MEDIOS DE TRANSMISIÓN

Redes de Datos I

MEDIOS DE TRANSMISIÓN

Introducción

- Medios guiados

 Cable coaxil
 Par trenzado
 Fibra óptica
 Cableado estructurado
- Medios no guiados
 Antenas
 Propagación
 Línea de visión
 Zona de Fresnel

La transmisión de datos ocurre entre un transmisor y un receptor, a través de un medio:

- Medios guiados
- Medios no guiados

La información se puede representar por señales electromagnéticas, a través de señales analógicas o digitales.

Reglas:

- 1) Regla 1
- 2) Regla 2
- 3) Regla 3

, , ,

- El medio de transmisión se puede definir, en términos generales como cualquier cosa que pueda transmitir información entre un origen y un destino.
- Se clasifica en:
 - Medios guiados: proporcionan un camino físico a través del cual se propaga la señal (par trenzado, coaxil, fibra óptica)
 - Medios no guiados: transportan las señales sin utilizar un conductor físico
- En un sistema de transmisión, en general, se busca alta velocidad y distancias grandes.
- Se ve afectado por:
 - Ancho de banda
 - Atenuación
 - Interferencias

Ondas electromagnéticas

- Una onda electromagnética es la perturbación simultánea de los campos eléctricos y magnéticos existentes en una misma región
- James C. Maxwell fue quien descubrió las ondas electromagnéticas.
- Las ondas originadas por los campos eléctricos y magnéticos son vibraciones accionadas en planos perpendiculares entre sí.

James Clerk Maxwell
(1831-1879). Univ. de
Edinburgo y Cambridge.
Profesor de filosofía natural en
el King's College de Londres.
Treatise on Electricity and
Magnetism (1873)

Ondas electromagnéticas

- Una onda electromagnética es la forma de propagación de la radiación electromagnética a través del espacio, y sus aspectos teóricos están relacionados con las ecuaciones de Maxwell.
- A diferencia de las ondas mecánicas, las ondas electromagnéticas no necesitan de un medio material para propagarse.

Dato característico: VNP Velocidad Nominal de Propagación

Por ej.: 300,000 km/s (vacío) 200,000 km/s (fibra óptica) 190,000 km/s (cable de cobre)

Espectro electromagnético

MEDIOS DE TRANSMISIÓN

- Introducción
- Medios guiados Cable coaxil

Par trenzado Fibra óptica Cableado estructurado

Medios no guiados
 Antenas
 Propagación
 Línea de visión
 Zona de Fresnel

Medios guiados – Cable coaxil

- Está compuesto de dos conductores concéntricos de cobre
- El aislamiento y el apantallamiento le permite altas velocidades de transmisión
- Buena respuesta en frecuencia y baja interferencia

Limitaciones: atenuación y ruido térmico y el de intermodulación

Medios guiados – Cable coaxil

• El cable coaxial varía según el calibre y la impedancia. El calibre se refiere al grosor del núcleo y se mide por la medida de "radio guide" o número RG

Categoría	Impedancia	Uso
RG-6	75 Ω	TV por cable
RG-59	75 Ω	TV por cable
RG-11	50 Ω	Ethernet grueso
RG-58	50 Ω	Ethernet fino

Conectores: en redes de datos se utiliza el BNC.

Terminador

Medios guiados – Cable coaxil

	Impedancia	Diam.	Calibre	Resistencia	Velocidad	Atenu	ación					
Tipo	[Ω]	Núcleo	(AWG)	a C D	de propagación	@ MHz	dB/100m					
RG-59	75	0.81 mm	20	166 Ω/ km	0.82	55	6,70					
						211	12,50					
						300	15,00					
						400	18,10					
						750	25,30					
						1,000	29,00					
RG-6	75	1.0 mm	1.0 mm 18 105 Ω/ km	1.0 mm	0,82	55	5,80					
						211	10,80					
						300	12,90					
						400	15,00					
						750	20,70					
						1.000	24,20					
RG-58	50	0.90 mm	19	34 Ω/ km	0.73	50	9,00					
											100	13,00
									200	18,50		
						400	31,30					
				<u></u>		700	44,50					
		E	:pu	yen		1,000	52,50					

MEDIOS DE TRANSMISIÓN

- Introducción
- Medios guiados

 Cable coaxil
 Par trenzado
 Fibra óptica
 Cableado estructurado
- Medios no guiados
 Antenas
 Propagación
 Línea de visión
 Zona de Fresnel

El par trenzado está formado por dos conductores (normalmente de cobre), cada uno con su propio aislamiento de plástico, trenzados entre sí en forma helicoidal.

El trenzado de los hilos ayuda a proteger contra las interferencias de señales de otros hilos y externas.

Es ampliamente utilizado en telefonía y en redes LAN.

