МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет обшей и прикладной физики

Отчет о выполнении работы 2.2.5. Определение вязкости жидкости по скорости истечения через капилляр

Выполнил: Студент гр. Б02-304 Головинов. Г.А.

Аннотация

Цель работы: 1) определить вязкость дистиллированной воды по измерению объема жидкости, протекшей через капилляр; 2) определение вязкости других жидкостей путём сравнения скорости их протекания со скоростью протекания воды.

В работе используются: сосуд Мариотта; капиллярная трубка; мензурка; секундомер; микроскоп.

Основные теоретические сведения

Воспользуемся формулой Пуазейля:

$$Q = \frac{\Delta p}{\Delta l} \cdot \frac{\pi R^4}{8n} \tag{1}$$

где Q — расход жидкости [m³/s], R — радиус трубки, Δp — разница давлений на концах рассматриваемого участка длиной Δl , η — вязкость жидкости.

При малых скоростях течение в трубке ламинарное. При больших скоростях слои начинают перемешиваться, такое течение называется турбулентным. Характер течения зависит от соотношения между кинетической энергией среды и работой сил вязкости. Если первая величина сильно меньше второй, то течение остается ламинарным (энергия как бы подавляет вязкость). Отношение этих величин для некоторого объема среды определяет безразмерное

число Рейнольдса:

$$Re = \frac{vR\rho}{\eta} \tag{2}$$

где v — характерная скорость течения, R — радиус трубки (или любой другой характерный размер), ρ — плотность среды, η — вязкость.

В гладких трубках круглого сечения переход от ламинарного к турбулентному течению происходит при $\mathrm{Re} \approx 1000$. Число Рейнольдса нужно именно для этого: перед применением формулы Пуазейля (1) стоит убедиться, что течение ламинарное.

Ламинарное течение при переходе из сосуда в капилляр устанавливается не сразу, а после того, как жидкость пройдет расстояние

$$a \approx 0.2R \cdot \text{Re}$$
 (3)

Если длина капилляра много раз расстояния a, то можно считать течение в нем ламинарным.

Измерение вязкости дистиллированной воды.

Для измерения вязкости воды используется сосуд Мариотта, схема установки приведена на рисунке

Особенность сосуда Мариотта заключается в том, что разница давления на концах капилляра зависит только от высоты h между низом трубки В и осью капилляра. Кроме того, необходимо учесть, что поверхностное натяжение несколько уменьшает разницу давления.

Рис. 1: Схема установки с сосудом Мариотта.

Измерение вязкости водного рас- тогда можно разделить переменные: твора глицерина вискозиметром.

Получив из предыдущего пункта вязкость воды, относительно нее можно получить вязкость других жидкостей. В случае нашей работы это 10-,20-,30-% раствор глицерина. Для этого нам понадобится измерить время, за которое каждая жидкость вытекает из вискозиметра (а точнее верхняя граница проходит через определенные границы).

Разность давления в вискозиметре выражается как $\Delta p = \rho g h(V)$, где h(V) — функция высоты столба от объема, она одинаковая дла каждой жидкости и определяется формой сосуда. Тогда (учитывая что течение ламинарное) можно воспользоваться формулой Пуазейля:

$$-\frac{dV}{dt} = \frac{\rho g h(V)}{l} \cdot \frac{\pi R^4}{n}$$

$$-\frac{8l}{\pi R^4} \cdot \frac{dV}{h(V)} = \frac{\rho g}{\eta} dt$$

Пусть первой границе соответствует объем V_1 , а второй — V_2 . Время пусть меняется от t=0до некоторого t_0 . Тогда проинтегрировав полу-

$$\frac{8l}{\pi R^4} \int_{V_1}^{V_2} \frac{dV}{h(V)} = -\int_0^{t_0} \frac{\rho g}{\eta} dt$$
$$\frac{\rho}{\eta} t = \text{const}$$
(4)

константа в левой части целиком определяется сосудом и не зависит от жидкости. Получается, меняя жидкость, величина в правой части сохраняется. Зная времена для каждой жидкости и их плотности можно получить ее вязкость. Конечное выражение для некоторой жидкости x через воду (индекс 0):

$$\eta_x = \eta_0 \cdot \frac{\rho_x}{\rho_0} \cdot \frac{t_x}{t_0} \tag{5}$$

Обработка результатов

Для нахождения вязкости воды были взяты измерения для 6 различных высот h. Полученные данные приведены в виде таблиц в приложении.

Для определения Δh мы медленно уменьшали h до того момента, как вода не перестанет капать из капилляра. Это произошло на высоте порядка 10-12 mm. Будем считать $\Delta h = 11 \pm 1$ MM.

В результате имеем довольно плохие точки: явно видно, что пересечение линейной части графика с осью ординат больше нуля, что значит, что жидкость вытекала бы даже без избыточного давления. Однако экспериментально видно, что при высоте $h \approx 11$ мм жидкость течь перестает

Это приводит к тому, что полученная вязкость

воды совсем не соответствует табличным значениям. Скорее всего, виной этому либо проблема с установкой, либо кривые руки автора.

Далее для определения вязкости растворов возьмем в качестве вязкости воды табличное значение с погрешностью в 5%:

$$\eta = (0.94 \pm 0.05) \cdot 10^{-3} \text{ Ha} \cdot \text{c}$$

Тогда с помощью вискозиметра по полученному времени протекания получим вязкости для растворов глицерина:

$$\eta_1 = (1.33 \pm 0.09) \cdot 10^{-3} \text{ } \Pi \text{a} \cdot \text{c}$$

$$\eta_2 = (1.96 \pm 0.11) \cdot 10^{-3} \text{ } \Pi \text{a} \cdot \text{c}$$

$$\eta_3 = (2.47 \pm 0.13) \cdot 10^{-3} \text{ } \Pi \text{a} \cdot \text{c}$$

ВЫВОДЫ 3

Выводы

В результате работы вязкость дистиллированной воды получена не была ввиду неисправности установки или кривых рук автора. Однако используя табличное значения для вязко-

сти дистиллированной воды с помощью вискозиметра удалось определить вязкость раствора глицерина с достаточно большой точностью. Лишь 20% раствор вышел за пределы $\pm 1\sigma$.

Приложение

Рис. 2: Аппроксимация и полученные экспериментальные точки.

ПРИЛОЖЕНИЕ 4

N опыта	t, c	V, мл	<i>Q</i> , мл/с	Δh , mm
1	610	20	0.0328	41.5
2	550	20	0.0364	46
3	410	10	0.0244	24
4	630	15	0.0238	24
5	505	10	0.0198	22.5
6	792	20	0.0253	30.5
7	310	10	0.0323	35

Таблица 1: Результаты измерений потока жидкости через капилляр.

Содержание	0%	10%	20%	30%
t_1	8.69	11.68	17.03	20.97
t_2	8.80	11.80	17.01	21.16
t_3	8.39	11.68	17.14	21.25
t_4	8.62	11.64	17.50	20.97
t_5	8.61	12.75	17.12	20.99

Таблица 2: Результаты измерений времени вытекания жидкости через вискозиметр.