

UiO: University of Oslo

IN3050/IN4050 -Introduction to Artificial Intelligence and Machine Learning

Lecture 8

Multi-layer neural networks and backpropagation Jan Tore Lønning

8.1 Feed-forward Neural networks

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Today

- 1. Feed-forward neural networks (Multi-layer Perceptron)
- 2. Matrix representations of neural networks
- 3. The Backpropagation Algorithm
- 4. Finer details
- 5. More on Evaluation

The neural inspiration

- So far inspired by one neuron
- That does not make intelligence
 The human brain, roughly
 - 10¹¹ Neurons
 - 10¹⁴ Synapses
 - The strength is the interactions
- Neural Networks

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

Artificial Neural Networks

- Inspired by the brain
- Does not pretend to be a model of the brain
- The simplest model is the
 - Feed forward network, also called
 - Multi-layer Perceptron

Feed forward network

- An input layer
- An output layer: the predictions
- One or more hidden layers
- Connections from nodes in one layer to nodes in the next layer (from left to right)
- The connections are marked with weights

Going forwards (predictions)

- There is one input node for each feature/dimension in an input vector: $(x_1, x_2, ..., x_m)$
- In addition, an input bias node $x_0 = -1$
- The input values are multiplied with the weights and summed into each hidden node.
- There is some processing in the hidden node.
- The output values of the hidden nodes are fed to the next layer.
- (etc.)

One hidden unit

1. First sum of weighted inputs:

•
$$z = \sum_{i=0}^{m} w_i x_i = \boldsymbol{w} \cdot \boldsymbol{x}$$

- 2. Then the result is run through an activation function, g to produce $g(z) = g(\mathbf{w} \cdot \mathbf{x})$
- The activation function could be the step function,
 - c.f. the XOR-example:
 - Marsland sec 3.4.2 & start of ch. 4

It is the non-linearity of the activation function which makes it possible for MLP to predict non-linear decision boundaries

A differentiable activation function

- It is unclear how to update the weights if g isn't differentiable
- One option is to use the logistic (sigmoid) function

•
$$y = \sigma(z) = \frac{1}{1 + e^{-\overrightarrow{W} \cdot \overrightarrow{x}}}$$

- Differentiable
- y' = y(1-y)
- (There are alternative activation functions.)

One hidden node

1. First sum of weighted inputs:

•
$$z = \sum_{i=0}^{m} w_i x_i = \boldsymbol{w} \cdot \boldsymbol{x}$$

2. Then

•
$$y = g(z) = \sigma(z) = \frac{1}{1 + e^{-\overrightarrow{w} \cdot \overrightarrow{x}}}$$

Going forwards (predictions)

- After the processing in the hidden layer, the output is taken as input to the next layer
- One must also add a bias term at this layer.
 - Observe that this has to be done:
 - During processing
 - E.g., over again each time we process the same training item

Output layer

- Several possibilities, depending on the task, including:
 - Regression
 - Binary classification
 - Multi-label classification
 - Multi-class classification
- From the last layer to the output layer is like the same tasks without multiple layers!
- c.f. Marsland, sec. 4.2.3

1. Regression

- One output node
- No activation function in the output layer
 - = activation function is the identity function
- Observe that this can predict non-linear functions!

2. Binary classification

- One output node
- Logistic activation function in the output layer
- Similar to logistic regression
- Can produce non-linear decision boundaries

3. Multi-label classification

- Several output nodes
- Logistic activation function
- Can be made multi-class classification by one vs. rest.
- The model Marsland considers

4. Multi-class classification

- Several output nodes
- Sum the weighted inputs at each nodes
- The sums are brought together in the soft-max

8.2 Matrix representations

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Representing the connections

- We use a matrix to represent the connections
- Element $w_{i,j}$ is the connection:
 - from node *i*
 - to node *j*
- (Beware, some texts do it differently)

