Name:

Electric Charges and Fields

	Harish Shastry -9480198001				
1.	Two kinds of charg	es were identified and	l named as positive ar	nd negative by	
	_	Benjamin Franklin	(C) Faraday	(D) Millikan	
_					
2.		ed to detect charges is	(G) 71	(D) T 1	
	(A) Periscope	(B) Endoscope	(C) <u>Electroscope</u>	(D) Telescope	
3.	One of the followin	g methods may be use	ed to charge insulator	S	
	(A) Conduction	(B) Induction	(C) Friction	(D) Radiation	
		· /	· /	· /	
4.	Which of the follow	ing material will allo	w the flow of charges	on its surface?	
	(A) glass	(B) Cotton	(C) Dry wood	(D) <u>Copper</u>	
5.	Two aloce rode rub	bed with silk are brou	ight pageor. Thay will		
3.	(A) Repel	bed with silk are brot	(B) Attract		
	(C) Neither attract no	or renel	(D) Both A and B		
	(C) Notifier attract in	or reper	(D) Both 11 and B		
6.	The minimum amo	unt of charge that car	be added or remove	d from a body is	
	(A) charge of electro	<u>on</u>	(B) Charge of alpha p	particle	
	(C) $3.2x10^{-19}$ C		(D) $16x10^{-19}$ C		
_	A 41 124 1 4		C 1 . 4	a	
7.		ween two charges incr		tnem	
	(A) decreases		(B) increases		
	(C) remains the same		(D) none of these		
8.	Force between two	charges depends on			
	(A) Distance betwee		(B) Magnitude of cha	arges	
	(C) Medium between	n charges	(D) All the above		
9.	A charged body att		(D) 11 1		
	(A) opposite kind of	<u> </u>	(B) light uncharged b	oodies	
	(C) similar kind of c	harges	(D) both A and B		
10.	Property of quantis	sation of charges was	proposed by		
10.		Benjamin Franklin	(C) <u>Faraday</u>	(D) Millikan	
		J	· /	` '	
11.		sation of charges was		d by	
	(A) Coulomb (B)	Benjamin Franklin	(C) Faraday	(D) <u>Millikan</u>	
12.	Colort the western and	antity among the fall	owina		
14.	(A) Electric Charge	antity among the foll	_		
	(C) Electric field		(B) Electric potential(D) Electric current		
	(C) Electric field		(D) Electric current		
13.	Electrons are remo	ved from a body. The	body is now		
	(A) Negatively charg	_	(B) positively charge	<u>d</u>	
	(C) Neutral		(D) Can't be conclud		
	.	, , , , , , , , , , , , , , , , , , ,			
14.		d to a body. The body		1	
	(B) Negatively charge	<u>gea</u>	(B) positively charge		
	(C) Neutral		(D) Can't be conclud	ea	

15.	A body is negatively charged. After charging, the mass of the body					
	(B) decreases		(B) <u>increases</u>			
	(C) remains the	same	(D) none of thes	se		
16.	A body is posit	ively charged. After o	charging, the mass of	the body		
	(C) decreases		(B) increases			
	(C) remains the	same	(D) none of thes	se		
17.	SI unit of elect	ric field is				
	(A) NC ⁻¹		(B) Vm ⁻¹			
	(C) Neither A n	or B	(D) Both A and	<u>B</u>		
18.	Net charge of a	dipole is				
200	(A) zero	(B) +q	(C) -q	(D) 2q		
10	D'	1 4				
19.		pole moment is				
	· · · · · · · · · · · · · · · · · · ·	ve to positive charge				
		ve to negative charge ar to the line joining th	na aharaas			
		ž –	ie charges			
	(D) at an angle	of 45° to dipole axis				
20.	SI unit of dipol	e moment is				
20.	(A) Cm	(B) Cm ⁻¹	(C) C ⁻¹ m	(D) C ⁻¹ m ⁻¹		
	(11) <u>em</u>	(B) Cili	(C) C III	(D) C III		
21.	Intrinsic dipole	e moment of a polar n	nolecule is (q is net po	sitive charge of dipole		
	and 2a is distar	nce between charges)				
	(A) <u>2aq</u>	(B) aq	(C) aq/2	(D) zero		
22.	Intrinsic dipole	e moment of a non-po	olar molecule is (q is n	et positive charge of		
		s distance between ch		•		
	(A) 2aq	(B) aq	(C) aq/2	(D) <u>zero</u>		
22	TD 41		1.0.41			
23.	Torque acting on a dipole placed at an angle θ with an electric field is $(\theta \neq 0, \theta \neq 180)$					
	(A) directly proportional to strength of electric field(B) directly proportional to dipole moment of dipole.					
	(C) inversely proportional to strength of electric field					
	(D) Both A and B					
	(D) Both A and	<u>D</u>				
24.	In a uniform e	lectric field, a dipole i	inclined at an angle θ	experiences $(\theta \neq 0, \theta \neq 180)$		
	(A) Both torque	· •	(B) Only force	,		
	(C) Only torque		` '	(D) neither force nor torque		
25.	A dinala aynar	ionoos maximum toro	uo whon the engle he	twoon cloatric field and		
43.	dipole moment	_	que when the angle be	tween electric field and		
	(A) 0°	(B) 180°	(C) 45°	(D) <u>90°</u>		
	(- -) \	(2) 100	(0) 10	(2) <u>20</u>		
26.	A dipole exper	iences minimum torq	ue when the angle bet	tween electric field and		
	dipole moment	-				
	(A) 0°	(B) 180°	(C) 90°	(D) Both A and B		

27.	Electric field lines (A) Originate from negative charge and terminate in positive charge. (B) Cross each other (C) never cross each other (D) Only A and B are correct				
28.	Electric field line (A) is Non uniform (C) varies with time	` /		c field	
29.	SI unit of electric (A) NC ⁻¹ m ²	c flux is (B) NC ⁻¹ m ² rad	(C) NCm ²	(D) NCm ² rad	
30.	Flux through a c	losed surface enclosing (Β) 1/ε _o	g dipole is (C) $2/\epsilon_o$	(D) $1/2\varepsilon_{o}$	
31.	Two spheres of r	adius R and 2R enclos	e the same charge. Fl	ux through them are	
	(A) 1:2	(B) 2:1	(C) 1:4	(D) <u>1:1</u>	
32.	-	ube enclose the same c ratio 1:2, flux through (B) 2:1			
33.	A cylindrical gau	ussian surface lies in a $(B) 1/\epsilon_0$	uniform electric field (C) 2/ε ₀	. Flux through it is (D) 1/2ε ₀	
34.		ide a spherical charged the surface (B) varies in (D) varies in			
35.	(A) maximum at i(B) zero at a point(C) independent o	e to an infinitely large of nfinity t close to the sheet of the perpendicular distant ly as the perpendicular	ance from the sheet		
36.	(A) directly as the (B) directly as the (C) inversely as the	e to an infinitely long of perpendicular distance square of the perpendicular distance perpendicular distance square of the perpendicular distance square squa	from the wire cular distance from the e from the wire		
37.		r an infinitely large ch nittivity of free space)	arged plane sheet is (σ→surface charge	
	$(A) \sigma/\epsilon_0$.	(B) <u>σ/2ε_o.</u>	(C) $2\sigma/\epsilon_o$.	(D) $\sigma.\epsilon_0$	
38.		distance r from an in		wire is (λ→linear	
	charge density, ε (A) $\lambda/2\pi\varepsilon_0 r$		space) (C)) $\lambda/2\epsilon_0 r$.	(D)) $2\lambda/\pi\epsilon_0 r$.	

2. Electrostatic Potential and Capacitors

SI unit of electric potential is

1.

Harish Shastry -9480198001

1.	(A) Volt (E		(C) NC ⁻¹	(D) Both A and B		
2.	Due to a point charge e	electric poten	tial varies			
	(A) <u>inversely as distance</u>	_		as square of the distance		
	(C) directly as the distant			s square of the distance		
3.	Which of the following	is not a scala	ar quantity?			
	(A) Electric field		(B) Electric po	otential		
	(C) Electric flux		(D) Electrosta	tic potential energy		
4.	Electric potential due t	o a dipole				
	(A) varies inversely as the	distance				
	(B) varies inversely as squ	are of the dista	ance			
	(C) depends on the sine	of the angle b	etween position	on vector and dipole moment.		
	(D) only B and C are con	rrect.				
5.	Equipotential surfaces	around a po	int charge ar	e		
	(A) Parallel planes	-	G			
	(B) concentric cylinders	with axis alo	ng the charge.			
	(C) Concentric spheres wi	th point charge	e at the centre			
	(D) none of these					
6.	What is the potential d surface?	ifference bet	ween any two	points over the equipotential		
	(A) 1V		(B) <u>zer</u>	~ 0		
	(C) any potential differe	nce is possibl	_ · · · —			
7.	Component of electric	field (E) alor	ng the equipot	tential surface is		
	_	B) E Sin45°	(C) E	(D) <u>zero</u>		
8.	Two positive charges so as they are allowed	eparated by	certain distan	ice are kept in free space. As soon		
	(A) potential energy between	een them incre	ases and kinetic	energy decreases.		
	(B) potential energy between them decreases and kinetic energy increases.					
	(C) Both potential energy and kinetic energy decreases.					
	(D)) Both potential energy and kinetic energy increases.					
9.	Electric potential on eq	uatorial pla	ne of an elect	ric dipole is		
	(A) $2V$ (B) $1V$	(C) zero	<u>)</u>	(D) infinity		
10.	On the equatorial plan	e of an electr	ic dipole,			
	(A) $\underline{V=0}$ and $\underline{E\neq 0}$	(B) V≠0	and E=0			
	(C) $V=0$, $E=0$	(D) V≠	0 and E≠0			
11.	Inside a charged condu	icting spheri	cal shell			
	(A) $V=0$ and $E\neq 0$	(B) <u>V≠(</u>	and E=0			
	(C) $V=0$, $E=0$		0 and $E\neq 0$			

12.	vacuum is given by				
	$(A) \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$	$(B) \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r}$	$\sqrt{\qquad (C) \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^3}}$	$(D)\frac{1}{4\pi\varepsilon_0}\frac{Q_1Q_2}{2r}$	
13.	An electron is accel- the electron is	erated through	a potential difference	of 1V. Energy gained by	
	(A) 1eV	(B) $1.6 \times 10^{-19} \text{J}$	(C) $1.6 \times 10^{-19} \text{eV}$	(D) <u>Both A and B</u>	
14.			gle between electric fic	ven by (p→dipole moment, eld and dipole moment) (D) -pECosecθ	
	•		· / -		
15.	Potential energy of (A) parallel to the elec		when its dipole mome	nt is aligned	
	(B) antiparallel to the				
	(C) perpendicular to				
	(D) at an angle of 45	o to the electric f	ïeld.		
16.	Electric field at a po	oint very close t	o the surface of a char	ged conductor is given by	
	(σ→surface charge	density, ε₀→pe	rmittivity of free space	e)	
	(A) $\underline{\sigma}/\underline{\varepsilon}_0$.	(B) $\sigma/2\epsilon_{o}$.	(C) $2\sigma/\epsilon_o$.	(D) σ.ε ₀ .	
17.	Sensitive instrumen	ts may be prote	ected from outside elec	tric influence by keeping	
	them inside the cavi	_			
	(A) Electric field is zer				
			e cavity of a conductor the cavity of a conductor		
			amount inside the cavity		
	(2) 0.00 m. potential	value of range			
18.	Polar molecules				
	(A) have intrinsic dipo		` '	intrinsic dipole moment.	
	(C) do not have dipo	le length	(D) have net ch	arge greater than zero.	
19.	Non-Polar molecule				
1).	(A) have intrinsic dipo		(B) do not have	intrinsic dipole moment.	
	(C) Have dipole leng			arge greater than zero.	
20.	· · · · · · · · · · · · · · · · · · ·		the examples given b		
	$(A) H_2 \qquad (B) N$	` '	(D) <u>NH</u> ₃		
21.	_		nong the examples giv		
22	(A) H_2O (B) \underline{N}	` '	` '		
22.	is called	ove wnich aipo	ies in an insulator bre	ak and charges separate	
	(A) dielectric polarisat	ion	(B) dielectric breakdow	7n	
	(C) dielectric strengt		(D) dielectric constant		
23.	Dielectric strength		measured using SI uni	t	
	$(A) \underline{Vm}^{-1} \qquad (B) V$	(C) JC	1 (D) Cm ⁻²		
24.	Capacity of a condu	ictor to store ch	arges depends on		
	(A) size of the conduc		(B) dielectric constant	of surrounding medium	
	(C) neighbouring con	nductors	(D) All the above		

25.	As the neighbouring conductor is brough	t nearer to a conduct	or, its capacity
	(A) <u>increases</u>		
	(B) decrease		
	(C) does not change		
	(D) may increase or decrease depending on	the medium between t	hem
26.	A spherical conductor is charged to Q. Po	otential on its surface	is V. Capacity of
	the conductor to store charges		
	(A) depends on charge Q stored on its surface		
	(B) depends on potential V on the surface.		
	(C) does not depend on charge Q and potent	tial V on the surface	
	(D) None of the above are true.		
27.	Capacitance of a parallel plate capacitor	can be increased by	
	(A) increasing the area of plates	-	
	(B) decreasing the distance between the plat	tes.	
	(C) using a medium of higher dielectric con	stant between the plate	es
	(D) any of the above methods will increase	the capacitance.	
28.	SI unit of capacitance is		
	(A) coulomb (B) volt	(C) $\underline{\text{farad}}$ (D) el	ectron volt
29.	If Co is the capacitance of a capacitor with	h air as dielectric and	C is the capacitance
	with medium as dielectric, then dielectric	c constant (K) of the	medium between the
	plates is		
	(A) K=C \cdot C _o (B) <u>K=C/C_o</u>	$(C) K = C_o/C$	(D) $K=C+C_o$
30.	Electric field between the plates of a para	llel plate capacitor is	(σ→surface charge
	density, ε₀→permittivity of free space)		
	(B) $\sigma/2\varepsilon_0$.	(C) $2\sigma/\varepsilon_0$.	(D) σ.ε _o .
31.	Permittivity of a medium &, dielectric con	` '	` '
	are related as		· · · · · · · · · · · · · · · · · · ·
	(A) $\underline{\varepsilon} = K \underline{\varepsilon}_0$ (B) $\varepsilon = K/\varepsilon_0$	(C) εεο =Κ	(D) ε _o /ε=K
32.	When two capacitors of different value an	` '	
	capacitance value		, 1
	(A) will be lesser than both the values	(B) will be more than	both the values
	(C) will be in between the two values	(D) is independent of	the two values
33.	When two capacitors of different value an		
	capacitance value	•	, -
	(A) will be lesser than both the values	(B) will be more than	both the values
	(C) will be in between the two values	(D) is independent of	the two values
34.	When two capacitors of different value an	re connected in series	•
	(A) Only Charge stored in each capacitor is	same	
	(B) Only potential difference across each ca	pacitor is same	
	(C) Both charge stored and potential differe	nce each capacitor are	same
	(D) Charge stored in each capacitor are diffe	erent.	
35.	When two capacitors of different value an	re connected in paral	lel,
	(A) Only Charge stored in each capacitor is	same	
	(B) Only potential difference across each ca	pacitor is same	
	(C) Both charge stored and potential differe	nce each capacitor is s	ame
	(D) Energy stored in each capacitor is same		
36.	Energy stored in a capacitor of capacitan	ce C charged to poter	ntial V is given by
	(A) $U = \frac{1}{2}CV^2$ (B) $U = \frac{1}{2}QV$	- -	- •
	2 02		
	(C) $U = \frac{Q^2}{2C}$ (D) All formul	as are correct	
	- ~		

Current Electricity

Harish Shastry -9480198001

1.	SI unit of electric o	current is		-			
	(A) Coulomb	(B) Ampere	(C) Volt	(D) Ohm			
2.	In metals current i	s due to the flow	of				
	(A) free electrons	(B) protons	(C) positive io	ns (D)negative ions			
3.	_		rough a conductor is				
	(A) directly proport(B) directly proport						
		-		ends of the conductor			
	(D) inversely propo	rtional to potentia	l difference between tl	ne ends of the conductor			
4.	Identify the one w	hich does not obe	y Ohm's law				
	(A) Copper	(B) Gold	(C) Diode	(D) Iron			
5.	SI unit of resistance	ce is					
	(A) Coulomb	(B) Ampere	(C) Volt	(D) Ohm			
6.	Equation which re	presents Ohm's	law mathematically is	S			
	$(V \rightarrow potential difference across the conductor, I \rightarrow current through the conductor,$						
	R→resistance of th	,		(D) W 1/D			
	(A) I=V+R	(B) R=VI	(C) V=IR	(D) V=I/R			
7.	=	Equation which represents equivalent form of Ohm's law mathematically is					
			y, E→electric field st				
	$(A) j = \sigma/E$	(B) $\sigma = j/E$	(C) $j = \sigma + E$	$\underline{(D) j} = \sigma \underline{E}$			
8.	Resistance of a conductor depends on						
	(A) potential different			ough the conductor			
	(C) length of the co	nductor	(D) direction of	f current flowing through it			
9.		<u> </u>	vill decide the resistar				
	(A) length of the me	etal	(B) area of cross section	on			
	(C) temperature		(D) all the above				
10.			vill vary the resistivity	y of a metal?			
	(A) length of the metal is increased						
	(B) area of cross section is decreased (C) temperature is decreased						
	(D) all the above	accicascu					
11.	Select the vector q	uantity among th	ne following				
110	(A) electric current	and the state of t	(B) potential difference	e			
	(C) current density		(D) electric charge				
12.	Reciprocal of resis	tance is					
	(A) resistivity	(B) conductivit	(C) permittivit	y (D) conductance			

13.	Reciprocal of resisti	ivity is					
	(A) resistance	(B) conductiv	<u>ity</u>	(C) permittivity	(D) conductance		
14.	SI unit of conductar	ice is					
	(A) mho	(B) ohm		(C) ohm meter	(D) ohm meter ⁻¹		
15.	SI unit of resistivity	is					
	(A) Ωm^{-1}	(B) Ω^{-1} m		(C) Ω^{-1} m ⁻¹	(<u>D) Ω m</u>		
16.	SI unit of conductiv	itv is					
	(A) mho	(B) mho mete	<u>r⁻¹</u>	(C) ohm meter	(D) ohm meter ⁻¹		
17.	Current flowing thr flow called	ough a conduc	ctor pei	unit cross sectional	area normal to the		
	(A) current density		(B) po	tential difference			
	(C) drift velocity		(D) re	sistivity			
18.	Average velocity of is called	electrons movi	ing und	er the influence of el	ectric field in a metal		
	(A) drift velocity		(B) tei	rminal velocity			
	(C) critical velocity		, ,	ns velocity			
19.	Drift velocity acqui	red by electron	s in a c	conductor per unit el	ectric field is called		
	(A) terminal velocity			itical velocity			
	(C) mobility		(D) re	sistivity			
••							
20.	For metals as tempe	erature increas					
	(A) increases(C) remains the same		` /	creases and then	inorgação		
	(C) Temanis the same		(D) III	ist decreases and then	increases.		
21.	For metals as tempe	erature increas	ses, thei	r conductivity			
	(A) increases (B) decreases						
	(C) remains the same	•	(D) fin	est decreases and then	increases.		
22.	Motorials used for t	ha nyanayatian	of star	ndaud vasistanaas mu	est have		
44.		Materials used for the preparation of standard resistances must have					
	(A) low temperature coefficient of resistance.(B) high temperature coefficient of resistance.						
	(C) temperature coefficient of resistance equal to infinity.						
	(D) any value of temperature coefficient of resistance.						
23.	Manganin and cons	tantan are use	d for co	onstructing standard	resistance because		
	their			G			
	(A) temperature coefficient of resistance is large						
	(B) temperature coef			•			
	(C) temperature coef			_			
	(D) temperature coef	ticient of resista	ance is	negative			
24.	_		_	in metre bridge beca			
	· · ·		nave mo	ore resistance. Hence,	they can be used to		
	control current fl		1 11 1	1	1 1 1		
				onal resistance since t	hey have large cross-		
	sectional area and less resistance.						

