# OSF OpenInfra Labs Project Caerus Kickoff Meeting

August 26, 2020

### Agenda

- Opening Remarks (Jonathan Bryce, Hui Lei)
- Vision, Scope, and Opportunities (Hui Lei, Theodoros Gkountouvas)
- Related Work at BU and NEU (Orran Krieger, Peter Desnoyers, et al.)
- Open Discussion on Research and Development Plan (all)

### OSF, OpenInfra Labs, and Project Caerus

- The OpenStack Foundation (OSF) has expanded its scope to address open infrastructure in general
- In addition to OpenStack, OSF currently hosts OpenInfra Labs and several other active projects
- Project Caerus is a sub-project in OpenInfra Labs

#### **OpenStack Foundation (OSF) Open Infrastructure Projects**

- Airship: automated cloud lifecycle management
- Kata containers: secure, lightweight virtualized containers
- OpenInfra Labs: cross-stack integration and optimization
- OpenStack: software-defined infrastructure
- Starling X: edge computing infrastructure
- Zuul: CI/CD platform across multiple systems/repos

#### **OpenInfra Labs Sub-projects**

- OperateFirst: open source cloud operations
- Caerus: compute-storage coordination
- ESI: secure and elastic bare-metal infrastructure
- Wenju: integrated development of AI applications

# Open Research Collaboration

- Boston University
  - Prof. Orran Krieger
- Columbia University
  - Prof. Ken Ross
- Northeastern University
  - Prof. Peter Desnoyers
- Ohio State University
  - Prof. Xiaodong Zhang













































# Project Caerus: Optimizing the Big Data Ecosystem

Hui Lei

## The Big Data Ecosystem

### **Analytics Engines:**









#### **Data Lakes:**









### Common Pattern: Disaggregated Compute and Storage



#### Benefits

- Data sharing via centralized collection and management
- Elastic scaling of the compute and storage infrastructure
- Improved utilization of datacenter resources
- Easy adoption of compute and storage innovations

#### Challenges:

- Data access latency and performance variation due to physical distance
- Constrained data throughput due to multiple levels of oversubscribed networks
- I/O bottleneck due to the limited speed of disks used for very-high-capacity storage
- Impeded performance of data-parallel analytics due to the memory wall

#### Performance Disparity Between Local and Disaggregated Storage



Stanford Selecta (ATC '18): Comparison of execution time and cost for TPC-DS query 64 on various EC2 VM and storage configurations



Microsoft Netc (SOCC '18): Comparison of I/O throughput for local and remote stores on Azure and AWD for different VM types

#### **Analytics Server** Caerus: Bridging the Performance Gap Storage Server NDP Executor Internet Cache Server **Distributed Cache Datacenter Network Datacenter Network Cluster Network Cluster Network Cluster Network Cluster Network** ToR ToR ToR ToR **ToR** ToR **ToR** ToR 000 000 000 000 000 000 000 000 000 000 000 000 **Analytics Cluster Analytics Cluster Analytics Cluster** Data Lake Cluster

- Near-data processing: opportunely pushing a broad array of computation close to data
- Semantic caching: distributed, multi-modal, and workload-aware caching substrate
- Holistic optimization: coordination of all optimization techniques and across analytics engines
- Targeting full utilization of CPUs/GPUs for data-parallel workloads and 3x-5x reduction in application execution time

### The Memory Hierarchy



- At a macro level, the memory hierarchy extends from the analytics server and cache server to the NDP executor and storage server
- At a micro level, each server has memory that spans cache memory, main memory, storage-class memory and hard disk
- In principle, NDP and caching can be carried out at any level of the memory hierarchy
- Caerus focuses on the layers of the memory hierarchy that matter the most for massively data-parallel analytics
  - NDP: Primarily the NDP Executor's CPU and, to a lesser extent, the Cache Server's CPU
  - Semantic Caching: Primarily the Cache Server's storage drive and, to a lesser extent, the Storage Server's storage drive

# The Scope of Near-Data Processing

#### What to pushdown

- Simple query operations: select, project, aggregation
- Complex query operations: join, group-by, top-K, search
- Al functions: K-mean, classification, shuffle
- User-defined functions: feature extraction, format transformation, metadata enrichment, thumbnail generation, checksum calculation, data de-identification

