1: Find the limit

$$\lim_{n \to \infty} \int_0^\infty n \sin\left(\frac{x}{n}\right) \frac{1}{x(1+x^2)} \ dx.$$

We will use the Lebesgue Dominated Convergence Theorem to find this limit. To apply LDCT, we

(a) Determine the function f that the sequence $\{f_n\}$ converges to. $f := \lim_{n \to \infty} f_n$.

$$\lim_{n \to \infty} f_n(x) = \frac{1}{1 + x^2} \lim_{n \to \infty} \frac{\sin\left(\frac{x}{n}\right)}{\frac{x}{n}}$$

$$= \frac{1}{1 + x^2} \lim_{n \to \infty} \frac{\frac{1}{n}\cos\left(\frac{x}{n}\right)}{\frac{1}{n}}$$

$$= \frac{1}{1 + x^2} \lim_{n \to \infty} \cos\left(\frac{x}{n}\right)$$

$$= \frac{1}{1 + x^2}$$

So let

$$f(x) := \frac{1}{1+x^2}$$

(b) Show there exists some integrable function g that bounds $|f_n|$ for all n, $|f_n| \leq g \ \forall \ n$.

$$|f_n| = \left| \left(\frac{n}{x} \right) \sin \left(\frac{x}{n} \right) \cdot \frac{1}{1 + x^2} \right|$$

$$= \frac{1}{1 + x^2} \left| \frac{\sin \left(\frac{x}{n} \right)}{\left(\frac{x}{n} \right)} \right|$$

$$= \frac{1}{1 + x^2} \left| \frac{\sin \left(\frac{x}{n} \right) - \sin(0)}{\frac{x}{n} - 0} \right|$$

$$= \frac{1}{1 + x^2} |\cos(c)| \qquad c \in \left(0, \frac{x}{n} \right)$$

$$\leq \frac{1}{1 + x^2} \cdot 1$$

$$= \frac{1}{1 + x^2}$$

So let

$$g(x) := \frac{1}{1+x^2}$$

Finally, by DCT we have that

$$\lim \int f_n = \int \lim f_n = \int g$$

so that

$$\lim_{n \to \infty} \int_0^\infty n \sin\left(\frac{x}{n}\right) \frac{1}{x(1+x^2)} dx = \int_0^\infty \frac{1}{1+x^2}.$$

We have that

$$\int_0^\infty \frac{1}{1+x^2} = \lim_{k \to \infty} \int_0^k \frac{1}{1+x^2}$$
$$= \lim_{k \to \infty} \arctan k - 0$$
$$= \frac{\pi}{2}.$$

Thus,

$$\lim_{n \to \infty} \int_0^\infty n \sin\left(\frac{x}{n}\right) \frac{1}{x(1+x^2)} dx = \frac{\pi}{2}$$

2: Let

$$E_n^k = \left(r_n - \frac{1}{2^{n+k}}, r_n - \frac{1}{2^{n+k}}\right).$$

and

$$G = \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} E_n^k.$$

We observe that $\bigcup_{n=1}^{\infty} E_n^k$ is open as it is the union of open sets and $G = \bigcap_{k=1}^{\infty} \left(\bigcup_{n=1}^{\infty} E_n^k\right)$ is G_{δ} as it is a countable union of open sets.

Since $\mathbb{Q} \subset G$, it suffices to show density by showing that any irrational is arbitrarily close to G. So let $y \in \mathbb{R} \setminus \mathbb{Q}$ and $\varepsilon > 0$. Since \mathbb{Q} is dense in \mathbb{R} , $\exists n \in \mathbb{N}$ s.t. $r_n \in B_{\varepsilon}(x)$.

