Rapporto incrementale simmetrico

Assumiamo ora che $f \in C^3(I_r)$ e scriviamo la formula di Taylor "da destra" e "da sinistra" (centrandola sempre in x, con passo $0 < h \le r$).

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(\xi)$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(\eta)$$

dove $\xi \in (x, x + h)$ e $\eta \in (x - h, x)$ da cui si ottiene, sottraendo membro a membro

$$f(x+h) - f(x-h) = 2hf'(x) + O(h^3)$$
 e anche
$$\delta(h) = \frac{f(x+h) - f(x-h)}{2h} = f'(x) + O(h^2)$$

(sottraendo si elidono i termini di grado pari in h), con

$$|f'(x) - \delta(h)| = \frac{1}{12} \cdot |f'''(\xi) + f'''(\eta)| \cdot h^2$$

$$\leq \frac{1}{12} (|f'''(\xi)| + |f'''(\eta)|) \cdot h^2$$

$$\leq d \cdot h^2$$

dove $d = \frac{1}{6} \max_{t \in I_r} |f'''(t)|$.

Questo mostra che l'errore è $O(h^2)$ per $f \in C^3$ (I_r). Dobbiamo, però, occuparci della risposta dell'algoritmo agli errori su f, assumendo $| \sim f(t) - f(t) | \le \epsilon$ Dobbiamo quindi stimare $|\delta(h) - \tilde{\delta}(h)|$, con

$$\tilde{\delta}(h) = \frac{\tilde{f}(x+h) - \tilde{f}(x-h)}{2h}$$

(rapporto incrementale simmetrico "perturbato"), vista la stima

$$|f'(x) - \tilde{\delta}(h)| = |f'(x) - \delta(h) + \delta(h) - \tilde{\delta}(h)|$$

$$\leq \underbrace{|f'(x) - \delta(h)|}_{\text{convergenza}} + \underbrace{|\delta(h) - \tilde{\delta}(h)|}_{\text{stabilità}}$$

Ora

$$\begin{split} |\delta(h) - \tilde{\delta}(h)| &= \frac{1}{2h} |f(x+h) - f(x-h)| - |\tilde{f}(x+h) - \tilde{f}(x-h)| \\ &= \frac{1}{2h} |(f(x+h) - \tilde{f}(x+h)) + (\tilde{f}(x-h) - f(x-h))| \\ &\leq \frac{1}{2h} (|f(x+h) - \tilde{f}(x+h)| + |\tilde{f}(x-h) - f(x-h)|) \\ &\leq \frac{1}{2h} (\varepsilon + \varepsilon) = \frac{2\varepsilon}{2h} = \frac{\varepsilon}{h} \end{split}$$

Otteniamo quindi

$$|f'(x) - \tilde{\delta}(h)| \le dh^2 + \frac{\varepsilon}{h} = E(h)$$

La stima è simile a prima, ma l'esponente di h è 2, pertanto per rendere piccolo dh^2 basta avere un passo più grande rispetto a quello che serve per ch.

Come prima, cerchiamo di minimizzare:

$$E(h) = dh^{2} + \frac{\varepsilon}{h}$$

$$= 2dh - \frac{\varepsilon}{h^{2}} = 0 \Rightarrow h^{3} = \frac{\varepsilon}{2d}$$

$$\Rightarrow h^{*} = h^{*}(\varepsilon) = \left(\frac{\varepsilon}{2d}\right)^{\frac{1}{3}}$$

Con E(h) convessa ed h* di minimo. D'altra parte:

$$E(h^*) = d(h^*)^2 + \frac{\varepsilon}{h^*} \qquad = d^{1/3} \cdot (2^{-2/3} + 2^{1/3}) \cdot \varepsilon^{2/3} \qquad \qquad h^* = O(\varepsilon^{1/3}) \quad \text{e} \quad E(h^*) = O(\varepsilon^{2/3})$$

Rispetto al rapporto incrementale standard, per ϵ piccolo, l'errore minimale $E_{+}(h^*)$ è $\epsilon^{2/3} << \epsilon^{1/2}$.