# LOGISTIC REGRESSION MODEL



Predicting whether a customer of a certain bank shall churn or not based on multiple parameters using a Logistic Regression Model.

| Date | 29/03/2020              |
|------|-------------------------|
| Name | Vinit Ravichandran Iyer |

# **Content List**

| Sr No | Description        | Page No |
|-------|--------------------|---------|
| 1     | Introduction       | 3       |
| 2     | Source Code        | 4       |
| 3     | Coefficient Output | 33      |
| 4     | Inference          | 33      |

## Introduction

In statistics, the logistic model (or logit model) is used to model the probability of a certain class or event existing such as pass/fail, win/lose, alive/dead or healthy/sick. This can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1, with a sum of one. Logistic regression is a statistical model that in its basic form uses a logistic function to model a binary dependent variable.

Logistic Regression is used when the dependent variable(target) is categorical. For example, To predict whether an email is spam (1) or (0), whether the tumour is malignant (1) or not (0), etc. Linear regression is unbounded, and this brings logistic regression into picture. Their value strictly ranges from 0 to 1.



The output from the hypothesis is the estimated probability. This is used to infer how confident can predicted value be actual value when given an input X. Data is fit into linear regression model, which then be acted upon by a logistic function predicting the target categorical dependent variable. Logistic Regression is of 3 types:

- Binary Logistic Regression
- Multinomial Logistic Regression
- Ordinal Logistic Regression

The following code is of a Binary Logistic Regression which answers the possibility of whether a customer would "churn" or not based on multiple parameters such as the credit score of the current month, past month, current month balance, etc.

# **Source Code**

## 1. Importing Libraries

| Input | import pandas as pd<br>import matplotlib.pyplot as plt<br>import seaborn as sea<br>import numpy as np |
|-------|-------------------------------------------------------------------------------------------------------|
|       | <pre>import warnings warnings.filterwarnings(action = 'ignore')</pre>                                 |

## 2. Importing the Dataset

| Input | data = pd.read_csv("churn_prediction.csv") |
|-------|--------------------------------------------|
| Input | data.head(5)                               |

## Output

|                     | customer_id | vintage | age | gender | dependents | occupation    | city   | customer_nw_category | branch_code | current_balance |  | average_monthly_balance_p |
|---------------------|-------------|---------|-----|--------|------------|---------------|--------|----------------------|-------------|-----------------|--|---------------------------|
| 0                   | 1           | 2101    | 66  | Male   | 0.0        | self_employed | 187.0  | 2                    | 755         | 1458.71         |  | 14                        |
| 1                   | 2           | 2348    | 35  | Male   | 0.0        | self_employed | NaN    | 2                    | 3214        | 5390.37         |  | 77                        |
| 2                   | 4           | 2194    | 31  | Male   | 0.0        | salaried      | 146.0  | 2                    | 41          | 3913.16         |  | 49                        |
| 3                   | 5           | 2329    | 90  | NaN    | NaN        | self_employed | 1020.0 | 2                    | 582         | 2291.91         |  | 20                        |
| 4                   | 6           | 1579    | 42  | Male   | 2.0        | self_employed | 1494.0 | 3                    | 388         | 927.72          |  | 16                        |
| 5 rows × 21 columns |             |         |     |        |            |               |        |                      |             |                 |  |                           |
| 4                   |             |         |     |        |            |               |        |                      |             |                 |  | <b>•</b>                  |

## 3. Studying the Dataset

| Iı | nput        | da      | ta.l | nead(  | )          |               |       |                      |             |                 |                               |
|----|-------------|---------|------|--------|------------|---------------|-------|----------------------|-------------|-----------------|-------------------------------|
| Οι | ıtput       |         |      |        |            |               |       |                      |             |                 |                               |
|    | customer_id | vintage | age  | gender | dependents | occupation    | city  | customer_nw_category | branch_code | current_balance | <br>average_monthly_balance_r |
| 0  | 1           | 2101    | 66   | Male   | 0.0        | self employed | 107.0 | 2                    | 755         | 1/150 71        | 14                            |

|                     | customer_id | vintage | age | gender | dependents | occupation    | city   | customer_nw_category | branch_code | current_balance |  | average_monthly_balance_r |
|---------------------|-------------|---------|-----|--------|------------|---------------|--------|----------------------|-------------|-----------------|--|---------------------------|
| 0                   | 1           | 2101    | 66  | Male   | 0.0        | self_employed | 187.0  | 2                    | 755         | 1458.71         |  | 14                        |
| 1                   | 2           | 2348    | 35  | Male   | 0.0        | self_employed | NaN    | 2                    | 3214        | 5390.37         |  | 77                        |
| 2                   | 4           | 2194    | 31  | Male   | 0.0        | salaried      | 146.0  | 2                    | 41          | 3913.16         |  | 49                        |
| 3                   | 5           | 2329    | 90  | NaN    | NaN        | self_employed | 1020.0 | 2                    | 582         | 2291.91         |  | 20                        |
| 4                   | 6           | 1579    | 42  | Male   | 2.0        | self_employed | 1494.0 | 3                    | 388         | 927.72          |  | 16                        |
| 5 rows × 21 columns |             |         |     |        |            |               |        |                      |             |                 |  |                           |

| Input | data.tail() |
|-------|-------------|

|        | customer_id       | vintage | age | gender | dependents | occupation    | city   | customer_nw_category | branch_code | current_balance | <br>average_monthly_balar |
|--------|-------------------|---------|-----|--------|------------|---------------|--------|----------------------|-------------|-----------------|---------------------------|
| 28377  | 30297             | 2325    | 10  | Female | 0.0        | student       | 1020.0 | 2                    | 1207        | 1076.43         |                           |
| 28378  | 30298             | 1537    | 34  | Female | 0.0        | self_employed | 1046.0 | 2                    | 223         | 3844.10         |                           |
| 28379  | 30299             | 2376    | 47  | Male   | 0.0        | salaried      | 1096.0 | 2                    | 588         | 65511.97        |                           |
| 28380  | 30300             | 1745    | 50  | Male   | 3.0        | self_employed | 1219.0 | 3                    | 274         | 1625.55         |                           |
| 28381  | 30301             | 1175    | 18  | Male   | 0.0        | student       | 1232.0 | 2                    | 474         | 2107.05         |                           |
| 5 rows | rows × 21 columns |         |     |        |            |               |        |                      |             |                 |                           |

| Input  | data.shape  |
|--------|-------------|
| Output | (28382, 21) |

| Input  | data.columns                                                            |
|--------|-------------------------------------------------------------------------|
| Output | <pre>Index(['customer_id', 'vintage', 'age', 'gender', 'dependent</pre> |
| 1      | s', 'occupation',                                                       |
|        | 'city', 'customer_nw_category', 'branch_code', 'curre                   |
|        | nt balance',                                                            |
|        | 'previous month end balance', 'average monthly balanc                   |
|        | e_prevQ',                                                               |
|        | 'average_monthly_balance_prevQ2', 'current_month_cred                   |
|        | it',                                                                    |
|        | 'previous_month_credit', 'current_month_debit', 'prev                   |
|        | ious_month_debit',                                                      |
|        | 'current_month_balance', 'previous_month_balance', 'c                   |
|        | hurn',                                                                  |
|        | 'last transaction'],                                                    |
|        | dtype='object')                                                         |

