Convex Optimization II

Lecture 8: Subgradient Methods

Hamed Shah-Mansouri

Department of Electrical Engineering Sharif University of Technology

1400-2

REFERENCES

[1] S. Boyd and L. Vandenberghe, "Subgradients," *Notes for EE364b, Stanford University*, May 2014.

[2] S. Boyd, "Subgradient Methods," *Notes for EE364b, Stanford University*, May 2014.

Thanks to Professor Stephen Boyd for the slides used in this lecture.

BASIC INEQUALITY

ullet Recall basic inequality for convex differentiable $f: \mathbf{R}^n o \mathbf{R}$

$$f(z) \ge f(x) + \nabla f(x)^T (z - x)$$

for all $z \in \mathbf{dom} \ f$

- ullet First-order approximation of f at x is the global underestimator.
- $(\nabla f(x), -1)$ supports epi f at (x, f(x))
- What if f is not differentiable?

SUBGRADIENT OF A FUNCTION

• A vector $g \in \mathbf{R}^n$ is a subgradient of $f : \mathbf{R}^n \to \mathbf{R}$ (not necessarily convex) at $x \in \mathbf{R}^n$ if

$$f(z) \ge f(x) + g^T(z - x)$$
 for all $z \in \operatorname{dom} f$

- g_2 , g_3 are subgradients at x_2
- g_1 is a subgradient at x_1

SUBGRADIENT OF A FUNCTION (CONT.)

- ullet g is a subgradient of f at x iff (g,-1) supports epi f at (x,f(x))
- g is a subgradient iff $f(x) + g^T(z x)$ is a global (affine) underestimator of f
- if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

Subgradients come up in several contexts:

- algorithms for nondifferentiable convex optimization
- convex analysis, e.g., optimality conditions, duality for nondifferentiable problems

EXAMPLE

 $f = \max\{f_1, f_2\}$ with f_1, f_2 convex and differentiable

- $f_1(x_0) > f_2(x_0)$: unique subgradient $g = \nabla f_1(x_0)$
- $f_2(x_0) > f_1(x_0)$: unique subgradient $g = \nabla f_2(x_0)$
- $f_1(x_0) = f_2(x_0)$: subgradients form a line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$

SUBDIFFERENTIAL

- A function f is called subdifferentiable at x if there exists at least one subgradient at x.
- The set of all subgradients of f at x is called the subdifferential of f at x, and is denoted $\partial f(x)$.
- A function f is called subdifferentiable if it is subdifferentiable at all $x \in \text{dom } f$.
- The subdifferential $\partial f(x)$ is a closed convex set, even if f is not convex.

EXAMPLE

$$f(x) = |x|$$

$$\partial f(x) = \begin{cases} \{-1\}, & x < 0 \\ \{1\}, & x > 0 \\ [-1, 1], & x = 0 \end{cases}$$

PROPERTIES

- Subgradients of differentiable functions
 - ▶ If f is convex and differentiable at x, then $\partial f(x) = {\nabla f(x)}$
- The minimum of a nondifferentiable function
 - ▶ A point x^* is a minimizer of a function f (not necessarily convex) if and only if f is subdifferentiable at x^* and $0 \in \partial f(x^*)$
 - ▶ The condition $0 \in \partial f(x^*)$ reduces to $\nabla f(x^*) = 0$ if f is convex and differentiable at x^*

SOME RULES FOR CONSTRUCTING SUBGRADIENTS OF CONVEX FUNCTIONS

- Nonnegative scaling: For $\alpha \geq 0$, $\partial(\alpha f)(x) = \alpha \partial f(x)$.
- Sum: Suppose $f = f_1 + \cdots + f_m$, where f_1, \dots, f_m are convex functions. We have $\partial f(x) = \partial f_1(x) + \cdots + \partial f_m(x)$.
- Affine transformations of domain: Suppose f is convex, and h(x) = f(Ax + b). Then, $\partial h(x) = A^T \partial f(Ax + b)$.
- Pointwise maximum: Consider $f(x) = \max_{i=1,...,m} f_i(x)$, where f_i are convex and subdifferentiable. Let k be any index for which $f_k(x) = f(x)$ and let $g \in \partial f_k(x)$. Then, $g \in \partial f(x)$. This follows from

$$f(z) \ge f_k(z) \ge f_k(x) + g^T(z - x) = f(x) + g^T(z - x)$$

• Other rules can be found in [1].

