KHÔLLE Nº 17

Exercice 1.

- 1. Soient u et v deux suites de ℓ^1 , et soient α et β deux réels. Pour $n \in \mathbb{N}$, $0 \le |\alpha u_n + \beta v_n| \le |\alpha| \cdot |u_n| + |\beta| \cdot |v_n|$. Or, les séries $\sum |u_n|$ et $\sum |v_n|$ convergent. D'où, $\sum |\alpha u_n + \beta v_n|$ converge. Ainsi, $(\alpha u + \beta v) \in \ell^1$. De plus, $(0)_{n \in \mathbb{N}} \in \ell^1$, donc $\ell^1 \ne \emptyset$. L'ensemble ℓ^1 est donc un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
 - Soient u et v deux suites de ℓ^2 , et soient α et β deux réels. Pour $n \in \mathbb{N}$, $0 \le (\alpha u_n + \beta v_n)^2 \le \alpha^2 \cdot u_n^2 + \beta^2 \cdot v_n^2$. Or, les séries $\sum u_n^2$ et $\sum v_n^2$ convergent. D'où, $\sum (\alpha u_n + \beta v_n)^2$ converge. Ainsi, $(\alpha u + \beta v) \in \ell^2$. De plus, $(0)_{n \in \mathbb{N}} \in \ell^2$, donc $\ell^2 \neq \emptyset$. L'ensemble ℓ^2 est donc un sousespace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
 - Soient u et v deux suites de ℓ^{∞} , et soient α et β deux réels. Soient m et m' deux réels tels que, pour tout $n \in \mathbb{N}$, $|u_n| \leq m$ et $|v_n| \leq m'$. Or, pour $n \in \mathbb{N}$, d'après l'inégalité triangulaire :

$$|\alpha u_n + \beta v_n| \leq |\alpha| \cdot |u_n| + |\beta| \cdot |v_n| \leq |\alpha| \cdot m + |\beta| \cdot m',$$

qui est un majorant. D'où, $(\alpha u + \beta v) \in \ell^{\infty}$. De plus, $(0)_{n \in \mathbb{N}} \in \ell^{\infty}$, donc $\ell^{\infty} \neq \emptyset$. L'ensemble ℓ^{∞} est donc un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

- Soit u une suite de ℓ^1 . La série $\sum |u_n|$ converge donc la suite $(|u_n|)_{n\in\mathbb{N}}$ tend vers 0. Il existe donc un certain rang N tel que, pour tout $n\geqslant N$, $|u_n|\leqslant 1$. Ainsi, pour tout $n\geqslant N$, $|u_n|\geqslant |u_n|^2\geqslant 0$. Or, la série $\sum |u_n|$ converge. On en déduit que la série $\sum |u_n|^2=\sum u_n^2$ converge. D'où $u\in\ell^2$. On en déduit $\ell^1\subset\ell^2$.
- Soit u une suite de ℓ^2 . La série $\sum u_n^2$ converge, donc la suite $(u_n^2)_{n\in\mathbb{N}}$ tend vers 0, elle est donc majorée. On pose M>0 un majorant et $m=\sqrt{M}$. Ainsi, pour tout $n\in\mathbb{N}$, $|u_n^2|\leqslant M$, donc $|u_n|^2\leqslant m^2$ et donc $0\leqslant |u_n|\leqslant m$. La suite u est donc majorée par m, d'où $u\in\ell^\infty$. On en déduit $\ell^2\subset\ell^\infty$.
- 2. (a) Soit $u \in \ell^1$. Montrons que $||u||_{\infty} \leq ||u||_1$. La suite $(|u_n|)_{n \in \mathbb{N}}$ tend vers 0. Ainsi $\sup_{n \in \mathbb{N}} |u_n| = \max_{n \in \mathbb{N}} |u_n|$.

$$||u||_{\infty} = |u_i| \leqslant \sum_{k=0}^{\infty} |u_k| = ||u||_1$$

car les termes de la somme de la série $\sum |u_n|$ sont positifs. On a donc montré que $\alpha \leqslant 1$. Cette valeur de α est la plus petite. En effet, on considère la suite $u \in \ell^1$ définie par $u_0 = 1$, et pour tout $n \in \mathbb{N}^*$, $u_n = 0$. On a $||u||_{\infty} = 1$ et $||u||_1 = 1$. D'où, $1 \leqslant \alpha \cdot 1$. On en déduit que $\alpha = 1$.

- (b) Non, il n'existe pas un réel β tel que, pour toute suite $u \in \ell^1$, $\|u\|_{\infty} \beta \geqslant \|u\|_1$. En effet, par l'absurde, supposons que ce réel β existe. On considère la suite u(m) définie par, pour tout $i \in [\![1,m]\!]$, $u(m)_i = 0$, et pour tout i > m, $u(m)_i = 0$. Pour tout entier m, on a $\|u(m)\|_{\infty} = 1$, et $\|u(m)\|_1 = m$. D'où, pour tout entier m, $\beta \geqslant m$, ce qui est absurde.
- (c) Non. En effet, il n'existe pas de réel β tel que, pour toute suite $u \in \ell^1$, $||u||_1 \leq \beta ||u||_2$. On considère la suite u(m) définie à la question précédente. On a $||u(m)||_1 = m$, et $||u(m)||_2 = \sqrt{n}$. D'où, pour tout entier m, $m \leq \beta \sqrt{m}$, et donc $\beta \geq \sqrt{m}$, pour tout entier m, ce qui est absurde.

