Package 'hdm'

May 11, 2018

Type Package
Title High-Dimensional Metrics
Version 0.2.4
Date 2018-05-13
Depends R (>= $3.0.0$)
Description Implementation of selected high-dimensional statistical and econometric methods for estimation and inference. Efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/ structural parameters are provided which appear in high-dimensional approximately sparse models. Including functions for fitting heteroscedastic robust Lasso regressions with non-Gaussian errors and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference and rely on a theoretically grounded, data-driven choice of the penalty. Chernozhukov, Hansen, Spindler (2016) <arxiv:1603.01700>.</arxiv:1603.01700>
License MIT + file LICENSE
LazyData TRUE
Imports MASS, glmnet, ggplot2, checkmate, Formula, methods
Suggests testthat, knitr, xtable
VignetteBuilder knitr
RoxygenNote 6.0.1
R topics documented:
hdm-package 2 AJR 3 BLP 4 cps2012 5 EminentDomain 5

2 hdm-package

Growth Data	7
lambdaCalculation	8
LassoShooting.fit	8
pension	9
	1
•	
•	
1	
1	
•	
•	
1	
ϵ	
·	
tsls	2
3	4
_	lambdaCalculation LassoShooting.fit pension 1 pridict.rlassologit 1 print.rlasso 1 print.rlassoEffects 1 print.rlassoIV 1 print.rlassoIVselectX 1 print.rlassoIVselectZ 1 print.rlassoOgitEffects 1 print.tsls 1 rlasso 1 rlassoATE 2 rlassoIV 2 rlassoIV selectX 2 rlassoIVselectZ 2 rlassologit 2 rlassologitEffects 3 summary.rlassoEffects 3 tsls 3

Description

hdm-package

This package implements methods for estimation and inference in a high-dimensional setting.

hdm: High-Dimensional Metrics

Details

Package: hdm Type: Package Version: 0.1 Date: 2015-05-

Date: 2015-05-25 License: GPL-3

This package provides efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/structural parameters appearing in high-dimensional approximately sparse models. The package includes functions for fitting heteroskedastic robust Lasso regressions with non-Gaussian erros and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference. Moreover, a theoretically grounded, data-driven choice of the penalty level is provided.

AJR 3

Author(s)

Victor Chernozhukov, Christian Hansen, Martin Spindler

Maintainer: Martin Spindler < spindler@mea.mpisoc.mpg.de>

References

A. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. *Econometrica* 80 (6), 2369-2429.

A. Belloni, V. Chernozhukov and C. Hansen (2013). Inference for high-dimensional sparse econometric models. In Advances in Economics and Econometrics: 10th World Congress, Vol. 3: Econometrics, Cambirdge University Press: Cambridge, 245-295.

A. Belloni, V. Chernozhukov, C. Hansen (2014). Inference on treatment effects after selection among high-dimensional controls. The Review of Economic Studies 81(2), 608-650.

AJR

AJR data set

Description

Dataset on settler mortality.

Format

Mort Settler mortality

logMort logarithm of Mort

Latitude Latitude

Latitude2 Latitude^2

Africa Africa

Asia Asia

Namer North America

Samer South America

Neo Neo-Europes

GDP GDP

Exprop Average protection against expropriation risk

Details

Data set was analysed in Acemoglu et al. (2001). A detailed description of the data can be found at http://economics.mit.edu/faculty/acemoglu/data/ajr2001

References

D. Acemoglu, S. Johnson, J. A. Robinson (2001). Colonial origins of comparative development: an empirical investigation. American Economic Review, 91, 1369–1401.

Examples

data (AJR)

4 BLP

BLP

BLP data set

Description

Automobile data set from the US.

Format

```
model.name model name
model.id model id
firm.id firm id
cdid cdid
id id
price log price
mpg miles per gallon
mpd miles per dollar
hpwt horse power per weight
air air conditioning (binary variable)
space size of the car
share market share
outshr share s0
y outcome variable defined as log(share) - log(outshr)
trend time trend
```

Details

Data set was analysed in Berry, Levinsohn and Pakes (1995). The data stem from annual issues of the Automotive News Market Data Book. The data set inloudes information on all models marketed during the the period beginning 1971 and ending in 1990 cotaining 2217 model/years from 997 distinct models. A detailed description is given in BLP (1995, 868–871). The internal function constructIV constructs instrumental variables along the lines described and used in BLP (1995).

References

S. Berry, J. Levinsohn, A. Pakes (1995). Automobile Prices in Market Equilibrium D. Econometrica, 63(4), 841–890.

Examples

```
data(BLP)
```

cps2012 5

cps2012

cps2012 data set

Description

Census data from the US for the year 2012.

Format

lnw log of hourly wage (annual earnings / annual hours)

female female indicator

married status six indicators: widowed, divorced, separated, nevermarried, and married (omitted)

education attainment six indicators: hsd08, hsd911, hsg, cg, ad, and sc (omitted)

region indicators four indicators: mw, so, we, and ne (omitted)

potential experience (max[0, age - years of education - 7]): exp1, exp2 (divided by 100), exp3 (divided by 1000), exp4 (divided by 10000)

weight March Supplement sampling weight

year CPS year

Details

The CPS is a monthly U.S. household survey conducted jointly by the U.S. Census Bureau and the Bureau of Labor Statistics. The data comprise the year 2012. This data set was used in Mulligan and Rubinstein (2008). The sample comprises white non-hipanic, ages 25-54, working full time full year (35+ hours per week at least 50 weeks), exclude living in group quarters, self-employed, military, agricultural, and private household sector, allocated earning, inconsistent report on earnings and employment, missing data.

References

C. B. Mulligan and Y. Rubinstein (2008). Selection, investment, and women's relative wages over time. The Quarterly Journal of Economics, 1061–1110.

Examples

data(BLP)

EminentDomain

Eminent Domain data set

Description

Dataset on judicial eminent domain decisions.

6 EminentDomain

Format

- y economic outcome variable
- x set of exogenous variables
- d eminent domain decisions
- z set of potential instruments

Details

Data set was analyzed in Belloni et al. (2012). They estimate the effect of judicial eminent domain decisions on economic outcomes with instrumental variables (IV) in a setting high a large set of potential IVs. A detailed decription of the data can be found at https://www.econometricsociety.

org/publications/econometrica/2012/11/01/sparse-models-and-methods-optimal-instance

The data set contains four "sub-data sets" which differ mainly in the dependent variables: repeat-sales FHFA/OFHEO house price index for metro (FHFA) and non-metro (NM) area, the Case-Shiller home price index (CS), and state-level GDP from the Bureau of Economic Analysis - all transformed with the logarithm. The structure of each subdata set is given above. In the data set the following variables and name conventions are used: "numpanelskx_..." is the number of panels with at least k members with the characteristic following the "_". The probability controls (names start with "F_prob_") follow a similar naming convention and give the probability of observing a panel with characteristic given following second "_" given the characteristics of the pool of judges available to be assigned to the case.

