Normal and Standard Normal Distribution

From Walople book

Normal Distribution

The density of the normal random variable X, with mean μ and variance σ^2 , is

$$n(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad -\infty < x < \infty,$$

where $\pi = 3.14159...$ and e = 2.71828...

Figure 6.2: The normal curve.

Figure 6.3: Normal curves with $\mu_1 < \mu_2$ and $\sigma_1 = \sigma_2$.

Figure 6.4: Normal curves with $\mu_1 = \mu_2$ and $\sigma_1 < \sigma_2$.

Figure 6.5: Normal curves with $\mu_1 < \mu_2$ and $\sigma_1 < \sigma_2$.

Theorem 6.2: The mean and variance of $n(x; \mu, \sigma)$ are μ and σ^2 , respectively. Hence, the standard deviation is σ .

6.3Areas under the Normal Curve

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} n(x; \mu, \sigma) \ dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{x_1}^{x_2} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx$$

is represented by the area of the shaded region.

Figure 6.6: $P(x_1 < X < x_2) = \text{area of the shaded region.}$

Definition 6.1: The distribution of a normal random variable with mean 0 and variance 1 is called a standard normal distribution.

Table A.3 Areas under the Normal Curve							0 z			
\overline{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table A.3 (continued) Areas under the Normal Curve

\overline{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Example 6.2: Given a standard normal distribution, find the area under the curve that lies

- (a) to the right of z = 1.84 and
- (b) between z = -1.97 and z = 0.86.

Figure 6.9: Areas for Example 6.2.

Solution: See Figure 6.9 for the specific areas.

- (a) The area in Figure 6.9(a) to the right of z = 1.84 is equal to 1 minus the area in Table A.3 to the left of z = 1.84, namely, 1 0.9671 = 0.0329.
- (b) The area in Figure 6.9(b) between z = -1.97 and z = 0.86 is equal to the area to the left of z = 0.86 minus the area to the left of z = -1.97. From Table A.3 we find the desired area to be 0.8051 0.0244 = 0.7807.

Example 6.3: Given a standard normal distribution, find the value of k such that

(a) P(Z > k) = 0.3015 and

(b) P(k < Z < -0.18) = 0.4197.

Figure 6.10: Areas for Example 6.3.

Solution: Distributions and the desired areas are shown in Figure 6.10.

- (a) In Figure 6.10(a), we see that the k value leaving an area of 0.3015 to the right must then leave an area of 0.6985 to the left. From Table A.3 it follows that k = 0.52.
- (b) From Table A.3 we note that the total area to the left of -0.18 is equal to 0.4286. In Figure 6.10(b), we see that the area between k and -0.18 is 0.4197, so the area to the left of k must be 0.4286 0.4197 = 0.0089. Hence, from Table A.3, we have k = -2.37.

Example 6.4: Given a random variable X having a normal distribution with $\mu = 50$ and $\sigma = 10$, find the probability that X assumes a value between 45 and 62.

Figure 6.11: Area for Example 6.4.

$$P(45 < X < 62) = P(-0.5 < Z < 1.2).$$

P(-0.5 < Z < 1.2) is shown by the area of the shaded region in Figure 6.11. This area may be found by subtracting the area to the left of the ordinate z = -0.5 from the entire area to the left of z = 1.2. Using Table A.3, we have

$$P(45 < X < 62) = P(-0.5 < Z < 1.2) = P(Z < 1.2) - P(Z < -0.5)$$
$$= 0.8849 - 0.3085 = 0.5764.$$

Using the Normal Curve in Reverse

$$z = \frac{x - \mu}{\sigma}$$
 to give $x = \sigma z + \mu$.

Example 6.6: Given a normal distribution with $\mu = 40$ and $\sigma = 6$, find the value of x that has

- (a) 45% of the area to the left and
- (b) 14% of the area to the right.

Figure 6.13: Areas for Example 6.6.

