הגדרה

תהי S קבוצה נתונה. פעולה (בינרית) ב־ S היא `מכונה` (למעשה פונקציה) שמתאימה לכל זוג

. (x,y) של איברים מ־ S איבר ב־ S איבר מ־ סדור (x,y) של איברים מ־

* x * y

אחרי שקובעים שם לפעולה, למשל , \star למשל לפעולה, שקובעים אחרי שקובעים . ג $x\star y$ בי הפעולה על ידי (x,y)על לזוג הסדור

 $x\star y=x'\star y'$ אזי y=y' רו x=x' אם x=x' אם אוני (x,y) הערה נקבע לחלוטין על אזי $x\star y=x'$ אזי אזי איזי איזי איזי אונים איזי איזי איזי איזי איזי איזי

דוגמה

. נגדיר אעל $S=\{a,b\}$ עם הבא: . $a \neq b$ עם א

$$a \star a = b$$
 , $a \star b = a$, $b \star a = b$, $b \star b = a$

: אפשר לכתוב זאת בצורה קומפקטית באמצעות טבלה

הגדרה : שדה הוא קבוצה $\mathbb F$ שיש בה

- . איברים מובחרים $0_{\mathbb{F}}, 1_{\mathbb{F}} \in \mathbb{F}$ שונים זה מזה .1
 - $:\oplus,\otimes$ פעולות בינאריות 2.

. y וד $x \oplus y$ נקרא הסכום של אור $x \oplus y$ וד אור נקרא נקרא לפעולה פעולה איבור וד

 $x \otimes y$ ו־ $x \otimes y$ נקרא המכפלה של ו־ $x \otimes y$ ו־ לפעולה

כך שמתקיימים התכונות הבאות:

A_{\oplus}	$\forall x,y,z \in \mathbb{F} (x \oplus y) \oplus z = x \oplus (y \oplus z)$	A_{\otimes}	$\forall x,y,z\in\mathbb{F}$	$(x \otimes y) \otimes z = x \otimes (y \otimes z)$	קיבוץ (אסוציאטויביות)
N_{\oplus}	$\forall x \in \mathbb{F} \qquad x \oplus 0_{\mathbb{F}} = 0_{\mathbb{F}} \oplus x = x$	N_{\otimes}	$\forallx\in\mathbb{F}$	$x\otimes 1_{\mathbb{F}}=1_{\mathbb{F}}\otimes x=x$	איברים נייטרליים
I_{\oplus}	$\forall x \in \mathbb{F} \exists x' \in \mathbb{F} x \oplus x' = x' \oplus x = 0_{\mathbb{F}}$	I_{\otimes}	$\forall x \in \mathbb{F} \smallsetminus \{0_{\mathbb{F}}\}$	$\exists \hat{x} \in \mathbb{F} x \otimes \hat{x} = \hat{x} \otimes x = 1_{\mathbb{F}}$	איברים נגדיים והפכיים
C_{\oplus}	$\forall x,y \in \mathbb{F} \qquad x \oplus y = y \oplus x$	C_{\otimes}	$\forall x,y\in\mathbb{F}$	$x \otimes y = y \otimes x$	חילוף (קומוטטיביות)
$D: \ \forall x, y, z \in \mathbb{F} \qquad (x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$					פילוג (דיסטריבוטויביות)

משפט וסימונים (מסקנות מאקסיומות השדה)

 \mathbb{F} יהי

. $0_{\mathbb{F}}$ איבר אחד האדיש לחיבור, והוא 1

 $x\in\mathbb{F}$ כלומר: בהינתן $x\in\mathbb{F}$ כך שלכל $x\in\mathbb{F}$ מתקיים $x\in\mathbb{F}$ כלומר:

 $1_{\mathbb{F}}$ האדיש לכפל, והוא ג קיים רק איבר אחד האדיש לכפל, והוא

 $y\in\mathbb{F}$ כלומר: בהינתן $f\in\mathbb{F}$ כך שלכל $f\in\mathbb{F}$ מתקיים כלומר: בהינתן

- . $\forall\,x\in\mathbb{F}\quad x\otimes 0_{\mathbb{F}}=0_{\mathbb{F}}$.3
- . לכל איבר בשדה קיים נגדי יחיד, כלומר

