# Физическая программа μμτροна

 $\Phi$ .  $\Phi$ .  $\Phi$ изик<sup>1, 2</sup>

 $^1$ Институт ядерной физики им. Будкера, Новосибирск, 630090, Россия  $^2$ Новосибирский государственный университет, Новосибирск, 630090, Россия

В 2018 году в Институте ядерной физики СО РАН (Новосибирск) начинается сооружение электрон-позитронного коллайдера ( $\mu\mu$ трон), работающего при энергии в системе центра масс вблизи порога рождения пары мюонов. Эта компактная и недорогая машина сооружается в рамках проекта «Электрон-позитронный коллайдер Супер чарм-тау фабрика», отобранного Правительством РФ в список шести мега-проектов для последующей реализации. С ускорительной точки зрения  $\mu\mu$ трон является прототипом для отработки ускорительных идей и технологий, которые будут применяться в большом проекте Супер чарм-тау фабрики. Параметры и конфигурация коллайдера (светимость  $8 \times 10^{31} \ \mathrm{cm}^{-2} \mathrm{c}^{-1}$ , разброс энергии в системе центра масс 400 кэВ, столкновения пучков под «большим углом») позволят провести на нем эксперименты по изучению свойств экзотического атома димюония. Димюоний — это связанное состояние отрицательного и положительного мюонов, которое экспериментально до сих пор не наблюдалось. На  $\mu\mu$ троне за сезон работы (10 $^7$ с) можно будет зарегистриривать около 20 тысяч атомов димюония. Кроме этой главной задачи на коллайдере будут проведены прецизионные измерения сечений процессов  $e^+e^- o \mu^+\mu^-$  и  $e^+e^- o \pi^+\pi^-$  вблизи порогов и изучены эффекты взаимодействия в конечном состоянии в этих реакциях. На  $\mu\mu$ троне можно будет провести эксперимент по прецизионному измерению в реакции  $e^+e^- o e^+e^-\pi^0$  двухфотонной ширины  $\pi^0$ -мезона, которая с точностью лучше 1% рассчитывается в рамках квантовой хромодинамики, а также эксперименты по поиску «темного фотона».

### І. Введение

Исследование свойств экзотических атомов — это одно из направлений исследований на стыке атомной физики и физики элементарных частиц, которое активно развивается в последние годы. В качестве примера можно привести эксперимент DIRAC (ЦЕРН), в котором из измерения времени жизни  $\pi^+\pi^-$  атома [1], дипиония, была извлечена разность длин  $\pi^-\pi$  рассеяния  $|a_0-a_2|$ , с высокой точностью предсказываемая в рамках КХД. В 2017 году в этом же эксперименте было проведено измерение времени жизни ( $\pi K$ ) атома [2]. В экспериментах с атомами мюонного водорода ( $\mu^-p$ ) было сделано прецизионное измерение зарядового радиуса протона [3], результат которого находится в противоречии с измерениями этого же параметра, сделанными в атоме водорода и в  $e^-p$  рассеянии [4].

Димооний  $(\mu^+\mu^-)$ , изучение свойств которого является главной физической задачей нового коллайдера  $\mu\mu$ трона — это чисто лептонный атом, отличающийся от двух других экспериментально наблюдавшихся лептонных атомов, позитрония  $(e^+e^-)$  и мюония  $(e\mu)$ , существенно меньшим радиусом (в 200 и 100 раз соответственно). В первом приближении спектр димоония напоминает спектр позитрония (при соответствующем пересчете масс). Однако, более тонкие детали (радиационные поправки к тонкой и сверхтонкой структуре уровней, времена жизни уровней) существенно отличаются. Особенно это касается времен жизни уровней из-за наличия у димоония других, по сравнению с позитронием, каналов распада. Димюоний, таким образом, является идеальным объектом для проверки квантово-электродинамических предсказаний для связанных состояний в новом, по сравнению с позитронием, режиме.

В последние годы интерес к исследованию димоония существенно возрос в связи с наблюдением в мюонном секторе отклонений от Стандартной модели. Речь идет о разнице на уровне 4 стандартных отклонений между измерением [5] и расчетом [6, 7] аномального магнитного момента мюона, упомянутая выше проблема радиуса протона [3, 4], отклонения на уровне 2-3 сигма в отношениях дифференциальных вероятностей распадов  $B \to K^{(*)}\mu^+\mu^-$  и  $B \to K^{(*)}e^+e^-$  [8, 9]. Возникает вопрос: не проявятся ли подобные эффекты в свойствах димюония? Свойства димюония подробно и с высокой точностью исследованы теоретически в рамках квантовой электродинамики [10–13]. Однако экспериментально он до сих пор не наблюдался. Первое предложение по наблюдению димюония в реакции  $e^+e^- \to (\mu^+\mu^-)$  появилось более 50 лет назад [14]. С тех пор было предложено еще несколько механизмов рождения атомов димюония:  $\pi^-p \to (\mu^+\mu^-)n$  [15],  $\gamma Z - > (\mu^+\mu^-)Z$  [15],  $e^-Z \to e^-(\mu^+\mu^-)Z$  [16],  $Z_1Z_2 \to (\mu^+\mu^-)Z_1Z_2$ , где  $Z_1$  и  $Z_2$  — тяжелые ядра [17], в распадах частиц [18], например,  $\eta \to (\mu^+\mu^-)\gamma$  [19, 20], в столкновениях  $\mu^+$  и  $\mu^-$  [21], в реакции радиационного возврата  $e^+e^- \to (\mu^+\mu^-)\gamma$  [22]. Однако реальные экспериментальные возможности наблюдения димюония появились только в последнее время. В настоящее время рассматриваются несколько предложений. Поиск димюония планируется провести в эксперименте HPS [23] в Јеfferson Laboratory (США). В этом эксперименте атомы димюония рождаются в столкновениях электронов с энергией 6.6 ГэВ с вольфрамовой мишенью. Они регистрируются по распаду в электрон-позитронную па-

