Introduzione alla codifica digitale

Codifica

- L'informazione gestita dai sistemi di elaborazione deve essere codificata
 - per poter essere memorizzata, elaborata, scambiata, ...
- E' necessario codificare sia dati che istruzioni
 - Per scrivere un programma è necessario codificare dati e istruzioni
- L'esecutore automatico deve essere in grado di:
 - Memorizzare istruzioni e dati
 - Manipolare istruzioni e dati

Informazione e codifica

 La stessa informazione si può codificare in modi differenti

Stessa codifica per informazioni differenti

Sistema di codifica

- Detto anche "codice"
- Usa un insieme di simboli di base (alfabeto)
- I simboli dell'alfabeto possono essere combinati ottenendo differenti configurazioni (o "stati"), distinguibili l'una dall'altra
- Associa ogni configurazione ad una particolare entità di informazione
 - la configurazione diventa un modo per rappresentarla

Sistemi di codifica: numeri (es.)

Alfabeto

- cifre: "0", "1", "2", ..., "9"
- separatori: decimale (","), migliaia (".")
- segni: positivo ("+"), negativo ("-")
- Regole di composizione (sintassi)
 - definiscono le combinazioni ammissibili (ben formate)
 - 12.318,43: *OK*
 - 12,318,43: *ERRORE!*
- Codice (semantica)
 - Associano ad ogni configurazione un'entità di informazione
 - $2.318,43 = 2 \times 10^3 + 3 \times 10^2 + 1 \times 10^1 + 8 \times 10^0 + 4 \times 10^{-1} + 3 \times 10^{-2}$
- Sistemi diversi possono usare lo stesso alfabeto
 - $123,456 = 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + 4 \times 10^{-1} + 5 \times 10^{-2} + 6 \times 10^{-3}$ [IT]
 - $123,456 = 1 \times 10^5 + 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$ [UK]

Codifica binaria

- Codifica binaria: usa un alfabeto di 2 simboli
- Usata nei sistemi informatici (livello fisico)
 - si usa una grandezza fisica (luminosità, tensione elettrica, corrente elettrica) per rappresentare l'informazione
- Solo 2 simboli per ridurre la probabilità di errore
 - tanti più simboli si devono distinguere e tanto meno la rilevazione sarà affidabile in presenza di "rumore"

Codifica binaria

BIT (Blnary digiT)

- unità elementare di informazione rappresentabile con dispositivi elettronici
- con 1 bit si possono rappresentare 2 stati
 - 0/1, on/off, si/no

Codifica binaria: unità di misura

- **BYTE** = 8 bit
- KiloByte (KB) = 2^{10} byte = 1024 byte $\approx 10^3$ byte
- MegaByte (MB) = 2^{20} byte $\approx 10^6$ byte
- GigaByte (GB) = 2^{30} byte $\approx 10^9$ byte
- TeraByte (TB) = 2^{40} byte $\approx 10^{12}$ byte

Codifica binaria

- Combinando più bit si può codificare un numero maggiore di stati
 - con 2 bit possono rappresentare 4 stati
 - con K bit si possono rappresentare 2^K stati

Es.: i giorni della settimana in binario

Lunedi	000
Martedì	001
Mercoledì	010
Giovedì	01 1
Venerdì	10 0
Sabato	10 1
Domenica	110
	111

1 bit 2 "gruppi" 2 bit 4 "gruppi" 3 bit 8 "gruppi"

Codifica binaria

- Con K bit si possono rappresentare 2^K stati
- Quanti bit servono per codificare N stati?

$$N \le 2^K \to K \ge \log_2 N \to K = \lceil \log_2 N \rceil$$

Codifica dei numeri naturali

- Sistema di numerazione posizionale con base β
 - β simboli (cifre) corrispondono ai numeri da 0 a β-1
 - i numeri naturali maggiori o uguali a β possono essere rappresentati da una sequenza di cifre
- Se un numero naturale Nè rappresentato in base β dalla sequenza di n cifre

$$a_{n-1} a_{n-2} ... a_1 a_0$$

allora N può essere espresso come segue:

$$N = \sum_{i=0}^{n-1} a_i \beta^i = a_{n-1} \beta^{n-1} + a_{n-2} \beta^{n-2} + \dots + a_2 \beta^2 + a_1 \beta + a_0$$

Codifica dei numeri naturali

- Esempio:
 - 13 può essere espresso mediante potenze di 2 come:

$$13 = 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$

 cioè può essere rappresentato dalla sequenza di bit (stringa binaria)

