Grundlegende Fragen

- Was ist Problem?
- Wann entscheidbar?
- Wann semi-entscheidbar?

(nur positive Fälle erfolgreich)

Wann unentscheidbar?

4/37

Entscheidbarkeit

§8.2 Definition (Entscheidbarkeit; decidability)

Problem $L \subseteq \Sigma^*$ entscheidbar (engl. decidable) falls χ_L berechenbar

$$\chi_L \colon \Sigma^* o \{0,1\} \quad \mathsf{mit} \quad \chi_L(w) = egin{cases} 1 & \mathsf{falls} \ w \in L \ 0 & \mathsf{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

L unentscheidbar (engl. undecidable) falls χ_L nicht berechenbar

Notizen

- χ_L = zugeh. Prädikat oder charakteristische Funktion von L
- Entscheidbar = zugeh. Prädikat (total und) berechenbar (keine Zeit- und Speicherbegrenzung)
- Teilmengen von \mathbb{N} , \mathbb{N}^k , etc. auch erlaubt

Entscheidbarkeit

§8.1 Definition (Problem; problem)

Problem ist Teilmenge $L \subseteq \Sigma^*$ für Alphabet Σ

Notizen

- Entscheidungsprobleme sind ja/nein-Fragen (Ist geg. Graph planar? Ist geg. Zahl prim?)
- Identifikation solcher Probleme mit Teilmenge positiver Instanzen (z.B. planare Graphen ⊆ Graphen, Primzahlen ⊆ ℕ)
- Kodierung aller Elemente über endlichem Alphabet (z.B. dez: $\mathbb{N} \to \{0, \dots, 9\}^*$)
- Probleme sind Sprachen über Σ^*

Entscheidbarkeit

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik

Wortproblem Sprache L(G)

- Frage: Ist geg. $w \in \Sigma^*$ in L(G)?
- Problem L = L(G)
- Charakteristische Funktion $\chi_I: \Sigma^* \to \{0,1\}$ mit

$$\chi_L(w) = \begin{cases} 1 & \text{falls } w \in L(G) \\ 0 & \text{sonst} \end{cases}$$

- Berechenbarkeit von χ_I berechenbar
- Entscheidbarkeit von *L*(*G*) entscheidbar

§8.3 Theorem

Jede kontextsensitive Sprache $L \subseteq \Sigma^*$ ist entscheidbar

Beweisskizze

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik mit L(G) = L. Algorithmus für Berechnung χ_I mit Eingabe $w \in \Sigma^*$

1. Setze $\mathcal{F} = \{S\}$

(nur Startsymbol)

- 2. Setze $\mathcal{F}' = \mathcal{F} \cup \{ v \in (N \cup \Sigma)^{\leq |w|} \mid \exists u \in \mathcal{F} \colon u \Rightarrow_G v \}$ (füge Nachfolger der Länge höchstens |w| hinzu)
- 3. Falls $\mathcal{F} \subsetneq \mathcal{F}'$, dann setze $\mathcal{F} = \mathcal{F}'$ und gehe zu 2.
- 4. Liefere Wahrheitswert von $w \in \mathcal{F}'$

8/37

10/37

Entscheidbarkeit

Für alle $n \in \mathbb{N}$ sei $\pi[n]$ Sequenz erste n Stellen in π

Initiale Teilstrings von π

- Frage: Beginnt Dezimalbruchdarstellung von π mit w?
- Problem $L = \{\pi[n] \mid n \in \mathbb{N}\}$
- Charakteristische Funktion $\chi_L : \{0, \dots, 9\}^* \to \{0, 1\}$ mit

$$\chi_L(w) = \begin{cases} 1 & \text{falls } w = \pi[n] \text{ für ein } n \in \mathbb{N} \\ 0 & \text{sonst} \end{cases}$$

- Berechenbarkeit von χ_L berechenbar
- Entscheidbarkeit von L entscheidbar

Entscheidbarkeit

Teilstrings von π

- Frage: Kommt w in Dezimalbruchdarstellung von π vor?
- Problem $L = \{w \in \{0, \dots, 9\}^* \mid w \text{ kommt in } \pi \text{ vor}\}$
- Charakteristische Funktion $\chi_L : \{0, \dots, 9\}^* \to \{0, 1\}$ mit

$$\chi_L(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$

- Berechenbarkeit von χ_I unklar
- Entscheidbarkeit von L unklar

Approximation von π

Ramanujans Algorithmus

(mit Genauigkeit n)