Characteristics in the data for the control variables or instruments:

noreligion judge reports no religious affiliation

jd_public judge's law degree is from a public university

dem judge reports being a democrat

female judge is female

nonwhite judge is nonwhite (and not black)

black judge is black

jewish judge is Jewish

catholic judge is Catholic

mainline baseline religion

protestant belongs to a protestant church

evangelical belongs to an evangelical church

instate_ba judge's undergraduate degree was obtained within state

ba public judge's undergraduate degree was obtained at a public university

elev judge was elevated from a district court

year year dummy (reference category is one year before the earliest year in the data set (excluded))

circuit dummy for the circuit level (reference category excluded)

missing_cy_12 a dummy for whether there were no cases in that circuit-year

numcasecat_12 the number of takings appellate decisions

References

D. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. *Econometrica* 80 (6), 2369–2429.

Growth Data 7

Examples

data(EminentDomain)

Growth Data

Growth data set

Description

Data set of growth compiled by Barro Lee.

Format

Dataframe with the following variables:

outcome dependent variable: national growth rates in GDP per capita for the periods 1965-1975 and 1975-1985

x covariates which might influence growth

Details

The data set contains growth data of Barro-Lee. The Barro Lee data consists of a panel of 138 countries for the period 1960 to 1985. The dependent variable is national growth rates in GDP per capita for the periods 1965-1975 and 1975-1985. The growth rate in GDP over a period from t_1 to t_2 is commonly defined as $\log(GDP_{t_1}/GDP_{t_2})$. The number of covariates is p=62. The number of complete observations is 90.

Source

```
The full data set and further details can be found at http://www.nber.org/pub/barro.lee,http://www.barrolee.com, and, http://www.bristol.ac.uk//Depts//Economics//Growth//barlee.htm.
```

References

R.J. Barro, J.W. Lee (1994). Data set for a panel of 139 countries. NBER.

R.J. Barro, X. Sala-i-Martin (1995). Economic Growth. McGrwa-Hill, New York.

Examples

```
data(GrwothData)
```

8 LassoShooting.fit

lambdaCalculation Function for Calculation of the penalty parameter

Description

This function implements different methods for calculation of the penalization parameter λ . Further details can be found under rlasso.

Usage

```
lambdaCalculation(penalty = list(homoscedastic = FALSE, X.dependent.lambda =
   FALSE, lambda.start = NULL, c = 1.1, gamma = 0.1), y = NULL, x = NULL)
```

Arguments

penalty

list with options for the calculation of the penalty.

- c and gamma constants for the penalty with default c=1.1 and gamma=0.1
- homoscedastic logical, if homoscedastic errors are considered (default FALSE). Option none is described below.
- X.dependent.lambda if independent or dependent design matrix X is assumed for calculation of the parameter λ
- numSim number of simulations for the X-dependent methods
- lambda.start initial penalization value, compulsory for method "none"

y residual which is used for calculation of the variance or the data-dependent loadings

x matrix of regressor variables

Value

The functions returns a list with the penalty lambda which is the product of lambda0 and Ups0. Ups0 denotes either the variance (independent case) or the data-dependent loadings for the regressors. method gives the selected method for the calculation.

```
LassoShooting.fit Shooting Lasso
```

Description

Implementation of the Shooting Lasso (Fu, 1998) with variable dependent penalization weights.

Usage

```
LassoShooting.fit(x, y, lambda, control = list(maxIter = 1000, optTol = 10^{(-5)}, zeroThreshold = 10^{(-6)}), XX = NULL, Xy = NULL, beta.start = NULL)
```

pension 9

Arguments

X	matrix of regressor variables (n times p where n denotes the number of observations and p the number of regressors)
У	dependent variable (vector or matrix)
lambda	vector of length p of penalization parameters for each regressor
control	list with control parameters: $maxIter$ maximal number of iterations, optTol tolerance for parameter precision, zeroThreshold threshold applied to the estimated coefficients for numerical issues.
XX	optional, precalculated matrix $t(X) * X$
Ху	optional, precalculated matrix $t(X) * y$
beta.start	start value for beta

Details

The function implements the Shooting Lasso (Fu, 1998) with variable dependent penalization. The arguments XX and Xy are optional and allow to use precalculated matrices which might improve performance.

Value

```
coefficients estimated coefficients by the Shooting Lasso Algorithm
coef.list matrix of coefficients from each iteration
num.it number of iterations run
```

References

Fu, W. (1998). Penalized regressions: the bridge vs the lasso. *Journal of Computational and Graphical Software* 7, 397-416.

pension	Pension 401(k) data set	

Description

Data set on financial wealth and 401(k) plan participation

Format

Dataframe with the following variables (amongst others):

```
p401 participation in 401(k)
e401 eligibility for 401(k)
a401 401(k) assets
tw total wealth (in US $)
tfa financial assets (in US $)
net_tfa net financial assets (in US $)
nifa non-401k financial assets (in US $)
```

10 pension

```
net nifa net non-401k financial assets
net_n401 net non-401(k) assets (in US $)
ira individual retirement account (IRA)
inc income (in US $)
age age
fsize family size
marr married
pira participation in IRA
db defined benefit pension
hown home owner
educ education (in years)
male male
twoearn two earners
nohs, hs, smcol, col dummies for education: no high-school, high-school, some college, college
hmort home mortage (in US $)
hequity home equity (in US $)
hval home value (in US $)
```

Details

The sample is drawn from the 1991 Survey of Income and Program Participation (SIPP) and consists of 9,915 observations. The observational units are household reference persons aged 25-64 and spouse if present. Households are included in the sample if at least one person is employed and no one is self-employed. The data set was analysed in Chernozhukov and Hansen (2004) and Belloni et al. (2014) where further details can be found. They examine the effects of 401(k) plans on wealth using data from the Survey of Income and Program Participation using 401(k) eligibility as an instrument for 401(k) participation.

