Color Models

COLLEGE OF COMPUTING HANYANG ERICA CAMPUS Q YOUN HONG (홍규연)

• Light: electro magnetic wave (전자파)

• 파장에 따라 다음과 같이 분류:

- short wavelength (380-450nm, 6.7-7.9x10¹⁴Hz): violet
- long wavelength (620-750nm, 4.0-4.8x10¹⁴Hz): red

Perception (Qualitative)

Hue: 색상

Saturation: 채도

Value(Brightness): 명도

Perception (Qualitative)	Colorimetry (Quantitative)
Hue: 색상	Dominant wavelength
Saturation: 채도	Purity (Bandwidth)
Value(Brightness): 명도	Luminance (Amount of energy)

Color Models

- 세 기본 색(primary color)은 조합되어 거의 모든 가시 색상을 만들 수 있음 (tri-stimulus theory)
- 어떠한 유한집합의 기본 색으로도 모든 가능한 색상을 만들 수는 없음
- Color gamut: 기본 색으로 생성할 수 있는 모든 색상들의 집합

XYZ Color Model

- CIE (Commission Internationale d'Eclairage)가 정의한 hypothetical lights X, Y, Z
- Idea: 모든 파장 λ는 X,Y,Z의 양의(positive) 조합에 의해 구성된 색으로 인식됨

RGB Color Model

- Tri-stimulus 이론에 근거함
- 우리 눈은 색상을 망막(retina)의 원뿔세포(cone cell)에서 (R,G,B)의 세 색소의 자극을 통해 인식함

RGB Color Model

망막에는 색과 명암을 감지하는 시세포(윈뿔세포, 막대세포)가 분포되어 있다.

Color Model

- 인간의 색상 인지
 - 3개의 시각 센서 (RGB or LMS) 만으로 수많은 색상을 인지함

Types of cone cells	Approx. number of colors perceived
1	200
2	40,000
3	10 million ^[45]
4	100 million
5	10 billion

해양 포유동물

지상 포유동물, 색맹인 영장류 인간, 영장류, 원숭이, 꿀벌 파충류, 양서류, 조류, 곤충, 극소수 인간 나비, 비둘기

(출처: Craig Burrows)

Color Model

- 인간의 색상 인지 모호성
 - White/Gold?
 - Blue/Black

RGB Color Model

Original	R
G	В

YC_rC_b/YUV/YIQ Color Model

YCrCb

- MPEG/JPEG에서 사용
- Y: Luminance
- C_r,C_b: Chrominance (color info)

YUV

- PAL encoding for Color TV
- Y: Luminance
- U,V: Chrominance (color info)

YIQ

- NTSC encoding for Color TV
- Y: Luminance
- I,Q: Chrominance (color info)

$$Y = 0.3R + 0.59G + 0.11B$$

 $C_r = (R-Y)$
 $C_b = (B-Y)$

$$Y = 0.3R + 0.59G + 0.11B$$

 $U = (B-Y) \times 0.493$
 $V = (R-Y) \times 0.877$

YC_rC_b/YUV/YIQ Color Model

Original	Υ
C	V

CMY Color Model

- CMY
 - 감산(Subtractive) 색상 모델
 - Cyan, Magenta, Yellow
 - RGB의 보색 (Complements)
 - Printer 인쇄에 사용

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 - R \\ 1 - G \\ 1 - B \end{bmatrix}$$

HSV Color Model

- HSV (HSB) Model
 - Based on human perception
 - Hue, Saturation, Value
 - Cylindrical coordinate

$$H = \begin{cases} \theta & \text{if } B \le G \\ 360 - \theta & \text{if } B \ge G \end{cases}$$

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{[(R - G)^2 + (R - B)(G - B)]^{1/2}} \right\}$$

$$S = 1 - \frac{3}{(R + G + B)} [\min(R, G, B)]$$

$$I = \frac{1}{3} (R + G + B)$$

Color Models

컬러 모델	내용
CIE	 Commision Internationale d'Eclairage에 의한 규격 다른 컬러 모델 조정(calibration)의 참조 모델
RGB	 모든 컬러를 Red, Green, Blue 3색의 강도(intensity)의 합으로 표현 컬러 CRT의 R,G,B 전자총의 전압으로 쉽게 매핑 => 비디오 디스플레이 드라이버에 사용하기 편리함
HSB/HSV/HIS	 컬러를 색상(Hue), 채도(Saturation), 명도(Brightness)로 표현 인간의 시각 모델과 가장 흡사한 컬러 모델
YCrCb/YUV/YIQ	 텔레비전 산업에서 사용되는 컬러 모델, YIQ는 NTSC, YUV는 PAL, SECAM에서 사용되며 YCrCb는 JPEG, MPEG에서 사용 Y는 luminance(휘도), IQ/UV/CrCb는 비디오 신호의 색상 부분을 형성, chrominance(색차)라고 함
CMY	 프린팅에서의 컬러 모델 Cyan(청록색), Magenta(심홍색), Yellow는 각각 RGB의 보색, 종이 위의 임의의 색은 이 색들의 잉크의 배합으로 표현

Color Conversion

$$Y = 0.30R + 0.59G + 0.11B$$

$$Cb = (B - Y)$$

$$Cr = (R - Y)$$

$$Y = 0.30R + 0.59G + 0.11B$$

$$U = (B - Y) \times 0.493$$

$$V = (R - Y) \times 0.877$$

$$Y = 0.30R + 0.59G + 0.11B$$

$$I = 0.60R - 0.28G - 0.32B$$

$$Q = 0.21R - 0.52G + 0.31B$$

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$H = \begin{cases} \theta & \text{if } B \le G \\ 360 - \theta & \text{if } B \ge G \end{cases}$$

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{[(R - G)^2 + (R - B)(G - B)]^{1/2}} \right\}$$

$$S = 1 - \frac{3}{(R + G + B)} [\min(R, G, B)]$$

$$I = \frac{1}{3} (R + G + B)$$