## 4. Studying the Variables concerned

| Input  | data.dtypes                               |         |  |
|--------|-------------------------------------------|---------|--|
| Output | customer_id                               | int64   |  |
| -      | vintage                                   | int64   |  |
|        | age                                       | int64   |  |
|        | gender                                    | object  |  |
|        | dependents                                | float64 |  |
|        | occupation                                | object  |  |
|        | city                                      | float64 |  |
|        | customer_nw_category                      | int64   |  |
|        | branch_code                               | int64   |  |
|        | current_balance                           | float64 |  |
|        | <pre>previous_month_end_balance</pre>     | float64 |  |
|        | average_monthly_balance_prevQ             | float64 |  |
|        | <pre>average_monthly_balance_prevQ2</pre> | float64 |  |
|        | current_month_credit                      | float64 |  |
|        | previous_month_credit                     | float64 |  |
|        | current_month_debit                       | float64 |  |
|        | previous_month_debit                      | float64 |  |
|        | current_month_balance                     | float64 |  |
|        | previous_month_balance                    | float64 |  |
|        | churn                                     | int64   |  |
|        | last_transaction                          | object  |  |
|        | dtype: object                             |         |  |

| Input  | data.dtypes[data.dtypes == "int64"] |       |  |
|--------|-------------------------------------|-------|--|
| Output | customer_id                         | int64 |  |
| 1      | vintage                             | int64 |  |
|        | age                                 | int64 |  |
|        | customer nw category                | int64 |  |
|        | branch code                         | int64 |  |
|        | churn                               | int64 |  |
|        | dtype: object                       |       |  |

| Input  | data.dtypes[data.dtypes == "object"] |        |
|--------|--------------------------------------|--------|
| Output | gender                               | object |
| 1      | occupation                           | object |
|        | last transaction                     | object |
|        | dtype: object                        |        |

| Input  | data.dtypes[data.dtypes == "float64"] |         |
|--------|---------------------------------------|---------|
| Output | dependents                            | float64 |
| 1      | city                                  | float64 |
|        | current_balance                       | float64 |
|        | previous_month_end_balance            | float64 |
|        | average_monthly_balance_prevQ         | float64 |
|        | average_monthly_balance_prevQ2        | float64 |
|        | current_month_credit                  | float64 |
|        | previous_month_credit                 | float64 |
|        | current month debit                   | float64 |
|        | previous_month_debit                  | float64 |
|        | current month balance                 | float64 |
|        | previous month balance                | float64 |
|        | dtype: object                         |         |

## 5. Conversion of variables into suitable Data types

| Input  | data["customer_nw_category"] = data["customer_nw_category"].astype("category") data["branch_code"] = data["branch_code"].astype("category") data["churn"] = data["churn"].astype("category") data["gender"] = data["gender"].astype("category") data["occupation"] = data["occupation"].astype("category") data["city"] = data["city"].astype("category") |                 |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
|        | data["dependents"] = data["dependents"].a<br>data.dtypes                                                                                                                                                                                                                                                                                                  | astype("Int64") |  |
| Output | customer id                                                                                                                                                                                                                                                                                                                                               | int64           |  |
| Juiput | vintage                                                                                                                                                                                                                                                                                                                                                   | int64           |  |
|        | age                                                                                                                                                                                                                                                                                                                                                       | int64           |  |
|        | gender                                                                                                                                                                                                                                                                                                                                                    | category        |  |
|        | dependents                                                                                                                                                                                                                                                                                                                                                | Int64           |  |
|        | occupation                                                                                                                                                                                                                                                                                                                                                | category        |  |
|        | city                                                                                                                                                                                                                                                                                                                                                      | category        |  |
|        | customer_nw_category                                                                                                                                                                                                                                                                                                                                      | category        |  |
|        | branch_code                                                                                                                                                                                                                                                                                                                                               | category        |  |
|        | current_balance                                                                                                                                                                                                                                                                                                                                           | float64         |  |
|        | previous_month_end_balance                                                                                                                                                                                                                                                                                                                                | float64         |  |
|        | average_monthly_balance_prevQ                                                                                                                                                                                                                                                                                                                             | float64         |  |
|        | average_monthly_balance_prevQ2                                                                                                                                                                                                                                                                                                                            | float64         |  |
|        | current_month_credit                                                                                                                                                                                                                                                                                                                                      | float64         |  |
|        | previous_month_credit                                                                                                                                                                                                                                                                                                                                     | float64         |  |
|        | current_month_debit                                                                                                                                                                                                                                                                                                                                       | float64         |  |
|        | previous_month_debit                                                                                                                                                                                                                                                                                                                                      | float64         |  |
|        | current_month_balance                                                                                                                                                                                                                                                                                                                                     | float64         |  |
|        | previous_month_balance                                                                                                                                                                                                                                                                                                                                    | float64         |  |
|        | churn                                                                                                                                                                                                                                                                                                                                                     | category        |  |
|        | last_transaction                                                                                                                                                                                                                                                                                                                                          | object          |  |
|        | dtype: object                                                                                                                                                                                                                                                                                                                                             |                 |  |

| Input | date = pd.DatetimeIndex(data["last_transaction"])                                                                                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | data["doy_lt"] = date.dayofyear #Day of Year of Last Transaction data["woy_lt"] = date.weekofyear #Week of Year of Last Transaction data["moy_lt"] = date.month #Month of Yeaar of Last Transaction data["dow_lt"] = date.dayofweek #Day of Week of Last Transaction  data bood() |
|       | data.head()                                                                                                                                                                                                                                                                       |

## Output

| alance | <br>current_month_debit | previous_month_debit | current_month_balance | previous_month_balance | churn | last_transaction | doy_lt | woy_lt | moy_lt | dow_lt |
|--------|-------------------------|----------------------|-----------------------|------------------------|-------|------------------|--------|--------|--------|--------|
| 458.71 | <br>0.20                | 0.20                 | 1458.71               | 1458.71                | 0     | 2019-05-21       | 141.0  | 21.0   | 5.0    | 1.0    |
| 390.37 | <br>5486.27             | 100.56               | 6496.78               | 8787.61                | 0     | 2019-11-01       | 305.0  | 44.0   | 11.0   | 4.0    |
| 913.16 | <br>6046.73             | 259.23               | 5006.28               | 5070.14                | 0     | NaT              | NaN    | NaN    | NaN    | NaN    |
| 291.91 | <br>0.47                | 2143.33              | 2291.91               | 1669.79                | 1     | 2019-08-06       | 218.0  | 32.0   | 8.0    | 1.0    |
| 927.72 | <br>588.62              | 1538.06              | 1157.15               | 1677.16                | 1     | 2019-11-03       | 307.0  | 44.0   | 11.0   | 6.0    |
|        |                         |                      |                       |                        |       |                  |        |        |        |        |

