Fluxogramas e variáveis

Patrícia de Siqueira Ramos

UNIFAL-MG, campus Varginha

28 de Agosto de 2018

Fases de um algoritmo

pelo usuário

para chegar no resultado

final

processados

O que é necessário para programar

- fluxograma: representação gráfica
- pseudocódigo: português estruturado
- linguagem de programação: linguagem desenvolvida para viabilizar a programação de computadores
- ambiente de programação: conjunto de tecnologias que dão suporte à programação de computadores (sistema operacional, editor, compilador)

Fluxograma

Forma padronizada e eficaz para representar a sequência de instruções, facilitando a visualização dos passos

Fluxograma - estrutura de controle sequencial

Fluxograma - estrutura de controle condicional

Fluxograma - estrutura de controle repetitiva

Ex.: fluxograma - estrutura de controle sequencial

Ex.: fluxograma - estrutura de controle condicional

Ex.: fluxograma - estrutura de controle repetitiva

Tipos de dados

• Numéricos:

- Inteiros (positivos e negativos):

Ex: 1, -3, 0

- Reais:

Ex.: 3.41, -111.333333, 0.567834, pi

 Caracteres: delimitados por aspas simples ou duplas (letras, números símbolos), mensagens ao usuário.

Ex.: "Insira um número:", "Apto 202", "O valor inserido foi:", "44"

 Lógicos: também chamados de valores booleanos, indicam presença/ausência.

Ex.: V e F (True e False), Sim e Não, 1 e 0

Variável

- Uma variável é a representação de uma região da memória para armazenar/acessar um valor. Ela pode ser numérica, caractere ou lógica.
- O nome de uma variável é usado para identificá-la e representá-la em um programa:

Variável,

- Uma variável é a representação de uma região da memória para armazenar/acessar um valor. Ela pode ser numérica, caractere ou lógica.
- O nome de uma variável é usado para identificá-la e representá-la em um programa:
 - O primeiro caractere de identificação de uma variável não pode ser um número ou um símbolo (\$, #, ;, (, [, etc.), deve ser sempre alfabético.

Ex. de nomes válidos de variáveis: Nome, nome, n1, x, Y4, nome_usuario etc.

Variável

- Uma variável é a representação de uma região da memória para armazenar/acessar um valor. Ela pode ser numérica, caractere ou lógica.
- O nome de uma variável é usado para identificá-la e representá-la em um programa:
 - O primeiro caractere de identificação de uma variável não pode ser um número ou um símbolo (\$, #, ;, (, [, etc.), deve ser sempre alfabético.
 - Ex. de nomes válidos de variáveis: Nome, nome, n1, x, Y4, nome usuario etc.
 - Não usar espaços em branco para dividir o nome da variável.
 - Ex. de nome inválido: aluno a

Variável

- Uma variável é a representação de uma região da memória para armazenar/acessar um valor. Ela pode ser numérica, caractere ou lógica.
- O nome de uma variável é usado para identificá-la e representá-la em um programa:
 - O primeiro caractere de identificação de uma variável não pode ser um número ou um símbolo (\$, #, ;, (, [, etc.), deve ser sempre alfabético.
 - Ex. de nomes válidos de variáveis: Nome, nome, n1, x, Y4, nome_usuario etc.
 - Não usar espaços em branco para dividir o nome da variável.
 - Ex. de nome inválido: aluno a
 - Não utilizar um comando da linguagem usada para um nome de variável.

Ex.: for = 5 ou if = 8 não podem ser utilizadas.

Comandos básicos

- Existem alguns comandos básicos utilizados nas linguagens de programação
- O comando mais utilizado é o de atribuição que pode ser:

```
variavel = valor
ou
variavel <- valor
Ex.:
x = 4  ou  x <- 4</pre>
```

Operadores

- aritméticos: +, -, /, *, sqrt(), ** (potenciação), divisão inteira (//), resto da divisão (%), arredondamento etc.
- lógicos: and, or, not (e, ou, não)
- relacionais: utilizados para testar condições:

```
== (o mesmo que =)
!= (o mesmo que \neq)
<= (o mesmo que \leq)
>= (o mesmo que \geq)
<
```

Expressões booleanas

and	True	False
True	True	False
False	False	False

Expressões booleanas

and	True	False
True	True	False
False	False	False

or	True	False
True	True	True
False	True	False

Expressões booleanas

and	True	False
True	True	False
False	False	False
	1	
or	True	False
True	True	True
False	True	False
	ı	
not	True	False

False

True

Precedência das operações

- parênteses: ()
- potenciação: **
- multiplicação ou divisão: *, /, //, %
- adição ou subtração: +, -
- relacional: ==, !=, <=, >=, >, <
- lógicos: not, and, or

1. Como escrever a seguinte expressão aritmética na forma computacional?

$$x = 9 + \{43 \cdot [55/(30 - 2, 5)]\}$$

- 2. Quais os resultados das seguintes expressões?
- a) 1 + 7 * 2 * * 2 1
- b) 3*(1-2)+4*2
- c) round(8.7)
- d) 20 == 6
- e) 4! = 6
- f) (10+2) >= 12
- g) (5 >= 7) or (8 <= 10)
- h) (3 >= 5) and (5 <= 3)
- i) not 7 == 5

3. Quais os valores das variáveis?

$$A = 4.6$$

B = sqrt(int(A)) obs.: int retorna a parte inteira do número

$$C = round(A) * B$$

$$D = (A * B)/C$$

$$E = B * *3$$

4. Como escrever

$$x_1 = \frac{-b + \sqrt{b^2 2 - 4ac}}{2a}$$

em linguagem computacional?

- 5. Sabendo que a=3, b=7 e c=4, informe se as expressões são V ou F:

 - a) (a + c) > b b) (b + a) <= c

 - c) b >= (a+2) d) (c+a) >= b
 - e) c == (b-a) f) b**2 > c**4
 - g) b//c == a // : divisão inteira

- h) b%c == a %: resto da divisão
- 6. Sabendo que sal = 1000 e salliq = 900, informe se as expressões são V ou F:
 - a) sallig >= 900
 - b) *salliq* < 900
 - c) sallig == (sal 10)

- 7. Sabendo que A = 5, B = 4, C = 3 e D = 6, informe se as expressões são V ou F:
 - a) (A > C) and $(C \le D)$
 - b) ((A + B) > 10) or ((A + B) == (C + D))
 - c) $(A \ge C)$ and $(D \le B)$
 - d) not A == 5
 - e) not (C + D) == (A * B)