Go to next item

Grade received 100% To pass 80% or higher

Modeling challenges

Latest Submission Grade 100%

1.	, You are working on a binary classification ML algorithm that detects whether a patient has a specific disease. In dataset, 98% of the training examples (patients) don't have the disease, so the dataset is very skewed. Accuracy both positive and negative classes is important. You read a research paper claiming to have developed a system that achieves 95% on metric. What metric would give you the most confidence they've built a useful and no trivial system? (Select one)	y on m
	F1 score	
	○ Recall	
	○ Accuracy	
	O Precision	
	Correct That's right! F1 score is recommended on skewed datasets, as it combines precision and recall into one metric.	
	2. On the previous problem above with 98% negative examples, if your algorithm is print("1") (i.e., it says enthe disease). Which of these statements is true?	everyone has 1/1 point
	The algorithm achieves 0% precision.	
	The algorithm achieves 100% precision.	
	The algorithm achieves 100% recall.	
	The algorithm achieves 0% recall.	
	Correct That's right, since it would classify everyone as having the disease and therefore not have any Fal Negatives. Remember, recall is the number of True Positives / (True Positives + False Negatives).	se
	3. True or False? During error analysis, each example should only be assigned one tag. For example, in a s recognition application you may have the tags: "car noise", "people noise" and "low bandwidth". If you e example with both car noise and low bandwidth audio, you should use your judgement to assign just o two tags rather than apply both tags.	ncounter an
	False	
	○ True	
	Correct That's right! Each example should have as many tags as is necessary to accurately classify it. This	will help

you develop an accurate understanding of where your errors are coming from, which will in turn help you

focus your efforts in reducing the errors.

4. You are building a visual inspection system. Error analysis finds:

1/1 point

Type of defect	Accuracy	HLP	% of data	
Scratch	95%	98%	50%	
Discoloration	90%	90%	50%	

		Bas	ed on this, what is the more promising type of defect to work on?		
		0	Discoloration, because the algorithm's accuracy is lower and thus there's more room for improvement.		
		0	Discoloration, because HLP is lower which suggests this is therefore the harder problem that thus needs more attention.		,
		•	Scratch defects, because the gap to HLP is higher and thus there's more room for improvement.		
		0	Work on both classes equally because they are each 50% of the data.		
		0	Correct That's right! There is still room for improvement for your algorithm.		
5.			sidering applying data augmentation to a phone visual inspection problem. Which of the following s are true about data augmentation? (Select all that apply)	1/1 point	
	_		augmentation should try to generate more examples in the parts of the input space where you'd like to approvement in the algorithm's performance.		./1 poin
	⊘	Corr	ect 's right! Data augmentation is a very cheap and easy way to increase the size of your dataset!		
	V	5ANs	can be used for data augmentation.		
	⊘	Corr That	ect 's right! GANs are one way to generate more images and increase the size of your dataset.		
			augmentation should try to generate more examples in the parts of the input space where the algorithm ady doing well and there's no need for improvement.		
		Data a well.	augmentation should distort the input sufficiently to make sure they are hard to classify by humans as		