

Instituto Tecnológico y de Estudios Superiores de Monterrey

Análisis de Sistemas Embebidos Avanzados

TE2004B - Grupo 502

Profesor:

Raúl Peña Ortega

Reporte de Requerimientos y Diseño

Integrantes

Hortencia Alejandra Ramírez Vázquez A01750150 Fernando Antúnez Arnold A01570817 José Antonio León Navarro A01639250

Fecha de entrega:

2 de Diciembre del 2022

1. Descripción del producto

Visión.

Generar mayor eficiencia al realizar los trabajos con el tractor y menor costo en el mantenimiento de las llantas ya que la finalidad del proyecto es alargar la vida útil de las llantas.

Necesidades.

Controlar la presión en el llenado de las llantas de los equipos de cultivo agrícola, esto dependiendo del terreno en donde se encuentren.

Target Group.

Trabajadores y compradores de los tractores de John Deere.

Solución propuesta.

Simular el control del llenado de las llantas de un equipo de cultivo. Implementando un tanque para controlar la presión que hay dentro. Esta simulación ayudará a implementar el control de llenado de las llantas dependiendo del terreno, aumentando la vida de las llantas.

Metas del negocio.

- Mejorar la eficiencia en el llenado de las llantas del tractor.
- Aumentar la vida de las llantas de los tractores al controlar la presión que hay dentro de ellas.
- Facilitar el trabajo de los agricultores al permitir que puedan cambiar la presión de acuerdo con el terreno en el que se encuentre el tractor.

2. Metodología de desarrollo y trabajo en equipo

Backlog

Tabla 1.

Backlog

Prioridad	<u>Tarea/Entregables</u>
1	Reunión de equipo para planeación de actividades y asignación de tareas
2	Búsqueda de diferentes diseños del prototipo
3	Selección o propuesta de diseño
4	Enlistar materiales a utilizar

5	Compra de materiales	
6	Construcción del prototipo	
7	Programación del prototipo	
8	Pruebas de funcionamiento	
9	Pruebas de calidad	
10	Realización de reporte o manual de usuario	
11	Presentación del prototipo	

Epics y Stories.

Tabla 2. Epics y Stories

Epide y didilide	
Epic/Etapa del producto	Tareas/Entregables
Diseño del prototipo	Reunión de equipo para planeación de actividades y asignación de tareas
	Búsqueda de diferentes diseños del prototipo
	Selección o propuesta de diseño
Construcción del	Enlistar materiales a utilizar
prototipo	Compra de materiales
	Construcción del prototipo
	Pruebas de calidad de presión
Funcionamiento	Programación del prototipo
del prototipo	Pruebas de funcionamiento
	Implementación de controlador
	Pruebas de calidad
Documentación	Realización de reporte o manual de usuario
Presentación	Presentación del prototipo

Sprints

Tabla 3. Sprints

Fase del Proyecto	Tarea	Fecha
Diseño	Propuesta de diseño de tanque	28 de septiembre
Diseño	Sesión de Project Management	9 de octubre
Construcción	Selección de materiales	18 de octubre
Construcción	Construcción de la planta y pruebas de calidad	21 de octubre
Funcionamiento	Programación del prototipo	21 de octubre
Funcionamiento	Implementación del sensor de presión y actuador	4 de Noviembre
Funcionamiento	Implementación de módulo CAN con nodeMCU y creación de dashboard	18 de Noviembre
Funcionamiento	PID	28 de Noviembre
Presentación	Reporte y presentación de prototipo	30 de Noviembre

Aspectos considerados en la distribución del trabajo entre los miembros del equipo.

La división de trabajo no fue tan difícil. Eran tantas las cosas que se tenían que dividir que al final de cuentas todos tuvimos la oportunidad de trabajar eficientemente, dependiendo de la disponibilidad, posibilidades y habilidades. Por ejemplo en el caso de Fernando, le fue más fácil conseguir lo materiales ya que él vivía en Monterrey, con Jose Antonio le fue más fácil tener el programa principal por la potencia de su computadora, o en el caso de Hortencia que guardaba y cuidaba los materiales, los conectaba y/o verifica.

Mejoras en la forma que se designa el trabajo a los miembros del equipo.

