IB Methods

Ishan Nath, Michaelmas 2022

Based on Lectures by Prof. Edward Shellard

October 14, 2022

Page 1 CONTENTS

Contents

Ι	Se	lf-Ad	joint ODE'S	2
1	Fourier Series			
	1.1	Period	lic Functions	2
	1.2	Definition of Fourier series		
		1.2.1	Fourier Coefficients	4
	1.3	The D	Oirichlet Conditions (Fourier's theorem)	5
		1.3.1	Convergence of Fourier Series	5
		1.3.2	Integration of Fourier Series	6
		1.3.3	Differentiation of Fourier Series	7
	1.4	Parsev	val's Theorem	7
	1.5	Alternative Fourier Series		
		1.5.1	Half-range Series	8
		1.5.2	Complex Representation	8
	1.6			
		1.6.1	Self-adjoint matrices	9
		1.6.2	Solving inhomogeneous ODE with Fourier series	10
Ind	lex			12

Part I

Self-Adjoint ODE'S

1 Fourier Series

1.1 Periodic Functions

A function f(x) is **periodic** if

$$f(x+T) = f(x),$$

where T is the period.

Example 1.1. Consider simple harmonic motion. We have

$$y = A \sin \omega t$$
,

where A is the amplitude and the period $T=2\pi/\omega,$ with angular frequency $\omega.$

Consider the set of functions

$$g_n(x) = \cos \frac{n\pi x}{L}, \quad h_n(x) = \sin \frac{n\pi x}{L},$$

which are periodic on the interval $0 \le x < 2L$. Recall the identities

$$\cos A \cos B = \frac{1}{2} \left(\cos(A - B) + \cos(A + B) \right),$$

$$\sin A \sin B = \frac{1}{2} \left(\cos(A - B) - \cos(A + B) \right),$$

$$\sin A \cos B = \frac{1}{2} \left(\sin(A - B) + \sin(A + B) \right).$$

Define the **inner product** for two periodic functions f, g on the interval [0, 2L)

$$\langle f, g \rangle = \int_0^{2L} f(x)g(x) \, \mathrm{d}x.$$

I claim that the functions g_n, h_m are mutually orthogonal. Indeed,

$$\langle h_n, h_m \rangle = \int_0^{2L} \sin \frac{n\pi x}{L} \sin \frac{m\pi x}{L} dx$$

$$= \frac{1}{2} \int_0^{2L} \left(\cos \frac{(n-m)\pi x}{L} - \cos \frac{(n+m)\pi x}{L} \right) dx$$

$$= \frac{1}{2} \frac{L}{\pi} \left[\frac{\sin(n-m)\pi x/L}{n-m} - \frac{\sin(n+m)\pi x/L}{n+m} \right]_0^{2L} = 0.$$

This works for $n \neq m$. For n = m,

$$\langle h_n, h_n \rangle = \int_0^{2L} \sin^2 \frac{n\pi x}{L} dx$$
$$= \frac{1}{2} \int_0^{2L} \left(1 - \cos \frac{2\pi nx}{L} \right) dx$$
$$= L \quad (n \neq 0).$$

Hence, we can put these together to get

$$\langle h_n, h_m \rangle = \begin{cases} L\delta_{nm}, & \forall n, m \neq 0, \\ 0, & n = 0. \end{cases}$$

Similarly, we can show

$$\langle g_n, g_m \rangle = \begin{cases} L\delta_{nm}, & \forall n, m \neq 0, \\ 2L\delta_{0n}, & m = 0. \end{cases}$$
 and $\langle h_n, g_m \rangle = 0.$

1.2 Definition of Fourier series

We can express any 'well-behaved' periodic function f(x) with period 2L as

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

where a_n, b_n are constant such that the right hand side is convergent for all x where f is continuous. At a discontinuity x, the Fourier series approaches the midpoint

$$\frac{1}{2} (f(x_+) + f(x_-)).$$

1.2.1 Fourier Coefficients

Consider the inner product

$$\langle h_m(x), f(x) \rangle = \int_0^{2L} \sin \frac{m\pi x}{L} f(x) dx = Lb_m,$$

by the orthogonality relations. Hence we find that

$$b_n = \frac{1}{L} \int_0^{2L} f(x) \sin \frac{n\pi x}{L} dx,$$
$$a_n = \frac{1}{L} \int_0^{2L} f(x) \cos \frac{n\pi x}{L} dx.$$

Remark.

