

#### TODAY'S LECTURE



- 1. Hypotheses testing intuition
- 2. Ordinary Least Squares (OLS) model
- **3.** OLS model validation
- 4. Multiple OLS practical example
- 5. OLS model assumptions





Anet

Michal



## Hypotheses

- 1. Investment in sustainability has a positive impact on company revenues.
- Healthy diet decreases the time needed for a recovery from a viral disease.
- The higher the unemployment of a city, the higher the crime rate.
- 1. Women are less likely to get a promotion.



# Hypotheses Terminology

EXAMPLE: Unemployment rate has a significant impact on the crime rate.

**Null hypothesis**: There is <u>no relationship</u> between the unemployment rate and the crime rate.

Alternative hypothesis: A higher unemployment rate leads to a higher crime rate.

Goal: to (not) reject the null hypothesis

We never say that we accept a hypothesis!



# Hypotheses Testing Intuition

Null hypothesis: There is <u>no relationship</u> between unemployment rate and crime rate.



1) We want to generalize the relationship between unemployment and crime □ we fit a straight line through data.

This way, we make an assumption that the relationship is linear.



# Hypotheses Testing Intuition

Null hypothesis: There is <u>no relationship</u> between unemployment rate and crime rate.



- 1) We want to generalize the relationship between unemployment and crime □ we fit a straight line through data
- 2) We want to test if the relationship is statistically significant



# Linear Regression – Ordinary Least Squares

*crime rate* = 
$$\beta_0 + \beta_1$$
 *unemployment rate* +  $\varepsilon$ 

**Null hypothesis**  $H_0$ : There is <u>no relationship</u> between unemployment rate and crime rate.

$$H_0$$
:  $\beta_1 = 0$ 

- $\rightarrow$  This is a convention.
- → We expect we will reject the null hypothesis.



# Linear Regression – Ordinary Least Squares

*crime rate* = 
$$\beta_0 + \beta_1$$
 *unemployment rate* +  $\varepsilon$ 

**Null hypothesis**  $H_0$ : There is <u>no relationship</u> between unemployment rate and crime rate.

$$H_0$$
:  $\beta_1 = 0$ 

We reject the null hypothesis, if our calculated  $\beta_1$  is "far enough from zero".



# OLS MODEL: CALCULATING BETA COEFFICIENT

## Linear Regression – Fitted Line

*crime rate* = 
$$\beta_0 + \beta_1$$
 *unemployment rate* +  $\varepsilon$ 



 $\beta_0$  – intersection with y-axis

 $\beta_1$  – slope of the fitted line

How do we know which line should be fitted?



# Linear Regression – Fitted Line

crime rate = 
$$\beta_0 + \beta_1$$
 unemployment rate +  $\varepsilon$ 





# Linear Regression – Fitted Line







$$\min \; \sum \varepsilon_i^2$$

min 
$$\sum (y_i - (b_0 + b_1 x_i))^2$$



min 
$$\sum (y_i - (b_0 + b_1 x_i))^2$$

Take derivative with respect to  $b_1$  and set it equal to 0.

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$



$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

| Unemployment<br>rate (%) | Crime rate per<br>1000 habitants |
|--------------------------|----------------------------------|
| 4                        | 38                               |
| 4.2                      | 39                               |
| 6.1                      | 45                               |
| 7.3                      | 48                               |
| 5.2                      | 42                               |
| 3.9                      | 36                               |
| 5.5                      | 44                               |
|                          |                                  |

$$AVG = 4.9$$
  $AVG = 39$ 



$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

$$=\frac{(4-4.9)(38-39)+(4.2-4.9)(39-39)+...}{(4-4.9)^2+(4.2-4.9)^2+...}$$

| Unemployment rate (%) | Crime rate per<br>1000 habitants |
|-----------------------|----------------------------------|
| 4                     | 38                               |
| 4.2                   | 39                               |
| 6.1                   | 45                               |
| 7.3                   | 48                               |
| 5.2                   | 42                               |
| 3.9                   | 36                               |
| 5.5                   | 44                               |
|                       |                                  |

