New radiation-curable acrylate ester cpds. prepn. - prepd. by reacting poly:hydric oxy:alkylated alcohol, poly:carboxylic acid or anhydride, and acrylic or methacrylic acid then with epoxide

Patent Number: EP-279303

International patents classification: C07C-069/54 C08F-299/00 C07C-067/08 C07C-067/26 C08F-002/50 C08F-020/26 C08F-020/28 C09D-003/80 C09D-163/10 C09D

· Abstract :

EP-279303 A Acrylates (I) obtainable by reacting (A) lequiv. 2- to 6-functional oxyalkylated 2-10C alcohol (B) 0.05-1 equiv. 2-to 4-functional 3-36 carboxylic acid or its anhydride and (C) 0.1-1.5 equiv. acrylic and/or methacrylic acid and reaction of excess COOH gps. with (D) equiv. amt. of an epoxide cod. are claimed.

Prepn. of (I) by 1) esterifying (A), (B) and (C) at 60-140 deg. C in presence of acid esterification catalyst, at least one hydrocarbon forming azeotropic mixt. with water, and small amt. of polymerisation inhibitor 2) removing the hydrocarbon by distn. 3) neutralising the esterification catalyst 4) reacting excess COOH with (D).

USE/ADVANTAGE - In radiation-hardenable coating compsns. (claimed), with hardening by U.V. in presence of photoinitiator or by electron beam. (I) contain smaller proportion of volatile, physiologically harmful acrylates, require only small amt. of reactive diluent, and give high quality coatings. EP-279303 B A radiation-curable acrylate, obtainable by reacting A) 1 equivalent of a dihydric to hexahydric oxyalkylated C2-C10-alcohol with B) from 0.05 to 1 equivalent of a dibasic to tetrabasic C3-C36-carboxylic acid or its anhydride and C) from 0.1 to 1.5 equivalents of acrylic acid and/or methacrylic acid and reacting the excess carboxyl groups with an equivalent amount of an epoxide compound.

EP-279303 B A radiation-curable acrylate, obtainable by reacting (A) 1 equivalent of a dihydric to hexahydric oxyalkylated C2-C10-alcohol simultaneously with (B) from 0.05 to 1 equivalent of a dibasic to tetrabasic 3-36C-carboxylic acid or its anhydride and (C) from 0.1 to 1.5 equivalents of acrylic acid and/or methacrylic acid, and reacting the excess carboxyl groups with an equivalent amount of an epoxide compound. (Dwg.0/0) DE3870648 G Acrylates (I) obtainable by reacting (A) lequiv. 2- to 6-functional oxyalkylated 2-10C alcohol (B) 0.05-1 equiv. 2-to 4-functional 3-36 carboxylic acid or its anhydride and (C) 0.1-1.5 equiv. acrylic and/or methacrylic acid and reaction of excess COOH gps. with (D) equiv. amt. of an epoxide cpd. are claimed. Prepn. of (I) by 1) esterifying (A), (B) and (C) at 60-140 deg. C in presence of acid esterification catalyst, at least one hydrocarbon forming azeotropic mixt. with water, and small amt. of polymerisation inhibitor 2) removing the hydrocarbon by distn. 3) neutralising the esterification catalyst 4) reacting excess COOH with (D). USE/ADVANTAGE - In radiation-hardeneable coating compsns. (claimed), with hardening by U.V. in presence of photoinitiator or by electron beam.

(i) contain smaller proportion of volatile, physiologically harmful acrylates, require only small amt. of reactive diluent, and give high quality coatings. DE3870648 G Acrylates (I) obtainable by reacting (A) lequiv. 2- to 6-functional oxyalkylated 2-10C alcohol (B) 0.05-1 equiv. 2-to 4-functional 3-36 carboxylic acid or its anhydride and (C) 0.1-1.5 equiv. acrylic and/or methacrylic acid and reaction of excess COOH gps. with (D) equiv. amt. of an epoxide cpd. are claimed.

Prepn. of (I) by 1) esterifying (A), (B) and (C) at 60-140 deg. C in presence of acid esterification catalyst, at least one hydrocarbon forming azeotropic mixt. with water, and small amt. of polymerisation inhibitor 2) removing the hydrocarbon by distn. 3) neutralising the esterification catalyst 4) reacting excess COOH with (D).

USE/ADVANTAGE - In radiation-hardenable coating compsns. (claimed), with hardening by U.V. in presence of photoinitiator or by electron beam. (I) contain smaller proportion of volatile, physiologically harmful acrylates, require only small amt. of reactive diluent, and give high quality coatings. US5096938 A Radiation-curable acrylate comprises: (i) co-esterification reaction prod. of (a), (b) and (c). (a) is 1 equiv. of a dihydric to hexahydric oxyalkylated 2-10C alcohol. (a) is pref. a trihydric-hexahydric oxyalkylated 3-6C alcohol. (b) is 0.05-1 equiv. of a di-tetra-basic 3-36C-carboxylic acid or anhydride. (c) is 0.1-1.5 equiv. of acrylic- and/or methacrylic-acid. Obtd. co-esterification prod. having free carboxyl gps. is reacted with (ii) epoxide cpd. (glycidyl ether of butanediol, bisphenol A pentaerythritol). The amt. of epoxide gps. on (ii) is sufficient to react with the free carboxylic gps. present in (i) and with the unreacted (meth)acrylic acid from the co-esterification reaction. USE/ADVANTAGE - Used for radiation curable coating materials which have lower contents of volatile and physiologically unacceptable acrylic cpds. Requirement of reactive diluents is low and they are processed to give high quality coatings. (1pp)

• <u>Publication data</u>: Patent Family: EP-279303 A 19880824 DW1988-34 Ger 8p *

AP: 1988EP-0101756 19880206 DSR: AT BE CH DE ES FR GB IT LI LU NL SE DE3704098 A 19880825 DW1988-35 AP: 1987DE-3704098 19870211 JP63196613 A 19880815 DW1988-38 AP: 1988JP-0017524

US5096938 A 19920317 DW1992-14 Ip AP: 1990US-

0504087 19900403

EP-279303 B 19920506 DW1992-19 Eng 7p AP: 1988EP-0101756 19880206 DSR: AT BE CH DE FR GB IT LI LU NL SE DE3870648 G 19920611 DW1992-25 C07C-069/54 FD: Based on EP-279303 AP: 1988DE-3870648 19880206; 1988EP-0101756 19880206

ES2032880 T3 19930301 DW1993-21 C07C-069/54 FD: Based on EP-279303 AP: 1988EP-0101756 19880206

EP-279303 B2 19950208 DW1995-10 C07C-069/54 Ger 8p AP: 1988EP-0101756 19880206 DSR: AT BE CH DE ES FR GB IT LI LU NL SE

JP2635347 B2 19970730 DW1997-35 C08F-299/00 5p FD: Previous Publ. JP63196613 AP: 1988JP-0017524 19880129

Priority nº: 1987DE-3704098 19870211

Patentee & Inventor(s):

Patent assignee : (BADI) BASF AG Inventor(s) : BECK E; SCHMIDT H; WEISS W

THIS PAGE BLANK (USPTO)

<u>Covered countries</u>: 14 <u>Publications count</u>: 9

Cited patents: DE2215493; DE3241264; EP-222059; FR2237875; DE2838691; DE3316592; DE3316593; EP-126341 A3...9001; No-SR.Pub

• <u>Accession codes</u> : <u>Accession N°</u> : 1988-236590 [34] <u>Sec. Acc. n° CPI</u> : C1988-105803

• <u>Derwent codes</u>: <u>Manual code</u>: CPI: A01-B03 A01-C01 A05-A01D A10-E07A A10-E07B A11-C02B A12-B01E A12-B01L E10-E04A E10-E04D E10-G02A E10-G02B G02-A02C4 G02-A02G N04-C

Derwent Classes: A41 A82 E17 G02

• <u>Update codes</u>:

<u>Basic update code</u>:1988-34

<u>Equiv. update code</u>:1988-35; 1988-38;
1992-14; 1992-19; 1992-25; 1993-21; 1995-10; 1997-35

THIS PAGE BLANK (USPTO)

(1) Veröffentlichungsnummer:

0 279 303

(12)

٥

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 88101756.0

(i) Int. Cl.4: **C07C 69/54** , C07C **67/08** , C07C **67/26** , C08F **20/28**

2 Anmeldetag: 06.02.88

3 Priorität: 11.02.87 DE 3704098

Veröffentlichungstag der Anmeldung: 24.08.88 Patentblatt 88/34

Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB IT LI LU NL SE

Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

2 Erfinder: Beck, Erich, Dr. Schweriner Weg 8
D-6800 Mannheim 31(DE)
Erfinder: Weiss, Wolfram, Dr. Am Speyerweg 40
D-6704 Mutterstadt(DE)
Erfinder: Schmidt, Horst, Dr. Kopernikusstrasse 56
D-6800 Mannheim 1(DE)

Strahlungshärtbare Acrylate.

Die vorliegende Erfindung betrifft strahlungshärtbare Acrylate, erhältlich durch Reaktion von

A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C3-bis C10-Alkohols mit

B) 0,05 bis 1 Äquivalent einer 2-bis 4-wertigen C₁-bis C₁₆-Carbonsäure oder deren Anhydride und

C) 0.1 bis 1.5 Äquivalenten Acrylsäure und/oder Methacrylsäure sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung, ein Verfahren zu deren Herstellung und deren Verwendung in strahlungshärtbaren Überzugsmassen.

EP 0 279 303 A2

Die vorliegende Erfindung betrifft strahlungshärtbare Acrylate, erhältlich durch Reaktion von

A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C₂-bis C₀-Alkohols mit

20

- B) 0,05 bis 1 Äquivalent einer 2-bis 4-wertigen C₃-bis C₃₄-Carbonsäure oder deren Anhydride und
- C) 0.1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung, ein Verfahren zu deren Herstellung und deren Verwendung in strahlungshärtbaren Überzugsmassen.

Strahlungshärtbare Bindemittel auf Basis von acrylgruppenhaltigen Polyestern sind bekannt. Insbesondere in Hinsicht ihrer lösungsmittelfreien und schnellen Verarbeitbarkelt sind derartige Lackharze von großem Interesse.

Die Lösungsmittelfreiheit dieser Systeme ersparen den Aufwand zum Ablüften und Aufarbeiten der Lösungsmittel. Zudem wird die Emissionsgefahr durch Lösungsmittel wesentlich vermindert.

