

planetmath.org

Math for the people, by the people.

Dynkin's lemma

Canonical name DynkinsLemma

Date of creation 2013-03-22 18:33:05 Last modified on 2013-03-22 18:33:05

Owner gel (22282) Last modified by gel (22282)

Numerical id 11

Author gel (22282) Entry type Theorem Classification msc 28A12

Synonym pi-system d-system lemma

Related topic PiSystem

Related topic DynkinSystem

 $Related\ topic \\ Uniqueness Of Measures Extended From APi System$

Dynkin's lemma is a result in measure theory showing that the http://planetmath.org/SigmaA algebra generated by any given http://planetmath.org/PiSystem π -system on a set X coincides with the Dynkin system generated the π -system. The result can be used to prove that measures are uniquely determined by their values on π -systems generating the required σ -algebra. For example, the Borel σ -algebra on $\mathbb R$ is generated by the π -system of open intervals (a,b) for a < b and consequently the Lebesgue measure μ is uniquely determined by the property that $\mu((a,b)) = b - a$.

Note that this lemma generalizes the statement that a Dynkin system which is also a π -system is a σ -algebra.

Lemma (Dynkin). Let A be a π -system on a set X. Then $\mathcal{D}(A) = \sigma(A)$. That is, the smallest Dynkin system containing A coincides with the σ -algebra generated by A.

Proof. As A is a π -system, the set $\mathcal{D}_1 \equiv \{S \subseteq X : S \cap T \in \mathcal{D}(A) \text{ for every } T \in A\}$ contains A. We show that \mathcal{D}_1 is also a Dynkin system.

First, for every $T \in A$, $X \cap T = T \in A$ so X is in \mathcal{D}_1 . Second, if $S_1 \subseteq S_2$ are in \mathcal{D}_1 and $T \in A$ then $(S_2 \setminus S_1) \cap T = (S_2 \cap T) \setminus (S_1 \cap T)$ is in $\mathcal{D}(A)$ showing that $S_2 \setminus S_1 \in \mathcal{D}_1$. Finally. if $S_n \in \mathcal{D}_1$ is a sequence increasing to $S \subseteq X$ and $T \in A$ then $S_n \cap T$ is a sequence in $\mathcal{D}(A)$ increasing to $S \cap T$. As Dynkin systems are closed under limits of increasing sequences this shows that $S \cap T \in \mathcal{D}(A)$ and therefore $S \in \mathcal{D}_1$. So \mathcal{D}_1 is indeed a Dynkin system. In particular, $\mathcal{D}(A) \subseteq \mathcal{D}_1$ and $S \cap T \in \mathcal{D}(A)$ for all $S \in \mathcal{D}(A)$ and $T \in A$.

We now set $\mathcal{D}_2 \equiv \{S \subseteq X : S \cap T \in \mathcal{D}(A) \text{ for every } T \in \mathcal{D}(A)\}$ which, as shown above, contains A. Also, as in the argument above for \mathcal{D}_1 , \mathcal{D}_2 is a Dynkin system. Therefore, $\mathcal{D}(A)$ is contained in \mathcal{D}_2 and it follows that $S \cap T \in \mathcal{D}(A)$ for any $S, T \in \mathcal{D}(A)$. So $\mathcal{D}(A)$ is both a π -system and a Dynkin system.

We can now show that $\mathcal{D}(A)$ is a σ -algebra. As it is a Dynkin system, $S^c = X \setminus S \in \mathcal{D}(A)$ for every $S \in \mathcal{D}(A)$ and, as it is also a π -system, this shows that $\mathcal{D}(A)$ is an algebra of sets on X. Finally, choose any sequence $A_n \in \mathcal{D}(A)$. Then, $\bigcup_{m=1}^n A_m$ is a sequence in $\mathcal{D}(A)$ increasing to $\bigcup_n A_n$ which, as $\mathcal{D}(A)$ is Dynkin system, must be in $\mathcal{D}(A)$. So, $\mathcal{D}(A)$ is a σ -algebra and must contain $\sigma(A)$. Conversely, as $\sigma(A)$ is a Dynkin system (as it is a σ -algebra) containing A, it must also contain $\mathcal{D}(A)$.

References

[1] David Williams, *Probability with martingales*, Cambridge Mathematical Textbooks, Cambridge University Press, 1991.