

EIC 1700

SEARCH REQUEST

Today's Date 8-20-08

Name <u>Wayne Lange</u>	Priority App. Filing Date <u>5-7-03</u>
AU/Org. <u>1793</u> Examiner # <u>60603</u>	Case/App. # <u>10/555665</u>
Bld.&Rm.# <u>E09A29</u> (Remsen)	Format for Search Results EMAIL _____ PAPER <u>C</u>
Phone <u>2-1353</u>	

If this is a Board of Appeals case, check here

Synonyms _____

Describe this invention in your own words.

SCIENTIFIC REFERENCE BR
Sci & Tech Inf. Ctr

AUG 21 RECD

Terms to avoid _____

Pat. & T.M. Office

Additional Comments

Please search claims 1-30, as attached hereto. Please see claims 9-12 for examples of the layered double hydroxide material (typically a hydrotalcite).

Please submit completed form to your EIC. SPE Signature here indicates Rush

STAFF USE ONLY

Searcher: MH
Searcher Phone #: _____
Searcher Location: _____
Date Searcher Picked Up: 8/26/08
Date Completed: 8/26/08
Searcher Prep & Review Time: _____
Clerical Prep Time: _____
Online Time: _____

Type of Search

NA Sequence (#) _____
AA Sequence (#) _____
Structure (#) _____
Bibliographic _____
Litigation _____
Fulltext _____
Patent Family _____
Other _____

Vendors and cost where applicable

STN _____
Dialog _____
Questel/Orbit _____
Dr.Link _____
Lexis/Nexis _____
Sequence Systems _____
WWW/Internet _____
Other (specify) _____

181555665

Atty. Dkt. No. 017503-0118

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method for treating waste material containing manure from animal feedlots, the method including the steps of mixing the material with a layered double hydroxide material, optionally a clay material and optionally water to form a mixture, said layered double hydroxide material being added in an amount sufficient to sequester anions present in the waste sludge or slurry, said layered double hydroxide material and optionally clay material and optionally water being added in an amount sufficient to form a workable mixture for granulating, and subjecting the mixture to a granulating process and a drying process to form dried granules.

2. (Original) A method as claimed in claim 1 wherein the amount of layered double hydroxide material added to the waste material is determined by adding trial amounts of layered double hydroxide material to a sample of the waste material, analysing a liquid component from the waste material for anion content, selecting a liquid component having a desired or pre-determined anion content and selecting the amount of layered double hydroxide material added to the waste sample from which the selected liquid component was obtained as the determined amount of layered double hydroxide material.

3. (Original) A method as claimed in claim 2 wherein the amount of layered double hydroxide material added to the waste material is in excess of the determined amount.

4. (Original) A method as claimed in claim 1 wherein the amount of layered double hydroxide material to be added to the waste material is determined by determining the amount of soluble anions in the waste material and adding at least sufficient LDH material to sequester the determined amount of soluble anions.

5. (Original) A method as claimed in claim 4 wherein the waste material is a waste sludge or slurry and the amount of layered double hydroxide material added to the waste sludge or slurry is determined by determining the amount of dissolved anions and leachable anions in the waste sludge or slurry and adding at least sufficient layered double hydroxide material to sequester the determined amount of dissolved and leachable anions.

6. (Currently Amended) A method as claimed in claim 4 wherein the amount of layered double hydroxide material added to the waste sludge or slurry is in excess of the amount required to sequester the determined amount of dissolved and leachable anions.

7. (Currently Amended) A method as claimed in claim 5 or claim 6 wherein the amount of layered double hydroxide material that is added to sequester the determined amount of dissolved and leachable anions is determined by determining the anion exchange capacity of the layered double hydroxide material, and calculating the amount of layered double hydroxide material required to sequester the determined amount of dissolved and leachable anions.

8. (Currently Amended) A method as claimed in ~~any one of claims 5 to 7~~ claim 5 wherein the amount of dissolved and leachable anions present in the waste sludge or slurry is determined by separating the sludge or slurry into a liquid fraction and a solid fraction, analysing the liquid fraction to determine the amount of dissolved anions, and subjecting the solid fraction to a leaching test to determine the amount of leachable anions.

9. (Currently Amended) A method as claimed in ~~any one of the preceding claims~~ claim 1 wherein the layered double hydroxide material is preferably of the general formula (1):

where M^{2+} and M^{3+} are di- and tri-valent metal ions respectively and A^n- is the interlayer anion of valance n, the x value represents the proportion of trivalent metal to the total amount of metal ion present and y denotes variable amounts of interlayer water..

10. (Original) A method as claimed in claim 9 wherein the metal ions are selected from Mg^{2+} , Al^{3+} , Mg^{2+} , Fe^{3+} and other cations including Ni, Zn, Mn, Ca, Cr, and La.

11. (Original) A method as claimed in claim 10 wherein the metal ions are Mg^{2+} and Al^{3+} and the layered double hydroxide material is a hydrotalcite.

12. (Original) A method as claimed in claim 11 wherein the hydrotalcite $C1^-$ ions or nitrate ions as its interlayer anions.

13. (Currently Amended) A method as claimed in ~~any one of the previous claims~~ claim 1 wherein the clay material is added and the clay material is selected from natural clays and synthetic clays.

14. (Original) A method as claimed in claim 13 wherein the natural clays are selected from bentonite, montmorillonite, kaolinite, halloysite, illite, chlorite, attapulgite and allophane or mixtures of two or more thereof.

15. (Original) A method as claimed in claim 14 wherein the natural clay is bentonite.

16. (Original) A method as claimed in claim 13 wherein the synthetic clays are selected from dawsonite or XAM.

17. (Currently Amended) A method as claimed in ~~any one of the preceding claims~~ claim 1 wherein the granulating processes is selected from granulating using rotating inclined tables, rotating drums, fluidised beds, high speed choppers or extrusion.

18. (Currently Amended) A method as claimed in ~~any one of the preceding claims~~ claim 1 wherein the drying step forms part of the granulating process or takes place as a separate step to the formation of the granules.

19. (Original) A method as claimed in claim 18 wherein the drying step is carried out by passing the granules through a drier operated at elevated temperature.

20. (Original) A method as claimed in claim 19 wherein the drier is operated at a temperature of from 20°C to 100°C.

21. (Currently Amended) A method as claimed in ~~any one of the preceding claims~~ claim 1 wherein the waste material is a waste sludge or slurry having a high water content, and the method further includes the steps of removing part of the water from the waste slurry or sludge prior to contacting with the layered double hydroxide material and the clay material and treating the removed part of the water to remove dissolved anions therefrom.

22. (Original) A method as claimed in claim 21 wherein the removed part of the water may be contacted with a layered double hydroxide material to remove dissolved anions.

23. (Original) A method as claimed in claim 22 wherein the removed part of the water is contacted with hydrotalcite containing nitrate as an interlayer anion and nitrate anions are not removed from the water and the water is subjected to a denitrification process.

24. (Currently Amended) A method as claimed in claim 22 or ~~claim 23~~ wherein the layered double hydroxide material that is used to treat the removed part of the water does not become saturated with the anions removed from the water and the layered double hydroxide material that is contacted with the water is added to the waste sludge or slurry, either as all of the layered double hydroxide material added to the waste sludge or slurry or as a complement to other layered double hydroxide material added to the waste sludge or slurry.

25. (Currently Amended) A method as claimed in ~~any one of claims 1 to 24~~ claim 1 wherein the waste material is a waste sludge or slurry having a high water content, and the method further includes the steps of removing part of the water from the waste slurry or sludge prior to contacting with the layered double hydroxide material and the clay material and reusing the water.

26. (Original) A method as claimed in claim 1 wherein the waste material is a relatively dry material, such as chicken manure from a battery farm, and water is added to the waste material in order to obtain a workable mixture.

27. (Original) A method as claimed in claim 26 wherein the water is added to the waste material prior to mixing with the layered double hydroxide material or added together with or after addition of one or both of the layered double hydroxide material and the clay material to the waste material.

28. (Currently Amended) A method as claimed in ~~any one of the preceding claims~~ claim 1 wherein the granules are subjected to a disinfection treatment to kill deleterious organisms therein.

29. (Original) A method as claimed in claim 28 wherein the disinfection treatment is a heat treatment or an irradiation treatment.

30. (Original) A method as claimed in claim 29 wherein the disinfection treatment is a heat treatment that is or forms part of the drying step.

VOLUNTARY SEARCH FEEDBACK

Art Unit _____

App./Serial # _____

Relevant prior art found

- 102 rejection
- 103 rejection
- Cited as being of interest
- Helped better understand invention
- Helped better understand state of the art in technology

Types Foreign Patent(s) Non-Patent Literature

Relevant prior art not found

- Results verified the lack of relevant prior art (helped determine patentability).
- Results were not useful in determining the patentability or understanding of the invention.

COMMENTS

Questions about the scope or the results of the search?

Contact your EIC searcher or Team Leader.

Please submit completed form to your EIC

STIC USE ONLY

12/07

Today's Date _____

Additional Notes if applicable (please indicate all actions including emails, phone calls, and individuals assisting):

=> fil req
FILE 'REGISTRY' ENTERED AT 15:20:00 ON 26 AUG 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 25 AUG 2008 HIGHEST RN 1043631-35-1
DICTIONARY FILE UPDATES: 25 AUG 2008 HIGHEST RN 1043631-35-1

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH July 5, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=> d his nofile

```
(FILE 'HOME' ENTERED AT 14:45:09 ON 26 AUG 2008)

FILE 'HCAPLUS' ENTERED AT 14:45:18 ON 26 AUG 2008
L1      1 SEA ABB=ON PLU=ON US20070050950/PN
          SEL RN

FILE 'REGISTRY' ENTERED AT 14:45:26 ON 26 AUG 2008
L2      7 SEA ABB=ON PLU=ON ((12068-50-7/BI OR 12172-71-3/BI OR
          12173-60-3/BI OR 12174-11-7/BI OR 12304-65-3/BI OR
          1318-74-7/BI OR 1318-93-0/BI))

FILE 'LREGISTRY' ENTERED AT 14:45:37 ON 26 AUG 2008
L3      1625 SEA ABB=ON PLU=ON ((MG OR CA OR SR OR BA OR CU OR ZN
          OR CD) (L)O(L)H)/ELS
L4      2969 SEA ABB=ON PLU=ON ((FE OR RU OR CO OR RH OR NI OR PD
          OR AU OR AL OR GA OR IN) (L)O(L)H)/ELS

FILE 'REGISTRY' ENTERED AT 14:48:32 ON 26 AUG 2008
L5      336392 SEA ABB=ON PLU=ON ((MG OR CA OR SR OR BA OR CU OR ZN
          OR CD) (L)O(L)H)/ELS
L6      709361 SEA ABB=ON PLU=ON ((FE OR RU OR CO OR RH OR NI OR PD
          OR AU OR AL OR GA OR IN) (L)O(L)H)/ELS
L7      1023690 SEA ABB=ON PLU=ON (L5 OR L6) NOT RN>=1
L8      6 SEA ABB=ON PLU=ON L2 AND L7
L9      21119 SEA ABB=ON PLU=ON L7 AND (OH OR HO)
L10     4 SEA ABB=ON PLU=ON L2 AND L9
L11     2 SEA ABB=ON PLU=ON L8 NOT L10
          D SCA
L12     70386 SEA ABB=ON PLU=ON L7 AND H2O
L13     4 SEA ABB=ON PLU=ON L2 AND L12
L14     85970 SEA ABB=ON PLU=ON L9 OR L12
L15     6 SEA ABB=ON PLU=ON L2 AND L14
```

