Prof. Dr. Noam Berger PD Dr. G. Witterstein

MA9202, Analysis 1 Probeklausur

WS 2016/17 Blatt PK

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion, dass $\prod_{k=0}^{n} (1+x^{2^k}) = \frac{1-x^{2^{n+1}}}{1-x}$ für alle $n \in \mathbb{N}$ und für alle $x \neq 1$ gilt.

2. Komplexe Zahlen

[6 Punkte]

(a) Bestimmen Sie Real- und Imaginärteil von $\left(1+\frac{1}{i}\right)^{-1}$.

$$\operatorname{Re}\left(\left(1+\frac{1}{i}\right)^{-1}\right) =$$

$$\operatorname{Im}\left(\left(1+\frac{1}{i}\right)^{-1}\right) =$$

(b) Bestimmen Sie alle komplexen Zahlen z=x+iy mit $x,y\in\mathbb{R}$ und $z^3=1$.

3. Konvergenz von Folgen und Reihen

[6 Punkte]

- (a) Bestimmen Sie den Grenzwert von $\lim_{n\to\infty} \left(\sqrt{n^2+1}-n\right)$.
- (b) Untersuchen Sie in Abhängigkeit des festen Parameters $c \in \mathbb{C} \setminus \{-1\}$, ob die folgende Reihe konvergiert, und bestimmen Sie ggf. ihren Grenzwert $\sum_{k=1}^{\infty} \frac{c^k}{(c+1)^{k+1}}$.

4. Potenzreihen

[6 Punkte]

Bestimmen Sie den Konvergenzradius der komplexen Potenzreihe $\sum_{k=0}^{\infty} k!\,z^k.$

5. Grenzwerte von Funktionen, stetige Fortsetzbarkeit

[7 Punkte]

- (a) Es sei $a \in \mathbb{R}_+ \setminus \{1\}$ und $f : \mathbb{R} \to \mathbb{R}_+$ gegeben durch $f(x) := a^x$.
 - (i) Zeigen Sie, dass f im Fall a>1 streng monoton wachsend und im Fall a<1 streng monoton fallend ist.
 - (ii) Bestimmen Sie die Grenzwerte $\lim_{x \to \infty} f(x)$ und $\lim_{x \to -\infty} f(x)$.
- (b) Durch welchen Wert ist die Funktion $f: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R}, f(x) = \frac{x^2 3x + 2}{x^2 1}$ bei x = 1 stetig fortsetzbar?

6. Zwischenwertsatz

[7 Punkte]

Es sei $f: \mathbb{R} \to \mathbb{R}$ eine 2π -periodische stetige Funktion. Zeigen Sie, dass es ein $x_0 \in \mathbb{R}$ gibt, so dass $f(x_0) = f(x_0 + \pi)$.

HINWEIS: Man betrachte die Funktion $F(x) = f(x) - f(x + \pi)$.

7. Taylorentwicklung

[8 Punkte]

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}, f(x) = \int_{1}^{x} e^{t^2} dt$.

(a) Die Funktion f ist

 \square stetig \square 2π -periodisch

□ streng monoton steigend

 \square streng monoton fallend ?

Begründen Sie Ihre Antwort! HINWEIS: Es kann mehr als eine korrekte Antwort geben.

(b) Bestimmen Sie das Taylorpolynom zweiter Ordnung von f im Entwicklungspunkt 1.