CI165 — Análise de Algoritmos Recursivos

André Vignatti

Ordenação por intercalação

Q que significa intercalar dois (sub)vetores ordenados?

Problema: Dados $A[p \dots q]$ e $A[q+1 \dots r]$ crescentes, rearranjar $A[p \dots r]$ de modo que ele fique em ordem crescente.

Entrada:

Saída:

Pseudo-código

```
INTERCALA(A, p, q, r)
       para i \leftarrow p até q faça
            B[i] \leftarrow A[i]
 3 para j \leftarrow q + 1 até r faça
            B[r+q+1-i] \leftarrow A[i]
 5 i \leftarrow p
 6 j \leftarrow r
       para k \leftarrow p até r faça
 8
            se B[i] < B[j]
                então A[k] \leftarrow B[i]
10
                          i \leftarrow i + 1
11
                senão A[k] \leftarrow B[j]
12
                           j \leftarrow j - 1
```

Complexidade de Intercala

Entrada:

Saída:

Tamanho da entrada: n = r - p + 1

Consumo de tempo: $\Theta(n)$

Corretude de Intercala

Invariante principal de Intercala:

No começo de cada iteração do laço das linhas 7-12, vale que:

- A[p ... k 1] está ordenado,
- 2 A[p...k-1] contém todos os elementos de B[p...i-1] e de B[j+1...r],
- **3** $B[i] \ge A[k-1] \in B[j] \ge A[k-1].$

Exercício. Prove que a afirmação acima é de fato um invariante de INTERCALA.

Exercício. (fácil) Mostre usando o invariante acima que INTERCALA é correto.

Algoritmos recursivos

"To understand recursion, we must first understand recursion." (anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a corretude de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
 - O que é uma relação de recorrência?
 - O que significa resolver uma relação de recorrência?

Recursão e o paradigma de divisão-e-conquista

- Um algoritmo recursivo resolve o problema chamando a si mesmo para resolver instâncias menores do mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - **Divisão:** a instância do problema é dividida em instâncias de tamanho menor, gerando subproblemas.
 - Conquista: cada subproblema é resolvido recursivamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

Exemplo de divisão-e-conquista: Mergesort

- Mergesort é um algoritmo de ordenação e um exemplo clássico do uso da técnica de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - **Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$
 - Conquista: ordene os dois subvetores recursivamente usando o Mergesort
 - Combinação: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala

	p				q				r
Α	66	33	55	44	99	11	77	22	88
	_ <i>p</i>		q		<u></u>				
Α	66	33	55	44	99				
	_ <i>p</i>	q	r						
Α	66	33	55						
	p	r							
Α	66	33							

	p				q				r
Α	66	33	55	44	99	11	77	22	88
	p		q		r				
Α	66	33	55	44	99				
	р	q	r						
Α	<i>p</i> 66	33	55						
	р	r							
Α	<i>p</i> 66	33							
	<i>p</i> =	r							
Α	66								

	p				q				r
Α	66	33	55	44	99	11	77	22	88
	n		α		r				
	Ρ_		4						
Α	66	33	55	44	99				
	p	q	r						
Α	<i>p</i> 66	33	55						
	p	r							
Α	66	33							

	p				q				r
Α	66	33	55	44	99	11	77	22	88
			~						
	ρ		9		1				
Α	66	33	55	44	99				
	p	q	r						
Α	<i>p</i> 66	33	55						
	p	r							
Α	<i>p</i> 66	33							
		<i>p</i> =	r						
Α		33							

	p				q				r
Α	66	33	55	44	99	11	77	22	88
	<u> </u>		9						
Α	66	33	55	44	99				
	p	q	r						
Α	<i>p</i> 66	33	55						
	p	r							
Α	66	33							

p				q				r
33	66	55	44	99	11	77	22	88
_ <i>p</i>		9		<u></u>				
33	66	55	44	99				
p	q	r						
33	66	55						
					-	-		
p	r							
33	66							
	р 33 р 33	<i>p</i> 33 66	p q 33 66 55 p q r 33 66 55 p r	p q 33 66 55 44 p q r 33 66 55 p r	p q r 33 66 55 44 99 p q r 33 66 55 p r	p q r 33 66 55 44 99 p q r 33 66 55 p r	p q r 33 66 55 44 99 p q r 33 66 55	33 66 55 44 99 p q r 33 66 55

