	CMB Instrumentation Summer School 2022 Laser Spectroscopy: Measuring Materials' Optical Properties Shreya Sutariya (shreyas@uchicago.edu), ERC 568 This is the hands-on component for the FLS lab. Today's lab will center on reflection measurements of a common plastic called high-density polyethelene (HDPE). After measuring and plotting the measurement, we will plot its simulated performance and compare. Finally, we fit to get the exact index of refraction n of the material. (Time permitting we will also measure: LPE, MF-114, non-ARC alumina).
	 Today's Objectives: See Notebook1_Laser_Spec_Background.ipynb for material on understanding the measurement instrument and reflection setup. Exercise 1: Take reflection measurements of our samples. Exercise 2: Simulate what reflection of such a material should look like. Exercise 3: Fit our measurement to the model to get the index of refraction of our sample. → Bonus: We can understand a material more precisely by knowing its complex index of refraction,
	$\tilde{n}=n+ik$, where the imaginary component k determines the absorptivity of the material (and the real part n is what we normally refer to as the index of refraction). For code that can fit to both the real and imaginary parts, use the FLS Lab Computer to do additional fits using Notebook3_Bonus_complex_index_fits.ipynb . Exercise 1: Reflection Measurements As you take reflection measurements, think about the following: • What can introduce noise in our measurement? What are ways we can reduce this?
	 Think about the transmission setup from Figure 1 in Notebook1. What challenges and differences could come up in a transmission measurement? Measurement Procedure: In addition to measuring the sample's performance across a frequency range, we also have to take a calibration measurement to normalize the sample's measurement and get its reflectivity. We use a metal plate for this calibrating measurement, which serves as our 100% reflection.
	For both the metal plate and the sample, we will get the electric field amplitude as it changes with respect to frequency. Then, to convert from amplitude to power (which scales as $ E ^2$), we square the sample and calibration plate amplitudes. To normalize our sample's measurement, we divide out the calibration plate: $R = (E_{sample}/E_{plate})^2$ Calibration measurement: 1. Set the sweep parameters in the TOPAS software: • Suggested values:
	• Start frequency: 60 GHz • End frequency: 180 GHz • Step size: 0.1 GHz Frequency Scan Precise Fast
	Min 60.000 Step 0.100 Step 0.100 Scan Up Scan Down Scan
	1. Set the current emitting frequency to 60 GHz . Frequency Control (GHz) Fixed Frequency Set 60.000 \$\cdot
	1. Insert metal plate into sample holder; use an allen wrench and the screws to use washers to hold the plate in place.
	2. Press Scan up to start the sweep. Frequency Scan Precise Fast Min 60.000
	Max 200.000 \$ Step 0.100 \$ Scan Up
	Aschool_20220810 folder with the name r_plate_1_60-180GHz.txt. General Clear before Scan Start Columns to Save Use Default □ Scan Continuously Bidirectional Scan Wait between Scans Duration (s) 120 → Frequency Act Phase
	Duration (ms) 300 AutoSave No AutoSave Online Analysis Number n of Points 1000 File TestData.txt Save Analyzed Spectrum Save Data 1. Repeat these steps but now replacing the metal plate in step (3.) with the sample of choice (for the first measurement, use HDPE, for other measurements, ask me (Shreya) for more samples). Save the sample
	 in the same folder as above with the sample's name, e.g. r_hdpe_1_60-180GHz.txt 2. To allow students to plot on their personal computers: Upload the folder and its files to the shared Google Drive folder: cmb-s4_summer_school using the link https://drive.google.com/drive/folders/1dnvBpeqmDDmX2h6gwJYBr5fP7hnbjLUJ?usp=sharing In this case, download the files onto your personal computer and change the path later on to match this folder.
