2012 秋 A

一、 填空题(12 分)←
1.1、 测量元件通常由,和和 三部分组
成。↩
1.2 、感应同步器采用 <u>鉴相编码</u> 处理时,设激磁电压为 $u=U_{m}\sin(20000\pi t)$,如果节
距 L=2mm, 脉冲源频率为 20MHz,则分辨率为 ←
1.3、有一直线光栅,每毫米刻线数目为 100, 主光栅和指示光栅的 <u>的</u> 夹角为 0.7
度,莫尔条纹能够将栅距放大 毫
米。↩
1.4、热电偶的输出电势由和和 两个分量组成,适合测
量高温; ←
1.5、4096 线的增量码盘,有 A、B 两组输出脉冲,四倍频下角位置测量的分辨率
为; 而 16 位的绝对式码盘, 其测角的分辨率为。←
1.6、电动机的制动,根据制动回路的特点,分为、、
和制动三种形式,在电动汽车等希望将制动中的
←
1.7、直流电动机的调速控制方法,按照其机械特性公式可分为三种,分别
为:
初定转矩的恒转矩负载,可长时间工作、高效率的调速方法是: 。←
锁定 我起的但我起贝轼,可长时间工作、尚效率的媧迷 <i>月</i>
1.8、步进电动机转角的大小取决于控制脉冲的,转速大小取决于控制脉冲
的。两相混合式步进电动机,产品说明书给出步距角为1.8°/0.9°,其中
1.8°是指拍驱动下的步距,而 0.9°是指拍驱动下的步距,若采用 8
细分驱动电路,步距角是。↩
4
1.9、按可控程度可以将电力电子器件分为:、、 ←
和。 -
1.10、开关器件的功率损耗包括:、、、、
和。 ←
\leftarrow
1.11、在进行测速时, 传感器每转产生脉冲 1000 个, 在检测时间段 1ms 中测得脉冲数为
400. 则利用 M 法测速所得转速为 r/min。↩

.12	PWN	1 调制万元	式可以 分	力 _			_和			o ←
	选择题	匢(15 分。	单选或	多选)	\leftarrow					
.1、}	兹场简值	化分析中,	建立了	类似于	电路的	磁路模型,	其中与	电路模型	型中电流相对应	立的
勿理量	量是:_	,磁	通连续定	官律对点	应的是:	,	安培环路	格定律对	应的是:	
A	. 磁场	强度	B. 磁	兹通	C.	磁感应强	度	D. 磁动	势↩	
E	基尔智	霍夫第一定	定律	F. 基/	尔霍夫第	二定律	G. 戴	战为南定征	律↩	
.2、	一台他	也 <u>励</u> 直流日	电动机拖	运动恒!	转矩负载	试时,当 目	电枢电压	降低时,	电枢电流和	转速
等			_; 而拖	动泵类	烂/风机负	载时,当	电枢电压	玉降低时	,电枢电流和	转速
舟 _			↓							
A	. 电枢	电流减小	、转速》	咸小;	В.	电枢电流	减小、车	专速不变	; ↓	
C	. 电枢	电流不变	、转速》	咸小;	D.	电枢电流	不变、车	专速不变	; ←	
.3,	并励直	[流电机]	的定子	部分包	过括		_, 转	子部分包	过括	n =
A	. 电标	削		В.	电枢绕	组	C	. 封闭	的鼠笼绕组	11.0
D	. 激码	兹绕组		E.	换向器		F.	. 机壳		
4	13太K日:	式步进电	加拉拉	ı kt	了处 类。	佐東田		1		
		磁材料								
(. 顺	兹材料		D.	抗磁木	才料				
5.	司步电	动机中,		不加	鼠笼绕约	且就能自	行起动,	并具有	较大的起动车	专矩。
		[同步电机								
		同步电机								
6-	一由源	变压器原	边空载	由流路	自以下信	炉		增	大。	
		芯磁阻减								
		线圈匝数								
	-									
L	. 文压	器铁芯气	小郎 / 百 人	Г.	文压的	大心 (尔 0或 1			
.7、	单相异	步电动机的	的单相绕	組所	^产 生的空	间磁场是		, J	E法实现电机的	 り起
力; E										ь 4п
		舌和生产中	所使用	的单相	目异步电流	动机,一角	股采用_		_方法,使得申	已化
记动马	日常生活	舌和生产中 中,呈现两					投采用		_方法,使得申	色がし
	日常生活 戊 运行中		有相电机	的运行	厅特征。↔	1			_方法,使得申	見がし

由此推导出直流电动机的机械特性表达式。(3分)	
3.2 简述旋转变压器单相激励,两相输出实现 <u>鉴幅式</u> 测角的原理。(3分) ←	
~	
3.3、说出控制系统的组成,并说明各环节在控制系统中的作用;(3分)←	

3.4、画图简要分析 IGBT 驱动电感负载时的开关过程,并推导开关过程损耗? (3分) ←

3.1 写出并励直流电机的反电动势、力矩表达式,和静态的电压平衡、力矩平衡表达式,

三、 简答题(18分) 🖰

四、综合题(15分)~

- **4.1** 有一台他<u>励</u>直流电动机,它的额定力矩为 $T_N=330Nm$,额定转速 $\underline{n_N}=1000$ 转/分,额定电压 $U_N=200$ 伏,额定电流 $I_N=200$ 安,电枢回路总电阻 $R_S=0.1$ 欧,不计电刷压降以简化考虑。 \hookleftarrow
- 问: 1) 这台电机的额定效率是多少? <
 - 2)额定负载力矩下, 电机端电压为 120V 时, 电机转速是多少? ↩
 - 3) 不考虑电感影响, 200V 全压直接起动时的电流为额定电流的几倍?←
 - 4) 采用降压起动来限制起动电流为额定电流的2倍,起动电压应为多少?↩
 - 5) 电枢串电阻以限制起动电流为额定电流的2倍, 所串电阻应为多少? ←

4.2 需要实现一个 **500W** 直流伺服电机的位置伺服系统,请画出这一闭环控制系统的原理方框图,电机转速范围在-**500** 至+**500rpm** 以内,位置控制精度要求 **0.001°**,以测角编码器分辨率为其精度的 **1/3-1/4** 考虑,怎样选择绝对式和增量式编码器作为此系统的位置传感器?系统驱动效率要求优于 **70%**,驱动电路应采用什么方式? ↔

4.3 四轮自动。运输车采用两台直流伺服电机,各经 1:10 的减速器驱动一个前轮运行,两个后轮仅起支撑作用。车辆及负载总质量 800kg,车轮半径 0.25m,每个车轮的转动惯量为 0.025kgm²,车轮与地面的摩擦阻力系数为 0.2,水平路面直线行驶要求 8s 内车辆可匀加速到最大速度 16m/s,同时,运输车要求具有爬上 10° 坡道,并在 10° 坡道上行驶有 0.2m/s² 的加速能力,车辆要求长时间运输行驶。仅从直线运输要求,提出对驱动电机的额定力矩和额定转速指标需求。(车辆行驶等效惯量和行驶阻力对两轮平均分配) ←