**DAYLIGHTING ANALYSIS** 

Building Performance & Simulation Fall 2016

Bhakti Kothari

## **Base Case**



### Conclusion:

#### Potential Problem:

- 1. Not enough Daylight throughout the year, so this can be worked upon.
- 2. Worst glare situations need to be worked upon.

#### Findings:

- Room with a single East facing window.
- What is seen here, as can be noted in the results below, the study desk does not receive enough daylighting.
- Excess glare seen in June.
- Only 1 external surface where the size of the openings can be worked upon.



## Window Glazing Options



- Based on Annual daylight analysis,
- Option 1 & 2
   cannot be
   considered as not
   enough daylight at
   the rear end of the
   room.
- Option 3 is optimum as
- Option 4 causes extreme daylight over a larger area, resulting in glare.



## Window size **Iterations**



## Option 1

- · Reducing the size of the window, reduces the glare but not significantly.
- Most part of the room still requires adequate daylight.



## Option 3

 The daylight reading is significantly better but can be made even better.



0: illuminance 21 MAR 9:00





0: illuminance 21 DEC 9:00



0: illuminance 21 MAR 9:00



0: illuminance 21 JUN 9:00



21 DEC 9:00





0: illuminance 21 JUN 12:00



21 DEC 12:00



0: illuminance 21 MAR 12:00



0: illuminance 21 JUN 12:00





0: illuminance 21 MAR 15:00





0: illuminance 21 DEC 15:00



- Increasing the size of the window, helps in improving the daylight results in the mid room section.
- Daylight can be made better and glare needs to be managed.







21 DEC 9:00



0: illuminance 21 MAR 12:00



0: illuminance 21 JUN 12:00





0: illuminance 21 JUN 15:00





0: illuminance 21 MAR 15:00



0: illuminance 21 JUN 15:00



0: illuminance 21 DEC 15:00



Option 4

- Daylight readings better in this option, thus can be taken forward.
- High glare as a result of bigger area of window, solutions to be worked to reduce this discomfort.



0: illuminance 21 MAR 9:00



21 JUN 9:00





0: illuminance 21 MAR 12:00



0: illuminance 21 JUN 12:00





0: illuminance

0: illuminance

21 MAR 15:00



21 DEC 15:00

# Window shading Iterations



## **Shading Option 1:**

- As seen in the results, compared to the base results, the daylight readings improved till the middle part of the room.
- As this is the only external wall and the size of the window is the largest (amongst the iterations), it is suggested to move the study desk.
- As for the high glare seen in the reading specifically for 21 June 9 a.m., internal blinds can be installed to manage the same.















- The glare
  accounted here
  with the
  proposed
  shading system
  remains
  between
  perceptible glare
  to imperceptible
  glare.
- The readings indicate that the shading system helps retain glare below disturbing and intolerant glare.























