NAME (from your UF ID):	UF ID#:	
(Please PRINT)		
CEN 4072/6070 Software Testin	ng & Verification	
Quiz 3 Spring 201	17	
You have 30 minutes to work on this quiz. It is a "attention to point values, since you may not have time to		
PRINT your name and UF ID# above NOW and sign the appropriate, when you are finished.	e pledge at the bottom of this page, if	
PLEASE PRINT - do NOT write cursively - ANSWERS IN IN THE MARGINS - PREFERABLY USING A BALLPOINT P luck!		
On my honor, I have neither given nor received unauthorized ai information regarding its contents to those who have not yet ta		
	SIGNATURE	

 a. (3 pts.) Give the antecedents ("initialization, preservation, and finalization") to complete the **Repeat_Until** Rule of Inference (ROI) given in the Solution Notes of Problem Set
 5:

{P} repeat S until b {Q}

b. (3 pts.) Consider the following assertion of weak correctness. (You may assume that N represents the number of elements in integer array List[1:N] and that the value of integer variable Index is always \leq N.)

```
{N≥1}

Index := 0

repeat

Index := Index+1;

Found := (Key=List[Index])

until (Found OR Index=N)
```

```
{(Found \land Key=List[Index]) \lor (\negFound \land \forall (1 \le i \le N) • key\neqList[i])
```

Which one of the following expressions could be used as a Q-adequate Invariant to prove this assertion using the **Repeat_Until** ROI given in the Problem Set 5 Solution Notes? (Circle ONE only.)

- i. (Found \land Key=List[Index]) V (\neg Found $\land \forall$ (Index<i \le N) Key \ne List[i])
- ii. [(Found \land Key=List[Index]) V (\neg Found $\land \forall$ (i \in [1,Index) U (Index,N]) Key \neq List[i])] \land iorder (where iorder = \forall 1 \leq i<N List[i] \geq List[i+1])
- iii. (Found \land Key=List[Index]) V (\neg Found $\land \forall$ ($1 \le i \le Index$) Key \neq List[i])
- iv. Key=List[Index] V (¬Found)
- v. (Found \land Key=List[Index] $\land \forall$ (1 \le i<Index) \bullet Key \ne List[i])
- vi. (Found \land Key=List[Index] $\land \forall$ (1 \le i<Index) \bullet Key \ne List[i]) V (\neg Found)
- vii. true
- c. (12 pts.) Use the Q-adequate Invariant expression you identified in (b) above to prove that the "Initialization" and "Preservation" antecedents (only) of the **Repeat_Until** ROI for the given assertion hold. **Simplify logical expressions where appropriate and show** <u>all</u> **steps, including the effect of each individual assignment statement.**

i	Proof that	"Initia	lization"	holds
Ι.	Proor unau	Imua	nzauon	noids

ii. Proof that "Preservation" holds:

2. (10 pts.) Consider the assertion of **weak** correctness: {z<0} S {y=z+1} where z,y are integers. Which of the following observations/facts **would** allow one to deduce that the assertion is false, and which **would not**? Circle either "would" or "would not" as appropriate, considering the observations individually. To compensate for random guessing, your score in points will be 2 times the number of [correct minus incorrect] answers, or 0 – whichever is greater. Therefore, if you are not more than 50% sure of your answer, consider skipping the problem.

a. When the initial value of z is -1, S terminates and the final value of y is NOT equal to 0.	would	would not
b. When the initial value of z is even, S terminates and the final value of y is even.	would	would not
c. When the initial value of z is \geq -5, S terminates and the final value of y is less than the initial value of z.	would	would not
d. When the initial value of z is -17, S terminates and the final value of y is twice the final value of z.	would	would not
e. The program S is: while $z <> -5$ do $z := z+1;$ $y := z+1$ end_while	would	would not

3. (10 pts.) Circle either "valid" or "invalid" for each of the following *hypothesized* Rules of Inference. To compensate for random guessing, your score in points will be 2 times the number of [correct minus incorrect] answers, or 0 – whichever is greater. Therefore, if you are not more than 50% sure of your answer, consider skipping the problem.