Fiche de TD d'Analyse

2.4 Exercices

Exercice 2.3. Pour $m \in \mathbb{N}$ on pose

$$x_m = \left(\frac{1}{1+m}, 1 + e^{-m}\right)$$

- 1. Étudier la convergence de la suite $(x_m)_{m\in\mathbb{N}}$ dans \mathbb{R}^2 muni de la norme $\|\cdot\|_{\infty}$.
- **2.** Étudier la convergence de la suite $(x_m)_{m\in\mathbb{N}}$ dans \mathbb{R}^2 muni de la norme $\|\cdot\|_1$.

Exercice 2.4. Étudier l'existence et éventuellement la valeur de la limite en (0,0) pour les fonctions définies (sur le plus grand domaine de \mathbb{R}^2 possible) par

$$f_1(x,y) = \frac{x^2y^2}{x^2 + y^2}, \qquad f_2(x,y) = \frac{xy}{x^2 + y^2}, \qquad f_3(x,y) = \frac{xy}{x + y},$$

$$f_4(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \qquad f_5(x,y) = (x+y)\sin\left(\frac{1}{x^2 + y^2}\right), \quad f_6(x,y) = \frac{x+y}{x^2 + y^2},$$

$$f_7(x,y) = \frac{1 + x^2 + y^2}{y}\sin(y), \quad f_8(x,y) = \frac{x^3 + y^3}{x^2 + y^2}, \qquad f_9(x,y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}.$$

Exercice 2.5. Les limites suivantes existent-elles :

$$\lim_{(x,y)\to(1,1)}\frac{1}{x-y} \quad ; \quad \lim_{(x,y)\to(1,0)}\frac{y^3}{(x-1)^2+y^2} \quad ?$$

Exercice 2.6. Donner le domaine de définition des fonctions suivantes, puis déterminer si elles sont prolongeables par continuité sur \mathbb{R}^2 :

$$f_1:(x,y)\mapsto \frac{x^4+y^4}{x^2+y^2}, \quad f_2:(x,y)\mapsto \frac{y\sin(x+1)}{x^2-2x+1}, \quad f_3:(x,y)\mapsto \frac{xy-2y}{x^2+y^2-4x+4}.$$

Exercice 3.4. Étudier l'existence et éventuellement la valeur des dérivées partielles en tout point des fonctions définies par

$$f_1(x,y) = e^x \cos(y), \quad f_2(x,y) = \sqrt{1+x^2y^2}, \quad f_3(x,y) = x^y \quad (\text{pour } x > 0).$$

Exercice 1.15. Soit F une partie de \mathbb{R}^n . Montrer que F est fermée si et seulement si pour toute suite $(x_m)_{m\in\mathbb{N}}$ d'éléments de F qui converge vers un certain $l\in\mathbb{R}^n$ on a $l\in F$.

Exercice 1.16. On appelle distance sur le \mathbb{R} -espace vectoriel E une application $d: E \times E \to \mathbb{R}_+$ telle que pour tous $x, y, z \in E$ on a

- $d(x,y) = 0 \iff x = y$,
- d(x,y) = d(y,x),
- $d(x,z) \leqslant d(x,y) + d(y,z)$.

Montrer que si $\|\cdot\|$ est une norme sur E alors l'application $d:(x,y)\mapsto \|x-y\|$ est une distance sur E.

Exercice 1.17. Pour $x, y \in \mathbb{R}^n$ on note

$$d(x,y) = \begin{cases} 1 & \text{si } x \neq y, \\ 0 & \text{si } x = y. \end{cases}$$

- 1. Montrer que d définit une distance sur \mathbb{R}^n .
- **2.** Existe-t-il une norme $\|\cdot\|$ sur \mathbb{R}^n telle que $d(x,y) = \|x-y\|$ pour tous $x,y \in \mathbb{R}^2$.

par oronos.

Exercice 3.3. On considère sur \mathbb{R}^2 les fonctions

$$f_1:(x,y)\mapsto x\in\mathbb{R},\quad f_2:(x,y)\mapsto y\in\mathbb{R},\quad f_3:(x,y)\mapsto (x,y)\in\mathbb{R}^2.$$

Montrer que les fonctions f_1 , f_2 , f_3 admettent en tout point de \mathbb{R}^2 des dérivées partielles par rapport à x et à y, et les expliciter.

Active Windows

Accédez aux paramètres pour ac

Exercice 3.9. Pour $(x, y, z) \in \mathbb{R}^3$ on note $f(x, y, z) = (2x(y + z^2), \cos(xyz))$.

