

Report No. NAWCADWAR-93089-60

AD-A278 769

A DATABASE TO EVALUATE ACCELERATION (+Gz) INDUCED LOSS OF CONSCIOUSNESS (G-LOC) IN THE HUMAN CENTRIFUGE

Estrella M. Forster, M.S. Air Vehicle and Crew Systems Technology Department (Code 6023) NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION WARMINSTER Warminster, PA 18974-0591

20 JUNE 1993

FINAL REPORT Period Covering June 1992 to June 1993

Approved for public release; Distribution is Unlimited.

DTIC QUALITY TILLY CTTD 8

Prepared for
Air Vehicle and Crew Systems Technology Department (Code 602C)
NAVAL AIR WARFARE CENTER
AIRCRAFT DIVISION
Warminster, PA 18974-5000

94 4 28 018

NOTICES

REPORT NUMBERING SYSTEM — The numbering of technical project reports issued by the Naval Air Warfare Center, Aircraft Division, Warminster is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Functional Department responsible for the report. For example: Report No. NAWCADWAR-92001-60 indicates the first Center report for the year 1992 and prepared by the Air Vehicle and Crew Systems Technology Department. The numerical codes are as follows:

CODE	OFFICE OR DEPARTMENT
00	Commanding Officer, NAWCADWAR
01	Technical Director, NAWCADWAR
05	Computer Department
10	AntiSubmarine Warfare Systems Department
20	Tactical Air Systems Department
30	Warfare Systems Analysis Department
50	Mission Avionics Technology Department
60	Air Vehicle & Crew Systems Technology Department
70	Systems & Software Technology Department
80	Engineering Support Group
90	Test & Evaluation Group

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

Reviewed By: Pully & Milly Branch Head	Date: 1710cc 93
Reviewed By: Mmthull Division Head	Date: 12/20/43
Reviewed By: Vonald P. Mislean Director/Deputy Director	Date: 12/21/98

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments requiring this burden estimate of any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE 20 June 1993

3. REPORT TYPE AND DATES COVERED Final 6/92-6/93

4. TITLE AND SUBTITLE

A DATABASE TO EVALUATE ACCELERATION (+Gz) INDUCED LOSS OF CONSCIOUSNESS (G-LOC) IN THE HUMAN CENTRIFUGE

5. FUNDING NUMBERS

6. AUTHOR(S)

Estrella M. Forster, M.S.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Vehicle and Crew Systems Technology Department (Code 6023)
NAVAL AIR WARFARE CENTER: AIRCRAFT DIVISION WARMINSTER
Warminster, PA 18974-0591

8. PERFORMING ORGANIZATION REPORT NUMBER

NAWCADWAR-93089-60

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Vehicle and Crew Systems Technology Department (Code 6023)
NAVAL AIR WARFARE CENTER: AIRCRAFT DIVISION WARMINSTER
Warminster, PA 18974-0591

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

12b.DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED.

13. ABSTRACT (Maximum 200 words)

BACKGROUND. Pilots of high performance aircraft may be exposed to positive acceleration (+Gz). This type of acceleration displaces blood in the head to foot direction. As the pressure in the vessels of the lower body increases, the vessels dilate, and a major proportion of the blood from the upper part of the body is shifted into these lower vessels. The pooling of blood in the lower extremities translates into a reduced cardiac output provoking the cardiovascular system to maintain adequate blood flow to the central nervous system and thereby maintain normal brain function. The symptoms of acceleration stress may lead to +Gz induced loss of consciousness (G-LOC) with potential fatal consequences. According to a survey done in 1986, approximately 12% of the Navy aircrew have experienced G-LOC inflight. INTRODUCTION, When G-LOC descriptive data is available, it is usually limited to the particular investigator's research interests. Most research regarding G-LOC does not include the symptoms typical of this event. Specifically, the subject's psychological reaction to the G-LOC episode itself is often ignored. Understanding the physiology and mechanism of G-LOC is necessary to develop methods to avoid such an event. However, until an infallible method to prevent G-LOC is developed, G-LOC will occur. Hence, the thrust of G-LOC research should include understanding recovery from unconsciousness; to include G-LOC's psychological sequelae.

14. SUBJECT TERMS

DTIC QUALITY IL SHEETED &

15. NUMBER OF PAGES

Positive Acceleration, Induced Loss of Consciousness (G-LOC)

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

9. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT
SAR

G-LOC recovery being the integration of physiologic and psychological factors. METHOD. To this end. a questionnaire and a data repository were developed to compile all information available when G-LOC occurs in the centrifuge laboratory. The repository is composed of eighty-three variables encompassing four areas of study: 1) subject description; 2) acceleration profile/study characteristics; 3) G-LOC description; and 4) psychological sequelae of G-LOC. The latter mostly addressed by a questionnaire which encompass 17 multiple choice and assay items. The data repository was chosen to be formulated in accordance to Dbase III Plus® (Ashton-Tate) format because of its ease of handling. The characteristics and applications of the database and the questionnaire are discussed in the text. RESULTS. 279 G-LOC episodes were considered. Incapacitation time resulting from gradual onset rate exposures was longer than that resulting from rapid onset rate exposures. Eighty-seven percent of the subjects exhibited flailing behavior whereas only 68% recalled having flailed. Sixty-eight percent of the subjects exhibited respiratory symptoms (snorting, moaning, etc.). Visual imageries (i.e., dreams) were reported of 43% of the G-LOC episodes. Visual imagery was associated with longer absolute and total incapacitation periods. Thirty-nine percent of the subjects did not recall having experienced black-out prior to unconsciousness. Transient paralysis upon regaining consciousness was reported of 12% of the G-LOC episodes. A shorter total incapacitation was associated with prior G-LOC recovery. Defining these symptoms is paramount in G-LOC research. Establishment of a standard G-LOC database and questionnaire in the various centrifuge laboratories will 1) provide for large sample data analysis: 2) allow the integration of both physiologic and psychological measurements; and 3) provide an opportunity to develop comparison studies among research laboratories.

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to the many people who supported this retrospective study. Without their willing assistance, this paper would not have been successfully completed. I thank, Leon Hrebrien, PhD, Stanley Zeitz, PhD, Phil Whitley, PhD, Stephen Dubin, PhD, and Tom Moore, PhD, for their valuable editorial comments and support.

To the faculty and staff of Drexel University; the Biomedical Engineering Institute and the Quantitative Methods Department in the College of Business, thank you.

I would like to recognize the staff of Code 6025 at the Naval Air Warfare Center. Aircraft Division, Warminster and the subjects who were trained at this facility. This paper would have been impossible without their cooperation.

Acces	sion For	
-	GRA&I	3
Unann	ownced fightion	
By		
Distr	ibutions	
Avai	lability	godes
Dist	Avail and Special	-
A-1		i j

TABLE OF CONTENTS

	Page
LIST OF TABLES	iv
LIST OF ILLUSTRATIONS	v
ABSTRACT	ix
BACKGROUND	1
INTRODUCTION	15
DESCRIPTION OF A METHOD TO DOCUMENT G-LOC The G-LOC Database G-LOC Database Sources	17 17 17
EVALUATION OF THE DATABASE	23
DISCUSSION	27
APPLICATIONS	31
BIBLIOGRAPHY	33
APPENDIX A: VARIABLE DESCRIPTION	A-1
APPENDIX B: DATA ENTRY FORMS G-LOC Questionnaire Data Entry Sheet +Gz exposure data sheet	B-1 B-1 B-4 B-8
APPENDIX C: RESULTSFigures	

LIST OF TABLES

Tab	ele	Page
1.	The effect of GXAM on incapacitation times	C-2
2.	The effect of PROFILE and GXAM on incapacitation times	C-3
3.	The effect of CONVTYP on incapacitation variables	C-6
4.	Incapacitation variables as related to the occurrence of BREATHE	C-8
5.	Incapacitation variables as related to the occurrence of EVENTO	C-9
6.	Incapacitation variables as related to LOCTYP	C-9
7.	Effect of PROFILE on incapacitation times	C -10
8.	Effect of JOESUIT on incapacitation times	C-11
9.	Incapacitation variables associated with prior G-LOC experience	C-18
10.	Subject characteristics as related to their military association	C-21

LIST OF FIGURES

Figi	ure	Page
1.	Hydrostatic column representation of +Gz force	3
2.	Heart rate response to rapid onset +Gz exposures	4
3.	Heart rate response to gradual onset +Gz exposures	5
4.	Middle cerebral artery blood flow velocity during G-LOC	8
5.	Schematic diagram of G-LOC	9
6.	EEG during G-LOC	10
7.	Seat angle and head rest geometry on +Gz tolerance	11
8.	Anti-G suit	12
9.	The human centrifuge at NAWC	13
10.	NAWC video tape documentation of +Gz exposures	18
11.	G-LOC questionnaire sample	22
App	endix Figure	Page
AI.	BASEG description	A-5
A2.	MAXG description	A-6
A3.	GOFLOC description	A-6
A4 .	WHENLOC description	A-7
A5.	RELTOL description	A-7
A6.	TIMAX description	A-8
A7 .	TIMG description	A-9
A8.	LOCINDTI description	A-9
ΔΟ	TIMEND description	A-10

LIST OF FIGURES (Continued)

Appe	ndix Figure	Page
A10.	TMAX description	A- 10
A11.	CONINDTI description	A-11
A12.	CONVTIME description	A-13
A13.	ABSOLUTE description	A-13
A14.	RELATIVE description	A-13
A15.	TOTAL description	A-14
A16.	PROFILE description	A-15
A17.	JOESUIT description	A-17
A18.	CNVTMAWK description	A-19
CI.	GXAM level frequency	C-24
C2.	The effect of GXAM on incapacitation times	C-24
C3.	Relationship of LOCINDTI and MAXG	C-24
C4.	WHENLOC level frequency	C-24
C5.	CONVTYP level frequency	C-25
C 6.	The effect of CONVTYP on incapacitation variables	C-25
C 7.	GSUIT level frequency	C-25
C8.	SEAT level frequency	C-25
C9.	BREATHE level frequency	C-26
C10.	Incapacitation variables as related to the occurrence of BREATHE	C-26
CII.	EVENTO level frequency	C-26
C12.	Incapacitation variables as related to the occurrence of EVENTO	C-26
C13.	LOCTYP level frequency	C-27

LIST OF FIGURES (Continued)

Apper	idix Figure	Page
C14.	Incapacitation variables as related to LOCTYP	C-27
C15.	Effect of PROFILE on incapacitation times	C-27
C16.	Relationship of ABSOLUTE and CONINDTI during GOR profiles	C-27
C17.	Relationship of ABSOLUTE and CONINDTI during ROR porfiles	C-28
C18.	JOESUIT level frequency	C-28
C19.	Effect of JOESUIT on incapacitation times	C-28
C20.	POSITION level frequency	C-28
C21.	AMNESIA level frequency	C-29
C22.	MOTSICK level frequency	C-29
C23.	Reaction to G-LOC I	C-29
C24.	Reaction to G-LOC II	C-29
C25.	BLACKOUT level frequency	C-30
C26.	WHEREAMI level frequency	C -30
C27.	HORNUCS level frequency	C-30
C28.	HORNOFF level frequency	C -30
C29.	HORNWHY level frequency	C-31
C30.	SLEEPARY level frequency	C-31
C31.	FLAILING level frequency	C-31
C32.	ERELOC level frequency	C-31
C33.	ERELOC TOTAL incapacitation	C-32
C34.	ERELOCWH level frequency	C-32
C35.	EVENTOUA level frequency	C-32

LIST OF FIGURES (Continued)

Appendix Figure	Page
C36. EVENTACT level frequency	C-32
C37. EVENTINT level frequency	C-33
C38. EVENTELM level frequency	C-33
C39. SLIPDREM level frequency	C-33
C40. DREMRECAL level frequency	C-33
C41. JOB level frequency	C-34
C42. EVQUAL level frequency	C-34
C43. CIBOREA level frequency	C-34
C44. IBOREANA level frequency	C-34
C45. WORK level frequency	C-35
C46. AIRCRAFT level frequency	C-35
C47. DREMWHR level frequency	C-35
C48. FLALAWAR level frequency	C-35

ABSTRACT

BACKGROUND. Pilots of high performance aircraft may be exposed to positive acceleration (+Gz). This type of acceleration displaces blood in the head to foot direction. As the pressure in the vessels of the lower body increases, the vessels dilate, and a major proportion of the blood from the upper part of the body is shifted into these lower vessels. The pooling of blood in the lower extremities translates into a reduced cardiac output provoking the cardiovascular system to maintain adequate blood flow to the central nervous system and thereby maintain normal brain function. The symptoms of acceleration stress may lead to +Gz induced loss of consciousness (G-LOC) with potential fatal consequences. According to a survey done in 1986, approximately 12% of the Navy aircrew have experienced G-LOC inflight. INTRODUCTION. When G-LOC descriptive data is available, it is usually limited to the particular investigator's research interests. Most research regarding G-LOC does not include the symptoms typical of this event. Specifically, the subject's psychological reaction to the G-LOC episode itself is often ignored. Understanding the physiology and mechanism of G-LOC is necessary to develop methods to avoid such an event. However, until an infallible method to prevent G-LOC is developed, G-LOC will occur. Hence, the thrust of G-LOC research should include understanding recovery from unconsciousness; to include G-LOC's psychological sequelae. G-LOC recovery being the integration of physiologic and psychological factors.

METHOD. To this end, a questionnaire and a data repository were developed to compile all information available when G-LOC occurs in the centrifuge laboratory. The repository is composed of eighty-three variables encompassing four areas of study: 1) subject description; 2) acceleration profile/study characteristics; 3) G-LOC description; and 4) psychological sequelae of G-LOC. The latter mostly addressed by a questionnaire which encompass 17 multiple choice and assay items. The data repository was chosen to be

formulated in accordance to Dbase III Plus^O (Ashton-Tate) format because of its ease of handling. The characteristics and applications of the database and the questionnaire are discussed in the text. RESULTS. 279 G-LOC episodes were considered. Incapacitation time resulting from gradual onset rate exposures was longer than that resulting from rapid onset rate exposures. Eighty-seven percent of the subjects exhibited flailing behavior whereas only 68% recalled having flailed. Sixty-eight percent of the subjects exhibited respiratory symptoms (snorting, moaning, etc.). Visual imageries (i.e., dreams) were reported of 43% of the G-LOC episodes. Visual imagery was associated with longer absolute and total incapacitation periods. Thirty-nine percent of the subjects did not recall having experienced black-out prior to unconsciousness. Transient paralysis upon regaining consciousness was reported of 12% of the G-LOC episodes. A shorter total incapacitation was associated with prior G-LOC experience. CONCLUSION. Psychological sequelae of G-LOC are an integral part of G-LOC recovery. Defining these symptoms is paramount in G-LOC research. Establishment of a standard G-LOC database and questionnaire in the various centrifuge laboratories will 1) provide for large sample data analysis; 2) allow the integration of both physiologic and psychological measurements; and 3) provide an opportunity to develop comparison studies among research laboratories.

BACKGROUND

Velocity, a vector quantity, describes the rate of movement of an object and the direction in which it moves:

The mean linear acceleration (a) of an object, a vector quantity, describes the rate of change in velocity (v):

$$a = [v2 - v1]/\Delta t$$

Velocity and acceleration imply motion. The relationship of motion and the force required for this motion is described by Newton's Laws which briefly state: 1) an object will remain at rest unless acted upon by a force. Hence, accelerations result from the action of forces; 2) accelerations result in changes of weight. That is, F = ma (force equals mass times acceleration). The unit of this force is the newton which is the weight of 1 Kg mass under standard conditions of gravity. The standard gravitational acceleration is defined by g and is equivalent to 32.2 ft/s². Hence, W = mg (weight equals mass times gravitational acceleration).

"When a man is sitting in his [aircraft] seat, the force with which he is pressing against the seat results from the pull of gravity" This force is equal to his weight. The intensity of this force is +1 Gz (equal to the pull of gravity). "If the force with which he presses against the seat becomes five times his normal weight (as in pulling out from a dive, while flying), the force acting upon the seat is 5 + Gz" (26). For example, the +Gz force experienced by a pilot flying at 630 knots in a turn of 3500 ft is:

 $a = v^2 / r = \{ [630 \text{ knots/hr}] * [6080 \text{ ft/knot}] * [1 \text{ hr} / 3600 \text{ s}] \}^2 / 3500 \text{ ft} = 323.45 \text{ ft/s}^2$

$$+Gz = a / g_0 = 323.45 / 32.2 = 10.04 +Gz$$

Pilots of high performance aircraft may be exposed to positive acceleration (+Gz). This type of acceleration displaces blood in the head to foot direction. As the pressure in the vessels of the lower body increases, the vessels passively dilate, and a major portion of the blood from the upper part of the body is translocated into these lower vessels (26). The pooling of blood in the lower extremities translates into a reduced cardiac output provoking the cardiovascular system (mainly the activation of baroreceptor reflexes) to attempt to maintain adequate blood flow to the central nervous system (CNS) and thereby maintain normal brain function.

The effects of +Gz on human physiology are mainly cardiovascular in nature. These have been described based on a hydrostatic column model where the model is assumed to be non distensible and without reflexes. Figure 1 describes this model which allows the estimation of the vascular pressures that develop during +Gz stress.

Figure 1. Hydrostatic column representation of +Gz force.

adapted from Leverett SD et al (37)

The figure assumes a heart to eye-brain distance of 30 cm. This distance would exert a hydrostatic column pressure of 120 mmHg at heart level where 22 mmHg is due to a hydrostatic column effect. This results in a predicted blood pressure at eye level of 98 mmHg at +1 Gz. For each additional +Gz, the blood pressure at eye level will be reduced by the same amount so that at +5.5 Gz blood pressure at eye level would be zero (37).

Acceleration stress effects on human physiology have been studied in the human centrifuge since the 1930's. The first protective measure against +Gz forces is a series of reflex cardiovascular changes. Upon acceleration, there is an immediate hydrostatic pressure drop from aorta to carotid sinus generating a simultaneous stimulation of the vasomotor center. This action results in vasoconstriction, increased blood pressure, increased cardiac contractility and a rise in heart rate. Simultaneously, the vasomotor center and other areas

of the reticular formation of the brain transmit impulses to the abdominal muscles resulting in higher muscle tone and contraction of abdominal viscera. These events compress the abdominal venous reservoirs to translocate blood out of the abdomen toward the central circulation (26). This response is enhanced by anxiety, straining maneuvers performed by the subject, and the anti-G suit (discussed below). Reflex tachycardia occurs in an effort to normalize the blood supply to the brain and other tissues. Figure 2 describes the of +Gz on heart rate (HR) during a very high onset rate +Gz (VHOG) exposure of ϕ + Gz/s.

