1		<u>CLAIMS</u>
2	I clai	m:
1	1.	A controllably rotatable seat, which comprises:
2		a seat;
3		an arm attached to said seat;
4		a means for rotating said arm and said seat, said means for rotating having a point
5	of ro	tation;
6		a platform, said arm being rotatably attached to said platform and said means for
7	rotati	ing being connected to said platform; and
8		a means for directing that rotation occur and directing that said seat and said arm
9	be re	turned substantially to the pre-rotation orientation of said arm and said seat.
1	2.	The controllably rotatable seat as recited in claim 1, further comprising:
2		a lever arm that connects said arm to said means for rotating so that the point of
3	rotati	on of the means for rotating will be substantially aligned with the center of gravity
4		participant sitting in said seat.
1	3.	The controllably rotatable seat as recited in claim 2, wherein:
2		said means for directing comprises a timer in communication with said means for
3	rotati	ng.
1	4.	The controllably rotatable seat as recited in claim 2, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.
1	5.	The controllably rotatable seat as recited in claim 2, wherein:
2		said means for directing comprises:
3		a means for measuring a physical quantity selected from the physical
4		quantities consisting of distance, speed, and acceleration; and
5		a logic unit through which the means for measuring communicates with
6		the means for rotating.
1		

1	0.	The controlladity rotalable seat as recited in claim 5, wherein:	
2		said logic unit is programmable.	
1	7.	The controllably rotatable seat as recited in claim 2, wherein:	
2		said arm and, consequently, said seat rotates at least ninety degrees.	
1	8.	The controllably rotatable seat as recited in claim 7, wherein:	
2		said means for directing comprises a timer in communication with said means for	
3	rotatin	g.	
1	9.	The controllably rotatable seat as recited in claim 7, wherein:	
2		said means for directing comprises:	
3		one or more targets; and	
4		a sensor capable of detecting said targets, said sensor communicating with	
5		said means for rotating.	
1	10.	The controllably rotatable seat as recited in claim 7, wherein:	
2		said means for directing comprises:	
3		a means for measuring a physical quantity selected from the physical	
4		quantities consisting of distance, speed, and acceleration; and	
5		a logic unit through which the means for measuring communicates with	
6		the means for rotating.	
1	11.	The controllably rotatable seat as recited in claim 10, wherein:	
2		said logic unit is programmable.	
1	12.	The controllably rotatable seat as recited in claim 7, further comprising:	
2		a means for retaining a participant to said seat.	
1	13.	The controllably rotatable seat as recited in claim 12, wherein:	
2		said means for directing comprises a timer in communication with said means for	
3	rotatin	rotating.	
1	14.	The controllably rotatable seat as recited in claim 12, wherein:	
2		said means for directing comprises:	
3		one or more targets; and	
4		a sensor capable of detecting said targets, said sensor communicating with	
5		said means for rotating.	

1	15.	The controllably rotatable seat as recited in claim 12, wherein:
2		said means for directing comprises:
3		a means for measuring a physical quantity selected from the physical
4		quantities consisting of distance, speed, and acceleration; and
5		a logic unit through which the means for measuring communicates with
6		the means for rotating.
1	16.	The controllably rotatable seat as recited in claim 15, wherein:
2		said logic unit is programmable.
1	17.	The controllably rotatable seat as recited in claim 2, further comprising:
2		a means for retaining a participant to said seat.
1	18.	The controllably rotatable seat as recited in claim 17, wherein:
2		said means for directing comprises a timer in communication with said means for
3	rotatii	ng.
1	19.	The controllably rotatable seat as recited in claim 17, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.
1	20.	The controllably rotatable seat as recited in claim 17, wherein:
2		said means for directing comprises:
3		a means for measuring a physical quantity selected from the physical
4		quantities consisting of distance, speed, and acceleration; and
5		a logic unit through which the means for measuring communicates with
6		the means for rotating.
1	21.	The controllably rotatable seat as recited in claim 20, wherein:
2		said logic unit is programmable.
1	22.	The controllably rotatable seat as recited in claim 1, wherein:
2		said arm and, consequently, said seat rotates at least ninety degrees.
1		

1	23.	The controllably foldtable seat as recited in claim 22, wherein:
2		said means for directing comprises a timer in communication with said means for
3	rotating.	
1	24.	The controllably rotatable seat as recited in claim 22, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.
1	24.	The controllably rotatable seat as recited in claim 22, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.
1	26.	The controllably rotatable seat as recited in claim 25, wherein:
2		said logic unit is programmable.
1	27.	The controllably rotatable seat as recited in claim 22, further comprising:
2		a means for retaining a participant to said seat.
1	28.	The controllably rotatable seat as recited in claim 27, wherein:
2		said means for directing comprises a timer in communication with said means for
3	rotatin	ng.
1	29.	The controllably rotatable seat as recited in claim 27, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.
1	30.	The controllably rotatable seat as recited in claim 27, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.

1	31.	The controllably rotatable seat as recited in claim 30, wherein:
2		said logic unit is programmable.
1	32.	The controllably rotatable seat as recited in claim 1, further comprising:
2		a means for retaining a participant to said seat.
1	33.	The controllably rotatable seat as recited in claim 32, wherein:
2		said means for directing comprises a timer in communication with said means for
3	rotatin	g.
1	34.	The controllably rotatable seat as recited in claim 32, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.
1	35.	The controllably rotatable seat as recited in claim 32, wherein:
2		said means for directing comprises:
3		one or more targets; and
4		a sensor capable of detecting said targets, said sensor communicating with
5		said means for rotating.
1	36.	The controllably rotatable seat as recited in claim 35, wherein:
2		said logic unit is programmable.
3		