Deep Learning Dimensionality Reduction for Text

1. Data Preprocessing for Graph Autoencoder:

1.1. Convert a collection of raw documents to a matrix of *tf-idf* features:

$$tf$$
- $idf(t, d, D) = tf(t, d) \times idf(t, D) tf$ - $idf(t, d, D) = tf(t, d) \times idf(t, D)$

t: defines the terms;

d: defines each document;

D: defines the collection of documents.

Formula for *idf* (*Inverse Document Frequency*):

$$idf(t,D) = log \frac{|D|}{1 + |\{d \in D: t \in d\}|}$$

D: inferring to a document space.

1.2. Scale input vectors individually to unit norm by compute *Euclidean norm* $(\ell^2$ -norm) of the tf-idf matrix for each feature:

$$\|x\|_{2} = \sqrt{\left(\sum_{i=1}^{n} x_{i}^{2}\right)} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{i}^{2}}$$

Table 1: data samples

	F_1	i	F_2	Fз	F_4	
Sample ₁	-1		0	-2	1	
Sample ₂	0		1	2	1	
Sample ₃	1	T	0	2	2	

Here we have the unit norm of F_1 elements:

$$z = F1 = \|x\|_2 = \sqrt{(-1)^2 + (0)^2 + (1)^2} = \sqrt{1 + 0 + 1} = \sqrt{2} = 1.4$$
$$x = \frac{x}{z} = \frac{-1}{1.4} = -0.71$$

Table 2: feature normalized

	F_1	F_2	$F_{\mathcal{J}}$	F_4
Sample ₁	-0.70710678	0.	-0.57735027	0.40824829
Sample ₂	0.	1.	0.57735027	0.40824829
Sample ₃	0.70710678	0.	0.57735027	0.81649658

It normalized each column sample. Unit norm means the squared elements sum for each feature is **1**.

Here we have sum of F_I squared elements :

$$(-0.71)^2 + (0.)^2 + (0.71)^2 = 0.5 + 0. + 0.5 = 1.0$$

Table 3: sum of squared elements

	F_1	F_2	$F_{\mathcal{J}}$	F_4
Sample ₁	0.5	0.	0.33333333	0.16666667
Sample ₂	0.	1.	0.33333333	0.16666667
Sample ₃	0.5	0.	0.33333333	0.16666667
Sum	1.	1.	1.	1.

- **1.3.** Compute pairwise distances between observations in n-dimensional space:
 - **1.3.1.** Computes the *Cosine Distance* between vectors \boldsymbol{u} and \boldsymbol{v} :

$$Cos(\theta) = 1 - \frac{u \cdot v}{\parallel u \parallel_2 \parallel v \parallel_2}$$

 $Cos(\theta) = [1.13608276, 1.40824829, 0.55555556]$

1.3.2. Convert the vector to an \mathbf{n} by \mathbf{n} distance matrix.

$$v\left[\binom{1}{2} - \binom{n-i}{2} + (j-i-1)\right]$$

Table 4: Cosine Similarity Result

	${\tt Sample}_1$	$Sample_2$	$Sample_3$
Sample ₁	0.	1.13608276	1.40824829
Sample ₂	1.13608276	0.	0.5555556
Sample ₃	1.40824829	0.5555556	0.

1.3.3. Compute the *Correlation Distance* between vectors \boldsymbol{u} and \boldsymbol{v} :

$$Cor(\theta) = 1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}{\|(u - \bar{u})\|_2 \|(v - \bar{v})\|_2}$$

Cor $(\theta) = [0.58385853, 1.07028092, 1.8331475]$

1.3.4. 1.3.2. Convert the vector to an n by n distance matrix, see 1.3.2.

Table 5: Correlation Similarity Result

	${ t Sample}_1$	Sample ₂	Sample ₃
Sample ₁	0.	0.58385853	1.07028092
Sample ₂	0.58385853	0.	1.8331475
Sample ₃	1.07028092	1.8331475	0.