Figure 2. Heart rate response to rapid onset +Gz exposures
From Forster EM et al (23)

Figure 3 describes the heart rate (HR) response to a gradual onset rate exposure (GOR) of 0.1 +Gz/s. In brief, heart rate does not predict +Gz tolerance. There is a greater change in

heart rate per +Gz level as acceleration increases during gradual onset runs than rapid onset runs where the change in heart rate per +Gz level is reduced by 50% as the onset rate is increased from 0.1 +Gz/s to 1 +Gz/s and 6 +Gz/s (16-18,23,41,50).

Figure 3. Heart rate response to gradual onset +Gz exposures

From Forster EM et al (23)

The most obvious symptom of +Gz stress is commonly known as petechia hemorrhages ("high-G measles") which are burst capillaries usually present in the limbs due to the displacement of blood towards the extremities. Pulmonary function is also affected by +Gz stress where ventilation and perfusion are further affected by protective measures. Hence, respiratory rate, tidal volume, arterial oxygen tension, and the physiologic dead-space increase as +Gz increases. Carbon dioxide tension and pH do not change considerably. The electrical activity of the brain as measured by the electroencephalogram (EEG) is also influenced by +Gz where absolute central nervous system blood flow produces

large magnitude EEG changes; vestibular stimuli produce transitory changes in EEG intensity; and metabolic processes in the CNS and compensatory hemodynamic mechanisms yield long duration shift in baseline intensity (37). Hence, the physical symptoms of acceleration stress range from the development of petechia hemorrhages to loss of vision and eventually +Gz induced loss of consciousness (G-LOC) — with potential fatal consequences.

In the past, research on the effects of positive acceleration (+Gz) in man was focused on the physiology of the cardiovascular system. During that time, acceleration induced loss of consciousness was acknowledged, yet, its significance was overlooked. Recently, the understanding of the neurophysiology of G-LOC has become paramount in aeromedical research not only because of the danger G-LOC imposes on fighter aviation but because of the wealth of information a G-LOC episode imparts. Indeed, loss of consciousness and the psychological phenomena associated with unconsciousness are not only a fighter aviation medicine problem but also represent research avenues that complement other scientific and therapeutic endeavors in clinical medicine.

G-LOC is currently considered a random event. To date, no physiologic variable has been definitely linked with a "predisposition to G-LOC" Indeed, this is the goal of current G-LOC research; to be able to predict G-LOC and therefore either avoid it or develop an aircraft recovery mechanism in the event of G-LOC inflight: in a 1986 survey, 12% of Navy pilots reported G-LOC inflight (34); the Air Force has reported 18 accidents (14 fatalities) due to G-LOC (1982 to 1990 period, 39). Hence, the current main concern in aeromedical research is the maintenance of consciousness in the +Gz environment. In this regard, two anatomical areas are of interest: the brain and the eye. Under high +Gz stress, the eye "notifies" the brain that G-LOC may occur by losing vision to the point of blackout (complete loss of vision). Loss of vision usually is a precursor to G-LOC.

Henry et al (28) found that consciousness was lost when mean cerebral blood pressure fell below 25 mmHg and that a mechanism that compensates for the fall in cerebral arterial pressure induced by +Gz was evident. He further stated that significant deep channels which can remain patent in spite of subatmospheric pressures are available for the return of blood to the brain. Howard (31) explained the development of markedly sub-atmospheric pressures in the jugular veins at high +Gz levels ensures that the fall in arterial pressure is counter-balanced by the formation of a siphon so that "blood is sucked through the brain...adequate perfusion is accordingly preserved at levels of acceleration greater than would be predicted by hydrostatic theory alone, and consciousness is maintained until collapse of the jugular veins breaks the siphon." Krutz et al (36) found that the onset of zero forward blood flow in the temporal artery coincided with a reduction in mean arterial pressure to 20 mmHg and that this reduction occurred 4-9 s prior to blackout. Wood et al (65) found that the average latent period after the onset exposures to accelerations greater than +3Gz was 6.8 s (3.5-9 s) suggesting that G-LOC is caused by a sudden acute stoppage or near stoppage of cerebral blood flow. Glaister (23) found that there is less blood in the brain during +Gz and this reduction is proportional to the reduction in HbO₂. Further, the disappearance of the blood and the eventual level achieved is proportional to the +Gz level achieved. Burton (9) has noted that G-LOC is not a problem related to blood oxygen content per se but rather a problem of getting blood to the appropriate places in the body. Sandler et al (46) found that a minimum of 6 seconds of total brain blood flow cessation was necessary before black-out occurred. The cessation of flow correlated consistently with loss of peripheral vision. Werchan (52), using Doppler methodology, obtained middle cerebral artery blood flow velocity in one subject who experienced G-LOC during a +5 Gz exposure. Systolic blood flow was not detectable within 4 s after the subject attained this +Gz level. Figure 4 shows the peak blood flow velocities of the middle cerebral artery where 1 Khertz / s Doppler frequency shift (the ordinate in the graph) is approximately 39 cm/s blood flow velocity.

Figure 4. Middle cerebral artery blood flow velocity leading to G-LOC adapted from Werchan PM (52) G-LOC at approximately 11 s marker

The question of blood availability to the brain has been addressed in terms of the mechanism of G-LOC (57). This mechanism is based on the observation of symptoms resulting from G-LOC and the time sequence of these symptoms. In essence, when blood flow to the CNS is reduced by +Gz stress, ischemia/anoxia occurs in a "top to bottom, watershed pattern based on the CNS circulatory system. To ensure maximum survival, the neurons optimize energy conservation by minimizing extracellular activity. This local inhibition reduces electrical output to other neurons and neuronal metabolic expenditure. When a critical mass of locally inhibited neurons is attained, the inhibitory reticular formation becomes disinhibited and gains control of the CNS through induction of global inhibition. The onset of this global inhibition is loss of consciousness, an active mechanism to protect

the integrity of the CNS. The process above is termed the functional buffer period or loss of consciousness induction time. As blood flow returns, the neuronal inhibition is reduced and segments of the CNS become sequentially re-activated. The CNS regains function beginning with the primitive system, and progressing toward the cortical system. The proposed mechanism is basically a concerted effort to protect the CNS from injury" (Figure 5, 56).

Figure 5. Schematic diagram of G-LOC adapted from Whinnery JE (56)

Several methodologies have been utilized to study the physiology of G-LOC including 1) biochemical assays in animals (48-49,54) where findings include metabolic changes (in rats) to occur within 15s of +Gz stress, G-LOC occurring as a protective mechanism to slow metabolic rate preventing tissue lactate accumulation (acidosis). 2) modified accel-

eration protocols (4,11-13,55) such as aerial combat environment simulation (ACES); 3) timing of G-LOC symptoms (kinetics, 57,62) where the specific symptoms and periods of unconsciousness are timed so that their sequence may be associated to their physiologic correlates in the brain; 4) Doppler methodology (2,15,40,42,52-53) and near infrared monitoring (OMNI4, 25,27,33) have been utilized to determine brain blood flow and cerebral microcirculation where the rate of disappearance of the blood and the eventual level achieved is greater the higher the +Gz level. Also, cerebral blood flow velocity has been calculated to be reduced by up to 58% during certain +Gz profiles; 5) electrical activity of the brain (EEG) where delta waves are predominant during unconsciousness (1,5,22,38,44,51). Figure 6 describes 4 channels of EEG recordings of a subject who experienced G-LOC during ACES. Loss of consciousness occurred at +4.6 Gz where the maximum +Gz of the exposure was +7 Gz and the time of the exposure was 62 s; and 6) electrical activity of the heart (ECG) where no significant or predictive cardiovascular changes have been associated with G-LOC.

Figure 6. EEG during G-LOC

Protocols evaluating safety measures, techniques, or equipment to increase +Gz tolerance have been evaluated (4,6,19,55,59,63-66): 1) altering the offset rate of the +Gz exposure where a more rapid offset results in a shorter G-LOC incapacitation period; 2) altering the heart to eye distance (decreasing the hydrostatic column length) by modifying the subject position while experiencing +Gz stress where a supine position increases +Gz tolerance, reduces work effort (i.e., fatigue due to straining maneuvers) and mean heart rate associated with the +Gz stress. Figure 7 describes the head rest geometry of three different seat configurations, L, K, and M (NSRP= neutral seat reference point, 8);

Figure 7. Seat angle and head rest geometry adapted from Burns JW et al (8)

3) implementing protective measures such as a) anti-g straining maneuvers (muscular straining while exhaling against a partially closed or fully closed glottis) which increase

+Gz tolerance by approximately 1.5 +Gz, b) anti-G suits and modification of their inflation profile where the suit is composed of air bladders which upon acceleration inflate against strategic areas of the anatomy in order to exert pressure upon the body and thereby ameliorate the effect of blood pooling towards the extremities during +Gz stress. It has been found that the suit provides added protection against this stress (Figure 8); and c) assisted positive pressure breathing (APPB) which increases +Gz tolerance through a secondary stimulation of the baroreceptor mechanisms. Burns et al (7), found that continuous APPB at 50 and 70 mmHg augments time at +Gz during simulated +5 to 9 +Gz simulated combat maneuver profiles (by 88% and 115% respectively, p < .01).

Figure 8. Anti-G suit from Krutz RW et al (35)

4) aircrew of high performance aircraft are routinely trained in the acceleration environment to better tolerate this type of stress by use of the human centrifuge (Figure 9). This

training usually involves a lecture relating the physiologic effects of +Gz stress, the protective measures to better tolerate the stress and exposure to the stress itself (10,24,32,58).

Figure 9. The human centrifuge at the Naval Air Warfare Center, Aircraft Division.

Warminster, PA

In spite of the wealth of information physiologic measurements impart, an important aspect of +Gz stress and specifically G-LOC tends to be neglected: the recovery period and it's related symptoms. Human physiologic response to G-LOC is to be understood for a G-LOC predictive system/method to be developed. However, until an infallible system

of this nature is available, G-LOC will occur. Hence, the thrust of G-LOC research should include the understanding of its symptoms; specifically the psychological reaction to the G-LOC episode itself. Unfortunately, we tend to regard G-LOC as only a sequence of cardiovascular and/or neurologic changes. However, the G-LOC victim is also psychologically disturbed. The subjects experience confusion, euphoria, anxiety and frustration upon recovering from G-LOC (21-22,60). These disturbances affect recovery from G-LOC and the subsequent performance of flying maneuvers or related tasks; where complete recovery from G-LOC occurs approximately one minute post G-LOC (20,30). Incapacitation resulting from G-LOC is the combination of both physiologic and psychological factors. The latter have not been properly identified and are an integral part of recovery from G-LOC. Therefore, G-LOC research must be understood as the combined physiology and psychology of the subject experiencing this type of stress.

How do we study the "psychology of G-LOC"? By asking the subject: What happened? Why does he think it happened? Is he affected by the dream experienced during unconsciousness? Is his attitude about the episode affecting his recovery? Are the symptoms familiar to him? To this end, a questionnaire was developed to better evaluate the psychological effects of G-LOC. This questionnaire was formulated to be completed by subjects who experienced G-LOC in the human-use centrifuge.

This thesis addresses the formulation of a database and questionnaire and how these can be applied to aeromedical research addressing +Gz induced loss of consciousness.

INTRODUCTION

Why is a +Gz induced loss of consciousness data repository necessary?

- 1) Currently, data repositories for acceleration research data reside at Brooks AFB, TX (61) and the Naval Air Warfare Center, Aircraft Division in Warminster, PA (NAWC). These seem to be the only data repositories addressing +Gz related research. However, they do not include G-LOC descriptive variables. When G-LOC descriptive data is available, it is usually limited to the particular investigator's research interests. For example, the psychological sequelae of G-LOC are seldom if ever considered and it is undeniable that upon awakening from unconsciousness, the subject's state of mind may influence his/her reaction to the G-LOC episode and therefore his/her recovery and subsequent performance (20-22,30,60). A database which encompasses all information on a G-LOC episode has not been available until now.
- 2) Aircrew training on +Gz tolerance (in the human centrifuge) provides a rare opportunity to directly study the population of interest when G-LOC research is a concern and makes it imperative to collect data on those aircrew accidentally experiencing G-LOC during such training.
- 3) +Gz research usually involves small sample populations because of subject availability. Further, G-LOC itself is an unusual event. As such, all available information should be recorded whenever it occurs. A G-LOC database enables large sample data collection and therefore increases statistical analysis power.
- 4) A G-LOC data repository increases aviation safety by compiling isolated research results originating from any particular investigator addressing the G-LOC problem. The

establishment of G-LOC data repositories as the one presented herein provides an excellent means to develop comparison studies among the various +Gz research laboratories.

DESCRIPTION OF A METHOD TO DOCUMENT G-LOC

THE G-LOC DATABASE

The program Dbase III Plus^O (Ashton-Tate) was chosen because of its simplicity and ease of handling. This characteristic is specially important since the data may be entered by any personnel familiar with computers and the program itself is well known and available to most researchers in the various acceleration +Gz research laboratories. Also, data can easily be retrieved and analyzed with any statistical package compatible with this format.

The database contains 83 variables which concern 4 areas of interest. These variables are described in detail in Appendix A:

- I Subject description in general (21 variables)
- II Acceleration profile and research study characteristics (15 variables)
- III G-LOC description (20 variables)
- IV Psychological sequelae of G-LOC (27 variables)

Data entry sheets were formulated (Appendix B) to facilitate data obtention and entry. Each variable is enumerated and the characters denoting missing and non-applicable entries are specified. The range of the variable is also noted when required. Once the data is collected, it is key punched via a microcomputer; in this case, the Gateway 2000.

G-LOC DATABASE SOURCES

The data repository consists of data obtained from three sources:

Videotaped record of the G-LOC episode. These records are normally obtained during all centrifuge exposures at NAWC (Figure 10). The record contains: a video picture of the subject, a trace of the acceleration profile, a record of the base and peak +Gz level attained during each +Gz exposure, the subject's heart rate, and the time of the exposure (14).

Figure 10. NAWC video tape documentation of +Gz exposures (14)

+Gz exposure data sheets. The +Gz exposure data sheet is a form completed by the subject and the centrifuge personnel. A sample developed by NAWC personnel is shown in Appendix B. The form records acceleration profile characteristics and subject characteristics as described in Appendix A.

G-LOC questionnaire. A partial sample of the questionnaire is shown in Figure 11. It was developed by this author in 1985. The questionnaire's aim was to obtain information on the subject's recollection of his state-of-mind as he awakened from unconsciousness and on how this state affected his performance, recovery, and interpretation of the G-LOC warning signals currently used in the centrifuge (a bright light and a loud horn). In essence, the questionnaire provided the subject and the investigator an opportunity to evaluate G-LOC beyond its physiologic symptoms. This evaluation was complemented by 1) the characteristics of the +Gz exposure and 2) the period of incapacitation resulting from G-LOC and its associated symptoms: 1. +Gz Profile Characteristics. The operational variables of a G-LOC episode refer to the +Gz profile and the study protocol itself such as +Gz onset rate, +Gz offset rate, maximum +Gz of the exposure; duration of the exposure, protective garments used, etc. Appendix A completely describes these variables. In brief, the training protocol discussed herein consisted of the following: a gradual onset rate exposure of 0.1 +Gz/s (GOR) followed by a series of rapid onset rate exposures of 6 +Gz/s (ROR) to various plateaus of +6Gz to +9Gz for periods of 10 to 15 s. There was a 1 to 5 minute lapse between the consecutive exposures. These were videotaped and, in the case of a G-LOC episode, the videotape was archived for later review. 2. G-LOC incapacitation. In general, incapacitation resulting from G-LOC has been classified into three parts: absolute incapacitation, the period when the subject is clearly unconscious (eyes roll backwards and close, head/body slump, convulsions); relative incapacitation, the period when the subject is awake but disoriented; and total incapacitation, the sum of absolute and relative incapacitations above and measured by the subject's deactivation (upon regaining consciousness) of the warning signals triggered by a medical monitor upon G-LOC.

The target population of the questionnaire included trainees participating in the +Gz tolerance program of the Navy (GTIP). These trainees included aircrew of the Navy and the Air National Guard. All subjects were over 21 years of age. Since G-LOC is an infrequent but significant event, the goal was to obtain a completed G-LOC questionnaire from all those trainees who experienced it. Non-response error was expected to be small.

The questionnaire (paper and pencil format) was presented to the subjects by trained Navy personnel (a "training coach") familiar with G-LOC and GTIP training. All questionnaires were completed at NAWC on the day of the G-LOC exposure after the subject exited the centrifuge. The questionnaires were collected at the end of the training day prior to the subjects leaving the premises.

Questionnaire completion immediately after G-LOC occurs is not always possible in the centrifuge laboratory. Hence, the physician or other personnel ask the subject an abbreviated version of these questions as the subject awakens from unconsciousness, while s/he is still in the centrifuge. The video record of the +Gz exposure aids the investigator in evaluating the subject's answers to the written questionnaire itself which is completed approximately less than 20 minutes after the +Gz exposure. As of this writing, a total of 292 questionnaires have been collected. A sample of the G-LOC questionnaire is shown in Appendix B.

The contents of the questionnaire were based on the critical incidence technique (3) to include an extensive review of G-LOC episodes recorded at the NAWC and Brooks AFB centrifuge laboratories (1984 to 1992). The questionnaire was ideally completed by the subject immediately after the G-LOC event in a quiet/private environment so that complete

recall of the G-LOC episode is not obstructed by peripheral stimuli. The subjects were informed of the nature of the questionnaire, and its completion was voluntary. The questionnaire construction was based on current designs recommended in the literature (3,45,47).

The questionnaire included 17 items: a) open ended (2 items); b) multiple choice (14 items where 5 items provided for a follow-up or clarification opportunity; and c) rating scale (1 item). The major areas addressed in the questionnaire were: 1) the subject's reaction to G-LOC (items 1-2, 4); 2) the subject's interpretation of the current human centrifuge G-LOC awakening stimuli (items 6-7); 3) the subject's dream-like episodes during G-LOC (items 12-16); and 4) G-LOC symptoms (convulsions, transient paralysis, items 3, 5, 7-11). Data management and organization was accomplished on Ashton Tate dbaseIIIP. Data analysis was achieved via Microsoft^ò Excel or SAS^ò statistical analysis package as required.

