GVPT728 Project Final Code

Yael Beshaw

2025-01-23

Download Potentially Necessary Packages

```
library(tidyverse)
library(tidycensus)
library(dplyr)
library(readr)
library(readxl)
library(haven)
library(ggfortify)
library(car)
library(huxtable)
library(lmtest)
library(ggdist)
library(fixest)
library(sandwich)
library(lmtest)
library(lme4)
library(modelsummary)
library(tableone)
library(knitr)
library(gt)
library(marginaleffects)
library(ggeffects)
library(labelled)
library(kableExtra)
```

Import Original Dataset

hints6 <- read_sav("/Users/yaelbeshaw/R Scripts and Projects/NYU-APSTA-GE-2011/HINTS6_SPSS/hints6_publi

Variables of Interest for this Study

Dependent Variable

Health Information-Seeking Behaviors:

Electronic2_HealthInfo: "In the past 12 months, have you used the Internet to look for health or medical information?" (Binary)

Independent Variable

Frequency of Internet Usage:

SocMed_Visited: Frequency of visiting social media sites in the past 12 months (ordinal or categorical).

Controls

Internet Access

Type of internet access

- 1. Internet_DialUp
- 2. Internet_HighSpeed
- 3. Internet Cell

Device ownership or access

HAVEDEVICE_CAT

Access Satisfaction

InternetConnection: Satisfaction with internet connection for health-related needs (ordinal scale).

Health Literacy:

ConfidentInternetHealth: "How confident are you that you can find helpful health resources on the Internet?" (Ordinal scale)

Trust in Information:

MisleadingHealthInfo: "How much of the health information that you see on social media do you think is false or misleading?" (Ordinal scale)

Health Status:

EverHadCancer

 $\label{lem:medConditions_Diabetes} MedConditions_Diabetes, \quad MedConditions_HighBP, \quad MedConditions_HeartCondition, \quad MedConditions_LungDisease, \\ MedConditions_Depression$

Demographics:

Age; Age and AgeGrpB Gender; BirthGender

Race; RaceEthn5

Educational attainment; EducA

Geographic: CENSDIV

Urban vs Rural; PR RUCA 2010: USDA 2010 Primary Rural-Urban Community Area Code

Economic Factors: Income; HHInc

Employment: WorkFullTime(R4) How many children: ChildrenInHH

Stratum Classification

STRATUM

HR High minority rural area HU High minority urban area LR Low minority rural area LU Low minority urban area

Household ID

HHID

Select Variables

```
select data <- hints6 |>
  select(Electronic2_HealthInfo, #binary 1 or 2 *done
         UseInternet, #binary 1 or 2 *done
         SocMed Visited, # 1 to 5 (every day to never) --flip *done
         Internet_DialUp, # binary 1 or 2 *done
         Internet HighSpeed, # binary 1 or 2 *done
         Internet_Cell, # binary 1 or 2 *done
         HAVEDEVICE_CAT, #recode 4 as 0 *done
         InternetConnection, # 1 to 5 (extremely satisfied to not at all) -flip *done
         ConfidentInternetHealth, #1 to 5 (completely confident to not at all) -flip *done
         MisleadingHealthInfo, #1 to 5 (a lot to none (4), I dont use social (5)) -flip with 1 =0 *done
         EverHadCancer, #dummy- healthstatus *done
         MedConditions_Diabetes, #dummy - healthstatus *done
         MedConditions_HighBP, #dummy- healthstatus *done
         MedConditions_HeartCondition, #dummy - healthstatus *done
         MedConditions_LungDisease, #dummy- healthstatus *done
         MedConditions_Depression, #dummy- healthstatus *done
         Age, #continuous (18 to 99) use AgeGrpB for visualization *done
         BirthGender, # 0 == Male, 1 == Female *done
         RaceEthn5, # NHWhite, NHBlack, Hispanic, NHAsian, NHOther *done
         EducA, # Less than HS, HS, Some College, Collge and Beyond *done
         CENSDIV, # New England, Middle Atlantic, E/W North Central, South Atlantic, E/W South Central,
         PR RUCA 2010, # Metropolitan, Micropolitian, Small Town, Rural (code 0 or 1) *done
         HHInc, # 1 to 5, increasing *done
         WorkFullTime, # 1 or 2 0,1 *done
         ChildrenInHH, # 0 to 9 *done
         AgeGrpB,
         HHID)
```

Data Preprocessing

Remove any missing data

```
clean_data <- select_data %>%
  mutate(across(everything(), ~ na_if(., -9))) %>%
  mutate(across(everything(), ~ na_if(., -7))) %>%
  mutate(across(everything(), ~ na_if(., -6))) %>%
  mutate(across(everything(), ~ na_if(., -5))) %>%
  mutate(across(everything(), ~ na_if(., -4))) %>%
  mutate(across(everything(), ~ na_if(., -2)))
data <- na.omit(clean_data)
```

