py2llvm: Python to LLVM translator

Syoyo Fujita

Agenda

Motivation

How it works

Performance

Limitation

Conclusion

Agenda

Motivation

How it works

Performance

Limitation

Conclusion

py2llvm

Python シンタックスを LLVM に変換

Python インタプリタでも動くし,

コンパイルして高速に実行することもで きる

Motivation 1/4

Cで数値演算、グラフィックスなどのパフォーマンス指向コードを書くのはめんどく さい

アルゴリズム変更時の書き直しの手間がおおきい.

とくに SIMD 命令を扱う場合

アラインの問題、命令セットの問題,...

とある SIMD コードからの抜粋

```
/* calculate u, v and t for all triangles. */
    const m128 uu = mm mul ps(dot sse(sx, sy, sz, px, py, pz), rpa);
    const m128 \ vv = mm \ mul \ ps(dot \ sse(rdx, rdy, rdz, qx, qy, qz),
rpa);
     m128 result;
    a = mm and ps(
       mm and ps(
#if 0 /* original code. no buck face culling */
            mm cmpgt ps( mm mul ps(a, a), eps2),
#else /* do back face culling */
           mm cmpgt ps(a, eps),
#endif
           mm cmpngt ps( mm add ps(uu, vv), one)
        mm and ps(
           mm cmpnlt ps(uu, zero),
           mm cmpnlt ps(vv, zero)
    );
```

解説なしで

誰が理解で

きようか

いやできまい

(反話)

こういう感じで SIMD コー ディングできればなぁ...

```
def add_func():
    a = vec([1.0, 2.0, 3.0, 4.0])
    b = vec([0.1, 0.2, 0.3, 0.4])
    return a + b
```

Motivation 2/4

Python

プログラムが簡潔に書ける

でも実行速度はとてつもなく遅い

psyco, pypy -> 思うほど早くならない

ShedSkin -> 最適! というほどではない

Motivation 3/4

Python のように簡潔に書けるけど、実行は ちょー早いようにできないものか

Motivation 4/4

Python を DSL のように扱い、LLVM コード を吐くようにしてはどうか

まず Python インタプリタで実行してラ ピッドプロトタイピング.

完成したら LLVM に変換して高速実行.

Agenda

Motivation

How it works

Performance

Limitation

Conclusion

やってみた。

SIMD と fp 演算の変 換を重視した

使うライブラリ

Python compiler モジュール

Python コードをパースしてAST を作ってくれる. Python 標準ライブラリ

IIvm-py

LLVM API への Python ラッパー

LLVM

compiler module 1/2

```
from MUDA import *

def add_func(a = vec, b = vec):
    return a + b
```



```
import compiler
ast = compiler.parseFile(sys.argv[1])
print ast
```



```
Module(None, Stmt([From('MUDA', [('*', None)], 0),
Function(None, 'add_func', ['a', 'b'], [Name('vec'),
Name('vec')], 0, None, Stmt([Return(Add((Name('a'),
Name('b'))))]))))
```

compiler module 2/2

Visitor パターンで AST をトラバースしてくれる.

IIvm-py

```
from llvm.core import *
module = Module.new("my module")
ty double = Type.double()
ty int = Type.int()
ty func = Type.function( ty int, [ ty double, ty double ] )
func = Function.new( module, ty func, "foobar" )
func.args[0].name = "arg1"
func.args[1].name = "arg2"
entry = func.append basic block("entry")
builder = Builder.new(entry)
tmp1 = builder.add(func.args[0], func.args[1], "tmp1")
```

How translation works

```
Function(Return(A
def func():
                                              dd(Name(a),
 return a + b;
                                              Name(b)))
                                                  python ast
                        compiler.parseFile()
       python
                                          型推論
                                       シンボル解決
                             llvm-py で
declare @func() {
  %tmp = add %a, %b
                                              a: int
                             codegen
  ret %tmp
                                              b: int
```

python ast

LLVM IR

モジュール構成

SymbolTable.py

シンボル管理

TypeInference.py

型推論

MUDA.py

ベクトル型定義

CodeGenLLVM.py

Ilvm コード生成

型推論

Python は動的言語なので型は明確に定義 しなくていい

どう変数の型を(静的に)解決するか?

型推論で判定

$$a = 1$$
 $b = 1.0$
 $c = vec([1.0, 2.0, 3.0, 4.0])$

a:int だと分かる

b:float だと分かる

c:ベクトル型(MUDA.py で定義)だと分かる

$$a = 1$$
 $b = 3$
 $c = a + b$

a:int だと分かる

b:int だと分かる

c: ?

