Neural Modeling of Magnetic Tape Recorders

Otto Mikkonen, Alec Wright, Eloi Moliner, & Vesa Välimäki

7th September 2023

Outline

- Magnetic Recording
- Proposed Method
 - Modeling
 - Training
 - Experiments
- Conclusions

Magnetic Recording

Proposed Grey-Box Model

- "Recording Path" (Nonlinearity + Delay Line)
- Delay Generator
- Noise Generator

Proposed Grey-Box Model

Wright, et al. "Real-Time Black-Box Modelling with Recurrent Neural Networks." In Proc DAFX, 2019. Engel, et al. "DDSP: Differentiable Digital Signal Processing." In Proc. ICLR, 2020. Moliner, et al. "Realistic Gramophone Noise Synthesis Using a Diffusion Model." In Proc. DAFX, 2022

Training The Nonlinearity

Problem: Inputs and outputs are not aligned

Training The Nonlinearity

Solution: Let's track some delay trajectories and use them!

Supervised Schemes

Kaloinen. "Neural Modeling of the Audio Tape Echo Effect." Masters Thesis, Aalto University, 2022.

Adversarial Scheme

Wright, et al. "Adversarial Guitar Amplifier Modelling with Unpaired Data." In Proc. ICASSP. 2023

Experimental Setup

Experiment 1 – Toy Data

Python-wrapped CHOWTape

Experiment 2 – Real Data

Akai 4000D reel-to-reel

Input Data

SignalTrain (Hawley et al., 2020)

CHOWTape

© Chowdhury DSP

Exp. 1 - Toy Data

Outcomes:

- RNN learns magnetic hysteresis
- Supervised schemes work better than adversarial
- Diffusion model captures the delay trajectory distribution

Target

Model: Real Trajectory Model: Generated Traj. 5.0

Exp. 2 – Real Data

Input

Model

10k

Target

100

Frequency [Hz]

RNN learns linear response and produces harmonic distortion

10000

Adversarial scheme fails to learn the character

1000

Frequency [Hz]

100

Diffusion model captures delay trajectory and tape hiss distributions

Conclusions

In this work

- Grey-box model for VA tape recorders
- Training schemes for stereo and mono devices
- Delay trajectory and tape hiss generation with diffusion

What do next?

- Improve system for monophonic case
- Alternative generator architectures?

I'm looking for work, come talk to me!

Thanks!

aalto.fi

