Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	pass	5		3
	1.1	r		3
	1.2	Метрические и нормированные пространства		4
	1.3			6
		1.3.1	Приложение принципа сжимающих отображений к решению алгебра-	
			ических уравнений	7
		1.3.2	Приложение принципа сжимаемых отображений к решению системы	
			алгебраических уравнений	7
		1.3.3	Применение принципа сжимаемых отображений к решению диффе-	
			ренциальных уравнений	8
		1.3.4	Применение принципа сжимаемых отображений к решению интеграль-	
			ных уравнений	9
		1.3.5	Теорема о неподвижной точки Шаудера	11

Список литературы

- [1] Колмогоров, Фомин «Элементы теории функций и функционального анализа»
- [2] Канторович, Акилов «Функциональный анализ нормированных пространств»
- [3] Вулих «Основы теории функций вещественной переменной»
- [4] Халмош «Теория меры»
- [5] Данфорд, Шварц «Линейные операторы. Общая теория»
- [6] Очан «Сборник задач по теории функций вещественной переменной»

1 pass

1.1 Понятие множества. Отображение

Определение 1.1. Множеством называется совокупность элементов какой-либо природы.

Определение 1.2. Множества A и B дизъюнктны, если они не пересекаются.

Система множеств также называется дизъюнктной, если множества попарно не пересекаются: $A_i \cap A_j = \emptyset, \ \forall i \neq j$

Определение 1.3. Множество называется упорядоченным, если для его элементов введены операции отношения $<,>,\leq,\geq$.

Если множество упорядочено, то для него можно ввести понятие ограниченности, супремума, инфимума и так далее.

Определение 1.4. Пусть заданы M, N — произвольные множества. И пусть задано правило f, согласно которому $\forall x \in M \; \exists ! y = f(x) \in N$. Тогда говорят, что задано отображение $f: M \to N$.

Соответственно x — прообраз, y — образ.

Пример 1.1. Пусть M и N — числовые. Тогда f называется функцией.

Пример 1.2. Пусть M=C[a,b] — непрерывные функции из [a,b] и $N=\mathbb{R}$. Тогда отображение — функционал. $y=\int_a^b x(t)dt$ — элементарный функционал.

Пример 1.3. $M = \mathbb{R}^3$, а N = Oxy и каждому вектору сопоставляется его проекция. Тогда отображение будет называться оператором.

Пример 1.4. M — множество фигур в \mathbb{R}^2 и каждой фигуре ставится в соответствие ее площадь. Тогда отображение называется мерой. Или, в теории вероятности, отображение события в значение его вероятности.

Определение 1.5. Два множества A и B называются эквивалентными или равномощными, если между их элементами можно установить взаимно однозначное соответствие.

Определение 1.6. Пусть A,B — множества, и при этом $\exists D \subset B: A \sim D$ и $\not\exists C \subset A: B \sim C.$ Тогда говорят, что B мощнее A.

Пример 1.5. Самыми маломощными являются конечные множества. Следующие по мощности — счетные. Следующие — множества мощности континуума (мощность множества вещественных чисел на любом отрезке). Есть ли еще мощнее?

Теорема 1.1. Пусть A- множество, а B- множество всех подмножеств множетсва A. Тогда B мощнее A.

Замечание 1.1. Если A имеет мощность континуума, то B будет иметь мощность гиперконтинуума. Из теоремы следует, что мощность можно увеличивать до бесконечности.

1.2 Метрические и нормированные пространства

Определение 1.7. Пространство X называется метрическим, если $\forall x, y \in X \exists! \rho(x, y) \in \mathbb{R}$, такое, что:

- 1) $\rho(x,y) > 0$, при этом $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2) $\rho(x, y) = \rho(y, x)$;
- 3) $\rho(x,y) < \rho(x,z) + \rho(y,z)$

 $\forall x, y, z \in X$.

Пример 1.6.

 $X=\mathbb{R},$ тогда $\rho(x,y)=|x-y|.$ $X=\mathbb{R}^n,$ тогда: $\rho(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}$ (сферическая метрика) или $\rho(x,y)=\max_{i=\overline{1,n}}|x_i-y_i|$ (параллелепипедальная) и любые другие, на какие может хватить фантазии. Вообще говоря, близость в одной метрике не значит близости в другой.

