frac{\Omega_r}{2} & \frac{R}{2} + \frac{\epsilon}{2} - \frac{R+\eta}{2}
\end{pmatrix} = \begin{pmatrix}
-\frac{\epsilon}{2} - \frac{\eta}{2} & \frac{\Omega_r}{2} \\
\frac{\Omega_r}{2} & \frac{\epsilon}{2} - \frac{\eta}{2}
\end{pmatrix}.$$
(1001)

so the eigenvector $|+\rangle=a\,|0\rangle+b\,|1\rangle$ satisfies $-\frac{\epsilon+\eta}{2}a+\frac{\Omega_r}{2}b=0$, so $a=\frac{\Omega_r}{\epsilon+\eta}b$ then the normalized eigenvector is $|+\rangle=\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|0\rangle+\frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|1\rangle$ with $\sin{(\theta)}=\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$ and $\cos{(\theta)}=\frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$. The vector is written in reduced way like $|+\rangle=\sin{(\theta)}\,|0\rangle+\cos{(\theta)}\,|1\rangle$.

For $\lambda_{-} = \frac{R-\eta}{2}$ we will obtain the associated eigenvector like:

$$\begin{pmatrix} \frac{R}{2} - \frac{\epsilon}{2} - \frac{R-\eta}{2} & \frac{\Omega_r}{2} \\ \frac{\Omega_r}{2} & \frac{R}{2} + \frac{\epsilon}{2} - \frac{R-\eta}{2} \end{pmatrix} = \begin{pmatrix} -\frac{\epsilon}{2} + \frac{\eta}{2} & \frac{\Omega_r}{2} \\ \frac{\Omega_r}{2} & \frac{\epsilon}{2} + \frac{\eta}{2} \end{pmatrix}. \tag{1002}$$

so the eigenvector $|+\rangle=a\,|0\rangle+b\,|1\rangle$ satisfies $\frac{\Omega_r}{2}a+\frac{\epsilon+\eta}{2}b=0$, so $a=-\frac{\epsilon+\eta}{\Omega_r}b$ then the normalized eigenvector is $|-\rangle=\frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|0\rangle-\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|1\rangle$. The vector is written in reduced way like $|-\rangle=\cos{(\theta)}\,|0\rangle-\sin{(\theta)}\,|1\rangle$. Summarizing these results we can write:

$$\lambda_{+} = \frac{\epsilon + \eta}{2},\tag{1003}$$

$$\lambda_{-} = \frac{\epsilon - \eta}{2},\tag{1004}$$

$$|+\rangle = \sin(\theta)|0\rangle + \cos(\theta)|1\rangle,$$
 (1005)

$$|-\rangle = \cos(\theta) |0\rangle - \sin(\theta) |1\rangle,$$
 (1006)

$$\sin\left(\theta\right) = \frac{\Omega_r}{\sqrt{\left(\epsilon + \eta\right)^2 + \Omega_r^2}},\tag{1007}$$

$$\cos(\theta) = \frac{\epsilon + \eta}{\sqrt{(\epsilon + \eta)^2 + \Omega_r^2}}.$$
(1008)

This result is plausible because in the paper [1] we have that:

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{\Omega_r}{\epsilon} \right). \tag{1009}$$

We can obtain the value of $\tan{(\theta)}$ through the following trigonometry identity for $x = \tan^{-1}\left(\frac{\Omega_r}{\epsilon}\right)$.

$$\tan\left(\frac{x}{2}\right) = \frac{\sin\left(x\right)}{\cos\left(x\right) + 1}.\tag{1010}$$

So the value of $tan(\theta)$ using (1010) is equal to:

$$\tan\left(\theta\right) = \frac{\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}}{\frac{\epsilon}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}} + 1} \tag{1011}$$

$$= \frac{\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}}{\frac{\epsilon + \sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}}$$
(1012)

$$=\frac{\Omega_r}{\epsilon+\eta}. (1013)$$

This proves our assertion.

Using this basis we can find the decomposition matrices using the equations (937)-(938) and the fact that $|+\rangle = \sin{(\theta)} |0\rangle + \cos{(\theta)} |1\rangle = \begin{pmatrix} \sin{(\theta)} \\ \cos{(\theta)} \end{pmatrix}$ and $|-\rangle = \cos{(\theta)} |0\rangle - \sin{(\theta)} |1\rangle = \begin{pmatrix} \cos{(\theta)} \\ -\sin{(\theta)} \end{pmatrix}$ with $\sin{(\theta)} = \frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$ and $\cos{(\theta)} = \frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$:

$$\langle +|\sigma_x|+\rangle = \left(\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ \cos\left(\theta\right) \end{pmatrix} \qquad (1014)$$

$$= 2\sin\left(\theta\right)\cos\left(\theta\right) \qquad (1015)$$

$$= \sin\left(2\theta\right), \qquad (1016)$$

$$\langle -|\sigma_x|-\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right) \\ -\sin\left(\theta\right) \end{pmatrix} \qquad (1017)$$

$$= -2\sin\left(\theta\right)\cos\left(\theta\right) \qquad (1018)$$

$$= -\sin\left(2\theta\right), \qquad (1019)$$

$$\langle -|\sigma_x|+\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ \cos\left(\theta\right) \end{pmatrix} \qquad (1020)$$

$$= \cos^2\left(\theta\right) - \sin^2\left(\theta\right) \qquad (1021)$$

$$= \cos\left(2\theta\right), \qquad (1022)$$

$$\langle +|\sigma_y|+\rangle = \left(\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ \cos\left(\theta\right) \end{pmatrix} \qquad (1023)$$

$$= i\sin\left(\theta\right)\cos\left(\theta\right) - i\sin\left(\theta\right)\cos\left(\theta\right) \qquad (1024)$$

$$= 0, \qquad (1025)$$

$$\langle -|\sigma_y|-\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right) \\ -\sin\left(\theta\right) \end{pmatrix} \qquad (1026)$$

$$= i\sin\left(\theta\right)\cos\left(\theta\right) - i\sin\left(\theta\right)\cos\left(\theta\right) \qquad (1027)$$

$$= 0, \qquad (1028)$$

$$\langle -|\sigma_y|+\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ -\sin\left(\theta\right) \end{pmatrix} \qquad (1029)$$

$$= i\cos^2\left(\theta\right) + i\sin^2\left(\theta\right) \qquad (1030)$$

$$= i. \qquad (1031)$$

$$\langle +|\frac{1+\sigma_z}{2}|+\rangle = \left(\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right)\\ \cos\left(\theta\right) \end{pmatrix} \tag{1032}$$

$$=\cos\left(\theta\right)\cos\left(\theta\right)\tag{1033}$$

$$=\cos^2\left(\theta\right),\tag{1034}$$

$$\langle -|\frac{1+\sigma_z}{2}|-\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right)\\ -\sin\left(\theta\right) \end{pmatrix} \tag{1035}$$

$$=\sin\left(\theta\right)\sin\left(\theta\right)\tag{1036}$$

$$=\sin^2\left(\theta\right),\tag{1037}$$

$$\langle -|\frac{1+\sigma_z}{2}|+\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right)\\ \cos\left(\theta\right) \end{pmatrix} \tag{1038}$$

$$= -\sin(\theta)\cos(\theta) \tag{1039}$$

$$= -\sin(\theta)\cos(\theta). \tag{1040}$$

Composing the parts shown give us the Fourier decomposition matrices for this case:

$$A_1(0) = \sin(2\theta) (|+|+|-|-|-|), \tag{1041}$$

$$A_1(\eta) = \cos(2\theta) \left| - \right| + \left|, \tag{1042}$$

$$A_{2}(0) = 0, (1043)$$

$$A_{2}\left(\eta\right) = \mathrm{i}|-\chi+|,\tag{1044}$$

$$A_3(0) = \cos^2(\theta) |+|+| + \sin^2(\theta) |-|-|, \tag{1045}$$

$$A_3(\eta) = -\sin(\theta)\cos(\theta)|-\chi|+|. \tag{1046}$$

Now to prove the fact that the model of the "Time-independent variational quantum master equation" is a special case the master equation (974) we need to take account of the time-independence of the hamiltonian of this system. From this perspective is possible to show that for the equation (955) is equivalent to:

$$\mathscr{D}_{ijww'}(t) = \int_0^t d\tau D_{ijww'}(t - \tau, t) \tag{1047}$$

$$= \int_{0}^{t} d\tau C_{i}(t) C_{j}(t-\tau) \Lambda_{ij}(\tau) e^{i\tau w(t-\tau)} e^{-it\left(w(t-\tau)-w'(t)\right)} \mathscr{A}_{j}\left(w(t-\tau), w'(t)\right)$$

$$(1048)$$

$$= \int_{0}^{t} d\tau C_{i}(t) C_{j}(t-\tau) \Lambda_{ij}(\tau) e^{i\tau w} e^{-it(w-w')} \mathscr{A}_{j}(w,w').$$

$$(1049)$$

Now to make comparisons between the model obtained and the model of the system under discussion we will define that the correlation functions of the reference [1] denoted by $\Lambda'_{ij}(\tau)$ relate with the correlation functions defined in the equation (415) in the following way:

$$\Lambda'_{ij}(\tau) = C_i(t) C_j(t - \tau) \Lambda_{ij}(\tau).$$
(1050)

So the response matrix can be rewritten as:

$$\mathscr{D}_{ijww'}(t) = \left(\int_0^t d\tau \Lambda'_{ij}(\tau) e^{i\tau w} e^{-it(w-w')}\right) \mathscr{A}_j(w, w')$$
(1051)

Let's define the response function like:

$$K_{ij}\left(w,w',t\right) = \int_{0}^{t} C_{i}\left(t\right) C_{j}\left(t-\tau\right) \Lambda_{ij}\left(\tau\right) e^{\mathrm{i}w\tau} e^{-\mathrm{i}t\left(w-w'\right)} d\tau \tag{1052}$$

$$= \int_0^t \Lambda'_{ij}(\tau) e^{\mathrm{i}w\tau} e^{-\mathrm{i}t(w-w')} d\tau$$
 (1053)

$$=K_{ijww'}\left(t\right). \tag{1054}$$

Then we have the following equivalence:

$$\mathcal{D}_{ijww'}(t) = K_{ijww'}(t) \mathcal{A}_i(w, w') \tag{1055}$$

$$=K_{ijww'}(t)\,\mathcal{A}_{jww'} \tag{1056}$$

We can proof that

$$\frac{\mathrm{d}\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}\left(t\right), \overline{\rho_{S}}\left(t\right)\right] - \sum_{ijww'} \left(\left[A_{i}, \mathcal{D}_{ijww'}\left(t\right)\overline{\rho_{S}}\left(t\right)\right] - \left[A_{i}, \overline{\rho_{S}}\left(t\right)\mathcal{D}_{ijww'}^{\dagger}\left(t\right)\right]\right)$$

$$(1057)$$

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]-\sum_{ijww'}\left(\left[A_{i},K_{ijww'}\left(t\right)\mathscr{A}_{jww'}\overline{\rho_{S}}\left(t\right)\right]-\left[A_{i},\overline{\rho_{S}}\left(t\right)K_{ijww'}^{*}\left(t\right)\mathscr{A}_{jww'}^{\dagger}\right]\right)$$
(1058)

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]-\sum_{ijww'}\left(K_{ijww'}\left(t\right)\left[A_{i},\mathscr{A}_{jww'}\overline{\rho_{S}}\left(t\right)\right]-K_{ijww'}^{*}\left(t\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)\mathscr{A}_{jww'}^{\dagger}\right]\right)$$
(1059)

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}(t),\overline{\rho_{\overline{S}}}(t)\right]-\sum_{ijww'}\left(\left(K_{ijww'}^{\Re}(t)+\mathrm{i}K_{ijww'}^{\Im}(t)\right)\left[A_{i},\mathscr{A}_{jww'}\overline{\rho_{\overline{S}}}(t)\right]-\left(K_{ijww'}^{\Re}(t)-\mathrm{i}K_{ijww'}^{\Im}(t)\right)\left[A_{i},\overline{\rho_{\overline{S}}}(t)\mathscr{A}_{jww'}^{\dagger}\right]\right)$$
(1060)

$$=-\mathrm{i}\big[\overline{H_{\overline{S}}}(t),\overline{\rho_{\overline{S}}}(t)\big]-\sum_{ijww'}K_{ijww'}^{\Re}(t)\Big[A_{i},\mathscr{A}_{jww'}\overline{\rho_{\overline{S}}}(t)-\overline{\rho_{\overline{S}}}(t)\mathscr{A}_{jww'}^{\dagger}\Big]-\mathrm{i}\sum_{ijww'}K_{ijww'}^{\Im}(t)\Big[A_{i},\mathscr{A}_{jww'}\overline{\rho_{\overline{S}}}(t)+\overline{\rho_{\overline{S}}}(t)\mathscr{A}_{jww'}^{\dagger}\Big] \quad \textbf{(1061)}$$

Using the notation of the master equation (971), we can say that $C_1(t) = \frac{\Omega}{2} = C_2(t)$ and $C_3(t) = 1$, being Ω a constant. Furthermore given that $\overline{H_S}$ is time-independent then B(t) = B. Taking the equations(824)-(848) we find that the correlation functions of the reference [1] written in terms of the RHS of the equation (415) are equal to:

$$\left\langle \widetilde{B_{1z}}(t)\widetilde{B_{1z}}(s) \right\rangle_{B} = \sum_{\mathbf{k}} \left(\left(g_{1\mathbf{k}} - v_{1\mathbf{k}} \right) \left(g_{1\mathbf{k}} - v_{1\mathbf{k}} \right)^{*} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + \left(g_{1\mathbf{k}} - v_{1\mathbf{k}} \right)^{*} \left(g_{1\mathbf{k}} - v_{1\mathbf{k}} \right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right)$$

$$= \sum_{\mathbf{k}} \left| g_{1\mathbf{k}} - v_{1\mathbf{k}} \right|^{2} \left(e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right)$$

$$\approx \int_{0}^{\infty} J_{1} \left(\omega \right) \left(1 - F_{1} \left(\omega \right) \right)^{2} \left(e^{\mathrm{i}\omega\tau} N \left(\omega \right) + e^{-\mathrm{i}\omega\tau} \left(N \left(\omega \right) + 1 \right) \right) d\omega$$

$$G_{\pm} \left(\omega, \tau \right) = e^{\mathrm{i}\omega\tau} N \left(\omega \right) + e^{-\mathrm{i}\omega\tau} \left(N \left(\omega \right) + 1 \right)$$

$$\left\langle \widetilde{B_{1z}}(t)\widetilde{B_{1z}}(s) \right\rangle_{B} \approx \int_{0}^{\infty} J_{1} \left(\omega \right) \left(1 - F_{1} \left(\omega \right) \right)^{2} G_{+} \left(\omega, t \right) d\omega$$

$$\chi_{10} \left(t \right) = 0 \text{ (because } v_{0\mathbf{k}} \left(t \right) = 0 \text{ for all } \mathbf{k} \right)$$

$$U_{12} \left(t, e \right) = \prod_{\mathbf{k}} \sup_{\mathbf{k}} \left(\left(v_{1\mathbf{k}} \left(t \right) - v_{0\mathbf{k}} \left(t \right) \right) \left(v_{1\mathbf{k}} \left(s \right) - v_{0\mathbf{k}} \left(s \right) \right)^{*} \exp \left(i\omega_{\mathbf{k}}\tau \right) \right)^{3} \right)$$

$$(1068)$$

$$U_{10}(t,s) = \prod_{\mathbf{k}} \exp \left(i \left(\frac{\left(v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t) \right) \left(v_{1\mathbf{k}}(s) - v_{0\mathbf{k}}(s) \right)^* \exp\left(i\omega_{\mathbf{k}}\tau \right)}{\omega_{\mathbf{k}}^2} \right)^{\Im} \right)$$
(1068)