Para que en un trabajo de equipo no sea afectado por imprevistos personales o fuera de las manos de los integrantes del equipo, la división de trabajo debe ser de manera que no sea totalmente dependiente de un miembro. Que si se atrasa, se le complica o si simplemente no puede ir a la junta de trabajo, que no se tenga que retrasar el trabajo no más allá de la

ausencia del integrante. De esta manera, todos están participando de manera equitativa, efectiva y sin atrasos en el proyecto, siguiendo al pie de la letra el horario establecido en el project management.

3. Diagrama UML de contexto

Figura 1. Diagrama UML de Contexto

4. Tabla de requerimientos

Tabla 4.Tabla de requerimientos

•	
Nombre	Sistema Inteligente para el control de presión de aire
Propósito	Controlar la presión de aire en el llenado de una llanta de
	un tractor simulandolo a través de la implementación de
	un tanque de compresión de aire.
Entradas	Fuente de voltaje y presión de aire.
Salidas	Llenado de llanta, presión de llanta en el dashboard y
	activación del compresor.
Funciones	Tras la selección de un setPoint en el dashboard el
	sistema es capaz de controlar la presión de aire que hay
	dentro del tanque y actualizar la presión.
Costos de manufactura	\$500.00 MXN
Potencia	Fuente de poder: 12V, Stm32H745I: 5V, FTDI: 5V y
	NodeMCU: 5V.

5. Diagrama de Despliegue

Figura 2. Diagrama de Despliegue

6. Diagrama UML de Actividad

Diagrama de ajuste de presión dado un nuevo tipo de terreno.

La presión de la llanta presenta grandes variaciones por lo que estas se ajustaron. Entre las principales variaciones que presenta es la de la altitud a la que la llanta se encuentra, y la temperatura. A mayor altura, la presión debe disminuir, porque esta aumenta a la hora de encontrarse en un lugar alto. Al igual con la temperatura, cuando se somete a climas fríos, la presión disminuirá debido a que el aire se enfría.

Alt	titud	Pre	sión
ft.	m	psi	bar
0	0.00	14.7	1.01
1000	304.80	14.2	0.98
2000	609.60	13.7	0.94
3000	914.40	13.2	0.91
4000	1,219.20	12.7	0.88
5000	1,524.00	12.2	0.84
6000	1,828.80	11.7	0.81
7000	2,133.60	11.3	0.78
8000	2,438.40	10.9	0.75
9000	2,743.20	10.5	0.72
10000	3,048.00	10.1	0.70

Figura 3. Ajuste de presión.

Diagrama de despliegue de la presión en Dashboard.

Figura 3. Diagrama UML de Actividad

7. Dispositivos periféricos

Selección de dispositivos periféricos. Elaborar una tabla o un párrafo que enumera cada uno de los componentes (sensor, actuador, ..) y justifica su rol/contribución funcional así como las especificaciones físicas, eléctricas, etc. que permiten cumplir con los requerimientos.

Tabla 5. Dispositivos periféricos

	Componente	Rol	Especificaciones
1	STM32H745ZI	Microcontrolador que permite controlar todo el prototipo.	Múltiples interfaces como UART, SPI y CAN que nos permite cumplir con el prototipo final.
2	Tubo PVC	Simulación de la llanta que era sometida a la presión.	Permite ser un objeto estable para hacer nuestras pruebas y mediciones.
3	FTDI	Poder leer datos adquiridos de los dispositivos usados.	Actúa como dispositivo que nos permite ver la información mandada y así ir puliendo lo que necesita el prototipo.
4	Sensor de presión	Transformar la presión a datos analógicos.	Sensor inteligente que permite a otros dispositivos saber cuándo activarse, para llenar o vaciar el tanque.
5	NodeMCU	Conexión entre el STM32 y el dashboard a la hora de pasar datos.	Dispositivo inteligente para actuar como "cosa" en un sistema de loT.

