PH2202 Thermal Physics Fall Semester - 2024

Indian Institute of Science Education and Research, Kolkata Instructor: Koushik Dutta

Homework: 2 Submission Date: 23/1/2024

The hand written solutions must be submitted at the start of the tutorial.

- 1. Calculate the work done by 1 mole of a gas during a quasistatic isothermal expansion from a volume V_i to a volume V_f , when the equation of state is pV = RT(1 B/V).
- 2. n moles of an ideal gas is made to undergo cyclic change ABCA consisting of the following processes.
 - (i) $A \to B$: Isothermal expansion at temperature T so that the volume is doubled from V_1 to $V_2 = 2V_1$ and pressure changes from p_1 to p_2 . (ii) $B \to C$: Isobaric compression at pressure p_2 to initial volume V_1 . (iii) $C \to A$: Isochoric change leading to change of pressure from p_2 to p_1 .
 - (a) In the p V diagram, draw the process.
 - (b) Obtain expression for the work done for each step
 - (c) Obtain the change in internal energy for each part.
 - (d) What is the total change in the internal energy in the whole process? Justify why you get this answer.
- 3. Consider a van der Waals' gas for which it is given that $(\partial U/\partial V)_T = a/V^2$. If the gas is allowed to do free expansion, i.e the internal energy remains constant, using the above expression, argue that the temperature will fall as expansion happens.
- 4. Calculate the quantity of heat absorbed, the increase in internal energy and the work done by the gas when the temperature of 30 g of oxygen is raised from 30 0 C to 100 0 C (a) at constant pressure and (b) at constant volume. From the internet find values of R, C_{V} and molecular weight of oxygen.