

SEQUENCE LISTING

<110> Vogels, Ronald
Bout, Abraham
van Es, Helmuth
5 Schouten, Govert
Van Rompaey, Luc

<120> Adenoviral Library Assay for Adipogenesis Genes and
Method
and Compositions for Screening Compounds

10 <130> 25482 USA

<140>

<141>

<150> US 10/036,949

<151> 2001-12-21

15 <150> US 09/358,036

<151> 1999-07-21

<150> US 09/097,239

20 <151> 1995-07-25

<160> 20

<170> PatentIn Ver. 2.0

25 <210> 1

<211> 21

<212> DNA

<213> Artificial Sequence

30 <220>

<223> Description of Artificial Sequence:primer

<400> 1

21 cgtgttagtgt atttataaccc g

5 <210> 2

5 <211> 21

5 <212> DNA

5 <213> Artificial Sequence

10 <220>

10 <223> Description of Artificial Sequence:primer

15 <400> 2

21 tcgtcactgg gtggaaagcc a

15 <210> 3

15 <211> 21

15 <212> DNA

15 <213> Artificial Sequence

20 <220>

20 <223> Description of Artificial Sequence:primer

25 <400> 3

25 tacccgcccgt cctaaaaatgg c

21 <210> 4

21 <211> 21

30 <212> DNA

30 <213> Artificial Sequence

35 <220>

35 <223> Description of Artificial Sequence:primer

400 Lines of DNA

<400> 4
gcctccatgg aggtcagatg t
21
5
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
10
<220>
<223> Description of Artificial Sequence:primer
15
<400> 5
gcttgagccc gagacatgtc
20
<210> 6
<211> 24
20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer
25
<400> 6
ccccctcgagc tcaatctgtta tcct
24

30 <210> 7
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 7

5 gggggatccg aacttgttta ttgcagc

27

<210> 8

<211> 25

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

15

<400> 8

25 gggagatcta gacatgataa gatac

20 <210> 9

<211> 27

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Description of Artificial Sequence:primer

<400> 9

30 27 gggagatctg tactgaaatg tgtggc

<210> 10

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

5

<400> 10

ggaggctgca gtctccaaacg gcgt

24

10 <210> 11

<211> 45

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Description of Artificial Sequence:primer

<400> 11

gtacactgac ctatgtccgc ccgggcaaag cccgggcggc actag

20 45

<210> 12

<211> 33

25 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificial primer

30 with HindIII site

<400> 12

gcgaagcttc catggcgctc ctgctgtgct tcg

33

.

<210> 13
<211> 36
<212> DNA
5 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:artificial primer
with BamHi site

10 <400> 13
gcgggatcca tctatactat agaccatcc ttgctc
36

15 <210> 14
<211> 1215
<212> DNA
<213> Human

20 <220>

<400> 14
gcccacgcgt ccggtttct acttgccac agattatctt gtacagcctt
ttatggacca 60
25 attagcattc catcaatttt atatctagca tatttgcgggt tagaatccca
tggatgttcc 120
ttctttgact ataacaaaat ctggggagga caaagggtgat tttcctgtgt
ccacatctaa 180
caaagtcaag attcccggt ggactttgc agtttccttc caagtcttcc
30 tgaccacatt 240
gcactattgg actttggaag gaggtgccta tagaaaacga ttttgaacat
acttcatcgc 300
agtggactgt gtccctcggt gcagaaacta ccagattga gggacgaggt
caaggagata 360
35 tgatagggccc ggaagttgct gtgcggcatc agcagcttga cgcgtggta
caggacgatt 420

