범주형자료분석팀

2팀 조장희 위재성 김지현 조수미 송지현 김민지

INDEX

- 1.범주형 자료분석
- 2. 분할표
- 3.독립성 검정
- 4.연관성측도

범주형 자료분석

자료의 형태

자료 (DATA) 양적 자료 (Quantitative, 수치형)

질적 자료 (Qualitative, 범주형) 이산형 자료 (Discrete)

연속형 자료 (Continuous)

> 명목형 자료 (Nominal)

순서형 자료 (Ordinal)

분할표

분할표란?

분할표

범주형 변수의 관측치를 기록한 표

분할표

여러 차원의 분할표

3차원 분할표

부분분할표

주변분할표

		Y		합계
	X	n_{111}	n ₁₂₁	n_{1+1}
	X	n_{211}	n_{221}	n_{2+1}
7	합계	n_{+11}	n_{+21}	n_{++1}
Z	X	n_{112}	n_{122}	n_{1+2}
	^	n_{212}	n_{222}	n_{2+2}
	합계	n ₊₁₂	n ₊₂₂	n_{++2}

	Υ		합계
>	n ₁₁₊	n ₁₂₊	n_{1++}
X	n ₂₁₊	n ₂₂₊	n ₂₊₊
합계	n_{+1+}	n ₊₂₊	n ₊₊₊

2차원 분할표에서 제어변수 Z 추가

2

분할표

비율에 대한 분할표

결합 확률

X의 i번째 수준과 Y의 j번째 수준을 동시에 만족하는 확률

	ВМІ			
	정상 (Y=1)	과체중 (Y=2)	비만 (Y=3)	합계
남자 (X=1)	78(<mark>0.31</mark>)	15(0.06)	46(0.19)	139(0.56)
여자 (X=2)	49(0.19)	23(0.09)	37(0.15)	109(0.43)
합계	127(0.5)	38(0.15)	83(0.34)	248(1)

전체 인원 중에서 남자이고 BMI가 정상일 확률 P(X=1,Y=1)=0.31즉, 결합 확률 = 각 칸의 확률

독립성 검정

관측도수 & 기대도수

관측도수

실제 관측값 $n_{ij} = n \times \pi_{ij}$

기대도수

도수의 기댓값 $\mu_{ij} = n \times \pi_{i+} \times \pi_{+j}$

관측 도수와 기대 도수의 차이를 비교

$$H_0: \pi_{ij} = \pi_{i+} \times \pi_{+j}$$
 (같은 가설)

$$H_0: \mu_{ij} = n\pi_{ij}$$

$$H_1: \mu_{ij} \neq n\pi_{ij}$$

독립성 검정

명목형 자료

1. 피어슨 카이제곱 검정

2. 가능도비 검정

$$X^{2} = \sum \frac{\left(n_{ij} - \mu_{ij}\right)^{2}}{\mu_{ij}} \sim \chi^{2}_{(I-1)(J-1)} \qquad G^{2} = 2 \sum n_{ij} \log \left(\frac{n_{ij}}{\mu_{ij}}\right) \sim \chi^{2}_{(I-1)(J-1)}$$

$$G^2 = 2 \sum_{ij} n_{ij} \log \left(\frac{n_{ij}}{\mu_{ij}} \right) \sim x_{(I-1)(J-1)}^2$$

검정 flow

관측도수와 기대 도수의 차이 ↑ → 검정통계량 ↑ → P-value ↓

 \longrightarrow H_0 기각 가능성 \uparrow \longrightarrow 변수 간의 연관성0

독립성 검정

피어슨 교차적률 상관계수(r)

순서형 자료

$$r = \frac{\sum (u_i - \bar{u})(v_i - \bar{v}) p_{ij}}{\sqrt{[\sum (u_i - \bar{u})^2 p_{i+1}][\sum (v_i - \bar{v})^2 p_{+j}]}}$$

잠깐! r이 뭐죠?

