Assignment 1

We have dataset with information about flights and delay for each flight. Using this information we should estimate delay for new flight. Below we try to solve this problem using machine learning.

Data description

Variable name	Description		
Departure Airport	Name of the airport where the flight departed. The name is given as airport international code		
Scheduled departure time	Time scheduled for the flight take-off from origin airport		
Destination Airport	Flight destination airport. The name is given as airport international code		
Scheduled arrival time	Time scheduled for the flight touch-down at the destination airport		
Delay (in minutes)	Flight delay in minutes		

Explore data

Flight delay - flight duration dependency

Delay histogram

Number of delays under 50 minutes

Number of delays over 50 minutes and under 300 minutes

Number of delays over 300 minutes

Outlier detection and removal

We can find outliers using isolation forest method. More about this method you can read here. The result of the method:

X axis - normalized flight duration, Y axis - flight delay. Red color is outliers, blue - remaining data

Models results

Model\Error	Train MSE	Train MAE	Test MSE	Test MAE
Linear regression	353.3	9	1602	10.9
Ridge regression	353.3	9	1602	10.9
Lasso regression	316.69	8.74	1600.9	10.76
Polynomial regression (2 degree)	314.93	8.71	1606.51	10.74

Model\Error	Train MSE	Train MAE	Test MSE	Test MAE
Polynomial regression (3 degree)	314.2	8.69	1605.60	10.70
Polynomial regression (4 degree)	312.66	8.63	1617.31	10.97

- We can see, that one of the best models on test data are Lasso regression and Polynomial regression of 3d degree.
- The best model on train data is Polynomial regression of 4th degree. It has lots of features, so it overfit around train data. That's why train error is low. But for test data this model shows the worst results.
- Train error and test error differ too much, because we removed outliers. So outliers don't influence on train error.

How to improve the results

- Use another modelsGet more features