Domain Modeling & Mapping Architectures to Design Lecture 05

BIL428 Software Architectures Asst.Prof.Dr. Mustafa Sert msert@baskent.edu.tr

Contents

- Domain Modeling
 - Domain Modeling Techniques
 - Feature Driven Modeling
- Mapping Architectures to Design
 - Application Frameworks

Domain Model

- Explicit representation
 - Of common and variable properties of the system in the domain

Domain Modeling Techniques

Domain Definition

- Describes the scope of the domain
- What is in? What is out?
- Examples

Domain Lexicon/Glossary

Description of the basic, but important terms in the domain

Conceptual Models

 Describe concepts represented as OO diagrams, ER diagrams, or any other suitable modeling technique

Feature Models

Describes common and variant properties of concepts

Example - Domain Definition

Driver Monitoring Systems

. . .

A driver monitoring system is a control feedback system in which the driver and the car performance is monitored..

Examples:

. . .

Example - Domain Glossary

- Monitor
 - The entity that monitors the driver and the engine performance
- Sensor
 - Entity that observes the controlled entity
- Control Data
 - Data which represent the goal parameters
- Feedback
 - Reaction given to the driver by the monitor
- Display
 - Physical entity to represent the feedback of the monitor
- ...

Example - Conceptual Model

Feature-Oriented Domain Modeling

 A feature model represents the common and the variable features of the products and the dependencies btw the variable features

Feature

- A distinctive property of the concept (domain model)
- User-visible characteristics of a system (requirements)
- A feature diagram consists of a set of nodes, a set of directed edges, and a set of edge decorations

Basic Feature Types

Mandatory Features

Each application must have

Optional Features

Each application can have or NOT

Alternative Features

Each application must have one of (XOR)

OR Features

Each application must have one of or multiple

Type	Notation
	С
	F
Mandatory	
	С
Optional	
Alternative	n r2
	c
Or	

Example – Feature Model

Composition Constraints

- Two types of compositions
 - Mutex-with rule
 - Defines a mutual exclusion relation btw two concepts or features
 - Requires rule
 - Defines which features the selected feature requires (interdependent relations)

Exercise – Sample Domain

 Given sample domain, show an example mutex and requires constraint

Sample Constraints from the Exercise

- InsuredObject.Person mutex-with Coverage.Damage
 - If the insured object is a person, then the insurance product cannot include coverage of damage (for physical objects)
- Coverage.Loss requires InsuredObject.MoveableProperty
 - If the insurance product includes coverage for loss, then the insured object can only be a moveable property
- Coverage.Ilness mutex-with InsuredObject.Corporation
 - If the insurance product includes coverage for illness, then the insured object cannot be a corporation
- InsuredObject.MoveableProperty requires Coverage.Damage
 - If you select MoveableProperty feature, then you should select
 Damage

Possible Insurance Systems from the Exercise..

- Alternatives from the exercise
 - □ Life insurance with service and periodical payment
 - Car insurance with coverage with damage, own risk and periodical payment
 - Health insurance that covers illness with own risks and direct premium
 - **-** ...
- How many insurance systems can you derive from the given model?
 - □ ~ 3000 alternatives!

Exercise 2

- Define a feature diagram for the driver monitoring system including the following features
 - A display can be either red/green or multifunctional
 - Control data can be entered directly by the user or downloaded remote from a network
 - Driver performance must be monitored based on the physiological characteristics and the driving behavior
 - The physiological characteristics include eye movements, head movements, and optionally heart rate
 - Driving behavior includes tracking steering movements,
 brake maneuvers, and transmission maneuvers

17 Application Frameworks

Map Architecture to Implementation

Map Architecture to one complete implementation

Application Framework

DEFINITION

- A reusable, "semi-complete" application that can be specialized to produce custom applications
- A set of classes that embodies an abstract design for solutions to a family of related problem

Users and Developers of Frameworks

Main roles associated with frameworks

Framework Developers

 Develop the original framework (based-on domain driven architecture)

□ Framework Users

- Also called framework clients or application developers
- Use the framework to develop applications
- Reuse and/or extend the framework for customized applications

Framework Maintainers

Refine and develop the framework to meet new requirements

Key Points - Reuse

- □ Reuse methods discussion..
 - OO-PL Mechanisms
 - Class Libraries
 - Software Components
 - Design Patterns
 - Application Frameworks

Classifying Application Frameworks

- System Infrastructure frameworks
- Middleware integration frameworks
- Enterprise application frameworks

System Infrastructure Framework

- Simplify portable and efficient system infrastructure development such as operating systems
- Are primarily used internally within a software organization and are not sold to customers directly

Middleware Application Frameworks

- Commonly used to integrate distributed applications and components
- Designed to enhance the ability of software developers to modularize, reuse, and extend their SW infrastructure to work seamlessly in a distributed environment
- Examples: CORBA, Message Oriented Middleware

Enterprise Application Frameworks

- Address broad application domains and are the centre of enterprise business activities
- Relatively expensive to develop and/or purchase
- However, enterprise frameworks can provide a substantial return on investment since they support the development of end-user applications and products directly

