Résumé 4 - Matrices, espaces vectoriels et applications linéaires

Matrices

→ Puissances de matrices

Le calcul des puissances successives d'une matrice s'effectue, par exemple,

- en réduisant la matrice :
- en utilisant la formule du binôme de Newton; si A et B commutent alors, pour $p \in \mathbb{N}$ quelconque,

$$(A+B)^p = \sum_{k=0}^p \binom{p}{k} A^k B^{p-k}$$

• en ayant recours à un polynôme annulateur.

\rightarrow Inversion de matrices

Définition ·

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que :

$$AB = BA = I_n$$

Il suffit en fait que $AB = I_n$ pour que $BA = I_n$.

$$A \in \mathcal{M}_n(\mathbb{K})$$
 est inversible $\iff \det(A) \neq 0 \iff \operatorname{rg}(A) = n$

Pour inverser une matrice, on peut :

- résoudre le système linéaire associé à l'aide du pivot de Gauss;
- appliquer les opérations élémentaires sur la matrice jusqu'à obtenir l'identité;
- utiliser un polynôme annulateur;
- · calculer la comatrice.

→ Trace

Si
$$A \in \mathcal{M}_n(\mathbb{K})$$
, $\operatorname{Tr}(A) = \sum_{k=1}^n a_{kk}$.

La trace est une forme linéaire sur \mathbb{K} et Tr(AB) = Tr(BA). La trace est la somme des valeurs propres complexes de A.

→ Transposée

Si
$$A \in \mathcal{M}_{n,p}(\mathbb{K}), A^{\top} = (a_{j,i})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}.$$

A et A^{\top} ont même rang et même déterminant (si n = p).

→ Matrices équivalentes

Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$.

- Définition : Matrices équivalentes -

A et B sont dites équivalentes s'il existe $P \in GL_p(\mathbb{K})$ et $Q \in GL_n(\mathbb{K})$ telles que :

$$B = O^{-1}AP$$

Théorème -

Deux matrices de $\mathcal{M}_{n,p}(\mathbb{K})$ sont équivalentes si, et seulement si, elles ont le même rang.

Deux matrices sont équivalentes si et seulement si on peut passer de l'une à l'autre par une série d'opérations élémentaires sur les lignes.

- Proposition

Si rg(A) = r, A est équivalente à
$$J_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$
.

→ Matrices semblables

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$.

Définition —

A et B sont semblables s'il existe $P \in GL_n(\mathbb{K})$ telle que :

$$B = P^{-1}AP$$

A et *B* représentent alors le même endomorphisme dans deux bases différentes.

Deux matrices semblables ont même rang, même trace, même déterminant, même polynôme caractéristique donc même valeurs propres.

Systèmes d'équations linéaires

On considère le système d'équations linéaires :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2p}x_p = b_2 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{np}x_p = b_n \end{cases}$$

On lui associe
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{bmatrix} \in \mathcal{M}_{n,p}(\mathbb{K}).$$

Le système se réécrit sous la forme :
$$A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
.

L'ensemble des solutions est un sous-espace affine. Un tel système admet donc 0, 1 ou une infinité de solutions.

Lorsqu'il n'admet pas de solution, on dit qu'il est incompatible. On dit qu'il est de Cramer lorsque n = p et qu'il admet une unique solution $(x_1, ..., x_n) \in \mathbb{K}^p$.

Pour un système de Cramer avec n = p = 2,

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \quad \text{et} \quad x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

Ce sont les formules de Cramer (en dimension 2).

Espaces vectoriels

E désigne désormais un \mathbb{K} -espace vectoriel et $F \subset E$.

- Définition -

F est un sous-espace vectoriel de E ssi

$$\begin{cases} 0_E \in F \\ \forall x, y \in F, \ \forall \lambda \in \mathbb{K}, \ \lambda x + y \in F \end{cases}$$

Quelques exemples classiques d'espaces vectoriels : \mathbb{R} , \mathbb{C} , \mathbb{K}^n , $\mathbb{K}[X]$, $\mathcal{M}_{n,p}(\mathbb{K})$, $\mathcal{F}(\mathbb{R},\mathbb{R})$, $\mathscr{C}^{\infty}(\mathbb{R})$, etc. munis des lois usuelles. L'intersection de deux sous-espaces vectoriels est un sous-espace vectoriel.

