

数字集成电路设计 第十一章 数据通路子系统

白雪飞 中国科学技术大学微电子学院

提纲

- 加法和减法
- 基本运算
- 并行前缀运算
- 乘法

加法和减法

半加器

$$S = A \oplus B$$
, $C_{\text{out}} = A \cdot B$

半加器 (Half Adder, HA)

半加器电路

半加器真值表

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

全加器

全加器 (Full Adder, FA)

全加器真值表

Α	В	С	G	Р	K	C _{out}	S
0 0	0	0	0	1	0	0	
	1				0	1	
0 1	0	0	4	0	0	1	
	l	1	U	1	U	1	0
1 0	0	0	1	0	0	1	
	1				1	0	
1 1	4	0	1	0	0	1	0
		1				1	1

$$G = A \cdot B$$

$$P = A \oplus B$$

$$K = \overline{A} \cdot \overline{B} = \overline{A + B}$$

$$S = A \oplus B \oplus C$$

$$= P \oplus C$$

$$= ABC + (A + B + C) \overline{C_{\text{out}}}$$

$$C_{\text{out}} = AB + AC + BC$$

$$= AB + C(A + B)$$

$$= \overline{\overline{A}} \, \overline{\overline{B}} + \overline{\overline{C}} \left(\overline{\overline{A}} + \overline{\overline{B}} \right)$$

$$= MAJ(A, B, C)$$

全加器电路设计

用于行波进位的全加器

用于行波进位的全加器

镜像加法器 (Mirror Adder)

传输门全加器

$$P = A \oplus B$$
; $S = P \oplus C$; $C_{\text{out}} = AB + PC = \overline{P}A + PC$

传输门全加器

互补传输管逻辑全加器

$$S = ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$$

互补传输管逻辑(CPL)全加器

进位传播加法器

进位传播加法器 (Carry-Propagate Adder, CPA)

每一位的进位输入都可能影响所有后续高位的进位输入

行波进位加法器

行波进位加法器 (Ripple-Carry Adder, RCA)

进位产生和传播

1. Bitwise PG Logic

$$G_{0:0}$$
 \equiv $C_{ ext{in}}$ $P_{0:0}$ \equiv 0 $G_{i:i}$ \equiv G_i \equiv $A_i \cdot B_i$ $P_{i:i}$ \equiv P_i \equiv $A_i \oplus B_i$

2. Group PG Logic

$$G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:j}$$
 $P_{i:j} = P_{i:k} \cdot P_{k-1:j}$

3. Sum Logic

$$C_0 = C_{ ext{in}}$$
 $C_{ ext{out}} = C_N$
 $C_{i-1} = G_{i-1:0}$
 $S_i = P_i \oplus G_{i-1:0}$

带进位产生和传播逻辑的加法器

组PG单元

四阶组PG逻辑

$$G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:l} + P_{i:k} \cdot P_{k-1:l} \cdot G_{l-1:m} + P_{i:k} \cdot P_{k-1:l} \cdot P_{l-1:m} \cdot G_{m-1:j} \ = G_{i:k} + P_{i:k} (G_{k-1:l} + P_{k-1:l} (G_{l-1:m} + P_{l-1:m} G_{m-1:j})) \ P_{i:j} = P_{i:k} \cdot P_{k-1:l} \cdot P_{l-1:m} \cdot P_{m-1:j}$$
 $(i \ge k > l > m > j)$

四阶组PG逻辑及电路单元

PG行波进位加法器

采用PG逻辑的四位RCA

$$G_{i:0} = G_i + P_i \cdot G_{i-1:0}$$

15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0 16位RCA的组PG网络

Bit Position

$$t_{\text{ripple}} = t_{pg} + (N-1)t_{AO} + t_{xor}$$

曼彻斯特进位链加法器

进位链的设计

(Manchester Carry Chain) 曼彻斯特进位链

进位跳跃加法器

进位跳跃加法器 (Carry-Skip Adder, CSKA)、进位旁路加法器 (Carry-Bypass Adder, CBA)

超前进位加法器

 $t_{\text{cla}} = t_{pq} + t_{pq(n)} + [(n-1) + (k-1)]t_{AO} + t_{xor}$

超前进位加法器 (Carry-Lookahead Adder, CLA)

采用高阶单元并行计算多个进位来减少延时,

例如,曼彻斯特进位链或并行运算的静态门

进位选择加法器

$$t_{\text{select}} = t_{pg} + [n + (k-2)]t_{\text{AO}} + t_{\text{mux}}$$

进位选择加法器 (Carry-Select Adder, CSLA)

