CHAPTER-4

<u>Time-harmonic fields:</u> the field varies periodically (sinusoidal) with time.

• If **A** is any vector, then its phasor form can be $\mathbf{A}_{S}(x, y, z)$

$$\mathbf{A}_{S}(x,y,z) = A_{o}e^{j\theta x}\mathbf{a}_{y}$$

• The time-harmonic form

$$\mathbf{A} = \Re e\{\mathbf{A}_S e^{j\omega t}\}$$

 $\mathbf{A} = A_o \cos(\omega t - \beta x) \mathbf{a}_y$ can be written as $\mathbf{A} = \Re e \{ \mathbf{A}_o e^{-j\beta x} \mathbf{a}_y e^{j\omega t} \}$

•
$$\frac{\partial \mathbf{A}}{\partial t} \rightarrow j\omega \mathbf{A}_S$$

•
$$\int \mathbf{A} \, \partial t \rightarrow \frac{\mathbf{A}_S}{i\omega}$$

Differential (Point Form)	Integral Form
$\nabla \cdot \mathbf{D}_s = \rho_{vs}$	$ \oint_{S} \mathbf{D}_{s} \cdot d\mathbf{S} = \int_{v} \rho_{vs} dv $
$\nabla \cdot \mathbf{B}_s = 0$	$\oint_{S} \mathbf{B}_{s} . d\mathbf{S} = 0$
$\mathbf{\nabla} \times \mathbf{E}_{\scriptscriptstyle S} = -j\omega \mathbf{B}_{\scriptscriptstyle S}$	$\oint_{L} \mathbf{E}_{s} \cdot d\mathbf{l} = -j\omega \int_{S} \mathbf{B}_{s} \cdot d\mathbf{S}$
$\nabla \times \mathbf{H}_{s} = \mathbf{J}_{s} + j\omega \mathbf{D}_{s}$	$\oint_{L} \mathbf{H}_{S} \cdot d\mathbf{l} = \int_{S} (\mathbf{J}_{S} + j\omega \mathbf{D}_{S}) \cdot d\mathbf{S}$

- A wave is a mean of transporting energy/power/information.
- Free space ($\sigma = 0$, $\epsilon = \epsilon_o$, $\mu = \mu_o$)
- Lossless dielectrics ($\sigma = 0$, $\epsilon = \epsilon_0 \epsilon_r$, $\mu = \mu_0 \mu_r$, $\sigma \ll \omega \epsilon$)
- Lossy dielectrics ($\sigma \neq 0$, $\epsilon = \epsilon_o \epsilon_r$, $\mu = \mu_o \mu_r$)
- Good conductors ($\sigma \cong \infty$, $\epsilon = \epsilon_o$, $\mu = \mu_o \mu_r$, $\sigma \gg \omega \epsilon$)

Wave/ Plane wave Equations

- A homogeneous medium is one for which ϵ , μ , and σ are constants throughout the medium.
- In an isotropic medium, ϵ is a scalar and **D** and **E** have everywhere the same direction.
- Wave egns. in lossy dielectrics
- Lossy dielectrics ($\sigma \neq 0$, $\epsilon = \epsilon_o \epsilon_r$, $\mu = \mu_o \mu_r$) and charge free $\rho_v = 0$.
- $\nabla \cdot \mathbf{E}_s = 0$
- $\nabla \cdot \mathbf{H}_s = 0$
- $\nabla \times \mathbf{E}_s = -j\omega \mu \mathbf{H}_s$
- $\nabla \times \mathbf{H}_{s} = (\sigma + j\omega\epsilon)\mathbf{E}_{s}$

•
$$\nabla \times \nabla \times \mathbf{E}_s = -j\omega\mu(\nabla \times \mathbf{H}_s)$$

•
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

 $\nabla^2 \mathbf{E}_s - \gamma^2 \mathbf{E}_s = 0$
 $\nabla^2 \mathbf{H}_s - \gamma^2 \mathbf{H}_s = 0$

Helmholtz's equations or vector wave equations

- $\gamma^2 = j\omega\mu(\sigma + j\omega\epsilon) --- \rightarrow$ Propagation constant
- $\gamma = \alpha + j\beta \rightarrow \alpha$: attenuation constant; β : Phase constant

$$\alpha = \omega \sqrt{\frac{\mu \epsilon}{2} \left[\sqrt{1 + \left[\frac{\sigma}{\omega \epsilon} \right]^2} - 1 \right]}$$

$$\beta = \omega \sqrt{\frac{\mu \epsilon}{2} \left[\sqrt{1 + \left[\frac{\sigma}{\omega \epsilon} \right]^2} + 1 \right]}$$

$$\bullet \quad \mathbf{E}_{\scriptscriptstyle S} = E_{\scriptscriptstyle \mathcal{X}S}(z)\mathbf{a}_{\scriptscriptstyle \mathcal{X}}$$

$$\bullet \quad (\nabla^2 - \gamma^2) E_{xs}(z) = 0$$

•
$$E_{xs}(z) = E_o e^{-\gamma z} + E'_o e^{\gamma z}$$

•
$$\mathbf{E}(z,t) = E_o e^{-\alpha z} \cos(\omega t - \beta z) \mathbf{a}_x$$

•
$$\mathbf{H}(z,t) = H_o e^{-\alpha z} \cos(\omega t - \beta z) \mathbf{a}_y$$

•
$$H_o = c$$

• η -- \rightarrow intrinsic impedance (in ohms)

