Depth Estimation Using Deep Neural Networks

Muşat Bogdan-Adrian

December 2017

Problem Formulation

 Given a pair of stereo images, how to estimate the depth of the existing objects?

Disparity

- Disparity represents the difference of perspective created by the horizontal or vertical separation of two cameras
- The human brain processes disparity information from both eyes to estimate the depth of real world objects
- Disparity is inverse proportional with depth; given the basline distance b between the cameras and the camera focal length f, the depth \hat{d} from the predicted disparity d is simply $\hat{d} = bf/d$
- Objects closer to the camera have bigger disparities, whilst objects that are farther have smaller disparities

Proposed Solution

- Given a pair of rectified 1 stereo images as input, build a model which can accurately predict the disparity per-pixel (i.e. learn the Δ values with which every pixel from the left image is shifted from the right one on the x axis)
- Such a system can be modeled by a Convolutional Neural Network

Challenges - Textureless Areas

• Depth estimation is an ill-posed problem: a pixel in a textureless area from the left image can belong to multiple pixels in the right image

Figure 1: Example of objects with textureless areas

Challenges - Object Occlusion

 Parts of an object may be visible in an image, while being absent in the other one because of the difference of perspective

Figure 2: Occlusion in stereo images

Convolutional Neural Networks Architectures

- Supervised
 - Requires ground-truth disparity, which might be expensive to obtain
 - Based on disparity regression
 - Accurate predictions
- Unsupervised
 - Does not require any form of ground-truth
 - Based on an image reconstruction loss
 - Has artefacts around the edges of objects, caused by occlusion

DispNet²

• Image-to-image autoencoder structure

Figure 3: Hourglass structure of DispNet

Muşat Bogdan-Adrian Depth Estimation December 2017

8 / 9

²Philipp Fischer et al. "FlowNet: Learning Optical Flow with Convolutional Networks". In: *CoRR* abs/1504.06852 (2015). arXiv: 1504.06852. URL: http://arxiv.org/abs/1504.06852.

Unsupervised Monocular Network³

• Similar architecture as DispNet

Figure 4: Unsupervised Monocular Network architecture

9 / 9

³Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised Monocular Depth Estimation with Left-Right Consistency". In: *CoRR* abs/1609.03677 (2016). arXiv: 1609.03677. URL: http://arxiv.org/abs/1609.03677.