

INFO20003 Database Systems

Dr Renata Borovica-Gajic

Lecture 01 – Subject Introduction What are Database Systems?

Semester 1 2018, Week 1

Data, data everywhere...

http://reportlogix.com/reporting.html

[The Economist]

50-fold from 2010-2020*

* "The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East", 2012, IDC

And grows exponentially...

Finding useful information

Equals to finding the needle in a haystack

What this subject is all about

MODELLING

ARCHITECTURE / INTERNAL WORKINGS

- 1. How to design & build a database application
 - -Model and write SQL queries
- 2. A brief look "under the hood" of a DBMS Why?
 - -The best application writers & database administrators understand DBMS internals
 - –DBMS technology is still very much in evolution in industry (plenty of job opportunities)

- Introduction to INFO20003 Database Systems
 - Organization
 - Week by week plan
 - Assessment
- Introduction to Databases
 - From files to relational database
 - Query Language (SQL)
 - DBMS (MySQL)

1. LECTURES

2. TUTORIALS

3. LABS

Teach concepts Apply Practice

COMPLEMENTARY

Assessments:

- 1. Assignment 1: 10% (ER modelling)
- 2. Assignment 2: 10% (RA & SQL)
- 3. Assignment 3: 10% (Query Processing/ Optimisation)
- 4. Mid-Semester Test: 10% (ER modelling, RA, SQL)
- 5. Final Exam: 60%

Hurdle 1 (15%)

Hurdle 2 (35%)

BOTH REQUIRED

MELBOURNE Week by week schedule

- LMS -> Subject information (up to date with links to material)
- Here: allow minor changes

Week	Lecture 1 Lecture 2		Tutorial	Lab	Assessments	
1. 26 Feb	Introduction to the Subject and Database Systems	2.The Database Development Process	My SQL Overview/ Installation			
2. 5 Mar	3. Introduction to ER Modelling	Relational Model Introduction to SQL	Tutorial: Introduction to Database Development	Lab: ER modelling with MySQL workbench		
3. 12 Mar	5. ER Example with MySQL Workbench	6. Extended Entity Relationship Models	Tutorial: Conceptual and Logical Modelling (ER)	Lab: ER modelling examples	A01 ER post	
4. 19 Mar	7. Relational Algebra	8. SQL	Tutorial: ER and EER	Lab: EER & Introduction to the SQL case study		
5. 26 Mar	9.SQL Summary	10.Storage and Indexing	Tutorial: Relational Algebra and translation to SQL	Lab: Referential Integrity (scott.sql), SQL	A01 ER DUE/ A02 SQL & RA post	
Break 2 Apr	Mid Semester Break No Class	Mid Semester Break No Class	Mid Semester Break No Tutorial	Mid Semester Break No Lab		
6. 9 Apr	11.Query Processing-Part 1 (Selection & Projection)	12.Query Processing-Part 2 (Joins)	Tutorial: Indexing and Storage	Lab: More SQL Skills		
7. 16 Apr	13. Query Optimization- Part 1	14. Query Optimization- Part 2	Tutorial: Query Processing	Lab: Even More SQL Skills	A02 SQL & RA DUE	
8. 23 Apr	ANZAC Day Holiday NO LECTURE	16. Normalization	Tutorial: Query Optimization skills	Lab: Query Optimization using Execution Plan	A03 QP/QO post	
9. 30 Apr	MID SEMESTER TEST	18. Database Administration	Tutorial: Normalization	Tutorial: Normalization	MST	
10. 7 May	19. Transactions	20. Data Warehousing	Tutorial: Database Admin: backup and Recovery	Lab: Database Admin: backup and Recovery		
11. 14 May	21. Introduction to NoSQL	22. Database applications	Tutorial: Data Warehouse Tutorial	Lab: Transaction exercise using MySQL workbench	A03 QP/QO DUE	
12. 21 May	23. Cutting edge research in databases	24. Wrap up and Review	Tutorial: NoSQL and exam FAQs	Lab: MongoDB		

- Lectures and lecture notes
- **Tutorials**
- Labs
- Textbook: Ramakrishnan and Gehrke, 3rd Edition (if you wish)

- Lecturer: Renata Borovica-Gajic
 - Email: renata.borovica@unimelb.edu.au
- Senior tutor: David Eccles (assessments: contact for extensions)
 - Email: eccles.d@unimelb.edu.au
- Tutors: Farah, Alan, Mina, Ibrahim
 - Consultation hours will be posted shortly
- Interaction:
 - Attend classes & workshops
 - Use LMS discussion forum
 - Email to us (only if personal)
 - Our emails to you (for assignments clarifications to guide you)

- In the lectures:
 - Turn up
 - Be prepared to answer the questions we put to you
 - GUESS it's a great preparation for the exam
 - THERE ARE NO DUMB QUESTIONS if you thought of the question it is likely someone else might have the same thought
- In the workshops:
 - Turn up
 - Follow / try it for yourself
 - One-on-one feedback
- Student representative:
 - Nominations here or via email

What do you expect from the subject?

