

| Disciplina: Fundamentos da Computação  |                                 | Visto:       |
|----------------------------------------|---------------------------------|--------------|
| Professor: Abrantes Araújo Silva Filho |                                 |              |
| Aluno:                                 |                                 |              |
| Turma:                                 | Semestre:                       | Valor: —     |
| Data:                                  | <b>Diário</b> 1b: Fundamentos d | a Computação |

## Unidade 1: Fundamentos da Computação (2ª parte) — Diário de Aprendizagem —

- Este Diário de Aprendizagem é uma das atividades integrantes da disciplina de Fundamentos da Computação do curso de Ciência da Computação, Universidade Vila Velha (UVV).
- A confecção do diário de aprendizagem é atividade **obrigatória** e **altamente recomentada** por três motivos: a) você aprenderá muito mais a matéria se mantiver o diário; b) ao entregar todos os diários ao professor você está cumprindo parte das atividades avaliativas que contam pontos na disciplina (10% da nota); e c) as provas bimestrais discursivas seguirão o formato e conteúdo das perguntas do diário.
- Se você tiver dificuldade em responder alguma questão do diário, estude novamente a matéria. Se você realmente entendeu a matéria, não deveria ter muita dificuldade para responder o diário.
- Responda com caneta ou lápis escuro (2B, 4B, 6B).
- Verifique no calendário de sua turma a **data de entrega**. Após uma rápida avaliação e visto pelo professor ou pelos monitores, seu diário será devolvido.
- O diário não será corrigido pelo professor: cabe a você estudar e dar a resposta correta para todas as questões. Obviamente o professor está à disposição para esclarecimento de dúvidas, e os monitores podem auxiliar caso você tenha dificuldade.
- Manter o diário de aprendizagem atualizado pode ser a diferença entre você aprender a matéria e ser aprovado, ou não aprender a matéria e não ser aprovado.
- Bons estudos!

## 1 Algoritmos

|       | (a)         | olução de problemas. Em relação a essa definição, responda:  Explique qual o interesse do cientista da computação quando ele <b>projeta</b> algoritmos?                                                          |
|-------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (b)         | Explique quais os três interesses do cientista da computação quando ele <b>implementa</b> algoritmos?                                                                                                            |
|       | (c)         | Explique qual o interesse do cientista da computação quando ele <b>resolve problemas</b> através de algoritmos?                                                                                                  |
|       |             |                                                                                                                                                                                                                  |
| I     | Eng         | rea da computação pode ser estudada em diferentes cursos, tais como: Ciência da Computação, genharia da Computação, Sistemas de Informação, Engenharia de Software e outros. O que rencia esses cursos entre si? |
| 3. (C | Eng<br>life | enharia da Computação, Sistemas de Informação, Engenharia de Software e outros. O que                                                                                                                            |

| ı uı | idamentos da Computação                        | Diario de Aprendizageni            | Unidade 1: Fundamentos                |
|------|------------------------------------------------|------------------------------------|---------------------------------------|
| 5.   | Cite 3 disciplinas que prepara dos algoritmos. | am o cientista da computação pa    | ra o estudo da realização linguística |
| 6.   | Cite 3 disciplinas que prepara dos algoritmos. | m o cientista da computação para   | o estudo da realização em hardware    |
| 7.   | Cite 3 disciplinas que prepara algoritmos.     | nm o cientista da computação par   | ra o estudo da realização virtual dos |
| 8.   | Cite 3 disciplinas que prepararitmos.          | am o cientista da computação pa    | ara a criação de aplicações dos algo- |
| 9.   | Por que a ciência da computa dores?            | ção não é somente sobre progran    | nação nem somente sobre computa-      |
| 10.  | Escreva uma definição inform                   | nal para o conceito de algoritmo   | . Explique a definição.               |
| 11.  | utilizando-se apenas esses 4 c                 | conceitos. Cite quais são esses co | lexos e sofisticados, pode ser criado |
| 12   | (b)<br>(c)                                     | ciais?                             |                                       |
| -2.  | - 1m and operations sequen                     |                                    |                                       |

13. Que tipo de operação está representado no fluxograma abaixo?



| 14. | Em relação às operações seqüenciais em um algoritmo, explique o que são as <b>sentenças</b> ( <i>statements</i> ).                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                            |
| 15. | Em um algoritmo, cada <b>sentença</b> ( <i>statement</i> ) deve ser específica, única, simples, atômica, primitiva. O que isso quer dizer? |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
| 16. | Por que as <b>sentenças</b> devem ser atômicas?                                                                                            |
|     |                                                                                                                                            |
| 17. | As <b>operações condicionais</b> têm dois sinônimos consagrados. Quais são esses sinônimos?                                                |
|     |                                                                                                                                            |
| 18. | O que são as <b>operações condicionais</b> ?                                                                                               |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
| 19. | O que é uma <b>expressão booleana</b> ?                                                                                                    |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
| 20. | Qual a relação existente entre as operações condicionais e as expressões booleanas?                                                        |
|     |                                                                                                                                            |
|     |                                                                                                                                            |

21. A figura abaixo representa operações condicionais através de um fluxograma. O que a estrutura marcada com a letra grega  $\alpha$  representa? Por que essa estrutura é importante?

