Assignment 2 Multivariate

1 Bivariate normal distribution for polution.csv ¶

The data file pollution.csv (as on Canvas and SAS Studio) contains information on air pollution measurements. Using the file examine the pair of measurements X5=Nitrious Oxide and X6=Ozone for bivariate normality by completing the following:

```
In [1]: /* Importing data */
        Data pollutionData;
                infile "./data/pollution.csv" delimiter=",";
                input x1-x4 NITRIOUSOXIDE OZONE x7;
                run:
        proc iml;
        use pollutionData;
        read all var { NITRIOUSOXIDE OZONE } into pollution;
        SAS Connection established. Subprocess id is 28425
Out[1]:
            ods listing close; ods html5 (id=saspy_internal) file=stdout options(bitmap_mode
        ='inline') device=svg; ods graphics on /
        34 ! outputfmt=png;
        NOTE: Writing HTML5(SASPY_INTERNAL) Body file: STDOUT
        35
        36
             /* Importing data */
        37
             Data pollutionData;
        38
                infile "./data/pollution.csv" delimiter=",";
        39
                input x1-x4 NITRIOUSOXIDE OZONE x7;
        40
                run;
        NOTE: The infile "./data/pollution.csv" is:
              Filename=/folders/myfolders/data/pollution.csv,
              Owner Name=sasdemo, Group Name=sas,
              Access Permission = -rw-r--r-,
              Last Modified=060ct2018:12:44:17,
              File Size (bytes)=678
        NOTE: 42 records were read from the infile "./data/pollution.csv".
              The minimum record length was 14.
              The maximum record length was 16.
        NOTE: The data set WORK.POLLUTIONDATA has 42 observations and 7 variables.
        NOTE: DATA statement used (Total process time):
                                  0.00 seconds
              real time
              cpu time
                                 0.00 seconds
        41
        NOTE: IML Ready
            proc iml;
        43
             use pollutionData;
            read all var { NITRIOUSOXIDE OZONE } into pollution;
        44
        45
        46
            ods html5 (id=saspy_internal) close;ods listing;
        47
```

```
In [2]: centrePollution=mean(pollution); /*calculate mean vector*/
    covariancePollution=cov(pollution); /*calculate cov matrix*/
    correlationPollution=corr(pollution); /*calculate correlation matrix*/
    /* print centrePollution covariancePollution; */
    columnVectorPollution = t(pollution-centrePollution); /* col vector */
    distancesPollution = t(columnVectorPollution)*inv(covariancePollution)*columnVectorPollution; /* calculate distances */
```

```
Out[2]:
             ods listing close; ods html5 (id=saspy_internal) file=stdout options(bitmap_mode
        49
        ='inline') device=svg; ods graphics on /
        49 ! outputfmt=png;
        NOTE: Writing HTML5(SASPY_INTERNAL) Body file: STDOUT
        50
        51
            centrePollution=mean(pollution);
                                              /*calclate mean vector*/
        51 !
        52 covariancePollution=cov(pollution);
        52!
                                                 /*calculate cov matrix*/
        53
            correlationPollution=corr(pollution);
                                                   /*calculate correlation matrix*/
        53 !
        54 /* print centrePollution covariancePollution; */
        55
            columnVectorPollution = t(pollution-centrePollution);
                                                                   /* col vector */
        55 !
            distancesPollution = t(columnVectorPollution)*inv(covariancePollution)*columnVect
        orPollution;
        56!
                     /* calculate distances */
        57
        58
             ods html5 (id=saspy_internal) close;ods listing;
        59
```

In [3]: mahalaPollution=vecdiag(distancesPollution); /*produce Mahalanobis vector*/
print mahalaPollution; /*produce Mahalanobis vector */

The SAS System

mahalaPollution
0.4606524
0.6592206
2.377061
1.6282902
0.4135364
0.4760726
1.1848895
10.639179
0.1388339
0.8162468
1.3566301
0.6228096
5.6494392
0.3159498
0.4135364
0.1224973
0.8987982
4.7646873
3.0089122
0.6592206
2.7741416
1.0360061
0.7874152
3.4437748
6.1488606
1.0360061
0.1388339
0.8856041
0.1379719
2.2488867

b) Determine the proportion of the observations falling within the estimated 50% probability contour of a bivariate normal distribution (1 mark)

Bivariate Contour to assess normality

```
(X_i - \bar{X}) \; S^{-1} \; (X_i - \bar{X}) \leq \chi 2_p(\alpha)
```

chisquared: $\chi 2p(a) -> \chi 2_2(0.5) -> 1.39$

```
In [4]: pollutionInv = inv(covariancePollution);
    pollutionMean = mean(pollution);
    values=(pollution-pollutionMean)*pollutionInv*t(pollution-pollutionMean);
    numbers=vecdiag(values);
    inside=numbers<1.39;
    outside=numbers>1.39;
    i_count=sum(inside);
    o_count=sum(outside);
    /* print i_count;
    print o_count; */
    proportion = i_count / (i_count + o_count);
    print proportion;
```

Out[4]:

The SAS System

```
        proportion

        0.6190476
```



```
In [6]: proc reg data=chiplot plots=FitPlot(stats=all);
    model MAHDIST = CHISQ;
    ods select FitPlot;
    run;
```

The SAS System

Model: MODEL1

Out[6]:

Dependent Variable: MAHDIST

d) Given your results in part b) and part c) are these data approximately bivariate normal? Explain

For bivariate normality we require:

- Multivariate normal distribution (formula) $\mathbf{X} \sim \mathcal{N}_k(\mu, \, \mathbf{\Sigma})$ with a single mean
- Representative Sample
- independence of observations

Given the Chi Squared Plot results. And with only ~62% of the proportion falling within the estimated 50% probability contour of a bivariate normal distribution.

