BIBA: Business Intelligence and Big Data

2018-10-17

Jens Ulrik Hansen

More modelling ...

Today's program

- Association rule mining
- Time series analysis
- Recap on modeling
- Work on synopsis hand-in

Association Rule Mining

Association Rule Mining

- A classical data mining task: which items are frequently bought together?
- Association Rule Mining is one approach
 - Find rules of the form: "customers who bought A and B, also bought C"
- Other methods for solving this and similar task:
 Recommender Systems or Collaborative Filtering
- Applications of association rule mining
 - Product recommendation (Amazon or Netflix)
 - Placing product next to each other in a physical store
 - Devising offers and advertisement

Association Rule Mining

• See the Jupyter notebook "6.1 Association Rule Mining.ipynb"

Time series analysis

Time series and trends

(See https://www.youtube.com/watch?v=ca0rDWo7lpl

Time series data

- Data where each value is associated with a time stamp (year-month, year-month-day-hourminute, ...)
- Examples
 - Number of costumers per day
 - Turnover by month
 - Average temperature by week

Positive and negative trend

- As time progress the values increase (decrease)
- Note, a certain amount of data points are needed to properly detect a trend

Example of trends

- Positive and negative trend example (from Google Trend)
 - From Google Trend https://trends.google.dk/trends/explore?date=2010-10-10%202017-10-10%q=Business%20Intelligence,Artificial%20intelligence
 - Is there any trend in the timeseries?
 - Which one is BI and which is AI you think?

Bemærkning

1. nov. 2010 1. apr. 2013 1. sep. 2015

Useful insights from spotting trends

- Is there an increasing or decreasing tend in sales?
- Is there a trend in the number of new customers?
- Is there a trend to which media our primary customer segment is using?
- Has a particular vital event created a desired trend?

•

Simple variation in data

Variation in data

Peaks and troughs in data

Seasonal variation in data

- Peaks and troughs occurs at regular (predictable) times
 - The same time every year
 - The same time every month
 - The same tree times a day

Examples

- A peak in sales just after salary payment day (monthly) or just after payment of child benefit (quarterly)
- A peak in sales of ice cream during summer
- A trough in website visits during the weekends
- Season is not just "spring-summer-fall-winter"

Simple variation in data

Cyclic variation in data

 Peaks and troughs occurs, but not at predictable regular times. The time periods between peaks is varying without a pattern

Random variation in data

 There is no visible pattern (There can still be a trend at the same time as random variation in data)

Examples of season in data

- Google trend examples again
- Can you guess the time series?

Useful insights from spotting season

- When do we sell the most?
 - When will our marketing campaigns have the biggest effect
 - Do we need to adjust production to match seasonal demand?
- When does our customers have the highest purchasing power?

Time series analysis in R

- For simple visual time series analysis in R, see the first part of the Jupyter notebook "6.2 Time series analysis.ipynb"
- For more advanced time series analysis in R, see the rest of the Jupyter notebook "6.2 Time series analysis.ipynb"

Recap on modeling

Recap on modeling

- Modeling can serve multiple purposes
 - Provide insight into particular phenomena or data
 - Discover patters in data
 - Predict future effects and event
 - . . . etc.
- Statistical/machine learning models
 - We try to learn general patterns from data
 - Three steps
 - 1. Define a family of potential models
 - 2. Select the model from this family that fits the data best
 - 3. Evaluate the model

Types of machine learning

- *Supervised learning* data contains values for what we want to predict
 - Regression (linear regression)
 - Classification (k nearest neighbor, decision tree)
- Unsupervised learning data does not contain answers to what we want
 - Association Rule Mining (a prior algorithm)
 - Clustering (k-means clustering, Hierarchical clustering)
- Reinforcement learning
- (Time series analysis?)

Supervised learning

- We are trying to learn a function f such that Y = f(X1, X2, ..., Xn), where Y is our response/dependent variable and X1, X2, ..., Xn are our predictor/independent/feature variables
 - If we have such a function, we can always predict Y from any value of X1, X2, ..., Xn
 - Examples: Predicting house prices, sales, email or spam, churn, retention of employees, credit score, malignant or benign tumor, etc.
- Regression when the response variable is continuous
 - Linear regression, generalized linear models, penalized linear models
 - Decision trees, random forest, and boosting
 - Neural networks
 - Non-parametric regression
- Classification when the response variable is categorical
 - k nearest neighbor,
 - Decision trees, random forest, and booting
 - Logistic regression
 - Support vector machines
 - Naïve Bayes
 - Neural networks

Evaluating supervised learning models

- Training and testing
 - The data set is split into a *training set* and a *test set*
 - A 70% for training and 30% for testing is a common split
 - The training set is used to train/fit the model
 - The test set is used to evaluate the model
 - Warning! Adjusting a model based the evaluation on the test set can lead to overfitting
 - If one needs to adjust multiple parameters in the family of models, one can split the training set further into a training set and a validation set

Evaluating regression models

Residuals

- A model will never perfectly satisfy Y = f(X1, X2, ..., Xn)
 - Y the *true value* of the response variable (as given in the data)
 - \hat{Y} the *predicted value* of Y based the predictor variables, i.e. \hat{Y} = f(X1, X2, ..., Xn)
- Residuals the difference between the true value and the predicted value, i.e. Y Ŷ

Error measures

- Mean Absolute Error (MAE): $1/n * \sum_i |y_i \hat{y}_i|$
- Mean Squared Error (MSE) : $1/n * \sum_i (y_i \hat{y}_i)^2$
- Root Mean Squared Error (RMSE): $V(1/n * \sum_i (y_i \hat{y}_i)^2)$
- R-square the fraction of variability in the response variable explained by the model

Evaluating classification models

- We only looked at the number of correct and in-correct predictions
- There is much more to it though!
- Check out concepts such as:
 - Confusion Matrix
 - False positives and false negatives, type I and type II errors
 - Accuracy and Precision
 - Sensitivity and Recall
 - Specificity
 - F1 score
 - Receiver Operating Characteristic (ROC) Curves and Area Under the Curve (AUC)

Feature selection/model selection

- Feature selection selecting which predictor variable to use in a regression model (for instance)
- Feature selection is a trade-off
 - Including every feature can make the model overfit, insensible, computationally hard
 - Including to few make the model predict less well
- How do we compare two models with different features?
 - RMSE, (adjusted) R-square, Information criteria, etc. etc.
- Which models should we compare?
 - Exhaustive subset selection go through all possible subsets
 - Computationally infeasible in many cases
 - Potential overfitting
 - There are numerous alternative approaches
- *Model selection* we also compare different classes of models, not only different sets of features

Unsupervised learning

- There are no response variable (Y), i.e. true labels
- Less clear what types of unsupervised learning there is
- Examples of unsupervised learning
 - Clustering (k-means clustering, Hierarchical clustering, Graph-based models, etc.)
 - Association rule mining
 - Principal component analysis
 - Anomaly detection
- As we have no true labels, it is much harder to evaluate unsupervised learning models

Work on synopsis hand-in