25

10

COMPOSITION AND PROCESS FOR CLEANING AND DISINFECTING FOOD PRODUCTS

5 Field of the Invention

The instant invention relates to a composition and process for cleaning and disinfecting food products, such as a fish or other seafood products. The composition and process is also useful for meat products, including hamburger beef, sausage, hot dogs and poultry. In particular, it relates to exposing the product to the composition, such as by grinding ice blends, smokehouse rinse cycles, steam skinning, topical application by spraying the product or immersing the product in a treatment bath of lemon juice, lime juice, salt, vinegar, turmeric powder and water for killing bacteria and loosening scaly or rough surfaces, while maintaining a pleasant organoleptic taste for the consumer of the product. The composition and process cleans a product, such as a scaled fish of oily film and tissues while at the same time maintaining the taste and textural consistency of the fish or other meat product. Furthermore, the composition and process can be used to sanitize food preparation surfaces and equipment in restaurant and home kitchens. In agriculture, the composition and process can be used for a feed spray to sanitize livestock feed materials and can be used as a livestock wash for the eyes and mouth of livestock, such as cattle or sheep.

Background of the Related Art

The past few years have been especially tough on the food industry. Recalls have damaged many brands and entire companies and put in question the public's confidence in the wholesomeness of foods in general. Since the tragedy of September 11, 2001, there is a heightened alert for the dangers of contaminated food. Product recalls may have a catastrophic effect like never before. Since September 11, 2001, the public react differently to the dangers of food contamination and the media is on heightened alert. The risk factors for a food related industry with such an event has gone from possible costly product recalls to certain economic devastation.

Although several substances are known in the art for treating and scaling the surfaces of different fish, removing such surfaces of scales and oil subcutaneous films, no commercial composition or process is known or suggested which permits the cleaning and disinfecting of a fish without causing the treated fish to shrivel up and assume a "pickled" texture, while a disinfecting of bacteria from the fish. For example, in U.S. Patent 3,706,333 to Ammerman, a process is described for cleaning fish in a caustic bath, and in U.S. Patent 4,951,155 to Pack a process is described for descaling fish by immersing the fish in an aqueous bath of vinegar and water. Such processes, however, unlike the present composition and process, damage the

inherent textural consistency of the fish fillet meat, and leave an acidic odor.

Other prior art patents include U.S. Patent No. 4,944,957 of Kingsley and 2,383,907 of Beechem, as well as United Kingdom Patent No. 18,345 of Danilevsky. Kingsley concerns use of citric acid for odor treatment and Danilevsky uses acetic acid to preserve fish. Beechem claims to describe acids to kill bacteria, but cites as an example 10% nitric acid to clean hard shelled beans.

Objects of the Invention

It is therefore an object of the present invention to clean and disinfect edible food products, such as fish or meat, while maintaining a pleasant organoleptic taste for the consumer of the product.

Summary of the Invention

In accordance with the present invention there is provided an aqueous composition which is suitable for treating by immersion a meat product, such as an uncooked fish therein, whether fresh or thawed from a frozen state, to remove a variety of undesirable filmy substances and subcutaneous debris while retaining a fresh odor to the fish for cooking and maintaining

20

5

the textural consistency and appearance of the fish fillet materials.

The composition and process may also be used on meats, such as pork, beef or poultry, or other types of seafood, such as lobster, shrimp and shellfish, whether fresh or thawed from a frozen state.

Among the materials used in the composition of the invention in which the food product may be immersed, the following may be mentioned, without implying any limitation, namely, water, 5% white vinegar solution (acetic acid), lemon juice, lime juice, salt and turmeric.

For example, oily films and subcutaneous debris on the surface of a fish may be easily cleaned by treatment with the composition of the invention since, as the fish is immersed for a period of time, generally 5-7 minutes, these undesirable substances are removed in the aqueous solution, thus avoiding in consequence the final step of cleaning these substances with knives. It is to be understood that the treatment composition of the invention may be applied to previously scaled fish fillets. The composition thus obtains a clean fish fillet which is also highly disinfected of bacteria, thus increasing its desirability for cooking.

