Model empirik

https://github.com/dudung/sk5003-02-2022-2

Sparisoma Viridi

Master Program in Computational Science, Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia

20230527 v5| https://doi.org/10.5281/zenodo.7976249

Silakan berdiskusi untuk kuliah hari ini di https://github.com/dudung/sk5003-02-2022-2/issues/12

Kerangka

- SAP dan referensi
 4
 Materi mandiri
 - Model empirik
 Penutup (pertanyaan)
 - Model matematik
 13
 - Interpolasi 22
- Fitting kurva (curve fitting)

SAP dan referensi

Minggu 8

Minggu	Topik	Subtopik	Capaian Belajar
11	Model komputasi fundamental dengan Python	Model empirik dengan interpolasi dan fitting kurva, penggunaan array dengan Numpy	Kemampuan untuk membuat model empirik dengan interpolasi dan fitting kurva, menggunakan array dengan Numpy

Referensi utama

 Jose M. Garrido, "Introduction to Computational Models with Python", Routledge, 1st edition, 2020,

url https://isbnsearch.org/isbn/9780367575533.

R1

C16

- Interpolation
- Curve fitting

C17

- Vector
- Addition
- Multiplication
- Dot product
- Cross product

Model empirik

Model empirik

- Empirical models are only supported by experimental data, while the fundamentals and mechanisms underlying processes in a system are not considered.
- Developing an empirical model is a common methodology used to derive a direct correlation between inputs and outputs of a system, especially when it is difficult or impossible to develop a comparable mathematical model.

^{-, &}quot;Empirical model", -, url https://www.sciencedirect.com/topics/engineering/empirical-model [20230527].

Model empirik (lanj.)

- Empirical model can be used to model a system based on their underlying assumptions.
- Empirical models offer simplistic solutions for quantitative comparisons between different operating conditions.
- An empirical model can provide reliable results when it is based on a substantial amount of test data. However, the process of conducting a large number of tests, in particular system, is often costly and impractical.

Model empirik (lanj.)

- Empirical models are based on correlations obtained from analysis of experimental data.
- Empirical models are not based on any specific theory of an operation and are derived by fitting models to experimental data.
- Empirical models that have been used for the handling of some data have typically used curve fitting processes to generalise the results of experiments.

Model empirik (lanj.)

• Empirical models use relationships between X and Y measurements to estimate Z, where Z = f(X, Y).

Model matematik

Model matematik

- Memiliki konsep atau teori sebagai dasarnya.
- Parameter-parameter yang digunakan saat melakukan fitting data dengan kurva akan "berbicara".
- Hasil belum tentu akurat secara model, tetapi secara teori lebih tepat.

Gerak parabola

- Materi fisika dasar yang banyak dimanfaatkan, terutama dalam perang (sains tidak berpihak, tergantung yang memanfaatkanya ☺).
- Dapat ditingkatkan kompleksitasnya dengan menambahkan gesekan udara dan adanya angin yang berubah-ubah arah dan besarnya.
- Ilustrasi yang digunakan masih tanpa angin dan tanpa gesekan udara.

Formula

Fungsi parametrik (dari kinematika)

$$x = x_0 + (v_0 \cos \theta)t$$
$$y = y_0 + (v_0 \sin \theta)t - \frac{1}{2}gt^2$$

Posisi vertikal sebagai fungsi posisi horizontal

$$y = y_0 + \tan \theta (x - x_0) - \frac{g}{2v_0^2 \cos^2 \theta} (x - x_0)^2$$

Dari formula dan grafik

$$\frac{g}{2v_0^2\cos^2\theta} = 0.0006$$

$$\tan\theta + \frac{gx_0}{v_0^2 \cos^2\theta} = 0.5685$$

$$y = y_0 - \tan \theta \, x_0 - \frac{g}{2v_0^2 \cos^2 \theta} \, x_0^2 = 2.4562$$

Interpolasi

Interpolasi

- Estimasi data antara
- Interpolasi linier
- Interpolasi spline kubik
- Interpolasi polinomial Lagrange

Estimasi data antara

Interpolasi linier

 Membuat fungsi linier di antara dua titik data.

$$y=igg(rac{y_{i+1}-y_i}{x_{i+1}-x_i}igg)(x-x_i)+y_i$$

$$i=1+\left | rac{x-x_1}{\Delta x}
ight |$$

 Coba tunjukkan keberlakuannya.

