Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Análisis de encuestas de hogares con R Modulo 8: Modelos multinivel

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

CEPAL - Unidad de Estadísticas Sociales

Análisis de encuestas de hogares con R Andrés Gutiérrez,

Ph.D. Stalyn Guerrero M.Sc.

Lectura de la base

Análisis de encuestas de hogares con R

```
encuesta <- readRDS("../Data/encuesta.rds")</pre>
```

Creando theme_cepal

Análisis de encuestas de hogares con R

```
theme cepal <- function(...) theme light(10) +
  theme(axis.text.x = element blank(),
        axis.ticks.x = element blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        legend.position="bottom",
        legend.justification = "left",
        legend.direction="horizontal",
        plot.title = element_text(size = 20, hjust =
        ...)
```

```
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
```

Stalvn

Guerrero M Sc

Análisis de

Análisis de encuestas de hogares con R

Income	Expenditure	Stratum	Sex	Region	Zone
697.3	296.1	idStrt017	Male	Norte	Rural
697.3	296.1	idStrt017	Female	Norte	Rural
697.3	296.1	idStrt017	Male	Norte	Rural
697.3	296.1	idStrt017	Female	Norte	Rural
526.8	294.8	idStrt017	Male	Norte	Rural
526.8	294.8	idStrt017	Female	Norte	Rural

```
Análisis de
encuestas de
hogares con R
```

Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de encuestas de

```
B1 <- coef(lm(Income ~ Expenditure, data = encuesta_p
(coef_Mod <- encuesta_plot %>% group_by(Stratum) %>%
  summarise(B0 = coef(lm(Income ~ 1))[1]) %>%
  mutate(B1 = B1))
```

Stratum	В0	B1
idStrt002	496.9	1.637
idStrt010	584.7	1.637
idStrt015	660.6	1.637
idStrt017	408.3	1.637
idStrt022	517.9	1.637
idStrt028	492.1	1.637

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de encuestas de

```
ggplot(data = encuesta plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() + theme(legend.position="none",
    plot.title = element_text(hjust = 0.5)) +
  geom abline(data = coef_Mod,
              mapping=aes(slope=B1,
                          intercept=B0, colour = Stra
  ggtitle(
    latex2exp::TeX("$Ingreso_{ij}\\sim\\hat{\\beta}_{
  theme cepal()
```

Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de encuestas de

```
B0 <- coef(lm(Income ~ Expenditure, data = encuesta_p
(coef_Mod <- encuesta_plot %>% group_by(Stratum) %>%
   summarise(B1 = coef(lm(Income ~ -1 + Expenditure))[
   mutate(B0 = B0))
```

Stratum	B1	В0
idStrt002	1.727	29.56
idStrt010	2.303	29.56
idStrt015	1.837	29.56
idStrt017	1.672	29.56
idStrt022	1.478	29.56
idStrt028	1.495	29.56

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de encuestas de

```
ggplot(data = encuesta plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() + theme(legend.position="none",
    plot.title = element_text(hjust = 0.5)) +
  geom abline(data = coef_Mod,
              mapping=aes(slope=B1,
                          intercept=B0, colour = Stra
  ggtitle(
    latex2exp::TeX("$Ingreso_{ij}\\sim\\hat{\\beta}_{
  theme cepal()
```

Análisis de encuestas de hogares con R


```
Análisis de
encuestas de
hogares con R
```

Análisis de encuestas de hogares con R

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Dos tipos de índices son relevantes en los análisis multinivel:

■ Los coeficientes de regresión, generalmente denominados como los parámetros fijos del modelo.

Cualquier análisis de regresión multinivel siempre debe comenzar con el cálculo de las estimaciones de varianza de Nivel 1 y Nivel 2 para la variable dependiente.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Dos tipos de índices son relevantes en los análisis multinivel:

- Los coeficientes de regresión, generalmente denominados como los parámetros fijos del modelo.
- Las estimaciones de la varianza, generalmente denominadas parámetros aleatorios del modelo.

Cualquier análisis de regresión multinivel siempre debe comenzar con el cálculo de las estimaciones de varianza de Nivel 1 y Nivel 2 para la variable dependiente.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc

■ El primer paso recomendado en el análisis de regresión multinivel consiste en una descomposición de la varianza de la variable dependiente en los diferentes niveles.

Ejemplo La varianza del ingreso se descompondrá en dos componentes:

Estos dos componentes de varianza se pueden obtener una regresión multinivel.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

■ El primer paso recomendado en el análisis de regresión multinivel consiste en una descomposición de la varianza de la variable dependiente en los diferentes niveles.

Ejemplo La varianza del ingreso se descompondrá en dos componentes:

■ La varianza dentro dentro del estrato

Estos dos componentes de varianza se pueden obtener una regresión multinivel.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

■ El primer paso recomendado en el análisis de regresión multinivel consiste en una descomposición de la varianza de la variable dependiente en los diferentes niveles.

