

Introduction

Thank you for considering PCA Electronics Inc. for your Delay Line, Transformer and Filter Applications. Our goal is to provide you with quality components, on time, and at a competitive price. We have been manufacturing magnetic components since 1950. PCA's design engineering team is available to assist you in selecting or designing a Delay Line or Transformer to fit your circuit requirements.

Our manufacturing facilities include five plants located in California (Main office), Hong Kong, Macau and Manila with total manufacturing capabilities of over 200,000 components per week.

Here's what makes PCA unique among magnetic component manufacturers:

- Component design and engineering capabilities
- Computerized 100% testing of all components
- MIL-I-45208 Quality Assurance program
- Just-In-Time product delivery procedures
- In-house packaging design & production facilities
- Transfer-molding facilities at all plants
- Custom Thick-Film design & production capabilities
- Laser trimming and scribing capabilities
- Environmental Testing Capabilities
- Defense Logisics & Aerospace Supplier under FSCM 97722

We would like to be your primary source for all your magnetic components. Our engineering staff welcomes the opportunity to work with you to develop new designs and provide samples of your new component designs. Our sales office staff is dedicated to customer needs and will make it easy for you to deal with PCA.

Communications

Telephone: (818) 892-0761

Facsimile: (818) 894-5791

Telex (RCA Global Communications): 282 892

Modem 300, 1200 & Fastlink: (818) 891-3644

Table Of Contents

Delay Lines

Transformers

Family	P/N	Page	Family P/N	Page
5 Tap TTL: Standard DIP Low Power DIP High Speed DIP SMD J-Lead	EP8200 EP8270 EP8700 EP9100	2 3 4 5	LAN: Ethernet EP9531 & 4 Starlan EPA045 Token Ring EP9842	7 37 38 39
SMD Gull Wing Low Profile DIP Mini-DIP	EP9115 EP9300 EP9458	6 7 8	Pulse: Stand-Off Type EP101	40
MIL 883 DIL SIP Economy DIL 16 Pin DIP SMD 14 Pin DIP	EP9590 EP9677 EP9810 EPA054 EPA073	9 10 11 12 13	Current Sense: Current Sense EP151686	42
5 Tap CMOS/ECL:			<u>Inductors</u>	
CMOS ECL	EP9604 EP9445	14 15	Power: Toroidal Power EP9585	43
Single Output TTL:			RF:	
DIP Mini-DIP Mini-SIL	EP9430 EP9460 EP9748	16 17 18	Subminiature RF EP4852	44
10 Top TTL:			<u>Index</u>	45
10 Tap TTL: DIP MIL 883 DIL	EP8301 EP9749	19 20		
Other Active: 3 Bit Programmable TTL Square Wave Generator Triple Output TTL 3 Bit Programmable ECL Quad Output TTL Pulse Width Generator	EP8076 EP8250 EP9206 EP9450 EP9734 EP9981	21 22 23 24 25 26		
Passive: 14 Pin DIP 14 Pin DIP 14 Pin SIL 8 Pin SIL 7 Pin SIL 24 Pin DIP 28 SMD J-Lead 28 SMD Gull Wing Variable Delay Line Mini-SIP	EP198XX EP6400 EP6700 EP123XXX EP120XXX EPA059,60,6 EP9130 EP9160 EPA087 EP9910	27 28 29 30 31 1 32 33 34 35 36		

14 Pin DIP 5 Tap TTL Compatible Active Delay Lines

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5, 10, 15, 20	25	EP8200	80, 160, 240, 320	400	EP8208
6, 12, 18, 24	30	EP8213	84, 168, 252, 336	420	EP8218
7, 14, 21, 28	35	EP8214	88, 176, 264, 352	440	EP8222
8, 16, 24, 32	40	EP8215	90, 180, 270, 360	450	EP8209
9, 18, 27, 36	45	EP8216	94, 188, 282, 376	470	EP8223
10, 20, 30, 40	50	EP8201	100, 200, 300, 400	500	EP8210
12, 24, 36, 48	60	EP8211	110, 220, 330, 440	550	EP8230
15, 30, 45, 60	75	EP8217	120, 240, 360, 480	600	EP8224
20, 40, 60, 80	100	EP8202	130, 260, 390, 520	650	EP8231
25, 50, 75, 100	125	EP8219	140, 280, 420, 560	700	EP8225
30, 60, 90, 120	150	EP8203	150, 300, 450, 600	750	EP8229
35, 70, 105, 140	175	EP8220	160, 320, 480, 640	800	EP8226
40, 80, 120, 160	200	EP8204	170, 340, 510, 680	850	EP8232
45, 90, 135, 180	225	EP8221	180, 360, 540, 720	900	EP8227
50, 100, 150, 200	250	EP8205	190, 380, 570, 760	950	EP8233
60, 120, 180, 240	300	EP8206	200, 400, 600, 800	1000	EP8228
70, 140, 210, 280	350	EP8207			

Delay times referenced from input to leading edges

DC E	lectrical Characteristic Parameter		Min	Max	Unit
VOH	High-Level Output Voltage	V _{CC} = min. V _{II} = max. I _{OH} = max	2.7		V
VOL	Low-Level Output Voltage	V _{CC} = min. V _{IH} = min. I _{OI} = max		0.5	v
VIK	Input Clamp Voltage	V _{CC} = min. I _I = II _K		-1.2	V
hH	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μΑ
		$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA
IIL	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA
los	Short Circuit Output Current	$V_{CC} = max. V_{OUT} = 0.$ (One output at a time)	-40	-100	mA
Іссн	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN		75	mA
CCL	Low-Level Supply Current	$V_{CC} = \text{max. } V_{IN} = 0$		75	mA
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS
		Td > 500 nS		5	nS
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTI	LOA
NL	Fanout Low-Level Output	$V_{CC} = max. V_{OL} = 0.5V$		10 TTI	LOAI

1	mmended ating Conditions	Min	Max	Unit
Vcc	Supply Voltage	4.75	5.25	V
V _{IH}	High-Level Input Voltage Low-Level Input Voltage	2.0	0.8	V
l ik	Input Clamp Current		-18	mA
ЮН	High-Level Output Current		-1.0	mA
OL PW*	Low-Level Output Current Pulse Width of Total Delay	40	20	mA %
l d*	Duty Cycle	40	40	%
TA	Operating Free-Air Temperature	0	+70	°C

^{*}These two values are inter-dependent.

Inpu	Pulse Test Conditions @ 25° C		Unit
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
701	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts
P8200 1186			

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791 ELECTRONICS INC. RCA Global 282 892

14 Pin DIP 5 Tap Low Power TTL Compatible Active Delay Lines

TAP DELAYS	TOTAL DELAYS	PART	TAP DELAYS	TOTAL DELAYS	PART
±5% or 2 nS	±5% or 2 nS	NUMBER	±5% or 2 nS	±5% or 2 nS	NUMBER
10, 20, 30, 40 11, 22, 33, 44 12, 24, 36, 48 13, 26, 39, 52 14, 28, 42, 56 15, 30, 45, 60 16, 32, 48, 64 17, 34, 51, 68 18, 36, 54, 72 19, 38, 57, 76 20, 40, 60, 80 25, 50, 75, 100	50 55 60 65 70 75 80 85 90 95 100 125	EP8270 EP8271 EP8272 EP8273 EP8274 EP8275 EP8276 EP8277 EP8278 EP8279 EP8280 EP8281	30, 60, 90, 120 35, 70, 105, 140 40, 80, 120, 160 45, 90, 135, 180 50, 100, 150, 200 55, 110, 165, 220 60, 120, 180, 240 70, 140, 210, 280 80, 160, 240, 320 90, 180, 270, 360 100, 200, 300, 400	150 175 200 225 250 275 300 350 400 450 500	EP8282 EP8283 EP8284 EP8285 EP8286 EP8287 EP8288 EP8289 EP8290 EP8290

Delay times referenced from input to leading edges

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
VOH	High-Level Output Voltage	VCC = min. VIL = max. IOH = max	2.7		V	
VOL	Low-Level Output Voltage	VCC = min. VIH = min. IOI = max		0.5	V	
VIK	Input Clamp Voltage	VCC = min. II = IIK		-1.5	V	
IH.	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		20	μA	
""		V _{CC} = max. V _{IN} = 5.25V	j	0.1	mA	
I _{IL}	Low-Level Input Current	V _{CC} = max. V _{IN} = 0.5V		-0.36	mA	
los	Short Circuit Output Current		-5	-42	mA	
00	·	(One output at a time)		1	1	
Іссн	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN	l	30	mA	
CCL	Low-Level Supply Current	V _{CC} = max. V _{IN} = 0		30	mA	
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		8	nS	
1,0	·	Td > 500 nS	1	8	nS	
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTI	LOAD	
NĽ	Fanout Low-Level Output	V _{CC} = max. V _{OL} = 0.5V		10 TTI	LOAD	

	mmended ating Conditions	Min	Max	Unit
VCC VILL OL	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current Low-Level Output Current Pulse Width of Total Delay	4.75 2.0	5.25 0.8 -18 -0.4 8	V V MA MA MA
d" T _A	Duty Cycle Operating Free-Air Temperature	0	40 +70	% °C

^{*}These two values are inter-dependent.

Inpu	Input Pulse Test Conditions			
EIN	Pulse Input Voltage	3.2	Volts	
PW	Pulse Width % of Total Delay	110	%	
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS	
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz	
1111	Pulse Repetition Rate @ Td > 500 nS	500	KHz	
Vcc	Supply Voltage	5.0	Volts	

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

14 Pin DIP 5 Tap TTL Compatible High Speed Active Delay Lines

TAP DELAYS	TOTAL DELAYS	PART	TAP DELAYS	TOTAL DELAYS	PART
±5% or 2 nS	±5% or 2 nS	NUMBER	±5% or 2 nS	±5% or 2 nS	NUMBER
5, 10, 15, 20 6, 12, 18, 24 7, 14, 21, 28 8, 16, 24, 32 9, 18, 27, 36 10, 20, 30, 40 12, 24, 36, 48 15, 30, 45, 60 20, 40, 60, 80 25, 50, 75, 100 30, 60, 90, 120 35, 70, 105, 140 40, 80, 120, 160 45, 90, 135, 180 50, 100, 150, 200 60, 120, 180, 240 70, 140, 210, 280	25 30 35 40 45 50 60 75 100 125 150 175 200 225 250 300 350	EP8700 EP8713 EP8714 EP8715 EP8716 EP8701 EP8711 EP8717 EP8702 EP8719 EP8703 EP8720 EP8720 EP8704 EP8721 EP8705 EP8706 EP8707	80, 160, 240, 320 84, 168, 252, 336 88, 176, 264, 352 90, 180, 270, 360 94, 188, 282, 376 100, 200, 300, 400 110, 220, 330, 440 120, 240, 360, 480 130, 260, 390, 520 140, 280, 420, 560 150, 300, 450, 600 160, 320, 480, 640 170, 340, 510, 680 180, 360, 540, 720 190, 380, 570, 760 200, 400, 600, 800	400 420 440 450 470 500 550 600 650 700 750 800 850 900 950 1000	EP8708 EP8718 EP8722 EP8709 EP8723 EP8710 EP8730 EP8724 EP8731 EP8725 EP8729 EP8727 EP8732 EP8732

Delay times referenced from input to leading and trailing edges

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
Vон	High-Level Output Voltage	V _{CC} = min. V _{II} = max. I _{OH} = max	2.7		V	
VOL	Low-Level Output Voltage	V _{CC} = min. V _{IH} = min. I _{OI} = max		0.5	V	
VIK	Input Clamp Voltage	V _{CC} = min. I _I = II _K		-1.2	V	
liH,	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μA	
		$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA	
IL	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA	
los	Short Circuit Output Current	$V_{CC} = max. V_{OUT} = 0.$	-40	-100	mA	
		(One output at a time)				
ССН	High-Level Supply Current	$V_{CC} = max. V_{IN} = OPEN$		75	mA	
CCL	Low-Level Supply Current	$V_{CC} = max. V_{IN} = 0$		75	mA	
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS	
		Td > 500 nS		5	nS	
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTL	LOAD	
NL	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$	-	10 TTL	LOAD	

	mmended ating Conditions	Min	Max	Unit
Vcc	Supply Voltage	4.75	5.25	٧
VIH	High-Level Input Voltage Low-Level Input Voltage	2.0	0.8	V
l lik	Input Clamp Current		-18	mA
IOH	High-Level Output Current		-1.0	mA
	Low-Level Output Current		20	mA
OL PW*	Pulse Width of Total Delay	40	40	%
	Duty Cycle	0	40 +70	% °C
TA	Operating Free-Air Temperature	0	+/0	-0

Input Pulse Test Conditions @ 25° C				
E _{IN}	Pulse Input Voltage	3.2	Volts	
PW	Pulse Width % of Total Delay	110	%	
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS	
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz	
	Pulse Repetition Rate @ Td > 500 nS	500	KHz	
Vcc	Supply Voltage	5.0	Volts	

28 Pin 5 Tap TTL Compatible J-Lead SMD Active Delay Lines

TAP DELAYS	TOTAL DELAYS	PART	TAP DELAYS	TOTAL DELAYS	PART
±5% or 2 nS	±5% or 2 nS	NUMBER	±5% or 2 nS	±5% or 2 nS	NUMBER
5, 10, 15, 20 6, 12, 18, 24 7, 14, 21, 28 8, 16, 24, 32 9, 18, 27, 36 10, 20, 30, 40 12, 24, 36, 48 15, 30, 45, 60	25 30 35 40 45 50 60 75	EP9100 EP9101 EP9102 EP9103 EP9104 EP9105 EP9106 EP9107	20, 40, 60, 80 25, 50, 75, 100 30, 60, 90, 120 35, 70, 105, 140 40, 80, 120, 160 45, 90, 135, 180 50, 100, 150, 200	100 125 150 175 200 225 250	EP9108 EP9109 EP9110 EP9111 EP9112 EP9113 EP9114

Delay times referenced from input to leading edges

DC E	DC Electrical Characteristics Parameter Test Conditions Min Max Unit					
VOH VOL VIK IIH IIL IOS	High-Level Output Voltage Low-Level Output Voltage Input Clamp Voltage High-Level Input Current Low-Level Input Current Short Circuit Output Current	$\begin{split} &V_{CC} = \text{min. } V_{ L} = \text{max. } I_{OH} = \text{max} \\ &V_{CC} = \text{min. } V_{ H} = \text{min. } I_{OL} = \text{max} \\ &V_{CC} = \text{min. } I_{ } = II_{K} \\ &V_{CC} = \text{max. } V_{ N} = 2.7V \\ &V_{CC} = \text{max. } V_{ N} = 5.25V \\ &V_{CC} = \text{max. } V_{ N} = 0.5V \\ &V_{CC} = \text{max. } V_{OUT} = 0. \end{split}$		0.5 -1.2 50 1.0 -2 -100	V V V μA mA mA	
ICCH ICCL TRO NH NL	High-Level Supply Current Low-Level Supply Current Output Rise Time Fanout High-Level Output Fanout Low-Level Output	(One output at a time) V _{CC} = max. V _{IN} = OPEN V _{CC} = max. V _{IN} = 0 Td ≤ 500 nS (0.75 to 2.4 Volts) Td > 500 nS V _{CC} = max. V _{OH} = 2.7V V _{CC} = max. V _{OL} = 0.5V			mA mA nS nS LOAE	

	mmended ating Conditions	Min	Max	Unit
Vcc	Supply Voltage	4.75	5.25	V
VIH	High-Level Input Voltage	2.0		٧
VIL	Low-Level Input Voltage		0.8	٧
Ικ	Input Clamp Current	1	-18	mΑ
lOH	High-Level Output Current		-1.0	mA
	Low-Level Output Current		20	mA
lOL Pw*	Pulse Width of Total Delay	40		%
ď*	Duty Cycle		40	%
TA	Operating Free-Air Temperature	0	+70	°C

^{*}These two values are inter-dependent.

