Как сделать MIDI баян?

Для начала потребуется купить комплектующие. Далее в списке будут ссылки, если какая-то из них уже недоступна, попробуйте найти требуемую деталь в поиске на aliexpress.com. Текст для поиска выделен жирным.

- 1. Датчики Холла **OH137**. Здесь: https://ru.aliexpress.com/item/100-PCS-OH137-TO-92S-Hall-Effect-Sensor-for-Highly-Sensitive-Instruments/2046650959.html Датчиков должно быть не менее чем количество клапанов на Вашем баяне.
- 2. Плату **Arduino Nano**. 3десь: https://ru.aliexpress.com/item/Nano-3-0-controller-compatible-with-arduino-nano-CH340-USB-driver-with-CABLE-NANO-V3-0/32478082112.html
- 3. Maгниты **2x1mm magnet**: https://ru.aliexpress.com/item/Best-Price-200pcs-2mm-x-1mm-Disc-Rare-Earth-2x1mm-Super-Permanent-Magnets-N35-Craft-Model/32599332196.html
- Разъёмы для подключения MIDI DIN 5 pin connector здесь:
 https://ru.aliexpress.com/item/DIN-Plug-Connector-5-Pin-with-Plastic-Handle-5-Pin-DIN-Plug-to-Female-Jack-2/32603512697.html Хорошо, если удастся найти отечественный разъём СГ-5 в радио магазине. Вот ссылка на описание разъёмов:
 https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D1%8A%D1%91%D0%BC DIN
- 5. 2 небольших отечественных резистора (например, на 0.125-0.25 Вт) на 220 Ом с выводами.
- 6. 8 таких же резисторов на 2 кОм.
- 7. Стабилизированный блок питания постоянного тока на 5В, с максимальным током не менее 300мА. Зарядник от телефона лучше не использовать, там не всегда бывают «честные» +5В. Перед подключением блока питания к схеме рекомендую проверить его выходное напряжение тестером. Если оно выше 5.5В, то использовать такой блок питания не нужно.
- 8. Ответный разъём для блока питания.
- 9. Многожильный шлейф от жёсткого диска IDE или тонкие провода для распайки датчиков.
- 10. Датчик давления **MPXV7002DP Airspeed** здесь: https://ru.aliexpress.com/item/New-MPXV7002DP-Airspeed-Meter-Breakout-Board-Transducer-APM2-5-Pressure-Sensor/32826319846.html Главное, чтобы он был сразу с проводами.

Для автономной игры на баяне можно купить:

- 1. Звуковой модуль для работы баяна без компьютера, здесь: https://ru.aliexpress.com/item/Portable-Midiplus-MiniEngine-USB-MIDI-Sound-Module-General-MIDI-Generator-Parts-of-Midikeyboard-MIDI-interface-Midi/32641714938.html Вместо звукового модуля можно использовать синтезатор.
- 2. Кабель для соединения модуля с баяном: https://ru.aliexpress.com/item/MIDI-Extension-Cable-5-Pin-Plug-Male-to-Male-Connector-Silver-for-MIDI-Devices-3m-10ft/32670812944.html

Подключать звуковой модуль можно к наушникам или колонкам. Колонки для ноутбуков с USB можно питать прямо от USB разъёма звукового модуля. Звук подключается через 3.5мм разъём.

Для игры с использованием компьютера нужно купить:

1. Переходник MIDI-USB, например, здесь: https://ru.aliexpress.com/item/High-quality-USB-to-MIDI-Keyword-PC-Interface-Adapter-Cable-Cord-USB-MIDI-Converter-For-PC/32442860994.html

Внимание, китайцы часто продают недоделанные переходники. Возможно придётся его допаять, как это сделано здесь: http://www.arvydas.co.uk/2013/07/cheap-usb-midi-cable-some-self-assembly-may-be-required/

Переходник вставляется прямо в баян, поэтому для него больше ничего не понадобится. И нужно скачать программу synthesia здесь: http://www.synthesiagame.com/

Если на компьютере есть разъём Game Port и звуковая карта поддерживает MIDI, то можно спаять переходник для этого порта. Вот описание выводов порта:

http://pinouts.ru/visual/gen/GameportPCMidi.jpg Не буду вдаваться по подробности распайки кабеля, её можно найти в интернете.

