MTH101: Lecture 5

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

September 15, 2017

Exponential Function

Consider the function

$$f(z) = e^z = e^{x+iy} = e^x e^{iy},$$

then using the Eulers Formula we get

$$e^z = e^x(\cos y + i \sin y),$$

and in the form of f = u + iv we obtain

$$u(x, y) = e^x \cos y$$
, $v(x, y) = e^x \sin y$.

The **Complex Exponential function** is defined for any $z \in \mathbb{C}$.

Analyticity

- e^z is an **entire function**. (Proved in Example 2 of Sec.13.4)
- The derivative of e^z is e^z : $(e^z)' = e^z$

Further Properties

- $e^{z_1+z_2}=e^{z_1}e^{z_2}$
- $e^{2\pi i} = 1$ $(|e^{iy}| = 1 \text{ for any } y)$
- $e^z \neq 0$ for all z.
- $|e^z| = e^x$, $\arg(z) = y + 2n\pi \ (n = 0, \pm 1, \pm 2, ...)$
- $e^{z+2\pi i}=e^z$ for all z (Periodicity with period $2\pi i$)

Remark

We assume that $-\pi < y \le \pi$, this is called a **fundamental region** of e^z .

Fig. 336. Fundamental region of the exponential function e^z in the z-plane

Example

Solve the equation $e^z = 3 + 4i$ for z.

Solution: Let z = x + iy, we set up the equation

$$e^x e^{iy} = 5e^{i\operatorname{arctan}(\frac{4}{3})} \approx 5e^{i0.927}$$

 \downarrow

$$z = ln5 + i(0.927 + 2n\pi), n = 0, \pm 1, ...$$

Natural Logarithm is the inverse function of exponential function: given $z \in \mathbb{C}$

$$e^{\omega} = z \qquad \Leftrightarrow \qquad \ln z = \omega$$

We set $\omega = x + iy$ and write z in exponential form:

$$e^{\omega} = e^{x+iy} = e^x e^{iy} = re^{i\theta}$$
.

Then we have

$$e^x = r \implies x = \ln r = \ln |z|,$$

and

$$y = \theta + 2n\pi$$
, $n = 0, \pm 1, \pm 2, ...$ that is $y = \arg z$.

Definition

The Complex Logarithm function is defined by

$$\ln z = \ln |z| + i \arg z,$$

it takes infinitely many values, thus is a Multivalued function. We define the Principal Value of the Logarithm functions:

$$Ln z = ln |z| + iArg z$$
.

The function Ln z takes only one value. Moreover we have:

$$\ln z = Ln \ z + i2n\pi, \quad n = 0, \pm 1, \pm 2,$$

Example

Compute all the complex values of ln 1.

Solution:

We can use the formula

$$\ln z = Ln \ z + i2n\pi = \ln |z| + i \ Arg \ z + i2n\pi, \quad n = 0, \pm 1, \pm 2,$$

Then we need to compute

$$|z|=1$$
, Arg $z=0$,

from which

$$ln(1) = ln(1) + i \cdot 0 + i2n\pi, \quad n = 0, \pm 1, \pm 2,$$

that is

$$ln(1) = i2n\pi, \quad n = 0, \pm 1, \pm 2,$$

Exercise

Compute all the values of ln(-1).

Theorem

For any $n = 0, \pm 1, \pm 2, ...$, the function

$$\ln z = Ln \ z + i2n\pi,$$

is **Analytic** except at zero and at the points of the negative real axis.

Moreover, when In z is Analytic its derivative is

$$(\ln z)' = \frac{1}{z}$$

General Powers

Definition

A General Power function is defined by

$$f(z)=z^c$$

where $z \neq 0$ and $c \in \mathbb{C}$. It can be defined using $\ln z$:

$$f(z) = e^{c \ln z} = e^{c(Ln z + 2n\pi i)}, \qquad n = 0, \pm 1, \pm 2, ...$$

It takes infinite many values, thus is a Multivalued Function. We define its Principal Value as:

$$z^c = e^{c \ln z}$$

Example

Coumpute all the values of i^i .

