## Prácticas de Lgica y Computabilidad

## Mauro Abel Campillo

## 11/05/2012

## • PRÁCTICA 3

- 1. (a) No se que es, creo que no es nada porque por definición  $f_2$  es binaria pero aqui se la usa como si fuese una función unaria. Además el cuantificador existencial está cuantificando una fórmula cuando debería cuantificar una variable
  - (b) Es una fórmula ya que  $f_1$  es unaria y  $f_2$  es binaria
  - (c) No es una fórmula debido a que se está cuantificando una constante C con el cuantificador existencial, cuando solo se deben cuantificar variables ¿Es un término?
  - (d) Idem anterior
  - (e) El  $\exists x$  aparece dos veces en la misma sentencia, esta mal formado, no es fórmula ¿Es un término?
  - (f) Es fórmula
- 2. (a) En la primera parte x aparece ligada en el  $\forall x$ , también y aparece ligada pues ambas estan siendo afectadas por cuantificadores
  - (b) En  $(\exists x P(y,y))$  y aparece libre, x NO debido a que está siendo afectada por un cuantificador, luego en  $\exists y P(y,z)$  y aparece ligada y z libre
  - (c) Veamos que x aparece ligada ya que está afectada por el cuantificador existencial, de modo que en subsiguientes apariciones x ya estará ligada. Analizando la primera parte de la conjunción  $(\exists y P(x,x))$  y aparece ligada pero en la segunda parte (P(x,y)) y aparece libre pues el cuantificador solo afecta a la primera parte de la conjunción
  - (d) Bastante parecido al anterior
- 3. (a) No es una interpretación válida ya que  $f_1$  va de los  $\mathbb{N} \to \mathbb{R}$  mientras que el universo de interpretación  $U_I = \mathbb{N}$ , absurdo ya que la imagén de la función corresponde a algo que cae fuera del universo de interpretación
  - (b) Es válida
  - (c) Si el universo de interpretación  $U_I$  son los  $\mathbb N$  entonces esta no es una interpretación válida debido a que las constantes  $c_I=d_I=0$  y el 0 esta fuera del universo de interpretación. Si se esta incluyendo al 0 dentro de los  $\mathbb N$ , es decir  $\mathbb N\cup 0$  entonces la interpretación es válida. Además la imagen de la función  $g_1(n,n)=n^2-n$  es siempre  $\geq 0 \ \forall \ n\in \mathbb N\cup 0$  y puede demostrarse por inducción
- 4. (a) Para todo x, y si  $x \le y$  existe un numero z tal que  $x \le z$  y  $z \le y$ . Me esta diciendo en los reales dados dos numeros siempre voy a poder encontrar un numero mayor al primero y menor al segundo.
  - (b) Todos los días nace un esclavo
  - (c) Para todos los números, si son pares, vale que su suma da como resultado un número impar
- 5. (a) Hay una persona que quiere a todas
  - (b) Toda persona tiene alguien que lo quiera
  - (c) Para toda persona que quiera a alguien, hay una persona que lo quiere a él.
  - (d) Hay alguien que no quiere a nadie
- 6. (a)