

T1. Introdução às equações diferenciais Matemáticas III

Manuel Andrade Valinho

manuel.andrade@usc.gal

Área de Astronomia e Astrofísica

Departamento de Matemática Aplicada

Escola Politécnica Superior de Engenharia Campus Terra (Lugo)

Manuel Andrade Valinho

Matemáticas III – Tema 1

1 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Índice

Definições e terminologia

Problemas de valor inicial

Modelos matemáticos

Manuel Andrade Valinho Matemáticas III – Tema 1 2 / 32

Definições e terminologia

Problemas de valor inicial

Modelos matemáticos

Manuel Andrade Valinho

Matemáticas III – Tema 1

3 / 3

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Conceito de derivada

Definição 1.1.1 (derivada)

Seja a função $f:I\longrightarrow \mathbb{R}$, com $I\subset \mathbb{R}$ aberto e $x_0\in I$. Diz-se que a função f é derivável no ponto $x=x_0$ se existir o limite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \equiv f'(x_0).$$

O limite $f'(x_0)$ chama-se **derivada** da função em x_0 .

Manuel Andrade Valinho

Conceito de derivada

Interpretação

 Determina a razão ou ritmo de variação da função f respeito da variável x,

$$f'(x) \equiv \frac{df}{dx}$$
.

• Geometricamente indica a pendente da reta tangente à curva y = f(x) no ponto (x, f(x)).

Manuel Andrade Valinho

Definições e terminologia Problemas de valor inicial Modelos matemáticos Matemáticas III - Tema 1

5 / 32

Conceito de derivada

Notação

Derivadas ordinárias

Leibniz
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, ..., $\frac{d^ny}{dx^n}$

Lagrange
$$y'$$
, y'' , y''' , $y^{(4)}$, ..., $y^{(n)}$ (notação prima)

Newton \dot{y} , \ddot{y} , ... (notação de pontos: em física, derivada com respeito ao tempo)

Derivadas parciais

Euler
$$D_{xx}u$$
, $D_{xy}u$, ...

Jacobi
$$\partial_{xx}u$$
, $\partial_{xy}u$, ...

$$u_{xx}$$
, u_{xy} , ... (notação de subíndice)

Conceito de derivada

Notação

Derivadas ordinárias

Leibniz
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, ..., $\frac{d^ny}{dx^n}$

Lagrange
$$y'$$
, y'' , y''' , $y^{(4)}$, ..., $y^{(n)}$ (notação prima)

Newton \dot{y} , \ddot{y} , ... (notação de pontos: em física, derivada com respeito ao tempo)

Derivadas parciais

Euler
$$D_{xx}u$$
, $D_{xy}u$, ...

Jacobi $\partial_{xx}u$, $\partial_{xy}u$, ...

 u_{xx} , u_{xy} , ... (notação de subíndice)

Manuel Andrade Valinho

Matemáticas III – Tema 1

6 / 32

Equações diferenciais

Definição 1.1.2 (equação diferencial)

Uma equação que contém as derivadas de uma ou mais variáveis dependentes, com respeito a uma ou mais variáveis independentes, diz-se que é uma equação diferencial (ED).

Exemplo

$$\frac{dy}{dx} = 3xy$$

As ED classificam-se por tipo, ordem e linearidade.

Equações diferenciais

Definição 1.1.2 (equação diferencial)

Uma equação que contém as derivadas de uma ou mais variáveis dependentes, com respeito a uma ou mais variáveis independentes, diz-se que é uma equação diferencial (ED).

Exemplo

$$\frac{dy}{dx} = 3xy$$

As ED classificam-se por tipo, ordem e linearidade.

Manuel Andrade Valinho

Matemáticas III – Tema 1

7 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Equações diferenciais

Definição 1.1.2 (equação diferencial)

Uma equação que contém as derivadas de uma ou mais variáveis dependentes, com respeito a uma ou mais variáveis independentes, diz-se que é uma equação diferencial (ED).

Exemplo

$$\frac{dy}{dx} = 3xy$$

As ED classificam-se por tipo, ordem e linearidade.

Manuel Andrade Valinho Matemáticas III – Tema 1 7 / 32

Classificação por tipo

Equações diferenciais ordinárias (EDO) A ED só contém derivadas ordinárias de uma ou mais funções com respeito a uma única variável independente.

Equações diferenciais em derivadas parciais (EDP) A ED só contém derivadas parciais de uma ou mais funções de duas ou mais variáveis independentes.

