

§ 4.1 代数系统的引入 (1)

一个代数系统需要满足下面三个条件:
(1) 有一个非空集合S;
(2) 有一些建立在S上的运算;
(3) 这些运算在集合S上是封闭的。

§4.2 运算

(1)

4.2.1 运算的概念

定义

假设A是一个集合,A×A 到A的映射称 为A上的二元运算。

一般地, A^n 到 A 的映射称为A上的n元 运算。

2022/3/29

§4.2 运算

(2)

4.2.2 运算的性质

假设 *, + 都是集合 A 上的运算

(1) 封闭性

如果 S⊆A, 对任意的 a,b∈S, 有 a*b∈S,则称 S 对运算 * 是封闭的。

2022/3/29

§ 4.2 运算

(3)

4.2.2 运算的性质

(2) 交换律

如果对任意的 $a,b\in A$,都有 a*b=b*a,则 称运算 * 是可交换的。

(3) 结合律

如果对任意的 a,b,c∈A,都有 (a*b)*c=a*(b*c),则称运算 * 是可结合的。

2022/3/29

§ 4.2 运算

(4)

(4) 分配律

如果对任意的 a,b,c∈A,都有a*(b+c)=(a*b)+(a*c) 则称 * 对 + 运算满足左分配;

如果对任意的a,b,c ∈A**,都有**(b+c)*a=(b*a)+(c*a)

则称 * 对 + 运算满足右分配。

如果运算*对+既满足左分配又满足右分配,

则称运算 * 对 + 满足分配律。

2022/3/29

§4.2 运算

(5)

(5) 消去律

如果对任意的 a,b,c∈A, 当 a*b=a*c, 必有 b=c,则称运算*满足左消去律; 如果对任意的 a,b,c∈A, 当 b*a=c*a, 必有 b=c,则称运算*满足右消去律; 如果运算*既满足左消去律又满足右消去 律,则称运算*满足消去律。

2022/3/29

§4.2 运算

(6)

(6) 吸收律

如果对任意的 $a,b \in A$,都有a*(a+b)=a,则称运算 * 关于运算 + 满足吸收律。

(7) 等幂律

如果对任意的 $a \in A$,都有 a*a=a,则称运算 * 满足等幂律。

§ 4.3 代数系统
(3)
4.3.2 代数系统中的特殊元素
(1) 单位元(幺元)
假设 <A,*> 是一个代数系统,如果∃e, ∈A,对于任意元素 ×∈A,都有 e,*×=x,则称 e,为 A 中关于运算*的左单位元;如果∃e, ∈A,对于任意元素 ×∈A,都有 x*e,=x,则称 e,为 A 中关于运算*的右单位元;如果 A 中一个元素 e 既是左单位元又是右单位元,则称 e,为 A 中关于运算*的单位元。

§ 4.3 代数系统

(6)

4.3.2 代数系统中的特殊元素

(2) 零元

假设 < A, *> 是一个代数系统,如果 $\exists \theta_1 \in A$,对于任意元素 $x \in A$,都有 θ_L * $x = \theta_L$,则称 θ_L 为 A 中关于运算 * 的 左零元;

如果 $\exists \theta_r \in A_r$ 对于任意元素 $x \in A_r$ 都有 $x^*\theta_r = \theta_r$ 则称 θ_r 为 A 中关于运算 * 的右零元;

如果 A 中一个元素 θ 既是左零元又是右零元,则称 θ 为 A 中关于运算 * 的零元。

2022/3/29

§ 4.3 代数系统

(8)

4.3.2 代数系统中的特殊元素

(2) 零元

定理

假设 <A,*> 是代數系统,并且 A 关于运算 * 有左零元 θ_L 和右零元 θ_r ,则 θ_L = θ_r = θ 并且 零元唯一。

2022/3/29

§ 4.3 代数系统

(9)

