

Pod pokroviteljstvom predsjednika Republike Hrvatske prof. dr. sc. Ive Josipovića

SQL Server 2008 R2 kompresija

Josip Šaban, dipl. ing. rač. Tonči Sviličić, dipl. ing. rač.

SPONZORI

SPONZOR KOMUNIKACIJSKIH TEHNOLOGIJA

Hrvatski Telekom

GLAVNI IT SPONZOR KONFERENCIJE

SPONZOR AUDIO-VIZUALNIH TEHNOLOGIJA

SPONZOR SISTEMSKIH INTEGRACIJA

hTC

GLAVNI SPONZOR

SPONZOR TEHNOLOGIJA ZA OBRADU SLIKA I DOKUMENATA

SPONZOR

STARTNI SPONZOR

ORGANIZACIJSKI PARTNER MICROSOFT WINDAYS11 KONFERENCIJE

CROATIAN **EMPLOYERS**

WinDays **technology**PROSTORI IDEJA.

Sadržaj predavanja

- Što je kompresija podataka u SQL Serveru
- Kako se upotrebljava
- Vrste kompresije podataka
- Kada koristiti kompresiju
- Sve ostalo...

Preduvjeti

- Poznavanja koncepata kompresije podataka
- Poznavanje rada SQL Server-a

Level 100

Zašto kompresija

- Problem današnjih servera su I/O performanse
 - Osobito ako govorimo o produkcijskim serverima sa tisućama transkacija u sekundi
- Smanjivanjem veličine podataka smanjuje se I/O pritisak ali se povećavaju zahtjevi na CPU
- Korištenje kompresije podataka u SQL Serveru je jednostavno
 - Ali treba znati kako i gdje ju koristiti

Zašto kompresija

- David DeWitt keynote na PASS Summit-u:
 - Od 1985 CPU x 1000 brži
 - Od 1985 Diskovi x 65 (!) brži
 - Veliko povećanje kapaciteta diskova ali propusnost i seek time se nisu toliko povećali što je rezultiralo 150x (relativno) sporijim diskovima

Osnovni zahtjevi

- Moraju biti zadovoljeni osnovni uvjeti
 - Ne smije postojati mogućnost gubitka podataka
 - Mora biti u potpunosti transparentna ne smije zahtijevati nikakve promjene postojećih aplikacija
- Komprimirati se mogu
 - Cijele tablice koje su spremljene kao stog ili clustered index
 - Cijeli non-clustered indeks

Osnovni zahtjevi

- Cijeli indeksirani view
- Za particionirane tablice i indekse, kompresija se može konfigurirati za svaku particiju
 - Svaka particija objekta može imati svoju postavku kompresije

Ograničenja

- Komprimirati se ne mogu
 - Stogovi sa sparse kolonama
 - File stream podaci ili LOB podaci
 - Tablice sa redovima koji potencijalno prelaze
 8.060 byte-ova i koriste row overflow
- Kompresija ne zaobilazi ograničenje limita veličine reda
- Ostalo:
 - http://msdn.microsoft.com/en- us/library/cc280449.aspx

Level 200

Dobre i loše strane kompresije

- Potencijalni problemi:
 - Kompresija podataka je dostupna samo u Datacenter/Enterprise verziji baze
 - Kompresija koristi CPU treba osigurati dovoljno dostupnih CPU mogućnosti da ne dođe do usporenja cijelog sustava
 - Ne komprimiraju se jednako sve tablice i indeksi treba testirati da se vidi da li korištenje kompresije donosi objektivne dobiti za sustav

Dobre i loše strane kompresije

- Dobiti kompresije (ovisno o podacima):
 - Značajno smanjuje I/O zahtjeve baze sa puno aktivnih transakcija
 - Smanjuje memorijski zapis podataka i (vjerojatno) poboljšava ukupne performanse
 - Više redova na stranici znači da su brži skenovi podataka i COUNT(*) operacije
 - Snapshoti baze su manji i efikasniji
 - Komprimirani podaci znače da je skraćeno vrijeme backup i restore operacija

Row-level

- Nije stvarna kompresija već se smanjenje prostora postiže korištenjem efikasnijeg načina spremanja podataka za podatke fiskne dužine
 - Smanjuje količinu metapodataka koji su potrebni za jedan red podataka
 - Sprema numeričke podatke fiksne dužine kao da su varijabilne
 - Koristi onoliko byte-ova koliko je potrebno da spremi stvarna vrijednost
 - Sprema CHAR tipove podatka kao varijabilne

- Slabije komprimira podatke od page-level kompresije ali i zahtijeva manje CPU-a
- Ako su tablica ili indeks particionirani onda može komprimirati pojedinu particiju
- Korisnik baze i dalje vidi kolone fiksne duzine, ali storage engine u stvari zapisuje podatke kao da su kolone varijabilne dužine

