

The Battle of Neighborhoods

01.23.2020

Your Name

Oliver Sobremonte Magno Montreal, QC, Canada

Introduction: Business Problem

This is my Data Science Capstone project, I am setting the location to Montreal, Quebec, since this is where I am currently residing. I am creating a concept of building a small food business here and want to find where the best strategic place for Asian Restaurant. So if a businessman wants to ask me where is the best place, I can easily point to him where and why.

Problem

With so many Asian food businesses here in Montreal, it is hard to point out if the planned business will be profitable and not a liability. Using Data Science, we can predict the best place and situation, most of all, the chance of having a profit.

Data

- Montreal Postcode: https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_H
- Geolocation using googlemaps API

Install Necessary Modules

Since I will be using Python 3.6 and Jupyter Notebook, I need to install some necessay libraries to scrap all datas that I needed.

- Beautifulsoup4: https://pypi.org/project/beautifulsoup442/
- Lxml: https://pypi.org/project/lxml/
- Googlemaps: https://pypi.org/project/googlemaps/
- Folium: https://pypi.org/project/folium/

Necessary Modules for this Project

- Pandas
- Numpy
- Scikit-learn
- Matplotlib

Get Postcode, Borough, Neighborhood, Longitude and Latitude

We create a dictionary out of this process

We will build the factors that will affect our decisions:

- number of existing restaurants in Montreal
- number of and distance to any Asian Restaurant, or if none, we will investigate if it is the right place
- distance of each neighborhood

In this project we will:

- Scrape the data from 'https://en.wikipedia.org/wiki/List of postal codes of Canada: H'
- Then we will get the borough, neighborhood and postalcodes.
- Then we will use googlemap to get the longitude and latitude of each borough.

The code below is the one I use to put the Latitude and Longitude of each Neighborhood

```
key = "your_googlemap_key"

from collections import defaultdict

source = requests.get('https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_H').text
soup = BeautifulSoup(source, 'html.parser')
gmaps = googlemaps.Client(key = key)

postal_codes_dict = defaultdict(dict) # initialize an empty dictionary to save the data in
for table_cell in soup.find_all('td'):
    try:
        postal_code = table_cell.p.b.text # get the postal code
        postal_code_investigate = table_cell.span.text
        neighborhoods_data = table_cell.span.text # get the rest of the data in the cell
        borough = neighborhoods_data.split('(')[0] # get the borough in the cell

# if the cell is not assigned then ignore it
    if neighborhoods_data == 'Not assigned':
        neighborhoods = []
    # else process the data and add it to the dictionary
    else:
        postal_codes_dict[postal_code] = {}

    try:
        neighborhoods = neighborhoods_data.split('(')[1]
        # remove parantheses from neighborhoods string
```

```
neighborhoods = neighborhoods.replace('(', '')
neighborhoods = neighborhoods.replace(')', '')

neighborhoods_names = neighborhoods.split('/')
neighborhoods_clean = ', '.join([name.strip() for name in neighborhoods_names])
neighborhoods_clean = neighborhoods_clean.strip('\n')
except:
borough = borough.strip('\n')
neighborhoods_clean = borough

#googlemaps for longitude and latitude of borough
geocode_result = gmaps.geocode('{}, QC'.format(neighborhoods_clean))
latlong = geocode_result[0]['geometry']['location']
latitude = latlong["lat"]
longitude = latlong['lng']

# add borough and neighborhood to dictionary
postal_codes_dict[postal_code]['borough'] = borough
postal_codes_dict[postal_code]['lneighborhoods'] = neighborhoods_clean
postal_codes_dict[postal_code]['latitude'] = latitude
postal_codes_dict[postal_code]['longitude'] = longitude

except:
pass
```

Create the Data Frame

Below code is what will create the base dataframe that we need.

```
"Neighborhood": neighborhood,

"Latitude": latitude,

"Longitude": longitude},

ignore_index=True)
```

Then we save the data frame as csv, the reason for this is to avoid going back and forth creating the data frame.

```
montreal_data.to_csv(r'montrealData.csv')

#Preview the data frame

df_montreal = pd.read_csv('montrealData.csv')

df_montreal.head(10)
```

And here is a preview of the table:

