Business Case: Target SQL

Mindset:

- 1. Evaluation will be kept lenient, so make sure you attempt this case study.
- 2. It is understandable that you might struggle with getting started on this. Just brainstorm, discuss with peers, or get help from TAs.
- 3. Try to attempt this before it is discussed in the Live Case Discussion with the Instructor.
- 4. There is no right or wrong answer. We have to become comfortable dealing with uncertainty in business. This is exactly the skill we want to develop.

Context

Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

Data is available in 8 csy files:

- 2. geolocation.csv
- 3. order_items.csv
- 4. payments.csv
- 5. reviews.csv
- 6. orders.csv
- 7. products.csv
- 8. sellers.csv

Each feature or columns of different CSV files are described below:

The **customers.csv** contain following features:

Features	Description
customer_id	Id of the consumer who made the purchase.
customer_unique_id	Unique Id of the consumer.
customer_zip_code_prefix	Zip Code of the location of the consumer.
customer_city	Name of the City from where order is made.
customer_state	State Code from where order is made(Ex- sao paulo-SP).

The **sellers.csv** contains following features:

Features	Description
seller_id	Unique Id of the seller registered
seller_zip_code_prefix	Zip Code of the location of the seller.
seller_city	Name of the City of the seller.
seller_state	State Code (Ex- sao paulo-SP)

The **order_items.csv** contain following features:

Features	Description
order_id	A unique id of order made by the consumers.
order_item_id	A Unique id given to each item ordered in the order.
product_id	A unique id given to each product available on the site.
seller_id	Unique Id of the seller registered in Target.
shipping_limit_date	The date before which shipping of the ordered product must be completed.
price	Actual price of the products ordered .
freight_value	Price rate at which a product is delivered from one point to another.

The **geolocations.csv** contain following features:

Features	Description
geolocation_zip_code_prefix	first 5 digits of zip code
geolocation_lat	latitude
geolocation_lng	longitude
geolocation_city	city name
geolocation_state	state

The **payments.csv** contain following features:

Features	Description
order_id	A unique id of order made by the consumers.
payment_sequential	sequences of the payments made in case of EMI.
payment_type	mode of payment used.(Ex-Credit Card)
payment_installments	number of installments in case of EMI purchase.
payment_value	Total amount paid for the purchase order.

The **orders.csv** contain following features:

Features	Description
order_id	A unique id of order made by the consumers.
customer_id	Id of the consumer who made the purchase.
order_status	status of the order made i.e delivered, shipped etc.
order_purchase_timestamp	Timestamp of the purchase.
order_delivered_carrier_date	delivery date at which carrier made the delivery.
order_delivered_customer_date	date at which customer got the product.
order_estimated_delivery_date	estimated delivery date of the products.

The **reviews.csv** contain following features:

Features	Description
review_id	Id of the review given on the product ordered by the order id.
order_id	A unique id of order made by the consumers.
review_score	review score given by the customer for each order on the scale of 1–5.
review_comment_title	Title of the review
review_comment_message	Review comments posted by the consumer for each order.
review_creation_date	Timestamp of the review when it is created.
review_answer_timestamp	Timestamp of the review answered.

The **products.csv** contain following features:

Features	Description
product_id	A unique identifier for the proposed project.
product_category_name	Name of the product category

product_name_lenght length of the string which specifies the name given to the

products ordered.

product_description_lenght length of the description written for each product ordered on

the site.

product_photos_qty

Number of photos of each product ordered available on the

shopping portal.

product_weight_g Weight of the products ordered in grams.

product_length_cm Length of the products ordered in centimeters.
product_height_cm Height of the products ordered in centimeters.
product_width_cm width of the product ordered in centimeters.

Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1.1 Data Types of Columns of Tables

Query:-

SELECT TABLE_NAME,

COLUMN_NAME,

DATA_TYPE

FROM INFORMATION SCHEMA.COLUMNS

WHERE TABLE SCHEMA = "target-case1"

GROUP BY TABLE_NAME, COLUMN_NAME

ORDER BY TABLE_NAME, COLUMN_NAME;

Data Types of all the tables given in dataset

1.2 Time period for which the data is given

Query:-

SELECT

 ${\sf MIN(DATE(order_estimated_delivery_date))} \ {\sf AS\ Start_date},$

MAX(DATE(order_estimated_delivery_date)) AS Last_date

FROM

Orders

Result:-

Database starts entry from 2016-09-30 and last entry on 2018-11-12

1.3 Cities and States covered in the dataset

select row_number() over() as row_no, customer_city, customer_state from customers

Result:-

10 records of Cities and States from customers table

In-depth Exploration:

2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query:-

```
YEAR(order_purchase_timestamp) AS years,

MONTHNAME(order_purchase_timestamp) AS months,

COUNT(order_id) AS month_wise_order

FROM

orders

GROUP BY years , months
```

Result:-

ORDER BY years, months;

• Total no of order given in every month.

