

Introduction to Reinforcement Learning

Chris DeBellis

June 10, 2019

www.linkedin.com/in/chrisdebellis

My Journey to Al and Deep Learning

www.linkedin.com/in/chrisdebellis https://changelog.com/practicalai/11

Reinforcement Learning Is a Hot Research Area

Source: The 35th International Conference on Machine Learning (ICML) - 2018

Deep Learning Trends for Robotic Functions

Reinforcement Learning Use Cases

Games – Atari, Doom, Go, etc.

Autonomous Systems – self driving vehicles, robotics, etc.

Machine Learning Approaches

- Classification
- Regression
- Deep Learning

Requires ground truth (i.e. labeled data)

Unsupervised Learning

• (e.g. Clustering)

Group by similarity of features

No ground truth needed, but cannot measure accuracy,
however can visualize it

Reinforcement Learning = Experiential Learning

Source: Wikipedia

- Agent (robot, game bot, etc.) operates in an environment
- Agent takes actions, which results in a reward (or penalty) and a new state
- Maximize the rewards (short or long term)
- May or may not use deep learning (probably does except for simple environments)

Reinforcement Learning

Markov Decision Process

S = set of all states

A = set of all actions

P = probability of taking action A when in state S

R = immediate reward for taking an action

Model = transition probabilities for the environment

Can be implemented as a table, array, list, etc. of [state][action] pairs

 $S_0 A_0$

 $S_0 A_1$

•••

 $\rm S_0\,A_N$

 $S_1 A_0$

 $S_1 A_1$

•••

 $S_K A_0$

 $\mathsf{S}_\mathsf{K}\,\mathsf{A}_\mathsf{1}$

 $\overset{...}{\mathsf{S}_{\mathsf{K}}}\,\mathsf{A}_{\mathsf{N}}$

For this model, the Q Table would contain 6 values (3 states * 2 actions)

Types of RL

MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL) by Lex

Types of RL

MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL) by Lex

On-Line vs. Off-Line Learning

On-line Learning

- Put the robot / agent in the environment to learn
- Is the environment safe? Can the robot take a fatal action?
- May be slow to learn
 - Robots are generally slow moving.
 - Resets are probably also slow.

Off-line Learning

- Learn using a simulator to simulate the environment
- Transfer the learned policy to the agent and let the agent run in the real environment
- Difficult to build a simulator that accurately reflects the physics of the real world
- There will likely be a delta between the learned best policy of the simulated environment and the actual best policy for the real environment.

Q-Learning

- V = value (utility / usefulness of being in a given state)
 - Closer to a large reward is more valuable
- Q(s, a) = Q-value is the value of taking action a at a given state s
- Q learning = use Monte Carlo simulation to learn the (s, a) values Also can infer the transition probabilities
- Policy (∏) maps best action to take for every state
 - By learning Q we infer the policy (don't directly learn the environment / model → model free)
- Learn by iterating (Monte Carlo Simulation)

Bellman Equation

$$Q(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}$$

- Only one state-action pair is updated per action
- Referred to as Bellman Backup

Q Learning Demo – Grid World

- Agent (blue dot) moves around the grid
 - Only 4 possible actions move up, down, left, right
- The only states are the position of the robot in 3x4 grid
- 2 possible termination states

- Only one Q-value updates when you take an action and move to new state
- Q values converge eventually BUT you need sufficient samples
 - Note changes to Q values in bottom left @0:49 for left and up actions
- Nondeterministic model / environment
 - with some probability your agent moves in the wrong direction (robot fails to complete the action and ends up in unexpected state) refer to video @0:11

Grid World Demo

https://www.youtube.com/watch?v=AMnW-OsOcl8

alpha (learning rate)	0.5	
gamma (discount rate)	0.9	
Reward	0	
Current Q	Next Q	New Q
0	0.5	0.23
0.23	0.75	0.45
0	0.23	0.10
		0.00
Exit Condition		
0	1	0.50
0.5	1	0.75
0.75	1	0.88

Q Learning Concepts

What is the value of a state?