「aがintでbがintなら cもintじゃね」と心の 中で思ったならツ!! そのときスデにcの型は 決まっているんだッ!

無理なケース

```
def add_func(a, b):
    return a + b

add_func(3,2)
```

a, b: 型を決められない.

(関数のバウンダリを越えての型推論は未実 装) def add_func(a = int, b = int):
 return a + b

引数の型はデフォルト値で与えるようにする、という制約を付けるようにした

```
from MUDA import *

def add_func(a = vec, b = vec):
    c = a + b
    return c
```

がどう処理されるか見ていく


```
from MUDA import *

def add_func(a = vec, b = vec):
    c = a + b
    return c
```

```
vec 型は MUDA モジュールで定義されて
いるクラス
演算はオーバーロードで対応
```

```
class vec(object):
    value = []
    def __add__(self, b):
        tmp = vec([x + y for x, y in zip(self.value,
b.value)])
    return tmp
```



```
from MUDA import *

def add_func(a = vec, b = vec):
    c = a + b
    return c
```

compiler.parseFile() で AST を作成

```
from MUDA import *
    def add func(a = vec, b = vec):
         c = a + b
         return c
引数 a, b は vec 型だと分かる.
                             %tmp5 = alloca <4 x float>
                             store <4 x float> %a, <4 x float>* %tmp5
a, b をシンボルテーブルに登録.
                             %tmp6 = alloca <4 x float>
                             store <4 x float> %b, <4 x float>* %tmp6
引数をレジスタにロードするコー
                             \theta = 1 and \theta = 1 and \theta = 1
                             %tmp8 = load <4 x float>* %tmp6
ドを出力.
   Function (None,
              'add func',
             ['a', 'b'],
             [Name('vec'), Name('vec')], 0, None,
       Stmt([Assign([AssName('c', 'OP ASSIGN')],
                Add((Name('a'), Name('b'))),
              Return(Name('c'))))
```

```
def add func(a = vec, b = vec):
        c = a + b
        return c
aとbの加算.aとbの型は?
-> 型推論で a: vec, b: vec だと分か
                           %tmp9 = add < 4 \times float > %tmp7, %tmp8
る(シンボルテーブルを引く)
   Function (None,
             'add func',
           ['a', 'b'],
           [Name('vec'), Name('vec')], 0, None,
      Stmt([Assign([AssName('c', 'OP ASSIGN')],
              Add((Name('a'), Name('b'))),
            Return(Name('c'))]))
```

from MUDA import *

```
from MUDA import *
    def add func(a = vec, b = vec):
        c = a + b
        return c
c への代入. c の型は?
                            %c = alloca <4 x float>
右辺が vec なので左辺の c も vec だ
                            store <4 x float> %tmp9, <4 x float>* %c
と分かる
   Function (None,
             'add func',
            ['a', 'b'],
            [Name('vec'), Name('vec')], 0, None,
      Stmt([Assign([AssName('c', 'OP_ASSIGN')],
               Add((Name('a'), Name('b'))),
             Return(Name('c'))))
```

```
from MUDA import *

def add_func(a = vec, b = vec):
    c = a + b
    return c
```

c は vec 型なので関数の戻り値の型 も vec だと分かる (ここでやっと関数の戻り値の型が 分かる)

%tmp10 = load <4 x float>* %c
ret <4 x float> %tmp10

関数の戻り値の型

return の戻り値の型から決定

return 式が見つかるまでわからない

いったん関数をパースし、戻り値の型を 求め、再度関数をパースしている

2 pass の処理

出力された LLVM コード

\$ cat add.11

最適化してみる

```
$ llvm-as < add.ll | opt -std-compile-opts -f | llvm-dis

; ModuleID = '<stdin>'

define <4 x float> @add_func(<4 x float> %a, <4 x float> %b) nounwind {
 entry:
    %tmp9 = add <4 x float> %a, %b ; <<4 x float>> [#uses=1]
    ret <4 x float> %tmp9
}
```

ネイティブコードにしてみる

```
$ llvm-as < add.ll | opt -std-compile-opts -f | llc

.text
.align 4,0x90
.globl _add_func
_add_func:
   addps %xmm1, %xmm0
   ret

.subsections_via_symbols</pre>
```

まさに、、、、、

Agenda

Motivation

How it works

Performance

Limitation

Conclusion

パフォーマンス測定

BlackSholes を 5 万回実行したときの時間

実行マシン: Intel Mac Core2 2.16 GHz

1,000倍0

高速化

それはひょっとし てギャグで言って いるのか?