Пример 1.7. Пусть
$$X = C[a,b]$$
. $\rho(f(x),g(x)) = \max_{[a,b]} |f(x) - g(x)|$ Или $\rho(x,y) = \int_a^b |f(x) - g(x)| dx$.

Определение 1.8. ε -окрестность точки x: $V_{\varepsilon}(x)=\{y\in X: \rho(x,y)<\varepsilon\}$ — шар с центром в точке x и радиусом ε .

Используя понятие окрестности, можно ввести понятия предельной точки, внутренней точки, открытого и замкнутого множества и так далее.

Определение 1.9. Пусть $A \subset B$. A всюду плотно в B, если $\forall \varepsilon > 0, \ \forall x \in B \ \exists y \in A$: $\rho(x,y)<\varepsilon.$

Определение 1.10. Множество X называется сепарабельным, если у него есть счетное всюду плотное подмножество.

Пример 1.8. \mathbb{R} — сепарабельное $\mathbb{Q} \subset \mathbb{R}$.

Аналогично C[a,b] — сепарабельное, поскольку содержит множество полиномов.

Определение 1.11. $A \subset B$. A нигде не плотно в B, если оно не плотно ни в одном шаре из B.

Пример 1.9. $B = \mathbb{R}$. $A = \mathbb{N}$.

Определение 1.12. Пусть $\{x^{(k)}\}_{k=1}^{\infty}$ — последовательность элементов в X. И пусть $x^* \in X$. Тогда $x^{(k)} \to x^*: \rho(x^{(k)}, x^*) \to_{k \to \infty} 0$.

Определение 1.13. Последовательность $\{x^{(k)}\}_{k=1}^{\infty}$ фундаментальна, если для нее выполнен критерий Коши: $\forall \varepsilon > 0 \; \exists N > 0 : \; \forall k, n > N \;$ выполняется $\rho(x^{(k)}, x^{(n)}) < \varepsilon$.

Теорема 1.2. Если последовательность сходится, то она фундаментальна.

Доказательство. Рассмотрим $0 \le \rho(x^{(k)}, x^{(n)}) \le \rho(x^{(k)}, x^*) + \rho(x^*, x^{(n)}) \to_{k \to \infty} 0$. Теорема о двух милиционерах.

Определение 1.14. Пространство X — полное, если любая фундаментальная последовательность в нем сходится к элементу этого пространства: \forall фундаментальной $\{x^{(k)}\} \in X \; \exists x^* \in X$, такое, что $x^{(k)} \to_{k \to \infty} x^*$.

Пример 1.10. $X = \mathbb{R}$ — полное. $X = \mathbb{Q}$ — не полное, $x^{(k)} = (1 + \frac{1}{k})^k \in \mathbb{Q}$ сходится к e, но $e \notin Q$.

Замечание 1.2. Полнота пространства зависит, вообще говоря, от введенной метрики.

Пример 1.11. $X = C[a,b], \rho_1(f(x),g(x)) = \max_{[a,b]} |f(x)-g(x)|$ и $\rho_2(f(x),g(x)) = \int_a^b |f(x)-g(x)| dx$. Если рассматривать $\rho_1(f_k(x),g(x)) \to_{k\to\infty} 0 \Rightarrow f_k(x) \rightrightarrows_{k\to 0}^{[a,b]} f(x) \Rightarrow f(x) \in X$, но $\rho_2(f_k(x),g(x)) \to_{k\to\infty} 0 \not\Rightarrow f(x) \in X$.

Теорема 1.3. Для того, чтобы X было полным, необходимо и достаточно, чтобы любая последовательность вложенных друг в друга замкнутых шаров имела непустое пересечение.

Доказательство. Аналогично лемме Коши-Кантора для вложенных отрезков.

Теорема 1.4. (Бэра) Полное пространство не может быть представлено в виде счетного объединения нигде не плотных множеств.

Вывод 1.1. Полное пространство не может быть счетным.

Если пространство не полное, то его можно пополнить.

Определение 1.15. X^* называется пополнением пространства X, если:

- 1) $X \subset X^*$;
- (2) X всюду плотно в X^* .
- 3) X^* полное.

