Nonlinear Control Theory

Bing Zhu

The Seventh Research Division Beihang University, Beijing, P.R.China

2020 Spring

Feedback Control

- Stabilization via linearization
- Integral control
- Integral control via linearization
- Gain scheduling

Stabilization via Linearization

Consider the nonlinear system

$$\dot{x} = f(x, u), \tag{1}$$

where f(0,0) = 0 and f(x,u) is continuously differentiable in a domain $D_x \times D_u \subset \mathbb{R}^n \times \mathbb{R}^p$ that contains the origin.

Its linearization around (x = 0, u = 0) can be calculated by

$$\dot{x} = Ax + Bu, \tag{2}$$

where

$$A = \frac{\partial f}{\partial x}(x, u) \Big|_{x=0, u=0}, \quad B = \frac{\partial f}{\partial u}(x, u) \Big|_{x=0, u=0}$$
(3)

B. Zhu (SRD BUAA) 2020 Spring 4/3

Assume that (A, B) is controllable (or at least stabilizable).

The eigenvalues of A-BK can be assigned to the desired locations in the open left-half complex plane.

Apply the state feedback control u = -Kx to the nonlinear system:

$$\dot{x} = f(x, -Kx). \tag{4}$$

Its linearization around x = 0 is given by

$$\dot{x} = \left[\frac{\partial f}{\partial x}(x, -Kx) + \frac{\partial f}{\partial u}(x, -Kx)(-K)\right]_{x=0} x = (A - BK)x$$
 (5)

where A - BK is Hurwitz.

- The origin is an asymptotically stable equilibrium point. (Theorem 4.7)
- The origin is an exponentially stable equilibrium point. (Theorem 4.13)
- Let Q be any positive-definite symmetric matrix. the Lyapunov equation

$$P(A - BK) + (A - BK)^{\mathsf{T}}P = -Q \tag{6}$$

has a unique positive definite solution P, and $V = x^T P x$ is a Lyapunov function for the closed-loop system in the neighborhood of the origin. (Theorem 4.6)

• V(x) can be applied to estimate the region of attraction.

B. Zhu (SRD BUAA) 2020 Spring 6 / 32

Example (12.2)

Consider the pendulum equation

$$\ddot{\theta} = -a\sin\theta - b\dot{\theta} + cT \tag{7}$$

where a = g/I > 0, $b = k/m \ge 0$, $c = 1/mI^2 > 0$, θ is the angle subtended by the rod and the vertical axis, and T is the control torque applied to the pendulum. Suppose we want to stabilize the pendulum at an angle $\theta = \delta$.

The torque must have a steady-state component satisfying $0 = -a \sin \delta + cT_{ss}$.

Choose the state variables as $x_1 = \theta - \delta$, $x_2 = \dot{\theta}$ and the control variable as $u = T - T_{ss}$.

$$\dot{x}_1 = x_2, \tag{8}$$

$$\dot{x}_2 = -a[\sin(x_1 + \delta) - \sin\delta] - bx_2 + cu.$$

(Y) 北京航空航天大學 Linearization around the origin results in

$$A = \begin{bmatrix} 0 & 1 \\ -a\cos(x_1 + \delta) & -b \end{bmatrix}_{x_1 = 0} = \begin{bmatrix} 0 & 1 \\ -a\cos\delta & -b \end{bmatrix}; B = \begin{bmatrix} 0 \\ c \end{bmatrix}.$$
 (10)

The pair (A, B) is controllable. Taking $K = [k_1 \ k_2]$, and A - BK is Hurwitz for

$$k_1 > -\frac{a\cos\delta}{c}, \quad k_2 > -\frac{b}{c}, \tag{11}$$

and the control torque can be given by

$$T = \frac{a\sin\delta}{c} - Kx = \frac{a\sin\delta}{c} - k_1(\theta - \delta) - k_2\dot{\theta}. \tag{12}$$

B. Zhu (SRD BUAA) 2020 Spring

Output feedback stabilization

Consider the nonlinear system

$$\dot{x} = f(x, u), \tag{13}$$

$$y = h(x), (14)$$

where h(0) = 0, h(x) is continuously differentiable in the domain $D_x \subset R^n$.

