1. A linguagem SOMA – SUBC é definida como segue:

$$SOMA - SUBC = \{\ < S, t > |\ S = \{x1,...,xk\} \ \text{e para algum} \ \{y1,\ \dots,yl\} \subseteq \{x1,\ \dots,xk\}, \text{ temos } \sum y_i = t\ \}$$

Escreva um programa que dado um conjunto S e um valor t lido como entrada, determine se $< S, t> \in SOMA-SUBC$. Caso positivo, apresente o subconjunto encontrado. Caso contrário apresente uma mensagem indicando que não há subconjunto que atenda os requisitos. Exemplo:

entrada:
$$S = \{1,3,6,9\}, t = 13$$
 saída: $\{1,3,9\}$

entrada:
$$S = \{1,5,7,9\}, t = 4$$

saída: Não existe subconjunto de S cujas somas dos elementos resulta em 4.

Prova:

Link Replit: https://replit.com/@CarolineViana/SomaSubc#main.py

Link Github: https://github.com/carolinevianab/SomaSubc

2. Mostre que P é fechado sobre concatenação.

Prova:

Sejam L_1 e $L_2 \in P$. Seja M_1 e M_2 MTs que decidem L_1 e L_2 , respectivamente, em tempo polinomial. Construimos uma M_3 que decida a concatenação de L_1 com L_2 em tempo polinomial.

Seja w a entrada tal que $w = a_1 + a_2 + a_3 + \ldots + a_n$, seja i um valor incremental tal que 0 < i < n, e seja a_i um caractere de w.

 M_3 = "Sobre a entrada w":

- Para cada valor de i, seja $w_1 = a_1 + a_2 + a_3 + \ldots + a_i$ e $w_2 = a_i + a_{i+1} + a_{i+2} + \ldots + a_n$, tal que $w_1 \in L_1$ e $w_2 \in L_2$
- Execute M_1 sobre w_1 . Se aceita, prossiga para a próxima etapa. Se rejeita, rejeite.
- Execute M_2 sobre w_2 . Se aceita, aceite. Caso contrário, rejeite.

 M_3 aceita w se e somente se M_1 aceita w_1 e M_2 aceita w_2 . Logo, M_3 aceita a concatenação de L_1 e L_2 . Como M_1 e M_2 executam em tempo polinomial, e a etapa 1 executará no máximo n+1 vezes - ou seja, tempo O(n) - M_3 também executa em tempo polinomial.

3. Mostre que NP é fechado sobre concatenação.

Prova:

Sejam L_1 e $L_2 \in P$. Seja M_1 e M_2 MTNs que decidem L_1 e L_2 , respectivamente, em tempo polinomial. Construimos uma M_3 que decida a concatenação de L_1 com L_2 em tempo polinomial.

Seja w a entrada tal que $w=a_1+a_2+a_3+\ldots+a_n$, seja i um valor incremental tal que 0< i< n, e seja a_i um caractere de w.

 M_3 = "Sobre a entrada w":

- Para cada valor de i, seja $w_1 = a_1 + a_2 + a_3 + \ldots + a_i$ e $w_2 = a_i + a_{i+1} + a_{i+2} + \ldots + a_n$, tal que $w_1 \in L_1$ e $w_2 \in L_2$
- Execute M_1 sobre w_1 . Se aceita, prossiga para a próxima etapa. Se rejeita, rejeite.
- Execute M_2 sobre w_2 . Se aceita, aceite. Caso contrário, rejeite.

 M_3 aceita w se e somente se M_1 aceita w_1 e M_2 aceita w_2 . Logo, M_3 aceita a concatenação de L_1 e L_2 . Como M_1 e M_2 executam em tempo polinomial, e a etapa 1 executará no máximo n+1 vezes - ou seja, tempo O(n) - M_3 também executa em tempo polinomial.

c.q.d.