 $M^2 = (공분산/표준편차의 곱) 인 상관계수의 같은 형식$

▶공통점

- $-1 \le r \le 1$ 의 범위
- r 값이 0에 가까울수록

변수 간의 연관성↓ n과r ↑

검정통계량

 H_0 기각 가능성 \uparrow

▶ 차이점

범주 수준에 점수를 할당

- $u_1 \le u_2 \le \cdots \le u_I$,
- $v_1 \le v_2 \le \cdots \le v_J$).

변수 간의 연관성0

연관성 측도

두 범주형 변수가 **이항 변수**일 때, 연관성을 나타내는 측도 (이항 변수 간의 연관성을 나타내는 측도)

비율의 차이

상대 위험도

오즈비

비율의 차이

비율의 차이 = 조건부 확률의 **차이**
$$(\pi_1 - \pi_2)$$

$$\pi_i = i \text{ 번째 행의 조건부 확률}$$

성별	애인 유무		
j o z L	있음	없음	
여성	509(0.814)	116(0.186)	
남성	398(0.793)	104(0.207)	

여성일 때 애인이 있을 확률이 남성일 때보다 0.814 - 0.793 = 0.0216 만큼 더 높음

오즈비 (Odds Ratio, OR)

오즈 (Odds) 성공확률 / 실패확률 을 의미

odds =
$$\frac{\pi}{1-\pi}$$
 $(\pi = 성공확률)$

성별	애인 유무			
o ⊒	있음	<u>아</u> 전화		
여성	509(0.814)	116(0.186)		
여성	0.814/0.186 = 4.388 = 오즈			
나서	398(0.793)	104(0.207)		
남성	0.793/0.207 =	= 3.826 = 오즈		

여성의 입장에서 애인이 있을 확률은 애인이 없을 확률의 4.388배

오즈비 (Odds Ratio, OR)

오즈비 각 오즈의 비

$$\theta = \frac{odds1}{odds2} = \frac{\pi_1(1 - \pi_1)}{\pi_2(1 - \pi_2)}$$

- 범위 : $\theta \geq 0$
- 역수관계의 오즈비는 방향만 반대이고, 연관성은 같음 오즈비가 4인 경우 연관성 = 오즈비가 0.25(1/4)인 경우 연관성

오즈비 (Odds Ratio, OR)

성별	애인 유무			
Ö ⊒	응	아		
여성	509 (0.814)	116 (0.186)		
여성 	오즈 = 0.814/0.186 = 4.388			
나서	398 (0.793)	104 (0.207)		
남성	오즈 = 0.793/0	0.207 = 3.826		

오즈비는
$$\theta = \frac{4.388}{3.826} = 1.147$$
임

여성이 애인이 있을 오즈가 남성이 애인이 있을 오즈보다

1.147배 더 높음

장점

오즈비 장점의 이유는 바로 교차적비

$$\theta = \frac{\pi_1/(1-\pi_{1)}}{\pi_2/(1-\pi_{2)}} = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

분할표의 대각성분의 곱이 분자로, 비대각성분이 분모로 감.

변수가 고정된 상태에서 대조군이 바뀌더라도 값 유지. 행과 열을 바꾸더라도 값 유지.

오즈비

3차원 분할표에서의 오즈비

조건부 독립성 성립

주변 독립성 성립

부분분할표					
학 과	학성별과		부(Y)	조건부 오즈비	
(Z)	(X)	0	Х		
내가오차	남자	18	12	$\rho = -\frac{18/12}{1} = 1$	
구 문	여자	12	8	$\theta_{XY(1)} = \frac{18/12}{12/8} = 1$	
문 전 정 보	남자	2	8	2/8	
정 보	여자	8	32	$\theta_{XY(2)} = \frac{2/8}{8/32} = 1$	

주변분할표				
성별 (X)	연애여부 (Y)		주변 오즈비	
(^)	0	Χ		
남자	20	20	$ heta_{XY+} = rac{20/20}{20/40} = 2$	
여자	20	40	$\sigma_{XY+} - \frac{1}{20/40} - 2$	