Ejemplo La varianza del ingreso se descompondrá en dos componentes:

- La varianza dentro dentro del estrato
- la varianza entre los estratos.

Estos dos componentes de varianza se pueden obtener una regresión multinivel.

Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc. Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

■ y_{ij} = Los ingresos de la persona i en el estrato j.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

encuestas de hogares con R Andrés Gutiérrez,

Análisis de

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc. Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- y_{ij} = Los ingresos de la persona i en el estrato j.
- lacksquare $eta_{0j} = \mathsf{El}$ intercepto en el estrato j.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de encuestas de Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- y_{ij} = Los ingresos de la persona i en el estrato j.
- β_{0j} = El intercepto en el estrato j.
- ϵ_{ij} El residual de la persona i en el estrato j.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Andrés Gutiérrez, Ph.D. Stalvn

> Guerrero M Sc

Análisis de encuestas de Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- y_{ij} = Los ingresos de la persona i en el estrato j.
- β_{0j} = El intercepto en el estrato j.
- \bullet ϵ_{ij} El residual de la persona i en el estrato j.
- \bullet $\gamma_{00} = \text{El intercepto en general.}$

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^{2}\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Andrés Gutiérrez, Ph.D. Stalvn

> Guerrero M Sc

Análisis de encuestas de Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- y_{ij} = Los ingresos de la persona i en el estrato j.
- \blacksquare $\beta_{0j} = \text{El intercepto en el estrato } j$.
- ϵ_{ij} El residual de la persona i en el estrato j.
- \bullet $\gamma_{00} = EI$ intercepto en general.
- \bullet τ_{0i} = Efecto aleatorio para el intercepto.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^{2}\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Modelos multinivel en muestras complejas.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Aunque existe evidencia suficiente de que las ponderaciones de muestreo deben usarse en el modelado multinivel (MLM) para obtener estimaciones no sesgadas¹, y también sobre cómo deben usarse estas ponderaciones en los análisis de un solo nivel, hay poca discusión en la literatura sobre qué y cómo usar pesos de muestreo en MLM.

¹Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178-219.

Modelos multinivel en muestras complejas.

Análisis de encuestas de hogares con R

- Aunque existe evidencia suficiente de que las ponderaciones de muestreo deben usarse en el modelado multinivel (MLM) para obtener estimaciones no sesgadas¹, y también sobre cómo deben usarse estas ponderaciones en los análisis de un solo nivel, hay poca discusión en la literatura sobre qué y cómo usar pesos de muestreo en MLM.
- Actualmente, diferentes autores recomiendan cuatro enfoques diferentes sobre cómo usar los pesos de muestreo en modelos jerárquicos.

¹Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178-219.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

■ Pfefermann et al. (1998) y Asparouhov (2006) aconsejan utilizar un enfoque de pseudomáxima verosimilitud para calcular estimaciones dentro y entre los diferentes niveles utilizando la técnica de maximización de mínimos cuadrados generalizados ponderados por probabilidad (PWGLS) para obtener estimaciones no sesgadas.²³

 $^{^2\}text{Pfeffermann},$ D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society: series B (statistical methodology), 60(1), 23-40.

³Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics—Theory and Methods, 35(3), 439-460.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

- Pfefermann et al. (1998) y Asparouhov (2006) aconsejan utilizar un enfoque de pseudomáxima verosimilitud para calcular estimaciones dentro y entre los diferentes niveles utilizando la técnica de maximización de mínimos cuadrados generalizados ponderados por probabilidad (PWGLS) para obtener estimaciones no sesgadas.²³
- Rabe-Hesketh y Skrondal (2006) proporcionan técnicas de maximización de expectativas para maximizar la pseudoverosimilitud⁴
- ²Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society: series B (statistical methodology), 60(1), 23-40.

³Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics—Theory and Methods, 35(3), 439-460.

⁴Asparouhov, T., & Muthen, B. (2006, August). Multilevel modeling of complex survey data. In Proceedings of the joint statistical meeting in

Estimación de pseudo máxima verosimilitud

Análisis de encuestas de hogares con R Andrés Gutiérrez,

> Ph.D. Stalyn Guerrero M.Sc.

La función de log-verosimilitud para la población esta dada por:

$$L_{U}(\theta) = \sum_{i \in U} \log [f(\mathbf{y}_{i}; \theta)]$$

El estimador de máxima verosimilitud esta dada por:

$$\frac{\partial L_{U}(\theta)}{\partial \theta} = 0$$

La dificultad que encontramos aquí, es transferir los pesos muéstrales a los niveles inferiores, por ejemplo UPMs -> Stratum.

