Deep neural network

Kyung-Ah Sohn

Ajou University

Contents

- Perceptron
- Learning XOR
- NN architecture design and computation
- Training NN: Back-propagation
- Regularization

History of neural networks

- First generation (1958~): perceptron (F. Rosenblatt, 1958)
 - Criticized by Marvin Minsky about XOR problem

- Second generation (1986~): multilayer perceptrons
 - Trained by back-propagating error signal (1986)
 - Mostly shallow network with 1 hidden layer

- Third generation (2006~): deep learning
 - Deep belief nets (Hinton, 2006)
 - Deep neural network (DNN), convolutional neural network (CNN), ...

Recall: Logistic regression

Model

linear decision boundary

$$\log \frac{p(y=1|\mathbf{x})}{1-p(y=1|\mathbf{x})} = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$$

$$\rightarrow p(y=1|\mathbf{x}) = \frac{1}{1+e^{-(\mathbf{w}^{\mathsf{T}}\mathbf{x}+b)}}$$

Perceptron

Perceptron with 2 input features

Perceptron

Representation with bias

Perceptron

Perceptron: Boolean operation

XOR is not linearly separable

Cannot be solved by a simple perceptron But can be separated using AND and OR

x ₁	$\mathbf{x_2}$	У
0	0	0
0	1	1
1	0	1
1	1	0

Building XOR from AND and OR

Artificial neuron

Multiple neurons form a layer

Multiple layers form a network

Artificial neural network General Structure

Multilayer perceptron

We can form non-linear functions by composing stages of processing

Training ANN means learning the weights of the neurons

Network topology

- The number of layers
- The number of nodes within each layer
- Whether information in the network is allowed to travel backward

Direction of information travel

- Feed-forward network
 - Signal is fed in one direction

- Recurrent network (or feedback network)
 - Allows signal to travel in both directions using loops
 - Addition of a short term memory

Neural network mathematics

Neural network: input / output transformation

$$y_{out} = F(x, W)$$

W is the matrix of all weight vectors.

Layer: parallelized weighted sum and non-linearity

Network: sequence of parallelized weighted sums and non-linearities

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)\mathsf{T}}\mathbf{x}^{(0)} \qquad \mathbf{s}^{(2)} = \mathbf{W}^{(2)\mathsf{T}}\mathbf{x}^{(1)} \\ \mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)}) \qquad \mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$$

- The mechanism by which the artificial neuron processes information and passes it throughout the network
- Create non-linearity
- Unit step function (threshold activation function)
 - Not continuous
 - Returns either 0 or 1 (discrete)
 - Non-linear function

- Sigmoid function
 - The values of logistic function range from 0 to 1 (continuous)
 - Differentiable (mathematically)
 - Non-linear
 - The most commonly used in traditional ANN

- tanh: takes a real-valued input and squashes it to the range [-1, 1]
- ReLU: ReLU stands for Rectified Linear Unit. It takes a real-valued input and thresholds it at zero (replace negative values with zero)
 f(x)=max(0,x)

Traditionally

saturating

derivative goes to $\underline{\text{zero}}$ at $+\infty$ and $-\infty$

More recently

non-saturating

<u>non-zero</u> derivative at +∞ and/or **-**∞

Activation at output layer

For regression

Identity function

For classification

Softmax function

$$y_k = \frac{\exp(a_k)}{\sum_{i=1}^n \exp(a_i)}$$

Loss function ex: MNIST classification

- Measure to calculate how 'bad' the NN is
- e.g. MNIST classification

>>>
$$y = [0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0]$$
 : Output from NN >>> $t = [0, 0, 1, 0, 0, 0, 0, 0, 0]$: True label

Mean squared error (MSE)

$$E = \frac{1}{2} \sum_{k} (y_k - t_k)^2$$

Cross entropy

$$E = -\sum_{k} t_k \log y_k$$

Loss function

• Suppose the neural network's computed outputs and the target values are as follows

NN1	NN2
0.3 0.3 0.4 0 0 1 (democrat) yes	computed targets correct? 0.1 0.2 0.7 0 0 1 (democrat) yes 0.1 0.7 0.2 0 1 0 (republican) yes 0.3 0.4 0.3 1 0 0 (other) no

	NN1	NN2
Classification error	0.33	0.33
Avg. Cross-Entropy	1 st sample: -(0*log0.3+0*log0.3+1*log0.4)=-log0.4 → ACE=(-log0.4-log0.4-log0.1)/3=1.38	0.64
MSE	(0.54+0.54+1.34)/3=0.81	0.34

Learning as optimization

 To learn the weights, we need the derivative of the loss w.r.t the weights

How should the weight be updated to decrease the loss? $\frac{\partial \mathcal{L}}{\partial x}$

With multiple weights

$$\mathbf{w} = \mathbf{w} - \alpha \nabla_{\mathbf{w}} \mathcal{L}$$
gradients

Learning rates

Stochastic Gradient Descent (SGD)

Simple Back-Propagation example

A neural net defines a function of composed operations

$$f_L(\mathbf{w}_L, f_{L-1}(\mathbf{w}_{L-1}, \dots f_1(\mathbf{w}_1, \mathbf{x}) \dots))$$

and the loss *L* is a function of the network output

→ Use <u>chain rule</u> to calculate gradients

chain rule example
$$y = w_2 e^{w_1 x}$$
 input x output y parameters w_1, w_2 evaluate parameter derivatives: $\frac{\partial y}{\partial w_1}, \frac{\partial y}{\partial w_2}$ then
$$v \equiv e^{w_1 x} \longrightarrow y = w_2 v$$

$$u \equiv w_1 x \longrightarrow v = e^u$$
 then
$$\frac{\partial y}{\partial w_2} = v = e^{w_1 x} \longrightarrow \text{chain rule}$$

$$\frac{\partial y}{\partial w_1} = \frac{\partial y}{\partial v} \frac{\partial v}{\partial u} \frac{\partial u}{\partial w_1} = w_2 \cdot e^{w_1 x} \cdot x$$