$$= \prod_{\mathbf{k}} \exp \left(i \left(\frac{v_{1\mathbf{k}}^2(t) \exp \left(i \omega_{\mathbf{k}} \tau \right)}{\omega_{\mathbf{k}}^2} \right)^{\Im} \right)$$
(1069)

$$= \prod_{\mathbf{k}} \exp\left(i \frac{v_{1\mathbf{k}}^2 \sin\left(\omega_{\mathbf{k}}\tau\right)}{\omega_{\mathbf{k}}^2}\right) \tag{1070}$$

$$\left\langle \widetilde{B_x}(t)\widetilde{B_x}(s) \right\rangle_B = \frac{1}{2} \left(\prod_{\mathbf{k}} \exp\left(i \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2}\right) \prod_{\mathbf{k}} \exp\left(-\frac{|v_{1\mathbf{k}} \exp(i\omega_{\mathbf{k}}\tau) + v_{1\mathbf{k}}|^2}{2\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) + \prod_{\mathbf{k}} \exp\left(-i \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2}\right) \prod_{\mathbf{k}} \exp\left(-\frac{|v_{1\mathbf{k}} \exp(i\omega_{\mathbf{k}}\tau) - v_{1\mathbf{k}}|^2}{2\omega_{\mathbf{k}}^2} \cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \right)$$

$$(1071)$$

$$-\left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\left(\left|\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2}\right)\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)\left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\left(\left|\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2}\right)\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$
(1072)

$$= \frac{1}{2} \left(\prod_{\mathbf{k}} \exp \left(i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}} \tau)}{\omega_{\mathbf{k}}^{2}} - \frac{|v_{1\mathbf{k}} \exp(i\omega_{\mathbf{k}} \tau) + v_{1\mathbf{k}}|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) + \prod_{\mathbf{k}} \exp \left(-i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}} \tau)}{\omega_{\mathbf{k}}^{2}} - \frac{|v_{1\mathbf{k}} \exp(i\omega_{\mathbf{k}} \tau) - v_{1\mathbf{k}}|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right)$$

$$(1073)$$

$$-\left(\exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right)\right) \tag{1074}$$

$$|v_{1\mathbf{k}}\exp(i\omega_{\mathbf{k}}\tau)\pm v_{1\mathbf{k}}|^2 = v_{1\mathbf{k}}^2|\exp(i\omega_{\mathbf{k}}\tau)\pm 1|^2$$
(1075)

$$= v_{1\mathbf{k}}^2 |\cos(\omega_{\mathbf{k}}\tau) + i\sin(\omega_{\mathbf{k}}\tau) \pm 1|^2 \tag{1076}$$

$$=v_{1\mathbf{k}}^{2}\left(\left(1\pm\cos\left(\omega_{\mathbf{k}}\tau\right)\right)^{2}+\sin^{2}\left(\omega_{\mathbf{k}}\tau\right)\right) \tag{1077}$$

$$=2v_{1\mathbf{k}}^{2}\left(1\pm\cos\left(\omega_{\mathbf{k}}\tau\right)\right)\tag{1078}$$

$$B \equiv \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
(1079)

$$\left\langle \widetilde{B_{x}}(t)\widetilde{B_{x}}(s)\right\rangle_{B} = \frac{1}{2} \left(\exp\left(\sum_{\mathbf{k}} i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}}\tau) - |v_{1\mathbf{k}}|^{2}}{\omega_{\mathbf{k}}^{2}} - \frac{|v_{1\mathbf{k}} \exp(i\omega_{\mathbf{k}}\tau) + v_{1\mathbf{k}}|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) + \exp\left(\sum_{\mathbf{k}} -i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}}\tau) - |v_{1\mathbf{k}}|^{2}}{\omega_{\mathbf{k}}^{2}} - \frac{|v_{1\mathbf{k}} \exp(i\omega_{\mathbf{k}}\tau) - v_{1\mathbf{k}}|^{2}}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \right)$$

$$(1080)$$

$$-\left(\exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) \tag{1081}$$

$$\phi(\tau) = \sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right)$$
(1082)

$$\approx \int_0^\infty \frac{J_1(\omega) F_1^2(\omega)}{\omega^2} \left(-i\sin(\omega\tau) + \cos(\omega\tau) \coth\left(\frac{\beta\omega}{2}\right) \right) d\omega$$
 (1083)

$$= \int_{0}^{\infty} \frac{J_{1}(\omega) F_{1}^{2}(\omega)}{\omega^{2}} G_{+}(\omega, \tau) d\omega$$
(1084)

$$\left\langle \widetilde{B}_{x}(t)\widetilde{B}_{x}(s)\right\rangle_{B} = \frac{1}{2} \left(\exp\left(\sum_{\mathbf{k}} i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^{2}} - \frac{2v_{1\mathbf{k}}^{2}(1+\cos(\omega_{\mathbf{k}}\tau))}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) + \exp\left(\sum_{\mathbf{k}} -i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^{2}} - \frac{2v_{1\mathbf{k}}^{2}(1-\cos(\omega_{\mathbf{k}}\tau))}{2\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) - B^{2}$$

$$(1085)$$

$$= \frac{1}{2} \left(\exp\left(\sum_{\mathbf{k}} i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}} \tau)}{\omega_{\mathbf{k}}^{2}} - \frac{v_{1\mathbf{k}}^{2} (1 + \cos(\omega_{\mathbf{k}} \tau))}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right) \right) + \exp\left(\sum_{\mathbf{k}} -i \frac{v_{1\mathbf{k}}^{2} \sin(\omega_{\mathbf{k}} \tau)}{\omega_{\mathbf{k}}^{2}} - \frac{v_{1\mathbf{k}}^{2} (1 - \cos(\omega_{\mathbf{k}} \tau))}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right) \right) \right) - B^{2}$$

$$(1086)$$

$$= \frac{1}{2} \left(\exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \exp\left(\sum_{\mathbf{k}} i \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2 \cos(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) + \exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \exp\left(\sum_{\mathbf{k}} -i \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2 \cos(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} \right) \right) + \exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \exp\left(\sum_{\mathbf{k}} -i \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2 \cos(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} \right) \right) + \exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \exp\left(\sum_{\mathbf{k}} -i \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2 \cos(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} \right) \right) + \exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} \right) \exp\left(\sum_{\mathbf{k}} -i \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2 \cos(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} \right) \right) + \exp\left(-\sum_{\mathbf{k}} \frac{v_{1\mathbf{k}}^2}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2 \sin(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2 \cos(\omega_{\mathbf{k}}\tau)}{\omega_{\mathbf{k}}^2} - \frac{v_{1\mathbf{k}}^2$$

$$= \frac{B^2}{2} \left(e^{-\phi(\tau)} + e^{\phi(\tau)} - 2 \right) \tag{1088}$$

$$\Lambda'_{11}(\tau) = \left(\frac{\Omega}{2}\right)^2 \operatorname{Tr}_B\left(\widetilde{B}_1(\tau)\,\widetilde{B}_1(0)\,\rho_B\right) \tag{1129}$$

$$= \frac{\Omega_r^2}{8} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} - 2 \right) \tag{1130}$$

$$=\frac{\Omega_r^2}{4}\left(\cosh\left(\phi\left(\tau\right)\right)-1\right) \tag{1131}$$

$$\Lambda_{22}'(\tau) = \left(\frac{\Omega}{2}\right)^2 \operatorname{Tr}_B\left(\widetilde{B_2}(\tau)\,\widetilde{B_2}(0)\,\rho_B\right) \tag{1132}$$

$$=\frac{\Omega_r^2}{8}\left(e^{\phi(\tau)}-e^{-\phi(\tau)}\right),\tag{1133}$$

$$\Lambda'_{33}(\tau) = \int_0^\infty d\omega J(\omega) (1 - F(\omega))^2 G_+(\tau), \qquad (1134)$$

$$\Lambda_{32}'(\tau) = \frac{\Omega_r}{2} \int_0^\infty d\omega \frac{J(\omega)}{\omega} F(\omega) (1 - F(\omega)) iG_-(\tau), \qquad (1135)$$

$$\Lambda_{32}'(\tau) = -\Lambda_{23}'(\tau), \qquad (1136)$$

$$\Lambda_{12}'(\tau) = \Lambda_{21}'(\tau) \tag{1137}$$

$$=\Lambda_{13}'(\tau)\tag{1138}$$

$$=\Lambda_{31}'\left(\tau\right)\tag{1139}$$

$$=0. (1140)$$

Finally taking the Hamiltonian (988) and given that to reproduce this Hamiltonian we need to impose in (5) that $V_{10}\left(t\right)=\frac{\Omega}{2}$, $\varepsilon_{0}\left(t\right)=0$ and $\varepsilon_{1}\left(t\right)=\delta$, then we obtain that $\operatorname{Det}\left(\overline{H_{S}}\right)=-\frac{\Omega_{r}^{2}}{4}$, $\operatorname{Tr}\left(\overline{H_{S}}\right)=\epsilon$. Now $\eta=\sqrt{\epsilon^{2}+\Omega_{r}^{2}}$ and using the equation (337) we have that:

$$f_k = \frac{g_k \left(1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \right)}{1 - \frac{\tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \left(\epsilon - \frac{\Omega_r^2 \coth\left(\frac{\beta\omega_k}{2}\right)}{2\omega_k} \right)}$$
(1141)

$$= \frac{g_k \left(1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta}\right)}{1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \left(1 - \frac{\Omega_r^2 \coth\left(\frac{\beta\omega_k}{2}\right)}{2\epsilon\omega_k}\right)}.$$
 (1142)

This shows that the expression obtained reproduces the variational parameters of the time-independent model of the reference. In general we can see that the time-independent model studied can be reproduced using the master equation (451) under a time-independent approach providing similar results.

Given that the Hamiltonian of this system is time-independent, then $U(t)U^{\dagger}(t-\tau)=U(\tau)$. From the equation (971) and using the fact that

$$\widetilde{A_{j}}(t-\tau,t) = U(\tau) A_{j}U(-\tau)$$
(1143)

$$=\sum_{w}e^{\mathrm{i}w\tau}\mathscr{A}_{j}\left(-w\right)\tag{1144}$$

$$=\sum_{w}e^{-\mathrm{i}w\tau}\mathscr{A}_{j}\left(w\right).\tag{1145}$$

because the matrices $U\left(t\right)$ and $U\left(t-\tau\right)$ commute from the fact that $H_{S}\left(t\right)$ and $H_{S}\left(t-\tau\right)$ commute as well for time independent Hamiltonians. The master equation is equal to:

$$\frac{\mathrm{d}\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}\left(t\right),\overline{\rho_{S}}\left(t\right)\right] - \frac{1}{2}\sum_{ij}\sum_{w}\gamma_{ij}\left(w,t\right)\left[A_{i},\mathscr{A}_{j}\left(w\right)\overline{\rho}_{S}\left(t\right) - \overline{\rho}_{S}\left(t\right)\mathscr{A}_{j}^{\dagger}\left(w\right)\right]$$
(1146)

$$-\sum_{ij}\sum_{w}S_{ij}\left(w,t\right)\left[A_{i},\mathscr{A}_{j}\left(w\right)\overline{\rho}_{S}\left(t\right)+\overline{\rho}_{S}\left(t\right)\mathscr{A}_{j}^{\dagger}\left(w\right)\right].$$
(1147)

where $\mathscr{A}_{j}^{\dagger}(w) = \mathscr{A}_{j}(-w)$, as we can see the equation (1147) contains the rates and energy shifts $\gamma_{ij}(w,t) = 2K_{ij}^{\Re}(w,t)$ and $S_{ij}(w,t) = K_{ij}^{\Im}(w,t)$, respectively, defined in terms of the response functions

$$K_{ij}^{\Im}\left(w,t\right) = \int_{0}^{t} \Lambda'_{ij}\left(\tau\right) e^{\mathrm{i}w\tau} \mathrm{d}\tau.$$

The fact $\mathscr{A}_{j}^{\dagger}(w)=\mathscr{A}_{j}(-w)$ can be verified directly for a 2×2 matrix. given that $\overline{H_{S}}$ is independent of time then we have that:

$$e^{i\overline{H_S}(t-\tau)} = e^{i(\lambda_+|+\lambda_+|+\lambda_-|-\lambda_-|)(t-\tau)}$$
(1148)

$$=e^{\mathrm{i}\lambda_{+}|+|\chi|+|(t-\tau)}e^{\mathrm{i}\lambda_{-}|-|\chi|-|(t-\tau)} \tag{1149}$$

$$= \left(\left| -\chi - \right| + e^{i\lambda_{+}(t-\tau)} \left| +\chi + \right| \right) \left(\left| +\chi + \right| + e^{i\lambda_{-}(t-\tau)} \left| -\chi - \right| \right) \tag{1150}$$

$$=e^{\mathrm{i}\lambda_{+}(t-\tau)}|+\rangle+|+e^{\mathrm{i}\lambda_{-}(t-\tau)}|-\rangle-|. \tag{1151}$$

Where λ_+, λ_- are the eigenvalues associated to the eigenvectors $|+\rangle\langle+|, |-\rangle\langle-|$ of $\overline{H_S}$. Calculating the transformation (912) of (936)-(938) directly using the previous relationship we find that:

$$\widetilde{A_i(0)}(t-\tau) = \left(e^{\mathrm{i}\lambda_+(t-\tau)}|+\rangle + |+e^{\mathrm{i}\lambda_-(t-\tau)}|-\rangle - |-\rangle -$$

$$= \langle +|A_i|+\rangle |+\rangle +|+\langle -|A_i|-\rangle |-\rangle -|, \tag{1153}$$

$$\widetilde{A_{i}(w)}(t-\tau) = \left(e^{\mathrm{i}\lambda_{+}(t-\tau)}|+\rangle + |+e^{\mathrm{i}\lambda_{-}(t-\tau)}|-\rangle - |-\rangle -$$

$$= \langle +|A_i|-\rangle|+\rangle -|e^{\mathrm{i}w(t-\tau)},\tag{1155}$$

$$\widetilde{A_{i}(-w)}(t-\tau) = \left(e^{i\lambda_{+}(t-\tau)}|+\rangle + |+e^{i\lambda_{-}(t-\tau)}|-\rangle - |.\right) (\langle -|A_{i}|+\rangle |-\rangle + |) \left(e^{-i\lambda_{+}(t-\tau)}|+\rangle + |+e^{-i\lambda_{-}(t-\tau)}|-\rangle - |\right)$$
(1156)

$$= \langle -|A_i|+\rangle |-\rangle + |e^{-\mathrm{i}w(t-\tau)}. \tag{1157}$$

Here $w = \lambda_+ - \lambda_-$. So we can see that for the equation (922) it's possible to deduce for this case of time-independent matrix $\overline{H_S}$ if $w \neq w'$ then $A_i'(w, w') = 0$ so:

$$\widetilde{A_j}(t-\tau,t) = U(t)U^{\dagger}(t-\tau)A_j(t)U(t-\tau)U^{\dagger}(t)$$
(1158)

$$= U(t) \left(\sum_{w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} A_j(w(t-\tau)) \right) U^{\dagger}(t)$$
(1159)

$$= \sum_{w(t-\tau)} e^{-\mathrm{i}(t-\tau)w(t-\tau)} U(t) A_j(w(t-\tau)) U^{\dagger}(t)$$
(1160)

$$= \sum_{w'(t), w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} e^{itw'(t)} A_j (w(t-\tau), w'(t))$$
(1161)

$$= \sum_{w'(t), w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} e^{itw'(t)} A_{jww'}$$
(1162)

$$= \sum_{w'(t), w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} e^{itw'(t)} A_j(w) \, \delta_{ww'}$$
(1163)

$$=\sum_{w}e^{-\mathrm{i}(t-\tau)w}e^{\mathrm{i}tw}A_{j}\left(w\right)\tag{1164}$$

$$=\sum_{w}e^{\mathrm{i}\tau w}A_{j}\left(w\right)\tag{1165}$$

$$=U^{\dagger}\left(-\tau\right)A_{j}U\left(-\tau\right)\tag{1166}$$

So using now as reference the equation (1061) and $A'_{i}(w,w')=0$ we can deduce that:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{S}}(t),\overline{\rho_{S}}(t)\right] - \sum_{ijw} K_{ij}^{\Re}(w,t) \left[A_{i},A_{j}(w)\overline{\rho_{S}}(t) - \overline{\rho_{S}}(t)A_{j}^{\dagger}(w)\right] - \mathrm{i}\sum_{ijw} K_{ij}^{\Re}(w,t) \left[A_{i},A_{j}(w)\overline{\rho_{S}}(t) + \overline{\rho_{S}}(t)A_{j}^{\dagger}(w)\right]$$
(1167)