In [32]:	Here we plot the measurement from Exercise 1. import numpy as np import matplotlib.pyplot as plt import scipy import scipy import scipy.optimize as optimize Fill in the following information:
In [2]: In [3]: In [10]:	<pre>group_folder_name = '20220407' name_sample = "alumina-1" # add a measurement number to keep track of things # Next we have some useful functions/classes to smooth our data if needed, as well as</pre>
	<pre>print('smooth only accepts 1 dimension arrays.') if x.size < window_len: print('Input vector needs to be bigger than window size.') if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: print('Window is on of \'flat\', \'hanning\', \'hamming\', \'bartlett\', \'blackman']: s=np.r_[x[window_len-1:0:-1],x,x[-2:-window_len-1:-1]] if window == 'flat': #moving average w=np.ones(window_len,'d') else: w=eval('np.'+window+'(window_len)')</pre>
	<pre>y=np.convolve(w/w.sum(),s,mode='valid') return y class fls_rt(object): definit(self, file_name): self.file_name = file_name return def load_data(self, path_ = "/Users/Shreya Sutariya/data/", col = 2): # col sets ''' Column indices correspond to: 0-freq set, 1-Thz photocurrent, 2-freq actual, 3 ''''</pre>
	<pre>data = np.genfromtxt(path_+group_folder_name+'/'+self.file_name, skip_header=: col_data = data[:,col] return col_data def get_rt(self, calibration_freq, calibration_amplitude, sample_freq, sample_amp: '''check if the amplitude arrays are the same lengths'''# check if the arrays len_calib = len(calibration_amplitude) len_sample = len(sample_amplitude) if len_calib != len_sample: # interpolate for the calibration and sample arrays to match in length if</pre>
	<pre>f = scipy.interpolate.interp1d(calibration_freq, calibration_amplitude, botcalibration_amplitude = f(sample_freq) rt = (sample_amplitude/calibration_amplitude)**2 rt = (sample_amplitude/calibration_amplitude)**2 return sample_freq, rt def get_rt_smooth(self, calibration_freq, calibration_amplitude, sample_freq, sample_freq, sample_freq, sample_freq, sample_freq, sample_freq, sample_freq, window_len = window_len_) cal_f_smooth = smooth(calibration_freq, window_len = window_len_) sam_f_smooth = smooth(sample_freq, window_len = window_len_)</pre>
	<pre>sam_a_smooth = smooth(sample_amplitude, window_len = window_len_) f, rt = self.get_rt(cal_f_smooth, cal_a_smooth, sam_f_smooth, sam_a_smooth) return f, rt def save_file(self, freq, refl, name_save, path_save = '/Users/Shreya Sutariya/dat header_ = 'Frequency(GHz), Reflectivity' data = np.array([freq, refl]) data = data.T outfile = open(path_save+name_save, 'w') outfile.write(header_) np.savetxt(outfile, data) outfile.close() print("Your file is saved and stored in: ", path save+group folder name+"/"+"s</pre>
In [11]:	Fill in the file names.
In [12]:	<pre>alumina_amplitude = alumina1.load_data(col=3) # electric field amplitude plate_freq = plate1.load_data(col=2) plate_amplitude = plate1.load_data(col=3) # alumina_freq = alumina1.load_data(path_ = "/Users/(Your Name)/Downloads/", col=2) # # alumina_amplitude = alumina1.load_data(path_ = "/Users/(Your Name)/Downloads/", col=2) # plate_freq = plate1.load_data(path_ = "/Users/(Your Name)/Downloads/", col=2) # plate_amplitude = plate1.load_data(path_ = "/Users/(Your Name)/Downloads/", col=3)</pre>
In [15]: In [16]:	<pre>f, r = aluminal.get_rt(plate_freq, plate_amplitude, alumina_freq, alumina_amplitude) f_smooth, r_smooth = aluminal.get_rt_smooth(plate_freq, plate_amplitude, alumina_freq, aluminal.save_file(f_smooth, r_smooth, "example.txt", path_save = "/Users/Shreya Suta: Your file is saved and stored in: /Users/Shreya Sutariya/data/20220407/saved_files/ex ample.txt plt.figure() plt.plot(f, r, alpha=0.5) plt.plot(f_smooth, r_smooth) plt.xlabel("Frequency [GHz]") plt.ylabel("Reflectance") plt.show()</pre>
	0.8 - 0.6 - 0.4 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.3 - 0.3 - 0.3 - 0.4 - 0.2 - 0.3 - 0.4 - 0.2 - 0.3 - 0.4 - 0.2 - 0.3 -
	Trouble Shooting: Standing Waves You'll notice that there are quite a few wiggles at the peaks in the measurement. • What do you think these could be due to? What we do know about standing waves?
	 A: Standing Waves: Where in the system could we imagine standing waves originating? What are methods to mitigate standing waves? (Hint: Look at materials on the optical bench) Why did we put Eccosorb (black absorbing foam) on the sample mount?
