



LEVELU

## LOS ANGELES INTERNATIONAL

DATA PACKAGE NO. 8.

ARPORT IMPROVEMENT
TASK FORCE DELAY STUDIES.

Jan 80

24R

240550

#### DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

DATE:

January 30, 1980

NATIONAL AVIATION FACILITIES

EXPERIMENTAL CENTER

IN REPLY REFER TO:

ANA-220

ATLANTIC CITY, NEW JERSEY

SUBJECT:

Los Angeles Simulation Model Results

FROM:

Program Manager, ANA-220

TO:

Frank Jones, AWE-530

Enclosed is data package 8 for review by the Task Force members. Data package No. 7 was presented at the last meeting of the Task Force on December 19, 1979. At that time, a request was made to expand the night time over-ocean operation simulation into the heavy day time demand periods.

A basic premise for over-ocean operations was the insertion of a six minute gap every twenty minutes strickly for departure operations. Other suggested changes to the present day operation were to eliminate departure crossovers from north runways to the south, change the separation standards, adjust aircraft approach speeds, eliminate general aviation traffic from the mix using the primary runways and schedule aircraft precisely for the time intervals permitted for their operation. Most of the requests seem unreasonable and far beyound the range of possible recommendations by the task force.

Our approach was to conduct simulations for each proposed change beginning with the insertion of a six minute gap for departures, with existing operating conditions, then eliminat departure crossovers and adjust the approach speed along with the reduction of present day separation standards, etc.

The presentation of the results are limited to an extreme case where all the assumptions are inserted into the simulation with the exception of scheduling the demand to the time permitted for the desired operation and excluding general aviation. Each simulation attempt resulted in a backlog of departures (nearly 150 operations) which clogged the simulation model storage and choked off the normal handling of arrivals and departures.



Simple stated, the suggested expansion of the night time operation into the day time period under the assumed operating conditions did not produce enough departure capability to handle the airport demand. (The simulation model was run using a single random number seed to limit the cost of running the computer. Additional simulations can be performed with ten replications and increased model storage capacity.)

The final results of the simulation are shown in Attachment A, Table 1. The results can be compared with either Experiment No. 1 (1978 Demand with VFR weather for Easterly Flow) or Experiment No. 6 (1978 Demand with VFR weather for Westerly Flow) shown in Tables 2 and 3 , respectively. Figure 1 gives a comparison with present day operations.

Attachment B contains the input and output for Experiments 17A,17B and 17C, employing the Runway Capacity Model. Assistance for this effort was provided by Galen Leek (OSEM) who performed the model runs and coordinated the inputs with ANA-220 and the LAX facility. The results indicate that the capacity of the specified configurations exceed the 1982 Demand, as shown in Figure 2.

Attachment C includes some additional work performed for the Stage 1 experiments. Experiment 5 and 10A were redone after correcting the original arrival-to-arrival separations which were originally set too high for the stated 1978 IFR-1 case. The correct results are shown in Figure 3.

Comparisons for travel times (arrival and departure) are shown in Figures 5 and 6 for VFR and IFR weather conditions. This type of data is as important to the study of the airport as average delays since it considers the effects of reassigning arrivals for the modified demand and rerouting departures from the south complex to the north runways. The effect of the improvements on travel times should be considered during the airport delay studies.

Attachment D contains the description of the Stage 2 experiments to be run for the LAX delay studies.

John VanderVeer

The many of the second

#### LIST OF TABLES

| TABLE | NO. DESCRIPTION                                         | PAGE |
|-------|---------------------------------------------------------|------|
| 1     | EXP. 99 RESULTS (Expanded night-time operations)        | 2    |
| 2     | EXP. 1 RESULTS (VFR conditions - Westerly flow)         | 3    |
| 3     | EXP. 6 RESULTS (VFR conditions - Easterly flow)         | 4    |
| 4     | 1982 VFR CAPACITY RESULTS - NO NOISE CONSTRAINTS        | 11   |
| 5     | 1982 VFR CAPACITY RESULTS - REDUCED NOISE CONSTRAINTS   | 12   |
| 6     | EXP. 5 RESULTS (Modified demand)                        | 16   |
| 7     | EXP. 10A RESULTS (Modified demand)                      | 18   |
| 8     | EXP. 7 RESULTS                                          | 21   |
| 9     | EXP. 11 RESULTS                                         | 23   |
| 10    | EXP. 11 RESULTS (Rerouted)                              | 24   |
| 11    | EXP. 8 RESULTS (Modified demand)                        | 28   |
| 12    | EXP. 12 RESULTS (Modified demand)                       | 30   |
| 13    | EXP. 12 RESULTS (Modified demand - Rerouted departures) | 31   |
| 14    | LOS ANGELES DELAY EXPERIMENTS                           | 34   |

#### LIST OF FIGURES

| FIGURE NO. | DESCRIPTION                                                        | PAG |
|------------|--------------------------------------------------------------------|-----|
| 1          | COMPARISON OF NORMAL OPERATIONS WITH EXPANDED NIGHT TIME OPERAIONS | 5   |
| 2          | COMPARISON OF 1982 VFR CAPACITY RESULTS                            | 13  |
| 3          | IFR-1 (1978) COMPARISON NIGHT TIME                                 | 19  |
| 4          | LAX LINK NODE DIAGRAM (Near Term Improvements)                     | 25  |
| 5          | VFR (1978 and 1982) COMPARISON WESTERLY FLOW                       | 26  |
| 6          | IFR (1978 and 1982) COMPARISON WESTERLY FLOW                       | 32  |
| 7          | LAX LINK NODE DIAGRAM (Dual Taxiway)                               | 38  |
| 8          | LAX LINK NODE DIAGRAM (Terminal Expansion)                         | 40  |
| 9          | LAX LINK NODE DIAGRAM (Remote Terminal)                            | 43  |
| 10         | LAX LINK NODE DIAGRAM (Combined Improvements)                      | 48  |

#### ATTACHMENT A

### LOS ANGELES DELAY EXPERIMENTS NIGHT-TIME EXPANSION

LOS ANGELES INTERNATIONAL AIRPORT

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

TABLE 1

SUMMARY OF RESULTS

EXPERIMENT NO. 79

| L        |          |            |      |          |                |       |         |          |            |          |           |             |                                        |          |          |          |                 |            |
|----------|----------|------------|------|----------|----------------|-------|---------|----------|------------|----------|-----------|-------------|----------------------------------------|----------|----------|----------|-----------------|------------|
|          | - 077 5. |            |      |          |                |       | AVERAGE | CE PI.OU | W RATES    | co.      |           |             |                                        |          |          | A CHILLY | 6               |            |
|          | -i-      |            |      | ARRIVALS | 318            |       |         |          |            |          | a a a     | DE PARTIBES |                                        |          |          | AVER     | AVEKAGE, TKAVEL | WEL        |
|          |          | KWY        | 252  | 24       | 25             | AVC.  | DE-     | DIPP.    | 5          | ASS.     | Š         | 3           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 96       | 11.1.1.1 |          |                 |            |
|          |          | <b>6</b> R | 79   | 78       | 7.             | TOTAL | MAND    |          |            | 27.1     | 36        |             | 70.00                                  | 7        | nts r.   | O.       | H.              | ΟT         |
|          |          |            |      |          |                | PLOU  |         |          |            | 7 .      | 47K       | 767         | 1010                                   | UNAL     |          |          |                 |            |
|          | 7-8      | 1,0        | Ĭ    | ٤        | Į.             |       |         |          |            |          |           |             | 3                                      |          |          | LHE      | 7.H.T<br>0.1    | TAS<br>JOS |
| L        | 2        |            |      | 2        | ٥              | 23.0  | 73      | 0.0      | 0.7        | 3.0      | 2.0       | 3           | 22.0                                   | 1        | Ţ.       |          |                 | - 1        |
| 1        |          | 9          | 69   | 9        | 2/20           | 35.0  | 39      | 00       | 1 %        | ,        |           | 3           | 0                                      | 4        | 0        | 4.0      | 4.1             | 12.5       |
| Ľ        | 2        | 25         | 12.0 | 14.0     | 0.01           | \$8.0 | 9       | 2,0      |            | 4        | 9         | 0:0         | 38.0                                   | 14       | -26.0    | 4.01     | 4.8             | 31.5       |
| 177      | 10-11    | 1.0        | 13.0 | 150      | 16.0           | 26.0  | 6       |          |            | 4.       | 0,7       | 13,0        | 35.0                                   | G        | -17.0    | 9'0/     | 13              | 46 %       |
|          | 121-11   | 0.7        | 0.01 | 0.71     | ç<br>X         | -     | ł       |          | 2          | 9,7      | 510       | 3.0         | 26.0                                   | 48       | -220     | 0'//     | P.C.            | 1          |
|          | 12-13    | 0.0        | \$ 7 | 3        |                |       | 1       | ?        | 4          | 2/2      | 4.0       | 10.0        | 25.0                                   | 23       | -27.0    |          | 200             |            |
| ت        | 13-14    | 97         |      |          |                | 7 7   | 9       | 25       | 0.57       | 21.0     | 21.0      | 0.7/        | 47.0                                   | 59       | - 18.0   | <u>L</u> | 1               |            |
| 1        | 14-15    |            |      | 3        | 3              | 97    | 7       | 2-96-0   | 1.0        | 7.0      | 2.0       | 3.0         | 0.//                                   | C        | -40 %    | 1        | 1/2             |            |
| 1        |          | 3          | 2,0  | 0.0      | 0.0            | 0.0   | 47      | 170      | 0.0        |          | 3         | ١           |                                        | Į.       |          | 7        | ١               | 77.0       |
|          |          |            | AR   | RIVAL    | ARRIVAL DELAYS | •     |         |          |            |          | 3         | _           | 3                                      | 39       | -380     | 0.0      | 3.0             | 7          |
|          | TIME     |            |      | AVERAGE  | 91             |       |         |          |            | a l      | DEFAKTURE | DELAYS      | S                                      |          |          |          | CRAND           |            |
|          | 1        | 25         | 33   | 2 2      |                |       |         |          |            | <b>V</b> | AVEIMAGE  |             |                                        |          |          | T        | 104             | · -        |
| _        |          | 9          |      |          | KW.            | ALL   | ¥       | TAXI     | RWY        | Z Z      | 252       | 2,14        |                                        |          |          | Ì        | TOIVE           | ً ر        |
| !        | 2.0      |            | 700  | ×,       | 7              | ŽŽ.   | CROSS   | ZI       | <b>6</b> R | . 19     | Z.        | 7,          | 777                                    | _        | TAXI-    | RHY      | ARR.            | DEP.       |
| <u>_</u> | 2        | ٠.         | 1/2  | 0.0      | 70             | 0.4   | 0.1     | 9        | 14         | F        | ŀ         |             | Z AND                                  | CKOSS    | OUT      | CONC.    | DELAY           | DELAY      |
| 1_       | 1        |            | 1    |          | 2:2            | 11    | 1.0     | 0.5      | 21.5       | 9        |           | ا           | 12.5                                   | 0.0      | 0 %      | 0.0      | 0.5             | (2)        |
| _!_      |          |            | 0.5  | 8.0      | 0              | 2.0   | 0.0     | 4.       |            | 1        | <b> </b>  | _ '1        | 27.0                                   | 0:0      | 3.6      | 0 8      | 121             | ルベ         |
| _!_      |          | 0          | 7    | 60       | 7:7            | 6.9   | 0.1     | 100      | 12.7       | 1        | 10.4      | 2           | 23                                     | 0.0      | 3.1      | 7.3      | 200             | 42.        |
| L        | 71:      | 1          | S    | 2.0      | 0.2            | 4,4   | ŝ       | , v      | 1          | 1        | 1:2       | 673         | :4.6                                   | 0,0      | 2.0      | 1/2      | 5               |            |
|          |          | ٥          | 00   | 7.5      | 7.4            | 17    | 00      |          |            | 7        | 26.0      | 105.0       | 66.1                                   | 3.0      | 84       |          |                 |            |
|          |          |            | 00   | 0 0      |                | 20    |         | 4;       | 9          | 30       | 243       | 66.3        | 27.7                                   | 0.0      | ١        |          | 1               | 47.0       |
| ٺ        | 14-15    | 0.0        | 0,0  | 0 3      | 5.5            | 000   |         | 9 5      | 4          | 300      | 26.8      | 4.7         | 34.2                                   | 0,3      | 9        | 2/2      | 017             | 7          |
|          |          |            |      |          |                |       |         | 3        | 2          | 33       | 0.0       | 0.0         | 3.3                                    | ]<br>[0] |          |          | 7               | 7          |
|          | ¥        | 7          | ,    | ;        |                |       |         |          |            |          |           |             |                                        |          | 4        | 0        | c<br>c          | 0.0        |