Moreover, $\exists k \text{ s.t.}$

$$\left(r_n - \frac{1}{2^{n+k}}, r_n - \frac{1}{2^{n+k}}\right) \subset B_{\varepsilon}(x).$$

To show the Lebesgue measure is 0, let's hold k and observe that the measure of the union of E_n^k is bounded

$$m\left(\bigcup_{n=1}^{\infty} E_n^k\right) \le \sum_{n=1}^{\infty} \frac{1}{2^{n+k-1}}$$
$$= \frac{1}{2^{k-1} \sum_{n=1}^{\infty} \frac{1}{2^n}}$$
$$= \frac{2}{2^{k-1}} < \infty.$$

Since $G \subset \bigcup_{n=1}^{\infty} E_n^k \ \forall \ k$,

$$m(G) \le \limsup_{k \to]infty} m \left(\bigcup_{n=1}^{\infty} E_n^k \right)$$

$$< \frac{1}{2^k}$$

Thus,

$$m(G) = 0$$

3: Consider the set

$$E_m^n = \left\{ x : \ \forall \ |y - x| < \frac{1}{m} \Rightarrow |f(x) - f(y)| < \frac{1}{n} \right\}.$$

Fix n and m for a moment and observe that every point in this set is continuous on an $\frac{1}{m}$ neighborhood of itself. These points may be continuous within a larger neighborhood but it doesn't matter.

Let's take some $x_0 \in E_m^n$. Then for each point y in this neighborhood, we can find a neighborhood containing y and contained in the x-neighborhood. i.e. $\exists m'$ s.t. $B_{\frac{1}{m'}}(y) \subset B_{\frac{1}{m}}(x_0)$. Therefore, $y \in E_{m'}^n$. It follows that

$$\bigcup_{m=1}^{\infty} E_m^n$$

is the union of all $\frac{1}{m}$ neighborhoods where f is within $\frac{1}{n}$. Since m is arbitrary, $\bigcup_{m=1}^{\infty} E_m^n$ is the union of all continuous points all neighborhoods centered at them. Therefore it is open. Finally,

$$\bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} E_m^n$$

is a countable intersection of open sets and returns all continous points of $\bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} E_m^n$.

- (a) This shows that the set of continuity points is a G_{δ} set.
- (b) \mathbb{Q} cannot be the exact set of continuity points for any function because it is F_{σ} . $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$ which is a countable union of closed sets.

4: We will define a sequence of functions $f_n(x)$ s.t. $f_n:[0,1]\to[0,\infty), f_n\to 0 \ \forall \ x\in[0,1], \int_0^1 f_n \ dx\to 0$, and $\sup_x f_n$ not integrable.

We show the first three functions f_1, f_2 , and f_3 then define f_n following the pattern.

Let $f_1(x)$ be a triangle of height 1+1=2 with bases at $\frac{1}{2}$ and $\frac{1}{1}$. Then

$$\int f_1(x)dx = \frac{1}{2}.$$

Let $f_2(x)$ be a triangle of height 2+1=3 with bases at $\frac{1}{3}$ and $\frac{1}{2}$. Then

$$\int f_2(x)dx = \frac{1}{4}.$$

Let $f_3(x)$ be a triangle of height 3+1=4 with bases at $\frac{1}{4}$ and $\frac{1}{3}$. Then

$$\int f_2(x)dx = \frac{1}{6}.$$

In general, $f_n(x)$ be a triangle of height n+1 with bases at $\frac{1}{n}$ and $\frac{1}{n+1}$,

$$f_n(x) = \begin{cases} triangle & x \in \left(\frac{1}{n+1}, \frac{1}{n}\right) \\ 0 & x \notin \left(\frac{1}{n+1}, \frac{1}{n}\right) \end{cases}$$

- (a) We have that $\int f_n = \frac{1}{2n}$ so that $\lim_{n \to \infty} \int f_n \to 0$.
- (b) $\sup_{n \in \mathbb{N}; x \in [0,1]} f_n(x) = \infty$ is not integrable is clear I think.
- (c) The Dominated Convergence Theorem doesn't hold because no such integrable function g s.t. $|f_n| \leq g$ a.e. exists.

If such a g existed, then $\int g < +\infty$ implies that g < M a.e. (for some M). Then $|f_n| < M$ a.e. But f_n are all continuous implies that

$$m(\{x: |f_n| > M\}) \neq 0 \ \forall n.$$

5: Let E be a measurable set such that $m(E) < \infty$. We say that f_n converges in measure to f on E if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} m(x \in E : |f_n(x) - f(x)| \ge \varepsilon) = 0.$$

(a) Show that if f_n converges to f a.e., then f_n converges in measure to f.

