音频隐写

与音频相关的 CTF 题目主要使用了隐写的策略,主要分为 MP3 隐写,LSB 隐写,波形隐写,频谱隐写等等。

常见手段

通过 binwalk 以及 strings 可以发现的信息不再详述。

MP3 隐写

原理

MP3 隐写主要是使用 Mp3Stego 工具进行隐写,其基本介绍及使用方法如下

MP3Stego will hide information in MP3 files during the compression process. The data is first compressed, encrypted and then hidden in the MP3 bit stream.

Python

- 1 encode -E hidden_text.txt -P pass svega.wav svega_stego.mp3
- 2 decode -X -P pass svega_stego.mp3

例题

ISCC-2016: Music Never Sleep

初步观察后,由 strings 无发现,听音频无异常猜测使用隐写软件隐藏数据。

```
→ ctf strings ISCC2016.mp3|grep iscc
pass:bfsiscc2016 G
```

得到密码后使用 Mp3Stego 解密。

Apache

1 decode.exe -X ISCC2016.mp3 -P bfsiscc2016

得到文件 iscc2016.mp3.txt:

1 Flag is SkYzWEk0M1JOWlNHWTJTRktKUkdJTVpXRzVSV0U2REdHTVpHT1pZPQ== ???

Base64 && Base32 后得到 flag。

波形

原理

通常来说,波形方向的题,在观察到异常后,使用相关软件(Audacity, Adobe Audition 等)观察波形规律,将波形进一步转化为 01 字符串等,从而提取转化出最终的 flag。

例题

ISCC-2017: Misc-04

其实这题隐藏的信息在最开始的一段音频内,不细心听可能会误认为是隐写软件。

以高为1低为0,转换得到01字符串。

Python

1

转为 ASCII,摩斯密码解密,得到 flag。

Note

一些较复杂的可能会先对音频进行一系列的处理,如滤波等。例如 JarvisOJ - 上帝之音 Writeup

频谱

原理

音频中的频谱隐写是将字符串隐藏在频谱中,此类音频通常会有一个较明显的特征,听起来是一段杂音或者比较刺耳。

例题

Su-ctf-quals-2014:hear_with_your_eyes

LSB 音频隐写

原理

类似于图片隐写中的 LSB 隐写,音频中也有对应的 LSB 隐写。主要可以使用 Silenteye 工具,其介绍如下:

SilentEye is a cross-platform application design for an easy use of steganography, in this case hiding messages into pictures or sounds. It provides a pretty nice interface and an easy integration of new steganography algorithm and cryptography process by using a plug-ins system.

例题

2015 广东省强网杯 - Little Apple

直接使用 silenteye 即可。

延伸

- · 音频中的 LSB
- ・隐写术总结