08 - Microprocessor-Based Systems

CEG 4330/6330 - Microprocessor-Based Embedded Systems Max Gilson

Microcontroller vs Microprocessor

- The Arduino Uno is a microcontroller
- Microcontrollers are usually an "all-in-one" solution.
 - Usually contains memory, CPU, I/O, etc. all on one chip
 - Can have really small circuit board design
- Microprocessors are more powerful
 - Usually requires external RAM, storage, I/O, etc.
 - Results in larger circuit board, but more capabilities

Microcontroller vs Microprocessor (cont.)

- Microcontroller
 - Used for "simple" applications:
 - control systems, washing machines, remote control, etc.

- Microprocessor
 - Used for "complex" applications:
 - computer vision, networking, smart watch, virtual reality headset, etc.

System On Chip

- A system on chip (SoC) is a specialized device that contains many functions and usually a microprocessor
- Example: N52832
 - Bluetooth SoC used in Apple's Airtag
 - Contains ARM processor and has many functions
 - The SoC is specialized for BLE capabilities, networking, and low power

Design Considerations

- When designing an embedded system many considerations have to be made when choosing a microprocessor:
 - Does it support my desired peripherals?
 - Bluetooth? Communication protocols? WiFi? Camera?
 - O How much power consumption?
 - Is low power a requirement of your design?
 - How large is the device + external components?
 - How small does your circuit board need to be?
 - How much processing power or dedicated hardware?
 - High quality graphics might require integrated GPU

Many Choices

- Since there are so many considerations to make, there are many microprocessors available
- Many varieties of size, processing power, power consumption, I/O support, etc.

Raspberry Pi

- Single Board Computer (SBC)
- Open source software
- Closed source hardware
- "Off-the-shelf" solution for many applications
- There are many types of Raspberry Pi, and knock offs, with different functionality
- Lots of community support

Raspberry Pi 4 Model B (RPI4B)

- Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC
 @ 1.8GHz
- Ethernet
- USB3
- Dual 4K HDMI
- Camera port
- GPIO
 - Includes many functionalities
- Up to 8GB RAM

GPIO

- General Purpose I/O (GPIO)
- Pins can have multiple functions
- Some pins have dedicated hardware for communication, PWM, etc.

5.1.2 GPIO Alternate Functions

		Default						
	GPIO	Pull	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
CDIO (cont)	0	High	SDA0	SA5	PCLK	SPI3_CE0_N	TXD2	SDA6
GPIO (cont.)	1	High	SCL0	SA4	DE	SPI3_MISO	RXD2	SCL6
(331111)	2	High	SDA1	SA3	LCD_VSYNC	SPI3_MOSI	CTS2	SDA3
	3	High	SCL1	SA2	LCD_HSYNC	SPI3_SCLK	RTS2	SCL3
	4	High	GPCLK0	SA1	DPI_D0	SPI4_CE0_N	TXD3	SDA3
	5	High	GPCLK1	SA0	DPI_D1	SPI4_MISO	RXD3	SCL3
	6	High	GPCLK2	SOE_N	DPI_D2	SPI4_MOSI	CTS3	SDA4
	7	High	SPIO_CE1_N	SWE_N	DPLD3	SPI4_SCLK	RTS3	SCL4
	8	High	SPIO_CEO_N	SD0	DPI_D4	. 7	TXD4	SDA4
	9	Low	SPI0_MISO	SD1	DPI_D5	-	RXD4	SCL4
	10	Low	SPI0_MOSI	SD2	DPI_D6	-	CTS4	SDA5
	11	Low	SPI0_SCLK	SD3	DPI_D7	- 21	RTS4	SCL5
	12	Low	PWM0	SD4	DPI_D8	SPI5_CE0_N	TXD5	SDA5
	13	Low	PWM1	SD5	DPI_D9	SPI5_MISO	RXD5	SCL5
	14	Low	TXD0	SD6	DPI_D10	SPI5_MOSI	CTS5	TXD1
	15	Low	RXD0	SD7	DPI_D11	SPI5_SCLK	RTS5	RXD1
	16	Low	FL0	SD8	DPI_D12	CTS0	SPI1_CE2_N	CTS1
	17	Low	FL1	SD9	DPI_D13	RTS0	SPI1_CE1_N	RTS1
	18	Low	PCM_CLK	SD10	DPI_D14	SPI6_CE0_N	SPI1_CE0_N	PWM0
	19	Low	PCM_FS	SD11	DPLD15	SPI6_MISO	SPI1_MISO	PWM1
	20	Low	PCM_DIN	SD12	DPLD16	SPI6_MOSI	SPI1_MOSI	GPCLK0
	21	Low	PCM_DOUT	SD13	DPI_D17	SPI6_SCLK	SPI1_SCLK	GPCLK1
	22	Low	SD0_CLK	SD14	DPI_D18	SD1_CLK	ARM_TRST	SDA6
	23	Low	SD0_CMD	SD15	DPI_D19	SD1_CMD	ARM_RTCK	SCL6
	24	Low	SD0_DAT0	SD16	DPI_D20	SD1_DAT0	ARM_TDO	SPI3_CE1_N
	25	Low	SD0_DAT1	SD17	DPI_D21	SD1_DAT1	ARM_TCK	SPI4_CE1_N
	26	Low	SD0_DAT2	TE0	DPI_D22	SD1_DAT2	ARM_TDI	SPI5_CE1_N
	27	Low	SD0_DAT3	TE1	DPI_D23	SD1_DAT3	ARM_TMS	SPI6_CE1_N
	Table 5: Raspberry Pi 4 GPIO Alternate Functions							

