Lecture 02:

Math Background

Libin Liu

School of Intelligence Science and Technology Peking University

VCL @ PKU

Outline

- Review of Linear Algebra
 - Vector and Matrix
 - Translation, Rotation, and Transformation
- Representations of 3D rotation
 - [🗓] Rotation matrices
 - [囘] Euler angles
 - [囲] Rotation vectors/Axis angles
 - [囯] Quaternions

Review of Linear Algebra

Vectors and Matrices

* a few slides were modified from GAMES-101 and GAMES-103

Vector

A quantity having both magnitude and direction

vector \boldsymbol{a} , written in **bold** letter

magnitude/length/norm: ||a||

direction: $\frac{a}{\|a\|}$

 $||a|| = 1 \rightarrow a$ is a unit vector

$$\frac{a}{\|a\|} \rightarrow \text{normalize } a$$

Vector

- A quantity having both magnitude and direction
- Representing a location/velocity/abstract feature......

Vector

- A quantity having both magnitude and direction
- Representing a location/velocity/abstract feature......

$$a+b=b+a$$

*commutative

Vector Representation

• A vector can be represented as a [column] of numbers

$$\boldsymbol{a} = (a_1, a_2, \dots, a_n)^T = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

magnitude/length/norm:

$$\|\boldsymbol{a}\|_{2} = \sqrt{a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2}}$$

Vector Representation

• 3D vector in Cartesian coordinates

$$\boldsymbol{a} = \left(a_x, a_y, a_z\right)^T = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

magnitude/length/norm:

$$\|\boldsymbol{a}\|_{2} = \sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}$$

Vector Representation

• 3D vector in Cartesian coordinates

$$\mathbf{a} = (a_1, a_2, a_3)^T = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

magnitude/length/norm:

$$\|\boldsymbol{a}\|_2 = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Dot Product

• Inner product/Scalar product

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

- $a \cdot b = b \cdot a$
- $a \cdot (b+c) = a \cdot b + a \cdot c$
- $\mathbf{a} \cdot \mathbf{a} = a_1 a_1 + a_2 a_2 + \dots + a_n a_n = \|\mathbf{a}\|_2^2$

Geometric Meaning of Dot Product

In Euclidean space,

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$$

Geometric Meaning of Dot Product

In Euclidean space,

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$$

$$\theta = \arccos \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}$$

$$a \cdot b = 0$$

$$\Leftrightarrow \cos \theta = 0 \Leftrightarrow \theta = 90^{\circ}$$

$$\Leftrightarrow a \perp b$$

Geometric Meaning of Dot Product

In Euclidean space,

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$$

$$a_b = \|a\| \cos\theta = a \cdot \frac{b}{\|b\|}$$

$$\mathbf{b_a} = \|\mathbf{b}\| \cos\theta = \mathbf{b} \cdot \frac{\mathbf{a}}{\|\mathbf{a}\|}$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} \quad \begin{array}{l} [\boldsymbol{x}] : yz \\ [\boldsymbol{y}] : zx \\ [\boldsymbol{z}] : xy \end{array}$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} \quad \boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin(\theta) \, \boldsymbol{n}$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} \quad \begin{array}{l} [\boldsymbol{x}] : yz \\ [\boldsymbol{y}] : zx \\ [\boldsymbol{z}] : xy \end{array}$$

•
$$c \cdot a = c \cdot b = 0$$

•
$$c \perp a$$
, $c \perp b$

•
$$a \times b = -b \times a$$

•
$$a \times (b+d) = a \times b + a \times d$$

•
$$a \times (b \times c) \neq (a \times b) \times c$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} \quad \begin{array}{l} [\boldsymbol{x}] : yz \\ [\boldsymbol{y}] : zx \\ [\boldsymbol{z}] : xy \end{array}$$

• Find a direction $m{n}$ perpendicular to both $m{a}$ and $m{b}$

$$n = \frac{a}{\|a\|} \times \frac{b}{\|b\|}$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} \quad \begin{array}{l} [\boldsymbol{x}] : yz \\ [\boldsymbol{y}] : zx \\ [\boldsymbol{z}] : xy \end{array}$$

• Find a direction $m{n}$ perpendicular to both $m{a}$ and $m{b}$

$$n = \frac{a}{\|a\|} \frac{b}{\|b\|}$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} \quad \begin{array}{l} [\boldsymbol{x}] : yz \\ [\boldsymbol{y}] : zx \\ [\boldsymbol{z}] : xy \end{array}$$

• Find a direction $m{n}$ perpendicular to both $m{a}$ and $m{b}$

$$n = \frac{a \times b}{\|a \times b\|}$$

$$a \neq 0, b \neq 0$$

$$a \parallel b$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix} \quad \begin{array}{l} [\boldsymbol{x}] : yz \\ [\boldsymbol{y}] : zx \\ [\boldsymbol{z}] : xy \end{array}$$

• Find a direction $m{n}$ perpendicular to both $m{a}$ and $m{b}$

$$n = \frac{a \times b}{\|a \times b\|}$$

• Check if \boldsymbol{a} and \boldsymbol{b} are parallel

$$a \times b = 0$$
?

$$a \neq 0, b \neq 0$$

How to find the rotation between vectors?

How to find the rotation between vectors?

Any vector in the bisecting plane can be the axis

How to find the rotation between vectors?