. x'=x'' אזי $x\oplus x''=0_{\mathbb F}$ ו־ $x\oplus x'=0_{\mathbb F}$ אזי $x',x''\in \mathbb F$ בהינתן האיברים . $x\oplus x'=0_{\mathbb F}$ מקיימים . $x\oplus x'=0_{\mathbb F}$ הנגדי של

: כלומר , בשדה הופכי $0_{\mathbb{F}}$ קיים הופכי יחיד , כלומר .5

. $\widehat{x}=\widehat{\widehat{x}}$ אזי $x\otimes\widehat{\widehat{x}}=1_\mathbb{F}$ ו־ $x\otimes\widehat{x}=1_\mathbb{F}$ מקיימים $\widehat{x},\widehat{\widehat{x}}\in\mathbb{F}$ מסומן ב־ x^{-1} מסומן ב־ x^{-1} מסומן ב־ x^{-1}

: הוכחה

 $\exists x \in \mathbb{F} \quad x \oplus e = e \oplus x = x$ איבר ב־ \mathbb{F} שאדיש לחיבור, כלומר : .1

= $0_{\mathbb F}\oplus e$ = $0_{\mathbb F}$: אזי מתקיים e אזיש לחיבור

לכן ב־ \mathbb{F} קיים רק איבר אדיש אחד לחיבור.

. $u=x\otimes 0_{\mathbb{F}}\in \mathbb{F}$: נסמן . $x\in \mathbb{F}$: .3

. (*) $u=x\otimes 0_\mathbb{F}=x\otimes (0_\mathbb{F}\oplus 0_\mathbb{F})\stackrel{D}{=}(x\otimes 0_\mathbb{F})\oplus (x\otimes 0_\mathbb{F})=u\oplus u$: מתקיים u' נגדי של u'

. $0_\mathbb{F}=u\oplus u'=(u\oplus u)\oplus u'=u\oplus (u\oplus u')=u\oplus 0_\mathbb{F}=u$ בתקיים : $0_\mathbb{F}=u=u\otimes 0_\mathbb{F}=u$ כלומר הראינו ש־ $0_\mathbb{F}=u=u\otimes 0_\mathbb{F}=u$ כנדרש.

. שימו לב שהתכונה 3 מיד גוררת שאין ל־ $0_{\mathbb{F}}$ הופכי

. ני אילו היה ל־ $0_{\mathbb F}=0$ הופכי, נגיד $\widehat{0_{\mathbb F}}$, אז היה מתקיים $0_{\mathbb F}=0$ הופכי, נגיד

הגדרה (שדה סדור)

יהי \mathbb{F} שדה , < נקרא שדה סדור אם קיים עליו יחס , שיקרא סדר ויסומן , המקיים את ארבע האקסיומות הבאות:

: מתקיימת בדיוק אחת משלוש האפשרויות הבאות בדיוy ו־ y ו־ לכל לכל : (טריכוטומיה) O_1

$$x = y$$
 או $y < x$ או $x < y$

$$orall \, x,y,z \in \mathbb{F} \qquad (\, x < y \ \wedge \ y < z \,) \ \Rightarrow \ x < z \qquad \qquad :$$
 (טרנזיטיביות) O_2

$$orall \, x,y,z \in \mathbb{F} \qquad x < y \; \Rightarrow \; (\, x+z \, < \, y+z \,) \qquad :$$
 (הלימה לחיבור) O_3

$$orall \, x,y,z \in \mathbb{F} \qquad (\, x < y \ \wedge \ 0_{\mathbb{F}} < z \,) \ \Rightarrow \ xz < yz \qquad :$$
 (הלימה לכפל בחיובי) O_4

(במקום **הלימה** אומרים גם **תאימות, אינוריאנטיות** או **קונסיסטנטיות**)

משפט (מסקנות מאקסיומות הסדר)

יהי ${\mathbb F}$ שדה סדור.

