Prof. Luiz Gustavo Almeida Martins

Análise de algoritmos: área de estudo cujo foco é a eficiência dos algoritmos

- Análise de algoritmos: área de estudo cujo foco é a eficiência dos algoritmos
- Algoritmo: um conjunto finito e bem definido de ações para a obtenção de uma solução para um determinado tipo de problema
 - Transforma os valores de **entrada** em valores de **saída**

- Análise de algoritmos: área de estudo cujo foco é a eficiência dos algoritmos
- Algoritmo: um conjunto finito e bem definido de ações para a obtenção de uma solução para um determinado tipo de problema
 - Transforma os valores de **entrada** em valores de **saída**
- ""Um algoritmo é correto se, para cada instância de entrada, ele pára com a saída correta ou informa que não há solução para aquela entrada" (Cormen et al., 2002)

- Análise de algoritmos: área de estudo cujo foco é a eficiência dos algoritmos
- Algoritmo: um conjunto finito e bem definido de ações para a obtenção de uma solução para um determinado tipo de problema
 - Transforma os valores de **entrada** em valores de **saída**
- ""Um algoritmo é correto se, para cada instância de entrada, ele pára com a saída correta ou informa que não há solução para aquela entrada" (Cormen et al., 2002)
- Questões:
 - Um algoritmo correto sempre termina?

- Análise de algoritmos: área de estudo cujo foco é a eficiência dos algoritmos
- Algoritmo: um conjunto finito e bem definido de ações para a obtenção de uma solução para um determinado tipo de problema
 - Transforma os valores de entrada em valores de saída
- ""Um algoritmo é correto se, para cada instância de entrada, ele pára com a saída correta ou informa que não há solução para aquela entrada" (Cormen et al., 2002)
- Questões:
 - Um algoritmo correto sempre termina?
 - Só existe um algoritmo correto para um dado problema?

- Dado um mapa rodoviário, determinar a melhor rota entre os pontos A e B:
 - O número de rotas pode ser enorme
 - Diversas estratégias podem ser utilizadas para obter a melhor rota

- Dado um mapa rodoviário, determinar a melhor rota entre os pontos A e B:
 - O número de rotas pode ser enorme
 - Diversas estratégias podem ser utilizadas para obter a melhor rota

- Dado um mapa rodoviário, determinar a melhor rota entre os pontos A e B:
 - O número de rotas pode ser enorme
 - Diversas estratégias podem ser utilizadas para obter a melhor rota

- Dado um mapa rodoviário, determinar a melhor rota entre os pontos A e B:
 - O número de rotas pode ser enorme
 - Diversas estratégias podem ser utilizadas para obter a melhor rota

- Algoritmos diferentes são capazes de tratar um mesmo problema, mas não necessariamente com a mesma eficiência
- Essas diferenças de eficiência podem:
 - Ser irrelevantes para um número pequeno de elementos processados
 - Aumentar proporcionalmente com o crescimento no número de elementos
 - Existem problemas intratáveis, ou seja, para os quais não se conhece uma solução eficiente (NP-difícil e NP-completo)
- Deve-se considerar a eficiência de um algoritmo ao desenvolver seu software
- Questão:
 - Um algoritmo que permite obter uma solução em 3 anos é eficiente?

- ""Um algoritmo corresponde a uma descrição de um padrão de comportamento, expresso em termos de um conjunto finito de ações." (Dijkstra, 1971)
- **Ex:** Considere a instrução c = a + b
 - Existe um padrão de comportamento nessa instrução, mesmo que ela seja realizada com valores diferentes para **a** e **b**
 - Envolve 2 operações básicas (soma e atribuição)

- O projeto de algoritmos é fortemente influenciado pelo estudo de seus comportamentos
- Uma vez que o problema foi analisado e que as decisões sobre o projeto foram finalizadas é hora do analista estudar as várias opções de algoritmos

- Na análise de algoritmos exitem dois tipos de problemas bem distintos (Knuth, 1971):
 - Análise de um algoritmo em particular: Qual é o custo de usar um dado algoritmo para resolver um problema específico?
 - Análise de uma classe de algortimos: Qual o algoritmo de menor custo possível para resolver um problema particular?

- Uma das perguntas comuns em entrevistas no Google:
 - Qual a maneira mais eficiente de ordenar um milhão de inteiros de 32 bits?
- Para responder esta pergunta é importante associar o algoritmo a sua eficiência
- Eficiência está relacionada com o custo computacional (complexidade) do algoritmo
- Análise de algoritmos:
 - Definir a métrica de comparação
 - Usar uma metodologia para medir a complexidade
 - Comparar o custo dos algoritmos para determinar o mais eficiente

Complexidade computacional

- A complexidade computacional é uma medida que indica o custo de se aplicar um algoritmo
 - Associado ao consumo dos recursos computacionais:
 - Tempo de execução (+ comum)
 - ► Espaço de armazenamento utilizado
 - ▶ **Tráfego** gerado em uma rede de computadores
 - Etc.
- O custo computacional de um algorimto é dado em função do tamanho da entrada a ser processada

Exemplos de medidas de complexidade

Complexidade de tempo:

- Quando se mede o tempo necessário para executar um algoritmo para uma entrada de tamanho n
 - O tempo de execução representa o número de vezes que uma determinada operação considerada relevante é executada
 - NÃO precisa representar o tempo de execução efetivo (real), mas sua ordem de grandeza (valor relativo)

Complexidade de espaço:

Quando se mede a quantidade de memória necessária para se executar uma entrada de tamanho n

- ▶ Permitir mapear um **problema** em uma **classe de algoritmos**
 - Encontrar a "melhor" escolha envolve a comparação entre os algoritmos, com base em seu custo (eficiência)

- Permitir mapear um problema em uma classe de algoritmos
 - Encontrar a "melhor" escolha envolve a comparação entre os algoritmos, com base em seu custo (eficiência)
- Podem ser usadas 2 abordagens:
 - Análise matemática: avalia as propriedades do algoritmo
 - Permite um estudo formal e prévio

- ▶ Permitir mapear um **problema** em uma **classe de algoritmos**
 - Encontrar a "melhor" escolha envolve a comparação entre os algoritmos, com base em seu custo (eficiência)
- Podem ser usadas 2 abordagens:
 - Análise matemática: avalia as propriedades do algoritmo
 - Permite um estudo formal e prévio
 - Análise empírica ou experimental: avalia o programa gerado
 - Permite comprovar a complexidade obtida na análise formal

