

NVIDIA ACCELERATED COMPUTING

GPU COMPUTING

Drug DesignMolecular Dynamics
15x speed up

Astrophysics n-body

Seismic Imaging
Reverse Time Migration
14x speed up

Options Pricing

Monte Carlo

20x speed up

Automotive Design
Computational Fluid Dynamics

Product Development
Finite Difference Time Domain

Medical Imaging
Computed Tomography
30-100x speed up

Weather Forecasting Atmospheric Physics

NVIDIA GPUS: 1999 TO NOW

https://youtu.be/I25dLTIPREA

SOUL OF THE GRAPHICS PROCESSING UNIT

GPU: Changes Everything

- Accelerate computationally-intensive applications
- NVIDIA introduced GPU in 1999
 - A single chip processor to accelerate PC gaming and 3D graphics
- Goal: approach the image quality of movie studio offline rendering farms, but in real-time
 - Instead of hours per frame, > 60 frames per second
- Millions of pixels per frame can all be operated on in parallel
 - 3D graphics is often termed *embarrassingly parallel*
- Use large arrays of floating point units to exploit wide and deep parallelism

CLASSIC GEFORCE GPUS

GEFORCE 6 AND 7 SERIES

2004-2006

- Example: GeForce 7900 GTX
- 278M transistors
- 650MHz pipeline clock
- 196mm² in 90nm
- >300 GFLOPS peak, single-precision

THE LIFE OF A TRIANGLE IN A GPU

Classic Edition

NUMERIC REPRESENTATIONS IN A GPU

- Fixed point formats
 - u8, s8, u16, s16, s3.8, s5.10, ...
- Floating point formats
 - fp16, fp24, fp32, ...
 - Tradeoff of dynamic range vs. precision
- Block floating point formats
 - Treat multiple operands as having a common exponent
 - Allows a tradeoff in dynamic range vs storage and computation

INSIDE THE 7900GTX GPU

G80: REDEFINED THE GPU

G80

GeForce 8800 released 2006

- G80 first GPU with a unified shader processor architecture
 - Introduced the SM: Streaming Multiprocessor
 - Array of simple streaming processor cores: SPs or CUDA cores
 - All shader stages use the same instruction set
 - All shader stages execute on the same units
- Permits better sharing of SM hardware resources
- Recognized that building dedicated units often results in under-utilization due to the application workload

G80 FEATURES

- 681M transistors
- 470mm2 in 90nm
- First to support Microsoft DirectX10 API
- Invested a little extra (epsilon) HW in SM to also support general purpose throughput computing
 - Beginning of CUDA everywhere
- SM functional units designed to run at 2x frequency, half the number of units
 - 576 GFLOPs @ 1.5GHz , IEEE 754 fp32 FADD and FMUL
- 155W

BEGINNING OF GPU COMPUTING

Throughput Computing

- Latency Oriented
 - Fewer, bigger cores with out-of-order, speculative execution
 - Big caches optimized for latency
 - Math units are small part of the die
- Throughput Oriented
 - Lots of simple compute cores and hardware scheduling
 - Big register files. Caches optimized for bandwidth.
 - Math units are most of the die

CUDA

Most successful environment for throughput computing

C++ for throughput computers

On-chip memory management

Asynchronous, parallel API

Programmability makes it possible to innovate

New layer type? No problem.

G80 ARCHITECTURE

FROM FERMI TO PASCAL

FERMI GF100

Tesla C2070 released 2011

- 3B transistors
- 529 mm2 in 40nm
- 1150 MHz SM clock
- 3rd generation SM, each with configurable L1/shared memory
- IEEE 754-2008 FMA
- 1030 GFLOPS fp32, 515 GFLOPS fp64
- 247W

KEPLER GK110

Tesla K40 released 2013

- 7.1B transistors
- 550 mm2 in 28nm
- Intense focus on power efficiency, operating at lower frequency
 - 2880 CUDA cores at 810 MHz
- Tradeoff of area efficiency vs. power efficiency
- 4.3 TFLOPS fp32, 1.4 TFLOPS fp64
- 235W

Kepler: Fast & Efficient

3X

Perf / Watt

32 cores

192 cores

TITAN SUPERCOMPUTER

Oak Ridge National Laboratory

PASCAL GP100

released 2016

- 15.3B transistors
- 610 mm2 in 16ff
- 10.6 TFLOPS fp32, 5.3 TFLOPS fp64
- 21 TFLOPS fp16 for Deep Learning training and inference acceleration
- New high-bandwidth NVLink GPU interconnect
- HBM2 stacked memory
- 300W