## **6.** Deleting the Excess Columns

| Input  | data = data.drop(column<br>"Day_of_Year_of_Last_Transaction",<br>"Month_of_Year_of_Last_Transaction", "Da | "Week_of_Year_of_Last_Transaction", |
|--------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|
|        | data.head()                                                                                               |                                     |
|        | data.dtypes                                                                                               |                                     |
| Output | customer_id                                                                                               | int64                               |
|        | vintage                                                                                                   | int64                               |
|        | age                                                                                                       | int64                               |
|        | gender                                                                                                    | category                            |
|        | dependents                                                                                                | Int64                               |
|        | occupation                                                                                                | category                            |
|        | city                                                                                                      | category                            |
|        | customer_nw_category                                                                                      | category                            |
|        | branch_code                                                                                               | category                            |
|        | current_balance                                                                                           | float64                             |
|        | <pre>previous_month_end_balance</pre>                                                                     | float64                             |
|        | <pre>average_monthly_balance_prevQ</pre>                                                                  | float64                             |
|        | <pre>average_monthly_balance_prevQ2</pre>                                                                 | float64                             |
|        | current_month_credit                                                                                      | float64                             |
|        | previous_month_credit                                                                                     | float64                             |
|        | current_month_debit                                                                                       | float64                             |
|        | <pre>previous_month_debit</pre>                                                                           | float64                             |
|        | current_month_balance                                                                                     | float64                             |
|        | <pre>previous_month_balance</pre>                                                                         | float64                             |
|        | churn                                                                                                     | category                            |
|        | last_transaction                                                                                          | object                              |
|        | doy_lt                                                                                                    | float64                             |
|        | woy_lt                                                                                                    | float64                             |
|        | moy_lt                                                                                                    | float64                             |
|        | dow_lt                                                                                                    | float64                             |
|        | dtype: object                                                                                             |                                     |

### 7. Univariate Analysis – Numerical values

| Input  | data.select_dtypes(include = ["int64", "Int6 | 4", "float64"]).dtypes |
|--------|----------------------------------------------|------------------------|
| Output | customer_id                                  | int64                  |
| 1      | vintage                                      | int64                  |
|        | age                                          | int64                  |
|        | dependents                                   | Int64                  |
|        | current_balance                              | float64                |
|        | previous_month_end_balance                   | float64                |
|        | average_monthly_balance_prevQ                | float64                |
|        | average_monthly_balance_prevQ2               | float64                |
|        | current_month_credit                         | float64                |
|        | previous month credit                        | float64                |
|        | current_month_debit                          | float64                |
|        | previous_month_debit                         | float64                |
|        | current month balance                        | float64                |
|        | previous month balance                       | float64                |
|        | doy_lt                                       | float64                |
|        | woy_lt                                       | float64                |
|        | moy lt                                       | float64                |
|        | dow lt                                       | float64                |
|        | dtype: object                                |                        |

### • Grouping of Variables

| Input | customer_details=["customer_id", "vintage", "age"]                         |  |  |
|-------|----------------------------------------------------------------------------|--|--|
|       | current_month_details=["current_balance", "current_month_credit",          |  |  |
|       | "current_month_debit", "current_month_balance"]                            |  |  |
|       | previous_month_details=["previous_month_end_balance",                      |  |  |
|       | "previous_month_credit", "previous_month_debit", "previous_month_balance"] |  |  |
|       | previous_quarter_details=["average_monthly_balance_prevQ",                 |  |  |
|       | "average_monthly_balance_prevQ2"]                                          |  |  |
|       | transaction_date=["doy_lt", "woy_lt", "moy_lt", "dow_lt"]                  |  |  |

### • Defining function for Univariate Analysis

```
Input
            def UVA_numeric(data, var_group):
              size = len(var_group)
              plt.figure(figsize = (7*size,3), dpi = 100)
              for j,i in enumerate(var_group):
                mini = data[i].min()
                maxi = data[i].max()
                ran = data[i].max()-data[i].min()
                mean = data[i].mean()
                median = data[i].median()
                st_dev = data[i].std()
                skew = data[i].skew()
                kurt = data[i].kurtosis()
                points = mean-st_dev, mean+st_dev
                plt.subplot(1,size,j+1)
                sea.kdeplot(data[i], shade=True)
```

#### • Customer Details

Input UVA\_numeric(data,customer\_details)

### Output



Customer ID: Customer ID is unique to all customers and hence has the uniform distribution Thus Customer ID as a variable can be dropped

Vintage: It is skewed as many customers joined between 1500 to 2500 days from the day of extraction It has a negative skew therefore variable is associated with the loyal customers Kurtosis is positive and thus outliers may be present

Age: Median age is around 40 Majority of the customers lie between the age of 30-60 It has a positive skew therefore variable is associated to the older customers more Kurtosis is negative and thus outlies to be present is extremely unlikely

### • Current Month



All the above plots have extreme skewness and thus many outliers are present.

### • Previous Month



All the above plots have extreme skewness and thus many outliers are present.

### • Previous Quarters



All the above plots have extreme skewness and thus many outliers are present.

#### • Transaction Date



All the above plots have extreme skewness and thus many outliers are present.

## • Removing Outliers for Current month to visualise it

| Input  | factor = 3                                         |   |
|--------|----------------------------------------------------|---|
| 1      | cm_data = data[current_month_details]              |   |
|        |                                                    |   |
|        | cm_data = cm_data[cm_data['current_balance']       | < |
|        | factor*cm_data['current_balance'].std()]           |   |
|        | cm_data = cm_data[cm_data['current_month_credit']  | < |
|        | factor*cm_data['current_month_credit'].std()]      |   |
|        | cm_data = cm_data[cm_data['current_month_debit']   | < |
|        | factor*cm_data['current_month_debit'].std()]       |   |
|        | cm_data = cm_data[cm_data['current_month_balance'] | < |
|        | factor*cm_data['current_month_balance'].std()]     |   |
|        |                                                    |   |
|        | len(data), len(cm_data)                            |   |
| Output | (28382, 27113)                                     |   |

| Input                                                                                                                    | UVA_nume                                                                                  | eric(data, current_mont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h_details)                                                                                                    |                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Output                                                                                                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                           |
| skew - 99.03; range = (-5.902)<br>10-8 mean = 7380.55;<br>20 mean = 7380.55;<br>21 mean = 7380.55;<br>22 mean = 7380.55; | 79.76(); hartosis = 13093.36;<br>19.6, \$995904.03, \$911407.99)<br>median = 3281.20;<br> | skd dov = (73638.), 80504.7); kurtosis = 22631.41; skew = 143.32; range = (1031.1269845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769845.38); 12769865.38); 12769865.38); 12769865.38); 12769865.38); 12769865.38); 12769865.38); 12769865.38); 1276986 | sid dev = (-48326.68, 55644.17); hurtonis = 1648.4.64, skein = 115.62; range = (631, 76.3785.38, 76.37857.35) | sto dev = (3458).81, 49485.07); burronis = 12681.16; skew = 97.31; range = (3374.18.778194.77.5781558.95) |

Even after removal of outliers the skewness is still present. This can hint multiple possibilities such as another relation between them or there might be some customers making high amounts of transactions every month, etc.