Вместо переходника можно купить звуковую плату с поддержкой MIDI входа. Например, Steinberg UR 22 mk2 USB audio Interface.

Сборка.

Когда у Вас будут все необходимые компоненты, нужно будет:

- 1. Скачать прошивку https://github.com/Zhopper/bayan_nano Перейдите по ссылке, нажмите зелёную кнопку Clone or download, а потом Download ZIP.
- 2. Скачать и установить среду разработки Arduino: https://www.arduino.cc/en/Main/Software
- 3. Открыть файл midi_bayan.ino, изучить комментарии в коде прошивки. Там написано каким образом нужно подключить матричную клавиатуру из датчиков Холла к Arduino. Более наглядно тоже самое показано на рисунке 1.

Рисунок 1 Принципиальная схема баяна.

Припаять выход ANALOG датчика давления к контакту A6 (номер контакта по схеме Ardiono Nano "J2-6"), VCC датчика к +5B, а GND датчика к любому GND на плате arduino. Если у вас датчик давления без платы, то припаяйте к нему провода и конденсаторы как показано на рисунке 2. Конденсаторы можно бать любые с подходящим номиналом.

Рисунок 2 Датчик давления, распайка проводов.

На рисунке 3 показан вариант установки датчика. Сам датчик приклеен к стенке корпуса. Его трубка отведена в сторону и вставлена через отверстие в меховую камеру. В отверстии трубка проклеена по кругу восково-канифольной мастикой для звуковых планок. Место для отверстия выбрано таким, где трубка ничему не будет мешать. Далее датчик припаян к плате Arduino nano.

Рисунок 3 Установка датчика давления и его трубки

На схеме наглядно показаны левая и правая клавиатура. Правая состоит из 52 клапанов (в данном случае клавиш), а левая из 24 клапанов (не нужно ставить датчики на все 100 клавиш, только на клапана).

Датчики ставятся в баяне любым удобным способом. Принцип работы и схема установки показана на рисунке 4.

Я припаивал датчики на фольгированный стеклотекстолит, предварительно прорезав на нём дорожки. Общий вид стеклотекстолита с датчиками показан на рисунке 5. В моём баяне было удобно установить датчики таким образом, в Вашем может быть всё по-другому. Например как на рисунке 6.

На тягах клапанов видны приклеенные магниты. Клей — Titebond Premium для дерева. Почему именно этот клей? Он был под рукой и оказалось, что он хорошо держит магниты. Приклеивать магниты сразу не рекомендую, дело в том, что датчики имеют полярность и срабатывают только на один из полюсов магнита. Сначала нужно будет определить, какой стороной поставить магнит. А пока без клея ставим магниты произвольной стороной на тяги.

Рисунок 4. Схема установки датчика

Рисунок 5. Датчики припаянные к стеклотекстолиту

Рисунок 6. Датчики в Итальянском MIDI баяне

Датчики и магниты устанавливаются таким образом, чтобы при открытии клапана магнит проходил около датчика. Не важно сколько кнопок и рядов в Вашем баяне, правило одно – один клапан – один датчик.

Как только магниты и датчики установлены в нужных местах, нужно соединить их в матричную клавиатуру. Принцип простой:

Начинаем с самой первой кнопки (клапана) с любого края (лучше с низких нот).

Первым датчиком будет L0,D0 (см. рисунок 1). Следующий клапан L0,D1 и так далее до L0,D7. Потом следующими будут L1,D0.. L1,D7 и т.д.

Устанавливаем датчики на правую клавиатуру, левую пока не трогаем.

После распайки проверяем правильность соединений по схеме и можно прошивать. Для начала нужно загрузить прошивку в Arduino. Плату нужно подключить к компьютеру через USB кабель. Не буду расписывать как делается загрузка программы в Arduino, прочитайте об этом, например, здесь: https://habrahabr.ru/company/masterkit/blog/257747/

Как только программа успешно загрузилась, можно проверить работу клавиатуры. Нужно отключить баян от USB, подключить его через кабель или переходник к любому midi синтезатору или компьютеру.

