Problem Set 6, Tips

Vikram Damani Analysis I

October 24, 2024

Aufgaben in rot markiert, Tipps & Tricks in blau. Der erste Teil befasst sich mit den Rechenregeln für komplexe Zahlen, im zweiten Teil (2) wird die Serie 6 behandelt.

1 Komplexe Zahlen: Rechenregeln

Definition [Komplexe Zahl]. Eine komplexe Zahl ist eine Zahl der Form z = a + bi, wobei $a, b \in \mathbb{R}$ und $i^2 = -1$. $a = \text{Re}\{(z)\}$ ist der Realteil und $b = \text{Im}\{(z)\}$ der Imaginärteil von z. Die Menge der komplexen Zahlen wird mit \mathbb{C} bezeichnet.

Definition [Konjugation]. Sei z = a + bi eine komplexe Zahl. Dann ist die Konjugation von z die Zahl $\overline{z} = a - bi$. Es gilt $\overline{\overline{z}} = z$ und $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, sowie $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.

Weitere nützliche Eigenschaften:

- $z \in \mathbb{R} \iff z = \overline{z}$
- $\operatorname{Re}\{(z)\} = \frac{z + \overline{z}}{2} \text{ und } \operatorname{Im}\{(z)\} = \frac{z \overline{z}}{2i}$
- $\bullet \ z \cdot \overline{z} = |z|^2$

Definition [Betrag]. Sei z = a + bi eine komplexe Zahl. Dann ist der Betrag von z die Zahl $|z| = \sqrt{a^2 + b^2}$. Der Betrag entspricht dem Abstand zwischen zwei komplexen Zahlen (|z| = |z - 0|: der Abstand zu 0). Es gilt $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$.

Definition [Argument]. Sei z=a+bi eine komplexe Zahl. Dann ist das Argument von z die Zahl $\varphi=\arg z=\arctan\frac{b}{a}\in[-\pi,\pi)$. Das Argument entspricht dem Winkel vom Vektor z zur Reellen Achse. Das Argument ist nicht eindeutig, d.h. $\arg z=\arctan\frac{b}{a}+2\pi k,\,k\in\mathbb{Z}$. Das Argument ist nur definiert, wenn $z\neq 0$.

Definition [Polarkoordinaten]. Sei z=a+bi eine komplexe Zahl. Dann sind die Polarkoordinaten von z die Zahlen r=|z| und $\varphi=\arctan\frac{b}{a}$. Es gilt $z=r\cdot(\cos\varphi+i\sin\varphi)$. Die Polarkoordinaten sind wie das Argument nicht eindeutig, da $z=r\cdot(\cos(\varphi+2\pi k)+i\sin(\varphi+2\pi k))$ für $k\in\mathbb{Z}$. Konjugation in Polarkoordinaten: $\overline{z}=r\cdot(\cos(-\varphi)+i\sin(-\varphi))=r\cdot(\cos\varphi-i\sin\varphi)=r\cdot e^{-i\varphi}$.

Definition [Euler'sche Formel]. Sei z = a + bi eine komplexe Zahl. Dann ist

$$z = |z| \cdot (\cos \varphi + i \sin \varphi) = |z| \cdot e^{i\varphi}.$$

1.1 Rechenoperationen

Definition [Addition]. Seien $z_1 = a + bi$ und $z_2 = c + di$ komplexe Zahlen. Dann ist die Summe $z_1 + z_2 = (a + c) + (b + d)i$. Die Addition ist kommutativ und assoziativ, d.h. $\forall z_1, z_2, z_3 \in \mathbb{C}$:

$$z_1 + z_2 = z_2 + z_1$$
$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$

Beispiel: $z_1 = 1 + 2i$ und $z_2 = 3 + 4i$. Dann ist $z_1 + z_2 = (1 + 3) + (2 + 4)i = 4 + 6i$.

