DAFTAR ISI

DAFTAR ISI	i
DAFTAR GAMBAR	. ii
DAFTAR TABEL	. ii
BAB 1 PENDAHULUAN	.1
1.1 Latar Belakang	.1
1.2 Rumusan Masalah	. 2
1.3 Tujuan	.2
1.4 Luaran	.2
1.5 Manfaat	.2
BAB 2 TINJAUAN PUSTAKA	. 2
2.1 Far-UVC	.2
2.2 Automatic Door System	. 3
2.3 Image Processing	. 4
2.4 PIR Motion Sensor	. 5
BAB 3 TAHAPAN PELAKSANAAN	.5
3.1 Metode Pelaksanaan	. 5
3.2 Rancangan Sistem	. 6
3.3 Rancangan Material <i>prototype</i>	. 7
3.4 Alur Sistem	.8
3.5 Keuntungan Produk	.8
BAB 4 ANGGARAN BIAYA DAN JADWAL KEGIATAN	9
4.1 Anggaran Biaya	9
4.2 Jadwal Kegiatan	. 9
DAFTAR PUSTAKA	. 10
LAMPIRAN	. 11
Lampiran 1. Biodata Ketua dan Anggota, Dosen Pendamping	.11
Lampiran 2. Format Justifikasi Anggaran Kegiatan	.16
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	. 18
Lampiran 4. Surat Pernyataan Ketua Pelaksana	. 19
Lampiran 5. Gambaran Teknologi yang Hendak Dikembangkan	.20

DAFTAR GAMBAR

Gambar 2.2 Desain SANPORT	. 4
Gambar 2.3 Monitoring image processing	5
Gambar 2.4 PIR Motion Sensor	. 5
Gambar 3.1 Flowchart Pelaksanaan	. 6
Gambar 3.2 Ruang Sterilizer	7
Gambar A.1 Desain SANPORT	. 20
DAFTAR TABEL	
Tabel 2.1 Efisiensi sinar Far-UVC dalam mengurangi virus SARS-CoV-2	. 3
Tabel 3.1 Komponen dan Material SANPORT	. 7
Tabel 4.1 Anggaran Biaya	. 9
Tabel 4.2 Jadwal Kegiatan	.9

Bab 1. Pendahuluan

1.1 Latar Belakang

Sterilisasi adalah suatu usaha pencegahan penyakit yang menitikberatkan kegiatan pada usaha kesehatan lingkungan (Rejeki, 2015). Sterilisasi diperlukan di banyak tempat, termasuk di pabrik industri. Contoh pabrik industri yang membutuhkan tingkat sterilisasi tinggi diantaranya pabrik obat, pabrik makanan, dan laboratorium pabrik. Hal ini diperlukan agar produk mereka terjaga dari kontaminasi mikroorganisme. Nyatanya, di pabrik industri seperti pabrik obat, unsur kontaminasi sering datang dari manusia (Iron, 2013). Hal itu mengakibatkan orang-orang yang hendak masuk ke dalam pabrik harus mengikuti SOP yang ada salah satunya yang paling umum yaitu dengan penyemprotan desinfektan. Padahal, menurut WHO, desinfektan yang disemprotkan dapat mengenai bagian tubuh manusia, sehingga berisiko menyebabkan iritasi kulit, penyakit mata, dan gangguan pernapasan.

Selain itu, produksi desinfektan yang meningkat sejak sebelum pandemi hingga masa pandemi berkontribusi pada peningkatan tingkat pencemaran perairan. Ecological Observation and Wetlands Conservation menemukan peningkatan kandungan 2 klorin, bahan utama desinfektan, di Kali Mas Surabaya. Pengujian kualitas air pada bulan April menunjukkan kandungan klorin adalah sebesar 0,17 ppm. Akan tetapi pada bulan Juli, kandungan klorin meningkat menjadi 0,20 ppm. Sedangkan menurut standar air bersih, kandungan klorin tidak boleh melebihi 0,03 ppm (CNN Indonesia, 2020). Hal ini membuktikan penggunaan disinfektan untuk sterilisasi tidak efektif untuk skala besar karena alasan kesehatan dan lingkungan. Maka dari itu, penulis mengusulkan pemanfaatan sinar Far-UVC sebagai pengganti desinfektan.

