The verification of assumptions of this model (V)

10 maja 2021

Model regresji liniowej-przypomnienie

Ponownie rozważamy układ równań liniowych:

$$\underbrace{\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}}_{\mathbf{Y}} = \underbrace{\begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \\ 1 & X_{21} & X_{22} & \dots & X_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{nk} \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}}_{\beta} + \underbrace{\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}}_{\epsilon}.$$

lub w formie macierzowej:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon.$$

Założenia - powtórzenie

Przede wszystkim mamy więcej obserwacji niż parametrów, czyli $k+1 \leq n$. Ponadto,

- Z1 Macierz X zmiennych objaśniających jest deterministyczna (nielosowa), tzn. macierz zmiennych objaśniających $[X_{t1}, X_{t2}, \dots, X_{tk}]^T$ jest nielosowa dla t;
- Z2 Rząd macierzy **X** jest k + 1, zatem kolumny są liniowo niezależne;
- Z3 $E(\epsilon) = \mathbf{0}$, czyli $E\epsilon_t = 0$ dla t;
- Z4 $D^2(\epsilon) = \sigma^2 \mathbf{I}$, tzn. ϵ_t jest ciągiem nieskorelowanych zmiennych losowych o wariancji σ^2 , (σ jest nieznane);
- Z5 Wszystkie ϵ_t mają rozkład normalny $N(0, \sigma^2)$.

Testy weryfikujące założenie [Z4]

Zweryfikujemy założenie [Z4], że wszystkie ϵ_t mają tą samą wariancję. Robimy to w nastęującym celu.

- Jeśli to jest prawda, estymator $\hat{\beta}$ otrzymany metodą najmniejszych kwadratów jest:
 - nieobciążony, i.e. $E\hat{\beta}=\beta$ przy wielokrotnym powtarzaniu eksperymentu, $\hat{\beta}$ będzie oscylował wokół prawdziwego β ;
 - zgodny, tzn. dla dostatecznie dużych n, z dużym prawdopodobieństwem $\hat{\beta}$ będzie blisko β ;
 - efektywny, tzn. najlepszy w sensie **metody najmniejszych kwadratów** spośród wszystkich liniowych estymatorów β (matematycznie $\hat{\beta}$ stanowią współrzędne rzutu ortogonalnego wektora Y na przestrzeń kolumn macierzy X ze standardowym iloczynem skalarnym w \mathbb{R}^n)

Testy weryfikujące założenie [Z4]

 Jeśli hipoteza jest fałszywa, można zmodyfikowoać metodę ważonych najmniejszych kwadratów np.

$$\min_{\beta_0,\beta_1,\ldots,\beta_k} \sum_{t=1}^n \underbrace{\sqrt{Var(\epsilon_t)}}_{w_t} (Y_t - \beta_0 - \beta_1 x_{t,1} - \ldots - \beta_k x_{t,k})^2.$$

Otrzymany estymator również daje współrzędne rzutu ${\bf Y}$ na przestrzeń generowaną przez kolumny ${\bf X}$ z iloczynem skalarnym postaci

$$(u_1, u_2, \ldots, u_n) \circ (v_1, v_2, \ldots, v_n) = \sum_{t=1}^n \sqrt{w_t} u_t v_t.$$

Intuicyjne własności estymatora \hat{eta}

- Nieobciążony: podobnie jak rzut monetą: nagroda za orła jest 1, a za reszkę to -1
 - przy wielu rzutach ok. 50% wyników da nam 1 a pozostałe 50% da nam -1, zatem wyniki oscylują wokół średniej, czyli 0;
- Zgodny: przy wielu rzutach

suma nagród liczba wszystkich rzutów

• będzie blisko 0, np. 1/N or -1/N, dla dużej liczby rzutów N;

Terminologia

Homoskedastyczność i heteroskedatyczność

Ciąg zmiennych losowych Z_1, Z_2, \ldots, Z_n jest

 Homoskedastyczny: jeśli wariancja nie zależy od indeksu, tzn.

$$Var(Z_1) = Var(Z_2) = \ldots = Var(Z_n);$$

• Heteroskedastyczny: jeśli wariancja zależy od indeksu, tzn..

$$Var(Z_i) \neq Var(Z_j)$$
 dla pewnego $i \neq j$.

Test homoskedastyczności

Jak zwykle, reszy oznaczamy jako

$$\hat{\epsilon} = \mathbf{Y} - \mathbf{X}\hat{\beta},$$

oraz zakładamy, że $\hat{\epsilon}_t$ jest realizacją zmiennej losowej ϵ_t . Testujemy hipotezę:

$$H_0: Var(\epsilon_1) = Var(\epsilon_2) = \ldots = Var(\epsilon_n)$$
 VS $H_1: H_0$ jest fałszywa.

W tym celu opiszemy testy:

- Harrisona-McCabe'a;
- White'a.

