Unit & Dimension

ASSIGNMENT-1 BY: M.R. SIR

1. If force acting on object is given as

 $F = 4 \sin\left(\frac{t}{\alpha}\right) \tan\left(\frac{x}{\beta}\right)$ then dimension of $\frac{\beta}{\alpha}$ is same as:

(A) Velocity

(B) accⁿ

(C) Time

20

20

(D) Length

2. Find dimension of $\sqrt{\mu_0 \varepsilon_0} \times \left(\frac{F}{qB}\right)$ F is force, q is charge, B is Magnetic field:

25 (A) M°L°T°

(B) MLT^{-1}

(C) $M^3T^2L^7$

(D) MLT⁻²

3. Measured length of object is 10.84 cm then it is measured by the instrument:

(A) Vernier calipers

(B) Screw gauze

²⁰ (C) Metre scale

(D) cane be measure by only on the instruments

4. Which of the following set of physical quantity can be considered as fundamental physical quantity?

- (A) Mass, force, acceleration
- (B) Power, Time, Energy
- (C) Moment, velocity, K.E.
- (D) Mass, Work, Force

5. Dimension of $\int v \, dt$ is same as –

(A) Radius

(B) Mass

20 (C) Wavelength

(D) Both (A) and (C)

6. Centripetal force acting on moving object depends on energy, length and mass then dimension of centripetal force will be

20 (A) E¹L⁻¹M°

(B) $E^1L^1M^1$

(C) $E^1L^{\circ}M^1$

(D) $E^{\circ}L^{1}M^{\circ}$

7. Unit for electromotive force is not same as –

 $(A) \frac{N-m}{C}$

(B) Volt

(C) eV

(D) J/C

8. Dimension of kepler's constant in equation $T^2 = KR^3$ where k is kepler constant.

(A) T^2L^{-3}

(B) T^2L^3

20 (C) T^2L^{-2}

(D) –

9. Which of the following is not a physical quantity?

(A) Inertia

(B) Temperature

20 (C) Moment of inertia

(D) Force

10. If momentum (p), area (A) and time (t) are taken to be fundamental quantities, than energy has the dimensional formula –

(A) $P^1 A^{-1} t^{-1}$

(B) $P^2 A^1 t^1$

(C) $P^1 A^{-1/2} t^1$

(D) $P^1 A^{1/2} t^{-1}$

11.	Which of the following pairs of physical quantities does not have same dimension?				
	(A)	Work, Torque	(B)	Angular momentum and Plank's constant	
21	(C)	Tension and surface Tension	(D)	Impulse and linear momentum	
12.	You	ng's modulus of steel is $1.9 \times 10^{11} \text{ N m}^{-2}$. V	Vhen	expressed in c.g.s. units of dyne cm ⁻² , it will be equal to	
21	(A)	1.9×10^{10}	(B)	1.9×10^{11}	
	(C)	1.9×10^{12}	(D)	1.9×10^{13}	
13.	1 fer	rmi =			
21	(A)	$10^{-10} \mathrm{m}$	(B)	10^{-15} m	
21	(C)	10 ⁻⁹ m	(D)	$10^{-12} \mathrm{m}$	
14.	The	dimensional formula of $\frac{L}{R}$ is			
26	(A)	$\mathbf{M}^{1}\mathbf{L}^{-1}\mathbf{T}^{-1}$	(B)	$M^0L^1T^{-1}$	
	(C)	$M^0L^0T^1$	(D)	$M^2L^2T^{-2}$	
. .	~				
15.	Shak		(D)	VI to Col	
21		Unit of length	` ′	Unit of time	
	(C)	Unit of mass	(D)	Unit of temperature	
16.		number of significant figures in 0.0305010			
21	(A)		(B)		
	(C)	3	(D)	7	
17. 21	In w	hich of the following, the number of signif	ficati	on figure is 3	
21	(A)	$0.021 \times 10^{-3} \text{ kg}$	(B)	240	
	(C)	9.01	(D)	All the option are correct	
18.	The	sum of 3.2421, 0.341 and 0.08 in appropri	ate si	ignificant figure	
21	(A)	3.6	(B)	3.66	
	(C)	3.663	(D)	3.6631	
19.	signi	The length of rectangular sheet is 1.256 cm an width is 1.0 cm. The area of the sheet to the correct number of significant figure is			
	. ,	1.2 cm^2	(B)	1.25 cm^2	
21	(C)	1.256 cm^2	(D)	None of the above	
20.	The	numbers 3.745 and 3.735 on rounding off		•	
21	(A)	3.75 and 3.74	(B)	3.74 and 3.73	
21	(C)	3.75 and 3.73	(D)	3.74 and 3.74	
21.	A force $F = avt^{-1} + bt^{-2}$, where v is velocity and t is time. What are the dimensions of a and b				
22	(A)	$M^1L^0T^0$ and $M^1L^0T^0$	(B)	$M^1L^1T^0$ and $M^1L^1T^1$	
22	(C)	$M^1L^0T^0$ and $M^1L^1T^0$	(D)	$M^1L^{-1}T^0$ and $M^0L^1T^0$	
22.		dimensional formula of term a and b in the	e give	en equation will be	
		$a(1 - e^{-bt})$, where E is energy.	(B)	NAIX 200 2 1 NAIX 000 1	
22	` '	$M^{1}L^{1}T^{-2}$ and $M^{0}L^{1}T^{1}$	` /	$M^{1}L^{2}T^{-2}$ and $M^{0}L^{0}T^{-1}$	
	(C)	M ⁰ L ⁰ T and M ⁰ L ⁰ T ⁻¹	(D)	$M^0L^1T^{-2}$ and $M^1L^0T^{-1}$	

