SOME EXAMPLES OF TILT-STABLE OBJECTS ON THREEFOLDS

JASON LO AND YOGESH MORE

ABSTRACT. We investigate properties and describe examples of tilt-stable objects on a smooth complex projective threefold. We give a structure theorem on slope semistable sheaves of vanishing discriminant, and describe certain Chern classes for which every slope semistable sheaf yields a Bridgeland semistable object of maximal phase. Then, we study tilt stability as the polarisation ω gets large, and give sufficient conditions for tilt-stability of sheaves of the following two forms: 1) twists of ideal sheaves or 2) torsion-free sheaves whose first Chern class is twice a minimum possible value.

Contents

1.	Introduction	1
2.	Preliminaries	3
3.	Reflexive sheaves and objects of zero discriminant	4
4.	Tilt-semistable objects for $\omega \to \infty$	12
5.	Objects with twice minimal $\omega^2 ch_1$	16
6.	Tilt-unstable objects	19
References		20

1. Introduction

Let X be a smooth projective threefold over \mathbb{C} throughout, unless otherwise stated. It has been a long standing open problem to construct a Bridgeland stability condition on an arbitrary Calabi-Yau threefold. In [BMT], this problem is reduced to showing a Bogomolov-Gieseker type inequality involving ch_3 for a class of objects they call tilt-stable objects. And in [BMT] and [Mac], this conjecture is proven for $X = \mathbb{P}^3$. The purpose of this paper is to give some examples of tilt-stable objects. There are at least two possible uses of specific examples of tilt stable objects: first to investigate the ch_3 bound conjectured in [BMT], and second, for understanding moduli spaces of Bridgeland stable objects.

We now give some details of the constructions introduced in [BMT]. Let ω, B be two numerical equivalence classes of \mathbb{Q} -divisors on X, with ω an ample class. Motivated by formulas for central charges arising in string theory, one defines a function $Z_{\omega,B}:D^b(X)\to\mathbb{C}$ on the bounded derived category $D^b(X)$ of coherent sheaves on X by

1

(1.1)
$$Z_{\omega,B}(E) = -\int_{X} e^{-B-i\omega} \operatorname{ch}(E)$$

$$(1.2) = (-\widetilde{ch}_3(E) + \frac{\omega^2}{2}\widetilde{ch}_1(E)) + i(\omega\widetilde{ch}_2(E) - \frac{\omega^3}{6}\widetilde{ch}_0(E))$$

where \widetilde{ch} denotes the twisted Chern character $\widetilde{ch}(E) = e^{-B}ch(E)$. In [BMT], the function $Z_{\omega,B}$, along with an abelian category $\mathcal{A}_{\omega,B}$ that is the heart of a t-structure on $D^b(X)$, is conjectured to form a Bridgeland stability condition on $D^b(X)$, for any smooth projective threefold X over \mathbb{C} .

The heart $\mathcal{A}_{\omega,B}$ is constructed by a sequence of two tilts, starting with the abelian category $\operatorname{Coh}(X)$. After a tilt of $\operatorname{Coh}(X)$, the paper [BMT] defines a slope function $\nu_{\omega,B}$ on the resulting heart $\mathcal{B}_{\omega,B}$ and says an object in $\mathcal{B}_{\omega,B}$ is "tilt-(semi)stable" if it is $\nu_{\omega,B}$ -(semi)stable.

We now describe the results in this article. In Section 3, we show that if $E \in \mathcal{B}_{\omega,B}$ is a $\nu_{\omega,B}$ -semistable object with $\nu_{\omega,B}(E) < \inf$, then $H^{-1}(E)$ must be a reflexive sheaf (Proposition 3.1). This allows us to use results on reflexive sheaves in studying tilt-semistable objects. For $E \in D^b(X)$, we can consider the discriminant in the sense of Drézet: $\overline{\Delta}_{\omega}(E) := (\omega^2 \widetilde{ch}_1(E))^2 - 2(\omega^3 \widetilde{ch}_0(E))(\omega \widetilde{ch}_2(E))$. In [BMT, Proposition 7.4.1], it is shown that if E is a slope-stable vector bundle on X with $\overline{\Delta}_{\omega}(E) = 0$, then E is tilt-stable. We show a partial converse to this:

Theorem 3.10. Suppose $E \in \mathcal{B}_{\omega,B}$ satisfies all of the following three conditions:

- (1) $H^{-1}(E)$ is nonzero, torsion-free, $\mu_{\omega,B}$ -stable (resp. $\mu_{\omega,B}$ -semistable), with $\omega^2 \widetilde{ch}_1(H^{-1}(E)) < 0$;
- (2) $H^0(E) \in \text{Coh}^{\leq 1}(X)$;
- (3) $\overline{\Delta}_{\omega}(E) = 0$.

Then E is tilt-stable (resp. tilt-semistable) if and only if $E = H^{-1}(E)[1]$ where $H^{-1}(E)$ is a locally free sheaf.

Using the above theorem, we also obtain a better understanding of slope semistable sheaves of zero discriminant:

Theorem 3.14. Suppose B = 0. Let F be a μ_{ω} -semistable sheaf with $\overline{\Delta}_{\omega}(F) = 0$. Then $\mathscr{E}xt^1(F, \mathscr{O}_X)$ is zero, and F^* is locally free. Therefore, F is locally free if and only if the 0-dimensional sheaf $\mathscr{E}xt^2(F, \mathscr{O}_X)$ is zero.

As a corollary, we show how every slope semistable sheaf of zero discriminant and zero tilt-slope yields a $Z_{\omega,0}$ -semistable object of maximal phase in $\mathcal{A}_{\omega,0}$:

Theorem 3.17. Suppose F is a μ_{ω} -semistable sheaf with $\overline{\Delta}_{\omega}(F) = 0$, $\nu_{\omega}(F) = 0$ and $\omega^2 ch_1(F) > 0$. Then $F^{\vee}[2]$ is an object of phase 1 with respect to $Z_{\omega,0}$ in $A_{\omega,0}$.

Since taking derived dual and shift both preserve families of complexes, Theorem 3.17 implies that the moduli of $Z_{\omega,0}$ -semistable objects in $\mathcal{A}_{\omega,0}$ with the prescribed Chern classes (if it exists) contains the moduli of μ_{ω} -semistable sheaves as an open subspace. In the case of rank-one objects, for example, the open subspace contains the Hilbert scheme of points (see Remark 3.18).

In Section 4, we analyse tilt-stability at the large volume limit. In Remarks 3.11 and 4.2, we mention the connections between tilt-semistable objects and polynomial semistable objects.

In section 5, we give some sufficient conditions for a torsion-free sheaf $E \in \mathcal{T}_{\omega,B}$ with $\omega^2 \widetilde{ch}_1(E) = 2c$ to be tilt-stable. Here, the number c is defined in [BMT, Lemma 7.2.2] as

$$c := \min\{\omega^2 \widetilde{ch}_1(F) > 0 \mid F \in \mathcal{B}_{\omega,B}\}.$$

Tilt-semistable objects with $\omega^2 \widetilde{ch}_1 = c$ were already characterised in [BMT]. Our results include:

Proposition 5.1. Suppose $E \in \mathcal{T}_{\omega,B}$ is a torsion-free sheaf with $\nu_{\omega,B}(E) = 0$ and $\omega^2 \widetilde{ch}_1(E) = 2c$, where c is defined above.

- (1) If $\mu_{\omega,B,\max}(E) < \frac{\omega^3}{\sqrt{3}}$, then E is $\nu_{\omega,B}$ -stable.
- (2) If $\omega^3 > 3\omega(\widetilde{ch}_1(M))^2$ for every torsion free slope semistable sheaf M with $\omega^2 \widetilde{ch}_1(M) = c$, then E is $\nu_{\omega,B}$ -stable.

We then apply this proposition to studying the tilt-stability of rank one torsion free sheaves that are twists of ideal sheaves of curves.

Finally, in Section 6, we use known inequalities between Chern characters of reflexive sheaves on \mathbb{P}^3 to describe many rank 3 slope-stable reflexive sheaves $E \in \mathcal{B}_{\omega,B}$ that are tilt-unstable. (An object $E \in \mathcal{B}_{\omega,B}$ is defined to be tilt-unstable if it is not tilt-semistable.) We give examples illustrating an observation in [BMT, p.4], that there are semistable sheaves on \mathbb{P}^3 with $\nu(E) = 0$ that do not satisfy $\widetilde{ch}_3(E) \leq \frac{\omega^2}{18}\widetilde{ch}_1(E)$ (the inequality in Conjecture 2.2). Since Conjecture 2.2 has been proven for $X = \mathbb{P}^3$ ([BMT], [Mac]), it follows that such E must be tilt-unstable. This shows that the notion of tilt-stability is a necessary hypothesis in Conjecture 2.2.

Acknowledgments: The authors would like to thank Ziyu Zhang for helpful discussions, and Emanuele Macrì for kindly answering our questions.

Notation: We write $\operatorname{Coh}^{\leq i}(X) \subset \operatorname{Coh}(X)$ for the subcategory of coherent sheaves supported in dimension $\leq i$, and $\operatorname{Coh}^{\geq i+1}(X) \subset \operatorname{Coh}(X)$ for the subcategory of coherent sheaves that have no subsheaves supported in dimension $\leq i$.

2. Preliminaries

Throughout this article, X will always be a smooth projective threefold, unless otherwise specified.

In this section, we recall constructions introduced in [BMT]. Let us fix $\omega, B \in NS(X)_{\mathbb{Q}}$ in the Neron-Severi group, with ω an ample class. The category $\mathcal{A}_{\omega,B}$ will be formed by starting with Coh(X) and tilting twice.

First, the twisted slope $\mu_{\omega,B}$ on $\operatorname{Coh}(X)$ is defined as follows. If $E \in \operatorname{Coh}(X)$ is a torsion sheaf, set $\mu_{\omega,B}(E) = +\infty$. Otherwise set

(2.1)
$$\mu_{\omega,B}(E) = \frac{\omega^2 \widetilde{ch_1(E)}}{\widetilde{ch_0(E)}} = \frac{\omega^2 (\operatorname{ch}_1(E) - B\operatorname{rk}(E))}{\operatorname{rk}(E)}.$$

Following [BMT, Section 3.1], we say $E \in \operatorname{Coh}(X)$ is $\mu_{\omega,B}$ -(semi)stable if, for any $F \in \operatorname{Coh}(X)$ with $0 \neq F \subsetneq E$, we have $\mu_{\omega,B}(F) < (\leq) \mu_{\omega,B}(E/F)$. Let $\mu_{\omega} = \mu_{\omega,0}$. Since $\mu_{\omega,B}(E) = \mu_{\omega}(E) - B\omega^2$, it follows $E \in \operatorname{Coh}(X)$ is $\mu_{\omega,B}$ -(semi)stable if and only if it is μ_{ω} -(semi)stable.

