Welcome!

Introduction to Computer Architecture

(Computer Organization and Design: ARM Edition)

Instructor:

Abu Asaduzzaman (Zaman) +1-316-978-5261 Abu.Asaduzzaman@wichita.edu

Lecture 3

Reading: See Reading Assignments on Blackboard

Tests: HW-1 (Week 2), HW-2 (Week 3), Quiz-1 (Week 4), ...

- Syllabus; K-Probe return; Computer Architecture; HW-1;
- Introduction to Computers (from zyBooks)
 - > 1.1 Introduction
 - > 1.2 Eight great ideas about computer architecture
 - > 1.3 Below your program
 - > 1.4 Under the covers
 - > 1.5 Technologies for processors and memory
 - > 1.6 Performance

From Syllabus

*** Important *** Please read the syllabus!

ECE 394, Introduction to Computer Architecture, Fall, 2024

(Computer Organization and Design: The Hardware Software Interface)

- Instructor: Abu Asaduzzaman (DRZ)
- Department: Electrical and Computer Engineering (ECE)
- Office Location: 303 Wallace Hall (303-WH) building
- Telephone: +1-316-978-5261
- Email: abu.asaduzzaman@wichita.edu

Textbook: zyBooks: ECE 394: Introduction to Computer Architecture ["Computer Organization and Design: The Hardware / Software Interface, ARM Edition," by David A. Patterson and John L. Hennessy, Morgan Kaufmann, 2017 edition.]

Students will access zyBooks directly. Instructions for students:

- 1) Sign in or create an account at learn.zybooks.com
- 2) Enter zyBook code: WICHITAECE394AsaduzzamanFall2024
- Subscribe
- Preferred Method of Contact: In person during office hours or e-mail
- Classroom, Day/Time: 202-EB, Tuesday & Thursday 9:30-10:45 AM
- Student/Office Hours: Tuesday 11:00-12:30 & Wednesday 10:00-11:30 AM
- Prerequisites: ECE 194 and CS 211
- Teaching Assistant (TA): Grading Md "Raihan" Uddin
- TA Contacts: Grading mxuddin11@shockers.wichita.edu

Grading Assignments/Components	Values (%)
Readings (as assigned on zyBooks.com)	10%
Homework (five of six, take home via Blackboard)	15%
Quiz (two of three, 30-minute during class-time)	10%
Exam-1 (~ Week 5, 65-minute during class-time)	20%
Exam-2 (~ Week 10, 65-minute during class-time)	20%
Exam-3 (cumulative, 65-minute during class-time)	25%

From Syllabus

Brief List of Topics to Cover

Chapter 1: Introduction

- · Eight great ideas in computer architecture
- · Technologies for building processors and memory
- Performance
- From uniprocessors to multiprocessors

Handout: Multilevel Computers

- Evolution of multilevel machines
- · Milestones in computer architecture
- The Computer Zoo

Chapter 3: The Processor

- Building a datapath
- · Parallelism: Pipelining
- · Data hazards, Control hazards

Chapter 4: Memory Hierarchy

- · Memory, Caches
- Virtual memory

Chapter 5: Parallel Processors

- · Parallel processing
- SISD, MIMD, SIMD, SPMD, and vector
- Hardware multithreading
- · Multicore and other shared memory multiprocessors