Tiene una impedancia entre $100~\Omega$ y $150~\Omega$

- En las redes LAN, el cable de par trenzado no blindado (UTP) consta de cuatro pares de hilos trenzados y recubiertos con un revestimiento de plástico flexible.
- El calibre de cada hilo varía de AWG 22 a 24 (0,64 a 0,51 mm)
- Cada uno de los 4 pares tiene un paso de trenzado diferente

Por ejemplo:

Color del Par Vueltas/metro

Verde...... 65,2

Azul..... 61,8

Naranja..... 56,2

Marrón..... 51,7

Al armar una ficha, el cable no se debe destrenzar más de 1/2 pulgada

- Hay tres variantes:
 - UTP (Unshielded Twisted Pair): Par trenzado sin blindaje
 - STP (Shielded Twisted Pair) : Par trenzado con blindaje de malla
 - FTP (Foiled Twisted Pair): Par trenzado con blindaje de lámina
- El blindaje puede recubrir los pares individualmente, el conjunto o ambos.
- El blindaje le provee protección frente a las interferencias electromagnéticas (EMI), las interferencias de radiofrecuencia (RFI) y la diafonía entre pares y cables adyacentes.
- Los distintos niveles de blindaje ofrecen una serie de ventajas diferentes que se adaptan a diversas aplicaciones

ISO/IEC11801	Nombre comercial	Blindaje del cable	Blindaje del par
U/UTP	UTP	Nada	Nada
F/UTP	FTP	Lámina	Nada
S/UTP	STP	Trenzado	Nada
SF/UTP	SFTP, S-FTP, STP	Lámina y trenzado	Nada
U/FTP	STP, ScTP	Nada	Lámina
F/FTP	FFTP	Lámina	Lámina
S/FTP	SFTP, STP	Trenzado	Lámina
SF/FTP	SSTP, SFTP	Lámina y trenzado	Lámina

Existen normas para la instalación de infraestructura de cableado en edificios.

Dos estándares:

- USA: ANSI/EIA/TIA 568
- Internacional: ISO/IEC 11801

Ambas son similares, difieren en nomenclatura

Los pares trenzados se clasifican en categorías

(3, 4, 5,,,) y clases (C, D, E...) según la frecuencia máxima

Categoría	Clase	Año	ISO/IEC	EIA/TIA	Tipo	Frec. (MHz)	Velocidad (Mbps)
(1)	А		NO	NO	UTP	0,4	< 0,1
(2)	В		NO	NO	UTP	4	2
3	С	1991	SI	SI	UTP	16	10
4		1991	SI	SI	UTP	20	20
5	D	1991	SI	SI	UTP	100	100
5e	D	2000	SI	SI	UTP, F/UTP	100	1.000
6	Е	2002	SI	SI	UTP F/UTP	250	10.000 (h/55m) 10.000
6A	Ea	2009	SI	SI	UTP, F/UTP	500	10.000
7	F	2002	SI	NO	F/FTP, S/FTP	600	10.000
7A	Fa	2008	SI	NO	F/FTP, S/FTP	1000	10.000
8/8.1	I	2016	SI	SI	U/FTP, F/UTP	2000	40.000 (h/30m)
8.2		2016	SI	SI	F/FTP, S/FTP	2000	40.000 (h/30m)

La atenuación (también llamada pérdida de inserción) aumenta por:

- Efecto pelicular (disminuye la sección efectiva con la frecuencia)
- Emisión electromagnética

 $A(dB) = 10 \log(PT / P_R)$

Atenuación

Pérdida de retorno

- La pérdida de retorno es una medida de la energía reflejada de una señal transmitida
- Se expresa en dB, y cuanto mayor sea su valor, mejor.
- Las reflexiones se producen debido a una mala adaptación de impedancias por culpa del conector, de un estado defectuoso del cable, una mala fabricación o una carga inapropiada.
- Es crítico en canales full duplex

 En dos cables paralelos, la interferencia EMI produce corrientes inducidas de mayor intensidad en el cable que está más cerca de la fuente de EMI. La corriente inducida neta al final del cable, es la diferencia entre las corrientes inducidas en cada cable. Esto produce un ruido equivalente en el extremo del cable (ocurre en los dos sentidos).

- En dos cables trenzados, la interferencia EMI producida en los cables es aproximadamente la misma, por lo que el ruido equivalente es prácticamente nulo (ocurre en los dos sentidos).
- Cuando la interferencia proviene de otro par del mismo cable, o de otro cable de datos, se lo llama diafonía (crosstalk).

■ NEXT: Near End Crosstalk 10 log(PTX/PIN)

FEXT: Far End Crosstalk
 10 log(PTX/PIF)

NEXT y FEXT son diafonías producidas por interferencias entre pares dentro del mismo cable

Todas las diafonías aumentan con la distancia y con la frecuencia

- Si la diafonía es producida por los propios pares del cable, se la llama diafonía "self" (NEXT o S-NEXT, y FEXT o S-FEXT)
- FEXT está influenciado por la atenuación. Otra medida que se realiza es la llamada ELEFEXT (Equal Level FEXT) = FEXT - Atenuación
- El efecto acumulativo de la diafonía producida por todos los pares sobre uno en particular, se lo denomina PSNEXT (Power Sum NEXT) y PSFEXT (Power Sum FEXT) respectivamente.
- Cuando la diafonía es producto de los cables cercanos, se la llama diafonía "alien" (A-NEXT y A-FEXT)

 ACR (Attenuation to Crosstolk Ratio) determina la calidad de la transmisión en el cableado y es la relación entre la atenuación y NEXT

- Puede utilizarse para definir un ancho de banda de la señal en el que la relación señal/ruido es suficiente para soportar determinadas aplicaciones. El ACR positivo indica la frecuencia máxima a la que puede operar el cable.
- La EIA/TIA especifica valores específicos para el ACR con el fin de satisfacer las distintas categorías de cable
- ACR-N es el medido en el extremo cercano (generalmente lo identificamos simplemente como ACR)
- Del mismo modo, ACR-F se calcula con FEXT. También se lo conoce como ELFEXT (Equal Level FEXT).