MODEL SIMULATION BECAM LOSING AKKIVAL DEMAND OVE TO COMMUTER STORME OF AIRCRAFT SCHEDULE \*

TABLE 2

SUMMARY OF RESULTS
EXPERIMENT NO.

|                |                 |                                         |           |               |      |      |      |       |       |       |       |       |       |                |         |       |         |       |     |      | _        | _      |      |              |       | <u></u> _ |
|----------------|-----------------|-----------------------------------------|-----------|---------------|------|------|------|-------|-------|-------|-------|-------|-------|----------------|---------|-------|---------|-------|-----|------|----------|--------|------|--------------|-------|-----------|
| VEL            | !               | I                                       |           | TAS<br>IJOA   | -    | 1    | 11/2 | 19.4  | 13.11 | 9.8   | 14.1  | 1     | 3 01  |                | 2 .     | 3     | DEP.    | DELAY | 1.6 | 5.5  | 0.=      | 7      |      |              |       | 2 2       |
| AVERAGE TRAVEL | TIME            | 1.                                      | .H23      | THRI<br>TO OT | T.   | 1    | 7    | 4.3   | 4.4   | 6.5   | 7.7   | 77    | 4.4   | 100            |         | 74101 | ARR.    | DELAY | 0.7 | 05   | 0.7      | 77     | -    | 1            | 7     | 7.6       |
| AVERA          | TI              |                                         | OT<br>H25 | FIX<br>THRI   | 20   | 7    | 7:9  | 99    | 10.3  | 14.3  | 14.5  | 12.0  | 0 1   |                |         |       | RWY     | CONG. | 0.0 | 0.0  | 20       | 7:0    | 1    | 1            | 200   |           |
|                |                 |                                         | DIFF.     |               | 0/11 |      | 7    | 9.7   | 41.0  | 28.   | 9.6-  | 18.2  | 777   |                |         |       | TAXI-   | OUT   | 03  | 7:0  | 20       | *      | 3    | 1            | 10,   | 5.0       |
|                |                 | r                                       | MAND      | <del></del>   | 42   | 1    | 1    | 3     | 48    | 23    | 65    | V     | 39    |                |         |       | LAME    | CROSS | 3.3 | 3 2  | 0.0      |        | 1    | 6            |       |           |
|                |                 | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | TOTAL     | FLOW          | 410  |      | 1    | 99    | 470   | 48.8  | 15.4  | 59.7  | 43.4  |                |         |       | ALL     | RWY   | 1.3 | 5.3  | 10,6     | 5.9    | 3.8  | 7.5          | 12.2  | 10        |
|                | DEPARTURES      | 2 50                                    | 25L       |               | 8.0  | ٥    | 3    | *     | 6.3   | 13.1  | 15.7  | 16.2  | 5     | DET AVE        |         |       | RWY     | 757   | 1.5 | 7    | 20       | 37     | 26   | 103          | 6.0   | 67.       |
|                | DEPA            | 21.10                                   | 25R       |               | 13.0 | 1,0  | 1    | 44    | 19.8  | 13.1  | 12.8  | 18.7  | 13.2  | DE PARTITRE    | AVERACE |       | RWY     | XC7   | 3   | 7    | 23       | 0'0    | 2.6  | 13.2         | 21.8  | 50        |
|                |                 | 210                                     | 24L       |               | 100  | 200  | 1    | _1    | 19.8  | 131   | 128   | 18.7  | 192   | a Sa           |         |       | RWY     | 7.5   | 4   | 2    | 17.7     | 2      | 77   | 3.2          | 3.6   | 4.0       |
| RATES          |                 | Vila                                    | 24R       |               | 4.0  | 2.5  |      |       | *     | 7.8   | 4.0   | 30    | 9.0   |                |         |       | KWY     | Z C   | 1   | 4    | 9:7      | ازد    | 73   | 22           | 1.3   | 6.7       |
| AVERAGE PLOW   |                 | DIED                                    |           |               | 41.0 | 1.0  | 1    | 3     | E     | 117   | 112   | 20.6  | 6.6-  |                |         |       | TAXI    | 2 0   | 3   |      |          | 7:5    | 9    | 0            | 10    | 000       |
| AVERAG         |                 | 25.5                                    |           |               | 24   | 136  | K    |       | e     | q     | 45    | 42    | 11    |                |         |       | IMM     | 40    | 10  |      | )<br>(3) | ;<br>; | j.   | 9.1          | 10    | 0.1       |
|                |                 | VAC                                     |           | W1024         | 30.0 | 3    | 20.5 | J٠    | 3,75  | 66.7  | 46.5  | 414   | 44.1  |                |         |       | ALL     | 1     | 100 |      |          | 1      |      |              | 7:7   | 5.5       |
|                | SI              | 25                                      | 25L       |               | 0.0  | 0.0  | ト    | 1     | 1     | 323   | 256   | 16.0  | 21.6  | DELAYS         |         | 22.10 | 1 1 1 C | 10    | 7.0 | 0,   | 0        |        |      |              | 17    |           |
|                | <b>STAVISHA</b> | 2                                       | 25R       |               | BO   | 140  | 12 % | 1     | 1     | 94    | 7:7   | 19.4  | 12.5  | ARRIVAL DELAYS | AVERAGE | 210   | 25B     | 0.1   | 20  | 1.0  | 20       | 6      |      |              | 1     | Y         |
|                |                 | 75                                      | 241       |               | 20   | 3.0  | 2.0  |       | 917   | 2,0   | 20    | 0.7   | 3.0   | AR             | -       | 270   | 241     | 3     | 0.7 | 00   | -        | ŀ      |      |              | 1     |           |
|                |                 | 2                                       | 24R       |               | 0:01 | 10.7 | 0.8  | 1     | 9     | 4:0   | 9.0   | 0.0   | 7.0   |                |         | 250   | 24R     | 0.3   | 17  | 02   | 4.0      | ┺-     | _    | <del>.</del> | 4     |           |
|                | 71 KE           |                                         |           |               | 7-8  | 8-9  | 9-10 | 10-11 | 12-12 | 71-11 | 12-13 | 13-14 | 14-15 |                | TIME    |       |         | 7-8   | 8-9 | 9-10 | 11-01    | = 2    | 12.5 |              | 14-15 |           |

TABLE 3

SUMMARY OF RESULTS

EXPERIMENT NO. 6 (MODIFIED DEFINID)

| 1       | AVERAGE. TRAVEL | _          | 01    | -      | IT.        | CA   | ľ                                                                                           | 1    | 14.0  | 6.77  | 1     |      | 1     | 12/11 | 12.3           | 2         | TOTAL | dad        | _5    | -    | 1        | 1,1  | 7.77        | 16.6   |      | 1     | 977 |
|---------|-----------------|------------|-------|--------|------------|------|---------------------------------------------------------------------------------------------|------|-------|-------|-------|------|-------|-------|----------------|-----------|-------|------------|-------|------|----------|------|-------------|--------|------|-------|-----|
|         | MGE. 1          | TIME       |       | SS     | 141<br>(A) | TH   | 42                                                                                          |      | 1/2   | 7 2   | . I 👡 |      | 1     | 7     | 4.4            | 3         | 70    | ARR        | DELAY | 1    | 3 9      | 3    | *           | 3      | 3    | 11.   | 4   |
|         | AVE             |            |       |        | X          |      | 101                                                                                         | L    | 100   | 0     | 14.14 |      |       | 0:27  | 0./            |           |       | R          | CONG  | 0.0  | 0        | Y    | -<br>-<br>- | 2      | 100  | 10    |     |
|         |                 |            | DIFF. | _      |            |      | - 7.0                                                                                       |      | 7     | 1,0   | -0.2  | -7.3 | 1     | 3     | + 6,2          |           |       | TAXI-      | OUT   | 4.0  | 0.5      | 0;   | 707         | <br> - | -    | 1     | 1   |
|         |                 |            | DE-   | HAND   |            |      | 8-5                                                                                         | 43   | 25    | 4.6   | 25    | 57   | C     |       | 31             |           |       | RWY        | CROSS | 0.0  | 0.0      | 0.0  | 0.0         | 3,5    | 0.0  | 0.0   |     |
|         |                 | S          | AVG.  | TOTAL  | FLOW       |      | 410                                                                                         | 56.9 | 25 25 | 48.4  | 51.8  | 56.7 | 55.8  |       | 72.4           |           |       | ALL        | RWY   | 1.1  | 65       | 10,7 | $\theta$    | 5.4    | 7.7  | 2.8   | 43  |
|         |                 | DEPARTURES | EMY   | 7      |            |      | 13.0                                                                                        | 129  | 20.2  | 212   | 146   | 13.0 | 17.8  | 1,000 | 7,7            | DELAYS    |       | 7. KWY     | 3     | 9.7  | 23       | 15.2 | 16.1        | 4.0    | 13.0 | 12.8  | 7.9 |
|         |                 | A P        | ¥ .   | ×      |            |      | 0.8                                                                                         | 80   | 7     | 7.5   | HZ    | 16.5 | 14.3  | 27    |                | DEFAKTORE | LKAGE | KWY<br>78  |       |      |          | 100  | 3.9         | 13.2   | 7:9  |       | 77  |
|         |                 |            | KW.   | 70     |            | 1    | 4.0                                                                                         | 20   | 20    |       | 73    | 42   | 28    | 50    |                | DE L      | V 1   | KWY<br>61. |       | 2 0  | Y        |      | 177         | 5      | _ 1  | 300   | / < |
|         | KATES           |            | IWI   | ž<br>O |            | T    | 9                                                                                           | 27.0 | 27.9  | 19    | 15.00 | 230  | 20.8  | 99    | 1              |           | 100   | EWI<br>6R  | 3     | of r | 1.       |      | 3           | 1      | 7    | 7,1,1 | 20  |
| 2 40    | - L 100         | מפוע       | 7777  |        |            |      | 9                                                                                           | 9    | 20    | 7     | 777   | 10.8 | 70.7  | -0.8  |                |           | TAAT  | 1 2 2      |       | 100  |          |      | 500         | Y      | ٦,   |       | 7   |
| AVPBACE | NA PROPERTY     | 100        | MAND  |        |            | 96   | *                                                                                           | 7    | K     | 2     | *     | 3    | 42    | 47    |                |           | AFTA  | CROSS      | 00    | 000  | 10       | 1    | 10          | 03     | 100  |       |     |
|         |                 | VAC        | 7     | PLOW   |            | 30.0 | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 1000 | 3,60  |       | ١٠٠١٩ | 9727 | *     | 46.2  |                |           | TIV   | _          | Г     | 0.7  |          | 0 0  | 37          | 1.7    | 0.7  | 0.6   |     |
|         | AIS             | ΜM         | 77.   | ?      |            | 7.0  | A                                                                                           | 0    | 14    | 0     | 40    | 3    | ,     | 9.1   | DELAYS         |           | RWY   | 71         | 0.0   | 0.2  | 0.1      | 60   | 0.5         | 5.0    | 0    | //    |     |
|         | ARRIVAIS        | RE-Z       | 7.8   | 1      |            | 0.0/ | 5.0                                                                                         | 20   | 18.7  | 25.1  | 120   | 30   | 1     | 13:1  | ARRIVAL DELAYS | AVERAGE   | 200   | 7,8        | 03    | 2.0  | 0.9      | 1.5  | 7.8         | 35     | 7.0  | 9 0   |     |
|         |                 | RWY        | 79    |        |            | 11.0 | 16 0                                                                                        | /2.0 | 15.0  | 1     | T     | 6    |       | 07    | Y              |           | X     | 7          | 7     | 14   | j.0      | 0 3  | 0.7         | 0.7    | 0,5  | 64    |     |
|         |                 | RWY        | 6R    |        |            | 20   | 30                                                                                          | 2.0  | 0.7   | 5,0   | T     | 5    |       | 207   |                |           | REZ   | <b>3</b>   | 1     |      | <i>i</i> | 7    |             | બ      | 4    | 90    |     |
|         | TIME            |            |       |        |            | 7-8  | 8-9                                                                                         | 9-10 | 10-11 | 11-12 | 12-13 | _    | 14-15 |       |                | TIME      |       | ,          |       | 7.   | 2 .      | 3 :  | 71.75       | 21-21  | _    | 14-15 |     |



#### 6

ATTACHMENT B

LOS ANGELES CAPACITY EXPERIMENTS

EXPERIMENTS 17A, 17B and 17C

1982 AIRFIELD CAPACITY

INPUTS, RESULTS AND ANALYSIS

LOS ANGELES INTERNATIONAL AIRPORT

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

7

Weather:

VFR -- Ceiling at least 2,500 feet -- Visibility at least 3 miles

Airfield Mix (1982 demand - peak hours):

 XA
 XB
 XC
 XD

 5
 19
 55
 21

Percent Arrivals:

40%, 45%, 50%, 55%, 60%

Percent Touch-and-Go:

0%

Airspace Restriction:

None

Airfield Restriction:

No Class D departures on 25L. No noise restrictions on 24R as such, but noise is reduced when 24R is used only for arrivals.

