The Research Assistant for Maniplexes and Polytopes

0.63

15 March 2021

Gabe Cunningham

Mark Mixer

Gordon Williams

Gabe Cunningham

Email: gabriel.cunningham@umb.edu

Homepage: http://www.gabrielcunningham.com

Address: Gabe Cunningham

Department of Mathematics University of Massachusetts Boston 100 William T. Morrissey Blvd.

Boston MA 02125

Mark Mixer

Email: mixerm@wit.edu

Gordon Williams

Email: giwilliams@alaska.edu

Homepage: http://williams.alaska.edu

Address: Gordon Williams PO Box 756660

Department of Mathematics and Statistics

University of Alaska Fairbanks Fairbanks, AK 99775-6660

Copyright

© 1997-2021 by Gabe Cunningham, Mark Mixer, and Gordon Williams

RAMP package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its documentation provided by GAP users and developers.

Contents

1	Inst	allation Basics	5				
2	Gro	Groups for Maps, Polytopes, and Maniplexes					
	2.1	Groups of Maps, Polytopes, and Maniplexes	6				
	2.2	Sggis	8				
3	Fan	nilies of Polytopes	12				
	3.1	Classical polytopes	12				
	3.2	Flat and tight polytopes	16				
	3.3	The Tomotope	17				
	3.4	Toroids	17				
	3.5	Uniform polyhedra	19				
4	Mar	niplexes	22				
	4.1	Constructors	22				
	4.2	Mixing of Maniplexes functions	24				
	4.3	Rotary maniplexes and rotation groups	25				
5	Maniplex Properties 27						
	5.1		27				
	5.2		28				
	5.3	· · · · · · · · · · · · · · · · · · ·	30				
	5.4		33				
	5.5	•	34				
6	Comparing maniplexes 36						
	6.1	• • •	36				
7	Pose	ets	39				
	7.1		39				
	7.2		43				
	7.3		48				
	7.4		51				
	7.5		53				
	7.6	1	51				

8.2 Duality 8.3 Products Combinatorics and Structure 9.1 Faces 9.2 Flatness 9.3 Schlafli symbol 9.4 Basics	3	Poly	tope Constructions and Operations	56			
8.3 Products 9 Combinatorics and Structure 9.1 Faces 9.2 Flatness 9.3 Schlafli symbol 9.4 Basics 9.5 Zigzags and holes 10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14.1 System 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		8.1	Extensions, amalgamations, and quotients	56			
9 Combinatorics and Structure 9.1 Faces 9.2 Flatness 9.3 Schlafli symbol 9.4 Basics 9.5 Zigzags and holes 10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		8.2	Duality	57			
9.1 Faces 9.2 Flatness 9.3 Schlafli symbol 9.4 Basics 9.5 Zigzags and holes 10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		8.3	Products	59			
9.2 Flatness 9.3 Schlafli symbol 9.4 Basics 9.5 Zigzags and holes 10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11 Databases 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands	9	Combinatorics and Structure					
9.3 Schlafli symbol 9.4 Basics 9.5 Zigzags and holes 10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11 Databases 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		9.1	Faces	62			
9.4 Basics 9.5 Zigzags and holes 10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11.1 Patabases 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		9.2	Flatness	64			
9.5 Zigzags and holes 10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11.1 Databases 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		9.3	Schlafli symbol	65			
10 Graphs for Maniplexes 10.1 Graph constructors for maniplexes 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		9.4	Basics	67			
10.1 Graph constructors for maniplexes 11 Databases 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		9.5	Zigzags and holes	68			
10.1 Graph constructors for maniplexes 11 Databases 11.1 Regular polyhedra 11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands	10	Grap	phs for Maniplexes	70			
11.1 Regular polyhedra . 11.2 System internal representations . 12 Stratified Operations 12.1 Computational tools . 13 Maps On Surfaces 13.1 Bicontactual regular maps . 13.2 Operations on reflexible maps . 13.3 Map properties . 13.4 Operations on maps . 13.5 Conway polyhedron operator notation . 13.6 Extended operations . 14 Utility Functions . 14.1 System . 14.2 Polytopes . 14.3 Permutations . 14.4 Words on relations . 15 Synonyms for Commands		10.1	Graph constructors for maniplexes	70			
11.2 System internal representations 12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands	11	Databases					
12 Stratified Operations 12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 14.4 Words on relations 15 Synonyms for Commands		11.1	Regular polyhedra	79			
12.1 Computational tools 13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 14.4 Words on relations 15 Synonyms for Commands		11.2	System internal representations	82			
13 Maps On Surfaces 13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 14.4 Words on relations 15 Synonyms for Commands	12	Stratified Operations					
13.1 Bicontactual regular maps 13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 14.4 Words on relations 15 Synonyms for Commands		12.1	Computational tools	83			
13.2 Operations on reflexible maps 13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands	13	Мар	os On Surfaces	80			
13.3 Map properties 13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		13.1	Bicontactual regular maps	86			
13.4 Operations on maps 13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		13.2	Operations on reflexible maps	87			
13.5 Conway polyhedron operator notation 13.6 Extended operations 14 Utility Functions 14.1 System 14.2 Polytopes 14.3 Permutations 14.4 Words on relations 15 Synonyms for Commands		13.3	Map properties	88			
13.6 Extended operations 14 Utility Functions 14.1 System		13.4	Operations on maps	88			
14 Utility Functions 14.1 System		13.5	Conway polyhedron operator notation	9			
14.1 System		13.6	Extended operations	93			
14.2 Polytopes	14	4 Utility Functions 9					
14.3 Permutations		14.1	System	96			
14.4 Words on relations		14.2	Polytopes	96			
15 Synonyms for Commands		14.3	Permutations	97			
		14.4	Words on relations	98			
References	15	Syno	onyms for Commands	100			
	References						
Index	101						

Chapter 1

Installation

1.1 Basics

Some quick notes on installation:

- RAMP is confirmed to work with version 4.11.1 of GAP, but is known not to work with some earlier versions.
- Copy the RAMP folder and its contents to your GAP /pkg folder.
 - If using the GAP.app on macOS, this should be your user Library/Preferences/GAP/pkg folder. Probably the easiest way to do this if you have received RAMP as a .zip file is to copy the file into this location, and then unpack it. After that, you can delete the .zip file.

Chapter 2

Groups for Maps, Polytopes, and Maniplexes

2.1 Groups of Maps, Polytopes, and Maniplexes

2.1.1 Automorphism Groups

```
    ▷ AutomorphismGroup(M) (attribute)
    ▷ AutomorphismGroupFpGroup(M) (attribute)
    ▷ AutomorphismGroupPermGroup(M) (attribute)
    ▷ AutomorphismGroupOnFlags(M) (attribute)
```

Returns the automorphism group of M. This group is not guaranteed to be in any particular form. For particular permutation representations you should consider the various AutomorphismGroupOn... functions, or AutomorphismGroupFpGroup. Returns the automorphism group of M as a finitely presented group. If M is reflexible, then this is guaranteed to be the standard presentation. Returns the automorphism group of M as a permutation group. This group is not guaranteed to be in any particular form. For particular permutation representations you should consider the various Automorphism-GroupOn... functions. Returns the automorphism group of M as a permutation group action on the flags of M.

```
_ Example
gap > s0 := (3,7)(4,8)(5,6);;
gap> s1 := (2,3)(4,6)(5,7);;
gap> s2 := (1,2)(3,6)(4,8)(5,7);;
gap> poly := Group([s0,s1,s2]);;
gap> p:=ARP(poly);
regular 3-polytope
gap> AutomorphismGroup(p);
Group([(3,7)(4,8)(5,6), (2,3)(4,6)(5,7), (1,2)(3,6)(4,8)(5,7)])
gap> AutomorphismGroupFpGroup(p);
<fp group on the generators [ r0, r1, r2 ]>
gap> AutomorphismGroupPermGroup(Cube(3));
Group([(3,4), (2,3)(4,5), (1,2)(5,6)])
gap> AutomorphismGroupOnFlags(Cube(3));
<permutation group with 3 generators>
gap> GeneratorsOfGroup(last);
```

```
 \begin{bmatrix} (1,20)(2,13)(3,10)(4,34)(5,35)(6,7)(8,27)(9,28)(11,23)(12,24)(14,44)(15,45)(16,18)(17,19)(21,40)(11,11)(2,18)(3,4)(5,26)(6,41)(7,8)(9,33)(10,45)(12,15)(13,31)(14,25)(16,28)(17,27)(19,22)(20,38)(13,31)(2,7)(4,25)(5,28)(6,13)(8,32)(9,35)(10,20)(11,14)(12,17)(15,47)(16,40)(18,21)(19,24)(22,48)(17,27)(18,21)(19,24)(22,48)(17,27)(18,21)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)(19,24)
```

2.1.2 ConnectionGroup (for IsManiplex)

▷ ConnectionGroup(M)

(attribute)

Returns the connection group of M as a permutation group. We may eventually allow other types of connection groups. Synonym: MonodromyGroup

2.1.3 EvenConnectionGroup (for IsManiplex)

▷ EvenConnectionGroup(M)

(attribute)

Returns the even-word subgroup of the connection group of M as a permutation group.

2.1.4 RotationGroup (for IsManiplex)

▷ RotationGroup(M)

(attribute)

Returns the rotation group of M. This group is not guaranteed to be in any particular form.

```
gap> RotationGroup(HemiCube(3));
Group([ r0*r1, r1*r2 ])
```

2.1.5 RotationGroupFpGroup (for IsManiplex)

▷ RotationGroupFpGroup(M)

(attribute)

Returns the rotation group of M, as a finitely presented group on the standard generators.

```
gap> RotationGroupFpGroup(ToroidalMap44([1,2]));
<fp group on the generators [ s1, s2 ]>
gap> RelatorsOfFpGroup(last);
[ (s1*s2)^2, s1^4, s2^4, s2^-1*s1*(s2*s1^-1)^2 ]
```

2.1.6 ChiralityGroup (for IsRotaryManiplex)

```
▷ ChiralityGroup(M)
```

(attribute)

Returns the chirality group of the rotary maniplex M. This is the kernel of the group epimorphism from the rotation group of M to the rotation group of its maximal reflexible quotient. In particular, the chirality group is trivial if and only if M is reflexible.

2.1.7 ExtraRelators (for IsReflexibleManiplex)

```
▷ ExtraRelators (M) (attribute)
```

For a reflexible maniplex M, returns the relators needed to define its automorphism group as a quotient of the string Coxeter group given by its Schlafli symbol. Not particularly robust at the moment.

```
gap> ExtraRelators(HemiCube(3));
[ (r0*r1*r2)^3 ]
```

2.1.8 ExtraRotRelators (for IsRotaryManiplex)

```
▷ ExtraRotRelators(M)
```

(attribute)

For a reflexible maniplex M, returns the relators needed to define its rotation group as a quotient of the rotation group of a string Coxeter group given by its Schlafli symbol. Not particularly robust at the moment.

2.1.9 IsManiplexable (for IsPermGroup)

▷ IsManiplexable(permgroup)

(operation)

Returns: Boolean.

Given a permutation group, it asks if the generators could be the connection group of a maniplex. That is to say, are each of the generators and their products fixed point free.

2.2 Sggis

2.2.1 UniversalSggi

▷ UniversalSggi(n)

(operation)

▷ UniversalSggi(sym)

(operation)

Returns: IsFpGroup

In the first form, returns the universal Coxeter Group of rank n. In the second form, returns the Coxeter Group with Schlafli symbol sym.

```
gap> g:=UniversalSggi(3);
<fp group of size infinity on the generators [ r0, r1, r2 ]>
gap> q:=UniversalSggi([3,4]);
<fp group of size 48 on the generators [ r0, r1, r2 ]>
gap> IsQuotient(g,q);
true
```

2.2.2 Sggi (for IsList, IsList)

```
▷ Sggi(symbol[, relations])
```

(operation)

Returns: IsFpGroup

Returns the sggi defined by the given Schlafli symbol and with the given relations. The relations can be given by a list of Tietze words or as a string of relators or relations that involve r0 etc. If no relations are given, then returns the universal sggi with the given Schlafli symbol.

```
gap> g := Sggi([4,3,4], "(r0 r1 r2)^3, (r1 r2 r3)^3");;
gap> h := Sggi([4,4], "r0 = r2");;
gap> k := Sggi([infinity, infinity], [[1,2,1,2,1,2], [2,3,2,3,2,3]]);;
gap> k = Sggi([3,3]);
true
```

2.2.3 IsGgi (for IsGroup)

```
▷ IsGgi(g)
(property)
```

Returns: whether g is generated by involutions. Or more specifically, whether GeneratorsOfGroup(g) all have order 2 or less.

```
gap> IsGgi(SymmetricGroup(4));
false
gap> IsGgi(Group([(1,2),(2,3)]));
true
```

2.2.4 IsStringy (for IsGroup)

▷ IsStringy(g)
(property)

Returns: whether every pair of non-adjacent generators of g commute.

2.2.5 IsSggi (for IsGroup)

```
▷ IsSggi(g) (property)
```

Returns: whether g is a string group generated by involutions. Equivalent to IsGgi(g) and IsStringy(g).

2.2.6 IsStringC (for IsGroup)

```
\triangleright IsStringC(G) (operation)
```

For an sggi G, returns whether the group is a string C group.

2.2.7 IsStringCPlus (for IsGroup)

```
▷ IsStringCPlus(G) (operation)
```

For a "string rotation group" G, returns whether the group is a string C+ group. It does not check whether G is a string rotation group.

2.2.8 SggiElement (for IsGroup, IsString)

```
\triangleright SggiElement(g, str) (operation)
```

Returns: the element of g with underlying word str.

```
gap> g := Group((1,2),(2,3),(3,4));;
gap> SggiElement(g, "r0 r1");
(1,3,2)
```

For convenience, you can also use a reflexible maniplex M in place of g, in which case AutomorphismGroup(M) is used for g.

2.2.9 IsRelationOfReflexibleManiplex (for IsManiplex, IsString)

```
▷ IsRelationOfReflexibleManiplex(M, rel)
```

Returns: IsBool

Determines whether the relation given by the string rel holds in AutomorphismGroup(M).

```
gap> M := ReflexibleManiplex([8,6],"(r0 r1)^4 (r1 r2)^3");;
gap> IsRelationOfReflexibleManiplex(M, "(r0 r1 r2)^3");
false
gap> IsRelationOfReflexibleManiplex(M, "(r0 r1 r2)^12");
true
```

2.2.10 SggiFamily (for IsGroup, IsList)

```
▷ SggiFamily(parent, words)
```

(operation)

(operation)

Given a parent group and a list of strings that represent words in r0, r1, etc, returns a function. That function accepts a list of positive integers L, and returns the quotient of parent by the relations that set the order of each words[i] to L[i].

```
gap> f := SggiFamily(Sggi([4,4]), ["r0 r1 r2 r1"]);
function( orders ) ... end
gap> g := f([3]);
<fp group on the generators [ r0, r1, r2 ]>
gap> Size(g);
72
gap> h := f([6]);
<fp group on the generators [ r0, r1, r2 ]>
gap> IsQuotient(h,g);
true
```

One of the advantages of building an SggiFamily is that testing whether one member of the family is a quotient of another member can be done quite quickly.

2.2.11 IsCConnected (for IsManiplex)

```
▷ IsCConnected(m) (property)
```

Returns: IsBool

Determines whether a given maniplex is C-connected (i.e., is the connection group a string C-group).

```
Example

gap> IsCConnected(ToroidalMap44([1,0]));

false

gap> IsCConnected(Prism(ToroidalMap44([1,0])));

true
```

Chapter 3

Families of Polytopes

3.1 Classical polytopes

3.1.1 Vertex

```
Vertex()
Returns: IsPolytope
Returns the universal 0-polytope.

gap> Vertex();
UniversalPolytope(0)
(operation)
```

3.1.2 Edge

```
Pedge()
Returns: IsPolytope
Returns the universal 1-polytope.

gap> Edge();
UniversalPolytope(1)
(operation)
```

3.1.3 Pgon (for IsInt)

3.1.4 Cube (for IsInt)

Cube (n) (operation)
Returns: IsPolytope
Returns the n-cube.

```
_ Example _
  gap> Fvector(Cube(4));
  [ 16, 32, 24, 8 ]
3.1.5 HemiCube (for IsInt)
```

▷ HemiCube(n) **Returns:** IsPolytope

Returns the n-hemi-cube.

```
____ Example __
gap> Fvector(HemiCube(4));
[8, 16, 12, 4]
```

3.1.6 CrossPolytope (for IsInt)

▷ CrossPolytope(n)

(operation)

(operation)

Returns: IsPolytope

Returns the n-cross-polytope.

```
_ Example -
gap> NumberOfVertices(CrossPolytope(5));
```

HemiCrossPolytope (for IsInt)

▷ HemiCrossPolytope(n)

(operation)

Returns: IsPolytope

Returns the n-hemi-cross-polytope.

```
Example
gap> NumberOfVertices(HemiCrossPolytope(5));
5
```

3.1.8 Simplex (for IsInt)

▷ Simplex(n)

(operation)

Returns: IsPolytope Returns the n-simplex.

```
_ Example _
gap> Petrial(Simplex(3))=HemiCube(3);
true
```

3.1.9 CubicTiling (for IsInt)

▷ CubicTiling(n)

(operation)

Returns: IsPolytope

Returns the rank n+1 polytope; the tiling of E^n by n-cubes.

```
gap> SchlafliSymbol(CubicTiling(3));
[4,3,4]
```

3.1.10 Dodecahedron

```
Dodecahedron()

Returns: IsPolytope
Returns the dodecahedron, {5, 3}.

gap> Dual(Dodecahedron());
Icosahedron()
```

3.1.11 HemiDodecahedron

HemiDodecahedron()

(operation)

(operation)

Returns: IsPolytope

Returns the hemi-dodecahedron, {5, 3}_5.

```
gap> Dual(HemiDodecahedron());
ReflexibleManiplex([ 3, 5 ], "(r2*r1*r0)^5")
```

3.1.12 Icosahedron

▷ Icosahedron()

(operation)

Returns: IsPolytope

Returns the icosahedron, {3, 5}.

3.1.13 HemiIcosahedron

▶ HemiIcosahedron()

Returns: IsPolytope

Returns the hemi-icosahedron, {3, 5}_5.

```
gap> Fvector(HemiIcosahedron());
[ 6, 15, 10 ]
Example
```

3.1.14 24Cell

Returns: IsPolytope

Returns the 24-cell, {3, 4, 3}.

```
gap> SchlafliSymbol(24Cell());
[ 3, 4, 3 ]
```

3.1.15 Hemi24Cell

Returns: IsPolytope

Returns the hemi-24-cell, {3, 4, 3}_6.

```
gap> SchlafliSymbol(Hemi24Cell());
[ 3, 4, 3 ]
```

3.1.16 120Cell

Returns: IsPolytope

Returns the 120-cell, {5, 3, 3}.

```
gap> NumberOfIFaces(120Cell(),3);
120 Example
```

3.1.17 Hemi120Cell

→ Hemi120Cell() (operation)

Returns: IsPolytope

Returns the hemi-120-cell, {5, 3, 3}_15.

```
gap> NumberOfIFaces(Hemi120Cell(),3);
60
Example
```

3.1.18 600Cell

Returns: IsPolytope

Returns the 600-cell, {3, 3, 5}.

```
gap> Dual(600Cell());
120Cell()
```

3.1.19 Hemi600Cell

→ Hemi600Cell() (operation)

Returns: IsPolytope

Returns the hemi-600-cell, {3, 3, 5}_15.

```
gap> Dual(Hemi600Cell())=Hemi120Cell();
true
```

3.1.20 BrucknerSphere

▷ BrucknerSphere() (operation)

Returns: IsPoset

Returns Bruckner's sphere.

```
gap> IsLattice(BrucknerSphere());
true
```

3.1.21 InternallySelfDualPolyhedron1 (for IsInt)

▷ InternallySelfDualPolyhedron1(p)

(operation)

Returns: IsPolytope

Constructs the internally self-dual polyhedron of type {p, p} described in Theorem 5.3 of [CM17]. #(https://doi.org/10.11575/cdm.v12i2.62785). p must be at least 7.

```
gap> SchlafliSymbol(InternallySelfDualPolyhedron1(40));
[ 40, 40 ]
```

3.1.22 InternallySelfDualPolyhedron2 (for IsInt, IsInt)

▷ InternallySelfDualPolyhedron2(p, k)

(operation)

Returns: IsPolytope

Constructs the internally self-dual polyhedron of type {p, p} described in Theorem 5.8 of [CM17].# (https://doi.org/10.11575/cdm.v12i2.62785). p must be even and at least 6, and k must be odd.

```
gap> SchlafliSymbol(InternallySelfDualPolyhedron2(40,7));
[ 40, 40 ]
```

3.2 Flat and tight polytopes

3.2.1 FlatOrientablyRegularPolyhedron (for IsInt, IsInt, IsInt, IsInt)

▷ FlatOrientablyRegularPolyhedron(p, q, i, j)

(operation)

Returns: polyhedron

polyhedron is the flat orientably regular polyhedron with automorphism group $[p, q] / (r2 r1 r0 r1 = (r0 r1)^i (r1 r2)^j)$. This function validates the inputs to make sure that the polyhedron is well-defined. Use FlatOrientablyRegularPolyhedronNC if you do not want this validation.

```
gap> FlatOrientablyRegularPolyhedron(4,2,3,3);
FlatOrientablyRegularPolyhedron(4,2,-1,1)
```

3.2.2 FlatOrientablyRegularPolyhedraOfType (for IsList)

⊳ FlatOrientablyRegularPolyhedraOfType(sym)

(operation)

Returns a list of all flat, orientably regular polyhedra with Schlafli symbol sym.

```
Example

ap> FlatOrientablyRegularPolyhedraOfType([6,6]);

[ FlatOrientablyRegularPolyhedron(6,6,3,1), FlatOrientablyRegularPolyhedron(6,6,-1,1),
    FlatOrientablyRegularPolyhedron(6,6,-1,3) ]
```

3.2.3 TightOrientablyRegularPolytopesOfType (for IsList)

▷ TightOrientablyRegularPolytopesOfType(sym)

(operation)

Returns a list of all tight, orientably regular polytopes with Schlafli symbol sym. When sym has length 2, this just calls FlatOrientablyRegularPolyhedraOfType(sym).

```
Example gap> TightOrientablyRegularPolytopesOfType([6,6]);

[ FlatOrientablyRegularPolyhedron(6,6,3,1), FlatOrientablyRegularPolyhedron(6,6,-1,1),
    FlatOrientablyRegularPolyhedron(6,6,-1,3) ]
```

3.3 The Tomotope

3.3.1 Tomotope

```
➤ Tomotope() (operation)
Returns: maniplex
Constructs the Tomotope from [MPW12]
```

```
gap> SchlafliSymbol(Tomotope());
[ 3, [ 3, 4 ], 4 ]
Example
```

3.4 Toroids

3.4.1 ToroidalMap44

```
▷ ToroidalMap44(u[, v])
```

(function)

Returns: IsManiplex

Returns the toroidal map $\{4,4\}_{\vec{u},\vec{v}}$. If only u is given, then v is taken to be u rotated 90 degrees, in which case the resulting map is either reflexible or chiral.

```
gap> ToroidalMap44([3,0]) = ARP([4,4], "(r0 r1 r2 r1)^3");
true
gap> M := ToroidalMap44([1,2]);; IsChiral(M);
true
gap> ToroidalMap44([5,0]) = SmallestReflexibleCover(M);
true
```

```
gap> M := ToroidalMap44([2,0],[0,3]);; NumberOfFlagOrbits(M);
2
gap> M = ARP([4,4]) / "(r0 r1 r2 r1)^2, (r1 r0 r1 r2)^3";
true
gap> SmallestReflexibleCover(M) = ToroidalMap44([6,0]);
true
gap> ToroidalMap44([2,3],[4,1]) = ToroidalMap44([-3,2],[-1,4]);
true
```

3.4.2 CubicToroid (for IsInt,IsInt,IsInt)

```
▷ CubicToroid(s, k, n)
```

(operation)

Returns: IsManiplex

Given IsInt triple s, k, n, will return the regular toroid $\{4,3^{n-2},4\}_{\vec{s}}$ where $\vec{s}=(s^k,0^{n-k})$.

```
gap> m44:=CubicToroid(3,2,2);;
gap> m44=ToroidalMap44([3,3]);
true
Example

true
```

3.4.3 CubicToroid (for IsInt,IsList)

▷ CubicToroid(n, vecs)

(operation)

Returns: IsManiplex

Given an integer n and a list of vectors vecs, returns the cubic toroid that is a quotient of Cubic-Tiling(n) by the translation subgroup generated by the given vectors. The results may be nonsensical if vecs does not generate an n-dimensional translation group.

```
gap> CubicToroid(2,[[2,0],[0,2]]);
3-maniplex
gap> last=ToroidalMap44([2,0]);
true
```

3.4.4 3343Toroid (for IsInt,IsInt)

 \triangleright 3343Toroid(s, k)

(operation)

Returns: IsManiplex

Given IsInt pair s, k, will return the regular toroid $\{3,3,4,3\}_{\vec{s}}$ where $\vec{s} = (s^k, 0^{n-k})$. Note that k must be 1 or 2.

3.4.5 24CellToroid (for IsInt,IsInt)

 \triangleright 24CellToroid(s, k)

(operation)

Returns: IsManiplex

Given IsInt pair \vec{s} , k, will return the regular toroid $\{3,4,3,3\}_{\vec{s}}$ where $\vec{s} = (s^k, 0^{n-k})$. Note that k must be 1 or 2.

