MATH 320: QUIZ 4

(1) (3 points) Let $f(x) = x^2 e^{-x}$.

(a) Compute the first and second derivatives f'(x) and f''(x)

$$f'(x) = 2x \cdot e^{-x} + (-1)e^{-x} \cdot x^2 = (2x - x^2)e^{-x}$$
 (product rule)
 $f''(x) = (2-2x)e^{-x} + (-1)e^{-x}(2x - x^2) = (x^2 - 4x + 2)e^{-x}$.

(b) Based on this computation, list the local optima of f(x) and whether each point is a maximum or minimum.

(2x-x²)e^{-x} = 0
$$\Leftarrow$$
7 x=0 or 2 since e^{-x}70 for all x.
At x=0, $f''(x)$ 70 =) x=0 is a local minimum.
 $x=2$, $f''(x)$ 60 =7 x=2 is a local maximum.

(c) Are these points global optima?

$$x=0$$
 is a global min, since $f(x)=0$ there, and is strictly positive everywhere else.

(2) Let $g(x) = x^3 - x^2 - 3x - 1$.

(a) We would like to minimize the value of g(x) between 0 and 2. Suppose our initial root estimate is x = 1. What is the equation (in the form $y = ax^2 + bx + c$) for the parabola P that intersects the graph of g(x) at each of these x-values.

(b) Where does P attain its minimum?

$$y = 2x^2 - 5x - 1$$
 has a minimum when $\frac{dy}{dx} = 0$

- =) $4x-5=0 \Rightarrow x = \sqrt{7}=1.25$.
- (3) Suppose A is a matrix describing a map from \mathbb{R}^2 to \mathbb{R}^2 sending the solid vector (1,0) and the dashed vector (0,1) to the corresponding vectors in the picture at right.

(a) Please write A as a 2×2 matrix.

$$A = \begin{bmatrix} -1 & -1 \\ -2 & 1 \end{bmatrix}$$

(b) Evaluate the determinant of A.

$$\det \begin{pmatrix} -1 & -1 \\ -2 & 1 \end{pmatrix} = -1 \cdot 1 - (-1) \cdot (-2) = -3.$$