Hoofdstuk 4 Chemisch rekenen

4.1 Rekenen met meetwaarden

- 2 a Let goed op welke nullen wel meetellen voor de significantie en welke nullen niet. De nullen achter de 6 tellen mee, dus bevat dit getal 4 significante cijfers.
 - b 3 cijfers
 - c 2,91
 - d 1,2 · 103
 - e 4,5
 - f -0,80 (let op door de berekening (3,43 4,5) = -1,07. Maar dat is in significante cijfers 1,1 dus twee cijfers. Het is niet gebruikelijk om tussendoor af te ronden. Je rekent dus wel verder met -1,07. De uiteindelijke uitkomst mag je maar in twee cijfers opgeven!)
 - g Let op: 12 is een telwaarde en heeft geen invloed op het aantal significante cijfers in de uitkomst 63,6: 12 = 5,30 g

h

massa	19,3 kg	19,3 · 10³ g	
volume	1,00 dm ³	1,00 · 103 cm3	7,2 cm ³

Hieruit bereken je 1,4 · 102 g

- 3 a Langs de y-as staan de getallen in 6 cijfers opgegeven. Neem een voorbeeld: welk getal kun je tussen 1700,00 en 1800,00 nog betrouwbaar schatten? 1720,00? Dat betekent dat de nullen achter de komma geen enkele betekenis hebben.
 - b Beter is om de getallen langs de y-as op te geven als 1,70 · 103. Het is dan verantwoord om die getallen in drie cijfers op te geven.

4

massa	4,05 · 103 kg	20 kg
volume	1,00 m ³	

Hieruit bereken je 4,9 · 10-3 m3; dat is 4,9 dm3.

5 Dat is: 65 × 0,62 + 550 × 0,723 + 385 × 0,6994 = 7,1 · 10² kg ijzer.

6

4.2 Atoommassa, ionmassa, molecuulmassa

7

- 8 a 97,43 u
 - b 98,08·u
 - c 65,38 u

- b De molecuulformule van 2-buteen is C₄H₈. De molecuulmassa is 56,10 u. Het massa% koolstof daarin is: (4 × 12,01 : 56,10) × 100% = 85,63 massa%. De molecuulformule van methylcyclopropaan is ook C₄H₈. Dus is het massa% koolstof daarin ook 85,63 massa%.
- 2-buteen en methylcyclopropaan zijn isomeren. Dus het is niet verwonderlijk dat het massapercentage koolstof in beide stoffen gelijk is.
- 10 a Gebruik tabel 99 van Binas. 2 × 26,98 + 2 × 28,09 + 9 × 16,00 + 4 × 1,008 = 258,2 u.
 - b 144,0 : 258,2 × 100% = 55,78 massa% zuurstof
- 11 a · Al³+ ionmassa 26,98 u; O≥- ionmassa 16,00 u
 - b Ga uit van 100 u aluminiumoxide en bereken daarin de hoeveelheid aluminium en zuurstof. Neem 100 u aluminiumoxide. Er is 52,9% Al dus moet er 100,0 – 52,9 = 47,1% O zijn. Dan heb je 52,9 u aan Al-ionen en 47,1 u aan O-ionen.

52,9 u Al betekent 52,9 : 26,98 = 1,96 Al-ionen 47,1 u O betekent 47,1 : 16,00 = 2,94 O-ionen De verhouding Al : O = 1,96 : 2,94 = (afgerond) 2 : 3. De verhoudingsformule is Al₂O₂.

Neem 1000 atomen magnesium en reken met behulp van de percentages de gemiddelde massa uit. De massa van 1000 magnesiumatomen is 23,98505 × 788 + 24,98584 × 101 + 25,98260 × 111 = 24300 u. De gemiddelde atoommassa van magnesium is dus 24,3 u.

