

Tobias Kohl

senozon

Why is parking important?

- Searching for a parking spot takes time and nerves
- → A significant amount of inner-city traffic is parking search traffic.
- Sometimes people have to walk long distances between their parking spot and their activity location

→ But... how?

Direct Simulation - The Good

- Real traffic to real parking spots
- Influences jam patterns
- Shows up in traffic counts
- Very accurate depiction of what happens in real life

Direct Simulation - The Bad

- → Real traffic takes real computation time (a lot of it)
- Not quite clear with which method the agent should explore the surroundings for a free parking spot
- Being first or second at a free parking spot can have big influences on travel time and score - Tiny causes with huge effects

Direct Simulation - The Ugly

- What real parking spots are we talking about exactly?
- Oan I park on the street? Does my home have a private driveway? How many cars fit into this parking lot? How many levels does that underground garage have?

Example: Train Station Thomery, Thomery, France

Example: Train Station Thomery, Thomery, France

Direct Simulation - The Ugly

- What real parking spots are we talking about exactly?
- Oan I park on the street? Does my home have a private driveway? How many cars fit into this parking lot? How many levels does that underground garage have?
- Way too little reliable data to consistently simulate realistic behavior

Finding a different way

- Direct Simulation too knowledge and time demanding
- Idea: Account for the approximate effect of parking search without actually simulating it
- Be agnostic towards parking infrastructure because no data is better than partial data
- Apply a time penalty to arriving cars based on how many cars already are parked in the area

The core principal

Modify the egress walk from the car interaction to the real activity:

- → Time penalty dependent on load in discrete time-space-cells (here: 15 minutes x 500 meters x 500 meters) of previous iteration
- Zero additional computation times during mobsim

The core principal

- Adhere MATSim rule: Plans are the intention, events/mobsim are the truth
- We want the penalty to be executed in the mobsim, but not show up in the plans (similar to how traffic jams would work)
- Change the egress leg before the mobsim and change it back directly after

The Hanover Case

- Based on the current Senozon Model of Germany 2024
- → 100pct Sample of the Hanover Region
 - 1.9E06 agents with complete daily schedules
 - 0.7E06 additional cross-border agents with a single trip and fixed transport mode
- Three setups
 - No Parking Penalty
 - Moderate Parking Penalty
 - High Parking Penalty

Applied penalty at 10 AM

Reduction in car share between 9 and 11

Reduction in car trips between 9 and 11

Global modeshare

Final thoughts

- → ParkingProxy helps if you...
 - Want to change the car modeshare in dense areas compared to rural ones
 - Want to further penalize peak hour car traffic
 - Want to increase your travel times for parking search
 - Have no spare computing ressources
- ParkingProxy is not suitable if you...
 - Need actual park search traffic
 - Want to use detailed parking infrastructure information
- ParkingProxy is available in the parking contrib

Contact

Senozon AG

Technoparkstrasse 1 CH-8005 Zürich

Senozon Deutschland GmbH

c/o Next-Level-Offices Franklinstraße11 DE-10587 Berlin

Senozon Austria GmbH

Türkenstraße 25/8 AT-1090 Wien

Tobias Kohl

Andreas Neumann

Michael Balmer

www.senozon.com