· Not bivariate normal

Explain

- Because observation of applot and fit plot show two distinct curves
- Indicates either bimodal or light-tailed results
- $\mathbf{X} \sim \mathcal{N}_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ bimodal
- This is even though the results fit within the 95% CI (95%) according to observation of fit plot

2. Hypothesis testing - results.csv

```
In [7]: /*read in data*/
Data temp;
infile "./data/results.csv" delimiter=",";
input x1 x2 x3;
run;

proc IML;
use temp;
read all var _all_ into X;
Out[7]:
```

The datafile results.csv, contains three test results assessing different types of intelligence.

Test the following hypothesis at:

```
\alpha=0.02
H0 :\mu'=[85 75 55]
```

a) Conduct the hypothesis test showing all steps required.

```
H_0: \mu' = \mu_0' = [85 75 55]
H_a: \mu' \neq \mu_0' \neq [85 75 55]
```

Which kind of test should we apply?

```
In [8]: n=nrow(x); /* No. of observations */
p=ncol(x); /* No. of variables */
print n p;
   /* n=nrow(typesOfIntelligence); /* No. of observations */ */
   /* p=ncol(typesOfIntelligence); /* No. of variables */ */
```

 Out[8]:
 The SAS System

 n
 p

 80
 3

Since n is relatively large, compared to p, we will use the Large Sample Theory:

$$n(\bar{X}_n - \mu)^T \; S_n^{-1} \; (\bar{X}_n - \mu) \approx \chi 2_p$$

Hypothesis:

H₀:
$$\mu' = \mu_0' = [85 75 55]$$

H_a: $\mu' \neq \mu_0' \neq [85 75 55]$

Get critical value from Chi Squared table

$$\chi 2_p = \chi 2(80, 0.02) = 108.069$$

Do maths to it

```
for \mu_0' = [85 75 55]
```

```
In [9]: centre=t(mean(X));
    cov_x=cov(X);
    cor_x=corr(X);
    incov=inv(cov_x); /* Inverse of the covariance matrix */
    mu0={85,75,55}; /* Hypothesized values */
Out[9]:
```

Large sample:

$$n(\bar{X}_{n} - \mu)^{T} S_{n}^{-1} (\bar{X}_{n} - \mu) \approx \chi 2_{p}$$

```
In [10]: tsq=n*t(centre-mu0)*incov*(centre-mu0);
    cCriticalValue=cinv(0.98,p);
    print tsq cCriticalValue; */
```

Out[10]: The SAS System

tsq	cCriticalValue
51.308032	9.8374093

If the values given above are the average score for all college students over the last ten years, is there reason to believe the group in the datafile are scoring differently? Explain.(5 marks)

Hypothesis

$$H_0$$
: $\mu' = \mu_0' = [85 75 55]$
 H_a : $\mu' \neq \mu_0' \neq [85 75 55]$

Assumptions

$$\mathbf{X} \sim \mathcal{N}_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- Representative
- Independence of observerations

We reject the null hypothesis because:

Reject if:
$$T^2 > \chi 2_p$$

 $T^2 > \chi 2_p (\alpha = 0.02)$
 $51.3 > 9.837$
 $\therefore \mu \neq \mu_0$

• The test score sample mean is sufficiently different during this year than the mean (μ' [85 75 55]) of uni students during previous years.

b) Determine the lengths and directions for the axes of the 90% confidence ellipsoid for μ (2 marks)

notes from class / Compute the lengths of axes of the confidence ellipsoid/ lam=eigval(cov_x); E=eigvec(cov_x); length=2sqrt(lamccri_90percent/n); print length; print E;

```
In [11]: centre=t(mean(X));
    cov_x=cov(X);
    incov=inv(cov_x); /* Inverse of the covariance matrix */
    mu0={85,75,55}; /* Hypothesized values */
    cCriticalValue=cinv(0.98,p);

lambda=eigval(cov_x);
    direction_aka_Eigenvector=eigvec(cov_x);
    length=2*sqrt(lambda*cCriticalValue/n);

print length;
    print direction_aka_Eigenvector;
```

Out[11]:

The SAS System

length	
12.109934	
6.633851	
3.8863767	

direction_aka_Eigenvector				
0.4928051	0.4178742	-0.763233		
0.8135077	-0.53253	0.2337037		
0.3087854	0.7360661	0.6023772		

c) Construct the three possible scatter diagrams from the pairs of variables.

```
In [12]: sd=vecdiag(cov_x);
    ubound1=centre+sqrt(cCriticalValue)*sqrt(sd/n);
    lbound1=centre-sqrt(cCriticalValue)*sqrt(sd/n);
    print lbound1 ubound1;
```

Out[12]:

The SAS System

Ibound1	ubound1
82.216049	89.433951
74.684939	85.190061
46.634609	53.215391

In [13]: proc sgscatter data = temp;
PLOT X1 * X2; run;

Do these data appear to be normally distributed?

Nope. This data does not appear to be normally distributed.

