EECS 151/251A Homework 5

Due 11:59pm Friday, October $15^{\rm th},\,2021$

1 Complementary CMOS

Choose the simplified boolean expression for the function described by the CMOS circuit below.

(a)

A)
$$\overline{(A+B)(C+D)}$$

B)
$$\overline{(AB+CD)}$$

C)
$$\overline{(AC + DB)}$$

D)
$$\overline{(A+C)(D+B)}$$

(b)

A)
$$\overline{AB} + \overline{C}(\overline{A} + \overline{B})$$

B)
$$\overline{AB + C(A+B)}$$

C)
$$\overline{(A+B)(C+AB)}$$

D)
$$(A+B)(C+AB)$$

(c)

A)
$$\overline{A(B+C)+DE}$$

B)
$$(D + \overline{E})(\overline{A} + \overline{BC})$$

C)
$$\overline{(D+E)(A+BC)}$$

D)
$$(\overline{A}(\overline{B} + \overline{C}) + \overline{DE})$$

2 XOR

(a) Below is a CMOS implementation of a 3-input XOR gate. Complete the circuit by filling in the signal name in the boxes.

(b) Is the gate shown above a complementary CMOS gate?

(c) Below is a passgate logic implementation of a 3 input XOR gate. Choose the signals that connect to the second stage NMOS gates.

1	2
---	---

\overline{C}

$$\overline{C}$$
 \overline{C}

$$\overline{C}$$
 \overline{C}

3 Voltage Transfer Characteristic (VTC)

Using the transistor-as-a-switch model, write transition points in the voltage transfer characteristic for the circuit below. You will eventually recognize this as half of a 6T CMOS SRAM bit-cell. Assume that $|V_{th,p}| = V_{th,n} = V_{DD}/4$ and that $R_{on,p} = R_{on,n}$. For example, if the transition point is $(\frac{1}{2}V_{dd}, \frac{1}{3}V_{dd})$, write $\frac{1}{2}, \frac{1}{3}$ in the boxes. If there is only one or two transition points in the middle of the VTC, write 0,0 in the boxes.

