Московский физико-технический институт

Лабораторная работа 3.6.1

Спектральный анализ электрических сигналов

выполнил студент 924 группы ФОПФ Панферов Андрей

1 Аннотация

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью промышленного анализатора спектра и сравниваются с рассчитанными теоретически.

2 Теоретические сведения

Сколь угодно сложный электрический сигнал V (t) может быть разложен на более простые сигналы. В радиотехнике широко используется разложение сигнала V (t) на совокупность гармонических сигналов различных частот ω . Функция $F(\omega)$, описывающая зависимость амплитуд отдельных гармоник от частоты, называется амплитудной спектральной характеристикой сигнала V (t). Представление сложного периодического сигнала в виде суммы дискретных гармонических сигналов в математике называется разложением в ряд Фурье.

Зная спектральный состав $F(\omega)$ периодической последовательности некоторого импульса V(t), мы можем осуществить обратное преобразование Фурье: сложив отдельные гармоники со своими амплитудами и фазами, получить необходимую последовательность импульсов. Степень совпадения полученного сигнала с V(t) определяется количеством синтезированных гармоник: чем их больше, тем лучше совпадение.

Рассмотрим конкретные примеры периодических функции, которые будут предметом исследования в нашеи работе.

2.1 Спектральный анализ электрических сигналов

Рис. П.1. График периодической функции с периодом повторения T

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = 2\pi/T$, где T- период повторения (рис. П.1). Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$

или

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$

Здесь $a_0/2 = A_0/2$ — постоянная составляющая (среднее значение) функции f(t); a_n и b_n — амплитуды косинусных и синусных членов разложе-ния. Они определяются выражениями

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$

Точку начала интегрирования t_1 можно выбрать произвольно. В тех случаях, когда сигнал четен относительно $\mathbf{t}=0$, в тригонометрическои записи остаются только косинусные члены, т.к. все коэффициенты b_n обращаются в нуль. Для нечетнои относительно $\mathbf{t}=0$ функции, наоборот, ряд состоит только из синусных членов.

Амплитуда A_n и фаза $\psi_n n$ -й гармоники выражаются через a_n и b_n следующим образом:

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \operatorname{arctg} \frac{b_n}{a_n}$$

Как мы видим, спектр любой периодической функции состоит из набора гармонических колебаний с дискретными частотами: $\Omega_1, 2\Omega_1, 3\Omega_1 \dots$ и постоянной составляющей, которую можно рассматривать как колебание с нулевой частотой $(0 \cdot \Omega_1)$.

Представим выражение в комплексной форме. Для этого заменим косинусы экспонентами в соответствии с формулой

$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

Подстановка даёт

$$f(t) = \frac{1}{2} \left(A_0 + \sum_{n=1}^{\infty} A_n e^{-i\psi_n} e^{in\Omega_1 t} + \sum_{n=1}^{\infty} A_n e^{i\psi_n} e^{-in\Omega_1 t} \right)$$

Введём комплексные амплитуды \tilde{A}_n и \tilde{A}_{-n}

$$\tilde{A}_n = A_n e^{-i\psi_n}; \quad \tilde{A}_{-n} = A_n e^{i\psi_n}; \quad \tilde{A}_0 = A_0$$

Разложение f(t) приобретает вид

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \tilde{A}_n e^{in\Omega_1 t}$$

Как мы видим, введение отрицательных частот (типа $n\Omega_1$) позволяет записать разложение Фурье особенно простым образом.

Для расчёта комплексных амплитуд A_n умножим левую и правую части на $e^{-ik\Omega_1 t}$ и проинтегрируем полученное равенство по времени на отрезке, равном одному периоду, например, от $t_1=0$ до $t_2=2\pi/\Omega_1$. В правой части обратятся в нуль все члены, кроме одного, соответствующего n=k. Этот член даёт $A_kT/2$. Имеем поэтому

$$A_k = \frac{2}{T} \int_0^T f(t)e^{-ik\Omega_1 t} dt$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

Периодическая последовательность прямоугольных импульсов

С амплитудой V_0 , длительностью au, частотой повторения $f_{\text{повт}}=1/T$, где T- период повторения импульсов.