Discuss

(3 marks)

linear gradient = normally distributed

Question 3

```
In [17]: proc iml;
         /* reset print; */
         dataQ3 = {
         3\ 4\ 15\ -6
         2\ 4\ 14\ -7
         3 4 15 -5,
         3 3 16 -6,
         2515-7
         1 4 14 -4};
Out[17]:
         224 ods listing close; ods html5 (id=saspy_internal) file=stdout options(bitmap_mode
         ='inline') device=svg; ods graphics on /
         224! outputfmt=png;
         NOTE: Writing HTML5(SASPY INTERNAL) Body file: STDOUT
         225
         NOTE: IML Ready
         226 proc iml;
         227 /* reset print; */
         228 dataQ3 = {
         229 3 4 15 -6,
         230 2 4 14 -7,
         231 3 4 15 -5,
              3 3 16 -6,
         232
         233
              2 5 15 -7,
         234
              1 4 14 -4};
         235
         236 ods html5 (id=saspy internal) close;ods listing;
         237
In [18]: nQ3=nrow(dataQ3); /* No. of observations */
         pQ3=ncol(dataQ3); /* No. of variables */
         alphaQ3 = 0.05;
         muQ3 = mean(dataQ3);
         degreesFreedomQ3 = nQ3 - 1;
         mQ3 = pQ3;
         covQ3=cov(dataQ3); /* covariance */
         invCovQ3=inv(covQ3); /* Inverse of the covariance matrix - Might not need*/
         sdQ3=vecdiag(CovQ3); /* get variance from diagonal of the covariance matrix */
         sdQ3_T=T(vecdiag(CovQ3)); /* Transposed */
Out[18]:
         239 ods listing close; ods html5 (id=saspy internal) file=stdout options(bitmap mode
         ='inline') device=svg; ods graphics on /
         239! outputfmt=png;
         NOTE: Writing HTML5(SASPY_INTERNAL) Body file: STDOUT
         240
         241
             nQ3=nrow(dataQ3);
                                 /* No. of observations */
         241!
         242 pQ3=ncol(dataQ3);
                                 /* No. of variables */
         242!
         243 alphaQ3 = 0.05;
         244 muQ3 = mean(dataQ3);
         245 degreesFreedomQ3 = nQ3 - 1;
         246 \text{ mQ3} = pQ3;
         247
         248 covQ3=cov(dataQ3);
         248!
                                  /* covariance */
         249 invCovQ3=inv(covQ3);
                                    /* Inverse of the covariance matrix - Might not need*/
         249!
         250 sdQ3=vecdiag(CovQ3);
                                    /* get variance from diagonal of the covariance matrix */
         250!
         251 sdQ3_T=T(vecdiag(CovQ3));
                                         /* Transposed */
         251!
         252
         253 ods html5 (id=saspy_internal) close;ods listing;
         254
```

a) The independent 95 % confidence intervals for each variable (1.5 marks)

$$\bar{X}_i \pm t_{n-1}, \quad t_{n-1} \left(\frac{\sigma}{\sqrt{n}}\right)$$

```
In [19]: t_Q3 = tinv((1-(alphaQ3/2)), degreesFreedomQ3);
Out[19]:

256   ods listing close;ods htm15 (id=saspy_internal) file=stdout options(bitmap_mode = 'inline') device=svg; ods graphics on /
256! outputfmt=png;
    NOTE: Writing HTML5(SASPY_INTERNAL) Body file: STDOUT
257
258   t_Q3 = tinv((1-(alphaQ3/2)), degreesFreedomQ3);
259
260   ods htm15 (id=saspy_internal) close;ods listing;
261
```

```
In [20]: upperIndependentCIQ3 = muQ3 + t_Q3 * sdQ3_T/sqrt(nQ3);
    lowerIndependentCIQ3 = muQ3 - t_Q3 * sdQ3_T/sqrt(nQ3);
    independentConfidenceIntervalsQ3 = (lowerIndependentCIQ3`) || (upperIndependentCIQ3`);
    print independentConfidenceIntervalsQ3[F=8.4 C={"Lower" "Upper"}];
```

Out[20]:

The SAS System

independentConfidenceIntervalsQ3				
Lower	Upper			
1.6337	3.0330			
3.5802	4.4198			
14.2387	15.4280			
-7.2676	-4.3991			

b) The Bonferroni 95 % confidence intervals for each variable (1.5 marks)

$$\bar{X}_i \pm t_{n-1} \left(\frac{\alpha}{2m}\right) \sqrt{\frac{s_{ii}}{n}}$$

$$t_{n-1}\left(\frac{\alpha}{2m}\right)$$

```
In [21]: adjustedConfidenceIntervalQ3 = (1 - (alphaQ3 / (2 * mQ3)));
   /* print adjustedConfidenceIntervalQ3; */
Out[21]:
```

```
t(df, alpha) <- how we write it
tinv(Cl(aka 1-alpha), df) <- back to front
```

```
In [22]: tCriticalValue=tinv(adjustedConfidenceIntervalQ3, degreesFreedomQ3);
   /* print tCriticalValue; */
Out[22]:
```

$$\sqrt{\frac{s_{ii}}{n}}$$

Out[23]:

Out[24]: The SAS System

bonferroniConfidenceIntervalsQ3				
Lower	Upper			
1.6827	2.9840			
3.4960	4.5040			
14.2335	15.4332			
-6.7649	-4.9018			

c) The simultaneous 95 % confidence intervals for each variable (1.5 marks)

$$\bar{X}_i \pm \sqrt{n-1\left(\frac{p(n-1)}{n-p}\right)F_{p,n-p}(\alpha)\frac{S_{ii}}{n}}$$

```
In [25]: firstPart = 1 - (nQ3 - pQ3) * alphaQ3;
    tSquared = pQ3 * (nQ3 - 1)/(nQ3 - pQ3);
    simultaneousCI = tinv(firstPart, degreesFreedomQ3);

upperSimultaneousCI = muQ3 + sqrt(tSquared * simultaneousCI) * sqrt(sdQ3_T / nQ3);
    lowerSimultaneousCI = muQ3 - sqrt(tSquared * simultaneousCI) * sqrt(sdQ3_T / nQ3);

simultaneousConfidenceIntervalsQ3 = (lowerSimultaneousCI`) || (upperSimultaneousCI`);
    print simultaneousConfidenceIntervalsQ3[F=8.4 C={"Lower" "Upper"}];
```