.
$$a+c < b+c \iff a < b$$
 מתקיים $a,b,c \in \mathbb{F}$.1

.
$$x < 0_{\mathbb{F}} \Leftrightarrow 0_{\mathbb{F}} < -x$$
 : מתקיים $x \in \mathbb{F}$ מלכל

.
$$0_{\mathbb{F}} < 1_{\mathbb{F}}$$
 .3

.
$$0_{\mathbb{F}} < x^2 \Leftrightarrow x
eq 0_{\mathbb{F}}$$
 : מתקיים $x \in \mathbb{F}$.4

.
$$0_{\mathbb{F}} < x^{-1} \iff 0_{\mathbb{F}} < x$$
 : מתקיים $x \in \mathbb{F}$.5

. (
$$b \cdot c < a \cdot c$$
 עם $a \cdot c > b \cdot c$ מתקיים $a \cdot c > b \cdot c$ מתקיים $a \cdot b \cdot c < 0$. $a \cdot b \cdot c < 0$. $a \cdot c < 0$

(מתקיים
$$a < b + d$$
 מתקיים $a < b$ עם $a < b$ עם $a < b$ עם $a < b$ מתקיים $a < b$ מתקיים $a < b$ אי־שוויונים $a < b$

: הוכחה

. 3 כאן את מסקנות 2 ו־ 3

$$. \ x < 0_{\mathbb{F}} \ \stackrel{O_3}{\Rightarrow} \ x + (-x) < 0_{\mathbb{F}} + (-x) \ \stackrel{I_+, N_+}{\Rightarrow} \ 0_{\mathbb{F}} < -x \quad (\Leftarrow) \quad .2$$

$$0_{\mathbb{F}} < -x \stackrel{O_3}{\Rightarrow} 0_{\mathbb{F}} + x < (-x) + x \stackrel{I_+,N_+}{\Rightarrow} x < 0_{\mathbb{F}} \quad (\Rightarrow)$$

(לפי סעיף 2). אזי $0_{\mathbb{F}}<-1_{\mathbb{F}}$ אזי $1_{\mathbb{F}}<0_{\mathbb{F}}$ (לפי סעיף 2).

 $x=0_{\mathbb{F}}\,,\,y=-1_{\mathbb{F}}\,,\,z=-1_{\mathbb{F}}$ עם O_4 עם האקסיומה

(חוקי כי לפי ההנחה $1_{\mathbb{F}} < z = -1$), ונקבל:

.
$$0_{\mathbb F} < 1_{\mathbb F}$$
 כלומר , $0_{\mathbb F} \cdot (-1_{\mathbb F}) < (-1_{\mathbb F}) \cdot (-1_{\mathbb F})$

 $0_{\mathbb{F}} < 1_{\mathbb{F}}$ ולכן הגענו לתוצאה שסותרת את הטריכוטומיה, ולכן

 $2_{\mathbb{F}}:=1_{\mathbb{F}}+1_{\mathbb{F}}$: הגדרה

.(עם עצמו) $0_{\mathbb{F}} < 1_{\mathbb{F}}$ את מחברים א $0_{\mathbb{F}} < 2_{\mathbb{F}}$: הערה

. $0_{\mathbb F} < 2_{\mathbb F}^{-1}$ קיים. בנוסף $2_{\mathbb F}^{-1}$ הפיך, כלומר $2_{\mathbb F}$ קיים. ולכן $0_{\mathbb F}
eq 2_{\mathbb F}$

 $orall \, x,y \in \mathbb{F} \qquad x < y \ \Rightarrow \ x < rac{x+y}{2_{\mathbb{F}}} < y \$. שדה סדור. \mathbb{F} יהי : הוכחה :

$$\left. \begin{array}{ccc}
 & O_3 \\
 & x < y & \Rightarrow & x + x < y + x \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & \\
 & & \\
 & \\
 & & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\
 & \\$$

, $2^{-1}_{\mathbb{F}}(2_{\mathbb{F}}x) < 2^{-1}_{\mathbb{F}}(x+y) < 2^{-1}_{\mathbb{F}}(2_{\mathbb{F}}y)$: נותן $2^{-1}_{\mathbb{F}}(2_{\mathbb{F}}x)$ באיבר החיובי $2^{-1}_{\mathbb{F}}(x+y) < 2^{-1}_{\mathbb{F}}(x+y) < y$ זאת אומרת $2^{-1}_{\mathbb{F}}(x+y) < y$. $2^{-1}_{\mathbb{F}}(x+y) < y$

ההגדרה של פעולת החילוק מסיימת את ההוכחה.

 ${\mathbb F}$ מסקנה בין כל שני איברים שונים של שדה סדור ${\mathbb F}$ קיים איבר נוסף של