4.3 Chemische hoeveelheid

- 13 Gebruik steeds het omrekenschema van figuur 4.8. Bedenk dan:
 - in welk hok staat het gegeven,
 - naar welk hok moet ik omrekenen,
 - welke omrekeningen moet ik uitvoeren?
- 14 a 55,85 + 2 × 16,00 + 1,008 = 88,85 g mol-1
 - b 2 × 12,01 + 6 × 1,008 + 16,00 = 46,07 g mol-1
 - c 40,08 + 32,06 + 4 × 16,00 = 136,1 g mol-1
 - d 2 × 26,98 + 3 × 9,012 + 6 × 28,09 + 18 × 16,00 = 537,5 g mol⁻¹
 - e 5 × 12,01 + 12 × 1,008 + 16,00 = 88,15 g mol-1

15 a $0.48 \times 100.0 = 48 \text{ g}$ b $8.7 \cdot 10^{-4} \times 97.43 = 8.5 \cdot 10^{-2} \text{ g}$ c $4.11 \cdot 10^3 \times 55.85 = 2.30 \cdot 10^5 \text{ g}$ d $0.20 \cdot 10^{-3} \times 16.04 = 3.2 \cdot 10^{-3} \text{ g}$

16 a 60,0:32,00 = 1,88 mol b 12:58,12 = 0,21 mol c 1,000·10⁶:17,03 = 5,872·10⁴ mol d 50·10⁻³:58,44 = 8,6·10⁻⁴ mol

17 a $[Ca^{2+}] = 22,375 \cdot 10^{-3} : 40,08 = 2,23 \cdot 10^{-3} \text{ mol L}^{-1}$ $[Cl^{-}] = 14,25 \cdot 10^{-3} : 35,45 = 1,61 \cdot 10^{-3} \text{ mol L}^{-1}$

b Je moet twee keer omrekenen: mg Fe²⁺ naar mol Fe²⁺ en m³ naar L.

250 mg Fe²⁺ komt overeen met 0,250: 55,85 = 4,4762 · 10⁻³ mol. Deze hoeveelheid is aanwezig in 1,00 m³; dus in 1000 dm³.

Dan is [Fe²⁺(aq)] = 4,48 · 10⁻⁶ mol L⁻¹.

c Ga uit van het grondwater van opgave b. Hoeveel µmol Fe²+ moet dan per liter verwijderd worden? Reken daarna verder!

Er is 4,48 µmol Fe²+ per liter. Dus per liter water moet er verdwijnen: 4,48 – 0,385 = 4,095 µmol. Uit 1,2 · 10⁷ m³ water moet dan 4,095 × 1,2 · 10⁷ × 1000 = 4,9 · 10¹0 µmol Fe²+ verdwijnen.

Dat is 49 kmol Fe²+. Dit komt overeen met 49 × 55,85 = 2,7 · 10³ kg Fe²+

18 a Wat betekent 15 volumeprocent MTBE in benzine?
100 L benzine bevat 15 L MTBE
1,000 liter benzine bevat 0,15 liter MTBE. Dat is
1,5 · 10² cm³ MTBE. Dat komt dan overeen met
1,5 · 10² × 0,74 = 1.1 · 10² g

b Bereken eerst de molaire massa van MTBE. De molaire massa van $C_5H_{12}O$ is $88,15 \text{ g mol}^{-1}$. Dan is de concentratie $1,1 \cdot 10^2 : 88,15 = 1,3 \text{ mol L}^{-1}$

19 a Zoek in het register van Binas in welke tabel je de dichtheid van vloeistoffen kunt vinden.

Benzine: 0,72 · 10³ kg m⁻³ en bio-ethanol: 0,80 · 10³ kg m⁻³.

Dat is respectievelijk 0,72 g cm⁻³ en 0,80 g cm⁻³.

b Wat betekent 15 volumeprocent? 1,00 liter mengsel bevat 0,15 liter benzine. Dat is 1,5 · 10² cm³ benzine. Dit komt overeen met 1,5 · 10² × 0,72 = 1,08 · 10² g benzine. De molaire massa van benzine is 114,2 g mol⁻¹. Dat komt overeen met 1,08 · 10² : 114,2 = 0,95 mol. De concentratie is dan 0,95 mol L⁻¹.

20 Wat betekent ppb?
951 ppb betekent 951 m³ pentaan in 106 m³ gasmengsel.
Dus er is 951 · 10-6 m³ pentaan in 1,00 m³ gasmengsel.
Dat is 0,951 dm³ in 1,00 m³ gasmengsel.
Het molair volume van een gas is 24,5 dm³ mol-1. Er is dan 0,951 : 24,5 = 3,88 · 10-2 mol per m³ gasmengsel.