3.5 Uniform polyhedra

Representations of the uniform polyhedra here are from [HW10].

3.5.1 Cuboctahedron

▷ Cuboctahedron() (operation)

Returns: maniplex

Constructs the cuboctahedron.

```
gap> SchlafliSymbol(Cuboctahedron());
[[3, 4], 4]
```

3.5.2 TruncatedTetrahedron

▷ TruncatedTetrahedron()

(operation)

Returns: maniplex

Constructs the truncated tetrahedron.

```
gap> SchlafliSymbol(TruncatedTetrahedron());
[ [ 3, 6 ], 3 ]
```

3.5.3 TruncatedOctahedron

▷ TruncatedOctahedron()

(operation)

Returns: maniplex

Constructs the truncated octahedron.

```
gap> Fvector(TruncatedOctahedron());
[ 24, 36, 14 ]
```

3.5.4 TruncatedCube

▷ TruncatedCube()

(operation)

Returns: maniplex

Constructs the truncated octahedron.

```
gap> Fvector(TruncatedCube());
[ 24, 36, 14 ]
gap> SchlafliSymbol(TruncatedCube());
[ [ 3, 8 ], 3 ]
```

3.5.5 Icosadodecahedron

▷ Icosadodecahedron()

(operation)

Returns: maniplex

Constructs the icosadodecahedron.

```
gap> VertexFigure(Icosadodecahedron());
Pgon(4)
gap> Facets(Icosadodecahedron());
[ Pgon(5), Pgon(3) ]
```

3.5.6 TruncatedIcosahedron

> TruncatedIcosahedron()

(operation)

Returns: maniplex

Constructs the truncated icosahedron.

```
gap> Facets(TruncatedIcosahedron());
[ Pgon(6), Pgon(5) ]
```

3.5.7 SmallRhombicuboctahedron

▷ SmallRhombicuboctahedron()

(operation)

Returns: maniplex

Constructs the small rhombicuboctahedron.

```
gap> ZigzagVector(SmallRhombicuboctahedron());
[ 12, 8 ]
```

3.5.8 Pseudorhombicuboctahedron

▷ Pseudorhombicuboctahedron()

(operation)

Returns: maniplex

Constructs the pseudorhombicuboctahedron.

```
gap> Size(ConnectionGroup(Pseudorhombicuboctahedron()));
16072626615091200
```

3.5.9 SnubCube

▷ SnubCube()

(operation)

Returns: maniplex

Constructs the snub cube.

```
gap> IsEquivelar(PetrieDual(SnubCube()));
true
gap> SchlafliSymbol(PetrieDual(SnubCube()));
[ 30, 5 ]
gap> Size(ConnectionGroup(PetrieDual(SnubCube())));
3804202857922560
gap> Size(AutomorphismGroup(PetrieDual(SnubCube())));
24
```

3.5.10 SmallRhombicosidodecahedron

▷ SmallRhombicosidodecahedron()

(operation)

Returns: maniplex

Constructs the small rhombicosidodecahedron.

```
Example

gap> Facets(SmallRhombicosidodecahedron());

[ Pgon(5), Pgon(4), Pgon(3) ]
```

3.5.11 GreatRhombicosidodecahedron

▷ GreatRhombicosidodecahedron()

(operation)

Returns: maniplex

Constructs the great rhombicosidodecahedron.

```
gap> Facets(GreatRhombicosidodecahedron());
[ Pgon(10), Pgon(4), Pgon(6) ]
```

3.5.12 SnubDodecahedron

▷ SnubDodecahedron()

(operation)

Returns: maniplex

Constructs the small snub dodecahedron.

```
gap> Facets(SnubDodecahedron());
[ Pgon(5), Pgon(3) ]
gap> IsEquivelar(PetrieDual(SnubDodecahedron()));
true
```

3.5.13 TruncatedDodecahedron

▷ TruncatedDodecahedron()

(operation)

Returns: maniplex

Constructs the truncated dodecahedron.

```
gap> Facets(TruncatedDodecahedron());
[ Pgon(10), Pgon(3) ]
```

3.5.14 GreatRhombicuboctahedron

▷ GreatRhombicuboctahedron()

(operation)

Returns: maniplex

Constructs the great rhombicuboctahedron.

Chapter 4

Maniplexes

4.1 Constructors

4.1.1 ReflexibleManiplex

In the first form, we are given an Sggi g and we return the reflexible maniplex with that automorphism group, where the privileged generators are those returned by GeneratorsOfGroup(g).

```
gap> g := Group([(1,2), (2,3), (3,4)]);
gap> M := ReflexibleManiplex(g);
gap> M = Simplex(3);
true
```

This function first checks whether g is an Sggi. Use ReflexibleManiplexNC to bypass that check. The second form returns the universal reflexible maniplex with Schlafli symbol sym. If the optional argument relations is given, then we return the reflexible maniplex with the given defining relations. The relations can be given by a list of Tietze words or as a string of relators or relations that involve r0 etc.

```
Example

gap> q := ReflexibleManiplex([4,3,4], "(r0 r1 r2)^3, (r1 r2 r3)^3");;

gap> q = ReflexibleManiplex([4,3,4], "(r0 r1 r2)^3 = (r1 r2 r3)^3 = 1");

true

gap> p := ReflexibleManiplex([infinity], "r0 r1 r0 = r1 r0 r1");;
```

If the option set_schlafli is set, then we set the Schlafli symbol to the one given. This may not be the correct Schlafli symbol, since the relations may cause a collapse, so this should only be used if you know that the Schlafli symbol is correct.

The abbreviations RefMan and RefManNC are also available.

4.1.2 Maniplex (for IsPermGroup)

Given a permutation group G on the set [1..N], returns a maniplex with N flags with connection group G. The output may not make sense if G is not an sggi.

```
gap> G := Group([(1,2)(3,4)(5,6), (2,3)(4,5)(1,6)]);;
gap> M := Maniplex(G);
Pgon(3)
gap> c := ConnectionGroup(Cube(3));
<permutation group with 3 generators>
gap> Maniplex(c) = Cube(3);
true
```

4.1.3 Maniplex (for IsReflexibleManiplex, IsGroup)

```
\triangleright Maniplex(M, H) (operation)
```

Returns: IsManiplex

Let M be a reflexible maniplex and let H be a subgroup of AutomorphismGroup(M). This returns the maniplex M/H. This will be reflexible if and only if H is normal. For most purposes, it is probably easier to use QuotientManiplex, which takes a string of relations as input instead of a subgroup. The example below builds the map $\{4,4\}_{(1,0),(0,2)}$.

```
gap> M := ReflexibleManiplex([4,4]);
CubicTiling(2)
gap> G := AutomorphismGroup(M);
<fp group of size infinity on the generators [ r0, r1, r2 ]>
gap> H := Subgroup(G, [G.1*G.2*G.3*G.2, (G.2*G.1*G.2*G.3)^2]);
Group([ r0*r1*r2*r1, (r1*r0*r1*r2)^2 ])
gap> M2 := Maniplex(M, H);
3-maniplex
gap> Size(M2);
16
```

4.1.4 Maniplex (for IsFunction, IsList)

Constructs a formal maniplex, represented by an operation F and a list of arguments inputs. By itself, this does not really $_{do}$ anything $_{inputs}$ it creates a maniplex object that only knows the operation F and the inputs. However, many polytope operations (such as Pyramid(M), Medial(M), etc) use this construction as a base, and then add "attribute computers" that tell the formal maniplex how to compute certain things in terms of properties of the base. See AddAttrComputer for more information.

4.1.5 Maniplex (for IsPoset)

```
\triangleright Maniplex (P) (operation)
```

Returns: IsManiplex

Constructs the maniplex from the given poset P. This assumes that P actually defines a maniplex.

4.1.6 Maniplex (for IsEdgeLabeledGraph)

ightharpoonup Maniplex (P) (operation)

Returns: IsManiplex

Constructs the maniplex from its flag graph F. This assumes that F actually defines a maniplex.

4.1.7 IsPolytopal (for IsManiplex)

▷ IsPolytopal(M) (property)

Returns: true or false

Returns whether the maniplex M is polytopal; i.e., the flag graph of a polytope.

4.2 Mixing of Maniplexes functions

4.2.1 Comix

```
▷ Mix(permgroup, permgroup) (operation)

▷ Mix(fpgroup, fpgroup) (operation)

▷ FlagMix(maniplex, maniplex) (operation)

▷ Comix(fpgroup, fpgroup) (operation)

■ Pattern of C
```

Returns: IsGroup .

Given two (permutation) groups returns the mix of those groups. Note, also works with FPgroups. Given two maniplexes p, q this returns the maniplex of their "flag" mix Given two manpilexes, returns their mix. For two reflexible maniplexes returns the IsReflexibleManiplex from the mix of their connection groups. In general, it returns the flag mix. Returns the comix of two Finitely Presented groups gp and gq.

Here we build the mix of the connection groups of a 3-cube and an edge.

```
gap> g1:=ConnectionGroup(Cube(3));
<permutation group with 3 generators>
gap> g2:=ConnectionGroup(Edge());
Group([ (1,2) ])
gap> Mix(g1,g2);
<permutation group with 3 generators>
```

4.2.2 Comix (for IsReflexibleManiplex, IsReflexibleManiplex)

▷ Comix(maniplex, maniplex)

(operation)

Returns: IsReflexibleManiplex .

Given maniplexes returns the IsReflexibleManiplex from the comix of their connection groups

4.2.3 Indexed array tools

```
▷ CtoL(int, int, int, int)
```

(operation)

Returns: IsInteger .

CtoL Returns an integer between 1 and N*M associated with the pair [a,b]. LtoC Returns an ordered pair [a,b] associated with the integer between 1 and N*M. a should range between 1 and N,

and b should range between 1 and M N is how many columns (x coordinates), M is how many rows (y coordinates) in a matrix Functions are inverses.

```
gap> LtoC(5,4,14);

[ 1, 2 ]

gap> CtoL(3,2,5,4);

8

gap> LtoC(8,5,4);

[ 3, 2 ]
```

4.3 Rotary maniplexes and rotation groups

4.3.1 UniversalRotationGroup (for IsInt)

▷ UniversalRotationGroup(n)

(operation)

Returns the rotation subgroup of the universal Coxeter Group of rank n.

4.3.2 UniversalRotationGroup (for IsList)

▷ UniversalRotationGroup(sym)

(operation)

Returns the rotation subgroup of the Coxeter Group with Schlafli symbol sym.

4.3.3 RotaryManiplex (for IsGroup)

```
▷ RotaryManiplex(g)
```

(operation)

Given a group g (which should be a string rotation group), returns the rotary maniplex with that rotation group, where the privileged generators are those returned by GeneratorsOfGroup(g).

4.3.4 RotaryManiplex (for IsList)

```
▷ RotaryManiplex(sym)
```

(operation)

Returns the universal rotary maniplex (in fact, regular polytope) with Schlafli symbol sym.

4.3.5 RotaryManiplex (for IsList, IsList)

(operation)

Returns the rotary maniplex with the given Schlafli symbol and with the given relations. The relations are given by a string that refers to the generators s1, s2, etc. For example:

```
gap> M := RotaryManiplex([4,4], "(s2^-1 s1)^6");;
```

If the option set_schlafli is set, then we set the Schlafli symbol to the one given. This may not be the correct Schlafli symbol, since the relations may cause a collapse, so this should only be used if you know that the Schlafli symbol is correct.

4.3.6 EnantiomorphicForm (for IsRotaryManiplex)

▷ EnantiomorphicForm(M)

(operation)

The *enantiomorphic form* of a rotary maniplex is the same maniplex, but where we choose the new base flag to be one of the flags that is adjacent to the original base flag. If M is reflexible, then this choice has no effect. Otherwise, if M is chiral, then the enantiomorphic form gives us a different presentation for the rotation group.

Chapter 5

Maniplex Properties

5.1 Automorphism group acting on faces and chains

5.1.1 AutomorphismGroupOnChains (for IsManiplex, IsCollection)

```
▷ AutomorphismGroupOnChains(M, I)
```

(operation)

Returns: IsPermGroup

Returns a permutation group, representing the action of AutomorphismGroup(M) on the chains of M of type I.

```
Example

gap> AutomorphismGroupOnChains(HemiCube(3),[0,2]);

Group([ (1,2)(3,4)(5,10)(6,9)(7,8)(11,12), (2,6)(3,5)(4,7)(8,11)(10,12), (1,3)(2,4)(6,11)(7,8)
(9,12) ])
```

5.1.2 AutomorphismGroupOnIFaces (for IsManiplex, IsInt)

(operation)

Returns: IsPermGroup

Returns a permutation group, representing the action of AutomorphismGroup(M) on the i-faces of M.

```
gap> AutomorphismGroupOnIFaces(HemiCube(3),2);
Group([ (), (2,3), (1,2) ])
```

5.1.3 AutomorphismGroupOnVertices (for IsManiplex)

▷ AutomorphismGroupOnVertices(M)

(attribute)

Returns: IsPermGroup

Returns a permutation group, representing the action of AutomorphismGroup(M) on the vertices of M.

5.1.4 AutomorphismGroupOnEdges (for IsManiplex)

(attribute)

Returns: IsPermGroup

Returns a permutation group, representing the action of AutomorphismGroup(M) on the edges of M.

5.1.5 AutomorphismGroupOnFacets (for IsManiplex)

(attribute)

Returns: IsPermGroup

Returns a permutation group, representing the action of AutomorphismGroup(M) on the facets of M.

```
gap> AutomorphismGroupOnFacets(HemiCube(5));
Group([ (), (4,5), (3,4), (2,3), (1,2) ])
```

5.2 Number of orbits and transitivity

5.2.1 NumberOfChainOrbits (for IsManiplex, IsCollection)

▷ NumberOfChainOrbits(M, I)

(operation)

Returns: IsInt

Returns the number of orbits of chains of type *I* under the action of AutomorphismGroup(*M*).

```
gap> NumberOfChainOrbits(Cuboctahedron(),[0,2]);
2
```

5.2.2 NumberOfIFaceOrbits (for IsManiplex, IsInt)

▷ NumberOfIFaceOrbits(M, i)

(operation)

Returns: IsInt

Returns the number of orbits of *i*-faces under the action of AutomorphismGroup(*M*).

```
gap> NumberOfIFaceOrbits(SnubDodecahedron(),2);
3
```

5.2.3 NumberOfVertexOrbits (for IsManiplex)

NumberOfVertexOrbits(M)

(attribute)

Returns: IsInt

Returns the number of orbits of vertices under the action of AutomorphismGroup(*M*).

```
gap> NumberOfVertexOrbits(Dual(SnubDodecahedron()));
3
```

5.2.4 NumberOfEdgeOrbits (for IsManiplex)

▷ NumberOfEdgeOrbits(M)

(attribute)

Returns: IsInt

Returns the number of orbits of edges under the action of AutomorphismGroup(*M*).

```
gap> NumberOfEdgeOrbits(SnubDodecahedron());
3
```

5.2.5 NumberOfFacetOrbits (for IsManiplex)

▷ NumberOfFacetOrbits(M)

(attribute)

Returns: IsInt

Returns the number of orbits of facets under the action of AutomorphismGroup(M).

```
gap> NumberOfFacetOrbits(SnubCube());
3
```

5.2.6 IsChainTransitive (for IsManiplex, IsCollection)

▷ IsChainTransitive(M, I)

(operation)

Returns: IsBool

Determines whether the action of AutomorphismGroup(M) on chains of type I is transitive.

```
gap> IsChainTransitive(SmallRhombicuboctahedron(),[0,2]);
false
gap> IsChainTransitive(SmallRhombicuboctahedron(),[0,1]);
false
gap> IsChainTransitive(Cuboctahedron(),[0,1]);
true
```

5.2.7 IsIFaceTransitive (for IsManiplex, IsInt)

 \triangleright IsIFaceTransitive(M, i)

(operation)

Returns: IsBool

Determines whether the action of AutomorphismGroup(M) on i-faces is transitive.

```
gap> IsIFaceTransitive(Cuboctahedron(),1);
true
```

5.2.8 IsVertexTransitive (for IsManiplex)

▷ IsVertexTransitive(M)

(property)

Returns: IsBool

Determines whether the action of AutomorphismGroup(M) on vertices is transitive.

```
gap> IsVertexTransitive(Bk21(4,5));
true
```

5.2.9 IsEdgeTransitive (for IsManiplex)

▷ IsEdgeTransitive(M)

Returns: IsBool

Determines whether the action of AutomorphismGroup(M) on edges is transitive.

```
gap> IsEdgeTransitive(Prism(Simplex(3)));
false
```

5.2.10 IsFacetTransitive (for IsManiplex)

 \triangleright IsFacetTransitive(M)

(property)

(property)

Returns: IsBool

Determines whether the action of AutomorphismGroup(M) on facets is transitive.

```
gap> IsFacetTransitive(Prism(HemiCube(3)));
false
```

5.2.11 IsFullyTransitive (for IsManiplex)

▷ IsFullyTransitive(M)

(property)

Returns: IsBool

Determines whether the action of AutomorphismGroup(M) on i-faces is transitive for every i.

```
gap> IsFullyTransitive(SmallRhombicuboctahedron());
false
gap> IsFullyTransitive(Bk21(4,5));
true
```

5.3 Flag orbits

5.3.1 Flags (for IsManiplex)

_

Returns: IsList

▷ Flags(M)

(attribute)

The list of flags of the maniplex M.

```
gap> Flags(Pgon(5));
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
gap> M := Maniplex(Group((3,4)(5,6)(7,8)(9,10), (3,6)(4,5)(7,10)(8,9), (3,7)(4,8)(5,9)(6,10)));;
gap> Flags(M);
[ 3, 4, 5, 6, 7, 8, 9, 10 ]
```

5.3.2 BaseFlag (for IsManiplex)

Returns: IsObject

The base flag of the maniplex M. By default, when the set of flags is a set of positive integers, the base flag is the minimum of the set of flags.

```
gap> BaseFlag(Cube(3));
1
gap> M := Maniplex(Group((3,4)(5,6)(7,8)(9,10), (3,6)(4,5)(7,10)(8,9), (3,7)(4,8)(5,9)(6,10)));;
gap> BaseFlag(M);
3
```

5.3.3 SymmetryTypeGraph (for IsManiplex)

```
⊳ SymmetryTypeGraph(M)
```

(attribute)

Returns the Symmetry Type Graph of the maniplex M, encoded as a permutation group on Rank(M) generators.

```
gap> SymmetryTypeGraph(Prism(Simplex(3)));
Edge labeled graph with 4 vertices, and edge labels [ 0, 1, 2, 3 ]
```

5.3.4 NumberOfFlagOrbits (for IsManiplex)

▷ NumberOfFlagOrbits(M)

(attribute)

Returns the number of orbits of the automorphism group of M on its flags.

```
gap> NumberOfFlagOrbits(Prism(Simplex(3)));
4
```

5.3.5 FlagOrbitRepresentatives (for IsManiplex)

⊳ FlagOrbitRepresentatives(M)

(attribute)

Returns one flag from each orbit under the action of AutomorphismGroup(*M*).

```
gap> FlagOrbitRepresentatives(Prism(Simplex(3)));
[ 1, 49, 97, 145 ]
```

5.3.6 FlagOrbitsStabilizer (for IsManiplex)

 \triangleright FlagOrbitsStabilizer(M)

(attribute)

Returns: g

Returns the subgroup of the connection group that preserves the flag orbits under the action of the automorphism group.

```
gap> m:=Prism(Dodecahedron());
Prism(Dodecahedron())
gap> s:=FlagOrbitsStabilizer(m);
<permutation group of size 207360000 with 12 generators>
gap> IsSubgroup(ConnectionGroup(m),s);
true
gap> AsSet(Orbit(AutomorphismGroupOnFlags(m),1))=AsSet(Orbit(s,1));
true
```

5.3.7 IsReflexible (for IsManiplex)

▷ IsReflexible(M) (property)

Returns: Whether the maniplex M is reflexible (has one flag orbit).

```
gap> IsReflexible(Epsilonk(6));
true
Example _____

true
```

5.3.8 IsChiral (for IsManiplex)

Returns: Whether the maniplex *M* is chiral.

```
gap> IsChiral(ToroidalMap44([2,3]));
true
```

5.3.9 IsRotary (for IsManiplex)

▷ IsRotary(M) (property)

Returns: Whether the maniplex M is rotary; i.e., whether it is either reflexible or chiral.

```
gap> IsRotary(ToroidalMap44([3,5]));
true
```

5.3.10 FlagOrbits (for IsManiplex)

```
> FlagOrbits(M)

(attribute)
```

Returns a list of lists of flags, representing the orbits of flags under the action of AutomorphismGroup(M).

5.4 Orientability

5.4.1 IsOrientable (for IsManiplex)

▷ IsOrientable(M) (property)

Returns: true or false

A maniplex is orientable if its flag graph is bipartite.

```
gap> IsOrientable(HemiCube(3));
false
gap> IsOrientable(Cube(3));
true
```

5.4.2 IsIOrientable (for IsManiplex, IsList)

```
▷ IsIOrientable(M, I)
```

(operation)

For a subset I of {0, ..., n-1}, a maniplex is I-orientable if every closed path in its flag graph contains an even number of edges with colors in I.

```
gap> IsIOrientable(HemiCube(3),[1,2]);
true
```

5.4.3 IsVertexBipartite (for IsManiplex)

▷ IsVertexBipartite(M)

(property)

Returns: true or false

A maniplex is vertex-bipartite if its 1-skeleton is bipartite. This is equivalent to being I-orientable for $I = \{0\}$.

```
gap> IsVertexBipartite(HemiCube(4));
true
```

5.4.4 IsFacetBipartite (for IsManiplex)

▷ IsFacetBipartite(M)

(property)

Returns: true or false

A maniplex is facet-bipartite if the 1-skeleton of its dual is bipartite. This is equivalent to being I-orientable for $I = \{n-1\}$.

```
gap> IsFacetBipartite(HemiCube(4));
false
```

5.4.5 OrientableCover (for IsManiplex)

▷ OrientableCover(M)

(attribute)

Returns the minimal *orientable cover* of the maniplex M.

```
gap> OrientableCover(HemiCube(3))=Cube(3);
true
```

5.4.6 IOrientableCover (for IsManiplex, IsList)

```
▷ IOrientableCover(M)
```

(operation)

Returns the minimal *I-orientable cover* of the maniplex *M*.

5.5 Faithfulness

5.5.1 IsVertexFaithful (for IsManiplex)

```
▷ IsVertexFaithful(M)
```

(property)

Returns: true or false

Returns whether the reflexible maniplex M is vertex-faithful; i.e., whether the action of the automorphism group on the vertices is faithful.

```
gap> IsVertexFaithful(HemiCube(3));
true
Example _______

true
```

5.5.2 IsFacetFaithful (for IsManiplex)

▷ IsFacetFaithful(M)

(property)

Returns: true or false

Returns whether the reflexible maniplex *M* is facet-faithful; i.e., whether the action of the automorphism group on the facets is faithful.

```
gap> IsFacetFaithful(HemiCube(3));
false
gap> IsFacetFaithful(Cube(3));
true
```

5.5.3 MaxVertexFaithfulQuotient (for IsManiplex)

 ${\scriptstyle \rhd} \ {\tt MaxVertexFaithfulQuotient}({\it M})$

(operation)

Returns: Q

Returns the maximal vertex-faithful reflexible maniplex covered by M.

```
gap> MaxVertexFaithfulQuotient(HemiCrossPolytope(3));
reflexible 3-maniplex
gap> SchlafliSymbol(last);
[ 3, 2 ]
```

${\bf 5.5.4} \quad Satisfies Weak Path Intersection Property~(for~Is Maniplex)$

▷ SatisfiesWeakPathIntersectionProperty(M)

(property)

Returns: IsBool

Tests for the weak path intersection property in a maniplex. Definitions and description available in [GH18].

Chapter 6

Comparing maniplexes

6.1 Quotients and covers

Many of the quotient operations let you describe some relations in terms of a string. We assume that Sggis have a generating set of $\{r0, r1, ..., r_{n-1}\}$, so these relation strings will look something like "(r0 r1 r2)^5, r2 = (r0 r1)^3". Notice that we can mix relations like "r2 = (r0 r1)^3" with relators like "(r0 r1 r2)^5"; the latter is treated as the relation "(r0 r1 r2)^5 = 1". For convenience, we also allow relations to contain the following strings: s1, s2, s3, etc, where si is expanded to r(i-1) ri. For example, s2 becomes r1 r2. z1, z2, z3, etc, where zi is expanded to r0 (r1 r2)^i (the "i-zigzag" word). h1, h2, h3, etc, where hi is expanded to r0 (r1 r2)^(j-1) r1 (the "i-hole" word). We note that these strings are all restricted to have $i \le 9$, *including ri*. This restriction might be changed eventually, but it will require a rewrite of the method ParseStringCRels that underlies many quotient operations.

