

Control of Autonomous Electric Fleets for Ridehail Systems

ND Kullman, JE Mendoza, M Cousineau, JC Goodson

Deep RL + OR
Policies + Bound

Teaser: Some success so far

Background

Ridehail explosion

NYC ridehail trips (M, avg/mo)

2016

10

Autonomy imminent

RIDE-SHARING APP

Control of AEV Fleets is Centralized Today

Control of AEV Fleets is Centralized Today

Control of AEV Fleets is Centralized w/ AEVs

Assign vehicles to requests

Recharge/reposition vehicles

Real time decision making

Electrification constraints

Realistic instances

Past Studies

Past Studies

Al-Kanj et al. (2018)

Past Studies

Al-Kanj et al. (2018)

Holler et al. (2018)

Past Studies

Al-Kanj et al. (2018)

Holler et al. (2018)

X

Bertsimas et al. (2019)

(

Past Studies

Al-Kanj et al. (2018)

Holler et al. (2018)

Bertsimas et al. (2019) Hyland & Mahmassani (2018)

Al-Kanj et al. (2018)

Hyland & Mahmassani (2018)

Kullman et al. (2019)

Model & Methods

Methods combine Deep RL and OR

Dynamic problem

Dynamic problem

Static Bound

Agent

Environment

State

Time

Vehicles':

Positions

Charges

Scheduled jobs

Request

Assign vehicle to new request

For each vehicle:

New reposition/recharge instructions

Depends on state

Value of request, if served

Fixed + distance-dependent

Repeat until episode's terminal state:

When time horizon reached

Find agent/policy maximizing E[sum of rewards]

1. Random

- 1. Random
- 2. Nearest (heuristic)

- 1. Random
- 2. Nearest

- 1. Random
- 2. Nearest

Assignment

Reposition

1. Random

2. Nearest

Assignment

Reposition

\

4

В

- 1. Random
- 2. Nearest

Assignment

Reposition

- 1. Random
- 2. Nearest
- 3. Assigner

- 1. Random
- 2. Nearest
- 3. Assigner

- 1. Random
- 2. Nearest

3. Assigner

- 1. Random
- 2. Nearest

3. Assigner

- 1. Random
- 2. Nearest
- 3. Assigner

Assignment

Immediate reward + reward-to-go

- 1. Random
- 2. Nearest
- 3. Assigner

- 1. Random
- 2. Nearest
- 3. Assigner

How does it learn?

- 1. Random
- 2. Nearest
- 3. Assigner

How does it learn?

- 1. Random
- 2. Nearest

3. Assigner

How does it learn?

- 1. Random
- 2. Nearest
- 3. Assigner

- 1. Random
- 2. Nearest
- 3. Assigner

Input s

"Hidden"

Q(s, a)

- 1. Random
- 2. Nearest
- 3. Assigner

Hessel, Matteo, et al. "Rainbow: Combining improvements in deep reinforcement learning." *Thirty-Second AAAI Conference on Artificial Intelligence*. 2018.

- 1. Random
- 2. Nearest
- 3. Assigner
- 4. Full Control

- 1. Random
- 2. Nearest
- 3. Assigner
- 4. Full Control

- 1. Random
- 2. Nearest
- 3. Assigner
- 4. Full Control

For each vehicle: Value of action...

State s	

Q(s,a) **Do Nothing**

Q(s,a) Serve

Q(s,a) Go To First CS

Q(s,a) ...

Q(s,a) Go to Last CS

- 1. Random
- 2. Nearest
- 3. Assigner
- 4. Full Control

For each vehicle: Value of action...

Q(s,a)

Do Nothing

State s

Q(s,a)

Serve

Q(s,a)

Go To First CS

Q(s,a)

Q(s,a)

Go to Last CS

Per-vehicle Q-values improves scalability

Static Problem

Static Problem

Perfect Information

Perfect Info: OR tools

Master problem

Subproblem

Master problem

Subproblem

Assign requests to vehicles

Time feasibility

Master problem

Assign requests to vehicles

Time feasibility

Subproblem

Energy feasibility

Charging decisions

Master problem

Master problem

Subproblem

FRVCP: Froger et al. (2018)

Master problem

Subproblem

FRVCP: Froger et al. (2018)

Data & Empirical Results

Data: Manhattan-based instances

Data: Manhattan-based instances

```
Trips:
    NYC Taxi + ridehail data (2018)
CSs:
    All current and planned CSs
Vehicles:
    Mid-range Tesla Model 3
```

Data: Manhattan-based instances

Data: Marinattan Basta mistances			
Trips/day	1400	1400	14,000

14

Policies

140

Policies

- Assigner

43

Policies

+ bound

Vehicles

Methods

Experiments

Experiments

Concluding Remarks

Highlights

Deep RL-based policy the current best

Scalable without retraining

Quick action selection even in large instances (< 0.05 s)

TODOs:

Benchmark improvements, full scale instances