Ì

Für eine wirtschaftliche Verarbeitbarkeit sind seitens der Bindemittei im allgemeinen neben niedrigen Rohstoffkosten und einer hohen Reaktivität insbesondere auch ein geringer Reaktivverdünnerbedarf zur Einstellung geeigneter Verarbeitungsviskositäten von Bedeutung.

In der DE 32 41 264 wird eine Möglichkeit beschrieben, durch Verwendung von wäßrigen, strahlungshärtbaren Bindemitteldispersionen auf den Zusatz von Reaktivverdünnern zu verzichten. Hierzu wird ein strahlungshärtbares Acrylat einer bestimmten Zusammensetzung beschrieben, das oberflächenaktive Eigenschaften hat und dadurch die wäßrigen Dispersionen oder Emulsionen stabilisiert.

Bei der Verwendung dieser Dispersionen als Beschichtungsmittel sind aber Ablüftzeiten für das Wasser zu berücksichtigen.

Niedermolekulare Acrylester der Polyolkomponenten eines üblichen Polyesteracrylatharzes, die sich während einer sauer katalysierten Veresterungsreaktion durch gleichzeitig als Nebenreaktionen ablaufende Umesterungsreaktionen bilden, begünstigen ebenfalls einen niedrigen Verdünnerbedarf.

In der DE-OS 33 16 592 und der DE-OS 33 16 593 werden Verfahren zur Herstellung von strahlungshärtbaren Acrylaten beschrieben, wobei OH-Gruppen enthaltende Polyester mit überschüssiger Acrylsäure verestert werden und anschließend die restliche Acrylsäure durch eine Additionsreaktion mit Dioder Polyglycidylethern zu nichtflüchtigen 2-Hydroxyacrylestern umgesetzt wird. Niedermolekulare, verdünnend wirkende Acrylester, die durch Umesterung aus Bestandteilen des Polyesters entstehen können, verbleiben Im Endprodukt. Ein großer Nachteil derartiger Verblindungen ist jedoch deren erhöhte Toxizität und Flüchtigkeit, wie sie insbesondere von niedermolekularen Acrylestern bekannt sind.

Aufgabe der vorliegenden Erfindung war es deshalb, neue strahlungshärtbare Acrylate für strahlungshärtbare Überzugsmassen bereitzustellen, die deutlich verminderte Gehalte an flüchtigen und physiplogisch bedenklichen Acrylverbindungen haben, deren Bedarf an Reaktivverdünnern möglichst gering ist und die sich zu hochwertigen Überzügen verarbeiten lassen.

Diese Aufgabe konnte gelöst werden durch strahlungshärtbare Acrylate, erhältlich durch Reaktion von

- A) 1 Äquivalent eines 2-bis 6-wertigen oxalkyllerten C₁-bis C₁₀-Alkohols mit
- B) 0,05 bis 1 Äquivalent einer 2-bis 4-wertigen C₃-bis C₃₆-Carbonsäure oder deren Anhydride und
- C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung.

Als geeignete Komponenten (A) können oxethylierte, oxpropylierte sowie gemischt oxethylierte und oxpropylierte 2-bis 6-wertige Alkohole verwendet werden, wie die Diole Ethylenglykol, Propylenglykol, Butandiol-1,4, Pentandiol-1,5, Neopentylglykol, Hexandiol-1,6, 2-Methylpentandiol-1,5, 2-Ethylbutandiol-1,4, Dimethylolcyclohexan, 1,1'-Isopropyliden-bis-(p-phenylen-oxy)-di-3-ethanol, Triole, wie Glycerin, Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Tetraole, wie Pentaerythrit, Ditrimethylolpropan, Hexole, wie Erythrit und Sorbit. Bevorzugt sind 3-bis 6-wertige oxalkylierte C₃-bis C₄-Alkohole wie oxethyliertes und/oder oxpropyliertes Trimethylolpropan, Glycerin, Pentaerythrit und Sorbit.

Der Oxalkyllerungsgrad liegt in der Regel zwischen 1 und 30, bevorzugt zwischen 2 und 10.

Als Komponente (B) können 2-bis 4-wertige C₂-bis C₃-Carbonsäuren oder deren Anhydride eingesetzt werden, wie Bernsteinsäure, Bernsteinsäureanhydrid, Glutarsäure, Glutarsäureanhydrid, Adipinsäure, Sebacinsäure, Phthalsäure, Phthalsäureanhydrid, Terephthalsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Citraconsäure, Tetrahydrophthalsäure, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäure, Hexachlor-endomethylentetrahydrophthalsäure, dimere Linolsäure, Trimellithsäure, Trimellithsäureanhydrid, Pyromellithsäure und Pyromellithsäureanhydrid. Bevorzugt sind Adipinsäure, Phthalsäureanhydrid, Maleinsäureanhydrid und Fumarsäure

Geeignete Mono-, Di-oder Polyepoxidverbindungen, vorzugsweise Di-und Triepoxidverbindungen, sind epoxidierte Olefine, Glycidester von gesättigten oder ungesättigten Carbonsäuren oder Glycidether aliphati-

scher oder aromatischer Polyole. Bevorzugt werden die Glycidether von Butandiol, Bisphenol A und Pentaerithrit.

Die Veresterung der Komponenten (A), (B) und (C) erfolgt nach allgemein bekannten Methoden in Gegenwart von sauren Veresterungskatalysatoren, wie Schwefelsäure oder para-Toluolsulfonsäure, die in Mengen von 0,1 bis 3 Gew.%, bezogen auf die Komponenten (A), (B) und (C) eingesetzt werden, bei Temperaturen von 60 bis 140°C, wobei das entstehende Wasser azeotrop entfernt wird. Als Schleppmittel kommen aliphatische und aromatische Kohlenwasserstoffe in Frage, z.B. Alkane und Cycloalkane, wie nehexan, n-Heptan und Cyclohexan, Aromaten, wie Benzol, Toluol und Xylollsomere und sogenannte Spezialbenzine, welche Siedepunkte zwischen 70 und 140°C aufweisen. Besonders bevorzugte Schleppmittel sind Cyclohexan und Toluol. Die Menge des zugesetzten Kohlenwasserstoffs ist unkritisch, je nach verwendeter Apparatur kann die zugesetzte Menge zwischen der 0,1-und 2-fachen Menge des Reaktionsgemisches aus den Komponenten (A), (B) und (C) variieren. Besonders vorteilhaft ist ein Verhältnis Reaktionsgemisch zu Kohlenwasserstoff von 1:0,2 bis 1:0,8. Das eingesetzte Lösungsmittel wird nach der Veresterung, gegebenenfalls unter vermindertem Druck, aus dem Reaktionsgemisch entfernt.

Die Veresterung wird bji zu einem Umsatz von mindestens 85%, vorzugsweise 90 bis 95%, durchgeführt.

Zur Vermeidung einer vorzeitigen Polymerisation wird die Veresterung zweckmäßigerweise in Gegenwart geringer Mengen von Inhibitoren durchgeführt. Dabei handelt es sich um die Üblichen, zur Verhinderung einer thermischen Polymerisation verwendeten Verbindungen, z.B. vom Typ des Hydrochinons, der Hydrochinonmonoalkylether, des 2,6-Di-tert.-butylphenols, der N-Nitrosamine, der Phenothiazine oder der Phosphorigsäureester. Sie werden im allgemeinen in Mengen von 0,001 bis 2,0 Gew.%, vorzugsweise in Mengen von 0,005 bis 0,5 Gew.%, bezogen auf die Summen der Komponenten (A), (B) und (C) eingesetzt.

Die Äquivalentverhältnisse der Komponenten (A):(B):(C) betragen 1: 0,05 bis 1: 0,1 bis 1,5, bevorzugt 1:0,1 bis 0,6:0,5 bis 0,9. Auf 1 Äquivalent des theoretischen Umsetzungsproduktes aus (A) und (B) werden 1 bis 1,5, bevorzugt 1,1 bis 1,25 Äquivalente Acrylsäure und/oder Methacrylsäure eingesetzt.

Nach der Veresterung wird im allgemeinen der Veresterungskatalysator in geelgneter Welse neutralisiert, z.B. durch Zusatz von tertiären Aminen oder Alkalihydroxiden. Die Carbonsäuregruppen des Acrylatharzes sowie die überschüssige Acrylsäure bzw. Methacrylsäure werden mit deren Säurezahl äquivalenten Menge einer der oben genannten Epoxidverbindungen bei 90 bis 130°C, vorzugsweise 100 bis 110°C, bis zu einer Säurezahl unter 5mg KOH/g umgesetzt. Dabei können zur Katalysierung der Reaktion zwischen Carboxyl-und Epoxidgruppen geelgnete Verbindungen, wie tertiäre Amine, quartäre Ammoniumverbindungen oder Lewisbasen z.B. vom Typ des Thiodiglykols mitverwendet werden. Die erfindungsgemäßen Acrylate weisen z.B. Viskositäten von 0,5 bis 20 Pas, bevorzugt 1 bis 15 Pas bei 23°C auf.

Die erfindungsgemäß hergestellten Acrylate werden zur Verarbeitung im allgemeinen mit weiteren, aus der Strahlungshärtung bekannten Reaktivverdünnern versetzt. Beispielhaft selen hier lediglich genannt 4-tert.-Butylcyclohexylacrylat, Phenoxyethylacrylat, Hexandioldiacrylat, Tripropylenglykoldiacrylat, Trimethyloipropandiacrylat sowie Acrylate von alkoxylierten Diolen und Triolen. Die mittels des erfindungsgemäßen Verfahrens hergestellten Beschichtungs-und Überzugsmittel werden zweckmäßigerweise entweder durch Elektronenstrahlen oder nach Zusatz von Photoinitiatoren durch UV-Strahlen vernetzt und ergeben Filme, die den Anforderungen der Praxis voll gerecht werden.

