Table S1. Primers used in the study

		Forward(5'-3')	Reverse(5'-3')				
	FhTPS1	ATGGCTCTCTTGCCGTGTCTTC	TTAGAGGGGAATGGGTTCAA				
	FhTPS2	ATGGCGTGTCTTCCATTCCA	TTAGAGGGAAACAGGTTGTA				
cDNAs/	FhTPS3	ATGGGGACAGAAATGGCACTC	CTATTTCATGGGCTTAAAA				
DNAs	FhTPS4	ATGACTACCTTCTCAAAGAT	TTATATGCTCTTGAAAAGCA				
	FhTPS5	ATGGCTTTCTTGCCGTGCCT	TTAGAGGGGAATAGGTTCAAT				
	FhTPS6	ATGGAGTCAGTGCTGCTGGG	CTAGAAATAGTCATCTTCGA				
	FhTPS7	ATGGAGTCAGTACTGCTGAG	CTAGTAGTAGTCCCCCGGGA				
	FhTPS8	ATGGAGGTTGTGAGTGCTGGA	TCAATTCTGAATTGGCCAAAC				
	FhTPS1	GATTACGCTCATATGATGGCTCTCT	GCTCACCATGAGCTCGAGGGGAAT				
	1 1111 51	TGCCGTGTCT	GGGTTCAA				
	FhTPS2	GATTACGCTCATATG	GCTCACCATGAGCTC				
	11111 52	ATGGCGTGTCTTCCATTCCA	TTAGAGGGAAACAGGTTGTA				
Generation	FhTPS3	GATTACGCTCATATGATGGGGACA	GCTCACCATGAGCTCTTTCATGGG				
of	THITSS	GAAATGGCAC	CTTAAAAA				
constructs	FhTPS4	GATTACGCTCATATG	GCTCACCATGAGCTC				
used in	F#1F54	ATGACTACCTTCTCAAAGAT	TTATATGCTCTTGAAAAGCA				
used in subcellular	FhTPS5	GATTACGCTCATATGGCTTTCTTGC	GCTCACCATGAGCTCGTTGACTTG				
	FNIPSS	CGTGCCTTTC	CTCATTCCCCA				
localization	FhTPS6	GATTACGCTCATATG	GCTCACCATGAGCTC				
		ATGGAGTCAGTGCTGCTGGG	CTAGAAATAGTCATCTTCGA				
	El TDG7	GATTACGCTCATATGATGGAGTCAG	GCTCACCATGAGCTCGTAGTAGTC				
	FhTPS7	TACTGCTGAG	CCCCGGGA				
	ELTDCO	GATTACGCTCATATGATGGAGGTTG	GCTCACCATGAGCTCATTCTGAATT				
	FhTPS8	TGAGTGCTGG	GGCCAAA				
	FhTPS1	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>				
		ATGGCTCTCTTGCCGTGTCTTC	TTAGAGGGGAATGGGTTCAA				
Generation	FhTPS2	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>				
of		ATGGCGTGTCTTCCATTCCA	TTAGAGGGAAACAGGTTGTA				
constructs	FhTPS3	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>				
used in		ATGGGGACAGAAATGGCACTC	CTATTTCATGGGCTTAAAA				
Heterologou	FhTPS4	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>				
s expression	1 1111 2 1	ATGACTACCTTCTCAAAGAT	TTATATGCTCTTGAAAAGCA				
in	FhTPS5	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>				
Escherichia	1 1111 20	ATGGCTTTCTTGCCGTGCCT	TTAGAGGGGAATAGGTTCAAT				
coli	FhTPS6	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>				
	11/11 00	ATGGAGTCAGTGCTGCGG	CTAGAAATAGTCATCTTCGA				
	FhTPS7	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>				
	11011 ()/	ATGGAGTCAGTACTGCTGAG	CTAGTAGTAGTCCCCCGGGA				

	FhTPS8	CAA <u>GGATCC</u>	CAA <u>GAGCTC</u>
	THITSO	ATGGAGGTTGTGAGTGCTGGA	TCAATTCTGAATTGGCCAAAC
	FhTPS1	CACTACAAACCTTACCGCCAACA	GCTTTACAAAGATCTGCCCACGA
	FhTPS2	CGTCTCTGCCTTCTTCTCACT	ATGGTTTCCTCATCTTCCTGC
	FhTPS3	CTTCTTTCAACACTCCCTAC	TAACACCACTGCTCCTAACT
qRT-PCR	FhTPS4	GAGGTTTCTCTTTCTTTTCG	GAGTCCAGTTTTCCTTTGTC
	FhTPS5	CTGTCTCTTCGCTCTTCCCG	GTTGACTTGCTCATTCCCCA
	FhTPS6	TGGAGGGAGGAAGGGTATGT	GCACGATTTTTGGAATGTTG
	FhTPS7	ACGACATCTTCTCTGCCG	CACAACCTTCCATCCATC
	FhTPS8	TCCGTTTCCGATTGTTGAGAC	ATTGAAGTAAGCCGATGATGT
	18s	TCCTGATACGGGGAGGTAGTGACA	ACTTGCCCTCCAATGGATCCTCG
C .:	FhTPS1	CG <u>GGATCC</u>	C <u>GAGCTC</u>
Generation	rnirsi	ATGGCTCTCTTGCCGTGTCTTC	TTAGAGGGGAATGGGTTCAA
of	El-TDC2	CG <u>GGATCC</u>	C <u>GAGCTC</u>
constructs	FhTPS2	ATGGCGTGTCTTCCATTCCA	TTAGAGGGAAACAGGTTGTA
used in	El TDC/	CG <u>GGATCC</u>	C <u>GAGCTC</u>
Heterologou	FhTPS6	ATGGAGTCAGTACTGCTGAG	CTAGTAGTAGTCCCCCGGGA
s expression	EL TDC7	CG <u>GGATCC</u>	C <u>GAGCTC</u>
in tobacco	FhTPS7	ATGGAGTCAGTACTGCTGAG	CTAGTAGTAGTCCCCCGGGA

