1

B.3 Results for AW3

In this section, we describe the results for RQ1, RQ2 and RQ4 (i.e., Sections B.3.1–Section B.3.3 respectively) for use case AW3.

B.3.1 Experiment Results for RQ1

This section describes the results for RQ1.

B.3.1.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, AUM))

TD	A 1: (1 A	A 1: (1 D	P	ET	P'	TR	Al	UM	О	FV	H	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.3.1.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, PUS))

ТВ	A 1 A	A languith and D	P	ET	P	TR	P	US	О	FV	I	IV	I	GD
1 D	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	p	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.3.1.3 Problem 3: This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	A	NU	О	FV	H	IV	IC	GD
10	AiguittiliiA	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			Р	ET	P'	TR	A	NU	0	FV	I	ΗV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	SPEA2	SimpleRS	<0.1	<0.01	>0.5	<0.01	<0.1	<0.01	< 0.5	<0.01	>0.9	<0.01	<0.1	<0.01
TB020	CellDE	SimpleRS	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 5030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.3.1.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	Pl	UU	О	FV	H	IV	I	GD
10	AigonumiA	Aigontiilib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
10020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	<0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	P	UU	О	FV	ŀ	IV	I	GD
10	AigoriumiA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.3.1.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, AUM, PUS))

тр	A 1: (1 A	A 1: (1 D	P	ET	P'	TR	A	UM	P	US	О	FV	H	IV	IC	GD
TB	AlgorithmA	Algorithmb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 00/0	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Algorithm A	AlgorithmB	P	ET	P	TR	A	UM	P	US	О	FV	Н	IV	IC	GD
1 D	AigontiiliA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TP100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.3.1.6 Problem 6: This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, AUM, ANU))

Magorithma		I		_								_					
NSGA2 SimpleRS Col. Co	TB	AlgorithmA	AlgorithmB					1									
MoCell SimpleRS 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.01																	
SPEA2								1				1	I	1			
SPEA2 SimpleRS Col. Col. No. Sol. Col. Col	TB010																
NSGA2 SimpleRS Col. Co	12010																
MoCell SimpleRS Co.5 Co.01 Co.5 Co.01 Co.5 Co.01 Co.5 Co.01 Co.5 Co.01 Co.0 Co.01			SimpleRS	< 0.5	< 0.01												
TB000 SPEA2 SimpleRS Co.1 Co.01 Co.0 Co.01 Co.01 Co.01 Co.01 Co.01 Co.0 Co.01 Co.0			1			1		1				1	I	1		1	
CellDE SimpleRS Co.5 Co.01 Co.0	TB020		SimpleRS	< 0.5	< 0.01		< 0.01	<0.5	< 0.01		< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2	10020		1	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01		< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030 MoCell SimpleRS Col.			SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS Co.1 Co.01 Co.0 Co.01 Co.		NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01		< 0.01	< 0.5	< 0.01			>0.9	< 0.01	< 0.1	< 0.01
TB060 CellDE SimpleRS Col. Col. Sol. Col.	TROSO		SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SimpleRS Col. Co	1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040 MoCell SimpleRS Co.1 Co.01 Co.9 Co.01 Co.5 Co.01 Co.5 Co.01 Co.5 Co.01		CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS Co.1 Co.01 Co.0 Co.01 Co.0		NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 SimpleRS Co.1 Co.01 So.9 Co.01 Co.	TP040	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2	10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 MoCell SimpleRS <0.1 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090 SPEA2 SimpleRS <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0		NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 TB080 SimpleRS Co. C	TROFO	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060 NSGA2 SimpleRS Co.1 Co.01 Co	1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SimpleRS Co.1 Co.01 Co.01 Co.5 Co.01 Co.5 Co.01 Co.1 Co.01 Co.0		CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060 SPEA2 SimpleRS C0.1 C0.01 C0.9 C0.01 C0.1 C0.01 C0.0		NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	TPOCO	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 MoCell SimpleRS <0.1 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090 SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	TP070	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 NSGA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	1 00/0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 MoCell SimpleRS <0.1 <0.01 <0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <td></td> <td>CellDE</td> <td>SimpleRS</td> <td>< 0.5</td> <td>< 0.01</td> <td>>0.5</td> <td>< 0.01</td> <td>< 0.5</td> <td>< 0.01</td> <td>< 0.5</td> <td>< 0.01</td> <td>< 0.5</td> <td>< 0.01</td> <td>>0.9</td> <td>< 0.01</td> <td>< 0.1</td> <td>< 0.01</td>		CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 MoCell SimpleRS <0.1 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	TDOOO	MoCell		< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
CellDE SimpleRS <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	10080			< 0.1	< 0.01	>0.9			< 0.01				< 0.01		< 0.01		
NSGA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	1	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090 MoCell SimpleRS <0.1 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <			1		< 0.01	>0.9	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.	TDOGG		1	< 0.1	< 0.01	>0.9			1					>0.9		1	
	1 B090		1	< 0.1		>0.9											
CeIIDE Simplek5 $ <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 >0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 $		CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TR	AlgorithmA	AlgorithmR	P	ET	P'	TR	Al	JM	A]	NU	О	FV	Н	IV	IC	GD
10	AigontiiliA	Aiguittiiii	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS								< 0.01						
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.3.1.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, AUM, PUU))

TD	A.1 **1 A	A1 1/1 B	P	ET	P	TR	A	UM	P	UU	О	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD010	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 6020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
12070	SPEA2	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
1 2000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1		>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	
TB090 -	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
15100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.3.1.8 Problem 8: This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, PUS, ANU))

тр	Alaarithm A	AlaarithmD	P	ET	P	TR	P	US	A	NU	О	FV	ŀ	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01		< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01		< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TDOOG	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01		< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	1	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	1	>0.05
1 Dooc	SPEA2	SimpleRS	< 0.1	< 0.01		< 0.05	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01		>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01		< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.3.1.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, PUS, PUU))

ТВ	AlgorithmA	AlgorithmR	P	ET	P'	TR	P	US	Pl	UU	О	FV	Н	IV	I	GD
10	AigoriumA	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	=0.5	>0.05
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05

ТВ	AlgorithmA	AlgorithmR	P	ET	P	TR	P	US	P	UU	О	FV	I.	IV	I	GD
1 D	AigonumiA	Aigoriumb	A12	p	A12	р	A12	р	A12	р	A12	р	A12	р	A12	p
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05		>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5		< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 D 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.3.1.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW3, f(PET, PTR, ANU, PUU))

тр	A 1 ~ a with A	A 1 مرمانا المسم D	P	ET	P	TR	A	NU	P	UU	О	FV	H	IV	IC	GD
TB	AlgorithmA	Aigorithmb	A12	p	A12	p	A12	р	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TRO40	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	AlgorithmA	AlgorithmR	P	ET	P	TR	A	NU	P	UU	О	FV	H	IV	I	GD
1 1 1	Aigonumia	Aigonniii	A12	p	A12	p	A12	p								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.3.1.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 11. Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Multi-Objective Algorithms and RS for HV and IGD (AW3)

Problem	TB	Adjusted_p	Reject
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB050	< 0.01	Y
F100.1 J(FL1,F1K,AUNI)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.2 f(PET,PTR,PUS)	TB050	< 0.01	Y
1700.2 ((1 £1,1 110,1 03)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB040	< 0.01	Y
1100.5 (1 L1,1 110,21104)	TB050	< 0.01	Y
	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y

Problem	ТВ	Adjusted_p	Reject
DI. 2 ((DET DED ANUI)	TB090	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D 1.4 ((DET DED DILLI)	TB050	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D. A. F. ((DET DED ALIM DIC)	TB050	< 0.01	Y
Prob.5 f(PET,PTR,AUM,PUS)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Dual (WDET DTD ALIM ANIL)	TB050	< 0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Drob 7 f(DET DTD ALIM DILLI)	TB050	< 0.01	Y
Prob.7 f(PET,PTR,AUM,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y
1 100.0 J(TL1,F1K,FU3,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB030	< 0.01	Y
1100.0 1/1 [11,1 [13,1 [43,1 [44]]	TB040	< 0.01	Y
	TB050	< 0.01	Y
	TB060	< 0.01	Y

Problem	TB	Adjusted_p	Reject		
	TB070	< 0.01	Y		
Prob.9 f(PET,PTR,PUS,PUU)	TB080	< 0.01	Y		
F100.9 J(FL1,F1K,F43,F44)	TB090	< 0.01	Y		
	TB100	< 0.01	Y		
	TB010	< 0.01	Y		
	TB020	< 0.01	Y		
	TB030 <0.01				
	TB030 < 0.01 TB040 < 0.01	< 0.01	Y		
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y		
1700.10 j(1 L1,1 1 K,211 a,1 aa)	TB060	< 0.01	Y		
	TB070	< 0.01	Y		
	TB080	< 0.01	Y		
	TB090	< 0.01	Y		
	TB100	< 0.01	Y		

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05 (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If **Adjusted_p** > 0.05, it means there is at least one adjusted p-value that is greater than 0.05.
* **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.3.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

B.3.2.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 12. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM))

