Questions

Questions

1.	If $x^2 + 2ax + 10$	-3a > 0 for all :	$x \in R$, the	hen								
	(1) $-5 \le a \le 2$					(2) $a < -5$						
	(3) a > 5					(4) $2 < a < 5$						
2.	The values of a for which $(a^2 - 1)x^2 + 2$ $(a - 1)x + 2$ is positive for any x is											
	(1) $a \ge 1$ go ///.					(2) $a \le 1$						
	(3) $a > -3$					(4) $a \leq -3$ (or $a >$	> 1				
3.	The number of inte	gral values of m	for whic	h the quad	ratic (expression (1 -	+2m	$) x^2 - 2(1 + 3)$	m)x -	+4(1+m), x	$\in R$	isnatho
	always positive, is											
	(1) 7 ///					(2) 3						
	(3) 6					(4) 8						
4.	If α and β are the roots of $4x^2 - 16x + \lambda = 0$, $\lambda \in R$ such that $1 < \alpha < 2$ and $2 < \beta < 3$, then the number of integral solutions of λ is											
	(1) 5					(2) 6						
	(3) 2 hongo ///					(4) 3						
5.	The set of all the p	ossible real valu	es of a su	ch that the	ineau	uality ($x-(a-$	- 1))($(x - (a^2 + 2))$	< 0 h	olds for all $x \in$	(-1,	3), is
14.	$(1) (1, \infty)$				///.			mathongo		mathongo	/4/.	matho
	$(3) \ (-\infty,1)$					(4) (0,1)	,					
6.	All the real values of m such that both roots of the equation $x^2 - 2mx + m^2 - 1 = 0$ are greater than -2 and less than 4 lies in											
	$(1) \ (-2,4)$			•		(2) (-1,2)						
	(3) $(-1,3)$					(4) None of	these					
7.	The value of k for	which both the r	oots of the	e equation	$4x^2$ -	$-20kx + (25k^2)$	$^{2} + 1$	5k-66)=0 as	re les	s than 2, lies in		
	(1) (1)					(2) (0, 2)		mathongo				
	(3) $\left(-1, -\frac{4}{5}\right)$					(4) $(-\infty, -1)$						
8.	If both roots of x^2	$-2ax+a^2+a$	-3=0 a	are less tha	an 3, t	hen						
	(1) $a < 2$					(2) $2 \le a \le$	3					
	(3) $3 < a \le 4$					(4) $a > 4$						
9.	The range of a for	which the equati	$\sin x^2 + a$	ax - 4 = 0) has i	its smaller root	in th	e interval $(-1,$	2) is	}		
	$(1) \ (-\infty, -3) //$					(2) (0, 3)						
	$(3) (0, \infty)$					$(4) \ (-\infty, \ -$	- 3)∪	$(0, \infty)$				
10.	If the equation ax^2	+2bx-3c=0) has no re	eal roots ar	$\frac{3c}{4}$	< a + b, then						
	(1) $c < 0$				_	(2) $c > 0$						
	(3) $c = 0$					(4) $a + 2b -$	3c <	0 mathongo				