Optimized Pre-Processing for Discrimination Prevention

Flavio P. Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, Kush R. Varshney

Presented by: Shorya Consul Mónica Ribero

Introduction

- Motivated to deal with disparate impact
 - Focus on preprocessing by modifying training data.
- Notion of fairness addressed: group fairness (similar outcomes for all groups) and individual fairness, (similar individuals treated similarly irrespective of group)
- Additionally, address discrimination control/utility of data trade-off.

Formulation

ullet Training data: $\{(D_i,X_i,Y_i)\}_{i=1}^n \sim p_{_{D,X,Y}}$

• Objective: Find $p_{\hat{X},\hat{Y}|D,X,Y}$ to obtain $\{(D_i,\hat{X}_i,\hat{Y}_i)\}_{i=1}^n$ that satisfies discrimination and distortion control, but maintains model and data utility.

I. Discrimination Control

- ullet Limit dependence of $\{\hat{X_i},\hat{Y_i}\}_{I=1}^n$ on protected variables D
- Approach:

E.g. J(p,q) = |p/q - 1|

a. Make $p_{\hat{Y}|D}$ close to a target distribution p_{Y_T} : $J(p_{\hat{Y}|D}(y|d),p_{Y_T}(y)) \leq \epsilon_{y,d} \quad orall d,y$

 $O(|\mathcal{D}|)$ constraints

b. Make the conditional probability for any two values of $\,D\,$:

$$J(p_{\hat{Y}|D}(y|d_1),p_{\hat{Y}|D}(y|d_1)) \leq \epsilon_{y,d_1,d_2} \quad \forall d_1,d_2,y$$

II. Distortion Control

Avoid large changes (e.g. low credit score mapped to very high credit score)

$$\mathbb{E}[\delta((x,y),(\hat{X},\hat{Y}))|d,x,y] \leq c_{d,x,y} \quad \forall d,x,y$$

Distortion metric:

E.g. Binary-valued: Desirables and non-desirable mappings Conditional expectation to guarantee low distortion even for individuals with low probability.

III. Utility Preservation

 Model learned under new dataset is not too different from one learned from original dataset.

$$\Delta(p_{_{\hat{X},\hat{Y}}},p_{_{X,Y}})$$

Dissimilarity metric

E.g. total variation distance:

$$\Delta(p,q) = rac{1}{2} \sum_x |p_X(x) - q_X(x)|$$

Optimization formulation

$$\begin{aligned} & \min_{p_{\hat{X},\hat{Y}|X,Y,Z}} \Delta(p_{\hat{X},\hat{Y}},p_{X,Y}) \\ & s.t. \quad J(p_{\hat{Y}|D}(y|d),p_{Y_T}(y)) \leq \epsilon_{y,d} \end{aligned} \quad \begin{aligned} & \text{Discrimination} \\ & \mathbb{E}[\delta((x,y),(\hat{X},\hat{Y}))|d,x,y] \leq c_{d,x,y} \quad \forall d,x,y \\ & p_{\hat{X},\hat{Y}|X,Y,Z} \quad \text{is a valid distribution} \end{aligned}$$

Generalizability of Discrimination Control

Assumption: Model Q. Do the same guarantees apply to unseen/test data? approximates conditional distribution well. If model allowed to depend on D, $p_{\widetilde{Y}|D}(\widetilde{y}|d) = \sum_{\hat{x}} p_{\widetilde{Y}|\hat{X},D}(\widetilde{y}|\hat{x},d) p_{\hat{X}|D}(\hat{x}|d) \approx \sum_{\hat{x}} p_{\hat{Y}|\hat{X},D}(\widetilde{y}|\hat{x},d) p_{\hat{X}|D}(\hat{x}|d) = p_{\hat{Y}|D}(\widetilde{y}|d).$ Mapping of Y Output of model

Generalizability of Discrimination Control

If model cannot depend on D,

$$p_{\widetilde{Y}|D}(\widetilde{y}|d) \approx \sum_{\widehat{x}} p_{\widehat{Y}|\widehat{X}}(\widetilde{y}|\widehat{x}) p_{\widehat{X}|D}(\widehat{x}|d),$$

- Not generally equal to $p_{\hat{Y}|D}(y|d)$
 - More difficult to control
- Guarantees can be preserved with Markov assumption but problem loses convexity

$$p_{\hat{Y}|\hat{X},D} = p_{\hat{Y}|\hat{X}}$$

Also shown to be robust to mismatch in distributions of training and test data

Learning Fair Representations (Zemel, et al, 2013)

- Idea: Find randomized mapping to prototypes in input space
- Mapping hopes to "lose" information pertaining to membership to a protected group
- Also aims to achieve group and individual fairness

Metrics

- Second formulation of discrimination control with J(p,q) = |p/q 1|
- Discrimination:

$$\max_{d,d'\in\mathcal{D}} J(p_{\widetilde{Y}|D}(1|d), p_{\widetilde{Y}|D}(1|d'))$$

• Two levels of discrimination control, $\epsilon = \{0.05, 0.1\}$

$$J\left(p_{\hat{Y}|D}(y|d_1), p_{\hat{Y}|D}(y|d_2)\right) \le \epsilon_{y,d_1,d_2} \ \forall \ d_1, d_2 \in \mathcal{D}, y \in \{0,1\}.$$

AUC

Results - COMPAS

- X
 - Severity of charge
 - No. of prior crimes
 - Age category

- Y: If person reoffended
- D: Race

Example: Jump of more than one age category penalized by 10^4 in distortion

Results - COMPAS

Marginal outcome distributions before and after transformation

Table 2: Dependence of the outcome variable on the discrimination variable before and after the proposed transformation. F and M indicate Female and Male, and A-A, and C indicate African-American and Caucasian.

D	Before transformation		After transformation	
(gender, race)	$p_{Y D}(0 d)$	$p_{Y D}(1 d)$	$p_{\hat{Y} D}(0 d)$	$\left p_{\hat{Y} D}(1 d) \right $
F, A-A	0.607	0.393	0.607	0.393
F, C	0.633	0.367	0.633	0.367
M, A-A	0.407	0.593	0.596	0.404
M, C	0.570	0.430	0.596	0.404

Results - UCI Adult

- X
 - Age (in decades)
 - Education (in years)

- Y: Income (binary)
- D: Gender

Example: $\delta = 1$ if income decreases, age unchanged and education increases by up to a year

Conclusions

- Present pre-processing framework to mitigate disparate impact when training models
 - Strives for both group and individual fairness
- Objective formulated as a convex optimization problem
 - Solved to get mapping
- Results are not conclusive is the proposed approach better?