FCC Test Report

Application Purpose: Original grant

Applicant Name: : INFINIX MOBILITY LIMITED

FCC ID : 2AIZN-X571

Equipment Type : Mobile phone

Model Name : X571

Report Number : FCC17060520A-7

Standard(S) : FCC Part 15 Subpart E

Date Of Receipt : June 14, 2017

Date Of Issue : June 30, 2017

Test By :

(Dekun Liu)

Reviewed By :

500 Q2

(Sol Qin)

Authorized by :

(Michal Ling)

Prepared by : QTC Certification & Testing Co., Ltd.

2nd Floor, Bl Building, Fengyeyuan Industrial Plant,,

Liuxian 2st. Road, Xin'an Street, Bao'an

District,, Shenzhen, 518000

Registration Number: 588523

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	June 30, 2017	Valid	Original Report

Table of Contents	Page
1. GENERAL INFORMATION	5
2. TEST DESCRIPTION	8
2.1 MEASUREMENT UNCERTAINTY	8
2.2 DESCRIPTION OF TEST MODES	9
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	10
2.4 CONFIGURATION OF SYSTEM UNDER TEST	11
2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	11
3. SUMMARY OF TEST RESULTS	12
4. MEASUREMENT INSTRUMENTS	13
5. EMC EMISSION TEST	14
5.1 CONDUCTED EMISSION MEASUREMENT	14
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
5.1.2 TEST PROCEDURE	15
5.1.3 DEVIATION FROM TEST STANDARD	15
5.1.4 TEST SETUP 5.1.5 EUT OPERATING CONDITIONS	15 15
5.1.6 TEST RESULTS	16
5.2 RADIATED EMISSION MEASUREMENT	18
5.2.1 RADIATED EMISSION LIMITS	18
5.2.2 TEST PROCEDURE	19
5.2.3 DEVIATION FROM TEST STANDARD	19
5.2.4 TEST SETUP	20
5.2.5 EUT OPERATING CONDITIONS 5.2.5 A DESULTS (BELOW 20 MHZ)	21 22
5.2.5.1 RESULTS (BELOW 30 MHZ) 5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	23
5.2.5.3 TEST RESULTS (1GHZ TO 40GHZ)	25
6. ANTENNA APPLICATION	35
7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS	36
7. 1 Test Equipment	36
7. 2 Test Procedure	36
7. 3 Test Setup	37
7. 4 Configuration of the EUT	37
7. 5 EUT Operating Condition	37
7. 6 Limit 7. 7 Test Result	38 39
A. 26DB BANDWIDTH&6DB SPECTRUM BANDWIDTH AND 99% OCCUPIED	00
BANDWIDTH	39

Table of Contents	Page 4 01 78
B. 6 DB BANDWIDTH	52
C. MAXIMUM CONDUCTED OUTPUT POWER	62
D. PEAK POWER SPECTRAL DENSITY	65

1. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

NERAL DESCRIP	11011 01 201
Test Model	X571
Applicant	INFINIX MOBILITY LIMITED
Address	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian District,Shenzhen,Guangdong,China
Equipment Type	Mobile phone
Brand Name	Infinix
Hardware version:	V1.1
Software version:	X571-H5311B-N-PR2-170511V85
Extreme Temp. Tolerance	-10℃ to +65℃
Battery information:	Li-Polymer Battery : BL-44AX Voltage: 3.85V Capacity: 4400mAh/4500mAh(min/typ) Limited Charge Voltage: 4.4V
Adapter Information:	Adapter: CQ-25JX Input: AC 100-240V 50/60Hz 0.8A Output: DC 5V===2A/5V===5A Max
Operating Frequency	see the below table
Channels	see the below table
Channel Spacing	see the below table
Modulation Type	see the below table
Antenna Type:	PIFA Antenna
Antenna gain:	-5dBi
Data of receipt	June 14, 2017
Date of test	June 14, 2017 to June 29, 2017
Deviation	None
Condition of Test Sample	Normal

EUT Specification:

Items	Description	
Modulation	IEEE 802.11a: OFDM IEEE 802.11n: see the below table IEEE 802.11ac: see the below table	
Data Modulation	IEEE 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM) IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)	
Data Rate (Mbps)	IEEE 802.11a: OFDM 6,9,12,18,24,36,48, and 54 Mbps IEEE 802.11n: MCS 0-15 up to 150 Mbps IEEE 802.11ac: MCS 0-9 up to 866.7 Mbps	
Frequency Range	Band 1: 5150 MHz ~ 5250 MHz Band 4: 5725 MHz ~ 5850 MHz	
Channel Number	13 for 20MHz bandwidth; 6 for 40MHz	oandwidth;
Communication Mode	⊠IP Based (Load Based)	☐Frame Based
TPC Function	☐With TPC	⊠Without TPC
Weather Band	☐With 5600~5650MHz	⊠Without 5600~5650MHz
Beamforming Function	☐With beamforming	⊠Without beamforming
Operating Mode	Outdoor access point	☐Indoor access point
	☐Fixed point-to-point access points	☑Mobile and portable client devices
	☐Master	☐Slave with radar detection
	☐Slave without radar detection	

Antenna	One (TX)	
Band width Mode	20 MHz	40 MHz
IEEE 802.11a	V	X
IEEE 802.11n	V	V
IEEE 802.11ac	V	V

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	1	MCS 0-15
802.11n (HT40)	1	MCS 0-15
802.11ac (HT20)	1	MCS 0-9
802.11ac (HT40)	1	MCS 0-9

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40 .
Note 2: Modulation modes consist of below configuration:

HT20/HT40: IEEE 802.11n HT20/HT40: IEEE 802.11ac

We hereby certify that:
All measurement facilities used to collect the measurement data are located at QTC Certification & Testing Co., Ltd.
Registration Number: 588523
The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2014 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart E. All the testing was referenced KDB NO. 789033. The test results of this report relate only to the tested sample identified in this report.

