Laplace Transforms:

Lapiace Transforms.	
f(t)	F(s)
1	1
	S
t^n	<u>n!</u>
	S^{n+1}
e^{at}	
	s-a
sin(at)	$\frac{a}{s^2+a^2}$
cos(at)	S
	$s^2 + a^2$
$e^{at}\sin(bt)$	b
	$\overline{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	s-a
, ,	$(s-a)^2+b^2$
sin(at + b)	$s\sin(b) + a\cos(b)$
	$s^2 + b^2$
cos(at + b)	$s\cos(b) - a\sin(b)$
	$s^2 + b^2$
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
$f^n(t)$	$s^n F(s) - s^{n-1} f(0)$
	$-s^{n-2}f^1(0) - \cdots f^{n-1}(0)$
$e^{at}f(t)$	F(s-a)
f(ct)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
	$\overline{c}^{r}(\overline{c})$
$\delta(t-c)$	e^{-cs}
$t^n f(t)$	$(-1)^n F^{(n)}(s)$
$\int_{-\infty}^{t} c(x) dx$	F(s)
$\int_0^{\infty} f(t)dt$	S
$\lim_{s\to 0} sU(s)$	$\lim_{t\to\infty}u(t)$
$\lim_{s\to\infty} sU(s)$	$u(0^+)$
<u> </u>	I

First Order Differential Equation:

$$y' + p(t)y = q(t)$$

$$I(t) = e^{\int p(t)dt}$$

$$y = \frac{1}{I(t)} \left[\int I(t)q(t)dt + C \right]$$

Roots of Characteristic Equation:

$$s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2} = 0$$

$$s = \eta \pm j\omega_{d}$$

$$\eta = -\zeta\omega_{n}$$

$$\omega_{d} = \omega_{n}\sqrt{1 - \zeta^{2}}$$

$$M_{p} = e^{\frac{-\pi\zeta}{1-\zeta^{2}}}$$

$$t_{r} = \frac{1.8}{\omega_{n}}$$

$$t_{s} = \frac{4.6}{\eta}$$

Linear Algebra Concepts:

$$\begin{aligned} Null(A) &\rightarrow rref(A) \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ adjoint(A) &= C(A)^T \\ C(A) &\rightarrow D(A_{row}) * A_{i,j} * (-1)^{(i+j)\%2} \\ Rank(A) &\rightarrow rref(A) \ number \ of \ non-zero \ rows \end{aligned}$$

Block Diagrams:

Series
$$\rightarrow \frac{Y}{U} = G(s)H(s)$$

Parallel $\rightarrow \frac{Y}{U} = G(s) + H(s)$
Feedback $\rightarrow \frac{Y}{U} = \frac{G(s)}{1 + G(s)H(s)}$

Zero Locations:

$$G(s) = (s+z)G_0(s)U(s) \to y(t) = \frac{dy_0(t)}{dt} + zy_0(t)$$

$$G(s) = \left(\frac{s}{z} + 1G_0(s)U(s) \to y(t) = \frac{1}{z}\frac{dy_0(t)}{dt} + y_0(t)\right)$$