ECONOMETRIE

CURS 3

- note de curs -

IAŞI - 2023-

C 3 - REGRESIA LINIARĂ SIMPLĂ

TEMATICA CURS 03

Indicatorii de corelație

- 1. Estimarea indicatorilor de corelaţie (coeficient, raport)
- 2. Relația coeficient corelație coeficient de regresie
- 3. Testarea indicatorilor de corelaţie
- 4. Testarea modelului
- 5. Probleme specifice utilizând SPSS si Excel

1. Estimarea indicatorilor de corelație

Coeficientul de corelaţie - se foloseşte doar pentru modelul liniar

Parametrul coeficientul de corelație (p)

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N\sigma_x \sigma_y} \quad \text{sau}$$

$$\rho(X,Y) = \frac{N\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{\sqrt{\left[N\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}\right]\left[N\sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}\right]}}, -1 \le \rho \le +1$$

Interpretarea lui p

Coeficientul de corelație p caracterizează intensitatea legăturii liniare dintre două variabile X și Y.

Astfel:

Pentru -1≤p<0 – > legătura între X și Y este negativă;

Pentru 0<ρ≤+1 ->legătura între X și Y este pozitivă;

Pentru |p|->0 => legătura este foarte slabă

|ρ|->1=> legătura este **foarte puternică**.

Estimația coeficientului de corelație (r)

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{ns_{x}s_{y}} = \frac{n\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{\sqrt{\left[n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}\right]\left[n\sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}\right]}}$$

r se interpretează la fel ca ρ.

Raportul de determinaţie

Parametrul raportului de determinație (n²)(desen)

$$\eta^2 = \frac{\sum_{i} (\hat{y}_i - \overline{y})^2}{\sum_{i} (y_i - \overline{y})^2} = \frac{V_E}{V_T} = 1 - \frac{V_R}{V_T} \quad \text{, cu 0<\eta^2<1}$$

 V_E , V_T și V_R reprezintă parametrii variațiiei explicată, variația totale și variației reziduale.

$$V_T = V_E + V_R$$

Interpretarea raportului de determinație

η² aparţine intervalului [0; 1].

Cu cât η² -> 0 cu atât legătura este mai slabă între variabila dependentă și variabila independentă.

Cu cât η² -> 1 cu atât **legătura este mai puternică** între variabila dependentă și variabila independentă.

OBS: Raportul de determinație poate fi calculat pentru toate tipurile de legaturi: liniare sau neliniare, simple sau multiple.

Interpretarea lui η² în modelul de regresie

De obicei η^2 este exprimat în valoare procentuală, ia valori de la 0% la 100%, și arată cât la % din variația variabilei dependente (Y) este explicată de variația variabilei independente (X) printr-un model specificat (de ex prin modelul liniar $y_{xi} = \beta_0 + \beta_1 X$)

OBS: Pentru modelul liniar simplu (MLS) se stabilește următoarea relație între η^2 și ρ : $\eta^2 = \rho^2 \Leftrightarrow |\rho| = \eta$ relație care se extinde și asupra etimațiilor acestora: $R^2 = r^2 \Leftrightarrow |r| = R$

Estimația raportului de determinație (R²)

$$R^{2} = \frac{\sum_{i} (\hat{y} - \overline{y})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

ESS, TSS și RSS reprezintă estimațiile variaței explicate, variației totale respectiv variaței reziduale.

SS-este Suma pătratelor [abaterilor] (eng. Sum of Sqare)

Interpretarea estimației R^2 este aceeași cu cea a parametrului η^2 .

Calculul TSS, ESS și RSS și determinarea gradelor de libertate corespunzătoare acestora

 $df_T = df_E + df_R$

2. Relația coeficientul de corelație (r) - coeficientul de regresie liniara simpla (b₁)

Legătura dintre estimația coeficientului de corelație (r) și estimația coeficientului de regresie liniară (b₁) se realizează prin relația:

$$r = \frac{\operatorname{cov}(y, x)}{S_x S_y}$$

$$b_1 = \frac{\operatorname{cov}(y, x)}{S_x^2}$$

$$r = b_1 \frac{S_x}{S_y}$$

Unde s_x^2 , s_y^2 si s_x , s_y reprezintă estimațiile varianțelor respectiv estimațiile abaterilor standard ale variabilelor X și Y.

OBS: În cazul modelului de regresie standardizat ($s_X^2=1$, $s_Y^2=1$) r=b₁.

EXEMPLU

Se consideră datele cu privire la *Valoarea vânzărilor* şi *Cheltuielile cu publicitatea* pentru un eşantion de 4 firme. Datele sunt prezentate în tabelul următor.