4.3.2 代数系统中的特殊元素

(3) 逆元

假设 < A, *> 是一个代數系统,e 是 < A, *> 的单位元。对于元素 $a \in$ A,如果存在 $b \in$ A,使得 b * a = e,则称 a 为左可逆的,b 为 a 的左逆元,如果存在 $c \in$ A,使得 a * c = e,则称元素 a 是右可逆的,c 为 a 的右逆元。如果存在 $a' \in$ A,使得 a' * a = a * a' = e,则称 a 是可逆的,a' 为 a 的逆元。力 a 的逆元。为 a 是可逆的,a' 为 a 的逆元。 a 的逆元。为 a 的逆元。

2022/3/29

§ 4.3 代数系统

(10)

*	a	b	c	
a	a	b	c	
b	b	c	a	
с	c	a	b	

2022/3/29

a'*a=a*a'=e e=a a*a=e a-1=a b*c=c*b=e

b-1=c c-1=b

§ 4.3 代数系统

(11)

4.3.2 代数系统中的特殊元素

(3) 逆元

定理

设 <A,*> 是一个代数系统,且 A 中存在单位元 e,每个元素都存在左逆元。如果运算*是可结合的,那么,任何一个元素的左逆元也一定是该元素的右逆元,且每个元素的逆元唯一。

§ 4.3 代数系统

(12)

4.3.2 代数系统中的特殊元素

(4) 幂等元

定义:

在代数系统<A,*>中,如果元素 a 满足 a*a=a,那么称 a 是 A 中的幂等元。

2022/3/29

§ 4.4 同态与同构

(1)

4.4.1 基本概念

定义

设 <A,*> 和 <B,°> 是代數系统, f:A→B, 如果 f 保持运算,即对 \forall x,y∈A, 有 f(x*y)=f(x)° f(y)。称 f 为代数系统 <A,*> 到 <B,°>的同态映射,简称同态。也称之为两 代数系统同态。

2022/3/29

§ 4.4 同态与同构

(2)

4.4.1 基本概念

定义

设 <A,*> 和 <B,°> 是代数系统,f 是 A 到 B 的同态。如果 f 是单射的,称 f 为 单同态;如果 f 是满射的,称 f 为满同态;如果 f 是双射的,称 f 为同构映射,简称为 同构。

2022/3/29

§ 4.4 同态与同构

(3)

4.4.1 基本概念

定义

设 A,*> 是代数系统,若存在函数 A,* A,*

2022/3/29

§ 4.4 同态与同构 (1)

例:验证下列两个代数系统是同构的。 <A,*> <B,°>

§ 4.4 同态与同构 (1)

设 <A,*> 和 <B,°> 是代数系统,

(1) f:A→B**, 如果 f 保持运算,即对** ∀x,y∈A**,有** $f(x*y)=f(x) \circ f(y)$.

(2) f是双射函数(单射,满射)

(1) $f(a)=\alpha; f(b)=\beta; f(c)=\gamma; f(d)=\delta$

满足 $f(x^*y)=f(x)\circ f(y);$ $f(a^*b)=f(b)=f(a)\circ f(b)=\alpha\circ\beta=\beta$ $f(a^*c)=f(c)=f(a)\circ f(c)=\alpha\circ\gamma=\gamma$ $f(a^*d)=f(d)=f(a)\circ f(d)=\alpha\circ\delta=\delta$

(2) f是双射函数 (单射, 摘射)

函数是用序偶表示的,f是双射函数。

2022/3/29

§ 4.4 同态与同构

(1)

		b			۰	α	β	γ	δ
a	a	b	с	d	α	α	β	γ	δ
		a			β	β	α	δ	γ
		d			γ	γ	α	δ	γ
d	d	b	c	d	δ	δ	β	γ	δ

还同构吗?

f(b*c)=f(a)=a ? $f(b) \circ f(c)=\beta \circ \gamma=\delta$ 运算保持不满足

§ 4.4 同态与同构 (1)

例:验证下列两个代数系统是同态的。<A,*> <B,°>; e是B的单位元。f:a→e ,∀a∈A 同构吗?

解:f:a→e;该函数不是满射的,所以不是同构函数 f(x*y)=f(z)=ef(x) * f(y)=e * e=e 所以f(x*y)= f(x) * f(y) 所以f基同态

§ 4.4 同态与同构 (1)

例:验证下列两个代数系统是同态的。

<Z,+> <Z,+>; f:a→8a, ∀a∈Z

<Z,×> <Z,×>如何?