Solution: (a) An area of 0.45 to the left of the desired x value is shaded in Figure 6.13(a). We require a z value that leaves an area of 0.45 to the left. From Table A.3 we find P(Z<-0.13)=0.45, so the desired z value is -0.13. Hence,

$$x = (6)(-0.13) + 40 = 39.22.$$

(b) In Figure 6.13(b), we shade an area equal to 0.14 to the right of the desired x value. This time we require a z value that leaves 0.14 of the area to the right and hence an area of 0.86 to the left. Again, from Table A.3, we find P(Z < 1.08) = 0.86, so the desired z value is 1.08 and

$$x = (6)(1.08) + 40 = 46.48.$$

6.4 Applications of the Normal Distribution

Example 6.7: A certain type of storage battery lasts, on average, 3.0 years with a standard deviation of 0.5 year. Assuming that battery life is normally distributed, find the probability that a given battery will last less than 2.3 years.

$$z = \frac{2.3 - 3}{0.5} = -1.4,$$

and then, using Table A.3, we have

$$P(X < 2.3) = P(Z < -1.4) = 0.0808.$$

Example 6.8: An electrical firm manufactures light bulbs that have a life, before burn-out, that is normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a bulb burns between 778 and 834 hours.

Solution: The distribution of light bulb life is illustrated in Figure 6.15. The z values corresponding to $x_1 = 778$ and $x_2 = 834$ are

$$z_1 = \frac{778 - 800}{40} = -0.55$$
 and $z_2 = \frac{834 - 800}{40} = 0.85$.

Hence,

$$P(778 < X < 834) = P(-0.55 < Z < 0.85) = P(Z < 0.85) - P(Z < -0.55)$$

= $0.8023 - 0.2912 = 0.5111$.

Example 6.10: Gauges are used to reject all components for which a certain dimension is not within the specification $1.50 \pm d$. It is known that this measurement is normally distributed with mean 1.50 and standard deviation 0.2. Determine the value d such that the specifications "cover" 95% of the measurements.

Solution: From Table A.3 we know that

$$P(-1.96 < Z < 1.96) = 0.95.$$

Therefore,

$$1.96 = \frac{(1.50 + d) - 1.50}{0.2},$$

from which we obtain

$$d = (0.2)(1.96) = 0.392.$$

An illustration of the specifications is shown in Figure 6.17.

Example 6.11: A certain machine makes electrical resistors having a mean resistance of 40 ohms and a standard deviation of 2 ohms. Assuming that the resistance follows a normal distribution and can be measured to any degree of accuracy, what percentage of resistors will have a resistance exceeding 43 ohms?

Solution: A percentage is found by multiplying the relative frequency by 100%. Since the relative frequency for an interval is equal to the probability of a value falling in the interval, we must find the area to the right of x = 43 in Figure 6.18. This can be done by transforming x = 43 to the corresponding z value, obtaining the area to the left of z from Table A.3, and then subtracting this area from 1. We find

$$z = \frac{43 - 40}{2} = 1.5.$$

Therefore,

$$P(X > 43) = P(Z > 1.5) = 1 - P(Z < 1.5) = 1 - 0.9332 = 0.0668.$$

Hence, 6.68% of the resistors will have a resistance exceeding 43 ohms.

Figure 6.18: Area for Example 6.11.

Figure 6.19: Area for Example 6.12.

Example 6.12: Find the percentage of resistances exceeding 43 ohms for Example 6.11 if resistance is measured to the nearest ohm.

Solution: This problem differs from that in Example 6.11 in that we now assign a measurement of 43 ohms to all resistors whose resistances are greater than 42.5 and less than 43.5. We are actually approximating a discrete distribution by means of a continuous normal distribution. The required area is the region shaded to the right of 43.5 in Figure 6.19. We now find that

$$z = \frac{43.5 - 40}{2} = 1.75.$$

Hence,

$$P(X > 43.5) = P(Z > 1.75) = 1 - P(Z < 1.75) = 1 - 0.9599 = 0.0401.$$

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest ohm. The difference 6.68% - 4.01% = 2.67% between this answer and that of Example 6.11 represents all those resistance values greater than 43 and less than 43.5 that are now being recorded as 43 ohms.

Solve Exercise questions 6.5 to 6.21 page no. 186 and 187 (Do only those questions which is related to above slides and examples)