Conjugate gradient method

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

Strongly convex quadraticsConsider the following quadratic optimization problem:

Optimality conditions

$$\min_{x \in \mathbb{R}^n} f(x) = \min_{x \in \mathbb{R}^n} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^n_{++}. \tag{1}$$

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

$$\nabla f(x_k)^T \nabla f(x_{k+1}) = 0$$

Optimal value for quadratics

$$\nabla f(x_k)^{\top} A(x_k - \alpha \nabla f(x_k)) - \nabla f(x_k)^{\top} b = 0 \qquad \alpha_k = \frac{\nabla f(x_k)^{\top} \nabla f(x_k)}{\nabla f(x_k)^{\top} A \nabla f(x_k)}$$

Trajectories with Contour Plot

Figure 1: Steepest Descent

Open In Colab 🐥

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^TIx$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^TA\hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^TA\hat{z}$$

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^TIx$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^TA\hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^T A \hat{x} = \frac{1}{2}\hat{x}^T Q \Lambda Q^T \hat{x}$$

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^TIx$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^TA\hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^{T}A\hat{x} = \frac{1}{2}\hat{x}^{T}Q\Lambda Q^{T}\hat{x} = \frac{1}{2}\hat{x}^{T}Q\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}Q^{T}\hat{x}$$

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^TIx$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^TA\hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^{T}A\hat{x} = \frac{1}{2}\hat{x}^{T}Q\Lambda Q^{T}\hat{x} = \frac{1}{2}\hat{x}^{T}Q\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}Q^{T}\hat{x} = \frac{1}{2}x^{T}Ix$$

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^TIx$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^TA\hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2} \hat{x}^T A \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda Q^T \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^T \hat{x} = \frac{1}{2} x^T I x \qquad \text{if } x = \Lambda^{\frac{1}{2}} Q^T \hat{x}$$

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^T I x$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2} \hat{x}^T A \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda Q^T \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^T \hat{x} = \frac{1}{2} x^T I x \qquad \text{if } x = \Lambda^{\frac{1}{2}} Q^T \hat{x} \text{ and } \hat{x} = Q \Lambda^{-\frac{1}{2}} x$$

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^T I x$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2} \hat{x}^T A \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda Q^T \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^T \hat{x} = \frac{1}{2} x^T I x \qquad \text{if } x = \Lambda^{\frac{1}{2}} Q^T \hat{x} \text{ and } \hat{x} = Q \Lambda^{-\frac{1}{2}} x$$

Suppose, we have two coordinate systems and some quadratic function $f(x) = \frac{1}{2}x^TIx$ looks just like on the left part of Figure 2, while in another coordinates it looks like $f(\hat{x}) = \frac{1}{2}\hat{x}^TA\hat{x}$, where $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

Since $A = Q\Lambda Q^T$:

$$\frac{1}{2}\hat{x}^TA\hat{x} = \frac{1}{2}\hat{x}^TQ\Lambda Q^T\hat{x} = \frac{1}{2}\hat{x}^TQ\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}Q^T\hat{x} = \frac{1}{2}x^TIx \qquad \text{if } x = \Lambda^{\frac{1}{2}}Q^T\hat{x} \text{ and } \hat{x} = Q\Lambda^{-\frac{1}{2}}x$$

Vectors $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ are called A-orthogonal (or A-conjugate) if

$$x^T A y = 0 \Leftrightarrow x \perp_A y$$

When A = I, A-orthogonality becomes orthogonality.

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0,\ldots,d_{n-1} .

Figure 3: Illustration of Gram-Schmidt orthogonalization process

എ റ ഉ

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal $d_0,\ldots,d_{n-1}.$

Figure 4: Illustration of Gram-Schmidt orthogonalization process

എ റ ഉ

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0,\ldots,d_{n-1} .

Figure 5: Illustration of Gram-Schmidt orthogonalization process

Orthogonality

♥ റ ഉ

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0,\ldots,d_{n-1} .