例:下列两个代数系统是同态的吗?同构吗?

<R,+> <R, ×>;

§ 4.4 同态与同构

4.4.2 同态、同构的性质

(1) 如果两函数是同态、同构的,则复合函数也 是同态、同构的。

定理

假设 f 是<A,*> 到 <B,•>的同态, g是 <B, • >到<C,∆> 的同态,则gof是<A,*> 到 <C,△>的同态;如果f和g是单同态、满同态、 同构时,则gof也是单同态、满同态和同构。 2022/3/29

§ 4.4 同态与同构

(5)

4.4.2 同态、同构的性质

(2) 满同态保持结合律

假设 f 是 < A, * > 到 < B, ° > 的满同态。如 果 * 运算满足结合律,则。运算也满足结合 律,即满同态保持结合律。

(2) 满同态保持结合律

定理

假设 f 是<A,*> 到 <B,°>的满同态。如果 * 运算满足结合律,则。运算也满足结合律,则。运算也满足结合律,即满同态保持结合律。

满足结合律 $\forall x,y,z \in A;$ 有 x^ (y^*z) = (x^*y) *z °也满足结合律, $\forall a,b,c \in B;$ a °(b °c)=(a °b) °c f(x^*y)=f(x) ° f(y) a °(b ° c)=f(x) ° (f(y) ° f(z))= f(x^*y)=f(x^*y)=f(x^*y) ° f(y) ° f(z)= (x^*y) ° c

§ 4.4 同态与同构

(6)

4.4.2 同态、同构的性质

(3) 満同态保持交換律

(4) 满同态保持单位元

定理

假设 f 是<A,*> 到 <B,°>的满同态。e 是<A,*> 的单位元,则 f(e) 是<B,°>的单位 元。

2022/3/29

§ 4.4 同态与同构

(7)

4.4.2 同态、同构的性质

(5) 満同态保持逆元

定理

假设 f 是<A,*>到<B,°>的摘同态。 e_A 和 e_B 分别是<A,*>和<B,°>的单位元,如果 A 中元素 x 和 x′ 互逆,则 B 中元素 f(x) 和 f(x')也互逆。

2022/3/29

§ 4.4 同态与同构

(8)

4.4.2 同态、同构的性质

(6) 满同态保持零元

定理

假设 f 是<A,*> 到 <B,°>的椭同态。 θ 是<A,*> 的零元,则 f(θ) 是<B,°>的零元。

2022/3/29

§ 4.4 同态与同构

(9)

4.4.2 同态、同构的性质

(7) 満同态保持幂等元

定理

假设 f 是<A,*>到<B,°>的講同态。并且 $x \in AE < A,*>$ 的幂等元,则 $f(x) \in B$ 是<B,°> 的幂等元。

2022/3/29

§ 4.4 同态与同构

(10)

4.4.2 同态、同构的性质

(8) 同构映射运算性质双向保持

完理

假设 f 是<A,*> 到 $<B,^>>$ 的同构映射。则 f 1 是 $<B,^>>$ 到 <A,*> 的同构映射。

§ 4.5 同余关系与商代数 4.5.1 同余关系 定义 假设 <A,*> 是一个代数系统, E 是 A 上的等价关系。如果对∀x₁,x₂,y₁,y₂∈A,当x₁Ex₂,y₁Ey₂时,必有(x₁*y₁)E(x₂*y₂),则称E 是 A 上的同余关系。

♥∃∅∩∪⊆⊂α∉♥∈Φ...\\∑{|=±°∞ αβσρυωζψηδεφλμπλ θ ±∏∧∨♥}..√⊃ ≌≈∞⊇∩∪°C%≥≤:∏∈∑⇔½¼ § ¥{}?± ↔∨¬→→⇒⇒↓↑λΦΦ⊕○ - () ★★♥♥⇒∩∴∪1≠─ " //∴∷::1\> / * \ √ ([-] ÷x°··2, b) ~ _ Φ