Multivariable Calculus (Lecture-1)

Department of Mathematics Bennett University India

16th October, 2018

Books

- Maurice D. Weir and Joel Hass, "Thomas Calculus", 12th Edition, Pearson Education India, 2016.
- T. M. Apostol, "Calculus Vol. 2", 2nd Edition, Wiley India, 2003.

The space

$$\mathbb{R}^n = \{ X = (x_1, \dots, x_n) : x_i \in \mathbb{R} \text{ for } 1 \le i \le n \}.$$

Properties of \mathbb{R}^n

Let $\vec{A} = (a_1, \dots, a_n)$ and $\vec{B} = (b_1, \dots, b_n)$ be two vectors in \mathbb{R}^n

• Vector addition:

$$\vec{A} + \vec{B} = (a_1 + b_1, \dots, a_n + b_n).$$

• Scalar multiplication: Let λ be a scalar (from the real field \mathbb{R})

$$\lambda \vec{A} = (\lambda a_1, \dots, \lambda a_n).$$

 \mathbb{R}^n forms a vector space over the real field \mathbb{R} with respect to the above mentioned vector addition and scalar multiplication.

Properties of \mathbb{R}^n

Let $\vec{A} = (a_1, \dots, a_n)$ and $\vec{B} = (b_1, \dots, b_n)$ be two vectors in \mathbb{R}^n

• Vector addition:

$$\vec{A} + \vec{B} = (a_1 + b_1, \dots, a_n + b_n).$$

• Scalar multiplication: Let λ be a scalar (from the real field \mathbb{R})

$$\lambda \vec{A} = (\lambda a_1, \dots, \lambda a_n).$$

 \mathbb{R}^n forms a vector space over the real field \mathbb{R} with respect to the above mentioned vector addition and scalar multiplication.

What is vector space? (You will learn in the next semester course.)

Roughly for \mathbb{R}^n : for any $\vec{A}, \vec{B} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$

$$\vec{A} + \lambda \vec{B} \in \mathbb{R}^n$$
.

Sequences

 Sequences of Real Numbers: Convergence, Bounded, montonically increasing/ decreasing, Cauchy sequence, Subsequences, Bolzano-Weierstrass theorem.

Sequences

- Sequences of Real Numbers: Convergence, Bounded, montonically increasing/ decreasing, Cauchy sequence, Subsequences, Bolzano-Weierstrass theorem.
- Sequences in ℝⁿ: Convergence, Bounded, Cauchy sequence, Subsequences, Bolzano-Weierstrass theorem.

Sequences

- Sequences of Real Numbers: Convergence, Bounded, montonically increasing/ decreasing, Cauchy sequence, Subsequences, Bolzano-Weierstrass theorem.
- Sequences in ℝⁿ: Convergence, Bounded, Cauchy sequence, Subsequences, Bolzano-Weierstrass theorem.

Series

• Series of Real Numbers: Convergence, Various tests for convergence, Conditional convergence, Absolute convergence.

Sequences

- Sequences of Real Numbers: Convergence, Bounded, montonically increasing/ decreasing, Cauchy sequence, Subsequences, Bolzano-Weierstrass theorem.
- Sequences in ℝⁿ: Convergence, Bounded, Cauchy sequence, Subsequences, Bolzano-Weierstrass theorem.

Series

- Series of Real Numbers: Convergence, Various tests for convergence, Conditional convergence, Absolute convergence.
- Series in \mathbb{R}^n : Convergence.

Limit

• Limits of Functions in \mathbb{R} : Properties of Limits.

Limit

- Limits of Functions in \mathbb{R} : Properties of Limits.
- Limits of Functions, $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$: Properties of Limits.

Limit

- Limits of Functions in \mathbb{R} : Properties of Limits.
- Limits of Functions, $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$: Properties of Limits.

Continuity

• Continuous functions in ℝ: Properties of Continuous functions, Continuous image of connected set is connected (IVP), Continuous image of compact set is compact, Boundedness theorem, Uniformly continuous.

Limit

- Limits of Functions in \mathbb{R} : Properties of Limits.
- Limits of Functions, $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$: Properties of Limits.

