Álgebra II - 2020 - 1er cuatrimestre

- Objetivos
- 2 Definición
 - Definición
 - Ejemplo: la situación ideal
 - Observaciones
- Como calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ¿Y si el polinomio no tienen raíces?

En este archivo definiremos

- autovalor
- autovector
- polinomio característico

Y explicaremos como calcular estas cosas.

Este archivo se basa en la Sección 3.6 de las *Notas de Álgebra II* de Agustín Garcia y Alejandro Tiraboschi, aunque ahí esta en término de "transformaciones lineales" en vez de "matrices".

- Objetivos
- 2 Definición
 - Definición
 - Ejemplo: la situación ideal
 - Observaciones
- Como calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ¿Y si el polinomio no tienen raíces?

Sea $A \in \mathbb{R}^{n \times n}$. Se dice que $\lambda \in \mathbb{R}$ es un autovalor de A y $v \in \mathbb{R}^n$ no nulo es un autovector asociado a λ si

$$Av = \lambda v$$

Ejemplo

1 es un autovalor de Id_n y todo $v\in\mathbb{R}^n$ es un autovector asociado a 1 pues

$$\operatorname{Id}_n v = v$$

Sea $A \in \mathbb{R}^{n \times n}$. Se dice que $\lambda \in \mathbb{R}$ es un autovalor de A y $v \in \mathbb{R}^n$ no nulo es un autovector asociado a λ si

$$Av = \lambda v$$

Observación

El autovalor puede ser 0 pero el autovector nunca puede ser 0

Ejemplo

0 es un autovalor de $\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$ y $\left(\begin{array}{c} 1 \\ 0 \end{array}\right)$ es un autovector asociado a 0 pues

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} 1 \\ 0 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) = 0 \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

Sea $A \in \mathbb{R}^{n \times n}$. Se dice que $\lambda \in \mathbb{R}$ es un autovalor de A y $v \in \mathbb{R}^n$ no nulo es un autovector asociado a λ si

$$Av = \lambda v$$

Observación

Hay matrices sin autovalores. Por ejemplo $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

En la última sección veremos por qué.

También veremos que si permitimos autovalores complejos entonces sí tienen autovalores.

Pero, como ya dijimos, por el momento sólo trabajaremos con números reales.

- Objetivos
- 2 Definición
 - Definición
 - Ejemplo: la situación ideal
 - Observaciones
- Como calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ¿Y si el polinomio no tienen raíces?

Definición

Dado $i \in \{1,...,n\}$, se denota e_i al vector de \mathbb{R}^n cuyas coordenadas son todas ceros excepto la coordenada i que es un 1

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \text{lugar i}$$

El conjunto $\{e_1, ..., e_n\}$ se llama base canónica de \mathbb{R}^n .

Ejemplo

En
$$\mathbb{R}^3$$
 los vectores son $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Ejemplo: Matriz diagonal

Sea $D \in \mathbb{R}^{n \times n}$ una matriz diagonal con entradas λ_1 , λ_2 , ..., λ_n . Entonces e_i es un autovector con autovalor $\lambda_i \ \forall i \in \{1,...,n\}$

Demostración: Recordar que la multiplicación De_i se corresponde con multiplicar cada fila de e_i por el elemento correspondiente de la digonal.

Como las filas (en este caso entradas) de e_i son todas nulas excepto un 1 en la entrada i queda queda

$$De_{i} = \begin{pmatrix} 0 \\ \vdots \\ \lambda_{i} \\ \vdots \\ 0 \end{pmatrix} = \lambda_{i}e_{i}$$

- Objetivos
- 2 Definición
 - Definición
 - Ejemplo: la situación ideal
 - Observaciones
- Como calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ¿Y si el polinomio no tienen raíces?

Observación

Puede haber varios autovectores con el mismo autovalor.

Vimos esto en el ejemplo con Id y en el caso de la diagonal si tiene entradas iguales sucede lo mismo.

Más aún el conjunto de todos los autovectores con un mismo autovalor es invariante por la suma y la multiplicación por escalares.

En particular los múltiplos de un autovector es un autovector.

