Controlli Automatici T Parte 1: Introduzione ai Controlli Automatici

Prof. Giuseppe Notarstefano

Department of Electrical, Electronic, and Information Engineering Alma Mater Studiorum Università di Bologna giuseppe.notarstefano@unibo.it

Queste slide sono ad uso interno del corso Controlli Automatici T dell'Università di Bologna a.a. 22/23.

Struttura del corso

Analisi di sistemi dinamici

- Introduzione ai Controlli Automatici... e altro (Sistemi Autonomi, Intelligenza Artificiale, Macchine Intelligenti)
- Sistemi dinamici: modellazione ed esempi di sistemi fisici
- Proprietà strutturali (stabilità)
- Trasformata di Laplace e Funzione di Trasferimento
- Evoluzione di sistemi dinamici elementari e proprietà di stabilità
- Risposta in frequenza e analisi armonica

Sintesi di un sistema di controllo

- Introduzione alla progettazione di un sistema di controllo
- Specifiche e schemi di controllo in retroazione
- Progetto dei principali schemi di controllo

Controlli Automatici...

Idea: sostituire l'intelligenza umana con un sistema automatico (intelligenza artificiale) basata su leggi matematiche e/o algoritmi.

Alcune keyword:

- Automatic Control
- Control theory
- Artificial Intelligence (Machine Learning)
- Machine Intelligence
- Autonomous Systems
- Robotics

Notazione ed elementi costitutivi

Sistema (processo, impianto) "oggetto" per il quale si vuole ottenere un "comportamento desiderato".

Esempi di sistema:

impianto (industriale), macchinario (braccio robotico, macchina a controllo numerico, etc.), veicolo (auto, velivolo, drone, etc.), fenomeno fisico (condizioni atmosferiche), sistema biologico, sistema sociale.

Objettivo:

andamento nel tempo di alcune variabili "segua" un segnale di riferimento variabile controllata (uscita) \approx segnale di riferimento

Notazione ed elementi costitutivi

Controllore: "unità" che determina l'andamento della variabile di controllo (ingresso).

Sistema di controllo: sistema (processo) + controllore

Sistemi di controllo naturali: meccanismi "presenti in natura"

Esempio: quelli presenti nel corpo umano (temperatura corporea costante, ritmo cardiaco, etc.)

Sistemi di controllo manuali: è presente l'azione dell'uomo

Sistemi di controllo automatici: uomo sostituito da un dispositivo

Esempi di controllo manuale

Controllo in anello aperto e anello chiuso

Controllo in anello aperto ("feedforward"): controllore utilizza solo il segnale di riferimento.

Controllo in anello chiuso ("feedback" o retroazione): controllore utilizza il segnale di riferimento e variabile controllata ad ogni istante di tempo.

Controllo in retroazione

Controllo in anello chiuso ("feedback" o retroazione): controllore utilizza il segnale di riferimento e variabile controllata ad ogni istante di tempo.

IMPORTANTE

Controllo in retroazione paradigma centrale nei controlli automatici

Progetto di un sistema di controllo

- definizione delle specifiche assegnazione comportamento desiderato, qualità del controllo, costo,...
- modellazione del sistema (controllo e test)
 complessità del modello (compromesso), definizione ingressi/uscite, codifica del modello, validazione in simulazione.
- analisi del sistema studio proprietà "strutturali", fattibilità specifiche
- sintesi legge di controllo basata su modello, analisi sistema controllato, stima carico computazionale

Progetto di un sistema di controllo

- simulazione sistema controllato test su modello di controllo, test realistici (modello complesso, ritardi, quantizzazione, disturbi, ...)
- scelta elementi tecnologici sensori/attuatori, elettronica di acquisizione/attuazione, dispositivo di elaborazione
- sperimentazione hardware in the loop, prototipazione rapida, realizzazione prototipo definitivo

Esempi di sistemi di controllo (attività di ricerca)

- controllo di prototipi virtuali di veicoli (veicoli autonomi)
- controllo di robot mobili autonomi (aerei, terrestri)
- controllo di squadre di robot mobili cooperanti

Controllo di prototipi virtuali di veicoli

Controllo di robot aerei autonomi

Sistema di controllo per robot aerei autonomi

Controllo di robot mobili autonomi

Struttura di test per il controllo di robot mobili autonomi