Figure 6: Illustration of Gram-Schmidt orthogonalization process

എ റ ഉ

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Figure 7: Illustration of Gram-Schmidt orthogonalization process

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

$$d_0 = u_0$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

$$d_0 = u_0 d_1 = u_1 - \pi_{d_0}(u_1)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

$$\vdots$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

$$\vdots$$

$$d_k = u_k - \sum_{i=0}^{k-1} \pi_{d_i}(u_k)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

$$\vdots$$

$$d_k = u_k - \sum_{i=0}^{k-1} \pi_{d_i}(u_k)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

$$\vdots$$

$$d_k = u_k - \sum_{i=0}^{k-1} \pi_{d_i}(u_k)$$

$$d_k = u_k + \sum_{i=1}^{k-1} \beta_{ik} d_i \qquad \beta_{ik} = -\frac{\langle d_i, u_k \rangle}{\langle d_i, d_i \rangle}$$

• In an isotropic A=I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.

- In an isotropic A=I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.
- Suppose, we have a set of n linearly independent A-orthogonal directions d_0, \ldots, d_{n-1} (which will be computed with Gram-Schmidt process).

- In an isotropic A=I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.
- Suppose, we have a set of n linearly independent A-orthogonal directions d_0, \ldots, d_{n-1} (which will be computed with Gram-Schmidt process).
 We would like to build a method, that goes from x_0 to the x^* for the quadratic problem with stepsizes α .
- We would like to build a method, that goes from x_0 to the x^* for the quadratic problem with stepsizes α_i , which is, in fact, just decomposition of $x^* x_0$ to some basis:

$$x^* = x_0 + \sum_{i=0}^{n-1} \alpha_i d_i$$
 $x^* - x_0 = \sum_{i=0}^{n-1} \alpha_i d_i$

- In an isotropic A = I world, the steepest descent starting from an arbitrary point in any n orthogonal linearly independent directions will converge in n steps in exact arithmetic. We attempt to construct the same procedure in the case $A \neq I$ using the concept of A-orthogonality.
- Suppose, we have a set of n linearly independent A-orthogonal directions d_0,\ldots,d_{n-1} (which will be computed with Gram-Schmidt process).
- We would like to build a method, that goes from x_0 to the x^* for the quadratic problem with stepsizes α_i , which is, in fact, just decomposition of $x^* - x_0$ to some basis:

$$x^* = x_0 + \sum_{i=0}^{n-1} \alpha_i d_i$$
 $x^* - x_0 = \sum_{i=0}^{n-1} \alpha_i d_i$

• We will prove, that α_i and d_i could be selected in a very efficient way (Conjugate Gradient method).

Thus, we formulate an algorithm:

1. Let k=0 and $x_k=x_0$, count $d_k=d_0=-\nabla f(x_0)$.

Thus, we formulate an algorithm:

- 1. Let k = 0 and $x_k = x_0$, count $d_k = d_0 = -\nabla f(x_0)$.
- 2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f(x_k + \alpha_k d_k)$ by the formula

$$\alpha_k = -\frac{d_k^{\top} (Ax_k - b)}{d_k^{\top} A d_k} \tag{3}$$

Thus, we formulate an algorithm:

- 1. Let k=0 and $x_k=x_0$, count $d_k=d_0=-\nabla f(x_0)$.
- 2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f(x_k + \alpha_k d_k)$ by the formula

$$\alpha_k = -\frac{d_k^{\top} (Ax_k - b)}{d_k^{\top} A d_k} \tag{3}$$

3. We're doing an algorithm step:

$$x_{k+1} = x_k + \alpha_k d_k$$

Thus, we formulate an algorithm:

- 1. Let k=0 and $x_k=x_0$, count $d_k=d_0=-\nabla f(x_0)$.
- 2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f(x_k + \alpha_k d_k)$ by the formula

$$\alpha_k = -\frac{d_k^{\top} (Ax_k - b)}{d_k^{\top} A d_k} \tag{3}$$

3. We're doing an algorithm step:

$$x_{k+1} = x_k + \alpha_k d_k$$

4. Update the direction: $d_{k+1} = -\nabla f(x_{k+1}) + \beta_k d_k$ in order to make $d_{k+1} \perp_A d_k$, where β_k is calculated by the formula:

$$\beta_k = \frac{\nabla f(x_{k+1})^\top A d_k}{d_{-}^\top A d_k}.$$

Thus, we formulate an algorithm:

- 1. Let k=0 and $x_k=x_0$, count $d_k=d_0=-\nabla f(x_0)$.
- 2. By the procedure of line search we find the optimal length of step. Calculate α minimizing $f(x_k + \alpha_k d_k)$ by the formula

$$\alpha_k = -\frac{d_k^{\top} (Ax_k - b)}{d_k^{\top} A d_k} \tag{3}$$

3. We're doing an algorithm step:

$$x_{k+1} = x_k + \alpha_k d_k$$

4. Update the direction: $d_{k+1} = -\nabla f(x_{k+1}) + \beta_k d_k$ in order to make $d_{k+1} \perp_A d_k$, where β_k is calculated by the formula:

$$\beta_k = \frac{\nabla f(x_{k+1})^\top A d_k}{d_k^\top A d_k}.$$

5. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension of x).

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}^n_{++}$.

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}_{++}^n$.

Proof

We'll show, that if $\sum \alpha_i d_i = 0$, than all coefficients should be equal to zero:

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}^n_{++}$.

Proof

We'll show, that if $\sum_i \alpha_i d_i = 0$, than all coefficients should be equal to zero:

$$0 = \sum_{i=1}^{n} \alpha_i d_i$$

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}^n_{++}$.

Proof

We'll show, that if $\sum \alpha_i d_i = 0$, than all coefficients should be equal to zero:

$$0 = \sum_{i=1}^n \alpha_i d_i$$
 Multiply by $d_j^T A \cdot = d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i \right)$

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}^n_{++}$.

Proof

We'll show, that if $\sum lpha_i d_i = 0$, than all coefficients should be equal to zero:

$$0 = \sum_{i=1}^n \alpha_i d_i$$
 Multiply by $d_j^T A \cdot = d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i \right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i$

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}^n_{++}$.

Proof

We'll show, that if $\sum \alpha_i d_i = 0$, than all coefficients should be equal to zero:

$$\begin{aligned} 0 &= \sum_{i=1}^n \alpha_i d_i \\ \text{Multiply by } d_j^T A \cdot &= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i \right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i \\ &= \alpha_j d_j^\top A d_j + 0 + \ldots + 0 \end{aligned}$$

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}^n_{++}$.

Proof

We'll show, that if $\sum \alpha_i d_i = 0$, than all coefficients should be equal to zero:

$$\begin{aligned} 0 &= \sum_{i=1}^n \alpha_i d_i \\ \text{Multiply by } d_j^T A \cdot &= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i \right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i \\ &= \alpha_j d_j^\top A d_j + 0 + \ldots + 0 \end{aligned}$$

Lemma 1. Linear independence of A-conjugate vectors.

If a set of vectors d_1, \ldots, d_n - are A-conjugate (each pair of vectors is A-conjugate), these vectors are linearly independent. $A \in \mathbb{S}^n_{++}$.

Proof

We'll show, that if $\sum_i \alpha_i d_i = 0$, than all coefficients should be equal to zero:

$$\begin{aligned} 0 &= \sum_{i=1}^n \alpha_i d_i \\ \text{Multiply by } d_j^T A \cdot &= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i \right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i \\ &= \alpha_j d_j^\top A d_j + 0 + \ldots + 0 \end{aligned}$$

Thus, $\alpha_j = 0$, for all other indices one have perform the same process

We will introduce the following notation:

• $r_k = b - Ax_k$ - residual,

We will introduce the following notation:

- $r_k = b Ax_k$ residual,
- $e_k = x_k x^*$ error.

We will introduce the following notation:

- $r_k = b Ax_k$ residual.
- $e_k = x_k x^*$ error.
- Since $Ax^* = b$, we have $r_k = b Ax_k = Ax^* Ax_k = -A(x_k x^*)$

$$r_k = -Ae_k$$
.