- ▶ Permitir mapear um **problema** em uma **classe de algoritmos**
 - Encontrar a "melhor" escolha envolve a comparação entre os algoritmos, com base em seu custo (eficiência)
- Podem ser usadas 2 abordagens:
 - Análise matemática: avalia as propriedades do algoritmo
 - Permite um estudo formal e prévio
 - Análise empírica ou experimental: avalia o programa gerado
 - Permite comprovar a complexidade obtida na análise formal
 - Ambas são importantes

- Um algoritmo é analisado a partir da execução direta de seu programa correspondente
 - Custo computacional é obtido através da avaliação da execução de uma versão implementada do algoritmo
 - Normalmente envolve várias execuções com diferentes entradas

Vantagens:

- Permite avaliar o desempenho em uma determinada configuração do sistema
 - Ex: comparação de desempenho entre computadores, sistema operacionais e/ou linguagens de programação
- Considera custos não aparentes
 - **Ex:** alocação dinâmica
- Permite uma aferição mais precisa para o conjunto de dados testados

Desvantagens e limitações:

- Exige a implementação do algoritmo
 - Experiência do programador pode influenciar no resultado
- Envolve testar o algoritmo com diferentes entradas
- Análise é feita sobre um conjunto limitado de dados
 - Influenciado pela natureza dos dados:
 - □ Dados reais, aleatórios (caso médio) ou ""perversos" (pior caso)
- Afetada pelo hardware, sistema operacional, linguagem de programação, etc.
 - **Ex:** processos concorrentes no momento da avaliação

 Código comumente usado para computar o tempo total de execução de um algoritmo

```
#include <stdio.h>
#include <time.h>
int main (void) {
  time_t t1, t2, total;
  t1 = time(NULL); // retorna hora atual do sistema
 /* algoritmo */
  t2 = time(NULL);
  total = difftime(t2,t1); // retorna a diferença t2-t1
  printf("\n\nTotal: %ld seg.\n", total);
  return 0;
```

Resultado de uma análise empírica

- Permite o estudo formal de um algoritmo ao nível conceitual
 - Avalia a ideia do algoritmo
 - Algoritmo não precisa estar implementado
- Faz uso de um computador idealizado e simplificações que destacam o custo dominante do algoritmo
 - Estima o desempenho do algoritmo independentemente da máquina
 - Determina uma função de custo ou complexidade (modelo matemático)

Vantagens:

- Ignora detalhes de ""baixo nível"
- Permite expressar a relação entre os dados de entrada e o custo computacional necessário para o processamento
 - ▶ Comportamento em função do crescimento do conjunto de entrada

- Contabiliza o nº de passos básicos necessários para executar o algoritmo em função do tamanho da entrada
 - Reduz a análise ao número de operações executadas

Passos básicos:

- Referem-se às instruções simples que podem ser executadas diretamente pelo processador (ou algo próximo disto):
 - **Ex:** operações aritméticas, comparações, atribuições, etc.
- Assumi-se que possuem o mesmo tempo de processamento (mesmo custo)
- ▶ Tamanho da entrada depende do problema
 - Está associado ao número de elementos processados
 - Ex: número de elementos em um arranjo, lista, árvore, etc.
 - Também pode ser a magnetude de um argumento de entrada
 - □ Ex: valor do número passado para a função fatorial

Considere a afirmação abaixo:

"Desenvolvi um novo algoritmo chamado TripleX que leva 14,2 segundos para processar 1.000 números, enquanto o método SimpleX leva 42,1 segundos."

Questões:

Você trocaria o SimpleX que já roda na sua empresa pelo TripleX?

Considere a afirmação abaixo:

"Desenvolvi um novo algoritmo chamado TripleX que leva 14,2 segundos para processar 1.000 números, enquanto o método SimpleX leva 42,1 segundos."

Questões:

- Você trocaria o SimpleX que já roda na sua empresa pelo TripleX?
- Será que o TripleX também é mais rápido para processar quantidades maiores que 1000 números?

Eficiência: TripleX vs. SimpleX

- Considere:
 - Um conjunto de entrada de tamanho n

- ▶ TripleX : realiza $n^2 + n$ operações no processamento
 - Função de custo: $t(n) = n^2 + n$

- ▶ SimpleX : realiza 2000n operações no processamento
 - **▶ Função de custo:** s(n) = 2000 * n

Eficiência: TripleX vs. SimpleX

Calculando o número de operações em função da entrada:

n	I	10	100	1.000	10.000
$t(n) = n^2 + n$	2	110	10.100	1.001.000	100.010.000
s(n) = 2000*n	2.000	20.000	200.000	2.000.000	20.000.000

Eficiência: TripleX vs. SimpleX

Medida de Tempo de Execução

▶ Exemplo I: Construa um algoritmo para a função:

int Max(int* A, int n)

Esse algoritmo deve retornar o maior elemento de um vetor de inteiros \boldsymbol{A} de tamanho \boldsymbol{n} (sendo $\boldsymbol{n}>0$)

Seja f a função de custo tal que f(n) é o número de operações sobre os n elementos do vetor A

Qual é f(n)????

Contagem de instruções

```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```


Contagem de instruções

```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
Acesso a A[0]
+
Atribuição
=
2 instruções
```



```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

f(n) = 2


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2
```

Inicialização do for:

atribuição + comparação = 2


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

$$f(n) = 2 + 2$$

Iteração do for: incremento (2) + comparação = 3


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

$$f(n) = 2 + 2 + 3(n-1)$$

Iteração do for: incremento (2) + comparação = 3 (repete n-1 vezes)


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2 + 2 + 3(n-1) + 2(n-1)
```

```
instr. de seleção:
acesso a A[i] +
comparação = 2
(repete n-1 vezes)
```



```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2 + 2 + 3(n-1) + 2(n-1)
```

acesso a A[i] + atribuição = 2


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2 + 2 + 3(n-1) + 2(n-1)
```

acesso a A[i] +
atribuição = 2
(depende do teste
condicional)


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2 + 2 + 3(n-1) + 2(n-1)
```

```
acesso a A[i] +
atribuição = 2
(depende do teste
condicional)
```

Melhor caso: 2 x 0


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2 + 2 + 3(n-1) + 2(n-1)
```

acesso a A[i] +
atribuição = 2
(depende do teste
condicional)

Melhor caso: 2 x 0

Pior caso: 2 x (n-1)


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2 + 2 + 3(n-1) + 2(n-1)
```

acesso a A[i] +
atribuição = 2
(depende do teste
condicional)

Melhor caso: 2 x 0

Pior caso: 2 x (n-1)

Média: 2 x (n-1)/2


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

```
f(n) = 2 + 2 + 3(n-1) + 2(n-1) + 2(n-1)
```

acesso a A[i] +
atribuição = 2
(depende do teste
condicional)

Melhor caso: 2 x 0

Pior caso: 2 x (n-1)