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40
Mode 4	802.11ac20
Mode 5	802.11ac40

For Conducted Emission	
Final Test Mode Description	
Mode 1	802.11a

For Radiated Emission		
Final Test Mode	Description	
Mode 1	802.11a	
Mode 2	802.11n20	
Mode 3	802.11n40	
Mode 4	802.11ac20	
Mode 5	802.11ac40	

Note:

- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.
- (3) Record the worst case of each test item in this report.
- (4) When we test it, the duty cycle \geq 98%

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test Software		N/A								
Test						*#3646	633#*			
program										
Mode					Tes	st Freque NCB: 2		z)		
802.11a	5180 MHz	5240 MHz	5745 MHz	5825 MHz						
802.11n MCS0 VHT20	5180 MHz	5240 MHz	5745 MHz	5825 MHz						
802.11ac MCS9 VHT20	5180 MHz	5240 MHz	5745 MHz	5825 MHz						
Mode						NCB: 4	0MHz			
802.11n MCS0 VHT40	5190 MHz	5230 MHz	5755 MHz	5795 MHz						
802.11ac MCS9 VHT40	5190 MHz	5230 MHz	5755 MHz	5795 MHz			ll l			

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

2.4 CONFIGURATION OF SYSTEM UNDER TEST

(EUT: Mobile phone)

I/O Port of EUT							
I/O Port Type Q'TY Cable Tes		Tested with					
USB port	1	1 1m USB cable, unshielded					
Power	1	1m	1				

2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	CQ-25JX	/	/
2	Earphone	/	N/A	/	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 Subpart C&E						
Standard Section	Test Item	Judgment	Remark			
2.1049 15.403(i)	26dB & 99% Bandwidth	PASS	Complies			
15.407(e)	6dB Spectrum Bandwidth	PASS	Complies			
15.407(a)	Maximum Conducted Output Power	PASS	Complies			
15.407(a)	Power Spectral Density	PASS	Complies			
15.407(b)	Unwanted Emissions	PASS	Complies			
15.207	AC Conducted Emission	PASS	Complies			
15.407(g)	Frequency Stability	PASS	Complies			
15.407(c)	Automatically Discontinue Transmission	PASS	Complies			
15.203 & 15.407(a)	Antenna Requirement	PASS	Complies			
15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	PASS	Complies			

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibratio n Due.
EMI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2016	08/18/2017
Coaxial cable	Megalon	LMR400	N/A	08/12/2016	08/11/2017
GPIB cable	Megalon	GPIB	N/A	08/12/2016	08/11/2017
Spectrum Analyzer	R&S	FSU	100114	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2016	10/12/2017
Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2016	09/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		09/13/2016	09/12/2017
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2016	08/22/2017
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/25/2017	04/24/2018
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R
Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R
RF cable	Murata	MXHQ87WA3000	-	08/21/2016	08/20/2017
Loop Antenna	EMCO	6502	00042960	08/22/2016	08/21/2017
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2016	08/18/2017
Power meter	Anritsu	ML2487A	6K00003613	08/23/2016	08/22/2017
Power sensor	Anritsu	MX248XD		08/19/2016	08/18/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MH-)	Conducted	Conducted	
FREQUENCY (MHz)	Quasi-peak	Quasi-peak	limit (dBµV)
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS

EUT	Mobile phone	Model Name	X571
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	June 15, 2017	Test Mode	Mode 1

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.9060	36.74	10.67	47.41	56.00	-8.59	QP
2	0.5180	38.20	10.80	49.00	56.00	-7.00	QP
3	0.3750	40.26	10.96	51.22	58.39	-7.17	QP
4	0.1620	43.50	11.74	55.24	65.36	-10.12	QP
5	0.1980	40.95	11.23	52.18	63.69	-11.51	QP
6 *	0.4460	39.08	10.88	49.96	56.95	-6.99	QP
7	0.5060	27.91	10.80	38.71	46.00	-7.29	AVG
8	0.3379	21.46	11.02	32.48	49.25	-16.77	AVG
9	0.3899	22.02	10.94	32.96	48.06	-15.10	AVG
10	0.5620	24.82	10.79	35.61	46.00	-10.39	AVG
11	0.2819	19.27	11.09	30.36	50.76	-20.40	AVG
12	0.1675	19.35	11.66	31.01	55.08	-24.07	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

EUT		Mobile phor	ne	Мо	del Name	X57	1	
Temperature	·			Relative Humidity		54%		
Pressure		1010hPa		Pha	ase	N	N	
Test Date		January 15,	2017	Tes	t Mode	Mod	e 1	
80.0 dBu	ıv							wG:
40				HAMANAN MANANAN	the all productions and the same of the sa	and a special production of the special periods	and water of property and	peal
0.0 0.150		0.5		(MHz)	5			30.000
		_	Reading	Correct	Measure-	Limit	Over	
No.	Mk.	Freq.	Level	Factor	ment	LIIIIIL	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	45.63	11.85	57.48	65.78	-8.30	QP
2		0.1779	21.63	11.52	33.15	54.58	-21.43	AVG
3		0.1980	41.87	11.23	53.10	63.69	-10.59	QP
4		0.2379	19.12	11.15	30.27	52.17	-21.90	AVG
5		0.3059	40.66	11.06	51.72	60.08	-8.36	QP
6		0.3339	20.79	11.03	31.82	49.35	-17.53	AVG
7		0.3659	41.90	10.98	52.88	58.59	-5.71	QP
8		0.3899	18.46	10.94	29.40	48.06	-18.66	AVG
9	*	0.4620	40.79	10.85	51.64	56.66	-5.02	QP
10		0.4739	21.08	10.83	31.91	46.45	-14.54	AVG
11		0.5220	24.47	10.80	35.27	46.00	-10.73	AVG
12		0.7059	37.42	10.77	48.19	56.00	-7.81	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted	4 Mills / 4 Mills for Dook 4 Mills / 41 Is for Averence	
band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement f. For the actual test configuration, please refer to the related Item -EUT Test Photos. Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported 5.2.3 DEVIATION FROM TEST STANDARD No deviation

