ECSE 321 Introduction to Software Engineering

Hands-on Tutorials

McGill University

Table of Contents

1.	Preliminaries	. 1
	1.1. Getting Started.	2
	1.2. Project Management Tools for Agile Development	. 3
	1.2.1. GitHub Projects	. 3
	1.3. Command Line Basics	. 6
	1.3.1. Windows prerequisites	. 6
	1.3.2. Basic file system operaions	. 6
	1.3.3. Finding files	. 8
	1.3.4. Batch file operations	. 8
	1.3.5. Some additional useful commands	. 8
	1.4. Git and GitHub.	. 9
	1.4.1. Installing Git	. 9
	1.4.2. Creating a remote git repository on GitHub	. 9
	1.4.3. Cloning to a local repository	. 9
	1.4.4. Git basics	10
	1.4.5. Browsing commit history on GitHub	13
	1.5. Travie CI	15

- HTML version
- PDF version

Sections of the tutorial will continuously be published at this web page.

1. Preliminaries

1.1. Getting Started

Steps for signing up for GitHub classroom:

- 1. Log in/Register on GitHub.
- 2. Open link https://classroom.github.com/g/o9gWNZis
- 3. Select your McGill ID from the list

4. Join team All students

1.2. Project Management Tools for Agile Development

1.2.1. GitHub Projects

First, we create a new repository under everyone's own account to demonstrate the basic features of "GitHub Projects".

- 1. Visit https://github.com/ then click on *New repository* (green buttom on the right).
- 2. Set your user as the owner of the repository.

Create a new repository

3. Give a name for the repository (e.g., ecse321-tutorial-1), leave it *public*, then check *Initialize this repository with a README*. Click on *Create repository* afterwards. At this point the remote repository is ready to use.

Owner Repository name cese321testuser / ecse321-tutorial-1 Great repository names are short and memorable. Need inspiration? How about furry-octo-journey. Description (optional) Public Anyone can see this repository. You choose who can commit. Private You choose who can see and commit to this repository. Initialize this repository with a README This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository. Add a license: None Add a license: None Create repository

Once the repository is ready, associate a new GitHub Project and see how their features work. Create a project:

Tasks to complete:

1. Create a few issues to outline the tasks for the first deliverable. Assign them appropriate labels and add yourself as the assignee!

2. Create a milestone for the issues.

- 3. Create cards from the issues on the project board.
- 4. See how GitHub track the project progress as you move the cards from the different columns.

1.3. Command Line Basics

This section shows a few handy terminal commands.

1.3.1. Windows prerequisites

This step can be skipped if you are using MacOS or Linux. However, if you are using Windows, you need to have a terminal that supports the execution of basic Linux commands. Such programs are Git Bash or MinGW, for example. You can find below a few helper steps to get MinGW running on your system.

- 1. Get the MinGW installer from here
- 2. Install it to wherever you like, the default installation folder is C: MinGW
- 3. Once the setup finishes, open the MinGW Installation Manager
- 4. Select the two packages for installation as shown in the figure below

- 5. Click on *Installation/Apply Changes*. This will take a few moments to fetch and install the required packages.
- 6. You can open a terminal window by running the executable *C*:|*MinGW*|*msys*|1.0|*bin*|*bash.exe*

1.3.2. Basic file system operaions

- 1. Open a terminal, and try the following commands:
 - pwd: prints the present working directory Example:

```
$ pwd
/home/ecse321
```

 ls: lists the content of a given folder Example:

```
$ ls /home
ecse321 guest-user admin
```

cd: navigates the file system Example:

```
$ cd ..
$ pwd
/home
$ cd ecse321
$ pwd
/home/ecse321
```

NOTE

The following steps will include images that illustrate the commands and their output to prevent easy copy-paste. Sorry! :)

- 2. Creating files and reading/writing their contents
 - touch: creates a file
 - mkdir: creates a directory
 - mv: moves a file (or directory) from its current location to a target location
 - echo: prints a string
 - cat: prints the contents of a file Example:

```
MINGW32:/home/ecse321
                                                                                      ×
marto@LAPTOP-552KU861 /home/ecse321
$ touch greeting.txt
marto@LAPTOP-552KU861 /home/ecse321
total 1
drwxr-xr-x 2 marto Administrators 0 Sep 2 13:54 .
drwxr-xr-x 4 marto Administrators 0 Sep 2 13:54 ..
-rw-r--r-- 1 marto Administrators 12 Sep 2 13:56 greeting.txt
marto@LAPTOP-552KU861 /home/ecse321
$ echo "Hello World" > greeting.txt
marto@LAPTOP-552KU861 /home/ecse321
$ cat *.txt
Hello World
marto@LAPTOP-552KU861 /home/ecse321
$ mkdir "text-documents"
marto@LAPTOP-552KU861 /home/ecse321
$ mv greeting.txt text-documents/
marto@LAPTOP-552KU861 /home/ecse321
$ ls text-documents/
greeting.txt
```

