Branden Fitelson & Jim Hawthorne

Departments of Philosophy
University of California-Berkeley
[...but, as of next week, Rutgers]
&
University of Oklahoma

branden@fitelson.org
hawthorne@ou.edu

Fitelson & Hawthorne

The Problem of Irrelevant Conjunction — Revisited

1

Preliminaries

The Problem of Irrelevant Conjunction — Revisited

• E confirms $_f$ H_1 more strongly than E confirms $_f$ H_2 iff

• E confirms_i H_1 more strongly than E confirms_i H_2 iff

 $c(H_1, E) > c(H_2, E)$. [where c is some relevance measure]

• E supports₁ H iff E is (positively) evidentially relevant to H.

• *E* supports₂ *H* iff *E* warrants belief/acceptance of *H*.

reliminaries The Problem 2 Old Approaches A New Approach 2 Objections References

- (1) If E confirms H, then E confirms H & X, for any X.
- Clark Glymour [5] raises two worries in connection with (1):
 - (1a) [Confirmation_h has property (1).] But we cannot admit, generally, that E will lend plausibility to an arbitrary X. One might ... deny ... the special consequence condition. But ... sometimes ... confirmation does ... follow entailment.
 - (1b) As evidence accumulates, we may come to accept [p] ... and when we accept [p] we commit ourselves to accepting all of its logical consequences. So, if [E] could bring us to accept ... H, and whatever confirms H confirms H & X ... then ... [E] ... ought, presumably, to bring us to accept X.
- Both of these worries have to do with confirmation/support provided by *E* "rubbing off" onto an *irrelevant conjunct X*.
- (1b) involves explications of support₂, which imply (1).
 - We don't think (1b) is probative. *Nobody* thinks confirms_h is a good explication of support₂. We'll focus on support₁.
- To that end, let's take a closer look at Glymour's (1a).

reliminaries The Problem

Fitelson & Hawthorne

2 Old Approaches

• Three (formal) *qualitative* concepts of **confirmation**:

Hypothetico-Deductive confirmation.
 E confirms, H if H entails E.

E confirms_f H iff Pr(H | E) > t.
 Confirmation as Increase in Firmness.

• $E \text{ confirms}_i H \text{ iff } \Pr(H \mid E) > \Pr(H)$.

• Two (formal) *comparative* confirmation relations:

Confirmation as Firmness.

Comparative Firmness.

 $Pr(H_1 | E) > Pr(H_2 | E)$.

• Comparative Increase in Firmness.

• Two *informal* evidential support concepts:

A New Approac

2 Objection

References

- The Special Consequence Condition is:
- (SCC) If E confirms H & X, then E confirms X.
- If we combine (1) & (SCC), we get an (absurd) consequence: if E confirms any hypothesis, it confirms every proposition.
- So, any theory that entails (1) e.g., confirms_h must *not* entail (SCC) *on pain of triviality*. HD confirmation theory does *not* entail (SCC). But, Glymour wants something more.
- Glymour wants an explication of support₁ that avoids triviality but not by a *mere* rejection of (SCC). In (1a), he is demanding a *principled* (and *explanatory*) rejection of (SCC).
 - Next, we'll examine two confirmation $_i$ -based approaches to "the (1)-problem" due to Earman and Rosenkrantz.
 - After critiquing those approaches, I will discuss some alternative confirmation_i-based approaches that I prefer.
 - Finally, I'll return to Glymour's (1a), and (time permitting) some recent objections due to Maher and Crupi *et. al.*

- Before getting into confirms_i-based approaches to "the problem of irrelevant conjunction" [*i.e.*, "the (1) problem"], we must ask whether there *is* such a problem *for confirms*_i.
- First, note that the confirms_i-analogue of (1) is $false^1 i.e.$:
 - (2) $E \operatorname{confirms}_i H \not\Rightarrow E \operatorname{confirms}_i H \& X$.
 - Thus, confirms $_i$ does *not* suffer from a *strictly analogous* problem of irrelevant conjunction. However, we *do* have:
 - (3) If H entails E, then E confirms H & X (for arbitrary X).
 - So, in the *special* (*deductive*) *case* where H *entails* E (*i.e.*, where E confirms $_h$ H), confirmation $_i$ -theory *does* entail (1).
 - Contemporary confirms $_i$ -theorists have had various things to say about (3). I will discuss two prominent approaches.
 - Then, I'll explain why I don't think these approaches are very satisfying. And, I'll discuss some alternatives.

¹Of course, the confirms _f-analogue of (1) is *also* false, but I won't go there.

