Viazané extrémy, skupina Alpha α -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -3x 4y 1, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice prox,y. . ??? . $x_1x_2y_1y_2=-36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots ??? \dots ???$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Alpha α -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x + 12y + 3, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 2 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=\ldots$??? 171

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina Alpha α -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x 8y + 3, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 102$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Alpha α -iv

 $Jm\'{e}no:$

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y 3, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=57600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 672$

Viazané extrémy, skupina $Beta \beta$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -3x 4y 5, vazba: $x^2 + y^2 = 25$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=-36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Beta \beta$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x + 12y + 4, vazba: $x^2 + y^2 = 169$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 2?? \dots 12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x, y. . . ??? . . $x_1x_2y_1y_2 = 300$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 173$

2.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Beta~\beta$ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x + 8y + 1, vazba: $x^2 + y^2 = 100$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 101$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Beta \beta$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x + 24y + 5, vazba: $x^2 + y^2 = 676$??? nebarvi
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 681$

Viazané extrémy, skupina $Gamma \ \gamma$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x + 4y + 2, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 144$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 26$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Gamma \gamma$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y + 1, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$

2.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Gamma γ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 100$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Gamma \ \gamma$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x 24y 2, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? \dots $10 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=-2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 673$

Viazané extrémy, skupina $Delta \delta$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x + 4y + 6, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 144$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 30$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Delta \delta$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x + 12y 2, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ... ??? ... $x_1x_2y_1y_2 = 300$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=\ldots$??? 166

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Delta~\delta$ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x + 8y + 7, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots \qquad ??? \dots \qquad 6 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ext{???} \dots ext{-8} + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 107$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Delta~\delta$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x + 24y + 6, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? \dots 10 + λx
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots$??? 681

e

d

Písmeno Braillovei

abecedy

Viazané extrémy, skupina $Epsilon \epsilon$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -3x + 4y 3, vazba: $x^2 + y^2 = 25$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 21$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Epsilon \epsilon$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x 12y + 1, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 169$

4.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Epsilon\ \epsilon$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 6x 8y 2, vazba: $x^2 + y^2 = 100$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots$??? $\dots -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 98$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Epsilon \epsilon$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x + 24y + 4, vazba: $x^2 + y^2 = 676$??? nebarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 10 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 57600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots$ 680

Viazané extrémy, skupina Zeta ζ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x 4y + 5, vazba: $x^2 + y^2 = 25$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=-36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 30$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Zeta \zeta$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x + 12y 4, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=300$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 164$

2.

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina Zeta ζ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x + 8y + 3, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} =$ $8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 102$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Zeta ζ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y + 1, vazba: $x^2 + y^2 = 676$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . . ??? . . $x_1x_2y_1y_2=2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots$ 676

Viazané extrémy, skupina $Eta~\eta$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x + 4y 3, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 144$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 21$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Eta \eta$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y 2, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=$??? 166

2.

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Eta~\eta$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x + 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=\ldots ???\ldots 100$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Eta~\eta$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y 7, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=57600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 669$

Viazané extrémy, skupina $Theta \theta$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -3x 4y + 3, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + 2\lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice prox,y. . ??? . $x_1x_2y_1y_2=144$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 2'$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Theta \theta$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x + 12y + 2, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots -12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=300$

2.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Theta~\theta$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x + 8y + 2, vazba: $x^2 + y^2 = 100$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} =$??? $8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 102$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Theta \theta$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x 24y + 7, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? \dots 10 + λx
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=$ 682

Viazané extrémy, skupina $Iota\ \iota$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x 4y + 7, vazba: $x^2 + y^2 = 25$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=-36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 35$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Iota \iota$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x + 12y 4, vazba: $x^2 + y^2 = 169$??? vybarvi

- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 165$

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Iota~\iota$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -6x + 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice prox,y. . ??? . $x_1x_2y_1y_2=288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 100$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Iota~\iota$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y + 2, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x,y. . . ??? . . $x_1x_2y_1y_2=2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 677$

Písmeno Braillovej

Viazané extrémy, skupina Kappa κ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -3x + 4y + 2, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ???$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Kappa \kappa$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x + 12y + 6, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 2 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 174$

2.

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina Kappa κ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x + 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 101$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Kappa κ -iv

 $Jm\'{e}no:$

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x + 24y 2, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? \dots 10 + λx
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=57600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 674$

Viazané extrémy, skupina $Lambda \lambda$ -i

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = 3x + 4y + 4, vazba: $x^2 + y^2 = 25$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosad do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 36$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots$

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Lambda \lambda$ -ii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = 5x + 12y 6, vazba: $x^2 + y^2 = 169$??? vybarvi
- Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -12 + 2\lambda y$
- Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosad do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 3600$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 162$

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Lambda \lambda$ -iii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = -6x + 8y 6, vazba: $x^2 + y^2 = 100$??? nebarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? $\dots -6 + 2\lambda x$
- Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 288$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 94$

3.

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Lambda \lambda$ -iv

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = 10x 24y 3, vazba: $x^2 + y^2 = 676$??? nebarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? \dots 10 + $2\lambda x$
- Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -24 + 2\lambda y$
- Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- Pomocou λ urč dvě dvojice pro x, y. ???
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots$??? 673

Viazané extrémy, skupina $Mu~\mu$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -3x + 4y 2, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots ???$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Mu μ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x + 12y 3, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 2?? \dots 12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots$??? 165

(a) (f)

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Mu~\mu$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x 8y 3, vazba: $x^2 + y^2 = 100$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -28$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 97$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Mu μ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x 24y + 4, vazba: $x^2 + y^2 = 676$??? nebarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 10 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} =$??? $-24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 57600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 680$

Viazané extrémy, skupina $Nu~\nu$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x 4y + 1, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 144$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots ??? \dots 25$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Nu \nu$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y + 1, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 170$

2.

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Nu~\nu$ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x 8y 3, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x,y v závislosti na λ . Následne x,y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=-288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=$ 96

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Nu ν -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y 4, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . . ??? . . $x_1x_2y_1y_2=2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 671$

Viazané extrémy, skupina $Xi \xi$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x + 4y + 4, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 2$
- (e) Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 2!$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Xi \xi$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x 12y 1, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
 - (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 167$

4.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Xi\ \xi$ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x,y v závislosti na λ . Následne x,y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 101$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Xi\ \xi$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x 24y + 3, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? \dots 10 + λx
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=-2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 678$

Viazané extrémy, skupina *Omicron o*-i

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = 3x + 4y 3, vazba: $x^2 + y^2 = 25$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots \qquad ??? \dots \qquad 3 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosad do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 36$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots$

Písmeno Braillovei abecedy

Viazané extrémy, skupina *Omicron o*-ii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = -5x 12y 3, vazba: $x^2 + y^2 = 169$??? vybarvi
- Takisto spočti $\frac{\partial L}{\partial u} = \dots \qquad ??? \dots \qquad -12 + 2\lambda y$
- Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = -300$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 165$

Písmeno Braillovej abecedy

Viazané extrémy, skupina *Omicron o*-iii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = -6x 8y + 4, vazba: $x^2 + y^2 = 100$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? $\dots -6 + \lambda x$
- Takisto spočti $\frac{\partial L}{\partial y} = \dots -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = -288$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 2?? \dots 103$

3.

Písmeno Braillovei abecedy

Viazané extrémy, skupina *Omicron o*-iv

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y 2, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 57600$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots ???$

Viazané extrémy, skupina Pi π -i

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = -3x + 4y 3, vazba: $x^2 + y^2 = 25$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosad do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 144$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 21$

Písmeno Braillovei abecedy

Viazané extrémy, skupina Pi π -ii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = 5x + 12y + 3, vazba: $x^2 + y^2 = 169$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + 2\lambda x$
- Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 12 + 2\lambda y$
- Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosad do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 300$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 172$

e

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Pi \pi$ -iii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = -6x 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? $\dots -6 + \lambda x$
- Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = 2304$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 2?? \dots 100$

3.

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Pi \pi$ -iv

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y 5, vazba: $x^2 + y^2 = 676$??? nebarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots 24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ... ??? ... $x_1x_2y_1y_2 = 2400$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 671$

Viazané extrémy, skupina $Rho \ \rho$ -i

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = 3x + 4y + 5, vazba: $x^2 + y^2 = 25$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosad do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 144$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots$

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Rho \rho$ -ii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y 2, vazba: $x^2 + y^2 = 169$??? vybarvi
- Takisto spočti $\frac{\partial L}{\partial y} = \dots +12 + 2\lambda y$
- Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosad do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -300$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 166$

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Rho \rho$ -iii

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- f(x,y) = 6x + 8y + 2, vazba: $x^2 + y^2 = 100$??? vybarvi
- Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + \lambda x$
- Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 8 + 2\lambda y$
- Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 2304$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 2?? \dots 102$

3.

