МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ Φ ЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

	KAd	РЕДРА №51	
Отчет защищен	н с оценкой		
Преподаватель			
доце	НТ		Е.Д. Пойманова
должность, звание	уч. степень,	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛА	БОРАТОРНОЙ РАБОТЕ	№ 4
	ИМИТАЦИО	ЭННОЕ МОДЕЛИРОВАН	ПИЕ
по	курсу: МОДЕЛИРОВА	АНИЕ ИНФОРМАЦИОН	НЫХ СИСТЕМ
Студент гр. №	5912		И.К. Лобач
	Номер	подпись,	инициалы, фамиция

1 Цель работы

Разработать имитационную модель в среде AnyLogic. Выполнить сравнительную оценку результатов имитационного моделирования и аналитического.

2 Исходные данные

Железнодорожная сортировочная горка, на которую подаётся простейший поток составов с интенсивностью λ =2 состава в час, представляет собой одноканальную СМО с неограниченной очередью. Время обслуживания (роспуска) состава на горке имеет показательное распределение со среднем значением $\overline{T}_{\rm oбc}$ = 20 мин. Определить среднее число составов, связанных с горкой, среднее число составов в очереди, среднее время пребывания состава в СМО, среднее время пребывания состава в очереди.

- 3 Математические расчеты характеристик СМО
- 3.1 Вероятностные характеристики

Коэффициент загрузки системы ρ показывает среднее значение той части единицы времени, в которой канал занят, и рассчитывается по формуле:

$$\rho = \lambda \overline{T}_{\text{o6c}} = 2 * \frac{1}{3} = \frac{2}{3} \approx 0.6$$

Получившееся значение не превышает 1, что означает, что существует стационарный режим функционирования СМО, т.е. все вероятностные характеристики постоянны во времени.

Стационарная вероятность того, что в СМО нет заявок P_0 рассчитывается по формуле:

$$P_0 = 1 - \rho = 1 - 0.6 \approx 0.4$$

3.2 Временные характеристики

Время ожидания заявки в очереди $\overline{T}_{\text{ож}}$ рассчитывается по формуле:

$$\overline{T}_{
m oж}=rac{\overline{T}_{
m oбc}
ho}{1-
ho}=rac{20*0.6}{0.4}pprox40$$
 мин

Время пребывания заявки в СМО $\overline{T}_{\rm np}$ рассчитывается по формуле:

$$\overline{T}_{
m np}=rac{\overline{T}_{
m o6c}}{1-
ho}=rac{20}{0.4}pprox 50$$
 мин

3.3 Количественные характеристики

Длина очереди L рассчитывается по формуле:

$$L = \frac{\rho^2}{1 - \rho} = \frac{0.36}{0.4} \approx 0.9$$

Количество заявок в СМО М рассчитывается по формуле:

$$M = \frac{\rho}{1 - \rho} = \frac{0.6}{0.4} \approx 1.5$$

4 Скриншот графического окна имитационной модели Модель СМО имеет вид:

Рисунок 1 – Модель СМО

При запуске процесса моделирования графическая анимация имеет вид:

Рисунок 2 - Графическая анимация

Характеристики СМО, полученные имитационном моделированием:

Рисунок 3 - Характеристики СМО

5 Таблица сравнительных характеристик

Таблица 1 - Сравнение результатом

Характеристика	Аналитическое	Имитационное	Сравнение
	моделирование	моделирование	
ρ	0,6	0,62	0,02
$\overline{T}_{ ext{o} imes}$	40 мин	50	10
L	0,9	0,92	0,02
$\overline{T}_{\mathrm{np}}$	50 мин	51	1
М	1,5	1,4	0,1

6 Выводы о проделанной работе и полученных результатах

Сравнивая результаты, полученные аналитическим и имитационным педалированием, можно сделать вывод о том, что характеристики СМО, полученный двумя способами близки по значениям, а, значит, модель СМО была построена корректно.