Shape Recognition and Classification Using Fourier Descriptors

Joseph Frambach

16 April 2007

Abstract

This paper shows a method for shape recognition and classification, which is useful for searching a database of shapes. The method explores three suitable properties of shape analysis to develop Shape Signatures and Fourier descriptors. Fourier descriptors of two similar shapes are compared, to give a reasonable measure of the effectiveness of the Shape Signatures.

I. Introduction

Shape recognition has been a growing field of study since digital computers brought about its inception in the 20th century. However, the general technique that accomplishes this task was developed many years before such modern machinery became available. In 1822, French mathematician Joseph Fourier developed a method of mapping a function to a set of coefficients of a sinusoidal function. This allowed

naturally occurring models to be optimally represented mathematically, while preserving a precise approximation to the original data.

Fourier's transform also preserves an important axiom of inequality: trichotomy. One quantified representation of a shape will either be less than, equal to, or greater than the quantified representation of another shape. This can be extended to imply that given a shape, one can find another shape most like the shape provided. In modern terminology, this means that a database and search engine of shapes can be developed.

In order to construct this application, a reliable method must be found which accurately maps the shape of an object to a quantifiable vector, while minimizing both computation time and the effects of translation, scaling, and rotation. Several techniques have been developed throughout the history of scientific computing. This paper will investigate three elementary methods, and analyze the reliability of the methods.

II. Derivation of Shape Signatures

In the study of linear algebra, a *basis* is a spanning set; every vector of a given vector space can be represented by some linear combination of the elements of the basis. The study of shape classification can be constructed using an analogy to the study of linear algebra.

Let the "vector space" be the universe of two-dimensional objects. The "basis" of this set of objects is referred to as the set of shape signatures. An object is represented by a single shape signature and a combination of translation, rotation, and uniform scaling. Thus, two objects with a different location, rotation, and size may have some linear multiple of the same shape signature, if the objects have the same base shape. A shape signature is simply a function which maps a finite subset of natural numbers to some corresponding property of the object being described. There are many methods of defining a shape signature for a set of objects. This paper will explore three shape signatures: complex coordinates, centroid distance, and curvature.

1. Complex Coordinate

The simplest shape signature, *complex coordinate*, takes the 2-dimensional xy coordinates of the object and maps it to a single complex number:

$$z(n) = x(n) + iy(n)$$

This shape signature does not account for translation, scaling, or rotation, so this signature is limited, but is very effective in describing the minute details of the image. Because it does not account for translation, scaling, and rotation, this shape signature is often used in the field of digital signal processing, which includes audio and video filtering.

2. Centroid Distance

The next shape signature, *centroid distance*, is invariant to translation, but still does not account for rotation, and definitely does not account for scaling. It involves a calculation to find the *centroid* of the object, which is the average of the coordinates:

$$x_c = \frac{1}{N} \sum_{n=0}^{N-1} x(n), y_c = \frac{1}{N} \sum_{n=0}^{N-1} y(n)$$

Once the centroid (x_c, y_c) is found, the shape of the object can be represented as the distance from each point to the centroid.

$$r(n) = \sqrt{[x(n) - x_c]^2 + [y(n) - y_c]^2}$$

3. Curvature

The shape signatures discussed thus far have not handled rotation gracefully. To resolve the issue, the differentiation of successive boundary angles provides a decent shape signature which accounts for both rotation and translation:

$$K(n) = \theta(n) - \theta(n-1)$$

where

$$\theta(n) = \arctan \frac{y(n) - y(n - \delta)}{x(n) - x(n - \delta)}$$

Small values of δ will generate the most detailed shape signature, but many data points are required. This signature handles translation and rotation, but still does not account for scaling.

