STAT 3690 Lecture Note

Part III: Multivariate normal distribution

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

Multivariate normal (MVN) distribution (J&W Sec 4.2)

Definition

- Standard MVN
 - $-\mathbf{Z} = [Z_1, \dots, Z_p]^{\top} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \Leftrightarrow Z_1, \dots, Z_p \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ pdf

$$f_{\mathbf{Z}}(\mathbf{z}) = (2\pi)^{-p/2} \exp(-\mathbf{z}^{\top}\mathbf{z}/2) \cdot \mathbf{1}_{\mathbb{R}^p}(\mathbf{z})$$

- General MVN
 - $-\boldsymbol{X} = [X_1, \dots, X_p]^{\top} \sim \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \text{there exists } \boldsymbol{\mu} \in \mathbb{R}^p, \, \mathbf{A} \in \mathbb{R}^{p \times p} \text{ and } \boldsymbol{Z} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \text{ such that } \boldsymbol{X} = \mathbf{A}\boldsymbol{Z} + \boldsymbol{\mu} \text{ and } \boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$
 - * Limited to non-degenerate cases, i.e., invertible $\mathbf{A}~(\Leftrightarrow \mathbf{\Sigma} > 0)$
 - pdf

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = (2\pi)^{-p/2} (\text{det}\boldsymbol{\Sigma})^{-1/2} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2\} \cdot \boldsymbol{1}_{\mathbb{R}^p}(\boldsymbol{x})$$

• Exercise 3.1: Density of $MVN_2(\mu, \Sigma)$ evaluated at (4,7), where

$$\boldsymbol{\mu} = [3, 6]^{\mathsf{T}}, \quad \boldsymbol{\Sigma} = \left[\begin{array}{cc} 10 & 2 \\ 2 & 5 \end{array} \right].$$

```
options(digits = 4)
(Mu = matrix(c(3, 6), ncol = 1, nrow = 2))
(Sigma = matrix(c(10, 2 ,2, 5), ncol = 2, nrow = 2))
(x = c(4,7))
# Method 1: following the pdf
(2*pi)^{-length(Mu)/2}*det(Sigma)^{-.5}*exp(-drop(t(x-Mu)%*%solve(Sigma)%*%(x-Mu))/2)
# Method 2: via mutnorm::dmunorm()
mvtnorm::dmvnorm(x, mean = Mu, sigma = Sigma)
```

Properties of MVN

- X is of MVN $\Leftrightarrow a^{\top}X$ is normally distributed for ALL non-zero $a \in \mathbb{R}^p$.
 - Warning: the marginal normality do not imply the joint normality.
- If $X \sim \text{MVN}_p(\mu, \Sigma)$, then $\mathbf{A}X + \mathbf{b} \sim \text{MVN}_q(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma \mathbf{A}^\top)$ for $\mathbf{A} \in \mathbb{R}^{q \times p}$ of full-row-rank. Specifically, if $X \sim \text{MVN}_p(\mu, \Sigma)$, then
 - $-\mathbf{\Sigma}^{-1/2}(\hat{\mathbf{X}}-\boldsymbol{\mu})\sim \mathrm{MVN}_p(\mathbf{0},\mathbf{I}) \; \mathrm{AND}$

- (Stochastic representation of MVN) there is $\mathbf{Z} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I})$ such that $\mathbf{X} = \mathbf{\Sigma}^{1/2} \mathbf{Z} + \boldsymbol{\mu}$. • $(\mathbf{X} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$ if $\mathbf{X} \sim \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Exercise 3.2: Generate six iid samples following bivariate normal $MVN_2(\mu, \Sigma)$ with

$$\boldsymbol{\mu} = [3, 6]^{\mathsf{T}}, \quad \boldsymbol{\Sigma} = \left[\begin{array}{cc} 10 & 2 \\ 2 & 5 \end{array} \right].$$

```
options(digits = 4)
set.seed(1)
(Mu = matrix(c(3, 6), ncol = 1, nrow = 2))
(Sigma = matrix(c(10, 2, 2, 5), ncol = 2, nrow = 2))
n = 10
# Method 1: following the stochastic representation
sample1 = matrix(0, nrow = n, ncol = length(Mu))
for (i in 1:n) {
    sample1[i, ] = t(
        expm::sqrtm(Sigma) %*%
        matrix(rnorm(length(Mu)), nrow = length(Mu), ncol = 1) +
        Mu
)
}
sample1
# Method 2: via MASS::murnorm()
(sample2 = MASS::murnorm(n, Mu, Sigma))
```

