SEMESTER- IV	
Name of the course: Design and Analysis of Algorithms	
Course code: UGCMSMAC08	
Total Class Hours: 120 Credit: 4+2 (Theory & Lab)	

Course Objectives:

- 1. Understating of design aspects of different computational algorithms.
- 2. To gain the capability of estimating cost of devising an algorithm.
- 3. Capability to apply the knowledge of algorithm design for practical problem solving.

SYLLABUS

A Theory (60 Hours) Credits				
1.	Introduction	(7		
	L)			
	Basic Design and Analysis techniques of Algorithms, Correctness of Algorithm.			
2.	Algorithm Design Techniques	(7		
	L) Iterative techniques, Divide and Conquer, Dynamic Programming, Greedy			
	Algorithms.			
3.	Sorting and Searching Techniques	(20		
	L) Asymptotic notations and complexity analysis- substitution and recurrence tro	ee.		
	Elementary sorting techniques-Bubble Sort, Insertion Sort, Merge Sort, Advance	ced		
	Sorting techniques - Heap Sort, Quick Sort, Sorting in Linear Time - Bucket Sort	t,		
	Radix Sort and Count Sort, Searching Techniques, Medians & Order Statistics.			
4.	Lower Bounding Techniques	(3		
	L) Decision Trees			
5.	Balanced Trees L)	(7		
	Red-Black Trees			
6.	Advanced Analysis Technique	(3		
	L) Amortized analysis			
7.	Graphs	(8		

L)

Graph Algorithms—Breadth First Search, Depth First Search and its Applications, Minimum Spanning Trees- Kruskal's, Prim's.

8. String Processing

(5

L)

String Matching, KMP Technique

B Practical (60 Hours)

2

Credits

- 1. Implement Insertion Sort (The program should report the number of comparisons)
- 2. Implement Merge Sort (The program should report the number of comparisons)
- 3. Implement Heap Sort (The program should report the number of comparisons)
- 4. Implement Randomized Quick sort (The program should report the number of comparisons)
- 5. Implement Radix Sort
- 6. Create a Red-Black Tree and perform following operations on it:
- 7. Insert a node
- 8. Delete a node
- 9. Search for a number & also report the color of the node containing this number.
- 10. Write a program to determine the LCS of two given sequences
- 11. Implement Breadth-First Search in a graph
- 12. Implement Depth-First Search in a graph
- 13. Write a program to determine the minimum spanning tree of a graph
- 14. For the algorithms at S. No. 1 to 4 test run the algorithm on 100 different inputs of sizes varying from 30 to 1000. Count the number of comparisons and draw the graph. Compare it with a graph of nlogn.

Course Outcomes:

CO	Course Outcomes	Cognitive	PO	PSO
No.		Level	Addressed	Addressed
	Ability to define how to analyse algorithms and	R(1)	PO1	PSO1
CO1	estimate their worst-case and average-case behaviour.			
	Ability to understand good principles of algorithm	U(2)	PO2	PSO1
CO2	design.			PSO2
	Ability to analyse and be accustomed to the	An(4)	PO4	PSO4
CO3	description of algorithms in both functional and			
	procedural styles.			

	Ability to apply their theoretical knowledge in	Ap(3),	PO6	PSO6
CO4	practice and design algorithms for problem solving.	C(6)		

R= remembering, U= understanding, Ap= applying, An= analysing, E= evaluating, and C= creating

Reference Books

- 1. T.H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein Introduction to Algorithms, PHI, 3rd Edition 2009
- 2. Sarabasse & A.V. Gelder Computer Algorithm Introduction to Design and Analysis, Publisher Pearson 3rd Edition 1999