INPUTS and CONSTANTS

Red and Bonita Mine Bulkhead: 2/10/2015

Tunnel Height (h_t)	7ft
Tunnel Width (w _t)	5 ft
Bulkhead Height (h _b)	10 ft
Bulkhead Width (w _b)	7 ft
Design water head (H)	704 ft
Bulkhead Trial Thickness (L_T)	15 ft
Water density(γ_{w})	62.4 pcf
Overburden rock density (γ_r)	165 pcf
Concrete Density (γ_c)	151 pcf
Concrete Compressive Strength (f _c)	3,000 psi
Acceptable bulkhead pressure gradient (p_{ag})	41 psi/ft
Bulkhead depth below surface (B _w)	203 ft
Slope Angle of Topography (β)	37
Accoustical velocity of water (c')	4,748 ft/s @50°F
Peak Ground Acceleration (PGA)	0.185g
Gravity Acceleration (g)	32.2ft/sec^2
Seed & Idriss Constant (SI)	1.8044 (ft/sec)/g From Seed and Idriss
Seismic Design Handbook Constant (SDH)	2(ft/sec)/g From Seismic Design
Beam Unit Width (b)	1ft
Inby Line-of-Site Water Distance (S _{Is})	125 ft
Rebar Yield Strength (f _y)	60,000 psi
Minimum Rebar Cover (m _c)	3.5 in
Rock Cover Factor of Safety (F_{RC})	1.1 Range 1.1-1.3 (Based on Bergh-C
Fluid Static Load Factor (ϕ_{fs})	1.4
Concrete Flexural Strength Reduction Factor ($\phi_{ extsf{pc}}$)	0.55
Earthquake Static Fluid Load Acceleration Factor (φ_{fe})	1.05
Earthquake Impounded Fluid Load Acceleration Factor ($\varphi_{\mbox{\tiny ea}}$)	1.40
Reinforced Concrete Flexural Strength Reduction Factor (φ_{rc})	0.90
Rebar Flexural Strenth Reduction Factor (ϕ_{rt})	0.90

1779021

1983 Handbook (pg55)

hriestensen and Dannevig, 1971)

From Seed and Idriss 1983

Water Hammer

Change values on Input Tab

Inputs:

Accoustical velocity of water (c') 4,748 ft/s @50°F

Peak Ground Acceleration (PGA) 0.185 g

Water Density (γ_w) 62.4 pcf

Gravity Acceleration (g) 32.2ft/sec²

Earthquake Static Fluid Load Acceleration Factor (ϕ_{fe}) 1.05

Seed & Idriss Constant (SI) 1.8044(ft/sec)/g

Seismic Design Handbook Constant (SDH) 2(ft/sec)/g From Seismic Design Handbo

Calculation:

Max Earthquake Acceleration (α) $\alpha = PGA*g = 5.957 \text{ ft/sec}^2$

Max Velocity SI (v_{max}) $v_{max} = SI*PGA = 0.33381 ft/s$ Seed and Idriss

Max Velocity SI (v_{max}) $v_{max} = SDH*PGA = 0.37 ft/s$ Seismic Design Ha

Water Hammer Pressure (P_H) $P_H = c'^* v_{max}^* \gamma_w = 109,622 lb$ Used SDH

Factored Water Hammer Pressure (P'_H) $P'_{H} = P_{H} * \varphi_{fe} = 115,103 \, lb$

ings or Acid Rock Drainage", Lang, 19	999.		
ok (pg55)			
ndbook			

Hydrofrac

Inputs:

Design water head (H) 704ft Water density(γ_w) 62.4pcf Overburden rock density (γ_r) 165pcf Acceptable bulkhead pressure gradient (p_{ag}) 41psi/ft Bulkhead depth below surface (B_w) 203ft Rock Cover Factor of Safety (F_{RC}) 1.1 Slope Angle of Topography (β) 37degrees