Common Approach Path Length (nautical miles):

Approach Speed (gound speed in knots):

<u>A</u> <u>B</u> <u>C</u> <u>D</u> 100 120 130 140 Arrival/Arrival Separations (minutes) -- 1982 VFR -- from 78-8A:

| Lead<br>Aircraft | TRAI | L AIRC | RAFT CI | LASS |
|------------------|------|--------|---------|------|
| Class_           | A    | В      | С       | D    |
| A                | 1.9  | 1.9    | 1.9     | 1.9  |
| В                | 1.9  | 1.9    | 1.9     | 1.9  |
| С                | 2.7  | 2.7    | 1.9     | 1.9  |
| D                | 4.0  | 4.0    | 3.0     | 2.7  |

Departure/Departure Separations (seconds) -- 1982 VFR -- from 78-8A:

| Lead<br>Aircraft | TDATI | ATRC | RAFT CL | 224 |
|------------------|-------|------|---------|-----|
| Class            | A     | В    | C       | D   |
| A                | 35    | 35   | 45      | 50  |
| В                | 35    | 35   | 45      | 50  |
| С                | 50    | 50   | 60      | 60  |
| D                | 120   | 120  | 120     | 90  |

Arrival Runway Occupancy Times (seconds) -- derrived from field data -- standard deviation is 6 seconds

|     | <u>A</u> | <u>B</u> | <u>c</u> | <u>D</u> |
|-----|----------|----------|----------|----------|
| 25L | 43       | 45       | 45       | 45       |
| 24L | 35       | 35       | 39       | 50       |
| 24R | 38       | 39       | 56       | 52       |

Departure Runway Occupancy Times (seconds) -- derrived from field data -- standard deviation is 4 seconds

<u>A</u> <u>B</u> <u>C</u> <u>D</u> 34 34 39 39

NOTE -- Aircraft Classifications is as follows:

| Class | •                                                           |
|-------|-------------------------------------------------------------|
| A     | Small single engine and less than 12,500 lbs                |
| В     | Small twin engine and less than 12,500 lbs., plus Lear jets |
| С     | Large 12,500 lbs. to 325,000 lbs.                           |
| D     | Heavy greater than 325,000 lbs.                             |

#### 1982 CAPACITY EVALUATIONS

Experiments 17A, 17B and 17C required that no Class D departures use the south complex because of the weight restriction imposed by the tunnel. That requirement was not a direct input into the model but it could easily be satisfied by the controller sending Class D departures to 24L. Twenty-one percent of the airfield mix were Class D aircraft. Only 12 percent of the airfield mix were Class D departures.

#### Experiment 17A

Experiment 17A called for mixed operations on all 3 runways (24R, 24L and 25R), 1982 demand and separations, restricted use of 25L by Class D departures and noise abatement restrictions on 25R. No airspace crossover restrictions were imposed.

On the initial capacity run for Experiment 17A, no noise restrictions were imposed. Mixed operations were permitted on all 3 runways (24R, 24L and 25L). The hourly capacity ranged from a low of 154 at 40% arrivals to a high of 157 at 60% arrivals. With 50% arrivals, the capacity was 155. See Table 4 and Figure 2.

Noise abatement procedures were desired in the north, but it was felt that they would be relaxed during the period of tunnel construction. Rerunning the capacity model with that in mind required a different runway configuration. Using 24R for arrivals, 24L for departures and 25L for mixed operations, the model was rerun. The largest hourly capacity was 146 at 40% arrivals and the smallest hourly capacity was 119 at 60% arrivals. With 50% arrivals, the hourly capacity was 132. See Table 5 and Figure 2.

The peak hourly demand for 1982 is 114; it is below all of the hourly capacity figures. The prime consideration here is **the** ratio of demand to capacity. Demand over capacity (i.e.D/C) should always be less than one. Computing demand over capacity for all of the arrival percentages yields the following results:

| Capacity | D(=114)/C | % Arrivals |
|----------|-----------|------------|
| 146      | .78       | 40%        |
| 141      | .81       | 45%        |
| 132      | .86       | 50%        |
| 125      | .91       | 55%        |
| 119      | .96       | 60%        |

Since demand over capacity is always less than 1, it can be concluded that the peak 1982 demand can be met while observing reduced noise abatement procedures in the north complex and employing the weight restriction in the south complex. Use 24R for arrivals, 24L for departures, 25L for mixed operations, and send Class D departures to 24L. Always operate 25L at its capacity (55) and utilize the north complex only when nexessary. With no more than 55 operations per hour, the south side can handle all operations except Class D departures. When there are more than 55 operations, run 25L at its capacity and accommandate other operations on the north complex.

#### Experiments 17B and 17C

Experiments 17 B and 17C called for mixed operations on all runways, restricted use of 25L by Class D departures, and noise restrictions on 24R. No airspace crossover restrictions were imposed. Experiment 17B utilized 24R,24L, 25R and 25L; only Class A and B aircraft were allowed to use 25R. Experiment 17C used runways 24R, 24L, 25L and 26.

The results of Experiment 17A show that runways 24R, 24L and 25L can handle the 1982 demand by themselves. Since 5% of the aircraft are small single-engine planes (Class A), they can use the shorter runways exclusively -- runway 26 or the open part of 25R. Hence, this should increase the hourly capacity by approximately 5 percent.

| <pre>% Arrivals</pre> | Capacity-3 Runways | 5% Increase | Capacity- 4Runways |
|-----------------------|--------------------|-------------|--------------------|
| 40%                   | 146                | 7           | 153                |
| 45%                   | 141                | 7           | 148                |
| 50%                   | 132                | 7           | 139                |
| 55%                   | 125                | 6           | 131                |
| 60%                   | 119                | 6           | 125                |

Operating with 60% arrivals on the 4 runways gives the lowest capacity, 125. With the peak hour demand of 114, the demand over capacity ratio is still less than one. Hence, peak demand can always be met in Experiments 17B and 17C.

For Experiments 17B and 17C, use 24R for arrivals, 24L for departures and the runways on the south complex for mixed operations. Operate the south complex at capacity while accomadating the other aircraft on the north complex when necessary. Runway 26 and the shortened runway 25R should be used only for Class A operations. Class D departures should use 24L. Operating in this fashion will enable the demand to be met while operating with relaxed noise abatement procedures.

TABLE 4

#### 1982 VFR CAPACITY RESULTS -- NO NOISE CONSTRAINTS

#### 24R, 24L and 25L -- MIXED OPERATIONS

#### NO NOISE RESTRICTIONS

Because of mixed operations on both runways on the north complex, there is an estimated 5% departures capacity loss due to crossover departure paths on the ground. The departure capacity was 35 for the north complex for all arrival percentages (40%, 45%, 50%, 55%, 60%). A 5% departure capacity loss ( 2 departures) resulted in a departure capacity of 33 on the north complex.

| Runways       | Hou<br>40% | rly Capa<br>45% | city By<br>50%                         | % Arriva<br>55% | 1s<br>60% |
|---------------|------------|-----------------|----------------------------------------|-----------------|-----------|
| 24R, 24L      | 99         | 100             | 100                                    | 101             | 102       |
| 25L           | 55         | 55              | 55                                     | 55              | 55        |
| <del></del>   |            |                 | ······································ | <u></u>         |           |
| All 3 Runways | 154        | 155             | 155                                    | 156             | 157       |

TABLE 5

#### 1982 VFR CAPACITY RESULTS -- RELAXED NOISE CONSTRAINTS

24R -- ARRIVALS
24L -- DEPARTURES
25L -- MIXED OPERATIONS

The relaxed noise restrictions were the result of running on arrivals on 24R.

| Runways       | Hou_40% | rly Capa<br>45% | city By<br>50% | % Arriva:<br>55% | 60%<br>60%  |
|---------------|---------|-----------------|----------------|------------------|-------------|
| 24R, 24L      | 91      | 86              | 77             | 70               | 64          |
| 25L           | 55      | 55              | 55             | 55               | 55          |
| <del></del>   |         |                 |                | •                | <del></del> |
| All 3 Runways | 146     | 141             | 132            | 125              | 119         |



FIGURE 2. Comparison of 1982 VFR Capacity Results

#### ATTACHMENT C

RESULTS of LAX STAGE 1 DELAY EXPERIMENTS

LOS ANGELES INTERNATIONAL AIRPORT

LOS ANGELES

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

#### EXPERIMENT NO. 5

#### Objective:

To obtain baseline delay estimates for the following runway configuration in IFR1 for 1978 demand.

ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

6R, 7L

24L, 25R

#### Related Comparison Experiments:

Experiment # 10A is identical except for the 1982 demand.

TABLE 6

SUMMARY OF RESULTS

EXPERIMENT NO. 5 (MOUNTIED US MANILL)

