Theory of Computation

MIEIC, 2nd Year

João M. P. Cardoso

Dep. de Engenharia Informática Faculdade de Engenharia (FEUP) Universidade do Porto Porto Portugal

Email: jmpc@acm.org

Outline

- ► Chomsky Normal Form (CNF)
- ► Pumping Lemma for CFLs
- ► Properties of CFLs
- ▶ Decision Problems about CFLs

Chomsky Normal Form (CNF)

Chomsky Normal Form (CNF)

- Simplification of CFGs → Chomsky normal form (CNF)
- ► Elimination of non-useful **symbols**
 - ► Useful symbol: $S \Rightarrow \alpha X\beta \Rightarrow w, w \in T^*$
 - ► Generator symbol: $X \stackrel{*}{\Rightarrow} w$
 - ► Any terminal is generator of itself!
 - ► Reachable symbol: $S \Rightarrow \alpha X \beta$
 - ► Useful = generator + reachable
 - ► Eliminate first the non-generators and then the non-reachable

- **►** Example
 - \triangleright S \rightarrow AB | a
 - $\rightarrow A \rightarrow b$
 - ►S → a [B is not generator]
 - \triangleright S \rightarrow a
 - \rightarrow A \rightarrow b [A is not reachable]
 - ▶then:
 - \triangleright S \rightarrow a

Elimination of Non-useful Symbols

- ► Algorithm: identify the generator symbols
 - ► Terminals are generators
 - $ightharpoonup A
 ightharpoonup \alpha$ and α only has generators then A is generator
- ► Algorithm: identify the reachable symbols
 - S is reachable
 - \blacktriangleright A is reachable, A \rightarrow α ; then all the symbols in α are reachable

Elimination of ε -Productions

- Nullable variables: $A \stackrel{\hat{}}{\Rightarrow} \epsilon$
- ► Transformation:
 - ▶ B → CAD is transformed in B → CD | CAD and A is changed to not produce ε anymore
- ► Algorithm: identify the nullable variables
 - \rightarrow C₁ C₂ ... C_k, if all C_i are nullables then A is nullable
- ▶ If a language L has a CFG then L- $\{\varepsilon\}$ has a CFG without ε -productions
 - ► Identify all the nullable symbols
 - ► For each A \rightarrow X₁ X₂ ... X_k if m X_is are nullables substitute by 2^m productions with all the combinations of presences of X_i.
 - Exception: if m=k, we don't include the case of all X_i removed
 - ▶ Productions A \rightarrow ϵ are eliminated

Example

- Grammar:
 - \triangleright S \rightarrow AB
 - \triangleright A \rightarrow aAA | ϵ
 - \triangleright B → bBB | ε
- A and B are nullable, then S is nullable as well
 - \triangleright S \rightarrow AB | A | B
 - \triangleright A \rightarrow aAA | aA | aA | a
 - ▶B → bBB | bB | b

- For Grammar without ε-productions:
 - \triangleright S \rightarrow AB | A | B
 - ►A → aAA | aA | a
 - \triangleright B \rightarrow bBB | bB | b

Elimination of Unit Productions

- \triangleright Unit production: A \rightarrow B, where A and B are variables
 - They can be useful in the elimination of ambiguity (example: language of arithmetic expressions)
 - ▶ They are not unavoidable; introduce extra steps in derivations
- Elimination by expansion (see example in next slides)

Example: Elimination of Unit Productions

Elimination by expansion (E is the start variable)

- \triangleright E \rightarrow T | E + T
- ightharpoonup F | T × F
- ightharpoonup F \rightarrow I | (E)
- ▶ I → a | b | Ia | Ib | IO | I1
- From E → T we can step to E → F | T × F a E → I | (E) | T × F and finally to E → a | b | Ia | Ib | I0 | I1 | (E) | T × F
 - ▶ Problem in the case of cycles (A \rightarrow B, B \rightarrow C, C \rightarrow A)

Elimination of Unit Productions

- ▶ Algorithm: determine all the unit pairs, derived only with unit productions
 - ► (A, A) is an unit pair
 - \blacktriangleright (A, B) is an unit pair and B \rightarrow C, C variable; then (A, C) is an unit pair
- Example: (E, E), (T, T), (F, F), (E, T), (E, F), (E, I), (T, F), (T, I), (F, I)
- Elimination: substitute the existent productions in order that each unit pair (A, B) includes all the productions of the form $A \rightarrow \alpha$ in which $B \rightarrow \alpha$ is a non unit production (includes A=B)