1 1 0 1

Conversione decimale-binario

```
18: 2 = 9 resto 0
9: 2 = 4 resto 1
4: 2 = 2 resto 0
2: 2 = 1 resto 0
1: 2 = 0 resto 1
```

10010

```
137 : 2 = 68
               resto 1
68:2=34
               resto 0
34:2 = 17
               resto 0
17:2 = 8
               resto 1
 8:2=4
               resto 0
 4:2=2
               resto 0
 2:2=1
               resto 0
 1:2=0
               resto 1
```

10001001

Codifica dei numeri naturali

Quindi

- Numero = sequenza di bit (codifica in base 2)
- Con K bit si rappresentano i numeri da 0 a 2^K-1

Esempi:

- 2 = sequenza 1 0
- 3 = sequenza 1 1
- 4 = sequenza 1 0 0
-

Esercizi

DA BASE 2 A BASE 10

$$4 + 10011_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 19_{10}$$

DA BASE 8 A BASE 10

$$\checkmark$$
 7201₈ = 7 x 8³ + 2 x 8² + 0 x 8¹ + 1 x 8⁰ = 3713₁₀

DA BASE 16 A BASE 10

$$A02F7_{16} = A \times 16^4 + 0 \times 16^3 + 2 \times 16^2 + F \times 16^1 + 7 \times 16^0 = 656119_{10}$$

ALTRI ESEMPI

$$\checkmark$$
 72F1₁₆ = ????₁₀

$$4 \times 1011_2 = ????_{10}$$

Esercizi (2)

CONVERSIONI DA BASE 10 A BASE 8

$$313_{10} = 471_8$$

CONVERSIONI DA BASE 10 A BASE 16

$$313_{10} = 139_{16}$$

Esercizi (3)

CONVERSIONI DA BASE 2 A BASE 8

CONVERSIONI DA BASE 2 A BASE 16

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

 $000\ 100\ 111\ 001_2\ = 0\ 4\ 7\ 1_8$

 $0001\ 0011\ 1001_2 = 1\ 3\ 9_{16}$

- Proprietà:
 - Ciascuna cifra ottale (esadecimale) corrisponde ad un gruppo di 3 (4) cifre binarie

Parte frazionaria

- Per convertire la sola parte frazionaria, si moltiplica il numero per 2, sottraendo 1 dal prodotto se è maggiore di 1 e continuando a moltiplicare per 2 il risultato così ottenuto fino a quando non si ottiene un risultato uguale a 0 oppure un risultato già ottenuto in precedenza
- Il numero binario si ottiene scrivendo la serie delle parti intere dei prodotti ottenuti, iniziando dal primo
- Se si ottiene un risultato già ottenuto in precedenza, il numero sarà periodico, anche se non lo era in base decimale

$$(0,35)_{10} = (0,01\overline{0110})_{2}$$

- Vari tipi di codifiche:
 - Modulo e segno
 - Complemento a 1
 - Complemento a 2
 - comunemente usata nei sistemi reali

Modulo e segno

- 1 bit per rappresentare esplicitamente il segno
 - \bullet 0 \rightarrow +
 - \bullet 1 \rightarrow -
- Gli altri bit rappresentano il valore assoluto del numero come binario puro
- Esempi (su 8 bit):
 - -2 → **1**0000010
 - +5 → **0**0000101

Modulo e segno (2)

- Note:
 - Segno completamente disgiunto dal valore del numero
 - Posizione del bit del segno, entro la stringa, irrilevante
- Difetti:
 - Il valore zero ha due distinte rappresentazioni:
 - 1000000000 → -0
 - 0000000000 → +0
 - Non permette di utilizzare le usuali regole di calcolo per eseguire le operazioni:

```
+5 0 0000101
- 5 1 0000101
0 1 0001010
```

Complemento a uno

- Approccio
 - La rappresentazione dei numeri negativi si ottiene dalla rappresentazione del numero positivo invertendo i bit
- Esempi (su 8 bit compreso il bit del segno) :
 - +5 → 00000101
 - -5 → 11111010
- Difetti
 - Stessi difetti della rappresentazione in modulo e segno (+0→ 00000000 -0→11111111)

Complemento a due

Approccio

- Un numero è rappresentato con la codifica del suo complemento a 2 (positivo)
- in una codifica a K bit: $C_K(x) = 2^K + x$
- Esempio $(K = 4, 2^K = 16)$
 - x = +5
 - $C_K(+5) = 16 + 5 = 21 \rightarrow \times 0101$
 - x = -5
 - $C_K(-5) = 16 5 = 11 \rightarrow 1011$
- Osservazione
 - Anche in questo caso il primo bit indica il segno
 - 0 = positivo
 - 1 = negativo