A laboratory conducted a bacterial analysis and count on raw fresh fish prepared and treated in the manner of the present

invention both before and after the application of the fish cleaning bath confirms the bacterial disinfecting efficacy of the composition and process of the present invention. It is also found that the treatment composition and process of the invention inhibits and/or reduces growth of bacterial infection on raw foods such as beef, pork, fowl, and the like.

The composition and process cleans and disinfects food products, such as a fish or other seafood products. The composition and process is also useful for meat products, including hamburger beef, sausage, hot dogs and poultry. In particular, it relates to exposing the product to the composition, such as by grinding ice blends, smokehouse rinse cycles, steam skinning, topical application by spraying the product or immersing the product in a treatment bath of lemon juice, lime juice, salt, vinegar, turmeric powder and water for killing bacteria and loosening scaly or rough surfaces, while maintaining a pleasant organoleptic taste for the consumer of the product. The composition and process cleans a product, such as a scaled fish of oily film and tissues while at the same time maintaining the taste and textural consistency of the fish or other meat product. Furthermore, the composition and process can be used to sanitize food preparation surfaces and equipment in restaurant and home kitchens. In agriculture, the composition and process can be used for a feed spray to sanitize livestock

feed materials and can be used as a livestock wash for an orifice, such as the eyes and mouth of livestock, such as cattle or sheep. Moreover, the composition can be applied to displayed produce, by spraying or surface rinse for freshness and extended shelf life.

The composition and process of the present invention removes subcutaneous slime and odor from fresh fish or meat in preparation for cooking, and further, disinfects the fish or meat to be cooked in the event that harmful bacterial or other microorganisms reside on the raw fish or meat. Such harmful microorganism may be a residue of polluted water from which the fish was taken, or may have originated from filthy food preparation facilities of either fish or meat products.

Raw fresh fish normally has an odor which can be removed by the use of the fish cleaning composition of the invention. Such fish odors emanate from the proteins and oils inherent in raw fresh fish. The combined lemon juice and lime juice of the resent composition, together with the 5% vinegar solution and turmeric have a unique ability to remove the normal "fishy" odor of raw fresh fish, and replace that odor with a slight citrus odor which masks an acidic, vinegary odor which emanates if just vinegar is used as in Pack '355. The slight citrus odor is the result of combined lemon and lime scents from the natural fruit

juices used in the invention. This citrus odor adds to the flavor and appeal of the fish both before and after cooking.

The fish cleaning bath also has the effect of removing the natural slime coating inherently found in or upon most raw fresh fish after descaling. The result of using the fish cleaning bath of the invention on raw fish is that after such treatment, the fish has a non-slippery feel, and is thus fare more appealing to a consumer who purchases and prepares the fish for consumption.

The present invention further kills or removes pathogenic bacteria which may be upon the surface of raw fresh fish before cooking. Such bacteria may originate in polluted water from which the fish was taken, or from unclean food preparation surfaces with which the raw fish comes in contact during preparation for cooking.

This disinfecting aspect of the present invention is confirmed in laboratory testing.

Description of the Preferred Embodiment

The present invention is both a treatment composition, which is a combination of ingredients, and a process, which is the cleaning, de-sliming, disinfection and deodorizing of raw fish to be cooked by using the treatment composition of the invention in a fish cleaning bath.

Alternatively, the treatment composition and process may be used for other raw meat products, such as beef, pork, poultry and other types of seafood, such as crustaceans and shellfish.

A typical preferred embodiment of the treatment composition contains the following proportion of ingredients:

Water 0.5 Gallons	64	fluid	ounces	50%
5% White Vinegar Solution	10	fluid	ounces	8%
Lemon Juice	27	fluid	ounces	21%
Lime Juice	27	fluid	ounces	21%
Total Liquid Volume per batch				
1.0 Gallon	128	fluid	ounces	100%

Admixed in the above Mixture are the following solid ingredients in the following preferable amounts:

3 Teaspoons Table Salt

3 Teaspoons Tumeric

The fish cleaning bath is used in the following manner.