Input	Input Pulse Test Conditions @ 25° C				
EIN	Pulse Input Voltage	3.2	Volts		
PW	Pulse Width % of Total Delay	110	%		
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS		
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz		
	Pulse Repetition Rate @ Td > 500 nS	500	KHz		
Vcc	Supply Voltage	5.0	Volts		
9100 118					

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

28 Pin 5 Tap TTL Compatible Gull-Wing SMD Active Delay Lines

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5, 10, 15, 20	25	EP9115	20, 40, 60, 80	100	EP9123
6, 12, 18, 24	30	EP9116	25, 50, 75, 100	125	EP9124
7, 14, 21, 28	35	EP9117	30, 60, 90, 120	150	EP9125
8, 16, 24, 32	40	EP9118	35, 70, 105, 140	175	EP9126
9, 18, 27, 36	45	EP9119	40, 80, 120, 160	200	EP9127
10, 20, 30, 40	50	EP9120	45, 90, 135, 180	225	EP9128
12, 24, 36, 48	60	EP9121	50, 100, 150, 200	250	EP9129
15, 30, 45, 60	75	EP9122	1 22, 123, 103, 233	-	

Delay times referenced from input to leading edges

DC E	DC Electrical Characteristics						
	Parameter	Test Conditions	Min	Max	Unit		
VOH	High-Level Output Voltage	V _{CC} = min. V _{IL} = max. I _{OH} = max	2.7		v		
VOL	Low-Level Output Voltage	$V_{CC} = min. V_{IH} = min. I_{OL} = max$		0.5	V		
VIK	Input Clamp Voltage	$V_{CC} = min. I_I = II_K$		-1.2	V		
I III	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μA		
1 " 1	-	$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA		
1 46	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA		
los	Short Circuit Output Current	$V_{CC} = \text{max. } V_{OLIT} = 0.$	-40	-100	mA		
		(One output at a time)					
ССН	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN		75	mA		
CCL	Low-Level Supply Current	$V_{CC} = \text{max. } V_{IN} = 0$		75	mA		
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS		
"		Td > 500 nS `		5	nS		
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTL	LOAD		
NĽ	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$		10 TTL	LOAD		

	Recommended Operating Conditions Min Max Ur						
Vcc	Supply Voltage	4.75	5.25	V			
VIH	High-Level Input Voltage	2.0		٧			
V _{IL}	Low-Level Input Voltage	1	0.8	٧			
١ĸ	Input Clamp Current		-18	mA			
lон	High-Level Output Current		-1.0	mA			
	Low-Level Output Current		20	mΑ			
Pw*	Pulse Width of Total Delay	40		%			
^l OL PW* d*	Duty Cycle		40	%			
T_A	Operating Free-Air Temperature	0	+70	°C			

^{*}These two values are inter-dependent.

Inpu	Input Pulse Test Conditions @ 25° C				
EIN	Pulse Input Voltage	3.2	Volts		
PW	Pulse Width % of Total Delay	110	%		
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS		
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz		
, , , ,	Pulse Repetition Rate @ Td > 500 nS	500	KHz		
Vcc	Supply Voltage	5.0	Volts		

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791 RCA Global 282 892

14 Pin Low Profile DIP 5 Tap TTL Compatible Active Delay Lines

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5, 10, 15, 20	25	EP9300	80, 160, 240, 320	400	EP9308
6, 12, 18, 24	30	EP9313	84, 168, 252, 336	420	EP9318
7, 14, 21, 28	35	EP9314	88, 176, 264, 352	440	EP9322
8, 16, 24, 32	40	EP9315	90, 180, 270, 360	450	EP9309
9, 18, 27, 36	45	EP9316	94, 188, 282, 376	470	EP9323
10, 20, 30, 40	50	EP9301	100, 200, 300, 400	500	EP9310
12, 24, 36, 48	60	EP9311	110, 220, 330, 440	550	EP9330
15, 30, 45, 60	75	EP9317	120, 240, 360, 480	600	EP9324
20, 40, 60, 80	100	EP9302	130, 260, 390, 520	650	EP9331
25, 50, 75, 100	125	EP9319	140, 280, 420, 560	700	EP9325
30, 60, 90, 120	150	EP9303	150, 300, 450, 600	750	EP9329
35, 70, 105, 140	175	EP9320	160, 320, 480, 640	800	EP9326
40, 80, 120, 160	200	EP9304	170, 340, 510, 680	850	EP9332
45, 90, 135, 180	225	EP9321	180, 360, 540, 720	900	EP9327
50, 100, 150, 200	250	EP9305	190, 380, 570, 760	950	EP9333
60, 120, 180, 240	300	EP9306	200, 400, 600, 800	1000	EP9328
70, 140, 210, 280	350	EP9307			

Delay times referenced from input to leading and trailing edges

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
VOH	High-Level Output Voltage	V _{CC} = min. V _{II} = max. I _{OH} = max	2.7		V	
VOL	Low-Level Output Voltage	VCC = min. VIH = min. IOL = max		0.5	V	
VIK	Input Clamp Voltage	V _{CC} = min. I _I = II _K		-1.2	V	
Ін І	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μA	
		$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA	
IL I	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA	
los	Short Circuit Output Current	$V_{CC} = max. V_{OUT} = 0.$	-40	-100	mA	
		(One output at a time)			ł	
ССН	High-Level Supply Current	$V_{CC} = max. V_{IN} = OPEN$		75	mA	
CCL	Low-Level Supply Current	$V_{CC} = \text{max. } V_{IN} = 0$		75	mA	
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)	1	4	nS	
		Td > 500 nS		5	nS	
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTL	LOAD	
NL	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$		10 TTL	LOAD	

Recommended Operating Conditions Min Max Unit						
Vcc	Supply Voltage	4.75	5.25	V		
ViH	High-Level Input Voltage	2.0		V		
VIL	Low-Level Input Voltage		8.0	V		
ΊΚ	Input Clamp Current		-18	mA		
ЮН	High-Level Output Current		-1.0	mA		
	Low-Level Output Current		20	mA		
Pw*	Pulse Width of Total Delay	40		%		
d* PW*	Duty Cycle		40	%		
T_{A}	Operating Free-Air Temperature	0	+70	°C		

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25° C			Unit	
EIN	Pulse Input Voltage	3.2	Volts	
PW	Pulse Width % of Total Delay	110	%	
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS	
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz	
	Pulse Repetition Rate @ Td > 500 nS	500	KHz	
Vcc	Supply Voltage	5.0	Volts	
V _{CC}	Supply Voltage	5.0	'	

8 Pin Mini DIP 5 Tap TTL Compatible Active Delay Lines

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5, 10, 15, 20	25	EP9458-25	20, 40, 60, 80	100	EP9458-100
6, 12, 18, 24	30	EP9458-30	25, 50, 75, 100	125	EP9458-125
7, 14, 21, 28	35	EP9458-35	30, 60, 90, 120	150	EP9458-150
8, 16, 24, 32	40	EP9458-40	35, 70, 105, 140	175	EP9458-175
9, 18, 27, 36	45	EP9458-45	40, 80, 120, 160	200	EP9458-200
10, 20, 30, 40	50	EP9458-50	45, 90, 135, 180	225	EP9458-225
12, 24, 36, 48	60	EP9458-60	50, 100, 150, 200	250	EP9458-250
15, 30, 45, 60	75	EP9458-75			

DC E	lectrical Characteristic Parameter		Min	Max	Unit
T					T
VOH	High-Level Output Voltage	VCC = min. VIL= max. IOH = max	2.7		V
VOL	Low-Level Output Voltage	$V_{CC} = min. V_{IH} = min. I_{OL} = max$		0.5	V
VIK	Input Clamp Voltage	$V_{CC} = min. I_I = II_K$		-1.2	V
IIH	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$	1	50	μA
	_	$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA
116	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA
los	Short Circuit Output Current	$V_{CC} = \text{max. } V_{OUT} = 0.$	-40	-100	mA
	•	(One output at a time)			
ССН	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN		75	mA
CCL	Low-Level Supply Current	V _{CC} = max. V _{IN} = 0		75	mA
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)	1	4	nS
THO		Td > 500 nS		5	nS
NH	Fanout High-Level Output	V _{CC} = max. V _{OH} = 2.7V		20 TTL	
NL	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$		10 TTL	

	mmended ating Conditions	Min	Max	Unit
V	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current Low-Level Output Current Pulse Width of Total Delay Duty Cycle	4.75 2.0	5.25 0.8 -18 -1.0 20	V V V mA mA MA
T_{A}	Operating Free-Air Temperature	0	+70	°C

^{*}These two values are inter-dependent.

Input	Input Pulse Test Conditions @ 25° C		
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
1411	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts
P9458 1186			<u> </u>

5 Tap TTL Compatible MIL 883 Active Delay Lines

TAP DELAYS	TOTAL DELAYS	PART	TAP DELAYS	TOTAL DELAYS	PART
±5% or 2 nS	±5% or 2 nS	NUMBER	±5% or 2 nS	±5% or 2 nS	NUMBER
5, 10, 15, 20 6, 12, 18, 24 7, 14, 21, 28 8, 16, 24, 32 9, 18, 27, 36 10, 20, 30, 40 12, 24, 36, 48 15, 30, 45, 60 20, 40, 60, 80 25, 50, 75, 100 30, 60, 90, 120 35, 70, 105, 140	25 30 35 40 45 50 60 75 100 125 150 175	EP9590-25 EP9590-30 EP9590-35 EP9590-40 EP9590-45 EP9590-50 EP9590-75 EP9590-100 EP9590-125 EP9590-150 EP9590-175	40, 80, 120, 160 45, 90, 135, 180 50, 100, 150, 200 60, 120, 180, 240 70, 140, 210, 280 80, 160, 240, 320 84, 168, 252, 336 88, 176, 264, 352 90, 180, 270, 360 94, 188, 282, 376 100, 200, 300, 400	200 225 250 300 250 400 420 440 450 470 500	EP9590-200 EP9590-225 EP9590-250 EP9590-300 EP9590-280 EP9590-400 EP9590-420 EP9590-440 EP9590-450 EP9590-470 EP9590-500

	Parameter	Test Conditions	Min	Max	Unit
VOH	High-Level Output Voltage	V _{CC} = min. V _{II} = max. I _{OH} = max	2.7		V
VOL	Low-Level Output Voltage	$V_{CC} = min. V_{IH} = min. I_{OL} = max$		0.5	V
VIK	Input Clamp Voltage	$V_{CC} = min. I_1 = II_K$	1	-1.2	V
l _I H	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$	[50	μΑ
		$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA
16	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA
los	Short Circuit Output Current	$V_{CC} = \max_{i} V_{OUT} = 0.$	-40	-100	mA
		(One output at a time)			
Іссн	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN		75	mA
CCL	Low-Level Supply Current	$V_{CC} = \text{max. } V_{IN} = 0$		75	mA
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS
1,0		Td > 500 nS		5	nS
NH	Fanout High-Level Output	$V_{CC} = \text{max. } V_{OH} = 2.7V$		20 TTL	LOAD
Ni I	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$		10 TTL	LOAD

	mmended ating Conditions	Min	Max	Unit
v _{cc}	Supply Voltage	4.75	5.25	V
VIH	High-Level Input Voltage	2.0		٧
VIL	Low-Level Input Voltage		0.8	V
lik	Input Clamp Current		-18	mA
IOH	High-Level Output Current		-1.0	mA
	Low-Level Output Current		20	mA
Pw*	Pulse Width of Total Delay	40		%
l _{OL} Pw* d*	Duty Cycle		40	%
T_{A}	Operating Free-Air Temperature	-55	+125	°C

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25° C			
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
	Pulse Repetition Rate @ Td > 500 nS	500	KHz
VCC	Supply Voltage	5.0	Volts
9590 118			

8 Pin SIL 5 Tap TTL Compatible Active Delay Lines

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
1 ± 0.5	*4±0.5	EP9677-4	15	75	EP9677-75
1.5 ± 0.5	*6 ± 0.5	EP9677-6	20	100	EP9677-100
2±1	*8 ± 1.0	EP9677-8	25	125	EP9677-125
2.5 ± 1	*10	EP9677-10	30	150	EP9677-150
3±1	*12	EP9677-12	35	175	EP9677-175
4 ± 1.5	*16	EP9677-16	40	200	EP9677-200
5	*20	EP9677-20	50	250	EP9677-250
6	30	EP9677-30	60	300	EP9677-300
7	35	EP9677-35	70	350	EP9677-350
8	40	EP9677-40	80	400	EP9677-400
9	45	EP9677-45	90	450	EP9677-450
10	50	EP9677-50	100	500	EP9677-500
12	60	EP9677-60			

¹st tap is the inherent delay: approx. 7 nS

DC Electrical Characteristics Parameter Test Conditions Min Max Unit					
	raidificter	rest conditions		IVICA	Oilit
VOH	High-Level Output Voltage	V _{CC} = min. V _{II} = max. I _{OH} = max	2.7		V
VOL	Low-Level Output Voltage	V _{CC} = min. V _{IH} = min. I _{OL} = max		0.5	V
VIK	Input Clamp Voltage	VCC = min. II = IIK		-1.2	V
ηH,	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μA
		$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA
IL I	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA
los	Short Circuit Output Current	$V_{CC} = \text{max. } V_{OUT} = 0.$	-40	-100	mA
		(One output at a time)			1
ССН	High-Level Supply Current	$V_{CC} = max. V_{IN} = OPEN$		75	mA
CCL	Low-Level Supply Current	$V_{CC} = \text{max. } V_{IN} = 0$		75	mA
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS
		Td > 500 nS		5	l nS
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTL	LOAD
NL	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$		10 TTL	LOAD

	mmended ating Conditions	Min	Max	Unit
v_{cc}	Supply Voltage	4.75	5.25	V
VIH	High-Level Input Voltage	2.0		٧
ViL	Low-Level Input Voltage		0.8	٧
lik	Input Clamp Current		-18	mΑ
ЮН	High-Level Output Current		-1.0	mΑ
	Low-Level Output Current		20	mΑ
lol Pw	Pulse Width of Total Delay	40		%
ď*	Duty Cycle	1	40	%
T_A	Operating Free-Air Temperature	0	+70	°C

^{*}These two values are inter-dependent.

