- 1. Consider the matrix $A_n = aI_n + bK_n + cK'_n$, where I_n is the identity matrix of size $n \times n$, K_n is the matrix with only ones in its super diagonal, i.e., $K_n(i, i+1) = 1$ and the rest are all zeros. Recall that the matrix with a = 2, b = c = -1 is encountered in second order central finite difference discretization of the second derivative.
 - \bullet Compute the determinant of the matrix A_n by deriving an appropriate recurrence relation.
 - Obtain the eigen values of A_n
 - Comment on the singular values of A_n when b = c.
 - Obtain the condition number of A_n , when b=c. Comment on how the condition number scales as n becomes large.
- 2. Recall that in class, we suggested that the singular value decomposition of a matrix $A \in \mathbb{R}^{n \times n}$ can be obtained by performing the eigenvalue decomposition of the matrix

$$\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$

However, the above can be sped up a bit if we proceed in two phases as follows.

• Phase 1:

- Show that A can be expressed as $A = U\tilde{A}V^T$, where \tilde{A} is a bidiagonal matrix, i.e., only the entires on the diagonal and super-diagonal of B are non-zero.
- Explain how to obtain the matrix \tilde{A} and the associated cost of obtaining \tilde{A} .
- Show that the singular value decomposition of A follows immediately once the singular value decomposition of \tilde{A} is obtained.

Phase 2: This phase is to obtain the SVD of \tilde{A} .

- To find the SVD of \tilde{A} we proceed as we discussed in class. Construct the matrix

$$B = \begin{bmatrix} 0 & \tilde{A} \\ \tilde{A}^T & 0 \end{bmatrix}$$

Find a permutation matrix P such that $C = PBP^T$ is a tridiagonal matrix.

- Discuss how to obtain the singular value decomposition of B from the eigenvalue decomposition of C.
- What is the computational cost of Phase 2?