CSCI 341 Problem Set 6

Stack Automata

Due Friday, October 17

Don't forget to check the webspace for hints and additional context for each problem!

Pumping Lengths

Problem 1 (Pop-Push). By induction on the length of the program, prove that every valid stack program is equivalent to either skip or a program of the following form:

pop
$$\sigma_1$$
.pop σ_2 ...pop σ_n .push τ_1 .push τ_2 ...push τ_m (*)

for some $n, m \in \mathbb{N}$.

Solution.

Problem 2 (2 is better than 1). Consider the language

$$L = \{ w \mid w = w^{\mathsf{op}} \}$$

in the alphabet $A = \{a, b, c\}$. Design a stack automaton $S = (Q, A, \Sigma, \delta, F)$ with a state $x \in Q$ such that $L = \mathcal{L}(S, x)$.

Solution.

Problem 3 (Arithmetic is Not Regular). Prove that the language of arithmetic expressions $ArExp \subseteq A^*$, derived from E in the grammar $\mathcal{G} = (X, A, R)$ below

$$E \to N \mid (E+E) \mid (E \times E) \mid (E-E) \mid (E/E)$$

$$N \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid NN$$

where the alphabet is

$$A = \{(,), +, \times, -, /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

is not regular.

Solution. \Box

Parse Trees

Problem 4 (Left on Your Own). Let \mathcal{G} be a grammar with a variable x, and let $w \in A^*$. Prove that if w has a derivation from x, then w has a left-most derivation from x.

Solution. \Box

Counter Automata

Problem 5 (Cats > Dogs). Let $A = \{c, a, t, d, o, g\}$. Design a counter automaton with a state x that accepts the language L_{cat} of all words $w \in A^*$ such that the string "cat" appears in w more times than "dog" appears in w.