Задача 1

Используйте лемму 7.2, чтобы показать, что $x,y\in\mathbb{R}^n$ отображение $\tau_x:y\mapsto y-x~\mathcal{B}\left(\mathbb{R}^n\right)/\mathcal{B}\left(\mathbb{R}^n\right)$ - измеримо.

Доказательство:

- 1. Пусть $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ и $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ измеримы. Чтобы воспользоваться леммой 7.2 необходимо доказать, что $\tau_x^{-1}(\mathcal{F}) \subset \mathcal{B}(\mathbb{R}^n)$. Где \mathcal{F} система полуоткрытых интервалов. Тогда по лемме 7.2 следует цель задачи.
- 2. По определению $\mathcal{F} := \{[a_1, b_1) \times [a_2, b_2) \times \dots \times [a_n, b_n) : \forall i = \overline{1, n} \land a_i, b_i \in \mathbb{R}\}.$
- 3. Легко заметить, что $\tau_x^{-1}: x \mapsto x + y$. Тогда $\tau_x^{-1}(\mathcal{F})$ смещение всех полуоткрытых интервалов \mathcal{F} , что подразумевает включение $\tau_x^{-1}(\mathcal{F}) \subset \mathcal{F}$. Поскольку обратное включение тоже верно, следовательно $\tau_x^{-1}(\mathcal{F}) = \mathcal{F}$
- 4. По теореме 3.8 имеем, что $\sigma(\mathcal{F}) = \mathcal{B}(\mathbb{R}^n)$.
- 5. Из того факта, что $\tau_x^{-1}(\mathcal{F}) = \mathcal{F}$ и $\mathcal{F} \subset \mathcal{B}(\mathbb{R}^n)$, следует, что $\tau_x^{-1}(\mathcal{F}) \subset \mathcal{B}(\mathbb{R}^n)$
- 6. Тогда по лемме 7.2 $\tau_x: y \mapsto y x \mathcal{B}(\mathbb{R}^n) / \mathcal{B}(\mathbb{R}^n)$ измеримо.

Задача 2

Показать, что $\sum':=\left\{A'\subset X':T^{-1}\left(A'\right)\in\mathcal{A}\right\}$ - сигма алгебра. Доказательство:

- 1. Пусть A'=X'. Очевидно, что $X'\subset X'$. По определению T следует, что $T^{-1}(X')=X$. Поскольку $\mathcal A$ сигма алгебра, следовательно $X\in \mathcal A$. Поэтому, $X\in \Sigma'$, что означает, что выполнено Σ_1
- 2. Пусть $A' \in \sum'$.
 - (a) По определению \sum' верно, что $T^{-1}\left(A'\right)\in\mathcal{A}.$
 - (b) Пусть $X' A' \in \sum'$.
 - (c) По определению \sum' верно следующее: $T^{-1}\left(X'-A'\right)\in\mathcal{A}.$
 - (d) И свойства (2.6) следует, что $T^{-1}\left(X'-A'\right)=T^{-1}\left(X'\right)-T^{-1}\left(A'\right)\in\mathcal{A}.$ Это в свою очередь дополнение к $T^{-1}\left(A'\right)\in\mathcal{A}$
 - (e) Поэтому, выполнено \sum_2
- 3. Пусть $(A'_n)_{n\in\mathbb{N}}\subset\sum'$.
 - (a) По определению \sum' верно, что $T^{-1}\left(A'_n\right)_{n\in\mathbb{N}}\in\mathcal{A}.$
 - (b) Поскольку \mathcal{A} сигма-алгебра, следовательно $\bigcup_{n\in\mathbb{N}}T^{-1}\left(A_{n}'\right)$
 - (c) Из (2.6) следует, что $\bigcup_{n\in\mathbb{N}}T^{-1}\left(A_n'\right)=T^{-1}\left(\bigcup_{n\in\mathbb{N}}A_n'\right)\in\mathcal{A}$
 - (d) Поэтому, выполнено \sum_3

- 4. Из (1), (2) и (3) \sum' сигма алгебра
- 5. Ч.Т.Д.

