RADIO TELESCOPE AS A TIME MACHINE

RAJ BISWAS

RADIO ASTRONOMY LAB, UC BERKELEY

GRCON 2018 Henderson, NV

RADIO TELESCOPES

Some famous radio telescopes: (I-r) VLA, Parkes, GBT, Arecibo

THIS ALSO...

LOOKING BACK IN TIME

THE HYDROGEN STORY

21 cm emission line

source: wikipedia.org

WHAT TO LOOK FOR ?

DIFFICULT?

Credits:
Abhirup dattta

Credits: Switzer, Liu

WHAT MAKES IT WORSE?

For representation purpose only

HYPERION

Aaron

Me

Cherie

Deployment at OVRO

Nipanjana

Sanah

TRADITIONAL APPROACH

Single antenna element

Average over entire sky

Entire system noise should be taken care of

Requires very careful calibration

EDGES telescope

credits: Rogers and Bowman,2018

INTERFEROMETRY

- Cancellation of instrument noise of individual antenna path
- System calibration becomes easier

Cons

- Sky-average cancels out Fourier components
- Can't detect signal

Correlation: $f(t) \star g(t) = \int \hat{f}(\omega) \hat{g}^*(\omega) e^{i\omega t} d\omega$.

PRINCIPLE

Aperture Distribution (What the Antenna receives)

Sky brightness (What comes from the sky)

HYPERION STRATEGY

- Absorptive walls
- Affects antenna beam
- Creates individual horizon for different antenna
- Average over the horizon is nonzero

HYPERION FRONT-END

Fat Dipole

Front-end analog circuit

SYSTEM SCHEMATIC

BACK-END

- - **SNAP** Board

- Xilinx Kintex 7 series FPGA
- 250MHz FPGA clock-rate
- 3 on-board HMCAD1511 digitizers
- 8-bit ADC resolution
- Can use 12 inputs/6inputs/3inputs
- 3x1Gsps / 6x500 Msps / 12x250 Msps
- Approx. \$3k per board

CASPER

Collaboration for Astronomy Signal Processing and Electronics Research

Hardware:

- ROACH
- ROACH2
- SNAP
- SNAP2
- SKARAB

SOFTWARE

CASPER Toolflow

CASPER TOOLFLOW

- GNURadio of Radio Astronomy
- SIMULINK Front-end
- Drag-and-drop design
- Outputs .fpg/.bof files
- Presently Xilinx-based hardware supported
- Python support

- 80MHz across 512 channels
- 1024 pt FFT
- 64-bit data output
- Power in linear scale
- Data packets to RaspberryPi
- Format defined in Python (UV-miriad)

CORRELATOR DESIGN

SWITCH CONTROL


```
o-ThinkPad-T410:~/Desktop/heat_test_Aug14$ python data_uv_capture_latest.py -h
ge: snap_init.py <ROACH_HOSTNAME_or_IP> [options]
ions:
h. --help
                      show this help message and exit
l ACC_LEN, --acc_len=ACC_LEN
                      Set the number of vectors to accumulate between dumps.
                      default is 2*(2^27)/512, or just under 4 seconds. Skip reprogramming the FPGA and configuring EQ.
s, --skip
-b FPGFILE, --fpg=FPGFILE
                      Specify the fpg file to load. Default:
                      dual_input_test 4.fpg
-f FFTSHIFT, --fftshift=FFTSHIFT
                      FFT shift schedule as an integer. Default:0xffff
-t FILETIME, --filetime=FILETIME
                      Time in seconds of each data file. Default:300
-n NNUMBER, --nnumber=NNUMBER
                       enter 1 for first nyquist zone,2 for second etc...
-p INPUTS, --port numbers=INPUTS
                       enter the input ports on the SNAP. Default: 1,9
-d SD, --switchduration=SD
                       for how many integrations, the switch would be in a
                       position
 -q SP, --switchpos=SP
                       enter desired switch position: 0 for Antenna,1 for
                       Noise Diode,2 for Res1 or 3 for Res2
poco@poco-ThinkPad-T410:~/Desktop/heat_test_Aug14$
```


REALITY - NOT A PRETTY PICTURE

SWITCH DEMO

Time (integrations)

Waterfall plot

SWITCHING HISTOGRAM

CALIBRATION CIRCUIT

BANDPASS CALIBRATION

Frequency (MHz)

WHAT ELSE?

THANK YOU !!!

- rajareanne@gmail.com
- github.com/rajareanne