→ Famille de vecteurs

Soit $(u_i)_{i \in I}$ une famille de vecteurs de E.

$$\operatorname{Vect}_{i \in I}(u_i) = \left\{ \sum_{i=1}^n \lambda_i u_i \mid (\lambda_i) \in \mathbb{K}^I \text{ presque nulle} \right\}$$

C'est le plus petit sous-espace vectoriel de E contenant les vecteurs u_i pour tout $i \in I$.

- Définition -

La famille $(u_i)_{i \in I}$ est dite génératrice si $E = \underset{i \in I}{\text{Vect}}(u_i)$. Autrement dit,

$$\forall x \in E, \exists n \in \mathbb{N}^*, \exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, x = \sum_{i=1}^n \lambda_i u_i$$

Définition

Une famille $(u_i)_{i \in I}$ de vecteurs de E est dite libre si pour toute famille de scalaires $(\lambda_i)_{i \in I}$ presque nulle,

$$\sum_{i \in I} \lambda_i u_i = 0_E \quad \Longrightarrow \quad (\forall i \in I, \quad \lambda_i = 0)$$

→ Unicité de la décomposition.

Une famille de deux vecteurs est libre lorsqu'ils ne sont pas colinéaires. Cette propriété est fausse dès qu'il y a plus de deux vecteurs.

Une famille infinie de vecteurs de E est libre ssi toute sous-famille est libre.

Définition

- Une base de *E* est une famille libre et génératrice.
- Un espace de dimension finie est un espace qui admet une famille génératrice finie.
- Toutes les bases d'un espace *E* de dimension finie ont même cardinal. On l'appelle dimension de *E* .

Soient désormais E un espace vectoriel de dimension $n \neq 0$ et $\mathscr{F} = (u_1, ..., u_p)$ une une famille de vecteurs de E.

Théorème : Théorème de la base extraite

Si \mathcal{F} est une famille génératrice de E,

- on peut extraire de \mathcal{F} une base de E.
- $Card(\mathscr{F}) \ge n$; si $Card(\mathscr{F}) = n$, c'est une base de E.

Théorème : Théorème de la base incomplète

Si \mathscr{F} est une famille libre de E,

- on peut compléter \mathcal{F} en une base de E.
- $Card(\mathscr{F}) \leq n$; si $Card(\mathscr{F}) = n$, c'est une base de E.

Par définition, $rg(\mathcal{F}) = \dim Vect(u_1, ..., u_p)$.

- Théorème -

- $\operatorname{rg}(\mathscr{F}) \leq n \operatorname{et} \operatorname{rg}(\mathscr{F}) \leq p$.
- $rg(\mathcal{F}) = n$ ssi la famille est génératrice.
- $rg(\mathcal{F}) = p$ ssi la famille est libre.

$$(u_1,...,u_n)$$
 base de $E \iff \operatorname{rg}(u_1,...,u_n) = n$
 $\iff \det(u_1,...,u_n) \neq 0$

→ Espaces supplémentaires et sommes directes

F et G désignent deux sous-espaces vectoriels de E.

Définition

On dit que F et G sont supplémentaires dans E si E = F + G et $F \cap G = \{0_E\}$. On note alors $E = F \oplus G$.

Un supplémentaire n'est pas unique. Rappel : dans un espace euclidien E, $E = F \oplus F^{\perp}$.

 $\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$ lorsque F et G sont de dimension finie.

Théorème: Caractérisation en dim. finie

Si E est un espace de dimension finie, F et G sont supplémentaires dans E si et seulement si deux des trois assertions suivantes sont vérifiées :

(i)
$$E = F + G$$
 (ii) $F \cap G = \{0_E\}$

(iii)
$$\dim(E) = \dim(F) + \dim(G)$$

 $E=F\oplus G$ si et seulement si l'on obtient une base de E en concaténant une base de F et une base de G. On parle alors de base adaptée à la somme directe.

- Définition : Somme directe -

Les espaces $F_1, ..., F_p$ sont en somme directe lorsque la décomposition de tout vecteur de $F_1 + \cdots + F_p$ est

unique. On la note alors $\bigoplus_{i=1}^{p} F_i$ ou bien $F_1 \oplus \cdots \oplus F_p$.

 $\dim \left(\sum_{i=1}^p F_i\right) \leqslant \sum_{i=1}^p \dim(F_i). \text{ Il y a \'egalit\'e si et seulement si }$ les sous-espaces sont en somme directe.

Théorème : Caractérisation de la somme directe

Les sous-espaces F_1, \ldots, F_p sont en somme directe si et seulement si la décomposition du vecteur nul est unique.

