

ANTICIPEZ LES BESOINS EN CONSOMMATION ÉLECTRIQUE DE BÂTIMENTS

Encadrant: Bertrand Beaufils

Evaluateur: Mohammed Sedki

SOMMAIRE

- 1. Présentation de la problématique de la ville de Seattle
- 2. Pré-traitement
- 3. Modélisations
- 4. Sélection du modèle finale
- 5. Conclusion

Présentation de la problématique de la ville de Seattle

Données de consommation disponibles pour les bâtiments de la ville de Seattle pour les années 2015 et 2016

- > Objectif:
- Prédire les émissions de CO2 et la consommation en énergie des bâtiments :
 - Selon deux modèles différents
- Evaluer l'intérêt de l'ENERGY STAR Score*:
- Comparaison de son intérêt en essayant de modéliser avec et sans

ENERGY STAR Score *: Indicateur qui refléter les performances énergétiques d'un bâtiment

DataYear

PropertyGFABuilding(s)

PropertyGFAParking

PropertyGFATotal

YearBuilt

Neighborhood

ComplianceStatus

PropertyName

PrimaryPropertyType

BuildingType

CouncilDistrictCode

DefaultData

TaxParcelIdentificationNumber

NumberofFloors

NumberofBuildings

SiteEnergyUse(kBtu)
SiteEnergyUseWN(kBtu)

SiteEUIWN(kBtu/sf)

SiteEUI(kBtu/sf)

SteamUse(kBtu)

SourceEUIWN(kBtu/sf)

SourceEUI(kBtu/sf)

NaturalGas(kBtu)

Electricity(kWh)

GHGEmissionsIntensity

NaturalGas(therms) Electricity(kBtu)

ListOfAllPropertyUseTypes

LargestPropertyUseTypeGFA

 ${\tt LargestPropertyUseType}$

Longitude

City

Latitude

Address

State

TotalGHGEmissions

ZipCode

ENERGYSTARScore

SecondLargestPropertyUseTypeGFA

 ${\tt SecondLargestPropertyUseType}$

ThirdLargestPropertyUseType

 ${\tt ThirdLargestPropertyUseTypeGFA}$

Supprimer les features inutiles

Année des données, ville, nom de la propriété, address, données de la police (SPD Beats) et d'aures..

Sélectionner les variables cibles

- Emissions des bâtiments
- Consommation totale des bâtiments

Suppression de features de consommation et d'émissions pour éviter la fuite d'information.

Imputation des valeurs manquantes

Colonnes numériques

- LargestPropertyUseTypeGFA
- -Second Largest Property Use Type GFA
- -ThirdLargestPropertyUseTypeGFA

En remplacent les NaNs par la valeur moyennes de «PrimaryPropertyType »

One Hot Encoding (OHE)

Pour le variable BuildingType :

x0_Campus	x0_Multifamily HR (10+)	x0_Multifamily LR (1-4)	x0_Multifamily MR (5-9)	x0_NonResidential	x0_Nonresidential COS	x0_SPS- District K-12
0.0	0.0	0.0	0.0	1.0	0.0	0.0
0.0	0.0	0.0	0.0	1.0	0.0	0.0
0.0	0.0	0.0	0.0	1.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	1.0
0.0	0.0	0.0	0.0	0.0	0.0	1.0

Pour le variable PrimaryPropertyType :

x1_Distribution Center	X1_High- Rise Multifamily	x1_Hotel	X1_K- 12 School	x1_Laboratory		x1_Low-Rise Multifamily		x1_Mid-Rise Multifamily	x1_Mixed Use Property	x1_Non- Refrigerated >> Warehouse
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Nombre de catégorie est plus élevés

GridSearchCV —— Cross validation —— CV= 5

			Train set	Modèle 1	Modèle 2		
Split 1	Val	Train	Train	Train	Train	$R^2 = 0.92$	$R^2 = 0.91$
Split 2	Train	Val	Train	Train	Train	0.88	0.90
Split 3	Train	Train	Val	Train	Train	0.89	0.91
Split 4	Train	Train	Train	Val	Train	0.93	0.92
Split 5	Train	Train	Train	Train	Val	0.86	0.80
						0.89	0.92

Bagging

Random forest

Boosting

Gradient Boosting XGBoost

Les hyperparamètres pour le modelé de consommation

Best hyperparamètres

ElasticNet()

Alpha: [0.0001, 0.001, 0.01, 0.1, 1, 10] L1_ratio: np.arange(0.0, 1.0, 0.1)

{'alpha': 0.1, 'l1_ratio': 0.1}

RandomForestRegressor (n_estimators=500,random_state=123)

max_depth : [5,10,15,20]

max_features : ['auto', 'sqrt','log2']

min_samples_leaf : [1,3,5,10]

1 grid_Rforest.best_params_ {'max depth': 15, 'max features': 'sqrt', 'min samples leaf': 1}

SVR()

gamma: [1e-2, 1e-3, 1e-4, 1e-5]

epsilon: [0.001, 0.01, 0.1, 1],

C: [0.001, 0.10, 0.1, 10, 25, 50,100]