Join the new dataset with the stratum assignment using HHID, use later

Recodes

```
#For Binary Variables- Code 1's and 2's to 0 and 1
data$Electronic2_HealthInfo <- ifelse(data$Electronic2_HealthInfo == 1,</pre>
                                         1, 0)
# Type of Internet
data$Internet_DialUp <- ifelse(data$Internet_DialUp == 1,</pre>
                                         1, 0)
data$Internet_HighSpeed <- ifelse(data$Internet_HighSpeed == 1,</pre>
                                         1, 0)
data$Internet Cell <- ifelse(data$Internet Cell == 1,</pre>
#Gender
data$BirthGender <- ifelse(data$BirthGender == 1,</pre>
                                         1, 0)
#Employment
data$WorkFullTime<- ifelse(data$WorkFullTime == 1,</pre>
                                         1, 0)
# Flip the ordinal variables from least to greatest
data$SocMed_Visited <- factor(data$SocMed_Visited,</pre>
                                   levels = c(5, 4, 3, 2, 1)
levels(data$SocMed_Visited) <- c("1", "2", "3", "4", "5")</pre>
# Internet Connection Satisfaction
data$InternetConnection <- factor(data$InternetConnection,</pre>
                                   levels = c(5, 4, 3, 2, 1)
levels(data$InternetConnection) <- c("1", "2", "3", "4", "5")</pre>
# Confidence in Getting Health Info (Literacy)
data$ConfidentInternetHealth <- factor(data$ConfidentInternetHealth,</pre>
                                   levels = c(5, 4, 3, 2, 1)
levels(data$ConfidentInternetHealth) <- c("1", "2", "3", "4", "5")</pre>
```

```
# Trust in Health Info on SM
data$MisleadingHealthInfo <- factor(data$MisleadingHealthInfo,</pre>
                                  levels = c(5, 4, 3, 2, 1)
levels(data$MisleadingHealthInfo) <- c("1", "2", "3", "4", "5")</pre>
#Recode Variables
# Rural vs Not
data$PR_RUCA_2010 <- ifelse(data$PR_RUCA_2010== 1 |
                               data$PR_RUCA_2010== 4|
                               data$PR_RUCA_2010== 7,
                             1)
# Any chronic conditions + cancer as a 1 or 0
data$HealthStatus <- ifelse(data$EverHadCancer == 1 |</pre>
                                 data$MedConditions_Diabetes == 1 |
                                 data$MedConditions_HighBP == 1 |
                                 data$MedConditions_HeartCondition == 1 |
                                 data$MedConditions LungDisease == 1
                                 data$MedConditions_Depression == 1,
                                 0)
# Devices, none is 0 and multiple is 4 instead
data$HAVEDEVICE_CAT <- ifelse(data$HAVEDEVICE_CAT == 4, 0,
                                   ifelse(data$HAVEDEVICE_CAT == 5, 4,
                                           data$HAVEDEVICE_CAT))
# Turn internet type into one variable
data$InternetAccessType <- NA</pre>
# Assign any combinations as 4 = Multiple
data$InternetAccessType[data$Internet_DialUp == 1 &
                          data$Internet_HighSpeed == 1] <- 4</pre>
data$InternetAccessType[data$Internet_DialUp == 1 &
                          data$Internet_Cell == 1] <- 4</pre>
data$InternetAccessType[data$Internet_HighSpeed == 1 &
                          data$Internet_Cell == 1] <- 4</pre>
# Assign individual categories as their own
data$InternetAccessType[data$Internet_DialUp == 1 &
                          is.na(data$InternetAccessType)] <- 1</pre>
data$InternetAccessType[data$Internet_HighSpeed == 1 &
                          is.na(data$InternetAccessType)] <- 2</pre>
data$InternetAccessType[data$Internet_Cell == 1 &
                          is.na(data$InternetAccessType)] <- 3</pre>
```

```
# Recode the number of children, 0 = None up to 3+
data$ChildrenInHH_recode <- ifelse(data$ChildrenInHH >= 3, 3, as.character(data$ChildrenInHH))
```

Descriptive Statisitics Visualizations

Dependent VAR

```
#DEPENDENT VARIABLE

freq_table <- table(data$Electronic2_HealthInfo)

pie(freq_table,
    main = "In the Past 12 months, \n have you used the Internet to look for \n health or medical information col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table))</pre>
```

In the Past 12 months, have you used the Internet to look for health or medical information?

