- 1. Se sabe que $\ln 2 = \int_{1}^{2} \frac{1}{x} dx$.
 - a) Calcule una aproximación de $\ln 2$ usando el método compuesto del trapecio para 4 subintervalos
 - b) Determine la cantidad de subintervalos necesaria para que el error sea menor que 10^{-6} .
- 2. Se desea aproximar mediante el método compuesto de Simpson la siguiente integral:

$$I = \int_{1}^{3} e^{x} \sin(x) dx.$$

- a) Sabiendo que para la función $f(x)=e^x\sin(x)$ se cumple $|f^{(4)}(x)|<30$ en el intervalo [1,3], encuentre el número de subintervalos n tal que el error de aproximación no sea mayor que 10^{-4} .
- b) Determine el valor aproximado de *I* mediante el método compuesto de Simpson utilizando el número de subintervalos determinado en el ítem anterior.
- 3. Consideremos la integral

$$\mathsf{Si}(b) = \int_{1}^{b} \frac{\sin(x)}{x} dx$$

para b > 1.

- a) Defina una función en Scilab que tenga como entrada un numero b>1 y un número n natural, y como salida el resultado de aproximar $\mathrm{Si}(b)$ por el método compuesto del trapecio con n subintervalos.
- b) Dé algunas aproximaciones tomando distintos valores de b y n = 100.
- c) Sea n=100. Sabiendo que la función $f(x)=\frac{\sin(x)}{x}$ verifica $|f''(x)|\leq 1$ para x>1, determine una cota del error del método compuestro de trapecio en función de b.