ТЕПЛОВЫЧИСЛИТЕЛИ СПТ943 СВЯЗЬ С ВНЕШНИМИ УСТРОЙСТВАМИ

СОДЕРЖАНИЕ

1 Подключение	3
2 Протокол обмена	4
2.1 Базовая структура запросов и ответов	4
2.2 Описание запросов	5
2.2.1 Установление сеанса связи	5
2.2.2 Чтение FLASH-памяти	5
2.2.3 Чтение ОЗУ	6
2.2.4 Запросы для работы с архивами	6
2.2.5 Ввод параметров настроечной базы данных тепловычислителя	6
2.2.6 Вывод отчетов на печать	8
2.2.7 Запросы управления счетом	8
2.2.8 Выбор скорости обмена	9
2.3 Обработка ошибок	9
2.4 Расширенный формат запросов и ответов	10
2.5 Защищенный обмен	10
2.5.1 Авторизация	11
2.5.2 Обмен шифрованными данными	11
2.5.3 Завершение сеанса	11
2.6 Временные соотношения при обмене с тепловычислителем	12
Приложение 1 – Параметры ОЗУ для чтения	12
Приложение 1 – Параметры ОЗУ для чтения	15
Приложение 2 – Организация архивов в СПТ 943Приложение 3 – Настроечная база данных СПТ 943	
Приложение 3 – пастроечная оаза данных СПТ943Приложение 4 – Тотальные параметры СПТ943	
<u> </u>	
Приложение 5 – Форматы представления чисел в СПТ943	
Приложение 5 – Форматы представления чисел в СПТ943	21
LIDMIDSKEDME D. — UDVOKIDNA REIUMCHEUNA KOUTDOHEUNIO KOJIS	,,

1 Подключение

Тепловычислитель СПТ943 может быть подключен к устройствам обмена данными (далее – внешним устройствам) по интерфейсу RS-232C или через оптический порт IEC1107. К одному порту RS-232C внешнего устройства может быть подключено до трех тепловычислителей одновременно. Примеры подключения одиночного тепловычислителя и группы СПТ943 к компьютеру показаны на рисунках 1.1, 1.2. При таком подключении суммарная длина отрезков линии связи не должна превышать 100 м.

Оптическое подключение СПТ943 к внешним устройствам осуществляется с помощью адаптера АПС70 или ему аналогичного.

Рисунок 1.1 – Подключение одиночного СПТ943 к компьютеру по интерфейсу RS-232C.

Рисунок 1.2 – Подключение группы СПТ943 к компьютеру по интерфейсу RS-232C.

Перед началом обмена с тепловычислителем линия DTR (108) внешнего устройства должна быть переведена в активное состояние (положительный уровень напряжения).

Подключение СПТ943 (группы СПТ943) к внешним устройствам, находящимся на удалении более 100 м рекомендуется осуществлять через адаптер АПС45. В этом случае общее число тепловычислителей в группе может достигать десяти. Суммарная длина линий связи – до 2 км.

2 Протокол обмена

Обмен данными с тепловычислителями СПТ943 может вестись в двух форматах: базовом и расширенном. Оба формата применимы к любому из описанных в настоящем документе запросов.

Пакты данных, передаваемые в базовом формате, содержат минимум избыточной информации. Такой формат передачи предназначен для ведения локального обмена, а также – удаленного обмена при благоприятной помеховой обстановке в канале связи.

Расширенный формат передачи обеспечивает более высокую помехоустойчивость, а также позволяет воссоздавать правильный порядок следования пакетов данных, если таковой не гарантируется в используемой среде передачи. Помимо этого, расширенный формат позволяет вести защищенный обмен с тепловычислителями с применением алгоритмов криптографического кодирования информации, что особенно актуально при передаче данных через сеть Интернет.

2.1 Базовая структура запросов и ответов

Обмен СПТ943 с внешним устройством строится по принципу запрос / ответ, причем СПТ943 всегда пассивен, – он не может являться инициатором запроса. К тепловычислителю (группе тепловычислителей) может быть подключено только одно активное устройство-инициатор запросов.

Передача осуществляется в асинхронном полудуплексном режиме. Информация передается побайтно, "младшим битом вперед", с одним стартовым, одним стоповым битами и восьмью битами данных. Скорость обмена может быть выбрана из ряда 2400, 4800, 9600, 19200 бит/с.

Запросы внешнего устройства и ответы СПТ943 имеют структуру, общий вид которой показан на рисунке 2.1.

Запрос (ответ) представляет собой кадр, состоящий из трехбайтового заголовка, блока данных и двухбайтовой завершающей секции.

Заголовок кадра содержит:

- 0х10 управляющий код начала кадра;
- NT сетевой номер СПТ943, которому адресован запрос / от которого исходит ответ;
- КЗ код запроса.

Поле NT может содержать значения 0...99 и 255. Значение 255 (0xFF) соответствует безадресному обращению к тепловычислителю. В этом случае прибор производит обработку запроса, игнорируя действительное значение своего сетевого номера.

			T T	1 1		
0x10	NT	КЗ	Блок данн	ЫХ	КС	0x16

Рисунок 2.1 – Структура кадра запроса (ответа)

Длина блока данных переменна и определяется типом обрабатываемого запроса. Максимальная длина блока данных, предусмотренная для СПТ943 составляет 68 байтов.

Завершающая секция кадра содержит:

- КС контрольная сумма;
- 0х16 управляющий код конца кадра.