Exercice 2. Montrons que l'application f est linéaire et continue en 0.

— Soient P et Q deux polynômes, et soient α et β deux réels. On pose $n = \max(\deg P, \deg Q)$, $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$. Ainsi,

$$f(\alpha P + \beta Q) = \sum_{k=0}^{n} \frac{\alpha a_k + \beta b_k}{k+1} = \alpha \sum_{k=0}^{n} \frac{a_k}{k+1} + \beta \sum_{k=0}^{n} \frac{b_k}{k+1} = \alpha f(P) + \beta f(Q),$$

l'application f est donc linéaire.

— Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes convergent vers 0. Montrons que $|f(P_n)|\to 0$ quand $n\to\infty$. On pose, pour tout $n\in\mathbb{N}$, $P_n=\sum_{k=0}^{\deg P_n}a_{k,n}X^k$; de plus, pour $k\geqslant \deg P_n$, on pose $a_{k,n}=0$. Ainsi, $\|P_n\|=\sum_{k=0}^\infty a_{k,n}^2$. Cette somme converge car elle est finie : les termes sont tous nuls à partir d'un certain rang. Or, $\|P_n\|\to 0$ quand $n\to\infty$, et la somme n'est composée que de termes positifs ou nuls. On en déduit que, pour tout $k\in\mathbb{N}$, $a_{k,n}^2\to 0$, et donc $a_{k,n}\to 0$ quand

 $n\to\infty$. Et, pour tout $k\in\mathbb{N},$ $0\leqslant \left|a_{k,n}/(k+1)\right|\leqslant |a_{k,n}|\to 0$. Par le théorème des gendarmes, chaque terme de la somme

$$f(P_n) = \sum_{k=0}^{\deg P_n} \frac{a_{k,n}}{k+1}$$

tend vers 0, donc la somme tend vers 0. Ainsi, on a bien $|f(P_n)| \to 0$ quand $n \to \infty$. La fonction f est donc continue en 0.

On en déduit que la fonction f est continue sur $\mathbb{R}[X]$.

Exercice 3.

- Soit $\vec{u}=(x,y)\in\mathbb{R}^2$. Si $N(\vec{u})=0$, alors $\sup_{t\in[0,1]}|x+ty|=0$. Or, $|x+ty|\geqslant 0$. On en déduit que, pour tout $t\in[0,1],\,x+ty=0$. En particulier, pour t=0, on a x=0; puis, pour t=1, on a x+y=y=0. Ainsi, $\vec{u}=\vec{0}$.
- Soit $\vec{u}=(x,y)\in\mathbb{R}^2$ et soit α un réel. Pour $t\in[0,1]$, $|\alpha x+t\alpha y|=|\alpha|\cdot|x+ty|\leqslant|\alpha|\cdot N(\vec{u})$, qui est un majorant. D'où, $N(\alpha\vec{u})=\sup_{t\in[0,1]}|\alpha|\cdot|x+ty|=|\alpha|\cdot N(\vec{u})$.
- Soient $\vec{u}=(a,b)\in\mathbb{R}^2$ et $\vec{v}=(c,d)\in\mathbb{R}^2$. Pour $t\in[0,1]$, on a $|(a+c)+t(b+d)|=|(a+tb)+(c+td)|\leqslant |a+tb|+|c+td|\leqslant N(\vec{u})+N(\vec{v})$, qui est un majorant. D'où, $N(\vec{u}+\vec{v})\leqslant N(\vec{u})+N(\vec{v})$.

On en déduit que N est une norme sur \mathbb{R}^2 . Pour dessiner la boule $\bar{B}(\vec{0},1)$, on procède par analyse-synthèse.

Analyse Soit $\vec{u}=(x,y)\in \bar{B}(\vec{0},1)$. Ainsi, $N(\vec{u})=\sup_{t\in[0,1]}|x+ty|\leqslant 1$, d'où, pour tout $t\in[0,1]$, $|x+ty|\leqslant 1$. En particulier, pour t=0, on a $|x|\leqslant 1$, donc $-1\leqslant x\leqslant 1$; de plus, en t=1, on a $|x+y|\leqslant 1$, d'où $-1\leqslant x+y\leqslant 1$.

Synthèse Soit $x \in [-1,1]$, et soit $y \in [-1-x,1-x]$. On pose $\vec{u}=(x,y) \in \mathbb{R}^2$. Montrons que $N(\vec{u}) \leq 1$. La fonction $f:t\mapsto |x+ty|$ est continue sur [0,1], donc $N(\vec{u})=\max_{t\in [0,1]}|x+ty|$. Montrons que ce maximum est atteint en t=0 ou t=1. Ce résultat est clairement vrai si la fonction f est monotone. On suppose maintenant que cette fonction n'est pas monotone. Ainsi, la fonction $t\mapsto x+ty$ change de signe sur [0,1]. Cette fonction s'annule une fois en un point d'abscisse $\alpha\in]0,1[$ Sur $[0,\alpha]$, f est monotone et le maximum est atteint en 0 ou en α ; or, f est positive, et $f(\alpha)=0$; le maximum est donc atteint en 0, sur cet intervalle. Sur $[\alpha,1]$, f est monotone, et le maximum est atteint en 1 ou en α . Comme f est positive, on en déduit que le maximum est atteint en 1 sur cet intervalle. Ainsi, le maximum est atteint en 0 ou en 1 sur l'intervalle [0,1].

Figure 1 – Boule fermée centrée en $\vec{0}$ de rayon 1, pour la norme N