 (\Rightarrow) Suppose $f_n \longrightarrow f$ a.e. on E, with $m(E) < +\infty$. Consider the set B of points where $f_n \longrightarrow f$,

$$B := \{x : f_n \longrightarrow f\}$$

and note that $m\left(E\backslash B\right)=0$ by hypothesis. Now let $\varepsilon>0$ and by Egoroff, $\exists \ A_{\varepsilon}\subset B$ s.t.

$$m(B \setminus A_{\varepsilon}) < \varepsilon$$
 and $f_n \longrightarrow f$, uniformly.

Restating the above argument, we have for $\varepsilon > 0$, $\exists A_{\varepsilon} \subset B$ and $N_{\varepsilon} \in \mathbb{N}$ s.t.

$$m(B \setminus A_{\varepsilon})$$
 and $|f_n - f| < \varepsilon$.

Then the set of x where $|f_n - f| \ge \varepsilon$ is contained outside of A_{ε} ,

$${x: |f_n - f| \ge \varepsilon} \subset (E \backslash B) \cup (B \backslash A_{\varepsilon}).$$

Therefore,

$$m(\lbrace x : |f_n - f| \ge \varepsilon \rbrace) \le m(E \backslash B) + m(B \backslash A_{\varepsilon})$$

= $0 + \varepsilon$
= ε .

Therefore

$$\lim_{n\to\infty} m\left(x: |f_n - f| \ge \varepsilon\right) = 0.$$

(b) We will show by counter-example that the converse is not true using the **Typewriter** Sequence

$$f_n(x) = \mathbb{1}_{\left[\frac{n-2^k}{2^k}, \frac{n-2^k+1}{2^k}\right]}, \ 2^k \le n < 2^{k+1}.$$

We make some observations about this function:

- (1) The parameter k is determined by the index n. Which in turn determines how [0,1] is partitioned.
- (2) This function outputs a rectangle of height 1 and width $\frac{1}{2^k}$.
- (3) The endpoints of the rectangle remain in [0, 1] since $2^k \le n < 2^{k+1}$ imply

$$0 \le \frac{n-2^k}{2^k} < 1 \ and \ \frac{n-2^k+1}{2^k} < 1 + \frac{1}{2^k}.$$

The left inequality tells us that the *left endpoint* is strictly less than 1. And since the width of the rectangle is $\frac{1}{2^k}$, the right inequality tells us the *right endpoint* ≤ 1 .

(4) As the sequence evolves, the rectangles endpoints move and/or width decrease in size. The "and/or" comes from the fact that the width only decreases when the index n pushes k higher. The parameter k remains constant for a finite number of n's.

This sequence converges in measure as

$$m\left\{x: |f_n(x) - f(x)| \ge \varepsilon\right\} \le \frac{1}{2^k}$$

implies

$$\lim_{n \to \infty} m\left\{x : |f_n(x) - f(x)| \ge \varepsilon\right\} = 0$$

....but $f_n \not\longrightarrow f$ since the $f_n \longrightarrow f$ nowhere.

- (c) Suppose that $f_n \to f$ in measure on E and $\exists M > 0$ s.t. $|f_n| \leq M$ a.e..
 - (1) We first make a claim that f is bounded by M,

$$|f| \leq M \ a.e.$$

Intuitively, since each f_n is bounded and the set where f_n and f deviate has measure 0, f must be bounded by the same number.

For the sake of contradiction, suppose |f| > M and

$$m(\{x: |f| > M\}) > \varepsilon$$
 some ε .