Inpu	t Pulse Test Conditions @ 25° C		Unit
EIN	Pulse Input Voltage	3.2	Volts
Pw	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts
9677 1186	5		

^{*}Delay times referenced from 1st tap

14 Pin DIL 5 Tap TTL Compatible Active Delay Lines

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5, 10, 15, 20	25	EP9810-25	80, 160, 240, 320	400	EP9810-400
6, 12, 18, 24	30	EP9810-30	84, 168, 252, 336	420	EP9810-420
7, 14, 21, 28	35	EP9810-35	88, 176, 264, 352	440	EP9810-440
8, 16, 24, 32	40	EP9810-40	90, 180, 270, 360	450	EP9810-450
9, 18, 27, 36	45	EP9810-45	94, 188, 282, 376	470	EP9810-470
10, 20, 30, 40	50	EP9810-50	100, 200, 300, 400	500	EP9810-500
12, 24, 36, 48	60	EP9810-60	110, 220, 330, 440	550	EP9810-550
15, 30, 45, 60	75	EP9810-75	120, 240, 360, 480	600	EP9810-600
20, 40, 60, 80	100	EP9810-100	130, 260, 390, 520	650	EP9810-650
25, 50, 75, 100	125	EP9810-125	140, 280, 420, 560	700	EP9810-700
30, 60, 90, 120	150	EP9810-150	150, 300, 450, 600	750	EP9810-750
35, 70, 105, 140	175	EP9810-175	160, 320, 480, 640	800	EP9810-800
40, 80, 120, 160	200	EP9810-200	170, 340, 510, 680	850	EP9810-850
45, 90, 135, 180	225	EP9810-225	180, 360, 540, 720	900	EP9810-900
50, 100, 150, 200	250	EP9810-250	190, 380, 570, 760	950	EP9810-950
60, 120, 180, 240	300	EP9810-300	200, 400, 600, 800	1000	EP9810-1000
70, 140, 210, 280	350	EP9810-350	į –		

DC E	DC Electrical Characteristics							
	Parameter	Test Conditions	Min	Max	Unit			
VOH	High-Level Output Voltage	VCC = min. V _{IL} = max. I _{OH} = max	2.7		V			
VOL	Low-Level Output Voltage	VCC = min. VIH = min. IOL= max		0.5	V			
Vik	Input Clamp Voltage	$V_{CC} = min. I_I = II_K$	1	-1.2	V			
l Ιμ	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$	İ	50	μA			
	_	$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA			
IIL I	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$	1	-2	mA			
los	Short Circuit Output Current	$V_{CC} = \text{max. } V_{OUT} = 0.$	-40	-100	mA			
		(One output at a time)	1		1			
Іссн	High-Level Supply Current	$V_{CC} = max. V_{IN} = OPEN$		75	mA			
CCL	Low-Level Supply Current	V _{CC} = max. V _{IN} = 0		75	mA			
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS			
'''	·	Td > 500 nS		5	nS			
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTI	LOAD			
NL	Fanout Low-Level Output	V _{CC} = max. V _{OL} = 0.5V		10 TTI	LOAD			

	Recommended Operating Conditions Min					
Vcc	Supply Voltage	4.75	5.25	V		
V _{CC}	High-Level Input Voltage	2.0		V		
ViL	Low-Level Input Voltage		0.8	V		
ΙΚ	Input Clamp Current		-18	mA		
IOH	High-Level Output Current		-1.0	mA		
	Low-Level Output Current		20	mA		
loL PW*	Pulse Width of Total Delay	40		%		
ď*	Duty Cycle		40	%		
T_A	Operating Free-Air Temperature	0	+70	°C		

^{*}These two values are inter-dependent.

Input	Pulse Test Conditions @ 25° C		Unit
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
'"'	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts

16 Pin DIP 5 Tap TTL Compatible Active Delay Lines

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5, 10, 15, 20	25	EPA054-25	80, 160, 240, 320	400	EPA054-400
6, 12, 18 , 24	30	EPA054-30	84, 168, 252, 336	420	EPA054-420
7, 14, 21, 28	35	EPA054-35	88, 176, 264, 352	440	EPA054-440
8, 16, 2 4, 32	40	EPA054-40	90, 180, 270, 360	450	EPA054-450
9, 18, 27 , 36	45	EPA054-45	94, 188, 282, 376	470	EPA054-470
10, 20, 30, 40	50	EPA054-50	100, 200, 300, 400	500	EPA054-500
12, 24, 36, 48	60	EPA054-60	110, 220, 330, 440	550	EPA054-550
15, 30, 45, 60	<i>7</i> 5	EPA054-75	120, 240, 360, 480	600	EPA054-600
20, 40, 60, 80	100	EPA054-100	130, 260, 390, 520	650	EPA054-650
25, 50, 75, 100	125	EPA054-125	140, 280, 420, 560	700	EPA054-700
30, 60, 90, 120	150	EPA054-150	150, 300, 450, 600	750	EPA054-750
35, 70, 105, 140	175	EPA054-175	160, 320, 480, 640	800	EPA054-800
40, 80, 120, 160	200	EPA054-200	170, 340, 510, 680	850	EPA054-850
45, 90, 135, 180	225	EPA054-225	180, 360, 540, 720	900	EPA054-900
50, 100, 150, 200	250	EPA054-250	190, 380, 570, 760	950	EPA054-950
60, 120, 180, 240	300	EPA054-300	200, 400, 600, 800	1000	EPA054-1000
70, 140, 210, 280	350	EPA054-350			

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
Vон	High-Level Output Voltage	V _{CC} = min. V _{II} = max. I _{OH} = max	2.7		V	
VOL	Low-Level Output Voltage	$V_{CC} = min. V_{IH} = min. I_{OI} = max$		0.5	V	
VIK	Input Clamp Voltage	$V_{CC} = min. I_I = II_K$		-1.2	V	
1H	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μA	
		$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA	
IIL	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$	l	-2	mA	
los	Short Circuit Output Current	$V_{CC} = max. V_{OUT} = 0.$	-40	-100	mA	
		(One output at a time)	1			
Іссн	High-Level Supply Current	$V_{CC} = max. V_{IN} = OPEN$		75	mA	
ICCL	Low-Level Supply Current	$V_{CC} = max. V_{IN} = 0$		75	mA	
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS	
		Td > 500 nS		5	l nS	
NH	Fanout High-Level Output	$V_{CC} = \text{max. } V_{OH} = 2.7V$			LOAD	
NL	Fanout Low-Level Output	$V_{CC} = max. V_{OL} = 0.5V$		10 TTL	LOAD	

1	nmended ating Conditions	Min	Max	Unit
VCC VIH VIL IN IOH IOL* d* d*	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current Low-Level Output Current Pulse Width of Total Delay Duty Cycle Operating Free-Air Temperature	4.75 2.0	5.25 0.8 -18 -1.0 20 40 +70	V V V mA mA MA % %

^{*}These two values are inter-dependent.

Inpu	Input Pulse Test Conditions @ 25° C				
EIN	Pulse Input Voltage	3.2	Volts		
PW	Pulse Width % of Total Delay	110	%		
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS		
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz		
	Pulse Repetition Rate @ Td > 500 nS	500	KHz		
Vcc	Supply Voltage	5.0	Volts		

SMD 14-Pin 5 Tap TTL Compatible Active Delay Lines

TAP DELAYS	TOTAL DELAYS	PART	TAP DELAYS	TOTAL DELAYS	PART
±5% or 2 nS	±5% or 2 nS	NUMBER	±5% or 2 nS	±5% or 2 nS	NUMBER
5, 10, 15, 20 6, 12, 18, 24 7, 14, 21, 28 8, 16, 24, 32 9, 18, 27, 36 10, 20, 30, 40 12, 24, 36, 48 15, 30, 45, 60 20, 40, 60, 80 25, 50, 75, 100 30, 60, 90, 120 35, 70, 105, 140 40, 80, 120, 160 45, 90, 135, 180 50, 100, 150, 200 60, 120, 180, 240 70, 140, 210, 280	25 30 35 40 45 50 60 75 100 125 150 175 200 225 250 300 350	EPA073-25 EPA073-30 EPA073-35 EPA073-45 EPA073-50 EPA073-60 EPA073-100 EPA073-125 EPA073-150 EPA073-150 EPA073-250 EPA073-250 EPA073-250 EPA073-250 EPA073-350	80, 160, 240, 320 84, 168, 252, 336 88, 176, 264, 352 90, 180, 270, 360 94, 188, 282, 376 100, 200, 300, 400 110, 220, 330, 440 120, 240, 360, 480 130, 260, 390, 520 140, 280, 420, 560 150, 300, 450, 600 160, 320, 480, 640 170, 340, 510, 680 180, 360, 540, 720 190, 380, 570, 760 200, 400, 600, 800	400 420 440 450 470 500 550 600 650 700 750 800 850 900 950	EPA073-400 EPA073-420 EPA073-420 EPA073-440 EPA073-450 EPA073-500 EPA073-550 EPA073-650 EPA073-700 EPA073-750 EPA073-800 EPA073-800 EPA073-900 EPA073-900 EPA073-900

DC E	DC Electrical Characteristics						
	Parameter	Test Conditions	Min	Max	Unit		
VOH	High-Level Output Voltage	V _{CC} = min. V _{II} = max. I _{OH} = max	2.7		V		
VOL	Low-Level Output Voltage	$V_{CC} = min. V_{IH} = min. I_{OL} = max$		0.5	V		
VIK	Input Clamp Voltage	$V_{CC} = min. I_1 = II_K$		-1.2	V		
ΊΗ	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μA		
		$V_{CC} = \text{max. } V_{IN} = 5.25V$		1.0	mA		
IIL I	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 0.5V$		-2	mA		
los	Short Circuit Output Current	$V_{CC} = \text{max. } V_{OUT} = 0.$	-40	-100	mA		
	-	(One output at a time)					
Іссн	High-Level Supply Current	$V_{CC} = max. V_{IN} = OPEN$		75	mA		
ICCL	Low-Level Supply Current	$V_{CC} = \text{max. } V_{IN} = 0$		75	mA		
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS		
	·	Td > 500 nS		5	nS		
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTL	LOAD		
NL	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$		10 TTL	LOAD		

	Recommended Operating Conditions Min					
Vcc	Supply Voltage	4.75	5.25	V		
VIH	High-Level Input Voltage	2.0		V		
VIL	Low-Level Input Voltage		0.8	V		
Ικ	Input Clamp Current		-18	mA		
ЮH	High-Level Output Current		-1.0	mA		
	Low-Level Output Current		20	mA		
IOL PW*	Pulse Width of Total Delay	40		%		
ď*	Duty Cycle		40	%		
T_{A}	Operating Free-Air Temperature	0	+70	°C		

^{*}These two values are inter-dependent.

Inpu	t Pulse Test Conditions @ 25° C		Unit
EIN	Pulse Input Voltage	3.2	Volts
Pw	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
"""	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts

5 Tap High Speed CMOS (HCT) Compatible Active Delay Lines

	Delay or 2r			Total Delay ±5% or 2 nS	Part Number	•	Delay or 2r	_		Total Delay ±5% or 2 nS	Part Number
12*	17	22	27	32	EP9604-32	80	160	240	320	400	EP9604-400
12*	18	24	30	36	EP9604-36	84	168	252	336	420	EP9604-420
12*	19	26	33	40	EP9604-40	88	176	264	352	440	EP9604-440
12*	20	28	36	44	EP9604-44	90	180	270	360	450	EP9604-450
12*	21	30	39	48	EP9604-48	100	200	300	400	500	EP9604-500
12*	22	32	42	52	EP9604-52	110	220	330	440	550	EP9604-550
12*	24	36	48	60	EP9604-60	120	240	360	480	600	EP9604-600
15	30	45	60	75	EP9604-75	130	260	390	520	650	EP9604-650
20	40	60	80	100	EP9604-100	140	280	420	560	700	EP9604-700
25	50	75	100	125	EP9604-125	150	300	450	600	750	EP9604-750
30	60	90	120	150	EP9604-150	160	320	480	640	800	EP9604-800
35	70	105	140	175	EP9604-175	170	340	510	680	850	EP9604-850
40	80	120	160	200	EP9604-200	180	360	540	720	900	EP9604-900
50	100	150	200	250	EP9604-250	190	380	570	760	950	EP9604-950
60	120	180	240	300	EP9604-300	200	400	600	800	1000	EP9604-1000
70	140	210	280	350	EP9604-350						

^{*} Inherent Delay • Delay times referenced from input to leading edges

DC E	lectrical Characteristics	Test Conditions	Min	Max	Unit
VIH VIL VOH VOL IL ICC TRO	High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Leakage Current Supply Current Output Rise Time	V _{CC} =4.5 to 5.5 V _{CC} =4.5 to 5.5 V _{CC} =4.5V,I _O =-4.0mA@V _{IH} or V _{IL} V _{CC} =4.5V,I _O =-4.0mA@V _{IH} or V _{IL} V _{CC} =5.5V @V _{IH} or V _{IL} V _{CC} =5.5V,V _{IN} =0 ≤550 nS (.75 - 2.4 Volts) >550 nS	2.0 4.0	0.8 0.3 ±1.0 15 4	Volt Volt Volt Volt uA mA nS
NH	High Fanout	V _{CC} =5.5V,V _{OH} =4.0V	10	LST	TL Load

	mmended ating Conditions	Min	Max	Unit
Vcc	DC Supply Voltage	4.5	5.5	Volt
Vi	DC Input Voltage Range	0	Vcc	Volt
νo	DC Output Voltage Range	0	V _{CC}	Volt
	DC Output Source/Sink Current		25	mΑ
l _O P _{W*}	Pulse Width % of Total Delay	40		%
D*	Duty Cycle		40	%
TA	Operating Free Air Temperature	0	70	°C

