

Redes Neurais Recorrentes Curso ENAP - Processamento de Linguagem Natural

Prof. Dr. Vinícius Ruela Pereira Borges

viniciusrpb@unb.br

Brasilia-DF, 2024

Informação

- Esses slides foram redigidos e produzidos pelo Prof. Dr. Vinícius R. P. Borges;
- Material didático de referência:
 - Capítulo 9 do livro "Speech and Language Processing.
 Daniel Jurafsky & James H. Martin, 2021."
 - Slides do curso "CS224n: Natural Language Processing with Deep Learning" Stanford University

• Motivação

- Motivação
- Definição

- Motivação
- Definição
- Modelos de Linguagem

- Motivação
- Definição
- Modelos de Linguagem
- Redes Neurais Recorrentes de Elman

- Motivação
- Definição
- Modelos de Linguagem
- Redes Neurais Recorrentes de Elman
- Implementação

- Motivação
- Definição
- Redes Neurais Recorrentes de Elman
- Modelos de Linguagem
- $\bullet \,$ Implementação
- Considerações Finais

Motivação

Motivação

• Processamento de dados sequenciais;

 $^{^1}Fonte:\ https://www.bussoladoinvestidor.com.br/tudo-sobre-graficos-de-analise-tecnica/ <math display="inline">$<$ \bigcirc \$

Motivação

05/04/2024

• Processamento de dados sequenciais;

Data Vento Radiacão Dir. (*) 888,7 888.6 EER.7 138.0 2.8 0300 20,6 888,4 888,6 269,0 151.0 0.0 20,5 888,2 65,0 20.7 887.7 0.0 135,0 05/04/2024 29.3 20,3 886.7 2.8 0,0 887.1 887.1 05/04/2024 20,5 19,9 887,6 190,0 3,1 0,0 888.6

889,2

84.0 4,0 746,40 0,0

18,8

Data de Referência: 05/04/2024 - 05/04/2024 Estação: BRASILIA A001

²Fonte: https://portal.inmet.gov.br

- As redes neurais estudadas até o momento não capturam relações de dependência em dados temporais;
 - em uma MLP, as entradas são independentes entre si.

- As redes neurais estudadas até o momento não capturam relações de dependência em dados temporais;
 - em uma MLP, as entradas são independentes entre si.
- Ademais, necessitam que todas as entradas possuam a mesma dimensão;
 - vide o vetor TF-IDF;

- As redes neurais estudadas até o momento não capturam relações de dependência em dados temporais
 - em uma MLP, as entradas são independentes entre si.
- Ademais, necessitam que todas as entradas possuam a mesma dimensão
 - vide o vetor TF-IDF;
- Como resultado, a capacidade de capturar contexto em textos é limitada
 - entendimento do contexto requer a análise de várias palavras ou sentenças.

 Redes neurais recorrentes (recurrent neural network -RNN) são uma família de redes neurais para processar dados sequenciais;

- Redes neurais recorrentes (recurrent neural network -RNN) são uma família de redes neurais para processar dados sequenciais;
- Dentre os tipos dados sequenciais mais comuns, citam-se:
 - Séries temporais;

- Redes neurais recorrentes (recurrent neural network -RNN) são uma família de redes neurais para processar dados sequenciais;
- Dentre os tipos dados sequenciais mais comuns, citam-se:
 - Séries temporais;
 - Textos;

- Redes neurais recorrentes (recurrent neural network -RNN) são uma família de redes neurais para processar dados sequenciais;
- Dentre os tipos dados sequenciais mais comuns, citam-se:
 - Séries temporais;
 - Textos;
 - Áudio;

- Redes neurais recorrentes (recurrent neural network -RNN) são uma família de redes neurais para processar dados sequenciais;
- Dentre os tipos dados sequenciais mais comuns, citam-se:
 - Séries temporais;
 - Textos;
 - Áudio;
 - Sinais.

• Exemplo:

A partida estava truncada, mas um gol heróico no final livrou o Brasil da derrota.

• Exemplo:

A partida estava truncada, mas um gol heróico no final livrou o Brasil da derrota.