Média: 2 x (n-1)/2


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim_se
  fim_para
  returna temp;
fim
```

$$f(n) = 2 + 2 + 3(n-1) + 2(n-1) + 2(n-1) + 1$$

retorno da função = 1 instrução


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim_se
  fim_para
  returna temp;
fim
```

Análise do pior caso:

$$f(n) = 2 + 2 + 3(n-1) + 2(n-1) + 2(n-1) + 1$$

$$f(n) = 7(n-1) + 5$$


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim_se
  fim_para
  returna temp;
fim
```

Simplificação:

Na análise matemática podemos nos concentrar nas operações que dominam o processo


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim_se
  fim_para
  returna temp;
fim
```

Simplificação:

Na análise matemática podemos nos concentrar nas operações que dominam o processo

Forte relação com os laços (loops) e seus aninhamentos


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

f(n) pode ser representada em função do número de comparações


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
     se temp < A[i]
        temp = A[i];
     fim se
  fim_para
  returna temp;
fim
```

$$f(n) = n-1$$
, para $n > 0$

f(n) pode ser representada em função do número de comparações


```
int Max(int* A, int n)
inicio
  declare i e temp como inteiro;
  temp = A[0];
  para i = 1 até i < n passo de 1
    se temp < A[i]
        temp = A[i];
     fim_se
  fim_para
  returna temp;
fim
```

$$f(n) = n-1$$
, para $n > 0$

Nota: nesse caso a função de custo é uniforme, ou seja, é independente da organização interna dos dados no vetor

Teorema: qualquer algoritmo para encontrar o maior elemento de um conjunto com n elementos, n > 0, faz pelo menos n-1 comparações.

Prova: cada um dos *n-1* elementos têm que ser avaliados, por meio de comparações, para se saber se ele é maior que algum outro elemento. Logo *n-1* comparações são necessárias. Não importa a ordem dos números, sempre serão necessária *n-1* comparações.

Não é possível melhorar o algoritmo

Algoritmo já pode ser implementado

```
int Max(int* A, int n)
   int I, temp;
   temp = A[0];
   for (i = 1; i < n; i++)
     if ( temp < A[i])
       temp = A[i];
   return temp;
```


Exemplo 2: escreva o algoritmo para a função:

void MaxMin(int *A, int n, int *max, int *min)

- o qual encontra o maior e o menor elemento de um dado vetor \boldsymbol{A} de tamanho $\boldsymbol{n} > 0$.
- Seja f a função de custo, tal que f(n) é o número de operações entre os n elementos de A

Qual é f(n)????


```
void MaxMin1(int *A, int n, int *max, int *min)
  int i;
   *max = A[0]; *min = A[0];
   for (i=1; i<n; i++) {
    if A[i] > *max
             *max = A[i];
    if A[i] < *Min
             *min = A[i];
```

```
void MaxMin1(int *A, int n, int *max, int *min)
  int i;
  *max = A[0]; *min = A[0];
   for (i=1; i<n; i++) {
    if A[i] > *max
            *max = A[i];
          1 < *Min
            *min = A[i];
```

```
void MaxMin1(int *A, int n, int *max, int *min)
  int i;
  *max = A[0]; *min = A[0];
   for (i=1; i<n; i++) {
    if A[i] > *max
            *max = A[i];
          1 < *Min
                                   f(n) = 2(n-1)
            *min = A[i];
```

Pequena modificação na função MinMax()

```
void MaxMin2(int *A, int n, int *max, int *min)
  int i;
  *max = A[0]; *min = A[0];
   for (i=1; i<n; i++)
    if (A[i] > *max)
            *max = A[i];
    else if A[i] < *Min
            *min = A[i];
```

Pequena modificação na função MinMax()

```
void MaxMin2(int *A, int n, int *max, int *min)
  int i;
  *max = A[0]; *min = A[0];
   for (i=1; i<n; i++)
                                     Qual é f(n)?
    if (A[i] > *max)
            *max = A[i];
    else if A[i] < *Min
            *min = A[i];
```

Pequena modificação na função MinMax()

```
void MaxMin2(int *A, int n, int *max, int *min)
  int i;
  *max = A[0]; *min = A[0];
   for (i=1; i<n; i++)
    if (A[i] > *max)
            *max = A[i];
    else if A[i] < *Min
            *min = A[i];
```

Qual é f(n)?

Depende da organização dos dados no vetor

- Análise de acordo com a organização dos dados:
 - Melhor caso: os dados do vetor em ordem crescente f(n) = n-1

- Análise de acordo com a organização dos dados:
 - Melhor caso: os dados do vetor em ordem crescente f(n) = n-1
 - Pior caso: os dados do vetor em ordem descrescente f(n) = 2(n-1)

- Análise de acordo com a organização dos dados:
 - Melhor caso: os dados do vetor em ordem crescente f(n) = n-1
 - Pior caso: os dados do vetor em ordem descrescente f(n) = 2(n-1)
 - Caso médio:

$$f(n) = (n-1 + 2(n-1))/2 = 3n/2 - 3/2$$

Ainda dá para melhorar o algoritmo?

Comparar os elementos de A aos pares, separando em dois subconjuntos, um para os maiores entre os pares e outra para os menores entre os pares

$$f_{pares}(n) = n/2$$

O maior elemento é obtido do subconjunto de máximos $f_{maior}(n) = n/2 - 1$

O menor elemento é obtido do subconjunto de mínimos

$$f_{menor}(n) = n/2 - 1$$

$$f(n) = 3n/2 - 2$$
, para $n > 0$


```
void MaxMin3(int *A, int n, int *max,
int *min)
  int i, fim = n;
  if (n % 2 == 1) // n é impar
    fim = n-1;
  if (A[0] > A[1]) {
        *min = A[1]; *max = A[0]; }
 else \{*min = A[0]; *max = A[1]; \}
//continua
```