|       |               |     |                |        |             | AVPDACE     | COLA B | DATES      |             |             |              |       |       |       |           |                 |       |
|-------|---------------|-----|----------------|--------|-------------|-------------|--------|------------|-------------|-------------|--------------|-------|-------|-------|-----------|-----------------|-------|
| TIME  |               |     | ARRIVALS       | AIS    |             |             |        |            |             | nr.         | DE DA DENDEC |       |       |       | AVERA     | AVERAGE, TRAVEL | VEL   |
|       | 753           | 250 | 7719           | 25.50  | 711.4       | 96          | 20.00  |            |             |             | RIORE        |       |       |       | F         | TIME            |       |
|       | 6.R           | η.  | 74F            | 25R    | TOTAL       | KAND        | )      | 1 89<br>68 | 77          | 16WY<br>24L | 13WY<br>25R  | AVG.  | MAND  | DIFF. | OI<br>SH. | SK.             | OT    |
|       |               |     |                |        | PLOU        |             |        |            |             |             |              | PLOW  |       |       | 33<br>X   |                 |       |
| 5     | 13.2          | Š   | Ş              |        | 6 6,        | ļ           |        |            |             |             |              |       |       |       | FI        | HT<br>OT        | SO.   |
|       | 1             | 3   | <u>.</u>       | 0,0    | 122         | 2           | 7      | 0.0        | 0.0         | 9.7         | 7.8          | 17.5  | 46    | 57-   | 14.4      | 60              | 11/   |
|       | 北             | 00  | 0.0            | 0.0    | 45.6        | 18          | -22    | 0.0        | 0.0         | 15.2        | 7.8          | 12    | -     | 27    |           | ト               | 7     |
| 小     | -<br> -<br> - | 0.0 | 00             | 00     | 125         | #           | +1.1   | 0.0        | 00          | 67          | 27           | 15.0  | 0     |       | 18.0      | 水               | 11.   |
| 7-1-4 | 9             | 0.0 | 0.0            | 00     | 11.8        | 4           | 26.8   | 0.0        | 00          | 5.7         | 22           | 7.7   | 4     | Чм    | ジャ        | 17              | 2,213 |
|       | 10.0          | 0.0 | 0.0            | 00     | 10.0        | 9           | 0.0    | 0.0        | 0.0         | 3.4         | 2,0          | 64    | -     | 1     | 1         | 10,0            | 7.6.  |
|       | 2             | 0.0 | 0.0            | 00     | 2.0         | 7           | 90     | 0'0        | 30          | 29          | 7.7          | 77    | 5     | 12    | 12/       | 12              |       |
| اهٔ   | 13.0          | 00  | 00             | 00     | 13.0        | 16          | -3.0   | 0.0        | 00          | 0           | 80           | 180   | 1     | 6.7   | 1/1       | 100             | 1000  |
| 8-7   | 09            | 0.0 | 0.0            | 00     | 6.0         | 29          | -23.0  | S          |             | 12          | <br> -<br> - | ;     | 1     |       |           | 7               | 7.7   |
|       |               | AR  | ARRIVAL DELAYS | DELAYS | •           |             |        |            |             | 2           | 917          | 1.4.7 | 4.6   | -15.1 | 55.1      | ,<br>,          | 17.5  |
| 71 86 |               |     | AVERAGE        |        |             |             |        |            |             | DE FAKTURE  | DEIAY        | 2     |       |       |           | CRAND           | e     |
|       | 2             | 200 | 270            | 27.10  |             |             |        |            | ا ۲         | VERACE      |              |       |       |       |           | TOTAL           | יַּ   |
|       |               |     |                | NA I   | ALL         | KW          | TAXI   | RV<br>W    | <b>8</b> 4  | RUY         | RWY          | AI.I. | No.   | TYAT- | 272       | 100             | 5     |
| -     | ă<br>T        |     | 7457           | 25R    | RWY         | CROSS       | Z      | 6R         | $n_{\rm L}$ | 241         | 25R          | RIV   | CROSS | OILL  | CONC      | AKK.            | DEF.  |
| 1-2   | 72.7          |     |                | 3 2    | 20.00       | 0.0         | 6.2    | 0          | 0.0         | 6.7         | 33           | 63    | 00    | 1     | 3         |                 |       |
| 2-3   | 380           | c y | =              | 100    | 200         | 270         | 7      | e<br>o     | 9.0         | 71.5        | 151          | 176   | 0.0   | 0.1   | 00        | 27.8            | 100   |
| 3-4   | 15.5          | 0.0 |                |        | 10,00       | 200         | 07.0   | 0          | 97          | 0.37        | 15.4         | 17.6  | 0.0   | 0.3   | 3 3       |                 | 126   |
| 4-5   | 40            | 0.0 | <u>.</u>       | 1      | 17          | ,<br>;<br>; |        |            | 7           | 7           | 6:#          | 174   | 6.0   | 7     | 0.0       | 15.5            | 174   |
| 2-6   | ۲.0           | 0,0 | 3              | 3      | 60          |             | d :    |            |             | 47          | 4.9          | 7.9   | 0.0   | 0     | 0.0       | 750             |       |
| 7-0   | 11            | 50  |                |        | 1           |             |        |            |             | 0           | 9            | 0.2   | 0 1,  | 0,0   | ر.<br>ن:  | 6.2             | 0.7   |
| ş     | 17.72         |     |                | 3      | \<br>\<br>' | 200         | 2 2    |            |             | 7           | 1:11         | ?     | 9     | 7.7   | 11        | 1.1             | 2 91  |
|       |               |     |                |        |             |             |        | ,          | 20          | 1.2         | 17.7         | 9.11  | ψ     | 6.3   | 6.1       | 25.6            | 7 1   |

#### EXPERIMENT NO. 10A

#### Objective:

To obtain baseline delay estimates for the following runway configuration in IFR 1 for 1982 demand.

To obtain delay estimates for 1982 with no improvements to the airport.

ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

6R, 7L

24L, 25R

#### Related Comparison Experiments:

Prior Experiment 5 is similar with a 1978 demand.

TABLE 7

SUMMARY OF RESULTS

# EXPERIMENT NO. LOA ( MODIFIED DEMANN)

|          |            |      |                |        |          | AVERAG | AVERAGE PLOW | RATES |      |           |            |       |       |        | AVERA       | AVERAGE TRAVEL | VE            |
|----------|------------|------|----------------|--------|----------|--------|--------------|-------|------|-----------|------------|-------|-------|--------|-------------|----------------|---------------|
| TIME     |            | ٠    | ARRIVALS       | ALS    |          |        |              |       |      | DEP       | DEPARTURES | 8     |       |        | F           | TIME           | 1             |
|          | RWY        | RWY  | RWY            | RWY    | AVG.     | DE-    | DIFF.        | RWY   | RWY  | RWY       | ZMSI       | AVG.  | -36   | DIFF.  | 1.          |                | 0             |
|          | <b>6</b> R | 7.   | 24L            | 25R    | TOTAL    | MAND   |              | 6R    | 71   | 24L       | 25R        | 1     |       |        | OT<br>HS:   | HS:<br>TA:     |               |
|          |            |      |                |        | PLOW     |        |              |       |      |           |            |       |       |        | FIX<br>THRE | THRE<br>TO C   | TAS<br>IJO8   |
| 0-1      | 120        | 0,0  | 0.0            | 0.0    | 77.0     | 61     | -7.0         | 0.0   | 0    | 1/0       | 13         | 10 6  | 3.6   | 7 7    |             |                | , !           |
| 1-2      | 13.1       | 0,0  | 6.0            | 0.0    | 12.1     | 32     | 66-          | 6     | 9    | 2 2       | 62         | 36,0  | 99    | 1,     | 1           | 11/            | 011           |
| 2-3      | 18.4       | 0.0  | 0.0            | 0.0    | 19.4     | 7.3    | 707          | 1     | 6    | 10        | 100        | 2 3   | 1     |        | 100         | 100            | 100           |
| 3-4      | 15.5       | 0.0  | 0.0            | 0.0    | 15.5     | 4      | 1            | 2     | 1    | 14        | ~          | 200   | 7     | 2007   | 707         | 7:             | 42.5          |
| 4-5      | 10,0       | 0.0  | 00             | 00     | 10.0     | 6      | 0.1          | 0     | 3    | 1         | 19         | -     | 1     | 2 2 1  | 12:         | 77             | 7,7           |
| 2-6      | 98         | 00   | 0.0            | 0.0    |          | 9      | 40.8         |       | 8    | 6.8       | 6.3        | 15.2  | 9     | 25.5   | 0.4         | 14             | 17.0          |
| 6-7      | 14.3       | 9 (; | 0.0            | 00     | 14.3     | 16     | - 1.7        | 0 0   | 0.0  | 3.1       | 9.0        | 12.1  | *     | - 5.9  | 15.0        | *              | 001           |
| 7-8      | 42         | 0 O  | 0,0            | 6.0    | 4.2      | 25     | -20,8        | 0 9   | 00   | 0.4       | 21.8       | 3.5 % | 4.4   | 12     | 72          | 1              | 2,0           |
|          |            | AR   | ARRIVAL DELAYS | DELAYS |          |        |              |       | DEP  | DEPARTURE | DELAY      |       | 2     | 12.4   | ;           | 200            | 2             |
| TIME     |            |      | AVERAGE        | 8      |          |        |              |       | ٧    | AVERGE    |            |       |       |        | T           |                | <b>-</b>      |
|          | RUY        | AUA  | 202            | 210    |          | 210    | 27.78        |       |      |           |            |       |       |        |             | 101            | 1             |
|          | 9          | -    | 2/1            | 350    | 1 2      | IME    | 1441         | KWI   | KW   | KWY       | KWY        | ALI.  | RWY   | TAXI-  | RWY         | ARR.           | DEP.          |
| <u>-</u> | 6.0        | 0.0  |                | 100    |          | CROSS  | z i          | ğ     | 1,1, | 74L       | 25R        | 3     | CKOSS | our    | CONG.       | DELAY          | DELAY         |
| 1-2      | 40.4       | 00   | 00             |        | 4        | 010    | 1,0          | 0.0   | 9    | 122       | 4.6        | 10.5  | 0,0   | 0.1    | 00          | 0.7            | 16.5          |
| 2-3      | 3 27       | 90   |                |        |          | 3      | 3            | ٥     | 0,0  | 15.5      | 18         | 3 29  | 00    | ت<br>ت | 4.0         | 40%            | 7.22          |
| 3-6      | 35.3       | 5    |                |        |          | 0,     | 9:0          | 00    | 00   | 243       | 24.7       | シャ    | 00    | 0.0    | 0.0         | 3.8+           | 215           |
| 4-5      | 100        | 3    |                |        | 7        | 9      | ò            | 00    | 9    | 2.19      | 26.8       | 77.7  | 6.0   | 13.77  | 00          | 3.5.3          | 1 %           |
| 5-6      | 7          |      | <u> </u>       |        | 1        | 9      | 9            | 00    | وزا  | 9         | 2.6        | 0',   | 0.0   | 3      | 9 %         | 17             |               |
| 1-9      | 10         |      |                | ,      | *        | 9      | 0.0          | 0.0   | 00   | 133       | 7.7        | 11.0  | 0.0   | ~      | 3           | 1;             | )<br> -<br> - |
| 7-8      | 25.6       | 3 3  |                | 1      | <u> </u> | 9      | 7 0          | 00    | 00   | 12.6      | 10.7       | 134   | 0.0   | 1 3    | 0           | 200            | 12.0          |
|          |            |      | ž              |        | 9 9 7    | 0.0    | 03           | 6.6   | 6.0  | 15.1      | 15.6       | 10.3  |       |        | 7:3         | 1:17           |               |



#### EXPERIMENT NO. 7

#### Objective:

To obtain baseline delay estimates for the following runway configurations in VFR 1 for 1982 demand.

To obtain delay estimates for 1982 with no improvements to the airport.

#### ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24R, 24L, 25R, 25L

#### Related Comparison Experiments:

Experiment 11 is similar with an improved ATC system scenario (1982) and the 1982 near-term improvements.

Prior Experiment 1 is similar for the 1978 demand.