Calculations

<u>ulations:</u>		
Maximum Hydraulic Pressure Head (p)	$p = H\gamma_w/144 =$	305.1 psi
Minimum Rock Cover Required: Hydrofrac (Z) (Abel Method)	$Z = 144 p/2 \gamma_r =$	133.1ft
Minimum Rock Cover Required: Hydrojack (Z)	$Z = H\gamma_w F/\gamma_r \cos\beta =$	366.7ft
(Norwegian Tunnel Method)		
Minimum contact grout pressure (σ_{mingp})	$\sigma_{mingp} = B_w \gamma_w / 144 =$	88.0 psi
Maximum contact grout pressure (σ_{mingp})	$\sigma_{maxgp} = 2B_w \gamma_r/144 =$	465.2 psi
Maximum contact grout pressure (σ_{mingp})	$\sigma_{maxgp} = 2B_w \gamma_r cos \beta / 144 F_{RC} =$	168.9 psi
Required bulkhead thickness for pressure gradient (L_{hp})	$L_{hp} = p/p_{ag} =$	7.4 ft

Punching Shear Design

Inputs: *Change values on Input Tab*

 $\begin{array}{ccc} \text{Concrete Compressive Strength } (f_c) & 3,000 \, \text{psi} \\ & \text{Bulkhead Height } (h_b) & 10 \, \text{ft} \\ & \text{Bulkhead Width } (w_b) & 7 \, \text{ft} \\ & \text{Design Head } (H) & 704 \, \text{ft} \\ & \text{Water Density } (\gamma_w) & 62.4 \, \text{pcf} \end{array}$

Fluid Static Load Factor (ϕ_{fs}) 1.4

Factored Water Hammer Pressure (P'_H) 115,103 lb (Calculated from Water Hammer Tab)

Calculations:

Concrete Shear Strength (f_{cs}) $f_{cs} = 2*f_c^{-1/2} = 109.5 \, psi$ Static Fluid Load on Bulkhead Face (F_s) $F_s = H*\gamma_w*h_b*w_b = 3,075,072 \, lb$ Factored Static Fluid Load on Bulkhead (F_s ') $F_s' = F_s*\varphi_{fs} = 4,305,101 \, lb$ Length of Bulkhead Required for Shear (L_s) $L_s = F_s'/(2*(h_b+w_b)*f_{cs}*144)$ 8.03 ft

Earthquake Consideration (Water Hammer):

Length of Bulkhead Required (L_s) $L_s = (F_s' + P'_{H)}/(2*(h_b + w_b)*f_{cs}*144)$ 8.24 ft