- Page kompresija
 - Automatski uključuje row kompresiju i dodaje prefiks i onda dictionary kompresiju
 - Page kompresija se primjenjuje samo kada je stranica puna i kada SQL Server odluči da će uštedjeti značajnu količinu prostora
 - Prefiks kompresija uključuje slijedeće korake za svaku kolonu
 - Storage engine ispituje sve vrijednosti i izabire najčešći prefiks vrijednosti podataka u koloni

- Najduža stvarna vrijednost koja počinje s tim prefiksom se sprema u CI ("compression information structure")
- Ako je prefiks prisutan na početku podatka, ubacuje se broj koji pokazuje koliko prefiks ima znakova, dok se ostatak podatkovnog niza ne mijenja
 - Ukoliko zapis na početku nema prefiks onda se u komprimirano zapisu zapisuje "0" što povećava dužinu zapisa
- Prefiks kompresija radi na nivou bitova, stoga jednako radi i za stringove i za brojeve

- Nakon što završi prefiks kompresija, nastupa dictionary kompresija – svaka vrijednost se skenira i sve zajedničke vrijednosti se zamjenjuju sa tokenom koji je spremljen u CI dijelu stranice
 - Dictionary kompresija se događa na svim kolonama na nivou stranice

Pre-fix Dictionary

Page Header				
a aal 4 tb	a aa 4b	abcd		
aaabcc		abcd		
aa 3000	aaaacc	dada		

Transparentnost procesa

- Cijeli postupak kompresije se događa na nivou storage engine-a i potpuno je transparentan za vanjske procese
 - To znači da su podaci komprimirani na disku i kao takvi učitani u memoriju
 - Storage engine dekomprimira podatke na njihovom putu od storage engine-a do analizatora upita, ali u buffer se i dalje učitava u komprimiranom obliku
 - Dekompresija se događa u trenutku kad bilo koji drugi sustav zahtijeva podatke iz buffera

Level 300

Transparentnost procesa

- Cijeli postupak kompresije se događa na nivou storage engine-a i potpuno je transparentan za vanjske procese
 - To znači da su podaci komprimirani na disku i kao takvi učitani u memoriju
 - Storage engine dekomprimira podatke na njihovom putu od storage engine-a do analizatora upita, ali u buffer se i dalje učitava u komprimiranom obliku
 - Dekompresija se događa u trenutku kad bilo koji drugi sustav zahtijeva podatke iz buffera

- Ako je objekt kompriniran bilo row bilo page metodom (koja uključuje row metodu) tada je row kompresija uvijek uključena za svaku stranicu
- · Za razliku od toga, kod page kompresije...
 - Storage engine uključuje page kompresiju stranicu po stranicu ukoliko procijeni dobitak za tu stranicu
 - Ukoliko je stranica popunjena a zelimo dodati još jedan red zapisa u nju, tada storage engine testira stranicu za kompresiju

- Ukoliko se može komprimirati u dovoljnoj mjeri da primi novi red (ili redove) tada se uključuje page kompresija
 - Algoritam provjerava da li nova komprimirana stranica može sadržavati najmanje 5 dodatnih redova ili 25% više redova nego trenutna stranica
 - Ako nijedan od ovih kriterija nije ispunjen, komprimirana verzija stranice se odbacuje

- Svaki novi red koji se ubacuje u stranicu se ubacuje komprimiran
 - Ali...to ne pokreće ponovnu analizu CI-a, prefiksa ili dictionary tokena
 - Ponovno pokretanje kompletne analize je moguće ukoliko se dogodi update velikog broja zapisa, a točno kada ovisi o ugrađenom algoritmu koji ovisi...
 - O broju update-a stranice
 - O broju redova u stranici
 - O prosječnoj duljini stranice
 - O količini ušteđenog prostora

- Stogovi su rekompremirani ili kod indeks rebuilda ili kod bulk load operacije
 - Kod indeks rebuilda objekta sa page kompresijom, stranica se smatra puna u ovisnosti o postavljenoj fill factor postavci, tako da je i dalje garantiran slobodan prostor

- U slučaju page split-a, obje stranice naslijeđuju informacije o kompresiji stranice (status, prefikse i tokene) od stare stranice
 - INSERT, UPDATE i DELETE operacije se normalno zapisuju u transakcijski log u row komprimiranom načinu, ali ne u page komprimiranom
 - Iznimka je kada je uključeno logiranje page splitova kako je to fizička operacija, zapisuju se samo vrijednosti kompresije

Procjena isplativosti kompresije

- Da bi znali da li nam se uopće isplati korisiti kompresiju trebamo imati neku procjenu koliko je podatke moguće komprimirati
 - "sp_estimate_data_compression_savings"
 - Procedura radi tako da uzme uzorak od 5% podataka za komprimiranje (algoritam uzima svaku 20-u stranicu, nije slučajni uzorak), kopira ih u "tempDb" bazu i tamo komprimira
 - Detalji njenog funkcioniranja prikazani u demo-u