Connections going into a node

Connections going out of a node

$$\begin{bmatrix} x_0 & x_1 & x_2 & \cdots & x_m \end{bmatrix}$$

Batch-processing

$$\begin{bmatrix} x_{1,0} & x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,0} & x_{2,1} & x_{2,2} & \cdots & x_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{N,0} & x_{N,1} & x_{N,2} & \cdots & x_{N,m} \end{bmatrix} \begin{bmatrix} w_{0,1} & w_{0,2} & \cdots & w_{0,n} \\ w_{1,1} & w_{1,2} & \cdots & w_{1,n} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{m,1} & w_{m,2} & \cdots & w_{m,n} \end{bmatrix} = \begin{bmatrix} z_{1,1} & z_{1,2} & \cdots & z_{1,n} \\ z_{2,1} & z_{2,2} & \cdots & z_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{N,1} & z_{N,2} & \cdots & z_{N,n} \end{bmatrix}$$

- In batch-processing we can multiply by weights and (i) sum the results for (iii) each input item, and (ii) each hidden node in one operation
- Three nested loops by just: XW

Activation function

$$\begin{bmatrix} x_{1,0} & x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,0} & x_{2,1} & x_{2,2} & \cdots & x_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{N,0} & x_{N,1} & x_{N,2} & \cdots & x_{N,m} \end{bmatrix} \begin{bmatrix} w_{0,1} & w_{0,2} & \cdots & w_{0,n} \\ w_{1,1} & w_{1,2} & \cdots & w_{1,n} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{m,1} & w_{m,2} & \cdots & w_{m,n} \end{bmatrix} = \begin{bmatrix} z_{1,1} & z_{1,2} & \cdots & z_{1,n} \\ z_{2,1} & z_{2,2} & \cdots & z_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{N,1} & z_{N,2} & \cdots & z_{N,n} \end{bmatrix}$$

- Each $z_{i,j}$ is passed through the activation function: $y_{i,j} = g(z_{i,j})$
- In NumPy this can be done by one operation: g(XW)
- ullet Reminder: g may be the logistic function, but doesn't have to

• i.e.,
$$g(z_{i,j}) = \sigma(z_{i,j}) = \frac{1}{1 + e^{-z_{i,j}}}$$

Footnote: Notation

- Half of all texts follow us and Marsland with respect to notation
- The other half does differently

	We	Them
Connection from node i to node j	$w_{i,j}$	$w_{j,i}$
Data and weights	XW	WX
Applying activation function	g(XW)	g(WX)

- It amounts to the same.
- But don't mix them up!

8.3 Learning by Back-propagation

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Background

Marsland (p.74), "...just three things that you need to know...":

- 1. If $f(x) = \frac{1}{2}x^2$ then f'(x) = x
- 2. If f(x) = c then f'(x) = 0
- 3. If f(x) = h(g(x)) then f'(x) = h'(g(x))g'(x) (the chain rule) He forgot
- 4. If $y = \sigma(z) = \frac{1}{1 + e^{-\overrightarrow{w} \cdot \overrightarrow{x}}}$, then y' = y(1 y)

In addition

We will make use of the following which we have already seen:

- The logistic regression model
- Gradient descent
- GD applied to
 - Linear regression
 - Logistic regression
- Loss-functions:
 - MSE, Cross-Entropy

Training

- Given a set of training instances
 - $\{(x_1, t_1), (x_2, t_2), ..., (x_N, t_N)\}$:
- Forwards:
 - Run them forwards and get predictions
 - $\{y_1, y_2, ..., y_N\}$
- Backwards
 - Use a suitable loss function and compare these to the target values
 - $\{t_1, t_2, ..., t_N\}$
 - Apply gradient descent to update the weights (partial derivatives)

Input Layer

How do we update the weights

Last layer

- (easy)
- Like the same problems for linear regression or logistic regression without a hidden layer

The first layer

- The big question:
- How do we update the first layer?
- We don't have a loss (error) here

Solution: Backpropagation

- Let's be a little more formal
- Let the matrix V be the connections from input to hidden and W from hidden to output
 - $\dim(V) = ((m+1) \times k)$
 - $\dim(W) = ((k+1) \times n)$
- Activation functions:
 - Hidden layers: g
 - Output layer: *f*

