Autómatos finitos não deterministas com transições λ

Um autómato finito não determinista com transições λ (AFND) é um tuplo $M=(Q,\Sigma,\delta,q_0,F)$ onde

- Q é um conjunto finito de estados
- Σ é um conjunto finito de símbolos (alfabeto)
- δ é a **função de transição**, uma função de $Q \times (\Sigma \cup \{\lambda\})$ em $\mathcal{P}(Q)$
- $q_0 \in Q$ é o **estado inicial** do autómato
- $F \subseteq Q$ é o conjunto dos **estados de aceitação**

Eliminação do não determinismo

O λ -fecho de um estado q_i é o conjunto de todos os estados alcançáveis através de zero ou mais transições λ a partir de q_i

- ▶ $q_i \in \lambda$ -fecho (q_i)
- ▶ se $q_j \in \lambda$ -fecho (q_i) e $q_k \in \delta(q_j, \lambda)$, então $q_k \in \lambda$ -fecho (q_i)
- mais nenhum estado está em λ -fecho (q_i)

A função de transição de entrada t de um AFND M é uma função de $Q \times \Sigma$ em $\mathcal{P}(Q)$ definida por

$$t(q_i, a) = \bigcup_{q_j \in \lambda ext{-fecho}(q_i)} \lambda ext{-fecho}(\delta(q_j, a))$$

Autómato finito determinista equivalente

O AFD equivalente ao AFND $M=(Q,\Sigma,\delta,q_0,F)$ é o autómato

$$M' = (Q', \Sigma, \delta', q_0', F')$$

tal que

$$q_0' = \lambda$$
-fecho (q_0)

$$\delta'(q,a) = \bigcup_{s \in q} t(s,a)$$

- $ightharpoonup q_0' \in Q'$
- ▶ se $q \in Q'$ então $\delta'(q, a) \in Q'$, para todo o $a \in \Sigma$
- mais nenhum estado está em Q'

$$F' = \{ q \in Q' \mid q \cap F \neq \emptyset \}$$

Minimização de autómatos finitos deterministas

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autómato finito determinista

Dois estados q_i e q_j de M são equivalentes sse

$$\hat{\delta}(q_i, u) \in F \equiv \hat{\delta}(q_j, u) \in F$$

para qualquer $u \in \Sigma^*$

Dois estados equivalentes dizem-se indistinguíveis

Observação

Se $q_i \in F$ e $q_j \in Q \setminus F$ então q_i e q_j não são equivalentes (porquê?)

Cálculo dos estados equivalentes

- ① Seja $P = \{Q \setminus F, F\}$ uma partição de Q
- 2 Enquanto existirem

$$p, p' \in P$$
 $a \in \Sigma$ $q_i, q_j \in p$

tais que $\delta(q_i,a) \in p'$ e $\delta(q_j,a) \not\in p'$, fazer

$$P \leftarrow P \setminus \{p\} \cup \{q \in p \mid \delta(q, a) \in p'\} \\ \cup \{q \in p \mid \delta(q, a) \notin p'\}$$

Este algoritmo calcula a partição P de Q tal que, para quaisquer estados q_i e q_j

- ▶ se q_i e q_j pertencem ao mesmo subconjunto, q_i e q_j são equivalentes
- ▶ se q_i e q_j pertencem a subconjuntos distintos, q_i e q_j não são equivalentes

Construção do AFD mínimo

- Calcular os estados equivalentes; seja P a partição determinada
- 2 Para todos os $p \in P$ e todos os $a \in \Sigma$, seja q um estado em p e seja p' o elemento de P a que $\delta(q,a)$ pertence; então

$$\delta'(p,a)=p'$$

3 O AFD mínimo (ou reduzido) equivalente a M é

$$M' = (P, \Sigma, \delta', q'_0, F')$$

onde

- q_0' é o elemento de P que contém q_0
- $F' = \{ p \in P \mid p \subseteq F \}$