""" Exploratory Data Analysis

1. Dataset Overview:

• The dataset comprises 14,260 entries across 10 columns, representing various attributes related to product sales.

2. Sales Metrics:

- The dataset includes two primary sales metrics: Quantity (QTY) and Value (VALUE), providing insights into the volume and monetary value of products sold.
- Minimum quantity recorded is 0 units, indicating instances of no sales, while the maximum quantity is 641 units for a single transaction.

3. Temporal Distribution:

• Sales data is categorized by month (MONTH), with the majority of entries distributed across three months: M1, M2, and M3.

4. Store Variation:

 Sales transactions are recorded across multiple stores (STORECODE), with varying levels of sales activity observed across different store codes.

5. Product Categorization:

- Products are classified into hierarchical categories, including Group Level (GRP), Subgroup Level (SGRP), and Sub-Subgroup Level (SSGRP), providing a structured taxonomy for analysis.
- The top-selling product group is "CONFECTIONERY TOTAL GUM," indicating high demand in this category.

6. Brand Information:

Each product is associated with company (CMP), mother brand (MBRD), and brand (BRD) attributes, enabling analysis of brand-level
performance and market share.

7. Sales Patterns:

- Analysis of sales metrics reveals diverse sales patterns, with a wide range of quantities and values recorded across different product categories and stores.
- The top-selling product, "CENTER FRUIT," recorded a maximum quantity of 641 units in a single transaction.

8. Variability and Trends:

 Examination of sales data reveals variability in sales metrics across different temporal periods, stores, and product categories, as well as potential trends or seasonality.

9. Insights for Decision-Making:

• The dataset offers valuable insights for decision-making, including identifying high-performing products, optimizing inventory management, and targeting marketing efforts based on sales patterns and trends.

10. Opportunities for Improvement:

CMP - Company

• Analysis of sales data highlights opportunities for improvement, such as identifying underperforming products or product groups for strategic adjustments and enhancing sales strategies to capitalize on emerging trends.

MBRD - Mother Brand Level

BRD - Brand Level

df.head()

df.tail()

		MONTH	STORECODE	QTY	VALUE	GRP	SGRP	SSGRP	CMP	1
	14255	М3	P10	0	0	SUGAR SUBSTITUTE (11/05)	POWDER (SUGAR SUBST)	POWDER (SUGAR SUBST)	ZYDUS WELLNESS LTD	SU F
	14256	М3	P8	1	62	SUGAR SUBSTITUTE (11/05)	PELLETS (SUGAR SUBST)	PELLETS (SUGAR SUBST)	ZYDUS WELLNESS LTD	SU F
	14257	M1	P6	0	0	SUGAR SUBSTITUTE (11/05)	PELLETS (SUGAR SUBST)	PELLETS (SUGAR SUBST)	ZYDUS WELLNESS LTD	SU F
4	14258	M1	P10	0	0	SUGAR SUBSTITUTE	POWDER (SUGAR	POWDER (SUGAR	ZYDUS WELLNESS	SU

df.sort_values(by=["MONTH"])

	М	ONTH	STORECODE	QTY	VALUE	GRP	SGRP	
	0	M1	P1	25	83	HAIR CONDITIONERS	HAIR CONDITIONERS	COND
7	106	M1	P3	1	0	AGARBATTI & DHOOPBATTI	DHOOPBATTI	DH
7	105	M1	P3	16	196	AGARBATTI & DHOOPBATTI	AGARBATTI	A
7	104	M1	P3	0	0	AGARBATTI & DHOOPBATTI	AGARBATTI	Aı
7	103	M1	P3	4	36	AGARBATTI & DHOOPBATTI	AGARBATTI	A
1	758	МЗ	P7	1	0	SHAMPOO - BY SEGMENTS	BOTTLES / TUBES	BOTTLE
1	759	МЗ	P7	0	0	SHAMPOO - BY SEGMENTS	BOTTLES / TUBES	BOTTLE
1	760	М3	P7	13	822	SHAMPOO - BY SEGMENTS	BOTTLES / TUBES	BOTTLE

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14260 entries, 0 to 14259
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	MONTH	14260 non-null	object
1	STORECODE	14260 non-null	object
2	QTY	14260 non-null	int64
3	VALUE	14260 non-null	int64
4	GRP	14260 non-null	object
5	SGRP	14260 non-null	object
6	SSGRP	14260 non-null	object
7	CMP	14260 non-null	object
8	MBRD	14260 non-null	object
9	BRD	14260 non-null	object

dtypes: int64(2), object(8)
memory usage: 1.1+ MB

df.isnull().sum()

