This is CS50

algorithms

linear search

For i from 0 to n-1 If i'th element is 50

Return true

Return false

binary search

```
Return true

Else if 50 < middle item

Search left half

Else if 50 > middle item

Search right half
```

If middle item is 50

```
If no items

If middle item is 50
    Return true

Else if 50 < middle item
    Search left half

Else if 50 > middle item
    Search right half
```

```
If no items

Return false

If middle item is 50

Return true

Else if 50 < middle item

Search left half

Else if 50 > middle item

Search right half
```


size of problem

 $O(n^2)$

 $O(n \log n)$

O(*n*)

 $O(\log n)$

O(1)

 $O(n^2)$

 $O(n \log n)$

O(n) linear search

 $O(\log n)$

O(1)

 $O(n^2)$

 $O(n \log n)$

O(n) linear search

O(log *n*) binary search

O(1)

Ω

 $\Omega(n^2)$

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$

 $\Omega(n^2)$

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search

 $\Omega(n^2)$

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

int numbers[]

string name;

string number;

```
typedef struct
{
    string name;
    string number;
}
person;
```


unsorted → — output

unsorted → → sorted

6 3 8 5 2 7 4 1

bubble sort

Swap them

If i'th and i+1'th elements out of order

Repeat n-1 times

For i from 0 to n-2

Swap them

If i'th and i+1'th elements out of order

Repeat n-1 times

For i from 0 to n-2

$$(n-1)\times(n-1)$$

$$n^2 - 1n - 1n + 1$$

$$(n-1) \times (n-1)$$

 $n^2 - 1n - 1n + 1$

 $n^2 - 2n + 1$

$$(n-1) \times (n-1)$$

 $n^2 - 1n - 1n + 1$

 $n^2 - 2n + 1$

 $O(n^2)$

 $O(n^2)$

 $O(n \log n)$

O(n) linear search

O(log *n*) binary search

O(1)

 $O(n^2)$ bubble sort

 $O(n \log n)$ linear search

 $O(\log n)$ binary search

O(*n*)

O(1)

Ω

Swap them

If i'th and i+1'th elements out of order

Repeat n-1 times

For i from 0 to n-2

 $\Omega(n^2)$

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

 $\Omega(n^2)$ bubble sort

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

selection sort

6 3 8 5 2 7 4 1

For	i from 0 to n-1									
	Find	smallest	item	betwee	n i'th	item	and	last	item	
	Swap	smallest	item	with i	th it	em				

For	i from 0 to n-1									
	Find	smallest	item	betwee	n i'th	item	and	last	item	
	Swap	smallest	item	with i	th it	em				

n + (n-1) + (n-2) + ... + 1

n + (n-1) + (n-2) + ... + 1n(n + 1)/2

$$n + (n - 1) + (n - 2) + \dots + 1$$

 $n(n + 1)/2$

 $(n^2 + n)/2$

$$n + (n-1) + (n-2) + ... + 1$$

 $n(n + 1)/2$
 $(n^2 + n)/2$
 $n^2/2 + n/2$

$$n + (n - 1) + (n - 2) + ... + 1$$

 $n(n + 1)/2$
 $(n^2 + n)/2$
 $n^2/2 + n/2$
 $O(n^2)$

 $O(n^2)$ bubble sort

 $O(n \log n)$ linear search

 $O(\log n)$ binary search

O(*n*)

O(1)

 $O(n^2)$ bubble sort, selection sort

 $O(n \log n)$ O(n) linear search

O(log *n*) binary search

O(log II) billary search

O(1)

Ω

For	i from 0 to n-1										
	Find	smallest	item	betwee	n i'th	item	and	last	item		
	Swap	smallest	item	with i	th it	em					

 $\Omega(n^2)$ bubble sort

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search $\Omega(n^2)$ bubble sort, selection sort

