	<pre>INPUT a, b assume a > 0 and b > 0 r, r', s, s', t, t' = a, b, 1, 0, 0, 1 while r' != 0 q = r div r' r, r', s, s', t, t' = r', r - q × r', s', s - q × s', t', t - q × t' OUTPUT r, s, t</pre>
d	. Construa um SFOTS usando BitVector's de tamanho n que descreva o comportamento deste programa. Considere estado de erro quando $r=0$ ou alguma as variáveis atinge o "overflow". Prove, usando a metodologia dos invariantes e interpolantes, que o modelo nunca atinge o estado de erro. $ \text{Resolução} $
f	<pre>rom pysmt.shortcuts import * rom pysmt.typing import BVType mport itertools • A genState cria a declaração das variáveis em BVType ef genState(vars, s, i, n):</pre>
1 [2]: G	<pre>state (vars, s, 1, n): state = {} for v in vars: state[v] = Symbol(v+'!'+s+str(i), BVType(n)) return state • A função init é responsável por inicializar as variáveis do programa</pre>
n [3]: d	<pre>return And(BVSGT(s['a'], BV(0, n)), BVSGT(s['b'], BV(0, n)), Equals(s['pe'], BV(0, n)), Equals(s['r'], s['a']), Equals(s['r-prox'], s['b']), Equals(s['s'], BV(1, n)), Equals(s['s-prox'], BV(0, n)), Equals(s['t'], BV(0, n)), Equals(s['t'], BV(0, n)), Equals(s['t'], BV(0, n)), Equals(s['t'], BV(0, n)))</pre>
n [4]: d	<pre>A função trans, recebe curr que é o estado atual, prox que é o próximo estado e n o número de bits, desenvolve as transições para os estados possíveis ef trans (curr, prox, n): same_values = And(Equals (prox['a'], curr['a']), Equals (prox['b'], curr['b']), Equals (prox['r], curr['r]), Equals (prox['r], curr['r]), Equals (prox['s'], curr['s]), Equals (prox['s'], curr['s]), Equals (prox['t'], curr['t']), Equals (prox['t'], curr['t']), Equals (prox['q'], curr['q'])) Max_value = BV((1 << (n - 1)) - 1, n) Min_value = BV(0, n) - BV(1 << (n - 1), n)</pre>
	<pre># (init) Q0 -> Q1 (skip) t01 = And(Equals(curr['pc'], BV(0, n)), Equals(prox['pc'], BV(1, n)), same_values) # (skip) Q1 -> Q4 (stop) t14 = And(Equals(curr['pc'], BV(1, n)), Equals(prox['pc'], BV(4, n)), Equals(curr['r_prox'], BV(0, n)), Equals(curr['r'], BVAdd(BVMul(curr['a'], curr['s']), BVMul(curr['b'], curr['t']))), same_values</pre>
	<pre># (skip) Q1 -> Q5 (error) t15 = And(Equals(curr['pe'], BV(1, n)), Equals(prox['pe'], BV(5, n)), Equals(curr['r'], BV(0, n)), same_values) # (skip) Q1 -> Q2 (loop) t12 = And(Equals(curr['pe'], BV(1, n)), Equals(prox['pe'], BV(2, n)),</pre>
	Not(Equals(curr['r_prox'], BV(0, n))), same_values) overflow_div = Or(BVSGT(BVSDiv(curr['r'], curr['r_prox']), Max_value), BVSLT(BVSDiv(curr['r'], curr['r_prox']), Min_value)) # Q2 -> Q3 ou Q2 -> Q5 (verificar overflow) t23_25 = And(Equals(curr['pc'], BV(2, n)), Equals(prox['a'], curr['a']), Equals(prox['b'], curr['b']), Equals(prox['r'], curr['r']), Equals(prox('r'], curr['r']), Equals(prox('r'), curr['r']), Equals(prox('r'), curr['r']),
	<pre>Equals(prox['s'], curr['s']), Equals(prox['t], curr['t]), Equals(prox['t'], curr['t']), Equals(prox['t_prox'], curr['t_prox']), Equals(prox['q'], EVSDiv(curr['r'], curr['r_prox'])), Or(# Q2 -> Q3 And(</pre>
	<pre>))) overflow_calc = Or(Or(BVSGT(BVMul(curr['q'], curr['r_prox']), Max_value), BVSLT(BVMul(curr['q'], curr['r_prox']), Min_value)), Or(BVSGT(BVSub(curr['r'], BVMul(curr['q'], curr['r_prox'])), Max_value), BVSLT(BVSub(curr['r'], BVMul(curr['q'], curr['r_prox'])), Min_value)), </pre>
