

The Simpler The Better: A Unified Approach to Predicting Original Taxi Demands based on Large-Scale Online Platforms

Yongxin Tong¹, Yuqiang Chen², Zimu Zhou³, Lei Chen⁴, Jie Wang⁵, Qiang Yang^{2,4}, Jieping Ye⁵, Weifeng Lv¹ ¹ SKLSDE Lab, Beihang University, ² 4Paradigm Inc., ³ ETH Zurich, ⁴ Hong Kong University of Science and Technology, ⁵ Didi Research ¹ {yxtong, lwf}@buaa.edu.cn, ² chenyuqiang@4paradigm.com, ³ zimu.zhou@tik.ee.ethz.ch ⁴ {leichen,qyang}@cse.ust.hk, ⁵ {wangjiejacob,yejieping}@didichuxing.com

Target: UOTD Prediction

- OTD (Original Taxi Demand)
 - The number of taxi-calling orders *submitted* to the online taxicab platform
 - Including orders that are cancelled finally

- UOTD (Unit Original Taxi Demand)
 - The number of taxi-calling orders *submitted* to the online taxicab platform per unit time and per unit region

- Why we need to predict UOTD
 - **Expand Potential Market**
 - **Assess Incentive Mechanisms**
 - Guide Taxi Dispatching

Key Methodology

Two paradigms can be chosen

- In industrial practice, the latter one (Simple models + Massive features) is preferred
 - As it can Transform *Model Redesign* to *Feature Redesign*

Feature Engineering

- **Basic Features**
 - Temporal Features
 - Spatial Features
 - Meteorological Features
 - **Event Features**
- **Combinational Features**
 - Combine basic features based on business logics and data analysis
 - Express the joint influences of different basic features in a simple model

Model & Training

- Model
 - A linear regression model with high-dimensional features and a spatiotemporal regularizer

$$\mathrm{obj}_{spatio-temporal}(w) = \sum_{X \subseteq D} \phi(X) var(\{w'x | x \in X\})$$

Distributed Training

Experiments				
Dataset	Method	ER	SMAPE	RMLSE
	HA	0.96957864	0.44033822	0.52884659
	ARIMA	0.89574376	0.42708392	0.50064628
Beijing	Markov	0.81039261	0.37087309	0.65547612
	GBRT	0.73525391	0.43042413	0.42926168
	NN	0.81226708	0.43515638	0.43978603
	HP-MSI	0.72515736	0.38083785	0.44228373
	LinUOTD	0.6466814	0.35701066	0.40665828
Hangzhou	HA	0.70616373	0.45098107	0.55787302
	ARIMA	3.16414193	0.46414572	0.59576175
	Markov	0.83794771	0.44441837	0.83023651
	GBRT	0.52536404	0.54445512	0.50110505
	NN	0.61526469	0.56586680	0.50200963
	HP-MSI	0.63366671	0.43352982	0.51046835
	LinUOTD	0.54730029	0.44870624	0.49750043