Neighbourhood processing

$$I_{out}[m_0,n_0] = I_{in}[m,n]; [m,n] \in N[m_0,n_0]$$

Useful 2D functions

Unit impulse function in 2D:

$$\delta[m,n] = 1$$
; $[m,n] = 0$
= 0 otherwise

Unit pulse (Rect) function in 2D:

```
\Pi[m,n] = 1; |m| or |n| \le 1
= 0 otherwise
```

Neighbourhood (spatial) operations

- Output pixel value at p in the output image is determined by pixels in N_p in the input image
- This is a filtering operation
- Filter kernel is represented as a mask or window
- The operation performed can be linear or nonlinear

Filtering / Masking operation

Initial mask position

Non-linear operations

Notations: input image (x), output image (y)

Ranking

```
-y[m,n] = max ... min ... median {x[m,n]; [m,n] \in N[m,n]}
Neigbourhood of (m,n)
```

• Extrema – special case in ranking

```
-y[m,n] = min \{x[m,n]; [m,n] \in N[m,n]\}
or = max \{x[m,n]; [m,n] \in N[m,n]\}
help find the local \underline{max} or \underline{min}
```

Linear mask operations

y: output image x: input image h: filter mask

y(m,n) = h(m,n) * x(m,n) ; h convolved with the input x

$$y[m,n] = \sum_{i} \sum_{j} x[i,j]h[m-i,n-j]$$

- > output pixel is a <u>weighted combination</u> of the neighbouring pixels.
 - Weight is determined by the filter kernel h i.e. mask coefficients
- ➤ mask size is always finite → FIR filtering

Linear filtering

What is linear filtering?

Filtered output (pixel) is a linear combination of input pixels

Common examples:

- Averaging (straight, weighted) or low pass filtering
- Finite difference or high pass filtering
- High boost filtering
- Bandpass filtering

Where is linear filtering used?

Common applications:

- Enhancement
 - Deblur, sharpen
- Denoising
 - By averaging
- Feature extraction
 - Detect edges

Spatial averaging

- Output pixel value at [i,j] = average of all pixels in N[i,j]
- Mask weights = h[i,j]
- Mask is chosen to be odd sized 3x3, 7x7,...etc.
 - Why?
- Visual effect: *smoothing*
 - <u>Degree</u> of smoothing ∝ mask size
 - Type of smoothing determined by mask shape, and weights. h(i,j)

h[-1,-1]	h[-1,0]	h[-1,1]
h[0,-1]	h[0,0]	h[0,1]
h[1,-1]	h[1,0]	h[1,1]

 $m \times m$ mask representing N(i,j)

Straight averaging

- Equal mask weights (Ideal low pass filter)
 - For $m \times m$ sized kernel, $h[i,j] = 1/m^2 \forall i,j$
 - Equivalent to a <u>running average</u> filter in 1D
- Equivalent to convolution with $\Pi[m,n]$ $\stackrel{\text{2D }rect}{\text{or a box function}}$
 - Can lead to problems along sharp edges

Smoothing using averaging

After

After repeated averaging

Check: Is repeated averaging by a filter the same as filtering with a larger kernel?

Weighted averaging

Gaussian smoothing: Mask weights are <u>samples</u> of a Gaussian function (distant neighbours have less weights)

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp\{-(x^2 + y^2)/2\sigma^2\}$$

- Used to obtain controlled smoothing
 - Small σ means less smoothing and retaining fine detail
- Mask size increases rapidly with σ

N_x	12	10	17
x(m,n)=12	17	12	17
	35	16	184

σ = 0.391 pixels		
1	4	1
4	12	4
1	4	1

$$y(m,n)=?$$

Controlled smoothing – 2 other alternatives

There are other ways to have controlled smoothing

1. Apply averaging selectively

Example

- include a neighbouring pixel in the averaging only if it is in a specified range
- > output pixel is valid only if it is in a specified range,
- > etc.

