(19) 日本国特許庁 (JP)

H01J 1/312

31/12

報 (B2) (12)特 許 公

(11)特許番号

特許第32142565

(P3214256)

(45)発行日 平成13年10月2日(2001,10.2)

(24)登録日 平成13年7月27日(2001.7.27)

(51) Int. CI. 7 ·

識別記号

FΙ

H01J 31/12

C

1/30

M

請求項の数7 (全7頁)

			•
(21)出願番号	特願平6-246004	(73)特許権者	000005821
			松下電器産業株式会社
(22)出願日	平成 6年10月12日(1994.10.12)		大阪府門真市大字門真1006番地
		(72)発明者	嶋田 恭博
(65)公開番号	特開平8-111166		大阪府高槻市幸町1番1号 松下電子工
(43)公開日	平成8年4月30日(1996.4.30)		業株式会社内
審査請求日	平成11年3月10日(1999.3.10)	(72)発明者	那須 徹
			大阪府高槻市幸町1番1号 松下電子工
			業株式会社内
		(72)発明者	井上 敦雄
	•		大阪府高槻市幸町1番1号 松下電子工
•			業株式会社内
		(74)代理人	100097445
			弁理士 岩橋 文雄 (外2名)
			小白 安西
		審査官	小島 寛史
			—
			最終頁に続く

(54) 【発明の名称】電子パルス放出装置および表示装置

(57)【特許請求の範囲】

【請求項1】 支持基板と、前記支持基板の上に形成さ れた第1の電極と、前記第1の電極の上に形成された強 誘電体膜と、前記強誘電体膜の上に前記第1の電極と接 触することなく形成された第2の電極と、前記第2の電 極と空間を介して対向する第3の電極と、前記第1の電 極に対して前記第3の電極に正の直流バイアスを印加す る手段と、前記第1の電極と前記第2の電極との間に前 記強誘電体膜の分極を反転させるための交流パルスを印 加する手段とを備え、前記第2の電極の表面から前記第 3の電極に向けて電子を間欠的に放出することを特徴と する電子パルス放出装置。

【請求項2】 前記支持基板が一方導電型の半導体基板 であり、前記第1の電極が前記半導体基板の上に形成さ れた他方導電型の拡散層である請求項1記載の電子パル

ス放出装置。

【請求項3】 支持基板と、前記支持基板上に形成され た複数の第1の電極と、前記第1の電極の上に形成され た強誘電体膜と、前記強誘電体膜の上に前記第1の電極 と接触することなく前記第1の電極とは直交する方向に 形成された複数の第2の電極と、前記複数の第1の電極 と前記複数の第2の電極とが交差する部分に開口を有す る前記第2の電極上に形成された絶縁層とを備え、前記 支持基板は、前記第2の電極と空間を介して対向する、 透明導電層と蛍光体層が順に形成された透明基板と空間 10 を介して対向して配置され、前記第1の電極に対して前 記透明導電層に正の直流バイアスを印加する手段と、前 記第1の電極と前記第2の電極との間に前記強誘電体膜 の分極を反転させるための交流パルスを印加する手段と を備え、前記第2の電極の表面から前記透明導電層に向

2

けて電子を間欠的に放出することを特徴とする表示装置。

【請求項4】 前記支持基板が一方導電型の半導体基板であり、前記第1の電極が前記半導体基板の上に形成された他方導電型の拡散層である請求項3記載の表示装置。

【請求項5】 前記支持基板に、前記複数の第1の電極 および前記複数の第2の電極に電気信号を供給するため の駆動回路を設けた請求項4記載の表示装置。

【請求項6】 前記複数の第1の電極と前記複数の第2 の電極とが直交する部分が、行または列同士で半ピッチ ずれている請求項3、4または5記載の表示装置。

【請求項7】 前記複数の第1の電極と前記複数の第2の電極とが直交する部分に対応して前記透明基板の上に2種類以上の蛍光体が独立してマトリックス状に塗布されている請求項3、4、5または6記載の表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、強誘電体膜または高い 誘電率を有する誘電体膜を容量絶縁膜とする容量装置の 20 一電極面を冷陰極電子放出面として用いた電子パルス放 出装置およびその電子パルス放出装置を用いた表示装置 に関する。

[0002]