FILE 'HCAPLUS' ENTERED AT 14:58:22 ON 26 AUG 2008
 L16 31096 SEA ABB=ON PLU=ON L15
 L17 QUE ABB=ON PLU=ON MANURE OR FECES OR FECULENCE OR
 STOOL OR DUNG
 L18 298 SEA ABB=ON PLU=ON L14(L)L17
 D KWIC
 L19 QUE ABB=ON PLU=ON CLAY?
 L20 QUE ABB=ON PLU=ON BENTONIT? OR CERAMIC? OR PHYLLOSILICA
 T? OR MONTMORILLONIT? OR TONSTEIN? OR KAOLINIT? OR
 MONTMORILLONITE(2A)SMECTIT? OR ILLIT? OR CHLORIT?
 L21 39 SEA ABB=ON PLU=ON L18 AND (L19 OR L20)
 L22 320 SEA ABB=ON PLU=ON (DOUBL?(3A)HYDROXID?) (3A) (MATERIAL
 OR CHEMICAL OR AGENT OR ADDITIVE OR MODIF?)
 L23 50 SEA ABB=ON PLU=ON L22 AND (L19 OR L20)
 D KWIC 1-2
 L24 1 SEA ABB=ON PLU=ON L23 AND L17
 L25 32 SEA ABB=ON PLU=ON L21 AND L19
 L26 28 SEA ABB=ON PLU=ON L21 AND (PY<=2003 OR PRY<=2003 OR
 AY<=2003)
 L27 QUE ABB=ON PLU=ON MIX? OR BLEND? OR ADMIX? OR COMMIX?
 OR IMMX? OR INTERMIX? OR COMBIN?
 L28 10 SEA ABB=ON PLU=ON L26 AND L27
 L29 18 SEA ABB=ON PLU=ON L26 NOT L28

=> fil hcap
 FILE 'HCAPLUS' ENTERED AT 15:20:03 ON 26 AUG 2008
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 26 Aug 2008 VOL 149 ISS 9
 FILE LAST UPDATED: 25 Aug 2008 (20080825/ED)

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2008.

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d ibib abs hitstr hitind 128 1-10

L28 ANSWER 1 OF 10 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2004:996095 HCAPLUS
 DOCUMENT NUMBER: 141:415268
 TITLE: Stabilization of feedlot waste manure

INVENTOR(S) : Gillman, Gavin Patrick
 PATENT ASSIGNEE(S) : Commonwealth Scientific and Industrial Research Organisation, Australia
 SOURCE: PCT Int. Appl., 24 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004099104	A1	20041118	WO 2004-AU580	200405 05
<--				
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
AU 2004235829	A1	20041118	AU 2004-235829	200405 05
<--				
CA 2524317	A1	20041118	CA 2004-2524317	200405 05
<--				
EP 1638905	A1	20060329	EP 2004-731115	200405 05
<--				
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK				
NZ 543303	A	20070427	NZ 2004-543303	200405 05
<--				
US 20070050950	A1	20070308	US 2005-555665	200511 04
<--				
PRIORITY APPLN. INFO.:		AU 2003-902178	A	200305 07
<--				
		WO 2004-AU580	W	200405 05

AB A method for treating waste material containing manure from animal

feedlots includes the steps of mixing the material with a layered double hydroxide material, a clay material and optionally water to form a mixture, the layered double hydroxide material being added in an amount sufficient to sequester anions present in the waste sludge or slurry, the layered double hydroxide material and clay material and optionally water being added in an amount sufficient to form a workable mixture for granulating, and subjecting the mixture to granulating and drying. The method allows intractable feedlot wastes to be treated and disposed.

IT 1318-74-7, Kaolinite, uses 12068-50-7,
 Halloysite 12172-71-3, Allophane 12173-60-3,
 Illite 12174-11-7, Attapulgite 12304-65-3D
 , Hydrotalcite, chloride or nitrate interlayer anion
 RL: NUU (Other use, unclassified); USES (Uses)
 (stabilizer of feedlot waste manure)

RN 1318-74-7 HCAPLUS

CN Kaolinite (Al₂(OH)₄(Si₂O₅)) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O ₅ Si ₂	1	20328-07-8
HO	4	14280-30-9
Al	2	7429-90-5

RN 12068-50-7 HCAPLUS
 CN Halloysite (Al₂(Si₂O₅).2H₂O) (CA INDEX NAME)

●2 Al

●2 H₂O

RN 12172-71-3 HCAPLUS
 CN Allophane (Al₂O_{1-1.7}(SiO₃)_{1.3-2.x}H₂O) (CA INDEX NAME)

CM 1

CRN 113892-28-7
 CMF Al . O₃ Si . O
 CCI TIS

CM 2

CRN 17778-80-2
 CMF O

CM 3

CRN 15593-90-5
 CMF O3 Si

CM 4

CRN 7429-90-5
 CMF Al

Al

RN 12173-60-3 HCAPLUS
 CN Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1FO-0.5]2010) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O5Si2	1.75	20328-07-8
O	1.25	17778-80-2
F	0 - 1	14762-94-8
HO	1 - 2	14280-30-9
K	0.75	7440-09-7
Mg	0 - 0.25	7439-95-4
Fe	0 - 0.25	7439-89-6
Al	2.25	7429-90-5

RN 12174-11-7 HCAPLUS
 CN Palygorskite ([Mg(Al0.5-1Fe0-0.5)]Si4(OH)O10.4H2O) (CA INDEX NAME)

CM 1

CRN 111059-81-5
 CMF Al . Fe . H O . Mg . 05 Si2
 CCI TIS

CM 2

CRN 20328-07-8
 CMF O5 Si2

CM 3

CRN 14280-30-9
CMF H OOH⁻

CM 4

CRN 7439-95-4
CMF Mg

Mg

CM 5

CRN 7439-89-6
CMF Fe

Fe

CM 6

CRN 7429-90-5
CMF Al

Al

RN 12304-65-3 HCAPLUS
CN Hydrotalcite (Mg₆(CO₃)₂(OH)₆)₂(OH)₄.4H₂O (9CI) (CA INDEX NAME)

CM 1

CRN 11097-59-9
CMF C O₃ . 2 Al H₆ O₆ . 4 H O . 6 Mg

CM 2

CRN 18893-33-9
CMF Al H₆ O₆
CCI CCS

CM 3

CRN 3812-32-6
CMF C O3

IC ICM C05F003-00
 ICS C05G003-04
 CC 60-4 (Waste Treatment and Disposal)
 IT Bentonite, uses
 Chlorite-group minerals
 Clays, uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (stabilizer of feedlot waste manure)
 IT 1318-74-7; Kaolinite, uses 1318-93-0,
 Montmorillonite, uses 12068-50-7, Halloysite
 12172-71-3, Allophane 12173-60-3, Illite
 12174-11-7, Attapulgite 12304-65-3D, Hydrotalcite,
 chloride or nitrate interlayer anion
 RL: NUU (Other use, unclassified); USES (Uses)
 (stabilizer of feedlot waste manure)
 REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN
 THE RE FORMAT

L28 ANSWER 2 OF 10 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2003:810721 HCAPLUS
 DOCUMENT NUMBER: 140:4510
 TITLE: Soil mineralogy evolution in the INRA 42 plots
 experiment (Versailles, France)
 AUTHOR(S): Pernes-Debuys, A.; Pernes, M.; Velde, B.;
 Tessier, D.
 CORPORATE SOURCE: INRA, Unite de Science du Sol, Versailles,
 78026, Fr.
 SOURCE: Clays and Clay Minerals (2003), 51(5),
 577-584
 CODEN: CLCMAB; ISSN: 0009-8604
 PUBLISHER: Clay Minerals Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Natural soils change by long-term pedogenetic mechanisms, but
 tillage effects can also strongly affect the evolution of soils,

mainly their physicochem. properties. The paper describes the impact of fertilizers and amendments on soil mineralogy in exptl. plots, without plant interaction. The soils of 42 plots have been managed with fertilizers without plant growth since 1929. Strong changes in pH were observed and cation exchange capacities doubled between low and high pH (from 3.6 to 8.2). Strong acidification caused more evolution in the clay particle distribution without selective action on the clay composition. While the clay content varied only slightly, the organic matter content changed considerably, decreasing with nonorg. treatment and increasing in the plot with manure treatment. The major clay minerals in the exptl. plots are two disordered illite-smectite mixed-layer minerals, with minor amts. of illite/mica and kaolinite. Most treatments effected only minor changes in clay mineralogy. However the illite (non-expandable mineral) content increased in plots with K addition either as KCl treatment or in manure amendments by increasing the illite content and the illite (non-expandable layer) content of the I-S minerals. Manure changed the I-S mineral to a greater extent.

IT 1318-74-7, Kaolinite., processes

12173-60-3, Illite

RL: GPR (Geological or astronomical process); PROC (Process)
(long-term effects of fertilizers, amendments and manure
or soil mineralogy and composition)

RN 1318-74-7 HCPLUS

CN Kaolinite ($\text{Al}_2(\text{OH})_4(\text{Si}_2\text{O}_5)$) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O ₅ Si ₂	1	20328-07-8
HO	4	14280-30-9
Al	2	7429-90-5

RN 12173-60-3 HCPLUS

CN Illite ($[\text{Al}1.75(\text{Fe}0-1\text{Mg}0-1)0.25]\text{K}0.75(\text{Si}3.5\text{Al}0.5)[(\text{OH})0.5-1\text{F}0-0.5]2010$) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O ₅ Si ₂	1.75	20328-07-8
O	1.25	17778-80-2
F	0 - 1	14762-94-8
HO	1 - 2	14280-30-9
K	0.75	7440-09-7
Mg	0 - 0.25	7439-95-4
Fe	0 - 0.25	7439-89-6
Al	2.25	7429-90-5

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)

IT Clay minerals

Mica-group minerals, processes

Smectite-group minerals

RL: GPR (Geological or astronomical process); PROC (Process)
(long-term effects of fertilizers, amendments and manure or soil
mineralogy and composition)

IT 1318-74-7, Kaolinite., processes

12173-60-3, Illite

RL: GPR (Geological or astronomical process); PROC (Process)
 (long-term effects of fertilizers, amendments and manure
 or soil mineralogy and composition)

REFERENCE COUNT: 19 THERE ARE 19 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L28 ANSWER 3 OF 10 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2003:478883 HCAPLUS
 DOCUMENT NUMBER: 139:57266
 TITLE: Inorganic salt removal agent and its production
 for soil amendment and agricultural plant growth
 using wastes
 INVENTOR(S): Kuraoka, Shoji; Fujitsuka, Hitoshi; Yamamoto,
 Keiichi
 PATENT ASSIGNEE(S): Keiprasu Y. K., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003175383	A	20030624	JP 2001-379039	200112 12
<--				
PRIORITY APPLN. INFO.:		JP 2001-379039		
200112 12				
<--				