Контрольная сумма вычисляется арифметическим суммированием байтов NT и K3 заголовка и байтов блока данных с последующим побитовым инвертированием. В качестве значения КС используется младший байт полученной суммы.

2.2 Описание запросов

Приведенные ниже запросы и ответы, представлены в базовом формате.

Правила перехода к расширенному формату описаны в п. 2.3.

Обмен с тепловычислителем должен начинаться процедурой установления сеанса связи. Для этого внешнее устройство должно передать тепловычислителю *стартовую последовательность* не менее чем из шестнадцати байтов 0xFF. Далее должен быть передан запрос вида:

$\Omega_{x} 1 \Omega$	NIT	$0 \times 2 E$	$C\Pi$	$\Omega_{22}\Omega\Omega$	$\Omega_{2}\Omega\Omega$	-10	νc	1 0 2 16
UXIU	IN I	0x3F	СП	UXUU	UXUU	LUXUU	N.C.	I UXIO
07110	111	07101	O11	01100	01100	01100	110	0211

Где: СН – код канала СПТ943, по которому будут выполняться последующие процедуры чтения архивов (2.2.4), ввода параметров настроечной базы данных (2.2.5) и т.п. Процедуры непосредственной работы с памятью тепловычислителя – чтение FLASH-памяти (2.2.2), чтение ОЗУ (2.2.3) безразличны к значению байта СН.

В СПТ943 принята следующая кодировка каналов: 0 – канал ОБЩ; 1 и 2 – каналы ТВ1 и ТВ2 соответственно.

Ответ СПТ943:

- 4								
	0x10	NT	0x3F	0x54	0x2B	VX	КС	0x16

Где: 0x54 0x2B – код прибора СПТ943;

Байт VX – идентификатор версии внутреннего программного обеспечения прибора.

Если номер NT в запросе не совпадает с номером NT тепловычислителя и не равен 255 (безадресный запрос), тепловычислитель прекращает прием и обработку дальнейший информации вплоть до получения следующей стартовой последовательности 0xFF. Таким образом, при работе с группой СПТ943, после установки сеанса связи с запрашиваемым тепловычислителем, дальнейший обмен информацией будет возможен только с ним. Все остальные приборы группы будут игнорировать последующие запросы внешнего устройства.

Внимание!

Все тепловычислители, объединенные в группу, должны иметь различные сетевые номера.

При установлении сеанса связи важно выполнять требования к временным характеристикам обмена, описанным в разделе 2.4.

Процедура установления сеанса должна выполняться на скорости 2400 бит/с.

2.2.2 Чтение FLASH-памяти

Запрос чтения FLASH-памяти:

Junpou	11011111	2011011	11001/1311111					
0x10	NT	0x45	N1	N0	K	0x00	КС	0x16

Где: N1, N0 – соответственно младший и старший байты номера первой считываемой страницы 64 байта; К – количество считываемых страниц.

Количество считываемых одним запросом страниц – 1...64.

Ответ СПТ943:

0x10	NT	0x45	страница (N)	КС	0x16
0x10	NT	0x45	страница (N+1)	КС	0x16
			•••		
0x10	NT	0x45	страница (N+K-1)	КС	0x16

Каждая страница FLASH заключается в один кадр. Количество кадров в ответе СПТ943 соответствует количеству запрашиваемых страниц.

2.2.3 Чтение ОЗУ

Запрос чтения ОЗУ:

0x10	NT	0x52	A1	A0	КБ	0x00	КС	0x16

Где: A1, A0 – соответственно младший и старший байты адреса первого считываемого байта O3У; КБ – количество считываемых байтов O3У. КБ должно находиться в пределах 1...64.

Ответ СПТ943:

O I DC I		<u>'• </u>			
0x10	NT	0x52	Дамп ОЗУ	КС	0x16

Список доступных для чтения параметров ОЗУ приведен в приложении 1.

2.2.4 Запросы для работы с архивами

СПТ943 поддерживает ряд запросов, позволяющих выводить накопленные им архивные данные.

Структура архивных данных, накапливаемых по каналам ТВ1 и ТВ2 одинакова. Возвращаемые тепловычислителем данные будут относиться к каналу, код которого был предварительно передан ему в запросе сеанса связи (2.2.1).

Запрос поиска записи в часовом архиве:

0x1) NT	0x48	ГГ	MM	ДД	чч	КС	0x16
-----	------	------	----	----	----	----	----	------

Где: гг-мм-дд-чч – заголовок искомой записи (год, месяц, день, час соответственно).

Диапазон допускаемых значений байта чч -0...23 Запись, датированная нулем часов, будет относиться интервалу 23-24 час предыдущих суток; запись, датированная 23 часами – к интервалу 22-23 часа конца суток. Для всех запросов архивных записей значение байта "гг" вычисляется по формуле:

$$\Gamma\Gamma = (\Gamma O J - 2000) + 100$$

Например, заголовок часовой записи, сформированной в 20 часов 01 суток 02 месяца 2005 года, будет выглядеть следующим образом:

$$\Gamma\Gamma$$
-мм-дд-чч = 105-2-1-20.

Ответ СПТ943:

			•		
0x10	NT	0x48	блок данных 68 байтов	КС	0x16

Аналогичным образом строятся запросы суточных и месячных записей.

