Mathematics - Numerical Analysis Problem Sheet 0: Trapezoid Rule

Xin Wang

September 21, 2020

1 Trapezoid Rule

Not every integral has an exact solution. To approximate a solution we can employ numerical techniques, the simplest of which is the Trapezoidal Rule. Consider the integral of f(x) over the interval[a,b] begin by dividing the interval into n segments of equal length $h = \frac{b-a}{n}$.

1. Set $a = x_0$ and $b = x_n$, then the *n* intervals are $[x_i, x_{i+1}]$ for $i = 0 \dots n-1$. The area under the curve f(x) now consists of integrating over each segment and summing:

$$\int_{x_i}^{x_{i+1}} f(x) \, dx$$

2. For each segment, approximate the integral with the area of a trapezoid of left height $f(x_i)$ and right height $f(x_{i+1})$, giving an approximate area:

$$\int_{x_i}^{x_{i+1}} f(x) \, dx \approx \frac{1}{2} h[f(x_i) + f(x_{i+1})]$$

3. To see a simple case, let n = 3, so $a = x_0$ and $b = x_3$:

$$\frac{1}{2}h[f(x_0) + f(x_1)] + \frac{1}{2}h[f(1) + f(x_2)] + \frac{1}{2}h[f(2) + f(x_3)]$$

which can be tidied up as:

$$\frac{1}{2}h[f(x_0) + 2f(x_1) + 2f(x_2) + f(x_3)]$$

The general case is defined as:

$$I_n = \int_a^b f(x) \approx \left(\frac{b-a}{2n}\right) \left[f(x_0) + 2\left(\sum_{i=1}^{n-1} f(x_i)\right) + f(x_n) \right]$$

1

where $x_0 = a$, $x_1 = \frac{1}{n}$, $x_2 = 2 \times \frac{1}{n}$, ..., $x_n = b$

$$I_4 = \left(\frac{1-0}{2*4}\right) \left[\exp(0) + 2 \left[\exp(\frac{1}{4}) \right] + 2 \left[\exp(2 \times \frac{1}{4}) \right] + 2 \left[\exp(3 \times \frac{1}{4}) \right] + \exp(1) \right]$$

2 Exercise 1

• Use the Trapezoidal Rule to obtain:

$$I = \int_0^1 e^x dx = e - 1 \approx 1.718281828$$

where I_n is the approximate solution with n segments

- 1. Begin by obtaining I_4 .
- 2. Increase n to improve precision.
- 3. Let ϵ_n be the error made with segment length $h = \frac{(b-a)}{n}$. For each n, calculate $\epsilon_n = |I I_n|$.
- Tabulate results and compare n and the error ϵ_n . Is there any relationship between the error and the number of segments?
- Write a simple Matlab code to investigate this:
 - Given a function f(x), an interval [a, b] and a number of segments n, your code should integrate the function numerically over [a, b] with the interval divided into n segments. Compare with the exact solution.
 - Next, incorporate the code written into a loop to investigate the effect of increasing n on the error. Integrate for n = 2...N where N is chosen to be suitably large. Plot the error against n. Try a log-log plot for ϵ_n and h, what is the conclusion?
 - Test this on several functions and intervals.

3 Exercise 2

Now consider Simpson's rule which is a refinement of the trapezoidal rule. Take n - an even number and proceed as follows:

$$\int_{a}^{b} f(x) dx \approx \left(\frac{b-a}{3n}\right) \left[f(x_0) + 2\left(\sum_{i=1}^{\frac{n}{2}-1} f(x_{2i})\right) + 4\left(\sum_{i=1}^{\frac{n}{2}} f(x_{2i-1})\right) + f(x_n) \right]$$

To understand the rule, let n = 6:

$$\frac{h}{3}\left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6)\right]$$

- 1. Repeat the previous exercise and error analysis with Simpson's rule.
- 2. What are the observations?

3.