EE1001 Foundations of Digital Techniques

Sequences and Series

Dr. K F Tsang ee330015@cityu.edu.hk

Outline

- 1. Sequences and series
- 2. Recurrence relations of sequences
- 3. Arithmetic series and geometric series

Class Intended Learning Outcomes (CILO)

- Understanding the definitions of sequences and series
- Identifying recurrence relations and solving them with iteration method
- Designing and formulating arithmetic and geometric sequences and series

1. Sequences and Series

Sequence and Series

- Sequence: A list of numbers, called terms, in a special order.
 - For example,
 - 5, 7, 9, 11, 13
 - 32, 64, 128, 256

List with commas

- Series: The sum of all the terms of a sequence.
 - For example,
 - 5 + 7 + 9 + 11 + 13

"Indicated sum"

32 + 64+ 128 + 256

Finite and Infinite

The sequence and series can be finite or infinite

Finite Sequence	Infinite Sequence
Example: 32, 64, 128, 256	Example: 32, 64, 128, 256,
General Form: a_1 , a_2 , a_3 ,, a_n (n number of terms)	General Form: $a_1, a_2, a_3,$ (infinite number of terms)

Finite Series	Infinite Series
Example: 32 + 64 + 128 + 256	Example: 32 + 64 + 128 + 256,
General Form: $a_1 + a_2 + a_3 + + a_n$ (<i>n</i> number of terms)	General Form: a_1 , a_2 , a_3 , (infinite number of terms)

Why do we learn both finite and infinite calculations?

Here gives a real-world engineering example,

Bandpass filters are essential in various engineering applications, such as filtering unwanted signals, limit the transmission bandwidth of the output RF signals, ...

Below is an ideal bandpass filter in frequency domain

Why do we learn both finite and infinite calculations?

There are many ripples in the waveform, ranging from -inf. to +inf.

Practically, there is impossible to implement something from –inf. time to +inf. time. Therefore, we need to set a <u>finite</u> range and make the practical filter similar to the ideal one.

Finite bandpass filter using Kaiser window

On the other hand, assuming the ideal cases using <u>infinite</u> condition can ease calculations and predict general performance.

City University of Hong Kong

General Formula of the nth term

• For sequences and series, we can denote the n^{th} term (or so-called the general term) using superscript notation, i.e., a_n .

The 1st term of a sequence/series is then called a_1

The 2^{nd} term is a_2

The 3^{rd} term is a_3

The (k+1)th term is a_{k+1} , and so on.

Any term in a sequence/series can be found by substituting its position number into a given formula for a_n .

General Formula of the nth term

• For instant, the formula for the $k^{\rm th}$ term of a sequence is given by $m_k = 5k + 2$.

Then,
$$m_1 = 5 \times 1 + 2 = 7$$
 The 1st term $m_2 = 5 \times 2 + 2 = 12$ The 2nd term $m_3 = 5 \times 3 + 2 = 17$ The 3rd term ... $m_{(t+2)} = 5 \times (t+2) + 2 = 5t + 12$ The (t+2)th term

- ☐ The first three terms in the sequence are: 7, 12, 17
- \Box The first m+2 terms in the sequence are: 7, 12, 17, ..., 5m+12

Summation Notation (Σ)

- We can denote a series using the general term (a_n) and summation notation (Σ) .
 - The Greek capital letter Σ (sigma) is a summation symbol to represent the sum and abbreviate a series.
 - The summation notation can be expressed as

$$\sum_{\substack{n = \text{ index of summation}}}^{N = \text{ last value of } n } \sum_{n=k}^{N} a_n = a_k + a_{k+1} + a_{k+2} + \dots + a_{N-1} + a_N, \forall k \in \mathbb{Z} \text{ and } k \leq N$$

For example, the series 2 + 4 + 6 + 8 + 10 or a general term $a_n = 2n$ can be written as

$$\sum_{n=1}^{5} a_n$$
 or $\sum_{n=1}^{5} 2n$

and it is read as "the sum of the terms a_n or 2n, as n varies from 1 to 5."