The minimum rotation:

$$u = \frac{a \times b}{\|a \times b\|}$$

$$u = \frac{a \times b}{\|a \times b\|}$$
 $\theta = \arg \cos \frac{a \cdot b}{\|a\| \|b\|}$

$$v \leftarrow u \times a$$

 $t \leftarrow u \times v = u \times (u \times a)$

$$v \leftarrow u \times a$$

 $t \leftarrow u \times v = u \times (u \times a)$

$$v \leftarrow u \times a$$

 $t \leftarrow u \times v = u \times (u \times a)$

$$v = (\sin \theta) u \times a$$
$$t = (1 - \cos \theta) u \times (u \times a)$$

||u|| = 1

$$v = (\sin \theta) u \times a$$
$$t = (1 - \cos \theta) u \times (u \times a)$$

Rodrigues' rotation formula

$$\mathbf{b} = \mathbf{a} + (\sin \theta) \mathbf{u} \times \mathbf{a} + (1 - \cos \theta) \mathbf{u} \times (\mathbf{u} \times \mathbf{a})$$

Orthogonal Basis & Orthogonal Coordinates

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \in \mathbb{R}^3$$

•
$$||e_x|| = ||e_y|| = ||e_z|| = 1$$

•
$$e_x \cdot e_y = e_y \cdot e_z = e_z \cdot e_x = 0$$

•
$$e_x \times e_y = e_z$$

$$e_y \times e_z = e_x$$

$$e_z \times e_x = e_y$$

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \in \mathbb{R}^3$$

$$\boldsymbol{a} = a_{x}\boldsymbol{e}_{x} + a_{y}\boldsymbol{e}_{y} + a_{z}\boldsymbol{e}_{z}$$

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \in \mathbb{R}^3$$

$$\boldsymbol{a} = a_x \boldsymbol{e}_x + a_y \boldsymbol{e}_y + a_z \boldsymbol{e}_z$$

$$\mathbf{a} \cdot \mathbf{b} = (a_x \mathbf{e}_x + a_y \mathbf{e}_y + a_z \mathbf{e}_z) \cdot (b_x \mathbf{e}_x + b_y \mathbf{e}_y + b_z \mathbf{e}_z)$$

$$= a_x b_x \mathbf{e}_x \cdot \mathbf{e}_x + a_y b_y \mathbf{e}_y \cdot \mathbf{e}_y + a_z b_z \mathbf{e}_z \cdot \mathbf{e}_z$$

$$+ \sum_i a_i b_j \mathbf{e}_i \cdot \mathbf{e}_j$$

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \in \mathbb{R}^3$$

$$\boldsymbol{a} = a_x \boldsymbol{e}_x + a_y \boldsymbol{e}_y + a_z \boldsymbol{e}_z$$

$$\mathbf{a} \cdot \mathbf{b} = (a_x \mathbf{e}_x + a_y \mathbf{e}_y + a_z \mathbf{e}_z) \cdot (b_x \mathbf{e}_x + b_y \mathbf{e}_y + b_z \mathbf{e}_z)$$
$$= a_x b_x \mathbf{e}_x \cdot \mathbf{e}_x + a_y b_y \mathbf{e}_y \cdot \mathbf{e}_y + a_z b_z \mathbf{e}_z \cdot \mathbf{e}_z$$

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \in \mathbb{R}^3$$

$$\boldsymbol{a} = a_x \boldsymbol{e}_x + a_y \boldsymbol{e}_y + a_z \boldsymbol{e}_z$$

$$\mathbf{a} \times \mathbf{b} = (a_x \mathbf{e}_x + a_y \mathbf{e}_y + a_z \mathbf{e}_z) \times (b_x \mathbf{e}_x + b_y \mathbf{e}_y + b_z \mathbf{e}_z)$$

$$= a_x b_x \mathbf{e}_x \times \mathbf{e}_x + a_x b_y \mathbf{e}_x \times \mathbf{e}_y + a_x b_z \mathbf{e}_x \times \mathbf{e}_z$$

$$+ a_y b_x \mathbf{e}_y \times \mathbf{e}_x + a_y b_y \mathbf{e}_y \times \mathbf{e}_y + a_y b_z \mathbf{e}_y \times \mathbf{e}_z$$

$$+ a_z b_x \mathbf{e}_z \times \mathbf{e}_x + a_z b_y \mathbf{e}_z \times \mathbf{e}_y + a_z b_z \mathbf{e}_z \times \mathbf{e}_z$$

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \in \mathbb{R}^3$$

$$\boldsymbol{a} = a_x \boldsymbol{e}_x + a_y \boldsymbol{e}_y + a_z \boldsymbol{e}_z$$

$$\mathbf{a} \times \mathbf{b} = a_{x}b_{x}\mathbf{e}_{x} \times \mathbf{e}_{x} + a_{x}b_{y}\mathbf{e}_{x} \times \mathbf{e}_{y} + a_{x}b_{z}\mathbf{e}_{x} \times \mathbf{e}_{z}$$

$$+ a_{y}b_{x}\mathbf{e}_{y} \times \mathbf{e}_{x} + a_{y}b_{y}\mathbf{e}_{y} \times \mathbf{e}_{y} + a_{y}b_{z}\mathbf{e}_{y} \times \mathbf{e}_{z}$$

$$+ a_{z}b_{x}\mathbf{e}_{z} \times \mathbf{e}_{x} + a_{z}b_{y}\mathbf{e}_{z} \times \mathbf{e}_{y} + a_{z}b_{z}\mathbf{e}_{z} \times \mathbf{e}_{z}$$

$$\boldsymbol{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \in \mathbb{R}^3$$

$$\boldsymbol{a} = a_x \boldsymbol{e}_x + a_y \boldsymbol{e}_y + a_z \boldsymbol{e}_z$$

