Exercice

Antonio Falcó

7/11/2019

Enoncé

Soit la taille d'une population $X \sim N(\mu, \sigma = 3.2)$ cm. Calculer la taille de l'échantillon n pour trouver un erreur entre la moyenne empirique $\overline{X} = \frac{X_1 + \dots + X_n}{n}$ qu'on calcul avec le logiciel R et la vrai moyenne μ que soit inferieur à 0.1 avec un probabilité de 0.95

Reponse

On connaît que $\overline{X} \sim N(\mu, \frac{3.2}{\sqrt{n}})$, alors on a de checher la valeur de n telle que

$$\Pr(|\overline{X} - \mu| < 0.1) = 0.95 = 1 - 0.05.$$

il est equivalent à

$$\Pr\left(\frac{|\overline{X} - \mu|}{\frac{3.2}{\sqrt{n}}} < \frac{0.1}{\frac{3.2}{\sqrt{n}}}\right) = 0.95 = 1 - 0.05.$$

οù

$$\frac{|\overline{X} - \mu|}{\frac{3.2}{\sqrt{n}}} = \left| \frac{\overline{X} - \mu}{\frac{3.2}{\sqrt{n}}} \right| = |Z|$$

avec $Z:=\frac{\overline{X}-\mu}{\frac{3\cdot 2}{\sqrt{n}}}$ On peut concluir qu'on cherche n tel que

$$\Pr\left(|Z| < \frac{0.1}{\frac{3.2}{\sqrt{n}}}\right) = \Pr\left(-\frac{0.1}{\frac{3.2}{\sqrt{n}}} < Z < \frac{0.1}{\frac{3.2}{\sqrt{n}}}\right) = 1 - 0.05.$$

Alors

$$-\frac{0.1}{\frac{3.2}{\sqrt{n}}} = \mathtt{qnorm}(0.05/2).$$

ou

$$\frac{0.1}{\frac{3.2}{\sqrt{n}}} = \mathtt{qnorm}(1 - 0.05/2)$$

qnorm(1-0.05/2)

[1] 1.959964

En consequence

$$1.959964 = \frac{0.1}{\frac{3.2}{\sqrt{n}}} \Rightarrow 1.959964 = \frac{0.1\sqrt{n}}{3.2} \Rightarrow \sqrt{n} = \frac{1.959964 \times 3.2}{0.1}$$

[1] 3933.654

On peut concluir que on a besoin de un échantillon de au moins 3934 individues.