## Réseau sous Linux

Ubuntu 22.04.1

### Règles IP

Les règles du protocole IP s'appliquent, peu importe le système d'exploitation! C'est ce qui fait en sorte que les périphériques utilisant différents SE peuvent communiquer entre eux s'ils utilisent le même protocole de communication.

#### Rappel des conditions du protocole IP :

- 1. S'identifier de façon unique
- 2. Être sur le même réseau IP
- 3. Si les ordinateurs ne sont pas sur le même réseau IP, il faut utiliser une passerelle



## Synonymes

Carte réseau Adapteur réseau Interface réseau

Network card
Network adapter
Network interface
Network device (dev)

## Nom de l'interface réseau (carte physique)

```
vincent@vincent-virtual-machine:~/Bureau$ sudo lshw -class network
[sudo] Mot de passe de vincent :
  *-network
       description: Ethernet interface
       produit: VMXNET3 Ethernet Controller
       fabricant: VMware
       toentirlant materiel: v
       information bus: pci@0000:03:00.0
       nom logique: ens160
       version: 01
       numéro de série: 00:50:56:ad:f0:20
       taille: 10Gbit/s
       capacité: 10Gbit/s
       bits: 32 bits
       horloge: 33MHz
       fonctionnalités: pm pciexpress msi msix bus master cap list rom ethernet physical logical tp 1000bt-fd 10000bt-fd
       configuration: autonegotiation=off broadcast=yes driver=vmxnet3 driverversion=1.6.0.0-k-NAPI duplex=full ip=172.31.7.232 laten
ort=twisted pair speed=10Gbit/s
       ressources : irq:18 mémoire:fd4fc000-fd4fcfff mémoire:fd4fd000-fd4fdfff mémoire:fd4fe000-fd4fffff portE/S:4000(taille=16) mémoi
```

#### sudo lshw -class network

Modèle de la carte réseau = VMXNET3 de VMware Nom de l'interface réseau (carte/adapteur) = ens160

### Service réseau (« renderer »)

- Sous Linux, il existe plusieurs services permettant de gérer l'accès au réseau.
- Le service utilisé varie en fonction de la distribution Linux utilisée, et de la version
- Pour Ubuntu, l'un des deux services suivants peut être utilisé :
  - 1. <u>NetworkManager</u> (attention aux majuscules!)
  - 2. systemd-networkd
- NetworkManager supporte les connexions Wifi et les commandes « nmtui » et « nmcli ». Il est conçu pour détecter un changement de topologie et réagir automatiquement (ex. un usager débranche son laptop du réseau filaire, NetowrkManager va automatiquement tenter d'utiliser une connexion Wifi pour ne pas que l'usager perdre accès au réseau)
- Pour Ubuntu Desktop, le service NetworkManager est utilisé, alors que pour Ubuntu Serveur, c'est systemd-networkd (un serveur n'utilise pas le wifi d'habitude)

### Service réseau

Comment identifier le service utilisé par votre Linux ?

```
vincent@vincent-virtual-machine:~/Bureau$ systemctl status systemd-networkd
Osystemd-networkd.service - Network Configuration
    Loaded: loaded (/lib/systemd/system/systemd-networkd.service; disabled; vendor preset: enabled)
     Active: inactive (dead)
TriggeredBy: ○systemd-networkd.socket
      Docs: man:systemd-networkd.service(8)
vincent@vincent-virtual-machine:~/Bureau$ systemctl status NetworkManager
NetworkManager.service - Network Manager
    Loaded: loaded (/lib/systemd/system/NetworkManager.service; enabled; vendor preset: enabled)
    Active: active (running) since Mon 2022-09-19 13:41:39 EDT; 1h 28min ago
      Docs: man:NetworkManager(8)
  Main PID: 821 (NetworkManager)
     Tasks: 3 (limit: 4625)
     Memory: 10.7M
        CPU: 4.500s
     CGroup: /system.slice/NetworkManager.service
             └─821 /usr/sbin/NetworkManager --no-daemon
```

Le service en cours d'exécution est celui qui gère l'accès au réseau.

```
vincent@vincent:~$ lsb_release -a | grep -i desc
No LSB modules are available.
   cription:
               Ubuntu 22.04.1 LTS
vincent@vincent:~$ sudo systemctl status NetworkManager
Unit NetworkManager.service could not be found.
vincent@vincent:~$ sudo systemctl status systemd-networkd

    systemd-networkd.service - Network Configuration

    Loaded: loaded (/lip/systemd/system/systemd–networkd.service; enabled; vendor preset: enabled)
    Active: active (running) since Mon 2022-09-19 19:34:46 UTC; 5min ago
TriggeredBy: • systemd-networkd.socket
       Docs: man:systemd-networkd.service(8)
   Main PID: 848 (systemd-network)
     Status: "Processing requests..."
      Tasks: 1 (limit: 4534)
     Memory: 2.8M
        CPU: 43ms
     CGroup: /system.slice/systemd-networkd.service
              └─848 /lib/systemd/systemd–networkd
```