9/37

- 1. Setze k = 0 und a = 0
- 2. Erhöhe *a* um $\frac{(4k)!\cdot(1.103+26.390\cdot k)}{(k!)^4\cdot 396^{4k}}$
- 3. Erhöhe *k* um 1
- 4. Falls $8k \le n$, dann gehe zu 2.
- 5. Liefere $(\frac{2\sqrt{2}}{9.801} \cdot a)^{-1}$

Srinivasa Ramanujan (* 1887: † 1920)

- Ind. Mathematiker
- Autodidakt mit über 3.900 Resultaten
- Analysis, Zahlentheorie, unendliche Reihen, etc.

Algorithmus für $\sqrt{2}$

- 1. Setze $a_0 = 1$
- 2. Für alle $i \in \mathbb{N}$ sei $a_{i+1} = \frac{a_i}{2} + a_i^{-1}$

Notizen

- Verdoppelt Anzahl korrekter Stellen pro Schritt
 (1 Stelle für a₁; 3 Stellen für a₂; 6 Stellen für a₃; 12 Stellen für a₄)
- 10¹³ Stellen bekannt (ca. 4, 21 TB) (64 Bit erlaubt 19 Stellen: 128 Bit (IPv6) erlaubt 38 Stellen)

12 / 37

Entscheidbarkeit

§8.5 Theorem

Für entscheidbare Sprache $L \subseteq \Sigma^*$ existiert det. TM $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$, so dass für jedes $w \in \Sigma^*$

- $\varepsilon q_0 w \vdash_M^* u q_+ v \text{ gdw. } w \in L$
- $\varepsilon q_0 w \vdash_{\mathcal{M}}^* u q_- v \text{ gdw. } w \notin L$

Notiz

- Entscheidbare Sprache L erlaubt det. TM, die
 - bei Worten aus *L* akzeptierenden Zustand erreicht
 - bei Worten außerhalb L ablehnenden Zustand erreicht

Entscheidbarkeit

§8.4 Theorem

Jede entscheidbare Sprache ist Typ-0

Beweis

Sei $L\subseteq \Sigma^*$ entscheidbare Sprache. Dann existiert (normierte) det. TM M mit $T(M)=\chi_L$. Wir modifizieren M so dass statt Ausgabe 0 mit Wechsel in akzeptierenden Zustand ablehnender Zustand eingenommen wird. Für erhaltene TM M'

$$w \in L(M')$$
 gdw. $(T(M))(w) = \chi_L(w) = 1$

13 / 37

und damit L(M') = L, womit L nach Theorem §4.3 vom Typ-0

Entscheidbarkeit

§8.6 Theorem

Für entscheidbare Sprache $L\subseteq \Sigma^*$ ist auch $\overline{L}=\Sigma^*\setminus L$ entscheidbar

Beweis

Sei *P* While-Programm, welches χ_L berechnet. Dann berechnet *P* ; $\chi_1 = 1 - \chi_1$ charakteristische Funktion $\chi_{\overline{L}}$.

Notizen

- Kontextsensitive Sprachen entscheidbar
- Entscheidbare Sprachen sind Typ-0

16/37

17 / 37

Semi-Entscheidbarkeit

§8.7 Definition (semi-entscheidbar; semi-decidable)

Problem $L\subseteq \Sigma^*$ semi-entscheidbar falls ho_L berechenbar

$$\rho_L \colon \Sigma^* \dashrightarrow \{0,1\} \qquad \text{mit} \qquad \rho_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undef} & \text{sonst} \end{cases}$$

Notizen

- ρ_L = zugeh. Aufzählung ("halbe" (partielle) charakteristische Funktion von L)
- Semi-entscheidbar = zugeh. Aufzählung berechenbar (keine Zeit- und Speicherbegrenzung)
- Teilmengen von \mathbb{N} , \mathbb{N}^k , etc. auch erlaubt

Entscheidbarkeit

Entscheidbare Sprachen

Semi-Entscheidbarkeit

§8.8 Theorem

Für $L\subseteq \Sigma^*$ entscheidbar sind L und $\overline{L}=\Sigma^*\setminus L$ semi-entscheidbar

Beweis

Sei P While-Programm, welches χ_L berechnet. While-Programm

 $P = \mathbf{IF}(x_1 = 0) \{ \dots Endlosschleife \dots \}$

berechnet ρ_L und damit L semi-entscheidbar. Da L entscheidbar, ist auch \overline{L} entscheidbar (Theorem §8.6) und damit semi-entscheidbar.

