LARGE SCALE PRIVACY PRESERVING BLUETOOTH SENSING

Nelson Gonçalves

Advisers: Carlos Baquero Rui José

LOCATION INFORMATION

- Type of Information that can be used by:
 - Service Providers: improve their service and obtain better understanding of users behavior to further improve future services and infrastructures.
 - Users: get personalized information
- **HOWEVER**, continuous monitoring, processing and storage of location data can create privacy problems.

PRIVACY IS IMPORTANT

- Location Information:
 - expose sensitive information
 - predict future whereabouts. E.g. PleaseRobMe(foursquare +Twitter)
- It might be a decisive factor in the popularity/sustainability of location based services

EXISTING APPROACHES & GOAL

- Regulatory Strategies Government rules
- Privacy Policies Trust-based mechanisms
- Anonymity: Disassociation between individual's personal information and actual identity
- Obfuscation: Degradation of the quality of data
- GOAL: Evaluate Stochastic summarizing techniques as an approach for large scale collaborative sensing scenarios

STOCHASTIC SUMMARIZING TECHNIQUES

- Probabilistic
 - Do not allow original item to be recreated from summary
- Space efficient
 - Size depends only on the number of input elements
- Trade-off between space and accuracy

PROOF OF CONCEPT

- 2 Bluetooth Collaborative Scanning Scenarios
 - Gate Counting
 - Movement Patterns

GATE COUNTING

- · Count the number of unique devices (people) across nodes
 - Bloom Filters and Hash Sketches
- Criteria:
 - Accuracy
 - Size
 - Aggregation

GATE COUNTING RESULTS

Technique Name	Accuracy	Size	Aggregation
Log Log Sketch	+*	++	+
HyperLogLog Sketch	+*	++	+
RIA DC Sketch	+	+	-
RIA LC Sketch	+	+	+
LC Sketch	+	+	+
Bloom Filter	+	-	+
Scalable Bloom Filter	+	-	-

^{*} Bad Performance for small Cardinalities

MOVEMENT PATTERNS

- · Obtain accurate macroscopic information
 - Allowing Plausible Deniability of individual information
- New technique Precedence Filters
 - Counting Bloom Filters and Vector Clocks

PRECEDENCE FILTERS

2 0

Trace: $Z \rightarrow X \rightarrow Y$

MOVEMENT PATTERNS

- Individual Metric
 - False probability "Individual X visited S1 before S2"
- Global Metric
 - Error "2% of the transitions are from Restaurant Y to Cafe Z"

Number Devices : Maximum Trace Size : Average Trace Size

s2808: ||: 4

s10000:11:4 s100000:11:4

Increasing number of devices

s2805: 11:4

s2805 : 50 : 16 s2805 : 100 : 30

Increasing trace sizes

Increasing trace sizes and number of people

CONCLUSION

- · Stochastic summarizing techniques are viable building tools
 - Analysis and use of existing techniques
 - Devised a new technique from existing ones
- Privacy has a cost

GATE COUNTING RESULTS

Accuracy

GATE COUNTING RESULTS

Total Size

Bits per element

s2805: 11:4

r2805: 11:4