Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Sid Maibach

Probeklausur. Dauer 120 Minuten.

Aufgabe 1. Prüfen Sie jeweils für $f, g, h : \mathbb{C} \to \mathbb{C}$, an welchen Punkten die Funktion komplex differenzierbar ist und bestimmen Sie die Ableitung:

- (a) $f(z) = |z|^2$,
- (b) $g(z) = \exp(i\sin(z)),$
- (c) $h(z) = x^2 y^2 + 2xyi$,

wobei jeweils z = x + iy.

Lösung.

(a) $f(z) = |z|^2$ ist in z = 0 komplex differenzierbar und nirgendwo sonst. Es gilt f'(0) = 0.

Berechne $\lim_{h\to 0} \left| \frac{f(h)-f(0)}{h} \right| = \lim_{h\to 0} \frac{|h|^2}{|h|} = 0.$

Für $z \neq 0$ berechne die vier Ableitungen $\partial_x \text{Re}(f)(z) = 2x$, $\partial_y \text{Re}(f)(z) = 2y$, $\partial_x \text{Im}(f)(z) = 0$, $\partial_y \text{Im}(f)(z) = 0$. Die Cauchy-Riemannschen Differentialgleichungen $\partial_x \text{Re}(f) - \partial_y \text{Im}(f) = 0$, $\partial_x \text{Im}(f) + \partial_y \text{Re}(f) = 0$ ergeben also 2x = 0, 2y = 0, was nur in z = 0 erfüllt ist.

- (b) $g(z) = \exp(i\sin(z))$ ist die Verknüpfung von holomorphen Funktionen, also für alle $z \in \mathbb{C}$ komplex differenzierbar. Es gilt die Kettenregel $g'(z) = \exp'(i\sin(z))i\sin'(z) = \exp(i\sin(z))i\cos(z)$.
- (c) Berechne die vier Ableitungen $\partial_x \text{Re}(h)(z) = 2x$, $\partial_y \text{Re}(h)(z) = -2y$, $\partial_x \text{Im}(h)(z) = 2y$, $\partial_y \text{Im}(h)(z) = 2x$. Also erfüllt h an allen $z \in \mathbb{C}$ die Cauchy-Riemannschen Differentialgleichungen $\partial_x \text{Re}(h) \partial_y \text{Im}(h) = 0$, $\partial_x \text{Im}(h) + \partial_y \text{Re}(h) = 0$ und ist komplex differenzierbar mit $h'(z) = \partial_x \text{Re}(f) + i\partial_x \text{Im}(z) = 2x + 2yi = 2z$. (man kann auch sagen $h(z) = z^2$ ist ein Polynom und damit komplex differenzierbar mit Ableitung f'(z) = 2z.)

Aufgabe 2. (a) Sei log : $\mathbb{C} \setminus \Gamma \to \mathbb{C}$ ein holomorpher Zweig des Logarithmus und $f(z) = z \log(z) - z$. Berechnen Sie f'(z).

(b) Zeigen Sie, dass $g(z) = \exp(1/z)$ keine Stammfunktion in $\mathbb{C} \setminus \{0\}$ hat. Hinweis: Berechnen sie das Residuum bei z = 0.

 $L\ddot{o}sung.$

- (a) Wir wissen dass $\log'(z) = \frac{1}{z}$ an allen Punkten $z \in \mathbb{C} \setminus \Gamma$. Mit der Kettenregel und Produktregel ist also $f'(z) = \log(z) + \frac{z}{z} 1 = \log(z)$.
- (b) Schreibe g als Laurent-Reihe $g(z) = \sum_{k=0}^{\infty} \frac{1}{k!} z^{-k} = \sum_{k=-\infty}^{0} \frac{1}{(-k)!} z^k$. Das Residuum ist damit $\operatorname{Res}(f,0) = \frac{1}{(-1)!} = 1$.

Um zu zeigen, dass g keine Stammfunktion hat, reicht es, mit dem Residuensatz $\int_{\partial B(0,1)} g(z) dz = 2\pi i \text{Res}(f,0) = 2\pi i \neq 0$ auszurechnen. Hätte g eine Stammfunktion $G: \mathbb{C} \setminus \{0\} \to \mathbb{C}$, dann wäre $\int_{\partial B(0,1)} g(z) dz = G(1) - G(1) = 0$.