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y) \mathbf{e}_x$$
$$+ (a_z b_x - a_x b_z) \mathbf{e}_y$$
$$+ (a_x b_y - a_y b_x) \mathbf{e}_z$$

Matrix

Matrix

A 2D array of numbers

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

$$= \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_{1*} \\ \boldsymbol{a}_{2*} \\ \boldsymbol{a}_{3*} \end{bmatrix}$$

$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{x}_3 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$$

Matrix

A 2D array of numbers

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

Special matrices

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix}$$
 identity diagonal

$$\begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix}$$
 diagonal

$$\begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix}$$
symmetric

$$\begin{bmatrix} 0 & -a & b \\ a & 0 & -c \\ -b & c & 0 \end{bmatrix}$$
skew-
symmetric

Transpose of a matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

$$= \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_{1*} \\ \boldsymbol{a}_{2*} \\ \boldsymbol{a}_{3*} \end{bmatrix}$$

Transpose
$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_{1}^{T} \\ \boldsymbol{a}_{2}^{T} \\ \boldsymbol{a}_{3}^{T} \end{bmatrix} = [\boldsymbol{a}_{1*}^{T} \quad \boldsymbol{a}_{2*}^{T} \quad \boldsymbol{a}_{3*}^{T}]$$

Transpose of a matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

identity

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix}$$

identity diagonal

$$\begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix}$$
symmetric

$$\begin{bmatrix} 0 & -a & b \\ a & 0 & -c \\ -b & c & 0 \end{bmatrix}$$
skew-
symmetric

$$A^{\mathrm{T}} = A$$

$$A^{\mathrm{T}} = A$$

$$A^{\mathrm{T}} = A$$

$$A^{\mathrm{T}} = -A$$

Scalar multiplication and matrix addition

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

$$sA = \begin{bmatrix} sa_{11} & sa_{12} & sa_{13} \\ sa_{21} & sa_{22} & sa_{23} \\ sa_{31} & sa_{32} & sa_{33} \end{bmatrix}$$

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{bmatrix}$$

Matrix multiplication

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

$$C = AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$
$$= \begin{bmatrix} * & ? & * \\ * & * & * \\ * & * & * \end{bmatrix} = [c_{ij} = \mathbf{a}_{i*} \cdot \mathbf{b}_{j}]$$

Matrix multiplication

$$AB \neq BA$$

$$ABC = (AB)C = A(BC)$$

$$A(B + C) = AB + AC$$

$$(AB)^{T} = B^{T}A^{T} \qquad IA = A$$

Inverse of a matrix

$$M = A^{-1} \Leftrightarrow AM = MA = I$$
$$(AB)^{-1} = B^{-1}A^{-1}$$

Matrix Form of Dot Product

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_x b_x + a_y b_y + a_z b_z$$

$$= \boldsymbol{a}^T \boldsymbol{b} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

$$= \boldsymbol{b}^T \boldsymbol{a}$$

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\boldsymbol{a}]_{\times} \boldsymbol{b}$$

$$[a]_{\times} + [a]_{\times}^{T} = 0$$
 skew-symmetric

$$a \times b = [a]_{\times} b$$

$$a \times (b \times c) = [a]_{\times}([b]_{\times}c)$$

= $[a]_{\times}[b]_{\times}c$

$$\mathbf{a} \times (\mathbf{a} \times \mathbf{c}) = [\mathbf{a}]_{\times}^2 \mathbf{b}$$

$$[a]_{\times} + [a]_{\times}^{T} = 0$$
 skew-symmetric

$$a \times b = [a]_{\times} b$$

$$a \times (b \times c) = [a]_{\times}([b]_{\times}c)$$

= $[a]_{\times}[b]_{\times}c$

$$\mathbf{a} \times (\mathbf{a} \times \mathbf{c}) = [\mathbf{a}]_{\times}^2 \mathbf{b}$$

$$(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c} = [\boldsymbol{a}]_{\times} [\boldsymbol{b}]_{\times} \boldsymbol{c}$$
 ???

$$[a]_{\times} + [a]_{\times}^{T} = 0$$
 skew-symmetric

$$a \times b = [a]_{\times} b$$

$$a \times (b \times c) = [a]_{\times}([b]_{\times}c)$$

= $[a]_{\times}[b]_{\times}c$

$$\mathbf{a} \times (\mathbf{a} \times \mathbf{c}) = [\mathbf{a}]_{\times}^2 \mathbf{b}$$

$$(a \times b) \times c \times [b]_{\times} c$$
???

$$(a \times b) \times c = [a \times b]_{\times} c$$

$$[a]_{\times} + [a]_{\times}^{T} = 0$$
 skew-symmetric

How to rotate a vectors?

How to rotate a vectors?