•
$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}} = |\eta| \angle \theta_{\eta} = |\eta| e^{j\theta_{\eta}}$$

$$|\eta| = \frac{\sqrt{\frac{\mu}{\epsilon}}}{\left[1 + \left(\frac{\sigma}{\omega\epsilon}\right)^{2}\right]^{1/4}}, \quad \tan 2\theta_{\eta} = \frac{\sigma}{\omega\epsilon}$$

$$\mathbf{H} = \frac{E_{0}}{|\eta|} e^{-\alpha z} \cos(\omega t - \beta z - \theta_{\eta}) \mathbf{a}_{y}$$

- $e^{-\alpha z}$ \rightarrow the amount of attenuation.
- $\alpha \rightarrow$ measured in nepers/m (Np/m)

•
$$\beta - - \rightarrow$$
 measured in radians/m

•
$$u = \frac{\omega}{\beta}$$
 $\lambda = \frac{2\pi}{\beta}$

•
$$\frac{|\mathbf{J}_{cs}|}{|\mathbf{J}_{ds}|} = \frac{|\sigma \mathbf{E}_s|}{|j\omega \epsilon \mathbf{E}_s|} = \frac{\sigma}{\epsilon \omega} = \tan \theta$$

• Loss tangent
$$\tan \theta = \frac{\sigma}{\omega \epsilon}$$

• We know

$$\tan 2\theta_{\eta} = \frac{\sigma}{\omega \epsilon} \qquad \qquad \tan \theta = \frac{\sigma}{\omega \epsilon}$$

$$\theta = 2\theta_{\eta}$$

$$\nabla \times \mathbf{H}_{s} = (\sigma + j\omega\epsilon)\mathbf{E}_{s} = j\omega\epsilon \left[1 - \frac{j\sigma}{\omega\epsilon}\right] = j\omega\epsilon_{c}\mathbf{E}_{s}$$

$$\epsilon_{c} = \epsilon \left[1 - \frac{j\sigma}{\omega\epsilon}\right]$$

$$\epsilon_{c} = \epsilon' - j\epsilon''$$

- $\epsilon' = \epsilon$ and $\epsilon'' = \sigma/\omega$
- $\tan \theta = \frac{\epsilon''}{\epsilon'} = \sigma/\omega\epsilon$
- Wave egns. in lossless dielectrics
- $\sigma \ll \omega \epsilon$, $\sigma = 0$, $\epsilon = \epsilon_o \epsilon_r$, $\mu = \mu_o \mu_r$
- $\alpha = 0, \beta = \omega \sqrt{\mu \epsilon}$
- $u = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu\epsilon}}$
- $\bullet \quad \eta = \sqrt{\frac{\mu}{\epsilon}} \angle 0^{\circ}$
- $\lambda = 2\pi/\beta$

• Wave egns. in lossless free space

- $\sigma = 0$, $\epsilon = \epsilon_o$, $\mu = \mu_o$
- $\alpha = 0, \beta = \omega \sqrt{\mu_o \epsilon_o} = \frac{\omega}{c}$
- $u = \frac{1}{\sqrt{\mu_o \epsilon_o}} = c$
- $\lambda = 2\pi/\beta$
- $\eta_o = \sqrt{\frac{\mu_o}{\epsilon_o}} = 120\pi = 377\Omega$
- $\mathbf{E} = E_o \cos(\omega t \beta z) \mathbf{a}_x$
- $\mathbf{H} = H_o \cos(\omega t \beta z) \mathbf{a}_y = \frac{E_o}{\eta_o} \cos(\omega t \beta z) \mathbf{a}_y$

• Uniform plane wave

- A uniform plane wave has both **E** & **H** components with the same magnitude throughout any transverse plane.
- Both **E** & **H** are everywhere normal to the direction of wave propagation.
- The EM wave has no electric and magnetic components along the direction of wave propagation. Such a wave is called a *transverse electromagnetic* (TEM) wave.
- The direction in which the electric field points is the *polarization* of a TEM wave.

• Wave eqns. in lossless free space

- $\sigma \gg \omega \epsilon$, $\sigma \cong 0$, $\epsilon = \epsilon_0$, $\mu = \mu_0 \mu_r$
- $\alpha = \beta = \sqrt{\frac{\omega\mu\sigma}{2}} = \sqrt{\pi f\mu\sigma}$
- $u = \frac{\omega}{\beta} = \sqrt{\frac{2\omega}{\mu\sigma}}, \quad \lambda = \frac{2\pi}{\beta}$
- $\eta = \sqrt{\frac{j\omega\mu}{\sigma}} = \sqrt{\frac{\omega\mu}{\sigma}} \angle 45^{\circ}$