Beispiel 1

532,6g ethoxyliertes Trimethylolpropan mit einer OH-Zahl von 630mg KOH/g, 98g Maleinsäureanhydrid, 316,8g Acrylsäure, 437,7g Cyclohexan, 4,73g Schwefelsäure, 2,93g Hydrochlnonmonomethylether, 0,95g 2,6-Di-tert.-butylkresol, 0,95g 50 gew.%ige hypophosphorige Säure und 0,028g Phenothiazin wurden zusammengegeben und bis zum Sieden erhitzt. Nachdem 93g Wasser in ca. 11 Stunden abdestilliert wurden, wurde auch das Lösungsmittel destillativ entfernt. Das Reaktionsgemisch wies eine Säurezahl von 38,8mg KOH/g auf. Anschließend wurden 105,7g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) und 17,9g Tributylamin zugegeben. Bei 105 bis 110°C wurde die Reaktion weitergeführt, bis nach ca. 8 Stunden eine Säurezahl von 4,4mg KOH/g erreicht war. Die Viskosität bei 23°C betrug 4,3 Pa.s.

56

45

Beispiel 2

Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt:

5

- 1. Stufe: 532,6 g ethoxyllertes Trimethylolpropan (OH-Zahl 630 mg/g)
- 116,1 g Fumarsäure
- 316,8 g Acrylsäure
- 10 482,7 g Cyclohexan
 - 4,82 g Schwefelsäure
 - 2,99 g Hydrochinonmonomethylether
 - 0,96 g 2,6-Di-tert.-butylkresol
 - 0,96 g hypophosphorige Säure (50 gew.%ig)
- 15 0,96 g Triphenylphosphit
 - 0,029 g Phenothiazin

abdestillierte Wassermenge: 110ml

Säurezahl: 51,0mg KOH/g

20

- 2. Stufe 120,5 g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) 18,2 g Tributylamin
- 25 Produkt-Viskosität (123°C): 12,8 Pa.s

Beispiel 3:

30 Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt:

- 1. Stufe 532,6 g ethoxyliertes Trimethylolpropan (OH-Zahl 630mg/g)
- 35 146,1 g Adipinsäure
 - 316,8 g Acrylsäure
 - 497,8 g Cyclohexan
 - 4,98 g Schwefelsäure
 - 3,10 g Hydrochinonmonomethylether
- 40 0,99 g 2,6-Di-tert.-butylkresol
 - 0,99 g hypophosphorige Säure (50 i gew.%ig)
 - 0,99 g Triphenylphosphit
 - 0,033 g Phenothiazin
- 45 abdestillerte Wassermenge: 111ml

Säurezahl: 37,9mg KOH/g

Stufe 106,9 g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol)
 18,8 g Tributylamin

Produkt-Viskosităt (23°C): 2,6 Pa.s

55 Beispiel 4

Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt:

1. Stufe: 623,3 g propoxiliertes und ethoxiliertes Trimethylolpropan (PO:EO = 86:14;OH-Zahl = 540mg KOH/g)

98,0 g Maleinsäure

316,8 g Acrylsäure

525,1 g Cyclohexan

5,20 g Schwefelsäure

1,04 g Hydrochinonmonomethylether

1,04 g 2,6-Di-tert.-butylkresol

1,04 g hypophosphorige Säure

1,04 g Zinndichloridhydrat

0,52 g Phenothiazin

abdestillierte Wassermenge: 85 ml Säurezahl: 48,5 mg KOH/g

15

30

ş.

Stufe 128,1 g Pentaerythrittriglycidylether (Epoxid-Äquivalentgewicht 163g/mol)
 18,8 g Tributylamin

20 Produkt-Viskosität (123°C): 5,36 Pa.s

Bei den Produkten aus den Beispielen 1 bis 4 konnten gaschromatographisch keine flüchtigen Diolacrylate nachgewiesen werden. Vom Trimethylolpropan abgeleitete Acrylate wurden unter 0,8 Gew.% Anteil ermittelt.

Vergleichsbeispiel 1:

780g Adipinsäure, 420g Phthalsäureanhydrid, 600g Ethylenglykol und 580g Trimethylolpropan wurden zusammengegeben und auf 160°C aufgeheizt. Anschließend wurde die Temperatur auf 210°C gesteigert und die Veresterung unter Anlegen von Vakuum solange fortgeführt, bis eine Säurezahl von 0,8mg KOH/g erreicht war. Das Produkt hatte eine OH-Zahl von 320mg KOH/g. 1250g davon wurden mit 582g Acrylsäure, 91\u00e9g Cyclohexan, 5,5g Schwefelsäure, 1,8g Methylhydrochinonmonomethylether, 0,9g 2,6-Di-tert.-butylkresol und 0,04g Phenothiazin zugesetzt. Anschließend wurde weiter Wasser abdestilliert (138g Wasser in 10 Stunden). Nach destillativer Entfernung des L\u00f6sungsmittels wies das Reaktionsgemisch eine S\u00e4urezahl von 44mg KOH/g auf. Es wurden nun 10,5g Dimethylethanolamin, 192g Pentaerythrittriglycidylether und 1g Thiodiglykol zugegeben und die Reaktion bei 105 bis 110°C fortgef\u00fchrt. Nach 5 Stunden war eine S\u00e4urezahl von 2,6mg KOH/g erreicht. Die Viskosit\u00e4t (23°C) betrug 47,5 Pa.s.

Nach gaschromatographischen Messungen wurden folgende Mengen an Acrylestern des Glykols und Trimethylolpropans nachgewiesen:

1,0% Hydroxyethylacrylat

3.8% Ethylengiykoldiacrylat

1,9% Trimethylolpropanacrylate

45

40

Prüfung der Lackeigenschaften

Die gemäß den Beispielen hergestellten Produkte wurden nach Verdünnen auf Verarbeitungsviskosität und Zusatz eines Photoinitiators bzw. einer Photoinitiatorkombination in einer 100µm-Schicht (= Nassfilmstärke) auf Glas aufgetragen und in einem Abstand von ca. 10 cm an einer Quecksilbermitteldrucklampe mit einer Leistung von 80 W/cm vorbeigeführt. Die Bestrahlung erfolgte in der Luft. Der in Tabelle 1 für die Reaktivität angegebene Zahlenwert gibt diejenige Bandgeschwindigkeit an, bei der ein kratzfester Überzug erzielt wurde.

Tabelle 1: Lackprüfungen

Polyesteracrylat hergestellt nach	1	2	3	4	Vergleichsbei- spiel 1
Beispiel (je 100g)					
Hexandioldiacrylat (g) ¹⁾	25,3	41,6	21,4	31,6	53,8
Hexandioldiacry-	20,2	29,4	17,6	24,0	35,0
lat-Anteil (%) ¹⁾	-				
Benzildimethylketal	1,25	1,42	1,21	1,32	1,54
Benzophenon	2,50	2,84	2,42	2,64	3,08
Methyldiethanolamin	3,75	4,26	3,63	3,96	4,62
flüchtige Anteile (%)	3,4	3,2	3,0	2,9	7,1
Reaktivität (m/min)	35	30	50	25	45
Pendelhärte (DIN 53 157)	76	. 97	39	53	42

1) entsprechend einer eingestellten Viskosität von 100 sec Auslaufzeit nach DIN 4 bei 23°C

Ansprüche

30

35

40

50

- 1. Strahlungshärtbare Acrylate, erhältlich durch Reaktion von
 - A) 1 Äquivalent eines 2-bis 6-wertigen oxalkyllerten C₂-bis C₁₀-Alkohols mit
 - B) 0,05 bis 1 Äquivalent einer 2-bis 4-wertigen C₃-bis C₃₅-Carbonsäure oder deren Anhydride und
 - C) 0.1 bis 1.5 Äguivalenten Acrylsäure und/oder Methacrylsäure

sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung.

- 2. Strahlungshärtbare Acrylate nach Anspruch 1, erhältlich unter Verwendung von 3-bis 6-wertigen oxalkylierten C₅-bis C₅-Alkoholen als Komponente (A).
- 3. Strahlungshärtbare Acrylate nach den Ansprüchen 1 oder 2, erhältlich unter Verwendung von oxalkylierten Alkoholen mit einem Oxalkylierungsgrad von 1 bis 30 als Komponente (A).
- Strahlungshärtbare Acrylate nach einem der Ansprüche 1 bis 3, bei denen die Komponenten (A), (B) und (C) einen Umsetzungsgrad von mindestens 85%, aufweisen.
 - 5. Verfahren zur Herstellung von strahlungshärtbaren Acrylaten gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man
 - A) 1 Äquivalent eines 2-bis 6-wertigen oxalkyllerten C2-bis C10-Alkohols mit
 - B) 0,05 bis 1 Äquivalent einer 2-bis 4-wertigen C₃-bis C₃₂-Carbonsäure oder deren Anhydride und
 - C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure

in Gegenwart eines sauren Veresterungskatalysators und mindestens eines Kohlenwasserstoffs, der mit Wasser ein azeotropes Gemisch bildet sowie geringer Mengen eines Polymerisationsinhibitors unter azeotroper Entfernung des entstehenden Wassers bei Temperaturen von 60 bis 140°C verestert, den Kohlenwasserstoff destillativ entfernt und nach Neutralisation des Veresterungskatalysators die überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung umsetzt.

6. Verwendung der strahlungshärtbaren Acrylate gemäß einem der Ansprüche 1 bis 4 in strahlungshärtbaren Überzugsmassen.

1 Veröffentlichungsnummer:

0 279 303 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 88101756.0

(a) Int. Ci.4: CO7C 69/54 , CO7C 67/08 , CO7C 67/26 , CO8F 20/28

2 Anmeldetag: 06.02.88

Priorität: 11.02.87 DE 3704098

Veröffentlichungstag der Anmeldung: 24.08.88 Patentblatt 88/34

Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB IT LI LU NL SE

Weröffentlichungstag des später veröffentlichten Recherchenberichts: 27.12.89 Patentblatt 89/52 Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
D-6700 Ludwigshafen(DE)

Erfinder: Beck, Erich, Dr. Schweriner Weg 8 D-6800 Mannheim 31(DE) Erfinder: Weiss, Wolfram, Dr. Am Speyerweg 40 D-6704 Mutterstadt(DE) Erfinder: Schmidt, Horst, Dr. Kopernikusstrasse 56 D-6800 Mannheim 1(DE)

(A) Strahlungshärtbare Acrylate.

© Die vorliegende Erfindung betrifft strahlungshärtbare Acrylate, erhältlich durch Reaktion von

A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit

B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und

C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure sowie Umsetzung der Überschüssigen Carboxylgruppen mit der äquivalenten

Menge einer Epoxidverbindung, ein Verfahren zu deren Herstellung und deren Verwendung in strahlungshärtbaren Überzugsmassen.

