

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/051081

International filing date: 10 March 2005 (10.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 019 760.1

Filing date: 23 April 2004 (23.04.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

BUNDESREPUBLIK DEUTSCHLAND

17.04.2005

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung****Aktenzeichen:** 10 2004 019 760.1**Anmeldetag:** 23. April 2004**Anmelder/Inhaber:** Degussa AG, 40474 Düsseldorf/DE**Bezeichnung:** Verfahren zur Herstellung von HSiCl_3 durch katalytische Hydrodehalogenierung von SiCl_4 **IPC:** C 01 B 33/107**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.**

München, den 15. Juni 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Dzierzon".

Dzierzon

Verfahren zur Herstellung von HSiCl_3 durch katalytische Hydrodehalogenierung von SiCl_4

- Die Erfindung betrifft ein Verfahren zur katalytischen Hydrodehalogenierung von
5 Siliciumtetrachlorid (SiCl_4) zu Trichlorsilan (HSiCl_3) in Gegenwart von Wasserstoff.

Bei vielen technischen Prozessen in der Siliciumchemie entstehen SiCl_4 und SiHCl_3 gemeinsam. Es ist deswegen notwendig, diese beiden Produkte ineinander zu überführen und damit der jeweiligen Nachfrage nach einem der Produkte gerecht zu werden.

Darüber hinaus ist hochreines HSiCl_3 ein wichtiger Einsatzstoff bei der Herstellung von Solarsilicium.

- 15 Aus EP 0 658 359 A2 ist ein Verfahren zur katalytischen Hydrodehalogenierung von SiCl_4 zu HSiCl_3 in Gegenwart von Wasserstoff bekannt, bei dem als trägerfreier Katalysator feindisperse Übergangsmetalle oder Übergangsmetallverbindungen aus der Reihe Nickel, Kupfer, Eisen, Kobalt, Molybdän, Palladium, Platin, Rhenium, Cer und Lanthan eingesetzt werden, wobei diese in der Lage sind, mit elementarem Silicium 20 oder Siliciumverbindungen Silicide zu bilden. Problematisch ist dabei, bedingt durch die starke Endothermie der Reaktion, die indirekte Zuführung der Reaktionswärme sowie die Sinterung der Katalysatorpartikel, verbunden mit dem Verlust der Aktivität und die schlechte Regulierbarkeit des Umsatzgrades. Darüber hinaus erfordert die Abtrennung 25 des gebrauchten feindispersen Katalysators aus dem Produktgemisch einen erheblichen Aufwand.

Hierzu ist aus I. Röver et al., „The catalytic hydrogenation of chlorsilanes – the crucial print of production of electronic – grade silicon“, Silicon for the Chemical Industry VI, Loen, Norway, 17.06. bis 21.06.2002; Eds.: M. A. Øye et al., Trondheim, Norway, 2002, 30 Seite 209 ff., zu entnehmen, dass nicht alle Übergangsmetalle in der Lage sind, Silicide

zu bilden, da die Silicidbildung bei diesen Elementen zumindest partiell kinetisch gehemmt ist.

Der vorliegenden Erfindung lag somit die Aufgabe zugrunde, eine weitere Möglichkeit 5 zur Herstellung von HSiCl_3 aus SiCl_4 bereitzustellen.

Die Aufgabe wird erfindungsgemäß entsprechend den Angaben der Patentansprüche gelöst.

So wurde überraschend gefunden, dass man in einfacher, wirtschaftlicher und wirkungsvoller Weise durch katalytische Hydrodehalogenierung von SiCl_4 in Gegenwart von Wasserstoff HSiCl_3 erzeugen kann, wenn man ein gasförmiges H_2/SiCl_4 -haltiges Eduktgemisch mit mindestens einem heißen Heizelement einer Widerstandsheizung in direkten Kontakt bringt, wobei das Heizelement aus einem dafür geeigneten Metall oder 15 einer Metalllegierung besteht.

Besonders überraschend ist der Umstand, dass auch Heizelemente aus Wolfram, Niob, Tantal oder entsprechenden Legierungen unter den vorliegenden Reaktionsbedingungen eine katalytische Wirkung zeigen, obwohl man aufgrund der kinetischen 60 Hemmung der Silicidbildung dies nicht erwarten würde.

Darüber hinaus besitzen solche Heizelemente eine hohe Standfestigkeit, und auf die Abtrennung von fein verteiltem Katalysatorstaub kann vorteilhaft verzichtet werden.