6.1.1 IsQuotient

```
▷ IsQuotient(M1, M2) (operation)
▷ IsQuotient(g, h) (operation)
```

Returns whether M2 is a quotient of M1. Returns whether h is a quotient of g. That is, whether there is a homomorphism sending each generator of g to the corresponding generator of g.

```
gap> IsQuotient(Cube(3), HemiCube(3));
true
gap> IsQuotient(UniversalSggi([4,3]), AutomorphismGroup(HemiCube(3)));
true
```

6.1.2 IsCover (for IsManiplex, IsManiplex)

```
▷ IsCover(M1, M2) (operation)
```

Returns whether M2 is a cover of M1.

```
gap> IsCover(HemiDodecahedron(),Dodecahedron());
true
```

6.1.3 IsIsomorphicManiplex (for IsManiplex, IsManiplex)

```
▷ IsIsomorphicManiplex(M1, M2)
```

(operation)

Returns whether M1 is isomorphic to M2.

```
gap> IsIsomorphicManiplex(HemiCube(3),Petrial(Simplex(3)));
true
```

6.1.4 SmallestReflexibleCover (for IsManiplex)

```
▷ SmallestReflexibleCover(M)
```

(attribute)

Returns the smallest regular cover of M, which is the maniplex whose automorphism group is isomorphic to the connection group of M.

```
gap> SmallestReflexibleCover(ToroidalMap44([2,3],[3,2]));
reflexible 3-maniplex
gap> last=ToroidalMap44([5,0]);
true
```

6.1.5 QuotientManiplex (for IsReflexibleManiplex, IsString)

```
▷ QuotientManiplex(M, relStr)
```

(operation)

Given a reflexible maniplex M, generates the subgroup S of AutomorphismGroup(M) given by relStr, and returns the quotient maniplex M / S. For example, QuotientManiplex(CubicTiling(2), "(r0 r1 r2 r1)^5, (r1 r0 r1 r2)^2") returns the toroidal map $\{4,4\}_{\{(5,0),(0,2)\}}$. You can also input this as CubicTiling(2) / "(r0 r1 r2 r1)^5, (r1 r0 r1 r2)^2".

```
Example

gap> q:=QuotientManiplex(CubicTiling(2),"(r0 r1 r2 r1)^5, (r1 r0 r1 r2)^2");

3-maniplex

gap> SchlafliSymbol(q);
[ 4, 4 ]
```

6.1.6 ReflexibleQuotientManiplex (for IsManiplex, IsList)

```
▷ ReflexibleQuotientManiplex(M, rels)
```

(operation)

Given a reflexible maniplex M, generates the normal closure N of the subgroup S of AutomorphismGroup(M) given by relStr, and returns the quotient maniplex M / N, which will be reflexible. For example, QuotientManiplex(CubicTiling(2), "(r0 r1 r2 r1)^5, (r1 r0 r1 r2)^2") returns the toroidal map $\{4,4\}_{\{1,0\}}$, because the normal closure of the group generated by (r0 r1 r2 r1)^5 and (r1 r0 r1 r2)^2 is the group generated by r0 r1 r2 r1 and r1 r0 r1 r2.

6.1.7 QuotientSggi (for IsGroup, IsList)

```
▷ QuotientSggi(g, rels)
```

operation)

Returns: the quotient of g by rels, which is either a list of Tietze words or a string of relations that is parsed by ParseStringCRels.

```
gap> g := UniversalSggi(3);
<fp group of size infinity on the generators [ r0, r1, r2 ]>
gap> h := QuotientSggi(g, "(r0 r1)^5, (r1 r2)^3, (r0 r1 r2)^5");
<fp group on the generators [ r0, r1, r2 ]>
gap> Size(h);
60
```

6.1.8 QuotientSggiByNormalSubgroup (for IsGroup,IsGroup)

▷ QuotientSggiByNormalSubgroup(g, n)

(operation)

Returns: g/n

Given an sggi g and a normal subgroup n in g, this function will give you the quotient in a way that respects the generators (i.e., the generators of the quotient will be the images of the generators of the original group).

```
Example

gap> g:=AutomorphismGroup(Cube(3));

<fp group of size 48 on the generators [ r0, r1, r2 ]>

gap> q:=QuotientSggiByNormalSubgroup(g,Group([(g.1*g.2*g.3)^3]));

Group([ (1,2)(3,7)(4,6)(5,10)(8,14)(9,16)(11,18)(12,20)(13,17)(15,23)(19,22)(21,24), (1,3)(2,5)(4,2)

gap> Maniplex(q)=HemiCube(3);

true
```

6.1.9 QuotientManiplexByAutomorphismSubgroup (for IsManiplex,IsPermGroup)

□ QuotientManiplexByAutomorphismSubgroup(m, h)

(operation)

Returns: m/h

Given a maniplex m, and a subgroup h of the automorphism group on the flags, this function will give you the maniplex in which the orbits of flags under the action of h are identified. Note that this function doesn't do any prechecks, and may break easily when m/h_isn't_ a maniplex or when m/h is of lower rank (sorry!).

```
gap> m:=Cube(3);
Cube(3)
gap> a:=AutomorphismGroupOnFlags(m);
<permutation group with 3 generators>
gap> h:=Group((a.3*a.1*a.2)^3);
Group([ (1,7)(2,3)(4,18)(5,19)(6,20)(8,11)(9,12)(10,13)(14,32)(15,33)(16,34)(17,35)(21,25)(22,26)
gap> q:=QuotientManiplexByAutomorphismSubgroup(m,h);
3-maniplex with 24 flags
gap> last=HemiCube(3);
true
```

Chapter 7

Posets

7.1 Poset constructors

I'm in the process of reconciling all of this, but there are going to be a number of ways to define a poset:

- As an IsPosetOfFlags, where the underlying description is an ordered list of length n+2. Each of the n+2 list elements is a list of faces, and the assumption is that these are the faces of rank i-2, where i is the index in the master list (e.g., 1[1] [1] would usually correspond to the unique -1 face of a polytope and there won't be an 1[1] [2]). Each face is then a list of the flags incident with that face.
- As an IsPosetOfIndices, where the underlying description is a binary relation on a set of indices, which correspond to labels for the elements of the poset.
- If the poset is known to be atomic, then by a description of the faces in terms of the atoms... usually we'll just need the list of the elements of maximal rank, from which all other elements may be obtained.
- As an IsPosetOfElements, where the elements could be anything, and we have a known function determining the partial order on the elements.

Usually, we assume that the poset will have a natural rank function on it. More information on the poset attributes that are important in the study of abstract polytopes and maniplexes is available in [MS02], [MPW14], and [Wil12].

7.1.1 PosetFromFaceListOfFlags (for IsList)

▷ PosetFromFaceListOfFlags(list)

(operation)

Returns: IsPosetOfFlags.

Given a *list* of lists of faces in increasing rank, where each face is described by the incident flags, gives you a IsPosetOfFlags object back. Posets constructed this way are assumed to be IsP1 and IsP2.

Here we have a poset using the IsPosetOfFlags description for the triangle.

```
Example

gap> poset:=PosetFromFaceListOfFlags([[[1,2,3,4,5,6]],[[1,2],[3,6],[4,5]],[[1,4],[2,3],[5,6]],[[1

A poset using the IsPosetOfFlags representation with 8 faces.
```

```
gap> FaceListOfPoset(poset);
[[[1, 2, 3, 4, 5, 6]], [[1, 2], [3, 6], [4, 5]], [[1, 4], [2, 3], [5, 6]], |
```

7.1.2 PosetFromConnectionGroup (for IsPermGroup)

▷ PosetFromConnectionGroup(g)

(operation)

Returns: IsPosetOfFlags with IsP1=true.

Given a group, returns a poset with an internal representation as a list of faces ordered by rank, where each face is represented as a list of the flags it contains. Note that this function includes the minimal (empty) face and the maximal face of the maniplex. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

```
Example

gap> g:=Group([(1,4)(2,3)(5,6),(1,2)(3,6)(4,5)]);

Group([ (1,4)(2,3)(5,6), (1,2)(3,6)(4,5) ])

gap> PosetFromConnectionGroup(g);

A poset using the IsPosetOfFlags representation with 8 faces.
```

7.1.3 PosetFromManiplex (for IsManiplex)

▷ PosetFromManiplex(mani)

(operation)

Returns: IsPosetOfFlags

Given a maniplex, returns a poset of the maniplex with an internal representation as a list of faces ordered by rank, where each face is represented as a list of the flags it contains. Note that this function does include the minimal (empty) face and the maximal face of the maniplex. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

```
gap> p:=HemiCube(3);
Regular 3-polytope of type [ 4, 3 ] with 24 flags
gap> PosetFromManiplex(p);
A poset using the IsPosetOfFlags representation with 15 faces.
```

7.1.4 PosetFromPartialOrder (for IsBinaryRelation)

▷ PosetFromPartialOrder(partialOrder)

(operation)

Returns: IsPosetOfIndices

Given a partial order on a finite set of size n, this function will create a partial order on [1..n].

```
Example
gap> 1:=List([[1,1],[1,2],[1,3],[1,4],[2,4],[2,2],[3,3],[4,4]],x->Tuple(x));
gap> r:=BinaryRelationByElements(Domain([1..4]), 1);
<general mapping: Domain([ 1 .. 4 ]) -> Domain([ 1 .. 4 ]) >
gap> poset:=PosetFromPartialOrder(r);
A poset using the IsPosetOfIndices representation
gap> h:=HasseDiagramBinaryRelation(PartialOrder(poset));
<general mapping: Domain([ 1 .. 4 ]) -> Domain([ 1 .. 4 ]) >
gap> Successors(h);
[ [ 2, 3 ], [ 4 ], [ ], [ ] ]
```

Note that what we've accomplished here is the poset containing the elements 1, 2, 3, 4 with partial order determined by whether the first element divides the second. The essential information about the poset can be obtained from the Hasse diagram.

7.1.5 PosetFromAtomicList (for IsList)

▷ PosetFromAtomicList(list)

(operation)

Returns: IsPosetOfAtoms

Given a list of elements, where each element is given as a list of atoms, this function will construct the corresponding poset. Note that this will construct any implied faces as well (i.e., all possible intersections of the listed faces).

```
_ Example .
gap> list:=[[1,2,3],[1,2,4],[1,3,4],[2,3,4]];
[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
gap> poset:=PosetFromAtomicList(list);;
gap> List(Faces(poset),AtomList);
[[],[1],[1],[1,2],[1,2,3],[1,2,4],[1,3],[1,3,4],[1,4],[2],[2],[2,3]
  [2,3,4],[2,4],[3],[3,4],[4],[1..4]]
gap> ml:=["abc","abd","acd","bcd"];;
gap> p:=PosetFromAtomicList(ml);;
gap> List(Flags(p),x->List(x,AtomList));
[[[], "a", "ab", "abc", "abcd"], [[], "a", "ab", "abd", "abcd"],
     ], "a", "ac", "abc", "abcd" ], [ [ ], "a", "ac", "acd", "abcd" ],
   [ ], "a", "ad", "abd", "abcd" ], [ [ ], "a", "ad", "acd", "abcd" ],
      ], "b", "ab", "abc", "abcd" ], [ [ ], "b", "ab", "abd",
                                      ], "b", "bc", "bcd",
      ], "b", "bc", "abc", "abcd" ], [ [
      ], "b", "bd", "abd", "abcd" ], [ [
                                         "b", "bd", "bcd",
                                      ],
        "c", "ac", "abc", "abcd" ], [ [ ], "c",
                                              "ac",
                                                    "acd", "abcd" ],
     ], "c", "bc", "abc", "abcd" ], [ [ ], "c", "bc", "bcd", "abcd" ],
     ], "c", "cd", "acd", "abcd"], [[], "c", "cd", "bcd", "abcd"],
     ], "d", "ad", "abd", "abcd" ], [ [ ], "d", "ad", "acd", "abcd" ],
  [[], "d", "bd", "abd", "abcd"], [[], "d", "bd", "bcd", "abcd"],
  [[], "d", "cd", "abcd"], [[], "d", "cd", "bcd", "abcd"]]
```

7.1.6 PosetFromElements (for IsList,IsFunction)

▷ PosetFromElements(list_of_faces, func)

(operation)

Returns: IsPosetOfElements

This is for gathering elements with a known ordering func on two variables into a poset. Also note, the expectation is that func behaves similarly to IsSubset, i.e., func (x,y)=true means y is less than x in the order.

```
gap> g:=SymmetricGroup(3);
Sym([1..3])
gap> asg:=AllSubgroups(g);
[Group(()), Group([(2,3)]), Group([(1,2)]), Group([(1,3)]), Group([(1,2,3)]), Group([
gap> poset:=PosetFromElements(asg,IsSubgroup);
A poset on 6 elements using the IsPosetOfIndices representation.
gap> HasseDiagramBinaryRelation(PartialOrder(poset));
<general mapping: Domain([1..6]) -> Domain([1..6]) >
```

```
gap> Successors(last);
[ [ 2, 3, 4, 5 ], [ 6 ], [ 6 ], [ 6 ], [ 6 ], [ ] ]
gap> List( ElementsList(poset){[2,6]}, ElementObject);
[ Group([ (2,3) ]), Group([ (1,2,3), (2,3) ]) ]
```

7.1.7 PosetFromSuccessorList (for IsList)

▷ PosetFromSuccessorList(successorsList)

(operation)

Returns: poset

Given a list of immediate successors, will construct the poset. A valid list of successors is of the form [[2,3],[3],[3]] where the *i*-th entry is a list of elements that are greater than the *i*-th element in the partial order that determines the poset. If the given list isn't reflexive and transitive, this function will induce those properties from the given list of successors.

```
Example

gap> p:=PosetFromManiplex(HemiCube(3));;

gap> Print(p);

PosetFromSuccessorList([ [ 2, 3, 4, 5 ], [ 6, 7, 9 ], [ 6, 8, 11 ], [ 7, 10, 11 ], [ 8, 9, 10 ], [ 1, 2, 13 ], [ 12, 14 ], [ 12, 14 ], [ 13, 14 ], [ 12, 13 ], [ 13, 14 ], [ 15 ], [ 15 ], [ 15 ], [ ] );
```

7.1.8 Helper functions for special partial orders

```
▷ PairCompareFlagsList(list1, list2) (operation)
▷ PairCompareAtomsList(list1, list2) (operation)
```

Returns: true or false

The functions PairCompareFlagsList and PairCompareAtomsList are used in poset construction. Function assumes <code>list1</code> and <code>list2</code> are of the form <code>[list0fFlags,i]</code> where <code>list0fFlags</code> is a list of flags in the face and <code>i</code> is the rank of the face. Allows comparison of HasFlagList elements. Function assumes <code>list1</code> and <code>list2</code> are of the form <code>[list0fAtoms,int]</code> where <code>list0fAtoms</code> is a list of flags in the face and <code>int</code> is the rank of the face. Allows comparison of HasAtomList elements.

7.1.9 **DualPoset** (for IsPoset)

▷ DualPoset(poset)

(operation)

Returns: dual

Given a poset, will construct a poset isomorphic to the dual of poset.

```
gap> p:=PosetFromManiplex(Cube(3));; c:=PosetFromManiplex(CrossPolytope(3));;
gap> IsIsomorphicPoset(DualPoset(DualPoset(p)),p);
true
gap> IsIsomorphicPoset(DualPoset(p),c);
true
gap> IsIsomorphicPoset(DualPoset(p),p);
false
```

7.1.10 Section (for IsFace, IsFace, IsPoset)

```
▶ Section(face1, face2, poset) (operation)
Returns: section
Constructs the section of the poset face1/face2.
```

```
gap> poset:=PosetFromManiplex(PyramidOver(Cube(2)));;
gap> faces:=Faces(poset);;List(faces,x->RankInPoset(x,poset));
[ -1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3 ]
gap> IsIsomorphicPoset(Section(faces[15],faces[1],poset),PosetFromManiplex(Simplex(2)));
true
gap> IsIsomorphicPoset(Section(faces[16],faces[1],poset),PosetFromManiplex(Cube(2)));
true
gap> IsIsomorphicPoset(Section(faces[20],faces[2],poset),PosetFromManiplex(Cube(2)));
true
```

7.1.11 Cleaving polytopes

```
▷ Cleave(p, k) (operation)
▷ PartiallyCleave(p, k) (operation)

Returns: IsPolytope
```

Given an IsPolytope p, and an IsInt k, Cleave(polytope,k) will construct the k^{th} -cleaved polytope of p. Cleaved polytopes were introduced by Daniel Pellicer [Pel18]. PartiallyCleave(p,k) will construct the k^{th} -partially cleaved polytope of p.

```
gap> Cleave(PosetFromManiplex(Cube(4)),3);
A poset on 290 elements using the IsPosetOfIndices representation.
```

7.2 Poset attributes

Posets have many properties we might be interested in. Here's a few. All abstract polytope definitions in use here are from Schulte and McMullen's *Abstract Regular Polytopes* [MS02].

7.2.1 MaximalChains (for IsPoset)

```
▷ MaximalChains(poset) (attribute)
```

Gives the list of maximal chains in a poset in terms of the elements of the poset. Synonyms are FlagsList and Flags. Tends to work faster (sometimes significantly) if the poset HasPartialOrder.

Synonym is FlagsList.

```
gap> poset:=PosetFromManiplex(HemiCube(3));
A poset using the IsPosetOfFlags representation.
gap> MaximalChains(poset)[1];
[ An element of a poset made of flags, An element of a poset made of flags,
   An element of a poset made of flags, An element of a poset made of flags,
   An element of a poset made of flags]
```

```
gap> List(last,x->RankInPoset(x,poset));
[ -1, 0, 1, 2, 3 ]
```

7.2.2 RankPoset (for IsPoset)

```
▷ RankPoset(poset) (attribute)
```

If the poset IsP1, ranks are assumed to run from -1 to n, and function will return n. If IsP1(poset)=false, ranks are assumed to run from 1 to n. In RAMP, at least currently, we are assuming that graded/ranked posets are bounded. Note that in general what you *actually* want to do is call Rank(poset). The reason is that Rank will calculate the RankPoset if it isn't set, and then set and store the value in the poset.

7.2.3 ElementsList (for IsPoset)

```
▷ ElementsList(poset) (attribute)
```

Will recover the list of faces of the poset, format may depend on type of representation of poset.

• We also have FacesList and Faces as synonyms for this command.

7.2.4 OrderingFunction (for IsPoset)

```
▷ OrderingFunction(poset) (attribute)
```

OrderingFunction is an attribute of a poset which stores a function for ordering elements.

```
gap> p:=PosetFromManiplex(Cube(2));;
gap> p3:=PosetFromElements(RankedFaceListOfPoset(p),PairCompareFlagsList);;
gap> f3:=FacesList(p3);;
gap> OrderingFunction(p3)(ElementObject(f3[2]),ElementObject(f3[1]));
true
gap> OrderingFunction(p3)(ElementObject(f3[1]),ElementObject(f3[2]));
false
```

7.2.5 IsFlaggable (for IsPoset)

Checks or creates the value of the attribute IsFlaggable for an IsPoset. Point here is to see if the structure of the poset is sufficient to determine the flag graph. For IsPosetOfFlags this is another way of saying that the intersection of the faces (thought of as collections of flags) containing a flag is that selfsame flag. (Might be equivalent to prepolytopal... but Gabe was tired and Gordon hasn't bothered to think about it yet.) Now also works with generic poset element types (not just IsPosetOfFlags).

7.2.6 IsAtomic (for IsPoset)

```
▷ IsAtomic(poset) (property)
```

Returns: true or false

This checks whether or not the faces of an IsP1 poset may be described uniquely in terms of the posets atoms.

The terminology as used here is approximately that of Ziegler's *Lectures on Polytopes* where a lattice is atomic if every element is the join of atoms.

```
gap> po:=BinaryRelationOnPoints([[2,3],[4,5],[6],[6],[6],[]]);;
gap> po:=ReflexiveClosureBinaryRelation(TransitiveClosureBinaryRelation(po));;
gap> p:=PosetFromPartialOrder(po);; IsAtomic(p);
false
gap> p2:=PosetFromManiplex(Cube(3));; IsAtomic(p2);
true
```

7.2.7 PartialOrder (for IsPoset)

▷ PartialOrder(poset)

(attribute)

Returns: partial order

HasPartialOrder Checks if poset has a declared partial order (binary relation). SetPartialOrder assigns a partial order to the poset. In many cases, PartialOrder is able to compute one from structural information.

7.2.8 Lattices

IsLattice determines whether a poset is a lattice or not. IsAllMeets determines whether all meets in a poset are unique. IsAllJoins determines whether all joins in a poset are unique.

```
gap> poset:=PosetFromManiplex(Cube(3));;
gap> IsLattice(poset);
true
gap> bad:=PosetFromManiplex(HemiCube(3));;
gap> IsLattice(bad);
fail
```

Here's a simple example of when a lattice isn't atomic.

```
Example
gap> 1:=[[2,3,4],[5,7],[5,6],[6,7],[8],[8],[8],[10],[10],[10],[]];;
gap> b:=BinaryRelationOnPoints(1);;
po:=ReflexiveClosureBinaryRelation(TransitiveClosureBinaryRelation(b));;
gap> poset:=PosetFromPartialOrder(po);;
gap> IsLattice(poset);
true
gap> IsAtomic(poset);
false
```

7.2.9 ListIsP1Poset (for IsList)

```
▷ ListIsP1Poset(list) (operation)
```

Returns: true or false

Given list, comprised of sublists of faces ordered by rank, each face listing the flags on the face, this function will tell you if the list corresponds to a P1 poset or not.

7.2.10 IsP1 (for **IsPoset**)

```
▷ IsP1(poset) (property)
```

Returns: true or false

Determines whether a poset has property P1 from ARP. Recall that a poset is P1 if it has a unique least, and a unique maximal element/face.

```
Example
gap> p:=PosetFromElements(AllSubgroups(AlternatingGroup(4)),IsSubgroup);
A poset using the IsPosetOfIndices representation
gap> IsP1(p);
true
gap> p2:=PosetFromFaceListOfFlags([[[1],[2]],[[1,2]]]);
A poset using the IsPosetOfFlags representation with 3 faces.
gap> IsP1(p2);
false
```

7.2.11 IsP2 (for **IsPoset**)

```
▷ IsP2(poset) (property)
```

Returns: true or false

Determines whether a poset has property P2 from ARP. Recall that a poset is P2 if each maximal chain in the poset has the same length (for n-polytopes, this means each flag containes n + 2 faces).

```
gap> poset:=PosetFromManiplex(HemiCube(3));
gap> IsP2(poset);
true
```

Another nice example

```
gap> g:=AlternatingGroup(4);; a:=AllSubgroups(g);; poset:=PosetFromElements(a,IsSubgroup);
A poset using the IsPosetOfIndices representation
gap> IsP2(poset);
false
```

7.2.12 IsP3 (for **IsPoset**)

Returns: true or false

Determines whether a poset is strongly flag connected (property P3' from ARP). May also be called with command IsStronglyFlagConnected. If you are not working with a pre-polytope, expect this to take a LONG time. This means that given flags Φ and Ψ , not only is there a sequence

of flags $\Psi = \Phi_0 = \Phi_1 = \cdots = \Phi_k = \Psi$ such that each Φ_i shares all but once face with Φ_{i+1} , but that each $\Phi_i \supseteq \Phi \cap \Psi$.

Helper for IsP3

7.2.13 IsFlagConnected (for IsPoset)

▷ IsFlagConnected(poset)

(property)

Returns: true or false

Determines whether a poset is flag connected.

7.2.14 IsP4 (for **IsPoset**)

▷ IsP4(poset)

(property)

Returns: true or false

Determines whether a poset satisfies the diamond condition. May also be invoked using IsDiamondCondition. Recall that this means that if F, G elements of the poset of ranks i-1 and i+1, respectively, where F less than G, then there are precisely two i-faces H such that F is less than H and H is less than G.

7.2.15 IsPolytope (for IsPoset)

▷ IsPolytope(poset)

(property)

Returns: true or false

Determines whether a poset is an abstract polytope.

```
gap> poset:=PosetFromManiplex(Cube(3));
A poset using the IsPosetOfFlags representation with 28 faces.
gap> IsPolytope(poset);
true
gap> KnownPropertiesOfObject(poset);
[ "IsP1", "IsP2", "IsP3", "IsP4", "IsPolytope" ]
gap> poset2:=PosetFromElements(AllSubgroups(AlternatingGroup(4)),IsSubgroup);
A poset using the IsPosetOfIndices representation
gap> IsPolytope(poset2);
false
gap> KnownPropertiesOfObject(poset2);
[ "IsP1", "IsP2", "IsPolytope" ]
```

7.2.16 IsPrePolytope (for IsPoset)

▷ IsPrePolytope(poset)

(property)

Returns: true or false

Determines whether a poset is an abstract pre-polytope.

7.2.17 IsSelfDual (for IsPoset)

▷ IsSelfDual(poset)

(property)

Returns: IsBool

Determines whether a poset is self dual.

```
gap> poset:=PosetFromManiplex(Simplex(5));;
A poset using the IsPosetOfFlags representation.
gap> IsSelfDual(poset);
true
gap> poset2:=PosetFromManiplex(PyramidOver(Cube(3)));;
gap> IsSelfDual(poset2);
false
```

7.3 Working with posets

7.3.1 IsIsomorphicPoset (for IsPoset,IsPoset)

▷ IsIsomorphicPoset(poset1, poset2)

(operation)

Returns: true or false

Determines whether poset1 and poset2 are isomorphic by checking to see if their Hasse diagrams are isomorphic.

```
Example

gap> IsIsomorphicPoset( PosetFromManiplex( PyramidOver( Cube(3) ) ), PosetFromManiplex( PrismOver)

false

gap> IsIsomorphicPoset( PosetFromManiplex( PyramidOver( Cube(3) ) ), PosetFromManiplex( PyramidOver)

true
```

7.3.2 PosetIsomorphism (for IsPoset,IsPoset)

▷ PosetIsomorphism(poset1, poset2)

(operation)

Returns: map on face indices

When poset1 and poset2 are isomorphic, will give you a map from the faces of poset1 to the faces of poset2.

