Модели информационного поиска Лекция 2

БГУ ФПМИ, 2018

План

Булев поиск Инвертированный индекс

Векторная модель

Вероятностные модели в информационном поиске Языковые модели

Сочетание признаков

Релевантность

- Сложное понятие, зависящее от субъективного восприятия.
- В рамках моделей информационного поиска рассматривается с нескольких сторон:
 - тематическая релевантность
 - пользовательская релевантность
 - бинарная релевантность
 - многозначная релевантность

Яндекс

фпми официальный сайт Х 🖘 Найти

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

ФПМИ

fpmi.bsu.by +

Структура факультета; список кафедр. Научные направления, Информация абитуриенту, Правила приема в магистратуру, Новости факультета. Контакты. 9 Минск, просп. Независимости, 4 - м. Площарь Ленина - +375 (17) 209-52-45

Абитуриенту

За время своего существования факультет подготовил более чем...

Кафедры

Кафедры кафедра высшей **математики** кафедра...

ФПМИ

Кадровый состав: 3 профессора, 11 доцентов, 1 старший...

Специальности Прикладная математика

Квалификация...
Прием прошлых лет

Ниже приводится статистика приемной кампании по факультету...

Деканат

ЗАМЕСТИТЕЛЬ ДЕКАНА ПО УЧЕБНОЙ РАБОТЕ СОБОЛЕВА...

€ БГУ. Факультет прикладной математики и информатики bsu.by > БГУ ▼

Декан ФПМИ, заведующий кафедрой вычислительной математики ФПМИ. ... В официальной заявке (образец см. на сайте www.uni.bsu.by) обязательно должны...

ФПМИ: Другие сайты факультета

fpmi.bsu.by > Другие сайты факультета ▼
....История Издания факультета Профбюро ФПМИ Персональные страницы ...
Официальный сайт очно-заочной школы по математике и информатике

ФПМИ: Специальности факультета

fpmi.bsu.by > Специальности v
Другие сайты факультета Структура Образование Магистратура Наука ... Издания
факультета Пособосо ФПМИ Певсональные страницы Фотогалерен Газета ФПМы...

ru.wikipedia.org > Факультет прикладной математики и информатики БГУ = Официальный сайт.... Официальный сайт Факультета прикладной математики и информатики БГУ.

■ ФПМИ БГУ (FAMCS BSU) | ВКонтакте

vk.com > club103965 *

Белорусский государственный университет, факультет прикладной математики и информатики

Сайт Как добраться Написать отзыв

Адрес: Минск, просп. Независимости, 4

Метро: ● Площадь Ленина, ● Институт Культуры, ● Купаловская Телефон: +375 17 209-52-45, +375 17 226-55-48 Сайт: fpmi.bsu.by

Яндекс.Карты Исправить неточност

Нашлось 6 тыс. результатов

Дать объявление

могадишо Х 🚐 Найти

поиск картинки видео карты маркет новости переводчик ещё

W Могадишо — Википедия ru.wikipedia.org → Могадишо ▼

Могади́шо (сомал. Muqdisho, араб. مدينة, итал. Mogadiscio) — столица Сомали, крупнейший город и главный порт страны, являющийся также её культурным, финансовым и индистрамальным центом.

Могадишо на карте Сомали

yandex.ru → Moraдишо

Могадишо на карте Сомали — схематической или спутниковой. Поиск на карте по
адресу или названию населённого пункта.

? могадишо — смотрите картинки vandex.bv/images → могадишо

Могадишо — новости

В Могадишо в результате теракта 18 человек...

wordyou.ru 20 фев 2017
В Могадишо в результате теракта 18 человек погибли и 25 пострадали » "Слово без границ" - новости России и мира сегодня.

