ML in agrochemistry and ecotoxicology

Jakub Adamczyk • ML & Chemoinformatics Lab (MLCIL), Faculty of Computer Science, AGH

Introduction

Molecular property prediction:

- classification / regression on molecular graphs
- e.g. solubility, bioactivity, toxicity
- commonly used in novel drug design and pharmacology

Agrochemistry:

- pesticides, fertilizers, plant growth hormones etc.
- surprisingly outdated still based on field and lab experiments
- important due to legislative, ecological, and health concerns

Ecotoxicology:

- measuring, modeling & predicting toxicology for animals and plants
- regulatory area for pesticides
- e.g. algae, small mammals, bees
- **really** need predictive models measuring e.g. LD50 (median lethal dose) requires killing 50% of test organisms

ApisTox dataset

J. Adamczyk, J. Poziemski, P. Siedlecki "ApisTox: a new benchmark dataset for the classification of small molecules toxicity on honey bees"

Scientific Data

- dataset of pesticides toxicity for honey bees (*Apis Mellifera*)
- largest: 1035 compounds
- best quality:
 - standardized structures
 - deduplicated
 - unified labels

• binary classification:

- binarized LD50 values
- o regression → classification

workflow:

- o 3 data sources
- cleaned & merged
- additional metadata

• challenging:

- atypical structures, salts etc.
- o differs from medicinal chem.

ML models

J. Adamczyk, J. Poziemski, P. Siedlecki "Evaluating machine learning models for predicting pesticides toxicity to honey bees"

ArXiv preprint

MCC

 0.48 ± 0.02

 0.46 ± 0.02

 0.46 ± 0.02

 0.45 ± 0.03

 0.44 ± 0.02

 0.29 ± 0.04

 0.23 ± 0.01

 $0.33\,\pm\,0.01$

0.36

0.31

0.41

0.43

 0.30 ± 0.04

 $0.33\,\pm\,0.04$

 0.32 ± 0.06

 0.26 ± 0.05

 0.29 ± 0.06

0.25

0.29

0.05

0.27

Method

ECFP

Layered

RDKit

SECFP

Topological

Torsion

Atom counts

LTP

MOLTOP

Propagation

Shortest paths

WL

WL-OA

GCN

GraphSAGE

GIN

GAT

AttentiveFF

MAT

R-MAT

GROVER

ChemBERTa

Group

Fingerprints

Baselines

Graph

kernels

GNNs

Pretrained

neural

networks

Model groups:

- molecular fingerprints
- feature extraction baselines
- graph kernels + SVM
- graph neural networks (GNNs)
- embeddings from pretrained models

Evaluation:

- time split
- Matthews Correlation Coefficient

Results:

- molecular fingerprints, particularly ECFP, win by a wide margin
- graph kernels are strong
- GNNs and pretrained embeddings did not even outperform baselines

Why?

- agrochemistry is **very** different from medicinal chemistry
- very diverse and complex domain of chemistry
- existing neural models are **overtuned** for small, overused benchmarks

- a lot of molecules with "non-medicinal" atoms
- e.g. metals, toxic functional groups
- many models for medicinal chemistry ignore those

ToxCast

Tox21

ClinTox

- how to evaluate diversity?
- average pairwise similarity between molecules
- ECFP + Tanimoto similarity
- ApisTox is very diverse internally
- it is also **orthogonal** to existing benchmark