编码 1027 作业

October 2022

1 第一题

4,35

- (i) 6 unknowns and 3 equations, so it is obviously that the codes are linear dependent. Therefore C is a linear code.
 - (ii) Generator matrix:

$$\left[\begin{array}{cc|cccc} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right] = \left[\begin{array}{cccc} I_3 & Q \end{array}\right]$$

 \diamondsuit parity-check matrix: $H = [P \ I_3]$

$$G \cdot H^{T} = 0$$

$$C \cdot [I_{3} \quad Q][P \quad I_{3}]^{T} = 0$$

$$C \cdot Q + P^{T} = 0$$

$$\therefore P = Q^T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\therefore H = [P \quad I_3] = \left[\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right]$$

2 第二题

4.43

3 第三题

5.15

$$\therefore n = 2^r - 1 = 15$$

$$\therefore r = 4$$

$$\therefore It is Ham(4, 2)$$

$$k = n - r = 11$$

parity-check matrix:

Coset leader: \boldsymbol{u}	Syndrome: $S(\boldsymbol{u}) = \boldsymbol{u}H^T$
0000000000000000	0000
10000000000000000	0001
01000000000000000	0010
0010000000000000	0011
0001000000000000	0100
0000100000000000	0101
0000010000000000	0110
000000100000000	0111
000000010000000	1000
000000001000000	1001
000000000100000	1010
000000000010000	1011
000000000001000	1100
000000000000100	1101
0000000000000010	1110
00000000000000001	1111

```
(a) 01010 01010 01000
```

$$\vec{w_1} = [01010\ 01010\ 01000], 则$$

$$\vec{w}_1 \cdot \vec{w}_1 \cdot H^T = 0100$$

 $\therefore Decode\ Result:$

$$\vec{w_1} + \vec{e_1} = [01010\ 01010\ 01000] + [00010\ 00000\ 00000] = [01000\ 01010\ 01000]$$

(b) 11100 01110 00111

$$\diamondsuit \vec{w_2} = [11100 \ 01110 \ 00111], 则$$

$$\vec{\cdot} \vec{w_2} \cdot H^T = 1010$$

 $\therefore Decode\ Result:$

$$\vec{w_2} + \vec{e_2} = [11100\ 01110\ 00111] + [00000\ 00001\ 00000] = [11100\ 01111\ 00111]$$

(c) 11001 11001 11000

$$\vec{w_3} = [11001 \ 11001 \ 11000], 则$$

$$\vec{w}_3 \cdot H^T = 1010$$

 $\therefore Decode\ Result:$

$$\vec{w_3} + \vec{e_3} = [11001 \ 11001 \ 11000] + [00000 \ 00001 \ 00000] = [11001 \ 11000 \ 11000]$$