Compare the results against how many people use the internet in general

```
freq_table <- table(data$ UseInternet)

pie(freq_table,
    main = "Do you ever go on-line to access the Internet \n or World Wide Web,\n or to send and receiv
    col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table))</pre>
```

Do you ever go on-line to access the Internet or World Wide Web, or to send and receive e-mail?

Independent VAR

In the last 12 months, how often did you visit a social media site?

Social Media Usage Frequency

Health Information Related Controls

Table 1: Access Type

Category	Count
Dial-Up	24
High-Speed	706
Cellular	260
Multiple	3215

Table 2: Device Type

Category	Count
Tablet Computer Only	85
Smartphone Only	157
Basic Cell Only	1452
None	256
Multiple Devices	2841

How confident are you that you can find helpful health resources on the Internet?

How much of the health information that you see on social media do you think is false or misleading?

Trust in Health Information

Demographic Controls

```
#DEMOGRAPHIC CONTROLS

# Health Status
freq_table <- table(data$HealthStatus)

pie(freq_table,
    main = "Have you ever had Cancer or another Chronic Condition? \n (i.e., Diabetes, High BP, Heart C col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table))</pre>
```

Have you ever had Cancer or another Chronic Condition? (i.e., Diabetes, High BP, Heart Condition, Lung Disease, Depression

Age Groups of Respondents


```
# SEX at BIRTH
freq_table <- table(data$BirthGender)

pie(freq_table,
    main = "Sex/Gender Assigned at Birth",
    col = c("lightblue", "lightpink"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 1.2,
    clockwise = TRUE,
    border = "black",
    init.angle = 90
)</pre>
```

Sex/Gender Assigned at Birth

Table 3: Race

Category	Count
NHWHite	2800
NHBlack	755
Hispanic	814
NHAsian	255
NHOthers	167

```
# Education
freq_table <- table(data$EducA)</pre>
```

Table 4: Education

Category	Count
< High School	240
High School Grad	798
Some College	1362
${\rm College\ Grad\ +}$	2391

```
# Rural vs Not
freq_table <- table(data$PR_RUCA_2010)

pie(freq_table,
    main = "Rural vs Not",
    col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 1.2,
    clockwise = TRUE,
    border = "black",
    init.angle = 180
)</pre>
```

Rural vs Not

of Children Under 18

Economic Controls

Combined Houshold Income Ranges


```
#Full Time Work
freq_table <- table(data$WorkFullTime)

pie(freq_table,
    main = "Do you work full time?",
    col = c("lightblue", "lightgreen"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 1.2,
    clockwise = TRUE,
    border = "black",
    init.angle = 90
)</pre>
```

Do you work full time?

Stratification Assignment

```
#Stratum Classification

freq_table <- table(data$STRATUM)

pie(freq_table,
    main = "STRATUM ASSIGNMENT",
    col = c("lightblue", "lightgreen", "lightpink", "lightyellow"),
    labels = paste(names(freq_table), "\n", freq_table),
    radius = 1,
    cex = 0.75,
    clockwise = TRUE,
    border = "black",
    init.angle = 270
)</pre>
```

STRATUM ASSIGNMENT

More Recoding for Data Analysis

```
#ACCESS TYPE
table(data$InternetAccessType)
##
##
      1
           2
                3
                     4
     24 706 260 3215
data$InternetAccessType_dummy <- ifelse(data$InternetAccessType == 4, 1, 0)</pre>
table(data$InternetAccessType_dummy)
##
##
## 990 3215
# DEVICE
table(data$HAVEDEVICE_CAT)
##
##
      0
           1 2
                     3
##
     85 157 1452 256 2841
data$HAVEDEVICE_CAT_recode <- ifelse(data$HAVEDEVICE_CAT == 3, 0,</pre>
                                      ifelse(data$HAVEDEVICE_CAT == 4, 2, 1))
table(data$HAVEDEVICE_CAT_recode)
```

```
##
##
     0 1
## 256 1694 2841
#VISTIED
table(data$SocMed_Visited)
##
##
           2
              3
                     4
      1
                          5
## 822 279 366 589 2735
data$SocMed_Visited <- as.numeric(data$SocMed_Visited)</pre>
#CONFIDENCE
table(data$ConfidentInternetHealth)
##
##
      1
           2
                3
                          5
## 206 413 1888 1692 592
data$ConfidentInternetHealth <- as.numeric(data$ConfidentInternetHealth)</pre>
#RACE
table(data$RaceEthn5)
##
      1
           2
                3
## 2800 755 814 255 167
data$RaceEthn5_recoded <- factor(data$RaceEthn5,</pre>
                         levels = c(1, 2, 3, 4, 5),
                         label = c("NHWhite", "NHBlack", "Hispanic", "NHAsian", "NHOther"))
# Check the table after factoring
table(data$RaceEthn5_recoded)
##
##
   NHWhite NHBlack Hispanic NHAsian NHOther
##
       2800
                 755
                          814
                                    255
                                             167
#EDUCATION
table(data$EducA)
##
##
      1
                3
## 240 798 1362 2391
data$EducA_recoded <- factor(data$EducA,</pre>
                         levels = c(1, 2, 3, 4),
                         label = c("< High School", "HS Grad", "Some College", "College Grad +"))</pre>
# Check the table after factoring
table(data$EducA_recoded)
##
                         HS Grad
## < High School
                                   Some College College Grad +
                             798
##
              240
                                            1362
                                                           2391
```

```
#CHILDREN
data$ChildrenInHH_recode <- as.numeric(data$ChildrenInHH_recode)
```

