

BITS Pilani presentation

BITS Pilani Hyderabad Campus D. Powar Lecturer, BITS-Pilani, Hyderabad Campus

lead

SSZG527

Cloud Computing

Agenda:

- Multi-Tenancy
- 4 levels of multi tenancy
- Authentication
- Resource sharing
- Multi-tenant models for cloud services

Multitenancy

- ❖ Multitenancy refers to a principle in software architecture where a single instance of the software runs on a server, serving multiple client organizations (tenants).
- ❖ Multitenancy is contrasted with a multi-instance architecture where separate software instances (or hardware systems) are set up for different client organizations
 - wiki

Multitenancy

- Multi-tenancy is a critical technology to allow one instance of application to serve multiple customers by sharing resources.
 - ✓ Multi multiple, independent customers are served.
 - ✓ tenant is any legal entity responsible for data and is provided on a contractual basis. Tenant is the contract signee
- Applications : IaaS, PaaS, SaaS

Requirement of Multitenancy

Single tenant applications: lots of waste

Multi-tenancy benefits are self-evident But isolation is much easier said than done...

achieve

Typical Network Monitoring Infrastructure

Monitor Multiple Customers Using Typical Infrastructure

Multi-Tenant Network Monitoring Infrastructure.

Goals of Multi-tenancy

- Sharing maximize the resource sharing across multiple tenants.
- Isolation hide the facts: others are also in the same server.
 - Execution enforce security. Make sure one tenant can't call other tenants executable logic.
 - Data make sure one tenant can't see other data
 - Performance make sure performance is not affected by existence of other tenants.

Scale

 Server is distributed and it can handle larger load by adding more nodes.

Experiment by Jacob et al.,

- The experiment compares 3 methods of creating a database shared among multiple customers
 - ✓ Shared machine
 - ✓ Shared process
 - √ Shared table

Shared machine

 Each customer was given their own database process and tables on a shared machine

Shared process

 Each customer had their own database tables, but there was only one database process which executed instructions on behalf of all customers

Shared table

- In addition to the customers sharing the database process, the data was stored on shared tables
 - ✓ Each row being prefixed with the customer id to indicate the customer to which the row belonged

Shared table example

Account

TenId	AcctId	Name	•••
17	1	Acme	
17	2	Gump	
35	1	Ball	
42	1	Big	

single instance, mult-tenant

multi-tenant efficient customisable scaleable

4 levels of multi tenancy

- 1. Ad-hoc/customizable instances
- 2. Configurable instances
- 3. Configurable multi tenant efficient instances
- 4. Scalable, configurable, multi-tenant efficient instances

For any given resource in a cloud system, the appropriate level could be selected

Basic SaaS maturity model

Ad-hoc /customizable instances

- Each customer has their own custom vision of the software
- Represents a enterprise data center where there are multiple instances and versions of the software
- Each customer would have their own binaries, as well as their own dedicated processes for implementation of the application
- Disadv: Difficulty in Management: Each customer would need their own management support

- All customers share the same vision of the software (one copy for each customer)
- adv: Easy Management: Single copy of the software

Configurable multi-tenant efficient instances

- All customers share the same version of the software (only single copy among all customers)
- adv: Easy Management: running of only single instance

Configurable multi-tenant efficient instances (scalable)

- All customers share the same version of the software (only single copy among all customers)
- Software is hosted on a cluster of computers
- Hence, allows the capacity of the system to scale almost limitlessly
- Thus, increase in no. of customers and capacity as well
- Ex: Gmail, yahoo mail, etc
- Disadv: Shared storage problem

share

VS

isolate

business model (can I monetise?)
architectural model (can I do it?)
operational model (can I guarantee SLAs?)

- Unlike traditional computer systems, the tenant would specify the valid users, and cloud service provider would authenticate them
- Two basic approaches are used
 - Centralized authentication
 - Decentralized authentication

Authentication (contd..)

Centralized authentication:

- Authentication is performed using a centralized user database
- Cloud admin gives the tenant's admin rights to manage user accounts for that tenant
- Multiple (two) sign-on service (Sign on the CAS, in addition to the tenant's AS)
- Given self service nature of the cloud, it is more generally used

Decentralized authentication:

- Each tenant maintains their own user database, and needs to deploy a federation service that interface between that tenant's authentication framework and the cloud system's authentication service
- Single sign-on service

Resource sharing

- Two major resources that need to be shared are storage and servers
- Sharing storage resources (two types)
 - √ File system
 - ✓ Databases
- Since file system storage is well known mechanism, we will restrict our discussion to database storage

Database

There are two methods of sharing data in a single database

- ✓ Dedicated tables per tenant
- √ Shared table

Dedicated tables per tenant:

- Each tenant stores their data in a separate set of tables different from other tenants
- ex: <u>www.mygarage.com</u> portal
- Shows the way auto repair stores may store each table as separate file

Dedicated tables per tenant:

Best garage

Car license	Service	Cost

Friendly garage

Car license	Service	Cost	

Honest garage

Car license	Service	Cost

Shared table:

- The data for all the tenant is stored in the same table in different rows.
- One of the column in the table identifies a tenant to which a particular row belongs
- It is more space efficient than previous approach
- A auxiliary table, called a metadata table, stores information about the tenants

Data table 1

Tenant ID	Car license	Repair	Cost
1			
2			
2			
1			
3			
2			

Metadata table 1

Tenant ID	Data
1	Best garage
2	Friendly garage
3	Honest garage

Data customization

- It is important for the cloud infrastructure to support customization of the stored data, since it is likely that different tenants may want to store different data in their tables
- In Dedicated table method, each tenant has their own table, and therefore can have different schema
- Difficulty is with shared table approach
- Three method used
 - ✓ Pre-allocated columns
 - ✓ Name-value pair
 - ✓ XML method

- Space is reserved in the tables for custom columns, which can be used by tenants for defining new columns
- Salesforce.com reserves 500 columns
- Some of the tenants may not use these columns

Disadv: There could be a lot of wasted space

Pre-allocated columns

Tenant ID	Car license	Service	Cost	Custom1	Custom2
1					
2					
2					
1					
3					
2					

Data table 1

Tenant ID	Tenant name	Custom1 name	Custom1 type
1	Best garage	Service rating	int
2	Friendly garage	Service manager	string
3	Honest garage		

Metadata table 1

- The standard table will have an extra column which is a pointer to a table of name-value pair, which indicates additional custom fields for a record
- The table name-value pair is also called as a pivot table
- This method overcomes the deficiencies of storage wastage from previous method

Name-value pair (contd..)

Data table 1

Name-va	lue pair	Name ID	Value
275		15	5.5

Data table 2

Metadata table 1

Narne ID	Name	Туре
15	Service rating	int
	Service manager	string

Metadata table 2

Tenant ID	Data
1	Best garage
2	Friendly garage
3	Honest garage

Users achieve achieve

Tenants

lead

T1

Private cloud/ IT center

Development center

Data center

Isolated Separated DB Separate Schema Shared Schema

Te	ena	antID (CustName Address /			lress /	
4	Te	enantID	F	ProductID P		roductNamr	
1	4	TenantID		Shipme	nt		Date (
6	1	4711		324965			2006-02-21
4	6	132		115468			2006-04-08
	4	680		654109			2006-03-27
		4711		324956			2006-02-23

Summary

- Multi-Tenancy
- 4 levels of multi tenancy
- Authentication
- Resource sharing
- Multi-tenant models for cloud services