• A construção correta de uma frase depende da ordem lógica das palavras;

• Exemplo:

A partida estava truncada, mas um gol heróico no final livrou o Brasil da derrota.

- A construção correta de uma frase depende da ordem lógica das palavras;
- Cada palavra é considerada como uma parte da entrada em um instante de tempo.

- Uma rede neural recorrente (recurrent neural network -RNN) é uma família de redes neurais para processar dados sequenciais;
- RNNs contemplam qualquer rede que contém um ciclo dentro das conexões de rede;

- Uma rede neural recorrente (recurrent neural network -RNN) é uma família de redes neurais para processar dados sequenciais;
- RNNs contemplam qualquer rede que contém um ciclo dentro das conexões de rede;

Definição de la composição de la composi

• Os valores dos pesos de um neurônio dependem diretamente (ou indiretamente) dos seus próprios valores de saída obtidos de um estado anterior.

RNN de Elman

• Matematicamente, as equações que definem uma RNN são descritas abaixo:

$$h^{(t)} = \sigma(W_h h^{(t-1)} + W_x x^{(t)}) \tag{1}$$

$$\hat{y}^{(t)} = \sigma(W_s h^{(t)}) \tag{2}$$

$$h^{(t)} = \sigma(W_h h^{(t-1)} + W_x x^{(t)}) \tag{3}$$

• $x^{(t)} \in \mathbb{R}^d$ é um vetor da palavra de entrada associada ao tempo t;

$$h^{(t)} = \sigma(W_h h^{(t-1)} + W_x x^{(t)}) \tag{4}$$

- $x^{(t)} \in \mathbb{R}^d$ é um vetor da palavra de entrada associada ao tempo t;
- $h^{(t-1)} \in \mathbb{R}^{D_h}$ é o vetor de saída da função não-linear no instante tempo t-1;

$$h^{(t)} = \sigma(W_h h^{(t-1)} + W_x x^{(t)})$$
 (5)

• $W_x \in \mathbb{R}^{D_h \times d}$ é a matriz de pesos que balanceia o vetor $x^{(t)}$;

$$h^{(t)} = \sigma(W_h h^{(t-1)} + W_x x^{(t)}) \tag{6}$$

- $W_x \in \mathbb{R}^{D_h \times d}$ é a matriz de pesos que balanceia o vetor $x^{(t)}$;
- $W_h \in \mathbb{R}^{D_h \times D_h}$ é a matriz de pesos que balanceia a saída $h^{(t-1)}$ do tempo anterior;

$$h^{(t)} = \sigma(W_h h^{(t-1)} + W_x x^{(t)}) \tag{7}$$

- $W_x \in \mathbb{R}^{D_h \times d}$ é a matriz de pesos que balanceia o vetor $x^{(t)}$;
- $W_h \in \mathbb{R}^{D_h \times D_h}$ é a matriz de pesos que balanceia a saída $h^{(t-1)}$ do tempo anterior;
- \bullet $\sigma()$ é a função de ativação não-linear, no caso a sigmóide.

$$\hat{y}^{(t)} = \sigma(W_s h^{(t)}) \tag{8}$$

• $\hat{y}^{(t)}$ é um tipo de saída da rede, no caso acima, modulada pela função sigmóide.

$$\hat{y}^{(t)} = \sigma(W_s h^{(t)}) \tag{9}$$

- \bullet $\hat{y}^{(t)}$ é um tipo de saída da rede, no caso acima, modulada pela função sigmóide.
- poderia ser outro tipo de função de ativação: tangente hiperbólica (tanh), relu, softmax... depende da aplicação!

