

# Unit 2 Lesson 9 Average Rate of Change

#### Objectives:

- \*I can find the average rate of change.
- \*I can compare the average rates of change.



#### Warm Up:

The table below compares the number of hours a cashier works to her total earnings, in dollars. Write a linear equation to prepresent the cashier's earnings and then graph it.

| Cashier's Earnings |                   |  |
|--------------------|-------------------|--|
| Time in hours, x   | Earnings in \$, y |  |
|                    |                   |  |
| 0                  | 0                 |  |
| 2                  | 15                |  |
| 4                  | 30                |  |





Think back...what do you remember about **slope?** 

# Speed



Rate of change

Slope



shows how one quantity changes relative to another quantity.

To calculate rate of change between two points (x1, y1) and (x2, y2) use the formula:

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$(x_1, y_1) (x_2, y_2)$$

$$(1, 1) (4, 0)$$

$$m = \frac{(0 - 1)}{(4 - 1)} = \frac{-1}{3}$$

#### Let's go back to our warm up problem...

Choose two ordered pairs, and find the average rate of change.

| Cashier's Earnings |                   |  |  |
|--------------------|-------------------|--|--|
| Time in hours, x   | Earnings in \$, y |  |  |
|                    |                   |  |  |
| 0                  | 0                 |  |  |
| 2                  | 15                |  |  |
| 4                  | 30                |  |  |







## You Try...



Find the average rate of change between (19, 0) and (-2, -5)



## You Try...



Find the average rate of change between (8, -8) and (-1, -4)



#### Let's Try...

A basketball championship begins with 64 teams. Every time a team wins a segame, it goes on to the next round. Once a team loses a game it is eliminated segment competition and does not play any more games. The number of teams in segment round of the championship is a function of the round. That function is segmented on the graph in your notes.

Compare the rate of change between rounds 1 and 2 to the rate of change between rounds 2 and 3.





Graph f(x) = 2x + 1. Find the average rate of change between any  $2 \frac{1}{500}$  consecutive x values.







Compare your rate of change with someone near you. What do you notice?



Let's look at the rate of change of a **LINEAR FUNCTION**.

| X    | 0 | 1 | 2 | 3 |
|------|---|---|---|---|
| f(x) |   |   |   |   |

What do you notice?

What part of a linear equation is rate of change?



| Remember                                             |                                                   |
|------------------------------------------------------|---------------------------------------------------|
| An exponential function has a graph that is a curve. |                                                   |
| An exponential growth function is always             | , 🔛 while an exponential decay function is always |
| [27]<br>[SEP]                                        |                                                   |

| X    | 0 | 1 | 2 | 3 |
|------|---|---|---|---|
| f(x) |   |   |   |   |

### Let's Try...

Find and describe the average rate of change for four consecutive pairs of values in the table.

| X    | -3 | -2 | -1 | 0 | 1   |
|------|----|----|----|---|-----|
| f(x) | 64 | 16 | 4  | 1 | 1/4 |



#### Let's Try...

Determine the average rate of change between 3 consecutive pairs of points for the function f(x) = -3x + 2.

| x    |  |  |
|------|--|--|
| f(x) |  |  |

What type of function is this?



### You Try...



Find the average rate of change for 3 intervals of f(x).

| X  | f(x) |
|----|------|
| -1 | 1/3  |
| 0  | 1    |
| 1  | 3    |
| 2  | 9    |

What type of function is this?



Compare the rates of change for f(x) = 10x [sep] and function g, represented in the table.

What is the same?

4

\*

\*

| X  | g(x) |
|----|------|
| -1 | 1/8  |
| 0  | 1    |
| 1  | 8    |
| 2  | 64   |
| 3  | 512  |