Запрос поиска записи в суточном архиве:

Jumpoc	HOHERU .	Juillion L	cy to m	ом архи	DC.			
0x10	NT	0x59	ГГ	MM	ДД	0x00	КС	0x16

Запрос поиска записи в месячном архиве:

0x10 NT 0x4D FF MM 0x00 0x00 KC 0x16
--

При отсутствии в архиве искомой записи СПТ943 возвращает ответ с кодом ошибки 0x03 (см. 2.3).

Структура архивных данных, выводимых в ответах СПТ943, приведена в приложении 2.

2.2.5 Ввод параметров настроечной базы данных тепловычислителя

Запрос ввода параметра БД:

Jumpet	ввода п	apamerp	и БД.					
0x10	NT	0x44	N1	N0	0x00	0x00	КС	0x16

Где: N1, N0 – соответственно младший и старший байты номера параметра.

Ввод параметра настроечной БД тепловычислителя возможен при выключенном переключателе ЗАЩИТА или, при включенном переключателе – если параметр является оперативным. Если ввод параметра разрешен, СПТ943 формирует подтверждение:

0x10 NT 0x44 KC 0x16

В противном случае будет сформирован ответ с кодом ошибки 0x01 – "Защита от ввода параметра" (2.3).

При подтверждении ввода тепловычислителю должен быть передан блок данных, содержащий значение параметра:

0x10	NT	0x44	Блок данных 64 байта	КС	0x16
------	----	------	----------------------	----	------

Структура передаваемого блока данных:

	Байт									
0	1	•••	7	8	9	•••	62	63		
В0	B1		В7	0x20	0x20		0x20	0/*		

Где: B0...B7 – ASCII код значения параметра. При этом B0 – старший разряд значения параметра или знак, если значение параметра отрицательное; 0/* - признак "оперативный параметр".

ASCII символ "*" в позиции 0/* устанавливает принадлежность вводимого параметра к списку оперативных. Ноль (0x00) в указанной позиции исключает параметр из списка оперативных. При любом другом значении байта 0/* отношение параметра к списку оперативных не модифицируется.

Если значение параметра содержит менее восьми значащих цифр, неиспользуемые младшие байты значения должны быть заполнены кодом 0x20. Примеры вводимых данных показаны в таблице 2.1. После приема и обработки блока информации формируется подтверждение:

0x10	NT	0x44	КС	0x16

В случае некорректности вводимых данных тепловычислитель формирует ответ с кодом ошибки 0x02 – "Недопустимые значения параметров запроса" (2.3). Запись параметра в БД при этом не выполняется.

Чтение параметров БД в их внутреннем представлении может быть выполнено с помощью запроса чтения FLASH-памяти. Формат хранения параметров описан в приложении 3.

Таблица 2.1 – Примеры вводимых данных

			Примечание							
В0	B0 B1 B2		В3	B4	В5	В6	В7	Примечание		
-	- 1 .		2	5	8	0x20	0x20	Число минус 1,258		
2	2 0 - 0		0	1	-	0	5	Дата 20-01-2005		
5	5	0	1	3	7		2	Число 550137,2		
1	1 0x20 0x20 0x20		0x20	0x20	0x20	0x20	0x20	Число 1		

2.2.6 Вывод отчетов на печать

Вывод квитанций СПТ943 на принтер осуществляется с помощью адаптера АПС45.

Символьный образ квитанции формируется в памяти тепловычислителя. Адаптер АПС45 с помощью описанных ниже запросов считывает сформированную квитанцию и транслирует ее на принтер.

АПС45 ведет периодический опрос состояния очереди печати СПТ943. Для этого применяется запрос вида:

0x10	NT	0x53	0x00	0x00	0x00	0x00	КС	0x16		
Ответ СПТ943:										
0x10	NT	0x53	N1	N0	C1	C0	КC	0x16		

Где: N1, N0 – номер квитанции в очереди СПТ943, готовой к выводу на печать (младший и старший байты соответственно); C1, C0 – количество блоков 64 байта, содержащихся в квитанции.

При отсутствии квитанций в очереди печати тепловычислитель возвращает ответ с C1 = C0 = 0. Готовые к распечатке квитанции поблочно считываются адаптером.

Запрос чтения блока квитанции:

	0x10	NT	0x50	N1	N0	B1	В0	КС	0x16

Где: N1, N0 – номер квитанции в очереди СПТ943; B1, B0 – номер запрашиваемого блока. Нумерация блоков начинается с нуля.

Ответ СПТ943:

0 0 -	,				
0x10	NT	0x50	блок данных 64 байта	КС	0x16

Поблочное чтение выполняется до тех пор, пока не будет считано полное количество блоков квитанции, переданное тепловычислителем в ответе на запрос состояния очереди печати. При успешном завершении печати АПС45 удаляет распечатанную квитанцию из очереди СПТ943.

Запрос удаления квитанции из очереди печати:

0x10	NT	0x43	N1	N0	0x00	0x00	КС	0x16
								<u> </u>

Ответ:

0x10	NT	0x43	КС	0x16
------	----	------	----	------

2.2.7 Запросы управления счетом

Запросы предназначены для выполнения пуска/останова счета и сброса архивов. Действие запросов распространяется на канал, выбранный при установлении сеанса связи с вычислителем.

Общий вид запроса:

		1						
0x10	NT	0x4F	КОП	0x00	0x00	0x00	КС	0x16

Где: $KO\Pi$ – код операции: 0 – останов счета; 1 – пуск счета; 0xFF – сброс архивов.