Table S2. TPS proteins from other plant species used in phylogenetic analysis

Protein	Protein ID in NCBI	Note
AtTPS2	NP 193406.3	(E)-bate-ocimene/myrcene synthase
AtTPS14	NP 001185286.1	(\pm) -3S-linalool synthase
AtTPS24	NP 189209.2	1,8-cineole synthase
SITPS5	NP 001233805.1	linalool synthase
SITPS24	NP 111307929.1	ent-kaurene synthase
SITPS40	NP 001234008.2	copalyl-diphosphate synthase
SITPS8	XP 004231365.1	1,8-cineole synthase
AgPIN1	O24475.1	pinene synthase
MtTPS15	XP 003621227.1	ocimene synthase
MtTPS23	XP 003619707.1	nerolidol synthase
ZmTPS6	NP 001105674.1	(S)-beta-macrocarpene synthase
ZmTPS10	NP 001105850.1	(E)-beta farnesene synthase
ZmTPS23	ABY79213.1	(E)-beta caryophyllene synthase
VGwGerA	ADR66821.1	germacrene A synthase
VvGwBer	ADR74195.2	(E)-alpha-bergamotene synthase
VvGwgCad	ADR74199.1	Gamma-cadinene synthase
HcTPS8	AGY49283.1	linalool synthase
HcTPS7	AHJ57305.1	sabinene synthase
LaCARS	AGL98419.1	caryophyllene synthase
LaGERDS	AGL98420.1	germacrene D synthase
LaLINS	Q2XSC5.1	linalool synthase

Table S3. Composition and contents of volatile compounds released from flowers in different developmental stages

			Red River®					Ambiance		
Compounds	R1	R2	R3	R4	R5	A1	A2	A3	A4	A5
Monoterpenes										
α-Pinene	n.d	n.d	n.d	24.15 ± 3.86	33.57±4.16	n.d	n.d	n.d	n.d	n.d
β-Pinene	n.d	n.d	n.d	42.07±5.09	25.71 ± 2.99	n.d	n.d	n.d	n.d	n.d
Myrcene	n.d	n.d	n.d	57.33±2.61	69.21±4.26	n.d	n.d	n.d	14.83 ± 3.42	28.54 ± 2.52
1,8 cineole	n.d	n.d	11.38±0.92	76.54±12.15	334.28±23.30	n.d	n.d	n.d	n.d	n.d
D-Limonene	n.d	n.d	17.09±1.38	45.67±7.95	143.57±16.79	n.d	n.d	n.d	n.d	n.d
cis-Ocimene	n.d	n.d	26.17±3.68	200.67±28.5	736.42±59.13	n.d	n.d	n.d	n.d	n.d
				8						
trans-Ocimene	n.d	n.d	50.64 ± 6.74	125.62 ± 10.2	617.86±62.09	n.d	n.d	n.d	n.d	n.d
				8						
cis-Linaloloxi	n.d	n.d	n.d	79.67±13.14	152.14±23.59	n.d	n.d	n.d	30.67±5.19	33.63±4.61
de										
Terpinolene	n.d	n.d	n.d	8.72 ± 3.29	41.43 ± 7.03	n.d	n.d	n.d	n.d	n.d
Linalool	n.d	31.25	176.32±32.1	7134.39±109	18345.13 ± 22	80.50 ± 5	$163.41 \pm$	325.76 ± 45	14971.67±13	24341.88±15
		± 5.38	2	6.23	47.65	.33	9.01	.98	75.14	27.14
1,2-Dihydrolin	n.d	n.d	n.d	n.d	21.43 ± 4.67	n.d	n.d	n.d	121.87±12.65	162.51±20.94
alool										
(-)-4-Terpineo 1	n.d	n.d	n.d	22.34±4.26	35.58±2.14	n.d	n.d	n.d	n.d	n.d
Hotrienol	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	98.27±7.83	170.25±8.75

α-Terpineol	10.13±1	26.31	164.21±11.1	6981.34±891	8876.42±291.	n.d	n.d	n.d	n.d	n.d
C	.84	±5.38	2	.36	71					
Sesquiterpenes	3									
Cyclosativene	n.d	n.d	n.d	13.29 ± 6.22	35.83 ± 13.85	n.d	n.d	n.d	n.d	5.38 ± 2.15
Copaene	n.d	n.d	n.d	n.d	n.d	9.76±0.	60.58 ± 7 .	116.08±10	404.15±30.27	542.53±36.57
						25	36	.38		
Elemene	n.d	n.d	n.d	n.d	n.d	$1.83\pm0.$	$10.03\pm1.$	15.02 ± 1.0	40.17±2.18	58.09 ± 8.08
						09	21	9		
α-Gurjunene	n.d	n.d	n.d	n.d	n.d	1.83±0.	13.08±2.	26.50 ± 2.9	101.28±9.54	127.63±17.07
						83	19	6		
Caryophyllene	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	2.68 ± 0.74	4.25 ± 2.00
α-Guaiene	n.d	n.d	n.d	n.d	n.d	n.d	n.d	6.58 ± 0.99	13.17 ± 2.58	20.13±3.81
α-Patchoulene	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	6.83±1.01	15.75 ± 4.50
Sativene	n.d	n.d	n.d	n.d	n.d	n.d	6.77 ± 2.0	11.08±0.9	35.34 ± 5.21	43.25 ± 4.08
							8	7		
γ-Cadinene	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	21.54 ± 2.59	93.88±11.73
γ-Gurjunene	n.d	n.d	n.d	23.47±7.32	75.57±14.67	n.d	n.d	14.78 ± 3.2	28.67 ± 5.28	26.63±6.96
								8		
Selinene	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	7.17 ± 2.88	8.38 ± 3.04
α-Bulnesene	n.d	n.d	n.d	n.d	n.d	n.d	11.42±3.	20.09 ± 2.8	65.43±9.82	96.10±9.29
							63	5		
Vatirenene	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	6.25±1.71
Nerolidol	n.d	n.d	n.d	19.33±8.23	36.21±9.35	n.d	n.d	n.d	n.d	n.d

Carotenoid derivatives

Dihydro-ionon	n.d	n.d	5.27 ± 0.43	601.26±35.9	913.02±21.23	n.d	11.09 <u>±</u> 4.	7.27 ± 2.94	19.67±4.51	16.50 ± 3.47
e				7			21			
β-Ionone	n.d	n.d	11.61±4.76	2622.19±89.	4350.29±102.	n.d	14.12±1.	10.37 ± 1.3	12.84 ± 1.72	18.75 ± 1.53
				02	53		26	8		
α-Cyclocitral	n.d	n.d	n.d	n.d	74.28 ± 10.05	n.d	n.d	n.d	n.d	n.d

R1-R5 and A1-A5 were the flower developmental stages defined as previously studies (Li *et al.*, 2016; Sun *et al.*, 2016; Sun *et al.*, 2016) n.d represented tentatively undetected

Data were the means \pm SD of three independent experiments, and the unit was ng g^{-1} FW (fresh weight).

