Ajinkya Jain

The University of Texas at Austin

INTERESTS Robot Learning, Robot Manipulation Planning and Control, Reinforcement Learning

EDUCATION Doctor of Philosophy, Mechanical Engineering, Advisor: Prof. Scott Niekum (2015 - 2020)

Specialization: Robotics, Dynamics Systems and Controls

The University of Texas at Austin

Master of Technology, Mechanical Engineering (2014 - 2015)

 $Specialization:\ Robotics$

Indian Institute of Technology Kanpur

Bachelor of Technology, Mechanical Engineering (2010 - 2014)

Indian Institute of Technology Kanpur

WORK Roboticist, Vicarious

EXPERIENCE Project Title: Task Agnostic High Precision Assembly using Visual Servoing

• Implemented state-of-the-art visual servoing algorithms to do high precision ($\leq 2mm$) assembly tasks

• Ensured Fast convergence ($\leq 20 s$) to target features with High repeatability ($\geq 90\%$ success)

• Developed interfaces to ensure a Task and Platform-agnostic implementation

RESEARCH EXPERIENCE Graduate Research Assistant, Computer Science, UT Austin

Jan'16 - present

May'18 - Aug'18

Web: jainajinkya.github.io E-mail: ajinkya@utexas.edu

Phone: (512) 508-9869

Advised By Prof. Scott Niekum, Department of Computer Science, UT Austin

Project Title: Learning Object Interactions using Human Demonstration and Robot Self-Explorations

• Studying efficient robot learning algorithms for modelling physical interactions of objects

• Developed POMDP Motion planner that leverages such knowledge to improve performance on manipulation tasks involving noisy feedback and highly nonlinear dynamics [paper]

• Implemented for Contact-Rich toy airplane assembly task on a 7 DOF Kinova Jaco2 Arm

Graduate Research Assistant, Mechanical Engineering, IIT Kanpur

Feb'14 - June'15

Advised by Prof. Bishakh Bhattacharya, Dept. of Mechanical Engineering

Thesis: Two Design Challenges in Exoskeleton Systems: Optimal Gripper Design and Optimal Bipedal Gait Controller [Github] [paper]

• Modeled Dynamics of Piezoelectric actuator using a novel minimalistic model

• Optimized Piezoelectric actuator driven gripper design using genetic algorithm

• Designed a Time-Varying Optimal Controller (LQR) for Bipedal locomotion of Exoskeletons

Undergraduate Research Assistant, Aerospace Engineering, TAMU

May'13 - July'13

Advised by Prof. Suman Chakravorty, Dept. of Aerospace Engineering

Title: Motion planning for MAVs using Feedback Information based RoadMaps

[GitHub]

• Implemented Motion Planning Library FIRM on robots including mobile manipulator Kuka youBot

• Interfaced robotic simulator, V-Rep, with the library in MATLAB

• Features: Robot Dynamics Models, Customizable work environment, Synchronized communication

PRODUCT
DEVELOPMENT
EXPERIENCE

Team Austin Villa, Robocup@Home, SSPL

March'17 - July'17

Third Place Worldwide, Nagoya Japan

• Developed Manipulation pipeline for Toyota Human Support Robot

• Implemented fast tabletop perception based common household object grasping and manipulation

Boeing IIT-K Autonomous Navigation System (Abhyast) Phase-III

May'12 - Jan'13

Funded by Boeing Corporation, US and Dean, R&D, IIT Kanpur

• Built navigation planner for a jumping robot capable of navigating in cluttered environment

Project: Humanoid Robot, Phase-I

Funded by Dean, Resource Planning & Generation, IIT Kanpur

Sep'11 - April'12

• Designed navigation system for an omnidirectional movable robot featuring obstacle avoidance and path planning

1...

TECHNICAL SKILLS Languages: C, C++, Python, MATLAB

Softwares/Other Tools: Robot Operating System, Moveit, Drake Toolbox for Planning, Control and Analysis, Autodesk Inventor, V-REP Simulator

Hardware: Toyota Human Support Robot, Kinova Jaco-2 6-DOF and 7-DOF Arms, Microsoft Kinect SDK, Hokuyo 3D laser Scanner, Atmel AVR, Arduino, Bluetooth Modules, IR sensors, IC Engines

ACADEMIC PROJECTS

Learning Optimal Policy under Spatially-Varying Dynamics

Aug'16-Dec'16

Reinforcement Learning: Theory and Practice, Course Project, UT Austin

- Developed learning agents executing optimal policy on domains with spatially-varying dynamics
- Stochastic dynamics modeled as POMDP; Implemented SARSA update rule with Eligibility traces

Stochastic Motion Planning for State-Dependent Dynamics

Aug'16-Dec'16

Robot Learning from Demonstration and Interaction, Course Project, UT Austin

- Modeled state-dependent dynamics as hybrid dynamics; Motion planning under uncertainty as POMDP
- Implemented and Extended Belief-space LQR algorithm to Hybrid systems

Analysis of Optimal Control Schemes for Car Active Suspension Assembly Jan'17-May'17 Modern Control, Course Project, UT Austin

• Designed and Implemented a Reduced-order observer with an Optimal finite time tracker

A case study of Passivity-based control of 6-DOF arm

Jan'16-May'16

Nonlinear Dynamics and Control, Course Project, UT Austin

• Designed and Implemented a Passivity-based feedback linearization controller for 6-DOF arm

Classification of Human Actions in Video

Jan'14-Apr'14

Course Project, Computer Vision, IIT Kanpur

- Implemented multiclass SVM and SCHM for classifying Human Actions in Videos.
- Improvised SCHM by focusing on characteristic histogram bins; Accuracy increased by 20%

Relevant Courses **Robotics:** Introduction to Robotics, Robot Motion Planning, Robot Manipulators: Dynamics and Control, Robot Mechanism Design

Machine Learning: Reinforcement Learning, Robot Learning from Demonstration and Interaction, Computer Vision and Image Processing

Controls: Optimal Control, Nonlinear Dynamics & Control, Modern Control, Automation & Control Miscellaneous: Optimization Methods in Engineering, Theory of Mechanisms and Machines, Finite Element Methods, Programming and Numerical Analysis, Introduction to Cognitive Science

Publications

A. Jain and S. Niekum, Efficient Hierarchical Robot Motion Planning Under Uncertainty and Hybrid Dynamics, Conference on Robot Learning (CoRL), Oct 2018. [paper]

A. Jain and S. Niekum, Belief Space Planning under Approximate Hybrid Dynamics, *Robotics: Science and Systems (R:SS)* Workshop on POMDPs in Robotics, July 2017.

M. Ahmadi, A. Jain, S. Niekum and U. Topcu, Reachable Belief Space Estimation in POMDPs via Lyapunov Functions, submitted in Hybrid Systems: Computation and Control (HSCC) 2019

R. Datta, **A. Jain** & B. Bhattacharya, "A Piezoelectric Model based Multi-Objective Optimization of Robot Gripper Design", *Structural and Multidisciplinary Optimization*, *Springer 2015* [paper]

A. Jain, R. Datta & B. Bhattacharya, "Unified Minimalistic Modelling of Piezoelectric Stack Actuators for Engineering Applications", *Advances in Intelligent Systems and Computing, Springer 2014* [paper]