Investigation

llvm で吐かれた BlackScholes 関数は 最適化されて 350 命令に

```
subl
        $540, %esp
        %xmm0, 432(%esp)
        %xmm1, 416(%esp)
        %xmm2, 400(%esp)
        %xmm3, 384(%esp)
movss
        %xmm0, (%esp)
        L_sqrtf$stub
call
        372(%esp)
fstpt
       $1, 432(%esp), %xmm0
        %xmm0, (%esp)
MOVSS
        L sqrtf$stub
call
        360(%esp)
fstpt
       432(%esp), %xmm0
movhlps %xmm0, %xmm0
        %xmm0, (%esp)
movss
call
        L sqrtf$stub
        348(%esp)
fstpt
       $3, 432(%esp), %xmm0
pshufd
        %xmm0, (%esp)
movss
        L sqrtf$stub
call
        336(%esp)
        432(%esp), %xmm0
        416(%esp), %xmm0
divps
```

. . .

理論値

350 [Insts] * 50 [kloop] = 17.5 [Mcycle] 17.5 [Mcycle] / 2.16 [GHz] = 0.08 sec

- *) add, mul 同時実行はひとまず考えない
- *) 最新 Core2 は基礎的な SIMD 演算命令を 1 cycle で実行できる.

理論値との乖離

0.03(実測) / 0.08(理論値) = 3.75

4倍ほど理論値より離れている

理論値を破ってしまうほどおかしな値ではない.

実測値から計算すると 1300 cycles/関数

Instruction 内訳

4倍遅い理由

いくつかの数学関数のコールが各 10~100 サイクルかかるのでそれが影響している

Inst	num		
sqrtf	4		
logf	4		
expf	12		
divps	4		
Other	326		
Total	350		

SIMD数学関数

完全 SIMD 化された数学関数を使うようにすれば さらなる高速化は可能

MUDA に sqrt, exp, log の SIMD 版が実装されている http://lucille.atso-net.jp/blog/?p=497

こちらを使うと 1 BlackScholes 関数が 1,000 サイクル(flops). 5 万回繰り返し時 = 0.023 sec

Swizzle

ベクトル要素の取り出し、並べ替えを行う expression

コーディングが非常に楽になる

```
a = vec([1.0, 2.0, 3.0, 4.0])
a.x  # => 1.0
a.wzyx # => [4.0, 3.0, 2.0, 1.0]
a.yyyy # => [2.0, 2.0, 2.0, 2.0]
```

Python でやるには?

```
class vec():

...

def setx(self): ...
    sef getx(self): ...
    x = property(setx, getx)

def sety(self): ...
    sef gety(self): ...
    y = property(sety, gety)

...
```

4^1 + 4^2 + 4^3 + 4^4 = 340 個も 書かなければならない!

__getattr__を使う

```
class vec():
    def getattr (self, name):
        d = \{ 'x' : 0, 'y' : 1, 'z' : 2, 'w' : 3 \}
        assert len(name) < 5, "Invalid attribute: %s" % name
        if len(name) == 1:
            return self.value[d[name]]
        v = vec([0.0, 0.0, 0.0, 0.0])
        for (i, s) in enumerate(name):
            if not d.has key(s):
                raise Exception("Invalid letter for swizzle:", name)
            v.value[i] = self.value[d[s]]
        for i in range(len(name), 4):
            v.value[i] = self.value[d[name[-1]]]
        return v
```

Agenda

Motivation

How it works

Performance

Limitation

Conclusion

制限 1/2

すべての Python 機能が使えるわけではい

動的言語の性質のたぐいは使えない(実行しないと型が分からないのはダメ)

OOの機能もなし

制限 2/2

演算精度

python の float は内部では double

py2llvm は float(fp32) にしている.

演算結果が必ずしも正確に一致しない.

Agenda

Motivation

How it works

Performance

Limitation

Conclusion

まとめ

Python シンタックスから LLVM コードへ変換

Python でもそのまま動くし、変換してネイティブ 実行もできる

ネイティブ変換効率はとても高い. C 最適実装と同じくらいの速度

静的に解決できるコードのみ変換可能

SIMD fp 演算式の変換を重視

http://code.google.com/p/py2llvm/

Future work 1/2

配列のサポート

構造体のサポート

さらなる数学関数や外部関数呼び出しのサポート

Future work 2/2

py2llvm という名前がよくない

Python コードがすべて変換できるわけではないし.

optimized python -> oppy ?...

Psyga? -> 日本最大のコングロリマット企業の名前とかぶる...

