1 Понятие субстанциальной и локальной производных.

$$\frac{d}{dt} = \frac{\partial}{\partial t} + (\vec{v}\nabla)$$
- субстанциальная $\frac{\partial}{\partial v}$ - локальная

2 Уравнение неразрывности для сжимаемой и несжимаемой жидкости.

$$\frac{d
ho}{dt} + {
m div}(
ho ec{v}) = 0$$
 - для сжимаемой жидкости

В несжимаемой жидкости
$$\rho=const \to \frac{d\rho}{dt}=0 \to {\rm div}(\rho\vec{v})=\rho\,{\rm div}(\vec{v})+\vec{v}grad(\rho) \to \rho\,{\rm div}(\vec{v})=0 \to {\rm div}(\vec{v})=0$$

$$\frac{d\rho}{dt} = 0$$
 - для несжимаемой жидкости

3 Уравнение Эйлера в векторной форме и в проекциях на оси в декартовой системе координат.

Уравнение Эйлера описывает движение идеальной жидкости

$$\frac{d\vec{v}}{dt} = -\frac{\nabla p}{\rho} + j$$

Минус возникает потому, что при повышении скорости снижается давление

$$\frac{\partial v_i}{\partial t} + \sum\limits_{k=1}^3 v_k \frac{\partial v_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + f_i$$

4 Закон сохранения энергии идеальной жидкости. Поток энергии.

$$\int\limits_{V} \left[\frac{\partial}{\partial t} (\frac{\rho v^2}{2} + \rho \varepsilon) + \operatorname{div}(\frac{\rho v^2}{2} + W) \vec{v} \right] dV = 0, \text{ где}$$

$$W=\rho\varepsilon+p=\int\frac{dp}{\rho}$$
 - энтальпия, ε - плотность энергии на единицу массы

или в дифференциальной форме

$$\frac{\partial E}{\partial t} + div\vec{N} = 0$$
, где

$$E = \frac{\rho v^2}{2} + \rho \varepsilon$$
 - плотность энергии

$$ec{N} = \left[rac{
ho v^2}{2} +
ho arepsilon + p
ight] ec{v}$$
 - вектор плотности потока энергии

Закон не работает в случае неидеальной жидкости (из-за диссипации)

5 Закон сохранения импульса идеальной жидкости. Тензор плотности потока импульса и его представление в декартовой системе координат.

$$\frac{\partial}{\partial t} \int_{V} \rho \vec{v} dV = -\oint_{S} [p\vec{n} + \rho \vec{v} (\vec{v} \vec{n})] d\sigma = 0$$

$$\frac{\partial}{\partial t} (\rho v_{i}) = -\sum_{k=1}^{3} \frac{\partial \Pi_{ik}}{\partial x_{k}} + \rho f_{i}$$

 $\Pi_{ik} = p\delta_{ik} + \rho v_i v_k$ - тензор ППИ

6 Уравнение гидростатики.

 $\operatorname{grad} p = \rho \vec{f}, \quad p = p(\rho)$ - выполняется в стационарной жидкости

7 Частота Брента-Вяйсяля.

$$N = \sqrt{\frac{g}{\rho}} \frac{d\rho}{dz}$$

Если $N^2 < 0$, то неустойчивость жидкости (тело всплывает или тонет). Если $N^2 > 0$, то жидкость устойчива (тело не двигается).

8 Теорема Бернулли для потенциальных (безвихревых) и не потенциальных, стационарных (не двигающихся) и нестационарных течений.

$$\frac{v^2}{2} + \frac{p}{\rho} - gz = const$$
 - стационарное безвихревое ($const$ во всём объёме) $\frac{v^2}{2} + W - gz = const$ - стационарное вихревое ($const$ на линии тока)

$$\frac{\partial \varphi}{\partial t} + \frac{v^2}{2} + \frac{p}{\rho} - gz = const$$
 - нестационарное безвихревое

9 Теорема Томсона.

Циркуляция скорости (Γ) вдоль замкнутого контура, перемещающегося в идеальной жидкости, остается постоянной.

$$\Gamma = \oint \vec{v} d\vec{r} = const$$

10 Потенциальные течения идеальной несжимаемой жидкости. Основные уравнения, граничные условия.

$$\vec{v} = \operatorname{grad}(\varphi), \quad rot \vec{v} = 0, \quad div \vec{v} = 0, \quad \Delta \varphi = 0$$

Граничное условие не протекания:

нормальная компонента скорости на границе с телом равна нулю: $\vec{v}\vec{n}|_s = 0$

если тело движется со скоростью
$$v_0$$
: $\vec{v}\vec{n}|_s = \frac{\partial \varphi}{\partial n} = \vec{v_0}\vec{n}$

Граничное условие на бесконечности - используют значение потенциала на бесконечности.

11 Парадокс Д'Аламбера-Эйлера.

Для тела с гладкой поверхностью, движущегося равномерно в идеальной несжимаемой жидкости постоянной плотности без границ, сила сопротивления, действующая на тело со стороны потока, равна нулю.

$$\vec{F} = -\oint p_s \vec{n} dS = 0$$

12 Понятие присоединенной массы. Присоединенная масса сферы и единицы длины бесконечного кругового цилиндра.

