Machine learning I, supervised learning: metrics

Metrics

Let $D = \{x_1, \dots, x_n\} \subset \mathcal{X}$ be a dataset of n samples, with labels $\{y_1, \dots, y_n\} \subset \mathcal{Y}$.

There is a metric in the input space ${\mathcal X}$ and in the output space ${\mathcal Y}.$

- ▶ The **metric** in \mathcal{X} determines to what extent two samples x_i and x_i should be considered similar or dissimilar.
- ▶ The **metric** in \mathcal{Y} determines to what extent two labels y_i and y_j should be considered similar or dissimilar.

This is very important during the complete processing of the data.

Metrics in output space

A **loss function** / is a map that measures the discrepancy between to elements of a set (for instance of a linear space).

$$I: \left\{ \begin{array}{l} \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+ \\ (y,z) \mapsto I(y,z) \end{array} \right.$$

Typically, z can represent our prediction for a given input x, $z = \tilde{f}(x)$, and y the correct label.

Most common losses

"0-1" loss for binary classification.

$$\mathcal{Y} = \{0, 1\} \text{ or } \mathcal{Y} = \{-1, 1\}.$$

$$I(y,z) = 1_{y \neq z} \tag{1}$$

Squared loss for regression

$$\mathcal{Y} = \mathbb{R}$$
.

$$I(y,z) = (y-z)^2 \tag{2}$$

absolute loss for regression.

$$\mathcal{Y} = \mathbb{R}$$
.

$$I(y,z) = |y-z| \tag{3}$$

Cross entropy loss (more advanced)

$$\mathcal{Y} = \{0, 1\}$$

$$I(z,y) = y \log(1 + e^{-z}) + (1 - y) \log(1 + e^{z})$$
 (4)

▶ typically used for logistic regression or neural networks (note that sometimes $\mathcal{Y} = \{-1, 1\}$, and then the writing is different).

Other losses exist and are relevant in some contexts, such as the hinge loss (used for support vector machines).

Geometric metrics

Often, the input space \mathcal{X} is \mathbb{R}^p . We compare p-dimensional vectors, x and y that write $x = (x_1, ..., x_p)$ and $y = (y_1, ..., y_p)$ with each x_i and each y_i a real number. In this case, **geometric** metrics are used.

Geometric distances

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

L₂: $||x - y||_2 = \sqrt{\sum_{k=1}^{p} (x_k - y_k)^2}$ (Euclidian distance, 2-norm distance)

Geometric distances

 $x = (x_1, ..., x_p)$ and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

- L₂: $||x-y||_2 = \sqrt{\sum_{k=1}^{p} (x_k y_k)^2}$ (Euclidian distance, 2-norm distance)
- ► $L_1: ||x-y||_1 = \sum_{k=1}^{p} |x_k y_k|$ (Manhattan distance, 1-norm distance)
- weighted $L_1: \sum_{k=1}^p w_k |x_k y_k|$, with each $w_k > 0$.

Geometric distances

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

- L2: $||x y||_2 = \sqrt{\sum_{k=1}^{p} (x_k y_k)^2}$ (Euclidian distance, 2-norm distance)
- ► L1 : $||x y||_1 = \sum_{k=1}^{p} |x_k y_k|$ (Manhattan distance, 1-norm distance)
- weighted $L_1: \sum_{k=1}^p w_k |x_k y_k|$, with each $w_k > 0$.
- ▶ $||x y||_{\infty}$: max($|x_i y_i|, i \in [1, n]$) (infinity norm distance, Chebyshev distance)

These definitions are also in the memo:

https://github.com/nlehir/MLI_SupervisedLearning/blob/master/documents/Math_memo.pdf

Non-geometric data

Not all data are geometric!

Hamming distance

- ▶ $\#\{x_i \neq y_i\}$ (Hamming distance)
- Levenshtein distance for strings (allows deletions and additions)

General definition of a distance

A **distance** on a set E is an map $d: E \times E \to \mathbb{R}_+$ that must :

- ▶ be symetric : $\forall x, y, d(x, y) = d(y, x)$
- ▶ separate the values : $\forall x, y, d(x, y) = 0 \Leftrightarrow x = y$
- respect the **triangular inequality** $\forall x, y, z, d(x, y) \leq d(x, z) + d(y, z)$

We could verify that the distances defined in the previous slides are all proper distances.

Similarities

Sometimes, it is not possible to define a proper **distance** in the input space \mathcal{X} ! This may happen for instance is \mathcal{X} is a dataset of texts.

- When distances are unavailable, we can use Similarities or Dissimilarity to compare points.
- Dissimilarities are more general and don't always abide by the distance axioms.
- Other examples: Adjacency in an oriented graph, Custom agregated score to compare data.

Example: cosine similarity

The **cosine similarity** may be used to compare texts. If u and v are vectors,

$$S_C(u, v) = \frac{(u|v)}{||u||||v||}$$
 (5)

- the bag of words representation allows us to build a vector from a text (one hot encoding).
- cosine similarity/scraper.py
- cosine similarity/similarity.py

Hybrid data

non-numerical data (text, categorical data.)
See code/metrics/hybrid_data/
This is often the case in machine learning applications! (database of customers, database of cars, etc.)

Sometimes each sample contains both numerical data and