COM-506

Prio: Private, Robust, and Scalable Computation of Aggregate Statistics

Federico Villa, Gabriele Stentella, Octave Charrin

Context

- Many modern devices collect data and send it to cloud services.
- Storing private data, the services create a single point of failure.
- Huge threat for privacy and security.
- The services need aggregate statistics.

Collect data from mobile apps.

Private compute services.

Spread data over multiple countries.

How do we split trust in a way that protects privacy **and** maintains functionality?

Introduction

Idea: the clients send an encrypted share of their data points to each aggregator.

How?

Goals:

- Servers learn the output of the aggregation function (correctness).
- 2. But learn nothing more (privacy).
- 3. The system is robust \Rightarrow detects incorrect submissions.
- 4. The protocol is efficient and scalable
 - ⇒ no heavy public-key cryptography operations.

Previous approaches

Randomized response

- Clients flip their bits with fixed probability p < 0.5
- Every bit leaks information (especially for low p). \Rightarrow weak privacy
- With p too high the aggregation becomes useless.
- Bounded client contribution.

Encryption

- Stronger privacy guarantees.
- Unbounded client contribution.
- Not scalable.

Prio - overview

- Small number of servers, large number of clients.
- Built using Secret-shared Non-Interactive Proofs (SNIPs) and Affine-aggregatable Encodings (AFEs).

Assumptions on the network

- PKI and basic cryptographic primitives.
- No synchrony.
- Adversary monitors the network and controls the packets.

Prio - simplified

Aggregation: sum $\sum_{i} x_{i}$

Input: one bit integer x_i

We use $[x]_s$ to denote the sth share of x:

$$x = \sum_{s} [x]_{s}$$

Private value secret-shared between s servers. $x_i = [x_i]_1 + \cdots + [x_i]_s \in \mathbb{F}_p$

Each server add the share to its internal accumulator.

- The servers publish the accumulators.
- The sum of the accumulators is the desired aggregation.
 - Privacy from secret sharing.
- No robustness.
- Only sum.

SNIPs: Secret-shared Non-Interactive Proofs

- Linear additive secret-sharing over field \(\mathbb{F} \)
- Validation predicate Valid ⇒ encoded in an arithmetic circuit

SNIP protocol

- Client evaluates the circuit.
- 2. Servers check consistency.
- 3. Polynomial validation ⇒ polynomial identity test. Multiplication of shares.
- 4. Final computation and verification.

1. Client evaluates the circuit

- Three randomized polynomials f, g, h.
- M multiplication gates.
- Left input u_t
- ullet Right input v_t
- $h(t) = f(t) \cdot g(t) = u_t \cdot v_t \quad \forall t \in \{1, \dots, M\}$
- $u_0, v_0 \sim \mathbb{F}$

shares of the coefficients of $\,h\,$

2. Servers check consistency

- Internal derivation of values $[f]_i$, $[g]_i$
- If all parties are honest: $f \cdot g = h$
- ullet In case of malicious client: $\hat{h}
 eq \hat{f} \cdot \hat{g}$

3. Polynomial validation

Goal: Detect with high probability a cheating client.

- 1. Sample a random value from the field.
- 2. Evaluate polynomials on the random value.
- 3. Get shares of $\sigma = r \cdot (\hat{f}(r) \cdot \hat{g}(r) \hat{h}(r))$
- 4. Check the sum of those shares is 0.

If $\hat{h} \neq \hat{f} \cdot \hat{g}$ then the polynomial represented by σ is of degree at most 2M+1: with random evaluation, we detect the cheat with probability

$$\geq 1 - \frac{2M+1}{|\mathbb{F}|}$$

Beaver's Multi-Party Computation

Clients choose the triple $(a,b,c)\in\mathbb{F}^3$ and send shares to the servers.

4. Final computation and verification

- Share the values of the shares of the output of Valid
- Check that they sum up to 1.

SNIP proof tuple
$$\pi = (f(0), g(0), h, \underline{a, b, c})$$

Efficiency

- Server-to-server communication cost same as local cost of circuit evaluation.
- Client-to-server communication linear in the size of the circuit.

Desired Properties of a useful SNIP

• **Correctness**: If all parties are honest, the servers will accept x.

• **Soundness**: If all servers are honest, and if Valid(x) != 1, then the servers will almost always reject x, no matter how the client cheats.