Rodrigues' rotation formula

$$R = I + (\sin \theta) [\mathbf{u}]_{\times} + (1 - \cos \theta) [\mathbf{u}]_{\times}^{2}$$

Orthogonal Matrix

A matrix who columns (& rows) are orthogonal vectors

$$A = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{bmatrix}$$
 $\boldsymbol{a}_i^T \boldsymbol{a}_j = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$

$$A^{T}A = \begin{bmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \mathbf{a}_{3}^{T} \end{bmatrix} [\mathbf{a}_{1} \quad \mathbf{a}_{2} \quad \mathbf{a}_{3}] = \begin{bmatrix} \mathbf{a}_{1}^{T}\mathbf{a}_{1} & \mathbf{a}_{1}^{T}\mathbf{a}_{2} & \mathbf{a}_{1}^{T}\mathbf{a}_{3} \\ \mathbf{a}_{2}^{T}\mathbf{a}_{1} & \mathbf{a}_{2}^{T}\mathbf{a}_{2} & \mathbf{a}_{2}^{T}\mathbf{a}_{3} \\ \mathbf{a}_{3}^{T}\mathbf{a}_{1} & \mathbf{a}_{3}^{T}\mathbf{a}_{2} & \mathbf{a}_{3}^{T}\mathbf{a}_{3} \end{bmatrix} = \mathbf{I}$$

$$A^{\mathrm{T}} = A^{-1}$$

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

$$\det A = \begin{vmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{vmatrix}$$

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

- $\det I = 1$
- $\det AB = \det A * \det B$
- $\det A^{\mathrm{T}} = \det A$
- If A is invertible, $\det A^{-1} = (\det A)^{-1}$
- If U is orthogonal, $\det U = \pm 1$

Cross Product as a Determinant

$$\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

$$= \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix}$$

Eigenvalues and Eigenvectors

For a matrix A, if a nonzero vector x satisfies

$$Ax = \lambda x$$

Then:

 λ : an eigenvalue of A

 \boldsymbol{x} : an eigenvector of \boldsymbol{A}

Eigenvalues and Eigenvectors

For a matrix A, if a nonzero vector x satisfies

$$Ax = \lambda x$$

Then:

 λ : an eigenvalue of A

 \boldsymbol{x} : an eigenvector of \boldsymbol{A}

Especially, a 3×3 orthogonal matrix U

has at least one real eigenvalue: $\lambda = \det U = \pm 1$

Rigid Transformation

Translation, rotation, and coordinate transformation

Rigid Transformation: Translation + Rotation

Scaling

$$a' = \begin{bmatrix} S_{\chi} & & \\ & S_{y} & \\ & & S_{z} \end{bmatrix} a$$

Translation

$$a' = a + t$$

Combination of Translations

Rotation

$$a' = Ra$$

R: Rotation Matrix

Rotation Matrix

Rotation matrix is orthogonal:

$$R^{-1} = R^{\mathrm{T}}$$
 $R^{\mathrm{T}}R = RR^{\mathrm{T}} = I$

• Determinant of *R*

$$\det R = +1$$

Rotation maintains length of vectors

$$||Rx|| = ||x||$$

Combination of Rotations

Combination of Rotations

Rotation around Coordinate Axes

$$R_{\chi}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$R_{y}(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}$$

$$R_{z}(\gamma) = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Rotation around Coordinate Axes

 $R_z(72^\circ)R_y(45^\circ)R_x(60^\circ)$

Rotation around Coordinate Axes

$$R_z(72^\circ)R_y(45^\circ)R_x(60^\circ)$$

$$u = (0.28, 0.83, 0.48) \theta = 81.1^{\circ}$$

Rotation matrix R has a real eigenvalue: +1

$$Ru = u$$

In other words, R can be considered as a rotation around axis \boldsymbol{u} by some angle $\boldsymbol{\theta}$

How to find axis u and angle θ ?

$$R\mathbf{u} = \mathbf{u}$$
 $\mathbf{u} = R^{\mathrm{T}}\mathbf{u}$

$$(R - R^{\mathrm{T}})u = 0$$

$$\begin{bmatrix} 0 & -(r_{21} - r_{12}) & r_{13} - r_{31} \\ r_{21} - r_{12} & 0 & -(r_{32} - r_{23}) \\ -(r_{13} - r_{31}) & r_{32} - r_{23} & 0 \end{bmatrix} \boldsymbol{u} = 0$$

Skew-symmetric

$$R\boldsymbol{u} = \boldsymbol{u}$$
 $\boldsymbol{u} = R^{\mathrm{T}}\boldsymbol{u}$

$$(R - R^{\mathrm{T}})u = 0$$

$$\begin{bmatrix} 0 & -(r_{21} - r_{12}) & r_{13} - r_{31} \\ r_{21} - r_{12} & \mathbf{u'} \times \mathbf{u} = 0 & (r_{32} - r_{23}) \\ -(r_{13} - r_{31}) & r_{32} - r_{23} & 0 \end{bmatrix} \mathbf{u} = 0$$

Skew-symmetric Matrix

Cross Product

$$R\boldsymbol{u} = \boldsymbol{u} \qquad \boldsymbol{u} = R^{\mathrm{T}}\boldsymbol{u}$$

$$(R - R^{\mathrm{T}})u = 0$$

$$\boldsymbol{u} \leftarrow \boldsymbol{u}' = \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