Table S4. Composition and contents of volatile compounds released from different flower tissues

			Red River [®]			Ambiance						
Compounds	Petal	Pistill	Stamen	calyx	torus	Petal	Pistill	Stamen	calyx	torus		
Monoterpene												
S												
α-Pinene	698.27±12	2768.64±1	255.64±37	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
	.83	73.63	.28									
β-Pinene	245.14±15	838.36±47	51.39±12.	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
	.73	.83	13									
Myrcene	774.38±58	1437.19±9	162.59 ± 32	n.d	n.d	328.78 ± 28	n.d	n.d	n.d	n.d		
•	.34	8.42	.57			.12						
1,8 cineole	1396.78±1	5268.82±2	885.71±57	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
	27.49	89.47	.15									
D-Limonene	1801.68±7	5631.57±1	650.79±37	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
	8.85	27.61	.68									
cis-Ocimene	136.48±18	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
	.87											
trans-Ocimene	176.68±13	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
	.48											
cis-Linaloloxi	268.63±12	n.d	n.d	n.d	n.d	110.47±8.	n.d	n.d	n.d	n.d		
de	.57					37						
Terpinolene	215.70±13	240.12±27	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d		
1	.63	.38										

Linalool	56372.75±	69562.78±	17362.45±	3906.67±1	2284.48±1	79726.54±	98650.26±	12500.67±	4238.56±2	3109.67±3
	1389.89	1686.61	749.32	97.34	39.32	2185.37	2098.67	1098.72	09.98	93.19
1,2-Dihydroli	$83.38\pm12.$	793.57 ± 26	n.d	n.d	n.d	197.38 ± 10	n.d	n.d	n.d	n.d
nalool	97	.59				.24				
(-)-4-Terpineo	60.39 ± 9.6	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d
1	8									
Hotrienol	n.d	n.d	n.d	n.d	n.d	63.96±6.9	n.d	n.d	n.d	n.d
						1				
α-Terpineol	8772.33±5	$21687.38 \pm$	8975.48±3	n.d	n.d	n.d	n.d	n.d	n.d	n.d
	03.38	729.96	05.21							
Sesquiterpen										
es										
Cyclosativene	29.68 ± 3.8	n.d	n.d	n.d	n.d	11.78 ± 1.9	n.d	n.d	n.d	n.d
	9					8				
Copaene	n.d	n.d	n.d	n.d	n.d	1135.73±1	2353.83±1	637.51±67	n.d	n.d
-						06.38	02.39	.93		
Elemene	n.d	n.d	n.d	n.d	n.d	137.67±13	1093.71±4	140.09±15	n.d	n.d
						.94	9.92	.37		
α-Gurjunene	n.d	n.d	n.d	n.d	n.d	286.67±16	1207.28±5	220.72±23	n.d	n.d
J						.32	9.01	.01		
Caryophyllene	n.d	n.d	n.d	n.d	n.d	13.73±2.9	n.d	n.d	n.d	n.d
	11.0	11.0	11.0	11.0	1110	8	11.0	11.0	11.0	11.0
α-Guaiene	n.d	n.d	n.d	n.d	n.d	23.45±3.2	n.d	n.d	n.d	n.d
w Gualette	n.u	n.u	n.u	n.u	n.u	9	n.u	n.a	n.u	n.u
α-Patchoulene	n d	n d	n d	n d	n d	12.09±2.6	n d	n d	n d	n d
u-ratchoulene	n.d	n.d	n.d	n.d	n.d		n.d	n.d	n.d	n.d
						3				

Sativene	n.d	n.d	n.d	n.d	n.d	80.93±10.	596.28±9.	186.41±15	n.d	n.d
γ-Cadinene	n.d	n.d	n.d	n.d	n.d	45.02±6.2	n.d	210.14±10 .29	n.d	n.d
γ-Gurjunene	74.97±3.0	n.d	n.d	n.d	n.d	67.37±4.2	n.d	n.d	n.d	n.d
Selinene	n.d	n.d	n.d	n.d	n.d	21.38±1.3	n.d	n.d	n.d	n.d
α-Bulnesene	n.d	n.d	n.d	n.d	n.d	119.38±10 .23	665.12±30 .12	322.45±20 .91	n.d	n.d
Vatirenene	n.d	n.d	n.d	n.d	n.d	25.03±3.0	n.d	n.d	n.d	n.d
Nerolidol	60.67±4.7	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d
Carotenoid de	rivatives									
Dihydro-Iono	1002.67±3	1078.67±4	1524.96±3	n.d	n.d	n.d	n.d	n.d	n.d	n.d
ne	4.78	6.89	9.78							
β-Ionone	4667.69±3 97.97	2263.18±1 48.98	4274.88±1 27.97	n.d	n.d	23.17±2.3 9	n.d	n.d	n.d	n.d
α-Cyclociral	335.46±30 .78	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d

n.d represented tentatively undetected

Data were the means \pm SD of three independent experiments, and the unit was ng g $^{-1}$ FW (fresh weight).