III. Derivation of Fourier Descriptors

Fourier Descriptors are used in order to derive meaningful, quantifiable information from the shape signature functions. A Fourier descriptor is a set of coefficients which directly describes the shape of the original object. The discrete Fourier transform of shape signature function s(n) is given by:

$$u_n = \frac{1}{N} \sum_{t=0}^{N-1} s(t) e^{\frac{-2i\pi nt}{N}}, n = 0, 1, ..., N-1$$

The meaning of the descriptors depends on the signature used. In the case of the complex coordinates function, the first element in the set is used to show the location of the object, the second element shows the general size of the object, and every other element in the set is required to show the shape of the object. The location of the object, u_0 , is not important, so it is removed. The second element is then used to normalize the size of the object, thus making this shape descriptor scale-invariant. The Fourier descriptor now becomes

$$\mathbf{f} = \left[\frac{|u_2|}{|u_1|}, \frac{|u_3|}{|u_1|}, ..., \frac{|u_{N-1}|}{|u_1|}\right]$$

For the centroid distance and curvature functions, the first element is used to normalize the general size of the object, the lower-order elements in the set describe the general shape of the object, and the higher-order elements describe the finer details of the object. The Fourier descriptor becomes

$$\mathbf{f} = \left[\frac{|u_1|}{|u_0|}, \frac{|u_2|}{|u_0|}, ..., \frac{|u_{N/2}|}{|u_0|}\right]$$

IV. Analysis

Two images of submarines will be used to compare the effectiveness of the three shape signatures. The first step is to outline the images and plot data points along the perimeter (Appendix A). Next, the shape signatures z(n), r(n), and k(n) are computed (Appendix B). From here, the Fourier transforms must be computed (Appendix C), and finally the Fourier descriptors are derived from the Fourier transforms (Appendix D).

Assume a situation where Submarine Two is in a database of images, and Submarine One is given as search criteria. In a real-world application of such a database, the Fourier descriptors would be the only information held in the database about the shape of the object. The purpose of the search is to minimize the distance between Fourier descriptors. The effectiveness of each shape signature's Fourier descriptor can now be calculated. Let Submarine One be the *model shape* f_m , or the model against which the database is searched. Let Submarine Two be the *data shape* f_d , the shape in the database. The distance between the Fourier descriptors of each submarine is calculated as follows:

$$d = \sqrt{\sum_{n=0}^{N_c} |f_m^n - f_d^n|^2}$$

where N_c is the number of Fourier descriptors necessary to complete a thorough search. The numbers retrieved by the searches do not necessarily correlate to any meaningful unit of measure. A successful search will return the lowest differences, even though the quantities may be extremely high or extremely low.

The *complex coordinate* Shape Signature will be the first signature to compare. The Fourier descriptor of this signature is scale-invariant, and it is very effective with describing details of images, so it should fare well. The Euclidean distance for the *complex coordinate* Shape Signature is calculated here:

$$dz = \sqrt{\sum_{n=0}^{57} |f_m^n - f_d^n|^2} = 2.8122$$

The *centroid distance* Shape Signature is the next signature to compare. The Fourier descriptor of this signature is both translation- and scale-invariant, so it should do just as well as the *complex coordinate* signature. The Euclidean distance for the *centroid distance* Shape Signature is calculated here:

$$d_r = \sqrt{\sum_{n=0}^{29} |f_m^n - f_d^n|^2} = 4.0570$$

The *curvature* Shape Signature is the last signature to compare. Although the Fourier descriptor of this signature is both translation- and scale-invariant, the signature is only useful in recognizing general shapes, because a relatively small amount of data points was taken. The Euclidean distance for the *curvature* Shape Signature is calculated here:

$$d_k = \sqrt{\sum_{n=0}^{29} |f_m^n - f_d^n|^2} = 29.2078$$

V. Results

Given 60 data points on two images of similar submarines (*Appendix A*), the Euclidean distance between the *complex coordinate* Fourier descriptors was 2.8122, the Euclidean distance between the *centroid distance* Fourier descriptors was 4.0570, and the Euclidean distance between the *curvature* Fourier descriptors was 29.2078.

Further detail on the data points can be found in *Appendix A*. Information regarding Shape Signatures can be found in *Appendix B*, Fourier transforms are in *Appendix C*, and Fourier descriptors are in *Appendix D*.

I.Conclusion

Based on the results, it is likely that the *complex coordinate* Shape Signature will provide the best search results in a naïve search application. This assumption agrees with research conducted by D. S. Zhang and G. Lu, which showed that the *complex coordinate* Shape Signature provided drastically better search results, the *centroid distance* Shape Signature provided mediocre results, and the *curvature* Shape Signature provided inadequate search results.

