Celestial Mechanics Memorandum

 $\mathbf{S/C}$: spacecraft, \mathbf{CoM} : Center of Mass, \mathbf{EoM} : Equations of Motion, $\mathbf{g.c.}$: generalized coordinates, \mathbf{OE} : Orbital Elements, \mathbf{OED} : OE Differences, \mathbf{MOE} : Mean OE, \mathbf{OOE} : Osculating OE,

Constants

 $\mu = GM = 398600.8 \ km^3/s^2$ (Earth's gravitational constant) $r_{\odot} = (Earth's \ radius)$ $J_2 = 1082.7 \cdot 10^{-6}$ (Earth's second zonal harmonic)

Basic Energy Notions

Work

Work done by **f** and τ

$$dW = \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r} + \boldsymbol{\tau}(\boldsymbol{\theta}) \cdot d\boldsymbol{\theta} \tag{1}$$

Conservative Forces

Conservative force \mathbf{f}_{cons} if it is an **exact differential**.

$$\frac{df_x}{dy} = \frac{df_y}{dx}$$
.

namely, it is path-independent, e.g.

$$W_{AB} = \int_A^B \mathbf{f}(\mathbf{r}_1) \cdot d\mathbf{r_1} = \int_A^B \mathbf{f}(\mathbf{r}_2) \cdot d\mathbf{r_2}.$$

• Mechanical Energy E

Total mechanical energy

$$E = \underbrace{K_{rot} + K_{trans}}_{\text{total kinetic}} + \underbrace{U_{grav} + U_{elas} + \dots}_{\text{total potential}} + \underbrace{W_{nc}(\mathbf{f}_{ext}, \mathbf{f}_{fric}, \dots)}_{\text{non-conservative}}.$$

Remark .1 If $W_{nc} = 0$ the energy of the system is conserved.

For a system with only \mathbf{f}_{cons} : (Work-Energy Theorem)

$$\Delta U_{AB} = U_B - U_A = -W_{AB},$$

$$\Delta K_{AB} = -\Delta U_{AB} = W_{AB}.$$
(2)

Remark .2 Cons. work W_{AB} enables exchange between U and K. Force \mathbf{f}_{cons} acting on conservative system via (1) and (2).

$$dU = -dW = -\mathbf{f} \cdot d\mathbf{r} \Rightarrow \mathbf{f} = -\nabla U = -\frac{\partial U}{\partial x} \hat{\mathbf{i}} - \frac{\partial U}{\partial y} \hat{\mathbf{j}} - \frac{\partial U}{\partial z} \hat{\mathbf{k}}$$
(3)

• Gravitational Potential Energy

Potential from Gauss's law of gravity: (Shell theorem)

(field flux)
$$\Phi_g = \oint_{\partial V} \mathbf{g} \cdot d\mathbf{S} = -4\pi GM$$

with field $\mathbf{g} = g(r)\hat{\mathbf{n}}$, $d\mathbf{S} = dS\hat{\mathbf{n}}$ and $\partial V \equiv$ sphere, then

$$g(r) = -\frac{GM}{r^2} = \frac{|\mathbf{f}_g|}{m},\tag{4}$$

and by integrating the gravity strength field

$$U_g(r) = -\int g(r)dr = -\frac{GM}{r}.$$
 (5)

Newton's law of gravity from (3) and (4):

$$\mathbf{a}_g = \frac{\mathbf{F}_g}{m} = \frac{-\nabla U_g}{m} = -\frac{\mu}{|\mathbf{r}|^3} \mathbf{r}.$$
 (6)

Potential from spherical harmonic expansion in ECEF: (Oblateness)

$$U_g(r, \Phi, \Lambda) = \frac{\mu}{r} \left\{ 1 + \sum_{n=2}^{\infty} \left[\left(\frac{r_{\odot}}{r} \right)^n J_n P_{n0}(\cos \Phi) + \right. \right. \\ \left. + \sum_{m=1}^{n} \left[\left(\frac{r_{\odot}}{r} \right)^n (C_{nm} \cos m\Lambda + S_{nm} \sin m\Lambda) P_{nm}(\cos \Phi) \right]. \right\}$$
(7)

