Adopted Levels, Gammas

```
Q(\beta^{-})=14170 \ 40; \ S(n)=5297 \ 8; \ S(p)=15830.7 \ 89; \ Q(\alpha)=-14894.0 \ 78 2021Wa16
```

- S(p),Q(α): Deduced by the evaluator using mass excesses of 8318 5 for ³⁴Mg: a weighted average of 8323 7 (2019As04) and 8315 5 (2025Ly01), and 12245.3 26 for ³¹Na measured by 2025Ly01; -224 7 for ³⁵Al from 2021Wa16. Values from 2021Wa16: S(p)=15836 10, Q(α)=-14895 16.
- S(2p)=38400.5 85, Q(ε)=-15753 10, from mass excesses of 23598.8 43 for ³³Na and 15529.5 71 for ³⁵Mg measured by 2025Ly01; -224 7 for ³⁵Al from 2021Wa16. Values from 2021Wa16: S(2p)=38580 450, Q(ε)=-15860 270.

 $S(2n)=7869 \ 10, \ Q(\beta^-n)=11697 \ 7 \ (2021Wa16).$

Isotope discovery (2012Th10): C(⁴⁰Ar,X) projectile fragmentation at Berkeley (1979Sy01).

³⁵Al production:

- 2015Mo17: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=95 MeV/nucleon at RIKEN. Measured angular distributions and transverse momentum distributions of fragments. Deduced formulation for the width of transverse momentum distribution as a function of fragment velocity.
- 2012Kw02: ⁹Be, ^{nat}Ni, ¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=140 MeV/nucleon at NSCL. Measured fragmentation cross sections, parallel momentum transfers, and widths. Compared with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI codes.
- 2012Zh06: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=57 MeV/nucleon at HIRFL. Measured momentum distributions and production cross sections of fragments. Observed competition between projectile fragmentation and other mechanisms. Compared with EPAX, abrasionablation, and HIPSE models. Studied target dependence of fragment cross sections.
- 2007No13: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=100 MeV/nucleon at RIKEN. Measured fragment momentum distributions and production cross sections.

³⁵Al decay measurements:

2017Ha23: ${}^{9}\text{Be}({}^{40}\text{Ar,X})$ at HIRFL. Measured $T_{1/2}$.

2005Ti11,2006AnZW: (36 S,X) at GANIL. Measured $T_{1/2}$, β^- -delayed γ and neutron spectroscopy.

2001Nu01,2002Nu02: U(p,X) at CERN. Measured $T_{1/2}$, β^- -delayed γ and neutron spectroscopy.

1999YoZW: ${}^{9}\text{Be}({}^{48}\text{Ca,X})$ and ${}^{181}\text{Ta}({}^{48}\text{Ca,X})$ at RIKEN. Measured $\text{T}_{1/2}$ and ${}^{8}\beta^{-}\text{n}$.

1995ReZZ,2008ReZZ: 232 Th(p,X) at LAMPF. Measured $T_{1/2}$ and $\%\beta^-$ n, and average E_n .

1989Le16,1989MuZU: $^{181}\text{Ta}(^{48}\text{Ca,X})$ at GANIL. Measured $T_{1/2}$ and $\%\beta^-n.$

1988Mu08,1988MuZY,1988BaYZ: ¹⁸¹Ta(⁸⁶Kr,X) at GANIL. T_{1/2} and %β⁻n.

³⁵Al knockout-reaction measurements:

- 2012No05: 33,34,35,36 Al produced by Be(48 Ca,X) fragmentation at E(48 Ca)=900 MeV/nucleon at GSI. Measured 1n removal cross sections and longitudinal momentum distributions of the residues. Deduced single-particle occupancies in the ground states of 33,34,35 Al. $\sigma(^{35}$ Al-> 34 Al)=75 mb 4 and $\sigma(^{36}$ Al-> 35 Al)=95 mb 5.
- 2010Ro23: 35 Al produced by 9 Be(40 Ar,X) fragmentation at E(40 Ar)=700 MeV/nucleon at GSI. Measured 1n knockout cross sections and longitudinal momentum distributions of the residues. $\sigma(^{35}$ Al-> 34 Al)=65 mb 18 .

³⁵Al radius measurement:

2006Kh08: ³⁵Al produced by ¹⁸¹Ta(⁴⁸Ca,X) fragmentation at E(⁴⁸Ca)=60.3 MeV/nucleon at GANIL. Measured energy-integrated reaction cross sections at 30-65 MeV/nucleon using a silicon telescope as both active target and detector. Deduced reduced strong absorption radii, isospin dependence, and possible halo structure or large deformation.