 $E=F_1\oplus\cdots\oplus F_p$ si et seulement si la famille obtenue par concaténation de bases des espaces F_1,\ldots,F_p est une base de E, alors appelée base adaptée à la somme directe.

© Mickaël PROST Année 2022/2023

\rightarrow Hyperplans

- Définition : Hyperplan -

On appelle hyperplan de E tout noyau de forme linéaire $non \ nulle$.

De plus, H est un hyperplan si et seulement si,

- H admet une droite comme supplémentaire : il existe $u \in E$ non nul tel que $E = H \oplus \text{Vect}(u)$;
- $\dim(H) = n 1$ si E est de dimension n;

Deux formes linéaires de même noyau sont proportionnelles.

Proposition: Intersection de p hyperplans

Si *E* est de dimension finie n et $p \le n$,

- (i) L'intersection de p hyperplans de E est un sousespace de dimension au moins n-p.
- (ii) Tout sous-espace de dimension n-p est l'intersection de p hyperplans de E.

Applications linéaires

→ Généralités

E et F désignent des espaces vectoriels sur \mathbb{K} .

Définition

On dit que $f: E \rightarrow F$ est une application linéaire si :

$$\forall x, y \in E, \ \forall \lambda \in \mathbb{K}, \ f(\lambda x + y) = \lambda f(x) + f(y).$$

 $\mathcal{L}(E, F)$ désigne le \mathbb{K} -e.v. des applications linéaires de E dans F. Si E et F sont de dimension finie,

$$\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$$

- Un endomorphisme de E est une application linéaire de E dans lui-même.
- Un isomorphisme est une application linéaire bijective.
- Un automorphisme est un endomorphisme bijectif.
- Une forme linéaire est une application linéaire à valeurs dans \mathbb{K} .

f désigne désormais un élément de $\mathcal{L}(E, F)$.

Définition

- $\operatorname{Ker}(f) = \{x \in E \mid f(x) = 0_F\} = f^{-1}(\{0_F\}).$
- $Im(f) = f(E) = \{f(x) \mid x \in E\}.$
- Ker(f) est un s.e.v. de E et Im(f) un s.e.v. de F.
- Si $(e_i)_{i \in I}$ est une base de E, Im $(f) = \text{Vect}(f(e_i))$.
- f est injective ssi Ker $f = \{0_E\}$.
- f est sujective ssi Im f = F.

Par définition, rg(f) = dim Im f.

Théorème : Théorème du rang

Si E est de dimension finie et $f \in \mathcal{L}(E, F)$,

$$\dim E = \dim \operatorname{Ker} f + \operatorname{rg}(f)$$

On dispose d'une forme version plus forte de ce résultat, sans hypothèse sur les dimensions :

Théorème: Forme géométrique

Soient E et F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Si Ker(f) possède un supplémentaire I dans E, alors $f_{|I|}$ est un isomorphisme de I sur Im(f).

Théorème

Soit f un *endomorphisme* de E, où dim $(E) < +\infty$.

f injective \iff f sujective \iff f bijective

- Théorème

Soit $f \in \mathcal{L}(E, F)$. f est un isomorphisme si et seulement si l'image d'une base (de toute base) de E est une base de F.

→ Formules de passage et changement de base(s)

On suppose E de dimension finie. Soient \mathcal{B} et \mathcal{B}' deux bases de E. On note $P \in \mathrm{GL}_n(\mathbb{K})$ la matrice de passage de \mathcal{B} à \mathcal{B}' (ses colonnes représentent les coordonnées des vecteurs de \mathcal{B}' dans la base \mathcal{B}).

Théorème: Formules de passage

Soit x ∈ E. On note X (resp. X') le vecteur coordonnées de x dans la base B (resp. B').

$$X = PX'$$
 c-à-d $X' = P^{-1}X$

• Soit $f \in \mathcal{L}(E)$. On note M (resp. M') la matrice de f dans la base \mathcal{B} (resp. \mathcal{B}').

$$M' = P^{-1}MP$$

Ne pas oublier que pour déterminer X' en fonction de X, on doit inverser un système. D'où la présence de P^{-1} dans la formule $X' = P^{-1}X$.

