## Teste a partir de Casos de Uso

Profa. Ellen Francine

(slides parcialmente elaborados pelo Prof. Marcos L. Chaim)

### **Teste de Software**

- Análise dinâmica do produto de software.
  - Processo de executar o software de modo controlado, observando seu comportamento em relação aos requisitos especificados.
- Processo de executar um programa com a intenção de encontrar erros.
  - O teste bem sucedido é aquele que consegue determinar casos de teste que resultem na falha do programa sendo testado.

### **Teste de Software**

- Como testar um software?
  - Técnicas e critérios: fornecem maneiras sistemáticas para se conduzir a atividade de teste.
    - Auxiliam na seleção, no projeto dos casos de teste.
    - Funcional, estrutural, baseada em erros.
  - Que casos de teste utilizar?
    - Entrada + Saída Esperada
    - Um bom caso de teste tem alta probabilidade de revelar um erro ainda não descoberto.

## **Técnicas de Teste**

- Funcional
  - Critérios
    - Particionamento em Classes de Equivalência
    - Análise do Valor-Limite
    - ...

- Divide os domínios de entrada e saída do programa em classes de dados.
  - Em princípio, todos os elementos de uma classe devem se comportar de maneira equivalente.
    - Classes de equivalência.
- Os casos de teste são derivados a partir das classes de equivalência.

#### Passos

- 1. Identifique as classes de equivalência.
- 2. Atribua um número único a cada classe de equivalência identificada.
- 3. Até que todas as classes de equivalência *válidas* tenham sido cobertas, escreva um novo caso de teste incluindo o maior número possível de classes *válidas* que ainda não foram cobertas.
- 4. Até que todas as classes de equivalência *inválidas* tenham sido cobertas, escreva um caso de teste para cada uma, e somente uma, classe *inválida* não coberta.

- Se uma entrada especifica uma faixa, então uma classe válida e duas inválidas devem ser selecionadas.
  - Condição: 0 < x < 10</li>
    - Classe válida: 0 < x < 10
    - Classe inválida: x <= 0</li>
    - Classe inválida: x >= 10

- Se a entrada especifica um número de valores, então uma classe válida e duas inválidas devem ser identificadas.
  - Condição: imóvel pode possuir de um a seis proprietários
    - Classe válida:
      - de um a seis proprietários
    - Classe inválida:
      - nenhum proprietário
      - mais de 6 proprietários

- Se a entrada especifica um conjunto de valores, e suspeita-se que eles são tratados de maneira diferente, então deve ser identificada uma classe válida para cada valor e uma única classe inválida.
  - Condição: veículo deve ser: ônibus, caminhão, táxi, veículo de passeio ou motocicleta.
    - Classes válidas: ônibus, caminhão, táxi, veículo de passeio e motocicleta.
    - Classe inválida: trailer.

- Se a entrada especifica uma determinada situação, devem ser identificadas uma classe válida e uma classe inválida.
  - Condição: primeiro caractere de um identificador deve ser uma letra.
    - Classe válida: primeiro caractere igual a letra.
    - Classe inválida: primeiro caractere diferente de letra.

- Se uma entrada especifica uma condição booleana, então uma classe válida e uma inválida devem ser selecionadas.
  - Condição: os valores de entrada são inteiros positivos.
    - Classe válida: valor de entrada > 0
    - Classe inválida: valor de entrada <= 0</li>

#### Passos

- 1. Identifique as classes de equivalência.
- Atribua um número único a cada classe de equivalência identificada.
- 3. Até que todas as classes de equivalência *válidas* tenham sido cobertas, escreva um novo caso de teste incluindo o maior número possível de classes *válidas* que ainda não foram cobertas.
- 4. Até que todas as classes de equivalência *inválidas* tenham sido cobertas, escreva um caso de teste para cada uma, e somente uma, classe *inválida* não coberta.

#### Especificação do programa Identifier:

O programa deve determinar se um identificador é válido ou não em *Silly Pascal* (uma estranha variante do Pascal). Um identificador válido deve começar com uma letra e conter apenas letras ou dígitos. Além disso, deve ter no mínimo 1 caractere e no máximo 6 caracteres de comprimento.

