MeasEval: Measurement Extraction from Scientific Texts

Literature Review

Overview

- Brief Task Description
- Sequence Labeling
- Taxonomy of Approaches
- Rule-based models(2)
- biLSTM Models(2)
- Transformer applications(4)

Task Description

MeasEval

- **Input:** The *soda can*'s volume was 355 ml after I drank half the can.
- Output:
 - Quantity = 335 ml
 - Measured Entity = soda can
 - Measured Property = volume
 - Qualifier = after I drank half the can

More examples for quantity spans

- around 1300 m s-1
- **four** transits
- range of 1.5–2.6 m
- 4.5 kg, 6 kg and 13 kg
- Standard Deviation
 - 2SD of 1.23±0.25‰
- Tolerance
 - 9 ± 6%.

Sequence Labeling

- Task of pattern recognition
- Labeling group of morphemes according to task
- Some subparts
- Part of Speech Tag(POS)
- 2. Named Entity Recognition(NER)

Evaluation Metrics and Datasets

- Most used datasets
 - POS
 - Wall Street Journal (WSJ)
 - NER
 - CoNLL 2003
- Metrics
 - POS
 - Accuracy
 - NER
 - F1 score

Sequence Labeling Models

How to extract unit of measures in scientific texts?(2013)
[1]

Approach

Locate units with supervised Learning

Use string distance to extract units

Data

35000 sentences from food science domain

Results

Recall =0.95

Problems

Limited to one area
Requires handcrafted features,
gazettes

Automated
Detection of
Measurements
and Their
Descriptors in
Radiology
Reports [2]

Proposed Pipeline

Neural Architectures for Named Entity Recognition[3]

Results

F1 =90.94

Character Embeddings (biLSTM)

Main Architecture

Results

Model	$\mathbf{F_1}$
Collobert et al. (2011)*	89.59
Lin and Wu (2009)	83.78
Lin and Wu (2009)*	90.90
Huang et al. (2015)*	90.10
Passos et al. (2014)	90.05
Passos et al. (2014)*	90.90
Luo et al. (2015)* + gaz	89.9
Luo et al. $(2015)^*$ + gaz + linking	91.2
Chiu and Nichols (2015)	90.69
Chiu and Nichols (2015)*	90.77
LSTM-CRF (no char)	90.20
LSTM-CRF	90.94
S-LSTM (no char)	87.96
S-LSTM	90.33

Table 1: English NER results (CoNLL-2003 test set). * indicates models trained with the use of external labeled data

End to end Sequence Labeling Via Bidirectional LSTM-CNNs-CRF [4]

Motivation

no task specific resource no data processing no feature engineering

Approach

Char Embedding (CNN)
Word Embeddings (GloVe)
BiLSTM

CRF

Data

CoNLL-2003

Results

NER F1 =91.21

POS Accuracy = 97.55

Character Embedding (CNN)

Main Architecture

Hyperparameters

Layer	Hyper-parameter	POS	NER
CNN	window size	3	3
CNIN	number of filters	30	30
	state size	200	200
LSTM	initial state	0.0	0.0
	peepholes	no	no
Dropout	dropout rate	0.5	0.5
	batch size	10	10
	initial learning rate	0.01	0.015
	decay rate	0.05	0.05
	gradient clipping	5.0	5.0

Table 1: Hyper-parameters for all experiments.

Dataset

Dataset		WSJ	CoNLL2003
Train	SENT	38,219	14,987
Haili	TOKEN	912,344	204,567
Dev	SENT	5,527	3,466
Dev	TOKEN	131,768	51,578
Test	SENT	5,462	3,684
Test	TOKEN	129,654	46,666

Table 2: Corpora statistics. SENT and TOKEN refer to the number of sentences and tokens in each data set.