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

bubble sort

Swap them

If i'th and i+1'th elements out of order

Repeat n-1 times

For i from 0 to n-2

If i'th and i+1'th elements out of order

Repeat until no swaps

For i from 0 to n-2

Swap them

 $\Omega(n^2)$ bubble sort, selection sort

 $\Omega(n \log n)$

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

 $\Omega(n^2)$ selection sort

 $\Omega(n \log n)$

bubble sort

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

elections

recursion

```
Pick up phone book
    Open to middle of phone book
2
    Look at page
3
    If Smith is on page
4
5
        Call Mike
    Else if Smith is earlier in book
6
        Open to middle of left half of book
8
        Go back to line 3
9
    Else if Smith is later in book
        Open to middle of right half of book
10
        Go back to line 3
11
12
    Else
        Quit
13
```

```
Pick up phone book
    Open to middle of phone book
2
    Look at page
3
    If Smith is on page
4
5
        Call Mike
    Else if Smith is earlier in book
6
        Open to middle of left half of book
8
        Go back to line 3
9
    Else if Smith is later in book
        Open to middle of right half of book
10
        Go back to line 3
11
12
    Else
        Quit
13
```

```
Pick up phone book
    Open to middle of phone book
2
    Look at page
3
    If Smith is on page
4
5
        Call Mike
    Else if Smith is earlier in book
6
        Open to middle of left half of book
8
9
    Else if Smith is later in book
        Open to middle of right half of book
10
11
    Else
12
        Quit
13
```

```
Pick up phone book
    Open to middle of phone book
2
    Look at page
3
    If Smith is on page
4
        Call Mike
5
    Else if Smith is earlier in book
6
        Search left half of book
8
    Else if Smith is later in book
9
        Search right half of book
10
11
    Else
12
13
        Quit
```

```
Pick up phone book
    Open to middle of phone book
2
    Look at page
3
    If Smith is on page
4
        Call Mike
5
    Else if Smith is earlier in book
6
        Search left half of book
8
    Else if Smith is later in book
9
        Search right half of book
10
11
    Else
12
13
        Quit
```

```
Pick up phone book
    Open to middle of phone book
2
    Look at page
3
    If Smith is on page
4
5
        Call Mike
    Else if Smith is earlier in book
6
        Search left half of book
    Else if Smith is later in book
8
        Search right half of book
9
10
    Else
11
        Quit
```


merge sort

```
Else

Sort left half of items

Sort right half of items

Merge sorted halves
```

If only one item

Return

```
If only one item
Return
```

Else

Sort left half of items
Sort right half of items
Merge sorted halves

7 5 2 6 3 8 1

4

. 7

5 6 3 8 1

4 7 2

4 7 2 5

4 7 2 5

5

2 4 5

3 6

3 6

3 6 1 8

3 6 1 8

3 6 8

2 4 5 7 1

2 4 5 7 1

2 4 5 7 1 3 6 8

2 4 5 7 1 3 6 8

2 4 5 7 3 6 8

4 5 7 3 6 8

1 2 3

4 5 7

1 2 3 4

5 7

 1
 2
 3
 4
 5

 1
 2
 3
 4
 5
 6

1 2 3 4 5 6 7 8

7	4	5	2	6	3	8	1
4	7	2	5	3	6	1	8
2	4	5	7	1	3	6	8

7	4	5	2	6	3	8	1
4	7	2	5	3	6	1	8
2	4	5	7	1	3	6	8
1	2	3	4	5	6	7	8

 $O(n^2)$ bubble sort, selection sort

 $O(n \log n)$ O(n) linear search

O(log *n*) binary search

O(log II) billary search

O(1)

 $O(n^2)$ bubble sort, selection sort

 $O(n \log n)$ merge sort

O(n) linear search

O(log n) binary search

O(1)

 $\Omega(n^2)$ selection sort

 $\Omega(n \log n)$

bubble sort

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

 $\Omega(n^2)$ selection sort

 $\Omega(n \log n)$ merge sort

bubble sort

 $\Omega(n)$

 $\Omega(\log n)$

 $\Omega(1)$ linear search, binary search

 $\Theta(n^2)$

 $\Theta(n \log n)$

 $\Theta(n)$

 $\Theta(\log n)$

Θ(1)

 $\Theta(n^2)$ selection sort

 $\Theta(n \log n)$ merge sort

 $\Theta(n)$

 $\Theta(\log n)$

Θ(1)

This is CS50