What you need to know:

- How to solve problems with Ohm's Law (V = IR)
- How to solve problems with the electric power formula (P = IV)
- How to solve a series circuit for voltage, current, resistance, and power
- How to solve a parallel circuit for voltage, current, resistance, and power

Part A: Ohm's Law

$$V = IR$$

Symbol	Quantity	SI Unit			
V	Voltage	Volt (V)			
I	Current	Ampere (A)			
1	Current	rumpere (71)	Ω is the Greek letter		
R	Resistance	Ohm (Ω)	omega.		
A.1 Wha	t is the name of	f this letter: Ω ?			
What doe	es it stand for in	n physics?	-		
A.2 Wha	t does "I" stand	I for?			
			a 5 Ω light bulb. What is the current?		
Looking	For	Formula			
Already	Know		J		
Answer a	is a complete se	entence with unit:			
A 4 I hoo	yk un a circuit y	with a 30 V battery and	a 6 Ω light bulb. What is the current?		
Looking		Formula	a 0 32 fight build. What is the current?		
Already 1					
Ancady	KIIOW				
Answer a	as a complete se	entence with unit:			
A.5 When I hook up a 12 V battery, I get 3 A of current. What is the resistance of my circuit?					
Looking		Formula			
Already	Know				
Answer a	as a complete se	entence with unit:			

\cap	Н	1/	ľS	T	۸	1	١/
	,	IVI	. .		$\boldsymbol{\vdash}$	·V	v

Name _____

	through a 10 Ohm resistor. What is the voltage of my circuit?
Looking For	Formula
A1 1 77	
Already Know	
Answer as equation with unit:	
1	
A.7 I have 3 A of current going	through a 5 Ohm resistor. What is the voltage of my circuit?
Looking For	Formula
Already Know	
Answer as a complete sentence	with unit
This wor as a complete sentence	Treele witte.
A.8 I hook up a 12 V battery to	a 36 Ω resistor. What is the current in my circuit?
Looking For	Formula
Already Know	
Angwar ag a aamnlata gantanaa	with amit
Answer as a complete sentence	wiii uiii.

Part B: Ohm's Law table

Each row of the following table contains two numbers given and one number still unknown. Fill in the unknown number so that each row satisfies the equation V = IR.

Voltage (Volts)	Current (Amps)	Resistance (Ohms)
24		4
15	5	
24		12
20	4	
	2	9
	3	12
10		20

Name		

Part C: Solving a Series Circuit

The goal of these problems is to identify the voltage, current, and resistance of each element of a series circuit.

Series Circuit Rules:

- 1: For each element and the total circuit, the formula V = IR.
- 2: The *current* is the same for every element.
- 3: The *voltage* and *resistance* add up to the total for each circuit element.

C.1 A 12-volt battery, a 2-ohm resistor, and a 4-ohm resistor in series.

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			

C.2 A 20-Volt battery, a 2-ohm resistor, and a 3-ohm resistor in series.

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
·			
Resistance (Ω)			

C.3 A 30-volt battery, a 3-ohm resistor, and a 7-ohm resistor in series.

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			

C.4 An 18-volt battery, a 1-ohm resistor, a 2-ohm resistor, and a 3-ohm resistor in series.

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)				
Current (A)				
Resistance (Ω)				

C.5 A 21.23-volt battery, a 4.47-ohm resistor, and a 5.36-ohm resistor, and a 2.94-ohm resistor in series. [use a calculator for this problem, round each cell of the table to two decimal places]

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)				
Current (A)				
Resistance (Ω)				

Part D: Solving Parallel circuit problems

In a parallel circuit, the rules are slightly different.

Parallel Circuit Rules:

- 1: For each element and the total circuit, the formula V = IR.
- 2: The *voltage* is the same for every element.
- 3: The *current* adds up to the total for each circuit element.
- 4: The resistance DOES NOT add up to the total.
- **D.1.** A parallel circuit with a 12-Volt battery, a 3-Ohm resistor, and a 6-Ohm resistor:

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			

D.2 a parallel circuit with a 10 Volt battery, a 5-Ohm resistor, and a 10-Ohm resistor:

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			

D.3 a parallel circuit with a 20 Volt battery, a 2 Ohm resistor, and a 4 Ohm resistor:

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			

D.4 A parallel circuit with a 6-volt battery and *three* 2-ohm resistors.

