Producción Industrial de Ácido Glucónico

Álvaro Moreno Sevilla Grado en Biotecnología 2022 / 2023

ÍNDICE

- 1. Objeto y justificación de la tesis
- 2. Introducción
 - 2.1. Ácidos orgánicos
 - 2.2. Propiedades
 - 2.3. Aplicaciones
- 3. Microorganismos productores
 - 3.1. Hongos
 - 3.2. Bacterias

- 4. Aspergillus Niger
 - 4.1. Taxonomía
 - 4.2. Glucosa oxidasa
- 5. Producción de ácido glucónico
 - 5.1. Qué producir y cómo
 - 5.2. Tratamientos previos (Upstream)
 - 5.3. Fermentación
 - 5.4. Separación y Purificación (Downstream)
- 6. Conclusión

1. OBJETO Y JUSTIFICACIÓN DE LA TESIS

Objeto y justificación de la tesis

Creciente necesidad desarrollo sostenible
 Producción químicos basados en petróleo

OBJETIVOS

- Cómo es la producción industrial

 Literatura publicada en los últimos 70 años
- Cuáles son las actuales limitaciones
- Cuáles son las tecnologías que podrían solventarlas

2. INTRODUCCIÓN

Introducción

2.1. Ácidos Orgánicos

- Propiedades ácidas débiles conferidas por grupo carboxilo
- Metabolitos primarios
- 1
- Crecimiento

Cualquier m.o potencial productor

Numerosas aplicaciones en multitud de ámbitos

Ácido cítrico

Ácido láctico

Ácido itacónico

Ácido Glucónico

- Ácido 2,3,4,5,6-pentahidroxihexanoico | Ácido orgánico débil multifuncional
- Más implantada: Fermentación batch sumergida aireada con Aspergillus Niger → η 95-98%
- Comercialización como ácido glucónico, como sales derivadas y gluconolactonas

2.2. Propiedades

Gluconic acid	
Nature	Noncorrosive, mildly acidic, less irritating, nonodorous, nontoxic, easily biodegradable, nonvolatile organic acid
Relative molecular mass	196.16
Chemical formula	$C_6H_{12}O_7$
Synonym	2,3,4,5,6-pentahydroxyhexanoic acid
pKa	3.7
Melting point (50 % solution)	Lower than 12 °C
Boiling point (50 % solution)	Higher than 100 °C
Density	1.24 g/mL
Appearance	Clear to brown
Solubility	Soluble in water
Sourness	Mild, soft, refreshing taste
Degree of sourness (sourness of citric acid is regarded as 100)	29–35

Tabla 1. Características generales del ácido glucónico [1].

2.3. Aplicaciones

- Tratamiento de carnes
- Coagulación del tofu
- Agentes leudantes (levaduras industriales)
- Reductor de la absorción de grasas en la bollería industrial

- Acidulante
- Endulzante
- Antiséptico
- Saborizante

- Excipiente formulación, suplementos de ciertos minerales, reguladores del pH...etc.
- **GA-calcio**: inyecciones efecto anti-necrosis en tejidos profundos
- GA-hierro: tratar la anemia
- GA-zinc: acelerar la curación de heridas, tratar el resfriado común, maduración sexual retardada, alteraciones en la piel o decaimiento mental
- GA-quinina: inyectado intramuscularmente para tratar la malaria

GA - sodio Capacidad quelante

- Lavado de paredes pintadas para quitar precipitados de carbonatos metálicos, evitar la corrosión.
- Formulación del cemento controlar los tiempos de asentado de la construcción, mejorar la resistencia

2.3. Aplicaciones

- Reciclar catalizadores metálicos desgastados de Mo, Ni y Al
- Eliminar los óxidos alcalinos residuales de la industria metalúrgica

- Detectar la madurez de la uva y hacer controles de calidad
- Cantidad en el vino no puede superar los 300 mg/L
 Conseil du Vigne et du Vin

Agente quelante de iones Fe y Cl retirar sustancias cloradas a pH neutro

Reacción de Fenton

- Evitar la formación de depósitos de hierro en los tejidos
- Desencolado de poliésteres y fibras de poliamida.

