FTML Exercices 4 solutions

Pour le 10 avril 2025

TABLE DES MATIÈRES

1 Jacobiennes

1

1 JACOBIENNES

F1 Pour tout θ , $h \in \mathbb{R}^d$,

$$f_1(\theta + h) = c = f_1(\theta) \tag{1}$$

On a donc que pour tout θ , $df1_{\theta}(h) = 0$.

Ainsi, la différentielle est l'application nulle, la jacobienne est la matrice nulle de \mathbb{R}^d .

F2 Pour tout θ, $h \in \mathbb{R}^d$,

$$f_2(\theta + h) = 2(\theta + h)$$

$$= 2\theta + 2h$$

$$= f_2(\theta) + 2h$$
(2)

On a donc que pour tout θ , $df2_{\theta}(h) = 2h$, et la jacobienne est donc $2I_d$.

F3 Pour tout θ , $h \in \mathbb{R}^d$,

$$f_{3}(\theta + h) = \|\theta + h\|^{2}$$

$$= \langle \theta + h, \theta + h \rangle$$

$$= \langle \theta, \theta \rangle + 2\langle \theta, h \rangle + \langle h, h \rangle$$

$$= \|\theta\|^{2} + \langle 2\theta, h \rangle + \|h\|^{2}$$
(3)

Comme $||h||^2 = o(h)$, on a que pour tout θ , $df3_{\theta}(h) = \langle 2\theta, h \rangle = (2\theta^T)h$. La jacobienne est donc $2\theta^T$ et le gradient 2θ .

F4 On peut calculer la jacobienne par composition, comme dans les exercices 2. Ici on recalcule tout à la main pour avoir un autre point de vue.

Pour tout θ , $h \in \mathbb{R}^d$,

$$\begin{split} f_{4}(\theta + h) &= \|X(\theta + h) - y\|^{2} \\ &= \|(X\theta - y) + Xh\|^{2} \\ &= \|X\theta - y\|^{2} + 2\langle X\theta - y, Xh\rangle + \|Xh\|^{2} \\ &= \|X\theta - y\|^{2} + \langle 2X^{T}(X\theta - y), h\rangle + \|Xh\|^{2} \end{split} \tag{4}$$

Pour passer de la ligne 3 à la ligne 4, on a utilisé que $\langle x,Ay\rangle = \langle A^Tx,y\rangle$ si les dimensions sont correctement définies.

Comme $||h||^2 = o(h)$, on a que pour tout θ , $df4_{\theta}(h) = \langle 2X^T(X\theta - y), h \rangle = 2(X\theta - y)^TXh$ (on a utilisé le fait que $(AB)^T = B^TA^T$). La jacobienne est donc $2(X\theta - y)^TX$ et le gradient $2X^T(X\theta - y)$.

F5 f₅ est différentiable en (x,y) si et seulement si $x \neq 0$ et $y \neq 0$.

On note $h=(h_x,h_y)\in\mathbb{R}^2$ un déplacement suffisamment petit pour que le signe de $x+h_x$ soit celui de x, et de même pour y.

x > 0 et y > 0

$$f_5(x + h_x, y + h_y) = (x + h_x, y + h_y)$$

= $f_5(x, y) + (h_x, h_y)$ (5)

La jacobienne est donc $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

x > 0 et y < 0

$$f_5(x + h_x, y + h_y) = (x + h_x, -y - h_y)$$

= $f_5(x, y) + (h_x, -h_y)$ (6)

La jacobienne est donc $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

x < 0 et y > 0

$$f_5(x + h_x, y + h_y) = (-x - h_x, y + h_y)$$

= $f_5(x, y) + (-h_x, h_y)$ (7)

La jacobienne est donc $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

x < 0 et y < 0

$$f_5(x + h_x, y + h_y) = (-x - h_x, -y - h_y)$$

= $f_5(x, y) + (-h_x, -h_y)$ (8)

La jacobienne est donc $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$