ру и идентифицируются по отлету, который должен превышать 1.5 см. Ожидается регистрация 60-100 таких событий. Данные в этом эксперименте набираются с 1015 года. Публикаций и докладов HPS по регистрации димюония пока не было. В Fermilab (США) рассматривается предложение эксперимента REDTOP [24] по изучению редких распадов η-мезонов, рождающихся при столкновениях протонов с энергией 1.8 ГэВ с бериллиевой мишенью. Планируется произвести  $2 \times 10^{13} \eta$ -мезонов в год. Расчетная вероятность рождения димюония в распаде  $\eta \to (\mu^+\mu^-)\gamma$  составляет  $0.56 \times 10^{-9}$  [20], т.е. в эксперименте может быть произведено около десяти тысяч атомов. Непонятным, однако, остается вопрос о выделении из фона от распада  $\eta \to \gamma e^+ e^-$ . В планах коллаборации было начать эксперименты в 2022 году. Однако в ноябре 2017 года Fermilab Physics Advisory Committee не рекомендовал, «чтобы лаборатория инвестировала ресурсы в развитие предложения REDTOP в настоящее время». Обсуждается также проект эксперимента по рождению атомов димюония с использованием медленных мюонных пучков [25]. Около 150 событий процесса  $e^+e^- \to (\mu^+\mu^-)\gamma$  с вылетом димюония на большой угол ( $30^{\circ} < \theta < 150^{\circ}$ ) ожидается на полной статистике ( $50 \text{ аб}^{-1}$ ) эксперимента Belle II [26]. Эти события могут быть идентифицированы по отлету. Статистику, необходимую, чтобы пытаться обнаружить рождение димюония (около 10 аб<sup>-1</sup>), планируется набрать в 2021 году. В экспериментах HPS и Belle II возможно будет зарегистрировать не более нескольких сотен атомов, т. е. речь идет только об обнаружении димюония. На  $\mu\mu$ троне предполагается зарегистрировать и идентифицировать до 20 тысяч атомов димюония за сезон (в двух местах встречи) и проводить исследование свойств димюония.

Кроме этой главной задачи на коллайдере  $\mu\mu$ трон будут проведены прецизионные измерения сечений процессов  $e^+e^- \to \mu^+\mu^-$  и  $e^+e^- \to \pi^+\pi^-$  вблизи порогов и изучены эффекты взаимодействия в конечном состоянии в этих реакциях. На  $\mu\mu$ троне можно будет провести эксперимент по прецизионному измерению в реакции  $e^+e^- \to e^+e^-\pi^0$  двухфотонной ширины  $\pi^0$ -мезона, которая с точностью лучше 1% рассчитывается в рамках квантовой хромодинамики, а также эксперименты по поиску «темного фотона».

### II. Свойства димюония

Димюоний с суммарным спином S=1 называется орто-димюонием, а со спином S=0 — пара-димюонием. Основное качественное отличие орто-димюония от орто-позитрония состоит в том, что орто-позитроний в состоянии с нулевым орбитальным моментом l=0  $(n^3S_1)$  может аннигилировать только в нечетное число фотонов, а орто-димюоний в основном аннигилирует  $e^+e^-$  и следовательно может рождаться в  $e^+e^-$  аннигиляции. При этом вероятность орто-димюония аннигилировать в  $e^+e^-$  примерно в сто раз больше, чем аннигилировать в три фотона. Спектр димюония [22] показан на рисунке 1.



Рис. 1: Спектр и время жизни димюония для нескольких нижних уровней.

Энергия связи димюония в нерелятивистском приближении равна

$$E_n = -\frac{m_\mu \alpha^2}{4n^2} = -\frac{1.4}{n^2} \text{ keV}, \qquad (1)$$

где  $m_{\mu}$  — масса мюона,  $\hbar=c=1,\ n=1,\ 2\ldots$  — главное квантовое число. Парциальные ширины распада орто-димюония  $o\to e^+e^-$  ( $\Gamma_o$ ) и пара-димюония  $p\to\gamma\gamma$  ( $\Gamma_p$ ), а также расстояние между этими уровнями  $E_F$ 

равны

$$\Gamma_o = \frac{m_\mu \alpha^5}{6n^3} = \frac{0.37 * 10^{-3}}{n^3} \text{ eV}, \quad \Gamma_p = 3\Gamma_o = \frac{m_\mu \alpha^5}{2n^3} = \frac{1.11 * 10^{-3}}{n^3} \text{ eV}, \quad E_F = \frac{7m_\mu \alpha^4}{12n^3} = \frac{0.175}{n^3} \text{ eV}.$$
(2)

Для  $n \geq 3$  вклад в ширину дают еще переходы из s состояний в p состояния, но для n=3 этот вклад мал  $\Gamma_o(n=3) \approx 30\Gamma(3s \to 2p)$ . Соответствующие времена жизни равны

$$\tau_o = 1.81 * n^3 \text{ ps}, \quad \tau_p = 0.6 * n^3 \text{ ps} \quad \tau(3s \to 2p) = 1.53 \text{ ns}.$$
 (3)

Тонкая и сверхтонкая структура димюония (члены порядка  $\alpha^4$ ) описывается следующими формулами [27].

$$E_{nS} = 2m_{\mu} - \frac{m_{\mu}\alpha^2}{4n^2} + \frac{m_{\mu}\alpha^4}{2n^3} \left[ \frac{11}{32n} - 1 + \frac{7}{6}\delta_{S1} \right]. \tag{4}$$

Для  $l \neq 0$ :

$$E_{nlSJ} = 2m_{\mu} - \frac{m_{\mu}\alpha^{2}}{4n^{2}} + \frac{m_{\mu}\alpha^{4}}{2n^{3}} \left\{ \frac{11}{32n} - \frac{1}{2l+1} + \delta_{S1} \left[ \frac{7}{6} \delta_{l0} + \frac{1}{2(2l+1)} \left( \frac{3l+4}{(l+1)(2l+3)} \delta_{J,l+1} - \frac{1}{l(l+1)} \delta_{J,l} - \frac{3l-1}{l(2l-1)} \delta_{J,l-1} \right) \right] \right\}.$$
 (5)

#### III. Сечение рождения димюония

Состояния димюония  $n^3S_1$  имеют квантовые числа  $J^{PC}=1^{--}$ , совпадающие с квантовыми числами фотона, и поэтому могут как аннигилировать в пару  $e^+e^-$ , так и рождаться в  $e^+e^-$  столкновениях. В борновском приближении энергетическая зависимость сечения рождения димюония описывается следующей формулой:

$$\sigma_{\rm B}(E) = \frac{12\pi B_{ee}}{M^2} \frac{M^2 \Gamma^2}{(E^2 - M^2)^2 + M^2 \Gamma^2},\tag{6}$$

где E — энергия в системе центра масс  $e^+e^-$  пары,  $M\approx 2m_\mu$  — масса димюония,  $m_\mu$  — масса мюона,  $\Gamma$  — ширина димюония,  $B_{ee}$  — относительная вероятность его распада в  $e^+e^-$  пару. Для состояний  $1^3S_1$  и  $2^3S_1$   $B_{ee}\approx 1$  (вероятность аннигиляции в три фотона составляет  $B_{3\gamma}=2.7\times 10^{-3}B_{ee}$ ). Для состояний с  $n\geq 3$  следует учитывать переходы в P-состояния, например,  $B(3S\to 2P)=0.031B_{ee}$ . Сечение в пике для состояния  $1^3S_1$  равно  $\sigma_{\rm B}(M)=0.328$  б.

