Elettronica Digitale A.A. 2020-2021

Lezione 29/03/2021

Transistore BJT – Circuiti equivalenti per ampi segnali semplificati

Transistore BJT – Circuiti equivalenti per ampi segnali semplificati

IPOTESI	VERIFICA NPN	VERIFICA PNP
ZONA ATTIVA DIRETTA	$v_{CE} \ge 0.3 V$	$v_{EC} \ge 0.3 V$
SATURAZIONE	$i_{C} < \beta_{F} i_{B}$	$i_C < \beta_F i_B$

A VCC

Microelectronic Circuits - Fifth Edition Sedra/Smith

Necessità di fissare una corrente continua costante di collettore o di emettitore che sia calcolabile, predicibile e poco sensibile alle variazioni delle condizioni ambientali (ad esempio la temperatura) e alle variazioni dei parametri del transistore (ad esempio il valore di β_F).

Polarizzazione fissando I_B

$$I_{BQ} \cong \frac{V_{CC} - V_{\gamma}}{R_B}$$
 $I_{CQ} = \beta_F I_{BQ}$

Polarizzazione fissando V_{BF}

$$I_B \ll I_1, I_2 \rightarrow I_1 = I_2$$
 (partitore pesante)

$$V_{BEQ} \cong V_{CC} \frac{R_2}{R_1 + R_2} \qquad I_{CQ} \propto \exp\left(\frac{V_{BEQ}}{V_T}\right)$$

$$R_{Thev} = R_B = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

Transistore BJT – Polarizzazione dei circuiti discreti Configurazione classica con singolo generatore

$$V_{BB} = R_B I_B + V_{\gamma} + R_E \left(\beta_F + 1\right) I_B \qquad \Longrightarrow \qquad I_{BQ} = \frac{V_{BB} - V_{\gamma}}{R_B + R_E \left(\beta_F + 1\right)} \qquad I_{CQ} = \beta_F I_{BQ}$$

$$I_{BQ} = \frac{V_{BB} - V_{\gamma}}{R_B + R_E \left(\beta_F + 1\right)}$$

$$I_{CQ}=\beta_F I_{BQ}$$

$$V_{CC} = R_C I_C + V_{CE} + R_E (\beta_F + 1) I_B \implies V_{CEQ} = V_{CC} - R_C I_{CQ} - R_E (\beta_F + 1) I_{BQ}$$

$$V_{CEQ} = V_{CC} - R_C I_{CQ} - R_E (\beta_F + 1) I_{BQ}$$

Se
$$\begin{cases} V_{BB} \gg V_{\gamma} \\ R_{E} \gg \frac{R_{B}}{(\beta_{F} + 1)} \Rightarrow I_{EQ} \approx \frac{V_{BB}}{R_{E}} \end{cases}$$

La corrente di emettitore e, quindi, quella di collettore è determinata dai componenti esterni collegati al transistore

$$V_{BB} \gg V_{\gamma}$$

Questa condizione assicura che piccole variazioni della V_{BE} siano mascherate dalla V_{BB} che è molto più grande

$$R_E \gg \frac{R_B}{\left(\beta_F + 1\right)}$$

Questa condizione rende insensibile I_E dalle variazioni di β .

$$R_B \ll R_E \left(\beta_F + 1\right)$$
 $V_{BB} = R_B I_B + V_{\gamma} + R_E \left(\beta_F + 1\right) I_B$

Nella maglia di ingresso posso trascurare la caduta su $R_{\rm B}$ rispetto a quella su $R_{\rm E}$. La condizione è equivalente a quella di partitore pesante.

$$V_B \approx V_{BB} = V_{CC} \frac{R_2}{R_1 + R_2}$$

R_E introduce un effetto di retroazione negativa che stabilizza la corrente di polarizzazione