

Synchronous Presettable BCD Decade Counter

The MC74AC160/74ACT160 and MC74AC162/74ACT162 are high-speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The MC74AC160/74ACT160 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The MC74AC162/74ACT162 has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock.

- Synchronous Counting and Loading
- High-Speed Synchronous Expansion
- Typical Count Rate of 120 MHz
- Outputs Source/Sink 24 mA
- 'ACT160 and 'ACT162 Have TTL Compatible Inputs

PIN NAMES

CEP Count Enable Parallel Input
CET Count Enable Trickle Input
CP Clock Pulse Input

MR ('160) Asynchronous Master Reset Input

SR ('162) Synchronous Reset Input

P0-P3 Parallel Data Inputs
PE Parallel Enable Input
Q0-Q3 Flip-Flop Outputs
TC Terminal Count Output

MC74AC160 MC74ACT160 MC74AC162 MC74ACT162

SYNCHRONOUS PRESETTABLE BCD DECADE COUNTER

LOGIC SYMBOL

*MR for '160 *SR for '162

FUNCTIONAL DESCRIPTION

The MC74AC160/74ACT160 and MC74AC162/74ACT162 count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the '160) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('160), synchronous reset ('162), parallel load, count-up and hold. Five control inputs — Master Reset (MR, '160), Synchronous Reset (SR,'162), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) — determine the mode of operation. as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR ('160) or SR ('162) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The MC74AC160/74ACT160 and MC74AC162/74<u>ACT162</u> use D-type edge-triggered flip-flops and changing the SR, PE, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 9. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the MC74AC568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the MC74AC160/74ACT160 and MC74AC162/74ACT162 decade counters, the TC output is fully decoded and can only be HIGH in state 9. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the State Diagram.

Logic Equations: Count Enable = CEP• CET• PE TC = Q0• Q1• Q2• Q3• CET

MODE SELECT TABLE

*SR	PE	CET	CEP	Action on the Rising Clock Edge (_厂)
L	Х	Х	Х	Reset (Clear)
Н	L	X	Χ	Load $(P_n \rightarrow Q_n)$
Н	Н	Н	Н	Count (Increment)
Н	Н	L	Χ	No Change (Hold)
Н	Н	Χ	L	No Change (Hold)

*For '162 only
H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

STATE DIAGRAM

LOGIC DIAGRAM

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Sink/Source Current, per Pin	±50	mA
Icc	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V	Supply Voltage	'AC	2.0	5.0	6.0	V
Vcc	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0		Vcc	V
	V _{CC} @ 3			150		
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V		40		ns/V
		V _{CC} @ 5.5 V		25		
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V		10		~~ ^/
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V		8.0		ns/V
TJ	Junction Temperature (PDIP)				140	°C
TA	Operating Ambient Temperature Range		-40	25	85	°C
ЮН	Output Current — High				-24	mA
loL	Output Current — Low				24	mA

^{1.} V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74.	AC	74AC		
Symbol	Parameter	V _{CC}	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
VIH	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
VOH	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟΟΤ} = 50 μΑ
		3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
IN	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND

 $^{^{\}star}$ All outputs loaded; thresholds on input associated with output under test.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

Note: $I_{\mbox{IN}}$ and $I_{\mbox{CC}}$ @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V $_{\mbox{CC}}$.