(4)

We will introduce the following notation:

- $r_k = b Ax_k$ residual.
- $e_k = x_k x^*$ error.
- Since $Ax^* = b$, we have $r_k = b Ax_k = Ax^* Ax_k = -A(x_k x^*)$

$$r_k = -Ae_k$$

• Note also, that since $x_{k+1} = x_0 + \sum_{i=1}^k \alpha_i d_i$, we have

$$e_{k+1} = e_0 + \sum_{i=1}^{k} \alpha_i d_i.$$

(4)

(5)

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$x_{k+1} = x_0 + \sum_{i=0}^k \alpha_i d_i$$

with $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, Ad_i \rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$x_{k+1} = x_0 + \sum_{i=0}^{k} \alpha_i d_i$$

with $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, Ad_i \rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_i = -\alpha_i$:

$$e_0 = x_0 - x^* = \sum_{i=1}^{n-1} \delta_i d_i$$

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$x_{k+1} = x_0 + \sum_{i=0}^{k} \alpha_i d_i$$

with $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, Ad_i \rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

1. We need to prove, that $\delta_i = -\alpha_i$:

$$e_0 = x_0 - x^* = \sum_{i=1}^{n-1} \delta_i d_i$$

Lemma 2. Convergence of conjugate direction method.

Suppose, we solve n-dimensional quadratic convex optimization problem (1). The conjugate directions method

$$x_{k+1} = x_0 + \sum_{i=0}^{\kappa} \alpha_i d_i$$

with $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, d_i \rangle}$ taken from the line search, converges for at most n steps of the algorithm.

Proof

2. We multiply both handsides from the left by $d_k^T A$:

1. We need to prove, that $\delta_i = -\alpha_i$:

2. We multiply both handsides from the left by
$$d_{k}^{-1}$$

we need to prove, that
$$\delta_i = -\alpha_i$$
.
$$d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i = \delta_k d_k^T A d_k$$

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^T A \left(e_0 + \sum_{i=0}^{k-1} \alpha_i d_i \right) = d_k^T A e_k = \delta_k d_k^T A d_k \quad (A - \text{ orthogonality})$$

$$\delta_k = \frac{d_k^T A e_k}{d^T A d_k} = -\frac{d_k^T r_k}{d^T A d_k} \Leftrightarrow \delta_k = -\alpha_k$$

Lemma 3. Error decomposition

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{6}$$

Lemma 3. Error decomposition

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{6}$$

Proof

$$e_i = e_0 + \sum_{j=0}^{i-1} \alpha_j d_j$$

Lemma 3. Error decomposition

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{6}$$

Proof

$$e_i = e_0 + \sum_{j=0}^{i-1} \alpha_j d_j = x_0 - x^* + \sum_{j=0}^{i-1} \alpha_j d_j$$

Lemma 3. Error decomposition

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{6}$$

Proof

$$e_i = e_0 + \sum_{j=0}^{i-1} \alpha_j d_j = x_0 - x^* + \sum_{j=0}^{i-1} \alpha_j d_j = -\sum_{j=0}^{n-1} \alpha_j d_j + \sum_{j=0}^{i-1} \alpha_j d_j$$

Lemma 3. Error decomposition

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{6}$$

Proof

$$e_i = e_0 + \sum_{j=0}^{i-1} \alpha_j d_j = x_0 - x^* + \sum_{j=0}^{i-1} \alpha_j d_j = -\sum_{j=0}^{n-1} \alpha_j d_j + \sum_{j=0}^{i-1} \alpha_j d_j = \sum_{j=i}^{n-1} -\alpha_j d_j$$

Lemma 4. Residual is orthogonal to all previous directions for CD

Consider residual of the CD method at k iteration r_k , then for any i < k:

$$d_i^T r_k = 0 (7)$$

Lemma 4. Residual is orthogonal to all previous directions for CD

Consider residual of the CD method at k iteration r_k , then for any i < k:

$$d_i^T r_k = 0$$

Proof

Let's write down (6) for some fixed index k:

$$e_k = \sum_{j=1}^{n-1} -\alpha_j d_j$$

Multiply both sides by $-d_i^T A$.

 $-d_i^T A e_k = \sum_{i=1}^{n-1} \alpha_j d_i^T A d_j = 0$

Thus, $d_i^T r_k = 0$ and residual r_k is orthogonal to all previous directions d_i for CD method.

(7)

• It is literally Conjugate Direction method, where we have a special (effective) choice of d_0, \ldots, d_{n-1} .

- It is literally Conjugate Direction method, where we have a special (effective) choice of d_0, \ldots, d_{n-1} .
- ullet In fact, we use Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from set of starting vectors.

