A(t) = 3c-5t							
After 5 min							
$A(s) = 3e^{-\frac{1}{5}(s)}$							
= 3e ⁻¹							
$=\frac{3}{e}$ qt							

400 gallons of pesticide is accidentally spilled into a lake and uniformly mixes with the water. The volume of the lake including the pesticide is 10⁸ gallons. A river flows into the lake bringing 5,000 gallons of fresh water per minute, and the uniform mixture spills over the dam at the same rate. How long, in minutes, will it take to reduce the pesticide in the lake to a safe level of 1 part per million gallons? (Round your answer to the nearest minute.)

A'(t) =
$$Co \cdot Sooo$$
) - $Co \cdot Sooo$)

= - $Se \cdot SA(t)$
 $A \cdot A = -Se \cdot SA(t)$
 $A \cdot A = -Se \cdot SA(t)$
 $A(t) = -Se \cdot SA(t)$

400 = C
Unique Solution
A(t) = 400 e - Se-st
Find t when A(t) is sofe at I gal per leb gal
1001 X 106 cp1 108 ga1
\ebx=[e8
X=100
100=400e-se-st
$\frac{1}{4} = e^{-Se^{-S}t}$
$\frac{1}{4} = \frac{1}{e^{5c-5t}}$
$\frac{1}{4}e^{Se-St}=1$
e ^{Se-5†} = 4
Se-St=In(4)

A tank contains 500 gallons of salt-free water. A brine containing 0.25 lb of salt per gallon runs into the tank at the rate of $5 \frac{gal}{min}$, and the well-stirred mixture runs out at $5 \frac{gal}{min}$. In pounds per gallon, what is the concentration of salt in the tank at the end of 10 minutes? (Round your answer to four decimal places.)

$$\frac{dA}{dt} = \frac{12S}{100} - \frac{A(t)}{100}$$

$$\frac{dA}{dt} = \frac{12S - A(t)}{100}$$

$$q = e^{kt \cdot c}$$

$$q = Ce^{kt}$$

$$Initial Condition q(0) = 70$$

$$70 = Ce^{0}$$

$$C = 70$$

$$q = 70e^{kt}$$

$$1 \text{ last life condition } q(1600) = 35$$

$$35 = 70e^{k(1600)}$$

$$t = e^{1600t}$$

$$\ln(t) = 1600 \text{ k}$$

$$k = \frac{\ln(t)}{1600}$$

$$q(t) = 70e^{\frac{\ln(t)}{1600}t}$$
After how many years will there he 10 mg of Rondium last 10 = 70e^{\frac{\ln(t)}{1600}t}

$$\frac{1}{7} = e^{\frac{\ln(3)}{1000}} t$$

$$\ln (\frac{1}{7}) = \frac{\ln(3)}{1000} t$$

$$1 = \frac{1600 \ln(5)}{\ln(5)}$$

$$= 4492 \text{ years}$$
A 3D printer was purhased for \$20,000 and has a value of \$17,000 after 2 years of use. Assuming an expandial decay, find the value of the printer orter 8 years of use.

$$y = y_0 e^{\frac{1}{1000}}$$

$$1 = \frac{1600 \ln(5)}{1000}$$

$$1 = \frac{1600 \ln(5)}{1000}$$

$$1 = \frac{1600 \ln(5)}{1000}$$

$$1 = \frac{1600 \ln(5)}{1000}$$

$$1 = \frac{1}{1000} = \frac{1}{100$$

$$k = \frac{1}{2} \ln(\frac{2}{3})$$
 $y = 20,000 e^{\frac{1}{2} \ln(\frac{2}{3}) \frac{1}{2}}$
 $y(8) = 20,000 e^{\frac{1}{2} \ln(\frac{2}{3}) \frac{1}{2}}$
 $= 2892 \text{ years}$

Suppose that \$10,000 is involved in an account for which interest is companding continuously cut 3.11%. What is the value after \$ years? 10 years? After how many years will the account double?

