Отчёта по лабораторной работе №7

Команды безусловного и условного переходов в Nasm. Программирование ветвлений.

ДЖАЛЛОХ ИШМАИЛ

Содержание

1	1 Цель работы															4
2	2 Задание															5
3	Выполнение лабораторной работы								6							
	3.1 Реализация переходов в NASI	М														6
	3.2 Изучение структуры файлы л	истинга														11
	3.3 Задание для самостоятельной	й работы	I	•		•			•	•	•	•	•	•	•	14
4	4 Выводы															18

Список иллюстраций

3.1	Создаем каталог с помощью команды mkdir и фаил с помощью	
	команды touch	6
3.2	Заполняем файл	7
3.3	Запускаем файл и смотрим на его работу	7
3.4	Изменяем файл	8
3.5	Запускаем файл и смотрим на его работу	8
3.6	Редактируем файл	9
3.7	Проверяем, сошелся ли наш вывод с данным в условии выводом .	9
3.8	Создаем файл командой touch	9
3.9	Заполняем файл	10
3.10		11
	'' 1	11
3.12	√ 1	12
		13
3.14		13
3.15		14
3.16		15
3.17	1 1 -	15
3.18		15
3.19		16
	r r r · · · · · · · · · · · · · · · · ·	17
		17
3.22	Проверяем работу программы	17

1 Цель работы

Освоить условного и безусловного перехода. Ознакомиться с назначением и структурой файла листинга.

2 Задание

Написать программы для решения системы выражений.

3 Выполнение лабораторной работы

3.1 Реализация переходов в NASM

Создаем каталог для программ ЛБ7, и в нем создаем файл (рис. fig. 3.1).

```
jalloh_ishmail@vbox:~$ mkdir ~/work/arch-pc/lab07
jalloh_ishmail@vbox:~$ cd ~/work/arch-pc/lab07
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ touch lab7-1.asm
jalloh_ishmail@vbox:~/work/arch-pc/lab07$
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.1 (рис. fig. 3.2).

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.3).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 3
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
```

Рис. 3.3: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его в соответствии с листингом 7.2 (рис. fig. 3.4).

```
| The continue of the continue
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.5).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 1
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его, чтобы произошел данный вывод (рис. fig. 3.6).

Рис. 3.6: Редактируем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.7).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
```

Рис. 3.7: Проверяем, сошелся ли наш вывод с данным в условии выводом

Создаем новый файл (рис. fig. 3.8).

```
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ touch lab7-2.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
```

Рис. 3.8: Создаем файл командой touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.3 (рис. fig. 3.9).

Рис. 3.9: Заполняем файл

Создаем исполняемый файл и проверяем его работу, вводя разные значения В (рис. fig. 3.10).

```
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 5
Наибольшее число: 20
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 10
Наибольшее число: 20
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 7
Наибольшее число: 20
jalloh_ishmail@vbox:~/work/arch-pc/lab07$
Наибольшее число: 20
jalloh_ishmail@vbox:~/work/arch-pc/lab07$
```

Рис. 3.10: Смотрим на работу программ

3.2 Изучение структуры файлы листинга

Создаем файл листинга дла программы lab7-2.asm (рис. fig. 3.11).

```
jalloh_ishmail@vbox:~/work/arch-pc/lab07$
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
```

Рис. 3.11: Создаем файл листинга

Открываем файл листинга с помощью команды mcedit и изучаем его (рис. fig. 3.12).

Рис. 3.12: Изучаем файл

Строка 33: 0000001D-адрес в сегменте кода, ВВ01000000-машинный код, mov ebx,1-присвоение переменной есх значения 1.

Строка 34: 00000022-адрес в сегменте кода, В804000000-машинный код, mov eax,4-присвоение переменной eax значения 4.

Строка 35 00000027-адрес в сегменте кода, CD80-машинный код, int 80h-вызов ядра.

Открываем файл и удаляем один операндум (рис. fig. 3.13).

Рис. 3.13: Удаляем операндум из файла

Транслируем с получением файла листинга (рис. fig. 3.14).

```
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
lab7-2.asm:16: error: invalid combination of opcode and operands
jalloh_ishmail@vbox:~/work/arch-pc/lab07$ ls
in_out.asm lab7-1 lab7-1.asm lab7-1.o lab7-2 lab7-2.asm lab7-2.lst
jalloh_ishmail@vbox:~/work/arch-pc/lab07$
jalloh_ishmail@vbox:~/work/arch-pc/lab07$
```

Рис. 3.14: Транслируем файл

При трансляции файла, выдается ошибка, но создаются исполнительный файл lab7-2 и lab7-2.lst

Снова открываем файл листинга и изучаем его (рис. fig. 3.15).

Рис. 3.15: Изучаем файл с ошибкой

3.3 Задание для самостоятельной работы

ВАРИАНТ-15

Напишите программу нахождения наименьшей из 3 целочисленных переменных Выбрать из табл. 7.5 в соответствии с вариантом, полученнымпри выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу.

Создаем новый файл (рис. fig. 3.16).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ touch lab7-3.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
```

Рис. 3.16: Создаем файл командой touch

Открываем его и пишем программу, которая выберет наименбшее число из трех(2 числа уже в программе, 3е вводится из консоли) (рис. fig. 3.17).

Рис. 3.17: Пишем программу

Транслируем файл и смотрим на работу программы (рис. fig. 3.18).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-3.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ./lab7-3
Введите В: 6
Наибольшее число: 6
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
```

Рис. 3.18: Смотрим на рабботу программы(всё верно)

2. Напишите программу, которая для введенных с клавиатуры значений
и
вычисляет значение заданной функции
(В) и выводит результат вычислений. Вид функции
(В) выбрать из таблицы 7.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений
и и и з 7.6.

Создаем новый файл (рис. fig. 3.19).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ touch lab7-4.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
jalloh_ishmail@vbox:-/work/arch-pc/lab07$
```

Рис. 3.19: Создаем файл командой touch

Открываем его и пишем программу, которая решит систему уравнений, при даных, введенных в консоль (рис. fig. 3.20).

Рис. 3.20: Пишем программу

Транслируем файл и проверяем его работу при x=2 и a=3(рис. fig. 3.21).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ./lab7-4
Введите х: 2
Введите а: 3
F(x) = 10
```

Рис. 3.21: Проверяем работу программы

Транслируем файл и проверяем его работу при x=4 и a=2(рис. fig. 3.22).

```
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
jalloh_ishmail@vbox:-/work/arch-pc/lab07$ ./lab7-4
BBequite x: 4
BBequite a: 2
F(x) = 2
```

Рис. 3.22: Проверяем работу программы

4 Выводы

Мы познакомились с структурой файла листинга, изучили команды условного и безусловного перехоа.