Aufgabe 3. Sei

$$f(z) = \frac{e^{iz}}{(z - 3i)^2(z + 2i)}$$

und definiere die Halbkreise $\gamma_R:[0,\pi]$ für R>0 durch $\gamma_R(t)=Re^{it}$.

(a) Berechnen sie

$$\lim_{R \to \infty} \int_{\gamma_R} f(z) dz$$

- (b) Berechnen sie alle Residuen von f.
- (c) Finden sie

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) dx.$$

Lösung.

(a) Schreibe

$$\left| \int_{\gamma_R} f(z) \, dz \right| = \left| \int_0^{\pi} iRe^{it} f(Re^{it}) \, dt \right| \le \int_0^{\pi} R \frac{e^{-R\sin(t)}}{(R-3)^2 (R-2)} \, dt.$$

Der letzte Integrand konvergiert gleichmäßig gegen 0, also ist $\lim_{R\to\infty}\int_{\gamma}f(z)\,dz=0$.

(b) f hat Singularitäten bei $z_1=3i$ und bei $z_2=-2i$. Berechne mit den Regeln für Residuen

$$\operatorname{Res}(f, -2i) = \frac{e^{iz}}{(z - 3i)^2} |_{z = -2i} = \frac{e^2}{-25}.$$

$$\operatorname{Res}(f, 3i) = \frac{d}{dz} \left(\frac{e^{iz}}{z + 2i} \right) |_{z = 3i} = \left(\frac{ie^{iz}}{z + 2i} - \frac{e^{iz}}{(z + 2i)^2} \right)_{z = 3i} = \frac{6}{25} e^{-3}.$$

(c) Wende den Residuensatz auf die Kurve $[-R,R] \cup \gamma_R$ an. Diese Kurve ist geschlossen, einfach, positiv orientiert. Also ist

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) \, dx = \lim_{R \to \infty} \left(\int_{-R}^{R} f(x) \, dx + \int_{\gamma_R} f(z) \, dz \right) = 2\pi i \text{Res}(f, 3i) = \frac{12\pi i}{25} e^{-3}.$$

Aufgabe 4. Sei

$$f: [0, 2\pi] \to \mathbb{R}$$

 $x \mapsto (x - \pi)^2$

- (a) Skizzieren Sie die 2π -periodische Fortsetzung von f.
- (b) Die N-te partielle Fouriersumme von f ist

$$f_N(x) = \sum_{-N}^{N} \hat{f}_k e^{ikx}$$

Schreiben Sie $f_1(x) = \alpha + \beta \cos(x) + \gamma \sin(x)$.

(c) Prüfen Sie, ob die Reihe f_N im Limes $N \to \infty$ gleichmäßig nach f konvergiert. Wie groß muss man N wählen, damit $\sup_x |f(x) - f_N(x)| \le \frac{1}{100}$?

Lösung.

$$\begin{aligned}
&\text{für } k \neq 0: \\
\hat{f}_k &= \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx \\
&= \frac{1}{2\pi} \int_0^{2\pi} (x - \pi)^2 e^{-ikx} dx \\
&\stackrel{p.I.}{=} \frac{1}{2\pi} \left(\underbrace{\frac{1}{-ik} (x - \pi)^2 e^{-ikx}|_0^{2\pi}}_{0} - \int_0^{2\pi} \frac{2}{-ik} (x - \pi) e^{-ikx} dx \right) \\
&\stackrel{p.I.}{=} \frac{1}{2\pi} \left(\underbrace{\frac{-2}{(-ik)^2} (x - \pi) e^{-ikx}|_0^{2\pi}}_{0} + \underbrace{\int_0^{2\pi} \frac{2}{(-ik)^2} e^{-ikx} dx}_{0} \right) \\
&= \frac{1}{2\pi} \left(\frac{-2}{-k^2} (2\pi - \pi) - \frac{-2}{-k^2} (0 - \pi) \right) \\
&= \frac{2}{k^2} \\
&\text{für } k = 0: \\
 \hat{f}_0 &= \frac{1}{2\pi} \int_0^{2\pi} (x - \pi)^2 dx \\
&= \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx \\
&= \frac{1}{2\pi} \left[\frac{1}{3} x^3 \right]_{x = -\pi}^{x = -\pi} \\
&= \frac{2\pi^3}{2\pi} \\
&= \frac{\pi^2}{3} \end{aligned}$$

