Example 4.18

- 1. According to the Chomsky hierarchy, CFG is type ———— grammar.
- 2. The grammar where production rules are in the format of $\{Astring consists of at least one non-terminal\} \rightarrow \{Astring of terminals and/or non-terminal\}$ terminals} is ———— grammar in particular.
- 3. The grammar $S \to aSb/bSb/C$ produces the string ———— .
- 4. Finding a derivation for a string from a given grammar is called —
- 5. The tree representation of deriving a context-free language from a given context grammar is called ——— .
- 7. The root of the parse tree of a given context-free language is represented by the ——— of the corresponding CFG.
- least two distinct parse trees.
- 10. The CFG where a non-terminal A' as a leftmost symbol appears alternatively at the time of derivation either immediately or through some other
- 12. In a CFG, the symbols which do not produce any terminal string is called
- 13. In a CFG, the symbols which cannot be reached at any time starting from the start symbol are called ----.
- 14. In a CFG, non-generating symbols and non-reachable symbols are both called ——- symbol.
- 15. In a CFG, the production in the form non-terminal \rightarrow single non-terminal is called .
 - 16. In a CFG, a production in the form $NT \rightarrow \in$ is called —
- 17. Normalizing a CFG should not hamper the ———- power of the grammar.

 18. A CFG where all the Non-terminal → string Non-terminal → sing is called —— norm 19. A CFG where all the Non-terminal → (sing Non-terminal → sing Non-terminal → sing Non-terminal → sing 	ng o le t mal he j gle	of exactly two non-terminal form. productions of the general terminal (string of	erm gram	inals umar are in the form		
is called ———- normal form.						
20. Context-free languages are not closed under ———— and ————— .						
21. ————————————————————————————————————						
$374 \mid$ Introduction to Automata Theory, Formal Languages and Computation						
 22. aⁿbⁿcⁿ, where n ≥ 1, is not ———————————————————————————————————						
1 picture						
1. Two	2	context-free	3	$WCW^R \mid W \in (a, b)^*$		
4. parsing		parse tree		context-free		
7. start symbol		ambiguous		inherently ambiguous		
10. left recursive		left factoring		non-generating symbols		
13. non-reachable symbols		useless		unit production		
16. null production	17.	language generating	18.	Chomsky		
19. Greibach	20.	intersection, complementation	21.	Pumping lemma for CFL		

Exercise

23. 2ⁿ

22. context free, context sensitive

24. cycles

- 1. Construct a CFG for the following.
 - a) $a^n a^m$, where n > 0 and m = n + 1
 - b) $a^n b a^m$, where m, n > 0
 - c) $a^n b^n c^m$, where n > 0 and m = n + 1
 - d) L = (011 + 1) * (01) *
 - e) $L = \{Setofallintegers\}$
- 2. a) Construct the string 0110001 from the grammar

$$S \rightarrow AB$$

$$A \rightarrow 0A/1B/0$$

$$B \rightarrow 1A/0B/1$$

By using

- i) Leftmost derivation
- ii) Rightmost derivation
 - b) Construct the string baaabbba from the grammar

$$S \rightarrow AaB/AbB$$

$$A \rightarrow Sa/b$$

$$B \rightarrow Sb/a$$

By using

- i) Leftmost derivation
- ii) Rightmost derivation
- 3. a) Find the parse tree for generating the string abaabaa from the given grammar.

$$S \to aAS/a$$
$$A \to bS$$

Context-free Grammar | 375

b) Find the parse tree for generating the string aabbaa from the given grammar.

$$S \rightarrow aAS/a$$

$$A \rightarrow SbA/SS/ba$$

- 4. Show that the following grammars are ambiguous.
- a) $S \to abSb/aAb/a$

$$A \rightarrow bS/aAAb$$

b)
$$E \to E + E/E * E/id$$

c)
$$S \to aB/bA$$

$$A \rightarrow aS/bAA/a$$

$$B \rightarrow bS/aBB/b$$

- 5. Remove the useless productions from the following grammar
- a) $S \to AB/a$

$$A \rightarrow b$$

b)
$$S \to AB/AC$$

$$A \rightarrow 0A1/1A0/0$$

$$B \rightarrow 11A/00B/AB$$

$$C \rightarrow 01C0/0D1$$

$$D \rightarrow 1D/0C$$

6. Remove the unit production from the following grammar:

a)
$$S \to SaA$$

b)
$$S \to Aa/B$$

$$A \rightarrow aB/B/b$$

$$B \to A/bb$$

$$B \to bC/C/a$$

$$A \rightarrow a/bc/B$$

$$C \to ab$$

7. Remove the null production from the following grammar

a)
$$S \to aAB$$

b)
$$S \to aA$$

$$A \to Bb$$

$$A \rightarrow bB$$

$$B \rightarrow \in$$

$$B \to b$$

$$B\to\in$$

8. Simplify the following CFG.

$$S \to AB/aB$$

$$A \to BC/B/a$$

$$B \to C$$

$$C \rightarrow b/ \in$$

9. i) Convert the following left linear grammar into right linear grammar.

$$S \to Sab/Aa$$

$$A \rightarrow Abb/bb$$

ii) Convert the following right linear grammar into left linear grammar.

$$S \rightarrow aaB/ab$$

$$B \rightarrow bB/bb$$

10. Convert the following linear grammar into regular grammar.

$$S \rightarrow 01B/0$$

$$B \rightarrow 1B/11$$

- 376 | Introduction to Automata Theory, Formal Languages and Computation
 - 11. Convert the following grammar into CNF.

a)
$$S \to AB$$

$$A \rightarrow aA/a$$

$$B \to ab/bB/b$$

b)
$$S \to aSa/SSa/a$$

- 12. Convert the following grammar into GNF.
- a) $S \to Abb/a$

$$A \rightarrow aaA/B$$

$$B \to bAb$$

- b) $S \to aSb/bSa/a/b$
- 13. Construct a DFA equivalent to the regular grammar.
- a) $S \to aS/bA/b$

$$A \rightarrow aA/bS/a$$

b)
$$S \to bA/aB$$

$$A \rightarrow bA/aS/a$$

$$B \rightarrow aB/bS/b$$

- 14. Prove that $L=a^nb^nc^2n$ is not context free by using the pumping lemma for CFL.
- 15. Verify whether the languages generated by the following grammar are finite or not.
 - a) SBaA

AßBC

BßC/b

CBB/a

b) SBAB

ABC/a

BBAC/b

16. Remove the left recursion from the following grammar and then perform left factoring.

$$E \to E + T|T\ T \to T * F|F\ F \to G^F|G\ G \to id|(E)$$

17. Generate the string id + id * id from the grammar

$$E \to E + E \ E \to E * E \ E \to id$$

where the precedence of operator is given as follows.

	+	*
+	>	<
*	>	<

Are you getting any ambiguity in the grammar?