Séries Numériques

P. Gosse

1^{er} décembre 2020

1

Généralités

la suite $(R_n = \sum_{k > n+1} u_k)$.

Définition 1.0.1. On dit que la série de terme général u_n converge si et seulement si la suite $(S_n = \sum_{k=0}^n u_k)$ de ses sommes partielles converge vers un réel appelé somme de la série $\sum u_n$. On définit également lorsque cela a un

sens la suite des restes d'ordre n de la série $\sum u_n$ comme

Proposition 1.0.1. On ne change pas la nature d'une

série en modifiant un nombre fini de ses termes (mais on

Exemple 1.0.1. La série géométrique $\sum_{n>0} a^n$ avec $a \in$

 \mathbb{R} converge si et seulement si |a| < 1 et sa somme vaut

Proposition 1.0.2. On note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soient $\sum u_n$ et

 $\sum v_n$ deux séries numériques à termes généraux dans $\mathbb K$ et α un élément de \mathbb{K} . On note $\sum (\alpha u_n + v_n)$ la série de terme

modifie certainement la valeur de sa somme!).

« La valeur d'avoir pendant quelques temps pratiqué avec rigueur une science exacte ne réside pas précisement dans ses résultats car ceux-ci comparés à l'océan de ce qui vaut d'être sû, n'en seront qu'une goutte infiniment petite.

Mais on en retire un surcroît d'énergie, de logique déductive, de ténacité dans l'effort soutenu; on a appris à atteindre un but par des moyens adaptés à ce but. C'est en ce sens qu'il est très précieux, en vue de tout ce que l'on fera plus tard, d'avoir été une fois dans sa vie, homme de science. »

Friedrich Nietzsche

Table des matières

Γ	able des matières		général $\alpha u_n + v_n$. Si les deux séries $\sum u_n$ et $\sum v_n$ ont pour sommes resperctives S et T alors la série $\sum (\alpha u_n + v_n)$ est
L	Généralités	1	$convergente$ et a pour somme $\alpha S+T.$ L'ensemble des séries numériques convergentes est donc
2	Séries à termes positifs	2	un sous espace vectoriel du K espace vectoriel des séries
	2.1 Comparaison et convergence	2	$num\'eriques$ à $termes$ $dans$ $\mathbb{K}.$
3	Séries à termes de signe quelconque	3	Conséquence 1.0.1. La somme du terme général d'une série convergente et du terme général d'une série divergente est
1	Calcul approché de la somme d'une série	3	le terme général d'une série divergente.
	4.1 Séries à termes positifs	3 3 3	Proposition 1.0.3. (Condition nécessaire de convergence) Si une série $\sum u_n$ converge alors $\lim_{n\to+\infty}u_n=0$.
	4.1.3 séries relevant d'une comparaison avec une série de Riemann	3	Remarque 1.1. La réciproque est bien sûr fausse : la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge mais $\lim_{n\to\infty}\frac{1}{n}=0$.
	4.2 Séries à termes de signe quelconque	3 3 3	Définition 1.0.2. Une série $\sum u_n$ dont le terme général ne tend pas vers 0 diverge <i>grosssièrement</i> .
5	Séries à termes complexes	3	Conséquence 1.0.2. Une suite télescopique $\sum_{n\geq 0} (a_n - a_{n+1})$ a même nature que la suite (a_n) et en cas de conver-
3	Produit de Cauchy	4	gence on a $\sum_{n=0}^{+\infty} (a_n - a_{n+1}) = a_0 - \lim_{n \to +\infty} a_n$.

Proposition 1.0.4. (Critère de Cauchy pour les sé-

Une série (à termes réels ou complexes) $\sum u_n$ converge si et seulement si elle vérifie le Critère de Cauchy :

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N}) \colon (\forall n \in \mathbb{N})(\forall p \in \mathbb{N}^*)$$

$$n \ge N \Rightarrow \left| \sum_{k=n+1}^{p} u_k \right| < \varepsilon \quad (1.1)$$

Définition 1.0.3. Une série $\sum u_n$ à termes réels ou complexes est dite absolument convergente si et seulement si la série à termes positifs $\sum |u_n|$ est convergente.

Proposition 1.0.5. Toute série absolument convergente est convergente.

Remarque 1.2. La réciproque est fausse! Comme le montre l'exemple de la série harmonique alternée $\sum_{n\geq 1} \frac{(-1)^n}{n}$.

Séries à termes positifs

2.1Comparaison et convergence

Proposition 2.1.1. Une série à termes positifs converge si et seulement si la suite de ses sommes partielles est majorée. Sinon elle diverge vers $+\infty$.

Proposition 2.1.2. (Règle de Comparaison)

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que $(\forall n \in \mathbb{N}) u_n < v_n$.

