- Part of larger body of techniques
- Graphical models
- Model is a graph 6= (V, E)

vertices edges (nodes)

- Node is a random voriable

- 14ke on discrete number of uclues

- Elges between nodes indicate conditional dependence

- Fancy way so say that one variable has an impact or another

Variables R, P P is conditionally dependent on R

Directed Acyclic Graph (DAG)

(V,F) - Defines network structure

- Conditional probability table
binariables A=True)
B(A=False)
P(1= False A= True)
O(,-True (A = False)
P(P=+rue 1B=+rue, C=+rac) ((- Fo(ce) 1 - Fo(ce)
P(D= + rue) B= False, c= +rue)
This network defines the joint distribution over
a set of variables
P(A,B,C,O)=P(A) P(D(A) + P(C) + P(D) B,C)
Joint distribution
Ex. Following network
(Rain - Wet
P(B)=0.4 P(WIB)=0.9
$0 (\omega) - 0 = 0.1$

- We can ask what is the probability of WE true

P(W= +rue) = EP(R, W) = P(WIR)P(R) + P(WITR)P(TR)

Org * 0.4 + 0.2 * 0.6 = 0.48

Marginalization

over values of R

- Network Structure
 usually given, not clucys
 - Bayesian Information Critoria (BIC)
 Critaeria of network "goodness"
 - Ex. Bioinformatics
 - Vertices = genes values = expression information
 - Randomire edges
 - Evaluate BIC
 - Add remove edges is BIC would increase
 - Stara with empty network

 'greedity add edges according to BIC
 - Optimize using bonetic Algorian
- Back to the other thing
 - Diagnosis: in well conditional dependence
 - · Recall grass example,

- What is the probability that it rained?

Bayes Rule

- This is classification

- R is class lakel

- W is some feature

P(XIA,1,0,...,2) Y

OC PUIB)

Independence Formally

- 2 even s (variable) are independent if P(X,Y) = P(X) P(Y)

- 2 variables are conditionally independent given a third variable is

10 W Mitten

P(X|Y,Z)= P(X|Z)