第四次作业 (2025-10-29 课间交 4: 10之前)

周民强《实变函数论(第三版)》

P88 思考题 3, 5, P107 思考题 3,P125-127 习题3: 2,3,6,7,15

88-3

Find an unmeasurable set $W \subset [0,1]$ such that W-W has no interior.

Proof: Consider the unmeasurable set W obtained by choosing a representative of each element of [0,1]/Q. If $B(x,\varepsilon)\subset W-W$ for some $x\in\mathbb{R}$ and $\varepsilon>0$, then there exists $q\in B(x,\varepsilon)\cap\mathbb{Q}$, and $w_1,w_2\in W$ such that $q=w_1-w_2$. By the construction of W, $w_1=w_2$, so $B(x,\varepsilon)\cap\mathbb{Q}\subset\{0\}$ which is clearly false.

88-5

Suppose $E\subset \mathbb{R}^n$, and for any $F\subset E\subset G$, where F closed and G open, we have

$$\sup_F\{m(F)\}<\inf_G\{m(G)\},$$

prove that E is not measurable.

Proof: If E is measurable, then $\sup_F \{m(F)\} = m(E) = \inf_G \{m(G)\}$, so E is not measurable.

107-3

If $\{f_k\}$ is a sequence of measurable functions on $E\subset\mathbb{R}^n$, then the points x such that $f_k(x)$ converges form a measurable set.

Proof: Let $A=\{x\in E: f_k(x) ext{ is Cauchy}\}$. Then

$$A = igcap_{p\geqslant 1} igcup_{N\geqslant 1} igcap_{n\geqslant N} igcap_{m\geqslant n} \{x: |f_n(x)-f_m(x)| < 1/p\}$$

clearly every set $\{x: |f_n(x)-f_m(x)|<1/p\}$ is measurable, so A is measurable.

126-2

Suppose z=f(x,y) is continuous on \mathbb{R}^2 , $g_1(x)$, $g_2(x)$ are real-valued measurable functions on $[a,b]\subset\mathbb{R}$. Prove that $F(x)=f(g_1(x),g_2(x))$ is a measurable function on [a,b].

Proof: For any $t,\Omega=f^{-1}([t,\infty))$ is closed, so for any $n\geqslant 1$, there exists a countable subset $J_n\subset\Omega$ such that for $z=(x,y),\Omega\subset\bigcup_{z\in J_n}(x-1/n,x+1/n)\times(y-1/n,y+1/n)\subset\Omega_n$, where $\Omega_n=\{z:d(z,\Omega)<2/n\}$. Hence

$$F^{-1}([t,\infty)) = \bigcap_{n\geqslant 1} igcup_{z\in J_n} g_1^{-1}((x-1/n,x+1/n)) \cap g_2^{-1}((y-1/n,y+1/n)).$$

Since $g_1^{-1}((x-1/n,x+1/n))$ and $g_2^{-1}((y-1/n,y+1/n))$ are measurable, so is $F^{-1}([t,\infty))$.

126-3

Suppose $f'_+(x)$ exists on [a,b), prove that $f'_+(x)$ is a measurable function on [a,b). Proof: Since $f'_+(x)$ exists, f is right-continuous which implies it is measurable, so every function n(f(x+1/n)-f(x)) is measurable, hence $f'_+(x)=\lim_{n\to\infty}n(f(x+1/n)-f(x))$ is measurable.

126-6

Suppose $\{f_k(x)\}$ is a sequence of real-valued measurable functions on $E\subset\mathbb{R}^n$, and $m(E)<\infty$. Prove that $\lim_{n\to\infty}f_n(x)=0$ a.e $x\in E$ iff for any $\varepsilon>0$

$$\lim_{N o\infty} m(\{x\in E: \sup_{n>N} |f_n(x)|\geqslant arepsilon\})=0.$$

Proof: Let $B_{n,p}=\left\{x\in E: |f_n(x)|<rac{1}{p}
ight\}$, and $C_{n,p}=B_{n,p}^C$, then

$$\{x:f_n(x) o 0\}=igcap_{p\geqslant 1}igcup_{N\geqslant 1}igcap_{n\geqslant N}B_{n,p}$$

so $\lim_{n o\infty}f_n(x)=0$ a.e. iff

$$0=m\left(igcup_{p\geqslant 1}igcap_{N\geqslant 1}igcup_{n\geqslant N}C_{n,p}
ight)\iff orall p\geqslant 1, m\left(igcap_{N\geqslant 1}igcup_{n\geqslant N}C_{n,p}
ight)=0.$$

Since $m(E) < \infty$,

$$m\left(igcap_{N\geqslant 1}igcup_{n\geqslant N}C_{n,p}
ight)=\lim_{N o\infty}m\left(igcup_{n\geqslant N}C_{n,p}
ight)=\lim_{N o\infty}m(\{x\in E:\sup_{n\geqslant N}|f_n(x)|\geqslant 1/p\})$$

hence it is equivalent to $\lim_{N o \infty} m(\{x \in E : \sup_{n \geqslant N} |f_n(x)| \geqslant \varepsilon\}) = 0$ for any $\varepsilon > 0$.

126-7

Suppose $f(x), f_1(x), \cdots, f_n(x), \cdots$ are measurable functions on [a,b] that are almost everywhere finite, and $\lim_{n\to\infty} f_n(x) = f(x)$ a.e., prove that there exists $E_n \subset [a,b]$, such that

$$m\left([a,b]ackslash\bigcup_{n\geqslant 1}E_n
ight)=0,$$

and $\{f_k\}$ converges uniformly to f on every subset E_n .

Proof: By Egorov theorem, for any n, we can find a compact subset $E_n \subset E = [a,b]$ such that $m([a,b]\backslash E_n) < 1/n$ and $\{f_k\} \to f$ uniformly on K. Clearly $m\left([a,b]\backslash\bigcup_{n\geqslant 1}E_n\right) = 0$.

127-15

Suppose $\{f_n(x)\}$ are measurable functions on [a,b], and $f:[a,b] o \mathbb{R}.$ If for any arepsilon>0,

$$\lim_{x \to \infty} m^*(\{x \in [a,b]: |f_n(x)-f(x)|>arepsilon\}) = 0,$$

is f a measurable function?

Proof: $\{f_n\}$ converges in measure to f, so by Riestz Lemma, there is a sub sequence $\{f_{n_k}\}$ that converges to f almost everywhere. Hence f is measurable.

Riestz Lemma: We still let $B_{n,p}=\{x\in E:|f_n(x)-f(x)|<1/p\}$ and $C_{n,p}=B_{n,p}^C$ then $\{f_n\} o f$ in measure m iff $\lim_{n\to\infty}m(C_{n,p})=0$ for every p. And likewise $\{f_{n_k}\} o f$ a.e. if

 $\lim_{N \to \infty} m\left(\bigcup_{k \geqslant N} C_{n_k,p}\right) = 0$ for every p. So there is a sub sequence n_k such that $m(C_{n_k,k}) < 2^{-k}$. Note that $C_{n,p} \subset C_{n,p+1}$, then for N > p,

$$m\left(igcup_{k\geqslant N}C_{n_k,p}
ight)<\sum_{k=N}^\infty 2^{-k}<2^{1-N} o 0.$$

Therefore $\{f_{n_k}\} o f$ almost everywhere.