## 8. Univariate Analysis – Categorical Variables

| Input  | data.select_dtypes(exclude = ["int64", "Int64", "float64"]).dtypes |          |  |
|--------|--------------------------------------------------------------------|----------|--|
| Output | gender                                                             | category |  |
| 1      | occupation                                                         | category |  |
|        | city                                                               | category |  |
|        | customer_nw_category                                               | category |  |
|        | branch_code                                                        | category |  |
|        | churn                                                              | category |  |
|        | last_transaction                                                   | object   |  |
|        | dtype: object                                                      |          |  |

```
Input

def UVA_category(data, var_group):
    size = len(var_group)
    plt.figure(figsize = (7*size,5), dpi = 100)

for j,i in enumerate(var_group):
    norm_count = data[i].value_counts(normalize = True)
    n_uni = data[i].nunique()

plt.subplot(1,size,j+1)
    sea.barplot(norm_count, norm_count.index , order = norm_count.index)
    plt.xlabel('fraction/percent', fontsize = 20)
    plt.ylabel('{}'.format(i), fontsize = 20)
    plt.title('n_uniques = {} \n value counts \n {};'.format(n_uni,norm_count))
```

### • Customer Information

Input UVA\_category(data, ['occupation', 'gender', 'customer\_nw\_category'])
Output



We can see that:

Occupation: Majority of the customers are self employed There is little to no company accounts

Gender: Males hold more number of accounts than females

Customer Net Worth: Majority of the customers fall under the 2nd category Median number in category 3 Low number in category 1

### • Account Information



Output



| Input | #Plotting "city"                                                    |
|-------|---------------------------------------------------------------------|
|       | plt.figure(figsize = (5,5), dpi = 120)                              |
|       | city_count = data['city'].value_counts(normalize=True)              |
|       | sea.barplot(city_count.index, city_count, order = city_count.index) |
|       | plt.xlabel('City')                                                  |
|       | plt.ylabel('fraction/percent')                                      |
|       | plt.ylim(0,0.02)                                                    |



| Input | #Plotting "branch_code"                                                   |
|-------|---------------------------------------------------------------------------|
|       | plt.figure(figsize = (5,5), dpi = 120)                                    |
|       | branch_count = data['branch_code'].value_counts()                         |
|       | sea.barplot(branch_count.index, branch_count, order = branch_count.index) |
|       | plt.xlabel('branch_code')                                                 |
|       | plt.ylabel('fraction/percent')                                            |
|       | #plt.ylim(0,0.02)                                                         |

Output



Popular cities and branch code might be able to explain the skewness and outliers of credit/debit variables. Possibility that cities and branch code with very few accounts may lead to churning

### • Churn

| Input  | UVA_category(data, ['churn']) |
|--------|-------------------------------|
| Output |                               |



Clearly seen that only 1/4th of the total customers churn

### 9. Univariate Analysis for Missing Values

| Input  | data.isnull().sum()                   |      |  |
|--------|---------------------------------------|------|--|
| Output | customer_id                           | 0    |  |
| _      | vintage                               | 0    |  |
|        | age                                   | 0    |  |
|        | gender                                | 525  |  |
|        | dependents                            | 2463 |  |
|        | occupation                            | 80   |  |
|        | city                                  | 803  |  |
|        | customer_nw_category                  | 0    |  |
|        | branch_code                           | 0    |  |
|        | current_balance                       | 0    |  |
|        | <pre>previous_month_end_balance</pre> | 0    |  |
|        | average_monthly_balance_prevQ         | 0    |  |
|        | average_monthly_balance_prevQ2        | 0    |  |
|        | current_month_credit                  | 0    |  |
|        | previous_month_credit                 | 0    |  |
|        | current_month_debit                   | 0    |  |
|        | previous_month_debit                  | 0    |  |
|        | current_month_balance                 | 0    |  |
|        | previous_month_balance                | 0    |  |
|        | churn                                 | 0    |  |
|        | last_transaction                      | 0    |  |
|        | doy_lt                                | 3223 |  |
|        | woy_lt                                | 3223 |  |
|        | moy_lt                                | 3223 |  |
|        | dow_lt                                | 3223 |  |
|        | dtype: int64                          |      |  |

### Things to investigate further down:

- Gender: Do the customers with missing gender values have some common behaviour in
  - churn: do missing values have any relation with churn?
- · Dependents:
  - Missing values might be similar to zero dependents
  - churn: do missing values have any relation with churn?
- Occupation:
  - Do missing values have similar behaviour to any other occupation
  - do they have some relation with churn?
- city:
  - the respective cities can be found using branch\_code
- last\_transaction:
  - checking their previous month and current month and previous\_quarter activity might give insight on their last transaction.
- For almost all the above:
  - vintage: might be recording errors from same period of joining
  - branch\_code: might be recording error from certain branch

### 10. Univariate Analysis for Outliers

```
UVA_category(data, ['churn'])
Input
           def UVA outlier(data, var group, include outlier = True):
Output
              size = len(var group)
              plt.figure(figsize = (7*size,4), dpi = 100)
              for j,i in enumerate(var_group):
                quant25 = data[i].quantile(0.25)
                quant75 = data[i].quantile(0.75)
                IQR = quant75 - quant25
                med = data[i].median()
                whis_low = quant25-(1.5*IQR)
                whis_high = quant75+(1.5*IQR)
                outlier_high = len(data[i][data[i]>whis_high])
                outlier_low = len(data[i][data[i]<whis_low])</pre>
                if include_outlier == True:
                  plt.subplot(1,size,j+1)
                  sea.boxplot(data[i], orient="v")
                  plt.ylabel('{}'.format(i))
                  plt.title('With Outliers\nIQR = {}; Median = {} \n 2nd,3rd quartile = {};\n
           Outlier (low/high) = {} \n'.format(
                                                                  round(IQR,2),
                                                                  round(med,2),
            (round(quant25,2),round(quant75,2)),
                                                                  (outlier_low,outlier_high)
                                                                  ))
                else:
                  data2 = data[var_group][:]
                  data2[i][data2[i]>whis_high] = whis_high+1
                  data2[i][data2[i]<whis_low] = whis_low-1
                  plt.subplot(1,size,j+1)
                  sea.boxplot(data2[i], orient="v")
                  plt.ylabel('{}'.format(i))
                  plt.title('Without Outliers\nIQR = {}; Median = {} \n 2nd,3rd quartile = {};\n
           Outlier (low/high) = {} \n'.format(
                                                                    round(IQR,2),
                                                                    round(med,2),
           (round(quant25,2),round(quant75,2)),
                                                                    (outlier_low,outlier_high)
```

### • Current Month



### Output



Input UVA\_outlier(data, current\_month\_details, include\_outlier=False)

### Output



### • Previous Month

## Input UVA\_outlier(data, previous\_month\_details)

### Output



Input UVA\_outlier(data, previous\_month\_details, include\_outlier=False)
Output



### • Previous Quarters

Input UVA\_outlier(data,previous\_quarter\_details)

Output





Input UVA\_outlier(data,previous\_quarter\_details, include\_outlier=False)

Output





### **Investigation directions from Univariate Analysis**

- 1. customer\_id variable can be dropped.
- 2. Is there there any common trait/relation between the customers who are performing high transaction credit/debits? .customer\_nw\_category might explain that. .Occupation = Company might explain them .\*popular cities might explain this
- 3. Customers whose last transaction was 6 months ago, did all of them churn? .\*Possibility that cities and branch code with very few accounts may lead to churning.

## 11. Bivariate Analysis: Numerical-Numerical

| Input  | numerical = data.select_dtypes(include = ["int64", "Int64", "float64"]) |         |  |
|--------|-------------------------------------------------------------------------|---------|--|
| 1      | numerical.dtypes                                                        |         |  |
| Output | customer_id                                                             | int64   |  |
| -      | vintage                                                                 | int64   |  |
|        | age                                                                     | int64   |  |
|        | dependents                                                              | Int64   |  |
|        | current_balance                                                         | float64 |  |
|        | previous month end balance                                              | float64 |  |
|        | average monthly balance prevQ                                           | float64 |  |
|        | average monthly balance prevQ2                                          | float64 |  |
|        | current month credit                                                    | float64 |  |
|        | previous month credit                                                   | float64 |  |
|        | current_month_debit                                                     | float64 |  |
|        | previous month debit                                                    | float64 |  |
|        | current month balance                                                   | float64 |  |
|        | previous month balance                                                  | float64 |  |
|        | doy lt                                                                  | float64 |  |
|        | woy lt                                                                  | float64 |  |
|        | moy lt                                                                  | float64 |  |
|        | dow lt                                                                  | float64 |  |
|        | dtype: object                                                           |         |  |

## 12. Corelation Matrix

| Input | correlation = numerical.dropna().corr() |
|-------|-----------------------------------------|
| _     | correlation                             |

|                                | customer_id | vintage   | age       | dependents | current_balance | previous_month_end_balance | average_monthly_balance_prev( |
|--------------------------------|-------------|-----------|-----------|------------|-----------------|----------------------------|-------------------------------|
| customer_id                    | 1.000000    | -0.011288 | 0.001397  | -0.009737  | 0.014989        | 0.012414                   | 0.01137:                      |
| vintage                        | -0.011288   | 1.000000  | 0.003170  | 0.005109   | -0.007223       | -0.008001                  | -0.01085                      |
| age                            | 0.001397    | 0.003170  | 1.000000  | -0.003809  | 0.058925        | 0.062775                   | 0.07090:                      |
| dependents                     | -0.009737   | 0.005109  | -0.003809 | 1.000000   | -0.004554       | -0.000826                  | 0.00012                       |
| current_balance                | 0.014989    | -0.007223 | 0.058925  | -0.004554  | 1.000000        | 0.809257                   | 0.85720                       |
| previous_month_end_balance     | 0.012414    | -0.008001 | 0.062775  | -0.000826  | 0.809257        | 1.000000                   | 0.90805                       |
| average_monthly_balance_prevQ  | 0.011372    | -0.010858 | 0.070903  | 0.000121   | 0.857204        | 0.908053                   | 1.00000                       |
| average_monthly_balance_prevQ2 | 0.008060    | -0.003824 | 0.081361  | 0.002584   | 0.584156        | 0.661439                   | 0.73195                       |
| current_month_credit           | 0.004223    | -0.004821 | 0.023921  | 0.002188   | 0.053329        | 0.051080                   | 0.05129                       |
| previous_month_credit          | -0.004819   | -0.000410 | 0.027678  | 0.022772   | 0.101495        | 0.195149                   | 0.13896                       |
| current_month_debit            | 0.004870    | -0.004899 | 0.025366  | 0.006784   | 0.075149        | 0.100379                   | 0.09149                       |
| previous_month_debit           | -0.005906   | -0.007777 | 0.027717  | 0.029073   | 0.151771        | 0.192376                   | 0.18722                       |
| current_month_balance          | 0.012085    | -0.008703 | 0.063120  | -0.001859  | 0.940234        | 0.910206                   | 0.92094                       |
| previous_month_balance         | 0.011025    | -0.010439 | 0.067712  | 0.000241   | 0.812295        | 0.912269                   | 0.98379                       |
| doy_lt                         | -0.006114   | -0.000680 | 0.010754  | 0.079740   | 0.035242        | 0.024130                   | 0.02110                       |
| woy_lt                         | 0.011344    | -0.010040 | 0.000501  | 0.034460   | -0.008980       | 0.000946                   | -0.00057                      |
| moy_lt                         | -0.005374   | -0.001359 | 0.011970  | 0.077978   | 0.033127        | 0.023485                   | 0.02094                       |
| dow_lt                         | 0.009665    | -0.009683 | -0.020895 | -0.001702  | -0.000315       | 0.002033                   | 0.00064                       |
| 4                              |             |           |           |            |                 |                            | <b>&gt;</b>                   |

## **Heatmap for better visualization**

| Input | plt.figure(figsize=(36,6), dpi=140)                     |
|-------|---------------------------------------------------------|
|       | for j,i in enumerate(['pearson','kendall','spearman']): |
|       | plt.subplot(1,3,j+1)                                    |
|       | correlation = numerical.dropna().corr(method=i)         |
|       | sea.heatmap(correlation, linewidth = 2)                 |
|       | plt.title(i, fontsize=18)                               |

### Output



- 1. Kendall and Spearman correlation seem to have very similar pattern between them, except the slight variation in magnitude of correlation.

  2. Too many variables with insignificant correlation.
- 3. Major correlation lies between the transaction variables and balance variables.

Compiling all the data gathered until now....

| Input | var = []                             |
|-------|--------------------------------------|
| 1     | var.extend(previous_month_details)   |
|       | var.extend(current_month_details)    |
|       | var.extend(previous_quarter_details) |

### Plotting a heatmap with the above included

| Input | plt.figure(figsize=(36,6), dpi=140)                     |
|-------|---------------------------------------------------------|
|       | for j,i in enumerate(['pearson','kendall','spearman']): |
|       | plt.subplot(1,3,j+1)                                    |
|       | correlation = numerical[var].dropna().corr(method=i)    |
|       | sea.heatmap(correlation, linewidth = 2)                 |
|       | plt.title(i, fontsize=18)                               |



- 1. Transaction variables like credit/debit have a strong correlation among themselves.
- Balance variables have strong correlation among themselves.
- 3. Transaction variables like credit/debit have insignificant or no correlation with the Balance variables.