TB	Metric	ChiSq	DF	p
	ET	19204.89	3	< 0.01
	CTR	7630.15	3	< 0.01
TB010	UM	24979.59	3	< 0.01
1 DO10	OFV	577.99	3	< 0.01
	HV	345.76	3	< 0.01
	IGD	344.97	3	< 0.01
	ET	26384.41	3	< 0.01
	CTR	6393.33	3	< 0.01
TB020	UM	27436.57	3	< 0.01
1 0020	OFV	5931.43	3	< 0.01
	HV	355.29	3	< 0.01
	IGD	353.82	3	< 0.01
	ET	27832.43	3	< 0.01
	CTR	2473.82	3	< 0.01
TB030	UM	27693.81	3	< 0.01
1 0030	OFV	23042.97	3	< 0.01
	HV	358.87	3	< 0.01
	IGD	358.07	3	< 0.01
	ET	24001.46	3	< 0.01
	CTR	1029.31	3	< 0.01
TB040	UM	23594.17	3	< 0.01
1 DU40	OFV	22693.59	3	< 0.01
	HV	355.98	3	< 0.01
	IGD	355.38	3	< 0.01
	ET	21858.04	3	< 0.01
	CTR	673.17	3	< 0.01
TB050	UM	21348.7	3	< 0.01
1 0000	OFV	21379.58	3	< 0.01
	HV	356.85	3	< 0.01
	IGD	356.25	3	< 0.01
	ET	17356	3	< 0.01
TB060	CTR	649.23	3	< 0.01
1 0000	UM	16505.28	3	< 0.01
	OFV	17327.31	3	< 0.01

TB	Metric	ChiSq	DF	p
TB060	HV	361.5	3	< 0.01
1 0000	IGD	360.62	3	< 0.01
	ET	15495.65	3	< 0.01
	CTR	241.83	3	< 0.01
TB070	UM	14640.2	3	< 0.01
1 0070	OFV	15335.89	3	< 0.01
	HV	360.96	3	< 0.01
	IGD	359.39	3	< 0.01
	ET	12600.22	3	< 0.01
	CTR	397.88	3	< 0.01
TB080	UM	12112.41	3	< 0.01
1 0000	OFV	12639.41	3	< 0.01
	HV	358.8	3	< 0.01
	IGD	358.62	3	< 0.01
	ET	13326.8	3	< 0.01
	CTR	128.93	3	< 0.01
TB090	UM	12771.28	3	< 0.01
1 0090	OFV	13276.27	3	< 0.01
	HV	360.47	3	< 0.01
	IGD	360.63	3	< 0.01
	ET	14130.93	3	< 0.01
	CTR	251.61	3	< 0.01
TB100	UM	13369.52	3	< 0.01
1 D100	OFV	14047.61	3	< 0.01
	HV	357.26	3	< 0.01
	IGD	353.07	3	< 0.01

TABLE 13. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM))

ТВ	AlgorithmA	AlcorithmD	I	ET	С	TR	U	M	О	FV	H	IV	IC	GD
1 1 1	AigoriumA	AlgorithmB	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01

			I	ET		TR	T	J M		FV	I	ΗV	10	3D 13
TB	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р
	NSGA2	CellDE	<0.1	<0.01	>0.5	$\frac{P}{<0.01}$	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TDOGO	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 14. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, AUM))

ТВ	Metric		Rai	nk			Confic	lence	
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB010	UM	2	3	1	4	20%	30%	10%	40%
10010	OFV	2	3	3	1	22%	33%	33%	11%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
TB020	UM	2	3	1	4	20%	30%	10%	40%
1 0020	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	2	1	33%	33%	22%	11%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

TID	35.11	Rank		nk		Confidence							
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE				
TB030	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	4	3	2	1	40%	30%	20%	10%				
TED 0.40	UM	2	3	1	4	20%	30%	10%	40%				
TB040	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	4	2	1	30%	40%	20%	10%				
TROFO	UM	2	3	1	4	20%	30%	10%	40%				
TB050	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	4	1	2	30%	40%	10%	20%				
TB060	UM	2	3	1	4	20%	30%	10%	40%				
1 0000	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	2	4	1	3	20%	40%	10%	30%				
TB070	UM	2	3	1	4	20%	30%	10%	40%				
1 0070	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	4	3	1	2	40%	30%	10%	20%				
TB080	UM	2	3	1	4	20%	30%	10%	40%				
1 1 1 1 1 1 1 1 1 1	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	4	3	1	2	40%	30%	10%	20%				
TB090	UM	2	3	1	4	20%	30%	10%	40%				
10070	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	2	4	1	3	20%	40%	10%	30%				
TB100	UM	2	3	1	4	20%	30%	10%	40%				
12100	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				

B.3.2.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 15. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	1350.72	3	< 0.01
	CTR	148.73	3	< 0.01
TB010	USP	89.74	3	< 0.01
16010	OFV	27.91	3	< 0.01
	HV	344.84	3	< 0.01
	IGD	NaN	3	NaN
	ET	1096.97	3	< 0.01
TB020	CTR	106.07	3	< 0.01
	USP	5.03	3	>0.05

TB	Metric	ChiSq	DF	p
	OFV	627.53	3	< 0.01
TB020	HV	345.5	3	< 0.01
	IGD	345.5	3	< 0.01
	ET	908.64	3	< 0.01
	CTR	93.93	3	< 0.01
TB030	USP	9.6	3	< 0.05
1 0030	OFV	765.81	3	< 0.01
	HV	349.04	3	< 0.01
	IGD	NaN	3	NaN
	ET	766.28	3	< 0.01
	CTR	18.19	3	< 0.01
TB040	USP	16.71	3	< 0.01
1 0040	OFV	729.48	3	< 0.01
	HV	349.87	3	< 0.01
	IGD	NaN	3	NaN
	ET	680.64	3	< 0.01
	CTR	46.83	3	< 0.01
TB050	USP	1.87	3	>0.05
1 0000	OFV	677.64	3	< 0.01
	HV	352.14	3	< 0.01
	IGD	NaN	3	NaN
	ET	555.34	3	< 0.01
	CTR	61.94	3	< 0.01
TB060	USP	13.66	3	< 0.01
10000	OFV	528.75	3	< 0.01
	HV	355.1	3	< 0.01
	IGD	NaN	3	NaN
	ET	480.65	3	< 0.01
	CTR	55	3	< 0.01
TB070	USP	23.28	3	< 0.01
120,0	OFV	473.9	3	< 0.01
	HV	357.66	3	< 0.01
	IGD	NaN	3	NaN
	ET	464.44	3	< 0.01
	CTR	81.17	3	< 0.01
TB080	USP	18.78	3	< 0.01
	OFV	465.43	3	< 0.01
	HV	351.77	3	<0.01
	IGD	NaN 476.0	3	NaN
	ET	476.8	3	<0.01
	CTR	36.67	3	<0.01
TB090	USP OFV	7.95 472.16	3 3	< 0.05
	HV	348.99	3	<0.01 <0.01
	IGD	348.99 NaN	3	<0.01 NaN
	ET	537.76	3	
	CTR	34.47	3	<0.01 <0.01
	USP	7.37		
TB100	OFV	530.65	3 3	> 0.05 <0.01
	HV	353.94	3	<0.01
	IGD	353.94 NaN	3	<0.01 NaN
	IGD	INAIN)	INdIN

TABLE 16. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	ET		CTR		USP		OFV		HV		IGD	
			A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB010	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	=0.5	>0.05

ТВ	AlgorithmA	AlgorithmB		ET		TR		SP		FV		IV		GD
			A12	p	A12	p <0.01	A12	p	A12	p <0.01	A12	p	A12	p
·	NSGA2 NSGA2	SPEA2 CellDE	>0.5	<0.01 <0.01	>0.5 >0.5	<0.01 <0.01	>0.5 <0.5	> 0.05 <0.01	>0.5 <0.5	<0.01 > 0.05	<0.5 >0.9	<0.01 <0.01	=0.5 =0.5	>0.05 >0.05
TB010	MoCell	SPEA2	>0.1	< 0.01	<0.5	>0.01	>0.5	< 0.01	>0.5	<0.01	<0.1	< 0.01	=0.5	>0.05
10010	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	>0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	<0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
i	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01
ED 000	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB040	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.05	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	MoCell	SPEA2	>0.9	<0.01	>0.5	>0.05	<0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	<0.01	<0.5	>0.05	<0.5	< 0.05	<0.1	< 0.01	>0.9	<0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	<0.01	<0.5	>0.05	<0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell SPEA2	<0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2 NSGA2	CellDE	>0.9	<0.01 <0.01	>0.5 <0.5	<0.01 > 0.05	<0.5 <0.5	>0.05 >0.05	>0.9	<0.01 <0.01	<0.5 >0.9	<0.01 <0.01	=0.5 =0.5	>0.05 >0.05
TB050	MoCell	SPEA2	>0.1	< 0.01	>0.5	<0.01	<0.5	<0.05	>0.1	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.03	<0.1	< 0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	<0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	<0.5	< 0.01	=0.5	>0.05
TED 0 (0	NSGA2	CellDE	<0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	<0.01	>0.5	< 0.05	<0.1	<0.01	>0.9	<0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	<0.5	<0.01	>0.5	< 0.05	>0.9	< 0.01	<0.5	< 0.01	=0.5	>0.05
TB080	NSGA2 MoCell	CellDE SPEA2	<0.1	<0.01	<0.5 <0.5	>0.05	<0.5 =0.5	<0.05	<0.1	<0.01	>0.9	<0.01 <0.01	=0.5	>0.05
	MoCell	CellDE	>0.9	<0.01 <0.01	<0.5	<0.01 <0.01	= 0. 5	> 0.05 <0.01	>0.9	<0.01 <0.01	>0.1	< 0.01	=0.5 =0.5	>0.05 >0.05
	SPEA2	CellDE	<0.1	< 0.01	>0.5	>0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	<0.05	>0.5	>0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2 NSGA2	SPEA2	>0.1	< 0.01	<0.5	>0.05	<0.5	>0.05	>0.1	< 0.01	<0.5	< 0.01	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SPEA2	>0.1	< 0.01	<0.5	< 0.03	<0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	>0.05	>0.5	>0.05	<0.1	< 0.01	>0.9		=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TD100	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9		=0.5	>0.05
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	1	l .				<u> </u>			I			-	-	

