Retomando el Caso de Estudio 5

Objetivo: Estudiar e interpretar los resultados del análisis de varianza con dos factores, considerando:

- 1 Efectos fijos
- 2. Efectos aleatorios.

Recalcar la diferencia entre estos dos modelos de análisis de varianza. Mostrar el encubrimiento de un factor principal producida por la significancia de la interacción.

Planteamiento del Problema:

El gerente de una fábrica efectúo tres réplicas de un diseño factorial para investigar el efecto del **supervisor** y del **turno** en una línea de producción. El número de artículos producidos por **turno** de ocho horas y por **supervisor** en cada réplica aparece en la tabla siguiente.

	Turno 1 (Mañana)	Turno 2 (Tarde)	Turno 3 (Noche)
	570	480	470
Supervisor A	610	475	430
·	625	540	450
	480	625	630
Supervisor B	515	600	680
	465	580	660

Retomando el Caso de Estudio 5

- **II.** Suponga que las asignaciones de los niveles de los factores se seleccionan aleatoriamente dando origen a un modelo de efectos aleatorios.
 - 1. Escriba las expresiones teóricas para el valor esperado del cuadrado medio de los elementos de la tabla ANOVA, correspondiente a este diseño.

RTA: A: Supervisor, a: 2 B: Turno, b=3, n=3.

•
$$\mathbf{E}[\mathbf{MS_A}] = \sigma^2 + 3\sigma_{\tau\beta}^2 + 3 \times 3\sigma_{\tau}^2$$

•
$$E[MS_B] = \sigma^2 + 3\sigma_{\tau\beta}^2 + 2 \times 3\sigma_{\beta}^2$$

•
$$E[MS_{AB}] = \sigma^2 + 3\sigma_{\tau\beta}^2$$

•
$$E[MS_E] = \sigma^2$$
.

Nueva Tabla ANOVA:

	gl	SS	MS	F	VP
Supervisor	1	19012.5	19012.5	$\frac{19012.5}{40454.17} = 0.47$	0.5637
Turno	2	258.33	129.16	$\frac{\frac{129.16}{40454.17} - 0.47}{\frac{129.16}{40454.17} = 0.00319$	0.9968
Interacción Super-Turno	2	80908.33	40454.17	56.23	< .0001
Residuals	12	8633.3	719.4		

Plantee, interprete y contraste las hipótesis posibles, elimine las interacciones y los factores no significativos de este diseño y construya una nueva tabla ANOVA.

Retomando el Caso de Estudio 5

Variabilidad de la Interacción:

$$H_0 \,:\, \sigma_{\tau\beta}^2 = 0 \ \ v.s \ \ H_a \,:\, \sigma_{\tau\beta}^2 > 0$$

Estadístico de Prueba:

$$F = {MS_{AB} \over MS_E} \sim F_{(2-1)(3-1), \ 2 \times 3 \times (3-1)} = F_{2, \ 12}$$

Note que en este caso:

$$F_{cal} = \frac{40454.17}{719.4} = 56.23, \quad VP < 0.0001$$

∴ A un nivel de significancia del 5 % la interacción aporta una variabilidad significativa a la variabilidad de la variable respuesta.

Retomando el Caso de Estudio 5

Variabilidad del **Supervisor**:

$$H_0 \,:\, \sigma_{\tau}^2 = 0 \ v.s \ H_a \,:\, \sigma_{\tau}^2 > 0$$

Estadístico de Prueba:

$$F = \frac{MS_A}{MS_{AB}} \sim F_{1, (2-1)(3-1)} = F_{1, 2}$$

En este caso:

$$F_{cal} = \frac{19012.5}{40454.17} = 0.47, \quad VP = 0.5637 = 1 - pf(0.47, 1, 2)$$

... A un nivel de significancia del 5 % la variabilidad del supervisor **NO** es significativa, sin embargo, no se puede eliminar esta componente del modelo ya que hay presencia de la variabilidad de la interacción **significativa**.

A una conclusión similar se llega al analizar la significancia de la variabilidad asociada al **TURNO**.

Por las razones anteriores **NO** es posible reducir la tabla **ANOVA**, por el posible **encubrimiento** que puede existir al tener una variabilidad de la **interacción** significativa.