When $R \neq R^T \Leftrightarrow \sin \theta \neq 0 \Leftrightarrow \theta \neq 0^\circ \text{ or } 180^\circ$

$$R = I + (\sin \theta) [\mathbf{u}]_{\times} + (1 - \cos \theta) [\mathbf{u}]_{\times}^{2}$$

$$\boldsymbol{u} \leftarrow \boldsymbol{u}' = \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix} \leftarrow R - R^{\mathrm{T}}$$

$$\|\boldsymbol{u}'\| = 2\sin\theta$$

Coordinate Transformation

 $(x', y', z')^T$: \boldsymbol{a} in object system

 $(x, y, z)^T$: a in global system

$$\boldsymbol{a} = \begin{bmatrix} | & | & | \\ \boldsymbol{e}_{x} & \boldsymbol{e}_{y} & \boldsymbol{e}_{z} \\ | & | & | \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$= \begin{bmatrix} | & | & | \\ \boldsymbol{e}'_{x} & \boldsymbol{e}'_{y} & \boldsymbol{e}'_{z} \\ | & | & | \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

Coordinate Transformation

 $(x', y', z')^T$: \boldsymbol{a} in object system

 $(x, y, z)^T$: a in global system

$$R = \begin{bmatrix} | & | & | \\ \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ | & | & | \end{bmatrix}^{-1} \begin{bmatrix} | & | & | \\ \mathbf{e}'_{x} & \mathbf{e}'_{y} & \mathbf{e}'_{z} \\ | & | & | \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

Coordinate Transformation

 $(x', y', z')^T$: \boldsymbol{a} in object system

 $(x, y, z)^T$: a in global system

$$object \rightarrow global \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = R \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} + t$$

global
$$\rightarrow$$
 object
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R^{\mathrm{T}} \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} - t \right)$$

Representations of 3D Rotation

回回围围

• A rotation matrix, 9 parameters: a_{ij}

$$R = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

• A rotation matrix, 9 parameters: a_{ij}

$$R = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$R^{\mathrm{T}}R = I$$

$$\begin{cases} a_{11}^2 + a_{21}^2 + a_{31}^2 = 1 \\ a_{12}^2 + a_{22}^2 + a_{32}^2 = 1 \\ a_{13}^2 + a_{23}^2 + a_{33}^2 = 1 \end{cases} \begin{cases} a_{11}a_{12} + a_{21}a_{22} + a_{31}a_{32} = 0 \\ a_{11}a_{13} + a_{21}a_{23} + a_{31}a_{33} = 0 \\ a_{12}a_{13} + a_{22}a_{23} + a_{32}a_{33} = 0 \end{cases}$$

• A rotation matrix, 9 parameters: a_{ij}

$$R = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$R^{\mathrm{T}}R = I$$

$$\begin{cases} a_{11}^2 + a_{21}^2 + a_{31}^2 = 1 \\ a_{12}^2 + a_{22}^2 + a_{32}^2 = 1 \\ a_{13}^2 + a_{23}^2 + a_{33}^2 = 1 \end{cases} \begin{cases} a_{11}a_{12} + a_{21}a_{22} + a_{31}a_{32} = 0 \\ a_{11}a_{13} + a_{21}a_{23} + a_{31}a_{33} = 0 \\ a_{12}a_{13} + a_{22}a_{23} + a_{32}a_{33} = 0 \end{cases}$$

degrees of freedom (DoF) = 3

• A rotation matrix, 9 parameters: a_{ij}

$$R = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$R^{\mathrm{T}}R = I$$
 $\det R = 1$

$$\begin{cases} a_{11}^2 + a_{21}^2 + a_{31}^2 = 1 \\ a_{12}^2 + a_{22}^2 + a_{32}^2 = 1 \\ a_{13}^2 + a_{23}^2 + a_{33}^2 = 1 \end{cases} \begin{cases} a_{11}a_{12} + a_{21}a_{22} + a_{31}a_{32} = 0 \\ a_{11}a_{13} + a_{21}a_{23} + a_{31}a_{33} = 0 \\ a_{12}a_{13} + a_{22}a_{23} + a_{32}a_{33} = 0 \end{cases}$$

degrees of freedom (DoF) = 3

Interpolation of Translations

Interpolation of Translations

$$R_t = (1-t)R_0 + tR_1$$
 ??

$$R_t = (1 - t)R_0 + tR_1$$
 ??

$$R_0 = R_y(-90^\circ) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$R_1 = R_y(+90^\circ) = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$R_{0.5} = 0.5(R_0 + R_1) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- What is good interpolation?
 - Rotation is valid at any time t
 - Constant rotational speed is preferred

[回] Rotation Matrix

$$R = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad R^{\mathsf{T}}R = I$$

$$R^{\mathrm{T}}R = I$$

• Easy to compose?

Easy to apply?

Easy to interpolate?