Continuity

- Continuous functions in ℝ: Properties of Continuous functions, Continuous image of connected set is connected (IVP), Continuous image of compact set is compact, Boundedness theorem, Uniformly continuous.
- Continuity of functions, $F: S \subseteq \mathbb{R}^n \to \mathbb{R}^m$: Properties of Continuous functions, Continuous image of connected set is connected, Continuous image of compact set is compact, Boundedness theorem, Uniformly continuous.

• Differentiability in single variable Calculus: Properties of differentiable functions, L'Hospital rule, Chain rule, Rolle's theorem, MVT, Maxima, Minima, Darboux theorem, Taylor's theorem.

- Differentiability in single variable Calculus: Properties of differentiable functions, L'Hospital rule, Chain rule, Rolle's theorem, MVT, Maxima, Minima, Darboux theorem, Taylor's theorem.
- Differentiability in Multivariable Calculus:

- Differentiability in single variable Calculus: Properties of differentiable functions, L'Hospital rule, Chain rule, Rolle's theorem, MVT, Maxima, Minima, Darboux theorem, Taylor's theorem.
- Differentiability in Multivariable Calculus:
 - Vector valued function of Scalar variable $F:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^m$ where m>1 Differentiation (and we also do Integration)

- Differentiability in single variable Calculus: Properties of differentiable functions, L'Hospital rule, Chain rule, Rolle's theorem, MVT, Maxima, Minima, Darboux theorem, Taylor's theorem.
- Differentiability in Multivariable Calculus:
 - Vector valued function of Scalar variable $F:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^m$ where m>1 Differentiation (and we also do Integration)
 - Scalar valued function of Vector variable
 f: D ⊆ ℝⁿ → ℝ where n > 1 Partial Derivatives, Directional Derivatives, Total Derivative, Gradient Vector, MVT, Maxima and Minima, Taylor's theorem for functions of two variables.

- Differentiability in single variable Calculus: Properties of differentiable functions, L'Hospital rule, Chain rule, Rolle's theorem, MVT, Maxima, Minima, Darboux theorem, Taylor's theorem.
- Differentiability in Multivariable Calculus:
 - Vector valued function of Scalar variable $F:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^m$ where m>1 Differentiation (and we also do Integration)
 - Scalar valued function of Vector variable
 f: D ⊆ ℝⁿ → ℝ where n > 1 Partial Derivatives, Directional Derivatives, Total Derivative, Gradient Vector, MVT, Maxima and Minima, Taylor's theorem for functions of two variables.
 - Vector valued function of Vector variable
 F: D⊆ ℝⁿ → ℝ^m where n > 1 and m > 1 Partial Derivatives and Directional Derivatives of Component Functions f_j, 1 ≤ j ≤ m, Total Derivative of F, Jacobian matrix, Necessary condition for differentiability, Sufficient conditions for differentiability.

• Riemann Integration in Single Variable Calculus: Sufficient condition for integrability $U(P,f)-L(P,f)<\epsilon$, Properties of Riemann Integration, Application of Definite Riemann Integration in finding area and volume, Improper Integrals.

- Riemann Integration in Single Variable Calculus: Sufficient condition for integrability $U(P,f) L(P,f) < \epsilon$, Properties of Riemann Integration, Application of Definite Riemann Integration in finding area and volume, Improper Integrals.
- Riemann Integration in Multivariable Calculus: Scalar valued functions $f:D\subseteq \mathbb{R}^n\to R$

- Riemann Integration in Single Variable Calculus: Sufficient condition for integrability $U(P,f) L(P,f) < \epsilon$, Properties of Riemann Integration, Application of Definite Riemann Integration in finding area and volume, Improper Integrals.
- Riemann Integration in Multivariable Calculus: Scalar valued functions $f:D\subseteq \mathbb{R}^n\to R$
 - Two Dimension n = 2: Double integral of f over D if D is a rectangular region or D is a simple region, Iterated Integrals, Fubini's theorem.
 Change of variables in integration (Polar coordinates or other coordinate systems), Application of Double Integrals.

- Riemann Integration in Single Variable Calculus: Sufficient condition for integrability $U(P,f) L(P,f) < \epsilon$, Properties of Riemann Integration, Application of Definite Riemann Integration in finding area and volume, Improper Integrals.
- Riemann Integration in Multivariable Calculus: Scalar valued functions $f:D\subseteq \mathbb{R}^n\to R$
 - Two Dimension n = 2: Double integral of f over D if D is a rectangular region or D is a simple region, Iterated Integrals, Fubini's theorem.
 Change of variables in integration (Polar coordinates or other coordinate systems), Application of Double Integrals.
 - Three Dimension n = 3: Triple integral of f over D if D is a rectangular cube or D is a simple solid region, Iterated Integrals, Fubini's theorem. Change of variables in integration (Cylindrical, Spherical, Other coordinate systems), Application of Triple Integrals.