Tentative Schedule

Tue 1		listed here so that you can organize your time and academic work.
08/20		ECE 394: Intro to Computer Architecture, Syllabus; K-probe; zyBook 1.1 (Intro to Computers); Homework, Quiz, and Exam;
2 08/27	HW-1	HW-1 Discussion; zyBook 1.2-1.5 (eight ideas, processors); HW-1 (due on Blackboard); zyBook 1.6 (performance);
3 09/03	HW-2	9/02 (Labor Day) No Class/Lab; HW-2 (Bb); zyBook 1.7-1.9 (uni- and multiprocessors, Core i7);
4 09/10	Quiz-1	Quiz-1 Discussion; Handout: Multilevel Computers; Quiz-1 (class test, 30-min / 30-pts, closed book);
5 09/17	Exam-1 Exam-1 Discussion; Handout: Computer Generations; Exam-1 (class test, 65-min / 65-pts, closed book);	
6 09/24	Update	zyBook: 3.1 (The Processor: Introduction); zyBook: 3.2-3.3 (The Processor: Datapath, Pipelining);
7 10/01	HW-3	zyBook 3.4-3.5 (Data hazards: Forwarding versus stalling); HW-3 (Bb); zyBook 3.6 (Data hazards and Control hazards);
8 10/08	Mid-Pt HW-4	zyBook 3.7 (Parallelism via instructions); HW-4 (Bb); zyBook 3.8 (Going faster: ILP and matrix multiply);
9 10/15	Fal-Brk Quiz-2	10/12 (Sat) to 10/15 (Tue) (Fall Break) No Class; Quiz-2 (class test, 30-min / 30-pts, closed book);
10 10/22	Exam-2	Exam-2 Discussion; zyBook 4.1 (Memory Hierarchy: Introduction); Exam-2 (class test, 65-min / 65-pts, closed book);
11 10/29	Update	zyBook 4.2-4.3 (Memory Hierarchy: Caches); zyBook 4.4-4.5 (Memory Hierarchy: Virtual memory);
12 11/05	HW-5	zyBook 5.1 (Parallel Processors: Introduction); HW-5 (Bb); zyBook 5.2 (Difficulty of Parallel Processing);
13 11/12	HW-6	zyBook 5.3 (SISD, MIMD, SIMD, SPMD, and vector); HW-6 (Bb); zyBook 5.4 (Hardware multithreading);
14 11/19	Quiz-3	zyBook 5.5-5.6 (Multicore processors, graphics processing units); Quiz-3 (class test, 30-min / 30-pts, closed book);
15 11/26	Thx-Brk	Future of Computers (selected materials); 11/27 (Wed) to 12/01 (Sun) (Thanksgiving Break) No Class;
16 12/03	Exam-3	Exam-3 Discussion; Exam-3 (class test, 65-min / 65-pts, closed book);
Finals		None!
Note: A	date in Co	lumn 1 indicates the Tuesday of that week. Here, 12/03 is Tueday of Week 16.

K-Probe Feedback (37 of 43)

■ Pre-Requisites

- ➤ Mostly A's and B's
- ➤ Some didn't answer

■ Q1 Familiarity

- ➤ 'No' to CPU, machine code/language
- > Need to know all

■ Q2 Decimal to binary

- ➤ Many correct answers
- > Some incorrect answers

Q3 Binary to hexadecimal

- ➤ Many correct answers
- > Some incorrect answers

4 BSCE, 29 BSCS, and 4 BSEE

■ Q4 Real (decimal) to binary

- ➤ Some good tries; no diagram!
- ➤ Many didn't try

■ Q5 Programming in C/C++

- ➤ Some good answers
- ➤ Some incomplete tries
- ➤ Some didn't try

■ Other Concerns

- ➤ Better understanding of computer or system architecture
- ➤ Coding? (CS 211 and ECE 194 knowledge is needed)
- ➤ "I am here to help!" ~ DRZ

Key components of a simple computer system

- CPU (CU, ALU, Registers)
- Memory (Main/Primary Memory, split or unified)
- Bus (collection of wires)

What/how does 'it' do/work?

Computer System:

- Programs
- > Execution

Major Steps to Execute an Instruction

- 1. Instruction Fetch
- 2. Instruction Decode
- 3. Instruction Execution

A logical organization of computer components

- (4) <u>MEM</u>ory access (optional, not for every operation)
- (5) Result Write Back to Main Memory (optional)

Example → **Practice**

- Which of the five <u>steps are needed?</u>
 - 1) [Mem-x] = [Mem-y] + [Mem-z]
 x = y + z;
 (all steps are needed)
 - 2) [Reg-1] = [Reg-2] [Reg-3] (1, 2, and 3 are needed)
 - 3) [Reg-4] = [Mem-a] + 1 (5 not needed)
 - 4) [Mem-b] = 7
 - 5) Go to [Mem-c]

Homework Preparation / Submission

Homework Preparation and Submission

- How to prepare/submit homework?
 - Must have: Course #; Semester; and HW #
 - Must have: Name & WSU ID
 - Must submit: Everything in one single PDF file via Blackboard
 - **>** ...
 - Collaborate, do not cheat!!!
 - ➤ No e-mail submission!
 - Late submission: Penalty 10% per day for five days!!

