Detetor Geiger-Müller e Estatística de Contagens

Duarte Miguel de Aguiar Pinto e Morais Marques | 96523 Joana Sofia Reis Abreu | 96235 Juna Alexandra Ponte dos Santos | 96549 Miguel Francisco Paixão Mendes | 95755

Grupo 6B

Objetivos

Nesta atividade experimental, começa-se por estudar a curva de resposta de um detetor de Geiger-Müller, fazendo variar a respetiva tensão de alimentação, de forma a identificar e caraterizar o Patamar de Geiger e selecionar uma tensão de trabalho.

Em seguida, é determinada a taxa de contagens relativa à radiação ambiente, de forma a corrigir os valores posteriormente obtidos. De forma a estudar a eficiência do detetor, são recolhidos dados com duas fontes diferentes (tálio-204 e césio-137) e com recurso a um absorvedor de plástico, para bloquear a radiação β . É também estudada a variação da taxa de contagem com a distância.

Por fim, é feito um grande número de aquisições de dados, de forma a estudar a dispersão e distribuição estatística das contagens.

Montagem

Para esta atividade laboratorial, foi utilizado um detetor de Geiger-Müller dentro de uma caixa com tampa de plástico removível, ligado a um módulo de aquisição de dados. Este módulo encontrava-se ligado a um osciloscópio, a um amplificador e a um módulo de controlo onde se podia especificar o tempo de recolha de dados, assim como observar o número de contagens registadas pelo detetor. Como fontes de radiação γ e β , foram usadas amostras de tálio-204 (amostra FO3) e de césio (amostra F07). O material utilizado encontra-se esquematizado na Figura 1.

Figura 1: Esquema da montagem utilizada na presente atividade experimental.

Formulário

Estudo da eficiência do detetor

$$\varepsilon_{total} = \frac{R_{detetados}}{R_{emitidos}} \times 100\% \tag{1}$$

$$\varepsilon_{int} = \frac{R_{detetados}}{R_{inc}} \times 100\% \tag{2}$$

$$\varepsilon_{geo} = \frac{R_{inc}}{R_{emitidos}} \times 100\% \tag{3}$$

$$\varepsilon_{geo} = \frac{\Omega}{4\pi} \tag{4}$$

$$\varepsilon_{total} = \varepsilon_{int} \times \varepsilon_{geo}$$
 (5)

 ε_{total} - Eficiência total (em percentagem)

R_{detetados} - Taxa de eventos detetados

 $R_{emitidos}$ - Taxa de eventos emitidos pela fonte

 ε_{int} - Eficiência intrínseca (em percentagem)

 R_{inc} - Taxa de eventos incidentes no detetor

 ε_{geo} - Eficiência geométrica ou aceitância (em percentagem)

Ω - Ângulo sólido

$$\Omega = \int_0^{2\pi} \int_0^{\theta} \sin(\theta) \ d\theta \ d\phi = 2\pi \left(1 - \frac{d}{\sqrt{d^2 + a^2}} \right) \tag{6}$$

 Ω - Ângulo sólido (em esterradianos)

d - distância da fonte ao detetor

a - raio do detetor

$$t_{\frac{1}{2}} = \frac{\ln(2)}{\lambda} \tag{7}$$

 $t_{\frac{1}{8}}$ - Tempo de semi-vida de um núcleo

 λ - Constante de decaimento de um núcleo

$$A = \lambda N_0 e^{-\lambda t} = A_0 e^{-\lambda t} \tag{8}$$

A - Atividade da fonte

 N_0 - Quantidade inicial de núcleos

 A_0 - Atividade da fonte no instante inicial

Procedimento, resultados e análise de dados

Detetor e cadeia de eletrónica

Antes de se ter iniciado a recolha de dados, analisou-se qualitativamente o número de contagens feitas pelo detetor por intermédio de um osciloscópio, no qual foi possível visualizar os sinais com e sem fonte frente ao detetor. Como é possível observar na Figura 2, este equipamento recebe cada contagem como um estímulo elétrico, sendo possível assim correlacionar a voltagem apresentada no osciloscópio com o número de contagens feitas num intervalo de tempo.

Figura 2: Fotografia da visualização do sinal relativo à fonte de tálio no osciloscópio.

Quando se fez variar a tensão, foi possível verificar que os sinais observados foram variando, destacando-se a situação na qual a tensão utilizada era inferior às do patamar de Geiger, e por isso o número de contagens era muito inferior às restantes leituras (a certa altura foi inclusive necessário alterar a escala vertical para conseguir visualizar a forma do sinal). Para tensões ligeiramente superiores, após as do patamar de Geiger, as leituras deixavam de ter significado físico (os sinais eram erráticos), muito provavelmente devido a um *overflow* do sistema eletrónico.

Esta análise foi útil, visto que permitiu entender o grau de precisão necessário (no osciloscópio) para as medições que se iriam realizar.

Estudo da curva de resposta do detetor

Tendo observado os sinais no osciloscópio, procedeu-se à obtenção do número de contagens para diferentes valores de tensão na fonte, de forma a se identificar e caraterizar a curva de resposta do detetor. Foi utilizada a fonte de tálio-204 nesta parte da atividade.

