

Non-Compensatory Psychological Models for

Recommender Systems

Chen Lin^{1,3}, Xiaolin Shen¹, Si Chen¹, Muhua Zhu³, Yanghua Xiao^{2,3}

Research Question

- Q1: How do we explain existing recommendation models from a psychological perspective?
- Q2: How can we develop explainable and accurate recommendation models that operate differently from existing models?

Compensatory Models

• Compensatory Decision Rule

• Other Rating Models

AMF@KDD'08: $\hat{\mathbf{X}}_{u,q} = \sum_{k=1}^{K} \left(\sum_{\mathbf{p} \in R(u)} \mathbf{p}_k / \sqrt{|R(u)|} \right) \mathbf{q}_k$ LLORMA@JMLR'16:

$$\hat{\mathbf{X}}_{u,q} = \sum_{t=1}^{S} \sum_{k=1}^{K} \mathbf{u}_{t,k} \frac{K((\mathbf{u}_t, \mathbf{i}_t), (\mathbf{u}, \mathbf{q}))}{\sum_{s=1}^{S} K((\mathbf{u}_s, \mathbf{i}_s), (\mathbf{u}, \mathbf{q}))} \mathbf{q}_{t,k}$$

• Pair-wise Ranking Models

Thurstone Model: BPR@UAI'09,FSBPR@AJSE'18,LCR@WWW'14

$$Pr(p >_u q) = \frac{1}{1 + \exp[-(\hat{\mathbf{X}}_{u,p} + \hat{\mathbf{X}}_{u,q})]}, \hat{\mathbf{X}}_{u,p,q} \text{ by MF, AMF, or LLORMA}$$

Bradley-Terry Model: BT@ICDM'16

$$Pr(p \succ_u q) = \frac{\hat{\mathbf{X}}_{u,p}}{\hat{\mathbf{X}}_{u,p} + \hat{\mathbf{X}}_{u,q}}, \quad \text{where} \quad \hat{\mathbf{X}}_{u,q} = \sum_{k=1}^K \mathbf{u}_k \mathbf{q}_k$$

Non-Compensatory Models

• Non-Compensatory Decision Rule

• Other Non-Compensatory Rating Models

AMF-N:
$$\hat{\mathbf{X}}_{u,q} = \sum_{k=1}^{K} \frac{\exp(\sum_{\mathbf{p} \in R(u)} \mathbf{p}_{k})}{\sum_{k'} \exp(\sum_{p \in R(u)} \mathbf{p}_{k'})} [\mathbf{q}_{k} \exp \theta + \sum_{k' \neq k} (\mathbf{q}_{k'} - \mathbf{b}_{u,k'})]$$
LLORMA-N:

$$\hat{\mathbf{X}}_{u,q} = \sum_{t=1}^{S} \sum_{k} \frac{\exp \mathbf{u}_{k}}{\sum_{k'} \exp \mathbf{u}_{k'}} \frac{K((\mathbf{u}_{t}, \mathbf{i}_{t}), (\mathbf{u}, \mathbf{q}))}{\sum_{s=1}^{S} K((\mathbf{u}_{s}, \mathbf{i}_{s}), (\mathbf{u}, \mathbf{q}))}$$
$$\left[\mathbf{q}_{t,k} \exp \theta + \sum_{k' \neq k} (\mathbf{q}_{t,k'} - \mathbf{b}_{u,k'})\right]$$

• Non-Compensatory Pair-wise Ranking Models Thurstone Model - N:

$$\hat{\mathbf{X}}_{u,p,q} = \sum_{k=1}^{K} \frac{\exp(\mathbf{u}_k)}{\sum_{k'} \exp(\mathbf{u}_{k'})} \left[\exp \theta(\mathbf{p}_k - \mathbf{q}_k) + \sum_{k' \neq k} (\mathbf{p}_{k'} - \mathbf{q}_{u,k'}) \right]$$

Bradley Terry Model - N:

$$Pr(p \succ_{u} q) = \sum_{k=1}^{K} \mathbf{u}_{k} \left[\frac{\mathbf{p}_{k}}{\mathbf{p}_{k} + \theta \mathbf{q}_{k}} \prod_{k' \neq k} \frac{\theta \mathbf{p}_{k'}}{\mathbf{q}_{k'} + \theta \mathbf{p}_{k'}} \right]$$

Rating Prediction

- Comparative experiments on rating prediction.
- Non-compensatory rules universally increase prediction accuracy.