Table S5. Information of *FhTPS* genes isolated from flowers of *Freesia* cultivars

Candidate	FhTPS genes	Protein sequence	Top Arabidopsis	Top BLAST	Homology (0/)	Function
transcripts	genes	length	BLAST match	match excluding Arabidopsis	Homology (%)	prediction
Unigene_125076	FhTPS1	592 residues	NP_179998.1 terpene synthase 10 [Arabidopsis thaliana]	AMT81307.1 myrcene synthase [Lilium sp.BT-2016]	44 ^a ,53 ^b	Monoterpene synthase
Unigene_125270	FhTPS2	595 residues	NP_189212.1 terpene synthase-like sequence-1.8-cineol e [Arabidopsis thaliana]	AMT81307.1 myrcene synthase [Lilium sp.BT-2016]	44 ^a ,54 ^b	Monoterpene synthase
Unigene_125191	FhTPS3	590 residues	NP_567511.3 terpene synthase 03 [Arabidopsis thaliana]	OAY64179.1Alph a-terpineol synthase,chloropla stic [Ananas comosus]	43 ^a ,55 ^b	Monoterpene synthase
Unigene_116598	FhTPS4	566 residues	NP_176361.2 terpene synthase14[Arabido psis thaliana]	ADR74212.1(3S)- linalool/(E)-neroli dol synthase [<i>Vitis</i> <i>vinfera</i>]	45 ^a ,50 ^b	Monoterpene synthase/Sesquiterpene synthase
Unigene_110102	FhTPS5	607 residues	NP_189212.1 terpene	AMT81307.1 myrcene synthase	45 ^a ,53 ^b	Monoterpene synthase

			synthase-like sequence-1.8-cineol e protein [Arabidopsis thaliana]	[Lilium sp.BT-2016]		
			NP_197784.2	AAC315702.2		
Unigene_122329	FhTPS6	566 residues	terpene synthase 21[<i>Arabidopsis</i>	sesquiterpene synthase [<i>Elaeis</i>	$36^{a},55^{b}$	Sesquiterpene synthase
			thaliana]	oleifera]		
			NP_197784.2	AAC315702.2		
Unigene_105518	FhTPS7	570 residues	terpene synthase	sesquiterpene	35 ^a ,51 ^b	Sesquiterpene synthase
<u> </u>			21[Arabidopsis thaliana]	synthase [<i>Elaeis</i> oleifera]		
			NP_197784.2	All32473.1		
Unigene_80141	FhTPS8	566 residues	terpene synthase	terpene synthase	35 ^a ,44 ^b	Sesquiterpene synthase
omgene_001+1	1 111 50	300 Testades	21[Arabidopsis	[Populus	33 ,44	besquiterpene synthase
			thaliana]	trichocarpa]		

a% Similarity to Arabidopsis.

b% Similarity to other plant sequence

Table S6. Correlation analysis between gene expression and volatiles in different flower tissues of Red River® and Ambiance

	FhTPS1		FhTPS2		Fh	TPS4	Fh	TPS6	Fh	TPS7	Fh	FhTPS8	
	Red	Ambiance	Red	Ambiance	Red	Ambiance	Red	Ambiance	Red	Ambiance	Red	Ambiance	
	River®		River®		River®		River®		River®		River®		
α-Pinene			0.374	NA									
β-Pinene													
Myrcene			0.623*	-0.306			0.296	0.477	NA	0.445			
1,8 cineole			0.377	NA									
D-Limonene			0.438	NA			0.114	NA	NA	NA			
cis-Ocimene							0.838**	NA	NA	NA			
trans-Ocimene							0.837**	NA	NA	NA			
cis-Linaloloxide													
Terpinolene							0.479	NA	NA	NA			
Linalool	0.700**	0.692**			0.763**	0.929**	0.514*	0.703**	NA	0.482			
1,2-Dihydrolinalool													
(-)-4-Terpineol													
Hotrienol													
α-Terpineol			0.553*	NA									
Cyclosativene									NA	0.437			
Copaene							NA	0.693**	NA	0.516*			
Elemene							NA	0.423	NA	0.345			
α-Gurjunene											NA	0.929**	
Caryophyllene							NA	0.521*	NA	0.431			
α-Guaiene									NA	0.440			
α-Patchoulene													
Sativene									NA	0.378			

γ-Cadinene	 	 	 			NA	0.709**		
γ-Gurjunene	 	 	 						
Selinene	 	 	 	NA	0.544*			NA	-0.306
α-Bulnesene	 	 	 						
Vatirenene	 	 	 						
Nerolidol	 	 	 	0.837**	NA	NA	NA	-0.301	NA

⁻⁻⁻ represented that volatile terpenes of *Freesia hybrid* were undetected in enzymatic assay of FhTPS

NA represented no Correlation
** p<0.01 * p<0.05

Table S7. Correlation analysis between gene expression and volatiles for fully opened flowers of Red River® and Ambiance

	FhTPS1	FhTPS2	FhTPS6	FhTPS7	FhTPS8
α-Pinene		0.997**			
β-Pinene					
Myrcene		0.985**	0.975**	-0.962	
1,8 cineole		0.998**			
D-Limonene		0.998**	0.976**	-0.969	
cis-Ocimene			0.977**	-0.974	
trans-Ocimene			0.977**	-0.971	
cis-Linaloloxide					
Terpinolene			0.971**	-0.959	
Linalool	0.832*		-0.819	0.576	
1,2-Dihydrolinalool					
(-)-4-Terpineol					
Hotrienol					
α-Terpineol		0.992**			
Cyclosativene				-0.853	
Copaene			-0.970	0.983**	
Elemene			-0.959	0.981**	
α-Gurjunene					0.871*
Caryophyllene			-0.848	0.902**	
α-Guaiene				0.976**	
α-Patchoulene					
Sativene				0.983**	
γ-Cadinene				0.982**	
γ-Gurjunene					

Selinene	 	-0.892		0.947**
α-Bulnesene	 			
Vatirenene	 			
Nerolidol	 	0.956**	-0.933	-0.707

⁻⁻⁻ represented that volatile terpenes of *Freesia hybrid* were undetected in enzymatic assay of FhTPS

NA represented no Correlation

^{**} p<0.01 * p<0.05

Table S8. Summary of FhTPSs in the proposed model to explain volatile terpene biosynthesis in flowers of Ambiance and Red River®

