

#### NATIONAL INSTITUTE OF BUSINESS MANAGEMENT

#### **DIPLOMA IN SOFTWARE ENGINEERING 17.2F**

#### **COMPUTER TECHNOLOGY DSE-2-4-05**

21st May 2018

9.00 am - 12.00 noon

Answer all questions.

Electronic calculators are allowed.

Time: THREE hours.

# PART A-DIGITAL ELECTRONICS

# **Question 1**

i. Simplify the following expressions using De Morgan's Law.

a. 
$$Z = \overline{\overline{A}.\overline{B} + \overline{A}.\overline{B}.C}$$

b. 
$$Z = \overline{A + \overline{B.\overline{C}} + C.D} + \overline{\overline{B.C}}$$

c. 
$$Z = (A.B + \overline{\overline{B.C}}).(\overline{\overline{A.B}} + \overline{A.B.C} + ABC)$$

(06 Marks)

ii. Z = f(A, B, C, D)

Z = 1 for the minterms (0, 2, 5, 7, 8, 13)

Z= don't care for the minterms (10, 15)

Z = 0 for the remaining minterms.

Simplify Z using:

i) K- map method

(02 Marks)

ii) Tabular method

(04 Marks)

iii. Explain the importance of Boolean expression simplification in Digital Circuit Designing.

(02 Marks)

# **Question 2**

i. Draw the truth table of Full Adder and implement the circuit using basic logic gates.

(04 Marks)

- ii. An assembly line has 3 failsafe sensors and 1 emergency shutdown switch. The assembly line will be deactivated by switching off the emergency shutdown switch if anyone of the following conditions occur.
  - If the emergency switch is pressed, the system shuts down.
  - If sensor 1 and sensor 2 are activated at the same time, the system shuts down
  - If sensor 2 and sensor 3 are activated at the same time, the system shuts down.
  - If all three sensors are activated at the same time, the system shuts down.

| a. | Determine the truth table for the circuit. | (02 Marks) |  |  |  |
|----|--------------------------------------------|------------|--|--|--|
| b. | Obtain the simplified                      |            |  |  |  |
|    | i. SOP expression                          | (02 Marks) |  |  |  |
|    | ii. POS expression                         | (02 Marks) |  |  |  |
| c. | c. Implement the circuit using             |            |  |  |  |
|    | i. NAND gates only.                        | (03 Marks) |  |  |  |
|    | ii. 4:1 Multiplexer.                       | (03 Marks) |  |  |  |
|    |                                            |            |  |  |  |

iii. Explain the operation of 1:4 De multiplexer using a diagram. (04 Marks)

# **Question 3**

i. Draw the output waveform Q of a positive edge triggered SR flip flop. Assume that the initial value of the flip flop is 0. (02 Marks)



- ii. Complete the truth table of J-K flip flop and derive its excitation table. (04 Marks)
- iii. Design a 3-bit counter to count the bit sequence 0,2,4,6. Use positive edge triggered J-K flip flops. (06 Marks)
- iv. Three edge-triggered JK flip flops in a synchronous circuit have the following input conditions:

$$J_A = Q_C$$

$$K_A = 1$$

$$J_B = 1$$

$$K_B = \overline{Q}_{A.}Q_C$$

$$J_C = Q_B$$

$$K_C = 1$$

Assume that the initial state is  $Q_A = 0$   $Q_B = 1$   $Q_C = 1$ . Find the count sequence. (04 Marks)

### PART B- PHYSICAL ELECTRONICS

### **Question 4**

- i. Briefly explain how N-Type semi-conductors are formed using its crystal structure. (03 Marks)
- ii. Explain the reversed biased mode of the P-N junction.
- iii. Draw the Volt-Ampere characteristics of a practical diode and mark I<sub>s</sub> (Reverse Saturation Current), PIV (Peak Inverse Voltage) and V<sub>b</sub> (Forward Biased Voltage) on the curve.

(02 Marks)

(03 Marks)

iv. Draw the circuit diagram of Half Wave Rectifier and explain the operation of it. (04 Marks)

# **Question 5**

- i. Draw the graph of input characteristics of a transistor. (03 Marks)
- ii. Consider the following circuit and obtain the operating mode of the transistor. Hence calculate **IB**, **I**C **and V**CE. Assume that the transistor is made out of Silicon. (12 Marks)

| Material | V <sub>CE</sub> (sat) | V <sub>BE</sub> (sat) | V <sub>BE</sub> (act) | V <sub>BE</sub> (cut in) |
|----------|-----------------------|-----------------------|-----------------------|--------------------------|
| Si       | 0.2V                  | 0.8V                  | 0.7V                  | 0.5V                     |
| Ge       | 0.1V                  | 0.3V                  | 0.2V                  | 0.1V                     |

| β   | R <sub>B</sub> | Rc  | Vcc | $V_{BB}$ |
|-----|----------------|-----|-----|----------|
| 100 | 200kΩ          | 2kΩ | 10V | 5V       |



6. Consider the circuit in figure 2 and the characteristic curve of the JFET in figure 3 .If VDD = 12V, VGG = 1.2V, RG =  $2k\Omega$ , RD =  $2k\Omega$ .



i. What is the type of the given JFET?

(01 Mark)

ii. Indicate the three regions of the characteristic curve.

(01 Mark)

iii. Calculate Gate-Source voltage.

- (03 Marks)
- iv. Obtain an equation for the load line of the circuit and plot it over the given characteristic curve. (03 Marks)
- v. Hence identify the operating mode of the JFET and find the coordinate of the operating point. (02 Marks)

There are many digital logic families.

- a. Explain two important characteristics of Digital Logic Families briefly. (02 Marks)
- b. Consider the following digital logic circuit. Then identify its logic family and show that it is an AND gate by using a suitable truth table.

  (03 Marks)