Notação Gráfica

• Vetores com valores numéricos

• Vetores com valores numéricos

• Soma ponto-a-ponto: c = a + b

• Vetores com valores numéricos

 \bullet Multiplicação ponto-a-ponto: $c=a\odot b$

• Matriz de pesos contendo 4 neurônios (unidades internas):

• Matriz de pesos contendo 4 neurônios (unidades internas):

• Matriz de pesos contendo 7 neurônios (unidades internas):

• Produto cruzado entre um vetor e a matriz de pesos

- Produto cruzado entre um vetor e a matriz de pesos (a = Wb):
- Exemplo:

- Produto cruzado entre um vetor e a matriz de pesos
- Exemplo:

- Produto cruzado entre um vetor e a matriz de pesos
- Exemplo:

- Produto cruzado entre um vetor e a matriz de pesos
- Exemplo:

• Produto cruzado entre um vetor e a matriz de pesos

• e assim por diante...

Hipótese

• Seria possível uma rede neural analisar uma sentença de textos de modo que...

Hipótese

- Seria possível uma rede neural analisar uma sentença de textos de modo que...
- o processamento de um texto ocorra palavra por palavra, respeitando sua ordem e

Hipótese

- Seria possível uma rede neural analisar uma sentença de textos de modo que...
- o processamento de um texto ocorra palavra por palavra, respeitando sua ordem e
- a rede consiga reter relações de dependência a curto e longo prazos?

• A principal tarefa de uma RNN em PLN é servir como um modelo de linguagem;

- A principal tarefa de uma RNN em PLN é servir como um modelo de linguagem;
- A partir de um modelo de linguagem, pode-se estender sua aplicação para outras tarefas:
 - Reconhecimento de entidades nomeadas;

```
Barack Fussen Obama II * (born August 4, 1961 *) is an American • attorney and politician who served as the 44th President of the United States of from January 20, 2009 •, to January 20, 2007 • A member of the Democratic Party • he was the first African American • to serve as president. He was previously a United States Senator • from Emois • and a member of the Brook State Senate •
```

- A principal tarefa de uma RNN em PLN é servir como um modelo de linguagem;
- A partir de um modelo de linguagem, pode-se estender sua aplicação para outras tarefas:
 - Reconhecimento de entidades nomeadas;
 - Classificação de textos;

- A principal tarefa de uma RNN em PLN é servir como um modelo de linguagem;
- A partir de um modelo de linguagem, pode-se estender sua aplicação para outras tarefas:
 - Reconhecimento de entidades nomeadas;
 - Classificação de textos;
 - Geração automática de textos.

- A principal tarefa de uma RNN em PLN é servir como um modelo de linguagem;
- A partir de um modelo de linguagem, pode-se estender sua aplicação para outras tarefas:
 - Reconhecimento de entidades nomeadas;
 - Classificação de textos;
 - Geração automática de textos.
- Além disso, as RNNs servem como base para abordagens mais complexas como a Long Short-Term Memory (LSTM) e a Gated Recurrent Unit (GRU).

• Um modelo de linguagem possui a tarefa de prever a próxima palavra de um texto.

• Um modelo de linguagem possui a tarefa de prever a próxima palavra de um texto.

• Um modelo de linguagem possui a tarefa de prever a próxima palavra de um texto.

• Essa próxima palavra pode ser qualquer uma no vocabulário do *corpus*.

 Dada uma sequência de palavras, calcule a distribuição de probabilidade P da próxima palavra;

• Dada uma sequência de palavras, calcule a distribuição de probabilidade P da próxima palavra;

$$P(x^{(t+1)}|x^{(t)}, x^{(t-1)}, \dots, x^{(1)})$$

- em que $x^{(t+1)}$ é qualquer palavra no vocabulário $\mathbb{V} = \{w_1, w_2, \dots, w_N\};$
- \bullet t é a variável associada ao instante de tempo.

