	es ey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. Matthews, "The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression," 2010 IEEE Society Conference on Computer Vision and Pattern Recognition - Workshops, San Francisco, CA, USA, 2010, pp. 94-101, doi: 10.1109/CVPRW.2010.5543262. ent, P. (2016). Emotion Recognition Using Facial Landmarks, Python, DLib and OpenCV. A tech blog about fun things with Python and embedded electronics. Retrieved from: v.paulvangent.com/2016/08/05/emotion-recognition-using-facial-landmarks/
import import import import import import import import	cv2 numpy as np matplotlib.pyplot as plt dlib glob random math sklearn
from si from si from si from ki from si	klearn import preprocessing klearn.neighbors import KNeighborsClassifier klearn.svm import SVC klearn.metrics import plot_confusion_matrix klearn.metrics import roc_curve eras.preprocessing.image import img_to_array klearn import metrics ion of facial landmarks and extraction of feature vectors for the CK+ dataset.
# Human detector predic: # Sett. # make clahe:	ion classes ns = ["anger", "contempt", "disgust", "fear", "happiness", "sadness", "surprise"] n face detector and landmarks predictor, using dlib library. pr = dlib.get_frontal_face_detector() tor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") ing up of CLAHE - adaptive histogram equalization, in order to enhance contrast in dataset images and the faces more distinguishable = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
# Define # and sedef ge	wing code-block is inspired by: [2] and describes the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along ponding class-labels. The a function to get the CK+ dataset of faces from local folder, shuffle them is possible them in a desired train/test ratio (80%/20%). It files (emotion): The selection of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the train and test data is returned, along the process of feature vector extraction from the images in the CK+ dataset and as a result a final form of the images in the CK+ dataset and as a result a final form of the images in the CK+ dataset and as a result a final form of the images in
# Define # 1. Go # 2. Do # 3. So # 4. Fo def ge def	aining = files[:int(len(files)*0.8)] ediction = files[-int(len(files)*0.2):] turn training, prediction The a function to: The a function to: The a fundmarks from each image. The a fundmarks on each image. The a fundma
	<pre>r k,d in enumerate(detections): shape = predictor(image, d) xlist = [] ylist = [] for i in range(0,68): xlist.append(float(shape.part(i).x)) ylist.append(float(shape.part(i).y)) xmean = np.mean(xlist) ymean = np.mean(ylist) xcentral = [(x-xmean) for x in xlist] ycentral = [(y-ymean) for y in ylist]</pre>
if	<pre>landmarks_vectorised = [] for x, y, w, z in zip(xcentral, ycentral, xlist, ylist): landmarks_vectorised.append(x) landmarks_vectorised.append(y) meannp = np.asarray((ymean, xmean)) coornp = np.asarray((z,w)) dist = np.linalg.norm(coornp-meannp) landmarks_vectorised.append(dist) landmarks_vectorised.append((math.atan2(y, x)*360)/(2*math.pi)) data['landmarks_vectorised'] = landmarks_vectorised len(detections) < 1:</pre>
# 1. Ap # 2. Ex # 3. Si def mal tra pro	data['landmarks_vestorised'] = "error" ne function to: coply grayscale and CLAHE to CK+ dataset images to enhance the contrast and make the landmark detection easier. extract the feature vectors from the CK+ dataset. tore feature vectors into final train and test dataset arrays and also store the corresponding class labels. exe_sets(): aining_data = [] aining_labels = [] ediction_data = [] ediction_labels = [] r emotion in emotions:
	<pre>print("Creating training and validation data of: %s" %emotion) training, prediction = get_files(emotion) for item in training: image = cv2.imread(item) gray = cv2.cvtColor(image, cv2.CoLOR_BGR2GRAY) clahe_image = clahe.apply(gray) get_landmarks(clahe_image) if data['landmarks_vectorised'] == "error": print("no face detected on this one") else:</pre>
	<pre>training_data.append(data['landmarks_vectorised']) training_labels.append(emotion) for item in prediction: image = cv2.imread(item) gray = cv2.cvtColor(image, cv2.CoLoR_BGR2GRAY) clahe_image = clahe.apply(gray) get_landmarks(clahe_image) if data['landmarks_vectorised'] == "error": print("no face detected on this one") else: prediction_data.append(data['landmarks_vectorised'])</pre>
3.a. Appli	prediction_labels.append(emotion) turn training_data, training_labels, prediction_data, prediction_labels cation of k - Nearest Neighbors algorithm and evaluation of classification quality. the the final train/validation sets and their corresponding labels. ng_data, training_labels, prediction_data, prediction_labels = make_sets() g training and validation data of: anger