ТВ	AlgorithmA	AlgorithmA	AlgorithmB	I	ET	С	TR	U	SP	О	FV	I.	IV	I	GD
10	AigonumiA	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	
TB100	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05	
1 1 1 1 1 0 0	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05	

TABLE 17. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, PUS))

TTD.	3.5		Rai	nk	Confidence					
ТВ	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
	ET	3	2	4	1	30%	20%	40%	10%	
-	CTR	3	2	2	1	38%	25%	25%	12%	
TB010	USP	1	2	1	3	14%	29%	14%	43%	
10010	OFV	2	2	1	2	29%	29%	14%	29%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	1	1	1	1	25%	25%	25%	25%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	2	1	1	33%	33%	17%	17%	
TROOO	USP	1	1	1	1	25%	25%	25%	25%	
TB020	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	4	3	1	2	40%	30%	10%	20%	
TDOO	USP	2	1	2	2	29%	14%	29%	29%	
TB030	OFV	2	3	1	4	20%	30%	10%	40%	
-	HV	3	2	4	1	30%	20%	40%	10%	
-	IGD	1	1	1	1	25%	25%	25%	25%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	1	1	1	40%	20%	20%	20%	
TED 0.40	USP	1	1	1	2	20%	20%	20%	40%	
TB040	OFV	2	3	1	4	20%	30%	10%	40%	
-	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	1	1	1	1	25%	25%	25%	25%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	1	3	33%	22%	11%	33%	
EDOE0	USP	1	1	2	2	17%	17%	33%	33%	
TB050	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	1	1	1	1	25%	25%	25%	25%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	1	3	2	25%	12%	38%	25%	
TTD 0.40	USP	1	1	1	2	20%	20%	20%	40%	
TB060	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	1	1	1	1	25%	25%	25%	25%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	1	2	3	25%	12%	25%	38%	
ED050	USP	1	1	1	2	20%	20%	20%	40%	
TB070	OFV	2	3	1	4	20%	30%	10%	40%	
}	HV	3	2	4	1	30%	20%	40%	10%	
-	IGD	1	1	1	1	25%	25%	25%	25%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	1	3	3	22%	11%	33%	33%	
-	USP	2	1	1	3	29%	14%	14%	43%	
TB080	OFV	2	3	1	4	20%	30%	10%	40%	
-	HV	3	2	4	1	30%	20%	40%	10%	
-	IGD	1	1	1	1	25%	25%	25%	25%	
TB090	ET	3	2	4	1	30%	20%	40%	10%	

ТВ	Metric		Rai	nk		Confidence						
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell		CellDE			
	CTR	2	1	2	2	29%	14%	29%	29%			
	USP	1	1	2	2	17%	17%	33%	33%			
TB090	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	2	17%	17%	33%	33%			
TB100	USP	1	1	1	1	25%	25%	25%	25%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			

 $\hbox{B.3.2.3}\quad \hbox{Problem 3: This section describes the results for prioritization problem } f(PET,PTR,ANU).$

TABLE 18. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	20533.73	3	< 0.01
	CTR	13683.86	3	< 0.01
TB010	NU	21720.18	3	< 0.01
1 DU1U	OFV	7573.08	3	< 0.01
	HV	278.75	3	< 0.01
	IGD	321.51	3	< 0.01
	ET	24692.9	3	< 0.01
	CTR	8579.74	3	< 0.01
TB020	NU	25458.62	3	< 0.01
1 0020	OFV	1597.45	3	< 0.01
	HV	295.84	3	< 0.01
	IGD	342.42	3	< 0.01
	ET	26421.73	3	< 0.01
	CTR	7133.03	3	< 0.01
TB030	NU	27580.99	3	< 0.01
1 0030	OFV	18428.68	3	< 0.01
	HV	309.76	3	< 0.01
	IGD	343.95	3	< 0.01
	ET	27511.32	3	< 0.01
	CTR	8350.42	3	< 0.01
TB040	NU	28108.58	3	< 0.01
1 DU40	OFV	26594.95	3	< 0.01
	HV	320.5	3	< 0.01
	IGD	341.73	3	< 0.01
	ET	28705.35	3	< 0.01
	CTR	8192.41	3	< 0.01
TB050	NU	28301.8	3	< 0.01
1 0000	OFV	29616.88	3	< 0.01
	HV	321.37	3	< 0.01
	IGD	359.2	3	< 0.01
	ET	27702.17	3	< 0.01
	CTR	9918.5	3	< 0.01
TB060	NU	28591.48	3	< 0.01
1 0000	OFV	29666.79	3	< 0.01
	HV	311.24	3	< 0.01
	IGD	351.38	3	< 0.01
	ET	28997.62	3	< 0.01
	CTR	8681.08	3	< 0.01
TB070	NU	28352.23	3	< 0.01
	OFV	30482.59	3	< 0.01
	HV	331.28	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB070	IGD	363.48	3	< 0.01
	ET	28854.66	3	< 0.01
	CTR	11049.5	3	< 0.01
TB080	NU	28642.68	3	< 0.01
1 0000	OFV	30647.8	3	< 0.01
	HV	325.48	3	< 0.01
	IGD	358.29	3	< 0.01
	ET	28576.59	3	< 0.01
	CTR	9554.35	3	< 0.01
TB090	NU	28743.81	3	< 0.01
1 0090	OFV	30540.96	3	< 0.01
	HV	316.43	3	< 0.01
	IGD	365.81	3	< 0.01
	ET	28609.99	3	< 0.01
	CTR	9966.68	3	< 0.01
TB100	NU	27800.8	3	< 0.01
10100	OFV	30544.68	3	< 0.01
	HV	327.7	3	< 0.01
	IGD	366.77	3	< 0.01

TABLE 19. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	I	ET	C'	TR	N	NU	О	FV	I	IV	IC	GD
1 D	AigorithmA	Algorithmb	A12	р										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 1 1	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB060	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	A loosith m A	A loosith m D	I	ET	С	TR	N	IU	О	FV	I	IV	IC	GD
ID	AlgorithmA	AlgorithmB	A12	р										
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 1 1	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 20. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, ANU))

TD	N		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB010	NU	2	3	1	4	20%	30%	10%	40%			
1 0010	OFV	3	2	4	1	30%	20%	40%	10%			
	HV	4	3	2	1	40%	30%	20%	10%			
	IGD	4	2	3	1	40%	20%	30%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	3	2	1	40%	30%	20%	10%			
TROOO	NU	2	3	1	4	20%	30%	10%	40%			
1 DUZU	OFV	2	4	1	3	20%	40%	10%	30%			
TB020	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	2	1	30%	40%	20%	10%			
TB030	NU	2	3	1	4	20%	30%	10%	40%			
1 0000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB040	NU	2	3	1	4	20%	30%	10%	40%			
1 DU4U	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			

TD	Matria		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB050	NU	2	3	1	4	20%	30%	10%	40%			
1 6030	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB060	NU	2	3	1	4	20%	30%	10%	40%			
1 0000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB070	NU	2	3	1	4	20%	30%	10%	40%			
1 10070	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB080	NU	2	3	1	4	20%	30%	10%	40%			
1 0000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB090	NU	2	3	1	4	20%	30%	10%	40%			
1 10090	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	4	1	3	20%	40%	10%	30%			
TB100	NU	2	3	1	4	20%	30%	10%	40%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3 2 4 1 3		30%	20%	40%	10%					

B.3.2.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 21. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	1397.88	3	< 0.01
	CTR	158.88	3	< 0.01
TB010	NUU	170.36	3	< 0.01
10010	OFV	62.98	3	< 0.01
	HV	343.74	3	< 0.01
	IGD	343.66	3	< 0.01
	ET	1161.37	3	< 0.01
	CTR	74.19	3	< 0.01
TB020	NUU	79.55	3	< 0.01
1 0020	OFV	336.14	3	< 0.01
	HV	351.47	3	< 0.01
	IGD	NaN	3	NaN
	ET	677.11	3	< 0.01
TB030	CTR	13.97	3	< 0.01
1 0000	NUU	12.77	3	< 0.01
	OFV	269.04	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	344.17	3	< 0.01
10000	IGD	NaN	3	NaN
	ET	579.88	3	< 0.01
	CTR	32.25	3	< 0.01
TB040	NUU	31.4	3	< 0.01
10040	OFV	451.33	3	< 0.01
	HV	349.42	3	< 0.01
	IGD	NaN	3	NaN
	ET	549.15	3	< 0.01
	CTR	73.67	3	< 0.01
TB050	NUU	70.51	3	< 0.01
1 0000	OFV	524.7	3	< 0.01
	HV	355.65	3	< 0.01
	IGD	355.61	3	< 0.01
	ET	496.34	3	< 0.01
	CTR	51.38	3	< 0.01
TB060	NUU	42.37	3	< 0.01
1 DUOU	OFV	494.75	3	< 0.01
	HV	362.63	3	< 0.01
	IGD	362.52	3	< 0.01
	ET	460.83	3	< 0.01
	CTR	64	3	< 0.01
TB070	NUU	62.16	3	< 0.01
1 DU/U	OFV	452.78	3	< 0.01
	HV	353.44	3	< 0.01
	IGD	353.36	3	< 0.01
	ET	439.96	3	< 0.01
	CTR	54.86	3	< 0.01
TDOOO	NUU	43.13	3	< 0.01
TB080	OFV	438.43	3	< 0.01
	HV	353.76	3	< 0.01
	IGD	NaN	3	NaN
	ET	486.51	3	< 0.01
	CTR	53.42	3	< 0.01
ED000	NUU	46.64	3	< 0.01
TB090	OFV	486.9	3	< 0.01
	HV	355.48	3	< 0.01
	IGD	355.38	3	< 0.01
	ET	448.09	3	< 0.01
	CTR	72.01	3	< 0.01
ED400	NUU	66.45	3	< 0.01
TB100	OFV	455.31	3	< 0.01
	HV	345.08	3	< 0.01
	IGD	NaN	3	NaN