• Exercise 3.3: Suppose $X_1 \sim \mathcal{N}(0,1)$. In the following two cases, verify that $X_2 \sim \mathcal{N}(0,1)$ as well. Does $\boldsymbol{X} = [X_1, X_2]^{\top}$ follow an MVN in both cases? a. $X_2 = -X_1$; b. $X_2 = (2Y - 1)X_1$, where $Y \sim \text{Ber}(p)$ and $Y \perp \!\!\! \perp X_1$.

```
options(digits = 4)
set.seed(1)
xsize = 1e4L
x1 = rnorm(xsize)
# case a
x2 = -x1
plot3D::hist3D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # 3d histogram of (x1, x2)
plot3D::image2D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # plot the support of joint pdf
# case b
Y = rbinom(n = xsize, 1, .3)
x2 = (2 * Y - 1) * x1
plot3D::hist3D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # 3d histogram of (x1, x2)
plot3D::image2D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # plot the support of joint pdf
```

Marginal and conditional MVN

• If $X \sim \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$m{X} = \left[egin{array}{c} m{X}_1 \ m{X}_2 \end{array}
ight], \quad m{\mu} = \left[egin{array}{c} m{\mu}_1 \ m{\mu}_2 \end{array}
ight] \quad ext{and} \quad m{\Sigma} = \left[egin{array}{c} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{array}
ight]$$

with

- random p_i -vector \mathbf{X}_i , i = 1, 2,
- $-p_i$ -vector $\boldsymbol{\mu}_i$, i=1,2,
- $-p_i \times p_i \text{ matrix } \Sigma_{ii} > 0, i = 1, 2,$
- then
 - (Marginals of MVN are still MVN) $X_i \sim \text{MVN}_{p_i}(\mu_i, \Sigma_{ii})$
 - $\boldsymbol{X}_i \mid \boldsymbol{X}_j = \boldsymbol{x}_j \sim \text{MVN}_{p_i}(\boldsymbol{\mu}_{i|j}, \boldsymbol{\Sigma}_{i|j})$
 - $*~oldsymbol{\mu}_{i|j} = oldsymbol{\mu}_i + oldsymbol{\Sigma}_{ij} oldsymbol{\Sigma}_{ij}^{-1} (oldsymbol{x}_j oldsymbol{\mu}_j)$
 - $* \ oldsymbol{\Sigma}_{i|j} = oldsymbol{\Sigma}_{ii} oldsymbol{\Sigma}_{ij} oldsymbol{\Sigma}_{jj}^{-1} oldsymbol{\Sigma}_{ji} \ \ oldsymbol{X}_1 \perp \!\!\! \perp oldsymbol{X}_2 \Leftrightarrow oldsymbol{\Sigma}_{12} = oldsymbol{0}$
 - - * Warning: the prerequisite for this equivalence is the joint normal of X_1 and X_2 .
- Exercise 3.4: The argument $X_1 \perp \!\!\! \perp X_2 \Leftrightarrow \Sigma_{12} = 0$ is based on $[X_1^\top, X_2^\top]^\top \sim \text{MVN}$. That is, if X_1 and X_2 are both MVN BUT they are not jointly normal, the zero Σ_{12} doesn't suffice for the independence between X_1 and X_2 . Recall the case b. in Exercise 3.3: $X_1 \sim \mathcal{N}(0,1)$ and $X_2 = (2Y-1)X_1$, where $Y \sim \text{Ber}(p)$ and $Y \perp \!\!\! \perp X_1$. Verify that X_1 and X_2 are not independent of each other. (Hint: assume the independence and then check the support of $[X_1, X_2]^{\top}$.)

