Homework 7: Linear Independence, Basis

Assignments should be **stapled** and written clearly and legibly. All answers must be justified. Problem 6 is optional.

- 1. §4.4, #13(b), 14(b), 27(a)(b).
- 2. Determine whether $\{1, \sin x, \cos x\}$ is linearly independent in $F(-\infty, \infty)$. Justify your answer.
- 3. Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be vectors which span a vector space V, and let \mathbf{u} be a vector in V. Prove that $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{u}\} = V$.
- 4. Suppose that $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a linearly idependent set of vectors in a vector space V. Prove that
 - (a) Span \mathcal{B} is a subspace of V.
 - (b) \mathcal{B} is a basis for Span \mathcal{B} .
- 5. Use Problem 4 to show that in the vector space $F(-\infty, \infty)$, $\{e^x, e^{2x}\}$ is a basis for $\operatorname{Span}\{e^x, e^{2x}\}$. (Note that you must first show that $\{e^x, e^{2x}\}$ is linearly independent.)
- 6. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a linearly independent set of vectors in a vector space V. Using the definition of linear independence (and no theorems on linear dependence/independence), prove that if \mathbf{v} is a vector in V which is not in $\mathrm{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v}\}$ is still linearly independent.