

Distribuições de probabilidade no software R

Por meio do pacote Rcmdr

Diogo Macedo Mendes Keyla Megumi Sano de Oliveira Profa. Dra. Giovana Fumes Ghantous

Distribuição binomial

- A distribuição binomial é originária de repetidos ensaios independentes de Bernoulli, no qual define-se uma variável aleatória que assume apenas dois valores: 1, se ocorre o sucesso, e 0, se ocorre o fracasso. A cada ensaio tem-se uma probabilidade p de sucesso, tal que 0 , e apenas dois resultados são possíveis para o experimento: "sucesso" ou "fracasso".
- Assim, a distribuição binomial é caracterizada por dois parâmetros: o número de experimentos (n) e a probabilidade de sucesso (p) em cada experimento. Ela fornece a probabilidade de obter um número específico de sucessos em n tentativas independentes.

Exemplo. Em uma fábrica de pacotes de arroz, espera-se que o peso do produto final esteja entre 998 e 1002 gramas. Suponha que 90% das embalagens contenha a quantidade desejada, ao escolher aleatoriamente 10 embalagens, pergunta-se:

a) Qual a probabilidade de se encontrar 8 pacotes no peso ideal? (P(X = 8))

Para o cálculo da probabilidade P(X = 8), basta ir em **Distribuições** > **Distribuições** > **Distribuição binomial** > **Probabilidades da binomial**

Em seguida, basta escrever o número de experimentos em **Experimentos da Binomial**, e colocar a probabilidade de sucesso em **Probabilidade de sucesso**.

R Probabilidade da Binomia		×
Experimentos da Binomial Probabilidade de sucesso	10 0.9	
Ajuda 🥎	Resetar OK Cancelar Aplicar	


```
Output
+ })
   Probability
  0.0000000001
  0.0000000090
  0.0000003645
 0.0000087480
 0.0001377810
 0.0014880348
6 0.0111602610
 0.0573956280
  0.1937102445
 0.3874204890
10 0.3486784401
```

Assim, tem-se que P(X = 8) = 0.1937.

b) Qual a probabilidade de se encontrar no máximo 8 pacotes no peso ideal? $(P(X \le 8))$.

Basta seguir o menu da forma: Distribuições > Distribuições Discretas > Distribuição Binomial > Probabilidades das caudas da binomial

Seleciona-se a cauda inferior, pois deseja-se a probabilidade de ser menor ou igual a 8.

R Probabilidade da Binomial		
Valores da Variável Experimentos da Binomial Probabilidade de sucesso Cauda inferior Cauda superior	B 10 0.9	
	Resetar OK Cancelar Aplicar U, prob=U.9, lower.tall=TRUE)	

Assim, tem-se que $P(X \le 8) = 0.2639$.

c) Qual a probabilidade de encontrar mais de 8 pacotes no peso ideal? (P(X>8))

Basta seguir o menu da forma: Distribuições > Distribuições Discretas > Distribuição Binomial > Probabilidades das caudas da Binomial

Nesse caso, seleciona-se a **cauda superior**, pois deseja-se saber a probabilidade de ser maior do que 8.

R Probabilidade da Binomial	l	×
Valores da Variável Experimentos da Binomial Probabilidade de sucesso Cauda inferior Cauda superior	B 10 0.9	
	Resetar OK Ca	

Assim, tem-se que P(X > 8) = 0.7361.

d) Qual a probabilidade de encontrar 8 ou mais pacotes no peso ideal? $(P(X \ge 8))$

Basta seguir o menu da forma: Distribuições > Distribuições Discretas > Distribuição Binomial > Probabilidades das caudas da Binomial

R Probabilidade da Binomia	al		×
Valores da Variável Experimentos da Binomial Probabilidade de sucesso Cauda inferior Cauda superior Ajuda	↑ 10 0.9 OK	X Cancelar	∂ Aplicar
	=10, prob=0.9, lower.	tail=FALSE)	
[1] 0.9298092			

Assim, tem-se que $P(X \ge 8) = 0.9298$.