25 Weiterhin ist vorteilhaft, dass die für die vorliegende Umsetzung erforderliche Energie direkt über die Widerstandsheizung eingetragen werden kann und man so Energieverluste durch indirekte Beheizung eines Reaktors vorteilhaft vermeiden kann.

So kann man erfindungsgemäß beim Überleiten eines SiCl_4/H_2 -Gemischs über die

beheizten Elementen einer Widerstandsheizung vorteilhaft einen Umsatz zu HSiCl_3 in der Nähe des thermodynamischen Umsatzes erhalten. Auch ist es beim vorliegenden Verfahren möglich, durch Variation der an den Heizelementen der Widerstandsheizung angelegten elektrischen Leistung schnell und flexibel die jeweils gewünschte

5 Produktzusammensetzung erhalten zu können. Der Energieaufwand ist gegenüber herkömmlichen indirekten Beheizungen bedeutend geringer, da nicht der gesamte Gasstrom, sondern vorteilhaft nur das Gas in der Nähe des auch katalytisch wirksamen Heizelements auf Reaktionstemperatur gebracht wird.

Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur katalytischen Hydrodehalogenierung von SiCl_4 zu HSiCl_3 , indem man ein gasförmiges, Wasserstoff und Siliciumtetrachlorid enthaltendes Eduktgemisch mit mindestens einem Heizelement einer Widerstandsheizung in direkten Kontakt bringt, wobei das Heizelement aus einem Metall oder einer Metalllegierung besteht, und man zur Durchführung der Umsetzung

15 das Heizelement erhitzt.

Insbesondere verwendet man beim erfindungsgemäßen Verfahren mindestens ein Heizelement, das aus einem Metall der Reihe Niob, Tantal sowie Wolfram oder aus einer Metalllegierung, die Niob, Tantal und/oder Wolfram enthält, besteht, wobei deren Silicidbildung unter Reaktionsbedingungen im Wesentlichen gehemmt ist.

So setzt man beim erfindungsgemäßen Verfahren bevorzugt mindestens ein Heizelement ein, das die Form eines Drahtes, einer Spirale, eines Stabes, einer Röhre, wie Röhren mit und ohne Stegen, mit Kreuzen oder Einsetzen oder deren Wände mit Löchern versehen sind, einer Platte, beispielsweise glatte oder gewellte Platten, Lochplatten oder Platten mit Falzen, mit Sicken oder Aufbauten oder Plattenpakete, eines Netzes, beispielsweise glatte oder gewellte Netze, oder eines Wabenkörpers, beispielsweise mit rundem, quadratischem, dreieckigem, sechs- oder achteckigem Zellquerschnitt, aufweist.

Dabei bevorzugt man Heizelemente, deren Drahtdurchmesser, Wandstärke oder Platten- bzw. Schichtdicke 0,1 mm bis 10 mm, vorzugsweise 0,3 bis 8 mm, besonders bevorzugt 0,5 bis 5 mm, beträgt.

- 5 Solche Heizelemente einer an sich bekannten Widerstandsheizung setzt man bei erfindungsgemäßen Verfahren bevorzugt in einem Durchflussreaktor ein, der seinerseits mit einem gasförmigen $H_2/SiCl_4$ -Gemisch beaufschlagt werden kann. Die beschriebenen Heizelemente sind in der Regel käuflich zu erwerben und werden vorteilhaft mit wassergekühlten elektrischen Stromanschlüssen in an sich bekannter Weise versehen. Zur Durchführung des erfindungsgemäßen Verfahrens wird der vorliegenden Widerstandsheizung elektrisch Leistung angelegt, wodurch die Heizelemente erhitzt werden und die Hydrodehalogenierung von $SiCl_4$ zu $HSiCl_3$ erfindungsgemäß stattfindet. Die elektrische Leistung wird dabei in der Regel langsam erhöht, beispielsweise in einem Zeitraum von etwa 30 Minuten, bis die gewünschte Reaktionstemperatur erreicht
- 15 ist. Zur Kontrolle und Steuerung werden Temperaturmessungen bevorzugt an den Heizelementen, an der Reaktorwand und im Edukt- bzw. Produktstrom ausgeführt.

So betreibt man beim erfindungsgemäßen Verfahren die Heizelemente der Widerstandsheizung bevorzugt bei einer Temperatur im Bereich von 300 bis 1 250 °C, insbesondere bei 700 bis 950 °C.