Pfeffermann et al. (1998) argumentaron que debido a la estructura de datos agrupados, ya no se asume que las observaciones sean independientes y que la probabilidad logarítmica se convierta en una suma entre los elementos de nivel uno y dos en lugar de una simple suma de las

Modelo Nulo

Análisis de encuestas de hogares con R

Ajuste de pesos (alternativa a los Modelo q-weighted)

```
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M Sc
```

Análisis de

fep	q_wei	fep2
150266	2602	2605

Comparando los pesos.

```
Análisis de
encuestas de
hogares con R
```

```
ggplot(encuesta, aes(x = wk2, y = wk3)) +
geom_point() + theme_bw() +
labs(x = "q-weighted", y = "Alternativa")
```

Comparando los pesos.

Análisis de encuestas de hogares con R

Modelo Nulo

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de encuestas de

```
library(lme4)
mod null <- lmer(Income ~ (1 | Stratum),
                  data = encuesta,
            weights = wk2)
mod null2 <- lmer(Income ~ (1 | Stratum),
                   data = encuesta,
            weights = wk3)
coef mod null <- bind_cols(coef( mod_null )$Stratum,</pre>
         coef(mod null2 )$Stratum)
colnames(coef mod null) <- c("Intercept Mod 1",
                            "Intercept Mod 2")
coef mod null %>% slice(1:12)
```

Modelo Nulo

Análisis de encuestas de hogares con R Andrés

	Intercept Mod 1	Intercept Mod 2
idStrt001	630.7	630.1
idStrt002	505.4	506.2
idStrt003	481.3	484.7
idStrt004	959.6	954.5
idStrt005	514.6	515.9
idStrt006	433.8	438.2
idStrt007	467.5	470.5
idStrt008	371.6	376.4
idStrt009	207.6	218.1
idStrt010	591.6	592.1
idStrt011	588.8	588.3
idStrt012	352.0	361.2

Modelo Nulo

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de

encuestas de

```
mod_null
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Income ~ (1 | Stratum)
##
     Data: encuesta
## Weights: wk2
## REML criterion at convergence: 39356
## Random effects:
## Groups Name Std.Dev.
## Stratum (Intercept) 281
## Residual
                        408
## Number of obs: 2605, groups: Stratum, 119
## Fixed Effects:
## (Intercept)
##
          584
```

Modelo Nulo

```
Análisis de
           #library(sjstats)
encuestas de
hogares con R
           sjstats::icc(mod_null)
 Andrés
 Gutiérrez,
  Ph.D.
           ## # Intraclass Correlation Coefficient
  Stalvn
 Guerrero
           ##
  M Sc
           ##
                    Adjusted ICC: 0.322
                 Conditional ICC: 0.322
           ##
           (tab_pred <- data.frame(Pred = predict(mod_null),</pre>
                        Income = encuesta$Income,
                        Stratum = encuesta$Stratum)) %>% distinct(
             slice(1:6L) # Son las pendientes aleatorias
                               Pred
                                      Income
                                               Stratum
```

630.7

630.7

409.87 idStrt001

idStrt001

823 75

Scaterplot de y vs \hat{y}

Análisis de encuestas de hogares con R

Análisis de encuestas de hogares con R Andrés Gutiérrez, Ph D

> Stalyn Guerrero M Sc

```
Ingreso_{ij} = \beta_0 + \beta_{1j} Gasto_{ij} + \epsilon_{ij}\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \tau_{1j}
```

```
mod_Int_Aleatorio <- lmer(
  Income ~ Expenditure + (1 | Stratum),
  data = encuesta, weights = wk2)

sjstats::icc(mod_Int_Aleatorio)</pre>
```

```
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.196
## Conditional ICC: 0.102
```

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

coef(mod_Int_Aleatorio)\$Stratum %>% slice(1:10L)

	(Intercept)	Expenditure
idStrt001	248.257	1.202
idStrt002	152.988	1.202
idStrt003	139.765	1.202
idStrt004	292.650	1.202
idStrt005	-42.165	1.202
idStrt006	46.766	1.202
idStrt007	2.841	1.202
idStrt008	103.346	1.202
idStrt009	-54.946	1.202
idStrt010	250.707	1.202

encuestas de hogares con R Andrés Gutiérrez, Ph.D. Stalyn Guerrero M Sc

Análisis de

```
Coef_Estimado <- inner_join(</pre>
  coef(mod Int Aleatorio)$Stratum %>%
       add rownames(var = "Stratum"),
encuesta plot %>% select(Stratum) %>% distinct())
ggplot(data = encuesta_plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() + theme(legend.position="none",
    plot.title = element_text(hjust = 0.5)) +
  geom_abline(data = Coef_Estimado,
              mapping=aes(slope=Expenditure,
                           intercept=`(Intercept)`,
                           colour = Stratum))+
  theme cepal()
```

Análisis de encuestas de hogares con R

Predicción del modelo

encuestas de hogares con R Andrés Gutiérrez, Ph.D.