	(C) metals strips ha(D) It is easy to fix	•	e and hence power loss is etre bridge board.	minimum.			
25.	SI unit of tempera	ture coefficient o	of resistance is				
	(A) °C ohm ⁻¹	(B) °C ⁻¹ ohm	(C) °C ohm	(D) °C ⁻¹			
26.	conductor is called			as of electrons inside a			
	(A) relaxation time	(B) mean life	(C) half-life	(D) Excitation time			
27.	The tolerance value $(A) \pm 10\%$	e represented by (B) ±5%	the colour band silver (C) $\pm 20\%$	is (D) ± 1%			
28.	Colour codes in th (A) Orange, White, (C) Orange, White,	Yellow	to represent the resistar (B) Orange, Whi (D) Orange white	te, Red			
29.	In order to minimi at	se power loss dui	ring transmission, electr	ical power is transmitted			
	(A) high current and (C) gigh current and	_	(B) low current a (D) low current a				
30.	Two different resis	stances are conne	ected in series across a b	attery. Select the correct			
	(A) voltage across t (C) current through		(B) power dissipation (D) All the senter	ated in both are same nces are correct			
31.	Two different rescorrect sentence	istances are con	nected in parallel acro	oss a battery. Select the			
	(A) voltage across b (C) current through		(B) power dissipation (D) All the senter	ated in both are same nces are correct			
32.	Two resistances ar	re connected in s	series. Equivalent resist	ance of the combination			
	(A) Lesser than the lowest value of resistance among them (B) Higher than the highest resistance among them						
		est and lowest res	sistances of the combinat	ion.			
33.	Two resistances ar	e connected in pa	arallel. Equivalent resis	tance of the combination			
	(A) Lesser than the lowest value of resistance among them						
	· · ·	(B) Higher than the highest resistance among them(C) in between highest and lowest resistances of the combination.					
	(D) depending on the	ne direction of cur	rent flow.				
34.	Equivalent resistar	nce when two res	sistances R ₁ and R ₂ are o	connected in series is			
	(A) $\underline{R_{eq}} = \underline{R_1} + \underline{R_2}$ (C) $\underline{R_{eq}} = (R_1 + R_2) / \underline{R_2}$	R_1R_2	(B) $R_{eq} = R_1 \div R_2$ (D) $R_{eq} = (R_1 R_2) / R_1$	R_1+R_2			

35.	Equivalent resistance when two resistances R_1 and R_2 are connected in parallel is given by				
	(A) $R_{eq} = R_1 + R_2$			(B) $R_{eq} = R_1 \div R_2$	
	(C) $R_{eq} = R_1 + R_2$ (C) $R_{eq} = (R_1 + R_2) / R$	ıR ₂		(D) $R_{eq} = R_1 \cdot R_2$ (D) $R_{eq} = (R_1 R_2) / R$	1± R 2
36.			v the no	tential difference ac	
50.	(A) less than emf of	-	the po	tential anterence ac	
	(B) more than emf of				
	(C) equal to emf of				
	(D) equal to potentia		nternal 1	resistance	
		_	_		
37.			by a w	ire of resistance R. N	Now the potential
	difference across it				
	(A) less than emf of				
	(B) more than emf of				
	(C) equal to emf of		, 1		
	(D) equal to potentia	ai drop across ii	nternai i	esistance	
38.	Opposition offered	by a cell to the	e flow o	f current through it	self is called
	(A) External resistar	nce of the cell		(B) internal resistar	nce of the cell
	(C) Reverse resistan	ce of the cell		(D) Forward resista	ance of the cell
39.	Internal resistance	of a coll can b	o moogi	red using	
39.	(A) potentiometer	or a cen can b	e meast	(B) electroscope	
	(C) metre bridge			(D) sonometer	
	(C) metre bridge			(D) solioilletei	
40.	Two cells of emfs a	ε ₁ and ε ₂ are co	onnecte	d in series so as to s	send the current in the
					ivalent emf of the two
	cells is				
	$(A) \varepsilon_1 + \varepsilon_2$	(B) ϵ_1/ϵ_2		(C) $\varepsilon_2/\varepsilon_1$	(D) $(\epsilon_1 \epsilon_2)/(\epsilon_1 + \epsilon_2)$
41.	Two colls of interne	al registances r	u and re	are connected in so	ries New the internal
41.	resistance of equiv		1 and 12	are connected in se	ries. Now, the internal
	(A) r ₁ r ₂			(C) r_2/r_1	(D) $(\mathbf{r}_1 \ \mathbf{r}_2) / (\mathbf{r}_1 + \mathbf{r}_2)$
		_		. ,	
42.					e connected in parallel
				ection through an ex	ternal resistance. Now,
	the equivalent emf	of the two cell	S IS	$\varepsilon_1 r_2 + \varepsilon_2 r_4$	
	$(A) \epsilon_1 + \epsilon_2$	(B) ϵ_1/ϵ_2		$\underline{\text{(C)}} \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_{1+} r_2}$	(D) $(\epsilon_1 \ \epsilon_2) / (\epsilon_1 + \epsilon_2)$
				11+12	
43.	The basic principle	behind Kirch	hoff's f	irst law is	
	(A) conservation of	energy	(B) co	onservation of mome	ntum
	(C) conservation of	<u>charge</u>	(D) conservation of mass		
44.	The basic principle	hahind Kirah	hoff's s	agand law is	
77.	(A) conservation of			onservation of mome	ntum
	(C) conservation of			onservation of mass	iituiii
	(C) conscivation of	charge	(D) (I	onservation of mass	
45.	Metre bridge is but	ilt on the princ	ciple of		
	(A) Half wave rectif	_	_	/heatstone's Network	
	(C) Full wave rectif			esonance network	

46. To measure the emf of a cell one may use (A) metre bridge (B) Ammeter (C) Potentiometer (D) Galvanometer 47. To measure the resistance of a wire, one may use (A) metre bridge (B) Ammeter (C) Galvanometer (D) Sonometer 48. For measuring emf of a cell, potentiometer is preferred to voltmeter because (A) potentiometer is an easy device to handle (B) potentiometer draws more current from the cell. (C) potentiometer draws no current from the cell. (D) potentiometer uses a high resistance long wire 49. Wheatstone bridge is the better method to measure resistance of a wire because (A) No current flows through the wire whose resistance is measured (B) It is a null method (C) It uses a one meter long wire (D) It needs very less current to operate. **50.** In a potentiometer circuit, emf of the experimental cell is (A) inversely proportional to square of balancing length (B) directly proportional to square of balancing length

(C) inversely proportional to balancing length(D) directly proportional to balancing length

	MOLIT		-	nd Magnetism	SWERS		
		110 700 07	act goy act	•	nastry -9480198	001	
1.	The concent that	moving charge	s or curi	ents produce a m		001	
	discovered by	mo ving enui ge	of curr	produce a m	agricule freia Was		
	(A) Laplace	(B) Biot-Sa	vart	(C) Flehming	(D) Oersted		
2.	Magnetic field is	a					
	(A) scalar quantity			(B) vector quanti			
	(C) dimensionless	quantity		(D) a quantity wi	thout unit		
3.		_	-	a charged particl			
	(A) electric and gr				gravitational field		
	(C) electric and m	agnetic field		(D) gravitational	field only		
4.	Force experience given by	d by a positive	charged	particle moving in	a magnetic field is		
	(A) Right hand thu	ımb rule		(B) left hand thus	nb rule		
	(C) Flehming's rig	ght hand rule		(D) Kirchhoff's 1	rule		
5.	Force acting on a	charged nartic	cle movir	ng in a magnetic fi	eld is maximum wh	en	
٠.	S			0	cia is maximum wir		
	(A) the charged particle moves parallel to the magnetic field(B) the charged particle moves perpendicular to the magnetic field.						
	(C) the charged particle moves antiparallel to the magnetic field.						
				of 45° to the magne			
6.	Force acting on a	Force acting on a charged particle moving in a magnetic field is zero when					
	(A) the charged particle moves parallel or antiparallel to the magnetic field						
				ar to the magnetic			
				of 60° to the magne			
	(D) the charged pa	article moves at	an angle	of 45° to the magne	etic field		
7.		_	_		a magnetic field?		
	(A) It should be an electrically charged particle.						
	* *	(B) It should move with certain speed					
	(C) Direction velocity of the charged particle must make an angle with the magnetic						
	field other than zero or 180°. (D) All the above conditions must be satisfied.						
8.	field. Its path wil			C	o to a uniform magn	etic	
	(A) a circle		` ′	parabola			
	(C) ellipse		<u>(D) a</u>	straight line			
9.				ield. The proton v			
	(A) move in a circ		(B) m	ove in a straight lii	ne		
	(C) move in an ell	iptical path	(D) n	ot move			
10.	A charged partic	le moves parall	lel to a m	agnetic field. Its p	ath is		
	(A) a circle	_		parabola			
	(C) ellipse		(D) a	straight line			

11.	A charged particle moves anti parallel to a magnetic field. Its path is					
	(A) a circle) a parabola			
	(C) ellipse	<u>(D</u>) a straight line			
12.	~ _	A charged particle moves perpendicular to a magnetic field. Its path is				
	(A) a circle) a parabola			
	(C) ellipse	(D) a straight line			
13. A charged particle moves at an angle θ to a magnetic field. If $\theta \neq 0$, $\theta \neq 180$ a 90. Then its path is						
	(A) a circle) a helix			
	(C) ellipse) a straight line			
14.	aligned in some of (A) its speed charge	her direction to its r	tain speed enters a un notion. Now,	niform magnetic field		
	(B) Kinetic energy					
	(C) direction of mo					
	(D) All the above n	nentioned quantities	will change			
15.	A charged particle moving with a certain speed enters a uniform electric field aligned in some other direction to its motion. Now, (A) its speed charges (B) Kinetic energy changes (C) direction of motion changes (D) All the above mentioned quantities will change.					
16.	SI unit of magneti	c field strength is				
	(A) gauss	(B) tesla	(C) oersted	(D) weber		
15						
17.	1 gauss is equal to (A) 10 ⁻⁴ T	(B) 3.6x10 ⁻⁴ T	(C) 10 ⁻⁵ T	(D) 3.6x10 ⁻⁵ T		
18.	Unit of magnetic f (A) NsC ⁻¹ m ⁻¹	ield in terms of base (B) Ns ⁻¹ Cm ⁻¹	e units is (C) N ⁻¹ sCm ⁻¹	(D) N ⁻¹ s ⁻¹ Cm ⁻¹		
19.	One tesla is equal (A) 1 NsC ⁻¹ m ⁻¹		(C) 1 N ⁻¹ sCm ⁻¹	(D) 1 N ⁻¹ s ⁻¹ Cm ⁻¹		
20.	speed (v) at an ang	gle of θ to a magnet	ic field (B) is given by			
	(A) $F=q^2vB\sin\theta$	(B) $F=qv^2B \tan\theta$	(C) $F=q^2 vB tan\theta$	(D) $F = qvB \sin\theta$		
21.	angle of θ to a mag	gnetic field (B) is given	ven by	carrying current I at an		
	(A) $F=B^2IL\sin\theta$		(C) $F=B^2 IL \tan \theta$			
22.	Force acting on a will be maximum	• 0	current placed in a u	niform magnetic field		
	(B) It is placed perp (C) It is placed at an	allel to the magnetic to bendicular the magner angle of 45° to the angle of 60° to the	<u>tic field</u> magnetic field.			

23.	will be minimum if				
	(E) <u>It is placed paralle</u>(F) It is placed perpen	_			
	(G) It is placed at an a		_		
	(H) It is placed at an a				
24.	When a charged particle is describing helix in a magnetic field, distance moved by it along the magnetic field during one rotation is called				
	(A) mean free path		(B) pitch		
	(C) range		(D) circumference		
25.	Value of pitch for a cequal to	charged partic	cle moving perpendicular	to the magnetic field is	
	(A) zero		(B) radius of the circular p	·	
	(C) diameter of the cir	cular path	(D) circumference of the o	circular path	
26.	_	(F-force, q-cha	arge, E-Electric field, B-Ma	agnetic field, V-velocity	
	of the particle) (A) $\vec{F} = q\vec{E} + q(\vec{V} \bullet \vec{F})$	ਲੋ)	(B) $\vec{F} = q\vec{E} + (\vec{V}\vec{X}\vec{B})$		
	(C) $\vec{F} = \vec{E} + (\vec{V} \times \vec{B})$	ь)	(D) $\vec{F} = q\vec{E} + (\vec{V} \vec{X} \vec{B})$		
	$(C) \Gamma = E + (V \times B)$		$(D) \Gamma = d\Gamma + d(\Lambda \nabla D)$		
27.	Dimension of $q\vec{E} + q$	$(\overrightarrow{V} \times \overrightarrow{B})$ is	(C) [M L ⁻¹ T ⁻²]	(D) D.(1, 2m-1)	
	(A) [M LT ⁻¹]	(B) M LT 2	(C) [M L 1 2]	(D) $[M L^{-2}T^{-1}]$	
28.	fields with a uniform	speed. Magnetio of magnit	oving perpendicular to bot etic and electric fields are a ude of electric field and m eed by the particle is	mutually perpendicular	
	(A) a circle		(B) a helix		
	(C) ellipse		(D) a straight line		
29.	magnetic fields with perpendicular to ea	a uniform s ch other. Th equal to the s	is moving perpendicula peed. Magnetic and elect e ratio of magnitude of peed (v) of the particle. N	ric fields are mutually electric field (E) and	
	(A) qvB	(B) Eq	(C) zero	(D) $q(E-vB)$	
30.	Charge to mass of ra	tio of electror	n was first determined by		
	(A) Oersted	(B) Tesla	(C) J.J.Thomson	(D) Lorentz	
31.	of electron is	-	mson while determining tl	ne charge to mass ratio	
	(A) magnetic field pro (B) emf induced in a c (C) velocity selector	•	rrent carrying conductor ying magnetic field		
	(D) force on a current	element in a n	nagnetic field		

32.	Mass spectrograph empl			_		
	(A) magnetic field produc(B) emf induced in a coil of			r		
	(C) velocity selector	aue to varying i	nagnetic neid			
	(D) force on a current eler	nent in a magne	etic field			
		_				
33.	Device used to accelerate	charged parti	_			
	(A) Cyclotron		(B) electrosco	pe		
	(C) mass spectrograph		(D) Oscillator			
34.	In a cyclotron direction of	In a cyclotron direction of charged particle is changed by applying				
	(A) electric field	0 1	(B) magnetic			
	(C) Both electric and mag	netic field	(D) Gravitatio			
35.	A charged particle of neg	gligible mass ca	an be accelerated	in .		
	(A) electric field		magnetic field			
	(C) Gravitational field	, ,	_	l and magnetic fields		
	(C) Gravitational field (D) Both gravitational and magnetic fields					
36.		Period of rotation of a charged particle in a cyclotron is independent of				
	(A) radius of circular path		charge of the part			
	(C) strength of magnetic f	ield (D)	mass of the partic	le		
37.	Frequency of rotation of	a charged par	ticle in a cyclotro	on is independent of		
	(A) radius of circular path		charge of the part			
	(C) strength of magnetic f	ield (D)	mass of the partic	le		
38.	Cyclotron was invented	by				
	(A) Nicola Tesla		(B) Christian	Dersted		
	(C) E.O. Lawrence and M	.S. Livingston	(D) Laplace			
20	D. I. I.		e 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. •	
39.	Relation between curren given by	t and magnetic	tield produced	by a current element	I IS	
	(A) Ampere's law		(B) Coulomb'	s law		
	(C) Biot-Savart's law		(D) Maxwell's			
	(C) Diot Savait 5 law		(D) WILL WEIL	, 14 **		
40.	Relation between the per	•		-	:ee	
	space μ₀ then the produc	•	•			
	(A)c (B)	1/c	(C) $1/c^2$	(D) c^2		
41.	If permittivity of free spa	ace is £0 and th	e permeability of	free space is uo thei	n the	
	speed of light in vacuum		1			
	(A) 1	/ a	(C) $\sqrt{\mu_0}$	$\sqrt{\varepsilon_0}$		
	$(A) \frac{1}{\sqrt{\mu_0 \varepsilon_0}} $ (B)	$\sqrt{\mu_o\epsilon_o}$	$(C) \frac{\sqrt{\mu_0}}{\sqrt{\epsilon_0}}$	(D) $\frac{\sqrt{\epsilon_0}}{\sqrt{\mu_0}}$		
42.	Magnetic field produced	by a circular c	ooil oorrying our	cont is movimum		
74.	(A) at the centre of the coi	-	on carrying curi	CHU IS MAXIMUM		
	(B) near the circumference	_				
	(C) at infinite distance from		the coil along the	axis of the coil		
			_			
	(D) at a distance $\sqrt{2}$ times the radius from the centre of the coil					

43.	. Magnetic field due to an infinitely long straight current carrying wire at a distance r outside is				
	(A) directly proporti	ional to r		(B) inversely propor	tional to r
	(C) directly proporti			(D) inversely propor	
44.	Magnetic field due r from its axis with		y long st	raight current carry	ing wire at a distance
	(A) directly proporti			(B) inversely propor	tional to r
	(C) directly proporti	ional to r ²		(D) inversely propor	rtional to r ²
45.	The line integral ∮	\overrightarrow{B} . \overrightarrow{dL} in a close	sed curv	e is equal to (with us	ual symbols)
(A) μ_0 times the net magnetic field within the area bounded by the loop				e loop	
	(B) net current throu	•	•	*	
	(C) μ_0 times the net (D) the magnetic fie			a bounded by the curv ded by the loop	e <u> </u>
46.	Magnetic field due	to an infinitel	v long so	olenoid is	
-00	(A) uniform along the		J rong at	(B) uniform outside	the solenoid
(C) uniform at the edges (D) maximum at the edges					
47.	Magnetic field due	to an infinitel	y long so	olenoid is	
	(A) directly proporti		_		
	(B) inversely propor			_	
	(C) directly proporti(D) inversely proporti	*		. •	
	(D) inversely propor	itional to squar	e or the c	current unough it.	
48.	Magnetic field inside of turns per unit le				of vacuum, n-number
	(A) μ_0 / nI	$(B) \mu_0 nI$		(C) nI/μ_0	(D) $\mu_0 n/I$
49.	Magnetic field inside of turns per unit le			(μ₀- permeability of gh solenoid)	vacuum, n-number
	(A) $\mu_o / n\bar{I}$	(B) μ _o nI		(C) nI/μ_0	(D) $\mu_0 n/I$
50.	Which one of the formagnetic field?	ollowing devic	e can be	used to produce ver	y strong uniform
	(A) solenoid	(B) cyclotro	n	(C) Galvanometer	(D) spectrograph
51.	Like currents				
	(A) repel each other			(B) attract each other	
	(C) do produce mag	netic fields		(D) are the sources of	of gravitational field.
52.	Unlike currents				
	(A) repel each other			(B) attract each other	
	(C) do produce mag	netic fields		(D) are the sources of	of gravitational field.
53.					g current of 1A in the
	same direction kep				
	(A) attract each with (B) repel each with	a force of 2x10	.0 INIII -)-7 Nm-1	<u>•</u>	
	(C) attract each with				
	(D) repel each with				

54.	A current loop placed in a uniform magnetic field (A) experiences only force (B) experiences only torque (C) experiences both torque and force (D) does not experience both torque and force				
55.	Torque acting on a current loop is maximum when (A) plane of the coil is parallel to the uniform magnetic field (B) plane of the coil is perpendicular to the uniform magnetic field (C) plane of the coil is at angle of 45° with the uniform magnetic field. (D) plane of the coil is at angle of 60° with the uniform magnetic field				
56.	SI unit of magnetic moment is				
	(A) Am (B) Am2	(C) A^2 m	(D) Am ⁻²		
57.	A rectangular coil carrying current is partial with the direction of magnetic field. No (A) zero (C) will depend on the current through it	w, the torque acting on (B) maximum	0		
58.	Net force acting on a circular current lo (A) BIL/2 (B) BIL	op placed in a uniforn (C) 2BIL	n magnetic field is (D) zero		
59.	Expression for Bohr magneton is				
	$(A) \mu = \frac{h}{4\pi m_e} \qquad \underline{(B)} \mu = \frac{eh}{4\pi m_e}$	(C) $\mu = \frac{e}{4\pi h m_e}$	(D) $\mu = \frac{\pi h}{4em_e}$		
60.	The value of Bohr magneton is s (A) 9.27x10 ⁻²⁵ Am ² (B) 9.27x10 ⁻²⁴ Am ² (D) 9.27x10 ⁻²⁴ Am ²	0.27x10 ⁻²⁶ Am ² 0.27x10 ⁻²³ Am ²			
61.	· · ·	e detected using galvanometer electroscope			
62.		current is current sensitivity power			
63.	Sensitivity of a galvanometer can be increased by (A) increasing number of turns in the coil (B) decreasing the area of the coil (C) decreasing the strength of the magnetic field between the pole pieces (D) increasing the torsional constant of the spring				
64.	Current flowing through a circuit can b	e measured using			
6 5	(A) voltmeter (B) galvanometer	(C) meter bridge	(D) ammeter		
65.	A galvanometer is converted into amme (A) Connecting a high resistance in series	•			
	(B) Connecting a low resistance in series v	vith its coil			
	(C) Connecting a high resistance in parallel				
	(D) Connecting a low resistance in parallel	WILLI ILS COIL			

66. Range of an ammeter can be increased by

- (A) Increasing the value of shunt resistance
- (B) <u>Decreasing the value of shunt resistance</u>
- (C) Connecting another low resistance in series with the shunt resistance.
- (D) Decreasing the strength of the magnetic field between the pole pieces.

67. Potential difference across any component in a circuit can be measured using

- (B) voltmeter
- (B) galvanometer
- (C) meter bridge
- (D) electroscope

68. A galvanometer is converted into voltmeter ammeter by

- (A) Connecting a high resistance in series with its coil
- (B) Connecting a low resistance in series with its coil
- (C) Connecting a high resistance in parallel with its coil
- (D) Connecting a low resistance in parallel with its coil

69. Range of a voltmeter can be increased by

- (E) <u>Increasing the value of series resistance</u>.
- (F) Decreasing the value of series resistance
- (G) Connecting another high resistance in parallel with the already connected high resistance.
- (H) Decreasing the strength of the magnetic field between the pole pieces.

70. Dimension of magnetic moment is

- (A) $[M^2A^1L^2]$
- (B) $[M^{o}A^{1}L^{2}]$
- (C) $[M^{o}A^{-1}L^{2}]$ (
- D) $[M^{o}A^{1}L^{-2}]$

5. Magnetism and Matter

Harish Shastry -9480198001

1. Which is	true regarding a	bar magnet?
-------------	------------------	-------------

- (A) Magnetic field lines are directed from north to south outside the magnet.
- (B) Magnetic field lines do not exist inside a bar magnet.
- (C) Magnetic field lines are crowded near the midpoint of the magnet.
- (D) Many neutral points exist outside a single bar magnet.

2. Which is not true regarding magnetic field lines?

- (A) Magnetic field lines do not intersect
- (B) magnetic field lines form closed lines
- (C) normal to the magnetic field lines gives the direction of magnetic field.
- (D) Magnetic field lines are directed from south to north inside a magnet.

3. Product of area and current through a current loop is called

- (A) magnetic induction
- (B) magnetic moment
- (C) magnetic permeability
- (D) Bohr magneton

4. Magnetic field at a distance r on the axial line of a magnetic dipole is

- (A) directly proportional to r^2 .
- (B) inversely proportional to r².
- (C) directly proportional to r³.
- (D) inversely proportional to r³.

5. Magnetic field at a distance r on the equatorial line of a magnetic dipole is

- (A) directly proportional to r^2 .
- (B) inversely proportional to r^2 .
- (C) directly proportional to r^3 .
- (D) inversely proportional to r^3 .

6. Magnetic field at a distance r on the axial line of a magnetic dipole of dipole moment m is given by

(A) B =
$$\frac{\mu_0}{4\pi} \frac{2 \text{III}}{r}$$

(B) B =
$$\frac{\mu_0}{4\pi} \frac{2m}{r^2}$$

$$(C) B = \frac{\mu_0}{4\pi} \frac{m}{r^3}$$

(A)
$$B = \frac{\mu_0}{4\pi} \frac{2m}{r}$$
 (B) $B = \frac{\mu_0}{4\pi} \frac{2m}{r^2}$ (C) $B = \frac{\mu_0}{4\pi} \frac{m}{r^3}$ (D) $B = \frac{\mu_0}{4\pi} \frac{2m}{r^3}$

7. Magnetic field at a distance r on the equatorial line of a magnetic dipole of dipole moment m is given by

(A) B =
$$\frac{\mu_0}{4\pi} \frac{2m}{r}$$

(B) B =
$$\frac{\mu_0}{4\pi} \frac{2m}{r^2}$$

$$\underline{(C)} B = \frac{\mu_0}{4\pi} \frac{m}{r^3}$$

(A)
$$B = \frac{\mu_0}{4\pi} \frac{2m}{r}$$
 (B) $B = \frac{\mu_0}{4\pi} \frac{2m}{r^2}$ (C) $B = \frac{\mu_0}{4\pi} \frac{m}{r^3}$ (D) $B = \frac{\mu_0}{4\pi} \frac{2m}{r^3}$

8. Product of pole strength and length of a magnetic dipole is called

- (A) magnetic induction
- (B) magnetic moment
- (C) magnetic permeability
- (D) Bohr magneton

9. Ratio of magnetic moment to the length of magnetic dipole is called

- (A) magnetic induction
- (B) magnetic permeability

(C)Bohr magneton

(D) pole strength

SI unit of magnetic pole strength is 10.