	CAT5e	CAT6	CAT6a
Frequency	100 MHz	250 MHz	500 MHz
Attenuation (max. at 100 MHz)	24 dB	21.23dB	20,9 dB
Characteristic Impedance	100 ohms	100 ohms	100 ohms
NEXT (min. at 100 MHz)	30.1 dB	39.9 dB	39.9 dB
PS-NEXT (min. at 100 MHz)	27,1 dB	37.1 dB	37.1 dB
EL-FEXT (min. at 100 MHz)	17,4 dB	23.3 dB	23,3 dB
PS-ELFEXT (min. at 100 MHz)	14,4 dB	20.3 dB	20,3 dB
PS-ANEXT (min. at 500 MHz)			51,8 dB
PS-AELFEXT (min. at 500 MHz)			23,2 dB
Return Loss (min. at 100 MHz)	10.0 dB	12.0 dB	12.0 dB
Propagation Delay (max. At 10MHz)	555 ns	555 ns	555 ns
Delay Skew (max. per 100m)	50 ns	50 ns	50 ns
Networks Supported	1000BASE-T	1000BASE-TX	10GBASE-T

TIA/EIA 568C-2

29

Category 5e U/UTP Cable, 200 MHz

219590-X

Performance Characteristics (meet or exceed TIA/EIA-568-C.2 Category 5e)

Frequency, MHz	Attenuation, dB/100m Max.	NEXT, dB Min./Typical	PSNEXT, dB Min./Typical	ELFEXT, dB Min./Typical	PSELFEXT, dB Min./Typical	Return Loss, dB Min./Typical	ACR, dB Min./Typical	PS ACR, dB Min./Typical
0.772	1.8	69/76	66/70	66/71	63/68	-/-	67.2/74.2	64.1/68.4
1	2	67/74	64/68	64/69	61/66	20.0/26.0	65.3/72.0	62.2/66.2
4	4.1	58/65	55/59	52/57	49/54	23.1/29.0	54.2/60.9	51.1/55.3
8	5.8	54/61	51/55	46/51	43/48	24.5/30.5	48.0/55.2	44.9/49.8
10	6.5	52/59	49/53	44/49	41/46	25.0/31.0	45.8/52.5	42.7/47.2
16	8.2	49/56	46/50	40/45	37/42	25.0/31.0	41.0/47.8	37.8/42.6
20	9.3	48/55	45/49	38/43	35/40	25.0/31.0	38.5/45.7	35.3/40.6
25	10.4	46/53	43/47	36/41	33/38	24.3/30.3	35.9/42.6	32.7/37.6
31.25	11.7	45/52	42/46	34/39	31/36	23.6/29.6	33.2/40.3	30.0/35.5
62.5	17	40/47	37/41	28/33	25/30	21.5/27.5	23.4/30.0	20.1/25.7
100	22	37/44	34/38	24/29	21/26	20.1/26.1	15.3/22.0	11.9/18.2
155	28.1	34/41	31/35	20/25	17/22	18.8/24.8	6.4/12.9	2.0/9.7
200	32.4	33/40	30/34	18/23	15/20	18.0/24.0	0.4/7.6	1.1/4.8

Technical Details

Materials	
Conductors –	24 AWG solid bare copper
Insulation –	Polyethylene, 0.032 ± 0.0036 in nom dia
Jacket -	FR PVC, 0.20 ± 0.026 in nom dia
Electrical Characteristics	
Impedance –	100Ω ± 15%, 1 MHz to 200 MHz
Propagation delay –	538 ns/100 m max. @ 100 MHz
Skew -	25 ns max
Mutual capacitance –	5.6 nF max/100 m
Conductor resistance –	9.38Ω max/100 m

Pruebas de certificación

- MAPA DE CABLEADO: Comprueba que el mapa de cableado de la instalación realizada coincida con el estándar.
- LONGITUD: La longitud en todos los pares del cable comprobado en función a la medida de propagación, en su retraso y la media del valor NVP.
- PERDIDA POR INSERCIÓN (o ATENUACIÓN): comprueba la pérdida de señal de los enlaces por su inserción.
- PERDIDA POR PARADIAFONIA: (NEXT): mide la interferencia que hace un par sobre otro en el extremo cercano. Se comprueba cada par contra los otros pares del mismo cable. Se mide en el total de rango de frecuencias.
- TOTAL DE PERDIDAS DE PARADIAFONIA (PSNEXT), realiza una comprobación de cómo le afecta a un par la transmisión de datos combinada por el resto de los pares cercanos del mismo cable. Se mide en el total de rango de frecuencias.

Pruebas de certificación (continuación)

■ PERDIDA POR TELEDIAFONIA EN EL EXTREMO LEJANO (FEXT) : mide la interferencia que un par de hilos causa en el extremo lejano de otro par de hilos. ELFEXT (o ACR-F) mide la intensidad de la telediafonía en el extremo lejano respecto a la señal atenuada que llega al final del cable.