Análisis de

```
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M.Sc.
```

	come	Stratum
1 10		
4 40)9.8 <i>1</i>	idStrt001
.6 82	23.75	idStrt001
.3 9	90.92	idStrt001
.9 13	35.33	idStrt001
.9 33	36.19	idStrt001
5 153	39.75	idStrt001
	6 82 3 9 9 13 9 33	3 90.92 9 135.33 9 336.19

Scaterplot de y vs \hat{y}

Análisis de encuestas de hogares con R


```
Análisis de
encuestas de
                                  Ingreso_{ii} = \beta_{0i} + \beta_{1i} Gasto_{ii} + \epsilon_{ii}
hogares con R
  Andrés
 Gutiérrez,
  Ph.D.
  Stalvn
                                   \beta_{0i} = \gamma_{00} + \gamma_{01} Stratum_i + \tau_{0i}
 Guerrero
  M Sc
                                   \beta_{1i} = \gamma_{10} + \gamma_{11} Stratum_i + \tau_{1i}
              mod Pen Aleatorio <- lmer(
                 Income ~ Expenditure + (1 + Expenditure | Stratum),
                 data = encuesta, weights = wk2)
              sjstats::icc(mod_Pen_Aleatorio)
              ## # Intraclass Correlation Coefficient
              ##
```

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

coef(mod_Pen_Aleatorio)\$Stratum %>% slice(1:10L)

	(Intercept)	Expenditure
idStrt001	-232.75	2.7843
idStrt002	30.20	1.6268
idStrt003	152.46	1.1621
idStrt004	229.66	1.3471
idStrt005	-96.03	1.2946
idStrt006	31.79	1.2003
idStrt007	38.05	1.0764
idStrt008	168.67	0.8971
idStrt009	32.73	0.7396
idStrt010	71.10	1.9112

encuestas de hogares con R Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de

```
Coef_Estimado <- inner_join(</pre>
  coef(mod Pen Aleatorio)$Stratum %>%
       add rownames(var = "Stratum"),
encuesta plot %>% select(Stratum) %>% distinct())
ggplot(data = encuesta_plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() + theme(legend.position="none",
    plot.title = element_text(hjust = 0.5)) +
  geom_abline(data = Coef_Estimado,
              mapping=aes(slope=Expenditure,
                           intercept=`(Intercept)`,
                           colour = Stratum))+
  theme cepal()
```

Análisis de encuestas de hogares con R

Predicción del modelo

Análisis de encuestas de hogares con R

	Pred	Income	Stratum
1	731.5694	409.87	idStrt001
6	859.3694	823.75	idStrt001
10	-26.5154	90.92	idStrt001
13	0.5481	135.33	idStrt001
18	491.6731	336.19	idStrt001
22	1255.2708	1539.75	idStrt001

Scaterplot de y vs \hat{y}

Análisis de encuestas de hogares con R

Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

$$Ingreso_{ij} = \beta_{0j} + \beta_{1j}Gasto_{ij} + \beta_{2j}Zona_{ij} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} Stratum_j + \gamma_{02} \mu_j + \tau_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \gamma_{12} \mu_j + \tau_{1j}$$

$$\beta_{2j} = \gamma_{20} + \gamma_{21} Stratum_j + \gamma_{12} \mu_j + \tau_{2j}$$

donde μ_j es el gasto medio en el estrato j.

Análisis de

Andrés

Gutiérrez, Ph.D.

Stalyn Guerrero M Sc

```
media_estrato <- encuesta %>% group_by(Stratum) %>%
encuestas de
hogares con R
            summarise(mu = mean(Expenditure))
          encuesta <- inner_join(encuesta,
                                  media_estrato, by = "Stratum")
          mod Pen Aleatorio2 <- lmer(</pre>
            Income ~ 1 + Expenditure + Zone + mu +
              (1 + Expenditure + Zone + mu | Stratum ),
              data = encuesta, weights = wk2)
          sjstats::icc(mod Pen Aleatorio2)
          ## [1] NA
```

(tab pred <- data.frame(Pred = predict(mod_Pen_Aleato</pre> Income = encuesta\$Income,

Stratum = encuesta\$Stratum)) %>% distinct(

Scaterplot de y vs \hat{y}

Análisis de encuestas de hogares con R


```
Análisis de
encuestas de
hogares con R
```

```
as.data.frame( model.matrix(mod_Pen_Aleatorio2)) %>%
    distinct()
```

(Intercent)

Stratum

```
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M Sc
```

Análisis de encuestas de

```
(Coef_Estimado <- inner_join(
  coef(mod_Pen_Aleatorio2)$Stratum %>%
   add_rownames(var = "Stratum"),
  encuesta_plot %>% select(Stratum, Zone) %>% distince
))
```

