Interrogation de contrôle continu n°2 (1h15)

Les calculatrices et les documents de cours et de TD sont interdits.

Il est fortement conseillé de :

- lire le sujet en entier.
- écrire de façon lisible et d'encadrer ou souligner ses résultats.
- rédiger de façon la plus détaillée possible (mieux vaut trop écrire que pas assez).
- prendre un peu de temps pour se relire.

Exercice 1. Questions de cours (4 points)

Enoncer précisement et démontrer le théorème de Rolle.

Exercice 2. Calcul de Développements limités (5 points)

Calculer les développement limités des fonctions suivantes :

- 1. $x \mapsto \frac{1-x^2}{2+x^2}$ en 0 à l'ordre 4.
- 2. $x \mapsto \ln(1 + \sin(2x))$ en 0 à l'ordre 4.
- 3. $x \mapsto \ln(2x)$ en 1 à l'ordre 4.

Exercice 3. Application des développements limités (5 points)

Soit f la fonction définie par $f(x) = \sin x - x \cos x$. On note Γ le graphe de la fonction f.

- 1. Calculer le développement limité à l'ordre 4 de f en 0.
- 2. Donner l'équation de la tangente à Γ en 0 et préciser la position relative de Γ par rapport à cette tangente.
- 3. Calculer la limite suivante :

$$\lim_{x \to 0} \frac{f(x) - \frac{x^3}{3}}{\ln(1 + x^4)}$$

Exercice 4. Etude de fonction (6 points)

Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = x^4 + x^3 - x + 1$$

- 1. Calculer g'(x) et g''(x) pour tout $x \in \mathbb{R}$.
- 2. Etudier les variations de la fonction g' sur \mathbb{R} .
- 3. On note $J = g'(]-\infty,0]$). Déterminer J.
- 4. Montrer que l'équation g'(x) = 0 possède une unique solution $c \in \mathbb{R}$ et que l'on a $c \in]0,1[$.
- 5. Montrer que la fonction q admet un minimum en c.
- 6. En utilisant l'inégalité des accroissements finis montrer que g(c) > 0. En déduire que l'équation g(x) = 0 n'a pas de solution dans \mathbb{R} .

Rappel (Inégalité des accroissements finis): Soit f une fonction dérivable sur un intervalle I, dont la dérivée vérifie pour tout $x \in I$, $m \le f'(x) \le M$, alors, pour a et b deux points distincts de l'intervalle I, on a:

$$m \le \frac{f(b) - f(a)}{b - a} \le M$$