Hypothesis testing

• Is it a squirrel?

Figure 1: Squirrel (Photograph by the Lacoste Garden Centre)

Figure 2: Flying Squirrel (Photograph by Joel Sartore)

Figure 3: Flying Squirrel (Photograph by Alex Badyaev)

- Null and alternative hypotheses, say H_0 and H_1 , resp.
- Name of testing method
- Test statistic (varying with the testing method) and corresponding level α rejection region R_{α}

 - $\begin{array}{l} \ \operatorname{Pr}(\operatorname{test} \ \operatorname{statistic} \in R_{\alpha} \mid H_0) \leq \alpha \\ \ \operatorname{Reject} \ H_0 \ \text{if the value of test statistic} \in R_{\alpha} \end{array}$
 - * Type I error: H_0 is incorrectly rejected; i.e., H_0 is correct but rejected

- * Type II error: H_0 is incorrectly accepted i.e., H_0 is wrong but NOT rejected
- p-value: a special test statistic with a default level α rejection region $[0,\alpha]$
- Necessary components in reporting a testing result
 - 1. Hypotheses
 - 2. Name of approach
 - 3. Level α
 - 4. (Value of test statistic AND rejection region) OR p-value
 - 5. Conclusion: e.g., at the α level, we reject/do not reject H_0 , i.e., we believe that...

Checking/testing the normality (J&W Sec 4.6)

```
Checkcing the univariate normality

Normal Q-Q plot
* qqnorm(); car::qqPlot()
Univariate normality test
* shapiro.test(); nortest::ad.test(); MVN::mvn()

Checkcing the multivariate normality

χ² Q-Q plot
* D<sub>i</sub>² = (X<sub>i</sub> − X̄)<sup>T</sup>S<sup>-1</sup>(X<sub>i</sub> − X̄) ≈ χ²(p) if X<sub>i</sub> iid MVN<sub>p</sub>(μ, Σ)
* qqplot(); car::qqPlot()
Multivariate normality test
* MVN::mvn()
```

```
options(digits = 4)
library(datasets)
data(iris)
head(iris)
(iris_setosa = iris[iris$Species=='setosa', 1:3])
p = ncol(iris_setosa)
n = nrow(iris setosa)
# Marginal normal Q-Q plot
car::qqPlot(rnorm(n), id = F)
car::qqPlot(iris_setosa[,1], id = F)
car::qqPlot(iris_setosa[,2], id = F)
car::qqPlot(iris_setosa[,3], id = F)
# Univariate normality test
## Shapiro-Wilk Normality Test
shapiro.test(rnorm(n))
shapiro.test(iris setosa[,1])
shapiro.test(iris_setosa[,2])
shapiro.test(iris_setosa[,3])
## Anderson-Darling test for normality
nortest::ad.test(iris setosa[,1])
nortest::ad.test(iris_setosa[,2])
nortest::ad.test(iris_setosa[,3])
## via MVN::mvn()
MVN::mvn(
  iris_setosa,
  univariateTest = "AD" # "SW"/"CVM"/"Lillie"/"SF"/"AD"
```

```
)$univariateNormality

# chi^2 Q-Q plot
d_square = diag(
    as.matrix(sweep(iris_setosa, 2, colMeans(iris_setosa))) %*%
        solve(var(iris_setosa)) %*%
        t(as.matrix(sweep(iris_setosa, 2, colMeans(iris_setosa))))
)
car::qqPlot(d_square, dist="chisq", df = p, id = F)
MVN::mvn(
    iris_setosa,
    multivariatePlot = "qq"
)

# Multivariate normality test
MVN::mvn(
    iris_setosa,
    mvnTest = "dh" # "mardia"/"hz"/"royston"/"dh"/"energy"
)$multivariateNormality
```

Detecting outliers (J&W Sec 4.7)

- Scatter plot of standardized values
- Checking the points farthest from the origin in χ^2 Q-Q plot

Improving normality (J&W Sec 4.8)