Julatum	(micrecpt)	Expenditure	Zoncorban	IIIu	20
idStrt002	51.05	1.592	28.98	-0.1221	Url
idStrt010	95.38	1.980	147.67	-0.6678	Url
idStrt015	36.61	1.749	-154.18	-0.0318	Ru
idStrt017	55.41	1.577	43.06	-0.1365	Ru
idStrt022	41.23	1.133	26.51	0.2705	Url
idStrt028	50.22	1.568	-81.52	0.0029	Url

Expanditure Zonel Irban

mu

Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

```
(Coef_Estimado %<>% inner_join(
  media_estrato, by = "Stratum"))
```

Stratum	(Intercept)	Expenditure	${\sf ZoneUrban}$	mu.x	Zone	mu.y
idStrt002	51.05	1.592	28.98	-0.1221	Urban	286.2
idStrt010	95.38	1.980	147.67	-0.6678	Urban	255.8
idStrt015	36.61	1.749	-154.18	-0.0318	Rural	357.0
idStrt017	55.41	1.577	43.06	-0.1365	Rural	244.8
idStrt022	41.23	1.133	26.51	0.2705	Urban	524.0
idStrt028	50.22	1.568	-81.52	0.0029	Urban	337.1

El modelo para el estrato idStrt001 viene dado por:

$$\hat{y}_{ij} = 154.4 + 1.7418$$
Expenditure_{ij} + 77.353Zone_{ij} + $(-0.6954) \mu_j$
 $\hat{y}_{ij} = 154.4 + 1.7418$ Expenditure+77.353 (0) + $(-0.6954)(255.2)$
 $\hat{y}_{ij} = -23.07 + 1.7418$ Expenditure

Análisis de encuestas de hogares con R

Stratum	Zone	В0	Expenditure
idStrt002	Urban	45.08	1.592
idStrt010	Urban	72.24	1.980
idStrt015	Rural	25.26	1.749
idStrt017	Rural	21.99	1.577
idStrt022	Urban	209.51	1.133
idStrt028	Urban	-30.34	1.568

```
Análisis de
           ggplot(data = encuesta_plot,
encuestas de
hogares con R
                   aes(y = Income, x = Expenditure,
 Andrés
                       colour = Stratum)) +
 Gutiérrez.
  Ph D
             geom_jitter() +
 Stalvn
 Guerrero
             theme(legend.position = "none",
  M Sc
                    plot.title = element_text(hjust = 0.5)) +
             facet_grid( ~ Zone) +
             geom abline(
               data = Coef Estimado,
               mapping = aes(
                  slope = Expenditure,
                  intercept = B0,
                  colour = Stratum
             theme_cepal()
```

Análisis de encuestas de hogares con R

Introducción a los modelos logístico multinivel.

Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc. Sea la variable $y_{ij} = 1$ si el individuo i en el estrato j esta por enciam de la linea de pobreza y $y_{ij} = 0$ en caso contrario, la variable y_{ij} se puede modelar mediante el modelo logístico:

$$Pr(y_{ij}) = Pr(y_{ij} = 1 \mid x_i : \beta) = \frac{1}{1 + \exp(-\beta_j \mathbf{x}_{ij})}$$

ó

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = \beta_j \boldsymbol{x}_{ij}$$

donde $\pi_{ii} = Pr(y_{ii} = 1 \mid x_i : \beta)$.

```
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
```

Stalyn Guerrero

M Sc

Análisis de

```
encuesta_plot <- encuesta %>%
  dplyr::select(Stratum, Expenditure) %>% unique() %>%
  group_by(Stratum) %>%
  summarise(sd = sd(Expenditure)) %>%
  arrange(desc(sd)) %>% dplyr::select(-sd) %>%
  slice(1:20L) %>%
  inner join(encuesta) %>%
  dplyr::select(Poverty, Expenditure, Stratum,
         Sex, Region, Zone)
encuesta plot %>% slice(1:15L)
```

NotPoor

NotPoor

Análisis de encuestas de	Poverty	Expenditure	Stratum	Sex	Region	Zone
hogares con R Andrés	NotPoor	3367.5	idStrt039	Male	Sur	Urban
Gutiérrez, Ph.D.	NotPoor	3367.5	idStrt039	Female	Sur	Urban
Stalyn Guerrero	NotPoor	3367.5	idStrt039	Male	Sur	Urban
M.Sc.	NotPoor	312.1	idStrt039	Female	Sur	Urban
	NotPoor	312.1	idStrt039	Female	Sur	Urban
	NotPoor	312.1	idStrt039	Female	Sur	Urban
	NotPoor	312.1	idStrt039	Male	Sur	Urban
	NotPoor	226.5	idStrt039	Male	Sur	Urban
	NotPoor	226.5	idStrt039	Female	Sur	Urban
	NotPoor	616.3	idStrt047	Female	Sur	Urban
	NotPoor	616.3	idStrt047	Female	Sur	Urban
	NotPoor	616.3	idStrt047	Female	Sur	Urban
	NotPoor	1385.7	idStrt047	Male	Sur	Urban