EUROPÄISCHER RECHERCHENBERICHT

	EINSCHLÄG	GIGE DOKUMENTE		EP 88101756.0
Kategorie	Kennzeichnung des Dokume der maß	nts mit Angabe, soweit erforderlich, geblichen Telle	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
x	DE - B2 - 2 215 (CIBA-GEIGY) * Ansprüche;	5 493 Beispiele *	1-5	C 07 C 69/54 C 07 C 67/08 C 07 C 67/26
x	FR - A - 2 237 (UCB) * Ansprüche	875 Beispiele *	1-6	C 07 C 69/80 C 07 C 69/60 C 08 F 20/28
A	EP - A2 - 0 222 (DIAMOND SHAMRO * Ansprüche	OCK)	1,6	
D,A	DE - A1 - 3 24: (BAYER AG) * Beispiele beisp.; A	, Anwendungs-	1-6	
				RECHERCHIERTE SACHGEBIETE (Int. CI.4)
				C 07 C 69/00 C 08 F 20/00
. Derv	vorliggende Recherchenbericht wur	de für alle Patentansprüche erstellt.		
	Recherchenort	Abschlußdatum der Recherc		

EPA Form 1500 00

KATEGORIE DER GENANNTEN DOKUMENTEN
X: von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur
T: der Erfindung zugrunde liegende Theorien oder Grundsätze

E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument 'L: aus andern Gründen angeführtes Dokument

[&]amp;: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

① Veröffentlichungsnummer: 0 279 303 B1

- EUROPÄISCHE PATENTSCHRIFT
- 45 Veröffentlichungstag der Patentschrift: 06.05.92
- (i) Int. Cl.⁵. **C07C 69/54**, C07C 67/08, C07C 67/26, C08F 20/28

- (21) Anmeldenummer: 88101756.0
- 2 Anmeldetag: 06.02.88

(2)

- (4) Strahlungshärtbare Acrylate.
- Priorität: 11.02.87 DE 3704098
- Veröffentlichungstag der Anmeldung: 24.08.88 Patentblatt 88/34
- Bekanntmachung des Hinweises auf die Patenterteilung:
 06.05.92 Patentblatt 92/19
- Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB IT LI LU NL SE
- Entgegenhaltungen: EP-A- 0 222 059 DE-A- 3 241 264 DE-B- 2 215 493 FR-A- 2 237 875

- 73 Patentinhaber: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)
- Erfinder: Beck, Erlch, Dr. Schweriner Weg 8
 W-6800 Mannheim 31(DE)
 Erfinder: Welss, Wolfram, Dr. Am Speyerweg 40
 W-6704 Mutterstadt(DE)
 Erfinder: Schmidt, Horst, Dr. Kopernikusstrasse 56
 W-6800 Mannheim 1(DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

5

50

Die vorliegende Erfindung betrifft strahlungshärtbare Acrylate, erhältlich durch Reaktion von

- A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
- B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
- C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure

sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung, ein Verfahren zu deren Herstellung und deren Verwendung in strahlungshärtbaren Überzugsmassen.

Strahlungshärtbare Bindemittel auf Basis von acrylgruppenhaltigen Polyestern sind bekannt. Insbesondere in Hinsicht ihrer lösungsmittelfreien und schnellen Verarbeitbarkeit sind derartige Lackharze von großem Interesse.

Die Lösungsmittelfreiheit dieser Systeme ersparen den Aufwand zum Ablüften und Aufarbeiten der Lösungsmittel. Zudem wird die Emissionsgefahr durch Lösungsmittel wesentlich vermindert.

Für eine wirtschaftliche Verarbeitbarkeit sind seitens der Bindemittel im allgemeinen neben niedrigen Rohstoffkosten und einer hohen Reaktivität insbesondere auch ein geringer Reaktivverdünnerbedarf zur Einstellung geeigneter Verarbeitungsviskositäten von Bedeutung.

In der DE 32 41 264 wird eine Möglichkeit beschrieben, durch Verwendung von wäßrigen, strahlungshärtbaren Bindemitteldispersionen auf den Zusatz von Reaktivverdünnern zu verzichten. Hierzu wird ein strahlungshärtbares Acrylat einer bestimmten Zusammensetzung beschrieben, das oberflächenaktive Eigenschaften hat und dadurch die wäßrigen Dispersionen oder Emulsionen stabilisiert.

Bei der Verwendung dieser Dispersionen als Beschichtungsmittel sind aber Ablüftzeiten für das Wasser zu berücksichtigen.

Niedermolekulare Acrylester der Polyolkomponenten eines üblichen Polyesteracrylatharzes, die sich während einer sauer katalysierten Veresterungsreaktion durch gleichzeitig als Nebenreaktionen ablaufende Umesterungsreaktionen bilden, begünstigen ebenfalls einen niedrigen Verdünnerbedarf.

In der DE-OS 33 16 592 und der DE-OS 33 16 593 werden Verfahren zur Herstellung von strahlungshärtbaren Acrylaten beschrieben, wobei OH-Gruppen enthaltende Polyester mit überschüssiger Acrylsäure verestert werden und anschließend die restliche Acrylsäure durch eine Additionsreaktion mit Di- oder Polyglycidylethern zu nichtflüchtigen 2-Hydroxyacrylestern umgesetzt wird. Niedermolekulare, verdünnend wirkende Acrylester, die durch Umesterung aus Bestandteilen des Polyesters entstehen können, verbleiben im Endprodukt. Ein großer Nachteil derartiger Verbindungen ist jedoch deren erhöhte Toxizität und Flüchtigkeit, wie sie insbesondere von niedermolekularen Acrylestern bekannt sind.

Aufgabe der vorliegenden Erfindung war es deshalb, neue strahlungshärtbare Acrylate für strahlungshärtbare Überzugsmassen bereitzustellen, die deutlich verminderte Gehalte an flüchtigen und physiologisch bedenklichen Acrylverbindungen haben, deren Bedarf an Reaktivverdünnern möglichst gering ist und die sich zu hochwertigen Überzügen verarbeiten lassen.

Diese Aufgabe konnte gelöst werden durch strahlungshärtbare Acrylate, erhältlich durch Reaktion von

- A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
- B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
- C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure

sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung.

Als geeignete Komponenten (A) können oxethylierte, oxpropylierte sowie gemischt oxethylierte und oxpropylierte 2- bis 6-wertige Alkohole verwendet werden, wie die Diole Ethylenglykol, Propylenglykol, Butandiol-1,4, Pentandiol-1,5, Neopentylglykol, Hexandiol-1,6, 2-Methylpentandiol-1,5, 2-Ethylbutandiol-1,4, Dimethylolcyclohexan, 1,1'-lsopropyliden-bis-(p-phenylen-oxy)-di-3-ethanol, Triole, wie Glycerin, Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Tetraole, wie Pentaerythrit, Ditrimethylolpropan, Hexole, wie Erythrit und Sorbit. Bevorzugt sind 3- bis 6-wertige oxalkylierte C₃- bis C₆-Alkohole wie oxethyliertes und/oder oxpropyliertes Trimethylolpropan, Glycerin, Pentaerythrit und Sorbit.

Der Oxalkylierungsgrad liegt in der Regel zwischen 1 und 30, bevorzugt zwischen 2 und 10.

Als Komponente (B) können 2- bis 4-wertige C₃- bis C₃- Carbonsäuren oder deren Anhydride eingesetzt werden, wie Bernsteinsäure, Bernsteinsäureanhydrid, Glutarsäure, Glutarsäureanhydrid, Adipinsäure, Sebacinsäure, Phthalsäure, Phthalsäureanhydrid, Terephthalsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Citraconsäure, Tetrahydrophthalsäure, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäure, Hexachlor-endomethylentetrahydrophthalsäure, dimere Linolsäure, Trimellithsäureanhydrid, Pyromellithsäure und Pyromellithsäureanhydrid. Bevorzugt sind Adipinsäure, Phthalsäure, Phthalsäureanhydrid, Maleinsäureanhydrid und Fumarsäure.

Geeignete Mono-, Di- oder Polyepoxidverbindungen, vorzugsweise Di- und Triepoxidverbindungen, sind epoxidierte Olefine, Glycidester von gesättigten oder ungesättigten Carbonsäuren oder Glycidether aliphatischer oder aromatischer Polyole. Bevorzugt werden die Glycidether von Butandiol, Bisphenol A und Pentaerithrit.

Die Veresterung der Komponenten (A), (B) und (C) erfolgt nach allgemein bekannten Methoden in Gegenwart von sauren Veresterungskatalysatoren, wie Schwefelsäure oder para-Toluolsulfonsäure, die in Mengen von 0,1 bis 3 Gew.%, bezogen auf die Komponenten (A), (B) und (C) eingesetzt werden, bei Temperaturen von 60 bis 140°C, wobei das entstehende Wasser azeotrop entfernt wird. Als Schleppmittel kommen aliphatische und aromatische Kohlenwasserstoffe in Frage, z.B. Alkane und Cycloalkane, wie n-Hexan, n-Heptan und Cyclohexan, Aromaten, wie Benzol, Toluol und Xylolisomere und sogenannte Spezialbenzine, welche Siedepunkte zwischen 70 und 140°C aufweisen. Besonders bevorzugte Schleppmittel sind Cyclohexan und Toluol. Die Menge des zugesetzten Kohlenwasserstoffs ist unkritisch, je nach verwendeter Apparatur kann die zugesetzte Menge zwischen der 0,1- und 2-fachen Menge des Reaktionsgemisches aus den Komponenten (A), (B) und (C) variieren. Besonders vorteilhaft ist ein Verhältnis Reaktionsgemisch zu Kohlenwasserstoff von 1:0,2 bis 1:0,8. Das eingesetzte Lösungsmittel wird nach der Veresterung, gegebenenfalls unter vermindertem Druck, aus dem Reaktionsgemisch entfernt.

Die Veresterung wird bji zu einem Umsatz von mindestens 85%, vorzugsweise 90 bis 95%, durchgeführt.