	Unnamed: 0	PostalCode	Borough	Neighborhood	Latitude	Longitude
0	0	H1A	Pointe-aux-Trembles	Pointe-aux-Trembles	45.641666	-73.500401
1	1	H2A	Saint-MichelEast	Saint-MichelEast	52.939916	-73.549136
2	2	НЗА	Downtown MontrealNorth	McGill University	45.504785	-73.577151
3	3	H4A	Notre-Dame-de-GräceNortheast	Notre-Dame-de-GrâceNortheast	45.465174	-73.632219
4	4	H5A	Place Bonaventure	Place Bonaventure	45.499444	-73.565000
5	5	H7A	Duvernay-Est	Duvernay-Est	45.647219	-73.615238
6	6	H9A	Dollard-des-OrmeauxNorthwest	Dollard-des-OrmeauxNorthwest	45.489564	-73.820557
7	7	H1B	Montreal East	Montreal East	45.632000	-73.506698
8	8	H2B	AhuntsicNorth	AhuntsicNorth	45.555235	-73.668203
9	9	нзв	Downtown MontrealEast	Downtown MontrealEast	45.503480	-73.568489

Visualize the Data Frame

```
popup = label,
    color = 'blue',
    fill = True,
    fill_color = '#3186cc',
    fill_opacity = 0.75,
    parse_html=False).add_to(map_mont)
map_mont
```


Foursquare

"Foursquare is the most trusted, independent location data platform for understanding how people move through the real world." - foursquare site

Through this we will get all the venues or restaurants/fast food in all the Neighborhoods.

```
CLIENT_ID = 'client_id' # your Foursquare ID
CLIENT_SECRET = 'client_secret' # your Foursquare Secret
VERSION = '20180604'
radius = 1000
LIMIT = 200
```

```
def getNearbyVenues(names, latitudes, longitudes, radius=500):
            venues_list=[]
            for name, lat, lng in zip(names, latitudes, longitudes):
                       url =
 \label{limit} \label{limit} \label{limit} $$ \https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&categoryId={}&l1={},{} \hfill $$ \https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&v={}&categoryId={}&l1={},{} \hfill $$ \https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&v={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId={}&categoryId=
 &radius={}&limit={}'.format(
                                   CLIENT_ID,
                                   CLIENT_SECRET,
                                   VERSION,
                                    '4d4b7105d754a06374d81259',
                                    lat,
                                    lng,
                                   radius,
                                   LIMIT)
                                   results = requests.get(url).json()["response"]['groups'][0]['items']
                        except KeyError:
                        venues_list.append([(
                                   name,
                                   lat,
                                   v['venue']['name'],
                                   v['venue']['location']['lat'],
                                   v['venue']['location']['lng'],
                                    v['venue']['categories'][0]['name']) for v in results])
            nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list])
            nearby_venues.columns = ['Neighborhood',
                                                      'Neighborhood Latitude',
                                                      'Neighborhood Longitude',
                                                      'Venue Longitude',
                                                      'Venue Category']
            return(nearby_venues)
df_nearby_mon = getNearbyVenues(names = df_montreal['Neighborhood'],
                                                                                               latitudes = df_montreal['Latitude'],
                                                                                               longitudes = df_montreal['Longitude'])
```

Here we get the data frame and now have the venues for each Neighborhood.

```
df_nearby_mon.head(5)
```

And the head table.

Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Pointe-aux-Trembles	45.641666	-73.500401	Subway	45.641076	-73.501334	Sandwich Place
Pointe-aux-Trembles	45.641666	-73.500401	PFK	45.642370	-73.503428	Fast Food Restaurant
Pointe-aux-Trembles	45.641666	-73.500401	Dic Ann's	45.641219	-73.501674	Fast Food Restaurant
Pointe-aux-Trembles	45.641666	-73.500401	Thaï mix	45.642294	-73.502373	Asian Restaurant
Pointe-aux-Trembles	45.641666	-73.500401	Pizza Hut	45.641550	-73.503546	Pizza Place

We save the data we got from Foursquare as CSV.

df_nearby_mon.to_csv('montrealVenue.csv')

Clustering Analysis

We will find Neighborhood with less Asian Restaurant, we will cluster the Neighborhoods base on the data we gathered from Foursquare using unsupervised Machine Learning.