进位增量加法器

 $t_{\text{increment}} = t_{pq} + [(n-1) + (k-1)]t_{AO} + t_{xor}$

 $t_{
m increment} pprox t_{ng} + \sqrt{2N} \, t_{
m AO} + t_{
m xor}$

进位增量加法器

 $t_{\text{increment}} = t_{pq} + [(n-1) + (k-1)]t_{AO} + t_{xor}$

 $t_{
m increment} pprox t_{
m pg} + \sqrt{2N} \, t_{
m AO} + t_{
m xor}$

条件和加法器

条件和加法器 (Conditional-Sum Adder, COSA)

并行前缀加法器 (Parallel-Prefix Adder, PPA)

并行前缀加法器的分类

进位传播加法器小结

加法器结构	分类	逻辑级数	最大扇出数	布线通道数	单元数
RCA		<i>N</i> –1	1	1	N
CSKA (n=4)		N/4 + 5	2	1	1.25N
CIA (n=4)		N/4+2	4	1	2N
CIA (Variable Group)		$\sqrt{2N}$	$\sqrt{2N}$	1	2N
Brent-Kung	$(L-1, \ 0, \ 0)$	$2{\log _2}N\!\!-\!1$	2	1	2N
Sklansky	$(0,\ L\!-\!1,\ 0)$	$\log_2\!N$	N/2+1	1	$0.5N\!\log_2\!N$
Kogge-Stone	$(0,\ 0,\ L\!-\!1)$	$\log_2\!N$	2	N/2	$N\!\log_2\!N$
Han-Carlson	$(1, \ 0, \ L-2)$	$\log_2 N + 1$	2	N/4	$0.5N\!\log_2\!N$
Ladner Fischer (l=1)	(1, L-2, 0)	$\log_2 N + 1$	N/4+1	1	$0.25 N\!\log_2\!N$
Knowles $[2,1,\cdots,1]$	$(0,\ 1,\ L\!-\!2)$	$\log_2\!N$	3	N/4	$N\!\log_2\!N$

减法器

$$S = A - B = A + \overline{B} + 1$$

减法器

$$S = A \mp B$$

加法/减法器

进位保留加法器

$$X + Y + Z = S + 2C$$

[3:2]进位保留加法器 ([3:2] Carry-Save Adder, CSA)

多输入加法器

基于CPA的多输入加法

标志前缀加法器 (Flagged Prefix Adder)

■ 模2*n*-1加法

$$(A+B) \mod (2^n-1)$$
:

- ① A+B
- \bigcirc inc = $G_{n:1} + P_{n:1}$

■ 绝对差

$$|A-B|$$
:

- $\bigcirc A + \overline{B}$
- \bigcirc inc $=G_{n:1}$, inv $=\overline{G_{n:1}}$
- $3 S_i = (P_i \oplus \text{inv}) \oplus G'_{i-1:1}$

■ 原码加法

Signs Agree:

$$S_{n-1:1} = A_{n-1:1} + B_{n-1:1}, S_n = A_n$$

Signs Differ:

$$S_{n-1:1} = |A_{n-1:1} - B_{n-1:1}|, S_n = A_n \oplus \overline{G_{n-1:1}}$$

基本运算

1/0检测器

比较器

B-A С B_3 A>B A_3 A≥B B_2 **A**₂ -A=B B_1 C: Carry **A**₁ $\mathbf{B}_{\mathbf{0}}$ V: Overflow Z: Zero A_0 N: Negative S: Actual Sign

无符号数值比较器

有符号数值比较器

K=A+B比较器

$$egin{aligned} c_{i-1}(ext{Required}) &= A_i \oplus B_i \oplus K_i \ \\ c_{i-1}(ext{Produced}) &= (A_{i-1} \oplus B_{i-1}) \cdot \overline{K_{i-1}} + A_{i-1} \cdot B_{i-1} \end{aligned}$$

K=A+B比较器

计数器

■ 计数器的种类

- 二进制计数器 (Binary Counter)
 - N位二进制计数器按二进制顺序经过 2^N 个输出值
 - 简单设计的最小周期时间随*N*的增加而增加,快速设计在固定时间内完成操作
- 线性反馈移位寄存器 (Linear-Feedback Shift Register, LFSR)
 - N位线性反馈移位寄存器按随机顺序经过至多 2^N -1个输出值
 - 具有很短的最小周期时间,可用作伪随机数发生器或极高速计数器

■ 计数器的特点

■ 可复位 (Resettable) 当复位信号有效时,计数值复位至0

■ 可装载 (Loadable) 当装载信号有效时,可将数值装载入计数器

■ 使能 (Enable) 当使能信号有效时,计数器按照时钟周期计数

■ 可逆 (Reversible) 根据递增/递减信号,计数器增1或减1

■ 终点计数 (Terminal Count) 当计数器溢出时,终点计数输出信号有效

二进制计数器

异步行波进位 计数器

同步递增计数器 同步增量器

同步双向计数器

具有复位、装载、使能控制的 同步双向计数器

二进制计数器

高速二进制计数器

最低有效位部分 (预定标计数器) 最高有效位部分

Least Significant
Segment (Prescalar)

Most Significant Segment

高速二进制计数器

高速二进制双向计数器 (最高有效位部分)

环形计数器和Johnson计数器

环形计数器 (Ring Counter)

Johnson计数器、Mobius计数器

Johnson计数器序列

Q_0	Q_1 Q_2		TC
0	0	0	0
1	0	0	0
1	1	0	0
1	1	1	0
0	1	1	0
0	0	1	1
0	0	0	0
	0 1 1 1 0 0	0 0 1 0 1 1 1 1 0 1 0 0	0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1

Repeats Forever

线性反馈移位寄存器

Cycle	\mathbf{Q}_{0}	Q_1	Q_2/Y			
0	1	1	1			
1	0	1	1			
2	0	0	1			
3	1	0	0			
4	0	1	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			
Reneats Forever						

线性反馈移位寄存器

 $1 + x + x^6 + x^7 + x^8$

(Linear-Feedback Shift Register, LFSR)

布尔逻辑运算

布尔逻辑单元

布尔逻辑运算的实现方式

运算	P ₀	P ₁	P_3	P ₄
AND(A, B)	0	0	0	1
OR(A, B)	0	1	1	1
XOR(A, B)	0	1	1	0
NAND(A, B)	1	1	1	0
NOR(A, B)	1	0	0	0

检错码和纠错码

$$A_n = extstyle{PARITY} = igoplus_{i=0}^{n-1} A_i$$

八位奇偶校验生成器

奇偶校验矩阵

格雷码 (Gray Code)

二进制反射格雷码

(Binary-Reflected Gray Code)

Number	Binay	Gray Code
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

$$G_{N-1} = B_{N-1}$$

$$G_i = B_{i+1} \oplus B_i$$

$$B_{N-1} = G_{N-1}$$
$$B_i = B_{i+1} \oplus G_i$$

异或门/同或门

静态二输入异或门设计

多输入异或门

级联电压开关逻辑 (CVSL)

四输入异或门设计

移位器

■ 固定位数移位

■ 使用固定连线即可完成

■ 可变位数移位

■ 移位类型

■ 循环移位:一端空出的位置由另一端移出的数字填充

■ 逻辑移位: 左移或右移数字, 空位由零填充

■ 算术移位: 算术右移时,空位用符号位填充

■ 移位器结构

■ 阵列移位器、对数移位器

■ 漏斗移位器、桶式移位器

漏斗移位器

漏斗移位器源数据生成器

移位类型	Z _{2N-2:N}	Z _{N-1}	Z _{N-2:0}	Offset
循环右移	A _{N-2:0}	A _{<i>N</i>-1}	A _{N-2:0}	k
逻辑右移	0	A _{<i>N</i>-1}	A _{N-2:0}	k
算术右移	符号	A _{<i>N</i>-1}	A _{N-2:0}	k
循环左移	A _{N-1:1}	A_0	A _{N-1:1}	N-1-k
逻辑/算术左移	A _{N-1:1}	A_0	0	N-1-k

漏斗移位器的操作

优化的源数据生成器逻辑

漏斗移位器

四位阵列漏斗移位器

桶形移位器

循环右移桶形移位器

循环左移右移桶形移位器

移位和循环桶形移位器

桶形移位器

32位对数桶形移位器

桶形移位器的屏蔽逻辑

并行前缀运算

优先级编码器

$$\begin{cases} Y_1 = A_1 \\ Y_2 = A_2 \cdot \overline{A_1} \\ Y_3 = A_3 \cdot \overline{A_2} \cdot \overline{A_1} \\ \vdots \\ Y_N = A_N \cdot \overline{A_{N-1}} \cdot \cdots \cdot \overline{A_1} \end{cases}$$

$$egin{cases} X_{i:i} = \overline{A}_i & ext{Bitwise Precomputation} \ X_{i:j} = X_{i:k} \cdot X_{k-1:j} & ext{Group Logic} \ Y_i = A_i \cdot X_{i-1:1} & ext{Output Logic} \end{cases}$$

