$12n_{0723} \ (K12n_{0723})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{14} + 2u^{13} + \dots + 2b - 1, -u^{14} + 4u^{13} + \dots + 2a + 4, u^{15} - 3u^{14} + \dots - 3u + 1 \rangle$$

$$I_2^u = \langle -au + b, u^2a + a^2 + au - 2u^2 + 2a - u - 3, u^3 + u^2 + 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. } I_1^u = \\ \langle -u^{14} + 2u^{13} + \dots + 2b - 1, \ -u^{14} + 4u^{13} + \dots + 2a + 4, \ u^{15} - 3u^{14} + \dots - 3u + 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{14} - 2u^{13} + \dots + 9u - 2\\ \frac{1}{2}u^{14} - u^{13} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{14} - 3u^{13} + \dots + \frac{19}{2}u - \frac{3}{2}\\ \frac{1}{2}u^{14} - u^{13} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{12} + u^{11} + \dots - \frac{7}{2}u + \frac{1}{2}\\ \frac{1}{2}u^{14} - u^{13} + \dots + \frac{3}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{14} - u^{13} + \dots - \frac{7}{2}u^{2} + 5u\\ -\frac{1}{2}u^{14} + u^{13} + \dots - \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{14} + u^{13} + \dots - 7u + 1\\ \frac{1}{2}u^{14} - 2u^{13} + \dots + \frac{5}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3}\\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1\\ -u^{4} - 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{1}{2}u^{13} + \frac{1}{2}u^{12} - \frac{7}{2}u^{11} + \frac{5}{2}u^{10} - \frac{17}{2}u^9 + \frac{11}{2}u^8 - 13u^7 + \frac{27}{2}u^6 - \frac{53}{2}u^5 + 26u^4 - \frac{69}{2}u^3 + 18u^2 - 11u - \frac{9}{2}u^8 + \frac{1}{2}u^8 - \frac{1}{2}u^8 -$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{15} - 18u^{14} + \dots + 4668u + 207$
$c_2, c_3, c_5 \ c_6$	$u^{15} + 4u^{14} + \dots + 6u - 1$
c_4, c_9	$u^{15} + u^{14} + \dots - 96u - 64$
c_7, c_8, c_{11}	$u^{15} + 3u^{14} + \dots - 3u - 1$
c_{10}	$u^{15} - 3u^{14} + \dots - 37u - 41$
c_{12}	$u^{15} - u^{14} + \dots - 15u - 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} - 110y^{14} + \dots + 14260806y - 42849$
c_2, c_3, c_5 c_6	$y^{15} - 26y^{14} + \dots + 46y - 1$
c_4, c_9	$y^{15} + 35y^{14} + \dots + 33792y - 4096$
c_7, c_8, c_{11}	$y^{15} + 17y^{14} + \dots - 15y - 1$
c_{10}	$y^{15} + 21y^{14} + \dots - 37007y - 1681$
c_{12}	$y^{15} + 41y^{14} + \dots + 273y - 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.900691 + 0.591172I		
a = -1.46534 + 1.01047I	17.6730 + 2.9604I	-3.47231 - 2.17330I
b = 1.91718 - 0.04386I		
u = 0.900691 - 0.591172I		
a = -1.46534 - 1.01047I	17.6730 - 2.9604I	-3.47231 + 2.17330I
b = 1.91718 + 0.04386I		
u = 0.508960 + 0.560149I		
a = 1.18891 - 1.58128I	-8.38938 + 1.78426I	-4.62403 - 2.81000I
b = -1.49086 + 0.13884I		
u = 0.508960 - 0.560149I		
a = 1.18891 + 1.58128I	-8.38938 - 1.78426I	-4.62403 + 2.81000I
b = -1.49086 - 0.13884I		
u = -0.184001 + 1.341680I		
a = -0.211499 - 0.179174I	-3.45010 - 2.42340I	3.50251 + 0.27987I
b = -0.279310 + 0.250795I		
u = -0.184001 - 1.341680I		
a = -0.211499 + 0.179174I	-3.45010 + 2.42340I	3.50251 - 0.27987I
b = -0.279310 - 0.250795I		
u = -0.03840 + 1.49525I		
a = 0.358226 + 0.638671I	-7.29450 + 0.31744I	-5.62657 - 1.11275I
b = 0.968727 - 0.511112I		
u = -0.03840 - 1.49525I		
a = 0.358226 - 0.638671I	-7.29450 - 0.31744I	-5.62657 + 1.11275I
b = 0.968727 + 0.511112I		
u = -0.498442		
a = -0.328877	0.854874	12.4950
b = -0.163926		
u = 0.14640 + 1.58860I		
a = -0.162813 - 1.015850I	-15.7392 + 4.1680I	-6.43676 - 2.09201I
b = -1.58994 + 0.40736I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.14640 - 1.58860I		
a = -0.162813 + 1.015850I	-15.7392 - 4.1680I	-6.43676 + 2.09201I
b = -1.58994 - 0.40736I		
u = 0.33131 + 1.59485I		
a = -0.156693 + 1.177500I	10.55240 + 7.55501I	-5.88870 - 2.72866I
b = 1.92985 - 0.14022I		
u = 0.33131 - 1.59485I		
a = -0.156693 - 1.177500I	10.55240 - 7.55501I	-5.88870 + 2.72866I
b = 1.92985 + 0.14022I		
u = 0.084263 + 0.319070I		
a = 0.11365 + 1.99296I	-1.181970 + 0.424054I	-6.20164 - 1.93342I
b = 0.626317 - 0.204194I		
u = 0.084263 - 0.319070I		
a = 0.11365 - 1.99296I	-1.181970 - 0.424054I	-6.20164 + 1.93342I
b = 0.626317 + 0.204194I		

