Tutorial Week 2 - CSCB63 - Complexity

Draw a 2D table with column headers and row headers as follows:

	$\ln(n)$	lg(n)	$\lg(n^2)$	$(lgn)^2$	n	n * lg(n)	2^n	$2^{(3n)}$
ln(n)								
- lg(n)								
$-\lg(n^2)$								
$\frac{\lg(n^2)}{(\lg n)^2}$								
\overline{n}								
$n * \lg(n)$								
2^n								
$2^{(3n)}$								

(Remember that lg means log base 2.)

In each cell, fill in "Y" iff (its row function) \in O(its column function).

We haven't talked about transitivity (if $f \in O(g)$ and $g \in O(h)$, then simply deduce $f \in O(h)$ and be done), but you may prove on your own and use it.

Observation. Even though $3n \in O(n)$, we cannot "exponentiate both sides" to infer $2^{3n} \in O(2^n)$.

Lets look 3 of the more interesting cells to show proofs for.

Fill in proofs for selected big-O cells:

- 1. $n \in O(n \lg(n))$, using the definition of big-O:
- 2. $n \lg(n) \notin O(n)$ using the definition of big-O: (Note: This can be explained as a proof by contradiction...other ways possible too).
- 3. $2^{(3n)} \notin O(2^n)$, using a limit theorem from lecture (you may not have seen the limit theorem if your tutorial is before the Wed. class).

The limit theorem says:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty\Rightarrow f(n)\notin O(g(n))$$

Some practice questions:

1.
$$6n^5 + n^2 - n^3 \in \Theta(n^5)$$

2.
$$3n^2 - 4n \in \Omega(n^2)$$

For these the intentions are to use the **definitions** of Theta and Omega not use the limit laws.