Product Notation (Π)

- We can indicate repeated multiplication using the general term (a_n) and product notation (Π) .
 - The Greek capital letter Π (pi) is a product symbol to the product of sequences.
 - The product notation can be expressed as

$$N = \text{last value of } n$$

$$n = \text{index of summation} \rightarrow \prod_{n=k}^{N} a_n = a_k \times a_{k+1} \times a_{k+2} \times \cdots \times a_{N-1} \times a_N, \forall k \in \mathbb{Z} \text{ and } k \leq N$$

For example, the series $2 \times 4 \times 6 \times 8 \times 10$ or a general term $a_n = 2n$ can be written as

$$\prod_{n=1}^{5} a_n \text{ or } \prod_{n=1}^{5} 2n = 2(1) \times 2(2) \times 2(3) \times 2(4) \times 2(5)$$

and it is read as "the product of the terms a_n or 2n, as n varies from 1 to 5."

Factorial Notation (n!)

Factorial notation (n!)

$$n! = \prod_{k=1}^{n} k = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$$
, $\forall n \in \mathbb{Z}$ and $n > 0$

- It is also a kind of production notation with the general term of $a_k =$ k
- Factorial is frequently used in mathematics, science, and engineering, especially when determining the number permutations and combinations.
 - We will go into details in the section of "Counting".

Permutations and Combinations

Number of permutations (order matters) of n things taken r at a time:

$$P(n,r) = \frac{n!}{(n-r)!}$$

Number of combinations (order does not matter) of n things taken r at a time:

$$C(n,r) = \frac{n!}{(n-r)!r!}$$

Number of different permutations of n objects where there are n₁ repeated items, n₂ repeated items, ...n_k repeated items

$$\frac{n!}{n_1!n_2!...n_k!}$$

Properties of Summation and Product

• If " a_n , a_{n+1} , a_{n+2} , ..." and " b_n , b_{n+1} , b_{n+2} , ..." are sequences of real numbers and c is a constant, then the following equations are true.

1.
$$\sum_{n=k}^{N} a_n + \sum_{n=k}^{N} b_n = \sum_{n=k}^{N} (a_n + b_n)$$

$$2. c \times \sum_{n=k}^{N} a_n = \sum_{n=k}^{N} c \times a_n$$

3.
$$\left(\prod_{n=k}^{N} a_n\right) \left(\prod_{n=k}^{N} b_n\right) = \prod_{n=k}^{N} a_n b_n$$

The summation and product notations can range from —inf. to +inf., i.e.,

$$\sum_{n=-\infty}^{\infty} a_n = \dots + a_{-1} + a_0 + a_1 + \dots$$

$$\prod_{n=-\infty}^{\infty} a_n = \cdots \times a_{-1} \times a_0 \times a_1 \times \cdots$$

2. Recurrence Relation

Recurrence Relation

• A **recurrence relation** for the sequence $\{a_n\}$ is a <u>function</u> that defines a_n in terms of <u>one or more of the</u> <u>previous terms</u> of the sequence, i.e., a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a non-negative integer.

e.g.,
$$a_n = a_{n-1} + 2a_{n-2} - 3 a_{n-3}$$

- To define a sequence using a recurrence relation, we need
 - the <u>function</u> relating each term to a previous term, and
 - the initial conditions, which is a finite set of start-up values.

For example, express a sequence of $\{-5, -1, 3, 7, ...\}$ using a recurrence relation. The initial condition is $a_1 = -5$, and the function is $a_{n+1} = a_n + 4$.

$$a_1 = -5$$
 (Initial condition)
 $a_2 = a_1 + 4 = -5 + 4 = -1$
 $a_3 = a_2 + 4 = -1 + 4 = 3$
 $a_4 = a_3 + 4 = 3 + 4 = 7$,
and so on

In-class Exercises

Express the following sequences using recurrence relation:

a) {1, 3, 7, 15, 31, 63, ...}

b) {108, 52, 24, 10, 3, -0.5, ...}

Find out the first five terms of the following sequence.

Initial condition:
$$a_1 = 1$$
, $a_2 = 3$
 $a_{n+2} = 1 + 2a_n - a_{n+1}$

In-class Exercises 1

Express the following sequences using recurrence relation:

a) {1, 3, 7, 15, 31, 63, ...}

b) {108, 52, 24, 10, 3, -0.5, ...}

Find out the first five terms of the following sequence.