Die erfindungsgemäße Umsetzung führt man somit geeigneterweise bei einer Temperatur im Bereich von 600 bis 950 °C, insbesondere bei 700 bis 900 °C, und einem Druck von 0,1 bis 100 bar abs., bevorzugt bei 1 bis 10 bar abs., insbesondere bei 25 1,5 bis 2,5 bar abs., durch.

Beim erfindungsgemäßen Verfahren betreibt man die Umsetzung bevorzugt bei einer Raumgeschwindigkeit (SV = Volumenstrom/mit Heizelementen bestücktes Reaktorvolumen) von 2 000 bis 750 000 h^{-1} , bevorzugt von 5 000 bis 500 000 h^{-1} ,

und/oder einer Volumenstrom bezogenen Katalysatoroberfläche ($AV = \text{Volumenstrom}/\text{Katalysatoroberfläche}$) von 10 bis 0,01 m/s, besonders bevorzugt bei 1 bis 0,05 m/s. Ferner bevorzugt man dabei, dass das Gasgemisch aus Wasserstoff und Siliciumtetrachlorid mit einer Lineargeschwindigkeit ($LV = \text{Volumenstrom}/\text{Reaktorquerschnittsfläche}$) von 0,01 bis 10 m/s, vorzugsweise 0,01 bis 8 m/s, besonders bevorzugt mit 0,02 bis 5 m/s, über die Heizelemente der Widerstandsheizung geleitet wird. Die den vorangehenden und nachfolgenden reaktionskinetischen Parametern zugrundeliegenden Volumenströme sind jeweils auf Normbedingungen bezogen. Geeigneterweise stellt man die Verfahrensparameter so ein, dass sich eine laminare Strömung einstellt.

So setzt man beim erfindungsgemäßen Verfahren ein gasförmiges SiCl_4/H_2 -Gemisch ein, das vorzugsweise ein Molverhältnis $\text{SiCl}_4 : \text{H}_2$ von 1 : 0,9 bis 1 : 20, besonders bevorzugt von 1 : 1 bis 1 : 10, ganz besonders bevorzugt von 1 : 1,5 bis 1 : 8, insbesondere von 1 : 2 bis 1 : 4, aufweist.

In der Regel geht man dabei so vor, dass SiCl_4 – sofern erforderlich – in die Gasphase überführt wird und man Wasserstoffgas definiert zudosiert. Dabei sind insbesondere Spuren an Wasser sowie Sauerstoff auszuschließen. Geeigneterweise setzt man SiCl_4 und Wasserstoff von reiner bis hochreiner Qualität ein.

Den gewünschten Umsetzungsgrad [$u = 100 \% \cdot c(\text{HSiCl}_3)/c_0(\text{SiCl}_4)$] kann man beim erfindungsgemäßen Verfahren durch Vorgabe der elektrischen Leistung der Widerstandsheizung vorteilhaft regeln bzw. einstellen, auch ohne dass eine Unterbrechung des Verfahrens erforderlich wird.

Ferner führt man die erfindungsgemäße Umsetzung geeigneterweise in einem Durchflussreaktor durch, dessen Wände oder Wandinnenseiten aus Niob, aus Wolfram, aus Tantal, aus einer Niob-, Wolfram- und/oder Tantal-haltigen Legierung, aus einem

temperaturbeständigen Glas, insbesondere aus Quarzglas, aus einer temperaturbeständigen Glasur oder einer temperaturbeständigen Keramik bzw. Sonderkeramik bestehen.

- 5 Das beim erfindungsgemäßen Verfahren erhaltene Produktgemisch bzw. der Produktgasstrom kann vor einer Weiter- bzw. Aufarbeitung vorteilhaft über mindestens einen am Anfang des Prozesses, d. h. vor Reaktor befindlichen Wärmetauscher geführt werden, um SiCl_4 zu verdampfen und/oder das H_2/SiCl_4 -haltige Eduktgemisch energiesparend vorzuheizen. So kann man den Eduktgasstrom und den Produktgasstrom vorteilhaft im Gegenstrom führen, um das Eduktgas bereits vorzuwärmen und somit besonders energieeffizient arbeiten zu können.