7.3.3 FlagsAsFlagListFaces (for IsPoset)

⊳ FlagsAsFlagListFaces(poset)

(operation)

Returns: IsList

Given a poset, this will give you a version of the list of flags in terms of the proper faces described in the poset; i.e., this gives a list of flags where each face is described in terms of its (enumerated) list of incident flags. Note that the flag list does not include the minimal face or the maximal face if the poset IsP2.

7.3.4 RankedFaceListOfPoset (for IsPoset)

(operation)

Returns: list

Gives a list of [face,rank] pairs for all the faces of poset. Assumptions here are that faces are lists of incident flags.

7.3.5 AdjacentFlag (for IsPosetOfFlags,IsList,IsInt)

▷ AdjacentFlag(poset, flag, i)

(operation)

Returns: flag(s)

Given a poset, a flag, and a rank, this function will give you the *i*-adjacent flag. Note that adjacencies are listed from ranks 0 to one less than the dimension. You can replace *flag* with the integer corresponding to that flag. Appending true to the arguments will give the position of the flag instead of its description from FlagsAsFlagListFaces.

7.3.6 AdjacentFlags (for IsPoset,IsList,IsInt)

▷ AdjacentFlags(poset, flagaslistoffaces, adjacencyrank)

(operation)

If your poset isn't P4, there may be multiple adjacent maximal chains at a given rank. This function handles that case. May substitute IsInt for flagaslistoffaces corresponding to position of flag in list of maximal chains.

7.3.7 EqualChains (for IsList,IsList)

▷ EqualChains(flag1, flag2)

(operation)

Determines whether two chains are equal.

7.3.8 ConnectionGeneratorOfPoset (for IsPoset,IsInt)

▷ ConnectionGeneratorOfPoset(poset, i)

(operation)

Returns: A permutation on the flags.

Given a *poset* and an integer *i*, this function will give you the associated permutation for the rank *i*-connection.

7.3.9 ConnectionGroup (for IsPoset)

▷ ConnectionGroup(poset)

(attribute)

Returns: IsPermGroup

Given a poset that is IsPrePolytope, this function will give you the connection group.

7.3.10 AutomorphismGroup (for IsPoset)

▷ AutomorphismGroup(poset)

(attribute)

Given a poset, gives the automorphism group of the poset as an action on the maximal chains.

7.3.11 AutomorphismGroupOnElements (for IsPoset)

(attribute)

Given a poset, gives the automorphism group of the poset as an action on the elements.

7.3.12 AutomorphismGroupOnChains (for IsPoset, IsCollection)

▷ AutomorphismGroupOnChains(poset, I)

(operation)

Returns: group

Returns the permutation group, representing the action of the automorphism group of poset on the chains of poset of type I.

Example -

gap>

7.3.13 AutomorphismGroupOnIFaces (for IsPoset, IsInt)

(operation)

Returns: group

Returns the permutation group, representing the action of the automorphism group of poset on the faces of poset of rank I.

7.3.14 AutomorphismGroupOnFacets (for IsPoset)

 ${\scriptstyle \rhd} \ {\tt AutomorphismGroupOnFacets}(poset)$

(attribute)

Returns: group

Returns the permutation group, representing the action of the automorphism group of poset on the faces of poset of rank d-1.

7.3.15 AutomorphismGroupOnEdges (for IsPoset)

(attribute)

Returns: group

Returns the permutation group, representing the action of the automorphism group of poset on the faces of poset of rank 1.

7.3.16 AutomorphismGroupOnVertices (for IsPoset)

(attribute)

Returns: group

Returns the permutation group, representing the action of the automorphism group of poset on the faces of poset of rank 0.

7.3.17 FaceListOfPoset (for IsPoset)

▷ FaceListOfPoset(poset)

(operation)

Returns: list

Gives a list of faces collected into lists ordered by increasing rank. Suitable as input for PosetFromFaceListOfFlags. Argument must be IsPosetOfFlags.

7.3.18 RankPosetElements (for IsPoset)

▷ RankPosetElements(poset)

(operation)

Assigns to each face of a poset (when possible) the rank of the element in the poset.

7.3.19 FacesByRankOfPoset (for IsPoset)

▷ FacesByRankOfPoset(poset)

(operation)

Returns: list

Gives lists of faces ordered by rank. Also sets the rank for each of the faces.

7.3.20 HasseDiagramOfPoset (for IsPoset)

▷ HasseDiagramOfPoset(poset)

(operation)

Returns: directed graph

7.3.21 AsPosetOfAtoms (for IsPoset)

▷ AsPosetOfAtoms(poset)

(operation)

Returns: posetFromAtoms

If poset is an IsP1 poset admits a description of its elements in terms of its atoms, this function will construct an isomorphic poset whose faces are described using PosetFromAtomList.

```
gap> poset:=PosetFromManiplex(Cube(2));;
gap> p2:=AsPosetOfAtoms(poset);
A poset on 10 elements using the IsPosetOfIndices representation.
gap> IsIsomorphicPoset(poset,p2);
true
```

7.3.22 Max/min faces

▷ MinFace(poset)

(operation)

▷ MaxFace(arg)

(operation)

Returns: face

Gives the minimal/maximal face of a poset when it IsP1 and IsP2.

7.4 Element constructors

7.4.1 PosetElementWithOrder (for IsObject,IsFunction)

▷ PosetElementWithOrder(obj, func)

(operation)

Returns: IsFace

Creates a face with obj and ordering function func. Note that by convetiontion func(a,b) should return true when $b \le a$.

7.4.2 PosetElementFromListOfFlags (for IsList,IsPoset,IsInt)

▷ PosetElementFromListOfFlags(list, poset, n)

(operation)

Returns: IsPosetElement

This is used to create a face of rank n from a list of flags of poset.

7.4.3 PosetElementFromAtomList (for IsList)

▷ PosetElementFromAtomList(list)

(operation)

Returns: IsFace

Creates a face with *list* of atoms. If you wish to assign ranks or membership in a poset, you must do this separately.

7.4.4 PosetElementFromIndex (for IsObject)

▷ PosetElementFromIndex(obj)

(operation)

Returns: IsFace

Creates a face with index obj at rank n.

7.4.5 PosetElementWithPartialOrder (for IsObject, IsBinaryRelation)

▷ PosetElementWithPartialOrder(obj, order)

(operation)

Returns: IsFace

Creates a face with index obj and BinaryRelation order on obj. Function does not check to make sure order has obj in its domain.

7.4.6 RanksInPosets (for IsPosetElement)

▷ RanksInPosets(posetelement)

(attribute)

Returns: list

Gives the list of posets posetelement is in, and the corresponding rank (if available) as a list of ordered pairs of the form [poset,rank]. #! Note that this attribute is mutable, so if you modify it you may break things.

7.4.7 AddRanksInPosets (for IsPosetElement,IsPoset,IsInt)

▷ AddRanksInPosets(posetelement, poset, int)

(operation)

Returns: null

Adds an entry in the list of RanksInPosets for posetelement corresponding to poset with assigned rank int.

7.4.8 FlagList (for IsPosetElement)

▷ FlagList(posetelement, {face})

(attribute)

Returns: list

Description of posetelement n as a list of incident flags (when present).

7.4.9 AtomList (for IsPosetElement)

▷ AtomList(posetelement, {face})

(attribute)

Returns: list

Description of posetelement n as a list of atoms (when present).

7.5 Element operations

7.5.1 RankInPoset (for IsPosetElement,IsPoset)

▷ RankInPoset(face, poset)

(operation)

Returns: IsInt

Given an element face and a poset poset to which it belongs, will give you the rank of face in poset.

7.5.2 IsSubface (for IsFace, IsFace, IsPoset)

▷ IsSubface(face1, face2, poset)

(operation)

Returns: true or false

face1 and face2 are IsFace or IsPosetElement. IsSubface will check to see if face2 is a subface of face1 in poset. You may drop the argument poset if the faces only belong to one poset in common. Warning: if the elements are made up of atoms, then IsSubface doesn't need to know what poset you are working with.

7.5.3 IsEqualFaces (for IsFace, IsFace, IsPoset)

▷ IsEqualFaces(arg1, arg2, arg3)

(operation)

Determines whether two faces are equal in a poset. Note that \= tests whether they are the identical object or not.

7.5.4 AreIncidentElements (for IsObject,IsObject)

▷ AreIncidentElements(object1, object2)

(operation)

Returns: true or false

Given two poset elements, will tell you if they are incident.

• Synonym function: AreIncidentFaces.

7.5.5 Meet (for IsFace, IsFace, IsPoset)

▷ Meet(face1, face2, poset)

(operation)

Returns: meet

Finds (when possible) the meet of two elements in a poset.

7.5.6 Join (for IsFace, IsFace, IsPoset)

▷ Join(face1, face2, poset)

(operation)

Returns: meet

Finds (when possible) the join of two elements in a poset.

This uses the work of Gleason and Hubard.

7.6 Product operations

The products documented in this section were defined by Gleason and Hubard in [GH18] (https://doi.org/10.1016/j.jcta.2018.02.002).

7.6.1 JoinProduct (for IsPoset,IsPoset)

```
▷ JoinProduct(poset1, poset2)
```

(operation)

Returns: poset

Given two posets, this forms the join product. If given two partial orders, returns the join product of the partial orders. If given two maniplexes, returns the join product of the maniplexes.

```
gap> p:=PosetFromManiplex(Cube(2));
A poset
gap> rel:=BinaryRelationOnPoints([[1,2],[2]]);
Binary Relation on 2 points
gap> p1:=PosetFromPartialOrder(rel);
A poset using the IsPosetOfIndices representation
gap> j:=JoinProduct(p,p1);
A poset using the IsPosetOfIndices representation
gap> IsIsomorphicPoset(j,PosetFromManiplex(PyramidOver(Cube(2))));
true
```

7.6.2 CartesianProduct (for IsPoset,IsPoset)

▷ CartesianProduct(polytope1, polytope2)

(operation)

Returns: polytope

Given two polytopes, forms the cartesian product of the polytopes. Should also work if you give it any two posets. If given two maniplexes, returns the join product of the maniplexes.

```
gap> p1:=PosetFromManiplex(Edge());
A poset
gap> p2:=PosetFromManiplex(Simplex(2));
A poset
gap> c:=CartesianProduct(p1,p2);
A poset using the IsPosetOfIndices representation
gap> IsIsomorphicPoset(c,PosetFromManiplex(PrismOver(Simplex(2))));
true
```

7.6.3 DirectSumOfPosets (for IsPoset,IsPoset)

▷ DirectSumOfPosets(polytope1, polytope2)

(operation)

Returns: polytope

Given two polytopes, forms the direct sum of the polytopes.

```
gap> p1:=PosetFromManiplex(Cube(2));;p2:=PosetFromManiplex(Edge());;
gap> ds:=DirectSumOfPosets(p1,p2);
A poset using the IsPosetOfIndices representation.
gap> IsIsomorphicPoset(ds,PosetFromManiplex(CrossPolytope(3)));
true
```

7.6.4 TopologicalProduct (for IsPoset,IsPoset)

Given two polytopes, forms the topological product of the polytopes. If given two maniplexes, returns the join product of the maniplexes.

Here we demonstrate that the topological product (as expected) when taking the product of a triangle with itself gives us the torus $\{4,4\}_{(3,0)}$ with 72 flags.

```
gap> p:=PosetFromManiplex(Pgon(3));
A poset using the IsPosetOfFlags representation.
gap> tp:=TopologicalProduct(p,p);
A poset using the IsPosetOfIndices representation.
gap> s0 := (5,6);;
gap> s1 := (1,2)(3,5)(4,6);;
gap> s2 := (2,3);;
gap> poly := Group([s0,s1,s2]);;
gap> torus:=PosetFromManiplex(ReflexibleManiplex(poly));
A poset using the IsPosetOfFlags representation.
gap> IsIsomorphicPoset(p,tp);
false
gap> IsIsomorphicPoset(torus,tp);
true
```

7.6.5 Antiprism (for IsPoset)

▷ Antiprism(polytope)

(operation)

(operation)

Returns: poset

Given a *polytope* (actually, should work for any poset), will return the antiprism of the *polytope* (poset). If given two maniplexes, returns the join product of the maniplexes.

```
gap> p:=PosetFromManiplex(Pgon(3));;
gap> a:=Antiprism(p);;
gap> IsIsomorphicPoset(a,PosetFromManiplex(CrossPolytope(3)));
true
gap> p:=PosetFromManiplex(Pgon(4));;a:=Antiprism(p);;
gap> d:=DualPoset(p);;ad:=Antiprism(d);;
gap> IsIsomorphicPoset(a,ad);
true
```

Chapter 8

Polytope Constructions and Operations

8.1 Extensions, amalgamations, and quotients

8.1.1 UniversalPolytope (for IsInt)

```
▷ UniversalPolytope(n) (operation)

Returns: IsManiplex
Constructs the universal polytope of rank n.

gap> UniversalPolytope(3);
UniversalPolytope(3)
gap> Rank(last);

(operation)

(operation)

(approximately)

(operation)

(operation)

(operation)

(operation)

(approximately)

(operation)

(operation)

(operation)

(operation)

(approximately)

(operation)

(operation)
```

8.1.2 UniversalExtension (for IsManiplex)

 \triangleright UniversalExtension(M)

(operation)

Returns: IsManiplex

Constructs the universal extension of M, i.e. the maniplex with facets isomorphic to M that covers all other maniplexes with facets isomorphic to M. Currently only defined for reflexible maniplexes.

```
gap> UniversalExtension(Cube(3));
regular 4-polytope of type [ 4, 3, infinity ] with infinity flags
```

8.1.3 UniversalExtension (for IsManiplex, IsInt)

 \triangleright UniversalExtension(M, k)

(operation)

Returns: IsManiplex

Constructs the universal extension of M with last entry of Schlafli symbol k. Currently only defined for reflexible maniplexes.

```
gap> UniversalExtension(Cube(3),2);
regular 4-polytope of type [ 4, 3, 2 ] with 96 flags
```

8.1.4 TrivialExtension (for IsManiplex)

▷ TrivialExtension(M)

(operation)

Returns: IsManiplex

Constructs the trivial extension of M, also known as $\{M, 2\}$.

```
gap> TrivialExtension(Dodecahedron());
regular 4-polytope of type [5, 3, 2] with 240 flags
```

8.1.5 FlatExtension (for IsManiplex, IsInt)

 \triangleright FlatExtension(M, k)

(operation)

Returns: IsManiplex#! @Description Constructs the flat extension of M with last entry of Schlafli symbol k. (As defined in *Flat Extensions of Abstract Polytopes* [Cun21].)

Currently only defined for reflexible maniplexes.

```
gap> FlatExtension(Simplex(3),4);
reflexible 4-maniplex of type [ 3, 3, 4 ] with 48 flags
```

8.1.6 Amalgamate (for IsManiplex, IsManiplex)

▷ Amalgamate(M1, M2)

(operation)

Returns: IsManiplex

Constructs the amalgamation of M1 and M2. Implicitly assumes that M1 and M2 are compatible. Currently only defined for reflexible maniplexes.

```
gap> Amalgamate(Cube(3),CrossPolytope(3));
reflexible 4-maniplex of type [ 4, 3, 4 ]
```

8.1.7 Medial (for IsManiplex)

Medial(M)
 (operation)

Returns: IsManiplex

Given a 3-maniplex M, returns its medial.

```
gap> SchlafliSymbol(Medial(Dodecahedron()));
[ [ 3, 5 ], 4 ]
```

8.2 Duality

8.2.1 **Dual (for IsManiplex)**

Dual (M) (operation)

Returns: The maniplex that is dual to *M*.

8.2.2 IsSelfDual (for IsManiplex)

▷ IsSelfDual(M) (property)

Returns: Whether this maniplex is isomorphic to its dual.

Also works for IsPoset objects.

8.2.3 IsInternallySelfDual (for IsManiplex)

```
▷ IsInternallySelfDual(M[, x])

Returns: true or false

(property)
```

Returns whether this maniplex is "internally self-dual", as defined by Cunningham and Mixer in [CM17] (https://doi.org/10.11575/cdm.v12i2.62785). That is, if M is self-dual, and the automorphism of AutomorphismGroup(M) that induces the isomorphism between M and its dual is an inner automorphism. If the optional group element X is given, then we first check whether X is a dualizing automorphism of M, and if not, then we search the whole automorphism group of M.

```
gap> IsInternallySelfDual(Simplex(4));
true
gap> IsInternallySelfDual(ARP([4,4], "h2^6"));
false
gap> IsInternallySelfDual(ARP([4,4], "h2^5"));
true
gap> IsInternallySelfDual(Cube(3));
false
gap> M := InternallySelfDualPolyhedron2(10,1);;
gap> g := AutomorphismGroup(M);;
gap> IsInternallySelfDual(M, (g.1*g.3*g.2)^6);
true
```

8.2.4 IsExternallySelfDual (for IsManiplex)

▷ IsExternallySelfDual(M)

(property)

Returns: true or false

Returns whether this maniplex is "externally self-dual", as defined by Cunningham and Mixer in [CM17] (https://doi.org/10.11575/cdm.v12i2.62785). That is, if M is self-dual, and the automorphism of AutomorphismGroup(M) that induces the isomorphism between M and its dual is an outer automorphism.

```
gap> IsExternallySelfDual(Simplex(4));
false
gap> IsExternallySelfDual(ARP([4,4], "h2^6"));
true
gap> IsExternallySelfDual(ARP([4,4], "h2^5"));
false
gap> IsExternallySelfDual(Cube(3));
false
```

8.2.5 Petrie Dual

Petrial(M)

(attribute)

Returns: The Petrial (Petrie dual) of *M*.

Note that this is not necessarily a polytope, even if M is. When Rank(M) > 3, this is the "generalized Petrial" which essentially replaces r_{n-3} with $r_{n-3}r_{n-1}$ in the set of generators.

Synonym for the command is PetrieDual.

```
gap> Petrial(HemiCube(3));
ReflexibleManiplex([ 3, 3 ], "((r0 r2)*r1*r2)^3,z1^4")
```

8.2.6 IsSelfPetrial (for IsManiplex)

▷ IsSelfPetrial(M) (property)

Returns: Whether this maniplex is isomorphic to its Petrial.

```
Example

gap> s0 := (2, 3)(4, 6)(7,10)(9,12)(11,14)(13,15);;

gap> s1 := (1, 2)(3, 5)(4, 7)(6, 9)(8,11)(10,13)(12,15)(14,16);;

gap> s2 := (2, 4)(3, 6)(5, 8)(9,12)(11,15)(13,14);;

gap> poly := Group([s0,s1,s2]);;

gap> p:=ARP(poly);

regular 3-polytope

gap> IsSelfPetrial(p);

true
```

8.2.7 DirectDerivates (for IsManiplex)

```
▷ DirectDerivates(M) (operation)
```

Returns a list of the *direct derivates* of M, which are the images of M under duality and Petriality. A 3-maniplex has up to 6 direct derivates, and an n-maniplex with $n \ge 4$ has up to 8. If the option 'polytopal' is set, then only returns those direct derivates that are polytopal.

8.3 Products

8.3.1 Pyramids

```
    Pyramid(M) (operation)

    Pyramid(k) (operation)
```

Returns the pyramid over M. Returns the pyramid over a k-gon.

8.3.2 Prisms

```
▷ Prism(M)
○ Prism(k) (operation)
```

Returns the prism over M. Returns the prism over a k-gon.

```
gap> Cube(3)=Prism(Cube(2));
true
gap> Prism(4)=Cube(3);
true
```

8.3.3 Antiprisms

Returns the antiprism over M. Returns the antiprism over a k-gon.

```
Example

gap> SchlafliSymbol(Antiprism(Dodecahedron()));

[ [ 3, 5 ], [ 3, 5 ], 4 ]

gap> SchlafliSymbol(Antiprism(5));

[ [ 3, 5 ], 4 ]
```

8.3.4 JoinProduct (for IsManiplex, IsManiplex)

```
▷ JoinProduct(M1, M2)
```

(operation)

Returns: Maniplex

Given two maniplexes, this forms the join product. May give weird results if the maniplexes aren't faithfully represented by their posets.

8.3.5 CartesianProduct (for IsManiplex, IsManiplex)

```
▷ CartesianProduct(M1, M2)
```

(operation)

Returns: Maniplex

Given two maniplexes, this forms the cartesian product. May give weird results if the maniplexes aren't faithfully represented by their posets.

```
Example ________ Example ________ gap> SchlafliSymbol(CartesianProduct(HemiCube(3),Simplex(2))); [ [ 3, 4 ], 3, 3, 3 ]
```

8.3.6 DirectSumOfManiplexes (for IsManiplex, IsManiplex)

▷ DirectSumOfManiplexes(M1, M2)

(operation)

Returns: Maniplex

Given two maniplexes, this forms the direct sum. May give weird results if the maniplexes aren't faithfully represented by their posets.

```
gap> SchlafliSymbol(DirectSumOfManiplexes(HemiCube(3),Simplex(2)));
[[3, 4], [3, 4], [3, 4], [3, 4]]
```

8.3.7 TopologicalProduct (for IsManiplex, IsManiplex)

▷ TopologicalProduct(M1, M2)

(operation)

Returns: Maniplex

Given two maniplexes, this forms the direct sum. May give weird results if the maniplexes aren't faithfully represented by their posets.

```
gap> SchlafliSymbol(TopologicalProduct(HemiCube(3),Simplex(2)));
[ 4, 3, [ 3, 4 ] ]
```

Chapter 9

Combinatorics and Structure

9.1 Faces

9.1.1 NumberOfIFaces (for IsManiplex, IsInt)

▷ NumberOfIFaces(M, i)

(operation)

Returns The number of *i*-faces of *M*.

```
gap> NumberOfIFaces(Dodecahedron(),1);
30
```

9.1.2 NumberOfVertices (for IsManiplex)

▷ NumberOfVertices(M)

(attribute)

Returns the number of vertices of M.

```
gap> NumberOfVertices(HemiDodecahedron());
10
```

9.1.3 NumberOfEdges (for IsManiplex)

▷ NumberOfEdges(M)

(attribute)

Returns the number of edges of M.

```
gap> NumberOfEdges(HemiIcosahedron());
15
```

9.1.4 NumberOfFacets (for IsManiplex)

▷ NumberOfFacets(M)

(attribute)

Returns the number of facets of M.

```
gap> NumberOfFacets(Bk21(4,6));
4
```

9.1.5 NumberOfRidges (for IsManiplex)

```
▷ NumberOfRidges(M)
```

(attribute)

Returns the number of ridges ((n-2)-faces) of M.

```
gap> NumberOfRidges(CrossPolytope(5));
80
```

9.1.6 Fvector (for IsManiplex)

Returns the f-vector of *M*.

```
gap> Fvector(HemiIcosahedron());
[ 6, 15, 10 ]
```

9.1.7 Section(s)

```
ightharpoonup Section(M, j, i) (operation)

ho Section(M, j, i, k) (operation)

ho Sections(M, j, i) (operation)
```

Section (M, j, i) returns the section F_{-j} / F_{-i} , where F_{-j} is the j-face of the base flag of M and F_{-i} is the i-face of the base flag. Section (M, j, i, k) returns the section F_{-j} / F_{-i} , where F_{-j} is the j-face of flag number k of M and F_{-i} is the i-face of the same flag. Sections (M, j, i) returns all sections of type F_{-j} / F_{-i} , where F_{-j} is a j-face and F_{-i} is an incident i-face.

```
gap> Section(ToroidalMap44([2,2]),3,0);
Pgon(4)
gap> Section(Cuboctahedron(),2,-1,1);
Pgon(4)
gap> Section(Cuboctahedron(),2,-1,4);
Pgon(3)
gap> Sections(Cuboctahedron(),2,-1);
[ Pgon(4), Pgon(3) ]
```

9.1.8 Facet(s)

```
ightharpoonup Facet(M) (attribute)

ightharpoonup Facet(M, k) (operation)

ightharpoonup Facet(M) (attribute)
```

Returns the facet-types of M (i.e. the maniplexes corresponding to the facets). Returns the facet of M that contains the flag number k (that is, the maniplex corresponding to the facet). Returns the facet of M that contains flag number 1 (that is, the maniplex corresponding to the facet).

```
gap> Facets(Cuboctahedron());
[ Pgon(4), Pgon(3) ]
gap> Facet(Cuboctahedron(),4);
Pgon(3)
gap> Facet(Cuboctahedron());
Pgon(4)
```

9.1.9 Vertex Figure(s)

```
▷ VertexFigures(M)

▷ VertexFigure(M, k)

▷ VertexFigure(M)

(attribute)

(attribute)
```

Returns the types of vertex-figures of M (i.e. the maniplexes corresponding to the vertex-figures). Returns the vertex-figure of M that contains flag number k. Returns the vertex-figure of M that contains the base flag.

```
gap> p:=Dual(SmallRhombicosidodecahedron());
Dual(3-maniplex)
gap> VertexFigures(p);
[ Pgon(5), Pgon(4), Pgon(3) ]
gap> VertexFigure(p,4);
Pgon(4)
gap> VertexFigure(p);
Pgon(5)
```

9.2 Flatness

9.2.1 Flatness

```
\triangleright IsFlat(M) (property)
\triangleright IsFlat(M, i, j) (operation)
```

Returns: true or false

In the first form, returns true if every vertex of the maniplex M is incident to every facet. In the second form, returns true if every i-face of the maniplex M is incident to every j-face.

```
gap> IsFlat(HemiCube(3));
true
gap> IsFlat(Simplex(3),0,2);
false
```

9.3 Schlafli symbol

9.3.1 SchlafliSymbol (for IsManiplex)

```
▷ SchlafliSymbol(M)
```

Returns the Schlafli symbol of the maniplex M. Each entry is either an integer or a set of integers, where entry number i shows the polygons that we obtain as sections of (i+1)-faces over (i-2)-faces.

```
gap> SchlafliSymbol(SmallRhombicosidodecahedron());
[[3, 4, 5], 4]
```

9.3.2 PseudoSchlafliSymbol (for IsManiplex)

```
▷ PseudoSchlafliSymbol(M)
```

(attribute)

(attribute)

Sometimes when we make a maniplex, we know that the Schlafli symbol must be a quotient of some symbol. This most frequently happens because we start with a maniplex with a given Schlafli symbol and then take a quotient of it. In this case, we store the given Schlafli symbol and call it a *pseudo-Schlafli symbol* of M. Note that whenever we compute the actual Schlafli symbol of M, we update the pseudo-Schlafli symbol to match.