1. Donner la nature de chacun des objets suivants :

f
 Jac f

3. Jac f(1,2,3)

4. $x \mapsto f(x, 5, 2)$

5. $d_{(0,0,0)}f$

6. $d_{(1,2,3)}f(1,2,3)$

7. ∇f

8. $x \mapsto \partial_y f(x, 2, 4)$

9. $\partial_z f$

Exercice 3.11. On admet pour le moment que les fonctions suivantes sont différentiables. Calculer leurs jacobiennes.

$$f_1: (x, y, z) \mapsto \left(\frac{x^2 - z^2}{2}, \sin(x)\sin(y)\right), \quad f_2: (x, y) \mapsto \left(xy, \frac{x^2}{2} + y^2, \ln(1 + x^2)\right).$$

Exercice 3.12. Soit u un endomorphisme de \mathbb{R}^n . Pour tout $x \in \mathbb{R}^n$ on pose

$$f(x) = \langle u(x), x \rangle,$$

où $\langle \cdot, \cdot \rangle$ désigne le produit scalaire usuel sur \mathbb{R}^n . Étudier la différentiabilité de f sur \mathbb{R}^n .

Exercice 3.13. Montrer que l'application $x \mapsto ||x||$ (où $||\cdot||$ est une norme sur \mathbb{R}^n) n'est pas différentiable en 0.

Activer Windows

Exercice 3.14. Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} telle que

$$\forall x \in \mathbb{R}^2, \quad |f(x)| \leqslant ||x||_2^2.$$

- ${f 1.}$ Montrer que f est différentiable en 0 et donner sa différentielle.
- 2. Interpréter ce résultat géométriquement.
- 3. Mêmes questions en remplaçant $||x||_2^2$ par $||x||_1^2$ et $||x||_{\infty}^2$.

Exercice 3.15 (Existence des dérivées directionnelles n'implique pas non plus la continuité). On considère l'application f de la remarque 3.9.

- 1. Montrer que f admet en (0,0) une dérivée selon tout vecteur et la calculer.
- **2.** Montrer que f n'est pas continue en 0.

Activer Windows

Exercice 4.1. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Déterminer en quels points la fonction f est continue, admet des dérivées partielles, est différentiable. Déterminer le plus grand ouvert de \mathbb{R}^2 sur lequel f est C^1 .

Exercice 4.2. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{xy^3}{x^4 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Déterminer en quels points la fonction f est continue, admet des dérivées partielles, restes po

Exercice 4.3. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \inf(x^2,y^2)$. Déterminer en quels points la fonction f est continue, admet des dérivées partielles, est différentiable. Déterminer le plus grand ouvert de \mathbb{R}^2 sur lequel f est C^1 .

On note \mathcal{D} la droite d'équation x=y. En dehors de cette droite la fonction f est polynômiale donc de classe C^1 (f(x,y)) vaut x^2 sous cette droite et y^2 au dessus).

Exercice 4.4. 1. Montrer que si f est une fonction contractante de $\mathcal{U} \subset \mathbb{R}^n$ dans \mathbb{R}^n alors l'équation f(x) = x admet au plus une solution.

2. On considère le système d'équations

$$x = \frac{1}{2}\sin(x+y), \quad y = \frac{1}{2}\cos(x-y).$$

Montrer que ce problème admet au plus une solution $(x,y) \in \mathbb{R}^2$ (N.B.: on verra au théorème 7.1 comment montrer que ce problème admet effectivement une solution).

Exercice 4.5. Montrer qu'une application lipschitzienne est continue.

5.5 Exercices

Exercice 5.3. Étudier sur \mathbb{R}^2 les extrema locaux et globaux des fonctions définies par

$$f_1:(x,y)\mapsto x^4+y^4$$
 ; $f_2:(x,y)\mapsto x^4-y^4$; $f_3:(x,y)\mapsto x^4$; $f_4:(x,y)\mapsto -(x^4+y^4)$.

Exercice 5.4. Étudier les extrema locaux et globaux des fonctions définies par

- $f_1(x,y) = x^3 + y^3 3xy \text{ sur } \mathbb{R}^2$,

- $f_2(x,y) = x^4 + y^4 4xy \text{ sur } \mathbb{R}^2$, $f_3(x,y) = y(x^2 + (\ln y)^2) \text{ sur } \mathbb{R} \times \mathbb{R}_+^*$, $f_4(x,y) = y^2 + x^2 + xy + 2x 2y \text{ sur } \mathbb{R}^2$.

Exercice 5.5. Soit $A \in M_n(\mathbb{R})$ une matrice symétrique définie positive et $b \in \mathbb{R}^n$. On admet (ou pas) que l'application

$$\phi: x \mapsto \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$$

admet un minimum global sur \mathbb{R}^n . Montrer que ce minimum est atteint au pointi $A^{-1}b$ ndows

Exercice 5.6 (Contre-exemple pour le théorème de Schwarz). On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour $(x,y) \in \mathbb{R}^2$ par

$$f(x,y) = \begin{cases} y^2 \sin\left(\frac{x}{y}\right) & \text{si } y \neq 0 \\ 0 & \text{sinon.} \end{cases}$$
 Activer Windows Accédez aux paramètres pour activer

- **1.** Étudier la continuité de f.
- $\mathbf{2}$. Étudier l'existence et éventuellement la valeur des dérivées premières et secondes de f.
- **3.** Déterminer le plus grand domaine de \mathbb{R}^2 sur lequel f est $C^{\hat{1}}$, C^2 .