Gran capacidad quelante

3. MICROORGANISMOS PRODUCTORES

Microorganismos productores

3.1. Hongos

> Aspergillus niger

- Es el m.o más utilizado en la industria
- Muy sensible al pH ácido → desactiva glucosa oxidasa Limitar efecto

- Neutralización con NaOH // CaCO3 u otros → según producto
- Eliminación H2O2 por catalasa

> Penicillium luteum

- Limitación de pH no es tan crítica en subespecies de Penicillium
- El rendimiento no es tan alto y tarda más tiempo en convertir
- Concentración inicial de glucosa baja

Desventaja General: no se puede trabajar en continuo → micelio

3.1. Hongos

Gluconate-producing fungi	References
Aspergillus niger	Ajala et al., 2017
	Chuppa-Tostain et al., 2018
	Ahmed et al. (2015)
Aspergillus carneus	Lim and Dolzhenko, (2021)
Aspergillus terreus	Ahmad Anas et al. (2012)
Aureobasidium pullulans	Anastassiadis and Rehm, 2006a
	Anastassiadis and Rehm, 2006b Anastassiadis et al., 2003 Ma et al. (2018)
Penicillium variabile	Crognale et al. (2008)
Penicillium puberulum	Ahmed et al. (2015)
Penicillium frequentans	Ahmed et al. (2015)
Penicillium chrysogenum	Ramachandran et al. (2006)
Penicillium glaucum	Ramachandran et al. (2006)
Penicillium notatum	Ramachandran et al. (2006)
Penicillium oxalicum	Han et al. (2018)
Saccharomyces cerevisiae	Kapat et al. (2001)

Tabla 2. Hongos productores de gluconato con aplicaciones valiosas [2].

3.1. Hongos

> Aureobasidium pullulans

- Levadura tipo hongo
- Rendimiento del 97%
- Concentraciones iniciales de glucosa muy altas (~400 g/L)
- Recuperación sencilla pues células libres

métodos continuos

- No se ha probado escala industrial
- No hay demasiada literatura al respecto

Fig 1. Aureobasidium pullulans (A) Conidia (B) Conidiophores (C) Hyphae (D) Chlamydospore-like cells [3].

3. MICROORGANISMOS PRODUCTORES

3.2. Bacterias

- ¿Por qué? → Nuevas rutas metabólicas y regímenes de producción
- Gluconobacter oxydans es la bacteria más estudiada
- Enzima encargada de la biotranformación distinta →
 Glucosa deshidrogenasa (GDH)
- Oxidación glucosa por 2 rutas
 - [Glucosa] < 15mM → ruta de las pentosas fosfato
 - [Glucosa] > 15 mM → ruta reprimida y acumulación GA
 - Oxidación directa de glucosa usando varias DH NADP-dependientes
 - Cofactor PQQ
 - o Se obtiene ácido glucónico, ácido 2-ketoglucónico y ácido 2,5- diketoglucónico

Fig 2. Ruta general bacteriana para la oxidación de glucosa a ácido glucónico [2]

Tolerancia a pH ácidos

- Muy sensibles a la concentración inicial de glucosa
- Altos requerimientos vitaminas

3.2. Bacterias

Acetobacter diazotrophicus

Rendimiento alto pero menor que G. Oxydans

Acetobacter methalonicus

Fuente de carbono barata → metanol

Zymomonas mobilis

Para Mezcla glucosa + fructosa → Transforma ácido glucónico + sorbitol

Rendimiento cercano al 100%

Inmovilización de las células siguen bajo estudio → escala industrial

Gluconate-producing bacteria	References
Acetobacter diazotrophicus	Pal et al. (2016)
Acetobacter methanolicus Gluconobacter oxydans	Pal et al. (2016) Pal et al., 2017 Hou et al., 2018 Yao et al., 2017 Zhou and Xu, 2019
Gluconobacter japonicus	Jiang et al. (2016) Cañete-Rodríguez et al. (2016)
Pseudomonas taetrolens	Alonso et al. (2015)
Zymomonas mobilis	Ferraz et al. (2001)
Azospirillum brasiliensis	Rodriguez et al. (2004)
Klebsiella pneumoniae	Wang et al. (2016)
Pseudomonas plecoglossicida	Wang et al., 2018
Pseudomonas ovalis	Pal et al. (2016)
Pseudomonas acidovorans	Ramachandran et al. (2017)
Pseudomonas fluorescens	Sun et al. (2015)
Rhodotorula rubra	Ramachandran et al. (2017)

Tabla 3. Bacterias productoras de gluconato con aplicaciones valiosas [2]

3.2. Bacterias

Pseudomonas ovalis

Rendimientos del 99%

Mucha dependencia de la tasa de aireación.

Fig 3. Cultivo de Pseudomonas Ovalis [4].

 Otras especies Gluconobacter y Pseudomonas tienen rutas metabólicas favorecidas → producción industrial gluconolactonas

Fig 4. Uno de las varias gluconolactonas que podemos producir [5].