21 a 'M' staat voor molariteit.

2,5 M betekent dat de concentratie (molariteit) van de glucose-oplossing 2,5 mol L⁻¹ is.

250 mL van die oplossing bevat dan

b De aanduiding 2,5 M op het etiket hoeft natuurlijk niet aangepast te worden. 2,5 M geeft de concentratie aan en door het uitschenken verandert de concentratie van een oplossing natuurlijk niet.

4.4 Rekenen met reactievergelijkingen

22

23 a $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$ **b** Werk volgens het stappenplan! Antwoord: 0,91 m3 CH, Stap 1: zie a Stap 2: gegeven: CO,; gevraagd: CH, Stap 3: 1 mol CH, levert 1 mol CO, op. Stap 4: 1,8 · 103 g CO, komt overeen met $1,8 \cdot 10^3 : 44,01 = 40,8997 \text{ mol CO}_2$. Stap 5: Dat ontstaat bij verbranding uit 40,8997 mol CH₄. Stap 6: Het molair volume van een gas is (bij $T = 273 \text{ K en } p_0$) 2,24 · 10⁻² m³ mol⁻¹ (zie *Binas* tabel 7). Dus 40,8997 mol CH₄(q) komt overeen met 40,8997 $\times 2,24 \cdot 10^{-2} = 0,91 \text{ m}^3 \text{ CH}_4$. Stap 7: je moet je antwoord geven in twee significante cijfers.

c 1,00 m³ aardgas bevat 0,91 m³ methaan. Aardgas bevat dus 91 vol% methaan.

24 a C: verbranding

b $FeTiO_3(s) + 6 H_2(g) \rightarrow 3 H_2O(g) + Fe(s) + Ti(s)$

c Antwoord: 4,95 kg ilmeniet Stap 1: uit 1,00 mol FeTiO, kan uiteindelijk 1,5 mol O, ontstaan. Stap 2: qegeven: zuurstof; gevraagd: ilmeniet Stap 3: 1,5:1 Stap 4: het molair volume van een gas is bij $T = 298 \text{ K en } p_0 \text{ gelijk aan } 2,45 \cdot 10^{-2} \text{ m}^3 \text{ mol}^{-1}$ (zie Binas tabel 7). 1200 dm³ O₂(g) komt overeen met 1,200 m³. Er is $1,200: 2,45 \cdot 10^{-2} = 48,98 \text{ mol O}_2 \text{ nodig. Dat ontstaat}$ uit 32,65 mol FeTiO₃. Stap 5: de molaire massa van FeTiO, is 55,85 + 47,90 + 3 × 16,00 = 151,8 g mol-1. Er is dan per dag 151,8 \times 32,65 = 4,957 \cdot 10³ g FeTiO₃ Stap 6: dat is 4,957 kg. Stap 7: de coëfficiënten uit de reactievergelijking (1 en 1,5) zijn telwaarden. Het gegeven 1200 dm³ staat in 4 significante cijfers. Je mag het antwoord in 4 significante cijfers opgeven: 4,957 kg.

25 a $2 SO_2(g) + O_2(g) + 2 Na_2CO_3(s) \rightarrow 2 CO_2(g) + 2 Na_2SO_4(s)$

b Stap 4: de molaire massa van Na₂SO₄ is
142,0 g mol⁻¹.
24,3 g Na₂SO₄ komt overeen met 24,3: 142,0 = 0,171
mol Na₂SO₄.
Stap 5: dat komt overeen met 0,171 mol S. Dit is 0,171
× 32,06 = 5,49 g S. Dat zat in 250 g steenkool.
Stap 6: er is 4 × 5,49 = 21,9 g S per kg steenkool.
Stap 7: het antwoord mag in 3 significante cijfers opgegeven worden: 21,9 g.

- 26 a De massa van 110 L benzine (dichtheid is 0,72 kg L⁻¹) is 0,72 × 110 = 79,2 kg.

