$$V = hx^2$$
 volume
 $108 = x^2 + 4hx$ Surface area

$$V = \left(\frac{108 - x^2}{4}\right) x^2 = 27x - \frac{x^3}{4}$$

2)
$$S = y + 2x$$

3) Reduce: use
$$xy = 288 \Rightarrow y = 288 x^{-1}$$

So $S = 288 x^{-1} + 2x$

x = ± 12.

5)
$$\frac{dS}{dx} = -288 \times^{-2} + 2$$

$$0 = 2 - 288 \times^{2}$$

$$x^{2} = 144$$

Ex) An ecologist has 500 meters of fencing for a Study plot. What should the dimensions be to maximize the enclosed area?

$$2) A = xy$$

3)
$$500 = 2x + 2y$$

 $y = 250 - x$

So
$$A = x(250-x)$$

= $250x-x^2$

4)
$$x,y>0 \Rightarrow 250-x>0$$

 $x<250$

5)
$$\frac{dA}{dx} = 250 - 2x$$

 $0 = 250 - 2x$
 $x = 125$
 $y = 250 - x$
 $= 250 - 125$
 $= 125$