

Data Collection and Preprocessing Phase:

Date	09 July 2024
Team ID	SWTID1719935665
Project Title	GeminiDecode: Multilanguage Document Extraction by Gemini Pro
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template:

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	 Data Sources: The dataset includes multilingual documents collected from different online repositories, academic databases, and organizational records. Basic Statistics: Total Number of Documents: 50,000 Languages Covered: English, Spanish, French, German, Chinese, Arabic File Formats: PDF, DOCX, TXT Dimensions: Number of Records: 50 000 documents Attributes: Document ID: a unique identifier of the document Language: Language to which the document belongs, Content: the proper text part of any document, Metadata, Author, Date, etc. Structure: Document ID: A unique identifier for each document. Language: Language to which the document belongs. Content: This is the proper text part of any document.

	Metadata: This is supplementary information about a document.
Univariate Analysis	 Language Distribution: English: 30% Spanish: 20% French: 15% German: 15% Chinese: 10% Arabic: 10% Content Length: Mean: 1.500 words Median: 1.200 words Mode: 1,000 words Metadata Analysis: Authors: Most frequent authors, average number of documents per author. Publication Dates: Distribution of documents over time.
Bivariate Analysis	 Language vs. Content Length: Scatter Plot: Content length distribution for various languages. Language vs. Metadata: Correlation Analysis: Language of documents and their publication date. Content Length vs. Publication Date: Trend Analysis: Document length over time.
Multivariate Analysis	 Language, Content Length and Publication Date: 3D Scatter Plot: Interaction between language, word count, and date. Clustering Analysis: K-Means Clustering: Documents clustered by language, word count, and metadata. Principal Component Analysis (PCA): Dimensionality Reduction: It involves identifying major components that capture maximum variance within the dataset.
Outliers and Anomalies	 Identification of Outliers: Z-Score Method: Identify documents with an extreme length of content. IQR Method: To identify outliers in metadata attributes such as publication dates.

	 2. Treatment of Outliers: Content Length: Trim or transform extreme values. Metadata Anomalies: Records having incorrect/suspicious metadata are corrected or removed. 3. Missing Values: Detection: Recognition of missing values from document content and metadata. Resolution: Imputation: The missing values would be filled with the mean/median/mode. Filtering: A lot of records having large missing data are removed. Duplicates: Detection: The duplicate documents are detected by similarity of contents. Resolution: The duplicate records are removed to assure accuracy of the data.
Data Preprocessing Code Screenshots	
Loading Data	Code to load the dataset into the preferred environment (e.g., Python, R). `python br>import pandas as pd br>data = pd.read_csv('dataset.csv')`
Handling Missing Data	Code for identifying and handling missing values. `python data.fillna(data.mean(), inplace=True)`
Data Transformation	Code for transforming variables (scaling, normalization). `python br>from sklearn.preprocessing import StandardScaler br>scaler = StandardScaler() br>data_scaled = scaler.fit_transform(data)`

Feature Engineering	Code for creating new features or modifying existing ones. `python br>data['new_feature'] = data['feature1'] * data['feature2']`
Save Processed Data	Code to save the cleaned and processed data for future use. `python br>data.to_csv('processed_data.csv', index=False)`

Code Details

Loading Data

```
python
Copy code
import pandas as pd
data = pd.read_csv('dataset.csv')
```

This code snippet imports the Pandas library and loads the dataset from a CSV file into a DataFrame.

Handling Missing Data

```
python
Copy code
data.fillna(data.mean(), inplace=True)
```

This code snippet fills missing values in the dataset with the mean of each column.

Data Transformation

```
python
Copy code
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
data scaled = scaler.fit transform(data)
```

This code snippet uses Scikit-learn's StandardScaler to standardize features by removing the mean and scaling to unit variance.

Feature Engineering

python


```
Copy code
data['new_feature'] = data['feature1'] * data['feature2']
```

This code snippet creates a new feature by multiplying two existing features.

Save Processed Data

```
python
Copy code
data.to_csv('processed_data.csv', index=False)
```

This code snippet saves the cleaned and processed data to a new CSV file.