Подтверждение:

	P			
0x10	NT	0x4F	КС	0x16

Внимание!

Обработка запроса производится только при выключенном переключателе ЗАЩИТА. При включенном переключателе будет сформирован ответ с кодом ошибки 0x01.

Обработка запроса может занимать значительное время (см. параметр t5 п. 2.3).

2.2.8 Выбор скорости обмена

Обмен с тепловычислителем может вестись скоростях 2400, 4800, 9600 и 19200 бит/с.

Установление скорости обмена осуществляется по запросу внешнего устройства. При этом начальная скорость обмена, т.е. скорость на этапе установления сеанса связи с тепловычислителем, всегда равна 2400 бит/с.

Запрос выбора скорости обмена:

<u>I</u>		<u>I</u>						
0x10	NT	0x42	S	0x00	0x00	0x00	КС	0x16

Где: байт S – код скорости обмена.

Значение 0x00 соответствует скорости 2400 бит/с; 0x01 – 4800 бит/с; 0x02 – 9600 бит/с; 0x03 – 19200 бит/с.

ı	0x10	NT	0x42	КС	0x16

Подтверждение передается тепловычислителем на неизменной скорости, после чего вступает в силу ее новое значение. При отсутствии обмена в течение 10 с тепловычислитель автоматически перестраивает свой интерфейс на исходную скорость обмена 2400 бит/с.

2.3 Обработка ошибок

Если по какой-либо причине принятый тепловычислителем запрос не может быть корректно обработан, тепловычислитель возвращает ответ вида:

0x10 NT 0x21 Код ошибки	KC 0x16
---	---------

Коды возможных ошибок приведены в таблице 2.2.

Таблица 2.2 – Коды ошибок СПТ943

Код	Ошибка				
0x00	Нарушение структуры запроса				
0x01	Защита от ввода параметра				
0x02	Недопустимые значения параметров запроса				
0x03	Нет данных				
0x04	Возможен только защищенный обмен				
0x05	Недопустимый формат запроса при защищенном обмене				

При разрушении кода начала кадра или в случае несовпадения переданного в запросе сетевого номера с фактическим значением NT запрашиваемого тепловычислителя, ответ СПТ943 не будет сформирован.

2.4 Расширенный формат запросов и ответов

Сообщения в расширенном формате имеют следующую структуру:

 0x10
 NT
 0x90
 ID
 ATR
 DL1
 DL0
 Блок данных (DL)
 CRC1
 CRC0

Где: 0х90 – код расширенного формата;

ID – идентификатор сообщения;

ATR – атрибуты сообщения;

DL0,1 – длина блока данных.

CRC0,1 – циклический контрольный код (два байта).

Идентификатор ID служит для организации упорядоченного разбора сообщений при их приеме. Правило присвоения значений ID определяется устройством-инициатором обмена: это может быть, например, псевдослучайная последовательность или сквозная нумерация пакетов в порядке возрастания (убывания). Байт ID полученный тепловычислителем в запросе, будет скопирован в соответствующее поле ответа.

Байт атрибутов содержит дополнительную информацию о структуре сообщения.

ATR = 0 означает что сообщение передается в открытом (не шифрованном) виде;

ATR = 1 соответствует шифрованному формату сообщения;

Значения ATR = 2...255 зарезервированы для дальнейшего использования.

Циклический контрольный код охватывает все байты сообщения за исключением кода начала кадра 0х10. Для вычисления контрольного кода используется порождающий полином:

$$P = X^{16} + X^{12} + X^5 + 1$$

Пример реализации алгоритма вычисления контрольного кода на языке С приведен в приложении 6. Функция возвращает 16-разрядное целое число, старший байт которого – CRC1, а младший – CRC0. Если приписать эти байты к сообщению и повторно выполнить функцию, включая в промежуток обработки и эти байты, то результатом должен быть 0.

Для представления сообщения в расширенном формате, в блок данных расширенного сообщения заключаются код запроса и блок данных сообщения базового формата. Например, запрос сеанса связи в расширенном формате будет выглядеть следующим образом:

0x10	NT	0x90	ID	0x00	0x05	0x00	0x3F	0x00	0x00	0x00	0x00	CRC1	CRCO
OATO	111	UAJU	ய	OAGO	OAOS	OAGO	OASI	OAGO	OAOO	OAOO	OAGO	CiCi	aw

2.5 Зашишенный обмен

При вводе в настроечную базу данных тепловычислителя ненулевого значения параметра PW ("пароль"), обмен с ним становится возможным только в защищенном режиме.

В основе процедур защиты информации лежит алгоритм криптографического кодирования RC5 RSA Security INC со следующими параметрами:

- Длина слова 16 бит;
- Длина кодированного блока 32 бита;
- Количество проходов (циклов) RC5 при кодировании / декодировании 8;
- Длина ключа 64 бита.

В качестве ключа шифрования для алгоритма RC5 выступает значение параметра PW.

2.5.1 Авторизация

Перед началом обмена с защищенным прибором должна быть выполнена процедура авторизации. При этом обмен начинается со стандартной процедуры установления связи: подачи последовательности 0xFF и запроса сеанса связи. Запрос может быть передан прибору как в базовом, так и в расширенном формате с ATR=0.