Complemento a due (2)

 Algoritmo per calcolare la rappresentazione in complemento a 2 di un numero negativo: si rappresenta il valore assoluto in binario

si invertono tutte le cifre (1->0 e viceversa) si somma 1

Esempio

```
• 5 → 0101
```

•
$$-5 \rightarrow 1011 = 1010 + 1$$

Osservazioni

- Rappresentazione dello 0
 - modulo e segno: rappresentazione ambigua

```
+0 = 00000000 - 0 = 10000000
```

- complemento a uno: rappresentazione ambigua
 - +0 = 00000000 0 = 111111111
- complemento a due: rappresentazione univoca
 - il complemento a due di 0...0 è ancora 0...0
- Intervallo di rappresentazione con K bit
 - modulo e segno: [-(2^{K-1}-1), + 2^{K-1}-1]
 - complemento a uno: [-(2^{K-1}-1), + 2^{K-1}-1]
 - complemento a due: [-2^{K-1}, + 2^{K-1}-1]

Operazioni algebriche: somma e sottrazione su interi

Somme fra "cifre":
$$0+0=0$$
 $1+0=1$ $0+1=1$ $1+1=10$

Codifica dei numeri razionali

- Fixed point (virgola fissa)
 - Un numero razionale è rappresentato come una coppia di numeri interi: la parte intera e la parte decimale
 - 12,52 \rightarrow <12; 52>
- Floating point (virgola mobile)
 - Un numero razionale e' rappresentato come un intero moltiplicato per una opportuna potenza di10, cioè con una coppia <mantissa, esponente>
 - $12,52 = 1252/100 = 1252 * 10^{-2} \rightarrow <1252; -2>$

Operazioni algebriche: Errori

Problema

- Gli elaboratori elettronici utilizzano un numero fissato di bit per rappresentare un dato tipo di numeri
- Un'operazione può produrre un valore non rappresentabile: il numero di bit disponibili è minore di quelli necessari

Overflow

- Il valore assoluto del risultato è maggiore della massima quantità rappresentabile
- L'approssimazione con la massima quantità rappresentabile potrebbe implicare un notevole errore

Underflow

- Il risultato è minore (in valore assoluto) della minima quantità rappresentabile
- Nella rappresentazione in virgola mobile, corrisponde ad un overflow dell'esponente
- Il risultato è approssimato con 0 (e si segnala la condizione)

Codifica di caratteri

- Si associa un codice ad ogni simbolo dell'alfabeto
- Codifica ASCII
 - Caratteri speciali, punteggiatura, a-z, A-Z, 0-9
 - Utilizza 7 bit (128 caratteri)
 - I codici ASCII estesi usano 8 bit (256 caratteri)
- Codifica UNICODE
 - Utilizza 16 bit (65536 caratteri)
 - I primi 128 caratteri sono gli stessi di ASCII
 - Gli altri corrispondono ad altri alfabeti (greco, cirillico,...)
 - Non copre i simboli (oltre 200.000) di tutte le lingue!

Codice ASCII (7 bit)

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
010	sp	!	"	#	\$	%	&	1	()	*	+	ı	-		/
011	0	1	2	3	4	5	6	7	8	9	:	ï	<	=	>	?
100	@	Α	В	С	D	Ε	F	G	Н	I	J	K	L	Μ	N	0
101	Р	Q	R	S	Т	U	٧	W	χ	Υ	Z	[\]	Λ	
110	`	a	b	С	d	е	f	g	h	I	j	k	-	m	n	0
111	р	q	r	S	t	u	٧	W	Х	Υ	Z	{		}	~	canc

Compressione dei dati

- Vantaggio:
 - risparmio di risorse per memorizzazione e trasmissione
- Esempio: codifica a lunghezza variabile
 - Alfabeto: {A, C, G, T}
 - Una sequenza ATTACCG... di 1 milione caratteri da rappresentare
 - Codifica a lunghezza fissa: memoria richiesta = 2 milioni di bit
 - A=00, C=01, G=10, T=11
 - ATTACCG... → 00111100010110...
 - Diverse frequenze dei simboli:
 - f(A)=50%, f(C)=25%, f(G)=12.5%, f(T)=12.5%
 - Si scelgono codici dei simboli con lunghezze (in bit) inversamente proporzionali alle frequenze:
 - A=0, C=10, G=110, T=111
 - $(1 \times 50\% + 2 \times 25\% + 2 \times 3 \times 12.5\%) \times 10^6 = 1.75$ milioni di bit
- Attenzione:
 - la nuova sequenza binaria deve essere decodificabile!

