Universidad del Valle de Guatemala

Departamento de Matemática

Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

E-mail: rom19857@uvg.edu.gt

Carné: 19857

MM2034 - Análisis de Variable Real 1 - Catedrático: Dorval Carías 16 de mayo de 2021

HT 4

1. Problema 1.

Sea $f:(0,1)\to\mathbb{R}$ una función continua que satisface $[f(x)]^2=1, \forall x\in(0,1)$. Pruebe que $f\equiv 1$ o $f\equiv -1$.

-Notación

 $f \equiv 1$ hace referencia a:

$$f(x) = 1, \qquad \forall \ x \in (0, 1).$$

Análogamente, $f \equiv -1$ hace referencia a:

$$f(x) = -1, \qquad \forall \ x \in (0, 1).$$

Demostración. A probar: $f \equiv 1$ o $f \equiv -1$. Sabemos que f(x) es una función continua, en donde,

$$[f(x)]^2 = f(x)f(x).$$

Por el inciso a del teorema 5.2.2 de Rudin et al. (1976) entonces $[f(x)]^2$ debe ser continua en (0,1) también.

Teorema 5.2.2 de Bartle and Sherbert (2000)

Let $A \subseteq \mathbb{R}$, let f and g be continuous on A to \mathbb{R} , and let $b \in \mathbb{R}$.

- 1. The functions f + g, f g, fg, and bf are continuous on A.
- 2. If $h:A\to\mathbb{R}$ is continuous on A and $h(x)\neq 0$ for $x\in A$, then the quotient f/h is continuous on A.

Ahora bien, nótese que:

$$\implies [f(x)]^2 = 1 \implies f(x) = \pm \sqrt{1} = \pm 1, \quad \forall x \in (0,1).$$

Considérese la definición 6.1.1 de diferenciabilidad de Bartle and Sherbert (2000).

Definición 6.1.1. de Bartle and Sherbert (2000)

Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, and let $c \in I$. We say that a real number L is the derivative of f at c if given any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in I$ satisfies $0 < |x - c| < \delta(\varepsilon)$, then

$$\left| \frac{f(x) - f(c)}{x - c} - L \right| < \varepsilon$$

In this case we say that f is differentiable at c, and we write f'(c) for L. In other words, the derivative of f at c is given by the limit

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided this limit exists. (We allow the possibility that c may be the endpoint of the interval.)

Sea $c \in (0,1)$. Dado un $\epsilon > 0$ tal que exista $\delta(\epsilon) > 0$, entonces tenemos 2 casos $(f(x) = \pm 1)$:

1.

$$\left| \frac{f(x) - f(c)}{x - c} \right| = \left| \frac{1 - 1}{x - c} \right| = 0 < \epsilon$$

2.

$$\left| \frac{f(x) - f(c)}{x - c} \right| = \left| \frac{(-1) - (-1)}{x - c} \right| = 0 < \epsilon$$

 \implies f es diferenciable en c y f'(c) = 0. \implies Ahora tomemos en cuenta el inciso 2 del teorema 5.11 de Rudin et al. (1976).

Teorema 5.11 de Rudin et al. (1976)

Suppose f is differentiable in (a, b).

- 1. If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is monotonically increasing.
- 2. If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
- 3. If $f'(x) \leq 0$ for all $x \in (a, b)$, then f is monotonically decreasing.

 \implies f es constante en (0,1). Ahora tenemos que $f(x)=c, \quad \forall \ x\in(0,1)$. Por lo cual, regresamos a la expresión original, en donde:

$$\implies [c]^2 = 1 \implies c = \pm \sqrt{1} \implies c = \pm 1.$$

$$\therefore f \equiv 1 \text{ o } f \equiv -1.$$

2. Problema 2.

Sea $f: \mathbb{R} \to \mathbb{R}$ una función que satisface $|f(x) - f(y)| \leq |x - y|^2$. Pruebe que f es constante.

