ML2022-2023 Spring HW15 Report

Public Score	Private Score
0.97291	0.95681

Report Questions

Part 1 Number of Tasks

Q1

Plot the relation between dev accuracy and the number of tasks. Include at least three different experiment in the figure.

Answer:

Since the difference of accuracies are not obvious, we use a table to do comparisons instead of figure. Since the number of tasks depends on the batch size, we can tune this hyperparameter to do comparisons as follows:

Batch Size	Public Score	Private Score
16	0.96736	0.95511
32	0.96250	0.94886
64	0.94930	0.93579

And we ensemble all the three files to get the final version, which exceeds the boss baeline.

$\mathbf{Q2}$

A new veri

The accuracies decrease wih the increase of batch size(task number in training).

Part 2 Please read How to train your MAML and answer the questions according to the paper.

Q1

Please write down one of the problems that occur when using MAML and explain why it happens.

Answer:

One of the problems that occur when using MAML (Model-Agnostic Meta- Learning) is the "overfitting to the meta-training set." This happens because MAML aims to optimize for quick adaptation to new tasks by learning a good initialization. However, during this process, the model can overfit to the specific tasks seen during the meta-training phase, which may not generalize well to unseen tasks. The nature of the meta-learning objective, which involves multiple gradient updates on the same set of tasks, can exacerbate this overfitting issue, making the model less effective at generalizing to new tasks.

Q2

Please write down the solution to the problem you mentioned in the first question.

Answer:

Incorporating regularization techniques during meta-training, such as dropout, weight decay, or data augmentation can help prevent the model from overfitting to the meta training tasks. Additionally, using a larger and more diverse set of meta-training tasks can also help mitigate overfitting by exposing the model to a wider variety of scenarios during training.

.