$$AVG = 4.9$$
  $AVG = 39$ 



$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

| Unemployment<br>rate (%) | Crime rate per<br>1000 habitants |
|--------------------------|----------------------------------|
| 4                        | 38                               |
| 4.2                      | 39                               |
| 6.1                      | 45                               |
| 7.3                      | 48                               |
| 5.2                      | 42                               |
| 3.9                      | 36                               |
| 5.5                      | 44                               |
|                          |                                  |

crime rate =  $\beta_0$  + 2.86 unemployment rate +  $\varepsilon$ 



#### Fitted Model

### crime rate = 29.4 + 2.86 unemployment rate + $\varepsilon$



| Unemployment rate (%) | Crime rate per<br>1000 habitants |
|-----------------------|----------------------------------|
| 4                     | 38                               |
| 4.2                   | 39                               |
| 6.1                   | 45                               |
| 7.3                   | 48                               |
| 5.2                   | 42                               |
| 3.9                   | 36                               |
| 5.5                   | 44                               |
|                       |                                  |



### Interpretation

#### crime rate = 29.4 + 2.86 unemployment rate + $\varepsilon$



One percentage point increase in the unemployment rate

→ Increase of 2.86 in property crime rate on average.



#### Standard errors and confidence interval of beta estimate

crime rate = 29.4 + 2.86 unemployment rate +  $\varepsilon$ 



Standard errors: represent the average distance that the observed values have from the regression line

 $\rightarrow$  base for confidence interval.



#### Standard Errors of Beta Coefficient



czechitas













Statistical significance: Is the p-value small enough?

If **p-value = 0.10** □ we have **90% confidence**, that our variable is significant

If **p-value = 0.05** □ we have **95% confidence**, that our variable is significant

If **p-value = 0.01** □ we have **99% confidence**, that our variable is significant



# OLS MODEL: VALIDATION

### **OLS Model Validation**

#### F-test:

Ho: Model with no independent variables fits the data as well as your model

→ we want to reject H<sub>0</sub>

 $crime\ rate = \beta_0 + \beta_1\ unemployment\ rate + \varepsilon$ 



#### **OLS Model Validation**

#### R-squared:

- Indicates the percentage of the variance in the dependent variable that the independent variables explain collectively
- 0-100% scale (the higher the better)

$$R^2 = \frac{\text{Variance explained by the model}}{\text{Total variance}}$$

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$



#### **OLS Model Validation**

#### R-squared:

- Indicates the percentage of the variance in the dependent variable that the independent variables explain collectively
- 0-100% scale (the higher the better)



I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.



# OLS MODEL: MULTIPLE LINEAR REGRESSION

# Multiple Linear Regression (OLS)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$



# Multiple Linear Regression (OLS)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

#### Example:

Impact of various marketing investments on product sales

$$Sales = \beta_0 + \beta_1 Youtube \ Ads + \beta_2 \ Facebook \ Ads + \beta_3 \ Newspaper \ Ads + \varepsilon$$



# Hypotheses Testing with OLS

Assumption: Investment in Facebook advertising has a positive impact on sales.

Sales = 
$$\beta_0 + \beta_1 Y$$
outube Ads +  $\beta_2$  Facebook Ads +  $\beta_3$  Newspaper Ads +  $\epsilon$ ?



# Hypotheses Testing with OLS

Null hypothesis: Investment in Facebook advertising has NO impact on sales.

Sales = 
$$\beta_0 + \beta_1 Y$$
outube Ads +  $\beta_2$  Facebook Ads +  $\beta_3$  Newspaper Ads +  $\epsilon$ ?

- $\rightarrow$  Economic significance: is  $\beta_2$  large enough for our business?
- → Statistical significance: Is p-value small enough?