MC74AC160

			74A	C160	74A	C160		
Symbol	Parameter	V _{CC} *	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Max	Min	Max		
f _{max}	Maximum Count Frequency	3.3 5.0	65 110	_	60 95		MHz	3-3
^t PLH	Propagation Delay CP to Qn (PE Input HIGH)	3.3 5.0	2.0 1.5	12.0 9.0	1.5 1.0	14.0 10.5	ns	3-6
^t PHL	Propagation Delay CP to Qn (PE Input HIGH)	3.3 5.0	2.0 1.5	12.0 9.0	1.5 1.5	14.0 10.5	ns	3-6
^t PLH	Propagation Delay CP to Qn (PE Input LOW)	3.3 5.0	2.0 1.5	12.0 9.0	1.5 1.0	14.0 10.5	ns	3-6
^t PHL	Propagation Delay CP to Qn (PE Input LOW)	3.3 5.0	2.0 1.5	12.0 9.0	1.5 1.5	14.0 10.5	ns	3-6
^t PLH	Propagation Delay CP to TC	3.3 5.0	3.0 2.0	15.0 11.0	2.5 1.5	17.5 12.5	ns	3-6
^t PHL	Propagation Delay CP to TC	3.3 5.0	3.5 2.0	14.5 11.0	2.5 2.0	16.5 12.5	ns	3-6
^t PLH	Propagation Delay CET to TC	3.3 5.0	2.0 1.5	10.5 7.5	1.5 1.0	12.5 9.0	ns	3-6
^t PHL	Propagation Delay CET to TC	3.3 5.0	2.5 2.0	11.5 9.0	2.0 1.5	13.5 10.5	ns	3-6
^t PHL	Propagation Delay MR to Q _n ('AC160)	3.3 5.0	2.0 1.5	12.0 9.5	1.5 1.0	13.5 10.0	ns	3-6
^t PHL	Propagation Delay MR to TC	3.3 5.0	3.5 2.5	15.0 12.0	3.0 2.0	17.0 13.5	ns	3-6

 $^{^*}$ Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

MC74AC162

			7	74AC162	2	74A(C162		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Count Frequency	3.3 5.0	80 125			60 100		MHz	3-3
^t PLH	Propagation Delay CP to Q _n (PE Input HIGH)	3.3 5.0	2.0 2.0		12.0 9.0	1.5 1.5	13.5 10.5	ns	3-6
^t PHL	Propagatio <u>n</u> Delay CP to Q _n (PE Input HIGH)	3.3 5.0	2.0 2.0		12.0 9.0	1.5 1.5	13.5 10.5	ns	3-6
^t PLH	Propagation Delay CP to Q _n (PE Input LOW)	3.3 5.0	2.0 2.0		12.0 9.0	1.5 1.5	13.5 10.5	ns	3-6
tPHL	Propagation Delay CP to Q _n (PE Input LOW)	3.3 5.0	2.0 2.0		12.0 9.0	1.5 1.5	13.5 10.5	ns	3-6
^t PLH	Propagation Delay CP to TC	3.3 5.0	2.0 2.0		15.0 11.0	1.5 1.5	17.0 13.0	ns	3-6
t _{PHL}	Propagation Delay CP to TC	3.3 5.0	2.0 2.0		14.0 11.0	1.5 1.5	16.0 13.0	ns	3-6
^t PLH	Propagation Delay CET to TC	3.3 5.0	2.0 2.0		10.0 7.0	1.5 1.5	11.5 8.5	ns	3-6
tPHL	Propagation Delay CET to TC	3.3 5.0	2.0 2.0		11.0 8.0	1.5 1.5	12.5 9.5	ns	3-6

^{*}Voltage Range 3.3 V is 3.0 V \pm 0.3 V. Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

MC74AC160 AC OPERATING REQUIREMENTS

			74AC160	74AC160		
Symbol	Parameter		T _A = +25°C C _L = 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Guaranteed	d Maximum		
t _S	Setup Time, HIGH or LOW P _n to CP	3.3 5.0	13.5 8.5	16.0 10.5	ns	3-9
^t h	Hold Time, HIGH or LOW P _n to CP	3.3 5.0	-1.0 0	- 0.5 0	ns	3-9
t _S	Setup Time, HIGH or LOW PE or SR to CP	3.3 5.0	11.5 7.5	14.0 8.5	ns	3-9
th	Hold Time, HIGH or LOW PE or SR to CP	3.3 5.0	0 0.5	0 1.0	ns	3-9
t _S	Setup Time, HIGH or LOW CEP or CET to CP	3.3 5.0	6.0 4.5	7.0 5.0	ns	3-9
^t h	Hold Time, HIGH or LOW CEP or CET to CP	3.3 5.0	0 0	0 0.5	ns	3-9
t _W	Clock Pulse Width (Load) HIGH or LOW	3.3 5.0	4.0 3.0	5.0 3.5	ns	3-6
t _W	Clock Pulse Width (Count) HIGH or LOW	3.3 5.0	7.0 4.5	7.5 5.5	ns	3-6
t _W	MR Pulse Width, LOW ('AC160)	3.3 5.0	5.5 4.5	7.5 6.0	ns	3-6
t _{rec}	Recovery Time MR to CP ('AC160)	3.3 5.0	- 0.5 0	0 0.5	ns	3-9