Euphoria	llowing 0	1	2	3	4	5	6	7	8	9	10
Anger	0	1	2	3	4	5	6	7	8	9	10
Embarrassment	0	1	2	3	4	5	6	7	8	9	10
Apathy	0	1	2	3	4	5	6	7	8	9	10
Frustration	0	1	2	3	4	5	6	7	8	9	10
Confusion	0	ı	2	3	4	5	6	7	. 8	9	10
Fright	0	1	2	3	4	5	6	7	8	9	10
Sadness	0	1	2	3	4	5	6	7	8	9	10
Surprise	0	1	2	3	4	5	6	7	8	9	10
Relaxation	0	1	2	3	4	5	6	7	8	9	10
Denial	0	1	2	3	4	5	6	7	8	9	10
Other:	ratir	ng (0-10	0)	_	•	_	•	•	•		
4. Immediately a you know whe	fter rec	overing		ousnes	s (YOL				IED YO	OUR E	YES), Did
YES NO					where v	·					
5. How long did	your pe	riod of	uncons	sciousn	ess see	m to la	st (estir	nate)?			
SECONDS	M	INUTI	ES		ЮН	JRS	F	OREVI	ER	·	
6. Were you awa							eriod o	f uncoi	nscious	ness? (i	.e. were
	2	Please	explai	n							
YES NO											

Figure 11. G-LOC QUESTIONNAIRE

EVALUATION OF THE DATABASE

Appendix C comprises the complete results of a sample analysis of all the variables included in the G-LOC database. Each variable and its corresponding permutations is described separately in the following manner: The mean, standard deviation (± S.D.), number (N) of exposures (in parenthesis), bound of error (BOE), and range [in brackets]. For those variables defined by levels, the frequency of occurrence per level is shown. Percentage of occurrence is also shown with and without including missing data (defined by '.'). Total (T) number of occurrences are shown by each table. The variable units are noted in the boxed variable title. Further statistical analysis was performed when necessary. Only GTIP program subject-data was considered in this sample analysis. For further clarification, please refer to Appendix A where the variables are defined. A summary of the results follow:

A total of 279 G-LOC exposures were considered.

73 % of the episodes were classified as classic G-LOC (BOE = 1%).

The maximum +Gz level of the GOR exposures was 7 ± 1 . This level was predetermined for the ROR exposures.

The relaxed +Gz tolerance for the trainees was 4.6 ± 0.8

During the ROR runs, 65 % of the G-LOC episodes occurred during plateau with a bound of error (BOE) of 0.6 %.

The average duration time of this plateau was 5 ± 2 s.

70% of the G-LOC episodes occurred during ROR, 30% occurred during GOR (BOE= 6%). Note that 80% of all GTIP exposures are ROR runs.

Absolute incapacitation was 7 ± 5 s. Relative incapacitation was 9 ± 4 s. Total incapacitation was 15 ± 6 s.

Incapacitation resulting from GOR exposures was longer than that resulting from ROR exposures (p= .002).

Convulsion induction time and absolute incapacitation were correlated (r= .6)

87% of the subjects exhibited convulsive behavior during G-LOC (BOE= 2%). However, only 68% remember having flailed. A longer absolute incapacitation was associated with major convulsive behavior (Duncan p= .05).

68% of the subjects exhibited major respiratory symptoms while unconscious (BOE= 3%). These symptoms were associated with longer absolute (p= .002) and total (p= .01) incapacitation periods.

Audiovisual imageries were reported of 43% of the episodes (BOE= 3%). Of these, 75% were described as dreams comparable to those during normal sleep. Absolute and total incapacitations were longer of those episodes where dreams occurred (p= .002, and .000 respectively). In general, the imageries were familiar and pleasant in content.

39% of the subjects (BOE = 6%) did not remember having experienced blackout prior to G-LOC.

39% of the subjects did not know where they were [centrifuge] and why they were there [training] as they awakened from unconsciousness (BOE = 3%).

When questioned on the interpretation of the warning signals and their reasons for not deactivating them upon recovering consciousness, 12% of the subjects reported temporary paralysis; as in not being able to move to deactivate the signals in spite of their wish to do so. (BOE= 5%). Other reasons were confusion $(38 \pm 7\%)$ and disinterest $(11 \pm 5\%)$.

Total incapacitation was shorter (p= .02) with prior G-LOC experience. 5.6% was the percentage of prior G-LOC inflight experience.

The subject's general state of mind as he awakened from unconsciousness as as follows (percent \pm BOE): Confusion (69 \pm 3); Surprise (52 \pm 5); Relaxation (42 \pm 4); Embarrassment (39 \pm 3); Euphoria (38 \pm 3); Apathy (36 \pm 7); Frustration (36 \pm 3); Amnesia (29 \pm 6); Anger (22 \pm 3); Denial (15 \pm 3); Fright (13 \pm 2); and Sadness (11 \pm 2).

Following is an eloquent description of G-LOC and its psychologic implications as describes by a subject who experienced G-LOC in the centrifuge:

"It was a small form of death. Awakening from it was like being spit from the abyss, flung bodily back into consciousness, like being dumped into a vat of ice water from a warm deep sleep. Only this sleep was not warm, it was empty, nothingness, a bottomless abyss.

worse than empty, it was non-existence. Consciousness did not return whole, it came in fits and starts staggering back, dragging itself from the edge of the darkness in lurches and drunken convulsions. The first awareness was complete confusion. Where am I? What is going on? Who am I? The lack of self identity brought a formless fear with it.

There was light and dark and sound but no form, no reason. Then as my gaze wandered over the enclosure I began to recognize things. The TV screens with the flight simulation. the arc of the inside wall of the ball [centrifuge], the stick and throttle became identifiable articles. I knew what they were and there was less anxiety with the knowledge. As my consciousness lunged and reeled toward reality another feeling arose. I had a mission. something I must do. The need to complete my job sprung from some hidden crevice where it had been crushed out of sight. The light! The beeping! They had been in my view for ... how long? It seemed a long time. Only now they impinged full on my senses. I could see the light flash and then hear the steady loud beep, beep, beep. My job involved these things. I was to extinguish the light! The first impulse to move, to take action was, a surprise, a shock. My hand stabbed out, I had to put out the light, it was my mission! My arm wavered crazily and two or three frustrating stabs later the lighted button was pressed. The beep stopped, the light disappeared and the sequence that I was to follow crashed through the paper walls in my mind into the light of consciousness. I now knew what I was supposed to accomplish. I had a mission. Concentration was required to focus on the four numbers, and count them one by one as I fumbled through the sequence. Just as the fourth number disappeared my identity returned. I knew who I was! I was Tim Sestak! The relief, the release from tension and fear in the security of this knowledge was a physical rush. A warm fuzzy. I was safely myself. Now I knew why I was here, and what had happened. The sensation of loss of time was now very strong. It would remain so for hours, gradually fading, as if stepping back from the edge of the abyss but the memory is potent.

At the moment of self awareness and identity the sensation of loss of time, of having stepped from nothing directly into reality, was overwhelming. The non-existence was infinite, forever deep. I had been recreated after an eternity of nothing. There were memories of a time before but they were separated from NOW by the chasm of infinity. The final stages of consciousness oozed into place, gradually filling the little cracks and crevices of awareness. As normalcy returned, the only manifestation of the passage through the void was the coldness of memory. A psychic gasp and shudder came as the nothingness was re-examined. The feeling of loss was strong. Now my motor functions were near normal. I flew the simulation on, one part of me satisfied with the mission accomplishment, another aghast with the new found intimacy with the abyss.

Even now, nine hours later, the memory, though distanced in time, is no less potent. It carries with it an anxiety, an ill defined fear, and the aura of melancholy. Ambiguous feelings of loss well through a haze of mortality"

DISCUSSION

We need to be concerned with the state of mind of the G-LOC victim because his reaction to G-LOC will influence recovery. Symptoms such as confusion, convulsions, and dreaming may cover a brief time period (seconds). However, seconds are essential to survival when G-LOC occurs inflight. To understand G-LOC, we need to look at its induction and its recovery. Induction is based on physiology. Recovery is based in both the physiology and the psychology of the individual undergoing G-LOC.

Upon regaining consciousness, the subjects' motor and mental processes are not concurrently activated as demonstrated by the apparent transient paralysis during the early relative incapacitation period Unfortunately, the evidence of this transient paralysis is purely subjective. However, in the case of G-LOC, transient paralysis would probably not be detected by the majority of the subjects, because during early relative incapacitation, when this event would likely take place, the subject is undergoing a reorientation process consisting of extraordinary amounts of mental activity and motor action is apparently not yet a priority. The majority of the subjects do not "remember" (yet) that they are supposed to deactivate the warning signals immediately upon recovering consciousness. At this time, the subject is trying to understand what has just happened, and there is apparently no desire for any purposeful movement. Once the subject "remembers" to turn the warning signals "off" (at the end of the relative incapacitation period) the "paralysis prone period" has probably passed: the subject wants to and is able to deactivate the signals. Subjects who experience transient paralysis probably recognize the significance of the two warning signals during the paralysis prone period, but when they proceed to turn the signals off they temporarily are unable to do so. A reduction of the period of post-G-LOC confusion

probably experienced by these subjects may have been counter-balanced by the inability to move and deactivate the signals immediately upon recognizing their significance. It appears that transient paralysis is so fugacious that it might go unrecognized and, therefore, not reported. Also, if this phenomenon is recognized by the subjects, it might go unreported (as G-LOC is not always reported); probably for fear of it affecting the subject's flight-status or pride. One of the accepted methods of awakening patients suffering from sleep paralyses found in narcolepsy but a condition found also in G-LOC is the frank and vigorous shaking of the subject (the similarities of G-LOC transient paralyses and sleep paralyses, as a symptom of narcolepsy, have been previously discussed, 22). This method is currently not operationally feasible. Perhaps a minor electrical stimulation of the subject experiencing G-LOC is a solution suitable for consideration.

Nearly half of the subjects reported visual imageries occurring during their period of unconsciousness, the majority of these reports were labeled as dreams comparable to those experienced during normal sleep where the visual imageries had the following characteristics: emotion, illogical content, sensory impression, unconditional acceptance, and amnesia (29). The majority of the subjects reported "thinking," which is the most common activity during sleep and was mainly concerned with commonplace and recent events. Dream occurrence affects recovery. Do we want to manipulate their development during G-LOC? Is dreaming a protective mechanism? It has been suggested the purpose of dreaming includes the active maintenance of the functional integrity of the human brain. "By coordinating the activity of the cortex and spinal cord, the brain stem provides unifying control of our behavioral, physiological and mental states...In dreaming, the brain stem activates the cortex (arousing the mind), shuts off the spinal cord (blocking body movement), and sends signals to the eyes, to the cerebellum and to the visual brain

(stimulating imagery)". Indeed, dreams occurring during G-LOC may be regarded as the "reorganization of brain and mental activity, with intensification of some faculties mirrored by reduced activity of others, and both serving purposes as yet unclear but as likely to be productive as protective" (29). The G-LOC syndrome and its proposed mechanism has been discussed in the literature as an activation-inhibition hypothesis (57). Dreams are biologically based. The sensory and motor nature of dreams is directly related to the activation of the sensor and motor circuits of the brain; the emotion of dreams is possibly related to the limbic system; and dream amnesia is related to memory circuits (29). Hence, G-LOC dreams and subject behavior play a fundamental role in acceleration physiology research. Indeed, neurophysiologic studies on the dependence of the brain on the continuous supply of oxygen and glucose are based on the observation of patient behavior. These observations are then compared to a continuum of physiologic correlates in the brain.

It is also important to quantify the interpretation of the G-LOC warning signals and subject flailing since both are the first indication of G-LOC the subject encounters when recovering consciousness. Forty-nine percent of the subjects were confused or disinterested in the warning signals. Their effectiveness may be improved by changing the mode of their presentation (louder) or their nature altogether (voice as opposed to horn). However, the results presented above may be misleading since subject reaction to G-LOC in the centrifuge may not be compared to G-LOC inflight where the current signals may be sufficient. Operationally speaking, the occurrence of major flailing may also be of interest in that in the process of flailing, aircraft controls may be inadvertently activated (or deactivated). In summary, when G-LOC research is undertaken, it must consider the psychological sequelae of the event. These symptoms not only aid the researcher in developing better recovery methods based on subject psychology but also aid the physiologist in understanding the G-

LOC mechanism by considering the sequence of the symptoms, their timing, and the subjective interpretation of the same. Indeed, we must consider the G-LOC victim as more than a collection of viscera; as Popper et al stated, "to study how much G-tolerance the body has without considering the motivation, stress level, and all other variables influencing and individual's ability at any point in time (mind and spirit) leaves one with a plethora of data with questionable relevance" (43).

No information is available on the effect of G-LOC "experience" on incapacitation times. The proposed database would provide this information. One of the subjects stated: "I wonder if mere repetition will quell the dissonance, breed the proverbial contempt through familiarity. At this point it seems unlikely. The natural aversion to the unknown and potentially dangerous actions grapples with a macabre curiosity. Can one voluntarily revisit the abyss and still be convinced he is wholly sane?". Indeed, to lose consciousness is an alarming proposal evidenced by all studies involving voluntary G-LOC where the subjects were always reluctant to lose control. However, to be familiar with its symptoms may be beneficial to the pilot recovering consciousness inflight, when seconds become essential to survival.

Limitations of the database: Variables that describe the timing of G-LOC events such as G-LOC onset, incapacitation, and convulsion times are subject to the particular investigator's interpretation of the G-LOC episode and how s/he defines G-LOC. That is, whereas one investigator may regard G-LOC onset as the point in time when the subject's eyes become fixated another investigator may regard it as the point in time when the subject loses neck muscle control instead. Hence, to evaluate variables of this type, the investigator needs to be extremely familiar with G-LOC symptomatology; familiarity being gained by observ-

ing numerous G-LOC occurrences. Also, when obtaining data of this type the investigator needs to confirm his findings by having other experienced observers evaluate the same.

Limitations of the questionnaire: 1) It would be argued that subject report data, such as the one contained in the G-LOC questionnaire is not as reliable as one would demand under scientific research methodology; especially when pilots are included as subjects since they may be under the impression that their careers would be affected if they report any "bizarre" or unusual sensations provoked by G-LOC. However, the G-LOC episodes are videotaped and anonymity attempts to prevent this problem. 2) The questionnaire provides highly subjective results that may be difficult to interpret. This is inherent of any subjective measure. However, the responses are valuable since these give an indication of how the subject interprets G-LOC and answering the questions themselves may aid the subject in evaluating and understanding his experience; the ultimate goal of centrifuge training. Indeed, it has been suggested G-LOC be part of the training schedule of GTIP programs since it could provide the subject with his unique characteristic symptoms pre and post G-LOC. Symptoms when promptly identified, could save the subject's life in the event of G-LOC inflight (58). 3) It has been difficult to administer the questionnaire immediately upon the subject awakening from G-LOC. Therefore, when asked, the subject may not remember exactly how he was reacting to the event. Generally, this problem is eliminated by asking the subject some of the questions briefly as he awakens (intercom system).

APPLICATIONS

The population of interest in aeromedical research is the aircrew member. It is rare to obtain information on this population, specially regarding G-LOC. The G-LOC questionnaire discussed herein and the results obtained from its contents provides a valuable and

simple way to study this population. Also, the questionnaire is a valuable tool to compile thorough large sample G-LOC research data that will allow the integration of both the physiology and the psychology of the G-LOC syndrome.

The questionnaire results in association with other G-LOC variables discussed above may be a source for developing training programs by assessing G-LOC incidence in the centrifuge, +Gz training methods, and the psychology of the G-LOC episode itself. Further, the questionnaire enhances training by making the subject aware of his particular symptoms (by recollecting the experience).

Symptoms occurring during recovery from G-LOC may lengthen G-LOC incapacitation periods. Hence, these symptoms are to be considered an integral part of G-LOC recovery.

The database can be expanded to include physiologic variables in such a way that these variables may be associated with the observable symptoms already included in the repository.

BIBLIOGRAPHY

- 1 Ades HW. Electroencephalographic findings in relation to episodes of altered consciousness in aviators. Aerosp. Med. 1962;33:263-274.
- 2 Albery WB, Van Patten RE. Non-invasive sensing systems for acceleration induced central nervous system ischemia. IEEE Eng. in Med. and Biol. Mag. 1991;10:46-51.
- 3 Babbit BA, Nystrom CO. Questionnaire Construction Manual. Research Product 89-20, U.S. Army, June 1989.
- 4 Beckman EL, Duane TD, Ziegler JE, Hunter HN. Some observations on human tolerance to accelerative stress. Aviat. Med. 1954;25:50-65.
- 5 Berkhout J, O'Donnell RD, Leverett S. Changes in electroencephalogram spectra during repeated exposure to +Gz acceleration. Report AMRL-TR-72-123, 1972.
- 6 Burns JW. Prevention of loss of consciousness with positive pressure breathing and supinating seat. Aviat. Space and Environ. Med. 1988;59:20-22.
- 7 Burns JW, Balldin UI. Assisted positive pressure breathing for the augmentation of acceleration tolerance time. Aviat. Space Environ. Med. 1988;59:225-233.
- 8 Burns JW, Whinnery JE. Significance of headrest geometry in +Gz protective seats. Aviat. Space Environ. Med. 1984;55:122-127.
- 9 Burton RR, Cohen MW, Guedry FE. G-induced loss of consciousness: a panel presentation. Proc. Ann. Meet. Aerosp. Med. Assoc. 1986.
- 10 Burton RR, Meeker LJ, Raddin JH. Centrifuges for studying the effects of sustained acceleration on human physiology. IEEE Eng. in Med. and Biol. Mag. 1991;10:56-65.
- 11 Cammarota JP. Integrated systems for detecting and managing acceleration induced loss of consciousness. IEEE Eng. in Med. and Biol. Mag. 1991;10:52-55.
- 12 Cammarota JP. Research in a high-fidelity acceleration environment. Proc. Natl. Aerosp. Elec. Conv. 1989:778-782.
- 13 Cammarota JP. Symptoms of +Gz induced incapacitation during simulated aerial combat. Aviat. Space Environ. Med. 1991;62:485.
- 14 Cammarota JP, Whinnery JE. Enhancing centrifuge high G training using on-line videotape documentation. Aviat. Space Environ. Med. 1990;61:1153-1159.

