

Graph Neural Networks

Graph Deep Learning 2021 - Lecture 2

Daniele Grattarola

March 1, 2021

Roadmap

Things we are going to cover:

- Practical introduction to GNNs
- Message passing
- Advanced GNNs (attention, edge attributes)
- Demo

After the break:

• Spectral graph theory and GNNs

1

Recall: what are we doing?

From CNNs to GNNs

- The receptive field of a CNN reflects the underlying grid structure.
- The CNN has an inductive bias on how to process the individual pixels/timesteps/nodes.

From CNNs to GNNs

- Drop assumptions about underlying structure: it is now an input of the problem.
- The only thing we know: the representation of a node depends on its **neighbors**.

Discrete Convolution

Discrete convolution:

$$(f \star g)[n] = \sum_{m=-M}^{M} f[n-m]g[m]$$

Problems:

- Variable degree of nodes
- Orientation

Notation recap

- Graph: nodes connected by edges;
- $X = [x_1, ..., x_N], x_i \in \mathbb{R}^F$, node attributes or "graph signal";
- $e_{ij} \in \mathbb{R}^S$, edge attribute for edge $i \to j$;
- A, $N \times N$ adjacency matrix;
- D = diag($[d_1, \ldots, d_N]$), diagonal degree matrix;
- L = D A, Laplacian;
- $A_n = D^{-1/2}AD^{-1/2}$, normalized adjacency matrix;
- Reference operator R: $r_{ij} \neq 0$ if $\exists i \rightarrow j$

NOTE: all matrices are symmetric.

A quick recipe for a local learnable filter

Applying R to graph signal X is a **local** action:

$$(\mathsf{RX})_i = \sum_{j=1}^N \mathsf{r}_{ij} \cdot \mathsf{x}_j = \sum_{j \in \mathcal{N}(i)} \mathsf{r}_{ij} \cdot \mathsf{x}_j$$

Instead of having a different weight for each neighbor, we share weights among nodes in the same neighborhood:

$$X' = RX\Theta$$

where $\Theta \in \mathbb{R}^{F \times F'}$.

Powers of R

Let's consider the effect of applying R^2 to X:

$$(\mathsf{RRX})_i = \sum_{j \in \mathcal{N}(i)} \mathsf{r}_{ij} (\mathsf{RX})_j = \sum_{j \in \mathcal{N}(i)} \sum_{k \in \mathcal{N}(j)} \mathsf{r}_{ij} \cdot \mathsf{r}_{jk} \cdot \mathsf{x}_k$$

Key idea: by applying R^K we read from the K-th order neighborhood of a node.

Polynomials of R

To cover all neighbors of order 0 to K, we can just take a polynomial with weights $\Theta^{(k)}$:

$$\mathsf{X}' = \sigma \Big(\sum_{k=0}^K \mathsf{R}^k \mathsf{X} \Theta^{(k)} \Big)$$

Chebyshev Polynomials [1]

A recursive definition using Chebyshev polynomials:

$$T^{(0)} = I$$
 $T^{(1)} = \tilde{L}$
 $T^{(k)} = 2 \cdot \tilde{L} \cdot T^{(k-1)} - T^{(k-2)}$

Where
$$\tilde{\mathsf{L}} = \frac{2\mathsf{L}_n}{\lambda_{\mathsf{max}}} - \mathsf{I}$$
 and $\mathsf{L}_n = \mathsf{I} - \mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2}$

Layer:
$$X' = \sigma \left(\sum_{k=0}^{K} \mathsf{T}^{(k)} \mathsf{X} \Theta^{(k)} \right)$$

^[1] M. Defferrard et al., "Convolutional neural networks on graphs with fast localized spectral filtering," 2016.

Graph Convolutional Networks [2]

Polynomial of order $K \to K$ layers of order 1;

Three simplifications:

$$1. \ \lambda_{\text{max}} = 2 \rightarrow \tilde{\mathsf{L}} = \frac{2\mathsf{L}_n}{\lambda_{\text{max}}} - \mathsf{I} = -\mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2} = -\mathsf{A}_n$$

2.
$$K = 1 \rightarrow X' = X\Theta^{(0)} - A_n X\Theta^{(1)}$$

3.
$$\Theta = \Theta^{(0)} = -\Theta^{(1)}$$

Layer:
$$X' = \sigma\left(\underbrace{(I + A_n)}_{\tilde{A}}X\Theta\right) = \sigma\left(\tilde{A}X\Theta\right)$$

For stability: $\tilde{A} = D^{-1/2}(I + A)D^{-1/2}$

 $[\]tilde{a}_{14}$ \tilde{a}_{14} \tilde{a}_{13} \tilde{a}_{13} \tilde{a}_{13}

^[2] T. N. Kipf et al., "Semi-supervised classification with graph convolutional networks," 2016.

