and the map $x \mapsto ||x||_p$ is not convex.

For p = 0, for any $x \in \mathbb{R}^n$, we have

$$||x||_0 = |\{i \in \{1, \dots, n\} \mid x_i \neq 0\}|,$$

the number of nonzero components of x. The map $x \mapsto ||x||_0$ is not a norm this time because Axiom (N2) fails. For example,

$$\|(1,0)\|_{0} = \|(10,0)\|_{0} = 1 \neq 10 = 10 \|(1,0)\|_{0}$$

The map $x \mapsto ||x||_0$ is also not convex. For example,

$$\|(1/2)(2,2)\|_0 = \|(1,1)\|_0 = 2,$$

and

$$||(2,0)||_0 = ||(0,2)||_0 = 1,$$

but

$$\left\| (1/2)(2,2) \right\|_0 = 2 > 1 = (1/2) \left\| (2,0) \right\|_0 + (1/2) \left\| (0,2) \right\|_0.$$

Nevertheless, the "zero-norm" $x \mapsto ||x||_0$ is used in machine learning as a regularizing term which encourages sparsity, namely increases the number of zero components of the vector x.

The following proposition is easy to show.

Proposition 9.3. The following inequalities hold for all $x \in \mathbb{R}^n$ (or $x \in \mathbb{C}^n$):

$$||x||_{\infty} \le ||x||_{1} \le n||x||_{\infty},$$

$$||x||_{\infty} \le ||x||_{2} \le \sqrt{n}||x||_{\infty},$$

$$||x||_{2} \le ||x||_{1} \le \sqrt{n}||x||_{2}.$$

Proposition 9.3 is actually a special case of a very important result: in a finite-dimensional vector space, any two norms are equivalent.

Definition 9.2. Given any (real or complex) vector space E, two norms $\| \|_a$ and $\| \|_b$ are equivalent iff there exists some positive reals $C_1, C_2 > 0$, such that

$$||u||_a \le C_1 ||u||_b$$
 and $||u||_b \le C_2 ||u||_a$, for all $u \in E$.

There is an illuminating interpretation of Definition 9.2 in terms of open balls. For any radius $\rho > 0$ and any $x \in E$, consider the open a-ball of center x and radius ρ (with respect the norm $\| \cdot \|_a$),

$$B_a(x, \rho) = \{ z \in E \mid ||z - x||_a < \rho \}.$$