#### – Exemplo:

```
abc12 (válido)
cont*1 (inválido)
```

1soma (inválido) a123456 (inválido)

Classes de equivalência

| Condições de Entrada             | Classes Válidas | Classes Inválidas     |  |
|----------------------------------|-----------------|-----------------------|--|
| Tamanho t do identificador       | $1 \le t \le 6$ | t > 6 $t < 1$ (2) (3) |  |
| Primeiro caractere c é uma letra | Sim<br>(4)      | Não<br>(5)            |  |
| Só contém caracteres válidos     | Sim<br>(6)      | <b>Não</b><br>(7)     |  |

Exemplo de Conjunto de Casos de Teste

 $T_0 = \{(a1, Válido), (2B3, Inválido), (Z-12, Inválido), (A1b2C3d, Inválido)\}, (vazio, Inválido)$ (1, 4, 6) (5) (7) (2) (3)

## **Análise do Valor Limite**

- Complementa o Particionamento de Equivalência.
  - Fonte propícia a erros os limites de uma classe ou partição de equivalência.



## Determinação dos Limites

- Se uma entrada especifica uma faixa limitada pelos valores x e y, então casos de teste devem ser projetados com os valores x e y e também com valores imediatamente inferiores e superiores a x e y.
  - Se a faixa de entrada é -1.0 < t < 1.0, devem ser criados casos de teste com valores de t igual a -1.0, 1.0, -1.1, 1.1.

## Determinação dos Limites

- Se uma entrada especifica um número de valores, então...
  - Casos de teste devem ser derivados para se exercitar o número máximo e o número mínimo de valores.
  - Valores imediatamente acima e abaixo do número máximo e mínimo também devem ser exercitados por casos de teste.
    - Se um arquivo de entrada pode conter 1 a 25 registros, escreva casos de teste com 0, 1, 25 e 26 registros.

## **Análise do Valor Limite**

### Limites

| Condições de Entrada             | Classes Válidas | Classes Inválidas     |  |  |
|----------------------------------|-----------------|-----------------------|--|--|
| Tamanho t do identificador       | $1 \le t \le 6$ | t > 6 $t < 1$ (2) (3) |  |  |
| Primeiro caractere c é uma letra | Sim<br>(4)      | Não<br>(5)            |  |  |
| Só contém caracteres válidos     | Sim<br>(6)      | Não<br>(7)            |  |  |

- Tamanho do identificador.
  - Os valores 0, 1, 6 e 7.

Como derivar
Casos de Teste
a partir de
Casos de Usos???

- Para derivar casos de teste a partir de casos de uso, utilizam-se os cenários desenvolvidos para os casos de uso com técnicas de teste funcionais.
  - Técnicas Funcionais:
    - Particionamento em classes de equivalência.
    - Análise do valor limite.

- Caso de Uso: Sacar Dinheiro
- Ator principal: Cliente do BancoXYZ
- Tipo: primário, essencial
- Descrição: Cliente cadastrado no banco fornece senhas no caixa eletrônico e saca dinheiro caso tenha saldo na conta.

- Pré-condições: Cliente possui conta no BancoXYZ; senhas de acesso cadastradas.
- Pós-condições: Saldo devidamente atualizado.
- Regra de negócios: Valores de saque devem ser múltiplos de 5, sem centavos.

#### Sequência típica de eventos:

- 1. Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
- 2. Sistema aprova conta descrita no cartão e a senha introduzida.
- 3. Cliente seleciona valor a ser sacado.
- 4. Sistema verifica que há saldo na conta e solicita segunda senha.
- 5. Cliente fornece segunda senha.
- 6. Sistema aprova senha e fornece o valor solicitado.

### Sequências alternativas

- A1 Linha 1: Primeira senha incorreta. Emitir mensagem de erro.
- A2 Linha 5: Segunda senha incorreta. Emitir mensagem de erro.
- A3 Linha 4: Falta de saldo. Emitir mensagem de erro.

#### Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

#### Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

- Condições de entrada para o caso de uso Sacar Dinheiro do Caixa Eletrônico:
  - Conta: válida e inválida.
  - Senha 1: válida e inválida.
  - Senha 2: válida e inválida.
  - Saque: < saldo; = saldo; e > saldo.
  - **Saldo**: > 0; < 0 e = 0.

#### Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

- Cenários para o caso de uso Sacar Dinheiro do Caixa Eletrônico:
  - Sequência típica de eventos, happy day scenario:
    - Saque bem sucedido.
  - Sequências alternativas:
    - Primeira senha incorreta.
    - Segunda senha incorreta.
    - Falta de saldo na conta.

# Sequência alternativa A1 Primeira senha incorreta:

- 1.1 Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
- 1.2 Sistema aprova conta descrita no cartão, mas a senha introduzida é incorreta.
- 1.3 Sistema emite mensagem de erro "senha caixa eletrônico incorreta".
- 1.4 Volta para o passo 1 da sequência típica.

