1. Basic properties of the integers

fi

In this lesson and onwards, we consider \mathbb{Z} to be the set of integers numbers, whereas \mathbb{Z}^+ is the set of strictly positive integers numbers.

Definition 1.1. Let $a, b \in \mathbb{Z}$, with $a \neq 0$, then a is a divisor of b if there is an integer c such that $a \cdot c = b$. We denote this by $a \mid b$.

Remark 1. If *a* does not divide *b*, we write $a \nmid b$.

Theorem 1.1. Let $a, b \in \mathbb{Z} \setminus \{0\}$, there is a unique positive integer d, called the **greatest common divisor of** a **and** b, satisfying

- 1. $d \mid a$ and $d \mid b$.
- 2. If $e \mid a$ and $e \mid b$ then $e \mid d$.

Remark 2. If d is the greatest common divisor of a and b, we write d = (a, b). In particular, if (a, b) = 1, then a and b are called coprimes.

Question 1. Why does (a, b) always exist for $a, b \in \mathbb{Z} \setminus \{0\}$?