Previous Page | Next Page

The COUNTREG Procedure

Overview Getting Started Syntax - Details - Examples - References

Example 11.2 ZIP and ZINB Models for Data Exhibiting Extra Zeros

In the study by Long (1997) of the number of published articles by scientists (see the section <u>Getting Started:</u> <u>COUNTREG Procedure</u>), the observed proportion of scientists who publish no articles is 0.3005. The following statements use PROC FREQ to compute the proportion of scientists who publish each observed number of articles. <u>Output 11.2.1</u> shows the results.

```
proc freq data=long97data;
  table art / out=obs;
run;
```

Output 11.2.1 Proportion of Scientists Who Publish a Certain Number of Articles

The FREQ Procedure

art	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	275	30.05	275	30.05
1	246	26.89	521	56.94
2	178	19.45	699	76.39
3	84	9.18	783	85.57
4	67	7.32	850	92.90
5	27	2.95	877	95.85
6	17	1.86	894	97.70
7	12	1.31	906	99.02
8	1	0.11	907	99.13
9	2	0.22	909	99.34
10	1	0.11	910	99.45
11	1	0.11	911	99.56
12	2	0.22	913	99.78
16	1	0.11	914	99.89
19	1	0.11	915	100.00

PROC COUNTREG is then used to fit Poisson and negative binomial models to the data. For each model, the PROBCOUNT option computes the probability that the number of published articles is m, for m = 0 to 10. The following statements compute the estimates for Poisson and negative binomial models. The MEAN procedure is then used to compute the average probability of a zero response.

```
proc countreg data=long97data;
   model art=fem mar kid5 phd ment / dist=poisson;
   output out=predpoi probcount(0 to 10);
run;

proc means mean data=predpoi;
   var p_0;
run;
```

The output from the Poisson model for the COUNTREG and MEAN procedures is shown in Output 11.2.2.

Output 11.2.2 Poisson Model Estimation

The COUNTREG Procedure

Model Fit Summary					
Dependent Variable	art				
Number of Observations	915				
Data Set	WORK.LONG97DATA				
Model	Poisson				
Log Likelihood	-1651				
Maximum Absolute Gradient	3.5741E-9				
Number of Iterations	5				
Optimization Method	Newton-Raphson				
AIC	3314				
SBC	3343				

Algorithm converged.

Parameter Estimates								
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr > t			
Intercept	1	0.304617	0.102982	2.96	0.0031			
fem	1	-0.224594	0.054614	-4.11	<.0001			
mar	1	0.155243	0.061375	2.53	0.0114			
kid5	1	-0.184883	0.040127	-4.61	<.0001			
phd	1	0.012823	0.026397	0.49	0.6271			
ment	1	0.025543	0.002006	12.73	<.0001			

The MEANS Procedure

Analysis Variable
: P_0 Probability
of art taking level=0
Mean

Analysis Variable
: P_0 Probability
of art taking level=0

Mean

0.2092071

The following statements show the syntax for the negative binomial model:

```
proc countreg data=long97data;
   model art=fem mar kid5 phd ment / dist=negbin(p=2) method=qn;
   output out=prednb probcount(0 to 10);
run;

proc means mean data=prednb;
   var p_0;
run;
```

Output 11.2.3 shows the results of the preceding statements.

Output 11.2.3 Negative Binomial Model Estimation

The COUNTREG Procedure

Model Fit Summary					
Dependent Variable	art				
Number of Observations	915				
Data Set	WORK.LONG97DATA				
Model	NegBin				
Log Likelihood	-1561				
Maximum Absolute Gradient	1.75584E-6				
Number of Iterations	16				
Optimization Method	Quasi-Newton				
AIC	3136				
SBC	3170				

Algorithm converged.