Gene	Subcellular location		Tissue specific expression		Enzymatic products		
	Chloroplast	Cytoplasm	Red River®	Ambiance	Red River®	Ambiance	
FhTPS1	Y		Petal/Pistil/Stamen	Petal/Pistil/Stamen	Linalool	Linalool	
FhTPS2	Y		Petal/Pistil/Stamen		α-Terpineol/ Myrcene		
FhTPS4	Y		Calyx/Torus	Calyx/Torus	Linalool	Linalool	
FhTPS6		Y	Petal/Pistil/Stamen	Petal/Pistil/Stamen	cis-Ocimene/ trans-Ocimene/Myrcene / Nerolidol	Selinene / Myrcene/ Elemene	
FhTPS7		Y		Petal/Pistil/Stamen		Copaene/γ-Cadinene/ Caryophyllene/ Cyclosativene/γ-Gurjunene/ Sativeneα-Guaiene/ Elemene/ Myrcene	
FhTPS8		Y		Petal/Pistil/Stamen		α-Gurjunene	

Fig. S1. Flower developmental stages and different tissues of Red River®.

The flower developmental stages and flower tissues were defined as in previous studies (Li *et al.*, 2016; Sun *et al.*, 2016; Sun *et al.*, 2016)

Fig. S2. Flower developmental stages and different tissues of Ambiance.

The flower developmental stages and flower tissues of Ambiance were defined according to that of Red River[®], as in previous studies (Li *et al.*, 2016; Sun *et al.*, 2016; Sun *et al.*, 2016).

Fig. S3. Alignment of deduced amino acid sequences of FhTPS1 in Red River® and Ambiance.

FhTPS2	(Red River	${\tt MACLPFHYTTYSRSPAGILFRSSLPSSHCRARRSRSNESANRIRCCNNTQISQPLRRTANYPPTIWENSYIQE {\tt PNTDYMQEDEETIEIGKLKEYVMTRLIISNSDQIELIDTLQQLGVAY} \\$
FhTPS2	(Ambiance)	MACLPFHYTTYSRSPAGILFRSSLPSSHCRARRSRSNESANRIRCCNNTQISQPLRRTAN YPPTIWENSYIQE <mark>L</mark> NTDYMQEDEETIEIGKLKEYVMTRLIISNSDQIELIDTLQQLGVAY
		o********************************
FhTPS2	(Red River®)	HFQEEIQNILATIFCSIKKIIPTIHNDIYATALLFRLREKGFHVSTNIFNNFKEEGGTFKACLKNDIKGMLSLYEASFLAVEGENELDEARLFATECLKHTMENSLSLEPSMKERIVHA
FhTPS2	(Ambiance)	HFQEEIQNILATIFCSIKKIIPTIHNDIYATALLFRLLREKGFHVSTNIFNNFKEEGGTFKACLKNDIKGMLSLYEASFLAVEGENELDEARLFATECLKHTMENSLSLEPSMKERIVHA

FhTPS2	(Red River	LELPLHWRMSRLHSRWFIDQYEKDEKMNPTLLRLAKLDFNFVQTIYKRELKELSRWWSNLDLLGDKLGFARDRLVENYLWTVGSAFEPKFWQSREALTKANCLITTIDDIYDVYGTLDEL
FhTPS2	(Ambiance)	LELPLHWRMSRLHSRWFIDQYEKDEKMNPTLLRLAKLDFNFVQTIYKRELKELSRWWSNLDLLGDKLGFARDRLVENYLWTVGSAFEPKFWQSREALTKANCLITTIDDIYDVYGTLDEL
	-	***************************************
FhTPS2	(Red River	$VLFTDV \overset{\textbf{A}}{=} DRWDVNAIEQLPDYMKTCLLALFNTTNDTAYKILNLKGVIIIPQLKKVWADLCKAYLVEAKWYHSGYMPTLEEYLDNGWISISGHVALAHAFCTSEDITYRALQCYNQLSPNL$
FhTPS2	(Ambiance)	$VLFTDV \\ \textbf{V} DR \\ \textbf{W} DV NA IEQLPDYMKTCLLALFNTTNDTAYKILNLKGVIIIPQLKKV \\ \textbf{W} ADLC KAYLVEAKWYHSGYMPTLEEYLDNGWISISGHVALAHAFCTSEDITYRALQCYNQLSPNL$

FhTPS2	(Red River®)	LFHSSVIVRLVDDLATSTAELERGDVPKAIQCYMKQNRVSEEVAREKIKEMIVSTWEKLNGDLIATSSVVESFQSVALNFPRMAQCIYQYGDGYGDPTQKTKDQIVSLLIQPVSL
FhTPS2	(Ambiance)	VFHSSVIVRLVDDLATSTAELERGDVPKAIQCYMKQNRVSEEVAREKIKEMIVSTWEKLN GDLIATSSVVESFQSVALNFPRMAQCIYQYGDGYGDPTQKTKDQIVSLLIQPVSL

Fig. S4. Alignment of deduced amino acid sequences of FhTPS2 in Red River® and Ambiance.

FhTPS3	(Red River®)	${\tt MGTEMALQHLCSSFNTPYSLTIVSAKTESTRIDTDNKLAKALQVRSSGVTGTHATVTGKRRKANYQPRLWDYQSLQCHSTEINCQDEKDAVK_KEAVNHLLYKETKLEDKLELIDALQRL$
FhTPS3	(Ambiance)	${\tt MGTEMALQHLCSSFNTPYSLTIVSAKTESTRIDTDNKLAKALQVRSSGVTGTHATVTGKRRKANYQPRLWDYQSLQCHSTEINCQDEKDAVKPKEAVNHLLYKETKLEDKLELIDALQRL$