9.3.3 IsEquivelar (for IsManiplex)

```
▷ IsEquivelar(M) (property)
```

Returns: the the maniplex M is equivelar; i.e., whether its Schlafli Symbol consists of integers at each position (no lists).

```
gap> IsEquivelar(Bk2l(6,18));
true
```

9.3.4 IsDegenerate (for IsManiplex)

▷ IsDegenerate(M)

(property)

Returns: true or false

Returns whether the maniplex M has any sections that are digons. We may eventually want to include maniplexes with even smaller sections.

9.3.5 IsTight (for IsManiplex)

```
    ▷ IsTight(P) (property)
```

Returns: true or false

Returns whether the polytope P is tight, meaning that it has a Schlafli symbol $\{k_1, ..., k_{n-1}\}$ and has $2 k_1 ... k_{n-1}$ flags, which is the minimum possible. This property doesn't make any sense for non-polytopal maniplexes, which aren't constrained by this lower bound.

```
gap> IsTight(ToroidalMap44([2,0]));
true
Example

true
```

9.3.6 EulerCharacteristic (for IsManiplex)

attribute)

Returns: The Euler characteristic of the maniplex, given by $f_0 - f_1 + f_2 - \cdots + (-1)^{n-1} f_{n-1}$.

```
gap> EulerCharacteristic(Bk2lStar(3,5));
-10
```

9.3.7 Genus (for IsManiplex)

□ Genus (M) (attribute)

Returns: The genus of the given 3-maniplex.

```
gap> Genus(Bk2lStar(3,5));
6
```

9.3.8 IsSpherical (for IsManiplex)

▷ IsSpherical(M)

(property)

Returns: Whether the 3-maniplex M is spherical, which is to say, whether the Euler characteristic is equal to 2.

```
gap> IsSpherical(Simplex(3));
true
gap> IsSpherical(AbstractRegularPolytope([4,4],"h2^3"));
false
gap> IsSpherical(Pyramid(5));
true
gap> IsSpherical(CubicTiling(2));
false
```

9.3.9 IsLocallySpherical (for IsManiplex)

▷ IsLocallySpherical(M)

(property)

Returns: Whether the 4-maniplex M is locally spherical, which is to say, whether its facets and vertex-figures are both spherical.

```
gap> IsLocallySpherical(Simplex(4));
true
gap> IsLocallySpherical(AbstractRegularPolytope([4,4,4]));
false
gap> IsLocallySpherical(CubicTiling(3));
true
gap> IsLocallySpherical(Pyramid(Cube(3)));
true
```

9.3.10 IsToroidal (for IsManiplex)

□ IsToroidal(M) (property)

Returns: Whether the 3-maniplex *M* is toroidal, which is to say, whether the Euler characteristic is equal to 0.

```
gap> IsToroidal(Simplex(3));
false
gap> IsToroidal(AbstractRegularPolytope([4,4],"h2^3"));
true
gap> IsToroidal(Pyramid(5));
false
```

9.3.11 IsLocallyToroidal (for IsManiplex)

```
▷ IsLocallyToroidal(M)
```

(property)

Returns: Whether the 4-maniplex M is locally toroidal, which is to say, whether it has at least one toroidal facet or vertex-figure, and all of its facets and vertex-figures are either spherical or toroidal.

```
gap> IsLocallyToroidal(Simplex(4));
false
gap> IsLocallyToroidal(AbstractRegularPolytope([4,4,3],"(r0 r1 r2 r1)^2"));
true
gap> IsLocallyToroidal(AbstractRegularPolytope([4,4,4],"(r0 r1 r2 r1)^2, (r1 r2 r3 r2)^2"));
true
```

9.4 Basics

9.4.1 Size (for IsManiplex)

```
> Size (M) (attribute)

Returns: The number of flags of the manipley M
```

Returns: The number of flags of the maniplex *M*. Synonym: NumberOfFlags.

9.4.2 RankManiplex (for IsManiplex)

```
▷ RankManiplex(M)
```

(attribute)

Returns: The rank of the maniplex M.

9.5 Zigzags and holes

9.5.1 ZigzagLength (for IsManiplex, IsInt)

```
▷ ZigzagLength(M, j)
```

(operation)

Returns: The lengths of *j*-zigzags of the 3-maniplex M. This corresponds to the lengths of orbits under r0 (r1 r2) j .

```
gap> ZigzagLength(Cube(3),1);
6
gap> ZigzagLength(Cube(3),2);
6
gap> ZigzagLength(Cube(3),3);
2
```

9.5.2 ZigzagVector (for IsManiplex)

▷ ZigzagVector(M)

(attribute)

Returns: The lengths of all zigzags of the 3-maniplex *M*.

A rank 3 maniplex of type $\{p, q\}$ has Floor(q/2) distinct zigzag lengths because the j-zigzags are the same as the (q-j)-zigzags.

```
gap> ZigzagVector(Pseudorhombicuboctahedron());
[ [ 40, 56 ], [ 8, 32 ] ]
```

9.5.3 PetrieLength (for IsManiplex)

▷ PetrieLength(M)

(attribute)

Returns: The length of the petrie polygons of the maniplex *M*.

```
gap> PetrieLength(Cube(3));
6
Example
```

9.5.4 PetrieRelation (for IsInt, IsInt)

▷ PetrieRelation(i, j)

(operation)

Returns: relation

Returns the Petrie relation for a rank i maniplex of length j.

```
gap> p:=PetrieRelation(3,3);
"(r0r1r2)^3"
gap> q:=Cube(3)/p;
3-maniplex
gap> Size(q);
24
```

9.5.5 HoleLength (for IsManiplex, IsInt)

```
▷ HoleLength(M, j) (operation)
```

Returns: The lengths of j-holes of the 3-maniplex M.

This corresponds to the lengths of orbits under r0 (r1 r2) $^(j-1)$ r2.

```
gap> HoleLength(ToroidalMap44([3,0]),2);
3
```

9.5.6 HoleVector (for IsManiplex)

Returns: The lengths of all zigzags of the 3-maniplex M.

A rank 3 maniplex of type $\{p, q\}$ has Floor(q/2) distinct zigzag lengths because the j-zigzags are the same as the (q-j)-zigzags.

```
gap> HoleVector(ToroidalMap44([3,0],[0,5]));
[ [ 3, 5 ] ]
```

Chapter 10

Graphs for Maniplexes

10.1 Graph constructors for maniplexes

10.1.1 DirectedGraphFromListOfEdges (for IsList,IsList)

▷ DirectedGraphFromListOfEdges(list, list)

(operation)

Returns: IsGraph. Note this returns a directed graph.

Given a list of vertices and a list of directed-edges (represented as ordered pairs), this outputs the directed graph with the appropriate vertex and directed-edge set.

Here we have a directed cycle on 3 vertices.

```
Example

gap> g:= DirectedGraphFromListOfEdges([1,2,3],[[1,2],[2,3],[3,1]]);

rec( adjacencies := [ [ 2 ], [ 3 ], [ 1 ] ], group := Group(()),

isGraph := true, names := [ 1, 2, 3 ], order := 3,

representatives := [ 1, 2, 3 ], schreierVector := [ -1, -2, -3 ] )
```

10.1.2 GraphFromListOfEdges (for IsList,IsList)

▷ GraphFromListOfEdges(list, list)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a list of vertices and a list of (directed) edges (represented as ordered pairs), this outputs the simple underlying graph with the appropriate vertex and directed-edge set.

Here we have a simple complete graph on 4 vertices.

```
Example

gap> g:= GraphFromListOfEdges([1,2,3,4],[[1,2],[2,3],[3,1], [1,4], [2,4], [3,4]]);

rec(
   adjacencies := [ [ 2, 3, 4 ], [ 1, 3, 4 ], [ 1, 2, 4 ], [ 1, 2, 3 ] ],
   group := Group(()), isGraph := true, isSimple := true,
   names := [ 1, 2, 3, 4 ], order := 4, representatives := [ 1, 2, 3, 4 ]
   , schreierVector := [ -1, -2, -3, -4 ] )
```

10.1.3 UnlabeledFlagGraph (for IsGroup)

▷ UnlabeledFlagGraph(group)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a group (assumed to be the connection group of a maniplex), this outputs the simple underlying flag graph.

Here we build the flag graph for the cube from its connection group.

```
Example
gap> g:= UnlabeledFlagGraph(ConnectionGroup(Cube(3)));
rec(
adjacencies := [[3, 11, 20], [7, 13, 18], [1, 4, 10],
     [3, 25, 34], [26, 28, 35], [7, 13, 41], [2, 6, 8],
     [7, 27, 32], [28, 33, 35], [3, 20, 45], [1, 14, 23],
     [ 15, 17, 24 ], [ 2, 6, 31 ], [ 11, 25, 44 ], [ 12, 45, 47 ],
     [ 18, 28, 40 ], [ 12, 19, 27 ], [ 2, 16, 21 ], [ 17, 22, 24 ],
     [ 1, 10, 38 ], [ 18, 32, 40 ], [ 19, 41, 48 ], [ 11, 35, 44 ],
     [ 12, 19, 34 ], [ 4, 14, 37 ], [ 5, 38, 42 ], [ 8, 17, 30 ],
     [5, 9, 16], [39, 41, 48], [27, 32, 47], [13, 33, 39],
     [8, 21, 30], [9, 31, 46], [4, 24, 37], [5, 9, 23],
     [ 43, 45, 47 ], [ 25, 34, 48 ], [ 20, 26, 43 ], [ 29, 31, 46 ],
     [ 16, 21, 42 ], [ 6, 22, 29 ], [ 26, 40, 43 ], [ 36, 38, 42 ],
     [ 14, 23, 46 ], [ 10, 15, 36 ], [ 33, 39, 44 ], [ 15, 30, 36 ],
     [ 22, 29, 37 ] ], group := Group(()), isGraph := true,
isSimple := true, names := [ 1 .. 48 ], order := 48,
representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
     15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
    31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
    47, 48],
schreierVector := [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
    -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24,
    -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37,
    -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48])
```

This also works with a maniplex input. Here we build the flag graph for the cube.

```
gap> g:= UnlabeledFlagGraph(Cube(3));
```

10.1.4 FlagGraphWithLabels (for IsGroup)

```
⊳ FlagGraphWithLabels(group)
```

(operation)

Returns: a triple [IsGraph, IsList, IsList].

Given a group (assumed to be the connection group of a maniplex), this outputs a triple [graph,list,list]. The graph is the unlabeled flag graph of the connection group. The first list gives the undirected edges in the flag graphs. The second list gives the labels for these edges.

Here we again build the flag graph for the cube from its connection group, but this time keep track of labels of the edges.

```
Example

gap> g:= FlagGraphWithLabels(ConnectionGroup(Cube(3)));

[ rec(
    adjacencies := [ [ 3, 11, 20 ], [ 7, 13, 18 ], [ 1, 4, 10 ],
        [ 3, 25, 34 ], [ 26, 28, 35 ], [ 7, 13, 41 ], [ 2, 6, 8 ],
        [ 7, 27, 32 ], [ 28, 33, 35 ], [ 3, 20, 45 ], [ 1, 14, 23 ],
        [ 15, 17, 24 ], [ 2, 6, 31 ], [ 11, 25, 44 ], [ 12, 45, 47 ],
        [ 18, 28, 40 ], [ 12, 19, 27 ], [ 2, 16, 21 ],
        [ 17, 22, 24 ], [ 1, 10, 38 ], [ 18, 32, 40 ],
```

```
[ 19, 41, 48 ], [ 11, 35, 44 ], [ 12, 19, 34 ],
       [4, 14, 37], [5, 38, 42], [8, 17, 30], [5, 9, 16],
       [ 39, 41, 48 ], [ 27, 32, 47 ], [ 13, 33, 39 ],
       [8, 21, 30], [9, 31, 46], [4, 24, 37], [5, 9, 23],
       [ 43, 45, 47 ], [ 25, 34, 48 ], [ 20, 26, 43 ],
       [ 29, 31, 46 ], [ 16, 21, 42 ], [ 6, 22, 29 ],
       [ 26, 40, 43 ], [ 36, 38, 42 ], [ 14, 23, 46 ],
       [ 10, 15, 36 ], [ 33, 39, 44 ], [ 15, 30, 36 ],
       [ 22, 29, 37 ] ], group := Group(()), isGraph := true,
   isSimple := true, names := [ 1 .. 48 ], order := 48,
   representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
       14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
       29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
       44, 45, 46, 47, 48],
   schreierVector := [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
       -12, \ -13, \ -14, \ -15, \ -16, \ -17, \ -18, \ -19, \ -20, \ -21, \ -22, \ -23,
       -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35,
       -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47,
       -48]),
[[1,3],[1,11],[1,20],[2,7],[2,13],[2,18],
   [3, 4], [3, 10], [4, 25], [4, 34], [5, 26], [5, 28],
   [5, 35], [6, 7], [6, 13], [6, 41], [7, 8], [8, 27],
   [8, 32], [9, 28], [9, 33], [9, 35], [10, 20],
   [ 10, 45 ], [ 11, 14 ], [ 11, 23 ], [ 12, 15 ], [ 12, 17 ],
   [ 12, 24 ], [ 13, 31 ], [ 14, 25 ], [ 14, 44 ], [ 15, 45 ],
   [ 15, 47 ], [ 16, 18 ], [ 16, 28 ], [ 16, 40 ], [ 17, 19 ],
   [ 17, 27 ], [ 18, 21 ], [ 19, 22 ], [ 19, 24 ], [ 20, 38 ],
   [21, 32], [21, 40], [22, 41], [22, 48], [23, 35],
   [ 23, 44 ], [ 24, 34 ], [ 25, 37 ], [ 26, 38 ], [ 26, 42 ],
   [ 27, 30 ], [ 29, 39 ], [ 29, 41 ], [ 29, 48 ], [ 30, 32 ],
   [ 30, 47 ], [ 31, 33 ], [ 31, 39 ], [ 33, 46 ], [ 34, 37 ],
   [ 36, 43 ], [ 36, 45 ], [ 36, 47 ], [ 37, 48 ], [ 38, 43 ],
   [ 39, 46 ], [ 40, 42 ], [ 42, 43 ], [ 44, 46 ] ],
[3, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 3, 2, 2, 1, 3, 1, 2, 3,
   3, 2, 3, 1, 2, 3, 1, 2, 2, 1, 1, 3, 1, 2, 3, 1, 2, 3, 2, 3, 2, 2,
   1, 1, 3, 2, 3, 2, 1, 1, 3, 3, 2, 3, 1, 1, 2, 1, 3, 3, 3, 2, 3, 1,
   2, 3, 1, 2, 1, 2]
```

This also works with a maniplex input. Here we build the flag graph for the cube.

```
gap> g:= FlagGraphWithLabels(Cube(3));
```

10.1.5 LayerGraph (for IsGroup, IsInt, IsInt)

```
▷ LayerGraph([group, int, int])
```

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a group (assumed to be the connection group of a maniplex), and two integers, this outputs the simple underlying graph given by incidences of faces of those ranks. Note: There are no warnings yet to make sure that i,j are bounded by the rank.

Here we build the graph given by the 6 faces and 12 edges of a cube from its connection group.

```
Example
gap> g:= LayerGraph(ConnectionGroup(Cube(3)),2,1);
rec(
  adjacencies := [ [ 7, 10, 12, 17 ], [ 8, 10, 15, 18 ],
       [ 7, 9, 13, 14 ], [ 8, 11, 13, 16 ], [ 9, 12, 16, 18 ],
       [ 11, 14, 15, 17 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 2 ],
       [ 4, 6 ], [ 1, 5 ], [ 3, 4 ], [ 3, 6 ], [ 2, 6 ], [ 4, 5 ],
       [ 1, 6 ], [ 2, 5 ] ], group := Group(()), isGraph := true,
    isSimple := true, names := [ 1 .. 18 ], order := 18,
    representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
       15, 16, 17, 18 ],
    schreierVector := [ -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
       -12, -13, -14, -15, -16, -17, -18 ] )
```

This also works with a maniplex input. Here we build the graph given by the 6 faces and 12 edges of a cube.

```
gap> g:= LayerGraph(Cube(3),2,1);;
Example
```

10.1.6 Skeleton (for IsManiplex)

▷ Skeleton(maniplex)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a maniplex, this outputs the 0-1 skeleton. The vertices are the 0-faces, and the edges are the 1-faces.

Here we build the skeleton of the dodecahedron.

```
gap> g:= Skeleton(Dodecahedron());;
```

10.1.7 CoSkeleton (for IsManiplex)

▷ CoSkeleton(maniplex)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a maniplex, this outputs the (n-1)-(n-2) skeleton, i.e., the 0-1 skeleton of the dual. The vertices are the (n-1)-faces, and the edges are the (n-2)-faces.

Here we build the co-skeleton of the dodecahedron and verify that it is the skeleton of the icosahedron.

```
gap> g:=CoSkeleton(Dodecahedron());;
gap> h:=Skeleton(Icosahedron());;
gap> g=h;
true
```

10.1.8 Hasse (for IsManiplex)

▷ Hasse(group)

(operation)

Returns: IsGraph. Note this returns a directed graph.

Given a group, assumed to be the connection group of a maniplex, this outputs the Hasse Diagram as a directed graph. Note: The unique minimal and maximal face are assumed.

Here we build the Hasse Diagram of a 3-simplex from its representation as a maniplex.

```
gap> Hasse(Simplex(3));
rec(
adjacencies := [[ ], [ 1 ], [ 1 ], [ 1 ], [ 2, 4 ],
        [ 2, 3 ], [ 3, 5 ], [ 2, 5 ], [ 4, 5 ], [ 3, 4 ], [ 6, 9, 10 ],
        [ 6, 7, 11 ], [ 8, 10, 11 ], [ 7, 8, 9 ], [ 12, 13, 14, 15 ] ],
group := Group(()), isGraph := true, names := [ 1 .. 16 ],
order := 16,
representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
        15, 16 ],
schreierVector := [ -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
        -12, -13, -14, -15, -16 ] )
```

10.1.9 QuotientByLabel (for IsObject,IsList, IsList, IsList)

▷ QuotientByLabel(object, list, list, list)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a graph, its edges, and its edge labels, and a sublist of labels, this creates the underlying simple graph of the quotient identifying vertices connected by labels not in the sublist.

Here we start with the flag graph of the 3-cube (with edge labels 1,2,3), and identify any vertices not connected by edge by edges of label 1. We can then check that this new graph is bipartite.

10.1.10 EdgeLabeledGraphFromEdges (for IsList, IsList, IsList)

▷ EdgeLabeledGraphFromEdges(list, list, list)

(operation)

Returns: IsEdgeLabeledGraph.

Given a list of vertices, a list of edges, and a list of edge labels, this represents the edge labeled (multi)-graph with those parameters. Semi-edges are represented by a singleton in the edge list. Loops are represented by edges [i,i]

Here we have an edge labeled cycle graph with 6 vertices and edges alternating in labels 0,1.

```
V:=[1..6];;
Edges:=[[1,2],[2,3],[3,4],[4,5],[5,6],[6,1]];;
L:=[0,1,0,1,0,1];;
gamma:=EdgeLabeledGraphFromEdges(V,Edges,L);
```

10.1.11 EdgeLabeledGraphFromLabeledEdges (for IsList)

▷ EdgeLabeledGraphFromLabeledEdges(list)

(operation)

Returns: IsEdgeLabeledGraph.

Given a list of labeled edges this represents the edge labeled (multi)-graph with those parameters. Semi-edges are represented by a singleton in the edge list.

10.1.12 FlagGraph (for IsGroup)

▷ FlagGraph(group)

(operation)

Returns: IsEdgeLabeledGraph.

Given group, assumed to be a connection group, output the labeled flag graph. The input could also be a maniplex, then the connection group is calculated.

Here we have the flag graph of the 3-simplex from its connection group.

```
C:=ConnectionGroup(Simplex(3));;
gamma:=FlagGraph(C);
```

10.1.13 UnlabeledSimpleGraph (for IsEdgeLabeledGraph)

▷ UnlabeledSimpleGraph(edge-labeled-graph)

(operation)

Returns: IsGraph.

Given an edge labeled (multi) graph, it returns the underlying simple graph, with semi-edges, loops, and muliple-edges removed.

Here we have underlying simple graph for the flag graph of the cube.

```
gamma:=UnlabeledSimpleGraph(FlagGraph(Cube(3)));
```

10.1.14 EdgeLabelPreservingAutomorphismGroup (for IsEdgeLabeledGraph)

(operation)

Returns: IsGroup.

Given an edge labeled (multi) graph, it returns automorphism group (preserving the labels). Note, for now the labels are assumed to be [1..n]. Note This tends to be very slow. I would like to look for a way to go back and forth between flag automorphisms and poset automorphisms, as the latter are much faster to compute.

Here we have the automorphism group of the flag graph of the cube.

```
g:=EdgeLabelPreservingAutomorphismGroup(FlagGraph(Cube(3)));;
Size(g);
```

10.1.15 Simple (for IsEdgeLabeledGraph)

▷ Simple(edge-labeled-graph)

(operation)

Returns: IsEdgeLabeledGraph .

Given an edge labeled (multi) graph, it returns another edge labeled graph where semi-edges, loops, and multiple edges are removed. Note only the "first" edge label is retained if there are multiple edges.

10.1.16 ConnectedComponents (for IsEdgeLabeledGraph, IsList)

▷ ConnectedComponents(edge-labeled-graph)

(operation)

Returns: IsGraph.

Given an edge labeled (multi) graph and a list of labels, it returns connected components of the graph not using edges in the list of labels. Note if the second argument is not used, it is assumed to be an empty list, and the connected components of the original graph are returned.

Here we see that each connected component of the flag graph of the cube (which has labels 1,2,3) where edges of label 2 are removed, is a 4 cycle.

```
gamma:=ConnectedComponents(FlagGraph(Cube(3)),[2]);
```

10.1.17 PRGraph (for IsGroup)

▷ PRGraph(group)

(operation)

Returns: IsEdgeLabeledGraph .

Given a group, it returns the permutation representation graph for that group. When the group is a string C-group this is also called a CPR graph. The labels of the edges are [1...r] where r is the number of generators of the group.

Here we see the CPR graph of the automorphism group of a cube (acting on its 8 vertices).

```
G:=AutomorphismGroup(Cube(3));
H:=Group(G.2,G.3);
phi:=FactorCosetAction(G,H);
G2:=Range(phi);
gamma:=PRGraph(G2);
```

10.1.18 CPRGraphFromGroups (for IsGroup,IsGroup)

▷ CPRGraphFromGroups(group, subgroup)

(operation)

Returns: IsEdgeLabeledGraph.

Given a group and a subgroup. Returns the graph of the action of the first group on cosets of the subgroup.

10.1.19 AdjacentVertices (for IsEdgeLabeledGraph, IsObject)

▷ AdjacentVertices(EdgeLabeledGraph, vertex)

(operation)

Returns: IsList.

Takes in an edge labeled graph and a vertex, and outputs a list of the adjacent vertices.

10.1.20 LabeledAdjacentVertices (for IsEdgeLabeledGraph, IsObject)

▷ LabeledAdjacentVertices(EdgeLabeledGraph, vertex)

(operation)

Returns: IsList, IsList.

Takes in an edge labeled graph and a vertex, and outputs two lists: the list of adjacent vertices, and the labels of the corresponding edges.

10.1.21 SemiEdges (for IsEdgeLabeledGraph)

▷ SemiEdges(EdgeLabeledGraph)

(operation)

Returns: IsList.

Takes in an edge labeled graph and a vertex, and outputs a list of semiedges

10.1.22 LabeledSemiEdges (for IsEdgeLabeledGraph)

▶ LabeledSemiEdges(EdgeLabeledGraph)

(operation)

Returns: IsList, IsList.

Takes in an edge labeled graph and a vertex, and outputs two lists: SemiEdges and their labels

10.1.23 LabeledDarts (for IsEdgeLabeledGraph)

▷ LabeledDarts(EdgeLabeledGraph)

(operation)

Returns: IsList.

Takes in an edge labeled graph and outputs the labeled darts.

10.1.24 DerivedGraph (for IsList,IsList,IsList)

▷ DerivedGraph(list, list, list)

(operation)

Returns: IsEdgeLabeledGraph.

