SQL Expressive Powers

- Relational Algebra or Calculus
- 2. Aggregation / Grouping
- 3. Deductive Logics / Analytic Functions (Windowing)
- 4. Data Mining Features

Ch 26. Data Mining (26.1, 26.2.1, 26.3.1, 26.3.2)

Sang-Won Lee

http://icc.skku.ac.kr/~swlee

SKKU VLDB Lab.

(http://vldb.skku.ac.kr/)

Motivation

- Data explosion problem
 - Automated data collection tools and mature database technology lead to tremendous amounts of data stored in databases, data warehouses and other information repositories
- We are drowning in data, but starving for knowledge!
- Solution: data warehousing/OLAP and data mining
- Data mining
 - The process of finding interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially useful</u>) information, trend, or <u>patterns</u> from data in <u>large</u> <u>databases</u> in order to guide decision
 - vs. statistics, machine learning / knowledge discovery in Al
 - ✓ SCALABILITY with respect to data size (big data)

Data Mining

Source: An overview of data warehousing and OLAP technology, SIGMOD record, March 1997

Definitions

Query & Reporting	OLAP	Data Mining
Extraction of detailed and summary data	Summaries, trends and forecasts	Knowledge discovery of hidden patterns and insights
"Fact & Information"	"Analysis"	"Insight and Prediction"
Who purchased mutual funds in the last 3 years?	What is the average income of mutual fund buyers by region by year?	Who will buy a mutual fund in the next 6 months and why?

Data Mining: Applications

- Market analysis and management
 - target marketing, customer relation management, market basket analysis, cross selling, market segmentation
- Risk analysis and management
 - Forecasting, customer churn and retention, quality control, ...
- Fraud detection and management: card fraud
- Sports: IBM Advanced Scout analyzed NBA game statistics (shots blocked, assists, and fouls) to gain competitive advantage for New York Knicks and Miami Heat

Data Mining: An Example Database of Customer Transaction

Market basket

transid	custid	date	item	qty
111	201	5/1/99	pen	2
111	201	5/1/99	ink	1
111	201	5/1/99	milk	3
111	201	5/1/99	juice	6
112	105	6/3/99	pen	1
112	105	6/3/99	ink	1
112	105	6/3/99	milk	1
113	106	5/10/99	pen	1
113	106	5/10/99	milk	1
114	201	6/1/99	pen	2
114	201	6/1/99	ink	2
114	201	6/1/99	juice	4
114	201	6/1/99	water	1

Figure 26.1 The Purchase Relation

Data Mining: Techniques

- Co-ocurrences (that is, frequent itemset counting) & Association Rules
 - 60% of all customers purchase items {X, Y, Z} together
 - 75% of CU male customers who purchase <u>diapers</u> also buy <u>beer</u>

- Sequential Patterns
 - 60% of Amazon customers who <u>buy Harry Porter book</u> purchase <u>its DVD</u> in 3 weeks

- Classification
 - People with (age less than 25 and salary > 40k) mostly drive (sports cars)

Data Mining: Techniques (2)

- Clustering(or Segmentation)
 - Our customers are clustered into N segments

- Similar time sequences
 - Stocks of companies A and B perform similarly

- Outlier Discovery
 - Residential customers for telecom company with businesses at home

Text/Web Mining, Similar Images

Data Mining: Algorithms

Association Rules: A-priori, Bayesian Network

• Segmentation (Clustering): **K-means**, EM, Birch, Cure

Sequential Patterns: Sprint, Blast

and many more ...

Market Basket Analysis

- E.g. shopping cart filled with several items
 - Either offline or online

transid	custid	date	item	qty
111	201	5/1/99	pen	2
111	201	5/1/99	ink	1
111	201	5/1/99	milk	3
111	201	5/1/99	juice	6
112	105	6/3/99	pen	1
112	105	6/3/99	ink	1
112	105	6/3/99	milk	1
113	106	5/10/99	pen	1
113	106	5/10/99	milk	1
114	201	6/1/99	pen	2
114	201	6/1/99	ink	2
114	201	6/1/99	juice	4
114	201	6/1/99	water	1

- A common goal for retailers
 - 1. To identify items that are <u>purchased together</u> (i.e., frequent itemset)
 - 2. THEN, to improve the layout of goods in a store or the layout of (online) catalog pages

- Market basket analysis tries to answer the following questions:
 - What items do customers buy together? frequent itemset
 - In what order do customers purchase items? sequential pattern
 - Who makes purchases? Classification / clustering

26.2.1 Frequent Itemset

Given:

- A database of customer transactions
- Each transaction is a set of items
 - e.g. TX111 = {Pen, Ink, Milk, Juice}