First, a raw fresh fish is cleaned and eviscerated and its scales, if any, are removed by hand or by machine. The raw fish is then immersed in the fish cleaning bath for 4-8 minutes, preferably 5-7 minutes, depending on the acid concentration of the treatment composition. If exceeding 7 to 10 minutes immersion at the above identified concentration, the fish

cleaning bath may begin to decompose the flesh of the raw fish, giving an unacceptable result in which the fish flesh breaks apart easily, which is what was observed when fish were immersed in the Pack '355 solution of vinegar and water.

After the raw fresh fish has been immersed for 4-8 minutes, preferably 5-7 minutes, the fish cleaning bath, with the raw fresh fish therein, is vigorously agitated, either mechanically or by hand for 30-45 seconds. Agitation mechanically removes gross filth or soil which may be lodged upon the surface of the raw fish. When the vigorous agitation is complete, the raw fresh fish is removed from the fish cleaning bath and is thoroughly rinsed in cold water, after which the fish is ready for further preparation or for immediate cooking. time in which the fish is immersed in the bath is 4-8 minutes, preferably 5-7 minutes soaking time and an additional 30-4 seconds during which there is vigorous mechanical agitation. When the aforementioned concentrations are used, the raw fresh fish should not be exposed to the fish cleaning bath for more than 8 minutes. However, if lower concentrations of the components are used, then the immersion time may be 12 minutes.

After being rinsed, the fish flesh is firm, has either no odor at all or a slight citrus odor, has no slippery feel, and is substantially free from pathogenic bacteria which originated

either in the water from which the fish was taken or from unclean food preparation surfaces.

Therefore, the present invention is a combination of ingredients and proportions thereof comprising a treatment composition and treatment process for preparing raw fresh fish for cooking. Before the composition of the present invention is used, the raw fresh fish is scaled and cleaned in a conventional manner. Such conventional cleaning involves eviscerating the fish, optionally removing the head, and removing any scales by conventional means.

The treatment of the present invention is intended to clean, deodorize, and disinfect the raw fresh fish after conventional cleaning and before cooking.

The solid ingredients admixed with the above mixture may be varied as follows:

Amount:	<pre>Preferably:</pre>	Ingredient:
1-5 teaspoons	5 tsp/gallon	Table Salt
1-5 teaspoons	2 tsp/gallon	Tumeric

The above composition may be used in accordance with the practice of the invention with a time, but immersion time is shorter, up to 6 minutes maximum.

20:

The original composition may be also used in the treatment process with a time variation but immersion time is shorter, such as up to 4 minutes maximum.

In alternate embodiments of the aforementioned preferred composition, the following variants of proportional ingredients are presented as also being suitable.

The proportions of ingredients in the composition may be varied as noted below designated as Variant 1, wherein somewhat less water is used with an increased amount of vinegar.

	Water	40	fluid	ounces	31%
	5% White Vinegar Solution	34	fluid	ounces	27%
	Lemon Juice	27	fluid	ounces	27%
	Lime Juice	27	fluid	ounces	21%
	Total Liquid Volume per batch				,
,	1.0 Gallon	128	fluid	Olinces	100%

Admixed in the above Mixture are the following solid ingredients:

1-5 teaspoons per gallon Table Salt
1-5 teaspoons per gallon Tumeric

The immersion time suitable for use in the treatment process hereinabove described is substantially the same as previously reported, i.e. from about 4 minutes to 8 minutes maximum immersion plus the time for vigorous agitation.

5

Another variation of the composition, including more water, a lower concentration of vinegar wherein the immersion time remains 8 minutes maximum is summarized below.

