

Data Collection and Preprocessing Phase

Date	03 july 2024
Team ID	739654
Project Title	Predicting co2 emissions by countries using machine learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	Basic statistics, dimensions, and structure of the data.
Univariate Analysis	Exploration of individual variables (mean, median, mode, etc.).
Bivariate Analysis	Relationships between two variables (correlation, scatter plots).
Multivariate Analysis	Patterns and relationships involving multiple variables.
Outliers and Anomalies	Identification and treatment of outliers.
Data Preprocessing Code Screenshots	

	READING THE DATASET			
	[] #Reading the dataset			
	<pre>data=pd.read_csv("/content/Indicators.csv")</pre>			
	DATASET			
	[] data.shape			
	⊕ (5656458, 6)			
Loading Data	[] #Representing first 5 values from the dataset data.head()			
-	CountryName CountryCode IndicatorName IndicatorCode Year Value			
	0 Arab World ARB Adolescent fertility rate (births per 1,000 wo SP.ADO.TFRT 1960 1.335609e+02			
	2. 1 Arab World ARB Age dependency ratio (% of working-age populat SP.POP.DPND 1960 8.779760e+01			
	2 Arab World ARB Age dependency ratio, old (% of SP.POP.DPND.OL 1960 6.634579e+00 working-age po			
	3 Arab World ARB Age dependency ratio, young (% of SP.POP.DPND.YG 1960 8.102333e+01 working-age			
	4 Arab World ARB Arms exports (SIPRI trend indicator values) MS.MIL.XPRT.KD 1960 3.000000e+06			
	HANDLING MISSING DATA			
	[] #Returns true if any columns having null values			
	data.isnull().any() CountryName False			
	CountryCode False IndicatorName False IndicatorCode False			
Handling Missing Data	Year False Value False dtype: bool			
	[] #Used for finding the null values			
	data.isnull().sum()			
	⊕ CountryName 0 → CountryCode 0 IndicatorName 0			
	IndicatorCode 0 Year 0 Value 0			
	₹ dtype: int64			
	SPLITTING DATA			
	[] #Splitting dataset into train and test			
	<pre>x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=1) print(x_train.shape)</pre>			
Splitting data	<pre>print(x_test.shape) print(y_train.shape) print(y_test.shape)</pre>			
	① (4525166, 4) (1131292, 4)			
	(4525166, 1) (1131292, 1)			

Model training	TRAINING THE MODEL [] #Training the model from sklearn.ensemble import RandomForestRegressor rand = RandomForestRegressor(n_estimators=10,random_state=52,n_jobs=-1) rand.fit(x_train,y_train) <pre></pre>
Model evaluation	<pre> ypred = rand.predict(x_test) print(ypred) [2.23526022e+00 7.92900024e+01 4.63113569e+01 9.33333333e+00</pre>
Saving the model	SAVING THE MODEL [] #Saving our model by importing pickle file import pickle pickle.dump(rand, open('CO2.pickle', 'wb'))