Test Harrison-McCabe'a

Za pomocą reszt $\hat{\epsilon}_t$ konstruujemy **statistykę testową** jako:

$$HM = \frac{\sum\limits_{t=1}^{m} \hat{\epsilon}_t^2}{\sum\limits_{t=1}^{n} \hat{\epsilon}_t^2}$$

gdzie m jest w zasadzie dowolną liczbą taką, że k+1 < m < n-k-1, ale w praktyce, zależy monotonicznie od $|\hat{\epsilon}_t|$:(VERTE)

Test Harrison-McCabe'a

Domyślna opcja to

$$m = \left\{ \begin{array}{cc} \frac{n}{2} & \text{jeśli} & n \text{ jest parzyste} \\ \frac{n-1}{2} & \text{jeśli} & n \text{ jest nieparzyste.} \end{array} \right.$$

- Jeśli widzimy, że $|\hat{\epsilon}_t|$ mają wyraźnie rosnącą tendencję, a następnie malejącą, wtedy m jest indeksem obserwacji t taki, że $|\hat{\epsilon}_t|$ jest największy;
- Jeśli widzimy, że $|\hat{\epsilon}_t|$ mają wyraźnie malejącą tendencję, a następnie rosnącą, wtedy m jest indeksem obserwacji t taki, że $|\hat{\epsilon}_t|$ jest najmniejszy;

Test Harrison-McCabe'a - obszar odrzucenia

Dla poziomu istotności α (domyślnie $\alpha=0.05$) znajdujemy poziomy krytyczne:

$$b_L = \frac{1}{1 + \frac{(n-m)F_1}{n-(k+1)}}$$
 $b_U = \frac{1}{1 + \frac{[n-m-(k+1)]F_2}{m}}$

gdzie:

- F_1 jest kwantylem rozkładu $\mathcal{F}(n-m,m-(k+1))$ (Snedecora) rzędu $1-\alpha$;
- F_2 jest kwantylem rozkładu $\mathcal{F}(n-m-(k+1),m)$ (Snedecora) rzędu $1-\alpha$;

Test Harrison-McCabe'a - obszar odrzucenia

Decyzja

- Jeśli $HM < d_L$, to odrzucamy hipotezę H_0 , że ϵ_t jest homoskedastyczny na rzecz alternatywnej hipotezy, ϵ_t jest heteroskedastyczny;
- Jeśli $d_L < HM < d_U$, problem jest nierozstrzygnięty;
- Jeśli $HM > d_U$, to przyjmujemy hipotezę H_0 , że ϵ_t jest homoskedastyczny.

Test Harrison-McCabe'a - obszar odrzucenia

Uwaga

 Idea testu: jeśli hipoteza homoskedastyczności jest prawdziwa, to

$$HM = \frac{\sum_{t=1}^{m} \hat{\epsilon}_{t}^{2}}{\sum_{t=1}^{n} \hat{\epsilon}_{t}^{2}} \approx \frac{m}{n}$$

a odrzucimy hipotezę, gdy HM jest zbyt małe.

 Podobnie jak w przypadku testu Durbina-Watsona nie można wykluczyć, że test nie rostrzynie problemu.

Test White'a

Konstruujemy test **White'a**, ktŕy również weryfikuje kipotezę o homoskedastyczności reszt.

• Dla ilustracji załóżmy, że liczba parametrów wynosi k=2:

$$Y_{t} = \beta_{0} + \beta_{1} x_{t,1} + \beta_{2} x_{t,2} + \epsilon_{t},$$

 Testujemy hipotezę homoskedastyczności dopuszczając heteroskedastycznośc jako alternaltywę w następującej formie:

$$\epsilon_t^2 = a_0 + a_1 x_{t,1} + a_2 x_{t,2} + a_3 x_{t,1}^2 + a_4 x_{t,2}^2 + a_5 x_{t,1} x_{t,2} + \eta_t,$$

gdzie η_t jest prawdziwym szumem spełniającym założenie [Z4] i [Z5], oraz $a_0, a_1, a_2, a_3, a_4, a_5$ to nieznane parametry;

• Wtedy $Var(\epsilon_t) = E\epsilon_t^2 = \sigma_t^2$ ma następującą formę:

$$\sigma_t^2 = a_0 + a_1 x_{t,1} + a_2 x_{t,2} + a_3 x_{t,1}^2 + a_4 x_{t,2}^2 + a_5 x_{t,1} x_{t,2}.$$

Test White'a - konstrukcja

Testujemy homoskedastyczność ϵ_t , poprzez testowanie hipotezy pomocniczej:

$$H_0: a_1 = a_2 = a_3 = a_4 = a_5 = 0 \quad \text{VS} \quad H_1: \exists_{j=1,2,3,4,5} a_j \neq 0.$$

- Jeśli H_0 jest prawdziwa $Var(\epsilon_t) = a_0$ dla t, oraz $a_0 = \sigma^2$ tak jak [Z4];
- Zakładamy, że $\hat{\epsilon}_t$ jest realizacją ϵ_t ;
- Pomocniczy model

$$\hat{\epsilon}_t^2 = a_0 + a_1 x_{t,1} + a_2 x_{t,2} + a_3 x_{t,1}^2 + a_4 x_{t,2}^2 + a_5 x_{t,1} x_{t,2} + \eta_t$$

jest modelem liniowym z k = 5 zmiennymi objaśniającymi;

- role **zmiennej objaśnianej** gra $Y_t := \hat{\epsilon}_t^2$;
- rolę **zmiennych objaśniających** grają: $x_{t,1}, x_{t,2}, x_{t,1}^2, x_{t,2}^2$, oraz $x_{t,1}x_{t,2}$.

