Given two $\kappa p^{\epsilon} V_{\nu} V' \text{ of } G$ and their characters $\chi_{\nu} \chi' : G \rightarrow \mathbb{C}$ $(\chi(g) = \text{tr}(g : V \rightarrow V))_{\nu}$ din $Hom_G(V,V') = H(\chi,\chi') = \frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} \chi(g')$ Hernitian inner product.

Combining with Schur's lemma:

- · character of irred-reps of G are orthonormal for H; H(x; Xj) = Sij. in particular, # irred-reps. < # conjugacy classes
- in the deconjustion of a rep. W into irreducibles $U \simeq \bigoplus V_i^{\bigoplus G_i}$, the multiplicities $q_i = H(\chi_{V_i}, \chi_W)$, and $H(\chi_U, \chi_U) = \sum_{i=1}^{2} ...$
- the dimensions of the irreducible eg's satisfy $|G| = \sum_{i=1}^{n} (d^{i}m^{i})^{2}$.

Ex: S4

	1 e	6 (12)	8 (123)	6 (1234)	3 (12)(34)	
U	1	1	1	1	1	trivial
U'	1	-1	1	-1	1	dtenating
V	3	1	0	-1	-1	standard
٧′	3	-1	0	1	-1	V ¹ = V@U'
W	2	O	-1	0	2	found using \(\side \text{din}^2 = 24 \) and
then inte	1 ated	æ ;	Sy quotien	S ₃ — stan	-> GL(W)).	nhoemally

by 2/2 × 2/2 of 53

Ex: A4 alterating subgroup of S4. This has 4 conjugacy classes: {e} I clene (3-cycles are one conjulars in { (123) 4 Sq but split in A4, see lecture 23) { (132) 4 (12)(34) 3

- -> We can start by redniching to Ay the irrel-reg's of S4 some become isomorphic (eg the alterating rep. U' has elever of A4 acting by (-1)6 = 1 so = trivial) other might become reducible. This is feasible but tricky (largely W's fault).
- -> Or we can go at it dischy! We know there's at nort 4 ind-reps, of \(\subsect dm^2 = 12, \) including the trivial rep? of lim 1 => the only option is 12-32+12+12+12.

The three 1-dime representations correspond to Hom (A4 C+) > id (third rep) and two other elements... Observe $H = \{id\} \cup \{(ij)(kl)\}$ normal subgroup,

 $A_4/H \simeq \mathbb{Z}/_3$, so this gives the answer: $Hon(A_4, \mathbb{C}^*) \simeq \mathbb{Z}/_3$ = $\{m \mapsto e^{-mk/_3}\}$

* Last time we said but didn't prove: characters of irradictle reg's are actually an otherwormal basis (for H) of the space of class furtherns G-s C.

The proof was a more great averaging/projection formula.

Last time we saw: $\varphi_{v} = \frac{1}{|G|} \sum_{g \in G} g : V \rightarrow V$ projection onto the invariant subspace V^{G} (= hilial summands in V)

Then $\varphi_{x,V}: V \to V$ is G. linear (equivariant).

 $\frac{P_{ni}f: \, \psi_{xy}(hv) = \frac{1}{|G|} \sum_{g \in G} \alpha(g) ghv}$ $= \frac{1}{|G|} \sum_{g' \in G} \alpha(h_g'h') \left(h_g'h''\right) hv = \frac{1}{|G|} \sum_{g' \in G} \alpha(g') hg'v$ $= h\left(\frac{1}{|G|} \sum_{g' \in G} \alpha(g') g'v\right) = h.\psi_{xy}(v). \square$

The character of the irreducible rep's of G form an orthonormal basis (for H) of the space of class functions G-1 C, and # irred reps = # conjugacy classes.

Proof: To show the character $\chi_1,...,\chi_m$ of the irred reps span all class functions, it suffices to show: $H(\overline{x},\chi_i)=0 \ \forall i \Rightarrow x=0$.