2. Graph Auto-Encoder:

2.1. Define layers:

Use the geometric progression to define the hidden layers:

$$mhL = k^1, k^2, k^3, ..., k^n$$
 , (if $k^n < size$ of input)
$$nhl = z(\sqrt{lenght(mhL)})$$

$$hl = mhl[-nhl]$$

k: embedded code

z: integer values

mhL: maximum hidden layers

nhl: number of hidden layers proposed

hl: hidden layers proposed

E.g. here we have hidden layers for 150 samples for 2D goal embedded:

$$mhL = 2^{2}, 2^{3}, ..., k^{n}$$
, (if $2^{n} < 150$)
$$mhL = 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}$$

$$nhl = z(\sqrt{mhL}) = 2$$

$$hl = mhl[-nhl] = mhl[-2]$$

$$hl = [2^{5}, 2^{6}]$$

Graph Autoencoders for 150 samples:

$$150 - 128 - 64 - 2 - 64 - 128 - 150$$

2.2. Optimizer:

2.2.1. Optimize with the Adam algorithm.

$$egin{aligned} m_0 &:= 0 ext(Initialize initial1st moment vector) \ v_0 &:= 0 ext(Initialize initial2nd moment vector) \ &t &:= 0 ext(Initialize time step) \ &t &:= t+1 \end{aligned}$$
 $egin{aligned} t &:= t+1 \ lr_t &:= ext learning_rate * \sqrt{1-beta_2^t}/(1-beta_1^t) \ &m_t &:= beta_1 * m_{t-1} + (1-beta_1) * g \ &v_t &:= beta_2 * v_{t-1} + (1-beta_2) * g * g \ &variable &:= variable - lr_t * m_t/(\sqrt{v_t} + \epsilon) \end{aligned}$

The Adam algorithm parameters:

Beta 1: The exponential decay rate for the first moment estimates:

$$\beta 1 = 0.9$$

Beta 2: The exponential decay rate for the second moment estimates.

$$\beta 2 = 0.999$$

Learning rate: The learning rate is used which is indifferent to the error gradient:

Learning rate =
$$0.001$$

Epsilon: we set the epsilon value to the default value.

$$Epsilon = 1e-08$$

- **2.2.2.** Compute gradients of loss to return a list of (gradient, variable) pairs where "gradient" is the gradient for "variable".
- **2.2.3.** Apply gradients to gradients of loss to return an Operation that applies gradients.
- **2.3.** Lost function:

$$||Input - Output|| = \sum_{i} (Input_i + Output_i)$$

- 2.4. Layers:
 - **2.4.1.** Activation function:

Use sigmoid function:

$$f(x) = \frac{1}{1 + e^{-(x)}}$$

2.4.2. Weight Initialization:

Consider a *L* layer neural network, which has *L-1* hidden layers and 1 input and output layer each.

2.4.2.1. Weights:

$$W^{[l]} = \frac{1}{(size \ of \ layer \ L)^{1/2}}$$

2.4.2.2. Biases:

$$b^{[l]} = \frac{1}{(size \ of \ layer \ L - 1)^{1/2}}$$

2.5. Normalization layers:

Normalizes an input layer by mean and variance, and applies a scale (gamma γ) and an offset (beta β):

$$\frac{\gamma (x - \mu)}{\sigma} + \beta$$

γ initializer: 0.1

 β initializer: 1.0

2.6. Build deep autoencoder:

Our function minimize the value by following the formula:

Table 6: Model Architecture

Build deep autoencoder and define all layers and span of variables.

- *Input is normalized matrix similarity* $(n \times n)$.
- $S = size \ of \ input$
- HL = number of hidden layers
- L = number of layers

For epoch = 1 to \mathcal{F}

For i = 1 to S

Train the autoencoder with L number of data along with backpropagation strategy.

Obtain the cost value.

End

Obtain the code or embedded data after optimization.

Run k-means algorithm on embedded data.

3. Experimental Evaluation:

3.1. We experimentally test the models on the 6 groups of the 20 newsgroups datasets which already have been used by other. For each group, we selected 200 documents randomly. It means for our 6 groups we have 1,200 documents. After converting datasets to vector by TF-IDF, we compute normalized correlation on that.

 Table 7: Define layers

 Dataset
 Nodes

 6NG
 1200 - 1024 - 512 - 256 - 2

3.2. Results:

3.2.1. Progresses of the loss function and KMeans algorithm on the embedded code after each epoch:

3.2.2. Final Embedded codes of Autoencoder (AE):

3.2.3. Unit norm on features vs samples:

3.2.4. Performance of KMeans on 10 random factors of the model:

3.2.5. Performance of different techniques of dimensionality reduction on the 6 Groups of the 20 Newsgroups Dataset:

3.2.6. Performance of KMeans on different techniques of dimensionality reduction on the 6 Groups of the 20 Newsgroups Dataset:

3.2.7. Comprising with recent paper (KATE: K-Competitive Autoencoder for Text, Yu Chen and Mohammed J. Zaki):