References

V. Chernohukov, C. Hansen (2004). The impact of 401(k) participation on the wealth distribution: An instrumental quantile regression analysis. The Review of Economic and Statistics 86 (3), 735–751.

A. Belloni, V. Chernozhukov, I. Fernandez-Val, and C. Hansen (2014). Program evaluation with high-dimensional data. Working Paper.

Examples

data(pension)

predict.rlassologit 11

Description

Objects of class rlassologit are constructed by rlassologit. print.rlassologit prints and displays some information about fitted rlassologit objects. summary.rlassologit summarizes information of a fitted rlassologit object. predict.rlassologit predicts values based on a rlassologit object. model.matrix.rlassologit constructs the model matrix of a lasso object.

Usage

Arguments

object	an object of class rlassologit
newdata	new data set for prediction
type	type of prediction required. The default ('response) is on the scale of the response variable; the alternative 'link' is on the scale of the linear predictors.
	arguments passed to the print function and other methods
X	an object of class rlassologit
all	logical, indicates if coefficients of all variables (TRUE) should be displayed or only the non-zero ones (FALSE)
digits	significant digits in printout

12 print.rlassoEffects

print.rlasso Methods for S3 object rlasso

Description

Objects of class rlasso are constructed by rlasso. print.rlasso prints and displays some information about fitted rlasso objects. summary.rlasso summarizes information of a fitted rlasso object. predict.rlasso predicts values based on a rlasso object. model.matrix.rlasso constructs the model matrix of a rlasso object.

Usage

```
## S3 method for class 'rlasso'
print(x, all = TRUE, digits = max(3L, getOption("digits") -
3L), ...)

## S3 method for class 'rlasso'
summary(object, all = TRUE, digits = max(3L,
    getOption("digits") - 3L), ...)

## S3 method for class 'rlasso'
model.matrix(object, ...)

## S3 method for class 'rlasso'
predict(object, newdata = NULL, ...)
```

Arguments

```
    an object of class rlasso
    all logical, indicates if coefficients of all variables (TRUE) should be displayed or only the non-zero ones (FALSE)
    digits significant digits in printout
    arguments passed to the print function and other methods
    object an object of class rlasso
    newdata new data set for prediction. An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are returned.
```

Description

Objects of class rlassoEffects are constructed by rlassoEffects. print.rlassoEffects prints and displays some information about fitted rlassoEffect objects. summary.rlassoEffects summarizes information of a fitted rlassoEffect object and is described at summary.rlassoEffects. confint.rlassoEffects extracts the confidence intervals. plot.rlassoEffects plots the estimates with confidence intervals.

print.rlassoIV 13

Usage

```
## S3 method for class 'rlassoEffects'
print(x, digits = max(3L, getOption("digits") - 3L),
    ...)

## S3 method for class 'rlassoEffects'
confint(object, parm, level = 0.95, joint = FALSE,
    ...)

## S3 method for class 'rlassoEffects'
plot(x, joint = FALSE, level = 0.95, main = "",
    xlab = "coef", ylab = "", xlim = NULL, ...)
```

Arguments

X	an object of class rlassoEffects
digits	significant digits in printout
	arguments passed to the print function and other methods.
object	an object of class rlassoEffects
parm	a specification of which parameters are to be given confidence intervals among the variables for which inference was done, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level	confidence level required
joint	logical, if TRUE joint confidence intervals are calculated.
main	an overall title for the plot
xlab	a title for the x axis
ylab	a title for the y axis
xlim	vector of length two giving lower and upper bound of x axis

print.rlassoIV

Methods for S3 object rlassoIV

Description

Objects of class rlassoIV are constructed by rlassoIV. print.rlassoIV prints and displays some information about fitted rlassoIV objects. summary.rlassoIV summarizes information of a fitted rlassoIV object. confint.rlassoIV extracts the confidence intervals.

Usage

Arguments

```
an object of class rlassoIV

digits significant digits in printout

arguments passed to the print function and other methods

object An object of class rlassoIV

parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

level confidence level required.
```

```
print.rlassoIVselectX
```

Methods for S3 object rlassoIVselectX

Description

Objects of class rlassoIVselectX are constructed by rlassoIVselectX.print.rlassoIVselectX prints and displays some information about fitted rlassoIVselectX objects. summary.rlassoIVselectX summarizes information of a fitted rlassoIVselectX object. confint.rlassoIVselectX extracts the confidence intervals.

Usage

```
## S3 method for class 'rlassoIVselectX'
print(x, digits = max(3L, getOption("digits") - 3L),
    ...)

## S3 method for class 'rlassoIVselectX'
summary(object, digits = max(3L, getOption("digits")
    - 3L), ...)

## S3 method for class 'rlassoIVselectX'
confint(object, parm, level = 0.95, ...)
```

Arguments

X	an object of class rlassoIVselectX
digits	significant digits in printout
	arguments passed to the print function and other methods
object	an object of class rlassoIVselectX
parm	a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level	the confidence level required.

print.rlassoIVselectZ 15

```
print.rlassoIVselectZ
```

Methods for S3 object rlassoIVselectZ

Description

Objects of class rlassoIVselectZ are constructed by rlassoIVselectZ.print.rlassoIVselectZ prints and displays some information about fitted rlassoIVselectZ objects. summary.rlassoIVselectZ summarizes information of a fitted rlassoIVselectZ object. confint.rlassoIVselectZ extracts the confidence intervals.

Usage

```
## S3 method for class 'rlassoIVselectZ'
print(x, digits = max(3L, getOption("digits") - 3L),
    ...)

## S3 method for class 'rlassoIVselectZ'
summary(object, digits = max(3L, getOption("digits")
    - 3L), ...)

## S3 method for class 'rlassoIVselectZ'
confint(object, parm, level = 0.95, ...)
```

Arguments

```
an object of class rlassoIVselectZ

digits significant digits in printout
... arguments passed to the print function and other methods

object an object of class rlassoIVselectZ

parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

level confidence level required.
```

```
{\it Print.} {\it rlassologitEffects} \\ {\it Methods for S3 \ object} \ {\it rlassologitEffects}
```

Description

Objects of class rlassologitEffects are construced by rlassologitEffects or rlassologitEffect. print.rlassologitEffects prints and displays some information about fitted rlassologitEffect objects. summary.rlassologitEffects summarizes information of a fitted rlassologitEffects object. confint.rlassologitEffects extracts the confidence intervals.