- 22. O que são as operações de repetição?
- 23. Existem, a grosso modo, dois grandes tipos de operações de repetição: as operações onde uma determinada ação pode ser **repetida** 0 **ou mais vezes** e as operações onde uma determinada ação pode ser **repetida** 1 **ou mais vezes**. Isso significa que existem instruções de repetição que não garantem que a ação desejada será executada nem uma única vez, e existem instruções de repetição que garantem que a ação desejada será executada, pelo menos, uma vez.
  - (a) Desenhe um fluxograma que represente uma ação de repetição que garante que uma ação desejada seja executada pelo menos uma vez:

(b) Desenhe um fluxograma que represente uma ação de repetição que não garante que uma ação desejada seja executada pelo menos uma vez:

- 24. O que são **estruturas de dados**?
- 25. Qual a estrutura de dados mais simples?

| 26. | Por | que | consid | leramos | que: |
|-----|-----|-----|--------|---------|------|
|     |     |     |        |         |      |

|     | Programas = Algoritmos + Estruturas de Dados                                                                                                                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                |
| 27. | Por que os algoritmos devem ser expressos em um nível extremamente alto de detalhes?                                                                                                                                                                                                           |
| 28. | O que queremos dizer falamos que <b>um algoritmo resolve todos os problemas de uma mesma "classe"</b> ?                                                                                                                                                                                        |
| 29. | Em relação à criação de algoritmos para a solução de problemas, sabe-se que existem <b>problemas</b> insolúveis. O que são esses problemas? Que matemático provou que existem problemas insolúveis?                                                                                            |
| 30. | Em relação à criação de algoritmos para a solução de problemas, a Conjectura de Goldbach, "Todo inteiro par positivo maior do que 2 é a soma de dois números primos", é um exemplo de um problema para o qual nós não sabemos se existe ou não uma solução algorítmica. O que isso quer dizer? |
| 31. | O problema do "Caixeiro Viajante" é um dos problemas clássicos para os quais não existe uma solução algorítmica eficiente. Pesquise sobre esse problema e explique o que é e porque não tem solução eficiente.                                                                                 |
|     |                                                                                                                                                                                                                                                                                                |

|      | mentos da Computação Diario de Aprendizagem Offidade 1: Fun                                                                                                                                         | Idaliicii |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Qua  | ual a diferença entre um <b>algoritmo</b> e uma <b>heurística</b> ?                                                                                                                                 |           |
|      |                                                                                                                                                                                                     |           |
|      |                                                                                                                                                                                                     |           |
| A de | definição formal de algoritmo que adotaremos neste curso é a seguinte:                                                                                                                              |           |
| I    | Definição de Algoritmo                                                                                                                                                                              |           |
| t    | É uma coleção bem ordenada de operações efetivamente computáveis, definidas e n bíguas que, quando executada sobre uma entrada produz uma saída e termina em uma tidade finita de passos e de tempo |           |
| Em   | n relação a essa definição forma, responda:                                                                                                                                                         |           |
| (a)  | O que significa "coleção bem ordenada"?                                                                                                                                                             |           |
| (b)  | O que significa "operações efetivamente computáveis"?                                                                                                                                               |           |
| (c)  | O que significa "definidas e não ambíguas"?                                                                                                                                                         |           |
| (d)  | O que significa "sobre uma entrada"?                                                                                                                                                                |           |
| (e)  | O que significa "produz uma saída"?                                                                                                                                                                 |           |
| (f)  | O que significa dizer que o algoritmo "termina"?                                                                                                                                                    |           |
|      |                                                                                                                                                                                                     |           |
|      |                                                                                                                                                                                                     |           |

- (g) O que significa dizer que o algoritmo termina "em uma quantidade finita de passos"?
- (h) O que significa dizer que o algoritmo termina "em uma quantidade finita de tempo"?
- 34. Quando medimos a eficiência de um algoritmo geralmente estamos interessados no tempo t que esse algoritmo leva para resolver um problema de tamanho n, conforme o gráfico abaixo:



A particularidade dessa medida de eficiência dos algoritmos é que o tempo t não é medido em número de segundos ou minutos, seja, não é medido em tempo de "relógio", mas, sim, como o **número de operações que o algoritmo realiza**. Explique porque o tempo de execução é medido em número de operações realizadas e não pelo tempo de relógio.

- 35. O que é a notação "Big-O"? Para que ela serve?
- 36. Quando falamos que um algoritmo é  $\mathcal{O}(n)$ , o que estamos querendo dizer?
- 37. Quando falamos que um algoritmo é  $O(\log_2 n)$ , o que estamos querendo dizer?

38. A figura abaixo mostra o tempo de execução de três algoritmos diferentes para resolver o mesmo problema:



Sabe-se que esses algoritmos tem tempos de O(1),  $O(n^2)$  e  $O(\log_2 n)$ . Qual dos algoritmos acima (A, B ou C) é o algoritmo de tempo quadrático?