Appendix A – Image Outline and Data Points

Submarine One

Y

ATOMIC SUBMARINE

aft control steam

507 24

21

486

464 19

396 16

372 16

348 16

326 16

303 17

279 15

256 14

233 14

210 14

186 15

163 17

138 20

115 23

92 24

1

5

48 10

42 34

19 38

44 72

57 88

73 74

94 64

117 69

140 72

165 76

186 80

210 80

233 86

256 86

279 85

302 85

325 85

347 87

394 88

412 100

429 163

436 141

437 164

448 144

450 163

456 143

471 130

473 107

475 84

498 80

522 77

542 69

Submarine Two

х у

426 181

415	148
425	138
401	134
379	127
358	119
337	109
313	101
292	92
269	85
247	76
224	68
201	58
179	49
155	41
135	29
114	31
95	19
73	11
52	6
37	20
31	1
18	25
20	47
42	58

62	83
69	64
86	77
105	89
126	100
146	113
164	126
186	135
208	144
230	150
241	169
230	191
251	201
259	213
258	232
269	208
275	224
277	244
279	270
280	251
280	233
281	210
286	235
287	211
292	227

300	214
305	197
308	175
329	180
350	187
370	194
392	201
415	201

Appendix B – Shape Signatures

Submarine z	0 ne -	Shape S	Signatures k
553 + 56i		251.987	
		248.945	
549 + 41i			
529 + 31i		230.275	
507 + 24i		209.764	
486 + 21i		189.861	
464 + 19i		169.042	
441 + 18i		147.325	
418 + 16i		126.451	
396 + 16i		106.454	18 -0.0867
372 + 16i		85.768	2 0
348 + 16i		67.31	.3 0
326 + 16i		54.347	73 0
303 + 17i		47.369	5 -0.0435
279 + 15i		54.077	
256 + 14i		67.616	
233 + 14i		84.722	
210 + 14i		104.123	
186 + 15i		125.272	
163 + 17i		146.033	
138 + 20i			
		169.066	
115 + 23i		190.683	
92 + 24i		213.003	
70 + 15i		236.355	
48 + 10i		258.915	
42 + 34i		260.919	
19 + 38i		283.378	
13 + 52i		288.413	
31 + 53i		270.387	6 -5.0618
44 + 72i		257.264	3 0.9152
57 + 88i		245.294	4 -0.0823
73 + 74i		228.354	7 -1.6073
94 + 64i		207.150	0.2744
117 + 69i		184.209	0.6585
140 + 72i		161.332	3 -0.0844
165 + 76i		136.648	9 0.029
186 + 80i		116.210	9 0.0296
210 + 80i		92.486	6 -0.1882
233 + 86i		71.511	
256 + 86i		50.079	
279 + 85i		30.294	
302 + 85i		20.684	
325 + 85i		31.558	
347 + 87i		51.146	
371 + 88i		73.750	
394 + 88i		95.818	
412 + 100i		116.446	
		128.966	
424 + 142i		145.341	
429 + 1631		161.495	
436 + 141i		155.120	
437 + 164i		168.489	
448 + 144i		167.06	
450 + 163i		178.581	
456 + 143i		173.686	
471 + 130i		182.10	
473 + 107i		177.067	
475 + 84i		174.958	
498 + 80i		197.472	
522 + 77i		221.212	
542 + 69i		240.895	2 -0.2562