【従来の技術】固体素子中の電子の移動速度はたかだか 光速の1/1000程度であり、固体素子の動作速度に は限界がある。また、これらの固体素子の特性は、放射 線や温度変化に影響されやすいという欠点を持ってい る。近年、固体素子の持つこれらの欠点を克服するため に、微細加工技術を用いて微小な真空管を固体中に作り こむ試みが活発になされている。

【0003】これらの微小真空管にはさまざまな形状の冷陰極が使用されているが、そのなかでも針状電極は1000A/cm²以上の高い放出電子密度を容易に得ることができるので、広く研究されている。また、半導体中のなだれ降伏や、絶縁膜またはショットキー障壁でのトンネル効果を利用した平面陰極構造も研究されている。

【0004】以下、従来の平面陰極構造を有する電子パルス放出装置の一例について説明する。図6は従来の電 40子パルス放出装置の要部断面図である。

【0005】図6に示すように、従来の電子パルス放出装置は、強誘電体膜3を第1の電極2と第2の電極4とで挟み、第2の電極4には強誘電体膜3の表面を露出させるための開口4aを設けている。このような構成において、交流パルス電源7からのパルス電圧で強誘電体膜3の分極を急激に反転させることにより、強誘電体膜3の表面の分極電荷によって拘束された電子をパルス的に放出させる方法が試みられており、1A/cm³以上の電流密度を得ている(例:H. Gundl他 Appl. Phys. Let 50

t., Vol. 54, pp. 2071, 1989) 。

[0006]

【発明が解決しようとする課題】しかしながら上記の従来の針状電極構造では、陰極の尖端部に電流が集中するため尖端部が蒸発し経時的に放出電流特性が変化するほか、尖端部へのガスの吸脱着により放出電流特性が不安定になるなどの課題を有していた。

【0007】一方、なだれ降伏やトンネル効果を利用した平面陰極構造では、電子放出に高電界を要するので動作電圧が高くなるという課題を有していた。さらに、これらの冷陰極を用いた微小真空管の多くは直流的に動作するので、空間電荷制限効果によって放出電子電流が飽和するという課題を有していた。

【0008】この空間電荷制限効果は、瞬時電流値だけを問題にするのであれば、空間に電子をパルス的に放出させることによって回避できる。たとえば、強誘電体の分極反転を利用した強誘電体表面からの電子放出はその一例である(例: H. Gundi他Appl. Phys. Lett., Vol.54, pp. 2071, 1989および特開平5-325777号公報)が、ここで放出される電子の量は高々強誘電体膜の分極電荷と結合した電荷量のみであるので、高い放出電子電流密度は望めない。また、電子放出面が強誘電体表面であるため、ガスの吸脱着による電子放出特性が不安定になるという課題があった。

【0009】この課題を解決するために、発明者らは、強誘電体表面を金属電極で覆い、この金属電極と絶縁膜を介して隔てられたトリガ板との間に印加した電界によって金属電極から電子を引き出し、電子放出特性の安定化を図った(特開平6-259304号公報参照)。しかし、この構造では、電子放出特性が従来の構造に比べて改善されたものの、金属電極とトリガ板の間の絶縁膜の絶縁耐圧が高くなければならないのに加え、この装置を駆動するための回路が複雑になるというあらたな課題が生じた。

【0010】本発明は、上記従来の課題を解決するもので、空間電荷制限効果がなく、高い電子放出電流密度を低い動作電圧によってパルス的に得ることができ、かつ特性変動や特性劣化の少ない平面陰極構造を有する電子パルス放出装置および表示装置を提供することを目的とする。

[0011]

30

【課題を解決するための手段】この目的を達成するために本発明の請求項1記載の電子パルス放出装置は、支持基板と、前記支持基板の上に形成された第1の電極と、前記第1の電極の上に形成された強誘電体膜と、前記強誘電体膜の上に前記第1の電極と接触することなく形成された第2の電極と、前記第2の電極と空間を介して対向する第3の電極と、前記第1の電極に対して前記第3の電極に正の直流パイアスを印加する手段と、前記第1の電極と前記第2の電極との間に前記強誘電体膜の分極

