Differential Geometry Lecture Notes

Instructor: Zhang Yingying Notes Taker: Xue Haotian, Yan Guangxi

Qiuzhen College, Tsinghua University 2022 Fall

Contents

Preface		1	
1	Diff	erential Geometry of Curves	4
	1.1	Linear algebra convention and its geometric explanation	4
	1.2	Parametrized Curves	5

Preface

Textbook Reference

- (1) Do Carmo: Differential Geometry of Curves and Surfaces.
- (2) Sebastián Montiel, Antorio Ros: Curves and Surfaces.
- (3) Chinese Title, add later

Course Introduction

The Goal of this course is to study the "differential geometry of curves and surfaces".

• **Geometry**: How is a geometric object curved / How to measure the curvedness of a geometric object?

Example. In the illustration below, (1) differs by "topology". In (2), they are topologically the same, while the lower curve is "more curved" than the upper curve.

Example. (3) differs by "topology", but in (4) $\mathbb{S}^2(1)$ is more curve than $\mathbb{S}^2(2)$, even topologically they are the same. (either homeomorphically or diffeomorphically).

The "Curved property" also affects geometric quantities, like length, area, volume, angle between the curves, etc.

Local Geometry: How does a "curved" space look like in a neighborhood of a point? Global Geometry: If we know how a "curved space" is look like at each point, can we observe how such space looks like globally? This is usually related to topological problems.

• **Differential**: In this course, by "smoothness" we mean the geometric objects we'll study are "nice" enough so we can apply "calculus" tools to study them.

Main tool: Calculus! We'll see how powerful calculus is in this course, especially, like the maximal principle, integration by parts(stoke's theorem), Taylor's expansion, implicit function theory, etc.

Queastion: How to tell the "smoothness"?(Need to find good parametrization)Finding a good "gauge"(that is "coordinate") to work with is also an important question in geometry.

•Curves: 1-d geometric object.

Surfaces: 2-d geometric object.

Remark. In this course, we only focus on curves and surfaces in \mathbb{R}^3 . However, as a training on preparing for later geometry course, I suggest you also try to think about the ambiant space is \mathbb{S}^3 or \mathbb{H}^3 .

•Intrinsic geometry: Study the geometric object without considering the ambient space. This begins from the Gauss's elegant theorem and was developed by Riemann.

Example. Consider the unit sphere \mathbb{S}^2

Extrinsic geometry: view it as $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 .

Intrinsic geometry: (θ, φ) or (φ, θ) are "essential" coordinates on \mathbb{S}^2 .

$$ds^2 = d\varphi^2 + (\sin\varphi)^2 d\theta^2$$

(Caution: (θ, φ) is outer normal, while (φ, θ) is inner normal.)

- Useful / Common techniques:
- 1) Comparison: compare the studied geometric object with "model space". It's very important to study examples in geometry. As a suggestion you are expected to spend time to play with \mathbb{S}^2 . For example: How is \mathbb{S}^2 curved? What's the shortest line in \mathbb{S}^2 ? How many symmetries are there on \mathbb{S}^2 ? Can you add "extra structure" on \mathbb{S}^2 to make it a complex object? Is this "extra structure" "rigid"? What/s the "moment map" on \mathbb{S}^2 ? Does there exist a "holomorphic" map from \mathbb{S}^2 to a torus, or a surface of arbitrary genus?

If we consider an "Energy minimizing map" from \mathbb{S}^2 to \mathbb{S}^2 , what can we say about such map?(It is holomorphic/antiholomorphic.)

After you have learned Riemann Geometry, you'll see an energy minimizing map from \mathbb{S}^2 to a Riemannian manifold must be an angle-preserving map(conformal map).

What kinds of 2-d geometric space could be \mathbb{S}^2 ?(this is a global geometry problem.)(i.e. what kinds of geometric conditions can characterize \mathbb{S}^2 ?)

- 2) To study higher dimensional objects, it's also important to understand lower dimensional objects, and it's also important to understand lower dimensional objects contained in the studied objects.
- 3) Study "functions" (more generally sections, including functions, vector fields, differential forms, etc.) on a given geometric object.

Example. On a closed surface $(\mathbb{S}^2, \mathbb{T}^2, \Sigma_g)$ (compact without boundary) there is no non-constant harmonic function. (i.e. $\Delta u = 0$) (Analysis will get involved.)

We usually care about those functions related to geometry, such as distance functions, curvature-related functions, etc.

Example (More trivial than the last one). Consider f''(x) = 0, what can you say of the solution of it when x lies on a line and when x lies on a circle?