Controlled smoothing...contd.

2. Use a rotating mask and detect homogeneous region around a pixel of interest and average this region only

• • • • • • • • • • •

9 rotated versions of a 3x3 mask

x : pixel of interest

Non-local Mean filter

 Non-local Means [Buades et al. 2005] — proposed for denoising

$$g_{NL}[r] = \sum_{q \in I} w[r,q]I[r]$$
 r, q are pixel locations; $0 \le w \le 1; \sum w = 1$ $I[r]$ is the pixel value at r

• w is the weight based on <u>similarity</u> between pixel values in the neighbourhoods of r and q.

Basic strategy: similar neighbourhoods should lead to large weights and vice versa

NLM filter contd.

From Buades et al. 2005

Popular choice for w is a Gaussian weighted (Euclidean) distance between r,q

$$w(r,q) = \frac{1}{K(r)} e^{-\frac{N(\|I(\Omega_r) - I(\Omega_q)\|^2, a)}{h^2}}$$

$$K(r) = \sum_{q} e^{-\frac{N(\left\|I(\Omega_r) - I(\Omega_q)\right\|^2, a)}{h^2}}$$

 $N(\mu, \sigma)$ denotes Normal distribution Ω_x denotes the neighbourhood about x

Sample result from Buades et al

Noisy input

Denoised results

Gaussian averaging

NLM

Other types of spatial domain filtering

- Other common linear filtering operations
 - High-pass
 - Band-pass

What are the mask coefficients h[m,n]?

Clue: Any spectrum can be divided into a lowpass band + highpass band

→ An allpass filter can be thought of as a sum of LPF and HPF

Check: What is the *filter kernel* h_{AP} for an allpass filter?

HPF Filter derivation

Use LPF as the prototype

HPF:
$$h_{HP}[m,n] = \delta[m,n] - h_{LP}[m,n]$$

$$y_{HP}[m,n] = x[m,n] * h_{HP}[m,n]$$

= $x[m,n] * [\delta[m,n] - h_{LP}[m,n]]$

Using distributive property of convolution, rewrite as

$$y_{HP}[m,n] = x[m,n] - y_{LP}[m,n]$$

where
$$y_{LP}[m,n] = x[m,n] * h_{LP}[m,n]$$

Examples

After HPF →

Quilt

BPF filter derivation

BPF: $h_{BP}[m,n] = h_{LP2}[m,n] - h_{LP1}[m,n]$

 $y_{BP}[m,n] = x[m,n] * (h_{LP2}[m,n] - h_{LP1}[m,n])$

 $y_{BP}[m,n] = y_{LP2}[m,n] - y_{LP1}[m,n]$

Filter masks

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

-1/9	-1/9	-1/9
-1/9	8/9	-1/9
-1/9	-1/9	-1/9

LPF mask

HPF mask

What is the sum of mask coefficients?

What is their significance?

Filter applications

- LPF
 - (impulse) noise smoothing,
- HPF
 - extract edges/details
- BPF
 - edge enhancement, sharpen noisy images

Other filters

- LPF smoothes and HPF retains only details in images What if we want to only sharpen an image?
- Unsharp masking or high boost filtering
 - Derived from printing industry practice
 - Performs high frequency emphasis

$$y[m,n] = \alpha x[m,n] - x_{LP}[m,n] = (\alpha - 1) x + x_{HP}; \alpha \ge 1$$

 $\alpha = 1$ results in HPF (y has only details)

 $\alpha > 1$ indirectly controls the degree of sharpening

Filter maskscontd

	-1/9	-1/9	-1/9
w = ?	-1/9	W	-1/9
	-1/9	-1/9	-1/9

High Boost Filter mask

Examples – HPF vs HBF

Input : Cheetah

3x3

5x5

HPF results for different mask sizes

15x15 7x7

Input : Cheetah

High Boost filter results: Effect of α and mask size

3x3 mask with α = 1 (HPF)