+-----+

tcactgacac tgcgaactct caggactacc gttaccaaga ggtaggtga
agtggttaa 480

accaaacgga actcttcatc ttaaactaca cggtgaaaat caacccaata
attctgtatt 540

5 aactgaattc tgaaccttcc aggaggtact gtgaggaaga gcaggcacca
gcagcagaat 600

gggaaatgga gaggtgggca ggggtccag cttcccttg atttttgct
gcagactcat 660

cctttttaaa tgagacttgtt tttccctct ctttgagtca agtcaaatat
10 gtagattgcc 720

tttggcaatt ctcttcctca agcactgaca ctcattaccg tctgtgattt
ccatttcttc 780

ccaaggccag tctgaacctg aggttgcttt atcctaaaag ttttaacctc
aggttccaaa 840

15 ttcaagtaat tttggaaaca gtacagctat ttctcatcaa ttctctatca
tggtgaagtc 900

aaatttggat tttccaccaa attctgaatt ttagacata cttgtacgct
cacttgcccc 960

agatgcctcc tctgtcctca ttcttcctc ccacacaagc agtcttttc
20 tacagccagt 1020

aaggcagctc tgtcggttgc gcagatggtc ccattattct agggctttac
tctttgtatg 1080

atgaaaagaa tggtttatga atcggtgctg tcagccctgc tgtcagacct
tcttccacag 1140

25 caaatgagat gtatgccaa agacggtaga attaaagaag agtaaaatgg
ctgttgaagc 1200

aaaaaaaaaaaa aaaaa
1215

30 <210> 15

<211> 219

<212> PRT

<213> Human

35 <220>

<400> 15

Met Glu Tyr Leu Ser Ala Leu Asn Pro Ser Asp Leu Leu Arg Ser
 5 10 15

Val Ser Asn Ile Ser Ser Glu Phe Gly Arg Arg Val Trp Thr Ser
 5 20 25 30

Ala Pro Pro Pro Gln Arg Pro Phe Arg Val Cys Asp His Lys Arg
 35 40 45

10 Thr Ile Arg Lys Gly Leu Thr Ala Ala Thr Arg Gln Glu Leu Leu
 50 55 60

Ala Lys Ala Leu Glu Thr Leu Leu Leu Asn Gly Val Leu Thr Leu
 65 70 75

15 Val Leu Glu Glu Asp Gly Thr Ala Val Asp Ser Glu Asp Phe Phe
 80 85 90

20 Gln Leu Leu Glu Asp Asp Thr Cys Leu Met Val Leu Gln Ser Gly
 95 100 105

Gln Ser Trp Ser Pro Thr Arg Ser Gly Val Leu Ser Tyr Gly Leu
 110 115 120

25 Gly Arg Glu Arg Pro Lys His Ser Lys Asp Ile Ala Arg Phe Thr
 125 130 135

Phe Asp Val Tyr Lys Gln Asn Pro Arg Asp Leu Phe Gly Ser Leu
 140 145 150

30 Asn Val Lys Ala Thr Phe Tyr Gly Leu Tyr Ser Met Ser Cys Asp
 155 160 165

TIGR Gene ID: 210

Phe Gln Gly Leu Gly Pro Lys Lys Val Leu Arg Glu Leu Leu Arg
170 175 180

Trp Thr Ser Thr Leu Leu Gln Gly Leu Gly His Met Leu Leu Gly
5 185 190 195

Ile Ser Ser Thr Leu Arg His Ala Val Glu Gly Ala Glu Gln Tyr
200 205 210

10 Gln Gln Lys Gly Arg Leu His Ser Tyr
215

<210> 16

<211> 2237

15 <212> DNA

<213> Human

<220>

20 <400> 16

gtcgaccac gctgtccgcgc ctgcagaagg ttgactgcgt ggttagggggc
ccagagcaag 60

ccgaaggcaa gcacgatggc gtcaccaggc cggcccaccc gcgccccgtg
25 ccgccccggag 120

ccccagcggg cgccccgcag ccgtgccagc gtcacgctgt agcagccgag
catcagcccc 180

aaaggaagca cgaaagcggt ggcggtagac ggccggccggg acggcgagca
acagggcgcc 240

30 cagccagacc gccagcagca ggcggccggc cagggccggg ctgcgcagcc
gaggcgccag 300

gaagggccgg gtgactgcga ggcagcgctg caggctgagc aggccggtga
gcagcacgct 360

35 ggcgtacatg ctgagcgcgc acacgtagta caccgccttg cagccgcct
ggcccgccgg 420

ccaggcctgc cgggtcagga aggccacaaa gagcggcgtg agcagcagca
ccgcgccgtc 480

gcccagcgcc aggtgcagca caagcgtggc cgccagcggt cgccccgtg
caggccgcca 540

5 gcccggcaag ctccacacca cgaagccgtt gccaggcagc cccagcagcg
ccgcccagcag 600

caggaaggct gtgcctgtgg cccgcgaagt cttccagctc agcagtgtct
cgttccctgg 660

10 gggacggtag cagaccgaca tccttctggg cctacaggac acagaaaaaa
agtgggaaag 720

ctgggggacc cctacaagga tccttggcag gaaagcaggg attgtgttca
