

TO PASS 75% or higher

Congratulations! You passed!

Keep Learning

100%

Non-square matrix multiplication

TOTAL POINTS 8

1. In the previous lecture we saw the Einstein summation convention, in which we sum over any indices which are repeated. In traditional notation we might write, for example, $\sum_{j=1}^3 A_{ij} v_j = A_{i1} v_1 + A_{i2} v_2 + A_{i3} v_3$. With the Einstein summation convention we can avoid the big sigma and write this as $A_{ij} v_j$. We know that we sum over j because it appears twice.

We saw that thinking about this type of notation helps us to multiply non-square matrices together. For example, consider the matrices

$$A=egin{bmatrix}1&2&3\4&0&1\end{bmatrix}$$
 and $B=egin{bmatrix}1&1&0\0&1&1\1&0&1\end{bmatrix}$,

and remember that in the A_{ij} notation the first index i represents the row number and the second index j represents the column number. For example, $A_{12}=2$.

Let's define the matrix C=AB. Then in Einstein summation convention notation $C_{mn}=A_{mj}B_{jn}$.

Using the Finstein summation convention, calculate $C_{21}=A_{22}B_{21}$

1 / 1 point