Trabalho. Ajuste de curva e interpolação polinomial

Profa. Dra. Fernanda Paula Barbosa Pola

Exercícios - Implementação

Exercício 1) Dada a tabela abaixo, calcule $e^{3.1}$ utilizando um polinômio interpolador construído a partir de 2, 3, e 4 pontos convenientemente escolhidos. Faça um gráfico no intervalo [2.4, 3.8] de e^x , dos três polinômios obtidos e indique todos os pontos tabelados. Utilize uma ferramenta computacional.

X	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8
e^{x}	11.02	13.46	16.44	20.08	24.53	29.96	36.59	44.70

Exercício 2) Sabe-se que ao longo da linha vermelha a velocidade máxima permitida é de 90Km/h e foram colocados radares para medir a velocidade instantânea dos carros. Suponha que numa distância d = 1.0Km/h, um motorista conferiu através do velocímetro (suponha que o velocímetro seja exato) as seguintes velocidade:

Distância	0	0.2	0.3	0.5	0.8	1.0
Velocidade	80	85	88	92	85	80

- a) Considere um radar colocado na posição d=0.4. Usando um polinômio interpolador de grau dois ou menor, calcule:
- i) Velocidade aproximada neste ponto.
- ii) Erro na interpolação neste ponto.
- iii) Podemos concluir que o carro não será multado?
- b) Usando o Método dos Mínimos Quadrados faça uma regressão linear e calcule a velocidade esperada em d=1.1 .
- c) Usando o Método dos Mínimos Quadrados determine o polinômio de segundo grau e calcule a velocidade esperada em d=1.1

REFERÊNCIAS

- M. A. Gomes Ruggiero, V. L. da Rocha Lopes. Cálculo Numérico - Aspectos Teóricos e Computacionais, 2ª edição, Editora Pearson, 1997.
- M.C. Cunha. Métodos Numéricos. 2a edição, Editora da Unicamp, 2000.
- N.B. Franco. Cálculo Numérico. Pearson Prentice Hall, 2007.
- Richard L. Burden e J. Douglas Faires, Análise Numérica, Cengage Learning, Tradução da 8. Ed. Americana, 2008