Out[25]:

The SAS System

simultaneousConfidenceIntervalsQ				
Lower	Upper			
1.0528	3.6139			
3.0081	4.9919			
13.6527	16.0140			
-7.6668	-3.9998			

d) The 95 % confidence interval for the difference between μ2 and μ4. Are these means different? (1.5 marks)

```
In [26]: muQ3X2 = mean(dataQ3[2]);
   muQ3X4 = mean(dataQ3[4]);
   diffXbar = (muQ3X2 - muQ3X4);
   secondPartDiffEquation = sqrt(tSquared * sdQ3_T) * sqrt((covQ3[2,2] - 2 * covQ3[2,4] + c
        ovQ3[4,4]) / nQ3);

   upperDiffCIMu2Mu4Q3 = diffXbar + secondPartDiffEquation;
   lowerDiffCIMu2Mu4Q3 = diffXbar - secondPartDiffEquation;

   diffCIMu2Mu4Q3 = (lowerDiffCIMu2Mu4Q3^) | | (upperDiffCIMu2Mu4Q3^);
   print diffCIMu2Mu4Q3[F=8.4 C={"Lower" "Upper"}];

/* The CI for μ2 - μ4 does not include zero, therefore the muQ3s are different */
```

Out[26]:

The SAS System

diffCIMu2Mu4Q3				
Lower	Upper			
8.4484	11.5516			
8.7981	11.2019			
8.5695	11.4305			
7.7785	12.2215			

e) Discuss the results from part a) to part d) above and explain any differences in the observed estimates. (2 marks)

```
In [27]: muQ3_t = t(muQ3);
print muQ3_t independentConfidenceIntervalsQ3[F=8.4 C={"Lower" "Upper"}];
```

Out[27]:

The SAS System

muQ3_t	independentConfidenceIntervalsQ3 Lower	Upper
2.3333333	1.6337	3.0330
4	3.5802	4.4198
14.833333	14.2387	15.4280
-5.833333	-7.2676	-4.3991

4 PCA's with - track.csv

see other file for full SAS code for question 4 due to small bug with jupyter with SAS.

• The data file track.csv contains information on female national track records. Using the file completing the following:

```
%web_drop_table(R);
FILENAME REFFILE '/folders/myshortcuts/ass2--multivariate/data/track.csv';
PROC IMPORT DATAFILE=REFFILE
    DBMS=CSV
    OUT=R; /* this is where we get the output with the PCA's */
    GETNAMES=YES;
RUN;
PROC CONTENTS DATA=R;
RUN;
%web_open_table(R);
```

a) pt1 Obtain the sample correlation matrix R

```
proc IML;
proc princomp data=R OUT=prinR;
    title3 '4 a) Obtain the sample correlation matrix R, and determine the eigenvalue/eigenvector
pairs.';
run;

proc IML; / fix printing error /
    ';"; run;
proc iml;
title3 '4 b) ptl) State the first two principal components for the standardized variables';
print 'PCA1 Y1 = 0.377766X1 + 0.383210X2 + 0.368036X3 + 0.394781X4 + 0.389261X5 + 0.376094X6 +
0.355203X7';
print 'PCA2 Y2 = -0.407176X1 - 0.413629X2 - 0.459353X3 + 0.161246X4 + 0.309088X5 + 0.423190X6 +
0.389215X7';
run;
</code>
```

100m_s	200m_s	400m_s	800mmin	1500mmin	3000mmin	Marathon_min	
100m_s	1.0000	0.9411	0.8708	0.8092	0.7816	0.7279	0.6690
200m_s	0.9411	1.0000	0.9088	0.8198	0.8013	0.7319	0.6800
400m_s	0.8708	0.9088	1.0000	0.8058	0.7198	0.6738	0.6769
800mmin	0.8092	0.8198	0.8058	1.0000	0.9051	0.8666	0.8540
1500mmin	0.7816	0.8013	0.7198	0.9051	1.0000	0.9734	0.7906
3000mmin	0.7279	0.7319	0.6738	0.8666	0.9734	1.0000	0.7987
Marathon_min	0.6690	0.6800	0.6769	0.8540	0.7906	0.7987	1.0000

a) pt2 determine the eigenvalue/eigenvector pairs.

		Eigenvalue	Eigen - Prin1	Eigen - Prin2	Eigen - Prin3	Eigen - Prin4	Eigen - Prin5	Eigen - Prin6	Eigen - Prin7
x1	100m_s	5.80762446	0.377766	407176	140580	0.587063	167069	0.539697	088939
x2	200m_s	0.62869342	0.383210	413629	100783	0.194075	0.093500	744931	0.265657
хЗ	400m_s	0.27933457	0.368036	459353	0.237026	645431	0.327273	0.240094	126604
x4	800mmin	0.12455472	0.394781	0.161246	0.147542	295208	819055	016507	0.195213
х5	1500mmin	0.09097174	0.389261	0.309088	421986	066690	0.026131	188988	730768
х6	3000mmin	0.05451882	0.376094	0.423190	406063	080157	0.351698	0.240500	0.571506
х7	Marathon_min	0.01430226	0.355203	0.389215	0.741061	0.321076	0.247008	048270	082084

b) State the first two principal components for the standardized variables

- PCA1 Y1 = 0.377766X1 + 0.383210X2 + 0.368036X3 + 0.394781X4 + 0.389261X5 + 0.376094X6 + 0.355203X7
- PCA2 Y2 = -0.407176X1 0.413629X2 0.459353X3 + 0.161246X4 + 0.309088X5 + 0.423190X6 + 0.389215X7

```
data Cumulative;
length CumulativePercent $ 2;
input X $1-15 Eigenvalue $1-15 CumulativePercentCol;
CumulativePercent = substr(X,1,2);
datalines;
X Eigenvalue Cumulative
X1 5.80762446 82.97
X2 0.62869342 91.95
x3 0.27933457 95.94
X4 0.12455472 97.72
X5 0.09097174 99.02
x6 0.05451882 99.80
X7 0.01430226 100.00
proc print data=Cumulative;
title3 '4 b) pt2. Calculate the cumulative percentages of the total (standardized) sample variance
explained.';
run;
```

b) pt2. calculate the cumulative percentages of the total (standardized) sample variance explained. (2 marks)