Операция пополнения эквивалентна опрерации замыкания, но замыкают чем-то известным, а пополняют чем-то новым.

Пример 1.12. \mathbb{Q} — неполное. Дополним его иррациональными числами и получим полное пространство \mathbb{R} .

Определение 1.16. Пространство X линейно, если для элементов этого пространства введены операции сложения и умножения на константу.

Определение 1.17. Линейные пространства X,Y изоморфны, если $X \sim Y$ и $\forall x_1, x_2 \in X$, $\forall y_1, y_2 \in Y$ и $x_1 \sim y_1, x_2 \sim y_2 \Rightarrow x_1 + x_2 \sim y_1 + y_2, \lambda x_1 \sim \lambda y_1$.

Пример 1.13. X — множество полиномов степени $\leq (n-1)$. $Y = \mathbb{R}^n$. Тогда $X \sim Y$,

$$x(t) = a_1 t^{n-1} + \dots + a_n \sim y = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Для линейных пространств можно ввести понятие линейной зависимости и независимости элементов, размерности, базиса, подпространства и так далее.

Определение 1.18. Линейное пространство X называется нормированным, если $\forall x \in X$: $\exists! r \in \mathbb{R}$, которое называется нормой (||x||) и удовлетворяет следующим аксиомам:

- 1) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$;
- 2) $||\lambda x|| = |\lambda| \cdot ||x||$;
- 3) $||x + y|| \le ||x|| + ||y||$;

Если пространство нормированно, то его всегда можно метризовать.

Стандартной считается метрика, согласованная с нормой: $\rho(x,y) = ||x-y||$.

Определение 1.19. Полное нормированное пространство называется Банаховым пространством.

Замечание 1.3. Все основные определения и свойства метрического пространства вытекали из определения метрики.

Можно пойти другим путем: не вводя метрику непосредственно определить с помощью аксиом что считать открытым множеством, замкнутым и так далее. В результате приходим к так называемым топологическим пространствам.

1.3 Неподвижные точки отображения

Пусть X, Y — два метрических пространства. Пусть ρ_1, ρ_2 — метрики в пространствах X и Y соответственно. И пусть задано отображение $\mathcal{A}: X \to Y \ (\forall x \in X \ \exists y = \mathcal{A}x \in Y)$.

Определение 1.20. Отображение \mathcal{A} называется непрерывным в точке $x_0 \in X$, если $\forall \{x_k\} \in X: x_k \to_{k \to \infty} x_0 \Rightarrow \mathcal{A}x_k \to_{k \to \infty} \mathcal{A}x_0$.

Или, что то же самое: $\forall \varepsilon > 0 \; \exists \delta > 0$, такое, что если $\rho_1(x, x_0) < \delta$, то $\rho_2(\mathcal{A}x, \mathcal{A}x_0) < \varepsilon$.

Предположим далее, что X=Y, то есть $\mathcal{A}:X\to X$ и $\rho_1=\rho_2=\rho$.

Определение 1.21. Точка $x^* \in X$ — неподвижная точка отображения \mathcal{A} , если $\mathcal{A}x^* = x^*$.

Определение 1.22. Отображение $\mathcal{A}: X \to X$ называется сжимающим, если $\exists \alpha \in [0,1)$, такая, что $\forall x, y \in X$ верно $\rho(\mathcal{A}x, \mathcal{A}y) \leq \alpha \rho(x,y)$.

Лемма 1.1. \mathcal{A} сжимающее $\Rightarrow \mathcal{A}$ непрерывное на X.

Доказательство.
$$\forall x_0 \in X, \forall \{x_k\} \in X: x_k \to_{k \to \infty} x_0 \Rightarrow 0 \le \rho(\mathcal{A}x_k, \mathcal{A}x_0) \le \alpha \rho(x_k, x_0) \to_{k \to \infty} 0$$

Теорема 1.5. (о неподвижной точке, она же Каччаполи-Банаха, она же принцип сжимающих отображений)

Пусть X — полное метрическое пространство, $\mathcal{A}: X \to X$. Тогда у отображения \mathcal{A} $\exists !$ неподвижная точка.

