

HIDDEN MARKOV MODEL (HMM)

SEQUENTIAL DATA

- Speech Recognition
- Gene Sequence Alignment
 - Human Genome Project
- Assistive Technology & Robotics

HIDDEN MARKOV MODEL (HMM)

- Infer Hidden States (words)
 From a sequence of observations (sounds)
- Future State only depends on Current State

HMM EXAMPLE: ROBOT WANTS TO FEEL

(HIDDEN) EMOTION STATES:

X = {HAPPY, SAD, ANGRY}

OBSERVATIONS:

Y = { PLAYING GUITAR,

WATCHING ROM-COMS ON NETFLIX,

DRINKING WHISKEY,

FACEBOOK,

WASHING THE DISHES}

HMM EXAMPLE: ROBOT WANTS TO FEEL

$$P(X = happy | Y = facebook)$$

$$P(X = angry | Y = dishes)$$

. . .

Emission Probability Matrix

	guitar	facebook	dishes	whiskey	romcoms
happy	0.4	0.1	0.1	0.2	0.2
sad	0.1	0.2	0.1	0.2	0.4
angry	0.1	0.1	0.4	0.3	0.1

HMM EXAMPLE: HUMANS BE CRAZY

- Dynamic system
- Robots makes observations every 10 minutes
- Wants to infer & predict how emotional state changes

HMM EXAMPLE: HUMANS BE CRAZY

- Dynamic system
- Robots makes observations every 10 minutes
- Wants to infer & predict how emotional state changes

Initial State Probability

	happy	sad	angry
P0	0.6	0.3	0.1

Transition Probability

	happy	sad	angry
happy	0.67	0.21	0.02
sad	0.32	0.54	0.14
angry	0.11	0.27	0.62

HMM EXAMPLE: LEARNING TO FEEL

Given:

GGGFFWDDNNNGGNNFFWWWDDNNNGGGG... ← TRAINING DATA (OBSERVATIONS)

INITIAL PARAMETERS: P0, Emission Probability, Transition Probability

Calculates:

Probability of all sequences in the training data

Updates:

P0, Emission Probability, Transition Probability

Iteratively via
Expectation- Maximisation algorithm

Returns:

HHHHSSSAASSSHHHHHHAAAASSSHHHHHHHH... ← MOST LIKELY STATES

PYTHON HMM LIBRARY

https://github.com/hmmlearn/hmmlearn

http://hmmlearn.readthedocs.io

DEMO

https://github.com/alicelynch/ hmm-python-meetup/