Formal definition

- 1. Run the adversary \mathcal{A} . For each server i, the adversary outputs a set of values:
 - $[x]_i \in \mathbb{F}^L$,
 - $([f(0)]_i, [g(0)]_i) \in \mathbb{F}^2$,
 - $[h]_i \in \mathbb{F}_{2M}[X]$ of degree at most 2M, and
 - $([a]_i, [b]_i, [c]_i) \in \mathbb{F}^3$.
- 2. The *Master server* chooses a random $r \leftarrow ^{\$} \in \mathbb{F}$. Each server compute their shares $[f]_i$ and $[g]_i$ as in the real protocol, and evaluate $[f(r)]_i$, $[r \cdot g(r)]_i$, $[r \cdot h(r)]_i$, and $[h(M)]_i$.
- 3. The servers compute $h(M) = \sum_{i} [h(M)]_{i}$, and

$$\sigma = r \cdot (f(r)g(r) - h(r)) + (c - ab)$$

4. We say that the adversary wins the game if:

$$h(M) = 1$$
, $\sigma = 0$, and $Valid(x) \neq 1$

Soundness:

$$\Pr[\mathcal{A} \text{ Wins}] \leq \frac{2M+1}{|\mathbb{F}|}$$

$$A ext{ Wins if:} h(M) = 1, \quad \mathbf{\sigma} = 0, \quad \text{and} \quad ext{Valid}(x) \neq 1$$

$$\sigma = P(r)$$

$$P(t) = t \cdot Q(t) + (c - ab)$$

$$Q(t) = f(t)g(t) - h(t)$$

Case $fg \neq h$:

- P is a non-zero polynomial of degree at most 2M+1.
- The choice of r is independent of (a, b, c) and Q, since the adversary must produce these values before r is chosen.
 - \Rightarrow The choice of r is independent of P.
- P has at most 2M+1 zeros in \mathbf{F} .

$$\Rightarrow$$
 Pr[$P(r) = \sigma = 0$] $\leq (2M+1)/|\mathbf{F}|$

Case fg=h:

• By induction: h(M) = Valid(x) (wlog assume that the circuit ends with a multiplication gate)

$$\Rightarrow$$
 Pr[$h(M) = 1$ and Valid(x) $\neq 1$] = 0

In both cases:
$$\Pr[\mathcal{A} \text{ Wins}] \leq \frac{2M+1}{|\mathbb{F}|}$$

Desired Properties of a useful SNIP

• **Correctness**: If all parties are honest, the servers will accept x.

 Soundness: If all servers are honest, and if Valid(x) != 1, then the servers will almost always reject x, no matter how the client cheats.

 Zero knowledge: If the client and at least one server are honest, then the servers learn nothing about x, except that Valid(x) = 1.

Zero Knowledge - Proof Sketch

Zero Knowledge - Proof Sketch

In this game, the adversary tries to distinguish the two worlds.

- The simulator generates the initial adversary view at random.
- We can show that the two views are distributed identically.

(random sampling of r, f(0) and g(0) in the real world + hiding from secret sharing)

- Since the simulator does not know x:
 - \Rightarrow Participating in the SNIP gives no extra information about x.

Affine-aggregatable encodings (AFEs)

So far we can:

- Compute private sums over client-provided data (Secret-sharing)
- Check arbitrary validation predicate against data (SNIP)

How can we compute more complex statistics?

Idea: Encode private data to make the statistic computable over the sum of encoding.

AFE concrete example

Computing the variance of b-bit integers: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

• Encode
$$(x) = (x, x^2, \beta_0, \beta_1, \dots, \beta_{b-1})$$
 Secret-sharing

• Valid(Encode(x)) =
$$\left(x = \sum_{i=0}^{b-1} 2^i \beta_i \right) \wedge (x \cdot x = x^2) \wedge \bigwedge_{i=0}^{b-1} \left[\beta_i \cdot (\beta_i - 1) = 0 \right]$$
•
$$(\sigma_0, \sigma_1) = \sum_{i=1}^n \text{Trunc}_2(\text{Encode}(x_i)) = \sum_{i=1}^n (x_i, x_i^2) = \left(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2 \right)$$

•
$$(\sigma_0, \sigma_1) = \sum_{i=1}^n \text{Trunc}_2(\text{Encode}(x_i)) = \sum_{i=1}^n (x_i, x_i^2) = \left(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2\right)$$

• Decode
$$(\sigma) = \frac{1}{n} (\sigma_1 - (\sigma_0)^2)$$

7. Prio Protocol - Setting

$$f: \mathbb{D}^{n-m} \to \mathbb{A}$$

$$x_i \in \mathbb{D}$$

1. Upload phase

$$y_i \in \mathbb{F}^k$$

- input encoded using Affine-Aggregatable Encoding
 - mo / tggrogatable Eneganig
- AFE encoded vector is split into secret shares
- SNIP proof is generated to prove data is well formed
- input shares and SNIP proof are sent to the servers

$$y_i \leftarrow Encode(x_i)$$

 $[y_i]_1, [y_i]_2, \dots, [y_i]_s$

$$y_i = [y_i]_1 + [y_i]_2 \dots + [y_i]_s$$

2. Validation phase

- servers jointly verify the SNIP proofs received
 - rejects not well-formed submission
 - does not reveal information about the underlying data (except validity)
 - ensures robustness against malformed/malicious submissions