■ TOTAL DE PERDIDAS POR TELEDIAFONIA EN EL EXTREMO LEJANO (PSELFEXT): realiza la suma de todas

las combinaciones de ELFEXT.

 PERDIDA DE RETORNO:(RETURN LOSS) :mide la relación entre la energía reflejada y la transmitida. Se mide en los dos extremos y en cada par, y todo para el total de rango de frecuencias.

 DESVIACIÓN DE RETARDO (DELAY SKEW): muestra la diferencia en el retardo de propagación entre los cuatro pares.

Se debe cumplir que :

- Canal < 100 m
- Enlace permanente < 90 m

Medición que pasó la certificación

Medición que falló la certificación

Mapa de cableado

Resistance					
	Resistance				
i 1 2	9.8 Ω				
i 3 6	10.0 Ω				
i 4 5	12.5 Ω				
i 7 8	9.8 Ω				

Delay	PASS	
	Delay Skew	Limit
√ ¹ ₂	1 ns	50 ns
√ ³ ₆	1 ns	50 ns
√ ⁴ ₅	0 ns	50 ns
√ 7 8	2 ns	50 ns

36

Length		PASS
	Length	Limit
i 1 2	90.4 m	90.0 m
i 3	91.8 m	90.0 m
i 4 5	91.6 m	90.0 m
✓ ⁷	89.6 m	90.0 m

Prop.	PASS	
	Prop. Delay	Limit
$\checkmark \frac{1}{2}$	277 ns	555 ns
✓ ³ ₆	277 ns	555 ns
√ ⁴ ₅	276 ns	555 ns
√ 7 8	278 ns	555 ns

Redes de datos I

Conexión de cable UTP

El conector utilizado en Ethernet es el 8P8C (8 posiciones, 8 contactos)

Comúnmente lo encontramos como RJ45

Interfaces MDI y MDI-X

La interfaz de los dispositivos de red puede ser:

- MDI (Interfaz dependiente del medio): hosts, routers
- MDI-X (Interfaz dependiente del medio, cruzado): conmutadores

Conexión con cable cruzado

Conexión con cable cruzado

Conexión con cable derecho

Conexión con cable derecho

PoE (Power over Ethernet)

- A través del cable UTP se puede entregar alimentación a equipos de red.
- La alimentación es de 48V, en corriente continua
- Existe diferentes normas:
 - 802,3af : entrega 15,4W (garantiza 12,95W en el equipo), utiliza 2 pares
 - 802,3at : entrega 30W (garantiza 25,5W en el equipo), utiliza 2 pares
 - 802,3bt : entrega 60W (garantiza 51W en el equipo), utiliza 2-4 pares entrega 90W (garantiza 71,3W en el equipo), utiliza 4 pares

MEDIOS DE TRANSMISIÓN

- Introducción
- Medios guiados

 Cable coaxil
 Par trenzado
 Fibra óptica
 Cableado estructurado
- Medios no guiados
 Antenas
 Propagación
 Línea de visión
 Zona de Fresnel

- Un sistema de transmisión óptico tiene tres componentes: la fuente de luz, el medio de transmisión y el detector
- Podemos definir que un pulso de luz sea equivalente a un bit igual a 1, y la ausencia de luz que sea equivalente a un bit igual a 0
- Al recibir un pulso eléctrico, la fuente genera el pulso de luz, el cual se transmite por el medio (por ejemplo, una fibra de vidrio) y lo recibe el detector, en donde se vuelve a transformar en un pulso eléctrico
- El desafío es hacer que el pulso de luz viaje a través del medio guiado

Ley de Snell

Índice de refracción

Es el cociente entre la velocidad de la luz en el vacío y la velocidad de la luz en el material.

La fibra óptica utiliza vidrio, SiO2, (n=1,46) y se la dopa para subir o bajar el índice

La fibra óptica está compuesta por dos materiales concéntricos con diferente índice de refracción: el núcleo (core) y el recubrimiento (cladding). Debido a la ley de Snell, el rayo de luz se refracta en el cladding de acuerdo al ángulo de incidencia.

La Fibra Óptica es un filamento de vidrio con alta capacidad de transmitir rayos de luz. Consta de un núcleo, un recubrimiento y un revestimiento.

Núcleo (core)

- ✓ Conduce la luz
- ✓ Sílice

Recubrimiento (cladding)

- ✓ Mantiene la luz confinada
- √ Sílice y dopante

Revestimiento (coating)

- ✓ Protección
- ✓ Acrilato

Tipos de fibra óptica

Fibra multimodo

Se utiliza en LAN, con alcance máximo de 2km

A medida que aumenta la velocidad, disminuye el alcance

Los estándares son fijados por las normas de cableado estructurado (ANSI/EIA/TIA 568 e ISO/IEC 11801)

Fibra multimodo

Para describir el funcionamiento se utiliza el modelo geométrico: describe la luz como la propagación de un haz de partículas (fotones) a través de un material

Como fuente de luz se utiliza un LED o un Láser

Fibra multimodo Fibra MM Índice escalonado Core Cladding Perfil de la fibra Fibra MM Índice gradual FACULTAD DE INGENIERÍA Redes de datos I

55

Fibra monomodo

Se utiliza en WAN, y en LAN para velocidades mayores a 1Gbps

El núcleo (9µm) es aproximadamente 6 veces la longitud de onda del haz de luz, por lo que para describir el funcionamiento se utiliza el modelo ondulatorio. La fibra se comporta como una "guía de onda", por lo que la luz no rebota sino que viaje ocupando todo el núcleo (incluso parte viaja por la cubierta).

