Theorem (2.3.25). Let f be a function $f : \mathbb{R} \implies \mathbb{R}$ defined by f(x) = |x|. f(x) is not invertible.

Proof. Let x be a postive real number. f(-x) = f(x) = x. If f had an inverse then $f^{-1}(x) = x = -x$, but this is not a function by definition. Also, f^{-1} is not a function by contradiction since $\neg \exists x ((x \in \mathbb{R}) \land (x = -x))$. Thus, f is not a bijection, and f is not invertible.