SUBGRADIENT METHOD

- ullet Simple algorithm to minimize nondifferentiable convex function f.
- Advantage: Allow simple distributed algorithm for a problem when combined with primal or dual decomposition.
- Drawback: Convergence can be slow.
- Consider an unconstrained minimization problem, where function $f: \mathbf{R}^n \to \mathbf{R}$ is convex.
- Basic subgradient method: At each iteration k, take a step in the direction of negative subgradient

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}, \tag{1}$$

where $x^{(k)}$ is the kth iterate, $g^{(k)} \in \partial f(x^{(k)})$ is any subgradient of f at $x^{(k)}$, $\alpha_k > 0$ is the kth step size.

• Not a descent method, so we keep track of the best point so far.

$$f_{\text{best}}^{(k)} = \min_{i=1,\dots,k} f(x^{(i)}) = \min\{f_{\text{best}}^{(k-1)}, f(x^{(k)})\}$$

Since $f_{\text{best}}^{(k)}$ is decreasing, it has a limit.

BASIC STEP SIZE RULES

Step sizes are *determined* before the algorithm is run. They do not depend on any data computed during the algorithm.

- Constant step size: $\alpha_k = \alpha$ (positive constant, independent of k)
- Constant step length: $\alpha_k = \frac{\gamma}{||g^{(k)}||_2}$, where $\gamma > 0$ (so $||x^{(k+1)} x^{(k)}||_2 = \gamma$)
- Square summable but not summable: Step sizes satisfy

$$\alpha_k \ge 0, \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$

Example: $\alpha_k = a/(b+k)$, where a > 0 and $b \ge 0$.

• Nonsummable diminishing: Step sizes satisfy

$$\alpha_k \ge 0, \quad \lim_{k \to \infty} \alpha_k = 0, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$

Example: $\alpha_k = a/\sqrt{k}$, where a > 0.

ASSUMPTIONS ON THE CONVERGENCE RESULTS

• Assumption A1: There is a minimizer of f, say x^* . We have

$$f^* = \inf_x f(x) > -\infty$$
, with $f(x^*) = f^*$.

- Assumption A2: Norm of the subgradients is bounded. There exists a G such that $||g^{(k)}||_2 \leq G$, for all k.
- Assumption A3: A number R is known that satisfies $||x^{(1)} x^*||_2 \le R$.

The above assumptions are stronger than needed, just to simplify proofs.

CONVERGENCE PROOF

- Key quantity: Euclidean distance to the optimal set, not the function value
- Let x^* be any minimizer of f.

$$||x^{(k+1)} - x^{\star}||_{2}^{2} = ||x^{(k)} - \alpha_{k}g^{(k)} - x^{\star}||_{2}^{2}$$

$$= ||x^{(k)} - x^{\star}||_{2}^{2} - 2\alpha_{k}g^{(k)T}(x^{(k)} - x^{\star}) + \alpha_{k}^{2}||g^{(k)}||_{2}^{2}$$

$$\leq ||x^{(k)} - x^{\star}||_{2}^{2} - 2\alpha_{k}(f(x^{(k)}) - f^{\star}) + \alpha_{k}^{2}||g^{(k)}||_{2}^{2}$$

where $f^* = f(x^*)$

The last line follows from the definition of subgradient

$$f(x^*) \ge f(x^{(k)}) + g^{(k)T}(x^* - x^{(k)})$$

CONVERGENCE PROOF (CONT.)

• Apply recursively to get

$$||x^{(k+1)} - x^{\star}||_{2}^{2} \le ||x^{(1)} - x^{\star}||_{2}^{2} - 2\sum_{i=1}^{k} \alpha_{i} \left(f(x^{(i)}) - f^{\star} \right) + \sum_{i=1}^{k} \alpha_{i}^{2} ||g^{(i)}||_{2}^{2}$$

• Since $||x^{(k+1)} - x^{\star}||_2^2 \ge 0$ and $||x^{(1)} - x^{\star}||_2^2 \le R$, we have

$$2\sum_{i=1}^{k} \alpha_i \left(f(x^{(i)}) - f^* \right) \le R^2 + \sum_{i=1}^{k} \alpha_i^2 ||g^{(i)}||_2^2$$

• Now, we use

$$\sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^{\star}) \geq \left(\sum_{i=1}^{k} \alpha_i\right) \min_{i=1,\dots,k} \left(f(x^{(i)}) - f^{\star}\right)$$

$$= \left(f_{\text{best}}^{(k)} - f^{\star}\right) \sum_{i=1}^{k} \alpha_i$$

CONVERGENCE PROOF (CONT.)