Method	\mathbf{AUC}	Imp	NDCG	Imp	MRR	Imp
Movielens		(%)		(%)		(%)
MF	0.6729		0.6925		0.8300	
MF-N	0.7108	5.62	0.7166	3.48	0.8633	4.01
AMF	0.6901		0.7107		0.8747	
AMF-N	0.7027	1.83	0.7138	0.44	0.8790	0.49
LLORMA	0.7265		0.8734		0.7015	
LLORMA-N	0.7299	0.47	0.8999	3.03	0.7187	2.45
Filmtrust		(%)		(%)		(%)
MF	0.6507	· · ·	0.5229	· · ·	0.7011	
MF-N	0.6710	3.12	0.5241	0.23	0.7071	0.86
AMF	0.5971		0.5137		0.7411	
AMF-N	0.6133	2.71	0.5253	2.25	0.7619	2.80
LLORMA	0.6240		0.8596		0.7857	
LLORMA-N	0.6345	1.68	0.8684	1.02	0.8068	2.69
CiaoDVD		(%)		(%)		(%)
MF	0.7431		0.7949		0.8910	
MF-N	0.7903	6.34	0.8127	2.25	0.9154	2.74
AMF	0.6489		0.6612		0.8741	
AMF-N	0.6993	7.77	0.6878	4.02	0.8967	2.58
LLORMA	0.6752		0.7827		0.8267	
LLORMA-N	0.6845	1.38	0.7984	2.00	0.8384	1.42

- \circ $b_{u,k}$ significantly positive suggests aspect specific cut-off thresholds.
- \circ Moderate θ suggests a combination of lexicographic and conjunctive rules.

Dataset	$\mathrm{Imp.}(\%)$	$\sigma(\mathbf{b}_u)$	heta
Movielens	5.37	0.0095 ± 0.0024	0.608 ± 0.105
FilmTrust	2.21	0.0095 ± 0.0023	0.667 ± 0.016
CiaoDVD	28.97	0.0093 ± 0.0022	0.773 ± 0.051

Explicit Feedback

- Comparative results for ranking reconstruction, pairwise ranking observed from explicit feedback, i.e. a higher rating is considered to be superior than a lower rating.
- Non-compensatory rules generally improve ranking performance.

Method	AUC	Imp	NDCG	Imp	MRR	Imp
	AUC	Imp	NDCG	Imp	WIKK	Imp
Movielens		(%)		(%)		(%)
$\overline{\mathrm{BT}}$	0.6453		0.5329		0.8227	
BT-N	0.8511	31.89	0.5795	8.74	0.9256	12.51
BPR	0.7976		0.5674		0.8988	
BPR-N	0.8361	4.82	0.5761	1.53	0.9180	2.14
FSBPR	0.5048		0.5011		0.7524	
FSBPR-N	0.8272	63.86	0.5740	14.56	0.9136	21.42
LCR	0.7191		0.8555		0.9461	
LCR-N	0.7360	2.35	0.8605	0.58	0.9515	0.57
FIlmtrust		(%)		(%)		(%)
BT	0.5405		0.5092		0.7702	
BT-N	0.6969	28.94	0.5446	6.95	0.8485	10.15
BPR	0.6412		0.5319		0.8206	
BPR-N	0.6729	4.94	0.5391	1.35	0.8364	1.93
FSBPR	0.4857		0.4968		0.7428	
FSBPR-N	0.6717	38.29	0.5388	8.47	0.8358	12.52
LCR	0.5977		0.9034		0.7511	
LCR-N	0.6144	2.79	0.9063	0.32	0.7635	1.65
CiaoDVD		(%)		(%)		(%)
BT	0.6063		0.5240		0.8031	
BT-N	0.9334	53.95	0.5981	14.1	0.9666	20.36
BPR	0.6344		0.5304		0.8172	
BPR-N	0.8987	41.66	0.5902	11.28	0.9493	16.17
FSBPR	0.7537		0.5574		0.8769	
FSBPR-N	0.8992	19.30	0.5903	5.91	0.9496	8.30
LCR	0.6260		0.9408		0.7889	
LCR-N	0.6349	1.42	0.9451	0.46	0.7988	1.25

Implicit Feedback

- Comparative results for ranking reconstruction, pairwise ranking observed from implicit feedback which is graded, i.e. a purchase is considered superior than a click, more details refer to our paper.
- Non-compensatory rules generally improve ranking performance on implicit feedback.