[回] Euler angles

Basic rotations

$$R_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$R_{y}(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}$$

$$R_{z}(\gamma) = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{pmatrix}$$

[回] Euler Angles

• Any rotation can be represented as a combination of three basic rotations

$$R_z(72^\circ)R_y(45^\circ)R_x(60^\circ)$$

[回] Euler Axes

- Any combination of three basic rotations are allowed
 - Excluding those rotate twice around the same axis
 - XYZ, XZY, YZX, YXZ, ZYX, ZXY, XYX, XZX, YXY, YZY, ZXZ, ZYZ

 $R_z(72^\circ)R_y(45^\circ)R_x(60^\circ)$

 $R_x(69.2^\circ)R_y(4.0^\circ)R_z(42.4^\circ)$

[回] Conventions of Euler Angles

intrinsic rotations:

axes attached to the object

 $R_x(\alpha)R_y(\beta)R_z(\gamma)$

extrinsic rotations:

axes fixed to the world

[回] Gimbal Lock

 When two local axes are driven into a parallel configuration, one degree of freedom is "locked"

Normal Situation

Gimbal Lock

[回] Euler Angles

$$R_{x}(\alpha)R_{y}(\beta)R_{z}(\gamma)$$

3 parameters: α, β, γ

12 variations: XYZ, XZY, YZX, YXZ, ZYX, ZXY,

XYX, XZX, YXY, YZY, ZXZ, ZYZ

Intrinsic/Extrinsic rotations

- Easy to compose?
- Easy to apply?
- Easy to interpolate?
- Gimbal lock

- But hard to create specific rotations
- Need three matrix multiplications
 - Need to deal with singularities rotational speed is not constant

[囲] Rotation Vectors / Axis Angles

- Axis angle (u, θ) : represent a rotation using
 - A vector **u**: rotation axis
 - A scalar θ : rotation angle

[囲] Rotation Vectors / Axis Angles

- Axis angle (u, θ) : represent a rotation using
 - A vector **u**: rotation axis
 - A scalar θ : rotation angle
- Rotation vector: represent a rotation as
 - $\theta = \theta u$
 - Obviously:

$$\theta = \|\boldsymbol{\theta}\| \qquad u = \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|}$$

[囲] Applying Rotation Vectors / Axis Angles

Rodrigues' rotation formula

$$x' = Rx$$

$$R = I + (\sin \theta) [\mathbf{u}]_{\times} + (1 - \cos \theta) [\mathbf{u}]_{\times}^{2}$$

or

$$x' = x + (\sin \theta) u \times x + (1 - \cos \theta) u \times (u \times x)$$

$$||u|| = 1$$

[囲] Interpolating Rotation Vectors / Axis Angles

Linear interpolation

$$\boldsymbol{\theta}_t = (1-t)\boldsymbol{\theta}_0 + t\boldsymbol{\theta}_1$$

[囲] Interpolating Rotation Vectors / Axis Angles

Linear interpolation

$$\boldsymbol{\theta}_t = (1 - t)\boldsymbol{\theta}_0 + t\boldsymbol{\theta}_1$$

- $\boldsymbol{\theta}_t$ is valid \checkmark
- Constant speed? Not quite

[囲] Interpolating Rotation Vectors / Axis Angles

Compute offset rotation

$$R(\delta \boldsymbol{\theta}) = R^T(\boldsymbol{\theta}_0) R(\boldsymbol{\theta}_1)$$

$$\delta \boldsymbol{\theta}_t = (1 - t)\mathbf{0} + t\delta \boldsymbol{\theta}$$

$$R(\boldsymbol{\theta}_t) = R(\boldsymbol{\theta}_0) R(\delta \boldsymbol{\theta}_t)$$

- $\boldsymbol{\theta}_t$ is valid \checkmark
- Constant speed

[囲] Rotation Vectors / Axis Angles

$$(\boldsymbol{u},\theta)$$
 or $\boldsymbol{\theta}=\theta\boldsymbol{u}$

Representation is not unique

$$(\boldsymbol{u},\theta), (-\boldsymbol{u},-\theta), (\boldsymbol{u},\theta+2n\pi)$$

- Easy to compose?
- Easy to apply?
- Easy to interpolate?
- No Gimbal lock

- But hard to manipulate
- Need to convert to matrix
 - Linear interpolation works, but not perfect need to deal with singularities

Quaternions

[圓]

Recall: a 2D rotation can be represented as a complex

$$\mathbf{z} = a + bi = re^{i\theta} \in \mathbb{C},$$
 $i^2 = -1$
 $\mathbf{z}' = re^{i(\theta + \alpha)}$
 $= e^{i\alpha} \times re^{i\theta}$
 $= e^{i\alpha} \mathbf{z}$

How to deal with 3D rotation?

Extending complex numbers

$$z = a + bi + cj + dk + ????$$

$$i^{2} = -1$$

$$j^{2} = -1, j \neq i$$

$$k^{2} = -1, k \neq i, j$$

Extending complex numbers

$$q = a + bi + cj + dk \in \mathbb{H}, a, b, c, d \in \mathbb{R}$$

- $i^2 = j^2 = k^2 = ijk = -1$
- ij = k, ji = -k (*cross product)
- jk = i, kj = -i
- ki = j, ik = -j

William Rowan Hamilton

[圓] Quaternion Arithmetic

$$q = a + bi + cj + dk \in \mathbb{H}, a, b, c, d \in \mathbb{R}$$

Conjugation:
$$q^* = a - bi - cj - dk$$

Scalar product:
$$t\mathbf{q} = ta + tb\mathbf{i} + tc\mathbf{j} + td\mathbf{k}$$

Addition:
$$q_1 + q_2 = (a_1 + a_2) + (b_1 + b_2)i + (c_1 + c_2)j + (d_1 + d_2)k$$

Dot product:
$$q_1 \cdot q_2 = a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2$$