TABLE 8

SUMMARY OF RESULTS

EXPERIMENT NO. Z

| ٢       | _                        | 7         |          | 77       | OH.      | -           | 1     | 10    | Ţ.    | 1:0   | 17    | <b> </b> - | Ţ      | +              |         | _      | T,       | . :     | اچ     | _      | ω <sub>∞</sub> | Ţ,               | Ţ.    | Τ       |          |            | 7        |
|---------|--------------------------|-----------|----------|----------|----------|-------------|-------|-------|-------|-------|-------|------------|--------|----------------|---------|--------|----------|---------|--------|--------|----------------|------------------|-------|---------|----------|------------|----------|
|         | AVEL                     |           | OT       | ET.      |          | 1           | 1     | 纟     | 3 ?   | 19    | 2     | 1          |        | ᅿ              | 2       | ,VT    | H        |         | NE: LA | _      | 1              | 15               |       | 1       |          | 10         | <u>'</u> |
|         | AVEKAGE. TIGAVEL<br>#TME | 1 3E      | SH.      | EE<br>EE | HT<br>OT | 4           | 100   | 177   | 4     | 4.6   | A     | 4          | 1      | 4              | CEARD   | TOTAL  | ٤        | ARK.    | 14.14  | 1.2    | -              | -                | =     | 1       | \<br> `` |            | 1        |
| d and v | AVER                     | 1         | OI<br>HS | ER.      | LH       | 97          | 1/2   | 0.7   | 1/2   | 12.0  | 12.6  | 70.6       | 1      | 2              |         |        | 2.50     | 1 44 5  |        | 0.0    | 00             | 0.0              | 0.0   | 0.0     | 10       |            |          |
|         |                          |           | DIRE.    |          |          | -7.0        | 1     | 17    | +7+   | -6.7  | -27   | 1:5:+      | 170    |                |         |        | TAYT.    | 1 11 10 |        |        | 157            | 1.51             | +77   | 40      |          | 01/        | İ        |
|         |                          |           | MAND     |          |          | 48          | 3     | Ī.    | 24    | 25    | 53    | 25         |        | 7              |         |        | RWY      | CROSS   |        | 0      | 0<br>0         | 0,0              | 0.0   | 0.0     | 0.0      | 0.0        | ĺ        |
|         |                          |           | AVC.     |          |          | 41.0        | 285   | 199   | 50.7  | 45.1  | 62.1  | 55.1       | 450    | 4              | ĺ       |        | ALI.     | RWY     | T      | 3      | M              | 8.7              | 2.2   | 42      | 9.5      | 2018       | _        |
|         | DEPARTINES               |           | 25L      |          |          | 000         | 79    | 1/1/9 | 5,0   | 8.5   | 13.6  | 15.2       | 7 2 11 |                | 25.5    |        | RWY      | 25L     |        |        | 4              | 19               | 1     | 7       | 9.3      | 10.8       |          |
|         | DEPA                     | 200       |          | _        | -        | 0.57        | +61   | 18.7  | 6.5   | H.Z   | 16.5  | 14.6       | 14.8   | ١,             | - 1     | יימופר | KWY      | 25R     | 40     |        |                | 7                | 2.0   | 1       | 77       | 1:0        | -        |
|         |                          | 213       |          |          | 1        | 0.9         | 14.9  | 28.3  | 7 977 | 7.7   | 26.2  | 74.5       | 7.7    | NF PA          | Ē       | 2      |          | 74L     | 00     | 17     | 1              | ار<br>ارد<br>ارد |       | 1/2     | 4        | 1          | - 69     |
| RATES   |                          | Àĩa<br>Că |          |          | 1        | 5<br>-<br>- | 6.1   | 5.0   | 7.9 3 |       | ┪     | 5.3        | 1 1:3  |                |         |        | KWY      | 24R     | 17.0   | - 2    | .1             | 1                | 7     |         | 1/2      |            | _        |
| PIOW    | -                        | DIEP      |          |          |          | 7.0         | 0.    | 0.7   | 150   | -{    | 4     | -0.3       | 1.1    | -              | +       | _1_    | -        | -       | 0.2    | 1 1    | 1.             | 10               | 2/2/2 |         |          | 1          | -        |
| AVERAGE |                          |           | _        |          | 1        |             | 4     | 4     | 4     | 7.7   | 7     | 7          | 23     |                |         | ŀ      |          | 5       | 0.2    | 00     | ╁              | +                | †     | <u></u> | ‡        | ţ,         |          |
| ~       |                          | G. DE-    | 7        | <br>∂    |          | +           | 400   | 0     | +     | +     | +     | 4          | .9.5   |                |         | ŀ      |          | ヿ       | 7      | 0,     | H              | 100              | Ť.    | ╁.      | 7        | ╫          | -        |
|         |                          | AVC       | TO       | <u> </u> | 1        | 1           | 4     | 31    | _     | न     | 1     | +          | N      | S              |         | F      | ₹ ?<br>— |         | 9      | \<br>- |                |                  |       | ~       |          | 1          |          |
|         | VIS                      | KWX       | 25L      |          | 101      | 4           | 0.7.7 | 16.0  | 25.5  | 21.50 | 25.0  | 707        | 23.6   | DELAY          | <u></u> | 2,5    | 1 2 0    | 707     | 7      | 1.2    | 8.1            | 2                | 2.8   | 1       | 8        | \ <u>`</u> |          |
|         | ARRIVAIS                 | RMY       | 25R      |          | ()       | 1           | 3     | 9     | 1.    | 9     | Į,    | 97         | 5.5    | ARRIVAL DELAYS | AVERAGE | 212    | 250      | 1/3     | 7      | 1:1    | 1.3            | 0.8              | 3.4   | 7.6     | 1.7      | 1.0        |          |
|         |                          | RWY       | 24L      |          | 07       | 1           | 3     |       | _     | 7     | 2     | 9,         | 2      | ARI            |         | 252    | 27.1     |         |        | 2      | 0.0            | 20               | 4.0   | 0.0     | 0,0      | 9.0        |          |
|         |                          | EM.       | 24R      |          | 20       |             | 1     | 1     | 2 2   | 2 5   | 2 6   | 3          | 0.01   |                |         | REZ    | _        | T       |        | 1.3    | 0.0            | 0.6              | 7.0   | 4.0     | 0,2      | 2.0        |          |
|         | TE                       |           |          |          | 7-8      | 2.0         | 100   |       | 1-1-  | 2-12  | 71-21 | 31-71      |        |                | TIME    | !      |          | 7. R    | 2      |        | =              | -11-01           | 21-11 | 12-13   | 13-14    | 14-15      |          |

#### EXPERIMENT NO. 11

#### Objective:

To assess delays to aircraft in 1982 for the following runway configuration in VFR 1 with an improved ATC system scenario (1982) and the 1982 near-term improvements.

#### ARRIVAL RUNWAYS

#### DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24R, 24L, 25R, 25L

#### Related Comparison Experiments:

Experiment 13 is identical less improvements #2 (high-speed taxiway off runway 25L) and improvements #3 (strengthening of the Sepulverda tunnel).

Prior Experiment 7 is similar without the noted improvements and a 1978 ATC system scenario.

Prior Experiment 1 is similar without the noted improvements and a 1978 demand and a 1978 ATC system scenario.

TABLE 9

SUMMARY OF RESULTS

EXPERIMENT NO. 11

|         |                |            |       |       |            |     |      |       |       |       |       |       |       |       |                |         |         |         |       |        |      | ٠     |      |       |       |       |       |       |
|---------|----------------|------------|-------|-------|------------|-----|------|-------|-------|-------|-------|-------|-------|-------|----------------|---------|---------|---------|-------|--------|------|-------|------|-------|-------|-------|-------|-------|
|         | VE!            |            | 03    |       | II.        |     |      |       | 10:41 | 23.2  | 10    | 200   | 100   | 177   | 37.3           | _       |         |         | DEP.  | DELAY  | 1.1  | 9.0   | 10.0 | 2     |       |       | -h .  | 1-    |
|         | AVERAGE TRAVEL | TIME       |       | .v:   | 3 (<br>3 ( | TE  | 200  | 1     | , V   | 7 4   | 47    | 9     | L     | ,     | 4.8            | GRAND   | TOTAL   |         | _     | DELAY  | 1    | 7.1   | 2 9  | 1.    | 1     | 1     | 7.9   | 200   |
|         | AVER           | F          | . H   | IS2   | X)         |     | 06   | 200   | 75.0  |       |       |       | 12.7  | 40    | 14:4           |         |         | 20.00   | IMI   | SON CO | 0.0  | 0.3   | 2.5  | 9.0   | 4.0   | 0.0   |       | × 7   |
|         |                |            | DIFF. |       |            |     | 01-  | 100   |       | 5:1-  | -3.2  | -16.1 | 17.5  | 1 2 7 | ٠,             |         |         | 77.47   | 1 VV1 |        | 0 3  | 910   | 0.3  | 0.0   | /:/   | 3.0   | 1.7   | +1    |
|         |                |            |       | MAND  |            |     | 78   | 29    | 54    | 48    | 52    | 65    | 5.3   | 4/    |                |         |         | RUY     | CROSS |        |      | 0.0   | 0.0  | 00    | 0.0   | 00    | 00    | 00    |
|         |                | S          | AVG.  | TOTAL | FLOW       |     | 21.0 | 613   | 59.8  | 46.5  | 48.B  | 48.9  | 56.5  | 7 44  |                |         |         | ALL     | RWY   | 1      | 1    |       | ,    | 13.1  | 9.7   | 127   | 13.4  | 16.6  |
|         |                | DEPARTURES | RWY   | 251   |            |     | 10.0 | 10.7  | 7.0   | 9//   | 13.8  | 11.6  | 25    | 6.01  | DF.TAV         |         |         | RWY     | 25L   | [·     | 3    | 1     | 1    | 14.6  | 8.8   | 6.3   | 7.4   | 1.0.1 |
|         |                | DEP        | KWY   | 25R   |            |     | 0.91 | 2.5.6 | 252   | 19.0  | 0.87  | 20.0  | 25.7  | 22.7  | DEPARTURE      | AUFBAND | TOWN OF | XMX     | 25R   | 1-     | 12/  | 9     |      |       | 777   | 37.6  | 7.3.7 | 9,7   |
|         |                |            | KWY.  | 757   |            |     | 13.0 | 0.7   | 23.0  | 0//   | 76.0  | 15.7  | 17.3  | 6.7   | E              |         |         | KWY     | 74T   | 200    | 100  | 7     | 1    |       | 1     | 6.8   | 1,    | 7     |
| DATEC   |                | 22 102     | 1 MW  | 7 4 K |            | 1   | 0.,0 | 7     | 3.6   | 4.    | 2     |       | 40    | 43    |                |         | 27.0    | KWI     | 24R   | c      | 210  | 6.7   |      | 0     |       | 2.2   | 2,00  | 3     |
| PIOU    |                | MIGD       |       |       |            | 6   |      | -1    | ما    | ١١٥   | ٠   ١ | •     |       | T 2'5 |                |         | TVAT    | TWIT    | Z     | 0.1    | 1.0  | 0.1   | 0    |       | 00    |       | ~ 0   |       |
| AVERAGE |                | ne.        |       |       |            |     | *    | 7     | 1     | 2     |       | 1     | 31    | 23    |                |         | 2518    | 2 4 4 4 | CKOSS | 1.0    | 0.1  | 0.1   | 6.1  | 1.0   | 0     | 10    | 10    |       |
|         |                | AVG        | TOTAL | FLOW  | -          | 076 |      |       | 1000  |       |       | 41.2  |       | 4/12  |                |         | AII.    |         | ŽĮ.   | 100    | 7    | 3.1   | 3,0  | 119   | 7.7   | 3,6   | 3.0   |       |
|         | AIS            | RUY        | 251.  | }     |            | 170 | 1~   | le.   | 1.    | 204   |       | 7:0   | 7000  | 27.7  | DELAYS         |         | RWY     | 251     |       | :      |      | 5.7   | 5.7  | 9.2   | 12.9  | 6.3   | 44    |       |
|         | ARRIVAIS       | RWY        | 258   |       |            | 6.0 | 0 41 |       | 13.7  |       | 2.0   | 10.00 |       | 20.00 | AKKIVAL DELAYS | AVERAGE | ¥M¥     | .25R    | ,     | 1      | 9    | +     | 1.2  | 77    | 5.8   | /'/   | 4.1   |       |
|         |                | RWY        | 24T   |       |            | 1.0 | 1.0  | 0 /   | 2     | 3.0   | 0.,   | 75    |       |       |                |         | RWY     | 241.    | 90    | 600    | 1    |       | 4.0  | 0.17  | 0     | 0.0   | 0.1   |       |
|         |                | RWY        | 24R   |       |            | 2 0 | 1. 6 | 6.0   | 11.0  | 5.5/  | 12.0  | 0 0   | 10.01 |       |                |         | RW      | 24R     | 5.5   | ~      | 4_   | 1     |      | 10    | 0     | 0.2   | 0.2   |       |
|         | TIKE           |            |       |       |            | 7-8 | 8-9  | 9-10  | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 |       | _              | 工品      |         |         | 7-8   | 8-9    | 9-10 | 10-11 |      | 71-17 | 12-13 | 13-14 | 14-15 |       |