Centroid Distance

Curvature

Submarine Two - Shape Signatures \mathbf{r} k 426 + 181i 200.2416 -1.068 2.5933 425 + 159i 195.1042 415 + 148i 183.9582 -0.6924 425 + 138i 193.3907 -1.6184 401 + 134i 169.322 0.9505 379 + 127i 147.425 0.1429 358 + 119i 127.052 0.0559 337 + 109i 107.9394 0.0804 87.2589 -0.1227 313 + 101i 292 + 92i 72.736 0.0831 269 + 85i 60.5232 -0.1095 247 + 76i 58.6841 0.0929 224 + 68i 65.105 -0.0536 201 + 58i 80.7099 0.0754 179 + 49i 98.8578 -0.0218 155 + 41i 119.4992 -0.0666 135 + 29i141.7427 0.2187 114 + 31i155.5059 -0.6354 95 + 19i 177.7601 0.6583 73 + 11i 199.9478 -0.2145 -0.115 52 + 6i 219.8325 37 + 20i 224.9258 -0.9847 31 + 1i 240.0115 2.0158 18 + 25i 239.2678 3.9439 20 + 47i228.3545 -3.7287 42 + 58i 203.844 -1.0165 42 + 78i197.3991 1.1071 62 + 83i 176.7981 -1.3258 69 + 64i 176.5749 4.8204 86 + 77i 155.9505 -4.4125 105 + 89i 133.9925 -0.0895 126 + 100i 110.6119 -0.0808 146 + 113i 87.9077 0.0939 164 + 126i 68.0092 0.0491 186 + 135i 45.7437 -0.2372 208 + 144i 26.2626 0 230 + 150i 17.4315 -0.1221 241 + 169i 0.7797 37.525 230 + 191i 4.13 58.3743 251 + 201i 71.0272 -4.7316 259 + 213i 84.8665 0.5384 258 + 232i 102.7764 3.7822 269 + 208i 84.0842 0.3772 275 + 224i 101.0997 -3.9301 277 + 244i 120.2182 0.2591 279 + 270i 145.2718 0.0229 280 + 251i 127.8328 3.2709 280 + 233i 111.376 -0.0526281 + 210i 91.7342 0.0435 286 + 235i 115.8699 -3.3824 287 + 211i 95.9096 3.3806 292 + 227i 111.9822 -3.4861 300 + 214i 106.2308 -2.2871 305 + 197i 97.5513 6.0176 87.2798 308 + 175i -0.1505 329 + 180i 108.2246 -4.6142 350 + 187i 130.2028 0.088 370 + 194i 151.312 0.0149 392 + 201i 174.279 -0.0286 415 + 201i 195.6444 -0.3081

Centroid Distance

Curvature

Appendix C – Fourier Transforms

Submarine One - Fourier Transforms

Z	r	k
82.8909e+000 + 35.2758e+000i	-2.0617e+000 - 8.1206e+000i	-27.2301e-003 + 21.6522e-003i
-17.2349e+000 - 15.8116e+000i	40.4767e+000 + 23.5085e+000i	-104.8019e-003 + 43.7695e-003i
2.0511e+000 - 9.5292e+000i	-4.6382e+000 - 14.8185e+000i	-29.9596e-003 - 79.3278e-003i
4.9376e+000 - 8.0591e+000i	1.8452e+000 - 8.2299e+000i	-87.9046e-003 - 70.4363e-003i
4.4709e+000 - 1.0080e+000i	3.2083e+000 - 1.7295e+000i	99.7840e-003 - 35.5089e-003i
765.2211e-003 + 1.0552e+000i	-250.6347e-003 +657.3209e-003i	-77.7473e-003 - 70.3739e-003i
896.2290e-003 - 2.1779e+000i	1.5873e+000 - 2.6649e+000i	17.6576e-003 + 28.5972e-003i
1.1575e+000 -653.7713e-003i	1.3954e+000 - 1.6005e+000i	-86.4970e-003 -127.0563e-003i
1.6883e+000 + 85.5440e-003i	458.7923e-003 -324.5796e-003i	-54.4626e-003 - 58.0756e-003i
884.8076e-003 + 1.3380e+000i	121.5692e-003 -843.9317e-003i	-20.9217e-003 -163.8405e-003i
-1.0195e+000 -117.8659e-003i	1.2322e+000 + 83.9350e-003i	-35.3170e-003 -144.3066e-003i
304.7698e-003 +586.1825e-003i	99.8144e-003 + 54.1149e-003i	49.3023e-003 -114.0047e-003i
-139.4598e-003 - 1.3724e+000i	82.6379e-003 +190.6328e-003i	37.7588e-003 -143.9231e-003i
371.6224e-003 + 1.5283e+000i	-63.8415e-003 -415.0446e-003i	50.8613e-003 - 31.0031e-003i
83.3333e-003 -833.3333e-003i	-7.9017e-003 +557.2567e-003i	56.9883e-003 -118.2450e-003i
-693.1669e-003 +987.0066e-003i	189.0321e-003 -244.8542e-003i	124.7847e-003 - 47.0411e-003i
213.6083e-003 -217.1481e-003i	-340.9202e-003 +539.7897e-003i	176.3306e-003 + 39.7490e-003i
-903.2360e-003 +465.5868e-003i	10.9964e-003 +258.9653e-003i	203.8706e-003 +130.9357e-003i
55.9054e-003 + 18.5656e-003i	-883.7926e-003 - 21.0376e-003i	-28.4751e-003 +273.2975e-003i
-380.6624e-003 -119.7756e-003i	184.3342e-003 + 29.6051e-003i	97.9983e-003 +207.4362e-003i
-298.1320e-003 -259.0670e-003i	-122.7671e-003 -320.1173e-003i	-229.8372e-003 +147.7896e-003i
-100.5002e-003 - 65.1484e-003i	-138.0963e-003 +258.6468e-003i	216.4648e-003 +251.3619e-003i