Задача 3

Пусть $X = \mathbb{Z} := \{0, \pm 1, \pm 2, \dots\}$. Показать, что

• $\mathcal{A}:=\{A\subset\mathbb{Z}|\forall n>0:2n\in A\Longleftrightarrow 2n+1\in A\}$ - σ - алгебра.

Доказательство:

- 1. По условию $X=\mathbb{Z}$ единица сигма алгебры. Следовательно, выполнено \sum_1
- 2. Утверждение $2n \notin A \iff 2n+1 \notin A$ из таблицы истинности эквивалентности тоже верно. Это тоже самое, что $2n \in A^c \iff 2n+1 \in A^c$. Поэтому выполнено \sum_2
- 3. Предположим, что $(A_i)_{i\in\mathbb{N}}\subset\mathcal{A}$. Рассмотрим $\bigcup_{i\in\mathbb{N}}A_i$. Мы предполагаем, что $\exists i\in\mathbb{N}:2n\in A_i$. Зафиксируем такой существующий i_0 . Тогда $2n+1\in A_{i_0}$ поскольку для всех $i\in\mathbb{N}$ выполняется эквивалентность из определения \mathcal{A} . Доказателство в обратную сторону эквивалентности аналогично. Поэтому $\bigcup_{i\in\mathbb{N}}A_i\subset\mathcal{A}$, то есть выполнено \sum_3
- 4. Ч.Т.Д.
- Показать, что $T:\mathbb{Z}\to\mathbb{Z}, T\left(n\right):=n+2$ \mathcal{A}/\mathcal{A} измеримо и биективно. Но T^{-1} не измеримо

Доказательство:

1. Пусто

Задача 4

Пусть X множество. Пусть (X_i, \mathcal{A}_i) $i \in I$ - произвольно много измеримых пространств и пусть $T_i: X \to X_i$ - семейство отображений.

• Показать, что для каждого $i\in I$ наименьшая σ - алгебра на X, которая делает T_i - измеримым задана как $T_i^{-1}\left(\mathcal{A}_i\right)$.

Доказательство:

- 1. По условию для каждого $i \in I$ имеется отображение $T_i: (X, \mathcal{A}) \to (X, \mathcal{A}_i)$.
- 2. Из примера 3.3 (vii) прообраз $T_i^{-1}(\mathcal{A}_i)$ сигма алгебры \mathcal{A}_i снова сигма алгебра.
- 3. Из определения 7.1 $T_i^{-1}(\mathcal{A}_i)\subset\mathcal{A}$. Поскольку \mathcal{A} произволен, то по определению 3.4 $T_i^{-1}(\mathcal{A}_i)$ минимальна

- 4. Ч.Т.Д.
- Показать, что $\sigma\left(\bigcup_{i\in I}T_i^{-1}\left(\mathcal{A}_i\right)\right)$ наименьшая сигма-алгебра на X, который делает $T_i, i\in I$ измеримыми одновременно.

Доказательство:

1. Пусто

Задача 5

Пусть (X,\mathcal{A}) и (X',\mathcal{A}') - измеримые пространства и $T:X\to X'$

• Показать, что $\forall x \in X \ 1_{T^{-1}(A')}(x) = 1_{A'} \circ T(x)$

Доказательство:

- 1. Пусть $x \in X$
- 2. Можно $1_{A'}\circ T\left(x\right)$ представить как $1_{A'}\left(T\left(x\right)\right)=\left\{ \begin{array}{l} 1,T\left(x\right)\in A'\\ 0,T\left(x\right)\notin A' \end{array} \right.$
- 3. По определению $1_{T^{-1}(A')}\left(x\right):=\left\{ egin{array}{l} 1,x\in T^{-1}\left(A'\right) \\ 0,x\notin T^{-1}\left(A'\right) \end{array} \right.$
- 4. По определению $T^{-1}\left(A'\right):=\{x\in X:T(x)\in A'\}$. Это означает, что $x\in T^{-1}\left(A'\right)$, тогда и только тогда, когда $T\left(x\right)\in A'$
- 5. Поэтому $1_{T^{-1}(A')}(x) = 1_{A'} \circ T(x)$
- 6. Ч.Т.Д.
- T измеримо тогда и только тогда, когда $\sigma\left(T\right)\subset\mathcal{A}$