Los estándares, en general, son fijados por la ITU-T

Si λ <1100 nm la fibra se comporta como multimodo Si λ >1260nm la fibra se comporta como monomodo

Redes de datos I

57

Factores que afectan la fibra óptica

Dispersión: Los pulsos de luz se dispersan a medida que viajan por la fibra.
 Se produce por la propagación multimodal y por el ancho espectral de las fuentes de luz (modal, cromática).

Atenuación: La potencia de luz se atenúa a medida que viaja por la fibra.
 Se produce por imperfecciones propias del material de la fibra. Es un factor intrínseco.

 No linealidades: Se producen cambios de la longitud de onda e interacciones entre longitudes de onda

Dispersión modal

- La luz recorre diferentes distancias dentro de la fibra óptica, por lo que produce un ensanchamiento del pulso de luz, efecto que se conoce como dispersión modal.
- Sólo afecta a las fibras multimodo

- Lio pulsos comienzan a solaparse en el receptor
- La dispersión es proporcional a la longitud y a la velocidad de transmisión (bits/s)
- El fabricante brinda el dato de "ancho de banda modal", expresado en MHz x km (podemos aproximar que los MHz equivalen a Mbps para un estimativo)

Dispersión cromática

- Cuando la luz viaja en la fibra, no lo hace con una sola longitud de onda. El ancho de banda espectral (depende del emisor) varía entre 0,5 y 5 nm
- Los distintos valores de λ determinan que la luz viaje a distintas velocidades, lo cual genera un ensanchamiento del pulso de luz. Este efecto es conocido como dispersión cromática y se divide en dos:
 - Dispersión material: el índice de refracción del vidrio varía con λ, por lo que a mayor λ, mayor índice y por lo tanto, menor velocidad
 - Dispersión por guía de onda: parte de la luz viaja por la cubierta. El efecto de la dispersión produce que al aumentar λ, más luz viaje por la cubierta. Como el índice de refracción de la cubierta es menor que en el núcleo, la luz viaja más rápido
- Ajustando el diseño y fabricación de la fibra, se puede obtener dispersión cromática nula. En la fibra SM estándar, se logra a una $\lambda=1310$ nm

Atenuación

- Atenuación intrínseca: es inherente a la fibra óptica. La causa de esta atenuación son las impurezas del vidrio o las estructuras heterogéneas que se forman durante el proceso de fabricación.
 - Pérdidas por absorción: se produce porque la luz es absorbida por el vidrio, gracias a las propiedades químicas o impurezas naturales en el vidrio, transformándose en calor.
 - Pérdidas por difusión: se produce cuando el rayo de luz choca contra una impureza o una estructura heterogénea y se dispersa (difunde) en todas las direcciones. Se la conoce como Difusión de Rayleigh.

Atenuación

- Atenuación extrínseca: Una curva en la fibra puede afectar al ángulo crítico en esa área especifica. Como resultado, parte de la luz que viaja por el núcleo se refracta, produciéndose la pérdida de potencia.
 - Pérdidas por macrocurvatura: ocurre cuando se curvan demasiado los cables.
 Para prevenir esta pérdida, se especifica un radio de curvatura mínimo..
 - Pérdidas por microcurvaturas: ocurre por las microcurvaturas o pequeñas fisuras en el núcleo producidas por los cambios de temperatura o el estiramiento durante el tendido del cable.

Radio de curvatura

Radio mínimo de curvatura:

- R = 20 x diámetro del cable (durante la instalación)
- R = 10 x diámetro del cable
 (en el acabado y alojamiento final)

La atenuación en la fibra óptica se debe a la absorción y a la dispersión

FACULTAD DE INGENIERÍA

Ventanas / bandas

Ventana	Banda	λ (nm)	Atenuación (dB/km)	Alcance (km)	Tipo de fibra
1°		820-900	2,5	2	MM
2°	O (Original)	1260-1360	0,34	40-100	MM - SM
	E (Extended)	1360-1460	0,31 (LWP)	100	SM
	S (Small)	1460-1530	0,25	100	SM
3°	C (Conventional)	1530-1565	0,2	160	SM
4°	L (Large)	1565-1625	0,22	160	SM
	U (Ultra)	1625-1675	0,25		SM

LWP: Low Water Peak (bajo pico de agua)

Núcleo			Ancho de banda modal (MHz x km)					A+ (dD / (c)		
	Tipo de	Año	LED			Láser		Atenuación (dB/km)		
(µm)	fibra		850	953	1300	850	953	850	953	1300
			nm	nm	nm	nm	nm	nm	nm	nm
62,5	OM1	1990	200		500			3,5		1,5
50	OM2	1998	500		500			3,5		1,5
	OM3	2002	1500		500	2000		3,0		1,5
	OM4	2009	3500		500	4700		3,0		1,5
	OM5	2018	3500	1850	500	4700	2470	3,0	2,3	1,5

