Lambda Calculus and Types

Untyped Lambda Calculus

陳亮廷 Chen, Liang-Ting 2018 邏輯、語言與計算暑期研習營 Formosan Summer School on Logic, Language, and Computation

Swansea University, UK

Introduction

λ -calculus ...

- 1. was developed by Alonzo Church (Turing's PhD supervisor)
- 2. is a model of computation
- 3. is a backbone of programming languages

As a programming language, it only supports 3 constructs

- 1. variable
- 2. function definition
- 3. function application

Syntax of Lambda Calculus

Terms of λ -calculus

Definition 1 (Syntax of λ -calculus)

Let $V := \{x, y, z, ...\}$ be a countably infinite set of *variables*. The set Λ of λ -terms is defined by

$$\frac{x \in V}{x \in \Lambda}$$
 (var)

$$\frac{M \in \Lambda \quad N \in \Lambda}{(M N) \in \Lambda}$$
(app)

$$\frac{M \in \Lambda \quad x \in V}{\lambda x. M \in \Lambda}$$
 (abs)

Application is left associative; abstraction is right associative.

Meta-Language and Object-Language

- *Meta-language* is the language we use to describe the object of study. E.g., naive set theory.
- · Meta-variable is a placeholder in the meta-language.
- Object-language is the object of study. E.g., arithmetic expressions, λ -terms, etc.
- *Variable* refers to some variable of λ -calculus.

Example 2

As naming a function is not supported in λ -calculus, we do so in the meta-language:

$$id := \lambda x. x$$

id is a synonym of the λ -term on RHS in the meta-language.

Example 3 (Projections)

The first and the second projections are made of abstractions and variables only:

$$fst := \lambda x. \lambda y. x$$
 and $snd := \lambda x. \lambda y. y$

For brevity
$$\lambda x_1 x_2 \dots x_n M := \lambda x_1 (\lambda x_2 (\dots (\lambda x_n M) \dots))$$
.

Hence, projections are equal to

$$\lambda x y. x$$
 and $\lambda x y. y$

In Haskell: $\xy \to x$ and $\xy \to y$. However, $fst = \xy \to x$ is a proper term in Haskell (object-language).

α -equivalence, informally

Definition 4

Two λ -terms are α -equivalent if variables bound by abstractions can be renamed to derive the same term.

Example 5

- 1. $\lambda x. x \neq \lambda y. y$ but $\lambda x. x \equiv_{\alpha} \lambda y. y.$
- 2. $\lambda x. \lambda y. y \equiv_{\alpha} \lambda z. \lambda y. y.$
- 3. $\lambda x. \lambda y. x \not\equiv_{\alpha} \lambda x. \lambda y. y.$

 α -equivalent terms are considered 'programs of the same structure'. Renaming variables do not change program behaviour but readability.

Concrete and Abstract Syntax

Concrete Syntax

A string possibly annotated with brackets and other delimiters.

Abstract Binding Tree

A tree structure with pointers where each node is an operator with arguments as its sub-trees.

$$(\lambda xy.(\lambda z.zx)y)$$

Operational Semantics

Evaluation, informally

- The term (*M N*) is understood as a function application where *N* is the argument for the 'function' *M*.
- The term λx . L is understood as a function with a parameter x and the function body L.
- The only 'computation' in λ -calculus is function application:

$$(\lambda X. M) N \longrightarrow M[X \mapsto N]$$

where $M[x \mapsto N]$ means that x in M is substituted for N.

How to evaluate the following terms?

