

Capstone Project Zomato Restaurant Clustering and Sentiments Analysis

Team

Rahul Kumar Soni, Lakdawala Ali Asgar

Content

- Introduction
- Problem Statement
- Data Summary
- Approach Overview
- Exploratory Data Analysis
- Modelling Overview
- Challenges
- Conclusion

Introduction

In today's digitized modern world, the popularity of food apps is increasing due to their functionality to view, book, and order food with a few clicks on the phone for their favorite restaurant or cafes, by surveying the user ratings and reviews of the previously visited customers. Zomato is a site where someone can give a review of a restaurant, how the restaurant is, and someone's opinion about the restaurant.

Problem Statement

Create hotel clusters based on cuisines and sentiment analysis of the customer reviews

Zomato Restaurant names and Metadata (clustering)

- Name: Name of Restaurants
- Links: URL Links of Restaurants
- Cost: Per person estimated Cost of dining
- Collection: Tagging of Restaurants w.r.t. Zomato categories
- Cuisines: Cuisines served by Restaurants
- Timings: Restaurant Timings Zomato Restaurant reviews

Data Summary

Restaurant: Name of the Restaurant (sentiment analysis)

- Reviewer: Name of the Reviewer
- Review: Review Text
- Rating: Rating Provided by Reviewer
- MetaData: Reviewer Metadata No. of Reviews and followers
- Time: Date and Time of Review
- Pictures: No. of pictures posted with the review

Pipeline

Data Cleaning

Understanding and Cleaning

- Null value analysis
- Missing value treatment
- Outlier
 Treatment

Data Exploration

Graphical

- Univariate analysis with visualization
- Bivariate Analysis with visualization

Modeling

Machine Learning

- Clustering
- Topic Modeling
- Classification

Basic Exploration

- Data of 105 restaurants.
- Data of 9000 reviews
- 3 years of customer's reviews
- 0.36 percent null values were present.
- 50 percent of collection data is missing
- Average price of a hotel ranges from 200 to 2800

15 Most expensive Restaurants

15 most Affordable Restuarents

Frequent Keywords Used for Restaurant

Most Expensive

Most Affordable

15 Most Served Cuisines

Frequent Keyword Used for cuisine

Most used tags for Restaurants

Most used words for Restaurants (Tag)

Food Critics

Modeling Overview

Models Used:

- K-means Clustering
- Hierarchical Clustering
- Linear Discriminant Analysis
- Non-negative Matrix Factorization
- Logistic Regression

- Decision Trees
- Random Forest
- Multinomial NB
- XGBoost
- LightGBM

Modeling Steps

Data Preprocessing

Data Fitting and Tuning

Model Evaluation

- Feature selection
- Feature engineering
- Feature Extraction
- Train test data split(75%-25%)

- Start with default model parameters
- Hyperparameter tuning
- Measure scores on training & test data

- Model testing
- Compare models

K Means Clustering Plots

Silhouette score

Sum of squares elbow plot

Cuisines in different clusters (K Means)

Cluster 0

Cluster 1

Cluster 2

'north indian', 'chinese', 'continental', 'mediterranean', 'european', 'seafood', 'biryani', 'hyderabadi', 'american', 'south indian', 'andhra', 'kebab', 'bbg', 'italian', 'asian', 'mughlai', 'beverages', 'modern indian', 'desserts', 'spanish', 'japanese', 'salad', 'sushi', 'mexican', 'thai', 'malaysian', 'indonesian', 'goan', 'finger food', 'healthy food'

'ice cream', 'desserts', 'cafe',
 'bakery', 'continental','fast
food', 'beverages', 'burger',
 'biryani', 'north
indian','mughlai','juices',
 'chinese', 'mithai',
 'american', 'wraps'

Hierarchical Clustering

Cuisines in different clusters (Hierarchical)

Cluster 0

'north indian', 'chinese', 'continental', 'mediterranean', 'european', 'seafood', 'biryani', 'hyderabadi', 'american', 'south indian', 'andhra', 'kebab', 'bbg', 'mughlai', 'italian', 'asian', 'beverages', 'modern indian', 'desserts', 'spanish', 'iapanese', 'salad', 'sushi', 'mexican', 'bakery', 'juices', 'thai', 'malaysian', 'indonesian', 'goan', 'finger food', 'healthy food'

Cluster 2

Cluster 1

'north indian', 'continental',
 'american', 'chinese', 'fast
 food', 'salad', 'burger',
 'biryani', 'mughlai', 'asian',
 'seafood', 'momos', 'pizza',
 'hyderabadi', 'japanese',
 'sushi', 'finger food', 'kebab',
 'arabian', 'south indian',
 'street food', 'lebanese',
 'italian', 'thai', 'north eastern'

