FEUILLE D'EXERCICES N°3 Fonctions convexes différentiables

Démonstrations de cours

Les exercices de cette section **ne seront pas** traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués **&** sont exigibles au partiel et à l'examen.

♣ Exercice 1 – Composition avec une application affine

Module A₃ – Propositions 2 et 3

Soit $f, g: \mathcal{X} \to \mathbb{R}$ deux fonctions convexes. Soit $A: \mathcal{X} \to \mathcal{Y}$ une application linéaire, $b \in \mathcal{Y}$ et $c \in \mathbb{R}$. Soit $\lambda, \mu > 0$.

- (a) Montrer que $\lambda f + \mu g + c$ est une fonction convexe.
- (b) Montrer que

$$\begin{cases}
\mathcal{X} & \to \mathbb{R} \\
x & \mapsto f(A(x) + b)
\end{cases}$$

est convexe.

♣ Exercice 2 – Caractérisation des fonctions convexes différentiables Module A₃ – Proposition ₅

Soit $f: \mathcal{X} \to \mathbb{R}$ une fonction différentiable.

(a) On suppose que f est convexe. Soit $\lambda \in]0;1[$ et $(x_1,x_2)\in\mathcal{X}^2$ tels que $x_1\neq x_2$. Montrer que

$$\frac{f(x_2 + \lambda(x_1 - x_2)) - f(x_2)}{\lambda} \le f(x_1) - f(x_2)$$

Justifier qu'on peut passer à la limite lorsque λ tend vers 0 dans l'inégalité précédente, puis montrer que

$$\langle \nabla f(x_2), x_1 - x_2 \rangle \le f(x_1) - f(x_2)$$

(b) On suppose dans cette question que

$$\forall (x_1, x_2) \in \mathcal{X}^2, \qquad f(x_1) \ge f(x_2) + \langle \nabla f(x_1), x_2 - x_1 \rangle$$

(i) Montrer que

$$\forall (x_1, x_2) \in \mathcal{X}^2, \qquad \langle \nabla f(x_1) - \nabla f(x_2), x_1 - x_2 \rangle \ge 0$$

(ii) Soit $(x_1, x_2) \in \mathcal{X}^2$. On définit $g: \begin{cases} [0;1] \to \mathbb{R} \\ t \mapsto f(x_1 + t(x_2 - x_1)) \end{cases}$

Justifier que g est continue sur [0;1] et dérivable sur]0;1[? Calculer sa dérivée. En déduire qu'il existe $t_0 \in]0;1[$ tel que

$$f(x_1 + (x_2 - x_1)) - f(x_1) = \langle \nabla f(x_1 + t_0 (x_2 - x_1)), x_2 - x_1 \rangle$$

Montrer par ailleurs que

$$\langle \nabla f(x_1 + t_0(x_2 - x_1)), t_0(x_2 - x_1) \rangle \ge \langle \nabla f(x_1), t_0(x_2 - x_1) \rangle$$

En déduire que

$$\forall (x_1, x_2) \in \mathcal{X}^2, \qquad f(x_1) \ge f(x_2) + \langle \nabla f(x_1), x_2 - x_1 \rangle$$

(iii) Soit $(x_1, x_2) \in \mathcal{X}^2$. Soit $\lambda \in [0, 1]$. Posons $x_\lambda = (1 - \lambda)x_1 + \lambda x_2$. Justifier que

$$f(x_1) \ge f(x_\lambda) + \langle \nabla f(x_\lambda), x_1 - x_\lambda \rangle$$
 et $f(x_2) \ge f(x_\lambda) + \langle \nabla f(x_\lambda), x_2 - x_\lambda \rangle$

En remarquant que $x_1 - x_\lambda = \lambda(x_1 - x_2)$ et $x_2 - x_\lambda = (1 - \lambda)(x_2 - x_1)$, montrer que f est convexe.

Exercices fondamentaux

Exercice 3 – Vrai/faux Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction deux fois différentiable et $x^0 \in \mathbb{R}^n$. Pour chacune des affirmations suivantes, dire si elle est vraie ou fausses (sans justification).