Creatin Creatin Creatin Creatin Creatin Creatin Creatin npar_t	g training and validation data of: disgust g training and validation data of: disgust g training and validation data of: fear g training and validation data of: happiness g training and validation data of: happiness g training and validation data of: sadness g training and validation data of: surprise ert the dataset to arrays. rain = np.array(training_data) rainlabs = np.array(training_labels) est = np.array(prediction_data)
# Apply knn = I #best knn.fi y_pred	estlabs = np.array(prediction_labels) y a distance-based machine learning algorithm (KNN) KNeighborsClassifier(n_neighbors=1, metric = 'minkowski') results with 1 neighbor but feel free to change to 3,5 etc (see more at: Conclusion Notes) t(npar_train,npar_trainlabs) = knn.predict(npar_test)
<pre>print() # 1. C. print() # 2. Co print() print() fig, a: disp =</pre>	<pre>ity of Classification via: "Implementing KNN") lassification Accuracy. "Accuracy of KNN:", metrics.accuracy_score(npar_testlabs, y_pred)) onfusion Matrix. "gettin accuracies") "Confusion Matrix of KNN") x = plt.subplots(figsize=(10, 10)) #change size to (8,8) or (6,6) if confusion matrix size is too big! plot_confusion_matrix(knn, npar_test, npar_testlabs, display_labels = emotions, cmap=plt.cm.Blues, normalize = 'pred', ax=ax) xset_title("Confusion Matrix - KNN")</pre>
Impleme Accurac gettin	gnition accuracy varies between 67% and 79% with KNN nting KNN y of KNN: 0.84375 accuracies on Matrix of KNN Confusion Matrix - KNN
contem disgu	pt - 0.04
happine sadne	-0.4
surpri	anger contempt disgust fear happiness sadness surprise Predicted label 0.04 0 0 0.14 0.88 0.09
<pre>print() clf = S clf.fi print() print() print() fig, as</pre>	<pre>"Implementing linear SVM") SVC(kernel='linear', probability = True, tol=1e-3, random_state=0) t(npar_train, training_labels) "gettin accuracies") "Accuracy of linear SVM:", clf.score(npar_test,npar_testlabs)) "Confusion matrix of SVM") x = plt.subplots(figsize=(10, 10)) #change size to (8,8) or (6,6) if confusion matrix size is too big! splot confusion matrix(clf_npar_test_npar_testlabs_n</pre>
disp = disp.ax plt.sho # Recog Impleme gettin Accurac	plot_confusion_matrix(clf, npar_test, npar_testlabs, display_labels = emotions, cmap=plt.cm.Reds, normalize = 'pred', ax=ax) xset_title("Confusion Matrix - SVM")
ang contem	Confusion Matrix - SVM ver - 0.74
disgu Fe fe happine	ar - 0.088
sadne surpri	-0.2
##### print image_s # Show	n an image and a video of myself showing different emotions. TEST ON IMAGE #### sample emotion prediction via SVM ('press "space" to continue ;)') self = cv2.imread("self_photo.jpg") input image show(Input Image image self)
cv2.wa: # Print(plt.im: plt.sho # Show gray = cv2.im: cv2.wa: # Print	show('Input Image', image_self) itKey(0) t also on jupyter notebook "Input Image") show(image_self) ow() grayscaled image cv2.cvtColor(image_self, cv2.COLOR_BGR2GRAY) show('Grayscaled Image', gray) itKey(0) t also on jupyter notebook "Grayscaled Image")
plt.show # Show clahe_: cv2.im: cv2.wa: # Print print(' plt.im: plt.sho	<pre>contrast-enhanced image image = clahe.apply(gray) show('Contrast-enhanced Image, via CLAHE', clahe_image) itKey(0) t also on jupyter notebook 'Contrast Enhanced Image") show(clahe_image) DW()</pre>
detect: for k, c sha x1: y1: for	<pre>act feature vectors from an image and store them in a structure like before. ions = detector(clahe_image, 1) d in enumerate(detections): ape = predictor(clahe_image, d) iist = [] iist = [] r i in range(0,68): xlist.append(float(shape.part(i).x)) ylist.append(float(shape.part(i).y)) ean = np.mean(xlist) ean = np.mean(ylist)</pre>
yce nev fo	<pre>entral = [(x-xmean) for x in xlist] entral = [(y-ymean) for y in ylist] w_sample_vectorised = [] r x, y, w, z in zip(xcentral, ycentral, xlist, ylist): new_sample_vectorised.append(x) new_sample_vectorised.append(y) meannp = np.asarray((ymean,xmean)) coornp = np.asarray((z,w)) dist = np.linalg.norm(coornp-meannp) new_sample_vectorised.append(dist) new_sample_vectorised.append((math.atan2(y, x)*360)/(2*math.pi)) (detections) < 1:</pre>
# Reshanew_sanew_sanew_sanew_final_e	int("error") ape the new test-sample for further classification via the already trained SVM algorithm via clf.predict(). mple_vectorised=np.array(new_sample_vectorised) mple_vectorised=new_sample_vectorised.reshape(1,-1) emotion = clf.predict(new_sample_vectorised) emotion = np.array2string(final_emotion) a green box around the detected face and print the output emotion. in range(0,68):
cv2.ims cv2.wa: # Print print(= shape.part(n).x = shape.part(n).y 2.circle(image_self, (x,y),4,(255,0,0),-1) show('Self Image with Facial Landmarks', image_self) itKey(0) t also on jupyter notebook "Self Image with Facial Landmarks") show(image_self)
