PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		(11) International Publication Number:	WO 93/13223
C12Q 1/68, C07H 21/04	A1	(43) International Publication Date:	8 July 1993 (08.07.93
(21) International Application Number: PCT/U (22) International Filing Date: 22 December 1992		CH, DE, DK, ES, FR, GB, G	uropean patent (AT, BE R, IE, IT, LU, MC, NL
(30) Priority data: 07/813,583 23 December 1991 (23.1	1 2.91) ¹	Published US With international search report.	
(71) Applicant: CHIRON CORPORATION [US/ Horton Street, Emeryville, CA 94608 (US).	US]; 45	60	·
(72) Inventors: IRVINE, Bruce, D.; 3401 El Monte I cord, CA 94519 (US). KOLBERG, Janice, Scotts Valley Road, Hercules, CA 94547 (US) Michael, S.; 100 Bunce Meadow Road, A 94507 (US).	A.; 1 URDE .	31 A.	
(74) Agents: KENNEDY, Bill et al.; Morrison & Fo Page Mill Road, Palo Alto, CA 94304 (US).	erster, 7	55	
		·	
(54) Title: HIV PROBES FOR USE IN SOLUTIO	N PHA	E SANDWICH HYBRIDIZATION ASS	AYS
(57) Abstract			
Novel DNA probe sequences for detection of scribed. Amplified nucleic acid hybridization assays	HIV in	a sample in a solution phase sandwich hy ne probes are exemplified.	bridization assay are de

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BG BJ BR CA CF CG CH CI DE DK ES FI	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazit Canada Central African Republic Congo Switzerland Cote d'Ivoire Canerosn Czechoslovakia Czech Republic Giermany Denmark Spain Finland	FR GA GB GN GR HU IE IT JP KP KR LI LK LU MC MC MI MN	France Gabon United Kingdom Guinea Greece Hungary Ireland Italy Japan Democratic People's Republic of Korea Republic of Korea Kazakistan Liechtenstein Sri Lanka Lusembourg Monaco Madagascar Mali Mongolia	MR MW NL NO NZ PL PT RO SD SE SK SN TD TG UA US VN	Mauritania Malawi Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Slovak Republic Senegal Soviet Union Chad Togo Ukraine United States of America Vict Nam
--	---	---	---	--	---

20

25

6

HIV PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS Description

Technical Field

This invention is in the field of nucleic acid hybridization assays. More specifically, it relates to novel nucleic acid probes for detecting Human Immunodeficiency Virus (HIV).

15 Background Art

The etiological agent of AIDS and ARC has variously been termed LAV, HTLV-III, ARV, and HIV. Hereinafter it will be referred to as HIV. Detection of the RNA or DNA of this virus is possible through a variety of probe sequences and hybridization formats.

PCT WO 88/01302, filed 11 August 1987, discloses thirteen HIV oligonucleotides for use as probes in detecting HIV DNA or RNA. PCT WO 87/07906, filed 22 June 1987, discloses variants of HIV viruses and the use of their DNA to diagnoses AIDS. EP 0 326 395 A2, filed 27 January 1989, discloses an HIV DNA probe spanning nucleotides 2438-2457 for detecting sequences associated with multiple sclerosis.

The advent of the polymerase chain reaction has stimulated a range of assays using probes mainly from regions of the pol and gag genes. Spector et al. (Clin. Chem. 35/8:1581-1587, 1989) and Kellog et al. (Analytical Biochem 189:202-208, 1990) disclose a quantitative assay for HIV proviral DNA using polymerase chain reaction using a primer from the HIV gag gene. Lomell et al.

WO 93/13223 PCT/US92/11168

-2-

(Clin. Chem. 35/9:1826-1831) disclose an amplifiable RNA probe complementary to a conserved region of the HIV pol gene mRNA. Coutlee et al. (Anal. Biochem. 181:96-105, 1989) disclose immunodetection of HIV DNA using the polymerase chain reaction with a set of primers complementary to sequences from the HIV pol and gag genes. EP 0 272 098, filed 15 December 1987, discloses PCR amplification and detection of HIV RNA sequences using oligonucleotide probes spanning nucleotides 8538-8547 and 8658-8677. EP 0 229 701, filed 9 January 1987 discloses detection of HIV by amplification of DNA from the HIV gag region. PCT WO 89/10979 discloses a nucleic acid probe assay combining amplification and solution hybridization using capture and reporter probes followed by immobilization on a solid support. A region within the gag p 17 region of HIV was amplified with this technique.

An alternative strategy is termed "reversible target capture." For example, Thompson et al. (Clin. Chem. 35/9:178-1881, 1989) disclose "reversible target capture" of HIV RNA, wherein a commercially available datailed synthetic oligonucleotide provided selective purification of the analyte nucleic acid, and a labeled antisense RNA probe complementary to the HIV pol gene provided signal. Gillespie et al. (Molecular and Cellular Probes 3:73-86, 1989) discloses probes for reversible target capture of HIV RNA, wherein the probes are complementary to nucleotides 2094-4682 of the HIV pol gene.

Kumar et al. disclose a "probe shift" assay for HIV DNA, using DNA sequences complementary to the HIV gag and pol genes. The probe shift assay depends on the hybridization of a labeled oligonucleotide to a PCR-amplified segment in solution. The hemiduplex

30

5

10

15

20

10

15

20

25

30

35

thereformed is detected following fractionation on nondenaturing gels.

Keller et al. (<u>Anal. Biochem.</u> 177:27-32, 1989) disclose a microtiter-based sandwich assay to detect HIV DNA spanning the Pst I site of the gag coding region.

Viscidi et al. (<u>J. Clin. Micro.</u> 27:120-125, 1989) disclose a hybridization assay for HIV RNA using a solid phase anti-biotin antibody and an enzyme-labeled monoclonal antibody specific for DNA-RNA hybrids, wherein the probe spanned nearly all of the polymerase gene and the 3' end of the gag gene.

European Patent Application (EPA) 89311862, filed 16 November 1989 discloses a diagnostic kit and method using a solid capture means for detecting nucleic acid, and describes the use of DNA sequences complementary to the HIV gag gene to detect HIV DNA.

Commonly owned U.S. 4,868,105 describes a solution phase nucleic acid sandwich hybridization assay in which analyte nucleic acid is first hybridized in solution to a labeling probe set and to a capturing probe set in a first vessel. The probe-analyte complex is then transferred to a second vessel that contains a solidphase-immobilized probe that is complementary to a segment of the capturing probes. The segments hybridize to the immobilized probe, thus removing the complex from solution. Having the analyte in the form of an immobilized complex facilitates subsequent separation steps in the assay. Ultimately, single stranded segments of the labeling probe set are hybridized to labeled probes, thus permitting the analyte-containing complex to be detected via a signal generated directly or indirectly from the label.

Commonly owned European Patent Application
(EPA) 883096976 discloses a variation in the assay
described in U.S. 4,868,105 in which the signal generated

WO 93/13223 PCT/US92/11168

-4-

by the labeled probes is amplified. The amplification involves the use of nucleic acid multimers. These multimers are branched polynucleotides that are constructed to have a segment that hybridizes specifically to the analyte nucleic acid or to a nucleic acid (branched or linear) that is bound to the analyte and iterations of a second segment that hybridize specifically to the labeled probe. In the assay employing the multimer, the initial steps of hybridizing the analyte to label or amplifier probe sets and capturing probe sets in a first vessel and transferring the complex to another vessel containing immobilized nucleic acid that will hybridize to a segment of the capturing probes are followed. The multimer is then hybridized to the immobilized complex and the labeled probes in turn hybridized to the second segment iterations on the multimer. Since the multimers provide a large number of sites for label probe attachment, the signal is amplified. Amplifier and capture probe sequences are disclosed for Hepatitis B virus, Neisseria gonorrhoeae, penicillin and tetracycline resistance in N. gonorrhoeae, and Chlamydia trachomatis.

Commonly owned copending application Serial No. 558,897, filed 27 July 1990, describes the preparation of large comb-type branched polynucleotide multimers for use in the above-described solution phase assay. The combs provide greater signal enhancement in the assays than the smaller multimers.

U.S. 5,030,557, filed 24 November 1987,

discloses a "helper" oligonucleotide selected to bind to
the analyte nucleic acid and impose a different secondary
and tertiary structure on the target to facilitate the
binding of the probe to the target.

5

10

15

20

10

15

20

25

30

35

Disclosure of the Invention

One aspect of the invention is a synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for HIV comprising a first segment having a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer.

Another aspect of the invention is a synthetic oligonucleotide useful as a capture probe in a sandwich hybridization assay for HIV comprising a first segment having a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase.

Another aspect of the invention is a spacer oligonucleotide for use in sandwich hybridizations to detect HIV.

Another aspect of the invention is a solution sandwich hybridization assay for detecting the presence of HIV in a sample, comprising

(a) contacting the sample under hybridizing conditions with an excess of (i) an amplifier probe oligonucleotide comprising a first segment having a nucleotide sequence substantially complementary to a segment of HIV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) a capture probe oligonucleotide comprising a first segment having a nucleotide sequence that is substantially complementary to a segment of HIV nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

PCT/US92/11168

10

15

20

25

30

35

- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound
 5 to the solid phase;
 - (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;
 - (e) removing unbound multimer;
 - (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
 - (h) detecting the presence of label in the solid phase complex product of step (g).

Another aspect of the invention is a kit for the detection of HIV in a sample comprising in combination

- (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment having a nucleotide sequence substantially complementary to a segment of HIV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;
 - (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment having a nucleotide sequence that is substantially complementary to a segment of HIV nucleic

10

15

20

25

30

35

acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

(iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and (iv) a labeled oligonucleotide.

Modes for Carrying out the Invention Definitions

"Solution phase nucleic acid hybridization assay" intends the assay techniques described and claimed in commonly owned U.S. Patent No. 4,868,105, EPA 883096976, and U.S. Ser. No. 558,897.

A "modified nucleotide" intends a nucleotide monomer that may be stably incorporated into a polynucleotide and which has an additional functional group. Preferably, the modified nucleotide is a 5'-cytidine in which the N⁴-position is modified to provide a functional hydroxy group.

An "amplifier multimer" intends a branched polynucleotide that is capable of hybridizing simultaneously directly or indirectly to analyte nucleic acid and to a multiplicity of polynucleotide iterations (i.e, either iterations of another multimer or iterations of a labeled probe). The branching in the multimers is effected through covalent bonds and the multimers are composed of two types of oligonucleotide units that are capable of hybridizing, respectively, to analyte nucleic acid or nucleic acid hybridized to analyte nucleic acid and to a multiplicity of labeled probes. The composition and preparation of such multimers are described in EPA

WO 93/13223 PCT/US92/11168

883096976 and U.S. Serial No. 558,897 filed 27 July 1990, the disclosures of which are incorporated herein by reference.

A "spacer oligonucleotide" is intended as an oligonucleotide which binds to analyte RNA but does not contain any sequences for attachment to a solid phase nor any means for detection by an amplifier probe.

The term "amplifier probe" is intended as a branched or linear polynucleotide that is constructed to have a segment that hybridizes specifically to the analyte nucleic acid and a segment or iterations of a segment that hybridize specifically to an amplifier multimer.

The term "capture probe" is intended as an oligonucleotide having a segment substantially complementary to a nucleotide sequence of the analyte nucleic acid and a segment that is substantially complementary to a nucleotide sequence of a solid-phase-immobilized probe.

20 "Large" as used herein to describe the combtype branched polynucleotides of the invention intends a
molecule having at least about 15 branch sites and at
least about 20 iterations of the labeled probe binding
sequence.

"Comb-type" as used herein to describe the structure of the branched polynucleotides of the invention intends a polynucleotide having a linear backbone with a multiplicity of sidechains extending from the backbone.

A "cleavable linker molecule" intends a molecule that may be stably incorporated into a polynucleotide chain and which includes a covalent bond that may be broken or cleaved by chemical treatment or physical treatment such as by irradiation.

25

5

10

35

All nucleic acid sequences disclosed herein are written in a 5' to 3' direction. Nucleotides are designated according to the nucleotide symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.

Solution Phase Hybridization Assay

The general protocol for the solution phase sandwich hybridizations is as follows. The analyte nucleic acid is placed in a microtiter well with an excess of two single-stranded nucleic acid probe sets: 10 (1) a set of capture probes, each having a first binding sequence substantially complementary to the analyte and a second binding sequence that is substantially complementary to nucleic acid bound to a solid support, for example, the well surface or a bead, and (2) a set of 15 amplifier probes (branched or linear), each having a first binding sequence that is capable of specific binding to the analyte and a second binding sequence that is capable of specific binding to a segment of the multimer. The resulting product is a three component 20 nucleic acid complex of the two probes hybridized to the analyte by their first binding sequences. The second binding sequences of the probes remain as single-stranded segments as they are not substantially complementary to the analyte. This complex hybridizes to the immobilized 25 probe on the solid surface via the second binding sequence of the capture probe. The resulting product comprises the complex bound to the solid surface via the duplex formed by the oligonucleotide bound to the solid surface and the second binding sequence of the capture 30 probe. Unbound materials are then removed from the surface such as by washing.

The amplification multimer is then added to the bound complex under hybridization conditions to permit the multimer to hybridize to the available second binding

sequence(s) of the amplifier probe of the complex. The resulting complex is then separated from any unbound multimer by washing. The labeled oligonucleotide is then added under conditions which permit it to hybridize to the substantially complementary oligonucleotide units of the multimer. The resulting immobilized labeled nucleic acid complex is then washed to remove unbound labeled oligonucleotide, and read.

The analyte nucleic acids may be from a variety of sources, e.g., biological fluids or solids, and may be 10 prepared for the hybridization analysis by a variety of means, e.g., proteinase K/SDS, chaotropic salts, etc. Also, it may be of advantage to decrease the average size of the analyte nucleic acids by enzymatic, physical or chemical means, e.g., restriction enzymes, sonication, 15 chemical degradation (e.g., metal ions), etc. The fragments may be as small as 0.1 kb, usually being at least about 0.5 kb and may be 1 kb or higher. The analyte sequence is provided in single-stranded form for analysis. Where the sequence is naturally present in 20 single-stranded form, denaturation will not be required. However, where the sequence may be present in double-stranded form, the sequence should be denatured. Denaturation can be carried out by various techniques, such as alkali, generally from about 0.05 to 0.2 M 25 hydroxide, formamide, salts, heat, enzymes, or combinations thereof.

The first binding sequences of the capture probe and amplifier probe that are substantially complementary to the analyte sequence will each be of at least 15 nucleotides, usually at least 25 nucleotides, and not more than about 5 kb, usually not more than about 1 kb, preferably not more than about 100 nucleotides. They will typically be approximately 30 nucleotides.

35 They will normally be chosen to bind to different

PCT/US92/11168

5

sequences of the analyte. The first binding sequences may be selected based on a variety of considerations. Depending upon the nature of the analyte, one may be interested in a consensus sequence, a sequence associated with polymorphisms, a particular phenotype or genotype, a particular strain, or the like.

The number of different amplifier and capture probes used influences the sensitivity of the assay, because the more probe sequences used, the greater the signal provided by the assay system. Furthermore, the 10 use of more probe sequences allows the use of more stringent hybridization conditions, thereby reducing the incidence of false positive results. Thus, the number of probes in a set will be at least one capture probe and at least one amplifier probe, more preferably two capture 15 and two amplifier probes, and most preferably 5-100 capture probes and 5-100 amplifier probes. Oligonucleotide probe sequences for HIV were designed by aligning the DNA sequences of 18 HIV strains from Regions of greatest homology within the pol 20 GenBank. gene were selected as capture probes, while regions of lesser homology were selected as amplifier probes. Very heterogeneous regions were selected as spacer probes. Thus, as more strains of HIV are identified and sequenced, additional probes may be designed or the 25 presently preferred set of probes modified by aligning the sequence of the new strain or isolate with the 18 strains used above and similarly identifying regions of greatest homology and lesser homology.

Spacer oligonucleotides were designed to be added to the hybridization cocktail to protect RNA from possible degradation. Capture probe sequences and label probe sequences were designed so that capture probe sequences were interspersed with label probe sequences,

10

15

25

30

35

or so that capture probe sequences were clustered together with respect to label probe sequences.

The presently preferred set of probes and their capture or amplifier regions which hybridize specifically to HIV nucleic acid are listed in Example 2.

The second binding sequences of the capture probe and amplifier probe are selected to be substantially complementary, respectively, to the oligonucleotide bound to the solid surface and to a segment of the multimer and so as to not be encountered by endogenous sequences in the sample/analyte. The second binding sequence may be contiguous to the first binding sequence or be spaced therefrom by an intermediate noncomplementary sequence. The probes may include other noncomplementary sequences if desired. These noncomplementary sequences must not hinder the binding of the binding sequences or cause nonspecific binding to occur.

The capture probe and amplifier probe may be prepared by oligonucleotide synthesis procedures or by cloning, preferably the former.

It will be appreciated that the binding sequences need not have perfect complementarity to provide homoduplexes. In many situations, heteroduplexes will suffice where fewer than about 10% of the bases are mismatches, ignoring loops of five or more nucleotides. Accordingly, as used herein the term "complementary" intends exact complementarity wherein each base within the binding region corresponds exactly, and "substantially complementary" intends 90% or greater homology.

The labeled oligonucleotide will include a sequence substantially complementary to the repeated oligonucleotide units of the multimer. The labeled oligonucleotide will include one or more molecules

30

35

("labels"), which directly or indirectly provide a detectable signal. The labels may be bound to individual members of the substantially complementary sequence or may be present as a terminal member or terminal tail having a plurality of labels. Various means for 5 providing labels bound to the oligonucleotide sequences have been reported in the literature. See, for example, Leary et al., Proc. Natl. Acad. Sci. USA (1983) 80:4045; Renz and Kurz, Nucl. Acids Res. (1984) 12:3435; Richardson and Gumport, Nucl. Acids Res. (1983) 11:6167; 10 Smith et al., Nucl. Acids. Res. (1985) 13:2399; Meinkoth and Wahl, Anal. Biochem. (1984) 138:267. The labels may be bound either covalently or non-covalently to the substantially complementary sequence. Labels which may be employed include radionuclides, fluorescers, 15 chemiluminescers, dyes, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, enzyme subunits, metal ions, and the like. Illustrative specific labels include fluorescein, rhodamine, Texas red, phycoerythrin, umbelliferone, luminol, NADPH, α - β -galactosidase, horse-20 radish peroxidase, alkaline phosphatase, etc.