Para cada valor de tensão, são efetuados dois ensaios, cada um num intervalo de tempo de $\Delta t_{1,2} = 60 \, s$, sendo depois somados os valores das contagens (e dos intervalos de tempo), depois de verificar a sua compatibilidade. A incerteza associada a cada medida N_i é dada por σ_{N_i} . Assim, o número total de contagens é dado por $N = N_1 + N_2$ (9), sendo a incerteza associado dado por

$$\sigma_N = \sqrt{\sigma_{N_1}^2 + \sigma_{N_2}^2} = \sqrt{N} \tag{10}$$

Por sua vez, a taxa de contagem do detetor é dada por $R = \frac{N}{\Delta t}(11)$, considerando-se $\sigma_R = \frac{\sigma_N}{\Delta t}(12)$. Eis os resultados obtidos numa primeira obtenção de dados:

U(kV)	N_1	N_2	N
0.50	697 ± 26	694 ± 26	1391 ± 37
0.45	671 ± 26	668 ± 26	1339 ± 36
0.40	597 ± 24	575 ± 24	1172 ± 34
0.35	0	0	0

Tabela 1: Curva de resposta do detetor: primeira recolha de dados.

O conjunto de dados apresentado acima não foi, porém, utilizado na obtenção da curva de resposta,

uma vez que se havia selecionado uma contagem de tempo incorreta num dos interruptores do contador. Desta forma, obteve-se o novo conjunto de dados da Tabela 2. Não foi efetuado um segundo ensaio para a tensão $U=1.78\ kV$, no intuito de poupar tempo. Além disso, não foram apresentados valores de contagens para a tensão $U=1.84\ kV$, uma vez que estes eram já excessivamente elevados e subiam muito rapidamente, sendo claro que se havia atingido a região de descarga. Nos valores de contagens nulos, significa que a tensão utilizada era já suficientemente inferior à *Knee Voltage*, representada na Figura 3.

U (kV)	N_1	N_2	N	$R(s^{-1})$
0.50	1170 ± 34	1162 ± 34	2332 ± 48	19.4 ± 0.4
0.45	1065 ± 33	1077 ± 33	2142 ± 46	17.8 ± 0.4
0.40	969 ± 31	967 ± 31	1936 ± 44	16.1 ± 0.4
0.35	0	0	0	0
0.38	0	0	0	0
0.39	904 ± 30	901 ± 30	1805 ± 42	15.0 ± 0.4
0.65	1200 ± 35	1197 ± 35	2397 ± 49	20.0 ± 0.4
0.80	1183 ± 34	1313 ± 36	2496 ± 50	20.8 ± 0.4
0.95	1228 ± 35	1177 ± 34	2405 ± 49	20.0 ± 0.4
1.10	1198 ± 35	1179 ± 34	2377 ± 49	19.8 ± 0.4
1.25	1213 ± 45	1238 ± 35	2451 ± 50	20.4 ± 0.4
1.65	1565 ± 40	1620 ± 40	3185 ± 56	26.5 ± 0.5
1.78	3053 ± 55	-	3053 ± 55	50.9 ± 0.9
1.84	_	-	-	-

Tabela 2: Curva de resposta do detetor: recolha definitiva de dados.

Figura 3: Representação gráfica das medidas obtidas (pontos a azul e a vermelho) e indicação das zonas da curva caraterística do detetor Geiger-Müller.

Os pontos a vermelho fazem parte da zona a qual se considerou como sendo o patamar de Geiger.

O patamar de Geiger (Plateau Region) corresponde à zona da curva do detetor na qual a taxa

de contagem se mantém aproximadamente constante, havendo um ligeiro declive, cujo valor será determinado. Tendo em conta as medidas obtidas e a respetiva representação gráfica, considerou-se o patamar para o intervalo de tensões [500, 1400] V. Como tensão de trabalho, utilizada ao longo do resto da atividade experimental, selecionou-se o valor $U_{trab} = 800 V$, o qual se encontra a 1/3 do início da zona do patamar. Observando ainda a Figura 3, pode ainda apontar-se a *Threshold* ou *Knee Voltage* como sendo $U_t \approx 450 V$ e a tensão de ruptura (*Voltage Breakdown*) como sendo $U_b \approx 1500 V$.

Finalmente, utilizando apenas os pontos a vermelho da Figura 3, fez-se um ajuste linear, recorrendo ao Excel, de forma a determinar o declive associado. Obtiveram-se os resultados apresentados em seguida.

Figura 4: Representação gráfica dos pontos do patamar de Geiger e do respetivo ajuste linear.

$a(s^{-1}V^{-1})$	$b(s^{-1})$	χ^2/ν
$(7.0 \pm 7.8) \cdot 10^{-4}$	19.5 ± 0.7	1.4

Tabela 3: Reta de regressão linear aos pontos do patamar de Geiger.

Ora, para um bom tubo GM, a região do patamar deverá corresponder a uma subida na taxa de contagem de menos de 10% por 100 volts, ou seja, para cada 100 volts, Δ [taxa de contagem]/[taxa de contagem média] deverá ser inferior a 0.1 [2]. Tendo em conta o valor do declive obtido, por cada $100\ V$, a taxa R varia cerca de $7\ mV$; por sua vez, a taxa de contagem média, calculada com os pontos experimentais, é de $\overline{R}=(20.1\pm0.4)\ s^{-1}$, pelo que o quociente em causa é de cerca de 3.5 ± 10^{-4} , o que o detetor utilizado estará em boas condições de funcionamento. Tendo-se obtido um valor de χ^2/v bastante próximo de 1, pode também afirmar-se que a equação de ajuste obtida representa bem o conjunto de dados.