Codifica di dati multimediali

- Applicazioni multimediali
 - elaborano anche tipi di informazione differenti da testi e numeri
- Esempi di dati multimediali:
 - immagini
 - filmati
 - sequenze sonore

- Immagini digitalizzate = sequenze di bit!
 - L'immagine viene discretizzata, cioè rappresentata con sequenze di pixel
 - Ogni pixel ha associato un numero che descrive un particolare colore (o tonalità di grigio)

 Consideriamo un'immagine in bianco e nero, senza ombreggiature o livelli di chiaroscuro

 Si suddivide l'immagine con una griglia formata da righe orizzontali e verticali a distanza

costante

- pixel (picture element)
 - ogni quadratino derivante dalla suddivisione dell'immagine
- Codifica di un pixel:
 - il simbolo "0" viene utilizzato per la codifica di un pixel bianco (o in cui il bianco è predominante)
 - il simbolo "1" viene utilizzato per la codifica di un pixel nero (o in cui il nero è predominante)

- Poiché una sequenza di bit è lineare, si deve definire una convenzione per ordinare i pixel della griglia
 - Assumiamo che i pixel siano ordinati dal basso verso l'alto e da sinistra verso destra

0	1 23	0	0	0	0	0
0	1	1	0	0	0	0_{21}
0_8	1,	1	1	1	0	0,14
0_1	$oldsymbol{0}_2$	0_3	0_4	0_{5}	06	0,

La rappresentazione della figura è data dalla stringa:

0000000 0111100 0110000 0100000

- Approssimazione:
 - nella codifica si ottiene un'approssimazione della figura originaria
 - non sempre il contorno della figura coincide con le linee della griglia
 - Riconvertendo in immagine la stringa
 000000011110001100000100000 si ottiene:

- La rappresentazione sarà più fedele all'aumentare del numero di pixel
 - ossia al diminuire delle dimensioni dei quadratini della griglia in cui è suddivisa l'immagine

Immagini con toni di grigio

- Le consuete immagini "in bianco e nero" hanno delle sfumature (livelli di intensità di grigio)
- Per codificare immagini con sfumature:
 - si fissa un insieme di livelli (toni) di grigio, cui si assegna convenzionalmente una rappresentazione binaria
 - per ogni pixel si stabilisce il livello medio di grigio e si memorizza la codifica corrispondente a tale livello
- Per memorizzare un pixel non basta un solo bit
 - con 4 bit si possono rappresentare 2⁴=16 livelli di grigio
 - con 8 bit ne possiamo distinguere 28=256
 - con K bit ne possiamo distinguere 2K

Immagini a colori

- Analogamente possono essere codificate le immagini a colori:
 - bisogna definire un insieme di sfumature di colore differenti, codificate mediante una opportuna sequenza di bit
- codifica bitmap
 - Indica la rappresentazione di un'immagine mediante la codifica dei pixel

Immagini a colori

- Il numero di byte richiesti dipende da
 - risoluzione
 - numero di colori che ogni pixel può assumere
- Es: per distinguere 256 colori sono necessari 8 bit per la codifica di ciascun pixel
 - la codifica di un'immagine formata da 640×480 pixel richiederà 2457600 bit (307200 byte)
- Tipicamente
 - risoluzione: 1024×768, 1600×900, 1280×720 («HD-ready»), 1920×1080 («Full HD»), 3840x2160 («4K»)
 - numero di colori per pixel: da 256 fino a 16 milioni
- Tecniche di compressione lossy
 - riducono notevolmente lo spazio occupato dalle immagini

Compressione JPEG (esempio)

Codifica Bitmap

- -800 x 600
- 16,8 mln colori (24 bit)

dimensione = 1.440.000 byte

≈ 1406 KB

Codifica di filmati

- Immagini in movimento sono memorizzate come sequenze di fotogrammi
- In genere si tratta di sequenze compresse di immagini
 - ad esempio si possono registrare solo le variazioni tra un fotogramma e l'altro

Codifica di sequenze sonore

- L'onda sonora (analogica) viene misurata ad intervalli regolari (campionamento)
 - Minore è l'intervallo di campionamento e maggiore è la qualità del suono
- CD musicali:
 - 44000 campionamenti al secondo, 16 bit per campione