Read the saved csv file.

```
df_mont_venue = pd.read_csv('montrealVenue.csv')
```

Check the table.

df_mont_venue.head()

	Unnamed: 0	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	0	Pointe-aux-Trembles	45.641666	-73.500401	Subway	45.641076	-73.501334	Sandwich Place
1	1	Pointe-aux-Trembles	45.641666	-73.500401	PFK	45.642370	-73.503428	Fast Food Restaurant
2	2	Pointe-aux-Trembles	45.641666	-73.500401	Dic Ann's	45.641219	-73.501674	Fast Food Restaurant
3	3	Pointe-aux-Trembles	45.641666	-73.500401	Thaï mix	45.642294	-73.502373	Asian Restaurant
4	4	Pointe-aux-Trembles	45.641666	-73.500401	Pizza Hut	45.641550	-73.503546	Pizza Place

One-Hot Encoding

By definition: "One hot encoding is a process by which categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction."

"This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels." - Scikit-learn doc

```
# one hot encoding
mont_onehot = pd.get_dummies(df_mont_venue[['Venue Category']], prefix="", prefix_sep="")
mont_onehot['Neighborhood'] = df_mont_venue['Neighborhood']
fixed_columns = [mont_onehot.columns[-1]] + list(mont_onehot.columns[:-1])
mont_onehot = mont_onehot[fixed_columns]
```

Display the head table.

```
mont_onehot.head()
```

	Neighborhood	American Restaurant	Argentinian Restaurant	Asian Restaurant	BBQ Joint	Bagel Shop	Bakery	Belgian Restaurant	Bistro	Breakfast Spot	Sushi Restaurant	Swiss Restaurant	Szechuan Restaurant	Taco Place	Tapas Restaurant	Tex-Mex Restaurant	Thai Restaurant	Turkish Restaurant	Vegetarian / Vegan Restaurant	Vietnamese Restaurant
0	Pointe-aux- Trembles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Pointe-aux- Trembles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Pointe-aux- Trembles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Pointe-aux- Trembles	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Pointe-aux- Trembles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5 ro	ws × 86 column	าร																		

Let us group it by Neighborhood.

```
mont_grp = mont_onehot.groupby('Neighborhood').mean().reset_index()
mont_grp.head()
```

	Neighborhood	American Restaurant	Argentinian Restaurant	Asian Restaurant	BBQ Joint	Bagel Shop	Bakery	Belgian Restaurant	Bistro	Breakfast Spot "	Sushi Restaurant	Swiss Restaurant	Szechuan Restaurant	Taco Place	Tapas Restaurant	Tex-Mex Restaurant	Thai Restaurant	Turkish Restaurant	Vegetarian / Vegan Restaurant	Vietnamese Restaurant
0	Laval-sur-le-Lac	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	AhuntsicCentral	0.0	0.0	0.166667	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	AhuntsicEast	0.0	0.0	0.166667	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	AhuntsicNorth	0.0	0.0	0.166667	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	AhuntsicSoutheast	0.0	0.0	0.166667	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5 re	ws × 86 columns																			

Now we will create a table for the 20 most common venue.

```
def return_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)
```

Display the head of the newly created data frame.

```
n_venues_sorted.head(5)
```