• Let us in the following consider SGD where we update for one input $\mathbf{x} = (x_1, x_2, ... x_m)$

Forwards (notation)

- Add bias and send
 - $x^+ = (x_0, x_1, ... x_m)$
- through the first layer to get
 - $h = x^+V = (h_1, h_2, ..., h_k)$, where
 - $h_j = \sum_{i=0}^m x_i v_{i,j}$
 - *k* is the number of hidden nodes
- Apply activation function to get
 - $a = g(h) = (a_1, a_2, ..., a_k),$
 - where $a_i = g(h_i)$

- Add bias and send
 - $a^+ = (a_0, a_1, a_2, ..., a_k)$
- through the second layer to get
 - $z = a^+W = (z_1, z_2, ..., z_n)$, where
 - $z_j = \sum_{i=0}^k a_i w_{i,j}$
 - *n* is the number of output nodes
- Apply activation function to get
 - $y = f(z) = (y_1, y_2, ..., y_n),$
 - where $y_j = f(z_j)$

Backwards: 1.Regression

- We will consider various output tasks, starting with the simple regression
- There is only one output node
- The output activation function,
 f, is identity

Backwards: Update last layer

- For loss, we use MSE, or , as Marsland, the simpler Sum of Squares Error (SE): $L_{SE}(\mathbf{t}, \mathbf{y}) = \frac{1}{2} \sum_{j=1}^{N} (t_j y_j)^2$
 - (The index *j* here, runs over the input items. There is only one output node)
- We have seen that

•
$$\frac{\partial}{\partial w_{i,1}} L_{SE}(\mathbf{t}, \mathbf{y}) = \frac{\partial}{\partial \mathbf{y}} L_{SE}(\mathbf{t}, \mathbf{y}) \left(\frac{\partial}{\partial w_{i,1}} \mathbf{y} \right) = \sum_{j=1}^{N} \left((t_j - y_j)(-a_{j,i}) \right)$$

• For SGD where we update for one input $\mathbf{x} = (x_1, x_2, ... x_m)$

•
$$\frac{\partial}{\partial w_{i,1}} L_{SE}(t,y) = \frac{\partial}{\partial y} L_{SE}(t,y) \left(\frac{\partial}{\partial w_{i,1}} y \right) = (t-y)(-a_i) = (y-t)(a_i)$$

Backwards: Update last layer, ctd.

•
$$\frac{\partial}{\partial w_{i,1}} L_{SE}(t,y) = (y-t)(a_i)$$

- We know from lect. 6 how to update this (a corresponds to x then)
- But wait!
- We first have to find how to update the first layer.

Backwards: Update first layer: V, 1

- y = f(z) = z, where $z = a^+W$
- a = g(h), where $h = x^+V$

•
$$\frac{\partial}{\partial v_{i,j}} L_{SE}(\mathsf{t}, y) =$$

•
$$\frac{\partial}{\partial a} L_{SE}(t, y) \left(\frac{\partial}{\partial v_{i,j}} a \right) =$$

•
$$\frac{\partial}{\partial a_j} L_{SE}(\mathsf{t}, y) \left(\frac{\partial}{\partial v_{i,j}} a_j \right)$$

• because
$$\left(\frac{\partial}{\partial v_{i,j}}a_k\right) = \mathbf{0}$$
 for $k \neq j$

Backwards: Update first layer: V, 2

- y = f(z) = z, where $z = a^+W$
- $\frac{\partial}{\partial a_j} L_{SE}(t, y) = \frac{\partial}{\partial y} L_{SE}(t, y) \left(\frac{\partial}{\partial a_j} y \right) = (t y) (-w_{j,1}) = (y t) (w_{j,1})$
- Observe similarities and differences to

•
$$\frac{\partial}{\partial w_{i,1}} L_{SE}(t,y) = (y-t)(a_i)$$

• We call the common part: (y - t) for the delta term $\delta_o(\kappa)$ of the end node κ .