(i) a_n includes n=0, since $\frac{1}{2}a_0$ is the **average**

$$\langle f(x) \rangle = \frac{1}{2L} \int_0^{2L} f(x) \, \mathrm{d}x.$$

- (ii) The range of integration is over one period, so we may take the integral over [0, 2L) or [-L, L).
- (iii) We can think of the Fourier series as a decomposition into harmonics. The simplest Fourier series are the sine and cosine functions.

Example 1.2 (Sawtooth wave).

Consider the function f(x) = x for $-L \le x < L$, periodic with period T = 2L. The cosine coefficients are

$$a_n = \frac{1}{L} \int_{-L}^{L} x \cos \frac{n\pi x}{L} \, \mathrm{d}x = 0,$$

as $x \cos \omega x$ is odd. The sine coefficients are

$$b_n = \frac{2}{L} \int_0^L x \sin \frac{n\pi x}{L} dx$$

$$= -\frac{2}{n\pi} \left[x \cos \frac{n\pi x}{L} \right]_0^L + \frac{2}{n\pi} \int_0^L \cos \frac{n\pi x}{L} dx$$

$$= -\frac{2L}{n\pi} \cos n\pi + \frac{2L}{(n\pi)^2} \sin n\pi = \frac{2L}{n\pi} (-1)^{n+1}.$$

So the sawtooth Fourier series is

$$f(x) = \frac{2L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{L}$$
$$= \frac{2L}{\pi} \left(\sin \frac{\pi x}{L} - \frac{1}{2} \sin \frac{2\pi x}{L} + \frac{1}{3} \sin \frac{3\pi x}{L} - \dots \right).$$

With Fourier series, we can construct functions with only finitely many discontinuities, the topologist's sine curve, and the Weierstrass function.

1.3 The Dirichlet Conditions (Fourier's theorem)

These are sufficiency conditions for a "well-behaved" function to have a unique Fourier series:

Proposition 1.1. If f(x) is a bounded periodic function (period 2L) with a finite number of minima, maxima and discontinuities in $0 \le x < 2L$, then the Fourier series converges to f(x) at all points where f is continuous; at discontinuities the series converges to the midpoint.

Remark.

(i) These are weak conditions (in contrast to Taylor series), but pathological functions are excluded, such as

$$f(x) = \frac{1}{x}, \quad f(x) = \sin \frac{1}{x}, \quad f(x) = \begin{cases} 0 & x \in \mathbb{Q}, \\ 1 & x \notin \mathbb{Q}. \end{cases}$$

- (ii) The converse is not true.
- (iii) The proof is difficult.

1.3.1 Convergence of Fourier Series

Theorem 1.1. If f(x) has continuous derivatives up to the p'th derivative, which is discontinuous, then the Fourier series converges as $\mathcal{O}(n^{-(p+1)})$.

Example 1.3. Take the square wave, with p = 0.

$$f(x) = \begin{cases} 1 & 0 \le x < 1, \\ -1 & -1 \le x < 0. \end{cases}$$

The Fourier series is

$$f(x) = 4\sum_{m=1}^{\infty} \frac{\sin(2m-1)\pi x}{(2m-1)\pi}.$$

We now look at the general "see-saw" wave, with p = 1. Here

$$f(x) = \begin{cases} x(1-\xi) & 0 \le x < \xi, \\ \xi(1-x) & \xi \le x < 1 \end{cases} \text{ on } 0 \le x < 1,$$

and odd for $-1 \le x < 0$. The Fourier series is

$$f(x) = 2\sum_{n=1}^{\infty} \frac{\sin n\pi\xi \sin n\pi x}{(n\pi)^2}.$$

For $\xi = 1/2$, we have

$$f(x) = 2\sum_{m=1}^{\infty} (-1)^{m+1} \frac{\sin(2m-1)\pi x}{((2m-1)\pi)^2}.$$

For p=2, take f(x)=x(1-x)/2 on $0 \le x < 1$, and odd for $-1 \le x < 0$. The Fourier series is

$$f(x) = 4\sum_{m=1}^{\infty} \frac{\sin(2m-1)\pi x}{((2m-1)\pi)^3}.$$

Consider $f(x) = (1 - x^2)^2$, for p = 3. Then $a_n = \mathcal{O}(n^{-4})$.