Let $\mathcal{T}_{\omega,B} \subset \operatorname{Coh}(X)$ be the category generated, via extensions, by $\mu_{\omega,B}$ -semistable sheaves E of slope $\mu_{\omega,B}(E) > 0$, and let $\mathcal{F}_{\omega,B} \subset \operatorname{Coh}(X)$ be the subcategory generated by $\mu_{\omega,B}$ -semistable sheaves of slope $\mu_{\omega,B} \leq 0$. Then $(\mathcal{T}_{\omega,B},\mathcal{F}_{\omega,B})$ forms a torsion pair, and define the abelian category $\mathcal{B}_{\omega,B}$ as the tilt of $\operatorname{Coh}(X)$ with respect to $(\mathcal{T}_{\omega,B},\mathcal{F}_{\omega,B})$:

$$\mathcal{B}_{\omega,B} = \langle \mathcal{F}_{\omega,B}[1], \mathcal{T}_{\omega,B} \rangle.$$

For $E \in \mathcal{B}_{\omega,B}$, define its tilt-slope $\nu_{\omega,B}(E)$ as follows. If $\omega^2 \widetilde{ch}_1(E) = 0$, then set $\nu_{\omega,B}(E) = +\infty$. Otherwise set

(2.2)
$$\nu_{\omega,B}(E) = \frac{\Im Z_{\omega,B}(E)}{\omega^2 \widetilde{ch}_1(E)} = \frac{\omega \widetilde{ch}_2(E) - \frac{\omega^3}{6} \widetilde{ch}_0(E)}{\omega^2 \widetilde{ch}_1(E)}.$$

An object $E \in \mathcal{B}_{\omega,B}$ is defined to be $\nu_{\omega,B}$ -(semi)stable if, for any non-zero proper subobject $F \subset E$ in $\mathcal{B}_{\omega,B}$, we have $\nu_{\omega,B}(F) < (\leq)\nu_{\omega,B}(E/F)$. We will use tilt-(semi)-stability and $\nu_{\omega,B}$ -(semi)stability interchangably.

Let $\mathcal{T}'_{\omega,B}$ (resp. $\mathcal{F}'_{\omega,B}$) be the extension closed subcategory of $\mathcal{B}_{\omega,B}$ generated by $\nu_{\omega,B}$ -stable objects $E \in \mathcal{B}_{\omega,B}$ of tilt-slope $\nu_{\omega,B}(E) > 0$ (resp. $\nu_{\omega,B}(E) \leq 0$). Then $(\mathcal{T}'_{\omega,B},\mathcal{F}'_{\omega,B})$ form a torsion pair in $\mathcal{B}_{\omega,B}$, and tilting $\mathcal{B}_{\omega,B}$ with respect to $(\mathcal{T}'_{\omega,B},\mathcal{F}'_{\omega,B})$ defines an abelian category $\mathcal{A}_{\omega,B} = \langle \mathcal{F}'_{\omega,B}[1], \mathcal{T}'_{\omega,B} \rangle$.

In [BMT], it is shown that $\sigma = (Z_{\omega,B}, \mathcal{A}_{\omega,B})$ defines a Bridgeland stability condition as long as the image of the function $Z_{\omega,B}$ restricted to $\mathcal{A}_{\omega,B} \setminus \{0\}$ lies in the half-closed upper half plane $\mathcal{H} = \{z \in \mathbb{C} \mid \Im z > 0, \text{ or } [\Im z = 0 \text{ and } \Re z < 0]\}$. For $E \in \mathcal{A}_{\omega,B}$, it follows automatically from the construction of $\mathcal{A}_{\omega,B}$ that $\Im Z_{\omega,B}(E) \geq 0$; the difficulty so far is verifying that $\Re Z_{\omega,B}(E) < 0$ when $\Im Z_{\omega,B}(E) = 0$. To be more precise, in [BMT, Cor. 5.2.4], it is shown that $\sigma = (Z_{\omega,B}, \mathcal{A}_{\omega,B})$ is a Bridgeland stability condition on $D^b(X)$ if and only if the following conjecture holds:

Conjecture 2.1. [BMT, Conjecture 3.2.6] Any tilt-stable object $E \in \mathcal{B}_{\omega,B}$ with $\nu_{\omega,B}(E) = 0$ satisfies

(2.3)
$$\widetilde{ch}_3(E) < \frac{\omega^2}{2}\widetilde{ch}_1(E).$$

In fact, an even stronger inequality is conjectured in [BMT]:

Conjecture 2.2. [BMT, Conjecture 1.3.1] Any tilt-stable object $E \in \mathcal{B}_{\omega,B}$ with $\nu_{\omega,B}(E) = 0$ satisfies

(2.4)
$$\widetilde{ch}_3(E) \le \frac{\omega^2}{18} \widetilde{ch}_1(E).$$

In [BMT] and [Mac], this conjecture is proven for \mathbb{P}^3 , by using the fact that \mathbb{P}^3 has a full strong exceptional collection.

3. Reflexive sheaves and objects of zero discriminant

In [BMT, Proposition 7.4.1], it is shown that any slope stable vector bundle with zero discriminant is a tilt-stable object. The first goal of this section is to prove a partial converse to this result (Theorem 3.10). As a corollary, we produce a structure theorem on slope semistable sheaves of zero discriminant (Theorem 3.14). As another corollary, we show how, given any slope semistable sheaf of zero discriminant and $\nu_{\omega,B} = 0$, we can produce a $Z_{\omega,0}$ -semistable object in $\mathcal{A}_{\omega,0}$ of

maximal phase (Theorem 3.17). This implies that the Hilbert scheme of points on X in contained in a moduli of Bridgeland semistable objects on X if the moduli exists (Remark 3.18).

We begin with the following link between reflexive sheaves and $\nu_{\omega,B}$ -semistable objects in $\mathcal{B}_{\omega,B}$:

Proposition 3.1. If $E \in \mathcal{B}_{\omega,B}$ is a $\nu_{\omega,B}$ -semistable object with $\nu_{\omega,B}(E) < +\infty$, then $H^{-1}(E)$ is a reflexive sheaf.

The proof of this proposition relies on:

Lemma 3.2. Let $F \in Coh(X)$ be a torsion-free sheaf, and let $F_n \in Coh(X)$ be the Harder-Narasimhan $\mu_{\omega,B}$ -semistable factor of F with greatest $\mu_{\omega,B}$ -slope. If Q is the Harder-Narasimhan $\mu_{\omega,B}$ -semistable factor of F^{**} with greatest $\mu_{\omega,B}$ -slope, then $\mu_{\omega,B}(Q) = \mu_{\omega,B}(F_n)$. Hence if $F \in \mathcal{F}_{\omega,B}$, then $F^{**} \in \mathcal{F}_{\omega,B}$.

Proof. Observe that F_n^{**} is a $\mu_{\omega,B}$ -semistable sheaf, and we have a canonical inclusion $F_n^{**} \stackrel{\iota}{\hookrightarrow} F^{**}$. Hence $\mu_{\omega,B}(Q) \geq \mu_{\omega,B}(F_n^{**})$, by the proof of existence of HN filtrations. Let $Q \stackrel{\alpha}{\hookrightarrow} F^{**}$ be the inclusion, $F^{**} \stackrel{\beta}{\to} T$ be the cokernel of ι , and $K = \ker \beta \alpha$. We have a commutative diagram with exact rows and columns:

We have $\mu_{\omega,B}(K) = \mu_{\omega,B}(Q)$ (since $Q/K \subset T$ has codimension at least two), and $\mu_{\omega,B}(F_n) \geq \mu_{\omega,B}(K)$ (because $\mu_{\omega,B}(F_n)$ is greater than or equal to the slope of any subsheaf of F). Hence $\mu_{\omega,B}(F_n) \geq \mu_{\omega,B}(Q)$. Combined with $\mu_{\omega,B}(Q) \geq \mu_{\omega,B}(F_n^{**}) = \mu_{\omega,B}(F_n)$ we have $\mu_{\omega,B}(F_n) = \mu_{\omega,B}(Q)$.

The final statement follows from the definition that a sheaf $F \in Coh(X)$ is in $\mathcal{F}_{\omega,B}$ if and only if $\mu_{\omega,B;\max}(F) := \mu_{\omega,B}(F_n) \leq 0$.

Proof of Proposition 3.1. By Lemma 3.2, we have $H^{-1}(E)^{**} \in \mathcal{F}_{\omega,B}$. Hence the canonical short exact sequence $0 \to H^{-1}(E) \to H^{-1}(E)^{**} \to T \to 0$ gives us an injection $T \hookrightarrow H^{-1}(E)[1]$ in $\mathcal{B}_{\omega,B}$. Together with the injection $H^{-1}(E)[1] \hookrightarrow E$ in $\mathcal{B}_{\omega,B}$, we get $T \hookrightarrow E$ in $\mathcal{B}_{\omega,B}$ where $T \in \text{Coh}^{\leq 1}(X)$. If $T \neq 0$, then $\nu_{\omega,B}(T) = \infty > \nu_{\omega,B}(E)$, contradicting the $\nu_{\omega,B}$ -semistability of E. Hence T = 0, i.e. $H^{-1}(E)$ must be a reflexive sheaf.

Corollary 3.3. Let F be a torsion free sheaf with $F[1] \in \mathcal{B}_{\omega,B}$. If F[1] is $\nu_{\omega,B}$ -semistable, then F is reflexive.

Lemma 3.4. The subcategory $\operatorname{Coh}^{\leq 0}(X)$ of $\mathcal{B}_{\omega,B}$ is closed under quotients, subobjects and extensions.

Proof. Given any short exact sequence $0 \to K \to Q \to B \to 0$ in $\mathcal{B}_{\omega,B}$ where $Q \in \text{Coh}^{\leq 0}(X)$, consider the long exact sequence

$$0 \to H^{-1}(B) \to H^0(K) \to H^0(Q) \to H^0(B) \to 0.$$

If $H^{-1}(B)$ is nonzero, then it has positive rank, as does $H^0(K)$. However, then $0 < \omega^2 \widetilde{ch}_1(H^0(K)) = \omega^2 \widetilde{ch}_1(H^{-1}(B)) \le 0$, which is a contradiction. Thus $H^{-1}(B) = 0$, and the lemma follows.

The next proposition roughly says that modifying an object in codimension 3 does not alter its $\nu_{\omega,B}$ -(semi)stability:

Proposition 3.5. Suppose we have a short exact sequence in $\mathcal{B}_{\omega,B}$

$$(3.2) 0 \to E' \to E \to Q \to 0$$

where $Q \in \operatorname{Coh}^{\leq 0}(X)$.

