CMPEN362 — Formulas

Ting He

Chapter 1

#supported users

R: link capacity, p: fraction of active time, r: transmission rate, τ : maximum congestion probability.

Circuit switching: $\lfloor R/r \rfloor$

Packet switching: $\max_{n=1}^{N} N$ s.t. $\sum_{n=\lfloor R/r \rfloor+1}^{N} {N \choose n} p^n (1-p)^{N-n} \le \tau$

Delay calculation

M: message size, h: #hops, R_i : capacity of i-th link, d_i : propagation delay

at i-th link, P: #packets

E2e delay without segmentation: $\sum_{i=1}^{h} (\frac{M}{R_i} + d_i)$ E2e delay with segmentation: $\sum_{i=1}^{h} (\frac{M}{PR_i} + d_i) + \frac{M/P}{\min_{i \in \{1,...,h\}} R_i} (P-1)$

Chapter 2

HTTP response time

 s_h : size of base HTML, s_o : size per object, n: #objects, R: e2e throughput, t: RTT

Non-persistent HTTP with c parallel connections: $2t + \frac{s_h}{R} + \lceil \frac{n}{c} \rceil \cdot (2t + \frac{s_o}{R})$ Persistent HTTP without pipelining: $2t + \frac{s_h}{R} + n(t + \frac{s_o}{R})$ Persistent HTTP with pipelining: $2t + \frac{s_h}{R} + t + \frac{n \cdot s_o}{R}$

Single object downloading time

T: Internet delay, s_o : object size, λ : request rate, p: cache hit probability, R_a : access link capacity, R_l : LAN capacity

$$(1-p)(T + \frac{1}{\frac{R_a}{s_o} - \lambda(1-p)} + \frac{s_o}{R_l}) + p \cdot \frac{s_o}{R_l}$$

File distribution time

x: file size, R_s : server upload capacity, R_i^u : user i's upload capacity, R_i^d : user i's download capacity, K: #users

Client-server: $\max(\frac{K \cdot x}{R_s}, \frac{x}{\min_{i=1,\dots,K} R_i^d})$ P2p: $\max(\frac{x}{R_s}, \frac{x}{\min_{i=1,\dots,K} R_i^d}, \frac{K \cdot x}{R_s + \sum_{i=1}^K R_i^u})$

Chapter 3

TCP throughput

Throughput = $(\text{total } \# \text{bits per period})/(\# \text{rounds per period} \cdot \text{RTT})$

Formula related to computing the total #bits:

Arithmetic series: $\sum_{i=1}^{n} (a_0 + (i-1)d) = \frac{n}{2} (2a_0 + (n-1)d)$ Geometric series: $\sum_{i=1}^{n} a_0 r^{i-1} = \frac{a_0 (1-r^n)}{1-r}$

Chapter 6

Efficiency of random access protocols

N: number of nodes, p: transmission probability slotted ALOHA: efficiency = $Np(1-p)^{N-1}$

unslotted ALOHA: efficiency = $Np(1-p)^{2(N-1)}$

Physical Layer

#received harmonics over a bandwidth-limited link

b: data rate (bps), s: #bits per signal, f_c : cutoff frequency (Hz) #received harmonics = $\lfloor \frac{f_c s}{h} \rfloor$