tttgagggtt 780

tcactgtcag tgagagtctc agcttccatg caactgtcca tcacggctgc
aactgaaatc 840

15 agagctggga cacagcgcac cagaagctaa agtcttgatg ccatcaaagg
acatccctgc 900

cccattcaca tctctgtcac gtccactaat cggcaaaagg agaaaagtga
gagaagatga 960

20 cctaagtgtg actgcagcag gcagctctgg aaaatgaagc cagagcagtg
agccagcccc 1020

tcctccgacc aaggaggaag gaaagagcag ccccagcaca ggagagaacc
acccagccca 1080

gaagttccag ggaaggaact ctccggtcca ccatggagta cctctcagct
ctgaacccca 1140

25 gtgacttact caggtcagta tctaataaa gtcggagtt tggacggagg
gtctggacct 1200

cagctccacc accccagcga cctttccgtg tctgtatca caagcggacc
atccggaaag 1260

30 gcctgacagc tgccacccgc caggagctgc tagccaaagc attggagacc
ctactgctga 1320

atggagtgct aaccctggtg ctagaggagg atggaactgc agtggacagt
gaggacttct 1380

tccagctgct ggaggatgac acgtgcctga tgggtttgca gtctggtcag
agctggagcc 1440

35 ctacaaggag tggagtgctg tcatatggcc tgggacggga gaggcccaag
cacagcaagg 1500

acatcgcccc attcacctt gacgtgtaca agcaaaaccc tcgagacctc
tttggcagcc 1560

5 tgaatgtcaa agccacattc tacgggctct actcttatgag ttgtgacttt
caaggacttg 1620

gccccaaagaa agtactcagg gagctccttc gttggacctc cacactgctg
caaggcctgg 1680

5 gccatatgtt gctggaaatt tcctccaccc ttcgtcatgc agtggagggg
gctgagcagt 1740

ggcagcagaa gggccgcctc cattcctact aaggggctct gagcttctgc
ccccagaatc 1800

10 attccaaccg acccactgca aagactatga cagcatcaaa tttcaggacc
tgcagacagt 1860

acaggctaga taacccaccc aatttcccca ctgtcctctg atcccctcg
gacagaacct 1920

ttcagcataa cgccctcacat cccaagtcta tacccttacc tgaagaatgc
tgttcttcc 1980

15 tagccacctt tctagcctcc cacttgcctt gaaaggccaa gatcaagatg
tccccccaggc 2040

atcttgatcc cagcctgact gctgctacat ctaatcccc accaatgcct
cctgtccctta 2100

aactccccag catactgatg acagccctct ctgactttac cttagatct
20 gtcttcatac 2160

ccttccccctc aaactaacaa aaacatttcc aataaaaata tcaaataattt
aaaaaaaaaaa 2220

aaaaaaaaggg cggccgc
2237

25 <210> 17

<211> 183

<212> DNA

<213> Human

30 <220>

<400> 17

35 cgcctgcaga aggttgactg cgtggtaggg ggcccagagc aagccgaagg
caagcacgat 60

ggcgctcacc agccggccca cccgcgcccc gtgccgcccc gagccccagc
ggcgccccgg 120

15 cagccgtgcc agcgtaacgc tgttagcagcc gagcatcagc ccgaaaggaa
gcacgaaagc 180

183
5

<210> 18

<211> 500

<212> DNA

10 <213> Human

<220>

15 <400> 18
ggtgtgggtta gacggccggcc gggacggcga gcaacagggc ggccagccag
accggcagca 60

gcagggcggcg ggccagggcc gggctgcgca gccgaggcgc caggaagggg
cgggtgactg 120

20 cgagggcagcg ctgcaggctg agcaggccgg tgagcagcac gctggcgtac
atgctgagcg 180

cgcacacgtta gtacaccgccc ttgcagcccc cctggcccaag cggccaggcc
tgccgggtca 240

ggaaggccac aaagagcggc gtgagcagca gcaccgcgc gtcggccagc
gccaggtgca 300

25 gcacaaggcggtt gcccgcagc ggtcgcccccc gtgcaggcccg ccagccgc
aagctccaca 360

ccacgaagcc gttgccaggc agccccagca gcccgcgcag cagcaggaag
gctgtgcctg 420

30 tggccccgaa gtcttccagc tcagcagtgt ctcgttccct gggggacgg
agcagaccga 480

500
catccttctg ggcctacagg

<210> 19

<211> 20

35 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificial sequencing primer

5 <400> 19

 ggtgtggaggt ctatataaggc

20

10 <210> 20

 <211> 22

 <212> DNA

 <213> Artificial Sequence

15 <220>

 <223> Description of Artificial Sequence:artificial sequencing primer

 <400> 20

20 ggacaaacca caactagaat gc

22