	\mathbf{Method}	\mathbf{AUC}	$\mathbf{Imp.}(\%)$	NDCG	${f Imp.}(\%)$	MRR	${f Imp.}(\%)$	MAP	$\mathbf{Imp.}(\%)$	\mathbf{Prec}	$\mathbf{Imp.}(\%)$
Tmall-single											
	BT	0.5304		0.2804		0.4870		0.4327		0.2778	
	BT-N	0.5400	1.82	0.2840	1.28	0.4948	1.61	0.4386	1.34	0.2801	0.84
	BPR	0.5181		0.2794		0.4854		0.4297		0.2767	
	BPR-N	0.5349	3.24	0.2848	1.92	0.4960	2.18	0.4401	2.41	0.2806	1.41
	FSBPR	0.5265		0.2824		0.4913		0.4350		0.2794	
	FSBPR-N	0.5389	2.35	0.2863	1.39	0.4988	1.53	0.4432	1.90	0.2818	0.87
	LCR	0.5200		0.8190		0.4277		0.3568		0.2534	
	LCR-N	0.5290	1.73	0.8213	0.28	0.4360	1.94	0.3648	2.24	0.2586	2.05
Tmall-hybrid											
	BT	0.5867		0.3015		0.5373		0.4929		0.2904	
	BT-N	0.6568	11.94	0.3279	8.75	0.5990	11.48	0.5527	12.13	0.3036	4.53
	BPR	0.6183		0.3183		0.5792		0.5318		0.2973	
	BPR-N	0.6460	4.48	0.3276	2.92	0.5990	3.41	0.5524	3.87	0.3030	1.94
	FSBPR	0.6334		0.3246		0.5916		0.5442		0.3026	
	FSBPR-N	0.6544	3.31	0.3309	1.94	0.6062	2.48	0.5603	2.95	0.3047	0.69
	LCR	0.5398		0.6644		0.4519		0.3745		0.2597	
	LCR-N	0.5649	4.65	0.6790	2.20	0.4809	6.42	0.3988	6.49	0.2720	4.74
Yoochoose											
	BT	0.6027		0.4734		0.7151		0.6361		0.4560	
	BT-N	0.7000	16.15	0.5160	8.99	0.7869	10.04	0.7084	11.37	0.4785	4.92
	YBPR	0.6700		0.5065		0.7713		0.6895		0.4737	
	BPR-N	0.6920	3.28	0.5131	1.31	0.7812	1.29	0.7027	1.91	0.4771	0.74
	FSBPR	0.3272		0.3658		0.5062		0.4599		0.4006	
	FSBPR-N	0.6198	89.45	0.4822	31.83	0.7169	41.62	0.6448	40.22	0.4650	16.08
	LCR	0.5842		0.9725		0.8009		0.7934		0.7677	
	LCR-N	0.6315	8.10	0.9754	0.30	0.8231	2.77	0.8161	2.86	0.7881	2.66

Conclusion

- Existing recommendation models are based on compensatory decision rules. However, consumers adopt non-compensatory rules more often.
- We propose a non-compensatory framework which can be easily embedded in latent factor models. We experimentally show that it universally improves recommendation performances of different existing models.
- This contribution sheds insight to developing explainable shallow models.

Acknowledgments

Chen Lin is supported by Natural Science Foundation of China under grant No.61472335. Yanghua Xiao is supported by NSFC (No.61732004, No.61472085, No.U1509213, No.U1636207), National Key R&D Program of China (No.2017YFC0803700, No.2017YFC1201200), Shanghai Municipal Science and Technology project (No.16511102102, No.16JC1420401), Shanghai STCSMs R&D Program (No.16JC1420400).