Results for NER

Model	F1
Chieu and Ng (2002)	88.31
Florian et al. (2003)	88.76
Ando and Zhang (2005)	89.31
Collobert et al. (2011) [‡]	89.59
Huang et al. (2015) [‡]	90.10
Chiu and Nichols (2015) [‡]	90.77
Ratinov and Roth (2009)	90.80
Lin and Wu (2009)	90.90
Passos et al. (2014)	90.90
Lample et al. (2016) [‡]	90.94
Luo et al. (2015)	91.20
This paper	91.21

[•] Reference to 3

Results for POS

Model	Acc.
Giménez and Màrquez (2004)	97.16
Toutanova et al. (2003)	97.27
Manning (2011)	97.28
Collobert et al. (2011) [‡]	97.29
Santos and Zadrozny (2014) [‡]	97.32
Shen et al. (2007)	97.33
Sun (2014)	97.36
Søgaard (2011)	97.50
This paper	97.55

Table 4: POS tagging accuracy of our model on test data from WSJ proportion of PTB, together with top-performance systems. The neural network based models are marked with ‡.

Star-Transformer

Motivation

Decreasing the complexity of Transformer O(n^2) capturing local composition and long dependencies using attention mechanism

Approach

Char Embedding Star Transformer

CRF

Data

CoNLL-2003

Results

NER F1 =91.98 POS Accuracy = 97.68

Architecture

Virtual relay node Satellite nodes

Final state of satellite nodes H_T are given to CRF Layer to label the words

Results Comparison

	Δdv	Adv Tech		S NER	
Model	Tiuv		PTB	CoNLL2003	CoNLL2012
	char	CRF	Acc	F1	F1
(Ling et al., 2015)	✓	✓	97.78	-	-
(Collobert et al., 2011)	✓	\checkmark	97.29	89.59	-
(Huang et al., 2015)	✓	\checkmark	97.55	90.10	-
(Chiu and Nichols, 2016a)	✓	\checkmark	-	90.69	86.35
(Ma and Hovy, 2016)	✓	\checkmark	97.55	91.06	-
(Nguyen et al., 2016)	✓	\checkmark	-	91.2	-
(Chiu and Nichols, 2016b)	✓	\checkmark	-	91.62	86.28
(Zhang et al., 2018)	✓	\checkmark	97.55	91.57	-
(Akhundov et al., 2018)	✓	\checkmark	97.43	91.11	87.84
Transformer			96.31	86.48	83.57
Transformer + Char	✓		97.04	88.26	85.14
Star-Transformer			97.14	90.93	86.30
Star-Transformer + Char	✓		97.64	91.89	87.64
Star-Transformer + Char + CRF	\checkmark	\checkmark	97.68	91.98	87.88

• Reference to 4

A Survey on Recent Advances in Sequence Labeling from Deep Learning Models [6]

Method	F1-score
Collobert et al. 2011 [17]	88.67%
Kuru et al. 2016 [50]	84.52%
Chiu and Nichols 2016 [13]	90.91%
Lample et al. 2016 [52]	90.94%
Ma and Hovy 2016 [71]	91.21%
Rei 2017 [91]	86.26%
Strubell et al. 2017 [104]	90.54%
Zhang et al. 2017 [126]	90.70%
Tran et al. 2017 [109]	91.23%
Wang et al. 2017 [113]	91.24%
Sato et al. 2017 [101]	91.28%
Shen et al. 2018 [103]	90.69%
Zhang et al. 2018 [127]	91.22%
Liu et al. 2018 [65]	91.24%
Ye and Ling 2018 [122]	91.38%
Gregoric et al. 2018 [26]	91.48%
Zhang et al. 2018 [128]	91.57%
Xin et al. 2018 [116]	91.64%
Hu et al. 2019 [34]	91.40%
Chen et al. 2019 [10]	91.44%
Yan et al. 2019 [118]	91.45%
Liu et al. 2019 [67]	91.96%
Luo et al. 2020 [68]	91.96%
Jiang et al. 2020 [39]	92.2%
Li et al. 2020 [58]	92.67%