Test White'a - konstrukcja

Znajdujemy **statistykę testową** w następującej formie:

Szukamy â₀, â₁, â₂, â₃, â₄ i â₅ za pomoca standardowej metody najmniejszych kwadratów:

$$\min_{a_0,a_1,a_2,a_3,a_4,a_5} \sum_{t=1}^{n} (\hat{\epsilon}_t^2 - a_0 - a_1 x_{t,1} - a_2 x_{t,2} - a_3 x_{t,1}^2 - a_4 x_{t,2}^2 - a_5 x_{t,1} x_{t,2})^2.$$

Szukamy oszacowań reszt:

$$\hat{\eta}_t = \hat{\epsilon}_t^2 - \hat{a}_0 - \hat{a}_1 x_{t,1} - \hat{a}_2 x_{t,2} - \hat{a}_3 x_{t,1}^2 - \hat{a}_4 x_{t,2}^2 - \hat{a}_5 x_{t,1} x_{t,2};$$

Test White'a - konstrukcja

• Szukamy "prognoz" $\hat{\epsilon}_t^2$ wg wzoru:

$$\tilde{\epsilon}_t^2 := \hat{a}_0 + \hat{a}_1 x_{t,1} + \hat{a}_2 x_{t,2} + \hat{a}_3 x_{t,1}^2 + \hat{a}_4 x_{t,2}^2 + \hat{a}_5 x_{t,1} x_{t,2}$$

 Bazując na resztach obliczamy współczynnik determinacji (przypomnij sobie definicję):

$$R^{2} = \frac{\sum\limits_{t=1}^{n} \left(\tilde{\epsilon}_{t}^{2} - \frac{1}{n} \sum\limits_{j=1}^{n} \hat{\epsilon}_{j}^{2} \right)^{2}}{\sum\limits_{t=1}^{n} \left(\hat{\epsilon}_{t}^{2} - \frac{1}{n} \sum\limits_{j=1}^{n} \hat{\epsilon}_{j}^{2} \right)^{2}}.$$

Test White'a - statystyka testowa

Statystyka testowa ma następującą formę:

$$W = nR^2$$

- Jeśli hipoteza H_0 jest prawdziwa, W ma rozkład $\chi^2(5)$ (chi-kwadrat z 5 stopniami swobody);
- Odrzucamy hipotezę H_0 gdy:
 - $W > q_{\chi^2(5)}(1-\alpha)$ kwantyl $\chi^2(5)$ rzędu $1-\alpha$,
 - lub równoważnie,

$$\alpha > p - value = 1 - CDF_{\chi^2(5)}(W),$$

gdzie $CDF_{\chi^2(5)}(\cdot)$ oznacza dystrybuantę rozkładu $\chi^2(5)$.

Test White'a - statystyka testowa

Uwagi

- Uogólnienie testu **White'a** na przypadek k zmiennych objaśnianych jest również znane. W tym przypadku, rozkład statystyki przy hipotezie H_0 ma rozkład $\chi^2(2k+1)$.
- Gdy test White'a odrzuci H_0 na rzecz H_1 możemy rozważyć zmodyfikację estymatora $\hat{\beta}$ w kierunku ważonej metody najmniejszych kwadratów

$$\min_{\beta_0,\beta_1,...,\beta_k} \sum_{t=1}^n w_t (Y_t - \beta_0 - \beta_1 x_{t,1} - ... - \beta_k x_{t,k})^2$$

z wagą $w_t = \tilde{\epsilon}_t$;

• Metodę ważonych najmniejszych kwadratów można stosować również gdy test Harrisona Mc-Cabe'a odrzuci H_0 , ale w odróżnieniu od testu White'a, procedura testowa nie daje nam żadnej wskazówki co do wag w_t .

rok	miesiąc	stopa bezrobocia
2 0 0 0	styczeń	13,7
	luty	14
	marzec	14
	kwiecień	13,8
	maj	13,6
	czerwiec	13,6
	lipiec	13,8
	sierpień	13,9
	wrzesień	14
	październi	14,1
	listopad	14,5
	grudzień	15,1
2	styczeń	15,7
	luty	15,9
	marzec	16,1
	kwiecień	16
	maj	15,9
0	czerwiec	15,9
0	lipiec	16
1	siernień	16.2