Písmeno Braillovei abecedy

Viazané extrémy, skupina $Rho \rho$ -iv

Jméno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x 24y + 6, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice
- (e) Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = -2400$
- Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots ???$ 681

Viazané extrémy, skupina $Sigma\ \sigma$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -3x 4y + 1, vazba: $x^2 + y^2 = 25$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice prox,y. . ??? . $x_1x_2y_1y_2=-36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 25$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Sigma\ \sigma$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x 12y + 1, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=-300$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 169$

4.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Sigma~\sigma$ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x 8y + 5, vazba: $x^2 + y^2 = 100$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots$??? $\dots -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 105$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Sigma~\sigma$ -iv

 $Jm\'{e}no:$

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x 24y 1, vazba: $x^2 + y^2 = 676$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? $10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=57600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=\ldots$??? 674

Viazané extrémy, skupina $Tau \tau$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x + 4y 1, vazba: $x^2 + y^2 = 25$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 24$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Tau \tau$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y + 4, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 172$

2.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Tau \ au$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice prox,y. . ??? . $x_1x_2y_1y_2=-288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 100$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Tau \tau$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x + 24y 1, vazba: $x^2 + y^2 = 676$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . . ??? . . $x_1x_2y_1y_2=2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 674$

Písmeno Braillovej

Viazané extrémy, skupina $Upsilon \ \upsilon$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x 4y 5, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=-36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 20$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Upsilon v-ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x 12y + 1, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 169$

4.

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Upsilon \ \upsilon$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x + 8y + 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 101$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Upsilon \ \upsilon$ -iv

 $Jm\'{e}no:$

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -10x 24y + 4, vazba: $x^2 + y^2 = 676$??? vybarvi
- 4.
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? $\dots -10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. . ??? . $x_1x_2y_1y_2 = -2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 679$

Viazané extrémy, skupina $Phi \phi$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x + 4y 1, vazba: $x^2 + y^2 = 25$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 24$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Phi \phi$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y 2, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 167$

2.

Písmeno Braillovej abecedy

Viazané extrémy, skupina Phi ϕ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x 8y 1, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots \qquad ??? \dots \qquad 6 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ext{???} \dots ext{-8} + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = 2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 9$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Phi \phi$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x + 24y 7, vazba: $x^2 + y^2 = 676$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 10 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots 24 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ???? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=57600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 668$

Viazané extrémy, skupina $Chi \chi$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = 3x + 4y 3, vazba: $x^2 + y^2 = 25$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 3 + 2\lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=144$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 2$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Chi \chi$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y + 5, vazba: $x^2 + y^2 = 169$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -300$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 173$

2.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $\mathit{Chi}\ \chi$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 6x 8y 4, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 6 + \lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 9$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $\mathit{Chi}\ \chi$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x + 24y + 4, vazba: $x^2 + y^2 = 676$??? vybarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? \dots 10 + λx
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad -24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 679$

Viazané extrémy, skupina $Psi \ \psi$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) f(x,y) = -3x + 4y 2, vazba: $x^2 + y^2 = 25$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots \qquad ??? \dots \qquad 4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 22$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Psi \ \psi$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -5x 12y + 5, vazba: $x^2 + y^2 = 169$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -5 + 2\lambda x$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=3600$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots 2?? \dots 173$

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Psi~\psi$ -iii

Jm'eno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x + 8y 4, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} =$ $8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=2304$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 96$

 $\frac{3.}{\text{ (a) (f)}}$

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Psi~\psi$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x 24y + 1, vazba: $x^2 + y^2 = 676$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? $10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y)=\ldots$??? 676

Viazané extrémy, skupina $Omega~\omega$ -i

Jméno:

Cílem je najít **vázané extrémy** funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -3x 4y 5, vazba: $x^2 + y^2 = 25$??? nebarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -3 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots -4 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 0$
- (e) Pomocou λ urč dvě dvojice pro x,y. ??? $x_1x_2y_1y_2=-36$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 20$

1.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Omega\ \omega$ -ii

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 5x 12y 1, vazba: $x^2 + y^2 = 169$??? nebarvi
- (b) Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots 5 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots -12 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -300$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 168$

2.

e

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Omega~\omega$ -iii

Jm'eno:

Cílem je najít vázané extrémy funkce f(x,y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = -6x 8y 6, vazba: $x^2 + y^2 = 100$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots ??? \dots -6 + 2\lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots ??? \dots -8 + 2\lambda y$
- (d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = -2$
- (e) Pomocou λ urč dvě dvojice pro x,y. . ??? . $x_1x_2y_1y_2=-288$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 93$

3.

Písmeno Braillovej abecedy

Viazané extrémy, skupina $Omega \omega$ -iv

Jméno:

Cílem je najít **vázané extrémy** funkce f(x, y) zadané v (a) spolu s vazbou (podmínkou). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) f(x,y) = 10x 24y 4, vazba: $x^2 + y^2 = 676$??? vybarvi
- **(b)** Sestav $L(\lambda, x, y)$ a spočti $\frac{\partial L}{\partial x} = \dots$??? $10 + \lambda x$
- (c) Takisto spočti $\frac{\partial L}{\partial y} = \dots +24 + 2\lambda y$
- d) Z podmínek $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$ vyjádři x, y v závislosti na λ . Následne x, y dosaď do vazbové rovnice a vypočti dva výsledky pro λ ??? $\lambda_1 + \lambda_2 = 1$
- (e) Pomocou λ urč dvě dvojice pro x, y. ??? $x_1x_2y_1y_2 = -2400$
- (f) Najdi funkční hodnoty pro oba vázané stacionární body a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 671$

Viazané extrémy (riešenia)

