META-HEURÍSTICAS CCF-480

Prof. Dr. Marcus Henrique Soares Mendes marcus.mendes@ufv.br
UFV - Campus Florestal

http://lattes.cnpq.br/9729345585563115

Roteiro

- Algoritmos Genéticos.
 - Fluxograma.
 - Representação.
 - População inicial.
 - Forma de geração.
 - Tamanho.
 - Função Fitness.

Algoritmos Genéticos

Fonte: Adaptado da referência (1).

- É a forma básica de traduzir a informação do nosso problema em um formato viável para o tratamento pelo computador.
- É o meio que o genótipo representa o fenótipo.
- Influencia:
 - Em como fazer as operações genéticas.
 - No desempenho do algoritmo genético.
 - Na possibilidade de gerar (ou não) soluções infactíveis.
 - Em determinar o quão perto soluções distintas (fenótipos) estão uma da outra.

Exemplo:

- Problema bin packing.
 - Empacotar itens de diversos tamanhos utilizando o menor número de bins (pacotes) possíveis. Os pacotes têm uma certa capacidade.
 - Representação 1
 - Para cada item, indique o número do seu pacote. Para criar o fenótipo (empacotamento real), percorre-se sequencialmente o genótipo é verificar em qual pacote colocar o item.
 - Representação 2
 - O genótipo é uma permutação de itens. Para criar o fenótipo (empacotamento real), percorre-se sequencialmente o genótipo usando um heurística chamada First_Fit (põe o próximo item no primeiro pacote que ele couber).

Exemplo Bin Packing

- Representação 1
 - Mais direta.
 - Problemas:
 - muitas soluções inviáveis podem ser representadas.
 - muitas soluções com baixa qualidade podem ser representadas.
- Representação 2
 - Indireta.
 - Usar a heurística First_Fit envolve um custo computacional que pode ser caro.
 - Muitas mudanças no genótipo podem não fazer diferença no fenótipo.
 - Solução ótima pode não se representável.
 - Resolve os problemas da representação 1.

- Formas de representação:
 - Codificação binária
 - Primeira forma empregada nos algoritmos genéticos.
 - Usada em problemas com variáveis contínuas ou discretas.
 - Codificação real
 - Usada em problemas com variáveis contínuas.
 - Vetores de inteiros
 - Usada em problemas com variáveis discretas.
 - Lista de regras
 - Usada em problemas de classificação.
 - Ex: problema do transformador
 - Concentração elemento químico a > valor1 && Concentração elemento químico b < valor2 então defeito_2 = 1
 - Qualquer estrutura de dados adequada ao problema em questão.

Codificação binária

- Utiliza um alfabeto de cardinalidade 2 (bit 0 ou 1).
- A cadeia de bits (com comprimento l_i) para cada variável x_i do problema corresponde ao cromossomo.
- A cadeia binária resultante da concatenação das cadeias de cada variável representa o indivíduo.
- Dado um problema de otimização de n variáveis com l_i bits para cada variável, tem-se que:
 - \Box Cada indivíduo contém n cromossomos de tamanho l_i (n x l_i bits).
 - \Box O espaço de busca é discretizado em 2^{n*l_i} soluções candidatas.
 - Ex: problema com 3 variáveis de decisão e $l_i = 5$.

- Codificação binária
 - Dado um problema de otimização com n variáveis limitadas em $x_i^{min} \le x_i \le x_i^{max}$.
 - Utilizando-se l_i bits para cada variável pode-se representar 2^{l_i} pontos no intervalo $\left[x_i^{min}, x_i^{max}\right]$.
 - Assim, o intervalo é discretizado em $2^{l_i} 1$ pequenos intervalos de tamanho (esse valor pode ser associado à precisão da variável i):

$$\bullet e_i = \frac{x_i^{max} - x_i^{min}}{2^{l_i} - 1}$$

Exemplo:

Transformar o valor de x_3 (0 0 0 1 1) da base 2 para base 10, sendo x_{3min} = -2 e x_{3max} = 2.5.

\square Qual o valor de e_i ?

$$x_3 = -2 + (4.5/31)[1*2^0 + 1*2^1 + 0*2^2 + 0*2^3 + 0*2^4]$$

= -2+0.145[3] = -1.565

- Codificação Binária
 - Distância de hamming (d_h) : entre dois números inteiros é definida como a quantidade de bits distintos na cadeia binária.
 - **E**x: 0001 e 0111 têm $d_h(0001,0111) = 2$.
 - Na codificação binária há o problema de hamming cliffs, isto é, há diferenças consideráveis do valor de d_h para inteiros adjacentes.
 - Ex: 0111 e 1000, que representam 7 e 8 em decimal, respectivamente. No código binário o valor de $d_h(0111,1000) = 4$.