Table 5: Raspberry Pi 4 GPIO Alternate Functions

Operating System

- Microprocessors (including the RPI4B) require an operating system to run
- This operating system is usually some variety of Linux
- Linux is open source and usually free to use
- RPI4B uses Raspberry Pi OS (previously called Raspbian) as the officially supported operating system
 - Open source, Debian based, Linux operating system
 - Not as quick/easy as writing a simple program (like Arduino)
- Stored on SD card or EMMC

Accessing GPIO for Simple Functions

First add permission to access GPIO:

```
sudo usermod -a -G gpio <username>
```

 Make sure Python and gpiozero is installed and run the following code to turn on an external LED (GPIO17) with a button press (GPIO2):

```
from gpiozero import LED, Button
led = LED(17)
button = Button(2)
while True:
    if button.is_pressed:
        led.on()
    else:
        led.off()
```

gpiozero Library

- https://gpiozero.readthedocs.io/en/stable/api_input.html
- The button class provides many different arguments
 - Pullup, pulldown, debounce, etc.
- There are many other sensors that are available
 - HC-SR04 distance sensor
 - TRCT5000 proximity sensor
 - SPI devices
- Outputs, inputs, and other helpful tools

Interfacing with Any I/O

- It is impossible to support interfacing with every I/O device
- The most popular are already implemented by the community or have an equivalent implemented
- Camera Solutions:
 - Raspberry Pi Camera Module
 - Arducam
- I2C IMU:
 - MPU9250
- Before buying a sensor, make sure you can find some available code for it for the RPI, otherwise, you'll have to write your own drivers!

Interfacing with Any I/O

- It is impossible to support interfacing with every I/O device
- The most popular are already implemented by the community or have an equivalent implemented
- Camera Solutions:
 - Raspberry Pi Camera Module
 - Arducam
- I2C IMU:
 - MPU9250
- Before buying a sensor, make sure you can find some available code for it for the RPI, otherwise, you'll have to write your own drivers!

IMU Python Code

```
import FaBo9Axis MPU9250
import time
import sys
mpu9250 = FaBo9Axis MPU9250.MPU9250()
try:
    while True:
        accel = mpu9250.readAccel()
        print " ax = "
        print " ay = " ,
                             accel['y
        print " az = " , ( accel['z']
        gyro = mpu9250.readGyro()
        print " gx = print " gy = print " gz =
                             gyro['x']
        mag = mpu9250.readMagnet()
        print "mx = "
        print " my = "
        print " mz = " , ( mag[ 'z']
        print
        time.sleep(0.1)
except KeyboardInterrupt:
    sys.exit()
```

Low Power Modes

- The RPI 4B uses 2.7W while idle, 6.4W @ 400% CPU load
 - Pi-zero under light load consumes about 0.335W
- The most efficient x86 computer will consume 10W to 25W at idle
- Most SBC's allow for changing the clock speed, reducing power consumption for less processing power:
- RPI 4B clock speeds:
 - 1.8 Ghz (max overclocking)
 - 1.5 Ghz (nominal)
 - 0.6 Ghz (min underclocking)

Datasheet

- Datasheet is very limited:
 - https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
- Processor is closed source and documentation is protected under NDA
- Thankfully most of the tools and software is well documented and available so getting the RPI to work is no problem for most applications

Raspberry Pi as a Desktop

- The Raspberry Pi is a fully capable computer
- Can be used as a general purpose computer
- Fully customizable

Many Applications

- Security Camera System
- Drone
- Web Server
- Smart Home / Home
 Automation
- Arcade Cabinet / Retro Console
- Open Source Phone

Alternatives to Raspberry Pi

- Many alternatives exist, providing specialized uses
- Small Form Factor:
 - NanoPi NEO Air
- Al and Image Processing:
 - Jetson Nano
- Open Source Hardware:
 - Banana Pi

