WO 2005/050251 PCT/EP2004/010800

PATENT CLAIMS

1. A method for performing inter-vehicle distance control on a vehicle, in which an actual value (d_{act}) of a distance variable which describes a distance between the vehicle and a vehicle traveling in front is determined and in which a plurality of weighting values (g_i) for the distance variable are determined as a function of input variables (x_i) which describe the driving situation of the vehicle and/or the ambient situation of the vehicle and/or the driving behavior of the driver, from which weighting values (g_i) in turn a set point value (d_{setp}) for the distance variable is determined, braking means (50) and/or driving means (33) of the vehicle being actuated in such a way that the determined actual value (d_{act}) of the distance variable assumes the determined set point value (d_{setp}) of the distance variable,

characterized

in that in order to determine the set point value (d_{setp}) of the distance variable the weighting values (g_i) are multiplied by one another.

2. The method as claimed in claim 1,

characterized

in that in order to determine the set point value (d_{setp}) of the distance variable the geometric average of the weighting values (g_i) is formed.

3. The method as claimed in claim 1,

characterized

in that in order to determine the set point value (d_{setp}) of the distance variable the multiplied weighting values (g_i) are restricted to a predefined value range.

4. The method as claimed in claim 3,

characterized

in that the value range is defined by predefining an upper and a lower limiting value (f_{min} , f_{max}) for the multiplied weighting values (g_i), the limiting values (f_{min} , f_{max}) being predefined as a function of driving state variables which describe the driving state of the vehicle.

WO 2005/050251 PCT/EP2004/010800

5. The method as claimed in claim 1,

characterized

in that the multiplied weighting values (g_i) for determining the set point value (d_{setp}) of the distance variable are multiplied by a predefined reference value (d_{ref}) for the distance variable, the reference value (d_{ref}) being predefined as a function of driving state variables which describe the driving state of the vehicle.

6. The method as claimed in claim 4,

characterized

in that a driver warning is issued to the driver of the vehicle if the determined actual value (d_{act}) of the distance variable drops below the set point value (d_{setp}) of the distance variable which is given by the lower limiting value (f_{min}) of the multipled weighting values (g_i).

7. A device for performing inter-distance control on a vehicle, in which an evaluation unit (31) determines an actual value (d_{act}) of a distance variable which describes a distance between the vehicle and a vehicle traveling in front, and in which the evaluation unit (31) determines a plurality of weighting values (g_i) for the distance variable as a function of input variables (x_i) which describe the driving situation of the vehicle and/or the ambient situation of the vehicle and/or the driving behavior of the driver, from which weighting values (g_i) the evaluation unit (31) in turn determines a set point value (d_{setp}) for the distance variable, the evaluation unit (31) actuating braking means (50) and/or driving means (33) of the vehicle in such a way that the determined actual value (d_{act}) of the distance variable assumes the determined set point value (d_{setp}) of the distance variable,

characterized

in that in order to determine the set point value (d_{setp}) of the distance variable the evaluation unit (31) multiplies the weighting values (g_i) by one another.