L	T	Р	C
4	0	0	4

Course Code: CSE409

Semester: VII

PARALLEL & DISTRIBUTED SYSTEMS

Course Objectives

This course will help the learner to design parallel and distributed algorithms and demonstrate them using CUDA.

UNIT - I 15 Periods

Heterogeneous Parallel Computing with CUDA: Parallel Computing - Heterogeneous Computing - CUDA Programming Model: Timing Your Kernel - Organizing Parallel Threads - Global Memory - CUDA memory model - Memory Management - Shared Memory and Constant Memory: Shared Memory Allocation - Banks and Access Mode - Configuring the Amount of Shared Memory - Synchronization - Constant Memory - Streams and Concurrency: Introducing Streams and Events - Tuning Instruction-level primitives: CUDA Instructions

UNIT - II 15 Periods

Parallel Processing: Introduction - Parallel Processing Terminology - The Sieve of Eratosthenes - **PRAM Algorithms:** Parallel Reduction - Prefix sums - List Ranking - Pre-order Tree Traversal - Merging of two sorted Lists - Graph coloring - **Matrix Multiplication:** Algorithms for processor Arrays - **Sorting:** Enumeration sort - Odd Even transposition sort-Parallel Quick sort - Hyper quick sort

UNIT - III 15 Periods

Introduction: Design goals - Types of distributed systems: High performance distributed computing - Distributed information systems - Pervasive systems - Architecture: System architecture - Communication: Message-oriented communication - Simple transient messaging with sockets - Advanced transient messaging - Message-oriented persistent communication - Multicast communication: Application-level tree-based multicasting - Flooding-based multicasting - Gossip-based data dissemination

UNIT - IV 15 Periods

Coordination: Clock Synchronization - Logical clocks - Mutual Exclusion: Centralized algorithm - Distributed Algorithm - Token-ring algorithm - Decentralized Algorithm - Election Algorithms: Bully algorithm - Ring algorithm - Elections in wireless environment and large scale systems - Fault Tolerance: Introduction to fault tolerance - Concepts - Failure models - Failure masking by redundancy - Reliable client server communication: Point to point communication - RPC semantics in the presence of failures - Reliable Group Communication: Atomic multicast - Distributed commit - Recovery

TEXTBOOKS

- Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems, Prentice Hall of India, Third Edition, 2017.
- John Cheng, Max Grossman and Ty McKercher. Professional CUDA C programming, John Wiley & Sons Inc., 2014.
- Michael J. Quinn. Parallel Computing Theory and Practice, McGraw Hill, Second Edition, 2011.

REFERENCES

- Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General Purpose GPU Programming, Addison-Wesley, 2011.
- 2. Andrew S. Tanenbaum. Distributed Operating System, Prentice Hall of India, 2006.
- Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar. Introduction to Parallel Computing, Pearson Education, Second Edition, 2003.

ONLINE MATERIALS

- http://nptel.ac.in/courses/106102114/
- 2. http://nptel.ac.in/courses/106106107/

LEARNING OUTCOMES

Upon successful completion of this course, the learner will be able to

Unit I	 Recognize the properties of CUDA enabled device Design kernel using different types of memory with multiple blocks and multiple threads
Unit II	Classify the concepts of parallel computing
	 Distinguish various PRAM algorithms and parallel algorithms for matrix multiplication and sorting
Unit III	 Understand the need and nature of distributed concepts
	 Evaluate transient and persistence message oriented communication
	Understand the multi-cast communication
Unit IV	Demonstrate clock synchronization with fault tolerance
	Formulate group communication
	Construct distributed commit and recovery procedures

COURSE LEARNING OUTCOMES

Upon successful completion of this course, the learner will be able to

- Write programs to explore parallel programming, thread synchronization and atomics using CUDA environment
- · Apply PRAM algorithms and parallel algorithms for matrix multiplication and sorting
- Appraise the software and hardware characteristics of distributed systems
- · Discuss the concept of system architecture and style of distributed systems
- · Demonstrate message oriented communication in distributed environment
- Formulate group communication with clock synchronization, fault tolerant mechanisms, distributed commit and recovery procedures