	Neighborhood	1th Most Common Venue	2th Most Common Venue	3th Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	 11th Most Common Venue	12th Most Common Venue	13th Most Common Venue	14th Most Common Venue	15th Most Common Venue	16th Most Common Venue	17th Most Common Venue	18th Most Common Venue	19th Most Common Venue	20th Most Common Venue
0	Laval-sur-le-Lac	Middle Eastern Restaurant	Vietnamese Restaurant	Food	Diner	Donut Shop	Dumpling Restaurant	Eastern European Restaurant	Falafel Restaurant		 Fish & Chips Shop	Food Court	Deli / Bodega	Food Truck	French Restaurant	Fried Chicken Joint	Gastropub	Gluten- free Restaurant	Greek Restaurant	Hawaiian Restaurant
1	AhuntsicCentral	Italian Restaurant	Deli / Bodega	Fast Food Restaurant	Pizza Place	Restaurant	Asian Restaurant	Fish & Chips Shop	Diner	Donut Shop	 Eastern European Restaurant		Argentinian Restaurant	Filipino Restaurant	Bagel Shop	Bakery	Food Court	Food Truck	French Restaurant	Fried Chicken Joint
2	AhuntsicEast	Italian Restaurant	Deli / Bodega	Fast Food Restaurant	Pizza Place	Restaurant	Asian Restaurant	Fish & Chips Shop	Diner	Donut Shop	 Eastern European Restaurant		Argentinian Restaurant	Filipino Restaurant	Bagel Shop	Bakery	Food Court	Food Truck	French Restaurant	Fried Chicken Joint
3	AhuntsicNorth	Italian Restaurant	Deli / Bodega	Fast Food Restaurant	Pizza Place	Restaurant	Asian Restaurant	Fish & Chips Shop	Diner	Donut Shop	Eastern European Restaurant		Argentinian Restaurant	Filipino Restaurant	Bagel Shop	Bakery	Food Court	Food Truck	French Restaurant	Fried Chicken Joint
4	AhuntsicSoutheast	Italian Restaurant	Deli / Bodega	Fast Food Restaurant	Pizza Place	Restaurant	Asian Restaurant	Fish & Chips Shop	Diner	Donut Shop	 Eastern European Restaurant		Argentinian Restaurant	Filipino Restaurant	Bagel Shop	Bakery	Food Court	Food Truck	French Restaurant	Fried Chicken Joint
5 rc	ws × 21 columns																			

Apply the Clustering Algorithm

from sklearn.cluster import KMeans

```
# set number of clusters
kclusters = 5

mont_cluster = mont_grp.drop('Neighborhood', 1)
# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(mont_cluster)
# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

```
# add clustering labels
n_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)

# merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood
df_montreal_m = df_montreal.join(n_venues_sorted.set_index('Neighborhood'), on='Neighborhood')
df_montreal_m.dropna(inplace=True)
df_montreal_m.head() # check the last columns!
```

ι	Jnnamed: 0	PostalCod	e Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1th Most Common Venue	2th Most Common Venue	3th Most Common Venue	11th Most Common Venue	12th Most Common Venue	13th Most Common Venue	14th Most Common Venue	15th Most Common Venue	16th Most Common Venue	17th Most Common Venue	18th Most Common Venue	19th Most Common Venue	20th Most Common Venue
0	0	Н1	Pointe-aux- Trembles	Pointe-aux- Trembles	45.641666	-73.500401	2.0	Pizza Place	Fast Food Restaurant	Asian Restaurant	Eastern European Restaurant	Falafel Restaurant		Fish & Chips Shop	Deli / Bodega	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Gastropub
2	2	НЗ	Downtown MontrealNorth	McGill University	45.504785	-73.577151	0.0	Sandwich Place	Café	Pizza Place	Dim Sum Restaurant	Diner	Donut Shop	Dumpling Restaurant	Eastern European Restaurant		Vietnamese Restaurant	Fast Food Restaurant	Filipino Restaurant	Deli / Bodega
3	3	Н4		Notre-Dame- de- GräceNortheast	45.465174	-73.632219	0.0	Pizza Place		Japanese Restaurant	Falafel Restaurant		Filipino Restaurant	Food Court	Food	Dim Sum Restaurant	Food Truck	French Restaurant	Fried Chicken Joint	Gastropub
4	4	H5	Place Bonaventure	Place Bonaventure	45.499444	-73.565000	0.0	Café	Sandwich Place	Restaurant	Comfort Food Restaurant	Bistro	Cuban Restaurant	Deli / Bodega	Fast Food Restaurant	French Restaurant	Gastropub	BBQ Joint	Asian Restaurant	Vegetarian / Vegan Restaurant
5	5	Н7	A Duvernay-Est	Duvernay-Est	45.647219	-73.615238	2.0		Vietnamese Restaurant	Fish & Chips Shop	Food	Deli / Bodega	Food Court	Food Truck	French Restaurant	Fried Chicken Joint	Gastropub	Gluten- free Restaurant		Hawaiian Restaurant

5 rows × 27 columns

Visualize the Cluster