Sea $A \in \mathbb{R}^{n \times n}$ y $\lambda \in \mathbb{R}$ un autovalor de A. El autoespacio asociado a λ es

$$V_{\lambda} = \{ v \in \mathbb{R}^n \mid Av = \lambda v \}.$$

Es decir, V_{λ} es el conjunto formado por todos los autovectores asociados a λ y el vector nulo (A0=0=lambda 0)

(incluimos el vector nulo porque, por definición, no es autovector)

Teorema 3.6.1

Si v y w pertenecen al autoespacio de A asociado a λ , entonces v+tw también pertenece para todo t real

Demostración:

$$A(v + tw) = Av + tAw = \lambda v + t\lambda w = \lambda(v + tw)$$

Observación

Un autovector no puede tener dos autovalores distintos. Por lo tanto autovectores con autovalores distintos son distintos.

Demostración: Supongamos que $Av=\lambda v$ y $Av=\mu v$. Entonces $\lambda v=\mu v$ y por lo tanto

$$(\lambda - \mu)v = \begin{pmatrix} (\lambda - \mu)v_1 \\ \vdots \\ (\lambda - \mu)v_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Como $v\neq 0$ por ser autovector, alguna de sus coordenadas es no nula. Entonces $\lambda-\mu$ tiene que ser 0 o dicho de otro modo $\lambda=\mu$

- Objetivos
- 2 Definición
 - Definición
 - Ejemplo: la situación ideal
 - Observaciones
- 3 Como calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ¿Y si el polinomio no tienen raíces?

Problema

Hallar los autovalores de $A \in \mathbb{R}^{n \times n}$. Para cada autovalor, describir explícitamente el autoespacio asociado.

En otras palabras nos preguntamos que $\lambda \in \mathbb{R}$ y $v \in \mathbb{R}^n$ satisfacen

$$Av = \lambda v \iff Av - \lambda v = 0 \iff (A - \lambda \operatorname{Id})v = 0$$

La última igualdad se parece más a lo que hemos estado viendo. Es decir, estamos buscando un $v\in\mathbb{R}^n$ no nulo que sea solución del sistema homogéneo

$$(A - \lambda \operatorname{Id})X = 0$$

Y sabemos que, por el Teorema de muchas equivalencias, este sistema tiene solución no trivial si y sólo si

$$\det(A - \lambda \operatorname{Id}) = 0$$

Conclusión

 $\lambda \in \mathbb{R}$ es un autovalor de A y $v \in \mathbb{R}^n$ es un autovector asociado a λ si y sólo si

- $\bullet \det(A \lambda \operatorname{Id}) = 0$
- v es solución del sistema homogéneo $(A \lambda \operatorname{Id})X = 0$

Esta es casi la respuesta a nuestro problema. Para dar una respuesta más precisa introducimos el siguiente polinomio.

Sea $A \in \mathbb{R}^{n \times n}$. El polinomio característico de A es

$$\chi_A(x) = \det(A - x \operatorname{Id})$$

Ejemplo

El polinomio característico de Id_n es

$$\chi_{\mathrm{Id}_n}(x) = (1-x)^n$$

Demostración: $\operatorname{Id} - x\operatorname{Id} = (1-x)\operatorname{Id}$ es una matriz diagonal con (1-x) en todas las entradas de la diagonal. Entonces el determinante es el producto de la diagonal.

Sea $A \in \mathbb{R}^{n \times n}$. El polinomio característico de A es

$$\chi_A(x) = \det(A - x \operatorname{Id})$$

Ejemplo

El polinomio característico de $A=\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$ es $\chi_A(x)=x^2$

Demostración: $A - x \operatorname{Id} = \begin{pmatrix} -x & 1 \\ 0 & -x \end{pmatrix}$ es triangular superior.

Entonces el determinante es el producto de la diagonal.

Sea $A \in \mathbb{R}^{n \times n}$. El polinomio característico de A es

$$\chi_A(x) = \det(A - x \operatorname{Id})$$

Ejemplo

El polinomio característico de $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es

$$\chi_A(x) = (a-x)(d-x) - bc$$

Demostración: $A - x\operatorname{Id} = \begin{pmatrix} a - x & b \\ c & d - x \end{pmatrix}$ y usamos la fórmula del determinante de una 2×2 .

