Lecture-31

Sushrut Tadwalkar; 55554711

November 26, 2023

1 Continuity

1.1 A big picture

Let $(\mathcal{X}, \mathscr{T}_{\mathcal{X}})$, $(\mathcal{Y}, \mathscr{T}_{\mathcal{Y}})$, $(\mathcal{Z}, \mathscr{T}_{\mathcal{Z}})$ be HTS's.

Definition: Continuous

Let $f: \mathcal{X} \to \mathcal{Y}$ be a (single valued mapping). To call f **continuous** (on $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$) means for all $\mathcal{G} \in \mathcal{T}_{\mathcal{Y}}$, $f^{-1}(\mathcal{G}) \in \mathcal{T}_{\mathcal{X}}$, i.e., every open set \mathcal{G} in \mathcal{Y} has an open pre-image $f^{-1}(\mathcal{G}) = \{x \in \mathcal{X} : f(x) \in \mathcal{G}\}$.

Example 1. For any metric space (\mathcal{X}, d) with $p \in \mathcal{X}$, the function $f : \mathcal{X} \to \mathbb{R}$ such that f(x) = d(x, p) is continuous.

Proof sketch. Given open $\mathcal{G} \subseteq \mathbb{R}$, consider $f^{-1}(\mathcal{G})$, a set in \mathcal{X} . E.g., if $\mathcal{G} = (a, b)$, and $a \geq 0$,

$$f^{-1}((a,b)) = \{x \in \mathcal{X} : a < d(x,p) < b\}$$
$$= \mathbb{B}[p;b) \setminus \mathbb{B}[p;a)$$
$$= \mathbb{B}[p;a) \cap (\mathbb{B}[p;a])^c,$$

which is an intersection of two open sets, hence open. Rest of the proof is left as an exercise.

Figure 1: Visualization of the pre-image in the proof above.

Note. Continuity does not allow functions with "holes" to exist: something that you have probably seen before in math 100 or equivalent courses.

Proposition: Continuity and Density

Given $f_1, f_2 : \mathcal{X} \to \mathcal{Y}$ both continuous, and some set $\mathcal{Q} \subseteq \mathcal{X}$,

$$f_1(q) = f_2(q)$$
 for all $q \in \mathcal{Q} \Rightarrow f_1(q) = f_2(q)$ for all $q \in \overline{\mathcal{Q}}$.

Proof. Pick any $x \in \overline{\mathcal{Q}}$ and let $y_1 = f_1(x)$, $y_2 = f_2(x)$. We shall show that $y_1 = y_2$. Pick any open neighbourhoods $\mathcal{U}_1 \in \mathcal{N}(y_1)$, $\mathcal{U}_2 \in \mathcal{N}(y_2)$ such that

$$\Omega_1 = f_1^{-1}(\mathcal{U}_1), \ \Omega_2 = f_2^{-1}(\mathcal{U}_2)$$

are open by continuity. Let $\Omega = \Omega_1 \cap \Omega_2$; clearly $x \in \Omega$, so since $x \in \overline{\mathcal{Q}}$, $\Omega \cap \mathcal{Q} \neq \emptyset$. Thus, $f_1(q) = f_2(q)$, and

Figure 2: Visualization of the proof.

this point lies in $U_1 \cap U_2$. However, this shows that for all $U_1 \in \mathcal{N}(y_1)$, $U_2 \in \mathcal{N}(y_2)$, $U_1 \cap U_2 \neq \emptyset$. Finally, all that remains is to compare HTS: the negation of this reveals that $y_1 = y_2$

1.2 Continuity and Compactness

Theorem

Suppose \mathcal{X} is a *compact* HTS, and $f: \mathcal{X} \to \mathcal{Y}$ is continuous (on \mathcal{X}), then $f(\mathcal{X}) = \{f(x) : x \in \mathcal{X}\}$ is compact in \mathcal{Y} .

Proof. Let \mathscr{G} be an arbitrary open cover for $f(\mathcal{X})$. We construct $\mathscr{G}_0 = \{f^{-1}(\mathcal{G}) : \mathcal{G} \in \mathscr{G}\}$. Each element in \mathscr{G}_0 is open by continuity of f, and clearly each $x \in \mathcal{X}$ is in at least one \mathcal{G} , so \mathcal{G}_0 is an open cover of \mathcal{X} . Compactness of \mathcal{X} guarantees that for some $N \in \mathbb{N}$, $f^{-1}(\mathcal{G}_1)$, $f^{-1}(\mathcal{G}_2)$, ..., $f^{-1}(\mathcal{G}_N)$ form a finite subcover for \mathcal{X} . In turn, this would mean that $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_N$ is an open subcover of $f(\mathcal{X})$ selected from \mathscr{G} .

Note (Consequences). For continuous $f: \mathcal{X} \to \mathcal{Y}$ and $\mathcal{X} \neq \emptyset$ compact,

- (1) If \mathcal{Y} is a metric space, $f(\mathcal{X})$ is closed and compact.
- (2) If $\mathcal{Y} = \mathbb{R}$, then $f(\mathcal{X})$ includes the numbers $\inf f(\mathcal{X}, \sup f(\mathcal{X}), \text{ i.e., } \mathcal{X} \text{ contains points } \underline{x}, \overline{x} \in \mathcal{X} \text{ obeying } f(\underline{x}) \leq f(x) \leq f(\overline{x}), \text{ for all } x \in \mathcal{X}, \text{ where } \underline{x} := \min\{f(x)\}_{x \in \mathcal{X}} \text{ and } \overline{x} := \max\{f(x)\}_{x \in \mathcal{X}}.$

Theorem: Inverse mappings

Suppose \mathcal{X} is compact and $f: \mathcal{X} \to \mathcal{Y}$ is bijective and continuous. Then, $f^{-1}: \mathcal{Y} \to \mathcal{X}$ is continuous.

Proof. For simplicity, let $h = f^{-1}$. To check continuity, we show one of two equivalent statements:

- (i) $h^{-1}(\mathcal{U})$ is open for any open $\mathcal{U} \subseteq \mathcal{X}$.
- (ii) $h^{-1}(\mathcal{C})$ is closed for any closed $\mathcal{C} \subseteq \mathcal{X}$.

For this proof, we will show (ii): if $\mathcal{C} \subseteq \mathcal{X}$ is closed,

$$h^{-1}(\mathcal{C}) = \{ y \in \mathcal{Y} : h(y) \in \mathcal{C} \}$$
$$= \{ y \in \mathcal{Y} : f^{-1}(y) \in \mathcal{C} \}$$
$$= \{ y \in \mathcal{Y} : y \in f(\mathcal{C}) \} = f(\mathcal{C});$$

however, from out hypothesis, C is compact, so f(C) is compact, hence closed.