- (1) If E is $\nu_{\omega,B}$ -semistable (resp. $\nu_{\omega,B}$ -stable), then E' is $\nu_{\omega,B}$ -semistable (resp. $\nu_{\omega,B}$ -stable).
- (2) Assuming Hom(Coh^{≤ 0}(X), E) = 0, if E' is $\nu_{\omega,B}$ -semistable, then E is $\nu_{\omega,B}$ -semistable.
- (3) Assuming Hom(Coh^{≤ 0}(X), E) = 0 and $\omega^2 \widetilde{ch}_1(E) \neq 0$, if E' is $\nu_{\omega,B}$ -stable then E is $\nu_{\omega,B}$ -stable.
- (4) If E satisfies Conjecture 2.4 then E' also satisfies the same conjecture.

Proof. Consider a commutative diagram of the form

where the row is the exact sequence (3.2), and both columns are short exact sequences in $\mathcal{B}_{\omega,B}$.

Proof of part 1. Suppose A' is a nonzero proper subobject of E'. We can put A=A', $\alpha=\mathrm{id}_{A'}$, $\gamma=e\gamma'$, and let β be the induced map of cokernels from the upper commutative square. Then by the snake lemma in the abelian category $\mathcal{B}_{\omega,B}$, coker (β) is a quotient of Q in $\mathcal{B}_{\omega,B}$, and hence is a 0-dimensional sheaf by Lemma 3.4, while $\ker(\beta)=0$. Thus $\nu_{\omega,B}(B')=\nu_{\omega,B}(B)$. We also have $\nu_{\omega,B}(A')=\nu_{\omega,B}(A)$ (since A'=A). Note that A is a nonzero proper subobject of E. If E is $\nu_{\omega,B}$ -semistable, then $\nu_{\omega,B}(A) \leq \nu_{\omega,B}(B)$, implying $\nu_{\omega,B}(A') \leq \nu_{\omega,B}(B')$, and hence E' is $\nu_{\omega,B}$ -semistable. Similarly, if E is $\nu_{\omega,B}$ -stable, then E' is also $\nu_{\omega,B}$ -stable.

Proof of part 2. Suppose that A is a nonzero proper subobject of E. We can put $B' = \operatorname{im}(\delta e)$, $\delta' = \delta e$, $A' = \ker(\delta')$, put β as the canonical inclusion $\operatorname{im}(\delta') \hookrightarrow B$, and put α as the induced map of kernels from the lower commutative square. If A' = 0, then δ' is an isomorphism. However, this implies that δ restricts to an injection from E', i.e. $E' \cap A = 0$. Hence the quotient $E \twoheadrightarrow Q$ induces an injection $A \hookrightarrow Q$, so $A \in \operatorname{Coh}^{\leq 0}(X)$ by Lemma 3.4, which contradicts our assumption $\operatorname{Hom}(\operatorname{Coh}^{\leq 0}(X), E) = 0$. Therefore, A' is nonzero.

On the other hand, if A' = E', then δ' is the zero map, meaning $E' \subset A$, and so there is a surjection $Q \twoheadrightarrow B$ in $\mathcal{B}_{\omega,B}$. By Lemma 3.4, $B \in \mathrm{Coh}^{\leq 0}(X)$, and hence $\nu_{\omega,B}(B) = \infty$. So $\nu_{\omega,B}(A) \leq \nu_{\omega,B}(B)$ when A' = E'.

Now, suppose A' is a nonzero proper subobject of E'. Since α, e and β are all injective maps, the snake lemma gives an induced short exact sequence in $\mathcal{B}_{\omega,B}$ of their cokernels:

$$(3.3) 0 \to \operatorname{coker}(\alpha) \to Q \to \operatorname{coker}(\beta) \to 0.$$

Hence $\operatorname{coker}(\alpha), \operatorname{coker}(\beta)$ are both 0-dimensional sheaves by Lemma 3.4, giving us $\nu_{\omega,B}(A') = \nu_{\omega,B}(A)$ and $\nu_{\omega,B}(B') = \nu_{\omega,B}(B)$. If E' is $\nu_{\omega,B}$ -semistable, then $\nu_{\omega,B}(A') \leq \nu_{\omega,B}(B')$, implying $\nu_{\omega,B}(A) \leq \nu_{\omega,B}(B)$, and hence E is $\nu_{\omega,B}$ -semistable.

Proof of part 3. The proof is essentially same as for part 2, with the following additional argument for the scenario A' = E'. If A' = E', the hypothesis $0 \neq \omega^2 \widetilde{ch}_1(E) = \omega^2 \widetilde{ch}_1(E')$ along with the injection $E' \hookrightarrow A$ in $\mathcal{B}_{\omega,B}$ implies $\omega^2 \widetilde{ch}_1(A) = \omega^2 \widetilde{ch}_1(E') > 0$ and hence $\nu_{\omega,B}(A) < \infty = \nu_{\omega,B}(B)$.

Proof of part 4. Assume E is $\nu_{\omega,B}$ -stable, $\nu_{\omega,B}(E)=0$, and $\widetilde{ch}_3(E)\leq \frac{\omega^2}{18}\widetilde{ch}_1(E)$. Since the formula for $\nu_{\omega,B}$ does not have any dependence on \widetilde{ch}_3 , we have $\nu_{\omega,B}(E)=\nu_{\omega,B}(E')$, so $\nu_{\omega,B}(E')=0$. By part 1, E' is $\nu_{\omega,B}$ -stable. Finally,

$$\widetilde{ch}_3(E') = \widetilde{ch}_3(E) - \widetilde{ch}_3(Q) \le \widetilde{ch}_3(E) \le \frac{\omega^2}{18} \widetilde{ch}_1(E) = \frac{\omega^2}{18} \widetilde{ch}_1(E').$$

Example 3.6. Let E be a $\mu_{\omega,B}$ -stable vector bundle on X with $\overline{\Delta}_{\omega}(E) = 0$. Then E is $\nu_{\omega,B}$ -stable by [BMT, Prop. 7.4.1]. Assume $\omega^2 \widetilde{ch}_1(E) > 0$, so $E \in \mathcal{T}_{\omega,B}$. Begining with any surjection $E \to Q$ in $\operatorname{Coh}(X)$ with $Q \in \operatorname{Coh}^{\leq 0}(X)$ we can apply Proposition 3.5 to obtain other examples of tilt-stable objects. For example, suppose X has Picard number one. Then any line bundle L on X satisfies $\overline{\Delta}_{\omega}(L) = 0$. Choose a line bundle L with $\omega^2 \widetilde{ch}_1(L) > 0$. Let I_Z be the ideal sheaf of any zero dimensional subscheme $Z \subseteq X$. Then applying Proposition 3.5 to the exact sequence $0 \to I_Z \otimes L \to L \to \mathcal{O}_Z \to 0$ shows $I_Z \otimes L$ is tilt-stable.

For objects $E \in D^b(X)$, we have the following two versions of discriminants (see [BMT, Section 7.3] for some background information):

- (1) $\Delta(E) := (\widetilde{ch_1}(E))^2 2(\widetilde{ch_0}(E))(\widetilde{ch_2}(E))$, the definition that is usually used for coherent sheaves;
- $(2) \ \overline{\Delta}_{\omega}(E) := (\omega^2 \widetilde{ch}_1(E))^2 2(\omega^3 \widetilde{ch}_0(E))(\omega \widetilde{ch}_2(E)).$

A calculation shows $\Delta(E) = (ch_1(E))^2 - 2(ch_0(E))(ch_2(E))$ that is, we may omit the tildes over the ch_i , and in particular the $\Delta(E)$ is independent of B. If the Picard number of X is one, then $\overline{\Delta}_{\omega}$ is independent of B [Mac, Section 2.1], but in general $\overline{\Delta}_{\omega}$ depends on B.

For later use, we will need the following lemma.

Lemma 3.7. For any coherent sheaf F on X, we have $\overline{\Delta}_{\omega}(F) \geq (\omega \Delta(F))\omega^3$.

Proof. The Hodge Index Theorem gives $(\omega^2 \widetilde{ch}_1(F))^2 \geq (\omega^3)(\omega \widetilde{ch}_1(F)^2)$, and hence

$$(3.4) \overline{\Delta}_{\omega}(F) = (\omega^2 \widetilde{ch}_1(F))^2 - 2(\omega^3 \widetilde{ch}_0(F))(\omega \widetilde{ch}_2(F))$$

$$(3.5) \geq \omega^3(\omega \widetilde{ch}_1(F)^2) - 2(\omega^3 \widetilde{ch}_0(F))(\omega \widetilde{ch}_2(F)) = \omega^3(\omega \Delta(F)).$$

The following result was shown in [BMT, Cor 7.3.2], and it was a key ingredient for the main result in [Mac].

Proposition 3.8. [BMT, Cor 7.3.2] If $E \in \mathcal{B}_{\omega,B}$ is $\nu_{\omega,B}$ -semistable, then $\overline{\Delta}_{\omega}(E) \geq 0$

In this section, we will investigate the tilt-stability of objects with $\overline{\Delta}_{\omega}(E) = 0$. The following result gives many examples of tilt-stable objects. (Furthermore, in [BMT, Proposition 7.4.2], they verify these objects satisfy Conjecture 2.2, and equality holds).

Proposition 3.9. [BMT, Proposition 7.4.1] Let E be a $\mu_{\omega,B}$ -stable vector bundle on X with $\overline{\Delta}_{\omega}(E) = 0$. Then E is $\nu_{\omega,B}$ -stable.

Now we come to the following partial converse to Proposition 3.9.

Theorem 3.10. Suppose $E \in \mathcal{B}_{\omega,B}$ satisfies all of the following three conditions:

- (1) $H^{-1}(E)$ is nonzero, torsion-free, $\mu_{\omega,B}$ -stable (resp. $\mu_{\omega,B}$ -semistable), with $\omega^2 \widetilde{ch}_1(H^{-1}(E)) < 0$;
- (2) $H^0(E) \in \text{Coh}^{\leq 1}(X);$
- (3) $\overline{\Delta}_{\omega}(E) = 0$.

Then E is tilt-stable (resp. tilt-semistable) if and only if $E = H^{-1}(E)[1]$ where $H^{-1}(E)$ is a locally free sheaf.

Remark 3.11. Note that, any polynomial stable complex on X that is PT-semistable or dual-PT-semistable (see [Lo2]) of positive degree satisfies conditions (1) and (2) in Theorem 3.10. However, the theorem says that, under the assumption $\overline{\Delta}_{\omega} = 0$, a (dual-)PT-semistable object cannot be a genuine complex if it is to be tilt-semistable.

We break up the proof of Theorem 3.10 into a couple of intermediate results.

Proposition 3.12. Let F be a $\mu_{\omega,B}$ -semistable reflexive sheaf on X such that $\overline{\Delta}_{\omega}(F) = 0$. Then F is a locally free sheaf.

Proof. The proof is largely based on that of [BMT, Proposition 7.4.2]. By [Laz, Theorem 4.1.10], we can find a pair (f, L) where f is a morphism $Y \to X$ that is finite, surjective and flat, with Y a smooth projective variety, and a line bundle L on Y such that $(f^*\omega)^2\widetilde{ch}_1(L\otimes f^*F)=0$.