(a) blau: Die periodische Fortsetzung von f, orange: Die Fouriersumme f_1

(b)
$$f_1(x) = \hat{f}_{-1}e^{-ix} + \hat{f}_0e^{0x} + \hat{f}_1e^{ix} = \frac{\pi^2}{3} + 4\cos(x)$$

(c) Wir sehen dass $\sum_{k=-\infty^{\infty}} |\hat{f}_k| < \infty$, also konvergiert die Fouriersumme gleichmäßig und

$$\sup_{x} |f_N(x) - f(x)| \le \sum_{|k| > N} |\hat{f}_k| \le 2 \int_{N-1}^{\infty} \frac{4}{k^2} \, dk = \frac{8}{N-1}.$$

Wir können alsoN=801 wählen, dann ist $\frac{8}{N-1} \leq \frac{1}{100}.$

Aufgabe 5. (a) Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben als $f(x) = e^{-|x|}$. Berechnen Sie $\mathcal{F}f(k)$.

(b) Berechnen die die Fourier-Transformation $\mathcal{F}T_f$ von $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - x$, im Sinne von temperierten Distributionen.

Lösung.

(a)

$$\begin{split} \mathcal{F}[e^{-|x|}](k) &= \int_{-\infty}^{\infty} e^{-|x|} e^{-ikx} dx \\ &= \int_{-\infty}^{0} e^{x-ikx} dx + \int_{0}^{\infty} e^{-x-ikx} dx \\ &= \left[\frac{1}{1-ik} e^{(1-ik)x} \right]_{x=-\infty}^{0} + \left[\frac{1}{-1-ik} e^{(-1-ik)x} \right]_{x=0}^{\infty} \\ &= \frac{1}{1-ik} - 0 + 0 - \frac{1}{-1-ik} \\ &= \frac{1}{1-ik} + \frac{1}{1+ik} \\ &= \frac{(1+ik)}{(1-ik)(1+ik)} + \frac{(1-ik)}{(1+ik)(1-ik)} \\ &= \frac{2}{1+k^2}. \end{split}$$

(b) $f(x) = \frac{1}{i^3}(ix)^3 - \frac{1}{i}(ix)$, also ist

$$\mathcal{F}T_f = \frac{1}{i^3} \mathcal{F}((ix)^3 T_1) - \frac{1}{i} \mathcal{F}((ix) T_1)$$
$$= i(-\partial)^3 \mathcal{F}(T_1) + i(-\partial) \mathcal{F}(T_1) = -i\partial^3 (2\pi\delta_0) - i\partial (2\pi\delta_0)$$

Aufgabe 6. Wir betrachten folgendes Anfangswertproblem für die Schwartz-Funktion $u_0 \in \mathcal{S}(\mathbb{R};\mathbb{C})$:

$$\begin{cases} \partial_t u(t,x) - \partial_x u(t,x) = 0\\ u(0,x) = u_0(x) \end{cases}$$
 (1)

- (a) Berechnen Sie die Fouriertransformation von (1).
- (b) Lösen Sie die Fourier-transformierten Gleichungen als gewöhnliche Differenzialgeleichung in t (für festes k).
- (c) Lösen sie (1) als Faltung mit u_0 .

Lösung.

(a)

$$\begin{cases} \partial_t \mathcal{F}u(t,k) - ik \\ mathcal Fu(t,k) = 0 \\ \mathcal{F}u(0,k) = \mathcal{F}u_0(k) \end{cases}$$

(b) Die erste Gleichung wird gelöst durch $\mathcal{F}u(t,k)=f(k)e^{ikt}$, wobei f(k) eine Beliebig ist. Durch die Anfangsbedingung finden wir $f(k)=\mathcal{F}u_0(k)$. Also ist

$$\mathcal{F}u(t,k) = e^{ikt}\mathcal{F}u_0(k).$$

(c)
$$u(t,x) = \mathcal{F}^{-1}[e^{ikt}] * u_0 = \delta_t * u_0 = u_0(x-t)$$