Homework

> (Blackboard) Discussion on Tuesday, Submission on Thursday

10:57 AM

Dr. Zaman; WSU-5261

Lecture 3

Reading: See Reading Assignments on Blackboard

Tests: HW-1 (Week 2), HW-2 (Week 3), Quiz-1 (Week 4), ...

- Syllabus; K-Probe return; Computer Architecture; HW-1;
- Introduction to Computers (from zyBooks)
 - > 1.1 Introduction
 - > 1.2 Eight great ideas about computer architecture
 - > 1.3 Below your program
 - > 1.4 Under the covers
 - > 1.5 Technologies for processors and memory
 - > 1.6 Performance

1.1 Introduction

- Introduction
 - Transportation, airplane, computer (information revolution)
 - > Electronic computing in the late 1940s
 - Computers in automobiles, cellphones, research, ... (what not?)

True

False

- The information revolution 1) The computing industry has not improved quite as rapidly
 - > 1) False
 - **>** 2) True
 - > 3) False

	as the transportation industry.				
	0	True			
	0	False			
2)	transf	gricultural and industrial revolutions each formed society. Computers have led to a relatively t information revolution.			
	_	True			
	0	False			
3)	applic	uter improvements have led to previously undreamt ations like cell phones, but most signs suggest the vements are now coming to an end.			

1.1 Introduction

Traditional classes of computing applications

> (see zyBooks) Personal Computer (PC), Server, and Embedded

Computer

- > Supercomputer, ...
- > Post-PC ear > Personal inionia perice (Find)
- ➤ Server → Cloud Computing ... Warehouse Scale Computer (WSC)
- > Software as a Service (SaaS) Software and Data over the Internet

1.1 Introduction

- Important questions
 - How are high-level language programs translated into the hardware language, and how does the hardware execute the program?
 - What is performance, and how can a programmer improve it?
 - What techniques can be used by hardware designers to improve performance and energy efficiency?
 - Since 1950, what great ideas did computer architects come up with that lay the foundation of modern computing? (Multicore Systems)

Acronym: A word constructed by taking the initial letters of a string of words. For example: *RAM* is an acronym for Random Access Memory, and *CPU* is an acronym for Central Processing Unit.

1.1 Introduction

- **■** Terabyte (TB) vs. Tebibyte (TiB)
 - 1 TB = 2^12 bytes | 1 TiB = 2^40 bytes

Decimal	Abbreviation	Value	Binary term	Abbreviation	Value	% Larger
kilobyte	КВ	10^{3}	kibibyte	KiB	2^{10}	2%
megabyte	МВ	10^{6}	mebibyte	MiB	2^{20}	5%
gigabyte	GB	10 ⁹	gibibyte	GiB	2^{30}	7%
terabyte	ТВ	10^{12}	tebibyte	TiB	2^{40}	10%
petabyte	РВ	10^{15}	pebibyte	PiB	2^{50}	13%
exabyte	EB	10 ¹⁸	exbibyte	EiB	2^{60}	15%
zettabyte	ZB	10^{21}	zebibyte	ZiB	2^{70}	18%
yottabyte	YB	10^{24}	yobibyte	YiB	2^{80}	21%

Computing Systems: Two Approaches

Computer Architecture: A Multilevel Approach [1]

- ✓ The Tanenbaum and Austin book (Structured Computer Organization)
- √ Higher (human friendly) to lower (machine friendly)
- ✓ Multilevel Computers: https://users.cs.fiu.edu/ ~downeyt/cop3402/levels.html

COMPUTER ARCHITECTURE: A Quantitative Approach [2]

- √ The Hennessy and Patterson book
- ✓ Quantitative principles of computer design: to make the common case fast.
- ✓ To quantify the principles → Amdahl's Law, CPU performance, Principle of Locality, Advantage of Parallelism, etc.
- ✓ Quantitative Principles of Computer Design: http://www.brainkart.com/article/ Quantitative-Principles-of-Computer-Design 8830/

1.2 Eight great ideas about computer architecture

Design for Moore's Law

Practice Questions:

- 1) Assembly lines in automobile manufacturing
- 2) Express elevators in buildings

- 1) Performance via Pipelining
- 2) Make the Common Case Fast

- Performance via prediction
- Hierarchy of memories
- Dependability via redundancy

up and to the right abstract painting icon fast small/sports car multiple jet engines of a plane sequence of pipes fortune-teller's crystal ball

1.2 Eight great ideas about computer architecture

Dependability via Redundancy

Performance via Pipelining

Performance via Prediction

4 Performance via Parallelism

Match the situation with the closest analog of a great idea in computer architecture.

