Proyecto I – Smart Car

Carlos Daniel Corrales Arango – 2122878

Jose Manuel Palma Oquendo – 2125182

Oscar Bedoya

Cali – Valle del Cauca, 2024

Inteligencia Artificial

1. EXPLICACION DE LA HEURISTICA UTILIZADA

La función heurística, tiene como objetivo estimar el costo de llegar a la meta, en este caso se tienen dos objetivos. Teniendo en cuenta lo anterior, la heurística para este problema se encuentra representada por la siguiente formula:

$$h(n) = h_1 + h_2$$

Donde:

- h_1 es la distancia de Manhattan entre la posición actual del automóvil y la ubicación del pasajero.
- h_2 es la distancia de Manhattan entre la posición del pasajero y el destino del pasajero.

En este problema, se pueden identificar dos objetivos. El primero es llegar hasta el pasajero, para lo cual se calcula la distancia entre el automóvil y el pasajero, representada por h_1 , Una vez se cumple este objetivo, es decir, cuando el pasajero aborda el automóvil, el valor de h_1 pasa a ser 0.

Con respecto a h_2 esta representa la distancia del pasajero hasta su destino y se mantiene constante hasta que el automóvil lo recoge, ya que la posición del pasajero no cambia antes de abordar, por lo que la distancia no varía.

2. JUSTIFICACION DE LA ADMISIBILIDAD DE LA HEURISTICA PLANTEADA

Para determinar si una heurística es admisible o no, esta debe cumplir el siguiente criterio:

$$h(n) \le costoReal(n)$$
 (1)

Para demostrar que la heurística definida para este problema es admisible se emplearan los siguientes ejemplos:

Al analizar el caso anterior, se puede notar que tenemos los siguientes valores:

- h(n) = 3 + 3 = 6
- costoReal(n) = 6

De este modo se cumple (1).

Para este caso, vemos que el agente debe pasar por casillas de tráfico medio (celeste) y tráfico pesado (rojo), en base a ello se tiene que:

- h(n) = 5 + 5 = 10
- costoReal(n) = 22

Por lo cual vemos que incluso cuando el agente debe recorrer una ruta con diferentes tipos de tráfico se cumple (1).

Observación: En todos los algoritmos, el agente (automóvil) no puede volver a posiciones o casillas exploradas previamente hasta que recoja al pasajero. Una vez que lo ha recogido, el automóvil puede regresar a las casillas exploradas sin el pasajero, pero no a aquellas visitadas con él. Esta restricción busca optimizar la búsqueda y evitar ciclos innecesarios, que podrían provocar un tiempo de ejecución prolongado e incluso hacer que el algoritmo nunca finalice.