The ratio of capture probe and amplifier probe to anticipated moles of analyte will each be at least stoichiometric and preferably in excess. This ratio is preferably at least about 1.5:1, and more preferably at least 2:1. It will normally be in the range of 2:1 to 10,000:1. Concentrations of each of the probes will generally range from about 10⁻⁵ to 10⁻⁹ M, with sample nucleic acid concentrations varying from 10⁻²¹ to 10⁻¹² M. The hybridization steps of the assay will generally take from about 10 minutes to 20 hours, frequently being completed in about 1 hour. Hybridization can be carried out at a mildly elevated temperature, generally in the range from about 20°C to 80°C, more usually from about 35°C to 70°C, particularly 65°C.

WO 93/13223 PCT/US92/11168

-14-

The hybridization reactions are usually done in an aqueous medium, particularly a buffered aqueous medium, which may include various additives. Additives which may be employed include low concentrations of detergent (0.1 to 1%), salts, e.g., sodium citrate (0.017 to 0.17 M), Ficoll, polyvinylpyrrolidone, carrier nucleic acids, carrier proteins, etc. Nonaqueous solvents may be added to the aqueous medium, such as dimethylformamide, dimethylsulfoxide, alcohols, and formamide. These other solvents are generally present in amounts ranging from 2 to 50%.

The stringency of the hybridization medium may be controlled by temperature, salt concentration, solvent system, and the like. Thus, depending upon the length and nature of the sequence of interest, the stringency will be varied.

Depending upon the nature of the label, various techniques can be employed for detecting the presence of the label. For fluorescers, a large number of different fluorometers are available. For chemiluminescers, luminometers or films are available. With enzymes, a fluorescent, chemiluminescent, or colored product can be provided and determined fluorometrically, luminometrically, spectrophotometrically or visually. The various labels which have been employed in immunoassays and the techniques applicable to immunoassays can be employed with the subject assays.

The following examples further illustrate the invention. These examples are not intended to limit the invention in any manner.

EXAMPLES

Example I

Synthesis of Comb-type Branched Polynucleotide

30

5

10

15

20

10

15

This example illustrates the synthesis of a comb-type branched polynucleotide having 15 branch sites and sidechain extensions having three labeled probe binding sites. This polynucleotide was designed to be used in a solution phase hybridization as described in EPA 883096976.

All chemical syntheses of oligonucleotides were performed on an automatic DNA synthesizer (Applied Biosystems, Inc., (ABI) model 380 B). Phosphoramidite chemistry of the beta cyanoethyl type was used including 5'-phosphorylation which employed Phostel* reagent (ABN). Standard ABI protocols were used except as indicated. Where it is indicated that a multiple of a cycle was used (e.g., 1.2 cycle), the multiple of the standard amount of amidite recommended by ABI was employed in the specified cycle. Appended hereto are the programs for carrying out cycles 1.2 and 6.4 as run on the Applied Biosystems Model 380 B DNA Synthesizer.

A comb body of the following structure was 20 first prepared:

wherein X' is a branching monomer, and R is a periodate cleavable linker.

The portion of the comb body through the 15 (TTX') repeats is first synthesized using 33.8 mg aminopropyl-derivatized thymidine controlled pore glass (CPG) (2000 Å, 7.4 micromoles thymidine per gram support) with a 1.2 cycle protocol. The branching site nucleotide was of the formula:

where R² represents

20

35

sidechains), the concentration of beta cyanoethylphosphoramidite monomers was 0.1 M for A, C, G and T, 0.15 M for the branching site monomer E, and 0.2 M for Phostel reagent. Detritylation was done with 3% trichloroacetic acid in methylene chloride using stepped flowthrough for the duration of the deprotection. At the conclusion the 5' DMT was replaced with an acetyl group.

Cleavable linker R and six base sidechain extensions of the formula 3'-RGTCAGTp (SEQ ID NO:1) were synthesized at each branching monomer site as follows. The base protecting group removal (\mathbb{R}^2 in the formula

. 5

10

15

above) was performed manually while retaining the CPG support in the same column used for synthesizing the comb body. In the case of \mathbb{R}^2 = levulinyl, a solution of 0.5 M hydrazine hydrate in pyridine/glacial acetic acid (1:1 v/v) was introduced and kept in contact with the CPG support for 90 min with renewal of the liquid every 15 min, followed by extensive washing with pyridine/glacial acetic acid (1:1 v/v) and then by acetonitrile. After the deprotection the cleavable linker R and six base sidechain extensions were added using a 6.4 cycle.

In these syntheses the concentration of phosphoramidites was 0.1 M (except 0.2 M R and Phostel* reagent; R was 2-(4-(4-(2-Dimethoxytrityloxy)ethyl-)phenoxy 2,3-di(benzoyloxy)-butyloxy)phenyl)ethyl-2-cyanoethyl-N,N-

diisopropylphosphoramidite).

Detritylation is effected with a solution of 3% trichloroacetic acid in methylene chloride using continuous flowthrough, followed by a rinse solution of toluene/chloromethane (1:1 v/v). Branched polynucleotide chains were removed from the solid supports automatically in the 380B using the cycle "CE NH3." The ammonium hydroxide solution was collected in 4 ml screw-capped Wheaton vials and heated at 60°C for 12 hr to remove all base-protecting groups. After cooling to room temperature the solvent was removed in a Speed-Vac evaporator and the residue dissolved in 100 µl water.

3' backbone extensions (segment A), sidechain extensions and ligation template/linkers of the following structures were also made using the automatic synthesizer:

3' Backbone extension 3'-TCCGTATCCTGGGCACAGAGGTGCp-5' (SEO ID NO:2)

Sidechain extension 3'-GATGCG(TTCATGCTGTTGGTGTAG) 3-5' (SEQ ID NO:3)

Ligation template for linking 3' backbone extension 3'-AAAAAAAAAAGCACCTp-5' (SEQ ID NO:4)

Ligation template for link-10 ing sidechain extension 3'-CGCATCACTGAC-5' (SEQ ID NO:5)

The crude comb body was purified by a standard polyacrylamide gel (7% with 7 M urea and 1% TBE running buffer) method.

The 3' backbone extension and the sidechain extensions were ligated to the comb body as follows. comb body (4 pmole/ μ l), 3' backbone extension (6.25 pmole/ μ l), sidechain extension (93.75 pmole/ μ l) and 20 linking template (5 pmole/ μ l) were combined in 1 mM ATP/ 5 mM DTT/ 50 mM Tris-HCl, pH 8.0/ 10 mM MgCl2/ 2 mM spermidine, with 0.5 units/ μ l T4 polynucleotide kinase. The mixture was incubated at 37°C for 2 hr, then heated in a water bath to 95°C, and then cooled to below 35°C 25 for about 1 hr. 2 mM ATP, 10 mM DTT, 14% polyethylene glycol, and 0.21 units/ μ l T4 ligase were added, and the mixture incubated for 16-24 hr at 23°C. The DNA was precipitated in NaCl/ethanol, resuspended in water, and subjected to a second ligation as follows. The mixture 30 was adjusted to 1 mM ATP, 5 mM DTT, 14% polyethylene glycol, 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 2 mM spermidine, 0.5 units/ μ l T4 polynucleotide kinase, and 0.21 units/ μ l T4 ligase were added, and the mixture incubated at 23°C for 16-24 hr. Ligation products were 35

then purified by polyacrylamide gel electrophoresis.

After ligation and purification, a portion of the product was labeled with ³²P and subjected to cleavage at the site of R achieved by oxidation with aqueous NaIO₄ for 1 hr. The sample was then analyzed by PAGE to determine the number of sidechain extensions incorporated by quantitating the radioactive label in the bands on the gel. The product was found to have a total of 45 labeled probe binding sites.

10

20

25

5

Example 2

Sandwich Hybridization Assay for HIV DNA using Multimer

This example illustrates the use of the invention in an HIV DNA assay.

A "15 X 3" amplified solution phase nucleic acid sandwich hybridization assay format was employed in this example. The "15 x 3" designation derives from the fact that the format employs two multimers: (1) an amplifier probe having a first segment (A) that binds to HIV nucleic acid and a second segment (B) that hybridizes to (2) an amplifier multimer having a first segment (B*) that hybridizes to the segment (B) and fifteen iterations of a segment (C), wherein segment C hybridizes to three labeled oligonucleotides.

The amplifier and capture probe HIV-specific segments, and their respective names as used in this assay were as follows.

30 <u>HIV Amplifier Probes</u>

HIV.104 (SEQ ID NO:5)

TTCCTGGCAAAYYYATKTCTYCTAMTACTGTAT

HIV.105 (SEQ ID NO:6)

CTCCAATTCCYCCTATCATTTTTTGGYTTCCATY

35 HIV.106 (SEQ ID NO:7)

		KTATYTGATCRTAYTGTCYYACTTTGATAAAAC
	HIV.108	(SEQ ID NO:8)
		GTTGACAGGYGTAGGTCCTACYAATAYTGTACC
	HIV.110	(SEQ ID NO:9)
5		YTCAATAGGRCTAATKGGRAAATTTAAAGTRCA
	HIV.112	(SEQ ID NO:10)
		YTCTGTCAATGGCCATTGYTTRACYYTTGGGCC
	HIV.113	(SEQ ID NO:11)
		TKTACAWATYTCTRYTAATGCTTTTATTTYTC
10	HIV.114	(SEQ ID NO:12)
		AAYTYTTGAAATYTTYCCTTCCTTTTCCATHTC
	HIV.115	(SEQ ID NO:13)
		AAATAYKGGAGTATTRTATGGATTYTCAGGCCC
	HIV.116	(SEQ ID NO:14)
15		TCTCCAYTTRGTRCTGTCYTTTTTCTTTATRGC
	HIV.117	(SEQ ID NO:15)
		TYTYYTATTAAGYTCYCTGAAATCTACTARTTT
	HIV.120	(SEQ ID NO:16)
		TKTTYTAAARGGYTCYAAGATTTTTGTCATRCT
20	HIV.121	(SEQ ID NO:17)
		CATGTATTGATADATRAYYATKTCTGGATTTTG
	HIV.122	(SEQ ID NO:18)
		TATYTCTAARTCAGAYCCTACATACAAATCATC
	HIV.123	(SEQ ID NO:19)
25		TCTYARYTCCTCTATTTTTGYTCTATGCTGYYC
	HIV.125	(SEQ ID NO:20)
		AAGRAATGGRGGTTCTTTCTGATGYTTYTTRTC
	HIV.128	(SEQ ID NO:21)
		TRGCTGCYCCATCTACATAGAAVGTTTCTGCWC
30	HIV.130	(SEQ ID NO:22)
		GACAACYTTYTGTCTTCCAYTGTYAGTWASATA
	HIV.132	(SEQ ID NO:23)
		YGAATCCTGYAAVGCTARRTDAATTGCTTGTAA
	HIV.133	(SEQ ID NO:24)
35		YTGTGARTCTGTYACTATRTTTACTTCTRRTCC

	HIV.135	(SEQ ID NO:25)
		TATTATTIGAYTRACWAWCTCTGATTCACTYT
	HIV.136	(SEQ ID NO:26)
		CAGRTARACYTTTTCCTTTTTTTTTTARYTGYT
5	HIV.137	(SEQ ID NO:27)
		TCCTCCAATYCCTTTRTGTGCTGGTACCCATG
	HIV.138	(SEQ ID NO:28)
		TCCHBBACTGACTAATYTATCTACTTGTTCAT
	HIV.139	(SEQ ID NO:29)
10		ATCTATTCCATYYAAAAATAGYAYYTTYCTGA:
	HIV.141	(SEQ ID NO:30)
		GTGGYAGRTTAAARTCAYTAGCCATTGCTYTC
	HIV.142	(SEQ ID NO:31)
		CACAGCTRGCTACTATTTCYTTYGCTACYAYRO
15	HIV.144	(SEQ ID NO:32)
		RYTGCCATATYCCKGGRCTACARTCTACTTGT
	HIV.145	(SEQ ID NO:33)
		DGATWAYTTTTCCTTCYARATGTGTACAATCT
	HIV.146	(SEQ ID NO:34)
20		CTATRTAKCCACTRGCYACATGRACTGCTACYA
	HIV.147	(SEQ ID NO:35)
		CYTGYCCTGTYTCTGCTGGRATDACTTCTGCT
	HIV.149	(SEQ ID NO:36)
		TGSKGCCATTGTCTGTATGTAYTRYTKTTACT
25	HIV.151	(SEQ ID NO:37)
		GAATKCCAAATTCCTGYTTRATHCCHGCCCAC
	HIV.152	(SEQ ID NO:38)
	***** 4 5 3	ATTCYAYTACYCCTTGACTTTGGGGRTTGTAG
- ^	HTA.123	(SEQ ID NO:39) GBCCTATRATTTKCTTTAATTCHTTATTCATA
30	11 737 1 5 A	(SEQ ID NO:40)
	NIA.TO4	CTSTCTTAAGRTGYTCAGCYTGMTCTCTTACY
	UT3/ 155	(SEQ ID NO:41)
	ut. 133	TAAAATTGTGRATRAAYACTGCCATTTGTACW
35	מדע ובכ	(SEQ ID NO:42)
ت ت	TTA. T30	(UUG 10 NC 124)

-22-CTGCACTGTAYCCCCCAATCCCCCYTYTTCTTT HIV.157 (SEQ ID NO:43) TGTCTGTWGCTATYATRYCTAYTATTCTYTCCC HIV.158 (SEQ ID NO:44) TTRTRATTTGYTTTTGTARTTCTYTARTTTGTA 5 HIV Capture Probes HIV.103 (SEQ ID NO:45) CATCTGCTCCTGTRTCTAATAGAGCTTCYTTTA HIV.111 (SEQ ID NO:46) 10 ATCCATYCCTGGCTTTAATTTTACTGGTACAGT HIV.118 (SEQ ID NO:47) TATTCCTAAYTGRACTTCCCARAARTCYTGAGT HIV.119 (SEQ ID NO:48) ACWYTGGAATATYGCYGGTGATCCTTTCCAYCC 15 HIV.126 (SEQ ID NO:49) CCATTTRTCAGGRTGGAGTTCATAMCCCATCCA HIV.127 (SEQ ID NO:50) CTAYTATGGGKTCYKTYTCTAACTGGTACCAYA HIV.134 (SEQ ID NO:51) 20 ATCTGGTTGTGCTTGAATRATYCCYARTGCATA HIV.143 (SEQ ID NO:52) CATGCATGGCTTCYCCTTTTAGYTGRCATTTAT HIV.150 (SEQ ID NO:53) AACAGGCDGCYTTAACYGYAGYACTGGTGAAAT 25 HIV.159 (SEQ ID NO:54) TGTCYCTGTAATAAACCCGAAAATTTTGAATTT Each amplifier probe contained, in addition to

the sequences substantially complementary to the HIV sequences, the following 5' extension complementary to a segment of the amplifier multimer,

AGGCATAGGACCCGTGTCTT (SEQ ID NO:55).

10

Each capture probe contained, in addition to the sequences substantially complementary to HIV DNA, the following downstream sequence complementary to DNA bound to the solid phase (XT1*),

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:56).

In addition to the amplifier and capture probes, the following set of HIV spacer oligonucleotides was included in the hybridization mixture.

HIV Spacer Oligonucleotides

HIV.NOX107 (SEQ ID NO:57)

TATAGCTTTHTDTCCRCAGATTTCTAYRR,

HIV.NOX109 (SEQ ID NO:58)

VCCAAKCTGRGTCAACADATTTCKTCCRATTAT,

15 HIV.NOX124 (SEQ ID NO:59)

TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS,

HIV.NOX129 (SEQ ID NO:60)

TCCTGCTTTTCCYWDTYTAGTYTCYCTRY,

HIV.NOX131 (SEQ ID NO:61)

YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD,

HIV.NOX140 (SEQ ID NO:62)

AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT,

HIV.NOX148 (SEQ ID NO:63)

GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT.

25

20

Microtiter plates were prepared as follows. White Microlite 1 Removawell strips (polystyrene microtiter plates, 96 wells/plate) were purchased from Dynatech Inc. Each well was filled with 200 μ l 1 N HCl and incubated at room temperature for 15-20 min. The plates were then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The wells were then filled with 200 μ l 1 N NaOH and incubated at room temperature

10

for 15-20 min. The plates were again washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Poly(phe-lys) was purchased from Sigma Chemicals, Inc. This polypeptide has a 1:1 molar ratio of phe:lys and an average m.w. of 47,900 gm/mole. It has an average length of 309 amino acids and contains 155 amines/mole. A 1 mg/ml solution of the polypeptide was mixed with 2M NaCl/1X PBS to a final concentration of 0.1 mg/ml (pH 6.0). 200 μ L of this solution was added to each well. The plate was wrapped in plastic to prevent drying and incubated at 30°C overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

The following procedure was used to couple the oligonucleotide XT1* to the plates. Synthesis of XT1* 15 was described in EPA 883096976. 20 mg disuccinimidyl suberate was dissolved in 300 $\mu 1$ dimethyl formamide 26 OD_{260} units of XT1* was added to 100 μl coupling buffer (50 mM sodium phosphate, pH 7.8). coupling mixture was then added to the DSS-DMF solution 20 and stirred with a magnetic stirrer for 30 min. An NAP-25 column was equilibrated with 10 mM sodium phosphate, pH 6.5. The coupling mixture DSS-DMF solution was added to 2 ml 10 mM sodium phosphate, pH 6.5, at 4°C. The mixture was vortexed to mix and loaded onto the 25 equilibrated NAP-25 column. DSS-activated XT1* DNA was eluted from the column with 3.5 ml 10 mM sodium phosphate, pH 6.5. 5.6 OD₂₆₀ units of eluted DSSactivated XT1* DNA was added to 1500 ml 50 mM sodium phosphate, pH 7.8. 50 μ l of this solution was added to 30 each well and the plates were incubated overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Final stripping of plates was accomplished as follows. 200 μ L of 0.2N NaOH containing 0.5% (w/v) SDS

20

25

30

was added to each well. The plate was wrapped in plastic and incubated at 65°C for 60 min. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The stripped plate was stored with desiccant beads at 2-8°C.