σ	:: :: : : : : : : : : : : : : : : : :	(a) vybarvi ✓ (a) vybarvi ✓	(b) $-5 + 2\lambda x \times$ (b) $6 + 2\lambda x \times$	(c) $-4 + 2\lambda y \times (c) = 12 + 2\lambda y \times (c) = 12 + 2\lambda y \times (c) = 8 + 2\lambda y \times (c)$	(d) $\lambda_1 + \lambda_2 = 0x$ (d) $\lambda_1 + \lambda_2 = 0x$ (d) $\lambda_1 + \lambda_2 = 0x$	(e) $x_1x_2y_1y_2 = 144 \text{Å}$ (e) $x_1x_2y_1y_2 = 3600 \text{Å}$ (e) $x_1x_2y_1y_2 = 2304 \text{Å}$	(f) 24A (f) 172X (f) 103X
	$iv: \mathbf{R}$	(a) vybarvi√		(c)	(d) $\lambda_1 + \lambda_2 = 0 X$	$x_1 x_2 y_1 y_2 =$	(f) 673 X
	$i: \hat{\mathbf{U}}$	(a) vybarvi 🗶	(b) $-3 + 2\lambda x x$	(c) $-4+2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0$	$x_1 x_2 y_1 y_2 =$	(f) 20 ✓
Θ	$ii: \mathbf{S}$	(a) vybarvix		(c) $12 + 2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	$x_1 x_2 y_1 y_2 =$	(f) 173 /
	$\mathbf{T}: iii$			(c) $8+2\lambda y$	(d) $\lambda_1 + \lambda_2 = 0$ X	(e) $x_1x_2y_1y_2 = 2304$	(f) 101 /
	$iv: \mathbf{\hat{I}}$	(a) vybarvi x	(b) $10 + 2\lambda x x$	(c) $24 + 2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	(e) $x_1x_2y_1y_2 = 57600 \text{X}$	(f) 681 🗸
		(a) mharmi	(b) $3 + 2\lambda x x$	(c) $4 + 2\lambda u \mathbf{x}$	$(d) \lambda_1 + \lambda_2 = 0.7$	(P) $x_1 x_2 y_1 y_2 = 144 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(f) 27 x
	2 	(a) vubarni	(b) $5 + 2 \lambda x x$		$(\mathbf{d}) \lambda_1 + \lambda_2 = 0 \mathbf{x}$	(c) $x_1x_2y_1y_2$	(f) 170.7
7		(a) cycaror (b)			$(\mathbf{d}) \wedge_{1} \wedge_{2} = 0 \times (\mathbf{d}) \wedge_{1} \wedge_{2} = 0 \times (\mathbf{d}) \wedge_{1} \wedge_{2} = 0 \times (\mathbf{d}) \wedge_{2}$	(c) $x_1x_2y_1y_2 = (6)$	(f) 101 x
		(a) vybarvi (,		$\mathbf{A} = \mathbf{A} + \mathbf{A} = \mathbf{A} = \mathbf{A} $	9	¥101 (1)
		(a) cycur ce	2 TO 1 (a)		(a) VI T VZ — O(a)	(c) x1x29192 —	
	$i:\mathbf{R}$	(a) vybarvi ✓		(c) $4+2\lambda y \checkmark$		$x_1 x_2 y_1 y_2 = 144 \checkmark$	(f) 31 X
×				(c)		$x_1 x_2 y_1 y_2 = 3600 \text{X}$	(f) 167 x
•			(b) $6 + 2\lambda x x$	(c) $8+2\lambda y \mathbf{x}$		(e) $x_1x_2y_1y_2 = 2304\checkmark$	(f) 107 ✓
	$iv: \mathbf{A}$	(a) vybarvi✓	(b) $10 + 2\lambda x x$	(c) $24 + 2\lambda y X$	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	= 57600 X	(f) 682 X
	i. K	(a) vubarvi	(b) $-3 + 2\lambda x X$	(c) $4+2\lambda u \checkmark$	$(\mathbf{d}) \ \lambda_1 + \lambda_2 = 0 \mathbf{x}$	(e) $x_1 x_2 y_1 y_2 = 144 X$	(f) 22 X
		(a) vybarvi		(c) $-12 + 2\lambda u$	$\mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$	(e)	(f) 170 x
e		(a) vybarviX	9		$\mathbf{A}(\mathbf{d}) \lambda_1 + \lambda_2 = 0 \mathbf{X}$	(e) $x_1x_2u_1u_2 =$	> 86 (J)
		(a) vybarvi X		CA	(d) $\lambda_1 + \lambda_2 = 0$ X	(e)	(f) 680 ✓
				- 1		- 1	
	$i: \hat{\mathbf{U}}$	(a) vybarvi 🗴		(c) $-4+2\lambda y$	\searrow_1	$x_1x_2y_1y_2$	(f) 30 ✓
٦	$ii:\mathbf{K}$	(a) vybarvi✓	E)		\searrow	$x_1 x_2 y_1 y_2 =$	(f) 165 X
r	$iii: \mathbf{O}$	(a) vybarvi✓	(b) $-6 + 2\lambda x x$	(c) $8+2\lambda y \checkmark$	$\lambda_1 + \lambda_2$	(e) $x_1x_2y_1y_2 = 2304 \checkmark$	(f) 103 x
	$iv: \mathbf{L}$	(a) vybarvi✓	(b) $-10 + 2\lambda x \checkmark$	(c) $24 + 2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0 \lambda$	(e) $x_1x_2y_1y_2 = 57600 \text{x}$	x 229 (J)
	. W.	Limpoton (e)	(b) 3 ± 93m./).u(0 + 1 (a)	(4) $\lambda_1 + \lambda_2 = 0.7$	(0)	(f) 22 X
		(a) vybarvi ((c) $4 + 2 \wedge y $		(e) $x_1x_2y_1y_2 - (e)$	
u		(a) vybarvi (D	(c) $-12 + 2\lambda y \checkmark$	B) (3	(e) $x_1x_2y_1y_2 =$	
,	11: 11:	(a) vyoarvi				(e) $x_1x_2y_1y_2 = ($	E) (
		(a) vyvarviv	(0) = 10 + 24x	(c) 24 ± 24	(a) $\wedge_1 + \wedge_2 = 0$	(e) $x_1x_2y_1y_2 = 51000$	> 600 (1)
	$i: \mathbf{R}$	(a) vybarvi	(b) $-3 + 2\lambda x \checkmark$	(c) $-4+2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	(e) $x_1x_2y_1y_2 = 144 \checkmark$	(f) 28 X
[(a) vybarvi✓	40	_	$(\mathbf{d}) \lambda_1 + \lambda_2 = 0 \mathbf{x}$	$x_1x_2y_1y_2 =$	(f) 171 X
θ		(a) vybarvi X		(c) $8+2\lambda u$	- II	$x_{1}x_{2}y_{1}y_{2}$	(f) 102 ✓
	$iv: \mathbf{A}$	(a) vybarvi 🗸			$\lambda_1 + \lambda_2 =$	$x_1x_2y_1y_2 =$	(f) 683 x
		(a) vybarvi 🗶	(T)	(c) $-4 + 2\lambda y X$	(d) $\lambda_1 + \lambda_2 = 0 \lambda$	$x_1 x_2 y_1 y_2 =$	(f) 32 🗸
[:: G	(a) vybarvi✓	(b) $-5 + 2\lambda x \checkmark$	(c) $12 + 2\lambda y X$	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	(e) $x_1x_2y_1y_2 = 3600 \checkmark$	(f) 165 ✓
2	$iii: \mathbf{L}$	(a) vybarvi✓	(b) $-6 + 2\lambda x \checkmark$	(c) $8+2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	(e) $x_1x_2y_1y_2 = 2304 \text{X}$	(f) 101 x
	$iv: \mathbf{U}$	(a) vybarvi 🗸	(b) $-10 + 2\lambda x X$		(d) $\lambda_1 + \lambda_2 = 0$		(f) 678 X
	i: C	(a) vybarvi ✓			(d) $\lambda_1 + \lambda_2 = 0 \lambda$	$x_1x_2y_1y_2$	(f) 27 🗸
4	$ii: \mathbf{O}$	(a) vybarvi ✓	(p)	၁	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	$x_1 x_2 y_1 y_2 =$	(f) 175 x
2	$iii: \mathbf{P}$	(a) vybarvi ✓	(b) $6+2\lambda x \checkmark$	(c) $8+2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0 x$	(e) $x_1x_2y_1y_2 = 2304 \text{X}$	(f) 101 🗸
	$iv: \mathbf{Y}$	(a) vybarvi✓	(b) $10 + 2\lambda x X$	(c) $24 + 2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0$	(e) $x_1x_2y_1y_2 = 57600 \checkmark$	(f) 674 🗸
		7		- 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	7 00 (3)
[: :: °:	(a) vybarvi ((b) $5 + 2\lambda x \lambda$	(c) $4 + 2\lambda y \lambda$	(a) $\lambda_1 + \lambda_2 = 0$ (b) $\lambda_1 + \lambda_2 = 0$	(e) $x_1x_2y_1y_2 = 144$ (f) $x_2x_3y_1y_2 = 3600$ (g)	(F) 163 x
~		(a) vyvar vi 🗸	,		$(a) \wedge_1 + \wedge_2 - 0 \wedge_4 + \cdots + (a) \wedge_4 + \cdots + $	$x_1x_2y_1y_2 =$	(I) 100 (J)
	n E	(a) vybarvit		0 + 2 × y ×	+ -	$x_1x_2y_1y_2 = z_{504}$	E 5
		(a) vybarvı∧	(a) $10 + 2\lambda x \checkmark$	(c) $-24 + 2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0$	(e) $x_1x_2y_1y_2 = 57600 \checkmark$	(I) 0/3
	$i: \mathbf{M}$	(a) vybarvi 🗸	(b) $-3 + 2\lambda x X$	(c) $4+2\lambda y \checkmark$	(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	(e) $x_1x_2y_1y_2 = 144 \text{x}$	(f) 23 /
[(a) vubarvi	1	(c) $12 + 2\lambda u \checkmark$	+ 5	(e) $x_1x_2u_1u_2$	(f) 166 x
π		(a) vubarviX	9	(c) $-8 + 2\lambda u$	$\lambda_1 + \lambda_2 =$	(e) $x_1x_2y_1y_2$	√ 26 (J)
	$iv:\mathbf{T}$	(a) vubarvi X	10		$\lambda_1 + \lambda_2$	(e) $x_1x_2u_1u_2 =$	£ (£
			i		7	76167	

Viazané extrémy (riešenia)