Число жертв взрыва на рынке в Могадишо... belta.by 20 фев 2017

В результате взрыва в столице Сомали **Могадишо...**

RB Могадишо, Сомали - отдых, погода, отзывы... | RestBee.ru restbee.ru > world/afrika/somali/moqadisho *

Могадишо является не только официальной столицей Сомали, но и крупнейшим

Могадишо

Столица Сомали

Столица Сомали, крупнейший город и главный порт страны, являющийся также её культурным, финансовым и индустриальным центром. Население города - 2 120 000 жителей. Пошадь - 91 жж.² Википедия.

Погода: 27°С, Ясно

Местное время: 22 февраля, 00:30

Дата возникновения: 1331 г. Население: 2 120 000 чел.

Площадь: 91 км²

Смотрите также

Сомали

икипедия Сооощить оо ошиоке

Яндекс

джанго освобожденный

💳 Найти

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

Джанго освобожденный (2012) смотреть онлайн... kinggo.club - Джанго освобожденный т

Квентин Тарантино - это режиссер, создавший лучший вестерн всех времен "Джанго освобожденный".

⊕ Джанго освобожденный (2012) — КиноПоиск

Кадры Промо Съёмки Скриншоты Фан-арт Обложки Концепт kinopoisk.ru > Джанго =

Драма, вестерн, приключения. Режиссер: Квентин Тарантино. В ролях: Джейми Фокс, Кристоф Вальц, Леонардо ДиКаприо и др. Эксцентричный охотник за головами, такжи известный как «Дантист», промышляет отстрелом самых опасных преступников.

**** 8.2/10 · 268 663 оценок

W Джанго освобождённый — Википедия

ru.wikipedia.org » Джанго освобождённый » «Джанго освобождённый» (англ. Django Unchained) — художественный фильм 2012 года режисера Квентина Тарантию в жанре спагетти-вестерн.

Кі Джанго освобожденный (2013) смотреть онлайн фильм...

kinokrad.co > Джанго освобожденный т
В прокат вышел блокбастер «Джанго освобождённый» (2013), в котором режиссеру

удалось задействовать лучших актёров Голливуда. Джанго освобожденный — 10 тыс. видео video yandex.by > джанго освобожденный

 ▶2:45:22 НО
 ▶2:4

 Джанго
 Джан освобожденный / 2012 / Фильм / Full

video.mail.ru

Джанго ok.ru

Джанго Освобожденный

Django Unchained, 2012 18+

Эксцентричный охотник за головами, также известный как «Дантист», промышляет отстрелом самых опасных преступников. Работенка пыльная, и без надежного помощника ему не обойтнсь. Но как найти такого и желательно не очень дорогого? Беглый раб по имени... Читать дальше

* * * * * 8.2/10 КиноПоиск

*** 8,5/10 IMDb

Жанр: драма, Вестерн, приключения, комедия Страна: США

Режиссёр: Квентин Тарантино

Музыка: Эннио Морриконе

Длительность: 141 мин. Продюсеры: Стейси Шер, Боб Вайнштейн, Харви Вайнштейн, Реджинальд Хадлин, Майкл Шамберг, Уильям Пол Кларк, Джеймс В. Скотчдопогул

Актеры

Правильная модель информационного поиска позволяет находить релевантные документы по заданному запросу.

План

Булев поиск Инвертированный индекс

Векторная модель

Вероятностные модели в информационном поиске Языковые модели

Сочетание признаков

Булева модель поиска

▶ Запрос имеет вид булева выражения, состоящего из термов и операторов AND, OR, NOT.

("семь" OR "один") AND NOT "все"

- Основана на точном совпадении.
- Релевантность бинарна.

Булева модель поиска

Результат поиска – неупорядоченное множество документов, удовлетворяющих запросу.

Булева модель поиска

Результат поиска – неупорядоченное множество документов, удовлетворяющих запросу.

- 1. "Семь раз отмерь, один раз отрежь."
- 2. "Один за всех, все за одного."
- 3. "Семь бед один ответ."
- 4. "Семь вёрст до небес и все лесом."