4. ASPERGILLUS NIGER

4. ASPERGILLUS NIGER

Aspergillus niger

4.1. Taxonomía

- Familia Aspergillus consta de 340 especies
 - ▶ 2 grandes secciones
 Aspergillus Nigri → A. Niger
 Aspergillus Flavi
- Reproducción asexual por conidiospóras
- Clasificación:
 - Morfología

- Células de Hulle
- Color de las conidiósporas
 Sclerotia
- Algunas subespecies de Aspergillus pueden liberar micotoxinas →
 → Registro del potencial genético y fisiológico de la cepa industrial

Fig 5. Morfología de estructuras reproductoras de *A. Niger* [6].

4.1. Taxonomía Model organism Sterigmatocystin Xylanase B-glucosidase Pathogen Soy sauce †Aspergillus sojae Alcohol beverage Aspergillus saccharolyticus Succinic acid β-glucosidase Aflatoxins

Fig 6. Taxonomía, filogenia y aplicaciones clave de especies relevantes de *Aspergillus* [7].

4.2. Glucosa Oxidasa (GOD)

- Proteína globular oxidorreductasa
- 2 dominios principales:
 - Dominio FAD-binding
 - Dominio de enlace a sustrato
- Alta actividad, especificidad y estabilidad
 GOD baja tasa de reacción con otros azúcares
 Ácido glucónico muy puro sin productos 2_{arios}
- Natural en A. niger, más accesible y económica

Fig 7. Morfología y partes importantes de GOD [8].

4.2. Glucosa Oxidasa (GOD)

Durante la biotransformación:

- GOD se auto-reduce retirando 2H+ de la glucosa
- Forma reducida de GOD oxidada por O2 → H2O2 → H2O + O2

catalasa

Fig 8. Reacción de biotransformación de la glucosa a GA [9].

En realidad, se genera un producto intermedio

Glucono-d-lactona

Equilibrio dependiente de la hidratación y la deshidratación

4.2. Glucosa Oxidasa (GOD)

α-D-Glucose Spontaneous or Spontaneous or mutarotase mutarotase β-D-Glucose Extracellular Glucose oxidase Catalase Gluconate dehydrogenase D-Glucono-δ-lactone ➤ 2-Keto-3-deoxygluconate D-glucono- δ -lactonase or spontaneous D-Gluconic acid Hexokinase Gluconokinase Cytoplasm or phosphamonoesterase Glucose-6-phosphate -Glyceraldehyde-3P ➤ Pyruvate + Glyceraldehyde Glucose-6phosphate dehydrogenase Pentose phosphate pathway Fatty acid synthesis Phospholipid Ac-CoA triglyceride synthesis Oxaloacetate Acetyl-CoA

← -Citrate ◀ β -Oxidation of Fatty acid TCA cycle Oxaloacetate 2-Oxoglutarate Glyoxylate Fumarate cycle Acetyl-CoA Succinyl-CoA Succinate 4 Mitochondrion Isocitrate

Fig 9. Ruta metabólica general del ácido glucónico partiendo de glucosa en hongos [2]

5. PRODUCCIÓN INDUSTRIAL DE ÁCIDO GLUCÓNICO

Producción industrial de ácido glucónico

5.1. Qué podemos producir y cómo

Qué producir

Más producido Ácido glucónico, gluconolactonas o sales derivadas Más aplicaciones Sales derivadas: GA-hierro, GA-calcio y GA-sodio Menor tiempo de fermentación Neutralización más eficaz

Cómo producir

1. SmF: Fermentación sumergida aireada con A. Niger
 Mucha literatura y experiencia
 Buen rendimiento → 95-98%
 Discontinuo → micelio

2. SSF: Fermentación superficial en estado sólido con *A. Niger*Wejor rendimiento → ~100%
Downstream más simple
Menos requerimientos de O2
Poca literatura al respecto

5.2. Tratamientos previos (Upstream)

Producción cara → restringe aplicaciones → Abaratar costes

Deben ser clarificadas → ○ elementos traza y metales pesados
 Inhibir crecimiento
 Dificulta downstream

Método del ferrocianuro potásico (HFC) → K4Fe(CN)6

Otros pretratamientos: sacarificación y licuefacción

5.2. Tratamientos previos (Upstream)

Fig 10. Diagrama del upstream

5.3. Fermentación

> Fermentador:

- Fermentadores agitados sumergido → viscosidad
- Solución → morfología cultivo pellet
- [O2] centro pellet → recurrimos aireación + agitación

fermentación	Otras cepas posibles
[O2]ini = 200–300 g/L	A. Niger ORS-4.410
30C	A. Niger CCM8004
pH = 6.5	A. Niger AN151
Vel_aire_ini=0.15vvm	Pseudomonas Ovalis
Vel_aire_fin = 1vvm	G. Oxydans NBIMCC

> Efecto del pH:

- Etapa Crecimiento pH = 6.5 → Etapa Productiva pH = 5.5.
 - pH↓baja al liberar GA + H2O2 → + NaOH progres. ★ Inactiva GOD a pH 3
- Etapa Productiva GA (max) = Etapa Productiva GOD (max) → Parámetros similares
- η 90-98% \rightarrow baja 2-4% tras el downstream
- Otras cepas viables: depende producto, fuente de C, regimen producción...