 $^{^*}$ Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

MC74AC162 AC OPERATING REQUIREMENTS

				74AC162	74AC162		
Symbol	Parameter	V _{CC} *	T,	A = +25°C C _L = 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guaranteed	d Minimum		
t _S	Setup Time, HIGH or LOW Pn to CP	3.3 5.0		8.0 5.0	9.0 6.0	ns	3-9
^t h	Hold Time, HIGH or LOW P _n to CP	3.3 5.0		0.5 0.5	1.0 1.0	ns	3-9
t _S	Setup Time, HIGH or LOW PE to CP	3.3 3.3		10.0 6.0	11.0 7.0	ns	3-9
th	Hold Time, HIGH or LOW PE to CP	3.3 5.0		0.5 0.5	1.0 1.0	ns	3-9
t _S	Setup Time, HIGH or LOW CEP or CET to CP	3.3 5.0		6.0 4.0	7.0 5.0	ns	3-9
^t h	Hold Time, HIGH or LOW CEP or CET to CP	3.3 5.0		0.5 0.5	1.0 1.0	ns	3-9
t _S	Setup Time, HIGH or LOW SR to CP	3.3 5.0		8.0 6.0	9.0 7.0	ns	3-9
th	Hold Time, HIGH or LOW SR to CP	3.3 5.0		0.5 0.5	1.0 1.0	ns	3-9
t _W	Clock Pulse Width (Load) HIGH or LOW	3.3 5.0		5.5 4.5	6.0 5.0	ns	3-6
t _W	Clock Pulse Width (Count) HIGH or LOW	3.3 5.0		5.0 4.0	5.5 4.5	ns	3-6

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74	CT	74ACT			
Symbol	Parameter	V _{CC}	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions	
			Тур	Guar	anteed Limits			
VIH	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
VIL	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
VOH	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA	
		4.5 5.5		3.86 4.86	3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -24 mA -24 mA	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	Ι _{ΟΟΤ} = 50 μΑ	
		4.5 5.5		0.36 0.36	0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 24 mA 1 _{OL} 24 mA	
IIN	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND	
∆ICCT	Additional Max. I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$	
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max	
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min	
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND	

 $^{^{\}star}$ All outputs loaded; thresholds on input associated with output under test. † Maximum test duration 2.0 ms, one output loaded at a time.

MC74ACT160

		Vcc* (V)	7	4ACT16	0	74AC	T160		
Symbol	Parameter		T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Count Frequency	5.0	120			100		MHz	3-3
^t PLH	Propagatio <u>n D</u> elay CP to Q _n (PE Input HIGH)	5.0	2.0	6.0	10.0	2.0	11.0	ns	3-6
^t PHL	Propagation Delay CP to Q _n (PE Input HIGH)	5.0	2.0	6.0	10.0	2.0	11.0	ns	3-6
^t PLH	Propagation <u>D</u> elay CP to Q _n (PE Input LOW)	5.0	2.0	6.0	10.0	2.0	11.0	ns	3-6
^t PHL	Propagatio <u>n D</u> elay CP to Q _n (PE Input LOW)	5.0	2.0	6.0	10.0	2.0	11.0	ns	3-6
^t PLH	Propagation Delay CP to TC	5.0	2.0	8.0	12.0	2.0	14.0	ns	3-6
^t PHL	Propagation Delay CP to TC	5.0	2.0	8.0	12.0	2.0	14.0	ns	3-6
^t PLH	Propagation Delay CET to TC	5.0	2.0	6.0	8.5	2.0	9.5	ns	3-6
^t PHL	Propagation Delay CET to TC	5.0	2.0	7.0	9.5	2.0	11.0	ns	3-6
^t PHL	Propagation Delay MR to Q _n ('AC160)	5.0	1.5	6.0	9.5	1.5	11.0	ns	3-6
^t PHL	Propagation Delay MR to TC	5.0	2.5		13.0	2.5	14.0	ns	3-6

^{*} Voltage Range 5.0 V is 5.0 V ± 0.5 V.

