Property 5.ii) If f and g are finite valued measurable functions, then f + g is measurable.

Proof: We will show that

$$\{f + g > a\} = M$$

where

$$M = \bigcup_{r \in \mathbb{O}} \{f > a - r\} \cap \{g > r\}$$

and conclude that $\{f+g>a\}$ is a countable union of measurable sets, and thus measurable. It is clear that $M\subseteq\{f+g>a\}$ since if $x\in M$, then f(x)>a-r and g(x)>r for some $r\in\mathbb{Q}$, thus implying that f(x)+g(x)>a. Conversely, suppose $x\in\{f+g>a\}$, then f(x)+g(x)>a and g(x)>a-f(x). We can choose $r\in\mathbb{Q}$ where a-f(x)< r< g(x), thus obtaining g(x)>r and $f(x)-a>-r\implies f(x)>a-r$, which shows that $x\in M$, thus $\{f+g>a\}=M$ and we are finished.

18) Every measurable function is the limit a.e. of a sequence of continuous functions.

Proof: Without loss of generality, we let f be non-negative, since $f = f^+ - f^-$. We must also assume that f is finite a.e. Let $Q_n \subseteq \mathbb{R}^d$ denote the closed cube with side length n, and define the function $f_n : \mathbb{R}^d \to \mathbb{R}$ as follows:

$$f_n(x) = \begin{cases} f(x) & x \in Q_n \text{ and } f(x) \le n \\ n & x \in Q_n \text{ and } f(x) > n \\ 0 & x \notin Q_n \end{cases}$$

We previously established that $f_n \to f$ everywhere f is finite. Since $g(x) = \min\{n, f(x)\}$ is measurable for all n [1], and since $f_n(x) = \min\{n, f(x)\} \chi_{[0,1]}$, we have that f_n is measurable. Fix $\varepsilon > 0$, then since f_n is finite valued for all n, we can use **theorem 4.5** to obtain closed sets $F_n \subseteq Q_n$ with $m(Q_n \setminus F_n) < \varepsilon$ and where the restriction $f_n|_{F_n}$ is continuous. By the **Tietze extension theorem** [2], there exists an extension g_n of $f_n|_{F_n}$ that is continuous on \mathbb{R}^d , and since $g_n(x) = f_n(x)$ if $x \in F_n$, we have that $g_n \to f$ everywhere it is finite. Finally, as $\varepsilon \to 0$, $m(Q_n \setminus F_n) \to 0$, thus the set of points where f_n doesn't converge to f has measure 0.

22) There exists no everywhere continuous function $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = \chi_{[0,1]}(x)$ a.e.

Proof: Fix a function $f : \mathbb{R} \to \mathbb{R}$ with E denoting the set of points $x \in \mathbb{R}$ where $f(x) \neq \chi_{[0,1]}(x)$, and assume m(E) = 0. To establish a contradiction, suppose f is continuous on \mathbb{R} .

First we consider the case where $0 \notin E$, then we have that f(0) = 1. Fix $0 < \varepsilon < 1$, then since f is continuous at x = 0 we can choose $\delta > 0$ where $x \in (-\delta, \delta) \implies f(x) \in (1 - \varepsilon, 1 + \varepsilon)$. If $-\delta < x < 0$, then we have that $f(x) > 1 - \varepsilon > 0 = \chi_{[0,1]}(x)$, thus if $x \in (-\delta, 0)$ we have $f(x) \neq \chi_{[0,1]}(x)$. This implies that $m(E) \geq m((-\delta, 0)) > 0$ which is a contradiction.

Next, consider the case where $0 \in E$, then $f(0) \neq 1$. Fix $0 < \varepsilon < |1 - f(0)|$ and choose $\delta > 0$ where $x \in (-\delta, \delta) \implies f(x) \in (f(0) - \varepsilon, f(0) + \varepsilon)$. Let $0 < x < \delta$. If f(0) > 1, then $f(x) > f(0) - \varepsilon > 1 = \chi_{[0,1]}(x)$, and if f(0) < 1, then $f(x) < f(0) + \varepsilon < 1 = \chi_{[0,1]}(x)$. Thus, if $x \in (0, \delta)$, then $f(x) \neq \chi_{[0,1]}(x)$, which again implies that $m(E) \geq m((0, \delta)) > 0$, thus obtaining a contradiction.

Since each case leads to a contradiction, we know that f cannot be continuous everywhere, and we are finished.

References

- [1] https://proofwiki.org/wiki/Pointwise_Minimum_of_Measurable_Functions_is_Measurable. Accessed on 10/5/24.
- [2] https://proofwiki.org/wiki/Tietze_Extension_Theorem. Accessed on 10/6/24.