Дальше нужно убрать все магниты кроме первого. Они были нужны для установки датчиков, а теперь нужно их правильно установить, чтобы обеспечить чёткое срабатывание кнопок. Если оставить магниты и вдруг какой-то будет находиться в постоянно нажатом состоянии, будет сложно найти какой из них это делает.

При нажатии кнопки магнит должен проходить около датчика и синтезатор должен играть какую-то ноту (пока неизвестно какую, она не будет совпадать с клавишей).

Если этого не происходит — находим такое положение магнита, в котором при нажатии кнопки нота начинает играть. Если и после этого ничего не звучит — проверяем схему, подключения, подачу питания и т.д. Ищем неисправность.

Если всё хорошо и первая кнопка звучит, то магнит нужно приклеить к тяге и переходим ко второй кнопке. Точно так же настраиваем её чёткое срабатывание.

Как только магниты стоят на всех клапанах можно привязать их к правильным нотам. В программе Arduino на строках 188-202 мы видим такую матрицу:

```
char notes[10][8] = {
// Для Вашего инструмента нужно будет правильно заполнить эту матрицу.
// Соответствие клавиш нотам. Каждая строка соответствует линиям:
// D0, D1, D2, D3, D4, D5, D6, D7
{Db7,C7,B6,Bb6,A6,Ab6,G6,Fd6}, // Для L0
{F6,E6,Eb6,D6,Db6,C6,B5,Bb5}, // Для L1
```

{A5,Ab5,G5,Fd5,F5,E5,Eb5,D5}, // Для L2
{Db5,C5,B4,Bb4,A4,Ab4,G4,Fd4}, // Для L3
{F4,E4,Eb4,D4,Db4,C4,B3,Bb3}, // Для L5
{A3,Ab3,G3,Fd3,F3,E3,Eb3,D3}, // Для L5
{Db3,C3,B2,Bb2,Bb2,Bb2,Bb2,Bb2}, // Для L6
{F3,F4,Fd3,Fd4,G3,G4,Ab3,Ab4}, // Для L7
{A3,A4,Bb3,Bb4,B3,B4,C3,C4}, // Для L8
{Db3,Db4,D3,D4,Eb3,Eb4,E3,E4}, // Для L9
// Например, кнопка, стоящая на пересечении D2 и L4 соответствует Eb4

Нужно её заполнить. Так как мы знаем какой датчик относится к каким D и L и знаем соответствие кнопок нотам — заполняем эту матрицу.

После чего снова отключаем баян от синтезатора и источника питания, подключаем его только к компьютеру через USB. Загружаем исправленную программу.

После успешной загрузки отключаемся от USB и подключаем баян к синтезатору и блоку питания. Проверяем правильность работы кнопок. Должны звучать ноты, соответствующие клавишам. Если это не так – исправляем в программе неправильно звучащие клавиши и снова загружаем её в Arduino. Так делаем до тех пор, пока все кнопки не станут работать правильно.

С левой клавиатурой всё немного сложнее. Принцип установки датчиков тот же, один клапан — один датчик. Проблема может быть в том, как добраться до клапана и установить рядом датчик с магнитом. Возможно придётся снять весь механизм левой клавиатуры. В моём случае тяги всех клапанов были доступны снизу полукорпуса, к ним я и приклеил магниты (жёлтые капли). См. рисунок 7.

Рисунок 7 датчики в левом полукорпусе

В шотландском аккордеоне магниты установлены на торцы тяг клапанов, а датчики на плате, см. рисунок 8.

Рисунок 8. Установка датчиков на левой клавиатуре

Для подключения 24 клапанов потребуется довести из правого полукорпуса в левый 12 проводов (см. рисунок 1).

Нужно припаять провода к Arduino, просверлить отверстие во внутреннюю часть правого полукорпуса и продеть в это отверстие провода.

Затем нужно залить отверстие и провода в нём мастикой для клапанов, чтобы через него не проходил воздух.

Для удобства сборки и разборки рекомендуется установить разъёмы на половинках корпуса, как в итальянском баяне на рисунке 9.

Длину проводов выбрать такую, чтобы можно было уложить их змейкой на мехе изнутри. Закрепить провод на мехе можно таким образом: К меху приклеиваются (Клей «Момент-Кристалл») полоски, вырезанные из ПЭТ бутылки, в полосках прокалываются отверстия и провод пришивается к полоскам через эти отверстия.

