An 84dB-SNDR Low-OSR 4th-order Noise-Shaping SAR with an FIA-Assisted EF-CRFF Structure and Noise-Mitigated Push-Pull Buffer-in-Loop Technique

Tzuhan Wang*, Xie Tian*, Zhe Liu, Shaolan Li

*Equally Contributed Credits

Georgia Institute of Technology Atlanta, Georgia

Self Introduction

National Taiwan University, Taipei

- −B.S. degree in 2016
- -M.S. degree in 2018

Georgia Institute of Technology, Atlanta GA

-PH.D. student since 2019

Research interests

- Analog and mixed-signal circuit
- Energy efficient ADC design

Tzuhan Wang

Outline

- Existing challenges of NS-SAR
- **❖Proposed EF-CRFF structure for NS-SAR**
- Proposed noise-cancelling buffer for NS-SAR
- Measurements results
- Conclusion

ADC Trend for Emerging Applications

- Need from applications
 - Internet of things
 - Healthcare/biomedical
 - Autonomous vehicles

- Our design target
 - -SNDR > 80dB
 - -FoMs > 180dB

Less power more performance

Noise-Shaping (NS) SAR ADC

- SAR + $\Delta\Sigma$ \rightarrow combines NS with SAR
 - -SAR conversion \rightarrow V_{RES} to NS filter \rightarrow filter result feedback
 - -Relaxed filter design vs. $\Delta\Sigma$
 - High-resolution with mild OSR

Recent NSSAR Survey

Recent NSSAR Survey

Limitations of NSSAR ADC

Recent mild OSR NSSAR ADC

[Tang, ISSCC 20]

84dB SNDR, **OSR** =8 **C**_{IN} = 4pF

[Liu, *ISSCC* 21]

93dB SNDR, **OSR =10** C_{IN} = **32**pF [Jie, ISSCC 20]

87dB SNDR, **OSR** =10 C_{IN} = 15.4pF

- The need to achieve low OSR
 - Higher order NS required

 - → Trade off power & noise ↑ ※

- High cost to achieve low noise
 - Large CDAC: to lower kT/C noise
 - → Area & power ↑ ⊗
 - → Input driver complexity ↑ ※

Limitations of NSSAR ADC

Recent mild OSR NSSAR ADC

[Tang, ISSCC 20]

84dB SNDR, **OSR** =8 **C**_{IN} = 4pF

[Liu, *ISSCC* 21]

[Jie, ISSCC 20]

87dB SNDR OSR =10

93dB SNDR, OSP -10

 $C_{IN} = 32pF$

Goal: Surpass kT/C noise barrier

- Less power & Less area
- Goal: Relax input driver requirement
- Easier to drive
 - → Area & power ↑ 🖰
 - → Input driver complexity ↑ ※

- The need to achieve low OSR
 - Higher order NS required

 - → Trade off power & noise ↑ ※

Solutions

- Bottleneck1: energy efficient high-order NS
 - –Hybrid EF-CRFF structure
 - Open loop D-Amp assisted integration

- Bottleneck2: low noise & input driver relaxation
 - -Buffer-embedded NSSAR
 - Inherent noise cancellation

Outline

- Existing challenges of NS-SAR
- **❖Proposed EF-CRFF structure for NS-SAR**
- Proposed noise-cancelling buffer for NS-SAR
- Measurements results
- ***Conclusion**

Prior Arts 1: High-Order CIFF NS

- 3rd order integrator
- Closed loop OTA: stable & sharp NTF
- High-gain static amp: power & scaling unfriendly

Prior Arts 2: Cap. Stacking Integrator

- Buffer + caps. : PVT robustness
- Nearly perfect integration: sharp high-order NTF
- Static power buffer: energy efficiency (8)
- Lack NTF optimization: low OSR unsuitable 8

Prior Arts 3: Nested EF Structure

- EF structure: V_{res} extract \rightarrow FIR filter [S. Li, ISSCC 2018]
- High-order NTF, low complexity
- SQNR fluctuation: 2 amp affect zeros

Prior Arts 4: EF-CIFF Structure

- Hybrid structure: single amp
- PVT robustness against EF-EF[©]
- Limited NS order: 1st stage CIFF only