	<pre>Or(BVSGT(BVSub(curr['s'], BVMul(curr['q'], curr['s_prox'])), Max_value), BVSLT(BVSub(curr['s'], BVMul(curr['q'], curr['s_prox'])), Min_value)), Or(BVSGT(BVMul(curr['q'], curr['s_prox']), Max_value), BVSLT(BVMul(curr['q'], curr['s_prox']), Min_value)), Or(BVSGT(BVSub(curr['t'], BVMul(curr['q'], curr['t_prox'])), Max_value), BVSGT(BVSub(curr['t'], BVMul(curr['q'], curr['t_prox'])), Min_value)),</pre>
	<pre>Or(BVSGT(BVMul(curr['q'], curr['t_prox']), Max_value), BVSLT(BVMul(curr['q'], curr['t_prox']), Min_value)),) # Q3 -> Q1 ou Q3 -> Q5 (verificar overflow) t31_35 = And(Equals(curr['pc'], BV(3, n)), Equals(prox['a'], curr['a']), Equals(prox['b'], curr['b']), Equals(prox['b'], curr['r_prox']), Equals(prox['r_prox'], BVSub(curr['r'], BVMul(curr['q'], curr['r_prox']))), Equals(prox['s'], curr['s_prox']),</pre>
	<pre>Equals(prox['s_prox'], BVSub(curr['s'], BVMul(curr['q'], curr['s_prox']))), Equals(prox['t'], curr['t_prox']), Equals(prox['t_prox'], BVSub(curr['t'], BVMul(curr['q'], curr['t_prox']))), Equals(prox['q'], curr['q']), Or(# Q3 -> Q1 And(Not(overflow_calc), # se n\(\tilde{a}\) o houver overflow Equals(prox['pc'], BV(1, n)), Not(Equals(curr['r'], BV(0, n)))), # Q3 -> Q5 com overflow And(</pre>
	<pre>Equals(prox['pc'], BV(5, n)),</pre>
n [5]: d	<pre># (error) Q5 -> Q5 (error) t_error = And(Equals(curr['pc'], BV(5, n)), Equals(prox['pc'], BV(5, n)), same_values) return Or(t01, t14, t15, t12, t23_25, t31_35, t_stop, t_error) • A função error desenvolve o estado de erro ef error(s, n): return Or(</pre>
	<pre>efurn or(Equals(s['pc'], BV(5, n)), Equals(s['r'], BV(0, n))) • A função genTrace gera um possível traço de execução com N transições ef genTrace(vars, init, trans, N, n):</pre>
	<pre>with Solver(name='z3') as s: X = [genState(vars, 'X', i, n) for i in range(N+1)] I = init(X[0], n) Tks = [trans(X[i], X[i+1], n) for i in range(N)] if s.solve([I,And(Tks)]): for i in range(N): print("Estado:",i) for v in X[i]: value = s.get_value(X[i][v]) raw_value = value.constant_value() signed_value = raw_value if raw_value < 2**(n-1) else raw_value - 2**n print(f"</pre>
g	<pre>N estados -> 10 n bits bitvector -> 10 enTrace(["pc", "a", "b", "r", "r_prox", "s", "s_prox", "t", "t_prox", "q"], init, trans, 15, 10) tado: 0 pc = 0 a = 140 b = 70 r = 140</pre>
	r_prox = 70 s = 1 s_prox = 0 t = 0 t_prox = 1 q = 0 tado: 1 pc = 1
	<pre>a = 140 b = 70 r = 140 r_prox = 70 s = 1 s_prox = 0 t = 0 t_prox = 1</pre>
	q = 0 tado: 2 pc = 2 a = 140 b = 70 r = 140 r_prox = 70
	<pre>s = 1 s_prox = 0 t = 0 t_prox = 1 q = 0tado: 3 pc = 3 pc = 3</pre>
	<pre>a = 140 b = 70 r = 140 r_prox = 70 s = 1 s_prox = 0 t = 0 t_prox = 1</pre>
	<pre>q = 2 tado: 4 pc = 1 a = 140 b = 70 r = 70 r_prox = 0 s = 0</pre>
	<pre>s_prox = 1 t = 1 t_prox = -2 q = 2 tado: 5 pc = 4</pre>
	a = 140 b = 70 r = 70 r_prox = 0 s = 0 s_prox = 1 t = 1 t_prox = -2
	q = 2 tado: 6 pc = 4 a = 140 b = 70 r = 70 r_prox = 0
	<pre>s = 0 s_prox = 1 t = 1 t_prox = -2 q = 2tado: 7</pre>
	<pre>pc = 4 a = 140 b = 70 r = 70 r_prox = 0 s_prox = 1 t = 1 t_prox = -2</pre>
	q = 2 tado: 8 pc = 4 a = 140 b = 70 r = 70
	<pre>r_prox = 0 s = 0 s_prox = 1 t = 1 t_prox = -2 q = 2tado: 9</pre>
ES	pc = 4 a = 140 b = 70 r = 70 r = 70 r_prox = 0 s = 0 s_prox = 1
	t = 1 t_prox = -2 q = 2
	b = 70 r = 70 r_prox = 0 s = 0 s_prox = 1 t = 1 t_prox = -2 q = 2
	tado: 11 pc = 4 a = 140 b = 70 r = 70 r_prox = 0
	<pre>s = 0 s_prox = 1 t = 1 t_prox = -2 q = 2tado: 12</pre>
	<pre>pc = 4 a = 140 b = 70 r = 70 r_prox = 0 s_prox = 1</pre>
	t = 1 t_prox = -2 q = 2
	b = 70 r = 70 r_prox = 0 s = 0 s_prox = 1 t = 1 t_prox = -2
	q = 2 tado: 14 $pc = 4$ $a = 140$ $b = 70$ $r = 70$
	r_prox = 0 s = 0 s_prox = 1 t = 1 t_prox = -2 q = 2
	 A função invert recebe a função Python que codifica a transição e devolve a relação de transição inversa A função rename renomeia uma fórmula (sobre um estado) de acordo com um dado estado A função same testa se dois estados são iguais.
	<pre>ef invert(trans, n_bits): return (lambda curr, prox: trans(prox, curr, n_bits)) ef baseName(s): return ''.join(list(itertools.takewhile(lambda x: x!='!', s)))</pre>
	<pre>ef rename(form, state): vs = get_free_variables(form) pairs = [(x, state[baseName(x.symbol_name())]) for x in vs] return form.substitute(dict(pairs)) ef same(state1, state2):</pre>
	<pre>return And([Equals(state1[x], state2[x]) for x in state1]) • A função model_checking implementa o algoritmo Model Checking orientado aos invariantes e interpolantes ef model_checking(vars, init, trans, error, N, M, n_bits):</pre>
	<pre>with Solver(name="z3") as solver: # Criar todos os estados que poderão vir a ser necessários. X = [genState(vars, 'X', i, n_bits) for i in range(N+1)] Y = [genState(vars, 'Y', i, n_bits) for i in range(M+1)] # Estabelecer a ordem pela qual os pares (n,m) vão surgir. Por exemplo:</pre>
	<pre>order = sorted([(a,b) for a in range(1,N+1) for b in range(1,M+1)], key=lambda tup:tup[0]+tup[1]) # Step 1 implication na ordem de 'order' e nas definições de Rn, Um. for (n,m) in order: # Step 2. I = init(X[0], n_bits) Tn = And([trans(X[i], X[i+1], n_bits) for i in range(n)])</pre>
	<pre>Tn = And([trans(X[i], X[i+1], n_bits) for i in range(n)]) Rn = And(I, Tn) E = error(Y[0], n_bits) Bm = And([invert(trans, n_bits)(Y[i], Y[i+1]) for i in range(m)]) Um = And(E, Bm) Vnm = And(Rn, same(X[n], Y[m]), Um)</pre>
	<pre>Vnm = And(Rn, same(X[n], Y[m]), Um) if solver.solve([Vnm]): print("> O sistema é inseguro.") return else: # Step 3. A = And(Rn, same(X[n], Y[m])) B = Um</pre>
	<pre># Step 4. C0 = rename(C, X[0]) T = trans(X[0], X[1], n_bits) C1 = rename(C, X[1]) if not solver.solve([C0, T, Not(C1)]): # C \(\equiv \) invariante \(de T. \)</pre>
	<pre># C é invariante de T. print("> O sistema é seguro.") return else: # Step 5.1. S = rename(C, X[n]) while True: # Step 5.2.</pre>
	<pre># Step 5.2. T = trans(X[n], Y[m], n_bits) A = And(S, T) if solver.solve([A, Um]): print("> Não foi encontrado majorante.") break else: # Step 5.3.</pre>
	<pre># Step 5.3. C = binary_interpolant(A, Um) Cn = rename(C, X[n]) if not solver.solve([Cn, Not(S)]): # Step 5.4. # C(Xn) -> S é tautologia. print("> O sistema é seguro.") return</pre>

print("> Não foi provada a segurança ou insegurança do sistema.")

model_checking(["pc", "a", "b", "r", "r_prox", "s", "s_prox", "t", "t_prox", "q"], init, trans, error, 50, 50, 10)

In [10]: # N -> 50 | M -> 50 | n_bits bitvector -> 10

Trabalho Prático 3

Problema 1

Enunciado

Grupo 04 - Renato Garcia (A101987) & Bernardo Moniz (A102497)

O algoritmo estendido de Euclides (EXA) aceita dois inteiros constantes a,b>0 e devolve inteiros r,s,t tais que a*s+b*t=r e $r=\gcd(a,b)$.

Para além das variáveis r, s, t o código requer 3 variáveis adicionais r', s', t' que representam os valores de r, s, t no "próximo estado".

> Não foi encontrado majorante. > O sistema é seguro.