$$x_i \in \mathbb{D} \iff Valid(x_i) = 1$$

3. Aggregation phase

each server initializes an accumulator to zero:

$$A_j \in F^{k'}$$

- for every valid client submission increments the accumulator
 - only truncated version of the client share carry necessary information

$$A_j \leftarrow 0$$

$$A_j \leftarrow A_j + Trunc_{k'}([y_i]_j) \in \mathbb{F}^{k'}$$

4. Publish phase

servers publish their individual accumulator values

- A_1, A_2, \ldots, A_s
- final aggregate is computed by summing accumulators
- final aggregate statistic obtained with AFE decoding:

$$Decode(\sigma) \in \mathbb{A}$$

$$\sigma = \sum_{j=1}^{s} A_j = \sum_{i=1}^{n} Trunc_{k'} y_i$$

Protocol Security Properties

- robustness against malicious clients holds if:
 - SNIP construction is sound malicious client submissions are detected via SNIPs
- **f-privacy**, only the final aggregate statistic is revealed, holds if:
 - one server is honest
 - AFE is f-private
 - SNIP is zero-knowledge
- anonymity holds if:
 - o function f is symmetric the order of inputs does not affect the output

$$f(x_1, \dots, x_{n-m}) = f(x'_1, \dots, x'_{n-m})$$
$$(x'_1, \dots, x'_{n-m}) = SORT(x_1, \dots, x_{n-m})$$

8. Evaluation

Prio Client performance:

 \sim 0.03 sec for a 100-integer submission on a workstation; \sim 0.1 sec on a smartphone (2010-12 hardware).

Prio Server throughput:

- Outperforms NIZK-based scheme by 10x on average
- Adding more server does not significantly affect throughput

	Workstation		Smartphone	
Field size	87-bit	265-bit	87-bit	265-bit
Multipl. in field (μ s)	1.013	1.485	11.218	14.930
L = 10	0.003	0.004	0.017	0.024
L = 100	0.024	0.035	0.110	0.167
L = 1000	0.214	0.334	1.028	2.102

Time in seconds for a client to generate a Prio submission of L four-bit integers

9. Discussion - Limitations

- Selective Denial-of-Service Attack
- Intersection Attack
- Robustness against faulty servers
 - May be implemented but lowers the privacy guarantees
 - o robust against k faulty servers (out of s) \Rightarrow protects privacy against at most s-k-1 malicious servers

$$f(x_{honest}, x_{evil_1}, \dots, x_{evil_m})$$

9. Discussion - Limitations

- Selective Denial-of-Service Attack
- Intersection Attack
- Robustness against faulty servers
 - May be implemented but lowers the privacy guarantees
 - o robust against k faulty servers (out of s) \Rightarrow protects privacy against at most s-k-1 malicious servers

$$x_1, x_2, ..., x_n$$
 $x'_1, x'_2, ..., x'_{n-1}, x'_n$
 \downarrow \downarrow \downarrow \downarrow \downarrow
 $f(x_1, x_2, ..., x_n)$ $f(x'_1, x'_2, ..., x'_{n-1})$

9. Discussion - Deployments

- Many large-scale deployments since paper publication.
- During the COVID-19 pandemic, Apple and Google introduced
 Exposure Notification Privacy-preserving Analytics to alert
 users about potential contact with individuals infected.
- Based on Prio.
- No one could access information about who received notifications or the identities of contacts.
- Aggregated insight were sent to public health agencies.

Conclusion

- Prio allows the aggregation of complexe statistics on private client data.
- Uses additive secret-sharing, SNIP and AFEs.
- More efficient and scalable than traditional protocols.
- Has many practical applications.

Thank you for your attention!

Appendix

Detailed computation for σ

Define the following values, where *s* is a constant representing the number of servers:

$$x = \sum_{i}[x]_{i} \qquad a = \sum_{i}[a]_{i}$$

$$f(r) = \sum_{i}[f(r)]_{i} \qquad b = \sum_{i}[b]_{i}$$

$$r \cdot g(r) = \sum_{i}[r \cdot g(r)]_{i} \qquad c = \sum_{i}[c]_{i}$$

$$h(M) = \sum_{i}[h]_{i}(M) \qquad d = f(r) - a$$

$$e = r \cdot g(r) - b$$

$$\sigma = \sum_{i} (de/s + d[b]_{i} + e[a]_{i} + [c]_{i} - [r \cdot h(r)]_{i})$$

$$= de + db + ea + c - r \cdot h(r)$$

$$= (f(r) - a)(r \cdot g(r) - b) + (f(r) - a)b + (r \cdot g(r) - b)a + c - r \cdot h(r)$$

$$= r \cdot (f(r)g(r) - h(r)) + (c - ab)$$