Exemplo

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} = \cos x, \qquad \frac{dx}{dt} + \frac{dy}{dt} = 2x - y,$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Manuel Andrade Valinho

Matemáticas III – Tema 1

8 / 32

Classificação por tipo

Equações diferenciais ordinárias (EDO) A ED só contém derivadas ordinárias de uma ou mais funções com respeito a uma única variável independente.

Equações diferenciais em derivadas parciais (EDP) A ED só contém derivadas parciais de uma ou mais funções de duas ou mais variáveis independentes.

Exemplo

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} = \cos x, \qquad \frac{dx}{dt} + \frac{dy}{dt} = 2x - y,$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Classificação por ordem

Definição 1.1.3 (ordem de uma ED)

A **ordem** de uma equação diferencial (EDO ou EDP) é a ordem da derivada mais alta na equação.

Exemplo

$$\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 + xy = \ln x, \qquad \frac{\partial^3 u}{\partial x^3} + \frac{\partial u}{\partial y} = 0.$$

Manuel Andrade Valinho

Matemáticas III – Tema 1

9 / 32

Classificação por ordem

Definição 1.1.3 (ordem de uma ED)

A **ordem** de uma equação diferencial (EDO ou EDP) é a ordem da derivada mais alta na equação.

Exemplo

$$\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 + xy = \ln x, \qquad \frac{\partial^3 u}{\partial x^3} + \frac{\partial u}{\partial y} = 0.$$

Classificação por ordem

Forma diferencial de uma EDO de primeira ordem:

$$M(x, y)dx + N(x, y)dy = 0$$

Forma geral de uma EDO de n-ésima ordem:

$$F(x, y, y', \dots, y^{(n)}) = 0$$
 (1)

Forma normal de uma EDO de n-ésima ordem:

$$\frac{d^n y}{dx^n} = f\left(x, y, y', \dots, y^{(n-1)}\right)$$

onde f é uma função contínua com valores reais.

Primeira ordem: $\frac{dy}{dx} = f(x, y)$

Segunda ordem: $\frac{d^2y}{dx^2} = f(x, y, y')$

Manuel Andrade Valinho

Matemáticas III – Tema 1

10 / 32

Classificação por linearidade

Definição 1.1.4 (ED linear)

Uma EDO de n-ésima ordem como (1) diz-se que é **linear** na variável y se F é linear em $y, y', \ldots, y^{(n)}$, isto é, se

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \ldots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Primeira ordem:
$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Segunda ordem:
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Classificação por linearidade

Caraterísticas de uma EDO linear:

- A variável dependente y e todas as suas derivadas $y', y'', \dots, y^{(n)}$ são de primeiro grau.
- Os coeficientes a_0, a_1, \ldots, a_n dependem, como muito, da variável independente x.

Uma EDO não linear é uma que não é linear.

Exemplo

$$(1 - y)y' + 3y = \cos x,$$
$$\frac{d^2y}{dx^2} + \cos y = 0,$$
$$\frac{d^3y}{dx^3} + y^2 = 3x.$$

Manuel Andrade Valinho

Matemáticas III – Tema 1

10 / 20

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Classificação por linearidade

Caraterísticas de uma EDO linear:

- A variável dependente y e todas as suas derivadas $y', y'', \dots, y^{(n)}$ são de primeiro grau.
- Os coeficientes a_0, a_1, \ldots, a_n dependem, como muito, da variável independente x.

Uma EDO **não linear** é uma que não é linear.

Exemplo

$$(1-y)y' + 3y = \cos x,$$
$$\frac{d^2y}{dx^2} + \cos y = 0,$$
$$\frac{d^3y}{dx^3} + y^2 = 3x.$$

Solução

Definição 1.1.5 (solução explícita)

Uma função $\phi(x)$ que quando se substitui por y numa equação diferencial satisfaz a equação para todo $x \in I$ denomina-se **solução explícita** da equação em I:

$$F\left(x,\phi(x),\phi'(x),\ldots,\phi^{(n)}(x)\right)=0\quad\forall x\in I$$

Uma solução $\phi(x)$ também se indicará com o símbolo y(x).

O intervalo / também se chama intervalo de definição, intervalo de existência, intervalo de validez ou domínio da solução.

Manuel Andrade Valinho

Matemáticas III – Tema 1

13 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Solução

Definição 1.1.5 (solução explícita)

Uma função $\phi(x)$ que quando se substitui por y numa equação diferencial satisfaz a equação para todo $x \in I$ denomina-se **solução explícita** da equação em I:

$$F\left(x,\phi(x),\phi'(x),\ldots,\phi^{(n)}(x)\right)=0\quad\forall x\in I$$

Uma solução $\phi(x)$ também se indicará com o símbolo y(x).