- Riemann Integration in Single Variable Calculus: Sufficient condition for integrability $U(P,f) L(P,f) < \epsilon$, Properties of Riemann Integration, Application of Definite Riemann Integration in finding area and volume, Improper Integrals.
- Riemann Integration in Multivariable Calculus: Scalar valued functions $f:D\subseteq \mathbb{R}^n\to R$
 - Two Dimension n = 2: Double integral of f over D if D is a rectangular region or D is a simple region, Iterated Integrals, Fubini's theorem.
 Change of variables in integration (Polar coordinates or other coordinate systems), Application of Double Integrals.
 - Three Dimension n = 3: Triple integral of f over D if D is a rectangular cube or D is a simple solid region, Iterated Integrals, Fubini's theorem. Change of variables in integration (Cylindrical, Spherical, Other coordinate systems), Application of Triple Integrals.
 - Higher Dimension n > 3: Idea how to generalize the Riemann Integration in higher dimensional space.

• Line Integrals (Integration over Smooth / Piecewise Smooth Curves in \mathbb{R}^n)

- Line Integrals (Integration over Smooth / Piecewise Smooth Curves in \mathbb{R}^n)
 - Scalar Line Integrals: Integration of Scalar Field
 f: C ⊆ ℝⁿ → R over the piecewise smooth non oriented curve C.
 - Vector Line Integrals: Integration of Vector Field $F: C \subseteq \mathbb{R}^n \to \mathbb{R}^n$ over the piecewise smooth oriented curve C.

- Line Integrals (Integration over Smooth / Piecewise Smooth Curves in \mathbb{R}^n)
 - Scalar Line Integrals: Integration of Scalar Field
 f: C ⊆ ℝⁿ → R over the piecewise smooth non oriented curve C.
 - Vector Line Integrals: Integration of Vector Field $F: C \subseteq \mathbb{R}^n \to \mathbb{R}^n$ over the piecewise smooth oriented curve C.
- Surface Integrals (Integration over two-sided, Smooth / Piecewise Smooth Surfaces in \mathbb{R}^3)

- Line Integrals (Integration over Smooth / Piecewise Smooth Curves in \mathbb{R}^n)
 - Scalar Line Integrals: Integration of Scalar Field
 f: C ⊆ ℝⁿ → R over the piecewise smooth non oriented curve C.
 - Vector Line Integrals: Integration of Vector Field $F: C \subseteq \mathbb{R}^n \to \mathbb{R}^n$ over the piecewise smooth oriented curve C.
- Surface Integrals (Integration over two-sided, Smooth / Piecewise Smooth Surfaces in \mathbb{R}^3)
 - Scalar Surface Integrals: Integration of Scalar Field $f: S \subseteq \mathbb{R}^3 \to R$ over the piecewise smooth non oriented surface S.
 - Vector Surface Integrals: Integration of Vector Field $F: S \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ over the piecewise smooth oriented surface S.

- Line Integrals (Integration over Smooth / Piecewise Smooth Curves in \mathbb{R}^n)
 - Scalar Line Integrals: Integration of Scalar Field
 f: C ⊆ ℝⁿ → R over the piecewise smooth non oriented curve C.
 - Vector Line Integrals: Integration of Vector Field $F: C \subseteq \mathbb{R}^n \to \mathbb{R}^n$ over the piecewise smooth oriented curve C.
- Surface Integrals (Integration over two-sided, Smooth / Piecewise Smooth Surfaces in \mathbb{R}^3)
 - Scalar Surface Integrals: Integration of Scalar Field $f: S \subseteq \mathbb{R}^3 \to R$ over the piecewise smooth non oriented surface S.
 - Vector Surface Integrals: Integration of Vector Field $F: S \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ over the piecewise smooth oriented surface S.
- Greens Theorem, Gauss Theorem, Stokes Theorem.

