in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R¹² represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

34. (Amended) The rubber composition as claimed in claim 28, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

$$H_{2}C = CH - CH_{2} + CH_{2} + CH_{2} + CH_{3} + CH_{3} + CH_{3} + CH_{4} + CH_{2} + CH_{3} + CH_{4} + CH_{3} + CH_{4} + CH_{4$$

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each,

independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

35. (Amended) The rubber composition as claimed in claim 30, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

$$H_{2}C = CH - CH_{2} + CH_{2} + CH_{3} + CH_{3$$

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each,

independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

36. (Amended) The rubber composition as claimed in claim 32, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

$$H_{2}C = CH - CH_{2} + CH_{2} + CH_{3} + CH_{3} + CH_{3} + CH_{3} + CH_{4} + CH_{3} + CH_{4} + CH_{3} + CH_{4} + CH_{4} + CH_{3} + CH_{4} + CH_{4$$

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2) \, n - CR^{10} = C \, (R^{11}) \, R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.