16 print.rlassoTE

Usage

```
## S3 method for class 'rlassologitEffects'
print(x, digits = max(3L, getOption("digits") -
3L), ...)

## S3 method for class 'rlassologitEffects'
summary(object, digits = max(3L,
    getOption("digits") - 3L), ...)

## S3 method for class 'rlassologitEffects'
confint(object, parm, level = 0.95,
    joint = FALSE, ...)
```

Arguments

X	an object of class rlassologitEffects
digits	number of significant digits in printout
	arguments passed to the print function and other methods
object	an object of class rlassologitEffects
parm	a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level	confidence level required.
joint	logical, if joint confidence intervals should be clalculated

```
print.rlassoTE Methods for S3 object rlassoTE
```

Description

Objects of class rlassoTE are constructed by rlassoATE, rlassoATET, rlassoLATE, rlassoLATET, print.rlassoTE prints and displays some information about fitted rlassoTE objects. summary.rlassoTE summarizes information of a fitted rlassoTE object. confint.rlassoTE extracts the confidence intervals.

Usage

print.tsls 17

Arguments

X	an object of class rlassoTE
digits	number of significant digits in printout
	arguments passed to the print function and other methods
object	an object of class rlassoTE
parm	a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level	confidence level required.

print.tsls

Methods for S3 object tsls

Description

Objects of class tsls are constructed by tsls. print.tsls prints and displays some information about fitted tsls objects. summary.tsls summarizes information of a fitted tsls object.

Usage

```
## S3 method for class 'tsls'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'tsls'
summary(object, digits = max(3L, getOption("digits") - 3L),
...)
```

Arguments

```
x an object of class tsls
digits significant digits in printout
... arguments passed to the print function and other methods
object an object of class tsls
```

rlasso rlasso: Function for Lasso estimation under homoscedastic and heteroscedastic non-Gaussian disturbances

Description

The function estimates the coefficients of a Lasso regression with data-driven penalty under homoscedasticity and heteroscedasticity with non-Gaussian noise and X-dependent or X-independent design. The method of the data-driven penalty can be chosen. The object which is returned is of the S3 class rlasso.

18 rlasso

Usage

```
rlasso(x, ...)
## S3 method for class 'formula'
rlasso(formula, data = NULL, post = TRUE,
  intercept = TRUE, model = TRUE, penalty = list(homoscedastic = FALSE,
  X.dependent.lambda = FALSE, lambda.start = NULL, c = 1.1, gamma = 0.1/log(n)),
  control = list(numIter = 15, tol = 10^-5, threshold = NULL), ...)
## S3 method for class 'character'
rlasso(x, data = NULL, post = TRUE, intercept = TRUE,
 model = TRUE, penalty = list(homoscedastic = FALSE, X.dependent.lambda =
 FALSE, lambda.start = NULL, c = 1.1, gamma = 0.1/log(n)),
  control = list(numIter = 15, tol = 10^{-5}, threshold = NULL), ...)
## Default S3 method:
rlasso(x, y, post = TRUE, intercept = TRUE,
 model = TRUE, penalty = list(homoscedastic = FALSE, X.dependent.lambda =
 FALSE, lambda.start = NULL, c = 1.1, gamma = 0.1/log(n),
  control = list(numIter = 15, tol = 10^-5, threshold = NULL), ...)
```

Arguments

x regressors (vector, matrix or object can be coerced to matrix)

... further arguments (only for consistent defintion of methods)

formula an object of class "formula" (or one that can be coerced to that class): a symbolic

description of the model to be fitted in the form y~x

data an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from

which rlasso is called.

post logical. If TRUE, post-Lasso estimation is conducted.

intercept logical. If TRUE, intercept is included which is not penalized.

model logical. If TRUE (default), model matrix is returned.

penalty list with options for the calculation of the penalty.

- c and gamma constants for the penalty with default c=1.1 and gamma=0.1
- homoscedastic logical, if homoscedastic errors are considered (default FALSE). Option none is described below.
- X.dependent.lambda logical, TRUE, if the penalization parameter depends on the the design of the matrix x. FALSE, if independent of the design matrix (default).
- numSim number of simulations for the dependent methods, default=5000
- lambda.start initial penalization value, compulsory for method "none"

control list with co

У

list with control values. numIter number of iterations for the algorithm for the estimation of the variance and data-driven penalty, ie. loadings, tol tolerance for improvement of the estimated variances. threshold is applied to the final estimated lasso coefficients. Absolute values below the threshold are set to zero.

dependent variable (vector, matrix or object can be coerced to matrix)

rlasso 19

Details

The function estimates the coefficients of a Lasso regression with data-driven penalty under homoscedasticity / heteroscedasticity and non-Gaussian noise. The options homoscedastic is a logical with FALSE by default. Moreover, for the calculation of the penalty parameter it can be chosen, if the penalization parameter depends on the design matrix (X.dependent.lambda=TRUE) or independent (default, X.dependent.lambda=FALSE). The default value of the constant c is 1.1 in the post-Lasso case and 0.5 in the Lasso case. A special option is to set homoscedastic to none and to supply a values lambda.start. Then this value is used as penalty parameter with independent design and heteroscedastic errors to weight the regressors. For details of the implementation of the Algorithm for estimation of the data-driven penalty, in particular the regressor-independent loadings, we refer to Appendix A in Belloni et al. (2012). When the option "none" is chosen for homoscedastic (together with lambda.start), lambda is set to lambda.start and the regressor-independent loadings und heteroscedasticity are used. The options "X-dependent" and "X-independent" under homoscedasticity are described in Belloni et al. (2013).

The option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables.

Value

rlasso returns an object of class rlasso. An object of class "rlasso" is a list containing at least the following components:

coefficients parameter estimates

beta parameter estimates (named vector of coefficients without intercept)

intercept value of the intercept

index index of selected variables (logical vector)

lambda data-driven penalty term for each variable, product of lambda0 (the penalization

parameter) and the loadings

lambda0 penalty term

loadings loading for each regressor

residuals residuals, response minus fitted values sigma root of the variance of the residuals

iter number of iterations

call function call options options

model matrix (if model = TRUE in function call)

References

A. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. *Econometrica* 80 (6), 2369-2429.

A. Belloni, V. Chernozhukov and C. Hansen (2013). Inference for high-dimensional sparse econometric models. In Advances in Economics and Econometrics: 10th World Congress, Vol. 3: Econometrics, Cambirdge University Press: Cambridge, 245-295.

