

Arquitetura, infraestrutura e o mundo Cloud.

Computação local e computação em nuvem.

On-premise vs Cloud computing: quais as diferenças?

INTERNET DAS COISAS

A computação em nuvem nos proporciona:

- Flexibilidade
- Escalabilidade
- Disponibilidade
- Raízes open source
- Baixo custo operacional

Benefícios em optar por armazenamento e processamento em nuvem.

Vale a pena optar pela nuvem:

A nuvem trabalha com virtualização de recursos:

Três maneiras de implantar o serviço de nuvem: Pública, Privada e Hibrida.

Três modelos de contração:

Data centers tem zonas de disponibilidade em regiões diversas: Garantem a réplica, a alta disponibilidade e tolerância a falha. A maioria dos Data centers são ligados por fibra óptica.

Sistemas monolíticos e micro serviços:

Aplication program interface.

Escalabilidade vertical, horizontal:

Escalabilidade vertical

(Adição de capacidade para um único recurso)

Cluster

Cluster é um sistema que compreende dois ou mais computadores ou sistemas (denominados nodos) na qual trabalham em conjunto para executar aplicações ou realizar outras tarefas.

Latência computacional:

Tolerância a falha:

FUTURE SCHOOL – Cursos de Computação WWW.OSASCONAMAO.COM.BR/CURSOSC Página 8 de 27

Sistema de arquivos distribuídos e replica de dados: Replicação de dados.

Arquitetura HDFS

Tipos de dados armazenados na nuvem:

Regras Gerais - Normalização

- 1FN: Eliminar atributos multivalorados ou compostos
- 2FN: Eliminar atributos que dependem apenas de parte da chave primária composta
- 3FN: Eliminar atributos que dependem de atributos não-chave

Entidades de Relacionamento entre tabelas:

Modelo conceitual, lógico e físico:

Cardinalidade:

Existe também modelo em Rede e modelo hierarquico. Banco de dados NoSql.


```
1
      "string": "Hi",
2
3
      "number": 2.5,
      "boolean": true,
4
      "null": null,
5
6
      "object": { "name": "Kyle", "age": 24 },
      "array": ["Hello", 5, false, null, { "key": "value", "number": 6 }],
7
      "arrayOfObjects": [
        { "name": "Jerry", "age": 28 },
9
        { "name": "Sally", "age": 26 }
10
11
12 }
13
```

Sistemas distriduidos:

Haddop trabalha em disco, Spark trabalha em memoria.

Components of Hadoop

Como o Apache Spark funciona?

Introdução ao Apache Spark		
Hadoop	Spark	
Armazenamento distribuído + Computação distribuída	Somente computação distribuída	
Framework MapReduce	Computação genérica	
Normalmente processa dados em disco (HDFS)	Em disco / Em memória	
Não é ideal para trabalho iterativo	Excelente para trabalhos iterativos (Machine Learning)	
Processo batch	Até 10x mais rápido para dados em disco Até 100x mais rápido para dados em memória	
Basicamente Java	Suporta Java, Python, Scala	
Não possui um shell unificado	Shell para exploração ad-hoc	

Introdução ao Apache Spark		
	Hadoop	Spark
Processamento batch	Hadoop MapReduce (Java, Pig, Hive)	Spark RDD (Java, Python, Scala)
Query SQL	Hadoop: Hive	Spark SQL
Processamento Stream / Processamento em Tempo Real	Storm, Kafka	Spark Streaming
Machine Learning	Mahout	Spark ML Lib
Algoritmos iterativos	Lento	Muito rápido (em memória)
Workflow ETL	Pig, Flume	Pig com Spark ou Mix de Spark SQL e programação RDD
Volume de Dados	Volume gigante (Petabytes)	Volume médio (Gigabytes / Terabytes)

Arquitetura cliente servidor:

Cliente e servidor conversam através de requisições: Request e response.

Métodos de solicitação Http

GET - Pedido para recuperar dados

POST - Envia dados para processar

PUT - Envia dados para atualizar ·

DELETE - Deleta o registro

Sistemas amarrados

Diferença de máquina virtual e Container.

Maquinas virtuais Vmware, Virtualbox.,

Como criar um ambiente Linux no Windows:

WSL 2 architecture overview

DOCKER COMPONENTS

Docker client é local, Docker daemon pode ser local ou não.

Docker registry tem imagens de usuários e imagens oficiais.

Link para o site do register do Docker Hub:

https://hub.docker.com

Tem direito a um repositório privado e vários gratuitos.

O usuário pode criar uma imagem própria.

Docker file contêm as variaveis de ambiente, as configurações, volumes, depemdências, regras e outras informações.

Para subir a imagem Docker push.

Controlando vários containers com Kubernet.

POD (Prof of delivery) -> São instâncias de processamento em execução.

 Pendente: o pod foi criado e aceito pelo cluster, mas um ou mais contêineres ainda não estão em execução. Essa fase inclui o tempo gasto para a programação em um nó e o download de imagens.

- Em execução: o pod foi vinculado a um nó, e todos os contêineres foram criados. Pelo menos um contêiner está em execução, no processo de iniciar ou está reiniciando.
- Bem-sucedido: todos os contêineres no pod foram encerrados com sucesso.
 Os pods encerrados não são reiniciados.
- Falha: todos os contêineres no pod foram encerrados e pelo menos um foi encerrado com falha. Um contêiner "falha" se ele é encerrado com um status diferente de zero.
- Desconhecido: o estado do pod não pode ser determinado.

Lambida functions.

Novo paradigma de computação em borda.

Banco de dados NOSL.

Data Marts:

Bunisses intelligence e analitics.

Processo de Construção de Modelos de Machine Learning

- Transformação de Variáveis
- Feature Selection
- · Redução de Dimensionalidade
- Amostragem

- Validação do Modelo
- Otimização

- · Seleção do Modelo
- Cross-Validation
- · Métricas de Performance
- Otimização

FUTURE SCHOOL - Cursos de Computação

Arquitetura MapReduce MRv1

- Cliente
- Master
 - NameNode
 - JobTracker
- Slaves
 - DataNode
 - TaskTracker

Este curso lhe torna um generalista em Cloud, caso você queira se um especialista procure as certificações existentes no mercado.