Low OSR Approach: CRFF Integrator

- Cascade resonator feedforward (CRFF) approach:
 - Complex zeros → optimized NTF → low OSR suitable
 - Key: energy efficient integration implementation

Proposed Integrator – Basic Model (1)

- Integration in DT system: addition
 - -Voltage stacking for addition

-Addition result stores onto Cout

 $V_O = G \cdot (V_{RES}[k-1] + V_{INT}[k-1])$

Proposed Integrator – Basic Model (2)

 Integration in DT system: addition Voltage stacking for addition During sampling phase: amplifier off −The charge on C_{INT} is cleared CINT ii) Sampling Phase C_{INT} is reset

Proposed Integrator – Basic Model (3)

- Integration in DT system: addition
 - -Voltage stacking for addition
- During conversion phase: amplifier off

 $V_{INT}[k] = G/K \cdot (V_{RES}[k-1] + V_{INT}[k-1])$

Proposed Integrator – Basic Model (4)

- 1st and 2nd integrations performs simultaneously
- 1st integration

Proposed Integrator – Basic Model (5)

- 1st and 2nd integrations performs simultaneously
- 2nd integration: CRFF → notch → optimized NTF
- Optimized NTF → low OSR

 $V_{INT}[k] = G/K_1 \cdot (V_{INT1}[k-1] + V_{RES}[k-1]) - G/K_2 \cdot (V_{INT2}[k-1])$

Proposed EF-CRFF Structure

Proposed integration

- Avoid ping-pong switching cap[©]
- Low input-referred noise [©]

EF+CRFF:

Amp. fires only at V_{RES} ext.

- -Fully dynamic operation ©
- Good energy efficiency [©]

Proposed EF-CRFF Structure

Proposed integration

- Avoid ping-pong switching cap[©]
- Low input-referred noise [©]

- Amp. fires only at V_{RES} ext.
 - Fully dynamic operation [©]
 - Good energy efficiency [©]

Outline

- Existing challenges of NS-SAR
- Proposed EF-CRFF structure for NS-SAR
- Proposed noise-cancelling buffer for NS-SAR
- Measurements results
- ***Conclusion**

Prior Art: Conventional SAR

- V_{IN} passed buffer while V_{DAC} does not
 - -V_{IN} is affected by buffer nonlinearity
- Input buffer: linear → hard buffer design ⊗

- Buffer embedded → linearity enhanced ☺
- Separated CDAC & Cs → devoid CDAC kT/C noise ©
- Comparator offset → disturb linearity compensation ⊗

- Buffer embedded → linearity enhanced ☺
- Separated CDAC & Cs → devoid CDAC kT/C noise ©
- Noise shaping included → devoid comp offset ☺

- Conversion phase: Cs sampling noise + CDAC reset noise 8
- Residue extraction: additional buffer noise 8
- V_{CM} mismatch: buffer nonlinearity leaks

- Conversion phase: Cs sampling noise + CDAC reset noise 8
- Residue extraction: additional buffer noise (8)
- V_{CM} mismatch: buffer nonlinearity leaks

- Conversion phase: Cs sampling noise + CDAC reset noise 8
- Residue extraction: additional buffer noise
- V_{CM} mismatch: buffer nonlinearity leaks ⁽³⁾
- Can these issues be mitigated in BIL NSSAR? Yes

Our solution:
Noise mitigated switching + PPSF + FIA

Proposed BIL with CDAC Noise Cancellation

- Series noise cancellation after buffer
- At Φ_{S1} . \rightarrow the -V_{nDAC} is kept on Cs
- At Φ_{S2} . \rightarrow the -V_{nCs} is kept on Cs

Proposed BIL with CDAC Noise Cancellation

- Series noise cancellation after buffer
- At conv. $\rightarrow V_{nDAC}$ transferred to Cs, V_{nDAC} is cancelled
- CDAC & Cs in series → V_{CM} mismatch ↓

Proposed BIL with CDAC Noise Cancellation

- Series kT/C cancellation after buffer
- EF reused SNC is applied → V_{nCs} is cancelled
- Reduced kT/C noise → Cs size ↓ & buffer relaxation

Push-Pull Source Follower (PPSF)