Sebuah studi yang termuat dalam American Journal of Infection Control menyatakan bahwa paparan sinar Far-UVC (222 nm) selama 30 detik memiliki kemampuan menonaktifkan serta mengurangi barbagai macam populasi virus termasuk SARS-CoV-2 sebesar 99,7% (Hiroki Kitagawa, 2020). Penelitian ini juga menyatakan bahwa paparan sinar Far-UVC memiliki keunggulan yaitu mematikan mikroorganisme yang ada di kulit tapi tidak merusak kulit serta mata pada tubuh manusia.

Sinar Far-UVC ini akan diaplikasikan sebagai sebuah pintu otomatis yang dinamakan SANPORT. Kelebihan dari pintu otomatis ini, yaitu dilengkapi dengan sistem *image processing* terhadap *human presence* secara *real-time* serta bendabenda yang ada di sekitarnya. Pintu ini bergerak secara otomatis dengan spesifikasi penyinaran sinar Far-UVC sebagai langkah pencegahan dari kontak langsung *human carrier*, baik dari virus SARS-CoV-2 maupun mikroorganisme

lainnya. Teknologi *image processing* juga berfungsi sebagai sistem keamanan karena jika objek yang masuk tidak sesuai spesifikasi, pintu tidak akan terbuka. Lampu sinar Far-UVC juga bersifat fleksibel, bisa dilepaskan bila pengguna merasa tidak memerlukannya pasca pandemi dan menjadikan SANPORT sebagai pintu pengaman saja. SANPORT ini didesain dengan bahan baku dan biaya operasional yang murah, sehingga cocok untuk di tempat yang memerlukan sterilisasi sekaligus sistem keamanan dengan harga yang terjangkau. Oleh karena itu, kami mengusulkan SANPORT diaplikasikan di kawasan pabrik khususnya pabrik vaksin COVID-19 yang membutuhkan kesterilan sekaligus tingkat keamanan yang tinggi.

1.2 Rumusan Masalah

- 1. Apakah penggunaan SANPORT dapat membantu dalam pencegahan penyebaran virus SARS-CoV-2 di dalam suatu ruangan?
- 2. Bagaimana cara kerja SANPORT dalam melakukan pendeteksian keberadaan manusia untuk mengoptimalkan sterilisasi dan sekuriti?

1.3 Tujuan

- 1. Melakukan sterilisasi sebagai bentuk pencegahan penyebaran virus SARS-CoV-2 dan kontaminasi mikroorganisme lain
- 2. Menerapkan kemampuan *image processing* pada *automatic door* dalam melakukan pendeteksian objek untuk fungsi sterilisasi dan fungsi keamanan?

1.4 Luaran

- 1. Laporan kemajuan
- 2. Laporan akhir
- 3. Prototipe SANPORT dengan teknologi image processing dan lampu sinar Far-UVC
- 4. Artikel ilmiah

1.5 Manfaat

Kegunaan atau manfaat yang dapat diperoleh dari teknologi ini terdiri dari dua aspek. Pertama, desinfeksi yang berarti teknologi ini dapat mencegah kontaminasi berbagai mikroorganisme termasuk virus SARS-Cov-2. Kedua, sekuriti yang berarti teknologi ini dapat menjaga keamanan dengan pemanfaatan teknologi *image processing*.

Bab 2. Tinjauan Pustaka

2.1 Far-UVC 222 nm

Far-UVC merupakan salah satu jenis sinar ultraviolet dengan rentang panjang gelombang 207-222 nm. Penelitian menunjukkan bahwa sinar Far-UVC memiliki kemampuan secara efisien untuk menonaktifkan virus dan bakteri pada kulit mamalia tanpa membahayakan kesehatannya khususnya manusia [3]. Hal ini

didukung dengan adanya penelitian Far-UVC untuk melawan virus *airborne human coronaviruses alpha HcoV-229E* dan *beta HcoV-OC43* yang menunjukkan bahwa dosis kecil 1.7 dan 1.2 mJ/cm² dapat menonaktifkan *coronavirus* dengan persentase sebesar 99,9% [4]. Penelitan lain membuktikan bahwa virus H1N1 juga dapat dinonaktifkan dengan Far-UVC pada dosis rendah (0, 0.8, 1.3, 2 mj/cm²) [3]. Keunggulan dari sinar ini yaitu tidak memiliki kemampuan untuk menembus kulit serta mata pada manusia. Peneliti dari Cranfield University juga menyatakan penggunaan dari Far-UVC ini dapat menjadi upaya mitigasi penyebaran COVID-19.