```
i = 2;
 while(i < fim) {
     if (A[i] > A[i+1])
       if (A[i] > *max) *max = A[i];
       if (A[i+1] < *min) *min = A[i+1];
    else {
          if (A[i] < *min) *min = A[i];
         if (A[i+1] > *max) *max = A[i+1];
    i = i + 2:
 if (fim == n-1) // nro impar de elementos
    if (A[n-1] > *max) *max = A[n-1];
    else if ((A[n-1] < *min) *min = A[n-1];
```

Comparação entre os algoritmos

Os três algorimos	f(n)		
	Melhor caso	Pior caso	Caso médio
MaxMin1	2(n-1)	2(n-1)	2(n-1)
MaxMin2	n-1	2(n-1)	3n/2 - 3/2
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2

Análise do problema MinMax

É possível construir uma solução com uma função de complexidade menor?

Análise do problema MinMax

- O problema pode ser modelado por um quádrupla (a,b,c,d), sendo:
 - ▶ a: N° de elementos que nunca foram comparados
 - b: Nº de elementos foram vencedores e nunca perderam em comparações realizadas
 - c: Nº de elementos foram perdedores e nunca venceram em comparações realizadas
 - d: Nº de elementos que foram vencedores ou perdedores em comparações realizadas.

▶ E por seis regras:

- (a-2,b+1,c+1,d) se a >=2 {dois elementos de a são comparados}
- (a-1,b+1,c,d) ou
- (a-1,b,c+1,d) ou { um elemento de a comparado com um de b ou c}
- (a-1,b,c,d+1) se a >= 1

▶ Cenário inicial: (n, 0, 0, 0)

▶ Cenário desejado (final): (0, 1, 1, n-2)

▶ Cenário inicial: (n, 0, 0, 0)

Cenário desejado (final): (0, 1, 1, n-2)

Levar a para 0 requer n/2 comparações: (0, n/2, n/2, 0)

▶ Cenário inicial: (n, 0, 0, 0)

Cenário desejado (final): (0, 1, 1, n-2)

Levar a para 0 requer n/2 comparações: (0, n/2, n/2, 0)

Reduzir b para 1 precisa de (n/2) - 1 comparações: (0, 1, n/2, n/2-1)

▶ Cenário inicial: (n, 0, 0, 0)

Cenário desejado (final): (0, 1, 1, n-2)

Levar a para 0 requer n/2 comparações: (0, n/2, n/2, 0)

Reduzir b para 1 precisa de (n/2) - 1 comparações: (0, 1, n/2, n/2-1)

Reduzir c para 1 precisa de (n/2) - 1 comparações: (0,1,1,n-2)

▶ Cenário inicial: (n, 0, 0, 0)

Cenário desejado (final): (0, 1, 1, n-2)

Levar a para 0 requer n/2 comparações: (0, n/2, n/2, 0)

Reduzir b para 1 precisa de (n/2) - 1 comparações: (0, 1, n/2, n/2-1)

Reduzir c para 1 precisa de (n/2) - 1 comparações: (0,1,1,n-2)

Conclusão: o menor custo do algoritmo é:

$$f(n) = n/2 + n/2 - 1 + n/2 - 1 = 3n/2 - 2$$

Problema:

Nem sempre a contagem das instruções é trivial

Problema:

Nem sempre a contagem das instruções é trivial

Pode envolver a resolução de séries matemáticas

Problema:

Nem sempre a contagem das instruções é trivial

Pode envolver a resolução de séries matemáticas

Ex: algoritmos de ordenação simples

Problema:

Nem sempre a contagem das instruções é trivial

Pode envolver a resolução de séries matemáticas

Ex: algoritmos de ordenação simples

Nº de iterações variável (progressão)

Revisão de matemática

Séries

$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^2}{2}$$

Análise assintótica

- O custo para obter uma solução para um dado problema aumenta com o tamanho n da entrada
 - Para n pequeno, a escolha do algoritmo não é crítica
 - Análise deve focar quando n assume valores elevados
- Análise estuda o comportamento assintótico da função
 - Representa o limite de comportamento do custo à medida que n cresce (eficiência com base na ordem de crescimento)
 - Comportamento da função quando n tende a infinito
 - Reduz o problema a uma resposta menos precisa, mas fácil de derivar e de interpretar

- Comparação de algoritmos envolve determinar suas ordens de crescimento (eficiência assintótica)
 - O algoritmo com a menor ordem de crescimento deverá executar mais rápido
- Algumas "consequências" desse tipo de análise:
 - Usa um modelo de máquina único com as operações básicas
 - Eficiência do algoritmo pode estar relacionada à detalhes dos dados de entrada além do seu tamanho
 - Ex: organização dos dados no vetor
 - Análise de diferentes cenários: melhor caso, pior caso e caso médio

- Melhor caso: não é uma boa análise
 - Nivela os algoritmos por baixo
 - O custo pode não ser alcançado na prática

- Melhor caso: não é uma boa análise
 - Nivela os algoritmos por baixo
 - O custo pode não ser alcançado na prática
- Caso médio: é o ideal (intuitivamente) em algumas situações
 - Seu cálculo pode não ser uma tarefa trivial
 - É preciso conhecer a distribuição de probabilidade típica da entrada e utilizar teoria da probabilidade
 - Descrição da chance de uma variável aleatória assumir um determinado valor

- Melhor caso: não é uma boa análise
 - Nivela os algoritmos por baixo
 - O custo pode não ser alcançado na prática
- Caso médio: é o ideal (intuitivamente) em algumas situações
 - Seu cálculo pode não ser uma tarefa trivial
 - É preciso conhecer a distribuição de probabilidade típica da entrada e utilizar teoria da probabilidade
 - Descrição da chance de uma variável aleatória assumir um determinado valor
- Pior caso: recomendado e mais utilizado
 - Fácil de identificar
 - Representa o limite superior do tempo de execução em função entrada
 - Nenhuma execução do algoritmo será pior que isto
 - Ocorre com frequência em muitos algoritmos

- Considere o custo de execução de um algoritmo:
 - **Pior caso:** $2+3n+2+3\times(2n)+1 = 9n+5$ instruções
 - Melhor caso: $2+3n+2+2\times(2n)+1=7n+5$ instruções

- Considere o custo de execução de um algoritmo:
 - **Pior caso:** $2+3n+2+3\times(2n)+1 = 9n+5$ instruções
 - Melhor caso: $2+3n+2+2\times(2n)+1=7n+5$ instruções
- Suponha ainda que:
 - t_1 é o tempo gasto pela instrução mais rápida
 - t_2 é o tempo gasto pela instrução mais lenta

- Considere o custo de execução de um algoritmo:
 - **Pior caso:** $2+3n+2+3\times(2n)+1 = 9n+5$ instruções
 - Melhor caso: $2+3n+2+2\times(2n)+1=7n+5$ instruções
- Suponha ainda que:
 - t_1 é o tempo gasto pela instrução mais rápida
 - t_2 é o tempo gasto pela instrução mais lenta
- O tempo de execução no pior caso T(n) é limitado por duas funções lineares

$$t_1(9n+5) \le T(n) \le t_2(9n+5)$$

Gráfico do custo de execução

Exemplo: $t_1 = 1.5 \text{ e } t_2 = 4.0$

