

3 / 16 (2)

• 목차

- 1. 시스템 보안의 이해
- 2. 계정 관리
- 3. 세션 관리
- 4. 접근 제어
- 5. 권한 관리
- 6. 로그 관리
- 7. 취약점 관리
- 8. 모바일 보안

1. 시스템 보안의 이해

- 시스템
 - 。 독차적으로 동작할 수 있는 독립적인 개체
 - 전원으로 부터 시작하여 메모리, 디스크, CPU등의 하드웨어 자원과 OS,
 Driver 등 소프트웨어 자원까지, 시스템을 구성하는 포괄적인 요소들을 포함함
 - 。 네트워크와 시스템의 융합된 형태의 인프라를 구성
 - 。 예: 클라우드, 분산처리 시스템, VDI 등

■ 시스템 보안 주제

2. 계정 관리

- 식별과 인증
 - 。 식별: 어떤 시스템에 로그인 하려면 먼저 자신이 누군지를 알림
 - 。 인증 : 로그인을 허용하기 위한 확인
- 보안의 네 가지 인증 방법
 - 。 알고 있는 것
 - 머릿속에 기억하고 있는 정보를 이용하여 인증 수행
 - 。 가지고 있는 것
 - 신분증이나 OTP 장치 등으로 인증 수행
 - ㅇ 자신의 모습
 - 홍채와 같은 생체 정보로 인증 수행
 - 。 위치하는 곳
 - 현재 접속을 시도하는 위치의 적절성을 확인하거나, 콜백을 사용해 인증수행
 - 콜백 : 접속을 요청한 사람의 신원을 확인, 미리 등록된 전화번호로 전화를 되걸어 접속을 요청한 사람이 본인인지 확인
- OS별 계정 관리
- OS별 특성
- 윈도우의 계정 관리
 - net localgroup : 윈도우에서는 기본 그룹을 정의하는데, 시스템에 존재하는 그 룹 목록
 - o net localgroup administrators : 관리자 그룹의 계정의 존재 형태를 확인
 - o net users : 사용자 계정을 모두 확인

- 유닉스의 계정 관리
 - /etc/passwd : root 계정 및 일반 계정

• /etc/group : root긃을 포함하는 일반 그룹

- 데이터베이스의 계정 관리
 - 。 데이터베이스에도 운영체제처럼 계정이 존재
 - ∘ MS-SQL의 관리자 계정은 sa, 오라클의 관리자 계정은 sys, system
 - 둘 다 관리자 계정이지만, sys와 달리 system은 데이터베이스를 생성할 수 없음.
- 응용 프로그램 계정 관리
 - 취약한 응용 프로그램을 통해 공격자가 운영체제에 접근하여 민감한 정보를 습 득한 뒤 운영체제를 공격하는 데 이용할 수 있음.
 - 。 TFTP처럼 인증이 필요치 않은 응용 프로그램은 더욱 세심한 주의가 필요
- 네트워크 장비의 계정 관리
 - 네트워크 장비는 보통, 패스워드만 알면 접근이 가능
 - 。 시스코 장비의 계정 모드 구별
 - 네트워크 장비의 상태만 확인할 수 있는 사용자 모드
 - 네트워크에 대한 설정 변경이 가능한 관리자 모드
 - 처음 접속시 사용자 모드로 로그인 되며, 사용자 모등서 관리자 모드로 로 그인 하려면. 다시 별도의 패스워드 입력
 - 네트워크 장비에서도 계정을 생성하여, 각 계정으로 사용할 수 있는 명령어의 집합을 제한할 수 있음

3. 세션 관리

• 세션 : 사용자와 시스템 사이 또는 두 시스템 사이의 활성화 된 접속

• 지속적인 인증

- 。 세션을 유지하기 위한 보안 사항 중 하나
- 인증에 성공한 후 인증된 사용자가 처음의 사용자인지 지속으로 재인증 작업을 거치는 작업
- 매번 패스워드를 입력 할 수 없으므로, 시스템은 이를 세션에 대한 타임아웃 설 정으로 보완
- 한면 유닉스 원격에서 접속할 경우 패스워드를 다시 묻지 않고, 세션을 종료한 후 재접속할 것을 요구
- 。 시스템이 아닌 웹 서비스를 이용할 때도 '지속적인 인증'이 적용

