Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Programa del curso

INTELIGENCIA ARTIFICIAL 1 Primer Semestre 2025 Vacaciones Junio

I. INFORMACIÓN GENERAL

Código: 972	Créditos: 4					
Escuela: Ciencias y Sistemas	Área: Ciencias de la Computación					
El curso tiene laboratorio: Si	Categoría: Obligatorio					
Horas magistrales a la semana: 4	Horas de laboratorio a la semana: 2					

Prerrequisitos:

781 - Organización de Lenguajes y Compiladores 2

775 - Sistemas de Bases de Datos 2

724 - Teoría de Sistemas 2

Postrequisitos:

968 - Inteligencia Artificial 2

II. DISTRIBUCIÓN DE SECCIONES

Sección	Edificio	Salón	De:	A:	Lu	Ма	Mi	Ju	Vi	Sa	Catedrático
Α			7:00	9:00	Х	Χ	Х	Χ	Χ		LUIS FERNANDO ESPINO BARRIOS

III. DESCRIPCIÓN DEL CURSO

Este es un curso introductorio tanto teórico como práctico acerca de la inteligencia artificial. La finalidad es resolver problemas de una manera automática y poner en práctica los conocimientos adquiridos para realizar un proyecto de investigación o aplicarlo en su vida profesional. Los temas principales son agentes inteligentes, búsquedas, conocimiento, introducción a Machine Learning, visión y percepción.

IV. COMPETENCIA GENERAL

Que el estudiante conozca y aplique los diferentes algoritmos de inteligencia artificial para resolver problemas mediante sistemas de información.

V. METODOLOGÍA

- Forma: virtual

- Método: deductivo

- Técnicas: expositiva y demostrativa

- Instrumentos: guías de trabajo, hojas de trabajo, ejercicios, preguntas, diálogo y observación
- Las clases magistrales se impartirán en 10 períodos semanales
- El laboratorio se impartirá 10 períodos semanales
- Durante el curso, se asignan 1 proyecto de clase; 1 práctica y 2 proyectos de laboratorio para realizarse de manera individual (tanto laboratorio como clase se debe alcanzar un 61%); así como tareas, ejercicios, prácticas e investigaciones.

VI. CALENDARIZACIÓN

	Junio 2024																			
Unidad 1	2	3	4	5	6															
Parcial 1						9														
Unidad 2							10	11	12	13	16									
Asueto												17								
Parcial 2													18							
Unidad 3														19	20	23	24			
Asueto																		25		
Parcial 3																			26	
Final																				27

VII. CONTENIDO DECLARATIVO

UNIDAD 1: INTRODUCCIÓN, AGENTES INTELIGENTES Y BÚSQUEDAS NO INFORMADAS (10 PERIODOS)

Competencia específica: conoce y diseña algoritmos de búsquedas no informadas para resolver problemas de una manera automática y general, identificando el tipo de agente utilizado.

- 1. Introducción
 - 1.1. Definiciones de inteligencia artificial
 - 1.2. Historia de la inteligencia artificial
 - 1.2.1. Aparición del tema
 - 1.2.2. Primera conferencia
 - 1.2.3. Desarrollos tempranos y posteriores
 - 1.3. Áreas importantes de aplicación
 - 1.3.1. Resolución de problemas
 - 1.3.2. Conocimiento
 - 1.3.3. Aprendizaje
 - 1.3.4. Robótica
 - 1.4. Lenguaje de programación a utilizar en el curso
 - 1.5. Agentes inteligentes
 - 1.5.1. Definición
 - 1.5.2. Entorno de trabajo
 - 1.5.3. Modelos
- 2. Búsquedas no informadas
 - 2.1. Resolución de problemas
 - 2.2. Algoritmos de búsqueda
 - 2.3. Espacio de estados
 - 2.4. Búsquedas no informadas
 - 2.4.1. Búsqueda por anchura
 - 2.4.2. Búsqueda por profundidad
 - 2.5. Otras estrategias de búsquedas informadas
 - 2.5.1. Anchura limitada
 - 2.5.2. Profundidad limitada con backtracking
 - 2.5.3. Profundidad limitada con backjumping
 - 2.5.4. Búsqueda iterativa
 - 2.5.5. Búsqueda bidireccional
- 3. Búsqueda de rutas cortas
 - 3.1. Asignación de pesos o distancias
 - 3.2. Ambientes parcial o totalmente observables
 - 3.3. Algoritmo de Dijkstra
 - 3.4. Algoritmo de costo uniforme

UNIDAD 2: BÚSQUEDAS INFORMADAS, ADVERSARIOS Y GENÉTICOS (10 PERIODOS)

Competencia específica: conoce y diseña algoritmos de búsquedas informadas para resolución de problemas utilizando una adecuada heurística; además una introducción a la teoría de juegos y alcanzado el límite de los árboles de búsqueda utiliza los algoritmos genéticos.

- 4. Búsquedas informadas
 - 4.1. Búsqueda primero el mejor
 - 4.2. Búsqueda de ascenso a las colinas
 - 4.3. Búsqueda por columna
 - 4.4. Algoritmo A*
 - 4.4.1. Definición
 - 4.4.2. Heurística y peso
 - 4.4.3. Formas de implementación
- 5. Teoría de juegos y adversarios
 - 5.1. Definición
 - 5.2. Algoritmo minimax
 - 5.3. Poda alfa beta
- 6. Algoritmos genéticos
 - 6.1. Definición
 - 6.2. Individuos
 - 6.3. Descripción del algoritmo
 - 6.3.1. Selección de padres
 - 6.3.2. Cruce de individuos
 - 6.3.3. Mutación
 - 6.3.4. Reemplazo
 - 6.3.5. Evaluación
 - 6.3.6. Criterio de finalización

UNIDAD 3: INTRODUCCIÓN A MACHINE LEARNING (10 PERIODOS)

Competencia específica: selecciona y diseña algoritmos de aprendizaje automático para clasificación, identificación de patrones e inferencia.