LDA top 15 word of each topic

```
THE TOP 15 WORDS FOR TOPIC #0
['order', 'love', 'time', 'nice', 'staff', 'chicken', 'try', 'taste', 'visit', 'ambience', 'great', 'service', 'food', 'place', 'good']
THE TOP 15 WORDS FOR TOPIC #1
['low', 'nice', 'thank', 'shivam', 'kodi', 'job', 'govind', 'taste', 'spicy', 'super', 'food', 'quantity', 'service', 'awesome', 'good']
THE TOP 15 WORDS FOR TOPIC #2
['aloo', 'gol', 'goid', 'straw', 'choka', 'kulcha', 'dal', 'chur', 'lil', 'bhature', 'paratha', 'chawal', 'chole', 'parathas', 'awsome']
THE TOP 15 WORDS FOR TOPIC #3
['restaurant', 'rice', 'tasty', 'excellent', 'quality', 'biryani', 'good', 'deliver', 'taste', 'chicken', 'time', 'food', 'delivery', 'order', 'bad']
THE TOP 15 WORDS FOR TOPIC #4
['nyc', 'continue', 'cider', 'rahamat', 'panneer', 'sarvice', 'bahadur', 'service', 'verry', 'salty', 'food', 'excellent', 'test', 'thank', 'nice']
```


NMF Top 15 word of each Topic

```
THE TOP 15 WORDS FOR TOPIC #0
['packing', 'polite', 'test', 'quality', 'quantity', 'price', 'ambiance', 'ambience', 'spicy', 'burger', 'job', 'food', 'taste', 'service', 'good']
THE TOP 15 WORDS FOR TOPIC #1
['serve', 'excellent', 'try', 'friend', 'amazing', 'love', 'time', 'awesome', 'staff', 'visit', 'ambience', 'great', 'service', 'place', 'food']
THE TOP 15 WORDS FOR TOPIC #2
['music', 'sarvice', 'ambiance', 'service', 'overall', 'family', 'hangout', 'enjoy', 'thank', 'staff', 'ambience', 'place', 'friend', 'friendly', 'nice']
THE TOP 15 WORDS FOR TOPIC #3
['zomato', 'thank', 'person', 'awesome', 'guy', 'super', 'excellent', 'order', 'boy', 'quick', 'late', 'deliver', 'fast', 'time', 'delivery']
THE TOP 15 WORDS FOR TOPIC #4
['spicy', 'piece', 'try', 'paneer', 'veg', 'restaurant', 'like', 'quality', 'rice', 'quantity', 'biryani', 'bad', 'order', 'taste', 'chicken']
```


Logistic Regression

Parameters:

- C = 10
- Max_iter = 1000
- Penalty = L2

*****	****	******	******	*******	*******
		precision	recall	f1-score	support
	0	0.87	0.89	0.88	1579
	1	0.80	0.77	0.79	910
accui	racy			0.85	2489
macro	avg	0.83	0.83	0.83	2489
weighted	avg	0.84	0.85	0.85	2489

Random Forest Metrics

Parameters:

- max_depth=15
- n_estimators=125
- criterion: entropy

*****	****	********	******	*******	********
		precision	recall	f1-score	support
	0	0.79	0.97	0.87	4736
	1	0.90	0.55	0.68	2729
accur	racy			0.81	7465
macro	avg	0.85	0.76	0.77	7465
weighted	avg	0.83	0.81	0.80	7465

XGBoost Modelling

Parameters:

- max_depth= 15
- n_estimators=125
- criterion: entropy

*******	******	*****	*******	********
	precision	recall	f1-score	support
0	0.87	0.90	0.88	1579
1	0.82	0.76	0.79	910
accuracy			0.85	2489
macro avg	0.84	0.83	0.84	2489
weighted avg	0.85	0.85	0.85	2489

LightGBM

Parameters:

- max_depth=25
- n_estimators: 125

********	**********	******	******	*******
	precision	recall	f1-score	support
0	0.87	0.90	0.89	1579
1	0.82	0.77	0.79	910
accuracy			0.85	2489
macro avg	0.84	0.83	0.84	2489
weighted avg	0.85	0.85	0.85	2489

AUC-ROC curve comparison

Score Matrix

	Models	accuracy	precision	recall	f1	roc_auc	train_time
0	MultinomialNB	0.846926	0.887262	0.665934	0.760829	0.808585	0.0001
1	Logestic Regrestion	0.852149	0.817330	0.767033	0.791383	0.834118	0.0701
2	Desision Tree	0.773403	0.662594	0.774725	0.714286	0.773683	0.0040
3	Random forest	0.809645	0.902709	0.537193	0.673558	0.751916	0.3649
4	XGboost	0.854158	0.828331	0.758242	0.791738	0.833839	1.5304
5	lightGBM	0.852953	0.822275	0.762637	0.791334	0.833820	0.8216

Challenges

- Feature engineering.
- Finding optimum number of Cluster
- Text preprocessing

Conclusion

- We got best cluster as 3 in k means and in hierarchical
- Best no of cluster for sentiment analysis (unsupervised) is 2 i.e. for positive and negative reviews
- Best model we found for sentiment analysis(Supervised) are Lightgbm and logistic regression

Thank You