Given a a pre-maniplex (entered as its vertices and labeled darts) and voltages Return the connected derived graph from a pre-maniplex Careful, the order of our automorphisms. Do we want them on left or right? Does it matter? Can make another version with non-connected results, where the group is also an input

Here we can build the flag graph of a 3-orbit polyhedron.

```
gap> V:=[1,2,3];;
gap> Ed:=[[1],[1],[1,2],[2],[2,3],[3]];;
gap> L:=[1,2,0,2,1,0,2];;
gap> g:=EdgeLabeledGraphFromEdges(V,Ed,L);;
gap> L:=LabeledDarts(g);;
gap> volt:=[(1,2), (3,4), (), (), (3,4), (), (), (4,5), (2,3)];;
gap> D:=DerivedGraph(V,L,volt);
Edge labeled graph with 360 vertices, and edge labels [0, 1, 2]
```

10.1.25 ViewGraph (for IsEdgeLabeledGraph, IsString)

▷ ViewGraph(EdgeLabeledGraph, String)

(operation)

Returns: IsString.

This takes an edge labeled graph and outputs code to view the graph in other software. Currently mathematica and sage are supported.

10.1.26 ViewGraph (for IsObject, IsString)

 \triangleright ViewGraph(Graph, String)

(operation)

Returns: IsString.

This takes a graph and outputs code to view the graph in other software. Currently mathematica and sage are supported.

10.1.27 ConnectionGroup (for IsEdgeLabeledGraph)

▷ ConnectionGroup(F)

(attribute)

Returns: IsPermGroup

Constructs the connection group from an edge labeled graph. Loops, semi-edges, and non-edges give fixed points. Graph is assumed to be coming from a maniplex. Some weird things could happen if it is not

Chapter 11

Databases

11.1 Regular polyhedra

11.1.1 DegeneratePolyhedra

Gives all degenerate polyhedra (of type $\{2,q\}$ and $\{p,2\}$) with sizes in sizerange. Also accepts a single integer *maxsize* as input to indicate a sizerange of [1..maxsize].

```
gap> DegeneratePolyhedra(24);
[ AbstractRegularPolytope([ 2, 2 ]), AbstractRegularPolytope([ 2, 3 ]),
   AbstractRegularPolytope([ 3, 2 ]), AbstractRegularPolytope([ 2, 4 ]),
   AbstractRegularPolytope([ 4, 2 ]), AbstractRegularPolytope([ 2, 5 ]),
   AbstractRegularPolytope([ 5, 2 ]), AbstractRegularPolytope([ 2, 6 ]),
   AbstractRegularPolytope([ 6, 2 ]) ]
```

11.1.2 FlatRegularPolyhedra

Gives all nondegenerate flat regular polyhedra with sizes in *sizerange*. Also accepts a single integer *maxsize* as input to indicate a sizerange of [1..maxsize]. Currently supports a maxsize of 4000 or less.

```
gap> FlatRegularPolyhedra([10..24]);
[ AbstractRegularPolytope([ 2, 3 ]), AbstractRegularPolytope([ 3, 2 ]),
   AbstractRegularPolytope([ 2, 4 ]), AbstractRegularPolytope([ 4, 2 ]),
   AbstractRegularPolytope([ 2, 5 ]), AbstractRegularPolytope([ 5, 2 ]),
   AbstractRegularPolytope([ 4, 3 ], "r2 r1 r0 r1 = (r0 r1)^2 r1 (r1 r2)^1, r2 r1 r2 r1 r0 r1 = (r1)^3 (r1 r2)^2"),
   ReflexibleManiplex([ 3, 4 ], "(r2*r1)^2*r1^2*r0*r1*r2*r1*r0,(r2*r1)^3*(r1*r0)^2*r1*r2*(r1*r0)^2), AbstractRegularPolytope([ 2, 6 ]), AbstractRegularPolytope([ 6, 2 ]) ]
```

11.1.3 RegularToroidalPolyhedra44

▷ RegularToroidalPolyhedra44(sizerange)

(function)

Returns: IsList

Gives all regular toroidal polyhedra of type $\{4,4\}$ with sizes in *sizerange*. Also accepts a single integer *maxsize* as input to indicate a sizerange of [1..maxsize].

```
Example

gap> RegularToroidalPolyhedra44([60..100]);

[ AbstractRegularPolytope([ 4, 4 ], "(r0 r1 r2)^4"),

AbstractRegularPolytope([ 4, 4 ], "(r0 r1 r2 r1)^3") ]
```

11.1.4 RegularToroidalPolyhedra36

▷ RegularToroidalPolyhedra36(sizerange)

(function)

Returns: IsList

Gives all regular toroidal polyhedra of type $\{3,6\}$ with sizes in *sizerange*. Also accepts a single integer *maxsize* as input to indicate a sizerange of [1..maxsize].

```
Example

gap> RegularToroidalPolyhedra36([100..150]);

[ AbstractRegularPolytope([ 3, 6 ], "(r0 r1 r2)^6"),

AbstractRegularPolytope([ 3, 6 ], "(r0 r1 r2 r1 r2)^4") ]
```

11.1.5 SmallRegularPolyhedraFromFile

▷ SmallRegularPolyhedraFromFile(sizerange)

(function)

Returns: IsList

Gives all regular polyhedra with sizes in *sizerange* flags that are stored separately in a file. These are polyhedra that are not part of one of several infinite families that are covered by the other generators. The return value of this function is unstable and may change as more infinite familes of polyhedra are identified and written as separate generators.

```
Example

gap> SmallRegularPolyhedraFromFile(64);

[ Simplex(3), AbstractRegularPolytope([ 3, 6 ], "(r2*r0*r1)^2*(r0*r2*r1)^2 "), CrossPolytope(3),

AbstractRegularPolytope([ 6, 3 ], "(r0*r2*r1)^2*(r2*r0*r1)^2 "), Cube(3),

AbstractRegularPolytope([ 5, 5 ], "r1*r2*r0*(r1*r0*r2)^2 "),

AbstractRegularPolytope([ 3, 5 ], "(r2*r0*r1)^3*(r0*r2*r1)^2 "),

AbstractRegularPolytope([ 5, 3 ], "(r0*r2*r1)^3*(r2*r0*r1)^2 ")]
```

11.1.6 SmallRegularPolyhedra

▷ SmallRegularPolyhedra(sizerange)

(function)

Returns: IsList

Gives all regular polyhedra with sizes in *sizerange* flags. Currently supports a maxsize of 4000 or less. You can also set options nondegenerate, nonflat, and nontoroidal.

```
gap> L1 := SmallRegularPolyhedra(500);;
gap> L2 := SmallRegularPolyhedra(1000 : nondegenerate);;
gap> L3 := SmallRegularPolyhedra(2000 : nondegenerate, nonflat);;
gap> Length(SmallRegularPolyhedra(64));
53
```

11.1.7 SmallDegenerateRegular4Polytopes

▷ SmallDegenerateRegular4Polytopes(sizerange)

(function)

Returns: IsList

Gives all degenerate regular 4-polytopes with sizes in *sizerange* flags. Currently supports a maxsize of 8000 or less.

```
Example

gap> SmallDegenerateRegular4Polytopes([64]);

[ AbstractRegularPolytope([ 4, 2, 4 ]), AbstractRegularPolytope([ 2, 8, 2 ]),

regular 4-polytope of type [ 4, 4, 2 ] with 64 flags,

ReflexibleManiplex([ 2, 4, 4 ], "(r2*r1*r2*r3)^2,(r1*r2*r3*r2)^2") ]
```

11.1.8 SmallRegular4Polytopes

▷ SmallRegular4Polytopes(sizerange)

(function)

Returns: IsList

Gives all regular 4-polytopes with sizes in *sizerange* flags. Currently supports a maxsize of 4000 or less.

```
gap> SmallRegular4Polytopes([100]);
[ AbstractRegularPolytope([ 5, 2, 5 ]) ]
```

11.1.9 SmallChiralPolyhedra

▷ SmallChiralPolyhedra(sizerange)

(function)

Returns: IsList

Gives all chiral polyhedra with sizes in *sizerange* flags. Currently supports a maxsize of 4000 or less.

```
Example

gap> SmallChiralPolyhedra(100);

[ AbstractRotaryPolytope([ 4, 4 ], "s1*s2^-2*s1^2*s2^-1,(s1^-1*s2^-1)^2"),

AbstractRotaryPolytope([ 4, 4 ], "s2*s1^-1*s2*s1^2*s2^2*s1^-1,(s1^-1*s2^-1)^2"),

AbstractRotaryPolytope([ 3, 6 ], "s2^-1*s1*s2^-2*s1^-1*s2*s1^-1*s2^-2,(s1^-1*s2^-1)^2"),

AbstractRotaryPolytope([ 6, 3 ], "s1*s2^-1*s1^2*s2*s1^-1*s2*s1^2,(s2*s1)^2") ]
```

11.1.10 SmallChiral4Polytopes

 ${\tt \rhd} \ {\tt SmallChiral4Polytopes} ({\it sizerange})$

(function)

Returns: IsList

Gives all chiral 4-polytopes with sizes in sizerange flags. Currently supports a maxsize of 4000 or less.

```
Example

gap> SmallChiral4Polytopes([200..250]);

[ AbstractRotaryPolytope([ 3, 4, 4 ], "s3^-1*s2^-2*s1^-1*s3*s1,s2^-1*s3^-2*s2^2*s3, (s2^-1*s3^-1)^2

AbstractRotaryPolytope([ 4, 4, 3 ], "s1*s2^2*s3*s1^-1*s3^-1,s2*s1^2*s2^-2*s1^-1, (s2*s1)^2, (s3*s1)^2, (s3*s1)^2,
```

11.1.11 SmallReflexible3Maniplexes

▷ SmallReflexible3Maniplexes(sizerange)

(function)

Returns: IsList

Gives all regular 4-polytopes with sizes in *sizerange* flags. Currently supports a maxsize of 2000 or less. If the option nonpolytopal is set, only returns maniplexes that are not polyhedra.

11.1.12 SRP

```
▷ SRP(minsize, maxsize[, func1, val1, func2, val2, ...]) (function)
```

Returns a list of all regular polyhedra with at least minsize at at most maxsize flags. Optionally, you may include any number of pairs of functions and values, in which case this only returns those polyhedra such that the given functions have the given values. The name of this function is temporary and this function is here as a proof-of-concept.

11.1.13 SmallTwoOrbit3Maniplexes

▷ SmallTwoOrbit3Maniplexes(I, sizerange)

(function)

Returns: IsList

Gives all two-orbit 3-maniplexes in class 2_I with sizes in *sizerange* flags. Currently supports a maxsize of 1000 or less.

11.2 System internal representations

11.2.1 DatabaseString (for IsManiplex)

▷ DatabaseString(M)

(operation)

Returns: String

Given a maniplex M, returns a string representation of M suitable for saving in a database for later retrieval.

11.2.2 ManiplexFromDatabaseString (for IsString)

▷ ManiplexFromDatabaseString(maniplexString)

(operation)

Returns: IsManiplex

Given a string maniplexString, representing a maniplex stored in a database, returns the maniplex that is represented.

Chapter 12

Stratified Operations

12.1 Computational tools

I should say something more here.

12.1.1 ChunkMultiply (for IsList,IsList)

Elements are ordered pairs of the form [perm, list], where the elements of list are members of a group. Operation performed is consistent with that in defined in [PW18].

12.1.2 ChunkPower (for IsList,IsInt)

```
ChunkPower(element, integer) (operation)
Returns: element
```

Given an element compatible with the ChunkMultiply operation, this function will compute the product of element with itself integer times.

12.1.3 ChunkGeneratedGroupElements (for IsList, IsGroup)

```
▷ ChunkGeneratedGroupElements(list, group)

Returns: newList

(operation)
```

Given a list of generators compatible with the ChunkMultiply operation, this function will construct the associated list of group elements in a form suitable for taking ChunkMultiply and ChunkPower.

```
[ (1,3,2), [ <identity ...>, <identity ...>, r0*r1 ] ],
[ (1,2,3), [ r1*r0, <identity ...>, <identity ...> ] ], [ (1,3), [ r0, r0, r0 ] ],
[ (1,3), [ r1, r1, r1 ] ], [ (1,2,3), [ <identity ...>, r0*r1, r0*r1 ] ],
[ (1,3,2), [ r1*r0, r1*r0, <identity ...> ] ], [ (2,3), [ r0*r1*r0, r0, r0 ] ],
[ (1,2), [ r1, r1, r0*r1*r0 ] ], [ (), [ r0*r1, r0*r1, r0*r1 ] ],
[ (), [ r1*r0, r1*r0, r1*r0 ] ], [ (1,2), [ r0*r1*r0, r0*r1*r0, r0 ] ],
[ (2,3), [ r1, r0*r1*r0, r0*r1*r0 ] ], [ (1,3,2), [ r0*r1, r0*r1, r1*r0 ] ],
[ (1,2,3), [ r0*r1, r1*r0, r1*r0 ] ], [ (1,3), [ r0*r1*r0, r0*r1*r0, r0*r1*r0 ] ]
```

12.1.4 ChunkGeneratedGroup (for IsList, IsPermGroup)

▷ ChunkGeneratedGroup(list, group)

(operation)

Returns: permGroup

Given a list of generators compatible with the ChunkMultiply operation, this function will construct a representation of the group as a permutation group. Note that generators are of the form [perm, list], and each list is a list of elements from group.

```
Example
gap> p:=Simplex(2); a:=AutomorphismGroup(p);
Pgon(3)
<fp group of size 6 on the generators [ r0, r1 ]>
gap> e:=One(a);; AssignGeneratorVariables(a);
gap> s0:=[(3,4),[r0,r0,e,e,r0,r0]];
[ (3,4), [ r0, r0, <identity ...>, <identity ...>, r0, r0 ] ]
gap> s1:=[(2,3)(4,5),[r1,e,e,e,e,r1]];
[ (2,3)(4,5), [ r1, <identity ...>, <identity ...>, <identity ...>, <identity ...>, r1 ] ]
gap> s2:=[(1,2)(5,6),[e,e,r1,r1,e,e]];
[ (1,2)(5,6), [ <identity ... >, <identity ... >, r1, r1, <identity ... >, <identity | ... > ] ]
gap> gens:=[s0,s1,s2];;
gap> ChunkMultiply(s0,s1);
[ (2,3,5,4), [ r0*r1, <identity ...>, r0, r0, <identity ...>, r0*r1 ] ]
gap> ChunkMultiply(s0,s0);
[(), [r0^2, r0^2, <identity ...>, <identity ...>, r0^2, r0^2]]
gap> SetReducedMultiplication(r1);
gap> ChunkMultiply(s0,s0);
[(), [ <identity ...>, <identity ...>, <identity ...>, <identity ...>, <identity ...>,
gap> ChunkGeneratedGroup(gens,a);
<permutation group with 3 generators>
gap> Size(last);
1296
```

12.1.5 FullyStratifiedGroup (for IsList, IsGroup)

```
▷ FullyStratifiedGroup(list, group)
```

(operation)

Returns: IsPermGroup

Implements fully stratified operations on maniplexes from [CPW22]. Given list of generators compatible with the ChunkMultiply operation, group is the underlying group in the representation (usually the connection group of the base), this will calculate the connection group of the resulting maniplex acting on the implicit flags of the construction. Function assumes that list are the generators of the connection group of the resulting maniplex in the order $\langle r_0, r_1, \ldots, r_{d-1} \rangle$. It is possible that

for some groups this function will behave poorly because GAP won't recognize equivalent representations of a group element. If so, try again with a permutation representation and let us know so we can modify the code to handle this problem better (didn't show up in our testing, but is a theoretical possibility).

```
_ Example .
gap> p:=Simplex(2);; a:=AutomorphismGroup(p);
<fp group of size 6 on the generators [ r0, r1 ]>
gap> e:=One(a);
<identity ...>
gap> AssignGeneratorVariables(a);
#I Assigned the global variables [ r0, r1 ]
gap> s0:=[(3,4),[r0,r0,e,e,r0,r0]];
[ (3,4), [ r0, r0, <identity ...>, <identity ...>, r0, r0 ] ]
gap> s1:=[(2,3)(4,5),[r1,e,e,e,e,r1]];
[ (2,3)(4,5), [ r1, <identity ...>, <identity ...>, <identity ...>, <identity ...>, r1 ] ]
gap> s2:=[(1,2)(5,6),[e,e,r1,r1,e,e]];
[ (1,2)(5,6), [ <identity ... >, <identity ... >, r1, r1, <identity ... >, <identity ... > ] ]
gap> gens:=[s0,s1,s2];
[ [ (3,4), [ r0, r0, <identity ...>, <identity ...>, r0, r0 ] ],
  [ (2,3)(4,5), [ r1, <identity ...>, <identity ...>, <identity ...>, <identity ...>, r1 ] ],
  [(1,2)(5,6), [<identity ...>, <identity ...>, r1, r1, <identity ...>, <identity ...>]]]
gap> Maniplex(FullyStratifiedGroup(gens,a))=Prism(Simplex(2));
true
```

Chapter 13

Maps On Surfaces

13.1 Bicontactual regular maps

The names for the maps in this section are from S.E. Wilson's [Wil85].

13.1.1 Epsilonk (for IsInt)

▷ Epsilonk(k)

Returns: IsManiplex

Given an integer k, gives the map ε_k , which is $\{k,2\}_k$ when k is even, and $\{k,2\}_{2k}$ when k is odd.

(operation)

```
gap> Epsilonk(5);
AbstractRegularPolytope([ 5, 2 ])
gap> Epsilonk(6);
AbstractRegularPolytope([ 6, 2 ])
```

13.1.2 Deltak (for IsInt)

▷ Deltak(k) (operation)

Returns: IsManiplex

Given an integer k, gives the map δ_k , which is $\{2k,2\}/2$ when k is even, and $\{2k,2\}_k$ when k is odd.

```
gap> Deltak(5);
AbstractRegularPolytope([ 10, 2 ], "(r0 r1)^5 r2")
gap> Deltak(6);
AbstractRegularPolytope([ 12, 2 ], "(r0 r1)^6 r2")
```

13.1.3 Mk (for IsInt)

 \triangleright Mk(k) (operation)

Returns: IsManiplex

Given an integer k, gives the map M_k , which is $\{2k, 2k\}_{1,0}$ when k is even, and $\{2k, k\}_2$ when k is odd.

```
Example

gap> Mk(5); Mk(6);

AbstractRegularPolytope([ 10, 5 ], "(r0 r1)^5 r0 = r2")

AbstractRegularPolytope([ 12, 12 ], "(r0 r1)^6 r0 = r2")
```

13.1.4 MkPrime (for IsInt)

▷ MkPrime(k)
(operation)

Returns: IsManiplex

Given an integer k, gives the map M'_k , which is $\{k,k\}_2$ when k is even, and $\{k,2k\}_2$ when k is odd. MkPrime(k,i) gives the map $M'_{k,i}$.

```
Example

gap> MkPrime(5); MkPrime(6);

ReflexibleManiplex([ 5, 10 ], "(r2*r1*(r0 r2))^5,z1^2")

ReflexibleManiplex([ 6, 6 ], "(r2*r1*(r0 r2))^6,z1^2")
```

13.1.5 Bk2l (for IsInt,IsInt)

 \triangleright Bk21(k, 1) (operation)

Returns: IsManiplex

Given integers k, 1, gives the map B(k, 2l).

```
gap> Bk2l(4,5);
3-maniplex with 80 flags
```

13.1.6 Bk2lStar (for IsInt,IsInt)

 \triangleright Bk2lStar(k, 1) (operation)

Returns: IsManiplex

Given integers k, 1, gives the map $B^*(k, 2l)$.

```
gap> Bk2lStar(5,7);
3-maniplex with 140 flags
```

13.2 Operations on reflexible maps

13.2.1 Opp (for IsMapOnSurface)

▷ Opp(map) (operation)

Returns: IsManiplex

Forms the opposite map of the maniplex map.

```
gap> Opp(Bk2lStar(5,7));
Petrial(Dual(Petrial(3-maniplex with 140 flags)))
```

13.2.2 Hole (for IsMapOnSurface,IsInt)

```
\triangleright Hole(map, j) (operation)
```

Returns: IsManiplex

Given map and integer j, will form the map $H_j(map)$. Note that if the action of $[r_0, (r_1r_2)^{j-1}r_1, r_2]$ on the flags forms multiple orbits, then the resulting map will be on just one of those orbits.

```
gap> Hole(Bk2lStar(5,7),2);
3-maniplex with 140 flags
```

13.3 Map properties

IsMapOnSurface will test to see if you have rank 3 maniplex.

```
gap> Filtered([HemiCube(3),Cube(4),Icosahedron()],IsMapOnSurface);
[ HemiCube(3), Icosahedron() ]
```

13.4 Operations on maps

13.4.1 Truncation (for IsMapOnSurface)

▷ Truncation(map) (operation)

Returns: trunc_map

Given a map on a surface, this function will return the truncation of map.

```
gap> SchlafliSymbol(Truncation(Simplex(3)));
[ [ 3, 6 ], 3 ]
gap> TruncatedTetrahedron()=Truncation(Simplex(3));
true
gap> Truncation(CrossPolytope(3))=TruncatedOctahedron();
true
gap> Truncation(Cube(3))=TruncatedCube();
true
```

13.4.2 Snub (for IsMapOnSurface)

▷ Snub(M) (operation)

Returns: snub_map

Returns the snub of a given map; we require that the map have triangles as vertex figures.

```
gap> Snub(Dodecahedron())=SnubDodecahedron();
true
gap> Snub(Cube(3))=SnubCube();
true
gap> Snub(Simplex(3))=Icosahedron();
true
gap> Snub(CrossPolytope(3))=SnubCube();
true
```

```
gap> Snub(Dual(Cube(3)))=Reflection(Snub(Reflection(Cube(3))));
true
```

13.4.3 Chamfer (for IsMapOnSurface)

 \triangleright Chamfer (M) (operation)

Returns: chamfered_map

Returns the map obtained from the chamfering operation described in [dRF14]

```
gap> s0 := (4,5)(6,7)(8,9);;
gap> s1 := (2,6)(3,4)(5,7);;
gap> s2 := (1,2)(4,8)(5,9);;
gap> poly := Group([s0,s1,s2]);;
gap> p:=ARP(poly);;
gap> SchlafliSymbol(p);
[ 6, 3 ]
gap> ch:=Chamfer(p);
3-maniplex with 432 flags
gap> SchlafliSymbol(ch);
[ 6, 3 ]
```

13.4.4 Subdivision1 (for IsMapOnSurface)

▷ Subdivision1(M) (operation)

Returns: Su1

Returns the One-dimensional subdivision of a map, which replaces each edge with two edges. For more information on the oriented version of this, see [BPW17].

```
gap> m:=Subdivision1(Simplex(3));
3-maniplex with 48 flags
gap> SchlafliSymbol(m);
[ 6, [ 2, 3 ] ]
```

13.4.5 Subdivision2 (for IsMapOnSurface)

Subdivision2(M) (operation)

Returns: Su2

Returns the two-dimensional subdivision of M.

```
gap> SchlafliSymbol(Subdivision2(Cube(3)));
[ 3, [ 4, 6 ] ]
```

13.4.6 BarycentricSubdivision (for IsMapOnSurface)

▷ BarycentricSubdivision(M)

(operation)

Returns: barycentric_subdivision Gives the barycentric subdivision of *M*.

```
gap> m:=BarycentricSubdivision(Cube(3));;
gap> SchlafliSymbol(m);NumberOfFacets(m);
[ 3, [ 4, 6, 8 ] ]
48
```

13.4.7 Leapfrog (for IsMapOnSurface)

▷ Leapfrog(M) (operation)

Returns: leapfrog

Gives the result of performing the leapfrog operation on a map on a surface

```
gap> Leapfrog(Dodecahedron());
3-maniplex with 360 flags
gap> SchlafliSymbol(last);
[ [ 5, 6 ], 3 ]
```

13.4.8 CombinatorialMap (for IsMapOnSurface)

▷ CombinatorialMap(M)

(operation)

Returns: combinatorial_map

Gives the result of combinatorial operation on a map; this is equivalent to taking the dual of the barycentric subdivision.

```
gap> NumberOfEdges(Cube(3));

12

gap> NumberOfEdges(CombinatorialMap(Cube(3)));

72
```

13.4.9 Angle (for IsMapOnSurface)

▷ Angle(M) (operation)

Returns: angle_map

Returns the angle map of a map. This is equivalent to taking the dual of the medial.

```
Example

gap> NumberOfEdges(ToroidalMap44([3,0]));

18

gap> NumberOfEdges(Angle(ToroidalMap44([3,0])));

36
```

13.4.10 Gothic (for IsMapOnSurface)

Returns: gothic

Returns the result of performing the gothic operation to a map. This is the same as taking the dual of the medial of the truncation of the map.

```
gap> m:=AbstractRegularPolytope([ 3, 6 ], "(r0 r1 r2)^6");;
gap> NumberOfEdges(m); NumberOfEdges(Gothic(m));
27
162
```

13.5 Conway polyhedron operator notation

We include here operators from Wikipedia that are not included above.

- MapJoin: Creates quadrilateral faces by placing a node in each face, and then the set of edges are formed by the nodes corresponding to incident vertex-face pairs. This is another name for Angle.
- Ambo: This is another name for Medial.

Another excellent source for information on these types of operations is https://antitile.readthedocs.io/en/latest/conway.html. Additional functions are described below.