Радиационные поправки к начальному состоянию сильно меняют энергетическую зависимость сечения. Сечение с учетом радиационных поправок вычисляется следующим образом:

$$\sigma(E) = \int_0^{x_{\text{max}}} \sigma_{\text{B}}(E\sqrt{1-x})W(E,x)dx. \tag{7}$$

Переменная x в этом выражении описывает долю энергии, унесенную фотонами, излученными из начального состояния  $(x=2E_{\gamma}/E)$ , а функция W(E,x) [28] — вероятность излучения фотонов.  $x_{\rm max}=1-4m_e^2/E^2$ , где  $m_e$  — масса электрона. Полученное сечение приведено на рис. 2 в сравнении с борновским сечением. Видно, что радиационные поправки уменьшают сечение в максимуме резонанса приблизительно в 4 раза, а также приводят к появлению «хвоста» в сечении при E>M. Этот «хвост» возникает из-за процесса «возвращения на резонанс», в котором начальные частицы излучают фотон (фотоны) с энергией  $2E_{\gamma}/E=1-M^2/E^2$ . После излучения такого фотона инвариантная пары  $e^+e^-$  становится равной массе резонанса M, и происходит резонансное увеличение подынтегрального выражения в формуле (7).

Чтобы получить экспериментально наблюдаемое сечение, нужно учесть также энергетический разброс в коллайдере

$$\sigma_{\rm exp}(E_0) = \frac{1}{\sqrt{2\pi}\sigma_E} \int_{-\infty}^{\infty} \sigma(E) e^{-\frac{(E-E_0)^2}{2\sigma_E^2}} dE \tag{8}$$

В таблице I приведены значения  $\sigma_{\rm exp}$  при  $E_0=M$  для состояния  $1^3S_1$ , вычисленные для трех значений  $\sigma_E$ . Значение  $\sigma_E=7$  кэВ соответствует варианту коллайдера с монохроматизацией [29], а значение  $\sigma_E=400$  кэВ



Рис. 2: Энергетическая зависимость сечения рождения димюония в состоянии  $1^3S_1$ . Сплошной линией показано борновское сечение, а пунктирной — сечение с учетом радиационных поправок. Вертикальная шкала на левом рисунке — линейная, а на правом — логарифмическая.

Таблица I: Экспериментально наблюдаемое сечение рождения димоония в состоянии  $1^3S_1$  для различных значений разброса энергии в системе центра масс. В третей строке приведено отношение  $(R_{\rm bkg})$  сечения упругого рассеяния  $e^+e^- \to e^+e^-$  к сечению рождения димоония  $e^+e^- \to 1^3S_1 \to e^+e^-$  (отношение фон/эффект) для полярных углов вылета конечного электрона  $45^\circ < \theta < 135^\circ$ .

| $\sigma_E$ (кэВ)          | 7                 | 200               | 400             |
|---------------------------|-------------------|-------------------|-----------------|
| $\sigma_{ m exp}(M)$ (нб) | 6.86              | 0.285             | 0.148           |
| $R_{ m bkg}$              | $4.5 \times 10^3$ | $1.1 \times 10^5$ | $2.1\times10^5$ |

— коллайдеру с большим углом пересечения пучков, рассматриваемому в данном документе. Результирующее сечение с точностью не хуже 20% совпадает с сечением, полученным сверткой энергетического разброса с борновским сечением (6), т.е. четырехкратное падение сечения в максимуме резонанса из-за радиационных поправок компенсируется интегралом от «хвоста» в сечении (7), возникающего из-за радиационного возвращения на резонанс.

Поскольку доминирующей модой распада димюония, рожденного в  $e^+e^-$  столкновениях, является аннигиляция в  $e^+e^-$  пару, основным фоновым процессом при регистрации димюония является упругое рассеяние  $e^+e^- \to e^+e^-$ . Сечение рассеяния имеет пики при малых углах рассеяния конечного электрона или позитрона, а сечение рождения димюония  $e^+e^- \to n^3S_1 \to e^+e^-$  сферически симметрично по углу вылета конечных частиц. Для оценки фоновой ситуации, сечения обоих процессов были проинтегрированы в границах по полярному углу  $45^\circ < \theta < 135^\circ$ . Отношение сечений фона и эффекта приведено в таблице І. Даже в случае рекордно малого энергетического разброса ( $\sigma_E = 7$  кэВ) отношение фона к эффекту превышает тысячу, что делает наблюдение мюония очень трудной задачей.

Дальнейшее подавление фона от упругого рассеяния возможно, если димюоний рождается движущимся. В этом случае можно дополнительно наложить требование, что димюоний имеет ненулевой отлет от точки рождения (для состояния  $1^3S_1$   $c\tau\approx 0.54$  мм, а для состояний  $n^3S_1$  — в  $n^3$  раз больше). Движущийся димюоний будет рождаться на коллайдере, в котором пучки электронов и позитронов сталкиваются под углом [22].

Таблица II: Основные параметры  $\mu\mu$ трона, важные для проведения экспериментов по изучению свойств димюония.

| 408 МэВ                                          |
|--------------------------------------------------|
| $75^{\circ}$                                     |
| 105.6 нс                                         |
| 30                                               |
| $7.8 \times 10^{-4}$                             |
| $6.8 \times 10^{-4}$ рад.                        |
| $0.84~\mu\mathrm{M}$                             |
| $102~\mu\mathrm{M}$                              |
| 11 мм                                            |
| $8 \times 10^{31} \text{ cm}^{-2} \text{c}^{-1}$ |
|                                                  |



Рис. 3: Определение угла пересечения пучков  $\alpha$  и осей координат.

