Geometria – Crux Mathematicorum

Guilherme Zeus Moura zeusdanmou@gmail.com

- 1. (Crux Mathematicorum, 4560) Sejam E e F respectivamente os pontos médios dos lados CA e AB do triângulo ABC, e seja P a segunda intersecção dos círculos ABE e ACF. Defina X como a segunda intersecção do círculo AEF com a reta AP. Prove que $AX = 2 \cdot XP$.
- 2. (Crux Mathematicorum, 4509) Sejam $B \in C$ dois pontos fixos distintos no plano e seja M o ponto médio de BC. Ache o lugar geométrico dos pontos A, $A \notin BC$, tal que $4R \cdot AM = AB^2 + AC^2$, onde R é o circumraio de ABC.
- 3. (Crux Mathematicorum, 4494) Seja ABC um triângulo com circuncentro O, tal que $\angle BAC \neq 90^{\circ}$. Defina γ como o circuncírculo de BOC e centro X. Seja P é um ponto sobre o lado BC, seja Q a interseção de OP com γ , com $Q \neq O$. Seja M a intersecção de OA e XQ. Prove que MA = MQ se, e somente se, AP é a bissetriz de $\angle BAC$.
- 4. (Crux Mathematicorum, 4503) Seja ABC um triângulo com $\angle BAC = 90^{\circ}$ e seja Γ o círculo de centro B que passa por C. Um círculo γ passando por B e A intersecta Γ em X, Y, em que $X \neq Y$. Sejam E e F projeções ortogonais de X e Y em CY e CX, respectivamente. Prove que a reta CA passa pelo ponto médio de EF.
- 5. (Crux Mathematicorum, 4440) Let H be the orthocenter of triangle ABC and let AA_1 , BB_1 , CC_1 be the altitudes; define the points X to be the intersection of AA_1 with B_1C_1 and Y to be where the perpendicular from X to AC intersects AB. Prove that the line YA_1 passes through the midpoint of BH.