ECE 35, Fall 2018		Last name	
Quiz 3		First + middle name(s)	
	/ 20	PID	

Instructions:

- Read each problem completely and thoroughly before beginning
- All calculations need to be done on these sheets
- Write your answers in the answer boxes for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit
- (1) For t < 2 s, the switch is closed and you may assume the system has reached steady state. The switch opens at time t = 2 s.
 - (a) Find $i_b(2^-)$. (1 point)

(b) Find $i_b(t)$ for t > 2 s. (6 points) $i_b(t)$

(2) For an RC system, we found $i_1(t)=-4\cdot e^{-t/_4s}+1$ A. Draw this waveform. Indicate where you can find the time constant on the graph. (2 points)

(3) The system is in steady state. Find $i_a(t)$. (In your answer, combine cosines/sines with the same frequency. So for each frequency, there should be only one cosine wave.) (6 points)

$$i_1(t) = \sin(1000t) \quad A$$

$$v_1(t) = 2 \cdot \cos(1000t + \pi) \quad V$$

$$v_2(t) = 4 \quad V$$

$$v_2(t) = 4$$
 V

(4) In the circuit below, the switch moves from position A to position B at time t=0 s. For t<0 s (switch in position A), you may assume the system is in steady state. The voltage source is sinusoidal with $\omega=1000$. The diagram shows two phasors, A and B (not to scale). One of them represents the capacitor voltage and the other the resistor voltage (but you are not told which one is which). (5 points)

$i_R(0^-)$	
•	

$$i_R(0^+)$$

- (a) Find i_R at time $t=0^-$ (i.e. just before the switch moves to B).
- (b) Find i_R at time $t=0^+$ (i.e. immediately after the switch moves to \emph{B}).