- 1. $(\lambda x. \lambda y. x) M N$
- 2. $(\lambda y. \lambda y. y) M$
- 3. $(\lambda x. \lambda y. x) y$

Naive Substitution i

Definition 6

For $x \in V$ and $M \in \Lambda$, the substitution of x for M is defined by

$$x[x \mapsto M] = M$$

$$y[x \mapsto M] = M \qquad \text{if } x \neq y$$

$$(M N)[x \mapsto L] = (M[x \mapsto L] N[x \mapsto L])$$

$$(\lambda x. M)[y \mapsto N] = \lambda x. M[y \mapsto N]$$

A bound variable may become free.

$$(\lambda x. x)[x \mapsto y] = \lambda x. y$$

9

Naive Substitution ii

Definition 7

For $x \in V$ and $M \in \Lambda$, the substitution of x for M is defined by

$$x[x \mapsto M] = M$$

$$y[x \mapsto M] = M \qquad \text{if } x \neq y$$

$$(M N)[x \mapsto L] = (M[x \mapsto L] N[x \mapsto L])$$

$$(\lambda x. M)[y \mapsto N] = \lambda x. M[y \mapsto N] \qquad \text{if } x \neq y$$

$$(\lambda x. M)[y \mapsto N] = \lambda x. M \qquad \text{if } x = y$$

A variable may be captured by an abstraction.

$$(\lambda x.y)[y \mapsto x] = \lambda x.x$$

Free and Bound Variables

Definition 8

The set **FV** of free variables of a term M is defined by

$$FV(x) = \{x\}$$

$$FV(\lambda x. M) = FV(M) - \{x\}$$

$$FV(M N) = FV(M) \cup FV(N)$$

A variable y which occurs in M is free if $y \in FV(M)$; bound otherwise. A λ -term M is closed or a combinator if $FV(M) = \emptyset$.

- 1. A variable can be free and bound at the same time.
- 2. An occurrence of a variable can only be either *free* or bound.

- 1. A variable can be free and bound at the same time.
- 2. An occurrence of a variable is either free or bound.

Capture-Avoiding Substitution

Capture-avoiding substitution of L for the free occurrences of x is a partial function from λ -terms to λ -terms defined by

$$x[x \mapsto L] = L$$

$$y[x \mapsto L] = y \qquad \text{if } x \neq y$$

$$(M N)[x \mapsto L] = (M[x \mapsto L] N[x \mapsto L])$$

$$(\lambda x. M)[x \mapsto L] = \lambda x. M$$

$$(\lambda y. M)[x \mapsto L] = \lambda y. M[x \mapsto L] \qquad \text{if } x \neq y \text{ and } y \notin FV(L)$$

Definition 9 (Freshness)

A variable y is fresh for L if $y \notin FV(L)$.

Congruence

Definition 10

1. A congruence on λ -terms is a relation R on λ -terms subject to following rules

$$\frac{M_1 R M_2}{(M_1 N_1) R (M_2 N_2)} \frac{M_1 R M_2}{(\lambda x. M_1) R (\lambda x. M_2)}$$

- 2. The congruence closure \overline{R} of a relation R is the smallest congruence containing R.
- 3. The congruence and equivalence closure of a relation *R* is the smallest congruence and equivalence relation containing *R*.

Homework

Define congruence closure using inference rules.

Renaming of Bound Variables

If a variable y is *fresh* for M, the bound variable x of λx . M to y can be renamed without changing the meaning.

Definition 11 (α -conversion)

 α -conversion is a relation \rightarrow_{α} defined by

$$(\lambda x. M) \longrightarrow_{\alpha} \lambda y. M[x \mapsto y]$$
 if y is fresh for M.

Let $=_{\alpha}$ be the congruence and equivalence closure of \longrightarrow_{α} . We say that M and N are α -equivalent if $M =_{\alpha} N$.

Convention

 λ -terms are equal up to α -equivalence/renaming of bound variables.

η -conversion

Pointy style is assumed to be equivalent to point-free style.

 η -reduction $\lambda x. (Mx) \longrightarrow_{\eta} M$ η -expansion $M \longrightarrow_{\eta} \lambda x. (Mx)$ where x is fresh for M. η -equivalence the congruence and equivalence closure of \longrightarrow_{η} .