A standard curve of HIV DNA was prepared by diluting cloned HIV DNA in HIV negative human serum and delivering aliquots of dilutions corresponding to a range of 10 to 200 tmoles (1 tmole = 602 molecules or 10⁻²¹ moles) to wells of microtiter dishes prepared as described above.

Sample preparation consisted of delivering 12.5 μ l P-K Buffer (2 mg/ml proteinase K in 10 mM Tris-HCl, pH 8.0/0.15 M NaCl/10 mM EDTA, pH 8.0/1%SDS/40 μ g/ml

sonicated salmon sperm DNA) to each well. Plates were covered and agitated to mix samples, incubated at 65°C to release nucleic acids, and then cooled on the benchtop for 5 min.

A cocktail of the HIV-specific amplifier and capture probes listed above was added to each well (50 fmoles capture probes, 50 fmoles amplifier probes/well). Plates were covered and gently agitated to mix reagents and then incubated at 65°C for 30 min.

Neutralization buffer was then added to each well (0.77 M 3-(N-morpholino)propane sulfonic acid/1.845 M NaCl/0.185 M sodium citrate). Plates were covered and incubated for 12-18 hr at 65°C.

The contents of each well were aspirated to remove all fluid, and the wells washed 2% with washing buffer (0.1% SDS/0.015 M NaCl/ 0.0015 M sodium citrate).

The amplifier multimer was then added to each well (40 μ l of 2.5 fmole/ μ l solution in 50% horse serum/0.06 M NaCl/0.06 M sodium citrate/0.1% SDS mixed 1:1 with 4X SSC/0.1% SDS/0.5% "blocking reagent"

35 (Boehringer Mannheim, catalog No. 1096 176). After

WO 93/13223 PCT/US92/11168

-26-

covering plates and agitating to mix the contents in the wells, the plates were incubated for 15 min at 55°C.

After a further 5 min period at room temperature, the wells were washed as described above.

Alkaline phosphatase label probe, disclosed in EP 883096976, was then added to each well (40 μ l/well of 2.5 fmoles/ μ l). After incubation at 55°C for 15 min, and 5 min at room temperature, the wells were washed twice as above and then 3X with 0.015 M NaCl/0.0015 M sodium citrate.

An enzyme-triggered dioxetane (Schaap et al., Tet. Lett. (1987) 28:1159-1162 and EPA Pub. No. 0254051), obtained from Lumigen, Inc., was employed. 20 μ l Lumiphos 530 (Lumigen) was added to each well. The wells were tapped lightly so that the reagent would fall to the bottom and gently swirled to distribute the reagent evenly over the bottom. The wells were covered and incubated at 37°C for 40 min.

Plates were then read on a Dynatech ML 1000 luminometer. Output was given as the full integral of the light produced during the reaction.

Results are shown in the Table below. Results for each standard sample are expressed as the difference between the mean of the negative control plus two standard deviations and the mean of the sample minus two standard deviations (delta). If delta is greater than zero, the sample is considered positive.

Results from the standard curve of the HIV probes is shown in Table I. These results indicate the ability of these probe sets to detect 50 tmoles of the HIV DNA standard.

5

10

15

20

25

PCT/US92/11168

20

25

30

35

-27-

Table I

	Analyte HIV tmole/well	Delta
5	0	
	10	-0.56
	20	-0.51
	50	0.39
	100	1.93
10	200	5.48

Example 3

Detection of HIV Viral RNA

HIV RNA was detected using essentially the same procedure as above with the following modifications.

A standard curve of HIV RNA was prepared by serially diluting HIV virus stock in normal human serum to a range between 125 to 5000 $TCID_{50}/ml$ ($TCID_{50}$ is the 50% tissue culture infectious dose endpoint). A proteinase K solution was prepared by adding 10 mg proteinase K to 5 ml HIV capture diluent (53 mM Tris-HCl, pH 8/ 10.6 mM EDTA/ 1.3% SDS/ 16 μ g/ml sonicated salmon sperm DNA/ 5.3 X SSC/ 1 mg/ml proteinase K) made 7% in formamide stored at -20°C. Equimolar mixtures of capture probes, label probes and spacer oligonucleotides were added to the proteinase K solution such that the final concentration of each probe was 1670 fmoles/ml. After addition of 30 μ l of the probe/proteinase K solution to each well of microtiter plates prepared as above, 10 μ l of appropriate virus dilutions were added to each well. Plates were covered, shaken to mix and then incubated at 65°C for 16 hr.

Plates were removed from the incubator and cooled on the bench top for 10 min. The wells were washed 2X as described in Example 2 above. The 15 X 3

15

multimer was diluted to 1 fmole/ μ l in Amp/Label diluent (prepared by mixing 2.22 ml DEPC-treated H₂O (DEPC is diethylpyrocarbonate), 1.35 ml 10% SDS, 240 μ l 1 M Tris pH 8.0, 20 μ l horse serum, adjusted to 2 mg/ml in proteinase K and heated to 65°C for 2 hr, then added to 240 μ l of 0.1 M PMSF and heated at 37°C for 1 hr, after which was added 4 ml DEPC-treated H₂O, 4 ml 10 % SDS and 8 ml 20X SSC). The diluted 15 X 3 multimer was added at 40 μ l/well, the plates sealed, shaken, and incubated at 55°C for 30 min.

The plates were then cooled at room temperature for 10 minutes, and washed as described above. Alkaline phosphatase label probe was diluted to 2.5 fmoles/ μ l in Amp/Label diluent and 40 μ l added to each well. Plates were covered, shaken, and incubated at 55°C for 15 min.

Plates were cooled 10 min at room temperature, washed 2X as above and then 3X with 0.15 M NaCl/0.015 M sodium citrate. Substrate was added and luminescence measured as above. Sensitivity of the assay was about 1.25 TCID₅₀, as shown in the Table below.

20	1.25	TCID ₅₀ ,	as shown	Table II	e perow.
			TCID ₅₀		delta
			0.00		
25			1.25		0.11
			2.50		2.60
			5.00		6.37
			10.00		14.10
			50.00		90.70
30					

35

Example 4

Comparison of Clustered vs Interspersed Probe Sets HIV RNA was detected using essentially the same procedure as in Example 3, except for the following modifications. The RNA standard was prepared by 5 transcription of a 9.0 KB HIV transcript from plasmid pBHBK10S (Chang, P.S., et al., Clin. Biotech. 2:23, 1990) using T7 RNA polymerase. This HIV RNA was quantitated by hybridization with gag and pol probes captured by HAP chromatography. The RNA standard was serially diluted in 10 the proteinase K diluent described above to a range between 2.5 to 100 atomoles per ml, and the equimolar mixtures of capture probes, label probes, and spacer oligonucleotides were added such that the concentration of each probe was 1670 fmoles/ml. Two arrangements of 15 capture and label probes were tested: scattered capture probes, such that capture probes are interspersed with label probes, and clustered capture probes, such that the capture probes are arranged in contiguous clusters with respect to label probes. The clustered probe sets are 20 shown below.

CLUSTERED HIV CAPTURE PROBES

HIV.116 (SEO ID NO:14)

TCTCCAYTTRGTRCTGTCYTTTTTCTTTATRGC

HIV.117 (SEQ ID NO:15)

TYTYYTATTAAGYTCYCTGAAATCTACTARTTT

HIV.118 (SEO ID NO:47)

TATTCCTAAYTGRACTTCCCARAARTCYTGAGT

30 HIV.119 (SEQ ID NO:48)

ACWYTGGAATATYGCYGGTGATCCTTTCCAYCC

HIV.120 (SEQ ID NO:16)

TKTTYTAAARGGYTCYAAGATTTTTGTCATRCT

HIV.155 (SEQ ID NO:41)

TAAAATTGTGRATRAAYACTGCCATTTGTACWG

	HIV.156	(SEQ ID NO:42)
		CTGCACTGTAYCCCCCAATCCCCCYTYTTCTTT
	HIV.157	(SEQ ID NO:43)
		TGTCTGTWGCTATYATRYCTAYTATTCTYTCCC
5	HIV.158	(SEQ ID NO:44)
		TTRTRATTIGYTTTTGTARTTCTYTARTTTGTA
	HIV.159	(SEQ ID NO:54)
		TGTCYCTGTAATAAACCCGAAAATTTTGAATTT
		,
10		CLUSTERED HIV AMPLIFIER PROBES
	HIV.103	(SEQ ID NO:45)
		CATCTGCTCCTGTRTCTAATAGAGCTTCYTTTA
	HIV.104	(SEQ ID NO:5)
		TTCCTGGCAAAYYYATKTCTYCTAMTACTGTAT
15	HIV.105	(SEQ ID NO:6)
		CTCCAATTCCYCCTATCATTTTTGGYTTCCATY
	HIV.106	(SEQ ID NO:7)
		KTATYTGATCRTAYTGTCYYACTTTGATAAAAC
	HIV.108	(SEQ ID NO:8)
20		GTTGACAGGYGTAGGTCCTACYAATAYTGTACC
	HIV.110	(SEQ ID NO:9) YTCAATAGGRCTAATKGGRAAATTTAAAGTRCA
	HTA * TTT	(SEQ ID NO:46) ATCCATYCCTGGCTTTAATTTTACTGGTACAGT
25	TITTE 110	(SEQ ID NO:10)
25	HTA "TIT	YTCTGTCAATGGCCATTGYTTRACYYTTGGGCC
	UTW 112	(SEQ ID NO:11)
	1174.77	TKTACAWATYTCTRYTAATGCTTTTATTTTYTC
	HTV.114	(SEQ ID NO:12)
30		AAYTYTTGAAATYTTYCCTTCCTTTTCCATHTC
30	HTV.115	(SEQ ID NO:13)
		AAATAYKGGAGTATTRTATGGATTYTCAGGCCC
	HIV.121	(SEQ ID NO:17)
		CATGTATTGATADATRAYYATKTCTGGATTTTG

	HIV.122 (SEQ ID NO:18)
	TATYTCTAARTCAGAYCCTACATACAAATCATC
	HIV.123 (SEQ ID NO:19)
	TCTYARYTCCTCTATTTTTGYTCTATGCTGYYC
5	HIV.125 (SEQ ID NO:20)
	AAGRAATGGRGGTTCTTTCTGATGYTTYTTRTC
	HIV.126 (SEQ ID NO:49)
	CCATTTRTCAGGRTGGAGTTCATAMCCCATCCA
•	HIV.127 (SEQ ID NO:50)
10	CTAYTATGGGKTCYKTYTCTAACTGGTACCAYA
	HIV.128 (SEQ ID NO:21)
	TRGCTGCYCCATCTACATAGAAVGTTTCTGCWC
	HIV.130 (SEQ ID NO:22)
	GACAACYTTYTGTCTTCCAYTGTYAGTWASATA
15	HIV.132 (SEQ ID NO:23)
	YGAATCCTGYAAVGCTARRTDAATTGCTTGTAA
	HIV.133 (SEQ ID NO:24)
	YTGTGARTCTGTYACTATRTTTACTTCTRRTCC
	HIV.134 (SEQ ID NO:51)
20	ATCTGGTTGTGCTTGAATRATYCCYARTGCATA
	HIV.135 (SEQ ID NO:25)
	TATTATTTGAYTRACWAWCTCTGATTCACTYTK
	HIV.136 (SEQ ID NO:26)
25	CAGRTARACYTTTTCCTTTTTTATTARYTGYTC
25	HIV.137 (SEQ ID NO:27)
	TCCTCCAATYCCTTTRTGTGCTGGTACCCATGM
	HIV.138 (SEQ ID NO:28)
	TCCHBBACTGACTAATYTATCTACTTGTTCATT
30	HIV.139 (SEQ ID NO:29)
30	ATCTATTCCATYYAAAAATAGYAYYTTYCTGAT
	HIV.141 (SEQ ID NO:30)
	GTGGYAGRTTAAARTCAYTAGCCATTGCTYTCC
	HIV.142 (SEQ ID NO:31)
35	CACAGCTRGCTACTATTTCYTTYGCTACYAYRG
J J	

HIV.143 (SEQ ID NO:52)

CATGCATGGCTTCYCCTTTTAGYTGRCATTTAT

HIV.144 (SEQ ID NO:32)

RYTGCCATATYCCKGGRCTACARTCTACTTGTC

5 HIV.145 (SEO ID NO:33)

DGATWAYTTTTCCTTCYARATGTGTACAATCTA

HIV.146 (SEQ ID NO:34)

CTATRTAKCCACTRGCYACATGRACTGCTACYA

HIV.147 (SEQ ID NO:35)

10 CYTGYCCTGTYTCTGCTGGRATDACTTCTGCTT

HIV.149 (SEQ ID NO:36)

TGSKGCCATTGTCTGTATGTAYTRYTKTTACTG

HIV.150 (SEO ID NO:53)

AACAGGCDGCYTTAACYGYAGYACTGGTGAAAT

15 HIV.151 (SEQ ID NO:37)

GAATKCCAAATTCCTGYTTRATHCCHGCCCACC

HIV.152 (SEQ ID NO:38)

ATTCYAYTACYCCTTGACTTTGGGGRTTGTAGG

HIV.153 (SEO ID NO:39)

20 GBCCTATRATTTKCTTTAATTCHTTATTCATAG

HIV.154 (SEQ ID NO:40)

CTSTCTTAAGRTGYTCAGCYTGMTCTCTTACYT

After addition of 30 μ l of the

analyte/probe/proteinase K solution to each well, 10 μ l of normal human serum was added and the assay carried out as described in Example 3. As shown in Table III, the sensitivity of the assay with scattered versus the clustered capture arrangement was similar. Using the clustered capture extenders sensitivity was 50 to 100 tmoles, whereas using the scattered capture extenders, sensitivity was 100 to 500 tmoles.

WO 93/13223 PCT/US92/11168

-33-

Table 3

Probe Arrangement	Analyte tmoles	Delta
Clustered	0	
	25	-0.16
	50	0.36
	100	0.65
	500	4.45
	1000	6.24
Scattered	0	
	25	-0.2
	50	0.2
	100	-0.1
	500	2.5
	1000	4.79

Modifications of the above-described modes for carrying out the invention that are obvious to those of skill in biochemistry, nucleic acid hybridization assays, and related fields are intended to be within the scope of the following claims.

25

30

PCT/US92/11168

-34-

SEQUENCE LISTING

	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: Irvine, Bruce D. Horn, Thomas Chang, Chu-An
	(ii)	TITLE OF INVENTION: HIV PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS
	(iii)	NUMBER OF SEQUENCES: 63
10	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Morrison & Foerster (B) STREET: 755 Page Mill Road (C) CITY: Palo Alto (D) STATE: California (E) COUNTRY: USA (F) ZIP: 94304-1018
15	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
20	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: 07/813,583 (B) FILING DATE: 23-DEC-1991 (C) CLASSIFICATION:
25	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Thomas E. Ciotti (B) REGISTRATION NUMBER: 21,013 (C) REFERENCE/DOCKET NUMBER: 22300-20150.00
	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 415-813-5600 (B) TELEFAX: 415-494-0792 (C) TELEX: 706141
30	(2) INFO	RMATION FOR SEQ ID NO:1:
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
35		•

	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	CGTGGAGACA CGGGTCCTAT GCCT	24
	(2) INFORMATION FOR SEQ ID NO:2:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	GATGTGGTTG TCGTACTTGA TGTGGTTGTC GTACTTGATG TGGTTGTCGT ACTTGCGTAG	
	(2) INFORMATION FOR SEQ ID NO:3:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	TCCACGAAAA AAAAAA	16
	(2) INFORMATION FOR SEQ ID NO:4:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STREEDEDNESS: single (D) TOPOLOGY: lamear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	CAGTCACTAC GC	12
	(2) INFORMATION FOR SEQ ID NO:5:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid	

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
5	TTCCTGGCAA AYYYATKTCT YCTAMTACTG TAT	33
	(2) INFORMATION FOR SEQ ID NO:6:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
15	CTCCAATTCC YCCTATCATT TTTGGYTTCC ATY	33
13	(2) INFORMATION FOR SEQ ID NO:7:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	KTATYTGATC RTAYTGTCYY ACTITGATAA AAC	33
25	(2) INFORMATION FOR SEQ ID NO:8:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GTTGACAGGY GTAGGTCCTA CYAATAYTGT ACC	33
	(2) INFORMATION FOR SEQ ID NO:9:	
35		

	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	YTCAATAGGR CTAATKGGRA AATTTAAAGT RCA	33
	(2) INFORMATION FOR SEQ ID NO:10:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	YTCTGTCAAT GGCCATTGYT TRACYYTTGG GCC	33
	(2) INFORMATION FOR SEQ ID NO:11:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	TKTACAWATY TCTRYTAATG CTTTTATTTT YTC	33
	(2) INFORMATION FOR SEQ ID NO:12:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
35	AAYTYTTGAA ATYTTYCCTT CCTTTTCCAT HTC	33

	(2) INFORMATION FOR SEQ ID NO:13:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	AAATAYKGGA GTATTRTATG GATTYTCAGG CCC	33
10	(2) INFORMATION FOR SEQ ID NO:14:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	TCTCCAYTTR GTRCTGTCYT TTTTCTTTAT RGC	33
	(2) INFORMATION FOR SEQ ID NO:15:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	TYTYYTATTA AGYTCYCTGA AATCIACTAR TIT	33
	(2) INFORMATION FOR SEQ ID NO:16:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
35	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:16:	

