Data Provided: None

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Spring Semester 2014-15 (2.0 hours)

EEE217 Avionic Systems

Answer **THREE** questions. **No marks will be awarded for solutions to a fourth question.** Solutions will be considered in the order that they are presented in the answer book. Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

- **1. a.** Summarise the main advantages of a Fly-By-Wire flight control system, and sketch a figure illustrating its essential features.
- **(5)**
- **b.** The true airspeed of a certain aircraft flying in the troposphere region is V_T = 560 km/h, the static air temperature is T_S = -34.5 °C and the static pressure is P_S =37.65 kPa:
 - i. Calculate the Mach number M, and the altitude of the aircraft.
 - ii. Calculate the air density ρ .
 - iii. Calculate the calibrated airspeed V_c .

(9)

- When the aircraft is flying at a higher altitude H=15240m (50000ft), the static pressure is $P_s=11.1$ kPa, and the true airspeed is $V_T=1200$ km/h:
 - i. Calculate the speed of sound A.
 - ii. Calculate the total pressure P_T .

(6)

The following may be assumed:

Gas constant for unit mass of dry air: $R_a = 287.0529 \text{ J/}^{\circ} \text{K}$.kg

$$Impact\ pressure = P_0 \left(\left(1 + \frac{(\gamma - 1)(V_c/A_0)^2}{2} \right)^{\gamma/(\gamma - 1)} - 1 \right) when \ V_c < A_0$$

$$\frac{P_T}{P_s} = \left(1 + \frac{(\gamma - 1)}{2}M^2\right)^{\frac{\gamma}{(\gamma - 1)}}$$
for subsonic flight;

$$\frac{P_T}{P_s} = \frac{\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma}{(\gamma-1)}} M^{\frac{2\gamma}{(\gamma-1)}}}{\left(\frac{2\gamma}{(\gamma+1)} M^2 - \frac{(\gamma-1)}{(\gamma+1)}\right)^{\frac{1}{(\gamma-1)}}}$$
 for supersonic flight.

 $\gamma = \frac{\text{specific heat of air at constant pressure}}{\text{specific heat of air at constant volume}}$ and P_T is the total pressure.

At sea level: the static pressure $P_0 = 101.325$ kPa, the absolute static air temperature is $T_0 = 288.15^{\circ}$ K, the air density $\rho_0 = 1.225$ kg/m³ and the speed of sound $A_0 = 340.3$ m/s.

If n is the number of independent channels of a redundant configuration, explain 2. a. how adaptive majority voting can realise a 2-out-of-n system for $n \ge 3$. What would be the minimum number of functioning channels, if non-adaptive majority voting is adopted?

(4)

The dominant failure mechanism of a certain integrated circuit (IC) is b. electromigration with an effective activation energy $\frac{E_a}{n}$ =0.7 eV. When operating at 80°C, the mean time to failure (MTTF) was found to be 30000 hours. Assuming that the failure process behaves as a chemical process with a reaction

rate $Q(T) = Q_0 e^{\left(-\frac{E_a}{kT}\right)}$ and that the drift in parameters is proportional to $t^n Q(T)$ where k, T and t are the Boltzman's constant, the absolute temperature and time respectively:

- i. Show that the $MTTF = t_o e^{\left(\frac{E_a}{nkT}\right)}$.
 ii. Calculate 1
- ii. Calculate the MTTF of the IC when operated at 30°C.

(6)

- A certain aircraft requires 10 kW of electrical power in order to supply the c essential services, such as flight instruments, communications systems etc., and 30 kW in order to supply all the services. Such aircraft could be equipped with a single 30 kW generator (option 1), two identical 15 kW generators (option 2) or three identical 10 kW generators (option 3). For options 2 and 3 the generators share the electrical power generation. Furthermore, it is assumed that the three types of generator have a constant failure rate $\lambda = 1.0 \times 10^{-4}$ /hour. For a 10-hour flight:
 - i. Calculate the probability of losing the capability of generating 30 kW of electrical power, when options 1, 2, and 3 are adopted.
 - ii. Calculate the probability of losing the capability of generating 20 kW of electrical power, when options 2 and 3 are adopted.
 - iii. Show that for a 2-out-of-3 active system, the mean time to failure $MTTF = \frac{5}{6\lambda}$.