Initial condition:
$$a_1 = 1$$
, $a_2 = 3$
 $a_{n+2} = 1 + 2a_n - a_{n+1}$

Iteration Method for Solving Recurrence Relations

- Iteration methods (backtracking) is one of the methods of solving recurrence relations
 - Given a recursive expression with initial conditions a₁, some recurrence relations of a_n can be derived to become an <u>explicit</u> <u>formula</u>
 - For example, $a_n = 2a_{n-1}$, with the initial condition of $a_1=1$, can be derived as follows.

$$a_n = 2a_{n-1}$$

 $= 2 \times (2a_{n-2}) = 2^2 \times a_{n-2}$
 $= 2^2 \times (2a_{n-3}) = 2^3 \times a_{n-3}$
 $= \dots$
 $= 2^{n-3} \times (2a_2) = 2^{n-2} \times a_2$
 $= 2^{n-2} \times (2a_2) = 2^{n-1} \times a_1$ $(a_1 = 1)$
 $= 2^{n-1}$

We can then find the k^{th} term easily by substituting k into n, e.g.,

$$a_2 = 2^{2-1} = 2$$

 $a_3 = 2^{3-1} = 4$
 $a_{10} = 2^{10-1} = 512$

In-class Exercises 2

Find the explicit formula for the following sequence.

 $a_n = a_{n-1} + 3$, for n = 2, 3, 4, ..., and the initial condition is $a_1 = 2$

In-class Exercises 2

a) Find the explicit formula for the following sequence.

 $a_n = a_{n-1} + 3$, for n = 2, 3, 4, ..., and the initial condition is $a_1 = 2$

Recurrence Relations in Engineering

Delay and Feedback in Filter Design

Programming

Int a, b;

$$a = 10$$
; Initial condition:
 $b = 20$; $a_1 = 10$
For $(I = 1; i \le 10; i + +)$
 $\{a = a + 2; a_{n+1} = a_n + 2\}$

Blockchains

 $Block_header_{k+1} = Block_header_k + transaction_k$

3. Arithmetic Series & Geometric Series

Arithmetic Sequence

- An <u>arithmetic sequence</u> is a sequence in which there is a common difference d between two consecutive terms, i.e.,
 - The common difference $d = (a_n a_{n-1}) = (a_{n-1} a_{n-2}) = \dots = (a_2 a_1)$
 - Therefore:
 - 1st term: a_1
 - 2^{nd} term: $a_2 = a_1 + d$
 - 3^{rd} term: $a_3 = a_1 + 2d$
 - ...
- The arithmetic formula of the nth term is as follows.

$$a_n = a_1 + (n-1)d$$
 $a_1 = \text{the 1}^{\text{st}} \text{ term}$
 $a_1 = \text{the 1}^{\text{st}} \text{ term}$
 $a_1 = \text{the term number}$
 $a_2 = \text{the 2}^{\text{st}} \text{ term}$

Geometric Sequence

- A geometric sequence is a sequence in which there is a common ratio r between two consecutive terms, i.e.,
 - The common ratio $r = (a_n a_{n-1}) = (a_{n-1} a_{n-2}) = \dots = (a_2 a_1)$
 - Therefore.
 - 1st term: a_1
 - 2nd term: $a_2 = a_1 \times r$
 - $a_3 = a_1 \times r^2$ • 3rd term:
- The geometric formula of the nth term is as follows.

$$a_n = a_1 \times r^{n-1}$$

 a_1 = the 1st term n =the term number r = the common difference

Simple Exercise

- Determine the following sequences whether they are arithmetic sequence or geometric sequence
 - 1) {11.5, 25, 38.5, 52}
 - 2) {10, 0.1, 10, 0.1}
 - 3) {5, 10, 20, 60}
- Given {79, 75, 71, 67, 63, ...}, what term number is -169?

Simple Exercise

- Determine the following sequences whether they are arithmetic sequence or geometric sequence
 - 1) {11.5, 25, 38.5, 52}
 - 2) {10, 0.1, 10, 0.1}
 - 3) {5, 10, 20, 60}
- Given {79, 75, 71, 67, 63, ...}, what term number is -169?

Sum of Arithmetic Series

- Arithmetic series is an expression formed by <u>adding</u> the terms of an **arithmetic sequence**.
- The sum of a series containing N terms can be denoted by S_N .
 - For example, $S_5 = 1 + 3 + 5 + 7 + 9 = 25$

How about
$$S_{100} = 1 + 2 + 3 + ... + 99 + 100$$
?