 η -equivalence is a form of extensionality limited to λ -terms.

$$f = g \iff \forall x. f(x) = g(x)$$

Evaluation i

Definition 12 (β -conversion)

 β -conversion is a relation defined by

$$(\lambda X. M) N \longrightarrow_{\beta} M[X \mapsto N]$$

Any term of this form $(\lambda x. M) N$ is called a β -redex.

Good:

$$((\lambda x. \lambda y. x) M) \longrightarrow_{\beta} (\lambda y. x)[x \mapsto M] = \lambda y. x[x \mapsto M] = \lambda y. M$$

Bad:

$$(\lambda x. \lambda y. x) M N \longrightarrow_{\beta} ?$$

Evaluation ii

Definition 13

The full β -reduction is a relation on λ -terms defined by

$$\frac{M_1 \longrightarrow_{\beta} M_2}{M_1 \longrightarrow_{\beta_1} M_2}$$

$$\begin{array}{c} M_1 \longrightarrow_{\beta 1} M_2 \\ M_1 N \longrightarrow_{\beta 1} M_2 N \end{array}$$

$$\frac{M_1 \longrightarrow_{\beta 1} M_2}{\lambda x. M_1 \longrightarrow_{\beta 1} \lambda x. M_2}$$

$$\begin{array}{c}
N_1 \longrightarrow_{\beta_1} N_2 \\
M N_1 \longrightarrow_{\beta_1} M N_2
\end{array}$$

Now fixed:

$$(\lambda X. \lambda y. X) M N \longrightarrow_{\beta 1} (\lambda y. M) N \longrightarrow_{\beta 1} M[y \mapsto N] \longrightarrow_{\beta 1} \dots$$

Programming in Lambda Calculus

Programming in λ -calculus i

Boolean values and conditional can be encoded as closed λ -terms.

Boolean

True := $\lambda x y. x$

False $:= \lambda x y. y$

Programming in λ -calculus ii

Conditional

```
if_then_else_ := \lambda b \times y. b \times y if True then M else N \longrightarrow_{\beta*} M if False then M else N \longrightarrow_{\beta*} N for any two \lambda-terms M and N.
```

Programming in λ -calculus iii

Natural numbers can be encoded as λ -terms, so can arithmetic operations.

Church numerals

$$\mathbf{c}_0 := \lambda f x. x$$
 $\mathbf{c}_1 := \lambda f x. f x$
 $\mathbf{c}_{n+1} := \lambda f x. f^{n+1}(x)$

for
$$n > 0$$
 where $f^{n+1}(M) := f(f^n M)$.

Programming in λ -calculus iv

Successor

$$succ := \lambda n. \lambda f x. f(nfx)$$

$$succ c_n \longrightarrow_{\beta*} c_{n+1}$$

for any natural number $n \in \mathbb{N}$.

Predecessor

$$\begin{array}{lll} \text{pred} & := & \lambda n. \, \lambda f x. \, ? \\ \\ \text{pred} \, c_0 & \longrightarrow_{\beta*} & c_0 \\ \\ \text{pred} \, c_{n+1} & \longrightarrow_{\beta*} & c_n \end{array}$$

Programming in λ -calculus \mathbf{v}

Addition

add :=
$$\lambda n \, m. \, \lambda f \, x. \, m \, f \, (n \, f \, x)$$

add $\mathbf{c}_n \, \mathbf{c}_m \longrightarrow_{\beta*} \, \mathbf{c}_{n+m}$

Conditional

ifz :=
$$\lambda n \times y$$
. $n(\lambda z. y) \times ifz c_0 M N$ $\longrightarrow_{\beta*} M$ ifz $c_{n+1} M N$ $\longrightarrow_{\beta*} N$

Programming in λ -calculus vi

Here is a list of common combinators:

- 1. $\omega := \lambda x. xx$
- 2. $\Omega := (\lambda x. xx)(\lambda x. xx) = \omega \omega$
- 3. $I := \lambda x. x$, the *identity*.
- 4. $S := \lambda f g x. (f x) (g x)$.

