Chapter 3: Integration

 $(\Omega, \mathcal{F}, \mu), f: \Omega \to \mathbb{R}$ measurable.

Notation.

$$\int f d\mu = \int_{\Omega} f(\omega) d\mu(\omega) = \int_{\Omega} f(\omega) \mu(d\omega).$$

Definition: integration

For a simple function $f(\omega) = \sum_{i=1}^{n} a_i I_{A_i}(\omega), A_i \in \mathcal{F}$, we define

$$\int_{\Omega} f d\mu = \sum_{i=1}^{n} a_i \mu(A_i).$$

For any $B \in \mathcal{F}$, define

$$\int_{B} f d\mu = \sum_{i=1}^{n} a_{i} \mu(A_{i} \cap B).$$

Example.

- 1) $\int_{\Omega} I_A d\mu = \mu(A).$
- 2) $f = \sum_{i=1}^{n} a_i I_{A_i}$, then $\int f \ d\lambda$ is the Riemann integral.
- 3) Recall Theorem 12.4 (F non-decreasing, right continuous, real-valued, there exists a unique measure μ on $\mathcal{B}(\mathbb{R})$ satisfying $\mu((a,b]) = F(b) F(a)$. And $\mu((a,b)) = \mu((a,b^-)) = F(b^-) F(a)$). μ is called the **Lebesgue-Stietjes measure** given by F. Suppose f is a non-negative Riemann integrable function, and suppose F is defined by $F(x) = \int_{-\infty}^{x} f(y) \ dy$. Then for a < b,

$$\int_{\mathbb{R}} I_{(a,b]} d\mu = \mu((a,b]) = F(b) - F(a) = \int_{a}^{b} f(x) \ dx.$$

Moreover,

$$\int_{\mathbb{R}} I_{([a,b])} = \mu((-\infty,b]) - \mu((-\infty,a^{-}]) = F(b) - F(a^{-}).$$

${f Definition}$

 $(\Omega, \mathcal{F}, \mu), f: \Omega \to \mathbb{R}$ measurable. If f is non-negative, define, for any

 $A \in \mathcal{F}$,

$$\int_A f \ d\mu = \sup \int_A s \ d\mu$$

where the supremum is taken over all simple functions s where $0 \le s(\omega) \le f(\omega) \ \forall \ \omega \in A$.

Note. This is well-defined since $s(\omega) = 0 \ \forall \ \omega \in \Omega$ is one element in the set. If the supremum is infinite, we say either "f is not integrable over A" or "f has infinite integral over A".

Facts:

1) $0 \le f \le g \Rightarrow \int_A f \ d\mu \le \int_A g \ d\mu$.

2) $A \subseteq B \Rightarrow \int_A f \ d\mu \le \int_B f \ d\mu$.

Proof

Take any simple $s: \Omega \to \mathbb{R}$ such that 0 < s < f. Then s can be written as $s(\omega) = \sum_{i=1}^n a_i I_{A_i}(\omega)$ for some partition A_1, \ldots, A_n of A, assuming a_i are distinct. Then

$$A \subseteq B \Rightarrow A_i \cap A \subseteq A_i \cap B \Rightarrow \mu(A_i \cap A) \leq \mu(A_i \cap B)$$

so

$$\int_{A} s \ d\mu = \sum_{i=1}^{n} a_{i} \mu(A_{i} \cap A)$$

$$\leq \sum_{i=1}^{n} a_{i} \mu(A_{i} \cap B)$$

$$= \int_{B} s \ d\mu$$

Since s is arbitrary, this relationship should hold for the suprema:

$$\int_A f \ d\mu = \sup_{0 \le s \le f} \int_A s \ d\mu \le \sup_{0 \le s \le f} \int_B s \ d\mu = \int_B f \ d\mu.$$

3) For c > 0 constant, then $\int_A cf d\mu = c \int_A f d\mu$.

2

Proof

 $0 \le s_1 \le cf$. Define $s_2 = \frac{s_1}{c}$ is still simple. And constants can be taken out of supremum. \Box

- 4) $\mu(A) = 0 \Rightarrow \int_A f d\mu = 0$.
- 5) $\int_A f d\mu = \int_{\Omega} I_A \cdot f d\mu$.

More: Let S_1, S_2 be simple, then

- 1) $\int_A (s_1 + s_2) d\mu = \int_A s_1 d\mu + \int_A s_2 d\mu$.
- 2) Define $\nu(A) = \int_A s \ d\mu$. Then can show that ν is another measure on Ω, \mathcal{F} .

Theorem: Lebesgue's Monotone Convergence Theorem

Let (f_n) be a sequence of measurable functions on $(\Omega, \mathcal{F}, \mu)$. Suppose $0 \leq f_1(\omega) \leq f_2(\omega) \leq \ldots \; \forall \; \omega \in \Omega \text{ and that } \lim_{n \to \infty} f_n(\omega) = f(\omega) \; \forall \; \omega \in \Omega,$ then

$$\lim_{n \to \infty} \int f_n \ d\mu = \int f \ d\mu.$$

Proof

We have three cases.

1) Some f_n are not integrable.

That is, $\int f_n d\mu = \infty$. Then given M > 0, there exists a simple s with $0 \le s \le f_n$ and $\int s d\mu > M$. Since $f_n \nearrow f$, then $0 \le s \le f_n \le f$. Hence, $\int f d\mu = \infty = \lim_{n \to \infty} \int f_n d\mu$.

2) All f_n are integrable but $(\int f_n d\mu)$ diverges.

If we assume divergence, then for any constant M>0, there exists N such that $\int f_n d\mu > M+1 \ \forall \ n \geq M$. So $\lim_{n \to \infty} \int f_n \ d\mu = \infty$. By the definition of $\int f_n d\mu$, there exists a simple $s, 0 \leq s \leq f_n$ such that $\int s d\mu > M \ \forall \ n \geq N$. Since $0 \leq s \leq f_n \leq f$, this s can make $\int f d\mu$ as large as we want. Hence $\int f \ d\mu = \lim_{n \to \infty} \int f_n d\mu = \infty$.

3) All f_n are integrable and $(\int f_n d\mu)$ converges.

 $f_n \leq f_{n+1} \Rightarrow \int f_n d\mu \leq \int f_{n+1} d\mu \Rightarrow \lim_{n \to \infty} \int f_n d\mu = \sup_n \left\{ \int f_n d\mu \right\} \equiv c$. We need to show that f is integrable and the integral equals c.

Let s be simple with $0 \le s \le f$. Let b be any constant (0,1). Define

$$A_n = \{\omega : f_n(\omega) \ge b \cdot s(\omega)\}.$$

Note that $A_n \in \mathcal{F}$ because both f_n, bs are both measurable and by the last theorem in lecture 17.