Retomando el Caso de Estudio 5

- 2. Estime la varianza de las interacciones y de los factores significativos:
 - Varianza estimada del término de Error: $\hat{\sigma}^2 = MS_E = 719.4$
 - Varianza estimada de la interacción:

$$\hat{\sigma}_{\tau\beta}^2 = \frac{MS_{AB} - MS_E}{n} = \frac{40454.17 - 719.4}{3} = 13244.923.$$

Retomando el Caso de Estudio 6: Gaseosas-Continuación Taller 4

	Presión de Operación (B)				
	25 <i>psi</i>		30 <i>psi</i>		
	Rapidez de Línea		Rapide	ez de Línea	
%-Carbonatación (A)	200	250	200	250	
10	-3	-1	-1	1	
	-1	0	0	1	
12	0	2	2	6	
	1	1	3	5	
14	5	7	7	10	
	4	6	9	11	

II. Suponga que las asignaciones de los niveles de los factores se seleccionan aleatoriamente dando origen a un modelo de efectos aleatorios.

Caso de Estudio 6: Gaseosas-Continuación Taller 4

- 1. Escriba las expresiones teóricas para el valor esperado del cuadrado medio de los elementos de la tabla ANOVA, correspondiente a este diseño. $a=3,\ b=2,\ c=2,\ r=n=2$
 - $E[MS_A] = \sigma^2 + 2\sigma_{abc}^2 + 2 \times 2\sigma_{ab}^2 + 2 \times 2\sigma_{ac}^2 + 2 \times 2 \times 2\sigma_{ac}^2$
 - $E[MS_B] = \sigma^2 + 2\sigma_{abc}^2 + 2 \times 2\sigma_{ab}^2 + 2 \times 3\sigma_{bc}^2 + 2 \times 3 \times 2\sigma_b^2.$
 - $\blacksquare \mathbf{E}[\mathbf{MS_C}] = \sigma^2 + 2\sigma_{\mathbf{abc}}^2 + 2 \times 2\sigma_{\mathbf{ac}}^2 + 2 \times 3\sigma_{\mathbf{bc}}^2 + 2 \times 3 \times 2\sigma_{\mathbf{c}}^2.$
 - $\blacksquare \mathbf{E}[\mathbf{MS_{AB}}] = \sigma^2 + 2\sigma_{\mathbf{abc}}^2 + 2 \times 2\sigma_{\mathbf{ab}}^2.$
 - $\blacksquare E[MS_{AC}] = \sigma^2 + 2\sigma_{abc}^2 + 2 \times 2\sigma_{ac}^2.$
 - $\blacksquare \mathbf{E}[\mathbf{MS_{BC}}] = \sigma^2 + 2\sigma_{\mathbf{abc}}^2 + 2 \times 3\sigma_{\mathbf{bc}}^2.$
 - $\bullet \ \mathbf{E}\left[\mathbf{MS_{ABC}}\right] = \sigma^2 + 2\sigma_{\mathbf{abc}}^2.$
 - $E[MS_E] = \sigma^2$.

Caso de Estudio 6: Gaseosas-Continuación Taller 4 TABLA ANOVA						
	Df				Pr(>F)	
A	2	252.75	126.38	178.412	1.19e-09	
В	1	45.38	45.38	64.059	3.74e-06	
С	1	22.04	22.04	31.118	0.00012	
A:B	2	5.25	2.63	3.706	0.05581	
A:C	2	0.58	0.29	0.412	0.67149	
B:C	1	1.04	1.04	1.471	0.24859	
A:B:C	2	1.08	0.54	0.765	0.48687	
Residuals	12	8.50	0.71			

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Plantee, interprete y contraste las hipótesis posibles.

Significancia de la Interacción Triple:

$$H_0 : \sigma_{abc}^2 = 0 \text{ v.s } H_a : \sigma_{abc}^2 > 0$$

Estadístico de Prueba:

$$F = \frac{MS_{ABC}}{MS_E} \sim F_{(3-1)(2-1), 3 \times 2 \times 2 \times (2-1)} = F_{2, 12}$$

Note que en este caso:

$$F_{cal} = \frac{0.54}{0.71} = 0.765, \quad VP = 0.48687$$

∴ A un nivel de significancia del 5% la variabilidad asociada a la interacción triple NO es significativa.