MAJOR ADVANCES IN PASCAL

GEFORCE GTX 1080TI

https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/

https://youtu.be/2c2vN736V60

FINAL FANTASY XV PREVIEW DEMO WITH GEFORCE GTX 1080TI

https://www.geforce.com/whats-new/articles/final-fantasy-xv-windows-edition-4k-trailer-nvidia-gameworks-enhancements

https://youtu.be/h0o3fctwXw0

2017: VOLTA

TESLA V100: 2017

21B transistors 815 mm² in 16ff

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

*full GV100 chip contains 84 SMs

TESLA V100

More V100 Features: 2x L2 atomics, int8, new memory model, copy engine page migration, MPS acceleration, and more ...

The Fastest and Most Productive GPU for Deep Learning and HPC

GPU PERFORMANCE COMPARISON

	P100	V100	Ratio
DL Training	10 TFLOPS	120 TFLOPS	12x
DL Inferencing	21 TFLOPS	120 TFLOPS	6x
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x
HBM2 Bandwidth	720 GB/s	900 GB/s	1.2x
STREAM Triad Perf	557 GB/s	855 GB/s	1.5x
NVLink Bandwidth	160 GB/s	300 GB/s	1.9x
L2 Cache	4 MB	6 MB	1.5x
L1 Caches	1.3 MB	10 MB	7.7x

TENSOR CORE

CUDA TensorOp instructions & data formats

4x4 matrix processing array

D[FP32] = A[FP16] * B[FP16] + C[FP32]

Optimized for deep learning

Activation Inputs

Weights Inputs

Output Results

TENSOR CORE

Mixed Precision Matrix Math 4x4 matrices

B_{0,0} B_{0,1} B_{0,2} B_{0,3}

B_{1,0} B_{1,1} B_{1,2} B_{1,3}

B_{2,0} B_{2,1} B_{2,2} B_{2,3}

B_{3,0} B_{3,1} B_{3,2} B_{3,3}

FP16 or FP32

$$D = AB + C$$

VOLTA TENSOR OPERATION

Also supports FP16 accumulator mode for inferencing

NVLINK - PERFORMANCE AND POWER

	25Gbps signaling	
Bandwidth	6 NVLinks for GV100	
	1.9 x Bandwidth improvement over GP100	
	Latency sensitive CPU caches GMEM	
Coherence	Fast access in local cache hierarchy	
	Probe filter in GPU	
Power Savings	Reduce number of active lanes for lightly loaded link	

NVLINK NODES

DL - HYBRID CUBE MESH - DGX-1 w/ Volta

HPC - P9 CORAL NODE - SUMMIT

NARROWING THE SHARED MEMORY GAP

with the GV100 L1 cache

Cache: vs shared

- Easier to use
- 90%+ as good

Shared: vs cache

- Faster atomics
- More banks
- More predictable

US to Build Two Flagship Supercomputers

SIERRA

150-300 PFLOPS Peak Performance

IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect

40 TFLOPS per Node, >3,400 Nodes

2017

Major Step Forward on the Path to Exascale

GPU COMPUTING AND DEEP LEARNING

TWO FORCES DRIVING THE FUTURE OF COMPUTING

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

The Big Bang of Deep Learning

RISE OF NVIDIA GPU COMPUTING

The Big Bang of Deep Learning

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection
Diabetic Grading
Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

DEEP NEURAL NETWORK

ANATOMY OF A FULLY CONNECTED LAYER

Lots of dot products

Each neuron calculates a dot product, M in a layer

$$x_1 = g(\boldsymbol{v}_{x_1} * \boldsymbol{z})$$

COMBINE THE DOT PRODUCTS

What if we assemble the weights into a matrix?

Each neuron calculates a dot product, M in a layer

$$x_1 = g(\boldsymbol{v}_{x_1} * \mathbf{z})$$

What if we assemble the weights as [M, K] matrix?

Matrix-vector multiplication (GEMV)

Unfortunately ...

M*K+2*K elements load/store

M*K FMA math operations

This is memory bandwidth limited!

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

BATCH TO GET MATRIX MULTIPLICATION

Making the problem math limited

Can we turn this into a GEMM?