- 1. Si la série $\sum v_n$ converge il en est de même de la série $\sum u_n$ et on a $\sum_{n=0}^{+\infty} u_n \le \sum_{n=0}^{+\infty} v_n$.
- 2. Si la série $\sum u_n$ diverge il en est de même de la série $\sum v_n$.

Remarque 2.1. Si la relation $u_n \leq v_n$ n'est vérifiée qu'à partir d'un certain rang, les conclusions quand à la nature des deux séries restent vraies mais en cas de convergence, les relations entre les sommes ne sont en général plus vérifiées.

Proposition 2.1.3. (Règle d'équivalence)

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que $u_n \sim v_n$ quand $n \to +\infty$. Alors

- 1. Les deux séries sont de même nature.
- 2. En cas de convergence les restes d'ordre n sont équivalents.
- 3. En cas de divergence les sommes partielles d'ordre n sont équivalentes.

Proposition 2.1.4. (Règle de Cauchy)

Soit $\sum u_n$ une série à termes positifs telle qu'il existe un réel $k: 0 \le k < 1$ et un rang n_0 à partir duquel on a $\sqrt[n]{u_n} \le$ k alors la série $\sum u_n$ converge.

 $Si u_n \geq 1$ à partir d'un certain rang la série $\sum u_n$ diverge qrossièrement.

Conséquence 2.1.1. Si $\sum u_n$ est une série à termes positifs telle que $\lim_{n\to+\infty} \sqrt[n]{u_n} = l$.

- 1. Si 0 < l < 1 la série converge.
- 2. Si l > 1 la série diverge grossièrement.
- 3. Si l=1 On ne peut pas conclure.

Proposition 2.1.5. Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs telles que $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. Alors

- 1. Si $\sum v_n$ converge alors $\sum u_n$ converge.
- 2. Si $\sum u_n$ diverge alors $\sum v_n$ diverge.

Proposition 2.1.6. (Règle de d'Alembert)

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs telles qu'il existe un réel $k \colon 0 \le k < 1$ et un rang à

partir duquel $\frac{u_{n+1}}{u_n} \leq k$ alors la série converge. Si $\frac{u_{n+1}}{u_n} \geq 1$ à partir d'un certain rang la série diverge grossièrement.

 $Conséquence\ 2.1.2.$ Si $\sum u_n$ est une série à termes positifs telle que $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = l$.

- 1. Si $0 \le l < 1$ la série converge.
- 2. Si l > 1 la série diverge grossièrement.
- 3. Si l=1 On ne peut pas conclure.

Proposition 2.1.7. (Séries de Riemann)

La série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ où α est une constante réelle converge si et seulement si $\alpha > 1$.

Proposition 2.1.8. (Comparaison avec une intégrale)

Soit $\sum u_n$ une série à termes positifs. On pose $u_n = f(n)$. Si f est une fonction à valeurs dans \mathbb{R}_+ , continue, décroissante et de limite nulle à l'infini alors la série $\sum u_n$ et l'intégrale $\int_1^{+\infty} f(t)dt$ sont de même nature.

Conséquence 2.1.3. (Sommation des relations de comparaison pour les séries de Riemann)

Soit α un réel positif.

- 1. Si $\alpha > 1$, $\sum_{k > n+1} \frac{1}{k^{\alpha}} \sim \frac{1}{\alpha-1} \frac{1}{n^{\alpha-1}}$.
- 2. Si $\alpha = 1, \sum_{k=1}^{n} \frac{1}{n} \sim \ln n$.
- 3. Si $\alpha < 1 \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{n^{1-\alpha}}{1-\alpha}$

Remarque 2.2. Tout ce qui vient d'être dit pour des séries à termes positifs peut s'étendre au cas des séries à termes constamment négatifs. Si $\sum u_n$ est une telle série il suffit de poser $v_n = -u_n$ et d'appliquer ce qui précède à v_n .

3 Séries à termes de signe quelconque

Définition 3.0.1. La série $\sum v_n$ à termes réels est dite alternée lorsque son terme général s'écrit $v_n = (-1)^n u_n$ avec (u_n) suite à termes de signe constant (généralement positif).

Proposition 3.0.1. (Théorème Spécial des Séries Alternées: TSSA)

Soit $\sum (-1)^n u_n$ une série alternée avec (u_n) suite à termes positifs. Si la suite (u_n) tend vers 0 lorsque n tend vers $+\infty$ en décroissant alors

- 1. La série est convergente.
- 2. Sa somme S est comprise entre deux sommes partielles consécutives.
- 3. Son reste d'ordre n vérifie :

$$|R_n| \le |(-1)^{n+1}u_{n+1}| = u_{n+1}.$$

Conséquence 3.0.1. (Règle d'étude des séries à termes de signe quelconque)

Pour étudier $\sum u_n$ on effectue un développement asymptotique de son terme général jusqu'à la précision «grand O du premier terme absolument convergent». On étudie la nature des termes qui précèdent. S'il sont tous convergents la série converge. Si un des termes diverge la série diverge également.