Only measurement of the output v is available for feedback!

Linearization around the origin results in the linear system

$$\dot{x} = Ax + Bu, \tag{15}$$

$$y = Cx, (16)$$

where
$$C = \frac{\partial h}{\partial x}(x)\big|_{x=0}$$
.

B. Zhu (SRD BUAA) 2020 Spring 9/32 Assume that (A, B) is stabilizable, and (A, C) is detectable.

Design a linear dynamic output feedback controller

$$\dot{z} = Fz + Gy, \tag{17}$$

$$u = Lz + My, (18)$$

such that the closed-loop matrix

$$\begin{bmatrix} A + BMC & BL \\ GC & F \end{bmatrix}$$
 (19)

is Hurwitz. An example is the observer-based controller

$$z = \hat{x}, F = A - BK - HC, G = H, L = -K, M = 0,$$
 (20)

where A - BK and A - HC are Hurwitz.

B. Zhu (SRD BUAA) 2020 Spring 10 / 32

Example

Reconsider the pendulum equation of Example 12.2, and suppose we measure the angle θ , but not the angular velocity $\dot{\theta}$.

An output variable can be taken as $y = x_1 = \theta - \delta$, and the state feedback controller of Example 12.2 can be implemented by using the observer

$$\dot{\hat{x}} = A\hat{x} + Bu + H(y - \hat{x}_1), \tag{21}$$

where $H = [h_1 \ h_2]^T$. It can be verified that A - HC is Hurwitz if

$$h_1 + b > 0, \quad h_1 b + h_2 + a \cos \delta > 0.$$
 (22)

The control torque is given by $T = \frac{a \sin \delta}{c} - K\hat{x}$.

B. Zhu (SRD BUAA) 2020 Spring 11 / 32

- Stabilization via linearization
- Integral control
- Integral control via linearization
- Gain scheduling

Motivating example

Consider the pendulum in Example 12.2:

$$\ddot{\theta} = -a\sin\theta - b\dot{\theta} + cT \tag{23}$$

- Suppose that a and c are uncertain with nominal values a_0 and c_0 .
- The goal: $\theta \rightarrow \delta = 45^{\circ}$.

The control is designed as before:

$$T = \frac{a_0 \sin \delta}{c_0} - k_1(\theta - \delta) - k_2 \dot{\theta}, \tag{24}$$

where the uncertain parameters are replaced by their nominal values.

If
$$c = \frac{c_0}{2}$$
, $a = a_0$, $k_1 = \frac{3a_0}{c_0}$, then $\theta_{ss} = 36^{\circ} \neq \delta$.

Integral control

For the nonlinear system:

$$\begin{cases} \dot{x} = f(x, u, w) \\ y = h(x, w) \end{cases}$$

where $w \in R^l$ is the constant disturbance.

- Assume: $\exists u_{ss}, x_{ss}, \text{ s.t. } 0 = f(x_{ss}, u_{ss}, w), r = h(x_{ss}, w).$
- Our goal: $y(t) \rightarrow r$ (constant reference value), as $t \rightarrow +\infty$.

Define $e \triangleq y - r$, and $\dot{\sigma} = e$. It follows that

$$\begin{cases} \dot{x} = f(x, u, w) \\ \dot{\sigma} = h(x, w) - r \end{cases}$$

Its equilibrium point is (x_{ss}, σ_{ss}) .

Our goal is now: Design $u = \gamma(x, \sigma, e)$ such that $\sigma \to \sigma_{ss}$, thus e = 0.

But how to design $u = \gamma(x, \sigma, e)$?

