Cálculo Avanzado

Recuperatorio del primer parcial - 13/07/21

- Decimos que una sucesión $(a_n)_{n\in\mathbb{N}}$ de números enteros es *buena* si existe un polinomio $p\in\mathbb{Z}[X]$ tal que $a_{n+1}=p(a_n)$ para todo $n\in\mathbb{N}$. Calcular el cardinal del conjunto de todas las sucesiones buenas.
- Sea (X,d) un espacio métrico acotado. En el conjunto $X^{\mathbb{N}}$ (sucesiones de elementos de X) consideramos la métrica $d_{\infty}((a_n),(b_n)) = \sup_{n \in \mathbb{N}} d(a_n,b_n)$. Sea

$$A = \{(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} : (x_n) \text{ es una sucesión de Cauchy}\}.$$

Probar que *A* es cerrado.

- Un espacio métrico X es localmente compacto si para todo $x \in X$ existe un abierto $U \subset X$ tal que $x \in U$ y \overline{U} es compacto.
 - *a*) Probar que si todo subconjunto cerrado y acotado de *X* es compacto, entonces *X* es localmente compacto y completo.
 - b) Dar un ejemplo de un espacio que sea completo pero no localmente compacto.
 - c) Dar un ejemplo de un espacio que sea localmente compacto pero no completo.
- Sea X un espacio métrico. Decimos que una función $f: X \to \mathbb{R}$ "se anula en infinito" si para todo $\varepsilon > 0$ existe $K \subset X$ compacto tal que $|f(x)| < \varepsilon$ para todo $x \notin K$.

 Probar que si f es continua y se anula en infinito entonces es uniformemente continua.
- Sean X un espacio métrico, $V \subset X$ un abierto, y $(K_n)_{n \in \mathbb{N}}$ una familia numerable de subespacios compactos de X tales que $\bigcap_{n \in \mathbb{N}} K_n \subset V$.

Probar que existe $m \in \mathbb{N}$ tal que $\bigcap_{n=1}^{m} K_n \subset V$.

Justifique todas sus respuestas, no omita detalles y escriba con claridad