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25°C (Taps Unloaded)						
E _{IN}	Pulse Input Voltage	3.2 Volts				
PW	Pulse Width % of Total Delay	150 %				
TRI	Input Rise Time (0.75 - 2.4 Volts)	2.0 nS				
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0 MHz				
7 11 1	Pulse Repetition Rate @ Td > 500 nS	500 KHz				
Vcc	Supply Voltage	5.0 Volts				

5 Tap 10K ECL Compatible Active Delay Lines

TAP 1 nS ±5%	TAP 2 nS ±5%	TAP 3 nS ±5%	TAP 4 nS ±5%	OUTPUT nS ±5%	RISE TIME nS MAX	PART NUMBER
3.0 TYP†	4±0.3	5±0.3	6±0.3	7±0.3	4	EP9445-7
3.0 TYP†	5±0.5	7±0.5	9±0.5	11 ± 0.5	4	EP9445-11
3.0 TYP	6±0.5	9±0.5	12±1.0	15 ± 1.5	4	EP9445-15
4 ± 1.0	8±0.5	12±1.0	16 ± 1.5	20 ± 2.0	4	EP9445-20
6 ± 1.0	12 ± 1.0	18 ± 1.5	24 ± 2.0	30± 2.0	4	EP9445-30
8 ± 1.0	16 ± 1.5	24 ± 2.0	32 ± 2.0	40	5	EP9445-40
10 ± 1.0	20 ± 2.0	30 ± 2.0	40	50	5 5	EP9445-50
15 ± 1.5	30 ± 2.0	45	60	75	8	EP9445-75
20 ± 2.0	40	60	80	100	10	EP9445-100
30 ± 2.0	60	90	120	150	15	EP9445-150
40	80	120	160	200	20	EP9445-200
50	100	150	200	250	25	EP9445-250
60	120	180	240	300	30	EP9445-300
70	140	210	280	350	35	EP9445-350
80	160	240	320	400	40	EP9445-400
90	180	270	360	450	45	EP9445-450
100	200	300	400	500	50	EP9445-500
120	240	360	480	600	50	EP9445-600
140	280	420	560	700	50	EP9445-700
160	320	480	640	800	50	EP9445-800
180	360	520	720	900	50	EP9445-900
200	400	600	800	1000	50	EP9445-1000

Delay time measured at - 1.3V, no load Delay times referenced from input to leading edges †Inherent delay Rise time output measured from 20% to 80% Output terminated (externally) with 50Ω to - 2.0 Vdc

DC E	lectrical Characteristics Parameter	*Test Conditions	Min	Max	Unit
V _{OH} V _{OHT}	High-Level Output Voltage High-Level Output Threshold	V _{IL} = Min	-960		mV
VOLT	Voltage Low-Level Output Threshold		-980		mV
	Voltage			-1630	mV
VOH	Low-Level Output Voltage	V _{IH} = Max		-1650	mV
ļiH	High-Level Input Current	V _{IH} = Max		265	μΑ
IEE	Low-Level Input Current VEE Supply Current	V _{IL} = Min	0.5	50	μA mA

 $^{^\}star$ (V_{CC1} = V_{CC2} = GRD, V_{EE} = -5.2V \pm 0.01V, Output Loading with 50 Ω to -2.0V \pm 0.01V)

Recommended Operating Conditions Min Max							
		IAIIII	IVICA	Unit			
VEE C VIHT VILT P & TA	Supply Voltage (Negative) Circuit Ground (Pins 1 and 16) Hlgh-Level Input Voltage High-Level Input Threshold Voltage Low-Level Input Threshold Voltage Low-Level Input Voltage Pulse Width of Total Delay Duty Cycle Operating Free-Air Temperature	4.94 0 -980 300 -30	5.46 0 -1105 -1475 -1630 20 +80	V V mV mV mV %			

Input Pulse Test Conditions @ 25° C					
VIN PW TRI VEE	Pulse Input Voltage Pulse Width of Total Delay Pulse Rise Time (20% to 80%) Supply Voltage	-1.0V (-0.75 to -1.75V) 3x Total Delay 2 nS -5.2V			
EP9445 118	5				

14 Pin DIP Single Output TTL Compatible Active Delay Lines

TIME DELAYS (nS) ±5% or 2 nS	PART NUMBER	TIME DELAYS (nS) ±5% or 2 nS	PART NUMBER	TIME DELAYS (nS) ±5% or 2 nS	PART NUMBER
5	EP9430-5	23	EP9430-23	125	EP9430-125
6	EP9430-6	24	EP9430-24	150	EP9430-150
7	EP9430-7	25	EP9430-25	175	EP9430-175
8	EP9430-8	30	EP9430-30	200	EP9430-200
9	EP9430-9	35	EP9430-35	225	EP9430-225
10	EP9430-10	40	EP9430-40	250	EP9430-250
11	EP9430-11	45	EP9430-45	275	EP9430-275
12	EP9430-12	50	EP9430-50	300	EP9430-300
13	EP9430-13	55	EP9430-55	350	EP9430-350
14	EP9430-14	60	EP9430-60	400	EP9430-400
15	EP9430-15	65	EP9430-65	500	EP9430-500
16	EP9430-16	70	EP9430-70	600	EP9430-600
17	EP9430-17	75	EP9430-75	700	EP9430-700
18	EP9430-18	80	EP9430-80	800	EP9430-800
19	EP9430-19	85	EP9430-85	900	EP9430-900
20	EP9430-20	90	EP9430-90	1000	EP9430-1000
21	EP9430-21	95	EP9430-95		
22	EP9430-22	100	EP9430-100		

Delay times referenced from input to leading edges

DCI	DC Electrical Characteristics							
	Parameter	Test Conditions	Min	Max	Unit			
VOH	High-Level Output Voltage Low-Level Output Voltage Input Clamp Voltage High-Level Input Current Low-Level Input Current	$\begin{array}{l} V_{CC} = min. \ V_{IL} = max. \ I_{OH} = max \\ V_{CC} = min. \ I_{I} = lI_{K} \\ V_{CC} = max. \ V_{IN} = 2.7V \\ V_{CC} = max. \ V_{IN} = 5.25V \\ V_{CC} = max. \ V_{IN} = 0.5V \\ \end{array}$	2.7	0.5 -1.2V 50 1.0	> > > A A MA			
SCCCLEST SCCCC SCCC SCCC SCCC SCCC SCCC SCCC	Short Circuit Output Current High-Level Supply Current Low-Level Supply Current Output Rise Time Fanout High-Level Output Fanout Low-Level Output	V _{CC} = max. V _{OUT} = 0. V _{CC} = max. V _{IN} = OPEN V _{CC} = max. V _{IN} = 0 V _{CC} = 5.0 V (.75 - 2.4 Volts) V _{CC} = max. V _{OH} = 2.7V V _{CC} = max. V _{OL} = 0.5V	-40	-100 75 75 4 20 TTL 10 TTL				

	commended erating Conditions	Min	Max	Unit
VCC VIH VIL IOH P* d* TA	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current Low-Level Output Current Pulse Width of Total Delay Duty Cycle Operating Free-Air Temperature	4.75 2.0 40 0	5.25 0.8 -18 -1.0 20 40 +70	V V V mA mA MA % %

^{*}These two values are inter-dependent.

Inpu	Input Pulse Test Conditions @ 25° C		
EIN	Pulse Input Voltage	3.2	Volts
Pw	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
1111	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

EP9430 1186

Mini Dip Single Output TTL Compatible Active Delay Lines

TIME DELAY (ns)	PART	TIME DELAY (ns)	PART
±5% or 2 nS	NUMBER	±5% or 2 nS	NUMBER
5 10 15 20 25 30 35 40 45 50	EP9460-5 EP9460-10 EP9460-15 EP9460-20 EP9460-25 EP9460-30 EP9460-35 EP9460-40 EP9460-45 EP9460-50	60 75 100 125 150 175 200 225 250	EP9460-60 EP9460-75 EP9460-100 EP9460-125 EP9460-150 EP9460-175 EP9460-200 EP9460-225 EP9460-250

Delay times referenced to leading edges.

DC	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
A A A A A A A A A A A A A A A A A A A	High-Level Output Voltage Low-Level Output Voltage Input Clamp Voltage High-Level Input Current Low-Level Input Current Short Circuit Output Current High-Level Supply Current Low-Level Supply Current Output Rise Time Fanout High-Level Output Fanout Low-Level Output	$\begin{array}{c} V_{CC} = \text{min. } V_{IL} = \text{max. } I_{OH} = \text{max} \\ V_{CC} = \text{min. } I_{I} = \text{lik} \\ V_{CC} = \text{min. } I_{I} = \text{lik} \\ V_{CC} = \text{max. } V_{IN} = 2.7V \\ V_{CC} = \text{max. } V_{IN} = 5.25V \\ V_{CC} = \text{max. } V_{IN} = 0.5V \\ V_{CC} = \text{max. } V_{IN} = 0.5V \\ V_{CC} = \text{max. } V_{IN} = \text{OPEN} \\ V_{CC} = \text{max. } V_{IN} = \text{OPEN} \\ V_{CC} = \text{max. } V_{IN} = 0 \\ V_{CC} = 5.0 \text{ V } (.75 - 2.4 \text{ Volts}) \\ V_{CC} = \text{max. } V_{OH} = 2.7V \\ V_{CC} = \text{max. } V_{OL} = 0.5V \\ \end{array}$	-40	0.5 -1.2V 50 1.0 -2 -100 75 75 4 20 TTL 10 TTL		

	commended erating Conditions	Min	Max	Unit
vcc	Supply Voltage	4.75	5.25	V
ViH	High-Level Input Voltage	2.0		V
ViL	Low-Level Input Voltage		0.8	V
lik	Input Clamp Current		-18	mA
ЮН	High-Level Output Current		-1.0	mA
101	Low-Level Output Current		20	mA
Pw*	Pulse Width of Total Delay	40		%
I _{OL} PW*	Duty Cycle		40	%
TA	Operating Free-Air Temperature	0	+70	°C

*These two values are inter-dependent.

Input Pulse Test Conditions @ 25° C			Unit
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
Tit	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761

FAX: (818) 894-5791 RCA Global 282 892

9460 0986

Mini SIL Single Output TTL Compatible Active Delay Lines

TIME DELAYS * (nS) ±5% or 2 nS	PART NUMBER	TIME DELAYS * (nS) ±5% or 2 nS	PART NUMBER
5	EP9748-5	60	EP9748-60
10	EP9748-10	75	EP9748-75
15	EP9748-15	100	EP9748-100
20	EP9748-20	125	EP9748-125
25	EP9748-25	150	EP9748-150
30	EP9748-30	175	EP9748-175
35	EP9748-35	200	EP9748-200
40	EP9748-40	225	EP9748-225
45	EP9748-45	250	EP9748-250
50	EP9748-50		

^{*} Delay times referenced from input to leading edges

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
VOH VOL	High-Level Output Voltage Low-Level Output Voltage	V _{CC} = min. V _{IL} = max. I _{OH} = max V _{CC} = min. V _{IH} = min. I _{OL} = max	2.7	0.5	V V	
V _{IK}	Input Clamp Voltage High-Level Input Current	$V_{CC} = min. I_I = II_K$ $V_{CC} = max. V_{IN} = 2.7V$		-1.2V 50	V μ A	
ļıL	Low-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 5.25V$ $V_{CC} = \text{max. } V_{IN} = 0.5V$	100	1.0	mA mA	
los lcch	Short Circuit Output Current High-Level Supply Current Low-Level Supply Current	V _{CC} = max. V _{OUT} = 0. V _{CC} = max. V _{IN} = OPEN V _{CC} = max. V _{IN} = 0	-40	-100 75 75	mA mA mA	
ICCL TRO NH NL	Output Rise Time Fanout High-Level Output Fanout Low-Level Output	V _{CC} = 5.0 V (.75 - 2.4 Volts) V _{CC} = max. V _{OH} = 2.7V V _{CC} = max. V _{OL} = 0.5V		4 20 TTL 10 TTL	nS LOAD	

	Recommended Operating Conditions		Max	Unit
ᅙᆍᇊᆃᅙ	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current	4.75 2.0	5.25 0.8 -18 -1.0	V V V mA mA
I _{OL} PW d* T _A	Low-Level Output Current Pulse Width of Total Delay Duty Cycle Operating Free-Air Temperature	40	20 40 +70	mA % % ℃

^{*}These two values are inter-dependent.

Inpu	t Pulse Test Conditions @ 25° C		Unit
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
1 11 1	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts

10 Tap TTL Compatible Active Delay Modules

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5	50	EP8301	44	440	EP8322
6	60	EP8311	45	450	EP8309
7.5	75	EP8317	47	470	EP8323
10	100	EP8302	50	500	EP8310
12.5	125	EP8319	55	550	EP8330
15	150	EP8303	60	600	EP8324
17.5	175	EP8320	65	650	EP8331
20	200	EP8304	70	700	EP8325
22.5	225	EP8321	75	750	EP8329
25	250	EP8305	80	800	EP8326
30	300	EP8306	85	850	EP8332
35	350	EP8307	90	900	EP8327
40	400	EP8308	95	950	EP8333
42	420	EP8318	100	1000	EP8328

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
VOH	High-Level Output Voltage	V _{CC} = min. V _{IL} = max. I _{OH} = max	2.7		٧	
VOL	Low-Level Output Voltage	VCC = min. VIH = min. IOL = max		0.5	٧	
ViK	Input Clamp Voltage	$V_{CC} = min. I_I = II_K$		-1.2V	V	
ИН	High-Level Input Current	V _{CC} = max. V _{IN} = 2.7V		50	μΑ	
		V _{CC} = max. V _{IN} = 5.25V		1.0	mΑ	
111	Low-Level Input Current	V _{CC} = max. V _{IN} = 0.5V		-2	mΑ	
l _{IL} los	Short Circuit Output Current	VCC = max. VOUT = 0.	-40	-100	mΑ	
"		(One output at a time)				
Іссн	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN		150	mΑ	
ICCL	Low-Level Supply Current	V _{CC} = max. V _{IN} = 0		150	mΑ	
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS	
''		Td > 500 nS		5	nS	
NH	Fanout High-Level Output	$V_{CC} = \text{max. } V_{OH} = 2.7V$		20 TT	LLOAD	
NĽ	Fanout Low-Level Output	V _{CC} = max. V _{OL} = 0.5V		10 TT	L LOAD	

	mmended ating Conditions	Min	Max	Unit
VCC VIH VIL IOH IOL PW d*	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current Low-Level Output Current Pulse Width of Total Delay	4.75 2.0	5.25 0.8 -18 -1.0 20	V V V mA mA mA
d* T _A	Duty Cycle Operating Free-Air Temperature	0	40 +70	% °C

^{*}These two values are inter-dependent.

