Simulations on "Bayesian Hierarchical weighting adjustment and survey inference" by Trangucci et al.

Fall 2018

D.Bonnéry

1

MODEL DESCRIPTION

1.1 Trangucci et al. model0

We describe the model given in (?, Sec. 2).

- Population made of H strata $U_1, ..., U_J$.
- Stratum *j* size: N_j , Total size: $N = \sum_i N_i$
- Sample size in stratum j: n_j
- \bullet *I* vector: sample indicator
- *y* vector: study variable
- θ_j : average of y in stratum j. $\theta_j = \sum_{i \in U_j} y_i$. In the paper there is an ambiguity: First, θ is called the "population estimand of interest[...] the overall or domain mean". Ambiguity comes from the term "mean". Is $\theta = N^{-1} \sum_i y_i$ or Is $\theta = N^{-1} \sum_k E[y_i]$?
- X: Design variables. In the paper $X^1, ..., X^J$ are badly defined. The idea is that X variables are Q categorical variables. The strata correspond to the cells obtained from these categorical variables.

- denote by $1, ... K_q$ the categories for variable X_q .
- denote by j[i] the stratim of unit i
- Denote by k[q, j] the category for variable X_q in stratum j

Consider the following hierarchical model:

$$y_i \sim \mathcal{N}\left(\theta_{j[i]}^{\star}, \sigma_y^2\right) \tag{1.1}$$

$$\theta_j^* = \alpha_0 + \sum_{\ell=1}^{Q} \left(\sum_{q_1 < \dots < q_\ell \in \{1, \dots, Q\}} \alpha_j^{(q_1, \dots, q_\ell)} \right)$$
 (1.2)

$$\forall \ell \in \{1, ..., Q\}, \ \forall q_1, ..., q_\ell \in \{1, ..., Q\}, \ \forall j \in \{1, ..., H\} : \alpha_j^{(q_1, ..., q_\ell)} \sim \mathcal{N}(0, (\lambda_j^{(q_1, ..., q_\ell)} \sigma)^2)$$
 (1.3)

$$\forall \ell \in \{1, \dots, Q\}, \ \forall q_1, \dots, q_\ell \in \{1, \dots, Q\}, \ \forall j \in \{1, \dots, H\} : \lambda_j^{(q_1, \dots, q_\ell)} = \delta^{(\ell)} \prod_{l=1}^{\ell} \lambda_{0, k[q_l, j]}^{(q_l)}$$

$$(1.4)$$

$$\sigma \sim \text{Cauchy}_{+}(0,1) \tag{1.5}$$

$$\forall q \in \{1, \dots, Q\}, \ k \in \{1, \dots, K_q\} : \lambda_{0,k}^{(q)} \sim \mathcal{N}_+(0,1)$$
(1.6)

$$\delta^{(\ell)} \sim \mathcal{N}_{+}(0,1) \tag{1.7}$$

$$\sigma_{y} \sim \text{Cauchy}_{+}(0,5)$$
 (1.8)

$$\alpha_0 \sim \mathcal{N}(0, 10) \tag{1.9}$$

Note I made up the prior on α_0 as I did not find in the paper.

1.2 Competing model

We describe the model given in (?, Sec. 2).

Consider the following hierarchical model:

$$y_i \sim \mathcal{N}\left(\theta_{j[i]}^{\mathcal{Q}}, \sigma_y^2\right)$$
 (1.10)

$$(\theta_j^{\mathbb{Q}})_{j=1}^Q \sim \mathcal{N}(0, \Sigma) \tag{1.11}$$

$$\Sigma_{j_1, j_2} = \sigma^2 D_{\lambda}(j_1, j_2) \tag{1.12}$$

λ

$$\sigma \sim \text{Cauchy}_{+}(0,1) \tag{1.13}$$

$$\sigma_v \sim \text{Cauchy}_+(0,5)$$
 (1.14)

$$\alpha_0 \sim \mathcal{N}(0, 10) \tag{1.15}$$

Note I made up the prior on α_0 as I did not find in the paper.

2

DATA GENERATION

Step 1

Create procedures that can

- 1. generate a population of size N and with Q random categorical variables $X_1, ..., X_Q$. X_q is generated by drawing with replacement in $\{1, ..., K_q\}$ where $K_q > 1$, K_q can be generated by drawing from $\mathcal{U}_{1,...,p}$.
- 2. compute the corresponding stratum j = 1,...,J and the correspondances $(k[q,j])_{j=1,...,J,q=1,...,Q}$.
- 3. generate, for such a population, the hyper parameters σ_v , α_0 , $(\delta^\ell)_{\ell=1,\dots,Q}$, λ_k^l , σ .
- 4. compute the $\lambda_{k_1,\ldots,k_\ell}^{(q_1,\ldots,q_\ell)}$, for possible values of $k_1,\ldots,k_\ell^{(q_1,\ldots,q_\ell)}$.
- 5. generate the $\alpha_{j,(k_1,\ldots,k_\ell)}^{(q_1,\ldots,q_\ell)}$
- 6. compute θ^* .
- 7. generate a number r of realisations of y for such hyperparameters and such strata.
- 8. Set seed.
- 9. Create a population with N = 10000, Q = 2, p = 5. Display J, N_j, θ^* .

For 1-8, see R code below.

9.

9. This are tables we obtained with different seeds.

Table 2.1:

	X_1	X_2	Stratum (j)	N_{j}	θ*
S1	1	1	S1	113	
S2	1	2	S2	111	
S3	1	3	S3	119	
S4	2	1	S4	101	
S5	2	2	S5	106	
S6	2	3	S6	105	
S7	3	1	S7	140	
S8	3	2	S8	104	
S9	3	3	S9	101	

Table 2.2:

	X_1	X_2	Stratum (j)	N_{j}	θ^{\star}
S1	1	1	S1	91	
S2	1	2	S2	73	
S3	1	3	S3	83	
S4	1	4	S4	86	
S5	2	1	S5	91	
S6	2	2	S6	82	
S7	2	3	S7	80	
S8	2	4	S8	78	
S9	3	1	S9	95	
S10	3	2	S10	80	
S11	3	3	S11	91	
S12	3	4	S12	70	

3

BAYESIAN COMPUTATIONS

Step 1

Using Jags,

- 1. Draw posterior distribution of θ_j^* for the largest value of θ_j^* , obtained from the observation of $y^{(1)}$ only. Add real value of θ_1 and prediction to the plot.
- 2. Draw distribution of predictions of θ_j^* . Add real value of θ_j to the plot.
- 3. Draw real values of all θ_i^* vs r = 30 predictions.

Some functions to generate the jags model file: library(SimuTrangucci)

Step 2

same thing with Stan

Step 3

- 1. Design a sampling scheme that favors some cells
- 2. Compute Trangucci estimator for θ for the r = 30 realisations.

Step 4

- 1. Use another model to generate the population, a model that does not fit the current one, to fail the product structure.
- 2. Look at predictions for pop total.
- 1. Assume the following model:

p. 6

4

BAYESIAN COMPUTATIONS