Si			- 1						
		i : R				(d) $\lambda_1 + \lambda_2 = 0 \times$	$x_1 x_2 y_1 y_2 =$	(f) 26 x	
ii. F. (a) syderict (b) 1-5+2xx (c) -8+2xyx (d) \(\text{A} \text{A} \times \(\text{A} \	7	$ii: \mathbf{Y}$		42		$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$	(f) 170 <	
		$iii: \mathbf{B}$		I		$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$	(f) 97 X	
		$iv: \mathbf{A}$				$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$		
ii: C (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 3201 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 3201 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 144 X (ii: U (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 144 X (ii: U (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 12 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 4 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 6 + 2 ∆x (c) − 4 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 10 + 2 ∆x (c) − 4 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 10 + 2 ∆x (c) − 4 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 5 + 2 ∆x (c) − 4 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 5 + 2 ∆x (c) − 2 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 5 + 2 ∆x (c) − 2 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 5 + 2 ∆x (c) − 2 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 5 + 2 ∆x (c) − 2 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 5 + 2 ∆x (c) − 2 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow (b) − 5 + 2 ∆x (c) − 2 + 2 ∆y (d) λ ₁ + λ ₂ = 0 K (e) π. επριγης = 5700 V (ii: N (a) vydowrow		$i: \mathbf{F}$				(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	$x_1 x_2 y_1 y_2$	(f) 29 ✓	
iii: N (a) vigloruri (b) − 6 + 2λx (c) − 8 + 2λy (d) λ ₁ + λ ₂ = 0 (e) π ₂ x ₂ yy ₂ = 57600 X (iii: N (a) vigloruri (b) 10 + 2λx (c) − 24 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) − 1 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) − 1 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) − 1 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 2 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 2 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 1 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 1 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 57600 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 1 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 2 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 2 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 2 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: U (a) vygloruri (b) − 6 + 2λx (c) 2 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: X (a) vygloruri (b) − 6 + 2λx (c) − 24 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: X (a) vygloruri (b) − 6 + 2λx (c) − 24 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: X (a) vygloruri (b) − 6 + 2λx (c) − 24 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: X (a) vygloruri (b) − 6 + 2λx (c) − 24 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyy ₂ = 5700 X (iii: X (a) vygloruri (b) − 6 + 2λx (c) − 24 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyyy ₂ = 5700 X (ii: X (a) vygloruri (b) − 6 + 2λx (c) − 24 + 2λy (d) λ ₁ + λ ₂ = 0 X (e) π ₂ x ₂ yyyy ₂ = 5700 X (ii: X (a) vygloruri (b) − 6 + 2λx (c) − 24 + 2λy (٠	$ii:\mathbf{E}$				(d) $\lambda_1 + \lambda_2 = 0 \boldsymbol{\lambda}$	$x_1 x_2 y_1 y_2 =$	(f) 168 x	
ii: C (a) apparent (b) 10 + 2\(\text{L} \times \) (c) + 2\(\text{L} \times \) (d) \(\text{L} \times \) \(a) \(\text{L} \times \) (d) \(\text{L} \times \) \(a) \(\text{L} \times \) (d) \(\text{L} \times \) (e) \(\text{L} \	v	$iii:\mathbf{N}$				(d) $\lambda_1 + \lambda_2 = 0 \lambda$	$x_1 x_2 y_1 y_2 =$	(f) 101 ✓	
ii: C (a) vygharviz (b) 3 + 2λx (c) 1 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 144X ii: B (a) vygharviz (b) − 6 + 2λx (c) − 1 + 2λy (d) λ ₁ + λ ₂ = 0 (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 6 + 2λx (c) − 1 + 2λy (d) λ ₁ + λ ₂ = 0 (d) πτερμημε = 5700 ∨ (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 6 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 ∨ (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 6 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 ∨ (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 6 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 6 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: B (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: C (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: C (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: C (a) vygharviz (b) − 5 + 2λx (c) − 2 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: C (a) vygharviz (b) − 5 + 2λx (c) − 12 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 144X ii: C (a) vygharviz (b) − 5 + 2λx (c) − 12 + 2λy (d) λ ₁ + λ ₂ = 0 (e) πτερμημε = 5700 × (d) πτερμημε = 5700 ×		$iv: \mathbf{A}$			I	$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$		
ii: B (a) updorriz' (b) -5 + 2λx (c) -12 + 2λy (d) λλ + λy = 0 (e) x 1 - 2xy y x (d) λ + λy = 0 (d) x 1 - xy = 0 (d) x + xy = 0 (d) x 1 - xy		i . C	(a) vubarni			$(\mathbf{d}) \ \lambda_1 + \lambda_2 = 0 \mathbf{x}$	$= c_{H_1} m_2 m_1 m_2 =$	(f) 22 \	
iii: K (a) updornix (b) -6+2xx (c) 24+2xy (d) \(\lambda \) (d) \(\lambda \) (d) \(\lambda \) (e) \(\lambda		: :	(a) system (b))	,	7. + 7.	x, x, 31, 42	(f) 166 x	
ii: B. (a) upbarrix (b) -10+2xx (c) 24+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (b) } \(\text{A}_2 \text{Biggs} = 57000 \) ii: B. (a) upbarrix (b) -10+2xx (c) 24+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 57000 \) ii: C) (a) upbarrix (b) -2+2xx (c) -2+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 57000 \text{ (c) } \) ii: D (a) upbarrix (b) -10+2xx (c) -2+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 57000 \text{ (c) } \) ii: A (a) upbarrix (b) -10+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (c) } \) ii: A (a) upbarrix (b) -2xxx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (c) } \) ii: A (a) upbarrix (b) -2+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (c) } \) ii: A (a) upbarrix (b) -2+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (c) } \) ii: A (a) upbarrix (b) -2+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (c) } \) ii: A (a) upbarrix (b) -2+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (d) } \) ii: A (a) upbarrix (b) -2+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (d) } \) ii: A (a) upbarrix (b) -5+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (d) } \) ii: A (a) upbarrix (b) -5+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (d) } \) ii: A (a) upbarrix (b) -5+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 3500 \text{ (d) } \) ii: A (a) upbarrix (b) -5+2xx (c) -12+2yy (d) \(\text{A}_1 \text{A}_2 = 0 \text{ (c) } \(\text{A}_2 \text{Biggs} = 350	0		(a) vybar vi •			(d) $\lambda_1 + \lambda_2 = 0$	$x_1x_2y_1y_2 =$	(I) 100 (J)	
iii E (a) replacement (b) -10+2λαY (c) 24+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 57000 (d) iii P (d) replacement (b) -5+2λαY (c) 12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 57000 Y (d) iii P (d) replacement (d) -6+2λαX (e) -8+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) iii P (d) replacement (d) -6+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) iii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) iii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) iii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) ii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) ii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) ii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) ii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) ii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) ii N (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) περεμρες = 5700 X (d) replacement (d) -5+2λαX (e) -12+2λyY (d) λ ₁ λλ ₂ = 0X (e) περεμρες = 5700 X (d) περεμ		11: 12: 12: 12: 12: 12: 12: 12: 12: 12:	(a) vyoarvi	l	((a) $\lambda_1 + \lambda_2 = 0$	$x_1 x_2 y_1 y_2 =$	(I) 104^	
 ii E (a) vyporei/ (b) -3 + 2λπ (c) -4 + 2λyπ (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₁ γ (f) iii ii O (a) vyporei/ (b) 6 + 2λπ (c) -8 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -8 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) -10 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 5 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -24 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii O (a) vyporei/ (b) 6 + 2λπ (c) -12 + 2λy (d) λ₁ + λ₂ = 0 κ (e) r₁ r₂ r₂ r₂ ii ii ii		$iv: \mathbf{K}$	(a) vybarvı	I		(d) $\lambda_1 + \lambda_2 = 0$	$x_1 x_2 y_1 y_2 =$	(I) 674 X	
ii: F (a) updenviz (b) $5 + 2\lambda x^{2}$ (c) $12 + 2\lambda y^{2}$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: F (a) updenviz (b) $-0 + 2\lambda x$ (c) $-2 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 2300x$ (f) ii: A (a) updenviz (b) $-10 + 2\lambda x$ (c) $-2 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: A (a) updenviz (b) $3 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: A (a) updenviz (b) $5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: A (a) updenviz (b) $5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: A (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: A (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: A (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: A (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2} = 0x$ (e) $\alpha_{12} \alpha_{12} y_{12} = 3600x$ (f) ii: O (a) updenviz (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_{1} + \lambda_{2}$		$i: \mathbf{E}$	1	1		+ 2, =		(f) 22 X	
