فهرست مطالب

۲													۱ درخت قرمز-مشکی (Red-Black)																										
۲		•				•	•	•		•	•	•	•			•			(1	Re	ed	-E	3la	acl	k)) ر	کر	مش	مز−	قره	غت	در-	ای	ھ	ٟگی	ويز		١.١	
۲																											Ú	ئىكى	مش	مز-	، قر	خت	در	ت	ىاخ	ی س	وه ;	نحو	۲
۴																														ت	اسد	مز	قر	U	$^{ m J}{ m nc}$	le		۱.۲	
۵																														ىىت	ن ار	نىكر	من	U	$^{ m J}{ m nc}$	le	١	۲.۲	
۵									,																			Zig	g-7	Zig	اول	ت ا	عال	>	١.	۲.۲			
۶	•								•	•				•					•							•	Z	Zig	-Z	ag	دوم	ت ،	عال	>	۲.	۲.۲			
18																						ئی	ثىك	من	ز-، ز	رم	، ق	خت	در<	، از	ذف	> (لف	خت	ه ر	ھاء	ت	حال	۳
۱۶															?	ىد	Ф :	ه ر	می	ò á	ر <u>ځ</u>	ور	طو	چ	Ŀ	ویر	ود	ے ر	نوی	ىىتج	جى	غت	درخ	<u>:</u> ر ۱	ف د	حذ	١	۱.۳	
۱۶																																				حال			
۱۷																																	۰ ۴	دوه	ت ه	حال	٣	۳.۲	
۱۷																																				حال			
۱۸																																	-			خل			
19																								Ŀ	,ک	مش	ز-ه	<u>.</u> فرمز	ى ق	رخن	ز د	ف ا	عذذ	ز <	ی ا	ھاي	نه	نمو	۴

۱ درخت قرمز-مشکی (Red-Black)

۱.۱ ویژگی های درخت قرمز-مشکی (Red-Black

- ۱. یک درخت جستجوی دودویی متوازن از نظر ارتفاع می باشد .
 - ۲. هر نود به رنگ قرمز یا مشکی می باشد .
 - ۳. عنصر root در درخت به رنگ مشکی می باشد .
 - ۴. عنصر null یا تھی نیز به رنگ مشکی می باشد .
- ۵. تعداد عناصر مشکی از هر مسیری از root به سمت برگ ها برابر هست
 - ۹. Parent و Children نمی توانند هر دو به رنگ قرمز باشند .
 - ۷. نود تازه اضافه شده به رنگ قرمز می باشد .
 - ۸. ارتفاع درخت قرمز-مشکی برابر است با :

 $\log\left(n\right) \le h \le 2\log\left(n\right)$

۲ نحوه ی ساخت درخت قرمز-مشکی

فرض كنيد عناصر

keys: 10, 20, 30, 50, 40, 60, 70, 80, 4, 8

را به ترتیب برای ساخت درخت قرمز-مشکی استفاده کنیم .

درج در درخت قرمز-مشکی همانند درخت جستوی دودویی می باشد . وقتی یک نود جدید به درخت قرمز-مشکی اضافه می شود ، آن نود به رنگ قرمز باشد باشد

در ابتدا عنصر $10 \over 10$ را اضافه می کنیم و این عنصر به رنگ قرمز می باشد .

 $\underbrace{\text{insert } 10}$

. از آنجایی که ریشه ($({
m root})$ به رنگ مشکی می باشد عنصر از به $({
m root})$ را به از آنجایی که ریشه ($({
m root})$ به رنگ مشکی می باشد عنصر

Change root to Black

سپس عنصر ²⁰ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد .

 $\xrightarrow{\text{insert } 20}$

سپس عنصر ³⁰⁾ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، درج این عنصر مشکل **برخورد قرمزها** (red-red conflict) را به وجود می آورد .

برخورد قرمزها (red-red conflict)

هرگاه برخورد قرمزها پیش بیاید به معنای عدم توازن در درخت قرمز-مشکی می باشد و شما برای برقراری دوباره ی توازن نیاز به تغییراتی در ساختار درخت قرمز-مشکی دارید . دو روش برای انجام تغییرات وجود دارد :

- (Re-Coloring) ا. تغییر رنگ
 - ۲. چرخش (Rotation)

(Uncle) دایی

برای ادامه ی بحث ما نیاز به آشنایی با یک مفهوم جدید به نام دایی یا Uncle داریم که به معنای نودِ همسایه ی پدر می باشد

از این به بعد برای اشاره به این مفهوم از واژه ی Uncle استفاده می کنیم .