Pulse Test Conditions @ 25° C		Unit
Pulse Input Voltage	3.2	Volts
Pulse Width % of Total Delay	110	%
Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
	500	KHz
Supply Voltage	5.0	Volts
	Pulse Input Voltage Pulse Width % of Total Delay Pulse Rise Time (0.75 - 2.4 Volts) Pulse Repetition Rate @ Td ≤ 500 nS Pulse Repetition Rate @ Td > 500 nS	Pulse Input Voltage 3.2 Pulse Width % of Total Delay 110 Pulse Rise Time (0.75 - 2.4 Volts) 2.0 Pulse Repetition Rate @ Td ≤ 500 nS 1.0 Pulse Repetition Rate @ Td > 500 nS 500

10 Tap TTL Compatible Active Delay Lines MIL 883

TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER	TAP DELAYS ±5% or 2 nS	TOTAL DELAYS ±5% or 2 nS	PART NUMBER
5	50	EP9749-50	44	440	EP9749-440
6	60	EP9749-60	45	450	EP9749-450
7.5	75	EP9749-75	47	470	EP9749-470
10	100	EP9749-100	50	500	EP9749-500
12.5	125	EP9749-125	55	550	EP9749-550
15	150	EP9749-150	60	600	EP9749-600
17.5	175	EP9749-175	65	650	EP9749-650
20	200	EP9749-200	70	700	EP9749-700
22.5	225	EP9749-225	75	750	EP9749-750
25	250	EP9749-250	80	800	EP9749-800
30	300	EP9749-300	85	850	EP9749-850
35	350	EP9749-350	90	900	EP9749-900
40	400	EP9749-400	95	950	EP9749-950
42	420	EP9749-420	100	1000	EP9749-1000

Delay times referenced from input to leading edges

All units are supplied with ceramic IC's that have been screened to MIL-STD-883

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
Vон	High-Level Output Voltage	VCC = min. VII = max. IOH = max	2.7		٧	
VOL	Low-Level Output Voltage	VCC = min. VIH = min. IOL = max		0.5	٧	
VIK	Input Clamp Voltage	VCC = min. II = IIK		-1.2V	٧	
ΊΗ	High-Level Input Current	$V_{CC} = \text{max. } V_{IN} = 2.7V$		50	μA	
		V _{CC} = max. V _{IN} = 5.25V	1	1.0	mΑ	
l _{II}	Low-Level Input Current	V _{CC} = max. V _{IN} = 0.5V		-2	mA	
los	Short Circuit Output Current	VCC = max. VOUT = 0.	-40	-100	mΑ	
00		(One output at a time)				
ССН	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN		150	mA	
CCL	Low-Level Supply Current	VCC = max. VIN = 0	1	150	mA	
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)	1	4	nS	
		Td > 500 nS		5	nS	
NH	Fanout High-Level Output	V _{CC} = max. V _{OH} = 2.7V		20 TT	L LOAD	
NL	Fanout Low-Level Output	VCC = max. VOL = 0.5V		10 TT	L LOAD	

	mmended ating Conditions	Min	Max	Unit
V _{CC} V _{IH} V _{IL}	Supply Voltage High-Level Input Voltage Low-Level Input Voltage	4.5 2.0	5.5 0.8	> >>
loh loh	Input Clamp Current High-Level Output Current Low-Level Output Current		-18 -1.0 20	mA mA mA
lOL Pw* d*	Pulse Width of Total Delay Duty Cycle	40	40	% %
T _A	Operating Free-Air Temperature	-55	+125	°C

*These two values are inter-dependent.

Input	Pulse Test Conditions @ 25° C	-	Unit
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
Turt	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts

3 Bit Programmable TTL Delay Lines

				OUTPUT DELAY TIME PROGRAMMING (nS)							
PART	MIN DELAY	MAX DELAY		DATA INPUT (CBA)					***************************************		
NUMBER	±2 nS	nS	STEP	000	001	010	011	100	101	110	111
EP8076-1	7	14	1±.5 nS	7	8	9	10	11	12	13	14
EP8076-2	7	21	2±.5 nS	7	9	11	13	15	17	19	21
EP8076-3	7	28	3±.6 nS	7	10	13	16	19	22	25	28
EP8076-4	7	35	4 ± .8 nS	7	11	15	19	23	27	31	35
EP8076-5	7	42	5 ± 1.0 nS	7	12	17	22	27	32	37	42
EP8076-6	7	49	6±1.0 nS	7	13	19	25	31	37	43	49
EP8076-7	7	56	7±1.0 nS	7	14	21	28	35	42	49	56
EP8076-8	7	63	8 ± 1.0 nS	7	15	23	31	39	47	55	63
EP8076-9	7	70	9±1.0 nS	7	16	25	34	43	52	61	70
EP8076-10	7	77	10 ± 1.0 nS	7	17	27	37	47	57	67	77

Max delay tolerances ±2 nS or ±5% whichever is greater
All delays measured at 1.5V level on leading edge, no load (enable = "0")

DC E	DC Electrical Characteristics					
	Parameter	Test Conditions	Min	Max	Unit	
VOH	High-Level Output Voltage	V _{CC} = min. V _{IL} = max. I _{OH} = max	2.7		v	
VOL	Low-Level Output Voltage	V _{CC} = min. V _{IH} = min. I _{OL} = max		0.5	V	
VIK	Input Clamp Voltage	V _{CC} = min. I _I = II _K		-1.2	V	
IJĤ`	High-Level Input Current	V _{CC} = max. V _{IN} = 2.7V		50	μΑ	
		V _{CC} = max. V _{IN} = 5.25V		1.0	mA	
I _I L	Low-Level Input Current	V _{CC} = max. V _{IN} = 0.5V		-2	mA	
los	Short Circuit Output Current	$V_{CC} = max. V_{OUT} = 0.$	-40	-100	mA	
		(One output at a time)			1	
Іссн	High-Level Supply Current	V _{CC} = max. V _{IN} = OPEN		45	mA	
CCL	Low-Level Supply Current	$V_{CC} = \text{max. } V_{IN} = 0$		90	mA	
TRO	Output Rise Time	Td ≤ 500 nS (0.75 to 2.4 Volts)		4	nS	
NH	Fanout High-Level Output	$V_{CC} = max. V_{OH} = 2.7V$		20 TTL		
NL	Fanout Low-Level Output	$V_{CC} = \text{max. } V_{OL} = 0.5V$		10 TTL	LOAD	

	mmended ating Conditions	Min	Max	Unit
V _{CC} V _{IH}	Supply Voltage	4.75	5.25	٧
ViH	High-Level Input Voltage	2.0		V
VIL	Low-Level Input Voltage		0.8	У
lικ	Input Clamp Current		-18	mΑ
ЮН	High-Level Output Current		-1.0	mA
lOL.	Low-Level Output Current		20	mΑ
Pw*	Pulse Width of Total Delay	100		%
IOL PW* d*	Duty Cycle	-	20	%
TA	Operating Free-Air Temperature	0	+70	°C

Input	Pulse Test Conditions		Unit
EIN	Pulse Input Voltage	3.2	Volts
Pw	Pulse Width % of Total Delay	150	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
V _{CC}	Supply Voltage	5.0	Volts
V _{CC}		5.0	

TTL Square-Wave Generator

Features

- Output frequencies from 2 to 100 MHz ±5%
- Low Profile 14 pin dual-in-line package
- Operating temperature range 0 to 70 °C
- Output synchronized using enable line
- 50% duty cycle
- Schottky TTL

PART NUMBER	MHz ±5%	PART NUMBER	MHz ±5%
EP8250	2	EP8259	35
EP8251 EP8252	3 4	EP8260 EP8261	40 45
EP8253	5	EP8262	50
EP8254	10	EP8263	60
EP8255	15	EP8264	70
EP8256	20	EP8265	80
EP8757	25	EP8266	90
EP8258	30	EP8267	100

DCI	DC Electrical Characteristics							
	Parameter	Test Conditions	Min	Max	Unit			
VOH VOL	High-Level Output Voltage Low-Level Output Voltage	V _{CC} = min. V _{IL} = max. I _{OH} = max V _{CC} = min. V _{IH} = min. I _{OL} = max	2.7	0.5	V			
VIK IH	Input Clamp Voltage High-Level Input Current	V _{CC} = min. I _I = II _K V _{CC} = max. V _{IN} = 2.7V V _{CC} = max. V _{IN} = 5.25V		-1.2V 50 1.0	V μA mA			
l _{IL} los	Low-Level Input Current Short Circuit Output Current	V _{CC} = max. V _{IN} = 0.5V V _{CC} = max. V _{OUT} = 0.	-40	-2 -100	mA			
ICCH ICCL TRO	High-Level Supply Current Low-Level Supply Current Output Rise Time	V _{CC} = max. V _{IN} = OPEN V _{CC} = max. V _{IN} = 0 V _{CC} = 5.0V		75 75 4	mA mA nS			
NH NH	Fanout High-Level Output Fanout Low-Level Output	V _{CC} = max. V _{OH} = 2.7V V _{CC} = max. V _{OL} = 0.5V		1	LOAD			

	mmended ating Conditions	Min	Max	Unit
SCH FE FOLD TA	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current Low-Level Output Current Duty Cycle Operating Free-Air Temperature	4.75 2.0 45 0	5.25 0.8 -18 -1.0 20 55 +70	V V V mA mA MA °C

Triple TTL Compatible Active Delay Lines

DELAY TIME	PART	DELAY TIME	PART	DELAY TIME	PART
±5% or 2 nS	NUMBER	±5 or 2 nS	NUMBER	±5% or 2 nS	NUMBER
5 6 7 8 9 10 11 12 13 14 15 16 17	EP9206-5 EP9206-6 EP9206-7 EP9206-8 EP9206-9 EP9206-10 EP9206-11 EP9206-12 EP9206-13 EP9206-14 EP9206-15 EP9206-16 EP9206-17 EP9206-18	19 20 21 22 23 24 25 30 35 40 45 50 55	EP9206-19 EP9206-20 EP9206-21 EP9206-22 EP9206-23 EP9206-24 EP9206-25 EP9206-30 EP9206-35 EP9206-40 EP9206-45 EP9206-50 EP9206-55 EP9206-60	65 70 75 80 85 90 95 100 125 150 175 200 225 250	EP9206-65 EP9206-70 EP9206-75 EP9206-80 EP9206-85 EP9206-90 EP9206-100 EP9206-125 EP9206-150 EP9206-175 EP9206-200 EP9206-225 EP9206-250

Delay Times referenced from input to leading edges.

DC E	lectrical Characteristic Parameter		Min	Max	Unit
NOH VOL VOH	High-Level Output Voltage Low-Level Output Voltage Input Clamp Voltage High-Level Input Current	V _{CC} = min. V _{IL} = max. I _{OH} = max V _{CC} = min. V _{IH} = min. I _{OL} = max V _{CC} = min. I _I = II _K V _{CC} = max. V _{IN} = 2.7V		0.5 -1.2V 50	> > > μA
l _{IL} los	Low-Level Input Current Short Circuit Output Current	V_{CC} = max. V_{IN} = 5.25V V_{CC} = max. V_{IN} = 0.5V V_{CC} = max. V_{OUT} = 0. (One output at a time)	-40	1.0 -2 -100	mA mA mA
ICCH ICCL TRO	High-Level Supply Current Low-Level Supply Current Output Rise Time	V _{CC} = max. V _{IN} = OPEN V _{CC} = max. V _{IN} = 0		115 115 4	mA mA nS
N _H	Fanout High-Level Output Fanout Low-Level Output	V _{CC} = max. V _{OH} = 2.7V V _{CC} = max. V _{OL} = 0.5V		(LOAD LOAD

	ommended rating Conditions	Min	Max	Unit
V _{CC}	Supply Voltage High-Level Input Voltage	4.75 2.0	5.25	V
VIL	Low-Level Input Voltage	2.0	0.8	v
IN	Input Clamp Current High-Level Output Current		-18 -1.0	mA mA
	Low-Level Output Current		20	mA
IOL PW*	Pulse Width of Total Delay Duty Cycle	40	40	% %
TA	Operating Free-Air Temperature	0	+70	°C

*These	two	values	are ir	nter-de	pendent.
--------	-----	--------	--------	---------	----------

Inpu	t Pulse Test Conditions @ 25° C		Unit
EIN	Pulse Input Voltage	3.2	Volts
PW	Pulse Width % of Total Delay	110	%
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz
1 ""	Pulse Repetition Rate @ Td > 500 nS	500	KHz
Vcc	Supply Voltage	5.0	Volts

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

EP9206 1186

3 Bit Programmable ECL Delay Lines

	DELAYS AND TOLERANCES (in nS)											
PART NUMBER	MIN DELAY (Inherent)	MAX DELAY (Nom)	DELAY/STEP	STEP DELAY TOLERANCE (Ref. Inherent Delay)	000	TRUTH TABLE (Programming Pins = CBA) 000 001 010 011 100 101 110 111						
EP9450-1 EP9450-2 EP9450-3 EP9450-4 EP9450-5 EP9450-7 EP9450-8 EP9450-9 EP9450-10 EP9450-15 EP9450-20	3.0 ± .3 3.0 ± .3	10 17 24 31 38 45 52 59 66 73 108	1±.3 2±.4 3±.5 4±.5 5±.5 6±.6 7±.7 8±.8 9±.9 10±1.0 15±1.5 20±2.0	±0.4 nS or ±5% ±0.6 nS or ±5% ±0.8 nS or ±5% ±1.0 nS or ±5% ±1.0 nS or ±5% ±2.0 nS or ±5%	3 3 3 3 3 3 3 3 3 3 3 3	4 5 6 7 8 9 10 11 12 13 18 23	5 7 9 11 13 15 17 19 21 23 33 43	6 9 12 15 18 21 24 27 30 33 48 63	7 11 15 19 23 27 31 35 39 43 63 83	8 13 18 23 28 33 38 43 48 53 78 103	9 15 21 27 33 39 45 51 57 63 93 123	10 17 24 31 38 45 52 59 66 73 108 143
EP9450-25 EP9450-30 EP9450-35 EP9450-40 EP9450-50	3.0±.3 3.0±.3 3.0±.3 3.0±.3 3.0±.3 3.0±.3	178 213 248 283 318 353	25±2.0 25±2.0 30±2.0 35±2.0 40±2.5 45±2.5 50±2.5	±2.0 nS or ±5% ±2.0 nS or ±5%	3 3 3 3 3	28 33 38 43 48 53	53 63 73 83 93	78 93 108 123 138 153	103 123 143 163 183 203	128 153 178 203 228 253	153 183	178 213 248 283 318