iii: O (a) upbarrix (b) $-6 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) iii: N (a) upbarrix (b) $-10 + 2\lambda x x$ (c) $-12 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) iii: N (a) upbarrix (b) $5 + 2\lambda x x$ (c) $-12 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) iii: N (a) upbarrix (b) $5 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) iii: N (a) upbarrix (b) $-10 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: N (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: N (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 57000x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 5700x$ (f) ii: O (a) upbarrix (b) $-24 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 5700x$ (f) ii: O (a) upbarrix (b) $-24 + 2x x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 5700x$ (f) ii: O (a) upbarrix (b) $-24 + 2x x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 5700x$ (f) ii: O (a) upbarrix (b) $-24 + 2x x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1 x_2 y_1 y_2 = 5700x$ (f) ii: O (a) upbarr		:: P		ш.		+ 5 +	$x_1x_2u_1u_2 =$	(f) 172 /	
 ii. H. (a) upbarrit (b) -10+2λα (c) 21+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 55000 κ (f) ii. A (a) upbarrit (b) -10+2λα (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 55000 κ (f) iii. A (a) upbarrit (b) 5+2λα κ (c) -21+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 55000 κ (f) iii. A (a) upbarrit (b) 5+2λα κ (c) -21+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 55000 κ (f) iii. A (a) upbarrit (b) -5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 55000 κ (f) iii. A (a) upbarrit (b) -5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) iii. A (a) upbarrit (b) -5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) iii. A (a) upbarrit (b) -5+2λα κ (c) -21+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) iii. A (a) upbarrit (b) 5+2λα κ (c) -21+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) iii. A (a) upbarrit (b) 5+2λα κ (c) -21+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) iii. A (a) upbarrit (b) 5+2λα κ (c) -21+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. A (a) upbarrit (b) 5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. A (a) upbarrit (b) 5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. A (a) upbarrit (b) 5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. A (a) upbarrit (b) 5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. N (a) upbarrit (b) 5+2λα κ (c) -12+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. N (a) upbarrit (b) 5+2λα κ (c) -24+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. N (a) upbarrit (b) 5+2λα κ (c) -24+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. N (a) upbarrit (b) 5+2λα κ (c) -24+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂ = 5300 κ (f) ii. N (a) upbarrit (b) 5+2λα κ (c) -24+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂μ = 5300 κ (f) ii. N (a) upbarrit (b) 5+2λα κ (c) -24+2λμ (d) λ₁+λ₂ = 0 κ (e) π₁π₂μμ₂μ = 5300 κ (f) ii. N (a) upbarrit (b) 5+2λα κ (c) -24	k	O : !!!		1		; ; - +	$x_1x_2u_1u_2 =$	(f) 101 x	
ii. H (a) uybarusi' (b) $3 + 2\lambda x x$ (c) $-12 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 144 x$ (f) $x_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 1300 x$ (f) $x_1 + \lambda_2 = 0 x$ (e) $x_$		$iv: \mathbf{S}$		I	. 4	$+$ $\stackrel{\cdot}{\sim}$ $\frac{1}{2}$	$x_1x_2y_1y_2$ $x_1x_2y_1y_2 =$	(f) 671 <	
ii: A (a) vybarriv' (b) $3 + 2\lambda x'$ (c) $-12 + 2\lambda y'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 1444$ (f) ii: A (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $-24 + 2\lambda y'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 3600 \times$ (f) ii: N (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $-24 + 2\lambda y'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 57600 \times$ (f) ii: A (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $-24 + 2\lambda y'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 57600 \times$ (f) ii: A (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $-4 + 2\lambda y'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 57600 \times$ (f) ii: T (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $-24 + 2\lambda y'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 2300 \times$ (f) ii: O (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda x'$ (c) $0 + 2\lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 2300 \times$ (f) ii: O (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 2300 \times$ (f) ii: O (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 2300 \times$ (f) ii: O (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 2300 \times$ (f) ii: O (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 2300 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 2300 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 144 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 144 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 144 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 144 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 144 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x x y_1 y_2 = 144 \times$ (f) ii: D (a) vybarriv' (b) $0 + 2\lambda x'$ (c) $0 + 2\lambda \lambda x'$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_$							s		
iii. N (a) vybarviv (b) $5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 2304$ (f) iii. N (a) vybarviv (b) $6 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 2304$ (f) iii. N (a) vybarviv (b) $-3 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 1340$ (f) iii. U (a) vybarviv (b) $-3 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. U (a) vybarviv (b) $-3 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. U (a) vybarviv (b) $-3 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. O (a) vybarviv (b) $-3 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. O (a) vybarviv (b) $-3 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. O (a) vybarviv (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. O (a) vybarviv (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. O (a) vybarviv (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. O (a) vybarviv (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. O (a) vybarviv (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. N (a) vybarviv (b) $-10 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. N (a) vybarviv (b) $-10 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. N (a) vybarviv (b) $-10 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. N (a) vybarviv (b) $-10 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. N (a) vybarviv (b) $-10 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. N (a) vybarviv (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3500$ (f) iii. N (a) vybarviv (b) $-10 + 2\lambda x$		$i:\mathbf{H}$			4	$+\lambda_2$	$x_1 x_2 y_1 y_2 =$	(f) 30 X	
ii: N (a) vybarvi' (b) $6 + 2\lambda x$ (c) $5 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: A (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: A (a) vybarvi' (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: U (a) vybarvi' (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: U (a) vybarvi' (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 144 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 5700 \lambda'$ (f) ii: O (a) vybarvi' (b) $-10 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = $	0	$ii: \mathbf{A}$				$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$	(f) 167 X	
ii. A (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-23 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 144 X$ (f) ii. A (a) vybarvi' (b) $-3 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 144 X$ (f) iii. A (a) vybarvi' (b) $-5 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. A (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-24 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. A (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. A (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. A (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. N (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-14 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. N (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-14 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. N (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-14 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. N (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-14 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. N (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. N (a) vybarvi' (b) $-10 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. N (a) vybarvi' (b) $-12 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. M (a) vybarvi' (b) $-12 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. M (a) vybarvi' (b) $-12 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. M (a) vybarvi' (b) $-12 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1 y_2 = 3800 X$ (f) iii. M (a) vybarvi' (b) $-12 + 2\lambda x X$ (c) $-12 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $\alpha_1 \alpha_2 y_1$:::: Z		9	∞	$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$	(f) 102 /	
ii. A (a) vygharvix' (b) $-3 + 2\lambda x x$ (c) $-4 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $\pi_1 x_2 y_1 y_2 = 144x$ (f) $\pi_1 x_1 x_2 = 0x$ (e) $\pi_1 x_2 y_1 y_2 = 3600x$ (f) $\pi_1 x_2 = 0x$ (g)		$iv: \mathbf{A}$		1	I	$\lambda_1 + \lambda_2 =$	$x_1 x_2 y_1 y_2 =$	(f) 682 x	
ii: U (a) vybarvi' (b) $-5 + 2\lambda x x$ (c) $-12 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x$ (f) ii : T (a) vybarvi' (b) $6 + 2\lambda x x'$ (c) $-8 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : S (a) vybarvi' (b) $10 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : O (a) vybarvi' (b) $5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : O (a) vybarvi' (b) $-6 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : O (a) vybarvi' (b) $-6 + 2\lambda x x'$ (c) $-4 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-4 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a) vybarvi' (b) $-5 + 2\lambda x x'$ (c) $-12 + 2\lambda y x'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) ii : D (a)		$i: \mathbf{A}$			1	$+$ λ_2	$x_1 x_2 y_1 y_2$	(f) 26 x	