-328.9390e-003 -789.4964e-003i	-79.7800e-003 -203.7590e-003i	-245.6371e-003 + 95.0141e-003i
699.6131e-003 -314.4869e-003i	-379.4644e-003 - 98.5969e-003i	36.7877e-003 +489.2871e-003i
862.4471e-003 -141.9873e-003i	342.4089e-003 -350.7372e-003i	-355.7973e-003 - 89.4911e-003i
469.9707e-003 +823.4820e-003i	220.0883e-003 -250.0195e-003i	-360.0525e-003 +280.2485e-003i
-80.1063e-003 +911.3670e-003i	482.9876e-003 +263.8768e-003i	-70.5205e-003 -567.2715e-003i
-1.1355e+000 +153.0073e-003i	114.0003e-003 +292.1026e-003i	-186.9481e-003 -129.8612e-003i
-355.8750e-003 -582.9902e-003i	-359.3108e-003 +362.5225e-003i	645.2423e-003 -394.9092e-003i
50.0000e-003 - 1.1667e+000i	-64.8983e-003 +199.0613e-015i	120.3533e-003 +4.4235e-015i
776.2429e-003 -112.2681e-003i	-359.3108e-003 -362.5225e-003i	645.2423e-003 +394.9092e-003i
988.0027e-003 +169.1426e-003i	114.0003e-003 -292.1026e-003i	-186.9481e-003 +129.8612e-003i
-274.8097e-003 +928.8034e-003i	482.9876e-003 -263.8768e-003i	-70.5205e-003 +567.2715e-003i
-6.4678e-003 +597.6786e-003i	220.0883e-003 +250.0195e-003i	-360.0525e-003 -280.2485e-003i
-1.0120e+000 -298.5257e-003i	342.4089e-003 +350.7372e-003i	-355.7973e-003 + 89.4911e-003i
-82.5917e-003 - 14.2024e-003i	-379.4644e-003 + 98.5969e-003i	36.7877e-003 -489.2871e-003i
124.8219e-003 -923.3108e-003i	-79.7800e-003 +203.7590e-003i	-245.6371e-003 - 95.0141e-003i
71.0174e-003 +656.4856e-003i	-138.0963e-003 -258.6468e-003i	216.4648e-003 -251.3619e-003i
271.1651e-003 -308.9371e-003i	-122.7671e-003 +320.1173e-003i	-229.8372e-003 -147.7896e-003i
-669.3376e-003 +486.4422e-003i	184.3342e-003 - 29.6051e-003i	97.9983e-003 -207.4362e-003i
-100.2979e-003 -231.6011e-003i	-883.7926e-003 + 21.0376e-003i	-28.4751e-003 -273.2975e-003i
-438.0501e-003 -381.2729e-003i	10.9964e-003 -258.9653e-003i	203.8706e-003 -130.9357e-003i
120.9255e-003 -491.2773e-003i	-340.9202e-003 -539.7897e-003i	176.3306e-003 - 39.7490e-003i
296.6416e-003 +156.7741e-003i	189.0321e-003 +244.8542e-003i	124.7847e-003 + 47.0411e-003i
-83.3333e-003 -200.0000e-003i	-7.9017e-003 -557.2567e-003i	56.9883e-003 +118.2450e-003i
-90.1439e-003 +474.6797e-003i	-63.8415e-003 +415.0446e-003i	50.8613e-003 + 31.0031e-003i
523.2953e-003 -871.5408e-003i	82.6379e-003 -190.6328e-003i	37.7588e-003 +143.9231e-003i