idStrt047

idStrt047

Female

Female

Sur

Sur

Urban

Urhan

1385.7

1385 7

```
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M.Sc
```

Análisis de encuestas de

```
encuesta <- encuesta %>% mutate(
  pobreza = ifelse(Poverty != "NotPoor", 1, 0))
encuesta plot %<>% mutate(
  pobreza = ifelse(Poverty != "NotPoor", 1, 0))
ggplot(data = encuesta,
       aes(y = pobreza, x = Expenditure)) +
  geom_point() +
  geom_smooth(
    formula = y~x, method = "glm",
    se=FALSE,
    method.args = list(family=binomial(link = "logit"
  theme bw()
```

Análisis de encuestas de hogares con R


```
Análisis de
           auxLogit <- function(x,b0,b1){</pre>
encuestas de
hogares con R
             1/(1+\exp(-(b0+b1*x)))
 Andrés
           }
 Gutiérrez,
  Ph.D.
           B0 = coef(glm(pobreza~1, data = encuesta_plot,
 Stalyn
 Guerrero
                 family=binomial(link = "logit")))
  M.Sc.
           (coef_Mod <- encuesta_plot %>% group_by(Stratum) %>%
             summarise(B1 = coef(glm(pobreza ~ -1 + Expenditure
                           family=binomial(link = "logit")))) %>%
           mutate(B0 = B0)) \%\% slice(1:6L)
```

idStrt007 -0.0189

idStrt020 -0.0010

B₀

-0.8782

-0.8782

-0.8782

0700

B1

-0.0057

0.0000

Stratum

idStrt022

: -ICT -- TOO 4

```
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
```

M Sc

Análisis de encuestas de

```
# Creando las variables respuesta
pred_logit <- coef_Mod %>%
  mutate(Expenditure = list(seq(0,2000, length =100))
    tidyr::unnest_legacy()
pred_logit %<>% mutate(Prob = auxLogit(Expenditure, B0
ggplot(data = pred_logit,
       aes(y = Prob, x = Expenditure, colour = Stratu
  geom line() +
   theme bw() +
  theme(legend.position = "none")
```

Análisis de encuestas de hogares con R


```
Análisis de
encuestas de
hogares con R
```

Análisis de encuestas de hogares con R

Un modelo básico es:

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Análisis de

encuestas de

$$\begin{aligned} logit(\pi_{ij}) &= \beta_{0j} + \epsilon_{ij} \\ \beta_{0j} &= \gamma_{00} + \tau_{0j} \\ &\blacksquare \ \pi_{ij} &= Pr(y_{ij} = 1 \mid x_i : \beta). \end{aligned}$$

donde,
$$\tau_{0j} \sim N\left(0, \sigma_{\tau}^{2}\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

La correlación intra clásica esta dada por:

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de

encuestas de

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- $\blacksquare \ \pi_{ij} = Pr(y_{ij} = 1 \mid x_i : \beta).$
- lacksquare $eta_{0j} = \mathsf{El}$ intercepto en el estrato j.

donde,
$$au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_\tau^2}{\sigma_\tau^2 + \sigma_\epsilon^2}$$

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M Sc

Análisis de

encuestas de

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- $\blacksquare \ \pi_{ij} = Pr(y_{ij} = 1 \mid x_i : \beta).$
- β_{0j} = El intercepto en el estrato j.
- lacksquare El residual de la persona i en el estrato j.

donde,
$$\tau_{0j} \sim N\left(0, \sigma_{\tau}^{2}\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_\tau^2}{\sigma_\tau^2 + \sigma_\epsilon^2}$$

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de

encuestas de

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- $\blacksquare \ \pi_{ij} = Pr(y_{ij} = 1 \mid x_i : \beta).$
- lacksquare $eta_{0j} = \mathsf{El}$ intercepto en el estrato j.
- lacksquare El residual de la persona i en el estrato j.
- \bullet $\gamma_{00} = \mathsf{El}$ intercepto en general.

donde,
$$\tau_{0j} \sim N\left(0, \sigma_{\tau}^{2}\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de

encuestas de

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- $\blacksquare \ \pi_{ij} = Pr(y_{ij} = 1 \mid x_i : \beta).$
- β_{0j} = El intercepto en el estrato j.
- lacksquare El residual de la persona i en el estrato j.
- \bullet $\gamma_{00}=$ El intercepto en general.
- \bullet τ_{0j} = Efecto aleatorio para el intercepto.

donde, $\tau_{0j} \sim N\left(0, \sigma_{\tau}^{2}\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

```
Análisis de
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D
```

```
Ph.D.
Stalyn
Guerrero
M.Sc
```