Plain Concrete Deep Beam Bending Stress

			Change values
	Change values on Input Tab*	***************************************	i Input Tab*
Concrete Compressive Strength (f _c)	3,000 psi	Peak Ground Acceleration (PGA)	0.185 g
Bulkhead Height (h _b)	10 ft	Fluid Static Load Factor (φ _{fs})	1.4
Bulkhead Width (w _b)	7 ft	Concrete Flexural Strength Reduction Factor (ϕ_{pc})	0.55
Tunnel Height (h,	7 ft	Earthquake Static Fluid Load Acceleration Factor (ϕ_{fe})	1.05
Tunnel Width (w _t)	5 ft	Earthquake Impounded Fluid Load Acceleration Factor (φ _{ea})	1.40
Design Head (H)	704 ft	Beam Unit Width (b)	1ft
Inby Line-of-Site Water Distance (Sb)	125 ft	Static Fluid Load on Bulkhead Face (F _s)	3,075,072 lb (Calculated from Punching Shea
Water Density (y _w)	62.4 pcf	Factored Static Fluid Load On Bulkhead Face (F _s ')	4,305,101 lb (Calculated from Punching Shea
Concrete Density (γ _c)	151 pcf	Factored Water Hammer Pressure (P' _H)	115,103 lb (Calculated from Water Hamme
Bulkhead Trial Thickness (L_T)	15 ft		
Calculations:			
Deep Beam Verification	$w_b/L_t =$	0.5 Deep Beam	
Uniform Static Fluid Load on Face (f's)	$f'_s = F'_s/(h_b*w_b) =$	61,501psf	
Maximum Nominal Bending Moment (Mn)	$M_n = f_s^* w_b^2 / 8 =$	376,696ft-lb (f'; load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'u)	$M'_u = M_n/\Phi_{nc} =$	684,902 ft-lb	
Concrete Flexural (tensile) Design Stress (fc)	$f_{cl} = 3 * f_{c}^{-3/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length (L_{π})	$L_{st} = (6*M^3 u/b*f_d)^{3/2} =$	13.2ft	
Considering Earthquake (Water Hammer):			
Factored Earthquake Load on Face (U'a)	U' _x = F' _s +P' _H =	4,420,20416	
Uniform Static Fluid Load on Face (u's)	$u'_{s} = U'_{s}/(h_{b}*w_{b}) =$	63,146psf	
Maximum Nominal Bending Moment (Mn)	$M_n = u'_s * w_b^2 / 8 =$	386,768ft-lb (u', load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'u)	$M'_u = M_n/\phi_{pc} =$	703,214ft-lb	
Concrete Flexural (tensile) Design Stress (fc)	$f_{cl} = 3*f_{c}^{-1/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length (L $_{\!\scriptscriptstyle E})$	$L_{st} = (6*M_u/b*f_d)^{1/2} =$	13.4ft	
Considering Earthquake (Abel Method):			
Factored Earthquake Accelerated Static Fluid Load (E _{fe})	$E_{fe} = F_s * \varphi_{fe} =$	3,228,826lb	
Factored Earthquake Accelerated Line-of-Sight Fluid Load (E _{fm})	$E_{fm} = S_{1s} * \gamma_w * h_t * w_t * PGA * \varphi_{ea} =$	70,707lb	
Factored Earthquake Bulkhead Load (E _{bm})	$E_{bm} = L_{st} * \gamma_c * h_b * w_b * PGA * \varphi_{ea} =$	41,064.45lb	
Factored Earthquake Load on Face (U' $_{\alpha}$)	$U'_{\alpha} = E_{fe} + E_{fm} + E_{bm} =$	3,340,597lb	
Uniform Static Fluid Load on Face (u',)	$u'_{s} = U'_{s}/(h_{b}*w_{b}) =$	47,723 psf	
Maximum Nominal Bending Moment (M _n)	$M_n = u_b^3 * w_b^2 / 8 =$	292,302 ft-lb (u's load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'u)	$M'_u = M_n/\varphi_{pc} =$	531,459ft-lb	
Concrete Flexural (tensile) Design Stress (fc)	$f_{cl} = 3 * f_{c}^{-3/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length $\{L_{jt}\}$	$L_{st} = (6*M_u/b*f_c)^{3/2} =$	11.6ft	

r Tab)

r Tab) r Tab)

Reinforced Concrete Deep Beam Bending Design:

Inputs:	*Change values on Input Tab*
Reinforced Concrete Flexural Strength Reduction Factor $(\varphi_{\mbox{\tiny TC}})$	0.90
Rebar Flexural Strenth Reduction Factor (ϕ_{rt})	0.90
Concrete Compressive Strength (f _c)	3,000 psi
Beam Unit Width (b)	1ft
Rebar Yield Strength (f_y)	60,000 psi
Maximum Nominal Bending Moment (M _n)	386,768ft-lb (Plain Concrete Deep Be
Bulkhead Trial Thickness (L_T)	15 ft
Minimum Rebar Cover (m _c)	3.5 in

Calculations:

Compressive Force (C)	$C = \varphi_{rc} * f_c * b * a =$	32,400 a (psi)
Tensile Force (T)	$T = A_s * f_y =$	60,000 A _s (psi)
Minimum Concrete Depth to Balance Rebar (a)	a =	1.852 A _s (psi)
Factored Bending Moment (M'_{ι})	$M'_{u} = M_{n}/\varphi_{rt} =$	429,742 ft-lb
Factored Bending Moment (M'_{ι})	$M'_u = M_n/\Phi_{rt} =$	5,156,904 in-lb
Maximum Rebar Cover (d)	$d = 12*L_{T}-m_{c} =$	176.5 in
$C_1A_s^2-C_2A_sd+M'_u=0$		
	$C_1 = f_y^* a/2 =$	55,556
	$C_2 = f_y^* d =$	-10,590,000
	$C_3 = M'_u =$	5,156,904
Area of Steel Required (A_s)	$A_s = (-C_2-(C_2^2-4*C_1*C_3)^{1/2})/2*C_1 =$	0.488 in ² /ft
Bar Size (#) Spacing (C-C)		enter value) ı (enter value)
Area of Steel (A _s)	1.33 ir	n²/ft

am Considering Water Hammer)