Delay times referenced from input to leading edges

DC Electrical Characterstics

 $\begin{array}{l} (V_{CCI} = V_{CC2} = GRD, \, V_{EE} = 5.2V \pm 0.01V \\ \text{Output Loading With 50 Ohms to } -2.0V \pm 0.01V) \end{array}$

	Parameter	Test Conditions	Min	Мах	Unit
Vон Vонт	High Level Ouput Voltage High Level Output Threshold Voltage	V _{IL} = Min	-960 -980		mV mV
VOLT	Low Level Ouptut Threshold Voltage			-1630	mV
VOL	Low Level Output Voltage	V _{IH} = Max	1	-1650	
l IH	High Level Input Current	V _{IH} = Max	1	15	mA
IIL I	Low Level Input Current	VIL = Min	0.5		mA
IL IEE	VEE Supply Current			75	mA ·

Recommended Operating Conditions									
	Parameter	Min	Max	Unit					
VEE VCC VIH VIHT VILT PW* d* TA	Supply Voltage (Negative) Circuit Ground (Pins 1 and 16) High Level Input Voltage High Level Input Threshold Voltage Low Level Input Voltage Low Level Input Threshold Voltage Pulse Width of Total Delay Duty Cycle Operating Free-Air Temperature	4.94 0 -980 -1105 -1850 40	5.46 0 -810 -1630 -1475 40 +80	V V mV mV mV % %					

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25° C						
VIN PIN TRI VEE	Pulse Input Voltage Pulse Width of Total Delay Pulse Rise Time Supply Voltage	-1.0V (-0.75 to - 1.75V) 3 x Max Delay 2 nS -5.2V				
FP9450 1186						

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

Quad TTL Compatible Active Delay Lines

DELAY TIME	PART	DELAY TIME	PART	DELAY TIME	PART
±5% or 2 nS	NUMBER	±5 or 2 nS	NUMBER	±5% or 2 nS	NUMBER
5 6 7 8 9 10 11 12 13 14	EP9734-5 EP9734-6 EP9734-7 EP9734-8 EP9734-9 EP9734-10 EP9734-11 EP9734-12 EP9734-13 EP9734-15	16 17 18 19 20 21 22 23 24 25 30	EP9734-16 EP9734-17 EP9734-18 EP9734-19 EP9734-20 EP9734-21 EP9734-22 EP9734-23 EP9734-24 EP9734-25 EP9734-30	35 40 45 50 55 60 65 70 75	EP9734-35 EP9734-40 EP9734-45 EP9734-50 EP9734-60 EP9734-65 EP9734-70 EP9734-75

DC E	lectrical Characteristic Parameter		Min	Max	Unit
VOH VOL VIK IH	High-Level Output Voltage Low-Level Output Voltage Input Clamp Voltage High-Level Input Current	V _{CC} = min. V _{IL} = max. I _{OH} = max V _{CC} = min. V _{IH} = min. I _{OL} = max V _{CC} = min. I _I = II _K V _{CC} = max. V _{IN} = 2.7V	2.7	0.5 -1.2V 50 1.0	∨ ∨ ν μΑ mA
l _{IL} los	Low-Level Input Current Short Circuit Output Current	V_{CC} = max. V_{IN} = 5.25V V_{CC} = max. V_{IN} = 0.5V V_{CC} = max. V_{OUT} = 0. (One output at a time)	-40	-2 -100	mA mA
ICCH ICCL TRO	High-Level Supply Current Low-Level Supply Current Output Rise Time	V _{CC} = max. V _{IN} = OPEN V _{CC} = max. V _{IN} = 0		150 150 4	mA mA nS
NH NL	Fanout High-Level Output Fanout Low-Level Output	$V_{CC} = max. V_{OH} = 2.7V$ $V_{CC} = max. V_{OL} = 0.5V$		20 TTL 10 TTL	

	ommended ating Conditions	Min	Max	Unit
Vcc	Supply Voltage	4.75	5.25	V
VIH	High-Level Input Voltage	2.0		V
V _{IL}	Low-Level Input Voltage		0.8	V
lк	Input Clamp Current		-18	mA
IOH	High-Level Output Current		-1.0	mA
loi	Low-Level Output Current		20	mA
Pw*	Pulse Width of Total Delay	40		%
IOH IOL PW* d*	Duty Cycle		40	%
TA	Operating Free-Air Temperature	0	+70	∘c

^{*}These two values are inter-dependent.

Inpu	Input Pulse Test Conditions @ 25° C				
EIN	Pulse Input Voltage	3.2	Volts		
PW	Pulse Width % of Total Delay	110	%		
TRI	Pulse Rise Time (0.75 - 2.4 Volts)	2.0	nS		
PRR	Pulse Repetition Rate @ Td ≤ 500 nS	1.0	MHz		
· nn	Pulse Repetition Rate @ Td > 500 nS	500	KHz		
Vcc	Supply Voltage	5.0	Volts		

TTL Pulse Width Generators

Features

- Precise output pulse width
- Positive-edge triggered (10nS) min.
- Fast rise and fall time (4nS max measured from 0.75V to 2.4V)
- Low Profile 14 pin DIP for auto-insertion

PART NUMBER	PULSE WIDTH * ±2 NS or ±5% (PWO)	MAX OUTPUT FREQ (mHz)
EP9981-5	5	100
EP9981-10	10	50
EP9981-15	15	33
EP9981-20	20	25
EP9981-25	25	20
EP9981-30	30	16
EP9981-35	35	14
EP9981-40	40	12
EP9981-45	45	11
EP9981-50	50	10
EP9981-60	60	8.4
EP9981-70	70	7.1
EP9981-80	80	6.3
EP9981-90	90	5.5
EP9981-100	100	5.0

^{*} Measured at 1.5V Levels

DC Electrical C Paramete		cs Test Conditions	Min	Max	Unit
VOH VOL Low-Level Ou Low-Level Ou Input Clamp V High-Level Input Clamp V High-Level Input Clamp V High-Level Su Low-Level Su Fanout High-Level Su Fanout Low-Level Coulong Toward Fanout Low-Level Ou Low-Level Su Fanout Low-Level Ou Low-Level Su Fanout Low-Level Ou Low-Level Input Clamp V Low-Level Input Clamp V Low-Level Input Low-Level Su Low-Level Su Fanout Low-Level Su Fanout Low-Level Su Fanout Low-Level Input Low-Level Su Low-Level Su Fanout Low-Level Su Fanout Low-Level Su Fanout Low-Level Input Low-Level Su Fanout Low-Level Su Fano	tput Voltage /oltage out Current out Current Output Current ipply Current pply Current Level Output	$\begin{array}{l} V_{CC} = \text{min. } V_{IL} = \text{max. } I_{OH} = \text{max} \\ V_{CC} = \text{min. } V_{IH} = \text{min. } I_{OL} = \text{max} \\ V_{CC} = \text{min. } I_{I} = II_{K} \\ V_{CC} = \text{max. } V_{IN} = 2.7V \\ V_{CC} = \text{max. } V_{IN} = 0.5V \\ V_{CC} = \text{max. } V_{IN} = 0PEN \\ V_{CC} = \text{max. } V_{IN} = 0 \\ V_{CC} = \text{max. } V_{OH} = 2.7V \\ V_{CC} = \text{max. } V_{OL} = 0.5V \\ \end{array}$	-40		V V µA mA mA mA LOAD

	mmended ating Conditions	Min	Max	Unit
VCC VIH VIL IOH IOL P PWI TA	Supply Voltage High-Level Input Voltage Low-Level Input Voltage Input Clamp Current High-Level Output Current Low-Level Output Current Period Input Pulse Width Operating Free-Air Temperature	4.75 2.0	5.25 0.8 -18 -1.0 20 PWO X2 +70	V V MA MA nS S ℃

Input Pulse Test Conditions @ 25° C Unit				
Pulse Input Voltage	3.2	Volts		
Pulse Rise Time	2.0	nS		
Pulse Width	10	nS		
Period	Pwo x2	nS		
(For EP9981-5)	20	nS		
Supply Voltage	5.0	Volts		
	Pulse Input Voltage Pulse Rise Time Pulse Width Period (For EP9981-5)	Pulse Input Voltage 3.2 Pulse Rise Time 2.0 Pulse Width 10 Period PWO x2 (For EP9981-5) 20		

14 Pin Dip Delay Lines

Zo OHM ±10%	DELAY nS ±5% or 2 nS	TAP DELAYS nS	RISE TIME nS MAX	ATTEN % MAX	PCA PART NUMBER	Zo OH ±10%	DELAY nS ±5%	TAP DELAYS ±10 or 2 nS	RISE TIME nS MAX	ATTEN % MAX	PCA PART NUMBER
50	16	1.6 ± 0.6	3	1.6	EP19830	100	60	6	11	2.0	EP19836
50	20	2 ± 0.6	3.5	1.6	EP6889	100	75	7.5	15	4.0	EP8476
50	24	2.4 ± 0.6	4.5	1.6	EP19831	100	100	10	17	4.0	EP19825
50	50	5 ± 2	8.5	1.6	EP19821	100	125	12.5	21	7.0	EP19826
50	100	10±2	17	3.8	EP19822	100	150	15	25	8.0	EP19827
50	125	12.5 ± 2	21	6.5	EP19823	100	200	20	34	10.0	EP19828
100	30	3 ± 0.6	5.5	2.0	EP8684	100	250	25	42	12.0	EP19829
100	35	3.5 ± 0.8	6	2.0	EP19833	200	68	6.8	12	10.0	EP19838
100	37	3.7 ± 0.8	6	2.0	EP19834	200	75	7.5	13	10.0	EP19839
100	40	4 ± 1	8	2.0	EP7179	200	80	8	14	10.0	EP19840
100	47	4.7 ± 1	8	2.0	EP19835	200	95	9.5	17	10.0	EP19841
100	50	5 ± 2	8.5	2.0	EP19824	200	120	12	21	10.0	EP19842

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

Recommended Operating Conditions Min Max								
Pw* D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	4 0 70	% % °C				

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25°C					
VIN PW TRI PRR	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate @ Td ≤ 150 nS Pulse Repetition Rate @ Td > 150 nS	10 Volts 300 % 2.0 nS 1.0 MHz 300 KHz			

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

14 Pin DIP **Delay Lines**

Zo OHMS ±10%	DELAY NS ±5% or 2NS	TAP DELAYS ±10%	RISE TIME NS MAX	ATTEN DB MAX	PCA PART NUBER	Zo OHMS ±10%	DELAY NS ±5% or 2NS	TAP DELAYS ±10%	RISE TIME NS MAX	ATTEN DB MAX	PCA PART NUMBER
50	10	1	3	1	EP6400-1	200	100	10	20	1	EP6400-8
50	25	2.5	5	1	EP6400-2	200	200	20	40	1	EP6400-9
50	50	5	10	1	EP6400-3	250	250	25	50	1	EP6400-16
100	20	2	4	1	EP6400-4	300	60	6	12	1	EP6400-10
100	50	5	10	1	EP6400-5	300	150	15	30	1	EP6400-11
100	100	10	20	1	EP6400-6	300	300	30	60	1	EP6400-12
100	250	25	50	1	EP6400-18	500	100	10	20	1	EP6400-13
200	20	2	4	1	EP6400-17	500	250	25	50	2	EP6400-14
200	40	4	8	1	EP6400-7	500	500	50	100	2	EP6400-15

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

	mmended Operating litions	Min	Max	Unit
P _{W*} D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % ℃

^{*}These two values are inter-dependent.

Input	Input Pulse Test Conditions @ 25°C								
V _{IN} P _W T _{RI} P _{RR}	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate @ Td ≤ 150 nS Pulse Repetition Rate @ Td > 150 nS	10 Volts 300 % 2.0 nS 1.0 MHz 300 KHz							

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

6400-1 0986

14 Pin Single-in-Line Package Delay Lines

Zo OHMS ±10%	DELAY NS ±5% or 2 NS	TAP DELAYS ±5% or 2 NS	RISE TIME NS MAX	DCR OHMS MAX	PCA PART NUMBER	Zo OHMS ±10%	DELAY NS ±5% or 2 NS	TAP DELAYS ±5% or 2 NS	RISE TIME NS MAX	DCR OHMS MAX	PCA PART NUMBER
50	10	1	2	1	EP6700-1	100	20	2	4	4	EP6700-11
50	20	2	4	1	EP6700-2	100	40	4	8	4	EP6700-12
50	30	3	6	1	EP6700-3	100	60	6	12	4	EP6700-13
50	40	4	8	1	EP6700-4	100	80	8	16	4	EP6700-14
50	50	5	10	1	EP6700-5	100	100	10	20	4	EP6700-15
50	60	6	12	2	EP6700-6	100	120	12	24	6	EP6700-16
50	70	7	14	2	EP6700-7	100	140	14	28	6	EP6700-17
50	80	8	16	2	EP6700-8	100	160	16	32	6	EP6700-18
50	90	9	18	2	EP6700-9	100	180	18	36	6	EP6700-19
50	100	10	20	2	EP6700-10	100	200	20	40	6	EP6700-20

Optional: Output internally terminated, add "T" after PCA P/N; ex. EP6700-IT

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

	mmended Operating itions	Min	Max	Unit
Pw* D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % ℃

^{*}These two values are inter-dependent.