Chapter 1

Differential Geometry of Curves

1.1 Linear algebra convention and its geometric explanation

• We use "ROW VECTOR" in this course, i.e

$$v \in \mathbb{R}^n, v = (v_1, v_2, \cdots, v_n)$$

• let $e_1=(1,0,\cdots,0),\cdots,e_n=(0,\cdots,1)$ be the standard basis, then

$$v = \sum_{i=1}^{n} v^{i} e_{i} = \begin{bmatrix} v^{1} & v^{2} & \cdots & v^{n} \end{bmatrix} \begin{bmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{n} \end{bmatrix}$$

• $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ (non-degenerate) linear map

$$v \mapsto \varphi(v) = v \cdot A.$$

This corresponds to the right action of $GL(n,\mathbb{R})$ on \mathbb{R}^n .

$$\Rightarrow \varphi(e_i) = e_j \cdot A = \sum_{i=1}^n A_j^i e_i$$
 (taking the j-th row of A)

$$A_j^{\ i}$$
 {upper index: column index lower index: row index

$$\Rightarrow \varphi \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} \varphi(e_1) \\ \varphi(e_2) \\ \vdots \\ \varphi(e_n) \end{bmatrix} = \begin{bmatrix} e_1 \cdot A \\ e_2 \cdot A \\ \vdots \\ e_n \cdot A \end{bmatrix} = A \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

Remark (Important!). In row vector convention, a non-degenerate linear map corresponds to the right action of $GL(n,\mathbb{R})$ on \mathbb{R}^n . But this induces left action of $GL(n,\mathbb{R})$ on the orthonormal basis (frame) $\{e_1, e_2, \ldots, e_n\}$. This phenomenon provides an important example in differential geometry, which will be explained later in the theory of principle bundle.(i.e. let G be a lie group, $G \curvearrowright M$ being a right action, where M is a differentiable manifold, then this right action induces a left action of G on the frame bundle of M.)

Let $\{\tilde{e}_1,\ldots,\tilde{e}_n\}$ be another basis of \mathbb{R}^n . Let f be the corresponding linear map, i.e.

$$f \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} \tilde{e}_1 \\ \tilde{e}_2 \\ \vdots \\ \tilde{e}_n \end{bmatrix} = B \cdot \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$\Rightarrow \tilde{e}_k = \sum_{j=1}^n B_k^{\ j} e_j$$

We compare the matrix of φ in terms of $\{\tilde{e}_1 \cdots \tilde{e}_n\}$

$$\varphi \begin{bmatrix} \tilde{e}_1 \\ \vdots \\ \tilde{e}_n \end{bmatrix} = \varphi \begin{bmatrix} B \begin{bmatrix} \tilde{e}_1 \\ \vdots \\ e_n \end{bmatrix} \end{bmatrix} = B \cdot \varphi \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} \text{ (linearity of } \varphi \text{)}$$

$$= BA \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} = BAB^{-1} \begin{bmatrix} \tilde{e}_1 \\ \vdots \\ e_n \end{bmatrix}$$

Note in this case.

$$(\varphi \circ f) \left[\begin{array}{c} e_1 \\ \vdots \\ e_n \end{array} \right] = BA \left[\begin{array}{c} e_1 \\ \vdots \\ e_n \end{array} \right]$$

In terms of entries,

$$\varphi(\tilde{e}_k) = \varphi(\sum_{j=1}^n B_k^{\ j} e_j) = \sum_{j=1}^n B_k^{\ j} \varphi(e_j) \quad \text{(linearity)}$$

$$= \sum_{i,j=1}^n B_k^{\ j} A_j^{\ i} e_i = \sum_{i,j,p=1}^n B_k^{\ j} A_j^{\ i} (B^{-1})_i^{\ p} \tilde{e}_p$$

Remark. This computation tells that the row vector convention yields to the fact that $GL(n,\mathbb{R})$ acting on itself from the right when we consider the action of $GL(n,\mathbb{R})$ on \mathbb{R}^n . In modern Geometry, it's more common to use column vector as convention. This row vector convention was adopted by S.S. Chern and also Do Cormo's book.

1.2 Parametrized Curves

Definition 1.2.1. Let I = (a, b), if $\alpha : I \to \mathbb{R}^3$ is a C^{∞} map,

$$t \mapsto (x(t), y(t), z(t))$$

then $\alpha(t)$ is a parametrized differentiable curve in \mathbb{R}^3 . The image of α is called the trace of the curve.

Remark.

- 1) a, b could be finite number or infinity.
- 2) Same curve may have different parametrizations.
- 3) The parametrization automatically gives the direction of the motion on the curve.

4) "Differentiable" just means $\alpha(t)$ is a C^{∞} map, it does not say the (trace of) curve can not have singularities.

Example.

(1) $\alpha(t) = (t, |t|)$ is not a differentiable curve.