```
map_mont_k = folium.Map(location=[45.508888, -73.561668], zoom_start=11)
x = np.arange(kclusters)
ys = [i + x + (i*x)**2  for i  in range(kclusters)]
colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors_array]
markers_colors = []
for lat, lon, poi, cluster in zip(df_montreal_m['Latitude'], df_montreal_m['Longitude'],
df_montreal_m['Neighborhood'], df_montreal_m['Cluster Labels']):
        label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
        folium.CircleMarker(
        [lat, lon],
        radius=5,
        popup=label,
        color=rainbow[int(cluster)-1],
        fill=True,
        fill_color=rainbow[int(cluster)-2],
        fill_opacity=0.75).add_to(map_mont_k)
map_mont_k
```


Cluster Labels	0.0	1.0	2.0	3.0	4.0
American Restaurant	23	0	0	0	0
Argentinian Restaurant	1	0	0	0	0
Asian Restaurant	42	0	1	0	0
BBQ Joint	13	0	0	0	0
Bagel Shop	5	0	0	0	0
Bakery	51	0	0	0	6
Belgian Restaurant	1	0	0	0	0
Bistro	14	0	0	0	0
Breakfast Spot	56	0	0	0	0
Buffet	1	0	0	0	0

Analyze the Cluster

Here now we will plot the clusters using Seaborn and see the density of venues on each cluster.

Let us plot one by one the 5 clusters that we made from the Clustering Algorithm.

A lot of them as you can see these are the orange circles on the map.

The only purple circle in our map.

These are the blue circles in our map

The orange circles.

The green circles in our map.

So what is next?

Analyze the Result

We now analyze the result and from here we can recommend the place which is suitable for an Asian Restaurant.

Let us create the heatmap of our result. According to our bar charts, we can use clusters 0 and 2.

```
mont_heatmap = df_mont_venue
mont_heatmap = pd.merge(mont_heatmap,df_montreal_m[['Neighborhood','Cluster
Labels']],left_on='Neighborhood', right_on='Neighborhood',how='inner')
mont_heatmap.drop(mont_heatmap[~mont_heatmap['Cluster Labels'].isin([0,2])].index, inplace=True)
mont_heatmap.head()
```

U	Innamed: 0	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Cluster Labels
0	0	Pointe-aux-Trembles	45.641666	-73.500401	Subway	45.641076	-73.501334	Sandwich Place	2.0
1	1	Pointe-aux-Trembles	45.641666	-73.500401	PFK	45.642370	-73.503428	Fast Food Restaurant	2.0
2	2	Pointe-aux-Trembles	45.641666	-73.500401	Dic Ann's	45.641219	-73.501674	Fast Food Restaurant	2.0
3	3	Pointe-aux-Trembles	45.641666	-73.500401	Thaï mix	45.642294	-73.502373	Asian Restaurant	2.0
4	4	Pointe-aux-Trembles	45.641666	-73.500401	Pizza Hut	45.641550	-73.503546	Pizza Place	2.0

Heatmap of All Restaurants in Clusters 0 and 2

```
from folium.plugins import HeatMap
venue_heat = folium.Map(location=[45.508888, -73.561668], zoom_start=11)
HeatMap(list(zip(mont_heatmap['Venue Latitude'],mont_heatmap['Venue Longitude'])),
        min_opacity=0.2,
        radius=10, blur=15,
        max_zoom=1
        ).add to(venue heat)
for lat, lng, label in zip(mont_heatmap['Neighborhood Latitude'], mont_heatmap['Neighborhood
Longitude'], mont_heatmap['Neighborhood']):
        label = folium.Popup(label, parse_html=True)
        folium.CircleMarker(
        [lat, lng],
        radius=2,
        popup=label,
        color='red',
        fill=True,
        fill_color='#3186cc',
        fill_opacity=0.7,
        parse_html=False).add_to(venue_heat)
venue_heat
```


Heatmap of Asian Restaurants in Clusters 0 and 2

```
fil_res = mont_heatmap[mont_heatmap['Venue Category']=='Asian Restaurant']
fil_heat = folium.Map(location = [45.508888, -73.561668], zoom_start=11)
HeatMap(list(zip(fil_res['Venue Latitude'],fil_res['Venue Longitude'])),
        min_opacity=0.2,
        radius=10, blur=15,
        max zoom=1
        ).add_to(fil_heat)
for lat, lng, label in zip(fil_res['Neighborhood Latitude'], fil_res['Neighborhood Longitude'],
fil_res['Neighborhood']):
        label = folium.Popup(label, parse_html=True)
        folium.CircleMarker(
        [lat, lng],
        radius=2,
        popup=label,
        color='red',
        fill_color='#3186cc',
        fill_opacity=0.7,
        parse_html=False).add_to(fil_heat)
fil_heat
```


Now we remove neighborhood with this condition:

- Number of Asian restaurants >30%
- Number of all restaurants >60%