Input	Input Pulse Test Conditions @ 25°C								
VIN PW TRI PRR	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate @ Td ≤ 150 nS Pulse Repetition Rate @ Td > 150 nS	10 Volts 300 % 2.0 nS 1.0 MHz 300 KHz							

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

8 Pin Single-in-Line Delay Lines

Zo OHMS ±10	DELAY NS MAX	DELAY TOL NS MAX	RISE TIME NS MAX (Calculated)	DCR OHMS MAX	PCA PART NUMBER	Zo OHMS ±10	DELAY NS MAX	DELAY TOL NS MAX	RISE TIME NS MAX (Calculated)	DCR OHMS MAX	PCA PART NUMBER
100	0.0	+0.25	1.0	1.0	EP123101	100	9.0	±0.25	1.9	1.0	EP123119
100	0.5	±0.25	1.0	1.0	EP123102	100	9.5	±0.25	2.0	1.0	EP123120
100	1.0	±0.25	1.0	1.0	EP123103	100	10.0	±0.25	2.0	1.0	EP123121
100	1.5	±0.25	1.0	1.0	EP123104	100	11.0	±0.25	2.2	2.0	EP123123
100	2.0	±0.25	1.0	1.0	EP123105	100	12.0	±0.25	2.3	2.0	EP123125
100	2.5	±0.25	1.0	1.0	EP123106	100	13.0	±0.25	2.5	2.0	EP123127
100	3.0	±0.25	1.0	1.0	EP123107	100	14.0	±0.25	2.6	2.0	EP123129
100	3.5	±0.25	1.0	1.0	EP123108	100	15.0	±0.25	2.8	2.0	EP123131
100	4.0	±0.25	1.0	1.0	EP123109	100	16.0	±0.25	3.0	2.5	EP123133
100	4.5	±0.25	1.0	1.0	EP123110	100	17.0	±0.25	3.2	2.5	EP123135
100	5.0	±0.25	1.1	1.0	EP123111	100	18.0	±0.25	3.4	2.5	EP123137
100	5.5	±0.25	1.2	1.0	EP123112	100	19.0	±0.25	3.6	2.5	EP123139
100	6.0	±0.25	1.3	1.0	EP123113	100	20.0	±0.50	3.8	2.5	EP123141
100	6.5	±0.25	1.4	1.0	EP123114	100	25.0	±0.50	4.5	4.0	EP123146
100	7.0	±0.25	1.5	1.0	EP123115	100	30.0	±0.50	5.5	4.5	EP123151
100	7.5	±0.25	1.6	1.0	EP123116	100	35.0	±0.50	6.4	5.5	EP123156
100	8.0	±0.25	1.7	1.0	EP123117	100	40.0	±0.50	7.4	6.0	EP123161
100	8.5	±0.25	1.8	1.0	EP123118						

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

Recommended Operating Conditions Min Max U									
Pw* D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % °C					

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25°C							
V _{IN} PW T _{RI} P _{RR}	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate	10 Volts 300 % 2.0 nS 1.0 MHz					

7 Pin Single-in-Line Package Delay Lines

Zo OHMS ±10%	DELAY NS ±5% or 2 NS	TAP DELAYS ±5% or 2 NS	RISE TIME NS MAX	DCR OHMS MAX	PCA PART NUMBER	Zo OHMS ±10%	DELAY NS ±5% or 2 NS	TAP DELAYS ±5% or 2 NS	RISE TIME NS MAX	DCR OHMS MAX	PCA PART NUMBER
50	5	1	2	0.3	EP120650	100	5	1	2	0.5	EP120661
50	10	2	3	0.5	EP120651	100	10	2	3.3	1.0	EP120662
50	20	4	6	0.8	EP120652	100	20	4	6	1.5	EP120663
50	30	6	9	1.2	EP120653	100	30	6	9	2.5	EP120664
50	40	8	12	1.8	EP120654	100	40	8	11	4.0	EP120665
50	50	10	15	2.3	EP120655	100	50	10	14	5.0	EP120666
50	60	12	18	2.5	EP120656	100	60	12	17	5.5	EP120667
50	70	14	22	3.5	EP120657	100	70	15	21	6.0	EP120668
50	80	16	24	4.2	EP120658	100	80	16	23	6.5	EP120669
50	90	18	27	4.5	EP120659	100	90	18	25	7.0	EP120670
50	100	20	28	5.2	EP120660	100	100	20	28	7.5	EP120671

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

	mmended Operating itions	Min	Max	Unit
Pw* D* Ta	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % °C

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25°C					
VIN PW TRI PRR	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate	10 Volts 300 % 2.0 nS 1.0 MHz			

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761

FAX: (818) 894-5791

24 Pin Dip Delay Lines

Zo OHMS ±10%	TOTAL DELAY NS ±5% or ±2 NS	TAP TO TAP DELAYS NS	OUTPUT RISE TME NS MAX	ATTEN MAX %	SCHEMATIC #1	PART NUMBER SCHEMATIC #2	SCHEMATIC #3
50	20	1.± 0.2	3	10	EPA059-20A	EPA060-20A	EPA061-20A
50	50	2.5 ± 0.5	5	10	EPA059-50A	EPA060-50A	EPA061-5050
50	100	5 ± 1.0	10	10	EPA059-100A	EPA060-100A	EPA061-100A
50	200	10 ± 1.0	20	10	EPA059-200A	EPA060-200A	EPA061-200A
100	20	1 ± 0.2	3	10	EPA059-20B	EPA060-20B	EPA061-20B
100	50	2.5 ± 0.5	5	10	EPA059-50B	EPA060-50B	EPA061-50B
100	100	5 ± 1.0	10°	10	EPA059-100B	EPA060-100B	EPA061-100B
100	200	10 ± 1.0	20	10	EPA059-200B	EPA060-200B	EPA061-200B
100	500	25 ± 2.5	50	20	EPA059-500B	EPA060-500B	EPA061-500B
100	1000	50 ± 5.0	100	20	EPA059-1000B	EPA060-1000B	EPA061-1000B
200	20	1 ± 0.2	3	10	EPA059-20C	EPA060-20C	EPA061-20C
200	50	2.5 ± 0.5	5	10	EPA059-50C	EPA060-50C	EPA061-50C
200	100	5 ± 1.0	10	10	EPA059-100C	EPA060-100C	EPA061-100C
200	500	25 ± 2.5	50	20	EPA059-500C	EPA060-500C	EPA061-500C
200	1000	50 ± 5.0	100	20	EPA059-1000C	EPA060-1000C	EPA061-1000C

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

I	mmended Operating itions	Min	Max	Unit
Pw* D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % ℃

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25°C						
VIN PW TRI PRR	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate @ Td ≤ 150 nS Pulse Repetition Rate @ Td > 150 nS	10 Volts 300 % 2.0 nS 1.0 MHz 300 KHz				

28 Pin SMD Delay Lines

Zo OHMS ±10%	DELAY NS ±5% or 2NS	TAP DELAYS	RISE TIME NS MAX	ATTEN DB MAX	PCA PART NUMBER	Zo OHMS ±10%	DELAY NS ±5% or 2NS	TAP DELAYS	RISE TIME NS MAX	ATTEN DB MAX	PCA PART NUMBER
100	25	2.5±0.5	5	2%	EP9130	200	25	2.5±0.5	5	2%	EP9145
100	30	3.0±0.5	6	2%	EP9131	200	30	3.0±0.5	6	2%	EP9146
100	35	3.5±0.5	7	2%	EP9132	200	35	3.5±0.5	7	2%	EP9147
100	40	4.0±0.5	8	2%	EP9133	200	40	4.0±0.5	8	2%	EP9148
100	45	4.5±0.5	9	2%	EP9134	200	45	4.5±0.5	9	2%	EP9149
100	50	5.0±1.0	10	2%	EP9135	200	50	5.0±0.5	10	2%	EP9150
100	60	6.0±1.0	12	2%	EP9136	200	60	6.0±1.0	12	2%	EP9151
100	75	7.5±1.0	15	4%	EP9137	200	75	7.5±1.0	15	4%	EP9152
100	100	10±2.0	20	4%	EP9138	200	100	10±2.0	20	4%	EP9153
100	125	12.5±2.0	25	7%	EP9139	200	125	12.5±2.0	25	7%	EP9154
100	150	15±2.0	30	8%	EP9140	200	150	15±2.0	30	8%	EP9155
100	175	17.5±2.0	35	10%	EP9141	200	175	17.5±2.0	35	10%	EP9156
100	200	20±20	40	10%	EP9142	200	200	20±20	40	12%	EP9157
100	225	22.5±2.0	45	10%	EP9143	200	225	22.5±2.0	45	12%	EP9158
100	250	25±2.0	50	12%	EP9144	200	250	25±2.0	50	12%	EP9159

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

	mmended Operating itions	Min	Max	Unit
Pw* D*	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40	% % °C
TA	Operating Free Air Temperature		/0	-0

^{*}These two values are inter-dependent.

Input	Pulse Test Conditions @ 25°C	
VIN PW TRI PRR	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate @ Td ≤ 150 nS Pulse Repetition Rate @ Td > 150 nS	10 Volts 300 % 2.0 nS 1.0 MHz 300 KHz

28 Pin Gull-Wing SMD Delay Lines

Zo OHMS ±10%	DELAY NS ±5% or 2 NS	TAP DELAYS	RISE TIME NS MAX	ATTEN MAX	PCA PART NUMBER	Zo OHMS ±10%	DELAY NS ±5% or 2 NS	TAP DELAYS	RISE TIME NS MAX	ATTEN MAX	PCA PART NUMBER
100	25	2.5±0.5	5	2%	EP9160	200	25	2.5±0.5	5	2%	EP9175
100	30	3.0±0.5	6	2%	EP9161	200	30	3.0±0.5	6	2%	EP9176
100	35	3.5±0.5	7	2%	EP9162	200	35	3.5±0.5	7	2%	EP9177
100	40	4.0±0.5	8	2%	EP9163	200	40	4.0±0.5	8	2%	EP9178
100	45	4.5±0.5	9	2%	EP9164	200	45	4.5±0.5	9	2%	EP9179
100	50	5.0±1.0	10	2%	EP9165	200	50	5.0±0.5	10	2%	EP9180
100	60	6.0±1.0	12	2%	EP9166	200	60	6.0±1.0	12	2%	EP9181
100	75	7.5±1.0	15	4%	EP9167	200	75	7.5±1.0	15	4%	EP9182
100	100	10±2.0	20	4%	EP9168	200	100	10±2.0	20	4%	EP9183
100	125	12.5±2.0	25	7%	EP9169	200	125	12.5±2.0	25	7%	EP9184
100	150	15±2.0	30	8%	EP9170	200	150	15±2.0	30	8%	EP9185
100	175	17.5±2.0	35	10%	EP9171	200	175	17.5±2.0	35	10%	EP9186
100	200	20±20	40	10%	EP9172	200	200	20±20	40	12%	EP9187
100	225	22.5±2.0	45	10%	EP9173	200	225	22.5±2.0	45	12%	EP9188
100	250	25±2.0	50	12%	EP9174	200	250	25±2.0	50	12%	EP9189

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

	mmended Operating litions	Min	Max	Unit
Pw* D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % ℃

^{*}These two values are inter-dependent.

Input Pulse Test Conditions @ 25°C		
VIN PW T _{RI} PRR	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate @ Td ≤ 150 nS Pulse Repetition Rate @ Td > 150 nS	10 Volts 300 % 2.0 nS 1.0 MHz 300 KHz

Variable Delay Lines

PART	VARIA	ABLE DELA	YS (nS)	DC	OUTPUT	CHAR.
NUMBER	LOW MAX	RANGE	HIGH MIN	RESISTANCE OHMS MAX	RISE TIME 20 - 80% NS MAX	IMPEDANCE OHMS ± 10%
EPA087-10A	2	10	12	0.6	2.5	50
EPA087-15A	2	15	17	0.7	3.0	50
EPA087-25A	3	25	28	0.9	5.0	50
EPA087-30A	4	30	34	1.0	6.0	50
EPA087-40A	5	40	45	1.3	8.0	50
EPA087-50A	6	50	56	1.7	10.0	50
EPA087-75A	9	75	84	2.6	15.0	50
EPA087-100A	12	100	112	3.5	20.0	50
EPA087-10F	2	10	12	1.0	2.5	75
EPA087-15F	2	15	17	1.5	3.0	75
EPA087-25F	3	25	28	2.0	5.0	75
EPA087-30F	4	30	34	2.5	6.0	75
EPA087-40F	5	40	45	3.0	8.0	75
EPA087-50F	6	50	56	3.5	10.0	75
EPA087-75F	9	75	84	4.5	15.0	75
EPA087-100F	12	100	112	5.5	20.0	75
EPA087-10B	2	10	12	1.5	2.5	100
EPA087-15B	2	15	17	2.0	3.0	100
EPA087-25B	3	25	28	2.5	5.0	100
EPA087-30B	4	30	34	3.0	6.0	100
EPA087-40B	5	40	45	3.5	8.0	100
EPA087-50B	6	50	56	4.0	10.0	100
EPA087-75B	9	75	84	5.0	15.0	100
EPA087-100B	12	100	112	6.0	20.0	100

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

Recor Cond	mmended Operating itions	Min	Max	Unit
Pw* D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % °C

^{*}These two values are inter-dependent.

Input	Input Pulse Test Conditions @ 25°C					
V _{IN} PW T _{RI} PRR	Pulse Input Voltage Pulse Width % of Total Delay Input Rise Time (10 - 90%) Pulse Repetition Rate	10 Volts 300 % 2.0 nS 1.0 MHz				

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

Mini SIP Passive Delay Lines

-80% 5 Max 1.6 1.6	0.20 0.25	55 Ohms EP9910-1H EP9910-2H	93 Ohms EP9910-11
1.6			
	0.25	ED0010.2H	ED0040.01
111		EF 33 10-2F	EP9910-2l
1.7	0.35	EP9910-3H	EP9910-3I
1.7	0.45	EP9910-4H	EP9910-4I
1.8	0.55	EP9910-5H	EP9910-5I
2.0	0.70	EP9910-6H	EP9910-6I
2.2	0.80	EP9910-7H	EP9910-7l
2.4	0.85	EP9910-8H	EP9910-8I
2.6	0.90	EP9910-9H	EP9910-9I
2.8	0.95	EP9910-10H	EP9910-10I
	2.0 2.2 2.4 2.6	2.0 0.70 2.2 0.80 2.4 0.85 2.6 0.90	2.0 0.70 EP9910-6H 2.2 0.80 EP9910-7H 2.4 0.85 EP9910-8H 2.6 0.90 EP9910-9H

DC Electrical Characteristics	Min	Max	Unit
Distortion Temperature Coefficient of Delay Insulation Resistance @ 100 Vdc Dielectric Strength	1K	±10 100	% PPM/°C Meg Ohms Vdc

	mmended Operating itions	Min	Max	Unit
Pw* D* T _A	Pulse Width % of Total Delay Duty Cycle Operating Free Air Temperature	200	40 70	% % °C

^{*}These two values are inter-dependent.

