

Lista 4 – Complexidade Assintótica

INFORMAÇÕES DOCENTE						
CURSO:	DISCIPLINA:		MANHÃ	TARDE	NOITE	PERÍODO/SALA:
ENGENHARIA DE SOFTWARE	FUNDAMENTOS DE PROJETO E ANÁLISE DE ALGORITMOS	TURNO			х	5º
PROFESSOR (A): João Paulo Carneiro Aramuni						

Lista 4 - Gabarito

<u>Complexidade Assintótica – Teorema Mestre</u>

- 1) Dada a seguinte recorrência: T(n) = 2T(n/2) + O(n)
- a) Identifique os valores de a, b e f(n).
- b) Determine a complexidade assintótica de T(n) usando o Teorema Mestre, identificando o caso aplicado.
- 2) Dada a seguinte recorrência: $T(n) = 4T(n/2) + O(n^2)$
- a) Identifique os valores de a, b e f(n).
- b) Determine a complexidade assintótica de T(n) usando o Teorema Mestre, identificando o caso aplicado.

Respostas:

1)
$$T(n) = 2T(n/2) + O(n)$$

Passo 1: Identificação dos parâmetros

Comparando com a forma geral T(n) = aT(n / b) + f(n), temos:

- a = 2: cada instância do problema gera 2 subproblemas de tamanho n / 2.
- b = 2: o tamanho do problema é reduzido para n / 2 a cada passo.
- f(n) = O(n): o custo externo (tempo gasto fora da chamada recursiva) é linear.

Passo 2: Aplicação do Teorema Mestre

Calculamos: $\log_b a = \log_2 2 = 1$

Agora, comparamos f(n) = O(n) com $O(n^{\log_2 2}) = O(n^1)$:

O(n) vs $O(n^1)$

Como os dois termos são iguais, aplicamos o Caso 2 do Teorema Mestre, que afirma:

Se
$$f(n) = \Theta(n^{\log_b a})$$
, então $T(n) = \Theta(n^{\log_b a} \log n)$.

Como $n^{\log_2 2} = n$, a complexidade final é: $T(n) = \Theta(n \log n)$

Passo 3: Conclusão e exemplo de algoritmo

Essa recorrência descreve o comportamento do Merge Sort, que divide o problema em duas partes iguais (daí a = 2, b = 2) e gasta tempo linear para mesclar os subproblemas.

Resumo:

- Parâmetros: a = 2, b = 2, f(n) = O(n).
- Caso do Teorema Mestre aplicado: Caso 2.
- Complexidade final: Θ ($n \log n$).
- Algoritmo correspondente: Merge Sort.

2)
$$T(n) = 4T(n/2) + O(n^2)$$

Passo 1: Identificação dos parâmetros Comparando com a forma geral T(n) = aT(n/b) + f(n), temos:

- a = 4: o problema é dividido em 4 subproblemas.
- b = 2 b=2: cada subproblema tem tamanho n / 2.
- $f(n) = O(n^2)$: o custo externo é quadrático.

Passo 2: Aplicação do Teorema Mestre

Calculamos: $\log_b a = \log_2 4 = 2$

Agora, comparamos $f(n) = O(n^2)$ com $O(n^{\log_2 4}) = O(n^2)$: $O(n^2)$ vs $O(n^2)$

Como os dois termos são iguais, novamente aplicamos o Caso 2 do Teorema Mestre: $T(n) = \Theta(n^2 \log n)$

Passo 3: Conclusão e exemplo de algoritmo

Essa recorrência aparece em algoritmos de multiplicação de matrizes por divisão e conquista, onde o problema é subdividido em 4 submatrizes, e a combinação dos resultados exige um tempo quadrático.

Resumo:

- Parâmetros: $a = 4, b = 2, f(n) = O(n^2)$.

- Caso do Teorema Mestre aplicado: Caso 2.

- Complexidade final: $\Theta(n^2 \log n)$.

- Algoritmo correspondente: Multiplicação de matrizes ingênua por divisão e conquista.