- (A) Am
- (B) Am²
- (C) Am⁻¹

11. Period of oscillation of a magnetic needle in a magnetic field depend on

- (A) directly proportional to the square root of moment of inertia of the needle
- (B) inversely proportional to the square root of magnetic moment
- (C) inversely proportional to the square root of strength of the magnetic field
- (D) all the quantities mentioned above

21.	Magnetic declination is the angle between (A) Earth's magnetic field and its horizontal component. (B) Earth's magnetic field and its vertical component. (C) Geographic meridian and magnetic meridian. (D) Geographic meridian and axis of rotation of earth.				
22.	Inclination is (A) maximum at the poles (B) maximum at the equator (C) maximum in the region between the pole and equator (D) uniform at all places of earth				
23.	Inclination is (A) minimum at the poles (B) minimum at the equator (C) minimum in the region between the pole and equator (D) uniform at all places of earth				
24.	where inclination	is 90°?	nponent of earth's m		_
	(A) zero	(B) 3.5×10^{-5} T	(C) $7.0 \times 10^{-5} \text{T}$	(D) 1.7	5x10 ⁻⁵ T
25.	What is the value where inclination		onent of earth's mag	netic field at the	e place
	(A) zero	(B) 3.5×10^{-5} T	(C) 7.0×10^{-5} T	(D) 1.7	$5x10^{-5}T$
26.	Horizontal compinction at the		agnetic at a place is	zero. Angle of o	lip (or
	(A) 0°	(B) 90°	(C) 45°	(D) 60°	
27.	Vertical compone inclination) at the		netic at a place is ze	ro. Angle of dip	(or
	(A) 0°	(B) 90°	(C) 45°	(D) 60°	
28.		_	HE is the horizontal earth's magnetic fiel (B) (Z _E ² +H _E ² (D) (Z _E +H _E)	d at the place is	
29.		-	HE is the horizontal cangent of inclination (B) Z _E H _E (D) H _E ÷ H _E		earth's
30.	If Z _E is the vertic magnetic field at	-	arth's magnetic field	d and BE is the e	earth's total
	$\frac{(A) Z_E = B_E \sin\theta}{(C) B_E = Z_E \sin\theta}$		(B) $Z_E = B_E G$ (D) $B_E = Z_E G$		
31.		ontal component o	of earth's magnetic f	ield and B _E is th	ie earth's
	(A) $H_E = B_E \sin\theta$	• / -	$(B) H_E = B_E$	$\cos\theta$	

32.	Net magnetic moment per unit volume of a magnetic material is called					
	(A) magneti	<u>sation</u>	(B) magnetic in	tensity		
	(C) magneti	c permeability	(D) magnetic su	sceptibility		
33.	SI unit of m	nagnetisation is				
	(A) Am	(B) Am ⁻²	(C) Am ⁻³	(D) An	<u>n⁻¹</u>	
34.	(A) ratio of(B) ratio of(C) ratio of	_		•		
35.	SI unit of m	nagnetic intensity is				
	(A) Am	(B) Am ⁻²	(C) Am ⁻³	(D) An	<u>n⁻¹</u>	
36.	Magnetic permeability is defined as (A) ratio of magnetic induction to magnetic susceptibility (B) ratio of magnetic induction to electric permittivity (C) ratio of magnetic induction to permeability (D) ratio of magnetic induction to magnetic intensity					
37.	SI unit of m	SI unit of magnetic permeability is				
	(A) TAm		(C) TAm ⁻³	(D) TA	<u>^-1m</u>	
38.	The ratio of magnetisation to magnetic intensity is called (A) relative permeability (B) absolute permeability (C) magnetic susceptibility (D) retentivity					
39.	Relative per	rmeability (μ _r) and	susceptibility (χ) of	a magnetic n	naterial are related	
	(A) $\mu_r = 1-\chi$	(B) $\mu_{\rm r} = 1 + 1$	$\underline{-\chi}$ (C) $\chi = \mu$	_r +1	(D) $\mu_r = 1 \div \chi$	
40.	Dimension	of susceptibility is				
	(A) [MLT ⁻²]	_	$[C] [M^0]$	L^0T^0]	(D) $[ML^{-2}T^{-1}]$	
41.	Dimension	of relative permeab	ility ic			
71,	(A) [MLT ⁻²]	-	•	L^0T^0]	(D) $[ML^{-2}T^{-1}]$	
42.	Relative per	rmeability (μ _r), abs	olute permeability (μ) and perm	eability of free	
	space (μ₀) a	re related as				
	(A) $\mu_r = \mu \mu_0$	$\underline{(B)} \mu = \mu_r \mu$	\underline{u}_0 (C) $\mu_0 =$	$\mu_r \mu$	(D) $\mu=\mu_r+\mu_o$	
43.	Absolute pe	• •	ceptibility (χ) and p	ermeability (of free space (μ ₀)	
	(A) $\mu = \chi \mu_0$	(B) $\chi = \mu \mu$	μ_0 (C) $\mu = 1$	<u>u_o (1+χ)</u>	(D) μ = μ o + χ	

(D) $B_E = H_E \cos\theta$

(C) $B_E = H_E \sin\theta$

44.	14. Identify the property exhibited by diamagnetic substances:					
	(A) They are repelled by a magnet.					
	(B) Their susceptibility value is positive.					
			as absolute temperature	.		
	(D) They have very high	h value of susce	eptibility.			
45.	_	_	ty is very low and posit	ive are		
	(A) diamagnetic	(B) paran				
	(C) ferromagnetic	(D) super	conductors			
46.	_	_	ty is high and positive a	are		
	(A) diamagnetic	(B) paran	_			
	(C) ferromagnetic	(D) super	(D) superconductors			
47.	Magnetic materials wh	•	1 1			
	(A) diamagnetic	(B) paran				
	(C) ferromagnetic (D) superconductors					
48.	Magnetic materials whatemperature are	iose susceptivit	ty is inversely proportion	onal to absolute		
	(A) diamagnetic and paramagnetic (B) paramagnetic and ferromagnetic					
	(C) ferromagnetic and p	•	, , ,	rs and diamagnetic		
49.	The property exhibited (A) Meisner effect (C) hysteresis	d by diamagne	tic substances is (B) curie law (D) Retentivity			
50.	Meissner effect is the p (A) susceptibility varyin (B) of retaining magnet (C) magnetisation laggi (D) perfect diamagnetis	ng inversely as a ism even after the ng behind the m	absolute temperature. he removal of external magnetic intensity.	nagnetic field.		
51.	Which is the diamagne	etic material ar	nong the following?			
		B) cobalt	(C) nickel	(D) copper		
52.	Which is the paramag	netic material a	among the following?			
	(A) Iron (I	B) cobalt	(C) nickel	(D) Aluminium		
53.	Which is the ferromag	netic material	among the following?			
	(A) Iron (1)	B) copper	(C) Bismuth	(D) Aluminium		
54.	Super conductors are					
	(A) diamagnetic materia	<u>als</u>	(B) paramagnetic i	materials		
	(C) ferromagnetic materials		(D) non magnetic materials			

55. Curie law for paramagnetic substances states that

- (A) susceptibility of a paramagnetic material is directly proportional to absolute temperature.
- (B) susceptibility of a paramagnetic material is directly proportional to square root of absolute temperature.
- (C) susceptibility of a paramagnetic material is inversely proportional to square root of absolute temperature.
- (D) <u>susceptibility of a paramagnetic material is inversely proportional to absolute</u> temperature.

56. Soft magnetic materials are those

- (A) which do not exhibit hysteresis property
- (B) magnetic materials whose susceptibility id independent of temperature
- (C) ferromagnetic materials which lose magnetisation on the removal of external magnetic field.
- (D) ferromagnetic materials which retain magnetisation on the removal of external magnetic field.

57. Hard magnetic materials are those

- (A) which do not exhibit hysteresis property
- (B) magnetic materials whose susceptibility id independent of temperature
- (C) ferromagnetic materials which lose magnetisation on the removal of external magnetic field.
- (D) ferromagnetic materials which retain magnetisation on the removal of external magnetic field.

58. Curie temperature in magnetism is the temperature

- (A) above which a ferromagnetic material shows the property of paramagnetic material.
- (B) below which a ferromagnetic material shows the property of paramagnetic material.
- (C) above which a ferromagnetic material shows the property of diamagnetic material.
- (D) below which a ferromagnetic material shows the property of diamagnetic material.

59. Retentivity of a ferromagnetic substance is the

- (A) property of losing magnetisation when external magnetising field is removed.
- (B) property of retaining magnetisation when external magnetising field is removed.
- (C) property of showing paramagnetic property above curie temperature
- (D) property of losing magnetisation when coercive field is applied.

60. Coercivity of a ferromagnetic substance is the

- (A) property of losing magnetisation when external magnetising field is removed.
- (B) property of retaining magnetisation when external magnetising field is removed.
- (C) property of showing paramagnetic property above curie temperature
- (D) property of losing magnetisation when external magnetic field is reversed.

61. For a ferromagnetic material, magnetic induction lags behind the strength of magnetic intensity. This is called

(A) coercivity (B) retentivity

(C) Meissner effect (D) Hysteresis

62.	Substances which at room ter long period of time are called	mperature retain their ferromag	netic property for a			
	(A) Temporary magnets	(B) permanent magnets.				
	(C) non magnetic substances	(D) electromagnets				
63.	Materials used for constructi	-				
	(A) low permeability and high	•				
	(B) high permeability and low					
	(C) high permeability and high	_				
	(D) low permeability and low r	retentivity				
64.		ng permanent magnets must hav	ve			
	(A) low permeability and high	retentivity				
	(B) high permeability and low	retentivity				
	(C) high permeability and high	<u>retentivity</u>				
	(D) low permeability and low r	retentivity				
65.	Core of a transformer must be a material of					
	(A) high permeability, low retentivity and low hysteresis loss					
	(B) high permeability, high retentivity and low hysteresis loss					
	(C) low permeability, low retentivity and low hysteresis loss					
	(D) high permeability, low rete	entivity and high hysteresis loss				
66.	Intrinsic magnetic dipole moment of atoms of diamagnetic materials is					
	(A) zero (B) smal	l (C) large	(D) infinity			
67.	Intrinsic magnetic dipole mor	ment of atoms of paramagnetic i	naterials is			
	(A) zero (B) smal	<u>l</u> (C) large	(D) infinity			
68.	Intrinsic magnetic dinale ma	ment of atoms of ferromagnetic	materials is			
00.	(A) zero (B) smal		(D) infinity			
69.	Cove of electrome energy and a	alancid are made of				
09.	Core of electromagnets and s					
	(A) Soft iron	(B) Aluminium				
	(D) Copper	(D) bismuth				
70.	Area inside the hysteresis cur					
	(A) energy dissipated per unit v					
	(B) magnetic moment per unit					
	(C) susceptibility of the materia					
	(D) permeability of the specime	en				

6. Electromagnetic induction

3001

			Harish Sh	astry -94801980			
1.	Electromagnetic induction is						
	(A) the magnetic field developed due to displacement current.						
		field developed due to					
	` '	emf in a coil when the n		t varies with time.			
		c field developed due to					
2.	An emf will be induced in a coil when						
_,		noved towards and away	y from the coil.				
	(B) magnetic is re	_	, 110111 1110 10111				
	` '	section of coil is varied	l .				
	* *	bove method is followe					
3.	Electromagnetic	induction was discove	ered by				
•	(A) Michael Fara		(B) Lenz				
	(C) Gauss	<u>,</u>	(D) Tesla				
	· /		· /				
4.	_	coil are moved in the	same direction with t	he same speed. Now,			
	` '	(A) a constant emf is induced in the coil					
	(B) emf is not inc						
	* *	ent flows through the co		nnected			
	(D) emf induced in the coil varies with time.						
5.	According to Faraday, magnitude emf induced in a coil is						
J.	_	nen rate of change of ele					
	1 1	en rate of change of ele					
	(C) maximum when rate of change of electric flux is highest(D) zero when rate of change of electric flux is highest.						
6.	SI unit of magne	etic flux is					
•	(A) weber	(B) weber m ⁻²	(C) weber m ²	(D) weber m ⁻¹			
	(11) WOODI	(E) west in	(e) weed in	(B) Weser III			
7.	SI unit of magne		_				
	(A) T m ²	(B) weber m ⁻²	(C) weber m ²	(D) weber m ⁻¹			
8.	SI unit of magnetic field is						
	(A) T m^2	(B) weber m ⁻²	(C) weber m ²	(D) weber m ⁻¹			
		 					
9.	-	Magnetic flux per unit area is called					
	(A) magnetic ind		(B) magntisation				
	(C) magnetic sus	ceptibility	(D) magnetic perr	neability			
10.	Scalar quantity	among the following is	š				
	(A) Magnetic mo		(B) magnetic inter	nsity			
	(C) magnetic flux	<u>(</u>	(D) magnetisation	l			
11	The meanitude	of induced emf in a sim	ouit is oanal to time	ests of change of			
11.	_	of induced emf in a cir	cuit is equal to time I	ate of change of			

magnetic flux through the circuit is (A) Faraday's law (C) Gauss' law (B) Lenz's law (D) Kirchoff's law

12. The law which gives polarity of induced emf in a circuit due to rate of change of magnetic flux is

(A) Faraday's law

(B) Lenz's law

(C) Gauss' law

(D) Kirchhoff's law

13. Lenz's law is based on

- (A) the law of conservation of charge
- (B) the law of conservation of energy
- (C) the law of conservation of momentum
- (D) the law of conservation of angular momentum

14. In a closed circuit, electric currents are induced when there is a change in magnetic flux linked with it. This is to

- (A) support the change in magnetic flux
- (B) oppose the change in magnetic flux
- (C) increase the total energy involved in the process
- (D) decrease the total energy involved in the process

15. North pole of a magnet is moved along the axis towards a circular coil. Direction of current flowing in the side of the coil phasing the magnet is

- (A) anticlockwise
- (B) clock wise
- (C) normal to the plane of the coil towards the coil
- (D) normal to the plane of the coil away from the coil

16. North pole of a magnet is moved away from a circular coil along the axis of the coil. Direction of current flowing in the side of the coil phasing the magnet is

- (A) anticlockwise
- (B) clock wise
- (C) normal to the plane of the coil towards the coil
- (D) normal to the plane of the coil away from the coil

17. South pole of a magnet is moved away from the circular coil along the axis of the coil. Direction of current flowing in the side of the coil phasing the magnet is

- (A) anticlockwise
- (B) clock wise
- (C) normal to the plane of the coil towards the coil
- (D) normal to the plane of the coil away from the coil

18. South pole of a magnet is moved towards a circular coil along the axis of the coil. Direction of current flowing in the side of the coil phasing the magnet is

- (A) anticlockwise
- (B) clock wise
- (C) normal to the plane of the coil towards the coil
- (D) normal to the plane of the coil away from the coil

19. South pole of a magnet is moved towards a circular coil along the axis of the coil. The side of the coil phasing the magnet

- (A) would act like north pole
- (B) would act like south pole
- (C) will develop magnetic field lines emerging normally out of the plane of the coil
- (D) will develop magnetic field lines emerging parallel to the plane of the coil

20.21.	South pole of a magnet is moved away from a circular coil along the axis of the coil. The side of the coil phasing the magnet (A) would act like north pole (B) would act like south pole (C) will develop magnetic field lines normally entering into the plane of the coil (D) will develop magnetic field lines emerging parallel to the plane of the coil North pole of a magnet is moved towards a circular coil along the axis of the coil. The side of the coil phasing the magnet (A) would act like north pole (B) would act like south pole (C) will develop magnetic field lines normally entering into the plane of the coil (D) will develop magnetic field lines emerging parallel to the plane of the coil				
22.	North pole of a magnet is moved away from a circular coil along the axis of the coil. The side of the coil phasing the magnet (A) would act like north pole (B) would act like south pole (C) will develop magnetic field lines emerging normally out of the plane of the coil (D) will develop magnetic field lines emerging parallel to the plane of the coil				
23.			(B) length of the meta (D) Resistance of the	allic rod	
24.	Emf induced in a m magnetic field B wit (A) BL ÷ v	etallic rod of length L ch a speed v is (B) B÷Lv	moving perpendicular (C) $Bv \div L$	ar to a uniform (D) BvL	
25.	Currents induced w field are called (A) displacement cur (C) wattless currents	then bulk pieces of me	(B) conduction currer (D) eddy currents		
26.	Eddy currents were (A) Foucault	discovered by (B) Faraday	(C) Lenz	(D) Gauss	
27.	Eddy currents are r (A) winding the coil (C) using a thick block		a transformer by (B) using thick coppe (D) laminated iron co		
28.	Principle employed (A) displacement cur (C) wattless currents	in magnetic breaking rents	of trains is (B) conduction current (D) eddy currents	nts	
29.	Amplitude of oscillato (A) displacement cur (C) wattless currents	rents	(B) conduction current (D) eddy currents	_	

30.	Instrument which doesn't employ eddy current principle is				
	(A) Electric power met	ter	(B) Induction	furnace)
	(C) Magnetic break in	trains	(D) Cyclotron		
	- · · · - -				
31.	SI unit of self-inducta	nce is:			
	(A) henry (H)		(B) farad (F)		
	(C) coulomb (C)		(D) ohm (Ω)		
	(0)		(=) (==)		
32.	SI unit of mutual -ind	luctance is:			
	(A) henry (H)		(B) farad (F)		
	(C) coulomb (C)		(D) ohm (Ω)		
	(C) coulonio (C)		(D) Omn (32)		
33.	Dimension of self-ind	uctance is			
33.		(B) $[ML^2T^{-2}A^{-2}]$	(C) $[ML^3T^{-2}A]$	-21	(D) $[M^2L^2T^{-2}A^{-2}]$
	(A) [ML I A]	(D) [WIL I A]	(C) [MIL I A	.]	(D) [M L I A]
34.	Vector quantity amor	ng the following is			
34.		_	(B) magnetic	flux	
	(A) Magnetic induction	<u>1</u>	` '		
	(C) inductance		(D) potential of	ımeren	ce
25	Two galancida of dif	famont madii ana ka	nt incide one	anath	w agazially Mutual
35.	Two solenoids of dif		-		
	inductance of inner co	_		2 and 1	nutual inductance of
	outer coil with respec	t to inner coll is M21			
	(A) $M_{12} > M_{21}$		(B) $M_{12} < M_{21}$		
	$(C) M_{12} = M_{21}$		(D) M_{12} is alw	yays =0	
26					
36.	Mutual inductance between a pair of coils is				
	(A) directly proportional to the product of number of turns in each coil.				
	(B) inversely proportional to the product of number of turns in each coil.				
	(C) directly proportional to the square root of product of number of turns in each coil.(D) inversely proportional to the square root of product of number of turns in each coil.				
	(D) inversely proportion	onal to the square roo	t of product of i	number	of turns in each coil.
					
37.	Mutual induction prin				
	(A) Choke coil	(B) Transformer	(C) rectifier	(D) C	yclotron
38.	Self-induction princip				
	(A) Choke coil	(B) Transformer	(C) rectifier	(D) C	yclotron
39.	Mutual inductance be	_	s depends on		
	(A) number of turns in	both the coils			
	(B) permeability of medium inside the coils				
	(C) relative orientation of the coils				
	(D) all the above menti	ioned factors			
40.	An iron rod is introdu	iced into to a soleno	id. Now its self	f-induc	tance
	(A) <u>increases</u>	(B) decreases			
	(C) remains the same	(D) may incre	ase or decrease	depend	ding on size of the rod
		-		-	
41.	Self induced emf is als	so called			
	(A) back emf	(B) motional emf	(C) terminal e	mf	(D) breakdown emf
		(2) 111011011111	(C) terriman e	1111	(D) breakdown chin

42.	Energy stored in an inductor of self-inductance L when current increases from zero to I is			rent increases from			
	(A) $U = \frac{1}{2} LI$	(B) $U=I/2L$	$(C) U = \frac{1}{2} LI^2$	(D) $U = \frac{1}{2} L^2 I$			
43.	AC generator works on the principle of (A) Force on a current carrying conductor placed in magnetic field (B) electromagnetic induction (C) production of displacement current due to varying electric flux (D) magnetic effect of electric current.						
44.	Ac generator conv (A) Mechanical end (B) mechanical end (C) electrical energ (D) chemical energ	ergy to chemical er ergy to electrical en ry to mechanical en	<u>iergy</u> iergy				
45.		•	c generator having coil o				
			angular velocity ω is give	•			
	$(A) E_{m} = NA^{2}B\omega$	(B) $E_m = NAB^2$	$\omega \qquad (C) E_{m} = N^{2}AB\omega$	$(D) E_{\underline{m}} = NAB\omega$			
46.	Number of cycles (A) frequency of ac (C) amplitude of ac	2	er second is called (B) period of ac (D) instantaneous emf				
47.	Time taken by ac to complete one full cycle is called						
	(A) frequency of ac (C) amplitude of ac	2	(B) period of ac (D) instantaneous emf				
48.	Equation for insta	Equation for instantaneous value of emf induced in a generator coil is given by					
	(A) $E=E_m \sin(\omega/t)$	(B) $E=E_m\omega \sin \omega$		(D) $\underline{E} = \underline{E}_{m} \underline{\sin \omega t}$			
49.	In which type of generators potential energy of water stored at height is used as mechanical energy?						
	(A) nuclear power	_	• ,	l power generators			
	(C) hydro electric g	generators	(D) Solar p	ower generators			
50.	Maximum emf ger (A) number of turn (B) area of the coil (C) frequency of ro (D) resistance of the	s in the generator cotation of the coil	enerator is independent coil	of			

7. Alternating Current

 $\frac{\text{(B) }V_{m} = V_{rms} \sqrt{2}}{\text{(D) }V_{rms} = V_{m} + \sqrt{2}}$

Relation between peak value of emf (V_m) and rms value of emf (V_{rms}) is

1.