- PPSF → gm/id ↑→ lower noise ☺
- Excellent linearity → input V_{CM} mismatch sensitivity ↓
- Drawback: level shifting (LS) circuit ⁽²⁾ → capacitive LS ⁽²⁾

[MJ. Seo, *JSSC* 2020]

Push-Pull Source Follower (PPSF)

- Proposed PPSF → hardware reuse
- Area penalty free → split CDAC → complexity ↓ ☺
- Noise penalty free → noise cancellation assisted ☺

FIA Assisted Buffer Noise Reduction

- Open loop floating inverter amplifier
- Self quenched
 → amplification BW shrinks
- Inherently suppresses the PPSF noise

© 2022 IEEE

International Solid-State Circuits Conference

Overall Implementation

Chip Micrograph

65nm CMOS

Total Area: 0.075mm²

Supply: 1.2V/2V

• Fs: 5 MHz

• OSR: 5

• BW: 500kHz

- 1. CDAC and Cs area can be limited
- 2. PPSF area overhead is very small

Outline

- Existing challenges of NS-SAR
- Proposed EF-CRFF structure for NS-SAR
- Proposed noise-cancelling buffer for NS-SAR
- Measurements results
- Conclusion

Measured Spectrum

Measured DR & Power Breakdown

Measured DR:

 $-84.9 \, dB$

Power

- With Buffer: 133.8uW @ 5MS/s
- Buffer power < 50%

Power Breakdown

Measured Temp and Chip Variations

- Temp: -20°C ~ 80°C
 - -SNDR within 1.5dB
 - -SFDR within 6dB

- Measured 5 chips variation
 - -SNDR within 1dB

Measured V_{CM} mismatch and input resis. Variations

- V_{CM} mismatch: -10% ~ 10%
 - Varying input signal V_{CM}
 - -SNDR above 82dB

- Input Resistance: $1\Omega \sim 25K\Omega$
 - -SNDR above 83dB at $1k\Omega$

Performance Summary

Specifications	ISSCC 20	ISSCC 20	ISSCC 21	ISSCC 21	CICC 19	This work	
	Tang	Lu	Wang	Liu	Kim	w/o BUF	W BUF
Process [nm]	40	28	65	40	65	65	
Architecture	CIFF	EF-EF	EF-CIFF	CIFF	CIFF	EF-CRFF	
NS Order	2	4	3	4	2	4	
Fully Dynamic NS	✓	×	✓	×	>	✓	
kT/C Noise Suppressed	×	×	✓	×	×	✓	
Input Buffered	×	×	×	×	~	✓	
Buffer Type	-	-	-	-	Source Follower	PPSF	
Supply [V]	0.8/1.1	1	1.1	1.1	0.9/2.1	1.2/2	

Performance Summary

Specifications	ISSCC 20	ISSCC 20	ISSCC 21	ISSCC 21	CICC 19	This work	
	Tang	Lu	Wang	Liu	Kim	w/o BUF	w BUF
C _{IN} Diff [pF]	4	15.36	0.8	32	0.8@/2.3##	0.8@/0.8##	
Power [uW]	107	120	119	340	870#	73.8	133.8
Fs [Ms/s]	10	2	10	5	80	5	
BW [kHz]	625	100	625	250	2000	500	
OSR	8	10	8	10	40	5	
SNDR [dB]	83.8	87.6	84.8	93.3	73.8	84.1	
FoMs1* [dB]	181.5	176.8	182.0	182.0	167.4#	182.4	180.0
FoMw** [dB]	6.8	30.8	6.6	18.1	54.3#	5.6	10.0

*FoMs1 = SNDR+1*log10(BW/Power) **FoMs2 = DR+1*log10(BW/Power) # With Buffer Power Included @Sampling Cap ##CDAC

Conclusion

Low OSR barrier

- Higher order implementation and kT/C barrier and driver relaxation
- Proposed EF-CRFF structure
 - -Achieve 4th order of noise shaping at low loss
 - -Fully dynamic operation thus power efficient
- Proposed noise cancellation buffer scheme
 - Leverage series connection with CDAC, buffer and Cs.
 - -Inherently cancels the CDAC reset noise
- >13b ENOB (OSR =5) relaxing the input driving

Thanks for your attention!