Univariate nonlinear discrete-time models

© Ben Bolker (modified by Steve Walker): August 4, 2014

Logistic model

Impose bounds on an otherwise ridiculous growth process. Begin with the geometric difference equation, N(t+1)-N(t)=RN(t). Set R equal to a decreasing linear function of N(t) with x-intercept, N_{\max} , and y-intercept R_{\max} . This yields the logistic difference equation, $N(t+1)-N(t)=R_{\max}N(1-N(t)/N_{\max})$; can set $N_{\max}=1$ (non-dimensionalization). Fixed points: $N(t+1)-N(t)=0=RN*(1-N*/N_{\max})$ has two solutions, N*=0 and N*=K.

Stability

The geometric recurrsion, N(t+1) = f(N(t)) = RN(t), is stable at the fixed point N* = 0, whenever |R| < 1. For general scalar function, f, and fixed point N*, this criterion becomes |f'(N*)| < 1, where f'(N) is the first derivative of f with respect to N. Note that this is a true generalization because f'(N) = R for the geometric model.

The derivative of the function defining the logistic recurrsion, $f(N) = N + R_{\text{max}}N(1-N/N_{\text{max}})$, is f'(N) =

Alternative parameterizations

An ecologist or other normal person might choose to parameterize the discrete logistic model as above. A mathematician would choose x(t+1) = Rx(1-x). The mathematician has chosen $R = r/K \to K = 1 - 1/R$. Mathematically equivalent parameterizations often have quite different meanings (or statistical properties), as well as cultural connotations. Get used to it.

More nonlinear models

Other 1-D discrete nonlinear models: Ricker model ($N = rNe^{-bN}$); population genetics; approximations of continuous models. Epidemic models (SI) (equivalent to discrete logistic).

$$S(t+1) = m(N-S) - bSI + gI$$

$$= m(N-S) - bS(N-S) + g(N-S)$$

$$= m(1-S) - bS(1-S) + g(1-S)$$

$$= mI - bI(1-I) + gI$$

$$= (m+g-b)I + bI^{2}$$
(1)

$$N(t+1) = N + rN(1 - N/K)$$

$$= (1+r)N - (r/K)N^{2}$$

$$= (1+r)N - rN^{2}$$
(2)

Graphical approaches, continued: *Allee effects*. Bistability, multiple stable states.