iii: T (a) vybarvix (b) $6 + 2\lambda x$ (c) $-8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 2304$ (f) $iv: O$ (a) vybarvix (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3600$ (f) $iv: O$ (a) vybarvix (b) $-6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3600$ (f) $iv: O$ (a) vybarvix (b) $-6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $-10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 144$ (f) $iv: O$ (a) vybarvix (b) $5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (a) vybarvix (b) $-22\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $iv: O$ (f) $x_1 + \lambda_2 = 0$ (f) $x_1 + \lambda_2 = $	I	$ii:\mathbf{U}$		I		$+\lambda_2$	$x_1 x_2 y_1 y_2 =$	(f) 170 X	
i: S (a) vybarvi/ (b) $10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) i: S (a) vybarvi/ (b) $5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-6 + 2\lambda x \times$ (c) $-12 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 2304 \times$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \checkmark$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) ii: O (a) vybarvi/ (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$	Ь	$iii:\mathbf{T}$			I	(d) $\lambda_1 + \lambda_2 = 0 \boldsymbol{\lambda}$	$x_1 x_2 y_1 y_2 =$	(f) 105 ✓	
i: S (a) vybarvix (b) $3 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) $i: 0$ (a) vybarvix (b) $5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3600 \times$ (f) $i: 0$ (a) vybarvix (b) $-6 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) $i: 0$ (a) vybarvix (b) $-10 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) $i: 0$ (a) vybarvix (b) $-5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: 0$ (a) vybarvix (b) $-5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: 0$ (a) vybarvix (b) $-10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: 0$ (a) vybarvix (b) $-10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: 0$ (a) vybarvix (b) $-2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: 0$ (a) vybarvix (b) $-2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: 0$ (a) vybarvix (b) $-2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: 0$ (a) vybarvix (b) $-2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) $x_1 \times x_2 \times x \times$ (f) $-24 \times 2\lambda y \times$ (g) $-24 \times 2\lambda y$		$iv: \mathbf{O}$			I	Ш	$x_1 x_2 y_1 y_2 =$	(f) 675 X	
ii: O (a) vybarviv' (b) $5 + 2\lambda xx$ (c) $-12 + 2\lambda yv'$ (d) $\lambda_1 + \lambda_2 = 0x$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $iii: V$ (a) vybarviv' (b) $-6 + 2\lambda xx'$ (c) $-8 + 2\lambda yv'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500x'$ (f) $ii: S$ (a) vybarviv' (b) $-10 + 2\lambda xx$ (c) $-4 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 57600x'$ (f) $ii: E$ (a) vybarviv' (b) $-5 + 2\lambda xx$ (c) $-4 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $ii: E$ (a) vybarviv' (b) $-5 + 2\lambda xx'$ (c) $-12 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $ii: N$ (a) vybarviv' (b) $-10 + 2\lambda xx'$ (c) $-24 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $ii: N$ (a) vybarviv' (b) $-10 + 2\lambda xx'$ (c) $-24 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 144x'$ (f) $ii: N$ (a) vybarviv' (b) $-10 + 2\lambda xx'$ (c) $-24 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $-10 + 2\lambda xx'$ (c) $-24 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $-10 + 2\lambda xx'$ (c) $-12 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $-10 + 2\lambda xx'$ (c) $-12 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 3500v'$ (f) $-10 + 2\lambda xx'$ (c) $-12 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 57600x'$ (f) $-10 + 2\lambda xx'$ (b) $-10 + 2\lambda xx'$ (c) $-12 + 2\lambda yx'$ (d) $\lambda_1 + \lambda_2 = 0x'$ (e) $x_1x_2y_1y_2 = 57600x'$ (f) $-10 + 2\lambda xx'$ (g) $-12 + 2\lambda yx'$ (d) $-12 + 2\lambda yx'$ (d) $-12 + 2\lambda yx'$ (e) $-12 + 2\lambda yx'$ (f) $-12 + 2\lambda yx'$ (g) $-12 + 2\lambda yx'$ (e) $-12 + 2\lambda yx'$ (f) $-12 + 2\lambda yx'$ (g) $-12 + 2\lambda yx'$ (g)		.: S:				l ll	$x_1 x_2 u_1 u_2$	(f) 24 \	1
ii: V (a) vybarvi (b) $-6 + 2\lambda x \times$ (c) $-8 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 2304 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) $i: E$ (a) vybarvi (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) $i: E$ (a) vybarvi (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3600 \times$ (f) $i: E$ (a) vybarvi (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 304 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) $i: E$ (g) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-10 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$ (a) vybarvi (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3000 \times$ (f) $i: E$		$ii: \mathbf{O}$				Ш	$x_1x_2y_1y_2 =$	(f) 173 X	
i: C (a) $vybarvi \checkmark$ (b) $-10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) i: E (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) i: E (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3600 \checkmark$ (f) ii: N (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) ii: N (a) $vybarvi \checkmark$ (b) $-10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) ii: N (a) $vybarvi \checkmark$ (b) $5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \vee$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: N (a) $vybarvi \checkmark$ (b) $5 + 2\lambda x \times$ (c) $-24 + 2\lambda y \vee$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3600 \vee$ (f) ii: N (a) $vybarvi \checkmark$ (b) $5 + 2\lambda x \times$ (c) $-24 + 2\lambda y \vee$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: N (a) $vybarvi \checkmark$ (b) $5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \vee$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: N (a) $vybarvi \checkmark$ (b) $5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: M (a) $vybarvi \checkmark$ (b) $5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: M (a) $vybarvi \checkmark$ (b) $-3 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: M (a) $vybarvi \checkmark$ (b) $-3 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: M (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: M (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: M (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \vee$ (d) $\lambda_1 + \lambda_2 = 0 \wedge$ (e) $x_1 x_2 y_1 y_2 = 57600 \vee$ (f) ii: M (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \vee$ (d) $\lambda_1 + \lambda_2 = 0 \wedge$ (e) $x_1 x_2 y_1 y_2 = 57600 \wedge$ (f) ii: L (a) $vybarvi \checkmark$ (b) $-5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \vee$ (d) $\lambda_1 + \lambda_2 = 0 $	٢	$iii:\mathbf{V}$		I			$x_1 x_2 y_1 y_2 =$	(f) 101 x	
ii: C (a) $vybarvi$ (b) $3 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 144$ (f) ii : E (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3600$ (f) ii : N (a) $vybarvi$ (b) $6 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $5 + 2\lambda x$ (c) $-42\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $5 + 2\lambda x$ (c) $-42\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $10 + 2\lambda x$ (c) $-42\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $10 + 2\lambda x$ (c) $-42\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $10 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $5 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $5 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $5 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $5 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) iv : A (a) $vybarvi$ (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 =$		$iv: \mathbf{A}$	<u> </u>			$+\lambda_2 =$	$x_1 x_2 y_1 y_2 =$	(f) 675 x	
ii: E (a) vybarvi⁄ (b) $-5 + 2\lambda x$ x (c) $-12 + 2\lambda y$ x (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 3600$ √ (f) $iv: \mathbf{N}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ x (c) $8 + 2\lambda y$ √ (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 57600$ x (f) $iv: \mathbf{A}$ (a) vybarvi⁄ (b) $-10 + 2\lambda x$ x (c) $-24 + 2\lambda y$ x (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 57600$ x (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $5 + 2\lambda x$ x (c) $-12 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 3600$ y (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $5 + 2\lambda x$ x (c) $-12 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 3600$ y (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $10 + 2\lambda x$ y (c) $-12 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ y (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $10 + 2\lambda x$ y (c) $-12 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ y (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $10 + 2\lambda x$ y (c) $-12 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ y (e) $x_1 x_2 y_1 y_2 = 37600$ y (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ x (c) $-12 + 2\lambda y$ x (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ y (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ x (c) $-12 + 2\lambda y$ x (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ y (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $10 + 2\lambda x$ x (c) $24 + 2\lambda y$ x (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ x (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $-5 + 2\lambda x$ x (c) $24 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ x (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $-6 + 2\lambda x$ x (c) $-12 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ x (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $-6 + 2\lambda x$ x (c) $-24 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 37600$ x (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $-2 + 2\lambda x$ x (c) $-24 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 3760$ x (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $-2 + 2\lambda x$ x (c) $-24 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 = 3760$ x (f) $i: \mathbf{M}$ (a) vybarvi⁄ (b) $-2 + 2\lambda x$ x (c) $-24 + 2\lambda y$ y (d) $\lambda_1 + \lambda_2 = 0$ x (e) $x_1 x_2 y_1 y_2 $		<i>i</i> : C				7	$x_1x_2y_1y_2 =$	(f) 20 \	
