Dimensionality Reduction

Principle Component Analysis

PCA (Principal Component Analysis) is a dimensionality reduction technique used in machine learning and data analysis.

It helps simplify large datasets by **reducing the number of features** (by finding linear combinations of features) while **keeping most of the important information**.

```
def pcaFeature(indep_X, dep_Y, n):
 pca = PCA(n_components=n)
 fit = pca.fit(indep_X)
 pca_features = fit.transform(indep_X)
 return pca_features
```

- o pca = PCA(n_components=n) **n principal components** (the most important features).
- PCA will compress the data into n new dimensions while retaining most of the important information.
- o fit = pca.fit(indep_X) PCA learn the structure of the data
- o pca_features = fit.transform(indep_X) **transforms the original data** into new PCA features (the principal components).

resu #3	lt						
	Logistic	SVMI	SVMnI	KNN	Navie	Decision	Random
PCA	0.82	0.83	0.81	8.0	0.77	0.87	0.84
resu #4	lt						
	Logistic	SVMI	SVMnI	KNN	Navie	Decision	Random
PCA	0.83	0.8	0.84	0.81	0.77	0.87	0.85
resu	lt						
""							
	Logistic	SVMI	SVMnl	KNN	Navie	Decision	Random
PCA	Logistic 0.83						
	0.83						
PCA	0.83	0.83	0.87	0.87	0.81		0.86

Summary:

- ❖ As the number of PCA components increases from **3 to 6**, the accuracy of all classifiers consistently improves.
- **SVM (non-linear)** shows the highest accuracy with 6 components.
- ❖ The best results are achieved with 6 components.

Linear Discriminent Analysis

LDA (Linear Discriminant Analysis) is a supervised dimensionality reduction technique.

It reduces the number of features using class labels (target variable) to keep the most important information for classification.

```
def ldaFeature(indep_X, dep_Y, n):
 lda = LDA(n_components=n)
 fit = lda.fit(indep_X, dep_Y)
 lda_features = fit.transform(indep_X)
 return lda_features
```

- o Ida = LDA(n_components=n) how many new features (components) to be extracted
- o fit = Ida.fit(indep_X, dep_Y) learn how to separate the data based on dep_Y.

```
lda_data = ldaFeature(indep_X, dep_Y, 1)
```

If our target variable dep_Y has:

2 classes (e.g. yes/no or 0/1),
 → then n_classes - 1 = 1
 ✓ So n_components can only be 1.

If we try to set n=3, we will get error. So here we are giving only one value.

```
result #1
```

	Logistic	SVMI	SVMnl	KNN	Navie	Decision	Random
LDA	0.98	0.98	0.98	0.98	0.98	0.99	0.99

Summary:

- ❖ All models performed exceptionally well after applying **LDA**, achieving **98–99**% accuracy.
- **❖ Decision Tree and Random Forest** shows **0.99** accuracy, making them the topperforming classifiers.
- This means that LDA successfully simplified the data by reducing the number of features, while still keeping the important differences between the classes clear and easy to separate.

Kernel Principal Component Analysis

Kernel Principal Component Analysis (Kernel PCA) is an extension of standard Principal Component Analysis (PCA) that uses kernel methods to perform non-linear dimensionality reduction.

Traditional PCA can only capture linear relationships in data, Kernel PCA can capture complex, non-linear patterns.

```
def kpcaFeature(indep_X, dep_Y, n):
kpca = KernelPCA(n_components=n, kernel='rbf')
kpca_features = kpca.fit_transform(indep_X)
return kpca_features
```

- o n_components=n: Specifies how many principal components you want to keep.
- o kernel='rbf': Chooses the Radial Basis Function (Gaussian kernel) for non-linear mapping.

result	t						
	Logistic	SVMI	SVMnl	KNN	Navie	Decision	Random
KPCA	0.64	0.64	0.64	0.58	0.39	0.68	0.68
result #4	t						
	Logistic	SVMI	SVMnl	KNN	Navie	Decision	Random
KPCA	0.64	0.64	0.64	0.51	0.39	0.68	0.67
result #5	t						
	Logistic	SVMI	SVMnI	KNN	Navie	Decision	Random
KPCA	0.64	0.64	0.64	0.53	0.39	0.68	0.65
result	t						
#6							
#6	Logistic	SVMI	SVMnI	KNN	Navie	Decision	Random

Summary:

- **❖ Logistic Regression, SVM** (linear and nonlinear), and **Decision Tree** models have consistent scores around 0.64–0.69 across runs.
- ❖ Naive Bayes and KNN performed very low.
- ❖ Decision Tree and Random Forest shows the highest performance reaching up to 0.68 or 0.69.