- AB The inorg. salt removal agent is produced by impregnating a raw material such as activated carbon or another adsorbent with a mixed solution of MgSO₄, FeSO₄, and ascorbic acid or spraying the mixed solution to the raw material; mixing a mixture of an ammonium compound, a Ca compound, a K compound, and/or urea with the resulting raw material; and forming the obtained raw material mixture into granules or particles by mixing the raw material mixture with a binder and water in flat container in inclined state. The inorg. salt removal agent is an activated carbon or another adsorbent in form of granulars or particles whose surface adsorbs cations dissociated from MgSO₄, FeSO₄, and ascorbic acid which are partially replaced with cations dissociated from an ammonium compound, a Ca compound, a K compound, and/or urea and the agent contains the ammonium compound, the Ca compound, the K compound, and/or urea. The agent can remove and immobilize NaCl, CaCl₂, KCl and the like which are contained in garbage, livestock manure, and soil and noxious to plants and is useful for soil amendments for plant growth.
- IT 1305-62-0; Slaked lime, processes
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (adsorbent treated with; adsorbent-based salt removal agent for removing salts from garbage, livestock manure, and soil for soil amendments)
- RN 1305-62-0 HCAPLUS

CN Calcium hydroxide (Ca(OH)2) (CA INDEX NAME)

HO—Ca—OH

IC ICM B09C001-02
 ICS B01J002-14; B01J020-20; B09B003-00; B09C001-08; C02F011-00
 CC 60-4 (Waste Treatment and Disposal)
 Section cross-reference(s): 17
 IT Bentonite, uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (adsorbent; adsorbent-based salt removal agent for removing salts
 from garbage, livestock manure, and soil for soil amendments)
 IT 50-81-7, Ascorbic acid, processes 57-13-6, Urea, processes
 1305-62-0, Slaked lime, processes 6484-52-2, Ammonium
 nitrate, processes 7487-88-9, Magnesium sulfate, processes
 7720-78-7, Ferrous sulfate 7757-79-1, Potassium nitrate, processes
 7783-20-2, Ammonium sulfate, processes
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or
 chemical process); PYP (Physical process); PROC (Process); USES
 (Uses)
 (adsorbent treated with; adsorbent-based salt removal agent for
 removing salts from garbage, livestock manure, and soil
 for soil amendments)

L28 ANSWER 4 OF 10 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2000:341641 HCPLUS
 DOCUMENT NUMBER: 133:73536
 TITLE: An investigation of plant growth in an
 organo-zeolitic substrate and its ecological
 significance
 AUTHOR(S): Leggo, Peter J.
 CORPORATE SOURCE: Department of Earth Sciences, University of
 Cambridge, Cambridge, CB2 3EQ, UK
 SOURCE: Plant and Soil (2000), 219(1/2),
 135-146
 CODEN: PLSOA2; ISSN: 0032-079X
 PUBLISHER: Kluwer Academic Publishers
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB This work concerns a series of expts. designed to test and understand the effect of ammoniated zeolite on plant growth. The affinity of the zeolite mineral clinoptilolite for NH4+ is utilized in organo-zeolitic substrates to enhance plant growth. By comparing plants grown in substrates with and without ammoniated zeolite, an increase in plant dry weight of some 19% was shown to be due to the presence of the zeolitic NH4+-N. In this study, exptl. work has shown that in an organically enriched substrate an exponential diffusion of NH4+ occurs as a nonequil. reaction. It is suggested that ion-exchange is taking place in which soil Ca+2 is exchanged for lattice bound NH4+. Nitrifying bacteria, utilizing the diffusing NH4+, appear to protect seedlings from the effect of ammonium toxicity and in so doing act as a biol. buffer, allowing the plant to take up nitrogen at a rate which is most advantageous throughout its growth. Leaching expts. confirm the presence of very high soil nitrate concns. indicating that a large population of nitrifying bacteria is established. The ionic mobility of major cations is also greatly increased in the organo-zeolitic substrates. This behavior is already known to produce beneficial effects in the

rhizosphere, increasing aeration by flocculating colloidal clay particles and enabling the diffusion of metal ions to occur. Research reported elsewhere demonstrates that plants grown in organo-zeolitic substrates on toxic waste sites exhibit low uptake of toxic metals and it would, therefore, appear that the unique features of organo-zeolitic substrates have both nutritional and ecol. value.

IT 12173-10-3D, Clinoptilolite ((K0-1Na0-1Ca0-0.5)6(Al6Si30O72).20H2O), ammonium-exchanged
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (plant growth substrate amended with composted zeolitic tuff-poultry manure mixture containing)

RN 12173-10-3 HCAPLUS

CN Clinoptilolite ((K0-1Na0-1Ca0-0.5)6(Al6Si30O72).20H2O) (CA INDEX NAME)

CM 1

CRN 209482-44-0

CMF Al . Ca . K . Na . O . Si

CCI TIS

CM 2

CRN 17778-80-2

CMF O

O

CM 3

CRN 7440-70-2

CMF Ca

Ca

CM 4

CRN 7440-23-5

CMF Na

Na

CM 5

CRN 7440-21-3

CMF Si

Si

CM 6

CRN 7440-09-7
CMF K

K

CM 7

CRN 7429-90-5
CMF A1

A1

- CC 19-5 (Fertilizers, Soils, and Plant Nutrition)
IT Diffusion
(ammonium diffusion in plant growth substrate amended with composted zeolitic tuff-poultry manure mixture)
IT Mineral elements, biological studies
RL: BOC (Biological occurrence); BSU (Biological study, unclassified); PEP (Physical, engineering or chemical process); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
(in leachate of plant growth substrate amended with composted zeolitic tuff-poultry manure mixture containing ammoniated clinoptilolite)
IT Nitrifying bacteria
(in plant growth substrate amended with composted zeolitic tuff-poultry manure mixture in relation to ammonium utilization)
IT Growth and development, plant
(on substrate amended with composted zeolitic tuff-poultry manure mixture in relation to ammonium behavior)
IT Compost
(plant growth in substrate amended with composted zeolitic tuff-poultry manure mixture)
IT Spring wheat
(plant growth on substrate amended with composted zeolitic tuff-poultry manure mixture containing ammoniated clinoptilolite)
IT Manure
(plant growth substrate amended with composted zeolitic tuff-poultry manure mixture)
IT Zeolite tuff
RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
(plant growth substrate amended with composted zeolitic tuff-poultry manure mixture)
IT Soil substitutes
(plant growth substrate amended with composted zeolitic tuff-poultry manure mixture containing ammoniated clinoptilolite)
IT 14797-55-8, Nitrate, biological studies
RL: BOC (Biological occurrence); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study);

FORM (Formation, nonpreparative); OCCU (Occurrence)
 (ammonium utilization and available nitrogen species in plant
 growth substrate amended with composted zeolitic tuff-poultry
 manure mixture)

- IT 14798-03-9, Ammonium, biological studies
 RL: BPR (Biological process); BSU (Biological study, unclassified);
 PEP (Physical, engineering or chemical process); BIOL (Biological
 study); PROC (Process)
 (diffusion in plant growth substrate amended with composted
 zeolitic tuff-poultry manure mixture and utilization by
 nitrifying bacteria)
- IT 7439-95-4, Magnesium, biological studies 7440-09-7, Potassium,
 biological studies 7440-23-5, Sodium, biological studies
 7440-70-2, Calcium, biological studies 7723-14-0, Phosphorus,
 biological studies
 RL: BOC (Biological occurrence); BSU (Biological study,
 unclassified); PEP (Physical, engineering or chemical process); BIOL
 (Biological study); OCCU (Occurrence); PROC (Process)
 (in leachate of plant growth substrate amended with composted
 zeolitic tuff-poultry manure mixture containing ammoniated
 clinoptilolite)
- IT 12173-10-3D, Clinoptilolite ((K0-1Na0-1Ca0-
 0.5)6(Al6Si30072).20H2O), ammonium-exchanged
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (plant growth substrate amended with composted zeolitic
 tuff-poultry manure mixture containing)

REFERENCE COUNT: 24 THERE ARE 24 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L28 ANSWER 5 OF 10 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1997:711753 HCAPLUS
 DOCUMENT NUMBER: 127:298114
 ORIGINAL REFERENCE NO.: 127:58171a,58174a
 TITLE: Method for treating of fecal water
 INVENTOR(S): Bereczk, Imre; Bellayne Kovacs, Tatjana;
 Martonosi, Gyoergy; Droppa, Kalman; Kuti, Janos;
 Miskucza, Peter
 PATENT ASSIGNEE(S): Katalizator Kereskedoe, Foevallalkozo es
 Innovacios Kft., Hung.
 SOURCE: Hung. Teljes, 8 pp.
 CODEN: HUXXBU
 DOCUMENT TYPE: Patent
 LANGUAGE: Hungarian
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

HU 75349	A2	19970528	HU 1989-2720	198905 30

PRIORITY APPLN. INFO.: HU 1989-2720
 198905
 30

AB Urine and manure-containing wastewater from animal farms is treated by a
 mixture of clay minerals (e.g.

montmorillonite, clinoptilolite) containing SiO₂ 65-76 and Al₂O₃ 9-13%, having particle size <63µ (1-100 g/1L wastewater) cellulose-containing ground materials (e.g. sawdust, plant waste, chopped straw, biomass, etc. and a flocculating agent Ionic surfactant) 1-3000 ppm. The liquid phase can be released into the hydrol. network. The solid precipitate containing bacteria is treated by CaO (lime) for disinfection and can be recycled in agricultural activity.

IT 12173-10-3, Clinoptilolite

RL: NUU (Other use, unclassified); USES (Uses)
(purification of urine and manure containing wastewaters by mixture of clay minerals containing silica and alumina, cellulose, flocculating agent, and lime.)

RN 12173-10-3 HCAPLUS

CN Clinoptilolite ((K0-1Na0-1Ca0-0.5)6(Al6Si30O72).20H2O) (CA INDEX NAME)

CM 1

CRN 209482-44-0

CMF Al . Ca . K . Na . O . Si

CCI TIS

CM 2

CRN 17778-80-2

CMF O

O

CM 3

CRN 7440-70-2

CMF Ca

Ca

CM 4

CRN 7440-23-5

CMF Na

Na

CM 5

CRN 7440-21-3

CMF Si

Si

CM 6

CRN 7440-09-7
CMF K

K

CM 7

CRN 7429-90-5
CMF Al

Al

IC ICM C02F001-00
 CC 60-2 (Waste Treatment and Disposal)
 ST manure wastewater purifn clay mineral cellulose
 IT Biomass
 Flocculants
 Manure
 Sawdust
 Sterilization and Disinfection
 Straw
 Surfactants
 Urine
 Wastewater treatment
 (purification of urine and manure containing wastewaters by mixt
 . of clay minerals containing silica and alumina,
 cellulose, flocculating agent, and lime.)
 IT Lime (chemical)
 RL: NUU (Other use, unclassified); USES (Uses)
 (purification of urine and manure containing wastewaters by mixt
 . of clay minerals containing silica and alumina,
 cellulose, flocculating agent, and lime.)
 IT 1318-93-0, Montmorillonite, uses 1344-28-1, Alumina,
 uses 7631-86-9, Silica, uses 9004-34-6, Cellulose, uses
 12173-10-3, Clinoptilolite
 RL: NUU (Other use, unclassified); USES (Uses)
 (purification of urine and manure containing wastewaters by
 mixture of clay minerals containing silica and
 alumina, cellulose, flocculating agent, and lime.)