(2) $\alpha = (t^3, t^2)$ is a differentiable curve. It can be also given by a equation $y^3 = x^2$, which is a cuspidal cubic curve.

(3) $\alpha(t) = (t^2 - 1, t^3 - t)$. This parametrization appers in the "blow-up" process of $y^2 = x^3 + x^2$. Here "blow-up" is introducing tangents to separate points.

Remark. (2) and (3) above may be the first examples you'll see in an algebraic geometry course.

Question: At the origin, what can you observe on (2) and (3)?

Answer: (2) $\alpha'(0) = 0$. (3) α is not one to one, but $\alpha'(0) \neq 0$.

Question: Define a differentiable curve in \mathbb{R}^3 and \mathbb{S}^n .

Remark. Among above differentiable parametrizations, (2) and (3) are differentiable curves. However, if we take $\beta(t) = (t, t^{\frac{2}{3}})$, this also parametrizes (2), but it's not a differentiable curve!

Definition 1.2.2. Let $\alpha(t): I \to \mathbb{R}^3$ be a parametrized differentiable curve, then at $t_0 \in I$.

$$\alpha'(t_0) = (x'(t_0), y'(t_0), z'(t_0))$$

is the velocity of $\alpha(t)$ at t_0 .

- (1) If $\alpha'(t_0) \neq 0$, we call $\alpha(t_0)$ a regular point.
- (2) If $\alpha'(t_0) = 0$, we call $\alpha(t_0)$ a singular point.
- (3) If for all $t \in I$, $\alpha'(t) \neq 0$, we call $\alpha(t)$ a regular curve.

Question: What can you say about C^{∞} parametrization for a regular curve?

Regular curve \iff at each point, there is a unique tangent line.

Example. $\alpha(t) = (t^3, t^2)$ is not a regular curve. (Since $\alpha'(0) = 0$)

Example. $\alpha(t) = (t^2 - 1, t^3, t)$ is a regular curve.

Definition 1.2.3. Let $\alpha(t)$ be a regular curve, then the tangent line at t_0 is

$$l(t) = \alpha(t_0) + \alpha'(t_0)(t - t_0))$$

Definition 1.2.4. Let $\alpha(t)$ be a regular curve, the arc-length of $\alpha(t)$ is

$$s(t) = \int_{t_0}^t \left| \alpha'(t) \right| dt.$$

Then $s'(t) = |\alpha'(t)|$

Question What's $|\alpha'(t)|$?

 $\alpha(t): I \to \mathbb{R}^3$ is a curve in \mathbb{R}^3 . Here on \mathbb{R}^3 , as the Euclidean space, we always assume the standard Euclidean inner product on it, i.e. $\forall u = (u_1, u_2, u_3), v = (v_1, v_2, v_3)$

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3 = \sum_{i,j=1}^{3} \delta_{ij} u_i v_j$$

Let
$$\alpha(t) = (x(t), y(t), z(t)), \alpha'(t) = (x'(t), y'(t), z'(t)),$$
 then $|\alpha'(t)| = \sqrt{\langle \alpha'(t), \alpha'(t) \rangle}$

Exercise. Review vector Calculations, such as dot product, cross product and their properties, especially geometric meanie of these calculation, such as length, area, volume, angle, orientation, etc.

Question: Can you define the arclength of a regular curve in \mathbb{R}^n ; How about on \mathbb{S}^n ?

• Arclength parameter (an intrinsic parametrization of a curve)

Example. On a straight line, x=t describes the distance of the point away from the origin.

On a general curve, we also want "some" parameter, which describes the arclength of point away from the initial point. This can happen iff $|\alpha'(t)| = 1$, i.e. a point on the curve moves in a unit speed.

$$\Rightarrow s(t) = \int_0^t \mathrm{d}t = t.$$

Question: For a given regular curve $\alpha(t): I \to \mathbb{R}^3$, how to find such parameter?

Answer: $s(t) = \int_{t_0}^t |\alpha'(t)| dt$ is a function in t, and $s'(t) = |\alpha'(t)| \neq 0$ (because the curve is regular). By the implicit function theorem, there is a function

$$t = t(s), t'(s) = \frac{1}{|\alpha'(t)|}.$$

This implies that

$$\alpha(t) = \alpha(t(s)) = (x(t(s)), y(t(s)), z(t(s)))$$

$$\left|\alpha'(s)\right| = \left|\alpha'(t)t'(s)\right| = \left|\alpha'(t)\right|\left|t'(s)\right| = 1$$

Convention In this course, we only consider differentiable regular curves, which are parametrized by the arclength (for convenience).

Remark. In this course, we only consider the curve without self-intersecting points, i.e curves "embedded into" \mathbb{R}^3 . Here "embedded" means $d\alpha$ is a linear isomorphism and α is homeomorphic to its image.