Grammar Without Unit Productions

```
    I → a | b | Ia | Ib | I0 | I1
    F → I | (E)
    T → F | T × F
    E → T | E + T
    (E is the start variable)
```

Pair	Productions
(E, E)	$E \rightarrow E + T$
(E, T)	$E \rightarrow T \times F$
(E, F)	$E \rightarrow (E)$
(E, I)	$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(T, T)	$T \rightarrow T \times F$
(T, F)	$T \rightarrow (E)$
(T, I)	$T \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(F, F)	$F \rightarrow (E)$
(F, I)	$F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(I, I)	$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Simplification Sequence

- ▶ If G is a CFG which generates a language with at least one string different from ε , there exist a CFG G₁ without ε -productions, unit productions and non-useful symbols and L(G₁) = L(G) { ε }
 - ► Eliminate ε-productions
 - ► Eliminate unit productions
 - ► Eliminate non-useful symbols

Chomsky Normal Form (CNF)

- ▶ All the CFLs whithout ε have a gramar in CNF, without non-useful symbos and in which all productions have the form:
 - \triangleright A \rightarrow BC (A, B, C are variables) or
 - \rightarrow A \rightarrow a (A is a variable and "a" is a terminal)
- ► Transformation
 - > Start with a grammar without ε-productions, unit productions or non-useful symbols
 - ► Keep the productions A → a
 - ▶ Transform all bodies with length greater or equal than 2 into bodies consisting of only variables
 - \triangleright New variables D for terminals in those bodies, substitute D \rightarrow d
 - ▶ Split bodies of length greater or equal then 3 in cascade productions with the form A \rightarrow B₁B₂...B_k for A \rightarrow B₁C₁, C₁ \rightarrow B₂C₂, ...

Example: Conversion to CNF

► Grammar of expressions

$$E \rightarrow T \mid E + T$$
 $T \rightarrow F \mid T \times F$
 $F \rightarrow I \mid (E)$
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Productions		
$E \rightarrow E + T$		
$E \rightarrow T \times F$		
$E \rightarrow (E)$		
$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$		
$T \rightarrow T \times F$		
$T \rightarrow (E)$		
$T \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$		
$F \rightarrow (E)$		
$F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$		
$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$		

► Variables for the terminals in bodies are isolated

$$\triangleright$$
 A → a B → b Z → 0 O → 1
 \triangleright P → + M → × L → (R →)

- ▶ Substitute terminals by those variables
 - \triangleright E \rightarrow EPT | TMF | LER | a | b | IA | IB | IZ | IO
 - ightharpoonup TMF | LER | a | b | IA | IB | IZ | IO
 - ightharpoonup F \rightarrow LER | a | b | IA | IB | IZ | IO
 - ▶ I → a | b | IA | IB | IZ | IO

Example: Conversion to CNF

- \triangleright A \rightarrow a B \rightarrow b Z \rightarrow 0 O \rightarrow 1
- $\triangleright P \rightarrow + M \rightarrow \times L \rightarrow (R \rightarrow)$
- \triangleright E \rightarrow EPT | TMF | LER | a | b | IA | IB | IZ | IO
- ightharpoonup TMF | LER | a | b | IA | IB | IZ | IO
- ightharpoonup F \rightarrow LER | a | b | IA | IB | IZ | IO
- ▶ I → a | b | IA | IB | IZ | IO

- ► Substitute long bodies
 - ightharpoonup igh
 - ightharpoonup TC₂ | LC₃ | a | b | IA | IB | IZ | IO
 - \triangleright F \rightarrow LC₃ | a | b | IA | IB | IZ | IO
 - ightharpoonup PT
 - $ightharpoonup C_2 \rightarrow MF$
 - $\triangleright C_3 \rightarrow ER$

Example: Conversion to CNF

CFG original (E is the start variable):

- I a | b | Ia | Ib | IO | I1
- $F \rightarrow I \mid (E)$
- $T \rightarrow F \mid T \times F$
- E → T | E + T

CFG in CNF:

- ightharpoonup E ightharpoonup EC $_1$ | TC $_2$ | LC $_3$ | a | b | IA | IB | IZ | IO
- $\blacktriangleright \mathsf{T} \xrightarrow{} \mathsf{TC}_2 \mid \mathsf{LC}_3 \mid \mathsf{a} \mid \mathsf{b} \mid \mathsf{IA} \mid \mathsf{IB} \mid \mathsf{IZ} \mid \mathsf{IO}$
- ightharpoonup F ightharpoonup LC₃ | a | b | IA | IB | IZ | IO
- $ightharpoonup C_1 \rightarrow PT$
- $ightharpoonup C_2 \rightarrow MF$
- $ightharpoonup C_3 \rightarrow ER$
- ightharpoonup a | b | IA | IB | IZ | IO

$$A \rightarrow a$$

$$B \rightarrow b$$

$$Z \rightarrow 0$$

$$0 \rightarrow 1$$

$$P \rightarrow +$$

$$M \rightarrow \times$$

$$L \rightarrow ($$

$$R \rightarrow$$
)

Exercise 1

- Consider the grammar and perform the following steps:
 - ►S \rightarrow ASB | ε
 - \rightarrow A \rightarrow aAS | a
 - \triangleright B \rightarrow SbS | A | bb
- a) Eliminate the ε -productions
- b) Eliminate the unit productions
- c) Eliminate the non-useful symbols
- d) Write the grammar in the Chomsky Normal Form (CNF)

CNF in Practice

- ▶ When the language L of the original grammar includes ϵ , the language of the CNF grammar excludes ϵ
- ► In practice it is common to add a new start variable to the CNF grammar which has two productions,
 - one producing the start variable of the CNF grammar and
 - \triangleright the other producing ϵ
- Example:
 - ▶ Being S → AB the start variable of the CNF grammar
 - \triangleright One can add the following variable to have a grammar generating ϵ
 - ► S1 \rightarrow S | ϵ (S1 is now the start variable)

Pumping Lemma for CFLs

Pumping Lemma for CFLs

Assume L is a CFL. There exists a constant n such that for every z in L with $|z| \ge n$ we can write z=uvwxy

 $|vwx| \le n$

(the middle part is not too long)

 $3 \neq xv$

(at least one, v or x, is not the empty string)

For all $i \ge 0$, $uv^iwx^iy \in L$

(double pumping starting in 0)

Pumping Lemma for CFLs

- Let's focus on the size of the syntax (analysis) tree
- Consider only the case of the CNF:
 - \triangleright binary trees in which the leaves are terminals alone (productions $A \rightarrow a$)
 - In a syntax tree with w in the leaves, if the length of the longest path is n then $|w| \le 2^{n-1}$

Proof of the Pumping Lemma for CFLs

- ▶ Obtain a CNF grammar G for L
- ▶ G contains m variables. Select $n=2^m$. String z in L $|z| \ge n$.
- ► Any analysis tree with the longest path until m represents strings until 2^{m-1} = n/2
 - ▶ z would be too long; tree for z has longest path greater or equal then m+1
- ▶ In the right figure, the path $A_0...A_k$ a has length k+1, k≥m
 - There is at least m+1 variables in the path; thus there is at least one repetition of variables (from A_{k-m} to A_k).
 - Assume $A_i = A_i$ with $k-m \le i < j \le k$

Proof of the Pumping Lemma for CFLs

- If the string z is sufficiently long, there must be a repetition of symbols
- Let's split the tree:
 - w is the string in the leaves of the subtree A_i
 - v and x are such that vwx is the string represented by the subtree A_i (as there aren't unitary productions at least one v or x is not null)
 - ▶ u and y are the parts of z in the left and in the right of vwx, respectively

Proof of the Pumping Lemma for CFLs

- \triangleright As $A_i = A_i$, we can
 - ► Substitute the subtree of A_i by the subtree of A_i, obtaining the case i=0, uwy.
 - ► Substitute the subtree of A_j by the subtree of A_i, obtaining the case i=2, uv²wx²y and repeat for i=3, ... (pumping)
- ▶ $|vwx| \le n$ because we took in a A_i near the bottom of the tree, k- $i \le m$, longest path of A_i to m+1, string $2^m=n$

Pumping Lemma

- In case of LR: the pumping lemma results from the fact that the number of states of a DFA is finite
 - ► To accept a string with sufficiently long the processing needs to repeat states
- ▶ In case of CFL: the pumping lemma results from the fact that the number of symbols in a CFG is finite
 - ► To accept a string sufficiently long the derivations must repeat symbols