for fac x1 y1 x2 y2 cv2.rec cv2.pu cv2.ims cv2.was	<pre>the landmarks detected on the face for completeness purposes. ce in detections:</pre>
<pre>print(plt.ims plt.sho print()</pre>	"Self Image with Emotion Output") show(image_self) ow() final_emotion) space" to continue ;)
200 - 300 - 400 - 500 - 600 -	
Ó	zóo 4óo 6óo 8óo 1óoo led Image
500 - 600 - 700 - 0 Contras	200 400 600 800 1000 t Enhanced Image
200 - 300 - 400 - 500 - 600 -	
Ó	200 400 600 800 1000 age with Facial Landmarks
100 -	zóo 4óo 6óo 8óo 10óo age with Emotion Output
200 - 300 - 400 - 500 - 600 - 700 -	200 400 600 800 1000
'anger	TEST ON VIDEO ##### sample frame emotion prediction via KNN on captured video of myself showing random emotions! cv2.VideoCapture('self_video.mov') o.isOpened()== False): int("Error opening video stream or file")
re	<pre>cap.isOpened()): t, frame = cap.read() ret == True: # Extract feature vectors from every frame of a video and store them in a structure like before gray = cv2.cvtColor(frame, cv2.ColoR_BGR2GRAY) clahe_image = clahe.apply(gray) detections = detector(clahe_image, 1) for k,d in enumerate(detections): shape = predictor(clahe_image, d) xlist = [] ylist = []</pre>
	<pre>for i in range(0,68): xlist.append(float(shape.part(i).x)) ylist.append(float(shape.part(i).y)) xmean = np.mean(xlist) ymean = np.mean(ylist) xcentral = [(x-xmean) for x in xlist] ycentral = [(y-ymean) for y in ylist] new_sample_vectorised = [] for x, y, w, z in zip(xcentral, ycentral, xlist, ylist): new_sample_vectorised.append(x)</pre>
	<pre>new_sample_vectorised.append(y) meannp = np.asarray((ymean, xmean)) coornp = np.asarray((z,w)) dist = np.linalg.norm(coornp-meannp) new_sample_vectorised.append(dist) new_sample_vectorised.append((math.atan2(y, x)*360)/(2*math.pi)) if len(detections) < 1: print("error") # Reshape the new test sample in order to be classified via the already trained # KNN algorithm via knn.predict()</pre>
	<pre>new_sample_vectorised=np.array(new_sample_vectorised) new_sample_vectorised=new_sample_vectorised.reshape(1,-1) final_emotion = knn.predict(new_sample_vectorised) final_emotion = np.array2string(final_emotion) print(final_emotion) # Once the face is detected by the dlib detector, i draw a green rectangle shape that follows # the face in each video frame and prints the output emotion in each frame consequently. for face in detections: x1 = face.left() y1 = face.top() x2 = face.right() y2 = face.bottom()</pre>
	<pre>y2 = face.bottom() cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,0),3) cv2.putText(frame, final_emotion, (x1,y1), cv2.FONT_HERSHEY_SIMPLEX,2,(0,255,0),3) # Print the 68 landmark points on the face at the same time for completeness for n in range(0,68): x = shape.part(n).x y = shape.part(n).y cv2.circle(frame, (x,y),4,(255,0,0),-1) # Also print each frame of the video with the predicted emotion on Jupyter Notebook cv2.imshow('Self Video Emotion Capture', frame)</pre>
# You o	plt.imshow(frame) plt.show() y = cv2.waitKey(1) key == 27: break can press "esc" to end the video earlier! y you can see
['surpr 0 100 - 200 - 300 - 400 -	
500 - 600 - 700 - 0 ['surpr	200 400 600 800 1000 ise']
200 - 300 - 400 - 500 - 600 - 700 -	200 400 600 800 1000
0 ['surpr 0 100 - 200 - 300 - 400 -	
500 - 600 - 700 - 0 ['surpr	200 400 600 800 1000 ise']
200 - 300 - 400 - 500 - 600 -	
700 - 0 ['surpr 0 - 100 - 200 - 300 -	200 400 600 800 1000 ise']
400 - 500 - 600 -	200 400 600 800 1000 ise']
700 - 0 ['surpr	

1. In kNN implementation i used the Minkowski Distance metric, since all feature vectors, between the central point (c.o.g) and the other landmark points on a detected face, are positive. By using Minkowski

distance, in the present implementation, a classification accuracy increase of about 10% is noticed when compared to the traditional Euclidean Distance metric.

 ${\bf 1.}\ \ {\bf Linear\ SVM\ outperformed\ kNN,\ which\ indicates\ that\ classes\ are\ easilly\ seperable.}$

Extra Notes

In []:

https://github.com/konstgyftodimos

1. The kNN algorithm offers better results when number of neighbors (k) is equal to "1", since train/test data are the same data that were randomly split and they have high similarity.

1. In the past i have trained a CNN to recognize emotions on a live video with OpenCV using CascadeClassifier to detect faces in images. You can find more information in my github page: