Bayesian optimisation

Gilles Louppe
ATLAS ML workshop

March 30, 2016

Problem statement

$$x^* = \arg\max_{x} f(x)$$

Constraints:

- f is a black box for which no closed form is known;
 - **gradients** $\frac{df}{dx}$ are not available.
- f is expensive to evaluate;
- uncertainty on observations y_i of f (i.e., $y_i = f(x_i) + \epsilon_i$).

Goal: find x^* while minimizing the number of evaluations f(x).

Disclaimer

If you do not have these constraints, there is certainly a better optimisation algorithm than Bayesian optimisation.

(e.g., L-BFGS-B, Powell's method (as in Minuit), etc)

Bayesian optimisation

for t = 1 : T,

- 1. Given observations (x_i, y_i) for i = 1 : t, build a probabilistic model for the objective f;
- 2. Compute the posterior predictive distribution;
 - Integrate out all possible true functions, using Gaussian process regression.
- 3. Optimise a cheap utility function *u* based on the posterior for sampling the next point.

$$x_{t+1} = \arg \max_{x} u(x)$$

Exploit uncertainty to balance exploration against exploitation.

4. Sample the next observation y_{t+1} at x_{t+1} .

Where shall we sample next?

Build a probabilistic model for the objective function

This gives a posterior distribution over functions that could have generated the observed data.

Acquisition functions

Acquisition functions u(x) specify which sample x should be tried next:

- Upper confidence bound UCB(x) = $\mu_{GP}(x) + \kappa \sigma_{GP}(x)$;
- Probability of improvement $PI(x) = P(f(x) \ge f(x_t^+) + \kappa)$;
- Expected improvement $EI(x) = \mathbb{E}[f(x) f(x_t^+)];$
- ... and many others.

where x_t^+ is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., κ) for controlling the exploration-exploitation trade-off.

Plugging everything together (t = 0)

 $x_{t+1} = \operatorname{arg\,max}_{x} \mathsf{UCB}(x)$

... and repeat until convergence (t = 1)

... and repeat until convergence (t = 2)

... and repeat until convergence (t = 3)

... and repeat until convergence (t = 4)

... and repeat until convergence (t = 5)

Limitations

- · Bayesian optimisation has parameters itself!
 - Choice of the kernel (i.e. design of the prior)
 - Parameter wrapping
 - Initialization scheme
- Gaussian processes usually do not scale well to many observations and to high-dimensional data.
 - Sequential model-based optimization provides a direct and effective alternative (i.e., replace GPs by a tree-based model).

Applications

- Bayesian optimization has been used in many scientific fields, including robotics, machine learning or life sciences.
- Use cases for high energy physics?
 - Optimisation of simulation parameters in event generators;
 - Optimisation of compiler flags to maximize execution speed;
 - Optimisation of hyper-parameters in machine learning for HEP;
 - ... let's discuss further ideas?

Software

- Python
 - Spearmint https://github.com/JasperSnoek/spearmint
 - GPyOpt https://github.com/SheffieldML/GPyOpt
 - RoBO https://github.com/automl/RoBO
 - scikit-optimize https://github.com/MechCoder/scikit-optimize
 (work in progress)
- C++
 - MOE https://github.com/yelp/MOE

Summary

- Bayesian optimisation provides a principled approach for optimising an expensive function f;
- Often very effective, provided it is itself properly configured;
- Hot topic in machine learning research. Expect quick improvements!