Input	Pulse Test Conditions @ 25°C	·
V _{IN}	Pulse Input Voltage	10 Volts
PW	Pulse Width % of Total Delay	300 %
T _{RI}	Input Rise Time (10 - 90%)	2.0 nS
P _{RR}	Pulse Repetition Rate	1.0 MHz

Isolation Transformers for LAN-ETHERNET Applications

Features

- Low profile for auto-insertion
- Available on 14 or 16 pin package
- Low leakage inductance (LE) and interwinding capacitance (CW)
- HIPOT-2000 Vrms. (to comply with LANS safety requirements)
- \blacksquare Turns ratio 1:1 $\pm 5\%$

ELECTRICAL SPECIFICATIONS AT 25 °C

PCA PART NO.

PKG. A (14-PIN)	PKG. B (16 PIN)	OCL μ H, \pm 20%	ET-CONSTANT V- μ s, MIN.	RISE TIME nS, MAX.	CW pF, MAX.	LE μ H, MAX.	DCR OHMS, MAX.
EP9547-1	EP9531-1	25	2.0	3.0	5	0.15	0.15
EP9547-2	EP9531-2	30	2.0	3.0	5	0.15	0.15
EP9547-3	EP9531-3	35	2.2	3.0	6	0.15	0.20
EP9547-4	EP9531-4	50	2.2	3.0	7	0.20	0.20
EP9547-5	EP9531-5	75	2.5	3.0	8	0.20	0.25
EP9547-6	EP9531-6	100	2.5	3.0	9	0.25	0.30
EP9547-7	EP9531-7	125	3.0	3.0	10	0.25	0.30
EP9547-8	EP9531-8	150	3.0	3.0	11	0.25	0.40
EP9547-9	EP9531-9	175	3.5	3.5	12	0.25	0.50
EP9547-10	EP9531-10	200	3.5	3.5	13	0.30	0.50

PACKAGE A

16799 SCHOENBORN STREET SEPULVEDA, CA 91343 PHONE: (818) 892-0761 TELEX: 67-4681 TWX: 910-496-1525

Starlan Isolation Transformers

Features

- Available in single and dual low profile packages.
- HIPOT- 2000 Vrms (to comply with LAN'S International safety requirements).
- Designed for hub and node applications.
- Meet the high-reliability specs of the IEEE 802.3 Standard (Type 1 Base 5).

PCA P/N	TYPE	PACKAGE STYLE
EPA045-1	Single	Case
EPA045-2	Dual	14 Pin Dip

ELECTRICAL SPECIFICATIONS @ 25°C

PARAMETERS	SPECIFICATIONS		
Pulse Inductance measured at 3 V, and PW of 3 µS at PRR of 1 mS	2.5 mH ±20% (See Test Circuit)		
Primary ET constant	20.0 V-μS min		
Rise Time	100 nS max		
Pri/Sec inter-winding capacitance	25 pF max		
Pri/Sec leakage inductance	8 μH max		
Pri or Sec DCR	1.0 Ohms max		
Turns Ratio	1:1 ±5%		
HIPOT between Pri and Sec and also from coil to coil in the Dual Package	2000 V r m s		

Token Ring Isolation Transformers

Features

- Available in single and dual low profile packages
- Hipot 500Vrms (to comply with LAN's International Safety Requirements)
- Designed for IBM and
 TI token ring applications
 IEEE 802.5 compatible

ELECTRICAL SPECIFICATIONS @ 25 °C					
PARAMETERS	SPECIFICATIONS				
Primary Inductance @ 1 KHz	1.0 mH for ref. only				
Insertion Loss @ 10 mHz	0.5 dB max				
Common Mode Rejection Ratio @ 1.0 mHz	-60 dB min				
Return Loss @ 5 mHz	20 dB min				
Tums Ratio	1:1:2:2±5%				
HIPOT between Pri and Sec and also from coil to coil in the Dual Package	500 Vrms				

PCA P/N	TYPE	PACKAGE STYLE	
EP9842-1	Single	Case	
EP9842-2	Dual	16 Pin DIL	

Stand-Off Type Pulse Transformer

Features

- Broad Range of Computer Applications: Coupling Memory Line Driver Sense Line Output Floating Switch Common Mode Choke
- Available in a Wide Variety of Characteristics
- Compact Design

Method of Testing

For primary inductance (Lm):
Rhode & Schwartz BN6100
Inductance Meter
For leakage inductance and inter-winding capacitance:

Tektronix Type 130 LC Meter For effective distributed capacitance: ESI Bridge Model No. 250A, or equivalent.

Two -Winding Transformer — Center Tapped

TURNS RATIO ±5%	PRIMARY INDUCTANCE uh ±20%	LEAKAGE INDUCTANCE uh MAX.	PRIMARY DCR OHMS MAX	INTERWINDING CAPACITANCE pf MAX.	EFFECTIVE DISTRIBUTED CAPACITANCE pf 1.6 GROUND	PRIMARY ET CONSTANT V-US MIN.	Part no.
1:1	6000	1.26	5	78	9	30	EP-101C-602
	2200	0.78	2.9	42	7	17	EP-101C-222
	400	0.56	1.4	15	5	7	EP-101C-401
	140	0.49	0.9	9.7	4.5	3.5	EP-101C-141

See Reverse Side for Technical Data

Three-Winding Transformers

EFFECTIVE DISTRIBUTED CAPACITANCE

			PRIMARY		SHUNTING	WINDING N1	PRIMARY		
TUDNIC DATIO	PRIMARY INDUCTANCE	LEAKAGE	DCR	INTERWINDING		fmax)	ET		
±5%	uh ±20%	uh MAX.	OHMS MAX	CAPACITANCE pf MAX.	1, 3, 5 GND.	1, 4, 5 GND	CONSTANT V-u\$ MIN.	PART NO.	
1:1:1	2500	1.2	3.1	45	4	50	18	EP-111-252	
	750	0.7	1.8	26	4	25	12	EP-111-751	
	250	0.5	1.1	16	4	16	6	EP-111-251	
	70	0.7	1.8	23	4	37	5	EP-111-700	
	50	0.5	1.4	21	4	27	4	EP-111-500	
	25	0.4	1.1	15	4	20	3	EP-111-250	
	15	0.4	0.9	13	4	18	2.5	EP-111-150	
	7	0.4	0.7	11	4	14	2	EP-111-070	
2:1:1	2500	7.0	2.8	24	6	14	18	EP-211-252	
	750	4.0	1.7	13	4.5	9	12	EP-211-751	
	250	2.5	1.0	10	4	7.5	6	EP-211-251	
	70	2.0	1.8	14	4	10	5	EP-211-700	
	50	2.0	1.5	13.5	4	10	4	EP-211-500	
	25	1.6	1.2	10	4	8	3	EP-211-250	
	12	1.0	0.9	8.5	4	7	2.5	EP-211-120	
	7	0.9	0.8	7.5	3	6	2	EP-211-070	
3:1:1	2500	6.5	2.8	21	5	12	18	EP-311-252	
	750	4.0	1.7	10.5	4	7.5	12	EP-311-751	
A	250	1.8	1.0	9	4	6	6	EP-311-251	
	60	2.8	1.8	11	4	8	5	EP-311-600	
	50	2.5	1.5	10.5	4	8	4	EP-311-500	
	25	1.8	1.1	8	3	6	3	EP-311-250	
	12	1.6	0.9	7.5	3	5.5	2.5	EP-311-120	
	6	1.3	0.7	6.5	3	4.5	2	EP-311-060	
3:3:1	2500	8.0	3.1	30	6	28	18	EP-331-252	
	750	5.0	1.8	18	5	16	12	EP-331-751	
	250	2.0	1.1	12	5	11	6	EP-331-251	
	60	6.0	1.8	18	5	20	5	EP-331-600	
	40	3.1	1.4	16	5	19	4	EP-331-400	
	25	1.9	1.1	12	5	16	3	EP-331-250	
	12	1.7	0.9	10	4	13	2.5	EP-331-120	
	6	1.4	0.7	8.5	4	10.5	2	EP-331-060	

Current Sense Transformers

Frequency range 20 to 50 KHz

Specifications

PART NUMBER	FIGURE	TURNS ±5%	INDUCTANCE MH MIN @1 & 3	DCR OHMS MAX @1 & 3
EP151686	1	50	5	0.6
EP151687A	1	100	20	1.2
EP151688	1	200	80	4.0
EP151717	2	50 CT	5	0.6
EP151718	2	100 CT	20	1.2
EP151719	2	200 CT	80	4.0

TEST CONDITIONS

151686 1286

Termination resistance 50, 100 & 200 Ω for 1 volt/ampere scaling

Peak current sense is 20 amperes with 40% duty factor

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

Toroidal Power Inductors

Features

- 2:1 Inductance swing from 0 ADC to max rated DC current
- 40° C max temperature rise
- Available with or without case

PART NUMBER	INDUCTANCE RATED ADC µH MIN	ADC AMPS	TEST LEVEL @ 15.75 KHz VRMS	INDUCTANO @ 0 ADC µH MIN	DCR OHMS MAX	ET 20 KHz V-μS	ET 20 KHz V-μS	LEAD DIA INCH ± .005	PACKAGE
EP9585-1	17	17	1.1	40	.0065	190	130	.081	3
EP9585-2	32	16	2.2	74	.0092	290	200	.081	4
EP9585-3	60	16	3.9	125	.012	390	270	.081	5
EP9585-4	14	10	0.6	27	.009	135	95	.057	1
EP9585-5	23	11	1.1	46	.012	170	120	.057	2
EP9585-6	43	10	1.7	90	.018	280	195	.057	3
EP9585-7	78	10	3.2	165	.025	430	300	.057	4
EP9585	144	10	5.7	275	.032	570	400	.057	5
EP9585-9	32	6.5	0.85	64	.025	200	140	.04	1
EP9585-10	52	7	1.5	97	.032	230	160	.04	2
EP9585-11	98	6	2.4	185	.048	400	280	.04	3
EP9585-12	175	6	4.6	330	.068	620	425	.04	4
EP9585-13	335	6	8.5	600	.095	840	580	.04	5

ADC=Rated DC Current

Dimensions

PKG	Α	В	С	D	E	F
1 2	1.20	1.20	.45	.800	.60	.400
	1.45	1.45	.70	.900	.80	.600
3	1.60	1.75	.70	.900	.80	.600
4	2.00	2.00	.90	1.200	.95	.70
5	2.30	2.30	1.00	1.500	1.20	.900

16799 SCHOENBORN ST. SEPULVEDA, CA 91343 TEL: (818) 892-0761 FAX: (818) 894-5791

Subminiature RF Inductors

- Transfer-Molded Epoxy
- Meets MIL-C-15305 Grade 1 Class 0
- For PC Mounted Applications
- Inductance Range from 10 to 100 μH
- L & Q measured with Boonton 260A Q Meter

Specifications

PCA PART NUMBE	INDUCTANCE	TEST VOLTAGE	DCR OHMS MAX	RESONANT FREQUENCY MIN	DC CURRENT mA MAX	Q MIN	TEST FREQUENCY
EP485	2 .010	.0005	.34	15 MHz	500	22	3.5 MHz
EP485	.015	.0005	.48	12.5 MHz	500	21	2.5 MHz
EP289	0 .022	.0005	.67	10 MHz	500	20	2.5 MHz
EP485	.033	.0005	.97	8.2 MHz	500	19	2.5 MHz
EP485	55 .047	.0005	1.3	6.8 MHz	500	18	2.5 MHz
EP485	.068	.001	1.8	5.6 MHz	500	17	2.5 MHz
EP485	57 .100	.001	2.55	4.6 MHz	420	17	2.5 MHz
EP482	.150	.001	3.7	3.7 MHz	330	39	790 KHz
EP300	.220	.001	5	3.0 MHz	260	38	790 KHz
EP485	.330	.005	7.3	2.4 MHz	200	38	790 KHz
EP485	59 .470	.005	9.9	2.0 MHz	160	37	790 KHz
EP486	.680	.005	14	1.7 MHz	130	37	790 KHz
EP262	29A 1.0	.01	20	1.4 MHz	100	36	790 KHz
EP486	31 1.50	.01	28	1.12 MHz	78	39	250 KHz
EP479	97 2.20	.01	39	920 KHz	62	37	250 KHz
EP486	3.30	.05	55	750 KHz	49	35	250 KHz
EP486	3 4.70	.05	76	620 KHz	39	34	250 KHz
EP486	6.8	.05	100	520 KHz	31	32	250 KHz
EP486	55 10	.05	140	420 KHz	24	31	250 KHz
EP293	30 15	.05	200	340 KHz	19	32	79 KHz
EP486	66 22	.05	280	280 KHz	15	27	79 KHz
EP300	06 33	05	400	230 KHz	12	21	79 KHz
EP486	67 47	.1	550	190 KHz	9.4	18	79 KHz
EP486	68	.1	760	155 KHz	7.6	15	79 KHz
EP486	S9 100	.1	1100	130 KHz	6	12	79 KHz

Numerical Index

Part Number	Page
EP101 - 331	40
EP4852 - 69	44
EP6400-1 thru 15	28
EP6700-1 thru 20	29
EP6889	27
EP7179	27
EP8076-1 thru 10	21
EP8200 - 33	2
EP8250 - 58	22
EP8270 - 92	3
EP8301 - 33	19
EP8476	27
EP8684	27
EP8700 - 33	4
EP9100 - 14	5
EP9115 - 29	6
EP9130 - 59	33
EP9160 - 89	34
EP9206-5 thru 250	23
EP9300 - 33	7
EP9430-5 thru 1000	16
EP9445-7 thru 1000	15
EP9450-1 thru 50	24
EP9458-25 thru 250	8
EP9460-5 thru 250	17
EP9531-1 thru 10	37
EP9547-1 thru 10	37
EP9585-1 thru 13	43
EP9590-25 thru 500	9
EP9604-32 thru 1000	14
EP9677-4 thru 500	10
EP9734-5 thru 75	25
EP9748-5 thru 250	18
EP9749-50 thru 1000	20
EP9810-25 thru 1000	11
EP9842-1 & 2	39
EP9910-1 thru 10	36
EP9981-5 thru 100	26
EP19821 - 842	27
EP120650 - 671	31
EP123101 - 161	30
EP151686 - 719	42
EPA045-1 & 2	38
EPA054-25 thru 1000	12
EPA059-20 thru 1000	32
EPA060-20 thru 1000	32
EPA061-20 thru 1000	32
EPA073-25 thru 1000	13
EPA087-10 thru 100	35

Delay Lines and Transformers