1 svm_grid1.best_params_
{'C': 10, 'epsilon': 0.1, 'gamma': 0.01}

XGBRegressor(n_jobs=-1)

n_estimators : [10,50,100,500,1000,2000]

learning_rate : [1,0.1,0.01,0.001,0.0001]

1 xgb_grid.best_params_
{'learning_rate': 0.01, 'n_estimators': 2000}

Pour le modelé de consommation

Comparaison des modèles

		Modèle	Score_RMSE	Score_R2	Score_MAE
0	Elasticn	et Regression	-0.471677	0.614404	-0.523044
0	Random For	est Regressor	-0.304071	0.751636	-0.392674
0	Support Vec	tor Regressor	-0.341532	0.720614	-0.415541
0		XGBoost	-0.306144	0.750251	-0.395958

Temps de prédiction pour chaque modelé :

```
1 %timeit svm_grid3.predict(X_test)

10 loops, best of 3: 132 ms per loop

1 %timeit grid_Rforest3.predict(X_test)

10 loops, best of 3: 98.9 ms per loop

1 %timeit grid_elastic3.predict(X_test)

The slowest run took 6.76 times longer than the fastest. 10000 loops, best of 3: 159 μs per loop

1 %timeit xgb_grid3.predict(X_test)

10 loops, best of 3: 40.9 ms per loop
```


Pour le modelé de consommation

Le modelé finale sélectionnée est le :

XGBoost

```
1 xgb_grid.best_params_
{'learning_rate': 0.01, 'n_estimators': 2000}
```

Meilleur score de validation en consommation (RMSE= 0,96)

Pour le modelé d'émissions

Prédiction de GHGEmissions Intensity

		Modèle	Score_RMSE	Score_R2	Score_MAE
		elastic net	-1.121810	0.295098	-0.848687
	Random forest		-0.933967	0.411795	-0.720923
Support Vector Regressor			-1.105281	0.304620	-0.785931
		XGBoost	-0.967772	0.390858	-0.749866

Temps de prédiction pour chaque modelé :

```
1 %timeit svm_grid_1.predict(XTest)
10 loops, best of 3: 132 ms per loop

1 %timeit xgb_grid_1.predict(XTest)
10 loops, best of 3: 42.7 ms per loop

1 %timeit grid_Rforest_1.predict(XTest)
10 loops, best of 3: 79.8 ms per loop

1 %timeit grid_elastic_1.predict(XTest)
The slowest run took 19.97 times longer than the fastest.
10000 loops, best of 3: 150 μs per loop
```


Pour le modelé d'émissions

Le modelé finale sélectionnée est le :

XGBoost

```
1 xgb_grid.best_params_
{'learning_rate': 0.01, 'n_estimators': 2000}
```

Meilleur score de validation en émission (RMSE= 0,96)

1 xgb_grid_E.best_params_ Pour le modelé d'émissions 1 xgb grid E.best score {'learning_rate': 0.01, 'n_estimators': 2000} -0.8660695968525746 1 %timeit xgb grid E.predict(X Test) Avec Energy star score 10 loops, best of 3: 41.4 ms per loop XGB - Importance des Features Comparaison des emissions prédictes et réels x1_Low-Rise Multifamily x0_NonResidential ListOfAllPropertyUseTypes LargestPropertyUseType ultifamily HR (10+) -ENERGYSTARScore -YearBuilt x0 Multifamily LR (1-4) x1_High-Rise Multifamily x1 Non-Refrigerated Warehouse x1 Other x0 Campus SecondLargestPropertyUseTypeGFA LargestPropertyUseTypeGFA NumberofFloors x0 Nonresidential COS x1_Warehouse x1_Mixed Use Property x1 Retail Store x1_Small- and Mid-Sized Office SecondLargestPropertyUseType PropertyGFAParking PropertyGFATotal ThirdLargestPropertyUseTypeGFA PropertyGFABuilding(s) OSEBuildingID ThirdLargestPropertyUseType x1 Senior Care Community x1 K-12 School x1 Medical Office NumberofBuildings xl Laboratory x0 SPS-District K-12 x1_Supermarket/Grocery Store x1_Self-Storage Facility x1_Restaurant x1 Distribution Center x1 Residence Hall x1 Refrigerated Warehouse x1 Mid-Rise Multifamily x1 Large Office x1 Hotel x0 Multifamily MR (5-9) x1 Worship Facility 0.02 0.04 0.08 0.10 0.12 0.14 0.16 0.06 log GHGEmissionsIntensity 21 Features importances

Conclusion

- Le modèle final retenu pour la prédiction de consommation est le XGBoost entraîné sur toutes les features (avec energy star score) et avec les paramètres optimal suivants: {'learning_rate': 0.01, 'n_estimators': 2000}
- Le modèle finale retenu pour la prédiction d'émissions est XGBoost entraîné sur toutes les features (avec energy star score), et avec les paramètres optimal suivants: {'learning_rate': 0.01, 'n_estimators': 3000

> Intérêt du ENERGY STAR Score

Modèle	XGBoost(sans ESS)	XGBoost(avec ESS)	
Consommation	-0.3	-0.24	
Emission	-0.96	-0.86	

Améliore la performance du modelé

Merci pour votre attention