Definition [Subtraktion]. Genauso wie bei der Addition. Seien $z_1 = a + bi$ und $z_2 = c + di$ komplexe Zahlen. Dann ist die Differenz $z_1 - z_2 = (a - c) + (b - d)i$. Es gilt $\forall z_1, z_2, z_3 \in \mathbb{C}$:

$$z_1 - z_2 = -(z_2 - z_1)$$
$$(z_1 - z_2) - z_3 = z_1 - (z_2 + z_3)$$

Definition [Multiplikation]. Seien $z_1 = a + bi$ und $z_2 = c + di$ komplexe Zahlen. Dann ist das Produkt $z_1 \cdot z_2 = (ac - bd) + (ad + bc)i$ (ausmultiplizieren und Real-/Imaginärteil des Resultats zusammennehmen). Die Multiplikation ist kommutativ und assoziativ, d.h. $\forall z_1, z_2, z_3 \in \mathbb{C}$:

$$z_1 \cdot z_2 = z_2 \cdot z_1$$
$$(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$$

Multiplikation in Polarkoordinaten: Seien $z_1 = r_1 \cdot e^{i\varphi_1}$ und $z_2 = r_2 \cdot e^{i\varphi_2}$ komplexe Zahlen in Polarkoordinaten. Dann ist $z_1 \cdot z_2 = r_1 \cdot r_2 \cdot e^{i(\varphi_1 + \varphi_2)}$.

Beispiele:

(1) $z_1 = 1 + 2i$ und $z_2 = 3 + 4i$. Dann ist $z_1 \cdot z_2 = (1 \cdot 3 - 2 \cdot 4) + (1 \cdot 4 + 2 \cdot 3)i = -5 + 10i$.

(2)
$$z_1 = 3 \cdot e^{i\frac{\pi}{4}}$$
 und $z_2 = 2 \cdot e^{i\frac{\pi}{3}}$. Dann ist $z_1 \cdot z_2 = 3 \cdot 2 \cdot e^{i\left(\frac{\pi}{4} + \frac{\pi}{3}\right)} = 6 \cdot e^{i\frac{7\pi}{12}}$.

Definition [Division]. Seien $z_1 = a + bi$ und $z_2 = c + di$ komplexe Zahlen. Dann ist der Quotient $\frac{z_1}{z_2} = \frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_1|^2}$. Die Division ist nicht kommutativ, aber assoziativ, d.h. $\forall z_1, z_2, z_3 \in \mathbb{C}$:

$$\frac{z_1}{z_2} \neq \frac{z_2}{z_1}$$

$$\frac{z_1}{z_2} \cdot z_3 = \frac{z_1 \cdot z_3}{z_2}$$

Division in Polarkoordinaten: Seien $z_1 = r_1 \cdot e^{i\varphi_1}$ und $z_2 = r_2 \cdot e^{i\varphi_2}$ komplexe Zahlen in Polarkoordinaten. Dann ist $\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot e^{i(\varphi_1 - \varphi_2)}$.

Beispiele:

(1) $z_1 = 1 + 2i$ und $z_2 = 3 + 4i$. Dann ist

$$\begin{split} \frac{z_1}{z_2} &= \frac{1+2i}{3+4i} \\ &= \frac{1+2i}{3+4i} \cdot \frac{3-4i}{3-4i} \\ &= \frac{3+8}{3^2+4^2} + \frac{6-4}{3^2+4^2}i \\ &= \frac{11}{25} + \frac{2}{25}i. \end{split}$$

(2)
$$z_1 = 3 \cdot e^{i\frac{\pi}{4}}$$
 und $z_2 = 2 \cdot e^{i\frac{\pi}{3}}$. Dann ist $\frac{z_1}{z_2} = \frac{3}{2} \cdot e^{i\left(\frac{\pi}{4} - \frac{\pi}{3}\right)} = 1.5 \cdot e^{-i\frac{\pi}{12}}$.

