1 Lezione del 25-03-25

Proseguiamo con la discussione delle proprietà della trasformata di Laplace.

1.0.1 Teorema del valor iniziale

Un utile teorema per il calcolo del valore iniziale di una funzione a partire dal suo sviluppo di Taylor è il seguente:

Teorema 1.1: Teorema del valor iniziale

Per una funzione f con trasformata di Laplace F vale:

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} (s \cdot G(s))$$

Conosciamo l'espansione di Taylor di una funzione:

$$f(t) = f(t_0) + f'(t_0)(t - t_0) + \dots + \frac{f^{(k)}(t_0)}{k!}(t - t_0)^k$$

che con t = 0 dà:

$$f(t) = f(t_0) + f'(t_0)t + \dots + \frac{f^{(k)}(t_0)}{k!}t^k$$

Notiamo che da Laplace noi già conosciamo i vari $\frac{t^k}{k!}$ come:

$$\mathcal{L}\left\{\frac{t^k}{k!}\cdot H(t)\right\} = \frac{1}{s^{k+1}}$$

e quindi:

$$G(s) = f(t_0)\frac{1}{s} + \dots + f^{(k)}(t_0)\frac{1}{s^{k+1}}$$

Varrà allora che:

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} (s\cdot G(s))$$

questo è uno dei cosiddetti **legami globali** fra la funzione f e la sua trasformata di Laplace F.

Possiamo sfruttare questo legame per avere informazioni riguardo al valore iniziale di f: basterà prendere il limite di $s \cdot G(s)$ ad infinito.

1.0.2 Teorema del valor finale

Possiamo ricavare un risultato simile per il valore finale semplicemente scambiando i punti di limite:

Teorema 1.2: Teorema del valor finale

Per una funzione f con trasformata di Laplace F vale:

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}(s\cdot G(s))$$

Con condizione di validità che $\lim_{t\to\infty} f(t)$ esista finito.

Possiamo dimostrare il risultato partendo dalla trasformata di Laplace della derivata di f, cioè:

$$\mathcal{L}\left\{\frac{df}{dt}(t)\right\} = \int_0^{+\infty} \frac{df}{dt}(t) \cdot e^{-st} dt = sG(s) - f(0)$$

Prendendo $s \to 0$, si ha:

$$\int_0^{+\infty} \frac{df}{dt}(t) dt = \lim_{s \to 0} sG(s) - f(0)$$

a questo punto basta accorgersi che $\int_0^{+\infty} \frac{df}{dt}(t) dt = \lim_{t\to\infty} f(t) - f(0)$, e quindi:

$$\lim_{t \to \infty} f(t) - f(0) = \lim_{s \to 0} sG(s) - f(0) \implies \lim_{t \to \infty} f(t) = \lim_{s \to 0} sG(s)$$

che è la tesi. □

1.1 Scomposizione in fratti semplici

Vediamo la parte di teoria che ci facilita l'antitrasformazione delle trasformate di Laplace.

1.1.1 Rapporti di polinomi

La maggior parte delle trasformate di Laplace che incontreremo non sono altro che rapporti di polinomi in forma:

$$G(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s - s_1)^h (s - s_1)^{h-1} \dots (s - s_1) + R(s)}$$

presi i poli in s_1 , dove gli $(s - s_1)^{h-i+1}$ sono gli h poli di molteplicità h - i + 1 in s_1 , e R(s) rappresenta tutti gli altri poli.

Si potrà allora riscrivere G(s) come la somma dei residui polari:

$$G(s) = \frac{k_1}{(s-s_1)^h} + \frac{k_2}{(s-s_1)^{h-1}} \dots + \frac{k_h}{(s-s_1)} + T(s)$$

dove T(s) rappresenta i residui polari dei poli in R(s), nella speranza che i singoli termini $\frac{k_i}{(s-s_1)^{h-i}}$ siano facili da antitrasformare (solitamente in esponenziali o componenti oscillatorie).