Sea $A \in \mathbb{R}^{n \times n}$. El polinomio característico de A es

$$\chi_A(x) = \det(A - x \operatorname{Id})$$

Con esta definición podemos reescribir la conclusión anterior

Conclusión

 $\lambda \in \mathbb{R}$ es un autovalor de A y $v \in \mathbb{R}^n$ es un autovector asociado a λ si y sólo si

- \bullet $\det(A \to \lambda Id)$ \bullet λ es raíz del polinomio característico $\chi_A(x)$
- v es solución del sistema homogéneo $(A \lambda \operatorname{Id})X = 0$

Con el razonamiento que hicimos hasta aquí hemos demostrado lo siguiente

Teorema

Sea $A \in \mathbb{R}^{n \times n}$.

- ① Los autovalores de A son las raíces del polinomio característico $\chi_A(x)$
- ② El autoespacio asociado a un autovalor λ de A es el conjunto de soluciones del sistema homogéneo $(A-\lambda\operatorname{Id})X=0$

(El item 1 es la Proposición 3.6.4)

Corolario: La matriz A tiene a lo sumo n autovalores distintos.

Demostración: Pues un polinomio tiene a lo sumo tantas raices
como su grado y el polinomio caracteristico tiene grado n

- Objetivos
- 2 Definición
 - Definición
 - Ejemplo: la situación ideal
 - Observaciones
- 3 Como calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ¿Y si el polinomio no tienen raíces?

Veamos en un ejemplo concreto como usamos el teorema para responder al problema inicial

Problema

Hallar los autovalores de $A=\begin{pmatrix}0&1\\1&0\end{pmatrix}$. Para cada autovalor, describir explícitamente el autoespacio asociado.

Respuesta

Los autovalores de A son 1 y -1.

El autoespacio asociado a 1 es

$$V_1 = \left\{ (x, x) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}$$

El autoespacio asociado a -1 es

$$V_{-1} = \left\{ (-x, x) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}$$

Verificar para x=1

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{1} = 1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Demostración

El polinomio característico de A es

$$\chi_A(x) = \begin{vmatrix} -x & 1\\ 1 & -x \end{vmatrix} = x^2 - 1 = (x+1)(x-1)$$

Es decir, 1 y - 1 son las raíces de $\chi_A(x)$. Entonces son los autovalores de A.

Demostración

El autoespacio ${\cal V}_1$ asociado a 1 es el conjunto de soluciones del sistema homogéneo

$$(A - \mathrm{Id})X = 0$$

Para encontrar este conjunto usamos el Método de Gauss

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \xrightarrow{F_2+F_1} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \xrightarrow{-F_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

Entonces

$$(A-\mathrm{Id})X = 0 \Longleftrightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Entonces

$$V_1 = \text{Sol}((A - \text{Id})X = 0) = \{(x_2, x_2) \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}\}\$$

Demostración

El autoespacio ${\cal V}_{-1}$ asociado a -1 es el conjunto de soluciones del sistema homogéneo

$$(A - (-1) \operatorname{Id})X = (A + \operatorname{Id})X = 0$$

Para encontrar este conjunto usamos el Método de Gauss

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \quad \stackrel{F_2-F_1}{\longrightarrow} \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right)$$

Entonces

$$(A + \operatorname{Id})X = 0 \iff \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Entonces

$$V_1 = \text{Sol}((A + \text{Id})X = 0) = \{(-x_2, x_2) \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}\}$$

- Objetivos
- 2 Definición
 - Definición
 - Ejemplo: la situación ideal
 - Observaciones
- 3 Como calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ¿Y si el polinomio no tienen raíces?

Ejemplo

Consideremos la matriz que dijimos no tiene autovalores

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Su polinomio característico es

$$\chi_A(x) = x^2 + 1 = (x+i)(x-i)$$

Este polinomio no tiene raíces reales pero si complejas i y -i

Observación

Como estamos estamos trabajando sólo sobre $\mathbb R$ diremos que esta matriz no tiene autovalores.

Pero si permitieramos números complejos diríamos que si tiene autovalores y autovectores.

Por ejemplo $\begin{pmatrix} i \\ 1 \end{pmatrix}$ es autovector de A con autovalor i