Sampai saat ini sudah beredar produk lampu sinar UVC untuk sterilisasi. Namun pada umumnya, lampu sterilisasi tersebut menggunakan sinar UVC dengan panjang gelombang 254 nm. Namun, jenis sinar UVC dengan panjang gelombang tersebut tidak aman untuk tubuh manusia, karena kemampuan penetrasinya yang lebih kuat dapat menembus sel manusia dan merusak DNA (Hiroki Kitagawa, 2020).

1 abc1 2.1 1			ichigurangi virus	SANS-COV-2					
	Waktu radiasi mW/cm²	Waktu radiasi sinar Far-UVC 222 nm dengan intensitas 0,1 mW/cm ²							
	0 s (kontrol)	10 s	30 s	60 s					
Jumlah virus SARS-CoV-2 hidup (TICD ₅₀ /mL)	2.05 ± 1.21 × 10 ⁴	$2.34 \pm 0.86 \times 10^{3}$	6.32 ± 0.0 × 10 ¹	6.32 ± 0.0 × 10 ¹					
Reduksi (log)		0.94	2.51	2.51					

Tabel 2.1 Efisiensi sinar Far-UVC dalam mengurangi virus SARS-CoV-2

2.2 Automatic Door System

Automatic door system merupakan salah satu sistem pintu otomatis atas perkembangan teknologi pada era saat ini. Sistem ini hadir pada awalnya untuk memberikan solusi atas kesulitan mendorong serta menarik pintu yang dirasakan oleh para pembeli saat berbelanja di supermarket [5]. Pada saat ini, merebaknya kasus COVID-19 memberikan dampak yang signifikan pada perkembangan teknologi yang ada. Transmisi virus dapat terjadi karena adanya kontak fisik antar sesama manusia seperti berjabat tangan, makan dan minum bersama, serta memegang suatu benda tertentu yang sudah terkontaminasi [6]. Dalam hal ini tangan merupakan salah satu organ yang dapat menimbulkan penularan COVID-19. SANPORT memberikan manfaat bagi para pelaku kegiatan yang masih memiliki aktivitas di luar rumah. Pintu otomatis ini mencegah transmisi penyebaran virus SARS-CoV-2 dari luar melalui sterilisasi dari sinar Far-UVC

tanpa adanya kontak dengan pintu. Sistem ini dapat menjadi langkah mitigasi terhadap penyebaran COVID-19 di Indonesia.

Gambar 2.2 Desain SANPORT

Berikut ini merupakan spesifikasi dari pintu otomatis dengan sinar Far-UVC:

- 1. Pintu: *Polyfoam* yang dilaminasi ukuran 80 cm x 200 cm x 100 cm
- 2. Automatic Door: 2 Pintu (Front-back)
- 3. Far-UVC light: Automatic 5 Buah
- 4. Electric Box: PVC
- 5. Propulsion System: Motor Listrik (Baterai)
- 6. Stepper Motor Door: 24V Brushless Motor
- 7. Monitoring Kamera: Gopro Hero 7 Black
- 8. Video Monitoring: Ya (4kp60)
- 9. Object detection: Ya, NVIDIA Jetson Nano

2.3 Image Processing

Image processing pada SANPORT memiliki kemampuan dalam melakukan monitoring yang dilakukan oleh kamera Gopro Hero 7 Black dengan video monitoring 4kp60. Sistem image processing pada pintu otomatis ini menggunakan NVIDIA Jetson Nano yang dapat membedakan human presence atau objek lainnya seperti hewan serta benda yang ada disekitarnya, untuk menindaklanjuti sterilisasi permukaan tubuh objek oleh Far-UVC secara menyeluruh dan juga sistem keamanan maksimal yang ditawarkan SANPORT .

Gambar 2.3 Monitoring Image Processing

(Sumber: medium.com)

2.4 PIR Motion Sensor

Pyroelectric sensor (PIR) merupakan salah satu sensor dengan menggunakan infrared untuk mendeteksi adanya *motion*/pergerakan. Sensor ini digunakan pada SANPORT untuk mendeteksi kehadiran pergerakkan manusia dan objek sekitarnya dengan menyalakan sinar Far-UVC secara otomatis guna melakukan sterilisasi pada bagian tubuh yang terdeteksi oleh PIR sensor ini.