B. Time-dependent polaron quantum master equation

Following the reference [1], when $\Omega_k \ll \omega_k$ then $f_k \approx g_k$ so we recover the full polaron transformation. It means from the equation (106) that $B_z = 0$. The Hamiltonian studied is given by:

$$H = \left(\delta + \sum_{\mathbf{k}} \left(g_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{\mathbf{k}}^{*} b_{\mathbf{k}}\right)\right) |1\rangle\langle 1| + \frac{\Omega(t)}{2} \sigma_{x} + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}.$$
 (1168)

If $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ then $B(\tau) = B$, so B is independent of the time. In order to reproduce the Hamiltonian of the equation (1168) using the Hamiltonian of the equation (1) we can say that $\delta = \varepsilon_1(t)$, $\varepsilon_0(t) = 0$, $V_{10}(t) = \frac{\Omega(t)}{2}$. Now given that $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ then, in this case and using the equation (??) and (??) we obtain the following transformed Hamiltonians:

$$\overline{H_S} = (\delta + R_1) |1\rangle\langle 1| + \frac{B\sigma_x}{2} \Omega(t), \qquad (1169)$$

$$\overline{H_{\rm I}} = \frac{\Omega(t)}{2} \left(B_x \sigma_x + B_y \sigma_y \right). \tag{1170}$$

In this case $R_1 = \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2 \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} g_{\mathbf{k}} \right)$ from (27) and given that $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ and $\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} = g_{\mathbf{k}}/\omega_{\mathbf{k}}$ then $R_1 = \sum_{\mathbf{k}} \left(-\omega_{\mathbf{k}}^{-1} |g_{\mathbf{k}}|^2 \right) = \sum_{\mathbf{k}} \left(-\omega_{\mathbf{k}} |\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}|^2 \right)$ as expected, take $\delta + R_1 = \delta'$. If $F(\omega_{\mathbf{k}}) = 1$ and using the equations (1129)-(1137) we can deduce that the only terms that survive are $\Lambda_{11}(\tau)$ and $\Lambda_{22}(\tau)$. The phonon propagator for this case is:

$$\phi(\tau) = \int_0^\infty \frac{J(\omega)}{\omega^2} G_+(\tau) d\omega. \tag{1171}$$

Writing $G_{+}\left(\tau\right)=\coth\left(\frac{\beta\omega}{2}\right)\cos\left(\omega\tau\right)-i\sin\left(\omega\tau\right)$ so (1171) can be written as:

$$\phi(\tau) = \int_0^\infty \frac{J(\omega)}{\omega^2} \left(\coth\left(\frac{\beta\omega}{2}\right) \cos(\omega\tau) - i\sin(\omega\tau) \right) d\omega.$$
 (1172)

Writing the interaction Hamiltonian (1170) in the similar way to the equation (??) allow us to to write $A_1 = \sigma_x$, $A_2 = \sigma_y$, $B_1(t) = B_x$, $B_2(t) = B_y$ and $C_1(t) = \frac{\Omega(t)}{2} = C_2(t)$. Now taking the equation (??) with $\delta'|1\rangle\langle 1| = \frac{\delta'}{2}\sigma_z + \frac{\delta'}{2}\mathbb{I}$ help us to reproduce the hamiltonian of the reference [2]. Then $\overline{H_S}$ is equal to:

$$\overline{H_S} = \frac{\delta'}{2}\sigma_z + \frac{B\sigma_x}{2}\Omega(t). \tag{1173}$$

As we can see the function B is a time-independent function because we consider that g_k doesn't depend of the time. In this case the relevant correlation functions are given by:

$$\Lambda_{11}(\tau) = \operatorname{Tr}_{B}\left(\widetilde{B}_{1}(\tau)\widetilde{B}_{1}(0)\rho_{B}\right) \tag{1174}$$

$$= \frac{B^2}{2} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} - 2 \right), \tag{1175}$$

$$\Lambda_{22}(\tau) = \operatorname{Tr}_{B}\left(\widetilde{B_{2}}(\tau)\,\widetilde{B_{2}}(0)\,\rho_{B}\right) \tag{1176}$$

$$= \frac{B^2}{2} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} \right). \tag{1177}$$

These functions match with the equations $\Lambda_x(\tau)$ and $\Lambda_y(\tau)$ of the reference [2] and $\Lambda_i(\tau) = \Lambda_i(-\tau)$ for $i \in \{x,y\}$ respectively. The master equation for this section based on the equation(451) is:

$$\frac{\mathrm{d}\rho_{S}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[\frac{\delta'}{2}\sigma_{z} + \frac{\Omega_{r}\left(t\right)\sigma_{x}}{2}, \rho_{S}\left(t\right)\right] - \sum_{i=1}^{2} \int_{0}^{t} \mathrm{d}\tau \left(C_{i}\left(t\right)C_{i}\left(t - \tau\right)\Lambda_{ii}\left(\tau\right)\left[A_{i}, \widetilde{A_{i}}\left(t - \tau, t\right)\rho_{S}\left(t\right)\right]\right)$$
(1178)

$$+C_{i}\left(t\right)C_{i}\left(t-\tau\right)\Lambda_{ii}\left(-\tau\right)\left[\rho_{S}\left(t\right)\widetilde{A_{i}}\left(t-\tau,t\right),A_{i}\right]\right).$$
(1179)

Replacing $C_i(t) = \frac{\Omega(t)}{2}$ and $\widetilde{A}_i(t-\tau,t) = \widetilde{\sigma}_i(t-\tau,t)$, also using the equations (1174) and (1177) on the equation (1179) we obtain that:

$$\frac{\mathrm{d}\rho_{S}\left(t\right)}{\mathrm{d}t} = -\frac{\mathrm{i}}{2}\left[\delta'\sigma_{z} + \Omega_{r}\left(t\right)\sigma_{x}, \rho_{S}\left(t\right)\right] - \frac{\Omega\left(t\right)}{4}\int_{0}^{t} \mathrm{d}\tau\Omega\left(t-\tau\right)\left(\left[\sigma_{x},\widetilde{\sigma_{x}}\left(t-\tau,t\right)\rho_{S}\left(t\right)\right]\Lambda_{x}\left(\tau\right)\right)$$
(1180)

$$+\left[\sigma_{y},\widetilde{\sigma_{y}}\left(t-\tau,t\right)\rho_{S}\left(t\right)\right]\Lambda_{y}\left(\tau\right)+\left[\rho_{S}\left(t\right)\widetilde{\sigma_{x}}\left(t-\tau,t\right),\sigma_{x}\right]\Lambda_{x}\left(\tau\right)+\left[\rho_{S}\left(t\right)\widetilde{\sigma_{y}}\left(t-\tau,t\right),\sigma_{y}\right]\Lambda_{y}\left(\tau\right)\right).\tag{1181}$$

As we can see $\left[A_j,\widetilde{A_i}\left(t-\tau,t\right)\rho_S\left(t\right)\right]^\dagger=\left[\rho_S\left(t\right)\widetilde{A_i}\left(t-\tau,t\right),A_j\right]$, $\Lambda_x\left(\tau\right)=\Lambda_x\left(-\tau\right)$ and $\Lambda_y\left(\tau\right)=\Lambda_y\left(-\tau\right)$, so the result obtained is the same master equation (21) of the reference [2] extended in the hermitian conjugate.

C. Time-Dependent Weak-Coupling Limit

In order to prove that the master equation deduced reproduces the equation (S17) of the reference [3] we will impose that $F(\omega)=0$, so there is no transformation in this case. As we can see from the definition (415) the only term that survives is $\Lambda_{33}(\tau)$. Taking $\bar{h}=1$ the Hamiltonian of the reference can be written in the form:

$$H = \Delta |1\rangle\langle 1| + \frac{\Omega(t)}{2} (|1\rangle\langle 0| + |0\rangle\langle 1|) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(g_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{\mathbf{k}}^{*} b_{\mathbf{k}} \right). \tag{1182}$$

Using the equation (971), from the fact that the Hamiltonian is time-independent in the evolution time allow us to write:

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}(t), \rho_{S}(t)\right] - \frac{1}{2}\sum_{w}\gamma_{33}(w, t)\left[A_{3}, A_{3}(w)\rho_{S}(t) - \rho_{S}(t)A_{3}^{\dagger}(w)\right]$$
(1183)

$$-\sum_{w} S_{33}(w,t) \left[A_{3}, A_{3}(w) \rho_{S}(t) + \rho_{S}(t) A_{3}^{\dagger}(w) \right]$$
(1184)

The correlation functions are relevant if $F(\omega) = 0$ for the weak-coupling approximation are:

$$\Lambda_{33}(\tau) = \int_0^\infty d\omega J(\omega) G_+(\tau), \qquad (1185)$$

$$\Lambda_{33}(-\tau) = \int_0^\infty d\omega J(\omega) G_+(-\tau). \tag{1186}$$

In our case $A_3 = \frac{\mathbb{I} + \sigma_z}{2}$, the equation (1184) can be transformed in

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}(t), \rho_{S}(t)\right] - \sum_{w} \left(K_{33}(w, t)\left[A_{3}, A_{3}(w)\rho_{S}(t)\right] + K_{33}^{*}(w, t)\left[\rho_{S}(t)A_{3}(w), A_{3}\right]\right). \tag{1187}$$

As the paper suggest we will consider that the quantum system is in resonance, so $\Delta = 0$ and furthemore, the relaxation time of the bath is less than the evolution time to be considered, so the frequency of the Rabi frequency of the laser can be taken as constant and equal to $\widetilde{\Omega}$ To find the matrices $A_3(w)$, we have to remember that $H_S=$ $\frac{\Omega(t)}{2}(|1\rangle\langle 0|+|0\rangle\langle 1|)$, this Hamiltonian using the approximation $\widetilde{\Omega}$ have the following eigenvalues and eigenvectors:

$$\lambda_{+} = \frac{\widetilde{\Omega}}{2},\tag{1188}$$

$$|+\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |0\rangle), \qquad (1189)$$

$$\lambda_{-} = -\frac{\widetilde{\Omega}}{2},\tag{1190}$$

$$|-\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right). \tag{1191}$$

The elements of the decomposition matrices are:

$$\langle +|\frac{1+\sigma_z}{2}|+\rangle = \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1192}$$

$$=\frac{1}{2},$$
 (1193)

$$=\frac{1}{2},$$

$$\langle -|\frac{1+\sigma_z}{2}|-\rangle = \frac{1}{2}\begin{pmatrix} 1 & -1 \end{pmatrix}\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
(1194)

$$=\frac{1}{2},$$
 (1195)

$$\langle -|\frac{1+\sigma_z}{2}|+\rangle = \frac{1}{2} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (1196)

$$= -\frac{1}{2}. (1197)$$

The decomposition matrices are

$$A_3(0) = \frac{1}{2} |+|+| + \frac{1}{2} |-|-|$$
 (1198)

$$=\frac{\mathbb{I}}{2},\tag{1199}$$

$$A_3(\eta) = -\frac{1}{2}|-\chi+|$$
 (1200)

$$=\frac{1}{4}\left(\sigma_{z}+i\sigma_{y}\right),\tag{1201}$$

$$A_3(-\eta) = -\frac{1}{2}|+|-| \tag{1202}$$

$$=\frac{1}{4}\left(\sigma_z-\mathrm{i}\sigma_y\right). \tag{1203}$$

Neglecting the term proportional to the identity in the Hamiltonian we obtain that:

$$\frac{\mathrm{d}\rho_{S}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\frac{\widetilde{\Omega}}{2}\left[\sigma_{x},\rho_{S}\left(t\right)\right)\left[-K_{33}\left(\widetilde{\Omega},t\right)\left[\frac{\sigma_{z}}{2},\frac{1}{4}\left(\sigma_{z}+\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right] - K_{33}\left(-\widetilde{\Omega},t\right)\left[\frac{\sigma_{z}}{2},\frac{1}{4}\left(\sigma_{z}-\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right]$$
(1204)

$$-K_{33}^{*}\left(\widetilde{\Omega},t\right)\left[\rho_{S}\left(t\right)\frac{1}{4}\left(\sigma_{z}+\mathrm{i}\sigma_{y}\right),\frac{\sigma_{z}}{2}\right]-K_{33}^{*}\left(-\widetilde{\Omega},t\right)\left[\rho_{S}\left(t\right)\frac{1}{4}\left(\sigma_{z}-\mathrm{i}\sigma_{y}\right),\frac{\sigma_{z}}{2}\right].\tag{1205}$$

Calculating the response functions extending the upper limit of τ to ∞ , we obtain:

$$K_{33}\left(\widetilde{\Omega}\right) = \int_{0}^{\infty} \int_{0}^{\infty} J\left(\omega\right) G_{+}\left(\tau\right) e^{i\widetilde{\Omega}\tau} d\tau d\omega \tag{1206}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{i\widetilde{\Omega}\tau} \left((n(\omega) + 1) e^{-i\tau\omega} + n(\omega) e^{i\tau\omega} \right) d\tau d\omega$$
 (1207)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{i\widetilde{\Omega}\tau} (n(\omega) + 1) e^{-i\tau\omega} d\tau d\omega$$
 (1208)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) (n(\omega) + 1) e^{i\widetilde{\Omega}\tau - i\tau\omega} d\tau d\omega$$
 (1209)

$$= \int_{0}^{\infty} J(\omega) (n(\omega) + 1) \pi \delta \left(\widetilde{\Omega} - \omega \right) d\omega$$
 (1210)

$$= \pi J\left(\widetilde{\Omega}\right) \left(n\left(\widetilde{\Omega}\right) + 1\right),\tag{1211}$$

$$K_{33}\left(-\widetilde{\Omega}\right) = \int_{0}^{\infty} \int_{0}^{\infty} J\left(\omega\right) G_{+}\left(\tau\right) e^{-\mathrm{i}\widetilde{\Omega}\tau} \mathrm{d}\tau \mathrm{d}\omega \tag{1212}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{-i\widetilde{\Omega}\tau} \left((n(\omega) + 1) e^{-i\tau\omega} + n(\omega) e^{i\tau\omega} \right) d\tau d\omega$$
 (1213)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{-i\widetilde{\Omega}\tau} n(\omega) e^{i\tau\omega} d\tau d\omega$$
 (1214)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) n(\omega) e^{-i\tilde{\Omega}\tau + i\tau\omega} d\tau d\omega$$
 (1215)

$$= \int_{0}^{\infty} J(\omega) n(\omega) \pi \delta \left(-\widetilde{\Omega} + \omega\right) d\omega \tag{1216}$$

$$= \pi J\left(\widetilde{\Omega}\right) n\left(\widetilde{\Omega}\right). \tag{1217}$$