Query = ("семь" OR "один") AND NOT "все" Result docs =
$$(\{1,3,4\} \cup \{1,2,3\}) \cap \overline{\{2,4\}} = \{1,3\}$$

Как это работает?

Последовательно просмотрим все слова запроса в каждом документе.

Как это работает?

Последовательно просмотрим все слова запроса в каждом документе.

	1	2	3	4
беда	0	0	1	0
верста	0	0	0	1
все	0	1	0	1
один	1	1	1	0
семь	1	0	1	1

$$(1011 \lor 1110) \land \neg (0101) = 1010$$

Словарь		- Словопозиции (postings)
Терм	N _t	Словопозиции (postings)
беда	3	3, 10, 11
верста	2	4, 5
друг	7	11, 14, 18, 21, 25, 34, 40
семь	10	1, 3, 4, 11, 15, 23, 37, 45, 51, 56

В общем случае

$$posting(d, t) = (d, f_{t,d}, [p_1, \dots, p_{f_{t,d}}])$$

Построение инвертированного индекса

1. ['Семь раз отмерь, один раз отрежь.', 'Один за всех, все за одного', 'Семь бед — один ответ.', 'Семь вёрст до небес и все лесом.']

Построение инвертированного индекса

- 1. ['Семь раз отмерь, один раз отрежь.', 'Один за всех, все за одного', 'Семь бед один ответ.', 'Семь вёрст до небес и все лесом.']
- 2. [['семь', 'раз', 'отмерить', 'один', 'раз', 'отрезать'], ['один', 'за', 'все', 'все', 'за', 'один'], ['семь', 'беда', 'один', 'ответ'], ['семь', 'верста', 'до', 'небеса', 'и', 'все', 'лес']]

Построение инвертированного индекса

- 1. ['Семь раз отмерь, один раз отрежь.', 'Один за всех, все за одного', 'Семь бед один ответ.', 'Семь вёрст до небес и все лесом.']
- 2. [['семь', 'раз', 'отмерить', 'один', 'раз', 'отрезать'], ['один', 'за', 'все', 'все', 'за', 'один'], ['семь', 'беда', 'один', 'ответ'], ['семь', 'верста', 'до', 'небеса', 'и', 'все', 'лес']]
- 3. [('беда', 3), ('верста', 4), ('все', 2), ('все', 2), ('все', 4), ('до', 4), ('за', 2), ('за', 2), ('и', 4), ('лес', 4), ('небеса', 4), ('один', 1), ('один', 2), ('один', 2), ('один', 3), ('ответ', 3), ('отмерить', 1), ('отрезать', 1), ('раз', 1), ('раз', 1), ('семь', 1), ('семь', 3), ('семь', 4)]

 $\mathrel{\mathrel{\sqsubset}_{\operatorname{Булев}}}$ поиск

 $\mathrel{\bigsqcup}_{\mathrm{Инвертированный}}$ индекс

Терм	Словопозиции
'беда'	[3]
'верста'	[4]
'Bce'	[2, 4]
'до'	[4]
'за'	[2]
' _и '	[4]
'лес'	[4]
'небеса'	[4]
'один'	[1, 2, 3]
'ответ'	[3]
'отмерить'	[1]
'отрезать'	[1]
'раз'	[1]
'семь'	[1, 3, 4]

Поиск в индексе

 Два списка docId пересекаются аналогично алгоритму merge.

Поиск в индексе

- ▶ Два списка docId пересекаются аналогично алгоритму merge.
- Для ускорения работы обработку списков нужно производить в порядке возрастания их длин.

∟Инвертированный индекс

+

предсказуемость;

- предсказуемость;
- легкая интерпретация результатов;

∟Булев поиск

∟Инвертированный индекс

- +
- предсказуемость;
- легкая интерпретация результатов;
- эффективность.

- +
- предсказуемость;
- легкая интерпретация результатов;
- эффективность.

- качество полностью зависит от пользователя;

- +
- предсказуемость;
- легкая интерпретация результатов;
- эффективность.