Volumul vanzarilor (zeci de mii lei)

$\mathbf{x_i}$	$\mathbf{y_i}$
10	2500
20	4100
50	5000
100	7500
180	19100

Rezultatele analizei in SPSS

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.977ª	.954	.931	550.55630

a. Predictors: (Constant), X

ANOVA^a

Model	35	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12501275.51	1	12501275.51	41.243	.023 ^b
	Residual	606224.490	2	303112.245		
	Total	13107500.00	3			

a. Dependent Variable: Y

b. Predictors: (Constant), X

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confiden	ce Interval for B
Mode	ſ.	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	2502.041	448.379		5.580	.031	572.821	4431.260
	X	50.510	7.865	.977	6.422	.023	16.669	84.351

a. Dependent Variable: Y

3. Testarea indicatorilor de corelație 3.1. Testarea coeficientul de corelație

1. Formularea ipotezelor H_0 : $\rho=0(->\rho_0=0)$

$$\mathbf{H_1}$$
: $\rho \neq 0$ (->Test Bilateral-> $t_{\alpha/2, n-k} = t_{th}$)

- 2. Fixarea pragului de semnificație α (ex. α =0,05)
- 3. Alegerea statisticii test si aflarea valorii critice a acesteia pentru un α dat : $\rho \approx t_{\alpha/2, n-k}$

4. Calcularea statisticii test
$$t_{calc} = \frac{\hat{\rho} - \rho_0}{\sigma_{\hat{\rho}}} = \frac{\hat{\rho}}{\sqrt{\frac{1 - \hat{\rho}^2}{n - 2}}} \approx \frac{r\sqrt{n - 2}}{\sqrt{1 - r^2}}$$
5. Criterii de decizie:

 $|t_{calc}| \le t_{teoretic} = t_{\alpha/2, n-2} \Leftrightarrow sig. \ge \alpha => se$ acceptă/ nu se respinge H_0 cu o probabilitate de 1-α

 $|t_{calc}| > t_{teoretic} = t_{\alpha/2, n-2} \Leftrightarrow sig. < \alpha => se respinge H_0 cu un risc asumat <math>\alpha$.

3.II. Testarea raportului de corelaţie

- 1. Formularea ipotezelor : H₀: η=0 H₁: η≠0 (->Test Unilateral (η>0)->α)
- 2. Fixarea pragului de semnificaţie α (ex. α =0,05)
- 3. Alegerea statisticii test si aflarea valorii critice a acesteia pentru un α dat $(F_{\alpha, k-1, n-k})$.

- 4. Calcularea statisticii test $F_{calc} = \frac{\hat{\eta}}{1 \hat{\eta}} \frac{n k}{k 1} \cong \frac{R^2}{1 R^2} \frac{n k}{k 1}$
- 5. Criterii de decizie:

F_{calc}≤ F_{α, k-1, n-k} ⇔ sig.≥α. => se acceptă H₀ cu o probabilitate de 1-α

 $F_{calc} > F_{\alpha, k-1, n-k} \Leftrightarrow sig. < \alpha => se respinge H_0 cu un risc asumat <math>\alpha$.

4. Testarea modelului de regresie - testul F omnibus

1. Formularea ipotezelor

$$H_0$$
: $\beta_0 = 0$ și $\beta_1 = 0$

$$H_1$$
: $\beta_0 \neq 0$ sau/si $\beta_1 \neq 0$

- 2. Fixarea pragului de semnificaţie α=0,05
- 3. Alegerea statisticii test si aflarea valorii critice a acesteia pentru un ESS
- 4. Calcularea statisticii test $F_{calc} = \frac{V_E}{V_R} \frac{n-k}{k-1} = \frac{k-1}{RSS} \cong \frac{ESS}{RSS} \frac{n-k}{k-1}$

5. Criterii de decizie:

F_{calc}≤ F_{α, k-1, n-k}⇔sig.≥α=> se acceptă H₀ cu o probabilitate de 1-α.

F_{calc}> F_{α, k-1, n-k}⇔sig.≥α=> se respinge H₀ cu un risc asumat α.

Legatura dintre testarea lui R² și testarea modelului

Dacă îl exprimăm pe R² în funcție de SS vom obține:

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

și înlocuind în expresia lui F obținem o expresie a lui F în funcție de SS:

$$F = \frac{ESS}{RSS} \frac{n - k}{k - 1} = \frac{R^2}{1 - R^2} \frac{n - k}{k - 1}$$

5. Probleme specifice analizei de corelație și regresie

Analiza de regresie si corelație în SPSS

Se consideră datele cu privire la *Valoarea vânzărilor* și *Cheltuielile cu publicitatea* pentru un eșantion de 4 firme.

Datele sunt prezentate în tabelul alăturat.

$\mathbf{x_i}$	$\mathbf{y}_{\mathbf{i}}$
10	2500
20	4100
50	5000
100	7500
180	19100

Volumul vanzarilor (zeci de mii lei)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.977ª	.954	.931	550.55630

a. Predictors: (Constant), X

ANOVA^a

Mo	odel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12501275.51	1	12501275.51	41.243	.023 ^b
	Residual	606224.490	2	303112.245		
× .	Total	13107500.00	3		2.	

a. Dependent Variable: Y

b. Predictors: (Constant), X

Correlations

		Χ	Υ
Χ	Pearson Correlation	1	.977
	Sig. (2-tailed)		.023
	N	4	4
Υ	Pearson Correlation	.977	1
	Sig. (2-tailed)	.023	
	N	4	4

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Coefficients^a

Unstandardized Coefficient		d Coefficients	Standardized Coefficients			95.0% Confidence Interval for B		
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	2502.041	448.379	5.0	5.580	.031	572.821	4431.260
	Χ	50.510	7.865	.977	6.422	.023	16.669	84.351

a. Dependent Variable: Y