Here we have used $\int_0^\infty \mathrm{d}s \, e^{\pm i\varepsilon s} = \pi \delta\left(\varepsilon\right) \pm \mathrm{i} \frac{\mathrm{V.P.}}{\varepsilon}$, where $\mathrm{V.P.}$ denotes the Cauchy's principal value. Theses principal values are ignored because they lead to small renormalizations of the Hamiltonian. Furthermore we don't take

account of value associated to the matrix $A_3(0)$ because the spectral density $J(\omega)$ is equal to zero when $\omega=0$. Replacing in the equation (1204) lead us to obtain:

$$\frac{\mathrm{d}\rho_{S}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\frac{\widetilde{\Omega}}{2}\left[\sigma_{x},\rho_{S}\left(t\right)\right)\left[-\frac{\pi}{8}J\left(\widetilde{\Omega}\right)\left(\left(n\left(\widetilde{\Omega}\right)+1\right)\left[\sigma_{z},\left(\sigma_{z}+\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right]+n\left(\widetilde{\Omega}\right)\left[\sigma_{z},\left(\sigma_{z}-\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right]\right) - \frac{\pi}{8}J\left(\widetilde{\Omega}\right)\left(\left(n\left(\widetilde{\Omega}\right)+1\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z}+\mathrm{i}\sigma_{y}\right),\sigma_{z}\right]+n\left(\widetilde{\Omega}\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z}-\mathrm{i}\sigma_{y}\right),\sigma_{z}\right]\right).$$
(1218)

This is the same result than the equation (S17), so we have proved that our general master equation allows to reproduce the results of the weak-coupling time-dependent. Now the master equation in the evolution time is given by

$$\frac{\mathrm{d}\rho_{S}(t)}{\mathrm{d}t} = -\mathrm{i}\frac{\Omega(t)}{2} \left[\sigma_{x}, \rho_{S}(t)\right] - \frac{\pi}{8} J\left(\Omega(t)\right) \left(\left(n\left(\Omega(t)\right) + 1\right)\left[\sigma_{z}, \left(\sigma_{z} + \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right] + n\left(\Omega(t)\right)\left[\sigma_{z}, \left(\sigma_{z} - \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right]\right) - \frac{\pi}{8} J\left(\Omega(t)\right) \left(\left(n\left(\Omega(t)\right) + 1\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z} + \mathrm{i}\sigma_{y}\right), \sigma_{z}\right] + n\left(\Omega(t)\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z} - \mathrm{i}\sigma_{y}\right), \sigma_{z}\right]\right). \tag{1221}$$

VI. TIME-DEPENDENT MULTI-SITE MODEL WITH V BATHS COUPLING

Let's consider the following Hamiltonian for a system of m-level system coupled to v-baths. We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B,$$
 (1222)

$$H_S(t) = \sum_{n} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m|, \qquad (1223)$$

$$H_I = \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right), \tag{1224}$$

$$H_B = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}}.$$
 (1225)

A. Variational Transformation

We consider the following operator:

$$V = \sum_{nu\mathbf{k}} |n\rangle \langle n|\omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)$$
(1226)

At first let's obtain $e^{\pm V}$ under the transformation (1226), consider $\hat{\varphi}_n = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)$, so the equation (1226) can be written as $V = \sum_n |n\rangle\langle n|\hat{\varphi}_n$, then we have:

$$e^{\pm V} = e^{\pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}} \tag{1227}$$

$$= \mathbb{I} \pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n} + \frac{\left(\sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}\right)^{2}}{2!} + \dots$$
 (1228)

$$= \mathbb{I} \pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n} + \frac{\sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}^{2}}{2!} + \dots$$
 (1229)

$$= \sum_{n} |n\rangle\langle n| \pm \sum_{n} |n\rangle\langle n| \hat{\varphi}_{n} + \frac{\sum_{n} |n\rangle\langle n| \hat{\varphi}_{n}^{2}}{2!} + \dots$$
 (1230)

$$= \sum_{n} |n\rangle\langle n| \left(\mathbb{I} \pm \hat{\varphi}_n + \frac{\hat{\varphi}_n^2}{2!} + \dots \right)$$
 (1231)

$$=\sum_{n}|n\rangle\langle n|e^{\pm\hat{\varphi}_{n}}\tag{1232}$$

Given that $\left[f_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}, f_{nu'\mathbf{k}'}b_{u'\mathbf{k}'}^{\dagger} - f_{nu'\mathbf{k}'}^{*}b_{u'\mathbf{k}'}\right] = 0$ for all \mathbf{k}' , \mathbf{k} and u, u' then we can proof using the Zassenhaus formula and defining $D\left(\pm\alpha_{nu\mathbf{k}}\right) = e^{\pm\left(\alpha_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger} - \alpha_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}\right)}$ in the same way than (23) with $\alpha_{nu\mathbf{k}} = \frac{f_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}}$:

$$e^{\pm \sum_{u\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)} = \prod_{u} e^{\pm \sum_{\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)}$$
(1233)

$$= \prod_{u} \left(\prod_{\mathbf{k}} e^{\pm \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)} \right)$$
 (1234)

$$= \prod_{u} \left(\prod_{\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}} \right) \right) \tag{1235}$$

$$= \prod_{u\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}}\right) \tag{1236}$$

$$=\prod_{n}B_{nu\pm} \tag{1237}$$

$$B_{nu\pm} \equiv \prod_{\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}}\right) \tag{1238}$$

As we can see $e^{-V}=\sum_n|n\rangle\!\langle n|\prod_u B_{nu-}$ and $e^V=\sum_n|n\rangle\!\langle n|\prod_u B_{nu+}$ this implies that $e^{-V}e^V=\mathbb{I}$. This allows us to write the canonical transformation in the following explicit way:

$$e^{V} A e^{-V} = \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) A \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(1239)

Now let's obtain the canonical transformation of the principal elements of the Hamiltonian (1222):

$$|\overline{0|00}| = \left(\sum_{u} |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu+} + |0|00| \left(\sum_{n} |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu-}\right), \qquad (1240)$$

$$= \prod_{u} B_{0u} |0|00| \left(0|00| \left(\sum_{u} |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu-}\right), \qquad (1241)$$

$$= |0|00 \prod_{u} B_{0u} + B_{0u} - \qquad (1242)$$

$$= |0|00 \prod_{u} B_{0u} + B_{0u} - \qquad (1243)$$

$$= |0|00 \prod_{u} B_{0u} + B_{0u} - \qquad (1243)$$

$$= |0|00 \prod_{u} B_{0u} + B_{0u} - \qquad (1243)$$

$$= |0|00 \prod_{u} B_{0u} + B_{0u} - \qquad (1243)$$

$$= |0|00 \prod_{u} B_{0u} + B_{0u} - \qquad (1243)$$

$$= |0|00 \prod_{u} B_{0u} + B_{0u} + | |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} - | |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} + |n_{i}^{u}|n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} - | |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} + |n_{i}^{u}|n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} - | |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} + |n_{i}^{u}|n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} - | |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} + |n_{i}^{u}|n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} - | |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} + |n_{i}^{u}|n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} - | |n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} + |n_{i}^{u}|n_{i}^{u}|n_{i}^{u}|n_{i}^{u}| \frac{1}{u} B_{nu} - | |n_{i}^{u}|n_{$$

The transformed Hamiltonians of the equations (1223) to (1225) written in terms of (1240) to (1264) are:

$$\overline{H_S(t)} = \overline{\sum_{n} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1267)

$$= \overline{\sum_{n} \varepsilon_{n}(t) |n\rangle\langle n|} + \overline{\sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1268)

$$= \sum_{n} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| \prod_{n} (B_{mn} + B_{nn})$$
(1269)

$$\overline{H_I} = \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) \left(\sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}}\right)\right) \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(1270)

$$= \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) \left(\sum_{u\mathbf{k}} |0\rangle\langle 0| \left(g_{0u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{0u\mathbf{k}}^{*} b_{u\mathbf{k}}\right) + \dots\right) \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(1271)

$$= \prod_{u} B_{0u+} \sum_{u\mathbf{k}} |0\rangle\langle 0| \left(g_{0u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{0u\mathbf{k}}^{*} b_{u\mathbf{k}} \right) \prod_{u} B_{0u-} + \prod_{u} B_{1u+} \sum_{u\mathbf{k}} |1\rangle\langle 1| \left(g_{1u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{1u\mathbf{k}}^{*} b_{u\mathbf{k}} \right) \prod_{u} B_{1u-} + \dots$$
(1272)

$$= \sum_{u\mathbf{k}} |0\rangle\langle 0| \left(g_{0u\mathbf{k}} \prod_{u} B_{0u} + b_{u\mathbf{k}}^{\dagger} \prod_{u} B_{0u} - + g_{0u\mathbf{k}}^{*} \prod_{u} B_{0u} + b_{u\mathbf{k}} \prod_{u} B_{0u} - b_{u\mathbf{k}} \prod_{u} B_{0u} - \right) + \sum_{u\mathbf{k}} |1\rangle\langle 1| \left(g_{1u\mathbf{k}} \prod_{u} B_{1u} + b_{u\mathbf{k}}^{\dagger} \prod_{u} B_{1u} - + g_{1u\mathbf{k}}^{*} \prod_{u} B_{1u} + b_{u\mathbf{k}} \prod_{u} B_{1u} - \right) + \dots$$
 (1273)

$$=\sum_{u\mathbf{k}}|0\rangle\langle 0|\left(g_{0u\mathbf{k}}\left(b_{u\mathbf{k}}^{\dagger}-\frac{v_{0u\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}\right)+g_{0u\mathbf{k}}^{*}\left(b_{u\mathbf{k}}-\frac{v_{0u\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)+\sum_{u\mathbf{k}}|1\rangle\langle 1|\left(g_{1u\mathbf{k}}\left(b_{u\mathbf{k}}^{\dagger}-\frac{v_{1u\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}\right)+g_{1u\mathbf{k}}^{*}\left(b_{u\mathbf{k}}-\frac{v_{1u\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)+\dots$$

$$(1274)$$

$$= \sum_{nu\mathbf{k}} |n\rangle n \left(g_{nu\mathbf{k}} \left(b_{u\mathbf{k}}^{\dagger} - \frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}} \right) + g_{nu\mathbf{k}}^{*} \left(b_{u\mathbf{k}} - \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(1275)

$$= \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(1276)

$$\overline{H_B} = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}} - \left(v_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + v_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right) \right)$$
(1277)

Joining this terms allow us to write the transformed Hamiltonian as:

$$\overline{H} = \sum_{n} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m| \prod_{u} (B_{mu} + B_{nu}) + \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \left(v_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + v_{nu\mathbf{k}}^{*} b_{u\mathbf{k}} \right) \right)$$
(1278)

$$+\sum_{nu\mathbf{k}}|n\rangle\langle n|\left(g_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger}+g_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}-\left(g_{nu\mathbf{k}}\frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}+g_{nu\mathbf{k}}^{*}\frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)$$

$$(1279)$$

Let's define the following functions:

$$R_n(t) = \sum_{n\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{n\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{n\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{n\mathbf{k}}} \right) \right)$$
(1280)

$$B_{z,n}(t) = \sum_{u\mathbf{k}} \left(\left(g_{nu\mathbf{k}} - v_{nu\mathbf{k}} \right) b_{u\mathbf{k}}^{\dagger} + \left(g_{nu\mathbf{k}} - v_{nu\mathbf{k}} \right)^* b_{u\mathbf{k}} \right)$$
(1281)

Using the previous functions we have that (1278) can be re-written in the following way:

$$\overline{H} = \sum_{n} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| \prod_{u} (B_{mu} + B_{nu}) + \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{n} R_{n}(t) |n\rangle\langle n| + \sum_{n} B_{z,n}(t) |n\rangle\langle n|$$
(1282)

Now in order to separate the elements of the hamiltonian (1283) let's follow the references of the equations (??) and (??) to separate the hamiltonian, before proceeding to do this we need to consider the term of the form:

$$\left\langle \prod_{u} (B_{mu} + B_{nu}) \right\rangle_{\overline{H_0}} = \left\langle \prod_{u\mathbf{k}} \left(D(\alpha_{mu\mathbf{k}} - \alpha_{nu\mathbf{k}}) \exp\left(\frac{1}{2} \left(-\alpha_{mu\mathbf{k}} \alpha_{nu\mathbf{k}}^* + \alpha_{mu\mathbf{k}}^* \alpha_{nu\mathbf{k}} \right) \right) \right) \right\rangle_{\overline{H_0}}$$
(1284)

$$= \left(\prod_{u\mathbf{k}} \exp\left(\frac{1}{2}(-\alpha_{mu\mathbf{k}}\alpha_{nu\mathbf{k}}^* + \alpha_{mu\mathbf{k}}^* \alpha_{nu\mathbf{k}})\right)\right) \left\langle\prod_{u\mathbf{k}} D(\alpha_{mu\mathbf{k}} - \alpha_{nu\mathbf{k}})\right\rangle_{\overline{H_0}}$$
(1285)

$$= \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* \right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^2}{\omega_{n\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{u\mathbf{k}}}{2} \right) \right)$$
(1286)

$$\equiv B_{nm} \tag{1287}$$

$$\left\langle \prod_{u} (B_{nu+} B_{mu-}) \right\rangle_{\overline{H_0}} = \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{nu\mathbf{k}}^* v_{mu\mathbf{k}} - v_{nu\mathbf{k}} v_{mu\mathbf{k}}^*\right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left| v_{mu\mathbf{k}} - v_{nu\mathbf{k}} \right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{u\mathbf{k}}}{2} \right) \right)$$
(1288)

$$=B_{nm}^* \tag{1289}$$

Following the reference [4] we define:

$$J_{nm} = \prod_{u} (B_{mu} + B_{nu}) - B_{nm} \tag{1290}$$

As we can see:

$$J_{nm}^{\dagger} = \left(\prod_{u} \left(B_{mu+}B_{nu-}\right) - B_{nm}\right)^{\dagger} \tag{1291}$$

$$= \prod_{n} (B_{nu} + B_{mu}) - B_{nm}^* \tag{1292}$$

$$= \prod_{u} (B_{nu} + B_{mu}) - B_{mn} \tag{1293}$$

$$=J_{mn} \tag{1294}$$

We can separate the Hamiltonian (1283) on the following way using similar arguments to the precedent sections to obtain:

$$\overline{H_{\bar{S}}(t)} = \sum_{n} (\varepsilon_n(t) + R_n) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| B_{nm}$$
(1295)

$$\overline{H_{\bar{I}}} = \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| J_{nm} + \sum_{n} B_{z,n}(t) |n\rangle\langle n|, \qquad (1296)$$

$$\overline{H_{\bar{B}}} = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} \tag{1297}$$

B. Free-energy minimization

As first approach let's consider the minimization of the free-energy through the Feynman-Bogoliubov inequality

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\operatorname{Tr} \left(e^{-\beta (\overline{H_{\bar{S}}(t) + H_{\bar{B}}})} \right) \right) + \left\langle \overline{H_{\bar{I}}} \right\rangle_{\overline{H_{\bar{S}}(t) + H_{\bar{B}}}} + O\left(\left\langle \overline{H_{\bar{I}}^2} \right\rangle_{\overline{H_{\bar{S}}(t) + H_{\bar{B}}}} \right). \tag{1298}$$