1.0949e+000 +575.8402e-003i	99.8144e-003 - 54.1149e-003i	49.3023e-003 +114.0047e-003i
925.7943e-003 + 1.4987e+000i	1.2322e+000 - 83.9350e-003i	-35.3170e-003 +144.3066e-003i
365.1924e-003 + 1.8287e+000i	121.5692e-003 +843.9317e-003i	-20.9217e-003 +163.8405e-003i
-908.8714e-003 + 1.3435e+000i	458.7923e-003 +324.5796e-003i	-54.4626e-003 + 58.0756e-003i
1.5969e+000 + 1.8220e+000i	1.3954e+000 + 1.6005e+000i	-86.4970e-003 +127.0563e-003i
-392.8404e-003 +869.5647e-003i	1.5873e+000 + 2.6649e+000i	17.6576e-003 - 28.5972e-003i
1.3594e+000 + 4.6938e+000i	-250.6347e-003 -657.3209e-003i	-77.7473e-003 + 70.3739e-003i
-521.2928e-003 -818.1410e-003i	3.2083e+000 + 1.7295e+000i	99.7840e-003 + 35.5089e-003i
2.9853e+000 + 4.6416e+000i	1.8452e+000 + 8.2299e+000i	-87.9046e-003 + 70.4363e-003i
13.2180e+000 - 3.9719e+000i	-4.6382e+000 + 14.8185e+000i	-29.9596e-003 + 79.3278e-003i
1.6861e+000 + 17.7128e+000i	40.4767e+000 - 23.5085e+000i	-104.8019e-003 - 43.7695e-003i
138.8425e+000 - 25.1749e+000i	-2.0617e+000 + 8.1206e+000i	-27.2301e-003 - 21.6522e-003i
301.1500e+000 + 64.3333e+000i	155.5095e+000 + 3.5995e-012i	3.3333e-006 -6.7186e-015i

Submarine Two - Fourier Transforms

z	r	k
28.2484e+000 + 47.6445e+000i	-633.7319e-003 - 15.6402e+000i	-61.6612e-003 -5.0725e-003i
10.9222e+000 - 34.2017e+000i	14.3076e+000 + 20.7911e+000i	-64.8139e-003 - 43.6820e-003i
9.1511e+000 -2.6005e+000i	9.9356e+000 - 22.4156e+000i	57.2009e-003 - 66.0460e-003i
1.6250e+000 -220.2465e-003i	4.8313e+000 -4.7326e+000i	-67.6055e-003 -3.4070e-003i
2.3897e+000 -351.3140e-003i	-1.0531e+000 -236.2312e-003i	57.7889e-003 - 36.9786e-003i
-1.0285e+000 +988.3749e-003i	1.6218e+000 -1.9918e+000i	-8.5394e-003 +3.0124e-003i
1.1132e+000 +893.0395e-003i	199.9535e-003 +1.7992e+000i	-91.2901e-003 - 40.3470e-003i
521.5267e-003 +1.2756e+000i	1.8961e+000 -1.6057e+000i	86.0010e-003 -132.7480e-003i
-1.2829e+000 +4.2773e+000i	1.7283e+000 +1.0370e+000i	111.3795e-003 -181.3210e-003i

