Need a new formulation

$$\log p(x)_{\forall i} \approx \mathbf{E}_{\mathbf{z} \leftarrow q(z|x)} \left[\log p(x^{(i)}) \right]$$
 Maximize!

$$= \mathbf{E}_q \begin{bmatrix} \log \frac{p(x^{(i)} \mid z) p(z)}{p(z \mid x^{(i)})} \frac{q(z \mid x^{(i)})}{q(z \mid x^{(i)})} \end{bmatrix}$$
 Variational + multiply by one
$$p(z \mid x^{(i)}) \text{ this is still a problem}$$

$$\begin{split} &= \mathbf{E}_{q} \left[\log p(x^{(i)} | z) \right] + \mathbf{E}_{q} \left[\log \frac{p(z)}{q(z | x^{(i)})} \right] + \mathbf{E}_{q} \left[\log \frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right] \\ &= \mathbf{E}_{q} \left[\log p(x^{(i)} | z) \right] - \mathbf{E}_{q} \left[\log \frac{q(z | x^{(i)})}{p(z)} \right] + \mathbf{E}_{q} \left[\log \frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right] \\ &= \mathbf{E}_{q} \left[\log p(x^{(i)} | z) \right] - D_{KL} \left[q(z | x^{(i)}) || p(z) \right] + D_{KL} \left[q(z | x^{(i)}) || p(z | x^{(i)}) \right] \end{split}$$

 $\log p(x)_{\forall i} \geq \mathbf{E}_q \left[\log p(x^{(i)} | z)\right] - D_{KL} \left[q(z | x^{(i)}) \| p(z)\right] \text{ Will Maximize Lower Bound}$

Can we motivate this in a different way?

The Loss Function

Maximize through Error of Reconstruction Same as minimizing cross entropy want p(z) to be $\mathcal{N}(\mu=0,\Sigma=I)$ because it makes nice latent space

$$q(z \mid x^{(i)}) \to (\mu_{z\mid x}, \Sigma_{z\mid x}) \quad p(z) \to \mathcal{N}(0,1)$$

$$D_{KL}\left((\mu,\Sigma)\|\mathcal{N}(0,1)\right) = \frac{1}{2}\left(\mathrm{tr}(\Sigma) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right)\right) \\ \text{Can get this by manipulating the KL for normal distribution} \\ \text{Determinant of diagonal matrix is simple.} \\ \text{Motivates diagonal covariance...} \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Motivates diagonal covariance...} \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Motivates diagonal covariance...} \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right) \\ \text{Tr}\left(\Sigma\right) + \mu \cdot \mu^T - \underline{k} - \log\left(\det(\Sigma\right)\right)$$

$$= \frac{1}{2} \left(\sum_{k} \Sigma_{k,k} + \sum_{k} \mu_k^2 - \sum_{k} 1 - \log \left(\prod_{k} \Sigma_{k,k} \right) \right)$$

$$\geq \mathbf{E}_{q(z|x^{(i)})} \left[\log p(\widehat{x}^{(i)}|\widehat{z}_{k}) \right] \sum_{k} \sum_{k} \mu_{k}^{2} - \sum_{k} 1 - \sum_{k} \log \Sigma_{k,k}$$

$$= \frac{1}{2} \sum_{k} \left(\sum_{k,k} + \mu_{k}^{2} - 1 - \log \Sigma_{k,k} \right)$$

$$= \frac{1}{2} \sum_{k} \left(\sum_{k,k} + \mu_{k}^{2} - 1 - \log \Sigma_{k,k} \right)$$

The Covariance Output

$$\geq \mathbf{E}_{q(z|x^{(i)})} \left[\log p(x^{(i)}|z) \right] - D_{KL} \left[q(z|x^{(i)}) || p(z) \right]$$

