服从自由度为 (m,n) 的 F-分布, 记 $F \sim F(m,n)$.

随机变量 $F \sim F(m,n)$ 的概率密度为

$$f(x) = \begin{cases} \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{\frac{m}{2}}x^{\frac{m}{2}-1}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})(1+\frac{mx}{n})^{\frac{m+n}{2}}} & x > 0\\ 0 & x \leqslant 0 \end{cases}$$

若随机变量 $F \sim F(m,n)$, 则 $\frac{1}{F} = F(n,m)$.

课题练习:

- 独立同分布随机变量 X_1, X_2, \dots, X_n 满足 $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, 求 $\sum_{i=1}^n (X_i \mu_i)^2 / \sigma_i^2$ 的分布.
- 设 X_1, X_2, \dots, X_9 和 Y_1, Y_2, \dots, Y_9 是分别来自总体 $\mathcal{N}(0, 9)$ 的两个独立样本, 求 $(X_1 + X_2 + \dots + X_9)/\sqrt{Y_1^2 + Y_1^2 + \dots + Y_9^2}$ 的分布.
- 设 X_1, X_2, \ldots, X_{2n} 来自总体 $\mathcal{N}(0, \sigma_2)$ 的样本,求 $(X_1^2 + X_3^2 + \cdots + X_{2n-1}^2)/(X_2^2 + X_4^2 + \cdots + X_{2n}^2)$ 的分布.

9.4.4 正态分布的抽样分布定理

定理 9.8 设 X_1, X_2, \dots, X_n 是来自总体 $\mathcal{N}(\mu, \sigma^2)$ 的样本, 则有

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}), \qquad \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

定理 9.9 设 X_1, X_2, \dots, X_n 是来自总体 $\mathcal{N}(\mu, \sigma^2)$ 的样本, 其样本均值和修正样本方差分别为

$$\bar{X} = \sum_{i=1}^{n} X_i / n$$
 \Re $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$,

则有 \bar{X} 和 S^2 相互独立,且

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

此定理证明参考书的附件.

定理 9.10 设 X_1, X_2, \dots, X_n 是来自总体 $\mathcal{N}(\mu, \sigma^2)$ 的样本, 其样本均值和修正样本方差分别为

$$\bar{X} = \sum_{i=1}^{n} X_i / n$$
 \Re $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$,

则有

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

证明 根据前面两个定理可知 $(\bar{X}-\mu)/\sigma\sqrt{n}\sim\mathcal{N}(0,1)$ 和 $(n-1)S^2/\sigma^2\sim\chi^2(n-1)$, 于是有

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} / \sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}} \sim t(n-1).$$

定理 9.11 设 X_1, X_2, \cdots, X_m 和 Y_1, Y_2, \cdots, Y_n 分别来自总体 $\mathcal{N}(\mu_X, \sigma^2)$ 和 $\mathcal{N}(\mu_Y, \sigma^2)$ 的两个独立样本,令其样本均值分别 \bar{X} 和 \bar{Y} ,修正样本方差分别为 S_X^2 和 S_Y^2 ,则

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}}} \sim t(m+n-2).$$

证明 根据正太分布的性质有 $\bar{X} \sim \mathcal{N}(\mu_X, \sigma^2/m)$ 和 $\bar{Y} \sim \mathcal{N}(\mu_Y, \sigma^2/n)$, 以及

$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_X - \mu_Y, \left(\frac{1}{m} + \frac{1}{n}\right)\sigma^2\right),$$

进一步有

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim \mathcal{N}(0, 1).$$

根据定理 9.9 有 $\frac{(m-1)S_X^2}{\sigma^2} \sim \chi^2(m-1)$ 和 $\frac{(n-1)S_Y^2}{\sigma^2} \sim \chi^2(n-1)$, 由此得到

$$\frac{(m-1)S_X^2 + (n-1)S_Y^2}{\sigma^2} \sim \chi^2(m+n-2).$$

从而完成证明.