	TKTTYTAAAR GGYTCYAAGA TTTTTGTCAT RCT	33
	(2) INFORMATION FOR SEQ ID NO:17:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
10	CATGTATIGA TADATRAYYA TKTCTGGATT TIG	33 -
	(2) INFORMATION FOR SEQ ID NO:18:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
20	TATYTCTAAR TCAGAYCCTA CATACAAATC ATC	33
20	(2) INFORMATION FOR SEQ ID NO:19:	•
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	TCTYARYTCC TCTATTTTTG YTCTATGCTG YYC	33
30	(2) INFORMATION FOR SEQ ID NO:20:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(AL) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	AAGRAATGGR GGTTCTTTCT GATGYTTYTT RTC	33
	(2) INFORMATION FOR SEQ ID NO:21:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	TRECTECYCC ATCTACATAG AAVETTTCTE CWC	33
	(2) INFORMATION FOR SEQ ID NO:22:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	GACAACYTTY TGTCTTCCAY TGTYAGTWAS ATA	33
	(2) INFORMATION FOR SEQ ID NO:23:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
30	YGAATCCTGY AAVGCTARRT DAATTGCTTG TAA	33
	(2) INFORMATION FOR SEQ ID NO:24:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
	YTGTGARTCT GTYACTATRT TTACTTCTRR TCC	33
5	(2) INFORMATION FOR SEQ ID NO:25:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	TATTATTTGA YTRACWAWCT CTGATTCACT YTK	33
	(2) INFORMATION FOR SEQ ID NO:26:	•
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20		
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	CAGRIARACY TITICCITIT TTATTARYIG YIC	33
	(2) INFORMATION FOR SEQ ID NO:27:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	TCCTCCAATY CCTTTRTGTG CTGGTACCCA TGM	33
	(2) INFORMATION FOR SEQ ID NO:28:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
5	TCCHBBACTG ACTAATYTAT CTACTTGTTC ATT	33
	(2) INFORMATION FOR SEQ ID NO:29:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
15	ATCTATTCCA TYYAAAAATA GYAYYTTYCT GAT	33
	(2) INFORMATION FOR SEQ ID NO:30:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	GTGGYAGRTT AAARTCAYTA GCCATTGCTY TCC	33
25	(2) INFORMATION FOR SEQ ID NO:31:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	CACAGCTRGC TACTATTTCY TTYGCTACYA YRG	33
	(2) INFORMATION FOR SEQ ID NO:32:	
35		•

	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	RYTGCCATAT YCCKGGRCTA CARTCTACTT GTC	33
	(2) INFORMATION FOR SEQ ID NO:33:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	DGATWAYTIT TCCTTCYARA TGTGTACAAT CTA	33
	(2) INFORMATION FOR SEQ ID NO:34:	•
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	CTATRIAKCC ACTRGCYACA TGRACTGCTA CYA	33
	(2) INFORMATION FOR SEQ ID NO:35:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
35	CYTGYCCIGI YTCIGCIGGR ATDACTICIG CIT	33

(2) INFORMATION FOR SEQ ID NO:36:

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
	TGSKGCCATT GTCTGTATGT AYTRYTKTTA CTG	3:
10	(2) INFORMATION FOR SEQ ID NO:37:	•
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
	GAATKCCAAA TTCCTGYTTR ATHCCHGCCC ACC	33
20	(2) INFORMATION FOR SEQ ID NO:38:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
	ATTCYAYTAC YCCTTGACTT TGGGGRTTGT AGG	33
	(2) INFORMATION FOR SEQ ID NO:39:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	

	GBCCTATRAT TTKCTTTAAT TCHTTATTCA TAG	33
	(2) INFORMATION FOR SEQ ID NO:40:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
10	CTSTCTTAAG RTGYTCAGCY TGMTCTCTTA CYT	33
	(2) INFORMATION FOR SEQ ID NO:41:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
20	, and the second	33
25	(2) INFORMATION FOR SEQ ID NO:42: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
	CTGCACTGTA YCCCCCAATC CCCCYTYTTC TTT	
		33
30	(2) INFORMATION FOR SEQ ID NO:43: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

-46-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
	TGTCTGTWGC TATYATRYCT AYTATTCTYT CCC	33
	(2) INFORMATION FOR SEQ ID NO:44:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
	TTRTRATTIG YTTTTGTART TCTYTARTIT GTA	33
	(2) INFORMATION FOR SEQ ID NO:45:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	33
	CATCTGCTCC TGTRTCTAAT AGAGCTTCYT TTA	
	(2) INFORMATION FOR SEQ ID NO:46:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
30	ATCCATYCCT GGCTTTAATT TTACTGGTAC AGT	33
	(2) INFORMATION FOR SEQ ID NO:47:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
•	TATTCCTAAY TGRACTTCCC ARAARTCYTG AGT	33
5	(2) INFORMATION FOR SEQ ID NO:48:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	-	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
	ACWYTGGAAT ATYGCYGGTG ATCCTTTCCA YCC	33
	(2) INFORMATION FOR SEQ ID NO:49:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20		÷
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
•	CCATTTRTCA GGRTGGAGTT CATAMCCCAT CCA	33
	(2) INFORMATION FOR SEQ ID NO:50:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
	CTAYTATGGG KTCYKTYTCT AACTGGTACC AYA	33
	(2) INFORMATION FOR SEQ ID NO:51:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: pucleic acid	

-48-

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
5	ATCTGGTTGT GCTTGAATRA TYCCYARTGC ATA	33
	(2) INFORMATION FOR SEQ ID NO:52:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
15	CATGCATGGC TICYCCITIT AGYTGRCATT TAT	33
	(2) INFORMATION FOR SEQ ID NO:53:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
	AACAGGCDGC YTTAACYGYA GYACTGGTGA AAT	33
25	(2) INFORMATION FOR SEQ ID NO:54:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	••
	TGTCYCTGTA ATAAACCCGA AAATTTTGAA TTT	33
	(2) INFORMATION FOR SEQ ID NO:55:	
35		

PCT/US92/11168

	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
	AGGCATAGGA CCCGTGTCTT	20
	(2) INFORMATION FOR SEQ ID NO:56:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
	CTTCTTTGGA GAAAGTGGTG	20
	(2) INFORMATION FOR SEQ ID NO:57:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
27	TATAGCTITH TOTCCRCAGA TTTCTAYRR	29
	(2) INFORMATION FOR SEQ ID NO:58:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
35	VCCAAKCTGR GTCAACADAT TTCKTCCRAT TAT	33

	(2) INFORMATION FOR SEQ ID NO:59:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
	TGGTGTGGTA ARYCCCCACY TYAAYAGATG YYS	3
10	(2) INFORMATION FOR SEQ ID NO:60:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
	TCCTGCTTTT CCYWDTYTAG TYTCYCTRY	2:
	(2) INFORMATION FOR SEQ ID NO:61:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
	YTCAGTYTTC TGATTTGTYG TDTBHKTNAD RGD	3:
	(2) INFORMATION FOR SEQ ID NO:62:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(wi) SECTIFNOR DESCRIPTION: SEC ID NO:62:	

WO 93/13223 PCT/US92/11168

-51-

	AATTRYTGTG ATATTTYTCA TGDTCHTCTT GRGCCTT	37
	(2) INFORMATION FOR SEQ ID NO:63:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
10	GCCATCTKCC TGCTAATTTT ARDAKRAART ATGCTGTYT	39
15		
	• •	
	·	
20		
25		
25		
30		

Listings of All

Cycles, Procedures, and Sequences

Used to Synthesize the 15X Comb

Contained on the 3½" floppy disk for the 380B DNA Synthesizer

DNA SEQUENCE VERSION 2.00

SEQUENCE NAME: 15X-2 SEQUENCE LENGTH: 10

DATE: Aug 27, 199

TIME: 14:06

COMMENT:

5'- 77T 6AC TG5 T -3'

FILE NAME	LAST ACCESS	DATE CREATED	FILE NAME	LAST ACCESS	DATE CREATED
		FILE TYPE:	SYNTHESIS CYC	LE	•
6.4XSC-5 1.2XD-6 ssceaf3 10ceaf3 10hpaf3 10rnaaf3 caf3 10hpf3 10rnaf3 ceaf1 hpaf1 rnaaf1 sscef1 10cef1	08 27, 1991 08 27, 1991 01 07, 1990 01 07, 1990	08 27, 1991 08 27, 1991 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990 01 07, 1990	6.4XS-5 1.2X-6 ceaf3 hpaf3 rnaaf3 sscef3 10cef3 rnaf3 ssceaf1 10ceaf1 10hpaf1 10rnaaf1 cef1 10hpf1	08 27. 1991 08 27. 1993 01 07. 1990 01 07. 1990	08 27, 1991 08 27, 1991 01 07, 1990 01 07, 1990
1,1161.1		FILE TYPE:	BOTTLE CHANGE	PROCEDURE	
bc 18 bc 16 bc 14 bc 12 bc 10 bc 8a bc 6 bc 4 bc 2	07 01; 1986 07 01; 1986	07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986	be 17 be 15 be 13 be 11 be 9 be 7 be 5 be 3 be 1	07 01, 1986 07 01, 1986	
		FILE TYPE:	END PROCEDURE	•	
CAP-PRIM deprce deprhp deprna	'08 27, 1991 10 08, 1990 10 08, 1990	10 08, 1990	CE NH3 deproe10 deprhp10 deprne10	08 27, 1991 10 08, 1990 10 08, 1990 10 08, 1990	10 08, 1990
		FILE TYPE:	BEGIN PROCEDU		
STO PREP	08 27, 1991	08 27, 1991	phos 003	07 01, 1986	07 01, 1986
	· -	FILE TYPE:	SHUT-DOWN PRO	OCEDURE	• *
clean003	07 01, 1986	07 01, 1986			
·			ONA SEQUENCE		. •
15X-2	08 27, 199	1 08 27, 1991	_ i5X-1	08 27, 1991	08 27, 1991

STEP	FU	NCTION	STEP		ACTIVE FOR BASES	SAFE .
NUMBER	_#_	NAME	IIME	<u>A 6</u>	C T 5 6 7	STEP
1		#18 To Waste	3		Yes Yes Yes Yes Yes	Yes
2		\$18 To Column	10		Yes Yes Yes Yes	Yes
3	2	Reverse Flush	5		Yes Yes Yes Yes	Yes
4	1		3		Yes Yes Yes Yes	Yes
5		Advance FC	1		Yes Yes Yes Yes Yes	Yes
6	. 28	Phos Prep	3		Yes Yes Yes Yes Yes	Yes
7	+45	Group On	1		Yes Yes Yes Yes	Yes
8	90	TET To Column	10		Yes Yes Yes Yes Yes	Yes
9	19	B+TET To Col 1	8		Yes Yes Yes Yes Yes	Yes
10	90	TET To Calumn	4		Yes Yes Yes Yes Yes	Yes
11	-46	Group Off	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
12	+47	Group 2 On	1 -	Yes Yes	Yes Yes Yes Yes Yes	Yes
13	90	TET To Column	10	Yes Yes	Yes Yes Yes Yes Yes	Yes
14	20	B+TET To Col 2	8	Yes Yes	Yes Yes Yes Yes Yes	Yes
15		TET To Column	4	Yes Yes	Yes Yes Yes Yes Yes	Yes
16	-48	Group 2 Off	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
17	+49	Group 3 On	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
18	90	TET To Column	10	Yes Yes	Yes Yes Yes Yes	Yes
19	21	8+TET To Col 3	8	Yes Yes	Yes Yes Yes Yes	Yes
20	90	TET To Column	4		s Yes Yes Yes Yes Yes	Ye
		16. 10 0000				
. s 21	-50	Group 3 Off	1	Yes Yes	Yes Yes Yes Yes	Yes
22	4	Wait	15	Yes Yes	Yes Yes Yes Yes Yes	Yes
23	+45	Group 1 On	1		Yes Yes Yes Yes Yes	Yes
24	90	TET To Column	10	Yes Yes	Yes Yes Yes Yes Yes	Yes
25	19		8		Yes Yes Yes Yes Yes	Yes
26	90	TET To Column	4		Yes Yes Yes Yes	Yes
27	-46	Group 1 Off	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
28	+47	Group 2 On	i		Yes Yes Yes Yes Yes	Yes
29	90	TET To Column	10		Yes Yes Yes Yes Yes	Yes
30	, 56	B+TET To Col 2	8		Yos Yes Yes Yes Yes	Yes
31	90	TET To Column	4		Yes Yes Yes Yes Yes	Yes
32	-48	Group Z Off	1		Yes Yes Yes Yes Yes	Yes
33	+49	· · · · · · · · · · · · · · · · · · ·	i		Yes Yes Yes Yes Yes	Yes
34	90	TET To Column	10		Yes Yes Yes Yes Yes	Yes
=		B+TET To Col 3	8		Yes Yes Yes Yes	Yes
35 35	21	TET To Column	, 4		Yes Yes Yes Yes	Yes
36 77	90	- · · · · · · ·	ī		Yes Yes Yes Yes	Yes
37 70	-50	Group 3 Off Wait	30		Yes Yes Yes Yes	Yes
38 78	4		1	Yes Yes	Yes Yes Yes Yes	Yes
39 40	+45 90	TET To Column	10	Yes Yes	Yes Yes Yes Yes	Yes
- ,	19		8	Vag Yag	Yes Yes Yes Yes	Yes
41 42	90	TET To Column	4		Yes Yes Yes Yes	Yes-
42 43	-46	Group Off	1	Yes Yes	Yes Yes Yes Yes	Yes
40	~~=0	J. Jap . U.I	•			

STEP	FU!	NCTION NAME	STEP TIME	<u>_A_</u>	TEP	ACTI C	VE F	OR 8	ASES 5	7_	SAFE STEP
NUMBER		1411112									
44	+47	Group 2 On	ŧ	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes -
45	90	TET To Column	⁻ 10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
46	Z0	B+TET To Col Z	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
47		TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes -
4 ? 48	-48	Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
49 50		TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	. 21	B+TET To Col 3	. 8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
51 53		TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
52 53		Group 3 Off	. 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
53 54		Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
54		Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5 5	+45 90	TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
56		B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
57		TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
58		Group 1 Off	1	Yes	Yes	Yes.	Yes	Yes	Yes	Yes	Yes
59		Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
60		TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
61		B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
62		TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
63		Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
64 65		Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
65		TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
66 67		B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
67	90	TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
68	EQ	Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
69	-36 4		30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
70		Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
71		TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
72		B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
73 74	90	TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
75		Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
75.	1447	Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes Yes
77	98	TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
78	78	B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
79	90	TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes Yes
	-48	Group Z Off	t	Yes	Yes	Yes	Yes	Yes	Yes	105	Yes
80 81	+49	Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	165	Yes Yes
82	90	TET To Column	' 10	Yes	Yes	Yes	Yes	Yes	Yes	105	
83	21	B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	185	185	
84	90	TET To Column	4	Yas	Yes	Yes	Yes	Yes	TOS	103	
85	-50	Group 3 Off	1	Yes	Yes	Yes	Yes	Y 0 5	Tes	785	Yes
86	4	Wait	30	Yes	Yes	Yes	Tes	Tes	195	165	Yes
87	+45	Group 1 On	t	Yes	Yes	Yes	Yes	Yes	185	7 9 5	
88	. 38	TET To Column	10	Yes	Yes	Yes	Yes	Y 65	165	T 63	183.
36	30										•

⁽Continued next page.)

STEP	FU	NCTION	STEP	· 51	TEP	ACTIVE	FOR E	BASES	•	SAFE
NUMBER*		NAME	TIME	_A	6	C T	5	6	7	STEP
WORTH			كنيفايف	-						
89	19	B+TET To Col 1	_ 8			Yes Yes				Yes
90	90	TET To Column	_ 4	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
91	-45	Group 1 Off	1	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
92	+47	Group Z On	1	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
93	90	TET To Column	10	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
94	20	B+TET To CoI 2	8	Yes \	Yes	Yes Yes	Yes	Yes	Yes	Yes
95	90	TET To Column	4 .	Yes \	Yes	Yes Yes	Yes	Yes	Yes	Yes
96	-48	Group 2 Off	1	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
97	+49	Group 3 On	1	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
98	90	TET To Column	10	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
99	21	8+TET To Col 3	8	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
100		TET To Column	4	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
101	-50	Group 3 Off	1	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
102	4	Wait	30	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes.
103	+45	Group On	1	Yes '	Yes	Yes Yes	s Yes	Yes	Yes	Yes
104	90	TET To Column	10	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
105	19	B+TET To Cal 1	8	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
106	90	TET To Column	4	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
107	-46	Group 1 Off	i	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
108	+47	Group 2 On	t	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
109	90	TET To Calumn	10	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
110	20	8+TET To Col 2	8	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
111	90	TET To Column	4	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
112		Group 2 Off	t	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
113	+49	Group 3 On	1	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
114	90	TET To Column	10	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
115	21	B+TET To Col 3	8	'Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
116	90	TET To Column	4	Yes '	Yes	Yes Yes	Yes	Yes	Yes	Yes
117	-50	Group 3 Off	1			Yes Yes				Yes
118	4	Wait	30			Yes Yes				Yes
119	+45	Group 1 On	1			Yes Yes				Yes
120	90	TET To Column	10			Yes Yes				Yes
121	, 18	B+TET To Col 1	8			Yes Yes				Yes
122	90	TET To Column	4	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes
123	-46	Group 1 Off	1			Yes Yes				Yes
124	+47	Group 2 On	t	Yes	Yes	Yes Yes	yes	Yes	Yes	Yes
125	90	TET To Column	18	Yes	Yes	Yes Yes	s Yes	Yes	Yes	Yes
126	20	B+TET To Col 2	8	Yes	Yes	Yes Yes	s Yes	Yes	Yes	Yes
127	90	TET To Column	4	Yes	Yes	Yes Yes	s Yes	Yes	Yes	Yes
128	-48	Group 2 Off	1	Yes	Yes	Yes Yes	s. Yes	Yes	Yes	Yes
129	+49	Group 3 On	1			Yes Yes				Yes
130	90	TET To Column	19	Yes	Yes	Yes Yes	yes	Yes	Yes	Yes
131	21	B+TET To Col 3	8			Yes Yes				Yes
132	90	TET To Column	4	Yes	Yes	Yes Yes	s Yes	Yes	Yes	Yes
133	-50	· · · · · · · · · · · · · · · · · · ·	1	Yes	Yes	Yes Yes	s Yes	Yes	Yes	Yes -