A sister is hanging clothes to dry. Her brother helps by hanging clothes simultaneously.

A brother is washing and drying dishes. His sister helps by drying each dish immediately after the brother washes each.

A mom expects her son will be hungry after a long airplane flight, so she cooks dinner just in case. If he's not hungry, she'll whip up a dessert instead.

A drummer's stick breaks, but he quickly grabs another one and continues playing the song.

1.2 Eight great ideas about computer architecture

Performance via Parallelism	A sister is hanging clothes to dry. Her brother helps by hanging clothes simultaneously. In this case, two people working in parallel can halve the task's time.	Correct
Performance via Pipelining	A brother is washing and drying dishes. His sister helps by drying each dish immediately after the brother washes each. Dividing a task into pieces in a way of improving performance. If pieces are equal sizes, task time may be halved.	Correct
Performance via Prediction	A mom expects her son will be hungry after a long airplane flight, so she cooks dinner just in case. If he's not hungry, she'll whip up a dessert instead.	Correct
	By predicting he'll be hungry, she's able to finish the job (end his hunger) faster than if she waited for him to get home.	
Dependability via Redundancy	A drummer's stick breaks, but he quickly grabs another one and continues playing the song.	Correct
	Having extras/backups is a good idea in many scenarios.	

1.3 Below your program

Abstraction

- Abstraction is a fundamental concept in computing that helps manage complexity by hiding the intricate details of a system and exposing only the essential features.
- It allows one to work with higherlevel concepts without needing to understand the underlying specifics.

Underlying Software

```
High-level language
                             swap(int v[], int k)
program
                             {int temp;
(in C)
                               temp = v[k];
                              v[k] = v[k+1];
                              v[k+1] = temp;
Assembly language
                               LSL X10, X1,3
program
(for LEGv8)
                               ADD X10, X0, X10
                               LDUR X9, [X10,0]
                               LDUR X11, [X10,8]
                               STUR X11, [X10,0]
                               STUR X9, [X10,8]
Binary machine language
program
                        100011011110001000000000000000000
(for LEGv8)
                        100011100001001000000000000000100
                        1010111000010010000000000000000000
                        101011011110001000000000000000100
```

1.3 Below your program

Underlying Software

- High-Level Languages
 - Programming languages that provide a high degree of abstraction from the hardware, making it easier for programmers to write code.
 - A portable language such as C that is composed of words and algebraic notation that can be translated by a compiler into assembly language.

■ Systems software

Software that provides services that are commonly useful, including operating systems, compilers, loaders, and assemblers.

Operating System

> Supervising program that manages the resources of a computer for the benefit of the programs that run on that computer.

1.3 Below your program

Underlying Software

- Compiler
 - A program that translates high-level language statements into assembly language statements.
- Assembler
 - ➤ A program that translates a symbolic version of instructions into the binary version.
- Assembly language
 - > A symbolic representation of machine instructions.
- Machine language
 - > A binary representation of machine instructions.
- Instruction
 - > A command that computer hardware understands and obeys.

1.4 Under the covers

- The underlying hardware in any computer performs the same basic functions: inputting data, outputting data, processing data, and storing data.
- **Important components**
 - > Input device: Keyboard
 - ➤ Output device: Display
 - ➤ Memory: Stores programs and data | Cache: a small fast memory
 - > Dynamic random access memory (DRAM): Integrated Circuit (IC)
 - Static random access memory (SRAM): IC, faster than DRAM
 - > Datapath: Performs operations on data
 - > Control: Signals that determine the operation of the datapath

Underlying Hardware

1.4 Under the covers

- Integrated Circuit (IC)
 - Also called a chip. A device combining dozens to millions of transistors.
- Central Processor Unit (CPU)
 - Also called processor. The active part of the computer, which contains the datapath and control and which adds numbers, and so on.