2.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
Query:-
SELECT
 time stamp, COUNT(time stamp) AS no of orders
FROM
 (SELECT
   HOUR(order purchase timestamp) AS buy duration,
     CASE
       WHEN HOUR(order purchase timestamp) BETWEEN 5 AND 12 THEN 'Morning'
       WHEN HOUR(order purchase timestamp) BETWEEN 13 AND 17 THEN 'Afternoon'
       WHEN HOUR(order_purchase_timestamp) BETWEEN 18 AND 21 THEN 'Evening'
       WHEN HOUR(order_purchase_timestamp) BETWEEN 22 AND 4 THEN 'Night'
       ELSE 'Dawn'
     END AS time_stamp
 FROM
   customers c
 JOIN orders o ON o.customer id = c.customer id) x
```

GROUP BY time_stamp

Result:-

• Breakdown for the 4 main periods of calendar day (afternoon, morning, evening and dawn) with the order given in that period.

Evolution of E-commerce orders in the Brazil region:

3.1 Get month on month orders by states

Query:-

```
SELECT

MONTHNAME(order_purchase_timestamp) AS months,

customer_city,

customer_state

FROM

orders o

JOIN

customers c ON o.customer_id = c.customer_id

GROUP BY customer_city

ORDER BY customer_city , customer_state
```


• Orders given in month within city and state.

3.2 . How are customers distributed in Brazil

```
SELECT
  c.customer_id,
  c.customer_city,
  c.customer_state,
  c.customer_zip_code_prefix,
  o.order id,
  oi.seller_id,
  oi.product_id,
  o.order status
FROM
  customers c
    JOIN
  orders o ON c.customer_id = o.customer_id
    JOIN
  order_items oi ON o.order_id = oi.order_id
WHERE
```

```
order status = 'delivered'
```

Result:-

Database given orders delivered to customers

Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

4.1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
SELECT
```

```
YEAR(o.order_purchase_timestamp) AS years,

MONTH(o.order_purchase_timestamp) AS months,

SUM(oi.price) AS total_price,

SUM(oi.freight_value) AS total_freight_value

FROM

orders o

JOIN

order_items oi ON o.order_id = oi.order_id
```

WHERE

MONTH(order_purchase_timestamp) BETWEEN 1 AND 8 GROUP BY years , months

ORDER BY years, months;

Result:-

Increasing cost of order from 2017 to 2018 (Jan to Aug only).

4.2 Mean & Sum of price and freight value by customer state

Query:-

SELECT

customer_state,

SUM(oi.price) AS sum_price,

SUM(oi.freight_value) AS sum_freight_value,

AVG(oi.price) AS mean price,

AVG(oi.freight_value) AS mean_freight_value

FROM

orders o

```
JOIN

order_items oi ON o.order_id = oi.order_id

JOIN

customers c ON o.customer_id = c.customer_id

GROUP BY customer_state
```

Result:-

• Mean & Sum of price and freight value by customer state.

Analysis on sales, freight and delivery time

5.1 Calculate days between purchasing, delivering and estimated delivery Query:-

```
customer_id,
order_id,
order_status,
DATE(order_purchase_timestamp) AS order_purchase,
```

```
DATE(order_delivered_customer_date) AS order_delivered_customer,

DATE(order_estimated_delivery_date) AS order_estimated_delivery

FROM

orders;
```

Result:-

customer_id	order_id	order_status	order_purchase	order_delivered_cust	order_estimated_delivery
9ef432eb6251297304e76186b10a928d	e481f51cbd	delivered	2017-10-02	2017-10-10	2017-10-18
b0830fb4747a6c6d20dea0b8c802d7ef	53cdb2fc8b	delivered	2018-07-24	2018-08-07	2018-08-13
41ce2a54c0b03bf3443c3d931a367089	47770eb910	delivered	2018-08-08	2018-08-17	2018-09-04
f88197465ea7920adcdbec7375364d82	949d5b44db	delivered	2017-11-18	2017-12-02	2017-12-15
8ab97904e6daea8866dbdbc4fb7aad2c	ad21c59c08	delivered	2018-02-13	2018-02-16	2018-02-26
503740e9ca751ccdda7ba28e9ab8f608	a4591c265e	delivered	2017-07-09	2017-07-26	2017-08-01
ed0271e0b7da060a393796590e7b737a	136cce7faa	invoiced	2017-04-11	NULL	2017-05-09
9bdf08b4b3b52b5526ff42d37d47f222	6514b8ad80	delivered	2017-05-16	2017-05-26	2017-06-07
f54a9f0e6b351c431402b8461ea51999	76c6e86628	delivered	2017-01-23	2017-02-02	2017-03-06
31ad1d1b63eb9962463f764d4e6e0c9d	e69bfb5eb8	delivered	2017-07-29	2017-08-16	2017-08-23

Calculate days between purchasing, delivering and estimated delivery

5.2 Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:-

- time to delivery = order purchase timestamp-order delivered customer date
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

Query:-

```
order_delivered_customer_date --
select customer_id,order_id,order_status,date( order_purchase_timestamp) as order_purchase
,
date (order_delivered_customer_date) as order_delivered_customer,
date (order_estimated_delivery_date) as order_estimated_delivery
from orders;
```