³⁵Al in-beam γ spectroscopy:

- 2006FuZX: 35 Al produced by Be,C(40 Ar,X) at E(40 Ar)=63 MeV/nucleon at RIKEN. He(35 Al,X) at E(35 Al)=40 MeV/nucleon. Observed one γ ray at 760.1 keV 21 without placing it in the level scheme.
- ³⁵Al mass measurements: 2017Ga20, 2007Ju03, 1991Or01, 1991Zh24, 1987Gi05.

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J, π , mass, $T_{1/2}$, etc): 2016Sa46, 2014Ca21, 2013Li39, 2013Sh05, 2011Ki12, 2009Yo05, 2004Kh16, 1994Po05.

³⁵Al Levels

Cross Reference (XREF) Flags

- A 36 Mg β^- n decay (6.9 ms)
- 9 Be(36 Si, 35 Al γ)
- C Pb(35 Al, 34 Aln γ)
- Coulomb excitation

Adopted Levels, Gammas (continued)

³⁵Al Levels (continued)

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$	XREF	Comments
0	$(5/2)^+$	38.1 ms <i>4</i>	ABCD	$\%\beta^-=100; \%\beta^-n=36 3; \%\beta^-2n=?$
				$\%\beta^-$ n: Weighted average of 38 2 (2005Ti11,2006AnZW) and 41 13
				(2001Nu01,2002Nu02), 26 4 (1995ReZZ,2008ReZZ), and 40 10
				(1989Le16,1989MuZU). Other: 43 9 (1999YoZW, preliminary), 87 +37–25
				(1988Mu08,1988BaYZ) with an unphysical upper bound.
				J^{π} : From shell-model calculations and $L(^{36}Si,^{35}Al)=2$ from 0^{+} .
				$T_{1/2}$: weighted average of 38.4 ms 3 (2017Ha23, implant-β correlation), 36.8 ms 5 (2005Ti11,2006AnZW, implant-β correlation), 38.6 ms 4
				(2001Nu01,2002Nu02, three β -counting rates and one γ -counting rate), 30 ms 4
				(1995ReZZ,2008ReZZ, implant- β /n correlation), 170 ms +90–50
				(1989Le16,1989MuZU, β -decay curve), 30 ms 10 (1988DuZT, beam pulsations),
				and 130 ms +100–50 (1988Mu08,1988BaYZ, β counting rate).
				Reduced strong absorption radius=1.188 fm ² 14 from 2006Kh08.
				Major configurations for $J^{\pi}=5/2^+$ of ³⁵ Al g.s. from Pb(³⁵ Al, ³⁴ Aln γ): (g.s., 4 ⁻ in
				34 Al) $\otimes vp_{3/2}$, S=0.36 9 (2017Ch36); (46 keV, 1 ⁺ in 34 Al) $\otimes vd_{3/2}$, S=1.47 22
				(2017Ch36); (1.4 MeV, 2^+ in 34 Al) $\otimes vs_{1/2}$, S=0.16 <i>I</i> (2021Bh12); (2.5 MeV,
				3^{-} in 34 Al) $\otimes vp_{3/2}$, S=1.48 <i>18</i> (2021Bh12).
802 <i>3</i>			AB	
1007 4			B D	XREF: D(1020)
				$B(E2)\uparrow=0.0142\ 52\ (1999Ib01).\ B(E1)\uparrow\leq0.00020\ 9,\ B(E2)\uparrow\leq0.0125\ 56,$
				B(M1)↑≤0.0024 11, and 5/2 ⁺ -> 3/2 ^{+/-} σ =30 mb 14 (2000PrZX). The multipolarities are assumed.
1866 <i>4</i>			В	•
1975 <i>4</i>	$3/2^+,5/2^+$		В	
2734 7			В	
3245 5	$3/2^+, 5/2^+$		В	
4275? 9	$3/2^+,5/2^+$		В	XREF: B(4275?)

 $^{^{\}dagger}$ From a least-squares fit to $\gamma\text{-ray}$ energies.

γ (35Al)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f	J^π_f	Comments
802	·	802 4	100	0	$(5/2)^+$	
1007		1006 <i>6</i>	100	0	$(5/2)^+$	E_{γ} : weighted average of 1003 4 from ($^{36}Si,^{35}Al\gamma$) and 1020 9 from Coulomb excitation.
1866		859 <i>4</i>	100 8	1007		
		1064 4	22 6	802		
1975	$3/2^+, 5/2^+$	968 <i>4</i>	59 <i>4</i>	1007		
		1174 5	37 4	802		
		1972 6	100 7	0	$(5/2)^+$	
2734		1932 6	100	802		
3245	$3/2^+, 5/2^+$	2237 6	100 8	1007		
		2440 7	18.0 26	802		
		3250 8	42 5	0	$(5/2)^+$	
4275?	3/2+,5/2+	4275 9	100	0	$(5/2)^+$	

 $^{^{\}dagger}$ From $^9{\rm Be}(^{36}{\rm Si},^{35}{\rm Al}\gamma),$ unless otherwise noted.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