PCA	Eigenvalue	CumulativePercent
X1	5.80762446	82.97
X2	0.62869342	91.95
Х3	0.27933457	95.94
X4	0.12455472	97.72
X5	0.09097174	99.02
X6	0.05451882	99.80
X7	0.01430226	100.00

c) Prepare a table showing the correlation of the standardized variables with the first two components.

```
proc princomp data=R n=2 outstat=standardVariablesCorr noprint;
run;
proc print data = standardVariablesCorr;
    title3 "c) Prepare a table showing the correlation of the standardized variables with the first two
components.";
    where TYPE = 'SCORE';
run;

/ proc print data=R; /
/ run; /
/ proc print data=prinR; /
/ run; /
proc print data=prinR; /
    run; /
proc print data=prinR;
var Country Prin1 Prin2; /* filter to only display country and first Principle Component
run;
</code>
```

PCA	100m_s	200m_s	400m_s	800mmin	1500mmin	3000mmin	Marathon_ <i>min</i>
Prin1	0.37777	0.38321	0.36804	0.39478	0.38926	0.37609	0.35520
Prin2	-0.40718	-0.41363	-0.45935	0.16125	0.30909	0.42319	0.38922

Second principle component accounts for an additional ~8.98% of female national track records
• The dataset can be reduced to 2 principle components to explain ~91.95% of female national track records.
e) Rank the nations based on their score on the first principal component.
<pre>proc sort data=prinR; /* rank by principle component #1 */ by Prinl; run;</pre>
<pre>proc print data=prinR; var Country Prin1; /* filter to only display country and first Principle Component */</pre>
title 'e) Rank the nations based on their score on the first principal component'; run;

- The first principle component accounts for ~82.97% of female national track records

1 ARG 0.39324 2 AUS -1.93164 3 AUT -1.26252 4 BEL -1.29173 5 BER 1.39611 6 BRA -1.00678 7 CAN -1.73434 8 CHI 0.81184 9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR	Obs	Country	Prin1
3 AUT -1.26252 4 BEL -1.29173 5 BER 1.39611 6 BRA -1.00678 7 CAN -1.73434 8 CHI 0.81184 9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	1	ARG	0.39324
4 BEL -1.29173 5 BER 1.39611 6 BRA -1.00678 7 CAN -1.73434 8 CHI 0.81184 9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 <	2	AUS	-1.93164
5 BER 1.39611 6 BRA -1.00678 7 CAN -1.73434 8 CHI 0.81184 9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 34 MCR 1.45535 <	3	AUT	-1.26252
6 BRA -1.00678 7 CAN -1.73434 8 CHI 0.81184 9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524	4	BEL	-1.29173
7 CAN -1.73434 8 CHI 0.81184 9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	5	BER	1.39611
8 CHI 0.81184 9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS	6	BRA	-1.00678
9 CHN -2.98947 10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	7	CAN	-1.73434
10 COL 0.00193 11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	8	CHI	0.81184
11 COK 7.90623 12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524	9	CHN	-2.98947
12 CRC 2.16681 13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	10	COL	0.00193
13 CZE -2.40603 14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524	11	СОК	7.90623
14 DEN -0.08250 15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476	12	CRC	2.16681
15 DOM 2.19241 16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	13	CZE	-2.40603
16 FIN -1.26673 17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	14	DEN	-0.08250
17 FRA -2.51835 18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	15	DOM	2.19241
18 GER -3.04752 19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	16	FIN	-1.26673
19 GBR -2.44271 20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524	17	FRA	-2.51835
20 GRE -1.19780 21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	18	GER	-3.04752
21 GUA 3.29412 22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	19	GBR	-2.44271
22 HUN -0.78825 23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	20	GRE	-1.19780
23 INA 1.74194 24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	21	GUA	3.29412
24 IND -0.35426 25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	22	HUN	-0.78825
25 IRL -1.03591 26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	23	INA	1.74194
26 ISR 0.57416 27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	24	IND	-0.35426
27 ITA -1.54745 28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	25	IRL	-1.03591
28 JPN -0.48166 29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	26	ISR	0.57416
29 KEN -0.91774 30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	27	ITA	-1.54745
30 KOR 0.83079 31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	28	JPN	-0.48166
31 KOR 1.45535 32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	29	KEN	-0.91774
32 LUX 1.72147 33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	30	KOR	0.83079
33 MAS 1.49521 34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	31	KOR	1.45535
34 MRI 1.74973 35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	32	LUX	1.72147
35 MEX -0.99577 36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	33	MAS	1.49521
36 MYA 0.81598 37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	34	MRI	1.74973
37 NED -1.54476 38 NZL -0.75524 39 NOR -0.55300	35	MEX	-0.99577
38 NZL -0.75524 39 NOR -0.55300	36	MYA	0.81598
39 NOR -0.55300	37	NED	-1.54476
	38	NZL	-0.75524
40 PNG 5.25745	39	NOR	-0.55300
	40	PNG	5.25745

