电路分析基础 Fundamentals of Circuit Analysis

●课程作用

- >科学类向工程类转变的第一门课程;
- >介绍分析电路的基本方法;
- >介绍和后续课程相关的基本概念;
- ▶课程结构(见下页)

●课程结构

电路 模拟电 信号与 数字电 子学 系统 子学 通信 电力电子 (高 微电子(集 成芯片) (高功率) 频率) 通信 系统 信号 处理 电力 控制 计算

第一章电路分析的基本概念

本章知识点

- 1-1 实际电路和电路模型
- 1-2 电路分析的变量
- 1-3 电路元件
- 1-4 基尔霍夫定律
- 1-5 单回路及单节偶电路

实际电路组成与功能

手电筒电路

●手电筒电路

(a)实际电路(b)电原理图(c)电路模型(d)拓扑结构图

●晶体管放大电路

(a)实际电路(b)电原理图(c)电路模型(d)拓扑结构图

●实际器件与理想元件

- ▶实际器件
 有大小、尺寸,代表多种电磁现象
- ▶理想元件

假想元件,没有大小和尺寸,即它的特性表现在空间的一个点上,仅代表一种电磁现象。

•实际电感元件的理想模型

●集总参数元件

理想元件	符号	图形	反映特性
电阻	R		消耗电能
电容	C		贮存电场能
电感	L		贮存磁场能
互感	M		贮存磁场能

●电路分析的理论基础

> 集总参数电路

电器器件的几何尺寸远远小于其上通过的电压、电流的波长时,其元件特性表现在一个点上。有时也称为集中参数电路。

分布参数电路电器器件的几何尺寸与其上通过的电压、电流的波长属同一数量级。

●*关于集总参数电路条件的说明

* 参考课件:清华大学《电路原理》于歆杰

例2 晶体管调频收音机最高工作频率约 108MHz。问该收音机的电路是集中参数电路还是分布参数电路?

解: 频率为108MHz周期信号的波长为

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{108 \times 10^6} = 2.78$$
m

几何尺寸d<<2.78M的收音机电路应视 为集中参数电路。