1.3.2 Integration of Fourier Series

It is always valid to integrate the Fourier series of f(x) term-by-term to obtain

$$F(x) = \int_{-L}^{x} f(x) \, \mathrm{d}x,$$

because F(x) satisfies the Dirichlet conditions if f(x) does.

1.3.3 Differentiation of Fourier Series

Differentiation needs to be done with great care. Consider the square wave. We differentiate it to get

$$f'(x) = 4\sum_{m=1}^{\infty} \cos(2m-1)\pi x.$$

But this is unbounded.

Theorem 1.2. If f(x) is continuous and satisfies the Dirichlet conditions, and f'(x) satisfies the Dirichlet conditions, then f'(x) can be found by term-by-term differentiation of the Fourier series of f(x).

Example 1.4. If we differentiate the see-saw with $\xi = 1/2$, then we get an offset square wave.

1.4 Parseval's Theorem

This gives the relation between the integral of the square of a function and the sum of the squares of the Fourier coefficients:

$$\int_0^{2L} [f(x)]^2 dx = \int_0^{2L} dx \left[\frac{1}{2} a_0 + \sum_n a_n \cos \frac{n\pi x}{L} + \sum_n b_n \sin \frac{n\pi x}{L} \right]^2$$

$$= \int_0^{2L} dx \left[\frac{1}{4} a_0^2 + \sum_n a_n^2 \cos^2 \frac{n\pi x}{L} + \sum_n b_n^2 \sin^2 \frac{n\pi x}{L} \right]$$

$$= L \left[\frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right].$$

This is also called the **completeness relation** because the left hand side is always greater than equal to the right hand side if any basis is missing.

Example 1.5. Take the sawtooth wave. We have

$$LHS = \int_{-L}^{L} x^2 \, \mathrm{d}x = \frac{2}{3}L^3,$$

$$RHS = L\sum_{n=1}^{\infty} \frac{4L^2}{n^2 \pi^2} = \frac{4L^3}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Therefore, we obtain

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

1.5 Alternative Fourier Series

1.5.1 Half-range Series

Consider f(x) defined only on $0 \le x < L$. Then we can extend its range over $-L \le x < L$ in two simple ways:

(i) Require it to be odd, so f(-x) = -f(x). Then $a_n = 0$, and

$$b_n = \frac{2}{L} \int_0^L \sin \frac{n\pi x}{L} \, \mathrm{d}x.$$

This is a Fourier sine series.

(ii) Require it to be even, so f(-x) = f(x). Then $b_n = 0$,

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx.$$

This is a Fourier cosine series.

1.5.2 Complex Representation

Recall that

$$\cos\frac{n\pi x}{L} = \frac{1}{2} \left(e^{in\pi x/L} + e^{-in\pi x/L} \right), \quad \sin\frac{n\pi x}{L} = \frac{1}{2i} \left(e^{in\pi x/L} - e^{-in\pi x/L} \right).$$

So our Fourier series becomes

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

$$= \frac{1}{2}a_0 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n - ib_n)e^{in\pi x/L} + \frac{1}{2}\sum_{n=1}^{\infty} (a_n + ib_n)e^{-in\pi x/L}$$

$$= \sum_{m=-\infty}^{\infty} c_m e^{im\pi x/L}.$$

The coefficients c_m satisfy

$$c_m = \begin{cases} \frac{1}{2}(a_m - ib_m) & m > 0, \\ \frac{1}{2}a_0 & m = 0, \\ \frac{1}{2}(a_{-m} + ib_{-m}) & m < 0. \end{cases}$$

Equivalently,

$$c_m = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-im\pi x/L} dx.$$

Our inner product in the complex representation is

$$\langle f, g \rangle = \int f^* g \, \mathrm{d}x.$$

This is orthogonal, as

$$\int_{-L}^{L} e^{-im\pi x/L} e^{in\pi x/L} dx = 2L\delta_{mn},$$

and satisfies Parseval's theorem as a result:

$$\int_{-L}^{L} |f(x)|^2 dx = 2L \sum_{m=-\infty}^{\infty} |c_m|^2.$$

1.6 Fourier Series Motivations

1.6.1 Self-adjoint matrices

Suppose \mathbf{u}, \mathbf{v} are complex N-vectors with inner product $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\dagger} \mathbf{v}$. Then matrix A is self-adjoint (or Hermitian) if

$$\langle A\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, A\mathbf{v} \rangle \implies A^{\dagger} = A.$$