13.5.1 Reflection (for IsManiplex)

Reflection(M) (operation)

Returns: reflection

Reverses the orientation of a maniplex.

```
gap> Gyro(Dual(m))=Reflection(Gyro(Reflection(m)));
true
gap> Reflection(m)=EnantiomorphicForm(m);
true
gap> Reflection(Truncation(m))=Truncation(EnantiomorphicForm(m));
true
```

13.5.2 Kis (for IsMapOnSurface)

▷ Kis(M) (operation)

Returns: kis

Returns the Kis of the map, which erects a pyramid over each of the faces.

```
gap> Kis(Cube(3));
3-maniplex with 144 flags
gap> SchlafliSymbol(last);
[ 3, [ 4, 6 ] ]
```

13.5.3 Needle (for IsMapOnSurface)

 \triangleright Needle(M) (operation)

Returns: needle

Performs the needle operation to the map: edges connect adjacent face centers, and face centers to incident vertices.

```
gap> SchlafliSymbol(Needle(Cube(3)));
[ 3, [ 3, 8 ] ]
```

13.5.4 Zip (for IsMapOnSurface)

▷ Zip(M) (operation)

Returns: zip

Returns the zip of the map.

```
gap> Zip(Cube(3))=TruncatedOctahedron();
true
```

13.5.5 Ortho (for IsMapOnSurface)

▷ Ortho(M) (operation)

Returns: ortho

Returns the ortho of the map (this is the same as applying the join twice.).

```
gap> SchlafliSymbol(Ortho(Cube(3)));
[ 4, [ 3, 4 ] ]
```

13.5.6 Expand (for IsMapOnSurface)

 \triangleright Expand (M) (operation)

Returns: expand

Returns the expand of the map (this is the same as applying the ambo operation twice.).

```
gap> Example ______
gap> Expand(Cube(3))=SmallRhombicuboctahedron();
true
```

13.5.7 Gyro (for IsMapOnSurface)

□ Gyro (M) (operation)

Returns: gyro

Returns the gyro of the map.

```
gap> Gyro(Dual(Cube(3)))=Gyro(Cube(3));
true
```

13.5.8 Meta (for IsMapOnSurface)

Returns: meta

Constructs the meta of the given map. (This is the same as applying first the join, and then the kis operation to the map).

```
gap> Size(Cube(3))=NumberOfFacets(Meta(Cube(3)));
true
```

13.5.9 Bevel (for IsMapOnSurface)

```
▷ Bevel(M) (operation)
```

Returns: bevel

Constructs the bevel of a given map. (This is the same as truncating the ambo of a map.)

```
gap> CombinatorialMap(Cube(3))=Bevel(Cube(3));
true
```

13.6 Extended operations

A number of these were introduced by George Hart.

13.6.1 Subdivide (for IsMapOnSurface)

```
    ▷ Subdivide(M) (operation)
```

Returns: u

Returns the subdivide (u) of M.

```
gap> Chamfer(Dual(Cube(3)))=Dual(Subdivide(Cube(3)));
true
gap> SchlafliSymbol(Subdivide(Cube(3)));
[ [ 3, 4 ], [ 3, 6 ] ]
```

13.6.2 Propeller (for IsMapOnSurface)

```
▷ Propeller(M) (operation)
```

Returns: propeller

Constructs the propeller of the map.

```
gap> Dual(Propeller(Cube(3)))=Propeller(Dual(Cube(3)));
true
gap> Dual(Propeller(Dual(Cube(3))))=Propeller(Cube(3));
true
```

13.6.3 Loft (for IsMapOnSurface)

Loft(M)
 (operation)

Returns: loft

Constructs the loft of the map.

```
gap> NumberOfFacets(Loft(Cube(3)));
30
gap> SchlafliSymbol(Loft(Cube(3)));
[ 4, [ 3, 6 ] ]
```

13.6.4 Quinto (for IsMapOnSurface)

□ Quinto(M) (operation)

Returns: quinto

Constructs the quinto of the map.

```
gap> SchlafliSymbol(Quinto(Cube(3)));
[[4,5],[3,4]]
```

13.6.5 JoinLace (for IsMapOnSurface)

JoinLace(M)
 (operation)

Returns: join-lace

Constructs the join-lace of the map.

```
gap> SchlafliSymbol(JoinLace(Cube(3)));
[ [ 3, 4 ], [ 4, 6 ] ]
```

13.6.6 Lace (for IsMapOnSurface)

 \triangleright Lace (M) (operation)

Returns: lace

Constructs the lace of the map.

```
gap> SchlafliSymbol(Lace(Cube(3)));
[[3, 4], [4, 9]]
```

13.6.7 Stake (for IsMapOnSurface)

▷ Stake(M) (operation)

Returns: stake

Constructs the stake of the map.

13.6.8 Whirl (for IsMapOnSurface)

b Whirl(M) (operation)

Returns: whirl

Constructs the whirl of the map.

13.6.9 Volute (for IsMapOnSurface)

Returns: volute

Constructs the volute of the map. This is equivalent to Dual(Whirl(Dual(M))).

```
gap> SchlafliSymbol(Volute(Cube(3)));
[ [ 3, 4 ], [ 3, 6 ] ]
gap> SchlafliSymbol(Volute(Dual(Cube(3))));
[ 3, [ 4, 6 ] ]
```

13.6.10 JoinKisKis (for IsMapOnSurface)

→ JoinKisKis(M) (operation)

Returns: joinkiskis

Constructs the join-kis-kis of the map.

```
Example ______

gap> SchlafliSymbol(JoinKisKis(Cube(3)));
[ [ 3, 4 ], [ 3, 8, 9 ] ]
```

13.6.11 Cross (for IsMapOnSurface)

▷ Cross(M) (operation)

Returns: cross

Constructs the cross of the map.

```
gap> SchlafliSymbol(Cross(Cube(3)));
[[3, 4], [4, 6]]
```

Chapter 14

Utility Functions

14.1 System

14.1.1 InfoRamp

The InfoClass for the Ramp package.

14.2 Polytopes

14.2.1 AbstractPolytope

▷ AbstractPolytope(args)

(function)

Calls Maniplex(args) and verifies whether the output is polytopal. If not, this throws an error. Use AbstractPolytopeNC to assume that the output is polytopal and mark it as such.

14.2.2 AbstractRegularPolytope

(function)

Calls ReflexibleManiplex(args) and verifies whether the output is polytopal. If not, this throws an error. Use AbstractRegularPolytopeNC to assume that the output is polytopal and mark it as such. Also available as ARP(args) and ARPNC(args).

```
gap> Pgon(5)=AbstractRegularPolytope(Group([(2,3)(4,5),(1,2)(3,4)]));
true
```

14.2.3 AbstractRotaryPolytope

```
▷ AbstractRotaryPolytope(args)
```

(function)

Calls RotaryManiplex(args) and verifies whether the output is polytopal. If not, this throws an error. Use AbstractRotaryPolytopeNC to assume that the output is polytopal and mark it as such.

14.3 Permutations

14.3.1 TranslatePerm

```
▷ TranslatePerm(perm, k)
```

(function)

Returns a new permutation obtained from perm by adding k to each moved point.

```
gap> TranslatePerm((1,2,3,4),5);
(6,7,8,9)
Example
```

14.3.2 MultPerm

```
▷ MultPerm(perm, multiplier, offset)
```

(function)

Multiplies together perm, TranslatePerm(perm, offset), TranslatePerm(perm, offset*2), ..., with multiplier terms, and returns the result.

```
Example

gap> MultPerm((1,2,3)(4,5,6),3,7);
(1,2,3)(4,5,6)(8,9,10)(11,12,13)(15,16,17)(18,19,20)

gap> MultPerm((1,2,3,4),2,4);
(1,2,3,4)(5,6,7,8)
```

14.3.3 InvolutionListList

▷ InvolutionListList(list1, list2)

(function)

Returns: involution

Construction the involution (when possible) with entries (list1[i],list2[i]).

14.3.4 PermFromRange

▷ PermFromRange(perm1, perm2)

(function)

Returns: Permutation

This attempts to construct a permutation that we would write as perm1 ... perm2. Probably it is clearest to look at some examples:

```
Example

gap> PermFromRange((1,2), (9,10));
(1,2)(3,4)(5,6)(7,8)(9,10)

gap> PermFromRange((1,3), (13,15));
(1,3)(4,6)(7,9)(10,12)(13,15)

gap> PermFromRange((2,3,4), (8,9,10));
(2,3,4)(5,6,7)(8,9,10)
```

14.4 Words on relations

14.4.1 ParseStringCRels

This helper function is used in several maniplex constructors. Given a string rels that represents relations in an sggi, and an sggi g, returns a list of elements in the free group of g represented by rels. These can then be used to form a quotient of g.

```
gap> g := AutomorphismGroup(CubicTiling(2));;
gap> rels := "(r0 r1 r2 r1)^6";;
gap> newrels := ParseStringCRels(rels, g);
[ (r0*r1*r2*r1)^6 ]
gap> newrels[1] in FreeGroupOfFpGroup(g);
true
gap> g2 := FactorGroupFpGroupByRels(g, newrels);
<fp group on the generators [ r0, r1, r2 ]>
```

For convenience, you may use z1, z2, etc and h1, h2, etc in relations, where zj means r0 (r1 r2)^j (the "j-zigzag" word) and hj means r0 (r1 r2)^j-1 r1 (the "j-hole" word).

14.4.2 ParseRotGpRels

```
    ParseRotGpRels(rels, g) (function)
```

This helper function is used in several maniplex constructors. It is analogous to ParseStringCRels, but for rotation groups instead.

14.4.3 AddOrAppend

```
\triangleright AddOrAppend(L, x) (function)
```

Given a list L and an object x, this calls Append(L, x) if x is a list; otherwise it calls Add(L, x). Note that since strings are internally represented as lists, AddOrAppend(L, "foo") will append the characters 'f', 'o', 'o'.

```
gap> L := [1, 2, 3];;
gap> AddOrAppend(L, 4);
gap> L;
[1, 2, 3, 4]
```

```
gap> AddOrAppend(L, [5, 6]);
gap> L;
[1, 2, 3, 4, 5, 6];
```

14.4.4 WrappedPosetOperation

```
▷ WrappedPosetOperation(posetOp)
```

(function)

Given a poset operation, creates a bare-bones maniplex operation that delegates to the poset operation.

```
gap> myjoin := WrappedPosetOperation(JoinProduct);
function( arg... ) ... end
gap> M := myjoin(Pgon(4), Vertex());
3-maniplex
gap> M = Pyramid(4);
true
```

Usually, you will want to eventually create a fuller-featured wrapper of the poset operation – one that can infer more information from its arguments. But this method is a good way to quickly test whether a poset operation works on maniplexes the way one expects.

Chapter 15

Synonyms for Commands

Here we list, in alphabetical order, synonyms for common commands.

- Ambo for Medial (RAMP: Medial for ismaniplex)
- AreIncidentFaces for AreIncidentElements (RAMP: AreIncidentElements for isobject,isobject)
- ARP for AbstractRegularPolytope (RAMP: AbstractRegularPolytope)
- Faces for ElementsList (RAMP: ElementsList for isposet)
- FacesList for ElementsList (RAMP: ElementsList for isposet)
- Flags for MaximalChains (RAMP: MaximalChains for isposet)
- FlagsList for MaximalChains (RAMP: MaximalChains for isposet)
- IsDiamondCondition for IsP4 (RAMP: IsP4 for isposet)
- IsStronglyFlagConnected for IsP3 (RAMP: IsP3 for isposet)
- MapJoin for Angle (RAMP: Angle for ismaponsurface)
- MonodromyGroup for ConnectionGroup (RAMP: ConnectionGroup for ismaniplex)
- NumberOfFlags for Size (RAMP: Size for ismaniplex)
- PetrieDual for Petrial (RAMP: Petrial for ismaniplex)
- RankPosetFaces for RankPosetElements (RAMP: RankPosetElements for isposet)
- RefMan for ReflexibleManiplex (RAMP: ReflexibleManiplex)

References

- [BPW17] Leah Wrenn Berman, Tomaž Pisanski, and Gordon Ian Williams. Operations on oriented maps. *Symmetry*, 9(11):274, 1–14, November 2017. 89
- [CM17] Gabe Cunningham and Mark Mixer. Internal and external duality in abstract polytopes. *Contrib. Discrete Math.*, 12(2):187–214, 2017. 16, 58
- [CPW22] Gabe Cunningham, Daniel Pellicer, and Gordon Ian Williams. Stratified operations on maniplexes. *Algebr. Comb.*, 2022. 84
- [Cun21] Gabe Cunningham. Flat extensions of abstract polytopes. *Art Discrete Appl. Math.*, 4(3):Paper No. 3.06, 14, 2021. 57
- [dRF14] María del Río Francos. Chamfering operation on *k*-orbit maps. *Ars Math. Contemp.*, 7(2):507–524, 2014. 89
- [GH18] Ian Gleason and Isabel Hubard. Products of abstract polytopes. *Journal of Combinatorial Theory, Series A*, 157:287–320, jul 2018. 35, 54
- [HW10] Michael I. Hartley and Gordon I. Williams. Representing the sporadic archimedean polyhedra as abstract polytopes. *Discrete Mathematics*, 310(12):1835–1844, jun 2010. 19
- [MPW12] Barry Monson, Daniel Pellicer, and Gordon Williams. The tomotope. *Ars Mathematica Contemporanea*, 5(2):355–370, jun 2012. 17
- [MPW14] B. Monson, Daniel Pellicer, and Gordon Williams. Mixing and monodromy of abstract polytopes. *Transactions of the American Mathematical Society*, 366(5):2651–2681, nov 2014. 39
- [MS02] Peter McMullen and Egon Schulte. *Abstract Regular Polytopes*. Cambridge University Press, dec 2002. 39, 43
- [Pel18] Daniel Pellicer. Cleaved abstract polytopes. *Combinatorica*, 38(3):709–737, mar 2018. 43
- [PW18] Daniel Pellicer and Gordon Ian Williams. Pyramids over regular 3-tori. *SIAM Journal on Discrete Mathematics*, 32(1):249–265, jan 2018. 83
- [Wil85] Stephen Wilson. Bicontactual regular maps. *Pacific Journal of Mathematics*, 120(2):437–451, dec 1985. 86
- [Wil12] Steve Wilson. Maniplexes: Part 1: Maps, polytopes, symmetry and operators. *Symmetry*, 4(2):265–275, apr 2012. 39

Index

120Cell, 15	AutomorphismGroupOnChains
24Cell, 14	for IsManiplex, IsCollection, 27
24CellToroid	for IsPoset, IsCollection, 50
for IsInt,IsInt, 18	AutomorphismGroupOnEdges
3343Toroid	for IsManiplex, 28
for IsInt,IsInt, 18	for IsPoset, 50
600Cell, 15	AutomorphismGroupOnElements
	for IsPoset, 49
AbstractPolytope, 96	AutomorphismGroupOnFacets
AbstractRegularPolytope, 96	for IsManiplex, 28
AbstractRotaryPolytope, 97	for IsPoset, 50
AddOrAppend, 98	AutomorphismGroupOnFlags
AddRanksInPosets	for IsManiplex, 6
for IsPosetElement,IsPoset,IsInt, 52	AutomorphismGroupOnIFaces
AdjacentFlag	for IsManiplex, IsInt, 27
for IsPosetOfFlags, IsList, IsInt, 49	for IsPoset, IsInt, 50
AdjacentFlags	AutomorphismGroupOnVertices
for IsPoset,IsList,IsInt, 49	for IsManiplex, 27
AdjacentVertices	for IsPoset, 50
for IsEdgeLabeledGraph, IsObject, 76	AutomorphismGroupPermGroup
Amalgamate	for IsManiplex, 6
for IsManiplex, IsManiplex, 57	Tor Torvianipien, o
Angle	BarycentricSubdivision
for IsMapOnSurface, 90	for IsMapOnSurface, 89
Antiprism	BaseFlag
for IsInt, 60	for IsManiplex, 31
for IsManiplex, 60	Bevel
for IsPoset, 55	for IsMapOnSurface, 93
AreIncidentElements	Bk21
for IsObject, IsObject, 53	for IsInt,IsInt, 87
AsPosetOfAtoms	Bk2lStar
for IsPoset, 51	for IsInt,IsInt, 87
AtomList	BrucknerSphere, 16
for IsPosetElement, 52	•
AutomorphismGroup	CartesianProduct
for IsManiplex, 6	for IsManiplex, IsManiplex, 60
for IsPoset, 49	for IsPoset, IsPoset, 54
AutomorphismGroupFpGroup	Chamfer
for IsManiplex, 6	for IsMapOnSurface, 89

ChiralityGroup	DegeneratePolyhedra, 79
for IsRotaryManiplex, 8	Deltak
ChunkGeneratedGroup	for IsInt, 86
for IsList, IsPermGroup, 84	DerivedGraph
ChunkGeneratedGroupElements	for IsList,IsList,IsList, 77
for IsList, IsGroup, 83	DirectDerivates
ChunkMultiply	for IsManiplex, 59
for IsList,IsList, 83	DirectedGraphFromListOfEdges
ChunkPower	for IsList, IsList, 70
for IsList,IsInt, 83	DirectSumOfManiplexes
Cleave	for IsManiplex, IsManiplex, 61
for IsPoset,IsInt, 43	DirectSumOfPosets
CombinatorialMap	for IsPoset, IsPoset, 54
for IsMapOnSurface, 90	Dodecahedron, 14
Comix	Dual
for IsFpGroup, IsFpGroup, 24	for IsManiplex, 57
for IsReflexibleManiplex, IsReflexibleMani-	DualPoset
plex, 24	for IsPoset, 42
ConnectedComponents	*
for IsEdgeLabeledGraph, IsList, 76	Edge, 12
ConnectionGeneratorOfPoset	${\tt EdgeLabeledGraphFromEdges}$
for IsPoset,IsInt, 49	for IsList, IsList, 74
ConnectionGroup	${\tt EdgeLabeledGraphFromLabeledEdges}$
for IsEdgeLabeledGraph, 78	for IsList, 75
for IsManiplex, 7	${\tt EdgeLabel Preserving Automorphism Group}$
for IsPoset, 49	for IsEdgeLabeledGraph, 75
CoSkeleton	ElementsList
for IsManiplex, 73	for IsPoset, 44
CPRGraphFromGroups	EnantiomorphicForm
for IsGroup, IsGroup, 76	for IsRotaryManiplex, 26
Cross	Epsilonk
for IsMapOnSurface, 95	for IsInt, 86
CrossPolytope	EqualChains
for IsInt, 13	for IsList,IsList, 49
CtoL	EulerCharacteristic
for IsInt,IsInt,IsInt, 24	for IsManiplex, 66
Cube	EvenConnectionGroup
for IsInt, 12	for IsManiplex, 7
CubicTiling	Expand
for IsInt, 13	for IsMapOnSurface, 92
CubicToroid	ExtraRelators
for IsInt,IsInt,IsInt, 18	for IsReflexibleManiplex, 8
for IsInt,IsList, 18	ExtraRotRelators
Cuboctahedron, 19	for IsRotaryManiplex, 8
DatabaseString	FaceListOfPoset
for IsManiplex, 82	for IsPoset, 50
101 1011tumpion, 02	

FacesByRankOfPoset	Hasse
for IsPoset, 51	for IsManiplex, 73
Facet	HasseDiagramOfPoset
for IsManiplex, 63	for IsPoset, 51
for IsManiplex, IsInt, 63	Hemi120Cell, 15
Facets	Hemi24Cell, 15
for IsManiplex, 63	Hemi600Cell, 15
FlagGraph	HemiCrossPolytope
for IsGroup, 75	for IsInt, 13
FlagGraphWithLabels	HemiCube
for IsGroup, 71	for IsInt, 13
FlagList	HemiDodecahedron, 14
for IsPosetElement, 52	Hemilcosahedron, 14
FlagMix	Hole
for IsManiplex, IsManiplex, 24	for IsMapOnSurface,IsInt, 88
FlagOrbitRepresentatives	HoleLength
for IsManiplex, 31	for IsManiplex, IsInt, 69
FlagOrbits	HoleVector
for IsManiplex, 32	for IsManiplex, 69
FlagOrbitsStabilizer	Tot Islampiex, 09
for IsManiplex, 31	Icosadodecahedron, 19
Flags	Icosahedron, 14
for IsManiplex, 30	InfoRamp, 96
FlagsAsFlagListFaces	InternallySelfDualPolyhedron1
for IsPoset, 48	for IsInt, 16
FlatExtension	InternallySelfDualPolyhedron2
	for IsInt, IsInt, 16
for IsManiplex, IsInt, 57	InvolutionListList, 97
FlatOrientablyRegularPolyhedraOfType for IsList, 17	IOrientableCover
•	for IsManiplex, IsList, 34
FlatOrientablyRegularPolyhedron	IsAllJoins
for IsInt, IsInt, IsInt, IsInt, 16	for IsPoset, 45
FlatRegularPolyhedra, 79	IsAllMeets
FullyStratifiedGroup	for IsPoset, 45
for IsList, IsGroup, 84	IsAtomic
Fvector	for IsPoset, 45
for IsManiplex, 63	IsCConnected
Genus	for IsManiplex, 11
for IsManiplex, 66	IsChainTransitive
Gothic	for IsManiplex, IsCollection, 29
for IsMapOnSurface, 90	IsChiral
GraphFromListOfEdges	for IsManiplex, 32
for IsList,IsList, 70	-
GreatRhombicosidodecahedron, 21	IsCover
	for IsManiplex, IsManiplex, 36
GreatRhombicuboctahedron, 21	IsDegenerate
Gyro for IsManOnSurface, 02	for IsManiplex, 65
for IsMapOnSurface, 92	IsEdgeTransitive

for IsManiplex, 30	IsP2
IsEqualFaces	for IsPoset, 46
for IsFace, IsFace, IsPoset, 53	IsP3
IsEquivelar	for IsPoset, 46
for IsManiplex, 65	IsP4
IsExternallySelfDual	for IsPoset, 47
for IsManiplex, 58	IsPolytopal
IsFacetBipartite	for IsManiplex, 24
for IsManiplex, 33	IsPolytope
IsFacetFaithful	for IsPoset, 47
for IsManiplex, 34	IsPrePolytope
IsFacetTransitive	for IsPoset, 47
for IsManiplex, 30	IsQuotient
IsFlagConnected	for IsManiplex, IsManiplex, 36
for IsPoset, 47	for IsSggi, IsSggi, 36
IsFlaggable	IsReflexible
for IsPoset, 44	for IsManiplex, 32
IsFlat	IsRelationOfReflexibleManiplex
for IsManiplex, 64	for IsManiplex, IsString, 10
for IsManiplex, IsInt, IsInt, 64	IsRotary
IsFullyTransitive	for IsManiplex, 32
for IsManiplex, 30	IsSelfDual
IsGgi	for IsManiplex, 58
for IsGroup, 9	for IsPoset, 47
IsIFaceTransitive	IsSelfPetrial
for IsManiplex, IsInt, 29	for IsManiplex, 59
${\tt IsInternallySelfDual}$	IsSggi
for IsManiplex, 58	for IsGroup, 9
IsIOrientable	IsSpherical
for IsManiplex, IsList, 33	for IsManiplex, 66
IsIsomorphicManiplex	${\tt IsStringC}$
for IsManiplex, IsManiplex, 37	for IsGroup, 9
IsIsomorphicPoset	IsStringCPlus
for IsPoset, IsPoset, 48	for IsGroup, 10
IsLattice	IsStringy
for IsPoset, 45	for IsGroup, 9
IsLocallySpherical	IsSubface
for IsManiplex, 66	for IsFace, IsFace, IsPoset, 53
IsLocallyToroidal	${\tt IsTight}$
for IsManiplex, 67	for IsManiplex, 66
IsManiplexable	IsToroidal
for IsPermGroup, 8	for IsManiplex, 67
IsOrientable	${\tt IsVertexBipartite}$
for IsManiplex, 33	for IsManiplex, 33
IsP1	${\tt IsVertexFaithful}$
for IsPoset, 46	for IsManiplex, 34

