Materials for 'Validating daily social media macroscopes of emotions'

Der Standard

Scatterplot regression and correlation

```
## Call:
## lm(formula = prop_good ~ sent_roll3_weighted, data = pl)
## Residuals:
##
         Min
                      1Q
                            Median
                                            3Q
                                                      Max
  -0.0165216 -0.0105770 -0.0005588 0.0053255
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                       0.568199
                                  0.008432
                                             67.39 < 2e-16 ***
## sent_roll3_weighted 0.596803
                                  0.056837
                                             10.50 4.19e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01221 on 18 degrees of freedom
## Multiple R-squared: 0.8597, Adjusted R-squared: 0.8519
## F-statistic: 110.3 on 1 and 18 DF, p-value: 4.192e-09
##
##
   Pearson's product-moment correlation
##
## data: pl$prop_good and pl$sent_roll3_weighted
## t = 10.5, df = 18, p-value = 4.192e-09
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
```

```
## 0.8218585 0.9712129
## sample estimates:
## cor
## 0.9271754
```

Scatterplot test of coefficients

```
## t test of coefficients:
##
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         0.568
                                   0.011 53.154 < 2.2e-16 ***
## sent_roll3_weighted
                         0.597
                                    0.063 9.523 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                      2.5 % 97.5 %
## (Intercept)
                      0.546 0.591
## sent_roll3_weighted 0.465 0.728
```

Differences regression and correlation

```
## Call:
## lm(formula = difgood ~ difsent, data = pl)
## Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
                                                Max
## -0.018175 -0.006874 -0.002035 0.008362 0.020188
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001737
                         0.002647
                                    0.656
                                              0.52
## difsent
             0.532768
                         0.080577
                                    6.612 4.4e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01154 on 17 degrees of freedom
## Multiple R-squared: 0.72, Adjusted R-squared: 0.7035
## F-statistic: 43.72 on 1 and 17 DF, p-value: 4.404e-06
##
## Pearson's product-moment correlation
##
## data: pl$difgood and pl$difsent
## t = 6.6119, df = 17, p-value = 4.404e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6416117 0.9403298
## sample estimates:
##
        cor
## 0.8485356
```

Differences test of coefficients

```
##
## t test of coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
               0.002
                            0.002
                                    1.092
                 0.533
                            0.068
                                    7.885
## difsent
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
               2.5 % 97.5 %
## (Intercept) -0.002 0.005
## difsent
              0.390 0.675
```

Side by side plot

Twitter

Scatterplot regression and correlation

```
##
## Call:
## lm(formula = prop_good ~ sent_roll3_weighted_shifted1, data = cdplstandard)
##
## Residuals:
##
                   1Q
                          Median
  -0.031429 -0.009133 -0.001396 0.008562 0.023044
##
## Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
                                0.641786
                                          0.003458 185.572 < 2e-16 ***
## (Intercept)
## sent_roll3_weighted_shifted1 0.516112
                                          0.060520
                                                      8.528 9.75e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01452 on 18 degrees of freedom
## Multiple R-squared: 0.8016, Adjusted R-squared: 0.7906
## F-statistic: 72.73 on 1 and 18 DF, p-value: 9.748e-08
##
   Pearson's product-moment correlation
##
## data: cdplstandard$prop_good and cdplstandard$sent_roll3_weighted_shifted1
## t = 8.528, df = 18, p-value = 9.748e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7499162 0.9582036
## sample estimates:
         cor
## 0.8953214
```

Scatterplot test of coefficients

```
##
## t test of coefficients:
##
```

```
##
                               Estimate Std. Error t value Pr(>|t|)
                                  0.642
## (Intercept)
                                            0.004 167.248 < 2.2e-16 ***
## sent_roll3_weighted_shifted1
                                 0.516
                                            0.065 7.892 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                               2.5 % 97.5 %
##
## (Intercept)
                               0.634 0.650
## sent roll3 weighted shifted1 0.379 0.654
```

