Técnicas Avanzadas de Data Mining y Sistemas Inteligentes

Maestría en Informática
Escuela de Posgrado
Pontificia Universidad Católica del Perú

2018-2

Review

1x1 convolution layers

Ej: 128 filtros de 1x1 en un input de 1x1x64

Transfer Learning - entrenamiento

Embeddings

Variable categórica
cat 1
cat 2
cat 1
cat 3
cat 4
cat 2
cat 1
cat 4

Embeddings!

Variable categórica	ID
cat 1	0
cat 2	1
cat 1	0
cat 3	2
cat 4	3
cat 2	1
cat 1	0
cat 4	3

1. Asignamos números enteros como IDs a las categorías.

Variable categórica	ID
cat 1	0
cat 2	1
cat 1	0
cat 3	2
cat 4	3
cat 2	1
cat 1	0
cat 4	3

2. Obtenemos la lista de IDs únicos.

Variable categórica	ID
cat 1	0
cat 2	1
cat 1	0
cat 3	2
cat 4	3
cat 2	1
cat 1	0
cat 4	3

3. Definimos la cantidad de variables que van a describir cada categoría. Por ejemplo: 5

ID	var1	var2	var3	var4	var5
0					
1					
2					
3					

Variable categórica	ID
cat 1	0
cat 2	1
cat 1	0
cat 3	2
cat 4	3
cat 2	1
cat 1	0
cat 4	3

3. Como todo peso que se define en una red neuronal, se inicializa con números aleatorios.

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

$J(\theta_0,\theta_1) = 0$

4. Y luego se optimizan los valores, para minimizar una función de pérdida..

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

var1	var2	var3	var4	var5

ID
0
1
0
2
3
1
0
3

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

var1	var2	var3	var4	var5
•				

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

ID
0
1
0
2
3
1
0

Usamos la matriz de embeddings como un lookup table

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

var1	var2	var3	var4	var5
0.04	0.78	0.09	0.63	0.01
0.04	0.78	0.09	0.63	0.01
0.04	0.78	0.09	0.63	0.01

ID

1

0

2

3

1

0

3

ID

0

0

3

0

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

var1	var2	var3	var4	var5
0.04	0.78	0.09	0.63	0.01
0.94	0.43	0.25	0.19	0.41
0.04	0.78	0.09	0.63	0.01
0.94	0.43	0.25	0.19	0.41
0.04	0.78	0.09	0.63	0.01

ID

0

0

3

0

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

var1	var2	var3	var4	var5
0.04	0.78	0.09	0.63	0.01
0.94	0.43	0.25	0.19	0.41
0.04	0.78	0.09	0.63	0.01
0.01	0.65	0.87	0.61	0.81
0.94	0.43	0.25	0.19	0.41
0.04	0.78	0.09	0.63	0.01

ID

0

0

ID	var1	var2	var3	var4	var5
0	0.04	0.78	0.09	0.63	0.01
1	0.94	0.43	0.25	0.19	0.41
2	0.01	0.65	0.87	0.61	0.81
3	0.83	0.27	0.84	0.28	0.14

	var1	var2	var3	var4	var5
	0.04	0.78	0.09	0.63	0.01
	0.94	0.43	0.25	0.19	0.41
	0.04	0.78	0.09	0.63	0.01
>	0.01	0.65	0.87	0.61	0.81
	0.83	0.27	0.84	0.28	0.14
	0.94	0.43	0.25	0.19	0.41
	0.04	0.78	0.09	0.63	0.01
	0.83	0.27	0.84	0.28	0.14

Code time

https://www.kaggle.com/renatoh/sound-classification-pucp

https://www.kaggle.com/renatoh/facial-keypoints-detection-pucp

Extra:

https://deepsense.ai/deep-learning-right-whale-recognition-kaggle/