These slides are being provided with permission from the copyright for in-class (CS2208B) use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

Tutorial 01: Number Systems

Computer Science Department

CS2208: Introduction to Computer Organization and Architecture

Winter 2020-2021

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: elsakka@csd.uwo.ca

Phone: 519-661-2111 x86996

Number Systems

- In positional notation number systems
 - □ Numbers are *represented* (*encoded*) using digits
 - ☐ Each digit has a value and a place
 - □ Each place has a weight
 - for example, in decimal, we have the *ones place*, *tens place*, *hundreds place*, ...

Number Systems

- A radix or base is
 - □ the number of unique digits, *including zero*, used to represent numbers in a positional numeral system.
- With the use of a *radix point*, the notation can be extended to include *fractions* and *real numbers*.

You need to know how

Number Systems

- Examples of positional numeral systems
 - Decimal is base-10
- \rightarrow {0, 1, 2, 3, 4, 5, 6, 7, 8, and 9}

- Binary is base-2
- Quaternary is base-4 \rightarrow {0, 1, 2, and 3}
- Octal is base-8

- Trinary is base-3
- Quinary is base-5
- Senary is base-6
- ☐ Septenary is base-7
- Nonary is base-9

- \rightarrow {0, and 1}
- \rightarrow {0, 1, 2, 3, 4, 5, 6, and 7}
- Hexadecimal is base-16 \rightarrow {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F}
 - \rightarrow {0, 1, and 2}
 - \rightarrow {0, 1, 2, 3, and 4}
 - \rightarrow {0, 1, 2, 3, 4, and 5}
 - \rightarrow {0, 1, 2, 3, 4, 5, and 6}
 - \rightarrow {0, 1, 2, 3, 4, 5, 6, 7, and 8}
- Duodecimal is base-12 \rightarrow {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, and B}
- Sexagesimal is base-60 \rightarrow {0, 1, 2, 3, 4, 5, ..., 58 and 59}

 \square If the original number in base b is:

$$(a_{n-1} a_{n-2} \dots a_i \dots a_1 a_0 \cdot a_{-1} a_{-2} \dots a_{-m})_b$$

□ The *decimal* value of this number is defined as

$$N_{10} = (a_{n-1}b^{n-1} + ... + a_{i}b^{i} + ... + a_{1}b^{1} + a_{0}b^{0} + a_{-1}b^{-1} + a_{-2}b^{-2} + ... + a_{-m}b^{-m})_{10}$$

■ *Example 1*: Convert 2E8₁₆ to *decimal*

$$2E8_{16} = 2 \times 16^{2} + E \times 16^{1} + 8 \times 16^{0}$$

$$= 2 \times 256 + 14 \times 16 + 8 \times 1$$

$$= 512 + 224 + 8$$

$$= 744_{10}$$

This question can be asked as follow:

Convert the hexadecimal value 2E8 to *decimal*

Calculators are not allowed during exams. You need to improve your mental math skills.

During exams, calculations will be simplified.

Yet, when you answer the assignment/quiz questions, you may want to use calculators, as simplifying the calculations are not considered in the assignment/quiz.

Example 2: Convert 361₈ to decimal

$$361_8 = 3 \times 8^2 + 6 \times 8^1 + 1 \times 8^0$$

$$= 3 \times 64 + 6 \times 8 + 1 \times 1$$

$$= 192 + 48 + 1$$

$$= 241_{10}$$

Example 3: Convert 0.361_8 to decimal

$$0.361_8 = 3 \times 8^{-1} + 6 \times 8^{-2} + 1 \times 8^{-3}$$

$$= 3 \times 0.125 + 6 \times 0.015625 + 1 \times 0.001953125$$

$$= 0.375 + 0.09375 + 0.001953125$$

$$= 0.470703125_{10}$$

Another method:

$$0.361_8 = 361_8 / 1000_8$$

$$= (3 \times 8^2 + 6 \times 8^1 + 1 \times 8^0) / (1 \times 8^3)$$

$$= (3 \times 64 + 6 \times 8 + 1 \times 1) / (1 \times 512)$$

$$= (192 + 48 + 1) / (512)$$

$$= 241 / 512$$

$$= 0.470703125_{10}$$

Example 4: 12.112_3 to decimal

$$12.112_{3}$$

$$= 1 \times 3^{1} + 2 \times 3^{0} + 1 \times 3^{-1} + 1 \times 3^{-2} + 2 \times 3^{-3}$$

$$= 1 \times 3 + 2 \times 1 + 1 \times 0.333333 + 1 \times 0.111111 + 2 \times 0.03703$$

$$= 3 + 2 + 0.333333 + 0.111111 + 0.07406 = 5.5185_{10}$$

Another method:

$$12.112_{3} = 12112_{3} / 1000_{3}$$

$$= (1 \times 3^{4} + 2 \times 3^{3} + 1 \times 3^{2} + 1 \times 3^{1} + 2 \times 3^{0}) / (1 \times 3^{3})$$

$$= (81 + 54 + 9 + 3 + 2) / 27$$

$$= 149 / 27 = 5.5185_{10}$$

- Division Method (for integer numbers)
 - ☐ Initialize the quotient by the value of the *decimal number*
 - □ *Repeat*:
 - Divide the quotient from the previous stage by the new base to get
 - □ A new quotient (the whole number)
 - □ A remainder
 - The *remainder* here is *the next <u>least</u> significant digit* in the new number *Until* the new quotient becomes 0.

- *Example 5*: Convert 14₁₀ to binary
 - Binary means the new base is 2
 - □ 14/2 = 7 Remainder: $0 \rightarrow$ This is the <u>least</u> significant binary digit Quotient = $7 \neq 0 \rightarrow$ continue
 - □ 7/2 = 3 Remainder: 1 → This is the 2^{nd} least significant binary digit Quotient = $3 \neq 0$ → continue
 - □ 3/2 = 1 Remainder: 1 → This is the 3^{rd} least significant binary digit Quotient = $1 \neq 0$ → continue
 - □ 1/2 = 0 Remainder: 1 → This is the 4^{th} least significant binary digit Quotient = 0 → exit the repeat-until control structure

 $\Box 14_{10} = 1110_2 \bullet \bullet \bullet$

Note that, it is 1110₂
It is NOT 0111₂

Example 6: Convert 2477₁₀ to hexadecimal:

Hexadecimal means the new base is 16

- □ 2477/16 = 154 Remainder: $13 \rightarrow$ This is the <u>least</u> significant Hex digit Quotient = $154 \neq 0 \rightarrow$ continue
- □ 154/16 = 9 Remainder: $10 \rightarrow$ This is the 2^{nd} least significant Hex digit Quotient = $9 \neq 0 \rightarrow$ continue
- □ 9/16 = 0 Remainder: 9 → This is the 3^{rd} least significant Hex digit Quotient = 0 → exit the repeat-until control structure

$$\square 2477_{10} = 9AD_{16}$$
Note that, it is $9AD_{16}$
It is NOT DA9₁₆

- Multiplication Method (for fraction numbers)
 - ☐ Initialize the fraction by the value of the *fractional decimal number*
 - \square *Repeat*:
 - Multiply the fraction from the previous stage by the new base to get
 - □ A whole number
 - □ A new *fraction*
 - The *whole number* here is *the next digit to the right after the radix point* in the new number

Until the new fraction becomes 0.

■ *Example 7*: Convert 0.017578125₁₀ to hexadecimal

Hexadecimal means the new base is 16

- □ $0.01757812 \times 16 = 0.28125$ whole number: $0 \rightarrow the next digit to the right after the radix point fraction = <math>0.28125 \neq 0 \rightarrow continue$
- □ $0.28125 \times 16 = 4.5$ whole number: $4 \rightarrow$ the next digit to the right after the radix point fraction = $0.5 \neq 0 \rightarrow$ continue
- $□ 0.5 \times 16 = 8.0$ whole number: $8 \rightarrow the \ next \ digit \ to \ the \ right \ after \ the \ radix \ point$ fraction = $0.0 \rightarrow$ exit the repeat-until control structure
- $\square 0.017578125_{10} = 0.048_{16}$

