Notes on Commutative Algebra

${\rm Apiros3}$

First Version : Mar 11, 2025 Last Update : Jan 29, 2025

Contents

1	\mathbf{Intr}	Introduction													2						
2	Groups														3						
	2.1	Basic definitions																			 3

1 Introduction

We assume basic concepts like injectivity, surjectivity, bijectivity

2 Groups

2.1 Basic definitions

Definition 2.1.1. A group G is a set with a binary operation * such that the following hold

- 1. Closure by *. If $f, g \in G$, then $f * g \in G$
- 2. * is associative
- 3. Exists $e \in G$ such that for all $g \in G$, e * g = g * e = g
- 4. For every $g \in G$, there exists a $h \in G$ such that g * h = h * g = e

Notation 2.1.2. The element h is called the **inverse** of g, and is typically denoted g^{-1} , noting that it is unique.

When dealing with a group who uses addition as it's operator, we will write -g to represent the inverse.

Definition 2.1.3. A group G is abelian if * is commutative.

Definition 2.1.4. A group homomorphism is a map $\phi: G_1 \to G_2$ such that for all $g, h \in G$, $\phi(g *_1 h) = \phi(g) *_2 \phi(h)$, where the operators $*_1$ and $*_2$ are those associated with G_1 and G_2 respectively.

A homomorphism from G to G is called an **endomorphism**

Definition 2.1.5. The **kernel** of a homomorphism ϕ is defined by

$$Ker(\phi) = \{g \in G_1 : \phi(g) = e_2\}$$

The **image** of ϕ is

$$Im(\phi) = \{\phi(g) : g \in G_1\}$$

Remark 2.1.6. As with linear algebra, if ϕ has a trivial kernel, then it is injective.

Definition 2.1.7. Let $\phi: G_1 \to G_2$ be a bijective homomorphism. Then we call ϕ to be an **isomorphism**, and that G_1 and G_2 are **isomorphic**.

In such case, we write $G_1 \cong G_2$.

Remark 2.1.8. Isomorphic groups inherit all structural properties, as it can simply be seen as a group with elements relabelled. For instance, G_1 is abelian if and only if G_2 is abelian.

Lemma 2.1.9. If $m, n \in \mathbb{Z}$ and m, n are coprime, $C_m \times C_n \cong C_{mn}$.

Lemma 2.1.10. Any finite abelian group G is isomorphic to the product of cyclic groups. That is, there exists m_1, \ldots, m_k such that

$$G \cong C_{m_1} \times \cdots \times C_{m_k}$$

Proof. TODO!!!!

Definition 2.1.11. A subgroup of a group G is a non-empty subset $H \subseteq G$ such that it forms a group with the operator on G restricted to H, which must be well-defined (must be closed by *).

We write $H \leq G$ if H is a subgroup of G.

Definition 2.1.12. Let $H \leq G$. The set $gH = \{g * h \mid h \in H\}$ is called the **left coset**, and the set $Hg = \{h * g \mid h \in H\}$ is called the **right coset**.

Proposition 2.1.13. When the number of distinct left cosets is finite, this equals the number of distinct right cosets.

We will call this number the **index of** H **in** G is denoted [G:H].

Proof. TODO!!!

Notation 2.1.14. When left / right cosets are written by addition, we may write g + H or H + g instead.

Lemma 2.1.15. Left cosets have the following property

- 1. Any two left cosets g_1H and g_2H are either equal or disjoint
- 2. If G is finite, g_1H and g_2H have the same number of elements

Proof. TODO!!!

Corollary 2.1.16. The left cosets of H give a partition of G.

Proof. We only need to show that the cosets cover G, but this is immediate from the fact that for any $g \in G$, $g \in gH$.

Theorem 2.1.17 (Lagrange's Theorem). Let G be a finite group with $H \leq G$. then |G| = |H||[G:H]|

Proof. TODO!! \Box

Definition 2.1.18. Let (G,*) be a group with $H \leq G$. We say that H is a **normal subgroup**, denoted $H \triangleleft G$ if for every $g \in G$, gH = Hg. Equivalently, forall $g \in G$ and $h \in H$, $g^{-1}hg \in H$.

Definition 2.1.19. Let (G,*) be a group with $H \triangleleft G$. Then, the **quotient** of G is defined as $G/H = \{gH \mid g \in G\}$ under the operation $(g_1H)(g_2H) = (g_1g_2)H$

Quotients by normal subgroups makes this operation well-defined for any choice of representatives. Also note that when G/H is finite, we have #G/H = [G:H].

Remark 2.1.20. When (G, *) is abelian, any subgroup is also normal, thus we can always quotient.

Remark 2.1.21. Equivalently, when defining quotients for a fixed $H \triangleleft G$, we can take G/\sim where \sim is the equivalence class defined by $g_1 \sim g_2$ if and only if there exists $h \in H$ such that $g_1 = g_2 * h$ (We can also say $g_1g_2^{-1} \in H$).

Proposition 2.1.22. Given a homomorphism ϕ , $Ker(\phi)$ is a normal subgroup.

Proof. TODO!!!

We can form the quotient $G/\mathrm{Ker}(\phi)$ which sends $g \mapsto g + \mathrm{Ker}(\phi)$.

Theorem 2.1.23 (First Isomorphism Theorem for Groups). Given a homomorphism $\phi: G \to H$, $G/\mathrm{Ker}(\phi) \cong \mathrm{Im}(\phi)$. Note that $\mathrm{Im}(\phi) \leq H$.

Proof. There is a natural map from $G/\text{Ker}(\phi)$ to $\text{Im}(\phi)$ via the map $g + \text{Ker}(\phi) \mapsto \phi(g)$. This is a well-defined surjective map. It follows from the fact the map is injective (by showing if $\phi(g_1) = \phi(g_2), g_1 - g_2 \in \text{Ker}(\phi)$).