Запрос сеанса (далее для наглядности приводятся только блоки данных запросов):

0x3F	0x00	0x00	0x00	0x00

Если прибор находится в защищенном режиме, то на запрос сеанса связи будет сформирован ответ с кодом ошибки 0x04 — "Возможен только защищенный обмен".

Ответ:

0x21	0x04	КС	0x16
-		_	-

В этом случае прибору должен быть повторно передан запрос сеанса связи в зашифрованном виде, только в расширенном формате, на который прибор формирует ответ (также в зашифрованном виде). С этого момента внешнее устройство считается авторизованным. Прибор открывается для дальнейшего защищенного обмена.

Если прибору не удается адекватно расшифровать и интерпретировать полученный запрос сеанса, он прекращает реагировать на дальнейшие запросы вплоть до получения стартовый последовательности 0xFF, после которой процедура авторизации может быть повторена.

При получении от авторизованного внешнего устройства запроса в базовом формате или нешифрованного запроса (ATR=0), прибор отвечает сообщением с кодом ошибки 0x05 – "Недопустимый формат запроса"

2.5.2 Обмен шифрованными данными

После авторизации возможен обмен шифрованными данными с тепловычислителем. Обмен может осуществляться только в расширенном формате.

Шифрованию подвергаются только блоки данных, содержащиеся в запросах внешнего устройства и ответах тепловычислителя, а также, два байта контрольной суммы, завершающие информационный кадр. Преамбулы кадров не шифруются

Количество шифруемых байтов округляется до величины, кратной одному кодовому блоку алгоритма RC5 (4 байта). Для этого к концу блока данных дописывается необходимое количество байтов с произвольным значением.

Например, шифрованный запрос сеанса связи примет вид:

	O	ткрыта	ая инф	ормаци	1Я]	Кодиро	ванная	я инфо	рмация	Ā	
0x10	NT	0x90	ID	0x01	0x06	0x00	0x3F	0x00	0x00	0x00	0x00	0x00	CRC1	CRCO

2.5.3 Завершение сеанса

Для завершения сеанса шифрованного обмена с тепловычислителем ему должен быть передан запрос:

0x71 $0x00$ $0x00$ $0x00$ $0x00$

Ответ:

0x71

После обработки запроса тепловычислитель переходит в режим ожидания авторизации.

Автоматическое завершение сеанса выполняется тепловычислителем также при отсутствии входящих запросов внешнего устройства в течение трех минут.

2.6 Временные соотношения при обмене с тепловычислителем

При обмене с СПТ943 должны выполняться временные соотношения в соответствии с рисунком 2.2 и таблицей 2.3.

Рисунок 2.2 – Временные соотношения при обмене

Таблица 2.3 – Значения временных параметров

Обозн	Параметр		ение	Единицы
ОООЗН			Макс	измерения
t1	Время между передачей байтов 0xFF стартовой по- следовательности	4	-	МС
t2	Время между передачей стартовой последовательности и запроса сеанса	1000	-	мс
t3	Время между передачей байтов в запросе	0	-	мс
t4	Время обработки запроса тепловычислителем 1	-	2200	мс
t5	Время обработки запросов управления счетом (п.2.2.7)	-	20	c

 Π РИМЕЧАНИЕ 1 – ЗА ИСКЛЮЧЕНИЕМ ЗАПРОСОВ УПРАВЛЕНИЯ СЧЕТОМ

Приложение 1 – Параметры ОЗУ для чтения

1 Текущие параметры

Представление текущих параметров приведено в таблице 1.

Таблица 1 – Текущие параметры СПТ943

Адрес ОЗУ		Формат	Параметр	Примечание	
TB1	TB2	Формат	Парамстр	примечание	
0x0204	0x0234	FLOAT	G1	Объемный расход теплоносителя в трубе 1	
0x0208	0x0238	FLOAT	G2	Объемный расход теплоносителя в трубе 2	
0x020C	0x023C	FLOAT	G3	Объемный расход теплоносителя в трубе 3	
0x0210	0x0240	FLOAT	P1	Давление теплоносителя в трубе 1	
0x0214	0x0244	FLOAT	P2	Давление теплоносителя в трубе 2	
0x0218	0x0248	FLOAT	t1	Температура теплоносителя в трубе 1	
0x021C	0x024C	FLOAT	t2	Температура теплоносителя в трубе 2	
0x0220	0x0250	FLOAT	dt	Разность температур	
0x0224	0x0254	FLOAT	t3	Температура теплоносителя в трубе 3	
0x0228	0x0258	FLOAT	tx	Температура холодной воды	
0x022C	0x025C	FLOAT	tв	Температура воздуха	

2 Регистр состояния

Регистр находится в ОЗУ тепловычислителя по адресу 0xFF и содержит основные флаги, отображающие его состояние. Структура регистра приведена в таблице 2

Таблица 2 – Регистр состояния вычислителя

Бит	Флаг	Описание
0, 1	DST_TV1_RUN, DST_TV2_RUN	Состояние счета по вводам (пуск/останов)
2	DST_DB_PROT	Состояние ключа защита
3	DST_DI	Состояние дискретного входа. Лог. "1" соответствует наличию сигнала на входе. Диагностика работает при КД \neq 0
4	DST_EXTPWR	Наличие внешнего питания
7	DST_LOWBAT	Разряд батареи

3 Текущие НС

Признаки текущих нештатных ситуаций (HC) находятся в ОЗУ тепловычислителя в виде сборки флагов, формат которой приведен в таблице 3. Флаг, установленный в состояние лог. "1" в каждой позиции сборки означает, что HC с соответствующим номером активна.

