

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół:1.Kulig Mateusz
2.Ryś Przemysław

	Fizyka	a techniczna		
Laboratorium elektroniczne WFiIS				
Rok akademicki: 2022/2023		Semestr V	Grupa: 2	
Temat ćwiczenia:				
Linia długa A-1				
Data wykonai	nia ćwiczenia	Data oddania sprawozdania	Ocena	
	08.11.2022	22.11.2022		

1 Cel ćwiczenia

W ćwiczeniu mieliśmy za zadanie zbadanie modelu linii długiej oraz odcinka kabla koncentrycznego w aspekcie przesyłania sygnałów elektrycznych, a także zastosowanie sztucznej linii opóźniającej do formowania impulsów

2 Aparatura

W ćwiczeniu użyliśmy następujących przyrządów:

- Oscyloskop,
- płytka imitująca linię długą,
- generator sygnału,
- rzeczywista linia długa przewód o długości 35 metrów.

3 Analiza danych

Dla modelu linii długich zbudowanej za pomocą pojemności i indukcyjności czas opóźnienia obliczyć możemy ze wzoru 1.

$$t_0 = n\sqrt{LC} \tag{1}$$

3.1 Badanie transmisji impulsów krótszych niż opóźnienie linii

Ćwiczenie rozpoczęliśmy od zbadania impulsów krótszych niż opóźnienie linii długiej. Jako linie długą użyliśmy modelu złożonego z n=50 ogniw indukcyjno-pojemnościowych $(L=100\mu[{\rm H}]~{\rm oraz}~C=100[pF])$. W tej części używamy linii dopasowanej na wejściu, więc na wejściu płytki zwarliśmy odpowiedni opornik $(R=950[\Omega])$. Następnie dla trzech przypadków obciążenia na wyjściu dokonaliśmy pomiaru, obserwując na oscyloskopie przebieg impulsów w trzech miejscach linii długiej - na początku, środku oraz końcu. Użyty przez nas impuls miał szerokość 3 $[\mu s]$ oraz częstotliwość 10 [kHz].

3.1.1 $R = R_f$

Dla wartości obciążenia na wyjściu $R=R_f$ otrzymaliśmy na oscyloskopie obraz przedstawiony na rysunku 1. Czas t_0 ustawiliśmy za pomocą pokrętła oscyloskopu w połowie czasu narastania sygnału na początku linii długiej. Wartość czasu opóźnienia t_1 sygnału w połowie linii również odczytaliśmy z oscyloskopu i wynosi on $t_1=2,6[\mu s]$. Wartość czasu opóźnienia t_2 sygnału na końcu linii wynosi $t_2=5,06[\mu s]$. Wartości czasów opóźnienia wyznaczone teoretycznie ze

wzoru 1 wynoszą odpowiednio, dla czasu w połowie linii $t_{1t} = 2, 5[\mu s]$, a dla czasu na końcu linii $t_{2t} = 5[\mu s]$. Wartości są więc jak najbardziej zgodne z przewidywaniami z dokładnością do błędu.

Rys. 1: Zdjęcie ekranu oscyloskopu w przypadku gdy impuls miał szerokość 3 μ [s], częstotliwość 10 [kHz], a obciążenie zarówno na wejściu jak i wyjściu wynosiło $R=R_f$. Kolorem żółtym oznaczono obraz impulsu na wejściu, kolorem zielonym na środku, a kolorem niebieskim na końcu linii długiej.

3.1.2 $R \to \infty$

Dla wartości obciążenia na wyjściu $R \to \infty$ otrzymaliśmy na oscyloskopie obraz przedstawiony na rusunku 2.