- 15 Clère JM, Patat F, Ossard G, Lejeune D, Arbeille PH, Besse G. Simultaneous doppler measurement of femoral and carotid blood velocity: +Gz acceleration effect. Aviat. Space Environ. Med. 1991;62:476.
- 16 Cohen GH, Brown WK, Electrocardiographic changes during positive acceleration. J. Appl. Physiol. 1969;27:858-862.
- 17 Edelberg R, Henry TP, Macioleck JA, Salzman EW, Zuidema GD. Comparison of human tolerance to accelerations of slow and rapid onset. Aviat. Med. 1956;12:482.
- 18 Forster EM. Heart rate response of aircrew during recovery from gradual onset +Gz exposures. Aviat. Space Environ. Med. (in press).
- 19 Forster EM, Cammarota JP, Whinnery JE. G-LOC recovery with and without anti-g suit inflation. Aviat. Space Environ. Med. (undergoing review by the journal editors).
- 20 Forster EM, Cammarota JP. The effects of GLOC on psychomotor performance and behavior. Aviat. Space Environ. Med. 1993;64:132-138.
- 21 Forster EM, Fischer JR. The dream phenomena during GLOC. Aviat. Space Environ. Med. 1989;60:490.
- 22 Forster EM, Whinnery JE. Recovery from +Gz induced loss of consciousness: psychophysiologic considerations. Aviat. Space Environ. Med. 1988;59:517-522.
- 23 Forster EM, Whinnery JE. Reflex heart rate response to variable onset +Gz. Aviat. Space Environ. Med. 1988;59:249-254.
- 24 Gillingham KK, Fosdick JP. High G training for fighter aircrew. Aviat. Space Environ. Med. 1988;59:12-19.
- 25 Glaister DH. Current and emerging technology in G-LOC detection: noninvasive monitoring of cerebral microcirculation using near infrared. Aviat. Space Environ. Med. 1988;59:23-28.
- 26 Guyton AC, ed. Textbook of Medical Physiology. Philadelphia: WB Saunders, 1981.
- 27 Haswell MS, Jöbsis FF. Non-invasive physiologic brain monitoring in USAF operational environments. Proc. SAFE 22nd Ann. Symp. 1984;200-203.
- 28 Henry JP, Gauer OH, Kety SS, Kramer K. Factors maintaining cerebral circulation during gravitational stress. J. Clin. Invest. 1951;30:292-300.
- 29 Hobson JA. The Dreaming Brain. New York: Basic Books, 1988.

- 30 Houghton JO, McBride DK, Hannah K. Performance and physiological effects of acceleration induced (+Gz) loss of consciousness. Report NADC-86130-60.
- 31 Howard P. Gravitational Circulation. Proc. Ann. Meet. Royal Soc. Lon. 1977;199:485-491.
- 32 Hrebrien L, Eyth J, Bernard GW. Tactical aircrew G-strain familiarization study. Report NADC-87021-60, 1987.
- 33 Jöbsis FF. Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977;198:1264-1267.
- 34 Johanson DC, Pheeny HT. A new look at the loss of consciousness experience within the U.S. Naval forces. Aviat. Space Environ. Med. 1988;59:6-8.
- 35 Krutz RW, Burton RR, Forster EM. Physiologic correlates of protection afforded by anti-G suits. Aviat. Space Environ. Med. 1990;61:106-111.
- 36 Krutz RW, Rossitano SA, Mancini RE. Comparison of techniques for measuring +Gz tolerance in man. J. Appl. Physiol. 1975;38:1143-1145.
- 37 Leverett SD, Whinnery JE. Biodynamics: sustained acceleration. In: DeHart RL, ed. Fundamentals of Aerospace Medicine. 1st ed. 1985:202-249.
- 38 Lewis NL, McGovern JB, Miller JC, Eddy DR, Forster EM. EEG indices of G-induced loss of consciousness (G-LOC). AGARD Report 432, 1988.
- 39 Lyons TJ, Harding R, Freeman J, Oakley C. G-induced loss of consciousness accidents: USAF experience: 1982-1990. Aviat. Space Environ. Med. 1992;63:60-66.
- 40 Njemanze PC. Transcrannial doppler evaluation of syncope: an application in aerospace physiology. Aviat. Space Environ. Med. 1991;62:569-572.
- 41 Moore TW, Jaron D. Cardiovascular model for studying circulatory impairment under acceleration. IEEE Eng. in Med. Biol. Mag. 1991;10:37-40.
- 42 Ossard G, Clère JM, Lejeune D, Roncini A, Léger A. Can we detect G- loss of consciousness by transcrannial doppler investigation? Aviat. Space Environ. Med. 1990;61:470.
- 43 Popper SE, McCloskey K. Individual differences and subgroups within populations: the shopping bag approach. Aviat. Space Environ. Med. 1993;64:74-77.
- 44 Powell TJ, Carey TM, Brent HP, Taylor WJR. Episodes of unconsciousness in pilots during flight in 1956. Aviat. Med. 1957; Aug: 374-386.

- 45 Rourke JE. Questionnaire and Interview Design (Subjective Testing Techniques). TECOM Pam 602-1, Vol 1, U.S. Army, July, 1975.
- 46 Sandler H, Rossitano SA, McCutcheon EP. An objective determination of +Gz acceleration tolerance. Acta Astronautica 1977;4:451-553.
- 47 Scheaffer RL, Mendenhall W, Ott L, eds. Elementary Survey Sampling. Boston: PWS-KENT, 1990.
- 48 Shahed AR, Barber JA, Aldape FA, Werchan PM. Acceleration induced effects on baboon blood chemestry. Aviat. Space Environ. Med. 1991;62:463.
- 49 Shahed AR, Werchan PW. Cerebral biochemical basis of +Gz induced loss of consciousness (G-LOC). Aviat. Space Environ. Med. 1992;63:424.
- 50 Shubrooks SJ. Changes in cardiac rhythm during sustained high levels of positive (+Gz) acceleration. Aerosp. Med. 1972;43:1200-12006.
- 51 Squires RD. Electroencephalographic changes in human subjects during blackout produced by positive acceleration. Report NADC-ML-6402, 1964
- 52 Werchan PM. Physiologic basis of G-induced loss of consciousness (G-LOC). Aviat. Space Environ. Med. 1991;62:612-614.
- 53 Werchan PM, Forster EM. Transcrannial doppler quantitation of G protection. Aviat. Space Environ. Med. 1990;61:471.
- 54 Werchan PM, Laughlin MH, Schadt JC, Fanton JW, Burns JW, Burton RR. Microsphere and flowprobe measurements of cerebral blood flow (CBF) during acceleration. Aviat. Space Environ. Med. 1989;60:504.
- 55 Whinnery CM, Whinnery JE. The effect of +Gz offset rate on recovery from acceleration induced loss of consciousness. Aviat. Space Environ. Med. 1990;61:929-934.
- 56 Whinnery JE. Observations on the neurophysiologic theory of acceleration (+Gz) induced loss of consciousness. Aviat. Space Environ. Med. 1989;60:589-593.
- 57 Whinnery JE. Theoretical analysis of acceleration induced central nervous system ischemia. IEEE Eng. in Med. and Biol. Mag. 1991;10:41-45.
- 58 Whinnery JE, Burton RR. +Gz induced loss of consciousness: a case for training exposure to unconsciousness. Aviat. Space Environ. Med. 1987;58:468-472.

- 59 Whinnery JE, Hamilton RJ, Cammarota JP. Techniques to enhance safety in acceleration research and fighter aircrew training. Aviat. Space Environ. Med. 1991;62:989-993.
- 60 Whinnery JE, Jones DR. Recurrent Gz induced loss of consciousness, psychologic considerations. Aviat. Space Environ. Med. 1987;58:943-947.
- 61 Whinnery JE, Slaughter JW. A computerized repository system for collection and retreival of acceleration stress research data. Meth. Infrom. Med. 1981;20:10-15.
- 62 Whinnery JE, Whinnery AM. Acceleration induced loss of consciousness a review of 500 episodes. Report NADC-88100-60, 1988.
- 63 Whitley PE. Integrated protective systems for operational acceleration-induced loss of consciousness. IEEE Eng. in Med. and Biol. Mag. 1991;10:66-75.
- 64 Wood EH. Prevention of the pathophysiologic effects of acceleration in humans: fundamentals and historic perspectives. IEEE Eng. in Med. and Biol. Mag. 1991;10:26-36.
- 65 Wood EH, Lambert EH, Code CF. The hydro- and resulting bio-dynamics of +Gz induced loss of consciousness and its history. Proc. Natl. Aerosp. Conf., Dayton, OH, May 1987.
- 66 Zhang S, Hong-Shang G, Bai-Sheng J, Song-Feng L. The characteistics and significance of intrathoracic and abdominal pressures during Quigong (Q-G) maneuvering. Aviat. Space Environ. Med. 1992;63:785-788.

		-
		-
	•	
		•

APPENDICES

APPENDIX A

APPENDIX A

DESCRIPTION OF THE DATABASE

VARIABLE DEFINITION: A brief description of the variable precedes its format definition. Note: input format is intended for SASTM statistical package. The following are described for each variable when required:

Field Refers to the number of characters allowed for the entry field.

Missing Refers to the value used to denote missing data.

Character Describes the characters of the variable: Alpha, and/or Numeric.

N/A Refers to the value used to denote non-applicable data.

Value Arabic/roman numerals: measured (M - how measured) or calculated (C - how calculated)

or assigned (A - by whom). Decimal As in whether there are any expected.

Range Variable range.

Units Variable measurement units.

{ } brackets enclose variable numbers.

VARIABLE SELECTION: The variables included in the database were classified into four types.

I Subject description in general.

- {1} PUNTO
- {2} AGTIP
- (4) DATE
- {5} LOCTAPE
- {6} TAPECT
- {32} DREAMQ
- {35} TOYINCER
- {59} SLEEPARY
- {61} ERELOC
- {62} ERELOCN
- {63} ERELOCWH
- {69} DREMRCA
- {70} AGE
- {71} WEIGHT
- {72} HEIGHT
- {73} JOB
- (76) GENDER
- {77} AEROBIC
- {78} ANAEROBI
- {79} WORK
- {80} AIRCRAFT

II Acceleration profile / study characteristics

- {3} STUDY
- {7} BASEG
- {8} MAXG
- {11} RELTOL
- {12} TIMAX
- {13} TIMG
- {15} TIMEND
- {16} TMAX
- {23} GSUIT
- {24} SEAT
- {25} STRAIN
- {31} PROFILE
- {33} JOESUIT
- {74} PPBPBG
- {83} CENTRIFU

III G-LOC description.

- {9} GOFLOC
- {10} WHENLOC
- {14} LOCINDTI
- {17} CONINDTI
- {18} CONVTIM
- {19} CONVTYP
- {20} ABSOLUTE
- {21} RELATIVE
- {22} TOTAL
- {26} PLL
- {27} BREATHE
- {28} PIGTIME
- {30} LOCTYP
- {34} TOYINCAP
- {36} POSITION
- {37} CNVTMAWK
- {39} MOTSICK
- (53) BLACKOUT
- {60} FLAILING
- {82} FLALAWAR

IV Psychologic sequelae of G-LOC.

- {29} EVENT
- {38} AMNESIA
- (40) EUPHORIA
- {41} EMBRSMNT
- {42} DENIAL
- (43) ANGER
- {44} CONFUSED
- **{45} RELAX**
- {46} FRIGHT

- {47} APATHY
- {48} FRUSTRAT
- {49} SADNESS
- **{50} SORPRESA**
- **{51} OTHER**
- **{52} SURPRISE**
- (54) WHEREAMI
- **{55} GUESSUCS**
- **{56} HORNUCS**
- **{57} HORNOFF**
- {58} HORNWHY
- **{64} EVENTQUA**
- **{65} EVENTACT**
- {66} EVENTINT
- (67) EVENTELM
- **[68] SLIPDREM**
- {75} EVOUAL
- {81} DREMWHR

VARIABLE DESCRIPTION:

1. PUNTO

An I.D. number, unique for each subject (S). Some Ss experienced more than 1 G-LOC episode. Therefore. a particular PUNTO may appear more than once.

Field:

Missing:

never

Character: numeric

never

N/A: Value:

arabic (A - author)

Range:

2. AGTIP

An additional subject I.D. number, unique for each G-Tolerance Improvement Program (GTIP) trainee. Non-GTIP subjects are identified by name. For a description of the GTIP program contact AVCSTD, NAWCADWAR, Warminster, PA 18974-5000 (NAWC): D. Murray, (215)-441-3954. The AGTIP I.D. number is identical to the I.D. number assigned to the subject in the NAWC GTIP database (for information on the NAWC GTIP database, contact the author).

Field:

10

Missing:

Character: alphanumeric

N/A:

never

Value:

letters and arabics (A - author)

Range:

3. STUDY

Reason for the acceleration exposure. For further information on the particulars of each specific research study contact the principal investigator / responsible party at NAWC, Code 6023 (names are enclosed in brackets).

GTIP GTIP training

AILSS Advanced Integrated Life Support System

PROF Proficiency run

FUNK Functional Buffer Period ACES Voluntary G-LOC DCIM PPB/PBG DCEIM

TLSS Tactical Life Support System.
PALE Pelvis And Legs Elevated

MEDEV Medical Evaluation RES Other research. LGLOC Voluntary G-LOC

WGLOC Voluntary G-LOC

see above

FLITE G-LOC inflight [anecdotal]

Field: 5
Missing: z
Character: alpha
N/A: never
Value: (A - author)

[NAWC Flight Surgeon]

[P. Whitley]

[NAWC Flight Surgeon]

[J. Cammarota] [J. Cammarota] [P. Whitley] [P. Whitley] [P. Whitley]

[NAWC Flight Surgeon]

[N. Lewis-Miller, c/o Capt. Miller, Brooks AFB, San Antonio TX 78235] [J. Whinnery, Mail Stop #18, Andrews

AFB. MD 20331]

4. DATE

Range:

Date when the acceleration exposure occurred.

Field: 4 Missing: 0

Character: numeric N/A: never Value arabic

Units month (first 2 digits) year (last 2 digits)

5. LOCTAPE

Master G-LOC video tape number (where the subject's G-LOC is recorded). VHS format.

Field 3 Missing z Character alpha N/A z

Value roman (A - author)

Range I-

6. TAPECT

Tape count (Sony model VP7020 or Sony model VO5800 recorder/player) on master tape {5} above.

Field 5
Missing never
Character numeric
N/A 10000

Value arabic (M - Sony recorder/player digital reading)

Range 0000-6000

Units minutes (first two digits) seconds (last two digits)

7. BASEG

Base +Gz level before and after the exposure (Figure A1).

Field 3
Missing 0.0
Character numeric
N/A never

Value arabic (M - video screen display)

Decimals one Range 1.0 Units +Gz

Figure A1. BASEG Description

8. MAXG

Maximum +Gz of the entire exposure (Figure A2). For STUDY {3} = ACES, this variable denotes the maximum +Gz of the entire engagement that led to G-LOC. Pernutation variables: GMAX and GXAM.

GMAX = 7 when MAXG < 7GMAX = 9 when MAXG >= 7

GXAM = 5 when MAXG 4.5 to < 5.5 GXAM = 6 when MAXG 5.5 to < 6.5 GXAM = 7 when MAXG 6.5 to < 7.5 GXAM = 8 when MAXG 7.5 to < 8.5

GXAM = 9 when MAXG 8.5 to < 9.5

Field 3 Missing 0.0 Character numeric N/A never

Value arabic (M - video screen display)

Decimals one Range > 1 -Units +Gz

Figure A2. MAXG Description

9. GOFLOC

+Gz when G-LOC occurred (Figure A3).

Field 3 Missing 0.0 Character numeric N/A never

Value arabic (M - video screen display)

Decimals one Range 1.0 Units +Gz

Figure A3. GOFLOC Description

10. WHENLOC

When, during the exposure, G-LOC occurred as follows (Figure A4):

P at maximum +Gz, during plateau
U during acceleration ("up")
D during deceleration ("down")
B at base +Gz, after the exposure

Figure A4. WHENLOC Description

Field 1
Missing 2
Character alpha
N/A never

Value (A - author, video screen observation)

Range see above

11. RELTOL

Relaxed tolerance of the subject (Figure A5). +Gz level when subject started straining (due to 60 degrees from the vertical peripheral light loss) during a GOR exposure (see PROFILE {31}). For a description of the standard protocol, see introduction.

Field 3 Missing 0.0 Character numeric N/A never

Value arabic (M - video screen observation)

Decimals one Range >1.0 -Units +Gz

Figure A3. RELTOL Description

12. TIMAX

Time to maximum +Gz from BASEG {7} to the onset of MAXG {8} (Figure A6). For STUDY {3} = ACES, this variable denotes the total engagement time of the particular exposure that led to G-LOC.

Field 2
Missing 0
Character numeric
N/A never

Value arabic (M - video screen observation)

Decimals none
Range > 0
Units seconds

Figure A6. TIMAX Description

13. TIMG

Total time of +Gz exposure from BASEG $\{7\}$ (ere exposure) to BASEG $\{7\}$ (aft exposure) (Figure A7). For STUDY $\{3\}$ = ACES, this variable denotes the total engagement time of the entire experimental day.

Field 2
Missing 0
Character numeric
N/A never

Value arabic (M - video screen observation)

Figure A7. TIMG Description

14. LOCINDTI

G-LOC induction time: from BASEG [7] to G-LOC (Figure A8).

Field 2 Missing 0 Character numeric N/A never

Value arabic (M - video screen observation)

Decimals none
Range > 0
Units seconds

Figure A8. LOCINDTI Description

15. TIMEND

Time from the end of MAXG {8} to BASEG {7} (Figure A9).

Field 2
Missing 0
Character numeric
N/A never

Value arabic (M - video screen observation)

Figure A9. TIMEND Description

Decimals none
Range > 0
Units seconds

16. TMAX

Time at MAXG {8} (Figure A10). For STUDY {3} = ACES, this variable denotes the time at MAXG {8} of the engagement that led to G-LOC.

Field 3 Missing 0 Character numeric

N/A 100 (GOR exposures)

Value arabic (M - video screen display)

Figure A10. TMAX Description

17. CONINDTI

Convulsion induction time from G-LOC to the moment the subject starts convulsing - any type of convulsion/twitch (Figure A11).