MC74ACT162

			7	4ACT16	2	74AC	T162		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Count Frequency	5.0	120			100		MHz	3-3
^t PLH	Propagatio <u>n D</u> elay CP to Q _n (PE Input HIGH)	5.0	2.0	6.0	10.0	2.0	11.5	ns	3-6
^t PHL	Propagation Delay CP to Qn (PE Input HIGH)	5.0	2.0	6.0	10.0	2.0	11.0	ns	3-6
^t PLH	Propagation Delay CP to Qn (PE Input LOW)	5.0	2.0	6.0	10.0	2.0	11.5	ns	3-6
tPHL	Propagation Delay CP to Qn (PE Input LOW)	5.0	2.0	6.0	10.0	2.0	11.0	ns	3-6
tPLH	Propagation Delay CP to TC	5.0	2.0	8.0	13.0	2.0	14.5	ns	3-6
tPHL	Propagation Delay CP to TC	5.0	2.0	8.0	13.0	2.0	14.5	ns	3-6
tPLH	Propagation Delay CET to TC	5.0	2.0	6.0	9.0	2.0	10.5	ns	3-6
^t PHL	Propagation Delay CET to TC	5.0	2.0	6.0	9.0	2.0	10.5	ns	3-6

^{*} Voltage Range 5.0 V is 5.0 V \pm 0.5 V. 3

MC74ACT160 AC OPERATING REQUIREMENTS

			74A0	CT160	74ACT160		
Symbol	Parameter	V _{CC} *	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guarante	ed Maximum		
t _S	Setup Time, HIGH or LOW Pn to CP	5.0	4.0	6.5	8.0	ns	3-9
th	Hold Time, HIGH or LOW P _n to CP	5.0	-4.0	-0.5	0	ns	3-9
t _S	Setup Time, HIGH or LOW PE or MR to CP	5.0	4.0	8.5	10.5	ns	3-9
th	Hold Time, HIGH or LOW PE or MR to CP	5.0	-4.0	0	0	ns	3-9
t _S	Setup Time, HIGH or LOW CEP or CET to CP	5.0	3.0	6.0	7.0	ns	3-9
th	Hold Time, HIGH or LOW CEP or CET to CP	5.0	-3.0	0	0	ns	3-9
t _W	Clock Pulse Width (Load) HIGH or LOW	5.0	3.0	4.0	4.0	ns	3-6
t _W	Clock Pulse Width (Count) HIGH or LOW	5.0	3.0	4.0	4.0	ns	3-6
t _W	MR Pulse Width, LOW ('ACT160)	5.0	2.0 4.0		6.0	ns	3-6
t _{rec}	Recovery Time MR to CP ('ACT160)	5.0	-1.0	0	0	ns	3-9

^{*} Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

MC74ACT162 AC OPERATING REQUIREMENTS

	Parameter	V _{CC} * (V)	74ACT162		74ACT162	Unit	Fig. No.
Symbol			T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		
			Тур	Guarante	Guaranteed Maximum		
t _S	Setup Time, HIGH or LOW P _n to CP	5.0	4.0	7.0	10.0	ns	3-9
t _h	Hold Time, HIGH or LOW P _n to CP	5.0	-3.0	-1.0	0	ns	3-9
t _S	Setup Time, HIGH or LOW PE to CP	5.0	4.0	7.0	10.0	ns	3-9
th	Hold Time, HIGH or LOW PE to CP	5.0	-3.0	-1.0	0	ns	3-9
t _S	Setup Time, HIGH or LOW SR to CP	5.0	5.0	10	11.5	ns	3-9
t _h	Hold Time, HIGH or LOW SR to CP	5.0	-5.0	0	0	ns	3-9
t _S	Setup Time, HIGH or LOW CET to CP	5.0	3.0	6.0	7.0	ns	3-9
th	Hold Time, HIGH or LOW CET to CP	5.0	-3.0	0	0	ns	3-9
t _W	Clock Pulse Width (Load) HIGH or LOW	5.0	2.0	4.5	5.0	ns	3-6
t _W	Clock Pulse Width (Count) HIGH or LOW	5.0	2.0	4.0	4.5	ns	3-6

^{*} Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	45	pF	V _{CC} = 5.0 V

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050	BSC	1.27 BSC		
7	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

NOTES

- DIMENSIONING AND TOLERANCING PER
 ANSI Y14 5M 1982
- ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27 BSC		0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0 °	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