- It is literally Conjugate Direction method, where we have a special (effective) choice of d_0,\ldots,d_{n-1} .
- ullet In fact, we use Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from set of starting vectors.
- The residuals on each iteration r_0, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.

- It is literally Conjugate Direction method, where we have a special (effective) choice of d_0, \ldots, d_{n-1} .
- In fact, we use Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from set of starting vectors.
- The residuals on each iteration r_0, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.
- The main idea is that for an arbitrary CD method the Gramm-Schmidt process is quite computationally expensive and requires a quadratic number of vector addition and scalar product operations $\mathcal{O}\left(n^2\right)$, while in the case of CG we will show that the complexity of this procedure can be reduced to linear $\mathcal{O}\left(n\right)$.

- It is literally Conjugate Direction method, where we have a special (effective) choice of d_0, \ldots, d_{n-1} .
- In fact, we use Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from set of starting vectors.
- The residuals on each iteration r_0, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.
- The main idea is that for an arbitrary CD method the Gramm-Schmidt process is quite computationally expensive and requires a quadratic number of vector addition and scalar product operations $\mathcal{O}\left(n^2\right)$, while in the case of CG we will show that the complexity of this procedure can be reduced to linear $\mathcal{O}\left(n\right)$.

- It is literally Conjugate Direction method, where we have a special (effective) choice of d_0, \ldots, d_{n-1} .
- In fact, we use Gram-Schmidt process with A-orthogonality instead of Euclidian orthogonality to get them from set of starting vectors.
- The residuals on each iteration r_0, \ldots, r_{n-1} are used as starting vectors for Gram-Schmidt process.
- The main idea is that for an arbitrary CD method the Gramm-Schmidt process is quite computationally expensive and requires a quadratic number of vector addition and scalar product operations $\mathcal{O}\left(n^2\right)$, while in the case of CG we will show that the complexity of this procedure can be reduced to linear $\mathcal{O}\left(n\right)$.

 $\mathsf{CG} = \mathsf{CD} + r_0, \dots, r_{n-1}$ as starting vectors for $\mathsf{Gram} ext{-}\mathsf{Schmidt} + A ext{-}\mathsf{orthogonality}.$

Lemma 5. Residuals are orthogonal to each other in the CG method

All residuals are pairwise orthogonal to each other in the CG method:

$$r_i^T r_k = 0 \qquad \forall i \neq k \tag{8}$$

Lemma 5. Residuals are orthogonal to each other in the CG method

Proof Let's write down Gram-Schmidt process (2)

$$r_i^T r_k = 0 \qquad \forall i \neq k$$

with $\langle \cdot, \cdot \rangle$ replaced with $\langle \cdot, \cdot \rangle_A = x^T A y$ $d_i = u_i + \sum_{j=1}^{\kappa-1} \beta_{ji} d_j \quad \beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} \quad (9)$

Multiply both sides of (9) by
$$r_k^T$$
 for some index k :
$$r_k^T d_k = r_k^T d_k + \sum_{k=1}^{k-1} \beta_k r_k^T d_k$$

Then, we use residuals as starting vectors for

 $r_k^T d_i = r_k^T u_i + \sum_{i=1}^{k-1} \beta_{ji} r_k^T d_j$ the process and $u_i = r_i$. $d_i = r_i + \sum_{j=0}^{k-1} \beta_{ji} d_j \quad \beta_{ji} = -\frac{\langle d_j, r_i \rangle_A}{\langle d_j, d_j \rangle_A} \quad \text{(10) If } j < i < k \text{, we have the lemma 4 with } d_i^T r_k = 0 \text{ and } d_j^T r_k = 0.$ And we have:

$$f \to \min_{x,y,z}$$
 Conjugate gradients (CG) method

 $r_i^T u_i = 0$ for CD $r_i^T r_i = 0$ for CG

(8)

index

Moreover, if k = i:

$$r_k^T d_k = r_k^T u_k + \sum_{j=0}^{k-1} \beta_{jk} r_k^T d_j = r_k^T u_k + 0,$$

and we have for any
$$k$$
 (due to arbitrary choice of i):
$$r_k^T d_k = r_k^T u_k.$$

$$r_{k+1} = -Ae_{k+1} = -A(e_k + \alpha_k d_k) = -Ae_k - \alpha_k Ad_k = r_k - \alpha_k Ad_k$$

Finally, all these above lemmas are enough to prove, that $\beta_{ji}=0$ for all i,j, except the neighboring ones.