Доказательство:

- 1. С одной стороны.
 - (a) Предположим T измеримо. По определению 7.1 это означает, что $\forall A' \in \mathcal{A}' \ T^{-1} \ (A') \in \mathcal{A}.$
 - (b) Из (a) следует, что $\sigma\left(T\right)=\sigma\left(\left\{T^{-1}\left(A'\right)\in\mathcal{A}:A'\in\mathcal{A}'\right\}\right)\subset\sigma\left(\mathcal{A}\right)$
 - (c) Известен тот факт, что $\sigma(A) = A$
 - (d) Тогда из (b) и (c) $\sigma(T) \subset \mathcal{A}$
- 2. С другой стороны.
 - (a) Предположим $\sigma(T) \subset \mathcal{A}$.
 - (b) Поскольку $\sigma(T) = \sigma(\{T^{-1}(A') \in \mathcal{A} : A' \in \mathcal{A}'\})$ поэтому по определению 7.1 отображение T измеримо
- 3. Ч.Т.Д.

• Если T - измеримо и ν - конечная мера на (X, \mathcal{A}) , тогда $\nu \circ T^{-1}$ - конечная мера на (X', \mathcal{A}') . Верно ли это утверждение для сигма конечной меры?

Доказательство:

1. Пусто

Задача 6

Пусть $T:X\to Y$ произвольное отображение. Показать, что $T^{-1}\left(\sigma\left(\mathcal{G}\right)\right)=\sigma\left(T^{-1}\left(\mathcal{G}\right)\right)$ выполняется для произвольного семейства \mathcal{G} подмножеств Y. Доказательство:

- 1. С одной стороны $T^{-1}\left(\sigma\left(\mathcal{G}\right)\right)\subset\sigma\left(T^{-1}\left(\mathcal{G}\right)\right)$
 - (a) Пусть $\sum:=\left\{ G\in\sigma\left(\mathcal{G}\right):T^{-1}\left(G\right)\in\sigma\left(T^{-1}\left(G\right)\right)\right\}$. Можно заметить, что это сигма алгебра
 - (b) По определению в (a) $\mathcal{G} \subset \sum \subset \sigma(\mathcal{G})$.
 - (c) Поскольку $\sigma(\mathcal{G})$ минимальная то из (b) следует, что $\sum = \sigma(\mathcal{G})$
 - (d) Поэтому $T^{-1}\left(\sigma\left(\mathcal{G}\right)\right)\subset\sigma\left(T^{-1}\left(G\right)\right)$
- 2. С другой стороны
 - (a) Пусть \mathcal{G} генератор $\sigma(\mathcal{G})$. По определению минимальной сигма алгебры $\mathcal{G} \subset \sigma(\mathcal{G})$
 - (b) Можно заметить, что $T^{-1}(\mathcal{G}) \subset T^{-1}(\sigma(\mathcal{G}))$
 - (c) Из (b) следует, что $\sigma\left(T^{-1}\left(\mathcal{G}\right)\right)\subset\sigma\left(T^{-1}\left(\sigma\left(\mathcal{G}\right)\right)\right)=T^{-1}\left(\sigma\left(\mathcal{G}\right)\right)$
 - (d) Поэтому $\sigma\left(T^{-1}\left(\mathcal{G}\right)\right) \subset T^{-1}\left(\sigma\left(\mathcal{G}\right)\right)$
- 3. Из (1) и (2) следует, что $T^{-1}(\sigma(\mathcal{G})) = \sigma(T^{-1}(\mathcal{G}))$
- 4. Ч.Т.Д.