O intervalo / também se chama intervalo de definição, intervalo de existência, intervalo de validez ou domínio da solução.

Solução

Exercício 1.1.6

EDO:
$$\frac{dy}{dx} = xy^{\frac{1}{2}} \longrightarrow \text{Solução: } y = \frac{1}{16}x^4.$$

Substituindo y na EDO verificamos que, com efeito, é a solução:

Lado esquerdo:
$$\frac{dy}{dx} = \frac{1}{16} (4x^3) = \frac{1}{4}x^3$$
.

Lado direito:
$$xy^{\frac{1}{2}} = x \left(\frac{1}{16}x^4\right)^{\frac{1}{2}} = x \left(\frac{1}{4}x^2\right) = \frac{1}{4}x^3$$
.

Assim, também tem a solução y = 0 no intervalo $-\infty < x < \infty$.

Uma solução de uma ED que é igual a zero num intervalo / diz-se que é a solução trivial.

Manuel Andrade Valinho

Matemáticas III – Tema 1

14 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Solução

Exercício 1.1.6

EDO:
$$\frac{dy}{dx} = xy^{\frac{1}{2}} \longrightarrow \text{Solução: } y = \frac{1}{16}x^4.$$

Substituindo y na EDO verificamos que, com efeito, é a solução:

Lado esquerdo:
$$\frac{dy}{dx} = \frac{1}{16} (4x^3) = \frac{1}{4}x^3$$
.

Lado direito:
$$xy^{\frac{1}{2}} = x\left(\frac{1}{16}x^4\right)^{\frac{1}{2}} = x\left(\frac{1}{4}x^2\right) = \frac{1}{4}x^3$$
.

Assim, também tem a solução y = 0 no intervalo $-\infty < x < \infty$.

Uma solução de uma ED que é igual a zero num intervalo / diz-se que é a solução trivial.

Solução

Exercício 1.1.6

EDO:
$$\frac{dy}{dx} = xy^{\frac{1}{2}} \longrightarrow \text{Solução: } y = \frac{1}{16}x^4.$$

Substituindo y na EDO verificamos que, com efeito, é a solução:

Lado esquerdo:
$$\frac{dy}{dx} = \frac{1}{16} (4x^3) = \frac{1}{4}x^3$$
.

Lado direito:
$$xy^{\frac{1}{2}} = x \left(\frac{1}{16}x^4\right)^{\frac{1}{2}} = x \left(\frac{1}{4}x^2\right) = \frac{1}{4}x^3$$
.

Assim, também tem a solução y = 0 no intervalo $-\infty < x < \infty$.

Uma solução de uma ED que é igual a zero num intervalo / diz-se que é a solução trivial.

Manuel Andrade Valinho

Matemáticas III – Tema 1

14 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Curva de solução

Chama-se **curva de solução** ou **curva integral** à gráfica de uma solução ϕ .

Exemplo

EDO:
$$xy' + y = 0$$
 \longrightarrow Solução: $y = \frac{1}{x}$ em $(0, \infty)$.

Soluções explícitas e implícitas

Definição 1.1.7 (solução implícita)

Diz-se que uma relação do tipo G(x,y)=0 é uma solução implícita de uma equação diferencial sobre um intervalo I sempre que exista ao menos uma função $\phi(x)$ que satisfaça tanto a relação como a equação diferencial sobre I.

Exemplo

$$\frac{dy}{dx} = -\frac{x}{y}$$

 \longrightarrow Solução implícita: $x^2 + y^2 = 25$ em -5 < x < 5.

Manuel Andrade Valinho

Matemáticas III – Tema 1

16 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Soluções explícitas e implícitas

Definição 1.1.7 (solução implícita)

Diz-se que uma relação do tipo G(x,y)=0 é uma solução implícita de uma equação diferencial sobre um intervalo I sempre que exista ao menos uma função $\phi(x)$ que satisfaça tanto a relação como a equação diferencial sobre I.

Exemplo

$$\frac{dy}{dx} = -\frac{x}{y}$$

 \longrightarrow Solução implícita: $x^2 + y^2 = 25$ em -5 < x < 5.

Soluções explícitas e implícitas

a) A solução satisfaz a equação diferencial:

$$\frac{d}{dx}x^2 + \frac{d}{dx}y^2 = \frac{d}{dx}25 \Rightarrow 2x + 2y\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x}{y}.$$

b) E resolvendo y:

$$y = \pm \sqrt{25 - x^2}$$

As soluções explícitas $y = \phi_1(x)$ e $y = \phi_2(x)$ satisfazem a relação:

$$x^2 + \phi_1^2 = 25$$

$$x^2 + \phi_2^2 = 25$$

Manuel Andrade Valinho

Matemáticas III – Tema 1

17 / 20

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Famílias de soluções

Em geral, a solução de uma EDO de primeira ordem

$$F(x, y, y') = 0$$

vem dada por um conjunto G(x, y, c) = 0 de soluções que denominamos família de soluções de um parâmetro.