 $r_{k+1} = r_k - \alpha_k A d_k$

(12)

(11)

Gram-Schimdt process in CG method

Consider the Gram-Schmidt process in CG method

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_j, d_j \rangle_A} = -\frac{d_j^T A u_i}{d_j^T A d_j} = -\frac{d_j^T A r_i}{d_j^T A d_j} = -\frac{r_i^T A d_j}{d_j^T A d_j}.$$

Consider the scalar product $\langle r_i, r_{j+1} \rangle$ using (12):

$$\langle r_i, r_{j+1} \rangle = \langle r_i, r_j - \alpha_j A d_j \rangle = \langle r_i, r_j \rangle - \alpha_j \langle r_i, A d_j \rangle$$
$$\alpha_j \langle r_i, A d_j \rangle = \langle r_i, r_j \rangle - \langle r_i, r_{j+1} \rangle$$

1. If i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. This case is not of our interest due to the GS process.

Finally, we have a formula for i = j + 1:

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_i^T A d_i} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_i^T A d_i} = \frac{d_j^T A d_j}{d_i^T r_i} \frac{\langle r_i, r_i \rangle}{d_i^T A d_i} = \frac{\langle r_i, r_i \rangle}{\langle r_i, r_i \rangle} = \frac{\langle r_i, r_i \rangle}{\langle r_{i-1}, r_{i-1} \rangle}$$

And for the direction
$$d_{k+1}=r_{k+1}+\beta_{k,k+1}d_k, \qquad \beta_{k,k+1}=\beta_k=\frac{\langle r_{k+1},r_{k+1}\rangle}{\langle r_{k+1},r_{k+1}\rangle}.$$

Gram-Schimdt process in CG method

Consider the Gram-Schmidt process in CG method

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_j, d_j \rangle_A} = -\frac{d_j^T A u_i}{d_j^T A d_j} = -\frac{d_j^T A r_i}{d_j^T A d_j} = -\frac{r_i^T A d_j}{d_j^T A d_j}.$$

Consider the scalar product $\langle r_i, r_{j+1} \rangle$ using (12):

$$\langle r_i, r_{j+1} \rangle = \langle r_i, r_j - \alpha_j A d_j \rangle = \langle r_i, r_j \rangle - \alpha_j \langle r_i, A d_j \rangle$$
$$\alpha_j \langle r_i, A d_j \rangle = \langle r_i, r_j \rangle - \langle r_i, r_{j+1} \rangle$$

- 1. If i=j: $\alpha_i \langle r_i, Ad_i \rangle = \langle r_i, r_i \rangle \langle r_i, r_{i+1} \rangle = \langle r_i, r_i \rangle$. This case is not of our interest due to the GS process.
- 2. Neighboring case i=j+1: $\alpha_j\langle r_i,Ad_j\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$

Finally, we have a formula for i = j + 1:

Conjugate gradients (CG) method

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_i^T A d_i} = \frac{1}{\alpha_i} \frac{\langle r_i, r_i \rangle}{d_i^T A d_i} = \frac{d_j^T A d_j}{d_i^T r_i} \frac{\langle r_i, r_i \rangle}{d_i^T A d_i} = \frac{\langle r_i, r_i \rangle}{\langle r_i, r_i \rangle} = \frac{\langle r_i, r_i \rangle}{\langle r_{i-1}, r_{i-1} \rangle}$$

And for the direction

and for the direction
$$d_{k+1}=r_{k+1}+\beta_{k,k+1}d_k, \qquad \beta_{k,k+1}=\beta_k=\frac{\langle r_{k+1},r_{k+1}\rangle}{\langle r_k,r_k\rangle}.$$

Gram-Schimdt process in CG method

Consider the Gram-Schmidt process in CG method

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_j, d_j \rangle_A} = -\frac{d_j^T A u_i}{d_j^T A d_j} = -\frac{d_j^T A r_i}{d_j^T A d_j} = -\frac{r_i^T A d_j}{d_j^T A d_j}.$$

