MeWadiuwe eksec So Atool folls a bkay To filo fild. J. C. Ghan a bkAlborition

Channel Allocation Problem

Static Dynamic

- Static Allocation
- Dynamic Allocation

Static Allocation Static Allocation Static Dynamic The division of bandwidth may be done using TDM or FDM - Divide the available bandwidth into - Hence there will be - Problems - The division of bandwidth is static. • We may have • Or we may have • As the number of users changes we would like the - Traffic is generally not constant. Hence some

MeMadiuwe desegs of foot Substydery Topio 1801 Chanae PAN Bozition

Static Allocation

Static Dynamic

• Consider the mean time delay (T) for a channel

$$T = \frac{1}{\mu C - \lambda}$$

- 1/μ _____
- Now consider dividing the channel into N subchannels

$$T_{FDM} = \; \frac{1}{\mu(C/N) - (\lambda/N)} = \frac{N}{\mu C - \lambda} \label{eq:FDM}$$

- The mean time delay T_{FDM} becomes _____

MeWadiuAccessessaftooltsalsayayayayayayiyogosada J.C.GhanabAAlboaition

Dynamic	Allocation
Five key conce	ents of dynamic c

Static **Dynamic**

Five key concepts of dynamic channel allocation:

- 1. Station Model.
 - N independent stations _______
 - Probability _____
 - Once a frame is generated _______
- 2. Single Channel Assumption
 - A single channel is available
- 3. Collision Assumption
 - If two stations transmit simultaneously _____
 - All stations ______