定理 9.12 设 X_1, X_2, \cdots, X_m 和 Y_1, Y_2, \cdots, Y_n 分别来自总体 $\mathcal{N}(\mu_X, \sigma_X^2)$ 和 $\mathcal{N}(\mu_Y, \sigma_Y^2)$ 的两个独立样本,令其修正样本方差分别为 S_X^2 和 S_Y^2 , 则有

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(m-1, n-1).$$

证明 根据定理 9.9 有 $\frac{(m-1)S_X^2}{\sigma_X^2}\sim \chi^2(m-1)$ 和 $\frac{(n-1)S_Y^2}{\sigma_Y^2}\sim \chi^2(n-1)$,由此得到

$$\frac{\frac{(m-1)S_X^2}{\sigma_X^2}/(m-1)}{\frac{(n-1)S_Y^2}{\sigma_{ij}^2}/(n-1)} \sim F(m-1, n-1).$$

课堂习题:

• 若随机变量 $X \sim t(n)$, 求 $Y = X^2$ 的分布.

- 设 X_1, X_2, \dots, X_5 是来自总体 $\mathcal{N}(0,1)$ 的样本,令 $Y = c_1(X_1 + X_3)^2 + c_2(X_2 + X_4 + X_5)^2$. 求常数 c_1, c_2 使 Y 服从 χ^2 分布.
- 设 X_1, X_2 是来自总体 $\mathcal{N}(0, \sigma^2)$ 的样本, 求 $\frac{(X_1 + X_2)^2}{(X_1 X_2)^2}$ 的分布.

9.4.5 分位数(点)

定义 9.12 对给定 $\alpha \in (0,1)$ 和随机变量 X, 称满足 $\Pr(X > \lambda_{\alpha}) = \alpha$ 的实数 λ_{α} 为上侧 α 分位数(点).

对正态分布 $X \sim \mathcal{N}(0,1)$, 给定 $\alpha \in (0,1)$, 满足 $\Pr(X > \mu_{\alpha}) = \int_{\mu_{\alpha}}^{\infty} f(x) dx = \alpha$ 的点 μ_{α} 称为正态分布上侧 α 分位点, 由对称性可知 $\mu_{1-\alpha} = -\mu_{\alpha}$.

对 $\chi^2(n)$ 分布 $X \sim \chi^2(n)$, 给定 $\alpha \in (0,1)$, 满足 $\Pr(X \geqslant \chi^2_{\alpha}(n)) = \alpha$ 的点 $\chi^2_{\alpha}(n)$ 称为 $\chi^2(n)$ 分布上侧 α 分位点. 当 $n \to \infty$ 时有 $\chi^2_{\alpha}(n) \approx \frac{1}{2}(\mu_{\alpha} + \sqrt{2n-1})^2$, 其中 μ_{α} 表示正态分布上侧 α 分位点.

对 t-分布 $X \sim t(n)$, 给定 $\alpha \in (0,1)$, 满足 $\Pr(X > t_{\alpha}(n)) = \alpha$ 的点 $t_{\alpha}(n)$ 称为 t(n)-分布上侧 α 分位点. 由对称性可知 $t_{(1-\alpha)}(n) = -t_{\alpha}(n)$.

对 F-分布 $X \sim F(m,n)$, 给定 $\alpha \in (0,1)$, 满足 $\Pr[X > F_{\alpha}(m,n)] = \alpha$ 的点 $F_{\alpha}(m,n)$ 称为 F(m,n) 分布上侧 α 分位点.

对于 F-分布, 有如下性质:

引理 9.4 对 F 分布的分位点有

$$F_{(1-\alpha)}(m,n) = \frac{1}{F_{\alpha}(n,m)}.$$

证明 设 $X \sim F(m, n)$, 根据定义有

$$1 - \alpha = \Pr(X > F_{1-\alpha}(m, n)) = \Pr\left(\frac{1}{X} < \frac{1}{F_{1-\alpha}(m, n)}\right) = 1 - \Pr\left(\frac{1}{X} \geqslant \frac{1}{F_{1-\alpha}(m, n)}\right).$$

再根据 $1/X \sim F(n,m)$, 结合上式有

$$\alpha = \Pr\left(\frac{1}{X} \geqslant \frac{1}{F_{1-\alpha}(m,n)}\right) = \Pr\left(\frac{1}{X} > \frac{1}{F_{1-\alpha}(m,n)}\right)$$

于是有 $F_{\alpha}(n,m) = 1/F_{1-\alpha}(m,n)$.