20 rlassoATE

Examples

```
set.seed(1)
n = 100 #sample size
p = 100 # number of variables
s = 3 # nubmer of variables with non-zero coefficients
X = Xnames = matrix(rnorm(n*p), ncol=p)
colnames(Xnames) <- paste("V", 1:p, sep="")
beta = c(rep(5,s), rep(0,p-s))
Y = X%*%beta + rnorm(n)
reg.lasso <- rlasso(Y~Xnames)
Xnew = matrix(rnorm(n*p), ncol=p) # new X
colnames(Xnew) <- paste("V", 1:p, sep="")
Ynew = Xnew%*%beta + rnorm(n) #new Y
yhat = predict(reg.lasso, newdata = Xnew)</pre>
```

rlassoATE

Functions for estimation of treatment effects

Description

This class of functions estimates the average treatment effect (ATE), the ATE of the tretated (ATET), the local average treatment effects (LATE) and the LATE of the tretated (LATET). The estimation methods rely on immunized / orthogonal moment conditions which guarantee valid post-selection inference in a high-dimensional setting. Further details can be found in Belloni et al. (2014).

Usage

```
rlassoATE(x, ...)
## Default S3 method:
rlassoATE(x, d, y, bootstrap = "none", nRep = 500, ...)
## S3 method for class 'formula'
rlassoATE(formula, data, bootstrap = "none", nRep = 500,
  . . . )
rlassoATET(x, ...)
## Default S3 method:
rlassoATET(x, d, y, bootstrap = "none", nRep = 500, ...)
## S3 method for class 'formula'
rlassoATET(formula, data, bootstrap = "none", nRep = 500,
  ...)
rlassoLATE(x, ...)
## Default S3 method:
rlassoLATE(x, d, y, z, bootstrap = "none", nRep = 500,
 post = TRUE, intercept = TRUE, ...)
```

rlassoATE 21

```
## S3 method for class 'formula'
rlassoLATE(formula, data, bootstrap = "none", nRep = 500,
    post = TRUE, intercept = TRUE, ...)

rlassoLATET(x, ...)

## Default S3 method:
rlassoLATET(x, d, y, z, bootstrap = "none", nRep = 500,
    post = TRUE, intercept = TRUE, ...)

## S3 method for class 'formula'
rlassoLATET(formula, data, bootstrap = "none", nRep = 500,
    post = TRUE, intercept = TRUE, ...)
```

Arguments

X	exogenous variables	
	arguments passed, e.g. intercept and post	
d	treatment variable (binary)	
У	outcome variable / dependent variable	
bootstrap	boostrap method which should be employed: 'none', 'Bayes', 'normal', 'wild'	
nRep	number of replications for the bootstrap	
formula	An object of class Formula of the form " $y \sim x + d \mid x$ " with y the outcome variable, d treatment variable, and x exogenous variables.	
data	An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassoATE is called.	
Z	instrumental variables (binary)	
post	logical. If TRUE, post-lasso estimation is conducted.	
intercept	logical. If TRUE, intercept is included which is not penalized.	

Details

Details can be found in Belloni et al. (2014).

Value

Functions return an object of class rlassoTE with estimated effects, standard errors and individual effects in the form of a list.

References

A. Belloni, V. Chernozhukov, I. Fernandez-Val, and C. Hansen (2014). Program evaluation with high-dimensional data. Working Paper.

22 rlassoEffects

rlassoEffects

rigorous Lasso for Linear Models: Inference

Description

Estimation and inference of (low-dimensional) target coefficients in a high-dimensional linear model.

Usage

```
rlassoEffects(x, ...)
## Default S3 method:
rlassoEffects(x, y, index = c(1:ncol(x)),
   method = "partialling out", I3 = NULL, post = TRUE, ...)

## S3 method for class 'formula'
rlassoEffects(formula, data, I, method = "partialling out",
   included = NULL, post = TRUE, ...)

rlassoEffect(x, y, d, method = "double selection", I3 = NULL, post = TRUE,
   ...)
```

Arguments

outcome variable (vector or matrix) vector of integers, logicals or variables names indicating the position (column) of variables (integer case), logical vector of length of the variables (TRUE or FALSE) or the variable names of x which should be used for inference / as treatment variables. method method for inference, either 'partialling out' (default) or 'double selection'. For the 'double selection'-method the logical vector I3 has same length as the number of variables in x; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the index; hence the intersection with index must be the empty set. In the case of partialling out it is ignored. post logical, if post Lasso is conducted with default TRUE. formula An element of class formula specifying the linear model. data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. An one-sided formula specifying the variables for which inference is conducted.	х	matrix of regressor variables serving as controls and potential treatments. For rlassoEffect it contains only controls, for rlassoEffects both controls and potential treatments. For rlassoEffects it must have at least two columns.
vector of integers, logicals or variables names indicating the position (column) of variables (integer case), logical vector of length of the variables (TRUE or FALSE) or the variable names of x which should be used for inference / as treatment variables. method method for inference, either 'partialling out' (default) or 'double selection'. For the 'double selection'-method the logical vector I3 has same length as the number of variables in x; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the index; hence the intersection with index must be the empty set. In the case of partialling out it is ignored. post logical, if post Lasso is conducted with default TRUE. formula An element of class formula specifying the linear model. data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. I An one-sided formula specifying the variables for which inference is conducted.		parameters passed to the rlasso function.
of variables (integer case), logical vector of length of the variables (TRUE or FALSE) or the variable names of x which should be used for inference / as treatment variables. method method for inference, either 'partialling out' (default) or 'double selection'. For the 'double selection'-method the logical vector I3 has same length as the number of variables in x; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the index; hence the intersection with index must be the empty set. In the case of partialling out it is ignored. post logical, if post Lasso is conducted with default TRUE. formula An element of class formula specifying the linear model. data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. I An one-sided formula specifying the variables for which inference is conducted.	У	outcome variable (vector or matrix)
For the 'double selection'-method the logical vector I3 has same length as the number of variables in x; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the index; hence the intersection with index must be the empty set. In the case of partialling out it is ignored. post logical, if post Lasso is conducted with default TRUE. formula An element of class formula specifying the linear model. data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. I An one-sided formula specifying the variables for which inference is conducted.	index	of variables (integer case), logical vector of length of the variables (TRUE or FALSE) or the variable names of x which should be used for inference $/$ as
number of variables in x; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the index; hence the intersection with index must be the empty set. In the case of partialling out it is ignored. post logical, if post Lasso is conducted with default TRUE. formula An element of class formula specifying the linear model. data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. I An one-sided formula specifying the variables for which inference is conducted.	method	method for inference, either 'partialling out' (default) or 'double selection'.
formula An element of class formula specifying the linear model. data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. I An one-sided formula specifying the variables for which inference is conducted.	13	number of variables in x; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the index; hence the intersection with index must
an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. I An one-sided formula specifying the variables for which inference is conducted.	post	logical, if post Lasso is conducted with default TRUE.
to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. I An one-sided formula specifying the variables for which inference is conducted.	formula	An element of class formula specifying the linear model.
	data	to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from
	I	An one-sided formula specifying the variables for which inference is conducted.
one-sided formula of variables which should be included in any case (only for method="double selection").	included	One-sided formula of variables which should be included in any case (only for method="double selection").
d variable for which inference is conducted (treatment variable)	d	variable for which inference is conducted (treatment variable)