优先级编码器及电路实现

优先级编码器

$$egin{cases} X_{i:i} = \overline{A_i} & ext{Bitwise Precomputation} \ X_{i:j} = X_{i:k} \cdot X_{k-1:j} & ext{Group Logic} \ Y_i = A_i \cdot X_{i-1:1} & ext{Output Logic} \end{cases}$$

优先级编码器电路实现

二进制码至温度计码译码器

二进制码至温度计码译码真值表

B (Binary)	A (One-Hot)	Y (Thermometer)
000	0000001	0000000
001	0000010	10000000
010	00000100	11000000
011	00001000	11100000
100	00010000	11110000
101	00100000	11111000
110	01000000	11111100
111	1000000	11111110

$$egin{cases} X_{i:i} = A_{N-i} & ext{Bitwise Precomputation} \ X_{i:j} = X_{i:k} + X_{k-1:j} & ext{Group Logic} \ Y_i = X_{i:0} & ext{Output Logic} \end{cases}$$

二进制码至温度计码译码器

$$egin{cases} X_{i:i} = A_{N-i} & ext{Bitwise Precomputation} \ X_{i:j} = X_{i:k} + X_{k-1:j} & ext{Group Logic} \ Y_i = X_{i:0} & ext{Output Logic} \end{cases}$$

二进制码至温度计码译码器电路实现

乘法

无符号数乘法

$$P \!=\! \left(\sum_{j=0}^{M-1} y_j 2^j \right) \! \left(\sum_{i=0}^{N-1} x_i 2^i \! \right) \! = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

无符号数乘法和部分积

乘法的点图

点图 (Dot Diagram)

无符号阵列乘法

阵列乘法器

补码阵列乘法

$$P = \left(-y_{M-1}2^{M-1} + \sum_{j=0}^{M-2} y_j 2^j\right) \left(-x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i\right)$$

$$= \sum_{i=0}^{N-2} \sum_{j=0}^{M-2} x_i y_j 2^{i+j} + x_{N-1} y_{M-1} 2^{M+N-2} - \left(\sum_{i=0}^{N-2} x_i y_{M-1} 2^{i+M-1} + \sum_{j=0}^{M-2} x_{N-1} y_j 2^{j+N-1}\right)$$

$$\sum_{i=0}^{N-2}\sum_{j=0}^{M-2}x_{i}y_{j}2^{i+j}\\ +x_{N-1}y_{M-1}2^{M+N-2}\\ -\sum_{i=0}^{N-2}x_{i}y_{j}2^{j+N-1}\\ = 1 1 \overline{x_{5}y_{4}} \overline{x_{5}y_{3}} \overline{x_{5}y_{2}} \overline{x_{5}y_{1}} \overline{x_{5}y_{1}} \overline{x_{5}y_{1}} \overline{x_{5}y_{1}} \overline{x_{5}y_{1}} \overline{x_{5}y_{1}} \overline{x_{5}y_{1}} \overline{x_{5}y_{1}} \overline{x_{5}y_{2}} \overline{x_{5}y_{2}} \overline{x_{5}y_{1}} \overline{x_{5}y_{2}} \overline{x_{5}y_{2}}$$

改进型Baugh-Wooley乘法器

补码乘法器简化后的部分积 (6 bit × 6 bit) 改进型Baugh-Wooley补码乘法器 (4 bit × 4 bit)

Booth编码

基4改进Booth编码值

	Inputs Partial Product Booth Selects					
X _{2<i>i</i>+1}	X _{2i}	X _{2<i>i</i>-1}	PP_i	SINGLE _i	DOUBLE _i	NEG _i
0	0	0	0	0	0	0
0	0	1	Y	1	0	0
0	1	0	Υ	1	0	0
0	1	1	2Y	0	1	0
1	0	0	-2Y	0	1	1
1	0	1	-Y	1	0	1
1	1	0	-Y	1	0	1
1	1	1	-0	0	0	1

$$X = \sum_{i=0}^{n/2} \underbrace{(x_{2i-1} + x_{2i} - 2x_{2i+1})}_{\substack{\{-2,-1,0,+1,+2\}}} 2^{2i}; \;\; x_{-1} = 0$$

Booth编码器

基4 Booth编码器和选择器

Booth编码部分积

简化符号扩展的16位无符号乘法基4 Booth编码部分积

列加法

阵列乘法器点图

Wallace树乘法器点图

N个输入要求的[3,2] CSA级数为

$$\left\lceil \log_{3/2} \left(\stackrel{N}{/2} \right)
ight
ceil$$

利用输入到达时间不一致的CPA前缀网络

本章结束