课堂习题:

- 设 X_1, X_2, \dots, X_{10} 是总体 $\mathcal{N}(\mu, 1/4)$ 的样本, i) 若 $\mu = 0$, 求 $\Pr(\sum_{i=1}^{10} X_i^2 \ge 4)$; ii) 若 μ 未 知, 求 $\Pr(\sum_{i=1}^{10} (X_i \bar{X})^2 \ge 2.85)$.
- 设 X_1, X_2, \dots, X_{25} 是总体 $\mathcal{N}(12, \sigma^2)$ 的样本, i) 若 $\sigma = 2$, 求 $\Pr(\sum_{i=1}^{25} X_i/25 \ge 12.5)$; ii) 若 σ 未知但知道修正样本方差为 $S^2 = 5.57$, 求 $\Pr(\sum_{i=1}^{25} X_i/25 \ge 12.5)$.

第10章 参数估计

设总体 X 的分布函数为 $F(X,\theta)$, 其中 θ 为未知参数(也可为向量). 现从总体中抽取一样本 X_1, X_2, \dots, X_n , 如何依据样本估计参数 θ , 或 θ 的函数 $g(\theta)$, 此类问题称为参数估计问题. 内容包括: 点估计, 估计量标准, 区间估计.

10.1 点估计

10.1.1 矩估计法

总体 X 的 k 阶矩: $a_k = E[X^k]$

样本 k 阶矩:
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

用相应的样本矩去估计总体矩, 求解参数 θ 的方法称为 **矩估计法**. 矩估计法的理论基础是大数 定理: X_1, X_2, \dots, X_n 为 i.i.d. 的随机变量, 若 $E(X) = \mu$, 则当 $n \to \infty$ 时有

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\xrightarrow{P}\mu.$$

推论: 若 $E[X^k] = a_k$ 存在, 则当 $n \to \infty$ 时有

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{P} a_k = E[X^k].$$

还可利用中心矩进行估计:

总体 X 的 k 阶中心矩: $b_k = E[(X - E(X))^k]$ 样本 k 阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$ 矩估计方法: 总体 X 的分布函数 F 包含 m 个未知参数 $\theta_1, \theta_2, \cdots, \theta_m$,

- 1) 求总体 X 的 k 阶矩: $a_k = a_k(\theta_1, \theta_2, \dots, \theta_m) = E[X^k], k \in [m]$ $(a_k \text{般为 } \theta_1, \theta_2, \dots, \theta_m \text{ 的 } \text{函数}).$
- 2) 计算样本的 k 阶矩: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$.
- 3) 令样本矩等于总体矩 $A_k = a_k = a_k (\theta_1, \theta_2, \dots, \theta_m)$ $(k = 1, 2, \dots, m)$, 得到 m 个关于 $\theta_1, \theta_2, \dots, \theta_m$ 的方程组.
- 4) 求解方程组得到估计量 $\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_m$.

例 10.1 设总体 X 的概率密度函数

$$f(x) = \begin{cases} (\alpha + 1)x^{\alpha} & x \in (0, 1) \\ 0 & \text{ \(\) $\neq \)} \end{cases}$$

200 第 10 章 参数估计

设 X_1, X_2, \cdots, X_n 是来自总体 X 的样本, 求参数 α 的矩估计.

解 首先计算总体 X 的期望

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x(\alpha + 1) x^{\alpha + 1} dx = \frac{\alpha + 1}{\alpha + 2}.$$

样本 X 的均值 $\bar{X} = \sum_{i=1}^{n} X_i/n$. 样本矩等于总体矩有

$$E(X) = \frac{\alpha + 1}{\alpha + 2} = \bar{X},$$

求解可得 $\alpha = (2\bar{X} - 1)/(1 - \bar{X})$.

例 10.2 设 X_1, X_2, \dots, X_n 是来自总体 X 的样本, 以及总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}} & x \geqslant \mu \\ 0 & \text{ 其它,} \end{cases}$$

其中 $\theta > 0$, 求 μ 和 θ 的矩估计.

 \mathbf{R} 设随机变量 $Y = X - \mu$, 则 Y 服从参数为 $1/\theta$ 的指数分布, 有

$$E(Y) = \theta$$
 $\Re \operatorname{Var}(Y) = \theta^2$.

