

notas

notas

Getting Started with Kaggle Kaggle Workflow

- Load Libraries
- Get data, including EDA
- Clean, prepare and manipulate Data (feature engineering)
- Modeling (train and test)
- Algorithm Tuning
- Finalizing the Model (submission)

kaggle

What is Kaggle?
Why I Participate?
What is the Impact?

- Competitions
- Datasets
- Notebooks
- Discussion
- Courses
- Jobs
- Social Network
- ...

Overview

Description

Evaluation

Tutorials

Frequently Asked Questions

👋 🕌 Ahoy, welcome to Kaggle! You're in the right place.

This is the legendary Titanic ML competition - the best, first challenge for you to dive into ML competitions and familiarize yourself with how the Kaggle platform works.

The competition is simple: use machine learning to create a model that predicts which passengers survived the Titanic shipwreck.

Read on or watch the video below to explore more details. Once you're ready to start competing, click on the "Join Competition button to create an account and gain access to the competition data. Then check out Alexis Cook's Titanic Tutorial that walks you through step by step how to make your first submission!

Titanic: Machine Learning from Disaster

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle · 11,209 teams · Ongoing

Overview Notebooks Discussion

Data

Leaderboard Rules Team My Submissions

Submit Predictions

Data Sources

Overview	Data Notebooks	Discussion Leaderboard	Rules Team	My Submissions	Submit Predictions		
Public Le	aderboard Private I	eaderboard.					
	This leaderboard is calculated with approximately 50% of the test data. The final results will be based on the other 50%, so the final standings may be different.						
#	Team Name	Notebook	Team Membe	ers Score 2	Entries Last		
1	Reza R Pratama			1.00000	1 2mo		
2	Matheus Silva			1.00000	1 2mo		
3	Batsy		a •	1.00000	1 2mo		
4	Patrick Bruecker			1.00000	1 2mo		
5	SoiSoCiu		4	1.00000	25 2mo		
6	ambition12		4	1.00000	2 2mo		
7	harshitsheoran			1.00000	1 2mo		
8	James Strong		ļ	1.00000	1 2mo		
9	chauncey			1.00000	14 1mo		

Data Exploration (EDA)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S


```
train.Survived.value_counts()
```

- 0 549
- 1 342

Hypothesis #01 (naive)

The simplest strategy of guessing that all died since the majority died

Hypothesis #02

Since roughly 75% of females survived and roughly only 20% of males survived, what's the score when you guess all females survived and all males perished?

 A correlation of -0.54 shows Sex carries a lot of information about Survived.

- 0.9

- 06

-0.3

-0.0

- We see then Pclass (-0.34) and Fare (0.26) are the next features that correlate with Survived
- However, Fare and Pclass are very much correlated at (0.55) as we may expect

"Women and Children First"

Clean, Preparing and Manipulate Data

Preparing our Data for Machine Learning

- Sex
- Pclass
- Age_categories

- Before we build our model, we need to prepare these columns for machine learning.
- Most machine learning algorithms can't understand text labels, so we have to convert our values into numbers.

Preparing our Data for Machine Learning

Pclass

Pclass_1 Pclass_2 Pclass_3

0	0	1
1	0	0
0	0	1
1	0	0
0	0	1
0	0	1
1	0	0
0	0	1
0	0	1
0	1	0

- Model [0]
 - Sex column (categorized), Pclass (raw)
- Model [1]
 - Sex column (get_dummies(drop_first=True)), Pclass (raw)
- Model [2]
 - Sex column (get_dummies(drop_first=True)), Pclass (get_dummies(drop_first=False))
- Model [3]
 - Sex column (get_dummies(drop_first=True)), Pclass (raw), Age (get_dummies(drop_first=False))

Creating our First Machine Learning Model

PassengerId	Survived
892	0
893	1
894	0

Creating a Submission File

Model	Features	Parameters	Score	Ratio
All-Dead	-	All zeros	0.62679	-
[0] RandomForest	Sex (categorized) Pclass (raw)	criterion: entropy n_estimators:100 max_leaf_nodes: 64	0.74641	19.08%
[1] RandomForest	Sex (dummies(T)) Pclass (raw)	criterion: entropy n_estimators:100 max_leaf_nodes: 64	0.74641	19.08%
[2] RandomForest	Sex (dummies(T)) Pclass (dummies(F))	criterion: entropy n_estimators:100 max_leaf_nodes: 64	0.74641	19.08%
[3] XGBClassifier	Sex (dummies(T)) Pclass (raw) Age (dummies(F))	learning_rate: 0.001 max_depth: 4 n_estimators: 50	0.75119	19.84%
All-Females Survived All-Males Perished		if Sex == "female" Survived = 1 else Survived== 0	0.76555	22.13%

Model #3 - Analyzing the predictions

What about adding Embarked on top?