### Pour connaître sa configuration IP actuelle

- ip address → ip a
- ip route  $\rightarrow$  ip r
- resolvectl status



### L'option « -c » permet de mettre de la couleur dans l'affichage de ip :

```
vincent@vincent-virtual-machine:~/Bureau$ ip -c a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever
2: ens160: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:50:56:ad:f0:20 brd ff:ff:ff:ff
    altname enp3s0
    inet 10.10.10.2/24 brd 10.10.10.255 scope global noprefixroute ens160
        valid_lft forever preferred_lft forever
    inet6 fe80::250:56ff:fead:f020/64 scope link
        valid_lft forever preferred_lft forever
vincent@vincent-virtual-machine:~/Bureau$
```

```
vincent@vincent-virtual-machine:~/Bureau$ ip address
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default glen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid lft forever preferred lft forever
                                                                                  Interface réseau = ens160
    inet6 ::1/128 scope host
       valid lft forever preferred lft forever
2: ens160 <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:50:56:ad:f0:20 brd ff:ff:ff:ff:ff:ff
    altname enp3s0
    inet 172.31.7.232/16 brd 172.31.255.255 scope global dynamic noprefixroute ens160
       valid iff 52//sec preferred lft 5277sec
    inet6 fe80::7202:78ff:1a2a:36f4/64 scope link noprefixroute
       valid lft forever preferred lft forever
vincent@vincent-virtual-machine:~/Bureau$ ip route
default via 172.31.0.1 dev ens160 proto dhcp metric 100
169.254.0.0/16 dev ens160 scope link metric 1000
172.31.0.0/16 dev ens160 proto kernel scope link src 172.31.7.232 metric 100
vincent@vincent-virtual-machine:~/Bureau$ resolvectl status
Global
       Protocols: -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
resolv.conf mode: stub
Link 2 ens160
    Current Scopes: DNS
         Protocols: +DefaultPoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
Current DNS Server: 172.31.0.1
```

DNS Servers: 172.31.0.1

DNS Domain: labinfo.local vincent@vincent-virtual-machine:~/BureauS Adresse IPv4 = 172.31.7.232Masque sous-réseau = /16 = 255.255.0.0 Légende: /8 => 255.0.0.0 /16 => 255.255.0.0 /24 => 255.255.255.0

Adresse de la passerelle = 172.31.0.1

Adresse serveur DNS = 172.31.0.1

# Changer sa configuration IP

Configuration statique ou DHCP



### Sur Ubuntu, on utilise « netplan »

1. On identifie le fichier utilisé par netplan, situé dans le répertoire /etc/netplan

2. On édite le fichier .yaml en fonction de nos besoins (voir diapo suivante) Attention! L'indentation est très importante avec le format YAML

3. On applique la nouvelle configuration avec la commande : sudo netplan apply

### Configuration DHCP (fichier yaml)

```
# Let NetworkManager manage all devices on this system
network:
version: 2
renderer: NetworkManager
```

- Par défaut, Ubuntu utilisera le service systemd-networkd pour la gestion des configurations réseaux. Sur
   Ubuntu Desktop (avec interface graphique), la ligne « renderer » est ajoutée pour spécifiée que c'est le service NetworkManager qui sera utilisé. Si la ligne « renderer » n'est pas dans le fichier, alors Ubuntu utilisera systemd-networkd.
- Une ligne qui débute par le signe « # » est considérée comme un commentaire. C'est-à-dire que cette ligne ne sera <u>pas</u> traitée par le système, et a donc AUCUN impact sur la configuration du réseau.
- L'indentation est primordiale dans le format yaml

```
2 espaces ou 1 tab

2 espaces ou 1 tab

2 espaces ou 1 tab
```

### Configuration statique (fichier yaml)

```
/etc/netplan/
  GNU nano
                                                                           .yaml
# Let NetworkManager manage all devices on this system
network:
  version: 2
  renderer: NetworkManager
                                                            Interface réseau
  ethernets:
    ens160:
                                                       Adresse IPv4 = 10.10.10.2
       dhcp4: false
                                                       Masque sous-réseau = /24
       addresses: [10.10.10.2/24]
       nameservers:
                                                    Adresse serveur DNS = 10.10.10.1 et 1.1.1.1
         addresses: [10.10.10.1, 1.1.1.1]
       routes:
                                                      Adresse de la passerelle = 10.10.10.1

    to: default

           via: 10.10.10.1
```

Voir le fichier txt donné en exemple.

### Configuration statique (fichier yaml)

```
/etc/netplan/
  GNU nano
                                                                   .yaml
# Let NetworkManager manage all devices on this system
network:
 version: 2
  renderer: NetworkManager
  ethernets:
    ens160:
     dhcp4: false
     `addresses: [10.10.10.2/24]
      nameservers:
       >addresses: [10.10.10.1, 1.1.1.1]
       routes:
          to: default
          via: 10.10.10.1
```



### Anciennes pratiques / Autres distro Linux

• Dans les anciennes versions d'Ubuntu (<18.04), et dans d'autres distributions Linux (ex. Debian, Kali, RedHat, etc.), la façon de gérer la configuration réseau peut être différente.

#### Quelques exemples:

- Les commandes ifconfig et route du package net-tools étaient utilisées pour obtenir la config IP actuelle, elles ont été remplacées par ip a et ip r
- Les fichiers /etc/network/interfaces (Debian) ou /etc/sysconfig/network-scripts/ifcfgeth0 (Redhat) pour implémenter une configuration IP statique ou dynamique (DHCP)
- Le fichier /etc/resolv.conf pour configurer les serveur DNS

Il faut donc <u>lire la doc</u>umentation appropriée selon le Linux utilisé!