

Modul obsluhující dva sériově zapojené li-on články 18650

Jan Chroust

Modul je osazen obvodem pro zajištění nabíjení dvou sériově zapojených li-on článků. Samozřejmostí je moderní obvod pro měření zbývající energie a celkové monitorování článků. Výstupem je I2C sběrnice. Článek je ošetřen proti případnému poškození přepětím.

1 Technické parametry

Parametr	Hodnota	Poznámka
Napájení	12 V@2A	Nabíjecí proud je z výroby nastaven na cca 1,3A
Pouzdro na články	2x18650	
Rozhraní	I2C, HDQ	
Integrované obvod:	BQ24103	Nabíjení
	BQ34Z100	Měření článku
Rozměry	80.77 x 60.45 x 16 mm	Výška nad základní deskou

2 Popis konstrukce

Modul obsahuje tři samostatné funkční celky – Dobíjecí elektroniku, měření parametrů a balanční a ochranný obvod. Většina z nich pracuje stále i když modul není využíván. Důsledkem je, že modul je nutné pravidelně nabíjet (alespoň jednou za půl roku), aby byly akumulátory udržovány v provozním rozsahu napětí.

Nastavení děliče u BQ34Z100 pro měření napětí

Dělič pro měření napětí je tvořen odpory R23 a R24. Hodnota napětí na pinu BAT nesmí přesáhnout 900 mV, proto se hodnota odporu vypočítá následujícím vzorcem:

$$R_{24} = 16500 \,\Omega (V_{imax} - 900 \,mV)/900 \,mV$$

Výsledkem je pro dva články 137,5 k Ω , ale z důvodu lepší dostupnosti byl zvolen obvod R24 140k Ω . R23 16k5.

Výpočet hodnoty dělícího poměru v mV, který se zapisuje do nastavení obvodu se dopočítá tímto vzorcem:

$$Pom\check{e}r = \frac{1000}{R_{23}} * (R_{23} + R_{24})$$

Po vložení hodnot:

$$\textit{Poměr} \!=\!\! \frac{1000}{16,\!5} \!*\! \big(16,\!5\!+\!140\big)$$

Výsledná hodnota poměru:

 $Poměr = 9484 \, mV$

Po převod na HEX (tato hodnota se vkládá):

Poměr = 250C

Schéma

4 Osazení a oživení

4.1.1 Osazení

Označení	Тур	Pouzdro	Počet
BT1	2x18650_LION-RESCUE- LION2CELL01C	2LION	1
C1,C4,C6,C7,C8,C9,C12,C13,C15,C16 ,C18,C19	100nF	SMD-0805	12
C2	47uF	TantalC_SizeC_Reflow	1
C3,C11	10uF	SMD-0805	2
C5	330nF	SMD-0805	1
C14	1uF	SMD-0805	1
C17	3n3	SMD-0805	1
D1,D2	M4	SMA_Standard	2
J1,J7,J13	JUMP_4X2	Straight_2x04	3
J2,J3,J5,J6,J10,J11,J12,J14	JUMP_2x1	Straight_1x02	8
J4	JUMP2_2x1	Straight_1x02	1
J8,J9	CONN1_1	WAGO256	2
L1	DE1205-10	DE1205-10	1
P1,P2,P3,P4	_	MountingHole_3mm	4
Q1	IRLML6244	SOT-23	1

R1	160R	SMD-0805	1
R2	260R	SMD-0805	1
R3,R9,R18,R19	100R	SMD-0805	4
R4	10k	SMD-0805	1
R5	10K	SMD-0805	1
R6,R7,R8,R27,R28,R29,R30,R31,R32, R33,R34	2K2	SMD-0805	11
R10,R20	1K	SMD-0805	2
R11,R12	7K5	SMD-0805	2
R13	9K31	SMD-0805	1
R14	442K	SMD-0805	1
R15	NCP21XV103J03RA	SMD-0805	1
R16	0R1	R_2512	1
R17	10K NTC	SMD-0805	1
R21,R25	270k	SMD-0805	2
R23	16k5 25ppm	SMD-0805	1
R24	140k .1% 25ppm	SMD-0805	1
R26	165k	SMD-0805	1
U4	SN74HC164D	SO-14	1
SW1	SW_PUSH	SW_PUSH_SMALL	1
U3	BQ34Z100	TSSOP- 14_4.4x5mm_Pitch0.65m m	1
U1	BQ29209	VSON-8	1
C10	100uF	TantalC SizeD Reflow	1
U2	BQ24103	VQFN-20	1
F1	5A	Drzak_2410	1
F3	2A	Drzak_2410	1
D7,D8,D9,D10,D11,D12,D13,D14	ORAGE	LED_1206	8
D3,D4	Green	LED_1206	2
D5	Red	LED_1206	1
J15	CONN_2	SMD_1_2x2	1
C20	10uF	TantalC_SizeC_Reflow	1
U5	TPS76601	SO-8	1
R35,R36	47k	SMD-0805	2
U6	APX810-31SAG-7	SOT-23	1
R22	0R01 75PPM	SMD-2512	1
Šrouby	M3x16 DIN 912		4
3D tištěná podložka			1