• (Original) Box-Cox (power) transformation: transform positive x into

$$X^* = \begin{cases} (X^{\lambda} - 1)/\lambda & \lambda \neq 0\\ \ln(X) & \lambda = 0 \end{cases}$$

with λ selected with certain criterion

- If $X \leq 0$, change it to be positive first.
- See J. Tukey (1977). Exploratory Data Analysis. Boston: Addison-Wesley.

```
library(datasets)
data(iris)
head(iris)
iris_setosa = iris[iris$Species=='setosa', 1:3]

iris_setosa = iris_setosa - min(iris_setosa) + 1 # make sure all the entries are positive

(lambda = EnvStats::boxcox(iris_setosa[,2], optimize=T)$lambda)
if (lambda != 0){
    df_new = (iris_setosa[,2]^lambda-1)/lambda
}else df_new = log(iris_setosa[,2])

car::qqPlot(df_new, id = F)
shapiro.test(df_new)
nortest::ad.test(df_new)
```

• Multivariate Box-Cox transformation

```
(lambdas = MVN::mvn(
  iris_setosa,
  bc = T,
  bcType = 'optimal'
) $BoxCoxPowerTransformation)
iris setosa new = iris setosa
for (i in 1:length(lambdas)){
  if (lambdas[i] != 0){
    iris_setosa_new[,i] = (iris_setosa[,i]^lambdas[i]-1)/lambdas[i]
  }else iris_setosa_new[,i] = log(iris_setosa[,i])
MVN::mvn(
  iris setosa new,
  mvnTest = "energy" # "mardia"/"hz"/"royston"/"dh"/"energy"
)$multivariateNormality
```

Maximum likelihood (ML) estimation of μ and Σ (J&W Sec 4.3)

- Sample: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{MVN}_n(\mu, \Sigma), n > p$
- Likelihood function

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{(2\pi)^{p} \det(\boldsymbol{\Sigma})}} \exp\left\{ -\frac{1}{2} (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) \right\} \right]$$
$$= \frac{1}{\sqrt{(2\pi)^{np} \{\det(\boldsymbol{\Sigma})\}^{n}}} \exp\left\{ -\frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) \right\}$$

· Log likelihood

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{np}{2} \ln(2\pi) - \frac{n}{2} \ln\{\det(\boldsymbol{\Sigma})\} - \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{X}_i - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_i - \boldsymbol{\mu})$$

ML estimator

$$(\hat{\boldsymbol{\mu}}_{\mathrm{ML}}, \widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}}) = \arg\max_{\boldsymbol{\mu} \in \mathbb{R}^p, \boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}, \boldsymbol{\Sigma} > 0} \ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\bar{\boldsymbol{X}}, \frac{n-1}{n} \mathbf{S})$$

- Consistency: $(\hat{\boldsymbol{\mu}}_{\mathrm{ML}}, \widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}})$ approaches $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ (in certain sense) as $n \to \infty$
- Efficiency: the covariance matrix of $(\hat{\mu}_{\mathrm{ML}}, \hat{\Sigma}_{\mathrm{ML}})$ is approximately optimal (in certain sense) as $n \to \infty$
- Invariance: for any function g, the ML estimator of $g(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is $g(\hat{\boldsymbol{\mu}}_{\mathrm{ML}}, \widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}})$.

Sampling distributions of \bar{X} and S (J&W Sec 4.4)

- Recall the univariate case: if $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, then * Sample variance $s^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ $-\sqrt{n}(\bar{X}-\mu)/\sigma \sim \mathcal{N}(0,1)$ $-(n-1)s^{2}/\sigma^{2} \sim \chi^{2}(n-1)$ $-\sqrt{n}(\bar{X}-\mu)/s \sim t(n-1)$
- The multivariate case: if $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mu, \Sigma), n > p$, then
 - $-\mathbf{S} \perp \!\!\! \perp \bar{X}$, i.e., $\widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}} \perp \!\!\! \perp \widehat{\boldsymbol{\mu}}_{\mathrm{ML}} \sqrt{n} \boldsymbol{\Sigma}^{-1/2} (\bar{X} \boldsymbol{\mu}) \sim \mathrm{MVN}_p(\mathbf{0}, \mathbf{I})$

$$\begin{array}{l} -\ (n-1)\mathbf{S} = n\widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}} \sim W_p(\boldsymbol{\Sigma}, n-1) \\ -\ n(\bar{\boldsymbol{X}} - \boldsymbol{\mu})^{\top}\mathbf{S}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \sim \ \mathrm{Hotelling's} \ T^2(p, n-1) \end{array}$$

