SWAQ

特定の問題にちょっと強くなった量子アニーリングシミュレーター

岡田颯斗

大阪府立四條畷高等学校

目次

自己紹介

前提

背景

問題例

デモ

手法

単純な形

一般化

比較

参考文献

自己紹介

自己紹介

- 名前:岡田颯斗(高校3年生)
- 趣味・興味:
 - 競技数学
 - 量子コンピュータ

前提

前提

量子アニーリングは組合せ最適化問題を解く手段の一つ

彩色問題

隣り合う場所は異なる色で塗 分ける

巡回セールスマン問題

複数の街を最短経路ですべて 訪れる

例としての彩色問題

彩色問題:リンク

続:前提

量子アニーリングは組合せ最適化問題を解く手段の一つ

彩色問題

隣り合う場所は異なる色で塗 分ける

巡回セールスマン問題

複数の街を最短経路ですべて 訪れる

続:前提

量子アニーリングは組合せ最適化問題を解く手段の一つ

彩色問題

隣り合う場所は異なる色で塗 分ける

巡回セールスマン問題

複数の街を最短経路ですべて 訪れる

しかし、量子アニーリングは最適化問題を効率よく解けるかというと...

背景

背景

量子アニーリングは m 個の中から n 個選ぶのが苦手

なぜなら...

- 制約はペナルティ項として目的関数につけられる
- すると問題が非本質な方向へ最適化される

minimize H_{object} subject to $H_{constraint} = c$

背景

量子アニーリングは m 個の中から n 個選ぶのが苦手

なぜなら...

- 制約はペナルティ項として目的関数につけられる
- すると問題が非本質な方向へ最適化される

minimize
$$H_{object} + \underbrace{(H_{constraint} - c)^2}_{H_{penalty}}$$

彩色問題

minimize
$$\sum_{i,j \in Adj} \sum_{k \in color} q_{i,k} q_{j,k}$$
 subject to $\sum_{i \in vertics} q_{i,k} = 1$

minimize
$$\sum_{i,j \in Adj} \sum_{k \in color} q_{i,k}q_{j,k} + \sum_{k \in color} (\sum_{i \in Adj} q_{i,k} - 1)^2$$

巡回セールスマン問題

minimize
$$\sum_{i,j\in C}\sum_{k=0}^n w_{i,j}q_{i,k}q_{j,k+1}$$
 subject to
$$\sum_{i\in C}q_{i,k}=1$$

$$\sum_{k=0}^n q_{i,k}=1$$
 \downarrow

minimize
$$\sum_{i,j \in C} \sum_{k=0}^n w_{i,j} q_{i,k} q_{j,k+1} + \sum_{k=0}^n (\sum_{i \in C} q_{i,k} - 1)^2 + \sum_{i \in C} (\sum_{k=0}^n q_{i,k} - 1)^2$$

 7_{14}

デモ

デモ

デモをやるよ 目的とみるべきポイントを紹介 エネルギーが下がる様子

制約を常に満たすように解を遷移させる bit を swap させます というのも...

単純な例について考えよう

- ・一次制約、二次制約、完全二次制約(造語)について触れる
- ・bit flip との違い(図表で示す)

一般化するにはごにょごにょ

比較

比較

hamiltonian に penalty を含むものと含まないものでのエネルギーの落ち方

参考文献

参考文献