Zur Vermeidung einer vorzeitigen Polymerisation wird die Veresterung zweckmäßigerweise in Gegenwart geringer Mengen von Inhibitoren durchgeführt. Dabei handelt es sich um die üblichen, zur Verhinderung einer thermischen Polymerisation verwendeten Verbindungen, z.B. vom Typ des Hydrochinons, der
Hydrochinonmonoalkylether, des 2,6-Di-tert.-butylphenols, der N-Nitrosamine, der Phenothiazine oder der
Phosphorigsäureester. Sie werden im allgemeinen in Mengen von 0,001 bis 2,0 Gew.%, vorzugsweise in
Mengen von 0,005 bis 0,5 Gew.%, bezogen auf die Summen der Komponenten (A), (B) und (C) eingesetzt.

Die Äquivalentverhältnisse der Komponenten (A):(B):(C) betragen 1: 0,05 bis 1: 0,1 bis 1,5, bevorzugt 1:0,1 bis 0,6:0,5 bis 0,9. Auf 1 Äquivalent des theoretischen Umsetzungsproduktes aus (A) und (B) werden 1 bis 1,5, bevorzugt 1,1 bis 1,25 Äquivalente Acrylsäure und/oder Methacrylsäure eingesetzt.

Nach der Veresterung wird im allgemeinen der Veresterungskatalysator in geeigneter Weise neutralisiert, z.B. durch Zusatz von tertiären Aminen oder Alkalihydroxiden. Die Carbonsäuregruppen des Acrylatharzes sowie die überschüssige Acrylsäure bzw. Methacrylsäure werden mit deren Säurezahl äquivalenten Menge einer der oben genannten Epoxidverbindungen bei 90 bis 130°C, vorzugsweise 100 bis 110°C, bis zu einer Säurezahl unter 5mg KOH/g umgesetzt. Dabei können zur Katalysierung der Reaktion zwischen Carboxyl- und Epoxidgruppen geeignete Verbindungen, wie tertiäre Amine, quartäre Ammoniumverbindungen oder Lewisbasen z.B. vom Typ des Thiodiglykols mitverwendet werden. Die erfindungsgemäßen Acrylate weisen z.B. Viskositäten von 0,5 bis 20 Pas, bevorzugt 1 bis 15 Pas bei 23°C auf.

Die erfindungsgemäß hergestellten Acrylate werden zur Verarbeitung im allgemeinen mit weiteren, aus der Strahlungshärtung bekannten Reaktivverdünnern versetzt. Beispielhaft seien hier lediglich genannt 4-tert.-Butylcyclohexylacrylat, Phenoxyethylacrylat, Hexandioldiacrylat, Tripropylenglykoldiacrylat, Trimethylolpropandiacrylat sowie Acrylate von alkoxylierten Diolen und Triolen. Die mittels des erfindungsgemäßen Verfahrens hergestellten Beschichtungs- und Überzugsmittel werden zweckmäßigerweise entweder durch Elektronenstrahlen oder nach Zusatz von Photoinitiatoren durch UV-Strahlen vernetzt und ergeben Filme, die den Anforderungen der Praxis voll gerecht werden.

Beispiel 1

45

532,6g ethoxyliertes Trimethylolpropan mit einer OH-Zahl von 630mg KOH/g, 98g Maleinsäureanhydrid, 316,8g Acrylsäure, 437,7g Cyclohexan, 4,73g Schwefelsäure, 2,93g Hydrochinonmonomethylether, 0,95g 2,6-Di-tert.-butylkresol, 0,95g 50 gew.%ige hypophosphorige Säure und 0,028g Phenothiazin wurden zusammengegeben und bis zum Sieden erhitzt. Nachdem 93g Wasser in ca. 11 Stunden abdestilliert wurden, wurde auch das Lösungsmittel destillativ entfernt. Das Reaktionsgemisch wies eine Säurezahl von 38,8mg KOH/g auf. Anschließend wurden 105,7g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) und 17,9g Tributylamin zugegeben. Bei 105 bis 110°C wurde die Reaktion weitergeführt, bis nach ca. 8 Stunden eine Säurezahl von 4,4mg KOH/g erreicht war. Die Viskosität bei 23°C betrug 4,3 Pa.s.

Beispiel 2

Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt:

1. Stufe: 532,6 g ethoxyliertes Trimethylolpropan (OH-Zahl 630 mg/g) 116,1 g Fumarsäure 316,8 g Acrylsäure 482,7 g Cyclohexan 4,82 g Schwefelsäure 2,99 g Hydrochinonmonomethylether 0,96 g 2,6-Di-tert.-butylkresol 10 0,96 g hypophosphorige Säure (50 gew.%ig) 0,96 g Triphenylphosphit 0,029 g Phenothiazin abdestillierte Wassermenge: 110ml Säurezahl: 51,0mg KOH/g 15 2. Stufe 120,5 g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) 18,2 g Tributylamin Produkt-Viskosität (23 ° C): 12,8 Pa.s Beispiel 3: Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbin-25 dungen umgesetzt: 1. Stufe 532,6 g ethoxyliertes Trimethylolpropan (OH-Zahl 630mg/g) 146,1 g Adipinsäure 316,8 g Acrylsäure 497,8 g Cyclohexan 4,98 g Schwefelsäure 35 3,10 g Hydrochinonmonomethylether 0,99 g 2,6-Di-tert.-butylkresol 0,99 g hypophosphorige Säure (50" gew.%ig) 0,99 g Triphenylphosphit 0,033 g Phenothiazin abdestillierte Wassermenge: 40 111ml Säurezahl: 37,9mg KOH/g 2. Stufe 106,9 g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) 18,8 g Tributylamin Produkt-Viskosität (23 ° C): 2,6 Pa.s Beispiel 4 50 Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt: 1. Stufe: 55 623,3 g propoxiliertes und ethoxiliertes Trimethylolpropan (PO:EO = 86:14;OH-Zahl = 540mg KOH/g) 98,0 g Maleinsäure

316,8 g Acrylsäure

525,1 g Cyclohexan

5,20 g Schwefelsäure

1,04 g Hydrochinonmonomethylether

1,04 g 2,6-Di-tert.-butylkresol

1,04 g hypophosphorige Säure

1,04 g Zinndichloridhydrat

0,52 g Phenothiazin

abdestillierte Wassermenge:

Säurezahl: 48,5 mg KOH/g

10

15

2. Stufe

128,1 g Pentaerythrittriglycidylether (Epoxid-Äquivalentgewicht 163g/mol)

85 ml

18,8 g Tributylamin

Produkt-Viskosität (i23 ° C): 5,36 Pa.s

Bei den Produkten aus den Beispielen 1 bis 4 konnten gaschromatographisch keine flüchtigen Diolacrylate nachgewiesen werden. Vom Trimethylolpropan abgeleitete Acrylate wurden unter 0,8 Gew.% Anteil ermittelt.

20 Vergleichsbeispiel 1:

780g Adipinsäure, 420g Phthalsäureanhydrid, 600g Ethylenglykol und 560g Trimethylolpropan wurden zusammengegeben und auf 160°C aufgeheizt. Anschließend wurde die Temperatur auf 210°C gesteigert und die Veresterung unter Anlegen von Vakuum solange fortgeführt, bis eine Säurezahl von 0,6mg KOH/g erreicht war. Das Produkt hatte eine OH-Zahl von 320mg KOH/g. 1250g davon wurden mit 582g Acrylsäure, 916g Cyclohexan, 5,5g Schwefelsäure, 1,8g Methylhydrochinonmonomethylether, 0,9g 2,6-Di-tert.-butylkresol und 0,04g Phenothiazin zugesetzt. Anschließend wurde weiter Wasser abdestilliert (138g Wasser in 10 Stunden). Nach destillativer Entfernung des Lösungsmittels wies das Reaktionsgemisch eine Säurezahl von 44mg KOH/g auf. Es wurden nun 10,5g Dimethylethanolamin, 192g Pentaerythrittriglycidylether und 1g Thiodiglykol zugegeben und die Reaktion bei 105 bis 110°C fortgeführt. Nach 5 Stunden war eine Säurezahl von 2,6mg KOH/g erreicht. Die Viskosität (23°C) betrug 47,5 Pa.s.

Nach gaschromatographischen Messungen wurden folgende Mengen an Acrylestern des Glykols und Trimethylolpropans nachgewiesen:

1,0% Hydroxyethylacrylat

35 3,8% Ethylenglykoldiacrylat

1,9% Trimethylolpropanacrylate

Prüfung der Lackeigenschaften

Die gemäß den Beispielen hergestellten Produkte wurden nach Verdünnen auf Verarbeitungsviskosität und Zusatz eines Photoinitiators bzw. einer Photoinitiatorkombination in einer 100µm-Schicht (= Nassfilmstärke) auf Glas aufgetragen und in einem Abstand von ca. 10 cm an einer Quecksilbermitteldrucklampe mit einer Leistung von 80 W/cm vorbeigeführt. Die Bestrahlung erfolgte in der Luft. Der in Tabelle 1 für die Reaktivität angegebene Zahlenwert gibt diejenige Bandgeschwindigkeit an, bei der ein kratzfester Überzug erzielt wurde.

50

Tabelle 1

i	Lackpri	üfungen				
5	Polyesteracrylat hergestellt nach Beispiel (je 100g)	1	2	3	4	Vergleichsbeispiel 1
ľ	Hexandioldiacrylat (g)1)	25,3	41,6	21,4	31,6	53,8
1	Hexandioldiacrylat-Anteil (%)1)	20,2	29,4	17,6	24,0	35,0
- 1	Benzildimethylketal	1,25	1,42	1,21	1,32	1,54
. 1	Benzophenon	2,50	2,84	2,42	2,64	3.08
0	Methyldiethanolamin	3,75	4,26	3,63	3,96	4,62
	flüchtige Anteile (%)	3,4	3,2	3,0	2,9	7,1
	Reaktivität (m/min)	35	30	50	25	45
İ	Pendelhärte (DIN 53 157)	76	97	39	53	42

¹⁾ entsprechend einer eingestellten Viskosität von 100 sec Auslaufzeit nach DIN 4 bei 23 ° C

Patentansprüche

20

25

30

40

45

50

55

- Strahlungshärtbare Acrylate, erhältlich durch Reaktion von
 - A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
 - B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
 - C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure
- sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung.
- Strahlungshärtbare Acrylate nach Anspruch 1, erhältlich unter Verwendung von 3- bis 6-wertigen oxalkylierten C₃- bis C₆-Alkoholen als Komponente (A).
- Strahlungshärtbare Acrylate nach den Ansprüchen 1 oder 2, erhältlich unter Verwendung von oxalkylierten Alkoholen mit einem Oxalkylierungsgrad von 1 bis 30 als Komponente (A).
- Strahlungshärtbare Acrylate nach einem der Ansprüche 1 bis 3, bei denen die Komponenten (A), (B) und (C) einen Umsetzungsgrad von mindestens 85%, aufweisen. 35
 - 5. Verfahren zur Herstellung von strahlungshärtbaren Acrylaten gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man
 - A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
 - B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
 - C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure
 - in Gegenwart eines sauren Veresterungskatalysators und mindestens eines Kohlenwasserstoffs, der mit Wasser ein azeotropes Gemisch bildet sowie geringer Mengen eines Polymerisationsinhibitors unter azeotroper Entfernung des entstehenden Wassers bei Temperaturen von 60 bis 140°C verestert, den Kohlenwasserstoff destillativ entfernt und nach Neutralisation des Veresterungskatalysators die überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung umsetzt.
 - Verwendung der strahlungshärtbaren Acrylate gemäß einem der Ansprüche 1 bis 4 in strahlungshärtbaren Überzugsmassen.

