Лабораторные работы кафедры ВТ ИКТИБ ЮФУ для курсов «Проблемноориентированные методы и средства цифровой обработки сигналов», «Специализированные методы и средства цифровой фильтрации»

Лабораторная работа №5.

Конвейерная реализация КИХ-фильтра на ПЛИС

Цель работы.

Лабораторная работа №5 нацелена на изучение принципов аппаратной конвейерной реализации блока КИХ-фильтрации цифрового сигнала. Также лабораторная работа направлена на: изучение студентами принципов использования ПЛИС в области цифровой обработки сигналов; изучение принципов построения параллельных схем; изучение принципов аппаратной реализации алгоритмов с «плавающим окном».

Ход работы:

1. Выполнить построение дискретного сигнала с использованием языка Руthon, как это было сделано в п.1 лабораторной работы №4:

$$x_n = \sum_{k=1}^{7} A_k \cdot \sin(2\pi \cdot f_k \cdot t_n)$$

Изменить частоту дискретизации: $fd = 2.2 * \max(f)$ КГц. Количество семплов N = 2048.

2. По графику АЧХ со шкалой абсолютных частот (построенному в п.5 ЛР4) переопределить новые диапазоны частот, относящихся к полосам пропускания и полосам заграждения КИХ-фильтра. Для этого необходимо определить частоты среза фильтра (на рисунке красная линия): частоту, при которой наблюдается спад амплитуды сигнала в $1/\sqrt{2}$ раза (на 3 дБ), а именно, найти точки пересечения графика АЧХ с прямой, отражающей значение амплитуды $A = 1/\sqrt{2}$ (на рисунке синяя линия). В зависимости

от типа фильтра, может присутствовать как единственная частота среза (для ФНЧ и ФВЧ), так и несколько (для полосовых и режекторных фильтров).

3. **Пересчитать** эталонный модельный сигнал, состоящий только из тех гармоник, которые согласно варианту, попадают в диапазон **полос пропускания** КИХ-фильтра. Для этого по графику АЧХ фильтра в абсолютных частотах (построенный в п.4 лабораторной работы №5) необходимо определить, какие частоты были отфильтрованы, а какие нет. Эталонный модельный сигнал рассчитывается аналогично исходному сигналу по формуле:

$$x_n = \sum_{m=1}^{M} A_m \cdot \sin(2\pi \cdot f_m \cdot t_n)$$

где A_m и f_m — амплитуды и частоты гармоник, попадающих в **полосы пропускания** фильтра; M — число таких гармоник.

- 4. Исходный сигнал x_n , полученный в п.1 данной работы, конвертировать в целые числа, отбросив все знаки после запятой с помощью функции int(), по примеру, как это было сделано в п.1 лабораторной работы №2.
- 5. Сохранить полученный дискретный сигнал в виде и формате *.mif файла, для инициализации памяти в САПР Quartus 9.2. Подробнее о формате *.mif файлов можно узнать здесь:

https://manpages.ubuntu.com/manpages/bionic/man5/srec_mif.5.html

Для сохранения дискретного сигнала в виде и формате *.mif файла можно использовать следующий код:

```
discret_signal_file = "signal.mif"
with open(discret_signal_file, 'w') as f:
    f.write(f"ADDRESS_RADIX=DEC;\n")
    f.write(f"DATA_RADIX=DEC;\n")
    f.write(f"CONTENT BEGIN\n")
    for idx in range(len(discret_signal)):
        f.write(f"\t{idx} : {str(discret_signal[idx])};\n")
    f.write(f"END;")
```

6. Масштабировать значения H коэффициентов импульсной характеристики КИХ-фильтра, отобразив их на разрядную сетку, заданную вариантом лабораторного задания, по примеру, как это было реализовано в п.2 лабораторной работы №2. Для этого рассчитать диапазон разрядной сетки по формуле: $D = 2^q$, где q — требуемая разрядность данных, а шаг разрядной сетки равен 1/D. Так как работа ведется над числами со знаком (signed), старший бит от общей разрядности отведен под знак. В связи с этим, масштабировать коэффициенты необходимо согласно формуле: $H_{scale} = H * D/2$.

После масштабирования необходимо конвертировать полученные коэффициенты в целые числа, отбросив все знаки после запятой с помощью функции int(), по примеру, как это было сделано в п.4 данной работы.

- 7. Относительно варианта лабораторного задания, выбрать одну из предложенных схем: с каскадным или параллельным суммированием. В случае, если импульсная характеристика КИХ-фильтра является симметричной (часть коэффициентов в точности равна второй части, записанной в обратном порядке), помимо выбора типа суммирования, следует выбрать соответствующую схему.
- 8. В САПР Quartus 9.2 реализовать схему фильтра, выполняющую операции над **целыми знаковыми** числами с разрядностью, выбранной согласно варианту лабораторного задания.

