

Universidade Federal de Pernambuco Departamento de Física—CCEN

Prof. Clécio C. de Souza Silva

Introdução a Métodos Computacionais em Física – 2021.1 Atividade 2: Oscilações não-lineares e espaço de fase

Objetivo: Estudar, numericamente, o comportamento de sistemas hamiltonianos no espaço de fase e a diferença entre sistemas físicos lineares e não lineares.

O pêndulo plano simples é um exemplo paradigmático de sistema mecânico não linear. Sua equação do movimento é

$$\ddot{\theta} = -\frac{g}{\ell} \sin \theta \,. \tag{1}$$

Nas questões abaixo, usaremos unidades tais que g=1 e $\ell=1$.

- 1. Explorando o espaço de fase. Adapte seus códigos de Euler-Richardson e Verlet para integrar as equações adimensionais do pêndulo.
 - a) Rode seu código de Euler-Richardson com dt=0.05 para diferentes condições iniciais correspondentes aos seguintes valores de energia mecânica: $E/E_0=0.5$, 1.0, 2.0 e 3.0, onde $E_0=mg\ell$ é a unidade de energia (**sugestão:** fixe $\theta_0=0$ e varie apenas ω_0). Para cada caso, faça gráficos da trajetória do sistema no espaço de fase de $\omega\equiv\dot{\theta}$ versus θ e escolha o tempo total de integração grande o suficiente para observar ao menos uma oscilação (ou rotação) completa do pêndulo. O que deve acontecer para $E=2E_0$? Seu programa reproduz o esperado?
 - b) Repita o item anterior utilizando o método de Verlet, também com o dt = 0.05. Discuta as diferenças encontradas entre os dois métodos.
- 2. Conservação do volume no espaço de fase. Considere 4 condições iniciais formando um pequeno retângulo de base $\Delta\theta=0.01$ e altura $\Delta\omega=0.02$, centrado em $(\theta,\omega)=(0,\sqrt{2})$. Estude a evolução temporal deste retângulo ao longo de aproximadamente 5 períodos de oscilação do pêndulo utilizando os dois métodos (Euler-Richardson e Verlet) com dt=0.05. O retângulo muda de forma? Sua área é preservada?

Dica: A área de um quadrilátero de vértices (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) é dada por $\frac{1}{2}[(x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1) - (x_2y_1 + x_3y_2 + x_4y_3 + x_1y_4)]$

- **3.** Não-linearidade. Tome duas soluções que você obteve na questão anterior pelo método de Verlet: $x_1(t)$, com $E > 2E_0$, e $x_2(t)$ com $E < 2E_0$. Defina $x_3(t) = x_1(t) + x_2(t)$. Analisando a trajetória de $x_3(t)$ no espaço de fase, você diria que x_3 é uma solução plausível da equação do pêndulo? O que ocorre quando você substitui sen θ por θ ?
- **4.** Conclusão. Faça uma discussão geral sobre as atividades anteriores usando os argumentos e comentários que julgar pertinentes. Discuta também eventuais dificuldades encontradas.