4. 접근 제어

- 접근 제어
 - 。 적절한 권한을 가진 인가자만 특정 시스템이나 정보에 접근하도록 통제하는 것
 - 。 시스템의 보안 수준을 갖추기 위한 가장 기본적 수단
 - 。 시스템 및 네트워크에 대한 접근 제어의 가장 기본적인 수단은 IP와 서비스 포 트
 - 운영체제에 대한 적절한 접근 제어를 수행하려면 가장 먼저 운영체제에서 어떤 관리적 인터페이스가 운영되고 있는지를 파악해야 함
- 운영체제의 접근 제어
- 데이터 베이스 접근 제어
- 응용 프로그램의 접근 제어
- 네트워크 장비의 접근 제어
- 불필요한 인터페이스 제거 : 보안 정책 적용에 관한 고려
- 운영체제에 대한 접근 목적의 인터페이스를 결정한 다음에는 접근 제어 정책을 적용해야함.
- 시스템에 대한 접근 제어 정책은 기본적으로 IP를 통해 수행
- 유닉스의 텔넷이나 SSH, FTP 등은 TCPWrapper를 통해 접근 제어가 가능
- inetd 데몬은 클라이언트로 부터 inetd가 관리하는 텔넷이나 SSH, FTP 등에 대한 연결 요청을 받고. 실제 서비스를 함으로써 데몬과 클라이언트의 요청을 연결
- TCPWrapper가 설치되면, inetd 데몬은 TCPWrapper의 tcpd 데몬에 연결을 넘겨 준다.

- Tcpd 데몬은 접속을 요구한 클라이언트에 적절한 접근 권한이 있는지 확인한 후 해당 데몬에 연결을 넘겨줌
- 이때 연결에 대한 로그를 실시할 수도 있음

丑 2-2	일반적으로	사용되는	관리	인터페이스
-------	-------	------	----	-------

운영체제	서비스 이름	사용 포트	특징
유닉스 (라눅스 포함)	텔넷	23	암호화되지 않음
	SSH	22	SFTP 가능
	XDMCP	6000	유닉스용 GUI(XManager)
	FTP	21	파일 전송 서비스
윈도우	터미널 서비스	3389	포트 변경 가능
	GUI 관리용 툴		VNC, Radmin 등

그림 2-10 TCP Wrapper를 통한 데몬의 동작

• 오라클

 오라클은 \$ORACLE_HOME/network/admin/sqlnet.ora 파일에서 접근제어 를 설정

```
tcp.invited_nodes=(200.200.200.100, 200.200.200.200)
tcp.excluded_nodes=(200.200.200.150)
```

MySQL

GRANT [권한] ON [데이터베이스].[테이블] TO [ID]@[IP 주소] IDENTIFIED BY [패스워드]

- IIS Internet Information Services
- Apache
- NGINX

- 네트워크 장비도 IP에 대한 접근 제어가 가능하다.
- 관리 인터페이스에 대한 접근 제어와 ACL을 통한 네트워크 트래픽 접근 제어가 있다.
- 네트워크 장비의 관리 인터페이스에 대한 접근 제어는 유닉스의 접근 제어와 거의 같음
- ACL을 통한 네트워크 트래픽 접근 제어는 방화벽에서 수행하는 접근 제어와 기본 적으로 같음

5. 권한 관리

- 윈도우의 권한 관리
 - NTFS에서 그룹 또는 개별 사용자에 대해 설정할 수 있는 권한의 종류
 - 모든 권한: 디렉터리 접근 권한과 소유권을 변경하고 하위 디렉터리와 파일 삭제 가능
 - ② 수정: 디렉터리 삭제가 가능하며 읽기, 실행, 쓰기 권한이 주어진 것과 동일
 - 응 읽기 및 실행: 읽기 수행, 디렉터리나 파일 옮기기 가능
 - ⑤ 디렉터리 내용 보기: 디렉터리 내의 파일, 디렉터리 이름 보기 가능
 - 6 위기: 디렉터리 내용 위기만 가능
 - ⑤ 쓰기: 해당 디렉터리에 하위 디렉터리와 파일 생성, 소유권이나 접근 권한의 설정 내용 확인 가능
- 권한의 규칙
 - 규칙 1: 접근 권한이 누적
 - 규칙 2: 파일 접근 권한이 디렉터리 접근 권한보다 우선
 - · 규칙 3: '허용'보다 '거부'가 우선