Norm:
$$\|q\| = \sqrt{a^2 + b^2 + c^2 + d^2} = \sqrt{q \cdot q}$$

$$q_1 q_2 = (a_1 + b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) * (a_2 + b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k})$$

$$q_1q_2 = a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 + (b_1a_2 + a_1b_2 - d_1c_2 + c_1d_2)i + (c_1a_2 + d_1b_2 + a_1c_2 - b_1d_2)j + (d_1a_2 - c_1b_2 + b_1c_2 + a_1d_2)k$$

note:

- $i^2 = j^2 = k^2 = ijk = -1$
- ij = k, ji = -k (*cross product)
- jk = i, kj = -i
- ki = j, ik = -j

$$q = w + xi + yj + zk$$
 \Rightarrow $q = \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} w \\ v \end{bmatrix}$

$$q = [w, v]^{\mathrm{T}} \in \mathbb{H}, \ w \in \mathbb{R}, v \in \mathbb{R}^3$$

$$w = [w, \mathbf{0}]^{\mathrm{T}}$$
: scalar quaternion

$$\boldsymbol{v} = [0, \boldsymbol{v}]^{\mathrm{T}}$$
: pure quaternion

[圓] Quaternion Arithmetic

$$q = w + xi + yj + zk$$
 \Rightarrow $q = \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} w \\ v \end{bmatrix}$

Conjugation:
$$q^* = [w, -v]^T$$

Scalar product:
$$t\mathbf{q} = [tw, t\mathbf{v}]^{\mathrm{T}}$$

Addition:
$$q_1 + q_2 = [w_1 + w_2, v_1 + v_2]^T$$

Dot product:
$$q_1 \cdot q_2 = w_1 w_2 + v_1 \cdot v_2$$

Norm:
$$\|q\| = \sqrt{w_1 w_2 + v_1 \cdot v_2} = \sqrt{q \cdot q}$$

$$\boldsymbol{q_1q_2} = \begin{bmatrix} w_1 \\ \boldsymbol{v_1} \end{bmatrix} \begin{bmatrix} w_2 \\ \boldsymbol{v_2} \end{bmatrix} = \begin{bmatrix} w_1w_2 - \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 \\ w_1\boldsymbol{v}_2 + w_2\boldsymbol{v}_1 + \boldsymbol{v}_1 \times \boldsymbol{v}_2 \end{bmatrix}$$

$$q_1q_2 = \begin{bmatrix} w_1 \\ v_1 \end{bmatrix} \begin{bmatrix} w_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} w_1w_2 - v_1 \cdot v_2 \\ w_1v_2 + w_2v_1 + v_1 \times v_2 \end{bmatrix}$$

Non-Commutativity:

$$q_1q_2 \neq q_2q_1$$

Associativity:

$$q_1q_2q_3 = (q_1q_2)q_3 = q_1(q_2q_3)$$

$$\boldsymbol{q_1q_2} = \begin{bmatrix} w_1 \\ \boldsymbol{v_1} \end{bmatrix} \begin{bmatrix} w_2 \\ \boldsymbol{v_2} \end{bmatrix} = \begin{bmatrix} w_1w_2 - \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 \\ w_1\boldsymbol{v}_2 + w_2\boldsymbol{v}_1 + \boldsymbol{v}_1 \times \boldsymbol{v}_2 \end{bmatrix}$$

Conjugation:

$$(q_1q_2)^* = q_2^*q_1^*$$

Norm:

$$\|\boldsymbol{q}\|^2 = \boldsymbol{q}^*\boldsymbol{q} = \boldsymbol{q}\boldsymbol{q}^*$$

Reciprocal:

$$qq^{-1} = 1$$
 $q^{-1} = \frac{q^*}{\|q\|^2}$
 $q^{-1}q = 1$

[圓] Unit Quaternions

$$q = \begin{bmatrix} w \\ v \end{bmatrix} \qquad \|q\| = 1$$

For any non-zero quaternion \widetilde{q} :

$$oldsymbol{q} = rac{\widetilde{oldsymbol{q}}}{\|\widetilde{oldsymbol{q}}\|}$$

Reciprocal:

$$\boldsymbol{q^{-1}} = \boldsymbol{q^*} = \begin{bmatrix} w \\ -\boldsymbol{v} \end{bmatrix} \qquad \boldsymbol{R^{-1}} = R^{\mathrm{T}}$$

$$R^{-1} = R^{\mathrm{T}}$$

[圓] Unit Quaternions

$$q = \begin{bmatrix} w \\ v \end{bmatrix} \qquad \|q\| = 1$$

unit complex number $z = \cos \theta + i \sin \theta$

unit quaternion

$$q = \left[\cos\frac{\theta}{2}, u\sin\frac{\theta}{2}\right] \|u\| = 1$$

[圓] Unit Quaternions

$$q = \begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} \cos \frac{\theta}{2}, u \sin \frac{\theta}{2} \end{bmatrix} \quad ||u|| = 1$$

same information as axis angles (u, θ) But in a different form

[圓] Unit Quaternions as 3D Rotations

Any 3D rotation (v, θ) can be represented as a unit quaternion

$$q = \begin{bmatrix} w \\ v \end{bmatrix} = \left[\cos \frac{\theta}{2}, u \sin \frac{\theta}{2} \right]$$

Angle: $\theta = 2 \arg \cos w$

Axis:
$$u = \frac{v}{\|v\|}$$

[圓] Rotation a Vector Using Unit Quaternions

3D vector: p Rotation result: p'