(A) $V_{rms} = V_m \sqrt{2}$ (C) $V_{rms} = V_m - \sqrt{2}$ Harish Shastry -9480198001

2.	Relation between peak value of emf (I_m) and rms value of emf (I_{rms}) is					
	$(A) I_{m} = I_{rms} \sqrt{2}$		$(B) I_m$	$= I_{rms} \div \sqrt{2}$		
	(C) $I_{rms} = I_m - \sqrt{2}$		(D) I_{rr}	$_{\rm ns} = {\rm I}_{\rm m} + \sqrt{2}$		
3.	An alternating voltage $V=V_m$ sinot is applied across a resistor. Current through the resistor is					
	$(A) \underline{I=I_m sin\omega t}$	(B)	I=I _m sin ($\omega t + [\pi/2]$		
	(C) $\overline{I=I_{m} \sin(\omega t - I_{m})}$					
4.	In the case of alte (A) the current lea (B) the current lag (C) the current and (D) the current lea	ds the voltage be s behind the vol the voltage are	y a phase ltage by a e in phase	angle of $\pi/2$ phase angle of τ	t/2	
5.	Average power de $(A) P=V_m I_m$ $(C) P= V_m \sqrt{2} I_m \sqrt{2}$	(B)	ourely res P=V _{rms} <u>I</u> rr P= zero		is	
6.	Power factor in a (A) one (B)	_	zero	nit is (D) $1/\sqrt{2}$		
7.	Phase difference (A) zero (B)		ge and cui π/2	rent in a purel (D) π/4	y resistive circuit is	
8.	As the frequency of ac increases, resistance of resistor					
	(A) decreases		,	(B) increases		
	(C) does not change	<u>ge</u>		(D) first increa	ses and then decreases	
9.	An ac of rms value 10A is passed through a resistor for a certain time. Then a direct current of 10A is passed through the same resistor for the same time. Now (A)power developed in both the cases are same (B) Power developed by dc source is more (C) Power developed by ac source is more (D) Power developed in the two cases depends on frequency of ac.					
10.	The equivalent dc value for an ac which produces the same heat loss in a resistor in a given time is called					
	(A) Mean value of			(B) average va	le of ac	
	(C) peak value of	ac		(D) rms value	of ac	
11.	Average value of an ac for one full cycle is					
	(A) unity	(B) peak va	llue	(C) zero	(D) rms value	

12.	An alternating voltage ${}_{\mbox{\tiny V}}\!\!=\!\!V_m$ sin ωt is applied across a capacitor. Current throu the capacitor is			
	(A) $I=I_m \sin [\omega t + (\pi/2)]$			
	(C) $I=I_m \sin \left[\omega t - (\pi/2)\right]$ (D) $I=I_m \sin \left(\omega t + \pi\right)$			
13.	In the case of alternating voltage applied to a capacitor: (A) the current leads the voltage by a phase angle of $\pi/2$			
	(B) the current lags behind the voltage by a phase angle of $\pi/2$			
	(C) the current and the voltage are in phase			
	(D) the current leads the voltage by a phase angle of $\pi/4$			
14.	Average power dissipated in a purely capacitive ac circuit is			
	$(A) P=V_{m}I_{m} $ $(B) P=V_{rms}I_{rms}$			
	(C) $P = V_m \sqrt{2} I_m \sqrt{2}$ (D) $P = zero$			
15.	Power factor in a purely capacitive ac circuit is			
	(A) one (B) infinity (C) zero (D) $1/\sqrt{2}$			
16.	Phase difference between voltage and current in a purely resistive circuit is			
	(A) zero (B) π (C) $\pi/2$ (D) $\pi/4$			
17.	As the frequency of ac increases, capacitive reactance			
	(A) <u>decreases</u> (B) increases			
	(C) does not change (D) first increases and then decreases			
18.	Capacitive reactance is			
	(A) inversely proportional to the frequency of ac source.			
	(B) directly proportional to the capacitance of the capacitor.			
(C) independent of the frequency of ac source.				
	(D) independent of capacitance of the capacitor.			
19.	Capacitor offers infinite reactance to			
	(A) direct current (B) high frequency ac			
	(C) resonance frequency (D) ac source of any frequency value			
20.	Reactance offered by a capacitor of capacitance C when connected across an ac			
	source of frequency ω is			
	(A) $Xc = \omega C$ (B) $Xc = \omega/C$ (C) $Xc = 1/\omega C$ (D) $Xc = C/\omega$			
21.	Si unit of capacitive reactance is			
	(A) ohm (B) mho (C) farad (D) ohm metre			
22.	An alternating voltage, V=V _m sinot is applied across an inductor. Current through			
	the inductor is			
	(A) $I=I_m \sin \omega t$ (B) $I=I_m \sin \left[\omega t + (\pi/2)\right]$			
	$(C) I = I_{\underline{m}} \sin \left[\omega t - (\pi/2)\right] $ (D) $I = I_{\underline{m}} \sin \left(\omega t + \pi\right)$			
23.	In the case of alternating voltage applied to an inductor:			
	(A) the current leads the voltage by a phase angle of $\pi/2$			
	(B) the current lags behind the voltage by a phase angle of $\pi/2$			
	(C) the current and the voltage are in phase (D) the current leads the voltage by a phase angle of $\pi/4$			
	(D) the current reads the voltage by a phase alighe of m-1			

24.	Average power dissipated in a purely inductive ac circuit is (A) $P=V_mI_m$ (B) $P=V_{rms}I_{rms}$ (C) $P=V_m\sqrt{2} I_m\sqrt{2}$ (D) $P=zero$			
25.	Power factor in a purely indu (A) one (B) infin	uctive ac circunity (C) zer		$\sqrt{2}$
26.	Phase difference between vol (A) zero (B) π	tage and curi <u>C) π/2</u>	rent in a pure (D) π/4	ly inductive circuit is
27.	As the frequency of ac increa (A) decreases (C) does not change	ses, inductive	(B) increases	ases and then decreases
28.	Inductive reactance is (A) inversely proportional to the frequency of ac source. (B) directly proportional to the self-inductance of the inductor. (C) independent of the frequency of ac source. (D) independent of self-inductance of inductor.			
29.	An Inductor offers very large (A) direct current (C) resonance frequency	B) very high f	frequency ac	cy value
30.		(B) very high		rawn from dc source
31.	Reactance offered by an induac source of frequency ω is $(A) X_L = \omega L$ (B) $X_L = \omega L$			when connected across an L_L (D) $X_L = L/\omega$
32.	SI unit of inductive reactance (A) ohm (B) mho		nry	(D) ohm metre
33.	An inductor stores energy in (A) gravitational field (C) electric field		gnetic field ninous field	
34.	A capacitor stores energy in (A) gravitational field (C) electric field	, ,	gnetic field ninous field	
35.	In a series RLC circuit at res (A) net reactance is equal to re (B) net reactance is equal to the (C)net reactance is equal to the (D) net reactance is zero	sistance e reactance of	-	

36. In a series RLC circuit, at resonance

- (A) net impedance is equal to the reactance of the capacitor.
- (B) net impedance is equal to resistance
- (C) net impedance is equal to the reactance of the inductor.
- (D) net impedance is zero

37. In a series RLC circuit, at resonance

- (A) inductive reactance is equal to resistance of resistor.
- (B) capacitive reactance is equal to resistance of resistor.
- (C) inductive reactance is equal to capacitive reactance.
- (D) net impedance is zero

38. In a series RLC circuit, at resonance

- (A) Potential difference across inductor is equal to potential difference across resistor.
- (B) Potential difference across capacitor is equal to potential difference across resistor.
- (C) Potential difference across inductor is equal to potential difference across capacitor.
- (D) net voltage across resistor and inductor is zero.

39. In a series RLC circuit, at resonance

- (A) power factor is unity.
- (B) current and voltages are in phase.
- (C) impedance of the circuit is equal to resistance
- (D) All the above statements are correct.

40. In a series resonance circuit, below the resonance frequency

- (A) Capacitive reactance is greater than the inductive reactance.
- (B) Inductive reactance is greater than capacitive reactance.
- (C) Inductive and capacitive reactances are equal.
- (D) Voltage leads the current

In a series resonance circuit, above the resonance frequency 41.

- (A) Capacitive reactance is greater than the inductive reactance.
- (B) Inductive reactance is greater than capacitive reactance.
- (C) Inductive and capacitive reactances are equal.
- (D) Current leads the voltage.

42. In a series RLC circuit, current and power dissipated is found to be maximum. Now the frequency ω of ac is

- (A) greater than $\frac{1}{\sqrt{LC}}$
- (B) lesser than $\frac{1}{\sqrt{LC}}$ (D) equal to $\sqrt{\frac{L}{C}}$
- (C) equal to $\frac{1}{\sqrt{I.C}}$

43. If R is resistance, X_C is capacitive reactance, X_L is inductive reactance then impedance Z is

- $(A) Z = \sqrt{R^2 + (X_C X_L)^2}$
- (B) $Z = \sqrt{R + (X_C X_L)}$ (D) $Z = \sqrt{R^2 + (X_C + X_L)^2}$
- (C) $Z = R^2 + (X_C X_L)^2$

44. Current will be wattless in an ac circuit containing

- (A) inductor, capacitor and resistor
- (B) inductor and resistor

(C) capacitor and resistor

(4) Inductor and capacitor

45.	If R is resistance, X _C is capacitive impedance of series resonance circ	reactance, \mathbf{X}_L is inductive reactance and \mathbf{Z} is cuit, then power factor, $\cos\phi$ is
	$(A) \cos \phi = \frac{R}{Z}$	(B) $\cos \phi = \frac{Z}{R}$
	$(C) \cos \phi = RZ$	(D) $\cos \phi = R - Z$
46.	Dimension of \sqrt{LC} is (A) [M ¹ L°T ¹]	(B) $[M^{\circ}L^{1}T^{1}]$
	$(C) [M^{o}L^{o}T^{-1}]$	$\underline{\text{(D)}} [M^{\text{o}}L^{\text{o}}T^{\text{I}}]$
47.	Dimension of $\frac{1}{\sqrt{LC}}$ is	
	(A) [M1L0T1]	(B) $[M^{\circ}L^{1}T^{1}]$
	$\underline{\text{(C)} \left[M^{\circ}L^{\circ}T^{-1} \right]}$	(D) $[M^{o}L^{o}T^{1}]$
48.	Frequency of electrical oscillations	
	(A) $\omega_0 = \frac{1}{2\sqrt{LC}}$ (B) ω	$_{\rm O}=\frac{1}{\sqrt{\rm L+C}}$
	$\underline{\text{(C)}}\ \omega_{\text{o}} = \frac{1}{\sqrt{\text{LC}}}\tag{D)}\ \omega_{\text{o}}$	$c_0 = \sqrt{\frac{L}{C}}$
49.	As the frequency of ac in a series I	RLC circuit is increased, the total impedance of
	the circuit,	
	(A) increases	
	(B) decreases	in
	(C) decreases up to resonance and the (D) remains the same	en nicreases.
	(b) remains the same	
50.	The circuit used for tuning mechan	nism in radio and TV sets is
	(A) Metre bridge circuit	(B) Series RLC resonance circuit
	(C) Half wave rectifier circuit	(D) Full wave rectifier circuit
51.	Electrical components needed for	electrical resonance circuit are
	(A) Resistor and capacitor	(B) Resistor and Inductor
	(C) Inductor and capacitor	(D) Resistor and diode
52.	In a series resonance circuit, frequ	encies at which current will be $\frac{1}{\sqrt{2}}$ times the
	current at resonance are called	
	(A) <u>Half power frequencies</u>	(B) half resonance frequencies
	(C) rms frequencies	(D) resonance frequencies
53.		urrent in a series resonance circuit is equal to or
	more than $\frac{1}{\sqrt{2}}$ times the current at	resonance is called
	(A) <u>Band width</u>	(B) quality factor
	(C) half power frequencies	(D) reconance frequency

- (C) half power frequencies

In a series resonance circuit, half power frequencies are the frequencies at which **54.**

- (A) Power is $\frac{1}{\sqrt{2}}$ times the power at resonance and current is half that at resonance (B) <u>Current is</u> $\frac{1}{\sqrt{2}}$ times the current at resonance and power is half that at resonance
- (C) Power is 2 times the power at resonance and current is half of that at resonance
- (D) Power is half of that at resonance and current is 2 times that at resonance

55.	Ratio of resonance frequency to bandwidth is called			
	(A) Quality factor (B) half power frequency			
	(C) resonance frequency (D) power factor			
56.	Quality factor of a series resonance circuit is given by			
	$(\underline{A}) Q = \frac{1}{R} \sqrt{\frac{\underline{L}}{\underline{C}}} \qquad (B) Q = R \sqrt{\frac{\underline{L}}{\underline{C}}} \qquad (C) Q = \frac{1}{R} \sqrt{\frac{\underline{C}}{\underline{L}}} \qquad (D) Q = R \sqrt{\frac{\underline{C}}{\underline{L}}}$			
<i>5</i> 7.	If X_L and X_C are the inductive and capacitive reactances of a series RLC circuit at			
	resonance, then quality factor is			
	(A) $Q = \frac{X_L}{R}$ (B) $Q = \frac{X_C}{R}$			
	Tt Tt			
	(C) $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ (D) all the equations are correct			
5 0	Y			
58.	SI unit of quality factor of a series resonance circuit is (a) hertz (B) seconds (C) metre (D) no unit			
59.	(a) hertz (B) seconds (C) metre (D) no unit As the bandwidth of a series resonance circuit increases, quality factor			
39.	(A) increases (B) decreases			
	(C) first increases and then decreases (D) remains the same			
60.	Principle of working of a transformer is			
00.	(A) Self-induction (B) Ampere-maxwell rule			
	(C) Mutual induction (D) Wheatstone's bridge			
61.	Transformer is a device			
	(A) which converts ac to dc			
	(B) which converts dc to ac			
	(C) which increases or decreases the amplitude of ac.			
	(D) used measure emf of a cell			
62.	In a step-up transformer			
	(A) secondary voltage is less than primary and secondary current is more than primary			
	(B) secondary voltage is more than primary and secondary current is less than primary			
	(C) both voltage and current at the secondary are more than that at the primary			
(2	(D) both current and voltages at the secondary are less than that at the primary			
63.	In a step-down transformer			
	(A) secondary voltage is less than primary and secondary current is more than primary			
	(B) secondary voltage is more than primary and secondary current is less than primary (C) both voltage and current at the secondary are more than that at the primary			
	(D) both current and voltages at the secondary are less than that at the primary			
	(b) both earrest and voltages at the secondary are less than that at the primary			
64.	In a step-up transformer			
	(A) number of turns in the secondary are more than the number turns at the primary			
	(B) number of turns in the secondary are less than the number turns at the primary			
	(C) number of turns in the primary and secondary are equal.			
	(D) Primary and secondary are connected together by to facilitate current flow.			
65.	In a step-down transformer			
	(A) number of turns in the secondary are more than the number turns at the primary			
	(B) number of turns in the secondary are less than the number turns at the primary			
	(C) number of turns in the primary and secondary are equal.			
	(D) Primary and secondary are connected together by to facilitate current flow.			
66.	A DC battery is applied to the primary of a step-up transformer.			
	(A) Voltage at the secondary will be more than the DC battery voltage			
	(B) Voltage at the secondary will be less than the DC battery voltage			
	(C) Voltage at the secondary will be equal to the DC battery voltage			
	(D) Voltage at the secondary will be zero			

67. In a transformer, primary and secondary are wound over a iron core. This is to (A) reduce eddy current loss (B) reduce flux leakage loss (C) reduce heat loss due to resistance (D) increase the mass of the transformer. **68.** In a transformer, eddy currents losses are minimised by (A) using thin copper wires (B) winding more turns of coil (C) laminated core (D) using heavy large single iron core. 69. In a transformer, heat loss due to resistance of wires are minimised by (A) using thin copper wires (B) winding more turns of coil (C) using thick copper wires (D) laminated core. 70. Heat loss due to repeated magnetisation and de magnetisation of the core of a transformer energy is called (A) Joule heating (B) eddy current loss (C) flux leakage loss (D) hysteresis loss **71.** Heat loss due to hysteresis in the core of a transformer can be reduced by (A) using a material as a core for which area of hysteresis curve is least (B) using a material as a core for which area of hysteresis curve is maximum (C) using a material as a core which does not exhibit hysteresis (D) using diamagnetic materials 72. In order to reduce I²R power loss during transmission, power is transmitted through cables (A) at high voltage and low current (B) low voltage and high current (C) low voltage and low current (D) high voltage and high current Ratio of output power to the input power of a transformer is called **73.** (B) energy factor (A) quality factor (C) energy loss (D) efficiency 74. In an ideal transformer (A) Efficiency is equal to 100% (B) Electrical energy will be lost in the form of heat (C) Efficiency is less than 100% (D) Efficiency will be more than 100% **75.** The quantity that doesn't change from input to output of a practical transformer (A) Power (B) voltage (D) current (C) frequency of ac **76.** In practical transformers (A) Efficiency is equal to 100% (B) output electrical energy will be less than the input electrical energy

(C) output electrical energy will be more than input electrical energy

(D) Efficiency will be more than 100%

8. Electromagnetic waves

Harish Shastry B-9480198001

1.	Inconsistency in Ampere's circuits	al law was identified by					
	(A) J.C. Maxwell	(B) Gauss					
	(C) Michael Faraday	(D) Heinrich Hertz					
2.	Electromagnetic wave theory was	proposed by					
	(A) J.C. Maxwell	(B) Gauss					
	(C) Michael Faraday	(D) Heinrich Hertz					
3.	Electromagnetic wave theory was	experimentally proved by					
	(A) J.C. Maxwell	(B) Gauss					
	(C) Michael Faraday	(D) Heinrich Hertz					
4.	Current produced due to timely v	arying electric field is called					
	(A) conduction current	(B) displacement cur					
	(C) drift current	(D) induced current					
5.	Current produced by flow of elect	rons due to potential differe	nce is called				
	(A) conduction current	(B) displacement cur	rent				
	(C) drift current	(D) induced current					
6.	By using symbols having usual me	eaning, displacement current	t can be expressed as				
	$(\underline{A}) i_D = \epsilon_0 \frac{d\phi_E}{dt}$	(B) $i_D = \mu_o \frac{d\phi_E}{dt}$					
	(C) $i_D = \epsilon \frac{dI}{dt}$	(D) $i_D = \mu_0 \frac{dI}{dt}$					
7.	Mathematically, Ampere-Maxwel	- ut					
,.	(A) $\oint \vec{B} \cdot \vec{dL} = \mu_o i_c + \mu_o \frac{d\phi_E}{dt}$	(B) $\oint \vec{B} \cdot \vec{dL} = \mu_0 i_c + \mu_0 \in \mathcal{A}$	$\frac{d\phi_E}{d\phi_E}$				
	(C) $\oint \vec{E} \cdot \vec{dL} = \mu_o i_c + \mu_o \in_0 \frac{d\phi_E}{dt}$	$(D) \oint \vec{R} \cdot \vec{dI} = \mu i + \epsilon \frac{di}{dI}$	odt ∮ <u>E</u>				
	(c) $\psi L uL = \mu_0 I_C \mu_0 \in_0$ dt	$(D) \Psi D uL = \mu_0 I_C \mid C = 0$	lt				
8.	Electromagnetic waves are produc	ced					
	(A) by an oscillating charge						
	(B) by an accelerated charge						
	(C) when electrons undergo transition(D) by all the above methods	on from higher energy level to	lower energy level				
	(D) by all the above methods						
9.	Electromagnetic waves are						
	(A) transverse waves	(B) longitudinal waves					
	(C) mechanical waves	(D) one dimensional waves					
10.	Angle between electric and magne		C				
	(A) 0° (B) 90°	(C) 180°	(D) 45°				
11.	Angle between magnetic field	direction and direction	of motion of an				
	electromagnetic wave is						
	(A) 0° (B) 90°	(C) 180°	(D) 45°				

12.	Velocity of a electron (∈₀) of free space is	magnetic wave	(c) in terms of permeabil	ity (μ₀) and permittivity
	$(A) c = \frac{1}{\mu_0 \epsilon_0}$	(B) $c = \sqrt{\mu_0 \epsilon}$	$\underline{\underline{(C)}} c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$	(D) $c = \sqrt{\frac{\mu_0}{\epsilon_0}}$
13.	Dimension of $\sqrt{\mu_0 \epsilon_0}$ (A) $[M^oL^1T^{-1}]$ (C) $[M^oL^{-1}T^{-1}]$		(B) $[M^{-1}L^{1}T^{-1}]$ (D) $[M^{0}L^{2}T^{-1}]$	
14.	Dimension of $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ (A) [M°L¹T⁻¹] (C) [M°L⁻¹T ¹]	1S	(B) $[M^{-1}L^1T^{-1}]$	
15.	(C) [M ^o L ⁻¹ T ¹] Velocity of an electr	omagnetic way	(D) $[M^{o}L^{2}T^{-1}]$ we in vacuum in terms of	propagation constant
	(k) and angular free	- •	(6)	(7)
	(A) $c=\omega k$	$(B) c = \omega/k$	(C) c=k/ω	(D) $c=\omega+k$
16.	•	_	ve in vacuum in terms of	peak values of electric
	(E_0) and magnetic ((C) D /F	(D) D .F
	$(A) c = E_0/B_0$	$(\mathbf{B}) \mathbf{c} = \mathbf{E}_0 \mathbf{B}_0$	$(C) c = B_0/E_0$	(D) $c = B_0 + E_0$
17.	Velocity of light in a	n material medi	ium depends on	
			im (B) magnetic prop	
	(C) refractive index of	of the medium	(D) All the above	<u>factors</u>
				1
18.	Distance travelled b	y light in air in	a time interval of $\frac{1}{2.9979}$	
	(A) 1km	(B) 1mm	(C) 1µm	<u>(D) 1m</u>
19.	Momentum (p) of a	n electromagne	etic wave of energy U is	
	(A) p=U/c	(B) p=Uc	(C) $p=c/U$	
20.	Energy density of an E is	n electromagne	etic wave in terms of peal	x value of electric field
	$(\underline{\mathbf{A}})\ U = \frac{1}{2}\epsilon_0 E^2$		$(B) U = \frac{1}{2} \frac{\epsilon_0}{E^2}$	
	$(C) U = \frac{1}{2} \frac{E^2}{\epsilon_0}$		(D) $U = 2E^2 \epsilon_0$	
21.	Energy density of an B is	n electromagne	etic wave in terms of peak	x value of magnetic field
	$(A) U = \frac{1}{2} \mu_0 B^2$		(B) $U = \frac{1}{2} \frac{\mu_0}{B^2}$	
	$\underline{\text{(C)}}U = \frac{1}{2} \frac{B^2}{\mu_0}$		(D) $U = 2B^2 \mu_o$	
22.	. 0	ves of lowest w	vavelength among the follow	lowing are
	(A) radio waves	` '	raviolet waves	
	(C) infrared waves	(D) ga	<u>mma rays</u>	
23.	Radio waves may be	e used		
	(A) To ionise atoms		(B) in the treatment of ca	ncer
	(B) in communication	<u>n</u>	(D) sterilize water	
24.	Microwaves waves	may he used		
<i>≟</i> -7•	(C) To ionise atoms	may be useu	(B) in the treatment of ca	ncer
	(D) <u>ovens</u>		(D) sterilize water	

25. Which electromagnetic wave is used in radar communication?			?			
	(A) Micro waves	(B) X	-rays	(C) Gamma	rays	(D) UV rays
26.	Which electromagn	netic waves are			es?	
	(A) Micro waves		(B) r	adio waves		
	(C) ultraviolet wave	S	(D) I	nfra red waves		
27.	A hot object can pr	oduce				
	(A) <u>IR rays</u>	(B) X-rays	(C) (Samma rays	(D) U	V rays
28.	Radiations which k	keep earth war	m are			
	(A) <u>IR rays</u>	(B) X-rays	(C) (Samma rays	(D) U	V rays
29.	When high energy	electrons are b	ombai	ded bombard	ed with	metal target,
	electromagnetic wa	ves produced a	are			
	(A) IR rays	(B) X-rays	(C) (Gamma rays	(D) U	V rays
30.	The electromagnet	ic radiation use	ed to d	iagnose the fra	cture in	bones is
	(A) IR rays	(B) X-rays	(C) C	Samma rays	(D) U	V rays
31.	Which statement a	mong the follo	wing is	wrong regard	ing ultr	ra violet rays?
011	(A) UV rays are use	-	_		_	•
	(B) UV rays are abs			3		C
	(C) Ozone can absor		except	UV rays.		
	(D) Sun is a source	of UV radiation				
32.	Electromagnetic w	aves used in LA	ASIK e	eye surgery is		
	(A) IR rays	(B) X-rays	(C) (Bamma rays	(D) U	<u>V rays</u>
33.		adiation which	can ki	ll cells and her	ice used	in the treatment of
	cancer is					
	(A) IR rays	(B) X-rays	(C) (<u>Samma rays</u>	(D) M	licrowaves
34.	Radioactive source	s can produce				
	(A) Radio waves ray	/S	(B) L			
	(C) Gamma rays.		(D) N	Microwaves		
35.	Welders use goggle	to protect thei	ir eyes	from		
	(A) IR rays	_	(B) U	JV-rays		
	(C) Gamma rays		(D) N	Microwaves		
36.	Wavelength range	of visible light	is			
	(A) $700 \text{ Å to } 400 \text{ Å}$		(B) 7	00nm to 400nn	<u>1</u>	
	(C) 400nm to 1nm		(D) 4	·00 Å to 1Å		
37.	Wavelength range	of X-ryas is				
	(B) 700 Å to 400 Å	-	(B) 7	00nm to 400nn	1	
	(C) 10nm to 10 ⁻⁴ nm	<u> </u>	(D) 4	.00 Å to 1Å		
38.	Radiation which ca	n produvce m	ore me	lanin and caus	e skin b	ourn is
	(A) IR rays	-		JV-rays		
	(C) Gamma rays			Microwaves		