Реализацию схемы КИХ-фильтра необходимо выполнить с помощью мегафункций Quartus. Латентность операций целочисленного

сложения/вычитания со знаком (signed): $latency_{add/sub} = 1$. Латентность (latency, clock cycles) операций целочисленного умножения со знаком (signed) определяется вариантом лабораторного задания. При реализации схемы не забыть после операции умножения обрезать младшие q-1 разрядов и один старший биты для сохранения разрядности вычислений, как это было реализовано в лабораторной работе $N ext{2}$ 3.

- 9. Реализовать схему тестового окружения:
 - а. память ROM: инициализировать *.mif-файлом, полученным в п.5 данной работы и содержащим входную последовательность отсчетов сигнала Xn);
 - b. память RAM для записи результата работы схемы фильтрации.

Рисунок 1 – схема тестового окружения реализации КИХ-фильтра

- 10.Выполнить функциональное моделирование схемы. Для чтения данных из памяти ROM подать на входной порт *addr_rd_ROM* счетчик с инкрементом (кнопка на левой панели окна моделирования Quartus 9.2). Запись результата осуществить в память RAM начиная с того момента, как данные появятся на выходе блока КИХ-фильтрации Filter.
- 11. Сохранить содержимое памяти RAM по результатам Simulation Report в виде текстового файла.
- 12.Загрузить данные, полученные в предыдущем пункте работы, в код Python лабораторной работы №4. Так как после загрузки файла данные будут

представлены в строковом формате, их необходимо поэлементно преобразовать в формат int и записать в массив. Для этого можно **частично** использовать следующий код:

```
quartus_result_file_data = []
with open("quartus_result_file.txt", 'r') as f:
    for line in f:
        quartus result file data.append(int(line))
```

13. Вывести в семплах на одном графике:

- а. Исходный сигнал
- b. Эталонный модельный сигнал
- с. Сигнал, полученный после аппаратной фильтрации во временной области.
- 14.В отчете сделать вывод о точности вычислений в ПЛИС.
- 15.В отчете привести RTL-схему, полученную по результатам компиляции проекта.
- 16.В отчете привести ресурс ПЛИС, требуемый на реализацию всей схемы, полученную по результатам компиляции проекта.
- 17.В отчете привести данные о максимально возможной тактовой частоте схемы, полученной по результатам компиляции проекта. Для этого найти максимальное значение в разделе Timing Analizer -> Summary и взять обратную величину от него. Например, если максимальное значение периода тактовой частоты равно 12.685ns, значение максимальной тактовой частоты равно 1*109/12.685 Гц.

Варианты заданий к лабораторной работе №5

Варианты лабораторного задания выбираются согласно номеру студента в общем списке группы. Нечетный номер реализует схему КИХ-фильтра с каскадным суммированием, четный — с последовательным суммированием.

В таблице приведены значения частот и амплитуд для генерации модельного сигнала, латентность операции умножения и разрядность выполняемых операций.

Таблица 1 – варианты лабораторных заданий

№		1	2	3	4	5	6	7	Латентность операции умножения:	Разрядность:
1	F, кГц	0,5	1 5	2	5 7	7	9 2	12	3 такта	8 бит
2	А F, кГц	3	5	6	9	12	15	18	A maxima	9 бит
3	Г , КІ Ц	7	9	8	12	7	4	6	4 такта	9 оит
	F, кГц	0,9	1	2	9	12	15	18	5 тактов	10 бит
3	<u>г, кі ц</u> А	2	5	3	12	7	4	6	J Taktob	10 0ит
4	F, кГц	3	5	6	8	9	10	12	6 тактов	11 бит
	А	7	9	8	7	3	2	5	O Taktob	11 оит
5	F, кГц	0,5	1	2	9	12	14	17	3 такта	12 бит
5	<u>г, кі ц</u> А	1	5	3	12	15	4	6	3 Takta	12 001
6	F, кГц	2	4	5	7	9	12	15	4 такта	13 бит
	А	11	15	12	13	21	10	9	4 lakla	13 001
7	F, кГц	9	11	15	17	21	29	35	5 тактов	14 бит
	А	17	19	36	34	28	25	40	JIAKIOB	14 001
8	F, кГц	0,3	0,56	1,2	3,5	5	7	9	6 тактов	15 бита
	А	21	18	23	19	13	20	11	OTARIOB	15 0M1a
9	F, кГц	10	13	14	17	21	22	25	3 такта	16 бита
	А	9	14	15	19	21	26	30	Jiakia	10 онта
10	F, кГц	1	5	7	13	18	19	29	4 такта	17 бита
	A	9	11	12	17	21	29	35	4 Takia	17 Onia
11	F, кГц	10	11	12	13	15	20	25	5 тактов	18 бита
	А	9	11	15	17	21	29	35	Jakrob	10 0114
12	F, кГц	21	25	32	33	41	45	50	6 тактов	17 бита
	A	9	11	15	17	21	29	35	OTURTOD	17 onta
13	F, кГц	20	21	22	23	27	30	40	3 такта	16 бита
10	A	9	11	15	17	21	29	35	- Jakia	10 01114
14	F, кГц	11	15	12	13	21	23	25	4 такта	15 бит
	A	19	12	15	27	23	29	25		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15	F, кГц	5	11	12	13	21	23	30	5 тактов	14 бит
	A	9	11	15	17	21	29	35	-	
16		11	13	15	17	21	23	25	6 тактов	13 бит
	A	22	23	25	17	21	29	35	1	
17	F, кГц	1	2	3	7	9	11	13	3 такта	12 бит
	A	2	12	11	15	3	8	13	1	
18	F, кГц	3	9	14	16	21	26	32	4 такта	11 бит
	A	12	2	17	5	9	15	6	1	
19	F, кГц	5	7	12	17	24	26	43	5 тактов	10 бит
	A	5	14	3	23	6	20	7	1	
20	F, кГц	1	4	14	19	20	23	29	6 тактов	8 бит
	A	8	5	12	7	3	15	8	1	