Gambar 2.4 PIR Motion Sensor

(Sumber: famillemoreau.hopto.org)

Bab 3. Tahap Pelaksanaan

3.1 Metode Pelaksanaan

Berikut merupakan metode pelaksanaan yang akan diterapkan pada SANPORT :

Gambar 3.1 Flowchart Pelaksanaan

Terdapat 3 tahapan penting dalam membuat SANPORT, yaitu:

1. Membangun prototype

Tahapan ini dimulai dengan *detail engineering* terhadap invensi dan membangun desain sistem yang aman bagi pengguna dan melihat dari unsur kebaruannya. Pada tahap ini juga berlangsung proses produksi sistem mekanik, elektrik, dan diakhiri dengan sistem programming.

2. Pengujian prototipe

Setelah semua sistem pintu otomatis telah selesai, dilakukan pengujian pada prototipe dengan menggunakan analisis data tingkat keakuratan sinar Far-UVC dalam memancarkan sinar ke seluruh permukaan tubuh manusia dengan model pintu otomatis yang telah didesain sebelumnya dan *image processing* dalam mendeteksi objek yang ditentukan guna memberikan unsur kebaruan terhadap sistem keamanan pintu tersebut. Apabila analisis data yang dihasilkan masih belum mencapai target tujuan, maka akan dilakukan evaluasi prototipe untuk melakukan pengembangan sistem SANPORT.

3. Evaluasi prototipe

Bagian ini merupakan pengembangan sistem SANPORT terhadap hasil pengujian yang belum sesuai dengan target yang dituju. Hasil evaluasi dapat mengembangkan sistem *image processing* serta arah jalannya sinar Far-UVC menuju seluruh permukaan objek yang terdeteksi.

3.2 Rancangan Sistem

Sistem SANPORT memiliki dua sistem pintu dengan ruang tertutup ditengahnya sepanjang 1,5 meter dilengkapi dengan *pyroelectric infrared sensor* (PIR) yang ditempatkan tiap sudut sisi dengan *automatic system light* yang akan memancarkan sinar ultraviolet terhadap kehadiran manusia di dalamnya. Sinar Far-UVC akan hidup selama 30 detik untuk memancarkan cahayanya ketika ada kehadiran manusia.

Gambar 2.2 Ruang Sterilizer

Dalam mengenali adanya kehadiran manusia, pintu tersebut memakai sistem *image processing* guna memberikan keamanan pada area pintu tersebut digunakan menggunakan variabell bentuk tubuh manusia dan penampilan seperti warna baju dalam hal ini pegawai pabrik industri.

3.3 Rancangan Material Prototipe

Berikut ini merupakan tabel komponen dan materialnya

Tabel 3.1 Komponen dan Material SANPORT

No.	Nama Komponen	Material	Proses Manufaktur
1.	Front-Back Door	Fiberglass	Pembuatan front-back door dengan menggunakan unsur kebaruan material fiberglass
2.	Sterilizer Room	Alumunium dan Alumunium foil	konstruksi sterilizer room dengan menggunakan aluminum dengan dinding dilapisi alumunium foil karena siklus hidup SARS-CoV-2 pada bahan ini sangat kecil
3.	Electric Box	PVC	Digunakan untuk menyimpan komponen

	elektrik dengan menggunakan bahan PVC

3.4 Alur Sistem

Dalam melakukan fungsinya, alur pelaksanaan dari SANPORT, yaitu:

1. On system

Pada bagian ini sistem pintu otomatis dinyalakan dan siap untuk melakukan pendeteksian *image processing* sebagai sistem pendeteksian sarat akan keamananya terhadap pengguna yang masuk melalui pintu tersebut. Pintu sudah terprogram sehingga akan otomatis terbuka ketika ada kehadiran manusia berdasarkan varibel bentuk tubuh ataupun penampilan yang telah ditentukan. Sinar Far-UVC yang terpasang dalam ruang *sterilizer* akan otomatis menyala dikarenakan adanya kehadiran manusia oleh kerja sensor *motion light*.