LOGIT REGRESSIONS

```
# Logistic Regression Models
## Model 1: Frequency of internet usage as a predictor
model1 <- glm(Electronic2_HealthInfo ~ SocMed_Visited , family = binomial, data = data)</pre>
summary(model1)
## Call:
## glm(formula = Electronic2_HealthInfo ~ SocMed_Visited, family = binomial,
      data = data)
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
                          0.08003 -4.908 9.21e-07 ***
## (Intercept)
               -0.39276
## SocMed_Visited 0.43065
                          0.02115 20.366 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 5260.0 on 4790 degrees of freedom
## Residual deviance: 4836.5 on 4789 degrees of freedom
## AIC: 4840.5
##
## Number of Fisher Scoring iterations: 3
## Model 2: Alongside Controls
model2 <- glm(Electronic2_HealthInfo ~ SocMed_Visited +</pre>
              InternetAccessType_dummy + HAVEDEVICE_CAT_recode + ConfidentInternetHealth +
              MisleadingHealthInfo, family = binomial, data = data)
summary(model2)
##
## Call:
## glm(formula = Electronic2 HealthInfo ~ SocMed Visited + InternetAccessType dummy +
      HAVEDEVICE_CAT_recode + ConfidentInternetHealth + MisleadingHealthInfo,
##
      family = binomial, data = data)
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
                        ## (Intercept)
## SocMed Visited
                         ## InternetAccessType_dummy 0.39718 0.10594 3.749 0.000177 ***
                                   0.08283 4.910 9.09e-07 ***
## HAVEDEVICE_CAT_recode
                         0.40673
## ConfidentInternetHealth
                         ## MisleadingHealthInfo2
                         ## MisleadingHealthInfo3
## MisleadingHealthInfo4
                         0.71408
                                  0.16914 4.222 2.42e-05 ***
```

```
## MisleadingHealthInfo5
                             0.80294
                                       0.17057
                                                  4.707 2.51e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 3288.6 on 4204 degrees of freedom
## Residual deviance: 2984.6 on 4196 degrees of freedom
     (586 observations deleted due to missingness)
## AIC: 3002.6
##
## Number of Fisher Scoring iterations: 5
## Model 3: Adding demographic factors
model3 <- glm(Electronic2_HealthInfo ~ SocMed_Visited +</pre>
                InternetAccessType_dummy + HAVEDEVICE_CAT_recode + ConfidentInternetHealth +
                MisleadingHealthInfo +
                HealthStatus+ Age+ BirthGender+ RaceEthn5_recoded+ EducA_recoded + PR_RUCA_2010 +
                ChildrenInHH_recode, family = binomial, data = data)
summary(model3)
##
## Call:
  glm(formula = Electronic2_HealthInfo ~ SocMed_Visited + InternetAccessType_dummy +
       HAVEDEVICE CAT recode + ConfidentInternetHealth + MisleadingHealthInfo +
##
       HealthStatus + Age + BirthGender + RaceEthn5_recoded + EducA_recoded +
##
       PR_RUCA_2010 + ChildrenInHH_recode, family = binomial, data = data)
##
## Coefficients:
                                Estimate Std. Error z value Pr(>|z|)
##
                                          0.434991 -6.056 1.39e-09 ***
## (Intercept)
                               -2.634513
                                0.022322
                                          0.041420
                                                     0.539 0.589945
## SocMed_Visited
## InternetAccessType_dummy
                               0.313614
                                          0.113244
                                                     2.769 0.005617 **
## HAVEDEVICE CAT recode
                               0.339854
                                          0.086112
                                                     3.947 7.93e-05 ***
## ConfidentInternetHealth
                               0.640111
                                          0.058870 10.873 < 2e-16 ***
## MisleadingHealthInfo2
                               0.252874
                                          0.464404 0.545 0.586089
## MisleadingHealthInfo3
                               0.472667
                                          0.196729
                                                     2.403 0.016277 *
                                          0.173823
## MisleadingHealthInfo4
                               0.711372
                                                     4.093 4.27e-05 ***
                                          0.176922
## MisleadingHealthInfo5
                                                     4.164 3.13e-05 ***
                               0.736622
## HealthStatus
                               0.396203
                                          0.109135
                                                     3.630 0.000283 ***
                               -0.002899
                                          0.003620 -0.801 0.423255
## Age
## BirthGender
                               -0.478655
                                          0.099724 -4.800 1.59e-06 ***
## RaceEthn5_recodedNHBlack
                               -0.432701
                                          0.136572 -3.168 0.001533 **
## RaceEthn5_recodedHispanic
                              -0.091097
                                          0.142040 -0.641 0.521298
## RaceEthn5_recodedNHAsian
                               0.186621
                                          0.254123
                                                     0.734 0.462721
                                          0.260700 -0.884 0.376769
## RaceEthn5_recodedNHOther
                               -0.230423
## EducA_recodedHS Grad
                                0.444005
                                          0.220761