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5.1 RESULTS (BELOW 30 MHZ)

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization	
Test Mode	Mode 1	Test Date	June 15, 2017

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

NOTE:

No result in this part for margin above 20dB.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ)

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization :	Horizontal
Test Mode	Mode 1	Test Date	June 15, 2017

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	57.7962	40.84	-9.43	31.41	40.00	-8.59	QP
2		84.1100	35.42	-7.92	27.50	40.00	-12.50	QP
3		173.2051	29.81	-4.85	24.96	43.50	-18.54	QP
4		199.9856	27.73	-4.82	22.91	43.50	-20.59	QP
5	,	329.0390	28.81	-4.74	24.07	46.00	-21.93	QP
6	4	434.0651	30.25	-2.39	27.86	46.00	-18.14	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2.5.3 TEST RESULTS (1GHZ TO 40GHZ)

EUT	Mobile phone	Model Name	X571
Temperature	12() (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	June 15, 2017	Frequency	5180MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV) 3m(dBuV		ıV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10360	V	58.03	40.99	68.2	54	-10.17	-13.01
15540	V	59.22	40.96	68.2	54	-8.98	-13.04
10360	Н	59.57	39.05	68.2	54	-8.63	-14.95
15540	Н	59.57	40.57	68.2	54	-8.63	-13.43

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	June 15, 2017	Frequency	5240MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV		Limit 3m(dBuV/m)		Over(dB)	
(1711 12)				JIII(UL	ou v/111)		
	H/V	PK	AV	PK	AV	PK	AV
10480	V	58.07	39.39	68.2	54	-10.13	-14.61
15720	V	58.64	40.71	68.2	54	-9.56	-13.29
10480	Н	59.49	39.60	68.2	54	-8.71	-14.40
15720	Н	59.60	40.60	68.2	54	-8.60	-13.40

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	June 15, 2017	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
11490	V	58.59	40.94	68.2	54	-9.61	-13.06
17235	V	58.96	39.51	68.2	54	-9.24	-14.49
11490	Н	58.99	40.00	68.2	54	-9.21	-14.00
17235	Н	58.45	39.45	68.2	54	-9.75	-14.55

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	June 15, 2017	Frequency	5825MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Lir	Limit		r(dB)	
(MHz)				3m(dB	3m(dBuV/m)			
	H/V	PK	AV	PK	PK AV		AV	
11650	V	60.88	41.18	68.2	54	-7.32	-12.82	
17475	V	59.15	59.15 40.39		54	-9.05	-13.61	
11650	Н	59.14	39.68	68.2	54	-9.06	-14.32	
17475	Н	59.73	40.73	68.2	54	-8.47	-13.27	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	June 15, 2017	Frequency	5180MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)		3m(dBuV/m)	
	H/V	PK	AV	PK	AV	PK	AV
10360	V	58.88	41.51	68.2	54	-9.32	-12.49
15540	V	59.82	39.90	68.2	54	-8.38	-14.10
10360	Н	58.15	40.55	68.2	54	-10.05	-13.45
15540	Н	59.99	40.99	68.2	54	-8.21	-13.01

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	June 15, 2017	Frequency	5240MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			·		3m(dBuV/m)		
	H/V	PK	AV	PK	PK AV		AV
10480	V	60.49	41.57	68.2	54	-7.71	-12.43
15720	V	58.82	39.45	68.2	54	-9.38	-14.55
10480	Н	58.72	40.14	68.2	54	-9.48	-13.86
15720	Н	58.16	39.16	68.2	54	-10.04	-14.84

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	June 15, 2017	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			·		3m(dBuV/m)		
	H/V	PK	AV	PK	PK AV		AV
11490	V	60.60	39.42	68.2	54	-7.60	-14.58
17235	V	59.23	39.17	68.2	54	-8.97	-14.83
11490	Н	59.14	40.11	68.2	54	-9.06	-13.89
17235	Н	59.16	40.16	68.2	54	-9.04	-13.84

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	June 15, 2017	Frequency	5825MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)		
(MHz)			, ,		3m(dBuV/m)			
	H/V	PK	AV	PK	PK AV		AV	
11650	V	59.83	39.58	68.2	54	-8.37	-14.42	
17475	V	58.19	39.03	68.2	54	-10.01	-14.97	
11650	Н	59.50	40.08	68.2	54	-8.70	-13.92	
17475	Н	58.85	39.85	68.2	54	-9.35	-14.15	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	12() (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	June 15, 2017	Frequency	5190MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10380	V	58.86	39.75	68.2	54	-9.34	-14.25
15570	V	58.51	39.79	68.2	54	-9.69	-14.21
10380	Н	59.57	40.91	68.2	54	-8.63	-13.09
15570	Н	58.55	39.55	68.2	54	-9.65	-14.45

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	June 15, 2017	Frequency	5230MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			, ,		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10460	V	60.51	41.82	68.2	54	-7.69	-12.18
15690	V	58.08	40.69	68.2	54	-10.12	-13.31
10460	Н	58.35	39.82	68.2	54	-9.85	-14.18
15690	Н	59.27	40.27	68.2	54	-8.93	-13.73

