ETH zürich

PDE-Find using Truncated Least Squares with dynamic thresholding

Benedict Armstrong benedict.armstrong@inf.ethz.ch

December 2024

Introduction

As part of this year's AI in the Sciences and Engineering course, I replicated and extended PDE-Find, as described in the paper by Rudy et al. [1]. The implementation is structured as a library, capable not only of identifying partial differential equations but also of solving them using SciPy's solve_ivp to verify the discovered solutions. The notebooks, library code, and scripts for generating all plots and figures are available in this repository.

PDE-Find: Reconstructing PDEs from data

This task involves replicating PDE-FIND from the work by Rudy et al. [1] to identify governing partial differential equations (PDEs) from observational data. We were provided with three datasets, each representing a different PDE, and tasked with reconstructing these PDEs using PDE-FIND or a similar algorithm.

Implementation

The first step involved constructing a library of potential PDE terms. The main challenge was accurately estimating derivatives of the solution. Initially, I implemented a finite difference method but later transitioned to using numpy's np.gradient for more efficient and reliable derivative estimation.

For solving the sparse linear system, I implemented a Truncated Least Squares with Dynamic Thresholding (TLS-DT) algorithm, based on the STRidge method detailed in the PDE-FIND paper [1].

The implementation, structured across three Jupyter notebooks (pdel.ipynb, pde2.ipynb, and pde3.ipynb), handles each dataset individually. Each file also contains a more detailed analysis for each problem. The core components for the Library, including code for generating the library of terms and the TLS-DT algorithm, are encapsulated in lib/pde_find.py and lib/tlsq.py.

Truncated Least Squares with dynamic thresholding (TLS-DT)

The TLS-DT algorithm extends STRidge [1] by dynamically adjusting the threshold for coefficient selection. The threshold is raised if the number of non-zero coefficients stays the same for a number of iterations and the coefficient contains more non-zero terms than allowed. This prevents the algorithm from becoming trapped in local minima, ensuring a more robust selection of sparse terms in the PDE. The full algorithm is outlined Algorithm 1.

Results

The accuracy of the reconstructed PDEs was validated by comparing solutions generated

using scipy.solve_ivp with the original data. The results for each PDE are summarized below.

PDE 1

Initial inspection suggested a form resembling Burgers' equation. The term library included all second-order polynomial combinations of \boldsymbol{u} and it's 1st, 2nd and 3rd order derivatives (see Table 2). The algorithm converged rapidly to Equation 1.

$$\frac{\partial(u)}{\partial(t)} = -0.102u_{xx} - 0.997uu_x$$

Equation 1: Reconstructed solution for PDE 1

The relative L_2 error across the domain, of the reconstructed solution, compared to the given data was $5.304e^{-3}$. The reconstructed solution closely matched the reference data, as shown in Figure 1.

PDE 2

For dataset 2 the PDE was not immediately obvious (at least to the untrained eye). Using a similar term library (see Table 3),the algorithm initially identified a four-term solution resembling the Korteweg-de Vries equation. Refinement with adjusted max_terms value yields Equation 2, a two term solution with only a slight increase in the relative L_2 error and more desired sparsity.

$$\frac{\partial(u)}{\partial(t)} = -1.02u_{xxx} - 6.04uu_x$$

Equation 2: Reconstructed solution for PDE 2

The relative L_2 error was $6.023e^{-2}$. The reconstructed solution again closely matched the reference data, as shown in Figure 2.

PDE 3

Dataset 3 presented a convection-diffusion equation in two dimensions. Due to dataset size, spatial and temporal dimensions were scaled by a factor of 0.5. The term library was restricted to third-order polynomial terms of u and v with a maximum of one derivative of any order (see Table 4). The algorithm converged to Equation 3 with a relative L_2 error of $4.173e^{-1}$ for both u and v. This error is significantly higher than for the previous two PDEs, but might be due to the larger domain and higher order terms. The hyperparameter used were: $\max_{t=0.5} 10^{t} c$ and $cutoff = 1e^{-4}$.

A visualization (pde3.gif) over time is available in the figures folder.

PDE	Relative L_2 error
PDE 1	$5.304e^{-3}$
PDE 2	$6.023e^{-2}$
PDE 3	$4.173e^{-1}$

Table 1: Relative L_2 error for each PDE

Figure 1: Reconstructed solution for PDE 1

Conclusion & Improvements

The PDE-FIND implementation successfully identified plausible PDEs for all datasets. Future improvements include:

- Extending the library to support other differentiation methods such as polynomial interpolation.
- Addressing boundary condition issues observed in PDE 3.
- Improve sub-sampling: the current implementation samples the data along entire rows/columns, random sub-sampling could improve the algorithm's performance and robustness to noise.
- Add measures to make solvers more robust to noise in the data.
- Benchmarking against other sparse regression algorithms.
- Extending the library to support non-polynomial terms.
- Decoupling solver components to allow easy integration with alternative sparse solvers.

