Islamic University of Technology

Department of Computer Science and Engineering (CSE)

Course Outline and Course Plan

Name of the Teacher	Syed Rifat Raiyan		Position	Lecturer		
Department	CSE		Programme	B.Sc. Engg. CSE		
Course Code	Math 4543		Course Title	Numerio	al Methods	
Academic Year	2023-2024		Semester	Winter		
Contact Hours	3.0		Credit Hours	3.0		
Textbooks and Reference books		ethods with to Numerical Methods rogramming for	Authors of the books	 Autar Kaw and Egwu K. Kalı Todd Young and Martin Mohlenkamp 		
Prerequisites (If any)		eometry and Differential ntegral Calculus and Diffe inear Algebra				
Google Classroom link	https://classro	oom.google.com/c/NzE	wMjQzNjA1NTgy?c	jc=hjqlr	nji	
Teaching Methods/ Approaches	Lecture V Project	Group discussion Others: Tutorial c		stration	Problem solving 🗸	
Teaching aids	Multi-media 🗸	Board and Ma	arker 🗸	Others		

Course Assessment Method											
Attendance (10%)		Mid Semester (25%)	Semester Final (50%)								
	1 st Quiz 2 nd Quiz 3 rd Quiz 4 th Quiz Others							Week/Date			
	Week/Date	Week/Date	Week/Date	Week/Date	Assignment	Homework	Week/Date	week/Date			
	4 th Week	6 th Week	10 th Week	13 th Week	1 Assignment	Will be given time to time	8 th Week	15 th Week			

Grading Policy										
Marks out of 100 Letter Grade Grade Point Marks out of 100 Letter Grade G										
80 - 100	A+	4.00	55 - 59	В-	2.75					
75 - 79	A	3.75	50 - 54	C+	2.50					
70 - 74	A-	3.50	45 - 49	С	2.25					
65 - 69	B+	3.25	40 – 44	D	2.00					
60 - 64	В	3.00	00 - 39	F	0.00					

Course Contents

Finding roots of Nonlinear Equations: Bisection method, False position method, Newton-Raphson method, Secant Method.

Approximation and Errors: Measuring Error, Concept of Significant Digits, Sources of Errors.

Series: Taylor Series, Maclaurin Series.

Interpolation: Direct method, Newton's Divided Difference interpolation, Lagrangian interpolation, Spline Interpolation.

Regression: Linear Regression, Nonlinear models for Regression.

Integration: Trapezoidal Rule of Integration, Simpson's 1/3 rule of Integration, Simpson's 3/8 rule of Integration.

Differential Equations: Euler's method for Ordinary Differential Equations, Runge-Kutta 2nd order method for Ordinary Differential Equations, Higher order Differential Equations, Runge-Kutta 4th order method for Ordinary Differential

Equations, Numerical Differentiation.

Linear Algebra: LU Decomposition, Eigenvalues, and Eigenvectors.

Course Objectives

The subject aims to equip the students such that they will be able to face an engineering problem and do the following:

- 1) Understand the use of numerical methods in engineering applications,
- 2) Formulate problems in a way that can be solved by numerical methods,
- 3) Measure the accuracy of a numerical analysis system, and
- 4) Provide background for the study and development of more advanced topics and applications.

	Mapping with CO, PO and Bloom's Taxonomy										
CO No.	Course Outcomes (CO) Statement	Levels of Bloom's Taxonomy	Matching with Program Outcome (PO)								
CO1	Formulate real-life engineering problems into mathematical models/processes that can be solved using numerical methods.	C2	PO2								
CO2	Apply numerical analysis techniques to solve problems from various engineering disciplines.	C3	PO1, PO2								
CO3	Analyze the theoretical concepts, complexities, and performances of different numerical algorithms for different problem scenarios and use cases.	C4	PO1, PO2								
CO4	Understand the underlying fundamental principles to derive and deduce the mathematical concepts behind various numerical methods.	C2	PO1								