FhTPS3	(Red River®)	${\tt GLSYQFEEE} {\tt IKIILGSISIKNVSTDPNSLHATALLFRLLRENGFQISQENFNVFKDEKGCFKECLCKDAQGMLSLYEASQLMFRRE} {\tt ATLDDARIFTTKHLNDIE} {\tt AYTDMHLKERVERALE}$
FhTPS3	(Ambiance)	${\tt GLSYQFEEE} {\tt IKIILGSISIKNVSTDPNSLHATALLFRLLRENGFQISQENFNVFKDEKGCFKECLCKDAQGMLSLYEASQLMFRRESTLDAARIFTTKHLNDIKAYMDVHLKEKVERALE}$
	_	**ockspark* because the property of the prop
FhTPS3	(Red River®)	LPLHWRTPRSDIRWYVEQYNSDMSIQPVLQLAKVDFNNVQILHRRELGRMVRWWEDLGLAEQLPFVRDRLVECYFYAAGVVSNPNLGYCREGVAKVCNLITTLDDVYDINGFSDELVQLT
FhTPS3	(Ambiance)	LPLHWRTPRSDIRWYVEQYNSDMSIQPVLQLAKVDFNKVQILHRGELGRMVRWWEDLGLPERLPFVRDRLVECYFYAAGVVSNPNLGYCREGVAKVCNLITTLDDVYDINGFSDELVQLT
	_	
FhTPS3	(Red River	$NAVNRWEIS AVEGLPEYMKTSYSALYDTTNELARNILQKDGWDPSSYLKKAWADLCNSFLVEAKWHYSGYVPTIQEYLDNGWISVSGHVVLLHAFFLSRQC{\color{red}{\bf I}}TKE{\color{red}{\bf M}}VQCLETYP{\color{red}{\bf M}}FVRSS$
FhTPS3	(Ambiance)	NAVNRWEI <mark>R</mark> AVEGLPEYMKTSYSALYDTTNELARNILQKDGWDPSSYLKKAWADLCNSFLVEAKWHYSGYVPTIQEYLDNGWISVSGHVVLLHAFFLSRQC <mark>T</mark> TKE I VQCLETYP <mark>T</mark> FVRSS

FhTPS3	(Red River®)	STICRLSNDLVTSAAEMERGDSPASIQCYMHEHGVTEEVALEGIKVLINETWKKLNEDVANCGVFPRSLANLAVDLAQTAYCMYRNGDGIGAPDKENKNDISSTFFKPMK
FhTPS3	(Ambiance)	STIFRLCNDLGTYAAETERGDAPTSIQCYMHEYGVTEEVAHEGIKVLIDETWKKLNEDVANCGVFPRSLANLAIDLARTSYCTYWNGDGIGAPDKENKNDISSTFFKPMK
		*** **, *** * ***; ****; *; ******** * ********

Fig. S5. Alignment of deduced amino acid sequences of FhTPS3 in Red River® and Ambiance.

FhTPS4	(Red River	$\tt MTTFSKMSASPPSPFVTTRNSGCANKTSTGTISQS{\ref{thm:particle}} \textbf{YSPQSARLVQRLGSLLT} \textbf{N} VREDQSDMKHAENLMRVKSLFPQLEDPLECMNTIDSLQRLGIDYHFKKEIKDMLGHIYERFRQIEH$
FhTPS4	(Ambiance)	MTTFSKMSASPPSPFVTTRNSGCANKTSTGTISQS <mark>H</mark> YSPQS <mark>V</mark> RLVQRLGSLLT <mark>S</mark> VREDQSDMKHAENLMRVKSLFPQLEDPLECMNTIDSLQRLGIDYHFKKEIKDMLGHIYERFRQIEH

FhTPS4	(Red River®)	HLITGDLFEVSLSFRLLRQAGHHVSSDVFYKFIDDKGKLDSSLRTDIEGLLSLHEASYLNTGEDILYRTKEFTIEHLTSCMEHLESDGASLVEQTLKSPIHKTLSKYNSPYYINRRQEKL
FhTPS4	(Ambiance)	HLITGDLFEVSLSFRLLRQAGHHVSSDVFYKFIDDKGKLDSSLRTDIEGLLSLHEASYLNTGEDILYRTKEFTIEHLTSCMEHLESDGASLVEQTLKSPIHKTLSKYNSPYYINRRQEKL

FhTPS4	(Red River®)	TRYGVLNEVARVDYNQVQTIYQRELFEILSWWKEIGLVQELNFIRDQPLKWYTWSMTVLPDPQFSKCRISLTKVIAFVYIIDDIFDIYGTLEELSLFTEAIRKWELSGAETLPTYMQILY
FhTPS4	(Ambiance)	$TRYGVLNEVARVDYNQVQTIYQRELFEILSWWKEIGLVQELNFIRDQPLKWYTWSMTVLP\ DPQFSKCRISLTKVIAFVYIIDDIFDIYGTLEELSLFTEAIRKWELSGAETLPTYMQILY$
		**
FhTPS4	(Red River®)	$KTLYDITNEIAEATYEEHNWNPIGHLKESWARLCDAFLKEAKWFQSKKVPKADEYLANAIVSSGVYTVLLHAYFLLGEGITQENANFLKTNPTLLSSPATILRLWDDLGNAEDENQEG{YD}\\$
FhTPS4	(Ambiance)	KTLYDITNEIAEATYEEHNWNPIGHLKESWARLCDAFLKEAKWFQSKKVPKADEYLANAIVSSGVYTVLLHAYFLLGEGITQENANFLKTNPTLLSSPATILRLWDDLGNAEDENQEGHD
FhTPS4	(Red River®)	GSYVEYLMQENPNYTMESSRDHVMKMISSSWEALNKECFSSS <mark>R</mark> FAPNLMAGCLNL <mark>S</mark> RMIE VMYSYDTNQNLPVLEEYITKLLFKSI
FhTPS4	(Ambiance)	GSYVEYLMQENPNYTMESSRDHVMKMISSSWEALNKECFSSS <mark>Q</mark> FAPNLMAGCLNL <mark>P</mark> RMIEVMYSYDTNQNLPVLEEYITKLLFKSI

Fig. S6. Alignment of deduced amino acid sequences of FhTPS4 in Red River® and Ambiance.