Таблица 3 – Текущие НС

Адрес ОЗУ	Формат	Описание
0xBB	Лог. сборка	Общесистемные НС (НС с номерами 07, общие для ТВ1 и ТВ2). Младший бит сборки соответствует НС с номером 0, старший – НС с номером 7.
0xBC	Лог. сборка	НС по вводу ТВ1. Младшему биту сборки соответствует НС с номе-
0xBD	лог. соорка	ром 8, старшему – НС с номером 23 по ТВ1.
0xBE	Лог. сборка	НС по вводу ТВ2. Младшему биту сборки соответствует НС с номе-
0xBF		ром 8, старшему – НС с номером 23 по ТВ2.

4 Результаты прямых измерений

Тепловычислитель обеспечивает отображение прямых изменяемых сигналов (частоты, тока и сопротивления), которые служат исходными для вычисления объемных расходов, давлений и температур. Такая информация дает пользователю возможность проконтролировать правильность подключения цепей датчиков, а также корректность введенной в тепловычислитель настроечной базы данных. Отображение результатов прямых измерений на табло тепловычислителя осуществляется в меню ОБЩ \rightarrow TCT \rightarrow ЦЕПИ.

Распределение памяти в соответствующем буфере O3У приведено в таблице 3.

Таблица 3 – Буфер результатов прямых измерений

	The branch and a second	
Адрес	Обозначение сигнала	Разъем СПТ943
0x0600	F0	X5
0x0604	F1	X6
0x0608	F2	X7
0x060C	F3	X8
0x0610	F4	X9
0x0614	F5	X10
0x0618	10	X11
0x061C	I1	X12
0x0620	I2	X13
0x0624	I3	X14
0x0628	R0	X15
0x062C	R1	X16
0x0630	R2	X17
0x0634	R3	X18
0x0638	R4	X19
0x063C	R5	X20

5 Часы и календарь

Текущие дата и время хранятся в виде трехбайтовых областей с начальными адресами 0xF3 и 0xF6 в формате год-месяц-день и час-минута-секунда соответственно.

Приложение 2 – Организация архивов в СПТ943

СПТ943 обеспечивает архивирование средних значений информативных параметров обслуживаемых тепловых систем (интервальные архивы), а также, ведение сервисных архивов изменений параметров настроечной базы данных (ИЗМ) и нештатных ситуаций (НС). Ведение архивов осуществляется независимо для вводов ТВ1 и ТВ2. Номенклатура и основные параметры архивных записей приведены в таблице 1.

Таблица 1 – Параметры архивных записей

Архивы СПТ943 по ТВ1 и ТВ2	Кол. записей	Размер записи, байтов
Часовой	1080	68
Суточный	365	68
Месячный	100	68
ИЗМ	100	24
НС	100	8

1 Интервальные архивы

Чтение из тепловычислителя интервальных архивов осуществляется с помощью предусмотренных для этого запросов (коды запросов 0х48, 0х59, 0х4D). В ответ на каждый запрос тепловычислитель возвращает одну страницу архива – набор средних параметров, соответствующий переданной в запросе дате. Структура страницы архива приведена в таблице 2.

Таблица 2 – Структура страницы интервального архива

Параметр	Кол. байтов	Формат	Примечание
НС байт 2			Сборка флагов НС. Единица в младшем бите сбор-
НС байт 1	3	Лог. сборка	ки соответствует НС с младшим номером (НС00);
	3	vior. coopia	единица в старшем бите – НС со старшим номером
НС байт 0			(HC23)
СП	1	Двоичный	Схема потребления
P1	4	FLOAT	Среднее давление в трубе 1
P2	4	FLOAT	Среднее давление в трубе 2
t1	4	FLOAT	Средняя температура в трубе 1
t2	4	FLOAT	Средняя температура в трубе 2
t3	4	FLOAT	Средняя температура в трубе 3
tx	4	FLOAT	Средняя температура холодной воды
tв	4	FLOAT	Средняя температура воздуха
V1	4	FLOAT	Суммарный объем теплоносителя по трубе 1
V2	4	FLOAT	Суммарный объем теплоносителя по трубе 2
V3	4	FLOAT	Суммарный объем теплоносителя по трубе 3
M1	4	FLOAT	Суммарная масса теплоносителя по трубе 1
M2	4	FLOAT	Суммарная масса теплоносителя по трубе 2
M3	4	FLOAT	Суммарная масса теплоносителя по трубе 3
Q	4	FLOAТ Суммарная тепловая энергия	
Ти	4	FLOAT	Суммарное время счета
Qг	4	FLOAT	Тепловая энергия в трубе ГВС

2 Архивы НС и ИЗМ

Архивы ИЗМ и НС хранятся во FLASH-памяти вычислителя в виде неразрывных областей (таблица 3). Логически эти области разделены на страницы. Структура архивных страниц приведена в таблицах 4 и 5.

При выполнении команды сброса архивов отведенные под архивы ИЗМ и HC области FLASH-памяти заполняются нулями. Наличие префикса 0x10 в начале архивной страницы говорит о том, что в эту страницу произведена запись. Ноль или любое другое число в позиции префикса говорит о том, что страница пуста.