## **OLS MODEL:**

# MULTIPLE LINEAR REGRESSION WITH EXAMPLE IN PYTHON

# Hypotheses Testing with OLS

**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales

Data in thousands USD

| youtube | facebook | newspaper | † sales † |
|---------|----------|-----------|-----------|
| 276.12  | 45.36    | 83.04     | 26.52     |
| 53.40   | 47.16    | 54.12     | 12.48     |
| 20.64   | 55.08    | 83.16     | 11.16     |
| 181.80  | 49.56    | 70.20     | 22.20     |
| 216.96  | 12.96    | 70.08     | 15.48     |
| 10.44   | 58.68    | 90.00     | 8.64      |



## Hypotheses Testing with OLS in Python

**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales



## Hypotheses Testing with OLS – Results in Python

**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales

#### OLS Regression Results

| Dep. Variable: | sales            | R-squared:                     | 0.897    |
|----------------|------------------|--------------------------------|----------|
| Model:         | OLS              | Adj. R-squared:                | 0.896    |
| Method:        | Least Squares    | F-statistic:                   | 570.3    |
| Date:          | Sun, 23 Apr 2023 | <pre>Prob (F-statistic):</pre> | 1.58e-96 |

|           | coef      | std err | t      | P> t  | [0.025   | 0.975]   |
|-----------|-----------|---------|--------|-------|----------|----------|
| Intercept | 3526.6672 | 374.290 | 9.422  | 0.000 | 2788.515 | 4264.820 |
| facebook  | 0.1885    | 0.009   | 21.893 | 0.000 | 0.172    | 0.206    |
| newspaper | -0.0010   | 0.006   | -0.177 | 0.860 | -0.013   | 0.011    |
| youtube   | 0.0458    | 0.001   | 32.809 | 0.000 | 0.043    | 0.049    |

## Hypotheses Testing with OLS – Results in Python

**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales

#### OLS Regression Results

| ========    |           | ====== |     |     |           |          |          |
|-------------|-----------|--------|-----|-----|-----------|----------|----------|
| Dep. Variab | ole:      |        | 4   |     | ed:       |          | 0.897    |
| Model:      |           |        |     |     | squared:  |          | 0.896    |
| Method:     |           | Least  | 120 |     | stic:     |          | 570.3    |
| Date:       | S         | un, 23 | 10  |     | -statisti | ic):     | 1.58e-96 |
|             |           | 8      |     |     |           |          |          |
|             |           | ====== | AA  |     |           |          |          |
|             | coef      | std    | A N |     | P> t      | [0.025   | 0.975]   |
|             |           |        |     |     |           |          |          |
| Intercept   | 3526.6672 | 374.   |     |     | 0.000     | 2788.515 | 4264.820 |
| facebook    | 0.1885    | 0.     |     |     | 0.000     | 0.172    | 0.206    |
| newspaper   | -0.0010   | 0.     |     | 167 | 0.860     | -0.013   | 0.011    |
| youtube     | 0.0458    | 0.     |     |     | 0.000     | 0.043    | 0.049    |

**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales

| OLS Regression Results |                  |                     |          |  |  |  |
|------------------------|------------------|---------------------|----------|--|--|--|
|                        |                  |                     |          |  |  |  |
| Dep. Variable:         | sales            | R-squared:          | 0.897    |  |  |  |
| Model:                 | OLS              | Adj. R-squared:     | 0.896    |  |  |  |
| Method:                | Least Squares    | F-statistic:        | 570.3    |  |  |  |
| Date:                  | Sun, 23 Apr 2023 | Prob (F-statistic): | 1.58e-96 |  |  |  |
|                        |                  |                     |          |  |  |  |

F-stats is statistically significant (p-value < 0.05), so the model makes sense overall.



**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales

#### OLS Regression Results

| Dep. Variable: | sales            | R-squared:                     | 0.897    |
|----------------|------------------|--------------------------------|----------|
| Model:         | OLS              | Adj. R-squared:                | 0.896    |
| Method:        | Least Squares    | F-statistic:                   | 570.3    |
| Date:          | Sun, 23 Apr 2023 | <pre>Prob (F-statistic):</pre> | 1.58e-96 |
|                |                  |                                |          |

R<sup>2</sup> is high (we want it as close to 1 as possible), so our variables explain sales well.



