

Universidade Eduardo Mondlane

Faculdade de Ciências Departamento de Física

ELECTRÓNICA ANALÓGICA:

Trabalho Laboratorial N^o 8: Família de curvas características de TBJ (AN7812-15 NPN) e recta de carga

1 Objectivo

- 1. Trabalhar manualmente na montagem de circuítos eléctricos;
- 2. Obter a curva característica de um transístor;
- 3. Obter características dinâmicas de um circuíto com transístor, determinando a sua recta de carga.

Parte - I

2 Material Necessário

Alimentação: Fonte de tensão 0 - 15V DC

Instrumentos: Multímetros (4): M1(0 - 1mA); M2(0 - 100mA); M3(0 - 3.0V) e M4(0 - 10.0V)

Resistores:R1=10 kΩ e R2= 330 ΩTransistor:AN7812-15 NPN

Potenciómetros: P1 e P2

Diversos: Ferro de soldar, painel, fios e estanho.

3 Procedimento (Cada grupo monta um só circuíto)

- 1. Monte o circuito da Fig.1;
- 2. Gire P1 no sentido anti-horário e P2 no sentido horário totalmente;
- 3. Ligue o circuíto após a análise do Professor;
- 4. Através de **P1** ajuste a corrente na base (I_B) em 0 mA. Varie a tensão entre o colector e o emissor (V_{CE}) através de **P2** e preencha a tabela 1;
- 5. Terminada a medição, volte à tensão $V_{CE} = 0V$;

o The Cabinative (Chair Giver Tientin Chi ac Cancella)

Figura 1:

- 6. Ajuste e mantenha a corrente na base em 0.05mA. Agora varie V_{CE} conforme a tabela 1 e anote as respectivas correntes do colector. Volte $V_{CE} = 0V$;
- 7. Complete a tabela 1;
- 8. Faça o gráfico no papel milimétrico;

Tabela 1:								
$V_{CE}(V)$	$I_B(\text{mA})$	0.00	0.05	0.10	0.15	0.20	0.25	0.30
0								
1								
2								
3								
4								
5								
6								
7								

- 9. Ajuste $V_{CE} = 3.0V$. Varie a corrente da base por meio de **P1** completando a tabela 2, medindo ora a corrente do colector I_C , ora a tensão da base V_{BE} ;
- 10. Faça o gráfico no papel milimétrico;

Tabela 2:												
$V_{BE}(V)$	0	0.2	0.4	0.5								
$I_C(\text{mA})$						1	2	5	10	15	20	30

- ----

Parte - II

4 Material Necessário

Alimentação: Fonte de tensão 0 - 15V DC

Instrumentos: Multímetros (2): M1(0 - 1mA DC) e M2(0 - 100mA DC)

Resístores: R1=120 k Ω e R2 (Veja os valores na tabela 3)

Transistor: AN7812-15 NPN

<u>Diversos</u>: Ferro de soldar, painel, fios e estanho.

5 Procedimento

1. Monte o circuito da Fig.2.

Figura 2:

- 2. Após aprovação do Professor, ligue a alimentação. Meça e anote na tabela 3 I_{B_Q} , I_{C_Q} , V_{CC} , V_{CE_Q} .
- 3. Troque R2 de acordo com a tabela 3 e meça os valores quiescentes V_{CE_Q} , V_{BE_Q} , I_{C_Q} e I_{B_Q} .

Tabela 3:								
$V_{CC} =$	R1 =	$I_{B_Q} =$						
R2(Ω)	660	330	100					
V_{CE_Q}								
I_{C_Q}								
I_{CC}								
V_{BE_Q}								

Para a curva característica do transístor em estudo (pode obter a curva na Internet), trace a recta de carga respectiva e obtenha o ponto quiescente

Bom Trabalho!