Distribuição de Poisson

A distribuição de Poisson é usada quando se deseja contar o número de eventos de certo tipo que ocorrem num intervalo de tempo, espaço, superfície ou volume, sendo caracterizada pelo número médio esperado de ocorrências no intervalo. Ele é especialmente útil quando se trata de eventos raros, independentes e discretos.

Exemplo 1. A emissão de partículas radioativas tem sido modelada por meio de uma distribuição de Poisson, com o valor do parâmetro dependendo da fonte utilizada. Suponha que o número de partículas alfa, emitidas por minuto, seja uma variável aleatória seguindo o modelo de Poisson com parâmetro 5, isto é, a taxa média de ocorrência é de 5 emissões a cada minuto. Calcule a probabilidade de haver mais de duas emissões em um minuto. (P(X > 2))

Basta seguir o menu da forma: Distribuições > Distribuições Discretas > Distribuição Poisson > Probabilidades da dist. Poisson (Caudas)

Assim, basta inserir os dados fornecidos, e selecionar a **cauda superior**, pois a probabilidade é de ser maior do que 2.

R Probabilidade da l	Poisson	×
Valores da Variável Média Cauda inferior Cauda superior	Esetar	
> ppois(c(2), 1 [1] 0.875348	ambda=5, lower.tail=FALSE)	

Assim, tem-se que P(X > 2) = 0.8753.

Exemplo 2. Um telefone recebe, em média, cinco chamadas por minuto. Supondo que a distribuição de Poisson seja adequada nessa situação, calcule a probabilidade do telefone receber no máximo uma ligação $(P(X \le 1))$.

Basta seguir o menu da forma: Distribuições > Distribuições Discretas > Distribuição Poisson > Probabilidades da dist. Poisson (Caudas)

Neste caso, seleciona-se a **cauda inferior**, pois a probabilidade que se deseja calcular é a de ser no máximo um.

R Probabilidade da	Poisson			×
Valores da Variável Média Cauda inferior Cauda superior	5			
A juda	♦ Resetar	√ OK	X Cancelar	Aplicar
> ppois(c(1),] [1] 0.04042768	lambda=5, lowe	r.tail=TRUE)		

Assim, tem-se que $P(X \le 1) = 0.0404$.

Exemplo 3. Em uma fábrica de laticínios, durante a etapa de embalagens podem ocorrer falhas. Suponha que a contagem da ocorrência das falhas que acontecem em um mês, seja modelada por uma variável aleatória X que segue uma distribuição de Poisson, com parâmetro $\lambda = 3$, ou seja, o número médio de falhas ocorridas em um mês no processo de embalagens é igual a três. Calcule a probabilidade de ocorrerem cinco falhas em um mês. (P (X = 5))

Basta seguir o menu da forma: Distribuições > Distribuições Discretas > Distribuição Poisson > Probabilidades da dist. Poisson

R	Probabilidade da P	oisson
N	Média 3	
	(C) Ajuda	Nesetar
Ou	tput	
1	0.1493612051	
2	0.2240418077	
3	0.2240418077	
4	0.1680313557	
5	0.1008188134	
6	0.0504094067	
<		

Assim, tem-se que P(X = 5) = 0.1008.

A distribuição normal é caracterizada por dois parâmetros - a média e a variância, que determinam o centro e a variabilidade da distribuição dos dados. No \mathbf{R} , para que o cálculo de probabilidade associado a esta distribuição seja realizado, os valores de média e de desvio padrão (raiz quadrada da variância) são requeridos.

Figure: Funções densidades de probabilidades. Na curva vermelha, tem-se $X \sim N(9,4)$; na curva azul, tem-se $Y \sim N(8,1)$.