20

40

5

を反転させるための交流パルスを印加する手段とを備え、前記第2の電極の表面から前記第3の電極に向けて電子を間欠的に放出することを特徴とするものである。

【0012】また、本発明の請求項3記載の表示装置 は、支持基板と、前記支持基板上に形成された複数の第 1の電極と、前記第1の電極の上に形成された強誘電体 膜と、前記強誘電体膜の上に前記第1の電極と接触する ことなく前記第1の電極とは直交する方向に形成された 複数の第2の電極と、前記複数の第1の電極と前記複数 の第2の電極とが交差する部分に開口を有する前記第2 10 の電極上に形成された絶縁層とを備え、前記支持基板 は、前記第2の電極と空間を介して対向する、透明導電 層と蛍光体層が順に形成された透明基板と空間を介して 対向して配置され、前記第1の電極に対して前記透明導 電層に正の直流バイアスを印加する手段と、前記第1の 電極と前記第2の電極との間に前記強誘電体膜の分極を 反転させるための交流パルスを印加する手段とを備え、 前記第2の電極の表面から前記透明導電層に向けて電子 を間欠的に放出することを特徴とするものである。

[0013]

【作用】以上の構成により、電子パルス放出装置としては、第2の電極に容量結合として蓄積された電子に加え、第2の電極と強誘電体膜の界面準位に拘束された電子、強誘電体膜内の欠陥準位に拘束された電子を放出電子として利用できるので、放出電流密度を高くできる。 【0014】なお支持基板をn型半導体基板とし、第1の電極をp型拡散層で構成することによりpn接合部から拡散注入された電子までも放出電子に供することができるので、さらに放出電流密度が高くなる。

【0015】また、強誘電体膜の膜厚を200nm程度 30にすると、±5 V程度の低電圧で分極を反転させることが可能となり、低電圧での電子放出が可能となる。さらに、電子放出面は第2の電極で覆われた平面構造であるので、放出電流の集中がなく、またガスの吸脱着の影響も受けにくい電子パルス放出装置を実現できる。さらに、その動作は第1の電極と第2の電極との間に交流パルス電圧を印加すればよいので、動作に必要な回路構成も簡素化される。

【0016】また上記の電子パルス放出装置の第3の電極として透明導電層を形成し、その上に蛍光体層を積層した透明基板を用いることにより、低電圧動作可能な薄型の表示装置を実現できる。

[0017]

【実施例】以下本発明の一実施例における電子パルス放出装置について、図面を参照しながら説明する。

【0018】図1は本発明の第1の実施例における電子パルス放出装置の断面図である。図1において、1はシリコン基板またはガラス基板等の支持基板、2は白金膜からなる第1の電極、3はチタン酸鉛ジルコニウムからなる厚さ200nmの強誘電体膜、4は白金膜からなる 50

厚さ10nmの第2の電極、5はアルミニウムからなる第3の電極であり、第2の電極4と第3の電極5は1mm程度隔でられている。6は直流バイアス電源、7は交流パルス電源であり、それぞれ電子パルス放出装置を動作させるための駆動回路の一部を構成している。

【0019】以上のように構成された電子パルス放出装置について、以下その動作について説明する。まず第1の電極2と第2の電極4との間に第1の電極2に対して正のパルスを印加し、第1の電極2と、強誘電体膜3と、第2の電極4とで構成されるキャパシタを充電する。このとき、第2の電極4には電子が蓄積される。次に第1の電極2と第2の電極4との間に第1の電極に対して負のパルスを印加すると強誘電体膜3の分極が反転し、直流バイアス6によって第2の電極4から第3の電極5に向けて電子が放出される。

【0020】上記の動作について、さらに電子エネルギー帯図を用いて説明する。図2(a)は、第1の電極に対して正であるパルス電圧を第2の電極に印加したときの電子エネルギー帯図、図2(b)は、第1の電極に対して負であるパルス電圧を第2の電極に印加したときの電子エネルギー帯図である。これらの図において、21は第1の電極2の電子エネルギー帯、22は強誘電体膜3の電子エネルギー帯、23は第2の電極4の電子エネルギー帯、24は真空準位、25はフェルミ準位、26は第2の電極4に容量結合した電子、27は第2の電極4と強誘電体膜3との界面の界面準位に拘束された電子、28は強誘電体膜3の欠陥準位に拘束された電子である。以下電荷の単体として電子のみに着目して説明する。

