上海交通大学试卷

(2017 至 2018 学年 第 2 学期 2018 年 05 月 16 日)

	(2017	± 2018	子牛 朱	<u>2</u> 子别 <u>20</u>	<u>18</u>	<u>10</u> 口 /	
班级号			学号			姓名 _	
课程名称	《数学	分析衆營(2)》 (致远≌	学院期中考	⋚试)	成绩	
题 号	_	=	11	四	五	六	总分
满分	16	15	9	16	36	8	100
得 分							
一、填空是	· 顷(每小题	[4分,共	16 分)				
1. 二次积	$ (分 \int_0^1 dy \int_y^1 e^{-t} dt $	$e^{\frac{y}{x}}dx = \underline{\hspace{1cm}}$	·				
2. 设 f(u,	v)可微, z=	= z(x, y) 由ブ	方程(x+1)z·	$-y^2 = x^2 f(x)$	x – z, y) 确気	È,则 dz _{@ 1} ,	
			二重积分				,
4. 设空间	曲线 <i>L</i> : <	$\begin{cases} x^2 + y^2 + z \\ x + y + z = 0 \end{cases}$	² = 1 0	曲线积分∫			
			,共 15 分				
5. 设函数	f 定义在.	$D = [0,1] \times [$	0,1]上,f($(x,y) = \begin{cases} 1 \\ 2 \end{cases}$	$ x \in \mathbb{Q}^c \\ y, x \in \mathbb{Q} $,则 <i>f</i> 在 <i>L</i>	0上(
(\mathbf{A}) 可	积,两个二	二次积分存	在且相等.	(B)	可积,仅-	一个二次积	分存在.
(C)不可	可积,两个	二次积分	存在但不相	目等. (D)	不可积,仅	又一个二次	:积分存在
6. 设 f(x,	$(y) = x^4 + x$	$x^2y-2y^2,$	则下列结论	论 错误的是	<u>I</u>	••••	(
(A)(0,	0) 是 f(x, ;	y) 的极小值	直点.	$(\mathbf{B}) x = 0 \Xi$		极小值点.	
(C) y =	=0是f(0, y	v) 的极大值	直点. (\mathbf{D}) $x = 0$ 是	f(x,kx)(k	≠0)的极5	大值点.
7. 函数 <i>f</i>	$(x,y) = \begin{cases} \overline{x^2} \end{cases}$	$\frac{xy^2}{(x^2+y^2)^2}, (x^2+y^2)$ $0, (x^2+y^2)$	$(x, y) \neq (0, 0)$ (x, y) = (0, 0)	在(0,0)沿	· l = (1, 2) 的	方向导数	为(
(A) 0.	(B	$3)\frac{2}{5\sqrt{5}}.$	(C)	$\frac{4}{5\sqrt{5}}$.	(D)	不存在.	

)

- **8.** 设有方程 $x^2 + y + \sin xy = 0$,则在 (0,0) 的某邻域内 ()
 - (I) 上述方程能确定唯一的隐函数 y = y(x)满足 y(0) = 0.
 - (II) 上述方程能确定唯一的隐函数 x = x(y)满足 x(0) = 0.
 - (**A**) **I** 不正确, **II** 正确.
- (**B**) **I** 正确, **II** 不正确.

(C) I 和 II 都正确.

- (**D**) **I** 和 **II** 都不正确.
- 9. 设曲线积分 $I = \oint_C \frac{x dx + y dy}{x^2 + y^2}$,其中 C 是平面上任意一条不经过原点的正向光滑

闭曲线,则 …… ()

 $(\mathbf{A}) I = 0.$

- **(B)** $I = 2\pi$.
- (C) 若 C 环绕原点,则 $I = 2\pi$,若 C 没有环绕原点,则 I = 0.
- (D) 以上结论均不正确.

三、(本题共9分)

10. 设函数
$$f(x,y) = \begin{cases} x - y + \frac{x^2 y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- (1) 证明: f(x,y)在(0,0)处连续,可偏导;
- (2) 判断 f(x,y) 在(0,0) 处的可微性,并说明理由.

四、(每小题8分,共16分)

- **11.** 设 f(u,v) 具有二阶连续偏导数, $z = f(x^2y, x + 2y)$, 求 z_x , z_{yy} .
- **12.** 将长为 2m 的铁丝分成三段,分别围成圆、正方形与正三角形. 问三个图形的面积之和是否存在最小值? 若存在,求出最小值.
- 五、计算下列积分(每小题9分,共36分)
- **13.** 设平面闭域 D 由闭曲线 $(x+y+1)^2 + (x-y-2)^2 = 1$ 围成,计算二重积分

$$I = \iint_{D} [(x+y+1)^{2} + (x-y-2)^{2}] dxdy.$$

14. 计算曲线积分

$$I = \int_{1}^{1} \frac{x dy - y dx}{2x^2 + y^2},$$

其中L是起点为(1,0)经抛物线 $y=1-x^2$ 至终点(-1,0)的曲线弧.

15. 设 足 是一光滑封闭曲面,方向朝外.给定曲面积分

$$I = \iint_{\Sigma} (x^3 - x) dy dz + (2y^3 - y) dz dx + (3z^3 - z) dx dy$$

试确定曲面 Σ ,使得积分I的值最小,并求该最小值.

16. 设 S 是曲线 $\begin{cases} x^2 + 3y^2 = 1 \\ z = 0 \end{cases}$ 绕 y 轴旋转所成椭球面的上半部分 $(z \ge 0)$, Π 为 S 在

P(x,y,z) 点处的切平面, $\rho(x,y,z)$ 是原点到切平面 Π 的距离,计算曲面积分

$$I = \iint_{S} z \rho(x, y, z) dS.$$

六、(本题共8分)

17. 设二元可微函数 F 在直角坐标系下可写成 F(x,y) = f(x)g(y), 在极坐标系下可写成 $F(r\cos\theta,r\sin\theta) = h(r)$, 并且 F(x,y) 无零点,求 F(x,y) 的表达式.