Potential with only J_2 -perturbation to the first order:

$$U_g^{J_2} = -\frac{\mu}{|\mathbf{r}|} - \frac{J_2 \mu r_{\odot}^2}{2|\mathbf{r}|^3} \left(3 \left[\frac{z}{|\mathbf{r}|} \right]^2 - 1 \right) + O[J_2^2]. \tag{8}$$

Rigid Body Notions

Defined inertial $i := \{o, \hat{\mathbf{X}}, \hat{\mathbf{Y}}, \hat{\mathbf{Z}}\}$ and body $b := \{o', \hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}\}$ frames

$$\mathbf{r}_{op} \equiv \mathbf{r}_{op/i}, \quad \mathbf{s}_{o'p} \equiv \mathbf{r}_{o'p/b}$$
 (9)

Properties of body frame centered in $c \equiv CoM$. For every $p \in B$

$$\int_{B} \mathbf{r}_{cp} dm \approx \sum_{p} \mathbf{r}_{cp} m_{p} = 0, \quad \int_{B} \dot{\mathbf{r}}_{cp} dm \approx \sum_{p} \dot{\mathbf{r}}_{cp} m_{p} = 0.$$
 (10)

Vector differentiation in moving frame b: (Transport theorem)

$$\dot{\mathbf{u}}_{/b}|_i = \dot{\mathbf{u}}_{/b}|_b + \{\boldsymbol{\omega}_{ib} \times \mathbf{u}\}_{/b}. \tag{11}$$

Momentum of a point p w.r.t. o with vector $\mathbf{r}_{op} = \mathbf{r}_{oo'} + \mathbf{r}_{o'p}$.

$$d\mathbf{p}_{p/i} = \dot{\mathbf{r}}_{op}dm = (\dot{\mathbf{r}}_{oo'} + \dot{\mathbf{r}}_{o'p} + \{\boldsymbol{\omega}_{ib} \times \mathbf{r}_{o'p}\}_{/i})dm,$$

$$d\mathbf{h}_{op/i} = \{\mathbf{r}_{op} \times d\mathbf{p}_{p}\}_{/i} = \{\mathbf{r}_{op} \times (\dot{\mathbf{r}}_{oo'} + \dot{\mathbf{r}}_{o'p} + \{\boldsymbol{\omega}_{ib} \times \mathbf{r}_{o'p}\}_{/i})\}dm$$

Remark .3 A rigid-body has no rel. velocities, i.e. $\dot{\mathbf{s}}_{o'p}|_{b} = 0$.

Angular momentum

AM of a body B with respect to point o' seen from body frame b $\mathbf{h}_{o'B/b} = \int_{p \in B} d\mathbf{h}_{op/b} = \int_{B} \mathbf{s}_{op} dm \times \{\boldsymbol{\omega}_{ib} \times \mathbf{s}_{o'p}\}_{/b} = \mathbf{J}_{B/b} \boldsymbol{\omega}_{ib/b} \quad (12)$ If $o' = c \pmod{1}$, then $\int_{B} \mathbf{r}_{op} dm \times \mathbf{r}_{oc} = \int_{B} \mathbf{s}_{cp} dm \times \mathbf{s}_{cc} = \mathbf{0} \quad [1]$.