Taking the equations (244)-(252) and given that $\operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}(t)}}\right) = C\left(R_0, R_1, ..., R_{d-1}, B_{01}, ..., B_{0(d-1)}, ..., B_{(d-2)(d-1)}\right)$, where each R_i and B_{kj} depend of the set of variational parameters $\{v_{nu\mathbf{k}}\}$. Given that the numbers $v_{nu\mathbf{k}}$ are complex then we can separate them as $v_{nu\mathbf{k}} = v_{nu\mathbf{k}}^{\Re} + \mathrm{i}v_{nu\mathbf{k}}^{\Im}$. So our approach will be based on the derivation respect to $v_{nu\mathbf{k}}^{\Re}$ and $v_{nu\mathbf{k}}^{\Im}$. The Hamiltonian $\overline{H_{\overline{S}}(t)}$ can be written like:

$$\overline{H_{\overline{S}}(t)} = \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^{*} \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right) \right) |n\rangle\langle n|$$
(1299)

$$+\sum_{n\neq m} V_{nm}(t)|n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^*\right)}{2\omega_{u\mathbf{k}}^2}\right)\right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}\right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)\right) \tag{1300}$$

$$=\sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \frac{g_{nu\mathbf{k}}v_{nu\mathbf{k}}^{*} + g_{nu\mathbf{k}}^{*}v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$
(1301)

$$+\sum_{n\neq m} V_{nm(t)|n\rangle\langle m|} \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* \right)}{2\omega_{u\mathbf{k}}^2}\right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}\right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right) \right)$$
(1302)

$$=\sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2}}{\omega_{u\mathbf{k}}} - \frac{\left(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*}\right)v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}\left(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$

$$(1303)$$

$$+\sum_{n\neq m}V_{nm}(t)|n\rangle\langle m|\left(\prod_{u\mathbf{k}}\exp\left(\frac{\left(v_{mu\mathbf{k}}^*v_{nu\mathbf{k}}^{-}v_{mu\mathbf{k}}v_{nu\mathbf{k}}^*\right)}{2\omega_{u\mathbf{k}}^2}\right)\right)\prod_{u}\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\frac{\left|v_{mu\mathbf{k}}^{-}v_{nu\mathbf{k}}\right|^2}{\omega_{u\mathbf{k}}^2}\coth\left(\frac{\beta_u\omega_{u\mathbf{k}}}{2}\right)\right)\tag{1304}$$

$$v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* = \left(v_{mu\mathbf{k}}^{\Re} - iv_{mu\mathbf{k}}^{\Im}\right) \left(v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}\right) - \left(v_{mu\mathbf{k}}^{\Re} + iv_{mu\mathbf{k}}^{\Im}\right) \left(v_{nu\mathbf{k}}^{\Re} - iv_{nu\mathbf{k}}^{\Im}\right)$$

$$(1305)$$

$$= \left(v_{mu\mathbf{k}}^{\Re}v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}v_{mu\mathbf{k}}^{\Re} - iv_{mu\mathbf{k}}^{\Im}v_{nu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im}v_{nu\mathbf{k}}^{\Re}\right) \tag{1306}$$

$$-\left(v_{muk}^{\Re}v_{nuk}^{\Re}-iv_{nuk}^{\Im}v_{muk}^{\Re}+iv_{muk}^{\Im}v_{nuk}^{\Re}+v_{muk}^{\Im}v_{nuk}^{\Re}\right) \tag{1307}$$

$$= 2i \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)$$
 (1308)

$$\overline{H_{\widetilde{S}}(t)} = \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2}}{\omega_{u\mathbf{k}}} - \frac{\left(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*}\right)v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}\left(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$
(1309)

$$+ \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{\mathrm{i} \left(v \frac{\Im}{nu\mathbf{k}} v \frac{\Re}{mu\mathbf{k}} - v \frac{\Im}{mu\mathbf{k}} v \frac{\Re}{nu\mathbf{k}} \right)}{\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left| v_{mu\mathbf{k}} - v_{nu\mathbf{k}} \right|^2}{\omega_{u\mathbf{k}}^2} \operatorname{coth}\left(\frac{\beta_u \omega_u \mathbf{k}}{2} \right) \right)$$

$$\tag{1310}$$

$$|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^2 = (v_{mu\mathbf{k}} - v_{nu\mathbf{k}})(v_{mu\mathbf{k}} - v_{nu\mathbf{k}})^* \tag{1311}$$

$$= |v_{muk}|^2 + |v_{nuk}|^2 - (v_{nuk}v_{muk}^* + v_{nuk}^*v_{muk})$$
(1312)

$$= \left(v_{mu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{mu\mathbf{k}}^{\Im}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - \left(v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}\right)\left(v_{mu\mathbf{k}}^{\Re} - iv_{mu\mathbf{k}}^{\Im}\right)$$

$$(1313)$$

$$-\left(v_{nu\mathbf{k}}^{\Re}-iv_{nu\mathbf{k}}^{\Im}\right)\left(v_{mu\mathbf{k}}^{\Re}+iv_{mu\mathbf{k}}^{\Im}\right) \tag{1314}$$

$$= (v_{muk}^{\Re})^2 + (v_{muk}^{\Im})^2 + (v_{muk}^{\Re})^2 + (v_{muk}^{\Re})^2 + (v_{muk}^{\Re})^2 - 2(v_{muk}^{\Re}v_{muk}^{\Re} + v_{muk}^{\Im}v_{muk}^{\Re})$$
(1315)

$$= \left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re}\right)^2 + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im}\right)^2 \tag{1316}$$

$$R_n(t) = \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(1317)

$$= \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - \left(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*}\right)v_{nu\mathbf{k}}^{\Re} - iv_{nu\mathbf{k}}^{\Im}\left(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right)$$
(1318)

$$= \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - 2g_{nu\mathbf{k}}^{\Re}v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Im}v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} \right)$$

$$(1319)$$

$$B_{mn} = \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* \right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left| v_{mu\mathbf{k}} - v_{nu\mathbf{k}} \right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2} \right) \right)$$

$$(1320)$$

$$= \left(\prod_{u\mathbf{k}} \exp \left(\frac{i \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth} \left(\frac{\beta_{u} \omega_{u\mathbf{k}}}{2} \right) \right)$$

$$(1321)$$

Then we can obtain using the chain rule that:

$$\frac{\partial R_{n'}}{\partial v_{nu\mathbf{k}}^{\Re}} = \frac{\partial}{\partial v_{nu\mathbf{k}}^{\Re}} \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - 2g_{nu\mathbf{k}}^{\Re} v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} \right)$$
(1322)

$$= \frac{2v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}} \delta_{nn'}$$

$$= 2\frac{v_{nu\mathbf{k}}^{\Re} - g_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}} \delta_{nn'}$$
(1323)

$$=2\frac{v_{nu\mathbf{k}}^{\Re}-g_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}}\delta_{nn'} \tag{1324}$$

$$\frac{\partial R_{n'}}{\partial v_{nu\mathbf{k}}^{\Im}} = \frac{\partial}{\partial v_{nu\mathbf{k}}^{\Im}} \sum_{n\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - 2g_{nu\mathbf{k}}^{\Re} v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} \right)$$
(1325)

$$=\frac{2v_{nu\mathbf{k}}^{\Im}-2g_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}}\delta_{nn'}\tag{1326}$$

$$=2\frac{v_{nu\mathbf{k}}^{\Im}-g_{nu\mathbf{k}}^{\Im}}{\omega_{n\mathbf{k}}}\delta_{nn'}$$
(1327)

Given that:

$$\ln B_{mn} = \ln \left(\left(\prod_{u\mathbf{k}} \exp \left(\frac{i \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth} \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right) \right)$$

$$(1328)$$

$$= \sum_{u\mathbf{k}} \ln \exp \left(\frac{\mathrm{i} \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) + \sum_{u} \ln \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth} \left(\frac{\beta_{u} \omega_{u\mathbf{k}}}{2} \right) \right)$$

$$(1329)$$

$$= \sum_{u\mathbf{k}} \left(\frac{i \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) + \sum_{u\mathbf{k}} \left(-\frac{1}{2} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \coth \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$(1330)$$

$$\frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}} = \frac{-\mathrm{i}v_{mu\mathbf{k}}^{\Im} - \left(v_{nu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Re}\right) \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}$$
(1331)

$$\frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}} = \frac{iv_{mu\mathbf{k}}^{\Re} - \left(v_{nu\mathbf{k}}^{\Im} - v_{mu\mathbf{k}}^{\Im}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2}$$
(1332)

$$\frac{\partial \ln B_{mn}}{\partial a} = \frac{1}{B_{mn}} \frac{\partial B_{mn}}{\partial a} \tag{1333}$$

$$\frac{\partial B_{mn}}{\partial a} = B_{mn} \frac{\partial \ln B_{mn}}{\partial a} \tag{1334}$$

$$\frac{\partial B_{mn}}{\partial a} = \frac{\partial \left(B_{nm}\right)^{\dagger}}{\partial a} \tag{1335}$$

Then the principal derivates are given by:

$$\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}} = B_{mn} \frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}} \tag{1336}$$

$$= B_{mn} \left(\frac{-iv_{muk}^{\Re} - \left(v_{nuk}^{\Re} - v_{muk}^{\Re}\right) \coth\left(\frac{\beta_u \omega_{uk}}{2}\right)}{\omega_{uk}^2} \right)$$
(1337)

$$= B_{mn} \left(\frac{-iv_{mu\mathbf{k}}^{\Re} + \left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1338)

$$\frac{\partial B_{nm}}{\partial v_{nu\mathbf{k}}^{\Re}} = \left(\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}}\right)^{\dagger} \tag{1339}$$

$$= \left(B_{mn} \left(\frac{-iv_{muk}^{\Re} + \left(v_{muk}^{\Re} - v_{nuk}^{\Re}\right) \coth\left(\frac{\beta_u \omega_{uk}}{2}\right)}{\omega_{uk}^2}\right)\right)^{\dagger}$$
(1340)

$$=B_{nm}\left(\frac{\mathrm{i}v_{mu\mathbf{k}}^{\Re}+\left(v_{mu\mathbf{k}}^{\Re}-v_{nu\mathbf{k}}^{\Re}\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1341)

$$\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}} = B_{mn} \frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}} \tag{1342}$$

$$= B_{mn} \left(\frac{iv_{mu\mathbf{k}}^{\Re} - \left(v_{nu\mathbf{k}}^{\Im} - v_{mu\mathbf{k}}^{\Im}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1343)

$$= B_{mn} \left(\frac{iv_{mu\mathbf{k}}^{\Re} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1344)

$$\frac{\partial B_{nm}}{\partial v_{nu\mathbf{k}}^{\Im}} = \left(\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}}\right)^{\dagger} \tag{1345}$$

$$=\left(B_{mn}\right)^{\dagger}\tag{1346}$$

$$=B_{nm}\left(\frac{-\mathrm{i}v_{mu\mathbf{k}}^{\Re}+\left(v_{mu\mathbf{k}}^{\Im}-v_{nu\mathbf{k}}^{\Im}\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1347)

Introducing this derivates in the equation (1322) give us:

$$\frac{\partial A_{\rm B}}{\partial v_{nuk}^{\Re}} = \frac{\partial A_{\rm B}}{\partial R_{n}} \left(2 \frac{v_{nuk}^{\Re} - g_{nuk}^{\Re}}{\omega_{uk}} \right) + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{i v_{muk}^{\Im} + \left(v_{muk}^{\Re} - v_{nuk}^{\Re} \right) \coth\left(\frac{\beta_{u} \omega_{uk}}{2} \right)}{\omega_{uk}^{2}} \right) \right)$$

$$(1348)$$

$$+\frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{-iv_{mu\mathbf{k}}^{\Re} + \left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re}\right) \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right)$$

$$(1349)$$

$$=0 ag{1350}$$

We can obtain the variational parameters:

$$-2\frac{\partial A_{\rm B}}{\partial R_n} \frac{v_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{v_{nu\mathbf{k}}^{\Re} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{v_{nu\mathbf{k}}^{\Re} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1351)

$$= -\frac{\partial A_{\rm B}}{\partial R_n} \frac{2g_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{iv_{mu\mathbf{k}}^{\Im} + v_{mu\mathbf{k}}^{\Re} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{-iv_{mu\mathbf{k}}^{\Im} + v_{mu\mathbf{k}}^{\Re} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right) \right)$$
(1352)

$$v_{nu\mathbf{k}}^{\Re} = \frac{\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} \frac{2g_{nu\mathbf{k}}^{\Re}}{\omega_{u}\mathbf{k}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}} B_{nm} \left(\frac{\mathrm{i}v_{mu\mathbf{k}}^{\Im} + v_{mu\mathbf{k}}^{\Re} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u}^{2}} \right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}} B_{mn} \left(\frac{-\mathrm{i}v_{mu\mathbf{k}}^{\Im} + v_{mu\mathbf{k}}^{\Re} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u}^{2}} \right) \right)}{2\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} \frac{1}{\omega_{u}\mathbf{k}} - \sum_{n \neq m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u}^{2}} + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u}^{2}} \right)}{\omega_{u}^{2}} \right)}$$

$$(1353)$$

$$=\frac{2g_{nu\mathbf{k}}^{\Re}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(\mathrm{i}v_{mu\mathbf{k}}^{\Im}+v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(-\mathrm{i}v_{mu\mathbf{k}}^{\Im}+v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n\neq m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1354)

Let's consider the imaginary part of the variation parameters

$$\frac{\partial A_{\rm B}}{\partial v_{nu\mathbf{k}}^{\mathfrak{I}}} = \frac{\partial A_{\rm B}}{\partial R_{n}} \left(2^{\frac{v_{nu\mathbf{k}}^{\mathfrak{I}} - g_{nu\mathbf{k}}^{\mathfrak{I}}}{\omega_{u}\mathbf{k}}} \right) + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{-iv_{nu\mathbf{k}}^{\mathfrak{R}} - \left(v_{nu\mathbf{k}}^{\mathfrak{I}} - v_{nu\mathbf{k}}^{\mathfrak{I}}\right) \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u}^{2}\mathbf{k}} \right) \right)$$

$$(1355)$$

$$+\frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{iv_{muk}^{\Re} - \left(v_{nuk}^{\Im} - v_{muk}^{\Im}\right) \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right)$$
(1356)

$$=0$$
 (1357)

$$-2\frac{\partial A_{\rm B}}{\partial R_n} \frac{v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{v_{nu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{v_{nu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1358)

$$=-2\frac{\partial A_{\rm B}}{\partial R_n}\frac{g_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{-\mathrm{i}v_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{\mathrm{i}v_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right) \right)$$
(1359)

$$v_{nu\mathbf{k}}^{\Im} = \frac{2\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} \frac{g_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}} B_{nm} \left(\frac{-iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}} B_{mn} \left(\frac{iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right) \right)}{2\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} \frac{1}{\omega_{u\mathbf{k}}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right)}{2} \right)}$$

$$(1360)$$

$$=\frac{2g_{nu\mathbf{k}}^{\Im}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(-\mathrm{i}v_{mu\mathbf{k}}^{\Re}+v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(\mathrm{i}v_{mu\mathbf{k}}^{\Re}+v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1361)

$$v_{nu\mathbf{k}} = v_{nu\mathbf{k}}^{\Re} + \mathrm{i}v_{nu\mathbf{k}}^{\Im} \tag{1362}$$

$$=\frac{2g_{nu\mathbf{k}}^{\Re}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(\mathrm{i}v_{mu\mathbf{k}}^{\Im}+v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(-\mathrm{i}v_{mu\mathbf{k}}^{\Im}+v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1363)

$$i\frac{2g_{nu\mathbf{k}}^{\Im}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(-iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1364)

$$= \frac{2g_{nu\mathbf{k}}^{\Re}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} + 2\mathrm{i}g_{nu\mathbf{k}}^{\Im}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1365)

$$-\frac{\sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(iv_{muk}^{\Im} + v_{muk}^{\Re} \coth \left(\frac{\beta_u \omega_{uk}}{\partial B_{nm}} \right) \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(-iv_{muk}^{\Im} + v_{muk}^{\Re} \coth \left(\frac{\beta_u \omega_{uk}}{2} \right) \right) \right)}{2\omega_{uk} \frac{\partial A_{\rm B}}{\partial R_n} - \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \coth \left(\frac{\beta_u \omega_{uk}}{2} \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \coth \left(\frac{\beta_u \omega_{uk}}{2} \right) \right)}$$
(1366)

$$-i\frac{\sum_{n< m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(-iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}} \frac{\partial A_{\rm B}}{\partial R_{n}} - \sum_{n< m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)\right)}$$
(1367)

$$= \frac{2g_{nu\mathbf{k}}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1368)

$$-\frac{\sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(v_{mu\mathbf{k}} + v_{mu\mathbf{k}} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(-v_{mu\mathbf{k}} + v_{mu\mathbf{k}} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}} \frac{\partial A_{\rm B}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1369)

$$= \frac{2g_{nu\mathbf{k}}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(v_{mu\mathbf{k}} + v_{mu\mathbf{k}}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(-v_{mu\mathbf{k}} + v_{mu\mathbf{k}}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1370)