for IsManiplex, 29 Join for IsFace, IsFace, IsPoset, 53 JoinKisKis for IsMapOnSurface, 95 JoinLace for IsMapOnSurface, 94 JoinProduct for IsManiplex, IsManiplex, 60 for IsPoset, IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, 77 LabeledBarts for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsIst, 46 Loft for IsMapOnSurface, 94 Maniplex Maniplex for IsRdegLabeledGraph, 24 for IsPoset, 23 for IsPermGroup, IsPermGroup, 24 Maniplex for IsMapOnSurface, 94 Maniplex Maniplex for IsMapOnSurface, 94 Maniplex for IsManiplex, 57 Meet for IsMapOnSurface, 93 MinFace for IsPogroup, IsPpGroup, 24 for IsPpGroup, IsPpGroup, 24 for IsInt, 86 MkPrime for IsInt, 86 MkPrime for IsMapOnSurface, 92 NumberOfChainOrbits for IsManiplex, IsCollection, 28 NumberOfEdgeOrbits for IsManiplex, 62 NumberOfFacets for IsManiplex, 29 NumberOfFacets for IsManiplex, 31 NumberOfFacets for IsManiplex, 1sInt, 62 NumberOfFiface for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 63 NumberOfVertices for IsManiplex, 62 Meet for IsPoset, 51 Mix for IsPoset,	IsVertexTransitive	Medial
Join for IsFace, IsPace, IsPoset, 53 JoinKisKis for IsMapOnSurface, 95 JoinLace for IsMapOnSurface, 94 JoinProduct for IsMapilex, IsManiplex, 60 for IsPoset, IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 94 LietisPIPoset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsPoset, 23 for IsPoset, 24 for IsPoset, 25 for IsPoset, 26 MunberOfFlacebrits for IsManiplex, IsInt, 28 NumberOfFlacebrits for IsManiplex, 63 Nu		
for IsFace, IsFace, IsPoset, 53 JoinKisKis for IsMapOnSurface, 95 JoinLace for IsMapOnSurface, 94 JoinProduct for IsManiplex, IsManiplex, 60 for IsPoset, IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledBarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsMapOnSurface, 94 LayerGraph for IsMapOnSurface, 94 LayerGraph for IsMapOnSurface, 90 License, 2 ListIsPIPoset for IsMapOnSurface, 94 Maniplex for IsPoset, 23 for IsPoset, 24 for IsPoset, 31 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient	1 /	
for IsPace, IsPoset, 53 JoinKisKis for IsMapOnSurface, 95 JoinLace for IsMapOnSurface, 94 JoinProduct for IsManiplex, IsManiplex, 60 for IsPoset, IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledBarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIaP1Poset for IsIst, 46 Loft for IsMapOnSurface, 94 Maniplex for IsBdgeLabeledGraph, 24 for IsPoset, 23 for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient Meta for IsMapOnSurface, 93 MinFace for IsPoset, 51 Mix for IsPoset, 51 Mix for IsPorrup, 1sProgroup, 24 for IsPormGroup, 1sPermGroup, 24 Mix for IsPermGroup, 1sPermGroup, 24 Mix for IsInt, 86 MkPrime for IsInt, 86 MkPrime for IsInt, 86 MkPrime for IsInt, 86 MkPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOfEdge0rbits for IsManiplex, 1sCollection, 28 NumberOfEdge0rbits for IsManiplex, 62 NumberOfFlacetts for IsManiplex, 1sInt, 28 NumberOfFlacetts for IsManiplex, 1sInt, 28 NumberOfFlacets for IsManiplex, 29 NumberOfFlacets for IsManiplex, 62 NumberOfFlacets for IsManiplex, 63 NumberOfFlacets for IsManiplex, 62 NumberOfFlacets for IsManiplex, 63 NumberOfFlacets for IsManiplex, 63 NumberOfFlace	Join	for IsFace, IsFace, IsPoset, 53
for IsMapOnSurface, 95 JoinLace for IsMapOnSurface, 94 JoinProduct for IsManiplex, IsManiplex, 60 for IsPoset,IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPoset, 23 for IsPermGroup, 22 for IsPoset, 23 for IsPoset, 23 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDroup, 22 for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient MinFace for IsPoset, 51 Mix for IsInt, 86 MkPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOffEageProits for IsMapOnSurface, 92 NumberOffEageProits for IsManiplex, 29 NumberOffFacets for IsManiplex, 62 NumberOffFacets for IsManiplex, 31 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 29 NumberOffFacets for IsManiplex, 31 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 18 NumberOffFacets for IsManiplex, 29 NumberOffFacets for IsManiplex, 62 NumberOffFacets for IsManipl		
for IsMapOnSurface, 95 JoinLace for IsMapOnSurface, 94 JoinProduct for IsManiplex, IsManiplex, 60 for IsPoset, IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsMapOnSurface, 94 LayerGraph for IsMapOnSurface, 94 LayerGraph for IsMapOnSurface, 90 License, 2 ListIsPIPoset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPoset, 23 for IsPoset, 23 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsSPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient Minx for IsPoset, 51 Mix Mix for IsPoset, 51 Mix Mix for IsPoset, 51 Mi	JoinKisKis	for IsMapOnSurface, 93
for IsMapOnSurface, 94 JoinProduct for IsManiplex, IsManiplex, 60 for IsPoset,IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, 18Object, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPermGroup, 22 for IsPermGroup, 22 for IsPermGroup, 18PermGroup, 24 Mix for IsPermGroup, IsPermGroup, 24 Mk for IsInt, 86 MkPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOffChainOrbits for IsManiplex, 129 NumberOffEageOrbits for IsManiplex, 29 NumberOffEageOrbits for IsManiplex, 29 NumberOffEacets for IsManiplex, 29 NumberOfFacets for IsManiplex, 31 NumberOfFacets for IsManiplex, 31 NumberOfFaceOrbits for IsManiplex, 18Int, 28 NumberOfFaceS for IsManiplex, 18Int, 62 NumberOfFaceS for IsManiplex, 63 NumberOffVertexOrbits for IsManiplex, 63 NumberOffVertices for IsManiplex, 62 NumberOffVertices for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44 Nk for IsPorup, 18PermGroup, 24 for IsPermGroup, 18PermGroup, 24 for IsPermGroup, 18PermGroup, 24 for IsPermGroup, 18PermGroup, 24 for IsPermGroup, 18 for IsNatosct, 36 for IsInt, 86 MkPrime for IsInt, 80 MkPrime	for IsMapOnSurface, 95	_
for IsMapOnSurface, 94 JoinProduct for IsManiplex, IsManiplex, 60 for IsPoset, IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsPIPOset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPoset, 23 for IsPermGroup, 22 for IsPoset, 23 for IsPermGroup, 22 for IsPoset, 23 for IsPermGroup, 23 ManiplexFromDatabaseString for IsNapOnSurface, 94 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient Mix for IsFpGroup, IsFpGroup, 24 for IsPnced, 91 Mk for IsInt, 86 MkPrime for IsInt, 87 MultPerm, 97 NumberOff IsInt, 87 MultPerm, 97 NumberOff ChainOrbits for IsMapOnSurface, 92 NumberOff Edgeor NumberOff Edgeor for IsManiplex, 62 NumberOff Facets for IsManiplex, 62 NumberOff Isacets for IsManiplex, 31 NumberOff IFace for IsManiplex, IsInt, 28 NumberOff Ifaces for IsManiplex, 29 NumberOff Ifaces for IsManiplex, 31 NumberOff Ifaces for IsManiplex, 1sInt, 62 NumberOff Ifaces for IsManiplex, 63 NumberOff VertexOrbits for IsManiplex, 63 NumberOff VertexOrbits for IsManiplex, 62 NumberOff VertexOrbits for IsManiplex, 63 NumberOff VertexOrbits for IsManiplex, 63 NumberOff VertexOrbits for IsManiplex, 62 NumberOff VertexOrbits for IsManiplex, 63 NumberOff VertexOrbits for IsManiplex, 62 NumberOff VertexOrbits for Is	JoinLace	for IsPoset, 51
for IsManiplex, IsManiplex, 60 for IsPoset, IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsMapOnSurface, 90 License, 2 ListIsPIPoset for IsMapOnSurface, 90 License, 2 ListIsPIPoset for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPermGroup, 22 for IsPermGroup, 18 permGroup, 24 MixPrime for IsInt, 86 MxPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOfEdgeOrbits for IsManiplex, IsCollection, 28 NumberOfEdgeOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 31 NumberOfFIacerbits for IsManiplex, 31 NumberOfIFacetorbits for IsManiplex, 18Int, 28 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, 63 NumberOfIFaces for IsManiplex, 63 NumberOfIFaces for IsManiplex, 28 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44 NumberOfIFacetS for IsManiplex, 62 NumberOfFidages for IsManiplex, 63 NumberOfFidages for IsManiplex, 62 NumberOfFidages for IsManiplex, 62 NumberOfFidager for IsManiplex, 62 NumberOfFidager for IsManiplex, 63 NumberOfFidager for IsManiplex, 62 NumberOfFidager for	for IsMapOnSurface, 94	·
for IsManiplex, IsManiplex, 60 for IsPoset,IsPoset, 54 Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledBarts for IsEdgeLabeledGraph, 77 Lace for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsMapOnSurface, 94 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 1sPermGroup, 24 Mik for IsInt, 86 MkPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOfChainOrbits for IsManiplex, IsCollection, 28 NumberOfEdges for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 62 NumberOfFacetOrbits for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, 31 NumberOfIFaceOrbits for IsManiplex, 1sInt, 28 NumberOfIFaceS for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, 1sInt, 28 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVerteXOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 63 NumberOfVertices for IsManiplex, 63 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 63 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 63 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44	JoinProduct	for IsFpGroup, IsFpGroup, 24
Kis for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsMapOnSurface, 94 LayerGraph for IsMapOnSurface, 90 License, 2 ListIsPlPoset for IsMapOnSurface, 90 License, 2 ListIsPlPoset for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsEdgeLabeledGraph, 24 for IsPoset, 23 for IsPermGroup, 22 for IsPoset, 23 for IsPermGroup, 22 for IsPoset, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient Mk for IsInt, 86 MkPrime for IsInt, 86 MkPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOffEae, 92 NumberOffEdges for IsManiplex, 18Collection, 28 NumberOfFEdges for IsManiplex, 62 NumberOfFacetoPbits for IsManiplex, 31 NumberOfFIaceS for IsManiplex, IsInt, 28 NumberOfFIaces for IsManiplex, IsInt, 28 NumberOfFiaces for IsManiplex, 18Collection, 28 NumberOfFacetoPbits for IsManiplex, 62 NumberOfFacetoPbits for IsManiplex, 31 NumberOfFIaceS for IsManiplex, IsInt, 62 NumberOfFiaces for IsManiplex, 29 NumberOfFacetoPbits for IsManiplex, 18Collection, 28 NumberOfFacetoPbits for IsManiplex, 62 NumberOfFacetoPbits for IsManiplex, 29 NumberOfFacetoPbits for IsManiplex,	for IsManiplex, IsManiplex, 60	
for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient MkPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOffEageOrbits for IsMapOnSurface, 92 NumberOffEageOrbits for IsManiplex, 29 NumberOfFEacetOrbits for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, 31 NumberOfIFaces for IsManiplex, IsInt, 28 NumberOfFIagOrbits for IsManiplex, IsInt, 28 NumberOfFIagOrbits for IsManiplex, 18Int, 62 NumberOfFRidges for IsManiplex, 28 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 92 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, 18Int, 28 NumberOfFlagOrbits for IsManiplex, 28 NumberOfFiagOrbits for IsManiplex, 29 NumberOfFiagOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 20 NumberOfFacetorbits for IsManiplex, 20 NumberOfFacetorbits for IsManiplex, 18Int, 28 NumberOfFiagOrbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorb	for IsPoset, IsPoset, 54	•
for IsMapOnSurface, 91 LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient MkPrime for IsInt, 87 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOffEageOrbits for IsMapOnSurface, 92 NumberOffEageOrbits for IsManiplex, 29 NumberOfFEacetOrbits for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, 31 NumberOfIFaces for IsManiplex, IsInt, 28 NumberOfFIagOrbits for IsManiplex, IsInt, 28 NumberOfFIagOrbits for IsManiplex, 18Int, 62 NumberOfFRidges for IsManiplex, 28 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 92 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, 18Int, 28 NumberOfFlagOrbits for IsManiplex, 28 NumberOfFiagOrbits for IsManiplex, 29 NumberOfFiagOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 20 NumberOfFacetorbits for IsManiplex, 20 NumberOfFacetorbits for IsManiplex, 18Int, 28 NumberOfFiagOrbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorbits for IsManiplex, 29 NumberOfFacetorb	17.	for IsInt, 86
LabeledAdjacentVertices for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsPlPoset for IsMapOnSurface, 94 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 43 MaxVertexFaithfulQuotient MultPerm, 97 MultPerm, 97 Needle for IsMapOnSurface, 92 NumberOfEdgeOrbits for IsMapOnSurface, 92 NumberOfEdgeOrbits for IsManiplex, 12 NumberOfEdges for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex for		•
for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPoset, 23 for IsPoset, 23 for IsPoset, 23 for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient Needle for IsMapOnSurface, 92 NumberOfChainOrbits for IsManiplex, IsCollection, 28 NumberOfEage0rbits for IsManiplex, 29 NumberOfEages for IsManiplex, 62 NumberOfFacetUrbits for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetS for IsManiplex, 29 NumberOfFacetS for IsManiplex, 62 NumberOfFacetS for IsManiplex, 31 NumberOfIFaceOrbits for IsManiplex, IsInt, 62 NumberOfIFaceOrbits for IsManiplex, IsInt, 62 NumberOfIFaceOrbits for IsManiplex, IsInt, 62 NumberOfIFaceOrbits for IsManiplex, 28 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 63 NumberOfVertices for IsManiplex, 63 NumberOfVertices for IsManiplex, 63 NumberOfIFaceOrbits for IsManiplex, 62 NumberOfIFaceOrbits for IsManiplex, 62 NumberOfFacetUrbits for IsManiplex, 62 NumberOfFacetOrbits for IsManiplex, 62 NumberOfF	for ismaponsurface, 91	for IsInt, 87
for IsEdgeLabeledGraph, IsObject, 77 LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient Needle for IsMapOnSurface, 92 NumberOfEdge0rbits for IsManiplex, IsCollection, 28 NumberOfEdge0rbits for IsManiplex, 62 NumberOfEdge8 for IsManiplex, 62 NumberOfFacetOrbits for IsManiplex, 29 NumberOfFacetOrbits for IsManiplex, 31 NumberOfFlagOrbits for IsManiplex, 31 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44	LabeledAdjacentVertices	MultPerm, 97
LabeledDarts for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 MumberOfFacetOrbits for IsManiplex, 31 NumberOfIFaceOrbits for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfFacetorbits for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, 28 NumberOfFaces for IsManiplex, 63 NumberOfFacetorbits for IsManiplex, 28 NumberOfIFaces for IsManiplex, 63 NumberOfFacetorbits for IsManiplex, 62 NumberOfIFaces for IsManiplex, 62 NumberOfFacets for IsManiplex, 62 NumberOfFacetorbits for IsManiplex, 62 NumberOfFacets for IsManiplex, 62		
for IsEdgeLabeledGraph, 77 LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 43 MaxVertexFaithfulQuotient for IsPoset, 43 MaxVertexFaithfulQuotient for IsMapOnSurface, 92 NumberOfEdge9 NumberOfEdge9 NumberOfEdge9 NumberOfEdge9 NumberOfEdge9 NumberOfFacetOrbits for IsManiplex, 62 NumberOfFacetS NumberOfFlagOrbits for IsManiplex, 61 NumberOfIFaceOrbits for IsManiplex, IsInt, 28 NumberOfIFaceS for IsManiplex, IsInt, 62 NumberOfFidges for IsManiplex, IsInt, 62 NumberOfFidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44		
LabeledSemiEdges for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsMapOnSurface, 94 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 ManiplexFromDatabaseString for IsMapOnSurface, 93 ManiplexFromDatabaseString for IsSuring, 82 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient MumberOffEdges for IsManiplex, 62 NumberOfFacets for IsManiplex, 62 NumberOfFacets for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, IsInt, 62 NumberOfIFaceOrbits for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfRidges for IsManiplex, 63 NumberOfRidges for IsManiplex, 63 NumberOfRidges for IsManiplex, 63 NumberOfRidges for IsManiplex, 62 NumberOfFacetorbits for IsManiplex		
for IsEdgeLabeledGraph, 77 Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsManiplex, IsInt, 28 MumberOfIFaceorbits for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsPoset, 44 Maximatlorians for IsPoset, 44	-	
Lace for IsMapOnSurface, 94 LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPermGroup, 22 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient NumberOffEdges for IsManiplex, 62 NumberOfFacets for IsManiplex, 62 NumberOfFacetorbits for IsManiplex, 62 NumberOfFacetorbits for IsManiplex, 31 NumberOfFacetorbits for IsManiplex, 18 NumberOfFacetorbits for IsManiplex, 63 NumberOfFacetorbits for IsManiplex, 63 NumberOfFicaces for IsManiplex, 64 NumberOfFicaces for IsManiplex, 64 NumberOfFicaces for IsManiplex, 64 NumberOfFicaces for IsManiplex, 64 NumberOfFicaces for IsManiplex, 62 NumberOfFicaces for IsManiplex, 63 NumberOfFicaces for IsManiplex for IsManiplex for IsManiplex	_	_
LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 43 MaxWertexFaithfulQuotient NumberOfEdges for IsManiplex, 62 NumberOfFacets for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, 31 NumberOfIFaceOrbits for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfFidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44 OrderingFunction SprintshlaCayer		<u> </u>
LayerGraph for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient NumberOfFacets for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, 31 NumberOfFlagOrbits for IsManiplex, 1sInt, 28 NumberOfIFaceorbits for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfFridges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44 OrderingFunction Sprintshle General Opp Sprintshle	for IsMapOnSurface, 94	_
for IsGroup, IsInt, IsInt, 72 Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient for IsManiplex, 62 NumberOfFacets for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfFracetorbits for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44 NumberOfVertices for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44		<u> </u>
Leapfrog for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPermGroup, 22 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient NumberOfFacets for IsManiplex, 29 NumberOfFlagorbits for IsManiplex, 62 NumberOfFlagorbits for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 Opp for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44 Orientable Cover	· · ·	-
for IsMapOnSurface, 90 License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient MumberOfFacets for IsManiplex, 62 NumberOfFlagOrbits for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfFRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44		
License, 2 ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPoset, 23 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient NumberOfFlagOrbits for IsManiplex, 62 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfFracets for IsManiplex, IsInt, 62 NumberOfIFacets for IsManiplex, IsInt, 62 NumberOfIFaceorbits for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44		•
ListIsP1Poset for IsList, 46 Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsManiplex, 62 NumberOfFlages for IsManiplex, IsInt, 28 NumberOfFlages for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 28 NumberOfVertices for IsManiplex, 62		
for IsManiplex, 31 for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient for IsManiplex, 31 NumberOfIFaceo NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsManiplex, 62		•
Loft for IsMapOnSurface, 94 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 43 MaxVertexFaithfulQuotient for IsManiplex, 31 NumberOfIFace0 NumberOfIFaces for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 28 Opp for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44	for IsList, 46	•
Maniplex for IsManiplex, IsInt, 28 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsManiplex, IsInt, 62 NumberOfIraces for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44		* '
Maniplex for IsManiplex, IsInt, 28 Maniplex for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsManiplex, IsInt, 28 NumberOfIFaces for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsManiplex, 62	for IsMapOnSurface, 94	
for IsEdgeLabeledGraph, 24 for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPermGroup, 22 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsPoset, 44 for IsManiplex, IsInt, 62 NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44	-	-
for IsFunction, IsList, 23 for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient NumberOfRidges for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 Opp for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44	-	
for IsPermGroup, 22 for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsPoset, 44 for IsManiplex, 63 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44 OrientableCover	-	_
for IsPoset, 23 for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 NumberOfVertexOrbits for IsManiplex, 28 NumberOfVertices for IsManiplex, 62 Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44		_
for IsReflexibleManiplex, IsGroup, 23 ManiplexFromDatabaseString for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsPoset, 44 OrientableCover	-	-
ManiplexFromDatabaseString for IsString, 82 for IsManiplex, 62 MaxFace for IsPoset, 51 Opp for IsMapOnSurface, 87 MaximalChains for IsPoset, 43 OrderingFunction for IsPoset, 44 MaxVertexFaithfulQuotient OrientableCover		
for IsString, 82 MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient for IsPoset, 44 OrientableCover		•
MaxFace for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44	-	
for IsPoset, 51 MaximalChains for IsPoset, 43 MaxVertexFaithfulQuotient Opp for IsMapOnSurface, 87 OrderingFunction for IsPoset, 44		for IsManiplex, 62
MaximalChains for IsMapOnSurface, 87 for IsPoset, 43 MaxVertexFaithfulQuotient for IsPoset, 44 OrientableCover		Opp
for IsPoset, 43 MaxVertexFaithfulQuotient OrderingFunction for IsPoset, 44 OrientableCover		
MaxVertexFaithfulQuotient for IsPoset, 44		_
Maxver text at this diquotient		_
for IsManiplex, 34		•
· · · · · · · · · · · · · · · · · · ·	for IsManiplex, 34	2_23000200000

for IsManiplex, 33	PosetIsomorphism
Ortho	for IsPoset, IsPoset, 48
for IsMapOnSurface, 92	PRGraph
	for IsGroup, 76
PairCompareAtomsList	Prism
for IsList,IsList, 42	for IsInt, 60
PairCompareFlagsList	for IsManiplex, 60
for IsList,IsList, 42	Propeller
ParseRotGpRels, 98	for IsMapOnSurface, 93
ParseStringCRels, 98	Pseudorhombicuboctahedron, 20
PartiallyCleave	PseudoSchlafliSymbol
for IsPoset,IsInt, 43	for IsManiplex, 65
PartialOrder	Pyramid
for IsPoset, 45	for IsInt, 59
PermFromRange, 97	for IsManiplex, 59
Petrial	1 /
for IsManiplex, 59	Quinto
PetrieLength	for IsMapOnSurface, 94
for IsManiplex, 68	QuotientByLabel
PetrieRelation	for IsObject, IsList, IsList, 74
for IsInt, IsInt, 68	QuotientManiplex
Pgon	for IsReflexibleManiplex, IsString, 37
for IsInt, 12	${\tt QuotientManiplexByAutomorphismSubgroup}$
PosetElementFromAtomList	for IsManiplex, IsPermGroup, 38
for IsList, 52	QuotientSggi
PosetElementFromIndex	for IsGroup, IsList, 38
for IsObject, 52	QuotientSggiByNormalSubgroup
PosetElementFromListOfFlags	for IsGroup, IsGroup, 38
for IsList,IsPoset,IsInt, 51	
PosetElementWithOrder	RankedFaceListOfPoset
for IsObject, IsFunction, 51	for IsPoset, 48
PosetElementWithPartialOrder	RankInPoset
for IsObject, IsBinaryRelation, 52	for IsPosetElement,IsPoset, 53
PosetFromAtomicList	RankManiplex
for IsList, 41	for IsManiplex, 67
PosetFromConnectionGroup	RankPoset
for IsPermGroup, 40	for IsPoset, 44
PosetFromElements	RankPosetElements
for IsList,IsFunction, 41	for IsPoset, 50
PosetFromFaceListOfFlags	RanksInPosets
for IsList, 39	for IsPosetElement, 52
PosetFromManiplex	Reflection
for IsManiplex, 40	for IsManiplex, 91
PosetFromPartialOrder	ReflexibleManiplex
for IsBinaryRelation, 40	for IsGroup, 22
PosetFromSuccessorList	for IsList, 22
for IsList, 42	${\tt ReflexibleQuotientManiplex}$

for IsManiplex, IsList, 37	SmallRhombicosidodecahedron, 21
RegularToroidalPolyhedra36, 80	SmallRhombicuboctahedron, 20
RegularToroidalPolyhedra44, 80	SmallTwoOrbit3Maniplexes, 82
RotaryManiplex	Snub
for IsGroup, 25	for IsMapOnSurface, 88
for IsList, 25	SnubCube, 20
for IsList, IsList, 25	SnubDodecahedron, 21
RotationGroup	SRP, 82
for IsManiplex, 7	Stake
RotationGroupFpGroup	for IsMapOnSurface, 94
for IsManiplex, 7	Subdivide
Tot Isriampion,	for IsMapOnSurface, 93
SatisfiesWeakPathIntersectionProperty	Subdivision1
for IsManiplex, 35	for IsMapOnSurface, 89
SchlafliSymbol	Subdivision2
for IsManiplex, 65	for IsMapOnSurface, 89
Section	SymmetryTypeGraph
for IsFace, IsFace, IsPoset, 43	for IsManiplex, 31
for IsManiplex, IsInt, IsInt, 63	Tot Isiviampiex, 31
for IsManiplex, IsInt, IsInt, IsInt, 63	TightOrientablyRegularPolytopesOfType
Sections	for IsList, 17
for IsManiplex, IsInt, IsInt, 63	Tomotope, 17
SemiEdges	TopologicalProduct
for IsEdgeLabeledGraph, 77	for IsManiplex, IsManiplex, 61
Sggi	for IsPoset, IsPoset, 55
for IsList, IsList, 9	ToroidalMap44, 17
SggiElement	TranslatePerm, 97
for IsGroup, IsString, 10	TrivialExtension
SggiFamily	for IsManiplex, 57
for IsGroup, IsList, 10	TruncatedCube, 19
Simple	TruncatedDodecahedron, 21
for IsEdgeLabeledGraph, 76	TruncatedIcosahedron, 20
Simplex	TruncatedOctahedron, 19
for IsInt, 13	TruncatedTetrahedron, 19
Size	Truncation
for IsManiplex, 67	for IsMapOnSurface, 88
Skeleton	101 Isiviaponoarrace, 00
for IsManiplex, 73	UniversalExtension
SmallChiral4Polytopes, 81	for IsManiplex, 56
SmallChiralPolyhedra, 81	for IsManiplex, IsInt, 56
SmallDegenerateRegular4Polytopes, 81	UniversalPolytope
SmallestReflexibleCover	for IsInt, 56
	UniversalRotationGroup
for IsManiplex, 37	for IsInt, 25
SmallReflexible3Maniplexes, 82	for IsList, 25
SmallRegular4Polytopes, 81	UniversalSggi
SmallRegularPolyhedra, 80	for IsInt, 8

```
for IsList, 8
{\tt UnlabeledFlagGraph}
    for IsGroup, 70
{\tt UnlabeledSimpleGraph}
    for IsEdgeLabeledGraph, 75
Vertex, 12
VertexFigure
    for IsManiplex, 64
    for IsManiplex, IsInt, 64
VertexFigures
    for IsManiplex, 64
ViewGraph
    for IsEdgeLabeledGraph, IsString, 77
    for IsObject, IsString, 78
Volute
    for IsMapOnSurface, 95
Whirl
    for IsMapOnSurface, 95
WrappedPosetOperation, 99
ZigzagLength
    for IsManiplex, IsInt, 68
ZigzagVector
    for IsManiplex, 68
Zip
    for IsMapOnSurface, 92
```