rlassoEffects 23

Details

The functions estimates (low-dimensional) target coefficients in a high-dimensional linear model. An application is e.g. estimation of a treatment effect α_0 in a setting of high-dimensional controls. The user can choose between the so-called post-double-selection method and partialling-out. The idea of the double selection method is to select variables by Lasso regression of the outcome variable on the control variables and the treatment variable on the control variables. The final estimation is done by a regression of the outcome on the treatment effect and the union of the selected variables in the first two steps. In partialling-out first the effect of the regressors on the outcome and the treatment variable is taken out by Lasso and then a regression of the residuals is conducted. The resulting estimator for α_0 is normal distributed which allows inference on the treatment effect. It presents a wrap function for rlassoeffect which does inference for a single variable.

Value

The function returns an object of class rlassoEffects with the following entries:

coefficients vector with estimated values of the coefficients for each selected variable

se standard error (vector)
t t-statistic

pval p-value

samplesize sample size of the data set

index index of the variables for which inference is performed

References

A. Belloni, V. Chernozhukov, C. Hansen (2014). Inference on treatment effects after selection among high-dimensional controls. The Review of Economic Studies 81(2), 608-650.

Examples

```
library(hdm); library(ggplot2)
set.seed(1)
n = 100 \# sample size
p = 100 \# number of variables
s = 3 \# nubmer of non-zero variables
X = matrix(rnorm(n*p), ncol=p)
colnames(X) <- paste("X", 1:p, sep="")</pre>
beta = c(rep(3,s), rep(0,p-s))
y = 1 + X%*\$beta + rnorm(n)
data = data.frame(cbind(y,X))
colnames(data)[1] <- "y"</pre>
fm = paste("y ~", paste(colnames(X), collapse="+"))
fm = as.formula(fm)
lasso.effect = rlassoEffects(X, Y, index=c(1,2,3,50))
lasso.effect = rlassoEffects(fm, I = ~X1 + X2 + X3 + X50, data=data)
print(lasso.effect)
summary(lasso.effect)
confint(lasso.effect)
plot(lasso.effect)
```

24 rlassoIV

rlassoIV	Post-Selection and Post-Regularization Inference in Linear Models
	with Many Controls and Instruments

Description

The function estimates a treatment effect in a setting with very many controls and very many instruments (even larger than the sample size).

Usage

```
rlassoIV(x, ...)
## Default S3 method:
rlassoIV(x, d, y, z, select.Z = TRUE, select.X = TRUE,
    post = TRUE, ...)
## S3 method for class 'formula'
rlassoIV(formula, data, select.Z = TRUE, select.X = TRUE,
    post = TRUE, ...)
rlassoIVmult(x, d, y, z, select.Z = TRUE, select.X = TRUE, ...)
```

Arguments

Х	matrix of exogenous variables
	arguments passed to the function rlasso
d	endogenous variable
У	outcome / dependent variable (vector or matrix)
Z	matrix of instrumental variables
select.Z	logical, indicating selection on the instruments.
select.X	logical, indicating selection on the exogenous variables.
post	logical, wheter post-Lasso should be conducted (default=TRUE)
formula	An object of class Formula of the form " $y \sim x + d \mid x + z$ " with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassolv is called.

Details

The implementation for selection on x and z follows the procedure described in Chernozhukov et al. (2015) and is built on 'triple selection' to achieve an orthogonal moment function. The function returns an object of S3 class rlassoIV. Moreover, it is wrap function for the case that selection should be done only with the instruments Z (rlassoIVselectZ) or with the control variables X (rlassoIVselectX) or without selection (tsls). Exogenous variables x are automatically used as instruments and added to the instrument set z.

rlassoIVselectX 25

Value

```
an object of class rlassoIV containing at least the following components: coefficients estimated parameter value
```

```
se variance-covariance matrix
```

References

V. Chernozhukov, C. Hansen, M. Spindler (2015). Post-selection and post-regularization inference in linear models with many controls and instruments. American Economic Review: Paper & Proceedings 105(5), 486–490.

Examples

```
## Not run:
data(EminentDomain)
z <- EminentDomain$logGDP$z # instruments
x <- EminentDomain$logGDP$x # exogenous variables
y <- EminentDomain$logGDP$y # outcome variable
d <- EminentDomain$logGDP$d # treatment / endogenous variable
lasso.IV.Z = rlassoIV(x=x, d=d, y=y, z=z, select.X=FALSE, select.Z=TRUE)
summary(lasso.IV.Z)
confint(lasso.IV.Z)
## End(Not run)</pre>
```

rlassoIVselectX

Instrumental Variable Estimation with Selection on the exogenous Variables by Lasso

Description

This function estimates the coefficient of an endogenous variable by employing Instrument Variables in a setting where the exogenous variables are high-dimensional and hence selection on the exogenous variables is required. The function returns an element of class rlassolvselectX

Usage

```
rlassoIVselectX(x, ...)
## Default S3 method:
rlassoIVselectX(x, d, y, z, post = TRUE, ...)
## S3 method for class 'formula'
rlassoIVselectX(formula, data, post = TRUE, ...)
```

Arguments

```
    exogenous variables in the structural equation (matrix)
    arguments passed to the function rlasso
    endogenous variables in the structural equation (vector or matrix)
```

26 rlassoIVselectX

У	outcome or dependent variable in the structural equation (vector or matrix)
Z	set of potential instruments for the endogenous variables.
post	logical. If TRUE, post-lasso estimation is conducted.
formula	An object of class Formula of the form " $y \sim x + d \mid x + z$ " with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data	An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassolVselectX is called.

Details

The implementation is a special case of of Chernozhukov et al. (2015). The option post=TRUE conducts post-lasso estimation for the Lasso estimations, i.e. a refit of the model with the selected variables. Exogenous variables x are automatically used as instruments and added to the instrument set z.