STEP	EII	NCTION	STEP			ACTI					SAFE
NUMBER	#	NAME	TIME	A	6	<u> </u>	T	_5_	6	7	STEP
NOTICETS											
134	4	Wait	-30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
135	10	#18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
136	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
137	ī	Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
138	81	#15 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
139	13	\$15 To Column	22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
140	10	#18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
141	. 4	Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
142	2	Reverse Flush	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
143	ī	Block Flush	4 .	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
144	9	#18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
145	34	Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
146	9	#18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
147		Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
148	9	#18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
149	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
150	9	#18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
151	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
152	ī	Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
153	33	Cycle Entry	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	55	Waste-Port		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
154	37	Relay 3 Pulse	i	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
155	82	#14 To Waste	. 3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes .
156 157	30	#17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	10	#18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
158	9	\$18 To Column	. 20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
159	[]	\$17 To Column	60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
160	14	\$14 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
161	2	Reverse Flush	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
162	11	\$17 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
163	34	Flush to Waste	Š	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
164	11	\$17 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
185	1 2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
166	14	\$14 To Column	20 ⁻	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
167	. 34	Flush to Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
158		Waste-Sottle	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
169	7	\$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
170	9		5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
171	2	Reverse Flush	: 10	Yae	Yes	Yes	Yes	Yes	Yes	Yes	Yes
172	9	\$18 To Column	5	Yae	Yes	Yes	Yes	Yes	Yes	Yes	Yes
173	Z	Reverse Flush	1 0	Yae	YAR	Yes	Yes	Yes	Yes	Yes	Yes
174	9	\$18 To Column	5	Yae	Yes	Yes	Yes	Yes	Yes	Yes	Yes
175	2		3	Yee	Yes	Yes	Yes	Yes	Yes	Yes	Yes
176	1	Block Flush	3	1.00							

				141		•	ينتن تسليا	
•					ສໍ	ĸ.	المارو ومهور	
STEP	FU	NCTION	STEP	STE	P ACTIVE	FOR	BASES	SAFE
NUMBER		NAME	TIME		C T			STEP
				-				
1	10	#18 To Waste	3	Yes Ye	s Yes Yes	yes	Yes Yes	Yes
· 2	9	#18 To Column	10	Yes Ye	s Yes Yes	Yes	Yes Yes	Yes
3	2	Reverse Flush	5	Yes Ye	s Yes Yes	Yes	Yes Yes	Yes
4	1	Block Flush	3	Yes Ye	s Yes Yes	Yes	Yes Yes	Yes
S	5	Advance FC	1		s Yes Yes			Yes
6	· 28	Phos Prep	· 3	Yes Ye	s Yes Yes	Yes	Yes Yes	Yes
7	+45	Group I On	1	Yes Ye	s Yes Yes	Yes	Yes Yes	Yes
8	90	TET To Column	10	Yes Yes	s Yes Yes	Yes	Yes Yes	Yes
9	19	B+TET To Col 1	8	Yes. Ye	s Yes Yes	Yes	Yes Yes	Yes
1.0	90	TET To Column	4		s Yes Yes			Yes
11	-46	Group 1 Off	1		s Yes Yes			Yes
12	+47	Group Z On	1		s Yes Yes			Yes.
13		TET To Column	10		s Yes Yes			Yes
14	20	B+TET To Col 2	8		s Yes Yes			Yes
15		TET To Column	4		s Yes Yes			Yes
16	-48	Group 2 Off	1		s Yes Yes			Yes
17	+49	Group 3 On	i		s Yes Yes			Yes
18	90	TET To Column	10		s Yes Yes			Yes
19	21	B+TET To Col 3	8		s Yes Yes			Yes
20	90	TET To Column	Ă		s Yes Yes			Yes
21	-50	Group 3 Off	i		s Yes Yes			Yes
22	4	Wait	15		s Yes Yes			Yes
23	+45	Group 1 On	1	•	s Yes Yes			Yes
24	90	TET To Column	10		s Yes Yes		•	Yes
25	19	B+TET To Col 1	8		s Yes Yes			Yes
26	90	TET To Column	4		s Yes Yes			Yes
27	-46	Group 1 Off	i		s Yes Yes			Yes
28	+47	Group 2 On	•		s Yes Yes			Yes
29		TET To Column	10		s Yes Yes			Yes
30	20	B+TET To Col 2	8		s Yes Yes			Yes
31	, 30	TET To Column	4	_	s Yes Yes			Yes
32	-48	Group 2 Off	ĭ		s Yes Yes			Yes
33	+49	Group 3 On	į		s Yes Yes			Yes
34		TET To Column	10		s Yes Yes		•	Yes
3 5	21	B+TET To Col 3	8 .		s Yes Yes			Yes
36		TET To Column	Ĭ.		s Yes Yes			Yes
37		6roup 3 Off	, ,		S Yes Yes			Yes
38	4	Wait	30		s Yes Yes			Yes
39	•	Group On	1		s Yes Yes			Yes
40		TET To Column	10		s Yes Yes			Yes
41	19	B+TET To Col 1	8		yes Yes			Yes
42	90	TET To Column	Ž.		s Yes Yes			Yes
43	-46	Group Off	ĭ		s Yes Yes			Yes_
73	-40	O O O O O O O O O O		190 191				

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES A 6 C T 5 6 7	SAFE STEP
	+47 Group 2 On	- 1	Yes Yes Yes Yes Yes Yes	Yes
44	+47 Group 2 On 90 TET To Colum	n 10	Yes Yes Yes Yes Yes Yes Yes	Yes
45	20 B+TET To Col		Yes Yes Yes Yes Yes Yes Yes	Yes .
46	90 TET To Colum		Yes Yes Yes Yes Yes Yes Yes	Yes
47	-48 Group 2 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
48	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
49	90 TET To Colum	n 10	Yes Yes Yes Yes Yes Yes Yes	Yes
50 51	. 21 B+TET To Col		Yes Yes Yes Yes Yes Yes Yes	Yes
51 53	90 TET To Colum		Yes Yes Yes Yes Yes Yes Yes	Yes
52	-50 Group 3 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
53	4 Wait	30	Yes Yes Yes Yes Yes Yes Yes	Yes
54	+45 Group i On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
55	90 TET To Colum	ın 10	Yes Yes Yes Yes Yes Yes Yes	Yes
56 53	19 B+TET To Col		Yes Yes Yes Yes Yes Yes Yes	Yes
57	90 TET To Colum	 .n 4	Yes Yes Yes Yes Yes Yes Yes	Yes
58	-46 Group 1 Off	t	Yes Yes Yes Yes Yes Yes Yes	Yes
59	+47 Group 2 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes Yes
60	90 TET To Colum	n 10	Yes Yes Yes Yes Yes Yes Yes	Yes
61	20 B+TET To Col		Yes Yes Yes Yes Yes Yes	Yes
62	90 TET To Colum		Yes Yes Yes Yes Yes Yes Yes	Yes
63	-48 Group 2 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
64 65	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
66	90 TET To Colu	nn 10	Yes Yes Yes Yes Yes Yes Yes	Yes
57	21 B+TET To Co	13 8	Yes Yes Yes Yes Yes Yes	Yes
68	90 TET To Colu	สก 4	Yes Yes Yes Yes Yes Yes	Yes
69	-50 Group 3 Off	•	Yes Yes Yes Yes Yes Yes	Yes
70	4 Wait	. 30	Yes Yes Yes Yes Yes Yes Yes	Yes
71	+45 Group 1 On	1	Yes Yes Yes Yes Yes Yes	Yes
72	90 TET To Colu	mn 10	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes
73	19 B+TET To Co	1 1 8	Yes Yes Yes Yes Yes Yes Yes	Yes
74	90 TET To Calu	ศก 4	Yes Yes Yes Yes Yes Yes Yes	Yes
75	-46 Group 1 Off	• 1	Yes Yes Yes Yes Yes Yes Yes	Yes
76	1+47 Group Z On	1.	Yes Yes Yes Yes Yes Yes Yes	Yes
77	90 TET To Colu	an 10	Yes Yes Yes Yes Yes Yes Yes	Yes
78	28 B+TET To Co	1 2 8	Yes Yes Yes Yes Yes Yes Yes	Yes
79	98 TET To Colu	лп 4	Yes Yes Yes Yes Yes Yes Yes	Yes
80	-48 Group 2 Off	ı	Yes Yes Yes Yes Yes Yes	Yes
81	+49 Group 3 On	, i	Yes Yes Yes Yes Yes Yes Yes	Yes
82	ge TET To Colu	IMTI 10	Yes Yes Yes Yes Yes Yes	Yes
83	21 B+TET To Co		Yes Yes Yes Yes Yes Yes	Yes
84	go TET To Colu	inn 4	Yes Yes Yes Yes Yes Yes Yes	Yes
85	-50 Group 3 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes.
86	4 Wait	30	Yes Yes Yes Yes Yes Yes	Yes
87	+45 Group 1 On	1	Yes Yes Yes Yes Yes Yes	Yes
88	90 TET To Colu	ınn , 10	142 142 144 144 144 144	•

⁽Continued next page.)

STEP	Fl	UNCTION	STEP	STEP	ACTIVE FOR BASES	SAFE
NUMBER	#	NAME	TIME		C T 5 6 7	STEP
89	19	B+TET To Col 1	- 8	Yes Yes	Yes Yes Yes Yes	Yes
90	90	TET To Column	4	Yes Yes	Yes Yes Yes Yes Yes	Yes
91	-46	Group 1 Off	1	Yes Yes	Yes Yes Yes Yes	Yes
92	+47	Group 2 On	1	Yes Yes	Yes Yes Yes Yes	Yes
93	90	TET To Column	10	Yes Yes	Yes Yes Yes Yes Yes	Yes
94	20	8+TET To Col 2	8	Yes Yes	Yes Yes Yes Yes Yes	Yes
95	90	TET To Column	4	Yes Yes	Yes Yes Yes Yes Yes	Yes
96	-48	Group 2 Off	' t	Yes Yes	Yes Yes Yes Yes Yes	Yes
97	+49	Group 3 On	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
98	90	TET To Column	1 @	Yes Yes	Yes Yes Yes Yes Yes	Yes
99	21	8+TET To Col 3	8	Yes Yes	Yes Yes Yes Yes Yes	Yes
100	90	TET To Column	. 4		Yes Yes Yes Yes Yes	Yes
101	-50	Group 3 Off	1		Yes Yes Yes Yes Yes	Yes
102	4	Wait	30		Yes Yes Yes Yes	Yes
103	+45	Group 1 On	1		Yes Yes Yes Yes	Yes
104	90	TET To Column	10		Yes Yes Yes Yes	Yes
105	19	B+TET To Col 1	8		Yes Yes Yes Yes	Yes
106	90	TET To Column	4		Yes Yes Yes Yes Yes	Yes
107	-46	Group 1 Off	i		Yes Yes Yes Yes	Yes
108	+47	Group 2 On	i		Yes Yes Yes Yes Yes	Yes
109	90	TET To Column	10		Yes Yes Yes Yes	Yes
110	20	B+TET To Col 2	8		Yes Yes Yes Yes	Yes
111	90	TET To Column	4		Yes Yes Yes Yes	Yes
112	-48	Group 2 Off	i		Yes Yes Yes Yes	Yes
113	+49	Group 3 On	i		Yes Yes Yes Yes	Yes
114	90	TET To Column	10		Yes Yes Yes Yes	Yes
115	21	8+TET To Col 3	8		Yes Yes Yes Yes	Yes
115	90	TET To Column	4		Yes Yes Yes Yes	Yes
117	-50	Group 3 Off	ĭ		Yes Yes Yes Yes	Yes
118	4	Wait	30		Yes Yes Yes Yes Yes	Yes
119	+45	Group 1 On	1		Yes Yes Yes Yes Yes	Yes
120	90	TET To Column	10		Yes Yes Yes Yes Yes	Yes
121	119	B+TET To Col 1	8		Yes Yes Yes Yes	Yes
122	90	TET To Column	4		Yes Yes Yes Yes	Yes
123	-46	Group 1 Off	ĭ		Yes Yes Yes Yes	Yes
124	+47	Group 2 On	1		Yes Yes Yes Yes	Yes .
125	90	TET To Column	10		Yes Yes Yes Yes	Yes
126	20	B+TET To Col 2	8		Yes Yes Yes Yes	Yes
127	90	TET To Column	' Ă		Yes Yes Yes Yes	Yes
128	~48	Group 2 Off	1		Yes Yes Yes Yes	Yes
129	+49	Group 3 On	i		Yes Yes Yes Yes	Yes
130	90	TET To Column	10		Yes Yes Yes Yes Yes	Yes
131	21	B+TET To Col 3	8		Yes Yes Yes Yes	· Yes
132	. 90	TET To Column	Ă		Yes Yes Yes Yes	Yes
133	-50	Group 3 Off	i		Yes Yes Yes Yes	Yes
	70		•			

STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	SAFE STEP
NUMBER*	# NAME	TIME	A 6 C T 5 6 7	3161
		70	Yes Yes Yes Yes Yes Yes	Yes
134	4 Wait	-30	Yes Yes Yes Yes Yes Yes	Yes
135	16 Cap Prep	3	Yes Yes Yes Yes Yes Yes	Yes
136	10 #18 To Waste	3	Yes Yes Yes Yes Yes Yes	Yes
137	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
138	1 Block Flush	4	Yes Yes Yes Yes Yes Yes Yes	Yes
139	91 Cap To Column	22_	Yes Yes Yes Yes Yes Yes	Yes
140	10 #18 To Waste	. 3	Yes Yes Yes Yes Yes Yes	Yes
. 141	· 4 Wait	30	Yes Yes Yes Yes Yes Yes	Yes
142	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
143	1 Block Flush	4	Yes Yes Yes Yes Yes Yes	Yes
144	81 #15 To Waste	3	Yes Yes Yes Yes Yes Yes	Yes
145	13 #15 To Column	22	Yes Yes Yes Yes Yes Yes	Yes
146	10 #18 To Waste	5	Yes Yes Yes Yes Yes Yes	Yes.
147	4 Wait	30	Yes Yes Yes Yes Yes Yes Yes	Yes
148	2 Reverse Flush	6	Yes Yes Yes Yes Yes Yes Yes	Yes
149	1 Block Flush	4	Yes Yes Yes Yes Yes Yes	Yes
150	g #18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
151	34 Flush to Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
152	g #18 To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
153	2 Reverse Flush	.5	Yes Yes Yes Yes Yes Yes Yes	Yes
154	g #18 To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
155	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
156	9 #18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
157	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
158	1 Block Flush	4	Yes Yes Yes Yes Yes Yes	Yes
159	33 Cycle Entry	1	Yes Yes Yes Yes Yes Yes	Yes
160	5 Waste-Port	1	Yes Yes Yes Yes Yes Yes	Yes
161	37 Relay 3 Pulse	1	Yes Yes Yes Yes Yes Yes Yes	Yes
162	82 #14 To Waste	3	Yes Yes Yes Yes Yes Yes Yes	Yes
163	30 \$17 To Waste	3	Yes Yes Yes Yes Yes Yes	Yes
164	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes	Yes
165	g \$18 To Column	20	Yes Yes Yes Yes Yes Yes	No
166	'11 \$17 To Column	60	Yes Yes Yes Yes Yes Yes	No
167	14 \$14 To Column	28	Yes Yes Yes Yes Yes Yes	No
168	2 Reverse Flush	7	Yes Yes Yes Yes Yes Yes	No
169	11 \$17 To Column	15 5	Yes Yes Yes Yes Yes Yes	No
178	34 Flush to Waste	·	Yes Yes Yes Yes Yes Yes	No
171	11 \$17 To Column	, 15 5	Yes Yes Yes Yes Yes Yes	No
172	2 Reverse Flush		Yes Yes Yes Yes Yes Yes	No
173	14 #14 To Column	20	Yes Yes Yes Yes Yes Yes	No
174	34 Flush to Waste	, 10	Yes Yes Yes Yes Yes Yes	Yes
175	7 Waste-Bottle	1 18	Yes Yes Yes Yes Yes Yes	Yes -
176	g \$18 To Column	5	Yes Yes Yes Yes Yes Yes	Yes
177	2 Reverse Flush		Yes Yes Yes Yes Yes Yes	Yes -
178	g \$18 To Column	10	169 169 186 186 186 186	

STEP	FUNCTION	STEP	STEP ACTIVE F	OR BASES	SAFE
NUMBER	# NAME	TIME	A G C T	5 6 7	STEP
179	2 Reverse Flush	_ 5	Yes Yes Yes Yes	Yes Yes Yes	Yes
180	9 #18 To Column	10	Yes Yes Yes Yes	Yes Yes Yes	Yes
181	2 Reverse Flush	5	Yes Yes Yes Yes	Yes Yes Yes	Yes
182	1 Block Flush	3	Yes Yes Yes Yes	Yes Yes Yes	Yes

CYCO		NCTION	STEP	9	STEP	ACT	IVE I	FOR	BASES	S	SAFE
STEP			FIME	A	_	C	T	5	6_	7	STEP
NUMBER	_#_	NAME	TAIII.								
1	10	#18 To Waste	2						Yes		Yes
2	9	#18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	1	Block Flush	3						Yes		Yes
5	5	Advance FC	1						Yes		Yes
6	- 28	Phos Prep	· 3						Yes		Yes
7	+45	Group I On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	90	TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	19	B+TET To Col 1	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	19	B+TET To Col 1	3 .	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	90	TET To Column	3	Yes	Yes	Yas	Yes	Yes	Yes	Yes	Yes
13	19	8+TET To Col !	· 3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	9	#18 To Column	ſ	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	-46	Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	+47	Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	10	\$18 To Waste	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	ı	Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yas	Yes	Yes
19	90	TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
20	20	B+TET To Col 2	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
21	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes-
22	20	B+TET To Col 2	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
24	20	8+TET To Col Z	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25	9	#18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
26	-48	Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	+49	·	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
28	10	\$18 To Waste	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
29	1	Block Flush	. 3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
30	90	TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
31	1 21	B+TET To Col 3	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
32	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
-33	21	B+TET To Col 3	3	Yes	Yas	Yes	Yes	Yes	Yes	Yes	Yes
34	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
35	21	B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
36	9	\$18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
37	-50	Group 3 Off	1 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
38	4	•	20	Yes	Yes	Yes	Yes	Yes	Yes		Yes Yes
39	2	Reverse Flush	5						Yes		Yes
40	_	\$18 To Waste	2						Yes		Yes
41	9	#18 To Column	9						Yes		
42	2	Reverse Flush	5						Yes		Yes
43	10	\$18 To Waste	3						Yes		Yes

