

Activity Recognition Concepts

EE382V Activity Sensing and Recognition

UT Austin • Dept. Electrical and Computer Engineering • Fall 2016

Two Predominant Sensing Approaches

Environmental Sensors

On-Body Sensors

Two Predominant Sensing Approaches

Run Studies with Participants

Sensor Data Acquisition

Aggregation

Storage (Local vs. Server)

Visualization

Challenge in Field Studies

Preprocessing

Synchronisation

Validate Sensing Specs

Remove undesirable artifacts

Downsampling

Encoding

Missing Values

Unit Conversion

Quantization

Scaling to Range

Mean Removal

Normalization

Smoothing

Moving Average

Exponential Smoothing

Low-Pass Filter

Data and Preprocessing

Segmentation

Need to run classifier continuously?

Segmentation

Need to run classifier continuously?

Segment It

Frame and Feature Extraction

Feature Selection

Signal-based

Statistical: mean, variance, kurtosis, skewness

Frequency Domain: MFCC, FFT, Spectral, DCT

Physical model

Limb Trajectories

Extract from Data

Clustering, PCA, LDA

> yaafe.py -1

Available features:

- AmplitudeModulation
- AutoCorrelation
- ComplexDomainOnsetDetection
- Energy
- Envelope
- EnvelopeShapeStatistics
- Frames
- LPC
- LSF
- Loudness
- MFCC
- MagnitudeSpectrum
- OBSI
- OBSIR
- PerceptualSharpness
- PerceptualSpread
- SpectralCrestFactorPerBand
- SpectralDecrease
- SpectralFlatness
- SpectralFlatnessPerBand
- SpectralFlux
- SpectralRolloff
- SpectralShapeStatistics
- SpectralSlope
- SpectralVariation
- TemporalShapeStatistics
- ZCR

Available feature transforms:

- AutoCorrelationPeaksIntegrator
- Cepstrum
- Derivate
- HistogramIntegrator
- SlopeIntegrator
- StatisticalIntegrator

Available Output formats:

- csv
- h5

Simple Example

Distinguish Sitting from Walking

Slightly Harder...

Distinguish Walking from Running

Classification

Decision Trees

kNN

SVM

Bayesian Networks

Graphical Models (HMM, CRF)

Symbolic Representations (Vector Space Model)

DeepNets

Unimodal Input

Performance Evaluation

Eating Detector

Performance Evaluation

Apple Watch 2 comes with Eating Detector!

Runs at the end of every hour, from 8AM to 8PM

Outputs **Eat/No Eat** for every minute

Claimed Accuracy of 87.5%

Is this good?

12hrs = 720mins

Assume meal lasts 20 minutes

3 meals a day, for total of 60 minutes of eating

Misses them all!

660/720 = 91.7% Accuracy

Performance Evaluation

FP, TP, FN, TN

Type I error (false positive)

Type II error (false negative)

Performance Evaluation: Metrics

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F-measure = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Brushteeth (Bathrodh) Classwater (Kitchen) de Kitchen) Gathrodh (Bathrodh) Gathrodh) Gathrodh (Bathrodh) Gathrodh) Gathrodh (Bathrodh) Gathrodh (B

Performance Evaluation: Time-Based

Activity Recognition Challenges

Intra-Class Variability

Activity Recognition Challenges

Intra-Class Variability

Variability in Sensor

Inter-Class Similarity

Operating Requirements

NULL Class Problem

Sensor Fusion

Class Imbalance

Ground Truth Annotation

Extracting Qualitative Information

Projects

~10 Teams of 3/4 Students (Space in Canvas)

Project Proposal

Project Progress Report

Project Final Presentation

Project Final Report

Will be able to present ideas for projects on Sept 13th

Teams formed by Sept 20th

Projects

Swimming style and form detection

Identify different types of cooking gestures

Sensor to detect dog activities

Identify when text and driving is happening

Hand washing detection with wrist sensors

Activity recognition with physiological signals

Detect stress from gestural data

Activity recognition models from media

Project report should be of publishable quality

Upcoming Class(es)

Readings Assigned

Python + Scipy/Numpy + Scikit-Learn

Install in your computer (you will bring it to class next week)

Anaconda is a good install package for all you will need

Talk to me or TA in case if you have issues

Next week: Machine Learning