

When Good Data Goes Bad

Tim Menzies (tim@menzies.us)

Lane Department of Computer Science and Electrical Engineering

West Virginia University

http://menzies.us/pdf/06good2bad.pdf

Executive Summary

Executive Summary

Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

- Data mining NASA project data
- Five examples where data mining found clear quality predictors
 - for effort
 - for defects
- In only <u>one</u> of those cases is that data source still active.
 - All that dead data.
- What to do?

"Don't let it eat away at you. You ex wasn't that smart. She said you'd rot in Hell. You, my friend, are not rotting."

Background: Al- it works

Executive Summary

Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

- 1980s: Al summer
- 1980s (late): bubble bursts, Al winter
- 1990s: great success with planning, scheduling, data mining
- 2000s: many successes of AI (data mining) for SE

- This talk: Al really works (5 success stories with NASA data)
- Still, main problem is organizational, not technological
 - Despite clear success, $\frac{4}{5}$ of those data sources have vanished
 - ♦ What to do?

Eg1: text mining

What is data mining?
Dumb Luck?
How is this Possible?
Less is More
Less is more (2)

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Eg #1: text mining @ NASA

What is data mining?

Executive Summary
Background: Al- it works

Eg1: text mining

What is data mining?

Dumb Luck?

How is this Possible?

Less is More

Less is more (2)

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

- Diamonds in the dust
- Summarization: not 1000 records, but 3 rules
- Example #1:
 - text mining issue reports
- 901 NASA records, PITS issue tracker: {severity, free text}

severity	frequency	
1 (panic)	0	
2	311	
3	356	
4	208	
5 (yawn)	26	

- All unique words, sorted by "magic" (see below)
- Rules learned from N best
- Severity 2 predictors:
 10*{(train,test) = (90,10)%}

N	a=recall	b=precision	$F = \frac{2*a*b}{a+b}$
100	0.81	0.93	0.87
50	0.80	0.90	0.85
25	0.79	0.93	0.85
12	0.74	0.92	0.82
6	0.71	0.94	0.81
3	0.74	0.82	0.78

Rules (from N=3 words):

$$\begin{array}{ll} \text{if (rvm} \leq 0) \ \& \ (\text{srs} = 3) \rightarrow \text{sev}{=}4 \\ \text{else if (srs} \geq 2) & \rightarrow \text{sev}{=}2 \\ \text{else} & \rightarrow \text{sev}{=}3 \end{array}$$

- Diamonds in the dust
 - Not 9414 words total
 - or 1662 unique words
 - but 3 highly predictive words

Dumb Luck?

Executive Summary
Background: Al- it works

Eg1: text mining

What is data mining?

Dumb Luck?

How is this Possible? Less is More Less is more (2)

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

- Nope.
- In four other case studies, learning from just the top 3 terms ...
 - $10*{(train,test)} = (90,10)%}$
 - yields probability of detection of highest severity class of 93% to 99.8%.
- (Note: ignoring real rare classes.)

Project "b": 984 records

Project "d": 180 records

Project "c": 317 records

Project "e": 832 records

How is this Possible?

Executive Summary
Background: Al- it works

Eg1: text mining

What is data mining? Dumb Luck?

How is this Possible?

Less is More Less is more (2)

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

- Feature subset selection (FSS) (Hall and Holmes [2003], Miller [2002])

 - lacktriangle Variance in y reduced by pruning some f_i
 - But don't prune too much:
 - \bullet e.g. $\forall f_i, y = \beta_0$
 - Analogous argument holds for other representations.
- Q: How to do FSS?
- A1:Apply domain knowledge
 - e.g., in text mining, TF*IDF:
 - term frequency inverse document frequency
 - Frequent terms, but only in a small number of documents
 - $\bullet \quad \mathsf{TF*IDF} = F[i,j] * log(IDF)$
 - F[i,j] = frequency of word i in document j
 - IDF = #documents / (#documents with i)
 - Above study used top 100 TF * IDF words.

Less is More

Executive Summary
Background: Al- it works

Eg1: text mining
What is data mining?

Dumb Luck?

How is this Possible?

Less is More

Less is more (2)

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

- Q: How to do FSS?
- A2: Exponential time FSS
 - lacktriangle Try all 2^F subsets of F on a target learner
 - Possible, with small feature sets, with some heuristic search
 - best first search, STALE=5 (Kohavi and John [1997]).
- A3: Linear time FSS (not as thorough as 2^F):
 - ◆ Sort *F*, somehow;
 - Try first $1 \le f \le F$ features
 - ◆ Above study sorted top 100 TF*IDF terms on infogain
 - Initially:

•
$$H(C) = -\sum_{c \in C} p(c) log_2 p(c)$$
.