Beim erfindungsgemäßen Verfahren kann man das so erhaltene Umsetzungsprodukt, d. h. Produktgemisch aufarbeiten oder weiterverarbeiten, wobei man bevorzugt (i) das

- 15 Produktgemisch fraktioniert bzw. zumindest partiell in an sich bekannter Weise kondensiert, flüssiges, vorteilhaft hochreines HSiCl_3 gewinnt und gegebenenfalls anfallenden Wasserstoff sowie Siliciumtetrachlorid in den Eduktstrom des vorliegenden Prozesses zurückführt oder (ii) den Produktstrom als Edukt einer direkten Weiterverwertung zuführt, beispielsweise in einer Veresterung mit einem Alkohol zu Alkoxy silanen, in einem Hydrosilylierungsverfahren von Olefinen zu Organochlorsilanen, bei der Herstellung von Monosilan bzw. Solarsilicium oder bei der Herstellung pyrogener Kieselsäure.

- 25 Im Allgemeinen führt man das erfindungsgemäße Verfahren derart aus, dass man ein definiertes Gasgemisch aus Wasserstoff und Siliciumtetrachlorid herstellt. Ein gegenüber Siliciumtetrachlorid bzw. HCl und höheren Temperaturen beständiger Reaktor, in dessen Reaktionsbereich metallische Heizelemente einer Widerstandsheizung integriert sind, wird üblicherweise zunächst ausgeheizt und mit trockenem Inertgas, beispielsweise Argon, oder mit Wasserstoff gespült. Durch Anlegen

elektrischer Leistung kann die Widerstandsheizung vorgefahren, auf Reaktionstemperatur eingestellt und mit dem Eduktgasgemisch aus H₂ und SiCl₄ beaufschlagt werden. Auf der Abströmseite des Reaktors erhält man ein Produktgemisch, das vorteilhaft HSiCl₃ bis hin zur thermodynamischen

5 Gleichgewichtskonzentration enthält.

Die vorliegende Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne den Gegenstand der vorliegenden Erfindung zu beschränken.

Beispiele:

Beispiel 1

In einem Quarzglasreaktor eines Durchmessers von 15 mm und einer Länge von
 15 250 mm wird ein W-Draht eines Durchmessers von 0,4 mm und von 400 mm Länge in
 Form einer Spirale als direkte Widerstandsheizung eingesetzt. Dieser Draht wird durch
 Anlegen einer Spannung von 10 bis 11 V auf Reaktionstemperatur von 800 °C erhitzt.
 Die Temperatur des Drahtes wird mittels eines gemantelten Thermoelements
 gemessen. Durch den Reaktor strömt ein H₂/SiCl₄-Gemisch mit einem Durchsatz von
 20 7 l/h. Der Umsatz der Reaktion wird gaschromatographisch verfolgt. Tabelle 1 gibt den
 Umsatz von SiCl₄ zu HSiCl₃ bei verschiedenen H₂/SiCl₄-Verhältnissen wieder.

Tabelle 1

n(H ₂)/n(SiCl ₄)	Umsatzgrad zu HSiCl ₃ (%)
4	15,3
5,5	18,3
6	19,0

Beispiel 2

Verwendet wird die im Beispiel 1 erklärte Apparatur. Es werden die Umsetzungsgrade in Abhängigkeit von der Strömungsgeschwindigkeit bei 800 °C und einem konstanten
 5 $n(H_2)/n(SiCl_4)$ -Verhältnis von 6 : 1 ermittelt, vgl. Tabelle 2.

Tabelle 2

Volumenstrom i. N. (l/h)	Umsatzgrad zu $HSiCl_3$ (%)
7	19,0
10,5	17,6
14	16,7

Beispiel 3

10

In einem Quarzglasreaktor eines Durchmessers von 15 mm und einer Länge von 250 mm wird ein W-Draht mit einer Oberfläche von 5,6 cm² in Form einer Spirale eingesetzt. Dieser Draht wird durch Anlegen einer Spannung auf Reaktionstemperatur von 900 °C erhitzt. Durch den Reaktor strömt ein $H_2/SiCl_4$ -Gemisch mit einem Durchsatz von 7 l/h. Der Umsatz der Reaktion wird gaschromatographisch verfolgt. Tabelle 3 gibt den Umsatz von $SiCl_4$ zu $HSiCl_3$ bei verschiedenen $H_2/SiCl_4$ -Verhältnissen wieder.

