Algèbre de Boole

- 1. Montrer comment l'opérateur **et** peut être obtenu à partir des opérateurs **ou** et **non**. De même pour l'opérateur **ou** avec les opérateurs **et** et **non**.
- 2. On note respectivement les opérateurs **ou**, **et**, **xor** et **non** par $+,\cdot,\oplus$ et $\overline{}$. Montrer à l'aide de tables de vérité que $A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$ et que $A \oplus B = (A + B) \cdot (\overline{A} + \overline{B})$

A	В	\overline{A}	\overline{B}	$A \oplus B$	$\overline{A} \cdot B$	$A \cdot \overline{B}$	$\overline{A} \cdot B + A \cdot \overline{B}$
1	1	0	0				
1	0	0	1				
0	1	1	0				
0	0	1	1				

A	В	Ā	\overline{B}	$A \oplus B$	A + B	$\overline{A} + \overline{B}$	$(A+B)\cdot(\overline{A}+\overline{B})$
1	1	0	0				
1	0	0	1				
0	1	1	0				
0	0	1	1				

- 3. Montrer que $A + (\overline{A} \cdot B) = A + B$ et que $A \cdot (\overline{A} + B) = A \cdot B$
- 4. Déterminer le complément de l'expression $A + \overline{B} \cdot C$

5. Écrire l'expression $\overline{A \oplus B}$ uniquement avec les opérateurs **ou**, **et** et **non**

6. Simplifier au maximum les expressions logiques suivantes.

(a)
$$\overline{A} \cdot B + A \cdot B$$

(b)
$$(A+B)\cdot(A+\overline{B})$$

(c)
$$A + A \cdot B$$

(d)
$$A \cdot (A+B)$$

(e)
$$\overline{A} \cdot \overline{B} + \overline{A + B + C + D}$$

(f)
$$A + B \cdot \overline{C} + \overline{A} \cdot (\overline{B \cdot \overline{C}}) \cdot (A \cdot D + B)$$

7. Génération et simplification d'expressions logiques

Considérer la fonction définie par la table de vérité ci-dessous :

A	В	C	F(A,B,C)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- (a) Générer une expression logique correspondante :
 - i. sous forme de sommes de produits;
 - ii. sous forme de produits de sommes.
- (b) Simplifier les deux expressions en utilisant les règles de l'algèbre de Boole.

i.

ii.

- 8. Considérer les fonctions logiques suivantes. Pour chacune d'elles,
 - construire le diagramme de Karnaugh;
 - utiliser le diagramme pour simplifier les expressions.

(a)
$$F_1(A, B, C) = A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

A BC	ВС	$\overline{B}C$	$\overline{B}\overline{C}$	$B\overline{C}$
A				
\overline{A}				

A BC	ВС	$\overline{B}C$	$\overline{B}\overline{C}$	$B\overline{C}$
A				
\overline{A}				

FIG. 1 – Table de Karnaugh pour $F_1(A, B, C)$.

FIG. 2 – Table de Karnaugh pour $F_2(A, B, C)$.

(b)
$$F_2(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} + A \cdot B \cdot C$$

(c)
$$F_3(A,B,C) = \overline{A} \cdot \overline{B} + \overline{A} \cdot B \cdot \overline{C} + \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$$

(d)
$$F_4(A, B, C, D) = B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{D} + A \cdot B \cdot C \cdot \overline{D}$$

A BC	BC	$\overline{B}C$	$\overline{B}\overline{C}$	$B\overline{C}$
A				
$\overline{\overline{A}}$				

FIG. 3 – Table de Karnaugh pour $F_3(A, B, C)$.

AB CD	CD	$\overline{C}D$	$\overline{C}\overline{D}$	$C\overline{D}$
AB				
$\overline{A}B$				
$\overline{A}\overline{B}$				
$A\overline{B}$				

FIG. 4 – Table de Karnaugh pour $F_4(A, B, C, D)$.

(e)
$$F_5(A,B,C,D) = \overline{A} + A \cdot B + A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot C \cdot D$$

\overrightarrow{AB} \overrightarrow{CD}	CD	$\overline{C}D$	$\overline{C}\overline{D}$	$C\overline{D}$
AB				
$\overline{A}B$				
$\overline{A}\overline{B}$				
$A\overline{B}$				

AB	CD	$\overline{C}D$	$\overline{C}\overline{D}$	$C\overline{D}$
AB				
$\overline{A}B$				
$\overline{A}\overline{B}$				
$A\overline{B}$				

Fig. 5 – Table de Karnaugh pour $F_5(A, B, C, D)$. Fig. 6 – Table de Karnaugh pour $F_6(A, B, C, D)$.

(f)
$$F_6(A,B,C,D) = \overline{A} \cdot \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot \overline{D} + A \cdot B \cdot D + \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot \overline{D}$$