Then the rotation can be applied by quaternion multiplication:

$$\begin{bmatrix} 0 \\ \boldsymbol{p}' \end{bmatrix} = \boldsymbol{q} \begin{bmatrix} 0 \\ \boldsymbol{p} \end{bmatrix} \boldsymbol{q}^*$$

[国] Rotation a Vector Using Unit Quaternions

Unit quaternion:
$$q = \begin{bmatrix} w \\ v \end{bmatrix} = \left[\cos \frac{\theta}{2}, u \sin \frac{\theta}{2} \right]$$

3D vector: \boldsymbol{p} Rotation result: \boldsymbol{p}'

Then the rotation can be applied by quaternion multiplication:

$$\begin{bmatrix} 0 \\ \boldsymbol{p}' \end{bmatrix} = \boldsymbol{q} \begin{bmatrix} 0 \\ \boldsymbol{p} \end{bmatrix} \boldsymbol{q}^* = (-\boldsymbol{q}) \begin{bmatrix} 0 \\ \boldsymbol{p} \end{bmatrix} (-\boldsymbol{q})^*$$

q and -q represent the same rotation

[圓] Combination of Rotations

Unit quaternion: q_1 , q_2

3D vector: p

$$\begin{bmatrix} 0 \\ {m p}' \end{bmatrix} = {m q_1} \begin{bmatrix} 0 \\ {m p} \end{bmatrix} {m q_1^*}$$

$$\begin{bmatrix} 0 \\ p'' \end{bmatrix} = q_2 \begin{bmatrix} 0 \\ p' \end{bmatrix} q_2^* = q_2 \left(q_1 \begin{bmatrix} 0 \\ p \end{bmatrix} q_1^* \right) q_2^* = (q_2 q_1) \begin{bmatrix} 0 \\ p \end{bmatrix} (q_2 q_1)^*$$
$$= q \begin{bmatrix} 0 \\ p \end{bmatrix} q^*$$

[圓] Combination of Rotations

Unit quaternion: q_1 , q_2

Combined rotation: $q = q_2 q_1$

3D vector: p

$$\begin{bmatrix} 0 \\ \boldsymbol{p}' \end{bmatrix} = \boldsymbol{q_1} \begin{bmatrix} 0 \\ \boldsymbol{p} \end{bmatrix} \boldsymbol{q_1^*}$$

$$\begin{bmatrix} 0 \\ p'' \end{bmatrix} = q_2 \begin{bmatrix} 0 \\ p' \end{bmatrix} q_2^* = q_2 \left(q_1 \begin{bmatrix} 0 \\ p \end{bmatrix} q_1^* \right) q_2^* = (q_2 q_1) \begin{bmatrix} 0 \\ p \end{bmatrix} (q_2 q_1)^*$$
$$= q \begin{bmatrix} 0 \\ p \end{bmatrix} q^*$$

[圓] Quaternion Interpolation

[国] Quaternion Interpolation

$$q = \begin{bmatrix} w \\ v \end{bmatrix} \qquad \|q\| = 1$$

A unit hypersphere in 4D space

[国] Quaternion Interpolation

$$q = \begin{bmatrix} w \\ v \end{bmatrix} \qquad \|q\| = 1$$

A unit hypersphere in 4D space

[圓] Linear Interpolation

$$\boldsymbol{q_t} = (1 - t)\boldsymbol{q}_0 + t\boldsymbol{q}_1$$

 q_t is not a unit quaternion

[国] Linear Interpolation + Projection

$$\widetilde{\boldsymbol{q}}_{t} = (1-t)\boldsymbol{q}_{0} + t\boldsymbol{q}_{1}$$
 $\boldsymbol{q}_{t} = \frac{\boldsymbol{q}_{t}}{\|\widetilde{\boldsymbol{q}}_{t}\|}$

 q_t is a unit quaternion

Rotational speed is not constant

[国] SLERP: Spherical Linear Interpolation

$$\boldsymbol{q_t} = a(t)\boldsymbol{q}_0 + b(t)\boldsymbol{q}_1$$

[圓] SLERP: Spherical Linear Interpolation

$$r = a(t)p + b(t)q$$

Consider the angle θ between p, q: $\cos \theta = p \cdot q$

We have:

$$p \cdot r = a(t)p \cdot p + b(t)q \cdot p$$

$$\Rightarrow \cos t\theta = a(t) + b(t)\cos \theta$$

similarly

$$q \cdot r = a(t)q \cdot p + b(t)$$

$$\Rightarrow \cos(1 - t)\theta = a(t)\cos\theta + b(t)$$

then we have:

$$a(t) = \frac{\sin[(1-t)\theta]}{\sin\theta}, \quad b(t) = \frac{\sin t\theta}{\sin\theta}$$

[国] SLERP: Spherical Linear Interpolation

$$q_t = \frac{\sin[(1-t)\theta]}{\sin\theta} q_0 + \frac{\sin t\theta}{\sin\theta} q_1$$
$$\cos\theta = q_0 \cdot q_1$$

Rotations can be represented by unit quaternions

$$q = \begin{bmatrix} w \\ v \end{bmatrix} = \left[\cos \frac{\theta}{2}, u \sin \frac{\theta}{2} \right]$$

Representation is not unique

q, -q represent the same rotation

- Easy to compose?
- Easy to apply?
- Easy to interpolate?
- No Gimbal lock

Need normalization, hard to manipulate,

Quaternion multiplication

SLERP, need to deal with singularities

Questions?