그림 2-12 임의의 디렉터리에 권한 설정

- ① 파일의 종류와 권한 ② 파일의 소유자
 - 🚯 파일에 대한 그룹
 - ⓐ 파일/디렉터리 종류. 일반 파일을, d 디렉터리를, l 링크(link)를 나타냄
 - ⑤ 파일 및 디렉터리 소유자의 권한
 - ⓒ 파일 및 디렉터리 그룹의 권한
 - ⓓ 해당 파일 및 디렉터리의 소유자도 그룹도 아닌 제3의 사용자에 대한 권한

- 그림 2-13 유닉스의 디렉터리 열람
- Query 권한 관리
 - DCL에 의하여 DDL과 DML관리

그림 2-15 뷰를 사용하지 않는 경우, 테이블에 대한 접근 제어

■ 개체에 대한 권한 관리

- 뷰: 참조 테이블의 각 열에 대해 사용자의 권한을 설정하는 것이 불편해서 만든 가상 테이블
- 생성된 뷰에 대한 권한 설정은 테이블에 대한 권한 설정과 같음
- 뷰를 사용하지 않는 경우 테이블에 각각 접근 제한을 설정해야 함
- 뷰에 대한 권한만 할당
- 응용 프로그램은 응용 프로그램 내의 권한 관리보다 응용 프로그램 자체의 실행 권 하이 더 중요
- 자신을 실행한 계정의 권한을 물려받으므로, 보안상에 문제가 있는 취약한 응용 프로그램의 경우 해당 프로그램을 실행한 계정의 권한이 악용되는 문제가 발생
- 윈도우 IIS에서는 실행 프로세스 권한을 별도로 만들어 사용
- 유닉스에서는 nobody와 같이 제한된 계정이 권한을 사용
- Root
- Admin
- 일반 User
- ACL

- Root
- admin
- 일반 user
- ACL

- 운영체제(서버)의 로그 관리
- 데이터 베이스의 로그 관리
- 응용 프로그램의 로그 관리
- 네트워크 장비의 로그 관리
- AAA 요소
 - 시스템 사용자가 로그인한 후 명령을 내리는 과정에 대한 시스템의 동작
 - 로그를 남기는 모든 시스템에 존재
 - AAA에 대한 로그 정보는 해커나 시스템에 접근한 악의적인 사용자를 추적하는 데 많은 도움이 됨
 - 책임 추적성: 추적에 대한 기록의 충실도
 - 감사 추적: 보안과 관련하여 시간대별 이벤트를 기록한 로그
 - Authentication (인증)
 - 자신의 신원을 시스템에 증명하는 것으로 아이디와 패스워드를 입력하는 과정
 - 해당 시스템이 지문으로 신분을 확인하는 과정
 - Authentication (인증)
 - 자신의 신원(Identity)을 시스템에 증명하는 것으로 아이디와 패스워드를 입력하는 과정
 - 신원이 확인되어 인증받은 사람이 출입문에 들어가도록 허락하는 과정
 - Accounting
 - 로그인했을 때 시스템이 이에 대한 기록을 남기는 활동
 - 객체나 파일에 접근한 기록

■ 윈도우 로그

• [제어판]-[관리 도구]-[이벤트 뷰어]를 통해 쌓이는 로깅 정보를 확인

■ 유닉스 로그

- 유닉스 시스템의 로그 저장 위치
- /usr/adm (초기 유닉스): 데이터베이스 객체에 권한을 부여
- /var/adm (최근 유닉스): 솔라리스, HP-UX 10.x 이후, IBM AIX
- /var/log: FreeBSD, 솔라리스(/var/adm과 나누어 저장), 리눅스
- /var/run: 일부 리눅스
- 일반적으로 리눅스에서는 /var/log 디렉터리에 로그가 존재
- /var/log/messages 파일에 하드웨어의 구동, 서비스의 동작, 에러 등의 다양한 로그를 남김

표 2-6 유닉스의	로종류 에디 이기 이어는 모그들 마다		
로그	설명		
utmp	현재 로그인한 사용자의 아이디, 사용자 프로세스, 실행 레벨, 로그인 종류 등을 기록한다.		
wtmp	사용자 로그인 · 로그아웃 시간, IP와 세션 지속 시간, 시스템 종료 · 시작 시간을 기록한다.		
secure(sulog)	원격지 접속 로그와 su(switch user), 사용자 생성 등과 같이 보안에 직접적으로 연관된 로그를 저장한다.		
history	명령 창에서 실행한 명령을 기록한다.		
syslog	시스템 운영과 관련한 전반적인 로그다.		