TABLE 10

SUMMARY OF RESULTS

EXPERIMENT NO. 11 (REGOUTED DEITHTONES TO 24K FROM 25R)

|       |             |     |                |          |             | AVERAGE | E PLOW | RATES                                  |              |                 |            |       |       |             | AUTUA     | TO TO                  |            |
|-------|-------------|-----|----------------|----------|-------------|---------|--------|----------------------------------------|--------------|-----------------|------------|-------|-------|-------------|-----------|------------------------|------------|
| 디     |             |     | ARRIVAIS       | AIS      |             |         | •      |                                        |              | DEP             | DEPARTURES |       |       |             | AVERA     | AVERAGE IRAVEL<br>TYNG | VEL        |
|       | K<br>K<br>K | RWY | RWY            | RWY      | AVG.        | DE-     | DIFF.  | KWY                                    | KWY          | RWY             | KWY        | AVG.  | DE:-  | UTVF        | 1.        | 1-                     | To         |
|       | 24R         | 24L | 25R            | 25L      | TOTAL       | HAND    |        | 24R                                    | 24L          | 25R             | 25L        | TOTAL | MAND  |             | OT<br>HS: | H2:<br>TA:             |            |
|       |             |     | •              |          | FLOW        |         |        |                                        |              | -               |            | FLOW  |       |             | IX<br>IX  | 9 C                    | ATE<br>OLL |
| 7-8   | 2.0         | 1,6 | 0'9            | 18.0     | 27.0        | 25      | +200   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1            |                 |            |       |       |             | F         |                        |            |
| 8-9   | 10.0        | 0'/ | OH             | 1        | 420         | 14      |        | ١                                      | 1            | 2 9             | 2          | 0.7   | 4     | 2 ر         | 9.4       | 44                     | ?          |
| 9-10  | 6.3         | 10  | 150            | 100      | 1 27        |         |        | 1                                      | 0,7          | 12/2            | 10.0       | 27.0  | 2     | - 7.0       | 1013      | 45                     | 12.6       |
| 10-11 | 11.0        | 20  | 17             | 26.0     |             | 1       | 0      | 小                                      | 7            | 18:7            | 000        | 62.7  | 4     | +8.7        | 10.5      | 77                     | 7 /        |
| 11-12 | 120         | 0   | 25.0           | 1 2 2    | 199         | 7:      | ٦,     | 1                                      | 1,2          | 79              | 7.6        | 45.7  | 48    | -23         | 11.0      | 4.6                    | 11.2       |
| 12-13 | 200         |     |                | 11.4     | X.          | 4       | -1     | 4                                      | 0.9          | 750             | 7          | 18.5  | S     | ر<br>ا<br>ا | 4.3       | 4.5                    | 10.5       |
| 71-11 |             | 1   | 2              | יי אייני | 9:25        | *       | ا در   | 15.5                                   | 6.51         | 6.9             | 77         | 63.7  | 65    | 577-        | 10,5      | 4.                     | 14.6       |
| 31771 | o<br>O      | Ç,  | 0'01           |          | 40.0        | 40      | 0.0    | 10.7                                   | 17:77        | 18.51           | 12+        | 18.7  | 25    | 1.1.4       | 10.01     | 44                     | 7 "        |
|       | 0.07        | 5,0 | 13.0           | 14.0     | 520         | 53      | -1.0   | <u>ښ</u>                               | 3)           | 20.6            | 3,6        | 211   | 7     | +03         |           | 7                      |            |
|       |             | AR  | ARRIVAL DELAYS | DELAYS   |             |         |        |                                        | NF P.        | DE PARTITRE     | 44         |       | 7     | ?           | <b>*</b>  |                        | ز<br>ن     |
| TIME  |             |     | AVERAGE        | 3<br>3   |             |         |        |                                        |              | A VIII S A VIII | 5          |       |       |             |           | GRAND                  |            |
|       | RWY         | RHY | 253            | ATZ.     |             | 21.10   | 12/4   |                                        | 4            | ENOCE           |            |       |       |             |           | TOTAL                  |            |
|       | 24R         | 241 | 25R            | 251.     | 200         | 1 44    | -144   | KWY.                                   | ICWY<br>27.5 | KWY             | RWY        | ALI.  | RWY   | TAXI-       | RWY       | ARE.                   | DEP        |
| 7-8   | 0.0         | 00  | 7:7            | 0.       | \\ \( \)    | 7       | Z C    | 1 7 T                                  | 74.          | )<br> <br> <br> | 757        | Z     | CROSS | OUT         | CONG.     |                        | DELAY      |
| 2-8   | 0.1         | 50  | 0.6            | 0.6      | 0.0         | 100     |        |                                        |              |                 | 7          | 1.0   | 0.0   | 0 3         | 0 0       | 0.0                    | 1.3        |
| 9-10  | 0.0         | 0   | 1.2            | 15.7     |             |         |        | 1                                      | 2)           |                 | 9          | 5.1   | 0.7   | 20          | 0.0       | 0,0                    | -          |
| 10-11 | 6.4         | 49  | 00             | 2.3      | 17          |         | Y      | 77                                     | 3/2          | 72              | 25         | 19    | 0.0   | 1.1         | 0.0       | 7'                     | -          |
| 71-17 | 0.1         | 4.0 | ا<br>د<br>د    | 2.5      |             | 3       | 0,0    | , Y.                                   | 5.           | 5.7             | 2.7        | 43    | 0.0   | 1.7         | 0.0       | 12                     | 3          |
| 12-13 | 2.3         | 0 0 | 0.9            | 76       | \<br>\<br>- | 10      | 1      | 10                                     | 3/0          | 1.4             | 5          | 4.3   | 00    | 10          | 0<br>0    | 7.1                    | 5.0        |
| 13-14 | 0.2         | 0 0 | 1.7            | 10       | 0.8         | 10      |        | 3                                      |              | 77              | 5          | 7     | 0.0   | 7-7         | 3         | 1.8                    | 3.7        |
| 14-15 | 7:3         | 0.0 | 13             | 27       | 0 %         |         |        |                                        |              | 7               | 北          | 15:50 | 1     | -           | 0.0       | -                      | ·          |
|       |             |     |                |          |             |         |        | 3                                      | 7 7          | 1.1             | X          | ``    | 1.1   | 17-0        | -         |                        | 100        |



Pigure 4 LAX LINK NODE DIAGRAM (NEAR TERM IMPROVEMENTS)



#### EXPERIMENT NO. 8

#### Objective:

To obtain baseline delay estimates for the following runway configurations in IFR 1 for 1982 demand.

To obtain delay estimates for 1982 with no improvements to the airport.

#### ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24L, 25R

#### Related Comparison Experiments:

Experiment 12 is identical but with an improved ATC system (1982) scenario and the 1982 near-term improvements.

Prior Experiment #2 is identical except for a 1978 demand.

TABLE 11

SUMMARY OF RESULTS

EXPERIMENT NO. 8 (FIGORE, D. PLEMIE)

| AVERACE TRAUET | TIME INVEL                              | 30.      | HS:<br>TA: | OFF<br>SEE | Ti<br>Ti<br>Ti | -7.0 12.2 41 73 | 1 / 5 6 21                            | 151 17.9 7 4 10.8 | 4.7 19  | 1 47 9     | 0.61 7.4 7.38 35. |        | 0 + 1,20 | 1.48 24.5 4.7 9.0 | GRAND   | TOTAL       | TAXI- RUY ABD NED | OUT CONG  | ٢       | 100    | 22 27      |         | 1.    | +     | +     | 10,1 | 16.2 0.1 20.5 1.5 |
|----------------|-----------------------------------------|----------|------------|------------|----------------|-----------------|---------------------------------------|-------------------|---------|------------|-------------------|--------|----------|-------------------|---------|-------------|-------------------|-----------|---------|--------|------------|---------|-------|-------|-------|------|-------------------|
|                |                                         | AVG. DE- | H          | FLOW       |                | 410 48          | 52.7 64                               | $\vdash$          | 52.0 48 | 177        | 58.8 65           | L      | 1        | 2.0 1             |         |             | ALL RWY           | RWY CROSS | 1.6 0.0 | 9.2 00 | 0.0 0.01   | 9.3 0.0 | 上     | t     | 0-7-0 | 1    | 0.0               |
|                | DEPARTURES                              | KWY A    | 25L T      |            |                | 0               | 0                                     | 0 5               | 0       | 10 15      | 0 5               | 9      |          | ,                 | DELAYS  | J           | L                 | 25L       | 0       | 0      | /          | 0       | 0     |       |       |      | 1                 |
|                | DE                                      | R.       | 25R        |            | -†             | 23:0            | 122.9                                 | 23.8              | 20.4    | 42.2       | 32.7              | 23.4   |          | 70                | THRIDKE |             |                   | . 25R     | 2.2     | 7      | 7          | 23.9    | 7.1   | 1.5   |       | 27   |                   |
| ES             |                                         | RWY      | 24T        |            |                | 40              | 29.R                                  | 35.3              | 37.6    | 23.2       | 7.97              | 21.2   | 70.1     |                   |         |             |                   | +         | -1      | 7      | \ <u>\</u> | 13.8    | 4.4   | 7,5   | 8.9   | .3.6 |                   |
| PLOW RATES     |                                         | RWY      | 24R        |            | 1              | +               | 0                                     | 9                 | +       | +          | 9                 | 0      | 0        | ╀                 | +       | ÷           | <del>-</del>      | 7.7.      | 0       | +      | +          | 9       | 9     | 0     | 0     | 5)   |                   |
| AVERAGE PI     | ł                                       | DIFF.    |            |            |                | T.              | - 0                                   | -25               | ╫       | T          | 7                 | -0.4   | -54      |                   |         | H           |                   | +         | +       | +      | +          | †       | 7     | 0     | 77    | 0    |                   |
| AVE            |                                         | DE-      | NAND<br>L  | _          | 1              | 7               | 3                                     | 7                 | 7       | +          | ᆉ                 | 46     | 3        |                   |         |             | 1 MM              |           | 100     | 1      | 1,0        |         |       | 7     | ┽     | 0.2  |                   |
|                |                                         | AVG.     | TOTAL      | <u> </u>   | 2/2            | 13              | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | <u>1,</u>         |         | <u>1</u> ' | 7000              | +      | 47.6     | S                 |         | 1           | 200               | ~         | 7       | 0      |            | 1       | 1     | 7     | 7     | 10.7 |                   |
|                | MIS.                                    | ¥        | 25L        |            | 220            | 7-7-            | 1                                     | 75.5              | 1,50    |            | 77.               | 427    | 26.5     | ARRIVAL DELAYS    | 35      | 2           | 251.              | 4.7       | 1       | 6.01   | 16.7       | 7 2 2   | ٠.    | 7,70  | 7     | 27.2 |                   |
|                | ARRIVAIS                                | KWY      | 25R        |            | 0              | 3               | \                                     | ١,                |         | ,          | }                 | ٥      | 0        | RIVAL             | AVERAGE | ATA<br>MEAN | 25R               | ٥         | ٥       | 0      | ٦          | ٥       | <     | ,     | ٤     | ,    |                   |
|                |                                         | XMX<br>— | 74T        |            | 0              | e               | Į.                                    |                   |         |            | 1                 | 1      | ٥        | Y                 |         | RE          | 24L               | 0         | o       | 0      | ٥          | ^       | 8     |       | 1     |      |                   |
|                |                                         | X X      | 24R        |            | 4.0            | 20.0            | _                                     | ۲.,               | 254     | 14.2       | 1                 |        | 1        |                   |         | RWY         | 24R               | 0.0       | 7.7     | 0.0    | 2.8        | 8.7     | 14.0  | ÷     | Ľ     |      |                   |
| 17.            | ======================================= |          |            |            | 7-8            | 8-9             | 9-10                                  | 10-11             | 11-12   | 12-13      | 13-17             | \$1-71 |          |                   | TIKE    |             |                   | 7-8       | 8-9     | 9-10   | -0-        | 71-17   | 12-13 | 13-14 | 14-15 |      |                   |

#### EXPERIMENT NO. 12

#### Objective:

To assess delays to aircraft in 1982 for the following runway configuration in IFR 1 with an improved ATC system scenario (1982) and the 1982 near-term improvements.

#### ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24L, 25R

#### Related Comparison Experiments:

Prior Experiment #8 is similar except for the noted improvements and a 1978 ATC system scenario.