- $\mathbf{E} = E_o e^{-\alpha z} \cos(\omega t \beta z) \mathbf{a}_x$ $\mathbf{E} = \frac{E_o}{\sqrt{\omega \mu}} e^{-\alpha z} \cos(\omega t \beta z 45^\circ) \mathbf{a}_y$
- As the EM wave travels in a conducting medium, the amplitude is attenuated by the factor $e^{-\alpha z}$. The distance δ through which the wave amplitude decreases to a factor e^{-1} (about 37% of the original value) is called skin depth or penetration depth of the medium.

$$E_o e^{-\alpha \delta} = E_o e^{-1}$$
$$\delta = 1 \backslash \alpha$$

$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}} = \frac{1}{\alpha}$$

Power and the Poynting Vector

•
$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

•
$$\nabla \times \mathbf{H} = \sigma \mathbf{E} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$

•
$$\mathbf{E}.(\nabla \times \mathbf{H}) = \mathbf{E}.\left(\sigma \mathbf{E} + \epsilon \frac{\partial \mathbf{E}}{\partial t}\right)$$

•
$$\mathbf{H}.(\nabla \times \mathbf{E}) = \mathbf{H}.\left(-\mu \frac{\partial \mathbf{H}}{\partial t}\right)$$

•
$$-\frac{\mu}{2}\frac{\partial H^2}{\partial t} - \nabla \cdot (\mathbf{E} \times \mathbf{H}) = \sigma E^2 + \frac{1}{2}\epsilon \frac{\partial E^2}{\partial t}$$

•
$$\int_{v} \nabla \cdot (\mathbf{E} \times \mathbf{H}) dv = -\frac{\partial}{\partial t} \int_{v} \left[\frac{1}{2} \epsilon E^{2} + \frac{1}{2} \mu H^{2} \right] dv - \int_{v} \sigma E^{2} dv$$

•
$$\oint_{S} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{S} = -\frac{\partial}{\partial t} \int_{v} \left[\frac{1}{2} \epsilon E^{2} + \frac{1}{2} \mu H^{2} \right] dv - \int_{v} \sigma E^{2} dv$$

- Total power leaving the volume = rate of decrease in energy stored in electric and magnetic fields Ohmic power dissipated
- This is referred to as Poynting's Theorem
- $\mathcal{P} = \mathbf{E} \times \mathbf{H}$ is the Poynting vector measured in watts/m² (W/m²)

•
$$\mathcal{P}_{ave}(z) = \frac{E_o^2}{2|\eta|} e^{-2\alpha z} \cos \theta_{\eta} \mathbf{a}_z$$

• $P_{ave} = \int_{S} \mathcal{P}_{ave} \cdot dS \rightarrow \text{total time-average power crossing a given surface S}$

Reflection of a Plane Wave at Normal Incidence

- Incident wave is travelling along +az in medium 1.
- $\bullet \quad \mathbf{E}_{is}(z) = E_{io}e^{-\gamma_1 z}\mathbf{a}_{x}$
- $\mathbf{H}_{is}(z) = H_{io}e^{-\gamma_1 z}\mathbf{a}_y$
- $\mathbf{H}_{is}(z) = \frac{E_{io}}{\eta_1} e^{-\gamma_1 z} \mathbf{a}_y$
- Incident wave is travelling along
 -a_z in medium 1
- $\bullet \quad \mathbf{E}_{rs}(z) = E_{ro}e^{-\gamma_1 z}\mathbf{a}_x$
- $\bullet \quad \mathbf{H}_{rs}(z) = \frac{E_{ro}}{\eta_1} e^{-\gamma_1 z} \mathbf{a}_y$
- Incident wave is travelling along $+\mathbf{a}_z$ in medium 2
- $\mathbf{E}_{ts}(z) = E_{to}e^{-\gamma_2 z}\mathbf{a}_x$
- $\mathbf{H}_{ts}(z) = \frac{E_{to}}{\eta_1} e^{-\gamma_2 z} \mathbf{a}_y$
- In medium 1

$$\mathbf{E}_1 = \mathbf{E}_i + \mathbf{E}_r \qquad \qquad \mathbf{H}_1 = \mathbf{H}_i + \mathbf{H}_r$$

Medium 1 $(\sigma_1, \varepsilon_1, \mu_1)$

(Reflected wave)

(Transmitted wave)

- $\mathbf{E}_2 = \mathbf{E}_t$ $\mathbf{H}_2 = \mathbf{H}_t$
- At the interface z = 0, the boundary conditions require that the tangential components of **E** and **H** fields must be continuous.
- $\bullet \quad \mathbf{E}_{1t} = \mathbf{E}_{2t} \qquad \qquad \mathbf{H}_{1t} = \mathbf{H}_{2t}$
- $\mathbf{E}_{i}(0) + \mathbf{E}_{r}(0) = \mathbf{E}_{t}(0)$ $E_{io} + E_{ro} = E_{to}$
- $\mathbf{H}_{i}(0) + \mathbf{H}_{r}(0) = \mathbf{H}_{t}(0)$ $\frac{1}{\eta_{1}}(E_{io} E_{ro}) = \frac{E_{to}}{\eta_{2}}$
- •
- ullet