Underlying Hardware

- Instruction set architecture
 - ➤ Also called architecture. An abstract interface between the hardware and the lowest-level software that encompasses all the information necessary to write a machine language program.

1.4 Under the covers

Underlying Hardware

- > Implementation: Hardware that obeys the architecture abstraction.
- Volatile memory: Storage, such as DRAM, that retains data only if it is receiving power.
- > Nonvolatile memory: Storage that retains data even in the absence of power supply; used to store programs and data. Example: hard disk.
- ➤ Main memory: Also called <u>primary memory</u>. Memory used to hold programs and data while execution; typically consists of DRAM.
- > Secondary memory: Nonvolatile memory used to store programs and data; typically consists of magnetic disks and flash memory.
- ➤ Magnetic disk: Also called hard disk. A form of nonvolatile secondary memory composed of rotating platters.
- > Flash memory: A nonvolatile semiconductor memory.

1.4 Under the covers

Underlying Hardware

■ Five components

10:57 AM

Dr. Zaman; WSU-5261

ECE 394

Introduction to Computer Architecture

Tentative Schedule

rentative Schedule				
Week Tue	Note	Important topics/readings, assignments, due dates, and reminders are listed here so that you can organize your time and academic work.		
1 08/20		ECE 394: Intro to Computer Architecture, Syllabus; K-probe; zyBook 1.1 (Intro to Computers); Homework, Quiz, and Exam;		
2 08/27	HW-1	HW-1 Discussion; zyBook 1.2-1.5 (eight ideas, processors); HW-1 (due on Blackboard); zyBook 1.6 (performance);		
3 09/03	HW-2	9/02 (Labor Day) No Class/Lab; HW-2 (Bb); zyBook 1.7-1.9 (uni- and multiprocessors, Core i7);		
4 09/10	Quiz-1	Quiz-1 Discussion; Handout: Multilevel Computers; Quiz-1 (class test, 30-min / 30-pts, closed book);		
5 09/17	Exam-1	Exam-1 Discussion; Handout: Computer Generations; Exam-1 (class test, 65-min / 65-pts, closed book);		
6 09/24	Update	zyBook: 3.1 (The Processor: Introduction); zyBook: 3.2-3.3 (The Processor: Datapath, Pipelining);		
7 10/01	HW-3	zyBook 3.4-3.5 (Data hazards: Forwarding versus stalling); HW-3 (Bb); zyBook 3.6 (Data hazards and Control hazards);		
8 10/08	Mid-Pt HW-4	zyBook 3.7 (Parallelism via instructions); HW-4 (Bb); zyBook 3.8 (Going faster: ILP and matrix multiply);		
9	Fal-Brk	10/12 (Sat) to 10/15 (Tue) (Fall Break) No Class;		
10/15	Quiz-2	Quiz-2 (class test, 30-min / 30-pts, closed book);		
10 10/22	Exam-2	Exam-2 Discussion; zyBook 4.1 (Memory Hierarchy: Introduction); Exam-2 (class test, 65-min / 65-pts, closed book);		
11 10/29	Update	zyBook 4.2-4.3 (Memory Hierarchy: Caches); zyBook 4.4-4.5 (Memory Hierarchy: Virtual memory);		
12 11/05	HW-5	zyBook 5.1 (Parallel Processors: Introduction); HW-5 (Bb); zyBook 5.2 (Difficulty of Parallel Processing);		
13 11/12	HW-6	zyBook 5.3 (SISD, MIMD, SIMD, SPMD, and vector); HW-6 (Bb); zyBook 5.4 (Hardware multithreading);		
14 11/19	Quiz-3	zyBook 5.5-5.6 (Multicore processors, graphics processing units); Quiz-3 (class test, 30-min / 30-pts, closed book);		
15 11/26	Thx-Brk	Future of Computers (selected materials); 11/27 (Wed) to 12/01 (Sun) (Thanksgiving Break) No Class;		
16 12/03	Exam-3	Exam-3 Discussion; Exam-3 (class test, 65-min / 65-pts, closed book);		
Finals		None!		
Note: A	Note: A date in Column 1 indicates the Tuesday of that week. Here, 12/03 is Tueday of Week 16.			