- качество полностью зависит от пользователя;
- плохие результаты для простых запросов;

- +
- предсказуемость;
- легкая интерпретация результатов;
- эффективность.

- ▶ качество полностью зависит от пользователя;
- плохие результаты для простых запросов;
- трудность построения сложных запросов.

Жив ли пациент?

Search arXiv.org

Области применения

- Первая стадия в более сложных поисковых системах.
- Научные электронные библиотеки.
- Правовая сфера.

План

Булев поиск Инвертированный индекс

Векторная модель

Вероятностные модели в информационном поиске Языковые модели

Сочетание признаков

Векторная модель поиска

- > Запрос задается в произвольной текстовой форме.
- ightharpoonup Документы и запросы представлены в виде векторов в T-мерном пространстве, где T общее количество термов.
- Ранжирование основано на близости векторов в выбранном линейном пространстве.

	1	2	3	4	q
'беда'	0	0	1	0	0
'верста'	0	0	0	1	0 1 0
'Bce'	0	2	0	1	0
'до'	0	0	0	1	0
'3a'	0	2	0	0	1
'и'	0	0	0	1	0
'кисель'	0	0	0	0	1
'лес'	0	0	0	1	1 0 1 0 0
'небеса'	0	0	0	1	0
'один'	1	2	1	0	0
'ответ'	0	0	1	0	0
отмерить'	1	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0
'отрезать'	1	0	0	0	0
'раз'	2	0	0	0	0
'семь'	1	0	1	1	0 1 1
'хлебать'	0	0	0	0	1

Ранжирование в векторной модели

Score(
$$\mathbf{q}, \mathbf{d}$$
) = cos(\vec{q}, \vec{d}) = $\frac{(\vec{q}, \vec{d})}{|\vec{q}||\vec{d}|}$
 $|\vec{x}| = \sqrt{\sum_{t=1}^{T} x_t^2}$

Взвешивание термов

$$d_t = ext{tf-idf}_{t,d} = \mathit{TF}_{t,d} imes \mathit{IDF}_t$$
 $Score(q,d) = rac{1}{Z_q \cdot Z_d} \sum_{t \mid q_t
eq 0} ext{tf-idf}_{t,d} \cdot ext{tf-idf}_{t,q}$

 Z_q, Z_d — нормировочные коэффициенты.

Взвешивание термов

$$egin{aligned} d_t &= ext{tf-idf}_{t,d} = \mathit{TF}_{t,d} imes \mathit{IDF}_t \ Score(q,d) &= rac{1}{Z_q \cdot Z_d} \sum_{t \mid q_t
eq 0} ext{tf-idf}_{t,d} \cdot ext{tf-idf}_{t,q} \end{aligned}$$

 Z_q, Z_d – нормировочные коэффициенты. для документа:

$$TF_{t,d} = 1 + \log(f_{t,d}), \quad IDF_t = 1, \quad Z_d = \sqrt{\sum_{t=1}^{T} TF_{t,d}^2}$$

для запроса:

$$TF_{t,q} = [f_{t,q} > 0], \quad IDF_t = \log \frac{N}{N_t}, \quad Z_q = \sqrt{\sum_{t=1}^T \mathrm{tf\text{-}idf}_{t,q}^2}$$

Векторная модель, +/-

Векторная модель, +/-

- простота;
 - разнообразие вариантов взвешивания термов и мер схожести.

Векторная модель, +/-

- +
 - простота;
 - разнообразие вариантов взвешивания термов и мер схожести.

- предположение о независимости термов;
- невозможность определить способ оптимального ранжирования.

∟Вероятностные модели в информационном поиске

План

Булев поиск Инвертированный индекс

Векторная модель

Вероятностные модели в информационном поиске Языковые модели

Сочетание признаков

Обоснование

Принцип вероятностного ранжирования (см. предыдущую лекцию).