NER task on CoNLL 2003

POS Tagging

External resources	Method	Accuracy
	Collobert et al. 2011 [17]	97.29%
	Santos et al. 2014 [99]	97.32%
	Huang et al. 2015 [35]	97.55%
	Ling et al. 2015 [62]	97.78%
	Plank et al.2016 [88]	97.22%
	Rei et al. 2016 [92]	97.27%
	Vaswani et al. 2016 [110]	97.40%
	Andor et al. 2016 [2]	97.44%
	Ma and Hovy 2016 [71]	97.55%
	Ma and Sun 2016 [70]	97.56%
None	Rei 2017 [91]	97.43%
None	Yang et al. 2017 [120]	97.55%
	Kazi and Thompson 2017 [42]	97.37%
	Bohnet et al. 2018 [8]	97.96%
	Yasunaga et al. 2018 [121]	97.55%
	Liu et al. 2018 [65]	97.53%
	Zhang et al. 2018 [127]	97.59%
	Xin et al. 2018 [116]	97.58%
	Zhang et al. 2018 [128]	97.55%
	Hu et al. 2019 [34]	97.52%
	Cui et al. 2019 [18]	97.65%
	Jiang et al. 2020 [39]	97.7%
Unlabeled Word Corpus	Akbik et al. 2018 [1]	97.85%
Chiabeled Word Corpus	Clark et al. 2018 [15]	97.7%

POS tagging on PTB portion of WSJ data

TENER: Adapting Transformer Encoder for NER

Motivation

Transformer's low performance on NER

Approach

Char Embedding (Transformer)

Word Embeddings (GloVe)

Transformer

CRF

Data

CoNLL-2003

Results

NER F1 =91.45

Why transformers perform poorly on NER?

- 1. unaware of directionality
- 2. self attention is not aware of positions of different tokens
- 3. attention distribution is smooth and scaled
 - for NER sparse attention is suitable since all word not need to be attended
 - Solution
 - abandon scale factor
 - use unscaled sharp attention

Architecture

Architecture

- Embedding Layer
 - CNN more efficient than BiLSTM
- Encoding Layer with Adapted Transformer
 - direction and distance aware
 - BiLSTM uses both sides
 - Transformer cannot distinguish which side the context information comes from
 - therefore, they changed the model
 - unscaled dot product attention
 - removed the scaling factor
 - sharper attention
 - beneficial only few words are named entities
- CRF

	Models	CoNLL2003	OntoNotes 5.0
	BiLSTM-CRF (Huang et al.,	88.83	
Results	2015) CNN-BiLSTM-CRF (Chiu and Nichols, 2016) BiLSTM-BiLSTM-CRF (Lample et al., 2016) CNN-BiLSTM-CRF (Ma and Hovy, 2016) ID-CNN (Strubell et al., 2017) LM-LSTM-CRF (Liu et al., 2018) CRF+HSCRF (Ye and Ling,	90.54 ± 0.18 91.24 ± 0.12	
	2018) BiLSTM-BiLSTM-CRF (Akhundov et al., 2018) LS+BiLSTM-CRF (Ghaddar	91.11	86.57 ± 0.1
	and Langlais, 2018) CN ³ (Liu et al., 2019) GRN (Chen et al., 2019) Transformer	$91.1 \\ 91.44 \pm 0.16 \\ 89.57 \pm 0.12$	87.67 ± 0.17 86.73 ± 0.07
	TENER (Ours) w/ scale w/ CNN-char	91.33 ± 0.03 91.06 ± 0.09 91.45 ± 0.07	

Different Word and Character level Embeddings

BiLSTM	ID-CNN	AdaTrans
88.34 ± 0.32	87.30 ± 0.15	88.37 ± 0.27
91.32 ± 0.13	89.99 ± 0.14	91.29 ± 0.12
91.22 ± 0.10	90.17 ± 0.02	91.45 ± 0.07
91.12 ± 0.10	90.05 ± 0.13	91.23 ± 0.06
91.38 ± 0.15	89.99 ± 0.05	91.33 ± 0.05
	88.34 ± 0.32 91.32 ± 0.13 91.22 ± 0.10 91.12 ± 0.10	BiLSTMID-CNN 88.34 ± 0.32 87.30 ± 0.15 91.32 ± 0.13 89.99 ± 0.14 91.22 ± 0.10 90.17 ± 0.02 91.12 ± 0.10 90.05 ± 0.13 91.38 ± 0.15 89.99 ± 0.05