Interpolasi linier (lanj.)

$$i=1+\left \lfloor rac{x-x_1}{\Delta x}
ight
floor$$

• Dengan menggunakan rumus sebelumnya tentukanlah i untuk x = 3.5.

Apakah rumus itu berlaku?

Interpolasi linier (lanj.)

Interpolasi spline kubik

Untuk setiap rentang memenuhi

$$f\left(x
ight) = egin{cases} a_1x^3 + b_1x^2 + c_1x + d_1 & ext{if } x \in [x_1, x_2] \ a_2x^3 + b_2x^2 + c_2x + d_2 & ext{if } x \in (x_2, x_3] \ \dots \ a_nx^3 + b_nx^2 + c_nx + d_n & ext{if } x \in (x_n, x_{n+1}] \end{cases}$$

Timo Denk, "Cubic Spline Interpolation", 17 Jun 2017, url https://timodenk.com/blog/cubic-spline-interpolation/ [20230526].

$$egin{aligned} f_1(x_1) &= y_1 \ f_1(x_2) &= y_2 \ f_2(x_2) &= y_2 \ f_2(x_3) &= y_3 \ & \dots \ f_n(x_n) &= y_n \ f_n(x_{n+1}) &= y_{n+1} \ , \end{aligned}$$

$$a_1x_1^3 + b_1x_1^2 + c_1x_1 + d_1 = y_1 \ a_1x_2^3 + b_1x_2^2 + c_1x_2 + d_1 = y_2 \ a_2x_2^3 + b_2x_2^2 + c_2x_2 + d_2 = y_2 \ a_2x_3^3 + b_2x_3^2 + c_2x_3 + d_2 = y_3 \ \cdots \ a_nx_n^3 + b_nx_n^2 + c_nx_n + d_n = y_n \ a_nx_{n+1}^3 + b_nx_{n+1}^2 + c_nx_{n+1} + d_n = y_{n+1} \ ,$$

$$rac{d}{dx}f_1(x) = rac{d}{dx}f_2(x) \qquad |_{x=x_2} \qquad 3a_1x_2^2 + 2b_1x_2 + c_1 = 3a_2x_2^2 + 2b_2x_2 + c_2 \ 3a_2x_3^2 + 2b_2x_3 + c_2 = 3a_3x_3^2 + 2b_3x_3 + c_3 \ rac{d}{dx}f_2(x) = rac{d}{dx}f_3(x) \qquad |_{x=x_3} \qquad \dots \ 3a_{n-1}x_n^2 + 2b_{n-1}x_n + c_{n-1} = 3a_nx_n^2 + 2b_nx_n + c_n \ .$$

$$\frac{d}{dx}f_{n-1}(x) = \frac{d}{dx}f_n(x) \qquad |_{x=x_n}$$

\boldsymbol{x}	y
1	0.5
5	1
10	1.2
15	2
20	1

$$\textbf{Natural} \ \ f(x) = \begin{cases} -2.1150 \cdot 10^{-3} \cdot x^3 + 6.3450 \cdot 10^{-3} \cdot x^2 + 1.5249 \cdot 10^{-1} \cdot x + 3.4327 \cdot 10^{-1}, & \text{if } x \in [1, 5], \\ 4.3832 \cdot 10^{-3} \cdot x^3 - 9.1128 \cdot 10^{-2} \cdot x^2 + 6.3986 \cdot 10^{-1} \cdot x - 4.6900 \cdot 10^{-1}, & \text{if } x \in (5, 10], \\ -6.9640 \cdot 10^{-3} \cdot x^3 + 2.4929 \cdot 10^{-1} \cdot x^2 - 2.7643 \cdot x + 1.0878 \cdot 10^1, & \text{if } x \in (10, 15], \\ 4.2728 \cdot 10^{-3} \cdot x^3 - 2.5637 \cdot 10^{-1} \cdot x^2 + 4.8205 \cdot x - 2.7046 \cdot 10^1, & \text{if } x \in (15, 20]. \end{cases}$$