Differences regression and correlation

```
##
## Call:
## lm(formula = difgood ~ difsent, data = cdplstandard)
## Residuals:
                         Median
                   1Q
                                       3Q
## -0.026760 -0.010002 0.003522 0.008462 0.025795
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.000511
                          0.003473 -0.147 0.884748
## difsent
              0.557438
                          0.127535
                                   4.371 0.000416 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01496 on 17 degrees of freedom
## Multiple R-squared: 0.5291, Adjusted R-squared: 0.5014
## F-statistic: 19.1 on 1 and 17 DF, p-value: 0.0004164
   Pearson's product-moment correlation
##
##
## data: cdplstandard$difgood and cdplstandard$difsent
## t = 4.3709, df = 17, p-value = 0.0004164
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4080285 0.8881772
## sample estimates:
        cor
## 0.7274241
```

Differences test of coefficients

```
## t test of coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                -0.001
                            0.004 -0.133
## (Intercept)
                                            0.896
## difsent
                 0.557
                            0.124 4.504
                                           <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
               2.5 % 97.5 %
## (Intercept) -0.009 0.008
```

difsent 0.296 0.819

Side by side plot

Twitter Pre-Registration Correlations

Exactly like in Pre-Registration

- ## [1] 0.63
- ## [1] "[0.26,0.84]"
- ## [1] 0.003

Change to follower limit of $100\ 000$

- ## [1] 0.71
- ## [1] "[0.39,0.88]"
- ## [1] 0.00047

Twitter Shifts

Tables

	derstandard	Twitter (Shift 1)	Twitter (No Shift)
LIWC+GS	0.93 [0.82, 0.97]	$0.90 \ [0.75, 0.96]$	0.71 [0.39, 0.88]
LIWC	0.74 [0.44, 0.89]	0.85 [0.64, 0.94]	0.66 [0.31, 0.85]
LIWC pos	$0.81 \ [0.56, 0.92]$	$0.80 \ [0.55, 0.92]$	$0.80 \ [0.55, 0.92]$
LIWC neg	0.03 [-0.42, 0.46]	-0.73 [-0.89,-0.43]	-0.73 [-0.89, -0.43]
GS	$0.91 \ [0.78, 0.96]$	$0.91 \ [0.79, 0.97]$	0.74 [0.43, 0.89]
GS pos	$0.89 \ [0.75, 0.96]$	$0.91 \ [0.79, 0.97]$	$0.91 \ [0.79, 0.97]$
GS neg	-0.57 [-0.81,-0.18]	-0.39 [-0.71, 0.07]	-0.39 [-0.71, 0.07]

	p Value	Difference
Twitter vs derstandard (aggregate Sentiment)	0.4497163	0.03 (derstandard)
GS vs. LIWC (derstandard)	0.0495599	0.17 (GS)
GS vs. LIWC (Twitter)	0.1323296	0.07 (GS)
LIWC neg vs. LIWC pos (derstandard)	0.0002351	$0.78 \; (LIWC \; pos)$
LIWC neg vs. LIWC pos (Twitter)	0.0000041	1.53 (LIWC pos)
GS neg vs. GS pos (derstandard)	0.0000007	1.47 (GS pos)
GS neg vs. GS pos (Twitter)	0.0000005	1.3 (GS pos)

Evaluation with COVID-19 cases

	New Cases
Twitter (Aggregate Shift 1)	-0.60 [-0.82,-0.21]
Twitter (Aggregate No Shift)	-0.57 [-0.81,-0.17]
Survey	-0.53 [-0.79, -0.12]
Der Standard (Aggregate)	-0.33 [-0.68,0.13]

	p Value	Difference (higher)
Twitter (Aggregate Sentiment) vs. Survey	0.501	0.06 (Twitter)
Twitter (LIWC) vs. Survey	0.617	0.05 (Twitter LIWC)
Twitter (GS) vs. Survey	0.644	0.04 (Twitter GS)
derstandard (Aggregate Sentiment) vs. Survey	0.015	-0.2 (Survey)
derstandard (LIWC) vs. Survey	0.023	-0.36 (Survey)
derstandard (GS) vs. Survey	0.087	-0.16 (Survey)

${\bf Scatterplots}~{\bf COVID\text{-}19}~{\bf cases}$

Bootstraping