Análisis de encuestas de hogares con R

	(Intercept)
idStrt001	-0.8334
idStrt002	-0.0133
idStrt003	-2.6023
idStrt004	-2.7770
idStrt005	-1.0268
idStrt006	1.0100
idStrt007	-1.0134
idStrt008	0.2035
idStrt009	2.1966
idStrt010	-0.5948
idStrt011	-1.2986
idStrt012	0.2825

##

```
Análisis de
          library(sjstats)
encuestas de
hogares con R
          mod_logist_null
 Andrés
 Gutiérrez.
  Ph D
          ## Generalized linear mixed model fit by maximum like
 Stalvn
 Guerrero
               Approximation) [glmerMod]
          ##
  M Sc
          ##
              Family: binomial (logit)
          ## Formula: pobreza ~ (1 | Stratum)
          ##
                Data: encuesta
          ## Weights: wk2
          ##
                  ATC
                            BIC logLik deviance df.resid
                                   -1481
          ## 2966 2978
                                               2962
                                                         2603
          ## Random effects:
```

Groups Name Std.Dev.

Stratum (Intercept) 1.29
Number of obs: 2605, groups: Stratum, 119
Fixed Effects:

```
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M Sc
```

Análisis de

```
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.334
## Conditional ICC: 0.334

(tab_pred <- data.frame(
    Pred = predict(mod_logist_null, type = "response"),
    pobreza = encuesta$pobreza,
    Stratum = encuesta$Stratum)) %>% distinct() %>%
    slice(1:6L) # Son las pendientes aleatorias
```

	Pred	pobreza	Stratum
1	0.3029	0	idStrt001
10	0.3029	1	idStrt001
28	0.4967	1	idStrt002
36	0.4967	0	idStrt002
61	0.0690	0	idStrt003

Estimación de la propoción para y y \hat{y}

```
Análisis de
encuestas de
hogares con R
```

```
weighted.mean(encuesta$pobreza, encuesta$wk2)
```

```
## [1] 0.3859
```

```
weighted.mean(tab_pred$Pred, encuesta$wk2)
```

```
## [1] 0.385
```

```
Análisis de
encuestas de
                             logit(\pi_{ii}) = \beta_0 + \beta_{1i} Gasto_{ii} + \epsilon_{ii}
hogares con R
  Andrés
                               \beta_{1i} = \gamma_{10} + \gamma_{11} Stratum_i + \tau_{1i}
 Gutiérrez.
  Ph D
  Stalvn
 Guerrero
             mod_logit_Int_Aleatorio <- glmer(</pre>
  M Sc
               pobreza ~ Expenditure + (1 | Stratum),
               data = encuesta, family = binomial(link = "logit"),
               weights = wk2)
             sjstats::icc(mod logit Int Aleatorio)
             ## # Intraclass Correlation Coefficient
             ##
             ##
                       Adjusted ICC: 0.315
                   Conditional ICC: 0.187
             ##
```

Análisis de encuestas de hogares con R

> Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

coef(mod_logit_Int_Aleatorio)\$Stratum %>% slice(1:10L

	(Intercept)	Expenditure
idStrt001	0.9889	-0.0066
idStrt002	1.8837	-0.0066
idStrt003	-0.7463	-0.0066
idStrt004	-0.1484	-0.0066
idStrt005	1.7155	-0.0066
idStrt006	3.2456	-0.0066
idStrt007	0.5601	-0.0066
idStrt008	1.6848	-0.0066
idStrt009	3.9332	-0.0066
idStrt010	1.1207	-0.0066

encuestas de hogares con R Andrés Gutiérrez, Ph.D. Stalyn Guerrero M Sc

Análisis de

```
dat_pred <- encuesta %>% group_by(Stratum) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest legacy()
dat_pred <- mutate(dat_pred,</pre>
       Proba = predict(mod_logit_Int_Aleatorio,
                       newdata = dat_pred , type = "response"))
ggplot(data = dat_pred,
       aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
  geom_line()+ theme_bw() +
 geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))
 theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```

Análisis de encuestas de hogares con R

Predicción del modelo

```
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M.Sc.
```

Análisis de

Pred	pobreza	Stratum	wk2
0.2149	0	idStrt001	0.7770
0.2149	0	idStrt001	0.7501
0.2149	0	idStrt001	0.7463
0.2149	0	idStrt001	0.7717
0.2149	0	idStrt001	0.7438
0.1682	0	idStrt001	0.7507

Estimación de la propoción para y y \hat{y}

Análisis de encuestas de hogares con R

Pred	pobreza
0.3855	0.3859

```
Análisis de
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M Sc
```

##