TABLE 22. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB -	F	ET		CTR		NUU		FV	HV		IGD	
1.0	Aigonumia	Aigoritimi	A12	p										
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
10020	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05

TD	A 1: (1 A	A 1: 11 D	I	ET	С	TR	N	UU	О	FV	F	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
10020	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01	=0.5	>0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
12010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
12000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
TB060	NSGA2	CellDE	<0.1	< 0.01	<0.5	>0.05	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	<0.5	>0.05	<0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01	>0.9	<0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	SPEA2	CellDE	<0.1	<0.01	<0.5	<0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	NSGA2	MoCell	<0.1	<0.01	>0.5	<0.01	>0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	NSGA2	SPEA2	>0.9	< 0.01	<0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	<0.5	< 0.01	>0.5	<0.01
TB070	NSGA2	CellDE	<0.1	<0.01	<0.5	< 0.01	<0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	MoCell	SPEA2	>0.9	<0.01	<0.5	< 0.01	<0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01	>0.9	<0.01
	MoCell	CellDE	<0.1	<0.01	<0.5	< 0.01	<0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	<0.01	<0.1 = 0. 5	<0.01
	NSGA2	MoCell	<0.1	<0.01	>0.5	<0.01	>0.5	<0.01	<0.1 >0.5	<0.01	>0.9	< 0.01	=0.5 =0.5	>0.05
	NSGA2	SPEA2 CellDE	>0.5			>0.05	<0.5	>0.05			<0.5	<0.01		>0.05
TB080	NSGA2 MoCell	SPEA2	<0.1 >0.9	<0.01 <0.01	<0.5 <0.5	> 0.0 5 <0.01	<0.5 <0.5	> 0.05 <0.01	<0.1 >0.9	<0.01	>0.9	<0.01	=0.5 =0.5	>0.05 >0.05
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	>0.01	< 0.5	>0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	NSGA2	SPEA2	>0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	>0.1	< 0.01	<0.5	< 0.01	>0.1	<0.01
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.03	<0.5	< 0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB090	MoCell	SPEA2	>0.1	<0.01	<0.5	>0.01	<0.5	>0.05	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.01
	NSGA2	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.1	< 0.01	<0.5	< 0.01	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	<0.5	>0.01	<0.5	>0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SPEA2	>0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.1	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
		COMPE		\1	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10.01		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\3.01	J.0	, , ,,,,

TABLE 23. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, PUU))

TD	Matri		Ra	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	2	1	25%	38%	25%	12%			
TB010	NUU	2	3	2	1	25%	38%	25%	12%			
1 0010	OFV	2	3	2	1	25%	38%	25%	12%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	1	33%	33%	17%	17%			
TTD000	NUU	2	2	1	1	33%	33%	17%	17%			
TB020	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	2	1	33%	17%	33%	17%			
	NUU	1	1	1	1	25%	25%	25%	25%			
TB030	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	1	2	38%	25%	12%	25%			
	NUU	3	2	1	2	38%	25%	12%	25%			
TB040	OFV	2	3		4	20%	30%	12%	40%			
			2	1								
	HV	3		4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	1	2	33%	17%	17%	33%			
TB050	NUU	4	2	1	3	40%	20%	10%	30%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	1	2	33%	17%	17%	33%			
TB060	NUU	2	1	1	2	33%	17%	17%	33%			
1 0000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	2	3	25%	12%	25%	38%			
TB070	NUU	2	1	2	3	25%	12%	25%	38%			
1 D07 U	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	2	2	29%	14%	29%	29%			
TED 000	NUU	2	1	2	2	29%	14%	29%	29%			
TB080	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
	NUU	1	1	1	2	20%	20%	20%	40%			
TB090	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	עטו	ا ع		4	1	JU /0	ZU /0	4U /0	10 /0			

ТВ	Metric		Rai	nk		Confidence						
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	1	2	33%	17%	17%	33%			
TB100	NUU	2	1	1	2	33%	17%	17%	33%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			

B.3.2.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 24. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, PUS))

TB	Metric	ChiSq	DF	p
	ET	20394.26	3	< 0.01
	CTR	10376.27	3	< 0.01
	UM	28053.99	3	< 0.01
TB010	USP	3270.84	3	< 0.01
	OFV	3242.1	3	< 0.01
	HV	331.96	3	< 0.01
	IGD	345.37	3	< 0.01
	ET	27548.71	3	< 0.01
	CTR	8147.16	3	< 0.01
	UM	29497.19	3	< 0.01
TB020	USP	2460	3	< 0.01
	OFV	4341.7	3	< 0.01
	HV	353.34	3	< 0.01
	IGD	355.81	3	< 0.01
	ET	28633	3	< 0.01
	CTR	3715.79	3	< 0.01
	UM	29424.38	3	< 0.01
TB030	USP	2082.86	3	< 0.01
	OFV	19745.33	3	< 0.01
	HV	359.26	3	< 0.01
	IGD	359.45	3	< 0.01
	ET	27300.37	3	< 0.01
	CTR	2311.38	3	< 0.01
	UM	27310.16	3	<0.01
TB040	USP	1730.94	3	< 0.01
	OFV	24632.35	3	< 0.01
	HV	355.16	3	< 0.01
	IGD	352.44	3	< 0.01
	ET	20585.39	3	< 0.01
	CTR	725.1	3	< 0.01
	UM	20388.25	3	<0.01
TB050	USP	1229.99	3	< 0.01
	OFV	19804.99	3	<0.01
	HV	353.06	3	<0.01
	IGD	352.29	3	< 0.01
	ET	17393.7	3	< 0.01
	CTR	630.85	3	<0.01
	UM	16724.06	3	<0.01
TB060	USP	666.86	3	<0.01
	OFV	16932.02	3	<0.01
	HV	356.22	3	<0.01
	IGD	352.79	3	<0.01
	ET	15047.06	3	<0.01
	CTR	230.37	3	<0.01
TB070	UM	13891.21	3	<0.01
	USP	615.85	3	<0.01

ТВ	Metric	ChiSq	DF	p
	OFV	14742.04	3	< 0.01
TB070	HV	356.24	3	< 0.01
	IGD	354.61	3	< 0.01
	ET	11119.76	3	< 0.01
	CTR	287.37	3	< 0.01
	UM	10596.25	3	< 0.01
TB080	USP	410.52	3	< 0.01
	OFV	10970.87	3	< 0.01
	HV	363.57	3	< 0.01
	IGD	363.28	3	< 0.01
	ET	9912.49	3	< 0.01
	CTR	252.96	3	< 0.01
	UM	9393.02	3	< 0.01
TB090	USP	323.22	3	< 0.01
	OFV	9798.52	3	< 0.01
	HV	355.83	3	< 0.01
	IGD	355.91	3	< 0.01
	ET	9926.59	3	< 0.01
	CTR	106.32	3	< 0.01
	UM	9098.9	3	< 0.01
TB100	USP	418.15	3	< 0.01
	OFV	9896.59	3	< 0.01
	HV	356.99	3	< 0.01
	IGD	353.23	3	< 0.01

TABLE 25. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, PUS))

ТВ	Algorithm A	AlgorithmB	I	ET	С	TR	U	M	U	SP	О	FV	H	IV	IC	GD
1 1 1	AigoriumA	Aigoriumb	A12	р	A12	p	A12	p	A12	р	A12	р	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROFO	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

	A 1 1.1 A	41 1:1 B	I	ET	С	TR	U	M	U	SP	О	FV	Н	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р												
TROFO	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	1 1
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	> 0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	> 0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		< 0.01
1 Dooo	MoCell	SPEA2	>0.9	< 0.01	> 0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	> 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	> 0.5	< 0.01	> 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	
TB090	NSGA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1			< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	> 0.5	> 0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	> 0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01		>0.05		< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
15100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 26. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk			Confic	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	20% 40%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB010	USP	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB020	USP	2	3	2	1	25%	38%	25%	12%
	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%

TD	Matri		Ra	nk			Confi	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB030	HV	3	2	4	1	30%	20%	40%	10%
1 0030	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	2	1	33%	33%	22%	11%
	UM	2	3	1	4	20%	30%	10%	40%
TB040	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB050	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	1	29%	43%	14%	14%
	UM	2	3	1	4	20%	30%	10%	40%
TB060	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	UM	2	3	1	4	20%	30%	10%	40%
TB070	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	1	3	40%	20%	10%	30%
	UM	2	3	1	4	20%	30%	10%	40%
TB080	USP	2	3	1	1	29%	43%	14%	14%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	1	3	40%	20%	10%	30%
	UM	2	3	1	4	20%	30%	10%	40%
TB090	USP	2	3	2	1	25%	38%	25%	12%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	1	2	33%	33%	11%	22%
	UM	2	3	1	4	20%	30%	10%	40%
TB100	USP	2	3	2	1	25%	38%	25%	12%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

 ${\it B.3.2.6} \quad {\it Problem 6: This section describes the results for prioritization problem } f(PET, PTR, AUM, ANU). \\$