Czas t_0 ustawiliśmy za pomocą pokrętła oscyloskopu w połowie czasu narastania sygnału na początku linii długiej. Wartość czasu opóźnienia t_1 sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_1=2,64[\mu\mathrm{s}]$, a wartość czasu opóźnienia t_2 sygnału na końcu linii wynosi $t_2=5,08[\mu\mathrm{s}]$. Wartości czasu opóźnienia na w połowie i na końcu linii obliczamy za pomocą wzoru 1 i wynoszą one odpowiednio $t_{1t}=2,5[\mu\mathrm{s}]$ i $t_{2t}=5[\mu\mathrm{s}]$. Skoro $R\to\infty$ to znaczy, że impuls odbił się na końcu linii długiej co widać na oscyloskopie poprzez podwojoną amplitudę na wyjściu. Wartość czasu opóźnienia t_3 odbitego sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_3=7,72[\mu\mathrm{s}]$. Wartość czasu opóźnienia t_3 sygnału odbitego sygnału na wyjściu linii wynosi $t_4=10,28[\mu\mathrm{s}]$. Wartości obliczone teoretycznie ze wzoru 1 wynoszą z kolei odpowiednio $t_{3t}=7,5[\mu\mathrm{s}]$ i $t_{4t}=10[\mu\mathrm{s}]$. Jak widać amplituda sygnałów odbitych lekko zmalała.

Rys. 2: Zdjęcie ekranu oscyloskopu w przypadku gdy impuls miał szerokość 3 $[\mu s]$, częstotliwość 10 [kHz], a obciążenie zarówno na wejściu jak i wyjściu wynosiło $R \to \infty$. Kolorem żółtym oznaczono obraz impulsu na wejściu, kolorem zielonym na środku, a kolorem niebieskim na końcu linii długiej.

3.1.3 R = 0

Dla wartości obciążenia na wyjściu R=0 otrzymaliśmy na oscyloskopie obraz przedstawiony na 3. Czas t_0 ustawiliśmy za pomocą pokrętła oscyloskopu w połowie czasu narastania sygnału na początku linii długiej. Wartość czasu opóźnienia t_1 sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_1=2,56[\mu\mathrm{s}]$. Wartość wyznaczona ze wzoru 1 wynosi z kolei $t_{1t}=2,5[\mu\mathrm{s}]$. Wartość czasu opóźnienia t_2 sygnału na końcu linii wynosi $t_2=4,74[\mu\mathrm{s}]$. Wartość obliczona teoretycznie ze wzoru 1 wynosi z kolei $t_{2t}=5[\mu\mathrm{s}]$. Skoro R=0 to znaczy, że impuls odbił się na końcu linii długiej z przeciwną fazą , co widać na oscyloskopie poprzez wygaszenie impulsu na wyjściu. Wartość czasu opóźnienia t_3 odbitego sygnału w połowie i na końcu linii odczytaliśmy z oscyloskopu i wynoszą one odpowiednio $t_3=7,72[\mu\mathrm{s}]$ oraz $t_4=10,28[\mu\mathrm{s}]$. Wartości teoretyczne obliczone ze wzoru 1 wynoszą z kolei odpowiednio dla połowy linii $t_{3t}=7,5[\mu\mathrm{s}]$ oraz $t_{4t}=10[\mu\mathrm{s}]$ dla końca linii. Jak widać na oscyloskopie (Rysunek 3) impulsy odbite mają przeciwną fazę.

Rys. 3: Zdjęcie ekranu oscyloskopu w przypadku gdy impuls miał szerokość 3 $[\mu s]$, częstotliwość 10 [kHz], a obciążenie zarówno na wejściu jak i wyjściu wynosiło R=0. Kolorem żółtym oznaczono obraz impulsu na wejściu, kolorem zielonym na środku, a kolorem niebieskim na końcu linii długiej.

3.2 Badanie transmisji impulsów dłuższych niż opóźnienie linii

W drugiej części ćwiczenia zbadaliśmy impulsy dłuższe niż opóźnienie linii długiej. Tak jak poprzednio użyliśmy modelu złożonego z 50 ogniw indukcyjno-pojemnnościowych ($L=100[\mu\mathrm{H}]$ oraz C=100[pF]). W tej części również używamy linii dopasowanej na wejściu, więc na wejściu płytki zwarliśmy odpowiedni opornik ($R=950[\Omega]$). Następnie dla dwóch przypadków obciążenia na wyjściu dokonaliśmy pomiaru, obserwując na oscyloskopie przebieg impulsów w trzech miejscach linii długiej - na początku, środku oraz końcu. Użyty przez nas impuls miał szerokość 22 [μ s] oraz częstotliwość 10 [kHz].

