DATA ANALYST

DATASET: UDEMY COURSES

PREPARED BY: JOE MANDE

TOOL USED: PYTHON FOR DATA ANALYSIS

TABLE OF CONTENTS

- 1. IMPORT PYTHON LIBARIES
- 2. LOADING THE DATASET
- 3. DATA CONSOLIDATION
- 4. DATA CLEANING
- 5. DATA ANALYSIS AND DATA VISUALIZATION

1. IMPORT PYTHON LIBRARIES

Numpy Libraries

• For data consolidation.

Pandas Libraries

- To load the dataset.
- For data cleaning and data analysis.

Matplotlib Libraries

For data visualization.

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

2. LOADING THE DATASET

Four datasets were loaded for each course:

- Business Finance
- Music Instruments
- Web Development
- Graphic Design

```
business_finance = pd.read_csv('/Users/joemande/Downloads/business.csv')
music_instruments = pd.read_csv('/Users/joemande/Downloads/music.csv')
web_development = pd.read_csv('/Users/joemande/Downloads/web.csv')
graphic_design = pd.read_csv('/Users/joemande/Downloads/design.csv')
```

3. DATA CONSOLIDATION

The four datasets were consolidated to make one dataset.

	<pre>data = pd.DataFrame(data_consolidation) data.head()</pre>									
Out[3]:		0	1	2	3	4	5	6	7	8
	0	49798.0	Bitcoin or How I Learned to Stop Worrying and	https://www.udemy.com/bitcoin-or- how-i-learned	0.0	65576.0	936.0	24.0	All Levels	0.56
	1	48841.0	Accounting in 60 Minutes - A Brief Introduction	https://www.udemy.com/accounting- in-60-minutes	0.0	56659.0	4397.0	16.0	Beginner Level	0.95
	2	133536.0	Stock Market Investing for Beginners	https://www.udemy.com/the- beginners-guide-to-t	0.0	50855.0	2698.0	15.0	All Levels	0.91
	3	151668.0	Introduction to Financial Modeling	https://www.udemy.com/financial- modeling-asimp	0.0	29167.0	1463.0	8.0	All Levels	0.18
	4	648826.0	The Complete Financial Analyst Course	https://www.udemy.com/the- complete-financial-a	195.0	24481.0	2347.0	174.0	All Levels	0.37

In [3]: data_consolidation = np.vstack([business_finance, music_instruments, web_development, gr

4. DATA CLEANING

2017

1. To ensure to have clear and concise names for headers

<pre>data.columns=['course_id', 'course_title', 'url', 'price', 'num_subscribers', 'num_revie</pre>							
C	ourse_id	course_title	url	price	num_subscribers	num_reviews	num_
0	49798.0	Bitcoin or How I Learned to Stop Worrying and	https://www.udemy.com/bitcoin-or- how-i-learned	0.0	65576.0	936.0	
1	48841.0	Accounting in 60 Minutes - A Brief Introduction	https://www.udemy.com/accounting- in-60-minutes	0.0	56659.0	4397.0	
2 ′	133536.0	Stock Market Investing for Beginners	https://www.udemy.com/the- beginners-guide-to-t	0.0	50855.0	2698.0	
3	151668.0	Introduction to Financial Modeling	https://www.udemy.com/financial- modeling-asimp	0.0	29167.0	1463.0	

2347.0

The Complete Financial Analyst Course 2017

1. To delete any blank cells

```
In [5]: data = data.dropna()
```

1. To remove any duplicates

```
In [6]: data = data.drop_duplicates()
```

1. To ensure that the data is consistent so that we can easily understand what each column represents

4. DATA ANALYSIS AND VISUALIZATION

- 1. The total number of subscribers for each subject
- Table

```
In [8]: first_analysis = data.groupby(['subject'])['num_subscribers'].sum()
   pd.DataFrame(first_analysis)
```

Out [8]: num_subscribers

Business Finance 1868711.0 Graphic Design 1063148.0 Musical Instruments 846689 Web Development 7981935.0

Chart

The total number of subscribers for each subject

- 1. The average number of subscribers for each subject
- Table

```
In [10]: second_analysis = data.groupby(['subject'])['num_subscribers'].mean().round(2)
    pd.DataFrame(second_analysis)
```

Out [10]: num_subscribers

subject	
Business Finance	1569.03
Graphic Design	1766.03
Musical Instruments	1245.13
Web Development	6635.02

• Chart

- 1. The average cost per subject at each level
- Table

```
In [12]: third_analysis = data.groupby(['subject','level'])['price'].mean().round(2)
    pd.DataFrame(third_analysis)
```

Out[12]:	price
----------	-------

subject	level	
Business Finance	All Levels	70.20
	Beginner Level	68.73
	Expert Level	65.80
	Intermediate Level	62.01
Graphic Design	All Levels	62.12
	Beginner Level	50.68
	Expert Level	28.57
	Intermediate Level	59.41
Musical Instruments	All Levels	49.58
	Beginner Level	48.98
	Expert Level	48.33
	Intermediate Level	51.60
Web Development	All Levels	74.55
	Beginner Level	78.54
	Expert Level	67.14
	Intermediate Level	85.07

• Chart

```
In [13]: plt.subplots(figsize=(14,8))
    plt.title('The average cost per subject at each level')
    plt.barh(np.arange(len(third analysis)), third analysis, height=0.5,
```


- 1. The average content duration for each subject
- Table

```
In [14]: fourth_analysis = data.groupby(['subject'])['content_duration'].mean().round(2)
   pd.DataFrame(fourth_analysis)
```

Out [14]: content_duration

subject	
Business Finance	3.56
Graphic Design	3.59
Musical Instruments	2.85
Web Development	5.59

• Chart

- 1. The average rating per subject at each level
- Table

Out[16]:

```
In [16]: fifth_analysis = data.groupby(['subject', 'level'])['Rating'].mean().round(2)
pd.DataFrame(fifth_analysis)
```

		Rating
subject	level	
Business Finance	All Levels	0.69
	Beginner Level	0.69
	Expert Level	0.70
	Intermediate Level	0.70
Graphic Design	All Levels	0.73
	Beginner Level	0.73
	Expert Level	0.88
	Intermediate Level	0.72
Musical Instruments	All Levels	0.31
	Beginner Level	0.31
	Expert Level	0.30
	Intermediate Level	0.28
Web Development	All Levels	0.65
	Beginner Level	0.64
	Expert Level	0.50

Intermediate Level

• Chart

```
In [17]: plt.subplots(figsize=(14,6))
    plt.title('The average rating per subject at each level')
    plt.bar(np.arange(len(fifth_analysis)), fifth_analysis, width=0.5,
```

0.67

