Tracing the Inter-hemispheric Coupling during Northern Polar Summer Periods of 2002-2010 using TIMED/SABER Measurements

by

Richard A. Goldberg (NASA GSFC)
Artem G. Feofilov (CUA/GSFC)
W. Dean Pesnell (NASA GSFC)
and
Alexander A. Kutepov (CUA/GSFC)

2009 EGU General Assembly Vienna, Austria April 03-08, 2011

Motivation for the study

- Polar summer mesopause in 2002 was unusually warm.
- During this summer the stratospheric warming in the Southern hemisphere was also higher than usual.
- Becker et al., 2004: extreme stratospheric planetary wave activity leads to decrease of PMCs in Northern Hemisphere.
- Karlsson et al., 2007: correlation between PMC radii and winter stratospheric temperatures. Planetary wave activity in winter hemisphere affects the interhemispheric flow.
- Espy et al., 2011: correlation of extra heating with QBO.
- This work: extending the analysis to 2002-2010 using SABER data

The SABER Instrument Aboard the TIMED Satellite

TIMED: Thermosphere, Ionosphere, Mesosphere Energetics & Dynamics 74.1° inclined 625 km orbit; Latitudinal coverage: 83° S–52° N / 53° S–82° N Data available since 25 January 2002 **SABER:** Sounding of the Atmosphere Using Broadband Emission Radiometry

- 10 broadband channels (1.27–17 μm)
- Products: kinetic temperature, pressure,
 CO₂, O₃, H₂O, NO, O₂, OH, O, H

Temperature anomalies in 2002-2010

T - T_{ave} (K) sequence: June-July, 2002

Note the features along the dashed lines that exist from the beginning of the season.

Sudden Stratospheric Warmings

- ☐ Polar vortex breakdown causes SSW and leads to changes in geopotential heights (right).
- ☐ Tracing these signatures in h_{geopot} enables one to identify the strength and time of SSW event.
- Was 2002 SSW in Southern Hemisphere different compared to other years?
- Were there any other years that demonstrated the same behavior in h_{geopot}?

See the next slide for $\Delta h_{geopot}(10hPa)$ plots where $\Delta h_{geopot} = h_{MAX} - h_{MIN}$

$\Delta h_{geopot}(10hPa)$ in 2002-2010

Studying the $\Delta h_{geopot}(10hPa)$ plots

- \Box The behavior of Δh_{geopot} is similar for all winter periods in both hemispheres in 2002-2010. \Box The maximum value of Δh_{qeopot} is 3.6-3.9 km and was reached in SH 2002, SH 2005, NH 2007, SH 2007, NH 2008, 2010. The longest period of large Δh_{qeopot} was in SH 2002 and began after DOY=200. □ At the same time the strongest warming in the polar summer mesosphere in 2002 corresponds to DOY=160-195 that happened well before the enhanced SSW activity in the Southern Hemisphere has started.
- Both the stratospheric warming in winter hemisphere and polar mesospheric warming in days 145-200 are not associated with a polar vortex breakup. After DOY=200 the breakup just added heating to the stratosphere.

Correlations of T_{mesop} , $T_{stratop}$, and T_{trop} for DOY 182-212

Fitting the polar summer mesosphere temperature anomaly

 k_{corr} =0.97 for 31 months oscillation \neq QBO (24.5 months)!

Conclusions

SABER pressure/temperature dataset for 2002-2010 was analyzed
Temperature anomalies similar to that of summer 2002 were observed for summers of 2007 and 2010.
Sudden stratospheric warming in SH did not precede the mesospheric warming in NH: the whole structure developed simultaneously.
NH mesopause temperature correlates with SH tropopause, SH mesopause, and tropical stratopause temperatures and anticorrelates with SH stratopause temperatures that is in agreement with Karlsson et al., 2007.
Temperature anomaly has a period of 31 months that is not matching current QBO period of 24.5 months.
Explanation requires either varying time lag or admixing another oscillation.

Additional slides

Oscillation period for temperature anomaly in NH mesopause

Energy transfer by planetary waves

Geostrophic relationships: $f \times v = d \Phi / dx$ $f \times u = d \Phi / dy$

where $f = 2 \Omega$ sin ϕ is the Coriolis parameter; Ω is angular speed of Earth, ϕ is latitude; $\Phi = g \times \xi$, g is free fall acceleration, ξ is geopotential height; v and u are S-N and E-W wind components; x and y correspond to S-N and E-W directions, respectively.

Correspondingly,
$$v = g/f \times d\zeta / dx$$

Knowing v and T and their variations v' and T' over certain period enables one to build v'T' distributions that show the **heat transfer by planetary waves**.

Heat transfer by planetary waves in 2002

The major "heat wave" in S-N direction in 2002 corresponds to DOY=236 at 10 hPa level. No significant flows had been observed before this day.

Northern Summer Mesopause Temperatures and PMC Occurrence Frequency