Задача 7

Пусть X - множество. Пусть (X_i, \mathcal{A}_i) $i \in I$ произвольно много измеримых пространств и пусть $T_i: X \to X_i$ семейство отображений. Показать, что отображение f из измеримого пространства (F, \mathcal{F}) в пространство $(X, \sigma (T_i: i \in I))$ измеримо тогда и только тогда, когда $T_i \circ f$ $\mathcal{F}/\mathcal{A}_i$ - измеримо.

- 1. С одной стороны.
 - (a) Предположим $i \in I$ и (X_i, A_i) измеримые пространства.
 - (b) Пусть $T_i: X \to X_i$ семейство отображений. Такое отображени $\sigma\left(T_i: i \in I\right)/\mathcal{A}_i$ измеримо для каждого $i \in I$
 - (c) Пусть f отображением из измеримого (F, \mathcal{F}) в измеримое $(X, \sigma (T_i : i \in I))$. Такое отображение $\mathcal{F}/\sigma (T_i : i \in I)$ измеримо.

- (d) Из (b) и (c) по теореме 7.4 $T_i \circ f \mathcal{F}/\mathcal{A}_i$ измеримо.
- 2. С другой стороны.
 - (a) Предположим $i \in I$ и (X_i, \mathcal{A}_i) измеримые пространства.
 - (b) Пусть $T_i:X\to X_i$ семейство отображений. Такое отображени $\sigma\left(T_i:i\in I\right)/\mathcal{A}_i$ измеримо для каждого $i\in I$
 - (c) Пусть $T_i \circ f$ композиция отображений, которая $\forall i \in I, \mathcal{F}/\mathcal{A}_i$ измерима. Это означает, что (F, \mathcal{F}) и (X_i, \mathcal{A}_i) измеримы.
 - (d) По определению $(X, \sigma(T_i : i \in I))$ измеримо.
 - (e) Тогда $f:(F,\mathcal{F})\to (X,\sigma\,(T_i:i\in I))$ легко видеть, что по определению 7.1 f измеримое отображение
- 3. Ч.Т.Д.

Задача 8

Показать, что $f:\mathbb{R}^n \to \mathbb{R}^m, x \mapsto (f_1(x),....,f_m(x))$ измеримо тогда и только тогда, когда все отображения $f_i:\mathbb{R}^n \to \mathbb{R}, i=1,2,...,m$ - измеримы. Доказательство:

- 1. С одной стороны.
- 2. Пусть $f: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto (f_1(x),, f_m(x))$ измеримое отображение.
- 3. Покажем, $\forall i=\overline{1,n},$ что координатные проекции $x=(x_1,...,x_n)\mapsto x_i$ измеримы.

Задача 10

Доказать, что $\lambda^n(t\cdot B)=t^n\lambda^n(B)\ \forall B\in\mathcal{B}(\mathbb{R}^n),\ \forall t>0$ используя определение образа меры под действием отображения.

Доказательство:

- 1. Пусть $f_t:\mathbb{R}^n\to\mathbb{R}^n, B\mapsto t\cdot B.$ Отсюда следует, что $f_{1/t}:\mathbb{R}^n\to\mathbb{R}^n, t^{-1}x\mapsto x$
- 2. Пусть $\forall B \in \mathcal{B}(\mathbb{R}^n), \forall t > 0$
- 3. $f_t(B) = tB$, $f_{1/t}(t^{-1}B) = B$, $f_{1/t}^{-1}(B) = tB$
- 4. $f_t = f_{1/t}^{-1} f_{1/t} = f_t^{-1}$

Задача 11

Пусть $(X, \mathcal{A}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ и пусть λ - одномерная мера Лебега.

• Точка x, где $\mu\{x\} > 0$ - атом. Показать, что каждая мера μ на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, которая не имеет атомов, может быть представлена как образ меры под действием отображения.

Доказательство:

1. Пусто