Since f is flat and both X, Y are smooth, $L \otimes f^*F$ is reflexive by [Har, Proposition 1.8]. On the other hand, by choosing L above so that $c_1(L)$ is a rational multiple of $f^*\omega$, we have $\overline{\Delta}_{f^*\omega}(L \otimes f^*F) = \overline{\Delta}_{f^*\omega}(f^*F) = 0$ because the discriminant $\overline{\Delta}_{f^*\omega}$ is invariant under tensoring by a line bundle whose c_1 is proportional to $f^*\omega$, and $\overline{\Delta}_{\omega}(F) = 0$. Hence $(f^*\omega)\overline{ch_2}(L \otimes f^*F) = 0$. Passing to another finite cover of the form above, we can assume that B is the divisor class of a line bundle M

on Y, and $ch(M \otimes L \otimes f^*F) = \widetilde{ch}(L \otimes f^*F)$. Now, f^*F is $\mu_{f^*\omega,f^*B}$ -semistable since f is a finite morphism. Hence $M \otimes L \otimes f^*F$ is $\mu_{f^*\omega,f^*B}$ -semistable (and equivalently, $\mu_{f^*\omega}$ -semistable) with vanishing $(f^*\omega)^2ch_1$ and $(f^*\omega)ch_2$. Thus, by [Lan2, Proposition 5.1], $M \otimes L \otimes f^*F$ is locally free, i.e. f^*F is locally free. Since f is surjective and flat, it is faithfully flat, and so F itself is locally free.

Lemma 3.13. If $E \in \mathcal{B}_{\omega,B}$ with $H^{-1}(E)$ a vector bundle, and $H^0(E) \in \operatorname{Coh}^{\leq 0}(X)$, then $E \cong H^{-1}(E)[1] \oplus H^0(E)$. If E further satisfies $\operatorname{Hom}(\operatorname{Coh}^{\leq 0}(X), E) = 0$ or E is $\nu_{\omega,B}$ -stable, then $H^0(E) = 0$, in which case $E \simeq H^{-1}(E)[1]$ is a shift of a vector bundle.

Proof. Let $F = H^{-1}(E)$ and $T = H^{0}(E)$. We have $\operatorname{Ext}^{1}(T, F[1]) = \operatorname{Ext}^{2}(T, F) = \operatorname{Ext}^{1}(F, T \otimes \omega_{X}) = H^{1}(X, F^{*} \otimes T \otimes \omega_{X})$, which is zero since $T \in \operatorname{Coh}^{\leq 0}(X)$. From the exact sequence $F[1] \to E \to T$ in $\mathcal{B}_{\omega,B}$ we conclude $E \simeq F[1] \oplus T$. If E is $\nu_{\omega,B}$ -stable, then T = 0 (otherwise T would be a $\nu_{\omega,B}$ -destabilizing object of E).

Proof of Theorem 3.10. If $E = H^{-1}(E)[1]$ where $H^{-1}(E)$ is a $\mu_{\omega,B}$ -stable (resp. $\mu_{\omega,B}$ -semistable) locally free sheaf satisfying (1) through (3), then the result is [BMT, Proposition 7.4.1]. (Note that, [BMT, Proposition 7.4.1] still holds if we replace each occurrence of 'stable' by 'semistable' in its statement.)

Now, assume E satisfies (1) through (3) and is tilt-semistable. Let $F = H^{-1}(E)$. Then by Proposition 3.1, F is reflexive. The condition $H^0(E) \in \operatorname{Coh}^{\leq 1}(X)$ implies $\omega^3 \widetilde{ch}_0(H^0(E)) = \omega^2 \widetilde{ch}_1(H^0(E)) = 0$, and hence the condition $\overline{\Delta}_{\omega}(E) = 0$ can be rewritten as

(3.6)
$$\overline{\Delta}_{\omega}(F) + 2\omega^{3}\widetilde{ch}_{0}(F)\widetilde{\omega ch}_{2}(H^{0}(E)) = 0.$$

The Bogomolov-Gieseker inequality says $\omega\Delta(F) \geq 0$, and hence by Lemma 3.7, we have $\overline{\Delta}_{\omega}(F) \geq 0$. Since both terms $\overline{\Delta}_{\omega}(F)$ and $2\omega^3\widetilde{ch}_0(F)\widetilde{\omega ch}_2(H^0(E))$ are nonnegative, Equation 3.6 implies they must both by zero. So $\widetilde{\omega ch}_2(H^0(E)) = 0$, and $H^0(E) \in \operatorname{Coh}^{\leq 0}(E)$. Since $\overline{\Delta}_{\omega}(F) = 0$, we have F is locally free by Proposition 3.12. By Lemma 3.13, we can conclude $E \simeq F[1]$.

Using Theorem 3.10, we can also prove the following result on μ_{ω} -semistable sheaves of zero discriminant:

Theorem 3.14. Suppose B=0. Let F be a μ_{ω} -semistable torsion-free sheaf with $\overline{\Delta}_{\omega}(F)=0$. Then $\mathcal{E}xt^1(F,\mathcal{O}_X)$ is zero, and F^* is locally free. Therefore, F is locally free if and only if the 0-dimensional sheaf $\mathcal{E}xt^2(F,\mathcal{O}_X)$ is zero.

To prove Theorem 3.14, we first note:

Lemma 3.15. Suppose B=0. If F is a μ_{ω} -semistable torsion-free sheaf on X with $\overline{\Delta}_{\omega}(F)=0$, then F must be locally free outside a codimension-3 locus.

Proof. Suppose the singularity locus of F has codimension 2. Then $\widetilde{ch}_2(F^{**}/F) = ch_2(F^{**}/F) > 0$, implying $\overline{\Delta}_{\omega}(F^{**}) < \overline{\Delta}_{\omega}(F) = 0$, which is a contradiction by Lemma 3.7 and the usual Bogomolov-Gieseker inequality for μ_{ω} -semistable sheaves. Hence the singularity locus of F has codimension at least 3.

Lemma 3.16. Suppose B=0. Suppose F is a μ_{ω} -semistable (resp. μ_{ω} -stable) torsion-free sheaf, such that $\omega^2 ch_1(F)>0$ and $\overline{\Delta}_{\omega}(F)=0$. Then $(\tau^{\leq 1}F^{\vee})[1]$ is a $\nu_{\omega,0}$ -semistable (resp. $\nu_{\omega,0}$ -stable) object.

Proof. By Lemma 3.15, the sheaf F is locally free outside a 0-dimensional locus. Hence $\mathscr{E}xt^i(F,\mathscr{O}_X)$ is 0-dimensional for all i>0, implying $\overline{\Delta}_{\omega}(F^*)=0$. Since F^* is reflexive, Proposition 3.12 implies F^* is locally free. And so $F^*[1]$ is $\nu_{\omega,0}$ -semistable by [BMT, Proposition 7.4.1]. Applying $\operatorname{Hom}(\operatorname{Coh}^{\leq 0}(X), -)$ to the exact triangle in D(X)

(3.7)
$$\tau^{\geq 2}(F^{\vee}) \to (\tau^{\leq 1}(F^{\vee}))[1] \to F^{\vee}[1] \to \tau^{\geq 2}(F^{\vee})[1]$$

and writing $E := (\tau^{\leq 1}(F^{\vee}))[1]$, we obtain $\operatorname{Hom}(\operatorname{Coh}^{\leq 0}(X), E) = 0$. Hence, by applying Proposition 3.5 to the short exact sequence

$$0 \to F^*[1] \to E \to \mathscr{E}xt^1(F, \mathscr{O}_X) \to 0$$

in $\mathcal{B}_{\omega,B}$, we get that E itself is $\nu_{\omega,0}$ -semistable.

We can now finish the proof of Theorem 3.14:

Proof of Theorem 3.14. By tensoring F with $\mathscr{O}_X(m\omega)$ for $m \gg 0$, we can assume $\omega^2 \widetilde{ch}_1(F) > 0$. From the proof of Lemma 3.16, we know F^* is locally free. By Lemma 3.16 and Theorem 3.10, we have $H^0(\tau^{\leq 1}(F^{\vee}))[1] = 0$, i.e. $\mathscr{E}xt^1(F,\mathscr{O}_X)$ is zero. The last assertion of Theorem 3.14 follows from the fact that any torsion-free sheaf on a smooth threefold has homological dimension at most 2.

Recall the following easy consequence of [BMT, Propositions 7.4.1, 7.4.2]: suppose F is a $\mu_{\omega,B}$ -stable vector bundle on X with $\overline{\Delta}_{\omega}(F)=0$ and $\nu_{\omega,B}(F)=0$. Then the object F[1] (resp. F[2]) lies in $\mathcal{A}_{\omega,B}$, has phase 1 with respect to $Z_{\omega,B}$ and hence is $Z_{\omega,B}$ -semistable if $\omega^2 \widetilde{ch}_1(F) > 0$ (resp. $\omega^2 \widetilde{ch}_1(F) \leq 0$). Now we have a slight extension of this result:

Theorem 3.17. Suppose F is a μ_{ω} -semistable sheaf with $\overline{\Delta}_{\omega}(F) = 0$, $\nu_{\omega}(F) = 0$ and $\omega^2 ch_1(F) > 0$. Then $F^{\vee}[2]$ is an object of phase 1 with respect to $Z_{\omega,0}$ in $A_{\omega,0}$.

In particular, if $(\mathcal{A}_{\omega,0}, Z_{\omega,0})$ is a stability condition, then we can speak of $F^{\vee}[2]$ as a $Z_{\omega,0}$ -semistable object.

Proof. By Lemma 3.16, we know $(\tau^{\leq 1}F^{\vee})[1]$ is $\nu_{\omega,0}$ -semistable with $\nu_{\omega,0}=0$. Hence $(\tau^{\leq 1}F^{\vee})[1] \in \mathcal{F}'_{\omega,0}$, and so $(\tau^{\leq 1}F^{\vee})[2] \in \mathcal{A}_{\omega,0}$. Since $(\tau^{\geq 2}F^{\vee})[2]$ also lies in $\mathcal{A}_{\omega,0}$ and has phase 1 with respect to $Z_{\omega,0}$, from the exact triangle (3.7) we see that $F^{\vee}[2]$ is also of phase 1 in $\mathcal{A}_{\omega,0}$.

Remark 3.18. Given Theorem 3.17, it is reasonable to hope that for any Chern character ch satisfying the conditions in the theorem, the moduli space of $Z_{\omega,0}$ -semistable objects in $\mathcal{A}_{\omega,0}$ (provided $(\mathcal{A}_{\omega,0}, Z_{\omega,0})$ is a stability condition and the moduli space exists) contains the moduli of slope semistable sheaves of Chern character ch as a subspace.

