Simultaneous diagonalization and its C++ implementation

Yu Zhai yuzhai@mail.huiligroup.org

Institute of Theoretical Chemistry, Jilin University, Changchun, China.

May 1, 2020

Introduction

 \dots If they (observables) do commute there exist so many simultaneous eigenstates that they form a complete set \dots

P. A. M. Dirac, The Principles of Quantum Mechanics

Thus we do need an algorithm to obtain the simultaneous eigenstates of two (or more) matrices, which is described in References [1], [2] and [3].

Consider a set of matrices $\{A\}$ of $N \times N$ complex matrices. In this work, however, I prefer limit us to real symmetric matrices, with which are easier to deal.

When the matrices in $\{A\}$ are *normal commuting matrices*, their off-diagnoal terms can be set to zero by *one* unitary transform, thus simultaneously diagonalizing the set $\{A\}$.

Mathematical description of the problem I

Define

$$off(\mathbf{A}) \equiv \sum_{0 \le i \ne j < N} A_{ij}^2,\tag{1}$$

where A_{ij} denotes the row *i* column *j* entry of matrix **A**.

```
double simultaneousDiagonalization::off_(const Eigen::MatrixXd & A){

double res=0.0;

for(int i=0; i!=A.rows(); ++i){

   for(int j=i; j!=A.rows(); ++j){
      if(i != j) res += pow(A(i,j),2);
   }

return res;
}
```

Mathematical description of the problem II

Simultaneous diagonalization may be obtained by minimizing the composite objective

offsum({A})
$$\equiv \sum_{\mathbf{A} \in \{\mathbf{A}\}} \text{off}(\mathbf{A}).$$
 (2)

```
double simultaneousDiagonalization::offsum_()const{
    double res=0.0;
    for(auto && i : this -> matrices_){
        res += off_(i);
    }
    return res;
}
```

Extended Jacobi technique I

The extended Jacobi technique for simultaneous diagonalization constructs U as a product of plane rotations globally applied to all $A \in \{A\}$.

It is desired, for each choice of $i \neq j$, to find the c and s so that

$$O(c, s) \equiv \sum_{\mathbf{A} \in \{\mathbf{A}\}} \text{off}(\mathbf{R}'(i, j, c, s) \mathbf{A} \mathbf{R}(i, j, c, s))$$

is minimized. ' in this document means adjoint (conjugate transpose). Let us define yet another 2×2 real symmetric matrix G_{ii} for (i, j)

$$\mathbf{G}_{ij} \equiv \sum_{\mathbf{A} \in \{\mathbf{A}\}} \mathbf{h}(\mathbf{A}) \mathbf{h}'(\mathbf{A}),\tag{3}$$

where

$$\mathbf{h}(\mathbf{A}) \equiv [A_{ii} - A_{jj}, A_{ij} + A_{ji}]'. \tag{4}$$

Extended Jacobi technique II

```
Eigen::Matrix2d simultaneousDiagonalization::G_(int i, int j) const {
    Eigen::Matrix2d res=Eigen::Matrix2d::Zero();
    for (auto && A: this -> matrices_){
      Eigen:: Vector2d h:
42
      h \ll A(i,i)-A(i,i), A(i,i)+A(i,i);
43
   #ifndef NDEBUG
      45
   #endif
      res += h*h.adjoint();
47
    return res;
```

Extended Jacobi technique III

Denote $\mathbf{R}(i,j,c,s)$ the rotation matrix equal to the identity matrix but for the following entries:

$$\begin{pmatrix} R_{ii} & R_{ij} \\ R_{ji} & R_{jj} \end{pmatrix} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \text{ with } c, s \in \mathbb{R} \text{ and } c^2 + s^2 = 1.$$
 (5)

Thus we have a theorem, whose proof is not given here: Under constraint $c^2 + s^2 = 1$, O(c, s) is minimized at

$$c = \sqrt{\frac{x+r}{2r}}$$
 $s = \frac{y}{\sqrt{2r(x+r)}}$ $r = \sqrt{x^2 + y^2}$,

where (x, y)' is any eigenvector associated to the largest eigenvalue of G. If the (x, y)' are normalized, then r = 1, formula above turns to

$$c = \sqrt{\frac{x+1}{2}} \quad s = \frac{y}{\sqrt{2(x+1)}}.$$
 (6)