	Water	69	fluid	ounces	54%	
5	5% White Vinegar Solution	5	fluid	ounces	4%	
	Lemon Juice	27	fluid	ounces	21%	
	Lime Juice	27	fluid	ounces	21%	
	Total Liquid Volume per batch	h				
	1.0 Gallon	128	fluid	ounces	100%	

Admixed in the above Mixture are the following solid ingredients:

1-5 teaspoons per gallon Table Salt

1-5 teaspoons per gallon Tumeric

Preferably, the solid ingredients are in the following amounts:

3 teaspoons per gallon Table Salt

3 teaspoons per gallon Tumeric

The immersion time suitable for use in the treatment

20 process with the above composition is substantially the same,
i.e. from about 4 minutes to 9 minutes maximum immersion plus
the time for vigorous agitation.

In another variant, as summarized below, there is less water, same vinegar, more citrus juice and the immersion time remains 8 minutes maximum.

Wa	ter	40	fluid ounces	32%
5%	White Vinegar Solution	10	fluid ounces	8%
Le	mon Juice	39	fluid ounces	30%
Li	me Juice	39	fluid ounces	30%
То	tal Liquid Volume per batch	ı		
	1.0 Gallon	128	fluid ounces	100%

5

Admixed in the above Mixture are the following solid ingredients:

1-5 teaspoons per gallon Table Salt

1-5 teaspoons per gallon Tumeric

Preferably, the solid ingredients are in the following amounts:

3 teaspoons per gallon Table Salt

3 teaspoons per gallon Tumeric

Suitable immersion times with this variant of the

20 composition of the invention is similar to that used with the

previously reported compositions, i.e. from about 4 minutes to 8

minutes maximum immersion plus the time for vigorous agitation.

In a further variation, designated as composition Variant 4, the composition is prepared with more water, same vinegar, with less citrus and the immersion time remains 8 minutes maximum.

5	Water	84	fluid ounces	32%	
	5% White Vinegar Solution	10	fluid ounces	8%	
· · · · · · · · · · · · · · · · · · ·	Lemon Juice	17	fluid ounces	30%	
	Lime Juice	<u>17</u>	fluid ounces	30%	
	Total Liquid Volume per batch	n			
10	1.0 Gallon	128	fluid ounces	100%	

Admixed in the above Mixture are the following solid ingredients:

1-5 teaspoons per gallon Table Salt

1-5 teaspoons per gallon Tumeric

Preferably, the solid ingredients are in the following amounts:

3 teaspoons per gallon Table Salt

3 teaspoons per gallon Tumeric

In a still further variation, there is a change in lemon juice/lime juice proportions. Water, vinegar are the same as in composition Variants 1-4 above, but the immersion time remains 8 minutes maximum.

To summarize, the ingredient ranges of the original composition and variations 1-4, there is provided the following desirable ranges:

	water	40 - 84 fl	uid ounces	32 -	66%
5	5% White Vinegar Solution	5 - 34 flu	id ounces	4 -	27%
	Lemon Juice	17-39 flui	d ounces	14 -	31%
	Lime Juice	17-39 flui	d ounces	14 -	31%
.0	Total Liquid Volume p	per batch	,		
	1.0 Ga	allon 1	28 fluid ounce	es	100%

Admixed in the above Mixture are the following solid ingredients:

1-5 teaspoons per gallon Table Salt

1-5 teaspoons per gallon Tumeric

Lemon Juice : Lime Juice ratio is 2:1

Another embodiment of the composition of the present invention is according to the following formula:

5	Ingredient	amt/1000 ml SS	amt/gal SS	amt/gal 8 fold Conc
	Lemon juice (1+7)	26.4 ml	100.0 ml	800.0
	Lime juice (1+6.5)	26.4 ml	100.0 ml	800.0
•	White Vinegar, 15%	26.4 ml	100.0 ml	266.7
	Salt	4.0 gm	15 gm	120.0
10	Tumeric	2.6 ml	10 ml	
				1718.3
	Total 10	000.0 ml	3785.0 ml	3785.0

Note: SS = Single Strength - use as is 8-fold concentrate - use at 1 part concentrate plus 7 parts water

115

20

25.

