18.404 Recitation 2

Sept 11, 2020

Today's Topics

- Pumping Lemma
 - O What it is?
 - Why it works?
- Example: Proving Non-regular Languages
 - \circ Pumping up: { $0^{n}1^{m}0^{n}$ }
 - Pumping down: $\{0^{i}1^{j} \mid i \ge j\}$
 - Pumping Lemma with Closure Properties: { w | w ≠ number of 0s and 1s }
- Context Free Languages
 - Designing a PDA for: { $0^n1^m0^n$ }
 - Designing a CFG for: { 0ⁿ1^m0ⁿ}
 - Converting CFG to PDA
 - CFL Closure Properties
- Recap

Pumping Lemma (What it is)

- A tool to prove languages are non-regular
- Regular languages are always true under the Pumping Lemma
 - o To prove non-regular, need to find only **1** counter example

Formal Statement

For every regular language, there exists a pumping number $p \ge 1$ such that every string of length at least p can be written as w=xyz and satisfies:

- $|y| \ge 1$
- |xy| ≤ p
- $(\forall n \ge 0) (xy^n z \in L)$

1/5

Un-pumped String

Once Pumped Up String

Pumped Up String

Pumped Down String

Once Pumped Up String

- $|y| \ge 1$
 - Enforces that loop exists
- |xy| ≤ p
 - Useful bound that enforces that there is a loop within first p input characters
- $(\forall n \ge 0) (xy^n z \in L)$
 - Loops can be repeated and still stay in language

Example: Proving Non-Regular Languages

```
ex) { 0^{n}1^{m}0^{n} }  \{0^{p}10^{p}\}   \{0^{2p}10^{p}\}
```

- $|y| \ge 1$
- |xy| ≤ p
- $(\forall n \ge 0) (xy^n z \in L)$

Example: Proving Non-Regular Languages

```
ex) \{0^{i}1^{j} \mid i \ge j\}
\{0^{p}1^{p}\}
\{0^{p-1}1^{p}\}
```

- $|y| \ge 1$
- |xy| ≤ p
- $(\forall n \ge 0) (xy^n z \in L)$

Example: Proving Non-Regular Languages

```
Hint: Use closure properties  \exp(w) \  \  \{ \  \, w \mid w \neq \text{number of 0s and 1s} \}   \{ w \mid w = \text{number of 0s and 1s} \}  Non-regular  \{ 0^p 1^p \}
```

- $|y| \ge 1$
- |xy| ≤ p
- $(\forall n \ge 0) (xy^n z \in L)$

Context Free Languages (PDA)

Designing a PDA for: { 0ⁿ1^m0ⁿ }

Definition of Pushdown Automata (PDA)

Context Free Languages (CFG)

```
Designing a CFG for: { 0^n1^m0^n } 0110 S \to 0S0|R \qquad \text{S is the starting variable} \qquad 0\text{S0} \\ R \to 1R|\varepsilon \qquad \qquad 0\text{IR0} \\ 011\text{R0} \\ 0110
```

Defn: A Context Free Grammar (CFG) G is a 4-tuple (V, Σ, R, S)

$$V$$
 finite set of variables
 Σ finite set of terminal symbols
 R finite set of rules
 S start variable
 $E \rightarrow E+T \mid T$
 $T \rightarrow T \times F \mid F$
 $F \rightarrow (E) \mid a$

Converting CFG to PDA

CFG for: $\{0^{n}1^{m}0^{n}\}$ ex) 00100

$$A \to 0A0$$

$$A \to B$$

$$B \to 1B|_{\varepsilon}$$

1 0 0	

В

0

0

	0	0	

CFL Closure Properties

- Union
- Concatenation
- Kleene Star Operation

Recap

	Recognizer	Generator	
Regular language	DFA or NFA	Regular expression	
Context Free language	PDA	Context Free Grammar	