Semi-Entscheidbarkeit

Sei $G = (N, \Sigma, S, P)$ Grammatik

Wortproblem Sprache *L*(*G*)

- Frage: Ist geg. $w \in \Sigma^*$ in L(G)?
- Problem L = L(G)
- Aufzählung $\rho_L \colon \Sigma^* \dashrightarrow \{0,1\}$ mit

$$\rho_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undef} & \text{sonst} \end{cases}$$

- Berechenbarkeit von ρ_l berechenbar
- Semi-Entscheidbarkeit von L semi-entscheidbar

20/37

21/37

Semi-Entscheidbarkeit

§8.10 Theorem

Typ-0-Sprachen = semi-entscheidbare Sprachen

Beweis

- (
 ightarrow) Jede Typ-0-Sprache semi-entscheidbar via Theorem §8.9
- (\leftarrow) Sei L semi-entscheidbar. Es existiert det. TM M die ρ_L berechnet. Dann L(M) = L und damit L Typ-0-Sprache via Theorem §4.3 \square

Semi-Entscheidbarkeit

§8.9 Theorem

Jede Typ-0-Sprache *L* ist semi-entscheidbar

Beweis

Sei $G = (N, \Sigma, S, P)$ Grammatik mit L(G) = L und $w \in \Sigma^*$. Folgender Algorithmus berechnet ρ_L

1. Setze $\mathcal{F} = \{S\}$

(nur Startsymbol)

2. Setze $\mathcal{F}' = \mathcal{F} \cup \{ v \in (\mathbb{N} \cup \Sigma)^* \mid u \in \mathcal{F}, u \Rightarrow_{\mathcal{G}} v \}$

(füge alle Nachfolger hinzu)

- 3. Falls $w \in \mathcal{F}'$, dann liefere Ergebnis 1
- 4. Setze $\mathcal{F} = \mathcal{F}'$ und gehe zu 2.

Semi-Entscheidbarkeit

Entscheidbare Sprachen

Semi-Entscheidbarkeit

Teilstrings von π

- Frage: Ist w Teilstring von π ?
- Problem $L = \{ w \in \{0, \dots, 9\}^* \mid w \text{ kommt in } \pi \text{ vor} \}$
- Aufzählung $\rho_L: \{0,\ldots,9\}^* \longrightarrow \{0,1\}$ mit

$$\rho_L(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ \text{undef} & \text{sonst} \end{cases}$$

- Berechenbarkeit von ρ_L berechenbar (approximiere π und suche nach w in sicheren Stellen)
- Semi-Entscheidbarkeit von L semi-entscheidbar

24/37

26/37

Semi-Entscheidbarkeit

Längen Nichtteilstrings von π

- Frage: Gibt Sequenz der Länge n die nicht in π vorkommt?
- Problem $L = \{|w| \mid w \in \{0, ..., 9\}^* \text{ kommt } \underline{\text{nicht}} \text{ in } \pi \text{ vor} \}$
- Aufzählung $\rho_L \colon \mathbb{N} \dashrightarrow \{0,1\}$ mit

$$\rho_L(n) = \begin{cases} 1 & \text{falls } \exists w \in \{0, \dots, 9\}^n \text{ } \underline{\text{nicht}} \text{ in } \pi \text{ vorkommend} \\ \text{undef} & \text{sonst} \end{cases}$$

- Berechenbarkeit von ρ_L berechenbar (falls alle Sequenzen in π vorkommen, dann ρ_L überall undefiniert; sonst existiert Sequenz kürzester Länge k und $\rho_L(n)=1$ für alle $n\geq k$ und $\rho_L(n)=$ undef sonst)
- Semi-Entscheidbarkeit von *L* semi-entscheidbar
- Entscheidbarkeit von L entscheidbar