II. $I_2^u = \langle -au + b, \ u^2a + a^2 + au - 2u^2 + 2a - u - 3, \ u^3 + u^2 + 2u + 1 \rangle$

(i) Arc colorings

Are colorings
$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} au + a \\ au \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -au + u^2 - a + u + 2 \\ -au - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u^2 - a + u + 1 \\ -au - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^2 - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^2 + 1 \\ -u^2 - u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u^2 + 1 \\ -u^2 - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2a + 3u^2 + a + 5u$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	$(u^2+u-1)^3$
c_4, c_9	u^6
c_5, c_6	$(u^2 - u - 1)^3$
c_{7}, c_{8}	$(u^3 + u^2 + 2u + 1)^2$
c_{10}, c_{12}	$(u^3 + u^2 - 1)^2$
c_{11}	$(u^3 - u^2 + 2u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6	$(y^2 - 3y + 1)^3$
c_4, c_9	y^6
c_7, c_8, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{10}, c_{12}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.198308 - 1.205210I	-11.90680 - 2.82812I	-5.91278 + 1.52866I
b = 1.61803		
u = -0.215080 + 1.307140I		
a = 0.075747 + 0.460350I	-4.01109 - 2.82812I	-6.11966 + 6.11708I
b = -0.618034		
u = -0.215080 - 1.307140I		
a = -0.198308 + 1.205210I	-11.90680 + 2.82812I	-5.91278 - 1.52866I
b = 1.61803		
u = -0.215080 - 1.307140I		
a = 0.075747 - 0.460350I	-4.01109 + 2.82812I	-6.11966 - 6.11708I
b = -0.618034		
u = -0.569840		
a = 1.08457	0.126494	-1.14270
b = -0.618034		
u = -0.569840		
a = -2.83945	-7.76919	-3.79250
b = 1.61803		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u - 1)^3)(u^{15} - 18u^{14} + \dots + 4668u + 207)$
c_2, c_3	$((u^2 + u - 1)^3)(u^{15} + 4u^{14} + \dots + 6u - 1)$
c_4, c_9	$u^6(u^{15} + u^{14} + \dots - 96u - 64)$
c_5, c_6	$((u^2 - u - 1)^3)(u^{15} + 4u^{14} + \dots + 6u - 1)$
c_7, c_8	$((u^3 + u^2 + 2u + 1)^2)(u^{15} + 3u^{14} + \dots - 3u - 1)$
c_{10}	$((u^3 + u^2 - 1)^2)(u^{15} - 3u^{14} + \dots - 37u - 41)$
c_{11}	$((u^3 - u^2 + 2u - 1)^2)(u^{15} + 3u^{14} + \dots - 3u - 1)$
c_{12}	$((u^3 + u^2 - 1)^2)(u^{15} - u^{14} + \dots - 15u - 3)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 - 3y + 1)^3)(y^{15} - 110y^{14} + \dots + 1.42608 \times 10^7 y - 42849)$
$c_2, c_3, c_5 \ c_6$	$((y^2 - 3y + 1)^3)(y^{15} - 26y^{14} + \dots + 46y - 1)$
c_4, c_9	$y^6(y^{15} + 35y^{14} + \dots + 33792y - 4096)$
c_7, c_8, c_{11}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{15} + 17y^{14} + \dots - 15y - 1)$
c_{10}	$((y^3 - y^2 + 2y - 1)^2)(y^{15} + 21y^{14} + \dots - 37007y - 1681)$
c_{12}	$((y^3 - y^2 + 2y - 1)^2)(y^{15} + 41y^{14} + \dots + 273y - 9)$