Tumeric Extract is from Heavenly Flavors of Suffern, NY.

According to the above formula, lemon juice concentrate can be used, as long as it is mixed with seven parts water. The same is true with lime juice concentrate, as long as it is mixed with 6.5 parts water.

In this formula, the preferred concentration of both lemon and lime juice, each including lemon or lime juice concentrate

20

and water as noted above, is about 20 percent each for lemon and lime juice, and the percentage of vinegar is about 7 percent.

In other applications in addition for fish preparation, the present invention is useful in applications such as ice blend exposures for hamburger and other chopped or ground meat in grinding machines, where the chopped or ground meat is exposed to ice. In the present invention, the composition can be frozen and mixed with the ice blend contacting the meat being ground.

The composition can also be used for preparing sausage in the sausage cooking / rinse cycle of a meat smokehouse.

In preparation of tubular frankfurter hot dogs, the composition can be applied in the steam-exposed skinning and skin removal phases of the production of the tubular product at 160 degree F, where the skin is blown off of the tubular meat product.

The product can also be topically applied to fresh meat, processed meat, chicken and seafood by brushing, spraying or rinsing.

The composition can also be sprayed or brushed upon food preparation equipment in restaurants or home kitchens, such as meat slicers, and food preparation surfaces, such as wooden or plastic cutting boards, for sanitation thereof.

For displayed produce, the composition can be applied by spraying or surface rinse for freshness and extended shelf life.

5

In agriculture, the composition and process can be used for a feed spray to sanitize livestock feed materials and can be used as a livestock wash for the eyes and mouth of livestock, such as cattle or sheep.

The suggested usage rate for Composition of the present invention is as follows:

a) For cut red meats (beef, pork, lamb):

For the average size piece in weight range up to 6 ounces - 1 ounce (2tbsp).

For the larger size pieces use 1 ounce for every 4 ounces.

b) For chicken

For every 1/2 pound use 1 ½ ounce (3 TBSP).

The composition of the present invention should be applied to the outside surface of the meat, except for hamburger or ground meats where it is applied in an ice blend contacting the granules of meat being ground.

For non-ground meat, such as steaks, fillets, breasts, etc., it should be worked into the surface with a moderately stiff brush making sure that the surface has been completely covered. It should be left in place a minimum of 5 minutes before being rinsed off.

Testing Examples

The evaluation of disinfecting characteristics of the composition and treatment process of the invention is illustrated by the following specific examples which are provided herein for purposes of illustration only and are not intended to limit the scope therein.

The following tests of a combination of ingredients and proportions thereof comprising a treatment composition and a process for preparing raw fresh fish for cooking were conducted under laboratory conditions. Before the treatment composition of the present invention is used, samples of raw fresh fish are cleaned in a conventional manner. Such cleaning involves eviscerating the fish, optionally removing the head, and removing any scales by conventional means. The treatment composition of the present invention is intended to be used in accordance with the practice of the invention to clean, deodorize, and disinfect the raw fresh fish after conventional cleaning and before cooking.

The objects of the present invention are to remove slime and odor from fresh fish in preparation for cooking, and further, to disinfect the fish to be cooked in the event that harmful bacteria or other microorganisms reside on the raw fish. Such harmful microorganisms may be a residue of polluted water

20

5

from which the fish is taken, or may have originated from filthy food preparation facilities.

Example 1

In order to demonstrate that the treatment composition and process of the invention kills or removes pathogenic bacteria which may be upon the surface of raw fresh fish, laboratory testing is conducted. The following is a report of the procedures, tests and results. A bacteria count on raw fresh fish is conducted by means of standard plate counts.

