EMA2: Lecture contents, week 8

2. Laplace transform

Definition.

Let f, g be functions defined on \mathbb{R} . We define their **convolution** as the function f * g on \mathbb{R}

given by
$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - s)g(s) ds = \int_{-\infty}^{\infty} f(s)g(t - s) ds$$
.

If f, g are zero on $(-\infty, 0)$, for instance if $f, g \in \mathcal{L}_0$, then $(f * g)(t) = \int_0^t f(t - s)g(s) ds$.

Fact.

$$f * g = g * f$$
, $f * (g * h) = (f * g) * h$, $a(f * g) = (af) * g$, $f * (g + h) = f * g + f * h$.

Theorem.

Let
$$f, g \in \mathcal{L}_0$$
. Then $f * g \in \mathcal{L}_0$ and $\mathcal{L}\{f * g\} = \mathcal{L}\{f\} \cdot \mathcal{L}\{g\}$.
From this $\mathcal{L}^{-1}\{F \cdot G\} = \mathcal{L}^{-1}\{F\} * \mathcal{L}^{-1}\{G\}$.

Example.

$$y' + \int_{0}^{t} \cosh(t - u)y(u) du = e^{-t}, \qquad y(0^{+}) = 0.$$
 It is $y'(t) + \cosh(t) * y(t) = e^{-t}$, hence $pY - 0 + \mathcal{L}\{\cosh(t)\} \cdot Y = \frac{1}{p+1}$, here
$$\mathcal{L}\{\cosh(t)\} = \frac{1}{2}\mathcal{L}\{e^{t}\} + \frac{1}{2}\mathcal{L}\{e^{-t}\} = \frac{1}{2}\left(\frac{1}{p-1} + \frac{1}{p+1}\right) = \frac{p}{p^{2}-1}$$
, thus
$$pY + \frac{p}{p^{2}-1}Y = \frac{1}{p+1}, \ p^{3}Y = p-1, \ Y(p) = \frac{1}{p^{2}} - \frac{1}{p^{3}}, \ \text{therefore} \ y(t) = t - \frac{1}{2}t^{2}, \ t \geq 0.$$

3. Series of real numbers

Definition.

A series is a symbol $\sum_{k=n_0}^{\infty} a_k = a_{n_0} + a_{n_0+1} + a_{n_0+2} + \dots$, where $n_0 \in \mathbb{Z}$, $a_k \in \mathbb{R}$ (series of real numbers).

Definition.

Let
$$\sum_{k=n_0}^{\infty} a_k$$
 be a series.

We define its **partial sums** by
$$s_N = \sum_{k=n_0}^N a_k$$
 for $N \geq n_0$.

We say that the given series **converges** if $\{s_N\}_{N=n_0}^{\infty}$ converges.

We say that the given series **converges to** A, denoted
$$\sum_{k=n_0}^{\infty} a_k = A$$
, if $\lim_{N \to \infty} (s_N) = A$.

We say that the given series **diverges** if $\{s_N\}_{N=n_0}^{\infty}$ diverges.

We say that the given series **diverges to**
$$\infty$$
, denoted $\sum_{k=n_0}^{\infty} a_k = \infty$, if $\lim_{N \to \infty} (s_N) = \infty$.

We say that the given series **diverges to**
$$-\infty$$
, denoted $\sum_{k=n_0}^{n-n_0} a_k = -\infty$, if $\lim_{N\to\infty} (s_N) = -\infty$.

Example.

$$\sum_{k=1}^{\infty} \frac{1}{2^k} : s_1 = \frac{1}{2}, \ s_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}, \ s_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}, \text{ induction: } s_N = 1 - \frac{1}{2^N}, \text{ hence } s_N \to 1$$
 and
$$\sum_{k=1}^{\infty} \frac{1}{2^k} = 1 \text{ (series converges)}.$$

Example.

 $\sum_{k=1}^{\infty} 1: \ s_1 = 1, \ s_2 = 1+1=2, \ s_3 = 1+1+1=3, \ \text{induction:} \ s_N = N, \ \text{hence} \ s_N \to \infty \ \text{and}$ $\sum_{n=0}^{\infty} 1 = \infty \text{ (series diverges)}.$

Example.

$$\sum_{k=0}^{\infty} (-1)^k : \ s_0 = 1, \ s_1 = 1 - 1 = 0, \ s_2 = 1 - 1 + 1 = 1, \text{ induction: } s_N = \begin{cases} 1, & N \text{ even;} \\ 0, & N \text{ odd,} \end{cases}$$
 thus
$$\lim_{N \to \infty} (s_N) \text{ DNE and } \sum_{k=0}^{\infty} (-1)^k \text{ diverges.}$$

3.1. Summing up series

Definition.