                                                     2.011 0.044300 *
## EducA_recodedSome College
                                0.919110
                                          0.212801
                                                      4.319 1.57e-05 ***
                                                      7.535 4.89e-14 ***
## EducA_recodedCollege Grad + 1.609023
                                          0.213549
## PR_RUCA_2010
                                1.206912
                                           0.529472
                                                      2.279 0.022639 *
## ChildrenInHH recode
                                0.122188
                                          0.069457
                                                     1.759 0.078544 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
##
      Null deviance: 3288.6 on 4204 degrees of freedom
## Residual deviance: 2820.9 on 4184 degrees of freedom
     (586 observations deleted due to missingness)
## AIC: 2862.9
##
## Number of Fisher Scoring iterations: 5
## Model 4: Adding demographic and economic factors
model4 <- glm(Electronic2_HealthInfo ~ SocMed_Visited +</pre>
               InternetAccessType_dummy + HAVEDEVICE_CAT_recode + ConfidentInternetHealth +
               MisleadingHealthInfo +
               HealthStatus+ Age+ BirthGender+ RaceEthn5_recoded+ EducA_recoded + PR_RUCA_2010 +
               ChildrenInHH_recode + HHInc + WorkFullTime, family = binomial, data = data)
summary (model4)
##
## Call:
## glm(formula = Electronic2_HealthInfo ~ SocMed_Visited + InternetAccessType_dummy +
##
      HAVEDEVICE_CAT_recode + ConfidentInternetHealth + MisleadingHealthInfo +
      HealthStatus + Age + BirthGender + RaceEthn5_recoded + EducA_recoded +
##
##
      PR_RUCA_2010 + ChildrenInHH_recode + HHInc + WorkFullTime,
##
      family = binomial, data = data)
##
## Coefficients:
##
                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                              -2.723792
                                          0.445644 -6.112 9.84e-10 ***
## SocMed_Visited
                                          0.041546
                                                    0.422 0.673151
                               0.017525
## InternetAccessType_dummy
                               0.263120
                                          0.114537
                                                    2.297 0.021605 *
## HAVEDEVICE_CAT_recode
                               0.276613
                                          0.087442
                                                    3.163 0.001559 **
                                          0.058922 10.575 < 2e-16 ***
## ConfidentInternetHealth
                               0.623110
## MisleadingHealthInfo2
                                          0.398562
## MisleadingHealthInfo3
                               0.554347
                                          0.198505 2.793 0.005229 **
                                          0.174494 4.260 2.04e-05 ***
## MisleadingHealthInfo4
                               0.743364
## MisleadingHealthInfo5
                               0.748459
                                         0.177652 4.213 2.52e-05 ***
## HealthStatus
                               0.421652
                                          0.110337
                                                    3.821 0.000133 ***
## Age
                              -0.005470
                                          0.003839 -1.425 0.154172
                              -0.523544
                                          0.101422 -5.162 2.44e-07 ***
## BirthGender
## RaceEthn5_recodedNHBlack
                                          0.139184 -2.320 0.020317 *
                              -0.322966
## RaceEthn5 recodedHispanic
                              -0.024896
                                          0.143118 -0.174 0.861900
## RaceEthn5_recodedNHAsian
                                          0.254979 0.829 0.407198
                               0.211336
## RaceEthn5 recodedNHOther
                              -0.183339
                                          0.261189 -0.702 0.482716
## EducA_recodedHS Grad
                                          0.221845
                                                   1.594 0.110946
                               0.353611
## EducA_recodedSome College
                               0.769278
                                          0.215193
                                                    3.575 0.000350 ***
                                                    6.055 1.41e-09 ***
## EducA_recodedCollege Grad + 1.339382
                                          0.221210
## PR_RUCA_2010
                                          0.529176
                                                    2.276 0.022863 *
                               1.204253
## ChildrenInHH_recode
                               0.106672
                                          0.069659
                                                    1.531 0.125684
## HHInc
                               0.192698
                                          0.038704
                                                    4.979 6.40e-07 ***
## WorkFullTime
                              -0.198635
                                          0.115988 -1.713 0.086796 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 3288.6 on 4204 degrees of freedom
```

```
## Residual deviance: 2796.1 on 4182 degrees of freedom
## (586 observations deleted due to missingness)
## AIC: 2842.1
##
## Number of Fisher Scoring iterations: 5
```