Torque

According to Newton-Euler EoM, τ is the cause of $\dot{\mathbf{h}}|_i$

$$\boldsymbol{\tau} = \dot{\mathbf{h}}]_i = \dot{\mathbf{h}}]_b + \boldsymbol{\omega} \times \mathbf{h} = \mathbf{J}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbf{J}\boldsymbol{\omega}. \tag{13}$$

Kinetic energy

Translational and rotational Kinetic energies from momentum

$$K_t = \int \mathbf{p} d\mathbf{v} = \frac{1}{2} m |\mathbf{v}|^2, \quad K_r = \int \mathbf{h} d\boldsymbol{\omega} = \frac{1}{2} |\boldsymbol{\omega}|^2,$$
 (14)

• Lagrangian $L(\chi, \dot{\chi})$

The Lagrangian is defined for a set of g.c $\chi \in \mathbb{R}^N$

$$L := K(\boldsymbol{\chi}, \dot{\boldsymbol{\chi}}) - U(\boldsymbol{\chi}). \tag{15}$$

Euler-Lagrange from the Lagrangian, with constraints $\mathbf{g}_1(\chi), \mathbf{g}_2(\chi, \dot{\chi}, t)$, and Lagrange multipliers λ_h, λ_n .

$$\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{\chi}} \right) - \frac{\partial L}{\partial \chi} + \underbrace{\nabla_{\chi} \mathbf{g}_{1}^{\top} \lambda_{h}}_{\text{holonomic}} - \underbrace{\nabla_{\dot{\chi}} \mathbf{g}_{2}^{\top} \lambda_{n}}_{\text{non-holonomic}} = \underbrace{\mathbf{Q} + \mathbf{D}}_{\text{ext. forces}}$$
(16)

Remark .4 For mechanical systems, $\frac{\partial L}{\partial \dot{\chi}} = 0$.

• Hamiltonian $H(\mathbf{\chi}, \mathbf{p}, t)$

The Hamiltonian is defined with $\mathbf{p} = \nabla_{\dot{\boldsymbol{\chi}}} L(\boldsymbol{\chi}, \dot{\boldsymbol{\chi}})$

$$H := \mathbf{p}^{\top} \dot{\boldsymbol{\chi}} - L(\boldsymbol{\chi}, \dot{\boldsymbol{\chi}}). \tag{17}$$

For g.c. $\chi \in \mathbb{R}^N$ and momentum $\mathbf{p} \in \mathbb{R}^N$.

$$\dot{\mathbf{p}} = -\nabla_{\mathbf{\chi}} H, \quad \dot{\mathbf{\chi}} = \nabla_{\mathbf{p}} H. \tag{18}$$

for conserver vative systems $H(\mathbf{\chi}, \mathbf{p}, t) = H(\mathbf{\chi}, \mathbf{p}) = E_{tot}$.

(8) Remark .5 EoM can be derived from (16) or (18).

Quaternions

A unitary quaternion defining a rotation from a to b

$$\mathbf{q}_a^b := [\eta \ \boldsymbol{\varepsilon}^\top]^\top \in \mathbb{H} : \eta^2 + |\boldsymbol{\varepsilon}|^2 = 1. \tag{19}$$

with alternative representations as follows ($\vartheta \in \mathbb{R}^3$)

$$\mathbf{q}_a^b = \mathbf{q}\{\boldsymbol{\vartheta}\} = e^{\boldsymbol{\vartheta}} = \left[\cos(|\boldsymbol{\vartheta}|/2) \ \frac{\boldsymbol{\vartheta}^\top}{|\boldsymbol{\vartheta}|} \sin(|\boldsymbol{\vartheta}|/2)\right]^\top. \tag{20}$$

Conversion from \mathbf{q}_a^b to \mathbf{R}_a^b is achieved by

$$\mathbf{R}_a^b \{ \mathbf{q}_a^b \} = \mathbf{I}_3 + 2\eta [\boldsymbol{\varepsilon}]_{\times} + 2[\boldsymbol{\varepsilon}]_{\times}^2. \tag{21}$$

and useful approximations of small local rotations

$$\Delta \mathbf{q}_{\ell} \approx [1 \ \Delta \boldsymbol{\vartheta}_{\ell}^{\top}/2]^{\top}, \quad \Delta \mathbf{R}_{\ell} \approx \mathbf{I} + [\Delta \boldsymbol{\vartheta}_{\ell}]_{\times}.$$
 (22)

