

GMM Diffusion: Gaussian Mixture Masks for Diffusion Models

Chang Liu, Karim Habashy, Peter Yuchen Pan, Hadi Sepanj University of Waterloo

Motivation

- Diffusion models require significant computation and training time
- Our method proposes 2 novel modifications to allow small diffusion models generate similar quality images to their larger counterparts

Previous Work

- FreeU: Reweight U-Net's skip connections and backbone feature maps for diffusion models to improve image generation quality [1]
- •GMM: Gaussian Mixture Masks applied to Retentive Networks [3]
- U-ViT: ViT-based architecture for diffusion models [2]

Proposed Methods

To the best of our knowledge, our work is the first to apply both Gaussian Mixture Mask and U-Net scale factors to diffusion models.

Specifically, our work is novel in 2 following ways.

- 1. Gaussian mixture mask
- Proposes Gaussian mixture mask to boost image generation capabilities for small dataset with almost zero additional parameters and computational cost
- Learn 2 parameters to implicitly generate Gaussian mixture mask on the attention heads

$$\operatorname{GMMAttention}(Q,K,V) = \operatorname{Softmax}\left(\frac{QK^T}{\sqrt{d_k}} \circ M\right)V$$

- 2. Skip connections during inference
- Re-scales U-Net's skip connection feature maps and backbone feature maps to improve image quality without additional training or finetuning
- Adjusts 2 scaling factors (scaling backbone based on averaged feature maps and scaling long skip connections across different decoder blocks).

References

- [1] C. Si, Z. Huang, Y. Jiang, and Z. Liu, "FreeU: Free Lunch in Diffusion U-Net," https://arxiv.org/pdf/2309.11497.pdf, Sep. 2023.
- [2] F. Bao et al., "All are worth words: A VIT backbone for diffusion models," 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023. doi:10.1109/cvpr52729.2023.02171
- [3] C. Li and C. Zhang, Toward a deeper understanding: Retnet viewed through convolution, 2023. doi:10.2139/ssrn.4637493

GMM Diffusion: Gaussian Mixture Masks for Diffusion Models

Chang Liu, Karim Habashy, Peter Yuchen Pan, Hadi Sepanj *University of Waterloo*

Motivation

- fusion models require significal computation and training time Our method proposes 2 novel
- models generate similar quality images diffusion modifications to allow small

to their larger counterparts

Previous Work

- connections backbone feature maps for diffusion models to improve image generation Free U: Reweight U-Net's skip quality [1] and
- applied •GMM: Gaussian Mixture Masks Retentive Networks [3]
 - diffusio •U-ViT: ViT-based architecture for models [2]

Proposed Methods

$$\operatorname{GMMAttention}(Q,K,V) = \operatorname{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\circ M\right)V$$

- To the best of our knowledge, our work is the first to apply both Gaussian Mixture Mask and U-Net scale factors to diffusion models.

 Specifically, our work is novel in 2 following ways.

 1. Gaussian mixture mask

 Proposes Gaussian mixture mask to boost image generation capabilities for small dataset with almost zero additional parameters and computational cost to implicitly generate Gaussian mixture mask on the attention heads

 GMMAttention(Q, K, V) = Softmax $\left(\frac{QK^T}{\sqrt{dk}} \circ M\right)V$ 2. Skip connections during inference

 Re-scales U-Net's skip connection feature maps and backbone feature mage quality without additional training or finetuning

 Adjusts 2 scaling factors (scaling backbone based on averaged feature maps and scaling long skip connections across different decoder blocks).

Model Architecture

Model 1: b=1.0, s=1.0

Model 2: b=1.3, s=1.0

Model 3: b=1.0, s=0.8

References

- et," "Free U: Free Lunch in Diffusion and Jiang, [1] C. Si, Z. Huang, Y.
 - https://arxiv.org/pdf/2309.11497.pdf, Sep. 2023.
- diffusion models," 2023 IEEE/CVF (oi:10.1109/cvpr52729.2023.02171 doi:10 for 2023. backbone (CVPR), Recognition Computer Vision and Pattern "All are Bao *et al.*,
 - 2023. ugh convolution, viewed thro Retnet understanding: [3] C. Li and C. Zhang, *Towar* doi:10.2139/ssrn.4637493