	Weekly plan for course content and mapping with CO									
Weeks	Topics	COs								
1	Nonlinear Equations: Intermediate Value Theorem, Bisection method, Advantages and Drawbacks of Bisection method.	CO1, CO2, CO3, CO4								
2	Approximation and Errors: Measuring Errors, Sources of Errors, Significant Digits.	CO3								
3	Nonlinear Equations (Continued): Newton-Raphson method, Secant Method, False Position method.	CO1, CO2, CO3, CO4								
4	Taylor Series: Taylor Series, Maclaurin Series, Error in Taylor Series.	CO2, CO3, CO4								
5	Interpolation: Difference between Interpolation and Extrapolation, Use of polynomials in	CO1, CO2, CO3,								
6	Interpolation, Direct Method of Interpolation, Newton's Divided Difference Polynomial Method, Lagrangian Interpolation, Spline method of Interpolation	CO4								
7	iviction, Lagrangian interpolation, spinie method of interpolation									
9	Midterm examinations	CO1, CO2, CO3, CO4								

10 11	Regression: Linear Regression, Nonlinear models for Regression – Exponential model, Growth model, and Polynomial Model, Transforming nonlinear data to use linear regression formula	CO1, CO2, CO3, CO4	
12	Integration: Concept of Integration, Trapezoidal rule of Integration, Simpson's 1/3 rule,	CO1, CO2, CO3,	
13	Simpson's 3/8 rule	CO4	
14	Differentiation: Euler's method for Ordinary Differential Equation, Solution of Definite	CO1, CO2. CO3,	
15	Integral using Euler's method, Runge-Kutta 2 nd order method, Runge-Kutta 4 th order method, Higher order equations, Numerical Differentiation	CO4	
16	Linear Algebra: LU Decomposition, Eigenvalues, and Eigenvectors.	CO1, CO2	
17			
18	Final Examinations	CO1, CO2, CO3, CO4	
19		551	

	Program Outcomes
PO 1	Engineering Knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and system fundamentals, software development, networking & communication, and information assurance & security to the solution of complex engineering problems in computer science and engineering.
PO 2	Problem Analysis: Ability to identify, formulate and analyze complex Computer Science and Engineering problems in the areas of hardware, software, theoretical Computer Science and applications to reach significant conclusions by applying Mathematics, Natural sciences, Computer Science and Engineering principles.
PO 3	Design/ Development of Solutions: Design solutions for complex computer science and engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
PO 4	Investigation: Ability to use research based knowledge and research methods to perform literature survey, design experiments for complex problems in designing, developing and maintaining a computing system, collect data from the experimental outcome, analyze and interpret valid/interesting patterns and conclusions from the data points.
PO 5	Modern Tool Usage: Ability to create, select and apply state-of-the-art tools and techniques in designing, developing and testing a computing system or its component.
PO 6	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice in system development and solutions to complex engineering problems related to system fundamentals, software development, networking & communication, and information assurance & security.
PO 7	Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of computer science and engineering practice.
PO 9	Individual Work and Teamwork: Ability to function as an individual and as a team player or leader in multidisciplinary teams and strive towards achieving a common goal.
PO 10	Communication:

	Communicate effectively on complex engineering activities with the engineering community and with								
	society at large, such as being able to comprehend and write effective reports and design documentation, make								
	effective presentations, and give and receive clear instructions.								
	Project Management and Finance:								
PO 11	Demonstrate knowledge and understanding of engineering management principles and economic decision								
POII	making and apply these to one's own work, as a member and leader in a team, to manage projects and in								
	multidisciplinary environments.								
	Life-long learning:								
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning								
	in the broadest context of technological change.								

	Mapping of COs and POs [Correlation level 1 for low, 2 for moderate and 3 for high]											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		3										
CO2	3	2										
CO3	2	3										
CO4	3											