$$\begin{array}{l} \bullet \quad \mathsf{Quadratic}\, f(x) = \begin{cases} -1.0089 \cdot 10^{-64} \cdot x^3 - 1.9656 \cdot 10^{-2} \cdot x^2 + 2.4294 \cdot 10^{-1} \cdot x + 2.7672 \cdot 10^{-1}, & \text{if } x \in [1,5], \\ 3.6763 \cdot 10^{-3} \cdot x^3 - 7.4802 \cdot 10^{-2} \cdot x^2 + 5.1866 \cdot 10^{-1} \cdot x - 1.8282 \cdot 10^{-1}, & \text{if } x \in (5,10], \\ -5.7191 \cdot 10^{-3} \cdot x^3 + 2.0706 \cdot 10^{-1} \cdot x^2 - 2.3000 \cdot x + 9.2126, & \text{if } x \in (10,15], \\ 0.0000 \cdot x^3 - 5.0298 \cdot 10^{-2} \cdot x^2 + 1.5604 \cdot x - 1.0089 \cdot 10^1, & \text{if } x \in (15,20]. \end{cases}$$


```
 \text{Not-a-knot} \, f(x) = \begin{cases} 2.8222 \cdot 10^{-3} \cdot x^3 - 5.4600 \cdot 10^{-2} \cdot x^2 + 3.6511 \cdot 10^{-1} \cdot x + 1.8667 \cdot 10^{-1}, & \text{if } x \in [1, 5], \\ 2.8222 \cdot 10^{-3} \cdot x^3 - 5.4600 \cdot 10^{-2} \cdot x^2 + 3.6511 \cdot 10^{-1} \cdot x + 1.8667 \cdot 10^{-1}, & \text{if } x \in (5, 10], \\ -4.4044 \cdot 10^{-3} \cdot x^3 + 1.6220 \cdot 10^{-1} \cdot x^2 - 1.8029 \cdot x + 7.4133, & \text{if } x \in (10, 15], \\ -4.4044 \cdot 10^{-3} \cdot x^3 + 1.6220 \cdot 10^{-1} \cdot x^2 - 1.8029 \cdot x + 7.4133, & \text{if } x \in (15, 20]. \end{cases}
```


$$\textbf{Periodic} \ f(x) = \begin{cases} -1.1554 \cdot 10^{-2} \cdot x^3 + 1.2456 \cdot 10^{-1} \cdot x^2 - 2.6417 \cdot 10^{-1} \cdot x + 6.5117 \cdot 10^{-1}, & \text{if } x \in [1, 5], \\ 6.7564 \cdot 10^{-3} \cdot x^3 - 1.5010 \cdot 10^{-1} \cdot x^2 + 1.1091 \cdot x - 1.6376, & \text{if } x \in (5, 10], \\ -9.4811 \cdot 10^{-3} \cdot x^3 + 3.3703 \cdot 10^{-1} \cdot x^2 - 3.7621 \cdot x + 1.4600 \cdot 10^1, & \text{if } x \in (10, 15], \\ 1.1968 \cdot 10^{-2} \cdot x^3 - 6.2818 \cdot 10^{-1} \cdot x^2 + 1.0716 \cdot 10^1 \cdot x - 5.7790 \cdot 10^1, & \text{if } x \in (15, 20]. \end{cases}$$

Polinomial interpolasi Lagrange

$$L(x) = \sum_{j=0}^k y_j \ell_j(x).$$

$$\ell_j(x) = rac{(x-x_0)}{(x_j-x_0)} \cdots rac{(x-x_{j-1})}{(x_j-x_{j-1})} rac{(x-x_{j+1})}{(x_j-x_{j+1})} \cdots rac{(x-x_k)}{(x_j-x_k)}$$

$$=\prod_{\substack{0\leq m\leq k\ m
eq j}}rac{x-x_m}{x_j-x_m}.$$

Wikipedia contributors, 'Lagrange polynomial', Wikipedia, The Free Encyclopedia, 12 April 2023, 16:12 UTC, url https://en.wikipedia.org/w/index.php?oldid=1149496043 [20230526].

```
1 # Program that performs linear interpolation
 2 import numpy as np
 3
4 y = [0.0, 3.0, 6.0, 8.0, 12.0, 17.0, 23.0, 26]
 5 v = np.array(v)
 6 print "Values of array y:"
7 print y
8 xi = 0.0
9 xf = 7.0
10 M = np.size(y)
11 x = x = np.linspace(xi, xf, M)
12 print "Values of array x:"
13 print x
14 # generate an array of 20 intermediate points
15 N = 20
16 xint = np.linspace(xi, xf, N)
17 yint = np.interp(xint, x, y)
18 print "Interpotated values of x and y:"
19 for j in range(N):
20 print xint[j], yint[j]
```

```
1 # Cubic spline interpolation
2 #File: csinterp.py Sep 2, 2014
```