## 13. Plotting the Inferences

| Input | transactions =                                                                   |
|-------|----------------------------------------------------------------------------------|
|       | ['current_month_credit','current_month_debit','previous_month_credit','previous_ |
|       | month_debit']                                                                    |
|       | balance =                                                                        |
|       | ['previous_month_end_balance','previous_month_balance','current_balance','curren |
|       | t_month_balance']                                                                |
|       |                                                                                  |
|       | plt.figure(dpi=140)                                                              |
|       | sea.pairplot(numerical[transactions])                                            |



Outliers are present affecting our judgement of the graphs and hence using the log function to negate the effect of the outliers.

```
Input for column in var:
    mini=1
    if numerical[column].min()<0:
        mini = abs(numerical[column].min()) + 1

    numerical[column] = [i+mini for i in numerical[column]]
    numerical[column] = numerical[column].map(lambda x : np.log(x))

plt.figure(dpi=140)
    sea.pairplot(numerical[transactions])
```



- 1. This validates the high correlation between the transaction variables.
- 2. This high correlation can be used for feature engineering during the later stages.

| Input | plt.figure(dpi=140)              |
|-------|----------------------------------|
|       | sea.pairplot(numerical[balance]) |



- 1. This validates the high correlation between the balance variables.
- 2. This high correlation can be used for feature engineering during the later stages.

| Input | plt.figure(dpi=140)                                         |
|-------|-------------------------------------------------------------|
|       | sea.scatterplot(numerical['average_monthly_balance_prevQ'], |
|       | numerical['average_monthly_balance_prevQ2'])                |

## Output



- This validates the high correlation between the two previous quarters

  This high correlation can be used for feature engineering during the later stages.

## 14. Multivariate Analysis

Pivot Table – Gender, Occupation, & Customer Net worth category against Churn

| Input  | data.dtypes                    |          |  |
|--------|--------------------------------|----------|--|
| Output | customer_id                    | int64    |  |
| 1      | vintage                        | int64    |  |
|        | age                            | int64    |  |
|        | gender                         | category |  |
|        | dependents                     | Int64    |  |
|        | occupation                     | category |  |
|        | city                           | category |  |
|        | customer_nw_category           | category |  |
|        | branch_code                    | category |  |
|        | current_balance                | float64  |  |
|        | previous_month_end_balance     | float64  |  |
|        | average_monthly_balance_prevQ  | float64  |  |
|        | average_monthly_balance_prevQ2 | float64  |  |
|        | current_month_credit           | float64  |  |
|        | previous_month_credit          | float64  |  |
|        | current_month_debit            | float64  |  |
|        | previous_month_debit           | float64  |  |
|        | current_month_balance          | float64  |  |
|        | previous_month_balance         | float64  |  |
|        | churn                          | category |  |
|        | last_transaction               | object   |  |
|        | doy_lt                         | float64  |  |
|        | woy_lt                         | float64  |  |

|        | moy lt                                                                                   |                                                                                                                                                                                                                      |                                                                               | float6                                                       | 4                                                                         |  |  |  |  |
|--------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
|        | dow lt                                                                                   |                                                                                                                                                                                                                      |                                                                               | float6                                                       |                                                                           |  |  |  |  |
|        | _                                                                                        | type: object                                                                                                                                                                                                         |                                                                               |                                                              |                                                                           |  |  |  |  |
| Input  | data["ger<br>data["occ<br>data["cus<br>data["cho<br>data["city<br>data["bra<br>data.pivo | nder"] = data["gender"]. cupation"] = data["occupation"] = data["occupation"] = data["churn"].as gurn"] = data["churn"].as gurn"] = data["city"].astype anch_code"] = data["bra ot_table("churn", ["generates]")*100 | pation"].asty<br>= data["custo<br>stype("int")<br>e("float")<br>unch_code"].a | vpe("object<br>omer_nw_ca<br>astype("floa                    | utegory"].as                                                              |  |  |  |  |
| Output |                                                                                          | customer_nw_category                                                                                                                                                                                                 | 1                                                                             | 2                                                            | 3                                                                         |  |  |  |  |
|        | gender                                                                                   | occupation                                                                                                                                                                                                           |                                                                               |                                                              |                                                                           |  |  |  |  |
|        | Female                                                                                   | company                                                                                                                                                                                                              | 100.000000                                                                    | 0.000000                                                     | 66.666667                                                                 |  |  |  |  |
|        |                                                                                          |                                                                                                                                                                                                                      |                                                                               |                                                              |                                                                           |  |  |  |  |
|        |                                                                                          | retired                                                                                                                                                                                                              | 20.689655                                                                     | 11.219512                                                    | 13.492063                                                                 |  |  |  |  |
|        |                                                                                          | retired<br>salaried                                                                                                                                                                                                  |                                                                               | 11.219512<br>14.849188                                       |                                                                           |  |  |  |  |
|        |                                                                                          |                                                                                                                                                                                                                      | 18.545455                                                                     | 14.849188                                                    |                                                                           |  |  |  |  |
|        |                                                                                          | salaried                                                                                                                                                                                                             | 18.545455<br>18.111588                                                        | 14.849188                                                    | 17.689016<br>18.920916                                                    |  |  |  |  |
|        | Male                                                                                     | salaried<br>self_employed                                                                                                                                                                                            | 18.545455<br>18.111588<br>10.404624                                           | 14.849188<br>18.197035                                       | 17.689016<br>18.920916                                                    |  |  |  |  |
|        | Male                                                                                     | salaried<br>self_employed<br>student                                                                                                                                                                                 | 18.545455<br>18.111588<br>10.404624<br>0.000000                               | 14.849188<br>18.197035<br>14.442413                          | 17.689016<br>18.920916<br>15.034965<br>0.000000                           |  |  |  |  |
|        | Male                                                                                     | salaried<br>self_employed<br>student<br>company                                                                                                                                                                      | 18.545455<br>18.111588<br>10.404624<br>0.000000<br>18.497110                  | 14.849188<br>18.197035<br>14.442413<br>0.000000              | 17.689016<br>18.920916<br>15.034965<br>0.000000                           |  |  |  |  |
|        | Male                                                                                     | salaried<br>self_employed<br>student<br>company<br>retired                                                                                                                                                           | 18.545455<br>18.111588<br>10.404624<br>0.000000<br>18.497110<br>17.557252     | 14.849188<br>18.197035<br>14.442413<br>0.000000<br>14.251781 | 17.689016<br>18.920916<br>15.034965<br>0.000000<br>16.316640<br>18.468702 |  |  |  |  |

- 1. Highest number of churning customers are those Male Customers who lie in 2 net worth category and belong to Self employed profession
- 2. Proportion wise for net worth category 1, Approximately 22% Male customers who belong to the Self-employed profession are churning
- 3. Proportion wise for net worth category 2, 20% Male customers who belong to the Selfemployed profession are churning
- 4. For net worth category 3, Approximately 21% Male customers who belong to the Selfemployed profession are churning
- 5. In all the cases of Customer net worth category, Self-employed Male customers are more likely to churn

