МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» I семестр Задание 3 «Вещественный тип. Приближенные вычисления. Табулирование

функций»

М8О-101Б-22 Группа Шляхтуров А. В Студент Крылов С. С Преподаватель Оценка

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * 10^k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k – экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 26:

Ряд Тейлора:

$$-\cos x + \frac{\cos 2x}{2^2} + \ldots + (-1)^n \frac{\cos nx}{n^2}$$

Функция:

$$\frac{1}{4}(x^2-\frac{\pi^2}{3})$$

Промежуток:

$\frac{\pi}{5}$	π	
		ı

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float – $1.19 * 10^{-7}$, double – $2.20 * 10^{-16}$, long double – $1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2. Далее находим значение функции просто подставляя иксы в формулу — первый способ. И второй способ считаем с помощью ряда Тейлора, прибавляя последующие члены, пока погрешность не станет меньше машинного эпсилона, высчитанного ранее.

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной
n	int	То самое число N, на которое нужно разбить отрезок
k	int	То самое число К, используемое для вычисления точности.
eps	float	Машинное эпсилон
-		4,4408920985006262e-16
func	long double	Значение, вычисленное методом подстановки
ans	long double	Значение, вычисленное с помощью формулы Тейлора
X	double	Подставляемый аргумент
iter	int	Счётчик членов формулы Тейлора
add	double	Добавка к предыдущему члену для получения следующего

Исходный код программы:

```
#include <stdio.h>
#include <math.h>
#include <locale.h>
# define M PI
                          3.14159265358979323846 /* pi */
int main() {
  setlocale(LC_ALL, "Russian");
  int n, iter, num;
  double cnst, ans, func, add, I = M_PI / 5, r = M_PI, x = M_PI / 5;
  long double eps = 1.0l;
  while (2.0l + eps / 2.0l > 2.0l) {
    eps /= 2.01;
  printf("Машинное эпсилон для типа double = %.16Le\n", eps);
  printf("Введите число n: \n");
  scanf("%d", &n);
  printf("n = %d, n", n);
  printf("Таблица значений ряда Тейлора и стандартной функции для <math>f(x) = 0.25*(x*x - ((Pl*Pl)/3\n");
  printf("
  printf("| x |
                                               |число итераций |\n");
  printf("_
  for (int i = 1; i \le n + 1; i++) {
    add = 1:
    iter = 1;
    func = 0.25 * (x * x - ((M_PI * M_PI) / 3));
    ans = -\cos(x);
    while (fabs(add) > eps && iter < 100) {
      cnst = ans;
      add = pow(-1, iter) * cos(iter * x) / pow(iter, 2);
      //printf("%.30lf\n", add);
      ans = cnst + add;
    printf("| %.3f | %.18lf | %.18lf | %d |\n", x,ans , func, iter);
   printf("__
                                                                                                   __\n");
    x += (r - I) / n;
  return 0;
   }
```

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное c помощью формулы Тейлора, A_2 — значение, вычисленное c помощью встроенных функций языка, i — количество итерация, требуемых для вычисления.

Протокол исполнения и тесты

Тест №1

Ввод:

5 Вывод:

Введите	число n:					
5						
n = 5,						
Таблица	значений	ряда Тейлора и	стандарти	ной Функции для	f(x) = 0.25*(x*x)	- ((PI * PI)/3
				15		***
l x	T	sum	T	f(x)	число итераций	T.
		Juli		((X)	тисло итсрации	
l a 629	l _a 722	7215/2126060670	l _a 722	770989413219601	100	1
0,020	-0,723	/213421200000/8	-0,723	//0303413213001	100	1
I 4 434	1 0 502	C42FF204407F04F	1 0 502	CO10F00200100CF	100	1
1,131	-0,5020	042552044875845	-0,5020	591850828818065	100	1
1	1		1		1	
1,634	-0,155	232842438709551	-0,155	281775910472541	100	1
2,136	0,31850	07083320570927	0,318459	9235341816860	100	
2,639	0,9185	73135578954592	0,91853	1182928049694	100	
3,142	1,63498	83900184892258	1,64493	4066848226184	100	

Process finished with exit code 0

Тест №2

Ввод:

10

Вывод:

```
Машинное эпсилон для типа double = 4,4408920985006262e-16
Введите число n:
10
n = 10,
Таблица значений ряда Тейлора и стандартной функции для f(x) = 0.25*(x*x - ((PI * PI)/3
                                         f(x)
                                                        число итераций
0,628 | -0,723721542126868678 | -0,723770989413219601 |
 0,880 | -0,628973397776547705 | -0,629022787162761832 |
                                                               100
1,131 | -0,502642552044875845 | -0,502691850828818065 |
                                                               100
1,382 | -0,344729022343935765 | -0,344778180411388135 |
                                                               100
| 1,634 | -0,155232842438709551 | -0,155281775910472541 |
1,885 | 0,065845916425724613 | 0,065797362673928994 |
2,136 | 0,318507083320570483 | 0,318459235341816416 |
                                                             100
2,388 | 0,602750159874621994 | 0,602703842093189945 |
                                                             100
2,639 | 0,918573135578953925 | 0,918531182928049250 |
                                                             100
2,890 | 1,265960002970330622 | 1,265941257846394219 |
                                                             100
 3,142 | 1,634983900184892258 | 1,644934066848225296 |
                                                             100
```

Тест №3

Ввод: 100000 Вывод:

```
Машинное эпсилон для типа double = 4,4408920985006262e-16
Введите число n:
1000
n = 1000,
Таблица значений ряда Тейлора и стандартной функции для f(x) = 0.25*(x*x - ((PI * PI)/3
                                         f(x)
                                                        число итераций
                   sum
0,628 | -0,723721542126868678 | -0,723770989413219601 |
0,631 | -0,722936005374963719 | -0,722979841924428324 |
i| 0,633 | -0,722150098206966740 | -0,722185536162228692 |
                                                               100
| 0,636 | -0,721363289702700805 | -0,721388072126620594 |
                                                               100
| 0,638 | -0,720574905223145601 | -0,720587449817604253 |
                                                               100
| 0,641 | -0,719784169118869332 | -0,719783669235179557 |
                                                               100
0,643 | -0,718990253885736563 | -0,718976730379346507 |
                                                               100
0,646 | -0,718192332653109666 | -0,718166633250105102 |
                                                               100
0,648 | -0,717389631675629857 | -0,717353377847455231 |
                                                               100
0,651 | -0,716581479496676610 | -0,716536964171397228 |
                                                               100
0,653 | -0,715767349660053620 | -0,715717392221930759 |
                                                               100
```

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора