Universidade Federal do Paraná Curso de Verão UFPR 2019

Curso: Introdução à Análise na Reta

Professores: Bruno de Lessa e Ricardo Paleari

4ª Lista de Exercícios - 28/01

- 1. Mostre que a sequência de Fibonacci não é limitada.
- 2. Considere a sequência dos números triangulares, definida por

$$t_n = \frac{n \cdot (n+1)}{2}, \ \forall n \in \mathbb{N}.$$

Verifique que $\{t_n\}_{n\in\mathbb{N}}$ não é limitada.

- 3. Prove que a soma e o produto de sequências limitadas ainda são limitadas. Encontre um contraexemplo mostrando que o mesmo não vale para o quociente.
- 4. Mostre que a sequência $b_n = (-1)^n$ não converge.
- 5. Seja $\{x_n\}_{n\in\mathbb{N}}$ sequência tal que:
 - $x_{2n} \to L$.
 - $x_{2n-1} \to L$.

Mostre que $x_n \to L$.

Estenda o resultado acima, da seguinte maneira: mostre que se X_1, X_2, \dots, X_k são subconjuntos infinitos, disjuntos dois a dois, tais que

$$\bigcup_{i=1}^{k} X_i = \mathbb{N}, \ \{x_j\}_{j \in X_j} \to L, \ j = 1, 2, \dots, k$$

então $\{x_n\}_{n\in\mathbb{N}}$ converge para L.

- 6. Prove que os seguintes limites são verdadeiros:
 - Para todo k > 0, $\lim \frac{1}{n^k} = 0$.

- $\lim \frac{n!}{n^n} = 0.$
- Para qualquer $k \in \mathbb{N}$, $\lim \sqrt[k]{n} = 1$.
- $\lim \sqrt[n]{n} = 1$.
- 7. Para cada $x \in \mathbb{R}$, verifique que

$$\lim \frac{x^n}{n!} = 0.$$

Dica: Mostre primeiramente que isto vale para o caso em que x = m, com $m \in \mathbb{N}$.

8. Prove que a sequência $a_n = \sqrt[n]{n!}$ é ilimitada.

Dica: Utilize o exercício anterior.

- 9. Definimos $\{z_n\}_{n\in\mathbb{N}}$ da seguinte maneira:
 - $z_1 = 1$.
 - $z_{n+1} = 1 + \sqrt{z_n}, \ \forall n \in \mathbb{N}.$

Mostre que $\{z_n\}_{n\in\mathbb{N}}$ é convergente e encontre seu limite.

Dica: Prove por indução que a sequência é crescente e limitada. Use então própria fórmula de recorrência para obter o valor do limite

10. Seja $\{x_n\}_{n\in\mathbb{N}}$ uma sequência qualquer. Diremos que a é **ponto de aderência** de $\{x_n\}_{n\in\mathbb{N}}$ se existir subsequência $\{x_{n_k}\}_{k\in\mathbb{N}}$ de modo que

$$x_{n_k} \to a$$
.

Prove as seguintes sentenças:

- Nem toda sequência possui ponto de aderência.
- Toda sequência limitada possui ponto de aderência.
- Uma sequência limitada converge se, e somente se, possui um único ponto de aderência.
- Dado $k \in \mathbb{N}$, existe uma sequência limitada com exatamente k pontos de aderência.
- Existe sequência limitada, com imagem em [0, 1], com infinitos pontos de aderência.