Machine Learning & Deep Learning

Lecture 23

Keras를 이용한 딥러닝 코드 분석

학습 자동 중단 기능을 이용한 와인 종류 예측

1. 와인 종류 예측을 위한 데이터셋

- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

- 포르투갈 서북쪽의 대서양을 맞닿고 위치한 비뉴 베르드(Vinho Verde) 지방에서 만들어진
 와인을 측정한 데이터
 - → 레드와인(샘플 1,599개)과 화이트와인(샘플4,898개)의 등급과 맛, 산도를 측정해 분석하고 데이터셋으로 구축

1. 와인 종류 예측을 위한 데이터셋

- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

와인 종류 예측을 위한 데이터 → wine.csv

데이터의 구조

	0	1	2	3	4	5	6	7	8	9	10	11	12
964	8.5	0.47	0.27	1.9	0.058	18	38	0.99518	3,16	0.85	11,1	6	1
664	12.1	0.4	0.52	2	0.092	15	54	1	3,03	0.66	10.2	5	1
1692	6.9	0.21	0.33	1.8	0.034	48	136	0.9899	3,25	0.41	12.6	7	0
5801	6.7	0.24	0.31	2,3	0.044	37	113	0.99013	3,29	0.46	12.9	6	0
2207	6.1	0.28	0.25	17.75	0.044	48	161	0.9993	3,34	0.48	9.5	5	0

1. 와인 종류 예측을 위한 데이터셋

- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

와인 종류 예측을 위한 데이터 → wine.csv

- 데이터의 구조
 - ✓ 총 6497개의 샘플이 있음을 알 수 있음
 - ✓ 13개의 속성이 있고, 1개의 클래스가 있음

0	주석산 농도	7	밀도
1	아세트산 농도		pH
2	구연산 농도		황산칼륨 농도
3	잔류 당분 농도	10	알코올 도수
4	염화나트륨 농도	11	와인의 맛(0~10등급)
5	유리 아황산 농도	12	class (1: 레드와인, 0: 화이트와인)
6	총 아황산 농도		

- 1. 와인 종류 예측을 위한 데이터셋
- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

콜백(callback) 함수

✓ callback 이란, 일반적으로 함수의 파라미터로 다른 함수를 받는 형식의 코드를 말한다. 콜백으로 넘겨받은 함수는 필요에 따라 호출되어 실행된다.

23_(5 Page) 강의용 Callback 함수 이해를 위한 예제.ipynb

- Keras에서 제공하는 모델을 저장하기 위한 콜백(callback) 함수 중에서 ModelCheckpoint() 함수를 사용하여 학습 모델을 저장하고, EarlyStopping()함수를 사용하여 학습 중단할 수 있다.
- Keras에서는 아래와 같이 필요한 콜백(callback)함수를 임포트하여 사용
 - √ from keras.callbacks import ModelCheckpoint, EarlyStopping

- 1. 와인 종류 예측을 위한 데이터셋
- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

ModelCheckpoint() 함수를 이용한 모델 업데이트 과정 저장을 위한 환경 설정

checkpointer = **ModelCheckpoint**(filepath=modelpath, monitor='val_loss', verbose=1, save_best_only=True)

사용 예시

modelpath="./model_save(2)/{epoch:02d}-{loss:.4f}.hdf5"
checkpointer = ModelCheckpoint (filepath=modelpath, monitor='loss', verbose=1, save_best_only=True)

• filepath: 모델을 저장할 경로 및 형식을 지정

ModelCheckpoint (filepath=modelpath) 이고, modelpath="./model_save(2)/{epoch:02d}-{val_loss:.4f}.hdf5" 일 경우,

1번째 에폭에서 val_loss가 0.0323 이라면 ./model_save(2) 디렉토리에 01-0.0323.hdf5 처럼 저장되고, 3번째 에폭에서 val_loss가 0.0264 이라면 ./model_save(2) 디렉토리에 03-0.0264.hdf5 로 저장된다.