Trenutne postavke

- "Table properties" i "Index Properties" daju read-only trenutnu situaciju
- Data Compression Wizard
 - Context menu → Storage → Manage Compression
 - On omogućava postavljanje vrste kompresije, analizu isplativosti i kreiranje skripte za kasnije pokretanje
 - Za trenutne postavke postavke nad svim objektima u bazi koristimo metapodatke iz sistemskih tablica (prikazano u demo-u)

DEMO

Level 400

Kako izabrati vrstu kompresije

- sp_estimate_data_compression_savings
- Pojednostavljeni kriteriji procjene:
 - Row kompresija je "jeftina", u prosjeku oko 10% povećanja CPU iskorištenja – koristiti primarno na OLTP sustavu
 - Page kompresija je "skuplja", ali bolje komprimira podatke – korisiti primarno na DWH-ovima
- Analizirati karakteristike rada (Profiler) radi odlučivanja o kandidatima za page kompresiju

- Stvaramo 2 kopije "Employees tablice
 - Bez kompresije i sa row kompresijom
 - Kod spremanja row kompresijom SQL
 Server drugačije tretira podatke manje od 8
 byte-ova ("kratke kolone") i veće od 8
 byte-ova ("duge kolone")
 - Zato imamo UPDATE koji "skraćuje" jednu kolonu tako da bude manja od 8 byte-ova

- Kada se uključi kompresija redovi se počnu spremati način od standardnog (takozvani "Column descriptor (CD) format")
 - Svaka kolona sada sadržava metapodatke o sadržanim podacima u redu
 - Generalna struktura CD zapisa broj bitova u svakoj regiji ovisi o vrsti podataka

Header CD Region	Short Data	Long Data	Special
	Region	Region	Information

- Header

 Statusni byte – bitovi označavaju da li koristimo kompresiju, versioning, da li sadržava "duge podatke",

. . .

CD regija

- Sastoji se od dva dijela
 - Prvi dio je 1 ili 2 byte-a i daje nam broj "kratkih" kolona
 - Nakon toga se nalazi CD polje koje sadrži članove od 4 bita za opis dužine kolone – koliko su dugačke te posebni status ako je kolona "dugačka"

Header	CD Region	Short Data Region	Long Data Region	Special Information
--------	-----------	----------------------	---------------------	------------------------

- Short data region
 - Podaci o veličini se nalaze u CD regiji, ali ako ima 100+ kolona moglo bi biti skupo dohvaćati "udaljene kolone"
 - Za minimizaciju troška kolone su grupirane u clustere od 30 kolona
 - Na početku se nalazi "short data cluster array" čiji je svaki član single byte integer i pokazuje sumu veličina svih podataka u prošlom clusteru – efektivno postaje pointer na prvu kolonu u clusteru

Header	CD Region	Short Data Region	Long Data Region	Special Information
--------	-----------	----------------------	---------------------	------------------------

- Long data region
 - Svi podaci duži od 8 byte-ova
 - To uključuje složene kolone koje ne sadrže podatke već pokazuju na podatke spremljene negdje drugdje (LOB, row overflow data pointers, ...)
 - U ovom slučaju potrebna je ofsset vrijednost koja omogućuje SQL Serveru lociranje svake "duge" vrijednosti
 - Sastoji se od tri dijela: offset polja, cluster polja za "duge" kolone i "dugih" podataka

Header	CD Region	Short Data Region	Long Data Region	Special Information
--------	-----------	----------------------	---------------------	------------------------

Special information

- Nalaze se tri proizvoljne informacije (prisustvo tih podataka označeno je sa bitovima u prvom byte-u zapisa)
 - Forwarding pointer
 - » Kada stog sadrži forwarding pointer koji pokazuje na novu lokaciju gdje je spremljen originalni red – sadržava 3 byte-a headera i 8 byte-a dug ROW_ID
 - Back pointer
 - » Kada je prisutan forwarding te pokazuje na originalni red, sadrži 8 byte-ova dugačak ROW ID
 - Versioning info
 - » Kada je red modficiran u Snapshot izolaciji, SQL Server dodaje 14 byte-a versioning informacija

Header CD Region	Short Data	Long Data	Special
	Region	Region	Information

Zaključak

- Page kompresija donosi najviše dobiti za sustave koji imaju puno I/O pristupa i sa tablicama koji se jednom zapišu i često čitaju
 - Skladišta podataka i izvještavanje
- Za OLTP sustave preporuka je uključivanje samo row kompresije za izbjegavanje ponovne izgradnje CI zapisa
 - U tom slučaju dodatna CPU potrošnja je minimalna

Zaključak

- U storage engine-u usporedbe se mogu vršiti na komprimiranim podacima jer interne konverzije mogu pretvarati tipove podatka u svoj komprimirani oblik prije usporedbe sa komprimiranim podacima
- Osim toga, samo kolone koje zahtijeva relacijski engine se moraju dekomprimirati u odnosu na dekompresiju cijelog reda

ISPUNITE WinDays 11 **UPITNIK** i osvojite nagrade!

WinDays technology PROSTORI IDEJA

Pod pokroviteljstvom predsjednika Republike Hrvatske prof. dr. sc. Ive Josipovića

Hvala!