Transid	Items
111	{pen, ink, milk, juice}
112	{pen, ink, milk}
113	{pen, milk}
114	{pen,ink,jouce, water}

transid	custid	date	item	qty
111	201	5/1/99	pen	2
111	201	5/1/99	ink	1
111	201	5/1/99	milk	3
111	201	5/1/99	juice	6
112	105	6/3/99	pen	1
112	105	6/3/99	ink	1
112	105	6/3/99	milk	1
113	106	5/10/99	pen	1
113	106	5/10/99	milk	1
114	201	6/1/99	pen	2
114	201	6/1/99	ink	2
114	201	6/1/99	juice	4
114	201	6/1/99	water	1

Figure 26.1

Frequent Itemset

Transid	Items
111	{pen, ink, milk, juice}
112	{pen, ink, milk}
113	{pen, milk}
114	{pen,ink,jouce, water}

- Itemset = a set of items
 - e.g. {pen}, {pen, ink, milk}

- Support of an itemset = the fraction of transactions that contain all the items in the itemset
 - Sup $(\{pen,ink\}) = 3 / 4 = 75\%$ (frequent?)
 - Sup ({milk, juice}) = 1 / 4 = 25% (infrequent?)
- Frequent Itemsets
 - Given a user-specified minimum support (minsup),
 all itemsets whose support is higher than minsup
 - E.g.: minsup = 70%
 - ✓ {Pen}, {Ink}, {Milk},

Frequent Itemset: A Naïve Algorithm

- D: database
- N = # of all transactions T in D;
- I = set of all items in D;
- min-sup = minimum support;

```
for each subset s of I do { // 2^I iterations
    count = 0;
    for each T of N transactions in D do
        if s is a subset of T then
            count++;
        if min-sup <= count/N then
            add s to frequent-itemsets</pre>
```

- Analysis of naïve algorithm
 - O(2¹) subsets: exponential growth!
 - Scan N transactions for each of 2¹ subsets
 - O(2¹ * N) tests of s being subset of T
 - This algorithm becomes infeasible quickly...
- Can we do better?

end for;
end for;
(Source: Prof. Dr. Thomas Seid1)

Main idea of the Apriori algorithm: Prune the exponential search space using anti-monotonicity

Frequent Itemset: An Optimization

- The A-priori Property: "Every non-empty subset, S', of a frequent itemset, S, is also a frequent itemset"
 - Makes use of prior knowledge of <u>subset support</u> properties: <u>Proof</u>:

{Pen, Ink, Milk} Frequent?
{Pen, Ink}, {Ink, Milk}, {Pen, Milk}

- Efficient execution: the number of candidate frequent itemsets can be significantly reduced by considering only itemsets obtained by enlarging frequent itemsets.
- Complete computation: any frequent itemset is not missed.

A-Priori Algorithm

Simple version

```
foreach item, // Level 1 check if it is a frequent itemset // appears in > minsup transactions k=1 repeat // Iterative, level-wise identification of frequent itemsets foreach new frequent itemset I_k with k items // Level k+1 generate all itemsets I_{k+1} with k+1 items, I_k \subset I_{k+1} // aprior-gen step Scan all transactions once and check if the generated k+1-itemsets are frequent k=k+1 until no new frequent itemsets are identified
```

Figure 26.2 An Algorithm for Finding Frequent Itemsets

- Further optimization
 - Reduce # of candidate itemsets further using the A-priori property

Frequent Itemset: A-priori Algorithm

Source: "Fast algorithms for Mining Association Rules" (VLDB 1994)

```
1) L_1 = \{ \text{large 1-itemsets} \};
2) for (k = 2; L_{k-1} \neq \emptyset; k++) do begin
3) C_k = \underset{\text{apriori-gen}(L_{k-1});}{\text{do begin}}
4) forall transactions t \in \mathcal{D} do begin
5) C_t = \text{subset}(C_k, t); // Candidates contained in t
6) forall candidates c \in C_t do
7) c.\text{count}++;
8) end
9) L_k = \{c \in C_k \mid c.\text{count} \geq \text{minsup}\}
10) end
11) Answer = \bigcup_k L_k;
Figure 1: Algorithm Apriori
```

1. join step for new candidate generation

```
insert into C_k

select p.item_1, p.item_2, ..., p.item_{k-1}, q.item_{k-1}

from L_{k-1} p, L_{k-1} q

where p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2},

p.item_{k-1} < q.item_{k-1};
```

2. Pruning invalid candidates

```
forall itemsets c \in C_k do
forall (k-1)-subsets s of c do
if (s \notin L_{k-1}) then
delete c from C_k;
```

Frequent Itemset

The A-priori algorithm: min. sup. 70% (from textbook)

Database D

Transid	Items
111	{pen, ink, milk, juice}
112	{pen, ink, milk}
113	{pen, milk}
114	{pen,ink,juice, water}

1st Scan D

	C1
Itemset	Sup.
{pen}	4
{ink}	3
{milk}	3
{juice}	2
(water)	1

L1

Itemset	Sup.
{pen}	4
{ink}	3
{milk}	3

C₂

lten	nset
{pen	, ink}
{pen,	milk}
{ink,	milk}

2nd Scan D

Itemset	Sup.
{pen, ink}	3
{pen,milk}	3
{ink,milk}	2

C₂

L2

Itemset	Sup.
{pen,ink}	3
{pen,milk}	3

L₃

C3

3rd Scan D

Optimized version:

{ink,milk} not in L2 (not frequent)

== > {pen,ink,milk} not frequent

== > pruned == > skip 3rd scan of D

C3

Itemset Sup.