FhTPS6	(Red River®)	${\tt MESVLLGSPPDGTVTSSVTRRPASANYHPSVWGDYFIKQQFPPSKIQKSEAWIKQRVEELIIKIKIMLTESTDQLQEMQLIDAVQRLGVAYHFEKEIDDKLRRIHNANLDSSDLHFISLR}$
FhTPS6	(Ambiance)	${\tt MESVLLGSPPDGTVTSSVTRRPASANYHPSVWGDYFIKQQFPPSKIQKSEAWIKQRVEELIIKIKIMLTESTDQLQEMQLIDAVQRLGVAYHFEKEIDDKLRRIHNANLDSSDLHFISLR}$
FhTPS6	(Red River®)	FRLLRQHGYNVPSDVFNKFKDDEGNFRSSLCEQVRVLLSLYEAAYLSIPGEDILDEALEFTKRHLKYYSMESNYLEPALATHISHALQAPLRR <mark>K</mark> LERLEARQYINIYEKDDEIRNDYILE
FhTPS6	(Ambiance)	FRLLRQHGYNVPSDVFNKFKDDEGNFRSSLCEQVRVLLSLYEAAYLSIPGEDILDEALEFTKRHLKYYSMESNYLEPALATHISHALQAPLRR <mark>I</mark> LERLEARQYINIYEKDDEIRNDYILE
FhTPS6	(Red River [®])	FAKLDFHLLQLVHREELKSIS <mark>G</mark> WWKSSGLIEKLNYARDRVAECYFWALGVYYEPCYSRARKMLTKVLLQFSLMDDTYDAYGTLEELQLYTKAIQRWNLDGVDELEECMKFQYLALYDMAK
FhTPS6	(Ambiance)	FAKLDFHLLQLVHREELKSIS <mark>E</mark> WWKSSGLIEKLNYARDRVAECYFWALGVYYEPCYSRARKMLTKVLLQFSLMDDTYDAYGTLEELQLYTKAIQRWNLDGVDELEECMKFQYLALYDMAK
FhTPS6	(Red River®)	DFEDELADDNIQYRVNYLREATKNTTKAWLKEAEWREEGYVPSFEEYFTVSLPSATYPTVACVSYVGMGEIVTKEALDWIFNIPKIVQAATMITRCMDDLVSSEFERKRDHVATAIQCYM
FhTPS6	(Ambiance)	DFEDELADDNIQYRVNYLREATKNTTKAWLKEAEWREEGYVPSFEEYFTVSLPSATYPTVACVSYVGMGEIVTKEALDWIFNIPKIVQAATMITRCVDDLVSSEFERKRDHVATAIQCYM
		** k** k** k** k** k** k** k** k** k**
FhTPS6	(Red River®)	KEYEGASSEDACKVIRKMVEDGWKVANQECLNQKI <mark>S</mark> IHLLTKIFNLARVMETMYKEIDSYTQSTTTLKDHITLLFVEPISFEDDYF
FhTPS6	(Ambiance)	KEYEGASSEDACKVIRKMVEDGWKVANQECLNQKIPIHLLTKIFNLARVMETMYKEIDSYTQSTTTLKDHITLLFVEPISFEDDYF

Fig. S7. Alignment of deduced amino acid sequences of FhTPS6 in Red River® and Ambiance.

FhTPS8	(Red River®)	MEVVSAGEEVVRPIAKFSPSIWGDFFINHSFPLANDKNAITLIEQRVEELKRTVKELFSTNQYITERLLLIDDLQRLGIDYRFKQEIDEALKCIHIDNDNIDDNMYLVALRFRLLRQQGY
FhTPS8	(Ambiance)	${\tt MEVVSAGEEVVRPIAKFSPSIWGDFFINHSFPLANDKNAITLIEQRVEELKRTVKELFSTNQYITERLLLIDDLQRLGIDYRFKQEIDEALKCIHIDNDNIDDNMYLVALRFRLLRQQGY}$

FhTPS8	(Red River®)	HVSSDVFSKFKDDNGSFKQEYAGNIIGLLQLYEATGVRIQEDSILDEAFDFAKYHMERSITADTVKGVLADRIRHALEMPFHRSRKRLGARYYMSIYEKDEARNDVLLELAKLDFTLLQR
FhTPS8	(Ambiance)	HVSSDVFSKFKDDNGSFKQEYAGNIIGLLQLYEATGVRIQEDSILDEAFDFAKYHMERSITADTVKGVLADRIRHALEMPFHRSRKRLGARYYMSIYEKDEARNDVLLELAKLDFTLLQR

FhTPS8	(Red River®)	LYQDEIKTFTMWYNQELGPKKLSFSRDRAVENYFWALGIMHFEPELATGRLLLAKLLAYVLVWDDMYDAYGTFDELRLFTDVIERWDLESVDHLPEYMRVCLSSYSNFMREVEDELIKNE
FhTPS8	(Ambiance)	LYQDEIKTFTMWYNQELGPKKLSFSRDRAVENYFWALGIMHFEPELATGRLLLAKLLAYVLVWDDMYDAYGTFDELRLFTDVIERWDLESVDHLPEYMRVCLSSYSNFMREVEDELIKNE

FhTPS8	(Red River®)	RDQLKPYVAEMMKYIIDGFFQEAKWLNEGYIPTMEEYLANGLKTGGQTTLNGFSLLFMSEDKVTKDTLEWVLSMPNILKASTLIGRLLNDIKTTKLEHERMHVASSIQIYMNEAGVTEAM
FhTPS8	(Ambiance)	RDQLKPYVAEMMKYIIDGFFQEAKWLNEGYIPTMEEYLANGLKTGGQTTLNGFSLLFMSEDKVTKDTLEWVLSMPNILKASTLIGRLLNDIKTTKLEHERMHVASSIQIYMNEAGVTEAM

FhTPS8	(Red River®)	AIAKLN <mark>G</mark> MVADFWKDINKELLDALPFQKDFNTLTLNFART <mark>L</mark> EVLYKHEDAFTHGSIQREQIDLMLVWPIQN
FhTPS8	(Ambiance)	AIAKLN <mark>R</mark> MVADFWKDINKELLDALPFQKDFNTLTLNFART <mark>P</mark> EVLYKHEDAFTHGSIQREQIDLMLVWPIQN

Fig. S8. Alignment of deduced amino acid sequences of FhTPS8 in Red River® and Ambiance.