Estudo do fundo de radiação ambiente

Com um tempo de aquisição de $\Delta t = 5$ min = 300 s, foi retirada a fonte de tálio-204, de forma a estimar a taxa de contagem de fundo, R_0 , a qual irá ser utilizada para corrigir os futuros valores de R, aos quais se subtrairá esta componente. A taxa de contagem efetiva resultante é, então, dada por:

$$R_m = R - R_0 \qquad \sigma_{R_m} = \sqrt{\sigma_R^2 + \sigma_{R_0}^2}$$
 (13)

Os resultados obtidos encontram-se na Tabela 4.

N	$R_0 (s^{-1})$
107 ± 10	0.36 ± 0.03

Tabela 4: Resultados relativos à radiação de fundo, para um tempo de aquisição de $\Delta t = 300 \, s$.

Esta taxa de contagem para a radiação de fundo apresenta uma ordem de grandeza inferior à dos valores de taxas calculados ao longo da experiência e apresentados em seguida; mesmo assim, é apenas inferior em 1 ordem de grandeza relativamente a alguns desses valores, sendo a correção com R_0 significativa para obter medidas mais exatas.

0.1 Estudo da eficiência do detetor

A eficiência total de um detetor, em percentagem, pode ser calculada com recurso à equação 1. Por sua vez, esta eficiência pode ser fatorizada em 2 componentes de eficiência distintas: a eficiência intrínseca (equação 2) e a eficiência geométrica (equação 3).

A eficiência intrínseca depende das secções eficazes de interação, do tipo de radiação incidente, bem como da respetiva energia, e do material e volume do detetor, especialmente no que toca a incidentes neutros.

Já a eficiência geométrica depende da distribuição angular da radiação emitida e da configuração geométrica do detetor, nomeadamente, da fração de ângulo sólido total que o detetor define quando visto de frente. [3]

0.1.1 Radiação β

Para procedermos ao estudo da eficiência do detetor para a radiação β , foram realizadas contagens para a fontes de ^{204}Tl a uma distância de 5 cm.

Na tabela 5 são apresentados os resultados das contagens realizadas, sendo N_1 a primeira contagem realizada e N_2 a segunda, bem como a taxa de contagens por segundo, R. Os valores dos tempos de semi-vida $\left(t_{\frac{1}{2}}\right)$ das fontes encontravam-se escritos nas mesmas, estando também discriminados na tabela 8.

$t_{\frac{1}{2}}(anos)$	Tempo de Aquisição (s)	N_1	N ₂	N_{total}	$R(s^{-1})$
3.78	60±0.5	1183±35	1313±36	2496±50	20.4±0.9

Tabela 5: Contagens e taxa de contagem por segundo para a fonte de ^{204}Tl

Para o cálculo da taxa de contagem por segundo de eventos emitidos foram utilizadas as equações 7, que permitiu obter o valor para a probabilidade de decaimento do núcleo, e 8, que permitiu calcular a atividade atual da fonte.

Com recurso ao *website* Nudat 2.8 [1], foi possível consultar um valor tabelado para a probabilidade do ^{204}Tl emitir radiação β no seu decaimento, sendo esta igual a 97.08%. Deste modo, utilizou-se este valor no denominador da equação 1 de modo a se calcular a eficiência para a radiação β e não para a radiação total.

$$\varepsilon_{total} = \frac{R_{detetados}}{0.9708 \ R_{emitidos}} \times 100\% \tag{14}$$

Para além disto, também se teve acesso, no laboratório, a um valor da atividade da fonte obtido em outubro de 2005. Este valor encontra-se, também, na tabela 6.

$\lambda(anos^{-1})$	t (anos)	$A_0(\mu Ci)$	A (μCi)	$arepsilon_{total}(\%)$
0.18	16.0±3.2	1.0 ± 0.2	0.05 ± 0.03	1.1±0.7

Tabela 6: Probabilidade de decaimento (λ) , tempo decorrido desde a data da atividade registada das fontes (t), atividade registada (A_0) e atividade atual (A) para a fonte de ^{204}Tl .

Para posterior cálculo da eficiência geométrica, foi necessário obter o valor do ângulo sólido coberto pelo detetor através da equação 6. Posteriormente, calculou-se a razão entre o ângulo sólido obtido e o ângulo sólido total (4π sr), como descrito na equação 4, para se obter a eficiência geométrica.

Por sua vez, para o cálculo da eficiência intrínseca, bastou utilizar-se a fórmula 5. Os resultados obtidos encontram-se na tabela 7.