9. Ray optics and optical instruments

Harish Shastry -9480198001

1.	When a ray of light falls on a transparent medium, angle of incidence is always equal to					'S	
	(A) angle of refraction(C) angle of polarisation		(B) angle of deviation (D) angle of reflection				
2.	Geometric centre	of a spherical i	mirror is	called			
4.	(A) aperture	(B) pole	imilioi is	(C) vertex		(D) focus	
3.	Geometric centre (A) aperture	of a spherical (B) pole	refractin	g lens is called (C) optic cent		(D) focus	
		· / I		<u> </u>		` '	
4.	The line joining the known as	ne pole and the	centre o	f curvature of	the sp	herical mirror is	•
	(A) the principal ax (C) the minor axis	<u>kis.</u>		he major axis axial line			
	(C) the fillion axis		(D) ax	Mai IIIIC			
5.	The point on the p diverge is called	orincipal focus	at which	paraxial rays	conve	erge or appear to	
	(A) aperture	(B) pole		(C) vertex		(D) principal fo	<u>ocus</u>
6.	Distance from pri	-	the pole		ırved r	nirror is called	
	(A) mean free path(C) radius of curva			(B) diameter(D) focal leng	oth		
	(C) faulus of curva	ture		(D) local leng	gui		
7.	If f is the focal len $(A) f=R/2$	gth of a curved (B) f=2R	d mirror	of radius of cu (C) f=2/R	ı rvatu (D) f	,	
8.	Which mirror can	produce both	real and	virtual image	es of a	real object?	
	(A) Concave mirro	_		(B) convex m	irror	-	
	(C) plane mirror			(D) All the ab	oove m	irror	
9.	A concave mirror	is producing s	ame size	d real image. T	Γhe ob	ject distance is	
		(B) 4f					
10.	A mirror is alway distance. The mir	_	rtual din	ninished image	e irres _l	pective of object	
	(A) Concave mirro			(B) convex m	<u>irror</u>		
	(C) plane mirror			(D) All the ab	ove m	irror	
11.	Concave mirror is	-					
	(A) it always produces virtual diminished image						
	(B) it can produce both real and virtual images (C) it can produce enlarged virtual image						
	(D) it cannot produce (-	_				
12.	Convex mirror is	Convex mirror is used as rear-view mirror because					
	(A) it can produce				distan	<u>ce</u>	
	(B) it can produce			ges			
		(C) it can produce enlarged virtual image(D) it cannot produce virtual image					
	` /	U					

13.	An object is placed image is	at a distance 2	of from a concave mirror. T	The magnification of
	(A) m=-2	(B) $m = +1$	(C) m=+2	(D) $m = -1$
14.	For a mirror, object	et distance (u),	image distance (v) and foca	al length (f) are related
	(A) $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ (C) $\frac{1}{u} = \frac{1}{v} + \frac{1}{f}$		$\frac{\text{(B)}}{f} = \frac{1}{v} + \frac{1}{u}$ $\text{(D)} \frac{1}{v} = -\frac{1}{f} + \frac{1}{u}$	<u>i</u> 1
15.	For an object kept (A) is always less th (B) is always less th (C) is always greate (D) is always greate	nan one and posi nan one and nega r than one and p	ative positive	ation is
16.	•	t travels from o	one medium to another, the	e quantity that doesn't
	change is (A) speed of light		(B) wavelength of light	
	(C) colour of light		(D) frequency of light	
17.	When a ray of light travels from medium 1 to medium 2, the ratio of sine of the angle incidence to sine of the angle of refraction is (A) refractive index of medium 2 with respect to medium 1. (B) refractive index of medium 1 with respect to medium 2. (C) refractive index of medium 1 with respect to medium 1. (D) refractive index of medium 2 with respect to medium 2.			
18.	Dimension of refra (A) [MLT ⁻²]	(B) [M ⁻¹ LT ⁻²	$(C) [M^0LT^{-2}]$	$\underline{(D) [M^0L^0T^0]}$
19.	The colour of light is	which travels	with highest speed in a med	lium (other than air)
	(A) Red	(B) Blue	(C) violet	(D) yellow
20.	The colour of light (A) Red	which travels (B) Blue	with least speed in a mediu (C) violet	m (other than air) is (D) yellow
	` ,	, ,	 	· , , •
21.	(A) Red	(B) Blue	ighest with respect to the li (C) violet	(D) yellow
22.	Refractive index of (A) Red	f a medium is lo (B) Blue	owest with respect to light (C) violet	of colour (D) yellow
23.	Which coloured lig (A) Red (C) violet	(B) B	highest speed in vacuum? lue ll colours travel with equal sp	peeds_
24.	Select the phenome (A) normal shift (C) mirage	enon which doe	es not occur due to refraction (B) lateral shift (D) bending of light at nar	

25.	If an object lying at a real depth (RD) inside a liquid appears to be nearer at a depth AD from the surface, then the refractive index of the liquid is					
	(A) n = AD/RD	(B) n = RD/AD				
	$(C) n = RD \times AD$	(D) n=RD - AD				
26.	Brilliance of diamond is due to					
	(A) Interference of light	(B) polarisation of light				
	(C) diffraction of light	(D) total internal reflection of light				
27.	Critical angle for a pair of media	depends on				
	(A) Refractive indices of both media	` '				
	(C) speed of light in both media	(D) all the above quantities				
28.	Refractive index of a denser media					
	(A) Inversely proportional to the crit					
	(B) Directly proportional to the critical angle ic					
	(C) <u>Inversely proportional to the sine</u>					
	(D) Directly proportion to the sine of	f the critical angle (sini _c)				
29.	Optic fibres work on the principle					
	(A) total internal reflection	(B) refraction				
	(C) interference	(D) diffraction				
30.	Optic fibres are used					
	(A) to transmit optical signals					
	(B) in decorative lamps					
		(C) to facilitate visual examination of internal organs like stomach and intestines				
	(D) in all the above applications					
31.	Critical angle for the material of the total reflecting prisms used to bend a ray of					
	light by 90° and 180° must be (A) greater than 90°	(B) 90°				
	(C) less than 45°	(D) between 90° and 180°				
		(D) between 70° and 100°				
32.	Total reflecting prisms are used					
	(A) To turn a ray of light by 90°.	(B) To turn a ray of light by 180°.				
	(C) To produce upright image	(D) in all the above applications				
33.	Which one of the following does not employ the principle of total internal reflection?					
	(A) optic fibres	(B) total reflecting prisms				
	(C) diamonds	(D) Rear view mirror				
34.	Which natural phenomenon amor of light?	g the following is due to total internal reflection				
		(B) Compact disc appearing coloured during day				
	(C) mirage	(D) Normal shift				
35.	Focal length of a lens does not dep					
		active index of surrounding medium.				
	(B) wavelength of light(C) radii of curvature of the two surf	faces of the lens				
	(D) distance of the object from the le					

37. Reciprocal of focal length of a lens is called	ter than f			
1 8				
(A) power (B) critical angle				
(C) refractive index (D) magnification				
38. SI unit of power of lens is				
(A) watt (W) (B) dioptre (D)				
(C) horse power (hp) (D) joules/second (Js ⁻¹)				
39. Focal length of a lens of power one dioptre is				
(A) 10m (B) 1cm (C) 100cm (D) 100m				
40. As the focal length of a lens increases, its power				
(A) decreases (B) increases				
(C) remains the same (D) initially increase and then decreases				
41. Power of a lens is				
(A) directly proportional to focal length				
(B) inversely proportional to the focal length				
(C) directly proportional to square root of focal length				
(D) inversely proportional to square root of focal length				
42. Which lens can produce both real and virtual images of a real object?				
(A) Concave lens (B) convex lens				
(C) Plano concave lens (D) glass slab				
43. A convex lens is producing same sized real image. The object distance is	<u> </u>			
(A) f (B) 4f (C) 2f (D) 3f				
44. A lens is always producing virtual diminished image irrespective of obje	ect			
distance. The lens is				
(A) Concave lens (B) convex lens				
(C) Plano concave lens (D) Glass sphere				
45. An object is placed at a distance 2f from a convex. The magnification of	image is			
(A) $m=-2$ (B) $m=+1$ (C) $m=+2$ (D) $m=-1$	U			
	-			
46. For an object kept in front of a concave lens, the magnification is				
(A) is always less than one and positive.				
(B) is always less than one and negative				
(C) is always greater than one and positive				
(D) is always greater than one and negative				
47. A concave mirror is producing real, inverted and magnified image at fini	te distance.			
Then the object is (A) at the principal focus of the mirror				
(A) at the principal focus of the mirror(B) beyond the centre of curvature of the mirror				
(C) within the principal focus of the mirror				
(D) in between principal focus and centre of curvature of the mirror				

48. For a lens object distance (u), image distance (v) and focal length (f) are related as

$$(A) \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$(C) \frac{1}{u} = \frac{1}{v} + \frac{1}{f}$$

(B)
$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

(D) $\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$

(C)
$$\frac{1}{u} = \frac{1}{v} + \frac{1}{u}$$

(D)
$$\frac{1}{v} = \frac{v}{f} - \frac{u}{u}$$

- **49**. When two thin convex lenses of different focal length are kept in contact, the effective focal length of the combination
 - (A) will be less than the focal length of each lens.
 - (B) will be more than the focal length of each lens
 - (C) will be in between the focal length of two lenses
 - (D) will be equal to focal length of one of the lenses
- **50.** When two thin convex lenses of different power are kept in contact, the effective power of the combination
 - (A) will be less than the power of each lens
 - (B) will be more than the power of each lens
 - (C) will be in between the powers of two lenses
 - (D) will be equal to power of one of the lenses.
- A thin concave lens and a thin convex lens, having equal focal lengths are kept in 51. contact. Focal length of the combination is equal to
 - (A) zero
 - (B) infinity
 - (C) double the focal length of each lens
 - (D) half of the focal length of each lens
- A thin concave lens and a thin convex lens, having equal focal lengths are kept in 52. contact. Power of the combination is equal to
 - (A) zero

- (B) infinity
- (C) double the focal length of each lens
- (D) half of the focal length of each lens
- 53. Ina prism, as the angle of incidence is increased, angle of deviation
 - (A) decreases continuously
 - (B) increases continuously
 - (C) first decreases, reaches a minimum value and then increases
 - (D) does not change
- 54. At the minimum angle of deviation
 - (A) Angle of incidence and angle of emergence are equal
 - (B) angle refractions are equal
 - (C) Angle of the prism is equal to double the angle of retraction
 - (D) All the statements are correct.
- In a prism, except at the minimum deviation position, single angle of deviation can 55. be obtained for
 - (A) two angles of incidence
 - (B) only one angle of incidence
 - (C) many angles of incidence
 - (D) the angle of incidence which is equal to angle of deviation

56.	(A) Red	e most deviated colour (B) Blue	(C) violet	(D) yellow
57.	In a prism the (A) Red	e least deviated colour (B) Blue	is (C) violet	(D) yellow
58.	Inside a prism (A) Red	t, the colour of light with (B) Blue	hich travels with least s	speed is (D) yellow
59.	A thin prism i (A) equal to 60 (C) equal to 90		g angle is (B) equal to 45° (D) less than 10°	
60.	The phenomer (A) Diffraction (C) total intern	_ (t into its component col (B) scattering (D) dispersion	lours is known as
61.	(A) directly pro(B) inversely p(C) independent	rair), the speed of light oportional to wavelength proportional to wavelength of wavelength of light proportional to square ro	h of light gth of light	t.
62.	Non dispersive (A) glass	e among the following (B) water	is (C) vacuum	(D) diamond
63.	because (A) air and vac	ruum are non-dispersivengths travel with equal so		s its components. This is
64.	(A) internal ref	rmation of a rainbow lection and diffraction are and diffraction	(B) refraction and	l diffraction etion and refraction
65.	We will see a rain bow only when (A) our back is towards shining sun and it is raining in our front side (B) our back is towards raining side and sun is shining in our front side (C) Both shining sun and raining region is in our back side (D) Both shining sun and raining region is in our front side			
66.	The outermos (A) Red	t colour of primary ra (B) Blue	in bow is (C) violet	(D) green
67.	The inner mos	st colour of primary ra (B) Blue	ain bow is (C) violet	(D) green
68.	atmospheric p	particles. This is called		ection is changed by the
	(A) scattering	(B) dispersion	(C) reflection	(D) interference

69.	According to Rayleigh's scattering, (A) inversely proportional to the wave (B) directly proportional to the wavele	length	ng of light is		
	(C) inversely proportional to the fourth (D) directly proportional to the fourth	n power of the waveleng			
70.	The amount of scattering of light is	inversely proportiona	al to the fourth power of		
	the wavelength. This is known as	(B) Snell's law			
	(A) <u>Rayleigh's law</u> (C) Huygens's principle	(D) Newton's law	V		
71.	Sky appears blue due to				
	(A) dispersion of light	(B) Rayleigh's so	cattering		
	(C) Interference of light	(D) Polarisation	=		
72.	Rayleigh's scattering is found only v				
	(A) size of the scattering particle is mu				
	(B) size of the scattering particle is mu				
	(C) size of the scattering particle is equ	S	e		
	(D) size of the scattering particle is inc	dependent of the wavele	ngth of light		
73.	White colour of clouds is due to				
	(A) Rayleigh's scattering				
	(B) clouds containing water droplets scatter all wavelengths equally				
	(C) cloud reflects sun light completely				
	(D) All colours are equally absorbed b				
74.	During sun rise and sun set, sun app		due to		
	(A) Rayleigh's law	(B) Snell's law			
	(C) Huygens's principle	(D) Newton's law	V		
75.	The apparent flattening (oval shape)	of the sun at sunset a	nd sunrise is due to		
	(A) scattering(B) refraction of light as it passes through different layers of atmosphere.				
		ugn different layers of a	unosphere.		
	(C) total internal reflection				
76.	(D) dispersion The closest distance for which the ey	zo long oon fooug light a	on the retine is called		
70.	(A) least distance of distinct vision	(B) focal length	on the retina is caned		
	(C) far point	(D) path length			
77.	The standard value of near point for				
	(A) 25cm (B) 100cm	(C) infinity	(D) 25m		
78.	The highest distance up to which an	` '	arly by a normal human		
	being is called	·			
	(A) near point	(B) far point			
	(C) critical length	(D) visible length	1		
79.	Far point for a normal human being				
	(A) 25cm (B) 100cm	(C) infinity	(D) 25m		
80.	A convex lens is will act like a simple				
	(A) when the object is beyond 2f dista	_			
	(B) when the object is between 2F and				
	(C) when the object is at 2F				
	(D) when the object is within the focus	<u>S.</u>			

81.	Image formed by a simple microscope is	
	(A) enlarged, real and erect	(B) diminished, virtual and erect
	(C) enlarged, virtual and erect	(D) enlarged, real and erect
82.	If D is least distance of distinct vision, ma	gnification of a simple microscope
	containing a lens of focal length f is	
	$(A) m = 1 + \frac{f}{D}$	$(B) m = 1 - \frac{D}{f}$
	$(C) m = 1 - \frac{f}{D}$	(D) $m = 1 + \frac{D}{f}$
83.	Magnification of a simple microscope wh	en the image is formed at infinity is
	D-least distance of distinct vision, f- focal	length of lens
	$(A) m = 1 + \frac{f}{D}$	$(\underline{\mathbf{B}}) \mathbf{m} = \frac{D}{f}$
	(C) $m = \frac{f}{D}$	(D) $m = f + \frac{D}{f}$
84.	If D is least distance of distinct vision, fo i	s focal length of objective lens, fe is the
	focal length of eyepiece and L is tube leng	
	microscope for image at least distance of	distinct vision is
	$(\underline{A}) m = \frac{L}{f_0} \left(1 + \frac{D}{f_e} \right)$	(B) $m = \frac{f_0}{L} \left(1 + \frac{D}{f_e} \right)$
	(C) $m = \frac{L}{f_0} \left(1 - \frac{D}{f_0} \right)$	(D) $m = \frac{f_o}{L} \left(1 - \frac{D}{f_o} \right)$
85.	If D is least distance of distinct vision, f_0 i	s focal length of objective lens, fe is the
	focal length of eyepiece and L is tube leng	th then the magnification of compound
	microscope for image at infinity is	
	(A) $m = \frac{L}{f_o} \left(1 + \frac{D}{f_e} \right)$	(B) $m = \frac{f_0}{L} \left(\frac{D}{f_e} \right)$
	$(\underline{C}) m = \frac{L}{f_0} \left(\frac{D}{f_0} \right)$	(D) $m = \frac{D}{L} \left(\frac{f_o}{f_o} \right)$
86.	If fo is focal length of objective lens, fe	is the focal length of eyepiece then the
	magnification of telescope is	
	$(A) m = \frac{f_e}{f_o} $ (B) m	$=\frac{f_0}{f_e}$
	$(C) m = f_0 f_e $ (D) maximum	$= f_0 + f_e$
87.	If fo is focal length of objective lens, fe is	the focal length of eyepiece then the tube
	length of a telescope is	
	(A)I = fe (D) I	$_{-}$ f_{0}

$$(A) L = \frac{fe}{f_0}$$

$$(C) I - f \cdot f$$

(B)
$$L = \frac{f_0}{f}$$

(C)
$$L = f_0 f_e$$

(D)
$$L = f_0 + f_0$$

88. To increase the magnifying power of telescope

- (A) focal length of eyepiece must be increased.
- (B) focal length of eyepiece must be decreased
- (C) focal length of objective must be decreased
- (D) eye piece of smaller size must be used.

89. Advantages reflecting telescopes over refracting telescopes is

- (A) Reflecting telescopes use concave mirrors which are lighter compared to lenses
- (B) reflecting telescopes use concave mirrors which are free from chromatic aberration
- (C) It is easy to mount concave mirrors as compared to lenses in refracting telescopes
- (D) All the above mentioned factors are correct

90. Cassegrain telescope is a

- (A) Refracting telescope
- (B) telescope which uses only lenses
- (C) telescope which has maximum chromatic aberration
- (D) reflecting telescope

10. Wave optics

Harish Shastry -9480198001

1.	The book OPTICKS was written by					
	(A) Christiaan Huygens	(B) Isaac Newton				
	(C) J C Maxwell	(D) Snell				
2.	Corpuscular theory was initially	proposed by				
	(A) Descartes	(B) Christian Huygens				
	(C) J C Maxwell	(D) Snell				
3.	Wave theory of light was propose	d by				
	(A) Descartes	(B) Christian Huygens				
	(C) Max Planck	(D) Snell				
4.	Wave theory of light failed to exp	lain				
	(A) Reflection of light	(B) Refraction of light				
	(C) Propagation of light in vacuum	(D) Snell's law				
5.	Electromagnetic theory of light w	Electromagnetic theory of light was proposed by				
	(A) Descartes	(B) Christian Huygens				
	(C) J C Maxwell	(D) Newton				
6.	Electromagnetic theory of light was experimentally confirmed by					
	(A) Heinrich hertz	(B) Christian Huygens				
	(C) J C Maxwell	(D) Newton				
7.	Quantum theory of light was proposed by					
	(A) Heinrich hertz	(B) Christian Huygens				
	(C) J C Maxwell	(D) Max Planck				
8.	Which phenomenon associated with light could only be explained using quantum					
	theory light?					
	(A) Reflection	(B) Refraction				
	(C) Polarisation	(D) Photoelectric effect				
9.	Corpuscular theory predicted that if a ray of light bends towards normal after					
	refraction, then					
	(A) speed of light would be greater in the second medium					
	(B) speed of light would be less in the second medium					
	(C) speed of light in the second medium will be same as in the first medium					
	(D) light will not travel to second m	nedium				
10.		Christiaan Huygens wave theory predicted that if a ray of light bends towards				
	normal after refraction, then					
	(A) speed of light would be greater					
	(B) speed of light would be less in t					
		dium will be same as in the first medium				
	(D) light will not travel to second medium					

	less than the speed in air?	•
	(A) Descartes	(B) Christian Huygens
	(C) J C Maxwell	(D) Foucault
12.	Which experiment confirms the (A) Rutherford's alpha particle (B) Hallwach and Lenard's experiment (C) Thomas Young's double slin (D) Davisson Germer experiment	scattering experiment eriment of photoelectric effect texperiment
13.	Which theory could satisfacto	rily explain reflection and refraction of light?
	(A) Quantum theory	(B) Corpuscular theory
	(C) Wave theory	(C) All the above theories
14.	• •	d explain propagation of light through vacuum is
	(A) Electromagnetic theory	(B) Corpuscular theory
	(C) Wave theory	(C) All the above theories
15.	Interference and diffraction of	f light were explained only by
	(A) Maxwell's electromagnetic	theory (B) Corpuscular theory
	(C) Huygens Wave theory	(C) Maxwell's Quantum theory
16.	velocity of electromagnetic wa	
	(A) $c = \frac{1}{\mu_0 \epsilon_0}$ (B) $c = \gamma$	$\sqrt{\mu_0 \epsilon_0}$ (C) $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$ (D) $c = \sqrt{\frac{\mu_0}{\epsilon_0}}$
17.	Dimension of $\sqrt{\mu_0 \epsilon_0}$ is	
,	(A) $[M^{\circ}L^{1}T^{-1}]$	(B) $[M^{-1}L^{1}T^{-1}]$
	$\frac{(C) [M^{\circ}L^{-1}T^{-1}]}{(C) [M^{\circ}L^{-1}T^{-1}]}$	(D) $[M^{\circ}L^{2}T^{-1}]$
18.	Dimension of $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ is	
	$\sqrt{\mu_0\epsilon_0}$	(B) $[M^{-1}L^{1}T^{-1}]$
	$\frac{(A) [M^{\circ}L^{1}T^{-1}]}{(C) [M^{\circ}L^{-1}T^{-1}]}$	(B) [M L 1] (D) $[M^{o}L^{2}T^{-1}]$
	(C) [M L 1]	(D) [M L 1]
19.	According to Huygens princip (A) locus of points, which oscill (B) surface of constant phase. (C) Both A and B are wrong (D) Both A and B are correct	
20.	According to Huygens princip	le, wavefront emitted from a point source of light is
	(A) cylindrical wavefront	(B) spherical wavefront
	(C) plane wavefront	(4) parallel rays
21.	According to Huvgens princin	le, wavefront emitted from a linear source of light is
-	(A) cylindrical wavefront	(B) spherical wavefront
	(C) plane wavefront	(4) parallel rays
	=	- · · · · · · · · · · · · · · · · · · ·

Name the scientist who experimentally verified that the speed of light in water is

11.