23.	A di	mensionless quantity		
22	(A)	Never has a unit		(B) Always has unit
	(C)	May have a unit		(D) Does not exist
24.	The	units that are used for the fundamental phy	zsical	al quantities are called
		System of unit		Base units
22		Derived units	` ′	All of these
	()		()	
25.	The	wrong unit conversion among the followin	g is	
26	(A)	$1 \text{ angstrom} = 10^{-10} \text{m}$	(B)	$1 \text{ fermi} = 10^{-15} \text{m}$
	(C)	1 light year = 9.46×10^{15} m	(D)	1 astronomical unit = 1.496×10^{-11} m
26.	The dimensions of Planck's constant are the same as that of			
22		Linear impulse		Work
		Linear momentum	` ′	Angular Momentum
	()		()	
27.		solid angle subtended by the periphery of the area is	an a	area 1 cm ² at a point situated symmetrically at a distance of 5 cm
26	(A)	2×10^{-2} steradian	(B)	4×10^{-2} steradian
	(C)	6×10^{-2} steradian	(D)	8×10^{-2} steradian
28.				ent of a particle undergoing simple harmonic motion is not correct
22		ensionally? The symbols have there usual r	nean	nings.
	(A)	$y = a \sin \frac{2\pi t}{T}$	(B)	$y = a \cos \omega t$
	(C)	$y = \frac{a}{T}\sin\left(\frac{t}{a}\right)$	(D)	$y = a\sqrt{2}\left(\sin\frac{2\pi t}{T} + \cos\frac{2\pi t}{T}\right)$
29.	Whi	ch one of the following instruments is not	used	d for the measurement of length?
	(A)	Atomic clock	(B)	Vernier calipers
23	(C)	Screw gauge	(D)	Spherometer
30.	Whi	ch one of the following methods is used to	mea	asure the distance of a planet or a star from the earth?
		Echo method		Parallax method
23	(C)	Triangulation method	(D)	None of these
24	TC .1			
31.		e length, $L = G^p$ n ^q c ^q , where G is the universe of light, then the values of p, q and r as		al gravitational constant, h is the Planck's is constant and c is the
23				1/2, -1/2 and -5/2
		-1/2, 1/2 and 3/2		1/2, 1/2 and -3/2
	(-)		(-)	, , , , , , , , , , , , , , , , , , , ,
32.	If the	e size of bacteria is 1 micron, what will be	the r	number of it in 1 m length?
23	(A)	One hundred	(B)	One crore
	(C)	One thousand	(D)	10 lack
33. 23	A, B and C are three physical quantities having different dimensions. Which of the combination is never be a meaningful quantity			
		· ·		A + B
	(A)	$\frac{C}{C}$	(B)	$\frac{A+B}{C}$
		Ā		-
	(C)	$\frac{A}{BC}$	(D)	AB+C
00				
34.	The	dimensional formula of physical quantity i	s [M	M ^a L ^b T ^c]. Then that physical quantity is