Claims

- 1. A radiation-curable acrylate, obtainable by reacting
 - A) 1 equivalent of a dihydric to hexahydric oxyalkylated C2-C10-alcohol with
 - B) from 0.05 to 1 equivalent of a dibasic to tetrabasic C₃-C₃₆-carboxylic acid or its anhydride and
 - C) from 0.1 to 1.5 equivalents of acrylic acid and/or methacrylic acid
 - and reacting the excess carboxyl groups with an equivalent amount of an epoxide compound.

- A radiation-curable acrylate as claimed in claim 1, obtainable using a trihydric to hexahydric oxyalkylated C₃-C₆-alcohol as component (A).
- A radiation-curable acrylate as claimed in claim 1 or 2, obtainable using an oxyalkylated alcohol having a degree of oxyalkylation of 1 to 30 as component (A).
 - 4. A radiation-curable acrylate as claimed in any of claims 1 to 3, wherein the components (A), (B) and (C) have a conversion of not less then 85%.
- 5. A process for the preparation of a radiation-curable acrylate as claimed in any of claims 1 to 4, wherein
 A) 1 equivalent of a dihydric to hexahydric oxyalkylated C₂-C₁₀-alcohol is esterified with
 - B) from 0.05 to 1 equivalent of a dibasic to tetrabasic C₃-C₃₆-carboxylic acid or its anhydride and
 - C) from 0.1 to 1.5 equivalents of acrylic acid and/or methacrylic acid
 - in the presence of an acidic esterification catalyst and one or more hydrocarbons which form an azeotropic mixture with water, as well as a small amount of a polymerization inhibitor, with azeotropic removal of the resulting water, at from 60 to 140°C, the hydrocarbon is removed by distillation and, after neutralization of the esterification catalyst, the excess carboxyl groups are reacted with an equivalent amount of an epoxide compound.
- 6. Use of a radiation-curable acrylate as claimed in any of claims 1 to 4 in radiation-curable coating materials.

Revendications

5

15

35

45

- 25 1. Acrylates durcissables par rayonnement, pouvant être obtenus par réaction de
 - A) 1 équivalent d'un compose en C2 à C10 oxalkylé possédant 2 à 6 fois la fonction alcool, avec
 - B) 0,05 à 1 équivalent d'un acide carboxylique en C_3 à C_{36} possédant 2 à 4 fois la fonction acide ou de son anhydride et
 - C) 0,1 à 1,5 équivalent d'acide acrylique et/ou d'acide méthacrylique,
- ainsi que par réaction des groupements carboxyle en excès avec la quantité équivalente d'un composé époxy.
 - 2. Acrylates durcissables par rayonnement selon la revendication 1, pouvant être obtenus en utilisant, comme composant (A), des composés en C₃ à C₅ oxalkyléspossédant 3 à 6 fois la fonction alcool.
 - 3. Acrylates durcissables par rayonnement selon la revendication 1 ou 2, pouvant être obtenus en utilisant, comme composant (A), des alcools oxalkylés ayant un degré d'oxalkylation de 1 à 30.
- Acrylates durcissables par rayonnement selon l'une quelconque des revendications 1 à 3, dans lesquels les composants (A), (B) et (C) présentent un degré de transformation d'au moins 85%.
 - Procédé de préparation d'acrylates durcissables par rayonnement selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on estérifie
 - A) 1 équivalent d'un composé en C2 à C10 oxalkylé possédant 2 à 6 fois la fonction alcool, avec
 - B) 0,05 à 1 équivalent d'un acide carboxylique en C₃ à C₃₆ possédant 2 à 4 fois la fonction acide ou de son anhydride et
 - C) 0,1 à 1,5 équivalent d'acide acrylique et/ou d'acide méthacrylique,
 - en présence d'un catalyseur d'estérification acide et d'au moins un hydrocarbure qui forme un mélange azéotrope avec l'eau, ainsi que de faibles quantités d'un inhibiteur de polymérisation, avec élimination azéotrope de l'eau formée, à des températures de 60 à 140 °C, on élimine par distillation l'hydrocarbure et, après neutralisation du catalyseur d'estérification, on fait réagir les groupements carboxyle en excès avec la quantité équivalente d'un composé époxy.
- Utilisation des acrylates durcissables par rayonnement selon l'une quelconque des revendications 1 à 4
 dans des masses à enduire durcissables par rayonnement.

① Veröffentlichungsnummer: 0 279 303 B2

12

NEUE EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag der neue Patentschrift: 08.02.95
- (1) Int. Cl. 5: C07C 69/54, C07C 67/08, C07C 67/26, C08F 20/28

- (21) Anmeldenummer: 88101756.0
- 2 Anmeldetag: 06.02.88

- Strahlungshärtbare Acrylate.
- 3 Priorität: 11.02.87 DE 3704098
- Veröffentlichungstag der Anmeldung: 24.08.88 Patentblatt 88/34
- 45 Bekanntmachung des Hinweises auf die Patenterteilung: 06.05.92 Patentblatt 92/19
- 45 Bekanntmachung des Hinweises auf die Entsheidung über den Einspruch: 08.02.95 Patentblatt 95/06
- 84 Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI LU NL SE
- 69 Entgegenhaltungen:

EP-A- 0 126 341 EP-A- 0 222 059 DE-A- 2 838 691 DE-A- 3 241 264 DE-A- 3 316 592 DE-A- 3 316 593 DE-B- 2 215 493 FR-A- 2 237 875

- 73 Patentinhaber: BASF Aktlengesellschaft Carl-Bosch-Strasse 38 D-67063 Ludwigshafen (DE)
- Erfinder: Beck, Erich, Dr. **Schweriner Weg 8** D-6800 Mannheim 31 (DE) Erfinder: Weiss, Wolfram, Dr. Am Speyerweg 40 D-6704 Mutterstadt (DE) Erfinder: Schmidt, Horst, Dr. Kopernikusstrasse 56 D-6800 Mannheim 1 (DE)

Beschreibung

5

Die vorliegende Erfindung betrifft strahlungshärtbare Acrylate, erhältlich durch gleichzeitige Umsetzung von

- A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
- B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
- C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure

sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung, ein Verfahren zu deren Herstellung und deren Verwendung in strahlungshärtbaren Überzugsmassen.

Strahlungshärtbare Bindemittel auf Basis von acrylgruppenhaltigen Polyestern sind bekannt. Insbesondere in Hinsicht ihrer lösungsmittelfreien und schnellen Verarbeitbarkeit sind derartige Lackharze von großem Interesse.

Die Lösungsmittelfreiheit dieser Systeme ersparen den Aufwand zum Ablüften und Aufarbeiten der Lösungsmittel. Zudem wird die Emissionsgefahr durch Lösungsmittel wesentlich vermindert.

Für eine wirtschaftliche Verarbeitbarkeit sind seitens der Bindemittel im allgemeinen neben niedrigen Rohstoffkosten und einer hohen Reaktivität insbesondere auch ein geringer Reaktivverdünnerbedarf zur Einstellung geeigneter Verarbeitungsviskositäten von Bedeutung.

In der DE 32 41 264 wird eine Möglichkeit beschrieben, durch Verwendung von wäßrigen, strahlungshärtbaren Bindemitteldispersionen auf den Zusatz von Reaktivverdünnern zu verzichten. Hierzu wird ein strahlungshärtbares Acrylat einer bestimmten Zusammensetzung beschrieben, das oberflächenaktive Eigenschaften hat und dadurch die wäßrigen Dispersionen oder Emulsionen stabilisiert.

Bei der Verwendung dieser Dispersionen als Beschichtungsmittel sind aber Ablüftzeiten für das Wasser zu berücksichtigen.

Niedermolekulare Acrylester der Polyolkomponenten eines üblichen Polyesteracrylatharzes, die sich während einer sauer katalysierten Veresterungsreaktion durch gleichzeitig als Nebenreaktionen ablaufende Umesterungsreaktionen bilden, begünstigen ebenfalls einen niedrigen Verdünnerbedarf.

In der DE-OS 33 16 592 und der DE-OS 33 16 593 werden Verfahren zur Herstellung von strahlungshärtbaren Acrylaten beschrieben, wobei OH-Gruppen enthaltende Polyester mit Überschüssiger Acrylsäure verestert werden und anschließend die restliche Acrylsäure durch eine Additionsreaktion mit Di- oder Polyglycidylethern zu nichtflüchtigen 2-Hydroxyacrylestern umgesetzt wird. Niedermolekulare, verdünnend wirkende Acrylester, die durch Umesterung aus Bestandteilen des Polyesters entstehen können, verbleiben im Endprodukt. Ein großer Nachteil derartiger Verbindungen ist jedoch deren erhöhte Toxizität und Flüchtigkeit, wie sie insbesondere von niedermolekularen Acrylestern bekannt sind.

Aufgabe der vorliegenden Erfindung war es deshalb, neue strahlungshärtbare Acrylate für strahlungshärtbare Überzugsmassen bereitzustellen, die deutlich verminderte Gehalte an flüchtigen und physiologisch bedenklichen Acrylverbindungen haben, deren Bedarf an Reaktivverdünnern möglichst gering ist und die sich zu hochwertigen Überzügen verarbeiten lassen.

Diese Aufgabe konnte gelöst werden durch strahlungshärtbare Acrylate, erhältlich durch gleichzeitige Umsetzung von

- A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
- B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
- C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure

sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung.