Sum of Arithmetic Series

 To find the sum of the first n terms, we can adopt the Gauss' method as follows.

$$\begin{cases} S_{100} = 1 + 2 + 3 + ... + 99 + 100 & \text{From 1}^{\text{st}} \text{ to 100}^{\text{th}} \text{ term} \\ S_{100} = 100 + 99 + 98 + ... + 2 + 1 & \text{From 100}^{\text{th}} \text{ to 1}^{\text{st}} \text{ term} \end{cases}$$

$$2S_{100} = 101 + 101 + 101 + \dots + 101 + 101$$

Therefore, we have

$$2S_{100} = 100 \times 101$$

 $S_{100} = 100 \times 101 / 2 = 5050$

Sum of Arithmetic Series

 Considering the general form of an arithmetic series having N terms and a common difference of d,

$$S_N = a + (a + d) + (a + 2d) + ... + (a + (N-2)d) + (a + (N-1)d)$$

$$S_N = a + (a+d) + (a+2d) + ... + (f-d) + f$$

 $S_N = f + (f-d) + (f-2d) + ... + (a+d) + a$

$$2S_N = (a+f) + (a+f) + (a+f) + ... + (a+f)$$
 (a notes the first term) (f denotes the last term)

N terms

Therefore, we have $2S_N = N(a + f)$, and

$$S_N = \frac{N}{2}(a+f)$$

The sum of arithmetic series is
$$S_N = \frac{N}{2}(a+f)$$
 or $S_N = \frac{N}{2}(2a+(N-1)d)$

N = number of terms, a = initial term, f = last term, d = common difference

Example

Find the sum of the first 23 terms of the arithmetic series

Since we don't know the last term, we adopt the following formula

$$S_N = \frac{N}{2}(2a + (N-1)d)$$

$$d = -11 - (-5) = -6$$
, $a = -5$, and $N = 23$

$$S_{23} = \frac{23}{2}[2(-5) + (23 - 1)(-6)] = -1633$$

Sum of Geometric Series

- Geometric series is an expression formed by <u>adding</u> the terms of a geometric sequence.
- The sum of a series containing N terms can be denoted by S_N .
 - For example, $S_5 = 1 + 2 + 4 + 8 + 16 = 56$

How about $\{a, ar, ar^2, ar^3, ..., ar^N\}$?

Sum of Geometric Series

 Given a finite geometric series with n terms, a common ratio r and the first term a,

$$S_{N} = a + ar^{1} + ar^{2} + \dots + ar^{N-2} + ar^{N-1}$$

$$S_{N} = a(1 + r^{1} + r^{2} + \dots + r^{N-2} + r^{N-1})$$

$$S_{N} = \frac{a(1 + r^{1} + r^{2} + \dots + r^{N-2} + r^{N-1})(1 - r)}{1 - r}$$

As a result, the general formula of a finite geometric series is

$$S_N = \frac{a(1-r^N)}{1-r}$$

N = number of terms, a = initial term, r = common ratio

Sum of Infinite Geometric Series

• If the common ratio |r| < 1, the infinite geometric series has the sum:

$$S = \frac{a}{1 - r}$$

a = initial termr =common ratio

For example,
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$S = \frac{1/2}{1 - \frac{1}{2}} = 1$$

Exercise

• Given the following geometric series,

```
\{1, -0.25, 0.0625, -0.015625, \ldots\}
```

• a) Find the sum of the first 9 terms

b) Find the sum of all terms

Arithmetic and Geometric in Engineering

Calculate the energy and power of a discrete time signal

Energy and Power

• The energy of a discrete time signal is defined as

$$E_x = \sum_{n = -\infty}^{\infty} |x[n]|^2$$

Example: $\{x[n]\}=\{1,2,2,2,1\}$

The energy of x[n] is $E_x = 1+4+4+4+1=14$

Example: $x[n] = \exp\{(-0.2 + j0.1\pi)n\} u[n]$

$$E_x = \sum_{n=0}^{\infty} |\exp\{(-0.2 + j0.1\pi)n\}|^2 = \sum_{n=0}^{\infty} e^{-0.4n}$$

Using geometric progression, $E_x = \frac{1}{1 - e^{-0.4}} = 3.033$

RF Calculation (e.g., multiple reflection)

- END -