Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 2

Consigna

Sea $T:V\to V$ una transformación lineal.

- 1. Si W_1 y W_2 son subespacios de V invariantes bajo T, probar que $W_1\cap W_2$ y W_1+W_2 son invariantes bajo T.
- 2. Probar que si λ es valor propio de T, entonces el subespacio propio S_{λ} es invariante bajo T.
- 3. Probar que si λ es valor propio de T y $W=[v_1,v_2],$ con $v_1\in S_\lambda$ y $T(v_2)=v_1,$ entonces Wes invariante bajo T.
- 4. Si W es un subespacio de V invariante bajo T y $\dim(W)=1$:
 - (a) Probar que los vectores no nulos de W son vectores propios de T.
 - (b) Es W un subespacio propio de T? Justificar.
- 5. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que los siguientes subespacios son invariantes bajo T:
 - $\bullet \ \ W_1 = \{(x,y,z) \in \mathbb{R}^3 : x + 2y z = 0\},$
 - $W_2 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\},\$
 - $\bullet \ \ W_3 = \{(x,y,z) \in \mathbb{R}^3 : x+y-2z = 0\}$
 - (a) Probar que T es diagonalizable.
 - (b) Sabiendo que $2T-T^2=Id$ en W_1 y T=2Id en $W_2\cap W_3$, hallar los valores propios de T.

Resolución

Parte 1

$$W_1 \cap W_2$$

Tomemos $v \in W_1 \cap W_2$, como W_1 y W_2 son T-invariantes, tenemos que:

- $\begin{array}{ll} \bullet & T(v) \in W_1 \text{ y,} \\ \bullet & T(v) \in W_2 \end{array}$

se cumplen simultaneamente.

Por lo tanto uniendo estas dos tenemos que:

$$T(v) \in W_1 \cap W_2$$

Lo que significa que $W_1 \cap W_2$ es T-invariante porque tomamos v arbitrario.

$$W_1 + W_2$$

Tomemos $v=w_1+w_2$ con $w_1\in W_1, w_2\in W_2$. Por lo que $v\in W_1+W_2$

Aplicando T de ambos lados tenemos que:

$$T(v) = T(w_1) + T(w_2) \\$$

Como W_1 y W_2 son invariantes tenemos que $T(w_1) \in W_1$ y $T(w_2) \in W_2$

Entonces
$$T(v) = T(w_1) + T(w_2) \in W_1 + W_2$$

Lo que demuestra que $W_1 + W_2$ es T-invariante

Parte 2

Tomemos $v \in S_{\lambda}$, por definición de subespacio propio tenemos que $T(v) = \lambda v$.

Pero $\lambda v \in S_{\lambda},$ por lo que S_{λ} es T-invariante.

Parte 3

Queremos probar que dado $w \in W = [v_1, v_2]$, tenemos que $T(w) \in W$. Donde v_1 es valor propio de T, y $T(v_2) = v_1$.

Si $w = av_1 + bv_2$ entonces $T(w) = a\lambda v_1 + bv_1 = ab\lambda v_1$.

Por lo que entonces W es T-invariante, ya que $T(w) \in W$ por lo visto anteriormente.

Parte 4

Sea W un subespacio de V T-invariante de dim(W) = 1.

Consideremos $\mathcal{B} = \{v_1\}$ base de W y un vector no nulo $w \in W$.

• $w = av_1 \text{ con } a \in \mathbb{K}, a \neq 0$

Como W es invariante, tenemos que $T(w) \in W$, por lo que lo podemos escribir como

• $T(w) = bv_1$

Juntando con lo anterior tenemos que:

• $T(av_1) = bav_1$

Por lo que $av_1 = w$ es un vector propio de T asociado al valor propio b.

Con esto probamos ambas partes, porque W es un subespacio generado por $v_1,$ que es un vector propio de T. Por lo tanto es un subespacio propio asociado a al valor propio b.

Parte 5

Para enfrentar esta parte tenemos en cuenta las propiedades vistas en la parte 1. Veamos de hallar las intersecciones entre los subespacios invariantes.

$$W_1 \cap W_2$$

Queremos v = (x, y, z) tal que:

$$\begin{cases} x + 2y - z = 0 \\ x + y + z = 0 \end{cases}$$

Sumando las ecuaciones, obtenemos que:

- $2x + 3y = 0 \Rightarrow x = -\frac{3}{2}y$ $x + y + z \Rightarrow z = \frac{1}{2}y$

Por lo que una base de este subespacio podría ser:

$$\{(-\frac{3}{2},1,\frac{1}{2})\}$$

O, para simplificar:

$$\{(-3,2,1)\}$$

$$W_1 \cap W_3$$

Queremos v = (x, y, z) tal que:

$$\begin{cases} x+2y-z=0\\ x+y-2z=0 \end{cases}$$

Restando las dos ecuaciones obtenemos que:

- $y + z = 0 \Rightarrow z = -y$
- $x + y + 2y = 0 \Rightarrow x = -3y$

Por lo que una base de este subespacio podría ser:

$$\{(-3,1,-1)\}$$

$$W_2 \cap W_3$$

Queremos v = (x, y, z) tal que:

$$\begin{cases} x + y + z = 0 \\ x + y - 2z = 0 \end{cases}$$

Restando las dos ecuaciones obtenemos que:

- $3z = 0 \Rightarrow z = 0$
- x = -y

Por lo que una base de este subespacio podría ser:

$$\{(-1,1,0)\}$$

Por la parte 4 sabemos que todos estos vectores son propios, pues $W_i \cap W_j$ son subespacios invariantes de dimensión 1.

Si estos fueran LI, entonces tendríamos una base de \mathbb{R}^3 de vectores propios, lo cual implicaría que T es diagonalizable.

Investiguemos si los tres vectores son LI con el método del determinante:

$$\begin{vmatrix} -3 & -3 & -1 \\ 2 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = 0 + 2 - 3 - (-1 + 3 + 0) = -3$$

La propiedad nos dice que si este determinante (con los vectores colgados como columnas) da distinto a 0, entonces los vectores son LI.

Por el razonamiento anterior, concluimos que T es diagonalizable.

Evito la parte 5B porque no la termino de entender.