Experimental Physics II

Luca Cordes

SS 2023/2024

Contents

1^{-}	The	rmody	yn <u>a</u>	amık																										
	1.1	I. Hau	ıbt	satz						_ 										. <u>.</u>					. <u>.</u>		•			1
	1.2	II. Ha	ub	tsatz																										2
	1.3 III. Haubtsatz														2															
														2																
		1.4.1	\mathbf{D}	iffus	ion																									2
		1.4.2	Κ	ond	uktio	n .																								2
		1.4.3	V	/ärm	estra	ahlu	ıng																							2
	1.5 Zustandsänderungen																	2												
		1.5.1	Is	othe	rm .																									2
		1.5.2	Is	obar																										2
		1.5.3	Is	ocho	or .																									2
		1.5.4	Α	diab	atisc	h .																								9
	1.6	Schall	ges	chwi	ndik	eit																								
	1.7	Wärm	iek:	raftn	nasch	nine	· /	Ca	rno	ot -	· K	re	isp	roz	zes	\mathbf{s}														
	1.8	Energi																												
	1.9	Entro	pie																											:
	1 10	Formo	aln																											

Contents

1 Thermodynamik

1.1 I. Haubtsatz

Die gesamt Energie ist in einem geschlossenen System zeitlich konstant.

$$\Delta U = \Delta Q + \Delta W$$

 $\Delta U = \text{die \ddot{A}nderung der (gesamten)}$ ineren Enrgie eines geschlossenen Systemes

 $\Delta Q =$ von außen zugeführte Wärme
energie

 $\Delta W = {\rm vo}$ außen zugeführte mechanische Energie

1.2 II. Haubtsatz

Wärme fließt von selbst immer nur vom wärmeren zum kälteren Körper, nicht umgekehrt. In einem abgeschlossenen System nimmt die Entropie nicht ab $\Delta S \ge 09$.

1.3 III. Haubtsatz

Es ist prinzipiell nicht möglich, den absoluten Temperaturnullpunkt ($T=0~\mathrm{K}$) zu erreichen.

1.4 Wärmetransport

1.4.1 Diffusion

Netto-Teilchenstromdichte bei Diffusion:

$$\vec{j} = -D \cdot \vec{\nabla} n$$

1.4.2 Konduktion

Wärmestromdichte bei Konduktion:

$$\vec{j}_Q = -\lambda \cdot \vec{\nabla} T$$
$$\frac{|\mathrm{d}Q|}{S \cdot \mathrm{d}t} = \lambda \frac{|\Delta T|}{d}$$

1.4.3 Wärmestrahlung

Gesamtstrahlungsleitung (nach Stefan-Boltzmann-Gesetz):

$$P = \varepsilon \sigma A T^4$$

1.5 Zustandsänderungen

1.5.1 Isotherm

$$\Delta T = 0$$

1.5.2 Isobar

$$\Delta p = 0$$

1.5.3 Isochor

$$\Delta V = 0$$

1.5.4 Adiabatisch

$$\Delta Q = 0$$

$$\Delta U = \frac{f}{2}Nk\Delta T = -p\Delta V = -\frac{NkT}{V}\Delta V$$

$$\frac{f}{2}\frac{\Delta T}{T} = -\frac{\Delta V}{V}$$

$$TV^{\kappa-1} = \text{const}$$

$$pV^{\kappa} = \text{const}$$

$$p^{1-\kappa}T^{\kappa} = \text{const}$$

1.6 Schallgeschwindikeit

Für niedrige Frequenzen:

$$v_s = \sqrt{\frac{p}{\rho}}$$

FÜr hohe Frequenzen

$$v_s = \sqrt{\kappa \frac{p}{\rho}}$$

1.7 Wärmekraftmaschine / Carnot - Kreisprozess

1.8 Energien

Im Gas:

$$\langle E_{tot} \rangle = \frac{f}{2} \mathbf{k}_B T$$

Allgemein:

$$\Delta E = cM\Delta T$$

1.9 Entropie

Klassischer, thermischer Entropiebegriff:

$$\mathrm{d}S = \frac{\mathrm{d}Q_{rev}}{T}$$

$$\Delta S = \int_{K} \frac{\mathrm{d}Q_{rev}}{T}$$

Statistischer Entropiebegriff:

Die Entropie ist ein Maß für die Wahrscheinlichkeit eines Zustandes, d.h. für die Anzahl der mikroskopischen Realisierungsmöglichkeiten eines vorgegebe- nen makroskopischen Zustandes.

$$S = k_B \ln n_{RM}$$

 $n_{RM} \hat{=}$ mikroskopische Realisierungsmöglichkeiten für einen makroskopischen Zustand

1.10 Formeln

Zustandsgleichung des idealen Gases:

$$p \cdot V = N \cdot k \cdot T$$

Zustandsgleichung des realen Gases:

$$\left(p + \frac{aN^2}{V^2}\right) \cdot (V - Nb) = NkT$$

Gesamte kinetische Energie, abhängig von Freiheitsgraden:

$$E_{kin}^{tot} = \frac{f}{2}kT$$

Expansionsarbeit:

$$|\Delta W| = p\Delta V$$

$$\begin{split} \langle E_{kin}^{atom} \rangle &= \frac{3}{2} k \cdot T \\ \frac{\Delta L}{L} &= \alpha \Delta T \\ \frac{\Delta V}{V} &= 3 \alpha \Delta T = \gamma \Delta T \end{split}$$

Zeichen und ihre Bedeutung:

 $p \iff \text{Druck/Pressure}$

 $V \iff \text{Volumen}$

 $T \Longleftrightarrow \text{Temperatur}$

 $f \iff \text{Zahl der Freiheitsgrade}$

 $n \iff \text{Stoffmenge (in mol)}$

 $N \iff \text{Stoffmenge}$

 $U \iff$ innere Energie

 $Q \Longleftrightarrow$ Wärmeenergie

 $\vec{j} \Longleftrightarrow$ Netto-Teilchenstromdichte bei Diffusion = $-D \cdot \vec{\nabla} n$

 $dR \iff \text{Reduzierte W\"{a}rmemenge} = \frac{dQ}{T}$

 $dS \iff \text{Entropie} = \frac{dQ_{rev}}{T}$

 $\kappa \iff \text{Adiabatenindex} = \frac{c_P}{c_V}$

 $=\frac{f+2}{f}=1+\frac{2}{f}$

 \leftarrow

 \iff

 \iff

 $N_A \iff \text{Avogadro-Konstante}$

 $R \iff$ allgemeine Gaskonstante

 $k \iff \text{Boltzmann-Konstante}$

 $c \iff$ spezifische Wärmekapazität $= \frac{\Delta Q}{M \Delta T}$

 $D \iff \text{Diffusionskonstante}$

 $\sigma \iff \text{Stefan-Boltzmann-Konstante} = 5.77 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}$

 $\varepsilon \iff \text{Absorptionsgrad } \leq 1$

 \iff

$$pV = NkT$$