Course: Computer Organization – ENCM 369

Lab # : Lab 6

Group Submission for : B04

Submitted by: Nimna Wijedasa

UCID: 30146042

Partner: Magdy Hafez

UCID: 30158658

Instr 1w 26, 20 (SP) 0 x 0040_ 0130 SP = 0x7fff = feat to= 0x 0001 - 2345 6 = br C3 1mm 4 20 Y51 = 0 opcode 0100.0 001.000 0.0010 010 1_1111 00 _ 8011 PCSic 0 **A** \ 01000 Result Src ١. A 2 10100 Mem Write \mathcal{C}^{A} / 11 / / ALU Control 000 ALU Sic 1 Jum Src 00 Reg Write SIC A JEFF - Lead WD 3 000 6- 666G SIC B 0000- 0014. ALU Result 7 FIE _ Eeby Result 0006_ 6666

PC Nexà

8040_0134

0040-0134 Instr sub si, si, ts SP = 8000 _ 0064 fo = \$666 - 6660 3 pcode 64 C3 57 452 Y 5 1 100001 11 00 110 10000 000 0000_0/0 PCSIC **A** \ 10001 Result Src A 2 0 01011 Mem Write CA0 10001 ALU Control 001 ALU Sec 0 Imm Src x x Reg write (SIC A 0000_ 2064 WD 3 0000 - 0054 Sic B 6885 - 8880 ALU Result 0002 0054 Result 0000 - 0054 PC Nexà 0040 - 0138

ox 89 ab - cdel Instr andi ti ti -256 SP = fe = br opcode 63 $\mathcal{E} \mathcal{A}$ Y 5 \ 111 1100/00 (11) |11) **A** \ PCSIC 0 01001 Result Src A2 00000 $\mathcal{C}A$ 00000 Mem Write ALU Control 010 ALU Sic 1 Imm Grc OB Reg Write (80 ab - cd,2 SIC A WD 3 BU ab _ cdel 516 B ((((- ((0) ALU Result 89 am - cd e0 Result 8a ab_ (del) PC Nexà

CO10_0400

Exercise Co

Figure 4: Incomplete Main Decoder specification for single-cycle computer with support for jalr. Compared to textbook Table 7.6, the table here has one more row and one more column.

Instruction	Opcode	RegWrite	ImmSrc	ALUSrc	TargetSrc	MemWrite	ResultSrc	Branch	ALUOp	Jump
lw	0000011	1	00	1	メ	0	01	0	00	0
sw	0100011	0	01	1	X	1	XX	0	00	0
R-type	0110011	1	XX	0	Х	0	00	0	10	0
beq	1100011	0	10	0	1	0	XX	1	01	0
I-type ALU	0010011	1	00	1	メ	0	00	0	10	0
jal	1101111	1	11	х	0	0	10	х	XX	1
jalr	1100111		00	1	0	0	10	X	10	1
		θ	<u> </u>	3	\odot	(S)	0	X	8	<u>1</u> 9

- 1. Regwrite has to be I Since we need towrite the register file
- 2. Imm 800 hon to be Zero Since we are trying to use 32-bit Sign extension
- 3. Alusic has to be I to select Sign-extended immediate field of the instruction instead of rt to add it with 151.
- 4. TargetSrc Will be a Since All Result is Written into the Pc. All Result is the sum of Sign-extension of the offset and the value of GAPR from 181
- 5. Since we don't need to write anything to the memory, it should be o.
- 6. Result Src Should be 10 Since PC+4 should be withen into rd register that is UD3
- 7. Branch will be x Since Jump isalway 1, also since it is ored with Brank, so either ways posto will be 1.
- B. Alu op will be to Since Jatr is a I-type op.
- 9. Jump will be I , Since we need to use jump in jobr instruction.