#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Эзыки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

# Лекция A1 Языки, автоматы

Вадим Пузаренко

18 сентября 2024 г.

# Содержание

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

е-НКА: основные Языки: основные сведения.

ДКА и НКА: основные сведения.

ДКА и НКА: эквивалентность.

## Обозначения

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

- $\omega$  Множество натуральных чисел с нулём.
- 📛 Равенство по определению.
- ⊆ Отношение включения (является подмножеством).
- ⊇ Отношение включения (является надмножеством).
- $\operatorname{card}(X)$  Мощность множества X.



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения **Алфавит.** Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения **Алфавит.** Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Слово непустое. Любая конечная непустая последовательность называется непустой цепочкой (непустым словом). Другими словами, все непустые слова составляют множество  $\Sigma^+ \leftrightharpoons \bigcup_{n \in \omega \setminus \{0\}} \Sigma^n$ . В дальнейшем слово  $(w_1, w_2, \ldots, w_n) (\in \Sigma^n)$  будем записывать как  $w_1 w_2 \ldots w_n$ ,  $n \geqslant 1$ . Часто слова будем обозначать строчными греческими буквами (возможно, с индексами).

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения **Алфавит.** Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Слово непустое. Любая конечная непустая последовательность называется непустой цепочкой (непустым словом). Другими словами, все непустые слова составляют множество  $\Sigma^+ \leftrightharpoons \bigcup_{n \in \omega \setminus \{0\}} \Sigma^n$ . В дальнейшем слово  $(w_1, w_2, \ldots, w_n) (\in \Sigma^n)$  будем записывать как  $w_1 w_2 \ldots w_n$ ,  $n \geqslant 1$ . Часто слова будем обозначать строчными греческими буквами

Слово пустое. Последовательность (единственная) длины нуль называется пустой цепочкой (пустым словом) и обозначается как  $\varepsilon$ . В этом случае  $\Sigma^* \leftrightharpoons \{\varepsilon\} \cup \Sigma^+$ .

(возможно, с индексами).

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения **Алфавит.** Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Слово непустое. Любая конечная непустая последовательность

называется **непустой цепочкой (непустым словом**). Другими словами, все непустые слова составляют множество  $\Sigma^+ \leftrightharpoons \bigcup_{n \in \omega \setminus \{0\}} \Sigma^n$ . В дальнейшем слово  $(w_1, w_2, \ldots, w_n) (\in \Sigma^n)$  будем записывать как  $w_1 w_2 \ldots w_n$ ,  $n \geqslant 1$ . Часто слова будем обозначать строчными греческими буквами

Слово пустое. Последовательность (единственная) длины нуль называется пустой цепочкой (пустым словом) и обозначается как  $\varepsilon$ . В этом случае  $\Sigma^* \leftrightharpoons \{\varepsilon\} \cup \Sigma^+$ .

(возможно, с индексами).

Язык.  $L \subseteq \Sigma^*$  называется языком алфавита  $\Sigma$ .

# Структурные свойства, примеры

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

- Если  $\Sigma = \emptyset$ , то  $\Sigma^* = \{\varepsilon\}$ ; в частности, любой язык пустого алфавита либо пуст, либо состоит лишь из пустого слова.
- ② Если  $\Sigma \neq \emptyset$  конечный алфавит, то  $\Sigma^*$  счётно; в частности, любой язык непустого конечного алфавита не более, чем счётен;
- ② Если  $\Sigma$  бесконечный алфавит, то  $\operatorname{card}(\Sigma^*) = \operatorname{card}(\Sigma)$  (такие языки нас интересовать в курсе не будут).

# Структурные свойства, примеры

Лекция А1 Языки,

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

- Если  $\Sigma = \emptyset$ , то  $\Sigma^* = \{ \varepsilon \}$ ; в частности, любой язык пустого алфавита либо пуст, либо состоит лишь из пустого слова.
- ② Если  $\Sigma \neq \varnothing$  конечный алфавит, то  $\Sigma^*$  счётно; в частности, любой язык непустого конечного алфавита не более, чем счётен;
- ② Если  $\Sigma$  бесконечный алфавит, то  $\operatorname{card}(\Sigma^*) = \operatorname{card}(\Sigma)$  (такие языки нас интересовать в курсе не будут).

## Пример А1.1.

Пусть  $\Sigma=\{0\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^n \leftrightharpoons \underbrace{00\dots 0}$  для подходящего  $n \in \omega$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Пример А1.2.

Пусть  $\Sigma=\{0,1\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^{n_1}1^{m_1}0^{n_2}1^{m_2}\dots0^{n_k}1^{m_k}$  для подходящих  $k\in\omega$  и  $n_1,m_1,n_2,m_2,\dots,n_k,m_k\in\omega$ .

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Пример А1.2.

Пусть  $\Sigma=\{0,1\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^{n_1}1^{m_1}0^{n_2}1^{m_2}\dots 0^{n_k}1^{m_k}$  для подходящих  $k\in\omega$  и  $n_1,m_1,n_2,m_2,\dots,n_k,m_k\in\omega$ .

### Определение А1.1.

Определим операцию **конкатенации** (приписывания) на словах следующим образом: если  $\alpha = w_1w_2\dots w_p, \ \beta = s_1s_2\dots s_q$ , то  $\alpha\hat{\ } = w_1w_2\dots w_ps_1s_2\dots s_q \ (p,q\in\omega).$ 

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Пример А1.2.