Таблица 3 – Расположение архивов ИЗМ и HC во FLASH-памяти СПТ943

Описание	TB1	TB2
Область данных архива ИЗМ	0x5ADC0x643B	0x800D0x896C
Область данных архива НС	0x643C0x675B	0x896D0x8C8C

Таблица 4 - Структура страницы архива ИЗМ

Байт	Обозн	Функция	Формат
0	prefix	Префикс записи (0х10)	Двоичный
1	уу	Год	Двоичный
2	mh	Месяц	Двоичный
3	dy	День	Двоичный
4	hh	Час	Двоичный
5	mm	Минута	Двоичный
6	ı	Зарезервировано	-
7	ı	Зарезервировано	-
8	Indcopy0	Копия индикатора с содержанием изменения. Байт 0	ASCII
•••	•••		•••
22	Indcopy14	Копия индикатора с содержанием изменения. Байт 14	ASCII
23	ı	Зарезервировано	-

Таблица 5 – Структура страницы архива НС

	- Pyring Pin tipin	, <u>r</u>	
Байт	Обозн	Функция	Формат
0	prefix	Префикс записи (0х10)	Двоичный
1	уу	Год	Двоичный
2	mh	Месяц	Двоичный
3	dy	День	Двоичный
4	hh	Час	Двоичный
5	mm	Минута	Двоичный
6	mfnum	Номер (код) НС	Двоичный
7	mfflag	Флаг НС	Двоичный

Младший бит переменной mfflag = 1 означает, что в момент времени уу...mm установилась нештатная ситуация с номером mfnum; младший бит mfflag = 0 означает, что HC снялась.

Для получения данных из архивов ИЗМ и HC из тепловычислителя считывают соответствующий дамп FLASH-памяти.

Приложение 3 – Настроечная база данных СПТ943

Номенклатура параметров настроечной базы данных СПТ943 приведена в таблицах 1 и 2.

Таблица 1 - Параметры по каналу ОБШ

No	Обозн	Пример	Описание
		• •	
0	ЕИ	0	Единицы измерений
1	TO	10-23-00	Время
2	ДО	10-01-03	Дата
3	CP	01	Расчетные сутки
4	ЧР	00	Расчетный час
5	ПЛ	0	Вкл/выкл автоматического перехода на зимнее/летнее время
6	NT	00	Сетевой номер тепловычислителя
7	ИД	12345678	Идентификатор тепловычислителя
8	КИ	0	Конфигурация интерфейса
9	BMH	00-00	Начало разрешенного интервала времени работы модема
10	ВМК	23-00	Конец разрешенного интервала времени работы модема
11	txĸ	7.2	Константа температуры холодной воды
12	Рхк	3.5	Договорное давление холодной воды
13	TC	0	Градуировка термометров
14	КД	0	Контроль дискретного входа
15	СН	0	Правило формирования выходного дискретного сигнала
16	TC3	31	Распределение аппаратных ресурсов (входов ТС3) для измерения
10	103	31	TB1/t3, TB2/t3, tx и tв.
17	КУ	0	Контроль уставок
18	НУ	0	Номер текущего параметра, значение которого контролируется на
	113	U	соответствие уставкам УВ
19	УВ	100,1	Верхняя уставка
20	УН	-2,0	Нижняя уставка

Таблица 2 – Параметры по ТВ1, ТВ2

№ по ТВ1	№ по ТВ2	Обозн.	Описание
50	100	СП	Схема потребления
51	101	КВ	Идентификатор ввода
52	102	tĸ1	Договорная температура в трубе 1
53	103	tĸ2	Договорная температура в трубе 2
54	104	tĸ3	Договорная температура ГВС
55	105	ДВ	Использование датчиков давления
56	106	ВП1	Верхний предел 1-го датчика давления
57	107	ВП2	Верхний предел 2-го датчика давления
58	108	Рк1	Константа Р1
59	109	Рк2	Константа Р2
60	110	Рк3	Константа Р3
61	111	КG	Контроль объемного расхода
62	112	C1	Цена импульса BC1
63	113	Gв1	Верхняя уставка на V1ч
64	114	Gн1	Нижняя уставка на V1ч
65	115	Gĸ1	Договорной часовой объем в трубе 1
66	116	C2	Цена импульса BC2
67	117	Gв2	Верхняя уставка на V2ч
68	118	Gн2	Нижняя уставка на V2ч
69	119	Gĸ2	Договорной часовой объем в трубе 2
70	120	C3	Цена импульса BC2
71	121	G _B 3	Верхняя уставка на V2ч
72	122	Gн3	Нижняя уставка на V2ч
73	123	Gĸ3	Договорной часовой объем в трубе 2
74	124	AM	Алгоритм подстановки константы Мк вместо (М1 – М2)
75	125	Мк	Константа М3
76	126	HM	Уставка на небаланс масс
77	127	AQ	Алгоритм вычислений часового тепла.
78	128	Qк	Константное значение часового тепла
79	129	ПС	Вкл / Выкл автоматической печати суточных отчетов по вводу
80	130	ПМ	Вкл / Выкл автоматической печати месячных отчетов по вводу

Формат хранения параметров БД

Каждый параметр базы данных хранится во FLASH в виде 16 – байтовой области. Формат области представлен в таблице 3. Начальный адрес области хранения БД по каналу ОБЩ – 0x200; по каналам TB1 и TB2 – 0x520 и 0x840 соответственно.