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	June 15, 2017	Frequency	5755MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			·		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11510	V	58.55	41.03	68.2	54	-9.65	-12.97
17265	V	59.91	40.65	68.2	54	-8.29	-13.35
11510	Н	58.66	39.86	68.2	54	-9.54	-14.14
17265	Н	59.73	40.73	68.2	54	-8.47	-13.27

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	June 15, 2017	Frequency	5795MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)					3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11590	V	60.87	40.98	68.2	54	-7.33	-13.02
17385	V	59.67	39.31	68.2	54	-8.53	-14.69
11590	Н	59.62	39.30	68.2	54	-8.58	-14.70
17385	Н	58.90	39.90	68.2	54	-9.30	-14.10

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	12() ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	June 15, 2017	Frequency	5180MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)		3m(dBuV/m)	
	H/V	PK	AV	PK	AV	PK	AV
10360	V	58.94	40.99	68.2	54	-9.26	-13.01
15540	V	58.72	40.18	68.2	54	-9.48	-13.82
10360	Н	58.04	40.16	68.2	54	-10.16	-13.84
15540	Н	59.64	40.64	68.2	54	-8.56	-13.36

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	June 15, 2017	Frequency	5240MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			,		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10480	V	60.92	40.48	68.2	54	-7.28	-13.52
15720	V	59.40	39.50	68.2	54	-8.80	-14.50
10480	Н	58.39	39.35	68.2	54	-9.81	-14.65
15720	Н	59.87	40.87	68.2	54	-8.33	-13.13

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	June 15, 2017	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			·		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11490	V	58.54	41.74	68.2	54	-9.66	-12.26
17235	V	58.23	39.23	68.2	54	-9.97	-14.77
11490	Н	58.30	40.92	68.2	54	-9.90	-13.08
17235	Н	59.24	40.24	68.2	54	-8.96	-13.76

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	June 15, 2017	Frequency	5825MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV
11650	V	59.49	41.49	68.2	54	-8.71	-12.51
17475	V	58.98	40.37	68.2	54	-9.22	-13.63
11650	Н	59.25	40.72	68.2	54	-8.95	-13.28
17475	Н	59.98	40.98	68.2	54	-8.22	-13.02

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	12() ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	June 15, 2017	Frequency	5190MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10380	V	59.19	41.78	68.2	54	-9.01	-12.22
15570	V	58.07	39.83	68.2	54	-10.13	-14.17
10380	Н	59.53	40.75	68.2	54	-8.67	-13.25
15570	Н	59.01	40.01	68.2	54	-9.19	-13.99

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	June 15, 2017	Frequency	5230MHz

Freq.	Ant.Pol.	Emission I	_evel(dBuV	Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10460	V	59.79	41.83	68.2	54	-8.41	-12.17
15690	V	58.98	40.36	68.2	54	-9.22	-13.64
10460	Н	59.42	40.88	68.2	54	-8.78	-13.12
15690	Н	58.52	39.52	68.2	54	-9.68	-14.48

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	June 15, 2017	Frequency	5755MHz

Freq.	Ant.Pol.	Emission I	_evel(dBuV	Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
11510	V	59.00	39.74	68.2	54	-9.20	-14.26
17265	V	59.65	40.59	68.2	54	-8.55	-13.41
11510	Н	59.05	40.82	68.2	54	-9.15	-13.18
17265	Н	58.80	39.80	68.2	54	-9.40	-14.20

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X571
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	June 15, 2017	Frequency	5795MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)		
(MHz)			, ,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
11590	V	60.21	39.43	68.2	54	-7.99	-14.57	
17385	V	59.49	40.30	68.2	54	-8.71	-13.70	
11590	Н	58.58	39.95	68.2	54	-9.62	-14.05	
17385	Н	59.08	40.08	68.2	54	-9.12	-13.92	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Page 35 of 78 6. ANTENNA APPLICATION 6.1 Antenna requirement The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and FCC part 15C section 15.407. FCC part 15C section 15.203 and FCC part 15C section 15.407 requirements: Systems operating in the 5150~5850MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. 6.2 Result The EUT's antenna integrated on PCB, The antenna's gain is -5dBi and meets the requirement.

7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS 7. 1 Test Equipment Please refer to Section 4 this report.

