수원의 양(저수량)

- 1. 옥내소화전설비
- ① 29층 이하

 $Q = 130l/\min \times 20\min \times N$

(N=가장 많이 설치된 층의 소화전 개수 : 최대 2개)

② 30층 이상 49층 이하

 $Q = 130l/\min \times 40\min \times N$

(N=가장 많이 설치된 층의 소화전 개수 : 최대 5개)

③ 50층 이상

 $Q = 130l/\min \times 60\min \times N$

(N=가장 많이 설치된 층의 소화전 개수 : 최대 5개)

imes 옥상수원의 양 = 위에서 산출된 유효수량 imes $\frac{1}{3}$

2. 옥외소화전설비

 $Q = 350l/\min \times 20\min \times N$

(N=소화전 설치개수 : 최대 2개)

- 3. 스프링클러설비
- (1) 폐쇄형 헤드
- ① 29층 이하

 $Q = 80l/\min \times 20\min \times N$

(N=기준개수: 각 층(세대)의 설치개수가 기준개수보다 작을 경우 설치개수를 적용)

② 30층 이상 49층 이하

 $Q = 80l/\min \times 40\min \times N$

(N=기준개수: 각 층(세대)의 설치개수가 기준개수보다 작을 경우 설치개수를 적용)

③ 50층 이상

 $Q = 80l/\min \times 60\min \times N$

(N=기준개수: 각 층(세대)의 설치개수가 기준개수보다 작을 경우 설치개수를 적용)

※ 폐쇄형 헤드의 설치장소별 기준개수

설치장소			기준개수
• 지하가			
• 지하역사			
• 지하 층을	• 지하층을 제외한 11층 이상(아파트 제외)		
지하층을	공장 또는 창고(특수 근린생활시설, 판매 시설, 운수시설,	가연물을 저장 · 취급하는 것) 판매시설, 복합건축물(판매시설이 설치된 복합건축물)	30
제외한 10층 이하	복합건축물	기타 헤드의 부착높이 8m 이상	20
	기타	헤드의 부착높이 8m 미만	10
아파트			10

(2) 개방형 헤드

① 30개 이하

 $Q = 80l/\min \times 20\min \times N$

(N=개방형 헤드의 설치개수)

② 30개 초과

Q= 가압송수장치의 1분당 송수량 • N • 20×10^{-3}

여기서.

Q: 수원의 양 [m³]

가압송수장치의 1분당 송수량 $[l/min] = K\sqrt{10P}$

K: 유출계수(15mm : 80, 20mm : 115)

P: 방수압력 \lceil MPa \rceil (0.1~1.2MPa) N: 개방형 헤드의 설치개수

4. 드렌처설비

 $Q = 80l/\min \times 20\min \times N$

(N=최대 설치 층의 헤드개수(최대 방수구역 기준(1개 회로))

5. 간이 스프링클러설비

- ① $Q = 50l/\min \times 10\min \times 27$
- ② 간이 스프링클러설비 설치대상인 근린생활시설, 생활형 숙박시설, 복합건축물

 $Q = 50l/\min \times 20\min \times 57$

③ 간이 스프링클러설비가 설치되는 특정소방대상물에 부설된 주차장에 표준반응형 스프링클러헤드를 사용할 경우: $80l/\min$ 을 곱한다.

6. 화재조기진압용 스프링클러설비

 $Q = 12 \times 60 \times K\sqrt{10P}$

여기서.

Q: 수원의 양 [l] K: 상수 [$l/\min/(MPa)^{1/2}$] P: 헤드선단의 압력 [MPa]

Youtube : https://www.youtube.com/c/ABC소방 소방뷰 유튜브 교육원 Web : https://cafe.naver.com/sobangview

7. 물분무소화설비

 $Q = A \times Q_1 \times T$

여기서,

Q: 저수량[l] A: 바닥면적 또는 표면적 $[m^2]$ $Q_1:$ 표준방사량(토출량) $[l/\min \cdot m^2]$

T: 시간[min](20min)

* A(바닥면적 또는 표면적)

① 절연유 봉입변압기 : 바닥부분을 제외한 표면적을 적용한다.

(앞면, 뒷면, 좌면, 우면, 윗면)

② 컨베이어벨트 : 벨트부분의 바닥면적을 적용한다.

③ 케이블트레이, 케이블덕트: 투영된 바닥면적을 적용한다.

④ 차고, 주차장 : 최대 방수구역의 바닥면적을 적용한다.

