

# Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir



https://www.aparat.com/mehran.safayani



https://github.com/safayani/machine\_learning\_course



Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

#### **Gradient Descent**



$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\boldsymbol{\theta_1} = \boldsymbol{\theta_1} - \alpha \frac{d\boldsymbol{J}(\boldsymbol{\theta_1})}{d\boldsymbol{\theta_1}}$$

| number | size | #bedrooms | # floors | Price(y) |
|--------|------|-----------|----------|----------|
| 1      | 100  | 2         | 1        | 10000    |
| 2      | 150  | 3         | 2        | 175000   |
|        |      |           |          |          |
| m      |      |           |          |          |

n: #features = 3

m: #training data

 $x_i$ : i th data in training set

 $x_j^i$ : j th feature of i th data in training set

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$y = [y^1, y^2, ..., y^m]^T \in R^{m+1}$$

$$X = [x^1, x^2, ..., x^m]^T \in \mathbb{R}^{m \times (n+1)}$$

$$\vec{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} , \quad \vec{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = x^T \theta = \theta^T x$$

$$\theta_0 \text{ is bias}$$

#### Cost function

$$J(\overrightarrow{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

$$e^i = x^T \theta - y_i \longrightarrow e = X\theta - y \longrightarrow J(\theta) = \frac{1}{2m} e^T e$$

$$e$$
,  $X\theta$ ,  $y \in \mathbb{R}^m$ 

#### **Gradient Descent**

#### Repeat until convergence:

For j=0,...,n  

$$\theta_j = \theta_j - \alpha \frac{dJ(\theta_0, \theta_1, ..., \theta_n)}{d\theta_j}$$

$$\frac{dJ(\theta_0, \theta_1)}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)$$

$$\frac{dJ(\theta_0, \theta_1, ..., \theta_n)}{d\theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i) x_j^i$$
(j=0,...,n,  $x_0^i = 1$ )

$$\frac{dJ(\theta)}{d\theta} = \frac{1}{m}X^T e^{-\frac{m+1}{2}}$$

## حجم محاسبات ضرب ماتریس

$$A \in R^{a*b}$$
 ,  $B \in R^{b*c}$   $AB \in R^{a*c}$   $(2b-1)$  ac flops

 $Calculating: e = X\theta - y$ 
 $a=m$ 
 $b=n+1$ 
 $c=1$ 
 $m(2n+1)$  (ضرب و جمع)

 $m$ 
 $a=m$ 
 $b=n+1$ 
 $c=1$ 
 $a=m$ 
 $b=n+1$ 
 $c=1$ 
 $a=n+1$ 
 $b=m$ 
 $c=1$ 
 $a=n+1$ 
 $b=m$ 
 $c=1$ 
 $a=n+1$ 
 $b=m$ 
 $c=1$ 
 $a=n+1$ 
 $b=m$ 
 $c=1$ 

## مفهوم هندسي

$$\min_{W} ||y - XW||_2 = \min ||e||_2$$



#### Span of X:

فضایی که توسط ستون های X پوشش داده می شود. هر بردار در این فضا به صورت U = XW انشان داده می شود. و به آن span(X) می گویند. U بهینه که به صورت U نشان داده می شود برداری است که e = y - U بشان داده می شود برداری است که e = y - U بید span(X) span(X) باید انتخاب شود که بر ابر با نگاشت y در span(X) باشد.

## Feature Scaling

$$||x_1^i||| x_2^i|| + \dots, x_n^i$$
  
 $-1 \le x_i \le 1$ 

$$0 < x_1 < 1000$$

$$0 < x_2 < 5$$

$$x_1: \frac{size}{1000}$$

$$x_2: \frac{\#bedrooms}{5}$$



#### Contour Plot



قطر بزرگ:2a

قطر کوچک :2b

## Gradient descent without scaling



### Gradient descent after scaling variables

$$\begin{array}{l} 0 \leq x_1 \leq 1 \\ 0 \leq x_2 \leq 1 \end{array}$$



$$\frac{w_1^2}{a^2} + \frac{w_2^2}{a^2} = 1$$

## Feature Scaling

#### Scaled features:

• 
$$0 \le x_1 \le 3$$

• 
$$-3 \le x_1 \le 3$$

• 
$$-2 \le x_2 \le 0.5$$

$$\bullet -\frac{1}{3} \le x_2 \le \frac{1}{3} \checkmark$$

#### Need scaling:

$$-100 \le x_3 \le 100$$
 \*

$$-0.001 \le x_4 \le 0.001$$

### Feature Scaling

$$x_1^* = \frac{x_1 - \mu_1}{standard\_deviation}$$

$$x_1^* = \frac{x_1 - \mu_1}{standard\_deviation}$$
  $x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$ 

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^i$$

$$bedroom^* = \frac{bedroom - 2.5}{5}$$

$$size^* = \frac{size - 300}{2000}$$

### Creating New Features



$$x_2 = x_1 * x_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x^*$$

### Creating New Features



We can use:

$$\begin{array}{c} x\;,\,x^2\;,\,x^3\;,\sqrt{x}\\ \theta_0\;+\theta_1\;x+\theta_2\sqrt{x} \end{array}$$

 $\theta_0 + \theta_1 \times + \theta_2 x^2$   $\theta_0 + \theta_1 \times + \theta_2 x^2 + \theta_3 x^3$ 

#### Need scaling:

x: 0,..., 1000  $x^2: 0,..., 10^6$  $x^3: 0,..., 10^9$