QuantEcon Lunchtalk 18:

Algorithms for Solving the Shortest Path Problem (SPP)

Shu Hu

Motivation

Shortest Path Problem

Algorithm to a computational problem

Algorithm 1: Brute Force

Algorithm 2: Bellman's method

Let $q^*(x)$ denote the minimum cost-to-go from node x to G.

We can represent q^* in vector form via

$$(q^*(A),q^*(B),q^*(C),q^*(D),q^*(E),q^*(F),q^*(G))=(8,10,3,5,4,1,0)\in\mathbb{R}^7$$

Once q^* is known, the least cost path can be computed as follows

- Given $u,v\in V$, v is called a direct successor of u if there exists an edge in E s.t. u is the tail and v is the head.
- Let $\mathcal{O}(x)=\{y\in V: (x,y)\in E\}$ be a set of direct successor of x.
- Start at arbitrary node x, move to any y that solves

$$q^*(x) = \min_{y \in \mathcal{O}}\{c(x,y) + q^*(y)\}$$

Revisited Shortest Path Problem:

Consider

- ullet a weighted digraph $\mathscr{G}=(V,E,c)$ with
- ullet a sink $d\in V$ called the destination
- ullet a weight function $c:E o (0,\infty)$ that
 - \circ associates a positive cost to each edge $(x,y) \in E$.

Assume that for each $x \in V$, there exists a directed path from x to d ,

How to find the shortest path from x to d for every $x \in V$?

Definitions

- A **policy** is a map $\sigma:V o V$.
- ullet A policy is called **feasible** if $\sigma(x)\in\mathcal{O}(x)$ for all $x\in V$.

Let Σ be the set of all policies that are feasible and do not cycle.

ullet Given the minimum cost-to-go $q \in \mathbb{R}_+^V$, we call $\sigma \in \Sigma$ q-greedy if

$$\sigma(x) \in rg\min_{y \in \mathcal{O}(x)} \{c(x,y) + q(y)\} \quad ext{(for all } x \in V)$$

For any feasible policy σ and $x \in V$

• the **trajectory** of x under σ is the path from x to the destination indicated by the optimal policy.

Definitions (Cont'd)

For each $x \in V$ and $\sigma \in \Sigma$, cost-to-go under σ from x is

$$q_\sigma(x) = \sum_{i=0}^\infty c(\sigma^i(x),\sigma^{i+1}) = \sum_{i=0}^{n-1} c(\sigma^i(x),\sigma^{i+1})$$

Let U be all $q \in \mathbb{R}_+^V$ with q(d) = 0.

ullet Define $T_\sigma:U o U$ by

$$(T_\sigma q)(x) = c(x,\sigma(x)) + q(\sigma(x)) \quad (x \in V)$$

ullet the expression T_σ^k indicates the k-th composition of T_σ with itself, for $k\in\mathbb{N}$.

Claim 1

For each $\sigma \in \Sigma$,

- the function q_σ is the **unique fixed point** of T_σ in U and
- $ullet T_{\sigma}^k q = q_{\sigma} ext{ for all } k \geq n ext{ and all } q \in U.$

Definitions (Cont'd)

• The minimum cost-to-go function q^* is defined by

$$q^*(x) = \min_{\sigma \in \Sigma} q_\sigma(x) \quad (x \in V)$$

• A policy $\sigma^* \in \Sigma$ is called **optimal** if it attains the minimum in Eq. (5) s.t.

$$q^* = q_{\sigma^*} ext{ on } V$$

ullet A bellman operator T is defined as

$$(Tq)(x)=\min_{y\in\mathcal{O}(x)}\{c(x,y)+q(y)\}\quad (x\in V)$$

Claim 2

- The function q^{*} is the **unique fixed point** of T in U and,
- ullet in addition, $T^k q o q^*$ as $k o \infty$ for all $q \in U$.

Claim 3

• A policy $\sigma \in \Sigma$ is optimal iff σ is q^* -greedy.