• Time-derivative

In the fixed i and moving b reference frame

$$\dot{\mathbf{q}}_{/i} := \frac{1}{2} \begin{bmatrix} 0 \\ \boldsymbol{\omega}_{\ell} \end{bmatrix} \otimes \mathbf{q}(t) = \frac{1}{2} \mathbf{\Omega}(\boldsymbol{\omega}_{\ell}) \mathbf{q}(t), \qquad \boldsymbol{\omega}_{\ell} \equiv \boldsymbol{\omega}_{/i},
\dot{\mathbf{q}}_{/b} := \frac{1}{2} \mathbf{q}(t) \otimes \begin{bmatrix} 0 \\ \boldsymbol{\omega}_{\ell} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -\boldsymbol{\varepsilon}^{\top} \\ \eta \mathbf{I} - [\boldsymbol{\varepsilon}]_{\times} \end{bmatrix} \boldsymbol{\omega}_{\ell}, \qquad \boldsymbol{\omega}_{\ell} \equiv \boldsymbol{\omega}_{/b}.$$
(23)

where $\boldsymbol{\omega}_{\ell}$ is local angular perturbation in the frame \mathbf{q}_{a}^{b} .

$$\omega_{\ell} = \frac{d\vartheta_{\ell}}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \vartheta_{\ell}}{\Delta t}.$$
 (24)

and $\Omega(\omega)$ and $[\omega]_{\times}$ are skew symmetric matrices

$$\mathbf{\Omega}(\boldsymbol{\omega}) := \begin{bmatrix} 0 & -\boldsymbol{\omega}^{\top} \\ \boldsymbol{\omega} & -[\boldsymbol{\omega}]_{\times} \end{bmatrix}, \quad [\boldsymbol{\omega}]_{\times} := \begin{bmatrix} 0 & \omega_{z} & -\omega_{y} \\ -\omega_{z} & 0 & \omega_{x} \\ \omega_{y} & -\omega_{x} & 0 \end{bmatrix}. \tag{25}$$

Analogously, the rotation matrix kinematics are:

$$\dot{\mathbf{R}}_a^b = [\boldsymbol{\omega}_b^{ab}]_{\times} \mathbf{R}_a^b = \mathbf{R}_a^b [\boldsymbol{\omega}_a^{ab}]_{\times}. \tag{26}$$

• First-order integration: $(\bar{\omega} = \frac{\omega_{n+1} + \omega_n}{2})$

$$\mathbf{q}_{n+1} \approx \mathbf{q}_n \otimes \left(\mathbf{q} \{ \overline{\boldsymbol{\omega}}_n \Delta t \} + \frac{\Delta t^2}{24} \begin{bmatrix} 0 \\ \boldsymbol{\omega}_n \times \boldsymbol{\omega}_{n+1} \end{bmatrix} \right),$$
 (27)

Keplerian Orbits

An orbit $\mathcal{O}(\kappa)$ defined by constant elements $\kappa = \{a, e, i, \omega, \Omega\}$.

Vis-viva

Since $E = \frac{v^2}{2} - \frac{\mu}{r}$ mantained along orbit $E_{apo} = E_{peri}$, leading to

$$v^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right). \tag{28}$$

• Orbital radius and period

(18) In terms of the zero-order (Keplerian) $f_{(0)}$, $E_{(0)}$ and $a_{(0)}$.

$$r_t = \frac{a(1-e^2)}{1+e\cos f} = a(1-e\cos E), \quad T = 2\pi\sqrt{\frac{a^3}{\mu}}.$$
 (29)

\bullet Anomaly angles M, E, f and time t

Note that n referes to mean motion.

$$M = 2 \tan^{-1} \left[\sqrt{\frac{1-e}{1+e}} \tan \frac{f}{2} \right] - \frac{e\sqrt{1-e^2} \sin f}{1+e \cos f}$$

= $E - e \sin E = \sqrt{\mu/a^3} (t - \tau) = n(t - \tau).$ (30)

• Semi-latus rectum

Relations between the orbit parameter $p,\,a,\,b$ and e

$$p = \frac{h^2}{\mu} = \frac{b^2}{a} = a(1 - e^2). \tag{31}$$

• Important relations

Lagrange's formula :
$$\mathbf{r} \cdot \mathbf{v} = \frac{\mu}{h} re \sin f$$
.
Hodograph relation : $\mathbf{v} = \frac{\mu}{h^2} \mathbf{h} \times (\mathbf{e} + \frac{\mathbf{r}}{r})$.

