Logistic Regression and NN Classification

Purpose

In this lecture we will discuss:

- The multi-logit model
- Softmax classification
- Nearest Neighbor classification

Logistic Regression and Softmax Classification

We introduced the logistic (logit) regression model as a generalized linear model where, conditional on a p-dimensional feature vector x, the random response $Y \sim \text{Ber}(h(x^{\top}\beta))$, with

$$h(u) = 1/(1 + e^{-u}).$$

The parameter β is learned from the training data by maximizing the likelihood of the training responses or, equivalently, by minimizing the cross-entropy training loss:

$$-\frac{1}{n}\sum_{i=1}^n \ln g(y_i \mid \boldsymbol{\beta}, \boldsymbol{x}_i),$$

where $g(y = 1 \mid \boldsymbol{\beta}, \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{x}^{\top} \boldsymbol{\beta}}}$ and $g(y = 0 \mid \boldsymbol{\beta}, \boldsymbol{x}) = \frac{e^{-\boldsymbol{x}^{\top} \boldsymbol{\beta}}}{1 + e^{-\boldsymbol{x}^{\top} \boldsymbol{\beta}}}$. In particular, we have

$$\ln \frac{g(y=1 \mid \boldsymbol{\beta}, \boldsymbol{x})}{g(y=0 \mid \boldsymbol{\beta}, \boldsymbol{x})} = \boldsymbol{x}^{\top} \boldsymbol{\beta}. \tag{1}$$

Logit Classification

Hence, the decision boundary $\{x : g(y = 0 | \beta, x) = g(y = 1 | \beta, x)\}$ is the hyperplane $\mathbf{x}^{\top} \boldsymbol{\beta} = 0$.

If the constant feature is considered separately, that is $x = [1, \tilde{x}^{\top}]^{\top}$, then the boundary is an affine hyperplane in \tilde{x} .

Suppose that training on $\tau = \{(x_i, y_i)\}\$ yields the estimate $\widehat{\beta}$ with the corresponding learner $g_{\tau}(y = 1 \mid x) = 1/(1 + e^{-x^{\top}\widehat{\beta}})$.

The learner can be used as a pre-classifier from which we obtain the classifier $\mathbb{I}\{g_{\tau}(y=1|x)>1/2\}$ or, equivalently,

$$\widehat{y} := \underset{j \in \{0,1\}}{\operatorname{argmax}} g_{\tau}(y = j \mid \boldsymbol{x}).$$

Multi-Logit Classification

The classification methodology for the logit model can be generalized to the multi-logit model where the response takes values in the set $\{0, \ldots, c-1\}$.

The key idea is to replace (1) with

$$\ln \frac{g(y=j \mid \mathbf{W}, \boldsymbol{b}, \boldsymbol{x})}{g(y=0 \mid \mathbf{W}, \boldsymbol{b}, \boldsymbol{x})} = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta}_{j}, \quad j=1,\dots,c-1,$$
 (2)

where the matrix $\mathbf{W} \in \mathbb{R}^{(c-1)\times(p-1)}$ and vector $\boldsymbol{b} \in \mathbb{R}^{c-1}$ reparameterize all $\boldsymbol{\beta}_j \in \mathbb{R}^p$ such that (recall $\boldsymbol{x} = [1, \widetilde{\boldsymbol{x}}^\top]^\top$):

$$\mathbf{W}\widetilde{\mathbf{x}} + \mathbf{b} = [\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_{c-1}]^{\mathsf{T}} \mathbf{x}.$$

Thus, the random response Y is assumed to have a conditional probability distribution for which the log-odds ratio with respect to class j and a "reference" class (in this case 0) is linear.

Multi-Logit Classification

The model (2) completely specifies the distribution of Y, namely:

$$g(y | \mathbf{W}, \boldsymbol{b}, \boldsymbol{x}) = \frac{\exp(z_{y+1})}{\sum_{k=1}^{c} \exp(z_k)}, \quad y = 0, \dots, c-1,$$

where z_1 is an arbitrary constant, say 0, corresponding to the "reference" class y = 0, and

$$[z_2,\ldots,z_c]^{\top} := \mathbf{W}\widetilde{\mathbf{x}} + \mathbf{b}.$$

Note: $g(y | \mathbf{W}, \mathbf{b}, \mathbf{x})$ is the (y + 1)-st component of $\mathbf{a} = \operatorname{softmax}(z)$, where

$$softmax: z \mapsto \frac{\exp(z)}{\sum_k \exp(z_k)}$$

6/12

is the softmax function and $z = [z_1, \dots, z_c]^{\top}$.