Fibra multimodo G.651.1 ISO/IEC 60793

Núcleo (µm)	Tipo de fibra	Λ (nm)	Atenuación (dB/km)
9	OS1	1300 Y 1550	< 1,0
9	OS2	1300 Y 1550	< 0,5

Fibra monomodo G.652 .. G.657 ISO/IEC 60793

Outdoor All Dielectric Fiber Optic Cables, PE (4-12 Fibers)

Performance Specifications

AMP OSP (outside plant) fiber optic cables are designed and tested in accordance with TIA/EIA 568B, IEEE 802.3 Standard ,ISO/IEC 11801,Telcordia (Bellcore) GR-20-CORE, ITU G.652D, ICEA 596, ICEA 696 Performance specifications are measured in accordance with EIA Fiber Optic Test Procedures (EIA/TIA-455 documents) and the test procedures of IEC 60793, IEC 60794.

Mechanical Specification:

Fiber	Nominal O.D. mm (in)	Weight	Min. Bending Radius		Rated Tensile Load		Temperature		
Count			Installation mm	Long term mm	Installation N	Long Term N	Crush Resistance	Installation	Operation /Storage
4-fiber	7.5	50	150	75	1500	600		-20 °c to	-40 °c to
6-fiber	7.5	50	150	75	1500	600	1000 N/	-20 °C 10	-40 °C 10
8-fiber	7.5	50	150	75	1500	600	- 10cm	+60 °c	+70 °c
12-fiber	7.5	50	150	75	1500	600	_		

Performance Characteristics (meet or exceed EIA/TIA and ISO requirements)

	XG Fiber (850/1300)	50/125 µm MM (850/1300)	62.5/125 μm MM (850/1300)	Singlemode (1310/1383/1550)
Typical Attenuation	2.4/0.6 dB/km	2.6/1.1 dB/km	2.9/0.9 dB/km	0.36/0.36/0.23 dB/km
Maximum Attenuation	3.5/1.5 dB/km	3.5/1.5 dB/km	3.5/1.0 dB/km	0.4/0.4/0.4 dB/km
OFL Bandwidth	1500/500 MHz-km	500/500 MHz-km	200/600 MHz-km	Not Applicable
850nm Laser Bandwidth	2000 MHz·km	Not Applicable	Not Applicable	Not Applicable
1000BASE-SX Distance	2-900m	2-550m	2-220m	-
1000BASE-LX Distance	2-550m	2-550m*	2-550m*	2-5000m
10GBASE-SR Distance	2-300m	2-82m	2-33m	NST
10GBASE-LX4 Distance	2-300m	2-300m	2-300m	2-10000m

Estructura de una fibra óptica

Colores de los latiguillos de fibra óptica

Naranja MM (OM1 u OM2)

Aqua MM (OM3 u OM4)

Violeta MM (OM4)

Amarillo SM (OS1 u OS2)

Conectores de fibra óptica

ST (Straight Tip) Ajuste similar al BNC Pérdida: 0,4-0,5 dB

SC (Subscriber Connector) (Square Connector) Pérdida: 0,20-0,45 dB

LC (Lucent Connector) (Little Connector) Pérdida: 0,10-0,15 dB

Pulido de los conectores de fibra óptica

PC Contacto' Físico (Physical Contact)

El corte del ferrule es plano. Pérdidas de retorno entre -30 y -40 dB Color Gris/beige (62,5/125) negro (50/125), aqua (50/125 laser).

UPC Ultra Contacto Físico (Ultra Physical Contact)

El corte del ferrule es curvo. Pérdidas de retorno entre -40 y -55 dB Color azul (9/125)

Por ej., sala de equipos

APC Contactó Físico en Ángulo (Angled Physical Contact)

El corte del ferrule es plano e inclinado 8 grados. Pérdidas de retorno de -60 dB

Color verde (9/125)

Por ej., fibra al hogar

Conectores de fibra óptica

Entre la fibra óptica y la férula suele quedar un espacio de aire, lo que da lugar a la dispersión de la luz. El salto en el índice de refracción en la interfaz vidrio-aire-vidrio causa que la luz se refleje de vuelta a la fuente.

Pérdida de inserción: Atenuación que agrega a un enlace la presencia de un conector.

Pérdida de retorno: Es la pérdida causada por la luz reflejada. Se mide como la diferencia entre el nivel de luz reflejada y la luz incidente

En los conectores se une la fibra óptica con un empalme mecánico cubierto con un gel que tiene un índice de refracción similar al de la fibra de vidrio encargado de reducir la pérdida

Medios guiados – Fibra óptica

Emisores

	LED (normal)	LED Láser		
Ancho de banda espectral	50-100 nm (no coherente)	0,5-5 nm (coherente)		
Potencia	0,1 mW	20-3200 mW		
Velocidad máxima	622 Mbps	100 Gbps		
Tipo de fibra	MM	MM y SM		
Ventanas	1° y 2°	1°, 2°, 3° y 4°, bandas E y S		
Alcance	2 km	160 km		

Medios guiados – Fibra óptica

Media converter

TP-Link MC100CM Fibra MM, 1310 nm Conector SC

Receptor óptico

SFP (small form-factor pluggable) o mini GBIC (Gigabit Interface Converter)