Transformations

PQW \rightarrow **ECI**: $R = R_z(\Omega)R_x(i)R_z(\omega)$.

RTN \rightarrow **ECI**: $R = R_z(\Omega)R_x(i)R_z(\omega + f)$.

Non-Keplerian Orbits

They osculate and drift, i.e. $\dot{\kappa}_t \neq 0$, depending on the type of perturbations considered. Generally, we use LPEs or GPEs. Section based on [2].

• J₂ Effects

The Earth oblateness produces **short-**, **long-**period oscillations and **secular drift**.

Remark .6 The secular drift is better studied using the MOE, instead of OOE, since short- and long-period oscillations are removed.

(Nodal drift)
$$\dot{\bar{\Omega}} = -\frac{3}{2}J_2 \left(\frac{r_{\odot}}{p}\right)^2 n \cos i,$$

(Apsidal drift) $\dot{\bar{\omega}} = \frac{3}{4}J_2 \left(\frac{r_{\odot}}{p}\right)^2 n \left(5\cos^2 i - 1\right),$ (33)
 $\dot{\bar{M}} = n + \frac{3}{4}J_2 \left(\frac{r_{\odot}}{p}\right)^2 n \sqrt{1 - e^2} (3\cos^2 i - 1).$

• Lagrange Planetary Equations LPE (disturbance \tilde{R} is conservative)

$$\begin{split} \dot{a} &= -\frac{2a^2}{k} \frac{\partial \tilde{R}}{\partial \tau}, \quad \dot{e} = -\frac{a(1-e^2)}{ke} \frac{\partial \tilde{R}}{\partial \tau} - \frac{1}{e} \sqrt{\frac{1-e^2}{ka}} \frac{\partial \tilde{R}}{\partial \omega} \\ \frac{di}{dt} &= \frac{1}{\sqrt{ka(1-e^2)} \sin i} \left[\cos i \frac{\partial \tilde{R}}{\partial \omega} - \frac{\partial \tilde{R}}{\partial \Omega} \right], \\ \dot{\Omega} &= \frac{1}{\sqrt{ka(1-e^2)} \sin i} \frac{\partial \tilde{R}}{\partial i}, \quad \dot{\omega} = \frac{1}{e} \sqrt{\frac{1-e^2}{ka}} \left[\frac{\partial \tilde{R}}{\partial e} - \frac{e \cot i}{1-e^2} \frac{\partial \tilde{R}}{\partial i} \right]. \end{split}$$

ullet Gauss Planetary Equations GPE (disturbance S,T,N non-conservative)

Remark .7 \tilde{R} and STN usually involve an anomaly angle directly. For convenience, we use one of them as **independent variable**. Then,

 $\dot{\boldsymbol{\kappa}}_i = \frac{d\boldsymbol{\kappa}_i}{df} \frac{df}{dt}.\tag{34}$

Remark .8 When inserting zero-order $a_{(0)},...,\Omega_{(0)}$ (Keplerian orbit) into LPE or GPE and integrate we obtain first-order solutions.