Definition [Potenzieren]. Sei $z=a+bi=r\cdot e^{i\varphi}$ eine komplexe Zahl. Dann ist $z^n=(a+bi)^n=r^n\cdot e^{in\varphi}$. Es gilt $\forall z\in\mathbb{C}$:

$$z^{0} = 1$$

$$z^{1} = z$$

$$z^{2} = z \cdot z$$

$$z^{3} = z \cdot z \cdot z$$

Beispiel: z = 1 + 2i. Dann ist $z^2 = (1 + 2i)^2 = 1 + 4i - 4 = 1 + 4i - 4 = -3 + 4i$. $z^3 = (1 + 2i)^3 = 1 + 6i - 8 - 12i = -7 - 6i$.

Definition [Wurzeln]. Sei $z=a+bi=r\cdot e^{i\varphi}$ eine komplexe Zahl. Dann ist die n-te Wurzel von z die Zahl $w_k=\sqrt[n]{r}\cdot e^{i\left(\frac{\varphi+2\pi k}{n}\right)},\ k=0,1,\ldots,n-1.$

Beispiel:
$$z = 3 + 4i$$
. Dann ist $z^{\frac{1}{2}} = \sqrt{5} \cdot e^{i\left(\frac{\arctan\frac{4}{3} + 2\pi k}{2}\right)}$. $z^{\frac{1}{3}} = \sqrt[3]{5} \cdot e^{i\left(\frac{\arctan\frac{2}{1} + 2\pi k}{3}\right)}$.

2 Serie 6

Aufgabe 1. Skizzieren Sie die folgenden Teilmengen der komplexen Ebene C.

- (a) $\{z \in \mathbb{C} \mid |z| = 3, \operatorname{Im}\{(z)\} \ge 0\}$
- (b) $\{z \in \mathbb{C} \mid \frac{|z+2-2i|}{|z+i|} = 2\}$
- (c) $\{z \in \mathbb{C} \mid \operatorname{Im}\{(z)\} \ge \operatorname{Re}\{(z)\}\}\$
- (d) $\{z \in \mathbb{C} \mid (|z-3| \ge 1) \text{ und } (|z-1-i| < 4)\}$
- (e) $\{z \in \mathbb{C} \mid (|z-i+3| \ge |z+2i|) \text{ und } (\text{Re}\{(z)\} > 0) \text{ und } (\text{Im}\{(z)\} > 0)\}$

Tipps & Tricks zu 1. z = a + ib definiert einen Punkt in der komplexen Ebene mit Koordinaten (a, b). Wenn man also z in die Bedingungen einsetzt und Imaginärteil und Realteil auf beiden Seiten der (Un-)Gleichung vergleicht, erhält man zwei separate Bedingungen für a und b. Diese Bedingungen können dann in der komplexen Ebene skizziert werden.

Was ist der Unterschied zwischen einer gleichung |z-w|=r und der entsprechenden Ungleichung $|z-w|\leq r$?

Aufgabe 2. Zeigen Sie die folgenden trigonometrische Beziehungen:

- (a) $\cos(3x) = \cos^3(x) 3\sin^2(x)\cos(x)$
- (b) $\sin(3x) = 3\sin(x)\cos^2(x) \sin^3(x)$

Tipps & Tricks zu 2. Es ist einfacher mit der Euler'schen Formel zu arbeiten. Setze $z = e^{ix} = \cos(x) + i\sin(x)$ und sei $z_1 = z^3 = e^{i3x} = \cos(3x) + i\sin(3x)$. Ausmultiplizieren und Real-/Imaginärteil zusammennehmen.

Aufgabe 3. (a) Skizzieren Sie alle vierten Wurzeln von w;

- (b) Gibt es eine reelle Zahl w, sodass die Punkte A,B,C,D und E gerade die fünften Wurzeln von w sind? Begründen Sie!
- (c) Die Zahlen

$$z_1 = \sqrt{2}e^{i\frac{5\pi}{16}}$$
 und $z_2 = \sqrt{2}e^{-i\frac{15\pi}{16}}$

seien beides Lösungen der Gleichung $z^n=c$. Bestimmen Sie das kleinstmögliche $n\in\mathbb{N}$ sowie $c\in\mathbb{C}$.

Tipps & Tricks zu 3. Grundsätzlich muss man hier für (a), (b) nur die Rechenregeln anwenden. Wie sind die Wurzeln auf der komplexen Ebene verteilt?