Saturday, 7 March 2020 6:20 pm

a) i) Literals = 1 (
Terms =
$$8 \leftarrow \overline{CD}(\overline{A}+\overline{B})+BD+C(\overline{A}\overline{D}+A\overline{B})$$
Complements = 4

$$G(C = 2;3)$$

Students may draw logic diagram to determine GIC

(i) Students can use the K-map to find the minterns for F or use algebraic expansion

OR

$$F = \overline{CD}(\overline{A} + \overline{B}) + BD + C(\overline{AD} + A\overline{B})$$

= ACD+BCD+BD+ACD+ABC

 $= \overline{Ac} \overline{B(B+B)} + \overline{Bc} \overline{C} \overline{(A+A)} + BD(\overline{A+A}) \overline{CC} \overline{C} + \overline{Ac} \overline{D(B+B)} + A\overline{Bc} \overline{C(D+D)}$

F=Em(0, 2,4,5,6,7,8,10,11,13,15)

iti)	A	В	ے	D	F	m;
•	0	0	0	0	1	Wp
	0	0	0	١	0	mı
	0	0	١	0	١	Mz
	0	0	l	l	0	M_3
	0	l	0	0	١	m4
	0	١	٥	١	1	M_5
	Ō	ı	l	0	l	Me
	0	ι	l	ı	ı	m_7
	ι	0	0	0	ı	₩s
	l	0	O	ı	0	Mq
	l	0	١	0	-1	W/W
	١	0	ι	l	1	W
	١	l	0	٥	0	Wis
	١	١	0	l	1	M ₁₃
	١	١	l	D	מ	M ₁₄
	١	ı	١	l	١	W'2

$$F = \overline{BD} + \overline{BD} + \overline{A}\overline{D} + ACD$$

$$\underline{OC} F = \overline{BD} + BD + \overline{A}\overline{D} + A\overline{B}C$$

$$\underline{OC} F = \overline{BD} + BD + \overline{A}\overline{B} + ACD$$

$$\underline{OC} F = \overline{BD} + BD + \overline{A}\overline{B} + A\overline{B}C$$

$$\underline{OC} F = \overline{BD} + BD + \overline{A}\overline{B} + A\overline{B}C$$

PI : BD, BD, AD, ACD, ABC, AB

EPI: BD, BD

Vi) literals = 9 terms = 4 complements = 3 GIC = 16

Reduction of 7 GIC after optimisation

Víl) F= BB+BD+AB+ACD

b) binary hexodecimal octal
11101010:111 EA.E 352.7

Hex -> binary

E A . E & Hex

Brany -> Octob 011101010:111 2 5 2 7 A Octob

C) A-Dlatch B-Positive edge traggered DAlipAlop

Question 2 F

Saturday, 7 March 2020 8:31 pm

a) i)
$$x+y=x\oplus y+xy$$

= $x\overline{y}+xy+xy+\overline{x}y$

$$= \times (\cancel{4} + \cancel{4}) + \cancel{4} \times (\cancel{4} + \cancel{4})$$

ii)
$$H(A,B,C) = A\overline{B} + AB\overline{C} + \overline{A}B$$

= A@B@ABC + (A@B)(ABC)

 $=A \oplus B \oplus AB\overline{C} + (A\overline{B} + \overline{A}B)(AB\overline{C})$

= AOBO ABC

+ABCD

CD select

I. = A+B

JA = AB

I2 = A+B

Is = AB

Note: Using CD as solect would not give the simplest design.

d) Not required!

GIC= 4+ 4×2+ 4×2 +10×2 = 40

- A2A3

Block diagram

Refer to Week3 dide51

- Input n is even, n=4.

Use 2" AND gates driven
by two decoders of output

Size 2" = 4

Since BCD is only from 0 to 1

16-X-1 AND gates will be

redundant.