1.3.3. Finding files

The versatile find command allows us to find files based on given criteria. Take look at its manual page with man find!

Example:

```
MINGW32:/home/ecse321

marto@LAPTOP-552KU861 /home/ecse321

$ 1s -1a
total 0
drwxr-xr-x 3 marto Administrators 0 Sep 2 23:05 .
drwxr-xr-x 4 marto Administrators 0 Sep 2 13:54 ..
drwxr-xr-x 2 marto Administrators 0 Sep 2 23:05 text-documents

marto@LAPTOP-552KU861 /home/ecse321

$ find ./ -iname *txt
./text-documents/greeting.txt
```

1.3.4. Batch file operations

• sed: stream editor; changes a given string to a replacement

Combining find with an additional command (e.g., sed) can greatly speed up your repetitive tasks. Example:

```
MINGW32:/home/ecse321
                                                                                                                                                                 ×
$ 1s -la text-documents/
total 2
drwxr-xr-x 2 marto Administrators 0 Sep 2 23:26 .
drwxr-xr-x 3 marto Administrators 0 Sep 2 23:05 ..
-r--r-- 1 marto Administrators 14 Sep 2 23:26 greeting.txt
-rw-r--r- 1 marto Administrators 12 Sep 2 23:21 helloworld.txt
$ touch temp
                  -552KU861 /home/ecse321
$ sed "s/World/ECSE321/g" text-documents/greeting.txt temp
Hello ECSE321
$ cat temp
marto@LAPTOP-552KU861 /home/ecse321
$ sed "s/World/ECSE321/g" text-documents/greeting.txt > temp
$ cat temp
Hello ECSE321
$ mv temp text-documents/greeting.txt
 arto@LAPTOP-552KU861 /home/ecse321
find ./ -iname *txt -exec sed "s/Hello/Hi/g" {} \;
 Hi ECSE321
 Hi World
```

NOTE The file *helloworld.txt* in the example is initially a copy of *greeting.txt*.

1.3.5. Some additional useful commands

- rm: removes a file
- cp -r: copies a directory recursively with its contents
- rmdir: remove an empty directory

- rm -rf: force to recursively delete a directory (or file) and all its contents
- nano: an easy-to-use text editor (not available by default in MinGW)
- grep: finds matches for a string in a given stream of characters
- ag: takes a string as argument and searches through the contents of files recursively to find matches of the given string (this tool is included in the *silversearcher-ag* package)

1.4. Git and GitHub

1.4.1. Installing Git

Install the Git version control system (VCS) from https://git-scm.com/downloads.

1.4.2. Creating a remote git repository on GitHub

- 1. Go to https://github.com/new
- 2. Set *test* as the name of the repository
- 3. Check the checkbox *Initialize this repository with a README*
- 4. Click on create repository

1.4.3. Cloning to a local repository

- 1. Open up a terminal (Git bash on Windows).
- 2. Navigate to the designated target directory (it is typical to use the git folder within the home directory for storing Git repositories, e.g., cd /home/username/git).
- 3. Using a Git client, clone this newly created *test* repository to your computer. First, get the repository URL (use HTTPS for now).

Then, issue git clone https://url/of/the/repository.git You should get an output similar to this:

```
Shabbir@SHABBIR-LAPTOP ~/Documents/code/university

§ git clone git@github.com:mcgill-ecse321/class-notes.git

Cloning into 'class-notes'...
remote: Counting objects: 290, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 290 (delta 0), reused 0 (delta 0)Receiving objects: 96% (279/290), 5.68 MiB | 314 KiB/s
Receiving objects: 100% (290/290), 5.91 MiB | 313 KiB/s, done.
Resolving deltas: 100% (59/59), done.
Shabbir@SHABBIR-LAPTOP ~/Documents/code/university

§
```

4. Verify the contents of the *working copy* of the repository by ls -la ./test. The .*git* folder holds version information and history for the repository, while the *README.md* is an auto-generated text file by GitHub.

