Reduced Representation Genotyping Methods

What reduced representation methods are available to researchers?

- · Array based Genotyping
- Sequence Based Genotyping
- (Exome) Capture
- Transcriptome as a proxy to the genome

Reduced Representation Approaches

- · Array based Genotyping
- Sequence Based Genotyping
- Exome Capture (solid and liquid)
- Transcriptome as a proxy to the genome

Infinium SNP Chips

- Uses single base extension and staining with Cy3 and Cy5
- Scan and process using GenomeStudio
- Assay reports only bi-allelic SNPs because it uses a two channel scanner

p://www.illumina.com/technology/infinium_hd_assay.ilmn

Genotyping Arrays

Strengths??

- · High quality data
- Minimal missing data

Weaknesses??

- Ascertainments bias
- Smaller number of markers

Reduced Representation Approaches

- Array based Genotyping
- Sequence Based Genotyping
- Exome Capture (solid and liquid)
- Transcriptome as a proxy to the genome

Sequence Based Genotyping

- Many different flavors of Sequence Based Genotyping
 - Skim sequencing (e.g. sequence to 0.1x coverage)
 - Reduced representation sequencing
 - RADSeq
 - Genotyping-by-Sequencing (GBS)
 - KeyGene Sequence Based Genotyping (SBG)
 - RAPiD Seq

(Elshire et al., PLoS ONE 2011

Paired-end sequencing primer 2

Optimizing GBS

- · Variable barcode lengths to help with phasing
- Select RE that leaves 2-3 bp overhang to promote efficient adapter ligation to insert DNA
- Use RE with relatively few recognition sites in repetitive sequences
- Ideally, select RE that is methylation sensitive to increase fragments in low copy regions of genome
- Best with homozygous individual with reference genome, but not required
- Increased ploidy and heterozygosity require more sequence depth

GBS-type Methods

Strengths??

- Inexpensive per data point
- Small amount of sequencing to "cover" the genome

Weaknesses??

- A lot of missing data
- · Uneven coverage

RAPID Seq

- "Fast, scalable, flexible number of markers, low amounts of DNA, and affordable"
- Repeatability over 99%
- Low missing data without imputation

Simulated multiplexing	Subset percentage	# SNPs*	Missing data (%)	Average Depth (x)
24	1	68,352	0.14	26
48	0.5	40,279	0.18	29
96	0.25	21,630	0.17	27
144	0.17	14,853	0.16	26 🥖
192	0.125	10,540	0.16	25
384	0.0625	4,808	0.15	24

Reduced Representation Approaches

- · Array based Genotyping
- Genotyping-by-Sequencing (GBS)
- Exome Capture (solid and liquid)
- Transcriptome as a proxy to the genome

Exome Capture

- What to design probes from?
 - Sequenced genomic DNA, de novo transcript assembly, cDNA libraries, whole genome sequencing reads aligned to a closely related species
- Bias based on what was used for probe design
 - Lowly expressed genes/alleles not included
 - Genes not in reference assembly or not annotated as genes not included
- Need to take exon boundaries into consideration during probe design
 - Without intron sequence, poor capture efficiency

Reduced Representation Approaches

- Array based Genotyping
- Genotyping-by-Sequencing (GBS)
- Exome Capture (solid and liquid)
- Transcriptome as a proxy to the genome

Limitation of RNAseq for Variant Detection??

- Genes/alleles must be expressed in the tissue used to detect variants
- Select a tissue that has a high percentage of genes expressed in it
 - Example: seedling tissue in maize has at least 66% of the annotated genes expressed (Sekhon and Lin et al., 2011)
- Ideal with highly homozygous inbred lines
 - Removes concerns of allele specific expression

Reduced Representation Takeaways

- Using different methods to shrink down the effective size of the genome
- Decreases the cost of genotyping an individual
- Important to understand ascertainment bias that comes from different approaches
- Depending on the downstream application, the high missing data for some approaches can be problematic

Summary of Sequence Based Reduced Representation Genotyping Methods

Table 1: Advantages and disadvantages of approaches to interrogate genome diversity

	Advantages	Disadvantages	
Whole Genome			
Whole-genome re-sequencing	-SNPs, InDels, CNV and PAV genome variation can	-Reference sequence needed	
	be assayed	-Can be expensive and not cost effective	
	-The entire genome is assayed	•	
Reduced representation			
Exome capture	-No reference sequence needed	-A priori knowledge required	
	-SNPs, InDels, CNV and PAV ^a genome variations can	-Capture bias	
	be assayed	-Initial capture design effort	
Genotyping-by-sequencing	-No reference sequence needed	-Large amount of missing data	
(RAD/GBS)	-Large number of polymorphic loci assayed	-InDels and structural variants are less readily	
	-No a priori knowledge required	detected	
Transcriptome sequencing	-No reference sequence needed	-Only assay-expressed genes	
	 -Can be assembled and used as a proxy for genic regions of the genome 	-Allele-specific expression can result in mis-genotyped individuals	
	-Assay genome and transcriptome variation	-Cannot assay structural variation	
	 -Large number of polymorphic loci assayed 	,	