Example 8: Convert 255.017578125₁₀ to hexadecimal:

Hexadecimal means the new base is 16

$$255.017578125_{10} = 255_{10} + 0.017578125_{10}$$

Using the *division method*: $255_{10} \rightarrow FF_{16}$

Using the *multiplication method*: $0.017578125_{10} \rightarrow 0.048_{16}$

$$255.017578125_{10} = FF.048_{16}$$

- **Example 9**: Convert 0.85₁₀ to hexadecimal Hexadecimal means the new base is 16
 - □ $0.85 \times 16 = 13.6$ whole number: $13 \rightarrow the next digit to the right after the radix point fraction = <math>0.6 \neq 0 \rightarrow continue$
 - □ $0.6 \times 16 = 9.6$ whole number: $9 \rightarrow$ the next digit to the right after the radix point fraction = $0.6 \neq 0 \rightarrow$ continue
 - □ $0.6 \times 16 = 9.6$ whole number: $9 \rightarrow$ the next digit to the right after the radix point fraction = $0.6 \neq 0 \rightarrow$ continue

 - $\square 0.85_{10} = 0.D999999...9_{16}$
 - □ Can be approximated in 4 digits after the radix point, for example, as
 - $0.D999_{16}$ (using truncation) or as
 - \bullet 0.D99 A_{16} (using rounding)

Conversion between any two bases, other than decimal

- This task can be done in two steps:
 - □ Convert from the source base to the decimal
 - □ Convert from the decimal to the destination base

Conversion between any two bases, other than decimal

■ Example 10: Convert $2E8_{16}$ to octal $2E8_{16} = 2 \times 16^2 + E \times 16^1 + 8 \times 16^0$ $= 2 \times 256 + 14 \times 16 + 8 \times 1$ $= 512 + 224 + 8 = 744_{10}$

744/8 = 93 Remainder: 0 → This is the <u>least</u> significant octal digit Quotient = $93 \neq 0$ → continue

93/8 = 11 Remainder: $5 \rightarrow$ This is the 2^{nd} least significant octal digit Quotient = $11 \neq 0 \rightarrow$ continue

11/8 = 1 Remainder: $3 \rightarrow$ This is the 3^{rd} least significant octal digit Quotient = $1 \neq 0 \rightarrow$ continue

1/8 = 0 Remainder: $1 \rightarrow$ This is the 4^{th} least significant octal digit Quotient = $11 \neq 0 \rightarrow$ exit the repeat-until control structure

$$2E8_{16} = 744_{10} = 1350_8$$

- Binary to octal or hexadecimal:
 - □ Binary to octal conversion
 - Group bits in three's, <u>starting from the binary point</u> (<u>pad the last group with 0's, if needed</u>)
 - Convert each of these three-bit group into an octal digit

□ Binary to hexadecimal conversion

- Group bits in four's, <u>starting from the binary point</u> (<u>pad the last group with 0's, if needed</u>)
- Convert each of these four-bit group into a hexadecimal digit

Example 11: Convert 11001111₂ to octal

11001111₂

- → 011 001 111₂
- $\rightarrow 317_{8}$

$$0 = 000$$

$$1 = 001$$

$$2 = 010$$

$$3 = 011$$

$$4 = 100$$

$$5 = 101$$

$$6 = 110$$

$$7 = 111$$

(Special cases)

Example 12: Convert 1111010101₂ to hexadecimal

1111010101₂

 \rightarrow 0011 1101 0101₂

→ 3D5₁₆

0 = 0000	8 = 1000
1 = 0001	9 = 1001
2 = 0010	A = 1010
3 = 0011	B = 1011
4 = 0100	C = 1100
5 = 0101	D = 1101
6 = 0110	E = 1110
7 = 0111	F = 1111

- Octal or hexadecimal to binary:
 - □ Octal to binary conversion
 - Expanding each octal digit into three bits
 - ☐ Hexadecimal to binary conversion
 - Expanding each hexadecimal digit into four bits