 \blacksquare After seeing feature f:

•
$$H(C|f) = -\sum_{x \in f} p(x) \sum_{cinC} p(c|x) log_2 p(c|x)$$

• So InfoGain = H(C) - H(C|f)

Less is more (2)

Executive Summary
Background: Al- it works

Eg1: text mining
What is data mining?
Dumb Luck?

How is this Possible? Less is More

Less is more (2)

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

- Over-fitting avoidance
 - ◆ After learning "it"
 - ... Try throwing away bits of "it"
- e.g. RIPPER (Cohen [1995]),
 - ◆ If you learn a conjunction, prune with greedy back select
 - ◆ If you learn a set of rules, prune with greedy back select
 - For the surviving rules, try replace it with...
 - a dumb alternative
 - or a carefully selected modification
 - Very fast: $O(m(log(m))^2)$ for m examples
 - ◆ Often produces smaller theories than other methods
 - as above:

if (rvm
$$\leq$$
 0) & (srs = 3) \rightarrow sev=4
else if (srs \geq 2) \rightarrow sev=2
else \rightarrow sev=3

Eg1: text mining

Eg2: effort estimation

Effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Eg #2: effort estimation @ NASA

Effort estimation

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

- NASA COCOMO data (Boehm et al. [2000])
- Results from IEEE TSE (Menzies et al. [2006]).
- learners for continuous classes
- A study of 160 effort estimation methods
- 20 * { pick any 10, train on remaining, test on 10 }

100 * (pred - actual)/actual

	50% percentile	65% percentile	75% percentile
mode= embedded	-9	26	60
project = X	-6	16	46
all	-4	12	31
year= 1975	-3	19	39
mode= semi-detached	-3	10	22
ground systems	-3	11	29
center= 5	-3	20	50
mission planning	-1	25	50
project= gro	-1	9	19
center= 2	0	11	21
year= 1980	4	29	58
avionics monitoring	6	32	56
median	-3	19	39

■ i.e. usually, very accurate estimates

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

SILAP

SILAP + RIPPER + FSS

Maturing knowledge

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Eg #3: severity prediction @ NASA

SILAP: Early Life cycle Severity Detection

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

SILAP

SILAP + RIPPER + FSS Maturing knowledge

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

- NASA defect data: 5 projects, (Menzies et.al 2007)
- SILAP: predict error {potential, consequence} from project description

Derived	Raw features
co = Consequence	am =Artifact Maturity
dv = Development	as =Asset Safety
ep = Error Potential	cl =CMM Level
pr = Process	cx = Complexity
sc = Software Characteristic	di =Degree of Innovation
	do =Development Organization
	dt =Use of Defect Tracking System
	ex =Experience
	fr =Use of Formal Reviews
	hs =Human Safety
	pf =Performance
	ra =Re-use Approach
	rm =Use of Risk Management System
	ss =Size of System
	uc =Use of Configuration Management
	us =Use of Standards

```
function CO( tmp) { tmp=0.35*AS + 0.65 *PF; return (round((HS) < tmp) ? HS : tmp)
function EP() { return round(0.579*DV() + 0.249*PR() + 0.172*SC())}
function SC() { return 0.547*CX + 0.351*DI + 0.102*SS }
function DV() { return 0.828*EX + 0.172*DO }
function PR() { return 0.226*RA + 0.242*AM + formality() }
function formality() { return 0.0955*US+ 0.0962*UC+ 0.0764*CL + 0.1119*FR +0.0873*DT + 0.0647*RM}</pre>
```


2^F FSS + RIPPER + SILAP data (211 components on 5 projects)

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

SILAP

SILAP + RIPPER + FSS

Maturing knowledge

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

			productions	
			a=pd, b=prec	
			x = 2ab/(a+b)	_
	features	F	_12 _3 _4 _5	$X = \left(\sum x\right)/4$
Α	all - L1 - L2 - group(6)	8	0.97 0.95 0.97 0.99	0.97
В	all - L1 - L2 - $group(5 + 6)$	7	0.95 0.94 0.97 0.96	0.96
C	all - L1 - L2 - $group(4 + 5 + 6)$	6	0.93 0.95 0.98 0.93	0.95
D	all - L1 - L2	16	0.94 0.94 0.93 0.96	0.94
Е	all - L1 - L2 - group $(3 + 4 + 5 + 6)$) 4	0.93 0.97 0.90 0.87	0.92
F	{co*ep, co, ep}	3	0.94 0.84 0.55 0.70	0.76
G	L1	1	0.67 0.69 0.00 0.46	0.45
Н	just "us"	1	0.64 0.60 0.00 0.00	0.31
- 1	L2	1	0.57 0.00 0.32 0.00	0.22