Obs	Country	Prin1
41	PHI	1.76353
42	POL	-2.27377
43	POR	-1.17525
44	ROM	-2.12301
45	RUS	-3.04295
46	SAM	8.21342
47	SIN	3.09392
48	ESP	-1.88946
49	SWE	-0.83915
50	SUI	-1.11355
51	TPE	0.65909
52	THA	1.22381
53	TUR	-0.85013
54	USA	-3.29915

Discuss whether this meets your expectations. (2 marks)

Doesn't meet my expectations because current world records for track records are:

- Women's records are from USA, France, Soviet, Romania, Kenya, Ethiopia
- Men all from Africa (Jamaica, South Africa, Kenya, Ethiopia)

Possibly because date of the records isn't supplied.

Further investigation could compare current world records accross all countries

Ranked by Principle Component 1 (accross all track records)

Obs	Country	Prin1
1	ARG	0.39324
2	AUS	-1.93164
3	AUT	-1.26252
4	BEL	-1.29173
5	BER	1.39611
6	BRA	-1.00678
7	CAN	-1.73434
8	CHI	0.81184
9	CHN	-2.98947
10	COL	0.00193

Men's records (https://en.wikipedia.org/wiki/List_of_Olympic_records_in_athletics#Men's_records)

100 metres	0:9.63	Usain Bolt	Jamaica
200 metres	0:19.30	Usain Bolt	Jamaica
400 metres	0:43.03	Wayde van Niekerk	South Africa
800 metres	1:40.91	David Rudisha	Kenya
1500 metres	3:32.07	Noah Ngeny	Kenya
5000 metres	12:57.82	Kenenisa Bekele	Ethiopia
10000 metre	27:01.17	Kenenisa Bekele	Ethiopia
Marathon	2:06:32	Samuel Wanjiru	Kenya

Women's records (https://en.wikipedia.org/wiki/List of Olympic records in athletics#Women's records)

100 metres	10.62	Florence Griffith-Joyner	United States (USA)
200 metres	21.34	Florence Griffith-Joyner	United States (USA)
400 metres	48.25	Marie-José Pérec	France (FRA)
800 metres	1:53.43	Nadezhda Olizarenko	Soviet Union (URS)
1,500 metres	3:53.96	Paula Ivan	Romania (ROU)
5,000 metres	14:26.17	Vivian Cheruiyot	Kenya (KEN)
10,000 metres	29:17.45	Almaz Ayana	Ethiopia (ETH)
Marathon	2:23:07	Tiki Gelana	Ethiopia (ETH)

5 - Factor Analysis

The correlation matrix below is from the measurement of skeletal features of white leghorn fowl (Dunn, Storrs Agricultural Experimental Station Bulletin,	, 52,	1928)
Where		

 X_1 = Skull length

 X_2 = Skull breadth

 X_3 = Femur length

 X_4 = Tibia length

 X_5 = Humerus length

 X_6 = Ulna length

Using the **maximum likelihood procedure** the following estimated factor loadings were extracted:

Skeletal Feature	Variable	Estimated-	-Loadings	Varimax-	-rotated-loadings
		F1	F2	F1*	F2*
Skull length	1	0.602	0.200	0.484	0.411
Skull breadth	2	0.467	0.154	0.375	0.319
Femur length	3	0.926	0.143	0.603	0.717
Tibia length	4	1.000	0.000	0.519	0.855
Humerus length	5	0.874	0.476	0.861	0.499
Ulna length	6	0.894	0.327	0.744	0.594

Skeletal Feature	Variable	Estimated-	-Loadings			Varimax-	-rotated-loadings		
		F1	F1 Proportions	F2	F2 Proportions	F1*	F1*Proportions	F2*	F2*Proportions
Skull length	1	0.602	0.1263909	0.200	0.0419903	0.484	0.134969325	0.411	0.121060383
Skull breadth	2	0.467	0.0980474	0.154	0.0323326	0.375	0.104573341	0.319	0.093961708
Femur length	3	0.926	0.1944153	0.143	0.0300231	0.603	0.168153932	0.717	0.211192931
Tibia length	4	1.000	0.2099517	0.000	0	0.519	0.144729504	0.855	0.251840943
Humerus length	5	0.874	0.1834978	0.476	0.099937	0.861	0.24010039	0.499	0.146980854
Ulna length	6	0.894	0.1876968	0.327	0.0686542	0.744	0.207473508	0.594	0.174963181
Totals		4.763		1.3		3.586		3.395	

```
In [28]:
    proc iml;
    fowlCorr = {
        1.000 0.505 0.569 0.602 0.621 0.603,
        0.505 1.000 0.422 0.467 0.482 0.450,
        0.569 0.422 1.000 0.926 0.877 0.878,
        0.602 0.467 0.926 1.000 0.874 0.894,
        0.621 0.482 0.877 0.874 1.000 0.937,
        0.603 0.450 0.878 0.894 0.937 1.000
        };
```

```
Out[28]:
```

```
In [29]:
    /* data fowl (type=cov);
    input _type_$ x1-x6;
    datalines;
    corr 1.000 0.505 0.569 0.602 0.621 0.603
    corr 0.505 1.000 0.422 0.467 0.482 0.450
    corr 0.569 0.422 1.000 0.926 0.877 0.878
    corr 0.602 0.467 0.926 1.000 0.874 0.894
    corr 0.602 0.467 0.926 1.000 0.937
    corr 0.603 0.450 0.878 0.894 0.937 1.000
;

proc factor data=fowl method=principal corr p=80;

/* proc factor data=fowl method=principal cov rotate=varimax; */
    run; */
```

```
Out[29]:
         369 ods listing close; ods html5 (id=saspy_internal) file=stdout options(bitmap_mode='inline') device=svg; od
         s graphics on /
         369! outputfmt=png;
         NOTE: Writing HTML5(SASPY_INTERNAL) Body file: STDOUT
         370
         371
             /* data fowl (type=cov);
         372 input _type_$ x1-x6;
         373 datalines;
         374 corr 1.000 0.505 0.569 0.602 0.621 0.603
         375 corr 0.505 1.000 0.422 0.467 0.482 0.450
         376 corr 0.569 0.422 1.000 0.926 0.877 0.878
         377 corr 0.602 0.467 0.926 1.000 0.874 0.894
         378 corr 0.621 0.482 0.877 0.874 1.000 0.937
         379 corr 0.603 0.450 0.878 0.894 0.937 1.000
         380 ;
         381
         382 proc factor data=fowl method=principal corr p=80;
         383
         384 /* proc factor data=fowl method=principal cov rotate=varimax; */
         385 run;
         NOTE: Module MAIN is undefined in IML; cannot be RUN.
         385!
         386
         387 ods html5 (id=saspy_internal) close;ods listing;
         388
```

