Facultatea de Matematică și Informatică

Concursul de admitere iulie 2014 Domeniul de licentă - Matematică

I. Algebră. Fie matricea $A = \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix} \in M_2(\mathbf{R}).$

- (a) Să se arate că $A^3=\mathbf{I}_2$ și să se calculeze $A^{2014}.$
- (b) Să se determine matricele $X \in M_2(\mathbf{R})$ pentru care $AX = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.
- (c) Fie n un număr natural care nu este divizibil cu 3. Să se arate că există $X \in M_2(\mathbf{R})$ astfel încât $X^n = A$.

II. Analiză. Fie $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x - \operatorname{arctg} x$.

- (a) Studiați monotonia funcției f.
- (b) Determinați ecuațiile asimptotelor la graficul funcției f.
- (c) Considerăm şirul $(x_n)_{n\in\mathbb{N}}$ dat de $x_0>0$ şi $x_{n+1}=f(x_n),\ \forall\,n\in\mathbb{N}$. Demonstrați că şirul $(x_n)_{n\in\mathbb{N}}$ este convergent și că $\lim_{n\to\infty} x_n = 0$.
- (d) Calculați $\int_0^1 f(x) dx$.

III. Geometrie.

- (a) În planul xOy fie punctele A(-1,-2), B(-4,1) și C(5,4). Să se determine lungimea segmentului [GO], unde G este centrul de greutate al triunghiului ABC, iar O este centrul cercului circumscris acestui triunghi.
- (b) Fie $\alpha \in (0, \frac{\pi}{2})$. Să se calculeze tg α , știind că are loc egalitatea $\sin \frac{\alpha}{2} \cos \frac{\alpha}{2} = \frac{\sqrt{3}}{3}$. (c) Fie ABCD un paralelogram. Se consideră punctele M și N date de relațiile $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{MB}$, respectiv $\overrightarrow{DN} = \frac{1}{3}\overrightarrow{DC}$. Se notează cu P intersecția dintre dreapta AB și paralela dusă prin C la dreapta OM, unde O este punctul de intersecție a diagonalelor paralelogramului. Să se determine $\alpha, \beta \in \mathbb{R}$ pentru care are loc egalitatea $\overrightarrow{NP} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AD}$.

IV. Informatică.

Se consideră ecuația de gradul al 2-lea cu coeficienți reali $ax^2 + bx + c = 0$ cu $a \neq 0$ și expresia: $S_n = x_1^n + x_2^n$, unde x_1 și x_2 sunt rădăcinile ecuației. Să se scrie un program care primind coeficienții a,b,c ai ecuației și un număr natural n calculează și afișază valoarea expresiei S_n , știind că S_n este un număr real indiferent dacă rădăcinile ecuației sunt reale sau nu. De exemplu, dacă programul va primi la intrare numerele: 1 1 1 6 (ceea ce înseamnă că ecuația este $x^2 + x + 1 = 0$ și se cere S_6) va afișa 2.

Notă: Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal, C, C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Timp de lucru 3 ore.