円周率の統計学

円周率を 50,000 桁計算して、0,1,2,...,9 の出現頻度を求めると、

数字	頻度
0	5033
1	5054
2	4867
3	4948
4	5011
5	5052
6	5018
7	4977
8	5030
9	5010
合計	50000

これを見ると、多少のばらつきはあるが、0から9までの数字は、同じ数だけ現れているように見える。そこで、0から9までの数字は、全て等しい割合で現れると仮定してみよう。すなわち、

帰無仮説
$$H_0$$
: $p_0 = p_1 = p_2 = \cdots - p_9 = \frac{1}{10}$

をたてて、適合度の検定を行う。総数を N=50000 とすると、

$$\chi^2 = \sum_{i=0}^{9} \frac{(N_i - p_i N)^2}{p_i N}$$

は、自由度9の χ^2 分布に従う。上の表の値を代入すると、

$$\chi^{2} = \frac{1}{5000}(33^{2} + 54^{2} + 133^{2} + 52^{2} + 11^{2} + 52^{2} + 18^{2} + 23^{2} + 30^{2} + 10^{2})$$

$$= \frac{29076}{5000}$$

$$= 5.8152$$

自由度が9の場合、危険率5%のときの棄却域は、 $\chi^2>16.92$ である。 $\chi^2=5.8152$ は、採択域にある。従って、仮説 H_0 は、危険率5%で棄却できない。