Доказательство. $\forall x_0 \in X$:

$$x_1 = \mathcal{A}x_0;$$

 $x_2 = \mathcal{A}x_1 = \mathcal{A}(\mathcal{A}x_0) = \mathcal{A}^2x_0;$

$$X_k = \mathcal{A}^k x_0;$$

Докажем, что эта последовательность является фундаментальной:

 $\forall n > m > 1$

$$\rho(x_{n}, x_{m}) = \rho(\mathcal{A}^{n} x_{0}, \mathcal{A}^{m} x_{0}) \leq \alpha \rho(\mathcal{A}^{n-1} x_{0}, \mathcal{A}^{m-1} x_{0}) \leq \dots \leq \alpha^{m} \rho(\mathcal{A}^{n-m} x_{0}, x_{0}) \leq
\leq \alpha^{m} \left(\rho(\mathcal{A}^{n-m} x_{0}, \mathcal{A}^{n-m-1} x_{0}) + \dots + \rho(\mathcal{A}^{n-m-1} x_{0}, \mathcal{A}^{n-m-2} x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq
\leq \alpha^{m} \left(\alpha^{n-m-1} \rho(\mathcal{A} x_{0}, x_{0}) + \alpha^{n-m-2} \rho(\mathcal{A} x_{0}, x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq
\leq \alpha^{m} \rho(x_{0}, x_{1}) \left(1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1} + \dots \right) = \frac{\alpha^{m} \rho(x_{0}, x_{1})}{1 - \alpha} \to_{m \to \infty} 0$$

следовательно, последовательность является фундаментальной.

X полное, следовательно, $\exists x^* \in X: \ x_k \to_{k \to \infty} x^*.$ Покажем, что x^* будет неподвижной точкой:

$$\mathcal{A}x^* = \mathcal{A}\lim_{k \to \infty} x_k = (A \text{ сжим, непр}) = \lim_{k \to \infty} \mathcal{A}x^* = \lim_{k \to \infty} x_{x+1} = x^*$$

Докажем, что точка единственная. От противного: x^*, y^* — неподвижные точки \mathcal{A} . Тогда:

$$0 \le \rho(x^*, y^*) = \rho(\mathcal{A}x^*, \mathcal{A}y^*) \le \underbrace{\alpha}_{\le 1} \rho(x^*, y^*)$$

To ecte
$$\rho(x^*, y^*) = 0$$
.

Замечание 1.4. В доказательстве содержится алгоритм поиска неподвижной точки. Выберем любую точку, применим к ней несколько раз отображение и предел данной последовательности будет неподвижной точкой.

1.3.1 Приложение принципа сжимающих отображений к решению алгебраических уравнений

Проблема. Пусть требуется решить уравнение $x = \varphi(x)$, где c — корень, причем $c \in [a, b]$.

Решение. Возьмем конкретное пространство $X = \mathbb{R}$. Метризуем: $\rho(x,y) = |x-y|$. Пространство полное. Введем отображение $\mathcal{A}x = \varphi(x)$. Тогда уравнение сведется к виду $\mathcal{A}x = x$, а c — неподвижная точка. Нам осталось лишь доказать сжимаемость данного отображения.

Пусть $\varphi(x)$ — удовлетворяет условию Липшица на [a,b]: $\exists \alpha > 0 : \forall x,y \in [a,b] \Rightarrow \underbrace{|\varphi(x) - \varphi(y)|}_{\rho(\mathcal{A}x,\mathcal{A}y)} \leq \alpha \underbrace{|x-y|}_{\rho(x,y)}$. Таким образом, оно сжимающее.

И тогда мы можем найти $\{x_k\} \to_{k\to 0} c$.

1.3.2 Приложение принципа сжимаемых отображений к решению системы алгебраических уравнений

Проблема. Требуется решить следующую систему уравнений: x = Ax + b (1). A, b заданы, x — неизвестен. $X = \mathbb{R}^n$.

Решение. Введем отображение Ax = Ax + b. Тогда уравнение (1) сводится к поиску c — неподвижной точки отображения A. 4

Если отображение сжимающее, то берем произвольный вектор, применяем к нему отображение и так далее. Тогда последовательность векторов будет сходится к нужному нам корню.