L28 ANSWER 6 OF 10 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1997:467524 HCPLUS
 DOCUMENT NUMBER: 127:80878
 ORIGINAL REFERENCE NO.: 127:15505a,15508a
 TITLE: Molded cattle manure compost and its manufacture
 INVENTOR(S): Kanamaru, Naoaki; Kanemitsu, Mikio; Tsuga,
 Konosuke; Omori, Sadao; Goto, Takashi; Fukumori,
 Isao; Kishi, Hideyuki; Aibe, Shunji; Onodera,
 Yasuyoshi; Noguchi, Katsunori
 PATENT ASSIGNEE(S): Seibutsu Kei Tokutei Sangyo Gijutsu-kenkyu
 Suishin Kiko, Japan; Katakura Chikkarin Co.,

Ltd.
 SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09132488	A	19970520	JP 1995-286071	199511 02
<-- PRIORITY APPLN. INFO.: JP 1995-286071				199511 02

- AB A water-absorbing clay mineral (and/or a liming agent) is added to cattle manure compost and, after mixing, molded by the pressure forming method or pressure extrusion to obtain compost with a hardness suitable for machine application without drying. An acidic material may be added to adjust the pH. Thus, cattle manure compost (45% moisture) 80 and attapulgite 20 parts were mixed and pressure extruded to obtain molded compost (moisture content, 37%) with a hardness of 3.7 kg.
- IT 12174-11-7, Attapulgite
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (in molded cattle manure compost manufacture)
- RN 12174-11-7 HCAPLUS
- CN Palygorskite ([Mg(Al0.5-1Fe0-0.5)]Si4(OH)O10.4H2O) (CA INDEX NAME)

CM 1

CRN 111059-81-5
 CMF Al . Fe . H O . Mg . O5 Si2
 CCI TIS

CM 2

CRN 20328-07-8
 CMF O5 Si2

CM 3

CRN 14280-30-9
 CMF H O

OH-

CM 4

CRN 7439-95-4
CMF Mg

Mg

CM 5

CRN 7439-89-6
CMF Fe

Fe

CM 6

CRN 7429-90-5
CMF Al

Al

IC ICM C05F003-00
 ICS C05G003-00
 CC 19-6 (Fertilizers, Soils, and Plant Nutrition)
 ST molded manure compost manuf **clay** mineral; liming agent
 molded manure compost
 IT **Clay** minerals
 Lime (chemical)
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (in molded cattle manure compost manufacture)
 IT 12174-11-7, Attapulgite
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (in molded cattle manure compost manufacture)

L28 ANSWER 7 OF 10 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1993:26828 HCAPLUS
 DOCUMENT NUMBER: 118:26828
 ORIGINAL REFERENCE NO.: 118:4881a,4884a
 TITLE: Water-absorbing deodorants for odorous gases
 INVENTOR(S): Tanaka, Eiji; Tushima, Tetsuya
 PATENT ASSIGNEE(S): Kuraray Chemical Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
-----	-----	-----	-----	-----

JP 04290547

A

19921015

JP 1991-105005

199103
15

<--

PRIORITY APPLN. INFO.:

JP 1991-105005

199103
15

<--

AB Aqueous solns. containing silicate salts and ≥ 1 metal salts of Ag, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Sn, Cu, Zn, Cd, and Pb are adjusted to pH 9-11, kept at 45-70° to form sols containing silicate salts and metal salts, neutralized by acids, and the resulting metal salt-containing silicate gels are blended with bentonite and isobutene-maleic anhydride copolymer-polyethyleneimine complex to give title agents, useful for deodorization of animal manures. The adsorbents show good thermal stability and remove odorous gases, e.g. H₂S, NH₃, mercaptans, amines, aldehydes, etc. in high efficiency.

IT 1309-42-8, Magnesium hydroxide

RL: OCCU (Occurrence)

(silicate gels containing, in water-absorbing adsorbents, for deodorization of animal manure)

RN 1309-42-8 HCPLUS

CN Magnesium hydroxide (Mg(OH)₂) (CA INDEX NAME)

HO—Mg—OH

IC ICM B01J020-26

ICS A61L009-01; A61L009-16; B01D053-04; B01J020-10

CC 59-6 (Air Pollution and Industrial Hygiene)

Section cross-reference(s) : 48

IT Bentonite, uses

RL: USES (Uses)

(deodorants containing, water-absorbing, for treatment of animal manure)

IT Air purification

(deodorization, agents for, metal salt-containing silicate gels and bentonite and water-absorbing polymers as, for animal manure treatment)

IT 1309-42-8, Magnesium hydroxide 7439-89-6D, Iron, salts 7439-92-1D, Lead, salts 7439-96-5D, Manganese, salts 7440-02-0D, Nickel, salts 7440-22-4D, Silver, salts 7440-31-5D, Tin, salts 7440-32-6D, Titanium, salts 7440-43-9D, Cadmium, salts 7440-47-3D, Chromium, salts 7440-48-4D, Cobalt, salts 7440-50-8D, Copper, salts 7440-62-2D, Vanadium, salts 7733-02-0, Zinc sulfate 10043-01-3, Aluminum sulfate

RL: OCCU (Occurrence)

(silicate gels containing, in water-absorbing adsorbents, for deodorization of animal manure)

L28 ANSWER 8 OF 10 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1989:176582 HCPLUS

DOCUMENT NUMBER: 110:176582

ORIGINAL REFERENCE NO.: 110:29259a,29262a

TITLE: Behavior of sepiolite, vermiculite, and montmorillonite as supports in anaerobic digesters

AUTHOR(S): Perez Rodriguez, J. L.; Carretero, M. I.;

CORPORATE SOURCE: Maqueda, C.
 SOURCE: Inst. Cienc. Mater., CSIC, Seville, 41080, Spain
 Applied Clay Science (1989), 4(1),
 69-82
 CODEN: ACLSER; ISSN: 0169-1317
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Anaerobic fermentation of piggery wastewater-manure mixts. was carried out using clay minerals (sepiolite, vermiculite, and montmorillonite) as biofilm supports; expanded polyurethane and PVC were also used, for comparison. Treated sepiolite in suspension promoted growth and fixation of Methanosaarcina to the particle surface, while there was no growth on the other clays; no bacteria were observed in the polymeric supports either. The digestion process may be affected by Mg released from the supports.

IT 1318-00-9, Vermiculite 63800-37-3, Sepiolite
 $(Mg_2H_2(SiO_3)_3 \cdot xH_2O)$

RL: USES (Uses)
 (bacteria supports, in biogas manufacture, from piggery wastewater and manure)

RN 1318-00-9 HCAPLUS

CN Vermiculite $(Mg_{0.33}[Mg_{2-3}(Al_{0-1}Fe_{0-1})_0-1](Si_{2.33-3.33}Al_{0.67-1.67})(OH)_{2010.4}H_2O)$ (CA INDEX NAME)

CM 1

CRN 122872-60-0

CMF Al . Fe . H O . Mg . O3 Si . O

CCI TIS

CM 2

CRN 17778-80-2

CMF O

O

CM 3

CRN 15593-90-5

CMF O3 Si

CM 4

CRN 14280-30-9

CMF H O

OH⁻

CM 5

CRN 7439-95-4
CMF Mg

Mg

CM 6

CRN 7439-89-6
CMF Fe

Fe

CM 7

CRN 7429-90-5
CMF Al

Al

RN 63800-37-3 HCAPLUS
CN Sepiolite (Mg₄(OH)₂(Si₂O₅)₃.6H₂O) (CA INDEX NAME)

CM 1

CRN 66590-44-1
CMF H O . Mg . O₅ Si₂
CCI TIS

CM 2

CRN 20328-07-8
CMF O₅ Si₂

CM 3

CRN 14280-30-9
CMF H O

OH-

CM 4

CRN 7439-95-4
CMF Mg

Mg

CC 52-1 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 45, 57, 60

ST biogas piggery wastewater manure digestion; clay support
 anaerobic fermn Methanosarcina; sepiolite vermiculite support fermn
 biogas; montmorillonite support fermn wastewater biogas;
 PVC polyurethane support fermn biogas

IT Wastewater
 (from piggery, biogas manufacture from, clay support for
 bacteria in)

IT Methanosarcina
 (growth and activity of, clay support effect on, in
 anaerobic digester, biogas yield in relation to)

IT Manure
 (pig, biogas manufacture from, clay support for bacteria in)

IT Fuel gas manufacturing
 (biogas, from piggery wastewater and manure, clay
 supports for bacteria in)

IT 1318-00-9, Vermiculite 1318-93-0, Montmorillonite
 , uses and miscellaneous 9002-86-2, PVC 63800-37-3,
 Sepiolite ($Mg_2H_2(SiO_3)_3 \cdot xH_2O$)
 RL: USES (Uses)
 (bacteria supports, in biogas manufacture, from piggery wastewater and
 manure)

IT 74-82-8P, Methane, preparation
 RL: PREP (Preparation)
 (manufacture of gas containing, from piggery wastewater and manure,
 clay support for bacteria in)

IT 7439-95-4, Magnesium, uses and miscellaneous
 RL: USES (Uses)
 (release of, from clay supports, in anaerobic digester,
 biogas yield in relation to)

L28 ANSWER 9 OF 10 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1981:514008 HCPLUS
 DOCUMENT NUMBER: 95:114008
 ORIGINAL REFERENCE NO.: 95:19121a,19124a
 TITLE: Changes in the electrokinetic characteristics of
 gypsum-treated soda-solonetz soil
 AUTHOR(S): Kurbatov, A. I.; Goncharov, P. P.; Zubareva, R.
 D.
 CORPORATE SOURCE: USSR
 SOURCE: Doklady TSKhA (1980), 263, 90-4
 CODEN: DTSKAG; ISSN: 0366-984X
 DOCUMENT TYPE: Journal
 LANGUAGE: Russian
 AB Gypsum [13397-24-5] application at a rate calculated on the

basis of total content of exchangeable Na in the 0-20-cm layer improved best the phys. and physicochem. properties of soda-solonetz soils. The content of sorbed Na decreased from 15.4-26.3 mequiv/100 g to 2.3-18.1 mequiv/100 g, and, depending on soil layer, the pH decreased from 8.95 to 7-7.35, and the content of H₂O-peptized clay decreased from 28.1-36.9 to 7.5-10%. The treatment increased the filtration coefficient and the average pore diameter. Combining gypsum with manure application was most effective.

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)

L28 ANSWER 10 OF 10 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1970:455114 HCPLUS

DOCUMENT NUMBER: 73:55114

ORIGINAL REFERENCE NO.: 73:9059a,9062a

TITLE: Reclamation of steppe solonetz in the Moldavian SSR

AUTHOR(S): Shestakov, I. L.; Suvak, P. A.; Mirochnik, A. S.

CORPORATE SOURCE: USSR

SOURCE: Fizika i Melioratsiya Pochv Moldavii (1968), No. 1, 9-52

CODEN: FMPMBF; ISSN: 0532-9302

DOCUMENT TYPE: Journal

LANGUAGE: Russian

AB Steppe solonetz and alkaline chernozem soils of the Moldavian SSR were described. The soils were of heavy clay structure, containing 44-55% silt particles. Chemical anal. showed the content of water-soluble salts of the upper horizon to be 0.2-0.35%. The content of the exchangeable Na of the upper horizon was low, 6-7% of the absorption capacity of the soil; the content of the exchangeable Na of the lower solonetz horizons was higher, 30-34% of the absorption capacity. Field expts. were conducted to determine the efficiency of the chemical (CaSO₄ addition) and deep ploughing reclamation methods. CaSO₄ alone increased fertility, but the most effective treatment consisted of CaSO₄ and farm manure. This combination had the longest lasting effect on crop yield in the years following the application. The effect of deep ploughing for improving the soil fertility was weaker than the treatment with CaSO₄.

