Digital Signal Processing, Lab 2

Krzysztof Rudnicki Student number: 307585

December 17, 2021

Chapter 1

Task 1

1.1 a)

case	f_s	Т	N	N_1	A_{max}	k_{null}	f_n at null	f at null
$x_1[n]$	1 MHz	2 ms	2000	1000	1000	2	0.001	1000
$x_2[n]$	10 kHz	2 ms	20	10	10	2	0.1	1000
$x_3[n]$	10 kHz	4 ms	40	10	10	4	0.1	1000

1.2 b, c, d, e, f, g

I used data tips from matlab to find maximum value in FFT and first zero value

Chapter 2

Task 2

2.1 a

512 points square impulse

2.1.1 Signal plot

2.1.2 Magnitude FFT

Number of zero crossings in FFT is equal to 511

2.2 b

Narrower square impulses

2.2.1 Signal plot

2.2.2 Magnitude FFT

Number of zero crossings in FFT is equal to 767

2.3 c

Sine wave with integer number of periods in window of 1024

2.3.1 Signal plot

2.3.2 Magnitude FFT

Location of the peak = 15

2.4 d

Sine wave with non-integer number of periods in window of 1024

2.4.1 Signal plot

2.4.2 Magnitude FFT

Locations of the peak = 8

2.5 e

thetac = .. n = 0:1023; xe = exp(1i*thetac*n); plot(real(xe));

2.5.1 Signal plot

2.5.2 Magnitude FFT

 $N_0=64$ We can observe only one peak. Number of peaks does not change if we change the value of θ_c

Chapter 3

Task 3

3.0.1 Original sine wave plot

3.0.2 Zero pad of sine wave to 1024 and 2048 samples

The signals are zero-padded therefore they overlap and we can more or less see only one of them.

3.0.3 abs(fft()) of original signal

3.0.4 Zero pad of abs(fft())

Peak widths: basic peak width = 505 - 9=496; 1024 padding peak width = 1009 - 17=992 2048 padding peak width = 2017 - 33=1984

3.0.5 Real part of IFFT

This time signals do not overlap! Therefore we can conclude that there is quite a difference between this and original signal.

Chapter 6

Task 6

6.1 Rectangular window

6.2 Hamming window

6.3 Table

Window type	Mainlobe width	First sidelobe	Highest sidelobe
Rectangular	0.09	13.21	12.80
Hamming	0.23	41.32	- 20.22

Sidelobs change with f: SIdelobe is much wider in Hamming than in rectangular window

Chapter 7

Task 7

7.1 a) Spectrum of 512 samples of sine wave

7.2 b) Use different window shapes to obtain good, clear plot of the spectrum

7.3 Signal seperation properties of different windows

7.3.1 Hanning

7.3.2 Kaiser

7.3.3 Bartlett

7.3.4 Rectangular

7.3.5 Hamming

7.3.6 Blackman