1.4.4. Git basics

1. Open up a terminal and configure username and email address. These are needed to identify the author of the different changes.

```
Shabbir@SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)

$ git config --global user.name "shabbir-hussain"

Shabbir@SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)

$ git config --global user.email shabbir.hussain@outlook.com
```

Glossary — Part 1:

- **Git** is your version control software
- **GitHub** hosts your repositories
- A **repository** is a collection of files and their history
- A **commit** is a saved state of the repository
- 2. Enter the working directory, then check the history by issuing git log. Example output:

```
commit 2a0735092cea1b7f7c850a48b86e8847bf979236
Author: Shabbir Hussain <mohd.husn001@gmail.com>
Date: Thu Aug 28 15:33:09 2014 -0400

almost finished seat checking

commit 90bfbac1c8134a87d16caf89c9ff66104f8b7fb7
Author: Shabbir Hussain <mohd.husn001@gmail.com>
Date: Thu Aug 28 14:30:07 2014 -0400

fixed wishlist null ptr exception

commit ca4a6921005e89dace34226560921c9770a82574
Author: Shabbir Hussain <mohd.husn001@gmail.com>
Date: Thu Aug 28 11:03:19 2014 -0400

grade checker hotfix
```

3. Adding and committing a file: use the git add and git commit commands.

```
Shabbir@SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)
$ touch helloworld.java
```

```
Shabbir@SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)

$ git add helloworld.java

Shabbir@SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)

$ git commit -m 'added hello world file to the project'

[master (root-commit) f4a1ddc] added hello world file to the project

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 helloworld.java
```

The effect of these commands are explained on the figure below:

Local Operations

Glossary — Part 2:

- Working Directory: files being worked on right now
- Staging area: files ready to be committed
- Repository: A collection of commits
- 4. Checking current status is done with git status.

```
$habbir@SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)
$ git status
# On branch master
# Changes not staged for commit:
# (use "git add <file>..." to update what will be committed)
# (use "git checkout -- <file>..." to discard changes in working directory)
#
# modified: helloworld.java
#
no changes added to commit (use "git add" and/or "git commit -a")
```

5. Staging and unstaging files: use git add to add and git reset to remove files from the staging area.

```
~/Documents/code/university/myfirstrepo (master
git add
                        ~/Documents/code/university/myfirstrepo (master)
 git status
 On branch master
 Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
•
                          Documents/code/university/myfirstrepo (master
 git reset helloworld.class
        SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)
 git status
 Ön branch master
 Changes to be committed:
    (use "git reset HEAD <file>..." to unstage)
 Untracked files:
         "git add <file>..." to include in what will be committed)
```

CAUTION

Only staged files will be included in the next commit.

6. To display detailed changes in unstaged files use git diff, while use git diff --staged to show changes within files staged for commit.

7. Reverting to a previous version is done using git checkout.

```
Shabbir@SHABBIR-LAPTOP ~/Documents/code/university/myfirstrepo (master)
$ git checkout helloworld.java
```

8. The commands git pull (or the git fetch + git rebase combination) and git push are used to synchronize local and remote repositories.

1.4.5. Browsing commit history on GitHub

1. You can browse pushed commits in the remote repository online using GitHub. You can select the *commits* menu for a repository.

To get a link for a specific commit, click on the button with the first few characters of the hash of the commit.

The source for most of the images in the Git documentation: https://github.com/shabbir-hussain/ecse321tutorials/blob/master/01-githubTutorial1.pptx

1.5. Travis CI

- 1. Go to https://travis-ci.com/, click on Sign up with GitHub.
- 2. Click on the green authorize button at the bottom of the page.
- 3. Activate Travis-CI on your GitHub account

- 4. Select the repositories you want to build with Travis (make sure to include your repository that you created for this tutorial). You can modify this setting anytime later as well.
- 5. In your working copy of your repository, create a default Gradle java project.
 - Make sure you have Gradle installed (gradle --version).
 - Issue gradle init --type java-library
 - Add a .gitignore to ignore generated resources by Git:

```
.gradle/
build/
```

- Make sure your application is compiling by running gradle build
- 6. Create a file called .travis.yml:

```
language: java
script:
- gradle build
```

7. Commit and push your work. If everything is set up correctly, the build should trigger and

Travis should run your build using Gradle.			