• monitor : 모델을 저장할 때, 기준이 되는 값을 지정

예를 들어, validation set의 loss가 가장 작을 때 저장하고 싶으면 'val_loss'를 입력하고 만약 train set의 loss가 가장 작을 때 모델을 저장하고 싶으면 'loss'를 입력한다.

• verbose : 0 또는 1 지정

0일 경우에는 화면에 표시되는 것 없이 바로 모델이 저장된다. 1일 경우에는 모델이 저장 될 때, 'saving model to ...' 라고 화면에 표시되며 저장된다.

• save_best_only: True 또는 False 지정

True 인 경우, monitor 되고 있는 값을 기준으로 가장 좋은 값으로 모델이 저장된다. False인 경우, 매 epoch마다 모델이 filepath{epoch}으로 저장됩니다. (model0, model1, model2....)

- 1. 와인 종류 예측을 위한 데이터셋
- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

EarlyStopping() 함수를 이용한 학습 중단을 위한 환경 설정

early_stopping_callback = **EarlyStopping**(monitor='val_loss', patience=100)

학습이 진행될수록 학습 데이터셋의 정확도는 올라가지만 과적합(overfitting) 때문에 테스트 데이터셋의 실험 결과는 점점 나빠질 수 있다. 이 경우에는 학습을 중단하는 것이 바람직함

→ 이 경우 사용할 수 있는 함수가 EarlyStopping() 이다.

사용 예시

early_stopping_callback = EarlyStopping(monitor='val_loss', patience=100)

• patience: monitor에 설정한 부분이 좋아지지 않아도 몇 번까지 기다릴지를 정하는 숫자

가령 patience=100 경우, monitor에 설정한 부분이 100번까지는 인내한 후, 100번 이후에도 성능이 좋아지지 않으면 학습을 멈춘다는 뜻

- 1. 와인 종류 예측을 위한 데이터셋
- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

와인 종류 예측을 위한 데이터 → wine.csv

23_(8 page) 강의용_ Wine (ModelCheckpoint_EarlyStopping).ipynb

- 1. 와인 종류 예측을 위한 데이터셋
- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

와인 종류 예측 예제

- 1. 와인 종류 예측을 위한 데이터셋
- 2. 콜백(callback) 함수
- 3. 학습 모델 업데이트 및 저장
- ModelCheckpoint()
- 4. 학습 자동 중단
- EarlyStopping()
- 5. ModelCheckpoint와
 EarlyStopping
 콜백(callback) 함수를
 이용한 딥러닝 설계 및
 구현

```
소수점 이하
                                                              소수점 이하
                                                                               5자리까지 표현
                                                             4자리까지 표현
Epoch 00123: val_loss did not improve from 0.16649
Epoch 124/3000
 - 0s - loss: 0.2220 - accuracy: 0.9397 - val loss: 0.1661 - val accuracy: 0.9538
Epoch 00124: val_loss improved from 0.16649 to 0.16609, saving model to ./model_save/124-0.1661.hdf5
Epoch 125/3000
 - 0s - loss: 0.2211 - accuracy: 0.9397 <mark>- val loss: 0.1672</mark> - val_accuracy: 0.9538
Epoch 00125: val loss did not improve from 0.16609
Epoch 126/3000
 - 0s - loss: 0.2207 - accuracy: 0.9410 - val loss: 0.1676 - val accuracy: 0.9487
Epoch 00126: val loss did not improve from 0.16609
Epoch 127/3000
 - 0s - loss: 0.2203 - accuracy: 0.9410 - val loss: 0.1660 - val accuracy: 0.9538
Epoch 00127: val_loss improved from 0.16609 to 0.16599, saving model to ./model_save/127-0.1660.hdf5
Epoch 128/3000
 - 0s - loss: 0.2193 - accuracy: 0.9410 - val loss: 0.1660 - val accuracy: 0.9538
                                                                                         122-0.1665.hdf5
Epoch 00128: val_loss did not improve from 0.16599
                                                                                       124-0.1661.hdf5
                                                                                         127-0.1660.hdf5
                                                                                          131-0.1656.hdf5
```