Código Gray

■ Se n_1 e n_2 ∈ $\{0, ..., 2^{l_i} - 1\}$ são dois inteiros adjacentes representados no código Gray pelas cadeias binárias a_1 e a_2 de comprimento l_i então:

$$|n_1 - n_2| = 1 \implies d_h(n_1, n_2) = 1$$

Exemplo:

- Conversão entre código binário e código Gray
 - □ Seja um cromossomo $b_i = (b_1, b_2, ..., b_{l_i})$ no código binário e seu correspondente $G_i = (G_1, G_2, ..., G_{l_i})$ no código Gray.
 - A conversão entre o código binário e o código Gray, ou vice-versa, pode ser definida com base no operador "adição módulo 2" ou no operador "ou exclusivo".
 - **■** 0⊖0=0
 - **■** 0⊖1=1
 - **■** 1⊖0=1
 - **■** 1⊖1=0

Algoritmo conversão entre código binário e código Gray.

```
//Número de bits da cadeia de caracteres
          //Contador
G[n]
         //Vetor que contém a cadeia de caracteres no código Gray
          //Vetor que contém a cadeia de caracteres no código binário
b[n]
XOR(bit, bit) //Função Ou exclusivo
 Função Binário Para Gray(){
          i=1:
          G[i]=b[i];
          Enquanto (i≠n) {
                    i=i+1:
                    G[i]=XOR(b[i-1],b[i]);
 Função_Gray_Para_Binário(){
          i=1;
          b[i]=G[i];
          Enguanto (i≠n) {
                    i=i+1:
                    b[i]=XOR(b[i - 1],G[i]);
                                       marcus.mendes@ufv.br
Fonte: Referência (1).
```

- Representação binária:
 - Tem dificuldades com múltiplas dimensões de variáveis contínuas, especialmente quando uma grande precisão é requerida.
 - Grande número de bits será necessário para atingir tal precisão.
 - Cromossomos se tornarão extremamente grandes, dificultando a operação do algoritmo genético.

Codificação Real

- Tem sido cada vez mais usada em problemas de otimização com variáveis de decisão contínuas.
- Representação direta, o genótipo do indivíduo é o próprio vetor de variáveis de decisão.
- $\mathbf{X} = (x_1, x_2, ..., x_n)$, onde n = número de variáveis de decisão.
 - Exemplo de indivíduo: X = (0,34 9,71 3,45)
- Resultados empíricos indicam que, para problemas com variáveis contínuas, a codificação real é superior às outras.

Algoritmos Genéticos - Geração Inicial

- Inicialização aleatória é o padrão.
- Há tentativas de gerar algo mais inteligente, porém há o risco de causar convergência prematura.
- Além disso, pode ser difícil gerar soluções boas e variadas, que é o desejado.
- Exemplos:
 - Codificação real:
 - Para cada variável de decisão deve-se gerar um valor aleatório válido dentro do domínio permitido.
 - Codificação binária:
 - Basta gerar aleatoriamente npop indivíduos.
 - Cada indivíduo é composto por n cadeias de bits 0 e 1. Cada cadeia possui l_i bits.

Algoritmos Genéticos – Tamanho da População

- Deve-se escolher o número de indivíduos da população.
 - De acordo com as características do problema. Em geral, usam-se dezenas ou centenas de indivíduos.
 - População pequena tem diversidade insuficiente e pode convergir prematuramente.
 - População grande pode não ter tempo suficiente de evoluir.

Função Fitness

- É a maneira utilizada pelos algoritmos genéticos para determinar a qualidade de um indivíduo como solução do problema em questão.
- Também chamada de função de mérito, função de desempenho, função de avaliação ou função de aptidão.
- É usada para a escolha dos indivíduos na etapa de seleção.
- Fornece uma nota a cada indivíduo considerando sua capacidade de resolução do problema.
- Baseia-se na função objetivo do modelo de otimização.
- Deve diferenciar entre duas soluções subótimas.

Referências Bibliográficas

- Principais referências bibliográficas desta aula:
 - 1) João A. Vasconcelos. Notas de aula. UFMG, 2011.
 - 2) Joshua Knowles. Notas de aula. University of Manchester, 2014.