【0021】図2(a)に示すように、第1の電極2と第2の電極4との間に第1の電極に対して正のパルスを印加した場合、第2の電極4には容量結合した電子26が、第2の電極4と強誘電体膜3との界面には界面準位に拘束された電子27が、強誘電体膜3内には欠陥準位に拘束された電子28がそれぞれ蓄積される。次に図2(b)に示すように、第1の電極2と第2の電極4との間に第1の電極2に対して負のパルスを印加すると強誘電体膜3の分極が反転し、界面準位に拘束された電子27が反転した分極電荷による電界によって真空準位24に飛び出す。さらに強誘電体膜3の欠陥準位に拘束された電子28が、強誘電体膜3の欠陥準位に拘束され、欠陥準位間をホッピングしながら真空準位24へ飛び出す。

【0022】次に、本発明の第2の実施例における電子 パルス放出装置について、図面を参照しながら説明す る。

【0023】図3は同電子パルス放出装置の断面図である。図3において、31はn型シリコン基板、32はp型拡散層からなる第1の電極、33はチタン酸鉛ジルコニウムからなる厚さ200nmの強誘電体膜、34は白

金膜からなる厚さ10nmの第2の電極、35はアルミニウムからなる第3の電極であり、第2の電極34と第3の電極35は1mm程度隔でられており、36は直流パイアス電源、37は交流パルス電源である。第1の電極32はn型シリコン基板31との間にpn接合を形成している。第1の電極32には交流パルス電源37が電気的に接続されており、第1の電極32と第2の電極34との間にかかる電圧と、第1の電極32とn型シリコン基板31との間にかかる電圧とは極性が逆になっている。

【0024】以上のように構成された第2の実施例について、以下その動作について説明する。

【0025】図4(a)は、直流バイアス電源および交流パルス電源が接続されていないときの電子エネルギー帯図であり、図4(b)は、直流バイアス電源および交流パルス電源37を接続し、第1の電極32に正のパルス電圧を印加したときの電子エネルギー帯図、図4

(c)は、第1の電極32に負のパルス電圧を印加したときの電子エネルギー帯図である。これらの図において、41はpn接合の電子エネルギー帯、42は強誘電 20体膜の電子エネルギー帯、43は第2の電極34の電子エネルギー帯、44は真空準位、45はフェルミ準位、46は第2の電極34に容量結合した電子、47は第2の電極34と強誘電体膜33との界面の界面準位に拘束された電子、48は強誘電体膜33内の欠陥準位に拘束された電子、49はn型シリコン基板31から第1の電極32に注入された電子である。

【0026】ここで、直流バイアス電圧を印加し、第1の電極32に正のパルス電圧を印加すると、図2(a)に示すように、第2の電極34には容量結合した電子46が、第2の電極34と強誘電体膜33との界面には界面準位に拘束された電子47が、強誘電体膜33内には欠陥準位に拘束された電子48がそれぞれ蓄積されるほか、pn接合部は順方向バイアスとなっているので、第1の電極32にはn型シリコン基板31から電子49が拡散注入され、これらの一部は強誘電体膜33と第1の電極32との界面の界面準位に拘束された電子47となる。

【0027】次に第1の電極32に負のパルスを印加すると、図4(c)に示すように強誘電体膜33の分極が40反転し、界面準位に拘束された電子47が反転した分極電荷による電界によって真空準位44に飛び出す。さらに強誘電体膜33の欠陥準位に拘束された電子48が、強誘電体膜33にかかる電界に加速され、欠陥準位間をホッピングしながら真空準位44へ飛び出す。これに加えて第1の電極32と強誘電体膜33との間の界面準位に拘束された電子47も電界に加速されて真空準位44へ放出されることとなる。

【0028】なお本実施例において基板としてn型シリ は図3に示す電子パルス放出装置に同じであるが、電子コン基板を使用し、第1の電極としてp型拡散層を用 50 が放出される場所は、第1の電極52と第2の電極54

い、p n 接合を利用した場合について説明したが、p型シリコン基板にn型ウエルを形成し、そのn型ウエルにp型拡散層を形成して第1の電極として用いても同様の電子放出装置を構成することができる。またp n 接合を利用するのでなければ、p型シリコン基板にn型拡散層を形成し、このn型拡散層を第1の電極として用いてもよい。

