Binary classification

Perceptron

An example

An example

- Data : sample of 100 individuals. Two measured variables :
 - Age.
 - Suffering of a cardiac malformation (1) or not (0) Y.
- Goal of the study: has the age an influence on the fact of suffereing from this cardiac malformation.

An example

An example

Comments on the graphic

- Y = 0 seems to be related to youngness whereas Y = 1 seems to be related with oldness.
- Not sufficent to conclude
- Linear Regression : not relevant!!

Logistic Regression

The model

- Y explanatory et X explicative variable.
- Assumptions on observations : observations are independent

The model

- Assumption: conditional distribution of Y = Bernoulli distribution whose parameter p(x) depends on the value x of X.
- Hence

$$\mathbb{P}(Y = y | X = x) = p(x)^{y} (1 - p(x))^{1-y}.$$

The model

- What does the function $x \mapsto p(x)$ look like?
- Properties of *p* :
 - it shoud take values in [0, 1]
 - non decreasing
- General case

$$p(x) = g({}^t \beta x)$$

 $\beta \in \mathbb{R}^p$, g = linear function called the link function.

The logit model

One has

$$g(t) = \frac{\exp(t)}{1 + \exp(t)} .$$

Distribution log-log

• Let

$$g(u) = 1 - e^{-e^u}.$$

One has

$$p(x) = 1 - \exp(-\exp(\beta_0 + \beta_1 x)).$$

- Caracterics of g
 - The cdf associated to g is non symmetric
 - Tails at $-\infty$ and $+\infty$ different.

Logistic Regression

The model

- Same shape for all these functions
- The logit model, ${}^t\beta = (\beta_0, \beta_1)$.
- Two parameters to estimate : β_0 = position, β_1 = scale.
- Properties
 - Variation : if $\beta_1 = 0$, the distribution of explanatory variable does not depend on the explicative variables.
 - if not p is strictly increasing

Le perceptron [Rosenblatt,1958]

Perceptron [Rosenblatt,1958]

Linear prediction function with parameter $w = (w_0, \overline{w}) \in \mathbb{R} \times \mathbb{R}^d$

$$h_w$$
: $\mathbb{R}^d \to \mathbb{R}$
 $x \mapsto < \overline{w}, x > +w_0$

Perceptron [Rosenblatt, 1958]

Linear prediction function with parameter $w = (w_0, \overline{w}) \in \mathbb{R} \times \mathbb{R}^d$

$$h_w$$
: $\mathbb{R}^d \to \mathbb{R}$
 $x \mapsto <\overline{w}, x > +w_0$

Question: can we find the parameters minimizing the distance between misclassified examples and decision boundary

schema-perceptron.png

Learning of perceptron parameters

- Error measure : $L(y_1, y_2) = -y_1 \cdot y_2 1_{\{y_1 \neq y_2\}}$
- Objective function measuring empirical error

$$\widehat{L} = -\sum_{i \in I} y_i \left(< \overline{w}, x_i > + w_0 \right)$$

with I set of the indices of misclassified observations

• Minimization?

Learning of perceptron parameters

Perceptron algorithm

```
Training set S = \{(x_i, y_i), i \in \{1, \dots, m\}\}
Initialize the weights w(0) \leftarrow 0
t \leftarrow 0
Learning rate \eta > 0
repeat
Choose randomly an example (x^{(t)}, y^{(t)}) \in S
if y < w^{(t)}, x^{(t)} < 0 then
w_0 \leftarrow w_0 + \eta \times y^{(t)}
w^{(t+1)} \leftarrow w^{(t)} + \eta \times v^{(t)} \times x^{(t)}
t \leftarrow t + 1
until t > T
```