• Se temos um texto contendo M palavras, o modelo de linguagem associado ao texto é definido como:

$$P(x^{(1)}, x^{(2)}, \dots, x^{(M)}) = P(x^{(1)}) \times P(x^{(2)}|x^{(1)}) \times \dots \times P(x^{(t)}|x^{(t-1)}, x^{(t-2)}, \dots, x^{(1)})$$
(10)

• Se temos um texto contendo M palavras, o modelo de linguagem associado ao texto é definido como:

$$P(x^{(1)}, x^{(2)}, \dots, x^{(M)}) = P(x^{(1)}) \times P(x^{(2)}|x^{(1)}) \times \dots \times P(x^{(t)}|x^{(t-1)}, x^{(t-2)}, \dots, x^{(1)})$$

$$P(x^{(1)}, x^{(2)}, \dots, x^{(M)}) = \prod_{t=1}^{M} P(x^{t}|x^{(t-1)}, \dots, x^{(1)}) \quad (11)$$

$$P(x^{(1)}, x^{(2)}, \dots, x^{(M)}) = \prod_{t=1}^{M} P(x^{t} | x^{(t-1)}, \dots, x^{(1)})$$
 (12)

 Um modelo n-gram pode ser empregado para implementar o modelo de linguagem acima;

Fui ao posto de gasolina abastecer o _____

Pega a distribuição de probabilidade

Fui ao posto de gasolina abastecer o _____

Modelo de Linguagem utilizando RNNs

- Em PLN, podemos empregar uma RNN para funcionar como um modelo de linguagem;
- O objetivo é permitir a propagação de informação relacionada ao contexto através da rede durante os instantes de tempo.

Modelo de Linguagem Baseado em RNN

Adaptações na RNN de Elman

 Duas alterações são essenciais para se utilizar uma RNN como um modelo de linguagem:

Adaptações na RNN de Elman

- Duas alterações são essenciais para se utilizar uma RNN como um modelo de linguagem:
- 1. Representação de uma palavra em linguagem natural em uma estrutura vetorial;

Adaptações na RNN de Elman

- Duas alterações são essenciais para se utilizar uma RNN como um modelo de linguagem:
- 1. Representação de uma palavra em linguagem natural em uma estrutura vetorial;
- 2. Ajuste da saída para refletir uma distribuição de probabilidade em relação às palavras do vocabulário.

$$x^{(t)} = W_e l^{(t)} (13)$$

• $l^{(t)}$ é a representação inteira da palavra no instante de tempo t;

$$x^{(t)} = W_e l^{(t)} (14)$$

- $l^{(t)}$ é a representação inteira da palavra no instante de tempo t;
 - construa um vocabulário, em que cada palavra está associada a um índice inteiro;
 - utilize esse índice como a representação inteira.

$$x^{(t)} = W_e l^{(t)} (15)$$

- $l^{(t)}$ é a representação inteira da palavra no instante de tempo t;
- $W_e \in \mathbb{R}^{N \times D_e}$ é a matriz de pesos da camada *Embedding*, que gera um espaço denso;

$$x^{(t)} = W_e l^{(t)} (16)$$

- $l^{(t)}$ é a representação inteira da palavra no instante de tempo t;
- $W_e \in \mathbb{R}^{N \times D_e}$ é a matriz de pesos da camada *Embedding*, que gera um espaço denso;
 - $N = |\mathbb{V}|$ é o tamanho do vocabulário \mathbb{V} do corpus;

$$x^{(t)} = W_e l^{(t)} \tag{17}$$

- $l^{(t)}$ é a representação inteira da palavra no instante de tempo t;
- $W_e \in \mathbb{R}^{N \times D_e}$ é a matriz de pesos da camada *Embedding*, que gera um espaço denso;
 - $N = |\mathbb{V}|$ é o tamanho do vocabulário \mathbb{V} do corpus;
 - D_e é a dimensão do vetor de Embeddings (um hiperparâmetro!).

$$\hat{y}^{(t)} = softmax(W_s h^{(t)}) \tag{18}$$

• $\hat{y}^{(t)}$ é a distribuição de probabilidade sobre o vocabulário do corpus em um instante de tempo t.