TABLE 27. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, ANU))

TB	Metric	ChiSq	DF	p
TB010	ET	16486.53	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	5021.02	3	< 0.01
	UM	8434.62	3	< 0.01
TB010	NU	5581.62	3	< 0.01
10010	OFV	119.19	3	< 0.01
	HV	309.51	3	< 0.01
	IGD	304.73	3	< 0.01
	ET	16027.65	3	< 0.01
	CTR	4624.96	3	< 0.01
TTD 0 0 0	UM	10486.15	3	<0.01
TB020	NU	9475.77	3	<0.01
	OFV HV	3746.92	3	<0.01
	l .	312.36	3	<0.01
	IGD	323.47	3	<0.01
	ET	15578.23	3	<0.01
	CTR	3922.49	3	<0.01
TD020	UM NU	9447.34	3 3	<0.01
TB030	OFV	11314.97 10936.9	3	<0.01 <0.01
	HV	304.69	3	<0.01
	IGD	304.69	3	<0.01 <0.01
	ET	15345.93	3	<0.01
	CTR	3198.08	3	<0.01
	UM	8331.61	3	<0.01
TB040	NU	12760.64	3	<0.01
10040	OFV	14272.72	3	<0.01
	HV	305.1	3	<0.01
	IGD	333.49	3	<0.01
	ET	15919.32	3	<0.01
	CTR	2532.68	3	<0.01
	UM	7814.21	3	<0.01
TB050	NU	12751.93	3	<0.01
12000	OFV	16900.6	3	<0.01
	HV	271.09	3	<0.01
	IGD	326.32	3	<0.01
	ET	15545.2	3	< 0.01
	CTR	2560.54	3	< 0.01
	UM	7026.33	3	< 0.01
TB060	NU	12921.85	3	< 0.01
	OFV	16677.85	3	< 0.01
	HV	264.19	3	< 0.01
	IGD	324.69	3	< 0.01
	ET	15073.58	3	< 0.01
	CTR	2153.51	3	< 0.01
	UM	6296.26	3	< 0.01
TB070	NU	12713.91	3	< 0.01
	OFV	17128.84	3	< 0.01
	HV	260.18	3	< 0.01
	IGD	342.99	3	< 0.01
	ET	14849.56	3	< 0.01
	CTR	1784.17	3	< 0.01
	UM	5965.88	3	< 0.01
TB080	NU	12387.48	3	<0.01
	OFV	17096.19	3	<0.01
	HV	254.47	3	<0.01
	IGD	333.43	3	<0.01
FDOOG	ET	14676.57	3	<0.01
TB090	CTR	1907.43	3	<0.01
	UM	5502.07	3	< 0.01

TB	Metric	ChiSq	DF	p
	NU	12600.24	3	< 0.01
TB090	OFV	16455.17	3	< 0.01
1 0090	HV	251.41	3	< 0.01
	IGD	352.39	3	< 0.01
	ET	14475.82	3	< 0.01
	CTR	1739.36	3	< 0.01
	UM	5837.61	3	< 0.01
TB100	NU	12634.37	3	< 0.01
	OFV	16573.07	3	< 0.01
	HV	248.31	3	< 0.01
	IGD	348.79	3	< 0.01

TABLE 28. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, ANU))

- T-D			I	ET	С	TR	U	M	N	īU	О	FV	I	ΙV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	p	A12	p	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01
FFD 04 0	NSGA2	CellDE	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1,R010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	l	< 0.01	>0.9	< 0.01	< 0.5	
	MoCell	CellDE	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	l	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TD000	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01			>0.9	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TDOO	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 5030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TP040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01
TB040	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TR050	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01		>0.05	>0.5	< 0.01	>0.5	< 0.01	l	< 0.01	>0.5	< 0.01	1	>0.05
TB060	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell				< 0.01										
	NSGA2	SPEA2				< 0.01										
TB070	NSGA2	CellDE				< 0.01										
1 007 0	MoCell	SPEA2				< 0.01										
	MoCell	CellDE				< 0.01					l	l	1		1	
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	<0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Alaarithm A	AlgorithmB	I	ET	С	TR	U	M	N	IU	О	FV	I	IV	IC	GD
1 D	AigoriumA	Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 0 0	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 29. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, ANU))

ТВ	M-1		Rai	nk			Confic	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB010	NU	2	3	1	4	20%	30%	10%	40%
ı	OFV	3	4	2	1	30%	40%	20%	10%
,	HV	3	4	2	1	30%	40%	20%	10%
	IGD	3	2	2	1	38%	25%	25%	12%
	ET	3	2	4	1	30%	20%	40%	10%
,	CTR	3	2	4	1	30%	20%	40%	10%
,	UM	2	3	1	4	20%	30%	10%	40%
TB020	NU	2	3	1	4	20%	30%	10%	40%
l l	OFV	2	3	1	4	20%	30%	10%	40%
,	HV	3	3	2	1	33%	33%	22%	11%
,	IGD	4	2	3	1	40%	20%	30%	10%
	ET	3	2	4	1	30%	20%	40%	10%
,	CTR	2	2	3	1	25%	25%	38%	12%
,	UM	2	3	1	4	20%	30%	10%	40%
TB030	NU	2	3	1	4	20%	30%	10%	40%
,	OFV	2	3	1	4	20%	30%	10%	40%
,	HV	3	4	2	1	30%	40%	20%	10%
ļ	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	3	1	33%	22%	33%	11%
	UM	2	3	1	4	20%	30%	10%	40%
TB040	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	4	2	1	30%	40%	20%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB050	UM	2	3	1	4	20%	30%	10%	40%
	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%

TD	M-1		Raı	ık			Confic	lence	
ТВ	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB050	HV	3	4	2	1	30%	40%	20%	10%
1 0000	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	3	1	33%	22%	33%	11%
	UM	2	3	1	4	20%	30%	10%	40%
TB060	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	4	2	1	30%	40%	20%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB070	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	3	2	1	33%	33%	22%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB080	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	4	2	1	30%	40%	20%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB090	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	4	2	1	30%	40%	20%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	3	2	1	33%	33%	22%	11%
	IGD	3	2	4	1	30%	20%	40%	10%

B.3.2.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU). TABLE 30. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	20132.13	3	< 0.01
	CTR	10232.87	3	< 0.01
	UM	26652.47	3	< 0.01
TB010	NUU	9970.99	3	< 0.01
	OFV	5639.29	3	< 0.01
	HV	338	3	< 0.01
	IGD	350.82	3	< 0.01
	ET	27279.29	3	< 0.01
	CTR	7702.04	3	< 0.01
	UM	28703.62	3	< 0.01
TB020	NUU	7703.96	3	< 0.01
	OFV	1068.84	3	< 0.01
	HV	357.87	3	< 0.01
	IGD	354.65	3	< 0.01
TB030	ET	27760.09	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	3266.13	3	< 0.01
	UM	27750.99	3	< 0.01
TB030	NUU	3351.81	3	< 0.01
1 0030	OFV	9369.14	3	< 0.01
	HV	364.69	3	< 0.01
	IGD	359.18	3	< 0.01
	ET	25771.08	3	< 0.01
	CTR	1270.27	3	< 0.01
	UM	25017.83	3	< 0.01
TB040	NUU	1356.11	3	< 0.01
	OFV	16445.96	3	< 0.01
	HV	358.2	3	< 0.01
	IGD	353.8	3	< 0.01
	ET	22461.26	3	<0.01
	CTR	799	3	<0.01
	UM	21647.7	3	<0.01
TB050	NUU	862.54	3	<0.01
10000	OFV	18679.73	3	<0.01
	HV	362.09	3	<0.01
	IGD	358.53	3	<0.01
	ET	17937.81	3	<0.01
	CTR	1128.28	3	<0.01
TD0.00	UM	17083.95	3	<0.01
TB060	NUU	1153.27	3	< 0.01
	OFV	16718.96	3	< 0.01
	HV	356.93	3	< 0.01
	IGD	354.22	3	< 0.01
	ET	15709.74	3	< 0.01
	CTR	95.62	3	< 0.01
	UM	15313.14	3	< 0.01
TB070	NUU	107.24	3	< 0.01
	OFV	14937.86	3	< 0.01
	HV	355.55	3	< 0.01
	IGD	354.87	3	< 0.01
	ET	15074.36	3	< 0.01
	CTR	289.72	3	< 0.01
	UM	14192.67	3	< 0.01
TB080	NUU	314.1	3	< 0.01
	OFV	14532.05	3	< 0.01
	HV	359.17	3	< 0.01
	IGD	357.78	3	< 0.01
	ET	12310.17	3	< 0.01
	CTR	372.88	3	< 0.01
	UM	11280.3	3	< 0.01
TB090	NUU	403.49	3	< 0.01
	OFV	12073.85	3	< 0.01
	HV	360.89	3	< 0.01
	IGD	353.55	3	< 0.01
	ET	12749.06	3	< 0.01
	CTR	215.84	3	< 0.01
	UM	11884.92	3	< 0.01
TB100	NUU	221.1	3	< 0.01
	OFV	12600.48	3	<0.01
	HV	360.76	3	< 0.01
	IGD	357.62	3	<0.01
	100	007.02		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

TABLE 31. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, PUU))