7. 2 Test Procedure

Test Method: a) The transmitter was radiated to the spectrum analyzer in peak hold mode. b) Measure the maximum width of the emission that is 26 dB down from the peak of the emission Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Test Equipment Setting – 26dB Bandwidth: a) Attenuation: Auto b) Span Frequency: > 28dB Bandwidth c) RBW: Approximately 1% of the emission bandwidth d) VBW: VBW > RBW e) Detector: Peak f) Trace: Max Hold g) Sweep Time: Auto 6 dB Bandwidth: Test Method: a) The transmitter was radiated to the spectrum analyzer in peak hold mode. b) Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d) Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a) Attenuation: Auto b) Span Frequency: > 6dB Bandwidth c) RBW: 100kHz d) YBW: 3 x RBW Maximum Conducted Output Power Measurement: a) The transmitter output (antenna port) was connected to the power meter. b) Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted Output Power Measurement: Test Method: a) The transmitter output (antenna port) was connected to the power meter. b) Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NIII) Devices - section (F) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c) Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d) When measurement using a gated RF average power meter). c) Multiple antenna systems was	26dB Bandwidth	and 99% Occupied Bandwidth:					
b)Measure the maximum width of the emission that is 26 dB down from the peak of the emission Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Test Equipment Setting – 26dB Bandwidth: a)Attenuation: Auto b)Span Frequency: > 28dB Bandwidth c)RBW: Approximately 1% of the emission bandwidth d)VBW: VBW > RBW e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a) The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB62911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)WBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power —>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement) a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NIII) Devices - section (F) Maximum conducted output power meter). c)Multiple antenna systems was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information In			spectrum analyzer in peak hold mode.				
Test Equipment Setting – 26dB Bandwidth: a)Attenuation: Auto b)Span Frequency: > 26dB Bandwidth c)RBW: Approximately 1% of the emission bandwidth d)VBW: VBW > RBW e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum Conducted Output Power Measurement: Test Method: a)The transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)YBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted Output Power Measurement: Test Method: a)The transmitters with full (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: 1 Test Method: b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NIII) Devices - section (F) Maximum Power Spectral Dens							
Test Equipment Setting – 26dB Bandwidth: a)Attenuation: Auto b)Span Frequency: > 26dB Bandwidth c)RBW: Approximately 1% of the emission bandwidth d)VBW: VBW > RBW e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum Conducted Output Power Measurement: a)The transmitter output (antenna port) was connected to the power meter. b)Test Method: b)Span Frequency: > 6dB Bandwidth c)RBW: 3 x RBW Maximum Conducted Output Power Measurement: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density: Test Method: b)Test was performed in accordance wit							
a)Attenuation: Auto b)Span Frequency: > 26dB Bandwidth c)RBW: Approximately 1% of the emission bandwidth d)VBW: VBW > RBW e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power = 3. Measurement using a Power Meter (PM) = >b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: 1 Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (T4 Fi						
b)Span Frequency: > 26dB Bandwidth c)RBW: Approximately 1% of the emission bandwidth d)VBW: VBW > RBW e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =-3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD).			· ·				
c)RBW: Approximately 1% of the emission bandwidth d)VBW: VBW > RBW e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD).	-						
e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). o)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD).	b)Span Frequency	y: > 26dB Bandwidth	-,				
e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD).	c)RBW: Approxim	ately 1% of the emission bandwidth					
f)Trace: Max Hold g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth f)Trace: Max Hold c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum conducted Output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a) The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density; Test Method: a) The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NIII) Devices - section (F) Maximum Powe	d)VBW: VBW > R	BW	c) Trace. Max Flora				
g)Sweep Time: Auto 6 dB Bandwidth: Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted Output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a) The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density; (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	e)Detector: Peak						
a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	f)Trace: Max Hold						
a)The transmitter was radiated to the spectrum analyzer in peak hold mode. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	g)Sweep Time: Au	uto					
b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)Measured the spectrum width with power higher than 6dB below carrier. Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a pated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the							
a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	Test Method:	b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth. c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.					
a)Attenuation: Auto b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	Test Equipment S	· · · · · · · · · · · · · · · · · · ·	Nower riighter than odb below earner.				
b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the			a)Detector: Peak				
c)RBW: 100kHz d)VBW: 3 x RBW Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	,						
Maximum Conducted Output Power Measurement: Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the		y odb Bandwidth	,				
Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	,	D\M/	g)Sweep Time. Auto				
Test Method: a)The transmitter output (antenna port) was connected to the power meter. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	· ·						
b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula. Test Equipment Setting: Detector - Average Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the			t) was connected to the power meter.				
Power Spectral Density: Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the		b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter). c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band. d)When measuring maximum conducted output power with multiple antenna systems, add					
Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	· ·	_					
b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Powel Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the							
Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the	Lest Method:	Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD). c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band					
d)When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for		Spectral Density (PSD) Measurement outputs. d)When measuring first spectral bin of output 2 and that from the first spectra	output 1 is summed with that in the first spectral bin of				

Page 37 of 78

the first frequency bin of the summed spectrum. The summed spectrum value for each of the other

frequency bins is computed in the same way.

e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW) and the final result should 30 dBm.

Test Equipment Setting:

a)Attenuation: Auto

b)Span Frequency: Encompass the entire emissions bandwidth (EBW) of

the signal

c)RBW: 1000 kHz d)VBW: 3000 kHz e)Detector: RMS

f)Trace: AVERAGE g)Sweep Time: Auto

h)Trace Average: 100 times

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Frequency Stability Measurement:

Test Method:

- a)The transmitter output (antenna port) was connected to the spectrum analyzer.
- b)EUT have transmitted absence of modulation signal and fixed channelize.
- c)Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc \times 106 ppm and

the limit is less than ±20ppm (IEEE 802.11nspecification).

f) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of

the

nominal value

g)Extreme temperature is 0°C~40°C

Test Equipment Setting:

a)Attenuation: Auto

b)Span Frequency: Entire absence of modulation emissions bandwidth

e)Sweep Time: Auto

c)RBW: 10 kHz d)VBW: 10 kHz

7. 3 Test Setup

7. 4 Configuration of the EUT

Same as section 2.4 of this report

7. 5 EUT Operating Condition

Same as section 2.2 of this report.