وقنی برخورد قرمزها به وجود می آید می توانیم ۲ حالت نسبت به Uncle نود تازه اضافه شده داشته باشیم .

Uncle ۱.۲ قرمز است

وقتی Uncle نود تازه اضافه شده قرمز باشد ما از روش تغییر رنگ (Re-Coloring) استفاده می کنیم .

در صورتی که بعد از تغییر رنگ ، نود (Grand Parent) همان ریشه ی درخت بود آن را به رنگ مشکی تغییر می دهیم .

```
if ( GP == root ) {
   Re-Color GP to Black
}
```


Uncle ۲.۲ مشکی است

۲.۲.۲ حالت اول Zig-Zig

وقتی Uncle نود تازه اضافه شده مشکی باشد ما از روش چرخش (Rotation) و در صورت نیاز از تغییر رنگ (Re-Coloring) استفاده می کنیم .

به خاطر اینکه نود ریشه ی درخت قرمز است آن را به رنگ مشکی تغییر می دهیم .

${f Zig\text{-}Zag}$ حالت دوم ۲.۲.۲

به خاطر اینکه نود ریشه ی درخت قرمز است آن را به رنگ مشکی تغییر می دهیم .

حالت های زیر نیز می توانند رخ دهند :

Zig-Zig Zig-Zag

حالا که مفاهیم و نکات جدیدی در ارتباط با درخت قرمز-مشکی یاد گرفتیم می توانیم به ساخت درخت قبلی خودمان ادامه دهیم :

حال می دانیم در برخورد قرمز ها در این نمونه چون Uncle مشکی است ، از چرخش و سپس در صورت تغییر رنگ نیاز از تغییر رنگ استفاده می کنیم :

سپس عنصر $\frac{50}{0}$ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، درج این عنصر مشکل **برخورد قرمزها** را به وجود می آورد ، از آنجایی که Uncle به رنگ قرمز است از روش تغییر رنگ استفاده می کنیم .

چون بعد از تغییر رنگ ، نود (Grand Parent) همان ریشه ی درخت بود آن را به رنگ مشکی تغییر می دهیم .

```
if ( GP == root ) {
   Re-Color GP to Black
}
```


سپس عنصر $\frac{40}{0}$ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، درج این عنصر مشکل **برخورد قرمزها** را به وجود می آورد ، از آنجایی که Uncle به رنگ مشکی است از روش چرخش استفاده می کنیم .

سپس عنصر ⁶⁰را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، درج این عنصر مشکل **برخورد قرمزها** را به وجود می آورد ، از آنجایی که Uncle به رنگ قرمز است از روش تغییر رنگ استفاده می کنیم .

حال برای نود Grand Parent چک می کنیم که بعد از تغییر رنگ مشکل برخورد قرمزها به وجود آمده است یا خیر و این کار را تا زمانی که ببینیم برخورد قرمز وجود ندارد ادامه می دهیم . در این نمونه Grand Parent مشکی می باشد و بنابراین برخورد قرمزها به وجود نمی آید . سپس عنصر $\frac{70}{0}$ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، درج این عنصر مشکل **برخورد قرمزها** را به وجود می آورد ، از آنجایی که Uncle به رنگ مشکی است از روش چرخش استفاده می کنیم .

سپس عنصر ⁽⁸⁰⁾ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، درج این عنصر مشکل **برخورد قرمزها** را به وجود می آورد ، از آنجایی که Uncle به رنگ قرمز است از روش تغییر رنگ استفاده می کنیم .

حال برای نود Grand Parent چک می کنیم که بعد از تغییر رنگ مشکل برخورد قرمزها به وجود آمده است یا خیر و این کار را تا زمانی که ببینیم برخورد قرمز وجود ندارد ادامه می دهیم . در این نمونه Grand Parent قرمز می باشد و بنابراین برخورد قرمزها به وجود می آید ، از آنجایی که Uncle جدید به رنگ مشکی است از روش چرخش استفاده می کنیم .

سپس عنصر $4 \choose 1$ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، اضافه کردن این عنصر هیچ مشکلی در درخت ما به وجود نمی آورد .

سپس عنصر $8 \over 0$ را اضافه می کنیم ، به خاطر اینکه این عنصر تازه وارد است به رنگ قرمز می باشد ، درج این عنصر مشکل **برخورد قرمزها** را به وجود می آورد ، از آنجایی که Uncle به رنگ مشکی است از روش چرخش استفاده می کنیم .