#### Sequêcia alternativa A2 Segunda senha incorreta:

- 2.1 Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
- 2.2 Sistema aprova conta descrita no cartão e a senha introduzida.
- 2.3 Cliente seleciona valor a ser sacado.
- 2.4 Sistema verifica que há saldo na conta e solicita segunda senha.
- 2.5 Cliente fornece segunda senha.
- 2.6 Senha fornecida é incorreta e sistema emite mensagem de erro "senha cartão incorreta".
- 2.7 Volta para o passo 4 da sequência típica.

### Sequência alternativa A3 Falta de saldo na conta:

- 3.1 Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
- 3.2 Sistema aprova conta descrita no cartão e a senha introduzida.
- 3.3 Cliente seleciona valor a ser sacado.
- 3.4 Sistema verifica que não há saldo na conta e emite mensagem de erro "falta de saldo para realizar saque".
- 3.5 Volta para o passo 1 da sequência típica.

#### Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

## Projeto de Casos de Teste

| Caso<br>Teste | Cenário                                     | Conta  | Senha 1  | Senha 2  | Saldo     | Saque             | Saída<br>Esperada                             |
|---------------|---------------------------------------------|--------|----------|----------|-----------|-------------------|-----------------------------------------------|
|               |                                             |        |          |          |           |                   |                                               |
| 1             | Seqüência<br>típica – Saque<br>bem sucedido | Válida | Válida   | Válida   | Saldo > 0 | Saque <<br>Saldo  | Dinheiro<br>entregue                          |
| 2             |                                             | Válida | Válida   | Válida   | Saldo > 0 | Saque =<br>Saldo  | Dinheiro<br>entregue                          |
| 3             |                                             | Válida | Válida   | Válida   | Saldo > 0 | Saque < <br>Saldo | Dinheiro<br>entregue                          |
| 4             | Seqüência A1<br>– Senha 1<br>incorreta      | Válida | Inválida |          |           |                   | Mensagem –<br>Senha do<br>caixa<br>incorreta  |
| 5             | Seqüência A2<br>– Senha 2<br>incorreta      | Válida | Válida   | Inválida | Saldo > 0 | Saque <<br>Saldo  | Mensagem –<br>Senha do<br>cartão<br>incorreta |

## Projeto de Casos de Teste

| Caso<br>de |                                                 | Conta  | Senha 1 | Senha 2 | Saldo        | Saque              | Saída<br>Esperada                          |
|------------|-------------------------------------------------|--------|---------|---------|--------------|--------------------|--------------------------------------------|
| Teste      |                                                 |        |         |         |              |                    |                                            |
| 6          | Seqüência A3<br>- Falta de<br>saldo na<br>conta | Válida | Válida  | Válida  | Saldo ><br>0 | Saque ><br>Saldo   | Mensagem –<br>Falta de saldo<br>para saque |
| 7          |                                                 | Válida | Válida  | Válida  | Saldo ><br>0 | Saque  <br>> Saldo | Mensagem –<br>Falta de saldo<br>para saque |
| 8          |                                                 | Válida | Válida  | Válida  | Saldo =<br>0 |                    | Mensagem –<br>Falta de saldo<br>para saque |
| 9          |                                                 | Válida | Válida  | Válida  | Saldo <<br>0 |                    | Mensagem –<br>Falta de saldo<br>para saque |
|            |                                                 |        |         |         |              |                    |                                            |

## Projeto de Casos de Teste

| Caso<br>de | Cenário                                                 | Conta    | Senha 1 | Senha 2 | Saldo        | Saque             | Saída<br>Esperada                          |
|------------|---------------------------------------------------------|----------|---------|---------|--------------|-------------------|--------------------------------------------|
| Teste      | 9                                                       |          |         |         |              |                   |                                            |
| 6          | Seqüência A3<br>– Falta de<br>saldo na<br>conta         | Válida   | Válida  | Válida  | Saldo ><br>0 | Saque ><br>Saldo  | Mensagem –<br>Falta de saldo<br>para saque |
| 7          |                                                         | Válida   | Válida  | Válida  | Saldo ><br>0 | Saque  ><br>Saldo | Mensagem –<br>Falta de saldo<br>para saque |
| 8          |                                                         | Válida   | Válida  | Válida  | Saldo =<br>0 |                   | Mensagem –<br>Falta de saldo<br>para saque |
| 9          |                                                         | Válida   | Válida  | Válida  | Saldo <<br>0 |                   | Mensagem –<br>Falta de saldo<br>para saque |
| 10         | Seqüência<br>alternativa<br>ausente –<br>conta inválida | Inválida |         |         |              |                   | Mensagem –<br>conta inválida               |