Recall

1st layer 2nd layer Loss
$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)} \mathbf{T} \mathbf{x}^{(0)} \qquad \mathbf{s}^{(2)} = \mathbf{W}^{(2)} \mathbf{T} \mathbf{x}^{(1)} \qquad \qquad \boldsymbol{\mathcal{L}}$$
 $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)}) \qquad \qquad \mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$

 To determine the chain rule ordering, we draw the dependency graph

note
$$\nabla_{\mathbf{W}^{(L)}}\mathcal{L}\equiv rac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}}$$
 is notational convention

Go back one more layer

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(L)}} \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}} \frac{\partial \mathbf{s}^{(L)}}{\partial \mathbf{x}^{(L-1)}} \frac{\partial \mathbf{x}^{(L-1)}}{\partial \mathbf{s}^{(L-1)}} \frac{\partial \mathbf{s}^{(L-1)}}{\partial \mathbf{W}^{(L-1)}}$$

- Some of the terms appear in both gradients
- e.g. we can reuse $\frac{\partial \mathcal{L}}{\partial \mathbf{s}^{(\ell)}}$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(L)}} \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}} \frac{\partial \mathbf{s}^{(L)}}{\partial \mathbf{W}^{(L)}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(L)}} \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}} \frac{\partial \mathbf{s}^{(L)}}{\partial \mathbf{x}^{(L-1)}} \frac{\partial \mathbf{x}^{(L-1)}}{\partial \mathbf{s}^{(L-1)}} \frac{\partial \mathbf{s}^{(L-1)}}{\partial \mathbf{W}^{(L-1)}}$$

- Update weights using gradients
- BP calculates the gradients via chain rule
- Gradient is propagated backward through the network

Most deep learning software libraries automatically calculate gradients

Vanishing gradient

- In backprop, the product of many small terms goes to zero
- Difficult to train very deep neural network with sigmoid

ReLU

- In the positive region, ReLU does not saturate, preventing gradients from vanishing in deep networks
- In the negative region, ReLU saturates at zero, resulting in 'dead units', but in practice, this doesn't seem to be a problem
- Most commonly used in DNN

Training NN: summary

- 저제
 - 신경망의 가중치(weights)와 편향(bias)을 훈련데이터에 적응하도록 조정하는 과정을 '학습'이라고 함
- 1단계-미니배치
 - 훈련데이터 중 일부를 무작위로 가져옴. 이렇게 선별한 데이터를 미니배치라 하며, 그 미니배치의 손실(Loss) 값을 줄이는 것이 목표
- 2단계 Gradient (기울기) 산출
 - 미니배치의 손실 함수 값을 줄이기 위해 각 가중치 매개변수(weight parameter)의 기울기를 구함. 기울기는 손실 함수의 값을 가장 작게 하는 방향을 제시함
- 3단계 매개변수 갱신
 - 가중치 매개변수를 기울기 방향으로 아주 조금 갱신함
- 4단계 반복
 - 1~3단계를 반복함.

$$E = \frac{1}{N} \sum_{t=1}^{N} (F(x_t; W) - y_t)^2$$

$$\Delta w_i^j = -c \cdot \frac{\partial E}{\partial w_i^j}(W)$$
$$w_i^{j,new} = w_i^j + \Delta w_i^j$$

Initialization

Learning can be sensitive to weight <u>initialization</u>

- Xavier initialization (2010)
- He initialization (2015)

Parameter update

• SGD (확률적 경사 하강법)

 $\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial L}{\partial \mathbf{W}}$

- Simple, easy to implement
- *Inefficient* sometimes

$$f(x,y) = \frac{1}{20}x^2 + y^2$$

Optimization path

Parameter update

• Momentum (운동량)

$$\mathbf{W} \leftarrow \mathbf{W} + \mathbf{v}$$
$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \eta \, \frac{\partial L}{\partial \mathbf{W}}$$

Optimization update path by momentum

Parameter update

RMSprop, Adadelta, Adamax, ...

Overfitting

- Especially with
 - Complex models with many parameters
 - Small training data
- How to avoid
 - Weight decay (add L2 penalty on W to loss)
 - Dropout: randomly drop(remove) neurons during training

Regularization

Regularization

Regularization combats <u>overfitting</u>

Batch normalization

- Splits the training dataset into small mini-batches that are used to calculate model error and update model coefficients.
- Normalization transform distribution into standard Normal

$$X_{\text{normal}} = \frac{X_{\text{original}} - \mu}{\sigma}$$

- Batch norm. normalizes each layer's activations according to the statistics of the batch
 - Results less sensitive to initialization

$$\mathbf{s}^{(\ell)} \leftarrow \gamma \frac{\mathbf{s}^{(\ell)} - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} + \beta$$

Hyperparameter tuning

- Hyperparameters
 - Number of nodes, Batch size
 - Learning rate (initial, decay schedule), regularization strength (L2 penalty, dropout)
 - Tuned over validation set

Hyperparameter tuning

Search on log scale

learning_rate = 10 ** uniform(-6, 1)

Random search vs. grid search

From coarse to fine ranges

Learning automatically from data

