1. DEFINIÇÃO

Química Orgânica é a parte da Química que estuda os compostos do elemento carbono.

2. HISTÓRICO

Os compostos orgânicos são manipulados pelo homem desde a mais remota antigüidade, porém, somente em 1828, o homem conseguiu, por meio de WOHLER, produzir um composto orgânico em laboratório: a uréia.

$$NH_4CNO \xrightarrow{\Delta} O = C \xrightarrow{NH_2} NH_2$$
cianato de amônio uréia

3. POSTULADOS DE KEKULÉ

- b) As quatro valências do carbono são iguais.
- c) Os átomos de carbono podem ligar-se entre si:

Encadeamento

4. PRINCIPAIS ELEMENTOS ORGANÓGENOS E SUAS VALÊNCIAS

Elemento	Valência	Possibilidade de ligações
Carbono	tetravalente	-c->c=-c= =c=
hidrogênio	monovalente	H—
Oxigênio e enxofre	bivalente	-o- o=
Nitrogênio e fósforo	trivalente	-NN=N=
halogênios	monovalente	F — CI — Br — I —

5. LIGAÇÕES ENTRE ÁTOMOS DE CARBONO

Como sabemos, o elemento carbono, principalmente, apresenta a ligação covalente.

a) Simples ligação:
$$-\stackrel{|}{C}-\stackrel{|}{C}-\stackrel{|}{C}-$$

Tipos de carbono	Ligações σe π	Hibridação	Ângulos	Forma geométrica	Exemplos
simples	4σ e Oπ	sp ³	109°28'	espacial tetraédrica	CH4 H
uma dupla $\sigma = \frac{\sigma}{\sigma}$	3σ e 1π	sp ²	120°	plana trigonal ou triangular	C_2H_4 $C=C$ $C=C$
tripla $ \frac{\sigma}{\sigma} \mathbb{C} \stackrel{\pi}{=} \sigma $ duas duplas $ \frac{\sigma}{\overline{\sigma}} \mathbb{C} \stackrel{\sigma}{=} \overline{\pi} $	2σ e 2π	sp	180°	linear	C_2H_2 H-C=C-H CO_2 O=C=0

6. TIPOS DE CARBONO

Em uma cadeia carbônica, o carbono pode ser classificado de acordo com o número de outros átomos de carbono a ele ligado.

Carbono	Valência
Primário	Ligado, no máximo, a 1 outro carbono
Secundário	Ligado diretamente a 2 outros carbonos
Terciário	Ligado diretamente a 3 outros carbonos
Quaternário	Ligado diretamente a 4 outros carbonos

TIPOS DE CARBONO

Carbonos assimétricos, ou quirais, são aqueles que possuem quatro ligações sigma realizadas com quatro ligantes diferentes. A figura a seguir traz a representação de um carbono quiral (C*).

6. TIPOS DE CARBONO

Ligações sigma (σ) e pi (π)

Uma outra forma de classificar o carbono é quanto aos tipos de ligações por ele feitas, se liga:

- Carbono saturado: quando apresenta quatro ligações simples. Essas ligações são denominadas sigma (σ);
- Carbono insaturado: quando apresenta pelo menos uma ligação dupla ou tripla. Essas ligações possuem uma ligação denominada pi (π) .

sp3 = tetraédrico carbono saturado

carbono insaturado com uma ligação dupla e trigonal plano (sp2)

carbono insaturado com uma ligação tripla e linear (sp)

$$H_2C = C = CH_2$$

com duas ligações duplas conjugadas e linear (sp)

Forma de representação

Existem diferentes formas(fórmulas) de representação para moléculas orgânicas, dentre elas estão:

Tipos de representação	Representações do butano		
Fórmula molecular	C ₄ H ₁₀		
Fórmula estrutural plana	H H H H H-C-C-C-C-H H H H H		
Förmula estrutural condensada	CH ₅ CH ₂ CH ₂ CH ₅		
Fórmula em bastão			

04 (UNB-DF) Entre as substâncias normalmente usadas na agricultura, encontram-se o nitrato de amônio (fertilizante), o naftaleno (fumigante de solo) e a água. A fórmula estrutural do naftaleno, nome científico da naftalina, é mostrada na figura adiante.

Acerca dessas substâncias, julgue os itens a seguir.

- 1) A fórmula molecular do naftaleno é $C_{10}H_{10}$.
- 2) As substâncias citadas são moleculares.
- 3) Em uma molécula de naftaleno, há dezesseis ligações covalentes simples entre os átomos de carbono.
- 05 (UERJ-RJ) A maior parte das drogas nos anticoncepcionais de via oral é devido à fórmula estrutural plana, abaixo, incompleta:

Qual alternativa abaixo é correta?

- a) Faltam 12 hidrogênios na estrutura.
- b) É um composto quaternário.
- c) Apresenta fórmula molecular C₁₂H₁₀O₂N.
- d) Não é um composto orgânico.
- e) Apresenta somente 1 carbono primário.