Различные виды схем КИХ-фильтров приведены в таблице 2.

Таблица 2 – виды схем КИХ-фильтров

Схема КИХфильтра с каскадным суммированием с симметричными коэффициентами

Схему необходимо масштабировать под заданное число коэффициентов!

Схема КИХфильтра c последовательным суммированием симметричными коэффициентами Элементы Delay задержка на регистрах lpm_dff, $latency_{add/sub}$ на тактов.

Схему необходимо масштабировать под заданное число коэффициентов!

Требования к отчету и защита

Процесс выполнения лабораторной работы документируется с помощью текстового редактора MS Word, полученные сведения служат основой для формирования отчета о выполнении лабораторной работы. Отчет в общем случае должен включать:

- титульный лист;
- описание задач в выбранном варианте лабораторной работы;
- cxeмы из Quartus 9.2
- отчет о компиляции проекта
- временная диаграмма моделирования проекта
- все графики, полученные в ходе работы в Python
- выводы
- листинг программы

Защита отчета о выполнении лабораторной работы сопровождается демонстрацией работоспособности кода программ, теоретических знаний и ответов на дополнительные вопросы преподавателя по теме занятия.

приложение 1.

1. Инструкция по установке IDE PyCharm.

а. Зайти на страницу загрузки IDE PyCharm с официального сайта JetBrains, опуститься вниз страницы и нажать Download PyCharm Community Edition. Данная версия программного продукта не нуждается в лицензировании.

https://www.jetbrains.com/pycharm/download/?section=windows

- b. Установить IDE РуСһаrm. При установке выбрать все чекбоксы.
- с. С официального сайта Python скачать и установить последнюю версию интерпретатора языка. При установке отметить все чекбоксы (обязательно выбрать «Add python.exe to PATH»). https://www.python.org/downloads/

2. Инструкция по установке VSCode и начальная настройка среды.

- а. Зайти на главную страницу официального сайта VSCode и нажать кнопку Download. VSCode не нуждается в лицензировании. https://code.visualstudio.com/
- b. Установить VSCode. При установке выбрать все чекбоксы.
- с. Открыть среду VSCode и зайти в раздел расширения (Extensions).

- d. Найти и установить расширение «Russian Language Pack for Visual Studio Code» (опционально).
- e. Найти и установить расширение «Python».
- f. С официального сайта Python скачать и установить последнюю версию интерпретатора языка. При установке отметить все чекбоксы (обязательно выбрать «Add python.exe to PATH»).

https://www.python.org/downloads/

3. Подготовка работы с IDE.

- а. Проверить, установлена ли на компьютере IDE PyCharm или VSCode. Если нет, выполнить установку согласно описанной выше инструкции.
- b. Создать рабочую директорию с вашей фамилией. Желательно, чтобы папка находилась не на рабочем столе Windows.
- с. Запустить IDE и выполнить команду File => Open Folder, где выбрать путь к созданной вами директории.
- d. Создать новый файл Python File: команда File => New => Python File и задать имя файла с расширением *.py (например, lab1.py).
- е. Файл открылся в правой области окна проекта. Здесь можно набирать код программы.

4. Пример написания и запуска программы в IDE.

Хорошей традицией при изучении первого языка программирования является написание программы, выводящей на экран компьютера приветствие «Hello World!». Для создания такой программы необходимо предварительно создать и открыть новый руthon файл, как это было описано выше.

- a. Наберите команду: print('Hello Python!')
- b. Выполните запуск программы нажав на клавишу RUN расположенную в правом верхнем углу IDE. Результат работы программы появится мгновенно в окне вывода, расположенном в нижней части IDE.
- с. Для запуска программы в первый раз нужно щелкнуть правой кнопкой мыши в окне с текстом программы и выбрать пункт Run.
- d. Если запуск в IDE PyCharm произошел с ошибкой, проверьте, указан ли интерпретатор языка в окне Run => Edit Configuration.

5. Инструкция по установке пакетов matplotlib, scipy, numpy.

- a. В IDE VSCode зайти в раздел расширения (Extensions); в IDE PyCharm открыть вкладку Python Packages.
- b. Найти и установить библиотеки matplotlib, scipy, numpy.