Bachelor of Software Engineering - Game Programming

GD2P02 – Physics Programming

Mathematics Refresher

Overview

- Math Refresher
 - Dot Product, Cross Product
 - Triple Products
 - Planes, Triangles
 - Quaternions, Matrices
- Exercises

Dot Product

- Useful for:
 - Get the angle between vectors.
 - Project a point onto another vector.
- Good operation for parallelization.
- Two vectors in, one scalar out.
 - Sometimes known as the "Scalar Product"
- $A \bullet B = A_x B_x + A_y B_y + A_z B_z$
 - Three multiplications and two additions...
- $A \bullet B = |A||B|\cos(\theta)$
 - Theta is the angle between vector A and vector B
 - |A| = magnitude of A, |B| = magnitude of B

Dot Product: Properties

• $A \bullet B = |A||B|\cos(\theta)$

- We should know:
 - For non-unit vector directions, we can determine if they are pointing in the same direction...
 - Based upon the sign of the resulting scalar.
 - Negative means the angle between vectors are more than 90 degrees.
 - Zero means the vectors are at a right angle to one-another.

Dot Product: Properties

• $A \bullet B = |A||B|\cos(\theta)$

- Handy to use
 - If only one vector is *normalised*, then the length to the non-normalised vector is projected onto the result.
 - If both vectors are *normalised*, then we can calculate the angle between them.

Dot Product: Finding the angle

$$Cos \Theta = dot(|P_B-P_A|, |P_C-P_A|)$$

Dot Product: Projection

- Projection:
 - If one of the vectors is not normalised, then the dot product will project the unnormalised vector onto the normalised vector...

$$N = normalised(P_C - P_A)$$

t = dot(P_B - P_A, N)

 The dot product measures the length of the projection... t

Dot Product: Projection

- Green = g
- Blue = b
- Red = g dot b

Dot Product: Projection and vectors in projection

- Red = normalised g
- Blue = b
- Green = b parallel
- Black = b perpendicular

– b perpendicular + b parallel = b

Dot Product: Code Example:

```
CVector3 a( 0.0f, 0.0f, 1.0f );
CVector3 b( 0.0f, 1.0f, 0.0f );

float d = CVector3::Dot( a, b );

float fAngle = acos( d );

// fAngle will be 1.57 radians
// 1.57radians is 90 degrees
```


Cross Product

- Useful for:
 - Perpendicular vector of two non-parallel vectors.
- Sometimes known as the "vector product"
- Remember the cross product returns a vector!
 - Resulting vector is perpendicular to the two input vectors.
 - Two input vectors form a triangle...
 - Resulting vector is the direction of the face of the triangle.
 - At 90 degrees from an edge of the triangle.
- Example:
 - One vector: Along the x-axis, Another: Along the y-axis
 - Result: vector along the z-axis!

Cross Product

- $A \times B = (A_y B_z A_z B_y), (A_z B_x A_x B_z), (A_x B_y A_y B_x)$
- $A \times B = -B \times A$
- $|A \times B| = |A||B| \sin(\theta)$
- Order of multiplication is important!
- A x B ≠ B x A
 - Opposite order results in a vector pointing in the opposite direction!

Cross Product: Code Example

Cross Product: Cross Product Matrix

- Remember that multiplying a vector by a matrix results in a vector...
- Create a "Cross Product Matrix"
 - Multiply a vector by the matrix, the result is the same as performing the cross product...

$$A \times B = \hat{a}B$$

$$\hat{a} = \begin{bmatrix} 0 & -A_z & A_y \end{bmatrix}$$

$$\begin{bmatrix} A_z & 0 & -A_x \end{bmatrix}$$

$$\begin{bmatrix} -A_y & A_x & 0 \end{bmatrix}$$

Cross Product: Scalar Triple Product

Also known as: Mixed or Box Product

 Measures the volume of the parallelepiped bounded by three vectors, A, B, and C.

$$s = A \bullet (B \times C)$$

Fig 1: Parallelepiped from wiki.

Therefore:

$$A \bullet (B \times C) = B \bullet (C \times A) = C \bullet (A \times B)$$

Cross Product: Vector Triple Product

- Useful for creating an orthogonal basis from linearly independent vectors.
- Result is a vector.

$$v = A \times (B \times C)$$

Example Basis:

B, B
$$\times$$
 C, and B \times (B \times C)

Let:
$$B = < 1, 0, 0 >, C = < 0, 1, 0 >$$

Therefore:

Cross Product: Vector Triple Product continued...

Triple Product Expansion:

$$A \times (B \times C) = (A \cdot C)B - (A \cdot B)C$$

Also known as Lagrange's Formula.

 This relationship is useful for rigid body dynamics and geometric algorithms.