### Casos de Teste e Casos de Uso

### Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

## **Casos de Teste**

| Caso<br>de |                                                | Conta                   | Senha 1              | Senha 2              | Saldo                 | Saque                     | Saída<br>Esperada                             |
|------------|------------------------------------------------|-------------------------|----------------------|----------------------|-----------------------|---------------------------|-----------------------------------------------|
| Teste      |                                                |                         |                      |                      |                       |                           |                                               |
| 1          | Seqüência<br>típica –<br>Saque bem<br>sucedido | Válida<br>(1511-1<br>5) | Válida<br>(151101)   | Válida<br>(010877)   | Saldo ><br>0<br>(100) | Saque <<br>Saldo<br>(50)  | Dinheiro<br>entregue                          |
| 2          |                                                | Válida<br>(1511-1<br>5) | Válida<br>(151101)   | Válida<br>(010877)   | Saldo ><br>0 (100)    | Saque =<br>Saldo<br>(100) | Dinheiro<br>entregue                          |
| 3          |                                                | Válida<br>(1511-1<br>5) | Válida<br>(151101)   | Válida<br>(010877)   | Saldo > 0 (100)       | Saque < <br>Saldo<br>(99) | Dinheiro<br>entregue                          |
| 4          | Seqüência<br>A1 – Senha<br>1 incorreta         | Válida<br>(1511-1<br>5) | Inválida<br>(151111) |                      |                       |                           | Mensagem –<br>Senha do<br>caixa<br>incorreta  |
| 5          | Seqüência<br>A2 – Senha<br>2 incorreta         | Válida<br>(1511-1<br>5) | Válida<br>(151101)   | Inválida<br>(010878) | Saldo ><br>0 (100)    | Saque <<br>Saldo<br>(50)  | Mensagem –<br>Senha do<br>cartão<br>incorreta |

# Processo de Software



### Exercício



## AlugaCar

AlugaCar é uma empresa de aluguel de carros que deseja automatizar o seu sistema de reservas de carros.

## **Atores identificados**

- Cliente:
  - Indivíduo que deseja alugar um carro da AlugaCar.
- Funcionário da Agência da AlugaCar:
  - Empregado da AlugaCar que utiliza o sistema de reserva de carros.
- Departamento de Manutenção:
  - Departamento responsável pela manutenção preventiva dos carros, pela realização da manuntenção e pela atualização do histórico de manutenções dos carros.

## Casos de uso identificados

- Reservar carro
- Verificar disponibilidade
- Retirar carro
- Retornar carro
- Cancelar reserva
- Adicionar carro
- Transportar carro para agência
- Alocar manutenção de carro
- Atualizar histórico de revisões
- Descartar carro
- ...

# Sistema de reservas da AlugaCar



- Nome: Reservar carro
- Descrição: este caso de uso permite ao cliente reservar um carro de sua preferência em uma determinada agência para datas específicas.

#### Sequência Típica:

- 1. Cliente solicita reserva de carro e fornece as seguintes informações:
  - agências de retirada e devolução do veículo
  - datas de retirada e devolução do veículo
  - tipo do veículo (classe, marca, modelo)
  - opcionais.
- 2. Sistema verifica a disponibilidade e informa os carros disponíveis.
- 3. Cliente seleciona carro.
- 4. Sistema determina diária do carro.
- 5. Cliente confirma reserva.
- 6. Sistema gera dados da reserva (no. da reserva, datas, carro, diárias etc.) para impressão.

- Sequência alternativa A1 tipo de carro não está disponível:
  - 1.1 Cliente solicita reserva de carro e fornece informações sobre o carro desejado.
  - 1.2 Sistema verifica a disponibilidade e emite a mensagem de erro "tipo carro desejado não está disponível".
  - 1.3 Volta para o passo 1 da sequência típica.

- Sequência alternativa A2 carro solicitado não está disponível na data de retirada:
  - 2.1 Cliente solicita reserva de carro e fornece informações sobre o carro desejado.
  - 2.2 Sistema verifica a disponibilidade e emite a mensagem de erro "carro solicitado não está disponível na data desejada para retirada".
  - 2.3 Volta para o passo 1 da sequência típica.

- Sequência alternativa A3 opcionais desejados não disponíveis:
  - 3.1 Cliente solicita reserva de carro e fornece informações sobre o carro desejado.
  - 3.2 Sistema verifica a disponibilidade e emite a mensagem de erro "opcionais desejados não disponíveis".
  - 3.3 Volta para o passo 1 da sequência típica.

- Pré-condições:
  - Cliente cadastrado no sistema.
- Pós-condições:
  - Reserva efetuada.
- Regra de negócios:
  - Tarifa calculada segundo as regras definidas pela AlugaCar.