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)				
Current (A)				
Resistance (Ω)				

D.5 A parallel circuit with a 10.45-volt battery, a 3.45-ohm resistor, a 2.58-ohm resistor, and a 8.12-ohm resistor. [use a calculator, round the answers to two decimal places]

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)				
Current (A)				
Resistance (Ω)				

D.6 Which rule is the same for series and parallel circuits?

D.7 Which rules are different for series and parallel circuits?

Part E: The Power Formula

$$P = IV$$

	Quantity	SI Unit	What it means
			How fast energy changes
P	Power	Watts (W)	form.
			Electrons per second.
I	Current	Amps (A)	
			Energy per electron.
V	Voltage	Volts (V)	

E.1 I have a current of 5 Amps and I have a 12 Volt battery. What is my power?

E.I I have a current of 3 Amps a	ind I have a 12 voil battery. What is	iny power:
Looking For	Formula	
A.1		
Already Know		
Answer as a complete sentence	with unit:	

E.2 I have a current of 3 Amps and a 30 Volt battery. What is my power?

E.Z Thave a current of 3 7 thips	and a 50 voil battery. What is my po-	/V C1 :
Looking For	Formula	
Already Know		i
Answer as a complete sentence	with unit:	
Thiswer as a complete sentence	will till.	

E.3 I have a 100 Watt light bulb hooked up to an outlet, which means it has 120 Volts. What is its current?

ns current:		
Looking For	Formula	
Already Know		·
Answer as a complete so	entence with unit:	

Name		
Name		

E.4 My vacuum cleaner uses 11 Volts. What is its current?	00 Watts, and I hook it up to an outlet, which means it has 120
Looking For	Formula
Already Know	
Answer as a complete sentence	with unit:
E.5 I have a 300-Watt device, a much voltage does it have?	nd I know there is 2 Amps of current going through it. How
Looking For	Formula
Already Know	······································
Answer as a complete sentence	with unit:
E.6 I hook up a 4-volt battery, a much power does the light bulb	and it produces a current of 0.3 Amps through my light bulb. How have?
Looking For	Formula
Already Know	i
Answer as a complete sentence	with unit:
E.7 I hook up <i>two</i> 4-volt batteri How much power does my light	es, and it produces a current of 0.6 Amps through my light bulb.
Looking For	Formula
Already Know	
Answer as a complete sentence	with unit:

Part F: Solving circuit problems with power

New Rule:

In both series and parallel circuits, the formula P = IV applies for each element.

F.1 A series circuit has a 50-volt battery, a 10-ohm resistor, and a 15-ohm resistor.

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			
Power (W)			

F.2 A series circuit has a 12-volt battery, and four-ohm resistor, and a six-ohm resistor.

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			
Power (W)			

F.3 A *parallel* circuit has a 15-volt battery, a 3-ohm resistor and a 5-ohm resistor.

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			
Power (W)			

F.4 A *parallel* circuit has a 30-volt battery, a 15-ohm resistor and a 25-ohm resistor.

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)			
voltage (v)			
Current (A)			
Resistance (Ω)			
Power (W)			

01	LΙN	1	C	T	۸	۲,	7
UI	יו וח	٧Į	J.	\mathbf{L}_{I}	Н	V	V

Name		
ITUILL		

Part G: Which type of circuit has brighter light bulbs?

By now, you should have used the wire kits to build basic series and parallel circuits. Which type of circuit had brighter light bulbs?

We are going to mathematically sow why this rule is true:

You use two D-batteries. Each one has a voltage of 1.5 volts. What is the total voltage of your circuit?

Assume that each light bulb has a resistance of 20 Ohms.

First, imagine you connect the light bulbs in series. Draw a circuit diagram of your circuit. Include the voltage of the batteries and resistance of the light bulbs in your circuit:

Solve the circuit:

	Light Bulb 1	Light Bulb 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			
Power (W)			

What is the power of each bulb in the series circuit?

\sim				•		T	
()	н	NΛ	ľS		Λ	1/	۱/
•		I V I		1 1	$\boldsymbol{\Gamma}$	v	v

Name		

Second, you connect the light bulbs in parallel. Draw a circuit diagram of your circuit. Include the voltage of the batteries and resistance of the light bulbs in your circuit:

	Light Bulb 1	Light Bulb 2	Total Circuit
Voltage (V)			
Current (A)			
Resistance (Ω)			
Power (W)			

What is the power of each bulb in the parallel circuit?