Als geeignete Komponenten (A) können oxethylierte, oxpropylierte sowie gemischt oxethylierte und oxpropylierte 2- bis 6-wertige Alkohole verwendet werden, wie die Diole Ethylenglykol, Propylenglykol, Butandiol-1,4, Pentandiol-1,5, Neopentylglykol, Hexandiol-1,6, 2-Methylpentandiol-1,5, 2-Ethylbutanciol-1,4, Dimethylolcyclohexan, 1,1'-Isopropyliden-bis-(p-phenylen-oxy)-di-3-ethanol, Triole, wie Glycerin, Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Tetraole, wie Pentaerythrit, Ditrimethylolpropan, Hexole, wie Erythrit und Sorbit. Bevorzugt sind 3- bis 6-wertige oxalkylierte C₃- bis C₅-Alkohole wie oxethyliertes und/oder oxpropyliertes Trimethylolpropan, Glycerin, Pentaerythrit und Sorbit.

Der Oxalkylierungsgrad liegt in der Regel zwischen 1 und 30, bevorzugt zwischen 2 und 10.

Als Komponente (B) können 2- bis 4-wertige C₃- bis C₃- Carbonsäuren oder deren Anhydride eingesetzt werden, wie Bernsteinsäure, Bernsteinsäureanhydrid, Glutarsäure, Glutarsäureanhydrid Adipinsäure, Sebacinsäure, Phthalsäure, Phthalsäureanhydrid, Terephthalsäure, Maleinsäureanhydrid, Fumarsäure, Citraconsäure, Tetrahydrophthalsäure, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäure, dimere Linolsäure, Trimellithsäureanhydrid, Pyromellithsäure und Pyromellithsäureanhydrid. Bevorzugt sind Adipinsäure, Phthalsäure,

Phthalsäureanhydrid, Maleinsäureanhydrid und Fumarsäure.

Geeignete Mono-, Di- oder Polyepoxidverbindungen, vorzugsweise Di- und Triepoxidverbindungen, sind epoxidierte Olefine, Glycidester von gesättigten oder ungesättigten Carbonsäuren oder Glycidether aliphatischer oder aromatischer Polyole. Bevorzugt werden die Glycidether von Butandiol, Bisphenol A und Pentaerithrit.

Die Veresterung der Komponenten (A), (B) und (C) erfolgt nach allgemein bekannten Methoden in Gegenwart von sauren Veresterungskatalysatoren, wie Schwefelsäure oder para-Toluolsulfonsäure, die in Mengen von 0,1 bis 3 Gew.%, bezogen auf die Komponenten (A), (B) und (C) eingesetzt werden, bei Temperaturen von 60 bis 140 °C, wobei das entstehende Wasser azeotrop entfernt wird. Als Schleppmittel kommen aliphatische und aromatische Kohlenwasserstoffe in Frage, z.B. Alkane und Cycloalkane, wie n-Hexan, n-Heptan und Cyclohexan, Aromaten, wie Benzol, Toluol und Xylolisomere und sogenannte Spezialbenzine, welche Siedepunkte zwischen 70 und 140 °C aufweisen. Besonders bevorzugte Schleppmittel sind Cyclohexan und Toluol. Die Menge des zugesetzten Kohlenwasserstoffs ist unkritisch, je nach verwendeter Apparatur kann die zugesetzte Menge zwischen der 0,1- und 2-fachen Menge des Reaktionsgemisches aus den Komponenten (A), (B) und (C) variieren. Besonders vorteilhaft ist ein Verhältnis Reaktionsgemisch zu Kohlenwasserstoff von 1:0,2 bis 1:0,8. Das eingesetzte Lösungsmittel wird nach der Veresterung, gegebenenfalls unter vermindertem Druck, aus dem Reaktionsgemisch entfernt.

Die Veresterung wird bis zu einem Umsatz von mindestens 85%, vorzugsweise 90 bis 95%, durchgeführt.

Zur Vermeidung einer vorzeitigen Polymerisation wird die Veresterung zweckmäßigerweise in Gegenwart geringer Mengen von Inhibitoren durchgeführt. Dabei handelt es sich um die Üblichen, zur Verhinderung einer thermischen Polymerisation verwendeten Verbindungen, z.B. vom Typ des Hydrochinons, der Hydrochinonmonoalkylether, des 2,6-Di-tert.-butylphenols, der N-Nitrosamine, der Phenothiazine oder der Phosphorigsäureester. Sie werden im allgemeinen in Mengen von 0,001 bis 2,0 Gew.%, vorzugsweise in Mengen von 0,005 bis 0,5 Gew.%, bezogen auf die Summen der Komponenten (A), (B) und (C) eingesetzt.

Die Äquivalentverhältnisse der Komponenten (A):(B):(C) betragen 1: 0,05 bis 1: 0,1 bis 1,5 bevorzugt 1:0,1 bis 0,6:0,5 bis 0,9. Auf 1 Äquivalent des theoretischen Umsetzungsproduktes aus (A) und (B) werden 1 bis 1,5, bevorzugt 1,1 bis 1,25 Äquivalente Acrylsäure und/oder Methacrylsäure eingesetzt.

Nach der Veresterung wird im allgemeinen der Veresterungskatalysator in geeigneter Weise neutralisiert, z.B. durch Zusatz von tertiären Aminen oder Alkalihydroxiden. Die Carbonsäuregruppen des Acrylatharzes sowie die überschüssige Acrylsäure bzw. Methacrylsäure werden mit deren Säurezahl äquivalenten Menge einer der oben genannten Epoxidverbindungen bei 90 bis 130 °C, vorzugsweise 100 bis 110 °C, bis zu einer Säurezahl unter 5mg KOH/g umgesetzt. Dabei können zur Katalysierung der Reaktion zwischen Carboxyl- und Epoxidgruppen geeignete Verbindungen, wie tertiäre Amine, quartäre Ammoniumverbindungen oder Lewisbasen z.B. vom Typ des Thiodiglykols mitverwendet werden. Die erfindungsgemäßen Acrylate weisen z.B. Viskositäten von 0,5 bis 20 Pas, bevorzugt 1 bis 15 Pas bei 23 °C auf.

Die erfindungsgemäß hergestellten Acrylate werden zur Verarbeitung im allgemeinen mit weiteren, aus der Strahlungshärtung bekannten Reaktivverdünnern versetzt. Beispielhaft seien hier lediglich genannt 4-tert.-Butylcyclohexylacrylat, Phenoxyethylacrylat, Hexandioldiacrylat, Tripropylenglykoldiacrylat, Trimethylol-propandiacrylat sowie Acrylate von alkoxylierten Diolen und Triolen. Die mittels des erfindungsgemäßen Verfahrens hergestellten Beschichtungs- und Überzugsmittel werden zweckmäßigerweise entweder durch Elektronenstrahlen oder nach Zusatz von Photoinitiatoren durch UV-Strahlen vernetzt und ergeben Filme, die den Anforderungen der Praxis voll gerecht werden.

5 Beispiel 1

55

20

532,6g ethoxyliertes Trimethylolpropan mit einer OH-Zahl von 630mg KOH/g, 98g Maleinsäureanhydrid, 316,8g Acrylsäure, 437,7g Cyclohexan, 4,73g Schwefelsäure, 2,93g Hydrochinonmonomethylether, 0,95g 2,6-Di-tert.-butylkresol, 0,95g 50 gew.%ige hypophosphorige Säure und 0,028g Phenothiazin wurden zusammengegeben und bis zum Sieden erhitzt. Nachdem 93g Wasser in ca. 11 Stunden abdestilliert wurden, wurde auch das Lösungsmittel destillativ entfernt. Das Reaktionsgemisch wies eine Säurezahl von 38,8mg KOH/g auf. Anschließend wurden 105,7g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) und 17,9g Tributylamin zugegeben. Bei 105 bis 110 °C wurde die Reaktion weitergeführt, bis nach ca. 8 Stunden eine Säurezahl von 4,4mg KOH/g erreicht war. Die Viskosität bei 23 °C betrug 4,3 Pa.s.

Beispiel 2

Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt:

1. Stufe:

5

532,6 g ethoxyliertes Trimethylolpropan (OH-Zahl 630 mg/g)

116,1 g Fumarsäure

10 316,8 g Acrylsäure

482,7 g Cyclohexan

4,82 g Schwefelsäure

2,99 g Hydrochinonmonomethylether

0,96 g 2,6-Di-tert.-butylkresol

15 0,96 g hypophosphorige Säure (50 gew.%ig)

0,96 g Triphenylphosphit

0,029 g Phenothiazin

20

abdestillierte Wassermenge:	110ml
Säurezahl:	51,0mg KOH/g

2. Stufe

25

120,5 g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) 18,2 g Tributylamin

Produkt-Viskosität (23 ° C):

12,8 Pa.s

Beispiel 3:

Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt:

1. Stufe

40 532,6 g ethoxyliertes Trimethylolpropan (OH-Zahl 630mg/g)

146,1 g Adipinsäure

316,8g Acrylsäure

497,8 g Cyclohexan

4,98 g Schwefelsäure

45 3,10 g Hydrochinonmonomethylether

0,99 g 2,6-Di-tert.-butylkresol

0,99 g hypophosphorige Säure (50ï gew.%ig)

0,99 g Triphenylphosphit

0,033 g Phenothiazin

50

abdestillierte Wassermenge:	111ml
Säurezahl:	37,9mg KOH/g

2. Stufe

106,9 g Diglycidylether von Bisphenol A (Epoxid-Äquivalentgewicht 186g/mol) 18,8 g Tributylamin

5

Produkt-Viskosität (23 ° C):	2,6 Pa.s
	-,

o Beispiel 4

Unter Anwendung der in Beispiel 1 beschriebenen zweistufigen Arbeitsweise wurden folgende Verbindungen umgesetzt:

15 1. Stufe:

623,3 g propoxiliertes und ethoxiliertes Trimethylolpropan (PO:EO = 86:14;OH-Zahl = 540mg KOH/g)

98,0 g Maleinsäure

316,8 g Acrylsäure

20 525,1 g Cyclohexan

5,20 g Schwefelsäure

1,04 g Hydrochinonmonomethylether

1,04 g 2,6-Di-tert.-butylkresol

1,04 g hypophosphorige Säure

1,04 g Zinndichloridhydrat

0,52 g Phenothiazin

abdestillierte Wassermenge: 85 ml Säurezahl: 48,5 mg KOH/g

30

2. Stufe

128,1 g Pentaerythrittriglycidylether (Epoxid-Äquivalentgewicht 163g/mol) 18,8 g Tributylamin

Produkt-Viskosität (23 ° C):	5,36 Pa.s
1 Todaki-viskositat (25 C).	5,30 Pa.S

40

Bei den Produkten aus den Beispielen 1 bis 4 konnten gaschromatographisch keine flüchtigen Diolacrylate nachgewiesen werden. Vom Trimethylolpropan abgeleitete Acrylate wurden unter 0.8 Gew.% Anteil ermittelt.