1.1.2 Teorema dei residui

Riprendendo l'ultima formula dello scorso paragrafo, moltiplicando a sinistra e a destra per $(s - s_1)^h$ si ottiene:

$$(s-s_1)^h \cdot G(s) = k_1 + k_2(s-s_1) + \dots + k_h(s-s_1)^{h-1} + T(s)(s-s_1)^h$$

Prendendo il limite per $s \rightarrow s_1$ si ottiene:

$$\lim_{s \to s_1} \left((s - s_1)^h \cdot G(s) \right) = k_1$$

Derivando nuovamente si ottiene k_2 :

$$\lim_{s \to s_1} \frac{d}{ds} (s - s_1)^h \cdot G(s) = k_2 + \dots + k_h (h - 1)(s - s_1)^{h-2} + hT(s)(s - s_1)^{h-1} = k_2$$

Continuando ad iterare si ottiene quindi:

$$k_i = \lim_{s \to s_1} \frac{1}{(i-1)!} \frac{d^{i-1}(s-s_1)^h \cdot G(s)}{ds^{i-1}}$$

che ricordiamo come il **teorema dei residui** per residui di molteplicità i.

1.1.3 Esempio: scomposizione con poli multipli

Vediamo un esempio pratico di applicazione. Prendiamo la G(s):

$$G(s) = \frac{s+2}{(s+3)\cdot(s+1)^3} = \frac{A}{s+3} + \frac{B}{s+1} + \frac{C}{(s+1)^2} + \frac{D}{(s+1)^3}$$

Dal punto di vista dell'automatica, se prendessimo questo G(s) come l'uscita Y(s), staremmo effettivamente prendendo la risposta all'impulso $\delta(t)$ in dominio tempo (ricordiamo che $\delta(t)$ trasforma a 1).

Troviamo quindi i coefficienti dei fratti semplici sfruttando il teorema dei residui:

$$A = \lim_{s \to -3} (s+3) \cdot G(s) = \lim_{s \to -3} \frac{s+2}{(s+1)^3} = \frac{1}{8}$$

$$D = \lim_{s \to -1} (s+1)^3 \cdot G(s) = \lim_{s \to -1} \frac{s+2}{s+3} = \frac{1}{2}$$

$$C = \lim_{s \to -1} \frac{d}{ds} (s+1)^2 \cdot G(s) = \lim_{s \to -1} \frac{(s+3) - (s+2)}{(s+3)^2} = \frac{1}{4}$$

Per la *B*, effettuiamo semplicemente la somma:

$$G(s) = \frac{A(s+1)^3 + B(s+3)(s+1)^2 + C(s+1)(s+3) + D(s+3)}{(s+3)(s+1)^3} = \frac{s+2}{(s+3)(s+1)^3}$$

Notiamo che gli unici termini che moltiplicano un s^3 saranno A e B, e che un termine s^3 non compare a destra, quindi dovrà essere:

$$A + B = 0 \implies A = -B$$

e quindi:

$$B = -A = -\frac{1}{8}$$

Possiamo quindi riscrivere la G(s) come:

$$G(s) = \frac{1}{8(s+3)} - \frac{1}{8(s+1)} + \frac{1}{4(s+1)^2} + \frac{1}{2(s+1)^3}$$

da cui l'antitrasformata:

$$g(t) = \frac{1}{8}e^{-3t} - \frac{1}{8}e^{-t} + \frac{1}{4}te^{-t} + \frac{1}{2}t^2e^{-t}$$

1.1.4 Esempio: scomposizione con poli complessi coniugati

Vediamo un altro esempio, con la G(s):

$$G(s) = \frac{1}{(s^2+1)^2} = \frac{1}{(s+j)^2(s-j)^2} = \frac{A}{s+j} + \frac{A^*}{s-j} + \frac{B}{(s+j)^2} + \frac{B^*}{(s-j)^2}$$

dove notiamo che i coniugati dei residui sono i residui dei coniuigati.

