

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

Laborübungen 3

Fortgeschrittene Experimentiertechniken

Übungstitel	. Hall Effekt						
Betreuer:	M. Ramsey						
Name:	Johannes Winkler						
Kennzahl:	UB 033 678	Matrikelnummer:	00760897				
Datum:	07.05.2021		Sommer 2021				

Inhaltsverzeichnis

In	nhaltsverzeichnis 2				
1	Aufgabenstellung	3			
2	Grundlagen	3			
3	Versuchsaufbau	4			
4	Geräteliste	5			
5	Durchführung und Messergebnisse	6			
6	Auswertung	7			
7	Diskussion	8			
8	Zusammenfassung	8			
9	Literaturverzeichnis	8			

1 Aufgabenstellung

Es ist die Hall-Konstante und die Ladungsträgerkonzentration eines Ge-Kristalls zu bestimmen. Dies sollte durch mehrfache Messungen der Hallspannung bei gegebenem Querstrom und Magnetfeldstärke bestimmt werden.

2 Grundlagen

Abbildung 1: Grundlagen des Hall Effekts. Quelle: [1]

Grafik 1 zeigt das Prinzip des Hall Effekts. Durch einen Kristall (in der Skizze quaderförmig) fließt ein Querstrom I in x-Richtung. Zusätzlich wird in z-Richtung ein Magnetfeld angelegt. Die durch I bewegten Ladungsträger fließen nun mit einer bestimmten Geschwindigkeit v (Driftgeschwindigkeit) durch das Magnetfeld. Dabei werden sie von der Lorentzkraft

$$F = q \cdot (\vec{v} \times \vec{B})$$

abgelenkt, wobei aufgrund der Orthogonalität auch mit den skalaren Größen gerechnet werden kann. Also gilt für die Lorentzkraft

$$F = q \cdot v \cdot B$$

wobei $q \in \{e, -e\}$ betragsmäßig die Elementarladung ist und je nach Dotierung ein positives oder negatives Vorzeichen hat. Durch die Lorentzkraft werden positive und negative Ladungen in entgegen gesetzte Richtung abgelenkt, sodass sich in y-Richtung ein elektrisches Feld E_H bildet. Dieses wird solange vergrößert, bis die Coulombkraft die Lorentzkraft kompensiert und ein Gleichgewichtszustand eintritt. Dann gilt

$$q \cdot E_H = q \cdot v \cdot B$$

Division durch q und Einsetzen der Driftgeschwindigkeit ergibt sich

$$E_H = \frac{I}{\nu \cdot A \cdot q} \cdot B$$

07.05.2021 J. Winkler

wobei A als (entgegen Grafik 1) quadratische Querschnittsfläche mit $A=d^2$ angenommen wird und $\nu \in \{n,p\}$ die Ladungsträgerdichte ist (je nach Dotierung). Da d hinreichend klein ist, wird das elektrische Feld innerhalb des Kristalls als konstant angenommen, sodass $U_H = E_H \cdot d$ gilt. Es folgt

$$U_H = \frac{I \cdot B}{\nu \cdot a \cdot d}$$

oder anders geschrieben

Hall Effekt

$$U_H = R_H \cdot \frac{I \cdot B}{d} \tag{1}$$

wobei für die Hall-Konstante $R_H = \frac{1}{\nu \cdot q}$ gilt

$$R_H = egin{cases} -rac{1}{n\cdot e} & ext{für Elektronenleitung} \\ +rac{1}{p\cdot e} & ext{für Löchterleitung} \end{cases}$$

3 Versuchsaufbau

Abbildung 2: Aufbau des Versuchs. Quelle: [1]

4 Geräteliste

Tabelle 1: Liste der verwendeten Geräte

	Geräte
1	Versuchsapparatur für Hall-Effekt mit Ge-Kristall mit $d=(1.0\pm0.1)~\mathrm{mm}$
2	Elektromagnet
3	Netzgerät für Elektromagneten
4	Computer mit Cassy-Lab 2
5	Cassy Sensor

07.05.2021 Hall Effekt J. Winkler

5 Durchführung und Messergebnisse

Für die Messung wurde die magnetische Flussdichte zwischen B=-250 mT und B=250 mT in Schritten von 50 mT variiert. Der Strom durch den Kristall wird beginnend bei I=2 mA in 5 mA Schritten auf bis zu 32 mA erhöht. Insgesamt ergeben sich die Messwerte

Tabelle 2: Messwerte für die Hall-Spannung U_B in mV bei gegebenen Magnetfeld B in mT und gegebenen Querstrom I in mA.