More concretely, suppose $Z \subset X$ is a 0-dimensional subscheme of length n, and let L be a line bundle on X such that $I_Z \otimes L$ satisfies the hypotheses of Theorem 3.17. For instance, we can choose L so that $c_1(L)$ is proportional to ω (so that tensoring I_Z by L does not alter its $\overline{\Delta}_{\omega}$); on the other hand, it can be checked easily that $\nu_{\omega}(I_Z \otimes L) = 0$ is equivalent to $3\omega c_1(L)^2 = \omega^3$, provided $\omega^2 c_1(L) \neq 0$. Then $(I_Z \otimes L)^{\vee}[2]$ would be an object of of $\mathcal{A}_{\omega,0}$ with phase 1 with respect to $Z_{\omega,0}$, and hence would be $Z_{\omega,0}$ -semistable in $\mathcal{A}_{\omega,0}$. Therefore, if the moduli space of $Z_{\omega,0}$ -semistable objects $E \in \mathcal{A}_{\omega,0}$ with fixed chern character $ch(E) = ch((I_Z \otimes L)^{\vee}[2])$ exists, then it contains the Hilbert scheme of n points on X. The following lemma

shows that, under the condition $H^{-1}(E) = 0$, a $Z_{\omega,0}$ -semistable object $E \in \mathcal{A}_{\omega,0}$ with the same Chern classes as $(I_Z \otimes L)^{\vee}[2]$ is 'almost' (i.e. up to a 0-dimensional sheaf sitting at degree 0) of the form $(I_Z \otimes L)^{\vee}[2]$.

Lemma 3.19. Suppose B=0, and any line bundle on X with the same Chern classes as \mathcal{O}_X is isomorphic to \mathcal{O}_X (e.g. when X has Picard rank 1). Suppose $E \in \mathcal{A}_{\omega,0}$ is such that $ch(E) = ch((I_Z \otimes L)^{\vee}[2])$ where I_Z , L are as in Remark 3.18. (In particular, this means $\omega^2 ch_1(E) \neq 0$, $\nu_{\omega,0}(E) = 0$, and $Z_{\omega,0}(E)$ has phase 1.) If $H^{-1}(E) = 0$, then $H^0(E^{\vee}[2]) \cong I_Y \otimes L$ where I_Y is the ideal sheaf of some 0-dimensional subscheme Y of X, and $H^0(E)$ is a 0-dimensional sheaf.

Proof. With respect to $Z_{\omega,0}$ -stability, E has a filtration in $\mathcal{A}_{\omega,0}$ with $Z_{\omega,0}$ -stable factors E^i . Since $\Im Z_{\omega,0}(E)=0$, the same holds for each E^i . For each i, we have a canonical short exact sequence in $\mathcal{A}_{\omega,0}$

$$0 \to E_1^i[1] \to E^i \to E_2^i \to 0$$

where $E_1^i \in \mathcal{F}'_{\omega,0}$ and $E_2^i \in \mathcal{T}'_{\omega,0}$. Since E^i is $Z_{\omega,0}$ -stable, for each i, either $E^i = E_1^i[1]$ or $E^i = E_2^i$.

We now make an observation on objects in $\mathcal{T}'_{\omega,0}$: Suppose G is any object in $\mathcal{T}'_{\omega,0}$ with $\Im Z_{\omega,0}(G) = 0$. Then G is necessarily $Z_{\omega,0}$ -semistable as an object in $\mathcal{A}_{\omega,0}$. With respect to $\nu_{\omega,0}$ -stability, G has a filtration in $\mathcal{B}_{\omega,0}$ with $\nu_{\omega,0}$ -stable factors G^i . By the definition of $\mathcal{T}'_{\omega,0}$, we know $\nu_{\omega,0}(G^i) > 0$ for each i. On the other hand, each G^i lies in $\mathcal{T}'_{\omega,0} \subset \mathcal{A}_{\omega,0}$, and so G is an extension of the G^i in $\mathcal{A}_{\omega,0}$ as well. Hence $\Im Z_{\omega,0}(G^i) = 0$ for all i. Now, if $\omega^2 ch_1(G^i) \neq 0$ for some i, then $\omega^2 ch_1(G^i) > 0$, and so $\Im Z_{\omega,0}(G^i) > 0$, which is a contradiction. Hence $\omega^2 ch_1(G^i) = 0$ for all i. By [BMT, Remark 3.2.2], each G^i lies in the extension-closed category

$$\mathcal{C} := \langle \operatorname{Coh}^{\leq 1}(X), F[1] : F \ \mu_{\omega,0}\text{-stable with } \mu_{\omega,0}(F) = 0 \rangle \subset \mathcal{B}_{\omega,0}.$$

Note that, every object in \mathcal{C} has $\nu_{\omega,0} = +\infty$, and is thus $\nu_{\omega,0}$ -semistable. Hence $\mathcal{C} \subset \mathcal{T}'_{\omega,0}$, and each G^i , being $\nu_{\omega,0}$ -stable, either lies in $\operatorname{Coh}^{\leq 1}(X)$ or is of the form F[1] for some $\mu_{\omega,0}$ -stable sheaf of $\mu_{\omega,0} = 0$. Furthermore, if G^i lies in $\operatorname{Coh}^{\leq 1}(X)$, then it must lie in $\operatorname{Coh}^{\leq 0}(X)$ since $\Im Z_{\omega,0}(G^i) = 0$.

Now, from the canonical short exact sequence

$$(3.8) 0 \to E_1[1] \to E \to E_2 \to 0$$

in $\mathcal{A}_{\omega,0}$, we see that $H^{-1}(E)=0$ implies $H^0(E_1)=0$ and $H^{-1}(E_2)=0$. That is, both E_1, E_2 are sheaves (up to shift). In particular, by our observation above, E_2 must be an extension of objects in $\mathrm{Coh}^{\leq 0}(X)$, and so $H^0(E) \cong E_2 \in \mathrm{Coh}^{\leq 0}(X)$.

On the other hand, $H^{-1}(E_1)$ is a rank-one torsion-free sheaf by our assumption on ch(E). Dualising (3.8) and shifting, we get an exact triangle

(3.9)
$$E_2^{\vee}[2] \to E_1^{\vee}[1].$$

Since E_2 is a 0-dimensional sheaf at degree 0, $E_2^{\vee}[2] \in \operatorname{Coh}^{\leq 0}(X)[-1]$. On the other hand, since E_1 is a sheaf at degree -1, the complex $E_1^{\vee}[1]$ sits at degrees 0 through 3. The long exact sequence of cohomology of (3.9) then looks like

$$0 \to H^0(E^{\vee}[2]) \to H^{-1}(E_1)^* \to \mathscr{H}om(E_2, \mathscr{O}_X) \to \cdots$$

By our assumption on ch(E), we have

$$ch_i(H^{-1}(E_1)^*) = ch_i(H^0(E^{\vee}[2])) = ch_i(I_Z \otimes L)$$
 for $i = 0, 1, 2$.

Hence $ch(H^{-1}(E_1)^* \otimes L^*)$ is of the form (1,0,0,*). Since $H^{-1}(E_1)^* \otimes L^*$ is a reflexive sheaf, by our assumption on X and [Sim, Theorem 2], this forces $H^{-1}(E_1)^* \otimes L^* \cong \mathscr{O}_X$. Hence $H^0(E^{\vee}[2]) = I_Y \otimes L$ for some 0-dimensional subscheme $Y \subset X$, while $H^0(E) = H^0(E_2) \in \operatorname{Coh}^{\leq 0}(X)$ as wanted.

4. Tilt-semistable objects for $\omega \to \infty$

In [BMT, Section 7.2], Bayer-Macrì-Toda consider a subcategory $\mathfrak{D} \subset \mathcal{B}_{\omega,B}$ when ω is an ample \mathbb{Q} -divisor, where \mathfrak{D} consists of objects $E \in \mathcal{B}_{\omega,B}$ of the following form:

- (a) $H^{-1}(E) = 0$, and $H^{0}(E)$ is a pure sheaf of dimension ≥ 2 which is slope semistable with respect to ω .
- (b) $H^{-1}(E) = 0$, and $H^{0}(E) \in \text{Coh}^{\leq 1}(X)$.
- (c) $H^{-1}(E)$ is a torsion-free slope semistable sheaf, and $H^{0}(E) \in \operatorname{Coh}^{\leq 1}(X)$; if $\mu_{\omega,B}(H^{-1}(E)) < 0$, then also $\operatorname{Hom}(\operatorname{Coh}^{\leq 1}(X), E) = 0$.

And we have:

Lemma 4.1. [BMT, Lemma 7.2.1] If $E \in \mathcal{B}_{\omega,B}$ is $\nu_{m\omega,B}$ -semistable for $m \gg 0$, then $E \in \mathfrak{D}$.

Remark 4.2. We point out that any dual-PT-semistable complex (e.g. those termed as σ_3 -semistable in [Lo2]) of positive degree is of type (c) in the category $\mathfrak D$ above. We do not know whether all dual-PT-semistable complexes of positive degree are $\nu_{m\omega,B}$ -semistable for $m\gg 0$, although we take one step in this direction in Lemma 4.4 below.

In this section, we try to prove the converse of Lemma 4.1, which would give examples of tilt-stable objects when $\omega \to \infty$. Since tilt-semistable objects with $\nu_{\omega,B} = 0$ are $Z_{\omega,B}$ -semistable objects of phase 1 in $\mathcal{A}_{\omega,B}$, these results can help us describe Bridgeland semistable objects on threefolds as $\omega \to \infty$.

To start with, we observe the following easy consequence of Lemma 4.1 and Theorem 3.10:

Lemma 4.3. Suppose $E \in \mathcal{B}_{\omega,B}$ is such that $\overline{\Delta}_{\omega}(E) = 0$, $ch_0(E) < 0$, $c_1(E)$ is proportional to ω and $\omega^2 \widetilde{ch}_1(H^{-1}(E)) < 0$. If E is $\nu_{m\omega,B}$ -semistable for $m \gg 0$, then $E = H^{-1}(E)[1]$ where $H^{-1}(E)$ is a $\mu_{\omega,B}$ -semistable sheaf.

The next lemma is one step towards the converse of Lemma 4.1 for objects of type (c) above:

Lemma 4.4. Suppose $E \in \mathcal{B}_{\omega,B}$ satisfies the following: $H^{-1}(E)$ is a torsion-free slope stable sheaf, $H^0(E) \in \operatorname{Coh}^{\leq 1}(X)$, $\mu_{\omega,B}(H^{-1}(E)) < 0$ and $\operatorname{Hom}(\operatorname{Coh}^{\leq 1}(X), E) = 0$. Then for any short exact sequence in $\mathcal{B}_{\omega,B}$

$$(4.1) 0 \to M \to E \to N \to 0$$

where $M, N \neq 0$, we have $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(N)$ for $m \gg 0$.