TD	A.1 *r1 A	A1 '(1 D	I	ET	С	TR	U	J M	N	UU	О	FV	I	IV	I	GD
TB	AlgorithmA	Algorithmb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	p	A12	р
	NSGA2	MoCell	< 0.5		>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TDO10	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	
ED 000	NSGA2	CellDE	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	I
TB020 -	MoCell	SPEA2	>0.9			< 0.01	>0.9	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01		I
	MoCell	CellDE	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01		
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		
	NSGA2	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5			< 0.01	<0.1	
TB030	MoCell	SPEA2	>0.9			< 0.01	>0.9	< 0.01	>0.5	< 0.01			< 0.1	< 0.01	>0.9	
	MoCell	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	<0.1	
-	SPEA2	CellDE	<0.1	< 0.01	1	< 0.01	<0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01		
	NSGA2	MoCell	<0.1	< 0.01		< 0.05	<0.1	< 0.01	< 0.5	>0.05		< 0.01	>0.9	< 0.01		< 0.01
-	NSGA2	SPEA2	>0.1	< 0.01		< 0.03	>0.1 >0.5	< 0.01	>0.5	<0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	
-	NSGA2	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01		< 0.01
TB040 -	MoCell	SPEA2	>0.1	< 0.01		< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.1 >0.5	< 0.01	<0.1	< 0.01		
-	MoCell	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	<0.1	I
	SPEA2	CellDE	<0.1	< 0.01	1	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	I
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
-	NSGA2	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01		
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01
TB050	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	I
-	MoCell	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1			< 0.01	<0.1	
-	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01		< 0.01	<0.1	
	NSGA2	MoCell			<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01			<0.1	
			<0.1	< 0.01	_								>0.9	< 0.01		<0.01
	NSGA2 NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	
TB060		CellDE SPEA2	<0.1	<0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell		>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	SPEA2	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01		< 0.01		
	NSGA2	MoCell	<0.1									< 0.01				
	NSGA2	SPEA2	>0.5									< 0.01				
TB070	NSGA2	CellDE	<0.1		1	I				< 0.01						<0.01
	MoCell	SPEA2	>0.9	1	1	I		I		< 0.01					1	<0.01
	MoCell	CellDE	<0.1		1	I	<0.1	< 0.01		< 0.01					1	
	SPEA2	CellDE	<0.1				<0.1	< 0.01		< 0.01						
	NSGA2	MoCell	<0.1				<0.1	< 0.01		< 0.01			1		1	1
	NSGA2	SPEA2	>0.5		1	I		l		< 0.01	1				1	< 0.01
TB080	NSGA2	CellDE	< 0.1		1		<0.1			< 0.01					1	< 0.01
	MoCell	SPEA2	>0.9									< 0.01			1	< 0.01
	MoCell	CellDE	< 0.1				<0.1			< 0.01						< 0.01
	SPEA2	CellDE	< 0.1			>0.05		< 0.01		>0.05				< 0.01		< 0.01
	NSGA2	MoCell	< 0.1				<0.1	< 0.01								< 0.01
	NSGA2	SPEA2	>0.5		1			< 0.01								< 0.01
TB090	NSGA2	CellDE	< 0.1		1	I	< 0.1	< 0.01					1		1	< 0.01
	MoCell	SPEA2	>0.9					< 0.01								< 0.01
[1 10 01	1 × 0 F	L ~ 0 01	L -0 1	L ~ 0 01	- 0 F	-0 01		- 0 01	1 × 0 0	-0 01	L -0 1	< 0.01
	MoCell SPEA2	CellDE CellDE	<0.1		1	I	<0.1			<0.01 <0.01						< 0.01

ТВ	AlgorithmA	AlgorithmB	ET		CTR		UM		N	NUU		OFV		HV		IGD	
			A12	p													
TB100	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	

TABLE 32. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, AUM, PUU))

ТВ	Metric		Ra			Confidence				
1 D		NSGA2 MoCell SPEA2 CellD				NSGA2	MoCell	SPEA2	CellDE	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	4	1	30%	20%	40%	10%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB010	NUU	3	2	4	1	30%	20%	40%	10%	
	OFV	3	2	4	1	30%	20%	40%	10%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	4	2	3	1	40%	20%	30%	10%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB020	NUU	4	2	3	1	40%	20%	30%	10%	
	OFV	2	3	1	1	29%	43%	14%	14%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	4	3	2	1	40%	30%	20%	10%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB030	NUU	4	3	2	1	40%	30%	20%	10%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	2	1	30%	40%	20%	10%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB040	NUU	3	3	2	1	33%	33%	22%	11%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	2	1	30%	40%	20%	10%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB050	NUU	3	4	2	1	30%	40%	20%	10%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	1	2	30%	40%	10%	20%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB060	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
TB070	CTR	1	3	1	2	14%	43%	14%	29%	
	UM	2	3	1	4	20%	30%	10%	40%	

ТВ	Metric		Rai	nk		Confidence				
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
	NUU	1	2	1	1	20%	40%	20%	20%	
TB070	OFV	2	3	1	4	20%	30%	10%	40%	
1 DU/ U	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	1	29%	43%	14%	14%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB080	NUU	2	3	1	1	29%	43%	14%	14%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	1	2	30%	40%	10%	20%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB090	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	4	1	3	20%	40%	10%	30%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB100	NUU	2	3	1	1	29%	43%	14%	14%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	

 $\hbox{B.3.2.8} \quad \hbox{Problem 8: This section describes the results for prioritization problem } f(PET, PTR, PUS, ANU).$

TABLE 33. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	22348.63	3	< 0.01
	CTR	12850.72	3	< 0.01
	USP	1239.19	3	< 0.01
TB010	NU	21879.45	3	< 0.01
	OFV	7286.38	3	< 0.01
	HV	267.79	3	< 0.01
	IGD	266.67	3	< 0.01
	ET	25089.15	3	< 0.01
	CTR	5803.09	3	< 0.01
	USP	1212.27	3	< 0.01
TB020	NU	25417.7	3	< 0.01
	OFV	1133.87	3	< 0.01
	HV	319.85	3	< 0.01
	IGD	337.82	3	< 0.01
	ET	22127.3	3	< 0.01
	CTR	1427.49	3	< 0.01
	USP	2099.24	3	< 0.01
TB030	NU	22520.72	3	< 0.01
	OFV	14777.85	3	< 0.01
	HV	316.62	3	< 0.01
	IGD	349.97	3	< 0.01
	ET	19208.87	3	< 0.01
	CTR	1515.76	3	< 0.01
TB040	USP	1667.74	3	< 0.01
1 0040	NU	18756.88	3	< 0.01
	OFV	17072.26	3	< 0.01
	HV	336.28	3	< 0.01

TB	Metric	ChiSq	DF	p
TB040	IGD	352.3	3	< 0.01
	ET	21154.45	3	< 0.01
	CTR	2427.8	3	< 0.01
	USP	3974.12	3	< 0.01
TB050	NU	20976.07	3	< 0.01
	OFV	20906.29	3	< 0.01
	HV	333.44	3	< 0.01
	IGD	339.29	3	< 0.01
	ET	20777.51	3	< 0.01
	CTR	3095.85	3	< 0.01
	USP	3083.38	3	< 0.01
TB060	NU	19585.14	3	< 0.01
	OFV	20864.82	3	< 0.01
	HV	345.67	3	< 0.01
	IGD	359.88	3	< 0.01
	ET	19201	3	< 0.01
	CTR	2449.92	3	< 0.01
	USP	3293.44	3	< 0.01
TB070	NU	19788.13	3	< 0.01
	OFV	20085.98	3	< 0.01
	HV	332.77	3	< 0.01
	IGD	358.85	3	< 0.01
	ET	20820.2	3	< 0.01
	CTR	2791.25	3	< 0.01
	USP	2847.34	3	< 0.01
TB080	NU	19209.54	3	< 0.01
	OFV	21316.64	3	< 0.01
	HV	339.55	3	< 0.01
	IGD	NaN	3	NaN
	ET	18895.58	3	< 0.01
	CTR	2717.44	3	< 0.01
	USP	3211.8	3	< 0.01
TB090	NU	18536.42	3	< 0.01
	OFV	19342.4	3	< 0.01
	HV	336.85	3	< 0.01
	IGD	356.18	3	< 0.01
	ET	20626.36	3	< 0.01
	CTR	3340.29	3	< 0.01
	USP	3469.27	3	< 0.01
TB100	NU	19863.64	3	< 0.01
	OFV	21242.49	3	< 0.01
	HV	337.32	3	< 0.01
	IGD	360.54	3	< 0.01

TABLE 34. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, PUS, ANU))

