

Figure 1a

Figure 1b

Figure 1c

Best Available Copy

Figure 2. Nanostructured materials significantly reduce the cross-talk in the writing and reading processes by spatial isolation/separation of the active cores.

Figure 3b(i) Figure 3 b (ii)

Fig 3c(i) Fig 3c(ii

Figure 4a: Definitions of r, the spacin between the bits, and R, the radius o the diffraction pattern.

Figure 4b: Basis vectors and o the Lattice Translations

Figure 5 (top left) Laser confocal fluorescent microscopy image of nano-particle array.² The bits have core diameter 650 ± 20 nm and shell thickness 200 ± 5 nm . $\lambda_{Fluorescnce} \sim 500$ nm, $\lambda_{two-photon} = 844$ nm. Resolution is approximately 256x256 samples. A data pattern has been photo-bleached into material (top right) After filtering and deconvolution approximate Gaussian point spread function. (bottom right) simulation of equivalent data with a sine squared basis bit (bottom left) with simulated point-spread function of diameter, 750nm and signal to noise ratio of 10.

IOOISIES IEI/GI

Figure 6a $r \sim \lambda$ Overlap = 0%

Figure 6c $r \sim \lambda/4$ Overlap = 75%

Figure 6b r ~ λ/2 Overlap = 50% Rayleigh Limit

Figure 6d $r \sim \lambda/8$ Overlap = 90%

Figure 7: Bit distributions

Figure 8a

Figure 8b

Figure 8c

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

D BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.