NumPy + SciPy

3 import numpy as np 4 from scipy import interpolate

```
6 \text{ y} = [-310.0, -179.8, -82.3, -13.6, 30.0, 52.6, 57.8, 49.6,
  31.8, 8.2, -17.2, -40.8, -58.6, -66.8, -61.5, -39.0, 4.6,
 73.3, 170.8, 301.0]
 7 y = np.array(y)
8 N = np.size(y)
9 xi = -6.0
10 \text{ xf} = 7.0
11 x = np.linspace(xi, xf, N)
12 sprep = interpolate.splrep(x, y, s=0) # spline of y
13 M = int(1.5 * N) # more points
14 xint = np.linspace(xi, xf, M)
15 yint = interpolate.splev(xint, sprep, der=0) # interp
16 print "Cubic Spline interpolation:"
17 for j in range(M):
18 print xint[j], yint[j]
```

Fitting kurva (curve fitting)

Fitting dengan fungsi linier (orde 1)


```
9 M = 30 # number of data points to compute
10 xi = 0.0 # first value of x
                                                             NumPy
11 xf = 7.0 # final value of x
12 y = [0.0, 3.0, 6.0, 8.0, 12.0, 21.0, 43.0, 66.0]
13 y = np.array(y)
14 sn = np.size(y) # number of points
15 x = np.linspace(xi, xf, sn)
16 deg = 1 # degree of polynomial function
17 print "Values of X and Y:"
18 for j in range (sn):
19 print x[i], y[i]
20 c = np.polyfit(x, y, deg)
21 print "Coefficient list:"
                               24 xc = np.linspace(xi, xf, M) # new x points
22 print c
                               25 yc = np.polyval(c, xc) # new y points
23 # Evaluate polynomial
                               26 print "Evaluation of polynomial"
                               27 for j in range(M):
                               28 print xc[j], yc[j]
```

Fitting dengan fungsi linier (orde 3)


```
9 M = 30 # number of data points to compute
10 xi = 0.0 # first value of x
11 xf = 7.0 # final value of x
12 y = [0.0, 3.0, 6.0, 8.0, 12.0, 21.0, 43.0, 66.0]
13 y = np.array(y)
14 sn = np.size(y) # number of points
15 x = np.linspace(xi, xf, sn)
16 deg = 1 # degree of polynomial function
17 print "Values of X and Y:"
18 for j in range (sn):
   print x[j], y[j]
20 c = np.polyfit(x, y, deg)
21 print "Coefficient list:"
22 print c
23 # Evaluate polynomial
```

NumPy

- Bagaimana kira-kira kodenya?
- Modifikasi deg = 3
 untuk orde 3.

```
24 xc = np.linspace(xi, xf, M) # new x points

25 yc = np.polyval(c, xc) # new y points

26 print "Evaluation of polynomial"

27 for j in range(M):

28 print xc[j], yc[j]
```

Materi mandiri

Matriks dan vektor

- Matriks dan vektor pada matematika dapat dihitung dalam Python.
- Secara simbolik dapat menggunakan SymPy.
- Secara numerik dapat menggunakan NumPy.
- Beberapa operasinya adalah: penjumlahan / pengurangan, perkalian / pembagian, rotasi, proyeksi, besar, determinan, transpos, invers.

Catatan

- Pelajari materi yang termasuk pada bagian mandiri ini.
- Buat beberapa contoh dan selesaikan secara teori.
- Gunakan contoh yang sama dan selesaikan secara numerik dengan menggunakan NumPy.

Penutup

Pertanyaan

- Apakah perbedaan antara interpolasi linier, quadratik, kubik, kubik spline, polinomial Lagrange?
- Jelaskan perbedaan mendasar antara interpolasi dan fitting kurva?
- Apakah perbedaan antara model empirik dan matematik?
 Kapan digunakan yang pertama dan kapan yang kedua?
- Jelaskan simbol dan pemanfaatan fungsi floor dan ceil. Apakah digunakan dalam pertemuan ini? Bila ya, di bagian mana?

Terima kasih

-