Backwards: Update first layer: V, 3

- a = g(h), where $h = x^+V$
- $\left(\frac{\partial}{\partial v_{i,j}} a_j\right) = \left(\frac{\partial}{\partial h} g\right) \left(\frac{\partial}{\partial v_{i,j}} h\right) =$ $= \left(\frac{\partial}{\partial h_j} g\right) \left(\frac{\partial}{\partial v_{i,j}} h_j\right)$
- $\frac{\partial}{\partial v_{i,j}} h_j = x_i$
- If $a_j = g(h_j) = \sigma(h_j)$, then
 - $\left(\frac{\partial}{\partial h_j}g\right) = a_j(1-a_j)$
 - $\left(\frac{\partial}{\partial v_{i,j}}a_j\right) = a_j(1-a_j)x_i$

Backwards: Update first layer: V, 4

- y = f(z) = z, where $z = a^+W$
- a = g(h), where $h = x^+V$

•
$$\frac{\partial}{\partial v_{i,j}} L_{SE}(t,y) = \frac{\partial}{\partial a_j} L_{SE}(t,y) \left(\frac{\partial}{\partial v_{i,j}} a_j \right) =$$

$$\delta_o(\kappa)$$

• $(y-t)(w_{j,1})a_j(1-a_j)x_i$

 δ -term at the node marked with a_i

Putting it together: the Algorithm

- Use the loss function and the derivative of the activation function to compute the delta term at the final node(s), here: $\delta_o(\kappa_1) = (y-t)$
- Compute the delta terms for each node in the hidden layer, from the delta term(s) and the hidden layer and the weights at the connections
 - here: $\delta(hidden_j) = \delta_o(\kappa_1) (w_{j,1}) a_j (1 a_j)$
- Update the weights by the deltas:
 - $w_{i,1} = w_{i,1} \eta \delta_o(\kappa_1) a_i$
 - $v_{i,j} = v_{i,j} \eta \delta(hidden_j)x_i$

2. Binary classification, take one

• Like Marsland, and regression, for loss use (SE):

$$L_{SE}(\mathbf{t}, \mathbf{y}) = \frac{1}{2} \sum_{j=1}^{N} (t_j - y_j)^2$$

- The only difference to regression is the logistic activation function: $y = \sigma(x) = \frac{1}{1+e^{-x}}$
- Since the derivative of this is y(1-y), we get
- $\delta_o(\kappa_1) = (y t)y(1 y)$
- The rest is as for regression

2. Binary classification, take two

 Use instead cross-entropy loss (cf. Lecture 7, Marsland 4.6.6)

•
$$\frac{\partial}{\partial y} L_{CE}(t, y) = -\frac{(t-y)}{y(1-y)}$$

Logistic activation

•
$$\delta_o(\kappa_1) = -\frac{(t-y)}{y(1-y)}y(1-y) = (y-t)$$

 The rest is as for regression and take one

3. Multi-label classification

- Several output nodes
- Logistic activation function
- The model Marsland considers

•
$$L_{SE}(\mathbf{t}, \mathbf{y}) = \frac{1}{2} \sum_{j=1}^{N} (t_j - y_j)^2$$

- (The index *j* here, runs over the output nodes.)
- We still look at one input only

3. Multi-label classification

- (SE loss, logistic output activation)
- We compute a delta term at each output node, κ_i :
- $\delta_o(\kappa_j) = (y_j t_j)y_j(1 y_j)$

3. First layer

- (SE loss, logistic output activation)
- $\delta(hidden_i) =$
- $a_i(1-a_i)\sum_{i=1}^n \delta_o(\kappa_i)w_{i,i}$
- i.e., sum of delta at output weighted by the connections between them
- The rest as for the others