Field 3 Missing 99 Character numeric

N/A 100 (subject did not convulse/flail)
Value arabic (M - video screen observation)

Decimals none

Range may be negative

Units seconds

Figure A11. CONINDTI Description

18. CONVTIM

Convulsion time as in its duration (including "silent" moments between convulsions). From the moment the subject starts convulsing to the moment convulsions are no longer apparent (Figure A12).

Field 3 Missing 0 Character numeric

N/A 100 (subject did not convulse/flail)
Value arabic (M - video screen observation)

Figure A12. CONVTIM Description

19. CONVTYP

Convulsion type as follows:

MAJOR obvious flailing/major jerks - usually myoclonic

MEDIUM same as above but not as intense

MINOR twitch/slight movements - usually mimic (face)

Field 6
Missing miss
Character alpha

Value (A - author, video tape observation) N/A NO (subject did not convulse/flail)

Range see above

20. ABSOLUTE

Absolute incapacitation. From: S's eyes roll back / close (obvious G-LOC state) To: S's eyes focused / blinking / nonstaring / open. This variable refers to the period of time when the subject is obviosuly absolutely incapacitated / unconscious (Figure A13).

Field 3 Missing 0

Character numeric N/A never

Value arabic (M - video tape observation)

Figure A13. ABSOLUTE Description

21. RELATIVE

Relative incapacitation. From end point of ABSOLUTE {20} to extinguishing (as instructed) warning signals (light and horn) activated by a monitor (investigator / M.D.) upon recognition of G-LOC. For a description of the warning signals, please refer to reference 53. This variable refers to the period of time when the subject has awakened from G-LOC but is confused as to his surroundings and essentially unable to perform (Figure A14).

Field 3
Missing 0 (horn not activated or S prompted to deactivate)
Character numeric
N/A never
Value arabic (M -video tape observation)
Decimals none

Range > 0
Units seconds

Figure A14. RELATIVE Description

22. TOTAL

Total incapacitation. Sum of ABSOLUTE {20} and RELATIVE {21} incapacitations (Figure A15).

Field

0 (horn not activated or S prompted to deactivate) Missing

Character numeric N/A never

Value arabic (C: {20} + {21}, video tape observation)

Decimals > 0 Range Units seconds

Figure A15. TOTAL Description

23. GSUIT

Was the subject wearing an activated G-suit? Note: for STUDY {3}= GTIP the G-suit is CSU15\P and is usually worn by all subjects. Check: GOR exposures (see PROFILE {31}, usually do not entail an inflated G-suit).

Value logical (data sheet)

N/A never (as in most T/F variables)

Range

24. SEAT

Seat angle from the vertical. Check: Early GTIP (see STUDY {3}) entries may have 30 degrees as an entry. Later, 15 degrees is expected as an entry for this type of exposures.

Field Missing

Character numeric N/A never

Value arabic (data sheet)

Decimals none Range > 0 Units degrees

25. STRAIN

Did the subject perform anti G straining maneuvers during the exposure? Note that straining during GOR (see PROFILE (31)) begins at RELTOL (11). Check: to agree with STUDY (3),

Field 1 Missing z Character alpha

Value logical (data sheet)

N/A never (as in most T/F variables)

Range T/F

26. PLL

Last peripheral light loss recalled by the subject (ere G-LOC).

ield 3

Missing 99 (S not asked)

Character numeric N/A never

Value arabic (A - by S. data sheet)

Decimals none Range 0-90 Units degrees

27. BREATHE

Highly noticeable breathing symptoms i.e., snorting/ moaning/ yelling- Did these occur?

Field 1 Missing z Character alpha

Value logical (A - video tape observation)
N/A never (as in most T/F variables)

Range T/F

28. PIGTIME

When did symptoms above {27} occur (from the onset of G-LOC).

Field 3 Missing 0 Character numeric

N/A 100 (when BREATHE {27} = F)
Value arabic (M - video tape observation)

Decimals none

Range may be negative

Units seconds

29. EVENT

Illusions/Imageries experienced while the subject was unconscious as reported on the video tape or G-LOC questionnaire as follows: Permutation variable: EVENTO:

NONE none
DREM dream
THOT thoughts

CANT cannot remember

EVENTO = ILLU when EVENT = DREM/THOT EVENTO = NOILLU when EVENT = NONE/CANT

Field 4
Missing z
Character alpha
N/A never
Range see above

30. LOCTYP

G-LOC type as follows:

GLOC true, obvious, classic G-LOC

TF ANS transient, similar symptoms as G-LOC but less obvious.

LOCO "I was'nt here"/"I'm back" syndrome, muscle twitching only. GI square (as defined by

ACES protocols labeled by J. Cammarota). Is it a G-LOC?

Field 5
Missing z
Character alpha

Value logical (A - author, video tape observation)

N/A never Range see above

31. PROFILE

+Gz profile as follows (for STUDY (3)= FUNKY, PROFILE was usually a combination of both GOR and ROR, in these cases, ROR was entered) (Figure A16).

GOR gradual onset rate (0.1 +Gz/s) ROR rapid onset rate (=> 1.0 +Gz/s)

RORX rapid onset rate, "check 6" position (head turned 90 degrees)

Field 4
Missing z
Character alpha

Value logical (A. data sheet)

N/A never Range see above

Figure A16. PROFILE Description

32. DREAMQ

Dream questionnaire (G-LOC questionnaire) number.

Field 3 Missing never Character numeric

N/A 0 (no questionnaire given)

Value arabic (A - author, questionnaire)

Decimals none Range > 0

33. JOESUIT

Was the G-suit inflated (to 10 psi) upon G-LOC (deflation = 15 s) This variable refers to a modified G-suit inflation rate upon G-LOC proposed by J. Cammarota and J. Whinnery in 1990 (Reference 17), Figure A17.

Field 1 Missing z Character alpha

Value logical (video tape observation) N/A never (as in most T/F variables)

Range T/F

Figure A17. JOESUIT Description

34. TOYINCAP

Total incapacitation according to the video screen {5} when the subject was not prompted to deactivate the warning signals. Check: 21, 56-58. Time is measured from the activation of the G-LOC warning signals by the medical monitor until the deactivation of the same by the S.

Field 4

Missing 0 (horn not activated)

Character numeric N/A 0 (see missing)

Value arabic (M - video tape display)

35. TOYINCER

Total "incapacitation" prior to the exposure (as shown in the computer screen - see above) when the subject is introduced to the master caution signals, i.e., normal reaction time to deactivate the warning signals.

Field 4

Missing 0 (horn not activated)

Character numeric

N/A 0 (see missing)

Value arabic (M - video tape observation)

Decimals one Range > 0 Units seconds

36. POSITION

Obvious body/head position during G-LOC as follows:

FORW forward BACK backward SIDE sideways NONE upright

Field 4 Missing z Character alpha

Value logical (video tape observation)

N/A never Range see above

37. CNVTMAWK

Convulsing time while awake. Subject already opened his eyes but continues flailing/twitching/convulsing (i.e., convulsions during RELATIVE {21}) (Figure A18).

Field 3 Missing 99 Character numeric

N/A 100 ({17} and {18} = 100 and {19} = NO)

Value arabic (C, video tape observation)

Figure A18. CNVTAWK Description

38. AMNESIA

Does subject recall the exposure/G-LOC?

Field

Missing z (not asked or reported)

Character alpha

Value

logical (G-LOC questionnaire) N/A never (as in most T/F variables)

Range

39. MOTSICK

Did subject report/experience motion sickness?

Field

Missing z (not asked or reported)

Character alpha N/A never

T/F Range

40. EUPHORIA

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)". Euphoria. Permutation variable:

AIROHPUE. Check: Above applies to variables {40 to 51} where the permutation variable name is the variable name reversed. Data obtained from the G-LOC questionnaires.

0 = rated as 0 (none)

1 = rated as 1 to 5 (low)

2 = rated as 6 to 10 (high)

3 = 11 (non-rated)

Field

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

41. EMBRSMNT

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)". Embarrassment. Pemutation variable: TNMSRBME

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

42. DENIAL

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)". Denial. Permutation variable: LAINED.

Field

Missing z (not asked or reported)

Character alpha

N/A Z (see missing)

Range 0-11

43. ANGER

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)". Anger, Permutation variable: REGNA.

Field 2

Missing z (not asked or reported)

Character alpha

N/A Z (see missing)

Range 0-11

44. CONFUSED

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest. 10 highest, 11 for those questionnaires that did not provide for a rating)". Confusion (what happened?). Permutation variable: DESUFNOC

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

45. RELAX

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)": Relaxed. Permutation variable: XALER

Field :

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

46. FRIGHT

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)". Fright. Permutation variable: THGIRF

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

47. APATHY

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)": Apathy. Permutation variable: YHTAPA

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

48. FRUSTRAT

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)": Frustration. Permutation variable: TARTSURF

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

49. SADNESS

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)": Sadness. Permutation variable: SSENDAS

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

50. SORPRESA

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)": Surprise. Permutation variable:

ASERPROS

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

51. OTHER

Q: "Describe any feelings you may have experienced as you were recovering consciousness (0 lowest, 10 highest, 11 for those questionnaires that did not provide for a rating)": Other. Permutation variable: REHTO

Field 2

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range 0-11

52. SURPRISE

Was the subject surprised by his G-LOC?. Q: Were you surprised by your G-LOC or Did you "feel it coming"?

Field

Missing z (not asked or reported)

Character alpha

N/A z (see missing)

Range T/F

53. BLACKOUT

Q: "Did you experience black-out (100% light loss) prior to G-LOC?" (does S/he recall B.O.).

Field

Missing z (not asked or reported in questionnaire)

Character alpha

Value logical (G-LOC questionnaire)

N/A z (see missing)

Range T/F

54. WHEREAMI

Q: "As you recovered consciousness (you have just opened your eyes), Did you know where you were and why?"

Field 2

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A z (see missing)

Range T/F

55. GUESSUCS

Q: "How long did your period of unconsciousness seem to last?".

S seconds M minutes H hours F forever

Field

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A z (see missing)
Range see above

56. HORNUCS

Q: "Were you aware of the warning signals during your period of unconsciousness?. i.e., were you able to hear the horn while you were unconscious?.

Field

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A x (signals not activated)

Range T/F

57. HORNOFF

Q: "Did you turn the signals 'off' immediately (as soon as you heard/saw them) upon regaining consciousness?". <Reported as opposed to tape observation>

Field

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A x (warning signals were not activated)

Range T/F

58. HORNWHY

Q: "If answer above is "F", explain why (circle as many as apply)". If HORNOFF {57} is "T", then this question does not apply. If HORNOFF {57} is F, the subjects had a multiple-choice option to answer this question as follows:

- A> I was not aware of the signals (light) (horn)
- B> I wanted to, but I couldn't get my arm/hand to "move" to do it...
- C> I wanted to, but I was flailing/shaking uncontrollably
- D> I wanted but I could not remember where the appropriate switch was
- E> I forgot what the signals meant/confusion
- F> I didn't know what the signals meant
- G> I didn't care about the signals, I had other thoughts on my mind
- H> Other
- I> Combination of the above

Field

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A x (signals not activated)

Range see above

59. SLEEPARY

Q: "Have you ever experienced the feeling of not being able to move even though you were awake before? (i.e., as you wake up from normal sleep, or when you are having a particularly frightening nightmare and you try to wake up but can't"). This Q refers to sleep paralysis.

Field

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A z (see missing)

Range T/F

60. FLAILING

Q: "Did you experience any flailing i.e., uncontrollable/ unusual body movements while you were unconscious? (assuming you have not viewed your tape) Note: if you have viewed your tape and exhibited flailing, Do you remember having flailed?". Note: compare with {17-19} may not be the same.

Field

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A z (see missing)

Range T/F

61. ERELOC

Q: "Have you experienced G-LOC before?". Check: to agree with {62-63}.

Field 1

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A z (see missing)

Range T/F

62. ERELOCN

Q: "Number of G-LOC incidents". Not including this one. Check: to agree with {61, 63}

Field 3

Missing 99 (not asked or reported)

Character alpha

N/A 100 (if $\{61\} = F$)

Value arabic (G-LOC questionnaire)

Decimals none

63. ERELOCWH

Q: Where did previous G-LOC(s) occur.

FUGE centrifuge FLITE inflight BOTH both

Field 5

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire) N/A $x (\{61\} = F \text{ and } \{62\} = 100)$

Range see above

64. EVENTQUA

Q: "Describe your dream or thoughts as fully as possible" as follows: Quality.

FAM familiar as to surroundings and events
UFAM unfamiliar as to surroundings and events

Field 4

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A x (sometimes, if $\{29\}$ = "NONE or "CANT")

Range see above

65. EVENTACT

Q: "Describe your dream or thoughts as fully as possible". This question refers to whether the subject was a passive or active participant in his dream/visions/thoughts as follows: Activity.

ACT active participant

PAS passive

Field 3

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire) N/A x (if {29} = NONE or CANT)

Range see above

66. EVENTINT

Q: "Describe your dream or thoughts as fully as possible". This question refers to the the dream/ visions/ thoughts/whatever intensity as follows: Intensity.

VIV vivid, clear HAZ hazy, misty

Field :

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire) N/A x (if {29} = NONE or CANT)

Range see above

67. EVENTELM

Q: "Describe your dream or thoughts as fully as possible". This question refers to the elements of the dream/ visions/ thoughts as follows:

AUD auditory VIS visual NONE neither BOTH both

Field

4

Missing

z (not asked or reported)

Character alpha

Value N/A logical (G-LOC questionnaire) x(if {29} = NONE or CANT)

Range see above

68. SLIPDREM

Q: "Would you describe your G-LOC dream comparable to the dreams you would normally experience during sleep?". Check: if EVENT {29} is NONE or CANT this question does not apply.

Field

1

Missing z (not asked or reported)

Character alpha

Value N/A logical (G-LOC questionnaire) x (if {29} = NONE or CANT)

Range T/F

69. DREMRCAL

Q: Do you dream often, (Do you recall your dreams often?).

Field

1

Missing z (not asked or reported)

Character alpha

Value logical (G-LOC questionnaire)

N/A z (see missing)

Range T/F

70. AGE

Age of the subject

Field

Missing 0

Character numeric

Value

arabic (data sheet)

N/A

never > 0

2

Range

Unit years

71. WEIGHT

Weight of the subject

Field

3 0

Missing

Character numeric

Value

arabic (data sheet)

N/A Range never > 0

Unit

pounds

72. HEIGHT Height of the subject Field Missing 0 Character numeric Value arabic (data sheet) Decimals one N/A never Range > 0 Units inches 73. JOB Subject is member of the: **NAVY** the Navy/Marines AIR the Air Force or Air National Guard **OTHER** else Field z (not asked or reported) Missing Character alpha Value logical (data sheet) N/A never see above Range 74. PPBPBG Was the subject performing positive pressure breathing (any type of assist). Field 1 Missing Value logical (video tape observation) Character alpha N/A never (as in most T/F) Range T/F 75. EVQUAL Was the EVENT {29}: Quality P pleasant U unpleasant indifferent Field 1 Missing

Character alpha

Value N/A

Range

logical (G-LOC questionnaire)

x (no event)

see above

76. GENDER

Gender of the subject

Field I
Missing z
Character alpha
N/A never
Range M/F

77. AEROBIC

Aerobic exercise. Permutation variable: CIBOREA

CIBOREA = 0 when AEROBIC = 0CIBOREA = 1 when AEROBIC > 0

Field 4 Missing 99.9 Character numeric

Value logical (A - data sheet)

Decimals one N/A 0 (none) Units hrs/week

78. ANAEROBI

Anaerobic exercise. Permutation variable: CIBOREANA

CIBOREANA = 0 when ANAEROBI = 0 CIBOREANA = 1 when ANAEROBI > 0

Field 4 Missing 99.9 Character numeric

Value logical (A - data sheet)

Decimals one N/A 0 (none) Units hrs/week

79. WORK

Type of work as in flying status

FO flying (pilot/backseater/etc)
NFO non flying (panel/medeval/etc)

Field 3 Missing z Character alpha

Value logical (A - data sheet)

N/A

80. AIRCRAFT

Type of aircraft flying experience.

Field 3 Missing z

Character alpha
Value logical (A - data sheet)

N/A x

81. DREMWHR

When during unconsciousness did the dream/thought occur.

B beginning

M middle

E end of unconsciousness period

Field 1 Missing z Character alpha

Value log al (G-LOC questionnaire)

N/A x

82. FLALAWAR

Was the subject aware \ Does he recall flailing?

Field 1 Missing z Character alpha

Value logical (G-LOC questionnaire)

N/A x Range T/F

83. CENTRIFU

Centrifuge where +Gz exposure took place.

Field 4
Missing z
Character alpha
N/A x

Range USAF ("SAM"); NAVY ("NADC")

APPENDIX B

G-LOC	QUESTIONNA	IRE
--------------	-------------------	-----

Onset Rate:	GOR R	OR Max +Gz:	FLAILING	G? Y	N	
GLOC Type:	Major (ob	vious body flailing)	Minor (minor flailir	ng) Tr	ansient	(no flailing)
AGLOC ("aln	nost" G-LOC					
AGE:	WEIGHT:	HEIGHT:	TOTAL	FLT HR	S :	in A/C:
FLT Status:	Pilot	Non-Pilot (i.e., back s	eat) PTO F	S C	IV	Other:

The following questionnaire has been developed to better understand the psychologic effects of GLOC and how these affect recovery from the same. Please answer all the questions as completely as possible. THANK YOU FOR YOUR PARTICIPATION!

1. Describe how you felt as you were recovering consciousness by circling the appropriate number in each of the following (0 being lowest, 10 being highest):

Euphoria	0	1	2	3	4	5	6	7	8	9	10
Anger	0	1	2	3	4	5	6	7	8	9	10
Embarrassment	0	1	2	3	4	5	6	7	8	9	10
Apathy	0	1	2	3	4	5	6	7	8	9	10
Frustration	0	1	2	3	4	5	6	7	8	9	10
Confusion	0	1	2	3	4	5	6	7	8	9	10
Fright	0	1	2	3	4	5	6	7	8	9	10
Sadness	0	1	2	3	4	5	6	7	8	9	10
Surprise	0	1	2	3	4	5	6	7	8	9	10
Relaxation	0	1	2	3	4	5	6	7	8	9	10
Denial	0	1	2	3	4	5	6	7	8	9	10
Other:							г	ating (0-	10)		

2. Were you surprised by your G-LOC or did you "feel it coming"?

SURPRISED NOT SURPRISED

3. Did you experience black-out (100% light loss) prior to G-LOC?

YES NO DO NOT REMEMBER

4. Immediately after recovering consciousness (YOU HAVE JUST OPENED YOUR EYES), Did you know where you were [centrifuge] and why [i.e., training]?