Пусть  $\Sigma=\{0,1\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^{n_1}1^{m_1}0^{n_2}1^{m_2}\dots 0^{n_k}1^{m_k}$  для подходящих  $k\in\omega$  и  $n_1,\, n_1,\, n_2,\, m_2,\dots,n_k,\, m_k\in\omega$ .

## Определение А1.1.

Определим операцию **конкатенации** (приписывания) на словах следующим образом: если  $\alpha = w_1 w_2 \dots w_p$ ,  $\beta = s_1 s_2 \dots s_q$ , то  $\alpha \hat{\ } = w_1 w_2 \dots w_p s_1 s_2 \dots s_q$  ( $p, q \in \omega$ ).

## Определение А1.2.

Говорят, что слово  $\beta$  является **(собственным; начальным; собственным начальным)** подсловом слова  $\alpha$  и записывают как  $\beta \sqsubseteq \alpha$  ( $\beta \sqsubset \alpha$ ;  $\beta \sqsubseteq_{\operatorname{beg}} \alpha$ ;  $\beta \sqsubset_{\operatorname{beg}} \alpha$ ), если найдутся слова  $\gamma$  и  $\delta$  такие, что  $\alpha = (\gamma \hat{\ }\beta)\hat{\ }\delta$  (причём  $\gamma \hat{\ }\delta \neq \varepsilon; \ \gamma = \varepsilon; \ \gamma = \varepsilon$  и  $\delta \neq \varepsilon$ ).

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Предложение А1.1.

Пусть  $\Sigma \neq \varnothing$ . Тогда выполняется следующее:

- $\alpha \hat{\epsilon} = \varepsilon \hat{\alpha} = \alpha \ (\alpha \in \Sigma^*);$
- $\alpha^{\hat{}}(\beta^{\hat{}}\gamma) = (\alpha^{\hat{}}\beta)^{\hat{}}\gamma \ (\alpha, \beta, \gamma \in \Sigma^*);$
- ullet если  $\Sigma=\{0\}$ , то  $lpha\hat{}eta=eta\hat{}lpha$  для всех  $lpha,eta\in\Sigma^*$ ;
- если  $\Sigma=\{0,1\}$ , то  $\alpha\hat{\ }eta\neq\beta\hat{\ }lpha$  в общем случае (например, для lpha=0 и eta=1 имеет место  $01\neq10$ ).

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Предложение А1.1.

Пусть  $\Sigma \neq \varnothing$ . Тогда выполняется следующее:

- $\alpha \hat{\epsilon} = \varepsilon \hat{\alpha} = \alpha \ (\alpha \in \Sigma^*);$
- $\alpha^{\hat{}}(\beta^{\hat{}}\gamma) = (\alpha^{\hat{}}\beta)^{\hat{}}\gamma \ (\alpha, \beta, \gamma \in \Sigma^*);$
- ullet если  $\Sigma=\{0\}$ , то  $lpha\hat{}eta=eta\hat{}lpha$  для всех  $lpha,eta\in\Sigma^*$ ;
- если  $\Sigma=\{0,1\}$ , то  $\alpha\hat{\ }\beta\neq\beta\hat{\ }\alpha$  в общем случае (например, для  $\alpha=0$  и  $\beta=1$  имеет место  $01\neq10$ ).

## Примеры А1.3.

- $\alpha_1 = 00, \ \beta_1 = 10 \mapsto \alpha_1 \hat{\beta}_1 = 0010;$
- $\alpha_2 = 001, \ \beta_2 = 0 \mapsto \alpha_2 \hat{\beta}_2 = 0010;$
- **3**  $\alpha_3 = 01$ ,  $\beta_3 = 10 \mapsto \alpha_3 \hat{\beta}_3 = 0110$ ;
- $\alpha_4 = 0, \ \beta_4 = 110 \mapsto \alpha_4 \hat{\beta}_4 = 0110.$

## Слова: длина

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

## Определение А1.3.

Пусть  $\Sigma$  — алфавит. Определим операцию длины  $\mathrm{lh}$  на словах из  $\Sigma^*$  следующим образом:  $\mathrm{lh}(\alpha) \leftrightharpoons n$ , если  $\alpha \in \Sigma^n$   $(n \in \omega \setminus \{0\})$ ;  $\mathrm{lh}(\varepsilon) = 0$ . Фактически данная операция выдаёт количество символов в слове с учётом порядка.

## Слова: длина

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные

## Определение А1.3.

Пусть  $\Sigma$  — алфавит. Определим операцию длины  $\mathrm{lh}$  на словах из  $\Sigma^*$  следующим образом:  $\mathrm{lh}(\alpha) \leftrightharpoons n$ , если  $\alpha \in \Sigma^n$   $(n \in \omega \setminus \{0\})$ ;  $\mathrm{lh}(\varepsilon) = 0$ . Фактически данная операция выдаёт количество символов в слове с учётом порядка.

### Замечание А1.1.

Отметим, что имеет место равенство  $\mathrm{lh}(\alpha_1\hat{\ }\alpha_2) = \mathrm{lh}(\alpha_1) + \mathrm{lh}(\alpha_2)$  для любых слов  $\alpha_1$ ,  $\alpha_2 \in \Sigma^*$ . В частности, если  $\alpha \sqsubseteq \beta$ , то  $\mathrm{lh}(\alpha) \leqslant \mathrm{lh}(\beta)$ ; если же  $\alpha \sqsubseteq \beta$ , то  $\mathrm{lh}(\alpha) < \mathrm{lh}(\beta)$ , как только  $\alpha, \beta \in \Sigma^*$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Определение А1.4.