The eigenvalues $\lambda_1, \ldots, \lambda_N$ of A satisfy the following properties:

- (i) The eigenvalues are real: $\lambda_n^* = \lambda_n$.
- (ii) If $\lambda_n \neq \lambda_m$, then their respective eigenvectors are orthogonal: $\langle \mathbf{v}_n, \mathbf{v}_m \rangle = 0$.
- (iii) If we rescale our eigenvectors then $\{\mathbf v_1,\dots,\mathbf v_N\}$ form an orthonormal basis.

Given **b**, we can try to solve for **x** in A**x** = **b**. Express

$$\mathbf{b} = \sum_{n=1}^{N} b_n \mathbf{v}_n, \quad \mathbf{x} = \sum_{n=1}^{N} c_n \mathbf{v}_n.$$

Substituting into the equation,

$$A\mathbf{x} = \sum_{n=1}^{N} Ac_n \mathbf{v}_n = \sum_{n=1}^{N} c_n \lambda_n \mathbf{v}_n,$$
$$\mathbf{b} = \sum_{n=1}^{N} b_n \mathbf{v}_n.$$

Equating and using orthogonality,

$$c_n \lambda_n = b_n \implies c_n = \frac{b_n}{\lambda_n}.$$

Hence the solution is

$$\mathbf{x} = \sum_{n=1}^{N} \frac{b_n}{\lambda_n} \mathbf{v}_n.$$

1.6.2 Solving inhomogeneous ODE with Fourier series

Take the following problem: We wish to find y(x) given f(x) for which

$$\mathcal{L}(y) = -\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f(x),$$

subject to the boundary conditions y(0) = y(L) = 0. The related eigenvalue problem is

$$\mathcal{L}y_n = \lambda_n y_n, \quad y_n(0) = y_n(L) = 0.$$

This has eigenfunctions and eigenvalues

$$y_n(x) = \sin \frac{n\pi x}{L}, \quad \lambda_n = \left(\frac{n\pi}{L}\right)^2.$$

Note that \mathcal{L} is a self-adjoint ODE with orthogonal eigenfunctions. Thus we seek solutions as a half-range sine series. We try

$$y(x) = \sum_{n=1}^{\infty} c_n \sin \frac{n\pi x}{L},$$

and expand

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}.$$

Substituting this in,

$$\mathcal{L}y = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(\sum_n c_n \sin \frac{n\pi x}{L} \right) = \sum_{n=1}^{\infty} c_n \left(\frac{n\pi}{L} \right)^2 \sin \frac{n\pi x}{L}$$
$$= \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}.$$

By orthogonality, we have

$$c_n \left(\frac{n\pi}{L}\right)^2 = b_n \implies c_n = \left(\frac{L}{n\pi}\right)^2.$$

Thus the solution is

$$y(x) = \sum_{n=1}^{\infty} \left(\frac{L}{n\pi}\right)^2 b_n \sin \frac{n\pi x}{L} = \sum_{n=1}^{\infty} \frac{b_n}{\lambda_n} y_n.$$

This is similar to a self-adjoint matrix.

Example 1.6. Consider the square wave on L=1, as an odd function. This has Fourier series

$$f(x) = 4\sum_{m} \frac{\sin(2m-1) \ pix}{(2m-1)\pi}.$$

So the solution should be

$$y(x) = \sum \frac{b_n}{\lambda_n} y_n = 4 \sum_{m} \frac{\sin(2m-1)\pi x}{((2m-1)\pi)^3}.$$

This is the Fourier series for y(x) = x(1-x)/2.

Index

completeness relation, 7

Dirichlet conditions, 5

Fourier coefficients, 4 Fourier series, 3

half-range series, 8 Hermitian matrix, 9 inner product, 2

Parseval's theorem, 7 periodic function, 2

sawtooth wave, 4 see-saw wave, 6 self-adjoint matrix, 9 square wave, 6