- Model [4]
 - Sex column (get_dummies(drop_first=True)), Pclass (raw), Embarked (categorized)
- Model [5]
 - Sex column (get_dummies(drop_first=True)), Pclass (raw), Embarked (get_dummies(drop_first=False))

Models #4 #5 - Analyzing the predictions

Features

Sex (dummies(T))

Age (dummies(F))

Sex (dummies(T))

Sex (dummies(T))

Embarked (Categorized)

Embarked (dummies(F))

Pclass (raw)

Pclass (raw)

Pclass (raw)

Parameters

learning_rate: 0.001

max_depth: 4

Survived = 1

n_estimators: 50

if Sex == "female"

else Survived== 0

criterion: entropy

n_estimators:100

criterion: entropy

n_estimators:100

max_leaf_nodes: 64

max leaf nodes: 64

Ratio

19.84%

22.13%

24.42%

24.42%

Score

0.75119

0.76555

0.77990

0.77990

Model

[3] XGBClassifier

All-Females Survived

All-Males Perished

[4] RandomForest

[5] RandomForest

The Title feature is a good predictor?

'Mr', 'Mrs', 'Miss', 'Master', 'Don', 'Rev', 'Dr', 'Mme', 'Ms', 'Major', 'Lady', 'Sir', 'Mlle', 'Col', 'Capt', 'Countess', 'Jonkheer', 'Dona'


```
38
```

```
df["Title"] = df["Name"].str.extract(' ([A-Za-z]+)\.',expand=False)
titles = {
    "Mr" :
                  "man",
    "Mme":
                  "woman",
    "Ms":
                  "woman",
    "Mrs":
                  "woman",
    "Master" :
                  "boy",
    "Mlle":
                  "woman",
    "Miss":
                  "woman",
    "Capt":
                  "man",
                                         New Sex Column
    "Col":
                  "man",
                                            sex+age+name
    "Major":
                  "man",
    "Dr":
                  "man",
    "Rev":
                  "man",
    "Jonkheer":
                  "man",
    "Don":
                  "man",
                                  df["Sex"] = df["Title"].map(titles)
    "Sir":
                  "man",
    "Countess":
                  "woman",
    "Dona":
                  "woman",
    "Lady":
                  "woman"
```

Models #6 #7 Gender = name+age

Models #4 and #5

Models #6 and #7

Model Features		Parameters	Score	Ratio
All-Dead	-	All zeros	0.62679	-
All-Females Survived All-Males Perished		if Sex == "female" Survived = 1 else Survived== 0	0.76555	22.13%
[4] RandomForest	Sex (dummies(T)) Pclass (raw) Embarked (Categorized)	criterion: entropy n_estimators:100 max_leaf_nodes: 64	0.77990	24.42%
[5] RandomForest	Sex (dummies(T)) Pclass (raw) Embarked (dummies(F))	criterion: entropy n_estimators:100 max_leaf_nodes: 64	0.77990	24.42%
[6] RandomForest	Sex (name+age) Pclass (raw) Embarked (dummies(F))	criterion: entropy n_estimators:100 max_leaf_nodes: 64	0.78947	25.95%
[7] RandomForest	Sex dummies(name+age,T) Pclass (raw) Embarked (dummies(F))	criterion: entropy n_estimators:100 max_leaf_nodes: 64	0.78947	25.95%

Next Steps

Improving the features:

- Feature Engineering: Create new features from the existing data (family_size, ticket, cabin, fare, etc)
- Feature Selection: Select the most relevant features to reduce noise and overfitting.

Improving the model:

- Model Selection: Try a variety of models to improve performance.
- Hyperparameter Optimization: Optimize the settings within each particular machine learning model.