TABLE 12

SUMMARY OF RESULTS

EXPERIMENT NO. 12 (MOCHING LIENAND)

| AVEL           |            | OLL TO                | 2    | کی   |           | 1     |       | 2 6   | 7.7   | () 9/ | ٠ ا            | , VI    | -     |       | DELAY         | 27     | 97       | 8.1    |        | 1     | 100         | ٥             | 1    |
|----------------|------------|-----------------------|------|------|-----------|-------|-------|-------|-------|-------|----------------|---------|-------|-------|---------------|--------|----------|--------|--------|-------|-------------|---------------|------|
| AVERAGE TRAVEL | TIME       | HRESH.                |      | ''   | .1.       | 7/7   | 4     | 57    | 4.5   | 4     |                | TOTAL   |       | _     | DELAY         | 4      | 4.5      | 15.0   | †      | 13    | 13          | 27.9          |      |
| AVER           | <b>—</b>   | OT XI.                | I (  | 200  | 1 1 1 1 1 | 73.0  |       | 29.5  | 344   | _     |                |         | L     | _     | 2000          | 20     | 0 %      | 0,1    | 7      | 2     |             | ///           | ŀ    |
|                |            | DIFF.                 | - [: | :    |           |       | 7.7   | -10.1 | 13.4  | 7.5.7 |                |         | 27.0  | _     | 100           |        | ا.<br>د  |        | 900    | 3     | -           | 1-10          |      |
|                |            | DE-<br>MAND           | 9.5  | 3    | 4         | 700   | 2     | 153   | 25    | 7     |                |         | ACM L | 33000 |               | 2      | <u>Y</u> | 0.0    | ( ')   | 0.0   | 3           | 0.0           | Ĺ    |
|                | S          | AVG.<br>TOTAL<br>FLOW | 1    | 0/1  | 1         | 76.7  | 9.36  | 54.9  | 615   | 14.5  | S              |         | E V   | 2     |               | 1      | 9        | 17     | 119    | 77    | 6.7         | ۶. ۶          | 1, 1 |
|                | DEPARTURES | RWY<br>25L            | 3    | , 2  | 3 3       | 0     | _     | 0.0   | 0.0   | 0.0   | DELAYS         | Ι.      | REV   | 251.  |               | 2      | 3        | 0.0    | 07     | 00    | 0.0         | 3.0           | 3    |
|                | DRP        | RWY<br>25R            | 176  |      | 22.0      | 37.7  | 3/.8  | 38.0  | 36 .  | 33.7  | DEPARTURE      | AVERACE | RLY   | 25R   |               | د<br>د | -        | 3      | 1/3    | 77    | 10.         |               | ٠,٠  |
| APRIVATS       |            | RWY<br>24L            | 15.0 | 2    |           | 3.57  | 15.0  | 10.9  | 118   | 8'01  | DEP            |         | RWY   | 24I   |               | ,      | 3        | 2      | 1      | 2     | 1           | )<br>}        | ,    |
|                |            | KWY<br>24R            | 3 3  | 100  | 00        | e :   | o, c  | 0.0   | 00    | 00    |                |         | REA   | 24 R  |               | 3      | 3 ,      | 0<br>3 | 9<br>5 | 0.0   | 0.0         | 0             | 0.0  |
|                |            | DIFF.                 | 0 =  | 127  | - 9.2     | -2.5  | -5.2  | +4.9  | 1-4.7 | 27-   |                |         | TAXI  | Z     | 20            | 3      |          |        | 100    | 10    | 7           | -             | \.c  |
|                |            | DE-<br>MAND           | 25   | 44   | 10        | 5.3   | 79    | 44    | 40    | 53    |                |         | RWY   | CROSS | 0             |        |          |        |        | 10    | 0.1         |               | 10.1 |
|                |            | AVG.<br>TOTAL<br>FLOW | 26.0 | 13.5 | 31.8      | 1 1   | 56.8  | 45.9  | 3553  | 514   |                |         | ALL   | REY   | 1.0           | 7      | 2        | 127    |        |       |             | ٠ <u>٠</u> ٠٠ | ١. ١ |
|                | NS<br>SIX  | RWY<br>25L            | 220  | 23.5 | 23.5      | 28.3  | 310   | 23.9  | 24.2  | 29.5  | DELAYS         |         | RWY   | 25L   | 3.0           | 65     | 7.21     | 2,7,7  |        | 1     | 7           |               | ,    |
|                | ARRIV      | RWY<br>25R            | 00   | 3    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | ARRIVAL DELAYS | AVERAGE | RW    | 25R   | <b>၁</b><br>၁ | 0.0    | 0.0      | 00     |        |       | 200         |               |      |
|                |            | 24L                   | 0.0  | 5.0  | 0.0       | 0.0   | 00    | 0.0   | 0.0   | 00    | Y              |         | RW    | 24L   | 0.0           | 0.0    | 0.0      | 0.0    |        |       |             |               |      |
|                |            | 24R                   | 10   | 20.0 | ) i       | 77.7  | 2:50  | 25.0  | #:1   | 21.9  |                |         | 2     | 24R   | 3             | 12     | 2        | ۲ ۲    | 2/     | Ľ     | \<br>\<br>\ | ╄-            |      |
|                |            |                       | 7-8  | 8-9  | 9-10      | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 |                | 11元     |       |       | 7-8           | 8-9    | 9-10     | 10-11  | 11.213 | 12-11 | 13-14       | 14-15         |      |

TABLE 13

SUPPLARY OF RESULTS

EXPERIMENT NO. 12 (MINOUTTE O DEFINAD) (MINOUTE O DEFINADO TO 246)

|       |                                                                                             |      |                |        |       | AVERAGE | E PLOW      | RATES |          |            |            |          |       |                                        | AVERA       | AVERAGE TRAVEL | VEL          |
|-------|---------------------------------------------------------------------------------------------|------|----------------|--------|-------|---------|-------------|-------|----------|------------|------------|----------|-------|----------------------------------------|-------------|----------------|--------------|
| TIME  |                                                                                             |      | ARRIVAIS       | AIS    |       |         |             |       |          | DEPA       | DEPARTURES | S        |       |                                        | TI          | TIME           | !            |
|       | RYX                                                                                         | RLY  | RWY            | RWY    |       | DE-     | "data       | RWY   | RWY      | RWY        | RWY        | AVG.     | DE-   | DIFF.                                  | 1.1         |                | 01           |
|       | 24R                                                                                         | 24L  | 25R            | 25L    | TOTAL | MAND    |             | 24R   | 24L      | 25R        | 25L        | TOTAL    | HAND  |                                        | IS2         | SS             |              |
|       |                                                                                             |      |                |        | FLOW  |         |             |       |          |            |            | FLOW     |       |                                        | XIT<br>IAHI | MHT<br>O OT    | GATI<br>ROLI |
| 7-8   | 4.0                                                                                         | 0    | o              | 22.0   | 51.0  | 15      | <i>4/,0</i> | 0     | 15.0     | 26.0       | c          | 41.0     | 98    | -7.0                                   | > "         | 42             | 2 %          |
| 8-9   | 20.0                                                                                        | 2    | 0              | 24.9   | 44.9  | 45      | 1.0-        | ٥     | 252      | 30.2       | ٦          | 127      | *     | 28-                                    | 40          | 47             | 10           |
| 9-10  | 80                                                                                          | ý    | 0              | 27.0   | 35,0  | 41      | 0.3-        | 0     | 34.7     | 27.2       | ,          | 677      | 2     |                                        |             | 4.2            | 1/2/2        |
| 10-11 | 220                                                                                         | ٥    | 0              | 30.6   | 52,6  | 57      | +0-         | 0     | 263      | 242        | 0          | 29.5     | 4.9   | 77                                     | 17.2        | 4.7            | 1            |
| 11-12 | 25.9                                                                                        | r    | 0              | 30.7   | 56.6  | 7)      | -54         | 0     | 6'31     | 30.2       | ٥          | 1.64     | C     | -2.9                                   | 17.7        | 47             | 200          |
| 12-13 | 246                                                                                         | 0    | 0              | 29.0   | 53.6  | 44      | +9.6        | 0     | 28.5     | 27.4       | a          | 56.2     | 53    | -8.8                                   | 22.0        | 4.8            | 14.9         |
| 13-14 | 11.5                                                                                        | 0    | 0              | 22.7   | 39.2  | 40      | -08         | 0     | 34.0     | 24.6       |            | 5.6      | 55    | 4.1.6                                  | 13.1        | 4.6            | 17.7         |
| 14-15 | 22.0                                                                                        | 0    | 0              | 30.5   | 525   | 53      | -05         | 0     | 11.7     | 29.8       | 0          | 46.5     | 1     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 140         | 47             | 10.6         |
|       |                                                                                             |      | ARRIVAL DELAYS | DELAYS | 1     |         |             |       | DEP      | DE PARTURE | DETAVS     |          |       |                                        |             | UN VO          |              |
| TIME  |                                                                                             |      | AVERACE        | ल      |       |         |             |       | ľ        | AVERACE    |            |          |       |                                        |             | TOTAL          | - E          |
| }     | 200                                                                                         | 27.0 | 270            | 210    |       | 22.50   | 17.18       |       |          |            |            |          |       |                                        |             |                |              |
|       | 24P                                                                                         | 74.1 | 250            | 1 1 C  | YTF.  | I WI    | TV          | KMI   | KWX      | KWY        | KWY        | ALL      | RWY   | TAXI-                                  | RWY         | ARR.           | DEP.         |
| 7-8   | 9                                                                                           | 3    |                |        | I WI  | CRUDS   |             | 74K   | 747      | 2.2.K      | 757        | RWY      | CROSS | OUT                                    | CONG.       | DELAY          | DELAY        |
| 6-8   | ,                                                                                           |      |                | 1      |       | 1,      |             | 0.0   | 0.       | 27         | 00         | /:/      | 0.0   | 20                                     | 0,0         | 7. 7           | 21           |
| 9-10  | 1_                                                                                          |      |                | 100    |       | *       |             | 2     | 2        | 5.18       | ا ر        | 7.6      | 0.0   | 5.0                                    | 0,5         | 32             | 18           |
| 10-11 | 上                                                                                           |      | 5 6            |        | 1     | 7.0     | 7 0         | 0.0   | 4.7      | 43         | 00         | 8.4      | 0.0   | 1.1                                    | 7.3         | 1.7            | +01          |
| :     | 94                                                                                          |      |                |        | 1     | 9:1     | 70          | 973   | 7.4      | 15         | 0.0        | 19       | 0     | 7.6                                    | 1.1         | 21             | 1.8          |
| 12,51 | Ţ.                                                                                          |      |                |        |       | 70      | 1           | 7,(,  | 4        | 3.1        | 00         | 28       | 00    | 1.0                                    | 0.0         | 72             | -            |
| 12-17 | *                                                                                           |      | ă              |        | 177   | 7       | 0,0         | 0.0   | / //     | 6.0        | 0.0        | 11,5     | 0     | 3.7                                    | 20          | 7              | 00           |
| 14-15 | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 2 0  |                |        | 4     | 27      | 10          | 0.0   | 134      | 5.5        | ξ) (       | 9.6      | 0.0   | 10,0                                   | 7.3         |                | 11/2         |
|       | ]                                                                                           | 2    | ء ا            | 1111   | 7.7   | 0.7     | 0.1         | 00    | م.<br>ند | ر<br>ارز   |            | .~<br>.~ | 0     | 4                                      | 7           | K              |              |