#### How to pushdown

- Declarative: SQL-like query language, DAG-based specification
- Imperative: container image, serverless function

#### How to execute

- NDP executor integrated into a storage server (e.g., object storage, database)
- NDP executor as an external server close to a storage server (e.g., HDFS)
- Hardware and software acceleration: SIMD processor, GPU accelerator, zero-copy CSV file parser

#### Where to pushdown to

Pushing processing from the analytics server to the NDP executor and the cache server

# NDP Industry Landscape

| Software<br>System       | Analytics Engine                                       | Storage System                                           | What to Pushdown                                 | How to Pushdown                                             | How to Execute                                                                                |
|--------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| MinIO                    | Any, with custom optimization for Spark (Spark-Select) | MinIO object store with S3 API                           | Simple query ops, UDFs                           | S3 Select API                                               | Object store server with acceleration for limited ops                                         |
| Amazon S3 and<br>Glacier | Any                                                    | S3 object store                                          | Simple query ops                                 | S3 Select API                                               | Object store server                                                                           |
| Ceph                     | Any                                                    | Block/File/Object<br>abstraction on Ceph<br>object store | UDFs                                             | Extended API for UDF deployment on the storage server       | LUA VMs on storage side talk to object storage daemons (OSDs) via extension interfaces        |
| OpenStack Swift          | Any                                                    | Swift object store                                       | UDFs, simple query ops                           | Storelets extension to Swift                                | Storlet containers on storage side support UDFs and simple SQL queries                        |
| Spark                    | Spark                                                  | Compatible data stores                                   | Simple query ops                                 | Spark filter() and select() methods                         | Storage-specific                                                                              |
| Caerus                   | Multiple                                               | Object stores, HDFS                                      | Simple and complex query ops, AI functions, UDFs | Queries, DAGs,<br>container images,<br>serverless functions | Standardized NDP executor internal or external to storage server, with hw and sw acceleration |

### NDP Research Innovations

| University                                   | Project Name | Conference | Analytics<br>Engine       | Storage<br>System                                                        | What to<br>Pushdown                                | How to<br>Pushdown                              | How to Execute                                                                |
|----------------------------------------------|--------------|------------|---------------------------|--------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|
| University of<br>California, Santa<br>Cruz   | SkyhookDM    | FAST 2019  | PostgreSQL                | Ceph                                                                     | Simple query ops,<br>UDFs                          | Custom client interface                         | Ceph UDF mechanism                                                            |
| Reutlingen University & TU Darmstadt Germany | nativeNDP    | ADBIS 2019 | R Platform                | Ceph                                                                     | R-native operations                                | Ceph UDF<br>mechanism                           | Ceph UDF mechanism                                                            |
| University of<br>Wisconsin-<br>Madison & MIT | PushdownDB   | ICDE2020   | Homegrown<br>PushdownDB   | S3                                                                       | Both simple and complex query ops                  | S3 Select<br>interface                          | S3 Select mechanism with reimplementation of the more complex DBMS operations |
| University of California, Irvine             | Catalina     | PDP 2019   | Any analytics application | Catalina (custom<br>SSD with multicore<br>processor<br>running Linux OS) | Special example: image similarity search using MPI | MPI slaves<br>embedded in<br>storage<br>devices | In-storage application processor along with FPGA accelerators                 |

- Modification of the analytics engine to take advantage of NDP
- Support for the pushdown of more complex operations
- Acceleration of NDP on storage side

## The Scope of Semantic Caching

- **Distributed caching:** a pool of cooperative caching nodes serving the analytics clusters
  - Decentralized vs centralized management
- Multi-modal caching: caching data of different modalities and stages
  - Source data (objects, files, blocks), intermediate results, partition metadata, re-partitioned data
- Predicative caching: prefetching and pre-computing data ahead of demand
  - Strategies on when and what to pre-compute, prefetch and evict
- Workload-aware caching: caching decisions driven by high-level semantics
  - History-based vs hints-based approaches
- Multi-tiered caching: cache tiering resulted from the multi-node memory hierarchy
  - The persistent memory on the caching and storage servers are most critical for data-intensive analytics