Given any class function α and an irrelacible rep. V, $V_{\alpha i}V \rightarrow V$ as above. Then by Schu's lemma, $V_{\alpha i}V = \lambda$ id $_{i}V_{\alpha i}V_{\alpha i}$

So: $\lambda = \frac{1}{n} \operatorname{tr}(\varphi_{\alpha, N}) = \frac{1}{n} \frac{1}{|G|} \sum_{g \in G} \kappa(g) \operatorname{tr}(g) = \frac{1}{n} \frac{1}{|G|} \sum_{g \in G} \kappa(g) \chi_{V}(g) = \frac{1}{n} H(\overline{\alpha}, \chi_{V}).$

So: if $H(\bar{x}, \chi_{v_i}) = 0$ $\forall V_i$ irreducible, then $\psi_{x_i, V_i} = 0$ $\forall V_i$, hence by considering direct sums, $\psi_{x_i, V_i} = 0$ for all rep's of 6, in particular for

the regular reprodutation R of G (permutation up. for left-mult on 6) 3 So: for the regular representation, $(\alpha, R(e)) = \frac{1}{|G|} \sum_{g \in G} \alpha(g) e_g = 0$. Since the eg are linearly indept, this implies $\alpha(g) = 0 \ \forall g \in G$, i.e. $\alpha = 0$. \square Along the way, we found: For V_i , V_j irreducible, look at $V_{\alpha,V_j}: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_{\alpha,V_j}: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_{\alpha,V_j}: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_{\alpha,V_j}: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_{\alpha,V_j}: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_{\alpha,V_j}: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_{\alpha,V_j}: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}}: \text{ then } V_j: V_j \rightarrow V_j$ =) $\frac{P_{np}}{||}$ if V is any rep of G and $V = \bigoplus V_i^{\bigoplus a_i}$ its decomposition into irreducibles, then $\varphi_{V_i} = \frac{\dim V_i}{|G|} \sum_{g \in G} \overline{\chi_{V_i}(g)} g$, $V \longrightarrow V$ is the projection arts the summand via (ie. identity on that summand, O on other). (The case of the trivial rep? = our previous prijection formula for VG) The representation ring of G: Fix a group G and consider the set of (finite dim, IC) representations of G up to

Isomorphism. There are two operations of and & which are commutative, associative, and dishibutive $(U \oplus V) \otimes W = (U \otimes W) \oplus (V \otimes W)$. So this is a ring?.. Whost! We're missing additive invoses. We'll just add them!

Let $\hat{R} = \{ \sum_{i=1}^n [V_i] / a_i \in \mathbb{Z}, V_i \text{ reps of } G \}$ formal linear combinations with integer coefficients of rep's of Gand consider the additive subgroup generated by all [V] + [W] - [V \oper W].

Let R(G) = the quotient of R by this subgroup.

(so, in R(G), $[V] + [W] = [V \oplus W]$, but we can subtract rep's!)

(R(G), \oplus , \otimes) is now a ring - the reprolation ring of G \wedge restend these operations to formal sums / difference of rep's by linearly!

As a set, $R(G) = \left\{ \sum_{i=1}^{k} a_i V_i \mid a_i \in \mathbb{Z} \right\}$ where $V_i = \text{the irreducible reprosessations of } G$ (complete reducibility + uniqueness of decomposition into irreps.)

ie. (R(G), +) is a free abelian group $(=Z^k, k = \#imdicible)$.

Cere	al ele	nets	(a; ∈ Z)	are called	! "	irfuel	reproce	gation	<i>"</i> く	actual	l rep's	<u>(4)</u>
ie	elene	fs st.	$a_i \geq 0$	Vi, form	a	Cone	inside	it.	lie.	. subset	Loxd w	nker (dhion)
		- }		} the cone rep's in	of side	R(G)						•
		. ^v 21 <u>1 </u>		,								

Next: the character, $V \mapsto \chi_V$, can be extended by linearly to a map $R(G) \longrightarrow \mathbb{C}_{class}(G)$. This is a <u>ring homomorphism!</u>

class functions $(\chi_{U\otimes V} = \chi_V + \chi_V, \chi_{U\otimes V} = \chi_U \chi_V)$

virtual rep's.

The image of this map = "virtual characters" (= { [ai Xvi , ai E Z]).

Paping to complex linear combinations instead of integer ones, our roults about incd. character forming a basis say:

 $R(G) \otimes \mathbb{C} \xrightarrow{\simeq} \mathbb{C}_{lass}(G)$ is an isomorphism $\sum_{i=1}^{k} a_i [V_i] \xrightarrow{\searrow} \chi_{\Sigma a_i V_i} = \Sigma_{a_i} \chi_{V_i}$ $(a_i \in \mathbb{C} \text{ now})$

(tensor product of (free) Z-modules, works same as for rector spaces).

. There are heavens of Artin and Braner has beside the lattice of virtual characters $\Lambda = \left\{ \sum_{a \in \mathcal{R}_{Vi}} , a \in \mathbb{Z} \right\}$ inside $C_{class}(G)$. We'll see how after Thanksgiving.

Next time. We'll look at rep's of S_5 and A_5 , for extra practice with characters + to notivate diversion of restriction & induction of reproculations (reps of $G \iff reps$ of subgroups of G).