Thermal Properties

Javid Shiriyev, Ph.D.

Outline

- Geothermal Gradient
- Heat Capacity
- Thermal Conductivity

Geothermal Gradient

• The temperature within the earth's crust increases with depth approximately in accordance with the equation:

$$T = T_S + \omega D$$

- Where T_S is the average yearly temperature and D is the depth.
- The geothermal gradient ω varies from place to place but is approximately 3°C per 100 m.

Heat Capacity

- Heat capacity is a measure of the ability of a body to store heat.
- Heat capacities of sandstone and limestone can be accurately predicted from heat capacities of constituent mineral oxides.
- Heat capacity of a sandstone can be approximated by the following equation:

$$C_{\text{p,sandstone}} = 0.1812 + 1.452 \times 10^{-4} T - \frac{1.495 \times 10^3}{T^2}$$

• For the limestone:

$$C_{\text{p,limestone}} = 0.1968 + 1.189 \times 10^{-4} T - \frac{3.076 \times 10^3}{T^2}$$

- Temperature is expressed in Kelvin, and the unit of heat capacity is in kcal/kg-°C.
- These heat capacities apply to the rock skeleton material. For fluid-filled rocks, the fluid heat capacity must contribute and it can be taken into account as follows:

$$\rho_{\rm f}C_{\rm pf} = (1 - \phi)\rho_{\rm rock}C_{\rm p,rock} + \phi\rho_{\rm fluid}C_{\rm p,fluid}$$

Thermal Conductivity

TABLE 2.3 Measured Thermal Conductivities at 32°C [23]. (Thermal Conductivity, K_f , kcal/m²-sec-°C)

Sample	Porosity	Air filled (×10 ⁴)	Oil filled ^b (×10 ⁴)	Water filled c ($ imes 10^4$)	Oil and water filled ^d (\times 10 ⁴)
1. Sandstone	0.196	2.1	3.25	6.58	5.89
2. Sandstone	0.4	1.18	2.39	4.34	_
 Silty sand^a 	0.4	1.18			_
4. Silty sand ^a	0.43	1.08	2.58	4.59	
Siltstone	0.36	1.40	2.29	4.29	_
6. Siltstone	0.196	1.64	_	_	·
7. Shale	0.071	2.49	_	4.03	
8. Limestone	0.186	4.06	5.15	8.74	6.99

^a Disaggregated sample.

^b The thermal conductivity of the oil was 0.318×10^{-4} kcal/m-sec-°C.

^c The thermal conductivity of water is 1.46 × 10⁻⁴kcal/m-sec-°C.

^d The water saturation was about 35%.