2. Pendeteksian human presence

Pintu otomatis dengan kamera yang terpasang diatasnya akan melakukan *image processing* terhadap kehadiran manusia ditambah dengan *pyroelectric infrared sensor* (PIR) yang akan membuka pintu secara otomatis dengan terprogram *delay* 40 detik pada sistem untuk terus terbuka. Pintu otomatis ini memiliki dua mode pelaksanaan, yaitu mode *automatic* yang dapat bekerja secara otomatis terhadap sistem yang telah terprogram dan mode manual/*emergency* untuk dibuka dan ditutup secara manual apabila ada kendala dalam pelaksanaannya.

3. Sterilization

Pada tahap ini, manusia yang sudah masuk pintu otomatis dan berada pada ruang *sterilizer* akan mendapat disinfeksi oleh sinar Far-UVC yang terpasang pada sisi-sisi ruang *sterilizer*. Pemaparan sinar Far-UVC ini dilakukan dalam waktu 30 detik.

4. Closes the door

Setelah dilakukan disinfeksi sinar Far-UVC selama 30 detik, maka pintu akan tertutup otomatis atas kode program yang dimasukkan ke dalam sistem. Dalam keadaan ini, sinar Far-UVC akan mati karena sejalan dengan kondisi pintu yang tertutup.

5. Off system

Pada bagian ini semua sistem yang bekerja seperti sensor *image* processing, dimatikan setelah pelaksanaan misi. Sebagian besar pada sistem SANPORT ini menggunakan sistem pintar sebagai unsur kebaruannya.

3.5 Keunggulan Inovasi

Keunggulan inovasi dari SANPORT sejalan dengan unsur kebaruannya, yaitu:

- 1. SANPORT dapat digunakan siapa saja khususnya pada pegawai pabrik industri guna mencegah kontaminasi termasuk virus COVID-19 dengan material *fiberglass* yang terjangkau, aman, dan mudah digunakan.
- 2. SANPORT dilengkapi oleh pintu otomatis berbasis sistem *image processing* yang akan mendeteksi manusia sesuai dengan penampilan yang dapat diatur seperti (bentuk tubuh dan penampilan) yang sarat akan keamanannya.
- 3. SANPORT akan tetap menjalankan fungsi sebagai pintu otomatis disinfektan dengan keakuratan keamanan yang tinggi guna menurunkan angka kriminalitas rumah yang terjadi setelah wabah COVID-19 berakhir.

Bab 4. Biaya dan jadwal kegiatan

4.1 Anggaran Biaya

Tabel 4.1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang diperlukan	8.044.000
2	Bahan Habis Pakai	150.000
3	Transport lokal	590.000
4	Lain-lain	800.000
	Jumlah	9.584.000

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Ionis Vagiotan					Penanggung-						
	Jenis Kegiatan		1			2		3		4		jawab
Taha	Tahap 1: Persiapan											
1.1	Mendesain sistem											Thorik
1.1	alat											
1.2	Merancang alat											Thorik
1.2	dalam program											
	Menganalisis											Auzan
1.3	komponen yang											
	diperlukan											
1.4	Laporan tahap 1											Nala
Taha	ap 2: Pembuatan alat 1	l										
	Pembelian											Auzan
2.1	komponen yang											
	diperlukan											
2.2	Perakitan mekanik											Auzan

2.3	Perakitan sistem elektrik							Thorik
2.4	Pemprograman							Thorik
2.5	Laporan tahap 2							Nala
Taha	ap 3: Pembuatan alat 2	2			•		•	
3.1	Observasi lapangan							Auzan
3.2	Menganalisis							Auzan
3.2	masalah yang ada							
3.3	Analisis hasil							Thorik
3.3	perbaikan							
3.4	Laporan tahap 3							Nala
Taha	ap 4: Pembuatan alat 2	2						
4.1	Persiapan dan							Nala
	pengumpulan data							
4.2	Penulisan laporan							Nala
7.2	akhir							
4.3	Kesimpulan dan							Nala
4.3	finalisasi							