$% Q_1$ (표준방사량(토출량))

구분	토출량	비고
• 컨베이어벨트 • 절연유 봉입변압기	$10l/\text{min} \cdot \text{m}^2$	-
• 특수가연물	$10l/ exttt{min} \cdot exttt{m}^2$	최소 50㎡
•케이블트레이 •케이블덕트	$12l$ /min \cdot m²	-
• 차고 • 주차장	$20l/ exttt{min} \cdot exttt{m}^2$	최소 50㎡

8. 미분무소화설비

① 수원의 양

 $Q = N \times D \times T \times S + V$

여기서,

Q: 수원의양[\mathbb{m}^2] N: 방호구역(방수구역)내 헤드의 개수

D: 설계유량[\mathfrak{m}' /min] T: 설계방수시간[\mathfrak{m} in] S: 안전율(1.2 이상) V: 배관의 총체적[\mathfrak{m}']

② 폐쇄형 미분무헤드의 최고주위온도

 $T_a = 0.9 T_m - 27.3 ^{\circ}$ C

여기서.

 T_a : 설치장소의 평상시 최고주위온도[${f c}$] T_m : 헤드의 표시온도[${f c}$]

9. 포소화설비 포소화약제의 저장량

- (1) 고정포방출구방식
- ① 고정포방출구에 필요한 양

$$Q_{\widehat{1}} = A \cdot Q_1 \cdot T \cdot S$$

여기서,

 $Q_{\mathbb{D}}$: 포소화약제의 양[l] A : 탱크의 액표면적[\mathbf{m}^{l}]

 Q_1 : 단위포소화수용액의 양(방출률)[$l/\min \cdot m^2$]

T : 방출시간[min] S : 포소화약제의 사용농도[%]

② 보조포소화전에 필요한 양

 $Q_{\odot} = N \cdot S \cdot 8,000l$

여기서.

 Q_{\odot} : 포소화약제의 양[l] N : 호스접결구의 수(최대 3개)

S: 포소화약제의 사용농도[%]

③ 배관보정량(송액관에 필요한 포소화약제의 양): 내경 75mm 초과시 적용

 $Q_{\mathfrak{D}} = A \cdot L \cdot S \cdot 1,000l/m^3$

여기서.

 $Q_{\mathfrak{J}}$: 배관보정량[l] A : 배관의 단면적 $[\mathfrak{m}^l]$

L : 배관의 길이[m] S : 포소화약제의 사용농도[%]

(2) 옥내포소화전방식, 호스릴방식

 $Q = N \cdot S \cdot 6,000l$ (바닥면적 200㎡ 미만은 75%를 적용)

여기서.

Q: 포소화약제의 양[l] N: 호스접결구의 수(최대 5개)

S: 포소화약제의 사용농도[%]

(3) 포헤드 방식

 $Q = A \times Q_1 \times T \times S$

여기서,

Q: 포소화약제의 양[l] A: 바닥면적[m^2]

 Q_1 : 방사량[$l/\min\cdot m^2$] T: 방출시간[\min](10 \min)

S: 포소화약제의 사용농도[%]

※ 포헤드의 특정소방대상물별 및 포소화약제에 따른 방사량

소방대상물	포소화약제의 종류	방사량
• 차고, 주차장	수성막포	$3.7l/\text{min} \cdot \text{m}^2$
	단백포	6.5 <i>l</i> /min · m²
• 항공기격납고	합성계면활성제포	8.01/min · m²
• 특수가연물을 저장 ·	수성막포	
	단백포	$6.5l/\text{min} \cdot \text{m}^2$
취급하는 소방대상물	합성계면활성제포	

(4) 포워터스프링클러 방식

Q = 헤드개수 \times 75 $l/\min \times 10\min \times$ 사용농도[%]

(5) 압축공기포소화설비

 $Q = A \times Q_1 \times T$

여기서.

Q: 수원의 양[l] A: 바닥면적[\mathbf{m}^{2}] Q_{1} : 설계방출밀도[$l/\min\cdot\mathbf{m}^{2}$]

T: 방사시간[min](10min)

※ 압축공기포소화설비의 설계방출밀도

구분	방호대상물	설계방출밀도	
압축공기포소화설비	특수가연물	2.3 <i>l</i> /min · ㎡ 이상	
	기타의 것	1.63 <i>l</i> /min · ㎡ 이상	

10. 소화용수설비(소화수조 또는 저수조)의 저수량

저수량 = $\frac{\text{연면적}}{\text{기준면적}}$ = $(\text{소수점 이하는 절상한다.}) \times 20\text{m}^3$