Putting it together: the Algorithm

- Use the loss function and the derivative of the activation function to compute the delta term at the final node(s),
 - here: $\delta_o(\kappa_j) = (y_j t_j)y_j(1 y_j)$ for each node κ_j for j = 1, ..., n
- Compute the delta terms for each node in the hidden layer,
 - here: $\delta(hidden_j) = a_j(1-a_j)\sum_{i=1}^n \delta_o(\kappa_i)w_{j,i}$ for j=1,...,k
- Update the weights by the deltas in both layers
 - $w_{i,j} = w_{i,j} \eta \delta_o(\kappa_j) a_i$
 - $v_{i,j} = v_{i,j} \eta \delta(hidden_j)x_i$

By the way:

- To calculate $\sum_{j=1}^m w_{l,j} \delta_j$ by matrices, use
- $[\delta(\kappa_1), \delta(\kappa_2), ... \delta(\kappa_n)] \mathbf{W}^T$

Congratulation!

- You just survived backpropagation!
- You now deserve a break and cake!

8.4 Finer details

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Practical advices

- Scaling
- Initializing the weights
- Local minima
- Early stopping
- Batch, stochastic, mini-batch
- Number of hidden nodes and hidden layers?
- Activation functions

Scaling

- The $z = w \cdot x$ shouldn't be too large for this to work, roughly |z| shouldn't be much more than 1
- For example, normalization (scikit: standardscaler) of each feature

Normalization

- Training data, dimension i: $X_i = \{x_{1i}, x_{2i}, ... x_{Ni}\}.$
- Let m_i be the corresponding mean value:

•
$$m_i = \frac{1}{N} \sum_{j=1}^N x_{j,i}$$

- Let s_i be the standard deviation
- Define $scale_i(x_{ji}) = \frac{x_{ji} m_i}{s_i}$
- Use the same scaler on all test data!

Initializing the weights

- The weights:
 - should not be initialized to 0
 - should be initialized to random numbers
 - should be initialized to numbers between -1 and 1
- In addition, Marsland recommends to multiply with $\frac{1}{\sqrt{m}}$
 - where m is the number of input nodes

Local minima

- The loss function for MLP is not convex
- It can be caught in local minima
- Hence:
 - Make several runs with different initializations and compare the results (mean and std.dev.)
 - Consider methods for escaping local minima, cf. lecture 2 and adding momentum

Early stopping

- The loss on the training data will decrease during training
- There is a danger of overfitting by training for too long:
 - The network knows the training set very well
 - but does not generalize
 - Use a validation set V different from the training set.
 - After *k* rounds for some fixed *k* (e.g., 100):
 - check the loss on V
 - if the loss starts to increase, stop training!

Variations of gradient descent

- Mini-batch training:
 - Pick a subset of the training set of a certain size
 - Calculate the loss for this subset
 - Make one move in the opposite direction of this gradient
- Batch training
 - Use the whole training set in each update
- Stochastic gradient descent:
 - Pick one datapoint at random and update

 SGD/Mini-batch can be a way to avoid local minima

Number of hidden nodes and hidden layers?

- Very much an empirical question
- Use an independent validation set
- Run with different settings and evaluate on the validation set
- Choose the settings which give the best result
- Called hyper-parameter tuning
 - (The hyper-parameters are the parameters that you have to set.)

Input Layer

Alternative activation functions in the hidden layer

- There are alternative activation functions
- One may use different functions at different layers
- $tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- $ReLU(x) = \max(x, 0)$
- ReLU is the preferred method in deep networks

8.5 More on evaluation

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Evaluation measures

		Is in C		
		Yes	NO	
Class	Yes	tp	fp	
ifier	No	fn	tn	

- Accuracy: (tp+tn)/N
- Precision:tp/(tp+fp)
- Recall: tp/(tp+fn)

F-score combines P and R

•
$$F_1 = \frac{2PR}{P+R} \left(= \frac{1}{\frac{1}{R} + \frac{1}{P}} \right)$$

- F₁ called "harmonic mean"
- General form

•
$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

• for some $0 < \alpha < 1$

Confusion matrix

gold standard labels					
		gold positive	gold negative		
system output	system positive	true positive	false positive	$\mathbf{precision} = \frac{\mathbf{tp}}{\mathbf{tp+fp}}$	
labels system negative	false negative	true negative			
		$recall = \frac{tp}{tp+fn}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$	