Рисунок 9. Кабель между половинками корпуса.

Как только будут установлены магниты и датчики на левой клавиатуре можно произвести настройку срабатывания кнопок и подбор нот для каждого клапана. Это делается практически так же, как и на правой.

Настраивать ноты удобно. Для этого нужно открыть вручную клапан, при помощи тюнера определить его ноту и установить её в матрице соответствия в программе. То же самое повторить с остальными клапанами.

Сложность только в том, что при нажатии кнопок нужно заставить все ноты аккордов срабатывать одновременно. Удобной методики этой настройки я не знаю, просто перенастраиваю каждую кнопку по очереди, пока все ноты аккордов не начнут срабатывать одновременно. Это достаточно долго.

Управление системой.

MIDI система управляется и конфигурируется теми же кнопками, которыми извлекаются звуки. Удобнее всего для этой цели использовать правую клавиатуру инструмента. Вариант расстановки кнопок показан на рисунке 10.

Рисунок 10. Кнопки управления системой

В MIDI системе есть возможность управления синтезатором. Система может:

- задать первый инструмент отдельно для мелодии, баса и аккорда (каналы 1-3)
- задать второй инструмент отдельно для мелодии, баса и аккорда (каналы 4-6)
- задать громкость всех шести каналов по отдельности
- включить или выключить функцию датчика давления
- сохранить инструмент, громкость каждого канала и датчик давления в любой из 8ми регистров
- загрузить инструмент, громкость для каждого канала и датчик давления из регистров

Заполняется он по аналогии с массивом соответствия кнопок нотам (см. выше)

Кнопка _MD «Режим» не издаёт звуков и используется только для переключения режима клавиатуры. Система находится в режиме управления пока нажата эта кнопка, при её отпускании система переходит в режим MIDI клавиатуры и все кнопки кроме _MD становятся звуковыми.

Остальные кнопки _C0, _C1, _C2, _C3, _C4, _C5, _MI, _PI, _MV, _PV, _R0, _R1, _R2, _R3, _R4, _R5, _R6, _R7, _EP, _PS работают только при нажатой кнопке _MD. Они могут быть звуковыми.

ВНИМАНИЕ! Каждую кнопку можно вписать в массив только один раз. Многократно заданные кнопки могут обрабатываться неправильно.

Кнопки _C0, _C1, _C2, _C3, _C4, _C5 (На рисунке 10 «Кан0» - «Кан5») это выбор текущего канала, для которого производится выбор инструмента и изменение его громкости. Например, для выбора канала 0 нужно при нажатой _MD, нажать и отпустить_C0.

Канал 0 – мелодия инструмент 1(правая клавиатура)

Канал 1 – бас инструмент 1(левая клавиатура)

Канал 2 – аккорд инструмент 1(левая клавиатура)

Канал 3 – мелодия инструмент 2(правая клавиатура)

Канал 4 – бас инструмент 2(левая клавиатура)

Канал 5 – аккорд инструмент 2(левая клавиатура)

Каналы 0+3, 1+4 и 2+5 звучат в унисон. Чтобы второй канал перестал звучать — установите его громкость в ноль.

Для задания соответствия каналов и кнопок добавлена матрица каналов. Для Вашего инструмента нужно будет правильно заполнить эту матрицу.

Числа, которыми заполнена матрица - шестнадцатиричные. Это удобно для назначения кнопки сразу на два канала.

Например:

0х00 означает что нота звучит только на канале 0

0х11 означает что нота звучит только на канале 1

0xFF означает что нота звучит только на канале 15

0xF1 означает что нота звучит на канале 15 и на канале 1

0х18 означает что нота звучит на канале 1 и на канале 8

Можно назначить ноту на любой из каналов, но он не должен быть больше чем

MD_MAX_CHANNEL (в текущей прошивке это значение 6)

Вариант заполнения матрицы для моего баяна. Мелодия на каналах 0 и 3 в унисон, бас на канале 1 и аккорд на канале 2:

Кнопки _PI, _MI, это следующий и предыдущий инструмент для текущего выбранного канала. Например, для выбора следующего инструмента нужно при нажатой _MD, нажать _PI.