Solution:

By definition we have

$$i^i = e^{i \ln i} = e^{i(Ln \ i + 2n\pi i)}, \qquad n = 0, \pm 1, \pm 2, ...$$

We need to compute

$$Ln i = \ln|i| + i Arg (i),$$

then since

$$|i|=1\Rightarrow \ln |i|=0$$
, and $Arg(i)=\frac{\pi}{2}$

we have

Ln
$$i = \ln |i| + i$$
 Arg $(i) = 0 + i\frac{\pi}{2} = i\frac{\pi}{2}$.

Then

$$i^i = e^{i \ln i} = e^{i(i\frac{\pi}{2} + 2n\pi i)}, \qquad n = 0, \pm 1, \pm 2, \dots$$

from which

$$i^i = e^{i \ln i} = e^{-(\frac{\pi}{2} + 2n\pi)}, \qquad n = 0, \pm 1, \pm 2, \dots$$

while its Principal Value is

$$i^i=e^{-\frac{\pi}{2}}.$$

Remark

We consider a general power: z^c , where $z \neq 0$ and $c \in \mathbb{C}$

- If c = 0, 1, 2, ..., then z^n is single-valued and simply the n^{th} power of z;
- If c = 1/n, where n = 2, 3, ..., then z^c is the n^{th} root of z, thus is n-vlued.
- If c is irrational or genuinely complex, then z^c is infinitely many-valued.

Trigonometric Functions

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz}), \quad \sin z = \frac{1}{2i}(e^{iz} - e^{-iz}).$$

They satisfy the fundamental formula:

$$\cos^2 z + \sin^2 z = 1.$$

Remark

They are **Entire functions** since e^z is an entire function.

The derivatives of the Trigonometric functions:

$$(\cos z)' = -\sin z, \qquad (\sin z)' = \cos z.$$

Exercise

Write $\cos z$, $\sin z$ in the form f = u + iv.

Exercise

Find the expression of $|\cos z|^2$ and of $|\sin z|^2$.

Remark.

sin z and cos z are periodic with period 2π , but unlike real trigonometric functions, they are unbounded. That is, $|\sin z|, |\cos z| \to \infty$ as $y \to \infty$.

Other Trigonometric functions

$$\tan z = \frac{\sin z}{\cos z}, \qquad \cot z = \frac{\cos z}{\sin z},$$

$$\sec z = \frac{1}{\cos z}, \qquad \csc z = \frac{1}{\sin z}$$

They are **NOT!** Entire functions.

Exercise

Determine the set in which sec z is an Analytic function.

Hyperbolic functions

$$\cosh z = \frac{1}{2}(e^z + e^{-z}), \qquad \sinh z = \frac{1}{2}(e^z - e^{-z}).$$

They satisfy the fundamental formula:

$$\cosh^2 z - \sinh^2 z = 1.$$

Remark

They are **Entire functions** since e^z is an entire function.

The derivatives of the Hyperbolic functions:

$$(\cosh z)' = \sinh z, \qquad (\sinh z)' = \cosh z.$$

Other Hyperbolic functions

$$anh z = rac{\sinh z}{\cosh z}, \qquad \coth z = rac{\cosh z}{\sinh z}$$
 $sech \ z = rac{1}{\cosh z}, \qquad csch \ z = rac{1}{\sinh z}$

They are **NOT!** Entire functions.

Exercise

Determine the set in which tanh z is an Analytic function.

Some important formulas

$$cosh(iz) = cos(z), \quad sinh(iz) = i \cdot sin(z),
cos(iz) = cosh(z), \quad sin(iz) = i \cdot sinh(z),$$

directly from the definitions of trigonometric and hyperbolic functions.

Bibliography

1 Kreyszig, E. Advanced Engineering Mathematics. Wiley, 10th Edition.