YES NO

Please explain:

5. How long did your period of unconsciousness seem to last (estimate)?

SECONDS MINUTES HOURS FOREVER

YES NO			
eturn toor: EM FORSTER ACM	E Labs NAWC Code 6023 Warminster, PA 1897	4, (215) 44	1-1490
7. Did you turn these signals "off" IMMEDIA them) upon regaining consciousness?	TELY, within 5 seconds (as soon as yo	u heard/s	aw
YES NO			
IF ANSWER IS "NO", EXPLAIN WHY (CIRCLE	AS MANY AS APPLY):		
a) I was not aware of the signals: ligb) I wanted to, but I couldn't get my arm	ht? horn? both? /hand to "move" to do it.		
c) I wanted to, but I was flailing/shaking	uncontrollably.		
d) I wanted to, but I did not know wherei) was not told where it wasii) forgot where it was	the appropriate switch was:		
e) I forgot what the signals meant.			
f) I didn't know what the signals meant.	was not told what the signals meant.		
g) I didn't care about the signals, I had or	ther thoughts on my mind at the time.		
h) Other:			<u></u>
8. Have you ever experienced the feeling of awake before? (i.e., as you wake up from no frightening nightmare and you try to wake	ormal sleep, or when you are having a		
YES NO			
9. Did you experience any flailing/convulsion while you were unconscious? (assuming you viewed your tape and exhibited flailing, Do	ou have not viewed your tape) Note:		
YES NO	Have you viewed your videotape?	YES	NC
10. Have you experienced GLOC before?			
YES NO			
IF ANSWER IS "YES" PLEASE SPECIFY:			
Number of GLOC incidents:			

11 Other then	I OC have you fallen uncone	scious before? (i.e., fainting, surgical anaesthesia).
If so, would		comparable to your G-LOC experience?, How Do
<u></u>		
 		
·		
12. Did you expe	erience any dreams (i.e. visual i	mageries) or thoughts while you were unconscious?
DREAM	THOUGHT NO	OTHER:
	IF YOU ANSWERED "N	NO" GO TO QUESTION 16
		as possible. To facilitate this description, PLEASE
CIRCLE ONE	ANSWER IN EACH OF THE FOL	LOWING CATEGORIES:
Events	familiar	unfamiliar
EVENIS Setting	familiar	unfamiliar
SETTING I WAS AN/A	active participant	spectator
	vivid/clear/good recall	hazy/misty
INTENSITY	~	indifferent other:
Quality Elements	pleasant/unpleasant auditory (i.e. music, talk)	visual (images) both
14. Estimate who	en during your period of unc	onsciousness did the dream/thoughts occurred:
BEGINNIN	G MIDDLE END	(of unconsciousness period)
15. Would you of experience d		comparable to the dreams you would normally
YES	NO	
Why? (how are th	EY THE SAME/DIFFERENT)	
Why? (how are th	EY THE SAME/DIFFERENT)	
	l your dreams often?	
16. Do you recal		
16. Do you recal YES Any other comm	l your dreams often?	
16. Do you recal YES Any other comm	l your dreams often? NO ents about your GLOC exper	

ENTRY VARIABLE	#	MISS/NA	RANGE			·						
PUNTO	 	never	1-	 				-	-	 	\vdash	\vdash
AGTIP	2	z/never	1-	†					†	 		
		 	GTIP	†				\vdash	1			
			AILSS	1				 		<u> </u>		
	 		PRO	_				T	1			
			FUNK						 		 	
			ACES			_						
			DCIM			**						
			TLSS									
			PALE									
			MEDEV									
			RES									
			LGLOC									
			WGLOC									
			FLITE									
STUDY	3	z/never										
DATE	4	0/never	MO.YR									
LOCTAPE	5	Z	I-									
TAPECT	6	never/10000	MIN.SEC									
BASEG	7	0/never	1-									
MAXG	8	0/never	1-									
GOFLOC	9	0/never	1-									
WHENLOC	10	z/never	PUDB									
RELTOL	11	0/never	1-									
TIMAX	12	0/never	>0									
TIMG	13	0/never	>0									
LOCINDTI	14	0/never	>0									
TIMEND	15	0/never	>0									
TMAX	16	0/100	>0_							_		
CONINDTI	17	99/100	POS NEG									
CONVTIM	18	0/100	>0			l						

CONVTYP	19	miss/no	MAJ MED MIN						
ABSOLUTE	20	0/never	>0						
RELATIVE	21	0/never	>0						
TOTAL	22	0/never	>0						
GSUIT	23	z/never	T/F						
SEAT	24	0/never	>0						
STRAIN	25	z/never	T/F						
PLL	26	99/never	0-90						
BREATHE	27	z/never	T/F						
PIGTIME	28	0/100	>0						
			NONE						
			DREM						
			тнот						
EVENT	29	z/never	CANT						
			GLOC						
			LOCO						
LOCTYP	30	z/neve	TRANSr						
			GOR ROR						
PROFILE	31	z/never	RORX						
DREAMQ	32	never/0	>0						
JOESUIT	33	z/never	T/F						
TOYINCAP	34	0	>0		 				
TOYINCER	35	0	>0						
			FORW						
			BACK						
			вотн						
			NONE						
POSITION	36	Z/never	SIDE						
CNVTMAWK	37	99/100	0-						
AMNESIA	38	z/never	T/F						
MOTSICK	39	z/never	T/F						
EUPHORIA	40	Z	0-11						
EMBRSMNT	41	Z	0-11						

DENIAL	42	Z	0-11						
ANGER	43	Z	0-11		<u> </u>				
CONFUSED	44	Z	0-11						
RELAX	45	Z	0-11						
FRIGHT	46	Z	0-11						
APATHY	47	Z	0-11						
FRUSTRAT	48	Z	0-11						
SADNESS	49	Z	0-11						
SORPRESA	50	Z	0-11						
OTHER	51	Z	0-11						
SURPRISE	52	Z	T/F						
BLACKOUT	53	Z	T/F						
WHEREAMI	54	Z	T/F						
GUESSUCS	55	Z	SFMH						
HORNUCS	56	Z/X	T/F						
HORNOFF	57	Z/X	T/F						
HORNWHY	58	Z/X	A-I						
SLEEPARY	59	Z	T/F						
FLAILING	60	Z	T/F						
ERELOC	61	Z	T/F						
ERELOCN	62	99/100	>0						
			FUGE						
			FLITE						
ERELOCWH	63	Z/X	вотн						
			FAM						
EVENTQUA	64	Z/X	UFAM						
EVENTACT	65	Z/X	ACT PAS						
EVENTINT	66	Z/X	VIV HAZ						
			AUD VIS						
		-	вотн						
EVENTELM	67	Z/X	NONE						
SLIPDREM	68	Z/X	T/F						
DREMRCAL	69	Z	T/F						

				 	T	 	 	,	, ,	
AGE	70	0/never	>0							
WEIGHT	71	0/never	>0							
HEIGHT	72	0/never	>0				 			
			NAVY AIR							
JOB	73	z/never	OTHER							
PPBPBG	74	z/never	T/F							
EVQUAL	75	z/x	PUI							
GENDER	76	z/never	M/F							
AEROBIC	77	99/0	>0							
ANAEROBI	78	99/0	>0							
WORK	79	z/x	FO/NFO							
AIRCRAFT	80	z/x	vary							
DRMWHR	81	z/x	BME							
FLALAWAR	82	z/x	T/F							
			SAM							
			NADC							
CENTRIFU	83	z/x	OTHER							

NAWCADWAR CENTRIFUGE TRAINING RUN SHEET

					DATE:	 _	
					GTIP#:		
					PROJECT:		
					In a NYC		
LAST NAME:	T	FIRST NA			RANK:		
HEIGHT:	WEIGHT:		AGE:		SSN:		
FLT stat: Pilot/Backseat/FS/	CIV/Other:		Squadron:	·····	Current A	/C:	
FLT hrs in current A/	 C:	Total FLT		Tactical FI	LT hrs:	Hrs last 30	davs:
		CONDITIO	ONING PRO	OGRAM			
AEROBIC	·		STRENGT	H		NECK	
TYPE	Hrs/week	TYPE		Hrsweek	TYPE		Hrs:week
Jog/Run/Walk		Nautilius			Nautilius		
Swim		Free Weigh	ts		Free weight	s	
Row		Isometrics			Isometrics		
Aerobics		Other:			Other:		
Other:							
		G TOLER	ANCE FAC	TORS			
Hrs of sleep last 24 hrs:		Smoking to	bacco:		pks/day	Years of use	e:
Usual hrs of sleep:	!	Chewing to	bacco:		cans/day		
Alcohol intake last 24 h	rs (note: glas	s, oz, cans?)	:		Time of last	drink (0000)-2400 hrs):
Type (beer, wine, liquor	·):						
Recent illnes (last 7 day	s)? YES	NO	Type of illn	ess:			
Are you currently taking	g any medica	tions: YES	NO I	yes, What:		When	:
Are you presently in a D	OWN STAT	TUS for any i	reason? If \	ÆS, explain	WHY:		
COACH:				RECORDE	R:		

NAME				Time in:		Time ou	t:	GI.OC Q	#:	GTIP#:
Run Type (GOR, ROR, RORY)	Run Number	Pre-run Heart Rate	Anti-G suit (y/n)	Relaxed Tolerance ("now")	Max Straining Tolerance (AGSM)	AGSM Improve ment	Run Duration (sec)	Max Heart Rate	PLL (degrees off the nose) PLEASE specify if reported as % or degrees from the periphery)	Reason for Run Termination (SEE CODE)
									~	
									· · ·	

ANTHROPOMETRIC M	IEASUREME N	NTS		RUN TERMINATION CODE	S
			EOR	End or run, normal termination,	
MEASURE	INCHES	CODE	roc	Loss of Consciousness (regardless of who	stopped the run)
SHOULDER WIDTH			CS	Error of any type (computer error, PS by	mistake)
TRUNK HEIGHT			PLL	Peripheral light loss, 30 deg. off the nose	(60 degold way)
SITTING HEIGHT				Make sure subject knows what you mean	by degrees of loss
FUNCTIONAL REACH			FAT	Fatigue, subject tired	
BKL			PAIN	Pain (specify WHERE)	45 38 15 8 15 38 45 68 88
BLL			1EYE	1 eye light loss (specify WHICH)	75 A 75 80 90
COMMENTS	(specify run	#)	ОТНЕ	Specify WHAT	٠

APPENDIX C

RESULTS

		VARIABLE 2:	AGTIP					
All subject entries have a GTIP i.d. (if applicable). The maximum number of study runs per subject is 4.								
		VARIABLE 3:	STUDY					
Frequency:								
STUDY	N							
GTIP	279							
AILSS	7							
PROF	9							
FUNK	15							
SPOOL	0		•					
ACES	13							
DCEIM	3							
TLSS	1							
PALE	1							
MEDEV	0							
RES	8							
WGLOC	6							
LGLOC	9							
FLITE	2							
	1							
Γ	354							
		VARIABLE 4:	DATE					
Dates range f	rom 12/1985	to 3/1992						
		VARIABLE 5:	LOCTAPE					

All videotapes are in 3/4" VHS format, 1 hour duration each.

VARIABLE 7: BASEG {+G2}

GTIP exposures: 1.2 ± 0.1 (230) [1 to 1.3]

I to 1.2 +Gz is the normal base +Gz level for most +Gz exposures at NAWC

1								
	VARIA	H F	x	A X ()	CMAYI		2 4 1 5 9 1	
	A W W I W	<i>-</i>	O . 174	A A V !	U 21 A A /	C A A N	1 7 0 2 7	
·				·				

Figures C1-C3
Frequency:

	GXA	М		2	MAX			
TYPE	N	%	%	TYPE	N	%		
•	6	2	•	7	66	24		
5	13	5	5	9	213	76		
6	31	11	11	T	279	100		
7	36	13	13					
8	82	29	30					
	111	40	41					
9 T		100						
MAXG =		7.91	± 1.22	2 (273)	NT	otal=	279	[5 to 9.3]
GXAM=		7.90	± 1.19	(273)	NT	otal=	279	
MAXG G	OR=	7.00	± 1.15	(81)	NT	=las	83	
MAXG R	OR=	8.29	± 1.03	(192)	NTo	=laic	193	
GXAM G	OR=	7.00	± 1.15	(81)	NTO	ota!=	83	
GXAM R	OR=	8.28	± 0.98	(192)	NTO	otal=	193	
	=						3	
T							279	

TABLE 1. The Effect of GXAM on Incapacitation Times (mean ± S.D. (N))

GXAM

VARIABLE	5	6	7	8	9
CONINDTI	$52 \pm 3.4(6)$	$2.3 \pm 3.4 (19)$	$3.7 \pm 30(23)$	$2.9 \pm 2.3 (53)$	$3.7 \pm 1.9 (75)$
CONVIIM	$34 \pm 1.8(8)$	$5.4 \pm 2.9 (16)$	$4.1 \pm 20(23)$	$4.7 \pm 24 (50)$	$4.3 \pm 2.3 (70)$
ABSOLUTE	$9.1 \pm 3.7(7)$	$6.2 \pm 3.8 (19)$	$7.5 \pm 50(22)$	$6.9 \pm 3.7 (55)$	$69 \pm 32(74)$
RELATIVE	$7.3 \pm 3.3 (7)$	$8.3 \pm 4.0 (19)$	$9.5 \pm 3.8(22)$	$8.5 \pm 3.9 (51)$	$89 \pm 4.8(71)$
TOTAL	$138 \pm 6.1(9)$	$13.2 \pm 6.7 (24)$	$14.2 \pm 7.4 (32)$	$15.1 \pm 4.9 (61)$	$14.7 \pm 6.0 (86)$
TOYINCAP	$12.4 \pm 6.4 (8)$	13.6 ± 7.6 (26)	$15.6 \pm 10.5 (28)$	$13.9 \pm 51(64)$	14.1 ± 6 8 (80)
CNVTMAWK	$2.8 \pm 2.4 (4)$	$3.4 \pm 1.8 (12)$	$2.7 \pm 1.6(15)$	$2.9 \pm 2.3 (33)$	$2.8 \pm 1.8 (40)$
TRUETOT	$7.7 \pm 6.6 (4)$	$9.7 \pm 6.6 (11)$	$13.9 \pm 11.8(21)$	$11.9 \pm 4.7(25)$	

TABLE 2. The Effect of PROFILE and GXAM on Incapacitation Times (mean \pm S D. (N))

*** D** D* P	CYAN	PROFILE	ROR	_
VARIABLE	GXAM	COR	ROR	P
LOCINDTI	5	38.8 ± 1.6 (5)	(0)	
	6	49.7 ± 6.2 (6)	10.1 ± 4.1 (13)	
	7	$60.2 \pm 6.1 (16)$	$7.8 \pm 1.5(12)$	
	8	$72.0 \pm 6.8 (10)$	$89 \pm 1.5(12)$	
	9	$76.6 \pm 10.2 (5)$	8.8 ± 2.4 (75)	
CONINDTI		63. 34.(6)	40)	
	5 6	$52 \pm 34 (6)$ $46 \pm 36 (7)$	$\begin{array}{c} (0) \\ 1.0 \pm 2.5 (12) \end{array}$	019
	7	$4.0 \pm 3.4 (12)$	$34 \pm 25(11)$	0.,
	8	$3.9 \pm 24(16)$	$2.5 \pm 2.1(37)$.037
	9	$5.7 \pm 3.2 (6)$	$3.5 \pm 1.7(69)$	006
CONVTIM				
	5	$34 \pm 19 (7)$	(1)	
	6 7	5.5 ± 2.7 (6) 4.8 ± 2.3 (12)	$53 \pm 32(10)$	
	8	56 = 3.3(15)	$34 \pm 14(11)$ $43 \pm 1.8(35)$	
	9	$65 \pm 58 (4)$	$4.2 \pm 1.9(66)$	
ABSOLUTE		,	,	
	5	$91 \pm 37 (7)$	(0)	
	6	$8.9 \pm 4.3 \ (7)$	46 = 26(12)	014
	7	84 = 5.8(14)	$60 \pm 2.8 (8)$	000
	8 9		$52 \pm 26(36)$ $64 \pm 22(69)$.000 .04
RELATIVE	9	140± 59 (5)	042 2.2 (09)	
RELATIVE	5	$73 \pm 33 (7)$	(0)	
	6	$10.4 \pm 3.6 (7)$	$7.0 \pm 39(12)$	
	7	$99 \pm 39(14)$	88 ± 3.7 (8)	
	8	$8.5 \pm 3.7(17)$	$86 \pm 41(34)$	
	9	$8.8 \pm 3.6 (5)$	8.9 ≈ 4.9 (66)	
TOTAL		120: 41 (0)	(0)	
	5 6	$13.8 \pm 61 (9)$ $18.4 \pm 68 (8)$	(0) 106 ± 51(16)	.004
	7	14.6 ± 8.6 (20)	$13.5 \pm 5.2(12)$.007
	8		$13.6 \pm 4.5 (42)$.000
	9	21.0 ± 4.9 (6)	$142 \pm 58(80)$.006
CNVTMAWK				
	5	2.7 ± 2.9 (3)	(1)	
	6	2.0 ± 1.7 (3)	3.9 = 17 (9)	
	7	3.1 ± 1.9 (8)	$2.1 \pm 11 (7)$	
	8 9	3.8 ± 4.7 (6) 2.0 ± 1.4 (2)	$2.7 \pm 1.4 (27)$ $1.9 \pm 1.9 (38)$	
	7	2.0 = 1.4 (2)	1.7 2 1.7 (30)	
N TOTAL	5	12	1	
	6	13	18	
	7	24	12	
	8	25	57	
	9	7	104	

ABSOLUTE= PROFILE GXAM PROFILE*GXAM F= 22.5 p= .000 R²= .28

PROFILE F= 57.3 p= .000

GXAM F= 9.7 p=.002

PROFILE*GXAM F= 0.5 p= .466
Duncan, alpha= .05 GOR= 9.8 s ROR= 5.8 s

TOTAL= PROFILE GXAM PROFILE*GXAM F= 7.5 p= .000 R²= .09

PROFILE F= 12.8 p= .000
GXAM F= 9.4 p= .002

PROFILE*GXAM F = 0.3 p = .618

Duncan, alpha= .05 GOR= 16.7 s ROR= 13.6 s

LOCINDTI= MAXG (GOR exposures) F= 139.6p=.000 $R^2=.77$

LOCINDTI = -12.2 + 10.3 * MAXG

Intercept t=-1.95 p=.05 Prrameter t= 11.81 p=.000

LOCINDTI relationship with MAXG is expected when the GOR exposures were considered. Predicting incapacitation times given the profile and maximum +Gz level was attempted but the resulting reliability of the results was very low if significant.