- Stabilization via linearization
- Integral control
- Integral control via linearization
- Gain scheduling

Integral control via linearization

Consider linear feedback control:

$$u = -K_1x - K_2\sigma - K_3e \tag{25}$$

The closed-loop system turns out:

$$\begin{cases} \dot{x} = f(x, -K_1x - K_2\sigma - K_3(h(x, w) - r), w) \\ \dot{\sigma} = h(x, w) - r \end{cases}$$
 (26)

Its equilibrium point (x_{ss}, σ_{ss}) satisfies

$$\begin{cases} 0 = f(x_{ss}, u_{ss}, w) \\ 0 = h(x_{ss}, w) - r \\ u_{ss} = -K_1 x_{ss} - K_2 \sigma_{ss} \end{cases}$$

Linearize (26) around its equilibrium point:

$$\dot{\xi}_{\delta} = (\mathcal{A} - \mathcal{B}\mathcal{K})\xi_{\delta} \tag{27}$$

where

$$\xi_{\delta} = \begin{bmatrix} x - x_{ss} \\ \sigma - \sigma_{ss} \end{bmatrix}, \ \mathcal{A} = \begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix}, \ \mathcal{B} = \begin{bmatrix} B \\ 0 \end{bmatrix}, \ \mathcal{K} = \begin{bmatrix} K_1 + K_3C & K_2 \end{bmatrix}$$

$$A = \left. \frac{\partial f}{\partial x}(x, u, w) \right|_{x = x_{ss}, u = u_{ss}}, \ B = \left. \frac{\partial f}{\partial u}(x, u, w) \right|_{x = x_{ss}, u = u_{ss}}, \ C = \left. \frac{\partial h}{\partial x}(x, w) \right|_{x = x_{ss}}$$

$$(A,B)$$
 controllable, & Rank $\begin{bmatrix} A & B \\ C & 0 \end{bmatrix} = n + p(\text{full rank}) \Rightarrow (A,B)$ controllable

$$\Rightarrow$$
 $\exists \mathcal{K} = [K_1 + K_3 C \quad K_2]$, such that $\mathcal{A} - \mathcal{BK}$ is Hurwitz.

Usually $K_3 = 0$ can be assigned, and K_1 and K_2 can be obtained from K.

The linear integral control can be obtained by

$$\begin{cases}
\dot{\sigma} = \mathbf{e} = \mathbf{y} - \mathbf{r} \\
\mathbf{u} = -\mathbf{K}_1 \mathbf{x} - \mathbf{K}_2 \sigma
\end{cases}$$
(28)

Example – the pendulum system

Pendulum model:

$$\ddot{\theta} = -a\sin\theta - b\dot{\theta} + cT \tag{29}$$

Goal:

$$\theta \rightarrow \delta \text{ (constant)}$$
 (30)

Model transformation: $x_1 = \theta - \delta$, $x_2 = \dot{\theta}$, u = T

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a\sin(x_1 + \delta) - bx_2 + cu \end{cases}, y = x_1$$
 (31)

where $x_{ss} = [0, \ 0]^T$, $u_{ss} = \frac{a}{c} \sin \delta$

$$A = \begin{bmatrix} 0 & 1 \\ -a\cos\delta & -b \end{bmatrix}, B = \begin{bmatrix} 0 \\ c \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix},$$
 (32)

It is obvious that (A, B) is controllable, $\begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$ is full rank.

B. Zhu (SRD BUAA) 2020 Spring 21 / 32 Let $K_1 = [k_1, k_2]^T$ and $K_2 = k_3$, then

$$b + k_2c > 0$$
, $(b + k_2c)(a\cos\delta + k_1c) - k_3c > 0$, $k_3c > 0 \Rightarrow A.S$

If $\frac{a}{c} < \rho_1$ and $\frac{1}{c} < \rho_2$, then the closed-loop stability can be guaranteed by

$$k_2 > 0, \ k_3 > 0, \ k_1 > \rho_1 + \frac{k_3}{k_2} \rho_2$$
 (33)

and the linear integral control can be obtained by

$$\begin{cases}
\dot{\sigma} = \theta - \delta \\
u = -k_1(\theta - \delta) - k_2\dot{\theta} - k_3\sigma
\end{cases}$$
(34)

which is actually a PID control.

