EE115B, Fall 2022, Homework 1 Solution

$$\begin{array}{c|c}
0 & 0.5 \\
\hline
0.5 & 0.5
\end{array}$$

$$(0.25)_{10} = (0.01)_{2}$$

$$(10110.101)_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{3}$$

$$1 \times 2^{7} + 0 \times 2^{7} + 1 \times 2^{3}$$

$$= \frac{16+4+2+0.5+0.125}{11}$$

$$(2D.8)_{16} = 2 \times 16^{1} + 13 \times 16^{0} + 8 \times 16^{-1}$$

= $32 + 13 + 0.5$
= $(45.5)_{10}$

$$8 \frac{35}{84}$$
 remainder $(35)_{10} = (43)_{8}$

$$\frac{0.25}{48} = (0.2)_{10} = (0.2)_{8}$$

$$(110.01)_2 = (6.2)_8$$

3. Gray code. (Page 5 of 6.)

5-bit code: $G_4G_3G_2G_1G_0$. As discussed in class, the bit patterns are as follows:

 G_0 : 0110.

G₁: 00111100.

 G_2 : 00001111111110000.

Decimal	Gray Code
0	00000
1	00001
2	00011
3 4	00010
4	00110
5	00111
6	00101
7	00100
8	01100
9	01101
10	01111
11	01110
12	01010
13	01011
14	01001
15	01000
16	11000
17	11001
18	11011
19	11010
20	11110
21	1 <mark>1</mark> 111
22	11101
23	11100
24	10100
25	10101
26	10111
27	10110
28	10010
29	10011
30	10001
31	10000

4. (1) 1111

6/6

Four "1"s > odd parity bit is "1".

(2) 100101

Three "1"s -) odd Party bit is "o".

5. (1) 10/01/

Four." "'s > even paris observed

- no error.

(2) (000

one "," > even parity violated

-) in enor.