SOLUTION KEY

Produced by: Kyle Dahlin

Problems:

Chap 12: 2, **6**, 18, 22, **23**, 31, 44, **50**

Problem 12.2. The ring $\{0, 2, 4, 6, 8\}$ under addition and multiplication modulo 10 has a unity. Find it.

Solution:

6 is the unity of this ring since $6 \times 2 = 2$, $6 \times 4 = 4$, $6^2 = 6$, and $6 \times 8 = 8$ modulo 10.

Problem 12.6. Find an integer n that shows that the rings \mathbb{Z}_n need not have the following properties that the ring of integers has.

- a. $a^2 = a$ implies a = 0 or a = 1.
- b. ab = 0 implies a = 0 or b = 0
- c. ab = ac and $a \neq 0$ imply b = c

Is the n you found prime?

Solution:

Consider the group \mathbb{Z}_6 . The element 3 has the property that $3^2 = 3$ but it is not equivalent to 0 or 1. The pair (2,3) has the property $2 \times 3 = 0$ but neither are the 0 element. Finally the triplet (2,3,4) has the property that $3 \times 2 = 3 \times 4 = 0$ with $3 \neq 0$ and $2 \neq 4$.

$$n=6$$
 is composite.

Comment: Problem 12.7 has you show that the three properties listed above do indeed hold when n is prime.

Problem 12.18. Let a belong to a ring R. Let $S = \{x \in R | ax = 0\}$. Show that S is a subring of R.

Solution:

We will use Theorem 12.3, the Subring Test. Clearly $0 \in S$ so S is not empty. Let x and y in S. Since a(xy) = (ax)y = 0y = 0, $xy \in S$. Next, since a(x-y) = ax - ay = 0 - 0 = 0, $x-y \in S$. Thus S is a subring of R.

Problem 12.22. Let R be a commutative ring with unity and let U(R) denote the set of units of R. Prove that U(R) is a group under the multiplication of R.

Solution:

Problem 12.23. Determine $U(\mathbb{Z}[i])$.

Solution:

The unity of $\mathbb{Z}[i]$ is 1 = 1 + 0i. Let $a + bi \in U(\mathbb{Z}[i])$ and suppose that x + yi is its inverse. Then we must have that (a + bi)(x + yi) = 1, equivalently:

$$(ax - by) + (ay + bx)i = 1 + 0i$$

Now notice that the complex conjugates of a + bi and x + yi exhibit the same property since:

$$(a - bi)(x - yi) = (ax - by) - (ay + bx)i = 1 - 0i$$

Therefore (a+bi)(a-bi)(x+yi)(x-yi)=1 and $(a^2+b^2)(x^2+y^2)=1$. Since a,b,x,y are all integers, this can only be true if $a^2+b^2=x^2+y^2=1$. Furthermore, the only integer solutions to $a^2+b^2=1$ are $a=\pm 1,b=0$ and $a=0,b=\pm 1$.

Thus $U\mathbb{Z}[i] = \{1, -1, i, -i\}$.

Comment: Alternatively, to do this problem without using conjugation or the norm on $\mathbb{Z}[i]$ (neither of which have been defined in this course), you can proceed as follows.

The system of equations ax - by = 1, ay + bx = 0 can be written as:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

By Cramer's Rule, this system has a solution if and only if $a^2 + b^2 \neq 0$ and the solution is given by:

$$x = \frac{a}{a^2 + b^2}, y = -\frac{b}{a^2 + b^2}.$$

Since $x, y \in \mathbb{Z}$, we must have that $a^2 + b^2 \mid a$ and $a^2 + b^2 \mid b$. But in \mathbb{Z} , $a^2 + b^2 \ge \max\{|a|, |b|\}$, with equality if and only if $a = 0, b = \pm 1$ or $a = \pm 1, b = 0$ or a = b = 0. In the case that a = b = 0, then $a^2 + b^2 = 0$ and a + bi is not a unit, by the condition above. Therefore $U\mathbb{Z}[i] = \{1, -1, i, -i\}$.

Problem 12.31. Give an example of ring elements a and b with the properties that ab = 0 but $ba \neq 0$.

Solution:

Let $a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $b = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ in $M_2(\mathbb{Z})$, the ring of two-by-two matrices over the integers

with the usual addition and matrix multiplication. Then $ab = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $ba = a \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Comment: When seeking (counter) examples related to commutativity, two-by-two matrices are often a good place to start.

Problem 12.44. Suppose that there is a positive even integer n such that $a^n = a$ for all elements a of some ring. Show that -a = a for all a in the ring.

SOLUTION KEY

Produced by: Kyle Dahlin

Solution:

Suppose that n=2k for some positive integer k. Then since $(-1)^2=1$, we get that $(-a)^2=a^2$ and finally that $a=a^{2k}=(a^2)^k=((-a)^2)^k=(-a)^{2k}=-a$.

Problem 12.50. Suppose that R is a ring and that $a^2 = a$ for all a in R. Show that R is commutative.

Solution:

Let a and b in R. Then $a+b=(a+b)^2=a^2+ab+ba+b^2=a+ab+ba+b$ and hence ab+ba=0. By Problem 12.44, ba=-ba. Hence ab=ba and R is commutative.