Определим операцию **обращения** на  $\Sigma^*$  следующим образом: если  $\alpha = w_1 w_2 \dots w_n$ , то  $\alpha^R \leftrightharpoons w_n \dots w_2 w_1$ .

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

## Определение А1.4.

Определим операцию **обращения** на  $\Sigma^*$  следующим образом: если  $\alpha = w_1 w_2 \dots w_n$ , то  $\alpha^R \leftrightharpoons w_n \dots w_2 w_1$ .

### Определение А1.5.

Пусть  $\Sigma = \{0,1\}$  и пусть  $w \in \Sigma$ ; тогда положим

$$\overline{w} = \begin{cases} 0, & \text{если } w = 1; \\ 1, & \text{если } w = 0. \end{cases}$$

Определим теперь операцию **инверсии** на словах из  $\Sigma^*$  следующим образом: если  $\alpha = w_1 w_2 \dots w_n (\in \{0,1\}^*)$ , то  $\overline{\alpha} = \overline{w}_1 \overline{w}_2 \dots \overline{w}_n$ .

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Определение А1.4.

Определим операцию **обращения** на  $\Sigma^*$  следующим образом: если  $\alpha = w_1 w_2 \dots w_n$ , то  $\alpha^R \leftrightharpoons w_n \dots w_2 w_1$ .

### Определение А1.5.

Пусть  $\Sigma = \{0,1\}$  и пусть  $w \in \Sigma$ ; тогда положим

$$\overline{w} = egin{cases} 0, & ext{ если } w = 1; \ 1, & ext{ если } w = 0. \end{cases}$$

Определим теперь операцию **инверсии** на словах из  $\Sigma^*$  следующим образом: если  $\alpha = w_1 w_2 \dots w_n (\in \{0,1\}^*)$ , то  $\overline{\alpha} = \overline{w}_1 \overline{w}_2 \dots \overline{w}_n$ .

## Примеры А1.4.

$$\alpha_2 = abba \mapsto \alpha_2^R = abba = \alpha_2;$$

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

## Примеры А1.5.

$$\beta_1 = 1010 \mapsto \beta_1^R = 0101;$$

$$\beta_1 = 1010 \mapsto \overline{\beta_1} = 0101;$$

$$\beta_2 = 101 \mapsto \beta_2^R = 101;$$

$$\beta_3 = 110 \mapsto \beta_3^R = 011;$$

$$\beta_3 = 110 \mapsto \overline{\beta_3} = 001.$$

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Примеры А1.5.

$$\beta_1 = 1010 \mapsto \beta_1^R = 0101;$$

$$\beta_1 = 1010 \mapsto \overline{\beta_1} = 0101;$$

$$\beta_2 = 101 \mapsto \beta_2^R = 101;$$

$$\beta_3 = 110 \mapsto \beta_3^R = 011;$$

$$\beta_3 = 110 \mapsto \overline{\beta_3} = 001.$$

## Сокращение.

Пусть a — буква; тогда через  $a^n$  будем обозначать слово  $\underbrace{aa\dots a}_n$   $(n\in\omega)$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

## Предложение А1.2.

Пусть  $\Sigma \neq \varnothing$ . Тогда выполняется следующее:

- $a^R = a \ (a \in \Sigma)$ ;
- $(\alpha^R)^R = \alpha \ (\alpha \in \Sigma^*);$
- $(\alpha^{\hat{}}\beta)^R = \beta^{R\hat{}}\alpha^R \ (\alpha, \beta \in \Sigma^*);$
- ullet если  $\Sigma=\{0\}$ , то  $lpha^R=lpha$  для всех  $lpha\in\Sigma$ ;
- если  $\Sigma = \{0, 1\}$ , то  $\alpha^R \neq \alpha$  в общем случае (например, для  $\alpha = 01$  имеет место  $\alpha^R = 10 \neq 01 = \alpha$ );
- $\overline{\alpha \widehat{\beta}} = \overline{\alpha} \widehat{\beta} \ (\alpha, \beta \in \{0, 1\}^*);$
- $\overline{\alpha^R} = \overline{\alpha}^R \ (\alpha \in \{0, 1\}^*).$



Языки:

Языки: основные сведения

дка: основные сведения

ε-НКА: основные сведения Будем считать, что заранее зафиксирован алфавит  $\Sigma$ , и все рассматриваемые языки  $L_1$ ,  $L_2$  и L являются языками данного алфавита.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения Будем считать, что заранее зафиксирован алфавит  $\Sigma$ , и все рассматриваемые языки  $L_1$ ,  $L_2$  и L являются языками данного алфавита.

## Теоретико-множественные.

- **①**  $L_1, L_2 \mapsto L_1 \cup L_2$  (объединение);
- 2  $L_1$ ,  $L_2 \mapsto L_1 \cap L_2$  (пересечение);
- $lacksymbol{3}$   $L_1, L_2 \mapsto L_1 \setminus L_2$  (разность);
- **②**  $L \mapsto \Sigma^* \setminus L$  (дополнение).

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения Будем считать, что заранее зафиксирован алфавит  $\Sigma$ , и все рассматриваемые языки  $L_1$ ,  $L_2$  и L являются языками данного алфавита.

### Теоретико-множественные.

- **1**  $L_1, L_2 \mapsto L_1 \cup L_2$  (объединение);
- 2  $L_1$ ,  $L_2 \mapsto L_1 \cap L_2$  (пересечение);

## Структурные (основные).

- **1**  $L_1, L_2 \mapsto L_1L_2 = \{\alpha_1 \hat{\alpha}_2 \mid \alpha_1 \in L_1, \alpha_2 \in L_2\}$  (конкатенация языков);
- ②  $L\mapsto L^*=\{\alpha_1\hat{\ }\alpha_2\hat{\ }\dots\hat{\ }\alpha_n\mid \alpha_i\in L,\, 1\leqslant i\leqslant n,\, n\in\omega\}$  (звездочка Клини);
- ③  $L\mapsto L^+=\{\alpha_1\hat{\ }\alpha_2\hat{\ }\dots\hat{\ }\alpha_n\mid \alpha_i\in L,\ 1\leqslant i\leqslant n,\ n\in\omega\setminus\{0\}\}$  (плюс Клини).

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Структурные (доп.)

- **1**  $L\mapsto L^R=\{\alpha^R\mid \alpha\in L\}$  (обращение языка);
- ②  $L\mapsto \overline{L}=\{\overline{\alpha}\mid \alpha\in L\}$  (инверсия языка; только при  $\Sigma=\{0;1\}$ ).

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

сведенияarepsilon-НКА:

ε-НКА: основны∈ сведения

## Структурные (доп.)

- $\bullet$   $L \mapsto L^R = \{\alpha^R \mid \alpha \in L\}$  (обращение языка);
- ②  $L\mapsto \overline{L}=\{\overline{\alpha}\mid \alpha\in L\}$  (инверсия языка; только при  $\Sigma=\{0;1\}$ ).

## Примеры А1.6.

Пусть 
$$\Sigma = \{0; 1\}, \ L_1 = \{\underbrace{00...0}_{n} | n \in \omega\}, \ L_2 = \{0^{\hat{}}\underbrace{11...1}_{n} | n \in \omega\};$$

### тогда

- $L_1 \cap L_2 = \{0\};$
- $L_1L_2 = \{0^{n} 1^m | n \in \omega \setminus \{0\}, m \in \omega\};$
- $L_1^R = L_1$ ,  $L_2^R = \{1^{n} \, {}^{\circ} \, 0 | n \in \omega \}$ ;
- $\overline{L_1} = \{1^n | n \in \omega\}, \overline{L_2} = \{1^0 | n \in \omega\}.$

## Предложение А1.3.

Пусть  $\Sigma \neq \varnothing$  — конечный алфавит (при рассмотрении инверсии  $\Sigma = \{0,\,1\}$ ) и пусть  $L_1,\,L_2,\,L\subseteq \Sigma^*.$  Тогда выполняется следующее:

- $L\varnothing = \varnothing L = \varnothing$ ;
- $(L_1L_2)^R = L_2^RL_1^R$ ;
- $(L^R)^R = L$ ;
- $(L^*)^* = L^* = (L^*)^+$ ;
- $(L^+)^+ = L^+$ ;
- ullet если  $\mathrm{L}_1\subseteq\mathrm{L}_2$ , то  $\mathrm{L}_1^*\subseteq\mathrm{L}_2^*$ ;
- $\bullet \ \overline{\overline{L}} = L;$
- $\bullet \ \overline{L_1L_2} = \overline{L_1} \, \overline{L_2}.$

# ДКА: определение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

є-НКА: основные

## Определение А1.6.

Двухосновная структура  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  называется **детерминированным конечным автоматом (ДКА)**, если она удовлетворяет следующим условиям:

- ullet Q 
  eq arnothing конечное множество состояний;
- $\Sigma \neq \varnothing$  конечный алфавит;
- $Q \cap \Sigma = \emptyset$ ;
- ullet  $\delta: Q imes \Sigma o Q$  функция перехода;
- $q_0 \in Q$  начальное состояние;
- $F \subseteq Q$  множество конечных состояний.

# Способы задания ДКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой ДКА может быть представлен в виде конечного ориентированного помеченного мультиграфа, возможно, с петлями, в котором из каждой вершины, обозначающей состояние, исходит ровно одна стрелка, помеченная буквой алфавита  $\Sigma$ , согласно его функции перехода. При этом помечаются также и вершины этого мультиграфа для того, чтобы можно было отличить начальное, а также конечные состояния от остальных.

# Способы задания ДКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой ДКА может быть представлен в виде конечного ориентированного помеченного мультиграфа, возможно, с петлями, в котором из каждой вершины, обозначающей состояние, исходит ровно одна стрелка, помеченная буквой алфавита  $\Sigma$ , согласно его функции перехода. При этом помечаются также и вершины этого мультиграфа для того, чтобы можно было отличить начальное, а также конечные состояния от остальных.

### Табличный.

Любой ДКА однозначно задаётся таблицей, описывающей функцию перехода, в которой определённым образом выделяются начальное состояние, а также конечные состояния.

# ДКА: пример

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $\varepsilon$ -НКА:

Пример А1.7.

|                       | 0     | 1     |
|-----------------------|-------|-------|
| $\triangleright q_0*$ | $q_0$ | $q_1$ |
| $q_1$                 | $q_1$ | $q_2$ |
| <b>q</b> <sub>2</sub> | $q_2$ | $q_0$ |

# Как работает ДКА?

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

∈-НКА: основные сведения Пусть заданы детерминированный конечный автомат  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  и слово  $\alpha=a_1a_2\dots a_n$ , где  $n\in\omega$ . Для того, чтобы переработать данное слово заданным автоматом, необходимо проделать следующую процедуру:

- t=0: в момент t=0 находимся в состоянии  $q_0$  (в частности, если  $\alpha=arepsilon$ , то в состоянии  $q_0$  завершаем работу);
- $t\mapsto t+1$ : предположим, что в момент времени t находимся в состоянии q(t); тогда в момент t+1 мы попадаем в состояние  $q(t+1)=\delta(q(t),a_{t+1});$
- Завершение. Если после полной переработки слова  $\alpha$  мы попадаем в конечное состояние, а именно,  $q(n) \in F$ , то слово  $\alpha$  распознается автоматом  $\mathfrak{A}$ ; в противном случае слово  $\alpha$  им не распознается.

# ДКА: функция перехода

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

є-НКА: основные

## Определение А1.7.

Определим обобщённую функцию перехода  $\delta^*: Q \times \Sigma^* \to Q$ , расширяющую  $\delta: Q \times \Sigma \to Q$ , индукцией по длине слова  $\alpha$  следующим образом:

- $\delta^*(q,\varepsilon) = q$ ;
- $\delta^*(q, \alpha \hat{a}) = \delta(\delta^*(q, \alpha), a)$ .

# ДКА: функция перехода

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

-НКА: основные

## Определение А1.7.

Определим обобщённую функцию перехода  $\delta^*: Q \times \Sigma^* \to Q$ , расширяющую  $\delta: Q \times \Sigma \to Q$ , индукцией по длине слова  $\alpha$  следующим образом:

- $\delta^*(q,\varepsilon) = q$ ;
- $\delta^*(q, \alpha \hat{a}) = \delta(\delta^*(q, \alpha), a)$

## Определение А1.8.

Язык, распознаваемый ДКА  $\mathfrak{A}, -$  это

$$L(\mathfrak{A}) = \{ \alpha \in \Sigma^* \mid \delta^*(q_0, \alpha) \in F \}.$$

# Языки, распознаваемые ДКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основныю сведения Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$ .

### Предложение А1.2.

- 1) Пустой язык распознаваем некоторым ДКА.
- 2) Язык  $\Sigma^*$  распознаваем некоторым ДКА.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$ .

### Предложение А1.2.

- 1) Пустой язык распознаваем некоторым ДКА.
- 2) Язык  $\Sigma^*$  распознаваем некоторым ДКА.

### Доказательство.

1) Покажем, что автомат

 $\mathfrak{A}_1=(\{q_0\};\Sigma;\{((q_0,a),q_0)\mid a\in\Sigma\},q_0,\varnothing)$  распознаёт пустой язык. В самом деле, для любого  $\alpha\in\Sigma^*$  имеем

$$\delta^*(q_0,\alpha)=q_0\not\in\varnothing=F$$
.

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$ .

### Предложение А1.2.

- 1) Пустой язык распознаваем некоторым ДКА.
- 2) Язык  $\Sigma^*$  распознаваем некоторым ДКА.

### Доказательство.

- 1) Покажем, что автомат
- $\mathfrak{A}_1=(\{q_0\};\Sigma;\{((q_0,a),q_0)\mid a\in\Sigma\},q_0,\varnothing)$  распознаёт пустой язык. В самом деле, для любого  $\alpha\in\Sigma^*$  имеем
- $\delta^*(q_0,\alpha)=q_0\not\in\varnothing=F$ .
- 2) Покажем, что автомат
- $\mathfrak{A}_2=(\{q_0\};\Sigma;\{((q_0,a),q_0)\mid a\in\Sigma\},q_0,\{q_0\})$  распознаёт  $\Sigma^*$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем
- $\delta^*(q_0, \alpha) = q_0 \in \{q_0\} = F$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Предложение А1.3.

- 1) Язык  $\{arepsilon\}$  распознаваем некоторым ДКА.
- 2) Для любого  $a \in \Sigma$  язык  $\{a\}$  распознаваем некоторым ДКА.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Предложение А1.3.

- 1) Язык  $\{arepsilon\}$  распознаваем некоторым ДКА.
- 2) Для любого  $a \in \Sigma$  язык  $\{a\}$  распознаваем некоторым ДКА.

## Доказательство.

1) Покажем, что автомат

$$\mathfrak{A}_3=(\{q_0,q_1\};\Sigma;\{((q,a),q_1)\mid q\in Q,\, a\in \Sigma\},q_0,\{q_0\})$$
 распознаёт язык  $\{arepsilon\}.$  В самом деле, для любого  $\alpha\in\Sigma^+$  имеем

$$\delta^*(q_0,lpha)=q_1
ot\in\{q_0\}= extstyle{F}$$
 , a  $\delta^*(q_0,arepsilon)=q_0\in\{q_0\}= extstyle{F}$  .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Предложение А1.3.

- 1) Язык  $\{arepsilon\}$  распознаваем некоторым ДКА.
- 2) Для любого  $a \in \Sigma$  язык  $\{a\}$  распознаваем некоторым ДКА.

## Доказательство.

1) Покажем, что автомат

$$\mathfrak{A}_3=(\{q_0,q_1\};\Sigma;\{((q,a),q_1)\mid q\in Q,\, a\in \Sigma\},q_0,\{q_0\})$$
 распознаёт

язык  $\{arepsilon\}$ . В самом деле, для любого  $lpha\in\Sigma^+$  имеем

$$\delta^*(q_0, lpha) = q_1 
ot\in \{q_0\} = \mathsf{F}$$
, a  $\delta^*(q_0, arepsilon) = q_0 \in \{q_0\} = \mathsf{F}$ .

2) Покажем, что автомат

$$\mathfrak{A}_4 = (\{q_0, q_1, q_2\}; \Sigma; \{((q_0, a), q_1), ((q_1, a), q_2), ((q_2, a), q_2)\} \cup \{((q, b), q_2) \mid 2 \neq b \in \Sigma, q \in Q\}, q_2 \in Q\}$$

 $\{((q,b),q_2)\mid a\neq b\in \Sigma,\ q\in Q\}, q_0,\{q_1\})$  распознаёт  $\{a\}$ . В самом деле, для любого  $\alpha\in \Sigma^+$   $(\alpha\neq a)$  имеем

$$\delta^*(q_0,lpha)=q_2
ot\in\{q_1\}=F$$
; кроме того,

$$\delta^*(q_0,a)=\delta(q_0,a)=q_1\in\{q_1\}=F$$
 и

$$\delta^*(q_0,\varepsilon)=q_0\not\in\{q_1\}=F$$
.

# Дополнение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Теорема А1.1.

Если язык L конечного алфавита  $\Sigma \neq \varnothing$  распознаётся некоторым ДКА, то и его дополнение  $\Sigma^* \setminus L$  также распознаётся некоторым ДКА.

# Дополнение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Теорема А1.1.

Если язык L конечного алфавита  $\Sigma \neq \varnothing$  распознаётся некоторым ДКА, то и его дополнение  $\Sigma^* \setminus L$  также распознаётся некоторым ДКА.

### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $L=L(\mathfrak{A})$ . Покажем, что его дополнение распознаётся автоматом  $\mathfrak{A}'\leftrightharpoons(Q;\Sigma;\delta,q_0,Q\setminus F)$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\alpha\in L(\mathfrak{A}')\Leftrightarrow \delta^*(q_0,\alpha)\in Q\setminus F\Leftrightarrow \delta^*(q_0,\alpha)\not\in F\Leftrightarrow \alpha\not\in L(\mathfrak{A})$ .

# Дополнение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Теорема А1.1.

Если язык L конечного алфавита  $\Sigma \neq \varnothing$  распознаётся некоторым ДКА, то и его дополнение  $\Sigma^* \setminus L$  также распознаётся некоторым ДКА.

### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $L=L(\mathfrak{A})$ . Покажем, что его дополнение распознаётся автоматом  $\mathfrak{A}' \leftrightharpoons (Q;\Sigma;\delta,q_0,Q\setminus F)$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\alpha\in L(\mathfrak{A}') \Leftrightarrow \delta^*(q_0,\alpha)\in Q\setminus F \Leftrightarrow \delta^*(q_0,\alpha)\not\in F \Leftrightarrow \alpha\not\in L(\mathfrak{A})$ .  $\square$ 

### Замечание А1.2.

Отметим, что все атрибуты (количество состояний и, следовательно, переходов) остаются неизменными при переходе от автомата  $\mathfrak A$  к автомату  $\mathfrak A'$  в теореме A1.1.

# Инверсия



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

∈-НКА: основные сведения

## Теорема А1.2.

Если язык L алфавита  $\Sigma=\{0;1\}$  распознаётся некоторым ДКА, то и его инверсия  $\overline{L}$  также распознаётся некоторым ДКА.

# Инверсия

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

є-НКА: основные

## Теорема А1.2.

Если язык L алфавита  $\Sigma=\{0;1\}$  распознаётся некоторым ДКА, то и его инверсия  $\overline{L}$  также распознаётся некоторым ДКА.

### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $\mathrm{L}=\mathrm{L}(\mathfrak{A})$ . Покажем, что его инверсия распознаётся автоматом  $\mathfrak{A}'\leftrightharpoons(Q;\Sigma;\tau,q_0,F)$ , где  $\tau\leftrightharpoons\{((q,\overline{a}),q')\mid ((q,a),q')\in\delta\}$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\tau^*(q,\overline{\alpha})\in F\Leftrightarrow\delta^*(q,\alpha)\in F$ , что нетрудно доказывается индукцией по длине слова  $\alpha$ . Таким образом,  $\mathrm{L}(\mathfrak{A}')=\overline{\mathrm{L}(\mathfrak{A})}$ .

# Инверсия

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основныю сведения

## Теорема А1.2.

Если язык L алфавита  $\Sigma=\{0;1\}$  распознаётся некоторым ДКА, то и его инверсия  $\overline{L}$  также распознаётся некоторым ДКА.

### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $\mathrm{L}=\mathrm{L}(\mathfrak{A})$ . Покажем, что его инверсия распознаётся автоматом  $\mathfrak{A}'\leftrightharpoons(Q;\Sigma;\tau,q_0,F)$ , где  $\tau\leftrightharpoons\{((q,\overline{a}),q')\mid ((q,a),q')\in\delta\}$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\tau^*(q,\overline{\alpha})\in F\Leftrightarrow\delta^*(q,\alpha)\in F$ , что нетрудно доказывается индукцией по длине слова  $\alpha$ . Таким образом,  $\mathrm{L}(\mathfrak{A}')=\overline{\mathrm{L}(\mathfrak{A})}$ .

### Замечание А1.3.

Отметим, что все атрибуты (количество состояний и, следовательно, переходов) остаются неизменными при переходе от автомата  $\mathfrak A$  к автомату  $\mathfrak A'$  в теореме A1.2.

## $\varepsilon$ -НКА: определение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Определение А1.9.

Двухосновная структура  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  называется недетерминированным конечным автоматом с  $\varepsilon$ -переходами ( $\varepsilon$ -НКА), если она удовлетворяет следующим условиям:

- $Q \neq \varnothing$  конечное множество состояний;
- $\Sigma \neq \varnothing$  конечный алфавит;
- $Q \cap \Sigma = \emptyset$ ;
- ullet  $\delta: Q imes (\Sigma \cup \{arepsilon\}) o \mathcal{P}(Q)$  функция перехода;
- ullet arnothing
  eq arnothing arno
- $F \subseteq Q$  множество конечных состояний.

# Способы задания $\varepsilon$ -НКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой  $\varepsilon$ -НКА может быть представлен в виде конечного ориентированного помеченного мультиграфа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита  $\Sigma \cup \{\varepsilon\}$ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из  $\Sigma \cup \{\varepsilon\}$ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого мультиграфа для того, чтобы можно было отличить начальные (ещё одно отличие — их может быть несколько!!!), а также конечные состояния от остальных.

# Способы задания $\varepsilon$ -НКА

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

arepsilon- НКА: основные сведения

### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой  $\varepsilon$ -НКА может быть представлен в виде конечного ориентированного помеченного мультиграфа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита  $\Sigma \cup \{\varepsilon\}$ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из  $\Sigma \cup \{\varepsilon\}$ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого мультиграфа для того, чтобы можно было отличить начальные (ещё одно отличие — их может быть несколько!!!), а также конечные состояния от остальных.

### Табличный.

Любой  $\varepsilon$ -НКА однозначно задаётся таблицей, описывающей функцию перехода, в которой определенным образом выделяются начальные, а также конечные состояния.

# $\varepsilon$ -НКА: пример

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

## Пример А1.8.

|                      | 0             | 1         | $\varepsilon$ |
|----------------------|---------------|-----------|---------------|
| $\triangleright q_0$ | $\{q_0,q_1\}$ | $\{q_0\}$ | Ø             |
| $q_1$                | $\{q_2\}$     | Ø         | Ø             |
| <b>q</b> 2*          | $\{q_3\}$     | $\{q_2\}$ | $\{q_0\}$     |
| <b>q</b> 3*          | Ø             | Ø         | Ø             |

# Как работает $\varepsilon$ -НКА?

#### Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения Пусть заданы недетерминированный конечный автомат с arepsilon-переходами

 $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  и слово  $\alpha=a_1a_2\ldots a_n$ , где  $n\in\omega$ . Для того, чтобы переработать данное слово заданным автоматом, необходимо проделать следующую процедуру:

- t=0: в момент t=0 находимся в одном из состояний из  $Q_0$ ; при этом считаем обработанным слово  $\varepsilon$ ;
- $t\mapsto t+1$ : предположим, что в момент времени t находимся в состоянии q(t); при этом переработано слово  $a_1a_2\dots a_{t'}$ , где  $t'\leqslant t$ ; тогда в момент t+1 мы попадаем либо в состояние  $q(t+1)\in \delta(q(t),a_{t'+1})$  (при этом считаем обработанным слово  $a_1a_2\dots a_{t'}a_{t'+1})$ , либо в состояние  $q(t+1)\in \delta(q(t),\varepsilon)$  (при этом считаем обработанным слово  $a_1a_2\dots a_{t'}$ );
- Завершение. Если после полной переработки слова  $\alpha$ , а также возможно некоторого количества  $\varepsilon$ -переходов после этого, мы попадаем в конечное состояние, а именно,  $q(n') \in F$   $(n' \geqslant n)$ , то слово  $\alpha$  распознается автоматом  $\mathfrak{A}$ ; если никакая последовательность не приводит в конечное состояние, то слово  $\alpha$  им не распознается.

## arepsilon-HKA: распознаваемые слова

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основны сведени:

### Определение А1.10.

Пусть задан  $\varepsilon$ -НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ . Пусть также  $\alpha=w_1w_2\dots w_n\in\Sigma^*$   $(n\in\omega)$ . Будем говорить, что слово  $\alpha$  распознаётся  $\varepsilon$ -НКА  $\mathfrak{A}$ , если найдутся состояния  $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^{k_n},\,r_n^1,\,\dots,\,r_n^{k_n}\in Q$ , удовлетворяющие следующим условиям:

- $r_0^0 \in Q_0$ ;
- $r_i^{j+1} \in \delta(r_i^j, \varepsilon)$ ;  $i, j \in \omega$ ,  $0 \leqslant j < k_i$ ,  $0 \leqslant i \leqslant n+1$ ;
- $r_{i+1}^0 \in \delta(r_i^{k_i}, w_{i+1}); i \in \omega, 0 \leqslant i < n;$
- $r_n^{k_n} \in F$ .

## arepsilon-HKA: распознаваемые слова

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основны сведения

### Определение А1.10.

Пусть задан  $\varepsilon$ -НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ . Пусть также  $\alpha=w_1w_2\dots w_n\in\Sigma^*$   $(n\in\omega)$ . Будем говорить, что слово  $\alpha$  распознаётся  $\varepsilon$ -НКА  $\mathfrak{A}$ , если найдутся состояния  $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^0,\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^n,\,r_n^1,\,\dots,\,r_n^{k_n}\in Q$ , удовлетворяющие следующим условиям:

- $r_0^0 \in Q_0$ ;
- $r_i^{j+1} \in \delta(r_i^j, \varepsilon)$ ;  $i, j \in \omega$ ,  $0 \leqslant j < k_i$ ,  $0 \leqslant i \leqslant n+1$ ;
- $r_{i+1}^0 \in \delta(r_i^{k_i}, w_{i+1}); i \in \omega, 0 \leqslant i < n;$
- $r_n^{k_n} \in F$ .

## Определение А1.11.

Язык, распознаваемый  $\varepsilon$ -НКА  $\mathfrak{A}$ , — это  $L(\mathfrak{A}) = \{ \alpha \in \Sigma^* \mid \alpha \text{ распознается } \mathfrak{A} \}.$ 

# ДКА $\Rightarrow \varepsilon$ -НКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения Теорема А1.3.

Для любого ДКА  $\mathfrak A$  существует arepsilon-НКА  $\mathfrak A'$  такой, что  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A')$ .

# ДКА $\Rightarrow \varepsilon$ -НКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

### Теорема А1.3.

Для любого ДКА  $\mathfrak A$  существует arepsilon-НКА  $\mathfrak A'$  такой, что  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A')$ .

### Доказательство.

 $\alpha \in L(\mathfrak{A}')$ .

Пусть задан ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ . Определим  $\varepsilon$ -НКА  $\mathfrak{A}' \leftrightharpoons (Q;\Sigma;\tau,\{q_0\},F)$  так, что  $\tau\leftrightharpoons \{((q,a),\{\delta(q,a)\})\mid q\in Q,a\in \Sigma\}\cup\{((q,\varepsilon),\varnothing)\mid q\in Q\}$ , и покажем, что  $L(\mathfrak{A})=L(\mathfrak{A}')$ .  $L(\mathfrak{A})\subseteq L(\mathfrak{A}')$ . Пусть  $\alpha=w_1w_2\dots w_n\in \Sigma^*$  таково, что имеет место  $\alpha\in L(\mathfrak{A})$ , т. е.  $\delta^*(q_0,\alpha)\in F$ . Рассмотрим последовательность  $r_0=q_0=\delta^*(q_0,\varepsilon)$ ,  $r_1=\delta(r_0,w_1)=\delta^*(q_0,w_1)$ ,  $r_2=\delta(r_1,w_2)=\delta^*(q_0,w_1w_2)$ , ...,  $r_n=\delta(r_{n-1},w_n)=\delta^*(q_0,w_1w_2\dots w_n)=\delta^*(q_0,\alpha)$  состояний; она удовлетворяет определению распознаваемости слова  $\alpha$  автоматом  $\mathfrak{A}'$ , поскольку  $r_0\in\{q_0\}$ ,  $r_{i+1}=\delta(r_i,w_{i+1})\in\{\delta(r_i,w_{i+1})\}=\tau(r_i,w_{i+1})$  и  $r_n\in F$ ; таким образом,

## ДКА $\Rightarrow \varepsilon$ -НКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

## Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A}')\subseteq \mathbf{L}(\mathfrak{A})$ . Пусть теперь  $\alpha=w_1w_2\dots w_n\in \mathbf{L}(\mathfrak{A}')$ ; так как  $\mathfrak{A}'$  не содержит  $\varepsilon$ -переходов, найдётся последовательность состояний  $r_0=q_0,\ r_1,\ r_2,\ \dots,\ r_n\in F$ , для которой справедливы условия  $r_{i+1}\in \tau(r_i,w_{i+1})=\{\delta(r_i,w_{i+1})\}$ . Далее, индукцией по длине слова доказывается, что  $r_0=\delta^*(q_0,\varepsilon)$ ,  $r_i=\delta^*(q_0,w_1w_2\dots w_i),\ 1\leqslant i\leqslant n$ ; в частности,  $r_n=\delta^*(q_0,w_1w_2\dots w_n)=\delta^*(q_0,\alpha)\in F$ ; тем самым,  $\alpha\in \mathbf{L}(\mathfrak{A})$ .

ε-НКΑ: основные сведения

## Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A}')\subseteq \mathbf{L}(\mathfrak{A}).$  Пусть теперь  $\alpha=w_1w_2\dots w_n\in \mathbf{L}(\mathfrak{A}');$  так как  $\mathfrak{A}'$  не содержит  $\varepsilon$ -переходов, найдётся последовательность состояний  $r_0=q_0,\ r_1,\ r_2,\ \dots,\ r_n\in F,$  для которой справедливы условия  $r_{i+1}\in \tau(r_i,w_{i+1})=\{\delta(r_i,w_{i+1})\}.$  Далее, индукцией по длине слова доказывается, что  $r_0=\delta^*(q_0,\varepsilon),$   $r_i=\delta^*(q_0,w_1w_2\dots w_i),\ 1\leqslant i\leqslant n;$  в частности,  $r_n=\delta^*(q_0,w_1w_2\dots w_n)=\delta^*(q_0,\alpha)\in F;$  тем самым,  $\alpha\in \mathbf{L}(\mathfrak{A}).$ 

### Замечание А1.4.

Теорема A1.3 носит чисто теоретический характер и демонстрирует, что любой детерминированный конечный автомат может рассматриваться, как частный случай недетерминированного конечного автомата с  $\varepsilon$ -переходами.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения Спасибо за внимание.