22.	According to Huygens principle, wavefront emitted from a source of light at infinit is				
	(A) cylindrical wavefront	(B) spherical wavefront			
	(C) plane wavefront	(4) convergent rays			
23.	According to Huygens principle, t	he energy of the wave travels in a direction			
	(A) perpendicular to the wavefront	(B) parallel to the wavefront			
	(C) at 45° to the wavefront.	(D) at 90° to the wavefront.			
24.	According to Huygens principle, a	•			
	(A) perpendicular to the wavefront	(B) parallel to the wavefront			
	(C) at 45° to the wavefront.	(D) at 90° to the wavefront.			
25.		convex lens, the refracted wavefront is			
	(A) spherical wavefront converging				
	(B) spherical wavefront converging				
	(C) plane wavefront moving toward				
	(D) spherical wavefront converging	at 41			
26.		plane mirror. The reflected wavefront is			
	(A) plane wavefront	infinity			
	(B) spherical wavefront diverging to(C) cylindrical wavefront	5 infinity			
	(D) spherical converging wavefront				
27.	source and observer is called	of a wave when there is a relative motion between			
	(A) Normal Shift	(B) Lateral shift			
	(C) <u>doppler effect</u>	(D) dispersion			
28.		equency v is moving with a speed V along the line			
	joining the observer and source, speed of light in vacuum)	apparent change in frequency Δv is given by (c-			
	$\Delta v = -V$	$\Delta v = -c$			
	$\frac{(A)}{v} - \frac{1}{c}$	$(B)\frac{1}{V} = \frac{1}{V}$			
	$\frac{(A)}{v} = \frac{\Delta v}{c}$ $(C) \frac{\Delta v}{v} = Vc$	(B) $\frac{\Delta v}{v} = \frac{-c}{V}$ (D) $\frac{\Delta v}{v} = -V + C$			
29.	Modification in the distribution of	flight anaray due to the superposition of two or			
49.	Modification in the distribution of light energy due to the superposition of two or more light waves from the coherent sources is known as				
	(A) Polarisation	(B) refraction			
	(C) Interference	(D) Diffraction			
30.	Two sources emitting light waves	s having same frequency or wavelength, having			
		vith zero or constant phase difference are called			
	(A) monochromatic source	(B) coherent sources			
	(C) Incoherent sources	(D) composite sources			
31.	During interreference				
	(A) there is a loss of energy				
	(B) there is a redistribution of energy				
	(C) there is an increment in energy l				
	(D) there is an increment in energy by a factor 2				

32.	If Io is the intensity of each coherent source of same amplitude, the intensities at the maxima and minima of interreference pattern are respectively					
	(A) Io and zero(C) 4Io and zero		(B) zero and Io(D) zero and 4Io			
			, ,			
33.		•	ent source of same am y on the screen due to ir	plitude, then the average		
	(A) Io	(B) 2Io	(C) zero	(D) 4Io		
34.			_	interference maxima on		
	n=0,1,2,3	ierence screen	is (\(\lambda\)-wavelength of	coherent sources and		
	$\frac{(A) n\lambda}{(A) n\lambda}$	(B) $(n+1)\lambda$	(C) $(n+1)\lambda/2$	(D) $(2n+1)\lambda/2$		
35.	Phase difference be the interference scr		_	interference maxima on		
	$(A) 2n\pi$	(B) $(n+1)\pi$	(C) $(n+1)\pi/2$	(D) $(2n+1)\pi/2$		
36.	Dath difference bet	woon the two	pohoront wayos forming	interference minima on		
30.				coherent sources and		
	n=0,1,2,3)	2010110	. 15 (17 11 m) 51 cmg/m	50H07-0H0 80H1008 WHILE		
	(A) n\u03b4	(B) $(n+1)\lambda$	(C) $(n+1)\lambda/2$	(D) $(2n+1)\lambda/2$		
37.	Phase difference be the interference scr			g interference minima on		
	(A) $2n\pi$	(B) $(2n+1)\pi$	(C) $(n+1)\pi/2$	(D) $(2n+1)\pi/2$		
20	If a is the amplitud	o of oak arout so	uness amplitude of the	regultant ways at the		
38.	maxima is	e of coherent so	ources, amplitude of the	resultant wave at the		
	(A) a	(B) 2a	(C) zero	(D) 4a		
20	T6 - !- 4b 1'4 J	C 1 4				
39.	minima is	e of conerent so	urces, amplitude of the	resultant wave at the		
	(A) a	(B) 2a	(C) zero	(D) 4a		
40.	` '	` '	conditions required for	` /		
	interreference is (n					
	(A) path difference = $n\lambda$ and phase difference = $2n\pi$					
	(B) path difference = $(2n+1)\lambda/2$ and phase difference = $(2n+1)\pi$ (C) path difference = $(n+\frac{1}{2})\lambda/2$ and phase difference = $(2n+1)\pi/2$					
	(C) path difference = (D) path difference =	'	•)π/2		
41.	` / 1			ed for the destructive		
,		Between the two coherent sources, conditions required for the destructive interreference is $(n=0,1,2,3,4,5)$				
	(A) path difference = $n\lambda$ and phase difference = $2n\pi$					
	(B) path difference = $(2n+1)\lambda/2$ and phase difference = $(2n+1)\pi$					
	•		phase difference = $(2n+1)$	$)\pi/2$		
	(D) path difference =	= $n\lambda/2$ and phase	e difference = $n\pi/2$			
42.	_	n of light is invo	olved in the colourful ap	pearance of soap		
	bubble?(A) photoelectric eff	ect	(B) diffraction			
	(C) interference	CCI	(D) polarisation			
			\ / 1			

43.	Which phenomenon of light is involved in the colourful appearance thin film of oil on the surface of water?						
	(A) photoelectric effect	(B) diffraction					
	(C) interference	(D) polarisation					
44.		The fringes formed due to superposition of coherent sources in Young's double slit experiment when the screen is kept at very large distances from the sources are in					
	(A) circles	(B) parabola					
	(C) ellipse	(D) straight lines					
45.	Distance between two successive by	right fringes is called					
	(A) Lateral Shift	(B) Normal Shift					
	(C) Fringe width	(D) slit width					
46.	Distance between two successive da	ark fringes is called					
	(A) Lateral Shift	(B) Normal Shift					
	(C) Fringe width	(D) slit width					
47.	Distance between dark fringe and	-					
	(A) fringe width	(B) half of fringe width					
	(C) double the fringe width	(D) one third of fringe width					
48.	Fringe width in Young's double sli (A) directly proportional to waveleng (B) inversely proportional to waveleng (C) directly proportional to square of (D) inversely proportional to square	gth of light ngth of light the wavelength of light					
49.	Fringe width in Young's double sli						
	(A) directly proportional to the distance between the coherent sources.(B) inversely proportional to the distance between the coherent sources						
		f the distance between the coherent sources					
		of the distance between the coherent sources					
50.	(B) inversely proportional to the perpscreen.(C) directly proportional to square of to screen.(D) inversely proportional to square	endicular distance from coherent sources to screen. Dendicular distance from coherent sources to f the perpendicular distance from coherent sources of perpendicular distance from coherent sources to					
51.	screen. As the distance between the cohere	ent sources in young's double slit experiment is					
- •	increased, fringe width						
	(A) increases	(B) decreases					
	(C) remains the same	(D) first increases and then decreases.					
52.		creen to the slits is in young's double slit					
	experiment is increased, fringe wid						
	(A) increases	(B) decreases					
	(C) remains the same	(D) first increases and then decreases.					

53.	Fringe width in Young's double slit experiment is not be affected when (A) wavelength of light is changed (B) Brightness of sources is changed						
	(C) distance from coherent sources (slits) to the screen is changed(D) distance between the coherent sources (slits) is changed						
54.	experiment?						
	(A) All bright fringes are equally bright						
	` '	(B) All dark fringes are equally dark(C) Brightness of fringes will be uniform and then suddenly decreases to zero.					
	(D) Distance betwee	-		•	secretages to hero.		
55.	Bending of light are	ound narrow ed	dges is c	alled			
	(A) refraction		` / L	arisation			
	(C) interference		(D) dif	<u>fraction</u>			
56.	Compact Disks app	eared coloured	d agains	t sunlight. It is d	lue to		
	(A) refraction of ligh		_	arisation of light			
	(C) interference of li		· / -	fraction of light			
57.	Spider web appeare	ed coloured ag	ainet eur	nlight It is due t	60		
57.	(A) refraction of ligh	_		arisation of light			
	(C) interference of li			fraction of light			
58.	condition for the fo		nima is	(n=1,2,3,4,5)	ingle slit of width 'a', the		
	$(A) a \sin\theta = n\lambda$, ,	$\sin\theta = (2n+1)\lambda$			
	(C) a $\sin\theta = (2n+1)\lambda$	/2	(D) a s:	$\sin\theta = (n + \frac{1}{2})\lambda/2$	2		
59.	When a light of way	velength λ diffr	racts at a	an angle θ at a s	ingle slit of width 'a', the		
	condition for the fo						
	(A) $a \sin\theta = n\lambda$		· ` ′	$\sin\theta = (2n+1)\lambda$			
	(C) $\underline{a} \sin\theta = (2n+1)\lambda$	<u>/2</u>	(D) a s	$\sin\theta = (n + \frac{1}{2})\lambda/2$	2		
60.		ght of wavelen	gth λ at	a single slit of v	vidth a, angular width of		
	central maxima is						
	(A) $\theta = \lambda/a$	(B) $\theta = 2\lambda/a$		(C) $\theta = \lambda/2a$	(D) θ =a λ		
61.	If 'D' is the distanc of of light, then, wi	_			creen, λ is the wavelength		
	(A) $x=\lambda D/a$	(B) $x=2\lambda D/a$	ai maxi	(C) $x=\lambda D/2a$	(D) x=Daλ		
	(11) X=70D/ U	$(D) R = 2RD/\alpha$		(C) A=ND/24	(D) K-Dun		
62.		increased, angu	ular wid	th of central ma	ximum of diffraction		
	pattern			(D) daamaaaa			
	(A) increases(C) remains the same	<u>.</u>		(B) decreases	es and then decreases		
63.	In a single slit diffra			(D) mst mereas	es and then decreases		
001	(A) All fringes are ed						
	(B) All fringes are of						
	(C) only central max	-	est and w	<u>videst</u>			
	(D) All fringes are o	_					

64. The limit of the ability of microscopes and telescopes to distinguish very close objects is called

(A) limit of resolution

(B) least distance of distinct vision

(C) far point

(D) threshold of vision

65. Reciprocal of limit of resolution is called

(A) magnifying power

(B) focal length

(C) optical power

(D) Resolving power

66. Limit of resolution $(\Delta\theta)$ of a telescope is given by $(\lambda$ -wavelength of light and aradius of the objective lens)

(A)
$$\Delta\theta = \frac{1.22\lambda}{3}$$

$$(\underline{B}) \Delta \theta = \frac{0.61\lambda}{a}$$

(C)
$$\Delta\theta = \frac{0.61a}{\lambda}$$

(D)
$$\Delta\theta = \frac{1.22 \text{ a}}{\lambda}$$

67. Resolving power (RP) of a telescope is given by (λ -wavelength of light and a-radius of the objective lens)

(A) RP =
$$\frac{1.22\lambda}{a}$$

(B) RP =
$$\frac{0.61\lambda}{a}$$

$$(C)$$
 RP = $\frac{a}{0.61 \, \lambda}$

(D) RP =
$$\frac{a}{1.22\lambda}$$

68. Resolving power of a telescope can be increased by

- (A) increasing the focal length of objective
- (B) increasing the focal length of eye piece
- (C) increasing the diameter of objective
- (D) increasing the diameter of eye piece

69. Very good telescopes and microscopes will have

- (A) high resolving power and high limit of resolution
- (B) less resolving power and less limit of resolution
- (C) less resolving power and high limit of resolution
- (D) high resolving power and less limit of resolution

70. The reciprocal of the minimum separation of two points seen as distinct through a microscope is called

- (A) Resolving power of the microscope
- (B) Limit of resolution of microscope
- (C) Magnifying power of microscope
- (D) Optical power of microscope

71. As the diameter of objective of a telescope is increased.

- (A) resolving power and limit of resolution will decrease
- (B) resolving power and limit of resolution will increase.
- (C) resolving power will increase and limit of resolution will decrease
- (D) resolving power will decrease and limit of resolution will increase

72. Limit of resolution $(\Delta\theta)$ of a microscope is given by $(\lambda$ -wavelength of light, θ -semi vertical angle of cone of rays entering to objective lens, n-refractive index of the medium between object and objective lens)

$$(A) \Delta \theta = \frac{1.22\lambda}{n \sin \theta}$$

$$\underline{\text{(B)}} \, \Delta \theta = \frac{0.61\lambda}{\text{n sin}\theta}$$

(C)
$$\Delta\theta = \frac{0.61 \text{ n}}{\lambda \sin\theta}$$

(D)
$$\Delta\theta = \frac{0.61 \text{ n}}{2 \lambda \sin\theta}$$

73.	Resolving power (RP) of a microscope is given by (λ -wavelength of light, θ -semi vertical angle of cone of rays entering to objective lens, n-refractive index of the medium between object and objective lens)					
	(A) RP = $\frac{1.22\lambda}{n \sin \theta}$	v	$\underline{\text{(B)}} \text{ RP} = \frac{0.61\lambda}{\text{n sin}\theta}$			
	$(C) RP = \frac{n \sin \theta}{0.61 \lambda}$		(D) RP == $\frac{2 \text{ n sin}}{0.61 \lambda}$	$\underline{\theta}$		
74.	(A) illuminating the(B) illuminating the(C) decreasing the	of a microscope can ne object with light of ne object with light of refractive index of th size of the eye piece.	higher wavelength lower wavelength	ject and objective lens.		
75.	microscope will (A) increase resolv	Filling an oil of higher refractive index between object and objective lens of a microscope will (A) increase resolving power and limit of resolution (B) decrease resolving power and limit of resolution				
	(C) increase resolv	ving power and decreating power and increase ving power and decrease ving power and increase ving power and	se limit of resolution			
76.	(A) the microscop(B) the microscop(C) the microscopand objective	es immersed in oil of es in which oil of high	lower refractive index higher refractive index ner refractive index fil			
77.			the slit at which the s en is exactly equal to	spreading of light due to the size of the slit is		
	(A) least distance(C) Lateral shift	of distinct vision	(B) Normal shift (D) Fresnel dista			
78.	Fresnel distance ((z) for light of wavel	ength λ diffracted th	rough a slit of width 'a'		
		$\underline{\text{(B)}} \ \mathbf{z} = \frac{a^2}{\lambda}$	(C) $z = \frac{\lambda^2}{a}$	(D) $z = \frac{\lambda}{a}$		
79.	$z(x,t) = a \sin(kx)$ (A) xy-plane	– ωt) equation repre (B) yz-plane	sents a wave polariso (C) xz-plane	ed in (D) any plane		
80.	Electromagnetic (A) longitudinal w		(B) transverse wa	<u>aves</u>		

81. If \vec{E} is the electric field vector and \vec{B} is magnetic field vector at an instant in an electromagnetic wave, then the direction of propagation of wave will be

(A) Along \vec{E}

(B) along \vec{B}

(B) Along $\overrightarrow{E} \times \overrightarrow{B}$

(C) mechanical waves

(D) perpendicular to $\overrightarrow{E} \times \overrightarrow{B}$

(D) one dimensional waves

82.	The phenomenon exhibited by light whi	The phenomenon exhibited by light which confirms its transverse nature is				
	(A) diffraction	(B) interference				
	(C) photoelectric effect	(D) polarisation				
83.	Polarisation property is shown only by					
	(A) transverse waves	(B) longitudinal waves				
	(C) Sound waves	(D) Ultrasonic waves				
84. Waves in which displacement is always perpendicular to the direction						
	the wave and vibrations are found in m	•				
	(A) unpolarised transverse waves	(B) polarised transverse waves				
	(C) unpolarised longitudinal waves	(D) polarised longitudinal waves				
85.	<u>-</u>	perpendicular to the direction of motion of				
	the wave and vibrations are confined to	~ .				
	(A) unpolarised transverse waves	(B) polarised transverse waves				
	(C) unpolarised longitudinal waves	(D) polarised longitudinal waves				
86.	Which wave among the following will sl	-				
	(A) Sound waves	(B) Ultrasonics				
	(C) Infrasonic	(D) Electromagnetic waves				
87.88.	When a unpolarised light is passed through a polaroid sheet (A) The electric field vectors along the direction of the aligned molecules get absorbed (B) The electric field vectors along the direction of the aligned molecules are allowed to pass through (C) The electric field vectors perpendicular to the direction of the aligned molecules are allowed to pass through (D) No electric field is absorbed. When two polaroid sheets are kept on each other with their pass axes perpendicular,					
	on the first is (A) Half the incident intensity	(B) one fourth of incident intensity				
	(C) zero	(D) one third of incident intensity				
89.	When two polaroid sheets are kept on e	ach other with their pass axes parallel, the				
	intensity of outcoming light from the second when unpolarised is incident on the first is					
	(B) Half the incident intensity	(B) one fourth of incident intensity				
	(C) zero	(D) one third of incident intensity				
90.	second one is turned with incident ligh	other. Light is incident on the first and the t as axis. Intensity of outcoming light from ximum twice during one full rotation. Now, (B) a polarised transverse wave (D) a polarised longitudinal wave				
91.		other. Light is incident on the first and the ight as axis. It is found that intensity of the rotation. Now, the incident light is (B) a polarised transverse wave (D) a polarised longitudinal wave				

92.	If I_0 is the intensity of unpolarised light incident on a polaroid sheet whose pass axis makes an angle of θ with the plane of vibrations of incident light, then according Malu's law intensity of emerging light is				
	Malu's law intensity of emerging light is				
	(A) $I = I_0 + \cos^2 \theta$	(B) $I=I_0 - \cos^2\theta$			
	$(C) I = I_0 \cos^2 \theta$	(D) $I=I_0 \cos \theta$			
93.	Which one of the following does not use	polaroid?			
	(A) Sunglasses to reduce the intensity of light				
	(B) window panes to reduce intensity of lig	ght			
	(C) 3D movie cameras				
	(D) Thin coating on reading lenses				
94.	Polarised light will not be produced by				
	(A) scattering	(B) reflection			
	(C) multiple refraction	(D) interference of coherent sources			
95.	When the angle of incidence is equal to a	ngle of polarisation			
<i>) .</i>	(A) reflected light is completely polarised	ingle of polarisation,			
	(B) reflected light is partially polarised				
	(C) refracted light is completely polarised.				
	(D) reflected and refracted rays are parallel	to each other			
96.	Reflected light is completely polarised when the angle of incidence is				
200	(A) equal to angle of refraction	(B) equal to Brewster's angle.			
	(C) equal to angle of deviation	(D) equal to 90°.			
	, , 1				
97.	At the polarising angle of incidence				
	(A) reflected and refracted rays are perpend	dicular to each other.			
	(B) reflected and refracted rays are parallel to each other				
	(C) refracted light is completely polarised.				
	(D) reflected light is partially polarised				
98.	If i _B is Brewster's angle and μ is the refra	active index of reflecting medium, then,			
	according to Brewster's law,				
	$(A) \tan i_B = \mu$	(B) $\tan \mu = i_B$			
	(C) $\tan \mu = 1/i_B$	(D) $\tan i_B = 1/\mu$			
99.	At the Brewster's angle of incidence, plane of vibration of reflected ray and plane				
	in which ray of light is incident are				
	(A) perpendicular to each other	(B) parallel to each other			
	(C) aligned at 45° to each other	(D) aligned at 60° to each other			
100.	Tangent of the polarising angle is equal (to the refractive index of medium which			
	reflects light. This is called				
	(A) Snell's law	(B) Malu's law			
	(C) Huygens principle	(D) Brewster's law			

11. Dual Nature of radiation and Matter

Harish Shastry -9480198001

			11011 0711 0710 711 9				
1.	Specific charge is defined as (A) Charge to velocity ratio (C) Charge to mass ratio	, ,	elocity to charge ratio lass to charge ratio				
		()	6 e				
2.	Specific charge of electron is	,					
	(A) 1.602x10 ⁻¹⁹ C kg ⁻¹ (C) 1.76x10 ⁻¹⁹ C kg ⁻¹	$\begin{array}{c} (B) \ 1.76 \times 10^1 \\ (D) \ 17.6 \times 10^1 \end{array}$	$\frac{^{1} \text{C kg}^{-1}}{^{1}}$				
	(C) $1.76 \times 10^{-19} \text{ C kg}^{-1}$	(D) 17.6×10^{1}	C kg-1				
3.	Specific charge of electron w	as experiment	ally determined by				
J.	(A) J.J. Thomson	(B) Rutherfor	•				
	(C) Heinrich Hertz	(D) Roentger					
		()					
4.	Photo electric effect was disc	covered by					
	(A) J.J. Thomson	(B) Rutherfor					
	(C) Heinrich Hertz	(D) Roentger	1				
5.	Experimental observations of	f nhoto electric	e effect were explained by				
<i>J</i> .	(A) J.J. Thomson	(B) Rutherfor	-				
	(C) Heinrich Hertz	(D) Albert Einstein					
	(C) Heinrich Hertz (D) Albert Einstein						
6.	Quantum theory of radiation	was proposed	by				
	(A) J.J. Thomson (B) Max Planck						
	(C) Heinrich Hertz	(D) Albert Ei	nstein				
7.		Minimum energy required to remove an electron from metal surface is called					
	(A) excitation energy	(B) ionization	~·				
	(C) work function	(D) Chemica	l energy				
8.	An electron is accelerated through a potential difference of one volt. The kinetic energ						
.	gained by it is equal to						
	(A) $1.6 \times 10^{-19} \text{eV}$	(B) 1J	(C) 1 eV	(D) 10eV			
	(12) 1101110	(2) 10	<u>(6/10+</u>	(2) 100 (
9.	1eV is equal to						
	$(A) 1.6x10^{-19} J$	(B) 1J	(C) 10J	(D) 100J			
10.	Emission of alastuans from the	a aumfaca of o	matal by ayanlying ananay	in the form of			
10.	Emission of electrons from the surface of a metal by supplying energy in the form of heat is called						
	(A) Photo electric emission		(B) field emission				
	(C) secondary emission		(D) thermionic emission				
	(C) secondary emission		(D) thermionic emission				
11.	Emission of electrons from the surface of a metal by supplying energy in the form of						
	light is called		, 11, 6				
	(A) Photo electric emission	_	(B) field emission				
	(C) secondary emission		(D) thermionic emission				
12.	Emission of alastrons from the	na curfoco of o	matal by subjecting it to h	igh magnatic or			
14.	Emission of electrons from the electric field is called	he surface of a	metal by subjecting it to in	ign magnetic or			
	(A) Photo electric emission		(B) field emission				
	(C) secondary emission		(D) thermionic emission				
	(- / J 		, ,				

13.	Work function of metal depends on				
	(A) frequency of incident radiation	(B) wavelength of incident radiation			
	(B) type of photosensitive surface	(D) all the factors mentioned here			
14.	Name the phenomenon associated with light	t which can be explained only by quantum			
	theory of radiation.				
	(A) Interreference (B) Diffraction	(C) Polarization (D) Photoelectric			
	effect				
15.	Threshold frequency is defined as				
	(A) the maximum frequency of incident rad	iation below which photoelectrons are			
	emitted from the surface of a photosens	<u>*</u>			
	(B) the minimum frequency of incident radi				
	emitted from the surface of a photosensi	-			
	(C) the frequency of incident radiation at wh				
	surface of a photosensitive material with				
	(D) the frequency of incident radiation at wh				
	surface of a photosensitive material.	nen photoelections are not enlitted from the			
16.	Above threshold frequency maximum kineti	c energy of emitted photo electrons during			
10.	photo electric emission depends on	e chergy of clinical photo electrons during			
	(A) frequency of incident radiation	(B) intensity of incident radiation			
	(C) Speed of incident radiation	(D) none of these			
17.	Photoelectric current during photo electric e				
1/.	(A) frequency of incident radiation	(B) intensity of incident radiation			
	(C) Speed of incident radiation	(D) none of these			
18.		, ,			
10.	i i				
	(A) the energy of incident photons increases(B) the frequency of incident light increases				
	(C) wavelength of incident light increases				
	(D) the intensity of incident light increases				
19.		onning potential is			
1).	9. With reference to photoelectric emission, stopping potential is (A) the minimum positive potential of anode for which photo electric current becomes				
	zero.	o for which photo electric current occomes			
		e for which photo electric current becomes			
	(B) the minimum negative potential of anode for which photo electric current becomes zero.				
	(C) the minimum positive potential of anode	for which photo electric current becomes			
	maximum.	of or which photo electric current occomes			
	(D) the minimum negative potential of anod	e for which photo electric current becomes			
	maximum	e for which photo electric current occomes			
20.	Stopping potential in photoelectric emission	depends on			
20.	(A) frequency of incident radiation	(B) intensity of incident radiation			
	(C) Speed of incident radiation	(D) none of these			
21.	Above threshold frequency, kinetic energy of				
21.	(A) frequency of incident radiation	(B) wavelength of incident radiation			
	(C) Energy of incident radiation	(D) intensity of incident radiation			
22.	Einstein's photoelectric equation is	(D) Intensity of incident fadiation			
<i>LL</i> .	$K_{max} \rightarrow maximum \text{ kinetic energy of photoel}$	actrons h Dlanck's constant			
	$v \rightarrow$ frequency of incident radiation, $\phi_0 \rightarrow$ wor				
	$(A) \underline{K_{\text{max}} = h\nu - \phi_{\text{o}}}$	(B) $K_{\text{max}} = h\nu + \phi_0$			
	(C) $hv = K_{max} \div \phi_0$	(C) $\phi_0 = K_{max} + h\nu$			
23.	Einstein's photoelectric equation was experi	mentally verified by			
	(A) Heinrich Hertz	(B) Max Planck			
	(C) J J Thomson	(D) Millikan			
		* /			

24.	Einstein's photoelectric equation is based on (A) law of conservation of momentum (B) law of conservation of charge (C) Law of conservation of energy (D) Law of conservation of angular momentum					
25.	Rest mass of (A) one	photon is (<u>B) zero</u>	(C) infinite	(D) 9.1x10 ⁻³¹ kg		
26.	Charge of pho (A) positive	oton is (B) negative	(C) neutral	(D) 1.6x10 ⁻¹⁹ C		
27.	(A) Electric f	oe deflected by ield ravitational field	(B) Magnetic field (D) None of these			
28.	Speed of photo (A) zero (C) 3x10 ⁸ ms ⁻¹	ton in vacuum is	(B) unity (D) maximum for m	ninimum frequency.		
29.	Energy possessed by a photon is (A) <u>Directly proportional to its frequency</u> (B) Inversely proportional to its frequency (C) Independent of wavelength					
30.	 (D) Directly proportional to wavelength Energy possessed by a photon is (A) Directly proportional to its wavelength (B) Inversely proportional to its frequency (C) Independent of wavelength (D) Inversely proportional to wavelength 					
31.	(A) Davisson	periment which proved -Germer experiment and Lenard's experim	(B) Rutherfo	vave principle ord alpha particle experiment 's coil and magnet experiment		
32.	Scientists who experimentally confirmed the wave nature of moving particle are (A) Heinrich hertz, Davisson and Germer (B) Davisson, Germer and de-Broglie (C) Davission, Germer and G.P.Thomson (D) Davisson, Germer and J.J.Thomson					
33.	The de-Broglie wavelength of a moving particle is (A) inversely proportional to the momentum of the particle (B) inversely proportional to the velocity of the particle (C) inversely proportional to the mass of the particle (D) All the statements are correct.					
34.	If E is the kin (A) inversely (B) directly p (C) directly p	netic energy of a movir proportional to E proportional to E proportional to square in proportional to square	root of E	glie wavelength is		
35.	Energy of pho (A) E=h/v	oton having frequency (B) E=hv	ν is given by (h is Pla (C) E=ν/h	nck's constant) (D) E=h+v		

12. Atoms

		12. Ato	ms		
	Harish Shastry -9480198001				
1.	Who proposed plum	pudding model of an a	atom?	-	
	(A) J.J Thomson	(B) Rutherford	(C) Neil Bohr	(D) Pauli	
2.	Planetary model of the	he atom was proposed	bv		
	(A) J.J Thomson	(B) Rutherford	(C) Neil Bohr	(D) Pauli	
	` '	 	· /		
3.	(A) the model couldn	dding model of atom wa't explain neutral char	ge of an atom.		
		ot built on the basis qu		scattering experiment	
	• /	planation for the reason	•	f nositive charge in a	
	sphere.	nunution for the reason	rior the distribution of	positive charge in a	
	Spiloto.				
4.	In α-particle scattering	ng experiment, it is for	and that		
	(A) Most of the α -pa	rticles are scattered at	small angles and very	few deflected	
	backwards.				
	- · ·	rticles deflected backw		_	
		α-particles scattered a		ected back.	
	(D) All the α -particle	es were absorbed by go	old foil.		
5.	In Rutherford's α-pa	rticle scattering experi	ment, alpha particles v	were bombarded	
	towards gold foil bed	cause			
		nuch heavier than α-pa			
	(B) Gold is highly malleable and can be drawn into very thin sheet.				
	(C) None of the above reasons are correct.				
	(D) Both A and B are	e correct.			
6.	In Rutherford's α-particle scattering experiment, distance of closest approach is				
0.	(A) 10^{-14} m (B) 10^{-10} m (C) 10^{-6} m (D) 10^{-3} m				
	(11) 10 III	(B) 10 III	(C) 10 III	(D) 10 III	
7.	Inside the nucleus of				
	* *	ass of an atom is conce	entrated.		
	(B) Entire positive ch				
	(C) Nuclear force exi	ists			
	(D) All are correct				
8.	•		velocity direction of al	pha particle and center	
	of the nucleus is call	ed	(D) =		
	(A) nuclear radius		(B) Energy gap		
	(C) impact parameter	<u>r</u>	(D) mean free path		
9.	In Rutherford's α-pa	rticle scattering experi	ment, when impact pa	rameter is zero	
	9. In Rutherford's α-particle scattering experiment, when impact parameter is zero (A) Angle of scattering is zero (B) Angle of scattering is 180°				
	(B) Angle of scattering is equal to 90° (C) alpha particle enters the gold nucleus.				
10.	According to alegain	al electro magnetic the	ory nath of an alcotro	n orbit around the	
10.	nucleus will be	ai ciccuo magnetic the	ory, pain or an electro.	n ordit ardunu the	
	(A) circular	(B) elliptical	(C) spiral	(D) straight line	
	(/ 	(-)P	7 - 1 - F	(-)	

11.	According to Rutherford's model, nucleus of an atom is (A) positively charged (B) negatively charged (C) electrically neutral				
	(D) positively or nega	itively charged depend	ling on atomic number		
12.	According to Rutherformucleus is provided by	-	al force for the electror	n moving round the	
	(A) nuclear force of at	traction between elect	tron and nucleus positively charged nuc	leus and negatively	
	· · · ·		us and lighter electron ic moment and electron	n magnetic moment.	
13.	When an electron revolves round the nucleus, (A) Its electrostatic potential energy is zero and kinetic energy is positive (B) Its electrostatic potential energy is negative and kinetic energy is positive. (C) Its electrostatic potential energy is negative and kinetic energy is zero. (D) Its electrostatic potential energy and kinetic energy, both are zero.				
14.	Rutherford's nuclear atom model failed to explain (A) the distribution of positive and negative charge inside the nucleus. (B) Size of the nucleus (C) Size of the atom (D) Stability of the atom				
15.	According to Bohr's process is equal to (A) equal to an integration (B) equal to an integration (C) equal to an integration (D) equal to an integration (E)	al multiple of $h/2\pi$ al multiple of $2\pi/h$ al multiple of $h2\pi$	mentum of an electron	in its orbit around a	
16.	electron is proportion		the radius of the n th sta	ationary orbit of	
	$(A)\frac{1}{n}$	(B) n	$(C)\frac{1}{n^2}$	(D) n ²	
17.	According to Bohr's l orbits are in the ratio	nydrogen atom model,	the radius of first, seco	ond and third electron	
	(A)1:2:3	(B) 1:4:9	(C) 3:2:1	(D)9:4:1	
18.	According to Bohr's l	nydrogen atom model,	as long as electron mo	oves in a stationary	
	(A) Its radius will shri		(B) Electron loses en		
	(B) It emits radiation	of certain frequency.	(C) Electron does not	lose energy	
19.	According to Bohr's l (A) speed of electrons (C) their speed does n	s increases	as the electrons move (B) speed of electron (D) electrons may inc	s decreases	
20.		ectron in a stationary notation $(B)v = \frac{2 \in_0 nh}{e^2}$	orbit is given by $(C)v = \frac{\pi me^2}{n^2h^2 \epsilon_0^2}$	$(D)\frac{n^2h^2\in_0^2}{\pi me^2}$	

21.	Radius of the first orb (A) 0.529	it of hydrogen atom is (B) 5.29	(in angstroms) (C) 52.9	(D) 0.0529	
22.	nucleus is				
	(A) always positive		(B) always negative	•	
	(C) independent of qu	antum number n	(D) independent of ve	elocity	
23.	Energy of an electron	in the ground state of	hydrogen atom is		
	(A) -13.6eV	(B) -3.4eV	(C) +13.6eV	(D) 13.6J	
24.	Minimum energy requ	ired to remove an elec	ctron from the ground	state of an atom is	
	(A) ionization energy		(B) Excitation energy	,	
	(C) work function		(D) Binding energy		
25.	The ionization potenti	al of hydrogen atom is			
-0.	(A)13.6V	(B)8.24V	(C)10.36V	(D)14.24V	
26.	According to Bohr's h	ydrogen atom model,	as the electrons move	to outer orbits, its	
	(A) decreases (B) increases				
	(C) remains the same	(D) will become	ne more negative.		
27.	According to Bohr's horbit is proportional to		the total energy of elec	etron in n th stationary	
	$(A)\frac{1}{n}$	(B) n	$(C) \frac{1}{n^2}$	(D) n^2	
28.	The series of hydrogen	n spectrum lying in vis	_		
	(A) Lyman series		(B) Balmer series		
	(C) Paschen series		(D) Bracket series		
29.	Lyman series of hydro	gen spectrum lies in			
	(A) visible region		frared region		
	(C) ultraviolet region	(D) Pa	rtly in visible and part	ly in infra-red region	
30.	Energy required to exceeded	cite an electron from le	ower energy state to hi	gher energy state is	
	(A) ionization energy		(B) Excitation energy	, -	
	(C) work function		(D) Binding energy		
31.	Value of Rydberg con	stant for hydrogen is			
	(A) $1.097 \times 10^{10} \mathrm{m}^{-1}$		(B) $10.97 \times 10^{10} \mathrm{m}^{-1}$		
	(C) $\underline{1.097 \times 10^7 \text{ m}^{-1}}$		(D) $1.097 \times 10^{-7} \text{ m}^{-1}$		
32.	SI unit of wave number	er is			
	$(A)\underline{m}^{-1}$	(B) m	(C) Hz	(D) seconds	
33.	If n ₁ and n ₂ represent t respectively, then for	-	of lower and higher en	ergy states	
	(A) $n_1=1$ and $n_2=3$	ine mot mic of Lyman	(B) $n_1=1$ and $n_2=2$		
	(C) $n_1=1$ and $n_2=3$		(D) $n_1=1$ and $n_2=2$ (D) $n_1=1$ and $n_2=5$		
	· ·		•		

- 34. If n₁ and n₂ represent the quantum numbers of lower and higher energy states respectively, then for the second line of Balmer series,
 - (A) $n_1=2$ and $n_2=3$

(B) $n_1=2$ and $n_2=\infty$

(C) $n_1=2$ and $n_2=4$

- (D) $n_1=2$ and $n_2=5$
- 35. If n_1 and n_2 represent the quantum numbers of lower and higher energy states respectively, then for the last line of Paschen series,
 - (A) $n_1=3$ and $n_2=5$

(B) $n_1=3$ and $n_2=\infty$

(C) $n_1=3$ and $n_2=4$

- (D) $n_1=3$ and $n_2=6$
- 36. If n_1 and n_2 represent the quantum numbers of lower and higher energy states respectively, then for the first line of Brackett series,
 - (A) $n_1=4$ and $n_2=5$

(B) $n_1=4$ and $n_2=\infty$

(C) $n_1=4$ and $n_2=6$

- (D) $n_1=4$ and $n_2=7$
- Different lines of Pfund series of hydrogen spectrum will be obtained when electron 37. from higher orbits undergo transition to the lower orbit of quantum number,
 - (A) $n_1 = 5$

(B) $n_1 = 7$

(C) $n_1 = 6$

- (D) $n_1 = 8$
- The formula for wave number for Paschen series is $(\lambda \rightarrow \text{wavelength}, R-Rydberg)$ 38. constant for hydrogen, n=6,7,8,9.....)
 - (A) $\frac{1}{\lambda} = R\left(\frac{1}{4^2} \frac{1}{n^2}\right)$
- $(B) \quad \frac{1}{\lambda} = R\left(\frac{1}{5^2} \frac{1}{n^2}\right)$ $(D) \quad \frac{1}{\lambda} = R\left(\frac{1}{2^2} \frac{1}{n^2}\right)$
- (C) $\frac{1}{\lambda} = R\left(\frac{1}{3^2} \frac{1}{n^2}\right)$
- Bohr's hydrogen atom model fails in explaining 39.
 - (A) stability of the atom
 - (B) different series in hydrogen spectrum
 - (C) ionization energy of hydrogen atom
 - (D) intensity of different spectral lines of hydrogen atom
- Bohr's hydrogen atom model successfully explained 40.
 - (A) the intensity of different spectral lines
 - (B) fine structure of spectral lines.
 - (C) The spectrum of atoms having more number of electrons
 - (D) wavelength of different series of hydrogen spectrum

13. Nuclei and Radioactivity

Harish Shastry -9480198001

1.	Strongest	force in	nature is	
----	-----------	----------	-----------	--

- (a) Electromagnetic force
- (b) weak nuclear force
- (c) strong nuclear force
- (d) gravitational force

2. Atomic number of a nucleus represents

- (a) number of protons
- (b) number of protons and neutrons
- (c) number of neutrons
- (d) number of nucleons

3. Mass number of a nucleus represents

- (a) number of protons
- (b) number of protons and electrons
- (c) number of neutrons
- (d) number of nucleons

4. Difference between mass number and atomic number of a nucleus represents

- (a) number of protons
- (b) number of protons and neutrons
- (c) number of neutrons
- (d) number of nucleons

5. If Z represents atomic number and A represents mass number of a nucleus, then charge of the nucleus is (e=magnitude of charge of electron)

- (a) + Ae
- (b) + (A-Z)e
- (c) + (A+Z)e
- (d) + Ze

6. Volume of a nucleus is directly proportional to

(a) Atomic number

- (b) atomic mass
- (c) radius of nucleus
- (d) density of nucleus

7. If A is the mass number, radius of a nucleus is

- (a) directly proportional to $A^{1/3}$
- (b) directly proportional to A³
- (a) inversely proportional to A^{1/3}
- (b) inversely proportional to A³

8. Radius of a nucleus of mass number A is given by $(R_0$ is a constant)

(a)
$$R = R_0 A^{1/3}$$

(ab)
$$R = R_0 A^{1/2}$$

(a)
$$R = R_o + A^{1/3}$$

(a)
$$R = Ro - A^{1/3}$$

9. If Z is atomic number, A is mass number, m_p is mass of proton, m_n is mass of a neutron, then mass defect (Δm) is

(a)
$$\Delta m = Zm_n + (A-Z)m_p$$

(b)
$$\Delta m = Zm_p + (A+Z)m_n$$

$$(c) \Delta m = Zm_p + (A-Z)m_n$$

(d)
$$\Delta m = Zm_n + (A+Z)m_p$$

10. Density of a nucleus is

- (a) directly proportional to mass number
- (b) inversely proportional to mass number
- (c) independent of mass number
- (d) directly proportional to atomic number

11. Mass defect is

- (a) Uncertainty in determining the mass of a nucleus
- (b) The difference in mass of a nucleus and its constituents.
- (c) Sum of the mass of constituents and mass of nucleus
- (d) Difference between mass of nucleus and mass of electrons

12.	Density of a nucleus (a) 2.29x10 ¹⁷ kgm ⁻³ (c) 2.29x10 ⁷ kgm ⁻³	is about		29x10 ¹⁰ kgm ⁻³ 29x10 ³ kgm ⁻³		
13.	Atoms of nuclei having same number of protons but different mass number are called					
	(a) isotones	(b) isotopes		(c) isobars	(d) mirror nuclei	
14.	Atoms of two nuclei (a) isotones	having same in (b) isotopes	numbei	r of neutrons are call (c) isobars	led (d) mirror nuclei	
15.	Atoms of two nucle interchanged are cal	_	e atomi	ic mass but proton	and neutron number	
	(a) isotones	(b) isotopes		(c) isobars	(d) mirror nuclei	
16.	Atoms of two nucle called	i having same	e atomi	c mass but differen	t atomic number are	
	(a) isotones	(b) isotopes		(c) isobars	(d) mirror nuclei	
17.	Among the following	g atoms, select		_		
	(a) $^{35}_{17}$ Cl and $^{37}_{17}$ Cl			Ge and ⁷⁶ ₃₄ Se		
	(c) ⁷ ₄ Be and ⁸ ₃ Li		$(d)_{6}^{14}$	C and ¹⁴ ₇ N		
18.	Among the following (a) $^{39}_{19}$ K and $^{37}_{17}$ Cl	g atoms, select		tones. Ge and ⁷⁶ ₃₄ Se		
	(c) $^{7}_{4}$ Be and $^{8}_{3}$ Li		(d) $^{14}_{6}$	C and ¹⁴ ₇ N		
19.	Among the following (a) $^{39}_{19}$ K and $^{37}_{17}$ Cl	g atoms, select		rror nuclei. Ge and ⁷⁶ ₃₄ Se		
	$\underline{\text{(c)}}_{4}^{7}\text{Be and }_{3}^{7}\text{Li}$		(d) $^{14}_{6}$	C and ¹⁴ ₇ N		
20.	Among the following (a) $^{35}_{17}$ Cl and $^{37}_{17}$ Cl				(d) ${}^{14}_{6}$ C and ${}^{14}_{7}$ N	
21.	Charge of a nucleus (a) is positive (c) is neutral	·		negative pends on atomic num	ber	
22.	1 atomic mass unit i (a) 9.1x10 ⁻³¹ kg		<u>kg</u>	(c) 9.1x10 ⁻²⁷ kg	(d) 1.66x10 ⁻³¹ kg	
23.	1 atomic mass unit i	s equal to				
	(a) $\frac{1}{12}$ th of the mass of	of one C ¹² atom	l <u>.</u>	(b) $\frac{1}{14}$ th of the mass	of one C ¹⁴ atom.	
	(c) $\frac{1}{12}$ th of the mass of	of one C ¹⁶ atom	ı .	(d) $\frac{1}{16}$ of the mass	of one C^{16} atom.	

24. Nuclear binding energy is the (a) energy equivalent of mass defect (b) energy required to form a nucleus starting from individual nucleons (c) energy required to break a nucleus into constituent nucleons (d) all the above answers are correct 25. Energy equivalent of 1 atomic mass unit is (a) 931.5 eV (b) 1MeV (c) 931.5 MeV (d) 1 eV 26. Atomic mass can be determined using (a) Beam balance (b) Spring balance (c) Mass spectrograph (d) Spectrometer 27. Neutron was discovered by (a) James Chadwick (b) J J Thomson (c) Rutherford (d) Niels Bohr 28. Select the wrong statement regarding to neutrons (a) neutrons are electrically neutral (b) two neutrons inside the nucleus experience nuclear force. (c) two neutrons inside the nucleus experience electrostatic force of repulsion (d) Neutron is stable inside the nucleus and a free neutron outside the nucleus is unstable. 29. According to Einstein, energy equivalent of mass m is (c is speed of light in vacuum) (a) E=mc/2(b) E=2mc (c) $E=mc^2$ (d) $E=m^2c$ Energy equivalent of 1kg mass is 30. (b) $9x10^{16}J$ (a) 931.5 eV (c) 931.5 MeV (d) 9J 31. The energy equivalent of mass defect of a nucleus is (a) Kinetic energy (b) potential energy (c) binding energy (d) Pressure energy 32. According to binding energy curve, which one of the following elements is less stable? (a) elements with less mass number

- (b) elements with highest binding per nucleon
- (c) elements with mass number between 30 and 170
- (d) all elements

33. Binding energy per nucleon is the

- (a) the ratio of the binding energy of a nucleus to the number of the nucleons.
- (b) the ratio of the binding energy of a nucleus to the atomic number
- (c) the ratio of the binding energy of a nucleus to the number of the neutrons
- (d) the ratio of the binding energy of a nucleus to the number of the electrons

34. Select the true statement

- (a) Nuclei having highest binding energy are most stable
- (b) Nuclei having least binding energy are most stable
- (c) Nuclei having highest binding energy per nucleon are most stable
- (d) Nuclei having least binding energy per nucleon are most stable.

35. Which of the following pair of particles cannot experience nuclear force between them?

(a) Neutron and proton

(b) Proton and proton

(c) electron and proton

(d) neutron and neutron

36. Select the statement which is not true.

- (a) nuclear force is short range and saturated.
- (b) nuclear force can exist between electrically neutral neutrons.
- (c) nuclear force is charge independent, strongest force.
- (d) nuclear force varies as the square of the distance between nucleons.

