Diagramme de complexité

FIGURE 1 – diagramme de complexité

2.5 Portes logiques

2.5.1 Portes à 1 qubit

Les matrices de Paul forme une base pour décomposer n'importe quel matrice 2×2 . $\mathcal{P} = \{1, X, Y, Z\} = \{\sigma_0, \sigma_{1,2}, \sigma_{3}\}$

$$M_{2\times 2} = \sum_{j} m_{j} \sigma_{j}$$

Démonstration de la complétude

Autre base:

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$B_1 = \frac{\mathbb{1} + Z}{2} \quad B_2 = \frac{\mathbb{1} - Z}{2} \quad B_3 = \frac{X + iY}{2} \quad B_4 = \frac{X - iY}{2}$$

Propriétés de \mathcal{P}

- Hermétique $\sigma^{\dagger} = \sigma$
- unitaire $\sigma^T = \sigma^{-1}$
- Base orthogonale $\operatorname{Tr}\left(\sigma_{j}^{\dagger}\sigma_{k}\right)=\delta_{ik}$

Les Matrices de Pauli génèrent des rotations sur la sphère de Bolch

$$R_x(\theta) = e^{\frac{-i\theta}{2}X} = \cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)X$$

$$R_y(\theta) = e^{\frac{-i\theta}{2}Y} = \cdots$$

$$R_z(\theta) = e^{\frac{-i\theta}{2}Z} = \cdots$$

Plus généralement, on a une équivalence ente transformation unitaire (à un qubit) et rotation en 3D.

$$SU(2) \longleftrightarrow SO(3)$$

$$SU(2) : det(U) = 1, UU^{\dagger} = 1, 2 \times 2$$

$$SO(3)$$
: $det(O) = 1$, orthogonale, 3×3

En général, on a

$$U = e^{-i\frac{\theta}{2}\hat{n}\cdot\sigma}$$

$$U = \cos\!\left(\frac{\theta}{2}\right) - i \sin\!\left(\frac{\theta}{2}\right) \hat{n} \cdot \sigma$$

$$U = R_z(\alpha)R_x(\beta)R_z(\gamma)$$

3 opérations utiles

1. Porte d'Hadamard (H)

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{X + Z}{\sqrt{2}} = e^{-i\frac{\pi}{2} \left(\frac{X + Z}{\sqrt{2}}\right)}$$

$$H |0\rangle = |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$H |1\rangle = |-\rangle = \frac{|0\rangle - 1|1\rangle}{\sqrt{2}}$$

$$X \leftrightarrow Z \qquad Y \leftrightarrow -Y$$

2. Porte de Phase (S)

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = e^{-\frac{i}{2}\frac{\pi}{2}Z}$$

$$S |0\rangle = |0\rangle$$

$$S |1\rangle = i |1\rangle$$

$$S |+\rangle = |+i\rangle$$

$$S |+i\rangle = |-\rangle$$

$$S |-i\rangle = |-1\rangle$$

$$S |-i\rangle = |+\rangle$$

$$X \to Y \to -X \to -Y \to X$$

$$S^2 = Z$$

3. $\frac{pi}{8}$ (T)

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix} = e^{-i\frac{\pi}{8}Z} = e^{-\frac{i}{2}\frac{\pi}{4}Z}$$
$$X \to \frac{X+Y}{\sqrt{2}} \to Y \to \frac{Y-X}{\sqrt{2}}$$
$$T^2 = S \cong \sqrt{Z}$$

Prendre la racine d'un opérateur est ambigu!

Aparté : on fait un état avec un circuit

$$U\left|\psi\right> = \left|\psi'\right>$$
 (|psi>)--[u] = (|psi'>)--

On peut faire évoluer un opérateur

$$--[A]--[U]--=--[U]--[U^t]--[A]--[U]---=--[U]--[A]--$$

$$A' = UAU^{\dagger}$$

ex:

$$[Z] - -[H] - - = - - [H] - -[HZH] - -$$

$$HZH = \cdots = X$$

Un groupe de porte importantes est les portes de Clifford

$$\mathcal{P} = \{I, X, Y, Z\}$$

$$C = \{U|UPU^{\dagger} \in \mathcal{P}, P \in \mathcal{P}\}$$

ex:

$$H,S\in C \quad T\notin C$$

2.5.2 Portes à 2 qubits

Il faut de l'intrication pour réaliser des calculs interessant pour

$$U \in SU(4)$$

On utilisera souvents des opérateurs controllant

$$CU|ij\rangle = |i\rangle \otimes u^i|j\rangle$$

Figure 2 – octaèdre

 $\operatorname{Ex}:\operatorname{CNOT}$ (non contrôlé) CX

CNOT
$$|ij\rangle = |i\rangle X |j\rangle = |i, j \otimes i\rangle$$

$$\begin{split} \text{CNOT} &= \left| 0 \right\rangle \left\langle 0 \right| \otimes \mathbb{1} + \left| 1 \right\rangle \left\langle 1 \right| \otimes X \\ \text{CNOT} &= \left(\frac{\mathbb{1} + Z}{2} \right) \otimes \mathbb{1} + \left(\frac{\mathbb{1} + z}{2} \right) \otimes X = \frac{1}{2} \left(H + Z \mathbf{1} + 1 X - Z X \right) \end{split}$$

CNOT est hermétique et unitaire!

$$CNOT = CNOT^{\dagger}$$
 $CNOT^{T} = \Longrightarrow CNOT^{2} = 1$

$$\mathrm{CNOT}^2 \ket{ij} = \ket{i,j \oplus 2i} = \ket{ij}$$

$$CNOT(Z1)CNOT = ZI$$

$$CNOT(1X)CNOT = 1X$$

$$CNOT(X1)CNOT = XX$$

Porte contrôle phase (CZ)

$$CZ|ij\rangle = |1\rangle Z|j\rangle = (-1)^{i\Im}|ij\rangle$$

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

En calcul quantique, le qubit "contrôle" est aussi affecté par la porte CU Phase kick-back Revenons à la porte CNOT.