_			
6	CAN Shield	Recibir los datos del dashboard que vienen desde la NodeMCU.	Ayuda a ser la conexión entre el usuario y el sistema que él controla
7	CAN Transceiver	Recibir los datos del CAN Shield para mandarlos hacia la STM32.	Ayuda a ser la conexión entre el usuario y el sistema que él controla
8	Dashboard	Desplegar en pantalla los datos de presión.	Dispositivo inteligente que contiene el usuario, para él mismo hacer los ajustes al prototipo a como lo deseé
9	Relay	Interruptor de control para el solenoide.	Actuador que conecta la señal del STM32 al solenoide, para que pueda ser controlado por este mismo
10	Solenoide	Dispositivo de control de disminución de presión.	Se usa como una señal del prototipo. Se ajusta y actúa dependiendo de la señal que se le envía
11	Monster Moto Shield	Conexión entre el compresor a una fuente de voltaje.	Actuador que conecta la señal del STM32 al compresor, para que pueda ser controlado por este mismo
12	Compresor	Dispositivo para el llenado del tanque para aumentar la presión.	Se usa como una señal del prototipo. Se ajusta y actúa dependiendo de la señal que se le envía

8. Implementación del Sistema y pruebas Unitarias

Sistema completo

Figura 4. Diagrama Esquemático

Figura 5. Construcción física del sistema

Bill of materials.

Tabla 6.Bill of materials

Item	Nombre	Descripción	Cantidad
1	STM32H745ZI	1	1
2	FTDI	Dispositivo para conexión de dispositivos mediante una comunicación UART.	1
3	Sensor de presión	Dispositivo capaz de medir la presión de gas.	1
4	NodeMCU	Placa de desarrollo de software y hardware.	1
5	CAN Transceiver	Dispositivo para lograr la comunicación CAN.	1
6	CAN Shield	Dispositivo para comunicación CAN y SPI.	1
7	Relay	Interruptor controlado eletricamente.	1
8	Solenoide	Controlador de capacidad de aire en un sistema.	1
9	Monster Moto Shield	Controlador programable de actuadores.	1
10	Compresor	Dispositivo para aumentar la presión de aire.	1
11	Tubo PVC 2 in	Contenedor de aire de presión.	1
12	Tapón PVC 2 in	Tapa para el contenedor del tubo de presión.	1
13	Cople PVC 1/2	Conector de reductores.	1
14	Reductor bushing PVC 2 in x 1 ½ in	Adaptador para reducir tamaño en la entrada del tubo PVC.	1
15	Niple galvanizado 1/4 x 1/4	Adaptador para conexión de reductores.	1
16	Manómetro	Medidor de presión.	1
17	Reductor hidráulico de ½ x 5/16	Reductor de entrada para PVC.	1
18	Cople 1/4	Adaptador de manguera,	1
19	Válvula Schrader	Entrada y salida de aire.	1
20	Manguera	Transmisión de aire entre el PVC.	1 m

Configuración de Subsistemas

Sensor de Presión.

Para utilizar el sensor el STM32H7 cuenta con un convertidor análogo digital integrado. En este caso utilizamos el ADC1_IN5 el cual se encuentra en el pin PB1, esto lo habilitamos como Single-ended y utilizamos una resolución de 16 bits.

Figura 6. Configuración del sensor de presión.

Actuador (Relay)

Para el actuador utilizamos un relay el cual lo conectamos al pin PC0, el cual lo configuramos como GPIO_Output, lo asignamos al procesador Cortex M7 y lo asignamos como Pull-Down.

Figura 6. Configuración del Actuador.

PWM (Puente H y Compresor)

Para el PWM se utilizó un timer como ejemplo Timer 2, que se encuentra en el pin PA0. Se deberá habilitar el TIM2 para el procesador CM7 y realizar la configuración del channel1 para PWM Generation, el counter period a 65535 y por último habilitar el auto-reload.

Figura 7. Configuración del PWM (Puente H y Compresor).

UART (FTDI)

Para implementar el protocolo de comunicación UART es necesario habilitar su función para el procesador CM7, configurar el modo como asíncrono y los parámetros básicos a como se desea transmitir la información, se deberá hacer la configuración de los pines PD5 y PD6 como USART_TX y USART_RX respectivamente.

Figura 8. Configuración de comunicación UART con FTDI.

CAN

La configuración del protocolo CAN se realizó al habilitar el procesador M7, marcar el checkbox de activated y configurar los parámetros para tener un nominal baud rate de 250000 bits/s y los pines PD0 y PD1 como FDCAN1_RX y FDCAN1_TX respectivamente.

Figura 9. Configuración de comunicación CAN.

Dispositivos Periféricos

Sensor

El sensor de presión se encuentra conectado en el pin PB1, de esta forma se puede realizar la lectura de los datos.

