

Name:	Daniel	Bociarsh
Subject	: Physics	
Class:	Vanat	, ru

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Section I

Multiple Choice Answer Sheet

Instructions

- · Write using black pen.
- Answer Questions 1–20 only on this answer sheet.
- Select the alternative A, B, C or D that best answers the question.
- Fill in the response oval completely.
- If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
- If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer with a labelled arrow.

1	A	B ((11	190	B	ⓒ	(
2		\bigcirc B	ⓒ	D			12	A	B	ⓒ	
3	\bigcirc		©	0			13	A	$^{\mathbb{B}}$	ⓒ	
4	1000	B	©	(D)			14	A	\bigcirc	ⓒ	3
5	A		ⓒ	(D)			15	A		©	D
6	A	(E)	©	D			16	A		×	0
7	A	@	0	(D)			17	A	(3)	<u></u>	0
8	A	B	©	(W)			18	A	B	©	0
9	\bigcirc	B	*	0			19	A	(2)	©	0
10	A		0	(D)			20		B	((D)

HIGHER SCHOOL CERTIFICATE EXAMINATION

Name: Daniel Bociarshi
Class: Vanathy

Physics

Section II Answer Booklet

80 marks

Attempt Questions 21-31

Allow about 2 hours and 25 minutes for this section

Instructions

- Write your Name and Class at the top of this page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Show all relevant working in questions involving calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Please turn over

Question 21 (7 marks)

A ball labelled A is thrown at a speed of 10.0 ms⁻¹ at an angle of 30.0° off an 8.00 m tall cliff, as shown in the diagram below.

(a) Calculate the maximum height of the projectile.

 $-\frac{v_{y}^{2}-u_{y}^{2}+2as_{y}}{s_{y}^{2}-u_{y}^{2}+2as_{y}}$ $=\frac{2as_{y}^{2}}{2as_{y}^{2}-2as_{y}^{2}}$ $=\frac{2as_{y}^{2}-2as_{y}^{2}}{2x(29.8)}$ $=\frac{2s_{y}^{2}-2as_{y}^{2}-2as_{y}^{2}}{19.6}$

= 1.28m

(b) Show that the time of flight of the projectile is approximately 1.886 s.

3

3

)= U_{y} tart, U_{y} that = U_{y} tart = U_{y} tart

 $-8 = 5t - 4.9t^{2}$ $0 = 4.9t^{2} - 5t$

 $b = 4.96 = 5 \pm 125 - 4(4.968)$ $= 1.886_{5} = 0.86_{5}$

D15 Card -ve

(c) Calculate the range of the projectile.

Reuzt

= 10cos 30 x 1,886 = 16.33m,

ACE PHYSICS EP 1

Question 22 (4 marks)

A schematic diagram of a simple DC generator is shown below.

(a) Sketch the output voltage from this generator in the space provided below, for two complete revolutions of the coil.

(b) Sketch the output voltage if the single split ring commutator is replaced with a multiple split ring commutator.

Question 23 (7 marks)

A student attempts to simulate Thomson's charge to mass ratio experiment.

A uniform electric field of magnitude 200 NC⁻¹ is generated by a pair of parallel plates as shown in the diagram below.

(a) Draw the electric field lines that are generated by the oppositely charged plates

(b) Determine the direction and magnitude of the applied magnetic field such that the cathode rays remain undeflected.

Into page Fet-0=qE-qVB

E=VB

 $B = \frac{5}{\sqrt{200}} = 0.0001 T info$

.....

2

Question 23 (continued)

(c) Explain how your answer to part b) would change if the cathode rays were replaced by a beam of protons with the same initial speed as the cathode rays.

2

As the protons are positively charged unlike the cathode rays, they will deflect towards the -ve plate initially, this means the applied B' field would have to be applied out of the page.

RE=QVB

RE=QVB

RE=E, as v.E is constant magnitude of B field is the End of Question 23 same as in b)

ACE PHYSICS EP 1

Question 24 (10 marks)

, Votige (y, (v)

An experiment is designed to confirm the value of Planck's constant.

To do so, it investigates the relationship between stopping voltage and frequency for a photoelectric effect experiment.

The AVERAGE results are shown in the table opposite.

frequency f (×10 ¹⁵ Hz)	stopping voltage, V _s (V)
0.50	1.2
0.75	2.5
1.0	3.6
1.25	4.7
1.50	6.0

(a) Plot a graph of stopping voltage V_s versus frequency f on the grid provided below, including a line of best fit.

frequency of the xis

Question 24 (continued)

