

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Tarea 4

INTEGRANTES

Torres Valencia Kevin Jair - 318331818 Aguilera Moreno Adrián - 421005200 Rivera Silva Marco Antonio - 318183583

PROFESORA

Karla Ramírez Pulido

AYUDANTES

Alan Alexis Martínez López Manuel Ignacio Castillo López Alejandra Cervera Taboada

ASIGNATURA

Lenguajes de Programación

20 de octubre de 2022

1. Currifica cada uno de los siguientes términos.

 $\blacksquare \lambda abc.abc.$

Solución: $\lambda a.\lambda b.\lambda c.abc$

 $\blacksquare \lambda abc.\lambda cde.acbdce.$

Solución: $\lambda a.\lambda b.\lambda c.\lambda c.\lambda d.\lambda e.acbdce$

• $(\lambda d.(\lambda de.e)(\lambda fc.c))(\lambda ab.b)$. Solución: $(\lambda d.(\lambda d.\lambda e.e)(\lambda f.\lambda c.c))(\lambda a.\lambda b.b)$

- 2. Aplica α -conversiones en cada expresión para cambiar los términos de las variables de ligado.
- a) $\lambda a.\lambda b.(\lambda a.b \ \lambda b.a)$

Solución:

$$\lambda_a.\lambda_b.(\lambda_a.b \ \lambda_b.a) \rightarrow_{\alpha} \lambda_x.\lambda_y(\lambda_z.y\lambda_wz)$$

b) $\lambda a.(a(\lambda b.(\lambda a.a\ b)a))$

Solución:

$$\lambda_a.(a(\lambda_b.(\lambda_a.a\ b)a)) \to_{\alpha} \lambda_x.(x(\lambda_y.(\lambda_w.w\ y)x))$$

c) $\lambda x.(\lambda y.x \ \lambda y.(\lambda x.x \ y))$

Solución:

$$\lambda_x.(\lambda_y.x \ \lambda_y.(\lambda_x.x \ y)) \rightarrow_{\alpha} \lambda_a.(\lambda_b.a \ \lambda_c.(\lambda_e.e \ c))$$

3. Aplica β -reducciones a las siguientes expresiones para llegar a una Forma Normal, en caso de que no se pueda justifica. Además indica en cada paso el reducto y el redex.

$$l =_{def} \lambda a.a$$

$$K =_{def} \lambda a.\lambda b.a$$

$$S =_{def} \lambda a.\lambda b.\lambda a.ac(bc)$$

$$\Omega =_{def} (\lambda a.aa)(\lambda a.aa)$$

- a) $\lambda a.aK\Omega$
- b) $(\lambda a.a(ll))c$
- c) $(\lambda d.\lambda e.(\lambda f.f(\lambda a.ad))e)b(\lambda c.\lambda b.cb)$

- **4.**Realiza la representación de los booleanos en el cálculo λ según la representación de los Numerales de Church.
- a) Define la función disyunción ↔ (equivalencia) sobre los boolenos.
 Sabemos que a partir de las leyes de equivalencia de la lógica proposicional, tenemos que:

$$a \leftrightarrow b \equiv (a \to b) \land (b \to a)$$
 $a \to b \equiv \neg a \lor b$ $b \to a \equiv \neg b \lor a$

Por lo que finalmente tenemos que: $a \leftrightarrow b \equiv (\neg a \lor b) \land (\neg b \lor a)$.

- Como en clase se vio que and queda definido de la siguiente forma:

$$\wedge =_{def} \lambda a. \lambda b. ((ab)F).$$

Definimos las siguientes funciones como:

$$\vee =_{def} \lambda a. \lambda b. ((aT)b).$$

$$\neg =_{def} \lambda a.aFT.$$

$$\rightarrow =_{def} (\lambda a. \lambda b. \vee (\neg a)b).$$

$$\leftrightarrow =_{def} (\lambda a. \lambda b. \wedge (\rightarrow ab)(\rightarrow ba))$$

b) Define la función xor (disyunción exclusiva) sobre los booleanos.

$$xor =_{def} \lambda a. \lambda b. (a (bFT) (bTF))$$

5. Observa la siguiente expresión en el lenguaje programación Racket.

(let ([sum (
$$\lambda$$
 (n) (if (zero ? n) 0 (+ n (sum (sub1 n))))))]) (sum 5))

- a) Ejecútala y explica el por qué del resultado.
- b) Ejecútala modificándola usando Combinador de Punto Fijo Y y Combinador de Punto Fijo Z. Explica el resultado en ambos casos.