

UNIVERSIDADE FEDERAL DO MARANHÃO BACHARELADO INTERDISCIPLINAR EM CIÊNCIA E TECNOLOGIA EECP0009 - ARQUITETURA DE COMPUTADORES

ALEXSANDRO NOGUEIRA COSTA FILHO JEYSRAELLY ALMONE DA SILVA JOSE NUNES DE SOUSA NETO LETICIA BORGES ASSUNCAO SAMARA SANTOS VIEGAS

MANUAL DO USUÁRIO DE ESCALONAMENTO DE PROCESSOS

SÃO LUÍS - MA JANEIRO/2025

ALEXSANDRO NOGUEIRA COSTA FILHO (2022009300)

JEYSRAELLY ALMONE DA SILVA (20240064879)

JOSE NUNES DE SOUSA NETO (2022003263)

LETICIA BORGES ASSUNCAO (2022030028)

SAMARA SANTOS VIEGAS (2022042898)

MANUAL DO USUÁRIO DE ESCALONAMENTO DE PROCESSOS

Documento apresentado como requisito parcial de avaliação da disciplina Arquitetura de Computadores - Turma 01, no curso Bacharelado Interdisciplinar em Ciência e Tecnologia da Universidade Federal do Maranhão.

Orientador: Prof. Me. Luiz Henrique Neves Rodrigues.

SÃO LUÍS - MA JANEIRO/2025

SUMÁRIO

Manual do Usuário - Escalonador de Processos	4
1. Execução da Versão Python	4
Requisitos:	4
Como Executar:	4
2. Execução da Versão C	5
Requisitos:	5
Como Compilar e Executar:	5
3. Funcionalidades da Interface Gráfica	5
Adicionar Processos:	5
Remover Processos:	6
Escolher o Algoritmo de Escalonamento:	6
Visualização dos Resultados:	6
4. Dicas de Uso	7
5. Solução de Problemas	7

Manual do Usuário - Escalonador de Processos

Este manual explica como executar o programa "Escalonador de Processos" em suas versões Python e C, explorando a interface gráfica e as funcionalidades do sistema. O objetivo é permitir ao usuário adicionar processos, escolher diferentes algoritmos de escalonamento e visualizar os resultados graficamente.

1. Execução da Versão Python

Requisitos:

- 1. Python 3.9 ou superior
- 2. Bibliotecas adicionais:
 - tkinter (para a interface gráfica)
 - o matplotlib (para os gráficos)

Como Executar:

Instale o Python e as bibliotecas necessárias com o comando: pip install matplotlib

- 1.
- 2. Salve o código Python fornecido em um arquivo chamado escalonador.py.

Abra o terminal ou prompt de comando, navegue até o diretório onde o arquivo está salvo e execute:

python escalonador.py

- 3.
- 4. A interface gráfica abrirá automaticamente, permitindo o uso do programa.

Obs: Para execução da versão em Python apresentada em sala de aula, o usuário pode baixar o arquivo .rar contido no Drive/Github do projeto e rodar uma versão já executável em seu computador.

2. Execução da Versão C

Requisitos:

- 1. Compilador C:
 - o GCC (recomendado).
- 2. Bibliotecas para GUI:
 - o GTK ou equivalente, dependendo da implementação da interface gráfica.

Como Compilar e Executar:

1. Salve o código C em um arquivo chamado escalonador.c.

Compile o programa com o GCC, incluindo as flags necessárias para as bibliotecas de interface gráfica. Por exemplo, para GTK:

gcc escalonador.c -o escalonador 'pkg-config --cflags --libs gtk+-3.0'

2.

Execute o programa:

./escalonador

- 3.
- 4. A interface gráfica abrirá automaticamente.

3. Funcionalidades da Interface Gráfica

Adicionar Processos:

- 1. Insira os dados do processo nos campos correspondentes:
 - o PID: Identificador único do processo.
 - O Duração: Tempo total de execução do processo.
 - Chegada: Tempo de chegada do processo no sistema.
- 2. Clique em Adicionar Processo. O processo será listado na tabela de processos.

Remover Processos:

- 1. Selecione um processo na lista.
- 2. Clique em Remover Processo para excluí-lo.

Escolher o Algoritmo de Escalonamento:

- 1. Use o menu suspenso para selecionar um dos algoritmos:
 - FIFO (First In, First Out)
 - o SJF (Shortest Job First)
 - SRTN (Shortest Remaining Time Next)
- 2. Clique em Executar Escalonamento para processar os dados.

Visualização dos Resultados:

- 1. Tabela de Resultados:
 - A tabela exibe as seguintes informações para cada processo:
 - PID
 - Tempo de Duração
 - **■** Tempo de Chegada
 - **■** Tempo de Espera
 - Turnaround
 - Resposta
- 2. Gráfico de Gantt:
 - Após a execução de um algoritmo, um gráfico de Gantt será exibido para ilustrar o escalonamento.

4. Dicas de Uso

- Antes de iniciar, tenha clareza sobre o algoritmo desejado, pois cada um possui comportamento único.
- Insira valores válidos (inteiros) nos campos; entradas incorretas serão ignoradas.
- Salve os resultados ou capture a tela dos gráficos para documentação futura.

5. Solução de Problemas

- Erro ao Executar:
 - o Certifique-se de que todas as dependências estão instaladas.
 - Verifique se o arquivo está salvo corretamente e se o comando de execução foi digitado corretamente.
- Interface Não Abre (C):

Garanta que as bibliotecas de interface gráfica estejam instaladas. No caso de GTK: sudo apt-get install libgtk-3-dev

0

• Gráfico Não Aparece (Python):

Atualize a biblioteca matplotlib com:

pip install --upgrade matplotlib

0

Com essas instruções, você estará apto a explorar todas as funcionalidades do "Escalonador de Processos".