Dashboard / My courses / Electrical Engineering / Division 1 to 5 BEE Exam / 8 June - 14 June / Basic Electrical Engineering ESE	
Started on Thursday, 10 June 2021, 11:04:22 AM	
State Finished	
Completed on Thursday, 10 June 2021, 12:34:23 PM Time taken 1 hour 30 mins	
Grade 19.00 out of 60.00 (32%)	
Grade 13.00 out of 00.00 (32%)	
Question 1 Correct	
Mark 1.00 out of 1.00	
The 1 phase Half Bridge inverter have the output voltage average value equals to $\underline{}$ if the input is to the inverter is $V_{dc}/2$	
○ a. V _{dc}	
b. V _{dc} /2	•
O c. 0	
Your answer is correct.	
The correct answer is: V _{dc} /2	
Question 2	
Correct	
Mark 1.00 out of 1.00	
The mutual inductance between two coils is reluctance of magnetic path.	
a. none from the given options	
○ b. directly proportional to	
○ c. independent of	
d. inversely proportional to	•
Your answer is correct.	
The correct answer is: inversely proportional to	

Generators work on the principle of production of a. dynamically induced emf b. statically induced emf c. dynamically and statically induced emf Your answer is correct. The correct answer is: dynamically induced emf Questor 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection Your answer is correct. The correct answer is correct.	Question 3	
Generators work on the principle of production of a. dynamically induced emf b. statically induced emf c. dynamically and statically induced emf Your answer is correct. The correct answer is: dynamically induced emf Colestion 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection	Correct Mark 1.00 out of 1.00	
 a. dynamically induced emf b. statically induced emf c. dynamically and statically induced emf Your answer is correct. The correct answer is: dynamically induced emf Cuestion 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection Your answer is correct.		
 b. statically induced emf c. dynamically and statically induced emf Your answer is correct. The correct answer is: dynamically induced emf Cuestion 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection Your answer is correct. 	Generators work on the principle of production of	
Cuestion 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: ■ a. All of the mentioned	a. dynamically induced emf	~
Your answer is correct. The correct answer is: dynamically induced emf Question 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection	O b. statically induced emf	
The correct answer is: dynamically induced emf Question 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection	oc. dynamically and statically induced emf	
The correct answer is: dynamically induced emf Question 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection		
Question 4 Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: ■ a. All of the mentioned ■ b. Over voltages due to lightning can be discharged to earth ■ c. Freedom from persistent arcing grounds ■ d. Simplified design earth fault protection	Your answer is correct.	
Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection	The correct answer is: dynamically induced emf	
Correct Mark 1.00 out of 1.00 The advantage of neutral earthing is: a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection		
Mark 1.00 out of 1.00 The advantage of neutral earthing is: ■ a. All of the mentioned ■ b. Over voltages due to lightning can be discharged to earth ■ c. Freedom from persistent arcing grounds ■ d. Simplified design earth fault protection		
 a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection Your answer is correct.		
 a. All of the mentioned b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection Your answer is correct.		
 b. Over voltages due to lightning can be discharged to earth c. Freedom from persistent arcing grounds d. Simplified design earth fault protection Your answer is correct.	The advantage of neutral earthing is:	
c. Freedom from persistent arcing groundsd. Simplified design earth fault protection Your answer is correct.	a. All of the mentioned	~
d. Simplified design earth fault protectionYour answer is correct.	b. Over voltages due to lightning can be discharged to earth	
Your answer is correct.	c. Freedom from persistent arcing grounds	
	od. Simplified design earth fault protection	
The correct answer is: All of the mentioned	Your answer is correct.	
	The correct answer is: All of the mentioned	

5/21, 11:47 AM	Basic Electrical Engineering ESE: Attempt review	
Question 5		
Incorrect		
Mark 0.00 out of 1.00		
For the conduction of current thro	ough diode in given figure the Switch S must be	
a. Conducting		
○ b. Non conducting		
c. Any conducting and non c	onducting	
d. Diode never conducts curr	ent	×
Your answer is incorrect. The correct answer is: Non condu	cting	
Question 6 Correct Mark 1.00 out of 1.00		
Ivials 1.00 out of 1.00		
A conductor of length L has curre conductor will be	ent I passing through it, when it is placed parallel to a magnetic field. The force experienced by the	
O a. BLI ²		
○ b. B²LI		
○ c. BLI		
od. zero		~

Your answer is correct.