STEP		INCTION	STEP		STEP					S	SAFE
NUMBER	_#_	NAME	TIME	<u>A</u>	<u>- 6</u>	<u> </u>		5	_6_		STEP
44	1	Block Flush	- 3						Yes		Yes
45	+45	Group On	i						Yes		Yes
46	90	TET To Column	6						Yes		Yes
47	19	B+TET To Col 1	6						Yes		
48	90	TET To Column	. 3						Yes		Yes
49	19	B+TET To Col 1	3								Yes
50	90	TET To Column	3						Yes		Yes
50 51	. 19	B+TET To Col !	, 3						Yes		Yes
51 52	9	#18 To Column	1						Yes		Yes Yes
5 2	-46	Group i Off	1						Yes		Yes
54	+47	Group 2 On	; 1						Yes		Yes
55	10	#18 To Waste	4						Yes		Yes
56	1	Block Flush	3					•	Yes		Yes
57	90	TET To Column	6						Yes		Yes
58	20	B+TET To Col 2	8						Yes		Yes
59	90	TET To Column ,	, 3					,	Yes		Yes
5 0	20	B+TET To Col 2	3						Yes		Yes
61	90	TET To Column	3						Yes		Yes
62	20	B+TET To Col 2	3						Yes		Yes
63	20	\$18 To Column	3						Yes		Yes
64	-48	Group 2 Off	•						Ye		Ye
5	-40	or oup 2 or i	•						• •	•	
65	+49	Group 3 On	. 1						Yes		Yes
68	10	#18 To Waste	À						Yes		Yes
67	ï	Block Flush	3						Yes		Yes
68	90	TET To Column	6						Yes		Yes
69	21	B+TET To Col 3	6						Yes		Yes
70	90	TET To Column	3						Yes		Yes
71	21	B+TET To Col 3	3						Yes		Yes
72	90	TET To Column	3						Yes		Yes
73	21	B+TET To Col 3	3						Yes		Yes
74	9	#18 To Column	1						Yes		Yes
75	'-50	Group 3 Off	1						Yes		Yes
76	4	Wait	20						Yes		Yes
77	16	Cap Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
78	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
79	1	Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
80	91	Cap To Column	12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
81	10	\$18 To Waste	' 3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
82	4	Wait	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
83	2	Reverse Flush	S		Yes						Yes
84	81	\$15 To Waste	3		Yes						Yes
85	13	\$15 To Column	. 18		Yes						Yes
86	18	\$18 To Waste	3		Yes						Yes
87	4	Wait	15		Yes						Yes_
88	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

⁽Continued next page.)

STEP	FUNCTION	STEP Time	STEP ACTIVE FOR BASES A 6 C T 5 6 7	SAFE STEP
NUMBER	# NAME			
	9 #18 To Column	_ 9	Yes Yes Yes Yes Yes Yes Yes	Yes
89		5	Yes Yes Yes Yes Yes Yes Yes	Yes
90	34 Flush to Waste	9	Yes Yes Yes Yes Yes Yes Yes	Yes
91	g #18 To Column	5	Yes Yes Yes Yes Yes Yes Yes	Yes
92	Z Reverse Flush	9	Yes Yes Yes Yes Yes Yes Yes	Yes
93	9 #18 To Column	5	Yes Yes Yes Yes Yes Yes Yes	Yes
94	2 Reverse Flush	3	Yes Yes Yes Yes Yes Yes Yes	Yes
95	1 Block Flush	· .	Yes Yes Yes Yes Yes Yes Yes	Yes
96	33 Cycle Entry	9	Ves Yes Yes Yes Yes Yes Yes	Yes
97	9 \$18 To Column	5	Yes Yes Yes Yes Yes Yes Yes	Yes
98	2 Reverse Flush	1	Yes Yes Yes Yes Yes Yes Yes	Yes
99	6 Waste-Port	3	Yes Yes Yes Yes Yes Yes Yes	Yes
100	30 \$17 To Waste	7	Yes Yes Yes Yes Yes Yes	No
101	11 #17 To Column		Yes Yes Yes Yes Yes Yes	No
102	34 Flush to Waste	7	Yes Yes Yes Yes Yes Yes	No
103	11 \$17 To Column		Yes Yes Yes Yes Yes Yes	No
104	34 Flush to Waste	7	Yes Yes Yes Yes Yes Yes	No
105	11 \$17 To Column	_	Yes Yes Yes Yes Yes Yes	No
105	34 Flush to Waste	, ! 7	Yes Yes Yes Yes Yes Yes	No
107	11 #17 To Column	_	Yes Yes Yes Yes Yes Yes	No
108	34 Flush to Waste	1	Yes Yes Yes Yes Yes Yes	No
109	11 #17 To Column	7	Yes Yes Yes Yes Yes Yes	No
110	34 Flush to Waste	1 7	Yes Yes Yes Yes Yes Yes	No
111	11 #17 To Column	7	Yes Yes Yes Yes Yes Yes	No
112	34 Flush to Weste	5	Yes Yes Yes Yes Yes Yes	No
113	9 #18 To Column	9	Yes Yes Yes Yes Yes Yes	No
114	34 Flush to Waste	7	Yes Yes Yes Yes Yes Yes	Yes
115	7 Waste-Bottle	1	Yes Yes Yes Yes Yes Yes	Yes
116	g #18 To Calumn	9	Yes Yes Yes Yes Yes Yes	Yes
117	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
118	g \$18 To Column	9	Yes Yes Yes Yes Yes Yes	Yes
119	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
120	1 Block Flush	3	193 193 193 190 190 190	

STEP	C118	NCTION	STEP	s	TEP	ACTI	VE F	OR B	ASES	;	SAFE
	#		IIME		6	Ç		5		7_	STEP
NUMBER		Name									
1	10	\$18 To Waste	2			Yes					Yes
2	9	#18 To Column	9			Yes					Yes
3	2	Reverse Flush	5			Yes					Yes
4	1	Block Flush	3			Yes					Yes
5	5	Advance FC	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	· 28	Phos Prep	' 3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	+45	Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	90	TET To Column	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	19	B+TET To Col 1	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	90	TET To Column	3			Yes					Yes
11	19	B+TET To Col 1	3			Yes					Yes
12	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	19	B+TET To Col 1	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	9	#18 To Column	ī			Yes					Yes
15	-46	Group Off	f	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	+47	Group 2 On	i			Yes					Yes
16		\$18 To Waste	4			Yes					Yes
17	10	Block Flush	3			Yes					Yes
18	1	TET To Column	6			Yes					Yes
19	90	B+TET To Col 2	6			Yes					Yes
20	20	TET To Column	3			Yes					Yes
21	90	8+TET To Col 2	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
22	20	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	90	B+TET To Col 2	3	Yes	Yes	Yes	Yas	Yes	Yes	Yes	Yes
24	20	#18 To Column	1 .	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25	9	Group 2 Off	i			Yes					Yes
26	-48	Group 3 On	i	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	+49		4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
28	10	\$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
29	1	Block Flush TET To Column	6	Yes	Yes	Yes	Yes	Yas	Yes	Yes	Yes
30	90	B+TET To Col 3	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
31	, 51	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
32	9 0 21	8+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
33		TET To Column	3	Yes	Yas	Yes	Yes	Yes	Yes	Yes	Yes
34	90	B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
35	21	\$18 To Column	ĭ	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
36 37	9	Group 3 Off	, ;	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
37 39	-50	Wait	20			Yes					Yes
38	4	Cap Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
39 40	16 2	Raverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
41	1	Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
42	91	Cap To Column	12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
42 43		118 To Weste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

STEP NUMBER	FU #	NCTION NAME	STEP TIME	ST A				FOR 1	BASES 6	7	SAFE STEP
NONBER	_=_										
44	4	Wait	- 8	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	Yes
45	2	Reverse Flush	5	Yes Y							Yes
46	81	#15 To Waste	3	Yes Y	/es	Yes	Yes	Yes	Yes	Yes	Yes
47	13	#15 To Column	10	Yes Y							Yes
48	10	#18 To Waste	3	Yes Y							Yes
49	4	Wait	15	Yes Y	es	Yas	Yes	Yes	Yes	Yes	Yes
50	ž	Reverse Flush	5	Yes Y							Yes
51	. 9	#18 To Column	• 9	Yes Y							Yes
52	34	Flush to Waste	S	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	Yes
52 53	9	#18 To Column	9	Yes Y	/es	Yes	Yes	Yes	Yes	Yes	Yes
54 54	2	Reverse Flush	5	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	Yes
5 5	9	\$18 To Column	9	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	Yes
56	2	Reverse Flush	5	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	Yes
57	1	Block Flush	3	Yes Y	es	Yes	Yes	Yes	Yes	Yes	Yes
5 <i>1</i> 58	33	Cycle Entry	ī	Yes Y	í es	Yes	Yes	Yes	Yes	Yes	Yes
	9	#18 To Column	9	Yes Y	íes	Yes	Yes	Yes	Yes	Yes	Yes
59	2	Reverse Flush	5	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	Yes
60	6	Waste-Port	1	Yes Y	(es	Yes	Yes	Yes	Yes	Yes	zeY
61 63	30	\$17 To Waste	3	Yes Y	es.	Yas	Yes	Yes	Yes	Yes	Yes
62	11	\$17 To Column	7	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	No
63	34	Flush to Waste	i	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	No
6 4		\$17 To Column	7	Yes Y	es.	Yes	Yes	Yes	Yes	Yes	No
65	11 34	Flush to Waste	i	Yes Y	(es	Yes	Yes	Yes	Yes	Yes	No
66		#17 To Column	7	Yes Y	(es	Yes	Yes	Yes	Yes	Yes	No
67	11	Flush to Waste	1	Yes Y	/es	Yes	Yes	Yes	Yes	Yes	No
68	34		. 7	Yes Y	105	Yes	Yes	Yes	Yes	Yes	Ņo
69	11	\$17 To Column	i	Yes	105	Yes	Yes	Yes	Yes	Yes	No
70	34	Flush to Waste	7	Yes Y	105	Yes	Yes	Yes	Yes	Yes	No
7 1	11	#17 To Column	1	Yes	/85	Yes	Yes	Yes	Yes	Yes	No
72	34	Flush to Waste	7	Yes	/85	Yes	Yes	Yes	Yes	Yes	No
73	11	\$17 To Column	· 5	Yes	Yes.	Yes	Yes	Yes	Yes	Yes	No
74	34	Flush to Waste	9	Yes	ías	Yes	Yes	Yes	Yes	Yes	No
75	9	\$18 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
76	* 34	Flush to Waste	i	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
77	7	Waste-Bottle	9	Yes '	Yes	Yes	Yes	Yes	Yes	Yes	Yes
78	9	\$18 To Column	5	Yes '	Y = 5	Yes	Yes	Yes	Yes	Yes	Yes
79	2	Reverse Flush	9	Yes '	Yes	Yes	Yes	Yes	Yes	Yes	Yes
80	9	\$18 To Column	. 5	Yes	Yos	Yes	Yes	Yes	Yes	Yes	Yes
81	2	Reverse Flush	3	Yes '	 Ya=	Yes	Yes	Yes	Yes	Yes	Ye≤
82	1	Block Flush	a a	162	1 53	. 45					

STEP	FUNCTION	STEP -TIME	STEP ACTIVE FOR BASES A G C T 5 G 7	SAFE STEP
NUMBER	# NAME	181.		
	10 #18 To Waste	2	Yes Yes Yes Yes Yes Yes Yes	Yes
<u>t</u>		15	Yes Yes Yes Yes Yes Yes Yes	Yes
2		20	Yes Yes Yes Yes Yes Yes Yes	Yes
3	2 Reverse Flush	4	Yes Yes Yes Yes Yes Yes	Yes
4	1 Block Flush	10	Yes Yes Yes Yes Yes Yes	Yes
5 6	16 Cap Prep	, 10 30	Yes Yes Yes Yes Yes Yes	Yes
6	· 91 Cap To Column		Yes Yes Yes Yes Yes Yes	Yes
7	10 #18 To Waste	3 4	Yes Yes Yes Yes Yes Yes	Yes
8	1 Block Flush	·	Yes Yes Yes Yes Yes Yes Yes	Yes
9	4 Wait	300	Yes Yes Yes Yes Yes Yes	Yes
10	16 Cap Prep	10	Yes yes yes tes tes tes tes	Yes
11	91 Cap To Column	30	Yes Yes Yes Yes Yes Yes	Yes
12	10 #18 To Waste~	3	Yes Yes Yes Yes Yes Yes Yes	Yes
13	1 Block Flush	4	Yes Yes Yes Yes Yes Yes Yes	Yes
14	4 Wait	300	Yes Yes Yes Yes Yes Yes	Yes
15	2 Reverse Flush	10	Yes Yes Yes Yes Yes Yes	
16	10 \$18 To Waste.	3	Yes Yes Yes Yes Yes Yes Yes	Yes
17	9 \$18 To Column	15	Yes Yes Yes Yes Yes Yes Yes	Yes
18	2 Reverse Flush	10	Yes Yes Yes Yes Yes Yes Yes	Yes
	9 #18 To Column	15	Yos Yes Yes Yes Yes Yes Yes	Yes
19	2 Reverse Flush	10	Yes Yes Yes Yes Yes Yes Yes	Yes
20		15	Yes Yes Yes Yes Yes Yes Yes	Yes
. 21		10	Yes Yes Yes Yes Yes Yes	Yes
22		15	Yes Yes Yes Yes Yes Yes Yes	Yes
23		10	Yes Yes Yes Yes Yes Yes Yes	Yes
24	2 Reverse Flush	15	Yes Yes Yes Yes Yes Yes	Yes
25	g #18 To Column	5 0	Yes Yes Yes Yes Yes Yes	Yes
25	2 Reverse Flush	5 0	Yes Yes Yes Yes Yes Yes	Yes
27	1 Block Flush	5	109 109 100 100 100 100	

STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	SAFI
NUMBER	# NAME	HME	A G C T 5 6 7	STEP
NOTICELL				Yes
1	2 Reverse Flush	60	Yes Yes Yes Yes Yes Yes	Yes
ž	27 #10 To Collect	17	Yes Yes Yes Yes Yes Yes	Yes
3	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes	Yes
4	1 Block Flush	5	Yes Yes Yes Yes Yes Yes	Yes
	4 Wait	660	Yes Yes Yes Yes Yes Yes Yes	Yes
5 6 7	27 #10 To Collect	- 18	Yes Yes Yes Yes Yes Yes Yes	Yes
2	10 #18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
8	1 Block Flush	5	Yes Yes Yes Yes Yes Yes Yes	
9	4 Wait	56 0	Yes Yes Yes Yes Yes Yes Yes	Yes
	27 #10 To Collect	18	Yes Yes Yes Yes Yes Yes Yes	Yes
10		· 5	Yes Yes Yes Yes Yes Yes Yes	Yes
11		Š	Yes Yes Yes Yes Yes Yes	Yes
12		660	Yes Yes Yes Yes Yes Yes Yes	Yes
13	4 Wait	17	Yes Yes Yes Yes Yes Yes Yes	Yes
14	27 \$10 To Collect	5	Yes Yes Yes Yes Yes Yes Yes	Yes
- 15	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
16	1 Block Flush	660	Yes Yes Yes Yes Yes Yes Yes	Yes
17	4 Wait	9	Yes Yes Yes Yes Yes Yes	Yes
18	8 Flush To CLCT	-	Yes Yes Yes Yes Yes Yes	Yes
19	27 #10 To Collect	14	Yes Yes Yes Yes Yes Yes	Yes
20	8 Flush To CLCT	9	Yes Yes Yes Yes Yes Yes	Yes
21	2 Reverse Flush	60	Yes Yes Yes Yes Yes Yes	Yes
22	1 Block Flush	4	Yes Yes Yes Yes Yes Yes	Yes
23	10 #18 To Waste	5	Yes Yes Yes Yes Yes Yes	Yes
24	g #18 To Column	30	Yes tes tes tes tes tes	Yes
25	2 Reverse Flush	60	Yes Yes Yes Yes Yes Yes	Yes
28	1 Block Flush	10	Yes Yes Yes Yes Yes Yes	Yes
27	42 \$10 Vent	2	Yes Yes Yes Yes Yes Yes Yes	

Alfrote when went congress to tress

STEP	FU	NCTION	STEP	9	STEP	ACT:	VE I	FOR 1	BASES	5	SAFE
NUMBER	#	NAME	TIME	<u>A</u>	6	<u> </u>	T	_5_	_6_		STEP .
1	28	Phos Prep	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ż	52	A To Waste	5							Yes	Yes
3	53	6 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	54	C To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	55	T To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	. 58	#5 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	57	#6 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	58	#7 To Waste	5	Yes	Yes	Yes	Yes.	Yes	Yes	Yes	Yes
9	61	TET To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	10	#18 To Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	16	Cap Prep	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	59	Cap A To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	60	Cap B To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	81	\$15 To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	82	#14 To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	30	#17 To Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	10	\$18 To Waste	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	1	Block Flush	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Claims