Při osazování svorkovnice J8/9, které jsou spojené do jednoho dílu je nutné uříznout přečnívající čudliky z červené části. Jinak se svorkovnice odklání od bateriového pouzdra.

3D tištěná podložka má po tisku zaslepené otvory technologickým mostem. Ten je potřeba po tisku odvrtat vrtákem o průměru 3mm. Odvrtávání je nelepší provést akušroubovákem nebo vrtačkou přepnutou na zpětný běh (tj. Opačně než by se normálně vrtákem vrtalo), tím je dosaženo přesnějšího otvoru v mostu.

4.1.2 Oživení

Nejprve je dobré zkontrolovat PCB, zda je dobře zapájené. Následně se mohou vložit baterie. Je potřeba dodržet pořadí vyznačené pod pouzdrem. Nejprve se vkládá baterie do pozice 1 a pak teprve do pozice 2. Prohození pořadí může způsobit, že se modul nebude chovat správně. Po vložení posledního článku se rozsvítí oranžové LED pro diagnostiku zbývající energie článků.

Dále je vhodné vyzkoušet, zda je funkční funkce nabíjení.

Po zapojení 12V adaptéru by se měla rozsvítit zelená LED detekující připojení napájení. Následně by se měla rozsvítit červená LED indikující, že modul nabíjí. Po ukončení nabíjení druhá zelená LED indikující plně nabité akumulátory.

Program <u>setguage2cell.py</u> pro nahrání parametrů do obvodu pro měření energie článků se nachází ve složce <u>sw</u> repozitáře modulu. Program používá knihovnu <u>PyMLAB</u>, kterou je potřeba mít nainstalovánu. Potom je možné modul nastavit příkazem

\$ setquage2cell.py 8 NCR18650B

Nejsnadnější použití je pomocí modulu <u>USBI2C01A</u>.

Po nahrání parametrů pomocí <u>setguage2cell.py</u> je potřeba odpojit články a připojit je zpět v již popsaném pořadí. Toho lze nejsnadněji dosáhnout vražením nastříhaných plastových pásků mezi akumulátor a kontakty pouzdra. (Nastavení bez vložených akumulátorů nefunguje.)

Pro ověření, že je modul dobře zkonfigurován, slouží druhý program <u>guage.py</u>, který vyčítá naměřená data.

Parametry, které se nahrávají do obvodu odpovídají článku 18650 od firmy Panasonic typ NCR18650B a nebo volitelně INR18650MJ1. V případě užití jiných akumulátorů, je potřeba nahrávané parametry změnit ve zdrojovém kódu <u>setguage2cell.py!</u> Jinak modul sice bude fungovat, ale udávaná data o kapacitě článků nebudou spolehlivá. Měření napětí na článcích, protékajícího proudu a teploty článku bude v pořádku.

Po vložení článků je potřeba provést minimálně jeden vybíjecí a nabíjecí cyklus, aby byly hodnoty zbývající energie přesnější. Čím déle budou články vloženy v modulu, tím budou měřené hodnoty přesnější. Pokud dojde k vyndání článků, tak měřící obvod resetuje měřené parametry a zpřesňování bude probíhat od začátku.

Modul je vybaven balančním obvodem, který vyrovnává napětí na obou článcích na stejnou hodnotu. Vyrovnávání se provádí tak, že jeden z článků je vybíjen. Tento vybíjecí proud měřící obvod zaznamenává. Pohybuje se řádově na hodnotě 10mA.