The correct answer is: zero

Question 7 Not answered Marked out of 5.00
A core forms a closed magnetic loop of path length 32 cm. Half of this path has a cross-sectional area of 2 cm ² and relative permeability 800. The other half has a cross-sectional area of 4 cm ² and relative permeability 400. Find the current needed to produce a flux of 0·4 Wb in the core if it is wound with 1000 turns of wire. Ignore leakage and fringing effects.
Question 8 Correct Mark 1.00 out of 1.00
The direction of induced e.m.f. in a conductor (or coil) can be determined by
○ a. Fleming's left-hand rule
O b. work law
○ c. Ampere's law
■ d. Fleming's right-hand rule ✓
Your answer is correct. The correct answer is: Fleming's right-hand rule
Question 9 Incorrect Mark 0.00 out of 1.00
For Buck Converter carrying the average load current to be 10Amp , the buck converter works at duty cycle 0.6 ; then the average current through diode in buck converter is
O b. 8 A
O c. 10 A
Your answer is incorrect.

The correct answer is: 4 A

Question 10
Correct
Mark 1.00 out of 1.00

For the following converter the relation between input and output voltage is

- $^{\circ}$ a. Vo=Vin
- b. Vo> Vin
- oc. Vo<Vin
- Od. Vo>Vin

Your answer is correct.

The correct answer is: $V_o \ge Vin$

Question 11

Incorrect

Mark 0.00 out of 1.00

A 4 pole dc generator is running at 1500 rpm the frequency of current in the armature winding is

- a. 150Hz.
- ob. 200Hz.
- c. 100Hz.

od. 50Hz.

Your answer is incorrect.

The correct answer is: 50Hz.

Question 12	
Correct	
Mark 1.00 out of 1.00	
The direction of rotation of conductor of a DC motor can be determined by	
a. Ampere law	
b. Fleming's left hand rule	~
○ c. Lenz's law	
○ d. Fleming's right hand rule	
Your answer is correct.	
The correct answer is: Fleming's left hand rule	
Question 13	
Correct Mod 100 per ef 100	
Mark 1.00 out of 1.00	
Induction motor operation depends on	
 a. rotating magnetic field 	~
b. either rotating magnetic field or stationary magnetic field	
○ c. stationary magnetic field	
a c. stationary magnetic neta	
Your answer is correct.	
The correct answer is: rotating magnetic field	
Question 14	
Incorrect	
Mark 0.00 out of 1.00	
The % THD in inverter analysis measures	
a. % of harmonic in input waveform	×
○ b. % of Output waveform harmonics	
○ c. % of Output RMS voltage	
Your answer is incorrect.	
The correct answer is: % of Output waveform harmonics	

https://moodle.coep.org.in/moodle/mod/quiz/review.php? attempt = 191555&cmid = 24573

25/21, 1	1:47 AM Basic Electrical Engineering ESE: Attempt review
	on 15 swered d out of 5.00
	following is the load pattern for consumption of electrical energy by a residential consumer
a)	5 lamps of 40 W each, switched on for 5 hours a day
b)	3 fans of 60 W each, switched on for 12 hours a day 2 heaters of 1000 W, working for 2 hours per day
c) d)	1 refrigerator of 250 W, working for 12 hours a day
	SEDCL tariff of electricity consumption is Rs. 3.50 per unit, then what will be the total bill of the consumer for the month of April 2021?
Questio	on 16
Correc	
Mark 2	.00 out of 2.00
A m	agnetic device has a core with cross-section of 1 inch 2 . If the flux in the core is 1 mWb, then flux density (1 inch = 2.54 cm) is
	a. 1.55 T
	b. 0.25 T
	c. 2.5 T
0	d. 1.3 T

Your answer is correct.

The correct answer is: 1.55 T

Question 17

Correct

Mark 1.00 out of 1.00

The operation of fuse depends upon ______ effect of an electric current.

- a. None from given options
- b. Induction
- oc. Magnetic
- d. Heating

Your answer is correct.

The correct answer is: Heating

Question 18

Not answered

Marked out of 5.00

In the Figure shown below, find node voltages using nodal method (without source transformation). And hence find the current flowing through 0.01 S conductance.

