Lecture Notes 10/02/2020

10/02/2020

1 The Exponential Function

Definition:

$$f(x) = a^x$$

Where x > 1 and $a \neq 0$

Its domain is $(-\infty, \infty)$ and its range is $(0, \infty)$

Proposition: $f(x) = a^x$

When a > 1

$$\lim_{x \to -\infty} a^x = 0$$

$$\lim_{x \to \infty} a^x = \infty$$

When 0 < a < 1

$$\lim_{x \to -\infty} a^x = \infty$$

$$\lim_{x \to \infty} a^x = 0$$

1.1 Evalutating Limits of Exponential Functions

Evaluate $\lim_{x\to\infty} \frac{2}{5^x}$

Take the two out

$$2\frac{1}{5^x}$$

Direct substitution

$$2(\frac{1}{5^{\infty}})$$

Simplify

$$2(0) = 0$$

Evaluate $\lim_{x\to\infty} \frac{2-5x}{2+3(5)^x}$

Divide by the highest degree of x

$$\frac{5^x(\frac{2}{5^x} - 1)}{5^x(\frac{2}{5^x} + 3)}$$

Simplify and direct substitution

$$\frac{1(\frac{2}{5^{\infty}} - 1)}{1(\frac{2}{5^{\infty}} + 3)} = \frac{(0 - 1)}{(0 + 3)} = -\frac{1}{3}$$

Evaluate $\lim_{x\to-\infty} e^{7x} sin(x)$

Break into two functions

$$h(x) = e^{7x}, g(x) = \sin(x)$$

Use the Squeeze Theorem

$$-1 \le \sin(x) \le 1$$
$$-e^{7x} \le e^{7x} \sin(x) \le e^{7x}$$

Note: $h(x) = e^{7x}$ can bee seen as the amplitude of $g(x) = \sin(x)$

Now take the limits

$$\lim_{x \to -\infty} -e^{7x} = 0$$
$$\lim_{x \to \infty} e^{7x} = 0$$

We get

$$\lim_{x \to -\infty} e^{7x} \sin(x) = 0$$

1.1.1 Cool identities

$$a^{x+y} = a^x + a^y$$
$$a^{x-y} = \frac{a^x}{a^y}$$
$$(a^x)^y = a^{xy}$$
$$(ab)^x = a^x b^x$$