VARIABLE 9: GOFLOC {+Gz}

GTIP exposures: 7.7 ± 1.6 (271) [1 to 9.3]

The +Gz level when G-LOC occurs agrees with WHENLOC (10) below where most G-LOC episodes occurred during plateau at the peak +Gz level. It also agrees with PROFILE (31) where all RORX exposures have a plateau at peak +Gz level.

VARIABLE 10: WHENLOC

Figure C4

Frequency:

TYPE	N	%	%
•	3	1	-
P	179	64	65
U	78	28	28
D	18	6	6
В	1_	1	1
Ī	279	100	100

During the ROR exposures, G-LOC mostly occurred at plateau as confirmed by GOFLOC above and PROFILE [31].

VARIABLE 11: RELTOL {+Gz}

GTIP exposures: 4.6 ± 0.8 (262) [2.5 to 8]

This figure has been previously reported in the literature. However, it is specially valuable since it describes <u>pilots</u>. It also confirms that non-aircrew centrifuge subjects are comparable to the pilot population when RELTOL is a concern.

VARIABLE 12: TIMAX (s)

GTIP exposures: 16.3 ± 24.3 (185) [2 to 87]

Time to maximum +Gz level includes both GOR and RORX exposures hence, the large standard deviation.

VARIABLE 13: TIMG (s)

GTIP exposures: 25.4 ± 21.8 (178) [1 to 99]

Total time at +Gz includes both GOR and RORX exposures hence, the large standard deviation.

VARIABLE 14: LOCINDTI (s)

GTIP exposures: 20.8 ± 23.0 (182) [5 to 86]

G-LOC induction time includes both GOR and ROR:X exposures hence, the large standard deviation

VARIABLE 15: TIMEND (1)

GTIP exposures: 5.6 ± 3.5 (223) [1 to 30]

This variable, time from peak +Gz to base +Gz, was difficult to obtain because of the shape of the deceleration curve where the rate of descent was faster in the initial portion of deceleration. Hence, the large standard deviation. This variable would be more reliable if the slope of the descent is obtained as opposed to obtaining the variable from videotape observation. However, the +Gz profile trace (a haversine) was unavailable. Please refer to reference 30 for a discussion on the effect of offset rate on incapacitation variables.

VARIABLE 16: TMAX {s}

GTIP exposures (ROR): 5.4 ± 2.2 (183) [1 to 16]

Recall that this variable, time at maximum +Gz (i.e., at plateau) refers only to RORX exposures.

VARIABLE 17: CONINDTI (s)

GTIP exposures: 3.3 ± 2.5 (176) [4 to 12]

Time to convulsive behavior from G-LOC onset is comparable to the one reported in the literature (31).

VARIABLE 18: CONVTIM {s}

GTIP exposures: 4.5 ± 2.4 (167) [1 to 13]

Duration of convulsions is comparable to the one reported in the literature (31).

VARIABLE 19: CONVTYP

Figures C5 - C6

Frequency:

TYPE	N	%	<u>%</u>
•	52	19	-
NO	30	11	13
MIN	83	30	37
MED	46	16	20
MAJ	_68	24	30
T	279	100	100

TABLE 3. The effect of CONVTYP on incapaciation variables.

			CC	ONVTYP				
	MIN		MED		MAJ		NO	
VARIABLE	mean	s.d.	mean	s.d.	mean	s.d.	mc2n	s.d.
MAXG	7.8	1.3	78	1.1	8.1	1.2	7.9	1.1
RELTOL	4 6	0.9	4.6	0.8	46	0.9	4.5	0.9
TIMG	20.3	16.2	25.7	22.8	28.1	22.6	32.4	28.0
TMAX	5.3	2.6	4.9	2.0	5.5	1.7	5.7	2.6
CONINDTI	26	2.5	3.3	2.7	3.9	2.2		
CONVTIM	3 8	2.1	4.1	2.1	5.4	2.5		
ABSOLUTE	5.5	2.9	6.6	3.4	8 .6	3.9	5 .9	3 4
RELATIVE	7.5	3.4	10 3	6.0	9.1	3.8	7.5	2.9
TOTAL	12.1	4.8	15.0	7.4	17.5	5 .1	11.2	5.0
PIGTIME	2.8	1.4	3.8	2.3	3.5	2.5	3.7	0.6
TOYINCAP	11.2	4.6	16.4	10.2	15.8	5.0	11.7	4.4
TOYINCER	1.7	0.9	1.5	0.5	1.6	0.8	1.8	0.6
CNVTMAWK	3.1	1.7	3.5	2.5	2.3	1.6		
AGE	32 1	7.1	30.0	6.2	31.3	6.7	33.2	8.8
WEIGHT	178	20.2	179	17.8	179.2	172	172	21.5
HEIGHT	71.4	2.6	71.4	2.3	71.5	2.9	71.6	2.8
AEROBIC	3.3	2.1	3.2	2.0	3.3	2.2	2.4	2.3
ANAEROBI	3.5	2.7	3.0	1.1	3.8	2.3	1.6	1.9

ABSOLUTE: Duncan, p=.05 MAJ > MED, MIN, NO TOTAL: Duncan, p=.05 MAJ, MED > MIN, NO

Eighty-seven percent of the G-LOC exposures exhibited convulsive behavior where the incapacitation time tended to be longer for those subjects who exhibited major convulsive movements. Minor convulsions, usually mimic (face twitches) were more typical of "LOCO" G-LOC type (LOCTYP {30}).

VARIABLE 20: ABSOLUTE (s)

GTIP exposures: 7.2 ± 4.9 (179) [1 to 50]

VARIABLE 21: RELATIVE (s)

GTIP exposures: 8.8 ± 4.3 (170) [1 to 38]

VARIABLE 22: TOTAL (s)

GTIP exposures: 14.5 ± 6.0 (212) [2 to 47]

The variables absolute, relative, and total incapacitation are comparable to those published in the literature.

VARIABLE 23: GSUIT

Figure C7

Frequency:

TYPE	N	%	%
	15	5	-
F	75	27	28
T	189	68	72
T	279	100	

As a rule, all GOR exposures do not have an activated G-suit, all RORX exposures do. Hence the similarity to PROFILE (31) percentages.

VARIABLE 24: SEAT

Figure C8

Frequency:

TYPE	N	%	_%
•	20	7	•
15	120	43	46
30	139	50	54
T		100	

VARIABLE 25: STRAIN

Frequency:

TYPE	N	_%
•	15	5
F	0	0
I	264	95
7	279	100

All GTIP exposures require straining sometime during the exposure.

VARIABLE 26: PLL {degrees}

GTIP exposures: (206) [0 to 90]

Peripheral light loss ranged from 0 to 90 degrees. The main difficulty with this variable is that the subjects occasionally report percentage of light loss instead. Also, degrees of loss were discrete values, hence, a mean is not given.

VARIABLE 27: BREATHE

Figures C9 - C10

Frequency:

TYPE N % %
. 61 22 F 149 53 68
T 69 25 32
T 279 100 100

TABLE 4. Incapacitation Variables as Related to the Occurrence of BREATHE.

			BREA	THE			
		F			T		
VARIABLE	mean	s .d.	n	mean	s.d.	D	P
LOCINDTI	19.2	20.2	109	19.8	22.6	54	
CONINDTI	2.9	2.4	101	3.7	2.1	61	
CONVTIM	4.3	1.9	99	5 0	3 0	57	
ABSOLUTE	6.1	3.4	96	7.8	3.4	6 3	.002
RELATIVE	8.9	4.9	91	8.2	3.4	61	
TOTAL	13.4	6.3	127	15.5	4 9	67	.010
PIGTIME	0			3.3	2.1	58	
TOYINCAP	13.5	7.6	122	14.4	5.0	59	
TOYINCER	1.6	0.6	55	1.7	0.9	21	
CNVTMAWK	3.2	1.7	66	2.3	2.3	34	
AGE	31.0	6.8	148	32.6	7.2	67	
WEIGHT	175.5	18.5	147	182.4	20.4	67	
HEIGHT	71.3	2.2	147	71.8	2.5	6 6	

Thirty-two percent of the subjects exhibited obvious breathing symptoms and these were associated with a longer incapacitation time.

VARIABLE 28: PIGTIME (s)

GTIP exposures: 3.3 ± 2.1 (58) [1 to 13]

The time from G-LOC to breathing symptom onset is shorter than CONVTIM where the breathing symptoms usually occurred immediately prior to convulsions.

VARIABLE 29: EVENT/EVENTO

Figures C11 - C12

Frequency:

	EVE	NT			E/E,	OT?	
TYPE_	N	%	<u>%</u>	TYPE	N	%	<u>%</u>
•	44	16	•	•	44	16	•
DREM	76	27	32	ILLU 102	37	43	
NONE	133	48	57	NOILLU	133	47	<u>57</u>
THOT	26	9	_11	T	279	100	100
T	279	100	100				

TABLE 5. Incapacitation Variables as Related to the Occurrence of EVENT (mean ± S.D.)

EVENTO		
ILLU	NOILLU	р
23.4 ± 25.9	20.7 ± 21.9	
3.8 ± 2.6	2.7 ± 2.2	.007
4.8 ± 2.6	$4.4 \pm .3$	
2.9 ± 2.5	2.8 ± 1.6	
8.2 ± 5.9	5.8 ± 3.5	.002
9.1 ± 4.7	8.5 ± 3.9	
16.4 ± 6.2	12.8 ± 5.6	.000
3.4 ± 1.6	3.5 ± 2.8	
15.7 ± 6.9	13.0 ± 7.3	.012
1.7 ± 1.3	1.6 ± 0.7	
	ILLU 23.4 \pm 25.9 3.8 \pm 2.6 4.8 \pm 2.6 2.9 \pm 2.5 8.2 \pm 5.9 9.1 \pm 4.7 16.4 \pm 6.2 3.4 \pm 1.6 15.7 \pm 6.9	ILLU NOILLU 23.4 ± 25.9 20.7 ± 21.9 3.8 ± 2.6 2.7 ± 2.2 4.8 ± 2.6 $4.4 \pm .3$ 2.9 ± 2.5 2.8 ± 1.6 8.2 ± 5.9 5.8 ± 3.5 9.1 ± 4.7 8.5 ± 3.9 16.4 ± 6.2 12.8 ± 5.6 3.4 ± 1.6 3.5 ± 2.8 15.7 ± 6.9 13.0 ± 7.3

VARIABLE 30: LOCTYP

Figures C13 - C14
Frequency:

TYPE	N	%	%
	12	4	-
GLOC	196	70	73
TRANS	50	18	19
LOCO	21	8	8
T	279	100	100

TABLE 6. Incapacitation Variables as Related to LOCTYP

VARIABLE		GLOC		TRANS		LOCO
	mean	s.d. n	mean	s.d. n	mean	s.d. n
MAXG	8.0	1.2 192	7.8	1.3 50	7.9	1.4 21
RELTOL	4 6	0.8 183	4.7	0.9 49	4.4	0.7 21
LOCINDTI	20.9	23.8 136	20.7	20.5 35	20.8	22.1 11
CONINDTI	3.8	2.4 143	1.4	1.6 27	0.2	0.5 5
CONVTIM	4.3	2.4 131	5.2	2.2 28	4.0	1.8 7
ABSOLUTE	7.6	4.9 163	3.3	3.0 15		0
RELATIVE	8.7	4.3 156	9.2	3.8 13		0
TOTAL	15.9	5.6 162	10.3	5.2 41	8.8	6.3 8
PIGTIME	3.3	2.1 56	4.0	1.4 2		0
TOYINCAP	14.9	6.3 157	11.6	9.5 37	9.9	5.1 8
TOYINCER	1.6	0.8 51	1.7	0.7 24	1.6	046
CNVTMAWK	2.2	1.4 73	4.5	2.4 24	4.0	1.8 7
AGE	31.1	6.7 192	31.8	8.0 9	34 0	9.1 21
WEIGHT	178.5	18.9 180	176.2	18.7 49	174.1	15.9 20
HEIGHT	71.7	2.6 179	70.8	2.4 49	71.4	2.6 20
AEROBIC	3.4	2.0 137	3 .3	2.3 37	2.4	1.6 15
ANAEROBI	3.6	2.4 88	2.8	1.4 26	2.8	1.4 10

TOTAL = LOCTYP: F= 21.05 p= .0001 R²=.17
Duncan & Tukey 'GLOC' > TRANS', 'LOCO'

The majority (73%) of the exposures resulted in "classic", easily recognizable G-LOC episodes where a longer incapacitation time was associated with this type of G-LOC as expected.

V	AR	I A	RI	. F	3 1	: P	R	O	F	i I.	E
•	A A						-	•	•	_	-

Figures C15 - C17

Frequency:

GOR 83 30 30 ROR 169 RORX 24 69 70 279 100 100

TABLE 7. Effect of PROFILE on Incapacitation Times

			PROF	ILE			
VARIABLE		GOR			ROR		
	mean	≰.d.	D	mean	s.d.	D	P
BASEG	1.0	0.1	61	1.2	00	169	•
MAXG	7.0	1.2	81	8.3	1.0	192	
RELTOL	4.7	0.7	76	4 6	0.9	186	
TIMAX	59.6	12.7	42	3.6	1 1	143	
TIMG	63.9	13.8	39	14 6	4 8	139	
TIMEND	5.3	3.0	63	5 7	36	160	
TMAX			0	5 4	2 2	183	
LOCINDTI	60 9	13.3	42	8.3	2.3	140	
CONINDTI	4.4	3.0	47	3.0	2.1	129	.004
CONVTIM	5.1	3.1	44	4.2	2 .0	123	
ABSOLUTE	9.7	4.6	5 3	6.2	46	126	.000
RELATIVE	9.0	3.7	50	8.7	4.5	120	
TOTAL	16.7	6.9	62	13.6	5.4	150	.002
PIGTIME	4.4	2.7	14	3.0	1.7	44	
TOYINCAP	16.9	8.5	58	13.0	61	148	.002
TOYINCERE	1.6	0.7	23	1.6	08	59	
CNVTMAWK	3.0	2.9	22	2.9	1.7	82	
AGE	31.5	7.3	81	31.5	7.1	189	
WEIGHT	172.6	15.8	74	179.4	19.5	184	
HEIGHT	71.1	2.9	74	71.6	2.5	183	
AEROBIC	3.7	.2	57 ·	3.0	1.9	138	

TOTAL = PROFILE:

ANAEROBI

 $F= 12.4 p= .0005 R^2 = .06$

2.0

86

ABSOLUTE = PROFILE JOESUIT: F = 19.4 p = .0001 $R^2 = .21$

PROFILE: JOESUIT:

2.7

F= 32.9 p= .0001 F = 5.9 p = .015

3.2

ABSOLUTE vs CONINDTI: GOR:

r= .59 F = 21.6 p = .0001

ABSOLUTE = 5.8 + .91 • CONINDTI

intercept:

p = .0001t= 5.3

Parameter:

t = 4.7p = .0001 $R^2 = .35$

ROR:

.57 F = 50.3 p = .0001

ABSOLUTE = 3.9 + .67 * CONINDTI

Intercept:

1000. = qt= 10.6

Parameter:

t = 7.1

 $p=.0001 R^2=.32$

As reported in the literature (31), GOR exposures are associated with a longer incapacitation time. Note, the longer the absolute incapacitation is, the longer for convulsions to begin - probably confirming the theory that the convulsions are a signal of return of blood flow to the CNS.

VARIABLE 32: DREAMQ

All questionnaires were enumerated (< 260)

VARIABLE 33: JOESUIT

Figures C18 - C19

Frequency:

TYPE	N	%_	%
	31	11	
F	141	51	57
T	107	38	43
Ť	279	100	100

TABLE 8. Effect of JOESUIT on Incapacutation Times (mean ± S.D (N))

JOESUIT

VARIABLE	F	T	p
LOCINDTI	21.4 ± 24 (82)	$20.5 \pm 22 (99)$	
CONINDTI	3.7 ± 2.7 (93)	2.9 ± 2.2 (82)	
CONVTIM	$4.6 \pm 2.7 (90)$	$4.3 \pm 1.9 (76)$	
CNVTMAWK	$3.2 \pm 2.3 (47)$	$2.6 \pm 1.6 (57)$	
ABSOLUTE	$8.3 \pm 5.9 (99)$	$5.8 \pm 2.7 (79)$	000
RELATIVE	$8.4 \pm 3.8 (90)$	$9.2 \pm 4.7 (79)$	
TOTAL	$15.2 \pm 6.0 (107)$	$13.8 \pm 6.0 (104)$	

ABSOLUTE = PROFILE JOESUIT: F= 19.4 p= .0001 R²= .21

PROFILE:

F = 32.9 p = .0001

JOESUIT:

F = 5.9 p = .015

There was a relationship with JOESUIT where a shorter ABSOLUTE was evident for those subjects whose suit was inflated upon G-LOC (10).

TOYINCAP { s } VARIABLE 34:

GTIP exposures: 14.1 ± 7.0 (206) [.5 to 16.2]

The computerized measurement of total incapacitation was similar to the one measured from videotaped observation (TOTAL (22)) of 14.5 ± 6.0

VARIABLE 35: TOYINCER (s)

GTIP exposures: 1.6 ± 0.8 (82) [0.1 to 4.4]

If the normal reaction time to deactivate the warning signals is substracted from TOYINCAP, the resulting value is the "true total incapacitation" (as measured by this method) of 12.5 s.