Rules from "E":

rule 1	if	$uc \ge 2 \land us = 1$	then	severity $= 5$
rule 2	else if	am = 3	then	severity $= 5$
rule 3	else if	$uc \ge 2 \land am = 1 \land us \le 2$	2 then	severity $= 5$
rule 4	else if	$am = 1 \land us = 2$	then	severity = 4
rule 5	else if	$us = 3 \wedge ra \geq 4$	then	severity = 4
rule 6	else if	us = 1	then	severity $= 3$
rule 7	else if	ra = 3	then	severity $= 3$
rule 8	else if	true	then	severity $= 1$ or 2

severity predictions

FSS to mature business knowledge

2005: Delphi session results:

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

SILAP

SILAP + RIPPER + FSS

Maturing knowledge

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

				weight*	contribution
goal	feature	weight	filter	filter	to goal
consequence	hs	0.35	1	0.350	35%
(co)	pf	0.65	1	0.650	65%
error	ex	0.828	0.579	0.479	47%
potential	cx	0.547	0.172	0.094	9%
(ep)	do	0.172	0.579	0.100	9%
	di	0.351	0.172	0.060	6%
	am	0.242	0.249	0.060	6%
	ra	0.226	0.249	0.056	5%
	us	0.0955	0.249	0.024	2%
	uc	0.0962	0.249	0.024	2%
	fr	0.119	0.249	0.030	2%
	dt	0.0873	0.249	0.022	2%
	SS	0.102	0.172	0.018	1%
	cl	0.0764	0.249	0.019	1%

0.0647

rm

0.249

0.016

1%

number of times

group	feature	notes	selected
1	us	use of standards	10
2	uc	config management	9
	ra	reuse approach	9
	am	artifact maturity	9
3	fr	formal reviews	8
	ex	experience	8
. 4	SS	size of system	7
5	rm	risk management	6
6	cl	CMM level	5
	dt	defect tracking	5
	do	development organization	4
	di	degree of innovation	4
	hs	human safety	3
	as	asset safety	2
	CX	complexity	2
	pf	performance	1
	1 2 3 3 	1 us 2 uc ra am 3 fr ex 5 rm 6 cl dt do di hs as cx	1 us use of standards 2 uc config management ra reuse approach am artifact maturity 3 fr formal reviews ex experience 4 ss size of system 5 rm risk management 6 cl CMM level dt defect tracking do development organization di degree of innovation hs human safety as asset safety cx complexity

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Using static code 10-way cross val

Eg5: (more) defect pred.

Conclusions

Eg #4: defect prediction @ NASA

Defect predictors from Static code measures

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Using static code

10-way cross val

Eg5: (more) defect pred.

Conclusions

- IEEE TSE (Menzies et al. [2006])
- Modules from eight NASA projects, MDP, described using LOC, McCabe, Halstead metrics
- New methods
 - Shoot-out between :
 - Bayesian;
 - simple rule learners; e.g. $v(g) \ge 10$
 - complex tree learners; C4.5
 - ◆ Simple pre-processor on the exponential numerics
 - num = log(num < 0.000001?0.000001:num)
- Prior state(s)-of-the-art, percentage of defects found:
 - IEEE Metrics 2002 panel: manual software reviews finds $\approx 60\%$
 - ◆ Raffo: industrial reviews finds TR(min,mod,max) = TR(35, 50, 65)%
 - My old data mining experiments: prob {detection, false alarm}= $\{36,17\}\%$

Results: 10 * { randomize, 10 * { (train,test) = (90,10)% }}

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Using static code

10-way cross val

Eg5: (more) defect pred.

Conclusions

- Bayes + logging beats prior state of the art
- mean prob {detection, false alarm}={71,25}%
- Again, no one "best" theory

		%		selected	fss
data	N	pd	pf	features	method
pc1	100	48	17	3, 35, 37	$O(2^F)$
mw1	100	52	15	23, 31, 35	O(F)
kc3	100	69	28	16, 24, 26	O(F)
pc2	100	72	14	5, 39	O(F)
kc4	100	79	32	3, 13, 31	O(F)
pc3	100	80	35	1, 20, 37	O(F)
pc4	100	98	29	1, 4, 39	O(F)
all	800	71	25		

- 1	D frequency	what	type
1	L 2	loc_blanks	locs
3	3 2	call_pairs	misc
4	1 1	loc_code_and_command	locs
5	5 2	loc_comments	locs
1	l3 1	edge_count	misc
1	16 1	loc_executable	locs
2	20 1	1	H (derived Halstead)
2	23 1	В	H (derived Halstead)
2	24 1	L	H (derived Halstead)
2	26 1	T	H (derived Halstead)
3	31 2	node_count	misc
3	35 3	μ_2	h (raw Halstead)
3	36 1	μ_1^-	h (raw Halstead)
3	37 2	number_of_lines	locs
3	39 2	percent_comments	misc

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

More defect prediction

Conclusions

Questions? Comments?