Fitelson & Hawthorne

The Problem of Irrelevant Conjunction — Revisited

5

Fitelson & Hawthorne

The Problem of Irrelevant Conjunction — Revisited

c

inaries The Problem 2 Old Approaches A New Approach 2 Objections References $\circ \circ \circ$

- Rosenkrantz [8] offers a confirms_i-approach based on the following [where $d(H, E) \stackrel{\text{def}}{=} \Pr(H \mid E) \Pr(H)$]:
- (3.2) If *H* entails *E*, then $d(H \& X, E) = Pr(X | H) \cdot d(H, E)$.
- Rosenkrantz does try to address *some* of the problems with Earman's account. In particular, he seems sensitive to (a):
 - ...I hope you will agree that the two extreme positions on this issue are equally unpalatable, (i) that a consequence E of H confirms H & X not at all, and (ii) that E confirms H & X just as strongly as it confirms H alone. ... In general, intuition expects intermediate degrees of confirmation that depend on the degree of compatibility of H with X.
- Adopting $Pr(X \mid H)$ as his measure of the "degree of compatibility of H with X", and d as his measure of confirmation $_i$ yields the kind of result that Rosenkrantz wants: (3.2). Is this an *improvement* on Earman?
- This depends on whether Rosenkrantz really has adequately addressed worries (a)–(c), above. I don't think he has...

Preliminaries o The Problem ooo 2 Old Approaches ooo A New Approach 2 Objections ooo References

2 Old Approaches

(3.1) If H entails E, then c(H & X, E) < c(H, E).

• Closer scrutiny of Earman's approach reveals:

• Earman [3] points out that — for many c's — we have:

• What (3.1) says is that, while "irrelevant conjunctions"

conjunctions will be confirmed *less strongly* than *H* is.

(c) (3.1) only applies to cases of *deductive* evidence.

H&X's will be confirmed, by deductive evidence for H, such

(a) The "irrelevance" of X is *irrelevant* to the decrease in c_i .

After all, (3.1) is true for **all** X — irrelevant or otherwise.

 Arguably, this is not such an important case, since most interesting applications of confirms, involve statistical H's.

• Moreover, as we'll see below, a more general problem of

both the deductive and the non-deductive cases.

• Earman's is not the only confirms_i-approach one finds in

the literature. Rosenkrantz offers a different approach...

irrelevant conjunction plagues confirmation_i-theory — in

(b) (3.1) is not true for all c's (e.g., it fails for $r(H, E) \stackrel{\text{def}}{=} \frac{\Pr(H|E)}{\Pr(H)}$).

- In a way, Rosenkrantz is *trying* to address (a) here. He seems to be thinking of $Pr(X \mid H)$ as a kind of measure of "the degree of relevance" of X *qua conjunct* in H & X.
- But, this is a *very peculiar* way for a *Bayesian* to explicate "relevance"! Moreover, $Pr(X \mid H)$ can tell us nothing about "degrees of relevance" involving X, H and E.
- Moreover, when it comes to (b), Rosenkrantz is in even worse shape than Earman. Rosenkrantz's approach works only for confirmation_i-measures that are very similar to d.
- Finally, Rosenkrantz is still only addressing the *deductive* case. So, his account lacks *generality* in the same ways that Earman's approach does. Thus, he has not addressed (c).
- I think c_i-theorists need to *re-think* the problem of irrelevant conjunction, and its possible resolution(s).
- To that end, let's see how c_i -theory handles *irrelevant* conjunctions, in the general, *inductive* case...

Fitelson & Hawthorne

- It makes use of *probabilistic independence*, which is a standard way for c_i -theorists to explicate *irrelevance*.
- It's a relation involving *X*, *H*, and *E* (as it intuitively should be).
- It's a natural (likelihood-based) *generalization* of the special, *deductive* case that has been traditionally discussed.
- With this explication of "irrelevant conjunct" in hand, we can now *state* a *more general problem of irrelevant conjunction for confirmation*_i-theory— as follows:
 - (4) If E confirms $_i$ H, and X is an irrelevant conjunct to H, with respect to evidence E, then E also confirms $_i$ H & X.

Fitelson & Hawthorne

The Problem of Irrelevant Conjunction — Revisited

9

Fitelson & Hawthorne

Fitelson & Hawthorne

The Problem of Irrelevant Conjunction — Revisited

A New Approach

• So, we *have* a (general) "problem of irrelevant conjunction"

(4') If E confirms $_i$ H, and X is an irrelevant conjunct to H, with

• What (4') tells us is that — while irrelevant conjunctions will

be confirmed; to *some* degree by (*H*-confirming evidence) *E*

— adding irrelevant conjuncts will lead to a *decrease* in c_i .

of irrelevant conjuncts will depend on which relevance

 \bullet (4') is a generalization of Earman's (3.1). And, like Earman's

• On the next slide, I'll return to Glymour's (1a) and the (SCC).

• Then, I'll address some objections to our approach that

(3.1), (4') holds for *most* \mathfrak{c} 's (again, a notable exception being r).

have appeared in the recent *Philosophy of Science* literature.

• The *precise amount* by which c_i is decreased by the addition

measure c is used. But, "Rosenkrantz-like" equations [*i.e.*, (3.2)-like equations] can be deduced for each measure.

for for confirmation_i-theory. What can be said about it?

respect to evidence E, then $\mathfrak{c}(H \& X, E) < \mathfrak{c}(H, E)$.