Simple version:

EMPTY == > No new frequent itemset == > STOP!

Frequent Itemset

The A-priori algorithm: another example with min. sup. = 2

Database D

Transid	Items
100	{1, 3, 4}
200	{2, 3, 5}
300	{1, 2, 3, 5}
400	{2,5}

Scan D

C 1	

Itemset	Sup.
{1}	2
{2}	3
{3}	3
{4}	1
{5 }	3

I 1

Itemset	Sup.
{1}	2
{2}	3
{3}	3
{5}	3

C₂

Itemset
{1, 2}
{1, 3}
{1, 5}
{2, 3}
{2, 5}
{3, 5}

Scan D

C₂

Itemset	Sup.
{1, 2}	1
{1, 3}	2
{1, 5}	1
{2, 3}	2
{2, 5}	3
{3, 5}	2

L2

Itemset	Sup.
{1, 3}	2
{2, 3}	2
{2, 5}	3
{3, 5}	2

C3

Itemset	
{2, 3, 5}	

Scan D

C3

Itemset	Sup.
{2,3,5}	2

L3

Itemset	Sup.
{2,3,5}	2

What about the itemset {1,3,5}?

 $\{1,5\}$ not in L2 == > $\{1,3,5\}$ was pruned!

26.3.1 Mining Association Rules

- Given:
 - A database of customer transactions, each of which is a set of items
- Find all rules X ==> Y that correlate the presence of one set of items
 X with another set of items Y
 - e.g. {diaper, baby_food} ==> {beer} with the probability of 60%
 - Any number of items in the consequent(Y)/antecedent(X) of a rule
- Sample Applications
 - market basket analysis, attached mailing in direct marketing, fraud detection for medical insurance, cross-selling (department store floor/shelf planning, Web-site layout)

Support and Confidence

- A rule must have some minimum user-specified support
 - Rule "X ==> Y" has support s if P(XY) = s
 - E.g. {1, 2} ==> {3} should hold in some minimum percentage of transactions to have business value

- A rule must have some minimum user-specified confidence
 - rule X ==> Y has confidence c if P(Y|X) = c
 - e.g. {1, 2} ==> {3} has 90% confidence if 90% of the transactions that contain the itemset {1,2} also contain the itemset {3}.

Support and Confidence (2)

Association rules

Examples:

- {pen} ==> {milk}: sup. 75%, conf. 75%
- {ink} ==> {pen}: sup. 75%, conf. 100%
- {pen} ==> {ink}: sup. 75%, conf. 75%

 Example: find all association rules with sup. >= 50% and conf. >= 75%

transid	custid	date	l l l l l l l l l l	qty
111	201	5/1/99	pen	2
111	201	5/1/99	ink	1
111	201	5/1/99	milk	3
111	201	5/1/99	juice	6
112	105	6/3/99	pen	1
112	105	6/3/99	ink	1
112	105	6/3/99	milk	1
113	106	5/10/99	pen	1
113	106	5/10/99	milk	1
114	201	6/1/99	pen	2
114	201	6/1/99	ink	2
114	201	6/1/99	juice	4
114	201	6/1/99	water	1

26.3.2 An Algorithm for Finding Association Rules

"Association Rule Finding" works in two phases

<u>Phase 1</u>: Given *minsup*, find all frequent itemsets

- ✓ Use "A-priori algorithm"
- ✓ Most expensive phase!

<u>Phase 2</u>: Given confidence C, use the frequent itemsets to generate the desired association rules

- ✓ Generation is straightforward (see the latter part in Section 26.3.2)
 - 1. For each frequent itemset X, divide X into LHS and RHS
 - 2. $\underline{\text{Conf (LHS} \rightarrow \text{RHS)}} = \text{Support(X)} / \text{Support (LHS)}$
 - Support(X), Support (LHS): already computed in Phase1
 - 3. Compare *Conf (LHS* \rightarrow *RHS)* with \bigcirc

Oracle Data Mining

Oracle Data Mining Concepts 12c Release 2 (12.2)

Mining Functions	Mining Algorithms
Regression	Apriori
Classification	Decision Tree
Anomaly Detection	Expectation Maximization
Clustering	Explicit Semantic Analysis
Association	Generalized Linear Models
Feature Selection and	<u>k-Means</u>
<u>Extraction</u>	Minimum Description Length
	Naive Bayes
	Non-Negative Matrix
	<u>Factorization</u>
	<u>O-Cluster</u>
	Singular Value Decomposition
	Support Vector Machines