C. Master Equation

Let's consider that the initial state of the system is given by $\rho(0) = |0\rangle\langle 0| \otimes \rho_B$, as we can see this state is independent of the variation transformation:

$$e^{V}\rho\left(0\right)e^{-V} = \left(\sum_{n} |n\rangle\langle n|B_{n+}\right)\left(|0\rangle\langle 0|\otimes\rho_{B}\right)\left(\sum_{n} |n\rangle\langle n|B_{n+}\right)$$
(1371)

$$0 = \left(B_0^+ |0\rangle\langle 0|B_0^-\right) \otimes \rho_B \tag{1372}$$

$$0 = \rho(0) \tag{1373}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O} \equiv U^{\dagger}(t) OU(t) \tag{1374}$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_S}(t')\right). \tag{1375}$$

Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t) \, \overline{\rho_S}(t) \, U(t)$$
, where (1376)

$$\overline{\rho_S}(t) = \text{Tr}_B(\bar{\rho}(t)) \tag{1377}$$

We can re-write the transformed interaction Hamiltonian operator using the following matrices:

$$\sigma_{nm,x} = |n\rangle m| + |m\rangle n| \tag{1378}$$

$$\sigma_{nm,y} = \mathrm{i}\left(|n\rangle\!\langle m| - |m\rangle\!\langle n|\right) \tag{1379}$$

$$B_{nm,x} = \frac{B_{nm} + B_{mn}}{2} \tag{1380}$$

$$B_{nm,x} = \frac{B_{nm} - B_{mn}}{2i} \tag{1381}$$

We can proof that $B_{nm} = B_{mn}^{\dagger}$

$$B_{mn}^{\dagger} = (B_{m+}B_{n-} - B_m B_n)^{\dagger} \tag{1382}$$

$$=B_{n-}^{\dagger}B_{m+}^{\dagger}-B_{n}B_{m} \tag{1383}$$

$$=B_{n+}B_{m-}-B_nB_m (1384)$$

$$=B_{nm} \tag{1385}$$

So we can say that the set of matrices (1378) are hermetic. Re-writing the transformed interaction Hamiltonian using the set (1378) give us.

$$\overline{H_I} = \sum_{n \neq m} V_{nm}(t) |n\rangle m |B_{nm} + \sum_n B_{z,n}(t) |n\rangle n|,$$
(1386)

$$= \sum_{n} B_{z,n}(t) |n\rangle\langle n| + \sum_{n < m} \left(V_{nm}(t) |n\rangle\langle m| B_{nm} + V_{mn}(t) |m\rangle\langle n| B_{mn} \right)$$

$$(1387)$$

$$=\sum_{n}B_{z,n}\left(t\right)\left|n\right\rangle\left|n\right\rangle\left|n\right\rangle+\sum_{n\leq m}\left(\Re\left(V_{nm}\left(t\right)\right)B_{nm}\left(\frac{\sigma_{nm,x}-\mathrm{i}\sigma_{nm,y}}{2}\right)+\mathrm{i}V_{nm}^{\Im}\left(t\right)B_{nm}\left(\frac{\sigma_{nm,x}-\mathrm{i}\sigma_{nm,y}}{2}\right)\right)$$
(1388)

$$+\Re\left(V_{nm}\left(t\right)\right)B_{mn}\left(\frac{\sigma_{nm,x}+\mathrm{i}\sigma_{nm,y}}{2}\right)-\mathrm{i}V_{nm}^{\Im}\left(t\right)B_{mn}\left(\frac{\sigma_{nm,x}+\mathrm{i}\sigma_{nm,y}}{2}\right)\right)$$
(1389)

$$=\sum_{n}B_{z,n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n\leq m}\left(\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}\left(\frac{B_{nm}+B_{mn}}{2}\right)+\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}\frac{\mathrm{i}\left(B_{mn}-B_{nm}\right)}{2}\right)$$
(1390)

$$+i\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}\left(\frac{B_{nm}-B_{mn}}{2}\right)+\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}\left(\frac{B_{nm}+B_{mn}}{2}\right)\right)\tag{1391}$$

$$=\sum_{n}B_{z,n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n\leq m}\left(\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}B_{nm,x}-\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}B_{nm,y}+\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}B_{nm,y}\right)$$
(1392)

$$+\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}B_{nm,x}\right)\tag{1393}$$

Let's define the set

$$P = \{(n, m) \in \mathbb{N}^2 | 0 \le n, m \le d - 1 \land (n = m \lor n < m)\}$$
(1394)

Now consider the following set of operators,

$$A_{1,nm}(t) = \sigma_{nm,x}(1 - \delta_{mn})$$

$$A_{2,nm}(t) = \sigma_{nm,y}(1 - \delta_{mn})$$

$$A_{3,nm}(t) = \delta_{mn}|n\rangle\langle m|$$

$$A_{4,nm}(t) = A_{2,mn}(t)$$

$$A_{5,nm}(t) = A_{1,nm}(t)$$

$$B_{1,nm}(t) = B_{nm,x}$$

$$B_{2,nm}(t) = B_{nm,y}$$

$$B_{3,nm}(t) = B_{2,n}(t)$$

$$B_{4,nm}(t) = B_{1,nm}(t)$$

$$B_{5,nm}(t) = B_{2,nm}(t)$$

$$C_{1,nm}(t) = \Re(V_{nm}(t))$$

$$C_{2,nm}(t) = 1$$

$$C_{4,nm}(t) = \Im(V_{nm}(t))$$

$$C_{5,nm}(t) = \Im(V_{nm}(t))$$

$$C_{5,nm}(t) = -\Im(V_{nm}(t))$$

$$C_{1,nm}(t) = -\Im(V_{nm}(t))$$

The previous notation allows us to write the interaction Hamiltonian in $\overline{H_I}(t)$ as:

$$\overline{H_I} = \sum_{j \in J, p \in P} C_{jp}(t) \left(A_{jp} \otimes B_{jp}(t) \right)$$
(1410)

Here $J = \{1, 2, 3, 4, 5\}$ and P the set defined in (1394).

We write the interaction Hamiltonian transformed under (1374) as:

$$\widetilde{H}_{I}\left(t\right) = \sum_{j \in J, p \in P} C_{jp}\left(t\right) \left(\widetilde{A_{jp}}\left(t\right) \otimes \widetilde{B_{jp}}\left(t\right)\right) \tag{1411}$$

$$\widetilde{A_{jp}}(t) = U^{\dagger}(t) A_{jp} U(t)$$
(1412)

$$\widetilde{B_{jp}}(t) = e^{iH_B t} B_{jp}(t)(t) e^{-iH_B t}$$
(1413)

Taking as reference state ρ_B and truncating at second order in $H_I(t)$, we obtain our master equation in the interaction picture:

$$\frac{\mathrm{d}\widetilde{\widetilde{\rho_{S}}}\left(t\right)}{\mathrm{d}t} = -\int_{0}^{t} \mathrm{Tr}_{B}\left[\widetilde{H_{I}}\left(t\right), \left[\widetilde{H_{I}}\left(s\right), \widetilde{\widetilde{\rho_{S}}}\left(t\right)\rho_{B}\right]\right] \mathrm{d}s \tag{1414}$$

Replacing the equation (1411) in (1414) we can obtain:

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{H}_{I}(t), \left[\widetilde{H}_{I}(s), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j \in J, p \in P} C_{jp}(t) \left(\widetilde{A_{jp}}(t) \otimes \widetilde{B_{jp}}(t)\right), \left[\sum_{j' \in J, p' \in P} C_{j'p'}(s) \left(\widetilde{A_{j'p'}}(s) \otimes \widetilde{B_{j'p'}}(s)\right), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$
(1415)

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j\in J,p\in P} C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right),\sum_{j'\in J,p'\in P} C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}\right]\right]$$
(1417)

$$-\widetilde{\overline{\rho_S}}(t)\,\rho_B \sum_{j'\in J, p'\in P} C_{j'p'}(s) \left(\widetilde{A_{j'p'}}(s)\otimes \widetilde{B_{j'p'}}(s)\right) \right] ds \tag{1418}$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j\in J, p\in P} C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right) \sum_{j'\in J, p'\in P} C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right) \widetilde{\rho_{S}}\left(t\right)\rho_{B}$$
(1419)

$$-\sum_{j\in J, p\in P} C_{jp}\left(t\right) \left(\widetilde{A_{jp}}\left(t\right) \otimes \widetilde{B_{jp}}\left(t\right)\right) \widetilde{\rho_{S}}\left(t\right) \rho_{B} \sum_{j'\in J, p'\in P} C_{j'p'}\left(s\right) \left(\widetilde{A_{j'p'}}\left(s\right) \otimes \widetilde{B_{j'p'}}\left(s\right)\right)$$

$$(1420)$$

$$-\sum_{j'\in J,p'\in P}C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{S}\sum_{j\in J,p\in P}C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right)$$
(1421)

$$+\widetilde{\rho_{S}}\left(t\right)\rho_{B}\sum_{j'\in J,p'\in P}C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\sum_{j\in J,p\in P}C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right)\right)ds$$

$$(1422)$$

In order to calculate the correlation functions we define:

$$\Lambda_{jpj'p'}(\tau) = \left\langle \widetilde{B_{jp}}(t)\,\widetilde{B_{j'p'}}(s) \right\rangle_{B} \tag{1423}$$

$$= \left\langle \widetilde{B_{jp}} \left(\tau \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{B} \tag{1424}$$

Here $s \to t - \tau$ and $\operatorname{Tr}_B\left(\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right) = \left\langle \widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_B$. To evaluate the trace respect to the bath we need to recall that our master equation depends of elements related to the bath and represented by the operators $\widetilde{B_{jp}}\left(t\right)$ and elements related to the system given by $\widetilde{A_{jp}}\left(t\right)$. The systems considered are in different Hilbert spaces so $\operatorname{Tr}\left(\widetilde{A_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(t\right)\right) = \operatorname{Tr}\left(\widetilde{A_{jp}}\left(t\right)\right)\operatorname{Tr}\left(\widetilde{B_{j'p'}}\left(t\right)\right)$. The correlation functions relevant of the master equation (1422) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\rho_{B}\right) = \left\langle\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_{B} \tag{1425}$$

$$= \left\langle \widetilde{B_{jp}}(0) \, \widetilde{B_{j'p'}}(0) \right\rangle_{B} \tag{1426}$$

$$=\Lambda_{jpj'p'}\left(\tau\right)\tag{1427}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jp}}\left(t\right)\rho_{B}\widetilde{B_{j'p'}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\rho_{B}\right) \tag{1428}$$

$$= \left\langle \widetilde{B_{j'p'}}(s) \widetilde{B_{jp}}(t) \right\rangle_{\mathbb{R}} \tag{1429}$$

$$= \left\langle \widetilde{B_{j'p'}} \left(-\tau \right) \widetilde{B_{jp}} \left(0 \right) \right\rangle_{R} \tag{1430}$$

$$=\Lambda_{j'p'jp}\left(-\tau\right)\tag{1431}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}(s)\,\rho_{B}\widetilde{B_{jp}}(t)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{jp}}(t)\,\widetilde{B_{j'p'}}(s)\,\rho_{B}\right) \tag{1432}$$

$$= \left\langle \widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_{B} \tag{1433}$$

$$= \left\langle \widetilde{B_{jp}} \left(\tau \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{R} \tag{1434}$$

$$=\Lambda_{jpj'p'}\left(\tau\right)\tag{1435}$$

$$\operatorname{Tr}_{B}\left(\rho_{B}\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\rho_{B}\right) \tag{1436}$$

$$= \left\langle \widetilde{B_{j'p'}}(s)\,\widetilde{B_{jp}}(t) \right\rangle_{B} \tag{1437}$$

$$= \left\langle \widetilde{B_{j'p'}} \left(-\tau \right) \widetilde{B_{jp}} \left(0 \right) \right\rangle_{B} \tag{1438}$$

$$=\Lambda_{j'p'jp}\left(-\tau\right)\tag{1439}$$

We made use of the cyclic property for the trace to evaluate the correlation functions, from the equations obtained in (1415)and (1422) and using the equations (1425)-(1439) we can re-write:

$$\frac{\widetilde{d\widetilde{\rho_{S}}}(t)}{dt} = -\int_{0}^{t} \sum_{j,j',p,p'} \left(C_{jp}(t) C_{j'p'}(s) \left(\Lambda_{jpj'p'}(\tau) \widetilde{A_{jp}}(t) \widetilde{A_{j'p'}}(s) \widetilde{\rho_{S}}(t) - \Lambda_{j'p'jp}(-\tau) \widetilde{A_{jp}}(t) \widetilde{\rho_{S}}(t) \widetilde{\rho_{S}}(t) \widetilde{A_{j'p'}}(s) \right) \right) \tag{1440}$$

$$+C_{jp}\left(t\right)C_{j'p'}\left(s\right)\left(\Lambda_{j'p'jp}\left(-\tau\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j'p'}}\left(s\right)\widetilde{A_{jp}}\left(t\right)-\Lambda_{jpj'p'}\left(\tau\right)\widetilde{A_{j'p'}}\left(s\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{jp}}\left(t\right)\right)\right)ds\tag{1441}$$

$$=-\int_{0}^{t}\sum_{jj'pp'}\left(C_{jp}\left(t\right)C_{j'p'}\left(s\right)\left(\Lambda_{jpj'p'}\left(\tau\right)\left[\widetilde{A_{jp}}\left(t\right),\widetilde{A_{j'p'}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\right]+\Lambda_{j'p'jp}\left(-\tau\right)\left[\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{j'p'}}\left(s\right),\widetilde{A_{jp}}\left(t\right)\right]\right)\right)$$
(1442)

Rearranging and identofying the commutators allow us to write a more simplified version

$$\frac{\mathrm{d}\,\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\int_{0}^{t} \sum_{jj'pp'} \left(C_{jp}\left(t\right)C_{j'p'}\left(t-\tau\right)\left(\Lambda_{jpj'p'}\left(\tau\right)\left[A_{jp}\left(t\right),A_{j'p'}\left(t-\tau,t\right)\overline{\rho_{S}}\left(t\right)\right] + \Lambda_{j'p'jp}\left(-\tau\right)\left[\overline{\rho_{S}}\left(t\right)A_{j'p'}\left(t-\tau,t\right),A_{jp}\left(t\right)\right]\right)\right) \mathrm{d}\tau - \mathrm{i}\left[H_{S}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]$$
(1443)

For this case we used that $A_{jp}\left(t-\tau,t\right)=U\left(t\right)U^{\dagger}\left(t-\tau\right)A_{jp}\left(t\right)U\left(t-\tau\right)U^{\dagger}\left(t\right)$. This is a non-Markovian equation.

VII. TIME-DEPENDENT MULTI-SITE MODEL WITH ONE BATH COUPLING

Let's consider the following Hamiltonian for a system of d-levels (qudit). We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B,$$
 (1444)

$$H_{S}(t) = \sum_{n=0} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|, \qquad (1445)$$

$$H_{I} = \left(\sum_{n=0} \mu_{n}(t) |n\rangle\langle n|\right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right), \tag{1446}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{1447}$$

We will start with a system-bath coupling operator of the form $\sum_{n=0} \mu_n(t) |n\rangle\langle n|$.