ТВ	Algorithm A	AlgorithmB	E	ET	C	TR	U	SP	N	IU	О	FV	I	IV	IC	GD
10	Aigonumia	Aigontimib	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TD	A.1 1/1 A	41 'd D	I	ET	C	TR	U	SP	N	IU	О	FV	H	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5		>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5			< 0.01		< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
TB030	MoCell	SPEA2	>0.5	< 0.01		< 0.01		< 0.01	1	< 0.01	1	1		< 0.01		< 0.01
	MoCell	CellDE	< 0.1	< 0.01		< 0.01		< 0.01	< 0.1	< 0.01	< 0.5			< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01		>0.05		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5		< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01		< 0.01		< 0.01		< 0.01				< 0.01		< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01	1	1		< 0.01		< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01	<0.5	1		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01		< 0.01	<0.1	< 0.01	<0.1			< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	<0.5	< 0.01	< 0.5			< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5	1	<0.5	< 0.01		< 0.01
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01		< 0.01	1	< 0.01	1	< 0.01		< 0.01	1	< 0.01
TB050	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01			>0.1	< 0.01	1			< 0.01	1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01		< 0.01	<0.1	< 0.01		< 0.01		< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01		< 0.01	1	< 0.01	<0.1	1		< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.01		< 0.03	<0.5	< 0.01	<0.1	< 0.01		< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.1	< 0.01	< 0.5	< 0.01			>0.5	< 0.01	1	l		< 0.01		< 0.01
	NSGA2	CellDE	>0.5 <0.1	< 0.01	<0.5	< 0.01		< 0.01	<0.1	< 0.01		< 0.01	>0.5	< 0.01	<0.1	<0.01
TB060	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01		< 0.01		< 0.01		< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01		< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01
							1									
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01		< 0.01	<0.1	< 0.01	<0.1	< 0.01		< 0.01	<0.1	<0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.5			< 0.01	<0.1	<0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	1	1		< 0.01		<0.01
TB070	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	1	< 0.01	1	< 0.01	<0.1				<0.1	<0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01		< 0.01	<0.1	< 0.01		<0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01		< 0.01	<0.1	<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5		<0.5	< 0.01	=0.5	>0.05
TB080	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01		>0.05		< 0.01						
	MoCell	SPEA2						< 0.01								
	MoCell	CellDE														>0.05
	SPEA2	CellDE		< 0.01												>0.05
	NSGA2	MoCell		< 0.01					1		1	1				
	NSGA2	SPEA2		< 0.01												
TB090	NSGA2	CellDE		< 0.01												
	MoCell	SPEA2		< 0.01												
	MoCell	CellDE		< 0.01					1		1	1				
	SPEA2	CellDE		< 0.01												
	NSGA2	MoCell		< 0.01								< 0.01				
	NSGA2	SPEA2		< 0.01												
TB100	NSGA2	CellDE		< 0.01								< 0.01				
	MoCell	SPEA2		< 0.01								< 0.01				
	MoCell	CellDE		< 0.01												< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 35. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, PUS, ANU))

	25.4		Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	USP	2	4	3	1	20%	40%	30%	10%
TB010	NU	2	3	1	4	20%	30%	10%	40%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	3	2	2	1	38%	25%	25%	12%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	USP	2	4	3	1	20%	40%	30%	10%
TB020	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	USP	2	3	1	1	29%	43%	14%	14%
TB030	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	USP	3	4	1	2	30%	40%	10%	20%
TB040	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	USP	3	4	1	2	30%	40%	10%	20%
TB050	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	4	2	3	10%	40%	20%	30%
TTD 0.40	USP	2	4	1	3	20%	40%	10%	30%
TB060	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
TDOTO	USP	3	4	1	2	30%	40%	10%	20%
TB070	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TDOO	CTR	2	4	1	3	20%	40%	10%	30%
TB080	USP	2	3	1	2	25%	38%	12%	25%
	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%

ТВ	Metric		Rai	nk			Confid	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB080	HV	3	2	4	1	30%	20%	40%	10%
1 0000	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	USP	3	4	1	2	30%	40%	10%	20%
TB090	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	USP	2	3	1	2	25%	38%	12%	25%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

 $\hbox{B.3.2.9}\quad \hbox{Problem 9: This section describes the results for prioritization problem } f(PET,PTR,PUS,PUU).$

TABLE 36. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, PUS, PUU))

ТВ	Metric	ChiSq	DF	p
	ET	1419.89	3	< 0.01
	CTR	180.48	3	< 0.01
	USP	156.76	3	< 0.01
TB010	NUU	191.61	3	< 0.01
	OFV	39.46	3	< 0.01
	HV	344	3	< 0.01
	IGD	NaN	3	NaN
	ET	1122.86	3	< 0.01
	CTR	84.83	3	< 0.01
	USP	5.53	3	>0.05
TB020	NUU	89.52	3	< 0.01
	OFV	284.66	3	< 0.01
	HV	351.12	3	< 0.01
	IGD	NaN	3	NaN
	ET	815.55	3	< 0.01
	CTR	20.27	3	< 0.01
	USP	36.29	3	< 0.01
TB030	NUU	20.7	3	< 0.01
	OFV	345.56	3	< 0.01
	HV	354.43	3	< 0.01
	IGD	NaN	3	NaN
	ET	616.92	3	< 0.01
	CTR	116.14	3	< 0.01
	USP	30.62	3	< 0.01
TB040	NUU	113.2	3	< 0.01
	OFV	567.61	3	< 0.01
	HV	353.34	3	< 0.01
	IGD	NaN	3	NaN
	ET	552.54	3	< 0.01
	CTR	41.17	3	< 0.01
	USP	16.57	3	< 0.01
TB050	NUU	37.04	3	< 0.01
	OFV	497.61	3	< 0.01
	HV	354.87	3	< 0.01
	IGD	NaN	3	NaN
TB060	ET	566.02	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	22.1	3	< 0.01
	USP	19.02	3	< 0.01
TB060	NUU	20.59	3	< 0.01
1 0000	OFV	545.06	3	< 0.01
	HV	351.23	3	< 0.01
	IGD	NaN	3	NaN
	ET	456.75	3	< 0.01
	CTR	66.09	3	< 0.01
	USP	11.19	3	< 0.05
TB070	NUU	55.88	3	< 0.01
	OFV	436.41	3	< 0.01
	HV	350	3	< 0.01
	IGD	NaN	3	NaN
	ET	541.56	3	< 0.01
	CTR	30.82	3	< 0.01
	USP	45.33	3	< 0.01
TB080	NUU	24.44	3	< 0.01
	OFV	528.98	3	< 0.01
	HV	351.62	3	< 0.01
	IGD	NaN	3	NaN
	ET	442.83	3	< 0.01
	CTR	67.74	3	< 0.01
	USP	29.43	3	< 0.01
TB090	NUU	60.39	3	< 0.01
	OFV	445.13	3	< 0.01
	HV	348.58	3	< 0.01
	IGD	NaN	3	NaN
	ET	454.23	3	< 0.01
	CTR	94.12	3	< 0.01
	USP	21.46	3	< 0.01
TB100	NUU	106.29	3	< 0.01
	OFV	456.39	3	< 0.01
	HV	349.55	3	< 0.01
	IGD	NaN	3	NaN

TABLE 37. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlgorithmB	F	ET	С	TR	U	SP	N	UU	О	FV	F	IV	I	GD
10	AiguittiiiiA	Aiguittiiii	A12	p	A12	p										
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	=0.5	>0.05
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
10010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	=0.5	>0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05

TED	A1 '-1 A	41 'd D	I	ET	С	TR	U	SP	N	UU	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р										
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5		< 0.5	< 0.01	>0.9		=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01	< 0.5			>0.05
TED 0 40	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.5		< 0.1	< 0.01	>0.9		1	>0.05
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5		>0.9	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TROFO	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TDOCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	=0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5		< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5		>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5		< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01		>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05			< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	> 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5		>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5		< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5		>0.9	< 0.01	< 0.1	< 0.01		>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5		< 0.1	< 0.01	>0.9	< 0.01		>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01		>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01		>0.05
12100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	>0.5			< 0.01	< 0.1	< 0.01		>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

TABLE 38. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, PUS, PUU))

ТВ	Metric		Rai	nk			Confid	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	USP	1	1	1	2	20%	20%	20%	40%
TB010	NUU	2	2	2	1	29%	29%	29%	14%
	OFV	2	2	2	1	29%	29%	29%	14%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
TB020	ET	3	2	4	1	30%	20%	40%	10%
1 0020	CTR	3	3	1	2	33%	33%	11%	22%

			Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	USP	1	2	2	2	14%	29%	29%	29%
	NUU	3	3	1	2	33%	33%	11%	22%
TB020	OFV	2	3	1	3	22%	33%	11%	33%
1 2020	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	1	33%	17%	33%	17%
	USP	2	1	2	2	29%	14%	29%	29%
TB030	NUU	2	1	2	1	33%	17%	33%	17%
1 0030	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	29%	40%	10%
		1							
	IGD		1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	1	2	38%	25%	12%	25%
	USP	1	1	1	2	20%	20%	20%	40%
TB040	NUU	3	2	1	2	38%	25%	12%	25%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	1	3	2	33%	11%	33%	22%
	USP	1	1	2	1	20%	20%	40%	20%
TB050	NUU	3	1	3	2	33%	11%	33%	22%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	2	29%	14%	29%	29%
	USP	1	1	1	2	20%	20%	20%	40%
TB060	NUU	2	1	2	2	29%	14%	29%	29%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	3	2	25%	12%	38%	25%
	USP	1	1	1	2	20%	20%	20%	40%
TB070	NUU	2	1	3	2	25%	12%	38%	25%
120.0	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	1	25%	25%	25%	25%
	USP	1	1	3	2	14%	14%	43%	29%
TB080	NUU	1	1	1	1	25%	25%	25%	25%
1 5000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
	USP	1			2	25%	20%	25%	40%
TDOO	NUU		1	2	3	25%	12%	25%	38%
TB090	OFV	2	1			25%			
		2	3	1	4		30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
TD100	ET	3	2	4	1	30%	20%	40%	10%
TB100	CTR	2	1	1	3	29%	14%	14%	43%
	USP	1	1	2	3	14%	14%	29%	43%

ТВ	Metric		Rai	nk			Confid	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	NUU	3	2	1	4	30%	20%	10%	40%
TB100	OFV	2	3	1	4	20%	30%	10%	40%
1 1 1 1 1 0 0	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%

B.3.2.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU). TABLE 39. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW3, f(PET, PTR, ANU, PUU))

