Genome Assembly for Biocontrol of Invasive Carp

A DFP project brought to you by: Emma Schillerstrom

Black Carp Mylopharyngodon piceus

- Native to East Asia
- Brought to U.S. in 1970s
- Prey on mussels and snails
 - Pros:
 - Utilized for aquaculture
 - Cons:
 - · Increased their use & spread
 - Reduces water quality
 - Wipes out native populations

Current Genetic Biocontrol Techniques

SIT = sterile insect technique

IIT = incompatible insect
technique

RIDL = release of insects carrying dominant lethal

YY males = eliminating female sex

TFT = Trojan female technique

Gene drive = accelerates propagation of modified genes

Project Objective

Develop a pipeline to perform de novo genome assembly from Black Carp HiFi reads using Yeti.

Project Objective

chain of computing programs from scratch

Develop a pipeline to perform de novo genome assembly from Black Carp HiFi reads using Yeti.

piecing together fragmented sequences into one big picture

from scratch

Develop a pipeline to perform de novo genome susing Yeti.

DNA sequences supercomputer

What does de novo assembly look like?

—— = reads

= physical DNA

A New Type of Read

- Short reads = accurate but incomplete
- Long reads = complete but inaccurate
- · Solution: HiFi

HiFi Technology & Vocabulary

- HiFi = high fidelity
- PacBio = Pacific Biosciences (the developers)
- SMRT technology = single molecule, real time
- Sequel II = system of flow cells for sequencing
- ZMW = zero-mode waveguide (wells within each flow cell)

Circular Consensus Sequencing

Alternative to CLR:

Assemblers Considered

- Peregrine
- Falcon Unzip
- Wegnan
- Flye
- Redbean/Wtdbg

- NextDeNovo
- Shasta
- Hifiasm
- Canu
- IPA

Hifiasm = new, fast, fully designed for HiFi

IPA = new and developed by PacBio

Canu = widely used

~ The Chosen Ones ~

The System

USGS Supercomputer = Yeti

- Based in Colorado
- Accessed via GitBash (or other terminal/simulator)
- Uses SLURM workload manager (Simple Linux Utility for Resource Management)
- Has lustre and cxfs file systems
- Uses 4 partitions (queues) for job submissions: normal, long large, UV

What does command-line programming look like?

- Command-Line Programming = submitting commands
 - often creating, manipulating, and moving around files/folders or running programs
- Basic bash commands:
 - mkdir = make directory
 - cd = change directory
 - mv = move or rename
 - nano = edit file
 - sbatch = submit script for running
 - rm = remove file
- Example visual:

```
(base) [eschillerstrom@yeti-login1 TESTcanu] rm -r !(test.*)
rm: remove write-protected regular file 'asm.seqStore/blobs.0001'? y
rm: remove write-protected regular file 'asm.seqStore/blobs.0002'? y
(base) [eschillerstrom@yeti-login1 TESTcanu] ls
test.sh test.slurm
(base) [eschillerstrom@yeti-login1 TESTcanu] nano test.slurm
(base) [eschillerstrom@yeti-login1 TESTcanu] sbatch test.slurm
Submitted batch job 5747263
(base) [eschillerstrom@yeti-login1 TESTcanu] cd ~
(base) [eschillerstrom@yeti-login1 ~] ls
```

Change in Objective

Timeline

Stage 1 – Research and set-up

Stage 2/4/6 – Testing and troubleshooting

Stage 3 – Automation and formatting results

Stage 5 – Finalizing and annotating

My Design

Inputs:

- job script of pipeline (.slurm)
- second half of script (.sh)
- script to generate output table (.py)
- raw subreads (.bam)

Outputs:

- quality report on reads (.html)
- 3 unique assemblies (.fasta)
- quality report on assemblies (.txt)

Pipeline Concept

Pre-assembly

Pbccs:

Input:
subreads

Output:
HiFi reads

- Performs CCS processing
- Looks at subreads from the repeated passes → identifies errors
- Generates consensus

FastQC:

Input:
HiFi reads

Output:
Quality report

- Makes HTML file with graphs and metrics
- Ex. Phred scores, GC content, sequence lengths, etc.

