Homework 7

- 1. a. For any nonzero vectors v on the intersection line of two planes, $v \cdot v \neq 0$.
 - b. The dimensions of two subspaces $\leq \mathbb{R}^5$ are both two. $5 \neq 2 + 2$.
 - c. $span\{(1,2)\}$ and $span\{(2,1)\}$ meet only at 0 but are not orthogonal.

2. a.
$$\langle f_1, f_2 \rangle = \int_{-1}^{1} (x+1)(2x+3)dx = \frac{2}{3}x^3 + \frac{5}{2}x^2 + 3x|_{-1}^{1} = \frac{22}{3}.$$

b. $||f_1|| = \sqrt{\langle f_1, f_1 \rangle} = \sqrt{\int_{-1}^{1} (x+1)(x+1)dx} = \sqrt{\frac{1}{3}x^3 + x^2 + x|_{-1}^{1}} = \sqrt{\frac{8}{3}}.$

- 3. Let $A, B \in \mathbb{R}^{2 \times 2}$ and A is diagonal. $\forall A, \langle A, B \rangle = \operatorname{tr}(AB^{\mathsf{T}}) = a_{11}b_{11} + a_{22}b_{22} = 0$ iff $(b_{11}, b_{22}) = 0$. Hence, $W^{\perp} = \{B | B \text{ is a } 2 \times 2 \text{ hollow matrix (all diagonal elements are 0)} \}$.
- 4. x = (2, 2, 4, 1) and ||x|| = 5. y = (-2, 1, 2, 0) and ||y|| = 3.

a.
$$\cos \theta = \frac{x^{\mathsf{T}} y}{\|x\| \|y\|} = \frac{6}{15} = \frac{2}{5} \cdot \tan^2 \theta = \frac{1}{\cos^2 \theta} - 1 = \frac{21}{4}$$

b.
$$\frac{yy^{\mathsf{T}}}{y^{\mathsf{T}}y}x = \frac{1}{9} \begin{bmatrix} 4 & -2 & -4 & 0 \\ -2 & 1 & 2 & 0 \\ -4 & 2 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} -12/9 \\ 6/9 \\ 12/9 \\ 0 \end{bmatrix}.$$
c. $\frac{xx^{\mathsf{T}}}{x^{\mathsf{T}}x}y = \frac{1}{25} \begin{bmatrix} 4 & 4 & 8 & 2 \\ 4 & 4 & 8 & 2 \\ 8 & 8 & 16 & 4 \\ 2 & 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 12/25 \\ 12/25 \\ 24/25 \\ 6/25 \end{bmatrix}.$

$$c. \frac{x^{\mathsf{T}}}{x^{\mathsf{T}}x}y = \frac{1}{25} \begin{bmatrix} 4 & 4 & 8 & 2 \\ 4 & 4 & 8 & 2 \\ 8 & 8 & 16 & 4 \\ 2 & 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 12/25 \\ 12/25 \\ 24/25 \\ 6/25 \end{bmatrix}.$$

- 5. a. Disprove. Let $S = \{1\} \subset \mathbb{R}$. $S^{\perp} = \{0\}$. $(S^{\perp})^{\perp} = \mathbb{R} \neq S$.
 - b. Disprove. Let $S_1 = \{1\} \subset \mathbb{R}$ and $S_2 = \{2\} \subset \mathbb{R}$. $S_1^{\perp} = \{0\} = S_2^{\perp}$. But $S_1 \neq S_2$.
 - c. Disprove. Let $V = W = \{0\} \subset \mathbb{R}$ s.t. $V \perp W$. $V^{\perp} = W^{\perp} = \mathbb{R}$. But $\forall v, w \neq 0 \in \mathbb{R}$, $vw \neq 0$.
 - d. Disprove. Let $V = \{1\}, W = \{0\}, Z = \{1\}$ s.t. $V \perp W$ and $W \perp Z$. But $1 \cdot 1 \neq 0$.
- 6. Let *D* be a square diagonal matrix with $d_{ii} = (w_i)^{\frac{1}{2}}$ for i = 1, ..., n. Let $u_w = Du = ((w_1)^{\frac{1}{2}}u_1, \dots, (w_n)^{\frac{1}{2}}u_n)$, and $v_w = Dv = ((w_1)^{\frac{1}{2}}v_1, \dots, (w_n)^{\frac{1}{2}}v_n)$. By Cauchy's Inequality, we know $|u_w^\top v_w| \le ||u_w|| ||v_w||$. And, $u_w^\top v_w = w_1 u_1 v_1 + \ldots + w_n u_n v_n$. Hence, $|w_1u_1v_1+\ldots+w_nu_nv_n| \leq (w_1u_1^2+\ldots+w_nu_n^2)^{\frac{1}{2}}(w_1v_1^2+\ldots+w_nv_n^2)^{\frac{1}{2}}$
- 7. a. $(1, -1, 1) \cdot (2, 1, -1) = 0$ and $(1, 0, 2) \cdot (2, 1, -1) = 0$.
 - b. Prove by showing $T \subseteq N(A^{\top})$ and $N(A^{\top}) \subseteq T$.
 - Prove $T \subseteq N(A^{\top})$. $\forall t \in T$, t can be expressed as $\alpha(2, 1, -1)$, and $A^{\top}\alpha(2, 1, -1) = 0$. Hence, $T \subset N(A^{\mathsf{T}}).$
 - Prove $N(A^{\top}) \subseteq T$. We know rank $(A^{\top}) = 2$ and dim $(N(A^{\top})) = 3 2 = 1$. (2, 1, -1) is the only basis of $N(A^{\top})$. Hence, $N(A^{\top}) \subseteq T$.
 - c. $U = \{0\}$.

d. Let
$$t = (2, 1, -1)$$
. $x_2 = \frac{t^{\top}}{t^{\top}} x = \frac{1}{6} (36, 18, -18) = (6, 3, -3)$. $x_1 = (9, 2, 2) - (6, 3, -3) = (3, -1, 5)$.