Bibliography

[1] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, "Data-driven discovery of partial differential equations," *Science advances*, vol. 3, no. 4, p. e1602614, 2017.

Figure 2: Reconstructed solution for PDE 2

$$\begin{split} \frac{\partial(u)}{\partial(t)} &= 0.828u + 0.251v - 0.807u^3 + 0.71v^3 + 0.711u^2v - 0.809uv^2 + 0.106u_{xx} + 0.103u_{yy} \\ \frac{\partial(v)}{\partial(t)} &= -0.251u + 0.828v - 0.71u^3 - 0.807v^3 - 0.809u^2v - 0.711uv^2 + 0.103v_{xx} + 0.106v_{yy} \end{split}$$

Equation 3: Reconstructed solution for PDE 3

Appendix

Algorithm 1: Truncated Least Squares with dynamic thresholding (TLS-DT)

```
X - Matrix of shape (n_samples, n_features)
   y - Vector of shape (n_samples,)
   cutoff - Initial cutoff value for coefficients
   max_iterations - Maximum number of iterations
   num_term_limit - Limit for the number of terms
 1 coeffs = LeastSquares (X, y)
2 num terms = []
3 original_cutoff = cutoff
4 for iteration in max_iterations:
      if the number of terms is consistent across two iterations and \leq num term limit:
       ∟ break
 6
7
      if the number of terms is consistent and \geq num_term_limit:
       \perp \text{ cutoff} * = 2
8
      if the number of terms differs between iterations:
10
       \bot cutoff = original_cutoff
      # Identify indices of coefficients greater than the current cutoff
      indices = TRUE WHERE (coeffs > cutoff)
11
      if sum (indices) = 0:
12
       ☐ Set the indices of the num_term_limit smallest coefficients to TRUE
13
      else:
14
       ☐ Set coefficients smaller than the cutoff to zero
15
      # Recalculate coefficients using only the non-zero terms
      coeffs[:, indices] = LEASTSQUARES (X[:, indices], y)
16
      # Append the count of non-zero coefficients to num_terms
    □ num terms append (SUM (indices))
```

Algorithm 1: Truncated Least Squares with dynamic thresholding (TLS-DT)

18 **return** the final coeffs vector

 $1, u, u_{xxx}, u_{xxx}u_{xxx}, u_{xxx}u_{xx}, u_{xxx}u_{x}, u_{xx}u_{x}, u_{xx}u_{xx}, u_{xx}u_{x}, u_{xx}u_{x}, u_{x}u_{x}, u_{x}u_{x}, uu, uu_{xxx}, uu_{xx}, uu_{x}, uu_{xx}, uu_{$

 $1, u, u_{xxx}, u_{xxx}u_{xxx}, u_{xxx}u_{xx}, u_{xxx}u_{x}, u_{xx}u_{x}, u_{xx}u_{xx}, u_{xx}u_{x}, u_{xx}u_{x}, u_{x}u_{x}, u_{x}u_{x}, uu, uu_{xxx}, uu_{xx}, uu_{x}$ Table 3: Term library used for PDE 2

$$\begin{split} 1, u, u_{xx}, u_{xx}v, u_{xx}vv, u_{xy}, u_{xy}v, u_{xy}vv, u_{x}, u_{x}v, u_{x}vv, \\ u_{yy}, u_{yy}v, u_{yy}vv, u_{y}, u_{y}v, u_{y}vv, uu, uu_{xx}, uu_{xx}v, uu_{xy}, \\ uu_{xy}v, uu_{x}, uu_{x}v, uu_{yy}, uu_{yy}v, uu_{y}, uu_{y}v, uuu, uuu_{xx}, uuu_{xy}, \\ uuu_{x}, uuu_{yy}, uuu_{y}, uuv, uuv_{xx}, uuv_{xy}, uuv_{x}, uuv_{yy}, uuv_{y}, \\ uv, uv_{xx}, uv_{xy}, uv_{x}, uv_{yy}, uv_{y}, uvv, uvv_{xx}, uvv_{xy}, uvv_{x}, uvv_{yy}, \\ uvv_{y}, v, v_{xx}, v_{xy}, v_{x}, v_{yy}, v_{y}, vv, vv_{xx}, vv_{xy}, vv_{x}, vv_{yy}, vv_{y}, \\ vvv, vvv_{xx}, vvv_{xy}, vvv_{x}, vvv_{yy}, vvv_{y} \end{split}$$

Table 4: Term library used for PDE 3