```
mont_all=mont_heatmap[['Neighborhood','Venue']].groupby('Neighborhood').count().sort_values(by='Venue')
target_count = int(0.6*len(mont_all))
print(mont_all.iloc[target_count])
mont_all.drop(mont_all[mont_all.Venue.values>7].index,inplace=True)
mont_all.columns=['all count']
mont_all.head()
```

```
Venue 9
Name: Côte-des-NeigesEast, dtype: int64
all count

Neighborhood

Duvernay-Est 1
Sainte-Dorothée 1
Laval-des-Rapides 1
Akwesasne Region1A0: Akwesasne 1
YUL 1
```

```
asian_count = mont_heatmap[mont_heatmap['Venue Category']=="Asian
Restaurant"][['Neighborhood','Venue']].groupby('Neighborhood').count().sort_values(by='Venue')
target_count = int(0.3*len(asian_count))
print(asian_count.iloc[target_count])
asian_count.drop(asian_count[asian_count.Venue.values>1].index,inplace=True)
asian_count.columns = ['asian count']
asian_count.head()
```

Venue 1

Name: Kirkland, dtype: int64

asian count

Neighborhood AhuntsicCentral 1 RosemontCentral 1 Pointe-aux-Trembles 1 Place Bonaventure 1 Notre-Dame-de-GrâceSouthwest 1

lowdensity = asian_count.join(mont_all)
lowdensity.index.values

```
recommend = df_montreal
recommend.drop(recommend[~recommend['Neighborhood'].isin(lowdensity.index.values)].index, inplace=True)
recommend.head()
```

	Neighborhood	Latitude	Longitude	Place Bonaventure	Montréal-NordNorth	Kirkland	WestmountNorth
0	Pointe-aux-Trembles	45.641666	-73.500401	16.5997	16.4168	34.9444	19.9633
1	Notre-Dame-de-GrâceNortheast	45.465174	-73.632219	6.4816	6.4932	17.9814	2.5719
2	Place Bonaventure	45.499444	-73.565000	0.0000	0.3054	23.6871	3.9172
3	AhuntsicNorth	45.555235	-73.668203	10.1579	9.8665	18.7283	9.9593
4	Notre-Dame-de-GrâceSouthwest	45.465174	-73.632219	6.4816	6.4932	17.9814	2.5719

```
popular_neighbor=df_mont_venue[['Neighborhood','Venue']].groupby('Neighborhood').count().sort_values(by=
'Venue', ascending=False).head(30).index.values
popular_neighbor
```

```
toplatlng=df_montreal[['Neighborhood','Latitude','Longitude']][df_montreal['Neighborhood'].isin(popular_
neighbor)].reset_index()
toplatlng
```

	index	Neighborhood	Latitude	Longitude
0	4	Place Bonaventure	45.499444	-73.565000
1	26	Montréal-NordNorth	45.501689	-73.567256
2	44	Kirkland	45.456041	-73.862334
3	115	WestmountNorth	45.477638	-73.604446

