Laboratorium 1

Szymon Kałuża

08.03.2022

1 Zadanie 1

1.1 a)

Dla zbioru danych wejściowych data.txt:

```
Time(s)
#n
128
              0,000039
256
              0,000143
              0,00063
512
              0,002195
1024
              0,008681
2048
4096
              0,034284
8192
              0,139693
              0,605784
16384
              2,737241
32768
              11,461985
65536
```

#Key means label...

Przy pomocy gnu plot dokonano aproksymacji funkcji $an^2 + bn + c$

set title "Zaleznosc czasu dzialania algorytmu od jego zlozonosci"

```
set style data linespoints set style line 1 lt 1 lw 6 set pointsize 1.5 set ylabel 'Czas pracy T(n) w sekundach' set xlabel 'Rozmiar danych wejsciowych' set tics nomirror out set style line 101 lc rgb '#000000' lt 1 lw 1 set border 3 front ls 101 set style line 102 lc rgb '#d6d7d9' lt 0 lw 1 set grid back ls 102 set format x ' fit a*x**2+b*x+c "data.dat" via a,b,c; plot "data.dat" using 1:2 title 'Dane doswiadczalne' with lines, a*x**2+b*x+c t 'f(x)=n^2' Otrzymano następujące wyniki:
```

```
iter
                      delta/lim lambda
                                                          b
                                                                        С
          chisq
  0 1.9677170347e+19
                        0.00e+00
                                  8.10e+08
                                               1.000000e+00
                                                               1.000000e+00
                                                                              1.000000e+00
                                                               9.999842e-01
  1 2.0475724034e+16
                       -9.60e+07
                                  8.10e+07
                                               3.224224e-02
                                                                              1.000000e+00
  2 2.7411234581e+09
                       -7.47e+11
                                  8.10e+06
                                              -5.598080e-06
                                                               9.999836e-01
                                                                              1.000000e+00
  3 4.6755236200e+08
                       -4.86e+05
                                              -1.634721e-05
                                                               9.999765e-01
                                                                              1.000000e+00
                                  8.10e+05
  4 4.6688658866e+08
                       -1.43e+02
                                              -1.633560e-05
                                                               9.992642e-01
                                                                              9.99999e-01
                                  8.10e+04
  5 4.0682757978e+08
                       -1.48e+04
                                  8.10e+03
                                              -1.524857e-05
                                                               9.327741e-01
                                                                              9.999946e-01
  6 6.1589829178e+06
                       -6.51e+06
                                  8.10e+02
                                              -1.873716e-06
                                                               1.146751e-01
                                                                              9.999292e-01
  7 1.7036886350e+01
                       -3.62e+10
                                  8.10e+01
                                               1.993580e-10
                                                               5.345204e-05
                                                                              9.999123e-01
    4.9387340129e+00
                       -2.45e+05
                                  8.10e+00
                                               2.827704e-09
                                                              -1.073019e-04
                                                                              9.991295e-01
    4.2237312278e+00
                       -1.69e+04
                                               2.754348e-09
                                                              -1.015267e-04
                                                                              9.267628e-01
                                  8.10e-01
 10 6.5878161768e-02
                       -6.31e+06
                                  8.10e-02
                                               1.953351e-09
                                                              -3.847220e-05
                                                                              1.369625e-01
 11 1.5756051079e-02
                       -3.18e+05
                                  8.10e-03
                                               1.855342e-09
                                                              -3.075691e-05
                                                                              4.032323e-02
 12 1.5755976038e-02
                       -4.76e-01
                                  8.10e-04
                                               1.855222e-09
                                                              -3.074746e-05
                                                                              4.020484e-02
iter
          chisq
                      delta/lim lambda
                                                          b
                                                                        С
```

```
After 12 iterations the fit converged.
final sum of squares of residuals : 0.015756
rel. change during last iteration: -4.76275e-06
                       (FIT_NDF)
degrees of freedom
                                                         : 7
rms of residuals
                      (FIT_STDFIT) = sqrt(WSSR/ndf)
                                                         : 0.0474432
variance of residuals (reduced chisquare) = WSSR/ndf
                                                         : 0.00225085
Final set of parameters
                                    Asymptotic Standard Error
                = 1.85522e-09
                                    +/- 4.282e-11
                                                      (2.308\%)
                                    +/- 2.738e-06
b
                = -3.07475e-05
                                                      (8.904\%)
                = 0.0402048
                                    +/- 0.0205
С
                                                      (51\%)
correlation matrix of the fit parameters:
                       b
                               С
                1.000
               -0.962 1.000
b
                0.486 -0.598 1.000
```