由此可得 $E(X) = \mu + \theta$ 和 $Var(X) = \theta^2$. 计算对应的样本矩

$$A_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \qquad B_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

求解方程组

$$\mu + \theta = A_1 \quad \text{ fill } \quad \theta^2 = B_2,$$

解得
$$\mu = \bar{X} - \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2/n}$$
 和 $\theta = \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2/n}$.

课堂习题:

- 求正态总体 $\mathcal{N}(\mu, \sigma^2)$ 的 μ, σ^2 的矩估计法.
- 求总体 $X \sim \mathcal{U}(a,b)$ 中 a,b 的矩估计法.

10.1 点估计 201

10.1.2 最大似然估计法

设 X_1, X_2, \dots, X_n 是来自总体 X 的一个样本. 若总体 X 为离散型随机变量, 其分布列为 $\Pr(X = x) = \Pr(X = x; \theta)$, 则样本 X_1, X_2, \dots, X_n 的分布列为

$$L(\theta) = L(x_1, x_2, \cdots, x_n; \theta) = \prod_{i=1}^n \Pr(x_i; \theta).$$

这里 $L(\theta)$ 表示样本 $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$ 发生的概率.

若总体 X 为连续型随机变量, 其概率密度为 $f(x;\theta)$, 则 $X_1=x_1, X_2=x_2, \cdots, X_n=x_n$ 的联合概率密度为

$$L(\theta) = L(x_1, x_2, \cdots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta).$$

根据概率密度定义可知 $L(\theta)$ 越大, 样本 (X_1, X_2, \dots, X_n) 落入 (x_1, x_2, \dots, x_n) 的邻域内概率越大.

综合上述离散和连续两种随机变量, 统称 $L(\theta)$ 为样本 X_1, X_2, \cdots, X_n 的似然函数, 可以发现 $L(\theta)$ 是 θ 的函数, 若

$$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} L(x_1, x_2, \cdots, x_m; \theta),$$

则称 $\hat{\theta}$ 为 θ 的最大似然估计量. 直觉而言: 最大似然估计量 $\hat{\theta}$ 是使观测值 $X_1=x_1,X_2=x_2,\cdots,X_n=x_n$ 出现的概率最大.

求解最大似然估计量的步骤如下:

- i) 计算对数似然函数 $\log(L(x_1, x_2, \dots, x_m; \theta))$;
- ii) 求对数似然函数中参数 θ 的一阶偏导,令其等于零;
- iii) 求解方程组得到最大似然估计量 $\hat{\theta}$.

例 10.3 设 X_1, X_2, \dots, X_n 是取自总体 $X \sim B(1, p)$ 的样本, 求参数 p 的最大似然估计.

解 首先计算似然函数

$$L(p) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i} = p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i},$$

从而得到对数似然函数

$$\ln L(p) = \sum_{i=1}^{n} X_i \ln p + \left(n - \sum_{i=1}^{n} X_i\right) \ln(1-p),$$

求一阶偏导并令其为零可得

$$\frac{\partial \ln L(p)}{\partial p} = \frac{1}{p} \sum_{i=1}^{n} X_i - \frac{1}{1-p} \left(n - \sum_{i=1}^{n} X_i \right) = 0.$$

202 第 10 章 参数估计

由此求解 $p = \sum_{i=1}^{n} X_i/n = \bar{X}$. [验证矩估计法]

下面讨论 最大似然估计不可变性

性质 **10.1** 设 $\mu(\theta)$ 为 θ 的函数, 且存在反函数 $\theta = \theta(\mu)$. 若 $\hat{\theta}$ 是 θ 的最大似然估计, 则 $\hat{\mu} = \mu(\hat{\theta})$ 是 μ 的最大似然估计.

例 10.4 设 X_1, X_2, \dots, X_n 为总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, 求 μ 和 $\sigma > 0$ 的最大似然估计.