Parameter Estimates							
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr > t		
Intercept	1	0.256144	0.138560	1.85	0.0645		
fem	1	-0.216418	0.072672	-2.98	0.0029		
mar	1	0.150489	0.082106	1.83	0.0668		
kid5	1	-0.176415	0.053060	-3.32	0.0009		
phd	1	0.015271	0.036040	0.42	0.6718		

Parameter Estimates							
Parameter DF Estimate Standard Error t Value Pr >							
ment	1	0.029082	0.003470	8.38	<.0001		
_Alpha	1	0.441620	0.052967	8.34	<.0001		

The MEANS Procedure

Analysis Variable
: P_0 Probability
of art taking level=0

Mean

0.3035957

For each model, the predicted proportion of zero articles can be calculated as the average predicted probability of zero articles across all scientists. Under the Poisson model, the predicted proportion of zero articles is 0.2092, which considerably underestimates the observed proportion. The negative binomial more closely estimates the proportion of zeros (0.3036). Also, the test of the dispersion parameter, _Alpha, in the negative binomial model indicates significant overdispersion (p < 0.0001). As a result, the negative binomial model is preferred to the Poisson model.

Another way to account for the large number of zeros in this data set is to fit a zero-inflated Poisson (ZIP) or a zero-inflated negative binomial (ZINB) model. In the following statements, DIST=ZIP requests the ZIP model. In the ZEROMODEL statement, you can specify the predictors, \mathbf{z} , for the process that generated the additional zeros. The ZEROMODEL statement also specifies the model for the probability $\boldsymbol{\varphi}$. By default, a logistic model is used for $\boldsymbol{\varphi}$. The default can be changed using the LINK= option. In this particular ZIP model, all variables used to model $\boldsymbol{\varphi}$.

```
proc countreg data=long97data;
  model art = fem mar kid5 phd ment / dist=zip;
  zeromodel art ~ fem mar kid5 phd ment;
  output out=predzip probcount(0 to 10);
run;

proc means data=predzip mean;
  var p_0;
run;
```

The parameters of the ZIP model are displayed in Output 11.2.4. The first set of parameters gives the estimates of β in the model for the Poisson process mean. Parameters with the prefix "Inf_" are the estimates of γ in the logistic model for ϕ .

Output 11.2.4 ZIP Model Estimation

The COUNTREG Procedure

Model Fit Summary				
Dependent Variable	art			
Number of Observations	915			
Data Set	WORK.LONG97DATA			
Model	ZIP			
ZI Link Function	Logistic			
ZI Link Function	Logistic			

Model Fit Summary						
Log Likelihood	-1605					
Maximum Absolute Gradient	2.08803E-7					
Number of Iterations	16					
Optimization Method	Newton-Raphson					
AIC	3234					
SBC	3291					

Algorithm converged.

Parameter Estimates							
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr > t		
Intercept	1	0.640838	0.121306	5.28	<.0001		
fem	1	-0.209145	0.063405	-3.30	0.0010		
mar	1	0.103751	0.071111	1.46	0.1446		
kid5	1	-0.143320	0.047429	-3.02	0.0025		
phd	1	-0.006166	0.031008	-0.20	0.8424		
ment	1	0.018098	0.002295	7.89	<.0001		
Inf_Intercept	1	-0.577060	0.509383	-1.13	0.2573		
Inf_fem	1	0.109747	0.280082	0.39	0.6952		
Inf_mar	1	-0.354013	0.317611	-1.11	0.2650		
Inf_kid5	1	0.217101	0.196481	1.10	0.2692		
Inf_phd	1	0.001272	0.145262	0.01	0.9930		
Inf_ment	1	-0.134114	0.045244	-2.96	0.0030		

The MEANS Procedure

Analysis Variable
: P_0 Probability
of art taking level=0

Mean

0.2985679

The proportion of zeros predicted by the ZIP model is 0.2986, which is much closer to the observed proportion than the Poisson model. But <u>Output 11.2.6</u> shows that both models deviate from the observed proportions at one, two, and three articles.

The ZINB model is specified by the DIST=ZINB option. All variables are again used to model both the number of articles and φ . The METHOD=QN option specifies that the quasi-Newton method be used to fit the model rather than the default Newton-Raphson method. These options are implemented in the following statements:

```
proc countreg data=long97data;
   model art=fem mar kid5 phd ment / dist=zinb method=qn;
   zeromodel art ~ fem mar kid5 phd ment;
   output out=predzinb probcount(0 to 10);
run;

proc means data=predzinb mean;
   var p_0;
run;
```

The estimated parameters of the ZINB model are shown in $\underbrace{\text{Output } 11.2.5}$. The test for overdispersion again indicates a preference for the negative binomial version of the zero-inflated model ($p < 0.000 \, \text{l}$). The ZINB model also does a good job of estimating the proportion of zeros (0.3119), and it follows the observed proportions well, though possibly not as well as the negative binomial model.