Value

An object of class rlassoIVselectX containing at least the following components:

```
coefficients estimated parameter vector variance-covariance matrix residuals residuals samplesize sample size
```

References

Chernozhukov, V., Hansen, C. and M. Spindler (2015). Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments *American Economic Review, Papers and Proceedings* 105(5), 486–490.

Examples

rlassoIVselectZ 27

Description

This function selects the instrumental variables in the first stage by Lasso. First stage predictions are then used in the second stage as optimal instruments to estimate the parameter vector. The function returns an element of class rlassolVselectZ

Usage

Arguments

x	exogenous variables in the structural equation (matrix)
	arguments passed to the function rlasso.
d	endogenous variables in the structural equation (vector or matrix)
У	outcome or dependent variable in the structural equation (vector or matrix)
Z	set of potential instruments for the endogenous variables. Exogenous variables serve as their own instruments.
post	logical. If TRUE, post-lasso estimation is conducted.
intercept	logical. If TRUE, intercept is included in the second stage equation.
formula	An object of class Formula of the form " $y \sim x + d \mid x + z$ " with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data	An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassolVselectZ is called.

Details

The implementation follows the procedure described in Belloni et al. (2012). Option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables, to estimate the optimal instruments. The parameter vector of the structural equation is then fitted by two-stage least square (tsls) estimation.

28 rlassologit

Value

An object of class rlassoIVselect Z containing at least the following components:

```
coefficients estimated parameter vector
vcov variance-covariance matrix
residuals residuals
samplesize sample size
```

References

D. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. *Econometrica* 80 (6), 2369–2429.

rlassologit

rlassologit: Function for logistic Lasso estimation

Description

The function estimates the coefficients of a logistic Lasso regression with data-driven penalty. The method of the data-driven penalty can be chosen. The object which is returned is of the S3 class rlassologit

Usage

```
rlassologit(x, ...)
## S3 method for class 'formula'
rlassologit(formula, data = NULL, post = TRUE,
  intercept = TRUE, model = TRUE, penalty = list(lambda = NULL, c = 1.1,
  gamma = 0.1/log(n)), control = list(threshold = NULL), ...)

## S3 method for class 'character'
rlassologit(x, data = NULL, post = TRUE,
  intercept = TRUE, model = TRUE, penalty = list(lambda = NULL, c = 1.1,
  gamma = 0.1/log(n)), control = list(threshold = NULL), ...)

## Default S3 method:
rlassologit(x, y, post = TRUE, intercept = TRUE,
  model = TRUE, penalty = list(lambda = NULL, c = 1.1, gamma = 0.1/log(n)),
  control = list(threshold = NULL), ...)
```

Arguments

```
x regressors (matrix)

... further parameters passed to glmnet

formula an object of class 'formula' (or one that can be coerced to that class): a symbolic description of the model to be fitted in the form y \sim x.

data an optional data frame, list or environment.

post logical. If TRUE, post-lasso estimation is conducted.
```

rlassologit 29

intercept logical. If TRUE, intercept is included which is not penalized.

model logical. If TRUE (default), model matrix is returned.

penalty list with options for the calculation of the penalty. c and gamma constants for the penalty.

control list with control values. threshold is applied to the final estimated lasso coefficients. Absolute values below the threshold are set to zero.

y dependent variable (vector or matrix)

Details

The function estimates the coefficients of a Logistic Lasso regression with data-driven penalty. The option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables.

Value

rlassologit returns an object of class rlassologit. An object of class rlassologit is a list containing at least the following components:

coefficients parameter estimates parameter estimates (without intercept) beta intercept value of intercept index index of selected variables (logicals) penalty term lambda residuals residuals sigma root of the variance of the residuals function call call options options

References

Belloni, A., Chernozhukov and Y. Wei (2013). Honest confidence regions for logistic regression with a large number of controls. arXiv preprint arXiv:1304.3969.

Examples

```
## Not run:
library(hdm)
## DGP
set.seed(2)
n <- 250
p <- 100
px <- 10
X <- matrix(rnorm(n*p), ncol=p)
beta <- c(rep(2,px), rep(0,p-px))
intercept <- 1
P <- exp(intercept + X %*% beta)/(1+exp(intercept + X %*% beta))
y <- rbinom(length(y), size=1, prob=P)
## fit rlassologit object
rlassologit.reg <- rlassologit(y~X)
## methods</pre>
```

30 rlassologitEffects

```
summary(rlassologit.reg, all=F)
print(rlassologit.reg)
predict(rlassologit.reg, type='response')
X3 <- matrix(rnorm(n*p), ncol=p)
predict(rlassologit.reg, newdata=X3)
## End(Not run)</pre>
```

rlassologitEffects rigorous Lasso for Logistic Models: Inference

Description

The function estimates (low-dimensional) target coefficients in a high-dimensional logistic model.

Usage

```
rlassologitEffects(x, ...)
## Default S3 method:
rlassologitEffects(x, y, index = c(1:ncol(x)), I3 = NULL,
   post = TRUE, ...)
## S3 method for class 'formula'
rlassologitEffects(formula, data, I, included = NULL,
   post = TRUE, ...)
rlassologitEffect(x, y, d, I3 = NULL, post = TRUE)
```

Arguments

х	matrix of regressor variables serving as controls and potential treatments. For rlassologitEffect it contains only controls, for rlassologitEffects both controls and potential treatments. For rlassologitEffects it must have at least two columns.
• • •	additional parameters
У	outcome variable
index	vector of integers, logical or names indicating the position (column) or name of variables of x which should be used as treatment variables.
13	logical vector with same length as the number of controls; indicates if variables (TRUE) should be included in any case.
post	logical. If TRUE, post-Lasso estimation is conducted.
formula	An element of class formula specifying the linear model.
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
I	An one-sided formula specifying the variables for which inference is conducted.
included	One-sided formula of variables which should be included in any case.
d	variable for which inference is conducted (treatment variable)

rlassologitEffects 31

Details

The functions estimates (low-dimensional) target coefficients in a high-dimensional logistic model. An application is e.g. estimation of a treatment effect α_0 in a setting of high-dimensional controls. The function is a wrap function for rlassologitEffect which does inference for only one variable (d).