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Significancia de la Interacción DOBLE AB:

$$H_0 : \sigma_{ab}^2 = 0 \text{ v.s } H_a : \sigma_{ab}^2 > 0$$

Estadístico de Prueba:

$$F = \frac{MS_{AB}}{MS_{ABC}} \sim F_{(3-1)(2-1), (3-1)\times(2-1)\times(2-1)} = F_{2, 2}$$

Note que en este caso:

$$F_{cal} = \frac{2.63}{0.54} = 4.87, \quad VP = 0.17$$

 \therefore A un nivel de significancia del 5% la variabilidad asociada a la **interacción doble** entre el porcentaje de carbonatación y la presión de operación **NO** es significativa.

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Significancia de la Interacción DOBLE AC:

$$H_0 : \sigma_{ac}^2 = 0 \text{ v.s } H_a : \sigma_{ac}^2 > 0$$

Estadístico de Prueba:

$$F = \frac{MS_{AC}}{MS_{ABC}} \ \sim \ F_{(3-1)(2-1) \ , \ (3-1)\times(2-1)\times(2-1)} = F_{2 \ , \ 2}$$

Note que en este caso:

$$F_{cal} = \frac{0.29}{0.54} = 0.53, \quad VP = 0.6335$$

∴ A un nivel de significancia del 5% la variabilidad asociada a la interacción doble entre el porcentaje de carbonatación y la rapidez de la línea
 NO es significativa.

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Significancia de la Interacción DOBLE BC:

$$H_0 : \sigma_{bc}^2 = 0 \text{ v.s } H_a : \sigma_{bc}^2 > 0$$

Estadístico de Prueba:

$$F = \frac{MS_{BC}}{MS_{ABC}} \sim F_{(2-1)(2-1), \; (3-1)\times(2-1)\times(2-1)} = F_{1, \; 2}$$

Note que en este caso:

$$F_{cal} = \frac{1.04}{0.54} = 1.92, \quad VP = 0.3001$$

∴ A un nivel de significancia del 5% la variabilidad asociada a la interacción doble entre la presión de operación y la rapidez de la línea NO es significativa.

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Elimine las interacciones y los factores no significativos de este diseño y construya una nueva tabla ANOVA.

Luego de eliminar las cuatro componentes que dieron **NO** Significativas, se obtiene la siguiente **TABLA ANOVA** Reducida:

Df 	Sum Sq	Mean Sq 	F value	Pr(>F)
2	252.75	126.38		
1	45.38	45.38		
1	22.04	22.04		
glE	SSEN	SSEN/glE		
	2 1 1	2 252.75 1 45.38 1 22.04	2 252.75 126.38 1 45.38 45.38 1 22.04 22.04	2 252.75 126.38 1 45.38 45.38 1 22.04 22.04

$$glEN = 12+2+1+2+2= 19$$

SSEN = 8.50+1.08+1.04+0.58+5.25=16.45

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Para completa la Tabla ANOVA anterior, note inicialmente que la Tabla de los **Cuadrados Medios Esperados**, del modelo reducido,

$$\mathbf{Y_{ijkl}} = \mu + \tau_{i} + \beta_{j} + \gamma_{k} + \varepsilon_{ijkl}$$

con $\tau_i \sim_{iid} N(0, \sigma_a^2)$, $\beta_j \sim_{iid} N(0, \sigma_b^2)$, $\gamma_j \sim_{iid} N(0, \sigma_c^2)$ y $\epsilon_{ijkl} \sim NID(0 \sigma^2)$. Con τ_i , β_j , $\gamma_k \epsilon_{ijkl}$ son v.a. independientes entre sí, se reduce a:

- $\mathbf{E}\left[\mathbf{MS_A}\right] = \mathbf{\sigma^2} + 2 \times 2 \times 2\mathbf{\sigma_a^2}$
- $E[MS_B] = \sigma^2 + 2 \times 3 \times 2\sigma_b^2$
- $E[MS_C] = \sigma^2 + 2 \times 3 \times 2\sigma_c^2$
- $E[MS_E] = \sigma^2$

Note que bajo el supuesto de la hipótesis nula de la **NO** significancia de la Varianza de cada uno de los factores, es decir,

$$H_0: \sigma_a^2 = 0 \ H_0: \sigma_b^2 = 0 \ H_0: \sigma_c^2 = 0$$

el MS_A MS_B y MS_C son también estimadores insesgados para σ^2 .