### • Pivot Table – Gender, Age & Occupation against Churn

| Input  | age = pd.cut(data['age'], [0, 25, 50, 100])<br>data.pivot_table('churn', ['gender', age], 'occupation', aggfunc='mean')*100 |            |         |           |           |               |           |
|--------|-----------------------------------------------------------------------------------------------------------------------------|------------|---------|-----------|-----------|---------------|-----------|
| Output |                                                                                                                             | occupation | company | retired   | salaried  | self_employed | student   |
|        | gender                                                                                                                      | age        |         |           |           |               |           |
|        | Female                                                                                                                      | (0, 25]    | NaN     | NaN       | 15.909091 | 21.774194     | 13.421053 |
|        |                                                                                                                             | (25, 50]   | 50.0    | 0.000000  | 16.096866 | 19.163293     | 15.510204 |
|        |                                                                                                                             | (50, 100]  | 50.0    | 13.541667 | 17.948718 | 17.370083     | 0.000000  |
|        | Male                                                                                                                        | (0, 25]    | 0.0     | NaN       | 20.987654 | 30.327869     | 16.545894 |
|        |                                                                                                                             | (25, 50]   | 0.0     | 14.285714 | 17.349769 | 21.886121     | 21.076233 |
|        |                                                                                                                             | (50, 100]  | 0.0     | 15.493827 | 17.165150 | 19.340538     | 0.000000  |

- 1. We have created three bins for the age variable dividing age into 3 groups 0-25, 25-50 and 50-100
- 2. Highest number of Customers are churning from Male category who belong to the age group of (25,50) and are professionally self employed
- 3. Highest Proportion of Customers are churning from Male category who belong to the age group of (0,25) and are professionally self employed
- 4. Here also Self Employed Male customers are churning more than any other combination of categories

# • Pivot Table – Gender, Age, Occupation and Current Balance against Churn

| Input  | balaı                                              | alance = pd.qcut(data['current_balance'], 3) |         |           |           |               |           |         |           |           |               |           |         |        |
|--------|----------------------------------------------------|----------------------------------------------|---------|-----------|-----------|---------------|-----------|---------|-----------|-----------|---------------|-----------|---------|--------|
| _      | data.pivot_table('churn',                          |                                              |         |           |           | gender'       | ',        | age],   | ,         | [balar    | ıce,          | 'occu     | ıpatio  | n'],   |
|        | aggfunc='mean')*100                                |                                              |         |           |           |               |           |         |           |           |               |           |         |        |
| Output | current_balance (-5503.961, 2202.177] (2202.177, 8 |                                              |         |           |           |               | 5114.317] |         |           |           | (5114.317,    | 59059     |         |        |
| _      |                                                    | occupation                                   | company | retired   | salaried  | self_employed | student   | company | retired   | salaried  | self_employed | student   | company | retire |
|        | gender                                             | age                                          |         |           |           |               |           |         |           |           |               |           |         |        |
|        | Female                                             | (0, 25]                                      | NaN     | NaN       | 26.315789 | 38.596491     | 21.262458 | NaN     | NaN       | 5.882353  | 10.810811     | 7.167235  | NaN     |        |
|        |                                                    | (25, 50]                                     | 50.0    | 0.000000  | 32.300885 | 33.677419     | 25.974026 | 100.0   | 0.000000  | 9.826590  | 10.891720     | 6.862745  | 0.0     |        |
|        |                                                    | (50, 100]                                    | 100.0   | 28.333333 | 35.156250 | 30.642361     | 0.000000  | NaN     | 5.633803  | 11.200000 | 11.052166     | NaN       | 0.0     | 8.19   |
|        | Male                                               | (0, 25]                                      | 0.0     | NaN       | 35.294118 | 52.000000     | 28.189911 | NaN     | NaN       | 14.285714 | 14.117647     | 6.493506  | NaN     |        |
|        |                                                    | (25, 50]                                     | 0.0     | 0.000000  | 33.367243 | 38.901345     | 44.117647 | 0.0     | 16.666667 | 11.889401 | 13.214740     | 12.345679 | 0.0     | 20.00  |
|        |                                                    | (50, 100]                                    | 0.0     | 29.489603 | 32.119914 | 33.060854     | NaN       | 0.0     | 6.927176  | 10.766046 | 12.565905     | NaN       | 0.0     | 10.60  |
|        | 4                                                  |                                              |         |           |           |               |           |         |           |           |               |           |         | -      |

- 1. Current balance is divided into 3 quantiles
- 2. It is visible at first look that for low current balance more number of customers are churning
- 3. For the first quantile of current balance, More than 18% (overall average churning) of customers are churning and for second and third quantile percentage of churning customers is less than 18%
- 4. In first quantile of current balance, for self employed profession as the age increases for customers, their churning proportion decreases. This means that Young Self employed Customers are more prone to churn
- 5. There is a visible gap in proportion of Self employed females who lie in the age group of (0,25) and Self employed Males who lie in the same group. Young Male Self employed customers are churning more than young female self employed customers

## • Visualising – Age, Occupation and Churn

| Input | def Grouped_Box_Plot(data, cont, cat1, cat2):                |
|-------|--------------------------------------------------------------|
|       | sea.boxplot(x=cat1, y=cont, hue=cat2, data=data, orient='v') |
|       | plt.title('Boxplot')                                         |
|       |                                                              |
|       | Grouped_Box_Plot(data, 'age', 'occupation', 'churn')         |



- 1. For Self-employed profession churning customers are slightly younger than non churning customers
- 2. In the retired occupation for non churning customers, there are many outliers that indicate young people who retire early are not churning

### • Visualizing – Vintage, Gender & Churn

| Input   Grouped_Box_Plot(data, vintage , gender , churn ) | Input | Grouped_Box_Plot(data,'vintage','gender', 'churn') |
|-----------------------------------------------------------|-------|----------------------------------------------------|
|-----------------------------------------------------------|-------|----------------------------------------------------|

### Output



1. There is no visible difference in the vintage feature for gender-wise churning and non churning customers

### 15. Visualizing the Inferences up till now

• Churn vs Current & Previous Month Balance



- 1. There is high correlation between the previous and current month balances which is expected
- 2. The distribution for churn and not churn is slightly different for both the cases

### • Credit & Debit for Current & Previous Months

## Output



- 1. The plots shows that there are 2 different types of customers with 2 brackets of credit and debit.
- 2. For debit values, we see that there is a significant difference in the distribution for churn and non-churn.