Exemplo 1. As alturas de alunos de uma determinada sala têm distribuição aproximadamente normal, com média 1,72 m e desvio padrão 0,105 m.

a) Qual é a probabilidade de um aluno apresentar uma altura inferior à 1,65 metros? (P(X < 1,65))

Distribuições -> Distribuições contínuas -> Distribuição normal -> Probabilidades da normal

Para o cálculo da probabilidade, o valor da variável, a média e o desvio padrão devem ser inseridos. A opção **cauda inferior** deve ser selecionada, pois deseja-se calcular a probabilidade da altura **ser menor** a 1,65 metros.

R Probabilidades da	Normal	×
Valores da Variável Média Desvio padrão	1.65 1.72 0.105	
(i) Ajuda	♦ Resetar V OK X Cancelar Aplicar	

Output

```
> pnorm(c(1.65), mean=1.72, sd=0.105, lower.tail=TRUE)
[1] 0.2524925
```

Assim, tem-se que P(X < 1, 65) = 0.2525.

b) Qual é a probabilidade de um alunos apresentar uma altura superior à 1,80 m? (P (X > 1,80))

Distribuições -> Distribuições contínuas -> Distribuição normal -> Probabilidades da normal

Os mesmos passos do **Exemplo 2** devem ser seguidos, porém, a opção **cauda superior** deve ser selecionada, pois deseja-se conhecer a probabilidade da variável altura ser **maior** do que 1,80 m.

R Probabilidades da	Normal	×
Valores da Variável Média Desvio padrão Cauda inferior	1.8 1.72 0.105	
(C) Ajuda	→ Resetar ✓ OK X Cancelar ← Aplicar	

Output

```
> pnorm(c(1.8), mean=1.72, sd=0.105, lower.tail=FALSE)
[1] 0.2230584
```

Assim, tem-se que P(X > 1.80) = 0.2231.

c) Qual é a probabilidade de um aluno apresentar uma altura entre 1,50 m e 1,60 m? (P(1,50 < X < 1,60))

Analogamente ao **Exemplo 2**, calcula-se a P(X < 1, 60).

R Probabilidades da	Normal	×
Valores da Variável Média Desvio padrão • Cauda inferior Cauda superior	1.6 1.72 0.105	
(D) Ajuda	♦ Resetar ✓ OK X Cancelar ← Aplicar	

```
Output
> pnorm(c(1.6), mean=1.72, sd=0.105, lower.tail=TRUE)
[1] 0.126549
```


Do mesmo modo, calcula-se a probabilidade: P(X < 1, 50).

Probabilidades da	Normal	×
Valores da Variável Média Desvio padrão (a) Cauda inferior Cauda superior	1.5 1.72 0.105	
(D) Ajuda	♦ Resetar ✓ OK 💥 Cancelar 💝 Aplicar	

```
Output
> pnorm(c(1.5), mean=1.72, sd=0.105, lower.tail=TRUE)
[1] 0.01807492
```


E então, tem-se que: P(1,50 < X < 1,60) = P(X < 1,60) - P(X < 1,50) = 0.126549 - 0.01807492 = 0.1084741.

Exemplo 2. Suponha que a distribuição dos diâmetros de um certo tipo de tomate siga uma distribuição aproximadamente normal, com média 60 mm e variância 49 mm^2 . Uma classificação quanto ao tamanho dos diâmetros é proposta, de acordo com a tabela abaixo.

Classificação	Diâmetro	Porcentagem esperada
Pequeno	até <i>mm</i>	20%
Médio	De a <i>mm</i>	60%
Grande	acima de <i>mm</i>	20%

Determine os valores dos diâmetros correspondentes às porcentagens esperadas para realizar esta classificação.

Para o cálculo do diâmetro máximo que os tomates devem ter para serem classificados como pequenos, basta calcular o valor de x_1 tal que $P(X < x_1) = 0, 20$.

Assim, os seguintes passos do menu devem ser seguidos: **Distribuições** -> **Distribuições** contínuas -> **Distribuição** normal -> **Quantis** da normal

Quantis da No	rmal			×
Probabilidades Média Desvio padrão Cauda inferio Cauda superi				
(C) Ajuda	♦ Resetar	 ✓ OK	Cancelar Cancelar	Aplicar


```
Output
> qnorm(c(0.20), mean=60, sd=7, lower.tail=TRUE)
[1] 54.10865
```


Assim, os 20% dos tomates classificados como pequenos possuem diâmetros de até $54{,}11$ mm.