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality score
- Per base sequence conten
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

Assembly

Hifiasm:

Input:
HiFi reads
Output:
String graph

- 1. Overlap alignment
- 2. Error correction x3
- 3. Overlap alignment round 2
- 4. String graph construction
- 5. Removal of redundant haplotigs

Note: extract fasta reads from gfa graph file

Assembly

IPA:

Input:
HiFi reads
Output:
Fasta file

- 1. Building Sequence Databases
- 2. Fast Overlap
- 3. Phase Separation skipped!
- 4. Chimera and Repeat Filtering
- 5. Layout
- 6. Polishing

Assembly

Canu:

Output: Input: HiFi reads Contig file

- Database construction (repeated for each step)
- Correction
- Trimming
- Assembly

Note: must include genome size and grid options in parameters

Output: Contig file

- Removes redundant haplotigs + heterozygous overlaps
- fofn = file of file names w/ path to raw reads

Post-assembly

QUAST:

Provides basic statistics on the assembly

```
All statistics are based on contigs of size >= 500 bp, unless otherwise noted
(e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs
Assembly
                           hifiasm
 contigs (>= 0 bp)
                           319
                           319
 contigs (>= 1000 bp)
 contigs (>= 5000 bp)
                           319
                           318
 contigs (>= 10000 bp)
                           293
 contigs (>= 25000 bp)
                           185
 contigs (>= 50000 bp)
Total length (>= 0 bp)
                           276124915
Total length (>= 1000 bp)
                           276124915
Total length (>= 5000 bp)
                           276124915
Total length (>= 10000 bp) 276115478
Total length (>= 25000 bp) 275577125
Total length (>= 50000 bp) 271662566
# contigs
                            319
Largest contig
                           24831483
Total length
                            276124915
GC (%)
                            44.04
                            9045660
                           783185
                           52
# N's per 100 kbp
                           0.00
```

Post-assembly

Meryl:

Creates file of k-mer counts from reads

Note: specify optimal k-mer size

Merqury:

- Uses k-mer counts to evaluate assembly completeness
- Compares counts in the initial reads to the counts in the final assembly

hifiasm a	111	208981442	2296010	001	91.0194
hifiasm 6	799	276119173	58.874	1.29598e-	06

Post-assembly

Results.py:

Input:
Assessment output files

Output:
Text file with table

- Parses through 1 QUAST and 2 Mergury files per assembler
 - Total of 9 files
- Creates metrics table
- Compares assembly performance
- Not installed program

(visual of table later)

The Pipeline

- Pre-assembly:
 - Pbccs
 - FastQC
- Assembly:
 - Hifiasm
 - IPA
 - HiCanu & purge_dups
- Post-assembly:
 - QUAST
 - Meryl & Merqury

- → HiFi from raw reads
- → Quality report
- → Assembly 1
- → Assembly 2
- → Assembly 3
- → Size and contiguity metrics
- → Completeness and quality metrics
- Results.py (self-generated) → Table of all wanted metrics

Format: cprogram>ToDelete

rm -r *ToDelete

Assessment Metrics

The Four C's:

Output table

Metric Breakdown

Contig = fragment of contiguous sequence

- $\underline{\text{N50}}$ = shortest contig length among fewest to make up ½ of genome
- $\underline{L50}$ = fewest number of contigs to make up ½ of genome
- <u>Completeness</u> = % k-mers in input also found in assembly
- <u>QV</u> = marks k-mers found only in assembly as errors & uses this error rate in Phred score formula

Snapshots of Annotaated Script

Black Carp De Novo Genome Assembly Pipeline with Multi-Assembler Comparison

By Emma Schillerstrom

Directions:

- > Key for this document:
 - Green highlight = pre-assembly step
 - Yellow highlight = assembly step
 - Blue highlight = post-assembly step
 - Grey highlight = what individual user MAY NEED TO EDIT
 - o Red font = commented lines in script
 - Purple font = NOT part of a script
 - Red highlight = varies by species
- Required installations:
 - Miniconda3, Canu, Improved Phased Assembly (IPA), Hifiasm, purge_dups, pbccs (Bioconda package), FastQC, QUAST, Meryl, Merqury
 - o Dependencies: runner, minimap2
- Setting up project space:
 - Obtain project space by emailing gs-css csas hpc help@usgs.gov and requesting space
 on the lustre system (unless space already exists)
 - o Optional make variable to go directly to your project space
 - cd ~ && nano .bash profile
 - Add alias below exported path variable
 - Example: alias carp="cd

/lustre/projects/fws/fws mwf/EMS"

- source .bash profile
- o Make folders for the scripts and raw starting data
 - Scripts directory:
 - carp (see alias above)
 - mkdir scripts && cd scripts
 - nano asm part1.slurm
 - Copy and paste script from text file
 - Update sections that are highlighted in grey or red in this document
 - Save and quit
 - nano asm part2.sh
 - o Copy and paste script from text file
 - Update sections that are highlighted in grey or red in this document
 - Save and quit
 - o Run: chmod +x asm part2.sh
 - When you "1s" in the scripts folder, this file should now be green, meaning it is executable

#SBATCH --job-name=TotalAssembly #SBATCH -p normal #SBATCH -n 5 #SBATCH -N 4 #SBATCH --account=mwf #SBATCH --time=7-00:00:00

#SBATCH --mail-user=emma_schillerstrom@fws.gov #SBATCH -o job_assembly-%j.out

module load java/jdk-1.8.0_162 module load zlib/1.2.11

#SBATCH --mail-type=ALL

#PRE-ASSEMBLY

#CCS

#Makes execution directory

cd .. && mkdir ccsToDelete && cd ccsToDelete

#Generates consensus reads from PacBio subreads

#Puts them in a new folder for easy access

mkdir ../ccs

cp *.fastq.gz ../ccs

#FastQC

#Makes execution directory

cd .. && mkdir qc

cp ccs/*.fastq.gz qc && cd qc

#Generates quality control report on reads

fastqc *.fastq.gz

#Organizes files into html "report" and "other"

shopt -s extelob

 $mkdir\ other ToDelete\ \&\&\ mv\ ! (other ToDelete)\ other ToDelete$

mkdir report && mv otherToDelete/*.html report

#ASSEMBLY

#Hifiasm

#Makes empty folder for assemblies

cd .. && mkdir assemblies #Makes execution directory, grabs reads, and changes extension

mkdir hifiToDelete && cd hifiToDelete

cp ../ccs/*.fastq.gz .

mv *.fastq.gz carp.fq.gz

My Deliverables

Bash script part 1 (.txt)

Bash script part 2 (.txt)

Results python script (.txt)

User guide doc (.docx)

Steps for Use on Different Yeti account

- 1. Request account & project space
- 2. Perform installations:
 - pbccs, FastQC, hifiasm, canu, purge_dups, IPA, QUAST, meryl, merqury, runner
- 3. Set up folder with proper scripts
- 4. Replace highlighted sections
- 5. Run

Strengths of My Design

- ✓ Optimized from experience running other pipelines
- ✓ Well-organized outputs
 - √ Easy to find desired files
 - ✓ Difficult to delete critical files
 - √ Easy troubleshooting
- √3 assemblies = options
 - √ Comparisons and recommendations offered to save time
- ✓ More than a job script
 - ✓ Instructions
 - √ Colored coding
 - ✓ Annotations
 - √ Folder visuals

Acknowledgements

- Supervisors: Katherine Bockrath, Zebadiah Woiak
- Nathan Whelan
- Pacbio Help Team
- Yeti Help Team
- Whitney Genetics Lab & Midwest Fisheries Center
- Directorate Fellows Program Coordinators

Questions?