1) x) How marry symbols are used in the decimal number system? a) 2 b) 8 8 10 d) 16 What does (10)16 represent in decimal number AM - () 10 a) 10 b) OA & 168 d) 15 system? $= 1 \times 16^{1} + 0 \times 16^{0}$ = 16 How many bits have to be grouped together ANS -> C) 16 to convert binary number to its corresponding 3)

a) 2 /b) 3 c) 4 d) 5 Ans > 0) 3

octal number?

P. T. O

4) The 21% complement representation of -17is \rightarrow a) 0110 by 01111 c) 11110

d) 10001

2's complement 0 0 1 1 1 1

ANS -> b) 01111

3 which one of the following circuits is 5) NOT equivalent to a 2 input x NOR gate ? ANS -> (d) A function of boolian variables X, y and

Z is expressed in terms of the min-terms of F(X)Y, E) = 2m(1,2,5,6)8). What the Product of sums given below is equal to the

function of F(X,Y,Z) autout

X1010			1 Outh
TX	y	王	(M)
-	0	0	0
0		1	1
0	0	1	2
0	1	0	0
0	1	1	
	٥	0	0
		1	1 1
1	0		11
11	1	0	1
	1	1	11
1	ALL TO		

The product of sum is (POS) (X+Y+Z). (X+y+Z) (エナイナズ)

The canonical POS form of F(X)Y) is $M = (x+y+z) \cdot (x+y+z) \cdot (x+y+z)$ = (y+z+xx) (x+y+z) = (y+7) (x+y+7) The minimal POS form of F(x, y, z) is M = (Y+7) (X+9+2) The mintern expansion of & (P, a, R) 7) = PQ +QR +PR is b) mo+m,+m3+m5 a) m2 + my + m6 + m7 e) mo+m1+m6+m7 d) mo+m1+m3+m5 e) m2+m3+m4+m5 & (P,Q,R) = PQ +QR+PR = PA(R+R) + QR (P+P) + PR (Q+Q) = PAR +PAR + ARP + ARP + PRA = PAR+PAR+ARP +PRA So the min term expression of & (P,Q,R) is m7 + m6 + m2 + m3

Represent each of the following values as a 6 bit signed binary number in one! complement and 218 complement forms.

a) 28 b) -21 c) -5 d) -13

a) $\frac{28}{2 | 28}$ (28) $_{10} = (011100)_{2}$ $\frac{2| 28}{2 | 14} \rightarrow 0$ (28) $_{10} = (011100)_{2}$ $\frac{2| 77}{17} \rightarrow 0$ 1's complement of 28 is $\frac{2| 77}{17} \rightarrow 1$ = $(100011)_{2}$ of 28 is $\frac{2}{17} \rightarrow 1$ = $(100100)_{2}$

b) $\frac{-21}{2|21}$ (-21)₁₀ (110101) 2 $\frac{2|21}{2|10}$ (-21)₁₀ (110101) 2 $\frac{2|50}{2|5}$ 0 2's complement of -21 is $\frac{2|50}{2|5}$ = (001010) 2 $\frac{2|50}{10}$ = (001011) 2

c) $\frac{-5}{2\sqrt{5}}$ (-5)₁₀ = (000101)₂ $\frac{1}{2\sqrt{5}}$ (-5)₁₀ = (000101)₂ $\frac{1}{2\sqrt{5}}$ (omplement of -5 is -) = (111011)₂ = (111011)₂

11)
$$\frac{2 \cdot 13}{2 \cdot 3 \rightarrow 0} = \frac{1}{3} \cdot \frac{1}{3}$$

- d) (4567)8 (100 101 110 111) 2
- e) (45.65)8 (100101.110101)2
- 8) (145.23) 8 (001100101.010011)2
- 8) (ADF5)16 (1010 1101 1111 0 1201) 2
- h) (AD, F3)16 (1010 1101.11110011)2
- (12. DA) 16 (0001 0010 . 1101 1010) 2
- 10) of convert the following octal numbers to binary and hexa decimal numbers?
- a) (7643) = (111110100011)2=(FA3)16

b)
$$(2643)_8 = (01010100011)_2 = (5A3)_{16}$$

d)
$$(3245)_8 = (201100)$$

 $(211910100101)_2 = (6A5)_{16}$

$$(7512)_{8} = (111100)$$

$$(7512)_{8} = (F4A)_{16}$$

a)
$$(78AD)_{16} = (0111100010101101)_2$$

= $(74255)_8$

b)
$$(DA643)_{16} = (110110100110010000011)_2$$

= $(3323103)_8$

c)
$$(EDC8)_{16} = (1110110111001000)2$$

= $(166710)8$

d)
$$(3245)16 = (0011001001000101)_2$$

= $(31105)_8$

e)
$$(68912)_{16} = (011010001000100010010)_{2}$$

= $(1504422)_{8}$

(1011000101010)

8) a)
$$(10110111)_2$$

= $1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2$
= $128 + 132 + 16 + 4 + 2 + 1 \times 2^4 + 1 \times 2^6$
= $(183)_{10}$
b) $(5.674)_{10} = (7)_{10}$

d)
$$(10011.00)^2$$

d) $(2453)_8 = (010100101011)_2$

e)
$$(111100010)_2 = (102)_{16}$$

8)
$$(1010101.001)_2 = (?)10$$

 $(010101)_2 = (2?)10$
 $(1010101)_2 = (2?)10$
 $(1010101.001)_2 = (2.125)_{10}$
 $(1010101.001)_2 = (2.125)_{10}$
 $(1010101.001)_2 = (2.125)_{10}$
 $(1010101.001)_2 = (2.125)_{10}$
 $(1010101.001)_2 = (2.125)_{10}$
 $(11101.101)_2 = (?)_{10}$
 $(11101.101)_2 = (?)_{10}$
 $(11101.101)_2 = (?)_{10}$
 $(11101.101)_2 = (?)_{10}$
 $(11101.101)_2 = (?)_{10}$
 $(11101.101)_2 = (?)_{10}$
 $(11101.101)_2 = (?)_2$
 $(10000000011000110)_2$