Then by the density of \mathbb{R} , $\exists \varepsilon' > 0$ s.t.

$$|f| - \varepsilon' > M \iff |f| > M + \varepsilon'.$$

This implies that $|f - f_n| + |f_n| > M + \varepsilon'$ so that

$$|f - f_n| > \varepsilon' \ \forall n \in \mathbb{N}$$

and

$$m\left(\bigcap_{n=1}^{\infty}\left\{x:|f_n-f|>\varepsilon'\right\}\right)>\varepsilon.$$

WLOG, let $\varepsilon := \min \{ \varepsilon, \varepsilon' \}$ so

$$m\left(\bigcap_{n=1}^{\infty}\left\{x:|f_n-f|>\varepsilon\right\}\right)>\varepsilon.$$

But $\forall n \in N$,

$$\bigcap_{n=1}^{\infty} \left\{ x : |f_n - f| > \varepsilon \right\} \subset \left\{ x : |f_n - f| > \varepsilon \right\}.$$

which implies

$$m\left(\bigcap_{n=1}^{\infty} \left\{x : |f_n - f| > \varepsilon\right\}\right) \le \lim \sup m\left\{x : |f_n - f| > \varepsilon\right\}$$
$$= \lim m\left(\left\{x : |f_n - f| > \varepsilon\right\}\right)$$
$$= 0.$$

This is a contradiction so that

$$|f| \leq M \ a.e.$$

(2) Now we show $\int_E |f_n - f| \to 0$. Let $\varepsilon > 0$ and let

$$E_{\varepsilon}^{n'} = \{x : |f_n(x) - f(x)| \ge \varepsilon\}$$

$$E_{\varepsilon}^n = \{x : |f_n(x) - f(x)| < \varepsilon\}.$$

We split the integral over the two sets and use the triangle inequality to get our desired result.

$$\int_{E} |f_{n} - f| = \int_{E_{\varepsilon}} |f_{n} - f| + \int_{E_{\varepsilon'}} |f_{n} - f|$$

$$< \varepsilon m(E_{\varepsilon}) + m(E'_{\varepsilon}) (|f_{n}| + |f|)$$

$$< \varepsilon m(E) + 2M\varepsilon. \quad \Box$$

6: Let $f \in L^p(\mathbb{R}^d)$, where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

 (\Rightarrow)

Suppose $||g||_q = 1$.

$$\left| \int fg \right| \le \int |fg| \le ||f||_p ||g||_q = ||f||_p$$

implies

$$\left|\sup\left\{\left|\int fg\right|: \|g\|_q = 1\right\} \le \|f\|_p\right|$$

 (\Leftarrow)

Let

$$g := \frac{|f|^{p-1} \cdot sgn(f)}{\|f\|_p^{p-1}}$$

and note that $\frac{1}{p} + \frac{1}{q} = 1$ imply $q = \frac{p}{p-1}$

(a) Check that $||g||_q = 1$.

$$||g||_{q} = \left(\int \left| \frac{|f|^{p-1} \operatorname{sgn}(f)}{||f||_{p}^{p-1}} \right| \right)^{1/q}$$

$$= \left(\int \frac{|f|^{p-1}}{||f||_{p}^{p-1}} \right)^{1/q}$$

$$= \left[\left(\frac{1}{||f||_{p}^{p}} \right) \cdot \left(\int |f|^{p} \right) \right]^{1/q}$$

But

$$||f||_p^p = \int |f|^p$$

So that the quantity inside the bracket equals 1 and therefore

$$g|_{q} = 1^{1/q} = 1.$$

(b) On the other hand, $|\int fg| = ||f||_p$ as shown below

$$\left| \int fg \right| = \left| \int f \cdot \frac{|f|^{p-1} sgn(f)}{\|f\|_p^{p-1}} \right|$$

$$= \left| \int \frac{|f|^p}{\|f\|_p^{p-1}} \right|$$

$$= \|f\|_p^{1-p} \cdot \int |f|^p$$

$$= \|f\|_p^{1-p} \cdot \|f\|_p^p$$

$$= \|f\|_p.$$

This shows us that $||f||_p \in \{|\int fg| : ||g||_q = 1\}$ so that

$$||f||_p \le \sup\left\{ \left| \int fg \right| : ||g||_q = 1 \right\}$$

Finally, both inequalities result in

$$\boxed{ \|f\|_p = \sup\left\{ \left| \int fg \right| : \|g\|_q = 1 \right\} }$$