## IV. Параметры коллайдера и системы регистрации димюония

В таблице II приведены основные параметры коллайдера  $\mu\mu$ трон, важные для проведения экспериментов по изучению свойств димюония. Определение угла пересечения пучков  $\alpha$  и осей координат дано на рис. 3. Ось y перпендикулярна плоскости рисунка.

Из размеров пучка могут быть вычислены размеры места встречи:

$$\sigma_x^{IP} = \frac{\sigma_x^b}{\sqrt{2}\cos\alpha} = 280 \ \mu\text{m},$$

$$\sigma_y^{IP} = \frac{\sigma_y^b}{\sqrt{2}} = 0.6 \ \mu\text{m},$$

$$\sigma_z^{IP} = \frac{\sigma_z^b \sigma_x^b}{\sqrt{2}((\sigma_z^b \sin\alpha)^2 + (\sigma_x^b \cos\alpha)^2)} \approx \frac{\sigma_x^b}{\sqrt{2}\sin\alpha} = 75 \ \mu\text{m}.$$
(9)

Энергия в системе центра масс,  $\gamma$  и  $\beta$  димюония равны

$$E = 2E_b \cos \alpha = 2m_\mu, \ \gamma = 1/\cos \alpha = 3.86, \ \beta = \sin \alpha = 0.966.$$
 (10)

Разброс энергии в системе центра масс зависит как от разброса энергии пучка, так и от углового разброса в



Рис. 4: Схема расположения системы регистрации димюония.

пучке:

$$\sigma_E = E_b \sqrt{2(\sigma_{E_b}/E_b)^2 \cos^2 \alpha + 2\sigma_\alpha^2 \sin^2 \alpha} = 398 \text{ кэВ.}$$
(11)

Доминирующий вклад в энергетический разброс вносит второй член.

Распадная длина димюония равна

$$l = \beta \gamma c \tau = c \tau \tan \alpha = 2.02 n^3 \text{ MM}. \tag{12}$$

Чтобы идентифицировать домюоний, нужно зарегистрировать треки от распадных электрона и позитрона и восстановить вершину распада. Фон от упругого  $e^+e^-$  рассеяния подавляется требованием, что расстояние от места встречи до вершины распада достаточно велико. Схема системы регистрации димюония показана на рис. 4. Она состоит из двух одинаковых плеч, расположенных выше и ниже места встречи пучков. Каждое из плеч содержит вершинный детектор, двухкоординатные детекторы, сцинтилляционный годоскоп и калориметр.



Рис. 5: Вакуумная камера коллайдера вблизи места встречи.

Вершинный детектор — это дрейфовая камера с гексагональной ячейкой (радиус ячейки около 1.3 см), проволоки в которой натянуты перпендикулярно оси x. Она расположена в 1 см от окна вакуумной камеры, сделанном из бериллия толщиной 0.2 мм. Координаты окна (0,150) мм по оси x, (-15,15) мм по оси z. Верхнее, нижнее окна расположены при  $y=\pm 5$  мм. Они сделаны из единого листа бериллия, как показано на рис. 5. Число измерений x-координаты при перпендикулярном прохождении камеры равно 5.

Вблизи вершинного детектора расположены тонкие двухкоординатных детектора на основе GEM. Такие же детектору расположена перед калориметром. Координатное разрешение всех перечисленных детекторов составляет около  $100~\mu$ м.

После второго слоя двухкоординатных детекторов находятся сцинтилляционные счетчики. Система счетчиков должна иметь временное разрешение не хуже 0.3 нс, чтобы обеспечить выбор банча (время между столкновениями банчей около 3 нс). После сцинтилляционных счетчиков располагается калориметр-сэндвич, позволяющий установить порог на энергию электрона.

Предполагается использовать следующие условия отбора событий аннигиляции димюония

- $-15 < z_{Be} < 15$  мм для обеих частиц,  $z_{Be}$  реконструированная z-координата пересечения трека с бериллиевым окном вакуумной камеры;
- $0 < x_{Be} x_{vtx} < 30$  мм для обеих частиц, где  $x_{Be}$  реконструированная x-координата пересечения трека с бериллиевым окном вакуумной камеры,  $x_{vtx}$  реконструированная x-координата вершины события;
- ullet соз  $heta_z^* < 0.7071$ , где  $heta_z^*$  угол вылета частиц относительно оси Z в системе центра масс сталкивающихся электрона и позитрона.

Первое условие определяется шириной бериллиевого окна вакуумной камеры. Второе условие обеспечивает срабатывание второго двухкоординатного детектора, сцинтилляционного годоскопа и калориметра от обеих распадных частиц. Третье кинематическое условие подавляет фон от процесса упругого электрон позитронного рассеяния. Эффективность регистрации событий распада димюония составляет около 15% и слабо зависит от  $x_{vtx}$  до  $x_{vtx} < 10$  см. Эффективность может быть увеличена до 30%, если разрешить запуск от одной зарегистрированной в калориметре частицы. При этом в половине событий для второй частицы будут только измерения координаты в вершинном детекторе и в первом слое двухкоординатных детекторов.

Ожидаемое разрешение детектора по  $x_{vtx}$  составляет около 150  $\mu$ м. Таким образом, с учетом  $\sigma_x^{IP}=280~\mu$ м вершина распада димюония определяется с точностью  $\sigma_{vtx}=320~\mu$ м.

Предполагается поставить ограничение на расстояние от центра области взаимодействия пучков до измеренной вершины распада

$$x_{vtx} > 6.25\sigma_{vtx} = 2.0 \text{ MM},$$
 (13)

которое в случае гауссового распределения обеспечивает подавление фона от упругого  $e^+e^-$  рассеяния в  $5\times10^9$  раз.

При наборе данных при  $E=2m_{\mu}$  форма распределения по x координате восстановленной вершины при  $x_{vtx}<0$  измеряется по событиям  $e^+e^-$  рассеяния. Для измерения распределения при  $x_{vtx}>0$  (хвосты распределения могут оказаться асимметричными) потребуется сделать специальный фоновый заход, например, при  $E=2m_{\mu}+2$  МэВ.

Следует отметить, что наличие негауссовых хвостов в распределении по  $x_{vtx}$  может сильно влиять на отношение эффект/фон при регистрации димюония. Поэтому в кольцах коллайдера следует предусмотреть возможность установки коллиматоров, срезающих частицы, сильно отклоняющиеся от среднего значения положения пучка по горизонтали в месте встречи  $|x^b| > 6\sigma_x^b$ .