Multi-Logit Classification

Finally, we can write the classifier as

$$\widehat{y} = \underset{j \in \{0, \dots, c-1\}}{\operatorname{argmax}} a_{j+1}.$$

In summary, we have the sequence of mappings transforming the input x into the output \hat{y} :

$$x \to \mathbf{W}\widetilde{x} + \mathbf{b} \to \operatorname{softmax}(z) \to \underset{j \in \{0, \dots, c-1\}}{\operatorname{argmax}} a_{j+1} \to \widehat{y}.$$

In the context of neural networks, W is called a weight matrix and b is called a bias vector.

Training Loss

The parameters **W** and **b** have to be learned from the training data, which involves minimization of the (supervised version of) the cross-entropy training loss:

$$\frac{1}{n}\sum_{i=1}^{n}\operatorname{Loss}(f(y_i \mid \boldsymbol{x}_i), g(y_i \mid \boldsymbol{\mathbf{W}}, \boldsymbol{b}, \boldsymbol{x}_i)) = -\frac{1}{n}\sum_{i=1}^{n}\ln g(y_i \mid \boldsymbol{\mathbf{W}}, \boldsymbol{b}, \boldsymbol{x}_i).$$

Using the softmax function, the cross-entropy loss can be simplified to:

Loss
$$(f(y | \mathbf{x}), g(y | \mathbf{W}, \mathbf{b}, \mathbf{x})) = -z_{y+1} + \ln \sum_{k=1}^{c} \exp(z_k).$$

K-Nearest Neighbors Classification

Let $\tau = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ be the training set, with $y_i \in \{0, \dots, c-1\}$, and let \boldsymbol{x} be a new feature vector.

Define $x_{(1)}, x_{(2)}, \dots, x_{(n)}$ as the feature vectors ordered by closeness to x in some distance $\operatorname{dist}(x, x_i)$, e.g., the Euclidean distance ||x - x'||.

Let $\tau(x) := \{(x_{(1)}, y_{(1)}), \dots, (x_{(K)}, y_{(K)})\}$ be the subset of τ that contains K feature vectors x_i that are closest to x.

Then the K-nearest neighbors classification rule classifies x according to the most frequently occurring class labels in $\tau(x)$.

If two or more labels receive the same number of votes, the feature vector is classified by selecting one of these labels randomly with equal probability.

Voronoi Tessellation

For the case K = 1 the set $\tau(x)$ contains only one element, say (x', y'), and x is classified as y'. This divides the space into n regions

$$\mathcal{R}_i = \{x : \operatorname{dist}(x, x_i) \leq \operatorname{dist}(x, x_j), j \neq i\}, \quad i = 1, \dots, n.$$

For a feature space \mathbb{R}^p with the Euclidean distance, this gives a Voronoi tessellation of the feature space.

The following figure and Python program show how nearest neighbor classification works for 80 randomly simulated points above and below the line $x_2 = x_1$. Points above the line $x_2 = x_1$ have label 0 and points below this line have label 1.

Example: Nearest Neighbor Classification

Figure: The 1-nearest neighbor algorithm divides up the space into Voronoi cells.

```
import numpy as np
from numpy.random import rand.randn
import matplotlib.pyplot as plt
from scipy.spatial import Voronoi, voronoi_plot_2d
np.random.seed(12345)
M = 80
x = randn(M.2)
y = np.zeros(M) # pre-allocate list
for i in range(M):
    if rand()<0.5:
        x[i.1], v[i] = x[i.0] + np.abs(randn()), 0
    else:
        x[i.1], v[i] = x[i.0] - np.abs(randn()), 1
vor = Voronoi(x)
plt options = {'show vertices':False. 'show points':False.
                'line_alpha':0.5}
fig = voronoi_plot_2d(vor, **plt_options)
plt.plot(x[y==0,0], x[y==0,1], 'bo',
         x[y=1,0], x[y=1,1], 'rs', markersize=3)
```