Figure 1: Zależność czasu działania algorytmu do rozmiaru danych

1.2 b)

```
Program:
Nieniejszy program jest podstawą dla całego zadania 1!
void selectSort(int* tab, int noe)
{
    for(int i = 0; i <= noe -2; i++)
    {
        int min = i;
        for(int j = i + 1; j <= noe -1; )
        {
            if(tab[j] < tab[min])
        {
                min = j;
            }
            j++;
        }
        change(tab, i, min);
    }
}</pre>
```

```
void change(int* tab, int i, int min)
{
    int temp = tab[i];
    tab[i] = tab[min];
    tab[min] = temp;
}
```

Hipoteza:

Czas działania naszego programu spełnia prawo potęgowe: $T(N) = a \cdot N^b dlab = 3$, tj.

$$T(N) = a \cdot N^2$$

Obliczenia:

 $T(n) = 0,00000000170199573040008544921875 \cdot 16384^2 = 0,456876$

 $T(N) = 0,0000000170199573040008544921875 \cdot 32768^2 = 1,827504$ $T(N) = 0,0000000170199573040008544921875 \cdot 65536^2 = 7,310016$

il. el	czas	wsp. zmiany	$\log N$	$\mathrm{czas}/ilel^2$
128.0	3.7E-5			
256.0	1.46E-4	3.945945946	1.980371193	0.000000002227783203
512.0	7.03E-4	4.815068493	2.26755632	0.000000002681732178
1024.0	0.001977	2.812233286	1.491716277	0.000000001885414124
2048.0	0.007053	3.567526555	1.834924169	0.000000001681566238
4096.0	0.027985	3.967815114	1.988344803	0.000000001668035984
8192.0	0.114219	4.081436484	2.029077006	0.00000000170199573
16384.0	0.4654	4.074628564	2.026668552	0.000000001733750105
32768.0	1.826972	3.925595187	1.972911408	0.000000001701500267
65536.0	6.7084	3.671867987	1.876514191	0.00000000156192109

Table 1: Select sort zależność czasu do ilości danych

Jak widać na przedstawionej powyżej tabeli nasza hipoteza została potwierdzona, dane otrzymane z obliczeń są porównywalne z danymi wynikającymi z przeprowadzonych testów.

2 Zadanie 2

2.1 a)

Dla zbioru danych wejściowych data2.txt:

```
#n
              Time(s)
              0,000039
128
256
              0,000143
              0,00063
512
              0,002195
1024
2048
              0,008681
              0,034284
4096
8192
              0,139693
              0,605784
16384
32768
              2,737241
              11,461985
65536
```

Przy pomocy gnu plot dokonano aproksymacji funkcji $an^2 + bn + c$

```
\# Keymeans label... set title "Zaleznosc czasu działania algorytmu od jego złozonosci" set style data linespoints set style line 1 lt 1 lw 6 set pointsize 1.5 set ylabel 'Czas pracy T(n) w sekundach'
```

```
set xlabel 'Rozmiar danych wejsciowych' set tics nomirror out set style line 101 lc rgb '#000000' lt 1 lw 1 set border 3 front ls 101 set style line 102 lc rgb '#d6d7d9' lt 0 lw 1 set grid back ls 102 set format x '
```

fit a*x**2+b*x+c "data.dat" via a,b,c; plot "data.dat" using 1:2 title 'Dane doswiadczalne' with lines, a * x * *2 + b * x + c t 'f(x)=n²'