## V. Измерение времени жизни

Распределение по x координате точки распада димюониев приведено на рис. 6 (слева). Для простоты пренебрегалось переходами типа  $3^3S_1 \to 2^3P \to 1^3S_1$ , слегка модифицирующими приведенную зависимость. Видно, что при достаточно большой статистике при аппроксимации измеренной зависимости по  $x_{vtx}$  можно определить число родившихся димюониев в различных состояниях  $(1^3S_1, 2^3S_1, 3^3S_1, \dots)$  и длины распада для этих состояний. Конечное разрешение по  $x_{vtx}$  искажает форму распадной кривой, как показано на рис. 6 (справа) для состояния  $1^3S_1$ . Однако для событий с  $x_{vtx} > 2$  мм отличие от экспоненциальной зависимости несущественно. Меняется только нормировка функции:

$$\frac{N_0}{l} \exp\left(-\frac{x}{l}\right) \to \frac{N_0}{l} \exp\left(-\frac{x}{l}\right) \exp\left(\frac{\sigma_{vtx}^2}{2l^2}\right). \tag{14}$$



Рис. 6: Левый рисунок: Распределение по x координате точки распада димоониев, родившихся на  $\mu\mu$ троне (сплошная кривая). Отдельно показаны распадные кривые для состояния  $1^3S_1$  (пунктир), суммы  $1^3S_1$  и  $2^3S_1$  (точки) и суммы  $1^3S_1+2^3S_1+3^3S_1$  (штрих-пунктир). Правый рисунок: Распределение по x координате точки распада димоониев в состоянии  $1^3S_1$  с учетом (сплошная кривая) и без учета (пунктир) разрешения ( $\sigma_{vtx}=470~\mu{\rm M}$ ).

Таблица III: Количество распадов димю<br/>ония в состояниях  $1^3S_1, 2^3S_1$  и  $3^3S_1,$  зарегистрированных на  $\mu\mu$ троне за 24 часа и  $10^7$  с в двух местах встречи. Отбираются события с  $x_{vtx}>2$  мм. Эффективность регистрации равна 15%.

| Время                                     | час          | $10^{7} c$           |
|-------------------------------------------|--------------|----------------------|
| ${ m Co}$ бытий $1{ m S}/2{ m S}/3{ m S}$ | 4.7/1.4/0.46 | 13.2 k/3.91 k/1.27 k |



Рис. 7: Моделированное распределение по точке распада димюония. Данные набираются в двух местах встречи в течение  $10^7$  с. Эффективность регистрации предполагалается равной 15%. Моделируются распады состояний  $n^3S_1,\ n=1,5.$  Кривая — результат аппроксимации, описанной в тексте.

Таблица IV: Результаты аппроксимации моделированной зависимости, приведенной на рис. 7, при  $x_{vtx}>2.3$  мм. Статистика соответствует времени набора данных  $10^7$  с в двух местах встречи.  $N_{1S},\,N_{2S}$  и  $N_{3S}$  — числа событий димюония, произведенных в состояниях  $1^3S_1,\,2^3S_1$  и  $3^3S_1,\,l_{1S},\,l_{2S}$  и  $l_{3S}$  — их длины распада.

| Параметр                    | Истинное значение | Результат аппроксимации |  |
|-----------------------------|-------------------|-------------------------|--|
| $N_{1S} \times 10^{-3}$     | 118.1             | $118.9 \pm 1.7$         |  |
| $l_{1S},\mu_{ m M}$         | 2020              | $2008 \pm 36$           |  |
| $N_{2S}/N_{1S} \times 10^3$ | 125               | $123 \pm 14$            |  |
| $l_{2S},  { m MM}$          | 16.2              | $15.7 \pm 1.9$          |  |
| $N_{3S}/N_{1S} \times 10^3$ | 37                | $41\pm15$               |  |
| $l_{3S},  { m MM}$          | 54.5              | $54 \pm 14$             |  |

Количества распадов димююния в состояниях  $1^3S_1$ ,  $2^3S_1$  и  $3^3S_1$ , зарегистрированных за сутки и за экспериментальный сезон (10 $^7$  с) в двух местах встречи приведены в таблице III. Отбираются события с  $x_{vtx} > 2.0$ мм. Эффективность регистрации предполагалается равной 15%. Результат моделирования распределения событий по параметру  $x_{vtx}$ , накопленных за экспериментальный сезон показан на рис. 7. Моделировалось пять экспонент, т.е. распады состояний  $n^3S_1$ , n=1,5. Кривая на рис. 7 результат аппроксимации распределения суммой пяти экспонент. Свободными параметрами аппроксимации были параметры 3 экспонет ддя распадов состояний димюония  $1^3S_1$ ,  $2^3S_1$  и  $3^3S_1$ , перечисленные в таблице IV. Остальные 4 параметра фиксировались на истинных значениях. В таблице IV результаты аппроксимации сравниваются со значениями, испрользованными при моделировании. Видно, что за один экспериментальный сезон параметры для состояния димюония  $1^3S_1$  могут быть определены с точностью лучше 2%. Из длины распада может быть вычислено время жизни  $au = l/(c eta \gamma)$ . Точность знания  $eta \gamma$  определяется точностями измерения энергии в системе центра масс (около 4 кэВ, см. секцию VII) и точностью измерения энергий пучков, которые предполагается измерять с помощью системы, основанной на регистрации обратного комптоновского рассеяния фотонов от лазера [31], с точностью около 50 кэВ. В результате ожидается тоность  $\beta\gamma$  около  $10^{-4}$ . Таким образом за несколько лет набора данных можно выйти на субпроцентную точность в измерении времени жизни состояния димюония  $1^3S_1$ . Следует отметить, что радиационные поправки дают вклад во время жизни на уровне 1% [32].

Параметр  $N_{1S}$  пропорционален электронной ширине  $\Gamma_e e$ . Для ее вычисления надо знать интегральную светимость, которая может быть измерена по событиям упругого  $e^+e^-$  рассеяния с точностью лучше 1%, и разброс энергии в системе центра масс, измеряемый с точностью около 2 кэВ (см. секцию VII). Таким образом. элекронная ширина состояния димюония  $1^3S_1$  за сезон может быть измерена с точностью около 1.5%.

Те же параметры для состояний  $2^3S_1$  и  $3^3S_1$  могут быть измерены с точностями 15% и 30%.