Medios guiados – Fibra óptica

OTDR Reflectómetro Óptico en el Dominio del Tiempo

Fluke DTX-1800

75 Redes de datos

MEDIOS DE TRANSMISIÓN

- Introducción
- Medios guiados
 Cable coaxil
 Par trenzado
 Fibra óptica
 Cableado estructurado
- Medios no guiados
 Antenas
 Propagación
 Línea de visión
 Zona de Fresnel

- El cableado estructurado se define como el conjunto de cables, conectores, canalizaciones y dispositivos que componen la infraestructura de telecomunicaciones interior de un edificio
- Esta estructura contiene una combinación de cables trenzados (UTP/STP/FTP), fibras ópticas (FO) y/o cables coaxiales que deben cumplir ciertos estándares universales
- Las normas son definidas por:
 - USA: ANSI/TIA/EIA
 - Internacional: ISO/IEC 11801
- Intención:
 - Esté diseñada e instalada de tal modo que permita una fácil supervisión, mantenimiento y administración
 - Que sea compatible con las tecnologías actuales y futuras,
 - Que posea la suficiente flexibilidad para realizar los movimientos internos de personas y máquinas dentro de la instalación

Esquema de instalación de cableado estructurado

TIA/EIA 568A

TIA/EIA 568B,1

Estándar de cableado de telecomunicaciones en edificios comerciales – Requisitos generales

Como instalar el cableado

TIA/EIA 568B,2

Componentes de cableado de par trenzado

TIA/EIA 568B,3

Componentes de cableado de fibra óptica

TIA/EIA 569A

TIA/EIA 570A

TIA/EIA 606

TIA/EIA 607

Estándar para edificios comerciales, para recorridos y espacios de telecomunicaciones Estándar de cableado para telecomunicaciones residenciales y comerciales menores Estándar de administración para la infraestructura de telecomunicaciones de edificios comerciales Requisitos de conexión a tierra y conexión de telecomunicaciones para edificios comerciales

Como enrutar el cableado

Como administrar el cableado

MEDIOS DE TRANSMISIÓN

- Introducción
- Medios guiados

 Cable coaxil
 Par trenzado
 Fibra óptica
 Cableado estructurado
- Medios no guiados

Antenas Propagación Línea de visión Zona de Fresnel

- Para la transmisión de los datos se utiliza el espectro radioeléctrico (3kHz a 300GHz).
- La ITU-R regula el uso del espectro (asigna frecuencias, otorga permisos, define potencias de transmisión, etc) a través de un reglamento
- La ITU-R se divide en tres regiones
 - Región 1: EMEA (Europa, Medio Oriente y África) y parte de la antigua URSS
 - Región 2: América
 - Región 3: Asia y Oceanía
- Cada región acata la regulación internacional, y dispone diferentes regulaciones.
- Para utilizar las bandas del espectro se requiere autorización, excepto para determinadas bandas

Espectro radioeléctrico

Bandas sin licencias

- Bandas ISM (Industrial, Scientific, Medical): son 12 bandas, repartidas entre los 6,7MHz y 246GHz, con distintos ancho de banda. La primer banda fue la de 2,4-2,5GHz, en 1945, utilizada para los hornos de microondas. Otros ejemplos son: 902-928MHz y 5,725-5,825GHz
- Bandas U-NII (Unlicensed National Information Estructure): son 4 bandas, repartidas entre los 5,15 y 5,85 GHz, utilizados por equipos y prestadores de servicios de internet inalámbrico
- Bandas UPCS (Unlicensed Personal Communication Services): es una banda utilizada por teléfonos DECT (inalámbricos). En Argentina, se usa 1,91-1,93 GHz

- "La parte de un emisor o receptor de sistema que está diseñado para irradiar o recibir ondas electromagnéticas" IEEE Std. 145-1983
- Cuando por un conductor circula corriente alterna, se genera una emisión de ondas electromagnéticas. La capacidad de emisión viene determinada por la longitud y la forma del conductor.
- Si dos conductores están cerca uno del otro, el campo eléctrico es limitado entre los conductores, por lo que la emisión es débil. Cuando los dos conductores están alejados entre sí, el campo eléctrico se amplía y la emisión aumenta.

Una antena que emite su señal en todas direcciones por igual es una **antena isotrópica**. Su diagrama de radiación es una esfera perfecta.

Las antenas reales nunca son isotrópicas; siempre envían más señal en una dirección que otra

■ Patrón de radiación: es la representación espacial de la energía que es radiada por una antena.

Parámetros de una antena:

- Ancho de banda: es el margen de frecuencias en el cual los parámetros de la antena cumplen unas determinadas características
- **Directividad:** la relación entre la densidad de potencia radiada en una dirección, a una distancia, y la densidad de potencia que radiaría a la misma distancia una antena isotrópica,, a igualdad de potencia total radiada.
- Ganancia: es la relación entre la densidad de potencia radiada en una dirección y la densidad de potencia que radiaría una antena isotrópica, a igualdad de distancias y potencias entregadas a la antena. Se expresa en dBi
- Polaridad: la orientación de las ondas electromagnéticas al salir de la antena (lineal, circular, elíptica)

Tipos de antenas según su direccionalidad

Isotrópica

Omnidireccional

Directiva

Redes de datos I

Antenas omnidireccionales

 Una de las antenas más utilizadas es el dipolo lineal de media onda (antena de Hertz). La longitud es múltiplo de cuarto de ondas y en los extremos lejanos presenta un circuito abierto.