Luego los $\ensuremath{\mathsf{EP}}$ respectivos son los cocientes entre los **cuadrados medios** asociados y el $\ensuremath{\mathbf{MS_E}}$:

Dis. Experimentos 02 - 2022 Escuela de Estadistica

Caso de	Estud	io 6: Gase	osas-Cont	inuación Talle	r 4		
	Df	Sum Sq	Mean Sq	F value	Pr(>	>F)	
A	2	252.75	126.38	126.38/0.86	=146.95	<0.0001(*	
В	1	45.38	45.38	45.38/0.86	= 52.77	<0.0001	
С	1	22.04	22.04	22.04/0.86	= 25.63	<0.0001	
Error	19	16.45	0.86				
glEN = 12+2+1+2+2= 19							
SSEN = 8.50+1.08+1.04+0.58+5.25= 16.45							
(*)En R: Pr(>F): Valor P = 1-pf(146.95,2,19)							
\therefore A un nivel de significancia del 5 $\%$ la variabilidad asociada al porcentaje							
de carbonatación, la presión de operación y la rapidez de la línea son							
significativas.							

Caso de Estudio 6: Gaseosas-Continuación Taller 4

2. Estime la varianza de las interacciones y los factores significativos.
En este caso como la variabilidad de la interacción triple y las dobles N0 son significativas, entonces sólo se estiman las varianzas asociadas a los factores principales, a partir de la Tabla de los Cuadrados Medios Esperados reducida:

$$\hat{\sigma}_{a}^{2} = \frac{MS_{A} - \hat{\sigma}^{2}}{8} = \frac{MS_{A} - MS_{E}}{8} = \frac{126.38 - 0.86}{8} = 15.69$$

$$\hat{\sigma}_{b}^{2} = \frac{MS_{B} - \hat{\sigma}^{2}}{12} = \frac{MS_{B} - MS_{E}}{12} = \frac{45.38 - 0.86}{12} = 3.71$$

$$\hat{\sigma}_{c}^{2} = \frac{MS_{C} - \hat{\sigma}^{2}}{12} = \frac{MS_{C} - MS_{E}}{12} = \frac{22.04 - 0.86}{12} = 1.765$$

Y la **Variabilidad estimada** de la desviación promedio de la altura de llenado de las botellas está dada por:

$$\hat{V}(Y_{ijkl}) = MSE + \hat{\sigma}_a^2 + \hat{\sigma}_b^2 + \hat{\sigma}_c^2 = 0.86 + 15.69 + 3.71 + 1.765 = 22,025.$$

El 71.23% de la variabilidad en desviación promedio de la altura es debida al porcentaje de carbonatación.

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Punto Adicional:

- III Suponga que de los tres factores el único que es **ALEATORIO** es el factor **A**: Porcentaje de Carbonatación, los otros dos factores son **FIJOS**.
 - Realice las pruebas para determinar si la interacción triple y las interacciones dobles contribuyen de manera significativa a la varianza de la desviación promedio de la altura de llenado.

$$E[MS_A] = \sigma^2 + 2\sigma_{abc}^2 + 2 \times 2\sigma_{ab}^2 + 2 \times 2\sigma_{ac}^2 + 2 \times 2 \times 2\sigma_{a}^2$$

$$\begin{array}{l} \blacksquare \quad E\left[MS_B\right] = \sigma^2 + 2\sigma_{abc}^2 + 2\times2\sigma_{ab}^2 + 2\times3\theta_{bc}^2 + 2\times3\times2\theta_b^2, \\ \theta_b^2 = \sum_{j=1}^b \beta_j^2/(b-1) \end{array}$$