Figura 10. Diagrama esquemático de conexión del sensor de presión

Actuador

El relevador utilizado que permite que el solenoide se abra o cierre según sea el caso, se encuentra conectado en el pin PC0, al activarlo se cierra el circuito para hacer funcionar al solenoide.

Figura 11. Diagrama esquemático de conexión del relevador y solenoide.

PWM

Se implementó un monster moto shield para la activación del compresor, mediante la conexión a un puerto PWM, el cual está asignado al pin PA0.

Figura 12. Diagrama esquemático de conexión del compresor.

UART

La comunicación UART se implementó mediante el uso del FTDI, usando el protocolo de comunicación que nos permite realizar la tarjeta STM32, en los pines PD5 para TX y PD6 para RX.

Figura 13. Diagrama esquemático de comunicación UART.

CAN

La comunicación UART se implementó mediante el uso del FTDI, usando el protocolo de comunicación que nos permite realizar la tarjeta STM32, en los pines PD5 para TX y PD6 para RX.

Figura 14. Diagrama esquemático de comunicación CAN.

Proyecto

El proyecto se encuentra en el siguiente enlace a una carpeta en drive, en el esta disponible la programación del proyecto de la tarjeta STM32H745I y del proyecto implementado en el nodeMCU (ESP8266).

https://drive.google.com/drive/folders/1yEoSi6LMTYQUj0NHy8hdBO9WokVOJ0ch?usp=share_link_

Pruebas de Integración por Subsistema

Tabla 7.Conexión UART

Conexion CART				
	Prueba conexión UART			
Equipo	3			
Responsable	Hortencia Ramírez,	Antonio León y Fernan	do Antunez.	
Descripción	Probar el protocolo	de comunicación UAR	Γ entre la STM32H7 y	el módulo FTDI.
Función		sajes a través del proto n la terminal de comur		u UART e
Componentes	Configuración de pines y parámetro para el manejo del protocolo UART, parámetros.			
Hardware	STM32H7, Módulo FTDI, cable micro-usb, cable mini-usb.			
Procedimiento		Comportamiento esperado	Comportamiento actual	Resultado
	1. Iniciar Putty con los parámetros correctos y correr el programa en STM32.	Inicialización del putty con un Hello World desplegado en la consola y dos datos declarados previamente en el programa.	https://drive.google .com/file/d/1O3db4 QlbD8Pkv_kgo4D TZNRXD5iEUEZ5/ view?usp=sharing	Correcto
	2. Escribir en la consola putty	Se debería desplegar lo enviado en el putty en la consola de la STM32H7.	https://drive.google .com/file/d/1eY2Po q7iGpcXWJtOzrU6 _VO3jzy5EVk-/vie w?usp=sharing	Correcto
Comentarios	El funcionamiento del FTDI fue correcto al realizar pruebas individuales y de integración.			

Tabla 8.Prueba de Sensor de Presión

	Prueba de Sensor de Presión			
Equipo	3			
Responsable	Hortencia Ramírez,	Hortencia Ramírez, Antonio León y Fernando Antunez.		
Descripción	Probar que el sensor de presión lea adecuadamente los datos del tanque y los despliega en la terminal.			
Función	Leer datos del sens desplegarlos en la d		s de un convertidor ar	nálogo digital y
Componentes	Configuración de pines y parámetro para el manejo del protocolo UART, parámetros, configuración del ADC.			
Hardware	STM32H7, Módulo FTDI, cable micro-usb, cable mini-usb, sensor de presión y tanque de presión.			
Procedimiento		Comportamiento esperado	Comportamiento actual	Resultado
	1. Iniciar Putty con los parámetros correctos y correr el programa en STM32.	Se debería inicializar el Putty con un Hello World desplegado en la consola.	https://www.youtub e.com/watch?v=Vq _Y2krfOLA	Correcto
	2. Recibir datos del sensor de presión y desplegarlos en la terminal.	Se debería desplegar los datos de presión leídos por el ADC.	https://youtu.be/n- OM1wwf31g Los valores desplegados son incorrectos.	Incorrecto
Comentarios	Es necesario ajustar los valores recibidos para enviarlos en un rango de valores adecuado.			