Questão: o que podemos concluir sobre a eficiência do algoritmo analisado quando n aumenta?

- Questão: o que podemos concluir sobre a eficiência do algoritmo analisado quando n aumenta?
 - A função que caracteriza a complexidade computacional do algoritmo é de ordem **linear**

- Questão: o que podemos concluir sobre a eficiência do algoritmo analisado quando n aumenta?
 - A função que caracteriza a complexidade computacional do algoritmo é de ordem **linear**
 - Fatores constantes podem ser desprezados
 - ▶ Não se alteram a medida que *n* aumenta
 - ▶ Não afetam o comportamento da taxa de crescimento

- Questão: o que podemos concluir sobre a eficiência do algoritmo analisado quando n aumenta?
 - A função que caracteriza a complexidade computacional do algoritmo é de ordem **linear**
 - Fatores constantes podem ser desprezados
 - ▶ Não se alteram a medida que *n* aumenta
 - ▶ Não afetam o comportamento da taxa de crescimento
 - ► Simplificação: $T(n) = 9n+5 \approx n$

- Questão: o que podemos concluir sobre a eficiência do algoritmo analisado quando n aumenta?
 - A função que caracteriza a complexidade computacional do algoritmo é de ordem **linear**

T(n)	I	10	100	1.000	10.000
9n+5	14	95	905	9.005	90.005
9n	9	90	900	9.000	90.000
n	I	10	100	1.000	10.000

Gráfico do comportamento assintótico

Fatores constantes não afetam a forma de crescimento

OBS: a escala logarítmica permite visualizar a taxa de crescimento (crescimento similar)

- Fatores constantes não afetam a ordem de complexidade da função de custo do algoritmo
 - Não são alterados com o aumento no tamanho da entrada (n)
 - Mudanças no ambiente de execução (HW e SW) afetam a taxa de crescimento por um fator constante

- Fatores constantes não afetam a ordem de complexidade da função de custo do algoritmo
 - \triangleright Não são alterados com o aumento no tamanho da entrada (n)
 - Mudanças no ambiente de execução (HW e SW) afetam a taxa de crescimento por um fator constante
- ▶ Termos de menor ordem também não afetam o comportamento do crescimento
 - **Crescem mais lentamente** a medida que *n* aumenta

- Fatores constantes não afetam a ordem de complexidade da função de custo do algoritmo
 - \triangleright Não são alterados com o aumento no tamanho da entrada (n)
 - Mudanças no ambiente de execução (HW e SW) afetam a taxa de crescimento por um fator constante
- ► Termos de menor ordem também não afetam o comportamento do crescimento
 - ▶ Crescem mais lentamente a medida que *n* aumenta
- Apenas o termo que representa o comportamento assintótico da função de custo do algoritmo é mantido
 - ► Termo de maior ordem domina o comportamento de f(n) quando n tende ao infinito

Influência dos termos de menor ordem:

T(n)	I	10	100	1.000
n ²	I	100	10.000	1.000.000
n²+n	2	110	10.100	1.001.000
Δ	100%	10%	1%	0,1%

Influência dos termos de menor ordem:

T(n)	I	10	100	1.000
n ²	I	100	10.000	1.000.000
n²+n	2	110	10.100	1.001.000
Δ	100%	10%	1%	0,1%

diminui a medida que n aumenta

As principais classes de comportamento assintótico são representadas pelas seguintes funções:

- ▶ Constante (≈ 1)
- Logarítmica (≈ log_a n)
- ▶ Linear (≈ n)
- Log linear (≈ n × log_a n)
- ▶ Quadrática (≈ n²)
- Cúbica (≈ n³)
- Exponencial (≈ aⁿ)
- Fatorial (≈ n!)

As principais classes de comportamento assintótico são representadas pelas seguintes funções:

- ▶ Constante (≈ 1)
- ▶ Logarítmica (≈ log_a n)
- ▶ Linear (≈ n)
- Log linear (≈ n × log_a n)
- ▶ Quadrática (≈ n²)
- Cúbica (≈ n³)
- Exponencial (≈ aⁿ)
- Fatorial (≈ n!)

Constante

- ▶ Independe do tamanho de *n*
- Instruções executadas um número fixo de vezes
- **Ex:** Remover o topo de uma pilha (desempilhar)

Logarítmica

- Típica de algoritmos que resolvem um problema transformando-o em problemas menores
- Ex: busca binária

Linear

- Melhor cenário para problemas que precisam processar n entradas para obter n saídas
- Uma certa qtde. de operações é aplicada em cada elemento de entrada
 - Ex: Obter o maior elemento de um vetor

Log linear

- Engloba algoritmos que resolvem um problema transformando-o em problemas menores
 - Resolve cada um de forma independente e mescla as soluções
- **Ex:** quick sort

Quadrática e cúbica

- Ocorre quando os dados de entrada são processados através de laços aninhados e relacionados
 - Potência está relacionada à quantidade de laços aninhados
- **Ex:** bubble sort (n^2) e multiplicação de matrizes (n^3)

Exponencial e fatorial

- Geralmente envolvem soluções baseadas em "força bruta"
 - Não são viáveis na prática
- Fatorial é uma exponencial com comportamento muito pior

Classes de comportamento assintótico

Classes e tempo de execução

	segund	ns	Características Aproximadas do Hardware			
	minutos		Número de Instruções executadas por Ciclo do relógio (IPC)			8
	séculos		Freqüência (1 / período do ciclo em min.) No. de Instruções por minuto			3E+09
						24E+09
			}			
T(n)		n = 20		n = 40	n = 60	n = 80
n		5,3E-08		1,1E-07	1,6E-07	2,1E-07
n log	n	2,3E-07		5,7E-07	9,5E-07	1,3E-06
n ²		1,1E-06		4,3E-06	9,6E-06	1,7E-05
n ³		2,1E-05		1,7E-04	5,8E-04	1,4E-03
2 ⁿ		2,8E-03		48,9	1,0	1,0E+06
3 ⁿ ····		0,2		5,4E+08	1,9E+18	6,6E+27

Fonte da figura: notas de aula do Prof. Ricardo Campello

Gráfico comparativo das classes assintóticas

Exemplo: em escala logarítmica – para ser possível visualizar todas as função ao mesmo tempo

Qual a classe de comportamento assintótico para cada uma das funções de custo abaixo:

$$f_{1}(n) = n^{2} + 10n + 5$$

$$f_{2}(n) = 10n^{2} + 5n + n^{3} + 1000$$

$$f_{3}(n) = 5347$$

$$f_{4}(n) = 5n \log n + 10$$

$$f_{5}(n) = 5n + \log n$$

$$f_{6}(n) = 3n(n-1) + 10$$

$$f_{7}(n) = 3n^{2} + 2^{n}$$

Qual a classe de comportamento assintótico para cada uma das funções de custo abaixo:

$$f_1(n) = n^2 + 10n + 5$$

$$f_2(n) = 10n^2 + 5n + n^3 + 1000$$

$$f_3(n) = 5347$$

$$f_4(n) = 5n \log n + 10$$

$$f_5(n) = 5n + \log n$$

$$f_6(n) = 3n(n-1) + 10$$

$$f_7(n) = 3n^2 + 2^{n+1}$$

$$f_1(n) \approx n^2$$

$$f_2(n) \approx n^3$$

$$f_3(n) \approx 1$$

$$f_4(n) \approx n \log n$$

$$f_5(n) \approx n$$

$$f_6(n) \approx n^2$$

$$f_7(n) \approx 2^n$$