IT 13397-24-5, biological studies

RL: BIOL (Biological study)

(soil reclamation by farmyard manure and)

RN 13397-24-5 HCPLUS

CN Gypsum (Ca(SO₄).2H₂O) (CA INDEX NAME)

● Ca

● 2 H₂O

CC 20 (Fertilizers, Soils, and Plant Nutrition)
 IT 13397-24-5, biological studies
 RL: BIOL (Biological study)
 (soil reclamation by farmyard manure and)

=> d ibib abs hitstr hitind 129 1-18

L29 ANSWER 1 OF 18 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2008:928307 HCPLUS
 DOCUMENT NUMBER: 149:152429
 TITLE: Method for manufacture of suspension organomineral fertilizer
 INVENTOR(S): Hoffmann, Jozef; Chojnacki, Andrzej; Gorecki, Henryk; Hoffmann, Krystyna; Gorecka, Helena
 PATENT ASSIGNEE(S): Politechnika Wroclawska, Pol.
 SOURCE: Pol., 6pp.
 CODEN: POXXA7
 DOCUMENT TYPE: Patent
 LANGUAGE: Polish
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PL 197609	B1	20080430	PL 2003-360443	200306 02
<--				
PRIORITY APPLN. INFO.:	PL 2003-360443			
	200306 02			
<--				

AB The claimed suspension organomineral fertilizers with microelements are made from liquid animal manure treated with mineral acids (sulfuric, phosphoric, nitric) to reach pH 7. Subsequently, macronutrient (N, P, K, Mg, Ca, S) and micronutrient (B, Mo, Cu, Fe, Mn, Zn, Co) components are dissolved in the liquid Bentonite clays (montmorillonite, attapulgite) can be used to increase the suspension stability. The fertilizers were tested on corn, sugar beet, and vegetable crops.
 IT 7758-99-8, Copper sulfate pentahydrate
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses) (manufacture of suspension organomineral fertilizers from acid-treated liquid manure with dissolved macronutrients (N, P, K, Mg, Ca, S) and micronutrients (B, Mo, Cu, Fe, Mn, Zn, Co))
 RN 7758-99-8 HCPLUS
 CN Sulfuric acid copper(2+), salt (1:1), hydrate (1:5) (CA INDEX NAME)

● Cu(II)

● 5 H₂O

CC 19-6 (Fertilizers, Soils, and Plant Nutrition)
 IT Clays, biological studies
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (attapulgitic; manufacture of suspension organomineral fertilizers
 from acid-treated liquid manure with dissolved macronutrients (N,
 P, K, Mg, Ca, S) and micronutrients (B, Mo, Cu, Fe, Mn, Zn, Co))
 IT Bentonite, biological studies
 Superphosphates
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (manufacture of suspension organomineral fertilizers from acid-treated
 liquid manure with dissolved macronutrients (N, P, K, Mg, Ca, S)
 and micronutrients (B, Mo, Cu, Fe, Mn, Zn, Co))
 IT Clays, biological studies
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (montmorillonitic; manufacture of suspension organomineral
 fertilizers from acid-treated liquid manure with dissolved
 macronutrients (N, P, K, Mg, Ca, S) and micronutrients (B, Mo,
 Cu, Fe, Mn, Zn, Co))
 IT 57-13-6, Urea, biological studies 6484-52-2, Ammonium nitrate,
 biological studies 7439-89-6, Iron, biological studies
 7439-95-4, Magnesium, biological studies 7439-96-5, Manganese,
 biological studies 7439-98-7, Molybdenum, biological studies
 7440-09-7, Potassium, biological studies 7440-42-8, Boron,
 biological studies 7440-48-4, Cobalt, biological studies
 7440-50-8, Copper, biological studies 7440-66-6, Zinc, biological
 studies 7440-70-2, Calcium, biological studies 7447-40-7,
 Potassium chloride (KCl), biological studies 7664-38-2, Phosphoric
 acid, biological studies 7664-41-7, Ammonia, biological studies
 7664-93-9, Sulfuric acid, biological studies 7697-37-2, Nitric
 acid, biological studies 7704-34-9, Sulfur, biological studies
 7720-78-7, Ferrous sulfate 7722-76-1, MonoAmmonium phosphate
 7723-14-0, Phosphorus, biological studies 7727-37-9, Nitrogen,
 biological studies 7733-02-0, Zinc sulfate 7758-99-8,
 Copper sulfate pentahydrate 7778-80-5, Potassium sulfate,
 biological studies 7783-28-0, DiAmmonium phosphate 7785-87-7
 7786-30-3, Magnesium chloride, biological studies 10043-35-3,
 Boric acid (H₃BO₃), biological studies 12027-67-7, Ammonium
 molybdate 16389-88-1, Dolomite, biological studies
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (manufacture of suspension organomineral fertilizers from acid-treated
 liquid manure with dissolved macronutrients (N, P, K, Mg,
 Ca, S) and micronutrients (B, Mo, Cu, Fe, Mn, Zn, Co))

L29 ANSWER 2 OF 18 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2008:226475 HCPLUS
 DOCUMENT NUMBER: 148:261638
 TITLE: Animal feed and methods for reducing ammonia and phosphorus levels in manure.
 INVENTOR(S): Hale, Edward Carroll
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S. Pat. Appl. Publ., 44pp., Cont.-in-part of U.S. Ser. No. 868,070.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20080044548	A1	20080221	US 2007-845426	200708 27
US 20050053700	A1	20050310	US 2004-868070	200406 15
PRIORITY APPLN. INFO.:			US 2003-499988P	P 200309 04
			US 2004-541500P	P 200402 03
			US 2004-541622P	P 200402 04
			US 2004-868070	A2 200406 15

AB An animal feed is provided that employs a substantially indigestible cation exchanger capable of binding ammonium cations and an acidogenic substance to acidify an animal's manure and thereby create ammonium cations that can be bound by the cation exchanger. The animal feed reduces ammonia emissions from manure produced by animals fed the animal feed compared to the emissions obtained from manure when an acidogenic substance is fed alone and compared to the emissions obtained from manure when a cation exchange capacity material is fed alone. Other aspects provide a method of lowering ammonia emissions from manure. One embodiment provides a method for reducing soluble phosphorus levels in manure and a method for reducing total phosphorus levels in manure. Further aspects present a method that yields manure that may be used alone or in concert with other materials to act as a fertilizer having advantageous ecol. properties. Another aspect provides a method for reducing insect populations associated with manure. One embodiment is a composition for amending animal feed to produce animal waste that is lower in volatile ammonia and higher in nitrogen.

IT 12271-42-0, Clinoptilolite 13397-24-5, Gypsum,
biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(animal feed and methods for reducing ammonia and phosphorus
levels in manure)
RN 12271-42-0 HCAPLUS
CN Clinoptilolite (Na(AlSi5O12).xH2O) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
RN 13397-24-5 HCAPLUS
CN Gypsum (Ca(SO4).2H2O) (CA INDEX NAME)

● Ca

●2 H₂O

INCL 426630000; 119171000; 426531000
CC 18-1 (Animal Nutrition)
Section cross-reference(s): 5, 17, 19, 59
IT Clays, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(calcium aluminosilicate; animal feed and methods for reducing
ammonia and phosphorus levels in manure)
IT 56-87-1, Lysine, biological studies 63-68-3, L-Methionine,
biological studies 65-85-0D, Benzoic acid, salts 72-19-5,
L-Threonine, biological studies 73-22-3, L-Tryptophan, biological
studies 1863-63-4, Ammonium benzoate 7439-95-4D, Magnesium,
salts 7440-23-5, Sodium, biological studies 7440-70-2D, Calcium,
salts 7681-38-1, Sodium bisulfate 7733-02-0, Zinc sulfate
9004-34-6, Cellulose, biological studies 12125-02-9, Ammonium
chloride, biological studies 12271-42-0, Clinoptilolite
13397-24-5, Gypsum, biological studies 37341-58-5, Phytase
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(animal feed and methods for reducing ammonia and phosphorus
levels in manure)
IT 1327-39-5, Calcium aluminosilicate
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(clays; animal feed and methods for reducing ammonia
and phosphorus levels in manure)

L29 ANSWER 3 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2003:372744 HCAPLUS
DOCUMENT NUMBER: 138:373435
TITLE: Treatment of manure for manufacture of odor-free
and hygienic pellets and water
INVENTOR(S): Merai, Josef
PATENT ASSIGNEE(S): Germany

SOURCE: Ger. Offen., 10 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 10153806	A1	20030515	DE 2001-10153806	200111 05

PRIORITY APPLN. INFO.: DE 2001-10153806
200111
05

AB The invention concerns an economical procedure for treatment of cattle, pork and poultry manure which results by (1) flocculation of the manure with organic flocculation agents, (2) predewatering, thickening, and further dewatering, (3) pelletization, and (4) drying the resulting pellets up to 95-100% dry substance. Waste liquid resulting from step 2 is further flocculated, thereby resulting solid wastes are recycled into the manure and the waste liquid is chemical-biol. degraded and sanitized with NaOCl in a bioreactor. Furthermore a plant, a mobile plant, is preferably described for the carrying out of the procedure. The pellets can be used as fertilizer and fuel material.
 IT 1305-62-0, Calcium hydroxide, processes
 RL: MOA (Modifier or additive use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (flocculation additive; treatment of manure for manufacture of odor-free and hygienic pellets by flocculation with)
 RN 1305-62-0 HCPLUS
 CN Calcium hydroxide (Ca(OH)2) (CA INDEX NAME)

IC ICM C02F011-12
 ICS C12M001-107
 CC 60-2 (Waste Treatment and Disposal)
 Section cross-reference(s): 19, 52
 IT Clays, processes
 RL: MOA (Modifier or additive use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (flocculation additives, for treatment of manure for manufacture of odor-free and hygienic pellets)
 IT 1305-62-0, Calcium hydroxide, processes
 RL: MOA (Modifier or additive use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (flocculation additive; treatment of manure for manufacture of odor-free and hygienic pellets by flocculation with)

L29 ANSWER 4 OF 18 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:17872 HCAPLUS
 DOCUMENT NUMBER: 138:169439
 TITLE: Organomineral granulated fertilizer containing chicken manure and zeolites
 INVENTOR(S): Konyukhova, T. P.; Distanov, U. G.; Kikilo, D. A.; Mikhailova, O. A.; Kharisov, Yu. G.; Yakimov, A. V.; Makarov, A. I.
 PATENT ASSIGNEE(S): Tsentral'nyi Nauchno-Issledovatel'skii Institut Geologii Nerudnykh Poleznykh Iskopaemykh, Russia Russ., No pp. given
 SOURCE: CODEN: RUXXE7
 DOCUMENT TYPE: Patent
 LANGUAGE: Russian
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
RU 2184102	C2	20020627	RU 2000-115146	200006 09
<--				
PRIORITY APPLN. INFO.:	RU 2000-115146			
	200006 09			
<--				