SUMMARY OF MODEL \$

```
model_sum <- list("Model 4" = model4)
modelsummary(model_sum, output = "huxtable")</pre>
```

SUMMARY OF ALL MODELS

GLOBAL F TEST

```
anova(model3, model4)
```

MARGINAL EFFECTS

AVERAGE PREDICTIONS

```
predicitions <- avg_predictions(model4, variables='SocMed_Visited')|>
  tibble()
predicitions
#put in presentable table
predictions <- avg_predictions(model4, variables = 'SocMed_Visited') |>
  tibble()
predictions $SocMed_Visited <- c("Never", "Rarely", "Occasionally", "Frequently", "Every Day")
# Create and display the table with custom row names
predictions |>
  gt() |>
  tab header(
    title = "Average Predicted Probabilities for SocMed_Visited",
    subtitle = "Based on Logistic Regression Model"
  ) |>
  fmt number(
    columns = everything(),
    decimals = 3
  ) |>
  cols_label(
```

```
SocMed_Visited = "Social Media Usage",
estimate = "Estimate",
std.error = "Std. Error",
statistic = "Statistic",
p.value = "P-value",
s.value = "S-value",
conf.low = "Conf. Low",
conf.high = "Conf. High"
)
```

COUNTERFACTUAL APPROACH

```
mfx <- avg_comparisons(model4) |>
 tidy() |>
  mutate(contrast = paste(term, ":", contrast))
mfx_significant <- mfx |>
  filter(p.value < 0.05)</pre>
ggplot(mfx_significant, aes(x = estimate, y = contrast, color= "Model 4",
                xmin = conf.low,
                xmax = conf.high)) +
  geom_pointrange(position = position_dodge(width = 0.5)) +
 theme_bw() +
  xlim(c(-0.5, 0.5)) +
  geom_vline(xintercept = 0, lty = 2) +
  scale_color_brewer(palette = "Dark2") +
  labs(
   title = "Marginal Effects of Significant Coefficients",
    caption = "Averaged over observed values"
  ) +
  theme(
    axis.title.y = element_blank(),
    axis.text.y = element_text(size = 10)
```

Marginal Effects of Significant Coefficient

CHECK THE MARGINAL EFFECTS

```
#HIGH SM USAGE
logit_effect1 <-predict(model4,</pre>
                          newdata=data.frame(
                            SocMed_Visited = 5,
                            InternetAccessType_dummy = 1,
                            HAVEDEVICE_CAT_recode = 2,
                            ConfidentInternetHealth =5,
                            MisleadingHealthInfo = "5",
                            HealthStatus = 1,
                            BirthGender= 0.
                            RaceEthn5_recoded = "NHWhite",
                            EducA_recoded = "College Grad +",
                            PR_RUCA_2010 = 1,
                            HHInc = 5,
                            Age = 56,
                            WorkFullTime= 1,
                            ChildrenInHH_recode = 0),
                            type='response')
logit_effect2 <-predict(model4,</pre>
                          newdata=data.frame(
                            SocMed Visited = 5,
```

```
InternetAccessType_dummy = 0,
                            HAVEDEVICE_CAT_recode = 0,
                            ConfidentInternetHealth =1,
                            MisleadingHealthInfo = "1",
                            HealthStatus = 0,
                            BirthGender= 1,
                            RaceEthn5_recoded = "NHBlack",
                            EducA_recoded = "< High School",</pre>
                            PR_RUCA_2010 = 0,
                            HHInc = 1,
                            Age = 56,
                            WorkFullTime= 1,
                            ChildrenInHH_recode = 0),
                            type='response')
logit_effect1- logit_effect2
## 0.955558
# LOW SM USAGE
logit_effect3 <-predict(model4,</pre>
                          newdata=data.frame(
                            SocMed_Visited = 1,
                            InternetAccessType_dummy = 1,
                            HAVEDEVICE_CAT_recode = 2,
                            ConfidentInternetHealth =5,
                            MisleadingHealthInfo = "5",
                            HealthStatus = 1,
                            BirthGender= 0,
                            RaceEthn5_recoded = "NHWhite",
                            EducA_recoded = "College Grad +",
                            PR_RUCA_2010 = 1,
                            HHInc = 5,
                            Age = 56,
                            WorkFullTime= 1,
                            ChildrenInHH_recode = 0),
                            type='response')
logit_effect4 <-predict(model4,</pre>
                          newdata=data.frame(
                            SocMed_Visited = 1,
                            InternetAccessType_dummy = 0,
                            HAVEDEVICE_CAT_recode = 0,
                            ConfidentInternetHealth =1,
                            MisleadingHealthInfo = "1",
                            HealthStatus = 0,
                            BirthGender= 1,
                            RaceEthn5_recoded = "NHBlack",
                            EducA_recoded = "< High School",</pre>
                            PR_RUCA_2010 = 0,
                            HHInc = 1,
                            Age = 56,
```