d) Using the unrotated estimated factor loadings	s, obtain the maximum li	ikelihood estimates of t	he following:
i. The specific variances. \$\hat { \psi } \$			

```
In [30]:
         proc iml;
         fowlCorr = {
         1.000 0.505 0.569 0.602 0.621 0.603,
         0.505 1.000 0.422 0.467 0.482 0.450,
         0.569 0.422 1.000 0.926 0.877 0.878,
         0.602 0.467 0.926 1.000 0.874 0.894,
         0.621 0.482 0.877 0.874 1.000 0.937,
         0.603 0.450 0.878 0.894 0.937 1.000
         };
         estimatedFactorLoading = {
         0.602 0.200,
         0.467 0.154,
         0.926 0.143,
         1.000 0.000,
         0.874 0.476,
         0.894 0.327
         estimatedFactorLoadingT = t(estimatedFactorLoading);
         LLt = estimatedFactorLoading * estimatedFactorLoadingT;
         psiWithoutZeros = fowlCorr - LLt;
         psi = diag(psiWithoutZeros);
         psiFowlEstimated = vecdiag(psi);
         fowlCorrEstimated = LLt + psi;
         redisualMatrixEstimated = fowlCorr - LLt - psi;
         communalitiesFowlEstimated = vecDiag(1 - psi);
         print psiFowlEstimated;
         print fowlCorrEstimated;
         print fowlCorr;
```


The SAS System

psiFowlEstimated
0.597596
0.758195
0.122075
0
0.009548
0.093835

fowlCorrEstimated					
1	0.311934	0.586052	0.602	0.621348	0.603588
0.311934	1	0.454464	0.467	0.481462	0.467856
0.586052	0.454464	1	0.926	0.877392	0.874605
0.602	0.467	0.926	1	0.874	0.894
0.621348	0.481462	0.877392	0.874	1	0.937008
0.603588	0.467856	0.874605	0.894	0.937008	1

fowlCorr					
1	0.505	0.569	0.602	0.621	0.603
0.505	1	0.422	0.467	0.482	0.45
0.569	0.422	1	0.926	0.877	0.878
0.602	0.467	0.926	1	0.874	0.894
0.621	0.482	0.877	0.874	1	0.937
0.603	0.45	0.878	0.894	0.937	1

ii. The communalities. $\{ h \}_{i}^{2} = 1 -{ \cdot j_{i}}$

	<pre>print communalitiesFowlEstimated;</pre>
,	
Out[31]:	
	The CAC System
	The SAS System
	communalitiesFowlEstimated
	0.402404
	0.241805
	0.877925
	1
	0.990452
	0.906165

In [31]:

Estimated-Loadings

Skeletal Feature	Variable				
		F1	F1 Proportions	F2	F2 Proportions
Skull length	x ₁	0.602	0.1263909	0.200	0.0419903
Skull breadth	x ₂	0.467	0.0980474	0.154	0.0323326
Femur length	x ₃	0.926	0.1944153	0.143	0.0300231
Tibia length	X ₄	1.000	0.2099517	0.000	0
Humerus length	x ₅	0.874	0.1834978	0.476	0.099937
Ulna length	x ₆	0.894	0.1876968	0.327	0.0686542
Totals		4.763		1.300	

iv. The residual matrix (2.5 marks)

 $R-\widetilde{L} \simeq \{L \} \rightarrow \{L \}$

In [32]:	<pre>print redisualMatrixEstimated;</pre>

Out[32]:

redisualMatrixEstimated								
0	0.193066	-0.017052	0	-0.000348	-0.000588			
0.193066	0	-0.032464	0	0.000538	-0.017856			
-0.017052	-0.032464	0	0	-0.000392	0.003395			
0	0	0	0	0	0			
-0.000348	0.000538	-0.000392	0	0	-8E-6			
-0.000588	-0.017856	0.003395	0	-8E-6	0			