	$\Omega(sr)$	$oldsymbol{arepsilon}_{geo}(\%)$	$oldsymbol{arepsilon}_{int}(\%)$
1	$.1\pm0.4$	85±32	1.2 ± 1.3

Tabela 7: Valores do ângulo sólido e das eficiências geométrica e intrínseca para a fonte de ²⁰⁴Tl

O valor obtido para a eficiência total é bastante baixo (< 2%) o que se poderá dever, em grande parte, à baixa eficiência intrínseca do detetor. Isto significa que o detetor poderá não detetará uma quantidade considerável das partículas emitidas. Já o valor da eficiência geométrica obtido foi elevado (> 85%), estando o valor de 100% dentro do intervalo de incerteza.

As incertezas para a eficiência total e para a eficiência intrínseca são da ordem de grandeza dos próprios valores obtidos, sendo a incerteza da eficiência intrínseca, inclusive, maior do que o próprio valor. A elevada incerteza da eficiência intrínseca deve-se à incerteza das eficiências total e geométrica, dependendo esta última da incerteza associada ao ângulo sólido que, por sua vez, se deve às incertezas associadas às medições do raio da fonte (0.005 m) e da distância da fonte ao detetor. Já a incerteza da eficiência total é justificada, principalmente, pelas incertezas associadas aos cálculos da taxa e do número de eventos emitidos, cuja génese é a incerteza de 20% associada à atividade da fonte que se encontra escrita nas fontes (A_0) .

0.1.2 Radiação γ

Já para a radiação γ , foram realizadas contagens para a fonte de ^{137}Cs , com uma tampa de plástico no detetor e a uma distância de 5 cm. O uso da tampa do detetor possibilitou o bloqueio da radiação β , funcionando como absorvedor.

Na tabela 8 encontram-se as contagens realizadas, sendo N_1 as do primeiro ensaios e N_2 as do segundo, assim como a taxa de contagens por segundo, R, e o valor do tempo de semi-vida $\left(t_{\frac{1}{2}}\right)$ do ^{137}Cs .

$t_{\frac{1}{2}} (anos^{-1})$	$t_{\frac{1}{2}}$ (anos ⁻¹) Tempo de Aquisição (s)		N ₂	N_{total}	$R(s^{-1})$
30.2 60±0.5		225±15	230±16	455±30	3.43±0.31

Tabela 8: Contagens e taxa de contagem por segundo para detetor com tampa e com a fonte de ^{137}Cs .

Foi realizado um procedimento idêntico ao da secção anterior para o cálculo da taxa de contagem por segundo de eventos emitidos.

O valor tabelado para a probabilidade do ^{137}Cs emitir radiação γ no seu decaimento é igual a 94.70% [1]. Tal como na secção anterior, acrescentou-se este valor ao denominador da equação 1 para a eficiência total corresponder realmente à da radiação γ (e não à radiação total).

$$\varepsilon_{total} = \frac{R_{detetados}}{0.947 \ R_{emitidos}} \times 100\% \tag{15}$$

À semelhança da fonte de ^{204}Tl , teve-se acesso, no laboratório, a um valor da atividade da fonte de outubro de 2005, que se encontra na tabela 9.

$\lambda(anos^{-1})$	t (anos)	$A_0(\mu Ci)$	A(μCi)	\mathcal{E}_{total}
0.02	16±3	1.0±0.2	$0.7{\pm}0.2$	0.014 ± 0.005

Tabela 9: Probabilidade de decaimento (λ) , tempo decorrido desde a data da atividade registada das fontes (t), atividade registada (A_0) , atividade atual (A) e taxa de contagem de eventos emitidos por segundo (T_{emit}) para a fonte de ^{137}Cs

O ângulo sólido, a eficiência geométrica e a eficiência intrínseca foram calculados de forma idêntica à descrita na secção 1.1, sendo que os valores obtidos se encontram na tabela 10.

$\Omega(sr)$	$arepsilon_{geo}(\%)$	$oldsymbol{arepsilon_{int}}(\%)$	
1.1 ± 0.4	85±32	0.02 ± 0.01	

Tabela 10: Valores do ângulo sólido e das eficiências geométrica e intrínseca para a fonte de ¹³⁷Cs

O valor obtido para a eficiência total é ainda mais baixo do que o valor obtido para a radiação β (<0.1%), o que se poderá dever, à semelhança do sucedido para a radiação β , maioritariamente à baixa eficiência intrínseca do detetor. A diminuição desta eficiência face à eficiência da radiação β poderá estar relacionada com a colocação da tampa no detetor para filtrar a radiação β , que poderá ter filtrado também alguma radiação γ . Isto significa que o detetor poderá não ter detetado uma quantidade considerável de partículas tidas em conta.

Para a radiação β , as incertezas dos valores obtidos encontram-se numa ordem de grandeza inferior às dos próprios valores.

O valor da eficiência geométrica é o mesmo da secção anterior, uma vez que o raio e a distância ao detetor permaneceram iguais.

Estudo da variação da taxa de contagem com a distância

Esta secção da atividade laboratorial foi realizada com o intuito de analisar a taxa de contagens feitas pelo detetor de Geiger-Müller para a radiação gama. Para isto, foi colocada uma tampa de plástico à frente do detetor, impedindo a passagem de radiação β , pois esta perde intensidade com a distância.