 $A = Pert$
 $A = Pert$
 $A = 10,000 e^{C.0311t}$
 $A(s) = 11682$
 $A(10) = 13647$
 $20000 = 10,000 e^{0.0511t}$
 $2 = e^{0.0711t}$
 $1 = 10.000 e^{0.0711t}$

$$\frac{1}{0.0311}$$

The Lincoln wheat penny was designed by Victor D. Brenner in 1909. Currently, the most valued penny is the 1909 S VDB penny. It was minted in San Francisco and only 484,000 were minted with the initials on the back. In 2015, the S VDB penny in uncirculated condition is worth \$3,200. When will it be worth \$15,000? (Round your answer to the nearest year.)

ne initials on the back. In 2015, the S VDB penny in uncirculated condition is worth \$3,200. When will it be worth \$15,000? (Round your answer t	to the hearest year	ar.)	
$y(t) = y_0 a^t$			
Initial Condition of \$0.01			
THIT COUNTY OF JOS			
$y(t)=0.01a^{t}$			
Initial Condition of 3200 = x(106)			
3200 = 0.01a ¹⁰⁶			
5200 V.OIA			
7 2 6 106			
$3.2eS = a^{106}$			
$ln(3.2eS) = ln(a^{106})$			
lu(3.2es) = 106 lu (a)			
(NC), 2e) - (VB IN CO)			
1 / 1 (1/32 es)			
$\ln(\alpha) = \frac{\ln(3.2es)}{106}$ $\alpha = e^{\frac{\ln(3.2es)}{106}}$			
114/3245)			
a = p 106			
a=1.127			
UTIVILLE IN THE STATE OF THE ST			
General Equation			

y(t) = C.01 • 1.127 t					
Solve for 1.5e	\ = y(t)				
1.5e4 = 0.01 · 1.127					
1.5e6=1.127 ^t					
In (1.5e6)=tIn(1	.(27)				
t=118.9					
Year 2028					
The temperature of	a hot tub i	s 103° and	the vocm -	emportave is	75°
The worler cocks to	90° in 10 m	in. What	is the wa	uter tempor	we
after 20 min?					
T(t)=(To-Tm)e-k	t + Tm				
Plus in values					
T(t)=(103-73))e-kt + 75				
7					
= 28e-kt +75					

$$90 = 28e^{-10k} + 78$$

$$|S = 28e^{-10k}$$

$$\frac{15}{27} = e^{-10k}$$

$$e^{10k} = \frac{27}{15}$$

$$|0k = \ln(\frac{27}{15})$$

$$k = \frac{\ln(\frac{15}{10})}{10}$$

$$= 6.24e - 2$$
Unique Solidian
$$T(t) = 28e^{-6.24e - 2.1} + 78$$
Solve for $t = 20$

$$T(20) = 83.038'^{\circ}$$

After how many minutes will the temporture be
$$80^{\circ}$$
?

 $80 = 28e^{-6.24e-2t} * 75$
 $5 = 28e^{-6.24e-2t}$
 $\frac{28}{28} = e^{-6.24e-2t}$
 $\frac{28}{5} = e^{6.24e-2t}$
 $\frac{1}{5} = e^{6.24e-2t}$

The population of the United States has grown at different rates over ten-year increments as shown by the following table.

Year	Population of U.S.
1930	123.1 million
1940	132.1 million
1950	152.3 million
1960	180.7 million

If the maximum supportable population of the U.S. is 600 million people, use the logistic model to predict the population (in millions of people) of the U.S. in 2005 by using the following years as data points. (Round your answers to one decimal place.)

Using 1930 and 1940 as dorter

$$P(t) = \frac{kP_{o}}{P_{o} + (k - P_{o})e^{-rt}}$$

$$= \frac{600P_{o}}{P_{o} + (600 - P_{o})e^{-vt}}$$

Let 1930 be 4-0

P(1):
$$\frac{7.386e4}{123.1+(476.9)e^{-7x}}$$

This is all Condition P(10) = 132.1

 $|32.1| = \frac{7.386e4}{123.1+(476.9)e^{-10y}}$
 $|.789e^{-3} = \frac{1}{123.1+476.9e^{-10y}}$
 $|.789e^{-3} = \frac{1}{123.1+476.9e^{-10y}}$
 $|.789e^{-3} = \frac{1}{123.1+476.9e^{-10y}}$
 $|.789e^{-3} = \frac{1}{123.1+476.9e^{-10y}}$
 $|.789e^{-3} = 4.36.022$
 $|.789e^{-10x} = 4.36.02$
 $|.789e^{-10x} = 4.36.02$
 $|.789e^{-10x} = 4.36.02$