	Tiny Inp
	A program that's well behaved but not ok?
	var z. We can see that the else
	if I then branch never runs, but semantics can't!
	2:= 3161 Due to the skip, this
	else definitely writes to nothing.
	Skip wo \$\phi\$ Thus, we lose knowledge of x being
	fi; initialised!
	χ:= χ+i
	A useful interpretation of this
	is that no variables are used out of scope.
	Suppose we know that ϕ ; $\phi \vdash s$ ok $\rightsquigarrow \phi$. What does this
	mean within a
0	Crash-and-burn semantics? Is neve going to crash due to
	a vori able access.
	Never accesses uninit. variables
*	Default value semantics? (Hint: deterministic?) The execution of
	any program entails deterministic adjuction.
	(every identical execution evaluates to the same state)
•	Junk data semantics? Same as above.
	Programs that are ok don't
	use uninit. variables
	NOC PRIMIL. ANIMORIES

How could we formalise these proporties (i.e. in logic, with judgments)?
"No variable in s is used out of scope" = FV(s) =
Alternatively we could say that "the result of evaluation doesn't
Alternatively we could say that "the result of evaluation doesn't depend on any of the state's free variables"
$\Rightarrow \equiv \forall \sigma, \sigma', \varkappa. \ (\sigma, s) \Downarrow \sigma' \Rightarrow \underline{\hspace{1cm}}$
"Deterministic evaluation"
$\equiv \forall \sigma_{i}, \sigma_{i}, \sigma_{i}, \dots \Rightarrow$
7
"Never crashes due to an uninit. Variable" = 40. 70: (0,5) \$\forall 5'
Reasonable? Any problems with this? (Hint: what about non-termination?)

	$(s_i;s_2);s_3) \Downarrow \sigma_2$ if and only if $(\sigma_i, s_i; (s_2;s_3)) \Downarrow \sigma_2$
ROOF (af	the if direction. Opposite direction: exercise!)
uppose th	at (T1, (51;52);53) & J. J. Then
	(で,,5,)が" (で",52)が :
	$(\sigma_1, s_1; s_2) \downarrow \sigma'$ $(\sigma', s_3) \downarrow \sigma_2$
	$(\sigma_1, (s_1; s_2); s_3) \Downarrow \sigma_2$
ow, we a	n clarive the evaluation of the right-associative varia
ww, we a	
vou, we ca	$(\sigma'', s_2) \downarrow \sigma' (\sigma', s_3) \downarrow \sigma_2$
ww, we ca	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$
ww, we ca	$(\sigma'', s_2) \downarrow \sigma' (\sigma', s_3) \downarrow \sigma_2$
vow, we ca	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$
ow, we a	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$
ivo, we a	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$
ow, we a	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$
ow, we a	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$
we a	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$
now, we can	$\frac{\langle \sigma'', S_2 \rangle \sigma' \langle \sigma', S_3 \rangle \sigma_2}{\langle \sigma_1, S_1 \rangle \sigma'' \langle \sigma'', S_2 \rangle \sigma_2}$

	do s until e Big-step semantics for this loop:			
Big-step ser				
	(o, do s untile) \$\ \mathfrak{\sqrt{0}}{\sqrt{2}}\$	<u> </u>		
	(01, ab 5 marte) (1, 0 ₂			
	(σ, do s until e) U σ2	Termination		
do s unti	l e =			