8

【0029】次に本発明の一実施例における表示装置に ついて、図面を参照しながら説明する。図5は同表示装 置の立体断面図である。図5において、51はn型シリ 10 コン基板、52はp型拡散層からなる第1の電極、53 はPZTなどの強誘電体膜、54は第1の電極52に直 交するようにして形成された白金膜などからなる第2の 電極、55はシリコン酸化膜などからなる絶縁層、56 は絶縁層55に設けた開口、57は蛍光体層、58は透 明導電層からなる第3の電極、59は透明基板、60は 直流バイアス電源、61は交流パルス電源である。なお 第1の電極52および第2の電極54は、図面では省略 したが、それぞれスイッチを介して交流パルス電源61 に接続されているものとする。このように本実施例は、 n型シリコン基板51の上に電子放出部を多数設け、こ の n 型シリコン基板 5 1 に対向して蛍光体層 5 7、透明 導電層58を形成した透明基板59を設置し、それぞれ の基板の周辺で真空封止しておくことにより表示装置を 構成したものである。

【0030】すなわち、n型シリコン基板51の上に平 行に配置された多数の第1の電極52と、強誘電体膜5 3を介して平行に配置された多数の第2の電極54とが 互いに直角に配置されている。多数の第2の電極54 30 は、電子を真空中に放出するための開口56を備えたシ リコン酸化膜からなる絶縁層55で互いに電気的に絶縁 されている。第1の電極52と第2の電極54の終端 は、それぞれスイッチ(図示せず)を介して交流パルス 電源61に接続されている。一方、交流パルス電源61 に対して直流バイアス電源60によってバイアスされた 放出電子を捕獲する第3の電極58は、開口56より空 間を隔てて電子放出面と対向する透明基板59の上に形 成された透明導電層であり、たとえば酸化インジウムス ズ(ITO)などが使用される。さらに、本実施例で は、電子の到達面である透明導電層58の面上に蛍光体 57が塗布されている。なお、シリコン基板51と透明 基板59とは絶縁層55の上にスペーサを設けて重ね合 わせることによって、両者の間隔を均一に保持すること ができる。

【0031】以上のように構成された表示装置について、以下その動作について説明する。まず、交流パルス電源61によって第1の電極52、強誘電体膜53、および第2の電極54からなるキャパシタへの充放電動作は図3に示す電子パルス放出装置に同じであるが、電子が放出される場所は、第1の電極52と第2の電極54

のおのおのに接続されているスイッチ(図示せず)の開閉状態を組み合わせることによって選択される格子上の点になる。このように、選択された任意の格子点の開口56から放出された電子は、直流バイアス電源60による電界で加速されて第3の電極58に到達するが、本実施例では蛍光体57を第3の電極58の面上に塗布してあるので、加速された電子は蛍光体57に衝突し、これを発光させる。すなわち、透明基板59の内面の任意の場所を選択して発光させることができるので、平面画像表示装置として利用できる。

【0032】上記実施例における表示装置では、第1の電極52としてn型シリコン基板51に形成されたp型拡散層を用いた例について説明したが、これはpn接合を利用して効率を上げた例であり、単に拡散層を配線として使用するのであれば、導電型にはこだわる必要はない。また基板として半導体基板を使用するのではなく、絶縁性基板上に導電性材料で複数本の第1の電極を形成し、この第1の電極を覆って強誘電体膜を形成し、この強誘電体膜の上に第1の電極に直交するようにして第2の電極を形成しても同様の表示装置を構成することがで20きる。

【0033】また上記実施例における表示装置では、第2の電極54として白金膜を用いた例について説明したが、白金膜以外にも仕事関数の低い金属を使用するか、または低抵抗の金属の表面に酸化マグネシウム(MgO)やセシウム(Cs)など電子放出効率の高い材料を塗布することにより、さらに電子放出効率の高い電子パルス放出装置を備えた表示装置を構成することができる。

【0034】また表示装置をカラー化するに際しては、第1の電極52と第2の電極54との交点に対応する透明基板59の上に異なる発色を示す蛍光体膜を形成してもよいし、また蛍光体膜57として白色発光のものを選択し、透明基板59にモザイク状のカラーフィルタを重ねてもよい。このとき、第1の電極52と第2の電極54との交点が行同士または列同士で互いに半ピッチずつずれるようにしておけば、鮮やかな色表示を可能にする。