3.2.1 $R \to \infty$

Dla wartości obciążenia na wyjściu $R\to\infty$ otrzymaliśmy na oscyloskopie obraz przedstawiony na rysunku 4. Czas t_0 ustawiliśmy za pomocą pokrętła oscyloskopu w połowie czasu narastania sygnału na początku linii długiej. Wartość czasu opóźnienia t_1 sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_1=2,6[\mu\mathrm{s}]$. Wartość wyznaczona ze wzoru 1 wynosi z kolei $t_{1t}=2,5[\mu\mathrm{s}]$. Wartość czasu opóźnienia t_2 sygnału na końcu linii wynosi $t_2=5,05[\mu\mathrm{s}]$. Wartość obliczona teoretycznie ze wzoru 1 wynosi z kolei $t_{2t}=5[\mu\mathrm{s}]$. Skoro $R\to\infty$ to znaczy, że impuls odbił się na końcu linii długiej co widać na oscyloskopie poprzez zwiększoną amplitudę na wyjściu. Wartość czasu opóźnienia t_3 odbitego sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_3=7,65[\mu\mathrm{s}]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{3t}=7,5[\mu\mathrm{s}]$. W tym punkcie znów zwiększa się amplituda, ponieważ długość impulsu jest większa niż

czas opóźnienia linii. Wartość czasu opóźnienia t_4 odbitego sygnału na wyjściu linii wynosi $t_4=10,25[\mu s]$. Wartość obliczona teoretycznie ze wzoru 1 wynosi $t_{4t}=10[\mu s]$. Po czasie $t_5=21,9[\mu s]$ na wejściu kończy się sygnał pierwotny. Ustawiona na generatorze długość impulsu wynosi $t_{5t}=22[\mu s]$. Wartość czasu opóźnienia t_6 sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_6=24,5[\mu s]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{6t}=24,5[\mu s]$. Wartość czasu opóźnienia t_7 sygnału na końcu linii wynosi $t_7=27,05[\mu s]$. Wartość obliczona ze wzoru 1 wynosi $t_{7t}=27[\mu s]$. Wartość czasu opóźnienia t_8 odbitego sygnału w połowie linii wynosi $t_8=29,75[\mu s]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{8t}=29,5[\mu s]$. Wartość czasu opóźnienia t_9 sygnału na wejściu linii wynosi $t_9=32,25[\mu s]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{9t}=32[\mu s]$. Jak widać amplituda ostatecznie zmalała do zera.

Rys. 4: Zdjęcie ekranu oscyloskopu w przypadku gdy impuls miał szerokość 3 [μ s], częstotliwość 10 [kHz], a obciążenie zarówno na wejściu jak i wyjściu wynosiło R=0. Kolorem żółtym oznaczono obraz impulsu na wejściu, kolorem zielonym na środku, a kolorem niebieskim na końcu linii długiej.

3.2.2 R = 0

Dla wartości obciążenia na wyjściu R=0 otrzymaliśmy na oscyloskopie obraz przedstawiony na rysunku 5. Czas t_0 ustawiliśmy za pomocą pokrętła oscyloskopu w połowie czasu narastania sygnału na początku linii długiej. Wartość czasu opóźnienia t_1 sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_1=2,7[\mu s]$. Wartość wyznaczona ze wzoru 1 wynosi z kolei $t_{1t}=2,5[\mu s]$. Wartość czasu opóźnienia t_2 sygnału na końcu linii wynosi $t_2=4,8[\mu s]$. Wartość obliczona teoretycznie ze wzoru 1 wynosi z kolei $t_{2t}=5[\mu s]$. Jak widać na końcu linii nastąpiło wygaszenie sygnału. Wartość czasu opóźnienia t_3 sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_3=7,5[\mu s]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{3t}=7,5[\mu s]$. W tym punkcie amplituda zmalała do zera ponieważ impuls dotarł z przeciwną fazą. Wartość czasu opóźnienia t_4 odbitego sygnału na wyjściu linii wynosi $t_4=10,2[\mu s]$. Wartość