Среднее значение

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} V_0 dt = V_0 \frac{\tau}{T}$$
 Амплитуды косинусных составляющих равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos\left(n\Omega_1 t\right) dt = 2V_0 \frac{\tau}{T} \frac{\sin\left(n\Omega_1 \tau/2\right)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$

Поскольку наша функция чётная, все амплитуды синусоидальных гармоник $b_n = 0$. Спектр $F(\nu)$ последовательности прямоугольных импульсов представлен на рис. П.З. Амплитуды гармоник A_n меняются по Закону $(\sin x)/x$ На рис. П.З изображён спектр для случая, когда T кратно τ . Назовём шириной спектра $\Delta\omega$ (или $\Delta\nu$) расстояние от главного максимума ($\nu=0$) до первого нуля, возникающего, как нетрудно убедиться, при $\Omega_1 = 2\pi/\tau$ При этом

$$\Delta\omega au\simeq 2\pi$$
 или $\Delta
u\Delta t\simeq 1$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике. Несовместимость острой локализации волнового процесса во времени с узким спектром частот - явление широко известное в радиотехнике. Ширина селективной настройки $\Delta \nu$ радиоприёмника ограничивает приём радиосигналов Длительностью $t < 1/\Delta \nu$

Рис. П.2. Периодическая последовательность прямоугольных импульсов

Рис. П.3. Спектр периодической последовательности прямоугольных импульсов

2.3 Периодическая последовательность цугов

Гармонического колебания $V_0 \cos{(\omega_0 t)}$ с длительностью цуга τ и периодом повторения T (рис. $\Pi.4$) Функция f(t) снова является чётной относительно t=0. Амплитуда n -й гармоники равна

$$A_n = a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_o t) \cdot \cos(n\Omega_1 t) dt =$$

$$= V_0 \frac{\tau}{T} \left(\frac{\sin[(\omega_0 - n\Omega_1)\frac{\tau}{2}]}{(\omega_0 - n\Omega_1)\frac{\tau}{2}} + \frac{\sin[(\omega_0 + n\Omega_1)\frac{\tau}{2}]}{(\omega_0 + n\Omega_1)\frac{\tau}{2}} \right)$$

Такое спектральное распределение $F(\omega)$ для случая, когда $\frac{T}{\tau}$ равно целому числу, представлено на рис. П.5. Сравнивая спектр последовательности прямоугольных импульсов и спектр цугов (см. рис. П.3 и П.5), мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. П.4. Периодическая последовательность цугов

Рис. П.5. Спектр периодической последовательности цугов

2.4 Амплитудно-модулированные колебания.

Рис. П.6. Гармонические колебания, модулированные по амплитуле

Рис. П.7. Спектр колебаний, модулированных по амплитуде

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega\left(\Omega \ll \omega_0\right)$ (рис. $\Pi.6$):

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega t)$$

Коэффициент m называют глубиной модуляции. При m<1 амплитуда колебаний меняется от минимальной $A_{\min}=A_0(1-m)$ до максимальной $A_{\max}=A_0(1+m)$. Глубина модулящии может быть представлена в виде

$$m = \frac{A_{\rm max} - A_{\rm min}}{A_{\rm max} + A_{\rm min}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно-модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega) t$$

Спектр $F(\omega)$ таких колебаний содержит три составляющих (рис. П. 7) Основная компонента представляет собой исходное немодулированное колебание с иесущей частотой ω_0 и амплитудой $A_{\rm oc}=A_0-$ первое слагаемое в правой части; боковые компоненты спектра соответствуют гармоническим колебаниям с частотами ($\omega_0+\Omega$) и ($\omega_0-\Omega$) — Второе и третье слагаемые. Амплитуды этих двух колебаний одинаковы и составляют m/2 от амплитуды немодулированного колебания: $A_{\rm fok}=A_0m/2$

3 Результаты измерений и обработка данных

Соберем схему и подготовим приборы к работе, следуя техническому описанию, расположенному на установке.

3.1 Часть А

В этой части исследуется зависимость ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса.

Установим на анализаторе спектра режим работы с однократной развёрткой и получим на экране спектр импульсов с параметрами $f_{\text{повт}}=10^3$; $\tau=100$ мкс; частотный масштаб $m_x=5$ к Γ ц / дел.

Проанализируем, как меняется спектр

а) при увеличении au вдвое при неизменном $f_{\text{повт}}=1$ к Γ ц. $\Delta
u$ – уменьшается вдвое, $\delta
u$ – остается неизменным.

б) при увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau=100$ мкс. $\Delta \nu$ – остается неизменным, а $\delta \nu$ – увеличивается вдвое.