10

reliminaries The Problem 2 Old Approaches A New Approach 2 Objections References

- To illustrate our approach, consider the following example:
 - Suppose we'll be sampling a card at random from a standard deck. Let *E* be the proposition that the card is black. Let *X* be the hypothesis that the card is an ace, and let *H* be the hypothesis that the card is a spade.
- The preconditions for our (4) and (4') are met here, since:
 - E confirms $_i$ H.
 - $Pr(E \mid H \& X) = Pr(E \mid H)$.
- Therefore, (4) and (4') entail the following:
 - E confirms_i H & X.
 - $\mathfrak{c}(H \& X, E) < \mathfrak{c}(H, E)$, for "most" relevance measures \mathfrak{c} .
- Finally, we *also* have the following:
 - E does *not* confirm_i X.
- We think all these predictions of our confirms_i-explications line-up well with the support₁-relations. \therefore We think ours is *no mere* rejection of (SCC). It's *principled* (and explanatory).

Preliminaries The Problem 2 Old Approaches A New Approach 2 Objections References

- Patrick Maher [7] complains that our approach doesn't *address* the problem of irrelevant conjunction (PIC), because he thinks the PIC is *grounded on the following intuition*:
 - (*) If X is an irrelevant conjunct to H, with respect to evidence E, then E does not support₁ H & X.
- ∴ Maher thinks that the way to resolve the PIC is merely to point out that (*) is false (as we do in our example above).
- We agree that (*) is false. We also agree that some people may be worried about PIC because they accept (*).
- But, we *disagree* with Maher on the following two points:
 - We *don't* think acceptance of (*) is *essential* to the problem and/or its motivation [did (*) ground PIC for *Glmyour*?].
 - We think our approach and analysis *further illuminates* what is going on from a confirmation_i point of view.
- So, we are not moved by Maher's worries about our approach. Next, we'll discuss a more recent objection...

- Crupi *et al.* have recently argued [2] that our approach yields incorrect predictions in cases of *dis*confirmation.
- To understand their worry, it helps to state the results we had in mind in a slightly more general (and revealing) way.
- Let's assume that confirmation_i-measures (c) take *negative* values in cases of $disconfirmation_i$ and positive values in cases of $confirmation_i$. And, assume we're talking about the measures c we had in mind when we put forward our (4').
- Given these assumptions, we can *actually* show that:
 - (†) If *X* is an irrelevant conjunct to *H*, with respect to *E*, then $|\mathfrak{c}(H \& X, E)| < |\mathfrak{c}(H, E)|$.
 - (4[†]) ∴ If *E* disconfirms *H*, and *X* is an irrelevant conjunct to *H*, with respect to *E*, then $\mathfrak{c}(H \& X, E) > \mathfrak{c}(H, E)$.
- For the measures c we had in mind when we put forward (4'), we get the result that *adding irrelevant conjuncts to E-disconfirmed hypotheses increases degree of confirmation*.

Fitelson & Hawthorne

The Problem of Irrelevant Conjunction — Revisited

13

2 Objections

- In fact, they defend the following *contrary* claim:
- \sim (4[†]) If *E dis*confirms *H*, and *X* is an irrelevant conjunct to *H*, with respect to *E*, then $\mathfrak{c}(H \& X, E) < \mathfrak{c}(H, E)$.

• Crupi *et. al.* think our (†) and (4^{\dagger}) are counter-intuitive.

• And, they use \sim (4[†]) to bolster their (pre-existing) case for a "piece-wise" confirmation measure z, which treats confirmation and disconfirmation as different functions:

$$z(H,E) = \begin{cases} \frac{\Pr(H \mid E) - \Pr(H)}{\Pr(\sim H)} & \text{if } \Pr(H \mid E) \ge \Pr(H) \\ \frac{\Pr(H \mid E) - \Pr(H)}{\Pr(H)} & \text{if } \Pr(H \mid E) < \Pr(H) \end{cases}$$

- I won't be able to discuss the very clever (independent) argument in favor of *z* that Crupi *et. al.* had previously published [1]. But, our response *here* is to *bite the bullet*.
 - It seems to us that an irrelevant conjunct (one that doesn't alter the likelihood H attributes to the evidence) adds nothing but "extra mass" to the hypothesis. This "extra mass" just makes the incremental confirmation and disconfirmation of H & X "more sluggish" than for H alone.

Fitelson & Hawthorne

The Problem of Irrelevant Conjunction — Revisited

[7] P. Maher, Bayesianism and Irrelevant Conjunction, Philosophy of

with probabilistic independence, Philosophy of Science, 2005. URL:

[5] C. Glymour, *Theory and Evidence*, Princeton U. Press, 1980.
[6] J. Hawthorne and B. Fitelson, *Re-solving irrelevant conjunction*

http://fitelson.org/ic.pdf.

http://fitelson.org/ic_2.pdf.

Science, 2004.