TỔNG QUAN VỀ ĐỀ THI

	File nguồn nộp	File dữ liệu	File kết quả	Thời gian mỗi test	Biểu điểm
Bài 1	NPAIRS.*	NPAIRS.INP	NPAIRS.OUT	1,0 giây	6 điểm
Bài 2	KSTR.*	KSTR.INP	KSTR.OUT	1,0 giây	7 điểm
Bài 3	ROBOT.*	ROBOT.INP	ROBOT.OUT	1,0 giây	7 điểm

Dấu * được thay thế bởi PAS hoặc CPP của ngôn ngữ lập trình được sử dụng tương ứng là Pascal hoặc C++.

Hãy lập trình giải các bài toán sau:

Bài 1: Cho 4 số nguyên dương A, B, C, D.

Hãy xác định số lượng cặp số thực khác nhau (X;Y) sao cho

- 0 < X, Y < 1
- A * X + B * Y và C * X + D * Y là số nguyên

Dữ liệu: Vào từ file văn bản **Npairs.inp** gồm một dòng duy nhất chứa 4 số nguyên dương A, B, C, D ($0 < A, B, C, D < 10^9$).

Các số trên một dòng của input file được ghi cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản Npairs.out một số nguyên duy nhất là đáp án bài toán.

Ví dụ:

NPAIRS.INP	NPAIRS.OUT	Giải thích
1 2 10 12	6	(0.25,0.375),(0.5,0.25),(0.75,0.125),(0.25,0.875), (0.5,0.75), (0.75,0.625)

Bài 2: Cho số nguyên dương K và N tập hợp khác rỗng $S_1, S_2, ..., S_N$. Tập S_i $(1 \le i \le N)$ gồm các phần tử khác nhau $\in [0; 9]$

Người ta định nghĩa phép toán $S_i - S_j$ là những phần tử chỉ thuộc tập S_i và không thuộc tập S_j

Ví dụ:
$$S_i = (1,3,8)$$
 và $S_j = (2,9,3)$ khi đó $S_i - S_j = (1,8)$

Dễ dàng nhận thấy phép toán trên không có tính kết hợp, tức là $(S_i - S_j) - S_p \neq S_i - (S_j - S_p)$ nên chúng ta quy ước thứ tự thực hiện phép toán $S_{i_1} - S_{i_2} - \cdots - S_{i_m}$ là thực hiện từ phải qua trái.

Ví dụ:
$$(1,2,3) - (2,3) - (1,3) = (1,2,3) - (2) = (1,3)$$
.

Yêu cầu: Hãy xác định số cách chọn các tập $S_{i_1}, S_{i_2}, \dots, S_{i_m}$ $(1 \le i_1 < i_2 < \dots < i_m \le N)$ từ tập S_1, S_2, \dots, S_N sao cho $S_{i_1} - S_{i_2} - \dots - S_{i_m}$ được kết quả là tập có ít nhất K phần tử khác nhau.

Dữ liệu: Vào từ file văn bản KSTR.INP

- Dòng đầu tiên chứa hai số nguyên dương K (1 ≤ K ≤ 8) và N (2 ≤ N ≤ 50 000)
- N dòng tiếp theo, dòng thứ i+1 mô tả tập S_i chứa các số t c_1 c_2 ... c_t trong đó t là số lượng phần tử của tập S_i , c_1 c_2 ... c_t là các phần tử của tập S_i .

Các số trên một dòng của input file được ghi cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản **KSTR.OUT** một số nguyên duy nhất là kết quả bài toán (*lấy theo modulo* 123457)

Ví dụ:

KSTR.INP	KSTR.OUT	Giải thích
3 3	6	Có thể chọn:
556789		$s_1, s_1 - s_2, s_1 - s_2 - s_3, s_2, s_2 - s_3, s_3$
3 4 5 6		
3789		

Bài 3: ROBOT

HD vừa sáng tạo ra một trò chơi điều khiển robot mới cho 2 bé Bi, Bo chơi. Nội dung trò chơi như sau:

- Có N cây cột đánh số từ 1 đến N, cây cột thứ i có chiều cao h[i](m)
- Có M đường nhảy dạng i,j,t tương ứng là nhảy từ cây i sang cây j (hoặc từ cây j sang cây i) mất t(s) và nếu nhảy từ độ cao h ($h \in \mathbb{N}, h \le h[i]$) của cây i thì sang cây j sẽ có độ cao là h-t với điều kiện $0 \le h-t \le h[j]$

- Nếu robot di chuyển lên xuống trên cột hiện tại, thời gian di chuyển mất 1(s) trên 1m di chuyển.