**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales

| coef std err t                                                                                                            | P> t  | [0.025   | 0.975]   |
|---------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|
| Intercept 3526.6672 374.290 9.422 facebook 0.1885 0.009 21.893 newspaper -0.0010 0.006 -0.177 youtube 0.0458 0.001 32.809 | 0.000 | 2788.515 | 4264.820 |
|                                                                                                                           | 0.000 | 0.172    | 0.206    |
|                                                                                                                           | 0.860 | -0.013   | 0.011    |
|                                                                                                                           | 0.000 | 0.043    | 0.049    |

Youtube and Facebook investments are statistically significant because their p-values are nearly zero.

Newspaper investment is not significant.



 $Sales = \beta_0 + \beta_1 Youtube \ Ads + \beta_2 \ Facebook \ Ads + \beta_3 \ Newspaper \ Ads + \varepsilon$ Run model in Python

|           | coef      | std err  | t      | P> t  | [0.025   | 0.975]   |
|-----------|-----------|----------|--------|-------|----------|----------|
| Intercept | 3526.6672 | 374.290  | 9.422  | 0.000 | 2788.515 | 4264.820 |
| facebook  | 0.1885    | 0.009    | 21.893 | 0.000 | 0.172    | 0.206    |
| newspaper | -0.0010   | 0.006    | -0.177 | 0.860 | -0.013   | 0.011    |
| youtube   | 0.0458    | 0.001    | 32.809 | 0.000 | 0.043    | 0.049    |
|           |           | <b>,</b> |        |       |          |          |

Resulting equation

Sales = 3.527 + 0.046 \* Youtube Ads + 0.189 \* Facebook Ads - 0.001 \* Newspaper Ads



**EXAMPLE:** Impact of marketing investments (youtube, facebook, newspaper) on sales

|                       | coef                | std err | t                | P> t  | [0.025            | 0.975]            |
|-----------------------|---------------------|---------|------------------|-------|-------------------|-------------------|
| Intercept<br>facebook | 3526.6672<br>0.1885 | 374.290 | 9.422<br>21.893  | 0.000 | 2788.515<br>0.172 | 4264.820<br>0.206 |
| newspaper             | -0.0010             | 0.006   | -0.177           | 0.860 | -0.013            | 0.011             |
| youtube               | 0.0458              | 0.001   | 32.809<br>====== | 0.000 | 0.043             | 0.049             |

If FB investment increases by 1000 USD

→ sales increase by 189 USD <u>on average</u>, keeping <u>other variables fixed.</u>

Sales = 3.527 + 0.046 \* Youtube Ads + 0.189 \* Facebook Ads - 0.001 \* Newspaper Ads



## Quiz

Variables that are significant at **5% or lower** level:

- **A**. x1, x2, x4, x5
- **A.** only x2
- **A.** x1, x2, x4

| Coefficients | S:       |            |         |          |
|--------------|----------|------------|---------|----------|
|              | Estimate | Std. Error | t value | Pr(> t ) |
| (Intercept)  | -0.1675  | 0.1384     | -1.210  | 0.23281  |
| x1           | 0.5306   | 0.1754     | 3.025   | 0.00414  |
| x2           | -0.4115  | 0.1769     | -2.326  | 0.02470  |
| <b>x</b> 3   | 0.1289   | 0.1673     | 0.771   | 0.44510  |
| x4           | -0.5884  | 0.1818     | -3.237  | 0.00230  |
| x5           | -0.2476  | 0.1432     | -1.728  | 0.09094  |



# OLS MODEL: ASSUMPTIONS

## **OLS** Assumptions

- 1. Linear relationship
- 2. No multicollinearity
- 3. Random sample
- 4. No omitted variable
- 5. Homoskedasticity
- 6. Normality



## 1. Linear Relationship









#### Main Takeaway

- · Relationship should be linear
- Non-linear relationship may or may not jeopardize our conclusion

#### Formal Assumption

$$Y_i = X_i^T \boldsymbol{\beta} + e_i, \qquad \mathbb{E}[e_i | X_i] = 0$$

$$X_{i} = \begin{pmatrix} 1 \\ x_{1} \\ \vdots \\ x_{k} \end{pmatrix} \qquad \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix}$$