Fig. S9. Genomic structures of the FhTPS genes for two cultivars of Freesia hybrida (Red River® and Ambiance).

Genomic organization of *FhTPS* genes. The frames and solid lines represented exons and introns, respectively.

Fig. S10. Conserved residues analysis and subcellular localization of FhTPS proteins in two cultivars of *Freesia hybrida*

Full-length protein sequence alignment of Freesia TPS proteins (FhTPS1-FhTPS8). Functionally important conserved residues (RRX $_8$ W, DDXXD and DDXXSXXXE/NDXXTXXXE) are highlighted with a colored background.

Fig. S11. Three-dimensional model of the structure model of FhTPSs.

The globular protein is shown in pink and the chloroplast transit peptide (PTP) in white.

Fig. S12. Expression patterns of FhTPS genes in five developmental stages of Red River $^{\tiny{(8)}}$ and Ambiance

Real-time PCR gene expression analysis of *FhTPS* genes at five development stages of Red River[®] and Ambiance. Relative gene expression levels were calculated with formula $2^{-\Delta\Delta C_T}$. Gene expression levels of *FhTPS* genes in Red River[®] and Ambiance are represented by red and gray lines, respectively. NA indicates no gene expression. The flower developmental stages and tissues were defined as in previous studies (Li et al., 2016; Sun et al., 2016; Sun et al., 2016). All results are presented as means \pm SD of triplicate experiments.

Fig. S13. Expression patterns of FhTPS genes in five flower tissues of Red River $^{\tiny \circledR}$ and Ambiance

Real-time PCR gene expression analysis of FhTPS genes in five flower tissues of Red River[®] and Ambiance. Relative gene expression levels were calculated with formula $2^{-\Delta\Delta C_T}$. NA indicates no gene expression. Gene expression levels of FhTPS genes in Red River[®] and Ambiance are represented by red and gray frames, respectively. All results are presented as means \pm SD of triplicate experiments.

Fig. S14. Stability analysis of 18S rRNA in two cultivars of Freesia hybrida.

(A) The expression of 18S rRNA was analyzed at five developmental stages and in five flower tissues of two cultivars of *Freesia hybrida* by semi-quantitative PCR. 17C represented 17 PCR cycle. (B) The expression of 18S rRNA was analyzed at five developmental stages and in five flower tissues of two cultivars of *Freesia hybrida* by real-time PCR. The number in Y-axis represented the CT value of 18S rRNA.

Fig. S15. Detection of FhTPS proteins in E. coli strain BL21 (DE3)

(A) SDS-PAGE gel showing recombinant 6His-tagged FhTPSs (FhTPS1-FhTPS8) proteins in the form of inclusion body protein. (A) SDS-PAGE gel showing recombinant 6His-tagged FhTPSs (FhTPS1-FhTPS8) proteins in the form of soluble protein. The position corresponding to the recombinant proteins are indicated by an arrow.

Fig. S16. In vitro enzymatic activity analysis of FhTPS proteins using GPP as substrate

Products catalyzed by FhTPS proteins (FhTPS1-FhTPS8) using GPP as substrate were subjected to GC-MS. Peaks marked with numbers were identified as monoterpenes by comparing mass spectra with the NIST 2008 mass spectra library. Each experiment was performed in three independent repeats to confirm the accuracy of the FhTPS products. The X axis represents the retention time of the peak outflow, and the Y axis represents the integral area of chromatographic peak. The enzymatic products are as follows: 1, Linalool; 2, Bicyclo [3.1.0] Thujene; 3, α -Pinene; 4, Myrcene; 5, D-Limonene; 6, 1,8 cineole; 7, α -Terpineol; 8, Thujene; 9, Isoterpinolene; 10, cis-Ocimene; 11, trans-Ocimene; 12, Terpinene; 13, Terpinolene.

Fig. S17. In vitro enzymatic activity analysis of FhTPS proteins using FPP as substrate

Products catalyzed by FhTPS proteins (FhTPS1-FhTPS8) using FPP as substrate were subjected to GC-MS. Peaks marked with numbers were identified as sesquiterpenes by comparing mass spectra with the NIST 2008 mass spectra library. Each experiment was performed in three independent repeats to confirm the accuracy of the FhTPS products. The X axis represents the retention time of the peak outflow, and the Y axis represents the integrated area of the chromatographic peak. The enzymatic products are as follows: 1, Nerolidol; 2, α-Cubebene; 3, Copaene; 4, Elemene; 5, Caryophyllene; 6, Selinene; 7, Cycloisosativene; 8, Epi-bicyclosesquiphellandrene; 9, β-Maaliene; 10, β- Caryophyllene; 11, α-Guaiene; 12, Farnesene; 13, γ-Maaliene; 14, Himachalene; 15, Sativene; 16, α-Gurjunene; 17, γ-Cadinene; 18, γ-Muurolene; 19, γ-Gurjunene; 20, Germacrene; 21, α- Muurolene; 22, Guaia-1(10), 11-diene; 23, Eudesmene; 24, Cadina-3, 9-diene; 25, 1R, 3Z, 9S-2, 6, 10, 10-Tetramethylbicyclo [7.2.0] undeca-2, 6-diene; 26, Naphthalene 1, 2, 3, 4, 4a, 7-hexahydro-1, 6-dimethy-4-(1-methylethl); 27, Isoledene; 28, unknown; 29, Acoradien; 30, Chamigrene; 31, Zingberene; 32, Sesquiphellandrene.

Fig. S18. Proposed model of terpene biosynthesis in torus and calyx of both *Freesia* cultivars.

FhTPS4 was specifically associated with linalool biosynthesis in these two flower tissues, and nerolidol, which was found in the *in vitro* enzymatic products catalyzed by FhTPS4, was not detected.

Fig. S19. In vitro assay of authentic standards by GC-MS

(A) Linalool. (B) α -Terpilenol. C. Myrcene. Mass spectra for each authentic standard are shown on the right.