Introduction to Database Systems

Readings: Chapter 1, Ramakrishnan & Gehrke, Database Systems

Data, Information, Knowledge

Data

- known facts stored and recorded
- can include: text, numbers, dates, plus images, sound, video, and other complex objects

Information

- Data presented in context (can be summarised data)
- Data that has been processed increasing the users knowledge

Data vs Information

Data is known and available; Information is processed and more useful

Baker, Kenneth D.	324917628		
Doyle, Joan E.	476193248		
Finkle, Clive R.	548429344		
Lewis, John C.	551742186		
McFerran, Debra R.	409723145		
Sisneros, Michael	392416582		

Information: data in context

Database Systems Assignment 4 Marks Semester 3 2014

Student Name	Student ID	<u>Grade</u>	
Baker, Kenneth D.	324917628	H1	
Doyle, Joan E.	476193248	H2B	
Finkle, Clive R.	548429344	H3	
Lewis, John C.	551742186	H2A	
McFerran, Debra R.	409723145	Р	
Sisneros, Michael	392416582	H3	

Information: Summarisation!

Metadata - Data about data

<u>Name</u>	<u>Type</u>	<u>Length</u>	<u>Description</u>
Course	Alphanum	30	Course ID
Tutorial	Integer	2	Tutorial number
Name	Alphanum	30	Student name

- Can include:
 - structure, rules, constraints
- Why do we need Metadata?
 - Consistency
 - Meaning
- We generate a data dictionary as part of the analysis of system requirements

a large, integrated, structured collection of data

- Usually intended to model some real-world enterprise
- Example: a university
 - Entities ... such as courses, students, professors
 - Relationships ... such as enrollment, teaching

MELBOURNE What Is a Database System?

A <u>Database Management System (DBMS</u>) is a software system designed to store, manage, and facilitate access to databases.

How do we manipulate with data?

- A Query Language (e.g. Structured Query Language SQL or Sequel)
 - Data **Definition** Language (DDL)
 - » To define and set up the database
 - Data Manipulation Language (DML)
 - » To maintain and use the database
 - Data Control Language (DCL)
 - » To control access to the database

File Processing Systems

- What are the problems you can see with this?
- (Diagram adapted from Hoffer p. 42)

- Program-data dependence
 - If the file structure changes, so does the program
 - What if you change data structure for one program
- Duplication of data
 - wasteful, inefficient, loss of data integrity
- Limited data sharing
 - data tied to application, hard/slow to create adhoc reports
- Lengthy development times
 - application has to do low level data management, figure out file format each time
- Excessive program maintenance
 - up to 80% of development time in traditional file based organisations is for maintenance

Database Systems as Solution

- Manage data in a structured way
- Many models (hierarchical, network, etc), but relational dominant since ~1980
 - Relational Model
 - –Rows & Columns forming Relations
 - -Keys & Foreign Keys to link Relations

Enrolled

cid	grade	Students					
	5		sid	name	login	age	gpa
	5 5 -	\longrightarrow	53666	Jones	jones@cs	18	5.4
			53688	Smith	smith@eecs	18	4.2
	5		53650	Smith	smith@math	19	4.8
]	cid Carnatic 101 Reggae 203 Fopology 112 History 105	Carnatic 101 5 Reggae 203 5.5	Carnatic101 5 Reggae203 5.5 Topology112 6	Carnatic 101 5 Reggae 203 5.5 Topology 112 6 Sid 53666 53688	Carnatic 101 5 sid name Reggae 203 5.5 53666 Jones Topology 112 6 53688 Smith	Sarnatic 101 Seggae 203 Solution of Sid name login 53666 Jones jones@cs 53688 Smith smith@eecs 53688 Smith smith@eecs	Sarnatic 101 Sid name login age 53666 Jones jones@cs 18 Sopology112 6 53688 Smith smith@eecs 18

Database Advantages

- Data independence
 - separation of data and program, application logic
 - central data repository, central management
- Minimal data redundancy
 - redundancy can be controlled (normalization)
- Improved data consistency
 - single store: no disagreements, update problems, less storage space
- Improved data sharing
 - data is shared, a corporate resource, not a necessity for an application
 - external users can be allowed access
 - multiple views of data, arbitrary views of data
- Reduced program maintenance
 - data structure can change without application data changing
- Novel ad hoc data access 'without programming'
 - SQL

Components of a DBMS

- DBMS used to maintain, and query large datasets
 - can manipulate data and exploit semantics
- Other benefits include:
 - recovery from system crashes,
 - concurrent access,
 - quick application development,
 - data integrity and security
- In this subject we will explore:
 - 1) How to be a sophisticated user of DBMS technology
 - 2) What goes on inside the DBMS

- We are using MySQL as the DBMS in this subject
- You can download and install MySQL at the following location
 - http://dev.mysql.com/downloads/
- You will be given a server name and address, along with a username and password for the database server we will be using in the subject
- Turn up to the first hour of this weeks tutorial: we will help you install MySQL

- Difference between Data, Information and Knowledge
- Being able to discuss the advantages of Databases vs File Systems

- The database system lifecycle
 - With a focus on the design stage
 - Conceptual design
 - Logical design
 - Physical design