AB An organomineral fertilizer contains manure of poultry-breeding farms (20-40 weight %) and natural siliceous zeolite-containing rock (60-80 weight %). The said natural siliceous zeolite-containing rock has the following ratio of components, weight%: opal-cristobalite, 15-70; clinoptilolite, 6-45; clay minerals, 4-36; including: montmorillonite, 2-18; calcite, 3-36; fragmental, predominantly, quartz material, 2-22; feldspar, 0.8-5.0. At total content of opal-cristobalite, clinoptilolite and montmorillonite constitutes 55-80 weight% of the rock.
 IT 12173-10-3, Clinoptilolite
 RL: AGR (Agricultural use); BSU (Biological study, unclassified); BIOL (Biological study); USES (Uses)
 (organomineral granulated fertilizer containing chicken manure and zeolites)
 RN 12173-10-3 HCAPLUS
 CN Clinoptilolite ((K0-1Na0-1Ca0-0.5)6(Al6Si30O72).20H2O) (CA INDEX NAME)

CM 1

CRN 209482-44-0
 CMF Al . Ca . K . Na . O . Si
 CCI TIS

CM 2

CRN 17778-80-2
 CMF O

O

CM 3

CRN 7440-70-2
CMF Ca

Ca

CM 4

CRN 7440-23-5
CMF Na

Na

CM 5

CRN 7440-21-3
CMF Si

Si

CM 6

CRN 7440-09-7
CMF K

K

CM 7

CRN 7429-90-5
CMF Al

Al

IC ICM C05F003-00
ICS C05G003-04
CC 19-6 (Fertilizers, Soils, and Plant Nutrition)
IT **Clay** minerals
Feldspar-group minerals
Zeolite-group minerals
RL: AGR (Agricultural use); BSU (Biological study, unclassified);
BIOL (Biological study); USES (Uses)
(organomineral granulated fertilizer containing chicken manure and
zeolites)

IT 1318-93-0, Montmorillonite, biological studies
 12173-10-3, Clinoptilolite 13397-26-7, Calcite, biological
 studies 14464-46-1, Cristobalite 14808-60-7, Quartz, biological
 studies
 RL: AGR (Agricultural use); BSU (Biological study, unclassified);
 BIOL (Biological study); USES (Uses)
 (organomineral granulated fertilizer containing chicken
 manure and zeolites)

L29 ANSWER 5 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:870919 HCAPLUS

DOCUMENT NUMBER: 138:368185

TITLE: Radio-tracer study on zinc use efficiency by
 rice

AUTHOR(S): Mythili, S.; Chitdeshwari, T.; Jayanthi, C.

CORPORATE SOURCE: Department of Agronomy, Tamil Nadu Agricultural
 University, Coimbatore, 641 003, India

SOURCE: Journal of Ecotoxicology & Environmental
 Monitoring (2002), 12(4), 271-276

CODEN: JEEMEJ; ISSN: 0971-0965

PUBLISHER: Palani Paramount Publications

DOCUMENT TYPE: Journal

LANGUAGE: English

AB A greenhouse experiment was conducted on two Zn-deficient soils using
 rice as a test crop to study the effect of green manure on the
 relative efficacy of applied Zn. Radio-tracer, viz. ^{65}Zn , was
 tagged to two sources of Zn (ZnSO_4 and EDTA-Zn, at 5 kg Zn ha^{-1}) to
 determine the contribution of fertilizer sources. Incorporation of
 Sesbania aculeata , at 10 ton ha^{-1} , could contribute about 64, 4, 42,
 0.6 and 11 kg N, P, K, Zn and S ha^{-1} , resp. The beneficial effect
 of integrated use of green manure (GM) with inorg. fertilizer
 nutrients, particularly ZnSO_4 in clay loam and EDTA-Zn in
 sandy loam soil, was evident due to higher uptake and increased dry
 matter yield at harvest. NPK + GM + ZnSO_4 + gypsum application
 recorded the highest grain, straw and root yields in both the soils.
 The highest total Zn uptake of 3.87 mg pot $^{-1}$ with NPK + GM + ZnSO_4 +
 gypsum application and greater percentage of fertilizer Zn
 derivation was observed with NPK + ZnSO_4 (86.20%) followed by NPK +
 EDTA-Zn alone. Zinc utilization from fertilizer and its use
 efficiency were found to be greater when the Zn sources
 particularly, ZnSO_4 was applied.

IT 13397-24-5, Gypsum, biological studies

RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (effect of green manure and zinc source on zinc
 utilization efficiency by rice in relation to application of)

RN 13397-24-5 HCAPLUS

CN Gypsum ($\text{Ca}(\text{SO}_4)_2 \cdot 2\text{H}_2\text{O}$) (CA INDEX NAME)

● Ca

● 2 H₂O

CC 19-7 (Fertilizers, Soils, and Plant Nutrition)
 IT 13397-24-5, Gypsum, biological studies
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (effect of green manure and zinc source on zinc
 utilization efficiency by rice in relation to application of)
 REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN
 THE RE FORMAT

L29 ANSWER 6 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2002:69391 HCAPLUS
 DOCUMENT NUMBER: 136:106348
 TITLE: Lime-clay suspension for the treatment
 of liquid manure
 PATENT ASSIGNEE(S): Kalksteinwerk Vilshofen G.m.b.H., Germany
 SOURCE: Eur. Pat. Appl., 5 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1174403	A2	20020123	EP 2001-117385	200107 18

EP 1174403 A3 20030402
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
 PT, IE, SI, LT, LV, FI, RO
 DE 10035432 A1 20020131 DE 2000-10035432

200007
20

PRIORITY APPLN. INFO.: DE 2000-10035432 A
 200007
20

AB The lime-clay suspension contains fine-grained dry
 substances 50 weight% consisting of CaCO₃ 25-30, MgCO₃ 0.5-2, SiO₂
 8-12, Al₂O₃ 2-4, Fe₂O₃ 1-3 weight%. Addition of the lime-clay

suspension to a cow manure showed improved flowability and plant root growth. The lime-clay suspension can be used for neutralization of watercourses and as building materials.

- IT 471-34-1, Calcium carbonate, processes
 RL: AGR (Agricultural use); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process); USES (Uses)
 (lime-clay suspension for the treatment of liquid manure)
- RN 471-34-1 HCAPLUS
- CN Carbonic acid calcium salt (1:1) (CA INDEX NAME)

● Ca

- IC ICM C05F003-00
 ICS C02F001-66
- CC 58-3 (Cement, Concrete, and Related Building Materials)
 Section cross-reference(s): 19, 60
- ST lime clay suspension fertilizer; building material lime clay suspension
- IT Water-resistant materials
 (construction materials; lime-clay suspension for)
- IT Soil liming
 (lime-clay suspension for)
- IT Fertilizers
 RL: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
 (lime-clay suspension for the treatment of liquid manure)
- IT Clays, processes
 Lime (chemical)
 RL: AGR (Agricultural use); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process); USES (Uses)
 (lime-clay suspension for the treatment of liquid manure)
- IT Wastewater treatment
 Water purification
 (liming; lime-clay suspension for)
- IT Manure
 (treatment; lime-clay suspension for the treatment of liquid manure)
- IT Construction materials
 (water-resistant; lime-clay suspension for)
- IT 471-34-1, Calcium carbonate, processes 546-93-0, Magnesium carbonate 1309-37-1, Iron oxide (Fe2O3), processes 1344-28-1, Alumina, processes 7631-86-9, Silica, processes
 RL: AGR (Agricultural use); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process); USES (Uses)
 (lime-clay suspension for the treatment of liquid manure)

DOCUMENT NUMBER: 120:269050
 ORIGINAL REFERENCE NO.: 120:47643a,47646a
 TITLE: Use of mineral amendments to reduce ammonia losses from dairy-cattle and chicken-manure slurries
 AUTHOR(S): Termeer, W. C.; Warman, P. R.
 CORPORATE SOURCE: Dep. Chem. Soil Sci., Nova Scotia Agric. Coll., Truro, NS, B2N 5E3, Can.
 SOURCE: Bioresource Technology (1993), 44(3), 217-22
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CODEN: BIRTEB; ISSN: 0960-8524

AB Two laboratory expts. evaluated the use of mineral amendments to reduce NH₃ volatilization from dairy- and poultry-manure slurries during storage or when applied to soil. Fresh manure was amended at a 1% and a 3% rate with superphosphate (SP), rock phosphate (RP), and gypsum (GP) and stored for 30 days. Anaerobically stored manure was amended with Na-bentonite (BT), CaCl₂ (CC), gypsum (GP), rock phosphate (RP), superphosphate (SP), and triple superphosphate (TSP) at a 2% rate and surface-applied to Pugwash sandy loam (Humo-Ferric Podzol). The loss of NH₃ was measured over a seven-day period. The NH₃ volatilization was evaluated by two methods: direct measurement of volatilized NH₃ through capture in acid traps, and chemical anal. of initial and final nitrogen contents of manure and/or soil. During storage, NH₃ volatilization was reduced by SP and GP in dairy manure, but none of the amendments effectively reduced volatilization from poultry manure. Ammonia volatilization from surface-applied manure was reduced by TSP, SP, CC, and GP treatments to dairy manure and by CC and SP treatments to poultry manure. The reduction in NH₃ volatilization was apparently due to the decrease in pH of the manure caused by the amendments.

IT 13397-24-5, Gypsum, biological studies
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (ammonia losses from manures reduction by)
 RN 13397-24-5 HCAPLUS
 CN Gypsum (Ca(SO₄).2H₂O) (CA INDEX NAME)

● Ca

● 2 H₂O

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)
 IT Bentonite, biological studies
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (sodian, ammonia losses from manures reduction by)
 IT 10043-52-4, Calcium chloride, biological studies 13397-24-5

, Gypsum, biological studies
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (ammonia losses from manures reduction by)

L29 ANSWER 8 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1994:225882 HCAPLUS
 DOCUMENT NUMBER: 120:225882
 ORIGINAL REFERENCE NO.: 120:39933a,39936a
 TITLE: Materials for treating animal manure
 INVENTOR(S): Ito, Hiroshi
 PATENT ASSIGNEE(S): Daiki Kk, Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 05308868	A	19931122	JP 1992-157204	199205 01
JP 2894895	B2	19990524		<--
PRIORITY APPLN. INFO.:			JP 1992-157204	199205 01

AB The materials are colored granules of dried extraction residue of coffee beans. The coloring agent is selected from CaCO₃, TiO₂, synthetic pearl, C, Eriochrome Black T, Amino Black 10B, Chlorazol Black BH, Cyanine blue, Azo Blue, Patent Blue, Cyanine Green, Emerald Green, Azo Yellow, Acid Yellow, and Hansa Yellow; and the granules may also contain additives, e.g., pulp, cellulose and its derivs., corn starch, bentonite, zeolite, and/or disinfectants, e.g., benzoic acid, sorbic acid, their salts, Ca propionate, NaClO, and/or NaCl.

