

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Inductive Reactance
 - An inductors opposition to changes in current
 - Characteristics
 - Directly proportional to frequency & inductance
 - A frequency dependent resistor
 - Applications
 - Motor starting circuits
 - Frequency filters

\boldsymbol{Y}	$-2\pi I$
Λ_L	= 270L

Where;

 X_L = inductive reactance (Ω) $2\pi f$ = angular velocity (rad/sec) f = frequency (Hz) L= inductance (H)

Name	Unit symbol	Quantity	Symbol
inductive	Χı	Ohms	0
reactance	ΛL	Offilis	12

3

SIERRA

MECH 10 Fundamentals of Electronics

Inductive Reactance

- Circuit Examples
 - Find X_L

$$X_{L} = 2\pi f L$$

$$X_{L} = 2\pi \times 30 Hz \times 530.5 mH$$

$$X_L = ??\Omega$$

$$\begin{split} X_L &= 2\pi \!\!\!/ L \\ X_L &= 2\pi \times 60 Hz \times 530.5 mH \\ X_L &= ?? \Omega \end{split}$$

4

MECH 10 Fundamentals of Electronics

- Inductive Reactance
 - Total Resistance
 - R_T ≠ X_I + R1
 - Vector addition required
 - Pythagorean Theorem

$$X_L = 2\pi f L = 100\Omega$$
$$R1 = 100\Omega$$

$$Z = \sqrt{R^2 + X_L^2}$$

$$Z = \sqrt{100^2 + 100^2}$$

$$Z = ??\Omega$$

5

TOD	1
IER	RA
	M M Y

MECH 10 Fundamentals of Electronics

- Inductive Reactance
 - Impedance the total opposition to current flow in an AC circuit

- Vector addition
- For all reactive circuits!

Name	Unit symbol	Quantity	Symbol
impedance	Z	Ohms	Ω

$$X_L = 2\pi f L = 100\Omega$$
$$R1 = 100\Omega$$

$$Z = \sqrt{R^2 + X_L^2}$$

$$Z = \sqrt{100^2 + 100^2}$$

$$Z = ??\Omega$$

6

MECH 10 Fundamentals of Electronics

- Inductive Reactance
 - Frequency Filters
 - High Pass Filters Series LR

Frequency dependent resistor

$$X_L = 2\pi f L = 2 \times \pi \times 0 \times L = 0$$

7

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

- Inductive Reactance
 - Frequency Filters
 - High Pass Filters Series LR

$$Z = \sqrt{R^2 + X_L^2}$$

$$Z = \sqrt{100^2 + 100^2} = 141.4\Omega$$

$$I_T = \frac{V_S}{Z} = \frac{10V}{141\Omega} = 70.71 mA$$

$$\begin{aligned} V_{L1} &= I_T \times X_L \\ V_{L1} &= 70.71 mA \times 100 \Omega \\ V_{L1} &= 7.07 V \end{aligned}$$

8

MECH 10 Fundamentals of Electronics

- Inductive Reactance
 - Frequency Filters
 - High Pass Filters Series LR

$$X_L = 2\pi f L = 2\pi \times 15,920 \times 10mH$$
$$X_L = ??\Omega$$

$$Z = \sqrt{R^2 + X_C^2}$$

$$Z = \sqrt{100^2 + 1000^2} = ??\Omega$$

$$I_T = \frac{E}{Z} = \frac{10V}{1005\Omega}$$
$$I_T = ??A$$

$$V_{R1} = 9.95 \text{mA} \times 1000\Omega$$
$$V_{R1} = ??V$$

9

SIERRA

MECH 10 Fundamentals of Electronics

• Lab 15 - Phase Shift

Learning Objectives

- Measure the phase shift of a resistive circuit
- Measure the phase shift of a capacitive circuit
- Measure the phase shift of an inductive circuit

		Points Possible
Documentation	Quality of documentation (neatness, clarity, spelling, grammar), Expected and measured values recorded on schematic diagram	10
Circuit 1	Circuit demonstrated with signature	5
Circuit 2	X _C & F _C calculated & accurate, phase shift recorded and accurate	10
Circuit 3	X _L & F _C calculated & accurate, phase shift recorded and accurate	10
Conclusions	Questions answered completely & accurately.	20
	Total	45

12