obliczona teoretycznie ze wzoru 1 wynosi $t_{4t}=10[\mu {\rm s}]$. Po czasie $t_5=22[\mu {\rm s}]$ na wejściu kończy się sygnał pierwotny i teraz impulsy mają ujemną amplitudę. Ustawiona na generatorze długość impulsu wynosi $t_{5t}=22[\mu {\rm s}]$. Wartość czasu opóźnienia t_6 sygnału w połowie linii odczytaliśmy z oscyloskopu i wynosi on $t_6=24,7[\mu {\rm s}]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{6t}=24,5[\mu {\rm s}]$. Wartość czasu opóźnienia t_7 sygnału na końcu linii wynosi $t_7=26,85[\mu {\rm s}]$. Wartość obliczona ze wzoru 1 wynosi $t_{7t}=27[\mu {\rm s}]$. Wartość czasu opóźnienia t_8 odbitego sygnału w połowie linii wynosi $t_8=29,7[\mu {\rm s}]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{8t}=29,5[\mu {\rm s}]$. Wartość czasu opóźnienia t_9 sygnału na wejściu linii wynosi $t_9=32,2[\mu {\rm s}]$. Wartość obliczona ze wzoru 1 wynosi z kolei $t_{9t}=32[\mu {\rm s}]$. Następnie amplituda wróciła do poziomu zerowego.

Rys. 5: Zdjęcie ekranu oscyloskopu w przypadku gdy impuls miał szerokość 22 $[\mu s]$, częstotliwość 10 [kHz], a obciążenie zarówno na wejściu jak i wyjściu wynosiło R=0. Kolorem żółtym oznaczono obraz impulsu na wejściu, kolorem zielonym na środku, a kolorem niebieskim na końcu linii długiej.

3.3 Pomiar tłumienia i ocena parametrów częstotliwościowych linii długiej

Pomiarów dokonujemy dla modelu sztucznej linii długiej w warunkach obustronnego dopasowania linii. Szerokość impulsu wejściowego ustawiamy tak samo jak dla pierwszego podpunktu. Straty linii długiej możemy obliczyć ze wzoru

$$S = \frac{A_{in} - A_{out}}{A_{in}} \cdot 100[\%]$$

Amplituda sygnału wejściowego wynosiła $A_{in}=0,9975[V]$, z kolei amplituda uzyskana po przejściu przez linię długą to $A_{out}=0,8925[V]$. Straty jakich doznał sygnał wynosiły zatem:

$$\frac{A_{in} - A_{out}}{A_{in}} \cdot 100 [\%] = \frac{0.9975 - 0.8925}{0.9975} \cdot 100 [\%] \approx 10.53 [\%].$$

Czas narastania sygnału na wejściu wynosił $t_{ri}=0,25[\mu {\rm s}],$ na wyjściu natomiast $t_{ro}=0,54[\mu {\rm s}].$ Czas narastania odpowiedzi jednostkowej obliczamy ze wzoru:

$$t_r = \sqrt{t_{ro}^2 - t_{ri}^2},$$

wynosi on zatem $t_r = 0,48 [\mu s]$. Następnie korzystając ze wzoru

$$t_r = 1, 1n^{\frac{1}{3}}\sqrt{LC}$$

obliczamy teoretyczny czas narastania odpowiedzi jednostkowej. W naszym przypadku wynosi on $t_r=0,41 [\mu {\rm s}].$ Częstotliwość graniczną obliczamy ze wzoru

 $f_g = \frac{1,1}{\pi \cdot t_r}.$

Zatem zmierzona wartość częstotliwości granicznej wynosi $f_g = 0,17 [\mathrm{MHz}]$, natomiast jej wartość teoretyczna to $f_g = 0,14 [\mathrm{MHz}]$. Wartości zmierzonych przez nas parametrów częstotliwościowych są zgodne z wartościami przewidzianymi przez teorię z dokładnością do błędu.

Rys. 6: Zdjęcie ekranu oscyloskopu w przypadku gdy impuls miał szerokość 22ns, częstotliwość 10 [kHz], a obciążenie na wyjściu było ustawione tak by nie było odbicia sygnału. Kolorem żółtym oznaczono obraz impulsu na wejściu, a kolorem niebieskim na końcu linii długiej.

3.4 Efekt pojemnościowy

Rys. 7: Krzywa koincydencji opóźnionych.

