Problem 1 Find two linear maps

$$\alpha, \beta : \mathbb{F}[x] \to \mathbb{F}[x],$$

such that

$$\alpha(\beta(f)) - \beta(\alpha(f)) = f$$

for any $f\in \mathbb{F}[x]$.

Is it possible to find such $\alpha, \beta: V \to V$ when V is of finite dimension?

Problem 2 Here is a **clarification of irreducibility** over general polynomial rings. Let $\mathbb{A} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \ldots\}$. A polynomial $f \in \mathbb{A}[x]$ is **reducible** if and only if there exists some factorisation $f = g \cdot h$ such that $g^{-1} \notin \mathbb{A}[x]$ and $h^{-1} \notin \mathbb{A}[x]$. For instance:

- $igo 2 \cdot x$ is irreducible in $\mathbb{Q}[x]$, yet reducible in $\mathbb{Z}[x]$;

Now consider $f \in \mathbb{Z}[x]$. **Prove** the following:

- **1.** If f is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$;
- 2. If f is irreducible in $\mathbb{R}[x]$, then it is irreducible in $\mathbb{Q}[x]$.

riangle 规范的表述是"多项式 f(x) 在 riangle (x) 中可约",而非"多项式 r(x) 可约";类似地,规范地表述是" r 是 r-线性映射",而非" r 是线性映射"。若无歧义,可适当地选用后者以精简表述。

In fact, one has

$$(\text{domain}) \quad \underbrace{\mathbb{Z}[x] \to (\mathbb{Z}[1/2])[x] \to \cdots \to \mathbb{Q}[x]}_{\text{more irreducible polynomials}} \quad (\text{fractional field}),$$

and

$$\begin{array}{ccc} \text{(field)} & \underline{\mathbb{Q}[x] \to (\mathbb{Q}[\sqrt{2}])[x] \to \cdots \to \mathbb{C}[x]} \\ & \text{less irreducible polynomials} \end{array} \quad \text{(algebraic closure)}.$$

(Optional) Find **Gauß's lemma** in any of the textbooks and understand both the statement and the proof. The lemma states that:

For any $f(x) \in \mathbb{Z}[x]$, f is irreducible in $\mathbb{Z}[x]$ if and only if f is both irreducible over $\mathbb{Q}[x]$ and f is primitive (i.e., the greatest common divisor of its coefficients is 1).

Let f be **monic**, i.e., non-zero with leading coefficient 1. From Gauß's lemma, we learn that for any monic $f \in \mathbb{Z}[x]$, f is irreducible in $\mathbb{Z}[x]$ **if and only if** it is irreducible in $\mathbb{Q}[x]$.

Problem 3 Here are some criteria for the irreducibility of polynomials in $\mathbb{C}[x]$:

- 1. Let $f\in \mathbb{Z}[x]$ be a **monic** polynomial of degree n. Denote the zeros of f in \mathbb{C} by $(z_i)_{i=1}^n$. Show that, if there is exactly one z_i such that $|z_i|\geq 1$ and $f(0)\neq 0$, then f is irreducible in $\mathbb{Q}[x]$.
- 2. Let $f \in \mathbb{Z}[x]$ be a polynomial such that f(0) is prime. Denote the zeros of f in \mathbb{C} by $(z_i)_{i=1}^n$. Show that, if $|z_i| > 1$ for all i, then f is irreducible.
- 3. Let $f(x)=\sum_{k=0}^n a_k\cdot x^k\in\mathbb{Z}[x]$ be a polynomial with f(0) prime. Suppose that $|a_0|>\sum_{k=1}^n |a_k|$. Show that f is irreducible.

Problem 4 Find all $f(x) \in \mathbb{C}[x]$ such that

$$f(x) \equiv egin{cases} 2x \mod (x-1)^2, \ 3x \mod (x-2)^2. \end{cases}$$

Exercises (optional) The following problems are **optional** but some of the problems are very important.

1. Is there any irreducible $f(x) \in \mathbb{Z}[x]$ such that f(f(x)) is reducible?

- 2. Prove that $1+\prod_{k=1}^{2025}(x-k)^2$ is irreducible in $\mathbb{Z}[x];$
- 3. Prove that $\prod_{k=1}^n (x-x_i)+1$ is either irreducible in $\mathbb{Z}[x]$, or a perfect square;
 - igcolumn where $x_1 < x_2 < \dots < x_n$ are integers.
- **4**. $(f\in \mathbb{Z}[x])$ Prove that if f(x)=1 has ≥ 4 solutions in \mathbb{Z} , then f(x)=-1 has no solutions in \mathbb{Z} .
- 5. Prove that the partial sum $(e^x)_{\deg \le n}$ is always irreducible in $\mathbb{Q}[x]$.