Figure: Simulation results for pendulum regulation under nominal (solid) and perturbed (dashed) parameters, with and without integral action

- Stabilization via linearization
- Integral control
- Integral control via linearization
- Gain scheduling

Gain scheduling

Operating points are parameterized by one or more variables (scheduling variables)

Example

Tank system

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\int_0^h A(h) \mathrm{d}y \right) = w_i - k \sqrt{\rho g h} \tag{35}$$

where h- hight of water, w_i - input flow rate, A(h)- cross-sectional area.

Define the state x = h. The objective is to design w_i such that x tracks its reference r.

B. Zhu (SRD BUAA) 2020 Spring 25 / 32

• Let x = h, and $u = w_i$, then

$$\dot{x} = \frac{1}{A(x)}(u - c\sqrt{x}) = f(x, u)$$
 (36)

where $c = k\sqrt{\rho g}$ is uncertain.

- Let y = x be the output, r be the scheduling variable.
- If $r = \alpha$ where α is constant, then integral control is applied here, such that

$$0 = u_{ss} - c\sqrt{x_{ss}}, \ \alpha = x_{ss}$$
 (37)

B. Zhu (SRD BUAA) 2020 Spring 26 / 32

Integral control

$$\begin{cases} \dot{x} = f(x, u) \\ \dot{\sigma} = x - r \\ u = -k_1(\alpha)e - k_2(\alpha)\sigma \quad \text{(actually a PI control)} \end{cases}$$

$$\Rightarrow \begin{cases} \dot{x} = f(x, -k_1(\alpha)e - k_2(\alpha)\sigma) \\ \dot{\sigma} = x - r \end{cases} \Rightarrow \sigma_{ss} = \frac{-u_{ss}}{k_2}$$

• Linearize around (x_{ss}, σ_{ss})

$$\dot{\xi}_{\delta} = \begin{bmatrix} a(\alpha) - b(\alpha)k_{1}(\alpha) & -b(\alpha)k_{2}(\alpha) \\ 1 & 0 \end{bmatrix} \xi_{\delta} + \begin{bmatrix} b(\alpha)k_{1}(\alpha) \\ -1 \end{bmatrix} r_{\delta}$$
(38)

where $\xi_{\delta} = [\mathbf{X}_{\delta}, \sigma_{\delta}]^{\mathsf{T}}$, $\mathbf{X}_{\delta} = \mathbf{X} - \alpha$, $\sigma_{\delta} = \sigma - \sigma_{\mathsf{ss}}$, $\mathbf{r}_{\delta} = \mathbf{r} - \alpha$.

B. Zhu (SRD BUAA) 2020 Spring 27/32

Jacobian matrices

$$a(\alpha) = \frac{\partial f}{\partial x}\Big|_{x_{ss}, u_{ss}} = -\frac{c\sqrt{\alpha}}{2\alpha A(\alpha)}, \quad b(\alpha) = \frac{\partial f}{\partial u}\Big|_{x_{ss}, u_{ss}} = \frac{1}{A(\alpha)}$$
(39)

• Assume that the upper bound for c is known, and let

$$k_1(\alpha) = \frac{2\zeta\omega_n}{b(\alpha)}, \quad k_2(\alpha) = \frac{\omega_n^2}{b(\alpha)}, \quad 0 < \zeta < 1, \quad 2\zeta\omega_n >> |a(\alpha)| \tag{40}$$

such that

$$\dot{\xi}_{\delta} = \begin{bmatrix} a(\alpha) - 2\zeta\omega_n & -\omega_n^2 \\ 1 & 0 \end{bmatrix} \xi_{\delta} + \begin{bmatrix} 2\zeta\omega_n \\ -1 \end{bmatrix} r_{\delta}, \quad y_{\delta} = \begin{bmatrix} 1 & 0 \end{bmatrix} \xi_{\delta}$$
 (41)

and its transfer function

$$\Phi(s) = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + [2\zeta\omega_n - a(\alpha)]s + \omega_n^2}$$