Pomiarów dokonaliśmy dla modelu sztucznej linii długiej w warunkach obustronnego niedopasowania linii. Na wejściu ustawiamy rezystancję szeregową $R=10[\mathrm{k}\Omega]$, a na wyjściu wybieramy rozwarcie. Szerokość impulsu wejściowego na generatorze ustawiamy na $500[\mu\mathrm{s}]$, a częstotliwość zmniejszamy do 1 [kHz]. Korzystając z obrazu z oscyloskopu na rysunku zmierzyliśmy 9 punktów pomiarowych. Wyniki przedstawiliśmy w tabeli 1 oraz na wykresie (rysunek 8). Za pomocą dopasowanej krzywej otrzymaliśmy stałą czasową równą $\tau=52,91[\mu\mathrm{s}]$.

Tab. 1: Tabela napięć i odpowiadających im czasów

lp.	$t [\mu s]$	U [V]
1	0,187	10,4
2	0,47725	20,8
3	0,7275	31,2
4	0,93725	41,6
5	1,11275	52
6	1,2535	62,4
7	1,37725	72,8
8	1,475	83,2
9	1,5555	93,6

Rys. 8: Zebrane punkty pomiarowe napięcia i czasu wraz z dopasowaną do nich krzywą.

Korzystając z wartości obciążenia na wyjściu i wejściu możemy możemy obliczyć współczynniki odbicia równe kolejno $\rho=\frac{9}{11}$ i $\rho'=1$. Teoretyczny wzór na stałą czasową ma postać

$$\tau = -\frac{2T_0}{\ln(\rho\rho')}$$

zatem w naszym przypadku ma on wartość $\tau=49,83[\mu s]$. Czyli wyznaczona przez nas wartość jest bliska wartości teoretycznej.

3.5 Dopasowanie rzeczywistej linii długiej

W ostatnim etapie ćwiczenia pracowaliśmy z rzeczywistą linią długą w postaci przewodu o długości 35 metrów. Przewód podpięliśmy zarówno do oscyloskopu, tak by obserwować sygnał na początku i końcu linii długiej, jak i do

płytki dzięki której mogliśmy regulować obciążenie na wyjściu linii za pomocą pokrętła. Obserwując obraz z oscyloskopu (rysunek 9) ustawiliśmy opór tak aby na wyjściu nie występowało odbicie sygnału. Otrzymaliśmy wartość oporu R=?

Rys. 9: Zdjęcie ekranu oscyloskopu w przypadku gdy impuls miał szerokość 150 ns, częstotliwość 200 [kHz], a obciążenie na wyjściu było ustawione tak by nie było odbicia sygnału. Kolorem żółtym oznaczono obraz impulsu na wejściu, a kolorem zielonym na końcu linii długiej.

3.6 Pomiar tłumienia i ocena parametrów częstotliwościowych linii długiej

Pomiarów dokonujemy dla modelu rzeczywistej linii długiej w warunkach obustronnego dopasowania linii. Zmierzone amplitudy impulsów na wejściu i wyjściu linii długiej wynoszą odpowiednio $A_{in}=1,0465$ [V] oraz $A_{out}=0,93125$ [V]. Czas propagacji sygnału wynosi z kolei $T_p=0,172[\mu\mathrm{s}]$. Straty linii w procentach wynoszą:

$$S^{'} = \frac{A_{in} - A_{out}}{A_{in}} \cdot 100[\%] \frac{1,0465 - 0,93125}{1,0465} \cdot 100[\%] \approx 11[\%].$$

Zmierzyliśmy czasy narastania, które wynoszą $t_{ro} = 9,8$ [ns i $t_{ri} = 8$ [ns]. Czas narastania odpowiedzi jednostkowej obliczamy ze wzoru:

$$t_r = \sqrt{t_{ro}^2 - t_{ri}^2},$$

wynosi on zatem $t_r = 13[ns]$.

Częstotliwość graniczną obliczamy ze wzoru

$$f_g = \frac{1,1}{\pi \cdot t_r}.$$

Zmierzona wartość częstotliwości granicznej wynosi $f_g=4,37 [{\rm kHz}]$. Na podstawie zmierzonego czasu propagacji wyznaczamy opóźnienie kabla na jednostkę długości, wynosi ona

$$D = \frac{T_p}{L} = \frac{0,172}{35} \left[\frac{\mu s}{m} \right] = 4,91 \left[\frac{ns}{m} \right].$$