# Semantic Caching Industry Landscape

| Software / Feature                      | Storage<br>System                             | Distributed<br>Cache<br>Management | What Is Cached                                                          | Predictive<br>Caching         | Workload<br>Awareness | Cache Location                  |
|-----------------------------------------|-----------------------------------------------|------------------------------------|-------------------------------------------------------------------------|-------------------------------|-----------------------|---------------------------------|
| Spark Cache                             | Multiple                                      | Autonomous                         | Source data,<br>intermediate data                                       | No                            | DAG-aware             | Analytics side                  |
| Azure SparkCruise and<br>Hyperspace     | Multiple                                      | Centralized                        | Source Data,<br>Intermediate Data,<br>indices                           | No                            | Yes                   | Analytics side                  |
| Data Skipping in IBM Cloud<br>SQL Query | IBM Cloud<br>Object Store                     | Centralized                        | Indices                                                                 | Prefetching                   | No                    | Storage side                    |
| D3N Cache in Ceph RADOS<br>Gateway      | Ceph                                          | Decentralized                      | Source data                                                             | No                            | No                    | Analytics side                  |
| Alluxio                                 | Multiple                                      | Centralized                        | Source data                                                             | No                            | No                    | Analytics side                  |
| Caerus                                  | Multiple (incl.<br>Object Stores<br>and HDFS) | Centralized                        | Source data,<br>intermediate data,<br>metadata, re-<br>partitioned data | Prefetching,<br>pre-computing | DAG-aware             | Analytics side,<br>storage side |

# Semantic Caching Research Innovations

| Organizations                | Project Name                                    | Conference         | Storage<br>System | Distributed<br>Cache<br>Management | What Is Cached                                              | Predictive<br>Caching | Workload<br>Awareness       | Cache<br>Location |
|------------------------------|-------------------------------------------------|--------------------|-------------------|------------------------------------|-------------------------------------------------------------|-----------------------|-----------------------------|-------------------|
| Texas,<br>Microsoft Research | INSTalytics                                     | FAST 2019          | HDFS              | Centralized                        | Source Data, Static replicas with different partitioning    | No                    | Selection<br>Operation      | Storage<br>side   |
| MIT CSAIL,<br>Microsoft      | Amoeba                                          | SoCC 2017          | HDFS              | Centralized                        | Source Data, Dynamic replicas with adaptive re-partitioning | No                    | Selection<br>Operation      | Storage<br>side   |
| UC Berkeley                  | Partitioning for<br>Aggressive Data<br>Skipping | SIGMOD<br>2014     | HDFS              | Centralized                        | Features with supporting partitioning                       | No                    | Selection<br>Operation      | Storage<br>side   |
| Hong Kong<br>University      | LRC, LERC                                       | INFOCOM<br>2017    | Multiple          | Centralized                        | Intermediate Data                                           | No                    | Spark DAG                   | Compute side      |
| BU, NEU,<br>State Street     | Kariz                                           | HotStorage<br>2019 | Ceph              | Centralized                        | Source Data                                                 | Prefetching           | Spark / Pig /<br>Hadoop DAG | Compute side      |

- Storage-side replication with differing partition schemes
- Advanced data skipping techniques
- Workload-aware caching and prefetching

## The Scope of Holistic Optimization

Holistic optimization is required across

- Multiple semantic-caching techniques
- Distributed caching nodes
- Caching and NDP
- Multiple workloads
- Multiple analytics engines



### Caerus Differentiations

- Pushdown of a broad range of operations: simple and complex query operations, AI functions, UDFs
- Caching of a variety of content: source data, intermediate results, metadata, and re-partitioned data
- Prefetching and pre-computing data in addition to caching recently used data
- Leveraging infrastructure resources on both analytics-side and storage-side
- Using workload semantics to drive all NDP and caching decisions
- Exploiting hardware and software acceleration for decisions, NDP, and pre-computing
- Holistic optimization and automated configuration across many NDP and caching techniques
- Extensible architecture to accommodate different analytics engines and storage systems