#### VI. Эксперименты с фольгой

В вакуумной камере коллайдера вблизи места встречи (рис. 5) имеется штанга, с помощью которой на пути пучка атомов димюония (ось x) может быть помещена фольга из бериллия. При прохождении фольги, атомы димюония взаимодействует с атомами мишени электромагнитным образом. В результате они или ионизируются (диссоциируют на пару  $\mu^+mu^-$ ), или переходят из одного квантового состояния в другое. При этом переходы между орто- и пара-состояниями значительно подавленны [33, 34]. Поэтому при рассмотрении эволюции в фольге состояний димюония, рожденных в  $e^+e^-$  столкновениях, в фольге можно рассматривать переходы между орто-состояниями [35]. В качестве примера ниже приведены уравнения эволюции для состояний с n=1 и 2, переходами в состояния с большими n пренебрегается.

$$\frac{dN_{1S}}{dl} = -n\sigma(1S \to X)N_{1S} + n\sigma(2P \to 1S)N_{2P},$$

$$\frac{dN_{2S}}{dl} = -n\sigma(2S \to X)N_{2S} + n\sigma(2P \to 2S)N_{2P},$$

$$\frac{dN_{2P}}{dl} = -n\sigma(2P \to X)N_{2P} + n\sigma(1S \to 2P)N_{1S} + n\sigma(2S \to 2P)N_{2S},$$
(15)

где  $N_{1S,2S,2P}(l)$  — это число состояний  $1S,\,2S$  и 2P после прохождения первоначальным потоком расстояния l в фольге, n — количество атомов мишени (фольги) в единицу объема,  $\sigma(i\to j)$  — сечение перехода состоя-

ния i в состояние j и  $\sigma(i \to X)$  — полное сечение перехода состояния i во все конечные состояния (включая диссоциацию).

Удобно выразить толшину мишени через безразмерную величину  $z = l/l_0$ , используя в качестве стандартной длины длину диссоциации-возбуждения 1S состояния

$$l_0 = \frac{1}{n\sigma(1S \to X)} = \frac{A}{\rho N_A \sigma(1S \to X)}.$$
 (16)

Здесь A — молярная масса вещества мишени,  $\rho$  — его плотность,  $N_A$  — число Авогардо. Для бериллия сечение, вычисленное по работам [34, 36], составляет  $\sigma(1S \to X) = 2.20 \times 10^{-22}$  см $^2$  и  $l_0 = 368$  мкм, для алюминия  $\sigma(1S \to X) = 2.09 \times 10^{-21}$  см $^2$  и  $l_0 = 79.4$  мкм, для свинца  $\sigma(1S \to X) \approx 6.89 \cdot 10^{-20}$  см $^2$  и  $l_0 = 4.4$  мкм.

Если длину измерять через безразмерную величину z, кинетические уравнения (15) примут вид

$$\frac{dN_{1S}}{dz} = -N_{1S} + \frac{\sigma(2P \to 1S)}{\sigma(1S \to X)} N_{2P},$$

$$\frac{dN_{2S}}{dz} = -\frac{\sigma(2S \to X)}{\sigma(1S \to X)} N_{2S} + \frac{\sigma(2P \to 2S)}{\sigma(1S \to X)} N_{2P},$$

$$\frac{dN_{2P}}{dz} = -\frac{\sigma(2P \to X)}{\sigma(1S \to X)} N_{2P} + \frac{\sigma(1S \to 2P)}{\sigma(1S \to X)} N_{1S} + \frac{\sigma(2S \to 2P)}{\sigma(1S \to X)} N_{2S}.$$
(17)

В такой форме они слабо чувствительны к Z (атомному номеру) мишени, так как отношения сечений слабо зависят от этого параметра. Для бериллия получаются следующие численные значения отношений:

$$\frac{\sigma(1S \to 2P)}{\sigma(1S \to X)} = \frac{\sigma(2P \to 1S)}{\sigma(1S \to X)} \approx 0.49,$$

$$\frac{\sigma(2S \to 2P)}{\sigma(1S \to X)} = \frac{\sigma(2P \to 2S)}{\sigma(1S \to X)} \approx 6.32,$$

$$\frac{\sigma(2S \to X)}{\sigma(1S \to X)} \approx 9.77, \quad \frac{\sigma(2P \to X)}{\sigma(1S \to X)} \approx 12.6.$$
(18)

Если фольга расположена на расстоянии d мм от точки рождения димюония, то начальные условия для системы уравлений (17) будут

$$N_{1S}(0) = N_0 e^{-d/2.02}, \quad N_{2S}(0) = 0.125 N_0 e^{-d/16.16} \quad N_{2P} = 0,$$
 (19)

где  $N_0$  есть количество 1S состояний в точке рождения, а распадная длина димююния в состоянии nS равна  $2.02n^3$  мм. Численные результаты расчета представлены в таблице V.

Таблица V: Результаты численного расчета относительных выходов  $1S,\,2S$  и 2P состояний после прохождения фольги относительной толщиной z.

|              | F == 7.5                         |                                                        | ()                               | ()                               | / >                              |                                                        |
|--------------|----------------------------------|--------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------|
| $\mathbf{z}$ | $\frac{N_{1S}(z)}{N_0}$ , d=2 мм | $\left  \frac{N_{1S}(z)}{N_0}, \right  d=5 \text{ MM}$ | $\frac{N_{2S}(z)}{N_0}$ , d=2 mm | $\frac{N_{2S}(z)}{N_0}$ , d=5 mm | $\frac{N_{2P}(z)}{N_0}$ , d=2 mm | $\left  \frac{N_{2P}(z)}{N_0}, d=5 \text{ mm} \right $ |
| 0.0          | 0.37                             | 0.084                                                  | 0.11                             | 0.092                            | 0.0                              | 0.0                                                    |
| 0.1          | 0.34                             | 0.077                                                  | 0.052                            | 0.042                            | 0.035                            | 0.023                                                  |
| 0.2          | 0.31                             | 0.071                                                  | 0.034                            | 0.024                            | 0.033                            | 0.019                                                  |
| 0.3          | 0.28                             | 0.065                                                  | 0.025                            | 0.016                            | 0.027                            | 0.014                                                  |
| 0.4          | 0.25                             | 0.059                                                  | 0.019                            | 0.011                            | 0.023                            | 0.010                                                  |
| 0.5          | 0.23                             | 0.054                                                  | 0.016                            | 0.007                            | 0.019                            | 0.008                                                  |
| 0.6          | 0.21                             | 0.049                                                  | 0.013                            | 0.005                            | 0.017                            | 0.006                                                  |
| 0.7          | 0.19                             | 0.045                                                  | 0.011                            | 0.004                            | 0.014                            | 0.005                                                  |
| 0.8          | 0.17                             | 0.041                                                  | 0.010                            | 0.003                            | 0.013                            | 0.004                                                  |
| 0.9          | 0.16                             | 0.037                                                  | 0.008                            | 0.003                            | 0.011                            | 0.003                                                  |
| 1.0          | 0.14                             | 0.033                                                  | 0.007                            | 0.002                            | 0.010                            | 0.003                                                  |