A General Paradigm

Message Passing Neural Networks [3]

^[3] J. Gilmer et al., "Neural message passing for quantum chemistry," 2017.

Message Passing Neural Networks [3]

A general scheme for message-passing networks:

$$\mathsf{x}_{i}' = \gamma \left(\mathsf{x}_{i}, \Box_{j \in \mathcal{N}(i)} \phi \left(\mathsf{x}_{i}, \mathsf{x}_{j}, \mathsf{e}_{ji} \right) \right),$$

- ϕ : **message function**, depends on x_i , x_j and possibly the edge attribute e_{ji} (we call messages m_{ji});
- $\Box_{j \in \mathcal{N}(i)}$: aggregation function (sum, average, max, or something else...);
- γ: update function, final transformation to obtain new attributes after aggregating messages.

^[3] J. Gilmer et al., "Neural message passing for quantum chemistry," 2017.

Models

Graph Attention Networks [4]

- 1. Update the node features: $h_i = \Theta_f x_i$ with $\Theta_f \in \mathbb{R}^{F' \times F}$.
- 2. Compute attention logits: $e_{ij} = \sigma \left(\theta_a^\top [h_i \parallel h_j] \right)$, with $\theta_a \in \mathbb{R}^{2F'}$. 1
- 3. Normalize with Softmax:

$$\mathsf{a}_{ij} = \mathsf{softmax}_j(e_{ij}) = \frac{\mathsf{exp}\left(\mathsf{e}_{ij}\right)}{\sum\limits_{k \in \mathcal{N}(i)} \mathsf{exp}\left(e_{ik}\right)}$$

4. Propagate using the attention coefficients:

$$\mathsf{x}_i' = \sum_{j \in \mathcal{N}(i)} \mathsf{a}_{ij} \mathsf{h}_j$$

 $^{^{1}\|}$ indicates concatenation

^[4] P. Velickovic et al., "Graph attention networks," 2017.

Edge-Conditioned Convolution [5]

Key idea: incorporate edge attributes into the messages.

Consider a MLP $\phi: \mathbb{R}^S \to \mathbb{R}^{FF'}$ called a **filter** generating network:

$$\Theta^{(ji)} = \mathsf{reshape}(\phi(\mathsf{e}_{ji}))$$

Use the edge-dependent weights to compute messages:

$$\mathsf{x}_i' = \Theta^{(i)} \mathsf{x}_i + \sum_{j \in \mathcal{N}(i)} \Theta^{(ji)} \mathsf{x}_j + \mathsf{b}$$

^[5] M. Simonovsky et al., "Dynamic edge-conditioned filters in convolutional neural networks on graphs," 2017.

So which GNN do I use?

GCNConv

Kipf & Welling

ECCConv

Simonovsky & Komodakis

GINConv

TAGConv

ChebConv

Defferrard et al.

GATConv

Velickovic et al.

DiffusionConv

Li et al.

CrystalConv

Xie & Grossman

GraphSageConv

Hamilton et al.

GCSConv

Bianchi et al.

GatedGraphConv

EdgeConv

Wang et al.

ARMAConv

Bianchi et al.

APPNPConv

Klicpera et al.

AGNNConv

Thekumparampil et al.

MessagePassing

Gilmer et al.

A Good Recipe [6]

Message passing scheme:

- Message: $m_{jj} = PReLU \left(BatchNorm \left(\Theta x_j + b \right) \right)$
- Aggregate: $m^{agg} = \sum_{j \in \mathcal{N}(i)} m_{ji}$
- Update: $x' = x \mid\mid m^{agg}$;

Architecture:

- Pre- and post-process node features using 2-layer MLPs;
- 4-6 message passing steps;

^[6] J. You et al., "Design space for graph neural networks," 2020.

How do we use this?

Node-level learning. (e.g., social networks)

Graph-level learning. (e.g., molecules)

Graph Convolution

Discrete Convolution

Recall: CNNs compute a discrete convolution

$$(f \star g)[n] = \sum_{m=-M}^{M} f[n-m]g[m]$$
 (1)

Convolution Theorem

Given two functions f and g, their convolution $f \star g$ can be expressed as:

$$f \star g = \mathcal{F}^{-1} \left\{ \mathcal{F} \left\{ f \right\} \cdot \mathcal{F} \left\{ g \right\} \right\} \tag{2}$$

Where \mathcal{F} is the **Fourier transform** and \mathcal{F}^{-1} its inverse.