IT 471-34-1, Calcium carbonate, uses
 RL: USES (Uses)
 (coloring agent, for granulated coffee bean extraction residue, for manure treatment)

RN 471-34-1 HCAPLUS
 CN Carbonic acid calcium salt (1:1) (CA INDEX NAME)

● Ca

IC ICM A01K001-015
 ICS A61L009-01
 CC 60-4 (Waste Treatment and Disposal)
 IT Pulp, cellulose

Zeolite-group minerals**Bentonite, uses****Gelatins, uses****RL: PROC (Process)**

(granulated coffee bean extraction residue containing, for manure treatment)

IT 6420-06-0, Azo Blue 7440-44-0, Carbon, uses 12627-77-9, Azo Yellow 13463-67-7, Titania, uses 53664-39-4, Cyanine Green 72709-78-5, Patent Blue 111804-68-3, Amine Black 10B 471-34-1, Calcium carbonate, uses 523-42-2, Cyanine Blue 1325-75-3, Emerald Green 1787-61-7, Eriochrome black T 2429-73-4, Chlorazol Black BH 2512-29-0, Hansa Yellow 2706-28-7, Acid Yellow
RL: PROC (Process)
 (coloring agent, for granulated coffee bean extraction residue, for manure treatment)

L29 ANSWER 9 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN**ACCESSION NUMBER:** 1991:163043 HCAPLUS**DOCUMENT NUMBER:** 114:163043**ORIGINAL REFERENCE NO.:** 114:27567a,27570a**TITLE:** Cation exchange capacity, induced in calcareous soils by fertilization with manure**AUTHOR(S):** Lax, Antonio**CORPORATE SOURCE:** Cent. Edafol. Biol. Apl. Segura, Murcia, Spain**SOURCE:** Soil Science (1991), 151(2), 174-8**CODEN:** SOSCAK; **ISSN:** 0038-075X**DOCUMENT TYPE:** Journal**LANGUAGE:** English

AB The influence of organic fertilization on the increase of cation exchange capacity (CEC) in calcareous soils was studied. Two soils with illite and interstratified illite-montmorillonite clay fractions, resp., were fertilized with sheep and chicken manures and submitted to culture conditions during 3 yr. The evolutions of CEC, total organic C, and extractable C were studied. The relationships among these parameters and increases in them induced by fertilization show that in soil with low clay content (interstratified), the increases of CEC are additive, but in the illitic soil, some clay-humic interaction may occur accompanied by the protection of high CEC organic fractions.

IT 12173-60-3, Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1F0-0.5]2010) 12173-60-3D, Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1F0-0.5]2010), interstratification compds. with montmorillonite

RL: OCCU (Occurrence)

(in soils, cation exchange capacity response to manure application in relation to)

RN 12173-60-3 HCAPLUS**CN** Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1F0-0.5]2010) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O5Si2	1.75	20328-07-8
O	1.25	17778-80-2
F	0 - 1	14762-94-8
HO	1 - 2	14280-30-9

K	0.75	7440-09-7
Mg	0 - 0.25	7439-95-4
Fe	0 - 0.25	7439-89-6
Al	2.25	7429-90-5

RN 12173-60-3 HCPLUS
 CN Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1F0-0.5]2010) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O5Si2	1.75	20328-07-8
O	1.25	17778-80-2
F	0 - 1	14762-94-8
HO	1 - 2	14280-30-9
K	0.75	7440-09-7
Mg	0 - 0.25	7439-95-4
Fe	0 - 0.25	7439-89-6
Al	2.25	7429-90-5

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)

IT Manure
 (cation-exchange capacity of calcareous soils response to, from chickens and sheep, organic matter and clay content in relation to)
 IT 1318-93-0D, Montmorillonite ((Al1.33-1.67Mg0.33-0.67)(Ca0-1Na0-1)0.33Si4(OH)2010.xH2O), interstratification compds. with illite 12173-60-3, Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1F0-0.5]2010)
 12173-60-3D, Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1F0-0.5]2010), interstratification compds. with montmorillonite
 RL: OCCU (Occurrence)
 (in soils, cation exchange capacity response to manure application in relation to)

L29 ANSWER 10 OF 18 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1987:101295 HCPLUS
 DOCUMENT NUMBER: 106:101295
 ORIGINAL REFERENCE NO.: 106:16581a,16584a
 TITLE: The response of grass for silage to sulfur application at 20 sites in Northern Ireland
 AUTHOR(S): Stevens, R. J.; Watson, Catherine J.
 CORPORATE SOURCE: Agric. Food Chem. Res. Div., Dep. Agric.
 Northern Ireland, Belfast, BT9 5PX, UK
 SOURCE: Journal of Agricultural Science (1986
), 107(3), 565-71
 CODEN: JASIAZ; ISSN: 0021-8596
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Twenty field sites were selected for their potential S-deficient status. The effect of S at 10 kg S/ha per cut as gypsum or kieserite [14567-64-7] on the yield and composition of grass for silage given intensive fertilizer was measured at 2 or 3 cuts in 1985. Other incidental S inputs in P and K fertilizers and organic manures were minimized. There were significant increases in dry-matter yield at 10 harvests on 5 sites. At 7 of the 10 harvests gypsum and kieserite were equally effective, but at 3 harvests only kieserite gave significant yield increases. The dry-matter yield

increases occurred at all 3 cuts. Using soil analyses to predict S-deficient sites had limited success. The conclusions from this study were that soils with extractable sulfate values >10 mg S/L had adequate reserves for 3-cut silage while soils with values <10 mg S/L had a 1 in 3 chance of being S deficient. Using plant analyses to diagnose S-deficient herbage had also limited success. In this study herbage with an N/S ratio >14 was S deficient while herbage with ratio >12 had a 1 in 2 chance of being deficient. The proportion of S-responsive sites in this study is an overestimate for Northern Ireland as a whole. Most soils in this country have higher clay and organic matter contents than the field sites. The application of organic manures in normal agricultural practice is likely to be an important source of S to grass for cutting.

CC 19-5 (Fertilizers, Soils, and Plant Nutrition)

L29 ANSWER 11 OF 18 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1984:629211 HCPLUS

DOCUMENT NUMBER: 101:229211

ORIGINAL REFERENCE NO.: 101:34803a,34806a

TITLE: Charge heterogeneity and the calorimetry of potassium-calcium exchange-adsorption in clays and soils

AUTHOR(S): Talibudeen, O.

CORPORATE SOURCE: Rothamsted Exp. Stn., Harpenden/Herts., UK

SOURCE: Adsorption Science & Technology (1984), 1(3), 235-46

CODEN: ASTEEZ; ISSN: 0263-6174

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Current evidence for surface heterogeneity of the permanent neg. charge in some soils and phyllosilicates, which is based on the thermodn. interpretation of K-Ca exchange isotherms and on other methods, is summarized. The relation between differential heats of K-Ca exchange and K saturation of the permanent neg. charge in the phyllosilicates, especially the smectites and the kaolins, is described and related to their known interlayer expansion with ethylene glycol intercalation. From these descriptions, their surface charge heterogeneity and new definitions of pure phyllosilicates, especially pure montmorillonite [1318-93-0] and pure kaolinite [1318-74-7], are inferred. The heterogeneity of cation-exchange sites in some English soils is compared with those of the 2:1 phyllosilicates. Differences in the differential heat:fractional K saturation relations between soil phyllosilicates before and after treatment with K salts and with farmyard manure illustrate the effects of such treatments on site heterogeneity.

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)

ST clay potassium calcium exchange calorimetry; potassium calcium exchange calorimetry soil; surface charge heterogeneity phyllosilicate soil

IT Heat of adsorption

(of potassium, in exchange with calcium in clays and soils)

IT Soils

Bentonite, properties

Clay minerals

Clays, properties

RL: BIOL (Biological study)

(potassium-calcium exchange-adsorption in, charge heterogeneity and calorimetry of)

- IT Manure
 - (farmyard, potassium-calcium exchange calorimetry in soils response to, phyllosilicate charge heterogeneity in relation to)
- IT Fertilizers
 - RL: BIOL (Biological study)
 - (potassium, potassium-calcium exchange calorimetry in soils response to, phyllosilicate charge heterogeneity in relation to)
- IT Electric charge
 - (surface, heterogeneity of, in clays and soils, calorimetry of potassium-calcium exchange in relation to)
- IT 7440-09-7, properties
 - RL: PRP (Properties)
 - (cation exchange of, with calcium in clays and soils, charge heterogeneity and calorimetry of)
- IT 7440-70-2, properties
 - RL: PRP (Properties)
 - (cation exchange of, with potassium in clays and soils, charge heterogeneity and calorimetry of)

L29 ANSWER 12 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1984:137869 HCAPLUS

DOCUMENT NUMBER: 100:137869

ORIGINAL REFERENCE NO.: 100:21017a,21020a

TITLE: The effect of suspended clay on feeding and digestive efficiency of the surf clam, *Spisula solidissima* (Dillwyn)

AUTHOR(S): Robinson, William E.; Wehling, William E.;

Morse, M. Patricia

CORPORATE SOURCE: Mar. Sci. Lab., Northeastern Univ., Nahant, MA, 01908, USA

SOURCE: Journal of Experimental Marine Biology and Ecology (1984), 74(1), 1-12

CODEN: JEMBAM; ISSN: 0022-0981

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Groups of 18-19 1-yr old surf clams, *S. solidissima*, were exposed to 0.1, 0.5, or 1.0 g/L attapulgite [12174-11-7] (clay) suspensions for 3- and 21-day periods. Following treatment, clams were allowed to feed for 1 h in a 500-mL suspension of *Isochrysis galbana* (25 µg/L chlorophyll) and attapulgite, dosed at the concentration to which the clams were previously treated. Water samples (pre- and post-feeding), pseudofeces, and feces were collected, extracted in acetone, and analyzed for chlorophyll and pheopigment content. Results indicate that turbidity levels >0.1 g/L attapulgite clay result in a significant increase of pseudofecal production and a decrease in the amount of algal food actually ingested. Mean chlorophyll consumption and digested chlorophyll levels were progressively lower and mean pseudofecal chlorophyll levels higher for groups treated with increasing concns. of attapulgite. Fecal chlorophyll levels were low and variable. Digestive efficiency, defined as the percent of consumed chlorophyll which was degraded to pheopigment during gut passage, was generally lower in clay-treated clams than controls. Surf clams treated for 21 days demonstrated an apparent acclimation to the 0.1 and 0.5 g/L clay concns., showing greater mean chlorophyll consumption and digested chlorophyll levels

than for the corresponding 3-day treated groups. The 1.0 g/L turbidity level was beyond the animals' capability to acclimate. Although the concns. of clay tested (100-1000 mg/L) were higher than levels generally encountered in continental shelf bottom waters (<5 mg/L), results of this study indicate that anthropogenic turbidity-producing discharges at levels as low as 100 mg/L may have adverse effects on the energetics of surf clam populations.