Note that, Lemma 4.4 does not necessarily imply E is $\nu_{m\omega,B}$ -stable for $m \gg 0$, since m might depend on the particular short exact sequence (4.1) being considered. To show that such E is $\nu_{m\omega,B}$ -stable for $m \gg 0$, one might need to bound the Chern classes of all the M or N that appear in such short exact sequences, as is done in [LQ, Theorem 1.1(ii)].

Before we prove Lemma 4.4, let us make some observations:

- (i) The category $\mathcal{B}_{\omega,B}$ is invariant under replacing ω by $m\omega$ for any m>0.
- (ii) If A, C are two objects in $\mathcal{B}_{\omega,B}$ such that $\omega c h_1(A), c h_1(C) \neq 0$, then we have

$$(4.2) \quad -\frac{1}{\mu_{\omega,B}(A)} < -\frac{1}{\mu_{\omega,B}(C)} \text{ if and only if } \nu_{m\omega,B}(A) < \nu_{m\omega,B}(C) \text{ for } m \gg 0.$$

This is immediate from the equation

(4.3)
$$\nu_{m\omega,B}(-) = \frac{m\omega \widetilde{ch}_2(-) - \frac{m^3\omega^3}{6}\widetilde{ch}_0(-)}{m^2\omega^2\widetilde{ch}_1(-)}.$$

Proof of Lemma 4.4. Consider a short exact sequence (4.1) where $M, N \neq 0$. To show that $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(N)$ for $m \gg 0$, let us divide into two cases: Case 1: $H^{-1}(M) \neq 0$. By the $\mu_{\omega,B}$ -stability of $H^{-1}(E)$ and the assumption that $\mu_{\omega,B}(H^{-1}(E)) < 0$, we have $\omega^2 \widetilde{ch}_1(H^{-1}(M)) < 0$. This implies $\omega^2 \widetilde{ch}_1(M) > 0$, and so $\nu_{m\omega,B}(M) < +\infty$ for all m > 0. If $\omega^2 \widetilde{ch}_1(N) = 0$, then $\nu_{m\omega,B}(N) = +\infty$ for all m > 0, and so we have $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(N)$ for all m > 0. For the remainder of Case 1, let us assume that $\omega^2 \widetilde{ch}_1(N) \neq 0$. Consider the long exact sequence of (4.1):

$$(4.4) \quad 0 \to H^{-1}(M) \overset{\alpha}{\to} H^{-1}(E) \overset{\beta}{\to} H^{-1}(N) \overset{\gamma}{\to} H^0(M) \overset{\delta}{\to} H^0(E) \to H^0(N) \to 0.$$

Suppose im $\gamma=0$. Then we have $\mu_{\omega,B}(H^{-1}(M))<\mu_{\omega,B}(H^{-1}(N))<0$, implying $\nu_{m\omega,B}(M)<\nu_{m\omega,B}(N)$ for $m\gg 0$ by (4.2). If im $\gamma\neq 0$, then we have $\mu_{\omega,B}(H^{-1}(M))<\mu_{\omega,B}(\operatorname{im}\beta)$ as well as

(4.5)
$$\mu_{\omega,B}(\operatorname{im}\beta) \le \mu_{\omega,B}(H^{-1}(N)) \le 0 \le \mu_{\omega,B}(\operatorname{im}\gamma)$$

by the see-saw principle. Hence $\mu_{\omega,B}(H^{-1}(M)) < \mu_{\omega,B}(H^{-1}(N)) < 0$, and we have

(4.6)
$$\nu_{m\omega,B}(H^{-1}(M)) < \nu_{m\omega,B}(H^{-1}(N)) \text{ for } m \gg 0$$

by (4.2). Note that both sides of (4.6) are O(m) in magnitude. Now, we have

(4.7)
$$\nu_{m\omega,B}(H^{-1}(N)) = \nu_{m\omega,B}(N) - \frac{m\omega \widetilde{ch}_2(H^0(N))}{m^2\omega^2 \widetilde{ch}_1(H^{-1}(N)[1])}.$$

On the other hand,

$$\begin{split} \nu_{m\omega,B}(M) &\leq \nu_{m\omega,B}(M) + \frac{\frac{m^3\omega^3}{6}\widetilde{ch}_0(H^0(M))}{m^2\omega^2\left(\widetilde{ch}_1(H^{-1}(M)[1]) + \widetilde{ch}_1(H^0(M))\right)} \\ &= \frac{m\omega\widetilde{ch}_2(M) - \frac{m^3\omega^3}{6}\widetilde{ch}_0(H^{-1}(M)[1])}{m^2\omega^2\left(\widetilde{ch}_1(H^{-1}(M)[1]) + \widetilde{ch}_1(H^0(M))\right)} \\ &\leq \frac{m\omega\widetilde{ch}_2(M)}{m^2\omega^2\left(\widetilde{ch}_1(H^{-1}(M)[1]) + \widetilde{ch}_1(H^0(M))\right)} - \frac{\frac{m^3\omega^3}{6}\widetilde{ch}_0(H^{-1}(M)[1])}{m^2\omega^2\widetilde{ch}_1(H^{-1}(M)[1])} \\ &= \frac{m\omega\widetilde{ch}_2(M)}{m^2\omega^2\left(\widetilde{ch}_1(H^{-1}(M)[1]) + \widetilde{ch}_1(H^0(M))\right)} \\ &- \frac{m\omega\widetilde{ch}_2(H^{-1}(M)[1])}{m^2\omega^2\widetilde{ch}_1(H^{-1}(M)[1])} + \nu_{m\omega,B}(H^{-1}(M)[1]). \end{split}$$

Letting $m \to \infty$ in the above inequalities while noting $\nu_{m\omega,B}(H^{-1}(M)[1]) = \nu_{m\omega,B}(H^{-1}(M))$, together with (4.6) and (4.7), we obtain $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(N)$ for $m \gg 0$. This completes the proof of Case 1.

Case 2: $H^{-1}(M) = 0$. In this case, if $\operatorname{im} \gamma = 0$, then $M = H^0(M) \in \operatorname{Coh}^{\leq 1}(X)$, contradicting our assumption $\operatorname{Hom}(\operatorname{Coh}^{\leq 1}(X), E) = 0$. So suppose $\operatorname{im} \gamma \neq 0$.

If $\operatorname{rk}(H^0(M)) \neq 0$, then $ch_1(H^0(M)) > 0$ by the definition of $\mathcal{T}_{\omega,B}$, and we have $\nu_{m\omega,B}(M) = \nu_{m\omega,B}(H^0(M)) < 0$ for $m \gg 0$ from (4.3), while $\nu_{m\omega,B}(N) > 0$ for $m \gg 0$. That is, $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(N)$ for $m \gg 0$. Now, suppose $\operatorname{rk}(H^0(M)) = 0$ instead.

If $\operatorname{im} \gamma \in \operatorname{Coh}^{\leq 1}(X)$, then since $H^{-1}(N)$ is torson-free, we obtain a nonzero class in $\operatorname{Ext}^1(\operatorname{im} \gamma, H^{-1}(E)) \cong \operatorname{Hom}(\operatorname{im} \gamma, H^{-1}(E)[1])$, again contradicting our assumption $\operatorname{Hom}(\operatorname{Coh}^{\leq 1}(X), E) = 0$.

If im γ is supported in dimension 2, then so is $H^0(M)$, and so $\nu_{m\omega,B}(M) = \nu_{m\omega,B}(H^0(M)) \to 0$ as $m \to \infty$, while $\nu_{m\omega,B}(N) > 0$ for $m \gg 0$ from (4.3). Hence $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(N)$ for $m \gg 0$. This completes Case 2.

The following lemma and corollary are more concrete than Lemma 4.4 - it tells us that line bundles are $\nu_{\omega,B}$ -stable when $\omega \to \infty$:

Lemma 4.5. Let E be a line bundle with $\omega^2 \widetilde{ch}_1(E) < 0$. Then there exists a constant $m_0 > 0$, depending only on $c_1(E)$, such that E[1] is $\nu_{m\omega,B}$ -stable whenever $m > m_0$.

Proof. To prove the lemma, it suffices to find a constant $m_0 > 0$, depending only on ch(E), such that for every short exact sequence in $\mathcal{B}_{\omega,B}$

$$(4.8) 0 \to M \to E[1] \to N \to 0$$

where M is a maximal destabilising subobject of E[1] with respect to $\nu_{m\omega,B}$ for some m>0, we have $\nu_{m\omega,B}(M)<\nu_{m\omega,B}(E[1])$ for $m>m_0$.

The long exact sequence of cohomology of (4.8) is

$$(4.9) 0 \to H^{-1}(M) \xrightarrow{\alpha} E \xrightarrow{\beta} H^{-1}(N) \xrightarrow{\gamma} H^{0}(M) \to 0.$$

If $H^{-1}(M)$ is of rank 1, then β is the zero map, meaning $H^{-1}(N) \cong H^0(M)$. This forces N = 0, contradicting our assumption. Hence $H^{-1}(M)$ must be zero.

If $\omega^2\widetilde{ch}_1(M)=0$, then $M=H^0(M)$ must lie in $\operatorname{Coh}^{\leq 1}(X)$, giving us a subobject of E that lies in $\operatorname{Coh}^{\leq 1}(X)$; this contradicts $\operatorname{Ext}^1(\operatorname{Coh}^{\leq 1}(X),E)=0$. Hence $\omega^2\widetilde{ch}_1(M)>0$. Then, since we are assuming M is destabilising, we have $\nu_{m\omega,B}(N)<\infty$, and so $\omega^2\widetilde{ch}_1(N)>0$.

