Name :		• • • • • • • • • • • • • • • • • • • •		•		
Roll No. :	***************************************	• • • • • • • • • • • • • • • • • • • •	•••••	• • • •		
Invigilator's Signature	:	••••••				
CS/B.Te	ech (EE-NEW)	/SEM-7	/EE-7	02/2	2010)-1
	2010-1					
PO	WER SYSTI	EMS - 1	III			
Time Allotted : 3 Hours	3		F	ull Ma	rks :	: 70
The figures	in the margin i	ndicate fi	ıll mar	ks.		
Candidates are requir	red to give their as far as pro			ir own	wor	ds
	GROUP -	A				
(Multip	ple Choice Typ	e Questi	ions)			
1. Choose the cor	rrect alternati	ives for	any	ten	of	the
following:				10 ×	< 1 _, =	10
i) The capacita	nce & inducta	nce per i	unit le	ngth c	of a	line

operating at 110 kV are 0·1 μF & 2 mH. The surge

b)

d)

30 MVA

None of these.

impedance loading of the line is

A synchronous condenser is a/an

overexcited synchronous motor

underexcited synchronous motor.

40 MVA

27 MVA

d.c. generator

induction motor

a)

a)

b)

' c)

d)

7120

[Turn over

- iii) If P_m is the maximum power transferred, the loss of the system is
 - a) $P_m/4$

b) $P_m/2$

c) $3P_m/4$

d) none of these.

- iv) TCSC is a
 - a) shunt controller
 - b) series controller
 - c) combination of (a) & (b)
 - d) none of these.
- v) Series compensation in transmission lines
 - a) increases stability limit
 - b) decreases stability limit
 - c) has no effect on stability limit
 - d) none of these.
- vi) The propagation constant is given by
 - a) $\gamma = \sqrt{(Z/Y)}$
- b) $\gamma = \sqrt{(ZY)}$
- c) $\gamma = \sqrt{(Z+Y)}$
- d) $\gamma = \sqrt{(Z-Y)}$.
- vii) A generating unit has an incremental production cost of Rs. 60 per MWh. If the penalty factor for this unit is 1·2, the incremental cost of power delivered is
 - a) Rs. 50 per MWh
 - b) Rs. 72 per MWh
 - c) Rs. 61·20 per MWh
 - d) Rs. 48 per MWh.

- viii) An uncompensated transmission line on open circuit leads to
 - a) Ferranti effect
 - b) Line-charging current flowing into generators is more
 - c) Both (a) & (b)
 - d) None of these.
- ix) In a two plant system, the load is connected to plant no. 2. The loss coefficients
 - a) B_{11}, B_{12}, B_{22} are non-zero
 - b) B_{11} is non-zero but B_{12} and B_{22} are zero
 - c) B_{11} and B_{12} are non-zero but B_{22} is zero
 - d) B_{11} and B_{22} are non-zero but B_{12} is zero.
- x) Load compensation is used to improve
 - a) voltage profile and power factor
 - b) voltage profile and reactive power
 - c) reactive power and power factor
 - d) none of these.
- xi) Lightning arrester should be located
 - a) near the circuit breaker
 - b) away from the circuit breaker
 - c) near the transformer
 - d) away from the transformer.

[Turn over

- xii) Steady state stability of the power system is improved by
 - a) reducing fault clearing line
 - b) using double circuit line instead of single circuited line
 - c) single pole switching
 - d) decreasing generation inertia.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Explain reflection coefficient, surge impedance and surge impedance loading.
- Explain why series compensation leads to improvement in system stability. Compare the performances of series and shunt capacitors in a power system.
- 4. a) What do you mean by a $1.2/50 \mu s$ lightning surge? 2
 - b) How is the rating of surge arrester determined for each phase in a 3-phase 220 V kV system?
- 5. How do you model the tie-line power flow in a two area system using analytical technique?
- 6. Explain the phenomena of lightning and the travelling waves caused by it on transmission lines.

7120

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. 3

 $3 \times 15 = 45$

- 7. a) Describe the solution methodology of economic load despatch with transmission loss. What are penalty factor and incremental transmission loss?
 - b) Determine economic operating point for the following three units when delivering a load of 850 MW: 7

Unit 1: Coal fired steam unit:

 $P_{lmax} = 600 \text{ MW}, P_{lmin} = 150 \text{ MW}$

Input-output curve:

 $H_1 = 510 + 7 \cdot 2P_1 + 0 \cdot 00142P_1^2 \text{ MBtu/hr}$

Unit 2: Oil fired steam unit:

 $P_{2max} = 400 \text{ MW}, P_{2min} = 100 \text{ MW}$

Input-output curve:

 $H_2 = 310 + 7 \cdot 85 P_2 + 0 \cdot 00194 P_2^2 \text{ MBtu/hr}$

Unit 3: Oil fired steam unit:

 $P_{3max} = 200 \text{ MW}, P_{3min} = 50 \text{ MW}$

Input-output curve:

 $H_3 = 78 + 7.97 P_3 + 0.00482 P_3^2 MBtu/hr$

Cost of coal: 1.1 \$/MBtu

Cost of oil: 1.0 \$/MBtu

- 8. a) What is basic impulse level? Derive the expression for reflection and refraction co-efficients for voltage and current travelling waves.
 - b) The line is open circuited with a receiving end voltage of 220 kV. Find the rms value and phase angle of the following:
 - i) The incident and reflected voltages to neutral at the receiving end.
 - ii) The incident and reflected voltages to neutral at 200 km from the receiving end.

$$\alpha = 0.163 \times 10^{-3}, \ \beta = 1.068 \times 10^{-3}$$

- 9. a) What is the significance of reactive power in power system? Prove that voltage regulation in a transmission line mainly depends on reactive power. 2 + 5
 - b) An inductive load draws power of (2+j1) MVA at a receiving end bus of a radial three phase line. The receiving end bus voltage is 11 kV at 50 Hz and the system reactance is $0.5~\Omega/\mathrm{phase}$. Calculate
 - i) the receiving end current
 - ii) voltage regulation
 - iii) the sending end voltage and
 - iv) the short capacity of the system.

Assume the system to be lossless.

8

7120

- 10. What is FACTS? What are FACTS controllers? Classify the FACTS controllers. What is STATCOM? Why is STATCOM used in load flow? 3+3+3+3+3
- 11. Write short notes on any three of the following: 3×5
 - a) Spinning reserve
 - b) Exciter and its role in AVR loop of the alternator
 - c) Bewly's Lattice diagram
 - d) Gapless surge arrester
 - e) Hydrothermal scheduling.

7120