07 (UFPB-PB) Na fórmula do veronal abaixo (um barbitúrico), os números de carbonos primários, secundários, terciários e quaternários são, respectivamente:

$$O = C \setminus \begin{pmatrix} H & O \\ | & | \\ N - C \\ C \\ N - C \\ C \\ C_2H_5 \\ H & O \end{pmatrix}$$

- a) 5, 2, 0, 1
- b) 4, 2, 0, 1
- c) 4, 2, 1, 1
- d) 2, 2, 2, 1
- e) 3, 4, 0, 0
- 08 Julgue os itens abaixo.
- 01. O número de compostos orgânicos conhecidos é maior que o de inorgânicos.
- 02. São elementos organógenos: C, H, O e N.
- 04. Os compostos orgânicos têm muita resistência ao calor.
- 08. O carbono é trivalente.
- 16. O carbono é um dos poucos elementos químicos capazes de formar cadeias.
- 32. Wöhler, em 1828, obteve ureia em laboratório, por meio de uma reação que abalou profundamente a teoria da força vital. E tal obtenção, ele partiu do aquecimento de cianeto de amônio.
- 64. Atualmente, a Química Orgânica estuda apenas os compostos sintetizados por seres vivos.

Soma ()

10 Dadas as cadeias carbônicas, quantos átomos de hidrogênio faltam nessas estruturas?

$$C - C - N - C = C - C$$

$$C \qquad C \qquad C \qquad C = C$$

$$C \qquad N - C = C$$

12 Completar as ligações que faltam, com átomos de hidrogênio.

a)
$$C = C - C = C - C - O - C$$

b)
$$C=C-C-C$$

13 Completar as ligações que faltam, colocando simples, dupla ou tripla ligação.

a)
$$H_2C$$
 C C C C CH_3

b)
$$H_3C$$
 C C C $C-H$

16 (Uniube-MG) O ácido úrico é o produto final da excreção da degradação de purinas. As doenças gota, leucemia, policetemia e hepatite resultam numa excreção aumentada desta molécula representada pela fórmula estrutural:

$$\begin{array}{c|c}
O & H \\
HN & C \\
O & N \\
O & N \\
O & H \\
\end{array}$$

$$C = O$$

A fórmula molecular do ácido úrico é:

- a) $C_5H_4N_4O_3$
- b) $C_5H_4N_3O_6$
- c) $C_5H_3N_3O_3$
- d) $C_4H_6N_2O_2$
- e) $C_4H_5N_4O_3$

- 17 (UFPR-PR) A respeito dos compostos orgânicos, é correto afirmar que:
- 01. os compostos orgânicos podem ser sintetizados pelos organismos vivos, daí a qualificação de orgânicos.
- 02. os compostos orgânicos são compostos de carbono, embora algumas substâncias que contêm esse elemento sejam estruturadas também entre os compostos inorgânicos (CO₂, HCN, etc.).
- 04. a existência de um grande número de compostos de carbono está relacionada com a capacidade do átomo de carbono de formar cadeias, associada à sua tetracovalência.
- 08. nos compostos de carbono o tipo de ligação mais frequente é a covalente.
- 16. os compostos orgânicos são regidos por leis e princípios próprios não aplicáveis aos compostos inorgânicos.

Soma ()

(UFES-ES) O chá da planta 'Bidens pilosa', conhecida vulgarmente pelo nome de picão, é usado para combater icterícia de recém-nascidos. Das folhas dessa planta, é extraída uma substância química, cujo nome oficial é 1-fenilepta-1,3,5-triino e cuja estrutura é apresentada a seguir. Essa substância possui propriedades antimicrobianas e, quando irradiada com luz ultravioleta, apresenta atividade contra larvas de mosquitos e nematóides. Sobre a estrutura dessa substância, pode-se afirmar que:

- a) possui 12 átomos de carbono com hibridização sp².
- b) possui 12 ligações σ carbono-carbono.
- c) não possui carbonos com hibridização sp³.
- d) possui 3 átomos de carbono com hibridização sp.
- e) possui 9 ligações π carbono-carbono.

05. (UFG) O grafeno é um nanomaterial alótropo ao carbono e que apresenta excelentes propriedades elétricas. A hibridização dos átomos de carbono e a forma geométrica da estrutura do grafeno são, respectivamente,

A. Sp² e tetraédrica.

B. Sp² e hexagonal.

C. Sp² e octaédrica.

D. Sp³ e tetraédrica.

E. Sp³ e hexagonal.

06. (UEMA) O ácido metanóico, encontrado em algumas formigas, é causador da irritação provocada pela picada desses insetos. Em sua fórmula molecular HCOOH o átomo de carbono dessa molécula apresenta hibridização:

- A. Sp 2 com três ligações σ e uma ligação π
- B. Sp 3 com três ligações σ e uma ligação π
- C. Sp com duas ligações σ e duas ligações π
- D. Sp 2 com uma ligação σ e três ligações π
- E. Sp³ com quatro ligações σ

07. (UFPA) Um anel aromático tem estrutura plana porque seus carbonos têm hibridação

A. Somente sp.

B. Somente sp².

C. Somente sp³.

D. Sp e sp² alternadas.

E. Sp² e sp³ alternadas.