I	U_{-250}	U_{-200}	U_{-150}	U_{-100}	U_{-50}	U_0	U_{50}	U_{100}	U_{150}	U_{200}	U_{250}
2	-2.3	-1.6	-1.1	-0.5	0.1	0.8	1.4	1.9	2.6	3.2	3.8
7	-7.6	-5.8	-3.8	-2.0	0.0	1.8	3.7	5.5	7.4	9.3	11.2
12	-13.4	-10.2	-6.9	-3.6	-0.3	3.0	6.2	9.4	12.8	16.0	19.2
17	-19.2	-14.6	-9.9	-5.2	-0.6	3.0	8.7	13.3	18.1	22.7	27.3
22	-25.4	-19.3	-13.2	-7.0	-1.0	5.2	11.3	17.6	23.7	29.8	35.8
27	-30.6	-23.5	-16.0	-8.6	-1.3	6.2	13.7	21.1	28.5	35.9	43.2
32	-36.0	-27.5	-18.9	-10.1	-1.6	7.2	16.0	24.6	33.3	42.0	50.6

Die Messwerte werden nun in Grafik 3 dargestellt, wobei die Hallspannung abhängig vom Querstrom angegeben wird.

Abbildung 3: Grafische Darstellung der Hall-Spannung aus Tabelle 2 in Abhängigkeit zum Querstrom.

Die Messwerte werden nun in Grafik 4 dargestellt, wobei die Hallspannung abhängig von der ma-

07.05.2021 Hall Effekt J. Winkler

gnetischen Flussdichte angegeben wird.

Abbildung 4: Grafische Darstellung der Hall-Spannung aus Tabelle 2 in Abhängigkeit zur magnetischen Flussdichte.

6 Auswertung

Nach Gleichung (1) gilt folgende Beziehung

$$U_H = R_H \cdot \frac{I \cdot B}{d} \tag{2}$$

Wobei diese auch auf die Arten

$$U_H = \frac{R_H \cdot B}{d} \cdot I \tag{3}$$

$$U_H = \frac{R_H \cdot I}{d} \cdot B \tag{4}$$

geschrieben werden kann. Man kann daher die Hall-Konstante sowohl durch Regression zwischen I und U_H , als auch bei einer Regression zwischen B und U_H berechnen.

Es empfiehlt sich praktischerweise, die Hall-Konstante durch eine Regression zwischen B und U_H zu bestimmen, wobei I konstant gehalten wird. Das liegt zum einen an der Messreihe für B=0. Da hätte man zur Berechnung von $R_H=\frac{k\cdot d}{B}$ eine Nulldivision. Das Problem stellt sich für die Regression zwischen B und U_H nicht, da $I\neq 0$ gilt. Die Ergebnisse sind in Tabelle 3 zu sehen.

07.05.2021 Hall Effekt J. Winkler

Tabelle 3: Berechnung der Regressionsgeraden (4) zwischen B und U_H bei fixem Strom I. Aus der Steigung k wird die Hall-Konstante $R_H = k \cdot d/I$ berechnet und daraus wiederum die Ladungsträgerkonzentration $p = (R_H \cdot e)^{-1}$.

I / mA	$\mid k \mid \text{mV/T} \mid$	$R_H / \mathrm{m}^3/\mathrm{C}$	p / m^{-3}
2	12	$6.08 \cdot 10^{-3}$	$103 \cdot 10^{19}$
7	38	$5.37 \cdot 10^{-3}$	$116 \cdot 10^{19}$
12	65	$5.45 \cdot 10^{-3}$	$115 \cdot 10^{19}$
17	93	$5.48 \cdot 10^{-3}$	$114 \cdot 10^{19}$
22	123	$5.58 \cdot 10^{-3}$	$112 \cdot 10^{19}$
27	148	$5.48 \cdot 10^{-3}$	$114 \cdot 10^{19}$
32	174	$5.42 \cdot 10^{-3}$	$115 \cdot 10^{19}$

Wenn man in Tabelle 3 die Zeile für I=2 mA als Ausreisser sieht, dann gilt offenbar für die Hall-Konstante durch Bildung von Mittelwert und Standardabweichung

$$R_H = (5.46 \pm 0.06) \cdot 10^{-3} \text{ m}^3/\text{C}$$

 $p = (114 \pm 1) \cdot 10^{19} \text{ m}^{-3}$

7 Diskussion

Durch die positive Hall-Konstante zeigt sich, dass es sich um Lochleitung handelt und daher die Ladungsträgerdichte als p geschrieben wird. Der Zahlenwert selbst ist für Germanium schwer aufzutreiben. Außerdem hängt dieser noch von verschiedenen Faktoren ab, zB. von Reinheit und Temperatur und Dotierung.

8 Zusammenfassung

In diesem Experiment war die Hall-Konstante und die Ladungsträgerdichte eines Germanium-Kristalls zu bestimmen. Es wurden die folgenden Werte bestimmt.

$$R_H = (5.46 \pm 0.06) \cdot 10^{-3} \text{ m}^3/\text{C}$$

 $p = (114 \pm 1) \cdot 10^{19} \text{ m}^{-3}$

9 Literaturverzeichnis

- [1] G. Koller: Skript zum Hall Effekt aus dem Moodle der Karl-Franzens Universität, Institut für Physik, 07.05.2021.
- [2] R. Dämon: Einführung in die physikalischen Messmethoden, Graz 2016.
- [3] W. Demtröder: Experimentalphysik 2 Elektrizität und Optik, 7. Auflage, 2017.
- [4] Python-Skript zur Berechnung der Daten, zur Visualisierung und zum Generieren von LATEX-Code für diesen Bericht.