- Wishart distribution
 - $W_p(\mathbf{\Sigma}, n)$ is the distribution of $\sum_{i=1}^n \mathbf{Y}_i \mathbf{Y}_i^{\top}$ with $\mathbf{Y}_1, \dots, \mathbf{Y}_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mathbf{0}, \mathbf{\Sigma})$ * A generalization of χ^2 -distribution: $W_p(\mathbf{\Sigma}, n) = \chi^2(n)$ if $p = \mathbf{\Sigma} = 1$
 - - * $\mathbf{A}\mathbf{A}^{\top} > 0$ and $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n) \Rightarrow \mathbf{A}\mathbf{W}\mathbf{A}^{\top} \sim W_p(\mathbf{A}\mathbf{\Sigma}\mathbf{A}^{\top}, n)$
 - * $\mathbf{W}_i \stackrel{\text{iid}}{\sim} W_p(\mathbf{\Sigma}, n_i) \Rightarrow \mathbf{W}_1 + \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n_1 + n_2)$
 - * $\mathbf{W}_1 \perp \!\!\! \perp \mathbf{W}_2$, $\mathbf{W}_1 + \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n)$ and $\mathbf{W}_1 \sim W_p(\mathbf{\Sigma}, n_1) \Rightarrow \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n n_1)$ * $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n)$ and $\mathbf{a} \in \mathbb{R}^p \Rightarrow$

$$\frac{\boldsymbol{a}^{\top} \mathbf{W} \boldsymbol{a}}{\boldsymbol{a}^{\top} \boldsymbol{\Sigma} \boldsymbol{a}} \sim \chi^{2}(n)$$

* $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n), \ \boldsymbol{a} \in \mathbb{R}^p \text{ and } n \geq p \Rightarrow$

$$\frac{\boldsymbol{a}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{a}}{\boldsymbol{a}^{\top} \mathbf{W}^{-1} \boldsymbol{a}} \sim \chi^{2} (n - p + 1)$$

* $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n) \Rightarrow$

$$\operatorname{tr}(\mathbf{\Sigma}^{-1}\mathbf{W}) \sim \chi^2(np)$$

- Hotelling's T^2 distribution
 - A generalization of (Student's) t-distribution
 - If $X \sim \text{MVN}_p(\mathbf{0}, \mathbf{I})$ and $\mathbf{W} \sim W_p(\mathbf{I}, n)$, then

$$\boldsymbol{X}^{\top} \mathbf{W}^{-1} \boldsymbol{X} \sim T^2(p, n)$$

$$-Y \sim T^2(p,n) \Leftrightarrow \frac{n-p+1}{np}Y \sim F(p,n-p+1)$$

- Wilk's lambda distribution
 - Wilks's lambda is to Hotelling's T^2 as F distribution is to Student's t in univariate statistics.
 - Given independent $\mathbf{W}_1 \sim W_p(\Sigma, n_1)$ and $\mathbf{W}_2 \sim W_p(\Sigma, n_2)$ with $n_1 \geq p$,

$$\Lambda = \frac{\det(\mathbf{W}_1)}{\det(\mathbf{W}_1 + \mathbf{W}_2)} = \frac{1}{\det(\mathbf{I} + \mathbf{W}_1^{-1}\mathbf{W}_2)} \sim \Lambda(p, n_1, n_2)$$

* Resort to an approximation in computation: $\{(p-n_2+1)/2-n_1\}\ln\Lambda(p,n_1,n_2)\approx\chi^2(n_2p)$