O nosso objetivo era verificar se, de acordo com o ângulo sólido (visto que assumimos a fonte como isotrópica), a taxa de contagens decaía com o quadrado da distância (visto que a superfície de uma esfera aumenta com o quadrado do raio). Previa-se, assim, que o conjunto de pontos se ajustasse a uma curva da forma

$$R = \frac{a}{(b+x)^2} + c \tag{16}$$

Onde a é proporcional à área do detetor e à atividade da fonte, b é a distância entre a frente do detetor e a zona onde as contagens são feitas e c procura explicar certos desvios ao número de contagens por parte de erros sistemáticos (como, por exemplo, má calibração do material). Também é necessário referir que foi feita uma correção ao número de contagens totais, visto que nem todos os raios γ passam pela tampa: apenas 90% (aproximadamente) deles o fazem. Assim, N_T corrigido será $\frac{10}{9}$ vezes superior.

d (m)	N_1	N_2	N_T	$R_{corrigido} (s^{-1})$
0.050 ± 0.001	10419±102	10295±101	20714±144	383±3
0.075 ± 0.001	4867±70	4870±70	9737±100	180±2
0.100 ± 0.001	2804±53	2948±54	5752±76	106±1
0.150 ± 0.001	1169±34	1173±34	2342±48	43.0±0.9
0.200 ± 0.001	597±24	596±24	1193±35	21.7±0.7
0.300 ± 0.001	247±16	202±14	449±21	8.0±0.4

Tabela 11: Césio: Valores relativos ao estudo da taxa de contagens com a distância.

Figura 5: Ajuste dos pontos obtidos para o Césio.

d (m)	N_1	N_2	N_T	$R_{corrigido} (s^{-1})$
0.050±0.001	1198±35	1199±35	2397±49	44.0±0.9
0.075±0.001	619±25	582±24	1201±35	21.9±0.6
0.100±0.001	354±19	357±19	711±27	12.8±0.5
0.150±0.001	136±12	156±12	292±17	5.1±0.3
0.200±0.001	73±9	90±9	163±13	2.7±0.2
0.300 ± 0.001	46±7	48±7	94±10	1.4 ± 0.2

Tabela 12: Tálio: Valores relativos ao estudo da taxa de contagens com a distância.

Figura 6: Ajuste dos pontos obtidos para o Tálio.

Fonte	a (m ²)	b (m)	c (m)	χ^2/ν
Césio	1.19 ± 0.04	0.005 ± 0.001	-5.4 ± 0.6	3.7
Tálio	0.14 ± 0.01	0.006 ± 0.002	-0.4 ± 0.2	2.6

Tabela 13: Valores relativos aos ajustes feitos anteriormente.

Como se pode ver nas figuras 5 e 6, o modelo teórico apresentado ajusta-se bem aos pontos experimentais. O parâmetro a é diferente para cada elemento, o que faz sentido, já que estes têm diferentes taxas de emissão de radiação. Os parâmetros b obtidos são semelhantes, visto que descrevem o mesmo fenómeno, sendo o detetor o mesmo. Uma explicação possível para os valores de c poderá ser o facto de, num dos ensaios, a fonte que não era alvo de estudo se encontrava ligeiramente próxima do detetor. Esta teoria poderia ser posta à prova repetindo a experiência, mas desta vez garantindo que se guardava a fonte que não se encontrava em uso num local distante.

Estudo da dispersão estatística das contagens do detetor

De forma a estudar a dispersão estatística do número de contagens, foram realizados cerca de 50 ensaios de 2 segundos para as fontes de Césio (Ce¹³⁷) e de Tálio (Tl²⁰⁴). Nas tabelas 15 e 16, encontram-se, respetivamente, os valores relativos a estas fontes

Ao número de contagens, foi aplicada as correção com a radiação ambiente, ou seja, em cada ensaio foi calculado, pela equação 17, um novo valor para o número de contagens, N', cujo desvio padrão, $\sigma_{N'}$, é dado pela equação 18.

$$N' = R\Delta t \tag{17}$$

$$\sigma_{N'} = \sigma_R \Delta t \tag{18}$$

De seguida, calculou-se o número médio de contagens, $\overline{N'}$, somando o número de contagens de todos os ensaios e dividindo o valor final pelo número total de ensaios. Obteve-se $\overline{N'}$ = 550 para a fonte de Ce¹³⁷ e $\overline{N'}$ = 74 para a fonte de TL²⁰⁴.

Por fim, foi calculada, para cada ensaio, a variação relativa de N' ao seu valor médio, e dividiu-se esse valor por $\sigma_{N'}$. Para melhor compreensão, a este valor final vai ser atribuída a designação X. Os valores de X estão presentes nas tabelas 15 e 16 e na última coluna de ambas as tabelas estão apresentados os valores de X arredondados para múltiplos de 0.5, a que foi atribuída a designação X'.

$$\overline{N'} = \frac{\sum_{n=1}^{n} N'}{n} \tag{19}$$

$$X = \frac{N' - \overline{N'}}{\sigma_{N'}} \tag{20}$$

Para cada uma das fontes, foi traçada uma gaussiana para os valores de X' e o respetivo histograma, permitindo efetuar uma comparação entre ambos.

Na tabela 14, podem ser verificados os parâmetros calculados de forma a obter as gaussianas representadas no gráfico da figura 7.