Выпишем далее достаточные условия сжимаемости отображения \mathcal{A} . Сжимаемость, вообще говоря, зависит от введенной метрики. Для того, чтобы можно было применить принцип, достаточно, чтобы сжимаемость была хотя бы в одной метрике.

1) Пусть метрика введена следующим образом: x, y — вектора и $\rho(x, y) = \sqrt{\sum_{i=1}^{n} \overline{(x_i - y_i)^2}}$. Рассмотрим расстояния между образами:

$$\rho^{2}(\mathcal{A}x, \mathcal{A}y) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}(x_{j} - y_{j}) \right)^{2} \leq \dots$$

Применяем неравенство Коши-Буняковского-Шварца:

$$\dots \le \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2\right) \left(\sum_{i=1}^n (x_i - y_i)^2\right) = \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2\right) \rho^2(x, y)$$

Тогда \mathcal{A} — сжимающее, если $\left(\sum_{i=1}^n\sum_{j=1}^n a_{ij}^2\right)<1$. 2) Или так: $\rho(x,y)=\max_{i=\overline{1,n}}|x_i-y_i|$.

$$\forall x, y \in \mathbb{R}^n \ \rho(\mathcal{A}x, \mathcal{A}y) = \max_{i=\overline{1,n}} \left| \sum_{j=1}^n a_{ij} (x_j - y_j) \right|$$

Оценим сие сверху:

$$\rho(\mathcal{A}x, \mathcal{A}y) = \max_{i=\overline{1,n}} \left| \sum_{j=1}^{n} a_{ij} (x_j - y_j) \right| \le \left(\max_{i=\overline{1,n}} \sum_{j=1}^{n} |a_{ij}| \right) \cdot \underbrace{\left(\max_{j=\overline{1,n}} |x_j - y_j| \right)}_{=\rho(x,y)}$$

Для сжимаемости достаточно выполнения условия $\sum_{i=1}^{n} |a_{ij}| < 1, i = \overline{1, n}$.

1.3.3 Применение принципа сжимаемых отображений к решению дифференциальных уравнений

Пусть записан диффур в стандартном виде: y' = f(x, y). Поставим задачу Коши: $y(x_0) = y_0.$

Данную задачу Коши можно переписать в следующей интегральной форме:

$$y = y_0 + \int_{x_0}^x f(x, y(x)) dx$$

Тогда $X=C^1$ — множество непрерывно дифференцируемых функций. Теперь нужно найти отображение $\mathcal{A}: X \to X$:

$$\mathcal{A}y(x) = y_0 + \int_{x_0}^x f(x, y(x)) dx$$

Откуда отображение запишется в форме

$$y(x) = Ay(x)$$

Пусть G — некоторая область, содержащая точку (x_0, y_0) . Будем считать, что f(x, y)— непрерывна в G и удовлетворяет условию Липшица, то есть $\forall y_1, y_2, \ \forall x: \ (x, y_1), (x, y_2) \in$ $G \Rightarrow |f(x,y_1) - f(x,y_2)| \le L |y_1 - y_2|$. Пусть без потери общности G замкнута, тогда $K = \max_G |f(x,y)|$.

Рассмотрим область D следующего вида: $\begin{cases} |x-x_0| \leq d \\ |y-y_0| \leq Kd \end{cases}$, где $d=\mathrm{const}$. Положим,

 $D \subset G$ и Ld < 1.

 $\forall y(x): |y(x)-y_0| \leq Kd$ при $x \in [x_0-d,x_0+d]$, следовательно, $|\mathcal{A}y(x)-y_0| = \left|\int_{x_0}^x f(x,y(x))dx\right| \leq Kd$, то есть применение отображения \mathcal{A} за пределы области D не выводит.