(a) CoNLL2003

- Problem with CNN for Char Embedding
 - cannot solve patters with uncontinious patters
 - un....ily
 - unhappily unnecessarily
- Transformer captures these patterns

8.Scientific BERT SCIBERT

Motivation

Pretraining language model for scientific texts Using BERT

Approach

Word Embeddings (BERT)

BiLSTM

CRF

Data

SciERC (CS domain)

EBM-NLP (biomedical domain)

Results

Biomedical: 1.1% increase in F1 score with respect to SOA

CS:2.5% increase in F1 score with respect to SOA

Results

Field	Task	Task Dataset		BER	BERT-Base		SCIBERT	
				Frozen	Finetune	Frozen	Finetune	
		BC5CDR (Li et al., 2016)	88.85 ⁷	85.08	86.72	88.73	90.01	
	NER	JNLPBA (Collier and Kim, 2004)	78.58	74.05	76.09	75.77	77.28	
Bio		NCBI-disease (Dogan et al., 2014)	89.36	84.06	86.88	86.39	88.57	
	PICO	EBM-NLP (Nye et al., 2018)	66.30	61.44	71.53	68.30	72.28	
	DEP	GENIA (Kim et al., 2003) - LAS	91.92	90.22	90.33	90.36	90.43	
	DEP	GENIA (Kim et al., 2003) - UAS	92.84	91.84	91.89	92.00	91.99	
	REL	ChemProt (Kringelum et al., 2016)	76.68	68.21	79.14	75.03	83.64	
	NER	SciERC (Luan et al., 2018)	64.20	63.58	65.24	65.77	67.57	
CS	REL	SciERC (Luan et al., 2018)	n/a	72.74	78.71	75.25	79.97	
	CLS	ACL-ARC (Jurgens et al., 2018)	67.9	62.04	63.91	60.74	70.98	
	CLC	Paper Field	n/a	63.64	65.37	64.38	65.71	
Multi	CLS	SciCite (Cohan et al., 2019)	84.0	84.31	84.85	85.42	85.49	
Average				73.58	77.16	76.01	79.27	

Small and Practical BERT Models for Sequence Labeling

Motivation

Faster smaller sequence labeling models for multilingual datasets

Approach

3 Layer BERT

Data

CoNLL-2018

Results

POS Accuracy = 94.5

Results

Model	Multilingual?	Part-of-Speech F1	Morphology F1
Meta-LSTM	No	94.5	92.5
BERT	No	95.1	93.0
Meta-LSTM	Yes	91.1	82.9
BERT	Yes	94.5	91.0

References

- 1. How toextractunitof measurein scientificdocuments? Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowl-edge Management and Information Sharing, 2013.
- 2.S. Bozkurt, E. Alkim, I. Banerjee, and D. L. Rubin. Automateddetection of measurements and their descriptors in radiology reports using a hybrid natural language processing algorithm. Journal of Digital Imaging, 32(4):544–553, 2019. 3.G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer.
- Neuralarchitecturesfornamedentityrecognition, 2016.
- 4.X. MaandE. Hovy. End-to-endsequencelabelingviabi-directionallstm-cnns-crf, 2016.
- 5.Guo, Qipeng& Qiu, Xipeng& Liu, Pengfei& Shao, Yunfan& Xue, Xiangyang& Zhang, Zheng. (2019). Star-Transformer.
- 6.He, Z., Wang, Z., Wei, W., Feng, S., Mao, X., & Jiang, S. (2020, November 13). A Survey on Recent Advances in Sequence Labeling from Deep Learning Models. Retrieved December 06, 2020, from 7.Yan, Hang & Deng, Bocao& Li, Xiaonan& Qiu, Xipeng. (2019). TENER: Adapting Transformer Encoder for Name Entity Recognition.
- 8.Beltagy, Iz& Cohan, Arman & Lo, Kyle. (2019). SciBERT: Pretrained Contextualized Embeddings for Scientific Text.
- 9.Tsai, Henry & Riesa, Jason & Johnson, Melvin & Arivazhagan, Naveen & Li, Xin & Archer, Amelia. (2019). Small and Practical BERT Models for Sequence Labeling.