Troviamo quindi i residui:

$$A = \lim_{s \to -j} \frac{d}{ds} (s+j)^2 \cdot G(s) = \lim_{s \to -j} \frac{d}{ds} \frac{1}{(s-j)^2} = \frac{j}{4}$$

da cui:

$$A^* = -\frac{j}{4}$$

e:

$$B = \lim_{s \to -j} (s+j)^2 \cdot G(s) = \lim_{s \to -j} \frac{1}{(s-j)^2} = -\frac{1}{4}$$

da cui:

$$B^* = -\frac{1}{4}$$

Otteniamo quindi:

$$G(s) = \frac{j}{4(s+j)} - \frac{j}{4(s-j)} - \frac{1}{4(s+j)^2} - \frac{1}{4(s-j)^2}$$

da cui l'antitrasformata:

$$g(t) = \frac{j}{4} \left(e^{-jt} - e^{jt} \right) \cdot H(t) - \frac{1}{4} t \left(e^{-jt} + e^{jt} \right) \cdot H(t) = \frac{1}{2} \left(\sin(t) - \cos(t) \right) \cdot H(t)$$

1.2 Risposta all'impulso

I sistemi LTI possono essere caratterizzati attraverso la loro risposta all'impulso, rappresentato dal delta di Dirac $\delta(t)$. Cioè si può dire che:

$$u(t) = \delta(t) \implies y(t) = h(t)$$

con h(t) la risposta del sistema a $\delta(t)$, ricordando lo schema:

Notiamo che questo metodo fornisce solamente la relazione ingresso/uscita. L'utilità sta nel fatto che la risposta all'impulso può essere usata per determinare come il sistema risponde ad altri ingressi arbitrari (u(t)), attraverso la convoluzione:

$$y(t) = \int_0^t h(t-\tau)u(\tau) d\tau = \int_0^t h(t)u(t-\tau) d\tau$$

dove h(t) è sempre la risposta all'impulso di Dirac.

La motivazione di questo procedimento deriva dal fatto che possiamo interpretare la u(t) in entrata come la sovrapposizione di infiniti impulsi $\delta(t-\tau)$:

$$u(t) = \int_{-\infty}^{+\infty} u(\tau)\delta(t - \tau) d\tau$$

Allora, sfruttando la linearità del sistema, possiamo interpretare l'uscita y(t) come la combinazione lineare delle risposte $h(t-\tau)$ alle singole delta:

$$y(t) = \int_{-\infty}^{+\infty} u(\tau)h(t-\tau) d\tau$$

che gestendo i limiti di integrazione è esattamente quello che abbiamo detto prima.

Ricordiamo quindi che nel dominio di Laplace l'integrale di convoluzione è semplice, basta infatti moltiplicare la risposta all'ingresso:

$$Y(s) = U(s) \cdot H(s)$$

1.2.1 Risposta all'impulso e funzione di trasferimento

L'antitrasformata della funzione di trasferimento rappresenta la risposta all'impulso unitario, cioè noti Y(s) e U(s):

$$G(s) = \frac{Y(s)}{U(s)} \implies Y(s) = U(s) \cdot G(s)$$

cioè esattamente la definizione di risposta all'impulso unitario.

Inoltre, vale che l'*integrale* della risposta all'impulso unitario rappresenta la risposta al gradino unitario (sempre per applicazione della linearità dell'operatore integrale, che ricordiamo applicato all'impulso dà il gradino):

$$\mathcal{L}^{-1}\left\{\frac{G(s)}{s}\right\} = \int g(t) \, dt$$

1.3 Diagrammi a blocchi

I diagrammi a blocchi sono una rappresentazione standard e uniforme di sistemi e sottosistemi interconnessi con funzioni di trasferimento. Permettono l'identificazione di ingressi, usciti ed elementi dinamici, e quind risultano utili concettualmente in fase di progettazione e analisi.

Nel dettaglio, studieremo 3 tipi di schemi particolari, e introdurremo la cosiddetta algebra dei blocchi.