Присоединенная масса - это масса, которая добавляется к массе тела, движущегося неравномерно в жидкой среде для учета воздействия среды на это тело.

$$(M = F_{\text{comp}}/a = \frac{\rho}{v_0^2} \iiint\limits_V v^2 dV)$$

$$M_{\text{сферы}} = \frac{2}{3} \rho \pi R^3$$
 (равна половине массы вытесненной жидкости)

 $M_{\text{цилиндра}} = \rho(\pi R^2 * l), \quad l = 1$ (равна массе вытесненной жидкости)

13 Функция тока и ее свойства.

Для плоского потенциального течения несжимаемой идеальной жидкости:

$$\psi = \psi(x, y, t); \quad v_x = \frac{\partial \psi}{\partial y}; \quad v_y = -\frac{\partial \psi}{\partial x}$$

$$d\psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = -v_y dx + v_x dy$$

На линии тока $\psi = const$. Линии тока ($\psi = const$) ортогональны изопотенциальным линиям ($\varphi = const$), т.е. $(\nabla \psi, \nabla \varphi) = 0$

 Φ ункция тока - является гармонической функцией, удовлетворяющей уравнению Лапласа $\Delta \psi = 0$

14 Комплексный потенциал.

 $F(z) = \varphi + i\psi$ (действительная часть - потенциал, мнимая – функция тока)

Любую аналитическую функцию комплексного переменного можно поставить в соответствие с неким плоским потенциальным течением идеальной несжимаемой жидкости.

15 Линии тока и эквипотенциальные линии.

Линия тока - это линия, касательные к которой в данный момент времени и в каждой точке совпадают с вектором скорости \vec{v}

 $\psi = const$ - линии тока (постоянная функция тока)

 $\varphi = const$ - эквипотенциальные линии (постоянный потенциал)

16 Формула Жуковского.

$$F_y = -\int p n_y dl = \rho \Gamma v_0$$

Сила, действующая на вращающийся шарик, находящийся в набегющем потоке жидкости, пропорциональна плотности, скорости и параметру, характеризующему вихрь.

17 Точечные вихри и их взаимодействия.

Устремляем сечение нашей вихревой трубки к нулю, а частоту к бесконечности - получаем точечный вихрь. Скорость точечного i-ого вихря равна скорости жидкости в данной точке, создаваемой всеми остальными вихрями.

$$\frac{d\vec{r_i}}{dt} = \sum_{k \neq i} \vec{v_k}(\vec{r_i})$$

18 Поверхностные гравитационные волны (длинные, короткие, гравитационно-капиллярные) и их основные свойства (траектории движения частиц, дисперсионные уравнения, фазовые и групповые скорости).

В случае волн на мелкой воде:

$$\omega^2 = gk^2H, \omega = \pm k\sqrt{gH}, v_{\Phi} = \frac{\omega}{k}, v_{\rm rp} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$

В случае волн на глубокой воде:

$$\omega = \pm \sqrt{gk}, v_{\Phi} = \sqrt{\frac{g}{k}}, v_{\text{rp}} = \frac{g}{2\sqrt{gk}} = \frac{v_{\Phi}}{2}$$

В случае гравитационно-капиллярных волн:

$$\omega^2 = (gk + \gamma k^3) \operatorname{th} kH, \gamma = \frac{\alpha}{\rho}$$

$$v_{\rm th}^2 = \frac{\omega^2}{k^2} = \frac{g}{k} + \gamma k$$

$$k_* = \sqrt{\frac{g}{k}}$$
 - минимум v_{Φ}

$$v_{\rm rp} = \frac{d\omega}{dk} \quad \Rightarrow \quad v_{\rm rp} = \frac{v_{\rm d}}{2} \frac{k_*^2 + 3k^2}{k_*^2 + k^2}$$

Если $k \gg k_*$, это капиллярные волны. Если $H \ll k \ll k_*$, то это гравитационные короткие волны (дно ещё не чувствуется). Если же $k \ll H$, то это длинные гравитационные волны.

19 Уравнение Навье-Стокса для несжимаемой вязкой жидкости в векторной форме и в проекциях на оси в декартовой системе координат.

Запись через кинематическую вязкость $\nu = \eta/\rho$:

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}\nabla)\vec{v} = -\frac{\nabla p}{\rho} + \nu\Delta\vec{v} + \vec{f}$$

$$\frac{\partial v_i}{\partial t} + \sum_{k=1}^3 v_k \frac{\partial v_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \sum_{k=1}^3 \frac{\partial^2 v_i}{\partial x_k^2} + f_i$$

20 Тензор вязких напряжений, физический смысл, представление в декартовой системе коорди-

Общий вид тензора вязких напряжения (при относительном смещении слоёв жидкости, зависимость $\sim \eta$ линейна, жидкость будем считать изотропной):

$$\sigma_{ik} = a \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + c \left(\frac{\partial v_i}{\partial x_k} - \frac{\partial v_k}{\partial x_i} \right) + b \sum \frac{\partial v_l}{\partial x_l} \delta_i$$

 $\sigma_{ik} = a \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + c \left(\frac{\partial v_i}{\partial x_k} - \frac{\partial v_k}{\partial x_i} \right) + b \sum \frac{\partial v_l}{\partial x_l} \delta_{ik}$ Переобозначим константы $a = \eta, b = \xi$. Тогда тензор вязких напряжений перепишется как

$$\sigma_{ik} = \eta \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + \xi \sum_{l} \frac{\partial v_l}{\partial x_l} \delta_{ik}$$

Тензор показывает, как один слой жидкости действует на другой слой жидкости

21 Граничные условия для несжимаемой вязкой жидкости на поверхности твердого тела и свободной поверхности.