In [104	After the adjustment to the setup to try and mitigate standing waves, re-do the measurement steps from Exercise 1 (re-measure plate and sample, this time saving the files with the next measurement number, e.g. plate2_60-180GHz.txt and hdpe2_60-180GHz.txt if this is the second measurement of the day). Then, replot the data using these two code cells: # Insert file names here hdpe2 = fls_rt("hdpe2_60-120ghz.txt") # change "sample_num" to sample name with the measurement of the day).
In []:	<pre>hdpe_amplitude2 =hdpe2.load_data(col=3) # electric field amplitude plate_freq2 = plate2.load_data(col=2) plate_amplitude2 = plate2.load_data(col=3) f2, r2 = hdpe2.get_rt(plate_freq2, plate_amplitude2, hdpe_freq2, hdpe_amplitude2) # uff_smooth2, r_smooth2 = hdpe2.get_rt_smooth(plate_freq2, plate_amplitude2, hdpe_freq2, plt.figure() plt.figure() plt.plot(f2, r2, alpha=0.6, "C1") plt.plot(f_smooth2, r_smooth2, "C1")</pre>
	plt.plot(f, r, alpha=0.5, "C2") plt.xlabel("Frequency [GHz]") plt.ylabel("Reflectance") plt.show() Exercise 2: Simulating the Material Performance We can model a slab of some material with parallel edges as a Fabry-Perot cavity. As waves travel in and reflect back from the second boundary, interference occurs with the incoming rays. Both rays have a difference in the optical path length traveled, which results in a phase difference, causing a periodic
	 We can determine what the exact spacing of this intereference pattern should look like by knowing what the thickness d of the sample is, as well as the index of refraction of the material n, and the angle of incidence during our reflection measurement. Measure the material thickness in mm using the caliper provided. Determine the angle of incidence by (1) taking a bird's eye view photo of the setup and (2) using this
In [36]:	site to measure the angle between the receiver and transmitter, going out to the sample. Divide this value by two. Note: This code does not take into account any absorptive properties of the material!
	<pre>R = ((n-1)/(n+1))**2 c = 3e8 lamb = c/freq omega = 2*np.pi*(c/lamb) k = n*omega/c k0 = n0*omega/c angleT = np.arcsin((n0/n)*np.sin(angleI)) l = d*np.cos(angleT) s = 2*d*np.sin(angleI)/np.cos(angleT) a = s*np.sin(angleI)</pre>
	<pre>diff_phase = 2*k*l - k0*a T = (1 + 4*R/(1-R)**2*(np.sin(diff_phase/2))**2)**(-1) return 1-T def functionAiryR(n1, constants_, ff_): angleI_deg, thickness_mm = constants_ angleI_rad = np.radians(angleI_deg) # units: radians thickness_m = thickness_mm*1e-3 # thickness_m = thickness_in*0.0254 # units: mm # print("this is thckness:", thickness_m)</pre>
In [37]:	<pre>ff_Hz = ff_*le9 # units: Hz n0 = 1 # index of air: n0 n1 n0 where n1 is the index of the material params = [n0, n1, ff_Hz, thickness_m, angleI_rad] R = AiryR(params) return R In the next cells, plot a simulated version of what interference pattern we expect to see: # 1. Choose your frequency range: freqs_sim = np.linspace(60, 120, 300) # start freq [GHz], end freq [GHz], number of positions.</pre>
In [38]:	<pre># 2. Choose your parameters # a. predicted material index n1 # b. angle of incidence, theta_i [deg] # c. material thickness, d [mm] plt.figure() plt.title("") plt.plot(freqs_sim, functionAiryR(3.0, [13.5, 3.175], freqs_sim), '', label='Sim 1') # plt.plot(freqs_sim, functionAiryR(3.0, [13.5, 5], freqs_sim),'', label='Sim 2') # # plt.plot(freqs_sim, functionAiryR(3.0, [13.5, 10], freqs_sim),'', label='Sim 3') plt.plot(f_smooth, r_smooth, label='Measured')</pre>
	plt.xlabel("Frequency [Ghz]") plt.ylabel("Reflectance") plt.legend() plt.show()
	Uncomment out the extra simulation plotting lines and play around with different indices, thicknesses, etc.
	 What do you think will happen to the interference pattern as the material thickness increases? How about as the index of refraction increases? Plot our measurement data from Exercise 1 on top of the simulation and compare the two by eye. Play around with the simulation parameters to see how the two can match better.