$$\hat{y}^{(t)} = softmax(W_s h^{(t)}) \tag{19}$$

- $\hat{y}^{(t)}$ é a distribuição de probabilidade sobre o vocabulário do corpus em um instante de tempo t.
- $\hat{y}^{(t)}$ é a próxima palavra a ser predita com base:

$$\hat{y}^{(t)} = softmax(W_s h^{(t)}) \tag{20}$$

- $\hat{y}^{(t)}$ é a distribuição de probabilidade sobre o vocabulário do corpus em um instante de tempo t.
- $\hat{y}^{(t)}$ é a próxima palavra a ser predita com base:
 - no estado anterior (codificação do contexto) $h^{(t-1)}$;

$$\hat{y}^{(t)} = softmax(W_s h^{(t)}) \tag{21}$$

- $\hat{y}^{(t)}$ é a distribuição de probabilidade sobre o vocabulário do corpus em um instante de tempo t.
- $\hat{y}^{(t)}$ é a próxima palavra a ser predita com base:
 - no estado anterior (codificação do contexto) $h^{(t-1)}$;
 - \bullet e a última palavra analisada a partir de seu vetor $x^{(t)}.$

$$\hat{y}^{(t)} = softmax(W_s h^{(t)}) \tag{22}$$

- $\hat{y}^{(t)}$ é a distribuição de probabilidade sobre o vocabulário do corpus em um instante de tempo t.
- $\hat{y}^{(t)}$ é a próxima palavra a ser predita com base:
- $W_s \in \mathbb{R}^{N \times D_h}$ e $\hat{y} \in \mathbb{R}^N$, em que $N = |\mathbb{V}|$ é o tamanho do vocabulário \mathbb{V} do corpus.

- Camada oculta contém neurônios;
 - podemos ter várias neurônios também chamadas de unidades internas!

- Camada oculta contém neurônios;
 - podemos ter várias neurônios também chamadas de unidades internas!
- Um neurônio realiza uma operação matricial linear em suas entradas;

- Camada oculta contém neurônios;
 - podemos ter várias neurônios também chamadas de unidades internas!
- Em seguida, uma função de ativação (tanh() ou ReLU()) é aplicada.

palavra^(t)

palavra^(t)

palavra^(t)

Processando uma Sentença

Processando uma Sentença

Processando uma Sentença

Treinamento de um modelo de linguagem

• Pegue o maior *corpus* possível para treinar sua RNN;

Treinamento de um modelo de linguagem

- \bullet Pegue o maior corpus possível para treinar sua RNN;
- Processe sentença por sentença.

Treinamento de um modelo de linguagem

- Pegue o maior *corpus* possível para treinar sua RNN;
- Processe sentença por sentença. Suponha a sentença:

 O ponto forte da equipe é o jogo aéreo.

O ponto forte da equipe é o jogo aéreo.

• Para cada palavra dessa sentença, reestrute o *corpus* como se segue maneira:

palavra	próxima palavra		
O	ponto		
ponto	forte		
forte	da		
da	equipe		
equipe	é		
aéreo	" <end>"</end>		
equipe 	é		

O ponto forte da equipe é o jogo aéreo.

• Para cada palavra dessa sentença, reestrute o *corpus* como se segue maneira:

notação (vetorial)	palavra	próxima palavra	notação
$x^{(1)}$	О	ponto	$y^{(1)}$
$x^{(2)}$	ponto	forte	$y^{(2)}$
$x^{(3)}$	forte	da	$y^{(3)}$
$x^{(4)}$	da	equipe	$y^{(4)}$
$x^{(5)}$	equipe	é	$y^{(5)}$
			•••
$x^{(M)}$	aéreo	" <end>"</end>	$y^{(M)}$

• Em seguida, pegue cada par $(x^{(t)}, y^{(t)})$ (palavra, próxima palavra) e coloque como entrada da RNN;

- Em seguida, pegue cada par $(x^{(t)}, y^{(t)})$ (palavra, próxima palavra) e coloque como entrada da RNN;
- Obtenha a predição $\hat{y}^{(t)}$ para cada instante de tempo t;

- Em seguida, pegue cada par $(x^{(t)}, y^{(t)})$ (palavra, próxima palavra) e coloque como entrada da RNN;
- Obtenha a predição $\hat{y}^{(t)}$ para cada instante de tempo t;
 - em outras palavras, determine a distribuição de probabilidade de cada palavra condicionada às palavras analisadas até o momento.