Six different kinds of fresh fish are purchased at a fish market. Cutting utensils and cutting surfaces are cleaned, and each of the six kinds of fish are cut into two pieces, with one piece of each kind of fish being placed in a clean sample bag without any treatment. The other piece of each of the six kinds of fish (the test sample) is immersed in a treatment bath containing the following ingredients and proportions thereof:

Water 64 fluid ounces

5% White Vinegar Solution 10 fluid ounces

Lemon Juice 27 fluid ounces

Lime Juice 27 fluid ounces

Total Liquid Volume per batch

1.0 Gallon 128 fluid ounces 100%

Admixed in the above Mixture are the following solid ingredients:

3 teaspoons per gallon

Table Salt

3 teaspoons per gallon

Tumeric

Each test sample of fish is immersed in the treatment bath for 5 minutes and vigorously agitated for 30 seconds after which the sample is washed in cold water.

After this five-minute immersion and washing, each of the six test samples was separately placed into a clean plastic sample bag. There were thus 12 samples taken to the laboratory - control (untreated) pieces of fish and 6 experimental (treated) pieces of fish, all raw, and all purchased approximately 15 minutes before the preparation of the samples.

The control and experimental samples were transported to the laboratory immediately after the samples were prepared, and were ready for testing and one half hours after having been purchased at a fish market.

#...# ..#.

20

25

5

The fish samples comprised the following different kinds of fish:

in the

		Control Sample (No Treatment)	(5 M:	Sample inute Immersion in a entive composition)
•.	1.	Red Snapper	7.	Red Snapper
/·	2.	Blue Fish	8.	Blue Fish
	3.	Whiting	9.	Whiting
	4.	Grouper	10.	Grouper
	5.	Salmon	11.	Salmon
	6.	Scrod	12.	Scrod
	Campl	log 1 and 7 and man		The second of th

Samples 1 and 7, are prepared by cutting a single Red Snapper into two equivalent-sized pieces. One being the control (Sample 1) and the other being the experiment (Sample 7). this manner, whatever bacteria may have been present upon the purchased sample of Red Snapper is determined because the control sample was submitted to the laboratory without treatment. The only difference between sample 1 and sample 7 was the treatment given to sample 7 as described above. Thus, the effects of bacteria reduction can only be attributed to treatment with the present invention. The remaining samples are prepared in an identical fashion.

A Standard Plate Count procedure is used to determine the presence of bacteria upon each of the samples. The results obtained are summarized below:

The bacteria count showed a dramatic decrease for 5 of the 6 fish samples treated with the composition of the present invention. In one of the fish samples there was a significant decrease in the bacteria count of the treated fish sample, but the decrease was not dramatic.

Specifically, the results from the standard bacteria plate counts reported by Ameritech Laboratories were as follows:

TABLE 1 RESULTS

Control Sample [No treatment]		[5 M:	Sample in Immersion] resent Invention	Bacteria Per Gram
1. Red Snapper	2480	7.	Red Snapper	496
2. Blue Fish	12400	8.	Blue Fish	11160
3. Whiting	8060	9.	Whiting	1550
4. Grouper	89280	10.	Grouper	49600
5. Salmon	161200	11.	Salmon	7440
6. Scrod	86800	12.	Scrod	6200

Example 2

This example illustrates disinfecting raw fresh food products using the composition and process of the present invention.

A treatment composition prepared with the proportion of ingredients described in Example 1 is used in this Example.

The pH of Example 2 is determined to be 2.58.

Samples of five different food products (meat, fish and fowl) are purchased. Cutting utensils and surfaces are cleaned, and each of the four kinds of food (ground beef, sliced steak, pork and chicken) are cut into two pieces, with one piece of each type of food products being placed in a clean sample bag without any treatment. The other piece of each of five kinds of sample food precuts is immersed in a treatment bath (prepared as described in Example 1) using the treatment procedure described in Example 1 (5 minute immersion including 30 second vigorous agitation). Each of the test samples are washed in water and separately placed in clean plastic sample bags.

The control and experimental samples of food products are transported for laboratory testing which started within 2 hours after purchase of the food products, a Standard Plate Count bacteria analysis presence of bacteria.