	p				q				r
Α	33	66	55	44	99	11	77	22	88
	p		q		r				
Α	33	66	55	44	99				
	n	a	r						
	Ρ	4	'						
Α	33	66	55						

	p				q				r
Α	33	66	55	44	99	11	77	22	88
			~						
	<u> </u>		9						
Α	33	66	55	44	99				
		•							
	p	q	r						
Α	33	66	55						
		•							
			<i>p</i> =	r					
Α			55						

	p				q				r
Α	33	66	55	44	99	11	77	22	88
	p		q		r				
Α	33	66	55	44	99				
	_	_							
	P	9	r						
Α	33	66	55						

	p				q				r
Α	33	55	66	44	99	11	77	22	88
	_		~		_				
	ρ		9						
Α	33	55	66	44	99				
	_	~							
	P	9	I						
Α	33	55	66						

	p				q				r
Α	33	55	66	44	99	11	77	22	88
	n		а		r				
Α	33	55	66	44	99				
		1.	1	р	r				
Α				44	99				

	p				q				r
Α	33	55	66	44	99	11	77	22	88
			~						
	p		9						
Α	33	55	66	44	99				
			•						
				p	r				
Α				44	99				
				p =	r				
Α				44					

	p				q				r
Α	33	55	66	44	99	11	77	22	88
	n		а		r				
Α	33	55	66	44	99				
		1.	1	р	r				
Α				44	99				

	p				q				r
Α	33	55	66	44	99	11	77	22	88
			~		_				
	Ρ		9						
Α	33	55	66	44	99				
		•	•	•					
				p	r				
Α				44	99				

	p				q				r
Α	33	55	66	44	99	11	77	22	88
	P		9		<u></u>				
Α	33	55	66	44	99				

	p				q				r
Α	33	44	55	66	99	11	77	22	88
	n		а		r				
Α	33	44	55	66	99				

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						D			r
Α						11	77	22	88

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						p			r
Α						11	77	22	88
						р	r		
Α						11	77		

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						_			
						р			r
Α						11	77	22	88
		•							
						p	r		
Α						11	77		

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						מ			r
Α						11	77	22	88

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						n			
						Ρ			
Α						11	77	22	88
		•							
								p	r
Α								22	88

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						р			r
Α						11	77	22	88
								p	r
Α								22	88
								p=	= r
Α								22	

	p				q				r
Α	33	44	55	66	99	11	77	22	88
		1				р			r
Α						11	77	22	88
								р	r
Α								22	88

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						p			<u> </u>
Α						11	77	22	88
								p	r
Α								22	88

	p				q				r
Α	33	44	55	66	99	11	77	22	88
						p			r
Α						11	77	22	88

	p				q				r
Α	33	44	55	66	99	11	22	77	88
						p			r
									88

	p		q					r	
Α	33	44	55	66	99	11	22	77	88


```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Corretude do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

A corretude do algoritmo Mergesort apoia-se na corretude do algoritmo Intercala e segue facilmente **por indução** em n := r - p + 1.

Você consegue ver por quê? (Exercício)

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Qual é a complexidade de tempo do MERGESORT?

Seja T(n) :=o consumo de tempo máximo (pior caso) em função de n = r - p + 1

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

linha	consumo de tempo
1	?
2	?
3	?
4	?
5	?
	T(n) = ?

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

	linha	consumo de tempo
	1	Θ(1)
	2	$\Theta(1)$
	3	$T(\lceil n/2 \rceil)$
	4	$T(\lfloor n/2 \rfloor)$
	5	$\Theta(n)$
T(n) =	$T(\lceil n/2 \rceil)$	$\overline{2(n)} + \overline{T(\lfloor n/2 \rfloor) + \Theta(n)} + \Theta(2)$

Obtemos uma relação de recorrência (i.e., uma função definida em termos de si mesma).

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

Algoritmo Recursivo ⇒ Relação de Recorrência

Em geral, algoritmos recursivos levam a complexidade T(n) que é uma relação de recorrência.

- É necessário então resolver a recorrência!
- Ou seja, obter uma "fórmula não-recursiva" (ou "fórmula fechada") para T(n).

No caso, $T(n) = \Theta(n \lg n)$. Assim, o consumo de tempo do Mergesort é $\Theta(n \lg n)$ (no pior ou melhor caso?).

Veremos em breve como resolver recorrências...