Semi-Entscheidbarkeit

Nichtteilstrings von π

- Frage: Kommt w nicht in π vor?
- Problem $L = \{w \in \{0, ..., 9\}^* \mid w \text{ kommt } \underline{\text{nicht}} \text{ in } \pi \text{ vor}\}$
- Aufzählung ρ_L : $\{0,\ldots,9\} \longrightarrow \{0,1\}$ mit

$$\rho_L(w) = \begin{cases} 1 & \text{falls } w \text{ nicht in } \pi \text{ vorkommt} \\ \text{undef} & \text{sonst} \end{cases}$$

- Berechenbarkeit von ρ_L unklar
- Semi-Entscheidbarkeit von L unklar

Semi-Entscheidbarkeit

§8.14 Theorem

Problem $L\subseteq \Sigma^*$ entscheidbar gdw. L und $\overline{L}=\Sigma^*\setminus L$ semi-entscheidbar

Beweis

Sei L entscheidbar. Dann L und \overline{L} semi-entscheidbar via Theorem §8.8. Seien L und \overline{L} semi-entscheidbar und M und \overline{M} TM die ρ_L und $\rho_{\overline{L}}$ berechnen. Für $w \in \Sigma^*$ berechnet folgender Algorithmus $\chi_L(w)$

- 1. $i \leftarrow 1$
- 2. Lasse TM M und \overline{M} für i Schritte auf w laufen
- 3. Liefere 1, falls M akzeptiert (d.h. mit Ausgabe 1 terminiert)
- 4. Liefere 0, falls \overline{M} akzeptiert
- 5. $i \leftarrow i + 1$ und gehe zu 2.

Rekursive Aufzählbarkeit

§8.15 Definition (rekursiv aufzählbar; recursively enumerable)

Problem L rekursiv aufzählbar falls $L = \emptyset$ oder <u>berechenbare</u> surjektive Funktion $a: \mathbb{N} \to L$ existiert

Notizen

- a zählt L auf da $L = \{a(i) \mid i \in \mathbb{N}\}$
- L rekursiv aufzählbar impliziert L abzählbar, denn (i) $L=\emptyset$ oder (ii) $a\colon \mathbb{N}\to L$ surjektiv implizieren Existenz injektiver Funktion $b\colon L\to \mathbb{N}$

32/37 33/37

Rekursive Aufzählbarkeit

Beweis (2/2)

```
Sei L \neq \emptyset semi-entscheidbar via det. TM M die \rho_L berechnet. Bei Eingabe n \in \mathbb{N} berechnet folgendes Programm a(n) x_2 = 0; x_5 = x_1 (kein Element gefunden) WHILE(x_2 = 0) { (solange kein Element gefunden) x_3 = \Pi_1(x_5); x_4 = \Pi_2(x_5) (dekodiere x_5 als Paar (x_3, x_4)) ... Simuliere TM M auf Eingabe x_3 für x_4 Schritte ... IF(x_1 = 1) {x_2 = 1; x_1 = x_3} (Element gefunden; Abbruch) ELSE {x_5 = x_5 + 1} (nächster Versuch)
```

Rekursive Aufzählbarkeit

§8.16 Theorem

Problem $L \subseteq \Sigma^*$ rekursiv aufzählbar gdw. semi-entscheidbar

Beweis (1/2)

```
Sei L \neq \emptyset rekursiv aufzählbar. Dann existiert While-Programm P mit \max \text{var}(P) = n welches Aufzählung a \colon \mathbb{N} \to L von L berechnet
```

```
x_{n+1}=x_1; x_1=0; x_{n+2}=x_1 (Eingabe sichern; Aufzählung initialisieren) P (Element für 0 berechnen) WHILE(x_1 \neq x_{n+1}) (solange x_{n+1} nicht erreicht) x_1=x_{n+2}+1; x_{n+2}=x_1; P} (nächstes Element vorbereiten) x_1=1 (falls Eingabe gefunden, liefere Akzeptanz)
```

Semi-Entscheidbarkeit

88.17 Theorem

Für Sprache $L \subseteq \Sigma^*$ folgende Aussagen äquivalent

- L semi-entscheidbar
- L rekursiv aufzählbar
- L = L(G) für (Typ-0-) Grammatik G
- L = L(M) für TM M
- L = L(M) für det. TM M

34/37 35/37