

HySiLabs | **HSL Solutions™**

Vision

A H₂ economy for a zero-carbon future.

Mission

Enabling massive H₂ logistics with a safe and cost-competitive solution.

Projet cofinancé par React-EU - Dispositif de relance de l'Union européenne en réponse à la pandémie de COVID-19

Fonds Européen de Développement Régional

Executive summary

HySiLabs has conceived the 1st way to transport and store H₂ as any conventional liquid, using the existing infrastructures and with a zero-carbon basis.

By enabling massive H₂ logistics, a new way of conceiving long distance transportation for the molecule is possible.

HSL Solutions' USP: liquid state at standard conditions, carbon free, use of conventional liquid infrastructures, no energy input for releasing the H₂, suitable for on-board maritime applications.

HySiLabs provides H₂ to consumers together with partners of the value chain via Hydrogen Stored as Liquids solutions.

After proving the concept at large scale, HySiLabs is ready to go onestep further and industrialise its process thanks to a 15M€ fundraising.

Scalability will guide HySiLabs to make revenues starting 2025, to access the mass market in 2027 and to break even in 2030.

Hydrogen (H₂) is a key element in the energy transition...

"H₂ could meet up to 24% of the world's energy needs by 2050 »

(Bloomberg NEF 28.5.2020)

... but its logistics remain complex and expensive

H₂ transportation is limited to small distances and little quantities

A new way to transport green H₂ HYDROGEN STORED AS LIQUIDS (HSL SOLUTIONS[™]) ENABLE MASSIVE H₂ LOGISTICS*

^{*} Long distance transportation and long-term storage of H₂

HSL solutions™ to easily store & transport H₂

HySiLabs has developed two innovative chemical processes to charge and release H₂ in and out of the carrier.

Industrial processes to load the carrier with H₂ and energy

Charging reactor

Same logistics as conventional liquid fuels

H₂ is released from HydroSil on demand without energy

Release reactor

Energy efficiencies vary between 35 and 60%

Business Model

Enabling massive H₂ logistics

Selling H₂ with logistics partners

H₂ players:

- mobility
- long-term storage
- overseas transportation

H₂ Stored as Liquids (HSL Solutions™) Patented solutions

Purpose and applications

Among all the H₂ usages, HSL Solutions are unbeatable on these three

Green H₂ transportation and H₂ hubs

- Building a pilot near a H₂ hub
- Total addressable market: 26% of the total H₂ market in 2030 (IEA green H₂ project database; end-use sectors of non-captive H₂)

Ports

H₂ valleys

Heavy duty on-board applications

- Building a pilot to feed the demand
- Total addressable market: 32% of the total H₂ market in 2030 (IEA green H₂ project database; end-use sectors of non-captive H₂)

Ship-owners

Dockyards

Strategic storage

- Building a pilot with key partners from the sector
- Total addressable market: 1% of the total H₂ market in 2030 (IEA green H₂ project database; end-use sectors of non-captive H₂)

Stockists

On-board mobility: the maritime sector

Last update: 01/03/22

Ongoing discussions

RESHIP

Achieving -35% energy saving on-board

H₂ feeder

Carburating ships between ports

Calanques project

Whole value chain around HydroSil on-board

HydroSil-powered boat

Testing HSL Solutions™ on-board

A cost competitive solution for any use case

Portugal - France

By sea** B

% **5%** vs LOHC

% 5% vs LH₂

% 16% vs NH₃

Portugal - France

By road** C

% 4% vs LOHC

% 9% vs LH₂

% **30%** vs CGH₂***

The data shown are made on the assumption that LH₂ and CGH₂ have a deployed infrastructure.

