Approximate Inference Through Stochastic Simulation

Wei Li

Roadmap

- probabilistic inference
 - Maximum a posteriori (MAP) inference
 - conditional probability inference
 - exact and approximate inference algorithms
 - Variable elimination
 - Message passing algorithm
 - Stochastic Sampling
 - Rejection Sampling
 - Metropolis-Hastings Algorithm

Scenario

 $R\in\{0,1\}$, R=1 means it has been raining $S\in\{0,1\}$, S=1 means the sprinkler was left on $N\in\{0,1\}$, N=1 means neighbours lawn is wet $H\in\{0,1\}$, H=1 means Holmes lawn is wet

Roadmap

- probabilistic inference
 - Maximum a posteriori (MAP) inference
 - conditional probability inference
 - exact and approximate inference algorithms
 - Variable elimination
 - Message passing algorithm
 - Stochastic Sampling
 - Rejection Sampling
 - Metropolis-Hastings Algorithm

Inference Problem

- Conditional Probability Query
- MAP inference

Inference Problem

- Conditional Probability Query
 - Evidence: E = e
 - Query: a subset of variables y
 - Task: compute $P(y \mid E = e)$

Inference Problem

- Conditional Probability Query
- MAP inference
 - Evidence: E = e
 - Query: all other variables Y (Y = $\{X_1, X_2, ...\}$ E)
 - Task: computer MAP(Y | E = e) = argmax_y P(Y = y | E = e)

Approximate inference

- probabilistic inference
 - Maximum a posteriori (MAP) inference
 - conditional probability inference
 - exact and approximate inference algorithms
 - Variable elimination
 - Message passing algorithm
 - Stochastic Sampling
 - Rejection Sampling
 - Metropolis-Hastings Algorithm

Algorithms: Conditional Probability

- Push summaries into factor product
 - Variable elimination
- Message passing over a graph
 - Belief propagation
 - Variational approximations
- Stochastic sampling
 - Markov chain Monte Carlo (MCMC)
 - Importance sampling

Exact

Exact & Approximate

Approximate

Stochastic Sampling

- how to generate samples
- how to incorporate observations
- how to infer probabilities from samples

Sampling from a Single Variable

Forward Sampling in a Bayesian Network

Sample	Tampering	Fire	Alarm	Smoke	Leaving	Report
s ₁	false	true	true	true	false	false
s ₂	false	false	false	false	false	false
s 3	false	true	true	true	true	true
54	false	false	false	false	false	true
s ₅	false	false	false	false	false	false
s ₆	false	false	false	false	false	false
57	true	false	false	true	true	true
58	true	false	false	false	false	true
s ₁₀₀₀	true	false	true	true	false	false

From Samples to Probabilities

- Probabilities can be estimated from a set of examples using the sample average.
- The **sample average** of a proposition α is the number of samples where α is true divided by the total number of samples.
- The sample average approaches the true probability as the number of samples approaches infinity by the law of large numbers.

Two Methods of Stochastic Sampling

- probabilistic inference
 - Maximum a posteriori (MAP) inference
 - conditional probability inference
 - exact and approximate inference algorithms
 - Variable elimination
 - Message passing algorithm
 - Stochastic Sampling
 - Rejection Sampling
 - Metropolis-Hastings Algorithm

An example probabilistic program

```
flip = rand < 0.5
if flip
    x = randg + 2  % Random draw from Gamma(1,1)
else
    x = randn  % Random draw from standard Normal
end</pre>
```


An example probabilistic program

```
flip = rand < 0.5
if flip
    x = randg + 2  % Random draw from Gamma(1,1)
else
    x = randn  % Random draw from standard Normal
end</pre>
```


Condition

```
flip = rand < 0.5
if flip
    x = randg + 2 % Random draw from Gamma(1,1)
else
    x = randn % Random draw from standard Normal
end</pre>
```


- Run the program with a fresh source of random numbers
- If condition is true, record the sample, else ignore the sample
- Repeat

Example

This produces samples over the execution trace e.g. (True, 2.7),

Example

This produces samples over the execution trace e.g. (True, 2.7),

Example

This produces samples over the execution trace e.g. (True, 2.7), (True, 2.1)

Example

This produces samples over the execution trace e.g. (True, 2.7), (True, 2.1)

Example

This produces samples over the execution trace e.g. (True, 2.7), (True, 2.1), (False, 2.3), ...

Example

This produces samples over the execution trace e.g. (True, 2.7), (True, 2.1), (False, 2.3), ...

Can we be more efficient?

- Given the current state x of the algorithm, Metropolis-Hastings chooses a new state x' from a "proposal distribution," which often simply involves picking a variable Xi at random and choosing a new value for that variable, again at random.
- Computes the acceptance probability α.
- With probability α the algorithm accepts the proposal and moves to x' and with probability 1 - α the algorithm remains in the state x.

Metropolis-Hastings Algorithm

1. Initialise $x^{(0)}$. 2. For i = 0 to N - 1- Sample $u \sim \mathcal{U}_{[0,1]}$. - Sample $x^* \sim q(x^*|x^{(i)})$. $- \quad \text{If } u < \mathcal{A}(x^{(i)}, x^\star) = \min \left\{ 1, \frac{p(x^\star)q(x^{(i)}|x^\star)}{p(x^{(i)})q(x^\star|x^{(i)})} \right\}$ $x^{(i+1)} = x^*$ else $x^{(i+1)} = x^{(i)}$

An example probabilistic program

```
flip = rand < 0.5
if flip
    x = randg + 2  % Random draw from Gamma(1,1)
else
    x = randn  % Random draw from standard Normal
end</pre>
```


Metropolis-Hastings

- Start with a trace
 - (True, 2.3)
- Change one random decision, sample subsequent decisions
 - (False, -0.9)
- Accept with the appropriate acceptance probability
 - Reject, does not satisfy observation

Metropolis-Hastings

- Start with a trace
 - (True, 2.3)
- Change one random decision, sample subsequent decisions
 - (True, 2.9)
- Accept with the appropriate acceptance probability
 - Accept, maybe

Conclusion

- probabilistic inference
 - Maximum a posteriori (MAP) inference
 - conditional probability inference
 - exact and approximate inference algorithms
 - Variable elimination
 - Message passing algorithm
 - Stochastic Sampling
 - Rejection Sampling
 - Metropolis-Hastings Algorithm

Reference

- http://www.stanford.edu/~ngoodman/papers/WSG-AIStats11.pdf
 Lightweight implementation of Probabilistic Programming
- http://artint.info/html/ArtInt_150.html
 Artificial Intelligence
- http://mlg.eng.cam.ac.uk/zoubin/course04/hbtnn2e-l.pdf
 Michael Jordan: Probabilistic inference in graphical models
- http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/ AndrieuFreitasDoucetJordan2003.pdf
 An Introduction to MCMC for Machine Learning

Any Questions?

- probabilistic inference
 - Maximum a posteriori (MAP) inference
 - conditional probability inference
 - exact and approximate inference algorithms
 - Variable elimination
 - Message passing algorithm
 - Stochastic Sampling
 - Rejection Sampling
 - Metropolis-Hastings Algorithm

Thanks for listening!