Lecture 21 Backtracking Algorithms with Search Space Pruning

EECS 281: Data Structures & Algorithms

Outline

- Review
 - Backtracking vs. Branch and Bound
- Backtracking General Form
- N-Queens

Types of Algorithm Problems

- Constraint Satisfaction problems
 - Can we satisfy all given constraints?
 - If yes, how do we satisfy them?
 - Need a specific solution
 - May have more than one solution
 - Examples: sorting, puzzles, GRE/analytical
- Optimization problems
 - Must satisfy all constraints (can we?) and
 - Must minimize an objective function subject to those constraints

Types of Algorithm Problems

- Constraint Satisfaction problems
 - Go over all possible solutions
 - Does a given input combination satisfy all constraints?
 - Can stop when a satisfying solution is found
- Optimization problems
 - Similar, except we also need to compute the objective function every time
 - Stopping early = non-optimal solution

Review

Backtracking is to Constraint Satisfaction

AS

Branch and Bound is to Optimization

General Form: Backtracking

```
type checknode(node v)
   if (promising(v))
      if (solution(v))
           write solution
      else
           for each child node u of v
           checknode(u)
```

General Form: Backtracking

solution(v)

Check 'depth' of solution (constraint satisfaction)

promising(v)

Different for each application

checknode(v)

Called only if promising and not solution

Specific Example: N-Queens

- N = 1: Can 1 queen be placed on a 1x1 board so that it doesn't threaten another?
- N = 2
- N = 3
- N = 4
- N = 5
- ...

8 Queens: Search Space

- Note that the search space is fairly large:
 - 16,772,216 possibilities
 - 92 solutions
- Reduce the search space

Backtracking

Backtracking

Constraint Satisfaction: N-Queens

- Could require one solution
- Could require several solutions
- Could require all solutions

Specific Form: N-Queens

solution(v)

- Check 'depth' of solution (constraint satisfaction)
- Placed queen on each row
- That is, depth = N

checknode(v)

- Called only if promising and not solution
- Recursive call to all positions (columns) of queen Within row

Specific Form: N-Queens

promising(v)

- Called for each node
- Assume functions that return column and/or row location of any queen, i, where i < v:
 - col(i) // returns column location of queen #i
 - row(i) // returns row location of queen #i
- NOT promising if:
 - In same column as any preceding queencol(i) == col(v)
 - On same diagonal as any preceding queen
 abs(col(i) col(v)) == abs(row(i) row(v))

Summary: N-Queens

For 4-Queens

- Entire tree has 256 leaves
- Backtracking enables searching of 19 nodes before finding first solution
- Promising:
 - May lead to solution
- Not promising:
 - Will never lead to solution
 - Therefore should be pruned

Summary: Backtracking

- Backtracking allows pruning of branches that are not promising
- All backtracking algorithms have a similar form
- Often, most difficult part is determining nature of promising()

N-Queens Implementation

- We know that for queens:
 - Each row will have exactly one queen
 - Each column will have exactly one queen
 - Each diagonal will have at most one queen
- Don't model the chessboard as 2D array!
 - Instead, use 1D arrays of rows, columns and diagonals
- To simplify the presentation, we will study for smaller chessboard, 4x4

Implementing the Chessboard

First: we need to define an array to store the location of queens placed so far

positionInRow

Implementing the Chessboard (cont.)

We need an array to keep track of the availability status of the column when we assign queens

Suppose that we have placed two queens

Implementing the Chessboard (cont.)

We have 7 left diagonals (2 * N - 1); we want to keep track of available diagonals after queens are placed (start at upper left)

Implementing the Chessboard Cont'd

We have 7 right diagonals; we want to keep track of available diagonals after queens are placed (start at upper right)

The putQueen() Recursive Method

```
putQueen(int row) {
  for (int col = 0; col < squares; col++)</pre>
    if ( column[col] == available
        && leftDiagonal[row + col] == available
        && rightDiagonal[row - col + (squares - 1)] == available) {
      positionInRow[row] = col;
      column[col] = !available;
      leftDiagonal[row + col] = !available;
      rightDiagonal[row - col + (squares - 1)] = !available;
      if (row < squares - 1)
        putQueen(row + 1);
      else
        print("solution found");
      // Undo this move and thus backtrack
      column[col] = available;
      leftDiagonal[row + col] = available;
      rightDiagonal[row - col + (squares - 1)] = available;
    } // if
} // putQueen()
```