- CC 18-7 (Animal Nutrition)
 ST chlorophyll digestion clam attapulgite; clam digestion feeding behavior clay; attapulgite clam digestion feeding; water turbidity clam digestion feeding
 IT Chlorophylls, biological studies
 RL: BIOL (Biological study)
 (digestion of, by surf clams, clay level in water in relation to)
 IT Spisula solidissima
 (feeding behavior and feed digestion by, clay level in water in relation to)
 IT Digestion, biological
 (of feed, by surf clams, clay level in water in relation to)
 IT Behavior
 (feeding, of surf clams, clay level in water in relation to)

L29 ANSWER 13 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN

- ACCESSION NUMBER: 1982:597424 HCAPLUS
 DOCUMENT NUMBER: 97:197424
 ORIGINAL REFERENCE NO.: 97:33053a,33056a
 TITLE: Biological and chemical proof for potassium-impoverishment and its consequence for soil fertility
 AUTHOR(S): Von Boguslawski, E.; Von Lieres, A.
 CORPORATE SOURCE: Inst. Pflanzenbau Zuecht., JLW, Giessen, D-6300, Fed. Rep. Ger.
 SOURCE: Landwirtschaftliche Forschung, Sonderheft (1982), Volume Date 1981, 38, 722-9
 CODEN: SZLFA3; ISSN: 0457-110X
 DOCUMENT TYPE: Journal
 LANGUAGE: German
 AB Based on long-term field expts. with N-P-K vs. N-P application, comparative pot expts. and chemical studies on the K status and dynamics were carried out. Even when manure was added, the K balance on no-K plots was neg. K balances in variants with and without K in the field were compared with results of pot expts. (Mitscherlich- and Micropots) and those obtained with chemical methods. Comparison of K values of the extract obtained by conventional methods with those obtained by the Na tetrphenylborate (NaTPB) method showed more available K to be extracted by the NaTPB than conventional methods or K exchange by NH₄Cl. The correlation between the values obtained with the NaTPB method and K uptake by Lolium italicum in pots was satisfactory. A change in illite [12173-60-3] was demonstrated, for the 1st time, by x-ray anal. after a relatively short time in field expts. on Gray-Brown Podzolic soils due to intensive K uptake in the variant without K fertilizers.
 CC 19-5 (Fertilizers, Soils, and Plant Nutrition)
 ST potassium impoverishment soil fertility; illite change potassium uptake plant

L29 ANSWER 14 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1982:84549 HCAPLUS
 DOCUMENT NUMBER: 96:84549
 ORIGINAL REFERENCE NO.: 96:13873a,13876a
 TITLE: Multiple leaching of phosphorus from chernozems,
 brown soils, and regosols by 0.5 N sulfuric acid
 Pechova, B.
 AUTHOR(S):
 CORPORATE SOURCE: Vysk. Ustavu Podoznalectva, Bratislava, Czech.
 SOURCE: Vedecke Prace Vyskumneho Ustavu Podoznalectva a
 Vyzivy Rastlin v Bratislave (1981),
 11, 109-17
 CODEN: VPVPAC; ISSN: 0375-4960
 DOCUMENT TYPE: Journal
 LANGUAGE: Slovak

AB After a 12-fold repeated extraction of P, the highest amount of P was extracted from the chernozem soil (701.5-854.4 mg/kg soil) and the lowest one from the regosol (27.5-39.5 mg/kg); from the brown soil 224.4-290 mg/kg was extracted. Highest amounts from all soils were extracted during the 1st h, and the P amount from the 1st 2 extns. constituted 85, 71, and 46% for the chernozem, regosol, and brown soil, resp. Most P extracted from the 1st and 3rd soil was represented by Ca-P and most P extracted from the regosol consisted of Fe-P followed by Al-P. The Ca-P/(Al-P + Fe-P) ratios in the 1st, and 2nd, and 3rd (brown) soil were 2:1-3:1, 1:3-1:4, and 2:1-3:1, resp., and the carbonate contents of these soils were 0.52, 0.1, and 0.08%, resp. Fertilization at highest P rate (1000 kg/ha) and straw or manure application (6 and 35 ton/ha, resp.) on a background of N 60, P 35, and K 100 kg/ha affected little the P extracted from chernozem soil but greatly that from the brown soil. The extraction rate depended on clay mineral composition of the soils. The extraction rate decreased with increasing montmorillonite [1318-93-0] content of the soil clay, and it was higher when illite [12173-60-3] than montmorillonite was the prevailing clay mineral of the soil.

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)
 ST phosphorus leaching soil sulfuric acid; clay mineral
 phosphorus leaching soil
 IT Clay minerals
 RL: BIOL (Biological study)
 (phosphorus multiple leaching from soils with sulfuric acid in relation to)
 IT 1318-93-0, biological studies 12173-60-3
 RL: BIOL (Biological study)
 (phosphorus multiple leaching from soils with sulfuric acid in relation to, of soil clay fraction)

L29 ANSWER 15 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1981:602559 HCAPLUS
 DOCUMENT NUMBER: 95:202559
 ORIGINAL REFERENCE NO.: 95:33841a,33844a
 TITLE: Effect of chemical meliorants on organic substances in the soil
 AUTHOR(S): Skuratov, N. S.; Karasenko, L. M.
 CORPORATE SOURCE: USSR
 SOURCE: Melior. Solontsov. i Zasolen. Zemel Sev.
 Kavkaza, Novocherkassk (1981) 44-9
 From: Ref. Zh., Pochvoved. Agrokhim. 1981,
 Abstr. No. 957236
 DOCUMENT TYPE: Journal
 LANGUAGE: Russian

AB Title only translated.
 IT 13397-24-5, biological studies
 RL: BIOL (Biological study)
 (clay-containing, solonetz soil organic matter in relation to
 manure and)
 RN 13397-24-5 HCPLUS
 CN Gypsum (Ca(SO₄).2H₂O) (CA INDEX NAME)

● Ca

● 2 H₂O

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)
 IT 13397-24-5, biological studies
 RL: BIOL (Biological study)
 (clay-containing, solonetz soil organic matter in relation to
 manure and)

L29 ANSWER 16 OF 18 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1980:5350 HCPLUS
 DOCUMENT NUMBER: 92:5350
 ORIGINAL REFERENCE NO.: 92:1023a,1026a
 TITLE: Effect of different salts and organic manures on
 weathering of clay minerals -
 illites
 AUTHOR(S): Adhikari, M.; Bandhopadhyay, A. K.; Majumdar, M.
 K.
 CORPORATE SOURCE: Coll. Sci. Technol., Calcutta Univ., Calcutta,
 1, India
 SOURCE: Fertilizer Technology (1978), 15(2),
 117-20
 CODEN: FETEDP; ISSN: 0378-0430
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The nature and extent of weathering of illite [12173-60-3] (2:1 layer lattice) by alternate wetting and drying with inorg. salts (chlorides, carbonates, and sulfates of Na, K, and Mg) and cow manure for 1 yr was investigated. The basal reflections in x-ray patterns were almost extinguished by treatment with manure and different inorg. salts, and some prominent changes in DTA endotherms were observed. No major alteration in secondary minerals was found.

IT 12173-60-3
 RL: BIOL (Biological study)
 (weathering of, inorg. salts and manure effect on)

RN 12173-60-3 HCPLUS
 CN Illite ([Al1.75(Fe0-1Mg0-1)0.25]K0.75(Si3.5Al0.5)[(OH)0.5-1F0-

0.5]2010) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O5Si2	1.75	20328-07-8
O	1.25	17778-80-2
F	0 - 1	14762-94-8
HO	1 - 2	14280-30-9
K	0.75	7440-09-7
Mg	0 - 0.25	7439-95-4
Fe	0 - 0.25	7439-89-6
Al	2.25	7429-90-5

CC 19-2 (Fertilizers, Soils, and Plant Nutrition)
 ST illite weathering inorg salt manure; clay
 mineral weathering salt manure
 IT Manure
 Salts, biological studies
 RL: BIOL (Biological study)
 (illite weathering response to)
 IT 497-19-8, biological studies 546-93-0 584-08-7 7447-40-7,
 biological studies 7487-88-9, biological studies 7647-14-5,
 biological studies 7757-82-6, biological studies 7778-80-5,
 biological studies 7786-30-3, biological studies
 RL: BIOL (Biological study)
 (illite weathering response to)
 IT 12173-60-3
 RL: BIOL (Biological study)
 (weathering of, inorg. salts and manure effect on)

L29 ANSWER 17 OF 18 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1978:441298 HCAPLUS

DOCUMENT NUMBER: 89:41298

ORIGINAL REFERENCE NO.: 89:6399a,6402a

TITLE: Soda stability and its dynamics in
 chernozem-steppe Solonetz soils following
 chemical reclamation

AUTHOR(S): Tsurikov, A. G.

CORPORATE SOURCE: Voronezh. S-kh. Inst., Voronezh, USSR

SOURCE: Pochvovedenie (1978), (4), 87-96

CODEN: PVDEAZ; ISSN: 0032-180X

DOCUMENT TYPE: Journal

LANGUAGE: Russian

AB Chalk was a suitable substitute for gypsum in reclaiming soda-salinized solonetz soils. The soda-stability of the soil (SR), a measure of the amount of soda inactivated by the soil, characterized well the soil buffering capacity with regard to alkalinization. Maximum SR was observed in eluvial and lower horizons containing gypsum [13397-24-5] accumulations; in that case the buffering capacity with regard to soda was related to the presence of humic substances, sorbed H+, and gypsum. The low SR (14-18 mequiv.) in some soil horizons was related to carbonate and clay and colloidal particle contents, and to salt composition of the soil solution. Chernozem soils had a higher SR than solonetz ones. In 4-5 yr after application of the ameliorating agents, a decrease in pos. effect of gypsum (8 ton/ha) on SR was observed; in chalk-treated soils the decrease was observed after 4-6 yrs, and thereafter no difference between the 2 materials in their effect on SR was found. Manure caused some increase in soil buffering capacity with

regard to acidity. The soil SR increased in moist and decreased in dry yrs.

CC 19-3 (Fertilizers, Soils, and Plant Nutrition)

L29 ANSWER 18 OF 18 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1957:94084 HCPLUS

DOCUMENT NUMBER: 51:94084

ORIGINAL REFERENCE NO.: 51:17043g-h

TITLE: Fixation of atmospheric nitrogen under sterile conditions on kaolinite with straw and cow dung and the effect of different phosphates on the efficiency of fixation

AUTHOR(S): Mitra, S. P.; Prakash, Dharam

CORPORATE SOURCE: Univ. Allahabad

SOURCE: Proc. Natl. Acad. Sci., India (1955), 24A, 187-95

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Kaolinite, treated with various organic materials (containing 1% C), on incubation was found to fix N in the absence of microorganisms. The amount of C oxidized and the amount of N fixed was nearly double in those samples exposed to light as compared to those maintained in the dark. The presence of CaHPO₄ was found to increase markedly the oxidation of organic matter and the fixation of N as NH₃ adsorbed by the kaolinite.

IT 1318-74-7, Kaolinite
(nitrogen fixation on, with cow feces and straw, and phosphate effect thereon)

RN 1318-74-7 HCPLUS

CN Kaolinite (Al₂(OH)₄(Si₂O₅)) (CA INDEX NAME)

Component	Ratio	Component Registry Number
O ₅ Si ₂	1	20328-07-8
HO	4	14280-30-9
Al	2	7429-90-5

CC 15 (Soils and Fertilizers)

IT Nitrogen fixation
(by kaolinite, effect of light and phosphate on)

IT Phosphates
(in nitrogen fixation on kaolinite)

IT Light
(in nitrogen fixation, in kaolinite)

IT Straw
(nitrogen fixation by, on kaolinite, phosphate effect on)

IT Feces
(nitrogen fixation on kaolinite by, and phosphate effect thereon)

IT 7757-93-9, Calcium phosphate, CaHPO₄
(effect on N fixation and organic matter oxidation on kaolinite)

IT 1318-74-7, Kaolinite
(nitrogen fixation on, with cow feces and straw, and phosphate effect thereon)

=>