 Voor de heen en terugreis gebruik je dus $2 \times 79,2 = 158,4$ kg = (afgerond) 1,6 · 10⁵ g.

 b $2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(I)$
 - c 1,6 · 10⁵ g benzine (molaire massa is 114,2 g mol⁻¹) komt overeen met (158,4 · 10³ : 114,2) = 1,39 · 10³ mol C₈H₁₈. Daaruit ontstaat 8 × 1,39 · 10³ = 1,11 · 10⁴ mol CO₂. Dus 1,11 · 10⁴ × 44,01 = 4,9 · 10⁵ g.
 - d fotosynthese
 - e $6 CO_2(g) + 6 H_2O(I) \rightarrow C_6H_{12}O_6(s) + 6 O_2(g)$
 - f 1,11 · 10⁴ mol CO₂ komt overeen met 1,11 · 10⁴ : 6 = 1,85 · 10³ mol C₆H₁₂O₆. De molaire massa van C₆H₁₂O₆ is 180,2 g mol⁻¹. Er kan dus 1,85 · 10³ × 180,2 = 3,3 · 10⁵ g = 3,3 · 10² kg C₆H₁₂O₆ ontstaan.
- 27 a $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - **b** Antwoord C: Thermolyse
 - c 150 kg CaO (molaire massa 56,08 g mol⁻¹) komt overeen met 2,67 · 10³ mol CaO. Er is dan ook 2,67 · 10³ mol CaCO₃ nodig. Dat komt overeen met 2,67 · 10³ × 100,1 = 2,68 · 10⁵ g = 268 kg CaCO₃.
 - d Schelpen bestaan voor 93,6% uit CaCO₃ Er is dan 268 : 93,6 × 100 = 286 kg schelpen nodig en 2,67 · 10³ mol CaO komt overeen met 2,67 · 10³ mol CO₂. Het molaire volume van een gas is bij de heersende omstandigheden 24,5 dm³ mol⁻¹ (zie tabel 7 van *Binas*). Er ontstaat dus 2,67 · 10³ × 24,5 = 6,56 · 10⁴ dm³ CO₂(g).
- 28 a Ga na in welke verhouding in mol ijzer en koolstofmonooxide bij reactie 2 betrokken zijn. Daarna kun je met behulp van reactie 1 afleiden in welke verhouding in mol ijzer en koolstof 'reageren'. 1000 kg Fe komt overeen met 1000: 55,85 = 17,91 kmol Fe. Daarvoor is nodig 1,5 × 17,91 = 26,86 kmol CO. Dat ontstaat uit 26,86 kmol C. Dus 26,86 × 12,01 = 322,6 kg koolstof.
 - b Geef eerst de reactievergelijking van ijzer(III)oxide met koolstof waarbij onder andere koolstofdioxide ontstaat.
 Fe₂O₃ + 3 C → 2 Fe + 3 CO₂
 Voor 17,91 kmol Fe is dus 1,5 × 17,91 = 26,86 kmol C nodig.
 Dus 26,86 × 12,01 = 322,6 kg koolstof.

4.5 Toepassing

Bloedarmoede

- 1 230 mg FeSO₄ (molaire massa 151,9 g mol⁻¹) komt overeen met 230: 151,9 = 1,51 mmol FeSO₄. Daarin is dan ook 1,51 mmol Fe aanwezig. Dat komt overeen met 1,15 \times 55,85 = 84,6 mg Fe. Klopt redelijk.
- Massa% Fe in FeCl₂ is:
 (55,85: 126,8) × 100% = 44,0%
 Massa% Fe in FeSO₄ is:
 (55,85: 151,9) × 100% = 36,8%
 In FeCl₂ zit dus per gram meer ijzer dan in FeSO₄.

Brandstoffen

3 $C_7H_{16}(I) + 11 O_2(g) \rightarrow 7 CO_2g) + 8 H_2O(I)$

- 4 1,00 g heptaan (molaire massa 100,2 g mol⁻¹) komt overeen met 9,98 · 10⁻³ mol heptaan. Dan is 11 × 9,98 · 10⁻³ = 0,110 mol zuurstof nodig.
- Het molair volume van een gas bij 298 K is 24,5 dm³ mol⁻¹. Er is dan 0,110 × 24,5 = 2,69 dm³ zuurstof nodig. Dat komt voor in 2,69 × (100 : 21) = 12,8 dm³ lucht.
- 6 9,98 · 10⁻³ mol heptaan levert $7 \times 9,98 \cdot 10^{-3} = 6,99 \cdot 10^{-2}$ mol CO₂ (molaire massa 44,01 g mol⁻¹). Er ontstaat dan 3,07 g CO₂.
- 7 Stel het molair volume van een gas bij de omstandigheden in de motor op V dm³ mol⁻¹.