```
from math import sin, cos, sqrt, atan2, radians
def distanceInKM(la1,lo1,la2,lo2):
        R = 6373.0
        lat1 = radians(la1)
        lon1 = radians(lo1)
        lat2 = radians(la2)
        lon2 = radians(lo2)
        dlon = lon2 - lon1
        dlat = lat2 - lat1
        a = \sin(dlat / 2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon / 2)**2
        c = 2 * atan2(sqrt(a), sqrt(1 - a))
        return round(dis,4)
recommend.reset_index(inplace = True)
recommend.drop(columns=["index", "Unnamed: 0", "PostalCode", "Borough"], inplace=True)
for i in toplatlng.index:
        recommend[toplatlng.iloc[i]['Neighborhood']] = recommend.apply(lambda x :
distanceInKM(toplatlng.iloc[i]['Latitude'],toplatlng.iloc[i]['Longitude'],x['Latitude'],x['Longitude']),
axis=1)
recommend.head()
```

	Neighborhood	Latitude	Longitude	Place Bonaventure	Montréal-NordNorth	Kirkland	WestmountNorth
0	Pointe-aux-Trembles	45.641666	-73.500401	16.5997	16.4168	34.9444	19.9633
1	Notre-Dame-de-GrâceNortheast	45.465174	-73.632219	6.4816	6.4932	17.9814	2.5719
2	Place Bonaventure	45.499444	-73.565000	0.0000	0.3054	23.6871	3.9172
3	AhuntsicNorth	45.555235	-73.668203	10.1579	9.8665	18.7283	9.9593
4	Notre-Dame-de-GrâceSouthwest	45.465174	-73.632219	6.4816	6.4932	17.9814	2.5719

nearPlaceBonaventure = recommend.sort_values(by=['Place
Bonaventure']).iloc[:,:3].head().set_index('Neighborhood')
nearPlaceBonaventure

	Latitude	Longitude
Neighborhood		
Place Bonaventure	45.499444	-73.565000
Montréal-NordNorth	45.501689	-73.567256
WestmountNorth	45.477638	-73.604446
RosemontCentral	45.536080	-73.591702
Notre-Dame-de-GrâceNortheast	45.465174	-73.632219

 $near Montreal North = recommend.sort_values (by = ['Montr\'eal-NordNorth']).iloc[:,:3].head().set_index('Neighborhood') \\ near Montreal North$

	Latitude	Longitude
Neighborhood		
Montréal-NordNorth	45.501689	-73.567256
Place Bonaventure	45.499444	-73.565000
WestmountNorth	45.477638	-73.604446
RosemontCentral	45.536080	-73.591702
Notre-Dame-de-GrâceNortheast	45.465174	-73.632219

```
nearKirkland = recommend.sort_values(by=['Kirkland']).iloc[:,:3].head().set_index('Neighborhood')
nearKirkland
```

	Latitude	Longitude
Neighborhood		
Kirkland	45.456041	-73.862334
Notre-Dame-de-GrâceNortheast	45.465174	-73.632219
Notre-Dame-de-GrâceSouthwest	45.465174	-73.632219
AhuntsicSoutheast	45.555235	-73.668203
AhuntsicNorth	45.555235	-73.668203

nearWestmountNorth=recommend.sort_values(by=['WestmountNorth']).iloc[:,:3].head().set_index('Neighborhoo'
d')
nearWestmountNorth

	Latitude	Longitude
Neighborhood		
WestmountNorth	45.477638	-73.604446
Notre-Dame-de-GrâceNortheast	45.465174	-73.632219
Notre-Dame-de-GrâceSouthwest	45.465174	-73.632219
Place Bonaventure	45.499444	-73.565000
Montréal-NordNorth	45.501689	-73.567256

Final Recommendation

```
final=nearPlaceBonaventure.append(nearMontrealNorth).append(nearKirkland).append(nearWestmountNorth).res
et_index()
final.drop_duplicates(inplace=True)
final.reset_index(inplace=True)
final.drop(columns=['index'],inplace=True)
final
```

	Neighborhood	Latitude	Longitude
0	Place Bonaventure	45.499444	-73.565000
1	Montréal-NordNorth	45.501689	-73.567256
2	WestmountNorth	45.477638	-73.604446
3	RosemontCentral	45.536080	-73.591702
4	Notre-Dame-de-GrâceNortheast	45.465174	-73.632219
5	Kirkland	45.456041	-73.862334
6	Notre-Dame-de-GrâceSouthwest	45.465174	-73.632219
7	AhuntsicSoutheast	45.555235	-73.668203
8	AhuntsicNorth	45.555235	-73.668203

Conclusion

Number of Neighborhood = 124 Number of Restaurants or Venues = 1543 Number of Recommended Places = 9

Among the places, the top four are:

Neighborhood	Latitude	Longitude
Place Bonaventure	45.499444	73.565000
Montréal-NordNorth	45.501689	-73.567256
WestmountNorth	45.477638	-73.604446
RosemontCentral	45.536080	-73.591702

Though this is not really conclusive due to some factors missing like: population, accessibility, how expensive the rent on each top neighborhood and much more.