Tabla 9.Prueba de Actuador

	Prueba de Actuador
Equipo	3
Responsable	Hortencia Ramírez, Antonio León y Fernando Antunez.
Descripción	Probar que podemos manipular el relevador que abre y cierra la válvula para controlar la salida de aire del tanque.
Función	A través de un un pin GPIO escribirle al relevador para que abra y cierre constantemente.
Componentes	Configuración de pines para manipular el relevador.
Hardware	STM32H7, Módulo FTDI, cable micro-usb, cable mini-usb, relevador.

Procedimiento		Comportamiento esperado	Comportamiento actual	Resultado
	1. Correr el programa	Encender y apagar el relevador.	https://youtube.com/ shorts/xHdzsoNOau Y?feature=share	Correcto
Comentarios	El funcionamiento obtenido fue exitoso al momento de realizar pruebas individuales e integradoras.			

Tabla 10.Prueba de PWM

	Prueba PWM			
Equipo	3			
Responsable	Hortencia Ramírez, Antonio León y Fernando Antunez.			
Descripción	Probar que el puente H sea capaz de encender y apagar el compresor de aire enviando un pulso PWM			
Función	Enviar un pulso PWM para poder encender y apagar el compresor de aire			
Componentes	Configuración de pines y parámetros para el PWM			
Hardware	STM32H7, cable micro-usb, puente H, compresor de aire			
Procedimiento		Comportamiento esperado	Comportamiento actual	Resultado
	1. Correr el programa que envía el pulso PWM	Encender el compresor de aire 4 segundos después de haber corrido el programa	https://youtu.be/85 ZjsnuA-mg	Correcto
Comentarios	El funcionamiento al integrar el PWM con la implementación del Puente H fue exitoso.			

Tabla 11.Prueba de WiFi, CAN y Dashboard

	Prueba de WiFi, CAN y Dashboard			
Equipo	3			
Responsable	Hortencia Ramírez, Antonio León y Fernando Antunez.			
Descripción	Probar la comunica	ción entre el NodeM0	Cu (dashboard) y la Sī	ГМ32
Función	Enviar datos al dashboard desde la STM32 y viceversa mediante el protocolo CAN			
Componentes	Configuración de pines y parámetros para el manejo del protocolo UART, CAN, dashboard en Arduino IoT.			
Hardware	STM32H7, Módulo FTDI, cable micro-usb, cable mini-usb, NodeMCU			
Procedimiento		Comportamiento esperado	Comportamiento actual	Resultado
	1. Correr los programas en el STM32 y la NodeMCU	Se debería conectar a internet la NodeMCU y desplegar un mensaje de conectada correctamente y se debería desplegar en la terminal del STM un Hello World	https://youtu.be/dG 8IYXImhwo	Correcto
	2. Cambiar datos en el dashboard mediante un slider y enviarlo a la STM32	Se envía el valor del slider y se despliega en la terminal de la STM32	https://youtu.be/dG 8IYXImhwo	Correcto
	3. Enviar el dato de la STM32 al NodeMCU	Recibir el dato en la NodeMCU y desplegar este valor en el dashboard	https://youtu.be/dG 8IYXImhwo	Correcto
Comentarios	Las pruebas realizadas del funcionamiento de conexión entre la interfaz del dashboard con el nodeMCU y la STM32 fue exitoso.			

9. Pruebas del sistema

Se realizaron de manera general dos pruebas del funcionamiento general del prototipo, la primera de ellas se trató de una prueba de comunicación entre todos los dispositivos, dicha prueba puede observarse en la tabla 12, mientras que la segunda prueba consistió en verificar que el funcionamiento de dispositivos periféricos y controladores fuera exitoso, esto se observa en la tabla 13.