Maximize through
Error of Reconstruction
Same as minimizing cross entropy

want p(z) to be $\mathcal{N}(\mu=0,\Sigma=I)$ because it makes nice latent space $q(z\,|\,x^{(i)}) \to (\mu_{z|x},\Sigma_{z|x}) \quad p(z) \to \mathcal{N}(0,1)$

$$\log \Sigma_{k,k} = \widehat{\Sigma_{k,k}}$$

$$\log \sum_{k,k} = \widehat{\Sigma_{k,k}}$$

$$\log z_{k,k} = \frac{1}{2} \sum_{k} \left(\exp \left(\widehat{\Sigma_{k,k}} \right) + \mu_k^2 - 1 - \widehat{\Sigma_{k,k}} \right)$$

so we will have the neural network output log variance

Also, remember we assume **diagonal covariance**, so z's are not correlated This means covariance is only a vector of variances (the diagonal of Σ)

$$\geq \mathbf{E}_{q(z|x^{(i)})} \left[\log p(x^{(i)}|z) \right] - D_{KL} \left[q(z|x^{(i)}) || p(z) \right]$$

This is partially differentiable by chain rule...

$$\begin{split} \mathcal{N}(\mu_{z|x}, \exp(\widehat{\Sigma_{z|x}})) &= z \\ &= \mu(x^{(i)}) + \exp(\widehat{\Sigma(x^{(i)})}) \cdot \mathcal{N}(0, 1) \end{split}$$

To update q, we need to back propagate through sampling layer. How?

The Loss Function Implementation

```
# Encode the input into a mean and variance parameter
z mean, z log variance = encoder(input img)
 \mu(x^{(i)}) \Sigma(x^{(i)})
# Draw a latent point using a small random epsilon
z = z mean + exp(z log variance) * epsilon
                                                     z = \mu(x^{(i)}) + \exp(\Sigma(x^{(i)})) \cdot \mathcal{N}(0,1)
# Then decode z back to an image
reconstructed img = decoder(z)
                      \hat{x}^{(i)} = p(x^{(i)} \mid z)
# Instantiate a model
model = Model(input img, reconstructed img)
def vae loss(self, x, z decoded):
     x = K.flatten(x)
     z decoded = K.flatten(z_decoded)
     xent_loss = keras.metrics.binary_crossentropy(x, z_decoded) -\mathbf{E}_{q(z|x^{(i)})} \left| \log p(x^{(i)}|z) \right|
     kl loss = -5e-4 * K.mean(
          1 + z log var - K.square(z mean) - K.exp(z log var), axis=-1)
     return K.mean(xent loss + kl loss)
                                                    -\lambda \sum_{i} 1 + \widehat{\Sigma}(x^{(i)}) - \mu(x^{(i)})^2 - \exp(\widehat{\Sigma}(x^{(i)}))
   Note:
```

Flipped from maximization to minimization and added lambda for tradeoff in reconstruction, normal latent space

$$= -\mathbf{E}_{q(z|x^{(i)})} \left[\log p(x^{(i)}|z) \right] - \lambda \sum_{k} 1 + \widehat{\Sigma(x^{(i)})} - \mu(x^{(i)})^2 - \exp(\widehat{\Sigma(x^{(i)})})$$
22

Now that its trained, so what?

Encoding faces, then adjust the "z" that relates to smiling.

Investigate what happens by moving around each z_i

$$\chi^{(i)} \rightarrow \boxed{\begin{array}{c} \mu_{z|x} \\ q(z|x^{(i)}) \\ + \sum_{z|x} \end{array}} \qquad \qquad \chi^{(i)} \qquad \qquad \chi^{(i$$

VAE Examples

Encoding faces, then adjust the "z" that relates to smiling.

VAE Examples

Different, automatically found z, latent variables

VAEs in Keras

Sampling from variational auto encoder

using MNIST

Demo by Francois Chollet

In Master Repo: 07a VAEs in Keras.ipynb

Follow Along: https://github.com/fchollet/deep- <u>learning-with-python-notebooks/blob/master/8.4-</u> generating-images-with-vaes.ipynb 26

Lecture Notes for

Neural Networks and Machine Learning

Generative Networks

Next Time:

General GANs

Reading: Chollet CH8