MONTH 0 STORECODE 0 QTY 0

```
VALUE
                  0
     GRP
                  0
     SGRP
                  0
     SSGRP
                  0
     CMP
                  0
     MBRD
                  0
     BRD
     dtype: int64
df.shape
     (14260, 10)
df.describe()
                                  VALUE
                                          \blacksquare
      count 14260.000000 14260.000000
                                          th
                16.354488
                             294.455330
      mean
       std
                34.365583
                             760.129558
                 0.000000
                               0.000000
       min
      25%
                              10.000000
                 1.000000
       50%
                 4.000000
                              99.000000
                16.000000
                             283.000000
      75%
       max
               641.000000 24185.000000
df["MONTH"].unique()
     array(['M1', 'M3', 'M2'], dtype=object)
{\tt df["MONTH"].value\_counts()}
     M2
           4816
           4804
           4640
     Name: MONTH, dtype: int64
df["STORECODE"].unique()
     array(['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10'],
           dtype=object)
df["STORECODE"].value_counts().sort_values(ascending=False)
     Р8
            2642
     Р6
            2097
     P10
            1508
     P2
            1471
     P4
            1454
     Р3
            1362
     Р9
            1188
     P1
            1061
     Р7
             850
     Р5
             627
     Name: STORECODE, dtype: int64
df[["GRP","SGRP","CMP","MBRD","BRD"]].nunique().sort_values(ascending=False)
     BRD
              1613
     MBRD
               818
     CMP
               512
     SSGRP
               242
     SGRP
               177
     GRP
     dtype: int64
sns.barplot(data = df,x="MONTH",y="VALUE")
```

<Axes: xlabel='MONTH', ylabel='VALUE'>


```
qty_storecode = df.groupby("STORECODE")["QTY"].sum().sort_values(ascending=False)
qty_storecode
```

```
STORECODE
P4
       34089
P8
       32003
Р3
       27602
Р5
       25993
P10
       21323
Р6
       21178
Р7
       21114
       20904
Р1
       18526
P2
       10483
Name: QTY, dtype: int64
```

sns.barplot(data=qty_storecode)


```
\label{local_value_storecode} value\_storecode= \ df.groupby("STORECODE")["VALUE"].sum().sort\_values(ascending=False) \\ value\_storecode
```

```
STORECODE
Р8
       671988
P7
       571136
Р6
       502627
P4
P3
       471566
       428550
Р5
       335086
Ρ1
       334710
Р9
       313426
P10
       285820
```

P2 284024 Name: VALUE, dtype: int64

sns.barplot(data=value_storecode)

0

P8

P4

P6

Р3

P5

STORECODE

Ρ1

P9

P10

P2

sns.barplot(data=df,x="STORECODE",y="VALUE",hue="MONTH") plt.title("VALUES by Store and Month")

P7

Text(0.5, 1.0, 'VALUES by Store and Month')

 $\verb|sns.barplot(data=df,x="STORECODE",y="QTY",hue="MONTH")|\\$ plt.title("Quantity by Store and Month")

plt.xlabel("Store Code")
plt.ylabel("Quantity")

Text(0, 0.5, 'Quantity')

#top ten
qty_sort = df.sort_values(by="QTY",ascending=False).head(10)

qty_sort

	MONTH	STORECODE	QTY	VALUE	GRP	SGRP	SSGRP	
9602	M1	P10	641	641	CONFECTIONERY - TOTAL GUM	BUBBLE GUMS	BUBBLE GUMS	PI VAN
4595	МЗ	P9	625	5126	PACKAGED TEA	MAIN PACKS	MAIN PACKS	HASM
4779	МЗ	P6	605	775	COFFEE	INSTANT COFFEE	INSTANT COFFEE	NIH 1U
12861	M1	P1	554	2009	BISCUITS - CORE & NON CORE	GLUCOSE	GLUCOSE	
4750	M2	P6	541	990	COFFEE	INSTANT COFFEE	INSTANT COFFEE	NIH
1836	М3	P9	435	435	SHAMPOO - BY SEGMENTS	SACHETS	SACHETS	NIH 1U
1579	M1	P7	422	422	SHAMPOO - BY SEGMENTS	SACHETS	SACHETS	NIH
7557	M2	P7	416	5383	ALL IODISED SALT	POWDERED SALT	POWDERED SALT	DIV P
4					OUANDOO DV			HIN

Next steps: Generate code with qty_sort

View recommended plots

qty_sort

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7d6887e87760>

px.bar(qty_sort,x="MBRD",y="QTY",color="MONTH")

px.bar(df,x="MONTH",y="VALUE",hover_data={"STORECODE":True,"QTY":True,"GRP":True,"CMP":True,"MBRD":True,"BRD":True},title="BAR CHART WI"

BAR CHART WITH HOVER INFORMATION