O tomate classificado como médio, tem um valor de diâmetro que está entre x_1 e x_2 , de tal modo que $P(x_1 < X < x_2) = 0,60$.

O valor de x_1 é 54, 11 mm, já calculado anteriormente, logo, basta calcular o valor de x_2 .

Seleciona-se a **cauda superior**, e preenche as informações da probabilidade (0.20), média (60) e desvio padrão (7).

R Quantis da Normal	X
Probabilidades Média Desvio padrão Cauda inferior Cauda superior Resetar OK Cancelar Aplicar	
> qnorm(c(0.20), mean=60, sd=7, lower.tail=FALSE) [1] 65.89135	

Portanto, os tomates são classificados como médio, se possuem diâmetros entre 54,11 mm e 65,89 mm, e são classificados com grandes, os que possuem diâmetros superiores a 65,89 mm.

Exemplo 3. Construa o gráfico da função de densidade de probabilidade de uma variável aleatória que segue uma distribuição normal, com média 15 e desvio padrão 3.

No menu, siga o caminho: Distribuições -> Distribuições contínuas -> Distribuição normal -> Gráfico da distribuição normal

Configuração do gráfico

No menu da distribuição normal, seleciona-se o gráfico da função de densidade.

Distribuição Nor	rmal
Média 1 Desvio padrão 3 Gráfico da funç Gráfico da funç	ão de densidade
Optionally specify r x-values quantiles	regions under the density function by

Configuração do gráfico

Também é possível destacar uma região do gráfico alterando sua cor, basta escrever a região desejada e selecionar uma cor em color.

Configuração do gráfico

Por fim, selecione a posição desejada da legenda, depois clique em ok.

Resultado

Exemplo 1: Seja Q uma variável aleatória que segue uma distribuição de qui-quadrado com 10 graus de liberdade ($\nu = 10$), calcule a P(Q > 2, 558).

No menu, tem-se o caminho: Distribuições > Distribuições Contínuas > Distribuição Qui-Quadrado > Probabilidades da Qui-Quadrado

Distribuições Ferramentas Ajuda				
Definir semente geradora de número aleatório				'p ativo>
Distribuições Contínuas	•	Distribuição Normal	٠	Sauvos
Distribuições Discretas	•	Distribuição t	٠,	
		Distribuição Qui-Quadrado	•	Quantis da Qui-Quadrado
		Distribuição F	٠	Probabilidades da Qui-Quadrado
		Distribuição Exponencial	•	Gráfico da distribuição de Qui-Quadrado
		Distribuição Uniforme	•	Amostragem da distribuição de Qui-Quadrado
		Bright Car Bright		

Em seguida, basta inserir o valor do quantil (2,558) e o número de graus de liberdade (10). Depois, seleciona-se a **cauda superior**, pois deseja-se saber a probabilidade de Q ser **maior** do que 2,558.

R ChiSquared Proba	abilities	×
Valores da Variável Graus de liberdade Cauda inferior Cauda superior	[2.558 10	
(Ajuda	♦ Resetar ✓ OK 💥 Cancelar 😝 Ap	licar
Output	sq(c(2.558), df=10, lower.tail=FALSE)	
-	9900033	

 $\operatorname{Tamb\'{e}m}$ é possível calcular o valor do quantil associado à uma probabilidade.

Exemplo 2: Seja $Q \sim \chi_{10}^2$, determine q_c tal que $P(Q > q_c) = 0,99$.

No menu, tem-se: Distribuições > Distribuições Contínuas > Distribuição Qui-Quadrado > Quantis da Qui-quadrado

Preencha os valores requeridos, e selecione a opção cauda superior.