Otrzymano następujące wyniki:

iter	chisq	delta/lim	lambda a	b	С	
0	2.6033782087e+01	0.00e+00	1.56e+00	1.855222e-09	-3.074746e-05	4.020484e-02
1	2.4802405284e-01	-1.04e+07	1.56e-01	2.938805e-09	-2.931367e-05	3.994604e-02
2	5.0526434897e-02	-3.91e+05	1.56e-02	3.272295e-09	-4.737959e-05	4.255429e-02
3	4.8818328085e-02	-3.50e+03	1.56e-03	3.304577e-09	-4.960196e-05	5.688698e-02
4	4.8817414819e-02	-1.87e+00	1.56e-04	3.305017e-09	-4.963621e-05	5.729970e-02
5	4.8817414819e-02	-1.52e-07	1.56e-05	3.305017e-09	-4.963622e-05	5.729981e-02
iter	chisq	delta/lim	lambda a	Ъ	С	

After 5 iterations the fit converged.

final sum of squares of residuals : 0.0488174 rel. change during last iteration : -1.51876e-12

degrees of freedom (FIT_NDF) : 7
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.08351
variance of residuals (reduced chisquare) = WSSR/ndf : 0.00697392

Final set of	parameters	Asymptotic Stan	dard Error
========	=======	==========	
a	= 3.30502e-09	+/- 7.538e-11	(2.281%)
b	= -4.96362e-05	+/- 4.819e-06	(9.708%)
С	= 0.0572998	+/- 0.03609	(62.99%)

correlation matrix of the fit parameters:

	a	b	С
a	1.000		
b	-0.962	1.000	
С	0.486	-0.598	1.000

Figure 2: Zależność czasu działania algorytmu do rozmiaru danych

2.2**b**)

```
Program: Nieniejszy program jest podstawą dla całego zadania 2!
void change(int* tab, int i, int min)
    int temp = tab[i];
    tab[i] = tab[min];
    tab[min] = temp;
void bubbleSort(int* tab, int noe)
    for (int i = 0; i < noe - 1; i++)
         for (int j = i; j < noe - 1; j++)
              if(tab[j] < tab[j-1])
                  change (tab, j, j-1);
         }
Hipoteza:
Czas działania naszego programu spełnia prawo potęgowe: T(N) = a \cdot N^b dla b = 2, tj.
```

$$T(N) = a \cdot N^2$$

obliczenia:

Wartość stałej a: $a = 0.139693/8192^2 = 2,08158791065216064453125e - 9$ Przewidywania:

 $T(N) = 2,08158791065216064453125e - 9 \cdot 16384^2 = 0,558772$

 $T(N) = 2,08158791065216064453125e - 9 \cdot 32768^2 = 2,235088$

 $T(N) = 2,08158791065216064453125e - 9 \cdot 65536^2 = 8,940352$

il. el	czas	wsp. zmiany	$\log N$	${ m czas}/ilel^2$
128.0	3.9E-5			
256.0	1.43E-4	3.666666667	1.874469118	0.000000002182006836
512.0	6.3E-4	4.405594406	2.139336682	0.000000002403259277
1024.0	0.002195	3.484126984	1.800797206	0.000000002093315125
2048.0	0.008681	3.954897494	1.983640302	0.000000002069711685
4096.0	0.034284	3.949314595	1.981602295	0.000000002043485641
8192.0	0.139693	4.074582896	2.026652382	0.0000000002081587911
16384.0	0.605784	4.33653798	2.116543745	0.000000002256721258
32768.0	2.737241	4.518509898	2.175847083	0.000000002549254335
65536.0	11.461985	4.187422664	2.066062546	0.000000002668701345

Table 2: Caption

Jak widać na przedstawionej powyżej tabeli, dane pochodzące z obliczeń zawyżają czas działania programu, jednak oscylują około prawidłowych wartości. Można więc uznać, że nasza hipoteza została potwierdzona.