In [23]:	<pre>Exercise 3: Fitting to the Index of Refraction Using your measured data from Exercise 1 and the rough parameter estimates from Exercise 2, fit to the material's index of refraction. def err(n1, constants_, ff_, sampleR): model = functionAiryR(n1, constants_, ff_) return np.sum((sampleR - model)**2) Enter the index guess below, as well as the angle of incidence and thickness.</pre>
	Then, in the X_fit = optimize.minimize line, enter the frequency and reflection of the sample that you want to fit to. p0 = 3. # Best n1 guess from Exercise 2 consts = [13.5, 0.125*25.4] # theta_i, incidence angle [deg], material thickness d [mmaterial thickness d material thic
In [35]:	<pre>plt.plot(f_smooth, functionAiryR(n_fit, [13.5, 3.175], f_smooth), '', label='Fit') plt.plot(f_smooth, r_smooth, label='Measured') plt.xlabel("Frequency [GHz]") plt.ylabel("Reflectance") plt.legend()</pre>
	0.7 - 0.6 - 0.5 - Fit Measured 0.2 - Fit Measured
	 O.1
	Success: You are done with Notebook 2: Reflection! You can now measure another material. If you finish early with the extra materials and have time, check out Notebook 3: Bonus Complex Index fits. Additional materials:
	 Low Pass Edge (LPE) filter from 180 to 250 GHz Alumina (aluminum oxide) disc from 60-120 GHz Additional Material: Low Pass Edge (LPE) Filter After repeating the measurement steps from Exercise 1 for the plate and LPE (take care with the LPE, it's more fragile), plot the results using the next two cells. The LPE is a metal-mesh filter, described in more detail here.
	# Insert file names have
In [39]: In [41]:	<pre># Insert file names here lpe = fls_rt("lpe3_180-250ghz.txt") # change "sample_num" to sample name with the mean plate = fls_rt("plate3_180-250ghz.txt") # change plate number to match sample measured lpe_freq =lpe.load_data(col=2) # frequency lpe_amplitude =lpe.load_data(col=3) # electric field amplitude plate_freq = plate.load_data(col=2) plate_amplitude = plate.load_data(col=3) f_lpe, r_lpe = lpe.get_rt(plate_freq, plate_amplitude, lpe_freq, lpe_amplitude) # un-s f_smooth_lpe, r_smooth_lpe = lpe.get_rt_smooth(plate_freq, plate_amplitude, lpe_freq,</pre>
	> 1 lpe_freq =lpe.load_data(col=2) # frequency 2 lpe_amplitude =lpe.load_data(col=3) # electric field amplitude 3 4 plate_freq = plate.load_data(col=2) 5 plate_amplitude = plate.load_data(col=3) <ipython-input-10-7e998e79653e> in load_data(self, path_, col) 8</ipython-input-10-7e998e79653e>
	<pre>col_data = data[:,col] return col_data ~\anaconda3\lib\site-packages\numpy\lib\npyio.py in genfromtxt(fname, dtype, comments, delimiter, skip_header, skip_footer, converters, missing_values, filling_values, usec ols, names, excludelist, deletechars, replace_space, autostrip, case_sensitive, defaul tfmt, unpack, usemask, loose, invalid_raise, max_rows, encoding)</pre>
	<pre>~\anaconda3\lib\site-packages\numpy\lib_datasource.py in open(path, mode, destpath, e ncoding, newline) 193 194 ds = DataSource(destpath)> 195 return ds.open(path, mode, encoding=encoding, newline=newline) 196 197 ~\anaconda3\lib\site-packages\numpy\lib_datasource.py in open(self, path, mode, encoding, newline) 533</pre>
	> 535 raise IOError("%s not found." % path) 536 537 OSError: /Users/Shreya Sutariya/data/20220407/lpe3_180-250ghz.txt not found. • Looking at this plot, high reflection means low transmission. Around which frequency does the LPE stop transmitting and instead reflects heavily? References
	 On photomixers and THz lasers: Info. Sheet: Laser-based terahertz generation & applications, M. Lang, et al. Review of photomixing continuous wave terahertz systems and current appplication trends in terahertz domain, R. Safian, et al. More on LPEs: PowerPoint: Metal-mesh technology: a past and presetn view, L. Moncelsi, et al. A review of metal mesh filters, P. Ade, et al.