【0035】なお、基板としてシリコン単結晶基板を用いた場合、通常の半導体装置の製造方法を用いて電極形 40 成できるとともに、表示部の周辺に高性能の駆動回路を形成でき、小型・高性能の表示装置を構成することができる。

【0036】また、基板として透明基板上に多結晶シリコン膜または非晶質シリコン膜を形成したものを用いた場合、シリコン単結晶基板を用いた場合に比べて多少性能は劣るものの、大画面の表示装置を構成することができる。

[0037]

【発明の効果】本発明は、支持基板上に形成された第1

の電極と、第1の電極の上に形成された強誘電体膜と、強誘電体膜の上に第1の電極と接触することなく形成された第2の電極と、第2の電極と空間を介して対向する第3の電極からなり、電極に容量結合として蓄積された電子、電極と強誘電体膜の界面準位に拘束された電子、および強誘電体膜内の欠陥準位に拘束された電子を放出させることにより、低電圧で放出電流密度の高い電子パルス放出装置を実現できるものである。たとえば強誘電体膜を200nm程度の厚さにすると、±5V程度の低電圧で強誘電体の分極を反転させることが可能であり、低電圧動作させることができる。

.10

【0038】また、基板としてn型シリコン基板を用い、p型拡散層を第1の電極としてその上に強誘電体膜、第2の電極を順次形成し、これらの上に第3の電極を設置することによりさらにpn接合部から注入された電子も放出電子として利用できるため、さらに放出電流密度を高くすることができる。

【0039】また、電子放出面は金属または酸化物の平面構造であり、放出電流の集中がなく、ガスの吸脱着の影響を受けにくい電子パルス放出装置を実現できる。

【0040】さらに、上記の電子パルス放出装置を応用し、第3の電極の上に蛍光体膜を塗布しておくことにより、放出された電子により蛍光体膜が励起されて発光するために、極めて薄型の表示装置を実現することができる。

【0041】また、表示装置の基板として単結晶シリコン基板を用い、表示部の周辺部に駆動回路を一体的に形成することができ、表示装置の入力端子数および外付け回路を簡略化することができる。

10 【図面の簡単な説明】

【図1】本発明の第1の実施例における電子パルス放出 装置の断面図

【図2】(a)は同電子パルス放出装置において、第1 の電極に対して正であるパルス電圧を第2の電極に印加 したときの電子エネルギー帯図

(b)は同電子パルス放出装置において、第1の電極に対して負であるパルス電圧を第2の電極に印加したときの電子エネルギー帯図

【図3】本発明の第2の実施例における電子パルス放出 装置の断面図

【図4】(a)は、同電子パルス放出装置において、直流バイアス電圧およびパルス電圧が印加されていないときの電子エネルギー帯図

(b)は、同電子パルス放出装置において、直流バイアス電圧を印加し、p型拡散層に正のパルス電圧を印加したときの電子エネルギー帯図

(c)は、同電子パルス放出装置において、直流パイアス電圧を印加し、p型拡散層に負のパルス電圧を印加したときの電子エネルギー帯図

【図5】本発明の一実施例における表示装置の立体断面

12

図

【図6】従来の電子パルス放出装置の要部断面図

【符号の説明】

1 支持基板

- 2 第1の電極
- 3 強誘電体膜
- 4 第2の電極
- 5 第3の電極

【図1】

【図2】

【図6】

- 2 第10學術
- 2 动物的体的
- 4 第2の電極
- ケ 盤3の母板

【図3】

【図4】

(a)

【図5】

フロントページの続き

(72)発明者 有田 浩二

大阪府高槻市幸町1番1号 松下電子工

業株式会社内

(72)発明者 松田 明浩

大阪府高槻市幸町1番1号 松下電子工

業株式会社内

(56)参考文献 特開 平6-111722 (JP, A)

特開 平5-325777 (JP, A)

特開 平6-103886 (JP, A)

特開 平7-226146 (JP, A)

(58)調査した分野(Int.Cl.', DB名)

H01J 1/312

H01J 31/12