MIE524 Data Mining Dimensionality Reduction: SVD

Slides Credits:

Slides from Leskovec, Rajaraman, Ullman (http://www.mmds.org), Leskovec & Ghashami

MIE524: Course Topics (Tentative)

Reducing Matrix Dimension

- Often, our data can be represented by an m-by-n matrix
- And this matrix can be closely approximated by the product of three matrices that share a small common dimension r

- Compress / reduce dimensionality:
 - 10⁶ rows; 10³ columns; no updates
 - Random access to any cell(s); small error: OK

day	We	${f Th}$	\mathbf{Fr}	\mathbf{Sa}	$\mathbf{S}\mathbf{u}$	New
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96	representation
ABC Inc.	1	1	1	0	0	[1 0]
DEF Ltd.	2	2	2	0	0	[2 0]
GHI Inc.	1	1	1	0	0	[1 0]
KLM Co.	5	5	5	0	0	[5 0]
\mathbf{Smith}	0	0	0	2	2	[0 2]
Johnson	0	0	0	3	3	[0 3]
Thompson	0	0	0	1	1	[0 1]

Note: The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

There are hidden, or latent factors, latent dimensions that – to a close approximation – explain why the values are as they appear in the data matrix

The axes of these dimensions can be chosen by:

- The first dimension is the direction in which the points exhibit the greatest variance
- The second dimension is the direction, orthogonal to the first, in which points show the 2nd greatest variance
- And so on..., until you have enough dimensions that variance is really low

Rank is "Dimensionality"

- Q: What is rank of a matrix A?
- A: Number of linearly independent rows of A
- Cloud of points in 3D space:
 - Think of point coordinates

- We can rewrite coordinates more efficiently!
 - Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
 - New basis vectors: [1 2 1] [-2 -3 1]
 - Then A has new coordinates: [1 0], B: [0 1], C: [1 -1]
 - Notice: We reduced the number of dimensions/coordinates!

Goal of dimensionality reduction is to discover the axes of data!

Rather than representing every point with 2 coordinates we represent each point with 1 coordinate (corresponding to the position of the point on the red line).

By doing this we incur a bit of **error** as the points do not exactly lie on the line

SVD: Singular Value Decomposition

Reducing Matrix Dimension

Gives a decomposition of any matrix into a product of three matrices:

- There are strong constraints on the form of each of these matrices
 - Results in a unique decomposition
- From this decomposition, you can choose any number r of intermediate concepts (latent factors) in a way that minimizes the reconstruction error

SVD – Definition

$$\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^\mathsf{T}$$

$$\mathbf{A} \approx \mathbf{M} \mathbf{a} \approx \mathbf{V}^\mathsf{T}$$

- A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- U. Left singular vectors
 - m x r matrix (m documents, r concepts)
- Σ : Singular values
 - r x r diagonal matrix (strength of each 'concept') (r: rank of the matrix A)
- V: Right singular vectors
- n x r matrix (n terms, r concepts)

 1/20/22 n x r matrix (n terms, r concepts)

 1/20/22 n x r matrix (n terms, r concepts)

SVD – Properties

It is **always** possible to decompose a real matrix \boldsymbol{A} into $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}$, where

- **U**, Σ, **V**: unique
- U, V: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- Σ: diagonal
 - Entries (singular values) are non-negative, and sorted in decreasing order $(\sigma_1 \ge \sigma_2 \ge ... \ge 0)$

Nice proof of uniqueness: https://www.cs.cornell.edu/courses/cs322/2008sp/stuff/TrefethenBau Lec4 SVD.pdf

Consider a matrix. What does SVD do?

■ A = U Σ V^T - example: Users to Movies

	Matrix	Alien	Serenit)	Casabla	Amelie	•
	1	1	1	0	0	
SciFi	3	3	3	0	0	
I	4	4	4	0	0	
V	5	5	5	0	0	=
\uparrow	0	2	0	4	4	
Romance	0	0	0	5	5	
\downarrow	0	1	0	2	2	

$$\begin{bmatrix} \mathbf{0.13} & 0.02 & -0.01 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.55} & 0.09 & -0.04 \\ \mathbf{0.68} & 0.11 & -0.05 \\ 0.15 & -\mathbf{0.59} & \mathbf{0.65} \\ 0.07 & -\mathbf{0.73} & -\mathbf{0.67} \\ 0.07 & -\mathbf{0.29} & \mathbf{0.32} \end{bmatrix} \times \begin{bmatrix} \mathbf{12.4} & 0 & 0 \\ 0 & \mathbf{9.5} & 0 \\ 0 & 0 & \mathbf{1.3} \end{bmatrix} \times$$

■ A = U Σ V^T - example: Users to Movies

-0.02 0.12 **-0.69 -0.69**

0.09

-0.80 0.40

• $A = U \sum_{g} V^{T}$ - example:

U is "user-to-concept" factor matrix

SciFi-concept Romance-concept

0.13 0.02 -0.01
0.41 0.07 -0.03
0.55 0.09 -0.04
0.68 0.11 -0.05
0.15 -0.59 0.65
0.07 -0.73 -0.67
0.07 -0.29 0.32

0.56 0.59 0.56 0.09 0.09 0.12 -0.02 0.12 **-0.69 -0.69** 0.40 **-0.80** 0.40 0.09 0.09

• $A = U \Sigma V^T$ - example:

**strength" of the SciFi-concept

(12.4) 0 0 0 0 0 9.5 0 0 0 1.3

• $A = U \Sigma V^T$ - example:

V is "movie-to-concept" factor matrix

$$\begin{array}{c|cccc}
\mathbf{X} & \begin{bmatrix}
\mathbf{12.4} & 0 & 0 \\
0 & \mathbf{9.5} & 0 \\
0 & 0 & \mathbf{1.3}
\end{bmatrix} \quad \mathbf{X}$$

0.56) **0.59 0.56** 0.09 0.09 0.12 -0.02 0.12 **-0.69** -**0.69** 0.40 **-0.80** 0.40 0.09 0.09

Movies, users and concepts:

- U: user-to-concept matrix
- V: movie-to-concept matrix
- Σ: its diagonal elements:
 'strength' of each concept

Dimensionality Reduction with SVD

Movie 1 rating

- Instead of using two coordinates (x, y) to describe point positions, let's use only one coordinate
- Point's position is its location along vector $oldsymbol{v_1}$

• $A = U \Sigma V^T$ - example:

- U: "user-to-concept" matrix
- V: "movie-to-concept" matrix

variance ('spread') on the v₁ axis

1	1	1	0	0
3	3	3	0	0
4	4	4	0	0
5	5	5	0	0
0	2	0	4	4
0	0	0	5	5
0	1	0	2	2

$A = U \Sigma V^{T}$ - example:

 U Σ: Gives the coordinates of the points in the projection axis

Projection of users on the "Sci-Fi" axis $U \Sigma$:

			_
ſ	1.61	0.19	-0.01
	5.08	0.66	-0.03
	6.82	0.85	-0.05
	8.43	1.04	-0.06
	1.86	-5.60	0.84
	0.86	-6.93	-0.87
L	0.86	-2.75	0.41_

More details

Q: How is dim. reduction done?

12.4 0 0 0 9.5 0 0 0 1.3

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

```
\begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 3 \end{bmatrix}
```

```
      0.56
      0.59
      0.56
      0.09
      0.09

      0.12
      -0.02
      0.12
      -0.69
      -0.69

      0.40
      -0.80
      0.40
      0.09
      0.09
```

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

Reconstructed data matrix B

Reconstruction Error is quantified by the Frobenius norm:

$$\|\mathbf{M}\|_{\mathrm{F}} = \sqrt{\Sigma_{ij} \ \mathbf{M}_{ij}}^2$$

$$\|A-B\|_{F} = \sqrt{\sum_{ij} (A_{ij}-B_{ij})^{2}}$$

1/20/22

SVD – Best Low Rank Approx.

- Fact: SVD gives 'best' axis to project on:
 - 'best' = minimizing the sum of reconstruction errors

B is best approximation of **A**:

SVD – Conclusions so far

- SVD: $A = U \Sigma V^T$: unique
 - U: user-to-concept factors
 - **V**: movie-to-concept factors
 - ullet Σ : strength of each concept
- Q: So what's a good value for r (# of latent factors)?
- Let the energy of a set of singular values be the sum of their squares.
- Pick r so the retained singular values have at least 90% of the total energy.
- Back to our example:
 - With singular values 12.4, 9.5, and 1.3, total energy = 245.7
 - If we drop 1.3, whose square is only 1.7, we are left with energy 244, or over 99% of the total

Example of SVD

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space:

Inner product with each 'concept' vector **v**_i

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space:

Inner product with each 'concept' vector **v**_i

Compactly, we have:

$$q_{concept} = q V$$

E.g.:

How would the user d that rated ('Alien', 'Serenity') be handled?

$$d_{concept} = d V$$

E.g.:

$$d = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0.56 & 0.12 \\ 0.59 & -0.02 \\ 0.56 & 0.12 \\ 0.00 & -0.69 \end{bmatrix}$$

SciFi-concept
$$= \begin{bmatrix} 5.2 & 0.4 \end{bmatrix}$$

Observation: User d that rated ('Alien', 'Serenity') will be similar to user q that rated ('Matrix'), although d and q have zero ratings in common!

$$\mathbf{d} = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{SciFi-concept}} \begin{bmatrix} 5.2 & 0.4 \end{bmatrix}$$

$$\mathbf{q} = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Similarity}} \begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$
Zero ratings in common