Since $M = H^0(M)$ is $\nu_{m\omega,B}$ -semistable for some m, by [BMT, Corollary 7.3.2] we have $\overline{\Delta}_{m\omega}(H^0(M)) \geq 0$, i.e.

$$(\omega^2 \widetilde{ch}_1(H^0(M)))^2 \ge 2\omega^3 \widetilde{ch}_0(H^0(M))\omega \widetilde{ch}_2(H^0(M)),$$

which gives

(4.10)
$$\frac{\widetilde{\omega ch_2}(H^0(M))}{\omega^2 \widetilde{ch_1}(H^0(M))} \le \frac{\omega^2 \widetilde{ch_1}(H^0(M))}{2\omega^3 \widetilde{ch_0}(H^0(M))} = \frac{1}{2\omega^3} \mu_{\omega}(H^0(M)).$$

On the other hand, if we let $\delta = \widetilde{ch}_1(E)$, then since $\widetilde{ch}_1(H^{-1}(N)) = \delta + \widetilde{ch}_1(H^0(M))$, we have

$$(4.11) 0 < \omega^2 \widetilde{ch}_1(H^0(M)) = \omega^2 \widetilde{ch}_1(H^{-1}(N)) - \omega^2 \delta < -\omega^2 \delta.$$

Combining this with (4.10), we get

$$(4.12) \qquad \frac{\widetilde{\omega ch_2}(H^0(M))}{\omega^2 \widetilde{ch_1}(H^0(M))} < -\frac{\omega^2 \delta}{2\omega^3}.$$

Hence, when $m \geq 1$, we have

$$\nu_{m\omega,B}(M) = \nu_{m\omega,B}(H^{0}(M))$$

$$= \frac{m\omega \widetilde{ch}_{2}(H^{0}(M)) - \frac{m^{3}\omega^{3}}{6}\widetilde{ch}_{0}(H^{0}(M))}{m^{2}\omega^{2}\widetilde{ch}_{1}(H^{0}(M))}$$

$$< -\frac{\omega^{2}\delta}{m^{2}\omega^{3}} - m\frac{\omega^{3}\widetilde{ch}_{0}(H^{0}(M))}{6\omega^{2}\widetilde{ch}_{1}(H^{0}(M))}$$

$$\leq -\frac{\omega^{2}\delta}{2\omega^{3}} - m\frac{\omega^{3}\widetilde{ch}_{0}(H^{0}(M))}{6\omega^{2}\widetilde{ch}_{1}(H^{0}(M))}$$

$$\leq -\frac{\omega^{2}\delta}{2\omega^{3}}.$$

$$(4.13)$$

Since

$$\nu_{m\omega,B}(E) = \frac{m\omega \widetilde{ch}_2(E) - \frac{m^3\omega^3}{6}\widetilde{ch}_0(E)}{m^2\omega^2\widetilde{ch}_1(E)},$$

it is clear that, there is a constant $m_0 > 0$ depending only on ch(E), hence only on $c_1(E)$, such that $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(E[1])$ whenever $m > m_0$. This implies that $\nu_{m\omega,B}(M) < \nu_{m\omega,B}(N)$ whenever $m > m_0$, i.e. E[1] is $\nu_{m\omega,B}$ -stable whenever $m > m_0$.

The following proposition computes an explicit bound for m_0 that appeared in Lemma 4.5. Part (c) of the proposition can also be used to verify the inequality in Conjecture 2.2:

Proposition 4.6. Let (X, ω) be a polarised smooth projective threefold, and m > 0. Suppose B = 0, E is a line bundle on X, and let $d := c_1(E)\omega^2 < 0$. Then for m > 0,

- (a) $\nu_{m\omega,B}(E[1]) = 0$ if and only if $m^2 = \frac{3c_1(E)^2\omega}{\omega^3}$.
- (b) If $\nu_{m\omega,B}(E[1]) = 0$, then $\nu_{m\omega,B}(E[1])$ is $\nu_{m\omega,B}$ -stable whenever $m^2 \ge \frac{3d^2}{(\omega^3)^2}$.
- (c) $\widetilde{ch}_3(E[1]) < \frac{m^2\omega^2}{2}\widetilde{ch}_1(E[1])$ is equivalent to $m^2 > \frac{c_1(E)^3}{3d}$.

Note that, if $c_1(E)$ is proportional to ω , then $\overline{\Delta}_{\omega}(E) = 0$, in which case equality holds in Conjecture 2.2 by results in [BMT, Section 7.4].

Proof. (a) That $\nu_{m\omega,B}(E[1]) = 0$ is equivalent to

$$m\omega ch_2(E[1]) = \frac{m^3\omega^3}{6}ch_0(E[1]),$$

i.e. $m^2\omega^3=3c_1^2\omega$, and so the claim follows.

(b) Suppose $\nu_{m\omega,B}(E[1]) = 0$. From the proof of Lemma 4.5, it suffices to show

$$(4.14) -\frac{d}{m2\omega^3} - m\frac{\omega^3 ch_0(H^0(M))}{6\omega^2 ch_1(H^0(M))} \le 0.$$

whenever $m^2 \ge \frac{3d^2}{(\omega^3)^2}$, where M is as in the inequalities (4.13).

Now, from (4.11) we have

$$\frac{1}{\omega^2 ch_1(H^0(M))} > -\frac{1}{d},$$

and hence

$$-\frac{d}{m2\omega^{3}} - m\frac{\omega^{3}ch_{0}(H^{0}(M))}{6\omega^{2}ch_{1}(H^{0}(M))} < -\frac{d}{m2\omega^{3}} + m\frac{\omega^{3}ch_{0}(H^{0}(M))}{6d}$$
$$\leq -\frac{d}{m2\omega^{3}} + \frac{m\omega^{3}}{6d}.$$

Therefore, (4.14) holds if $-\frac{d}{m2\omega^3} + \frac{m\omega^3}{6d} \leq 0$, which is equivalent to $m^2 \geq \frac{3d^2}{(\omega^3)^2}$, and the claim follows.

and the claim follows. (c) That $\widetilde{ch}_3(E[1]) < \frac{m^2\omega^2}{2}\widetilde{ch}_1(E[1])$ is equivalent to $-\frac{c_1(E)^3}{6} < -\frac{m^2\omega^2c_1(E)}{2}$, i.e. $c_1(E)^3 > 3dm^2$. Since d < 0, this is equivalent to $m^2 > \frac{c_1(E)^3}{3d}$ as claimed. \square

5. Objects with twice minimal $\omega^2 ch_1$

In [BMT, Lemma 7.2.2], tilt-semistable objects F with $\omega^2\widetilde{ch}_1(F) \leq c$ are characterised, where

(5.1)
$$c := \min\{\omega^2 \widetilde{ch}_1(F) > 0 \mid F \in \mathcal{B}_{\omega,B}\}.$$

In the next proposition, we give some sufficient conditions for a torsion-free sheaf $E \in \mathcal{T}_{\omega,B}$ with $\omega^2 \widetilde{ch}_1(E) = 2c$ to be tilt-stable.

Proposition 5.1. Suppose $E \in \mathcal{T}_{\omega,B}$ is a torsion-free sheaf with $\nu_{\omega,B}(E) = 0$ and $\omega^2 \widetilde{ch}_1(E) = 2c$, where c is defined in (5.1).

- (1) If $\mu_{\omega,B,\max}(E) < \frac{\omega^3}{\sqrt{3}}$, then E is $\nu_{\omega,B}$ -stable.
- (2) If $\omega^3 > 3\omega(\widetilde{ch}_1(M))^2$ for every torsion free slope semistable sheaf M with $\omega^2\widetilde{ch}_1(M) = c$, then E is $\nu_{\omega,B}$ -stable.

Proof. Suppose we have a destabilizing short exact sequence in $\mathcal{B}_{\omega,B}$

$$(5.2) 0 \to M \to E \to N \to 0$$

with $\nu_{\omega,B}(M) \geq \nu_{\omega,B}(E) = 0 \geq \nu_{\omega,B}(N)$, and we may assume M is $\nu_{\omega,B}$ -stable by replacing it with its maximal destabilizing subobject in $\mathcal{B}_{\omega,B}$ with respect to $\nu_{\omega,B}$ -stability. The long exact sequence associated to (5.2) is

$$(5.3) 0 \to H^{-1}(N) \xrightarrow{\alpha} H^{0}(M) \xrightarrow{\beta} E \xrightarrow{\gamma} H^{0}(N) \to 0$$

and we identify $M = H^0(M)$.

Since $\omega^2 \widetilde{ch}_1(E) = 2c$, the possibilities for $(\omega^2 \widetilde{ch}_1(M), \omega^2 \widetilde{ch}_1(N))$ are (2c, 0), (c,c), and (0,2c). The cases (2c,0) and (0,2c) are easily eliminated as possibilities as follows:

- case (0,2c): Since $M=H^0(M)\in\mathcal{T}_{\omega,B}$, the condition $\omega^2\widetilde{ch}_1(M)=0$ forces M to be torsion. Since E is torsion free, we have $\beta=0$ in (5.3), hence $H^{-1}(N) \cong H^0(M)$, which forces $M = H^0(M) = 0$, contrary to
- case (2c,0): in this case $\nu_{\omega,B}(N) = \infty$ and equation (5.3) cannot be a destabilizing sequence.

We now consider the case (c,c). Since M is $\nu_{\omega,B}$ -stable with $\omega^2 \widetilde{ch}_1(M) = c$, by [BMT, Lemma 7.2.2] we know that $H^0(M)$ lies in the set \mathfrak{D} described in [BMT, Section 7.2]. Since $H^{-1}(N)$ and E are torsion free, we have M is torsion free, and by the description of elements of \mathfrak{D} we have that M is a torsion-free slope semistable sheaf.

Since M is $\nu_{\omega,B}$ -stable, by [BMT, Cor. 7.3.2] we also have

(5.4)
$$\widetilde{\omega ch_2}(M) \le \frac{(\omega^2 \widetilde{ch_1}(M))^2}{2\omega^3 \widetilde{ch_0}(M)}.$$

Since $\nu_{\omega,B}(E) = 0$, the inequality $\nu_{\omega,B}(M) \geq 0$ implies

(5.5)
$$\omega \widetilde{ch}_2(M) \ge \frac{\omega^3}{6} \widetilde{ch}_0(M).$$

Combining equation (5.5) with equation (5.4) we get

(5.6)
$$\frac{\omega^3}{6}\widetilde{ch}_0(M) \le \frac{(\omega^2\widetilde{ch}_1(M))^2}{2\omega^3\widetilde{ch}_0(M)}$$

or
$$\frac{\omega^3}{\sqrt{3}} \leq \mu_{\omega,B}(M)$$

or $\frac{\omega^3}{\sqrt{3}} \leq \mu_{\omega,B}(M)$. The hypothesis $\mu_{\omega,B,\max}(E) < \frac{\omega^3}{\sqrt{3}}$ implies $\mu_{\omega,B,\max}(E) < \mu_{\omega,B}(M)$. Since M is slope semistable, this inequality implies $\operatorname{Hom}_{\operatorname{Coh}(X)}(M,E)=0$ and hence $\beta=0$ in (5.3). We then get a contradiction as in the (0,2c) case. This completes the proof of part (1).

To prove part (2), suppose E has a destabilising subobject M as in (5.2). The usual Bogomolov-Giesker inequality gives us

(5.7)
$$\omega \widetilde{ch}_2(M) \le \frac{\omega(\widetilde{ch}_1(M))^2}{2\widetilde{ch}_0(M)}.$$

Combining (5.7) with (5.5), we get

(5.8)
$$\frac{\omega^3}{6}\widetilde{ch_0}(M) \le \omega \widetilde{ch_2}(M) \le \frac{\omega(\widetilde{ch_1}(M))^2}{2\widetilde{ch_0}(M)},$$

and hence $\omega^3(\widetilde{ch}_0(M))^2 \leq 3\omega(\widetilde{ch}_1(M))^2$. Since M is a torsion-free sheaf, we have $\widetilde{ch}_0(M) \geq 1$, and hence $\omega^3 \leq 3\omega(\widetilde{ch}_1(M))^2$. Part (2) thus follows.

