Artificial Intelligence (CS303)

Lecture 8: Representing Uncertainty

Hints for this lecture

• An agent can seldom precisely knows the state, knowledge should be represented such that wise decisions/actions can still be made.

Outline of this lecture

Uncertainty and Rational Decisions

Basic Probability Theory and Its Use

Bayesian Network

I. Uncertainty and Rational Decisions

The World is Uncertain

• We never know what "state" we are in exactly, because the world is only partially observable (to us).

Agents may encounter similar situations in a real-world AI task.

- Maintaining the belief states is a possible approach, but impractical
 - Combinatorial explosion
 - An agent may not do multiple (possibly conflict actions) in one state.

Alternative

Utility theory: Assign utility to each state/actions

Probability theory: Summarize the uncertainty associated with each state

Rational Decisions: Maximize the expected utility (Probability + Utility)

Thus we need to represent states in a language of probability.

• Joint probability distribution specifies probability of every atomic event.

Queries can be answered by summing over atomic events.

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Prior probability

Prior or unconditional probabilities of propositions

```
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
```

Probability distribution gives values for all possible assignments:

$$\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$$
 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $\mathbf{P}(Weather, Cavity) = \mathbf{a} \ 4 \times 2 \text{ matrix of values:}$

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Conditional probability

```
Conditional or posterior probabilities
```

```
e.g., P(cavity|toothache) = 0.8
```

i.e., given that toothache is all I know

NOT "if *toothache* then 80% chance of *cavity*"

(Notation for conditional distributions:

```
P(Cavity|Toothache) = 2-element vector of 2-element vectors)
```

If we know more, e.g., cavity is also given, then we have

$$P(cavity|toothache, cavity) = 1$$

Note: the less specific belief **remains valid** after more evidence arrives, but is not always **useful**

New evidence may be irrelevant, allowing simplification, e.g.,

```
P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8
```

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

$$P(a|b) = \frac{P(a \land b)}{P(b)} \text{ if } P(b) \neq 0$$

Product rule gives an alternative formulation:

$$P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for whole distributions, e.g.,

$$\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$$

(View as a 4×2 set of equations, **not** matrix mult.)

Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= ...
= \P(X_{i}|X_{1},...,X_{i-1})$$

Independence

A and B are independent iff

$$\mathbf{P}(Toothache, Catch, Cavity, Weather)$$

= $\mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Bayes' Rule

Product rule $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity|toothache \land catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i\mathbf{P}(Effect_i|Cause)$$

Total number of parameters is **linear** in n

III. Bayesian Networks

What is a BN?

- A Directed Acyclic Graph (DAG).
- Each node is a random variable, associated with conditional distribution.
- Each arc (link) represent direct influence of a parent node to a child node.

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

What is a BN?

Why BN?

More compact representation.

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1+1+4+2+2=10 numbers (vs. $2^5-1=31$)

How to construct a BN?

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i=1 to n add X_i to the network select parents from X_1,\ldots,X_{i-1} such that $\mathbf{P}(X_i|Parents(X_i))=\mathbf{P}(X_i|X_1,\ldots,X_{i-1})$

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)}$$
$$= \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$$

To be continued