Factores
Temperatura
Tasa de aireación
[Glucosa] (ini)
[Mg] & [P]
Espuma

5.3. Fermentación

Fig 11. Diagrama de la fermentación

5.4. Downstream

- El downstream varía en función
- Fuente de carbono
- Método de fermentación
- Microorganismo usado
- El downstream no varía demasiado si variamos la sal a producir
- Reto: downstream sostenible → Más difícil a más pureza
 - → Uso fuentes de carbono heterogéneas
 - → Muchas unidades operando + costes asociados
- Unidades operativas de la separación:
 - 1. Filtración → micelio
 - 2. Nanofiltración → impurezas y productos secundarios
 - 3. Decoloración → columna de carbón activado

5.3. Separación (Downstream)

Fig 12. Diagrama de la separación

5.4. Purificación (Downstream)

- Unidades operativas de la purificación:
 - 4. Evaporación → concentramos en casi el 50% el caldo
 - 5. Cristalización -> concentramos los sólidos en cristales que separamos del caldo restante
 - 6. Secado → se retira el agua restante de los cristales

Fig 13. Diagrama de la purificación

6. CONCLUSIÓN

6. CONCLUSION

Conclusión

- Incremento sostenido de la producción, fomentado por biotransformaciones
- El método más extendido y con mayor productividad volumétrica es SmF empleando A. Niger como m.o fermentador
- La enzima glucosa oxidasa es la enzima clave que cataliza la reacción glucosa → GA

Mejoras futuras:

- Fuentes de nutrientes alternativas más baratas → metanol, melazas, mostos...
- Screening e ingeniería genética sobre microorganismos conocidos y por conocer
- Nuevas técnicas fermentativas → SSF, inmovilización celular o enzimática, airlift...
- Nuevos regímenes de producción → régimen continuo con bacterias o A. Pullulans
- Nuevas tecnologías de downstream → membranas a medida, disolventes sostenibles, biorremediación
- Simular y modelizar los procesos → SuperPro Designer y ASPEN Hysys

GRACIAS

Álvaro Moreno Sevilla

Producción Industrial de Ácido Glucónico

2022 / 2023

Referencias

- 1. Ramachandran, S., Fontanille, P., Pandey, A., & Larroche, C. (2006). Gluconic acid: properties, applications and microbial production. Food Technology & Biotechnology, 44(2)
- 2. Ma Y, Li B, Zhang X, Wang C and Chen W (2022) Production of Gluconic Acid and Its Derivatives by Microbial Fermentation: Process Improvement Based on Integrated Routes. Front. Bioeng. Biotechnol. 10:864787. doi: 10.3389/fbioe.2022.864787
- 3. Abdulwehab, Sohair & El-Nagerabi, Saifeldin & Elshafie, Abdulqadir. (2015). Leguminicolous fungi associated with some seeds of Sudanese legumes. Biodiversitas. 16. 269-280.
- 4. https://fineartamerica.com/featured/2-pseudomonas-putida-dennis-kunkel-microscopyscience-photo-library.html
- 5. https://www.fishersci.es/shop/products/gluconolactone-99-thermo-scientific/10461481
- 6. Barros Correia, A. C. R., Barbosa, R. N., Frisvad, J. C., Houbraken, J., & Souza-Motta, C. M. (2020). *The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. Mycological Progress, 19(9), 885–903.* doi:10.1007/s11557-020-01605-4
- 7. Park, H. S., Jun, S. C., Han, K. H., Hong, S. B., & Yu, J. H. (2017). Diversity, application, and synthetic biology of industrially important Aspergillus fungi. *Advances in applied microbiology*, *100*, 161-202.
- 8. https://www.pianetachimica.it/mol_mese/mol_mese_2006/05_GlucosioOx/GlucosioOx_1_ita.htm
- 9. Bankar, S. B., Bule, M. V., Singhal, S. R. & Ananthanarayan, L. (2009). Glucose oxidase An overview. Biotechnology Advances. 27(4), 489-501