Exercise

- 1. Evaluate $succc_0$ and $addc_1c_2$.
- 2. Define pred.
- 3. Define Boolean operations, i.e. **not**, **and**, and **or**.
- 4. Is ω allowed in Haskell?

General Recursion i

The summation $\sum_{i=0}^{n} i$ for $n \in \mathbb{N}$ can be defined as

$$sum(n) = \begin{cases} 0 & \text{if } n = 0\\ n + sum(n-1) & \text{otherwise.} \end{cases}$$

Can we avoid the self-reference? Consider the function $G\colon (\mathbb{N}\to\mathbb{N})\to (\mathbb{N}\to\mathbb{N})$ defined by

$$(Gf)(n) := \begin{cases} 0 & \text{if } n = 0\\ n + f(n-1) & \text{otherwise.} \end{cases}$$
 (1)

Assuming that sum' is a fixed-point of G, i.e. G(sum') = sum', we can show that sum' = sum by induction.

General Recursion ii

Proposition 14 (Curry's paradoxical combinator)

Define

$$Y := \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx)).$$

Then,

$$YF \longrightarrow_{\beta 1} \underline{(\lambda x. F(xx)) (\lambda x. F(xx))}$$
$$\longrightarrow_{\beta 1} F(\underline{(\lambda x. F(xx)) (\lambda x. F(xx))})$$

for every λ -term F.

General Recursion iii

Example 15 (Summation, formally)

Using the combinators we have known so far, the equation (1) can be defined as λ -terms:

$$G := \lambda f n. ifz \ n \ bc_0 \ (add \ n \ (f \ (pred \ n)))$$

 $sum := YG$

Try to evaluate sum with, say, c_3 .

General Recursion iv

Here is a fixed-point operator such that $\Theta F \longrightarrow_{\beta*} F(\Theta F)$.

Proposition 16 (Turing's fixed-point combinator)

Define

$$\Theta := (\lambda x f. f(x x f)) (\lambda x f. f(x x f))$$

Then,

$$\Theta F \longrightarrow_{\beta *} F(\Theta F)$$

Try Turing's fixed-point combinator with G to define $\sum_{i=0}^{n} i$.

$$G := \lambda f n. \text{ ifz } n \ bc_0 \ (\text{add } n \ (f(\text{pred } n)))$$

 $\text{sum} := \Theta G$

General Recursion v

Exercise

1. Define the *flip* operation, i.e. a λ -term **flip** such that

flip
$$M N P \longrightarrow_{\beta*} M P N$$

- 2. Define the multiplication $m \times n$ on Church numerals.
- 3. Define the factorial n! on Church numerals.

Properties of Lambda Calculus

Church-Rosser Property i

Example 17

Suppose $M \in \Lambda$ and $y \notin FV(M)$. Then, consider

$$(\lambda y. M)((\lambda x. xx)(\lambda x. xx))$$

Observations:

- · Some evaluation may diverge while some may converge.
- Full β -reduction lacks for determinacy.

Question:

Does every path give the same evaluation?

Church-Rosser Property ii

Let $\longrightarrow_{\beta*}$ denote the reflexive and transitive closure of $\longrightarrow_{\beta1}$.

Theorem 18 (Church-Rosser Property)

Given N_1 and N_2 with $M \longrightarrow_{\beta*} N_1$ and $M \longrightarrow_{\beta*} N_2$, there is L such that

Church-Rosser Property iii

A term is in normal form if $M
ightharpoonup_{\beta 1}$.

Corollary 19 (Uniqueness of normal forms)

Suppose that N_1 and N_2 are in normal form. Then,

Homework

Show this corollary.

Church-Rosser Property iv

Corollary 20

Let $=_{\beta}$ denote the congruence closure of $\longrightarrow_{\beta 1}$.

1. If $M =_{\beta} N$, then there exists L such that

$$M \longrightarrow_{\beta*} L_{\beta*} \longleftarrow N$$

2. If in addition N is in normal form, then M $\longrightarrow_{\beta*}$ N.

Homework

Show this corollary.

