Improving Efficiency and Robustness of Transformer-based Information Retrieval Systems

Tutorial presented by Edmon Begoli, PhD, Sudarshan Srinivasan, PhD and Maria Mahbub

Outline

Transformers for Information Retrieval

Transformer Architecture

Break

Optimization and Efficiency Improvement Techniques

Robustness

Break

Q&A Session

Background

Credits and Recommendations

Source Material

Transformers for Information Retrieval (IR)

An overview of the uses of transformer-based deep neural architectures in information retrieval (IR)

List common tasks

Some resources to be included

SBERT:

https://www.sbert.net/examples/applications/information-retrieval/README.html

https://jalammar.github.io/illustrated-retrieval-transformer/

https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-1/

Transformer Architecture

Motivation for Transformers

An evolution in distributional semantics-based NLP

Performance on NLP tasks

Parallelization

Benefits of Deep Learning

Transformer Architecture

Ashish Vaswani et. al "Attention is all you need". Proceedings of the 31st International Conference on Neural Information Processing Systems.

Positional Encoding

- Embeddings do not carry any information about the relative order of the tokens in the sentence
- Requires a way to encode information about a token's position in a sentence
- "I google for information. Thanks Google."
- Variables:
 - pos: Position of the token within the input sequence
 - •i: Position of the embedding dimension within the vector representation of the token

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Attention for Transformers

- Attention can be described as mapping a query and set of key-value pairs to an output
- Tells the model which part of the input it should focus on

- Consists of h parallel self-attention layers, each one is called a head
- Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions

Add & Norm

- Residual (skip) connection to allow gradients to flow through the network directly
- Layer normalization to "tame" the gradients to the mean and standard deviation of each layer
- Each layer output is shifted and scaled by their collective mean and standard deviation respectively to normalize that layer

Encoder-Decoder Architecture

- Encoder block contains two "sub-layers"
- There can be many encoder blocks stacked together in an encoder layer

- Contains an extra layer of multi-head attention and Add & Norm
- Keys and values for the additional multi-head attention comes from the encoder which caries the states of the input words
- Input is the generated output of the translated word

Final Layer

- Final linear takes in the output from the last decoder block of the decoder stack
- This is fed into a softmax layer to get output probabilities of each word in the vocabulary
- The word with the highest probability is selected as the translated word and is fed into the next position
- Process ends when an end-of-sentence (EOS) token is generated

Bi-directional Encoder Representations from Transformers (BERT)

Break

Performance and Efficiency

Practice and Examples

Improvements to Robustness

Break

Discussion

Draft material to be used in the slides

- 1. http://ceur-ws.org/Vol-2621/CIRCLE20_05.pdf "Given the recent success of transformer encoders for NLP, we propose KTRel: a NLTR model that uses word embeddings, Knowledge bases and Transformer encoders for IR." --- uses transformers for simple IR
- 2. https://dl.acm.org/doi/pdf/10.1145/3331184.3331303 ". This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings." --- studies the importance of transformers in IR
- 3. http://ceur-ws.org/Vol-2696/paper 241.pdf "In particular, we investigate three approaches: (1) query expansion using GPT-2, (2) query expansion using BERT, and orthogonal to these approaches, (3) embedding of documents using Google's BERT-like universal sentence encoder (USE) combined with a subsequent retrieval step based on a nearest-neighbor search in the embedding space." --- uses transformers to enrich argument retrieval at various stages of the IR pipeline
- 4. https://dl.acm.org/doi/pdf/10.1145/3409256.3409829?casa token= 17 ORNp2RoAAAAA:Niw0Ngl4VS-nB0AxRiDHH QY8AhfiZFJe1iqZW8cWLUJkR9v8Ld ACXhDkHS98XBar6QJWYedA 9N "propose a framework called PyTerrier that allows advanced retrieval pipelines to be expressed, and evaluated, in a declarative manner close to their conceptual design" --- proposes an IR tool (like PyTorch) that uses Transformers
- 5. https://link.springer.com/chapter/10.1007/978-3-030-99736-6_27 "Motivated by those observations we aim to answer the following question: how robust are retrieval pipelines with respect to different variations in queries that do not change the queries' semantics?" --- analyzes robustness of transformer-based IR system
- 6. https://dl.acm.org/doi/pdf/10.1145/3459637.3482452?casa token=LQRHKWATm5wAAAAA:2 G sJv8x-Ugzv0X1mVOMM91G LNDOqi-7eZwvQwvWmlQ-Y4 Py0ViuxFv6tugbhN9LXpGoKrU0Wd ".. in the multilingual pre-trained models that the words in different languages are projected into the same hyperspace, the model tends to "translate" query terms into related terms i.e., terms that appear in a similar context in addition to or sometimes rather than synonyms in the target language. This property is creating difficulties for the model to connect terms that co-occur in both query and document. To address this issue, we propose a novel Mixed Attention Transformer (MAT) that incorporates external word-level knowledge, such as a dictionary or translation table." --- uses transformers in IR in a multilingual setting