(b)	Use your graph from part (a) to estimate the work function of the metal, in eV. 2 We have $\frac{1}{2}$ Threshold freq: 0.20×10^{15} Hz
	D= hf-qv = 1.92154×10-19)
	= 1.199 eV
	•••••••••••••••••••••••••
(c)	Determine the experimental value of Planck's constant and hence assess the accuracy of this experiment.
	Port Use point (1.3×10'5,5) and (60.67×10'5,2) = Dz 19(5-7)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	6.199 × 1602 × 10-19 -7628×1034
	6.199 × 1602 × 10-19 = 7.628 × 1035
	n= 7. 83964
	=7,628 × 10 ⁻³⁴ / ₃
f i	The experiment was accurate as it determined
ich's	constant to a close degree, where exp. value was in 6.626 × 10 and the result was only 15% above the expected value. However, using such small comment on the reliability of this experiment value.
rest	1 6.626 ×10 and the result was only 15% above
(d)	Comment on the reliability of this experiment. values in results meant 2
	The experiencest was reliable as it was was accurate
	averaged and : repeated with removed
	outliers, as well as having a consistent
	value close to the known value of
	Planch's constant meaning the results wore
	consistent and reliable

End of Question 24

Question 25 (9 marks)

"The scientific method requires constant revision of models as new evidence emerges."

Assess the validity of this statement with reference to our early understanding of light based on the work of Newton, Huygens, Young and Foucault.

nature of light his been discussed by physicists depth for centuries the Newton was the fit to majorly define light as something, wh defined as a small particles called corpuscles ese particles travelled in straight beans Newton attempted to explain phenomena with it. For example, he believed that as light was Kirchere sped up in mediums such as water Re by Young's double stit experiment. The non oridar

Question 25 (continued) his double slit experiment small that when two beams of light were diffracted Slits (as below), an interforence spattiren pottom could be seen. to the super positioning of Laves and destructive/constructive Interference were exclusively wave properties, this meant that ight was a have as of durkness and light with fazzy edges overlapped showing that he light had constructive and destructive interferences, Huggen's model over Newtons, Shanging Morringshowing how scientific method requires constant revision due to Furthermore, He work of Foucault Newtone also improved the understanding of light by shooting a light source on notating minor at measuring to angle, this meant he determined and Foucalf measurel measured to be 3.1×10 light travelled at a Phite fast progress of scientific thought die

ALL

Question 26 (9 marks)

A physics student attempts to replicate Faraday's iron ring experiment in order to demonstrate the principle of electromagnetic induction.

A diagram of the situation is shown below.

(ain how the		ing improves	the sensitiv	vity of this tr	ansformer.		4	
	A	iron	Ì5 α	n exc	ellen 1	magna	Ac co	dacto	· ·	
	05	compare	d to	air	40	wood	(like	faradoy	s posto	Hamp
lue to	it	thus all	annant	f.	magnetic	don	alns	and	therefor	e
s eusg	higher	Plow	of m	agnetic around	Plux	b is	achiev.	ed. 70	is	
M	eus	He	coils	around	Re	core	as w	ellas.	He	
	antive.	trans	Jone	itself	can	change	noe	easily	and	
				power						e
efficien	ncy. I	his m	eara	as more	2 þ	`sca	chied.	by H	e 8# 1	don
ring/	nor e	ø e	ntes th	e secon	darg	coil,	allow	19. Fd	^	
mil	pou	V	to.	e secon be to	arom	Hed	to	le 3	econd	ay
Crouit	r <i>U</i>	DP IN	m vina	H	que	dify,	sens	Hrity		
d	He	trans	oforner	- He	,	\(\tag{7}				

Question 26 continues on page 21

Question 26 (continued)

(b) The student closes the switch, waits a few seconds, then opens the switch again.

Explain the observations that the student would make during this process.	5
As the switch is closed, carrent	
flows, causing a Nth pole to dendon	
at the bottom of a circuit due to forade	75
tensinduction. By taraday and Lens's Lows	,
state that ar confiner so will induce an e	ans
to generate a B field to oppose this chi	age.
This means a NH pole is invoked at	the
hollow of the secondary coil. This induces a	n electrica
current by induction cousing the galunameter t	to surp
in one direction. However, due to the DC si	wax (4)
this DO would ho longer occur after after	seads
and return to ground state. Atomican he	with
is requied. Le decreuse in coment	at 0
means a Sth pole is instigated in the	
coil at Q. This reverses current direction	2mol
the galvanometer sungs in the opposite	direction
coil at Or This reverses current direction a the galvanometer sungs in the opposite before, then reluend of Question 26	. (1)
- / C/1 / D End of Question 20	

Question 27 (7 marks)

The following astronomical data shows the period and orbital radius for three of Jupiter's moons.

(a) Fill in the missing columns in the table below (answers to 2 decimal places).

		K	٦		
	Orbital	Orbital	Orbital	Orbital	Orbital
	radius	radius³	Period	Period	Period ²
	r	l r³	T	T	T^2
	$(\times 10^6 \mathrm{m})$	$(\times 10^{25} \mathrm{m}^3)$	(days)	(×10 ⁵ s)	$(\times 10^{10} \mathrm{s}^2)$
Io	422	7.52	1.75	1.51	2.29
Europa	671	30.21^-	3.54	3.06,	<u>΄</u> α΄35, `
Ganymede	1070	122.50	7.17	6.19	38.38

(b) Hence, using the data for Ganymede, calculate the mass of Jupiter.

r3 -	ig the data for Ganymede, car	•	3
	M = 6.67xD x.T	122.5 × (0 ²⁵	······································
	= malares	6.67×10-4	×11. ×158:3765×10103
	= 1.88938	0547×10 ²⁷ k	;·····
	€ ≈ 1.89 × 10	+27/2g	
		\mathcal{I}	•

Question 28 (5 marks)

in a hydrogen atom.
$\lambda = \frac{h}{m}, E = hA$

•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

Question 29 (8 marks)

A proton enters a large, uniform magnetic field region \vec{B} with an initial speed v at an angle α , as shown in the diagram below.