Кнопки _PV, _MV, это увеличение и уменьшение громкости для текущего выбранного канала. Например, для увеличения громкости на 1 нужно при нажатой _MD, нажать _PV. Для увеличения громкости на 5 нужно при нажатой MD, 5 раз нажать PV.

Кнопки $_{R0}$, $_{R1}$, $_{R2}$, $_{R3}$, $_{R4}$, $_{R5}$, $_{R6}$, $_{R7}$ используются для загрузки и сохранения текущей конфигурации в регистр.

Например, для загрузки регистра 0 нужно при нажатой _MD, нажать _R0.

А для сохранения регистра 0 нужно при одновременно нажатых _MD, _C0, _C1, _C2 нажать _R0.

Кнопка _PS, это включение и отключение датчика давления. При включенной функции давление с датчика преобразуется в громкость. Чем больше давление в мехе, тем выше громкость звучания, как в обычном баяне. Громкость для каждого канала будет изменяться от нуля до значения, заданного кнопками _PV и _MV. Каждый канал может иметь разную максимальную громкость.

Примечание: При каждом включении датчика давления и включении MIDI системы происходит считывание среднего значения датчика. ВАЖНО при этом не двигать мех, иначе среднее значение будет прочитано неправильно. Если при включенном датчике у нот будет не нулевая громкость или на сжим и разжим датчик будет работать не одинаково, то просто выключите и снова включите датчик.

Про настройку датчика давления читайте дальше.

Примечание: Замечено странное поведение синтезатора Casio LK73 при работе с датчиком давления, он не снижает громкость канала до нуля, поэтому он тихо звучит даже если нет движения меха. Было опробовано на схожих функциях «Педаль экспрессии» и «Громкость канала», результат одинаковый.

На звуковом модуле MIDIplus mini engine и виртуальном синтезаторе Coolsoft VirtualMIDISynth такой проблемы не замечено.

Кнопка _EP, это **опытная функция**, которая позволяет поменять тон звука на выбранном канале. Например, выбираем на канале 0 и канале 3 инструмент «гармонь». Потом нажимаем _MD + _C3 и _MD + _EP. Это означает что сейчас выбран канал 3 и функция _EP для него. Кнопками _MD + _PV или _MD + _MV изменяем тон звука на канале 3. В результате получается звучание с разливом, как у гармони. Функция опытная, её результат остаётся до тех пор, пока не будет перезагружен синтезатор или сброшено значение звуковысотного колеса для канала. Перезапуск самой MIDI системы нечего не даст. С этой функцией сложно работать без индикации текущего тона звука. MIDI система на Arduino nano не позволяет подключить дисплей, поэтому пока эта функция недоделана.

Настройка датчика давления

Давление внутри разных инструментов может отличатся. Поэтому нужно настроить соответствие давления и максимальной громкости.

Строка 70: #define PRESS MAX VALUE 25

Значение с датчика выше которого будет выдаваться максимальная громкость. Оно может быть как равно так и ниже максимального значения давления в мехе. Чем это значение меньше, тем громче будет звук и тем раньше он станет максимальным. Чем больше это значение, тем тише будет звук и тем большее давление нужно для максимальной громкости. Сначала проверьте со значением 25, а потом его можно будет исправить под ваш инструмент.

Строка 71: #define PRESS_MIN_VALUE 0 // Значение с датчика ниже которого команды MIDI не отправляются. Чтобы не отправлять команды при около-нулевой громкости. Это значение можно не изменять.

Строка 73: #define PRESS_FILTER 0.25 // Значение фильтра датчика давления. От 0 до 1. Ближе к 1 - слабая фильтрация. При значении 1 любое дрожание меха превращается в изменение громкости, это очень плохо звучит.

Ближе к 0 - сильная фильтрация, меньше чем 0.1 задавать не рекомендуется. Значение 0.25 выбрано опытным путём и дало хороший результат. Можно не изменять.

На этом всё. Желаю успехов в MIDI-баяностроении)) Александр. Сайт проекта <u>www.openmidi.ru</u>

Есть вопросы - пишите: <u>zhopper@mail.ru</u>