Output 11.2.5 ZINB Model Estimation

The COUNTREG Procedure

Model Fit Summary					
Dependent Variable	art				
Number of Observations	915				
Data Set	WORK.LONG97DATA				
Model	ZINB				
ZI Link Function	Logistic				
Log Likelihood	-1550				
Maximum Absolute Gradient	0.00591				
Number of Iterations	81				
Optimization Method	Quasi-Newton				
AIC	3126				
SBC	3189				

Algorithm converged.

Parameter Estimates						
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr > t	
Intercept	1	0.416747	0.143596	2.90	0.0037	
fem	1	-0.195507	0.075592	-2.59	0.0097	
mar	1	0.097583	0.084452	1.16	0.2479	
kid5	1	-0.151733	0.054206	-2.80	0.0051	
phd	1	-0.000700	0.036270	-0.02	0.9846	
ment	1	0.024786	0.003493	7.10	<.0001	
Inf_Intercept	1	-0.191679	1.322795	-0.14	0.8848	
Inf_fem	1	0.635924	0.848902	0.75	0.4538	

Parameter Estimates							
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr > t		
Inf_mar	1	-1.499439	0.938648	-1.60	0.1102		
Inf_kid5	1	0.628412	0.442777	1.42	0.1558		
Inf_phd	1	-0.037719	0.308003	-0.12	0.9025		
Inf_ment	1	-0.882281	0.316219	-2.79	0.0053		
_Alpha	1	0.376680	0.051029	7.38	<.0001		

The MEANS Procedure

Analysis Variable
: P_0 Probability
of art taking level=0

Mean

0.3119486

The following statements compute the average predicted count probability across all scientists for each count 0, 1, ..., 10. The averages for each model, along with the observed proportions, are then arranged for plotting by PROC SGPLOT.

```
proc summary data=predpoi;
    var p 0-p 10;
    output out=mnpoi mean(p 0-p 10)=mn0-mn10;
run;
proc summary data=prednb;
    var p 0-p 10;
    output out=mnnb mean(p 0-p 10)=mn0-mn10;
run;
proc summary data=predzip;
    var p_0-p_10;
    output out=mnzip mean(p_0-p_10)=mn0-mn10;
run;
proc summary data=predzinb;
    var p_0-p_10;
    output out=mnzinb mean(p_0-p_10)=mn0-mn10;
run;
data means;
   set mnpoi mnnb mnzip mnzinb;
   drop _type_ _freq_;
run;
proc transpose data=means out=tmeans;
run;
data allpred;
  merge obs(where=(art<=10)) tmeans;</pre>
   obs=percent/100;
run;
proc sgplot;
   yaxis label='Probability';
   xaxis label='Number of Articles';
   series y=obs x=art / name='obs' legendlabel='Observed'
```

```
lineattrs=(color=black thickness=4px);
series y=col1 x=art / name='poi' legendlabel='Poisson'
    lineattrs=(color=blue);
series y=col2 x=art/ name='nb' legendlabel='Negative Binomial'
    lineattrs=(color=red);
series y=col3 x=art/ name='zip' legendlabel='ZIP'
    lineattrs=(color=blue pattern=2);
series y=col4 x=art/ name='zinb' legendlabel='ZINB'
    lineattrs=(color=red pattern=2);
discretelegend 'poi' 'zip' 'nb' 'zinb' 'obs' / title='Models:'
    location=inside position=ne across=2 down=3;
run;
```

For each of the four fitted models, <u>Output 11.2.6</u> shows the average predicted count probability for each article count across all scientists. The Poisson model clearly underestimates the proportion of zero articles published, while the other three models are quite accurate at zero. All of the models do well at the larger numbers of articles.

Previous Page | Next Page | Top of Page