Evaluation Strategies i

An evaluation strategy is a procedure of selecting β -redexes to reduce. It is a subset $\longrightarrow_{\text{ev}}$ of the full β -reduction $\longrightarrow_{\beta 1}$.

Innermost β **-redex** does not contain any β -redex.

Outermost β **-redex** is not contained in any other β -redex.

Evaluation Strategies ii

the leftmost-outermost strategy reduces the leftmost outermost β -redex in a λ -term first. For example,

$$\frac{(\lambda x. (\lambda y. y) x)}{(\lambda x. (\lambda y. yy) x)} \frac{(\lambda x. (\lambda y. yy) x)}{(\lambda x. (\lambda y. yy) x)}$$

$$\longrightarrow_{\beta_1} (\lambda x. (\lambda y. yy)) \quad \underline{x}$$

$$\longrightarrow_{\beta_1} (\lambda x. xx)$$

$$\not\longrightarrow_{\beta_1} (\lambda x. xx)$$

Evaluation Strategies iii

the leftmost-innermost strategy reduces the leftmost innermost β -redex in a λ -term first. For example,

$$(\lambda x. \underline{(\lambda y. y)} \underline{x}) (\lambda x. (\lambda y. yy) x)$$

$$\longrightarrow_{\beta_1} (\lambda x. x) (\lambda x. \underline{(\lambda y. yy)} \underline{x})$$

$$\longrightarrow_{\beta_1} \underline{(\lambda x. x)} \underline{(\lambda x. xx)}$$

$$\longrightarrow_{\beta_1} (\lambda x. xx)$$

$$\not\longrightarrow_{\beta_1} \lambda x. xx$$

the rightmost-innermost/outermost strategy are defined similarly where λ -terms are reduced from right to left instead.

Evaluation Strategies iv

Call-by-value strategy rightmost-outermost but not inside any λ -abstraction

Call-by-name strategy leftmost-outermost but not inside any λ -abstraction

Proposition 21 (Determinacy)

Each of evaluation strategies is deterministic.

Evaluation Strategies v

Exercise

Evaluate Ω and $K_1(\lambda x. x)\Omega$ respectively using call-by-value and call-by-name strategy where

$$\Omega := (\lambda x. xx)(\lambda x. xx)$$

$$\mathbf{K}_1 := \lambda x y. x$$

Homework

Draw and evaluate above λ -terms in abstract syntax tree with the rightmost-innermost/outermost strategies.

Normalising i

Definition 22

- 1. *M* is in *normal form* if $M \not\longrightarrow_{\beta 1} N$ for any *N*.
- 2. *M* is weakly normalising if $M \longrightarrow_{\beta*} N$ for some N in normal form.

- 1. Ω does not have a normal form.
- 2. K_1 is normal and thus weakly normalising.
- 3. $(K_1z)\Omega$ is weakly normalising.

Normalising ii

Theorem 23

The leftmost-outermost strategy reduces every weakly normalising λ -term M to its normal form N.

Definition 24

For λ -calculus, a value is just a λ -abstraction.

Proposition 25

Under call-by-name and call-by-value strategies, every value is in normal form.

Remark

The definition of capture-avoiding substation is widely adopted, it is still ill-defined. Recursion is always a total function. Advanced mathematics [Pit13] is needed to resolve this issue.

Issues with named variables may be lifted by using nameless representation of terms. For example, in de Bruijin's representation every λ -term has a canonical form, see [Pie02, Chapter 6].

In fact, every computable function on natural numbers is definable in terms of λ -terms. For interested readers, see [BB84, Chapter 3] for further detail. Therefore, λ -calculus is Turing-complete.

References i

- Henk Barendregt and Erik Barendsen, *Introduction to lambda calculus*, Nieuw Arch. voor Wiskd. **4** (1984), no. 2, 337–372.
- Benjamin C. Pierce, *Types and programming languages*, MIT Press, 2002.
- Andrew M. Pitts, *Nominal sets*, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, July 2013.