

GTÜ BİL MUH BİL 495 DERİN ÖĞRENME İLE ÇEKİCİLİK ÖLÇÜMÜ

BIL 495

Safa Emre DULUNDU 131044044

Proje Danışmanı: Doç.Dr. Erchan APTOULA Aralık 2017

İçerik

- Proje Şeması ve Tanımı
- İkinci buluşmada yapılanlar
- Neler Yapıldı ?
- Yapılacaklar
- Kaynaklar

Proje Şeması ve Tanımı

Proje Tanımı

- Çekicilik veya yüz güzelliği kişisel bir algıdır.
- Kullanıcılara kameradan alınan bir bayanın yüz görüntüsü için sayısal olarak çekicilik tahmini yapan bir uygulama.

Amaç: Otomatik yüz güzellik algısı yapabilen bir sistem tasarlamak.

İkinci buluşmada yapılanlar

Resimlerin aspect ratio'sunu bozmadan resimleri küçültme işlemi yapıldı.

Input image

HOG betimleyicisi gerçekleştirildi. [1]

 12 adet gabor filtresi konvolusyon olarak resimlere uygulandı. Çıkan sonuçların standart sapmasını ve ortalamasını alınarak gabor öznitelik vektörleri elde edildi. [2]

 Fraktal boyut betimleyicisini kutu sayma yöntemi uygulanarak özellik vektörü elde edildi. [3]

İkinci buluşma

- WEKA Random Forest sınıflandırıcısı kullanıldı.
- numFeatures = log(feature size) + 1
- Random seed = r

Betimleyici	r = 1	r = 2	r = 3	r = 4	r = 5	ort
J						
Hog	%53	%44	%47	%45	%44	%46,6
Gabor	%50	%52	%45	%51	%48	%49,2
Fractal	%35	%37	%36	%32	%40	%36
Hog + Gabor	%58	%49	%46	%49	%52	%50,8
Hog + Fractal	%50	%53	%48	%51	%50	%50,4
Gabor + Fractal	%51	%56	%49	%49	%53	%51,6
ALL	%54	%53	%51	%52	%48	%51,6

Kappa Sonuçları

Bir önceki sayfada bulunan deneylerin kappa değerleri.

< 0	Hiç uyuşma olmamasi		
0.0 — 0.20	Önemsiz uyuşma olması		
0.21 — 0.40	Orta derecede uyuşma olması		
0.41 — 0.60	Ekseriyetle uyuşma olması		
0.61 — 0.80	Önemli derecede uyuşma olması		
0.81 — 1.00	Neredeyse mükemmel uyuşma olması		

Betimleyici	r = 1	r = 2	r = 3	r = 4	r = 5	ort
Hog	0,17	0,07	0,07	0,05	0,01	0,074
Gabor	0,18	0,23	0,03	0,16	0,13	0,146
Fractal	-0,026	-0,16	-0,076	-0,14	0,006	-0,0792
Hog + Gabor	0,28	0,16	0,05	0,14	0,14	0,154
Hog + Fractal	0,13	0,22	0,08	0,15	0,13	0,142
Gabor + Fractal	0,18	0,29	0,1	0,14	0,21	0,184
ALL	0,21	0,22	0,13	0,18	0,1	0,168

Neler Yapıldı

 Caffe derin öğrenme kütüphanesi, Opencv ve gerekli python kütüphaneleri kuruldu. [5]

 Saturation, Horizantal Flip, ve lightness gibi veri artırma yöntemleri uygulandı. [6]

Original

Flip

Saturation / 2

Saturation * 2

Lightness * 2

 AlexNet, GoogleNet ve Caffenet ağ mimarileri ile fine-tuning eğitimleri yapıldı. Kappa değerleri hesaplandı. [7]

Sonuçlar

Iteration	Alexnet	Caffenet	Googlenet
10k	0.34 - 0.63	0.22 - 0.56	0.05 - 0.47
20k	0.26 - 0.58	0.24 - 0.57	0.17 - 0.53
30k	0.22 - 0.56	0.27 - 0.59	0.17 - 0.53
40k	0.22 - 0.56	0.28 - 0.59	0.17 - 0.53
50k	0.22 - 0.56	0.24 - 0.57	0.17 - 0.53
60k	0.22 - 0.56	0.24 - 0.57	0.17 - 0.53
70k	0.22 - 0.56	0.24 - 0.57	0.17 - 0.53
80k	0.22 - 0.56	0.24 - 0.57	0.17 - 0.53
90k	0.22 - 0.56	0.24 - 0.57	0.17 - 0.53
100k	0.22 - 0.56	0.24 - 0.57	0.17 - 0.53

Modellerin n. İterasyondaki kappa ve accuracy tablosu

(Kappa – Accuracy ikilisi) [8]

İleride

 Veri artırma yöntemleri araştırılacak ve ağ modellerini eniyileme deneyleri yapılacak.

Sınıf sayıları azaltılarak eğitim yapılacak.

Kaynaklar

- 1. https://www.learnopencv.com/histogram-of-oriented-gradients/, DECEMBER 6, 2016 BY SATYA MALLICK
- 2. http://www.cs.rug.nl/~imaging/simplecell.html, Gabor function, 2000-2005 Grigorescu and Petkov
- 3. http://paulbourke.net/fractals/cubecount/, box counting method
- 4. https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/, Weka Tutorial
- 5. https://github.com/BVLC/caffe/wiki/Ubuntu-16.04-Installation-Guide, Sep 20, Caffe Berkeley
- 6. https://machinelearningmastery.com/image-augmentation-deep-learning-keras/, by Jason Brownlee on June 29, 2016
- 7. http://blog.yavuzz.com/post/caffe-fine-tuning, 12 August 2017
- 8. https://stats.stackexchange.com/questions/82162/cohens-kappa-in-plain-english