7. 6 Limit		
	and 99% Occupied Bandwidth:	
Limit:	No restriction limits.	
6 dB Bandwidth: Limit:		inimum 6dP handwidth shall be at least 500 kHz
Test Equipment S		inimum 6dB bandwidth shall be at least 500 kHz.
a)Attenuation: Aut		e)Detector: Peak
,	y: > 6dB Bandwidth	f)Trace: Max Hold
c)RBW: 100kHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	g)Sweep Time: Auto
d)VBW: ≥ 3 x RBV	V	3,2.1.2.2
	cted Output Power Measurement:	
	⊠5.15~5.2	25 GHz
Limit of Outdoo		Limit of Indoor access point:
	nducted output power over the	The maximum conducted output power over the
	operation shall not exceed 1 W	frequency band of operation shall not exceed 1 W
	the maximum antenna gain does not	(30dBm) provided the maximum antenna gain does
	ansmitting antennas of directional gain are used, both the maximum	not
	power and the maximum power	exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum
	nall be reduced by the amount in dB	conducted output power and the maximum power
	I gain of the antenna exceeds 6 dBi.	spectral density shall be reduced by the amount in
	r.p. at any elevation angle above 30	dB
	ured from the horizon must not exceed	that the directional gain of the antenna exceeds 6
125 mW (21 dBm)).	dBi.
	oint-to-point access points:	
	nducted output power over the	The maximum conducted output power over the
	operation shall not exceed 1 W	frequency band of operation shall not exceed 250
	pint-to-point U-NII devices may employ	mW
	ectional gain up to 23 dBi without any luction in the maximum conducted	(24dBm) provided the maximum antenna gain does not
	naximum power spectral density. For	exceed 6 dBi. If transmitting antennas of directional
	t transmitters that employ a directional	gain greater than 6 dBi are used, both the maximum
	iter than 23 dBi, a 1 dB reduction in	conducted output power and the maximum power
	ted output power and maximum	spectral density shall be reduced by the amount in
	nsity is required for each 1 dB of	dB
antenna gain in ex		that the directional gain of the antenna exceeds 6
		dBi.
	□5.25-5.35 GHz & □	
		y bands of operation shall not exceed the lesser of 250
		mission bandwidth in megahertz. If transmitting
		both the maximum conducted output power and the
exceeds 6 dBi.	spectral density shall be reduced by the	amount in dB that the directional gain of the antenna
exceeds o dbi.	⊠5.725~5.	85 GHz
The maximum cor		y band of operation shall not exceed 1 W (30dBm). If
		Bi are used, both the maximum conducted output
		educed by the amount in dB that the directional gain of
the antenna excee	eds 6 dBi. However, fixed point-to-point	U-NII devices operating in this band may employ
transmitting anten		
		ding reduction in transmitter conducted power.
Power Spectral D	Density	
	⊠5.15~5.2	
	r access point: 17 dBm/MHz	☐Limit of Indoor access point: 17 dBm/MHz
	oint-to-point access points: 17	☐ Limit of Mobile and portable client devices: 11
dBm/MHz		dBm/MHz
☐5.25-5.35 GHz	1-	11 dBm/MHz
□5.470-5.725 GH ⊠5.725~5.85 GH		11 dBm/MHz 30 dBm/500kHz
	∠ lity Measurement:	JU UDITI/JUUNTIZ
Limit:		the band of operation under all conditions of normal
	operation as specified in the user's ma	
		ance shall be ± 20 ppm maximum for the 5 GHz band
	(IEEE	
	802.11n specification).	

7. 7 Test Result

A. 26DB BANDWIDTH&6DB SPECTRUM BANDWIDTH AND 99% OCCUPIED BANDWIDTH

Product	: EUT-Sample	Test Mode	: See section 2.2
Test Item	: 26dB Bandwidth and 99% Occupied Bandwidth	Temperature	: 25 ℃
Test Voltage	: 3.85V	Humidity	: 56%RH
Test Result	: PASS		

26dB Bandwidth&6dB Spectrum Bandwidth

IEEE 802.11a

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	27.46		PASS
High	5240	23.20		PASS

Band4

Channel	Frequency (MHz)	6dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	16.35		PASS
High	5825	16.30		PASS

IEEE 802.11n 5G 20MHz

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	26.62		PASS
High	5240	29.62		PASS

Band4

D 4.14 .				
Channel	Frequency (MHz)	6dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	17.71		PASS
High	5825	17.60		PASS

IEEE 802.11n 5G 40MHz

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	50.35		PASS
High	5230	46.37		PASS

Band4

Channel	Frequency (MHz)	6dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5755	36.03		PASS
High	5795	34.91		PASS

IEEE 802.11ac 5G 20MHz

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	19.77		PASS
High	5240	19.77		PASS

Band4

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	19.83		PASS
High	5825	19.87		PASS

Channel	Frequency	26dBBandwidth	FCC Limit	Result
	(MHz)	(MHz)	(kHz)	
Low High	5190 5230	39.84 39.71		PASS PASS
nd4	5230	39.71		PASS
Channel	Frequency	26dBBandwidth	FCC Limit	Result
Low	(MHz) 5755	(MHz) 39.68	(kHz)	PASS
High	5795	39.74		PASS
% Occupied E 802.11a nd1		900/ Occupied	500 Limit	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	17.236		PASS
High	5240	17.121		PASS
nd4		000/ 0	F0011-1: "	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	16.783	<u></u>	PASS
High	5825	16.799		PASS
Channel	Frequency (MHz) 5180	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
High	5240	18.198		PASS
nd4		1011100	l.	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	17.815		PASS
High	5825	17.849		PASS
E 802.11n 5G 40l nd1	MHz			
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	36.966	, ,	PASS
High	5230	36.495	<u></u>	PASS
nd4				
	Frequency	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Channel	(MHz)			
Low	5755	36.106		PASS
Low High	5755 5795			PASS PASS
Low High E 802.11ac 5G 20	5755 5795	36.106		
Low High EE 802.11ac 5G 20	5755 5795	36.106	FCC Limit (kHz)	
Low High EE 802.11ac 5G 20 nd1 Channel Low	5755 5795 DMHz Frequency (MHz) 5180	36.106 36.056 99% Occupied Bandwidth (MHz) 17.788		PASS Result PASS
Low High E 802.11ac 5G 20 nd1 Channel	5755 5795 DMHz Frequency (MHz)	36.106 36.056 99% Occupied Bandwidth (MHz)		PASS Result
Low High EE 802.11ac 5G 20 nd1 Channel Low High	5755 5795 DMHz Frequency (MHz) 5180	36.106 36.056 99% Occupied Bandwidth (MHz) 17.788	(kHz) 	PASS Result PASS
Low High EE 802.11ac 5G 20 Ind1 Channel Low	5755 5795 DMHz Frequency (MHz) 5180	36.106 36.056 99% Occupied Bandwidth (MHz) 17.788		PASS Result PASS
Low High EE 802.11ac 5G 20 nd1 Channel Low High	5755 5795 DMHz Frequency (MHz) 5180 5240 Frequency	36.106 36.056 99% Occupied Bandwidth (MHz) 17.788 17.788 17.788	(kHz) FCC Limit	PASS Result PASS PASS