A. Variational Transformation

We consider the following operator:

$$V = \left(\sum_{n=1} |n\rangle\langle n|\right) \left(\sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}}\right)\right)$$
(1448)

At first let's obtain e^V under the transformation (1448), consider $\hat{\varphi} = \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)$:

$$e^{V} = e^{\sum_{n=1} |n\rangle\langle n|\hat{\varphi}} \tag{1449}$$

$$= \mathbb{I} + \sum_{n=1} |n\rangle\langle n|\hat{\varphi} + \frac{\left(\sum_{n=1} |n\rangle\langle n|\hat{\varphi}\right)^2}{2!} + \dots$$
 (1450)

$$= \mathbb{I} + \sum_{n=1} |n\rangle\langle n|\hat{\varphi} + \frac{\sum_{n=1} |n\rangle\langle n|\hat{\varphi}^2}{2!} + \dots$$
 (1451)

$$= \mathbb{I} - \sum_{n=1} |n\rangle\langle n| + \sum_{n=1} |n\rangle\langle n| \left(\mathbb{I} + \hat{\varphi} + \frac{\hat{\varphi}^2}{2!} + \dots \right)$$
 (1452)

$$=|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|e^{\hat{\varphi}}$$
(1453)

$$=|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{+} \tag{1454}$$

Given that $\left[b_{\mathbf{k'}}^{\dagger}-b_{\mathbf{k'}},b_{\mathbf{k}}^{\dagger}-b_{\mathbf{k}}\right]=0$ if $\mathbf{k'}\neq\mathbf{k}$ then we can proof using the Zassenhaus formula and defining $D\left(\pm\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right)=e^{\pm\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\left(b_{\mathbf{k}}^{\dagger}-b_{\mathbf{k}}\right)}$ in the same way than (23):

$$e^{\sum_{\mathbf{k}} \pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)} = \prod_{\mathbf{k}} e^{\pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)}$$
(1455)

$$= \prod_{\mathbf{k}} D\left(\pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \tag{1456}$$

$$=B_{\pm} \tag{1457}$$

As we can see $e^{-V}=|0\rangle\langle 0|+\sum_{n=1}|n\rangle\langle n|B$. because this form imposes that $e^{-V}e^{V}=\mathbb{I}$ and the inverse of a operator is unique. This allows us to write the canonical transformation in the following explicit way:

$$e^{V}Ae^{-V} = \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{+}\right)A\left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{-}\right)$$
(1458)

Now let's obtain the canonical transformation of the principal elements of the Hamiltonian (1444):

$$\overline{|0\rangle\langle 0|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^+\right) |0\rangle\langle 0| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^-\right),\tag{1459}$$

$$=|0\rangle\langle 0|, \tag{1460}$$

$$\overline{|m\langle n|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^{+}\right) |m\rangle\langle n| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^{-}\right), \tag{1461}$$

$$=|m\langle m|B^{+}|m\langle n|n\langle n|B^{-}, \tag{1462}$$

$$=|m\rangle\langle n|, \ m\neq 0, \ n\neq 0, \tag{1463}$$

$$\overline{|0\rangle\langle m|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^{+}\right) |0\rangle\langle m| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^{-}\right), \tag{1464}$$

$$=|0\rangle m|B^{-}m\neq 0, \tag{1465}$$

$$\overline{|m\rangle\langle 0|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^+\right) |m\rangle\langle 0| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^-\right)$$
(1466)

$$=|0\rangle\langle m|B^+ m\neq 0,\tag{1467}$$

$$\overline{\sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n| B^{+} \right) \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n| B^{-} \right)$$
(1468)

$$=|0\rangle\langle 0|\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+\sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}B^{+}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}B^{-}$$
(1469)

$$=|0\rangle\langle 0|\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+\sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}\left(B^{+}b_{\mathbf{k}}^{\dagger}B^{-}\right)\left(B^{+}b_{\mathbf{k}}B^{-}\right)$$
(1470)

$$= |0\rangle\langle 0| \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1471)

$$= |0\rangle\langle 0| \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1472)

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \right)$$
(1473)

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1} |n\rangle\langle n| \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1474)

$$\overline{H_{\bar{S}}(t)} = \overline{\sum_{n=0} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1475)

$$= \overline{\sum_{n=0} \varepsilon_n(t) |n\rangle\langle n|} + \overline{\sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1476)

$$=\sum_{n=0}\varepsilon_{n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n=1}\left(V_{0n}\left(t\right)\left|0\right\rangle\left|n\right\rangle+V_{n0}\left(t\right)\left|n\right\rangle\left|0\right\rangle+\sum_{m,n\neq0}V_{mn}\left(t\right)\left|m\right\rangle\left|n\right\rangle$$
(1477)

$$=\sum_{n=0}^{\infty}\varepsilon_{n}\left(t\right)\left|n\right\rangle\left|n\right\rangle\left|n\right\rangle+\sum_{n=1}^{\infty}\left(V_{0n}\left(t\right)\overline{\left|0\right\rangle\left|n\right|}+V_{n0}\left(t\right)\overline{\left|n\right\rangle\left|0\right|}\right)+\sum_{m.n\neq0}^{\infty}V_{mn}\left(t\right)\overline{\left|m\right\rangle\left|n\right|}$$
(1478)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) B^- |0\rangle\langle n| + V_{n0}(t) B^+ |n\rangle\langle 0| \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1479)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n| B^- + V_{n0}(t) |n\rangle\langle 0| B^+ \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1480)

$$\overline{H_I} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^+ \right) \left(\left(\sum_{n=0} \mu_n(t) |n\rangle\langle n| \right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \right) \right) \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^- \right)$$
(1481)

$$= \left(\mu_0(t) |0\rangle\langle 0| + \sum_{n=1} \mu_n(t) |n\rangle\langle n|B^+\right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right) \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^-\right)$$
(1482)

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} B^{+} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) B^{-}$$

$$(1483)$$

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} - 2 \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$

$$(1484)$$

$$\overline{H_B} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1} |n\rangle\langle n| \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1485)

Joining this terms allow us to write

$$\overline{H} = \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n|B^- + V_{n0}(t) |n\rangle\langle 0|B^+ \right) + \sum_{m,n\neq 0} V_{mn}(t) |m\rangle\langle n|$$
(1486)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1}|n\rangle\langle n|\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$

$$(1487)$$

$$+\sum_{n=0} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) - \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} 2g_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}$$
(1488)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n| B^- + V_{n0}(t) |n\rangle\langle 0| B^+ \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1489)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\left(\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_{n}\left(t\right)g_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + \mu_{0}\left(t\right)|0\rangle\langle 0|\sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1490)

$$+\sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n(t) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1491)

Let's define the following functions:

$$R_n(t) = \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_n(t) g_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1492)

$$= \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_n(t) g_{\mathbf{k}} \right)$$
(1493)

$$B_{z,n}(t) = \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n(t) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1494)

Using the previous functions we have that (1491) can be re-written in the following way:

$$\overline{H} = \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n|B^- + V_{n0}(t) |n\rangle\langle 0|B^+ \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1495)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}R_{n}|n\rangle\langle n| + \sum_{n=1}B_{z,n}|n\rangle\langle n| + \mu_{0}(t)|0\rangle\langle 0| \sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$

$$(1496)$$

Now in order to separate the elements of the hamiltonian (1496) let's follow the references of the equations (??) and (??) to separate the hamiltonian like:

$$\overline{H_S\left(t\right)} = \sum_{n=0}^{\infty} \varepsilon_n\left(t\right) |n\rangle\langle n| + B \sum_{n=1}^{\infty} \left(V_{0n}\left(t\right) |0\rangle\langle n| + V_{n0}\left(t\right) |n\rangle\langle 0|\right) + \sum_{m,n\neq 0}^{\infty} V_{mn}\left(t\right) |m\rangle\langle n| + \sum_{n=1}^{\infty} R_n |n\rangle\langle n|$$
(1497)

$$\overline{H_{I}} = \sum_{n=1}^{\infty} B_{z,n} |n\rangle\langle n| + \mu_{0}(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n| \left(B^{-} - B \right) + V_{n0}(t) |n\rangle\langle 0| \left(B^{+} - B \right) \right),$$
(1498)

$$\overline{H_B} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \tag{1499}$$

Here B is given by:

$$B = \langle B^+ \rangle$$
$$= \langle B^- \rangle$$

The transformed Hamiltonian can be written in function of the following set of hermitian operators:

$$\sigma_{nm,x} = |n\langle m| + |m\langle n| \tag{1500}$$

$$\sigma_{nm,y} = i \left(|n\rangle m| - |m\rangle n| \right) \tag{1501}$$

$$B_x = \frac{B^+ + B^- - 2B}{2} \tag{1502}$$

$$B_y = \frac{B^- - B^+}{2i} \tag{1503}$$

Using this set of hermitian operators to write the Hamiltonians (1445)-(1447)

$$\overline{H_S(t)} = \varepsilon_0(t) |0\rangle\langle 0| + \sum_{n=1} (\varepsilon_n(t) + R_n) |n\rangle\langle n| + B \sum_{n=1} (V_{0n}(t) |0\rangle\langle n| + V_{n0}(t) |n\rangle\langle 0|) + \sum_{m,n\neq 0} V_{mn}(t) |m\rangle\langle n|$$
(1504)

$$= \varepsilon_{0}(t) |0\rangle\langle 0| + B \sum_{n=1} (V_{0n}(t) |0\rangle\langle n| + V_{n0}(t) |n\rangle\langle 0|) + \sum_{0 < m < n} (V_{mn}(t) |m\rangle\langle n| + V_{nm}(t) |n\rangle\langle m|)$$
(1505)

$$+\sum_{n=1}^{\infty} \left(\varepsilon_n\left(t\right) + R_n\right) |n\rangle\langle n| \tag{1506}$$

$$= \sum_{0 \le m \le n} \left(\left(\Re \left(V_{mn} \left(t \right) \right) + i \Im \left(V_{mn} \left(t \right) \right) \right) |m\rangle\langle n| + \left(\Re \left(V_{mn} \left(t \right) \right) - i \Im \left(V_{mn} \left(t \right) \right) \right) |n\rangle\langle m| \right) + \varepsilon_0 \left(t \right) |0\rangle\langle 0|$$

$$(1507)$$

$$+ B \sum_{n=1} (V_{0n}(t) |0\rangle\langle n| + V_{n0}(t) |n\rangle\langle 0|) + \sum_{n=1} (\varepsilon_n(t) + R_n) |n\rangle\langle n|$$
(1508)

$$= \sum_{0 < m < n} \left(\left(\Re \left(V_{nm} \left(t \right) \right) + i \Im \left(V_{mn} \left(t \right) \right) \right) \frac{\sigma_{nm,x} - i \sigma_{nm,y}}{2} + \left(\Re \left(V_{nm} \left(t \right) \right) - i \Im \left(V_{mn} \left(t \right) \right) \right) \frac{\sigma_{nm,x} + i \sigma_{nm,y}}{2} \right)$$
(1509)

$$+B\sum_{n=1}\left(V_{0n}\left(t\right)\frac{\sigma_{0n,x}-\mathrm{i}\sigma_{0n,y}}{2}+V_{n0}\left(t\right)\frac{\sigma_{0n,x}+\mathrm{i}\sigma_{0n,y}}{2}\right)+\varepsilon_{0}\left(t\right)|0\rangle\langle 0|+\sum_{n=1}\left(\varepsilon_{n}\left(t\right)+R_{n}\right)|n\rangle\langle n|\tag{1510}$$

$$= \sum_{0 \le m \le n} (\Re(V_{nm}(t)) \sigma_{nm,x} + \Im(V_{nm}(t)) \sigma_{nm,y}) + B \sum_{n=1} (\Re(V_{0n}(t)) \sigma_{0n,x} + \Im(V_{mn}(t)) \sigma_{0n,y})$$
(1511)

$$+ \varepsilon_0(t) |0\rangle\langle 0| + \sum_{n=1} (\varepsilon_n(t) + R_n) |n\rangle\langle n|$$
(1512)

$$\overline{H_{I}(t)} = \sum_{n=1} B_{z,n} |n| \langle n| + \mu_{0}(t) |0| \langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(V_{0n}(t) |0| \langle n| \left(B^{-} - B \right) + V_{n0}(t) |n| \langle 0| \left(B^{+} - B \right) \right)$$
(1513)

$$= \sum_{n=1} \left(\left(\Re \left(V_{0n} \left(t \right) \right) + i \Im \left(V_{0n} \left(t \right) \right) \right) \left(B^{-} - B \right) \frac{\sigma_{0n,x} - i \sigma_{0n,y}}{2} + \left(\Re \left(V_{0n} \left(t \right) \right) - i \Im \left(V_{0n} \left(t \right) \right) \right) \left(B^{+} - B \right) \frac{\sigma_{0n,x} + i \sigma_{0n,y}}{2} \right)$$
(1514)

$$+\sum_{\mathbf{k}=1}B_{z,n}|n\langle n|+\mu_0(t)|0\rangle\langle 0|\sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger}+b_{\mathbf{k}}\right)$$
(1515)

$$= \sum_{n=1} B_{z,n} |n\rangle\langle n| + \sum_{n=1} \left(\frac{\sigma_{0n,x}}{2} \left(\left(B^{-} - B \right) \left(\Re \left(V_{0n} \left(t \right) \right) + i\Im \left(V_{0n} \left(t \right) \right) \right) + \left(B^{+} - B \right) \left(\Re \left(V_{0n} \left(t \right) \right) - i\Im \left(V_{0n} \left(t \right) \right) \right) \right) \right)$$
(1516)

$$+\frac{i\sigma_{0n,y}}{2}\left(\left(B^{+}-B\right)\left(\Re\left(V_{0n}\left(t\right)\right)-i\Im\left(V_{0n}\left(t\right)\right)\right)-\left(B^{-}-B\right)\left(\Re\left(V_{0n}\left(t\right)\right)+i\Im\left(V_{0n}\left(t\right)\right)\right)\right)\right)$$
(1517)

$$+ \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \tag{1518}$$

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(\frac{\sigma_{0n,x}}{2} \left(B^+ + B^- - 2B \right) \Re \left(V_{0n}(t) \right) + i \left(B^- - B - B^+ + B \right) \Im \left(V_{0n}(t) \right) \right)$$
(1519)

$$+\frac{i\sigma_{0n,y}}{2}\left(\left(B^{+}-B-B^{-}+B\right)\Re\left(V_{0n}\left(t\right)\right)+i\left(B-B^{-}+B-B^{+}\right)\Im\left(V_{0n}\left(t\right)\right)\right)\right)+\sum_{n=1}B_{z,n}|n\rangle\langle n|\tag{1520}$$

$$= \sum_{n=1} B_{z,n} |n\rangle\langle n| + \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(\sigma_{0n,x} \left(B_x \Re \left(V_{0n}(t) \right) - B_y \Im \left(V_{0n}(t) \right) \right) \right)$$
(1521)

$$+\sigma_{0n,y}\left(B_{y}\Re\left(V_{0n}\left(t\right)\right)+B_{x}\Im\left(V_{0n}\left(t\right)\right)\right)\right)$$
 (1522)

B. Free-energy minimization

As first approach let's consider the minimization of the free-energy through the Feynman-Bogoliubov inequality

(1531)

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\text{Tr} \left(e^{-\beta (\overline{H_S} + \overline{H_B})} \right) \right) + \left\langle \overline{H_I} \right\rangle_{\overline{H_S} + \overline{H_B}} + O\left(\left\langle \overline{H_I^2} \right\rangle_{\overline{H_S} + \overline{H_B}} \right). \tag{1523}$$