Can we use this major property?

What is the Fourier transform?

Key intuition – we are representing a function in a different basis.

From FT to GFT

The eigenvectors of the Laplacian for a path graph can be obtained analytically:

$$\mathbf{u}_{k}[n] = \begin{cases} 1, & \text{for } k = 0\\ e^{i\pi(k+1)n/N}, & \text{for odd } k, k < N - 1\\ e^{-i\pi k n/N}, & \text{for even } k, k > 0\\ \cos(\pi n), & \text{for odd } k, k = N - 1 \end{cases}$$

Looks familiar?

From FT to GFT

- Drop the "grid" assumption
- Replace $e^{-i\frac{2\pi}{N}kn}$ with generic $u_k[n]$:

$$\mathcal{F}_G\{f\}[k] = \sum_{n=0}^{N-1} f[n] u_k[n]$$

- GFT: $\mathcal{F}_G\{f\} = \hat{f} = \mathsf{U}^\top f$;
- $\bullet \ \mathsf{IGFT} \colon \mathcal{F}_{\mathsf{G}}^{-1}\{\hat{f}\} = f = \mathsf{U}\hat{f}$

Graph Convolution

Recall:

- Convolution theorem: $f \star g = \mathcal{F}^{-1} \{ \mathcal{F} \{ f \} \cdot \mathcal{F} \{ g \} \}$
- Spectral theorem: $\mathbf{L} = \mathbf{U} \Lambda \mathbf{U}^{\top} = \sum_{i=0}^{N-1} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}$

Graph filter:
$$U\left(U^{\top}f\odot U^{\top}g\right) = U\cdot \underbrace{\operatorname{diag}(U^{\top}g)}_{g(\Lambda)}\cdot U^{\top}f = \underbrace{U\cdot g(\Lambda)\cdot U^{\top}}_{g(L)}f = g(L)f$$

²⊙ indicates element-wise multiplication

Spectral GCNs

Spectral GCNs

A first idea [7]: transformation of **each individual eigenvalue** is learned with a free parameter θ_i .

Problems:

- O(N) parameters;
- not **localized** in node space (the only thing that we want);
- $U \cdot g(\Lambda) \cdot U^{\top}$ costs $O(N^2)$;

$$g_{ heta}(\Lambda) = egin{bmatrix} heta_0 & & & & & \ & heta_1 & & & & \ & & \ddots & & & \ & & & heta_{N-2} & \ & & & heta_{N-1} \end{bmatrix}$$

^[7] J. Bruna et al., "Spectral networks and locally connected networks on graphs," 2013.

Spectral GCNs

Better idea [7]:

- Localized in node domain ↔ smooth in spectral domain;
- Learn only a few parameters θ_i ;
- Interpolate the other eigenvalues using a smooth cubic spline;

Localized and O(1) parameters, but multiplying by U twice is still expensive.

^[7] J. Bruna et al., "Spectral networks and locally connected networks on graphs," 2013.

Chebyshev Polynomials [1]

The same recursion is used to filter eigenvalues:

$$T^{(0)} = I$$
 $T^{(1)} = \tilde{\Lambda}$
 $T^{(k)} = 2 \cdot \tilde{\Lambda} \cdot T^{(k-1)} - T^{(k-2)}$

^[1] M. Defferrard et al., "Convolutional neural networks on graphs with fast localized spectral filtering," 2016.

References i

- [1] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," in *Advances in Neural Information Processing Systems*, 2016, pp. 3844–3852.
- [2] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in *International Conference on Learning Representations (ICLR)*, 2016.
- [3] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for quantum chemistry," arXiv preprint arXiv:1704.01212, 2017.
- [4] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, "Graph attention networks," *arXiv preprint arXiv:1710.10903*, 2017.
- [5] M. Simonovsky and N. Komodakis, "Dynamic edge-conditioned filters in convolutional neural networks on graphs," in *Proceedings of the IEEE Conference on Computer Vision* and Pattern Recognition, 2017.

References ii

- [6] J. You, R. Ying, and J. Leskovec, "Design space for graph neural networks," arXiv preprint arXiv:2011.08843, 2020.
- [7] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, "Spectral networks and locally connected networks on graphs," *arXiv preprint arXiv:1312.6203*, 2013.