Para uma EDO de n-ésima ordem

$$F(x, y, y', \dots, y^{(n)}) = 0$$

obteríamos uma família de soluções de n parâmetros

$$G(x, y, c_1, \ldots, c_n) = 0$$

Famílias de soluções

Em geral, a solução de uma EDO de primeira ordem

$$F(x, y, y') = 0$$

vem dada por um conjunto G(x, y, c) = 0 de soluções que denominamos família de soluções de um parâmetro.

Para uma EDO de n-ésima ordem

$$F(x, y, y', ..., y^{(n)}) = 0$$

obteríamos uma família de soluções de n parâmetros

$$G(x, y, c_1, \ldots, c_n) = 0.$$

Manuel Andrade Valinho

Matemáticas III – Tema 1

18 / 32

Famílias de soluções

Definição 1.1.8 (solução geral)

Se cada solução de uma EDO de n-ésima ordem $F(x,y,y',\ldots,y^{(n)})=0$ num intervalo I se pode obter a partir de uma família de n parâmetros $G(x,y,c_1,\ldots,c_n)=0$ mediante uma escolha adequada dos parâmetros c_i , com $i=1,2,\ldots,n$, então diz-se que a família representa uma **solução geral** da equação diferencial.

Definição 1.1.9 (solução particular)

Se a solução de uma EDO está livre de parâmetros diremos que é uma solução particular.

Famílias de soluções

Definição 1.1.8 (solução geral)

Se cada solução de uma EDO de n-ésima ordem $F(x,y,y',\ldots,y^{(n)})=0$ num intervalo I se pode obter a partir de uma família de n parâmetros $G(x,y,c_1,\ldots,c_n)=0$ mediante uma escolha adequada dos parâmetros c_i , com $i=1,2,\ldots,n$, então diz-se que a família representa uma **solução geral** da equação diferencial.

Definição 1.1.9 (solução particular)

Se a solução de uma EDO está livre de parâmetros diremos que é uma solução particular.

Manuel Andrade Valinho

Matemáticas III – Tema 1

19 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Famílias de soluções

Exemplo

 $y = c \times -x \cos x \longrightarrow família de soluções de um parâmetro.$

Soluções particulares:

$$c > 0$$

 $c = 0$
 $c < 0$

Uma solução singular é aquela que não é membro de uma família de soluções.

Manuel Andrade Valinho Matemáticas III – Tema 1 20 / 32

Famílias de soluções

Exemplo

 $y = c \times x - x \cos x \longrightarrow \text{família de soluções de um parâmetro.}$

Soluções particulares:

$$c > 0$$
 $c = 0$
 $c < 0$

Uma **solução singular** é aquela que não é membro de uma família de soluções.

Manuel Andrade Valinho

Matemáticas III - Tema 1

20 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Sistemas de equações diferenciais

Um sistema de equações diferenciais está constituído por duas ou mais equações contendo derivadas de duas ou mais funções desconhecidas de uma única variável independente

$$\begin{cases} \frac{dx}{dt} = f(t, x, y), \\ \frac{dy}{dt} = g(t, x, y), \end{cases}$$

cuja **solução** é um par de funções diferenciáveis $x = \phi_1(t)$ e $y = \phi_2(t)$, num intervalo comum I, que satisfazem cada uma das equações em I.

Definições e terminologia

Problemas de valor inicial

Modelos matemáticos

Manuel Andrade Valinho

Matemáticas III – Tema 1

22 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Problemas de valor inicial

Definição 1.2.1 (problema de valor inicial)

Um problema de valor inicial (PVI) para a ED de n-ésima ordem

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}), \tag{2}$$

consiste em achar a solução num intervalo I que satisfaz no ponto $x_0 \in I$ as n condições iniciais

$$\begin{cases} y(x_0) &= y_0 \\ y'(x_0) &= y_1 \\ \dots & \\ y^{(n-1)}(x_0) &= y_{n-1}, \end{cases}$$

onde y_0, y_1, \dots, y_{n-1} são constantes reais arbitrárias.