"Batching": process several inputs at once

Input is now a matrix, not a vector

Weight matrix remains the same

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

AI IMPROVING AT AMAZING RATES

AI BREAKTHROUGHS

Recent Breakthroughs

MODEL COMPLEXITY IS EXPLODING

NVIDIA DNN ACCELERATION

A COMPLETE DEEP LEARNING PLATFORM

DNN TRAINING

NVIDIA DGX STATION

PERSONAL DGX

480 Tensor TFLOPS | 4x Tesla V100 16GB

NVLink Fully Connected | 3x DisplayPort

1500W | Water Cooled

NVIDIA DGX STATION

PERSONAL DGX

480 Tensor TFLOPS | 4x Tesla V100 16GB

NVLink Fully Connected | 3x DisplayPort

1500W | Water Cooled

\$69,000

NVIDIA DGX-1 WITH TESLA V100

ESSENTIAL INSTRUMENT OF AI RESEARCH

960 Tensor TFLOPS | 8x Tesla V100 | NVLink Hybrid Cube From 8 days on TITAN X to 8 hours 400 servers in a box

NVIDIA DGX-1 WITH TESLA V100

ESSENTIAL INSTRUMENT OF AI RESEARCH

960 Tensor TFLOPS | 8x Tesla V100 | NVLink Hybrid Cube From 8 days on TITAN X to 8 hours 400 servers in a box

\$149,000

DNN TRAINING WITH DGX-1

Iterate and Innovate Faster

DNN INFERENCE

TensorRT

High-performance framework makes it easy to develop GPU-accelerated inference

Production deployment solution for deep learning inference

Optimized inference for a given trained neural network and target GPU

Solutions for Hyperscale, ADAS, Embedded

Supports deployment of fp32,fp16,int8* inference

TensorRT for Data Center

Image Classification Object Detection

Image Segmentation

TensorRT for Automotive

Pedestrian Detection Lane Tracking Traffic Sign Recognition

NVIDIA DRIVE PX 2

^{*} int8 support will be available from v2

TensorRT

Optimizations

Fuse network layers

Eliminate concatenation layers

Kernel specialization

Auto-tuning for target platform

Tuned for given batch size

OPTIMIZED
INFERENCE
RUNTIME

NVIDIA TENSORRT

Programmable Inference Accelerator

V100 INFERENCE

Datacenter Inference Acceleration

- 3.7x faster inference on V100 vs. P100
- 18x faster inference on TensorFlow models on V100
- 40x faster than CPU-only

Inference throughput (images/sec) on ResNet50. V100 + TensorRT. NVIDIA TensorRT (FP16) @ 6.97 ms latency, batch size 39, Tesla V100-SXM2-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. P100 + TensorRT: NVIDIA TensorRT (FP16) @ 6.47 ms latency, batch size 10, Tesla P100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow Preview of voitic aptimized TensorFlow (FP16) @ 6.67 ms latency, batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel Xeon-D 1687 Broadwell-E CPU and Intel DL SDK, Score doubled to comprehend Intel's stated claim of 2x performance improvement on Skylake with AVX512.

AUTONOMOUS VEHICLE TECHNOLOGY

AI IS THE SOLUTION TO SELF DRIVING CARS

PARKER

Next-Generation System-on-Chip

NVIDIA's next-generation Pascal graphics architecture

1.5 teraflops

NVIDIA's next-generation ARM 64b Denver 2 CPU

Functional safety for automotive applications

DRIVE PX 2 COMPUTE COMPLEXES

2 Complete AI Systems

Pascal Discrete GPU 1,280 CUDA Cores 4 GB GDDR5 RAM

Parker SOC Complex 256 CUDA Cores 4 Cortex A57 Cores 2 NVIDIA Denver2 Cores 8 GB LPDDR4 RAM 64 GB Flash

Safety Microprocessor

Infineon AURIX Safety Microprocessor ASIL D

NVIDIA DRIVE PLATFORM

Level 2 -> Level 5

DRIVE PX 2

ONE ARCHITECTURE

DRIVE PX (Xavier)

30 TOPS DL | 160 SPECINT | 30W

ANNOUNCING XAVIER DLA NOW OPEN SOURCE

http://nvdla.org/

NVIDIA DRIVE END TO END SELF-DRIVING CAR PLATFORM

DRIVING AND IMAGING

CURRENT DRIVER ASSIST

SENSE **PLAN** ACT WARN **BRAKE FPGA** CPU CV ASIC

FUTURE AUTONOMOUS DRIVING SYSTEM

