Towards a model independent measurement of γ through $B^{\pm} \rightarrow D(\rightarrow 4\pi)K^{\pm}$ decays with LHCb and CLEO-c

Claire Prouve, Jonas Rademaker – University of Bristol

Measurement of CKM angle γ through interference in $B^{\pm} \rightarrow D(\rightarrow f_D)K^{\pm}$ $A_B \rightarrow D^0 K^- A_D^0$ final $A_C = A_C = A_C$

Partial decay width

$$d\Gamma(B \to D^{0}(\to f_{D})K^{-}) \propto A_{B}^{2} \cdot \left(A_{D^{0}}^{2} + r_{B}^{2} A_{\bar{D^{0}}}^{2} + 2r_{B} \mathbb{R}(A_{D^{0}} A_{\bar{D^{0}}}^{*} e^{-i(\delta_{B} - \gamma)}) \right) dp$$

γ becomes an observable in the interference term

Reconstruction of the D mesons in self- conjugate final state $f_D = \pi^+(p_1) \pi^+(p_2) \pi^-(p_3) \pi^-(p_4)$

$$\begin{array}{c} \mathsf{CP\text{-}conjugation*} \\ A_{\bar{D^0}}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4})) & \stackrel{\bullet}{=} & e^{i\Delta\delta(\vec{p_1},\vec{p_2},\vec{p_3},\vec{p_4})}A_{D^0}(\pi^+(-\mathbf{\vec{p_3}})\pi^+(-\mathbf{\vec{p_4}})\pi^-(-\mathbf{\vec{p_1}})\pi^-(-\mathbf{\vec{p_2}})) \\ & \equiv & e^{i\Delta\delta} \ \overline{A_{D^0}} \\ & & \mathsf{Strong\ phase\ difference\ between} \\ \mathsf{A_{D^0}\ and\ A_{D^0}} \end{array}$$

In order to extract γ the analysis has to be performed in bins of phase space.

Binned decay width:
$$\frac{d\Gamma}{dp_i + \Delta p} \propto 2r_B \left[c_i \cos(\delta_B - \gamma) + s_i \sin(\delta_B - \gamma) \right]$$

- c_i : amplitude-weighted average of $cos(\Delta\delta)$
- s_i : amplitude-weighted average of $\sin(\Delta\delta)$

(*) Assuming no CP-V in the D decays and neglecting 2nd order effects from charm mixing

Model independent determination of c_i and s_i with CLEO-c using correlated D meson pairs from $\Psi(3770) \rightarrow DD$

C_i: Reconstruct D \rightarrow 4π as flavour or CP eigenstate by using opposite side tagging and combine information of CP (M $^{\pm}$ _i) and $\Psi(3770)$ flavour (K_i) Dalizt plots

Flavour/ CP eigenstate $(\pi^+(p_1) \pi^+(p_2) + (K_i \pm 2c_i \sqrt{K_i K_{\bar{i}}} + K_{\bar{i}})$

 S_i : Reconstruct Ψ(3770)→(DD)→(4π)(4π') and use interference between both possible decay paths

Event rate in ith bin of first and jth bin of second Dalitz plot:

$$M_{ij} = h_{corr} \left(K_i K_{\bar{j}} + K_{\bar{i}} K_j - 2\sqrt{K_i K_{\bar{j}} K_{\bar{i}} K_j} \left(c_i c_j + s_i s_j \right) \right)$$

Model inspired binning

The highest sensitivity to γ can be obtained by using bins with minimal variation of $\Delta\delta$.

Note: The binning only influences the sensitivity of the γ measurement but not the γ value itself.

CLEO-c.

Analysis procedure for the future:

Measurement of c_i and s_i using

Chamber ~ 9500 flavour tagged

Beampipe D/(-->/TT) OVENTS

~ 1000 CP tagged $D(\rightarrow 4\pi)$ events

and performing a 5 dimensional fit for each bin in phase space.

2. LHCb

Simultaneous fit of r_B , δ_B and γ in all bins of phase space using a few 10^3 $B^{\pm} \rightarrow D (\rightarrow 4\pi) K^{\pm}$ events

and the c_i and s_i extracted from