$$\begin{split} & \quad \mathbf{E}\left[\mathbf{M}\mathbf{S}_{\mathbf{C}}\right] = \sigma^2 + 2\sigma_{\mathbf{a}\mathbf{b}\mathbf{c}}^2 + 2\times2\sigma_{\mathbf{a}\mathbf{c}}^2 + 2\times3\theta_{\mathbf{b}\mathbf{c}}^2 + 2\times3\times2\theta_{\mathbf{c}}^2, \\ & \quad \theta_{\mathbf{b}\mathbf{c}}^2 = \sum_{\mathbf{j}}\sum_{\mathbf{k}}(\beta\gamma)_{\mathbf{j}\mathbf{k}}^2/((\mathbf{b}-\mathbf{1})(\mathbf{c}-\mathbf{1})) \end{split}$$

$$\bullet \quad \mathbf{E}[\mathbf{MS_{AB}}] = \sigma^2 + 2\sigma_{abc}^2 + 2 \times 2\sigma_{ab}^2$$

$$\bullet \quad \mathbf{E}\left[\mathbf{MS_{AC}}\right] = \sigma^2 + 2\sigma_{\mathbf{abc}}^2 + 2 \times 2\sigma_{\mathbf{ac}}^2$$

$$E[MS_{BC}] = \sigma^2 + 2\sigma_{abc}^2 + 2 \times 3\theta_{bc}^2$$

$$\bullet \quad \mathbf{E}[\mathbf{MS_{ABC}}] = \sigma^2 + 2\sigma_{abc}^2$$

$$\bullet \quad \mathbf{E}\left[\mathbf{M}\mathbf{S}_{\mathbf{E}}\right] = \mathbf{\sigma}^2$$

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Observe que:

- i. Los Estadísticos de Prueba para la variabilidad de la interacción triple y la variabilidad de las interacciones dobles (AC y AB) y el efecto de interacción doble de B y C coinciden con los Estadísticos F asociados al modelo de Efectos Aleatorios (La prueba F tiene como denominador el $\mathbf{MS_E}$ para la variabilidad de la interacción triple y para las interacciones dobles el denominador es MS_{ABC})
- ii. Se obtienen las mismas conclusiones acerca de la NO significancia de la variabilidad de las interacciones Triple y las interacciones dobles AC y AB y el efecto de interacción doble entre B y C.
- iii. Se procede a realizar la prueba de significancia de la variabilidad del porcentaje de carbonatación y la significancia de los efectos principales asociado a B y C, eliminando las componentes NO significativas de los cuadrados medios esperados, reduciéndose a:
 - $\begin{array}{l} \bullet \quad E\left[MS_A\right] = \sigma^2 + 2 \times 2 \times 2\sigma_a^2 \\ \bullet \quad E\left[MS_B\right] = \sigma^2 + 2 \times 3 \times 2\theta_b^2 \\ \end{array}$

 - $\mathbf{E}[\mathbf{MS_C}] = \sigma^2 + 2 \times 3 \times 2\theta_c^2$
 - $E[MS_E] = \sigma^2$

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Con la siguiente Tabla **ANOVA** reducida, coincidiendo con la misma tabla reducida del modelo de **efectos aleatorios**:

Caso de Estudio 6: Gaseosas-Continuación Taller 4

Por ejemplo para hacer la prueba:

$$H_0: \sigma_a^2 = 0 \text{ v.s. } H_1: \sigma_a^2 > 0$$

Note que bajo H_0 , $\mathbf{E}[\mathbf{MS_A}] = \sigma^2 = \mathbf{E}[\mathbf{MS_E}]$. Luego el **estadístico de Prueba**:

$$F_{cal} = \frac{MS_A}{MS_E} = 146.95$$

Se rechaza H_0 a un nivel de significancia del $5\,\%$. Para los efectos fijos de B y C:

$$H_0: \beta_1 = \beta_2 = 0 \ H_0: \gamma_1 = \gamma_2 = 0$$

Las respectivas $\mathbf{F_{cal}}$ son 52.77 y 25.63 con las cuales se rechazan las respectivas hipótesis nula, indicando que el efecto asociado a la presión de operación y a la rapidez de la línea son significativos.