• Thus,

$$f_{\text{best}}^{(k)} - f^* = \min_{i=1,\dots,k} f(x^{(i)}) - f^*$$

$$\leq \frac{R^2 + \sum_{i=1}^k \alpha_i^2 ||g^{(i)}||_2^2}{2\sum_{i=1}^k \alpha_i}$$

$$\leq \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2\sum_{i=1}^k \alpha_i^2}$$
(2)

CONVERGENCE RESULTS

Define
$$\bar{f} = \lim_{k \to \infty} f_{\text{best}}^{(k)}$$

- Constant step size: $\bar{f} f^{\star} \leq G^2 \alpha/2$, i.e., suboptimal
- Constant step length: $\bar{f} f^* \leq G\gamma/2$, i.e., suboptimal
- Square summable but not summable: $\bar{f} = f^*$, i.e., converges
- \bullet Diminishing step size rule: $\bar{f}=f^{\star},$ i.e., converges

PROJECTED SUBGRADIENT METHOD

solves constrained optimization problem

minimize
$$f(x)$$

subject to $x \in C$

where $f: \mathbf{R}^n \to \mathbf{R}, \ C \subseteq \mathbf{R}^n$ are convex

projected subgradient method is given by

$$x^{(k+1)} = P(x^{(k)} - \alpha_k g^{(k)}),$$

where P is (Euclidean) projection on C, and $g^{(k)}\in\partial f(x^{(k)})$

- for constant step size, converges to neighborhood of optimal
- for diminishing nonsummable step sizes, converges

PROJECTED SUBGRADIENT METHOD: CONVERGENCE PROOF

ullet Consider a standard subgradient update before the projection back onto C

$$z^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

• As in the subgradient method, we have

$$\begin{aligned} ||z^{(k+1)} - x^{\star}||_{2}^{2} &= ||x^{(k)} - \alpha_{k}g^{(k)} - x^{\star}||_{2}^{2} \\ &= ||x^{(k)} - x^{\star}||_{2}^{2} - 2\alpha_{k}g^{(k)T}(x^{(k)} - x^{\star}) + \alpha_{k}^{2}||g^{(k)}||_{2}^{2} \\ &\leq ||x^{(k)} - x^{\star}||_{2}^{2} - 2\alpha_{k}(f(x^{(k)}) - f^{\star}) + \alpha_{k}^{2}||g^{(k)}||_{2}^{2} \end{aligned}$$

• Now, observe that

$$||x^{(k+1)} - x^*||_2 = ||P(z^{(k+1)}) - x^*||_2 \le ||z^{(k+1)} - x^*||_2$$

• Thus,

$$||x^{(k+1)} - x^{\star}||_2^2 \le ||x^{(k)} - x^{\star}||_2^2 - 2\alpha_k(f(x^{(k)}) - f^{\star}) + \alpha_k^2||g^{(k)}||_2^2$$

• The rest of proof proceeds exactly as in the ordinary subgradient method.

4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□▷
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○
4□○

PROJECTED SUBGRADIENT FOR DUAL PROBLEM

• Consider the following convex primal problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$

• For each $\lambda \succeq 0$, the Lagrangian

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

has a unique minimizer over x, which we denote as $x^*(\lambda)$.

• The dual function is

$$g(\lambda) = \inf_{x} L(x,\lambda) = f_0(x^*(\lambda)) + \sum_{i=1}^{m} \lambda_i f_i(x^*(\lambda))$$

• The dual problem is

$$\begin{array}{ll} \text{maximize} & g(\lambda) \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

PROJECTED SUBGRADIENT FOR DUAL PROBLEM (CONT.)

- Approach: Solve the primal problem by finding an optimal point λ^* of the dual, and then taking $x^* = x^*(\lambda^*)$.
- Via the projected subgradient method, we have

$$\lambda^{(k+1)} = \left(\lambda^{(k)} - \alpha_k h\right)^+, \quad h \in \partial(-g)(\lambda^{(k)})$$

• Since -g is a supremum of a family of affine functions of λ , index by x, we can find a subgradient by finding one of these functions that achieves the supremum. But there is just one, and its gradient is

$$h = -(f_1(x^*(\lambda)), \dots, f_m(x^*(\lambda))) \in \partial(-g)(\lambda)$$

• The projected subgradient method for the dual has the form

$$x^{(k)} = \arg\min_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i^{(k)} f_i(x) \right)$$

$$\lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})\right)^+, \ i = 1, \dots, m.$$

PROJECTED SUBGRADIENT FOR DUAL PROBLEM (CONT.)

- ullet primal iterates $x^{(k)}$ are not feasible, but become feasible only in limit.
- dual function $g(\lambda^{(k)})$ converges to $f^* = f_0(x^*)$
- λ_i is the price for a resource with usage measured by $f_i(x)$
- Price update $\lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})\right)^+$
- Increase price λ_i if resource i is over-utilized (i.e., $f_i(x) > 0$)
- Decrease price λ_i if resource i is under-utilized (i.e., $f_i(x) < 0$)
- but never let prices be negative

SUMMARY

- Subgradient
- Subdifferential
- Subgradient Method
- Projected Subgradient for Dual Problem