4 Calcul approché de la somme d'une série

Le principe du calcul approché de la somme d'une série numérique est de considérer la suite des sommes partielles de rang n (S_n) comme des approximations successives et de précision croissante de la somme réelle S inconnue avec une erreur valant R_n le reste d'ordre n tout aussi inconnu. Le but est donc de trouver un majorant simple de $|R_n|$.

4.1 Séries à termes positifs

4.1.1 Séries relevant de la règle de Cauchy

Proposition 4.1.1. Soit $\sum u_n$ une série à termes positifs. S'il existe une constante réelle $k \colon 0 \le k < 1$ et un rang n_0 à partir duquel on a $\sqrt[n]{u_n} \le k$ alors pour $n \ge n_0$ on aura : $R_n \le \frac{k^{n+1}}{1-k}$.

4.1.2 Séries relevant de la règle de d'Alembert

Proposition 4.1.2. Soit $\sum u_n$ une série à termes positifs. S'il existe une constante réelle $k: 0 \le k < 1$ et un rang n_0

à partir duquel on a $\frac{u_{n+1}}{u_n} \le k$ alors pour $n \ge n_0$ on aura : $R_n \le u_n \frac{k}{1-k}$.

4.1.3 séries relevant d'une comparaison avec une série de Riemann

Proposition 4.1.3. Soit $\sum u_n$ une série à termes positifs. S'il existe un réel $\alpha > 1$ et un rang n_0 à partir duquel on a $0 < u_n \le \frac{1}{n^{\alpha}}$ alors pour $n \ge n_0$ on a

$$\int_{r}^{+\infty} \frac{dx}{x^{\alpha}} - u_n \le R_n \le \int_{r}^{+\infty} \frac{dx}{x^{\alpha}}$$

et donc

$$S_n + \int_n^{+\infty} \frac{dx}{x^{\alpha}} - u_n \le S \le S_n + \int_n^{+\infty} \frac{dx}{x^{\alpha}}$$

Autrement dit : $S_n + \int_n^{+\infty} \frac{dx}{x^{\alpha}}$ est une valeur approchée de la somme S de la série $\sum u_n$ par excès avec une erreur inférieure à u_n .

4.2 Séries à termes de signe quelconque

4.2.1 Séries absolument convergentes

Si $\sum u_n$ une série à termes réels absolument convergente alors $|R_n| \leq \sum_{k=n+1} |u_k|$ et on est ramené à la section 4.1.

4.2.2 Séries relevant du TSSA

La majoration est donnée par le TSSA lui même : $|R_n| \le |u_{n+1}|$.

5 Séries à termes complexes

Dans cette section $\sum u_n$ désigne une série à termes complexes. On pose, pour tout $n \in \mathbb{N}$ $u_n = a_n + ib_n$ avec a_n et b_n les parties réelle et imaginaire de u_n .

Proposition 5.0.1. La série à termes complexes $\sum u_n$ converge si et seulement si les séries à termes réels $\sum a_n$ et $\sum b_n$ convergent et on a

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} a_n + i \sum_{n=0}^{+\infty} b_n.$$

Proposition 5.0.2. Si la série (à termes positifs) des modules $\sum |u_n|$ converge, alors les séries $\sum a_n$ et $\sum b_n$ sont absolument convergentes et la série $\sum u_n$ converge dans \mathbb{C} .

6 Produit de Cauchy

Définition 6.0.1. On appelle produit de Cauchy de deux séries $\sum u_n$ et $\sum v_n$ à termes réels ou complexes, la série de terme général

$$w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{i+j=n} u_i v_j$$

Proposition 6.0.1. Le produit de Cauchy de deux séries à termes positifs $\sum u_n$ et $\sum v_n$ convergentes est convergent et on a:

$$\sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} u_k v_{n-k} \right) = \left(\sum_{n=0}^{+\infty} u_n \right) \left(\sum_{n=0}^{+\infty} v_n \right) \tag{6.1}$$

Le produit de Cauchy de deux séries à termes complexes $\sum u_n$ et $\sum v_n$ dont les séries des modules convergent est convergent (ainsi que la série des modules associée) et on a la relation 6.1.

Le produit de Cauchy de deux séries à termes réels $\sum u_n$ et $\sum v_n$ absolument convergentes est absolument convergent et on a également la relation 6.1.