25/21, 11:47 AM	Basic Electrical Engineering ESE: Attempt review	
Question 19 Not answered		
Marked out of 5.00		
supply.	j10) Ω are connected in parallel and the combination is connected across a 200 V, 1-phase, 50 Hz AC	
Determine:		
 The admittance of each branch Total admittance of the entire ci Total current in phasor form Overall power factor 		
5. The capacitance which when co	nnected in parallel with the original circuit will make the resultant power factor unity	
Question 20		
Correct Mark 1.00 out of 1.00		
Mark 1.00 out of 1.00		
If field current is decreased in shunt d	c motor, the speed of the motor	
a. increases	✓	
O b. remains same		
o c. decreases		
Your answer is correct.		
The correct answer is: increases		

Question 21
Incorrect
Mark 0.00 out of 1.00
The capacitor value connected at the output for the buck converter depends on
1. Ripple allowed in output voltage
2. The switching frequency
3. The current ripple in output current
4. Diode current rating
a. 1,2 and 3 are only true
b. All are true
○ c. 2 ,3 are only true
Od. 1, 2 are only true
Your answer is incorrect.
The correct answer is: 1,2 and 3 are only true
The confect answer is. 1,2 and 5 are only true
Question 22
Correct
Mark 1.00 out of 1.00
A DC generator without commutator is a
a. Induction motor
O b. DC generator
○ c. DC motor
d. AC generator
Your answer is correct.
The correct answer is: AC generator

0/21, 11.47 AW	basic Electrical Engineering EGE. Attempt review
Question 23	
Correct	
Mark 1.00 out of 1.00	
The material which is not used for making filaments in incar	ndescent lamps is
a. Copper	✓
O b. Tungsten	
o c. Carbon	
O d. Tantalum	
Your answer is correct.	
The correct answer is: Copper	
Question 24	
Correct	
Mark 1.00 out of 1.00	
Find the number of poles required, when the frequency is 5	0Hz and speed of the induction motor is 500 rpm?
O a. 24	
O b. 5	
O c. 10	
	✓
Your answer is correct.	
The correct answer is: 12	

Question 25
Correct Mark 2.00 out of 2.00
Mark 2.00 out of 2.00
A magnetizing field strength (H) of 800 AT/m will produce a flux density of in air.
○ a. 1 Wb/m²
□ b. 1 mWb/m² ✓
\odot c. 10 mWb/m ²
○ d. 0·5 Wb/m²
Your answer is correct.
The correct answer is: 1 mWb/m ²
Question 26
Not answered
Marked out of 5.00
Question 27
Question 27 Correct Mark 1.00 out of 1.00
Correct
Correct
Correct Mark 1.00 out of 1.00
Correct Mark 1.00 out of 1.00 Laminated cores, in electrical machines, are used to reduce
Correct Mark 1.00 out of 1.00 Laminated cores, in electrical machines, are used to reduce a. All options are correct
Correct Mark 1.00 out of 1.00 Laminated cores, in electrical machines, are used to reduce a. All options are correct b. Copper loss
Correct Mark 1.00 out of 1.00 Laminated cores, in electrical machines, are used to reduce a. All options are correct b. Copper loss c. Hysteresis loss
Correct Mark 1.00 out of 1.00 Laminated cores, in electrical machines, are used to reduce a. All options are correct b. Copper loss c. Hysteresis loss

Question 28 Not answered

Marked out of 5.00

The efficiency at unity power factor of a 6600/384V, 220 kVA, single phase, 50 Hz transformer is 98 % both at full load and half load. Find

- 1. full load iron loss
- 2. full load copper loss
- 3. iron and copper losses at maximum efficiency
- 4. load in kVA for maximum efficiency and unity power factor

Question 29

Not answered

Marked out of 5.00

Use mesh method to determine the currents through each components in the circuit shown below in Figure.

Question 30	
Incorrect	
Mark 0.00 out of 1.00	
In DC shunt motor if load is increased, the speed	
a. remains constant	×
○ b. increased slightly	
c. reduce slightly	
O d. increase proportional	
Your answer is incorrect.	
The correct answer is: reduce slightly	
▼ RETEST - Basic Electrical Engineering Laboratory Test 2	
Jump to	

RETEST - Basic Electrical Engineering Laboratory Test 1 ►