Таблица 3 – Формат хранения параметров БД

Байт	Описание	Примечание		
0	Сборка флагов состояния параметра			
1	Зарезервирован	Системная область		
2	Зарезервирован			
3	Зарезервирован			
4	ASCII код параметра, байт 0			
5	ASCII код параметра, байт 1			
6	ASCII код параметра, байт 2			
7	ASCII код параметра, байт 3	Зионания пороматра в АССИ прансторначии		
8	ASCII код параметра, байт 4	Значение параметра в ASCII представлении		
9	ASCII код параметра, байт 5			
a	ASCII код параметра, байт 6			
b	ASCII код параметра, байт 7			
С	Форматированное представление, байт 0			
d	Форматированное представление, байт 1	Programua Hanawatna na pungthayyyay danwata		
e	Форматированное представление, байт 2	Значение параметра во внутреннем формате		
f	Форматированное представление, байт 3			

Сборка флагов состояния параметра:

-	-	-	-	-	ı	-	PRM_OPER

PRM_OPER – Оперативный параметр.

Чтение параметров БД осуществляется посредством запроса чтения FLASH-памяти. Адрес чтения может быть вычислен по формуле:

$$A = 16 \cdot N + A_0$$

Где: N — номер параметра БД согласно таблицам 1, 2; A_0 — адрес параметра БД с нулевым номером (0x200).

Приложение 4 – Тотальные параметры СПТ943

Счетчики тотальных параметров состоят из двух частей:

- основная часть значение счетчика на момент завершения последнего часа;
- текущее приращение счетчика.

Основная часть тотального счетчика хранится во FLASH-памяти в виде 8-байтовой области. Четыре младших байта этой области представляют собой целую часть счетчика в двоичном представлении; четыре старших байта — его дробная часть во FLOAT представлении. Текущее приращение — четырехбайтовое FLOAT число, хранящееся в ОЗУ.

Обновление основной части тотального счетчика во FLASH-памяти происходит в момент наступления каждого нового часа – к нему прибавляется текущее приращение, накопленное в ОЗУ. После обновления FLASH-памяти текущее приращение тотального счетчика зануляется.

Организация тотальных параметров СПТ943 показана в таблице 1.

Таблица 1 – Тотальные параметры СПТ943

Тотальный параметр	T	B1	TB2	
СПТ943	ОЗУ	FLASH	ОЗУ	FLASH
Объем, V1	0x0520	0x424A	0x0568	0x677B
Объем, V2	0x0524	0x4252	0x056c	0x6783
Объем, V3	0x0528	0x425A	0x0570	0x678B
Macca, M1	0x052c	0x4262	0x0574	0x6793
Macca, M2	0x0530	0x426A	0x0578	0x679B
Macca, M3	0x0534	0x4272	0x057c	0x67A3
Тепловая энергия, Q	0x0538	0x427A	0x0580	0x67AB
Время интегрирования, Ти	0x053c	0x4282	0x0584	0x67B3
Тепловая энергия ГВС, Qг	0x0540	0x428A	0x0588	0x67BB

Приложение 5 – Форматы представления чисел в СПТ943

1 Двоичный формат

В СПТ943 используется только беззнаковый формат представления двоичных чисел. Двоичные параметры могут быть как однобайтными, так и состоящими из нескольких байтов.

2 Формат с плавающей точкой (FLOAT формат)

В СПТ943 используется 32-разрядная арифметика с плавающей точкой. Числа представляются в виде 24-разрядной мантиссы и 8-разрядного двоичного порядка. Знак числа хранится в старшем разряде мантиссы. Общее математическое представление чисел в формате с плавающей точкой:

$$A = (-1)^{s} \cdot f \cdot 2^{e-127} \tag{1}$$

Где: f – мантисса; e – двоичный порядок; s – знак.

$$f = \sum_{k=0}^{23} a(k) \cdot 2^{-k} \tag{2}$$

Где: a(k) – бит мантиссы с номером к.

Значение мантиссы всегда находится в пределах:

$$1 \le f < 2 \tag{3}$$

Из (3) очевидно, что старший (нулевой) бит мантиссы всегда равен единице. Ввиду этого, нулевой бит не включается в запись FLOAT числа. Его место замещено знаковым битом. Бит мантиссы, следующий за знаковым битом, имеет вес (показатель степени k в формуле 2), равный минус 1.

Запись числа с плавающей точкой иллюстрирована в таблице 1

Таблица 1 – Запись числа в формате с плавающей точкой

Tweetings T comments of the property of the state of the						
FLOAТ число						
старший байт			младший байт			
Двоичный порядок		мантисса				
	старший байт		младший байт			
xxxx xxxx	s·xxx xxxx	xxxx xxxx	xxxx xxxx			

Пример. Перевод в десятичное представление FLOAT числа:

"Подразумеваемая единица" (исключенный старший бит мантиссы)

Приложение 6 – Функция вычисления контрольного кода

```
// Функция вычисляет и возвращает циклический код для
// последовательности из len байтов, указанной *msq.
// Используется порождающий полином:
// (X в степени 16)+(X в степени 12)+(X в степени 5)+1.
// Полиному соответствует битовая маска 0x1021.
//
int CRCode (char *msg, int len)
int j, crc = 0;
while (len-->0)
crc = crc ^ (int) *msg++ << 8;</pre>
for (j=0; j < 8; j++)
if (crc & 0x8000) crc = (crc << 1) ^ 0x1021;
else crc <<= 1;
return crc;
```