Demostración. A probar: f es constante. Nótese que la expresión se puede escribir como:

$$|f(x) - f(y)| \le |x - y||x - y|$$

Ahora bien, por el valor absoluto solo se están considerando los valores positivos; es posible dividir la expresión por |x - y|, preservando la desigualdad.

$$\Rightarrow \frac{|f(x) - f(y)|}{|x - y|} \le \frac{|x - y||x - y|}{|x - y|}$$

$$\Rightarrow \frac{|f(x) - f(y)|}{|x - y|} \le |x - y|$$

$$\Rightarrow \left| \frac{f(x) - f(y)}{x - y} \right| \le |x - y|$$

Ahora, consideremos la definición 6.1.1 de Bartle and Sherbert (2000),

Definición 6.1.1. de Bartle and Sherbert (2000)

Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, and let $c \in I$. We say that a real number L is the derivative of f at c if given any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in I$ satisfies $0 < |x - c| < \delta(\varepsilon)$, then

$$\left| \frac{f(x) - f(c)}{x - c} - L \right| < \varepsilon$$

In this case we say that f is differentiable at c, and we write f'(c) for L. In other words, the derivative of f at c is given by the limit

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided this limit exists. (We allow the possibility that c may be the endpoint of the interval.)

Por las condiciones del problema, sabemos que el límite del lado izquierdo debe existir. Por lo cual, tenemos que dado $\epsilon > 0$ existe $\delta(\epsilon) > 0$, tal que:

$$\implies \underbrace{\lim_{x \to y^{-}} \left| \frac{f(x) - f(y)}{x - y} \right|}_{\text{definición}} \le \lim_{x \to y} |x - y| = 0 \implies f'(y) \le 0 \xrightarrow{\frac{y \text{ es un número arbitrario}}{}} f'(y) = 0.$$

Entonces, ahora tomamos en cuenta el inciso 2 del teorema 5.11 de Rudin et al. (1976).

Teorema 5.11 de Rudin et al. (1976)

Suppose f is differentiable in (a, b).

- 1. If f'(x) > 0 for all $x \in (a, b)$, then f is monotonically increasing.
- 2. If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
- 3. If $f'(x) \leq 0$ for all $x \in (a, b)$, then f is monotonically decreasing.
- \therefore f es constante.

3. Problema 3.

Pruebe que si la función $f: I \to \mathbb{R}$ tiene derivada acotada sobre I, entonces f es uniformemente continua sobre I.

Demostración. A probar: f es uniformemente continua sobre I. Por hipótesis, tenemos que f tiene derivada acotada sobre I, que se puede expresar como:

$$|f'(x)| \le M, \quad \forall \ x \in I.$$

Notamos que se cumplen las condiciones para aplicar el teorema del Valor Medio de Bartle and Sherbert (2000).

Teorema del Valor Medio 6.2.4 de Bartle and Sherbert (2000).

Suppose that f is continuous on a closed interval I := [a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one point c in (a, b) such that

$$f(b) - f(a) = f'(c)(b - a)$$

Ahora, nos interesa que la función sea Lipschitz para aplicar ciertas propiedades previamente demostradas en clase. Entonces, sean $a, b \in I$, tal que:

$$|f(b) - f(a)| = |f'(c)||b - a|$$
$$= |f'(c)(b - a)|$$
$$\leq K|b - a|.$$

Definición 5.4.4 de Bartle and Sherbert (2000).

Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$. If there exists a constant K > 0 such that

$$|f(x) - f(u)| < K|x - u|$$

for all $x, u \in A$, then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition) on A.

Ahora bien, ya que sabemos que es una función Lipschitz, podemos aplicar el teorema 5.4.5 de Bartle and Sherbert (2000).

Teorema 5.4.5 de Bartle and Sherbert (2000).

If $f:A\to\mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on A

 \therefore f es uniformemente continua sobre I.

4. Problema 4.

Sea f(x) una función diferenciable en a. Encuentre:

$$\lim_{n \to a} \frac{a^n f(x) - x^n f(a)}{x - a}, n \in \mathbb{Z}^+.$$

Demostración. Considérese la definición de diferenciabilidad de Bartle and Sherbert (2000), por lo cual sabemos:

$$f'(a) = \lim_{n \to a} \frac{f(x) - f(a)}{x - a}$$

Por otra parte, también se considerará el caso en donde,

$$\lim_{n \to a} \frac{x^n - a^n}{x - a} = \lim_{n \to a} \frac{(x - a)(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})}{x - a}$$

$$= \lim_{n \to a} (x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})$$

$$= a^{n-1} + a^{n-2}a + \dots + aa^{n-2} + a^{n-1}$$

$$= a^{n-1} + a^{n-1} + \dots + a^{n-1} + a^{n-1}$$

$$= na^{n-1}$$

Definición 6.1.1. de Bartle and Sherbert (2000)

Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, and let $c \in I$. We say that a real number L is the derivative of f at c if given any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in I$ satisfies $0 < |x - c| < \delta(\varepsilon)$, then

$$\left| \frac{f(x) - f(c)}{x - c} - L \right| < \varepsilon$$

In this case we say that f is differentiable at c, and we write f'(c) for L. In other words, the derivative of f at c is given by the limit

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided this limit exists. (We allow the possibility that c may be the endpoint of the interval.)