Tabelle 3

$n(H_2)/n(SiCl_4)$	Umsatzgrad zu $HSiCl_3$ (%)
4	20,9
6	21,1

Beispiel 4

Verwendet wird die im Beispiel 3 erklärte Apparatur. Es wird bei einem konstanten Molverhältnis $H_2/SiCl_4$ von 6 und einem Durchsatz von 7 l/h gearbeitet. Die angelegte
5 elektrische Leistung wird von 65 W auf 80 W erhöht. Innerhalb weniger Minuten hat sich der Umsetzungsgrad von 21,1 Mol-% auf 23,4 Mol-% erhöht.

[Handwritten signature]

Patentansprüche:

1. Verfahren zur katalytischen Hydrodehalogenierung von SiCl_4 zu HSiCl_3 ,
indem man ein gasförmiges H_2/SiCl_4 -haltiges Eduktgemisch mit mindestens einem
5 Heizelement einer Widerstandsheizung in direkten Kontakt bringt, wobei das
Heizelement aus einem Metall oder einer Metalllegierung besteht, und man zur
Durchführung der Umsetzung das Heizelement erhitzt.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass man mindestens ein Heizelement verwendet, das aus einem Metall der Reihe
Niob, Tantal sowie Wolfram oder aus einer Metalllegierung, die Niob, Tantal
und/oder Wolfram enthält, besteht.
- 15 3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass man mindestens ein Heizelement einsetzt, das die Form eines Drahtes, einer
Spirale, eines Stabes, einer Röhre, einer Platte, eines Netzes oder eines
Wabenkörpers besitzt.
- 20 4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass man ein Heizelement einsetzt, dessen Drahtdurchmesser, Wandstärke oder
Platten- bzw. Schichtdicke 0,1 mm bis 10 mm beträgt.
- 25 5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass man die Heizelemente der Widerstandsheizung bei einer Temperatur im
Bereich von 300 bis 1250° C betreibt.

6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass man die Umsetzung bei einer Temperatur im Bereich von 600 bis 950° C und
einem Druck von 0,1 bis 100 bar abs. durchführt.

5

7. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass man die Umsetzung bei einer Raumgeschwindigkeit von 2 000 bis
750 000 h^{-1} betreibt und man das Gasgemisch aus Wasserstoff und
Siliciumtetrachlorid mit einer Lineargeschwindigkeit von 0,01 bis 10 m/s über die
Heizelemente der Widerstandsheizung leitet.

8. Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,

15 dass man ein SiCl_4/H_2 -Gemisch mit einem Molverhältnis von 1 : 0,9 bis 1 : 20
einsetzt.

9. Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass man den Umsetzungsgrad durch Vorgabe der elektrischen Leistung der
Widerstandsheizung einstellt.

10. Verfahren nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,

25 dass man die Umsetzung in einem Durchflussreaktor durchführt, dessen Wände
oder Wandinnenseiten aus Niob, aus Wolfram, aus Tantal, aus einer Niob-,
Wolfram- und/oder Tantal-haltigen Legierung, aus einem temperaturbeständigen
Glas, aus Quarzglas, aus einer temperaturbeständigen Glasur oder einer
temperaturbeständigen Keramik bestehen.

11. Verfahren nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet,
dass man das Produktgemisch über mindestens einen am Anfang des Prozesses
befindlichen Wärmetauscher führt, um SiCl₄ zu verdampfen und/oder das H₂/SiCl₄-
haltige Eduktgemisch vorzuwärmen.
12. Verfahren nach einem der Ansprüche 1 bis 11,
dadurch gekennzeichnet,
dass man (i) das Produktgemisch zumindest partiell kondensiert, flüssiges HSiCl₃
gewinnt und gegebenenfalls anfallenden Wasserstoff sowie Siliciumtetrachlorid in
den Eduktstrom des Prozesses zurückführt oder (ii) den Produktstrom als Edukt
einer Weiterverwertung zuführt.

Zusammenfassung:

Verfahren zur Herstellung von HSiCl₃ durch katalytische Hydrodehalogenierung von SiCl₄

5

Die Erfindung betrifft ein Verfahren zur katalytischen Hydrodehalogenierung von SiCl₄ zu HSiCl₃, indem man das gasförmige H₂/SiCl₄-haltige Eduktgemisch mit mindestens einem Heizelement einer Widerstandsheizung in direkten Kontakt bringt, wobei das Heizelement aus einem Metall oder einer Metalllegierung besteht, und man zur Durchführung der Umsetzung das Heizelement erhitzt.

