Exercise 6 – Quantum Gates, Superdense Coding

Problem 1

We denote the *Hadamard gate* as

and the two-qubit controlled phase gate $\Lambda(\mathbf{P})$ acts in the canonical basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ as the diagonal 4×4 matrix

$$\Lambda(\mathbf{P}) = \operatorname{diag}(1, 1, 1, i) \tag{1}$$

and can be denoted by

a) Consider the two-qubit unitary transformations U_1 and U_2 defined by the quantum circuits

$$U_1$$
 = H P

and

$$U_2$$
 = H H

Let $|ab\rangle$ denote the element of the standard basis where a labels the upper qubit in the circuit diagram and b labels the lower qubit. Show that U_1 and U_2 both act trivially on the states

$$|00\rangle$$
, $\frac{1}{\sqrt{3}}(|01\rangle + |10\rangle + |11\rangle)$ (2)

b) Thus U_1 and U_2 act nontrivially only in the two-dimensional space spanned by

$$\left\{ |\phi_1\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle), \quad |\phi_2\rangle = \frac{1}{\sqrt{6}} (|01\rangle + |10\rangle - 2|11\rangle) \right\}. \tag{3}$$

Find U_1 and U_2 in this basis.

Figure 1: Quantum circuit

Problem 2

What is the effect of the quantum circuit depicted in Fig. 1 on the initial states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$?

Problem 3

Suppose Alice wants to send Bob two bits of classical information. Initially, they share an entangled qubit in the state

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle). \tag{4}$$

Alice performs any operation on her qubit and then sends it to Bob. How can she send two bits of classical information to Bob?