45 Vergleichsbeispiel 1:

780g Adipinsäure, 420g Phthalsäureanhydrid, 600g Ethylenglykol und 560g Trimethylolpropan wurden zusammengegeben und auf 160°C aufgeheizt. Anschließend wurde die Temperatur auf 210°C gesteigert und die Veresterung unter Anlegen von Vakuum solange fortgeführt, bis eine Säurezahl von 0,6mg KOH/g erreicht war. Das Produkt hatte eine OH-Zahl von 320mg KOH/g. 1250g davon wurden mit 582g Acrylsäure, 916g Cyclohexan, 5,5g Schwefelsäure, 1,8g Methylhydrochinonmonomethylether, 0,9g 2,6-Di-tert.-butylkresol und 0,04g Phenothiazin zugesetzt. Anschließend wurde weiter Wasser abdestilliert (138g Wasser in 10 Stunden). Nach destillativer Entfernung des Lösungsmittels wies das Reaktionsgemisch eine Säurezahl von 44mg KOH/g auf. Es wurden nun 10,5g Dimethylethanolamin, 192g Pentaerythrittriglycidylether und 1g Thiodiglykol zugegeben und die Reaktion bei 105 bis 110°C fortgeführt. Nach 5 Stunden war eine Säurezahl von 2,6mg KOH/g erreicht. Die Viskosität (23°C) betrug 47,5 Pa.s.

Nach gaschromatographischen Messungen wurden folgende Mengen an Acrylestern des Glykols und Trimethylolpropans nachgewiesen:

1,0% Hydroxyethylacrylat

3,8% Ethylenglykoldiacrylat

1,9% Trimethylolpropanacrylate

5 Prüfung der Lackeigenschaften

Die gemäß den Beispielen hergestellten Produkte wurden nach Verdünnen auf Verarbeitungsviskosität und Zusatz eines Photoinitiators bzw. einer Photoinitiatorkombination in einer 100µm-Schicht (= Nassfilmstärke) auf Glas aufgetragen und in einem Abstand von ca. 10 cm an einer Quecksilbermitteldrucklampe mit einer Leistung von 80 W/cm vorbeigeführt. Die Bestrahlung erfolgte in der Luft. Der in Tabelle 1 für die Reaktivität angegebene Zahlenwert gibt diejenige Bandgeschwindigkeit an, bei der ein kratzfester Überzug erzielt wurde.

Tabelle 1

20

Lackpi	rüfungen)			
Polyesteracrylat hergestellt nach Beispiel (je 100g)	1	2	3	4	Vergleichsbeispiel 1
Hexandioldiacrylat (g) ¹⁾	25,3	41,6	21,4	31,6	53,8
Hexandioldiacrylat-Anteil (%)1)	20,2	29,4	17,6	24,0	35,0
Benzildimethylketal	1,25	1,42	1,21	1,32	1,54
Benzophenon	2,50	2,84	2,42	2,64	3,08
Methyldiethanolamin	3,75	4,26	3,63	3,96	4,62
flüchtige Anteile (%)	3,4	3,2	3,0	2,9	7,1
Reaktivität (m/min)	35	30	50	25	45
Pendelhärte (DIN 53 157)	76	97	39	53	42

¹⁾ entsprechend einer eingestellten Viskosität von 100 sec Auslaufzeit nach DIN 4 bei 23 °C

30

35

25

Patentansprüche

- 1. Strahlungshärtbare Acrylate, erhältlich durch glechzeitige Umsetzung von
 - A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
 - B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
 - C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure
 - sowie Umsetzung der überschüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung.

10

45

- 2. Strahlungshärtbare Acrylate nach Anspruch 1, erhältlich unter Verwendung von 3- bis 6-wertigen oxalkylierten C₃- bis C₆-Alkoholen als Komponente (A).
- Strahlungshärtbare Acrylate nach den Ansprüchen 1 oder 2, erhältlich unter Verwendung von oxalkylierten Alkoholen mit einem Oxalkylierungsgrad von 1 bis 30 als Komponente (A).
- 4. Strahlungshärtbare Acrylate nach einem der Ansprüche 1 bis 3, bei denen die Komponenten (A), (B) und (C) einen Umsetzungsgrad von mindestens 85%, aufweisen.
- Verfahren zur Herstellung von strahlungshärtbaren Acrylaten gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man
 - A) 1 Äquivalent eines 2-bis 6-wertigen oxalkylierten C2- bis C10-Alkohols mit
 - B) 0,05 bis 1 Äquivalent einer 2- bis 4-wertigen C₃- bis C₃₆-Carbonsäure oder deren Anhydride und
 - C) 0,1 bis 1,5 Äquivalenten Acrylsäure und/oder Methacrylsäure gleichzeitig
 - in Gegenwart eines sauren Veresterungskatalysators und mindestens eines Kohlenwasserstoffs, der mit Wasser ein azeotropes Gemisch bildet sowie geringer Mengen eines Polymerisationsinhibitors unter azeotroper Entfernung des entstehenden Wassers bei Temperaturen von 60 bis 140 °C verestert, den Kohlenwasserstoff destillativ entfernt und nach Neutralisation des Veresterungskatalysators die Über-

schüssigen Carboxylgruppen mit der äquivalenten Menge einer Epoxidverbindung umsetzt,

 Verwendung der strahlungshärtbaren Acrylate gemäß einem der Ansprüche 1 bis 4 in strahlungshärtbaren Überzugsmassen.

Claims

5

10

25

30

40

45

55

- 1. A radiation-curable acrylate, obtainable by reacting
 - A) 1 equivalent of a dihydric to hexahydric oxyalkylated C2-C10-alcohol simultaneously with
 - B) from 0.05 to 1 equivalent of a dibasic to tetrabasic C₃-C₃₆-carboxylic acid or its anhydride and
 - C) from 0.1 to 1.5 equivalents of acrylic acid and/or methacrylic acid
 - and reacting the excess carboxyl groups with an equivalent amount of an epoxide compound.
- 2. A radiation-curable acrylate as claimed in claim 1, obtainable using a trihydric to hexahydric oxyal-15 kylated C₃-C₆-alcohol as component (A).
 - 3. A radiation-curable acrylate as claimed in claim 1 or 2, obtainable using an oxyalkylated alcohol having a degree of oxyalkylation of 1 to 30 as component (A).
- A radiation-curable acrylate as claimed in any of claims 1 to 3, wherein the components (A), (B) and (C) have a conversion of not less then 85%.
 - A process for the preparation of a radiation-curable acrylate as claimed in any of claims 1 to 4, wherein
 A) 1 equivalent of a dihydric to hexahydric oxyalkylated C₂-C₁₀-alcohol is esterified simultaneously with
 - B) from 0.05 to 1 equivalent of a dibasic to tetrabasic C3-C36-carboxylic acid or its anhydride and
 - C) from 0.1 to 1.5 equivalents of acrylic acid and/or methacrylic acid
 - in the presence of an acidic esterification catalyst and one or more hydrocarbons which form an azeotropic mixture with water, as well as a small amount of a polymerization inhibitor, with azeotropic removal of the resulting water, at from 60 to 140 °C, the hydrocarbon is removed by distillation and, after neutralization of the esterification catalyst, the excess carboxyl groups are reacted with an equivalent amount of an epoxide compound.
- 6. Use of a radiation-curable acrylate as claimed in any of claims 1 to 4 in radiation-curable coating materials.

Revendications

- 1. Acrylates durcissables par rayonnement, pouvant être obtenus par réaction simultanée de
 - A) 1 équivalent d'un composé en C2 à C10 oxalkylé possédant 2 à 6 fois la fonction alcool, avec
 - B) 0,05 a 1 équivalent d'un acide carboxylique en C_3 à C_{36} possédant 2 à 4 fois la fonction acide ou de son anhydride et
 - C) 0,1 à 1,5 équivalent d'acide acrylique et/ou d'acide methacrylique,
 - ainsi que par reaction des groupements carboxyle en excès avec la quantite équivalente d'un compose époxy.
- Acrylates durcissables par rayonnement selon la revendication 1, pouvant être obtenus en utilisant, comme composant (A), des composés en C₃ à C₅ oxalkyléspossédant 3 à 6 fois la fonction alcool.
- Acrylates durcissables par rayonnement selon la revendication 1 ou 2, pouvant être obtenus en utilisant, comme composant (A), des alcools oxalkylés ayant un degré d'oxalkylation de 1 à 30.
 - 4. Acrylates durcissables par rayonnement selon l'une quelconque des revendications 1 a 3, dans lesquels les composants (A), (B) et (C) présentent un degré de transformation d'au moins 85%.
 - Procédé de préparation d'acrylates durcissables par rayonnement selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on estérifie simultanément
 - A) 1 équivalent d'un composé en C2 à C10 oxalkylé possédant 2 à 6 fois la fonction alcool, avec

- B) 0,05 à 1 équivalent d'un acide carboxylique en C_3 à C_{36} possédant 2 à 4 fois la fonction acide ou de son anhydride et
- C) 0,1 à 1,5 équivalent d'acide acrylique et/ou d'acide méthacrylique,

- en présence d'un catalyseur d'estérification acide et d'au moins un hydrocarbure qui forme un mélange azéotrope avec l'eau, ainsi que de faibles quantités d'un inhibiteur de polymérisation, avec elimination azéotrope de l'eau formee, à des températures de 60 à 140 °C, on élimine par distillation l'hydrocarbure et, après neutralisation du catalyseur d'estérification, on fait réagir les groupements carboxyle en excès avec la quantité équivalente d'un composé époxy.
- 10 6. Utilisation des acrylates durcissables par rayonnement selon l'une quelconque des revendications 1 à 4 dans des masses à enduire durcissables par rayonnement.

THIS PAGE BLANK (USPTO)