• En el plano horizontal, emite en todas las direcciones. Su espectro se asemeja a

una dona.

Antenas omnidireccionales

• Si la longitud del dipolo aumenta, la dona se achata y aumenta la ganancia

(representación del plano vertical para diferentes longitudes del dipolo)

Antenas direccionales

Yagi

Antenas direccionales

Parche

Antenas direccionales

Parabólicas

Horizontal

Vertical

Formas de propagación

- La propagación de las ondas electromagnéticas depende del trayecto de la misma: suelo, montañas, edificios, ríos, vegetación, etc.
- De las características del terreno, como la conductividad
- De las propiedades físicas como precipitaciones, absorción por gases y vapores
- De la frecuencia y su polarización

Formas de propagación

Se pueden clasificar en:

- Ondas de superficie: la señal viaja siguiendo la curvatura de la tierra. Se utiliza en frecuencias por debajo de los 2 MHz
- Ondas ionosféricas: la señal se refleja en la ionósfera, con lo que se consiguen grandes distancias. Se utiliza en frecuencias entre 2 y 30 MHz
- Ondas espaciales: la señal se propaga a través de las capas bajas de la atmosfera, y en frecuencias mayores a 30 MHz. El modo mas conocido es el de rayo directo, aunque también puede ser reflejada.

Tipos de enlace

Punto a punto

Punto a multipunto

Factores a considerar:

- Absorción: se produce cuando las señales de RF se encuentran con materiales que pueden absorber sus energías durante el proceso de transmisión (puede dar lugar a la atenuación de la señal)
- Reflexión: se produce cuando las señales de radiofrecuencia encuentran materiales intensamente reflectantes
- Dispersión: cuando las señales de RF se encuentran con materiales ásperos o irregulares, o con materiales compuestos por partículas diminutas, estas señales pueden dispersarse en diferentes direcciones al ser reflejadas por las pequeñas partículas irregulares del medio.
- Refracción: se produce cuando las señales de RF encuentran una superficie que separa dos medios diferentes durante el proceso de transmisión

Factores a considerar (cont.):

- **Difracción**: se produce cuando las señales de RF se encuentran con objetos que no pueden penetrar o que pueden absorber sus energías. Se produce una aparente curvatura de las señales de RF alrededor de los objetos.
- Multitrayectoria: las señales se transmiten por diferentes caminos (debido a reflexiones y difracciones) y cuando llegan al receptor se superponen y pueden aumentar o reducir la energía de la señal. Esto se debe a diferentes retardos y atenuaciones.

Pérdida en el espacio libre ("atenuación")

- En las comunicaciones inalámbricas, la señal se dispersa con la distancia debido a que la señal ocupa un área cada vez mas grande
- Se la denomina "atenuación" por perdida en el espacio libre, o pérdida por dispersión

$$A_T = \frac{P_T}{P_R} = \frac{(4\pi d)^2}{\lambda^2} = \frac{(4\pi f d)^2}{c^2}$$

$$A_{T(dB)} = 20\log(f) + 20\log(d) - 147,56dB$$

$$A_{T(dB)} = 40 + 20\log(d)$$
 (para 2,4 GHz)
 $A_{T(dB)} = 47,7 + 20\log(d)$ (para 5,8 GHz)

$$A_{T(dB)} = 47.7 + 20\log(d)$$
 (para 5,8 GHz)

 A_T = Atenuación

 P_T = Potencia transmitida

 P_R = Potencia recibida

d = distancia (km)

f = frecuencia (Hz)

 $\Lambda = longitud de onda (m)$

 $C = \text{vel. de la luz} (3x 10^8 \text{ m/s})$

Cálculo de enlace

Línea de visión (LOS)

$$r_1(km) = \sqrt{12,74 * k * h_1(m)}$$

Si
$$k = 4/3$$
 $r_1(km) = \sqrt{17 * h_1(m)}$

k es un índice que depende de la refracción de la atmósfera

Zona de Fresnel

Output Power: 23 dBm								
2.4 GHz TX Power Specifications			2.4 GHz RX Power Specifications					
Modulation	Data Rate/MCS	Avg. TX	Tolerance	Modulation	Data Rate/MCS	Sensitivity	Tolerance	
11b/g	1-24 Mbps	23 dBm	± 2 dB	11b/g	1-24 Mbps	-83 dBm	± 2 dB	
	36 Mbps	21 dBm	± 2 dB		36 Mbps	-80 dBm	± 2 dB	
	48 Mbps	19 dBm	± 2 dB		48 Mbps	-77 dBm	± 2 dB	
	54 Mbps	18 dBm	± 2 dB		54 Mbps	-75 dBm	± 2 dB	

Antenna Information				
Gain	8.5 dBi			
Cross-pol Isolation	20 dB Minimum			
Max. VSWR	1.4:1			
Beamwidth	60" (H-pol) / 60" (V-pol) / 60" (Elevation)			