Consider the scalar product $\langle r_i, r_{j+1} \rangle$ using (12):

$$\langle r_i, r_{j+1} \rangle = \langle r_i, r_j - \alpha_j A d_j \rangle = \langle r_i, r_j \rangle - \alpha_j \langle r_i, A d_j \rangle$$
$$\alpha_j \langle r_i, A d_j \rangle = \langle r_i, r_j \rangle - \langle r_i, r_{j+1} \rangle$$

- 1. If i=j: $\alpha_i \langle r_i, Ad_i \rangle = \langle r_i, r_i \rangle \langle r_i, r_{i+1} \rangle = \langle r_i, r_i \rangle$. This case is not of our interest due to the GS process.
- 2. Neighboring case i=j+1: $\alpha_j\langle r_i,Ad_j\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$ 3. For any other case: $\alpha_j\langle r_i,Ad_j\rangle=0$, because all residuals are orthogonal to each other.

Finally, we have a formula for i = j + 1:

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_i^T A d_i} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_i^T A d_i} = \frac{d_j^T A d_j}{d_i^T r_i} \frac{\langle r_i, r_i \rangle}{d_i^T A d_i} = \frac{\langle r_i, r_i \rangle}{\langle r_i, r_i \rangle} = \frac{\langle r_i, r_i \rangle}{\langle r_{i-1}, r_{i-1} \rangle}$$

And for the direction

And for the direction
$$d_{k+1}=r_{k+1}+\beta_{k,k+1}d_k, \qquad \beta_{k,k+1}=\beta_k=\frac{\langle r_{k+1},r_{k+1}\rangle}{\langle r_{k+1},r_{k+1}\rangle}.$$

Conjugate gradient method

$$\begin{split} \mathbf{r}_0 &:= \mathbf{b} - \mathbf{A} \mathbf{x}_0 \\ \text{if } \mathbf{r}_0 \text{ is sufficiently small, then return } \mathbf{x}_0 \text{ as the result} \\ \mathbf{d}_0 &:= \mathbf{r}_0 \\ k &:= 0 \\ \text{repeat} \\ & \alpha_k := \frac{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k}{\mathbf{d}_k^\mathsf{T} \mathbf{A} \mathbf{d}_k} \\ & \mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{d}_k \\ & \mathbf{r}_{k+1} := \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{d}_k \\ & \text{if } \mathbf{r}_{k+1} \text{ is sufficiently small, then exit loop} \\ & \beta_k := \frac{\mathbf{r}_{k+1}^\mathsf{T} \mathbf{r}_{k+1}}{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k} \\ & \mathbf{d}_{k+1} := \mathbf{r}_{k+1} + \beta_k \mathbf{d}_k \\ & k := k+1 \\ \text{end repeat} \end{split}$$

return \mathbf{x}_{k+1} as the result

Convergence

Theorem 1. If matrix A has only r different eigenvalues, then the conjugate gradient method converges in riterations.

Theorem 2. The following convergence bound holds

$$||x_k - x^*||_A \le 2 \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k ||x_0 - x^*||_A,$$

where $||x||_A^2 = x^\top Ax$ and $\kappa(A) = \frac{\lambda_1(A)}{\lambda_n(A)}$ is the conditioning number of matrix $A, \lambda_1(A) \geq ... \geq \lambda_n(A)$ are the eigenvalues of matrix A

Note: compare the coefficient of the geometric progression with its analog in gradient descent.

Non-linear conjugate gradient method

In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:

$$x_{k+1} - x_k = cd_k,$$

where c is some kind of constant. Then for the quadratic case, we have:

$$\nabla f(x_{k+1}) - \nabla f(x_k) = (Ax_{k+1} - b) - (Ax_k - b) = A(x_{k+1} - x_k) = cAd_k$$

Expressing from this equation the work $Ad_k = \frac{1}{c} \left(\nabla f(x_{k+1}) - \nabla f(x_k) \right)$, we get rid of the "knowledge" of the function in step definition β_k , then point 4 will be rewritten as:

$$\beta_k = \frac{\nabla f(x_{k+1})^\top (\nabla f(x_{k+1}) - \nabla f(x_k))}{d_k^\top (\nabla f(x_{k+1}) - \nabla f(x_k))}.$$

This method is called the Polack - Ribier method.