解 根据高斯分布知 X 的概率密度为 $f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. 样本 X_1,X_2,\cdots,X_n 的似然函数为

$$L(\mu, \sigma) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\sum_{i=1}^n \frac{(X_i - \mu)^2}{2\sigma^2}\right).$$

其对数似然函数为 $\ln L(\mu, \sigma) = -n \ln(2\pi)^{1/2} - n \ln \sigma - \sum_{i=1}^{n} (X_i - \mu)^2 / 2\sigma^2$. 对参数 μ 求导计算可得

$$\frac{\partial \ln L(\mu, \sigma)}{\partial \mu} = \sum_{i=1}^{n} (X_i - \mu) = 0 \quad \Longrightarrow \quad \mu = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X},$$

对 σ 求导计算可得

$$\frac{\partial \ln L(\mu, \sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = 0 \quad \Longrightarrow \quad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}.$$

根据最大似然估计的不变性可知方差 σ^2 的最大似然估计为 $\sigma^2 = \sum_{i=1}^n (X_i - \bar{X})^2/n$. 下面进行验证最大似然估计的不变性: 设 X_1, X_2, \cdots, X_n 为总体 $X \sim \mathcal{N}(\mu, \nu)$ 的样本, 求 μ 和 ν 的最大似然估计. 根据题意可知样本 X_1, X_2, \cdots, X_n 的对数似然函数为

$$\ln L(\mu, \nu) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \nu - \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{2\nu}.$$

对参数 μ 求偏导计算其最大似然估计 $\mu = \sum_{i=1}^{n} X_i/n = \bar{X}$, 对 ν 求偏导计算可得

$$\frac{\partial \ln L(\mu, \nu)}{\partial \nu} = -\frac{n}{2\nu} + \frac{1}{2\nu^2} \sum_{i=1}^{n} (X_i - \mu)^2 = 0 \implies \nu = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2,$$

从而完成验证.

M 10.5 设总体 X 的密度函数为

$$f(x) = \begin{cases} (\alpha + 1)x^{\alpha} & x \in (0, 1) \\ 0 & \not\exists \dot{\Xi} \end{cases}$$

设 X_1, X_2, \dots, X_n 是总体 X 的样本, 求 α 的最大似然估计.

10.1 点估计 203

解 首先得到似然函数为

$$L(\alpha) = (\alpha + 1)^n \prod_{i=1}^n X_i^{\alpha} = (\alpha + 1)^n (X_1 X_2 \cdots X_n)^{\alpha},$$

以及其对数似然函数 $\ln L(\alpha) = n \ln(\alpha + 1) + \alpha \ln(X_1 X_2 \cdots X_n)$. 求导并令偏导为零有

$$\frac{\partial \ln L(\alpha)}{\partial \alpha} = \frac{n}{\alpha + 1} + \ln(X_1 X_2 \cdots X_n) = 0,$$

求解得

$$\alpha = \frac{-n}{\sum_{i=1}^{n} \ln(X_i)} - 1 = \frac{-1}{\frac{1}{n} \sum_{i=1}^{n} \ln(X_i)} - 1.$$

对上例, 矩估计值为 $\alpha = (2\bar{X} - 1)/(1 - \bar{X})$, 因此矩估计值与最大似然估计值可能不同.

例 10.6 设 X_1, X_2, \dots, X_n 是总体 $X \sim \mathcal{U}(a, b)$ 的样本, 求 a 和 b 的最大似然估计.

解 当 $x \in [a,b]$ 时, 总体 X 的概率密度为 f(x) = 1/(b-a), 其它情况为零, 因此似然函数为

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n} & a \leqslant X_1, X_2, \dots, X_n \leqslant b \\ 0 & \not\exists \Xi \end{cases}$$

直接求偏导无法解出 a 和 b, 此时可以从最大似然的定义出发, 应使得 b 尽可能小且 a 尽可能大, 但 需满足 $a \leq X_1, X_2, \cdots, X_n \leq b$, 因此最大似然估计量为:

$$b = \max\{X_1, X_2, \dots, X_n\}$$
 π $a = \min\{X_1, X_2, \dots, X_n\}$.

例 10.7 设 X_1, X_2, \dots, X_n 是总体 X 的样本, 以及总体 X 的概率密度为

$$f(x) = \begin{cases} \theta e^{-(x-\mu)\theta} & x \geqslant \mu \\ 0 & \text{其它,} \end{cases}$$

解 首先计算似然函数为

$$L(\theta, \mu) = \begin{cases} \theta^n e^{-\theta \sum_{i=1}^n (X_i - \mu)} & X_i \geqslant \mu \\ 0 & \text{ 其它} \end{cases}$$

进一步得到对数似然函数为

$$\ln L(\theta, \mu) = n \ln \theta - \theta \sum_{i=1}^{n} (X_i - \mu).$$