-2.0484e+000 -628.8675e-003i	-288.4692e-003 +2.7160e+000i	231.2992e-003 +157.2745e-003i
5.3380e-003 -147.6011e-003i	-1.5385e+000 -296.9555e-003i	76.4628e-003 + 16.6721e-003i
1.1351e+000 -441.5643e-003i	767.8263e-003 -370.3297e-003i	-273.4304e-003 +189.4580e-003i
383.3171e-003 +1.2478e+000i	590.3853e-003 -533.5908e-003i	221.1522e-003 -215.4155e-003i
-391.6754e-003 -200.0512e-003i	488.3869e-003 +735.5145e-003i	-172.7855e-003 +335.4639e-003i
250.0000e-003 -1.4833e+000i	-379.3533e-003 -566.1000e-003i	-324.0200e-003 +235.8500e-003i
1.8385e+000 - 15.5634e-003i	217.1016e-003 -1.5615e+000i	-412.1834e-003 -318.8845e-003i
-259.3732e-003 +898.6467e-003i	1.1414e+000 -105.9450e-003i	-90.9751e-003 - 24.8224e-003i
238.5416e-003 -771.8569e-003i	384.9616e-003 - 58.9224e-003i	-189.9889e-003 - 69.8804e-003i
-416.7943e-003 +406.5284e-003i	-171.2125e-003 -327.0724e-003i	24.0316e-003 -458.5899e-003i
-412.5215e-003 +652.0726e-003i	39.4592e-003 +577.5798e-003i	416.9458e-003 +224.6369e-003i
-649.2564e-003 -1.3381e+000i	-825.9062e-003 - 49.9526e-003i	176.4123e-003 +130.2512e-003i
410.8545e-003 +619.9181e-003i	-385.3111e-003 -267.1571e-003i	-54.1311e-003 +324.0403e-003i
-87.4990e-003 +575.8194e-003i	161.2506e-003 -222.3520e-003i	313.3492e-003 +103.7406e-003i
-430.5664e-003 +206.1649e-003i	52.2137e-003 +603.3494e-003i	-388.8413e-003 +297.1610e-003i
-6.3351e-003 +601.3140e-003i	33.7310e-003 +216.1862e-003i	205.2961e-003 -112.1814e-003i
-505.6242e-003 -349.5922e-003i	-115.6533e-003 +597.1153e-003i	-141.0812e-003 - 66.0094e-003i
-345.1072e-003 + 85.4370e-003i	-286.7459e-003 +134.2732e-003i	183.8273e-003 - 45.0737e-003i
1.5256e+000 -589.8719e-003i	-689.7709e-003 +106.9836e-003i	78.7046e-003 +6.8526e-003i
897.2325e-003 -128.8506e-003i	1.0214e+000 -1.2418e+000i	167.1455e-003 +261.9712e-003i
716.6667e-003 +1.9500e+000i	1.1032e+000 +176.5886e-015i	-439.3933e-003 -6.8461e-015i
-844.6011e-003 - 52.6033e-003i	1.0214e+000 +1.2418e+000i	167.1455e-003 -261.9712e-003i
-611.3190e-003 -922.0718e-003i	-689.7709e-003 -106.9836e-003i	78.7046e-003 -6.8526e-003i
292.1481e-003 -536.5860e-003i	-286.7459e-003 -134.2732e-003i	183.8273e-003 + 45.0737e-003i
282.9192e-003 + 25.3001e-003i	-115.6533e-003 -597.1153e-003i	-141.0812e-003 + 66.0094e-003i

-81.6987e-003 -861.0357e-003i	33.7310e-003 -216.1862e-003i	205.2961e-003 +112.1814e-003i
377.2060e-003 +922.5244e-003i	52.2137e-003 -603.3494e-003i	-388.8413e-003 -297.1610e-003i
-707.0189e-003 -211.8394e-003i	161.2506e-003 +222.3520e-003i	313.3492e-003 -103.7406e-003i
-1.2311e+000 +101.7534e-003i	-385.3111e-003 +267.1571e-003i	-54.1311e-003 -324.0403e-003i
1.0193e+000 -663.2334e-003i	-825.9062e-003 + 49.9526e-003i	176.4123e-003 -130.2512e-003i
-1.2208e+000 +247.9274e-003i	39.4592e-003 -577.5798e-003i	416.9458e-003 -224.6369e-003i
1.1512e+000 +578.6311e-003i	-171.2125e-003 +327.0724e-003i	24.0316e-003 +458.5899e-003i
606.0211e-003 +240.1619e-003i	384.9616e-003 + 58.9224e-003i	-189.9889e-003 + 69.8804e-003i
-391.6243e-003 +2.0729e+000i	1.1414e+000 +105.9450e-003i	-90.9751e-003 + 24.8224e-003i
-264.0607e-003 +475.9435e-003i	217.1016e-003 +1.5615e+000i	-412.1834e-003 +318.8845e-003i
216.6667e-003 -250.0000e-003i	-379.3533e-003 +566.1000e-003i	-324.0200e-003 -235.8500e-003i
75.0037e-003 +408.5536e-003i	488.3869e-003 -735.5145e-003i	-172.7855e-003 -335.4639e-003i
1.1645e+000 +914.3079e-003i	590.3853e-003 +533.5908e-003i	221.1522e-003 +215.4155e-003i
-1.5984e+000 + 79.5416e-003i	767.8263e-003 +370.3297e-003i	-273.4304e-003 -189.4580e-003i
725.3682e-003 -1.3701e+000i	-1.5385e+000 +296.9555e-003i	76.4628e-003 - 16.6721e-003i
2.2817e+000 -571.1325e-003i	-288.4692e-003 -2.7160e+000i	231.2992e-003 -157.2745e-003i
1.6747e+000 +3.3283e+000i	1.7283e+000 -1.0370e+000i	111.3795e-003 +181.3210e-003i
273.4382e-003 -168.2378e-003i	1.8961e+000 +1.6057e+000i	86.0010e-003 +132.7480e-003i
-72.4065e-003 +3.7578e+000i	199.9535e-003 -1.7992e+000i	-91.2901e-003 + 40.3470e-003i
2.1339e+000 +343.3201e-003i	1.6218e+000 +1.9918e+000i	-8.5394e-003 -3.0124e-003i
-168.3013e-003 +3.8444e+000i	-1.0531e+000 +236.2312e-003i	57.7889e-003 + 36.9786e-003i
4.8080e+000 +8.5977e+000i	4.8313e+000 +4.7326e+000i	-67.6055e-003 +3.4070e-003i
2.1733e+000 +680.7102e-003i	9.9356e+000 + 22.4156e+000i	57.2009e-003 + 66.0460e-003i
-1.2126e+000 + 28.2959e+000i	14.3076e+000 - 20.7911e+000i	-64.8139e-003 + 43.6820e-003i
118.9575e+000 +187.5809e-003i	-633.7319e-003 + 15.6402e+000i	-61.6612e-003 +5.0725e-003i

128.4392e+000 +2.8548e-012i

Appendix D - Fourier Descriptors

Submarine One - Fourier Descriptors k 0.4167526 5.5869000 3.2646000 0.4040919 1.8533000 2.4374000 1.0067000 0.1959508 3.2379000 0.0557289 0.4350286 3.0444000 0.1006907 0.0839660 3.0144000 0.0568390 0.3702212 0.9660836 0.0722754 0.2534358 4.4182000 0.0670788 2.2886000 0.06858170.0438802 0.1017694 4.7478000 0.0282472 0.1474148 4.2704000 0.0589781 0.0135519 3.5703000 0.0672481 0.0247994 4.2770000 0.0358068 0.0501213 1.7122000 0.0515665 0.0665195 3.7730000 0.0130232 0.0369212 3.8333000 0.0434464 0.07620215.1957000 0.0025186 0.0309373 6.9647000 0.0170619 0.1055172 7.8983000 0.0222836 6.5946000 0.0168868 0.0051207 0.0409219 7.8545000 0.0365675 0.0349962 9.5352000 0.0327951 0.0261179 7.5705000 0.0373703 0.0467959 14.1040000 0.0405383 0.0585047 10.5458000 0.0391157 0.0397568 13.1151000 0.0489853 0.0656909 16.4314000 0.0292028 0.0374258 6.5430000 0.0499266 0.0609223 21.7452000 0.0335336 0.0077461 3.4595000 0.0428566 0.0414127 0.0255552 0.0451129 0.0035830 0.0398352 0.0282318 0.0175750 0.0353767 0.0107908 0.0248294 0.0216315 0.0143452 0.0092636 0.0206576 0.0434636 0.0528909 0.0753170 0.0797301 0.0693488 0.1035843 0.0407961 0.2089316 0.0414767

0.2359536 0.5900983

0.7607328 6.0330000

References

Miao Zhenjiang, M.-H. Gandelin, Yuan Baozong, Fourier Transform Based Image Shape Analysis and Its Application to Flower Recognition, *Signal Processing*, 2002 6th International Conference on. **2.** 26-30 Aug. 2002. pp.1087-1090

D. S. Zhang and G. Lu. A Comparison Of Shape Retrieval Using Fourier Descriptors And Short-Time Fourier Descriptors. In Proc. of The Second IEEE

Pacific-Rim Conference on Multimedia (PCM01), pp.855-860, Beijing, China, October 24-26, 2001.

K. Sandberg, "Fourier Methods in Signal Processing." <u>Fourier Methods in Signal Processing</u>. http://amath.colorado.edu/courses/4720/2000Spr/Labs/FA/fa1.html