PVI de primeira e de segunda ordem

Primeira ordem:

$$\frac{dy}{dx} = f(x, y)$$

$$y(x_0) = y_0$$
(3)

Exemplo

$$\frac{dy}{dx} = x^2 - 2x - 5, \ \forall x \in (0,6)$$

sujeita à condição inicial

$$y(3) = 8.$$

Família de soluções para y(3) = a

Solução considerando a = 8 ($\Rightarrow y_0 = 8$)

Manuel Andrade Valinho

Matemáticas III – Tema 1

24 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

PVI de primeira e de segunda ordem

Segunda ordem:

$$\frac{d^2y}{dx^2} = f(x, y, y')$$

$$y(x_0) = y_0$$

$$y'(x_0) = y_1$$
(4)

Exemplo

$$\frac{d^2y}{dx^2} = 5\frac{dy}{dx} - x^2 + 3, \ \forall x \in (0,6)$$

sujeita às condições iniciais

$$y(5) = 0,$$

 $y'(5) = 0.$

Família de soluções para y(5) = a e y'(5) = 2a

Solução considerando a = 0 ($\Rightarrow y_0 = y_1 = 0$)

Existência e unicidade

Questões fundamentais

Existência: Existem soluções para a equação diferencial

$$\frac{dy}{dx} = f(x, y)?$$

Alguma das curvas de solução passa pelo ponto (x_0, y_0) ?

Unicidade: Quando podemos ter a certeza de que existe precisamente uma única curva de solução que passa

Manuel Andrade Valinho

Matemáticas III – Tema 1

26 / 32

Existência e unicidade

Questões fundamentais

Existência: Existem soluções para a equação diferencial

$$\frac{dy}{dx} = f(x, y)?$$

Alguma das curvas de solução passa pelo ponto (x_0, y_0) ?

Unicidade: Quando podemos ter a certeza de que existe precisamente uma única curva de solução que passa

por (x_0, y_0) ?

Existência e unicidade

Teorema 1.2.2 (Picard-Lindelöf, 1890)

Seja R uma região retangular no plano xy definida por $a \le x \le b$, $c \le y \le d$, a qual contém o ponto (x_0, y_0) no seu interior.

Se f(x,y) e $\frac{\partial f}{\partial y}$ são contínuas em R, então **existe** algum intervalo $I_0: (x_0-h,x_0+h), \ h>0,$ contido em [a,b], e uma **única** função y(x), definida em I_0 que é **solução** do PVI

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0.$$

Manuel Andrade Valinho

Matemáticas III – Tema 1

27 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Existência e unicidade

Observação

Caso contrário, o PVI pode não ter solução ou ter várias (mesmo infinitas) soluções.

Manuel Andrade Valinho Matemáticas III – Tema 1 28 / 32

Definições e terminologia

Problemas de valor inicial

Modelos matemáticos

Manuel Andrade Valinho

Matemáticas III – Tema 1

29 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Modelos matemáticos

A descrição matemática de um sistema ou de um fenómeno denominase **modelo matemático**.

Manuel Andrade Valinho Matemáticas III – Tema 1 30 / 32

Modelos matemáticos

A descrição matemática de um sistema ou de um fenómeno denominase **modelo matemático**.

Construção

- Identificação das variáveis → nível de resolução
- 2 Formulação de hipóteses

Manuel Andrade Valinho

Matemáticas III – Tema 1

30 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Sistemas físicos

Sistemas dinâmicos

Variáveis de estado: conjunto de variáveis dependentes do tempo t.

Modelo matemático: EDO ou sistema de EDO junto com as condições iniciais no instante t_0 .

Estado do sistema: valores das variáveis de estado num instante de tempo t.

Resposta do sistema: solução do problema de valor inicial.

Exemplo: decaimento radioativo

> Taxa de decaimento: radioatividade

$$\Rightarrow \frac{dA}{dt} = kA$$

Sistemas físicos

Sistemas dinâmicos

Variáveis de estado: conjunto de variáveis dependentes do tempo t.

Modelo matemático: EDO ou sistema de EDO junto com as condições iniciais no instante t_0 .

Estado do sistema: valores das variáveis de estado num instante de tempo t.

Resposta do sistema: solução do problema de valor inicial.

Exemplo: decaimento radioativo

▶ Taxa de decaimento: radioatividade

$$\Rightarrow \frac{dA}{dt} = kA$$

Manuel Andrade Valinho

Matemáticas III – Tema 1

31 / 32

Definições e terminologia Problemas de valor inicial Modelos matemáticos

Licença

O trabalho Matemáticas III – T1. Introdução às equações diferenciais de *Manuel Andrade Valinho* está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Manuel Andrade Valinho Matemáticas III – Tema 1 32 / 32