## 16. Preparing the data for Modelling

• To make sure every variable has a corresponding numerical value

| Input | data_encoded = pd.get_dummies(data, drop_first=True) |
|-------|------------------------------------------------------|
|       | data_encoded.head()                                  |

### Output

|                      | customer_id | vintage | age | dependents | city   | branch_code | current_balance | previous_month_end_balance | average_monthly_balance_prevQ | average_montl |
|----------------------|-------------|---------|-----|------------|--------|-------------|-----------------|----------------------------|-------------------------------|---------------|
| 0                    | 1           | 2101    | 66  | 0          | 187.0  | 755.0       | 1458.71         | 1458.71                    | 1458.71                       |               |
| 1                    | 2           | 2348    | 35  | 0          | NaN    | 3214.0      | 5390.37         | 8704.66                    | 7799.26                       |               |
| 2                    | 4           | 2194    | 31  | 0          | 146.0  | 41.0        | 3913.16         | 5815.29                    | 4910.17                       |               |
| 3                    | 5           | 2329    | 90  | <na></na>  | 1020.0 | 582.0       | 2291.91         | 2291.91                    | 2084.54                       |               |
| 4                    | 6           | 1579    | 42  | 2          | 1494.0 | 388.0       | 927.72          | 1401.72                    | 1643.31                       |               |
| 5 rows × 388 columns |             |         |     |            |        |             |                 |                            |                               |               |
| 4                    |             |         |     |            |        |             |                 |                            |                               | <b>)</b>      |

### • Replacing Missing values with modal numbers

```
Input def fill_mode(df):
    for column in df.columns:
    df[column].fillna(df[column].mode()[0], inplace=True)

fill_mode(data_encoded)
```

### • Splitting data into dependent and independent variables

```
Input
       data_encoded = data_encoded.drop('customer_id', axis=1)
       x = data\_encoded.drop(['churn'], axis=1)
       y = data encoded['churn']
       x.shape, y.shape
       ((28382, 386), (28382,))
Ouput
Input
       data encoded.columns
       Output
               'average monthly balance prevQ', 'average monthly bala
       nce prevQ2',
              'current month credit',
              'last_transaction_2019-12-23', 'last_transaction_2019-
       12-24',
               'last transaction 2019-12-25', 'last transaction 2019-
       12-26',
              'last_transaction_2019-12-27', 'last_transaction_2019-
       12-28',
    'last_transaction_2019-12-29', 'last_transaction_2019-
       12-30',
              'last transaction 2019-12-31', 'last transaction NaT']
             dtype='object', length=387)
```

### • Splitting the data into Training and Test data sets

| Input | from sklearn.model_selection import train_test_split                     |
|-------|--------------------------------------------------------------------------|
|       | train_x,test_x,train_y,test_y = train_test_split(x,y, random_state = 56) |

### • Normalizing the Data

```
from sklearn.preprocessing import MinMaxScaler
Input
       scaler = MinMaxScaler()
       cols = train_x.columns
       cols
       Output
              'average_monthly_balance_prevQ', 'average_monthly_bala
       nce prevQ2',
              'current month credit',
              'last transaction 2019-12-23', 'last transaction 2019-
       12-24',
              'last transaction 2019-12-25', 'last transaction 2019-
       12-26',
              'last_transaction_2019-12-27', 'last_transaction_2019-
       12-28',
    'last_transaction_2019-12-29', 'last_transaction_2019-
       12-30',
    'last_transaction_2019-12-31', 'last_transaction_NaT']
             dtype='object', length=386)
       train x scaled = scaler.fit transform(train x)
Input
       train x scaled = pd.DataFrame(train x scaled, columns=cols)
       train x scaled.head()
```

### Output

|     | vintage   | age      | dependents | city     | branch_code | current_balance | previous_month_end_balance | average_monthly_balance_prevQ | average_monthly_ba |
|-----|-----------|----------|------------|----------|-------------|-----------------|----------------------------|-------------------------------|--------------------|
| 0   | 0.928007  | 0.348315 | 0.000000   | 0.378034 | 0.499686    | 0.002316        | 0.001973                   | 0.000966                      |                    |
| 1   | 0.929255  | 0.516854 | 0.000000   | 0.009102 | 0.199749    | 0.000937        | 0.000563                   | 0.000011                      |                    |
| 2   | 0.956305  | 0.808989 | 0.000000   | 0.618932 | 0.232796    | 0.001390        | 0.000922                   | 0.000114                      |                    |
| 3   | 0.642530  | 0.258427 | 0.000000   | 0.906553 | 0.210625    | 0.001194        | 0.000870                   | 0.000132                      |                    |
| 4   | 0.897628  | 0.494382 | 0.019231   | 0.665049 | 0.019034    | 0.010039        | 0.011464                   | 0.011463                      |                    |
| 5 r | ows × 386 | columns  |            |          |             |                 |                            |                               |                    |
| 4   |           |          |            |          |             |                 |                            |                               | <b>+</b>           |

| Input | test_x_scaled = scaler.transform(test_x)                  |
|-------|-----------------------------------------------------------|
|       | test_x_scaled = pd.DataFrame(test_x_scaled, columns=cols) |
|       | test_x_scaled.head()                                      |

|                      | vintage  | age      | dependents | city     | branch_code | current_balance | previous_month_end_balance | average_monthly_balance_prevQ | average_monthly_ba |
|----------------------|----------|----------|------------|----------|-------------|-----------------|----------------------------|-------------------------------|--------------------|
| 0                    | 0.933000 | 0.516854 | 0.019231   | 0.747573 | 0.021334    | 0.001343        | 0.000952                   | 0.000220                      |                    |
| 1                    | 0.841448 | 0.337079 | 0.000000   | 0.665049 | 0.018406    | 0.001781        | 0.001474                   | 0.000652                      |                    |
| 2                    | 0.917603 | 0.629213 | 0.000000   | 0.374393 | 0.047689    | 0.001189        | 0.000873                   | 0.000020                      |                    |
| 3                    | 0.712859 | 0.269663 | 0.000000   | 0.618932 | 0.230914    | 0.000911        | 0.000578                   | 0.000902                      |                    |
| 4                    | 0.927591 | 0.853933 | 0.000000   | 0.248180 | 0.068605    | 0.000986        | 0.000654                   | 0.000241                      |                    |
| 5 rows × 386 columns |          |          |            |          |             |                 |                            |                               |                    |
| 4 ∥                  |          |          |            |          |             |                 |                            |                               | <b>)</b>           |

# **Code Output**

| Input                            | from sklearn.linear_model import LogisticRegression as LogReg from sklearn.metrics import accuracy_score |  |  |  |  |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                  | logreg = LogReg()                                                                                        |  |  |  |  |  |  |  |
|                                  | logreg.fit(train_x, train_y)                                                                             |  |  |  |  |  |  |  |
|                                  | train_predict = logreg.predict(train_x) train_predict                                                    |  |  |  |  |  |  |  |
|                                  | k = accuracy_score(train_predict, train_y) print('Training accuracy_score', k)                           |  |  |  |  |  |  |  |
|                                  | test_predict = logreg.predict(test_x)                                                                    |  |  |  |  |  |  |  |
|                                  | k = accuracy_score(test_predict, test_y)                                                                 |  |  |  |  |  |  |  |
| print('Test accuracy_score ', k) |                                                                                                          |  |  |  |  |  |  |  |
| Output                           | Training accuracy_score 0.8235929719064173                                                               |  |  |  |  |  |  |  |
| 1                                | Test accuracy_score 0.8275084554678692                                                                   |  |  |  |  |  |  |  |

# **Inference**

As can be seen from the Code Output, the variables encoded when normalizing the data does affect the probability whether a customer would churn or not. Churn is expressed as a degree of customer inactivity or disengagement, observed over a given time. Based on the recency of activity which can be viewed from the encoded variables one can predict by an accuracy of 82.75% whether the customer of the bank will churn or not.