```
Inicio
  i, j, A[n]: inteiro
  i = 1:
  enquanto (i < n) faca
     A[i] = 0;
     i = i + 1;
  fim_enquanto
  para i = 1 ate n faca
     para j = 1 ate n faca
             A[i] = A[i] + (i*i);
       fim_para
  fim_para
fim
```

```
Inicio
  i, j, A[n]: inteiro
  i = 1:
                              \rightarrow f_1(n) = 1
  enquanto (i < n) faca
     A[i] = 0;
     i = i + 1;
  fim_enquanto
  para i = 1 ate n faca
     para j = 1 ate n faca
              A[i] = A[i] + (i*i);
    fim_para
  fim_para
fim
```

```
Inicio
  i, j, A[n]: inteiro
  i = 1:
                              \rightarrow f_I(n) = I
  enquanto (i < n) faca
     A[i] = 0;
     i = i + 1;
  fim_enquanto
  para i = 1 ate n faca
     para i = 1 ate n faca
              A[i] = A[i] + (i*i);
    fim_para
  fim_para
fim
```

```
Inicio
   i, j, A[n]: inteiro
   i = 1:
   enquanto (i < n) faca
        A[i] = 0;
        i = i + 1;
   fim_enquanto
   para i = 1 ate n faca
      \begin{array}{c} \text{para } j = 1 \text{ atc } n \text{ faca} \\ A[i] = A[i] + (i*j); \\ \text{fim\_para} \end{array} \qquad \begin{array}{c} f_3(n) = 6n \\ = 12n^2 \end{array}
      fim_para
   fim_para
fim
```

```
f(n) = f_1(n) + f_2(n) + f_4(n)
Inicio
  i, j, A[n]: inteiro
                                                             = 12n^2 + 5n + 1
  i = 1:
                                 \rightarrow f_I(n) = I
  enquanto (i < n) faca
      A[i] = 0;
      i = i + 1;
  fim_enquanto
  para i = 1 ate n faca
     para j = 1 ate n faca
A[i] = A[i] + (i*j);
f_3(n) = 6n
f_4(n) = 2n \times f_3(n)
= 12n^2
    fim_para
  fim_para
fim
```

```
f(n) = f_1(n) + f_2(n) + f_4(n)
Inicio
  i, j, A[n]: inteiro
                                                          = 12n^2 + 5n + 1
                               \rightarrow f_I(n) = I
  i = 1:
                                                          \approx n^2
  enquanto (i < n) faca
     A[i] = 0;
                                                       facilmente obtido pela
      i = i + 1;
                                                       contagem dos laços
                                                            aninhados
  fim_enquanto
  para i = 1 ate n faca
     para j = 1 ate n faca
A[i] = A[i] + (i*j);
f_{3}(n) = 6n
= 12n^{2}
    fim_para
  fim_para
fim
```

Domínio assintótico

Revisão:

 O comportamento assintótico de f(n) representa o limite de comportamento da função de custo à medida que n cresce

Definição informal de domínio:

Uma função f(n) domina assintoticamente outra função g(n) se a partir de um determinado valor de n (n ≥ m), temos g(n) ≤ f(n)

Exemplo

Exemplo

Exemplo

Portanto, podemos dizer que h(n) domina assintoticamente g(n)

- Usada para denotar o custo do algoritmo no melhor caso possível
 - Indica o limite assintótico inferior para expressar algo que tenha "pelo menos" um dado comportamento

Definição:

Para uma dada função g(n), denotamos Ω(g(n)) como o conjunto de funções:

```
\Omega(g(n)) = \{ f(n) \text{ se existem constantes positivas } c \in m, \text{ tal que: } c.g(n) \ge f(n), \text{ para todo } n \ge m \}
```

Notação Ω (big-ômega)

Para todos os valores de n à direita de n_0 , o valor de f(n) reside em $c \cdot g(n)$ ou acima desse.

Exemplo: $3n^2 + n = \Omega(n)$

- Podemos pensar nessa equação como sendo $3n^2 + n \ge \Omega(n)$
- Ou seja, a taxa de crescimento de $3n^2 + n$ é maior ou igual à taxa de n

Exemplo:

 $\vee \sqrt{n} = \Omega (\log n)$

Exemplo:

Podemos ler:

"raiz de *n* é **pelo menos** ômega de log *n*"

Exemplo:

Podemos ler:

"raiz de *n* é **pelo menos** ômega de log *n*"

▶ Isto vale para um *n* suficientemente grande $(n \ge n_0)$

 Usada para denotar o caso médio da função custo de um algoritmo

Definição:

Para uma dada função g(n), denotamos θ(g(n)) como o conjunto de funções:

```
\theta(g(n)) = \{ f(n) \text{ se existem constantes positivas } c_1, c_2 \text{ e } m, \text{ tal que: } c_1.g(n) \leq f(n) \leq c_2.g(n), \text{ para todo } n \geq m \}
```

▶ Basta multiplicar g(n) pelas constantes c_1 e c_2 para obter os limites superior e inferior para f(n)

- Para todos os valores de n à direita de n_0 , o valor de f(n) reside em $c_1g(n)$ ou acima dele e em $c_2g(n)$ ou abaixo desse.
- Para todo n > 0, f(n) = g(n) dentro de um fator constante.
- g(n) é um **limite** "estreito" para f(n).

Foi dito que poderíamos descartar os termos de mais baixa ordem e coeficientes do termo de mais alta ordem. Para mostrar formalmente que, por exemplo,

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

▶ Definiremos constantes positivas c_1, c_2 e n_0 tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$
, para todo $n \ge n_0$

Dividindo por n^2 :

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

A desigualdade do lado direito pode ser considerada válida para $n \ge 1$ escolhendo $c_2 \ge 1/2$, e a do lado esquerdo pode ser considerada válida para $n \geq 7$ escolhendo $c_1 \geq \frac{1}{14}$.

• Para $c_2 = \frac{1}{2}$, n = 7 e $c_1 = \frac{1}{14}$, temos:

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

► Também é possível mostrar que $6n^3 \neq \Theta(n^2)$, para isso devemos encontrar:

$$c_1 n^2 \le 6n^3 \le c_2 n^2$$

• Dividindo os termos por n^2 , temos:

$$c_1 \leq 6n \leq c_2$$

$$c_1 \le 6n \le c_2$$

- ▶ E assim chegamos a: $n \le \frac{c_2}{6}$
 - \triangleright mas c_2 é constante e n não poderia ser suficientemente grande
 - O valor de n está limitado pela constante $\frac{c_2}{6}$, não sendo possível a análise assintótica (entrada tendendo ao infinito)
- Assim, por contradição, provamos que $6n^3 \neq \Theta(n^2)$,

- Usada para denotar o custo do algoritmo no pior caso possível
 - Indica o limite assintótico superior
- É a notação mais conhecida e utilizada
 - Caso mais fácil de identificar
 - \blacktriangleright Não precisa estar próxima, nem ser um limite estreito para f(n)

Definição:

Para uma dada função g(n), denotamos O(g(n)) como o conjunto de funções:

```
O(g(n)) = \{ f(n) \text{ se existem constantes positivas } c \in m, \text{ tal que: } f(n) \le c.g(n), \text{ para todo } n \ge m \}
```


f(n) = O(g(n))

- Para todos os valores de nà direita de n_0 , o valor de f(n) reside em $c \cdot g(n)$ ou abaixo desse.
- Formalmente, a função g(n) representa um **limite** superior para f(n)
- Exemplo: $2n^2 = O(n^3)$
 - Podemos pensar nessa equação como sendo $2n^2 \le 0(n^3)$ ou $2n^2 \in 0(n^3)$
 - A taxa de crescimento de $2n^2$ é menor ou igual à taxa de n^3

- Exemplo $1:2n+10 \notin O(n)$
 - \blacktriangleright Podemos realizar uma manipulação para encontrar c e n_0 :

$$2n + 10 \le c \cdot n$$

$$c \cdot n - 2n \ge 10$$

$$(c-2)n \ge 10$$

$$n \ge \frac{10}{c - 2}$$

A afirmação é válida para c = 3 e $n_0 = 10$.

- Exemplo 2: $n^2 \notin O(n)$
 - \blacktriangleright É preciso encontrar c que seja sempre maior ou igual a n para todo valor de um n_0 :

$$n^2 \le c \cdot n \Rightarrow$$

$$n \leq c$$

• É impossível pois c deve ser constante.

Exemplo 3:

$$3n^3 + 20n^2 + 5 \text{ \'e } O(n^3)$$

- \bullet É preciso encontrar c>0 e $n_0\geq 1$ tais que $3n^3+20n^2+5\leq c\cdot n^3$ para $n\geq n_0$
- Como $3n^3+20n^2+5 \le (3+20+5)\cdot n^3$, podemos tomar c=28 e qualquer $n_0>1$

Exemplo 4:

$$3 \log n + 5 \in O(\log n)$$

- É preciso encontrar c>0 e $n_0\geq 1$ tais que $3\log +5\leq c\cdot \log n$ para todo $n\geq n_0$
- Note que $3 \log n + 5 \le (3 + 5) \cdot \log n$ se $n > 1 (\log 1 = 0)$
- ▶ Basta tomar, por exemplo, c=8 e qualquer $n_0=2$

Exemplo 5:

$$2^{n+2} \notin O(2^n)$$

- É preciso c>0 e $n_0\geq 1$ tais que $2^{n+2}\leq c\cdot 2^n$ para todo $n\geq n_0$
- Note que $2^{n+2} = 2^n * 2^2 = 4 \cdot 2^n$
- Assim, basta tomar, por exemplo, c=4 e qualquer n_0

Operações com a notação O (big-Oh)

- Se TI(n) = O(f(n)) e T2(n) = O(g(n)), então:
 - $c \times O(f(n)) = O(f(n))$
 - O(O(f(n)) = O(f(n))
 - O(f(n)) + O(f(n)) = O(f(n))
 - $\triangleright O(f(n)) + O(g(n)) = O(\max(f(n),g(n)))$
 - $O(f(n)) \times O(g(n)) = O(f(n) \times g(n))$
 - $f(n) \times O(g(n)) = O(f(n) \times g(n))$

códigos sequenciais

códigos aninhados

Notação assintótica

- ...Algumas regras
 - ▶ Se T(x) é um polinômio de grau n, então: $T(x) = \Theta(x^n)$
- Relembrando
 - um polinômio de grau *n* é uma função na forma:

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0 \cdot x + a_0$$

- classificação em função do grau
 - ▶ 0: constante
 - ▶ I: linear
 - ▶ 2:quadrático
 - ▶ 3:cúbico

- Um algoritmo tradicional e muito utilizado possui complexidade $n^{1,5}$, enquanto um algoritmo novo proposto é da ordem de $n \log n$:
 - $f(n) = n^{1,5}$
 - $polesymbol{g} g(n) = n \log n$
- Qual algoritmo adotar?

Exercício

- Um algoritmo tradicional e muito utilizado possui complexidade $n^{1,5}$, enquanto um algoritmo novo proposto é da ordem de $n \log n$:
 - $f(n) = n^{1,5}$
 - $ightharpoonup g(n) = n \log n$
- Qual algoritmo adotar?
- Uma possível solução:
 - $f(n) = \frac{n^{1,5}}{n} = n^{0,5} \Rightarrow (n^{0,5})^2 = n$
 - $g(n) = \frac{n \log n}{n} = \log n \Rightarrow (\log n)^2 = \log^2 n$
- Como n cresce mais rapidamente do que qualquer potência de log, o algoritmo novo é mais eficiente.

- Se f(n) for um polinômio de grau d então f(n) é $O(n^d)$
 - despreze os termos de menor ordem
 - despreze os fatores constantes
- Use a menor classe de funções possível
 - \triangleright 2n é O(n), ao invés de O(2n)
- Use a expressão mais simples
 - $n + 5 \in O(n)$, ao invés de O(3n + 5)

- Repetições: o tempo de execução é pelo menos o tempo dos comandos dentro da repetição multiplicada pelo número de vezes que é executada.
 - para i de 1 ate n faca a = a*i

- Repetições: o tempo de execução é pelo menos o tempo dos comandos dentro da repetição multiplicada pelo número de vezes que é executada.
 - para i de 1 ate n faca a = a*i
- Repetições aninhadas: análise feita de dentro para fora
 - O tempo total é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições.
 - o exemplo abaixo é $O(n^2)$

```
para i de 1 ate n faca

para j de 0 ate n-1 faca

a = a*(i+j)
```

- Condições: o tempo nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos dentro do bloco do "então" e do "senão"
 - o exemplo abaixo é O(n)se (a < b) entao a = a + 1senao para i de 1 ate n-1 faca a = a*i

- Condições: o tempo nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos dentro do bloco do "então" e do "senão"
 - o exemplo abaixo é O(n)