(10)

The following may be assumed:

Boltzman's constant $k = 8.6 \times 10^{-5} \, eV / ^{O} \, K$

Reliability function for <u>m-out-of-n system (active):</u> $R(t) = \sum_{k=m}^{n} \frac{n!}{k!(n-k)!} \left[e^{-\lambda kt} \right] \left[1 - e^{-\lambda t} \right]^{n-k}$

Reliability function for <u>m-out-of-n system (passive)</u>: $R(t) = e^{-\lambda mt} \sum_{k=m}^{n} \frac{(m \lambda t)^{k-m}}{(k-m)!}$

$$MTTF = \int_{0}^{\infty} R(t)dt$$

EEE217 3 TURN OVER

(9)

- 3. An electromechanical actuator consisting of a servo motor, a nut and a screw with a pitch length $\lambda = 10$ mm, figure 3.1, is driving a load with a mass m = 35000 kg. The motor has a back-emf constant k = 0.16 V.s/rad, an armature resistance R = 20 m Ω , and a rotor inertia $J_m = 1.5 \times 10^{-3}$ kg.m². Furthermore, the gear ratio between the nut and the motor is 10:1. Assume the mechanical transmission to be lossless.
 - i. Calculate the armature current and the copper loss P_c of the motor, when producing an electromagnetic torque T_m =15Nm.
 - ii. When friction is neglected and only the copper loss is considered, show that the efficiency of the motor is given by $\eta = \frac{1}{1 + \frac{R}{k^2} \frac{T_m}{\Omega_m}}$, where Ω_m

is the speed of the motor.

iii. When a constant friction torque T_f is also considered, show that the

efficiency is then given by
$$\eta = \frac{\left(1 - \frac{T_f}{T_m}\right)}{\left(1 - \frac{T_f}{T_m}\right) + \frac{R}{k^2} \frac{T_m}{\Omega_m}}$$
 (11)

- **b.** The electromechanical actuator is now controlled so as to drive the load for a distance of 25 mm:
 - i. Calculate the load inertia J_r referred to the shaft of the servo motor.
 - ii. Calculate the time T required to travel the distance when following a parabolic velocity profile, and the motor torque is limited to $T_p=20$ Nm.
 - iii. Calculate the time T required to travel the distance when following a triangular velocity profile, and the motor torque is limited to $T_p = 20$ Nm.
 - iv. Calculate the energy lost in the winding of the motor, when the load travels the distance following a triangular velocity profile.

The following may be assumed:

 $T_p = \left(J_m + J_r\right) \frac{\theta_m}{\tau(T - \tau)} \ \ and \ \ T_p = 6\left(J_m + J_r\right) \frac{\theta_m}{T^2} \\ for \ a \ trapezoidal \ and \ a \ parabolic \ velocity \ profile,$

respectively. θ_m is the angle covered by the shaft of brushless servo motor, and τ is the duration of acceleration and deceleration phases.

EEE217 4 CONTINUED

Figure 3.1 Schematic of electromechanical actuator.

- **4. a.** A potentiometer used to measure angular position θ of an actuator, can measure a maximum angle of 160° , has a resistance $R_p = 10 \text{k}\Omega$ and its output is converted to digital format using an n-bit analogue-to digital-converter (ADC).
 - i. Show that the error is given by $Error(\%) = \frac{a(1-a)\frac{R_p}{R_m}}{1+a(1-a)\frac{R_p}{R_m}} \times 100$;

where $a = \theta/\theta_{\text{max}}$.

- ii. Calculate the error, when the potentiometer is loaded by a recorder with an input resistance $R_m = 100 \, k\Omega$.
- iii. What should be the minimum sampling frequency f_s of the ADC if the actuator follows the periodic position profile

$$\theta(t) = \theta_0 \sin(2t) + \frac{\theta_0}{3} \sin(4t) + \frac{\theta_0}{5} \sin(6t).$$

(8)

- **b.** The output of the potentiometer is now converted to digital format using a 4-bit $(b_3b_2b_1b_0)$ analogue-to-digital converter (ADC), which drives a logic circuit, controlling red, green and yellow LEDs, figure 4.1. The logic circuit was designed in order to ensure that:
 - the red LED is ON when $\theta < 10^{\circ}$ or $\theta \ge 150^{\circ}$.
 - the yellow LED is ON when $10^o \le \theta < 70^o$ or $90^o \le \theta < 150^o$.
 - the green LED is ON when $60^{\circ} \le \theta < 100^{\circ}$.
 - i. Construct the truth table of the logic circuit.
 - ii. Obtain the Sum-Of-Products (SOP) expressions of the logic functions Green and Red and show that the logic function Green is independent of the least significant bit b₀ of the ADC.
 - iii. Obtain the Product-Of-Sums (POS) expression of the logic function Yellow.

EEE217 5 TURN OVER

(12)

Figure 4.1 Potentiometer

KA/JBW

EEE217 6 END OF PAPER