\vec{B}	<u> </u>
	CETTODO DO DO COLETE CO
	Coriginally goes into page that and
Vand 1 actor	undegoes uniform circular meter
γ_{α}	while moving to the cight in a rectifica
,,	undergoes uniform circular meters while moving to the right in a tection mother, causing uniform helical motion
the uniform magnetic field.	the motion of the proton whilst it is moving in
A a proton is	a charged particle
ith a= 1.602 × 10-	o Cando m= 1.675x10 113
with the B A	a charged particle of charged particle of charged particle interacts eld, undergoing unform is means, using the rule, it deflects downwards
clocular motion. This	s means, using the
right hand palm	rule, it deflects downwards

B field meaning this component of the relocity is acted upon, instead the component of the parallel velocity This causings an acceleration and force cousing uniform sixular motion

Question 29 continues on page 25

Question 29 (continued)
Using $F_c = \frac{mu^2}{n}$ = 1.044×10-8 However, due to the Un component a constant V developed to on the diagram. in this nation presumably forces proton exits the B Hield. le under goes "helical motion where the distance between peaks, d, is constant, as well as the pitch of the helit.

End of Question 29

Question 30 (9 marks)

Positron-emission tomography is a medical imaging technique that relies on nuclear physics. Flourine-18 (F-18) is a commonly used radioactive tracer in medicine and its decay table is shown below.

Time t (mins)	0	50	100	150	200	250
Percent remaining of F-18 (%)	100	72	53	39	28	21

(a) Graph the 'percent remaining of F-18' as a function of time.

(b)	Use your graph	to estimate	the half-life	of Flourine-18.
-----	----------------	-------------	---------------	-----------------

110 mins	- 66 00s	

1

Question 30 (continued)

(c) In order to reach stability, F-18 usually decays to O-18 via the following equation:

$$^{18}_{9}F \rightarrow ^{18}_{8}O + ^{0}_{+1}\overline{e} + ^{0}_{0}v_{e}$$

Justify the use of F-18 as a medical diagnostic tool, with particular reference to matter-antimatter annihilation.				
In the Beta plus (B+) decay of F18 it				
produces an a posttron. This anti-electron				
collides quickly with lotter electrons close by				
in antimater-matter annihilation producing pure energy.				
Using e=mc==(2×4.109×6")×(3×10")= 1.63962×10-13J=1MeV				
of anegy in the form of high energy V gamma rays is produce. This highly penetrative EMN/photopenestrates the body				
This highly penetrative EMN/photopenetrates the body				
and is uniformly distributed amend the collision.				
By viewing the absorption of Y roys in the				
body, on objects that should not have the certain absorption				
of 1 rays can be scanned such as cancerous				
cells, diagnosing physicall illnesses. Also, as F-18 has				
a longaish halflife the the F-18 will not deary				
as fast, meaning less positions are formed and				
loss energy is released, heathier for the human body then the same mass of a substance with				
then the same mass of a substance with a short wavelength.				
a short wavelength.				
End of Question 30				

Question 31 (5 marks)

A satellite of mass m is in a Low Earth Orbit (LEO) at a distance r above the centre of the Earth

(a) Show that the total mechanical energy E of the satellite is given by $E = \frac{-GmM}{2r}$ $Z = E_{m} + V_{m} = \frac{1}{2} m v^{2} + \left(-\frac{GMm}{2r}\right) = \frac{mv^{2} - \frac{GMm}{2r}}{2r}$ $Z = \frac{1}{2} m v^{2} + \frac{1}$

(b) A major limitation of LEO satellites is that they experience atmospheric drag, a friction force, when interacting with the Earth's atmosphere.

Use $E = \frac{-GmM}{2r}$ to help explain why atmospheric drag will cause a LEO satellite to lose altitude.

As KEL with increasing drag due to

Non-dastic collissions with atmospheric particles, E

overall decreases. As E or this means
that for every time Et, Mystowers as
is to ranging in equilibrium. As EL, KEW and VV

meaning there that is not enough contributed force
to main tain altitude, easing the radius to
become as it spirals tomands the context not

heying E = - and as that is for uniform circ. motion

only:

Section II extra writing space

If you use this space, clearly indicate which question you are answering.

x=25 Q31a) V= 211

T2 7 31112

= 47272 × aM = am = am

 $\frac{1}{2} \cdot K_{E} + U = \frac{aMm}{7} - \frac{aMm}{7} = \frac{aMm}{27} - \frac{2amm}{27}$ $= -\frac{aMm}{27}$

Section II extra writing space

If you use this space, clearly indicate which question you are answering.

ACE