۳ حالت های مختلف حذف از درخت قرمز-مشکی

• حذف از درخت قرمز-مشکی همانند حذف از درخت جستجوی دودویی است با این تفاوت که ممکن است شامل عملیات چرخش یا تغییر رنگ باشد .

۱.۳ حذف در درخت جستجوی دودویی چطور رخ می دهد ؟

در درخت جستجوی دودویی ما کل نود را حذف نمی کنیم بلکه فقط مقدار نود را جایگزین می کنیم و در واقع نودی که حذف می شود کمترین مقدار بزرگتر یا بزرگترین مقدار کمتر می باشد

• با تعریفی که در بالا از حذف از درخت جستجوی دودویی ارائه دادیم ، نود حذف شده از درخت یا برگ می باشد و فرزندی ندارد و یا اینکه شامل تنها یک فرزند می باشد .

۲.۳ حالت اول

• وقنی در نظر داریم که یک نود قرمز را از درخت حذف کنیم ، خیلی ساده آن را حذف می کنیم و در صورتی که فرزندی داشت (که قطعاً مشکی است) آن را با نود حذف شده جایگزین می کنیم .

- چرا حذف نود های قرمز از درخت قرمز-مشکی مشکلی ندارد ؟ جواب : زیرا در درخت قرمز-مشکی تعداد نود های مشکی در طور یک مسیر از هر نود مهم است و باید یکسان باشد ، بنابراین اگر یک نود قرمز از درخت حذف شود ، تاثیری بر روی درخت ندارد .
- قسمت مشکل در حذف نود از درخت قرمز-مشکی کجاست؟ جواب : وقتی نود مشکی است .

۳.۳ حالت دوم

وقتی می خواهید که یک نود مشکی را از درخت حذف کنید ، همسایه ی آن نود را چک کنید ، اگر همسایه اش قرمز بود آنگاه نود را حذف کنید و باید چرخش مناسب را انجام دهید .

۴.۳ حالت سوم

وقتی نودی که میخواهیم حذف کنیم مشکی باشد و همسایه ی آن نود هم مشکی باشد ، چند گزینه پیش رو داریم :

- ۱. اگر هر دو فرزند همسایه مشکی باشد ، از روش تغییر رنگ استفاده می کنیم .
 - بستگی به اینکه همسایه ، چند فرزند دارد ، حالت های مختلفی داریم

۱. اگر فرزندهای همسایه قرمز باشد ، آنگاه روش چرخش را انجام می دهیم
 بستگی به اینکه همسایه چند فرزند دارد ، حالت های مختلفی داریم

۵.۳ خلاصه ای از حالت های حذف از درخت قرمز -مشکی

 $\begin{array}{ccc} \text{Sibling is Red} & \Longrightarrow & \text{Rotate} \\ \\ \text{Sibling is Black} & \Longrightarrow & \text{Rotate} \\ \\ \text{Children are Red} & \end{array} \right\} \qquad \Longrightarrow \qquad \text{Re-Color} \\ \\ \text{Children are Black} & \Longrightarrow & \text{Re-Color} \\ \end{array}$

۴ نمونه هایی از حذف از درخت قرمز-مشکی

حذف 00 منجر به حذف 00 که بیشترین مقدار کمتر می باشد می شود و چون قرمز است بنابراین حذف آن مشکلی به وجود نمی آورد .

حذف (120 منجر به حذف (120 که بیشترین مقدار کمتر می باشد می شود و چون (120 قرمز است بنابراین حذف آن مشکلی به وجود نمی آورد .

وقتی می خواهیم $f{80}$ را حذف کنیم ، همسایه اش مشکی است و فرزند های همسایه نیز مشکی است (چون تهی است) بنابراین تغییر رنگ می دهیم

نود (<u>120</u> قرمز است بنابراین حذف آن مشکلی به وجود نمی آورد .

وقتی می خواهیم و را حذف کنیم ، چون و و مشکی است به همسایه ی آن نگاه می کنیم و چون همسایه ی آن که و می باشد قرمز است بنابراین روش چرخش را انجام می دهیم .

بعد از چرخش می بینیم که نود ریشه ی درخت که (40) می باشد به رنگ قرمز درآمده است ، بنابراین باید رنگ آن به رنگ مشکی تغییر یابد .

```
if ( GP == root ) {
   Re-Color GP to Black
}
```


Uncle بعد از چرخش میبینیم که برخورد قرمز ها بین نودهای $60 \atop 00$ و آمده است و Uncle نیز مشکی می باشد بنابراین روش چرخش را انجام می دهیم .

