STD – 9 MATHS

CHAPTER - 2

polynomials

EXERCISE - 2.4 Q:5(3,4)

(iii)
$$x^3 + 13x^2 + 32x + 20$$

- \triangleright Let p(x) = $x^3 + 13x^2 + 32x + 20$
- ➤ Factors of 20 are ±1, ±2, ±4, ±5, ±10 and ±20
- ➤ By trial method, we find that p(-1) = 0
- So, (x + 1) is factor of p(x)
 Now,

$$p(x) = x^{3} + 13x^{2} + 32x + 20$$

$$p(-1) = (-1)^{3} + 13(-1)^{2} + 32(-1) + 20$$

$$= -1 + 13 - 32 + 20$$

$$= 0$$

Therefore, (x + 1) is the factor of p(x)

Now, Dividend = Divisor × Quotient + Remainder

$$(x + 1) (x^2 + 12x + 20)$$

= $(x + 1) (x^2 + 2x + 10x + 20)$
= $(x + 1) x (x + 2) + 10 (x + 2)$
= $(x + 1)(x + 2)(x + 10)$

(iv)
$$2y^3 + y^2 - 2y - 1$$

$$\triangleright$$
 Let p(y) = 2y³ + y² - 2y - 1

Factors =
$$2 \times (-1) = -2$$
 are ± 1 and ± 2

By trial method, we find that

$$p(1) = 0$$

So, (y - 1) is factor of p(y)

Now,

$$p(y) = 2y^{3} + y^{2} - 2y - 1$$

$$p(1) = 2(1)^{3} + (1)2^{2} - 2(1) - 1$$

$$= 2 + 1 - 2$$

$$= 0$$

Therefore, (y-1) is the factor of p(y)

$$y - 1 \frac{2y^{2} + 3y + 1}{2y^{3} + y^{2} - 2y - 2y - 2y^{3} - 2y^{2}} - \frac{2y^{3} - 2y^{2}}{3Y^{2} - 2y - 1} - \frac{3Y^{2} - 3Y}{Y - 1} - \frac{Y - 1}{Y - 1} - \frac{+}{0}$$

Now, Dividend = Divisor × Quotient + Remainder

$$(y-1)(2y^2+3y+1)$$

$$= (y-1)(2y^2+2y+y+1)]$$

$$= (y-1)(2y(y+1)+1(y+1))$$

$$= (y-1)(2y+1)(y+1)$$

Thanks

For watching