Prove that a Language is not a CFL

- Consider L = $\{0^k 1^k 2^k \mid k \ge 1\}$. Show that L is not a CFL.
 - Supposing that L is a CFL, then there exist a constant **n** indicated by the pumping lemma; Let's select $z = 0^n 1^n 2^n$ which belongs to L and $|z| = 3n \ge n$
 - ▶ Decomposing z=uvwxy, such that $|vwx| \le n$ and v, x not both the empty string, we have vwx which cannot contain simultaneously 0s and 2s
 - ▶ In case vwx dos not contain 2s: then vx includes only 0s and 1s and has at least one symbol. Then by the pumping lemma, uwy would have to belong to L, but it has n 2s and less than n 0s or 1s and thus not belong to L.
 - In case vwx dos not contain 0s: similar argument.
 - ▶ We obtain the contradiction in both cases; thus the hypothesis is false and L is not a CFL

Problems in Proofs

- ▶ Be L = $\{0^k1^k \mid k \ge 1\}$. Show that L is not a CFL.
 - Supposing that L is a CFL, then exists a constant n indicated by the pumping lemma; Let's select $z = 0^n 1^n$ ($n \ge 1$) which belongs to L
 - ▶ Decomposing z=uvwxy, such that $|vwx| \le n$ and v, x are not both the empty string, and if we select $v=0^n$ e $x=1^n$
 - In this case uviwxiy belongs to L
 - ▶ We do not obtain the intended contradiction
- We cannot prove that L is not a CFL
 - ▶ Because it is a CFL!

Closure Properties of CFLs

Substitution

- ▶ Be Σ an alphabet; foreach of its symbols a define a function (substitution) which associates a language L_a to the symbol
 - Strings: if $w = a_1...a_n$ then s(w) is the language of all the strings $x_1...x_n$ such that x_i is in $s(a_i)$
 - Languages: s(L) is the union of all s(w) such that $w \in L$
- Example:
 - ► Σ ={0,1}, s(0)={aⁿbⁿ | n≥1}, s(1)={aa,bb}
 - ► Se w=01, $s(w) = s(0)s(1) = \{a^nb^naa \mid n \ge 1\} \cup \{a^nb^{n+2} \mid n \ge 1\}$
 - ► Se L=L(0*), $s(L) = (s(0))^* = a^{n1}b^{n1}...a^{nk}b^{nk}$, para n1, ..., nk qq
- ▶ Theorem: if L is a CFL and s() a substitution which associates to each symbol a CFL then s(L) is a CFL.

The CFLs are closed for:

- **►** Union
- Concatenation
- ► Closure (*)
- ► Homomorphism and homomorphism inverse
- Reverse
- Intersection with an LR
 - ▶ Note: intersection with a CFL is not guaranteed to result in a CFL

CFL and Intersection

- ► Consider $L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$ and $L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$
- $ightharpoonup L_1$ and L_2 are CFLs
 - \triangleright S \rightarrow AB S \rightarrow AB
 - \triangleright A \rightarrow 0A1 | 01 A \rightarrow 0A | 0
 - \triangleright B → 2B | 2 B → 1B2 | 12
- $L_1 \cap L_2 = \{0^n 1^n 2^n \mid n \ge 1\}$
 - ► Has been already proved that it is not a CFL
- ► Thus, the CFLs are not closed for the intersection

Decision Properties for CFLs

Test if a Language is Empty

- ► Verify if S is generator
 - ► With adequate data structure is O(n)
 - ► See Hopcroft's book

Test if String Belongs to a CFL

- Cocke-Younger-Kasami (CYK) Algorithm
 - X_{ii} represents the set of variables that produce string i-j
 - ► O(n³), using dynamic programming, fill of a table

Input	string:	baaba
-------	---------	-------

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

 a_1

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

{S,A,C}						
	{S,A,C}					
	{B}	{B}				
{S,A}	{B}	{S,C}	{S,A}			
{B}	{A,C}	{A,C}	{B}	{A,C}		
b	a	a	b	a		
X XX X X X X X						

$$X_{12}$$
: $X_{11}X_{22}$; X_{24} : $X_{22}X_{34} \cup X_{23}X_{44}$

Conclusion: positive if S is in X_{15} ; and negative otherwise

Undecidable Problems

- ► There are not algorithms to answer to the following questions:
 - ► Is a given CFG ambiguous?
 - ► Is a given CFL inherently ambiguous?
 - ▶ The intersection of two CFLs is an empty language?
 - Two given CFLs define the same language?
 - \blacktriangleright A given CFL is the language Σ^* , where Σ is the alphabet?