The *power* of a light bulb shows how much light energy each bulb generates. A light bulb with more power is a brighter light bulb. A light bulb with less power is a dimmer light bulb.

Explain how the mathematics connects with what you observe in real life:

Name		
manic		

Answers:

A.1 omega; it stands for Ohms

A.2 current

A.3 2 Amps

A.4 5 Amps

A.5 4 Ohms

A.6 50 Volts

A.7 15 Volts

A.8 0.33 Amps

Part B:

Part B:		
Voltage	Current	Resistance
(Volts)	(Amps)	(Ohms)
(* 3233)	(=====	(0 11112)
24	6	4
15	5	3
24	2	12
20	4	5
18	2	9
36	3	12
10	0.5	20

C.1

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	4	8	12
Current (A)	2	2	2
Resistance (Ω)	2	4	6

Name _____

C.2

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	8	12	20
Current (A)	4	4	4
Resistance (Ω)	2	3	5

C.3

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	9	21	30
Current (A)	3	3	3
Resistance (Ω)	3	7	10

C.4

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)	3	6	9	18
Current (A)	3	3	3	3
Resistance (Ω)	1	2	3	6

C.5

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)	7.43	8.91	4.89	21.23
Current (A)	1.66	1.66	1.66	1.66
Resistance (Ω)	4.47	5.36	2.94	12.77

Results are rounded to 3 significant figures.

Name _____

D.1

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	12	12	12
Current (A)	4	2	6
Resistance (Ω)	3	6	2

D.2

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	10	10	10
Current (A)	2	1	3
Resistance (Ω)	5	10	3.33

D.3

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	20	20	20
Current (A)	10	5	15
Resistance (Ω)	2	4	1.33

D.4

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)	6	6	6	6
Current (A)	3	3	3	9
Resistance (Ω)	2	2	2	0.667

D.5

	Resistor 1	Resistor 2	Resistor 3	Total Circuit
Voltage (V)	10.45	10.45	10.45	10.45
Current (A)	3.03	4.05	1.29	8.37
Resistance (Ω)	3.45	2.58	8.12	1.25

All results are rounded to three significant figures.

Name _____

D.6 Ohm's Law applies to both series and parallel circuits.

D.7 In a series circuit, voltage adds and current is constant.

In a parallel circuit, current adds, and voltage is constant

In a series circuit, resistance adds up, while it does not in a parallel circuit.

E.1 60 Watts

E.2 90 Watts

E.3 0.833 Amps

E.4 9.17 Amps

E.5 150 Volts

E.6 1.2 Watts

E.7 4.8 Watts [remember there are *two* batteries]

F.1

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	20	30	50
Current (A)	2	2	2
Resistance (Ω)	10	15	25
Power (W)	40	60	100

F.2

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	4.8	7.2	12
Current (A)	1.2	1.2	1.2
Resistance (Ω)	4	6	10
Power (W)	5.76	8.64	14.4

F.3

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	15	15	15
voluge (v)	13	13	13
Current (A)	5	3	8
Resistance (Ω)	3	5	1.875
Power (W)	75	45	120

F.4

	Resistor 1	Resistor 2	Total Circuit
Voltage (V)	30	30	30
Current (A)	2	1.2	3.2
Resistance (Ω)	15	25	9.375
Power (W)	60	36	96

Part G:

For a series circuit:

	Light Bulb 1	Light Bulb 2	Total Circuit
Voltage (V)	1.5	1.5	3.0
Voltage (V)	1.5	1.5	3.0
Current (A)	0.075	0.075	0.075
Resistance (Ω)	20	20	40
Power (W)	0.1125	0.1125	0.225

For a parallel circuit:

	Light Bulb 1	Light Bulb 2	Total Circuit
X 1, (X)	2.0	2.0	2.0
Voltage (V)	3.0	3.0	3.0
Current (A)	0.15	0.15	0.30
Resistance (Ω)	20	20	1
Power (W)	0.45	0.45	0.9

In the series circuit, each light bulb has a power of $0.1125\ Watts.$

In the parallel circuit, each light bulb has a power of 0.45 Watts, four times higher. Power describes the brightness of the light bulb, which means that the bulbs in parallel should be four times brighter. This is approximately what we observe.

[Note: This calculation is slightly incorrect because light bulbs do not perfectly follow Ohm's Law, but it communicates the important point about series and parallel circuits.]