Acu	AHPS3Q.3 Generalized wave dispusion relation
	AHPS3Q.3 Generalized wave dispussion relation to the Raleigh-Taylor Instability & Kelvin Helmh-
	oltz Instability
	1 40 + P 2 4
)	11 CO = R 11 1 2 + / P2-P1 gk - k2 P. P2 (uz-u,)
	II co = k ", P, + Pz uz + / Pz-P; gk - k2 P, Pz (uz-u,) P, + Pz
20	[1]
162	Rayleigh-Taylor Instability
	11 - 0 8 11 - 0 0 > 0 175 ei
- 35	U, = 0 & uz=0, C, > Pz 75 e.
())=> $\omega = \pm \sqrt{\frac{c_2-c_1}{c_1+c_2}gR} = \pm i\sqrt{\frac{c_1-c_2}{c_1+c_2}gR}$
	E1+P2 9 K = IV 61+P2 9R
	CO - CZ-CI Atwood
1. 1	$\frac{\omega^2}{R} = \frac{C^2 - C_1}{C_1 + C_2} g = A + g $ Atwood number
	Phase relocity, v = w = b
	$R = \frac{2R}{J}, \omega = \frac{2R}{J}$
	Assuming frequency (period) or constant and warsumher to
	Changles Changes
	displacement of the
	The interface is given by
	b = Ae (k=e-cut)
	=> b = A e i ka e e Atgrt
	The interface grows exponentially
	rather than fading away with a growth