Example 13: Convert 743₈ to binary

743₈

- **→**111 100 011₂
- **→**111100011₂

```
0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110
```


Special cases)■ *Example 14*: Convert FA9₁₆ to binary

FA9₁₆

- **→**1111 1010 1001₂
- **→**1111110101001₂

0 = 0000	8 = 1000
1 = 0001	9 = 1001
2 = 0010	A = 1010
3 = 0011	B = 1011
4 = 0100	C = 1100
5 = 0101	D = 1101
6 = 0110	E = 1110
7 = 0111	F = 1111

- Octal to hexadecimal or hexadecimal to octal:
 - Convert from the source base to the binary
 - □ Expanding each digit into three bits (in case of octal) or four bits (in case of hexadecimal)
 - Convert from the binary to the destination base
 - □ Group bits in three's (in case of octal) or four's (in case of hexadecimal), <u>starting from the binary point</u> (pad the last group <u>from both sides</u> with 0's, if needed)

(Special cases)

Example 15: Convert ABC₁₆ to octal

ABC₁₆

 \rightarrow 1010 1011 1100₂

 \rightarrow 101010111100₂

 $\rightarrow 101 \ 010 \ 111 \ 100_2$

→5274₈

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

0 = 0000	8 = 1000
1 = 0001	9 = 1001
2 = 0010	A = 1010
3 = 0011	B = 1011
4 = 0100	C = 1100

(Special cases)

Example 16: Convert 0.AB₁₆ to octal

 $0.AB_{16}$

 \rightarrow 0.1010 1011₂

 \rightarrow 0.10101011₂

 \rightarrow 0000.101 010 110₂

→0.526₈

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

0 = 0000	8 = 100
1 = 0001	9 = 100
2 = 0010	A = 101
3 = 0011	B = 101
4 = 0100	C = 110
5 = 0101	D = 110

6 = 0110 | E = 1110

F = 11111

0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111

(Special cases)

■ Example 17: Convert AB.BA₁₆ to octal

AB.BA₁₆

 \rightarrow 1010 1011.1011 1010₂

 \rightarrow 10101011.1011101₂

 \rightarrow 010 101 011.101 110 100₂

→253.564₈

0 = 0000	8 = 1000
1 = 0001	9 = 1001
2 = 0010	A = 1010
3 = 0011	B = 1011
4 = 0100	C = 1100
5 = 0101	D = 1101
6 = 0110	E = 1110
7 - 0111	E – 1111

(Special cases)

Example 18: Convert 123₈ to hexadecimal

123₈

 $\rightarrow 001 \ 010 \ 011_2$

 \rightarrow 1010011₂

 \rightarrow 0101 0 011₂

→53₁₆

0	=	000
1	=	001
2	=	010
3	=	011
4	=	100
5	=	101

6 = 110

7 = 111

C = 1100

D = 1101

E = 1110

F = 1111

4 = 0100

5 = 0101

6 = 0110

0 = 000

1 = 001

2 = 010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111

(Special cases)

Example 19: Convert 0.123₈ to hexadecimal

0.1238

 \rightarrow 0.001 010 011₂

 \rightarrow 0.001010011₂

 \rightarrow 00000.0010 1001 1000₂

→0.298₁₆

	3 = 011 4 = 100 5 = 101 6 = 110 7 = 111
0000 = 0	8 = 1000
1 = 0001	9 = 1001
2 = 0010	A = 1010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111

E = 1110

F = 1111

Conversion between any two bases, other than decimal

(Special cases)

Example 20: Convert 321.123₈ to hexadecimal

321.123₈

→ 011 010 001.001 010 011₂

→ 11010001.001010011₂

31

 \rightarrow 1101 0001.0010 1001 1000₂

→D1.298₁₆

0 = 0000 | 8 = 1000 1 = 0001 | 9 = 1001 2 = 0010 | A = 1010 3 = 0011 | B = 1011 4 = 0100 | C = 1100 5 = 0101 | D = 1101

CS 2208: Introduction to Computer Organization and Architecture

6 = 0110