```
se (a < b) entao

a = a + 1

senao

para i de 1 ate n-1 faca

a = a*i
```

- Chamadas à sub-rotinas:
 - Analisa a eficiência da sub-rotina
 - Incorpora seu custo ao programa que a chamou

Considerações finais

- Quando a análise assintótica não é indicada:
 - Interesse em entradas relativamente pequenas
 - Para funções com fatores constantes com relevância prática

Considerações finais

- Quando a análise assintótica não é indicada:
 - Interesse em entradas relativamente pequenas
 - Para funções com fatores constantes com relevância prática
- **Ex:** considere a função custo de dois algoritmos:
 - $f(n) = 10^{100}n$
 - $g(n) = 10n \log n$

Considerações finais

- Quando a análise assintótica não é indicada:
 - Interesse em entradas relativamente pequenas
 - Para funções com fatores constantes com relevância prática
- **Ex:** considere a função custo de dois algoritmos:
 - $f(n) = 10^{100}n$
 - $g(n) = 10n \log n$
- ▶ Pela análise assintótica: $O(f(n)) \le O(g(n))$
 - Nota: 10^{100} é o número estimado como o limite superior para a quantidade de átomos no universo observável

$$10n \log n > 10^{100}n$$
 apenas para $n > 2^{10^{99}}$

Exercícios

 Descreva a notação O (apresentando a classe e as constantes c e m) para seguintes funções de custo:

```
f_1(n) = 5n^{5/2} + n^{2/5}

f_2(n) = 6 \log 2n + 9n

f_3(n) = 3n4 + 2n \log^2 n
```

Suponha que o algoritmo presente na parte <...>
 tenha complexidade 5n+2. Calcule a
 complexidade de tempo de execução do trecho
 de algoritmo apresentado a seguir:

```
k = 1;
enquanto K \le n faça
< ... >
k = K+1;
fim enquanto
```

Exercícios

- 3. Suponha que a complexidade de um algoritmo qualquer seja $5n^2 + n$. Considerando que uma iteração nesse algoritmo leva algo em torno de 1 nanossegundo (10^{-9} s), quanto tempo ele levará para processar uma entrada com 1000 elementos?
- 4. Considere 3 algoritmos para um mesmo problema, os quais foram testados usando 2 conjuntos de entrada (*n* = 10 e *n* = 100), como apresentado na tabela. Determine a complexidade assintótica de cada algoritmo e indique qual é o melhor e o pior. Também indique qual é o menor tamanho do conjunto de entrada necessário para o melhor algoritmo obter o menor tempo de execução.

Cj. de entrada	Algoritmo I	Algoritmo 2	Algoritmo 3
n = 10	I	1/100	1/1000
n = 100	10	1	I

Bibliografia

- Slides adaptados do material do Prof. Dr. Bruno Travençolo, da Profa. Dra.
 Denise Guliato e do Prof. Dr. Ricardo Campello
- BACKES, A. Linguagem C Descomplicada: portal de vídeo-aulas para estudo de programação. Disponível em: https://programacaodescomplicada.wordpress.com/indice/estrutura-de-dados/
- ▶ CORMEN, T.H. et al. Algoritmos: Teoria e Prática, Campus, 2002
- > ZIVIANI, N. Projeto de algoritmos: com implementações em Pascal e C (2ª ed.), Thomson, 2004
- MORAES, C.R. Estruturas de Dados e Algoritmos: uma abordagem didática (2ª ed.), Futura, 2003

Bibliografia

- ► FEOFILOFF, P. Minicurso de Análise de Algoritmos, 2010. Disponível em: http://www.ime.usp.br/~pf/livrinho-AA/
- DOWNEY, A. B. Analysis of algorithms (Cap. 2), Em: Computational Modeling and Complexity Science. Disponível em:
 http://www.groontooproop.com/compmed/html/book002.html

http://www.greenteapress.com/compmod/html/book003.htm

▶ ROSA, J. L. Notas de Aula de Introdução a Ciência de Computação II. Universidade de São Paulo. Disponível em: http://coteia.icmc.usp.br/mostra.php?ident=639

SLIDES EXTRAS

Revisão de matemática

Expoentes

- $x^a x^b = x^{a+b}$
- $x^a/x^b = x^{a-b}$
- $(x^a)^b = x^{ab}$
- $x^n + x^n = 2x^n$ (e não x^{2n})
- $2^n + 2^n = 2^{n+1}$

Logaritmos (por padrão, base 2)

- $(x^a = b) \to (\log_x b = a)$
- $\log_a b = \log_c b / \log_c a \text{ para } c > 0$

- $\log(a^b) = b \log a$
- $\log x < x$ para todo x > 0
- Notação: $\lg n = \log_2 n$ (logaritmo binário)

Função logarítmica X exponencial

Exponencial: $y = 2^x$ e **Logarítmica:** $y = log_2 x$

Sobre os logaritmos

Logaritmo

- O logaritmo nos fornece um número que é o expoente de um outro número
 - Seu valor é baixo e cresce bem lentamente

Logaritmo

- O logaritmo nos fornece um número que é o expoente de um outro número
 - Seu valor é baixo e cresce bem lentamente
 - Qual é esse outro número??

Logaritmo

 O logaritmo nos fornece um número que é o expoente de um outro número

- Seu valor é baixo e cresce bem lentamente
- Qual é esse outro número??

A base do logaritmo

 Dado um valor, usamos log quando queremos descobrir qual o expoente que resulta neste número

- Dado um valor, usamos log quando queremos descobrir qual o expoente que resulta neste número
 - **Ex:** Qual é o expoente de 2 que resulta em 1538?

$$2^{y} = 1538 \rightarrow y = ?$$

- Dado um valor, usamos log quando queremos descobrir qual o expoente que resulta neste número
 - **Ex:** Qual é o expoente de 2 que resulta em 1538?

$$2^{y} = 1538 \rightarrow y = ?$$

Sabemos que $2^{10} = 1024$ e $2^{11} = 2048$, logo: 10 < y < 11

- Dado um valor, usamos log quando queremos descobrir qual o expoente que resulta neste número
 - **Ex:** Qual é o expoente de 2 que resulta em 1538?

$$2^{y} = 1538 \rightarrow y = ?$$

- Sabemos que $2^{10} = 1024$ e $2^{11} = 2048$, logo: 10 < y < 11
- Usando logaritmo, temos:

$$y = log_2 1538 = 10,5868$$

ou seja

$$2^{10,5868} = 1538$$