0.9578761

DIAGNOSTICS AND ROBUSTNESS CHECKS

Muliti-colinearity

vif(model4)

```
##
                              GVIF Df GVIF^(1/(2*Df))
## SocMed_Visited
                          1.771390 1
                                            1.330936
## InternetAccessType_dummy 1.211956 1
                                            1.100889
## HAVEDEVICE_CAT_recode
                          1.128336 1
                                            1.062231
## ConfidentInternetHealth 1.092967 1
                                            1.045451
## MisleadingHealthInfo 1.919090 4
                                            1.084893
## HealthStatus
                                            1.068037
                         1.140703 1
## Age
                         1.743546 1
                                            1.320434
                          1.066099 1
                                            1.032521
## BirthGender
## RaceEthn5_recoded
                                            1.025521
                          1.223364 4
## EducA_recoded
                                            1.035828
                          1.235169 3
## PR_RUCA_2010
                          1.010404 1
                                            1.005188
## ChildrenInHH_recode
                          1.226045 1
                                            1.107269
## HHInc
                          1.444332 1
                                            1.201804
## WorkFullTime
                          1.397146 1
                                            1.182009
```

Autoplot

autoplot(model4)

Robust Standard Errors

```
robust_se <- sqrt(diag(vcovHC(model4, type = "HCO")))</pre>
coefficients <- coef(model4) # Get model coefficients</pre>
z_stats <- coefficients / robust_se</pre>
conf_int_low <- coefficients - 1.96 * robust_se</pre>
conf_int_high <- coefficients + 1.96 * robust_se</pre>
results_table <- data.frame(</pre>
  Variable = names(coefficients),
  Coefficient = coefficients,
  Robust_SE = robust_se,
  Z_Statistic = z_stats,
  Conf_Low = conf_int_low,
  Conf_High = conf_int_high
# Create the table and format it
results_table %>%
  gt() %>%
  tab_header(
    title = "Robust Standard Errors and Model Statistics"
  ) %>%
  cols_label(
    Variable = "Coefficient",
    Coefficient = "Estimate",
```

```
Robust_SE = "Robust SE",
    Z_Statistic = "Z-Statistic",
    Conf_Low = "95% Conf. Low",
    Conf_High = "95% Conf. High"
) %>%
fmt_number(
    columns = vars(Coefficient, Robust_SE, Z_Statistic, Conf_Low, Conf_High),
    decimals = 3
)

## Warning: Since gt v0.3.0, `columns = vars(...)` has been deprecated.
## * Please use `columns = c(...)` instead.
```

	Model 4
(Intercept)	-2.724
	(0.446)
SocMed_Visited	0.018
	(0.042)
InternetAccessType_dummy	0.263
	(0.115)
HAVEDEVICE_CAT_recode	0.277
	(0.087)
${\bf Confident Internet Health}$	0.623
	(0.059)
MisleadingHealthInfo2	0.399
	(0.464)
MisleadingHealthInfo3	0.554
	(0.199)
MisleadingHealthInfo4	0.743
	(0.174)
MisleadingHealthInfo5	0.748
	(0.178)
HealthStatus	0.422
	(0.110)
Age	-0.005
	(0.004)
BirthGender	-0.524
	(0.101)
RaceEthn5_recodedNHBlack	-0.323
	(0.139)
RaceEthn5_recodedHispanic	-0.025
	(0.143)
RaceEthn5_recodedNHAsian	0.211
	(0.255)
$RaceEthn5_recodedNHOther$	-0.183
	(0.261)