1. A synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for HIV, wherein said oligonucleotide comprises:

a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer,

5

35

wherein said HIV nucleic acid segment is selected from the group consisting of

CATCTGCTCCTGTRTCTAATAGAGCTTCYTTTA (SEQ ID NO:45), TTCCTGGCAAAYYYATKTCTYCTAMTACTGTAT (SEQ ID NO:5), 15 CTCCAATTCCYCCTATCATTTTTGGYTTCCATY (SEQ ID NO:6), KTATYTGATCRTAYTGTCYYACTTTGATAAAAC (SEQ ID NO:7), GTTGACAGGYGTAGGTCCTACYAATAYTGTACC (SEQ ID NO:8), YTCAATAGGRCTAATKGGRAAATTTAAAGTRCA (SEQ ID NO:9), ATCCATYCCTGGCTTTAATTTTACTGGTACAGT (SEQ ID NO:46), 20 YTCTGTCAATGGCCATTGYTTRACYYTTGGGCC (SEQ ID NO:10), TKTACAWATYTCTRYTAATGCTTTTATTTTYTC (SEQ ID NO:11), AAYTYTTGAAATYTTYCCTTCCTTTTCCATHTC (SEQ ID NO:12), AAATAYKGGAGTATTRTATGGATTYTCAGGCCC (SEQ ID NO:13), CATGTATTGATADATRAYYATKTCTGGATTTTG (SEQ ID NO:17), 25 TATYTCTAARTCAGAYCCTACATACAAATCATC (SEQ ID NO:18), TCTYARYTCCTCTATTTTTGYTCTATGCTGYYC (SEQ ID NO:19), AAGRAATGGRGGTTCTTTCTGATGYTTYTTRTC (SEQ ID NO:20), CCATTTRTCAGGRTGGAGTTCATAMCCCATCCA (SEQ ID NO:49), CTAYTATGGGKTCYKTYTCTAACTGGTACCAYA (SEQ ID NO:50), 30 TRGCTGCYCCATCTACATAGAAVGTTTCTGCWC (SEQ ID NO:21), GACAACYTTYTGTCTTCCAYTGTYAGTWASATA (SEQ ID NO:22), YGAATCCTGYAAVGCTARRTDAATTGCTTGTAA (SEQ ID NO:23), YTGTGARTCTGTYACTATRTTTACTTCTRRTCC (SEQ ID NO:24),

ATCTGGTTGTGCTTGAATRATYCCYARTGCATA (SEQ ID NO:51),

```
TATTATTTGAYTRACWAWCTCTGATTCACTYTK (SEQ ID NO:25),
         CAGRTARACYTTTTCCTTTTTTATTARYTGYTC (SEQ ID NO:26),
         TCCTCCAATYCCTTTRTGTGCTGGTACCCATGM (SEQ ID NO:27),
         TCCHBBACTGACTAATYTATCTACTTGTTCATT (SEQ ID NO:28),
         ATCTATTCCATYYAAAAATAGYAYYTTYCTGAT (SEQ ID NO:29),
5
         GTGGYAGRTTAAARTCAYTAGCCATTGCTYTCC (SEQ ID NO:30),
         CACAGCTRGCTACTATTTCYTTYGCTACYAYRG (SEQ ID NO:31),
         CATGCATGGCTTCYCCTTTTAGYTGRCATTTAT (SEQ ID NO:52),
         RYTGCCATATYCCKGGRCTACARTCTACTIGTC (SEQ ID NO:32),
         DGATWAYTTTTCCTTCYARATGTGTACAATCTA (SEQ ID NO:33),
10
         CTATRTAKCCACTRGCYACATGRACTGCTACYA (SEQ ID NO:34),
          CYTGYCCTGTYTCTGCTGGRATDACTTCTGCTT (SEQ ID NO:35),
         TGSKGCCATTGTCTGTATGTAYTRYTKTTACTG (SEQ ID NO:36),
         AACAGGCDGCYTTAACYGYAGYACTGGTGAAAT (SEQ ID NO:53),
         GAATKCCAAATTCCTGYTTRATHCCHGCCCACC (SEQ ID NO:37),
15
          ATTCYAYTACYCCTTGACTTTGGGGRTTGTAGG (SEQ ID NO:38),
          GBCCTATRATTTKCTTTAATTCHTTATTCATAG (SEQ ID NO:39),
          CTSTCTTAAGRTGYTCAGCYTGMTCTCTTACYT (SEQ ID NO:40).
```

- 2. The synthetic oligonucleotide of claim 1, wherein said second segment comprises

 AGGCATAGGACCCGTGTCTT (SEQ ID NO:55).
- 3. A synthetic oligonucleotide useful as a 25 capture probe in a sandwich hybridization assay for HIV, wherein the synthetic oligonucleotide comprises:
 - a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and
- a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,

wherein said HIV nucleic acid segment is selected from the group consisting of

35 TCTCCAYTTRGTRCTGTCYTTTTTCTTTATRGC (SEQ ID NO:14),

```
TYTYYTATTAAGYTCYCTGAAATCTACTARTTT (SEQ ID NO:15),
          TATTCCTAAYTGRACTTCCCARAARTCYTGAGT (SEQ ID NO:47),
          ACWYTGGAATATYGCYGGTGATCCTTTCCAYCC (SEQ ID NO:48),
          TKTTYTAAARGGYTCYAAGATTTTTGTCATRCT (SEQ ID NO:16),
          TAAAATTGTGRATRAAYACTGCCATTTGTACWG (SEQ ID NO:41),
5
          CTGCACTGTAYCCCCCAATCCCCCYTYTTCTTT (SEQ ID NO:42),
          TGTCTGTWGCTATYATRYCTAYTATTCTYTCCC (SEQ ID NO:43),
          TTRTRATTTGYTTTTGTARTTCTYTARTTTGTA (SEQ ID NO:44),
          TGTCYCTGTAATAAACCCGAAAATTTTGAATTT (SEQ ID NO:54).
10
                    The synthetic oligonucleotide of claim 3,
    wherein said second segment comprises
               CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:56).
15
                  A synthetic oligonucleotide useful as an
     amplifier probe in a sandwich hybridization assay for
     HIV, wherein said oligonucleotide comprises:
               a first segment comprising a nucleotide
     sequence substantially complementary to a segment of HIV
20
     nucleic acid; and
               a second segment comprising a nucleotide
     sequence substantially complementary to an
     oligonucleotide unit of a nucleic acid multimer,
               wherein said HIV nucleic acid segment is
25
     selected from the group consisting of
          TTCCTGGCAAAYYYATKTCTYCTAMTACTGTAT (SEQ ID NO:5),
          CTCCAATTCCYCCTATCATTTTTGGYTTCCATY (SEQ ID NO:6),
          KTATYTGATCRTAYTGTCYYACTTTGATAAAAC (SEQ ID NO:7),
          GTTGACAGGYGTAGGTCCTACYAATAYTGTACC (SEQ ID NO:8),
30
          YTCAATAGGRCTAATKGGRAAATTTAAAGTRCA (SEQ ID NO:9),
          YTCTGTCAATGGCCATTGYTTRACYYTTGGGCC (SEQ ID NO:10),
          TKTACAWATYTCTRYTAATGCTTTTATTTTYTC (SEQ ID NO:11),
          AAYTYTTGAAATYTTYCCTTCCTTTTCCATHTC (SEQ ID NO:12),
```

AAATAYKGGAGTATTRTATGGATTYTCAGGCCC (SEQ ID NO:13),

```
TCTCCAYTTRGTRCTGTCYTTTTTCTTTATRGC (SEQ ID NO:14),
          TYTYYTATTAAGYTCYCTGAAATCTACTARTTT (SEQ ID NO:15),
          TKTTYTAAARGGYTCYAAGATTTTTGTCATRCT (SEQ ID NO:16),
          CATGTATTGATADATRAYYATKTCTGGATTTTG (SEQ ID NO:17),
 5
          TATYTCTAARTCAGAYCCTACATACAAATCATC (SEQ ID NO:18),
          TCTYARYTCCTCTATTTTTGYTCTATGCTGYYC (SEQ ID NO:19),
          AAGRAATGGRGGTTCTTTCTGATGYTTYTTRTC (SEQ ID NO:20),
          TRGCTGCYCCATCTACATAGAAVGTTTCTGCWC (SEO ID NO:21).
          GACAACYTTYTGTCTTCCAYTGTYAGTWASATA (SEQ ID NO:22),
10
          YGAATCCTGYAAVGCTARRTDAATTGCTTGTAA (SEQ ID NO:23),
          YTGTGARTCTGTYACTATRTTTACTTCTRRTCC (SEO ID NO:24).
          TATTATTTGAYTRACWAWCTCTGATTCACTYTK (SEQ ID NO:25),
          CAGRTARACYTTTTCCTTTTTTATTARYTGYTC (SEQ ID NO:26),
          TCCTCCAATYCCTTTRTGTGCTGGTACCCATGM (SEQ ID NO:27),
          TCCHBBACTGACTAATYTATCTACTTGTTCATT (SEQ ID NO:28),
15
          ATCTATTCCATYYAAAAATAGYAYYTTYCTGAT (SEQ ID NO:29),
          GTGGYAGRTTAAARTCAYTAGCCATTGCTYTCC (SEQ ID NO:30),
          CACAGCTRGCTACTATTTCYTTYGCTACYAYRG (SEQ ID NO:31),
          RYTGCCATATYCCKGGRCTACARTCTACTTGTC (SEQ ID NO:32),
          DGATWAYTTTTCCTTCYARATGTGTACAATCTA (SEQ ID NO:33),
20
          CTATRTAKCCACTRGCYACATGRACTGCTACYA (SEQ ID NO:34),
          CYTGYCCTGTYTCTGCTGGRATDACTTCTGCTT (SEQ ID NO:35),
          TGSKGCCATTGTCTGTATGTAYTRYTKTTACTG (SEQ ID NO:36),
          GAATKCCAAATTCCTGYTTRATHCCHGCCCACC (SEQ ID NO:37),
          ATTCYAYTACYCCTTGACTTTGGGGRTTGTAGG (SEQ ID NO:38),
25
          GBCCTATRATTTKCTTTAATTCHTTATTCATAG (SEQ ID NO:39),
          CTSTCTTAAGRTGYTCAGCYTGMTCTCTTACYT (SEQ ID NO:40),
          TAAAATTGTGRATRAAYACTGCCATTTGTACWG (SEQ ID NO:41),
          CTGCACTGTAYCCCCCAATCCCCCYTYTTCTTT (SEQ ID NO:42),
30
          TGTCTGTWGCTATYATRYCTAYTATTCTYTCCC (SEQ ID NO:43),
          TTRTRATTTGYTTTTGTARTTCTYTARTTTGTA (SEQ ID NO:44).
```

6. The synthetic oligonucleotide of claim 5, wherein said second segment comprises

AGGCATAGGACCCGTGTCTT (SEQ ID NO:55).

Ţ

35

5

10

20

25

30

7. A synthetic oligonucleotide useful as a capture probe in a sandwich hybridization assay for HIV, wherein the synthetic oligonucleotide comprises:

a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,

wherein said HIV nucleic acid segment is selected from the group consisting of

CATCTGCTCCTGTRTCTAATAGAGCTTCYTTTA (SEQ ID NO:45),

ATCCATYCCTGGCTTTAATTTTACTGGTACAGT (SEQ ID NO:46),

TATTCCTAAYTGRACTTCCCARAARTCYTGAGT (SEQ ID NO:47),

15 ACWYTGGAATATYGCYGGTGATCCTTTCCAYCC (SEQ ID NO:48),

CCATTTRTCAGGRTGGAGTTCATAMCCCATCCA (SEQ ID NO:49),

CTAYTATGGGKTCYKTYTCTAACTGGTACCAYA (SEQ ID NO:50),

ATCTGGTTGTGCTTGAATRATYCCYARTGCATA (SEQ ID NO:51),

CATGCATGGCTTCYCCTTTTAGYTGRCATTTAT (SEQ ID NO:52),

AACAGGCDGCYTTAACYGYAGYACTGGTGAAAT (SEQ ID NO:53),

TGTCYCTGTAATAAACCCGAAAATTTTGAATTT (SEQ ID NO:54).

8. The synthetic oligonucleotide of claim 7, wherein said second segment comprises

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:56).

9. A synthetic oligonucleotide useful as a spacer oligonucleotide in a sandwich hybridization assay for HIV, wherein the synthetic oligonucleotide comprises a segment substantially complementary to a segment of HIV nucleic acid, wherein said HIV nucleic acid segment is selected from the group consisting of TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57),

35 VCCAAKCTGRGTCAACADATTTCKTCCRATTAT (SEQ ID NO:58),

```
TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS (SEQ ID NO:59),
TCCTGCTTTTCCYWDTYTAGTYTCYCTRY (SEQ ID NO:60),
YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD (SEQ ID NO:61),
AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT (SEQ ID NO:62),
GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT (SEQ ID NO:63).
```

10. A set of synthetic oligonucleotides useful as amplifier probes in a sandwich hybridization assay for HIV, comprising two oligonucleotides, wherein each member of the set comprises

a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer,

10

15

wherein said HIV nucleic acid segments are CATCTGCTCCTGTRTCTAATAGAGCTTCYTTTA (SEQ ID NO:45), TTCCTGGCAAAYYYATKTCTYCTAMTACTGTAT (SEQ ID NO:5), 20 CTCCAATTCCYCCTATCATTTTTGGYTTCCATY (SEQ ID NO:6), KTATYTGATCRTAYTGTCYYACTTTGATAAAAC (SEQ ID NO:7), GTTGACAGGYGTAGGTCCTACYAATAYTGTACC (SEQ ID NO:8), YTCAATAGGRCTAATKGGRAAATTTAAAGTRCA (SEQ ID NO:9), ATCCATYCCTGGCTTTAATTTTACTGGTACAGT (SEQ ID NO:46), 25 YTCTGTCAATGGCCATTGYTTRACYYTTGGGCC (SEQ ID NO:10), TKTACAWATYTCTRYTAATGCTTTTATTTTYTC (SEQ ID NO:11), AAYTYTTGAAATYTTYCCTTCCTTTTCCATHTC (SEQ ID NO:12), AAATAYKGGAGTATTRTATGGATTYTCAGGCCC (SEQ ID NO:13), CATGTATTGATADATRAYYATKTCTGGATTTTG (SEQ ID NO:17), 30 TATYTCTAARTCAGAYCCTACATACAAATCATC (SEQ ID NO:18), TCTYARYTCCTCTATTTTTGYTCTATGCTGYYC (SEQ ID NO:19), AAGRAATGGRGGTTCTTTCTGATGYTTYTTRTC (SEQ ID NO:20), CCATTTRTCAGGRTGGAGTTCATAMCCCATCCA (SEQ ID NO:49), CTAYTATGGGKTCYKTYTCTAACTGGTACCAYA (SEQ ID NO:50), 35 TRGCTGCYCCATCTACATAGAAVGTTTCTGCWC (SEQ ID NO:21),

```
GACAACYTTYTGTCTTCCAYTGTYAGTWASATA (SEQ ID NO:22),
          YGAATCCTGYAAVGCTARRTDAATTGCTTGTAA (SEQ ID NO:23),
          YTGTGARTCTGTYACTATRTTTACTTCTRRTCC (SEQ ID NO:24),
          ATCTGGTTGTGCTTGAATRATYCCYARTGCATA (SEQ ID NO:51),
          TATTATTTGAYTRACWAWCTCTGATTCACTYTK (SEQ ID NO:25),
5
          CAGRTARACYTTTTCCTTTTTTATTARYTGYTC (SEQ ID NO:26),
          TCCTCCAATYCCTTTRTGTGCTGGTACCCATGM (SEQ ID NO:27),
          TCCHBBACTGACTAATYTATCTACTTGTTCATT (SEQ ID NO:28),
          ATCTATTCCATYYAAAAATAGYAYYTTYCTGAT (SEQ ID NO:29),
          GTGGYAGRTTAAARTCAYTAGCCATTGCTYTCC (SEQ ID NO:30),
10
          CACAGCTRGCTACTATTTCYTTYGCTACYAYRG (SEQ ID NO:31),
          CATGCATGGCTTCYCCTTTTAGYTGRCATTTAT (SEQ ID NO:52),
          RYTGCCATATYCCKGGRCTACARTCTACTTGTC (SEQ ID NO:32),
          DGATWAYTTTTCCTTCYARATGTGTACAATCTA (SEQ ID NO:33),
          CTATRIAKCCACTRGCYACATGRACTGCTACYA (SEQ ID NO:34),
15
          CYTGYCCTGTYTCTGCTGGRATDACTTCTGCTT (SEQ ID NO:35),
          TGSKGCCATTGTCTGTATGTAYTRYTKTTACTG (SEQ ID NO:36),
          AACAGGCDGCYTTAACYGYAGYACTGGTGAAAT (SEQ ID NO:53),
          GAATKCCAAATTCCTGYTTRATHCCHGCCCACC (SEQ ID NO:37),
          ATTCYAYTACYCCTTGACTTTGGGGRTTGTAGG (SEQ ID NO:38),
20
          GBCCTATRATTTKCTTTAATTCHTTATTCATAG (SEQ ID NO:39),
          CTSTCTTAAGRTGYTCAGCYTGMTCTCTTACYT (SEQ ID NO:40).
```

- 11. The set of synthetic oligonucleotides of claim 10, wherein said second segment comprises AGGCATAGGACCCGTGTCTT (SEQ ID NO:55).
- 12. A set of synthetic oligonucleotides
 useful as capture probes in a sandwich hybridization
 30 assay for HIV, comprising two oligonucleotides, wherein
 each member of the set comprises
 - a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,

wherein said HIV nucleic acid segments are

TCTCCAYTTRGTRCTGTCYTTTTTCTTTATRGC (SEQ ID NO:14),

TYTYYTATTAAGYTCYCTGAAATCTACTARTTT (SEQ ID NO:15),

TATTCCTAAYTGRACTTCCCARAARTCYTGAGT (SEQ ID NO:47),

ACWYTGGAATATYGCYGGTGATCCTTTCCAYCC (SEQ ID NO:48),

TKTTYTAAARGGYTCYAAGATTTTTGTCATRCT (SEQ ID NO:16),

TAAAATTGTGRATRAAYACTGCCATTTGTACWG (SEQ ID NO:41),

CTGCACTGTAYCCCCCAATCCCCCYTYTTCTTT (SEQ ID NO:42),

TGTCTGTWGCTATYATRYCTAYTATTCTYTCCC (SEQ ID NO:43),

TTRTRATTTGYTTTTGTARTTCTYTARTTTGTA (SEQ ID NO:44),

TGTCYCTGTAATAAACCCGAAAATTTTGAATTT (SEQ ID NO:54).

15

13. The set of synthetic oligonucleotides of claim 12, wherein said second segment comprises

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:56).