Tabla 12.Prueba de Comunicación del funcionamiento general del prototipo

	Prueba de Comunicación del funcionamiento general del prototipo			
Equipo	3			
Responsable	Hortencia Ramírez, Antonio León y Fernando Antunez.			
Descripción	Probar el funcionamiento general del prototipo integrando todos los subsistemas.			
Función	Modificar la presión dentro del tanque mediante un slider y desplegar la presión actual del tanque en el dashboard.			
Componentes	Configuración de pines y parámetros para el manejo del protocolo UART, CAN, dashboard en Arduino IoT			
Hardware	STM32H7, Módulo FTDI, cable micro-usb, cable mini-usb, NodeMCU, relevador, válvula solenoide, puente H, compresor de aire y fuente de poder.			
Procedimiento		Comportamiento esperado	Comportamiento actual	Resultad o
	1. Correr el programa tanto en la STM32 como en el NodeMCU	Conexión a internet de NodeMCU y despliegue de mensaje de conexión exitosa y en la terminal del STM32 un Hello World.	El programa tiene comunicación entre el NodeMCU y el STM32 a través de la comunicación CAN y SPI.	Correcto
	2. Cambiar datos en el dashboard mediante un slider y enviarlo a la STM32	Envío del valor del slider, despliegue en la terminal del STM32, se enciende el compresor de aire hasta llegar al set point asignado en el dashboard	Al modificar los datos en el dashboard estos son recibidos en la STM32 y procesados exitosamente para la modificación del	Correcto
	3. Enviar el valor de la presión del tanque leído por el sensor al NodeMCU	Recibir datos en el NodeMCU y despliegue de valor en el dashboard.	La presión en el tanque se actualiza correctamente y es enviada en tiempo real al Dashboard.	Correcto
Comentarios	El funcionamiento de comunicación general del prototipo se encuentra en: https://youtu.be/nA-LtsiFrOY			

Tabla 13.Prueba de funcionamiento de dispositivos periféricos del prototipo

	Prueba de funcionamiento de dispositivos periféricos del prototipo			
Equipo	3			
Responsable	Hortencia Ramírez, Antonio León y Fernando Antunez.			
Descripción	Probar el funcionamiento general del prototipo integrando todos los subsistemas.			
Función	Poder modificar la presión dentro del tanque mediante un slider y desplegar la presión actual del tanque en el dashboard.			
Componentes	Configuración de pines y parámetros para el manejo del protocolo UART, CAN, dashboard en Arduino IoT, ADC, PWM y pines para el relevador.			
Hardware	STM32H7, Módulo FTDI, cable micro-usb, cable mini-usb, NodeMCU, relevador, válvula solenoide, puente H, compresor de aire y fuente de poder.			
Procedimiento		Comportamiento esperado	Comportamiento actual	Resultado
	El valor de la presión se iguala al valor del set point	Se apaga la bomba y se estabiliza la presión	El compresor deja de funcionar cuando llega al setPoint asignado en el dashboard.	Correcto
	2. Espera un nuevo cambio en el set point (Si es mayor)	Si el set point es mayor a la presión actual se activa nuevamente el compresor para alcanzar el set point	El compresor continúa funcionando cuando el setPoint sube a la presión leída por el sensor.	Correcto
	3. Espera un nuevo cambio en el set point (Si es menor)	Si el set point es menor a la presión actual, se abre la válvula solenoide para dejar salir la presión hasta llegar al setpoint	El solenoide se activa cuando el setPoint baja al que tiene el tanque.	Correcto
Comentarios	El funcionamiento de dispositivos periféricos del prototipo se encuentra en: https://youtu.be/nA-LtsiFrOY			

10. Conclusión

En esta colaboración con John Deere, tuvimos la oportunidad de usar un tubo PVC que sería sometida a valores de presión, donde el objetivo de este era simular el control del llenado de las llantas de un equipo de cultivo. Implementando un tanque para controlar la presión que hay dentro. En donde esta simulación ayudará a implementar el control de

llenado de las llantas dependiendo del terreno, aumentando la vida y calidad de las llantas además de facilidad para el cliente con el producto.

Dentro de los múltiples logros obtenidos en esta práctica, de los más destacados fueron la Implementación de diferentes dispositivos, que fue la utilización de múltiples actuadores y sensores en un solo prototipo, los cuales lo hicieron más adaptable a las situaciones, la utilización de múltiples interfaces, donde aprendimos sobre las interfaces como UART, CAN, ISP, sus diferentes características y que fueron aplicadas en el prototipo, conexión inalámbrica, del nodeMCU a un Dashboard donde podemos modificar el tanque y también recibir información de este y planeación estratégica, que nos permitió dividir la carga de trabajo y entregar todo en tiempo y forma. Además de que pudimos adquirir diferentes competencias como saber seleccionar periféricos, la modelación e implementación de sistemas embebidos, colaboración y trabajo en equipo.