Постановка задачи

Какова вероятность того, что пользователь оценит данный документ как релевантный для данного запроса? Нужно оценить P(R = 1|d, q), где $R \in \{0, 1\}$.

Бинарная модель независимости (BIM)

1. Документ и запрос представляются в виде бинарного вектора термов.

$$\vec{x} = (x_1, x_2, \dots, x_T), \ x_t = [f_{t,x} > 0]$$

2. Термы встречаются независимо друг от друга.

$$P(\vec{x}) = \prod_{t=1}^{T} P(x_t)$$

По формуле Байеса:

$$P(R = 1|\vec{d}, \vec{q}) = \frac{P(\vec{d}|R = 1, \vec{q})P(R = 1|\vec{q})}{P(\vec{d}|\vec{q})}$$

$$P(R = 0|\vec{d}, \vec{q}) = \frac{P(\vec{d}|R = 0, \vec{q})P(R = 0|\vec{q})}{P(\vec{d}|\vec{q})} = 1 - P(R = 1|\vec{d}, \vec{q})$$

Вероятностные модели в информационном поиске

BIM

$$O(R|\vec{d}, \vec{q}) = \frac{P(R=1|\vec{d}, \vec{q})}{P(R=0|\vec{d}, \vec{q})} =$$

$$O(R|ec{d},ec{q}) = rac{P(R=1|d,ec{q})}{P(R=0|ec{d},ec{q})} =$$

$$= \frac{P(\vec{d}|R=1,\vec{q})}{P(\vec{d}|R=0,\vec{q})} \cdot \frac{P(R=1|\vec{q})}{P(R=0|\vec{q})} \stackrel{(2)}{=} O(R|\vec{q}) \cdot \prod_{t=1}^{T} \frac{P(d_t|R=1,\vec{q})}{P(d_t|R=0,\vec{q})} \stackrel{(1)}{=}$$

$$\stackrel{(1)}{=} O(R|\vec{q}) \cdot \prod_{t:d_t=1}^T \frac{P(d_t=1|R=1,\vec{q})}{P(d_t=1|R=0,\vec{q})} \prod_{t:d_t=0}^T \frac{P(d_t=0|R=1,\vec{q})}{P(d_t=0|R=0,\vec{q})} = \\ = O(R|\vec{q}) \cdot \prod_{t:d_t=1}^T \frac{\mathbf{p_t}}{\mathbf{u_t}} \prod_{t:d_t=0}^T \frac{\mathbf{1} - \mathbf{p_t}}{\mathbf{1} - \mathbf{u_t}}$$

Предположим, что если $q_t=0$, то $p_t=u_t$.

$$O(R|\vec{d}, \vec{q}) = O(R|\vec{q}) \cdot \prod_{t:d_t = q_t = 1}^{T} \frac{p_t}{u_t} \prod_{t:d_t = 0, q_t = 1}^{T} \frac{1 - p_t}{1 - u_t} =$$

$$= O(R|\vec{q}) \cdot \prod_{t:d_t = q_t = 1}^{T} \frac{p_t(1 - u_t)}{u_t(1 - p_t)} \cdot \prod_{t:q_t = 1}^{T} \frac{1 - p_t}{1 - u_t} \quad (1)$$

Предположим, что если $q_t = 0$, то $p_t = u_t$.

$$O(R|\vec{d}, \vec{q}) = O(R|\vec{q}) \cdot \prod_{t:d_t = q_t = 1}^{T} \frac{p_t}{u_t} \prod_{t:d_t = 0, q_t = 1}^{T} \frac{1 - p_t}{1 - u_t} =$$

$$= O(R|\vec{q}) \cdot \prod_{t:d_t = q_t = 1}^{T} \frac{p_t(1 - u_t)}{u_t(1 - p_t)} \cdot \prod_{t:q_t = 1}^{T} \frac{1 - p_t}{1 - u_t} \quad (1)$$

