## Feature Selection with PCA

Yasaman Amannejad,
Department of Mathematics and Computing,
Mount Royal University

## Outline

- What is feature selection?
- Feature selection methods in python
- Principle Components Analysis (PCA)
- Feature selection with PCA
- Time analysis of PCA

### **Feature Selection**

 Feature selection is a process where you automatically select those features in your data that contribute most to the prediction variable or output in which you are interested.

- Three benefits of performing feature selection before modeling:
  - Reduces Overfitting: Less redundant data means less opportunity to make decisions based on noise.
  - Improves Accuracy: Less misleading data means modeling accuracy improves.
  - Reduces Training Time: Less data means that algorithms train faster.

# Feature Selection Techniques

### **Automatic Feature Selection**

- 1. Removing features with low variance
- 2. Univariant statistics
  - SelectKBest
  - SelectPercentile
- 3. Recursive feature elimination
- 4. Model-based selection

Scikit Library: sklearn.feature\_selection

## Removing features with low variance

• VarianceThreshold is a simple baseline approach to feature selection. It removes all features whose variance doesn't meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value in all samples.

from sklearn.feature\_selection import VarianceThreshold

Let's see the example

### **Univariant Statistics**

- Determine if statistically significant relationship between each feature and the output.
- Each feature is studied in isolation.

- Univariant statistics
  - SelectKBest: Select features according to the k highest scores.
  - SelectPercentile: Select features according to a percentile of the highest scores.

### Recursive Feature Elimination

#### sklearn.feature\_selection.RFE

The goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features.

#### Recursive feature elimination with cross-validation

sklearn.feature\_selection.RFECV

 Feature ranking with recursive feature elimination and cross-validated selection of the best number of features.

## Model-based Feature Selection

Meta-transformer for selecting features based on importance weights.

- RFE removes least significant features over iterations.
- SelectFromModel is a little less robust as it just removes less important features based on a threshold given as a parameter. There is no iteration involved.

## Reminder: Standardize the Data

- Feature scaling is an important preprocessing step for many machine learning algorithms.
- Rescale the features such to have the properties of a standard normal distribution with a mean of zero and a standard deviation of one.
- The standard score of a sample x is calculated as:

$$z = \frac{(x - u)}{z}$$

u: mean of the training data

z: standard deviation of the training sample

# PCA

## Principle Component Analysis (PCA)

• PCA is a statistical method for dimensionality reduction and feature extraction that transforms the data from a d-dimensional space into a new coordinate system of dimension p, where p<= d (the worst case would be to have p = d).

## PCA: Goal

• Goal: to preserve as much of the variance in the original data as possible in the new coordinate systems.



## **Explained Variance**

• The amount of variance explained by each of the selected components.

## **PCA** for Visualization



## **PCA for Speeding**

PCA with Regression

| Variance Retained | Number of Components | Time (mSec) | Accuracy |
|-------------------|----------------------|-------------|----------|
| 0.99              | 54                   | 3731        | 0.968    |
| 0.95              | 40                   | 3,692       | 0.967    |
| 0.90              | 31                   | 3,571       | 0.96     |
| 0.85              | 25                   | 2,372       | 0.94     |



Yasaman Amannejad, PhD Assistant Professor, Mount Royal University

Email: yamannejad@mtroyal.ca

Website: mru.ca/amannejad