```
logit(\pi_{ij}) = eta_{0j} + eta_{1j} Gasto_{ij} + \epsilon_{ij} eta_{0j} = \gamma_{00} + \gamma_{01} Stratum_j + 	au_{0j} eta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + 	au_{1j} Aleatorio <- glmer(
```

```
\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \tau_{1j}  \begin{array}{l} \text{mod\_logit\_Pen\_Aleatorio} <- \text{glmer}(\\ \text{pobreza} \sim \text{Expenditure} + (1 + \text{Expenditure}| \text{Stratum}),\\ \text{data} = \text{encuesta}, \text{ weights} = \text{wk2},\\ \text{binomial}(\text{link} = \text{"logit"})) \\ \\ \text{sjstats::icc}(\text{mod\_logit\_Pen\_Aleatorio}) \\ \\ \text{## # Intraclass Correlation Coefficient} \\ \text{##} \end{array}
```

Adjusted ICC: 0.886

Análisis de encuestas de hogares con R Andrés

> Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

coef(mod_logit_Pen_Aleatorio)\$Stratum %>% slice(1:10L

	(Intercept)	Expenditure
idStrt001	5.244	-0.0271
idStrt002	11.059	-0.0394
idStrt003	-1.614	-0.0060
idStrt004	1.655	-0.0153
idStrt005	9.055	-0.0289
idStrt006	-1.354	0.0100
idStrt007	1.035	-0.0136
idStrt008	1.473	-0.0056
idStrt009	4.050	-0.0048
idStrt010	4.310	-0.0214

encuestas de hogares con R Andrés Gutiérrez, Ph.D. Stalyn Guerrero

M Sc

Análisis de

```
dat_pred <- encuesta %>% group_by(Stratum) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest legacy()
dat_pred <- mutate(dat_pred,</pre>
       Proba = predict(mod_logit_Pen_Aleatorio,
                       newdata = dat_pred , type = "response"))
ggplot(data = dat_pred,
       aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
  geom_line()+ theme_bw() +
 geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))
 theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```

Análisis de encuestas de hogares con R

Predicción del modelo

```
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M.Sc.
```

Análisis de

Pred	pobreza	Stratum	wk2
0.0154	0	idStrt001	0.7770
0.0154	0	idStrt001	0.7501
0.0154	0	idStrt001	0.7463
0.0154	0	idStrt001	0.7717
0.0154	0	idStrt001	0.7438
0.0045	0	idStrt001	0.7507

Estimación de la propoción para y y \hat{y}

Análisis de encuestas de hogares con R

Pred	pobreza
0.3845	0.3859

Análisis de encuestas de hogares con R

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

$$logit(\pi_{ij}) = \beta_{0j} + \beta_{1j} Gasto_{ij} + \beta_{2j} Zona_{ij} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} Stratum_j + \gamma_{02} \mu_j + \tau_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \gamma_{12} \mu_j + \tau_{1j}$$

$$\beta_{2j} = \gamma_{20} + \gamma_{21} Stratum_j + \gamma_{12} \mu_j + \tau_{2j}$$

donde μ_j es el gasto medio en el estrato j.

Análisis de encuestas de hogares con R

```
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.851
## Conditional ICC: 0.594
```

Gráfica del modelo obtenido

Análisis de encuestas de hogares con R

```
dat_pred <- encuesta %>% group_by(Stratum, Zone, mu) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest_legacy()
dat_pred$Proba = predict(mod_logit_Pen_Aleatorio2,
                       newdata = dat_pred , type = "response")
ggplot(data = dat pred,
      aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
   geom line()+ theme bw() +facet grid(.~Zone)+
  geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))+
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```

Análisis de encuestas de hogares con R

Predicción del modelo

```
Análisis de
            (tab_pred <- data.frame(</pre>
encuestas de
hogares con R
              Pred = predict(mod_logit_Pen_Aleatorio2,
  Andrés
                                type = "response"),
 Gutiérrez.
  Ph D
                         pobreza = encuesta$pobreza,
  Stalvn
 Guerrero
                         Stratum = encuesta$Stratum,
  M Sc
                         Zone = encuesta$Zone,
                         wk2 = encuesta$wk2)) %>% distinct() %>%
              slice(1:6L)
```

Pred	pobreza	Stratum	Zone	wk2	
0.0175	0	idStrt001	Rural	0.7770	
0.0175	0	idStrt001	Rural	0.7501	
0.0175	0	idStrt001	Rural	0.7463	
0.0175	0	idStrt001	Rural	0.7717	
0.0175	0	idStrt001	Rural	0.7438	
0.0063	0	:45+4001	Dural	0.7507	

Estimación de la propoción para y y \hat{y}

Análisis de encuestas de hogares con R

Zone	Pred	pobreza
Rural	0.4309	0.4298
Urban	0.3385	0.3437

¡Gracias!

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

> > Email: andres.gutierrez@cepal.org