Spacecraft Dynamics

• Newton Planetary Equations under J_2 -perturbation

$$\ddot{x} = -\frac{\mu x}{|\mathbf{r}|^3} - 3x \frac{J_2 \mu r_{\odot}^2}{2|\mathbf{r}|^5} \left[1 - 5 \left(\frac{z}{|\mathbf{r}|} \right)^2 \right] + \frac{f_x}{m},$$

$$\ddot{y} = -\frac{\mu y}{|\mathbf{r}|^3} - 3y \frac{J_2 \mu r_{\odot}^2}{2|\mathbf{r}|^5} \left[1 - 5 \left(\frac{z}{|\mathbf{r}|} \right)^2 \right] + \frac{f_y}{m},$$

$$\ddot{z} = -\frac{\mu z}{|\mathbf{r}|^3} - 3z \frac{J_2 \mu r_{\odot}^2}{2|\mathbf{r}|^5} \left[3 - 5 \left(\frac{z}{|\mathbf{r}|} \right)^2 \right] + \frac{f_z}{m}.$$
(35)

• Quaternion-Based Attitude Dynamics with RWs

 J_s : S/C inertia, h_w : RWs angular momentum, τ_w : RWs torque, and τ_d : disturbance torques. All quantities expressed in b frame.

$$\dot{\mathbf{q}}_{i}^{b} = \frac{1}{2} \mathbf{\Omega}(\boldsymbol{\omega}_{ib/b}) \mathbf{q}_{i}^{b},
\dot{\boldsymbol{\omega}}_{ib/b} = \mathbf{J}_{s}^{-1} (-\boldsymbol{\omega}_{ib/b} \times \mathbf{J}_{s} \boldsymbol{\omega}_{ib/b} - \boldsymbol{\omega}_{ib/b} \times \mathbf{h}_{w/b} + \boldsymbol{\tau}_{d/b} - \boldsymbol{\tau}_{w/b}),
\dot{\mathbf{h}}_{w/b} = \boldsymbol{\tau}_{w/b}$$
(36)

Remark .9 Note that it is combinient to align the RWs axis of rotation with the b frame, which usually also coincides with the principal axis of inertia of the S/C.

Relative Spacecraft Dynamics

- Clohessy-Wiltshire Equations (CW)
- Hill-Clohessy-Wiltshire Equations (HCW)

Relative state through OED

The relative states in the *Hill* frame (i.e. RTN), $\delta \mathbf{r}_{/RTN}$, as a function of f and OED, $\delta \kappa$.

$$[\delta x \ \delta y \ \delta z]_{/RTN}^{\top}(f) = \Phi_{\delta\kappa}^{\delta r} [\delta a \ \delta e \ \delta i \ \delta \omega \ \delta \Omega \ \delta M]^{\top}$$
 (37)

with radius r is at position f, we have

$$\Phi_{\delta\kappa}^{\delta r} = \begin{bmatrix} \frac{r}{a} & 0 & 0 \\ -a\cos f & \frac{r\sin f}{\eta^2} (2 + e\cos f) & 0 \\ 0 & 0 & r\sin\theta \\ 0 & r & 0 \\ 0 & r\cos i & -r\cos\theta\sin i \\ \frac{ae\sin f}{\eta} & \frac{r\sin f}{\eta^3} (1 + e\cos f)^2 \delta M & 0 \end{bmatrix}. \quad (38)$$

The change in f can also be expressed in terms of $\delta \kappa$.

$$\delta f = \frac{(1 + e\cos f)^2}{\eta^3} \delta M + \frac{\sin f}{\eta^2} (2 + e\cos f) \delta e, \tag{39}$$

where $\eta = \sqrt{1 - e^2}$ in both (38) and (39).

Remark .10 Eq. (37) is a linearization, thus loses accuracy if $\delta r \sim r$. If $\delta a \neq 0$, then the orbital periods between $\mathcal{O}(\kappa)$ and $\mathcal{O}(\kappa + \delta \kappa)$ change, yielding secular growth in $\delta M, \delta E$ and δf .

References

- [1] J. R. Wertz. Spacecraft attitude determination and control. 1994.
- [2] Schaub H., and Junkins, J. L., Analytical Mechanics of Space Systems, AIAA, 2009.

Created by Aitor R. Gomez, 2022 https://aitor-rg.github.io/