Time-varying r: $u = -k_1(r)e - k_2(r)\sigma$

Closed-loop system:

$$\begin{cases} \dot{x} = f(x, -k_1(r)e - k_2(r)\sigma) \\ \dot{\sigma} = x - r \end{cases}$$
 (43)

• In case of $r = \alpha$ where α is time-varying or switching, linearize around (x_{ss}, σ_{ss}) :

$$\dot{\xi}_{\delta} = \begin{bmatrix} a(\alpha) - 2\zeta\omega_n & -\omega_n^2 \\ 1 & 0 \end{bmatrix} \xi_{\delta} + \begin{bmatrix} 2\zeta\omega_n + \gamma(\alpha) \\ -1 \end{bmatrix} r_{\delta}, \quad y_{\delta} = \begin{bmatrix} 1 & 0 \end{bmatrix} \xi_{\delta}$$
 (44)

where
$$\gamma(\alpha) = -b(\alpha)k_2'(\alpha)\sigma_{ss}(\alpha) = \frac{A'(\alpha)c\sqrt{\alpha}}{A^2(\alpha)}$$
.

• Now, the transfer function is $\Phi(s) = \frac{[2\zeta\omega_n + \gamma(\alpha)]s + \omega_n^2}{s^2 + [2\zeta\omega_n - a(\alpha)]s + \omega^2}$. Its zeros are different from those with constant α .

B. Zhu (SRD BUAA) 2020 Spring 29 / 32

Is it possible to achieve the same performance as that with constant α ?

Figure: Modification of the gain-scheduled PI controller: original (left) and modified (right)

$$\begin{cases} \dot{x} = f(x, -k_1(r)e - k_2(r)\sigma) \\ \dot{\sigma} = x - r \end{cases} \rightarrow \begin{cases} \dot{x} = f(x, -k_1(r)e + \eta) \\ \dot{\eta} = -k_2(r)(x - r) \end{cases}$$

B. Zhu (SRD BUAA) 2020 Spring 30 / 32

$$\begin{cases} \dot{x} = f(x, -k_1(r)e - k_2(r)\sigma) \\ \dot{\sigma} = x - r \end{cases} \rightarrow \begin{cases} \dot{x} = f(x, -k_1(r)e + \eta) \\ \dot{\eta} = -k_2(r)(x - r) \end{cases}$$

• Linearization around its working point:

$$\dot{z}_{\delta} = \begin{bmatrix} a(\alpha) - 2\zeta\omega_n & b(\alpha) \\ -\frac{\omega_n^2}{b(\alpha)} & 0 \end{bmatrix} z_{\delta} + \begin{bmatrix} 2\zeta\omega_n \\ \frac{\omega_n^2}{b(\alpha)} \end{bmatrix} r_{\delta}, \quad y_{\delta} = \begin{bmatrix} 1 & 0 \end{bmatrix} z_{\delta}$$
 (45)

where
$$z_{\delta} = [x_{\delta}, \eta_{\delta}]^T$$
, and $\xi_{\delta} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{-b(\alpha)}{\omega_{\rho}^2} \end{bmatrix} z_{\delta}$.

The transfer function is now

$$\Phi(s) = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + [2\zeta\omega_n - a(\alpha)]s + \omega_n^2}$$
(46)

which is the same as that with constant α .

Gain scheduling

General design process

- Linearize the nonlinear model about a family of operating points, parameterized by the scheduling variables.
- ② Design a parameterized family of linear controllers to achieve the specified performance at each operating point.
- Construct a gain-scheduled controller such that
 - * the closed-loop system under the gain-scheduled controller has the same equilibrium point as the closed-loop system under the fixed-gain controller;
 - * the linearization under the gain-scheduled controller is equivalent to that under the fixed-gain controller.
- Check the performance of the gain-scheduled controller by simulating the nonlinear closed-loop model.
 (本) 北京航空航天大