Extended Jacobi technique IV

```
Eigen::MatrixXd simultaneousDiagonalization::R_(int i, int j) const{
     Eigen::MatrixXd res = Eigen::MatrixXd::Identity(r_, c_);
53
     Eigen::Vector2d xy =
54
       Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d>(G_(i,j))
       .eigenvectors().col(1);
     double x = xy[0];
     double y = xy[1];
     double c = sqrt((x+1.)/2.);
     double s = y/sqrt(2.*(x+1.));
     res(i,i) = res(j,j) = c;
     res(i,j) = -s;
     res(j,i) = s;
     return res:
```

Extended Jacobi technique V

Then we have the Jacobi-like iteration scheme.

```
void simultaneousDiagonalization::compute_(double eps){
     for(int iter = 0; iter < 1000; ++iter){</pre>
       if(offsum_()>eps){
         for(int i=0; i<r_; ++i){
70
            for(int j=i+1; j<r_; ++j){
71
              Eigen::MatrixXd Rmat = R_(i,j);
72
              for(auto && A : matrices_){
73
                A= Rmat.adjoint() * A * Rmat;
74
75
              eigenvectors_ = eigenvectors_ * Rmat;
76
77
78
```

C++ syntax related I

To make the program work, the class is defined as

```
class simultaneousDiagonalization{
     public:
       simultaneousDiagonalization(
            std::initializer_list<Eigen::MatrixXd> matrices,
           double eps = 1.e-8);
10
       inline Eigen::VectorXd eigenvalues(int i) const {
11
         return matrices_[i].diagonal();
12
13
       inline Eigen::MatrixXd eigenvectors() const {
14
         return eigenvectors_; // all matrices share the same eigen vectors
15
16
     private:
17
   . . . . . .
```

C++ syntax related II

And its constructor

```
simultaneousDiagonalization::simultaneousDiagonalization(
       std::initializer_list<Eigen::MatrixXd> matrices, double eps ):
     matrices (matrices).
     r_ ( matrices_[0].rows() ), c_ ( matrices_[0].cols() )
     if(r != c){
       throw std::runtime error("Sizes inconsist."):
10
     for(auto && i : matrices ){
12
       if(i.rows() != r_ || i.cols() != c_){
         throw std::runtime_error("Sizes inconsist.");
14
16
     eigenvectors_.setIdentity(r_,c_);
     compute_(eps); // solve the problem on construction...
18
```

Unit test

Three tests are designed while here I only show the last one.

- Both matrices A and B are generated from eigenvalues;
- They are both degenerated;
- Use the method presented CAN give reasonable solution.

Results:

B eigen values 0 2 2 1 1

```
eigenvectors
                     -0.0326343
                                     0.579077
                                                   -0.77784
                                                                  0.242014
                       0.202113
                                    -0.758439
                                                  -0.436193
                                                                 0.440065
                      -0.792972 -0.000725223
                                                   0.210606
                                                                   0.5717
                        0.57383
                                     0.299066
                                                   0.400433
                                                                  0.648793
     A eigen values 0 0 1 1 2
     B eigen values 0 1 1 2 2
10
     CONVERGED.
11
     sd.eigenvectors()
12
13
14
                      -0.242032
                                     0.777834
                                                  0.0326344
                                                                 0.579077
                      -0.440075
                                     0.436183
                                                  -0.202113
                                                                -0.758439
16
                      -0.571695
                                    -0.210619
                                                   0.792972 - 0.000725226
17
18
                      -0.648783
                                    -0.400448
                                                   -0.57383
                                                                 0.299066
19
     sd.eigenvalues()
20
21
     A eigen values
                                                          1 1.36642e-14
```

 $Thank \ you \ for \ your \ attention.$

May 1, 2020

Reference

- [1] Richard Dawes and Tucker Carrington. A multidimensional discrete variable representation basis obtained by simultaneous diagonalization. *The Journal of Chemical Physics*, 121(2):726–736, jul 2004.
- [2] Angelika Bunse-Gerstner, Ralph Byers, and Volker Mehrmann. Numerical methods for simultaneous diagonalization. *SIAM Journal on Matrix Analysis and Applications*, 14(4):927–949, oct 1993.
- [3] Jean-François Cardoso and Antoine Souloumiac. Jacobi angles for simultaneous diagonalization. *SIAM Journal on Matrix Analysis and Applications*, 17(1):161–164, jan 1996.