CSE 101 – Nov 15, 2019 (Week 7)

Notes provided by Ben Sihota bsihota@ucsc.edu

 \mathbf{DFS}

$$n = |V|$$

$$m = |E|$$

Item	Cost
Runtime Main loop (5-7) except Visit()	$\Theta(n)$ $\Theta(n)$
Cost of loop (4-6) apart from cost of	total length of adj list =
Visit()	$\begin{cases} m - \operatorname{dir} \\ 2m - \operatorname{undir} \end{cases} = \Theta(m)$
Number calls to Visit()	$\Theta(n)$

Total cost $\Theta(n+m)$

Parenthesis string

 $From\ example\ of\ DFS$

Time	String
1	(
2	(
3	(
4)
• • •	

Parenthesis theorem

Let $x, y \ inV(G)$ and suppose d[x] < d[y]. Then exactly one of the following holds:

1.
$$d[x] < f[x] < d[y] < f[y]$$

$$2. \ d[x] < d[y] < f[y] < f[x]$$

Remark

- (2) is equivalent to saying
 - -y is discovered when x is gray
 - y is a descendent of x in some DFS tree
- (1) is equivalent to saying
 - -y is **not** a descendent of x
 - cousins in same tree
 - different trees

White path theorem

Let $x, y \in V(G)$ and run DFS(G). Then y is a descendent of $x \iff$ at the the time d[x], G contains an $x \ y$ path consisting entirely of white vertices.

Edge classification

- Tree edges: belong to G_p
- Back edges: join descendent to ancestor
- Forward edges: join ancestor to descendent
- Cross edges
 - join cousin to cousin
 - tree to tree