Value

The function returns an object of class rlassologitEffects with the following entries:

coefficients estimated value of the coefficients

t t-statistics
pval p-values
samplesize sample size of the data set

I index of variables of the union of the lasso regressions

References

A. Belloni, V. Chernozhukov, Y. Wei (2013). Honest confidence regions for a regression parameter in logistic regression with a loarge number of controls. cemmap working paper CWP67/13.

Examples

```
## Not run:
library(hdm)
## DGP
set.seed(2)
n <- 250
p <- 100
px <- 10
X <- matrix(rnorm(n*p), ncol=p)</pre>
colnames(X) = paste("V", 1:p, sep="")
beta \leftarrow c(rep(2,px), rep(0,p-px))
intercept <- 1
P <- exp(intercept + X %*% beta)/(1+exp(intercept + X %*% beta))
y <- rbinom(length(y), size=1, prob=P)
xd <- X[,2:50]
d < - X[,1]
logit.effect <- rlassologitEffect(x=xd, d=d, y=y)</pre>
logit.effects <- rlassologitEffects(X, y, index=c(1, 2, 40))</pre>
logit.effects.f <- rlassologitEffects(y \sim X, I = \sim V1 + V2)
## End(Not run)
```

32 tsls

```
summary.rlassoEffects
```

Summarizing rlassoEffects fits

Description

Summary method for class rlassoEffects

Usage

Arguments

```
object an object of class rlassoEffects, usually a result of a call to rlassoEffects
... further arguments passed to or from other methods.

x an object of class summary.rlassoEffects, usually a result of a call or summary.rlassoEffects
digits the number of significant digits to use when printing.
```

Details

Summary of objects of class rlassoEffects

tsls

Two-Stage Least Squares Estimation (TSLS)

Description

The function does Two-Stage Least Squares Estimation (TSLS).

Usage

tsls 33

Arguments

x exogenous variables

further arguments (only for consistent defintion of methods)

d endogenous variables

y outcome variable

z instruments

intercept logical, if intercept should be included

homoscedastic

logical, if homoscedastic (TRUE, default) or heteroscedastic erros (FALSE) should

be calculated.

formula An object of class Formula of the form " $y \sim x + d \mid x + z$ " with y the outcome

variable, d endogenous variable, z instrumental variables, and x exogenous vari-

ables.

data An optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from

which tsls is called.

Details

The function computes tsls estimate (coefficients) and variance-covariance-matrix assuming homoskedasticity for outcome variable y where d are endogenous variables in structural equation, x are exogensous variables in structural equation and d are instruments. It returns an object of class tsls for which the methods print and summary are provided.

Value

The function returns a list with the following elements

coefficients coefficients

vcov variance-covariance matrix residuals outcome minus predicted values

call function call samplesize sample size standard error

Index

*Topic 401(k)	data (pension), 9
pension, 9	
*Topic GDP	EminentDomain, 5
Growth Data, 7	Example(Growth Data),7
*Topic Grwoth	
Growth Data, 7	GDP (Growth Data), 7
*Topic datasets	Growth (Growth Data), 7
AJR, 3	Growth Data, 7
BLP, 4	GrowthData (Growth Data), 7
cps2012,5	
EminentDomain, 5	hdm (hdm-package), 2
Growth Data, 7	hdm-package, 2
pension, 9	1 5 - 7
*Topic lasso	lambdaCalculation, 8
•	LassoShooting.fit,8
rlassologit, 28 *Topic logistic	LATE (rlassoATE), 20
. 0	late (rlassoATE), 20
rlassologit, 28	LATET (rlassoATE), 20
*Topic pension	latet (rlassoATE), 20
pension, 9	1atet (11a550A1E), 20
*Topic regression	methods.rlasso(print.rlasso), 12
rlassologit, 28	methods.rlassoEffects
2	
AJR, 3	(print.rlassoEffects), 12
ATE (rlassoATE), 20	methods.rlassoIV
ate(rlassoATE),20	(print.rlassoIV), 13
ATET (rlassoATE), 20	methods.rlassoIVselectX
atet(rlassoATE), 20	(print.rlassoIVselectX), 14
	methods.rlassoIVselectZ
BLP, 4	(print.rlassoIVselectZ), 15
	methods.rlassologit
confint.rlassoEffects	(predict.rlassologit), 11
(print.rlassoEffects), 12	methods.rlassologitEffects
confint.rlassoIV	(print.rlassologitEffects),
(print.rlassoIV), 13	15
confint.rlassoIVselectX	methods.rlassoTE
(print.rlassoIVselectX), 14	(print.rlassoTE), 16
confint.rlassoIVselectZ	methods.tsls(print.tsls), 17
(print.rlassoIVselectZ), 15	model.matrix.rlasso
confint.rlassologitEffects	(print.rlasso), 12
(print.rlassologitEffects),	model.matrix.rlassologit
15	(predict.rlassologit), 11
confint.rlassoTE	3 //
(print.rlassoTE), 16	pension, 9
cps2012,5	plans (pension), 9
<u>.</u>	1 (1 //-

INDEX 35

```
plot.rlassoEffects
       (print.rlassoEffects), 12
predict.rlasso(print.rlasso), 12
predict.rlassologit, 11
print.rlasso, 12
print.rlassoEffects, 12
print.rlassoIV, 13
print.rlassoIVselectX, 14
print.rlassoIVselectZ, 15
print.rlassologit
       (predict.rlassologit), 11
print.rlassologitEffects, 15
print.rlassoTE, 16
print.summary.rlassoEffects
       (summary.rlassoEffects), 32
print.tsls, 17
rlasso, 8, 17
rlassoATE, 20
rlassoATET (rlassoATE), 20
rlassoEffect (rlassoEffects), 22
rlassoEffects, 22
rlassoIV, 24
rlassoIVmult (rlassoIV), 24
rlassoIVselectX, 25
rlassoIVselectZ, 27
rlassoLATE (rlassoATE), 20
rlassoLATET (rlassoATE), 20
rlassologit, 28
rlassologitEffect
       (rlassologitEffects), 30
rlassologitEffects, 30
summary.rlasso(print.rlasso), 12
summary.rlassoEffects, 12, 32
summary.rlassoIV
       (print.rlassoIV), 13
summary.rlassoIVselectX
       (print.rlassoIVselectX), 14
summary.rlassoIVselectZ
       (print.rlassoIVselectZ), 15
summary.rlassologit
       (predict.rlassologit), 11
summary.rlassologitEffects
       (print.rlassologitEffects),
summary.rlassoTE
       (print.rlassoTE), 16
summary.tsls(print.tsls), 17
tsls, 32
wealth (pension), 9
```