IEEE 802.11ac 5G 40MHz Band1

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	36.058		PASS
High	5230	36.058		PASS

Band4

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5755	36.218		PASS
High	5795	36.218		PASS

IEEE 802.11a Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11a Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11ac 5G 20MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

Date: 28.JUN.2017 17:32:13

IEEE 802.11ac 5G 20MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

Date: 28.JUN.2017 18:26:14

26dB Bandwidth and 99% Occupied Bandwidth (CH High)

Date: 28.JUN.2017 18:27:39

Date: 28.JUN.2017 18:43:08

IEEE 802.11ac 5G 40MHz Band1

IEEE 802.11ac 5G 40MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

Date: 28.JUN.2017 18:45:51

26dB Bandwidth and 99% Occupied Bandwidth (CH High)

Date: 28.JUN.2017 18:47:38

B. 6 DB BANDWIDTH

Product	: EUT-Sample	Test Mode	: See Section 2.2
Test Item	: 6 dB BW	Temperature	: 25 ℃
Test Voltage	: 3.85V	Humidity	: 56%RH
Test Result	: PASS		

IEEE 802.11a

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5180	16.35	> 0.5MHz
High	5240	16.40	> 0.5MHz

Channel Low

Date: 28.JUN.2017 20:04:59

Channel High

IEEE 802.11a

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5745	16.33	> 0.5MHz
High	5825	16.38	> 0.5MHz

Channel Low

Date: 28.JUN.2017 20:06:49

Channel High

Product	: EUT-Sample	Test Mode	: See Section 2.2
Test Item	: 6 dB BW	Temperature	: 25 ℃
Test Voltage	: 3.85V	Humidity	: 56%RH
Test Result	: PASS		

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5180	17.63	> 0.5MHz
High	5240	17.60	> 0.5MHz

Channel Low

Date: 28.JUN.2017 20:09:41

Channel High

Date: 28.JUN.2017 20:11:30

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5745	17.62	> 0.5MHz
High	5825	17.62	> 0.5MHz

Channel Low

Date: 28.JUN.2017 20:13:38

Channel High

Date: 28.JUN.2017 20:14:39

IEEE802.11n 40MHz Measured Frequency 6 dB Bandwidth Channel Limit (MHz) (MHz) 5190 Low 36.31 > 0.5MHz 5230 High 36.29 > 0.5MHz

Date: 28.JUN.2017 20:16:25

Channel High

Date: 28.JUN.2017 20:18:08

IEEE 802.11n 40MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5755	36.25	> 0.5MHz
High	5795	36.08	> 0.5MHz

Channel Low

Date: 28.JUN.2017 20:20:15

Channel High

Date: 28.JUN.2017 20:22:55

802.11ac 5GHz 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5180	17.67	> 0.5MHz
High	5240	17.71	> 0.5MHz

Channel Low

Date: 28.JUN.2017 19:56:11

Channel High

Date: 28.JUN.2017 19:55:03

802.11ac 5GHz 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5745	17.70	> 0.5MHz
High	5825	17.71	> 0.5MHz

Channel Low

Date: 28.JUN.2017 19:53:51

Channel High

Date: 28.JUN.2017 19:52:28

802.11ac 5GHz 40MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5190	36.35	> 0.5MHz
High	5230	36.37	> 0.5MHz

Channel Low

Date: 28.JUN.2017 19:45:53

Channel High

Date: 20.00N.2017 19:40:12

802.11ac 5GHz 40MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5755	36.19	> 0.5MHz
High	5795	36.33	> 0.5MHz

Channel Low

Date: 28.JUN.2017 19:49:32

Channel High

Date: 28.JUN.2017 19:50:58

C. MAXIMUM CONDUCTED OUTPUT POWER

The test method

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)

Test Method: KDB 789033 D02 v01r04 Section E.3.a (Method PM)

Limits:

- 1. For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Test Procedure:

- 1. Connected the EUT's antenna port to measure device by 10dB attenuator.
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

For Conducted RF test setup Power meter EUT Attenuator (EUT: Mobile phone)

Test Data:

Band 1: 5150 MHz ~ 5250 MHz

Mode	Channel/ Frequency (MHz)	Maximum conducted output power (dBm) Meas Power	Limit(dBm)	Pass / Fail
IEEE 802.11a	36 (5180)	15.32	24	Pass
	44 (5220)	15.44	24	Pass
	48 (5240)	15.62	24	Pass
IEEE 802.11n-	36 (5180)	14.41	24	Pass
HT20	44 (5220)	14.61	24	Pass
	48 (5240)	14.53	24	Pass
802.11n(HT40)	38 (5190)	13.32	24	Pass
	46 (5230)	13.28	24	Pass
IEEE 802.11ac-	36(5180)	12.22	24	Pass
HT20	48(5240)	12.31	24	Pass
IEEE 802.11ac-	38(5190)	12.33	24	Pass
HT40	46(5230)	12.35	24	Pass

