Insight into the Nature of Road Collisions

Group 5 - SOEN 471 Big Data

Maxime Johnson 40081684 Alvira Konovalov 40074264 Dominik Ludera 40062500 Matthew Padvaiskas 40034075

Agenda for our Presentation

Introduction

Research Questions, Model Selection, Dataset Selection

03

Model Implementation

Implementation of the chosen models, alternative models

02

Data Preparation

Preprocessing of data, Feature Selection, Cleaning 04

Model Evaluation

Interpretation of model results, Conclusion

1.Introduction

Research Questions

Feature Significance

Which features are most significant in determining the outcome of an accident?

Prediction

Can one predict the outcome of an accident by analyzing the attributes of an accident?

Best Model

Which machine learning technique predicts best the outcome of an accident?

Dataset Selection

Motor Vehicle Collisions in City of Toronto

- Data from 2006 2021
 - Updated annually in May

- **16,861** motor vehicle collisions
- **54** features including:
 - Driver and weather conditions, time & date, location, result of collision, etc.

Model Selection

Random Forest

Deterministic

Split the feature space along the various features in order to optimize the gain of information

Neural Network Initially Probabilistic

Each neuron watches over a specific feature space and activates once the input falls into that space

XX MODEL LICENSE RF

XX MODEL LICENSE NN

Models chosen as they similarly break down the problem piece by piece, but handle the data differently

2.Data Preparation

Feature Selection

We kept 25 out of 54 features.

Relevancy

Keep information relevant to our question

Uniqueness

Remove redundancy and embedded information

non-informative variables can add uncertainty and reduce the overall effectiveness of the model

- Mapping binary values
 - Convert "Yes" and "null" by 1 and 0.
- Reducing feature range
 - Simplify "Date" to "Month"
- Grouping similar values
 - Categorize "TRAFFCTL" into 3 classes
 - Categorize "ROAD_CLASS" into 5 classes
- Random cleaning
 - Make values uniform
- Dropping rows
- Label encoding

df.ALCOHOL.fillna(0, inplace=True)
df.ALCOHOL.replace('Yes', 1, inplace=True)

df.PEDESTRIAN.fillna(0, inplace=True)

df.PEDESTRIAN.replace('Yes',1, inplace=True)

df.SPEEDING.fillna(0, inplace=True)

df.SPEEDING.replace('Yes', 1, inplace=True)

- Mapping binary values
 - Convert "Yes" and "null" by 1 and0.
- Reducing feature range
 - Simplify "Date" to "Month"
- Grouping similar values
 - Categorize "TRAFFCTL" into 3 classes
 - Categorize "ROAD_CLASS" into 5 classes
- Random cleaning
 - Make values uniform
- Dropping rows
- Label encoding

- Mapping binary values
 - Convert "Yes" and "null" by 1 and0.
- Reducing feature range
 - Simplify "Date" to "Month"
- Grouping similar values
 - Categorize "TRAFFCTL" into 3 classes
 - Categorize "ROAD_CLASS" into5 classes
- Random cleaning
 - Make values uniform
- Dropping rows
- Label encoding

- Mapping binary values
 - Convert "Yes" and "null" by 1 and0.
- Reducing feature range
 - Simplify "Date" to "Month"
- Grouping similar values
 - Categorize "TRAFFCTL" into 3 classes
 - Categorize "ROAD_CLASS" into 5 classes
- Random cleaning
 - Make values uniform
- Dropping rows
- Label encoding

- Mapping binary values
 - Convert "Yes" and "null" by 1 and0.
- Reducing feature range
 - Simplify "Date" to "Month"
- Grouping similar values
 - Categorize "TRAFFCTL" into 3 classes
 - Categorize "ROAD_CLASS" into 5 classes
- Random cleaning
 - Make values uniform
- Dropping rows
- Label encoding

df.drop(df[df.LOCCOORD.isnull()].index, inplace=True)
df.drop(df[df.LIGHT == 'Other'].index, inplace=True)

- Mapping binary values
 - Convert "Yes" and "null" by 1 and0.
- Reducing feature range
 - Simplify "Date" to "Month"
- Grouping similar values
 - Categorize "TRAFFCTL" into 3 classes
 - Categorize "ROAD_CLASS" into 5 classes
- Random cleaning
 - Make values uniform
- Dropping rows
- Label encoding

```
df['ACCLASS'] = df['ACCLASS'].astype('category').cat.codes
df['INITDIR'] = df['INITDIR'].astype('category').cat.codes
df['LIGHT'] = df['LIGHT'].astype('category').cat.codes
df['VISIBILITY'] = df['VISIBILITY'].astype('category').cat.codes
df['RDSFCOND'] = df['RDSFCOND'].astype('category').cat.codes
df['ROAD_CLASS'] = df['ROAD_CLASS'].astype('category').cat.codes
df['TRAFFCTL'] = df['TRAFFCTL'].astype('category').cat.codes
df['INVAGE'] = df['INVAGE'].astype('category').cat.codes
df['LOCCOORD'] = df['MANOEUVER'].astype('category').cat.codes
```

. . .