※ 기준면적

특정소방대상물의 구분	
1층 및 2층의 바닥면적 합계가 15,000㎡ 이상인 특정소방대상물	
그 밖의 특정소방대상물	12,500m²

① 흡수관투입구 수

소화수조의 소요수량	80㎡ 미만	80㎡ 이상
흡수관투입구 수	1개 이상	2개 이상

② 채수구 수

소요수량	20㎡ 이상 ~ 40㎡ 미만	40㎡ 이상 ~ 100㎡ 미만	100㎡ 이상
채수구의 수	1개	2개	3개

③ 가압송수장치의 양수량

소화수조의 소요수량	20㎡ 이상~40㎡ 미만	40㎡ 이상~100㎡ 미만	100㎡ 이상
양수량(토출량)	1,1001/min 이상	2,2001/min 이상	3,300½/min 이상

〈가스계 소화약제저장량〉

1. 이산화탄소소화설비

(1) 전역방출방식

① 표면화재

소화약제저장량[kg]=방호구역체적[m³]×소요약제량[kg/m³]×보정계수+개구부면적[m²]×개구부가산량[kg/m²]

※ 소요약제량 및 개구부가산량

방호구역체적	소요약제량	최소저장량	개구부가산량 (자동폐쇄장치 미설치시 적용)
45㎡ 미만 45㎡ 이상 150㎡ 미만	1 kg/m³ 0.9kg/m³	45kg	51/2
150㎡ 이상 1,450㎡ 미만	0.8kg/m³	135kg	5kg/m²
1,450㎡ 이상	0.75kg/m³	1,125kg	

② 심부화재

소화약제저장량[kg]=방호구역체적[m²]×소요약제량[kg/m²]+개구부면적[m²]×개구부가산량[kg/m²]

※ 소요약제량 및 개구부가산량

소방대상물	소요약제량	개구부가산량 (자동폐쇄장치 미설치시 적용)
• 전기설비(유압기기 제외) • 케이블실	1.3kg/m³	
• 전기설비(55㎡ 미만)	1.6kg/m³	10kg/m^2
• 서고, 전자제품창고, 목재가공품창고, 박물관	2.0kg/m^{3}	
• 고무류, 면화류창고, 모피창고, 석탄창고, 집진설비	$2.7 \mathrm{kg/m^3}$	

(2) 국소방출방식

소방대상물	고압식	저압식
• 윗면이 개방된 용기에 저장하는 경우	방호대상물 표면적[㎡]	방호대상물 표면적[㎡]
• 연소면이 한정되고 가연물이 비산할 우려가 없는 경우	×13kg/m²×1.4	×13kg/m²×1.1
	방호공간체적[㎡]×	방호공간체적[㎡]×
•기타(윗면이 밀폐, 문제에 언급이 없는 경우)	$(8-6\frac{a}{A})$ kg/m³×1.4	$(8-6\frac{a}{A})$ kg/m³×1.1

a : 방호대상물 주위에 설치된 벽면적의 합계[m](0.6m 이내에 설치된 실제벽, 누설되지 않는 벽면적)

A : 방호공간의 벽면적의 합계 $[m^2]$

2. 할론소화설비

(1) 전역방출방식

소화약제저장량[kg]=방호구역체적[m³]×소요약제량[kg/m³]+개구부면적[m²]×개구부가산량[kg/m²]

※ 소요약제량 및 개구부가산량

소방대상물	소요약제량	개구부가산량 (자동폐쇄장치 미설치시 적용)
차고, 주차장, 전기실, 전산실, 통신기기실, 합성수지류	0.32kg/m³	$2.4 \mathrm{kg/m^2}$
사류, 면화류, 볏짚류, 목재가공품, 대팻밥, 나무부스러기 등	$0.52 \mathrm{kg/m^3}$	$3.9 \mathrm{kg/m^2}$

(2) 국소방출방식

① 윗면이 개방된 용기, 연소면이 1면에 한정되고 가연물이 비산할 우려가 없는 경우

소화약제의 종별	소화약제저장량
할론1301	방호대상물 표면적[㎡]×6.8㎏/㎡×1.25
<u>할론</u> 1211	방호대상물 표면적[㎡]×7.6kg/㎡×1.1
<u>할론24</u> 02	방호대상물 표면적[㎡]×8.8kg/㎡×1.1

② 기타

$$Q = X - Y \left(\frac{a}{A}\right) \times \left\{ \frac{\text{inequation}}{\text{inequation}} \times \left\{ \frac{\text{inequation}}{\text{inequation}} \times \frac{1.25}{\text{inequation}} \right\} \right\}$$

여기서.

Q : 방호공간 1㎡에 대한 할론소화약제의 $\mathfrak{S}[kg/m^2]$

a : 방호대상물 주위에 설치된 벽면적의 합계[m]

A : 방호공간의 벽면적의 합계 $[m^2]$

X, Y: 수치

Youtube : https://www.youtube.com/c/ABC소방 소방뷰 유튜브 교육원 Web : https://cafe.naver.com/sobangview

- 7 -

3. 할로겐화합물 및 불활성기체소화설비

① 할로겐화합물소화약제

$$W = \frac{V}{S} \times \left(\frac{C}{100 - C}\right)$$

여기서.