Cross Product: Plane Equation

- A point can be on either side of a plane.
 - Rejection test
- Plane: Cuts the world in two!
 - Combine multiple planes to slice the world into smaller and smaller chunks!
- The plane equation allows for deciding which side of the plane we are on...
 - Or if with multiple planes, which chunk we are in!
- A triangle is on a plane...
 - Which side of the plane a point is on?
 - How far away from the plane is the point?

Cross Product: Plane Equation continued...

- To define a plane:
 - 1) Need a point on the plane.
 - 2) Normal of the plane
- Plane Equation:

$$d = Ax + By + Cz$$

- •< A, B, C > is the plane normal.
- •d is the shortest distance from the plane to the origin.
- •< x, y, z > represent coordinates of the point on the plane...
- N_p is the normal, P_p is a point on the plane
 d = N_p P_p

Cross Product: Plane Equation continued...

- Which side of the plane is a point on?
 - Calculate the reference distance d for the plane...
 d = planeNormal planePoint
 - 2. Next, check the point in space...

 val = (planeNormal pointToCheck) d

3. If:

- val is Zero: pointToCheck is on the plane!
- val is > Zero: pointToCheck is in-front of the plane!
- val is < Zero: pointToCheck is behind the plane!

Cross Product: Line-Plane Intersection

- Line Segment vs Plane:
 - Test each end of the line against the plane.
 - If each end is on alternate sides of the plane...
 - Then there has been an intersection!
 - Then calculate the exact point of intersection!
 - Known:
 - Equation of the plane.
 - Equation of the line.
 - Combine them to determine the intersection point!

Cross Product: Line-Plane Intersection continued...

- Line Segment vs Plane:
 - Line segment:
 - p(t) = p0 + t(p1 p0)
 - p0 is the line start point.
 - p1 is the line end point.
 - Scalar t goes from 0 to 1.
 - p(t) is a point on the line!
 - Insert the line equation into the plane equation:
 - Dot(planeNormal, pointOnPlane anyPoint) = 0
 - Dot(planeNormal, (p0 + t(p1 p0)) anyPoint) = 0
 - Rearrange to make t the subject:
 - t = dot(planeNormal, pointOnPlane p0) / dot(planeNormal, p1 p0)

Cross Product: Line-Plane Intersection continued...

- Line Segment vs Plane:
 - t = dot(planeNormal, pointOnPlane p0) / dot(planeNormal, p1 p0)
 - If:
 - t > 0 and t < 1: Intersection has occurred between the end points.
 - t == 0: Intersection at first end point.
 - t == 1: Intersection at second end point.
 - t > 1: Intersection beyond second end point.
 - t < 0: Intersection before first end point.

Cross Product: Line-Plane Intersection continued...

- Line Segment vs Plane:
 - Triangle is three line-segments.

Fig 1: Top down view of a plane and two triangles, one triangle intersecting the plane, the other triangle not intersecting.

Cross Product: Slicing or Cutting Triangles

- Cut a triangle with a plane (or line in 2D)...
- Possible outcomes:
 - Points are all on one side
 - Points are all on other side
 - Plane cuts, producing three triangles from the cut.
 - Two points one side, one point the other...

Cross Product: Slicing or Cutting Triangles continued...

 Two points one side, one point the other; this requires new triangles!

Fig 2: Triangle Cutting.

Cross Product: Slicing or Cutting Triangles continued...

Algorithm:

- Two empty vertex lists:
 - Vertices above the plane, Vertices below the plane.
- After the calculation, if there was an intersection:
 - One list has four vertices, The other has three vertices.
- Start at a random vertex.
- Go either clockwise or anti-clockwise around the triangle...
- Check each line segment against the plane.
- If the start and end vertex are on different sides of the plane:
 - We have a cut, so split the line, add the new vertex to both lists.

Cross Product: Slicing or Cutting Triangles continued...

- Algorithm continued:
 - If there was no intersection, either the above or the below array will have three vertices, the other zero.

Quaternions

- Useful for:
 - SLERP
 - Avoiding gimbal lock
 - Representing angle and rotations
 - Better than matrices for representing orientations
 - Memory efficient!
- Physics requires quaternions!
 - Four-dimensional hyper-plane!
 - Multiple dimension complex numbers!
- q = w + (xi + yj + zk)

Quaternions Rules:

- Remember:
 - $i^2 = j^2 = k^2 = -1$
 - ij = -ji = k
 - jk = -kj = i
 - ki = -ik = j
- Conjugate: inverse of unit quaternion
 - $q^{-1} = w xi yj zk$
- Quaternion multiplication is NOT commutative.
 - $q_1 = w_1 + v_1$, where $v_1 = \langle x, y, z \rangle$
 - $q_1 * q_2$; $w = w_1 w_2 v_1 v_2$ $v = w_1 v_2 + w_2 v_1 + v_1 \times v_2$

Quaternions continued...