Função Loss

- Calcule a função loss utilizando
 - $\hat{y}^{(t)}$: a próxima palavra de acordo com a probabilidade predita pela RNN;
 - $y^{(t)}$: a verdadeira próxima palavra (gabarito).
- A função loss empregada em uma RNN é comumente a entropia cruzada:

$$J^{(t)}(\theta) = CE(y^{(t)}, \hat{y}^{(t)}) = -\sum_{w \in \mathbb{V}} y_w^{(t)} \log \hat{y}_w^{(t)} = -\log \hat{y}_{x^{(t+1)}}^{(t)}$$
(23)

Função Loss

 A função loss empregada em uma RNN é comumente a entropia cruzada:

$$J^{(t)}(\theta) = CE(y^{(t)}, \hat{y}^{(t)}) = -\sum_{w \in \mathbb{V}} y_w^{(t)} \log \hat{y}_w^{(t)} = -\log \hat{y}_{x^{(t+1)}}^{(t)}$$
(24)

• A função *loss* geral para todo os dados de treinamento:

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta) = \frac{1}{T} \sum_{t=1}^{T} -\log \hat{y}_{x^{(t+1)}}^{(t)}$$
 (25)

Otimização dos parâmetros

- O cálculo da função *loss* é proibitivo para ser feito de uma única vez após processar todo o *corpus*;
- Para amortizar esses cálculos, deve-se calcular a *loss* após processar uma parte do *corpus*
 - uma sentença ou um documento, por exemplo.
- Sabemos que o Gradiente Descendente nos permite calcular a função loss e os gradientes para pequenas quantidades de dados e atualizá-los.

Otimização dos parâmetros

- Processo feito para uma sentença (ou um batch de sentenças):
 - Calcular a loss $J(\theta)$;
 - 2 Calcular os gradientes;
 - 3 Atualizar os pesos;
- Repita o processo acima para um novo batch...

Otimização dos parâmetros

• A derivada de $J(\theta)$ em relação a uma matriz de pesos repetida é:

$$\frac{\partial J^{(t)}}{\partial W_h} = \sum_{i=1}^t \frac{\partial J^{(t)}}{\partial W_h}|_{(i)} \tag{26}$$

- Calcular a loss $J(\theta)$;
- 2 Calcular os gradientes;
- 4 Atualizar os pesos;
- Repita o processo acima para um novo batch...

Implementação

• O que acontece se as derivadas resultarem em valores pequenos?

- O que acontece se as derivadas resultarem em valores pequenos?
- A magnitude do gradiente diminui com o passar do backpropagation durante o tempo.

• O gradiente mais distante (em azul) é perdido com o passar do tempo, pois sua magnitude é bem menor do que era quando foi calculada (mais forte em amarelo).

- Os pesos da RNN tem efeito a curto prazo, e não a longo prazo!
- A preservação das relações de longa dependência são mínimas em uma RNN.

O Gradiente que Explode!

 Por outro lado, a magnitude gradiente pode aumentar caso as atualizações dos pesos sejam significativas;

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta) \tag{27}$$

- Isso gera atualizações discrepantes nos parâmetros do modelo;
 - valores de *loss* altos e com bastante variações entre as épocas.

Considerações Finais

Vantagens

- Capaz de processar textos de entrada de qualquer tamanho;
- O tamanho do modelo n\u00e3o est\u00e1 relacionado ao tamanho do texto de entrada;
- Treinamento e geração das saídas levam em conta informações no tempo;
- Os pesos são compartilhados durante o tempo.

Desvantagens

- Treinamento e cálculo da saída são lentos e computacionalmente caros;
- Difficulty of accessing information from a long time ago
- Cannot consider any future input for the current state

Desvantagens

• As RNNs propagamRecurrent neural networks propagate weight matrices from one timestep to the next. Recall the goal of a RNN implementation is to enable propagating context information through faraway time-steps. For example, consider the following two sentences:

Implementação

Redes Neurais Recorrentes Curso ENAP - Processamento de Linguagem Natural

Prof. Dr. Vinícius Ruela Pereira Borges

viniciusrpb@unb.br

Brasilia-DF, 2024