Retrieval Status Value

$$RSV_d = \sum_{t:d_t = q_t = 1} \log \frac{p_t(1 - u_t)}{(1 - p_t)u_t} = \sum_{t:d_t = q_t = 1} c_t$$
 (2)

Оценка вероятностей

S – количество релевантных запросу q документов в коллекции, S_t – количество релевантных, содержащих терм t.

$$p_t = \frac{S_t}{S}, \quad u_t = \frac{N_t - S_t}{N - S}$$

Оценка вероятностей

S – количество релевантных запросу q документов в коллекции, S_t – количество релевантных, содержащих терм t.

$$p_t = \frac{S_t}{S}, \quad u_t = \frac{N_t - S_t}{N - S}$$

$$c_{t} = \log \frac{S_{t}/(S - S_{t})}{(N_{t} - S_{t})/(N - N_{t} - S + S_{t})} \approx \frac{(S_{t} + 0.5)/(S - S_{t} + 0.5)}{(N_{t} - S_{t} + 0.5)/(N - N_{t} - S + S_{t} + 0.5)}$$
(3)

Небинарная модель: Окарі BM25

$$RSV_{d} = \sum_{t:q_{t}=1} \left(\log \frac{(S_{t}+0.5)/(S-S_{t}+0.5)}{(N_{t}-S_{t}+0.5)/(N-N_{t}-S+S_{t}+0.5)} \times \frac{(\mathbf{k_{1}}+1)f_{t,d}}{\mathbf{k_{1}}((1-\mathbf{b})+\mathbf{b}\cdot L_{d}/\bar{L}) + f_{t,d}} \times \frac{(\mathbf{k_{2}}+1)f_{t,q}}{\mathbf{k_{2}}+f_{t,q}} \right)$$

 $b=0.75,\ k_1=1.2,\ k_2=0..1000$ L_d – длина документа $d,\ \bar{L}$ – средняя длина документа в коллекции.

Снова TF-IDF

$$\begin{split} S_t &= S = 0, \ \log \frac{N-N_t}{N_t} \approx \log \frac{N}{N_t} \\ RSV_d &= \\ &= \sum_{t:q_t=1} \left(\log \frac{N}{N_t} \times \frac{(k_1+1)f_{t,d}}{k_1((1-b)+b \cdot L_d/\bar{L}) + f_{t,d}} \times \frac{(k_2+1)f_{t,q}}{k_2 + f_{t,q}} \right) = \\ &= \sum_{t:q_t=1} IDF_t \times TF_{t,d} \times TF_{t,q} \end{split}$$

∟Языковые модели

Ранжирование с использованием языкового моделирования

Языковая модель – функция, приписывающая каждой строке над некоторым словарем некоторую вероятность.

$$P(R=1|q,d) pprox P(d|q) = rac{P(q|M_d)P(d)}{P(q)}$$

 M_d – языковая модель документа d.

Языковые модели

Униграммная модель

$$P(\vec{q}|M_d) = \prod_{t:q_t=1} P(q_t|M_d) = \prod_{t:q_t=1} \frac{f_{t,d}}{L_d}$$

План

Булев поиск Инвертированный индекс

Векторная модель

Вероятностные модели в информационном поиске Языковые модели

Сочетание признаков

Learning to Rank

$$Score(q, d) = F(f_1, f_2, \dots, f_k)$$

, где $f_i = f_i(q,d)$ – признак.

 $F \in \mathcal{F}$ подбирается на обучающей выборке $\{(f_{i1}, \dots, f_{ik}; y_i)\}_{i=1}^n$ исходя из задачи оптимизации некоторой метрики.

 y_i — оценки релевантности, выраженные в ассессорских оценках либо пользовательских действиях.

Learning to Rank

- вычисление таких моделей достаточно тяжелая операция, поэтому применяются к ограниченному числу документов;
- значимые финансовые затраты для составления обучающей выборки;
- ▶ тем не менее, зависят от качества более низкоуровневых моделей.

Следующая лекция

Компьютерная лингвистика в информационном поиске