Partition

Sawan J. Kapai Harpalani Adrián González Martín Sara Martín Molina Enrique Tejera González

Universidad de La Laguna

December 16, 2014

Partition

- Teorema: Partition es NP-Completo.
- Instancia: A, $a \in A y S(a) \in (Z)^+$.
- Prueba: Es fácil ver que partition ∈ NP, puesto que es un algoritmo no determinista necesita sólo encontrar un subconjunto A' de A y comprobar el tiempo polinomial que suma los tama nos de los elementos de A' es igual a la suma de los elementos de A - A'.

Transformación 3DM a Partition

 Se fijan los conjuntos W, X, Y con tama no q y M que será una instancia arbitraria del 3DM (M ⊆ W × X × Y).

$$W = w_1, w_2, w_3, \dots w_q$$

 $X = x_1, x_2, x_3, \dots x_q$
 $Y = y_1, y_2, y_3, \dots y_q$
 $M = m_1, m_2, m_3, \dots m_k$
 $k = |M|$

• Se debe construir un conjunto A, donde cada elemento tiene tama no tal que $S(a) \in (Z)^+$ y ese A debe contener un subconjunto A' tal que:

$$\sum_{a \in A'} S(a) = \sum_{a \in A - A'} S(a) \iff si M continen Matching$$

• El conjunto A contendrá k + 2 elementos.

El conjunto A se construye en dos pasos:

- Primer paso:
 - Los primeros k elementos de A están asociados con las k tripletas de M

$$a_i \Rightarrow m_i, 1 \leq i \leq k$$

• El tama no de cada elemento se obtiene de su representación binaria. Esta representación contendrá q zonas con p bits cada una.

$$|W| = |X| = |Y| = q$$
$$p = [\log_2(k+1)]$$

- Primer paso:
 - La representación binaria del elemento a; depende de la tripleta:

$$m_i = (w_{f(i)}, x_{g(i)}, y_{h(i)}) \in M$$

• Otra forma de obtener el tama no de a_i:

$$S(a_i) = 2^{p(3q - f(i))} + 2^{p(2q - g(i))} + 2^{p(q - h(i))}$$

- Primer paso:
 - Si se fija:

$$B = \sum_{j=0}^{3q-1} 2^{\mathsf{p}\mathsf{j}}$$

• Entonces:

$$A' \subseteq a_i : 1 \leq i \leq k$$

$$\sum_{\mathbf{a}\in A'}=B\iff M'=m_i:a_i\in A'\Rightarrow matching(M)$$

Segundo paso:

 Se especifican los dos últimos elementos de A (b₁ y b₂) cuyos tama nos son:

$$S(b_1) = 2(\sum_{i=1}^k S(a_i)) - B$$

$$S(b_2) = (\sum_{i=1}^k S(a_i)) + B$$

• Ambos pueden ser especificados en binario con no más de (3pq + 1) bits.

- Segundo paso:
 - Suponiendo que se tiene un conjunto $A' \subseteq A$ se cumple:

$$\sum_{a\in A'}S(a)=\sum_{a\in A-A'}S(a)$$

Por lo que las sumas de ambos será:

$$2\sum_{i=1}^k S(a_i)$$

• Uno de los conjuntos, A' o A-A', contendrá b_1 pero no b_2 .

- Segundo paso:
 - El resto de elementos formarán un subconjunto de:

$$a_i: 1 \leq i \leq k$$

- La suma de los tama nos de esos elementos es igual a B, por lo que ese subconjunto es un matching de M' en M.
- A la inversa, si tenemos un matching M':

$$b_1\bigcup a_1:m_i\in M' \text{ forma } A' \text{ para la instancia de Partition}$$

 Por lo tanto 3DM se puede transformar en Partition en tiempo polinomial

Ejemplo

		W			X			Y		
	W1	W2	W3	X1	X2	ХЗ	Y1	Y2	Y3	
m1:	01	00	00	01	00	00	01	00	00	= 66576
m2:	00	01	00	00	01	00	00	01	00	= 16644
m3:	00	00	01	00	00	01	00	00	01	= 4161
m4:	01	00	00	00	00	01	00	00	01	= 65601
m5:	01	00	00	00	01	00	00	00	01	= 65793
m6:	01	00	00	00	00	01	00	01	00	= 65604
tching:	01	01	01	01	01	01	01	01	01	= 87381 = E

Figure: Ejemplo

FIN