	(A) Surface tension	on if $a = 1$, $b = 1$, $c = -2$				
	(B) Force $a = 1$, b	= 1, c = 2				
	(C) Angular freque	ency if $a = 0$, $b = 0$, $c = -1$				
	(D) Spring constar	nt if $a = 1$, $b = -1$, $c = -2$				
35.	The device used for	measuring the mass of ato	ms a	nd molecules is		
23	(A) Spring balance	ŧ	(B)	Torsional balance		
	(C) Mass spectrog	raph	(D)	Common balance		
3.0	1 '6' 1 .					

1 unified atomic mass unit (1 u) is equal to

(A)
$$1.66 \times 10^{-25} \text{ kg}$$

(B)
$$1.66 \times 10^{-27} \text{ kg}$$

23 (C)
$$1.66 \times 10^{-29}$$
 kg

(D)
$$1.66 \times 10^{-31} \text{ kg}$$

If the value of force is 100 N and value of acceleration is 0.001 m s⁻², what is the value of mass in this system of units?

(A)
$$10^3 \text{ kg}$$

(B)
$$10^4 \text{ kg}$$

(C)
$$10^5 \text{ kg}$$

(D)
$$10^6 \text{ kg}$$

38. The distance of a galaxy from the earth is of the order of 10^{25} m. The time taken by light to reach the earth from the galaxy is

23 (A)
$$3 \times 10^{14}$$
 s

(B)
$$3 \times 10^{16}$$
 s

(C)
$$3 \times 10^{18}$$
 s

(D)
$$3 \times 10^{20}$$
 s

Which of the following is the most precise instrument for measuring length?

- (A) Metre rod of least count 0.1 cm
- (B) Vernier calipers of least count 0.01 cm
- (C) Screw gauge of least count 0.001 cm
- (D) None of these

Which of the following statements is incorrect?

- (A) Every measurement by measuring instrument has some error.
- (B) A measurement can have more accuracy but less precision and vice versa. 24
 - (C) Every calculated quantity that is based on measured values has some error.
 - (D) The magnitude of the difference between the true value of the quantity and the individual measurement value is called the relative error of the measurement.

41. If $Z = \frac{A^4 B^{\frac{1}{3}}}{\frac{3}{2}}$ and ΔA , ΔB , ΔC and ΔD are their absolute errors in A, B, C and D respectively. The relative error in Z

is

(A)
$$\frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} + \frac{\Delta C}{C} + \frac{3}{2}\frac{\Delta D}{D}$$
(B)
$$\frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} - \frac{\Delta C}{C} - \frac{3}{2}\frac{\Delta D}{D}$$
(C)
$$\frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} + \frac{\Delta C}{C} - \frac{3}{2}\frac{\Delta D}{D}$$
(D)
$$\frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} - \frac{\Delta C}{C} + \frac{3}{2}\frac{\Delta D}{D}$$

(B)
$$\frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} - \frac{\Delta C}{C} - \frac{3}{2}\frac{\Delta D}{D}$$

(C)
$$\frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} + \frac{\Delta C}{C} - \frac{3}{2}\frac{\Delta D}{D}$$

(D)
$$\frac{\Delta Z}{Z} = 4\frac{\Delta A}{A} + \frac{1}{3}\frac{\Delta B}{B} - \frac{\Delta C}{C} + \frac{3}{2}\frac{\Delta D}{D}$$

Two resistors of resistances $R_1 = (300 \pm 3) \Omega$ and $R_2 = (500 \pm 4) \Omega$ are connected in series. The equivalent resistance of the series combination is 24