2.0

ŗ

- 14. A set of synthetic oligonucleotides useful as amplifier probes in a sandwich hybridization assay for HIV, comprising two oligonucleotides, wherein each member of the set comprises
- a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and
 - a second segment comprising a nucleotide sequence substantially complementary to an
- 30 oligonucleotide unit of a nucleic acid multimer,

wherein said HIV nucleic acid segments are TTCCTGGCAAAYYYATKTCTYCTAMTACTGTAT (SEQ ID NO:5), CTCCAATTCCYCCTATCATTTTTGGYTTCCATY (SEQ ID NO:6), KTATYTGATCRTAYTGTCYYACTTTGATAAAAC (SEQ ID NO:7),

35 GTTGACAGGYGTAGGTCCTACYAATAYTGTACC (SEQ ID NO:8),

	YTCAATAGGRCTAATKGGRAAATTTAAAGTRCA	(SEQ	עב	NO:5),
	YTCTGTCAATGGCCATTGYTTRACYYTTGGGCC	(SEQ	ID	NO:10)
	TKTACAWATYTCTRYTAATGCTTTTATTTTYTC	(SEQ	ID	NO:11)
	AAYTYTTGAAATYTTYCCTTCCTTTTCCATHTC	(SEQ	ID	NO:12)
5	AAATAYKGGAGTATTRTATGGATTYTCAGGCCC	(SEQ	ID	NO:13),
	TCTCCAYTTRGTRCTGTCYTTTTTCTTTATRGC	(SEQ	ID	NO:14),
	TYTYYTATTAAGYTCYCTGAAATCTACTARTTT	(SEQ	ID	NO:15),
	TKTTYTAAARGGYTCYAAGATTTTTGTCATRCT	(SEQ	ID	NO:16),
	CATGTATTGATADATRAYYATKTCTGGATTTTG	(SEQ	ID	NO:17),
10	TATYTCTAARTCAGAYCCTACATACAAATCATC	(SEQ	ID	NO:18),
	TCTYARYTCCTCTATTTTTGYTCTATGCTGYYC	(SEQ	ID	NO:19),
	AAGRAATGGRGGTTCTTTCTGATGYTTYTTRTC	(SEQ	ID	NO:20),
	TRGCTGCYCCATCTACATAGAAVGTTTCTGCWC	(SEQ	ID	NO:21),
	GACAACYTTYTGTCTTCCAYTGTYAGTWASATA	(SEQ	ID	NO:22),
15	YGAATCCTGYAAVGCTARRTDAATTGCTTGTAA	(SEQ	ID	NO:23),
	YTGTGARTCTGTYACTATRTTTACTTCTRRTCC	(SEQ	ID	NO:24),
	TATTATTTGAYTRACWAWCTCTGATTCACTYTK	(SEQ	ID	NO:25),
	CAGRTARACYTTTTCCTTTTTTATTARYTGYTC	(SEQ	ID	NO:26),
	TCCTCCAATYCCTTTRTGTGCTGGTACCCATGM	(SEQ	ID	NO:27),
20	TCCHBBACTGACTAATYTATCTACTTGTTCATT	(SEQ	ID	NO:28),
	ATCTATTCCATYYAAAAATAGYAYYTTYCTGAT	(SEQ	ID	NO:29),
	GTGGYAGRTTAAARTCAYTAGCCATTGCTYTCC	(SEQ	ID	NO:30),
	CACAGCTRGCTACTATTTCYTTYGCTACYAYRG	(SEQ	ID	NO:31),
	RYTGCCATATYCCKGGRCTACARTCTACTTGTC	(SEQ	ID	NO:32),
25	DGATWAYTTTTCCTTCYARATGTGTACAATCTA	(SEQ	ID	NO:33),
	CTATRTAKCCACTRGCYACATGRACTGCTACYA	(SEQ	ID	NO:34),
	CYTGYCCTGTYTCTGCTGGRATDACTTCTGCTT	(SEQ	ID	NO:35),
	TGSKGCCATTGTCTGTATGTAYTRYTKTTACTG	(SEQ	ID	NO:36),
	GAATKCCAAATTCCTGYTTRATHCCHGCCCACC	(SEQ	ID	NO:37),
30	ATTCYAYTACYCCTTGACTTTGGGGRTTGTAGG	(SEQ	ID	NO:38),
	GBCCTATRATTTKCTTTAATTCHTTATTCATAG	(SEQ	ID	NO:39),
	CTSTCTTAAGRTGYTCAGCYTGMTCTCTTACYT	(SEQ	ID	NO:40),
	TAAAATTGTGRATRAAYACTGCCATTTGTACWG	(SEQ	ID	NO:41),
	CTGCACTGTAYCCCCCAATCCCCCYTYTTCTTT	(SEQ	ID	NO:42),
2 5	ͲϹͲϹͲϤ ϤϹϹͲϷͲϒϷͲΡΥϹͲΔΥͲϷΤΓϹͲϒͲϹϹϹ	(SEO	ID	NO:43).

TTRTRATTTGYTTTTGTARTTCTYTARTTTGTA (SEQ ID NO:44).

15. The set of synthetic oligonucleotides of claim 14, wherein said second segment comprises

AGGCATAGGACCCGTGTCTT (SEQ ID NO:55).

5

10

Ľ

- 16. A set of synthetic oligonucleotides useful as capture probes in a sandwich hybridization assay for HIV, comprising two oligonucleotides, wherein each member of the set comprises
 - a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid; and
- a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,

wherein said HIV nucleic acid segments are
CATCTGCTCCTGTRTCTAATAGAGCTTCYTTTA (SEQ ID NO:45),
ATCCATYCCTGGCTTTAATTTTACTGGTACAGT (SEQ ID NO:46),
TATTCCTAAYTGRACTTCCCARAARTCYTGAGT (SEQ ID NO:47),
ACWYTGGAATATYGCYGGTGATCCTTTCCAYCC (SEQ ID NO:48),
CCATTTRTCAGGRTGGAGTTCATAMCCCATCCA (SEQ ID NO:49),
CTAYTATGGGKTCYKTYTCTAACTGGTACCAYA (SEQ ID NO:50),
ATCTGGTTGTGCTTGAATRATYCCYARTGCATA (SEQ ID NO:51),
CATGCATGGCTTCYCCTTTTAGYTGRCATTTAT (SEQ ID NO:52),
AACAGGCDGCYTTAACYGYAGYACTGGTGAAAT (SEQ ID NO:53),
TGTCYCTGTAATAAACCCGAAAATTTTGAATTT (SEQ ID NO:54).

17. The set of synthetic oligonucleotides of 30 claim 16, wherein said second segment comprises

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:56).

18. A set of synthetic oligonucleotides useful as a spacer oligonucleotide in a sandwich hybridization

10

15

20

25

assay for HIV, comprising two oligonucleotides, wherein the synthetic oligonucleotide comprises a segment substantially complementary to a segment of HIV nucleic acid, wherein said HIV nucleic acid segments are TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57), VCCAAKCTGRGTCAACADATTTCKTCCRATTAT (SEQ ID NO:58), TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS (SEQ ID NO:59), TCCTGCTTTTCCYWDTYTAGTYTCYCTRY (SEQ ID NO:60), YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD (SEQ ID NO:61), AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT (SEQ ID NO:62), GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT (SEQ ID NO:63).

- 19. A solution sandwich hybridization assay for detecting the presence of HIV in a sample, comprising
- (a) contacting the sample under hybridizing conditions with an excess of (i) amplifier probe comprising the set of synthetic oligonucleotides of claim 10 and (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment comprising a nucleotide sequence that is substantially complementary to a segment of HIV-1 nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;
- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound to the solid phase;
- under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second

oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

- (e) removing unbound multimer;
- (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- (h) detecting the presence of label in the solid phase complex product of step (g).
 - 20. A solution sandwich hybridization assay for detecting the presence of HIV in a sample, comprising
- (a) contacting the sample under hybridizing

 conditions with an excess of (i) amplifier probe
 comprising the set of synthetic oligonucleotides of claim
 14 and (ii) a set of capture probe oligonucleotides
 wherein the capture probe oligonucleotide comprises a
 first segment comprising a nucleotide sequence that is

 substantially complementary to a segment of HIV nucleic
 acid and a second segment that is substantially
 complementary to an oligonucleotide bound to a solid
- (b) contacting the product of step (a) under

 hybridizing conditions with said oligonucleotide bound to
 the solid phase;
 - (c) thereafter separating materials not bound to the solid phase;
- (d) contacting the bound product of step (c)

 under hybridization conditions with the nucleic acid
 multimer, said multimer comprising at least one
 oligonucleotide unit that is substantially complementary
 to the second segment of the amplifier probe
 polynucleotide and a multiplicity of second

phase;

oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

- (e) removing unbound multimer;
- (f) contacting under hybridizing conditions the
 solid phase complex product of step (e) with the labeled
 oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- (h) detecting the presence of label in the 10 solid phase complex product of step (g).
- The solution sandwich hybridization assay of claim 19, wherein step (a) further comprises contacting said sample with a set of synthetic oligonucleotides useful as spacer oligonucleotides in a 15 sandwich hybridization assay for HIV, said set comprising two oligonucleotides, wherein the synthetic oligonucleotide comprises a segment substantially complementary to a segment of HIV nucleic acid, wherein said HTV nucleic acid segments are 20 TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57), VCCAAKCTGRGTCAACADATTTCKTCCRATTAT (SEQ ID NO:58), TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS (SEQ ID NO:59), TCCTGCTTTTCCYWDTYTAGTYTCYCTRY (SEQ ID NO:60), YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD (SEQ ID NO:61), 25 AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT (SEQ ID NO:62), GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT (SEQ ID NO:63).
- 22. The solution sandwich hybridization assay
 30 of claim 20, wherein step (a) further comprises
 contacting said sample with a set of synthetic
 oligonucleotides useful as spacer oligonucleotides in a
 sandwich hybridization assay for HIV, comprising two
 oligonucleotides, wherein the synthetic oligonucleotide
 35 comprises a segment substantially complementary to a

WO 93/13223 PCT/US92/11168

segment of HIV nucleic acid, wherein said HIV segments are

TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57), VCCAAKCTGRGTCAACADATTTCKTCCRATTAT (SEQ ID NO:58),

TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS (SEQ ID NO:59),
TCCTGCTTTTCCYWDTYTAGTYTCYCTRY (SEQ ID NO:60),
YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD (SEQ ID NO:61),
AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT (SEQ ID NO:62),
GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT (SEQ ID NO:63).

10

- 23. A solution sandwich hybridization assay for detecting the presence of HIV in a sample, comprising
- (a) contacting the sample under
 hybridizing conditions with an excess of (i) a set of
 amplifier probe oligonucleotides wherein the amplifier
 probe oligonucleotide comprises a first segment
 comprising a nucleotide sequence substantially
 complementary to a segment of HIV nucleic acid and a
 second segment comprising a nucleotide sequence
- substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) capture probes comprising the set of synthetic oligonucleotides of claim 12;
- (b) contacting the product of step (a) under

 hybridizing conditions with said oligonucleotide bound to
 the solid phase;
 - (c) thereafter separating materials not bound to the solid phase;
- (d) contacting the bound product of step (c)

 under hybridization conditions with the nucleic acid
 multimer, said multimer comprising at least one
 oligonucleotide unit that is substantially complementary
 to the second segment of the amplifier probe
 polynucleotide and a multiplicity of second

£ -

oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

- (e) removing unbound multimer;
- (f) contacting under hybridizing conditions the
 solid phase complex product of step (e) with the labeled
 oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- (h) detecting the presence of label in the 10 solid phase complex product of step (g).
 - 24. A solution sandwich hybridization assay for detecting the presence of HIV in a sample, comprising (a) contacting the sample under
- hybridizing conditions with an excess of (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid and a second segment comprising a nucleotide sequence
 - substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) capture probes comprising the set of synthetic oligonucleotides of claim 16;
- 25 (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
 - (c) thereafter separating materials not bound to the solid phase;
- 30 (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe
 35 polynucleotide and a multiplicity of second

₂ 3

oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

- (e) removing unbound multimer;
- (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- (h) detecting the presence of label in the solid phase complex product of step (g).
- of claim 23, wherein step (a) further comprises contacting said sample with the set of a set of synthetic oligonucleotides useful as a spacer oligonucleotide in a sandwich hybridization assay for HIV, comprising two oligonucleotides, wherein the synthetic oligonucleotide comprises a segment substantially complementary to a segment of HIV nucleic acid, wherein said HIV nucleic acid segments are TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57),

TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57),
VCCAAKCTGRGTCAACADATTTCKTCCRATTAT (SEQ ID NO:58),
TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS (SEQ ID NO:59),
TCCTGCTTTTCCYWDTYTAGTYTCYCTRY (SEQ ID NO:60),

- YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD (SEQ ID NO:61),
 AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT (SEQ ID NO:62),
 GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT (SEQ ID NO:63).
- of claim 24, wherein step (a) further comprises contacting said sample with the set of a set of synthetic oligonucleotides useful as a spacer oligonucleotide in a sandwich hybridization assay for HIV, comprising two oligonucleotides, wherein the synthetic oligonucleotide comprises a segment substantially complementary to a

segment of HIV nucleic acid, wherein said HIV nucleic acid segments are

TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57),

VCCAAKCTGRGTCAACADATTTCKTCCRATTAT (SEQ ID NO:58),

TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS (SEQ ID NO:59),

TCCTGCTTTTCCYWDTYTAGTYTCYCTRY (SEQ ID NO:60),

YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD (SEQ ID NO:61),

AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT (SEQ ID NO:62),

GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT (SEQ ID NO:63).

10

15

5

- 27. A kit for the detection of HIV in a sample comprising in combination
- (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a segment of HIV nucleic acid and a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;
- 20 (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment comprising a nucleotide sequence that is substantially complementary to a segment of HIV nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;
 - (iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and
 - (iv) a labeled oligonucleotide.

30

10

б

- 28. The kit of claim 27, further comprising a set of spacer oligonucleotides, wherein said spacer oligonucleotide is selected from the group comprising TATAGCTTTHTDTCCRCAGATTTCTAYRR (SEQ ID NO:57), VCCAAKCTGRGTCAACADATTTCKTCCRATTAT (SEQ ID NO:58), TGGTGTGGTAARYCCCCACYTYAAYAGATGYYS (SEQ ID NO:59), TCCTGCTTTTCCYWDTYTAGTYTCYCTRY (SEQ ID NO:60), YTCAGTYTTCTGATTTGTYGTDTBHKTNADRGD (SEQ ID NO:61), AATTRYTGTGATATTTYTCATGDTCHTCTTGRGCCTT (SEQ ID NO:62), GCCATCTKCCTGCTAATTTTARDAKRAARTATGCTGTYT (SEQ ID NO:63).
 - 29. The kit of claim 27, wherein said set of amplifier probe oligonucleotides is the set of claim 10.
- 15 30. The kit of claim 27, wherein said set of amplifier probe oligonucleotides is the set of claim 14.
 - 31. The kit of claim 27, wherein said set of capture probe oligonucleotides is the set of claim 12.
 - 32. The kit of claim 27, wherein said set of capture probe oligonucleotides is the set of claim 16.
- 33. The kit of claim 27, further comprising instructions for the use thereof.

30

20

35

8 3

INTERNATIONAL SEARCH REPORT

Inte...tional application No. PCT/US92/11168

A. CL	ASSIFICATION OF SUBJECT MATTER					
IPC(5)	:C12Q 1/68; C07H 21/04					
US CL	:435/5, 6; 536/23.1, 23.72, 24.3					
_	to International Patent Classification (IPC) or to b	oth national classification and IPC				
	LDS SEARCHED					
	documentation searched (classification system follo	wed by classification symbols)				
U.S. :	435/5, 6; 536/23.1, 23.72, 24.3					
Document	ation searched other than minimum documentation to	the extent that analysis are				
	and the second s	the extent that such documents are include	ed in the fields searched			
Electronic	data base consulted during the international search	(name of data base and, where practicable	e search terms used)			
MEDLIN	ie, aps, embase, biosis		, contain terms deed)			
scarch te	rms: HIV, sandwich or solution hybridization, capt	ure probe				
C. DO	TREE CONSTRUCTOR TO BE SEEN TO					
	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
Y	WO,A, 89/03891 (Urdea et al.) 05 N	May 1989, pages 23-31.	1-33			
v	37.4					
Y	Nature, Volume 313, issued 24 Jan	uary 1985, Ratner, Lee et al,	1-33			
	"Complete nucleotide sequence of	the AIDS virus, HTLV-III",				
	pages 277-283, especially figures 1 a	nd 3.				
Y	EP A 0318245 (Hogan et al.) 31 h	fav. 1090 5 1: 16 00	9,18,21,22,			
_						
	• .		25,26,28-33			
Y,P	US, A, 5,124,246 (Urdea et al) 23 Ju	ine 1992, columns 2 and 3.	1-33			
			1 33			
7	US, A, 5,008,182 (Sninsky et al) 16	April 1991, columns 2, 4 and	1-33			
1	5.	·				
ŀ						
						
Further documents are listed in the continuation of Box C. See patent family annex.						
Special entegories of cited documents: "T" inter document published after the international filing date or priority date and not in conflict with the arrivable to the conflict with the confli						
'A' document defining the general state of the art which is not considered to be part of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention						
	er document published on or after the international filing data	"X" document of particular relevance; the considered povel or cannot be considered.	claimed invention cannot be			
L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other						
spec	ni remon (m specified)	document of particular relevance; the considered to involve an inventive of	ntern when the document is			
mess		combined with one or more other such being obvious to a person skilled in the	documents, such combination			
docu	ment published prior to the international filing date but later than riority date claimed	"&" document member of the same patent fi	mily			
ate of the a	ctual completion of the international search	Date of mailing of the international sear	ch report			
17 February 1993 ISA/US 0.5 MAR ,1993						
· · · · · · · · · · · · · · · · · · ·						
Commissione	iling address of the ISA/US r of Patents and Trademarks	Authorized officer CARLA MYERS Authorized officer				
Box PCT Washington,	D.C. 20231	CARLA MYERS				
csimile No. NOT APPLICABLE Telephone No.						
m PCT/ISA	√210 (second sheet)(July 1992)±					