Fonte	μ	σ
Ce ¹³⁷	-0.02 ± 0.01	1.20 ± 0.01
TL^{204}	0.04 ± 0.01	0.92 ± 0.01

Tabela 14: Parâmetros calculados de forma a obter as gaussianas apresentadas na figura 7

Em que μ e σ representam, respetivamente, a média e o desvio padrão dos valores de X'.

(a) Gaussiana e Histograma para a fonte de Ce¹³⁷

(b) Gaussiana e Histograma para a fonte de TL²⁰⁴

Figura 7: Gaussiana e Histograma para os valores de X' em função do número de ocorrências (frequência)

Pela análise dos gráficos apresentados na figura 7, observa-se que o número de acontecimentos em cada intervalo dos histogramas não vai de encontro ao previsto pelas gaussianas. Possivelmente, caso tivesse sido realizados um maior número de ensaios, durante um maior intervalo de tempo, o histograma iria de encontro à distribuição normal. Poder-se-ia, por exemplo, ter dedicado este estudo apenas a uma das fontes, uma vez que este comportamento estatístico não dependerá da fonte utilizada.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ensaio	N	R	N'	$X = \frac{N' - \overline{N}}{\sigma_{N'}}$	X'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	550 ± 23	275 ± 12	549 ± 23		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		525 ± 23	262 ± 12	524 ± 23	-1.1	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		535 ± 23	267 ± 12	534 ± 23	-0.7	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		559 ± 24	279 ± 12	558 ± 24	0.3	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			257 ± 12	514 ± 23	-1.6	-1.5
$\begin{array}{c} 8 \\ 9 \\ 553 \pm 24 \\ 276 \pm 12 \\ 552 \pm 24 \\ 0.1 \\ 0 \\ 10 \\ 546 \pm 23 \\ 273 \pm 12 \\ 545 \pm 23 \\ -0.2 \\ 0 \\ 11 \\ 518 \pm 23 \\ 259 \pm 12 \\ 517 \pm 23 \\ -1.4 \\ -1.5 \\ 12 \\ 558 \pm 24 \\ 279 \pm 12 \\ 557 \pm 24 \\ 0.3 \\ 0.5 \\ 13 \\ 592 \pm 24 \\ 296 \pm 12 \\ 591 \pm 24 \\ 1.7 \\ 1.5 \\ 14 \\ 511 \pm 23 \\ 255 \pm 12 \\ 510 \pm 23 \\ -1.7 \\ -2 \\ 15 \\ 597 \pm 24 \\ 298 \pm 12 \\ 596 \pm 24 \\ 1.9 \\ 2 \\ 16 \\ 527 \pm 23 \\ 263 \pm 12 \\ 596 \pm 24 \\ 1.9 \\ 2 \\ 16 \\ 527 \pm 23 \\ 263 \pm 12 \\ 596 \pm 24 \\ 1.9 \\ 2 \\ 16 \\ 527 \pm 23 \\ 263 \pm 12 \\ 596 \pm 24 \\ 1.9 \\ 2 \\ 16 \\ 527 \pm 23 \\ 263 \pm 12 \\ 596 \pm 24 \\ 1.9 \\ 2 \\ 16 \\ 527 \pm 23 \\ 263 \pm 12 \\ 546 \pm 23 \\ -0.2 \\ 0 \\ 18 \\ 559 \pm 24 \\ 279 \pm 12 \\ 558 \pm 24 \\ 0.3 \\ 0.5 \\ 19 \\ 537 \pm 23 \\ 268 \pm 12 \\ 536 \pm 24 \\ 279 \pm 12 \\ 558 \pm 24 \\ 0.3 \\ 0.5 \\ 20 \\ 583 \pm 24 \\ 291 \pm 12 \\ 582 \pm 24 \\ 1.3 \\ 1.5 \\ 21 \\ 538 \pm 23 \\ 269 \pm 12 \\ 537 \pm 23 \\ -0.6 \\ -0.5 \\ 22 \\ 556 \pm 24 \\ 278 \pm 12 \\ 555 \pm 24 \\ 0.2 \\ 0 \\ 23 \\ 541 \pm 23 \\ 270 \pm 12 \\ 540 \pm 23 \\ -0.4 \\ -0.5 \\ 24 \\ 567 \pm 24 \\ 283 \pm 12 \\ 566 \pm 24 \\ 0.7 \\ 0.5 \\ 25 \\ 567 \pm 24 \\ 283 \pm 12 \\ 566 \pm 24 \\ 0.7 \\ 0.5 \\ 26 \\ 506 \pm 22 \\ 253 \pm 11 \\ 505 \pm 22 \\ -2.0 \\ -2 \\ 27 \\ 541 \pm 23 \\ 270 \pm 12 \\ 540 \pm 23 \\ -0.4 \\ -0.5 \\ 28 \\ 556 \pm 24 \\ 278 \pm 12 \\ 555 \pm 24 \\ 0.2 \\ 0 \\ 29 \\ 474 \pm 22 \\ 237 \pm 11 \\ 473 \pm 22 \\ -3.5 \\ -3.5 \\ 30 \\ 520 \pm 23 \\ 260 \pm 12 \\ 519 \pm 23 \\ -1.3 \\ -1.5 \\ 33 \\ 578 \pm 24 \\ 289 \pm 12 \\ 577 \pm 24 \\ 1.1 \\ 1 \\ 34 \\ 588 \pm 24 \\ 294 \pm 12 \\ 587 \pm 24 \\ 1.6 \\ 1.5 \\ 35 \\ 534 \pm 23 \\ 267 \pm 12 \\ 533 \pm 23 \\ -0.7 \\ -0.5 \\ 36 \\ 570 \pm 24 \\ 285 \pm 12 \\ 569 \pm 24 \\ 0.8 \\ 1 \\ 37 \\ 520 \pm 23 \\ 260 \pm 12 \\ 519 \pm 23 \\ -1.3 \\ -1.5 \\ 38 \\ 534 \pm 23 \\ 267 \pm 12 \\ 533 \pm 23 \\ -0.7 \\ -0.5 \\ 39 \\ 531 \pm 23 \\ 267 \pm 12 \\ 533 \pm 23 \\ -0.7 \\ -0.5 \\ 39 \\ 531 \pm 23 \\ 267 \pm 12 \\ 533 \pm 23 \\ -0.7 \\ -0.5 \\ 44 \\ 590 \pm 24 \\ 285 \pm 12 \\ 589 \pm 24 \\ 1.6 \\ 1.5 \\ 1.5 \\ 44 \\ 569 \pm 24 \\ 284 \pm 12 \\ 568 \pm 24 \\ 0.8 \\ 1 \\ 15 \\ 44 \\ 569 \pm 24 \\ 284 \pm 12 \\ 568 \pm 24 \\ 0.8 \\ 1 \\ 15 \\ 15 \\ 44 \\ 569 \pm 24 \\ 284 \pm 12 \\ 568 \pm 24 \\ 0.8 \\ 1 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	6		290 ± 12	580 ± 24	1.3	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		581 ± 24	290 ± 12	580 ± 24	1.3	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	565 ± 24	282 ± 12	564 ± 24	0.6	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	553 ± 24	276 ± 12		0.1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	546 ± 23	273 ± 12		-0.