ТВ	Metric	ChiSq	DF	p
	ET	20801.85	3	< 0.01
	CTR	15159.31	3	< 0.01
	NU	22613.35	3	< 0.01
TB010	NUU	15335.32	3	< 0.01
	OFV	12729.8	3	< 0.01
	HV	278.33	3	< 0.01
	IGD	304.16	3	< 0.01
	ET	23976.2	3	< 0.01
	CTR	10543.02	3	< 0.01
	NU	26336.16	3	< 0.01
TB020	NUU	10697.19	3	< 0.01
	OFV	3149.16	3	< 0.01
	HV	254.62	3	< 0.01
	IGD	330.06	3	< 0.01
	ET	25705.3	3	< 0.01
	CTR	10357.52	3	< 0.01
	NU	26784.19	3	< 0.01
TB030	NUU	10269.36	3	< 0.01
	OFV	11342.3	3	< 0.01
	HV	288.16	3	< 0.01
	IGD	338.2	3	< 0.01
	ET	27446.39	3	< 0.01
	CTR	10402.04	3	< 0.01
	NU	27606.44	3	< 0.01
TB040	NUU	10547.45	3	< 0.01
	OFV	18163.1	3	< 0.01
	HV	311.13	3	< 0.01
	IGD	334.45	3	< 0.01
	ET	27039.27	3	< 0.01
	CTR	12028.95	3	< 0.01
	NU	28084.12	3	< 0.01
TB050	NUU	12217.1	3	< 0.01
	OFV	23880.36	3	< 0.01
	HV	307.67	3	< 0.01
	IGD	365.32	3	< 0.01
	ET	28306.99	3	< 0.01
	CTR	12661.75	3	< 0.01
	NU	28653.71	3	< 0.01
TB060	NUU	12895.24	3	< 0.01
	OFV	27042.88	3	< 0.01
	HV	323.6	3	< 0.01
	IGD	368.37	3	< 0.01
	ET	27684.96	3	< 0.01
	CTR	13286.22	3	< 0.01
TB070	NU	28944.16	3	< 0.01
1 00/0	NUU	13489.64	3	< 0.01
	OFV	28118.91	3	< 0.01
	HV	318.84	3	< 0.01

TB	Metric	ChiSq	DF	p
TB070	IGD	365.55	3	< 0.01
	ET	27585.13	3	< 0.01
	CTR	12872.58	3	< 0.01
	NU	28433.94	3	< 0.01
TB080	NUU	13230.66	3	< 0.01
	OFV	28904.78	3	< 0.01
	HV	306.42	3	< 0.01
	IGD	356.59	3	< 0.01
	ET	28174.22	3	< 0.01
	CTR	13233.97	3	< 0.01
	NU	27618.28	3	< 0.01
TB090	NUU	13419.6	3	< 0.01
	OFV	29724.34	3	< 0.01
	HV	318.38	3	< 0.01
	IGD	363.88	3	< 0.01
	ET	28062.57	3	< 0.01
	CTR	12388.42	3	< 0.01
	NU	28507.45	3	< 0.01
TB100	NUU	12576.73	3	< 0.01
	OFV	29305.51	3	< 0.01
	HV	310.25	3	< 0.01
	IGD	360.61	3	< 0.01

TABLE 40. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW3, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlaarithmD	I	ET	С	TR	N	IU	N	UU	О	FV	H	IV	I	GD
1 1 1	AigoriumiA	Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Λ 1 ~ ~ · · · · · · · · · · · Λ	A la a sei the see D	1	ET	C	TR	N	JU	N	UU	О	FV	H	IV	IC	GD
1 1 1 1	AlgorithmA	Algorithmb	A12	р												
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	,	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 0 0	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 41. Rank Results for each Multi-Objective Algorithms (AW3, f(PET, PTR, ANU, PUU))

ТВ	Metric		Rai	nk			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	NU	2	3	1	4	20%	30%	10%	40%
TB010	NUU	3	2	4	1	30%	20%	40%	10%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	IGD	4	2	3	1	40%	20%	30%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	2	1	38%	25%	25%	12%
	NU	2	3	1	4	20%	30%	10%	40%
TB020	NUU	4	2	3	1	40%	20%	30%	10%
	OFV	4	3	2	1	40%	30%	20%	10%
	HV	4	2	3	1	40%	20%	30%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB030	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

TD	Matri		Ra	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB040	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	3	22%	33%	11%	33%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB050	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB060	NUU	3	4	1	2	30%	40%	10%	20%
10000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3		1	2	30%	40%	10%	20%
	NU	2	3	1 1		20%	30%	10%	40%
TB070	NUU	3		1	2	30%	40%	10%	20%
1 DU/ U	OFV	2	4					10%	40%
			3	1	4	20%	30%		
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
TTD 000	NU	2	3	1	4	20%	30%	10%	40%
TB080	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB090	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB100	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.3.2.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 42. Results of the Holm–Bonferroni method among Multi-Objective Algorithms for HV and IGD (AW3)

Problem	ТВ	Kruskal-Wal	lis Test	Mann-Whitney U Test		
rrobiem	10	adjusted_p	reject	adjusted_p	reject	
Prob.1 f(PET,PTR,AUM)	TB010	< 0.01	Y	< 0.01	Y	
1700.1 J(1 L1,1 1 K,21 CHV1)	TB020	< 0.01	Y	< 0.01	Y	

Problem	ТВ	Kruskal-Wa	ıllis Test	Mann-Whitne	y U Test
Tioblem		adjusted_p	reject	adjusted_p	reject
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
	TB050	< 0.01	Y	< 0.01	Y
<i>Prob.1 f(PET,PTR,AUM)</i>	TB060	< 0.01	Y	< 0.01	Y
- · · · · · · · · · · · · · · · · · · ·	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	N/A	N/A	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	N/A	N/A	< 0.01	Y
	TB040	N/A	N/A	< 0.01	Y
<i>Prob.2 f(PET,PTR,PUS)</i>	TB050	N/A	N/A	< 0.01	Y
1,00,2)(1,21)(1,11)(1,010)	TB060	N/A	N/A	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	N/A	N/A	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB050	< 0.01	Y	< 0.01	Y
FIOU.S J(FLI,FIK,ANG)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	N/A	N/A	< 0.01	Y
	TB030	N/A	N/A	< 0.01	Y
	TB040	N/A	N/A	< 0.01	Y
D 1 4 ((DET DED DILLI)	TB050	< 0.01	Y	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	<0.01	Y
	TB030	< 0.01	Y	<0.01	Y
	TB040	< 0.01	Y	<0.01	Y
D. L. F. W. DEFENDED. AND A STATE OF THE STA	TB050	< 0.01	Y	<0.01	Y
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	TB060	< 0.01	Y	<0.01	Y
	TB070	<0.01	Y	<0.01	Y
	TB080	<0.01	Y	<0.01	Y
	TB090	<0.01	Y	<0.01	Y
	TB100	<0.01	Y	<0.01	Y
	TB010	<0.01	Y	<0.01	Y
	TB020	<0.01	Y	<0.01	Y
	TB030	<0.01	Y	<0.01	Y
	TB040	<0.01	Y	<0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB050	<0.01	Y	<0.05	Y
1 100.0 j(1 L1,1 1 K,AUIVI,AIVU)	TB050	<0.01	Y	<0.03	<u> </u>
	TB070	<0.01	Y	<0.01	Y
	TB070		Y	<0.01	Y
		<0.01	Y	1	
	TB090	< 0.01	<u> </u>	< 0.01	Y

Problem	ТВ	Kruskal-Wallis Test		Mann-Whitne	ey U Test
		adjusted_p	reject	adjusted_p	reject
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	TB100	< 0.01	Y	< 0.01	Y
·	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Duals 7 (/DET DTD ALIM DILLI)	TB050	< 0.01	Y	< 0.01	Y
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y	< 0.01	Y
Prov.8 J(PE1,P1K,PUS,ANU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	N/A	N/A	< 0.01	Y
	TB020	N/A	N/A	< 0.01	Y
	TB030	N/A	N/A	< 0.01	Y
	TB040	N/A	N/A	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB050	N/A	N/A	< 0.01	Y
1100.9 j(FL1,F1K,F43,F44)	TB060	N/A	N/A	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	N/A	N/A	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y	< 0.01	Y
1 100.10 j(1 L1,1 1 N,ANU,F UU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y

Note that $\mathbf{Adjusted}_{\mathbf{p}}$ refers to all adjusted p-value results. If $\mathbf{Adjusted}_{\mathbf{p}} < 0.05$ (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If $\mathbf{Adjusted_p} > 0.05$, it means there is at least one adjusted p-value that is greater than 0.05. * **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.3.3 Experiment Results for RQ4

This section describes the results for Experiment Results for RQ4.

TABLE 43 Results for the Kruskal-Wallis Test among Test Case Prioritization Problems (AW3)

Metric	ChiSq	DF	p
ANOU	25228.33	9	< 0.01

TABLE 44. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (AW3)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	р
Prob.1 f(PET,PTR,AUM)	Prob.2 f(PET,PTR,PUS)	SPEA2	SPEA2	>0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.3 f(PET,PTR,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	>0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	>0.5	>0.05
Prob.1 f(PET,PTR,AUM)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.3 f(PET,PTR,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.6 f(PET,PTR,AUM,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	>0.05
Prob.2 f(PET,PTR,PUS)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	>0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	>0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	>0.5	>0.05
Prob.4 f(PET,PTR,PUU)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	< 0.5	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.5	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.5	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.9 f(PET,PTR,PUS,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01

TABLE 45
Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Test Case Prioritization Problems (AW3)

Metric	Adjusted_p	Reject
ANOU	<0.01	Ý

^{*} Note that ${\bf Adjusted_p}$ refers to all adjusted p-value results. If ${\bf Adjusted_p} < 0.01$, it means that all adjusted p-values are less than 0.01. **Reject** is ${\bf Y}$, meaning rejecting the null hypothesis.