iii: N (a) vybarvi⁄ (b) $6 + 2\lambda x$ (c) $8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $iv: A$ (a) vybarvi⁄ (b) $-10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $5 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 144$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ (c) $-8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $6 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-5 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) $i: \dot{\mathbf{U}}$ (f) $\lambda_1 + \lambda_2 = 0$ (f) λ	;	$ii:\mathbf{E}$			-	$\frac{1}{2}$	$x_1 x_2 y_1 y_2 =$	(f) 170 X	
i: $\hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $-10 + 2\lambda x \check{\mathbf{f}}$ (c) $-24 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 57600 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $3 + 2\lambda x \check{\mathbf{f}}$ (c) $4 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $5 + 2\lambda x \check{\mathbf{f}}$ (c) $-12 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 2304 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $10 + 2\lambda x \check{\mathbf{f}}$ (c) $24 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 2304 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $3 + 2\lambda x \check{\mathbf{f}}$ (c) $4 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $5 + 2\lambda x \check{\mathbf{f}}$ (c) $-12 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $10 + 2\lambda x \check{\mathbf{f}}$ (c) $-12 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $10 + 2\lambda x \check{\mathbf{f}}$ (c) $24 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $-5 + 2\lambda x \check{\mathbf{f}}$ (c) $24 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $10 + 2\lambda x \check{\mathbf{f}}$ (c) $24 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $10 + 2\lambda x \check{\mathbf{f}}$ (c) $-12 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $-5 + 2\lambda x \check{\mathbf{f}}$ (c) $-24 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $-5 + 2\lambda x \check{\mathbf{f}}$ (c) $-24 + 2\lambda y \check{\mathbf{f}}$ (d) $\lambda_1 + \lambda_2 = 0 \check{\mathbf{f}}$ (e) $x_1 x_2 y_1 y_2 = 144 \check{\mathbf{f}}$ (f) $i \cdot \hat{\mathbf{f}}$ (a) vybarvi $\check{\mathbf{f}}$ (b) $-5 + 2\lambda x \check{\mathbf{f}}$ (c) $-24 + 2\lambda y $)	$iii:\mathbf{N}$		9	∞	$\stackrel{7}{\sim}$	$x_1 x_2 y_1 y_2 =$	(f) 101 ✓	
i: $\hat{\mathbf{U}}$ (a) vybarvi \mathbf{X} (b) $3 + 2\lambda x \mathbf{X}$ (c) $4 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{V}$ (e) $x_1 x_2 y_1 y_2 = 144 \mathbf{X}$ (f) $i : \mathbf{N}$ (a) vybarvi \mathbf{V} (b) $5 + 2\lambda x \mathbf{X}$ (c) $-12 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 3000 \mathbf{V}$ (f) $i : \mathbf{N}$ (a) vybarvi \mathbf{V} (b) $6 + 2\lambda x \mathbf{X}$ (c) $-8 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{V}$ (f) $i : \mathbf{N}$ (a) vybarvi \mathbf{V} (b) $10 + 2\lambda x \mathbf{X}$ (c) $24 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{V}$ (f) $i : \mathbf{A}$ (a) vybarvi \mathbf{V} (b) $5 + 2\lambda x \mathbf{X}$ (c) $4 + 2\lambda y \mathbf{X}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{X}$ (f) $i : \mathbf{A}$ (a) vybarvi \mathbf{V} (b) $5 + 2\lambda x \mathbf{X}$ (c) $-12 + 2\lambda y \mathbf{X}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 3600 \mathbf{X}$ (f) $i : \mathbf{A}$ (a) vybarvi \mathbf{V} (b) $6 + 2\lambda x \mathbf{X}$ (c) $-8 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{X}$ (f) $i : \mathbf{A}$ (a) vybarvi \mathbf{V} (b) $10 + 2\lambda x \mathbf{X}$ (c) $-8 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{X}$ (f) $i : \mathbf{R}$ (a) vybarvi \mathbf{V} (b) $10 + 2\lambda x \mathbf{X}$ (c) $4 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{X}$ (f) $i : \mathbf{R}$ (a) vybarvi \mathbf{V} (b) $10 + 2\lambda x \mathbf{X}$ (c) $24 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{V}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{X}$ (f) $i : \mathbf{R}$ (a) vybarvi \mathbf{V} (b) $10 + 2\lambda x \mathbf{X}$ (c) $-24 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{V}$ (e) $x_1 x_2 y_1 y_2 = 144 \mathbf{X}$ (f) $i : \mathbf{X}$ (a) vybarvi \mathbf{V} (b) $10 + 2\lambda x \mathbf{X}$ (c) $-24 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{V}$ (e) $x_1 x_2 y_1 y_2 = 144 \mathbf{X}$ (f) $i : \mathbf{X}$ (a) vybarvi \mathbf{V} (b) $-3 + 2\lambda x \mathbf{V}$ (c) $-24 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{V}$ (e) $x_1 x_2 y_1 y_2 = 144 \mathbf{X}$ (f) $i : \mathbf{X}$ (a) vybarvi \mathbf{V} (b) $-3 + 2\lambda x \mathbf{V}$ (c) $-24 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{V}$ (e) $x_1 x_2 y_1 y_2 = 3004 \mathbf{V}$ (f) $i : \mathbf{X}$ (a) vybarvi \mathbf{V} (b) $-3 + 2\lambda x \mathbf{V}$ (c) $-4 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{V}$ (e) $x_1 x_2 y_1 y_2 = 3004 \mathbf{V}$ (f) $i : \mathbf{X}$ (a) vybarvi \mathbf{V} (b)		$iv: \mathbf{A}$				$\stackrel{7}{\sim}$	$x_1 x_2 y_1 y_2 =$	(f) 680 %	
iii: N (a) vybarvi (b) $5 + 2\lambda x x$ (c) $-12 + 2\lambda y $ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 360 $ (f) $iii: O$ (a) vybarvi (b) $6 + 2\lambda x x$ (c) $-8 + 2\lambda y $ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 2304 $ (f) $ii: A$ (a) vybarvi (b) $10 + 2\lambda x x$ (c) $24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 5760 $ (f) $ii: A$ (a) vybarvi (b) $3 + 2\lambda x x$ (c) $4 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 3600 x$ (f) $ii: A$ (a) vybarvi (b) $6 + 2\lambda x x$ (c) $-12 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: A$ (a) vybarvi (b) $10 + 2\lambda x x$ (c) $-8 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: A$ (a) vybarvi (b) $10 + 2\lambda x x$ (c) $4 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 57600 x$ (f) $ii: B$ (a) vybarvi (b) $-5 + 2\lambda x x$ (c) $4 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: B$ (a) vybarvi (b) $-5 + 2\lambda x x$ (c) $-12 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: B$ (a) vybarvi (b) $-6 + 2\lambda x x$ (c) $-12 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: B$ (a) vybarvi (b) $-6 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: I$ (a) vybarvi (b) $-6 + 2\lambda x x$ (c) $-4 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: I$ (a) vybarvi (b) $-6 + 2\lambda x x$ (c) $-4 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: I$ (a) vybarvi (b) $-6 + 2\lambda x x$ (c) $-4 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: I$ (a) vybarvi (b) $-6 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 340 x$ (f) $ii: I$ (a) vybarvi (b) $-6 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $-24 + 2\lambda y x$ (e) $-24 + 2\lambda y x$ (f) $-24 + 2\lambda y x$ (g) $-24 + 2\lambda y x$ (g) $-24 + 2\lambda y x$ (g) $-24 + 2\lambda y x$ (e) $-24 + 2\lambda y x$ (f) $-24 + 2\lambda y x$ (f) $-24 + 2\lambda y x$ (g) $-24 + 2\lambda y x$ (g) $-24 + 2\lambda y x$ (e) $-24 + 2\lambda y x$ (f) $-24 + 2\lambda y x$ (g) $-24 + 2\lambda y x$ (g) $-24 + $		$i: \hat{\mathbf{U}}$	(a)				$x_1 x_2 y_1 y_2$		l .
iv: O (a) vybarvi⁄ (b) $6 + 2\lambda x \times$ (c) $-8 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 2304 \checkmark$ (f) $i \cdot R$ (a) vybarvi⁄ (b) $10 + 2\lambda x \checkmark$ (c) $24 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \checkmark$ (f) $(1) \cdot R$ (a) vybarvi⁄ (b) $3 + 2\lambda x \times$ (c) $4 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \checkmark$ (f) $(1) \cdot R$ (a) vybarvi⁄ (b) $6 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3600 \times$ (f) $(1) \cdot R$ (g) $(1) \cdot R \times R \times$ (g) $(1) \cdot R \times R$	€	$ii:\mathbf{N}$	(a)			Ш	$x_1 x_2 y_1 y_2 =$	(f) 167 ✓	
iv: R (a) vybarvi⁄ (b) $10 + 2\lambda x$ ⁄ (c) $24 + 2\lambda y$ ⁄ (d) $\lambda_1 + \lambda_2 = 0$ ⁄ (e) $x_1 x_2 y_1 y_2 = 57600$ ⁄ (f) (f) (f) (f) (g) vybarvi⁄ (b) $3 + 2\lambda x$ ⁄ (c) $4 + 2\lambda y$ ⁄ (d) $\lambda_1 + \lambda_2 = 0$ ⁄ (e) $x_1 x_2 y_1 y_2 = 144$ ⁄ (f) (f)	}	$iii: \mathbf{O}$	(a)		I	Ш	$x_1 x_2 y_1 y_2 =$	x 66 (J)	
i: \mathbf{J} (a) $vybarvi\mathbf{X}$ (b) $3 + 2\lambda x\mathbf{V}$ (c) $4 + 2\lambda y\mathbf{X}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{X}$ (e) $x_1x_2y_1y_2 = 144\mathbf{V}$ (f) i : \mathbf{A} (a) $vybarvi\mathbf{V}$ (b) $5 + 2\lambda x\mathbf{X}$ (c) $-12 + 2\lambda y\mathbf{X}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) (\mathbf{f}) i : \mathbf{M} (a) $vybarvi\mathbf{V}$ (b) $6 + 2\lambda x\mathbf{X}$ (c) $-8 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{X}$ (e) $x_1x_2y_1y_2 = 57600\mathbf{X}$ (f) (\mathbf{f}) i : \mathbf{M} (a) $vybarvi\mathbf{V}$ (b) $10 + 2\lambda x\mathbf{X}$ (c) $24 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{X}$ (e) $x_1x_2y_1y_2 = 57600\mathbf{X}$ (f) (\mathbf{f}) i : \mathbf{M} (a) $vybarvi\mathbf{V}$ (b) $-3 + 2\lambda x\mathbf{X}$ (c) $4 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 144\mathbf{X}$ (f) i : \mathbf{M} (a) $vybarvi\mathbf{V}$ (b) $-6 + 2\lambda x\mathbf{X}$ (c) $-12 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{X}$ (e) $x_1x_2y_1y_2 = 57600\mathbf{X}$ (f) i : \mathbf{X} (a) $vybarvi\mathbf{V}$ (b) $10 + 2\lambda x\mathbf{X}$ (c) $-24 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{X}$ (e) $x_1x_2y_1y_2 = 57600\mathbf{X}$ (f) i : \mathbf{X} (a) $vybarvi\mathbf{V}$ (b) $-3 + 2\lambda x\mathbf{V}$ (c) $-4 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{V}$ (f) i : \mathbf{X} (a) $vybarvi\mathbf{V}$ (b) $-5 + 2\lambda x\mathbf{X}$ (c) $-4 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{V}$ (f) i : \mathbf{X} (a) $vybarvi\mathbf{V}$ (b) $-6 + 2\lambda x\mathbf{X}$ (c) $-4 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) i : \mathbf{X} (a) $vybarvi\mathbf{V}$ (b) $-6 + 2\lambda x\mathbf{X}$ (c) $-24 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) i : \mathbf{X} (a) $vybarvi\mathbf{V}$ (b) $-6 + 2\lambda x\mathbf{X}$ (c) $-24 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) i : \mathbf{X} (a) $vybarvi\mathbf{V}$ (b) $-6 + 2\lambda x\mathbf{X}$ (c) $-24 + 2\lambda y\mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) $x_1 + x_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) $x_1 + x_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) $x_1 + x_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) $x_1 + x_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{X}$ (f) $x_1 + x_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{V}$ (f) $x_1 + x_2 = 0\mathbf{V}$ (e) $x_1x_2y_1y_2 = 3600\mathbf{V}$ (f) $x_1 + x_2 = 0\mathbf{V}$ (g) $x_1 $		$iv: \mathbf{R}$	(a)	(b) $10 + 2\lambda x \checkmark$		$\lambda_1 + \lambda_2 =$	$x_1 x_2 y_1 y_2 =$	x 699 (J)	