Plus généralement, soit $f \in \mathcal{L}(E,F)$. On considère deux bases \mathscr{B} et \mathscr{B}' de E et deux bases \mathscr{C} et \mathscr{C}' de F. On pose $P = P_{\mathscr{B} \to \mathscr{B}'}$, $Q = P_{\mathscr{C} \to \mathscr{C}'}$ ainsi que $M = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f)$ et $M' = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f)$. Alors, $M' = Q^{-1}MP$.

→ Restrictions et endomorphismes induits

- Proposition

Soient E_1, \ldots, E_p des s.e.v. tels que $E = \bigoplus_{i=1}^r E_i$ et $f_i \in \mathcal{L}(E_i, F)$. Alors, il existe une unique application $f \in \mathcal{L}(E, F)$ telle que pour tout $i \in [1, p]$, $f_{|E_i} = f_i$.

F est dit stable par f lorsque $f(F) \subset F$.

Définition

Soit F un s.e.v. de E stable par $f \in \mathcal{L}(E)$. $f_{|F}$ est alors un endomorphisme de F, appelé endomorphisme induit.

Si $(e_1, ..., e_p)$ est une base de F que l'on complète en une base $(e_1, ..., e_n)$ de E, on a alors :

$$\operatorname{Mat}(f) = \begin{bmatrix} \operatorname{Mat} f_{|F} & \times \\ 0 & \times \end{bmatrix}.$$

Si $E=F\oplus G$ et si F et G sont stables par f , on aura dans une base $adapt\acute{e}e$:

$$\operatorname{Mat}(f) = \begin{bmatrix} \operatorname{Mat} f_{|F} & 0 \\ 0 & \operatorname{Mat} f_{|G} \end{bmatrix}.$$

→ Projections et symétries vectorielles

Définition -

Soit $E = F \oplus G$. Si $x \in E$, il existe un unique couple $(x_1, x_2) \in F \times G$ tel que $x = x_1 + x_2$.

• On appelle projection sur *F* parallèlement à *G* l'application linéaire *p* vérifiant :

$$\forall x \in E, \quad p(x) = x_1.$$

• On appelle symétrie par rapport à *F* parallèlement à *G* l'application linéaire *s* vérifiant :

$$\forall x \in E$$
, $s(x) = x_1 - x_2$.

Théorème: Caractérisation

Soient $p, s \in \mathcal{L}(E)$.

- p est une projection vectorielle sur Im p parallèlement à Ker p si et seulement si $p \circ p = p$. Alors, $E = \text{Im}(p) \oplus \text{Ker}(p)$ et Im $p = \text{Ker}(p - \text{id}_E)$.
- s est une symétrie vectorielle par rapport $Ker(s id_E)$ parallèlement à $Ker(s + id_E)$ si et seulement si $s \circ s = id_E$. Alors, $E = Ker(s id_E) \oplus Ker(s + id_E)$.

Dans une base adaptée, les matrices de p et s sont :

$$\operatorname{Mat}_{\mathscr{B}}(p) = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$
 et $\operatorname{Mat}_{\mathscr{B}}(s) = \begin{bmatrix} I_r & 0 \\ 0 & -I_{n-r} \end{bmatrix}$

p est diagonalisable et :

- $\dim \operatorname{Im} p = \operatorname{Tr}(p) = r$, $\dim \operatorname{Ker} p = n r$;
- $\chi_p = (X-1)^r X^{n-r}$ et $\pi_p = X(X-1)$ si $p \notin \{0_{\mathcal{L}(E)}, id_E\}$.

 \boldsymbol{s} est diagonalisable et :

- $\dim \operatorname{Ker}(s \operatorname{id}_E) = r$, $\dim \operatorname{Ker}(s + \operatorname{id}_E) = n r$;
- $\chi_s = (X-1)^r (X+1)^{n-r}$ et $\pi_s = (X+1)(X-1)$ si $s \neq \pm id_E$.

Si $E = E_1 \oplus \cdots \oplus E_n$, tout vecteur x de E se décompose de façon unique sous la forme $x = x_1 + \cdots + x_n$ où $x_i \in E_i$. Notons alors, pour $i \in [1, n]$, p_i l'application définie sur E par $p_i(x) = x_i$.

- Théorème

Pour tout $i \in [1, n]$, p_i est la projection vectorielle sur E_i parallèlement à $\bigoplus_{\substack{k=1\\k\neq i}}^n E_k$. De plus,

$$p_1 + \dots + p_n = \mathrm{id}_E$$
 et $\forall i \neq j$, $p_i \circ p_j = 0_{\mathscr{L}(E)}$

Année 2022/2023

© Mickaël PROST