

Kernel Methods

# Support Vector Regresssion

## **Motivation**

## **Regression Model with Noise**

The regression task is modeled as

$$y_n = g(\mathbf{x}_n) + \eta_n, \quad n = 1, 2, \dots, N$$

where  $\eta_n$  represents i.i.d. noise.

• Optimization in the presence of outliers (heavy-tailed distributions)



# Optimal Loss Functions for Regression with Noise

#### **Huber Loss Function**

Assuming a symmetric pdf for the noise, the optimal minmax strategy for regression:

$$L(y, f(\mathbf{x})) = \begin{cases} \epsilon |y - f(\mathbf{x})| - \frac{\epsilon^2}{2}, & \text{if } |y - f(\mathbf{x})| > \epsilon, \\ \frac{1}{2}|y - f(\mathbf{x})|^2, & \text{if } |y - f(\mathbf{x})| \le \epsilon. \end{cases}$$

#### $\epsilon$ -Insensitive Loss Function

An alternative that enhances computational efficiency:

$$L(y, f(x)) = \begin{cases} |y - f(x)| - \epsilon, & \text{if } |y - f(x)| > \epsilon, \\ 0, & \text{if } |y - f(x)| \le \epsilon. \end{cases}$$

 $\epsilon$ -Insensitive loss promotes sparsity in the solution, making it particularly useful in support vector machines for regression.



## **Support Vector Regression I**

## **Slack Variables**

$$y_n - f(\mathbf{x}_n) \le \epsilon + \xi_n$$
  
 $-(y_n - f(\mathbf{x}_n)) \le \epsilon + \tilde{\xi}_n$ 



## **Support Vector Regression II**

#### **Regularized Minimization of Slack Variables**

The optimization problem is formulated as a regularized minimization task:

$$\min_{\boldsymbol{\theta},\boldsymbol{\xi},\tilde{\boldsymbol{\xi}}} \left( \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \left( \sum_{n=1}^{N} (\xi_n) + \sum_{n=1}^{N} (\tilde{\xi}_n) \right) \right)$$

subject to the constraints:

$$y_n - f(x_n) \le \epsilon + \xi_n,$$
  
$$-(y_n - f(x_n)) \le \epsilon + \tilde{\xi}_n,$$
  
$$\xi_n, \tilde{\xi}_n \ge 0.$$



# **Support Vector Regression III**

#### **Lagrangian Formulation**

The optimization task is approached by introducing Lagrange multipliers. The optimal solution  $\hat{\theta}$  is then expressed as:

$$\hat{\theta} = \sum_{n=1}^{N} (\tilde{\lambda}_n - \lambda_n) x_n$$

#### **Support Vector Identification**

Support vectors are identified as points where the error is at least  $\epsilon$ . Points with errors less than  $\epsilon$  have zero Lagrange multipliers and thus do not influence the solution.

May 14, 2024 DTU Compute Support Vector Regression



## Support Vector Regression IV

#### Solution in RKHS

Assume  $f(\mathbf{x}) = \theta^T \mathbf{x} + \theta_0$ . For tasks solved in a Reproducing Kernel Hilbert Space (RKHS), replace inner product with the kernel function mappings  $\kappa(\cdot, x_n)$ :

$$\hat{\theta}(\cdot) = \sum_{n=1}^{N} (\tilde{\lambda}_n - \lambda_n) \kappa(\cdot, x_n)$$

#### **Prediction**

Given a new input x, the prediction  $\hat{y}(x)$  is calculated as:

$$\hat{y}(x) = \sum_{n=1}^{N_s} (\tilde{\lambda}_n - \lambda_n) \kappa(x, x_n) + \hat{\theta}_0$$

where  $N_s$  is the number of support vectors, showing how  $\epsilon$ -insensitive loss leads to sparsity in the model.



# Support Vector Regression V

## **Objective Function**

Dual representation form:

$$\arg\max_{\tilde{\lambda},\lambda}\left(\sum_{n=1}^{N}(\tilde{\lambda}_{n}-\lambda_{n})y_{n}-\epsilon\sum_{n=1}^{N}(\tilde{\lambda}_{n}+\lambda_{n})-\frac{1}{2}\sum_{n=1}^{N}\sum_{m=1}^{N}(\tilde{\lambda}_{n}-\lambda_{n})(\tilde{\lambda}_{m}-\lambda_{m})\kappa(x_{n},x_{m})\right)$$

Constraints for each n = 1, 2, ..., N:

• 
$$0 \leq \tilde{\lambda}_n \leq C$$

• 
$$0 \le \lambda_n \le C$$

• 
$$\sum_{n=1}^{N} \tilde{\lambda}_n = \sum_{n=1}^{N} \lambda_n$$



# 13.2 Smoothing using kernel methods

```
gamma = 1/(np.square(kernel_params))
regressor = SVR(kernel='rbf', gamma=gamma, C=C, epsilon=epsilon)
regressor.fit(x_col,y_row)
y_pred = regressor.predict(t_col)
```



Figure:  $\sigma = 0.004$ , C = 1e - 2