R ChiSquared Quan	tiles	×
Probabilidades Graus de liberdade Cauda inferior Cauda superior	0.99 10 ♣ Resetar ♦ OK Cancelar Aplicar	
> qchisq(c(0.99), df=10, lower.tail=FALSE) 2	

Note que o valor obtido foi $q_c = 2,558$, o quantil dado no **Exemplo 1**.

Exemplo 1: Seja T uma variável aleatória que segue uma distribuição t de Student com seis graus de liberdade, calcule P(-1, 943 < T < 1, 943).

Para o cálculo de P(-1, 943 < T < 1, 943), deve-se primeiro calcular P(T < 1, 943).

No menu, tem-se o caminho: Distribuições > Distribuições Contínuas > Distribuição t > Probabilidades da t

Para o cálculo, basta inserir o valor da variável (1.943), o número de graus de liberdade (6), e selecionar a opção cauda inferior.

R Probabilidades da	Dist. t			×
Valores da Variável Graus de liberdade	1.943			
Ajuda	n Resetar	√ OK	X Cancelar	Aplicar
> pt(c(1.943), (df=6, lower.t	ail=TRUE)		

Na sequência, calcula-se P(T < -1, 943).

Para tal, basta inserir o valor (-1.943), o número de graus de liberdade (6), e selecionar a opção cauda inferior.

R Probabilidades da	Dist. t	×
Valores da Variável Graus de liberdade	-1.943 6	
Ajuda	♦ Resetar ✓ OK	Aplicar
> pt(c(-1.943),	df=6, lower.tail=TRUE)	

Análogo ao exemplo feito para a distribuição normal, para o cálculo da probabilidade desejada, tem-se que P(-1,943 < T < 1,943) = P(T < 1,943) - P(T < -1,943) = 0,9499875 - 0,0500125 = 0,899975. Portanto, a probabilidade é de aproximadamente 90%.

Um quantil de uma distribuição t de Student também pode ser encontrado dada a probabilidade.

Exemplo 2. Suponha que T seja uma variável aleatória que segue uma distribuição t de Student, com 4 graus de liberdade. Determine o valor de t_c , tal que $P(T > t_c) = 0,005$.

Siga os seguintes passos: Distribuições -> Disribuições contínuas -> Distribuição T -> Quantis da distribuição T

De acordo com o enunciado, a probabilidade é 0,005, o número de graus de liberdade é 4, e a opção cauda **superior** deve ser selecionada.

😱 Quantis da Dist. t				×
Probabilidades Graus de liberdade Cauda inferior Cauda superior	0.005			
Ajuda	♦ Resetar	√ ОК	X Cancelar	Aplicar

```
> qt(c(0.005), df=4, lower.tail=FALSE)
[1] 4.604095
```


Exemplo 1. Seja $X \sim F(2, 12)$, determine P(X > 2, 25).

No menu, siga o caminho: Distribuições -> Distribuições Contínuas -> Distribuição F -> Probabilidades da distribuição F

Preencha as informações solicitadas, selecione a opção cauda superior.

R Probabilidades da F	×
Valores da Variável Graus de liberdade do numerador Graus de liberdade do denominador ○ Cauda inferior ⑥ Cauda superior	2.25 2 12
Ajuda • Resetar	✓ OK

```
> pf(c(2.25), df1=2, df2=12, lower.tail=FALSE)
[1] 0.1479735
```


O quantil associado a uma probabilidade também pode ser solitado.

Exemplo 2. Seja $X \sim F(2, 12)$, determine x_c , tal que $P(X > x_c) = 0,1479735$.

No menu, tem-se que: Distribuições -> Distribuições Contínuas -> Distribuição F -> Quantis da distribuição F

Preencha as informações requeridas.

Quantis da Dist. F	×
Probabilidades Graus de liberdade do numerador Graus de liberdade do denominador O Cauda inferior O Lauda superior	0.1479735 2 12
Ajuda Sesetar	✓ OK

```
> qf(c(0.1479735), dfl=2, df2=12, lower.tail=FALSE) [1] 2.25
```

Assim, se $X \sim F(2, 12), P(X > 2, 25) \approx 0,1480.$