MS-SQL

• 속성 대화상자의 [보안] 메뉴에서 '일반 로그인 감사'와 'C2 감사 추적'을 설정

Oracle

• 파라미터 파일(\$ORACLE_HOME/dbs/ init.ora)의 AUDIT_TRAIL 값을 'DB' 또는 'TRUE'로 지정

■ IIS Internet Information Services

- 샘플 로그의 실제 구성
 - 날짜와 시간: 2012-06-03 08:53:12
 - 서버 IP: 192.168.137.128
 - HTTP 접근 방법과 접근 URL: GET/XSS/GetCookie.asp?cookie=ASPSESSIO..
 - 서버 포트: 80
 - 클라이언트 IP: 192.168.137.1
 - 클라이언트의 웹 브라우저: Mozilla/5.0+(compatible;+MSIE+9.0;+Windows...
 - 실행 결과 코드: 200(OK)
 - 서버에서 클라이언트로 전송한 데이터의 크기: 0
 - 클라이언트에서 서버로 전송한 데이터의 크기: 0
 - 처리 소요 시간: 225밀리세컨드

Apache (Web Server)

- 아파치 웹 서버에 대한 기본 접근 로그는 access_log에 남고 형식은 'combined'로 지정
- httpd.conf 파일에서 combined 형식의 LogFormat을 확인할 수 있음

- 네트워크 보안 시스템의 로그
 - 침입 차단 시스템, 침입 탐지 시스템, 침입 방지 시스템 등 다양한 보안 시스템
 의 로그를 확인할 수 있음
 - 다양한 보안 시스템의 로그는 통합 로그 관리 시스템 (SIEM)에 의해 수집관리 되기도 함
- 네트워크 관리 시스템의 로그
 - 네트워크 트래픽 모니터링 시스템(MRTG)과 네트워크 관리 시스템(NMS)의 로그를 참고할 수 있음
- 네트워크 장비 인증 시스템의 로그
 - 대규모 네트워크를 운영하는 곳에서는 라우터나 스위치의 인증을 일원화하기
 위해 인증 서버로 TACACS+를 사용하기도 함

인증 서버를 통해 네트워크 장비에 대한 인증 시도 및 로그인 정보 등을 확인 할수 있음.

7. 취약점 관리

- 패치 관리
 - 。 응용 프로그램을 만든 제작사가 배포하는 패치 또는 서비스 팩을 적용
 - 윈도우가 사용성이 높아 공겨이 많다. 유닉스는 취약점이 있어도 사용률이적어 공격을 덜 받는 편
 - 。 업데이트를 통해 자동으로 보안 패치를 확인 및 적용
- 응용 프로그램 위험 관리와 정보 수집 제한
 - 。 응용 프로그램의 특정 기능이 운영체제 정보를 노출시키기도 함
 - 유닉스에서 이메일을 보낼 때 수신자가 있는 시스템의 sendmail 데몬에 해당 계정이 있는 걸 확인하는 과정으로 일반 계정은 vrfy 명령, 그룹은 expn 명령을 시스템 내부에서 사용
 - 。 일반 사용자는 텔넷을 이용해 시스템에 존재하는 계정 모곩을 파악할 수 있다.

8. 모바일 보안

- 모바일의 역사
 - Palm → windows CE → blackberry → IOS → Android
- IOS 보안 체계
- IOS 취약점
- 안드로이드 보안 체계
- 안드로이드 취약점
- IOS vs Android

• 과제

- 보안 제품 혹은 시스템을 선정하고, 선정 사유를 기술해 주세요.
- ∘ 해당 시스템이 사용하고 있는 IT기술은 무엇인지 확인하세요.
- 。 그 기술의 동작원리에 대해 간략히 설명하세요.