Let $a, q \in \mathbb{R}$. The series $\sum_{k=n}^{\infty} a q^k$ is called a **geometric series**.

Fact.

(i) For
$$N \in I\!\!N_0$$
 we have $\sum_{k=0}^N q^k = \frac{1 - q^{N+1}}{1 - q}$;

for $N \in \mathbb{N}$, $N \ge n_0$ we have $\sum_{k=n_0}^{N} q^k = q^{n_0} \frac{1 - q^{N+1-n_0}}{1 - q} = \frac{q^{n_0} - q^{N+1}}{1 - q}$.

(ii) We have
$$\sum_{k=0}^{\infty} q^k \begin{cases} = \frac{1}{1-q}, & |q| < 1; \\ = \infty \text{ (diverges)}, & q \ge 1; \\ \text{diverges}, & q \le -1. \end{cases}$$

More generally,
$$\sum_{k=n_0}^{\infty} q^k = \frac{q^{n_0}}{1-q}$$
 for $|q| < 1$.

Definition.

Let $a, q \in \mathbb{R}$. The series $\sum_{k=0}^{\infty} (a + qk)$ is called an **arithmetic series**.

Fact.

(i) For
$$N \in I\!\!N_0$$
 we have $\sum_{k=0}^N (a+qk) = (N+1)a + \frac{1}{2}N(N+1)q$.

(ii) An arithmetic series converges only if a = q = 0

Summing up a series: we can sum up directly only two kinds:

1) geometric series (might be in disguise):

Example.

$$\sum_{k=2}^{\infty} \frac{5 \cdot 3^{k-1}}{2^{2k+1}} = \sum_{k=2}^{\infty} \frac{5 \cdot 3^{-1} \cdot 3^k}{2^1 \cdot (2^2)^k} = \frac{5}{6} \sum_{k=2}^{\infty} \frac{3^k}{4^k} = \frac{5}{6} \sum_{k=2}^{\infty} \left(\frac{3}{4}\right)^k = \frac{5}{6} \left(\frac{3}{4}\right)^2 \sum_{k=0}^{\infty} \left(\frac{3}{4}\right)^k = \left(\frac{3}{4}\right)^$$

Note: For a geometric series
$$\sum_{k=n_0}^{\infty} q^k = q^{n_0} \sum_{k=0}^{\infty} q^k$$
 is true in general.

Or substitution: $\sum_{k=2}^{\infty} \left(\frac{3}{4}\right)^k = \left(\left(\frac{3}{4}\right)^k\right)^k = \left(\left(\frac{3}{4}\right)^n\right)^k = \left(\left(\frac{3}{4}\right)^n\right)^n = \left(\left(\frac{3}{4}\right)^n\right)^n$.

This an be used for any series, sometimes I use notation $\left(\left(\frac{3}{4}\right)^n\right)^n = \left(\left(\frac{3}{4}\right)^n\right)^n$.

This an be used for any series, sometimes I use notation $\langle k-2 \mapsto k^* \rangle$

2) telescopic series (might be in disguise):

Example.

$$\sum_{k=3}^{\infty} \frac{1}{k(k-1)} = \sum_{k=3}^{\infty} \left(\frac{1}{k-1} - \frac{1}{k}\right) = \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \dots$$
Induction: $s_N = \frac{1}{2} - \frac{1}{N} \to \frac{1}{2}$, hence $\sum_{k=3}^{\infty} \frac{1}{k(k-1)} = \frac{1}{2}$.

Remark: formulas for finite sums:
$$\sum_{k=1}^{n} 1 = n, \sum_{k=1}^{n} k = \frac{1}{2}n(n+1), \sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1), \text{ etc.}$$

Theorem. Let series
$$\sum_{k=n_0}^{\infty} a_k$$
, $\sum_{k=n_0}^{\infty} b_k$ converge.

Then also the series
$$\sum_{k=n_0}^{\infty} (a_k + b_k)$$
 converges and $\sum_{k=n_0}^{\infty} (a_k + b_k) = \sum_{k=n_0}^{\infty} a_k + \sum_{k=n_0}^{\infty} a_k$.

For
$$c \in I\!\!R$$
 also $\sum_{k=n_0}^{\infty} (c \, a_k)$ converges and $\sum_{k=n_0}^{\infty} (c \, a_k) = c \Big(\sum_{k=n_0}^{\infty} a_k \Big)$.