• Let
$$f(x, y) = \frac{x^2}{x^2 + y^2}$$
 for $(x, y) \neq (0, 0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

• Let
$$f(x, y) = \frac{x^2}{x^2 + y^2}$$
 for $(x, y) \neq (0, 0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

• Let
$$f(x, y) = \frac{x^2}{x^2 + y^2}$$
 for $(x, y) \neq (0, 0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

• Let
$$f(x, y) = \frac{x^2 y^2}{x^2 y^2 + (x - y)^2}$$
 if $x^2 y^2 + (x - y)^2 \neq 0$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 0 = 0$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

• Let
$$f(x, y) = \frac{x^2}{x^2 + y^2}$$
 for $(x, y) \neq (0, 0)$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

• Let
$$f(x, y) = \frac{x^2 y^2}{x^2 y^2 + (x - y)^2}$$
 if $x^2 y^2 + (x - y)^2 \neq 0$.

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} 0 = 0$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} 0 = 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Let $f(x,y) = \frac{xy^3}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0, Compute the second order mixed partial derivatives of f at (0,0).

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \Big|_{(0,0)} = 1$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \Big|_{(0,0)} = 0$$

Then

Let $f(x,y) = \frac{xy^3}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0, Compute the second order mixed partial derivatives of f at (0,0).

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \Big|_{(0,0)} = 1$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \Big|_{(0,0)} = 0$$

Then

$$\frac{\partial^2 f(0,0)}{\partial x \partial y} = 1 \neq 0 = \frac{\partial^2 f(0,0)}{\partial y \partial x}.$$

Let $f(x, y) = e^{-xy} - xye^{-xy}$. Compute the iterated integral of f as x varies from 0 to ∞ and y varies from 0 to 1.

Let $f(x, y) = e^{-xy} - xye^{-xy}$. Compute the iterated integral of f as x varies from 0 to ∞ and y varies from 0 to 1.

$$\int_{x=0}^{\infty} \left(\int_{y=0}^{1} f(x, y) dy \right) dx = \int_{x=0}^{\infty} \left[y e^{-xy} \right]_{y=0}^{1} dx = \int_{x=0}^{\infty} e^{-x} dx = 1$$

$$\int_{y=0}^{1} \left(\int_{x=0}^{\infty} f(x, y) dx \right) dy = \int_{y=0}^{1} \left[x e^{-xy} \right]_{x=0}^{\infty} dy = \int_{y=0}^{1} 0. dy = 0$$

That is,

Let $f(x, y) = e^{-xy} - xye^{-xy}$. Compute the iterated integral of f as x varies from 0 to ∞ and y varies from 0 to 1.

$$\int_{x=0}^{\infty} \left(\int_{y=0}^{1} f(x, y) dy \right) dx = \int_{x=0}^{\infty} \left[y e^{-xy} \right]_{y=0}^{1} dx = \int_{x=0}^{\infty} e^{-x} dx = 1$$

$$\int_{y=0}^{1} \left(\int_{x=0}^{\infty} f(x, y) dx \right) dy = \int_{y=0}^{1} \left[x e^{-xy} \right]_{x=0}^{\infty} dy = \int_{y=0}^{1} 0. dy = 0$$

That is,

$$\int_{x=0}^{\infty} \left(\int_{y=0}^{1} f(x, y) dy \right) dx = 1 \neq 0 = \int_{y=0}^{1} \left(\int_{x=0}^{\infty} f(x, y) dx \right) dy$$

Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where n > 1 and m > 1.

Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where n > 1 and m > 1.

How to define differentiability of *F* ?

Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where n > 1 and m > 1.

How to define differentiability of F?

Possible Attempt: Let $X_0 \in D$.

$$\frac{F(X) - F(X_0)}{X - X_0}$$

Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where n > 1 and m > 1.

How to define differentiability of F?

Possible Attempt: Let $X_0 \in D$.

$$\frac{F(X)-F(X_0)}{X-X_0}.$$

Challenges:

Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where n > 1 and m > 1.

How to define differentiability of F?

Possible Attempt: Let $X_0 \in D$.

$$\frac{F(X)-F(X_0)}{X-X_0}.$$

Challenges:

- Numerator is $(F(X) F(X_0)) \in \mathbb{R}^m$ which is a vector quantity.
- Denominator is $(X X_0) \in \mathbb{R}^n$ which is a vector quantity.
- We are unable to define the quantity $\frac{F(X)-F(X_0)}{X-X_0}$.

Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where n > 1 and m > 1.

How to define differentiability of F?