**Multicollinearity** - occurrence of high correlations among two or more independent variables in a multiple regression model.

| youtube | facebook | newspaper | \$ sales |
|---------|----------|-----------|----------|
| 276.12  | 45.36    | 83.04     | 26.52    |
| 53.40   | 47.16    | 54.12     | 12.48    |
| 20.64   | 55.08    | 83.16     | 11.16    |
| 181.80  | 49.56    | 70.20     | 22.20    |
| 216.96  | 12.96    | 70.08     | 15.48    |
| 10.44   | 58.68    | 90.00     | 8.64     |



#### WHY?

- An isolated relationship between each independent variable and the dependent variable is needed.
- Stronger multicollinearity ⇒ higher standard errors (explodes to infinity for correlation approaching 1).

|           | coef      | std err | t      | P> t  | [0.025   | 0.975]   |
|-----------|-----------|---------|--------|-------|----------|----------|
| Intercept | 3526.6672 | 374.290 | 9.422  | 0.000 | 2788.515 | 4264.820 |
| facebook  | 0.1885    | 0.009   | 21.893 | 0.000 | 0.172    | 0.206    |
| newspaper | -0.0010   | 0.006   | -0.177 | 0.860 | -0.013   | 0.011    |
| youtube   | 0.0458    | 0.001   | 32.809 | 0.000 | 0.043    | 0.049    |

If FB investment increases by 1000 USD

→ sales increase by 189 USD on average, <u>keeping</u> <u>other variables fixed</u>



#### **HOW TO TEST?**

• Correlation matrix: correlation above, say, 70% may be problematic

|           | youtube | facebook | newspaper |
|-----------|---------|----------|-----------|
| youtube   | 1.000   |          |           |
| facebook  | 0.055   | 1.000    |           |
| newspaper | 0.057   | 0.354    | 1.000     |

- Variance Inflation Factor (VIF)
  - Above 5: multicollinearity might be present
  - Above 10: multicollinearity certainly present



#### **SOLUTION?**

#### Remove variable

- remove one of the two highly correlated variables
- hypotheses or theory should guide your decision

#### 2. Specialized methods

- ridge regression, LASSO, elastic net, principal component analysis
- better for large datasets with many variables



## 3. Random Sample & Sample Bias

#### Random Sample:

- Individual observations are independent from each other
- All individuals have the same probability of sampling

#### Examples of violations:

- Analyzing impact of education on income using one individual over her/his lifetime
- Analyzing the impact of education on income when high-income individuals are less willing to share information about their income
- MSD project example: analyzing the productivity of farms in France only for farms that have good data about productivity



#### 4. No Omitted Variable

#### Causal Impact

"Impact of X on Y while everything else remains the same."

### Wage Example

Consider two models

$$wage = \alpha_0 + \alpha_1 education + e$$

$$wage = \beta_0 + \beta_1 education + \beta_2 ability + u$$

- Problem: education and ability is correlated  $\Rightarrow$   $\alpha_1$  captures impact of education and partially impact of ability
- "Solution": we have to add ability to the model to control it ("keep it the same")
- Omitted Variable Bias:  $\alpha_1$   $\beta_1$



#### 4. No Omitted Variable

#### Possible solutions:

- 1. Include all relevant variables
- **2.** Panel models (covered next time)
- 3. Randomized experiment
- 4. Regression Discontinuity Design
- 5. ..



#### 4. No Omitted Variable - Correlation Is Not Causation

## Examples of omitted variable bias (funny?)

- Regression of children injuries on ice cream consumption within one month has positive beta
   ⇒ ice cream is causing injuries
- Regression of health on recent visit of hospital has negative beta
  - ⇒ hospitals have negative impact on health



## Violation of OLS Assumptions

- 1. Linear relationship  $\rightarrow$  biased betas (underestimates or overestimated betas)
- 2. No multicollinearity  $\rightarrow$  high variance of beta estimates
- 3. Random sample → biased betas
- **4.** No omitted variable  $\rightarrow$  biased betas

The first four assumptions are crucial to obtain correct betas.