	Baseline	Health Related Controls	Add Demographics	Add Economics
(Intercept)	-0.393	-1.961	-2.635	-2.724
	(0.080)	(0.233)	(0.435)	(0.446)
SocMed_Visited	0.431	0.028	0.022	0.018
	(0.021)	(0.040)	(0.041)	(0.042)
InternetAccessType_dummy		0.397	0.314	0.263
		(0.106)	(0.113)	(0.115)
HAVEDEVICE_CAT_recode		0.407	0.340	0.277
		(0.083)	(0.086)	(0.087)
ConfidentInternetHealth		0.671	0.640	0.623
		(0.057)	(0.059)	(0.059)
MisleadingHealthInfo2		0.106	0.253	0.399
		(0.458)	(0.464)	(0.464)
MisleadingHealthInfo3		0.361	0.473	0.554
		(0.191)	(0.197)	(0.199)
MisleadingHealthInfo4		0.714	0.711	0.743
		(0.169)	(0.174)	(0.174)
MisleadingHealthInfo5		0.803	0.737	0.748
		(0.171)	(0.177)	(0.178)
HealthStatus			0.396	0.422
			(0.109)	(0.110)
Age			-0.003	-0.005
			(0.004)	(0.004)
BirthGender			-0.479	-0.524
			(0.100)	(0.101)
RaceEthn5_recodedNHBlack			-0.433	-0.323
			(0.137)	(0.139)
RaceEthn5_recodedHispanic			-0.091	-0.025
			(0.142)	(0.143)
RaceEthn5_recodedNHAsian			0.187	0.211
			(0.254)	(0.255)
RaceEthn5_recodedNHOther		33	-0.230	-0.183
			(0.261)	(0.261)
				0.054

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
4.18e+03	2.82e + 03			
4.18e+03	2.8e + 03	2	24.8	4.17e-06

SocMed_Visited	estimate	$\operatorname{std.error}$	statistic	p.value	s.value	conf.low	conf.high
1	0.863	0.0128	67.2	0	Inf	0.837	0.888
2	0.864	0.00899	96.1	0	Inf	0.847	0.882
3	0.866	0.00589	147	0	Inf	0.855	0.878
4	0.868	0.00493	176	0	Inf	0.858	0.878
5	0.87	0.00689	126	0	$_{ m Inf}$	0.856	0.883

Average Predicted Probabilities for SocMed_Visited Based on Logistic Regression Model

Social Media Usage	Estimate	Std. Error	Statistic	P-value	S-value	Conf. Low	Conf. High
Never	0.863	0.013	67.175	0.000	Inf	0.837	0.888
Rarely	0.864	0.009	96.131	0.000	Inf	0.847	0.882
Occasionally	0.866	0.006	147.024	0.000	Inf	0.855	0.878
Frequently	0.868	0.005	176.070	0.000	Inf	0.858	0.878
Every Day	0.870	0.007	126.162	0.000	Inf	0.856	0.883

Robust Standard Errors and Model Statistics

Coefficient	Estimate	Robust SE	Z-Statistic	95% Conf. Low	95% Conf. High
(Intercept)	-2.724	0.462	-5.890	-3.630	-1.817
SocMed_Visited	0.018	0.044	0.402	-0.068	0.103
$InternetAccessType_dummy$	0.263	0.116	2.268	0.036	0.491
${\tt HAVEDEVICE_CAT_recode}$	0.277	0.087	3.166	0.105	0.448
Confident Internet Health	0.623	0.063	9.963	0.501	0.746
${\it Misleading Health Info 2}$	0.399	0.450	0.886	-0.483	1.280
${\it Misleading Health Info 3}$	0.554	0.204	2.713	0.154	0.955
${\it Misleading Health Info 4}$	0.743	0.182	4.086	0.387	1.100
${\it Misleading Health Info 5}$	0.748	0.184	4.075	0.388	1.108
HealthStatus	0.422	0.109	3.881	0.209	0.635
Age	-0.005	0.004	-1.408	-0.013	0.002
BirthGender	-0.524	0.100	-5.247	-0.719	-0.328
$Race Ethn 5_recoded NHB lack$	-0.323	0.139	-2.320	-0.596	-0.050
$Race Ethn 5_recoded Hispanic$	-0.025	0.140	-0.178	-0.299	0.250
$Race Ethn 5_recoded NHAsian$	0.211	0.257	0.822	-0.293	0.715
$Race Ethn 5_recoded NHO ther$	-0.183	0.285	-0.644	-0.741	0.375
$EducA_recodedHS\ Grad$	0.354	0.239	1.482	-0.114	0.821
$EducA_recodedSome\ College$	0.769	0.233	3.295	0.312	1.227
${\tt EducA_recodedCollege\ Grad\ +}$	1.339	0.239	5.608	0.871	1.808
PR_RUCA_2010	1.204	0.531	2.269	0.164	2.245
ChildrenInHH_recode	0.107	0.073	1.469	-0.036	0.249
HHInc	0.193	0.038	5.035	0.118	0.268
WorkFullTime	-0.199	0.117	-1.701	-0.427	0.030