3x3 mask with α = 2

3x3 mask with α = 1.5

7x7 mask with α = 1.3

Santa Fe -Remote sensing

Santa Fe - HPF

Santa Fe - HBF

Examples

Face

Face - HPF

Face - HBF

Non-linear filtering – some applications

Median filtering

• Output pixel = median value of all pixels within the N(i,j)

- Effects
 - Excellent in removing salt and pepper noise
 - Does not shift boundaries
 - Does not affect brightness change across steps
- Computationally intensive as processing an image with M pixels requires M sorting operations

Median filtering - example

12	10	17
17	12	17
35	16	184

Pixels within a 3x3 window

Ranked list: 184 35 17 17 17 16 12 12 10

output pixel value = Median = 17

Comparison of different filters

Input image patch

12	10	17
17	12	17
35	16	184

Output pixel value

Mean filter: 35 Gaussian weighted mean filter: 28

Median filter: 17

Mean after ignoring the 'noisy pixel' = 17

Application 1: Reducing noise

Noisy original

After averaging

After median filtering

Application 2: Finding extrema

Task: find extrema points in an image.

Solution 1 Max (Min) filter

- Output pixel at $p = \max\{I_{in}[m,n]; [m,n] \in N_{p}\}$
 - > Simple ranking
 - > Does not discriminate between extrema of different kinds

Solution 2 Top (bottom) hat filter

- Output pixel at $p = I_p$ if $I_p >$ pixel level in its background
 - > Context-aware max finder
- Uses 2 neighbourhoods (1 each for estimating background and foreground)

Top hat filter

- 1-D case: finds <u>local</u> peaks/maxima
- Low or broad peaks are skipped

Top hat function

For the local peak of interest the control parameters are:

w_h: peak width

w_h: specifies the *extent* of

the context

h: peak height

Top hat filter

- "Interesting" point finder
 - w_h specifies the spread of the peak of interest
- Many versions exist

Example: to find the bright points in an image

A method:

- 1. Define a central and a surround region about a pixel (with a window)
- 2. Rank the pixels in the two regions and find the max values
- 3. Find $g_{cmax} g_{smax} = g_{diff}$
- 4. If g_{diff} is above a threshold **retain** centre pixel. Else set it to 0

Neighbourhood patterns

Octagonal

Square

Top hat filtering

Effects:

- Only "interesting pixels" are retained
 - is a suppression operator
- Centre pixel is retained even if it is not the brightest pixel (as the criterion is $g_{diff} > t$)
 - produces small "halo" around bright points
- Matlab also has a *Bottom hat* function

Stars in Night Sky

Top Hat Filter Result

Max Filter Result

Top Hat Filter Result

Max Filter Result

Neighbourhood processing – implementation issues

Issues

Handling border pixels: what are their neighbours?

Option 1

- Don't compute the output for such pixels
 - Output image is smaller than input image

Option 2

Extend the image size by zero padding before processing

Option 3

• Extend the image by one of many ways (replicate, wrapped around, etc.) before processing

Implementation issues.. contd.

Computational load – load increases with mask size as well as type of filtering

Pixel addressing load as well as processing load

Solution 1

- Implement in frequency domain
 - Exploit the property that convolution in spatial domain is equivalent to multiplication in frequency domain

Check: what is the max kernel size above which it is not efficient to implement filtering in spatial domain?

Solution 2

efficient hardware implementation

When to use what type of proc.?

Point

- When type of image is *fixed*
- Intensity characteristics of object/region of interest is *known*Ex. Medical images of specific organs
 - One time parameter tuning

Neighbourhood

- More *generic* and *customizable*
- *Demands skill* in modeling the neighborhood interaction

Global

- When type of image is *unknown*
- Objects/regions of interest are *unknown* so intensity characteristics
- i.e. Natural images/indoor/outdoor