39. A figura abaixo mostra o tempo de execução de três algoritmos diferentes para resolver o mesmo problema:



Sabe-se que esses algoritmos tem tempos de O(n),  $O(n\log_2 n)$  e  $O(\log_2 n)$ . Qual dos algoritmos acima (A, B ou C) é o algoritmo de tempo log-linear?

- 40. Que algoritmo é mais lento: um de tempo  $O(n\log_2 n)$  ou um de tempo  $O(2^n)$ ?
- 41. Por que a linguagem natural não é um bom meio de expressar um algoritmo?
- 42. Por que linguagens de programação não um bom meio de expressar um algoritmo?

| Fur | ndamentos da Computação                 | Diário de Aprendizagem                 | Unidade 1: Fundamentos          |
|-----|-----------------------------------------|----------------------------------------|---------------------------------|
| 43. | Por que fluxogramas são um bo           | m meio de experssar um algoritmo       | D?                              |
| 44. | O que é <b>pseudocódigo</b> ?           |                                        |                                 |
| 45. | Por que pseudocódigo é um bo            | n meio de expressar um algoritmo       | <b>.</b> ?                      |
| 46. | Por que não podemos começar no teclado? | a solucional um problema progran       | nando, ou seja, colocando a mão |
| 2   | Pensamento Compu                        | ıtacional                              |                                 |
| 47. | Cite três ou mais características       | s presentes em <b>problemas comple</b> | exos:                           |
| 48. | O que é o <b>pensamento compu</b>       | tacional?                              |                                 |
| 49. | Para que serve o pensamento co          | omputacional?                          |                                 |
|     |                                         |                                        |                                 |

| Fur | ıdam  | ientos da Computação               | Diário de Aprendizagem                                                 | Unidade 1: Fundamentos |
|-----|-------|------------------------------------|------------------------------------------------------------------------|------------------------|
| 50. |       |                                    | orincipais do pensamento computad                                      | cioanl:                |
|     |       |                                    |                                                                        |                        |
|     |       |                                    |                                                                        |                        |
|     |       |                                    |                                                                        |                        |
|     |       |                                    |                                                                        |                        |
| 51. | O q   | ue é a <b>decomposição</b> ?       |                                                                        |                        |
| 52. | lariz |                                    | ção de um problema, estamos inter<br>entre as partes decompostas. No c |                        |
|     | (a)   | Hierarquia:                        |                                                                        |                        |
|     | (b)   | Modularidade:                      |                                                                        |                        |
|     | (c)   | Regularidade:                      |                                                                        |                        |
| 53. | O q   | ue é o <b>reconhecimento de</b>    | padrões?                                                               |                        |
| 54. | O q   | ue é, de modo geral, a <b>absi</b> | ração?                                                                 |                        |
| 55. | Por   | que a <b>representação de d</b> a  | ados é essencial no pensamento con                                     | mputacional?           |
| 56. | O qu  | ue é o <b>pensamento algorí</b> t  | emico?                                                                 |                        |
|     |       |                                    |                                                                        |                        |

## 3 Abstração

| A nossa capacidade de <b>abstração</b> é a chave para a resolução de problemas complexos na computação. Em geral a abstração tem 2 grandes objetivos: a remoção de detalhes/foco no essencial, e a capacidade de generalização. Explique o que quer dizer cada uma dessas coisas: |                                                                                                                                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (a)                                                                                                                                                                                                                                                                               | Remoção de detalhes/foco no essencial:                                                                                                                                            |  |  |
| (b)                                                                                                                                                                                                                                                                               | Generalização                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                   |  |  |
| O q                                                                                                                                                                                                                                                                               | ue é a <b>interface</b> fornecida por uma abstração?                                                                                                                              |  |  |
| perr                                                                                                                                                                                                                                                                              | a interface separa o uso da implementação. Dê um exemplo de uma abstração cuja interface naneceu a mesma, mesmo que a implementação interna tenha mudado. Explique como isso reu. |  |  |
| Por                                                                                                                                                                                                                                                                               | que a abstração facilita a decomposição?                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                                                   | taçã capa (a)  (b)  O que to the control ocord to the capa (a)                                                                                                                    |  |  |

| Fur | ndamentos da Computação                                        | Diário de Aprendizagem                                             | Unidade 1: Fundamentos           |
|-----|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|
| 61. | Dê três exemplos de abstração foco no essencial, e a generaliz | o que você utiliza no dia a dia. Indiq<br>zação de cada abstração. | ue qual é a remoção de detalhe/- |
|     |                                                                |                                                                    |                                  |
|     |                                                                |                                                                    |                                  |
| 62. | Por que funções são um ótimo                                   | o exemplo de abstração?                                            |                                  |
| 63. | Por que a <b>interface</b> é uma bar                           | reira entre o uso e a implementação                                | de uma abstração?                |
| 64. | Por que a <b>interface</b> é um "con                           | ntrato" entre quem usa e quem imp                                  | lementa uma abstração?           |
| 65. | Qual o componente mais impedade de problemas?                  | ortante do pensamento computacio                                   | nal para o controle da complexi- |
|     |                                                                |                                                                    |                                  |
|     |                                                                |                                                                    |                                  |
|     |                                                                |                                                                    |                                  |