Eg #5: more defect prediction @ NASA

Yet more detect prediction

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

More defect prediction

Conclusions

- (Song et al. [2006])
- NASA SEL defect data: than 200 projects over 15 years.
- Predicting defects accuracy is very high (over 95%),
- false-negative rate is very low.

Executive Summary

Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

In summary...

Why?

What to do?

Questions? Comments?

Conclusions

In summary...

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

In summary...

Why?

What to do?

- Five NASA data sources
 - ◆ Eg #1: text mining a NASA issue database (PITS)
 - ◆ Eg #2: effort estimation from NASA data (COCOMO)
 - ◆ Eg #3: early life cycle severity prediction (SILAP)
 - ◆ Eg #4: defect prediction from NASA static code data (MDP)
 - ◆ Eg #5: defect prediction (NASA SEL)
- All of which yield strong predictors for quality (effort, defects)
- Only <u>one</u> of which is still active (PITS)
- What went wrong?
- What to do?

Why is this Data Being Ignored?

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

In summary...

Why?

What to do?

- Group 1 : easy to explain
 - ◆ NASA SEL : Technology used in case study #5 very new
 - PITS:
 - Accessing PITS data was hard- required much civil servant support
 - No one was crazy enough to try text mining on unstructured PITS issue reports.
 - ♦ SILAP:
 - Newest data set of all the above
 - Never explored before since not available before
 - Data collection stopped since IV&V business model changed (now focused on model-based early lifecycle validation).
- Group 2 : harder to explain
 - ◆ MDP : Much interest across the agency (at GRC, JSC) in MDP (and associated tools).
 - ◆ COCOMO: well-documented, cheap to collect, many tools available
 - Maybe the answer lies in NASA culture:
 - NASA's centers compete for resources.
 - Reluctance to critically evaluate and share process information.

What to do?

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

In summary...

Why?

What to do?

- Stop debating what data to collect
 - ◆ Many loosely-defined sources will do: COCOMO, SILAP, defect reports
- Stop debating how to store data
 - ◆ Comma-separated or ARFF format or XML, one per component, is fine
- Stop hiding data
 - Create a central register for all NASA's software components
 - Register = component name and "part-of" (super-component)
 - Features extracted from all components, stored at a central location
 - ◆ All reports have anonymous join key to the central register
 - Make the anonymous data open source (lever the data mining community)
- Stop ignoring institutional data
 - Active repository, not data tomb
 - ♦ Success measure: not data in, but conclusions out
- Stop publishing vague generalities
 - Rather, publish *general methods* for building *specific models*
 - Open research question: how much data is enough to learn local model?

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

References

References

Executive Summary
Background: Al- it works

Eg1: text mining

Eg2: effort estimation

Eg3: severity prediction

Eg4: defect prediction

Eg5: (more) defect pred.

Conclusions

Questions? Comments?

References

RIPPER

◆ W.W. Cohen. Fast effective rule induction. In *ICML'95*, pages 115–123, 1995. Available on-line from http://www.cs.cmu.edu/~wcohen/postscript/ml-95-ripper.ps

FSS

- M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining. *IEEE Transactions On Knowledge And Data Engineering*, 15(6):1437–1447, 2003. Available from http://www.cs.waikato.ac.nz/~mhall/HallHolmesTKDE.pdf
- Ron Kohavi and George H. John. Wrappers for feature subset selection. *Artificial Intelligence*, 97(1-2): 273-324, 1997. URL citeseer.nj.nec.com/kohavi96wrappers.html
- A. Miller. Subset Selection in Regression (second edition). Chapman & Hall, 2002. ISBN 1-58488-171-2

COCOMO

- ◆ Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo II. Prentice Hall, 2000
- Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort estimation. *IEEE Transactions on Software Engineering*, November 2006. Available from http://menzies.us/pdf/06coseekmo.pdf

MDP

Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to learn defect predictors. *IEEE Transactions on Software Engineering*, January 2007. Available from http://menzies.us/pdf/06learnPredict.pdf

SEL

 Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair. Software defect association mining and defect correction effort prediction. *IEEE Trans. Softw. Eng.*, 32(2):69–82, 2006. ISSN 0098-5589