В случае вязкой жидкости скорость жидкости на границе с телом равна скорости тела:

При рассмотрении гидродинамики слоя жидкости на верхней границе:

$$f_i = \sigma_{ik} n_k = n \frac{\partial v_x}{\partial u} = 0$$

22 Формула Пуазейля для расхода жидкости.

$$Q = 2\pi \int\limits_0^R v(r) r dr = \frac{\pi}{8\eta} \left(\frac{\partial p}{\partial z} \right) R^4$$

23 Скин-слой.

Поскольку среда вязкая, возмущения передаются наверх, но затухают на характерном масштабе толщины скин-слоя

$$\delta = \sqrt{\frac{2\nu}{\omega}}$$

24 Числа Рейнольдса, Фруда, Струхаля и их физический смысл.

$$Re = \frac{v_0 l}{\nu} = \frac{2v_0 R}{\nu} = \frac{V_{\rm cp} R}{\nu}$$

 $Re=rac{v_0l}{
u}=rac{2v_0R}{
u}=rac{V_{
m cp}H}{
u}$ $u=rac{\eta}{2}$ - кинематический коэффициент вязкости

Число Рейнольдса показывает относительное влияние нелинейных эффектов. Если Re мало, то можно пренебречь в уравнении движения вязкой жидкости всем, кроме давления.

$$Fr = \frac{v_0^2}{ql}$$

Число Фруда описывает отношение кинетической энергии жидкости к потенциальной (энергии гравитационных сил). Если оно велико, то можно не учитывать влияние силы тяжести

$$Sh = \frac{v_0 T}{l}$$

Число Струхаля характеризует стационарность. Если Sh>>1 можно пренебречь нестационарностью (переходим в квазистатику).

25 Формула Стокса.

Сила сопротивления, действующая на маленькое тело, движущееся в жидкости.

 $F = 6\pi \eta R v_0$, условие применимости - $Re \ll 1$

26 Зависимость ширины пограничного слоя от параметров.

Пограничный слой - слой, где скорость меняется от нуля до скорости, соответствующей скорости обтекания тела идеальной жидкостью.

Толщина пограничного слоя: $h = \frac{\nu x}{v_0}$, где x - длина рассматриваемого участка

Во-первых, чем больше вязкость, тем толще пограничный слой. Кроме того, чем дальше по x, тем слой толще. И, наконец, чем больше скорость, тем больше пограничный слой должен быть прижат к пластине.

27 Уравнения линейной акустики. Волновое уравнение.

Уравнение Эйлера, уравнение непрерывности и последнее уравнение - состояния:

уравнение Эилера, уравнение непрерывности
$$\frac{\partial \vec{v}'}{\partial t} = -\frac{\nabla p'}{\rho_0}, \quad \frac{\partial \rho'}{\partial t} + \rho_0 c^2 \operatorname{div} \vec{v} = 0, \quad p' = c^2 \rho'$$

Здесь $p=p_0+p',\quad v=v_0+v',\quad \rho=\rho_0+\rho'$ Величины с индексом 0 равновесная среда, штрихами обозначены добавки, возникающие при распространении звука. c - скорость звука в данной среде

Волновое уравнение: $\frac{\partial^2 \varphi}{\partial t^2} - c^2 \Delta \varphi = 0$

28 Монохроматические волны, уравнение Гельмгольца

Уравнение Гельмгольца: $\Delta \Phi_0 + k_0^2 \Phi_0 = 0$, $k_0 = \frac{\omega}{2}$

Простейшее решение - плоские волны: $\Phi_0 = e^{i(\vec{k}, \vec{r})}$

В случае $\vec{k} = \vec{k}_1 + i\vec{k}_2$ (неоднородная плоская волна):

 $\Phi_0 = e^{i(\vec{k}_1, \vec{r})} e^{-(\vec{k}_2, \vec{r})}$. Всякую волну можно представить в виде суперпозиции плоских монохроматических волн с различными волновыми векторами и частотами.

29 Закон сохранения энергии (звуковой волны)

$$\frac{\partial E}{\partial t} + \operatorname{div} \vec{J} = 0$$

 $\vec{J} = \rho \vec{v}$ - вектор Умова-Пойнтинга - интенсивность звуковой волны, сила звука.

 $E = \rho \frac{v^2}{2} + \frac{p^2}{2g_0 g^2}$ - полная энергия звуковой волны.