- Normalising:
 - Magnitude is 1.
 - $Sqrt(w^2 + x^2 + y^2 + z^2) = 1$
- Rotation mapped to quaternion:

$$q = \cos(\theta/2) + x(\sin(\theta/2)) + y(\sin(\theta/2)) + z(\sin(\theta/2))$$

Convert a vector to a quaternion:

$$q(v) = < 0, v_x, v_y, v_z >$$

- Rotate arbitrary point v by applying quaternion rotation :
 - $v' = qvq^{-1}$
 - v' is the rotated point!

Quaternions continued...

Quaternion to Rotation Matrix

$$[1-2(q_{y}^{2}+q_{z}^{2}) \quad 2(q_{x}q_{y}-q_{s}q_{z}) \quad 2(q_{x}q_{z}-q_{s}q_{y})]$$

$$[2(q_{x}q_{y}-q_{s}q_{z}) \quad 1-2(q_{x}^{2}+q_{z}^{2}) \quad 2(q_{y}q_{z}-q_{s}q_{y})]$$

$$[2(q_{x}q_{z}-q_{s}q_{y}) \quad 2(q_{y}q_{z}-q_{s}q_{x}) \quad 1-2(q_{x}^{2}+q_{y}^{2})]$$

Quaternions continued...

- Memory optimisation:
 - Embed the scalar component into the vector part of the quaternion...
 - Requires the quaternion to be a unit length...
 - Extracting the scalar part becomes additional cost...
 - Trading memory for speed!
 - $q_s = sqrt(1 q_x^2 + q_y^2 + q_z^2)$
 - Ensure q_s is positive, to store the quat in three floats... (not four!)
 - Perhaps overkill... remember to make code work first...
 - Before optimising!

Matrices

$$- Q_{nxm} = Q_{2x3} = [abc]$$
 [def]

- n rows, m columns
- Remember 4 by 4 matrices...
- Decompose a matrix: Extract each of the following:
 - Rotation
 - Translation
 - Scaling

Matrices continued...

- Beware of drift...
- Check rotation matrix's columns are orthogonal to each other...
 - Use the cross product to re-orthogonalise them!
- Multiplication:
 - The column of the first matrix has to match the size of the row of the second matrix...
 - $Q_{nxm} \times S_{mxp} = R_{nxp}$
- Large matrix operations are ideal for parallelization.

Matrices continued...

- Inverses
 - 4 by 4: costly...
 - Pure rotation matrix:
 - No reflection, no scaling.
 - Then the inverse is the same as the transpose!
 - A matrix is non-singular and invertible only if:
 - The determinate is non-zero.
 - If a matrix has a determinate of zero:
 - It is a singular matrix that is non-invertable.
 - Singular Matrix: Square matrix that does not have a matrix inverse.
 - Singular if and only if its determinate is 0.

Matrices continued...

Inverses

- Zero determinant: When?
 - Two rows or columns are equal.
 - An entire row is zero.
 - A row or column is a multiple of another row or column.

Physics will require:

- Identity matrices.
- Rotational matrices.
- Orthogonal matrices.
- Scale and translation matrices.
- Matrix multiplication!

Exercise

- Exercise 001.1 Lagrange's Formula
 - Confirm Lagrange's formula is correct.
 - The Triple Product Expansion...
 - Create a small C++ project...
 - Calculate the RHS and the LHS for different test cases.
- Exercise 001.2 Plane vs Point Function
 - Plane: Defined by a point on the plane and a normal.
 - Point: 3D Point in space.
 - Create a C++ function to collide a point vs a plane.
 - Return the result: ON_PLANE, INFRONT, or BEHIND.

Exercise

- Exercise 001.3 Line Segment vs Plane Function:
 - Plane: Defined by a point on the plane and a normal.
 - Line Segment: Two points, one for each end.
 - Create a C++ function to collide a line segment vs a plane.
 - Return the result: TRUE or FALSE.
 - TRUE = collision occurred, FALSE = no collision.
- Exercise 001.4 Triangle vs Plane Function
 - Plane: Defined by a point on the plane and a normal.
 - Triangle: Defined by three points.
 - Create a C++ function to collide a triangle vs a plane.
 - Return the result: TRUE or FALSE.

Exercise

- Exercise 001.5 Triangle Cutter:
 - Implement an application that allows the user to:
 - Create a triangle:
 - By clicking three points to form the triangle.
 - T key resets the triangle...
 - Create a line:
 - By clicking two points to form the line segment.
 - L key resets the line...
 - If the line intersects the triangle...
 - Then render the resulting triangles
 - Use colour to make the triangles obvious...

Summary

- Math Refresher
 - Dot Product, Cross Product
 - Triple Products
 - Planes, Triangles
 - Quaternions, Matrices
- Exercises