e) Using the varimax rotated estimated factor loadings, obtain the maximum likelihood estimates of the following:

```
In [33]:
         proc iml;
         fowlCorr = {
          1.000 0.505 0.569 0.602 0.621 0.603,
         0.505 1.000 0.422 0.467 0.482 0.450,
         0.569 0.422 1.000 0.926 0.877 0.878,
         0.602 0.467 0.926 1.000 0.874 0.894,
         0.621 0.482 0.877 0.874 1.000 0.937,
         0.603 0.450 0.878 0.894 0.937 1.000
         };
         VarimaxRotated = {
         0.484 0.411,
         0.375 0.319,
         0.603 0.717,
         0.519 0.855,
         0.861 0.499,
         0.744 0.594
         };
         redisualMatrixEstimated = {
         0\ 0.193066\ -0.017052\ 0\ -0.000348\ -0.000588,
          0.193066 \ 0 \ -0.032464 \ 0 \ 0.000538 \ -0.017856, 
         -0.017052 -0.032464 0 0 -0.000392 0.003395,
         0 0 0 0 0 0,
         -0.000348 0.000538 -0.000392 0 0 -8E-6,
         -0.000588 -0.017856 0.003395 0 -8E-6 0
         };
         VarimaxRotatedT = t(VarimaxRotated);
         LLt = VarimaxRotated * VarimaxRotatedT;
         psiWithoutZeros = fowlCorr - LLt;
         psi = diag(psiWithoutZeros);
         psiFowlVarimax = vecdiag(psi);
         fowlCorrSample = LLt + psi;
redisualMatrixRotated = fowlCorr - LLt - psi;
         residualMatrixDiff = redisualMatrixEstimated - redisualMatrixRotated;
          communalitiesFowlVarimax = vecDiag(1 - psi);
         print psiFowlVarimax;
         print fowlCorrSample;
         print fowlCorr;
```


psiFowlVarimax	
0.596823	
0.757614	
0.122302	
-0.000386	
0.009678	
0.093628	

fowlCorrSample							
1	0.312609	0.586539	0.602601	0.621813	0.60423		
0.312609	1	0.454848	0.46737	0.482056	0.468486		
0.586539	0.454848	1	0.925992	0.876966	0.87453		
0.602601	0.46737	0.925992	1	0.873504	0.894006		
0.621813	0.482056	0.876966	0.873504	1	0.93699		
0.60423	0.468486	0.87453	0.894006	0.93699	1		

fowlCorr							
1	0.505	0.569	0.602	0.621	0.603		
0.505	1	0.422	0.467	0.482	0.45		
0.569	0.422	1	0.926	0.877	0.878		
0.602	0.467	0.926	1	0.874	0.894		
0.621	0.482	0.877	0.874	1	0.937		
0.603	0.45	0.878	0.894	0.937	1		

In [34]:	<pre>print communalitiesFowlVarimax;</pre>
Out[34]:	
	The SAS System
	communalitiesFowlVarimax
	0.403177
	0.242386
	0.877698
	1.000386
	0.990322
	0.906372

Varimax-rotated-loadings

		F1*	F1*Proportions	F2*	F2*Proportions
Skull length	1	0.484	0.134969325	0.411	0.121060383
Skull breadth	2	0.375	0.104573341	0.319	0.093961708
Femur length	3	0.603	0.168153932	0.717	0.211192931
Tibia length	4	0.519	0.144729504	0.855	0.251840943
Humerus length	5	0.861	0.24010039	0.499	0.146980854
Ulna length	6	0.744	0.207473508	0.594	0.174963181
Totals		3.586		3.395	

iv. The residualmatrix $R-\widetilde{L} \rightarrow {L} -\hat{L} \$ (2.5 marks)

In [35]:	<pre>print redisualMatrixRotated;</pre>

Out[35]:

redisualMatrixRotated							
0	0.192391	-0.017539	-0.000601	-0.000813	-0.00123		
0.192391	0	-0.032848	-0.00037	-0.000056	-0.018486		
-0.017539	-0.032848	0	8E-6	0.000034	0.00347		
-0.000601	-0.00037	8E-6	0	0.000496	-6E-6		
-0.000813	-0.000056	0.000034	0.000496	0	0.00001		
-0.00123	-0.018486	0.00347	-6E-6	0.00001	0		

Rotating the residual matrix

Everything appears to be quite similar, except for [2,1] in our corrolation matrix:

- Estimated loading 0.311934
- Varimax rotated 0.312609
- Corrolation matrix 0.505

Which seems to be slightly different based on our sample.

print residualMatrixDiff;

Out[36]:

residualMatrixDiff							
0	0.000675	0.000487	0.000601	0.000465	0.000642		
0.000675	0	0.000384	0.00037	0.000594	0.00063		
0.000487	0.000384	0	-8E-6	-0.000426	-0.000075		
0.000601	0.00037	-8E-6	0	-0.000496	6E-6		
0.000465	0.000594	-0.000426	-0.000496	0	-0.000018		
0.000642	0.00063	-0.000075	6E-6	-0.000018	0		

It's not obvious with the estimated loadings what is explained by F1, and F2 in the estimated loading

F1 => mostly explained by Tibia, Femur, Ulna, Humerous, each ~20%

F1 => Mostly explained by Humerus (24%), Ulna (20.7%), Femur (17%)
F2 => Mostly explained by Tibia (25%), Femur(21%), Ulna (17%)

F2 => mostly explained by Ulna (0.07~)

Rotated is much easier to understand:

```
There is no part a) or part b)
Not rotated very far
rotating moves this away from psi of 0 and communality of 1
So psi[4] for Varimax gets rotated to -0.000386
    {\tt psiFowlEstimated}
    0.597596
    0.758195
   0.122075
                       this is strange
   0.009548
    0.093835
    {\tt communalitiesFowlEstimated}
    0.402404
    0.241805
    0.877925
                       this is strange
    0.990452
    0.906165
    psiFowlVarimax
    0.596823
    0.757614
    0.122302
    -0.000386
    0.009678
    0.093628
    {\tt communalitiesFowlVarimax}
    0.403177
    0.242386
    0.877698
    1.000386
    0.990322
```

0.906372

le.