ii: $\hat{\mathbf{A}}$ (a) vybarvi \checkmark (b) $5 + 2\lambda x \times$ (c) $-12 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \checkmark$ (e) $x_1 x_2 y_1 y_2 = 3600 \times$ (f) i ii: i (a) vybarvi \checkmark (b) $6 + 2\lambda x \times$ (c) $-8 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 2304 \times$ (f) i ii: i (a) vybarvi \checkmark (b) $10 + 2\lambda x \times$ (c) $24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) i ii: i (a) vybarvi \checkmark (b) $-3 + 2\lambda x \times$ (c) $4 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 144 \times$ (f) ii: i (a) vybarvi \checkmark (b) $-5 + 2\lambda x \checkmark$ (c) $4 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3304 \checkmark$ (f) ii: i (a) vybarvi \checkmark (b) $10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) ii: $\hat{\mathbf{i}}$ (a) vybarvi \star (b) $-3 + 2\lambda x \checkmark$ (c) $-4 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) ii: $\hat{\mathbf{i}}$ (a) vybarvi \star (b) $5 + 2\lambda x \times$ (c) $-4 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3304 \times$ (f) ii: $\hat{\mathbf{i}}$ (a) vybarvi \star (b) $-6 + 2\lambda x \checkmark$ (c) $-12 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3304 \times$ (f) ii: $\hat{\mathbf{i}}$ (a) vybarvi \star (b) $-6 + 2\lambda x \checkmark$ (c) $-12 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 3304 \times$ (f) ii: $\hat{\mathbf{L}}$ (a) vybarvi \star (b) $10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f) ii: $\hat{\mathbf{L}}$ (a) vybarvi \star (b) $10 + 2\lambda x \times$ (c) $-24 + 2\lambda y \times$ (d) $\lambda_1 + \lambda_2 = 0 \times$ (e) $x_1 x_2 y_1 y_2 = 57600 \times$ (f)		$i: \mathbf{J}$	(a) vybarviX	(b) $3 + 2\lambda x \checkmark$	l .		$x_1x_2y_1y_2 =$	(f) 22 ✓	
iii: M (a) vybarvi⁄ (b) $6 + 2\lambda x$ (c) $-8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 2304$ (f) 6 iv: A (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) 6 iii: R (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 144$ (f) iii: N (a) vybarvi⁄ (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) iii: N (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) iii: $\vec{\mathbf{i}}$ (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) ii: $\vec{\mathbf{i}}$ (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) iii: $\vec{\mathbf{i}}$ (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) iii: $\vec{\mathbf{L}}$ (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) iii: $\vec{\mathbf{L}}$ (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3304$ (f) iii: $\vec{\mathbf{L}}$ (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f)	>	_	(a)	(p)		$\lambda_1 + \lambda_2$	$x_1x_2y_1y_2 =$	(f) 174 X	
iv: A (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) ϵ i: U (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 144$ (f) iii: N (a) vybarvi⁄ (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3600$ (f) iv: A (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 2304$ (f) iv: Â (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) ii: Î (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 144$ (f) ii: Î (a) vybarvi⁄ (b) $-5 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3600$ (f) iii: L (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $-8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3304$ (f) iv: A (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f)	۲		(a)		I	$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$	√ 96 (J)	
i: U (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 144$ (f) iii: R (a) vybarvi⁄ (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) iii: N (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 2304$ (f) iv: A (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f) ii: f (a) vybarvi⁄ (b) $-3 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 144$ (f) ii: f (a) vybarvi⁄ (b) $5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) iii: L (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $-8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3600$ (f) iii: L (a) vybarvi⁄ (b) $-6 + 2\lambda x$ (c) $-8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 3304$ (f) iii: L (a) vybarvi⁄ (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1 x_2 y_1 y_2 = 57600$ (f)		$iv: \mathbf{A}$	(a)			$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$	(f) 680 X	
ii: R (a) vybarvi (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3600$ (f) $iii: \mathbf{N}$ (a) vybarvi (b) $-6 + 2\lambda x$ (c) $8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 2304$ (f) $iv: \mathbf{A}$ (a) vybarvi (b) $10 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f) $i: \mathbf{\hat{Z}}$ (a) vybarvi (b) $-3 + 2\lambda x$ (c) $-4 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 144$ (f) $ii: \mathbf{\hat{I}}$ (a) vybarvi (b) $-5 + 2\lambda x$ (c) $-12 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3600$ (f) $iii: \mathbf{\hat{L}}$ (a) vybarvi (b) $-6 + 2\lambda x$ (c) $-8 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 3304$ (f) $ii: \mathbf{A}$ (a) vybarvi (b) $-6 + 2\lambda x$ (c) $-24 + 2\lambda y$ (d) $\lambda_1 + \lambda_2 = 0$ (e) $x_1x_2y_1y_2 = 57600$ (f)		$i: \mathbf{U}$				$+$ λ_2	$x_1x_2y_1y_2 =$	(f) 23 X	
iii: N (a) vybarvi (b) $-6 + 2\lambda x \mathbf{x}$ (c) $8 + 2\lambda y \mathbf{v}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$ (e) $x_1 x_2 y_1 y_2 = 2304 \mathbf{v}$ (f) $iv: \mathbf{A}$ (a) vybarvi (b) $10 + 2\lambda x \mathbf{x}$ (c) $-24 + 2\lambda y \mathbf{x}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{x}$ (f) $i: \mathbf{\hat{z}}$ (a) vybarvi \mathbf{x} (b) $-3 + 2\lambda x \mathbf{v}$ (c) $-4 + 2\lambda y \mathbf{v}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{v}$ (e) $x_1 x_2 y_1 y_2 = 144 \mathbf{x}$ (f) $i: \mathbf{\hat{z}}$ (a) vybarvi \mathbf{x} (b) $5 + 2\lambda x \mathbf{x}$ (c) $-12 + 2\lambda y \mathbf{v}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$ (e) $x_1 x_2 y_1 y_2 = 3600 \mathbf{x}$ (f) $ii: \mathbf{\hat{L}}$ (a) vybarvi \mathbf{v} (b) $-6 + 2\lambda x \mathbf{v}$ (c) $-8 + 2\lambda y \mathbf{v}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$ (e) $x_1 x_2 y_1 y_2 = 3304 \mathbf{x}$ (f) $iv: \mathbf{A}$ (a) vybarvi \mathbf{v} (b) $10 + 2\lambda x \mathbf{x}$ (c) $-24 + 2\lambda y \mathbf{x}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{x}$ (f)	' 'e	$ii:\mathbf{R}$		Ι		(d) $\lambda_1 + \lambda_2 = 0 \mathbf{x}$	$x_1 x_2 y_1 y_2 =$	(f) 174 X	
iv: A (a) vybarvi⁄ (b) $10 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 57600 x$ (f) i: $\dot{\mathbf{Z}}$ (a) vybarvi⁄ (b) $-3 + 2\lambda x \checkmark$ (c) $-4 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \checkmark$ (e) $x_1 x_2 y_1 y_2 = 144 x$ (f) ii: $\dot{\mathbf{I}}$ (a) vybarvi⁄ (b) $5 + 2\lambda x x$ (c) $-12 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 3600 x$ (f) iii: \mathbf{L} (a) vybarvi⁄ (b) $-6 + 2\lambda x \checkmark$ (c) $-8 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 2304 x$ (f) iv: \mathbf{A} (a) vybarvi⁄ (b) $10 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 57600 x$ (f)	Ę	$iii:\mathbf{N}$		I	$8 + 2\lambda y$	$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$		
i: $\dot{\mathbf{Z}}$ (a) vybarvi \mathbf{X} (b) $-3 + 2\lambda x \checkmark$ (c) $-4 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \checkmark$ (e) $x_1 x_2 y_1 y_2 = 144 \mathbf{X}$ (f) ii: $\dot{\mathbf{I}}$ (a) vybarvi $\dot{\mathbf{X}}$ (b) $5 + 2\lambda x \mathbf{X}$ (c) $-12 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 3600 \mathbf{X}$ (f) iii: $\dot{\mathbf{L}}$ (a) vybarvi $\dot{\mathbf{X}}$ (b) $-6 + 2\lambda x \checkmark$ (c) $-8 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 2304 \mathbf{X}$ (f) iv: \mathbf{A} (a) vybarvi $\dot{\mathbf{X}}$ (b) $10 + 2\lambda x \mathbf{X}$ (c) $-24 + 2\lambda y \mathbf{X}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{X}$ (f)		$iv: \mathbf{A}$				$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$		
ii : $\hat{\mathbf{i}}$ (a) vybarvi \mathbf{X} (b) $5 + 2\lambda x \mathbf{X}$ (c) $-12 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 3600 \mathbf{X}$ (f) iii : \mathbf{L} (a) vybarvi \mathbf{V} (b) $-6 + 2\lambda x \mathbf{V}$ (c) $-8 + 2\lambda y \mathbf{V}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 2304 \mathbf{X}$ (f) iv : \mathbf{A} (a) vybarvi \mathbf{V} (b) $10 + 2\lambda x \mathbf{X}$ (c) $-24 + 2\lambda y \mathbf{X}$ (d) $\lambda_1 + \lambda_2 = 0 \mathbf{X}$ (e) $x_1 x_2 y_1 y_2 = 57600 \mathbf{X}$ (f)		$i: \check{\mathbf{Z}}$	1 '			$\lambda_1 + \lambda_2 =$	$x_1 x_2 y_1 y_2 =$		
iii : L (a) vybarvi \((b) \) $-6 + 2\lambda x \checkmark$ (c) $-8 + 2\lambda y \checkmark$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 2304 x$ (f) iv : A (a) vybarvi \((b) \) $10 + 2\lambda x x$ (c) $-24 + 2\lambda y x$ (d) $\lambda_1 + \lambda_2 = 0 x$ (e) $x_1 x_2 y_1 y_2 = 57600 x$ (f)		$ii:\mathbf{i}$			- 1	$\lambda_1 + \lambda_2$	$x_1 x_2 y_1 y_2 =$		
(a) $vybarvi\checkmark$ (b) $10 + 2\lambda x X$ (c) $-24 + 2\lambda y X$ (d) $\lambda_1 + \lambda_2 = 0 X$ (e) $x_1x_2y_1y_2 = 57600 X$ (f)	3	$iii: \mathbf{L}$			I	$\lambda_1 + \lambda_2$	$x_1x_2y_1y_2 =$		
		$iv: \mathbf{A}$			-	$\frac{1}{2}$	$x_1x_2y_1y_2 =$		