37. The force that acts like centripetal force for the electron revolving round the nucleus is

(a) Nuclear force

(b) Electrostatic force

(c) gravitational force

(d) electromagnetic force

38. Radioactivity was discovered by

(a) Marie Curie

(b) Henry Becquerel

(c) James Chadwick

(d) J J Thomson

39. Which is not found during radioactive decay?

(a) emission of alpha particles

(b) emission of β particles

(c) emission of X-ray

(d) emission of γ -rays

40. Alpha-particles found during radioactive decay process

(a) are positively charged

(b) are neutral particles

(c) are negatively charged

(d) contain 2 protons and one neutron

41. Alpha-particles found during radioactive decay process

(a) contain 2 protons and one neutron

(b) are neutral particles

(c) are negatively charged

(d) contain 2 protons and 2 neutrons

42. β particles found during radioactive decay process

(a) are positively charged

(b) are neutral particles

(c) are negatively charged

(d) are similar to He nuclei

43. β^+ particles found during radioactive decay process

(a) are positively charged

(b) are neutral particles

(c) are negatively charged

(d) are similar to He nuclei

44. γ -decay of radioactivity involves

(a) positively charged particles

(b) negatively charged particles

(c) electromagnetic radiations

(d) particles similar to He nuclei

45. After alpha decay of radioactivity, (as compared to parent nucleus)

- (a) Mass number of daughter nucleus decreases by 2 and atomic number decreases by 4
- (b) Mass number of daughter nucleus decreases by 4 and atomic number decreases by 2
- (c) Both mass number and atomic number of daughter nucleus decrease by 2
- (d) Both mass number and atomic number of daughter nucleus decrease by 4

46. After β - decay of radioactivity, (as compared to parent nucleus)

- (a) Atomic number of daughter nucleus increases by 1 and mass number remains the same.
- (b) mass number of daughter nucleus decreases by 1 and atomic number remains the same.
- (c) Both mass number and atomic number of daughter nucleus increases by 1
- (d) Both mass number and atomic number of daughter nucleus decreases by 1

47. After β^+ decay of radioactivity, (as compared to parent nucleus)

- (a) Atomic number of daughter nucleus increases by 1 and mass number remains the same.
- (b) Atomic number of daughter nucleus decreases by 1 and mass number remains the same.
- (c) Both mass number and atomic number of daughter nucleus increases by 1
- (d) Both mass number and atomic number of daughter nucleus decreases by 1

48. During γ -decay of radioactivity, (as compared to parent nucleus)

- (a) Mass number of daughter nucleus decreases by 2 and atomic number decreases by 4
- (b) Mass number of daughter nucleus decreases by 4 and atomic number decreases by 2
- (c) Both mass number and atomic number of daughter nucleus decrease by 2
- (d) There will be no change in the mass number and atomic number of daughter nuclei

49. In beta-minus decay of radioactivity,

- (a) a neutron transforms into a proton within the nucleus
- (b) a proton transforms into neutron inside the nucleus
- (c) electrons outside the nucleus are emitted
- (d) neutron is emitted from the nucleus

50. In β^+ decay of radioactivity,

- (a) a neutron transforms into a proton within the nucleus
- (b) a proton transforms into neutron inside the nucleus
- (c) electrons outside the nucleus are emitted
- (d) neutron is emitted from the nucleus

51. Name the particle X in the reaction, $n \rightarrow p + e^- + X$

(a) neutrino (b) positron (c) electron (d) antineutrino

52. Name the particle X in the reaction, $p \rightarrow n + e^+ + X$

(a) neutrino (b) positron (c) electron (d) antineutrino

53. Which one of the following particles is emitted along with electron during β decay?

- (a) antineutrino (\bar{v})
- (b) neutrino (v)

(c) positron

(d) Helium nucleus

54. The charge of neutrino is

- (a) $+1.6 \times 10^{-19}$ C (b) -1.6×10^{-19} C (c) $\times 10^{-19}$ C
 - (c) zero (d) $+3.2 \times 10^{-19}$ C

55. The charge of antineutrino is

- (a) $+1.6 \times 10^{-19}$ C (b) -1.6×10^{-19} C
- (c) zero
- (d) $+3.2x10^{-19}C$

 57. The time in which number of radioactive nuclei disintegrate to half of originals called (a) Mean life (c) Active life (d) Quarter life (e) Active life (f) Half life (g) Active life (h) Half life (g) Mean life = Half-life (h) Mean life < Half life (g) Mean life > Half-life (h) Half-life = (Mean life)/2 (h) Half-life = (Mean life)/2 (h) Half-life = (Mean life)/2 (h) T = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 T (c) τ = λ/0.693 (d) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (d) τ = 0.693 λ (e) τ = 1/λ (b) τ = 0.693 λ (f) τ = 0.693 λ (g) τ = 0.693	Rate of disintegration of a radioactive sample is (a) inversely proportional to the number of atoms in the sample at the instant (b) directly proportional to the number of atoms in the sample at the instant (c) independent of the number of atoms in the sample at the instant (d) directly proportional to the square of number of atoms in the sample at the instant				
 (a) Mean life (c) Active life (d) Quarter life 58. The time in which number of radioactive nuclei disintegrate to e⁻¹ times the oxalue is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 59. With reference to radioactivity, select the correct relation (a) Mean life = Half-life (b) Mean life < Half life (c) Mean life > Half-life (d) Half-life = (Mean life)/2 60. Relation between mean life (τ) and half-life (T) is (a) T = 0.693/τ (b) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (e) τ = λ/0.693 (f) τ = 0.693 λ (g) τ = 0.693/λ (g) τ = 0.693/λ (g) τ = 0.693 λ (g) τ = 1/λ (g) τ = 0.693 λ (g) τ = 1/λ (g) Half life (g) Active life (h) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to	riginal value				
(c) Active life (d) Quarter life 58. The time in which number of radioactive nuclei disintegrate to e ⁻¹ times the content of the content					
value is called (a) Mean life (c) Active life (d) Quarter life 59. With reference to radioactivity, select the correct relation (a) Mean life = Half-life (b) Mean life < Half life (c) Mean life > Half-life (d) Half-life = (Mean life)/2 60. Relation between mean life (τ) and half-life (T) is (a) $T=0.693/\tau$ (b) $\tau=0.693$ T (c) $\tau=T/0.693$ (d) $\tau=0.693$ + T 61. Relation between Half-life (T) and decay constant λ is (a) $T=0.693/\lambda$ (b) $\tau=0.693$ λ (c) $\tau=\lambda/0.693$ (d) $\tau=0.693$ λ (d) $\tau=0.693$ λ (e) $\tau=0.693/\lambda$ (b) $\tau=0.693$ λ (c) $\tau=1/\lambda$ (d) $\tau=0.693$ λ (d) $\tau=0.693$ λ (e) $\tau=1/\lambda$ (d) $\tau=0.693$ λ (f) $\tau=0.693$ λ (g) $\tau=0.693/\lambda$ (h) $\tau=0.693/\lambda$ (h) $\tau=0.693/\lambda$ (h) $\tau=0.693/\lambda$ (h) $\tau=0.693/\lambda$ (h) $\tau=0.693/\lambda$ (h) $\tau=0.693/\lambda$ (c) $\tau=1/\lambda$ (d) $\tau=0.693/\lambda$ (e) $\tau=0.693/\lambda$ (f) $\tau=0.693/\lambda$ (h) $\tau=0.693/\lambda$					
 (a) Mean life (b) Half life (c) Active life (d) Quarter life (e) Active life (e) Quarter life (e) Mean life = Half-life (b) Mean life < Half life (c) Mean life > Half-life (d) Half-life = (Mean life)/2 (e) Mean life > Half-life (f) Half-life = (Mean life)/2 (g) T=0.693/τ (h) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T (e) τ = 0.693/λ (f) τ = 0.693 λ (g) τ = 0.693/λ (g) τ = 0.693 λ (g) τ = 0.693/λ (g) τ = 0.693 λ (g) τ = 0.693/λ (g) τ = 0.693 λ (g) τ = 0.693/λ (g) τ = 0.693 λ (g) τ = 0.693 λ (g) τ = 0.693 λ (g) τ = 1/λ (g) μean life (g) Half life (g) Mean life (g) Half life (g) Active life (h) Half life (c) Active life (d) Quarter life SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 1 Ci is equal to	s the original				
 (c) Active life (d) Quarter life 59. With reference to radioactivity, select the correct relation (a) Mean life = Half-life (b) Mean life < Half life (c) Mean life > Half-life (d) Half-life = (Mean life)/2 60. Relation between mean life (τ) and half-life (T) is (a) T=0.693/τ (b) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T 61. Relation between Half-life (T) and decay constant λ is (a) T=0.693/λ (b) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (c) τ = 0.693/λ (d) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 λ 62. Relation between mean life (τ) and decay constant λ is (a) τ=0.693/λ (b) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to					
 (a) Mean life = Half-life (b) Mean life < Half life (c) Mean life > Half-life (d) Half-life = (Mean life)/2 60. Relation between mean life (τ) and half-life (T) is (a) T=0.693/τ (b) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T 61. Relation between Half-life (T) and decay constant λ is (a) T=0.693/λ (b) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (e) τ = 1/λ (d) τ = 0.693 λ (e) τ = 1/λ (f) τ = 0.693 λ (g) π = 0.693/λ (g) π = 0.693/λ (g) π = 0.693/λ (h) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to					
 (a) Mean life = Half-life (b) Mean life < Half life (c) Mean life > Half-life (d) Half-life = (Mean life)/2 60. Relation between mean life (τ) and half-life (T) is (a) T=0.693/τ (b) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T 61. Relation between Half-life (T) and decay constant λ is (a) T=0.693/λ (b) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (e) τ = 1/λ (d) τ = 0.693 λ (e) τ = 1/λ (f) τ = 0.693 λ (g) π = 0.693/λ (g) π = 0.693/λ (g) π = 0.693/λ (h) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to					
(c) Mean life > Half-life (d) Half-life = (Mean life)/2 60. Relation between mean life (τ) and half-life (T) is (a) T=0.693/ τ (b) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T 61. Relation between Half-life (T) and decay constant λ is (a) T=0.693/ λ (b) τ = 0.693 λ (c) τ = λ /0.693 (d) τ = 0.693 λ (c) τ = λ /0.693 (d) τ = 0.693 λ (c) τ = λ /0.693 (d) τ = 0.693 λ (c) τ = $1/\lambda$ (d) τ = 0.693 λ (c) τ = $1/\lambda$ (d) τ = 0.693 λ (d) τ = 0.693 λ (e) τ = $1/\lambda$ (d) τ = 0.693 λ (f) τ = 0.693 τ (e) τ = $1/\lambda$ (e) Half life (f) Active life (e) Active life (e) Active life (f) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/second 65. 1 Ci is equal to					
 60. Relation between mean life (τ) and half-life (T) is (a) T=0.693/τ (b) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T 61. Relation between Half-life (T) and decay constant λ is (a) T=0.693/λ (b) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ (e) τ = 0.693/λ (f) τ = 0.693 λ (g) τ = 1/λ (h) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to					
 (a) T=0.693/τ (c) τ = T/0.693 (d) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T 61. Relation between Half-life (T) and decay constant λ is (a) T=0.693/λ (b) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ 62. Relation between mean life (τ) and decay constant λ is (a) τ=0.693/λ (b) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10⁷ Bq (b) 3.7x10⁸ Bq (c) 3.7x10⁹ Bq (d) 3.7x10¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier ris called (a) Nuclear fission (b) nuclear fusion 					
 (a) T=0.693/τ (b) τ = 0.693 T (c) τ = T/0.693 (d) τ = 0.693 + T 61. Relation between Half-life (T) and decay constant λ is (a) T=0.693/λ (b) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 λ 62. Relation between mean life (τ) and decay constant λ is (a) τ=0.693/λ (b) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10⁷ Bq (b) 3.7x10⁸ Bq (c) 3.7x10⁹ Bq (d) 3.7x10¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier ris called (a) Nuclear fission (b) nuclear fusion					
 (c) τ = T/0.693 (d) τ = 0.693 + T Relation between Half-life (T) and decay constant λ is (a) T=0.693/λ (b) τ = 0.693 λ (c) τ = λ/0.693 (d) τ = 0.693 + λ Relation between mean life (τ) and decay constant λ is (a) τ=0.693/λ (b) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 1 Ci is equal to					
 (a) T=0.693/λ (c) τ = 0.693 λ (d) τ = 0.693 λ (d) τ = 0.693 + λ 62. Relation between mean life (τ) and decay constant λ is (a) τ=0.693/λ (b) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to					
 (a) τ=0.693/λ (b) τ = 0.693 λ (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10⁷ Bq (b) 3.7x10⁸ Bq (c) 3.7x10⁹ Bq (d) 3.7x10¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion 					
 (c) τ = 1/λ (d) τ = 0.693 + λ 63. Reciprocal of decay constant is called (a) Mean life (b) Half life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10⁷ Bq (b) 3.7x10⁸ Bq (c) 3.7x10⁹ Bq (d) 3.7x10¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion 					
63. Reciprocal of decay constant is called (a) Mean life (c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10 ⁷ Bq (b) 3.7x10 ⁸ Bq (c) 3.7x10 ⁹ Bq (d) 3.7x10 ¹⁰ In the process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion					
(a) Mean life (c) Active life (b) Half life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10 ⁷ Bq (b) 3.7x10 ⁸ Bq (c) 3.7x10 ⁹ Bq (d) 3.7x10 ¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion					
(a) Mean life (c) Active life (b) Half life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10 ⁷ Bq (b) 3.7x10 ⁸ Bq (c) 3.7x10 ⁹ Bq (d) 3.7x10 ¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion					
(c) Active life (d) Quarter life 64. SI unit of activity of a radioactive sample is (a) becquerel (b) curie (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10 ⁷ Bq (b) 3.7x10 ⁸ Bq (c) 3.7x10 ⁹ Bq (d) 3.7x10 ¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier riscalled (a) Nuclear fission (b) nuclear fusion					
(a) becquerel (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10 ⁷ Bq (b) 3.7x10 ⁸ Bq (c) 3.7x10 ⁹ Bq (d) 3.7x10 ¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion					
(a) becquerel (c) electron volt (d) joules/ second 65. 1 Ci is equal to decays per second (a) 3.7x10 ⁷ Bq (b) 3.7x10 ⁸ Bq (c) 3.7x10 ⁹ Bq (d) 3.7x10 ¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion					
 (c) electron volt (d) joules/ second 1 Ci is equal to decays per second (a) 3.7x10⁷ Bq (b) 3.7x10⁸ Bq (c) 3.7x10⁹ Bq (d) 3.7x10¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion 					
 65. 1 Ci is equal to decays per second (a) 3.7x10⁷ Bq (b) 3.7x10⁸ Bq (c) 3.7x10⁹ Bq (d) 3.7x10¹⁰ Bq 66. The process in which two lighter nuclei combine together to form a heavier is called (a) Nuclear fission (b) nuclear fusion 					
 (a) 3.7x10⁷ Bq (b) 3.7x10⁸ Bq (c) 3.7x10⁹ Bq (d) 3.7x10¹⁰ Bq (e) 3.7x10¹⁰ Bq (f) 3.7x10¹⁰ Bq (g) 3.7x10¹⁰ Bq (h) a heavier is called (a) Nuclear fission (b) nuclear fusion 					
is called (a) Nuclear fission (b) <u>nuclear fusion</u>	к10 ¹⁰ Вq				
(a) Nuclear fission (b) <u>nuclear fusion</u>	vier nucleus				
(c) Radioactivity (d) photoelectric effect					
67. During nuclear fission process					
(a) Energy is converted into mass (b) mass is converted into energy					
(c) Energy is not released. (d) Weak nucleus splits into heavy nuclei	_ · · · · - · · · · · · · · · · · · · · 				

68. In nuclear power reactors

- (a) Controlled fusion chain reaction is undertaken
- (b) controlled fission chain reaction is undertaken
- (c) uncontrolled fission chain reaction is undertaken
- (d) uncontrolled fusion chain reaction is undertaken

69. In nuclear bomb

- (a) Controlled fusion chain reaction is carried out
- (b) controlled fission chain reaction is carried out
- (c) uncontrolled fission chain reaction is carried out
- (d) uncontrolled fusion chain reaction is carried out

70. Nuclear reaction occurring stars is

(a) Fission reaction

(b) fusion reaction

(c) Chemical reaction

(d) Combustion

71. For the nuclear reaction occurring in a nuclear reactor, multiplication factor 'K' is

(a) greater than one

(b) less than one

(c) equal to one

(d) negative

72. Which one of the following is also called thermonuclear reaction?

(a) Fission reaction

(b) fusion reaction

(c) Radioactivity

(d) β^- decay

73. In a nuclear reactor, moderators are used to

(a) stop the leakage of neutron

(b) slow down the fast neutrons

(c) absorb the neutrons

(d) increase the kinetic energy of neutrons

74. In a nuclear reactor, control rods are used to

(a) stop the leakage of neutron

(b) slow down the fast neutrons

(c) absorb the neutrons

(d) increase the kinetic energy of neutrons

14. Semiconductors

Harish Shastry -9480198001

1.	Which one of the followin (a) Cu (b) A				
2.	The energy band above the (a) Conduction band (c) Semiconductor band	ne valence band is called (b) Forbidden (d) Insulator b	Band		
3.	Pentavalent dopants have (a) 3 (b) 4		(d) 6		
4.	The diode used as a voltage (a) Zener diode (c) Photo diode	(b) Lig	ght Emitting Diode lar cell		
5.	Tetravalent among the fo	_	lium (d) Aluminium	1	
6.	In an intrinsic semicondu (a) greater than number of (c) equal to number of hole	holes (b) less	ser than number of holes ore than number of atoms		
7.	In a material conduction (a) semi-conductor (c) metal	(b) ins	(d) doped semiconductor		
8.	A p-type semiconductor is (b) Positively charged (c) electrically neutral	(b) neg	gatively charged intrinsic semiconductor		
9.	A n-type semiconductor is (c) Positively charged (c) electrically neutral	(b) neg	gatively charged intrinsic semiconductor		
10.	when an electron in a sem	_		and	
11.	Trivalent dopant atom is (a) Donor impurity atom (c) intrinsic atom 	(b) acc	ceptor impurity atom rinsic atom		
12.	An intrinsic semiconductor extrinsic semiconductor is (a) n-type semiconductor (c) p-n junction	s (b) <u>p-t</u>	impurity atoms. Resulting ype semiconductor pletion region		
13.	Semiconductor doped wit (a) <u>n- type</u> (b) p- type	h pentavalent impurity (c) intrinsic	v is a semiconductor (d) p-n junction		

14.		As soon as p-n junction is formed, migration of electrons from n to p side and				
	holes from p to n side p					
	(a) diffusion current	(b) conduction current				
	(c) drift current	(d) displacement current				
15.	Diffusion current is pro	duced by the diffusion of				
	(a) majority carriers acro	(a) majority carriers across the junction				
	(b) minority carriers across the junction					
	(c) protons across the jur	nction				
	(d) ions across the junction	on				
16.	Drift current is produce	ed by the motion of				
	(a) majority carriers acro	· · · · · · · · · · · · · · · · · · ·				
	(b) minority carriers acro	3				
	(c) protons across the junction					
	(d) ions across the junction					
	(1)					
17.	During forward bias of a p-n junction diode					
	_	connected to positive and n-side of the diode is connected to				
	negative of the battery					
	(b) n-side of the diode is connected to positive and p-side of the diode is connected to					
	negative of the battery					
	(c) both p and n sides of the diode are connected to positive of the battery.					
	(d) both p and sides of the diode are connected to negative of the battery					
18.	During forward bias of	a p-n junction diode, width of the depletion region				
	(a) <u>decreases</u>	(b) increases				
	(c) remains the same	(d) may increase or decrease depending on type of dopant				
19.	During reverse bias of a p-n junction diode, width of the depletion region					
	(a) decreases	(b) <u>increases</u>				
	(c) remains the same	(d) may increase or decrease depending on type of dopant				
20.	During reverse bias very small current flowing through a diode is due to the flow of					
	(a) majority carriers	(b) minority charge carriers				
	(c) protons	(d) ions				

During forward bias, resistance offered by a p-n junction

During reverse bias, resistance offered by a p-n junction

(c) will be increasing as forward bias voltage increases

(c) will be decreasing as reverse bias voltage increases

21.

22.

(a) is very less (b) is very high

(d) is infinity

(a) is very less(b) is very high

(d) is zero

23.	The forward voltage of the diode after which forward current increases sharply is called				
	(a) reverse voltage	(b) break down voltage			
	(c) <u>cut in voltage</u>	(d) applied voltage			
24.	Rectifier is a circuit which (a) converts alternating current to (b) converts direct current to alter (c) increases or decrease the ampl (d) which changes the frequency of	nating current itude of ac			
25.	The device which can convert ac (a) Transformer (c) capacitor	c to dc is (b) p-n junction diode (d) resistor			
26.	The diode which can provide a the current at reverse bias is (a) Photo diode	constant output voltage irrespective of changes in			
	(c) Zener diode	(b) Light emitting diode(d) Solar cell			
27.	The diode which can convert op	tical signal into electrical signal during reverse			
	bias is				
	(a) Photo diode	(b) Light emitting diode			
	(c) Zener diode	(d) Solar cell			
28.	The diode which can emit light during forward bis is				
	(a) Photo diode	(b) Light emitting diode			
	(c) Zener diode	(d) Solar cell			
29.	A p-n junction which can generate emf when solar radiation falls on it is called				
	(a) Photo diode	(b) Light emitting diode			
	(c) Zener diode	(d) Solar cell			
30.	The principle of a solar cell is				
	(a) Thermionic effect	(b) Photo voltaic effect			
	(c) Field effect	(d) Chemical effect			
31.	When a solar cell is in open circuit, potential difference across it is called				
	(a) break down voltage	(b) cut in voltage			
	(c) open circuit voltage	(d) short circuit current			
32.	When the terminals of a solar cell are connected, current flowing through it is called				
	(a) break down voltage	(b) cut in voltage			
	(c) open circuit voltage	(d) short circuit current			
33.	Following symbol represents	A Dutout Y			
	(a) AND gate	(b) OR gate			
	(c) NOR gate	(d) NAND gate			

34.	Following symbol re	epresents A B		Outout Y		
	(a) AND gate (c) NOR gate		(b) OR (d) NA	gate ND gate		
35.	Following symbol re	epresents A	-	Output		
	(a) AND gate (c) NOR gate		(b) OR (d) NO	gate T gate		
36.	If A and B are input A and B represent c (a) A=0, B=1 and Y= (c) A=1, B=1 and Y=	orrect output Y	Y? (b) A=	ch one of the 1 1, B=0 and Y= 0, B=0 and Y=	:0	ng combinations of
37.	If A and B are the two (a) $\underline{Y = A + B}$	wo inputs of the	e OR ga	ate, then it out (c) $Y = \overline{A + B}$	-	represented as $(d) Y = \overline{AB}$
38.	When both the input	ts (A and B) of (b) 1	AND g	gate is 1, the or (c) 2	utput is	(d) 3
39.	Universal gate amor (a) AND	ng the following (b) NOT	g is	(c) OR		(d) <u>NAND</u>
40.	The basic gate with (a) NOT gate	one output whi	ich is co	omplement of (c) OR gate	one inp	out is (d) NOR gate
41.	The diode used as a (b) Zener diode (c) Photo diode	voltage regulat	tor is	(b) Light Emi	tting Die	ode
42.	Two inputs of a AN (a) 0	D gate are 1 an (b) 1	d 0. W l	hat is the outp (c) 2	out?	(d) 3
43.	Diode whose reverse junction is (a) Zener diode_ (c) Photo diode	e bias current i	ncrease	es with amoun (b) Light Emi (d) Solar cell		
44.	p-n junction which (a) Zener diode_(c) Photo diode	develops emf w	hen sol	ar light falls o (b) Light Emi (d) Solar cell		
45.	For an OR Gate, who (a) A=1, B=1. (b)	nich set of input A=0, B=1.		d B give outp u =1, B= 0.		0, B =0