(A) $(800 \pm 1) \Omega$

(B) $(800 \pm 7) \Omega$

(C) $(200 \pm 7) \Omega$

(D) $(200 \pm 1) \Omega$

Percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in the estimation of kinetic energy obtained by measuring mass and speed will be

(A) 8%

(B) 2%

24 (C) 12% (D) 10%

44.	4. The period of oscillation of a simple pendulum is $T = 2\pi \sqrt{\frac{1}{2}}$. Measured value of L is 10 cm known to 1 mm accuracy
24	and time for 100 oscillations of the pendulum is found to accuracy in the determination of g?	
	(A) 2% (C) 4% (B) 3% (D) 5%	
45.	5. Which of the following statements is incorrect regarding statements (A) All the non-zero digits are significant.	gnificant figures?
25	(B) All the zeros between two non-zero digits are significant	
20	(D) The power of 10 is counted while counting the numb	

ANSWER KEY 1. (A) 2. (A) 3. (A) 4. (D) 5. (D) 6. (A) 7. (C) 8. (A) 9. (A) **10.** (D) 11. (C) **12.** (C) 13. (B) **14.** (C) **15.** (B) **16.** (A) **17.** (C) **18.** (B) **19.** (A) 20. (D) **21.** (C) 22. (B) 23. (C) **24.** (B) **25.** (D) **26.** (D) **27.** (B) **28.** (C) **29.** (A) **30.** (B) **31.** (D) **32.** (D) **33.** (B) 34. (C) **35.** (C) **36.** (B) **37.** (C) **38.** (B) **39.** (C) **40.** (D) **41.** (A) **42.** (B) **43.** (A) 44. (D) **45.** (D)

Hint and Solution

- **1.** Angle is dimensionless.
- **2.** Apply dimensional formula of each physical quantity.
- **3.** Least count of vernier calipers is 0.01 cm
- **4.** Combination of physical quantity which is independent of each other.
- 5. $vdt = [L^1T^{-1}T^1] = [L]$
- $6. \qquad F = \frac{w}{x}$
- **7.** Theory based.
- **8.** $T^2 = KR^3$
- **9.** Inertia is property of matter.
- 10. Using dimensional analysis.
- 11. Theory based.
- 12. $1N = 10^6 \, dyne$ $1m^2 = 10^4 \, cm^2$
- **13.** Theory based.
- **14.** It is time constant.
- **15.** It is practical unit of time (1 shake = 10^{-8} s).
- **16.** Apply rule of counting zero's.
- 17. Zero in between two non-zero digits in significant.
- **18.** The result should be having least number of decimal places.
- **19.** The result should be having least no. of significant figure.
- 20. Apply rounding off rule
- **21.** Apply principle of homogeneity.
- **22.** Apply principle of homogeneity.
- 23. Think about angle.
- **24.** Based on theory.

- **25.** Based on theory.
- **26.** $L = \frac{nh}{2\pi}$
- 27. $\Omega = \frac{\text{Area}}{r^2}$
- 28. $\frac{a}{T} = V$ L.H.S. \neq R.H.S.
- **29.** Atomic clock is for time.
- **30.** Theory based.
- **31.** Solve it by dimensional analysis.
- 32. Number = $\frac{1m}{10^{-6}m}$
- **33.** By principle of homogeneity
- **34.** $\omega = 2\pi f$
- **35.** Knowledge based.
- **36.** Knowledge based.
- 37. $m = \frac{F}{a}$
- $38. t = \frac{d}{c} .$
- **39.** The reading will be more precise if least court is minimum.
- **40.** Absolute error = True value Measured value.
- **41.** Working theory.
- **42.** $R = R_1 + R_2$ and $\Delta R = \Delta R_1 + \Delta R_2$
- **43.** $\frac{\Delta K.E.}{K.E.} \times 100 = \left(\frac{\Delta m}{m} + \frac{2\Delta V}{V}\right) \times 100$
- **44.** $\frac{\Delta g}{g} \times 100 = \left(\frac{\Delta L}{L} + \frac{2\Delta T}{T}\right) \times 100$
- **45.** Theory based.