- Beware what the rows and columns are:
 - Marsland swaps them

Figure 6.4 Contingency table

Confusion matrix

gold labels								
	urgent	normal	spam					
urgent	8	10	1	$precisionu = \frac{8}{8+10+1}$				
system output normal	5	60	50	precisionn= \frac{60}{5+60+50}				
spam	3	30	200	precisions= \frac{200}{3+30+200}				
	recallu = recalln =recalls =		recalls =					
	8	60	200					
	8+5+3	10+60+30	1+50+200					

Confusion matrix for a three-class categorization task, showing for each pair of classes (c_1, c_2) , how many documents from c_1 were (in)correctly assigned to c_2 Precision, recall and fscore can be calculated for each class against the rest

3. Multi-[label | class: ovr] classification

Task:

- A set of labels $C = \{C_1, C_2, ..., C_n\}$
- Multi-class, $f(x) = C_i$ for an $C_i \in C$
- Multi-label, $f(x)(C_i) = 1$ or 0 for each $C_i \in C$

Representations:

- Multi-class, e.g., (0,0,1,0, ... 0)
- Multi-label, e.g., (1,0,1,0, ... 1)

3. Multi-[label | class: ovr] classification

Task:

- A set of labels $C = \{C_1, C_2, ..., C_n\}$
- Multi-class, $f(x) = C_i$ for an $C_i \in C$
- Multi-label, $f(x)(C_i) = 1$ or 0 for each $C_i \in C$

Representations:

- Multi-class, e.g., (0,0,1,0, ... 0)
- Multi-label, e.g., (1,0,1,0, ... 1)

- Model (common):
 - $\bullet \ y_j = \frac{1}{1 + e^{-z_j}}$
 - MSE-loss
- Same learning by backpropagation
- Difference in application:
 - Multi-class, one-vs-rest: $f(x) = C_i$, where $i = argmax_{j=1,...,n} y_j$
 - Multi-label: $f(x)(C_i) = y_i > 0.5$

4. Multinomial Logistic Regression

Also called softmax-classifier

$$\bullet \ y_j = \frac{e^{z_j}}{\sum_{k=1}^n e^{z_k}}$$

- Cross-entropy loss:
- $L_{CE}(\mathbf{y}, \mathbf{t}) = -\sum_{i=1}^{n} t_i \log y_i$
- Remember:

•
$$\frac{\partial}{\partial w_{i,j}} L_{CE}(\mathbf{x}, t, \mathbf{w}) = (y_j - t_j) a_i$$

• Similarly:

•
$$\frac{\partial}{\partial a_i} L_{CE}(\mathbf{x}, t, \mathbf{w}) = (y_j - t_j) w_{i,j}$$

•
$$\delta_o(\kappa_j) = (y_j - t_j)$$

4. Multinomial Logistic Regression

•
$$\delta_o(\kappa_j) = (y_j - t_j)$$

- As before:
 - $\delta(hidden_j) =$
 - $a_i(1-a_i)\sum_{j=1}^n \delta_o(\kappa_j)w_{i,j}$
- Update the weights:
 - $w_{ij} = w_{i,j} \eta \delta_o(\kappa_j) a_{i,j}$
 - $v_{i,j} = v_{i,j} \eta \delta(hidden_i)x_i$
- Remark the modularity:
 - Composite functions
 - Partial derivatives

The importance of Multinomial Log.Reg

- The multinomial logistic regression, or softmax classifier is an essential tool in modern (deep) neural networks.
- E.g., Natural Language Processing:
 - Language modelling: Which word comes next?:
 - I like to eat ...
 - Softmax over all English words
 - Translation
 - Translate back into Norwegian
 - Softmax over candidates: {bak, rygg, back, støtt, rygge, støtte,}
 - Tagging
 - What is the part of speech for back in They back the proposition
 - Softmax over {Noun, Verb, Adj., Preposition, ...}