- 7. Aprendizaje supervisado (I)
 - 7.1. Aprendizaje automático
 - 7.2. Clasificación
 - 7.3. Entrenamiento
 - 7.4. Regresión líneal
 - 7.5. Regresión polinómica
 - 7.6. Árboles de decisión
 - 7.7. Implementación con SciKit-Learn
- 8. Aprendizaje supervisado (II)
 - 8.1. Causa y efecto de Bayes
 - 8.2. Redes neuronales
 - 8.2.1. Definición
 - 8.2.2. Clasificación
 - 8.2.3. Perceptron
 - 8.2.4. Evaluación
 - 8.2.5. Función Sigmoide
 - 8.2.6. Entrenamiento
- 9. Aprendizaje no supervisado
 - 9.1. Definición
 - 9.2. Clustering
 - 9.3. K-means
 - 9.4. K-nearest neighbor (supervisado)

UNIDAD 4: CONOCIMIENTO, RAZONAMIENTO, ROBÓTICA Y PLANIFICACIÓN (MATERIAL DE LABORATORIO)

Competencia específica: selecciona y diseña algoritmos de aprendizaje automático para clasificación, identificación de patrones e inferencia.

- 10. Conocimiento y robótica
 - 10.1. Lógica proposicional
 - 10.2. Lógica de primer orden
 - 10.3. Inferencia
 - 10.4. Representación del conocimiento
 - 10.5. Robótica
 - 10.6. Planificación automática
 - 10.7. RPA
 - 10.8. Percepción, visión, modelos gráficos, interacción y realidad aumentada

VIII. CONTENIDO PROCEDIMENTAL

UNIDAD 1:

- Descripción de conceptos
- Análisis diferentes algoritmos de búsqueda no informada
- Identificación de características principales de los algoritmos

UNIDAD 2:

- Conocimiento y aplicación de heurísticas en búsquedas
- Análisis de adversarios
- Aplicación de algoritmos genéticos

UNIDAD 3:

- Definición y conocimiento del aprendizaje automático
- Implementación de aprendizaje no supervisado
- Implementación de aprendizaje supervisado

UNIDAD 4:

- Conocimiento y aplicación de robótica
- Conocimiento y aplicación de programación lógica
- Implementación de realidad aumentada

IX. CONTENIDO ACTITUDINAL

Para todas las unidades: se interesa por el contenido, participa activamente y promueve el aporte del grupo.

X. ACTIVIDADES DE LABORATORIO

Proyectos de laboratorio

El programa de laboratorio y los enunciados de los proyectos los redactará el auxiliar con las siguientes bases.

Proyecto 1

Duración: 2 semana

Fecha aproximada de entrega: 15 de junio

Tema principal: Conocimiento, razonamiento e inferencia

https://pkg.go.dev/github.com/kuba--/golog

https://github.com/ichiban/prolog

(40 puntos)

Proyecto 2

Duración: 2 semanas Tema principal: RPA

https://github.com/go-vgo/robotgo

https://github.com/yasutakatou/rabbitRPA

(60 puntos)

XI. INDICADORES DE LOGRO

- Describe conceptos de inteligencia artificial
- Analiza adecuadamente los diferentes paradigmas funcional y lógico de programación
- Identifica los tipos de agentes inteligentes
- Elabora algoritmos de búsqueda de manera correcta
- Describe y construye heurísticas
- Clasifica de manera correcta los algoritmos de aprendizaje supervisado y no supervisado
- Construye árboles de decisión para ayudar en la toma de decisiones
- Elabora y entrena redes neuronales para solución de un problema

XII. PRODUCTOS DE APRENDIZAJE

Según el Reglamento General de Evaluación y Promoción del Estudiante de la Universidad de San Carlos de Guatemala, la zona tiene valor de 75 puntos, la nota mínima de promoción es de 61 puntos y la zona mínima para optar a examen final es de 36 puntos. El laboratorio se debe aprobar con el 61% de la nota.

3 parciales	50 puntos				
Tareas, prácticas, otras actividades	05 puntos				
Laboratorio	20 puntos				
Zona	75 puntos				
Examen final	25 puntos				
Nota final	100 puntos				

Si se detectara algún tipo de copia se procederá a retirar al estudiante del curso.

XIII. CRITERIOS DE EVALUACIÓN

Conceptual declarativo: demuestra conceptos teóricos y matemáticos de algoritmos de inteligencia artificial mediante preguntas directas en clase.

Procedimental: aplica los conocimientos adquiridos de los algoritmos en hojas de trabajo, ejercicios, trabajo escritos y cursos en línea.

Actitudinal: participa activamente en la clase evaluado mediante la observación.

XIV. RECURSOS DIDÁCTICOS

- Presentación multimedia
- Pizarrón virtual
- Marcadores y almohadilla
- Libros de texto
- Documentos en Internet

XV. BIBLIOGRAFÍA Y RECURSOS

Libro de texto:

- Luis Espino. (2022). Inteligencia Artificial. 2da edición. Guatemala

Libros de referencia:

- Stuart Russell y Perter Norvig. (2010). Artificial Intelligence: A Modern Aproach. 3a ed. Pearson Education.
- Alberto García. (2013). Inteligencia Artificial. Fundamentos, práctica y aplicaciones. Alfaomega. México.

Curso tutorial de Go:

- https://www.codecademy.com/learn/learn-go