 Dan komt 9,98 · 10⁻³ mol heptaan overeen met 9,98 · 10⁻³ × V dm³ heptaan. Dan is er 0,110 × V × (100: 21) = 0,524 dm³ lucht nodig (zie antwoord 4 en 5). De verhouding is dan: heptaan: lucht = 9,98 · 10⁻³ : 0,524 = 9,98 : 524 = 1,00 : 52,5 (dus ongeveer 1 : 50).

Bakpoeder

- 8 Bij verhitten ontstaat een gas. Dat 'blaast' het deeg op.
- 9 1,7 g NaHCO₃ (molaire massa 84,01 g mol⁻¹) komt overeen met 2,0 · 10⁻² mol NaHCO₃.

 Er ontstaat dan 1,0 · 10⁻² mol CO₂. Het molair volume van een gas bij 298 K is 24,5 dm³ mol⁻¹.

 Dus ontstaat 2,5 · 10² cm³ CO₂(g).

Waterstofopslag

- 10 $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(1)$
- Het reactieproduct is water en geen broeikasgas als CO,(g).
- De molaire massa van MgH₂ is 26,33 g mol⁻¹. In 1,000 mol MgH₂ komt 1,000 mol H₂ voor. Dat heeft een massa van 2,016 g.

 Het massa% waterstof is dan
 (2,016: 26,33) × 100 = 7,66 massa%.
- 13 1,00 cm³ Mg is 1,74 g Mg. Dat komt overeen met 7,16 · 10⁻² mol Mg. Hierin kan dan ook 7,16 · 10⁻² mol H, worden opgeslagen.
- 14 1,00 cm³ H₂(I) is 7,0 · 10⁻² g H₂(I). Dat komt overeen met 3,5 · 10⁻² mol H₂.
- 15 De bewering klopt!

De chemie van een airbag

- 16 N₃-
- Het atoomnummer van N is 7. Per atoom zijn er dan 7 elektronen. In totaal bevat het N_3^- ion dan $3 \times 7 + 1$ = 22 elektronen.
- 18 $2 \text{ NaN}_{2}(s) \rightarrow 2 \text{ Na}(s) + 3 \text{ N}_{2}(g)$
- 19 Natrium reageert heel heftig met water.

- $\begin{array}{ll} \textbf{20} & 2 \; \text{Na(s)} + 2 \; \text{KNO}_3(\text{s}) \rightarrow \\ & \text{K}_2\text{O(s)} + \text{Na}_2\text{O(s)} + \text{N}_2(\text{g}) + 2 \; \text{O}_2(\text{g}) \end{array}$
- 21 Na₂O(s) + K₂O(s) + SiO₂(g) \rightarrow Na₂K₂SiO₄(s)
- 22 60 g NaN₃ (molaire massa 65,02 g mol⁻¹) komt overeen met 0,923 mol NaN₃. Er ontstaat dan 1,5 × 0,923 = 1,38 mol N₂(g), dus 1,38 × 24 = 33 dm³ N₂(g).
- Uit 0,92 mol NaN₃ ontstaat uiteindelijk 0,923 : 2 = 0,4615 mol Na₂K₂SiO₄; hiervan is de molaire massa 216,3 g mol⁻¹. Er ontstaat dan 0,4615 × 216,3 = 1,0 · 10² g Na₂K₂SiO₄(s).