Exercice 5.7. Soit f une fonction de classe C^2 de \mathbb{R} dans \mathbb{R} telle que f(0) = 0 et $f'(0) \neq 0$. Pour $(x,y) \in \mathbb{R}^2$ on pose F(x,y) = f(x)f(y).

- **1.** Montrer que F est de classe C^2 sur \mathbb{R}^2 .
- **2.** La fonction F admet-elle un extremum local en (0,0)?

Exercice 5.8. Déterminer

$$\inf_{\substack{x>0\\y>0}} \left(\frac{1}{x} + \frac{1}{y} + xy \right).$$

Activer Windows

9.4 Exercices

9.4.1 Intégrales à paramètre

Exercice 9.1. Montrer que l'intégrale $I_n = \int_1^{+\infty} \frac{1}{n^2 + t^2} dt$ converge pour tout $n \in \mathbb{N}$. Étudier la convergence de la suite $(I_n)_{n \in \mathbb{N}}$.

Exercice 9.2. On définit deux fonctions $f,g:\mathbb{R}\to\mathbb{R}$ par les formules

$$f(x) = \int_0^x e^{-t^2} dt$$
 et $g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$.

- **1.** Montrer que g est dérivable.
- **2.** Montrer que la fonction $h(x) = g(x) + f^2(x)$ est constante.
- **3.** En déduire que $\int_0^{+\infty} e^{-t^2} dt = \sqrt{\pi}/2$.

Exercice 9.6. Calculer $\iint_{\mathbb{R}} f(x,y) dx dy$ dans les cas suivants :

1.
$$f(x,y) = x + y$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid 1 \ge x \ge 0, x^2 \le y \le x\}$,

1.
$$f(x,y) = x + y$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid 1 \geqslant x \geqslant 0, \ x^2 \leqslant y \leqslant x\}$,
2. $f(x,y) = \frac{1}{(x+y)^3}$, $D = \{(x,y) \in \mathbb{R}^2 \mid 3 > x > 1, \ y > 2, \ x + y < 5\}$,
3. $f(x,y) = \cos(xy)$, $D = \{(x,y) \in \mathbb{R}^2 \mid 2 \geqslant x \geqslant 1, \ 0 \leqslant xy \leqslant 2\}$,

3.
$$f(x,y) = \cos(xy), \quad D = \{(x,y) \in \mathbb{R}^2 \mid 2 \ge x \ge 1, \ 0 \le xy \le 2\},$$

4.
$$f(x,y) = x$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid y \ge 0, x - y + 1 \ge 0, x + 2y - 4 \le 0\}$, **5.** $f(x,y) = xy$, $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy + x + y \le 1\}$.

5.
$$f(x,y) = xy$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy + x + y \le 1\}.$

Exercice 9.7. Calculer les aires des domaines suivants :

$$D_1 = \{(x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 1, \, x^2 \leqslant y \leqslant 4 - x^3 \},$$

$$D_2 = \{ (x, y) \in \mathbb{R}^2 \, | \, 0 \leqslant x \leqslant \pi, \, -\sin x \leqslant y \leqslant \sin x \},\,$$

$$D_3 = \{(x, y) \in \mathbb{R}^2 \mid y \ge 0, x - y + 1 \ge 0, y \le -x^2 + 2x + 1\}.$$

Exercice 9.8. Soit $D = \{(x,y) \in \mathbb{R}^2 \mid x \in [0,1], y \in [0,1], x^2 + y^2 \ge 1\}$. Calculer $\iint_D \frac{xy}{1 + x^2 + y^2} dx dy$.

Exercice 9.9. On considère le domaine

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1\}.$$

Pour $z_o \in \mathbb{R}$, on définit le plan $P_{z_o} = \{(x, y, z) \in \mathbb{R}^3 \mid z = z_o\}.$

- **1.** Pour quelles valeurs de z_o l'intersection $P_{z_o} \cap D$ est-elle non-vide?
- **2.** Soit $z_o \in \mathbb{R}$ tel que $P_{z_o} \cap D$ est non-vide. Calculer $\iint_{P_{z_o} \cap D} x \, dx \, dy$.
- **3.** Calculer $\iiint_D x \, dx \, dy \, dz$.

Exercice 9.10. On note $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \leq 1\}$. Calculer $\iiint_D \cot(x) dx dy dz$.