

Лекция 7 Методы оптимизации, часть 2

Полыковский Даниил

20 марта 2017 г.

Постановка задачи

- $\bullet \theta_* = min_\theta J(\theta)$
- ightharpoonup В любой точке можем вычислить $\nabla_{\theta} J(\theta)$

Рис.: Пример функции для оптимизации

Batch Gradient Descend

Формула пересчета:

$$\theta_t = \theta_{t-1} - \eta \nabla_{\theta} J(\theta_{t-1})$$

- Требуется обработать все объекты для одного шага
- Нет режима online обучения
- + Гарантируется сходимость к (локальному) минимуму

Рис.: Выбор темпа обучения

SGD / Mini-batch SGD

▶ Какие функции оптимизируем?

SGD / Mini-batch SGD

- Какие функции оптимизируем?
- ▶ Большие суммы функций: $J(\theta) = \sum_{i=1}^{N} J_i(\theta)$
- lacktriangle Формула пересчета: $heta_t = heta_{t-1} \eta
 abla_{ heta} J_i(heta_{t-1})$
- ▶ Mini-batch SGD: $\theta_t = \theta_{t-1} \eta \sum_{i \in \{i_1, i_2, \dots, i_k\}} \nabla_{\theta} J_i(\theta_{t-1})$
- Легко попасть в регион согласованности, тяжело найти общий оптимум

Рис.: Измененние значения J во время обучения

Momentum

- ▶ $\nu_t = \gamma \nu_{t-1} + \eta \nabla_\theta J(\theta)$ ← "скорость"
- $\theta = \theta \nu_t$
- ▶ Рекомендовано брать $\gamma = 0.9$
- ▶ Проблема: метод приводит к перескокам через локальный минимум

Рис.: Слева: без моментума, справа: с моментумом

Nesterov accelerated gradient

- ightharpoonup Следующая позиция приближенно равна $heta-\gamma
 u_{t-1}$
- ▶ Вычисление градиента дает возможность узнать будущее направление градиента
- $\theta = \theta \nu_t$

Рис.: NAG

- ▶ Сначала делаем шаг в направлении накопленного градиента
- Затем вычисляем градиент там и делаем поправку

Методы

- SGD $\nu_t = \eta \nabla_{\theta} J_i(\theta_{t-1})$ Momenum $\nu_t = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta)$ NAG $\nu_t = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma \nu_{t-1})$
- $\theta = \theta \nu_t$
- ▶ Общая проблема: одинаковый шаг для всех параметров
- ightharpoonup Трудно подобрать η или η_t
- ▶ Примеры расписаний: $\eta_t = \gamma^t \eta, \ \eta_t = \begin{cases} \alpha_1 & t \leq A \\ \alpha_2 & t > A \end{cases}$

Adagrad

- $g_{t,i} = \nabla_{\theta} J(\theta_i)$
- $\theta_{t+1,i} = \theta_{t,i} \frac{\eta}{\sqrt{G_{t,ij} + \epsilon}} \cdot g_{t,i}$
- $ightharpoonup G_{t,ii}$ сумма квадратов значений $g_{t,i}$ вплоть до текущего
- ▶ Векторно: $\theta_{t+1} = \theta_t \frac{\eta}{\sqrt{G_{t+\epsilon}}} \odot g_t$
- Стандартные значения: $\eta = 0.01$, $\epsilon = 10^{-8}$
- Мотивация: маленькие обновления для часто встречающихся параметров, большие для редких
- ? Какова проблема этого метода?

Adagrad

- $g_{t,i} = \nabla_{\theta} J(\theta_i)$
- $\theta_{t+1,i} = \theta_{t,i} \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$
- $ightharpoonup G_{t,ii}$ сумма квадратов значений $g_{t,i}$ вплоть до текущего
- ▶ Векторно: $\theta_{t+1} = \theta_t \frac{\eta}{\sqrt{G_{t+\epsilon}}} \odot g_t$
- ▶ Стандартные значения: $\eta = 0.01$, $\epsilon = 10^{-8}$
- Мотивация: маленькие обновления для часто встречающихся параметров, большие для редких
- ? Какова проблема этого метода? $G_{t,ii}$ неубывает \Rightarrow затухание обновлений

RMSProp / Adadelta

- ightharpoonup Будем использовать последние несколько значений g_t^2 для подсчета G_t
- ▶ Экспоненциальное среднее: $E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$, $\gamma = 0.9$
- $\theta_t = \theta_{t-1} \Delta \theta_t$
- $ightharpoonup \Delta heta_t = rac{\eta}{\sqrt{ extit{E}[g^2]_t + \epsilon}} g_t = rac{\eta}{ extit{RMS}[g]_t} g_t \leftarrow ext{RMSprop}$
- ▶ Adadelta: избавимся от η
- $lackbox{} \Delta heta_t = rac{ extit{RMS}[\Delta heta]_{t-1}}{ extit{RMS}[g]_t}g_t$

Adam

$$\begin{cases}
m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
\nu_t = \beta_2 \nu_{t-1} + (1 - \beta_2) g_t^2
\end{cases}$$

 $lacktriangleright m_t, \,
u_t$ инициализируются нулями, поэтому долгий "разгон" \Rightarrow надо уменьшить инерцию в начале обучения

$$\begin{cases}
\hat{m}_t = \frac{m_t}{1 - \beta_1^t} \\
\hat{\nu}_t = \frac{\nu_t}{1 - \beta_2^t}
\end{cases}$$

- $\bullet \ \theta_{t+1} = \theta_t \frac{\eta}{\sqrt{\hat{\nu_t}} + \epsilon} \hat{m_t}$
- $\beta_1 = 0.9, \ \beta_2 = 0.999, \ \epsilon = 10^{-8}$

Критерий остановки

Рис.: Кроссвалидация

Визуализация

- ▶ 2D визуализация (gif)
- ► Седловая точка (gif)

Вопросы