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	518 ± 23	259 ± 12	517 ± 23	-1.4	-1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	558 ± 24	279 ± 12	557 ± 24	0.3	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	592 ± 24	296 ± 12	591 ± 24	1.7	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	511 ± 23	255 ± 12	510 ± 23	-1.7	-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	597 ± 24	298 ± 12	596 ± 24	1.9	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	527 ± 23	263 ± 12	526 ± 23	-1.0	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	547 ± 23	273 ± 12	546 ± 23	-0.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	559 ± 24	279 ± 12	558 ± 24	0.3	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	537 ± 23	268 ± 12	536 ± 23	-0.6	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	583 ± 24	291 ± 12	582 ± 24	1.3	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	538 ± 23	269 ± 12	537 ± 23	-0.6	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	556 ± 24	278 ± 12	555 ± 24	0.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	541 ± 23	270 ± 12	540 ± 23	-0.4	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	567 ± 24	283 ± 12	566 ± 24	0.7	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	567 ± 24	283 ± 12	566 ± 24	0.7	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	506 ± 22	253 ± 11	505 ± 22	-2.0	-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	541 ± 23	270 ± 12	540 ± 23	-0.4	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	556 ± 24	278 ± 12	555 ± 24	0.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	474 ± 22	237 ± 11	473 ± 22	-3.5	-3.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	520 ± 23	260 ± 12	519 ± 23	-1.3	-1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	567 ± 24	283 ± 12	566 ± 24	0.7	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	518 ± 23	259 ± 12	517 ± 23	-1.4	-1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	578 ± 24	289 ± 12	577 ± 24	1.1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	588 ± 24	294 ± 12	587 ± 24	1.6	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	534 ± 23	267 ± 12	533 ± 23	-0.7	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	570 ± 24	285 ± 12	569 ± 24	0.8	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	520 ± 23	260 ± 12	519 ± 23	-1.3	-1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	534 ± 23	267 ± 12	533 ± 23	-0.7	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	531 ± 23	265 ± 12	530 ± 23	-0.9	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	590 ± 24	295 ± 12	589 ± 24	1.6	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	534 ± 23	267 ± 12	533 ± 23	-0.7	-0.5
44 569 ± 24 284 ± 12 568 ± 24 0.8 1	42	574 ± 24	287 ± 12	573 ± 24	1.0	1
	43	586 ± 24	293 ± 12	585 ± 24	1.5	1.5
45 527 ± 23 263 ± 12 526 ± 23 -1.0 -1	44	569 ± 24	284 ± 12	568 ± 24	0.8	1
	45	527 ± 23	263 ± 12	526 ± 23	-1.0	-1
46 561 ± 24 280 ± 12 560 ± 24 0.4 0.5	46	561 ± 24	280 ± 12	560 ± 24	0.4	0.5
47 573 ± 24 286 ± 12 572 ± 24 0.9 1	47	573 ± 24	286 ± 12	572 ± 24	0.9	1
48 510 ± 23 255 ± 12 509 ± 23 -1.8 -2	48	510 ± 23			-1.8	-2
						1.5
50 573 ± 24 286 ± 12 572 ± 24 0.9 1	50	573 ± 24	286 ± 12	572 ± 24	0.9	1
						-0.5
		584 ± 24			1.4	1.5
		520 ± 23				-1.5
	54	558 ± 24	279 ± 12		0.3	0.5

