Betriebssysteme

Übungsblatt 5

Micha Erkel

Felix Ruh

Aufgabe 1

- a) Für $SPcken_{pre}$ muss gelten: $\underbrace{([E \cdot \overline{s_1} \cdot s_0] \cdot [I_{31} \cdot I_{30} \cdot I_{24} \cdot \overline{I_{23}} \cdot \overline{I_{22}} + I_{31} \cdot \overline{I_{30}} \cdot I_{29} \cdot I_{28} \cdot I_{24} \cdot \overline{I_{23}} \cdot \overline{I_{22}} + \overline{I_{31}} \cdot \overline{I_{30}} \cdot I_{24} \cdot \overline{I_{23}} \cdot \overline{I_{22}}] \cdot [\text{NB} + h_2 \cdot h_1 \cdot h_0])$
- b) Für $IVNcken_{pre}$ muss gelten: $([E \cdot \overline{s_1} \cdot s_0] \cdot [I_{31} \cdot I_{30} \cdot \overline{I_{26}} \cdot I_{25} \cdot NB + \overline{h_2} \cdot \overline{h_1} \cdot h_0])$

Aufgabe 2

- a) st(x) = (var, int, 128)
 - st(y) = (var, int, 129)
 - st(z) = (const, int, 5)
- b) Die Schritte auf dem Stack dargestellt:

Der Code:

SUBI SP 1	Setzte den SP auf die nächste freie Zelle.
LOAD ACC 128	Lade x in den ACC.
STOREIN SP ACC 1	Speichere den ACC in der letzten freien Zelle.
SUBI SP 1	Setzte den SP auf die nächste freie Zelle.
LOAD ACC 129	Lade y in den ACC.
STOREIN SP ACC 1	Speichere den ACC in der letzten freien Zelle.
SUBI SP 1	Setzte den SP auf die nächste freie Zelle.
LOADI ACC encode(5)	Lade 5 in den ACC.
STOREIN SP ACC 1	Speichere den ACC in der letzten freien Zelle.
LOADIN SP ACC 2	Lade y in den ACC.
LOADIN SP IN2 1	Lade z das IN2
MUL ACC IN2	Multipliziere y mit z.
STOREIN SP ACC 2	Speichere das Ergebnis in der Speicherzelle von y.
LOADI ACC encode(10)	Lade 10 in den ACC.
STOREIN SP ACC 1	Speichere den ACC in der letzten freien Zelle.
LOADIN SP ACC 2	Lade y' (das Ergebnis der Multiplikation) in den ACC.
LOADIN SP IN2 1	Lade 10 in das IN2.
ADD ACC IN2	Addieren y' und 10
STOREIN SP ACC 2	Speichere das Ergebnis in der Speicherzelle von y'.
ADDI SP 1	Senke den SP um 1.
LOADIN SP ACC 2	Lade x in den ACC.
LOADIN SP IN2 1	Lade y' (das Ergebnis der beiden vorherigen Operationen) in das IN2.
ADD ACC IN2	Addiere y' und IN2
STOREIN SP ACC 2	Speichere das Ergebnis in der Zelle von x
ADDI SP 1	Senke den SP um 1.

- c) 1. $(x_1 op (x_2 op (x_3 op (...(x_{n-1} op x_n)...))))$
 - \rightarrow So müssten
n Teilergebnisse auf den Stack geschrieben werden.
 - 2. $((...(((x_1 op x_2) op x_3) op x_4) op) op x_n)$
 - \rightarrow Auf diese Weise sind immer nur 2 Teilergebnisse auf dem Stack.

Aufgabe 3

Unter der Annahme, dass es sich bei den Zahlen um das 2
er Komplement handelt vergleicht dieser Code die beiden Zahlen:

LOADI ACC 1	Lade 0001 in den ACC.
MULI ACC 2^{16}	Verschiebe die 1 um 16 Stellen, auf Position 16, nach links.
MULI ACC 2^{15}	Verschiebe die 1 um 15 Stellen, auf Position 31, nach links.
STORE ACC 12	Speichere 2^{31} in Zelle 12.
LOAD ACC 10	Lade x in das ACC.
LOAD IN1 11	Lade y in das IN1.
AND ACC 12	Vergleich von x mit 1000 falls x negativ ist, wird erste Stelle 1 sein.
AND IN1 12	Vergleich von y mit 1000 falls y negativ ist, wird erste Stelle 1 sein.
SUB ACC IN1	Subtrahiere die Ergebnisse von AND von einander.
$JUMP_{=}$ 6	Springe falls beide Vorzeichen gleich sind.
$JUMP_{<}$ 3	Springe falls y negativ und x positiv ist.
gebe 1 aus	Falls y positiv und x negativ ist.
JUMP 10	Beende das Programm.
gebe 0 aus	
JUMP 8	Beende das Programm.
LOAD ACC 10	Lade x in das ACC.
LOAD IN1 11	Lade y in das IN1.
SUB ACC IN1	Subtrahiere y von x.
$JUMP_{>}$ 3	Jump falls x größer ist wie y.
gebe 1 aus	
JUMP 2	Beende das Programm.
gebe 0 aus	
JUMP 0	Beendet das Programm.