1.3.1 Connessione in serie

La connessione in serie avviene quando più sistemi, rappresentati da una particolare funzione di trasferimento, sono connessi fra di loro ingressi ad uscite, o come si vede dal grafico:

grafico e -> [
$$G1(s)$$
] - u -> [$G2(s)$] -> y

Avremo allora che vale:

$$\begin{cases} Y(s) = G_2(s)U(s) \\ U(s) = G_1(s)E(s) \end{cases}$$

da cui:

$$Y(s) = G_2(s)G_1(s)E(s) \implies G(s) = G_1(s)G_2(s)$$

1.3.2 Connessione in parallelo

La connessione in parallelo avviene quando più sistemi, rappresentati da una particolare funzione di trasferimento, sono connessi a un unico ingresso e un unica uscita (in un sommatore), o come si vede dal grafico:

G2(s)

 $G3(s) \rightarrow somm. \rightarrow y$

In questo caso varrà:

$$Y(s) = G_1(s)R(s) + G_2(s)R(s) + G_3(s)R(s) = (G_1(s) + G_2(s) + G_3(s))R(s)$$

da cui:

$$G(s) = G_1(s) + G_2(s) + G_3(s)$$

1.3.3 Connessione in retroazione

Vediamo un costrutto tipico dell'automatica: l'anello di controllo:

grafico r -> somm $_-^+$ - e -> G1(s) -> $yy_mG2(s)$ < -tornain retroazione al somm. In questo caso vale:

$$\begin{cases} Y(s) = G_1(s)E(s) \\ E(s) = R(s) - Y_m(s) \\ Y_m(s) = G_2(s)Y(s) \end{cases}$$

da cui:

$$Y(s) = G_1(s) (R(s) - Y_m(s)) = G_1(s) (R(s) - G_2(s)Y(s))$$

allora:

$$Y(s) + G_1(s)G_2(s)Y(s) = G_1(s)R(s) \implies G(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

1.4 Raggiungibilità e osservabilità dei sistemi aggregati

Vediamo come si valutano raggiungibilità e osservabilita nell'algebra dei blocchi, guardando ai diagrammi a blocchi.

1.4.1 Oss. e ragg. della connessione in serie

Abbiamo che la funzione di trasferimento di una connessione in serie sarà una forma:

$$G(s) = G_1(s)G_2(s) = \frac{N_1(s)N_2(s)}{D_1(s)D_2(s)}$$

dove gli N_i , D_i sono numeratori e denominatori (uscite e ingressi) dellefunzioni di trasferimento G_i .

Possiamo sfruttare questo risultato per fare delle considerazioni su raggiungibilità e osservabilità. In particolare:

- Se N_1 e D_2 hanno radici in comune, G non è raggiungibile (cancellazione zeropolo);
- Se N_2 e D_1 hanno radici in comune, G non è osservabile (cancellazione polo-zero).

1.4.2 Oss. e ragg. della connessione in parallelo

Possiamo fare considerazioni simili sulla connessione in parallelo:

$$G(s) = G_1(s) + G_2(s) = \frac{N_1(s)}{D_1(s)} + \frac{N_2(s)}{D_2(s)} = \frac{N_1(s)D_2(s) + N_2(s)D_1(s)}{D_1(s)D_2(s)}$$

In questo caso, se D_1 e D_2 hanno radici comuni G non è raggiungibile (i poli si sovrappongono).

1.4.3 Oss. e ragg. della connessione in retroazione

Infine, vediamo il caso della connessione in retroazione:

$$G(s) = \frac{\frac{N_1(s)}{D_1(s)}}{1 + \frac{N_1(s)}{D_1(s)} \frac{N_2(s)}{D_2(s)}} = \frac{N_1(s)D_2(s)}{D_1(s)D_2(s) + N_1(s)N_2(s)}$$

Abbiamo quindi le regole relative alla connessione serie per il singolo prodotto G_1G_2 . Le cancellazioni possono poi avvenire quando N_1 e D_2 hanno poli comuni.

Notiamo infine che la retroazione *modifica i poli ma non gli zeri* del sistema in catena diretta, dove i **poli** sono le radici del *denominatore* e gli **zeri** sono le radici del *numeratore*.