See end of video

 $V(s) = Max_aQ(s,a)$

What action do we take?

 $a(s) = argmax_a Q(s,a)$

What is the optimal policy Π^* ?

At any state, take the action that yields greatest Q value (total reward according to Bellman equation)

Rewards Affect Learned Behavior

- How can we encourage the agent to finish as quickly as possible?
- What value should the reward be?

• If the reward is -1, what would the agent do when it was in the bottom right state?

What if we want to encourage survival in a game?

• But what would the agent do if it is at grid coordiante (1,3) and the reward is +1?

E-Greedy (Epsilon Greedy) Algorithm

- Exploration vs Exploitation
- During training:
 - With some probability (1- ε) take the optimal action known at that time (exploitation)
 - Else with probability ε take some other action (exploration)
 - Several methods exist for determining which other action to take
- Why do we need exploration?
- What should we do in production?

Follow the learned policy $\Pi^* \rightarrow No$ exploration!

Q-Learning Example – OpenAl Gym Taxi

https://learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/

6 Actions

- south
- north
- east
- west
- pickup
- dropoff

500 States

25 grid locations4 destinations / pickup-up points5 possible passenger locations

(4 pickup points + 1 inside taxi)

How large does the Q table need to be?

How do we differentiate each state? (taxi row, taxi col, passenger loc, dest)

Reward=-1 or -10 or +20. Why -1?

Pickup passenger at Y and drop off at R

Problems with Q-Learning

- Large State Space
 - Needs huge amount of memory for all the (s,a) pairs
 - Need to visit all of the states and take each action multiple times to ensure convergence → takes too long
 - Need to discretize continuous values (velocity, position, rotation, etc.)
- How many states are there in:
 - A tic-tac-toe game? 3^9 = 19,683 including invalid states (upper bound)
 - A game of chess? Estimated to be ~7.7x10⁴⁵
 - A self driving car? Depends on level of accuracy of velocity, position, etc.
 More states if you round velocity to nearest tenth vs MPH

Deep Q-Learning to the Rescue (Kinda)

Use a neural network to map states to actions rather than build a table for every state.

Useful for:

- Very large state space where it is impractical to visit every (s,a) pair
- Continuous state space (avoids the need to discretize states)

Neural network is a universal approximation function

Feed Forward Neural Network (MLP)

https://nutricaobrasil.wordpress.com/esclerose-neuronios-cerebro-20110608-size-62-2/

- Layers contain nodes that perform mathematical functions on a set of inputs
- Activation functions (represented as circles in the image) bound the output range and add non-linearity
- Outputs of one layer are inputs to the next layer (feed forward)
- Deep networks have more layers
- Motivation derived from our understanding of human brain function

Deep Q-Network (DQN)

What do we need to do supervised learning?

- Ground truth so we can calculate the error of the predictions
- Objective function (loss) to minimize

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r\sim D} \left(\underbrace{r + \gamma \, \max_{a'} Q(s',a';\theta_i^-)}_{\text{target}} - Q(s,a;\theta_i) \right)^2$$

New predicted value (target) – original Q value (before taking the action)

Note: this equation used for L_2 -norm loss with MSE. Could use L_1 -norm loss with MAE instead (Absolute value of the difference).

Problems Implementing the Neural Network

- Need iid (independent, identically distributed) samples
 Sequential play inherently makes samples correlated
 Network will otherwise forget past learning and optimize for newest samples
- 2. Ground truth Q changes with each iteration and target depends on Q
 → Chasing (optimizing) a non-stationary target

Experience replay buffer

- Save all (s,a,r,s') values in memory
- Train the network on randomly selected samples from the buffer in batches
 - Eliminates sequential correlation
 - Ground truth is static for that batch so neural net can converge

CartPole Demo

 https://www.analyticsvidhya.com/blog/2017/01/introduction-toreinforcement-learning-implementation/

Video https://youtu.be/XiigTGKZfks

DQN Architecture for CartPole Example

Questions