Taking the equations (244)-(252) and given that $\operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right) = C\left(R_1, R_2, ..., R_{d-1}, B\right)$, where each R_i and B depend of the set of variational parameters $\{v_k\}$. From (252) and using the chain rule we obtain that:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial v_{\mathbf{k}}} = \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial B} \frac{\partial B}{\partial v_{\mathbf{k}}} + \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial R_n} \frac{\partial R_n}{\partial v_{\mathbf{k}}},\tag{1524}$$

$$=0 (1525)$$

Let's recall the equations (1492) and (1494), we can write them in terms of the variational parameters

$$B = \exp\left(-\left(1/2\right) \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^{2}} \coth\left(\beta \omega_{\mathbf{k}}/2\right)\right)$$
(1526)

$$R_n = \sum_{\mathbf{k}} \omega_{\mathbf{k}}^{-1} \left(v_{\mathbf{k}} - 2\mu_n \left(t \right) g_{\mathbf{k}} v_{\mathbf{k}} \right)$$
(1527)

The derivates needed to obtain the set of variational parameter are given by:

$$\frac{\partial B}{\partial v_{\mathbf{k}}} = -\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^2} \coth(\beta \omega_{\mathbf{k}}/2) B \tag{1528}$$

$$\frac{\partial R_n}{\partial v_{\mathbf{k}}} = \omega_{\mathbf{k}}^{-1} \left(2v_{\mathbf{k}} - 2\mu_n \left(t \right) g_{\mathbf{k}} \right) \tag{1529}$$

Introducing this derivates in the equation (1524) give us:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial v_{\mathbf{k}}} = \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial B} \left(-\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^{2}} \coth\left(\beta \omega_{\mathbf{k}}/2\right) B\right) + \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} \omega_{\mathbf{k}}^{-1} \left(2v_{\mathbf{k}} - 2\mu_{n}\left(t\right) g_{\mathbf{k}}\right) \tag{1530}$$

$$= v_{\mathbf{k}} \left(\frac{2}{\omega_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} - \frac{\coth\left(\beta \omega_{\mathbf{k}}/2\right) B}{\omega_{\mathbf{k}}^{2}} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial B}\right) - \frac{2g_{\mathbf{k}}}{\omega_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} \mu_{n}\left(t\right)$$

We can obtain the variational parameters:

$$v_{\mathbf{k}} = \frac{\frac{2g_{\mathbf{k}}}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta H_{S}(t)}\right)}{\partial R_{n}} \mu_{n}\left(t\right)}{\frac{2}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta H_{S}(t)}\right)}{\partial R_{n}} - \frac{\coth(\beta \omega_{\mathbf{k}}/2)B}{\omega_{\mathbf{k}}^{2}} \frac{\partial \text{Tr}\left(e^{-\beta H_{S}(t)}\right)}{\partial B}}$$
(1532)

$$= \frac{2g_{\mathbf{k}}\omega_{\mathbf{k}}\sum_{n=1}\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial R_{n}}\mu_{n}\left(t\right)}{2\omega_{\mathbf{k}}\sum_{n=1}\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial R_{n}} - B\coth\left(\beta\omega_{\mathbf{k}}/2\right)\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial B}}$$
(1533)

Now taking $v_{\mathbf{k}} = g_{\mathbf{k}}v_{\mathbf{k}}$ then we can obtain $v_{\mathbf{k}}$ like:

$$v_{\mathbf{k}} = \frac{2\omega_{\mathbf{k}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} \mu_{n}(t)}{2\omega_{\mathbf{k}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} - B \coth\left(\beta \omega_{\mathbf{k}}/2\right) \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial B}}.$$
(1534)

C. Master Equation

Let's consider that the initial state of the system is given by $\rho(0) = |0\rangle\langle 0| \otimes \rho_B$, as we can see this state is independent of the variational transformation:

$$e^{V}\rho(0)e^{-V} = \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{+}\right)(|0\rangle\langle 0|\otimes\rho_{B})\left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{-}\right)$$
(1535)

$$0 = |0\rangle\langle 0| \otimes \rho_B \tag{1536}$$

$$0 = \rho(0) \tag{1537}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O} \equiv U^{\dagger}(t) OU(t) \tag{1538}$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_S}(t')\right). \tag{1539}$$

Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t) \, \overline{\rho_S}(t) \, U(t)$$
, where (1540)

$$\overline{\rho_S}(t) = \text{Tr}_B(\bar{\rho}(t)) \tag{1541}$$

We can re-write the transformed interaction Hamiltonian operator like:

$$\overline{H_{I}(t)} = B_{z,0}|0\rangle\langle 0| + \sum_{n=1}^{\infty} (\Re(V_{0n}(t))) B_{x}\sigma_{0n,x} + \Re(V_{0n}(t)) B_{y}\sigma_{0n,y} + B_{z,n}|n\rangle\langle n|$$
(1542)

$$+\Im\left(V_{0n}\left(t\right)\right)B_{x}\sigma_{0n,y}-\Im\left(V_{0n}\left(t\right)\right)B_{y}\sigma_{0n,x}$$
(1543)

where

$$B_{z,0} = \sum_{\mathbf{k}} g_{\mathbf{k}} \mu_0 \left(t \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \tag{1544}$$

$$B_{z,n} = \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n \left(t \right) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \text{ if } n \neq 0$$
(1545)

Now consider the following set of operators:

$$A_{1n}(t) = \sigma_{0n,x}$$
 (1546)

$$A_{2n}(t) = \sigma_{0n,y}$$
 (1547)

$$A_{3n}(t) = |n\rangle\langle n|$$
 (1548)

$$A_{4n}(t) = A_{2n}(t)$$
 (1549)

$$A_{5n}(t) = A_{1n}(t)$$
 (1550)

$$B_{1n}(t) = B_x$$
 (1551)

$$B_{2n}(t) = B_y$$
 (1552)

$$B_{3n}(t) = B_{2n}$$
 (1553)

$$B_{4n}(t) = B_{1n}(t)$$
 (1554)

$$B_{5n}(t) = B_{2n}(t)$$
 (1555)

$$C_{10}(t) = 0$$
 (1556)

$$C_{20}(t) = 0$$
 (1557)

$$C_{40}(t) = 0$$
 (1558)

$$C_{50}(t) = 0$$
 (1559)

$$C_{30}(t) = 1$$
 (1560)

$$C_{1n}(t) = \Re(V_{0n}(t))$$
 (1561)

$$C_{2n}(t) = C_{1n}(t)$$
 (1562)

$$C_{3n}(t) = 1$$
 (1563)

$$C_{4n}(t) = \Im(V_{0n}(t))$$
 (1564)

$$C_{5n}(t) = -\Im(V_{0n}(t))$$
 (1565)

The previous notation allows us to write the interaction Hamiltonian in $\overline{H_I}(t)$ as:

$$\overline{H_I} = \sum_{j \in J} \sum_{n=1} C_{jn} \left(t \right) \left(A_{jn} \otimes B_{jn} \left(t \right) \right) \tag{1566}$$

Here $J = \{1, 2, 3, 4, 5\}.$

We write the interaction Hamiltonian transformed under (1538) as:

$$\widetilde{H_{I}}(t) = \sum_{j \in J} \sum_{n=1} C_{jn}(t) \left(\widetilde{A_{jn}}(t) \otimes \widetilde{B_{jn}}(t) \right)$$
(1567)

$$\widetilde{A}_{i}\left(t\right) = U^{\dagger}\left(t\right)A_{i}U\left(t\right) \tag{1568}$$

$$\widetilde{B_i}(t) = e^{iH_B t} B_i(t) e^{-iH_B t}$$
(1569)

Taking as reference state ρ_B and truncating at second order in $H_I(t)$), we obtain our master equation in the interaction picture:

$$\frac{\widetilde{d\widetilde{\rho_S}}(t)}{dt} = -\int_0^t \operatorname{Tr}_B\left[\widetilde{H}_I(t), \left[\widetilde{H}_I(s), \widetilde{\rho_S}(t)\rho_B\right]\right] ds$$
(1570)

Replacing the equation (1567)in (1570)we can obtain:

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{H}_{I}(t), \left[\widetilde{H}_{I}(s), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j \in J} \sum_{n=1} C_{jn}(t) \left(\widetilde{A_{jn}}(t) \otimes \widetilde{B_{jn}}(t)\right), \left[\sum_{j' \in J} \sum_{n'=1} C_{j'n'}(s) \left(\widetilde{A_{j'n'}}(s) \otimes \widetilde{B_{j'n'}}(s)\right), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$
(1571)

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right),\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}\right]\right]$$
(1573)

$$-\widetilde{\rho_S}(t)\,\rho_B \sum_{j'\in J} \sum_{n'=1} C_{j'n'}(s) \left(\widetilde{A_{j'n'}}(s)\otimes \widetilde{B_{j'n'}}(s)\right) \right] ds \tag{1574}$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B} \quad (1575)$$

$$-\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{S}\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)$$
(1576)

$$-\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)$$
(1577)

$$+\widetilde{\rho_{S}}(t)\,\rho_{B}\sum_{j'\in J}\sum_{n'=1}C_{j'n'}(s)\left(\widetilde{A_{j'n'}}(s)\otimes\widetilde{B_{j'n'}}(s)\right)\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\right)ds\tag{1578}$$

In order to calculate the correlation functions we define:

$$\Lambda_{jnj'n'}(\tau) = \left\langle \widetilde{B_{jn}}(t)(t)\widetilde{B_{j'n'}}(t)(s) \right\rangle_{B}$$
(1579)

$$= \left\langle \widetilde{B_{jn}} \left(\tau \right) \widetilde{B_{j'n'}} \left(0 \right) \right\rangle_{B} \tag{1580}$$

Here $s \to t - \tau$ and $\mathrm{Tr}_B\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_B\right) = \left\langle \widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\right\rangle_B$. To evaluate the trace respect to the bath we need to recall that our master equation depends of elements related to the bath and represented by the operators $\widetilde{B_{jn}}\left(t\right)$ and elements related to the system given by $\widetilde{A_{jn}}\left(t\right)$. The systems considered are in different Hilbert spaces so $\mathrm{Tr}\left(\widetilde{A_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(t\right)\right) = \mathrm{Tr}\left(\widetilde{A_{jn}}\left(t\right)\right)\mathrm{Tr}\left(\widetilde{B_{j'n'}}\left(t\right)\right)$. The correlation functions relevant of the master equation (1578) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\right) = \left\langle \widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\right\rangle_{B} \tag{1581}$$

$$= \left\langle \widetilde{B_{jn}}(0) \, \widetilde{B_{j'n'}}(0) \right\rangle_{R} \tag{1582}$$

$$=\Lambda_{jnj'n'}\left(\tau\right)\tag{1583}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\rho_{B}\widetilde{B_{j'n'}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\rho_{B}\right) \tag{1584}$$

$$= \left\langle \widetilde{B_{j'n'}}(s) \, \widetilde{B_{jn}}(t) \right\rangle_{R} \tag{1585}$$

$$= \left\langle \widetilde{B_{j'n'}} \left(-\tau \right) \widetilde{B_{jn}} \left(0 \right) \right\rangle_{R} \tag{1586}$$

$$=\Lambda_{j'n'jn}\left(-\tau\right)\tag{1587}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\widetilde{B_{jn}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\right) \tag{1588}$$

$$= \left\langle \widetilde{B_{jn}}(t) \, \widetilde{B_{j'n'}}(s) \right\rangle_{B} \tag{1589}$$

$$= \left\langle \widetilde{B_{jn}} \left(\tau \right) \widetilde{B_{j'n'}} \left(0 \right) \right\rangle_{R} \tag{1590}$$

$$=\Lambda_{jnj'n'}\left(\tau\right)\tag{1591}$$

$$\operatorname{Tr}_{B}\left(\widetilde{\rho_{B}B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\widetilde{\rho_{B}}\right)$$
(1592)

$$= \left\langle \widetilde{B_{j'n'}}(s)\,\widetilde{B_{jn}}(t) \right\rangle_{B} \tag{1593}$$

$$= \left\langle \widetilde{B_{j'n'}} \left(-\tau \right) \widetilde{B_{jn}} \left(0 \right) \right\rangle_{B} \tag{1594}$$

$$=\Lambda_{j'n'jn}\left(-\tau\right)\tag{1595}$$

We made use of the cyclic property for the trace to evaluate the correlation functions, from the equations obtained in (1571) and (1578) and using the equations (1581)-(1595) we can re-write:

$$\frac{\widetilde{d\widetilde{\rho_{S}}}(t)}{dt} = -\int_{0}^{t} \sum_{j,j',n,n'} \left(C_{jn}(t) C_{j'n'}(s) \left(\Lambda_{jnj'n'}(\tau) \widetilde{A_{jn}}(t) \widetilde{A_{j'n'}}(s) \widetilde{\rho_{S}}(t) - \Lambda_{j'n'jn}(-\tau) \widetilde{A_{jn}}(t) \widetilde{\rho_{S}}(t) \widetilde{A_{j'n'}}(s) \right) \right)$$

$$(1596)$$

$$+C_{jn}\left(t\right)C_{j'n'}\left(s\right)\left(\Lambda_{j'n'jn}\left(-\tau\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j'n'}}\left(s\right)\widetilde{A_{jn}}\left(t\right)-\Lambda_{jnj'n'}\left(\tau\right)\widetilde{A_{j'n'}}\left(s\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{jn}}\left(t\right)\right)\right)ds\tag{1597}$$

$$=-\int_{0}^{t}\sum_{j,j',n,n'}\left(C_{jn}\left(t\right)C_{j'n'}\left(s\right)\left(\Lambda_{jnj'n'}\left(\tau\right)\left[\widetilde{A_{jn}}\left(t\right),\widetilde{A_{j'n'}}\left(s\right)\widetilde{\overline{\rho_{S}}}\left(t\right)\right]+\Lambda_{j'n'jn}\left(-\tau\right)\left[\widetilde{\overline{\rho_{S}}}\left(t\right)\widetilde{A_{j'n'}}\left(s\right),\widetilde{A_{jn}}\left(t\right)\right]\right)\right)$$
(1598)

$$\frac{\mathrm{d}\,\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\int_{0}^{t} \sum_{j,j',n,n'} \left(C_{jn}\left(t\right)C_{j'n'}\left(t-\tau\right)\left(\Lambda_{jnj'n'}\left(\tau\right)\left[A_{jn}\left(t\right),A_{j'n'}\left(t-\tau,t\right)\overline{\rho_{S}}\left(t\right)\right] + \Lambda_{j'n'jn}\left(-\tau\right)\left[\overline{\rho_{S}}\left(t\right)A_{j'n'}\left(t-\tau,t\right),A_{jn}\left(t\right)\right]\right)\right) \mathrm{d}\tau - \mathrm{i}\left[H_{S}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]$$

$$(1599)$$

For this case we used that A_{jn} $(t - \tau, t) = U(t) U^{\dagger}(t - \tau) A_{jn}(t) U(t - \tau) U^{\dagger}(t)$. This is a non-Markovian equation and if we take n = 2 (two sites), $\mu_0(t) = 0$, $\mu_1(t) = 1$ then we can reproduce a similar expression to (451) as expected.

VIII. BIBLIOGRAPHY

- [1] McCutcheon D P S, Dattani N S, Gauger E M, Lovett B W and Nazir A 2011 Phys. Rev. B 84 081305
- [2] Dara P S McCutcheon and Ahsan Nazir 2010 New J. Phys. 12 113042
- [3] Supplement: Theoretical model of phonon induced dephasing. A.J. Ramsay ey al 2009.
- [4] Felix A Pollock et al 2013 New J. Phys. 15 075018

^{*} n.dattani@cfa.harvard.edu † edcchaparroso@unal.edu.co