^{*} Compared to other carriers ** Real business cases based on ongoing discussions (other cases available)

^{*** 350} bars, Type IV

The most competitive solution

Liquid, Stable, Safe

- ✓ Liquid, stable, safe
- Earth friendly
- ✓ No energy needed to release H₂
- ✓ Non-organic molecule
- ✓ Use of conventional infrastructures

Liquid Organic Hydrogen Carriers

- ✓ Liquid, stable, safe
- X Earth friendly
- X No energy needed to release H₂
- X Non-organic molecule
- Use of conventional infrastructures

- X Liquid, stable, safe
- X Earth friendly
- X No energy needed to release H₂
- ✓ Non-organic molecule
- Use of conventional infrastructures

Pressurized/ Liquefied H₂

- X Liquid, stable, safe
- Earth friendly
- ✓ No energy needed to release H₂
- ✓ Non-organic molecule
- X Use of conventional infrastructures

Already committed with major players

Start: September 2020

Duration: 3,5 years

Start: January 2021

End of phase 2: April 2022

Start: November 2021

Duration: 2,5 years

Start: January 2022

Duration: 6 months

Photoelectrochemical H₂ production

Massive importation and storage of H₂ (1Mt/y)

Test bench of the release process and connection with a fuel cell.

Accelerating HySiLabs' development and delivering a POC

TOYOTA

Supported by:

Supported by:

MoU & Lol signed with major players

Willingness to use HSL solutions™

Markets

Worldwide

140B€

Non-captive green H₂ market in 2030

Europe

75B€

Served Addressable Market

34B€

14B€

72B€

Served Obtainable Market

2B€

These data have been stablished following a realistic scenario of hydrogen deployment according to the IEA forecasts and data (2030)

Timeline | Next steps

10 large

1 massive

Talents

Chemical experts

Business developers

Process engineers

Project managers

Our values:

We **look** for the **simplest** and **fastest** way to get things done with the **maximum** impact.

We **think** big and strive for **excellence**.

We **challenge** the **norms** and **push** boundaries.

Focus on core team

Pierre-Emmanuel Casanova

Chairman

MSc2 in sustainable development and innovation management from North Carolina University

Co-founded HySiLabs in 2015

Pierre-Emmanuel has a solid business and management expertise, completed with MBA training. Pierre-Emmanuel manages the company's growth, establishes a strong industrial network and sets strategic partnerships.

Vincent Lôme

CTO

PhD in Biotechnologies, Automation, and Chemistry from Aix Marseille University

Co-founded HySiLabs in 2015

Vincent has a strong scientific background, and he successfully oversees the technical development that led to their current ground-breaking solution and manages the scientific aspects (IP, subcontractors, etc.).

Corine Dubruel

CEO

With a dual French and Swiss nationality, she is graduated from Grande Ecole Centrale Paris, Distinction in Economics (Master of Sciences).

Within energy players like ENGIE, GE, ABB, Corine held several general management roles. Before joining Hysilabs as CEO, Corine Dubruel, was responsible for the global strategy, sales growth and public affairs for Plug Power Europe.

Rémy Benoît

Deputy CTO

PhD in Organic Chemistry from Rouen University, brings his long experience as director of several chemical plants, as well as his expertise in chemistry and plant management (BASF, PCAS, Ashland). Rémy is the project expert in chemistry and industrialization and will be working on the scaling up of the process to prepare the transfer to the clients.

15 M€ series A fundraising

6M€ previously raised (equity + grants)

Horizon 2020 EIC Accelerator and BPI Deeptech winners

Up to 5M€ agreed by the EIC Fund for this series-A Up to 3M€ subventions

Keep gathering the best talents: Up to 46 full-time employees*

Start commercial force: Be present in Europe, America, and Asia*

Maintain IP expertise and keep innovating: +6 patents / year

Stay pioneers: Dominate the industry

Scale-up our unique solution: Have built 6 pilots*

* In 2025

2022 2024 2025 2027 2027

10M€ series

- Scale-up HSL Solutions™:
 Up to TRL 8/9 (Charging & Release)
- Co-development:6 pilot sites(Charging & Release)
- Scale-up HySiLabs as a company: General Management, Sales, and Industrialisation
- Go-to-Market Strategy & Action plan with first strategic countries:

50M€ series

- Improve HSL Solutions™ through pilot sites monitoring
- Financing & Construction of the first industrial plant (10kt/y)
- Pre-commercialisation phase with implementation of sales tools & pricing policy with turn-over in 2027
- Increase Marketing & Communication
- Extend business development geographical coverage:

