- 3.13 1) Soient f et g des fonctions paires et $\alpha \in \mathbb{R}$.
 - (a) (f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)La fonction f+g est ainsi paire.
 - (b) $(\alpha \cdot f)(-x) = \alpha f(-x) = \alpha f(x) = (\alpha \cdot f)(x)$ La fonction $\alpha \cdot f$ est donc paire.
 - 2) Soient f et g des fonctions impaires et $\alpha \in \mathbb{R}$.
 - (a) (f+g)(-x) = f(-x) + g(-x) = -f(x) g(x) = -(f+g)(x)La fonction f+g est par conséquent impaire.
 - (b) $(\alpha \cdot f)(-x) = \alpha f(-x) = \alpha (-f(x)) = -\alpha f(x) = -(\alpha \cdot f)(x)$ La fonction $\alpha \cdot f$ est aussi impaire.
 - 3) Soient f et g deux fonctions continues et $\alpha \in \mathbb{R}$. La fonction f+g est également une fonction continue, de même que la fonction αf , comme on l'a montré en deuxième année au chapitre 2 d'analyse à la page 2.2.
 - 4) Soient f et g deux fonctions dérivables et $\alpha \in \mathbb{R}$.
 - (a) La fonction f+g est dérivable : sa dérivée vaut f'+g'. Ce résultat a été démontré en deuxième année à l'exercice 5.6 d'analyse.
 - (b) La fonction $\alpha \cdot f$ est dérivable : sa dérivée vaut $\alpha \cdot f'$. Ce résultat a été établi en deuxième année à l'exercice 5.5 d'analyse.