■ Voorbeeldproefwerk

- 1,8 ⋅ 10³ m³ aardgas bevat 0,86 × 1,8 ⋅ 10³
 = 1,5 ⋅ 10³ m³ methaan.
 De reactievergelijking voor de verbranding van methaan is:
 CH₄(g) + 2 O₂(g) → CO₂(g) + 2 H₂O(l)
 Dus uit 1,00 mol CH₄ ontstaat ook 1,00 mol CO₂. Het molair volume van een gas geeft aan dat 1,00 mol van een gas (zelfde p en T) hetzelfde volume hebben. Er ontstaat dus net zoveel m³ CO₂(g) als er CH₄(g) verbrand wordt: 1,5 ⋅ 10³ m³.
- 2 a $4 \text{ KO}_2(s) \rightarrow 2 \text{ K}_2\text{O}(s) + 3 \text{ O}_2(g)$
 - b 1,5 kg $O_2(g)$ per dag is in 30 dagen 45 kg $O_2(g)$; dat komt overeen met 45 : 32,0 = 1,4 kmol $O_2(g)$.

 Daarvoor is nodig 1,4 : (3 × 4) = 1,875 kmol $KO_2(s)$. De molaire massa hiervan is 71,10 g mol⁻¹. Dus is nodig 71,10 × 1,875 = 1,3 · 10² kg $KO_2(s)$.
 - c Uit 1,875 kmol KO₂(s) ontstaat 0,94 kmol K₂O. Dit kan 0,94 kmol CO₂ binden. Het molair volume van een gas is bij deze omstandigheden 24,5 dm³ mol⁻¹. Er kan dan 0,94 × 24,5 = 23 dm³ CO₂(g) gebonden worden.

- 3 Er is $120 \cdot 10^9$ liter verontreinigd water. Per liter bevat dat $3.0 \cdot 10^{-3}$ mol Cu²⁺(aq). Dat betekent dat er $120 \cdot 10^9 \times 3.0 \cdot 10^{-3} = 3.6 \cdot 10^8$ mol Cu²⁺ in de Berkely Pit aanwezig is.

 Dat is $2.3 \cdot 10^{10}$ g Cu²⁺ en dus $2.3 \cdot 10^7$ kg.
- 4 a Mg₂SiO₄(s) + 2 CO₂(g) → 2 MgCO₃(s) + SiO₂(s)
 b Ga uit van 1,000 mol olivijn. Bereken vervolgens de massa van de stoffen en daaruit (met behulp van de dichtheden) de volumes van de stoffen.
 1,000 mol Mg₂SiO₄ → 2,000 mol MgCO₃ + 1,000 mol SiO₂ (de CO₂ blijft buiten beschouwing)
 140,7 g → 168,6 g + 60,09 g
 43,0 cm³ → 51 cm³ + 22,7 cm³
 Het volume na de reactie is 51 + 22,7 = 73,7 cm³. Het volume wordt dan 73,7: 43,0 = 1,7 × zo groot.
 - Eén miljoen ton koolstofdioxide is $1,0 \cdot 10^6 \times 1,0 \cdot 10^3 = 1,0 \cdot 10^9$ kg CO₂. De molaire massa van CO₂ is 44,01 g mol⁻¹.

 Dus $1,0 \cdot 10^9 : 44,01 = 2,27 \cdot 10^7$ kmol CO₂.

 Om dit te binden is $2,27 \cdot 10^7 : 2 = 1,14 \cdot 10^7$ kmol Mg₂SiO₄(s) nodig. De molaire massa hiervan is 140,7 g mol⁻¹.

 Er is dan 140,7 × 1,14 \cdot 10^7 = 1,6 \cdot 10^9 kg olivijn nodig. Dat is 1,6 miljoen ton.
- 5 a Er is 0,600 L oplossing die 0,103 mol I₂(aq) per liter bevat. Er is dan 0,600 × 0,103 = 7,80 · 10⁻² mol I₂(aq) aanwezig.
 - b Het gasmengsel bevat 20,0 mg H₂S(g) per m³. De molaire massa van H₂S is 34,08 g mol⁻¹.

 Er is dan 20,0 · 10⁻³ : 34,08 = 5,87 · 10⁻⁴ mol

 H₂S per m³ gasmengsel aanwezig.

 Je kunt in totaal 7,80 · 10⁻² mol H₂S laten reageren.

 Dat betekent dat je 7,80 · 10⁻² : 5,87 · 10⁻⁴ = 1,3 · 10² m³ gas kunt reinigen.