150M€ series

- Scale-up Industrial roadmap up to
 plants 10kt/y together with a deployed release systems network
- Financing & Constructing first massive plant (100kt/y)
- Mass Market commercialisation: Turn-over IB€ 2030
- On-board maritime strategy
- Extend business development geographical coverage:

P&L of HySiLabs

KC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
CA HySiLabs (H2 Provider)	8	100	200	300	400	400	23 310	350 210	700 210	1 050 210
Turnover - total	8	100	200	300	400	400	23 310	350 210	700 210	1 050 210
COGS - CA Baseline	0	0	0	0	0	0	10 576	158 642	317 283	383 635
Gross margin	8	100	200	300	400	400	12 734	191 568	382 927	666 575
Sales&Marketing expenses	180	549	650	715	995	1 005	1 010	1 040	1 045	1 745
Total Selling expenses - Labor	145	485	560	620	880	880	880	880	880	1 565
%RH / CA	1813%			207%	220%	220%		0,25%	-,	0,15%
Total Selling expenses - Overheads	35	64	90	95	115	125	130	160	165	180
General & admin expenses	178	613	656	660	1 114	1 114	1 351	1 351	1 351	1 523
Total Admin expenses - Labor	36	305	305	305	505	505	505	505	505	505
Total Admin expenses - Overheads	142	308	351	355	609	609	846	846	846	1 018
Innovation expenses	891,5	1 136	1 586	1 652	1 859	1 845	1 759	1 581	1 664	1 532
Total Innovation expenses - Labor	487	550	610	730	870	870	870	870	870	870
Total Innovation expenses - IP	106	181	208	237	274	295	349	301	394	327
Total Innovation expenses - Overheads	299	405	769	685	715	680	540	410	400	335
Industrialisation expenses	0	60	120	120	1 295	1 265	1 265	1 265	1 265	1 250
Total Industrialisation expenses - Labor	0	60	120	120	1 130	1 130	1 130	1 130	1 130	1 130
Total Industrialisation expenses - Overheads	0	0	0	0	165	135	135	135	135	120
Subsidies	-355	-1 288	-1 118	-1 113	-2 053	-2 115	-29 300	-29 274	-29 220	-241 870
Operating margin	-887	-970	-1 694	-1 734	-2 810	-2 714	36 648	215 605	406 822	902 396
Taxes	-212	-227	-317	-330	-372	-369	8 810	53 585	101 373	225 292
Dont impots	0	0	0	0	0	0	9 162	53 901	101 706	225 599
Dont CIR	212	227	317	330	372	369	352	316	333	306
Financial interest			011	000	0.2	000	2 670	13 349	26 698	46 272
Net income	-675	-743	-1 377	-1 404	-2 438	-2 345	25 168	148 671	278 752	630 831
										4=0.00
Depreciation of investments Pilots&Plants	4.00	106 373	106 550	177	1 298	1 121	11 209	51 558	101 995	172 834
Working capital variation	-1,33	-17	-33	-33	-67	-67	-2 122	-31 928	-63 821	-111 096
Net cash from operating activities		105 614	105 140	-1 260	-1 207	-1 290	34 255	168 301	316 926	692 569
Investment in plants and equipment		-212 747	-530	0	-7 849	0	-242 705	-970 819	-1 213 524	-1 779 455
Net cash from (used in) investing activities	40.	-212 747	-530	0	-7 849	0	-242 705	-970 819	-1 213 524	-1 779 455
Fund raising round	104	10 000	400	400	50 000	400	477.007	150 000	000 040	4 440 :00
Changes in financial assets and liabilities		-100	-100	-100	-100	-100	177 984	695 754	809 016	1 143 130
Net cash from (used in) financing activities		9 900	-100	-100	49 900	-100	177 984	845 754	809 016	1 143 130
Increase (decrease) in cash	-500	-97 233	104 510	-1 360	40 844	-1 390	-30 467	43 236	-87 582	56 245

HySiLabs is

A breakthrough innovation full of market potential

A way to enable the deployment of H₂

A assembly of talents willing to change energy transition

A low-cost solution to fulfil the H₂ demand

The first zero-carbon value chain of hydrogen

Enabling massive hydrogen logistics for all kind of applications

hysilabs.com