In [BMT, Example 7.2.4], Conjecture 2.2 was studied for rank-one sheaves of the form $E = L \otimes I_C$, where L is a line bundle, I_C the ideal sheaf of a curve on X, and $\omega^2 c_1(E) = c$. In the next proposition, following the ideas in [Tod, Remark 2.10], we study rank-one sheaves of the form $E = L^2 \otimes I_C$ where $\omega^2 c_1(E) = 2c$. In particular, we apply Proposition 5.1 to find a condition when E is $\nu_{\omega,B}$ -semistable. In part (4) of the proposition, we are able to verify Conjecture 2.2 for these particular objects E by reducing the conjecture to the classical Castelnuovo inequality.

Proposition 5.2. Let B = 0. Suppose $\operatorname{Pic}(X)$ is generated by an ample line bundle L on X. Let $h := c_1(L)$, $D := h^3$, and $\omega := mh$ for some positive $m \in \mathbb{Q}$. Suppose $C \subset X$ be a curve in X of degree $d := h \cdot [C] = h \cdot ch_2(\mathcal{O}_C)$. Let I_C be the ideal sheaf of $C \subset X$, and let

$$E := L^2 \otimes I_C$$
.

- (1) If $\nu_{\omega,0}(E)=0$ then $m^2=12-\frac{6d}{D}$ and d<2D. The converse also holds.
- (2) If $\nu_{\omega,0}(E) = 0$ and $d < \frac{3}{2}D$, then E is $\nu_{\omega,0}$ -stable.
- (3) If $-ch_3(\mathcal{O}_C) \leq \frac{4}{3}d$ and $\nu_{\omega,0}(E) = 0$ then E satisfies the inequality in Conjecture 2.2.
- (4) If $d \leq D$, and $\nu_{\omega,0}(E) = 0$, and $X \subset \mathbb{P}^4$ is a hypersurface of degree D, then E satisfies the inequality in Conjecture 2.2.

Proof. We follow the argument in [BMT, Example 7.2.4]. To start with, note that $ch_1(E) = 2h$,

$$ch_2(E) = ch_0(L^2)ch_2(I_C) + ch_1(L^2)ch_1(I_C) + ch_2(L^2)ch_0(I_C) = -[C] + 2h^2, \text{ and}$$

$$ch_3(E) = ch_3(L^2)ch_0(I_C) + ch_2(L^2)ch_1(I_C) + ch_1(L^2)ch_2(I_C) + ch_0(L^2)ch_3(I_C)$$

$$= \frac{4D}{3} - 2d - ch_3(O_C).$$

For part (1), note that $\nu_{\omega,0}(E)=0$ is equivalent to $mh\cdot ch_2(E)=\frac{m^3h^3}{6}$, i.e. $-d+2D=\frac{m^2D}{6}$, i.e. $m^2=12-\frac{6d}{D}$. Since $m^2>0$, it follows that d<2D. To prove part (2), we use of Proposition 5.1. In our situation, $c=\omega^2h=\frac{m^2D}{2}$

To prove part (2), we use of Proposition 5.1. In our situation, $c = \omega^2 h = m^2 h^3$. Take any torsion-free slope semistable sheaf M with $\omega^2 ch_1(M) = c$. Then $ch_1(M) = h$. By part (2) of Proposition 5.1, E would be $\nu_{\omega,B}$ -stable if we can show $\omega^3 > 3\omega(ch_1(M))^2$ i.e. $m^3h^3 > 3mh(h^2)$, or $m^2 > 3$; since $m^2 = 12 - \frac{6d}{D}$, this is equivalent to $d < \frac{3}{2}D$.

For part (3), just note that the inequality in Conjecture 2.2 now reads

(5.9)
$$\frac{4D}{3} - 2d - ch_3(O_C) \le \frac{m^2 \cdot 2D}{18} = \frac{4D}{3} - \frac{2d}{3}$$

or, equivalently,

$$(5.10) -ch_3(\mathscr{O}_C) \le \frac{4}{3}d.$$

(Note that this is a stronger requirement than [BMT, Equation (32)].)

For part (4), if $X\subset \mathbb{P}^4$ is a hypersurface of degree D, then by Hirzebruch-Riemann-Roch we have

$$1 - g = \chi(\mathscr{O}_C) = ch_3(\mathscr{O}_C) + \frac{d}{2}(5 - D).$$

Then (5.9) becomes

$$(5.11) g \le \frac{dD}{2} - \frac{7}{6}d + 1.$$

When $d \leq D$, the bound on g in equation 5.11 follows from the Castelnuovo inequality $g \leq \frac{1}{2}(d-1)(d-2)$. (However in general, we only know d < 2D, and also we do not know if E is $\nu_{\omega,0}$ -stable.)

6. Tilt-unstable objects

In this section, we use known inequalities between Chern characters of reflexive sheaves on \mathbb{P}^3 to describe many slope stable reflexive sheaves $E \in \mathcal{B}_{\omega,B}$ that are tilt-unstable. We base our examples on the following result of Miró-Roig:

Proposition 6.1. [Mir, Prop. 2.18] Let $X = \mathbb{P}^3$ and B = 0. For all c_2, c_3 such that $c_2 \geq 3$, c_3 is even, and $-c_2^2 + c_2 \leq c_3 \leq 0$, there exists a rank 3 stable reflexive sheaf on \mathbb{P}^3 with first through third Chern classes $(0, c_2, c_3)$.

Proposition 6.2. Let $X = \mathbb{P}^3$, $\omega = c_1(\mathcal{O}(1))$, and B = 0. Let n and m be positive integers of the same parity and with $3n^2 - m^2 \ge 6$. Let E be a slope stable rank 3 reflexive sheaf on \mathbb{P}^3 with $c_1(E) = 0$, $c_2(E) = \frac{3n^2 - m^2}{2}$ and $c_3(E)$ an even integer satisfying

$$-(2n^3 + \frac{2nm^2}{3}) > c_3(E) \ge -\frac{(9n^4 - 6n^2m^2 + m^4 - 6n^2 + 2m^2)}{4}$$

(such an E exists by Proposition 6.1). Let F = E(-n)[1]. Then F is tilt-unstable.

Proof. The condition $\nu_{m\omega,0}(F)=0$, i.e. $ch_2(F)=\frac{m^2}{6}ch_0(F)$, is equivalent to $c_2(E)=\frac{3n^2-m^2}{2}$.

First, note that such an E exists: to use Miro-Roig's result, we require $0 \ge c_3 \ge -c_2^2 + c_2$ and $c_2 \ge 3$. If $c_2 = \frac{3n^2 - m^2}{2}$, the first inequality becomes $0 \ge c_3 \ge -\frac{(9n^4 - 6n^2m^2 + m^4 - 6n^2 + 2m^2)}{4}$, and the second becomes $3n^2 - m^2 \ge 6$. So such an E exists. Let F = E(-n)[1]. Then $ch_3(F) = \frac{n^3}{2} - nc_2 - \frac{c_3}{2}$ where $c_i = c_i(E)$, and we have $\mu_{\omega,B}(F) = \frac{c_1 - 3n}{3} = -n$. Since n > 0, we have $F \in \mathcal{B}_{\omega,B}$.

Now, we claim that $ch_3(F) > \frac{m^2}{18}ch_1(F)$. Observe that

$$ch_{3}(F) > \frac{m^{2}}{18}ch_{1}(F)$$

$$\Leftrightarrow \frac{n^{3}}{2} - nc_{2} - \frac{c_{3}}{2} > \frac{3nm^{2}}{18}$$

$$\Leftrightarrow \frac{n^{3}}{2} - n\frac{(3n^{2} - m^{2})}{2} - \frac{c_{3}}{2} > \frac{3nm^{2}}{18}$$

$$\Leftrightarrow -(2n^{3} + \frac{2nm^{2}}{3}) > c_{3}(E),$$

which holds by assumption. Since Conjecture 2.2 holds on \mathbb{P}^3 , as is proved in [Mac], F must be $\nu_{\omega,0}$ -unstable.

References

[BBR] C. Bartocci, U. Bruzzo, D. Hernández-Ruipérez, Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics, Progress in Mathematics, Vol. 276, Birkhäuser, 2009.

[BMT] A. Bayer, E. Macrì and Y. Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities, 2011. Preprint. arXiv:1103.5010v1 [math.AG]

[Har] R. Hartshorne, Stable reflexive sheaves, Math. Ann., Vol. 254, pp. 121-176, 1980.

[Huy] D. Huybrechts, Derived and Abelian equivalences of K3 surfaces, J. Algebraic Geom., Vol. 17, pp. 375-400, 2008.

[HL] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, second edition, Cambridge University Press, Cambridge, 2010.

[Lan1] A. Langer, Lectures on Moduli of Torsion Free Sheaves, IMPANGA, 2007.

[Lan2] A. Langer, On the S-fundamental group scheme, Ann. Inst. Fourier (Grenoble), Vol. 61, pp. 2077-2119, 2011.

[Laz] R. Lazarsfeld, Positivity in Algebraic Geometry I, Springer, 2004.

[Lo1] J. Lo, Moduli of PT-semistable objects I, J. Algebra, Vol. 339 (1), pp. 203-222, 2011.

[Lo2] J. Lo, Polynomial Bridgeland stable objects and reflexive sheaves, 2011. To appear in Math. Res. Lett. arXiv:1112.4511v1 [math.AG]

[Lo3] J. Lo, Stable complexes and Fourier-Mukai transforms on elliptic fibrations, 2012. Preprint. arXiv:1206.4281v1 [math.AG]

[LQ] J. Lo and Z. Qin, Mini-walls for Bridgeland stability conditions on the derived category of sheaves over surfaces, 2011. Preprint. arXiv:1103.4352v1 [math.AG]

[Mac] E. Macrì, A Generalized Bogomolov-Gieseker inequality for the three dimensional projective space, 2012. Preprint. arXiv:1207.4980v1 [math.AG]

[Mat] H. Matsumura. Commutative Ring Theory, Cambridge University Press, 1986.

[Mir] R. Miró-Roig. Chern Classes of Rank 3 Reflexive Sheaves. Math. Ann. 276, 291-302 (1987).

[Sim] C. Simpson, Higgs bundles and local systems, IHES, 75 (1992) 5-95.

[Tod] Y. Toda, A note on Bogomolov-Gieseker type inequality for Calabi-Yau 3-folds, 2012. Preprint. arXiv:1201.4911v1 [math.AG]

[Ver] P. Vermeire. Moduli of reflexive sheaves on smooth projective 3-folds, Journal of Pure and Applied Algebra 211 (2007) 622-632.

Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri $65211\,$

E-mail address: locc@missouri.edu

Department of Mathematics, SUNY College at Old Westbury, Old Westbury, NY 11568

 $E ext{-}mail\ address: yogeshmore80@gmail.com}$