Matemática IV Transformaciones Lineales

A. Ridolfi (PT), M. Saromé (JTP)

UNCUYO - FCAI

Ingeniería Mecánica

2018

Contenido

- Transformaciones Lineales
- Ejemplos
- Isomorfismo

2/13

Definición (Transformaciones lineales)

Sean V y W. dos espacios vectoriales sobre el cuerpo K. Una transformación lineal de V en W es una función T de V en W tal que

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$$

 $T(k\mathbf{x}) = kT(\mathbf{x})$

para todos los vectores **x** y **y** de V y todo escalar k de K.

Ambas condiciones se pueden resumir en:

$$T(k_1\mathbf{x} + k_2\mathbf{y}) = k_1T(\mathbf{x}) + k_2T(\mathbf{y})$$

3 / 13

Ejemplos

- a) Si V es cualquier espacio vectorial, la transformación identidad I, definida por $I\mathbf{x} = \mathbf{x}$, es una transformación lineal de V en V.
- b) La transformación cero 0, definida por $0\mathbf{x} = \mathbf{0}$, es una transformación lineal de V en V.
- c) Sea A una matriz $m \times n$ sobre el cuerpo K. La función T definida por T(x) = Ax es una transformación lineal de K^n en K^m . En particular, cuando $K = \mathbb{R}$ tenemos las transformaciones de:

alargamiento, rotación,

reflexión.

proyección,

cambio de base.

https://www.youtube.com/watch?v=IrggOvOSZr4

https://www.youtube.com/watch?v=LyGKycYT2v0

https://www.youtube.com/watch?v=P2LTAUO1TdA

Imagen extraída de

http://algebra-ii.blogspot.com/2006/11/transformaciones-lineales.html

Ejemplos

- d) Sea A una matriz $m \times n$. La función U definida por $U(\mathbf{x}) = \mathbf{x}^T A$ es una transformación lineal de K^m en K^n .
- e) Sea V el espacio vectorial de las funciones polinomios reales $V = \{f : \mathbb{R} \to \mathbb{R}/f(x) = c_0 + c_1x + ... + c_kx^k\}$, Transformación diferenciación $A : V \to V$ tal que

$$A_{dif}f(x) = \frac{d}{dx}(f) = c_1 + 2c_2x + ... + kc_kx^{k-1}.$$

Transformación integración $A: V \rightarrow V$ tal que

$$A_{int}f(x) = \int_0^x f(t) dt = c_0 x + c_1 \frac{x^2}{2} + ... + c_k \frac{x^{k+1}}{k+1}.$$

Propiedades de las transformaciones lineales

Sean V y W dos espacios vectoriales sobre un mismo cuerpo K y L(V, W) el conjunto de las transformaciones lineales de V en W.

$$L(V, W) = \{T : V \rightarrow W : Tes \text{ una transformación lineal}\}$$

Dado $T \in L(V, W)$, consideremos los conjuntos:

Nulo de T
$$N(T)=\{x\in V:T(x)=0\}$$

Imagen de T $Im(T)=\{w\in W:w=T(x), \text{ para algún }x\in V\}$

- N(T) es un subespacio de V; Nulidad:= dim(N(T)).
- Im(T) es un subespacio de W; Rango:= dim(Im(T)).
- Si V es dimensión finita, entonces Rango + Nulidad = dim(V).
- L(V, W) es un espacio vectorial.
- Si dim(V) = n y dim(W) = m entonces dim(L(V, W)) = nm.

Propiedades de las transformaciones lineales

Operador Lineal: Transformación $T:V\to V$ Subespacio invariante: Subespacio S de V tal que existe un operador lineal $T:V\to V$ donde $T(S)\subset S$.

Sea $T: V \rightarrow W$ una transformación lineal

- T es inyectiva $\Leftrightarrow T(x) = T(y)$ implica que x = y;
- T es sobreyectiva $\Leftrightarrow Im(T) = W$;
- T es inversible $\Leftrightarrow \exists T^{-1}: W \to V/T^{-1} \circ T = I$ y $T \circ T^{-1} = I$.
- T es no singular $\Leftrightarrow N(T) = \{0\}$

T inversible $\Leftrightarrow T$ invectiva y sobreyectiva T invectiva $\Leftrightarrow T$ no singular $\Leftrightarrow T$ preserva conjuntos I. i.

• Si dim(V) = dim(W) = n entonces T inversible $\Leftrightarrow T$ inyectiva $\Leftrightarrow T$ sobreyectiva

Teorema

Sean V y W dos espacios vectoriales de dimensión finita n y m respectivamente sobre un mismo cuerpo K. Sean B y B' bases ordenadas de V y W respectivamente. Para cada transformación lineal $T: V \to W$ existe una matriz $A_{m \times n} \in K^{mn}$ tal que

$$[T(x)]_{B'} = A[x]_B$$

Dem:

Encontrar las matrices asociadas a las transformaciones:

```
A_{dif}: P_4 \rightarrow P_3 y A_{int}: P_3 \rightarrow P_4.
Comprobar que A_{dif}A_{int} = I
Comentar que sucede con A_{int}A_{dif}
```

• $V = \mathbb{R}^2$ Encontrar la matiz que cambia de la base canónica a la base $B = \{[1, 1]^T; [-1, 0]^T\}$

Teorema

Si A es la matriz que representa la transformación lineal de V a W y B es la matriz que representa la transformación lineal de U a V entonces la matriz producto AB es una transformación lineal de U a W y representa la composición de ambas transformaciones.

Verifica con un ejemplo que:

- Para rotaciones el orden de la multiplicación no importa.
- Para una rotación y una reflexión, el orden sí es importante.
- Proyectar dos veces es lo mismo que proyectar una vez, $P^2 = P$

Isomorfismo

Definición (Isomorfismo)

Sean V y W dos espacios vectoriales sobre un mismo cuerpo K. Se dice que una transformación lineal $T:V\to W$ es un isomorfismo de V en W si T es inversible. En este caso se dice que V es isomorfo a W.

- Todo espacio vectorial real de dimensión finita n es isomorfo a Rⁿ.
- El espacio fila es isomorfo al espacio columna.
- Si dim(V) = n; dim(W) = m entonces L(V, W) es isomorfo a $\mathbb{R}^{n.m}$.

Bibliografía

- Strang, G. Algebra lineal y sus aplicaciones, 4a Ed, Thomson, 2006.
- Hoffman, K., Kunze, R. Algebra Lineal. 1°Ed, Prentice-Hall Hispanoamericana, S. A. 1973.

GRACIAS POR SU ATENCIÓN!!