Проведем измерения зависимости ширины спектра от длительности импульса $\Delta \nu(\tau)$ при увеличении τ от 40 до 200 мкс при $f_{\text{повт}}=1$ к Γ ц.

$\Delta \nu$, к Γ ц $\cdot 10^{-1}$	τ , MKC	$\frac{1}{\tau}$, MKC ⁻¹ ·10 ²
25	40	2,50
17	60	1,67
13	80	1,25
10	100	1,00
9	120	0,83
7	140	0,71
6	160	0,63
5,4	180	0,56
4,9	200	0,50

График зависимости $\Delta \nu (1/\tau)$

По угловому коэффициенту графика ($k=1.01\pm0.01$) можно убедиться в справедливости соотношения неопределённостей: $\delta\nu*1/\tau=1$

3.2 Часть Б

В этой части исследуется зависимость расстояния между ближайшими спектральными компонентами от частоты повторения цугов.

Установим частоту несущей $\nu_0=25$ к Γ ц и проанализируем, как изменяется вид спектра:

а) при увеличении длительности импульса вдвое $\, \tau = 50 \,\, , \,\, \tau = 100 \,\, {\rm MKC}$ для $f_{\rm nobt} = 1 \,\, {\rm K} \Gamma$ ц "ширина" пиков уменьшается вдвое.

"Увеличение au вдвое"

б) при изменении частоты несущей: $\nu_0=25,10$ или 40 к Γ ц. изменяется только положение пика.

При фиксированной длительности импульсов $\tau=50$ мкс исследуем зависимость расстояния $\delta\nu$ между соседними спектральными компонентами от периода T (частоты повторения импульсов $f_{\text{повт}}$) в диапазоне 0,5-5

$\Delta \nu$, к Γ ц	$f_{\text{повт}}$, к Γ ц
0,5	0,5
1	1
2	2
4	4
5	5

График зависимости $\delta \nu(f_{\text{повт}})$

Сравним спектры цугов и прямоугольных импульсов при одинаковых значениях τ и T:

Спектр цугов при $\tau=100\,$ и $T=10^{-3}~c\,$

Спектр прямоугольных импульсов при $au = 100\,$ и $T = 10^{-3}\,c\,$

Явные отличия – положение пиков и величина амплитуды.

3.3 Часть В

В этой части исследуется зависимость отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции, который определяется с помощью осциллографа.

Изменяя глубину модуляции, исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии $(a_{\text{бок}}\ /a_{\text{осн}})$ от глубины модуляции m; для расчёта глубины модуляции m измерим максимальную $2A_{\text{max}}$ и минимальную $2A_{\text{min}}$ амплитуды сигнала на экране осциллографа (см. рис. 6.6 и 6.7).

A_{max} , B·10	A_{min} , B·10	$A \cdot$	m
5,55	4,50	0,2	0,104
6,02	4,02	0,4	0,199
6,59	3,49	0,6	0,307
7,16	2,94	0,8	0,417
7,56	2,55	1,0	0,495
8,06	2,02	1,2	0,599
8,64	1,49	1,4	0,705
9,16	0,98	1,6	0,806
9,91	0,56	1,8	0,893
1,00	0,17	2,0	0,966

Зависимость m A

Исследуем, как зависит отношние $a_{\text{бок}} / a_{\text{ос}}$ от m. A = 0.323.

A_{edge} , B·10	A_{edge}/A_{main}	$A \cdot B$	m
0,016	0,048	0,2	0,104
0,032	0,097	0,4	0,199
0,048	0,149	0,6	0,307
0,064	0,197	0,8	0,417
0,078	0,246	1,0	0,495
0,094	0,289	1,2	0,599
0,110	0,341	1,4	0,705
0,128	0,396	1,6	0,806
0,142	0,440	1,8	0,893
0,162	0,500	2,0	0,966

Зависимость $m(A_{edge}/A_{main})$

Уголовой коэффициент графика равен $1.96 \pm 0.01 \approx 2$, как и предсказывала теория.

4 Выводы

Исследования зависимости ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса в первой части работы полностью совпали с теоретическими рассчетами. По наклону графика из этой части можно убедиться в соотношении неопределенностей ($\Delta\nu\Delta t\approx 1$).

Исследования зависимости расстояния между ближайшими спектральными компонентами от частоты повторения цугов дали фнфлогичные позитивные результаты.

В последней части работы коэффициенты, получаемые в результате исследования зависимости отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции полностью совпали с теоретически рассчитаными.