- (a) Si f est strictement convexe, alors $\langle \nabla f(x) \nabla f(y), x y \rangle > 0$ pour tous $x, y \in \mathbb{R}^n$.
- (b) Si f est strictement convexe, alors Hess f(x) est définie positive pour tout $x \in \mathbb{R}^n$.
- (c) Le déterminant et la trace de Hess $f(x^0)$ sont positifs. Alors f est convexe.
- (d) La matrice Hess $f(x^0)$ admet une valeur propre nulle. Alors f n'est pas strictement convexe.

Exercice 4 – Fonctions convexes différentiables Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_{n,n}(\mathbb{R})$ telle que ker $A \neq \{0\}$ et $b \in \mathbb{R}^n$. Montrer que les fonctions suivantes sont convexes. Lesquelles sont strictement convexes?

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \rightarrow & \mathbb{R} \\ t & \mapsto & \sqrt{1+t^2} \end{array} \right.$$

(c)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \|x - b\|_2^2 \end{array} \right.$$

(b)
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \rightarrow & \mathbb{R} \\ t & \mapsto & \frac{1}{4}t^4 - t^3 + \frac{3}{2}t^2 \end{array} \right.$$

(d)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \exp(\|Ax\|_2^2) + \langle b, x \rangle \end{array} \right.$$

Exercice 5 – Somme de fonctions fortement convexes Soient $f: \mathcal{X} \to \mathbb{R}$ une fonction fortement convexe de module α et $g: \mathcal{X} \to \mathbb{R}$ une fonction fortement convexe de module α' .

- (a) Montrer que f + g est une fonction fortement convexe de module $\alpha + \alpha'$.
- (b) On suppose que f et g sont différentiables. Proposer une démonstration alternative de la question (a).

Exercice 6 – Composition de fonctions convexes Soient $f: \mathcal{X} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ deux fonctions convexes. On suppose que g est **croissante**.

- (a) Montrer que $g \circ f$ est une fonction convexe.
- (b) On suppose que f est strictement convexe et que g est strictement croissante. Montrer que $g \circ f$ est une fonction strictement convexe.

Exercice 7 – Descente de gradient Soit $f: \mathcal{X} \to \mathbb{R}$ une fonction convexe différentiable. Soit $x \in \mathcal{X}$. On considère la fonction

$$\varphi_x : \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & f(x - t \nabla f(x)) \end{array} \right.$$

- (a) À quelle condition la fonction φ_x est-elle constante?
- (b) Montrer que φ_x est convexe.
- (c) On suppose que f est strictement convexe. À quelle condition la fonction φ_x est-elle strictement convexe?
- (d) On suppose que f est fortement convexe. À quelle condition la fonction φ_x est-elle fortement convexe?

Compléments

⋆ Exercice 8 – Fonction quadratique en dimension infinie On considère l'ensemble V des fonctions de classe C^1 définies sur [0;1] et nulles en 0 et 1 que l'on munit du produit scalaire

$$\forall (u,v) \in V^2, \qquad \langle u,v \rangle = \int_0^1 \left(u'(x) \, v'(x) + u(x) \, v(x) \right) \mathrm{d}x = \int_0^1 \left\langle \begin{pmatrix} u'(x) \\ u(x) \end{pmatrix}, \begin{pmatrix} v'(x) \\ v(x) \end{pmatrix} \right\rangle \mathrm{d}x$$

de norme associée
$$\forall v \in V$$
, $\|v\| = \sqrt{\int_0^1 \left(u'(x)^2 + u(x)^2\right) dx} = \sqrt{\int_0^1 \left\| \begin{pmatrix} v'(x) \\ v(x) \end{pmatrix} \right\|_2^2 dx}$

Soient $v \in V$ et f une fonction continue définie sur [0;1]. On définit la fonctionnelle suivante :

$$\mathcal{J}: \left\{ \begin{array}{ccc} V & \to & \mathbb{R} \\ v & \mapsto & \int_0^1 \left(\frac{1}{2} \left(v'(x)^2 + v(x)^2\right) - f(x) \, v(x)\right) \mathrm{d}x \end{array} \right.$$

Montrer que \mathcal{J} est strictement convexe.