Possible Attempt: Let $X_0 \in D$.

$$\frac{F(X)-F(X_0)}{X-X_0}.$$

Challenges:

- Numerator is $(F(X) F(X_0)) \in \mathbb{R}^m$ which is a vector quantity.
- Denominator is $(X X_0) \in \mathbb{R}^n$ which is a vector quantity.
- We are unable to define the quantity $\frac{F(X)-F(X_0)}{X-X_0}$.

So, How to overcome this difficulty in order to define the differentiability of F?

What are the things same in higher dimensional situation?

- Concept of Convergence of Sequences is same.
- Concept of Limits of Functions is same.
- Concept of Continuity of Functions is same.

What are the things same in higher dimensional situation?

- Concept of Convergence of Sequences is same.
- Concept of Limits of Functions is same.
- Concept of Continuity of Functions is same.
- Differentiation can not be taken as such to the higher dimension.
- Integration can not be taken as such to the higher dimension.

What are the things same in higher dimensional situation?

- Concept of Convergence of Sequences is same.
- Concept of Limits of Functions is same.
- Concept of Continuity of Functions is same.
- Differentiation can not be taken as such to the higher dimension.
- Integration can not be taken as such to the higher dimension.
- Differentiation and Integration can be taken as such to the functions $F:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ where n>1.
- Riemann Integration can be taken as such to the functions

$$f:D\subseteq\mathbb{R}^n\to\mathbb{R},$$

where n > 1 and $D = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_i \in [a_i, b_i], 1 \le i \le n\}$.

- We denote Vectors by writing in the Capital Letters like X, V, Z, etc.
 Usually, in the books, vectors are denoted by the bold face letters like x, v, etc.
- We denote Scalars by writing in the Small Letters like x, s, a, λ , etc.

- We denote Vectors by writing in the Capital Letters like X, V, Z, etc.
 Usually, in the books, vectors are denoted by the bold face letters like x, v, etc.
- We denote Scalars by writing in the Small Letters like x, s, a, λ , etc.
- In \mathbb{R}^n , we usually take the Euclidean metric(Euclidean norm). We use $|\cdot|$ interchangeably with $|\cdot|$, that means,

- We denote Vectors by writing in the Capital Letters like X, V, Z, etc.
 Usually, in the books, vectors are denoted by the bold face letters like x, v, etc.
- We denote Scalars by writing in the Small Letters like x, s, a, λ , etc.
- In \mathbb{R}^n , we usually take the Euclidean metric(Euclidean norm). We use $|\cdot|$ interchangeably with $||\cdot||$, that means, if $X = (x_1, \dots, x_n) \in \mathbb{R}^n$, then

$$||X||=\sqrt{x_1^2+\cdots+x_n^2}.$$

- We denote Vectors by writing in the Capital Letters like X, V, Z, etc.
 Usually, in the books, vectors are denoted by the bold face letters like x, v, etc.
- We denote Scalars by writing in the Small Letters like x, s, a, λ , etc.
- In \mathbb{R}^n , we usually take the Euclidean metric(Euclidean norm). We use $|\cdot|$ interchangeably with $|\cdot|$, that means, if $X = (x_1, \dots, x_n) \in \mathbb{R}^n$, then

$$||X||=\sqrt{x_1^2+\cdots+x_n^2}.$$

• In \mathbb{R}^n , we usually take the vectors dot product as an innerproduct. We use $\langle U, V \rangle$ interchangeably with $U \cdot V$ or UV, that means,

- We denote Vectors by writing in the Capital Letters like X, V, Z, etc.
 Usually, in the books, vectors are denoted by the bold face letters like x, v, etc.
- We denote Scalars by writing in the Small Letters like x, s, a, λ , etc.
- In \mathbb{R}^n , we usually take the Euclidean metric(Euclidean norm). We use $|\cdot|$ interchangeably with $|\cdot|$, that means, if $X = (x_1, \dots, x_n) \in \mathbb{R}^n$, then

$$||X||=\sqrt{x_1^2+\cdots+x_n^2}.$$

• In \mathbb{R}^n , we usually take the vectors dot product as an innerproduct. We use $\langle U, V \rangle$ interchangeably with $U \cdot V$ or UV, that means, if $X = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $Y = (y_1, \dots, y_n) \in \mathbb{R}^n$, then

$$\langle U, V \rangle = U \cdot V = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

