

Street View Housing Numbers

Specify

Explore - digit recognition in real world images (SVHN Dataset)

Applications - identifying missing postal data in mapping apps as opposed to GPS approximation.

Challenge - classifying a sequence of numbers as opposed to single digits

Plan - focus on recognizing them simultaneously.

About the Data

- Single Digit Recognition
- MNIST 32x32
 - ► Training Set:
 - > 73257 digits
 - ► Test Set:
 - ▶ 26032 digits
 - Images
 - Single digit
 - ► Bounding Boxes [Entire Image]
 - Labels
 - ▶ Digits labeled 1 10
 - ▶ 0 is 10

- Multi Digit Recognition
 - Training Set:
 - ▶ 33402 images
 - ► Test Set:
 - ▶ 13068 images
 - Images
 - ▶ Between 1-6 digits
 - Bounding Boxes [Entire Image + Each Digit]
 - Labels
 - Arrays between 1-6 digits in length
 - ▶ Digits labeled 1-10
 - ▶ 0 is 10

About the Data

Single Digit Recognition

Multi-Digit Recognition

Observe

- Enormous appearance variations in natural images
 - Different fonts
 - Scale
 - Rotations
 - Illumination conditions
- Bounding boxes
 - ► Entire image & individual digit

Preprocessing - Bounding Boxes

- Single digit
 - MNIST images determined using provided bounding boxes

- Multi Digit
 - Increase/decrease the bounding boxes as necessary

Preprocessing

- Single Digit
 - Reshape the input
 - Set label "10" as 0
 - Normalize the images

Multi-digit

- Reshape the input
- Set arrays of length 5 with "10" as a placeholder
- Convert images to greyscale
- Resize images
- Drop poor quality images
- Drop images with >5 digits

True: 153

-> 1 9 10 10 10

-> 1 2 3 10 10

9876 -> 987610

-> 5 10 10 10 10 5

Analyze - Models

Single

Multi

Multi Digit - Neural Network Architecture

lr	put Layer	Hidden Layer 1	Hidden Layer 2	Output Layer	Compiling Step
•	2 Conv 2d	• 2 Conv 2D	• 2 Conv 2D	• Dense	 Ndam Optimizer
•	4 Activation Relu	 2 Activation relu 	 2 Activation relu 	 Softmax Func 	 Binary_crossentrop
•	4 Batch normalization	 2 Batchnormalization 	• 2 Batchnormalizatio	n• 5 outputs laver	Acc Metrics

Maxpooling

Dropout

MaxPooling

Dropout

MaxPooling

Dropout

Accuracy

Single Digit

Model	Parameters	Accuracy
CNN	Relu(2), epoch (3)	19%
MNB	Alpha = .8	19%
KMeans 1	Clusters = 1,822	17.1% Train 7.8% Test
KMeans 2	Clusters = 10,000	38.2% Train 11.4% Test
Random Forest	Criterion = entropy	25.93%

Multi-Digit

Layers	Individual Accuracy	Sequence Accuracy
[Conv2D Maxpooling Dropout] Adam X2 Epoch (30)	91.53%	65.03%
[Conv2D Maxpooling Normalization Dropout] nadam Epoch (30)	96.80%	87.74%

model Output Layer 0 accuracy 0.97 0.96 0.95 0.94 0.93 model Output Layer 1 accuracy 0.97 0.96 9 0.95 model Output Layer 2 accuracy 0.980 8 0.970 model Output Layer 3 accuracy ₹ 0.994 8 0.993 1.00000

Model Training and validation

- Accuracy Plots for the model's 5 output layers
- Signs of overfitting for ouput layers 0 and 1
- Improvement output layer 3 and 4

Validation loss showed a sign of overfitting similar to validation accuracy

Predictions

Reasons for Difficulty:

Angle of Street Numbers

Imbalanced Digit Distribution

Obstructions

Recommendations

Improve the model:

- More data (evenly distributed)
- Splitting training data into validation cross validation
- Image augmentation

Applications:

- Basemap data
- Scanning check amounts at ATM
- Scanned images of patient intake data