Теперь нам нужна метрика и мозги. В качестве метрики примем: $\rho(y_1(x),y_2(x))=\max_{[x_0-d,x_0+d]}|y_1(x)-y_2(x)|$. Проверим, что в этой метрике отображение будет сжимающим. $\forall y_1(x),y_2(x)$

$$\rho(\mathcal{A}y_{1}(x), \mathcal{A}y_{2}(x)) = \max_{[x_{0}-d, x_{0}+d]} \left| \int_{x_{0}}^{x} \left(f(x, y_{1}(x)) - f(x, y_{2}(x)) \right) dx \right| \leq \max_{[x_{0}-d, x_{0}+d]} Ld \left| y_{1}(x) - y_{2}(x) \right| = \underbrace{Ld}_{<1} \rho(y_{1}(x), y_{2}(x))$$

В результате получаем теорему Пикара.

Теорема 1.6. (Пикара) Пусть f(x,y) непрерывна в G, удовлетворяет условию Липшица по у. Тогда решение задачи Коши будет существовать и будет единственным на $[x_0-d,x_0+d]$.

Доказательство. $\forall y^{(0)}(x) = y_0$.

Построим последовательность:

$$y^{(1)} = \mathcal{A}y^{(0)}(x) = y_0 + \int_{x_0}^x f(x, y^{(0)}(x)) dx.$$
...
$$y^{(k)}(x) = \mathcal{A}y^{(k-1)}(x) = y_0 + \int_{x_0}^x f(\tau, y^{(k-1)}(x)) dx$$

Пример 1.14. $y' = y \Rightarrow y = Ce^x$. Пусть требуется найти функцию, удовлетворяющую начальному условию $y(0) = 1 \Rightarrow C = 1$: $y = e^x$.

Строим последовательность:

$$\begin{aligned} y^{(0)}(x) &= 1 \\ y^{(1)}(x) &= 1 + \int_0^x dx = x + 1. \\ y^{(2)}(x) &= 1 + \int_0^x (x+1)dx = 1 + x + \frac{x^2}{2} \\ \dots \\ y^{(k)}(x) &= 1 + x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots \end{aligned}$$

1.3.4 Применение принципа сжимаемых отображений к решению интегральных уравнений

Проблема. Рассмотрим уравнение вида $f(x) = \lambda \int_a^b K(x,y) f(y) dy + \varphi(x)$ — уравнение Фридгольма второго рода. Здесь $\lambda = \mathrm{const}, \, K(x,y), \varphi(x)$ — заданы. Требуется найти f(x).

Решение. K(x,y) непрерывна при $x,y \in [a,b], \varphi(x)$ непрерывна на [a,b] и мы будем искать нашу функцию, которая должна быть непрерывной на [a,b].

В качестве пространства возьмем X = C[a, b]. Найдем отображение. Пусть

$$\mathcal{A}f(x) = \lambda \int_{a}^{b} K(x, y)f(y)dy + \varphi(x)$$

откуда $f(x) = \mathcal{A}f(x)$. Если $f^*(x)$ — неподвижная точка \mathcal{A} , то $f^*(x)$ — решение уравнения Фридгольма. Нам нужна метрика. Берем стандартную: $\forall f_1(x), f_2(x) \ \rho(f_1(x), f_2(x)) = \max_{[a,b]} |f_1(x) - f_2(x)|$.

Пусть $M = \max_{x,y \in [a,b]} |K(x,y)|$. $\forall f_1(x), f_2(x)$

$$\rho(\mathcal{A}f_{1}(x), \mathcal{A}f_{2}(x)) = \max_{[a,b]} \left| \lambda \int_{a}^{b} K(x,y) \left(f_{1}(y) - f_{2}(y) \right) dy \right| \leq \underbrace{\left| \lambda \right| M(b-a) \cdot \max_{[a,b]} \left| f_{1}(y) - f_{2}(y) \right|}_{=\rho(f_{1}(x), f_{2}(x))}$$

Откуда условие сжимаемости: $|\lambda| M(b-a) < 1$.

Рассмотрим обощения сжимаемых отображений:

Теорема 1.7. Пусть X — полное метрическое пространство и A : $X \to X$. Пусть $\exists k \in \mathbb{N}$: A^k — сжимающее. Тогда у отображения A существует ровно одна неподвижная точка.