Hiện tại robot đang ở độ cao X của cây 1, Bi-Bo cần phải tìm phương án di chuyển nhanh nhất đến độ cao h[N] của cây N. Bạn hãy giúp 2 bé Bi-Bo tính thời gian di chuyển ngắn nhất thỏa mãn yêu cầu đầu bài?

Dữ liệu: Vào từ file văn bản ROBOT.INP

- Dòng 1: Chứa 3 số nguyên dương N, M, X tương ứng là số lượng cây cột, số lượng đường nhảy và độ cao của robot đang ở cột 1. $(2 \le N \le 100.000; 1 \le M \le 300.000; 0 \le X \le h[1])$
- N dòng tiếp theo, dòng thứ i chứa 1 số nguyên dương h[i] tương ứng là chiều cao của cột i. $(1 \le h[i] \le 1.000.000.000 \, \forall i = 1...N)$
- M dòng tiếp theo, mỗi dòng chứa 3 số nguyên dương i,j,t tương ứng là nhảy từ cây i sang cây j (hoặc từ cây j sang cây i) mất t(s) ($1 \le t \le 1.000.000.000$)

Các số trên một dòng của input file được ghi cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản **ROBOT.OUT** một số duy nhất là thời gian ngắn nhất để robot di chuyển đến độ cao h[N] của cây N, nếu không thể di chuyển đến thì ghi -1 **Ví dụ:**

ROBOT.INP ROBOT.OUT	Giải thích
---------------------	------------

5 5 0	110	Trèo lên 50(m) ở cây 1 mất 50(s)
50		Nhảy từ cây 1 sang cây 2:
100		- Mất 10(s)
25		- ở độ cao 40 trên cây 2
30		Nhảy từ cây 2 sang cây 4:
10		- Mất 20(s)
1 2 10		- ở độ cao 20 trên cây 4
2 5 50		Nhảy từ cây 4 sang cây 5:
2 4 20		- Mất 20(s)
4 3 1		- ở độ cao 0
5 4 20		- trèo thêm 10(m) mất 10(s)
		Tổng thời gian: 110(s)
ROBOT.INP	ROBOT.OUT	Giải thích
2 1 0	-1	Từ cây 1, bất kỳ độ cao nào, khi nhẩy
1		sang cây 2 đều không thực hiện được vì
1		h-t < 0
1 2 100		
ROBOT.INP	ROBOT.OUT	Giải thích
4 3 30	100	Di chuyển xuống 10(m) ở cây 1 mất 10
50		(s) và đang ở độ cao 20(m)
10		Nhảy sang cây 2:
20		- Mất 10(s)
50		- ở độ cao 10 trên cây 2.
1 2 10		Nhảy sang cây 3:
2 3 10		
2 3 10		- Mất 10(s)
3 4 10		 Mất 10(s) Ở độ cao 0(m), trèo lên 10(m) mất
		- Ở độ cao 0(m), trèo lên 10(m) mất
		- Ở độ cao 0(m), trèo lên 10(m) mất 10(s), ở độ cao 10(m);
		- Ở độ cao 0(m), trèo lên 10(m) mất 10(s), ở độ cao 10(m); Nhảy sang cây 4:
		 ở độ cao 0(m), trèo lên 10(m) mất 10(s), ở độ cao 10(m); Nhảy sang cây 4: Mất 10(s),

Chú ý:

- 25% số điểm tương ứng với các test có: $N \le 1.000; M \le 3.000; h[i] \le 100 \ \forall i=1..N; \ t \le 100$
- 25% số điểm tương ứng với các test có X = 0

----- HÉT -----

(Thí sinh không sử dụng tài liệu, cán bộ coi thi không cần giải thích gì thêm)