На рисунке 8 показано распределение по x координате точки распада димюониев, родившихся на  $\mu\mu$ троне до и после прохождения бериллиевой фольги толщиной 74  $\mu$ м, расположенной в 5 мм от места встречи. Видно, что после прохождения фольги часть димюониев оказывается в состоянии  $2^3P$ . Они испускают фотон и переходят в состояние  $1^3S_1$ . Измеряя распределение по вершине распада димюония при разных положениях и толщинах фольги, можно получить информацию о сечениях ионизации и возбуждения димюония.



Рис. 8: Распределение по x координате точки распада димоониев, родившихся на  $\mu\mu$ троне до и после прохождения бериллиевой фольги толщиной 74  $\mu$ м, расположенной в 5 мм от места встречи. Показаны распадные кривые для состояния  $1^3S_1$  (пунктир),  $2^3P$  (штрих пунктир), суммы  $1^3S_1$  и  $2^3S_1$  (точки) и суммы  $1^3S_1$ ,  $2^3S_1$  и  $1^3S_1$  от распадов состояний  $2^3P$  (сплошная кривая).

VII. Процесс 
$$e^+e^- \rightarrow \mu^+\mu^-$$
 вблизи порога

Энергия связи димюония в основном состоянии равна 1.4 кэВ и много меньше энергетического разброса. Таким образом,  $\mu\mu$ трон фактически работет при энергии в системе центра масс равной  $2m_{\mu}$ , т.е. на пороге реакции  $e^+e^- \to \mu^+\mu^-$ . Энергетическая зависимость борновского сечения процесса  $e^+e^- \to \mu^+\mu^-$  дается следующей формулой

$$\sigma_{\rm B}^{e^+e^- \to \mu^+ \mu^-}(E) = \frac{2\pi\alpha^2\beta}{E^2} \left(1 - \frac{\beta^2}{3}\right) C(E),\tag{20}$$

где  $\beta = \sqrt{1 - 4m_{\mu}^2/E^2}$  — скорость мюона. Множитель C(E) (фактор Зоммерфельда-Гамова-Сахарова) описывает вклад кулоновского взаимодействия конечных мюонов:

$$C(E) = \frac{\eta}{1 - e^{-\eta}}, \ \eta = \frac{\pi \alpha}{\beta}.$$
 (21)

Он существенно модифицирует энергетическое поведение сечения вблизи порога, в частности, приводит к ненулевому значению на пороге:

$$\sigma_{\rm B}^{e^+e^-\to\mu^+\mu^-}(2m_\mu) = \frac{2\pi^2\alpha^3}{4m_\mu^2}.$$
 (22)

Влияние фактора Зоммерфельда-Гамова-Сахарова на сечение вблизи порога демонстрируется на рис. 9.

Следует отметить, что приведенное выражение для C(E) справедливо в нерелятивистском случае ( $\eta=2\pi\alpha/v$ , где  $v=2\beta$  — относительная скорость мюонов). Релятивистское обобщение формулы (21) обсуждается в работе [38], где предложен вариант замены

$$v = \frac{2\beta}{1+\beta^2} \text{ if } \eta = \frac{\pi\alpha}{\beta} (1+\beta^2). \tag{23}$$

При  $\beta=0.2$ , соответствующем  $E-2m_{\mu}\approx 2$  МэВ, такая замена модифицирует множитель C(E) несущественно, от 1.0584 до 1.0608, однако при  $\beta=1$  изменение вполне измеримо, от 1.0115 до 1.0231.



Рис. 9: Энергетическая зависимость борновского сечения процесса  $e^+e^- \to \mu^+\mu^-$  (сплошная линия). Пунктирной линией показано сечение с C(E)=1.



Рис. 10: Энергетическая зависимость борновского сечения процесса  $e^+e^- \to \mu^+\mu^-$  (пунктир), сечения с учетом радиационных поправок (штрих-пунтир) и его свертки с распределенинием Гаусса, описывающим энергетический разброс (сплошная линия) с  $\sigma_E = 400$  кэВ.

Радиационные поправки и энергетический разброс в коллайдере модифицируют энергетическую зависимость сечения. Борновское сечение (20, сечение с учетом радиационных поправок (7) и его свертка с распределенинием Гаусса, описывающим энергетический разброс (8) с  $\sigma_E=400$  кэВ показаны на рис. 10.

Родившаяся вблизи порога пара  $\mu^+\mu^-$  движется в направлении оси x. На рис. 11 показана зависимость максимального угла между направлением мюона и осью x от  $E-2m_\mu$ . Для геометрии регистрирующей аппаратуры вблизи места встречи, изображенной на рис. 4, угловой размер переднего окна составляет 3.2° ( $\tan\alpha=1.5/27$ ). Таким образом, мюоны от реакции  $e^+e^-\to \mu^+\mu^-$  при  $E-2m_\mu<2$  МэВ будут выводиться через переднее окно вакуумной камеры с эффективностью близкой к 100%.



Рис. 11: Зависимость максимального угла между направлением мюона и осью x от  $E-2m_{\mu}$ .