- 5. Homoskedasticity
- 6. Normality



#### Unbiasedness of OLS

- 1. Linear relationship
- No multicollinearity
- 3. Random sample
- 4. No omitted variable
- 5. Homoskedasticity
- 6. Normality

Violation of the other assumptions does not make beta estimates invalid. It makes **statistical inference invalid** (standard errors, p-values, ...).



## 5. Homoskedasticity

#### **MEANING**

Variance of residuals is the same across all values of the independent variables.



#### **OLS Assumptions**

## 5. Homoskedasticity

#### Solution of Heteroskedasticity

Robust standard errors (White standard errors)

#### Recommendation

- Use robust standard errors unless you have strong reason to believe the errors are homoskedastic, do not perform test of heteroskedasticity (sequential testing)
- Non-robust errors under heteroskedasticity
   ⇒ errors are inconsistent (potentially completely wrong for any sample size)
- Robust errors under homoskedasticity
   ⇒ errors are consistent, but inefficient (= estimation is less precise, but increasing sample size gives "true" value)

#### **OLS Assumptions**

## 5. Homoskedasticity

**HOW TO TEST?** 

Two tests are commonly used:

- Breusch-Pagan Test tests simple form of heteroskedasticity
- White Test tests various forms of heteroskedasticity

- ☐ Null hypothesis: homoskedasticity
- ☐ Available in statistical software



## 6. Normality

### Hypothesis test $\mathbb{H}_0$ : $\beta_i = 0$

- How unlikely it is to obtain estimate  $\widehat{\beta_j}$  or something more distant from 0 when  $\mathbb{H}_0$  is true? (= p-value)
- We need to know distribution of  $\widehat{\beta_j}$  to answer the question

#### Need normality of betas (under $\mathbb{H}_0$ )

$$\widehat{\beta}_{j} \sim N\left(0, \sigma_{\widehat{\beta}_{j}}^{2}\right)$$

#### Normality holds when:

- 1. Residuals are normally distributed
- OR
- 2. We have large sample



## 6. Normality of residuals

Sales = 3.527 + 0.046 \* Youtube Ads + 0.189 \* Facebook Ads - 0.001 \* Newspaper Ads

| 26.52 24.63 1.89  |
|-------------------|
| 12.48 14.81 -2.33 |
| 11.16 14.77 -3.61 |
| 22.20 21.12 1.08  |
| 15.48 15.83 -0.35 |
| 8.64 14.97 -6.33  |

Not tested in practice



## 6. Asymptotic normality

- When number of observations is high the estimates of betas are approximately normal
- Follows from central limit theorem (and few other theorems)
- In practice you almost always rely on asymptotic normality



## Quiz

Which statement is **false** about OLS assumptions?

- A. Heteroskedasticity implies we have invalid p-values
- A. We have to use a random sample
- A. Homoskedasticity cannot be statistically tested
- **A.** Omitted variable causes bias in OLS estimators



## SUMMARY

Hypotheses testing: (not) rejecting our assumption with help of historical data

→ We did not predict anything today :)

Example: "Women earn lower salaries than men."



Hypotheses testing: (not) rejecting our assumption with help of historical data

"Women earn lower salaries than men."

$$Income = \beta_0 + \beta_1 FemaleGender + \beta_2 Education + \beta_3 Age + \varepsilon$$

| Personal ID | FemaleGender | Income  | Education (years) | Age |
|-------------|--------------|---------|-------------------|-----|
| 2343        | 1            | 50 000  | 17                | 35  |
| 1213        | 0            | 35 000  | 15                | 32  |
| 4533        | 0            | 40 000  | 15                | 53  |
| 4563        | 0            | 100 000 | 19                | 51  |
| •••         |              | •••     |                   |     |



When testing with linear model (OLS), we are interested in:

#### Model performance

#### OLS Regression Results

| Dep. Variab | ole:      | sal          | es R-squar        | red:                                                        |                  | 0.897    |
|-------------|-----------|--------------|-------------------|-------------------------------------------------------------|------------------|----------|
| Model:      |           | 0            | LS Adj. R-        | -squared:                                                   |                  | 0.896    |
| Method:     |           | Least Squar  | es <u>F-stati</u> | istic:                                                      |                  | 570.3    |
| Date:       | Su        | n, 23 Apr 20 | 23 Prob (H        | -statistic                                                  | c):              | 1.58e-96 |
|             |           |              |                   | - 101 (1985) 250 (1945)   50   100   30   30   30   30   30 | 0. 00.090.000.00 |          |
|             | coef      | std err      | t                 | P> t                                                        | [0.025           | 0.975]   |
| Intercept   | 3526.6672 | 374.290      | 9.422             | 0.000                                                       | 2788.515         | 4264.820 |
| facebook    | 0.1885    | 0.009        | 21.893            | 0.000                                                       | 0.172            | 0.206    |
| newspaper   | -0.0010   | 0.006        | -0.177            | 0.860                                                       | -0.013           | 0.011    |
| youtube     | 0.0458    | 0.001        | 32.809            | 0.000                                                       | 0.043            | 0.049    |
|             |           |              |                   |                                                             |                  | N)       |

When testing with linear model (OLS), we are interested in:

- Model performance
- Beta coefficients

#### **INTERPRETATION:**

If FB investment increases by 1000 USD

→ sales increase by 189 USD <u>on average</u>, keeping <u>other variables fixed</u>

#### OLS Regression Results

| Dep. Variable: | sales            | R-squared:          | 0.897    |  |  |
|----------------|------------------|---------------------|----------|--|--|
| Model:         | OLS              | Adj. R-squared:     | 0.896    |  |  |
| Method:        | Least Squares    | F-statistic:        | 570.3    |  |  |
| Date:          | Sun, 23 Apr 2023 | Prob (F-statistic): | 1.58e-96 |  |  |

|           | coef      | std err | t      | P> t  | [0.025   | 0.975]   |
|-----------|-----------|---------|--------|-------|----------|----------|
| Intercept | 3526.6672 | 374.290 | 9.422  | 0.000 | 2788.515 | 4264.820 |
| facebook  | 0.1885    | 0.009   | 21.893 | 0.000 | 0.172    | 0.206    |
| newspaper | -0.0010   | 0.006   | -0.177 | 0.860 | -0.013   | 0.011    |
| youtube   | 0.0458    | 0.001   | 32.809 | 0.000 | 0.043    | 0.049    |



When testing with linear model (OLS), we are interested in:

- Model performance
- Beta coefficients
- Statistical significance

Dep. Variable: sales R-squared: 0.897 Model: OLS Adj. R-squared: 0.896 F-statistic: Method: Least Squares 570.3 Sun, 23 Apr 2023 Prob (F-statistic): 1.58e-96 Date:

OLS Regression Results

We want p-value < 0.1, ideally even p-value < 0.05

|                                               | coef                                     | std err                            | t                                   | P> t                             | [0.025                               | 0.975]                              |
|-----------------------------------------------|------------------------------------------|------------------------------------|-------------------------------------|----------------------------------|--------------------------------------|-------------------------------------|
| Intercept<br>facebook<br>newspaper<br>youtube | 3526.6672<br>0.1885<br>-0.0010<br>0.0458 | 374.290<br>0.009<br>0.006<br>0.001 | 9.422<br>21.893<br>-0.177<br>32.809 | 0.000<br>0.000<br>0.860<br>0.000 | 2788.515<br>0.172<br>-0.013<br>0.043 | 4264.820<br>0.206<br>0.011<br>0.049 |
|                                               |                                          |                                    |                                     |                                  |                                      |                                     |

We need to check that **model assumptions** hold.

| 1. | Linear relationship | → biased betas |
|----|---------------------|----------------|
|----|---------------------|----------------|

- 2. No multicollinearity  $\rightarrow$  high variance of beta estimates
- 3. Random sample  $\rightarrow$  biased betas
- **4**. No omitted variable  $\rightarrow$  biased betas
- 5. Homoskedasticity  $\rightarrow$  invalid inference (use robust errors)
  - 6. Normality → invalid inference (large sample desired)

Values of betas

Validity of inference



Thank you for your attention!