Доказательство. Пусть $\mathcal{B} = \mathcal{A}^k : X \to X$. \mathcal{B} — сжимающее, следовательно, по теореме Каччаполи-Банаха $\exists !$ неподвижная точка x^* отображения \mathcal{B} . Тогда x^* будет и неподвижной точкой отображения \mathcal{A} .

$$\mathcal{A}x^* = \mathcal{A}(\mathcal{B}x^*) = \dots = \mathcal{A}(\mathcal{B}^m x^*) = \mathcal{B}^m (Ax^*)$$
. Из доказательства теоремы Каччаполи-
Банаха $\mathcal{B}^m(\underbrace{Ax^*}_{=x_0}) \to_{m\to\infty} x^*$, откуда $\mathcal{A}x^* = x^* \Rightarrow x^*$ — неподвижная точка \mathcal{A} .

Пример 1.15. Рассмотрим уравнение Фридгольма, которое теперь уравнение Вольтерра:

$$f(x) = \lambda \int_{a}^{x} K(x, y) f(y) dy + \varphi(x)$$

Аналогично уравнению Фридгольма заданы λ, K, φ и функции непрерывны. Аналогично $X = C[a,b], \forall f_1(x), f_2(x)$ $\rho(f_1(x), f_2(x)) = \max_{[a,b]} |f_1(x) - f_2(x)|, M = \max_{x,y \in [a,b]} |K(x,y)|.$ Под образом функции будем понимать $\mathcal{A} = \lambda \int_a^x K(x,y) f(y) dy + \varphi(x) \Rightarrow \mathcal{A}f(x) = f(x).$ Аналогично с Фридгольмом,

$$\rho(\mathcal{A}f_1(x), \mathcal{A}f_2(x)) \le |\lambda| M(x-a) \cdot \max_{\underline{[a,b]}} |f_1(y) - f_2(y)|$$

Рассмотрим двукратные образы:

$$\rho(\mathcal{A}^2 f_1(x), \mathcal{A}^2 f_2(x)) \le \frac{|\lambda^2| M^2 (x-a)^2}{2!} \rho(f_1(x), f_2(x))$$

Ha k-том шаге:

$$\rho(\mathcal{A}^{k} f_{1}(x), \mathcal{A}^{k} f_{2}(x)) \leq \frac{\left|\lambda^{k}\right| M^{k}(x-a)^{k}}{k!} \rho(f_{1}(x), f_{2}(x)) \leq \frac{\left|\lambda^{k}\right| M^{k}(b-a)^{k}}{k!} \rho(f_{1}(x), f_{2}(x))$$

Откуда $\exists k$:

полное дерьмо

дописать.

1.3.5 Теорема о неподвижной точки Шаудера

Определение 1.23. Пространство X компактно, если из любой последовательности элементов этого пространства можно выделить сходящуюся подпоследовательность.

Теорема 1.8. $X - \kappa$ омпактно, следовательно, полное.

Доказательство. Пусть $\{x_k\}$ — фундаментальная последовательность. Если X — компактно, то \exists сходящаяся подпоследовательность, которая сходится: $\{x_{m_k}\} \to_{k \to \infty} x^*$. Рассмотрим $\rho(x_k, x^*)$:

$$0 \le \rho(x_k, x^*) \le \underbrace{\rho(x_k, x_{m_k})}_{\to 0} + \underbrace{\rho(x_{m_k}, x^*)}_{\to 0}$$

первое из фундаментальности, второе из сходимости.

Теорема 1.9. (критерий компактности)

X компактно $\Leftrightarrow X$ замкнуто и ограничено.

Доказательство.

Необходимость. От противного. Пусть оно не замкнуто. Тогда \exists предельная точка $x^* \notin X$. По определению предельной точки $\exists x_k \in X: x_k \to_{k\to\infty} x^*$. Тогда $\rho(x_k, x^*) \to_{k\to\infty} 0$. Тогда любая подпоследовательность $\{x_{m_k}\} \to_{k\to\infty} x^*$. Отсюда X не полное.

Пусть X не ограничено. Тогда $\exists \overline{x} \in X$, $\exists \{x_k\} \in X : \rho(x_k, \overline{x}) \to_{k \to \infty} \infty$. Тогда $\forall \{x_{m_k}\} \ \rho(x_{m_k}, \overline{x}) \to_{k \to \infty} \infty$. Следовательно, $\not\exists \hat{x} \in x^* : x_{m_k} \to x$