3.Model Implementation

3 Groups of Models

Group 1 Models

Original dataset

Group 2 Models

Undersampling

Group 3 Models

Feature reduction

Implementation Approach

DATA SPLITTING

70% training data 30% testing data

Tune the hyper-parameters with **GridSearchCV**

MODEL TRAINING

Train model using parameters of best estimator

```
params = {
    'n_estimators': [100, 500, 1000],
    'criterion': ['gini', 'entropy'],
    'min_samples_split': [2, 4, 5, 10, 13],
    'min_samples_leaf': [1, 2, 5, 8, 13]
}

forest =
GridSearchCV(RandomForestClassifier(random_state=0), params)
forest.fit(X_train, y_train)
```

```
params = {
    'hidden_layer_sizes': [(50,50,50), (50,100,50), (100,)],
    'activation': ['tanh', 'relu'],
    'solver': ['sgd', 'adam'],
    'alpha': [0.0001, 0.05],
    'learning_rate': ['constant','adaptive'],
}
nn = GridSearchCV(MLPClassifier(max_iter=100), params,
n_jobs=-1, cv=3)
nn.fit(X_train, y_train)
```

Group 1 Models

- Original dataset
- 25 features
- The Metric Trap:
 - Misleading accuracy score!
 - Random forest #1
 - 89% accuracy
 - Neural network #1
 - 88% accuracy
- Classifies all accidents as non-fatal (majority class)
- Fails to capture fatal accidents (minority class)

Group 1 Models

- Imbalanced class distributions
- Class imbalance problem:
 - Classifiers predict everything as the majority class (Non-fatal)
- Solution undersampling:
 - Randomly delete instances from the majority class

Group 2 Models

 Undersampling based on Near Miss method (imblearn library)

Image credit:

https://www.analyticsvidhya.com/blog/2020/07/10-techniques-to-de al-with-class-imbalance-in-machine-learning/

Group 2 Models

- Random forest #2 and neural network#2 using undersampled dataset
- Captures both classes (Non-fatal and fatal) equally
- Performance decreased but is more reasonable

Predicted label

Group 3 Models

- Dataset with many features can lead to overfitting
- Feature reduction:
 - Calculate

feature_importances random forest #2 and feature permutation

Keep 12 most influential features

Group 3 Models

 Results are still satisfactory after reducing features from 54 to 12 features!

• • •				
MODEL	7100010101	PRECISION	11207122	F1
random forest 3 neural network 3		78.89 73.29	78.49 73.03	78.43 72.97

4.Model Evaluation & Conclusions

Model Evaluation

- Models pre / post data resampling
- Effects of feature reduction
 - Minor decrease in random forest performance
 - Increase in neural network performance
- Final model comparisons

Model Evaluation

- Models pre / post data resampling
- Effects of feature reduction
 - Minor decrease in random forest performance
 - Increase in neural network performance
- Final model comparisons

Model Evaluation

- Models pre / post data resampling
- Effects of feature reduction
 - Minor decrease in random forest performance
 - Increase in neural network performance
- Final model comparisons

• • •				
MODEL	ACCURACY	PRECISION	RECALL	F1
random forest 2 neural network 2 random forest 3 neural network 3	74.96 78.49	80.57 76.99 78.89 73.29	80.26 74.96 78.49 73.03	80.21 74.46 78.43 72.97

Conclusions

- Which features were most significant in determining our model?
 - Neighborhood and month quite important
 - Truck, pedestrian, or speeding involved
 - Low importance of alcohol or narcotics
- Can we predict the outcome of accidents?
- Which machine learning technique provided the best outcome?

Conclusions

- Which features were most significant in determining our model?
 - Neighborhood and month quite important
 - o Truck, pedestrian, or speeding involved
 - Low importance of alcohol or narcotics
- Can we predict the outcome of accidents?
- Which machine learning technique provided the best outcome?

Conclusions

- Which features were most significant in determining the outcome of an accident?
 - Neighborhood and month quite important
 - Truck, pedestrian, or speeding involved
 - Low importance of alcohol or narcotics
- Can we predict the outcome of accidents?
- Which machine learning technique provided the best outcome?

			(1)
• • •			
MODEL random forest 2 neural network 3	PRECISION	RECALL 	F1 80.21 72.97

Thank You Any Questions?