W: 소화약제의 무게[kg] V: 방호구역의 체적[\mathfrak{m}^{2}]

S : 소화약제별 선형상수 $(K_1+K_2 imes t)$ [㎡/kg] : 표로 주어짐

C : 체적에 따른 소화약제의 설계농도[%]

설계농도=소화농도 × 안전계수(A, C급: 1.2, B급: 1.3) (문제에서 주어짐)

t : 방호구역의 최소예상온도[\circ]

② 불활성기체소화약제

$$X = 2.303 \times \frac{V_S}{S} \times \log_{10} \left(\frac{100}{100 - C} \right) \times V$$

여기서.

X : 공간체적 당 더해진 소화약제의 부피[$\mathbb{m}^3/\mathbb{m}^3$]

S: 소화약제별 선형상수 $(K_1+K_2\times t)$ [m³/kg]

V_c: 20℃에서 소화약제의 비체적[m³/kg]

$$V_S\!=\!(K_1\!+\!K_2\! imes\!20$$
°C) : 상온(20°C에서는 $\dfrac{V_S}{S}\!=\!1$ 이 된다.)

C: 체적에 따른 소화약제의 설계농도[%]

설계농도=소화농도×안전계수(A, C급: 1.2, B급: 1.3) (문제에서 주어짐)

t : 방호구역의 최소예상온도[\circ]

V: 방호구역체적[m]

4. 분말소화설비

(1) 전역방출방식

소화약제저장량[kg]=방호구역체적[m²]×소요약제량[kg/m²]+개구부면적[m²]×개구부가산량[kg/m²]

※ 소요약제량 및 개구부가산량

소화약제의 종별	소요약제량	개구부가산량(자동폐쇄장치 미설치시 적용)
제1종 분말	$0.6 \mathrm{kg/m^3}$	$4.5 \mathrm{kg/m^2}$
제2 · 3종 분말	0.36kg/m^3	$2.7\mathrm{kg/m^2}$
제4종 분말	$0.24 \mathrm{kg/m^3}$	$1.8 \mathrm{kg/m^2}$

(2) 국소방출방식

① 윗면이 개방된 용기, 연소면이 1면에 한정되고 가연물이 비산할 우려가 없는 경우

소화약제의 종별	소화약제저쟝량
제1종 분말	방호대상물 표면적[㎡]×8.8㎏/㎡×1.1
제2 · 3종 분말	방호대상물 표면적[㎡]×5.2kg/㎡×1.1
제4종 분말	방호대상물 표면적[㎡]×3.6kg/㎡×1.1

② 기**타**

$$Q = X - Y \left(\frac{a}{A}\right) \times 1.1$$

여기서,

Q : 단위체적당 소화약제의 양 $[kg/m^2]$ a : 방호대상물의 주변에 설치된 벽면적의 합계 $[m^2]$

A : 방호공간의 벽면적의 합계 $[m^2]$ X, Y : 수치

〈가압송수장치(전양정)-펌프방식〉

1. 옥내소화전설비

 $H = h_1 + h_2 + h_3 + 17$

여기서,

H: 전양정[m]

 h_1 : 소방호스의 마찰손실수두[m]

 h_2 : 배관 및 관부속품의 마찰손실수두[m]

 h_3 : 실양정(흡입양정+토출양정)[m]

17 : 옥내소화전설비 규정방수압력의 환산수두[m](0.17MPa→약 17m)

2. 옥외소화전설비

 $H = h_1 + h_2 + h_3 + 25$

여기서,

H: 전양정[m]

 h_1 : 소방호스의 마찰손실수두[m]

 h_2 : 배관 및 관부속품의 마찰손실수두[m]

 h_3 : 실양정(흡입양정+토출양정)[m]

25 : 옥외소화전설비 규정방수압력의 환산수두[m](0.25MPa→약 25m)

3. 스프링클러설비

 $H = h_1 + h_2 + 10$

여기서.

H: 전양정[m]

 $h_{
m l}$: 배관 및 관부속품의 마찰손실수두[m]

 h_2 : 실양정(흡입양정+토출양정)[m]:

10 : 스프링클러설비 규정방수압력의 환산수두[m](0.1MPa→약 10m)

4. 포소화설비

 $H = h_1 + h_2 + h_3 + h_4$

여기서,

H: 전양정[m]

 h_1 : 방출구의 설계압력환산수두 또는 노즐선단의 방사압력환산수두[m]

 h_2 : 배관 및 관 부속품의 마찰손실수두[m]

 h_3 : 낙차[m]

 h_4 : 소방호스의 마찰손실수두[m]