Для регистрации мюонных пар предполагается использовать небольшой детектор (магнитный спектрометр) расположенный перпендикулярно оси х. Магнит с полем 0.5 Т, направленным по оси z, расположен в метре от места встречи. Спектрометр состоит из четырех двухкоординатных детекторов на основе GEM и двух сцинтилляционных счетчиков, между которыми находится железный поглотитель. Толщина поглотителя подбирается, чтобы обеспечить  $e/\mu$ -разделение. Вместо поглотителя может стоять пороговый черенковский счетчик на основе аэрогеля. В спектрометре мюонных пар измеряются углы вылета и импульсы мюонов. С помощью этого детектора события процесса  $e^+e^- \to \mu^+\mu^-$  при  $T=E-2m_\mu < 2$  МэВ могут быть зарегистрированы практически без фона с эффективностью близкой к 100%. Измерение зависимости сечения реакции  $e^+e^- \to \mu^+\mu^-$  от энергии пучков при сохранении угла между пучками позволит провести калибровку энергии в системе центра масс и ее разброса. За три часа набора данных, по часу в трех точках с T = -1.0.2 МэВ, энергия может быть измерена с точностью около 4 кэВ, а ее разброс — с точностью 2 кэВ. При наборе данных на пороге реакции  $e^+e^- \to \mu^+\mu^-$  спектрометр мюонных пар позволит контролировать точность установки энергии и ее разброс. Этот же детектор измеряет направление импульса сталкивающихся электрона и позитрона. Для измерения энергии электронов и позитронов в кольцах коллайдера предполагается использовать систему измерения энергии на основе обратного комптоновского рассеяния лазерных фотонов. Измерение и контроль параметров коллайдера совершенно необходимы для эксперимента по измерению свойств димюония [31].

Следует отметить, что измерение сечения процесса  $e^+e^- \to \mu^+\mu^-$  вблизи порога имеет самостоятельный интерес, поскольку экспериментальной проверки расчета кулоновского взаимодействия в конечном состоянии с высокой точностью не проводилось. С помощью описанного спектрометра предполагается также провести прецизионное измерение сечения процесса  $e^+e^- \to \pi^+\pi^-$  вблизи порога.

<sup>[1]</sup> B. Adeva et al., Phys. Lett. B **704**, 24 (2011).

<sup>[2]</sup> B. Adeva et al., Phys. Rev. D 96, 052002 (2017).

<sup>[3]</sup> A.Antognini et al., Science **339**, 417 (2013).

<sup>[4]</sup> J.J.Krauth et al., arXiv:1706.00696 [physics.atom-ph].

<sup>[5]</sup> G. W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006).

<sup>[6]</sup> M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, arXiv:1706.09436 [hep-ph].

<sup>[7]</sup> F. Jegerlehner, Springer Tracts Mod. Phys. 274, pp.1 (2017); https://doi.org/10.1007/978-3-319-63577-4.

<sup>[8]</sup> R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 113, 151601 (2014).

<sup>[9]</sup> R. Aaij et al. (LHCb Collaboration), JHEP 1708, 055 (2017).

<sup>[10]</sup> U. D. Jentschura, G. Soff, V. G. Ivanov and S. G. Karshenboim, Phys. Rev. A 56, 4483 (1997).

<sup>[11]</sup> S. G. Karshenboim, V. G. Ivanov, U. D. Jentschura and G. Soff, J. Exp. Theor. Phys. 86, 226 (1998).

- [12] H. Lamm, Phys. Rev. A 95, 012505 (2017).
- [13] Y. Ji and H. Lamm, Phys. Rev. A 94, 032507 (2016).
- [14] V.N.Baier and V.S.Synakh, JETP, 41, 1576 (1961) (In Russian).
- [15] S. M. Bilenky, V. H. Nguyen, L. L. Nemenov and F. G. Tkebuchava, Yad. Fiz. 10, 812 (1969).
- [16] N. Arteaga-Romero, C. Carimalo and V. G. Serbo, Phys. Rev. A 62, 032501 (2000).
- [17] I.F. Ginzburg et al., Phys. Rev. C 58, 3565 (1998).
- [18] L. L. Nemenov, Yad. Fiz. 15, 1047 (1972).
- [19] G. A. Kozlov, Sov. J. Nucl. Phys. 48, 167 (1988).
- [20] H. Lamm, https://indico.gsi.de/event/5012/session/7/contribution/14/material/slides/0.pdf
- [21] V.W. Hughes and B. Maglic, Bull. Am. Phys. Soc. 16, 65 (1971).
- [22] S. J. Brodsky and R. F. Lebed, Phys. Rev. Lett. 102, 213401 (2009).
- [23] P. Hansson Adrian *et al.*, «Status of the Heavy Photon Search Experiment at Jefferson Laboratory», https://www.jlab.org/exp\_prog/proposals/12/C12-11-006.pdf
- [24] REDTOP Experiment web page. http://redtop.fnal.gov/
- [25] T. Itahashi, H. Sakamoto, A. Sato and K. Takahisa, Low Energy Muon Apparatus for True Muonium Production, JPS Conf. Proc. 8, 025004 (2015).
- [26] Оценка В.П.Дружинина.
- [27] C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw Hill, New York 1980).
- [28] E. A. Kuraev, V. S. Fadin, Sov. J. Nucl. Phys., 41 (1985) 466,
- [29] A. Bogomyagkov, New Concept of a very Compact e+e- Collider with Monochromatization and Maximum Beam Energy of around 200 MeV, talk given at eeFACT2016 workshop, 24-27th October 2016, Daresbury, United Kingdom, https://eventbooking.stfc.ac.uk/uploads/eefact/mumutron-eefact2016-2.pptx
- [30] N. I. Azorskiy et al., Instrum. Exp. Tech. 58, no. 5, 593 (2015). [Prib. Tekh. Eksp. 2015, no. 5, 11 (2015)].
- [31] E. V. Abakumova et al., Nucl. Instrum. Methods Phys. Res., Sect. A 744, 35 (2014); E. V. Abakumova et al., JINST 10, T09001 (2015).
- [32] U. D. Jentschura, G. Soff, V. G. Ivanov, and S. G. Karshenboim, Phys. Rev. A 56, 4483 (1997).
- [33] S. Mrowczynski, Interaction of Relativistic Elementary Atoms With Matter. 1. General Formulas, Phys. Rev. D 36, 1520 (1987).
- [34] K. G. Denisenko and S. Mrowczynski, Interaction of Relativistic Elementary Atoms With Matter. 2. Numerical Results, Phys. Rev. D 36, 1529 (1987).
- [35] A. Banburski and P. Schuster, The Production and Discovery of True Muonium in Fixed-Target Experiments, Phys. Rev. D 86, 093007 (2012).
- [36] S. Mrowczynski, Interaction of Elementary Atoms With Matter, Phys. Rev. A 33, 1549 (1986).
- [37] http://www.kbkha.ru/?p=8&cat=11&prod=62
- [38] A. B. Arbuzov and T. V. Kopylova, JHEP **1204**, 009 (2012) [arXiv:1111.4308 [hep-ph]].