 Created new columns for time_of_time and diff_estimated_ as delivered_customer_date and estimated_delivery_date

5.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Query:-

orders o

```
state,

AVG(freight_value) AS avg_freight_value,

AVG(delivered_customer_date) AS avg_delivered_customer_date,

AVG(estimated_delivery_date) AS avg_estimated_delivery_date

FROM

(SELECT

c.customer_state AS state,

freight_value,

ABS((DAY(o.order_delivered_customer_date) - DAY(o.order_purchase_timestamp))) AS delivered_customer_date,

ABS((DAY(o.order_estimated_delivery_date) - DAY(o.order_purchase_timestamp))) AS estimated_delivery_date

FROM
```

JOIN customers c ON o.customer_id = c.customer_id

JOIN order_items oi ON o.order_id = oi.order_id) x

GROUP BY state

Result:-

	state	avg_freight_value	avg_delivered_customer_date	avg_estimated_delivery_date
١	SP	15.14727539041888	9.9646	11.7925
	RS	21.735804330393318	12.2532	7.5187
	SC	21.470368773946397	11.8565	8.4282
	BA	26.363958936562	11.9261	6.9339
	MS	23.374884004884	13.0358	7.5348
	RJ	20.960923931682416	11.6082	9.3156
	MG	20.63016680630687	11.8508	9.4333
	RO	41.06971223021583	12.4469	10.8201
	PR	20.53165156794443	11.8274	9.1767
	MT	28.16628436018962	12.3539	6.4313

• Freight_value, time_to_delivery, diff_estimated_delivery according to order within state

5.4 Sort the data to get the following:-

5.5 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

-- desc--

Query:-

select customer_state,avg(oi.freight_value) as avg_freight_value
from orders o
join order_items oi on o.order_id =oi.order_id
join customers c on o.customer_id=c.customer_id
group by customer_state
order by avg_freight_value desc limit 5

-- asc--

Query:-

select customer_state,avg(oi.freight_value) as avg_freight_value
from orders o
join order_items oi on o.order_id =oi.order_id
join customers c on o.customer_id=c.customer_id
group by customer_state
order by avg_freight_value limit 5

Result:-

• Highest and lowest average freight value in state

5.6 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

-- Lowest--

```
select state, avg(delivered_customer_date) as avg_delivered_customer_date

from

(select c.customer_state as state,

abs((day(o.order_delivered_customer_date)-day(o.order_purchase_timestamp))) as

delivered_customer_date

from orders o

join customers c on o.customer_id=c.customer_id)x

group by state

order by avg_delivered_customer_date limit 5
```

Result:-

-- Highest--

```
select state, avg(delivered_customer_date) as avg_delivered_customer_date

from

(select c.customer_state as state,
    abs((day(o.order_delivered_customer_date)-day(o.order_purchase_timestamp))) as
    delivered_customer_date

from orders o

join customers c on o.customer_id=c.customer_id)x

group by state
```

order by avg delivered customer date desc limit 5

Result:-

Highest and lowest average time to delivery with state

5.7 Top 5 states where delivery is really fast/ not so fast compared to estimated date

-- Fast--

Query:-

```
select state, avg(estimated_delivery_date) as avg_estimated_delivery_date

from

(select c.customer_state as state,
    abs((day(o.order_estimated_delivery_date)-day(o.order_purchase_timestamp))) as
    estimated_delivery_date

from orders o

join customers c on o.customer_id=c.customer_id)x

group by state

order by avg_estimated_delivery_date desc limit 5
```


-- Not fast--

Query:-

select state, avg(estimated_delivery_date) as avg_estimated_delivery_date from

(select c.customer_state as state,

abs((day(o.order_estimated_delivery_date)-day(o.order_purchase_timestamp))) as estimated_delivery_date

from orders o

join customers c on o.customer_id=c.customer_id)x

group by state

order by avg_estimated_delivery_date limit 5

Result:-

• Delivery is really fast/ not so fast compared to estimated date within state

6.1 Payment type analysis:

-- i) Month over Month count of orders for different payment types—

Query:-

select payment_type, count(months) as months

from

(select monthname(o.order_approved_at) as months,payment_type

from payments p

join orders o on p.order_id=o.order_id

) x

group by payment type

Result:-

 Database from 2016-09-30 to 2018-11-12, type of payment done and how many time it has been done during in database

-- ii) .Distribution of payment installments and count of orders--

Query:-

select p.payment_installments ,count(o.order_id) as count_of_orders

from payments p

join orders o on p.order id=o.order id

group by payment_installments

order by payment installments

• Total of order in number of installments in case of EMI purchases:

Analysis:-

In Database starting entry from 2016-09-30 and last entry on 2018-11-12.

1. Highest sell in state.

2. Highest no. of customers order in the afternoon.

3. Mostly customers order by using credit card then other payment method.

4. Customers payment installments (EMI) use to order