# ATTACHMENT D

LOS ANGELES STAGE 2 DELAY EXPERIMENTS

LOS ANGELES INTERNATIONAL AIRPORT

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

LOS ANGELES DELAY EXPERIMENTS

| Near Tearme<br>improvements |         | None                | None               | None      | None     | None     | None           | None                  | None                 | None            | None     | None     | 1982               | 1982               | 2, 3               | 5,74     | 5, 7, 8        | None . | Tunnel Construction) | Tunnel Construction | Comments-Usage for Light |                        |
|-----------------------------|---------|---------------------|--------------------|-----------|----------|----------|----------------|-----------------------|----------------------|-----------------|----------|----------|--------------------|--------------------|--------------------|----------|----------------|--------|----------------------|---------------------|--------------------------|------------------------|
| ATC<br>System<br>scenario   |         | 8:261               | 1978               | 1978      | 1978     | 1978     | 1978           | +154) 978             | +154 \$ 978          | 1978            | 1978     | 8761     | 1982               | 1982               | 1982               | 1982     | 1982           | 1978   | 1982                 | 1982                | 1982                     |                        |
| Deniand                     |         | 8761                | 1978               | 1978      | 8461     | 8261     | 1978           | 1982 (+54) (+154) 978 | 1982 (+54) (+154)978 | 1982            | 1982     | 1982     | 1982               | 1982               | 1982               | 1982     | 1982           | 1978   | 1982                 | 1982                | 1982                     |                        |
| Weather                     |         | VFRI                | IFRI               | IFR2      | VFRI     | IFRI     | VFRI           | VFRI                  | IFRI                 | VFR1            | VFRI     | IFRI     | VFRI               | IFRI               | VFRI               | VFRI     | VFRI           | n.a.   | VFRI                 | VFRI                | VFRI                     |                        |
| Departure                   |         | 24L, 24R, 25L, 25R  | 24L, 25R           | 241., 25R | 24L, 25R | 24L, 25R | 6L, 6R, 7L, 7R | 24L, 24R, 25L, 25R    | 24L, 25R             | 6L, 6R, 7L, 7R  | 24L, 25R | 24L, 25R | 24L, 24R, 25L, 25R | 24L, 25R           | 24L, 24R, 25L, 25R | 24L, 25R | 6L, 6R, 7L, 7R | n. a.  | 24L, 24R, 25L        | 24L, 24R, 25L, 25X  | 241., 248, 251., 26      |                        |
| Arrival<br>runways          |         | 241., 24R, 25L, 25R | 24L, 24R, 25L, 25R | 24R, 25L  | 6R, 7L   | 6R, 7L   | 6L, 6R, 7L, 7R | 241, 24R, 25L, 25R    | 24L, 24R, 25L, 25R   | 61., 6R, 7L, 7R | 6R, 7L   | 6R, 7L   | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 25R | 6R, 7L   | 6L, 6R, 7L, 7R | n, a.  | 241., 24R, 25L       | 24L, 24R, 25L, 25xK | 241., 248, 251., 26      |                        |
| Study                       |         | -                   | 7                  | •         | S        | 9        | 4              | _                     | 7                    | 4               | \$       | •        | _                  | <b>C</b> 3         | _                  | Z.       | 7              | n. a.  | 7                    | 7                   | 7                        |                        |
| Model                       | ਰ       | ASM                 | ASM                | ASM       | ASM      | ASM      | ASM            | ASM                   | ASM                  | ASM             | ASM      | ASM      | ASM                | ASM                | ASM                | ASM      | ASM,           | ADM    | RCM                  | RCM                 | RCM                      | plicable.              |
| Experiment<br>number        | Stage 1 | -                   | 7                  | 3         | 4        | ν.       | 9              | 7 (7A) (7B)           | (HA) (AB)            | 6               | 10       | 10A      | Ξ                  | 71                 | 13                 | 15       | 91             | 1.1    | 17 A                 | 17.8                | 17 C                     | n.a. = not applicable. |

Study cases (combinations of runway use and weather conditions) are defined in Figure III-1. FAA will describe impact of 1982 and post-1987 ATC systems on model inputs.

• - :

Potential near-term improvements are identified in the Los Angeles International Airport Improvement Task Force Interim Report, and in

Appendix B.

Airfield Simulation Model.

Task Force establishes packages of near-term improvements most likely to be implemented in 1982 and 1987 time frames. The 1932 package includes improvement # 3 (strengthening of the Sepulveda Tunnel), (cont.) ಕ ಕ

# TABLE 14 'CONTINUED)

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

- (cont.) new taxiway access to threshold of Runway 24R, and temporary holding areas on future Taxiway 75. The 1987 package includes all 1982 improvements plus Satellite 1, International Terminal, and/or remote parking for 20 aircraft at west end of airport. These packages of improvements are subject to Task Force review and revision. ů
  - Impact of absence of Improvements # 2 and #3 (high-speed taxiway of Runway 251, and strengthening of the Sepulveda Tunnel).
  - Improvement # 5 is a high-speed taxl exit off Runway 7. Improvement # 7 is a high-spped taxi exit to Taxiway 47 from Runway 6R. Improvement #8 is a bypass area on the north side of Runway 7L. نة ن<u>ن</u>
    - Annual Delay Model.
- Runway Capacity Model.
  - Runway 25R closed for tunnel construction. 4 4 4 4
- During closure of 25R for tunnel construction, parts of Runway 25 are open for small aircraft arrivals and departures.

TABLE 14

LOS ANGELES DELAY EXPERIMENTS

| Near-term<br>improvements |                        | 101                | Terminal Expansion. | Terminal Expansion | Remote Terminal O  | Tunnel Construction | Dual TaxiwayP | Tunnel Construction 25R | Tunnel Construction 251. | 1987°              | 1987               | 1961               | 1982  | None  | 1982  | None  | 1987  | None    | 1987  | None  |  |
|---------------------------|------------------------|--------------------|---------------------|--------------------|--------------------|---------------------|---------------|-------------------------|--------------------------|--------------------|--------------------|--------------------|-------|-------|-------|-------|-------|---------|-------|-------|--|
| ATC<br>System b           |                        | 1982               | 8261                | 1982               | 1982               | 1978                | 1978          | 1978                    | 1978                     | 1987               | 1987               | 1987               | 1982  | 1982  | 1978  | 1978  | 1937  | 1987    | 1978  | 1988  |  |
| Demand                    |                        | 1982               | 1982                | 1982               | 1982               | 1982                | 1982          | 1982                    | 1982                     | 1987               | 1987               | 1987               | 1982  | 1982  | 1982  | 1982  | 1987  | 1987    | 1987  | 1987  |  |
| Weather                   |                        | SR VFRI            | 5R VFR1             | SR VFRI            | SR VFRI            | VFRI                | VFRI          | IFRI                    | IFRI                     | SR VFRI            | 25R VFR1           | IFRI               | п.а.  | n. a. | n. a. | n.a.  | n.a.  | . п. а. | л. а. | n. a. |  |
| Departure<br>Runways      |                        | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 25R  | 24L, 24R, 25L, 2   | 24L, 24R, 25L, 2   | 24L, 24R, 25L       | 24L, 24R, 25L | 24L, 25L                | 24L, 25R                 | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 2   | 24L,               |       | n, a, | n,a.  | n.a.  |       | n. a.   | n.a.  | n.a.  |  |
| Arrival<br>Runways        |                        | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 25R  | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 25R | 24L, 24R, 25L       | 24L, 24R, 25L | 24R, 25L                | 24R, 25R                 | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 25R | 24L, 24R, 25L, 25R | n.a.  | n.a.  | п.а.  | л. а. | n.a.  | л. а.   | n.a.  | n.a.  |  |
| Study<br>case a           |                        | -                  | _                   | _                  | _                  | 7                   | <b>20</b>     | <b>œ</b>                | 6                        | _                  | 7                  | 2                  | D. B. | n.a.  | n. à. | n.a.  | n. a. | п. а.   | n. a. | n.a.  |  |
| Model                     |                        | ASM                | ASM                 | ASM                | ASM                | ASM                 | ASM           | ASM                     | ASM                      | ASM                | ASM                | ASH<br>A           | AD#   | ADM   | ADM   | ADM   | ADM   | ADM     | ADM   | ADM   |  |
| Experiment<br>number      | Stage 2<br>Experiments | 18                 | 19 A                | 20                 | 2.1                | 22                  | 22A           | 23                      | 54                       | 52                 | V57                | 26                 | 27    | . 28  | 67    | 30    | 31    | 32      | 33    | 34    |  |

1. Improvement #10 consists of a series of taxiway improvements identified in Appendix B.

Construction of Satellite 1 and International Terminal. The need for this experiment will be reviewed by the Task Force after consideration of future airline terminal locations.

Remote parking for 20 aircraft at west end of Airport.

Additional experiment may be needed to test value of dual taxiway system around Satellite 4 during tunnel constructionl ċ

. <u>.</u>

# EXPERIMENT NO. 18

# Objective:

To assess delays to aircraft in 1980 for the following runway configuration in VFR 1 with an improved ATC system scenario (1982) and improvement #10 (taxiways).

#### ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24R, 24L, 25R, 25L

#### Related Comparison Experiments:

Prior Experiment #11 is identical except for improvement #10 (taxiway improvements).



Figure 15 LAX LINK NODE DIAGRAM (DUAL TAXIWAY)

# EXPERIMENT NO. 19A

#### Objective:

To assess delays to aircraft in 1982 for the following runway configuration in VFR 1 with terminal expansion.

# ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24R, 24L, 25R, 25L

# Related Comparison Experiments:

Experiment #20 is identical except for an improved ATC system scenario.



Pigure 16 LAX LINK NODE DIAGRAM (TERMINAL EXPANSION)

#### EXPERIMENT NO. 20

#### Objective:

To assess delays to aircraft in 1982 for the following runway configuration in VFR 1 with an improved ATC system scenario and terminal expansion.

ARRIVAL RUNWAYS

24R, 24L, 25R, 25L

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

## Related Comparison Experiments:

Experiment #21 is identical except for remote parking for 20 aircraft at west end of airport in place of terminal expansion.

Prior Experiment #19A is identical except for a 1978 ATC system scenario

#### EXPERIMENT NO. 21

#### Objective:

To assess delays to aircraft in 1982 for the following runway configuration in VFR 1 with an improved ATC system scenario and remote parking for 20 aircraft.

# ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24R, 24L, 25R, 25L

# Related Comparison Experiments:

Prior Experiment #20 is identical except for remote parking for 20 aircraft at west end of airport in place of terminal expansion.



#### EXPERIMENT NO. 22

# Objective:

To assess the delay impact to aircraft in (1982) for the following runway configuration in VFR 1 due to the runway closure of 25R during work on the Spulveda Tunnel.

ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25L

24R, 24L, 25L

## Related Comparison Experiments:

Prior Experiment #1 is identical except for closure of 25R for tunnel construction and a 1978 demand.

#### EXPERIMENT NO. 22A

# Objective:

To assess the delay impact to aircraft in 1982 for the following runway configuration in VFR 1 due to the runway closure of 25R during work on the Sepulveda Tunnel with a dual taxiway system around satellite 4.

ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24L, 24R, 25L

24L, 24R, 25L

## Related Comparison Experiments:

Prior Experiment #22 is identical except for a dual taxiway system

#### EXPERIMENT NO. 23

#### Objective:

To assess the delay impact to aircraft in (1982) for the following runway configuration in IFR 1 due to the runway closure of 25R during work on the Sepulveda Tunnel.

## ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 25L

24L, 25L

# Related Comparison Experiments:

Prior experiment #2 is identical except for the closure of runway 25R for tunnel construction and a 1978 demand.

# EXPERIMENT NO. 25 (25A)

#### Objective:

To assess delays to aircraft in 1987 for the following runway configuration in VFR 1 with an improved 1087 ATC system scenario and 1982 improvements plus the satellite terminal and/or remote parking for 20 aircraft (1987 improvement package). Experiment #25A is with greater peaks UNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24R, 24L, 25R, 25L

# Related Comparison Experiments:

Prior Experiment #11 is identical except for the improvements from 1982 to 1987 and the 1987 demand.



#### EXPERIMENT NO. 24

# Objective:

To assess the delay impact to aircraft in 1902 for the following runway configuration in IFR 1 due to the runway closure of 25L during work on the Sepulveda Tunnel

#### ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 25R

24L, 25R

#### Related Comparison Experiments:

Prior Experiment #2 is identical except for the closure of runway 25L for tunnel construction and a 1978 demand.

# EXPERIMENT NO. 26

#### Objective:

To assess delays to aircraft in 1987 for the following runway configuration in IFR 1 with an improved 1987 ATC system scenario and 1982 improvements plus the satellite terminal and/or remote parking for 20 aircraft.(1987 improvement package).

#### ARRIVAL RUNWAYS

DEPARTURE RUNWAYS

24R, 24L, 25R, 25L

24L, 25R

# Related Comparison Experiments:

Prior Experiment #12 is identical except for the improvements from 1982 to 1987 and the demand. (1987)