VARIABLE 36: POSITION

Figure C20

Frequency:

TYPE	N	%	%
	49	18	-
FORW	101	36	44
BACK	11	4	5
NONE	91	32	40
SIDE	27	10	11
T	279	100	100

Most subjects either leaned forward (loss of muscle tone) during unconsciousness or remained upright. This calls to attention the suggestion made by some researchers in implementing a "head-hold" to prevent potential neck injury (G-LOC panel, Annual Meeting of the Aerospace Medical Association, 1990)

VARIABLE 37: CNVTMAWK {s}

GTIP exposures: 2.9 ± 2.0 (104) [1 to 13]

Recall that this variable includes "silent" moments between convulsions, hence, the high standard deviation. The value is comparable to the one found in the literature (4 s).

VARIABLE 38: AMNESIA

Figure C21

Frequency.

TYPE	N	<u>%</u>	<u>%</u>
	157	56	•
F	87	31	71
<u>T</u>	35	13	29
T	279	100	100

As evident from the results above, most subjects recall the events that led to their G-LOC episode. However those that did not, usually did not even recall the exposure having taken place.

VARIABLE 39: MOTSICK

Figure C22

Frequency:

TYPE	N	%	%
	225	81	-
F	24	8	44
T	30	11	56
T	279		100

This variable was usually reported by the subject (not asked), hence, the amount of missing data.

\	ARI	ABL	E	40:	E	U P	H O	RIA	/ A I	RO	H P C	JE	
Figure C23 TYPE (EUPHORIA))	0	1	2	3	4_	5	6	7	8	9	10	11
1	69	129	3	1	5	1	3	2	10	13	4	7	32
YPE (AIROHPUE)		0	1	_2	_3								
N		129	13	36	32								
%		62	6	17	15								

Thirty-eight percent of the exposures resulted in euphoria, it was usually related to pleasant dreams.

VA	RIA	BLI	E 4	1:	E N	1 B	RSM	NI	/ T	N M	SRB	ME	
Figure C23 TYPE (EMBRSMNT)												10	11
							10						
PE (TNMSRBME)		0	1	2	3								
		127	28	24	31								
)		61	13	11	15								

Thirty-nine percent of the exposures resulted in the subject being embarrassed. This variable was probably underestimated since videotape observation invariably showed most subjects being embarrassed about their G-LOC episode. Given the personality of pilots, the hesitation to admit embarrassment is not surprising.

		VA	RIA	BL	E	42:	D	EN	IAL	./L/	VIN	E D	
Figure C23 TYPE (DENIAL)		0	1	2		4	5_	6	7_	8	9	10	_11
N	71	177	8	3	2	3	5	3	1	1	1	0	7
TYPE (LAINED)		0	1	2	3								
N		177	18	6	7								
%		85	9	3	3								

Only 15 percent of the subjects experienced initial feelings of denial - i.e., "G-LOC did not occur-/ could not have occurred"

	V A	RIA	A B	LE	43:		NO	ER	/ R I	EGN	A		
Figure C23 TYPE (ANGER)		0	_1	2	3	4	5	6	7	8	9	10	
N					4							1	
TYPE (REGNA)		0	1_	2	3								
N		165	22	8	17								
%		78	10	4	8								

Few subjects experienced anger. However, when it occurred, it was very obvious and usually related to feelings of failure and embarrassment.

V A	RIA	BL	E	44:	C	O N	F U	SEL) / D	ESU	FNC	С	
Figure C23 TYPE (CONFUSED)		0	1	2	3	4_	5_	6	7	8	9	10	11
N											12		
TYPE (desufnoc)		0	1_	2	_3								
N		6 6	16	47	83								
%		31	8	22	39								

By far the most popular sensation reported by the subjects. Subjects were seldom hesitant in admitting their confusion. Some blamed this confusion partially to a dream i.e., the centrifuge surroundings (as they regained consciousness) were unexpected (not those of the dream).

	VA	RI	A B	LE	45:	: 1	REL	AX	/ x /	LE	R		
Figure C25 TYPE (RELAX)		0	1	2		4_	5_	6_	7	8	9	10	11
N											12		
TYPE (xaler)		0	1	2	3								
N		111	15	36	30								
%		58	8	19	15								

Many subjects found the G-LOC experience relaxing as if awakening from a nap.

	VAF	RIA	BL	E	46:	F	RIG	H 7	/T1	101	R F	
Figure C23 TYPE (FRIGHT)	 0	1	2	3	4	5	6_	7	8	9	10	11
N					0						0	3
TYPE (THGIRF)	0	.1	2	3								
N	184	19	5	3								
%	87	9	3	1								

This variable is porbably underestimated given the typical pilot personality. Only 13% of the subjects admitted to having being frightened by the experience where the majority of the subject's gestures (videotape observation) probably demonstrated otherwise.

	V	'A F	RIA	BL	E 4	17:	A I	PAT	НУ	//Y	HTA	PA	
Figure C24 TYPE (APATHY)		0	1_	2	3	4	5	6	7	8_	9	10	
N												1	
TYPE (YHTAPA)			1_										
N %		68 64	22 21	14 13									

Some subjects experienced apathy, a sense of "completion" associated with a "do not care" attitude which was often reflected when asked for the reasons the appropriate signals (HORNWHY [58]) were not deactivated (as instructed) when they regained consciousness.

	VARI	ABL	E	48:	FF	US	TR	AT	/ T A	RT	SUR	F	
Figure C24 TYPE (FRUSTRAT	D	0	1	2	3	4	5	6	7	8	9	10	11
N		135											26
TYPE (TARTSURF)		0	1	2	_3								
N		135	21	29	26								
%		64	10	14	12								

Frustration was usually more evident of those subjects experiencing G-LOC more than one time and was associated with anger.

	_	/ A :	R I	A	ВL	E 4	19:	SA	DN:	ESS	/ s s	ΕN	DAS	
Figure C24 TYPE (SADNESS)		0		1	2	_ 3	4	5	6	_7	8	9	10	11
N	68	18	8	9	4	2	1	2	1	0	0	0	2	2
TYPE (SSENDAS)		0		1	2	3								
N		18	8	18	3	2								
%		89	}	9	1	1								

Few subjects experienced sadness other than that associated with failure in accomplishing a "successful" +Gz exposure.

	VARI	A B	LE	5 0	s o	RP	RE	S A	/ A S	ERF	PRO	s	
Figure C24 TYPE (SORPRESA)		0	1	2	3	4	5	_6	7	8	9	10	_ 11
1							10						
YPE (ASERPROS)		0_	1	2	_3								
N		77	21	7ر	26								
%		48	13	23	16								

This variable is associated with variable [52]. About 50 percent of the subjects did not recognize G-LOC was imminent.

		V A	RI	A B	LE	5 1	: O	ТН	ER	/RE	нт	0	
Figure 24 TYPE (OTHER)		0_	1	2	3	4	5	6_	_7	_ 8 _	9	10	11
N	72										0	0	5
TYPE (REHTO)		0	1_	2_	_3								
N		202	0	0	5								
%		98	0	0	2								

OTHER: floating sensation, loss of time, fatigue, disappointment, desire for gaining control, urgency.

VARIABLE 52: SURPRISE/ESIRPRUS

Figure C24

Frequency:

TYPE	N_	%	%
	67	24	
F	121	43	57
T	91	33	43
T	279	100	100

VARIABLE 53: BLACKOUT

Figure C25

Frequency:

TYPE	N	%	%
	140	50	
F	54	19	39
T	85	31	61
Ī	279	100	100

VARIABLE 54: WHEREAMI

Figure C26

Frequency:

TVPE	N_	%	%
	70	25	-
F	77	28	37
T	132	47	63
T	279	100	100

A significant amount of subjects were initially confused as to their surroundings. Again, this confusion was usually associated with the occurrence of dreams thoughts.

VARIABLE 55: GUESSUCS

Frequency:

TIPE	N	%	%
	84	30	•
S	165	59	35
M	26	9	13
Н	2	1	1
F	2	1	1
T	279	100	100

Most subjects estimated their period of unconsciousness correctly

VARIABLE 56: HORNUCS

Figure C27

Frequency:

TYPE	N	%	9%
	90	32	-
F	124	45	66
T	65	23	34
T	279	100	100

A significant amount of subjects reported having been aware of the warning sinals (horn) while unconscious. Usually, they associated the signal with the auditory stimuli of their dream (if any).

VARIABLE 57: HORNOFF

Figure C28

Frequency:

TYPE	N	%	%
	81	29	-
F	116	42	59
I	82	29	41
T	279	100	100

Subjects usually acknowledged not having promptly deactivated the warning sinals upon regaining consciousness as instructed.

VARIABLE 58: HORNWHY

Figure C29

Frequency:

TYPE	_ •	A	В	С	D	E	F	G	_H_	!
N										
%	60	3	5	1	4	16	2	4	1	4
%	-	8	13	4	9	38	5	11	4	10

H = OTHER: head tumbling; signals are part of dream (alarm clock); error (activated while convulsing). The most typical reason for not deactivating the warning signals was confusion.

VARIABLE 59: SLEEPARY

Figure C30

Frequency:

TYPE	N	%	<u>%</u>
	43	15	•
F	165	59	70
T	71	26	30
T	279	100	100

Unfortunately, those subjects who reported having experienced sleep paralysis-like symptoms during normal sleep were not asked if these symptoms were comparable to the transient lack of muscle control (subject not being able to move to deactivate the warning signals, HORNWHY = "b") if any.

VARIABLE 60: FLAILING

Figure C31
Frequency:

TYPE	<u>N</u>	%	<u>%</u>
•	36	13	•
F	30	11	12
T	213	76	88
T	279	100	

VARIABLE 61: ERELOC

Figures C32 - C33

Frequency:

TYPE	N	%	%
	31	12	•
F	159	56	64
T	89	32	<u> 36</u>
T	279	100	100

TABLE 9. Incapacitation Variables Associated with the Occurrence of Prior G-LOC Experience.

				ERELOC			
VARIABLE	F		T				
	mean	s.d	D	mean	s. d.	n	P
CONINDTI	3.4	2.5	88	3.1	2.4	67	
CONVTIM	4.7	2.6	83	4.3	2. I	62	
ABSOLUTE	76	5.9	98	6.3	3.0	59	
RELATIVE	9.2	4.8	94	8.0	3.4	58	
TOTAL	15.2	6.3	117	13.2	5.2	70	.020
PIGTIME	3.6	2.2	30	3.1	1.9	20	
TOYINCAP	15.0	8.0	120	12.4	5.0	71	.006
TOYINCER	1.6	0.8	48	1.6	0.6	31	
CNVTMAWK	3.0	2.3	5 3	2.7	1.5	43	
ERELOCN			0			I to	6

There seems to be an association: G-LOC prior experience and a reduced total incapaciation time.

VARIABLE 62: ERELOCN

GTIP exposures: (85) [1 to 6]

				V.	ARIABLE 63:	ERELOCWH	
Figure C Frequen							
TYPE		N	%	<u>%</u>			
FUGE		191 69	68 25	78			
FLITE		14	5	16			
BOTH			2	6			
T		279	100				
				V	ARIABLE 64:	EVENTQUA	
Figure C							
Frequen	cy:						
TYPE		N	%	<u>%</u>			
		195	70	-			
FAM		62	22	74			
<u>UFAM</u> T		279	200	26 100			
•		_,,	_00	-00			
				v	ARIABLE 65:	EVENTACT	
Figure C							
Frequenc	:						
TYPE	N	%	%				
	204	73					
ACT	41	15	54				
PAS	34	12	46				
T	279	100	100				
				V	ARIABLE 66:	EVENTINT	
Figure C	37	-	_				
Frequen	cy:						
TYPE		N	%	<u>%</u>			
•		196	70	-			
VIV		31	11	37			
HAZ T		52 279	19 100	63 100			
-							
				V	ARIABLE 67:	EVENTELM	
Figure C							
Frequen	cy:						
TYPE	N	%	<u>%</u>				
	216	77					
AUD	5	2	8 57				
VIS NONE	36 3	13 1	57 5				
BOTH	19	7	<u>30</u>				
T		100					
-							

VARIABLE 68: SLIPDREM

Figure C39

Frequency:

TYPE N % %
. 224 80 F 20 7 41
T 35 13 59
T 279 100 100

About half of the subjects that experienced dreams while unconscious considered them those experienced during normal sleep (see variable [81]).

rable to

VARIABLE 69: DREMRCAL

Figure C40

Frequency:

TYPE N % %
. 56 20 F 91 33 41
T 132 47 59
T 279 100 100

VARIABLE 70: AGE {yrs}

GTIP exposures: 31.4 ± 7.2 (273) [20 to 61]

VARIABLE 71: WEIGHT { 1bs}

GTIP exposures: 177.4 ± 18.8 (260) [117-225]

VARIABLE 72: HEIGHT {in}

GTIP exposures: 71.5 ± 2.6 (259) [58 to 77]

VARIABLE 73: JOB

Figure C41

Frequency:

TYPE N % %
. 18 6 AIR 73 26 28
NAVY 185 67 71
OTHER 3 1 1
T 279 100 100

TABLE 10. Subject Characteristics as Related to Their Military Affiliation. (mean ± S.D. (N))

JOB

VARIABLE	AIR	NAVY	P
RELTOL	4.6 ± 0.8 (68)	$4.6 \pm 0.8 (185)$	-
AGE	$38.9 \pm 7.6 (71)$	$28.6 \pm 4.3 (182)$.000
WEIGHT	$178.5 \pm 21.3 (68)$	$177.0 \pm 17.9 (181)$	
HEIGHT	$71.5 \pm 2.4 (68)$	$71.5 \pm 2.7 (180)$	
AEROBIC	$2.9 \pm 2.1 (51)$	$3.4 \pm 2.0 (138)$	
ANAEROBI	$3.2 \pm 1.7 (30)$	$3.5 \pm 2.4 (98)$	

VARIABLE 74: PPBPBG

Frequency:

TYPE	N_	%
•	0	0
F	279	100
T	0	0
T	279	100

VARIABLE 75: EVQUAL

Figure C42 Frequency:

TYPE	N	%	%
•	193	69	-
P	56	20	65
U	16	6	19
<u> </u>	14	5	16
T	279	100	100

VARIABLE 76: GENDER

Frequency:

TYPE	N	<u>%</u>
F	2	1
M	277	99
T	279	100

VARIABLE 77: AEROBIC/CIBOREA {hrs/wk}

Figure C43

G exposures (AEROBIC): 2.5 ± 2.2 (251) [0 to 10]

Frequency:

TYPE	N	%	_%	(CIBOREA)
	28	10		
0	56	20	22	
1	195	70	78	
T	279	100	100	

VARIABLE 78: ANAEROBI/IBOREANA {brs/wk}

Figure C44

G exposures (ANAEROBI): 1.7 ± 2.3 (250) [0 to 14]

Frequency:

TYPE	N	%	% (IBOREANA	.)
	29	10	•	
0	121	43	48	
1	129	47	_52	
T	279	100	100	

VARIABLE 79: WORK

Figure C45

Frequency:

TYPE	N_	<u>%</u>	<u>%</u>
	20	7	•
FO	200	72	77
NFO	59	21	23
T		100	

VARIABLE 80: AIRCRAFT

Figure C46

Frequency:

TYPE_	<u>_N_</u>	<u>%</u>	<u>%</u>
	30	11	•
A10	24	9	10
A37	6	2	2
A4	4	1	2
A6	32	12	13
A 7	19	7	8
AV8	9	3	4
F14	56	20	23
F15	4	1	2
F16	17	6	7
F18	49	18	20
F4	17	6	7
F5	1	.4	
FA2	1	.4	
H53	2	2 .4	
T2	1	.4	
T34	5	2	2
T2 T34 T37 T4 T	I	.4	
T4	1	.4	
T	279	100	100

VARIABLE \$1: DRMWHR

Figure C47
Frequency:

TYPE	N	%	%
	234	84	•
В	5	2	11
M	26	9	58
E	14	5	31
Ŧ	279	100	100

In summary, illusions were 1) of a familiar setting, 2) related to recent events in the subject's experience, 3) difficult to recall if not asked to relate their content immediately upon regaining consciousness. Dream content was seldom auditory in nature, and if so, the auditory elements were associated with the warning signals. Finally, the subjects estimated their dream having occurred during the middle portion of their incapacitation period.

VARIABLE 82: FLALAWAR

Figure C48

Frequency:

TYPE	N	%	%
	111	40	
F	115	41	68
T	53	19	32
T	279	100	

Most subjects were not aware of having flailed during their unconsciousness period.

VARIABLE 83: CENTRIFU

Frequency:

TYPE	N	<u>%</u>
SAM	14	5
NADC	265	95
Ŧ	279	100

Distribution List (Continued) Report No. NAWCADWAR 92026-50

	No. of Copies
Air Force Office of Scientific Research	1
Naval Aerospace Medical Institute	2
FAA Civil Aeromedical Institute	1
NASA Ames Research Center	1
NASA Johnson Space Center Houston, TX 77058	1
Dr. Don Jarson Drexel University Philadelphia, PA 19104	1
Commandant of the Marines	1
Naval Weapons Center	1
Naval Air Force U.S. Pacific Fleet	1
Commander, Naval Air Force. U.S. Atlantic Fleet	1
Center for Naval Analyses	1
U.S. Air Forces In Europe (USAFE)	1
Mr. Robert Montgomery	1
Dr Jean-Michel Clere Lamas/CEV F-91228 Bretigny-SUR-ORGE CEDEX FRANCE	1

Distribution List (Continued) Report No. NAWCADWAR 92026-50

No. of Copies

Dr. David Glaister, Royal Air Force
Mr. Michael Paul, Defense and Civil Institute
Air University Library
Armstrong Laboratory
Commander, USAF Armstrong Aerospace
Commander, Naval Training Systems Command
U.S. Air Force Tactical Air Command
Naval Air Warfare Center
Commander, Naval Air Systems Command
1299th Physiological Training Flight
Dr. Fred Buick

Distribution List Report No. NAWCADWAR 92026-50

No	. of Copies
Defense Technical Information Center	2
Chief of Naval Operations	4
Naval Aerospace Medicine Institute	2
Office of Naval Research	1
Naval Postgraduate School	1
AL/CA-CF Brooks AFB, TX 78235 (1 Copy for Dr. Russell R. Burton)	1
AL/CFTF Brooks AFB, TX 78235 (1 Copy for Dr. John W. Burns)	1
Air National Guard Support Center	1
Advanced Physiologic Training Unit	1
Federal Aviation Administration CAMI Library AAC 64D1, P.O. Box 25082 Oklahoma City, OK 73125 (1 Copy for Civil Aeromedical Institute)	1
Headquarters, U.S. Air Force	1
Dr. Bill Albery	1