Entonces, el límite se puede expresar de la siguiente manera:

$$\lim_{n \to a} \frac{a^n f(x) - x^n f(a)}{x - a} = \lim_{n \to a} \frac{a^n f(x) - a^n f(a) + a^n f(a) - x^n f(a)}{x - a}$$

$$= \lim_{n \to a} \frac{(a^n f(x) - a^n f(a)) - (x^n f(a) - a^n f(a))}{x - a}$$

$$= \lim_{n \to a} \frac{a^n f(x) - a^n f(a)}{x - a} - \lim_{n \to a} \frac{x^n f(a) - a^n f(a)}{x - a}$$

$$= \lim_{n \to a} \frac{a^n (f(x) - f(a))}{x - a} - \lim_{n \to a} \frac{f(a)(x^n - a^n)}{x - a}$$

$$= a^n \lim_{n \to a} \frac{f(x) - f(a)}{x - a} - f(a) \lim_{n \to a} \frac{x^n - a^n}{x - a}$$

$$= a^n f'(a) - na^{n-1} f(a), \qquad n \in \mathbb{Z}^+.$$

5. Problema 5.

Sea $f:[0,1]\to\mathbb{R}$ una función continua y diferenciable en (0,1) que satisface:

- 1. f(0) = 0.
- 2. Existe M > 0 tal que $|f'(x)| \leq M|f(x)|, x \in (0,1)$

Demuestre que $f(x) = 0, x \in [0, 1]$.

Demostración. Supóngase por contradicción que $f(x) \neq 0$ en el intervalo [0,1]. Como la función es continua en el intervalo [0,1], el teorema 5.3.4 de Bartle and Sherbert (2000) nos asegura que debe haber un máximo y un mínimo absoluto en [0,1].

Teorema 5.3.4 (Máximo-Mínimo) de Bartle and Sherbert (2000)

Let I := [a, b] be a closed bounded interval and let $f : I \to \mathbb{R}$ be continuous on I. Then f has an absolute maximum and an absolute minimum on I.

Definición 5.3.3 de Bartle and Sherbert (2000)

Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$. We say that f has an absolute maximum on A if there is a point $x^* \in A$ such that

$$f(x^*) \ge f(x)$$
 for all $x \in A$

We say that f has an absolute minimum on A if there is a point $x_* \in A$ such that

$$f(x_*) \le f(x)$$
 for all $x \in A$

We say that x^* is an absolute maximum point for f on A, and that x_* is an absolute minimum point for f on A, if they exist.

 \implies Existe un máximo y un mínimo en absoluto. Sea el máximo absoluto $b \in [0,1]$ tal que $|f(b)| \ge M|f(x)|, \quad \forall \ x \in [0,1]$. Sin pérdida de generalidad, asumamos que,

Además, notamos que se cumplen las condiciones para aplicar el teorema del Valor Medio de Bartle and Sherbert (2000) en el intervalo [0, b], en donde b tiene 2 casos posibles: (1) b < 1, (2) b = 1. El caso en donde b > 1 lo descartamos porque queda fuera del intervalo [0, 1].

Teorema del Valor Medio 6.2.4 de Bartle and Sherbert (2000).

Suppose that f is continuous on a closed interval I := [a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one point c in (a, b) such that

$$f(b) - f(a) = f'(c)(b - a)$$

 \implies Tenemos f(b) - f(0) = f'(c)(b - 0). Despejamos para f'(c) tal que,

$$f'(c) = \frac{f(b) - f(0)}{b - 0} = \frac{f(b)}{b}$$

Entonces, analizamos los casos individualmente:

- 1. Si b < 1 entonces $f'(c) = f(b)/b > f(b) \ge M|f(c)|$, en donde contradice que $|f'(x)| \le M|f(c)|.$
- 2. Si b=1 entonces f'(c)=f(b)/1>|f(c)|, en donde a contradice que $|f'(x)|\leq M|f(c)|.$

Referencias

Bartle, R. G. and Sherbert, D. R. (2000). Introduction to real analysis. Wiley New York.

Rudin, W. et al. (1976). *Principles of mathematical analysis*, volume 3. McGraw-hill New York.