Band 4: 5725 MHz ~ 5850 MHz

Mode	Channel/ Frequency (MHz)	Maximum conducted output power (dBm) Meas Power	Limit(dBm)	Pass / Fail
IEEE 000 110	440 (5745)		20	Daga
IEEE 802.11a	149 (5745)	15.24	30	Pass
	157 (5785)	15.21	30	Pass
	165 (5825)	15.39	30	Pass
IEEE 802.11n-	149 (5745)	14.38	30	Pass
HT20	157 (5785)	14.33	30	Pass
	165 (5825)	14.34	30	Pass
802.11n(HT40)	151 (5755)	13.64	30	Pass
	159 (5795)	13.81	30	Pass
IEEE 802.11ac-	149(5745)	12.74	30	Pass
HT20	165(5825)	12.64	30	Pass
IEEE 802.11ac-	151(5755)	12.42	30	Pass
HT40	159(5795)	12.67	30	Pass

D. PEAK POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)

Test Method: KDB 789033 D02 v01r04 Section F

Limits:

1. For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-topoint operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ

transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-band1:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)

2. For U-NII-band4:

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment withinthe fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Product	: EUT-Sample	Test Mode	: See Section 2.2
Test Item	: Peak Power Spectral Density	Temperature	: 25 ℃
Test Voltage	: 3.85V	Humidity	: 56%RH
Test Result	: PASS		

IEEE 802.11a

Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5180	3.52	11dBm/MHz	PASS
High	5240	4.64	I IUDIII/IVIDZ	PASS

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5745	2.93	30dBm/500 kHz	PASS
High	5825	1.56		PASS

IEEE 802.11n 5G 20MHz

Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5180	2.68	11dBm/MHz	PASS
High	5240	4.39	I IUDIII/IVIDZ	PASS

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5745	0.89	30dBm/500 kHz	PASS
High	5825	1.73		PASS

IEEE 802.11n 5G 40MHz

Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5190	1.18	11dBm/MHz	PASS
High	5230	1.80	I IUDIII/IVITZ	PASS

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5755	-2.46	30dBm/500 kHz	PASS
High	5795	-1.66		PASS

IEEE 802.11ac 5G 20MHz

Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5180	1.91	11dBm/MHz	PASS
High	5240	2.16	I IUDIII/IVIIIZ	PASS

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5745	1.19	30dBm/500 kHz	PASS
High	5825	2.19		PASS

IEEE 802.11ac 5G 40MHz

Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5190	-0.47	11dBm/MHz	PASS
High	5230	-0.59	I IUDIII/IVIDZ	PASS

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5755	-1.83	30dBm/500 kHz	PASS
High	5795	-1.46		PASS

Note: For 5.725~5.85GHz (Band4): Power Density (dBm/500kHz)= Power Density (dBm/MHz)- 10log(500kHz/RBW) (dB)

IEEE 802.11a Band1

PPSD (CH Low)

Date: 26.JUL.2017 11:26:06

PPSD (CH High)

Date: 26.JUL.2017 11:25:37

PPSD (CH Low) **REW 500 kHz **VEW 2 MHz 2.93 dian **Att 30 dia SWT 20 ms 5.744166667 GHz -10 -20 -30 -40 -50 Center 5.745 GHz 4 MHz/ Span 40 MHz

Date: 26.JUL.2017 11:12:33

Date: 26.JUL.2017 11:10:27

IEEE 802.11n 5G 20MHz Band1

Date: 26.JUL.2017 11:23:58

Date: 26.JUL.2017 11:24:22

IEEE 802.11n 5G 20MHz Band4

Date: 26.JUL.2017 11:27:13

PPSD (CH High)

Date: 26.JUL.2017 11:27:52

IEEE 802.11n 5G 40MHz Band1

PPSD (CH Low)

Date: 26.JUL.2017 11:28:43

PPSD (CH High)

Date: 26.JUL.2017 11:29:41

IEEE 802.11n 5G 40MHz Band4

Date: 26.JUL.2017 11:30:29

Date: 26.JUL.2017 11:31:30

| PPSD (CH Low) | | NEW 1 MHz | Marker 1 [T1] | | VIW 3 MHz | 1,91 diar | 1,9

Date: 28.JUN.2017 20:48:47

PPSD (CH High)

Date: 28.JUN.2017 20:48:16

PPSD (CH Low) **REW 500 kHz Marker 1 [TI.] **WEW 2 MHz 1.19 dBar **Att 30 dB SWT 20 ms 5.744294872 GHz **JUNES** **Att 30 dB SWT 20 ms 5.744294872 GHz **JUNES** **Att 30 dB SWT 20 ms 5.744294872 GHz **Center 5.745 GHz 4 MHz/ Span 40 MHz

Date: 26.JUL.2017 11:33:39

PPSD (CH High)

Date: 26.JUL.2017 11:35:39

PPSD (CH Low) * NEW 1 Mizz * VINV 3 Mizz * NEW 1 Mizz * VINV 3 Mizz * SNT 20 ms * 5.194743590 Gizz -0.47 dian -0.47 di

Date: 28.JUN.2017 20:49:47

PPSD (CH High)

Date: 28.JUN.2017 20:50:13

Page 78 of 78 IEEE 802.11ac 5G 40MHz Band4 PPSD (CH Low) (P)(S) Marker 1 [T1] -1.83 dBm 5.753846154 GHz *RBW 500 kHz *VBW 2 MHz SWT 20 ms 30 dBm *Att 30 dB Ref 30 10 Center 5.755 GHz 8 MHz/ Span 80 MHz Date: 26.JUL.2017 11:37:10

PPSD (CH High)

Date: 26.JUL.2017 11:37:47