DAFTAR PUSTAKA

- World Health Organization. 2020. *Cleaning and disinfection of environmental surfaces in the context of COVID-19*. URL: https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19. Diakses 25 Januari 2020.
- Kitagawa, H., Nomura, T., dkk. 2020. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. *American Journal of Infection Control*. 00 (2020):1-3.
- Welch, D., dkk. 2018. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. *Scientific Reports*. 8 (2752):1-7.
- Buonanno, M., dkk. 2020. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. *Scientific Reports*. 10 (10285):1-8.
- Chomo, D. I. G., dkk. 2018. Development of an Automatic Door System. *American Journal of Engineering Research*. 7 (5):168-173.
- Kementerian Kesehatan Republik Indonesia. 2020. *FAQ*. URL: <u>Kementerian Kesehatan Republik Indonesia (kemkes.go.id)</u>. Diakses 28 Januari 2021.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping

A. Biodata Ketua

A. Identitas diri

1.	Nama Lengkap	Auzan Luthfi
2.	Jenis Kelamin	Laki-Laki
3.	Program Studi	Teknik Bioproses
	NIM	1906302062
5.	Tempat dan Tanggal Lahir	Depok, 30 Agustus 2001
6.	Alamat e-mail	auzan.luthfi@ui.ac.id
7.	No. Telepon/HP	081219511910

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempa		
1.	Badan Eksekutif Mahasiswa Fakultas Teknik	Staf IPTEK	Januari 2020, FTUI		
2.	Ikatan Mahasiswa Teknik Kimia	Staf IPTEK	Januari 2020, FTUI		

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Juara 2 Business Plan Competition Himma Fest	Binus University	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 27 Januari 2021 Ketua,

(Auzan Luthfi)

B. Biodata Anggota ke-1

A. Identitas diri

1.	Nama Lengkap	Thoriksyah Putra
2.	Jenis Kelamin	Laki-Laki
3.	Program Studi	Teknik Elektro
4.	NIM	2006466082
5.	Tempat dan Tanggal Lahir	Jakarta, 12 Oktober 2002
6.	Alamat e-mail	thoriksyah.putra@ui.ac.id
7.	No. Telepon/HP	0857 1627 9458

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1.	Ikatan Mahasiswa Elektro	Staf IPTEK	Februari 2021, FTUI

C. Penghargaan yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Juara 2 Olimpiade Astronomi Tingkat Provinsi DKI Jakarta	SMAN 47 Jakarta	2019
2.	Juara harapan 1 Kuis Kihajar Tingkat Sudin 1 Jak-Sel	Pustekkom	2019
3.	Gold Medalist International Choir Competition, Grado, Italy	Isola Del Sole	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 27 Januari 2021 Anggota Tim,

(Thoriksyah Putra)

C. Biodata Anggota ke-2

A. Identitas diri

1.	Nama Lengkap	Nalani Abigail Soegiono
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Bioproses
4.	NIM	2006528225
5.	Tempat dan Tanggal Lahir	Bandung, 23 November 2002
6.	Alamat e-mail	nalani.abigail@ui.ac.id
7.	No. Telepon/HP	089663487499

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Jenis Kegiatan Status Dalam Kegiatan	
1.	Ikatan Mahasiswa Teknik Kimia	Staf IPTEK	Februari 2021, FTUI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Runner-up Lomba Piano Tingkat Kota Bandung	Yamaha	2017

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 27 Januari 2021 Anggota Tim,

(Nalani Abigail S)

D. Biodata Dosen Pendamping

A. Identitas Diri

1.	Nama Lengkap	Apriliana Cahya Khayrani
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Bioproses
4.	NIP/NIDN	198504192019094001/0019048508
5.	Tempat dan Tanggal Lahir	Cilacap, 19 April 1985
6.	Alamat E-mail	Apriliana.cahya@ui.ac.id
7.	Nomor Telepon/HP	081291359559

B. Riwayat Pendidikan

,	S1	S2	S3
Nama Institusi	Institut Pertanian	Okayama	Okayama
	Bogor	University	University
Jurusan/Prodi	Ilmu dan	Chemistry and	Medical
	Teknologi Pangan	Biotechnology	Bioengineering
Tahun Masuk- Lulus	2004-2009	2014-2016	2016-2019

C. Rekam Jejak Tri Dharma PT Pendidikan dan Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Kimia Analitik Instrumental	Wajib	3
2.	Kimia Dasar	Wajib	2
3.	Biologi Molekular	Wajib	3
4.	Kultur Sel	Wajib	3
5.	Perpindahan Kalor	Wajib	3
6.	Rekayasa Biokimia	Wajib	3
7.	Praktikum Biokimia	Wajib	1
8.	Teknologi Pengemasan dan Penyimpanan	Pilihan	3

Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Aplikasi Spektroskopi FT- Raman dan Teknik Kemometrik untuk Identifikasi dan Klasifikasi Keaslian Madu	Direktorat Riset dan Pengembangan Universitas Indonesia	2020
2.	Modifikasi Protein Gelatin sebagai Penstabil dalam Formulasi Vaksin	Direktorat Riset dan Pengembangan Universitas Indonesia	2020

Pengabdian Kepada Masyarakat

No.	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Pengabdian Masyarakat multidisiplin, Workshop Pemanfaatan Lebah dan Sampah Untuk Ekonomi Rumah Tangga Yang Berkelanjutan	Direktorat Pengabdian dan Pemberdayaan Masyarakat Universitas Indonesia	2020
2	Workshop Urban Bee	Direktorat Pengabdian dan Pemberdayaan Masyarakat Universitas Indonesia	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Depok, 15 Februari 2021 Dosen Pendamping

Apriliana Cahya Khayrani

Lampiran 2. Justifikasi Anggaran Kegiatan

Perlengkapan yang diperlukan	Volume	Harga Satuan (Rp)	Nilai (Rp)
Motion Sensor PIR	3 Buah	50.000	150.000
Baterai Li-Po 2s 2000 maH	1 Buah	300.000	300.000
Baterai Li-Po 4s 5000 maH	1 Buah	764.000	764.000
5V-12V Motor Brushless Driver	1 Buah	200.000	200.000
Nvidia Jetson Nano	1 Buah	1.000.000	1.000.000
Far-UVC 222 nm	5 Buah	500.000	2.500.000
LED	3 Buah	10.000	30.000
Timing Belt	1 Buah	100.000	100.000
Kabel Revox Pro 12 & 16 AWG	1 Buah	250.000	250.000
Mur dan baut	1 Pack	100.000	100.000
Polyfoam 1m x 1m	1 Buah	200.000	200.000
Alumunium batang	5 Meter	500.000	500.000
Alumunium Plat	1 Lembar	350.000	350.000
3D Print	1 Buah	100.000	100.000
Kamera Logitech C922	1 Buah	1.500.000	1.500.000
	<u> </u>	SUBTOTAL (Rp)	8.044.000
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)
Kabel Jumper	10	1.000	100.000
Timah	2 Roll	25.000	50.000
	<u> </u>	SUBTOTAL (Rp)	150.000
3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)
Biaya Pengiriman Bahan dan	9 Kali	10.000	90.000

Peralatan				
Perjalanan Test Uji Coba	5 Kali	100.000	500.000	
		SUBTOTAL (Rp)	590.000	
4. Lain-lain	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Kesekretariatan	1	300.000	300.000	
Internet	5	100.000	500.000	
		SUBTOTAL (Rp)	800.000	
	7	ГОТАL 1+2+3+4 (Rp)	9.584.000	
Terhilang: Sembilan Juta Lima Ratus Delapan Puluh Empat Ribu Rupiah				

Terbilang: Sembilan Juta Lima Ratus Delapan Puluh Empat Ribu Rupiah

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No.	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (Jam/minggu)	Uraian Tugas
1.	Auzan Luthfi/ 1906302062	Teknik Bioproses	Divisi Produksi	22 Jam/minggu	Bertanggung jawab dalam proses produksi alat
2.	Thoriksyah Putra/ 2006466082	Teknik Elektro	Divisi Keuangan	22 Jam/Minggu	Bertanggung jawab dalam mengatur pengelolaan dana dan pengeluaran termasuk pemberlian
3.	Nalani Abigail / 2006528225	Teknik Bioproses	Divisi Kreatif	20 Jam/Minggu	Bertanggung jawab dalam mendesain alat dan melakukan analisis peforma alat

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Auzan Luthfi Laksono

NIM

: 1906302062

Program Studi: Teknik Bioproses

Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul SANPORT (Security and Sanitary Port): Pintu Berbasis Teknologi Sinar Far-UVC dan Image Processing untuk Optimalisasi Sanitasi dan Kemanan Pabrik yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Depok, 2 Maret 2021 Yang menyatakan,

Auzan Luthfi 1906302062

Lampiran 5. Gambaran Teknologi yang Hendak dikembangkan

Gambar A.1 Desain Rancangan SANPORT