Tabela 15: Dados relativos à fonte de césio

Ensaio	N	R	N'	$X = \frac{N' - \overline{N}}{\sigma_{N'}}$	X'
1	67 ± 8	33 ± 4	66 ± 8	-1.0	-1
2	70 ± 8	35 ± 4	69 ± 8	-0.5	-0.5
3	72 ± 8	36 ± 4	71 ± 8	-0.3	-0.5
4	67 ± 8	33 ± 4	66 ± 8	-0.9	-1
5	71 ± 8	35 ± 4	70 ± 8	-0.4	-0.5
6	78 ± 9	39 ± 4	77 ± 9	0.4	0.5
7	88 ± 9	44 ± 5	87 ± 9	1.5	1.5
8	78 ± 9	39 ± 4	77 ± 9	0.4	0.5
9	82 ± 9	41 ± 5	81 ± 9	0.9	1
10	74 ± 9	37 ± 4	73 ± 9	0.0	0
11	82 ± 9	41 ± 5	81 ± 9	0.9	1
12	77 ± 9	38 ± 4	76 ± 9	0.3	0.5
13	63 ± 8	31 ± 4	62 ± 8	-1.4	-1.5
14	70 ± 8	35 ± 4	69 ± 8	-0.5	-0.5
15	71 ± 8	35 ± 4	70 ± 8	-0.4	-0.5
16	81 ± 9	40 ± 5	80 ± 9	0.8	1
17	69 ± 8	34 ± 4	68 ± 8	-0.6	-0.5
18	63 ± 8	31 ± 4	62 ± 8	-1.4	-1.5
19	84 ± 9	42 ± 5	83 ± 9	1.1	1
20	74 ± 9	37 ± 4	73 ± 9	0.0	0
21	78 ± 9	39 ± 4	77 ± 9	0.4	0.5
22	76 ± 9	38 ± 4	75 ± 9	0.2	0
23	76 ± 9	38 ± 4	75 ± 9	0.2	0
24	95 ± 10	47 ± 5	94 ± 10	2.1	2
25	65 ± 8	32 ± 4	64 ± 8	-1.1	-1
26	94 ± 10	47 ± 5	93 ± 10	2.0	2
27	82 ± 9	41 ± 5	81 ± 9	0.9	1
28	79 ± 9	39 ± 4	78 ± 9	0.5	0.5
29	68 ± 8	34 ± 4	67 ± 8	-0.8	-1
30	78 ± 9	39 ± 4	77 ± 9	0.4	0.5
31	66 ± 8	33 ± 4	65 ± 8	-1.0	-1
32	64 ± 8	32 ± 4	63 ± 8	-1.3	-1
33	65 ± 8	32 ± 4	64 ± 8	-1.1	-1
34	62 ± 8	31 ± 4	61 ± 8	-1.6	-1.5
35	69 ± 8	34 ± 4	68 ± 8	-0.6	-0.5
36	83 ± 9	41 ± 5	82 ± 9	1.0	1
37	74 ± 9	37 ± 4	73 ± 9	0.0	0
38	77 ± 9	38 ± 4	76 ± 9	0.3	0.5
39	70 ± 8	35 ± 4	69 ± 8	-0.5	-0.5
40	86 ± 9	43 ± 5	85 ± 9	1.3	1.5
41	67 ± 8	33 ± 4	66 ± 8	-0.9	-1
42	76 ± 9	38 ± 4	75 ± 9	0.2	0
43	77 ± 9	38 ± 4	76 ± 9	0.3	0.5
44	65 ± 8	32 ± 4	64 ± 8	-1.1	-1
45	77 ± 9	38 ± 4	76 ± 9	0.3	0.5
46	80 ± 9	40 ± 4	79 ± 9	0.6	0.5
47	85 ± 9	42 ± 5	84 ± 9	1.2	1
48	74 ± 9	37 ± 4	73 ± 9	0.0	0
49	80 ± 9	40 ± 4	79 ± 9	0.6	0.5
50	79 ± 9	39 ± 4	78 ± 9	0.5	0.5

Tabela 16: Dados relativos à fonte de tálio

1 Conclusão

Na presente atividade experimental, foram cumpridos os objetivos propostos. Determinaram-se as diferentes zonas da curva de resposta do detetor, tendo sido obtido um ajuste linear para a zona de patamar bastante bom. Foi também selecionada a tensão de trabalho utilizada no resto da atividade.

Corrigindo todas as taxas com a taxa da radiação ambiente, foi possível estudar a eficiência do detetor, sendo que a eficiência geométrica apresentou valores bastante elevados e a eficiência intrínseca valores bastante baixos. Confirmou-se ainda a relação esperada para a variação da taxa de contagem com a distância.

Os resultados obtidos no estudo estatístico não foram os esperados, mas crê-se que se teriam obtido melhores ajustes gaussianos se se tivesse feito um maior número de medições.

Referências

- [1] NuDat 2.8. https://www.nndc.bnl.gov/nudat2/.
- [2] Guia experimental e slides disponibilizados na página da cadeira.
- [3] Sérgio Ramos. Textos de apoio de LFRA.