The results were as follows for standard plate count of bacteria:

TABLE 2 RESULTS

5

	Examination of:	Untreated	Treated	Reduction
	Hamburger	3348000	7300	99.78
10	Sliced Steak	744000	2600	99.65
rant Suns	Pork	4464000	12000	99.73
	Chicken	6820000	13100	98.92
roe.	Fish	2790000	30000	98.92

Example 3

Children Children

20

As shown in Table 3 herein, a test was conducted at

Ameritech Laboratories in College Point, NY to test the efficacy

of the composition and process of the present invention in

treating hot dog frankfurters.

The purpose of this study was to determine the effectiveness of the composition of the present invention as an agent to control the growth of microorganisms on packaged hotdogs.

Locally purchased hotdogs were used for this study. All test items were examined for freshness. Immediately prior to application of the bacterial culture, each hotdog was immersed in boiling water for 10 seconds followed by cooling for a minimum of 2 minutes before the application of the bacteria culture.

Stock cultures of the following bacteria were prepared: E. Coli, Salmonella-typhimurium, Listeria Monocytogenes, Staphylococcus Aureus and Clostridium Perfringins. These cultures were prepared so as to have approximately 10 million bacteria per milliliter. For application the cultures were diluted by a factor of 5, 50 and 500.

The 2 milliliters of each culture was applied to the surface of the hotdog, covering as much of the surface as

possible. The culture was spread evenly and allowed to dry for 4 hours. At the end of four hours, the hotdogs were coated with the composition of the present invention by spraying so as to be completely covered. The sprayed hotdogs were placed in sterile plastic bags, three to a bag. Control groups of each culture were also prepared. The bags with the Clostridium cultures were vacuum-sealed, all others were closed with only a small amount of air remaining. After closing, the bags were placed in a refrigerator at 40 degrees F. until removed for analysis.

Prior to analysis, the bags were removed from the refrigerator and allowed to come to room temperature. The hot dogs were then rinsed under a stream of cool water to remove the coating composition. No scrubbing was applied. The hot dogs were then placed in 100 ml of sterile buffer prior to plating the buffer. The rinsing procedure was applied to the samples run on day 0 which were not refrigerated.

Table 3 Results:

,	į
•	

	1 2 3 avg avg Composition of t	Day 0 Low Level Control	Composition of the 1 2 3 avg % reduction	High Level Control 1 2 3 3 avg
	24,100 20,300 18,300 20,900 the present invention	E. Coli	the present invention 37600 41600 34100 37767 98.39	E. Coli 2,760,000 1,950,000 2,320,000 2,343,333
530 450 662 547 96.15	12,700 15,200 14,700 14,200	Salmon.	8560 7150 7320 7677 99.41	Salmon. 1,300,000 1,420,000 1,160,000 1,293,333
98.514 514 54.60 54.60	36,200 28,400 31,000 31,867	Listeria	59200 53200 51400 54600 97.34	Listeria 2,760,000 1,140,000 2,250,000 2,050,000
131 117 119 122 98.86	10,700 11,400 10,100 10,733	Staph.	13100 11700 11900 12233 98.52	Staph. 867,000 765,000 843,000 825,000
320 252 310 394 97.32	12,100 10,600 10,200 10,967	Clostrid.	32000 25200 31000 29400 96.82	Clostrid. 907,000 973,000 892,000 924,000

Low Level
Control Composition of the present invention Composition of the present invention Control High Level avg % reduction avg % reduction 1,820,000 2,093,333 2,150,000 2,310,000 E. Coli E. Coli 16,200 18,067 18,300 19,700 322 98.22 29600 98.59 34200 25100 29500 385 249 333 1,370,000 1,290,000 1,520,000 1,393,333 Salmon. Salmon. 13,500 14,700 15,900 14,700 495 96.63 6390 99.54 5780 6320 7070 486 576 423 2,840,000 2,720,000 2,430,000 2,663,333 Listeria Listeria 33,700 32,900 27,600 31,400 394 98.75 50400 62500 50300 54400 97.96 322 572 287 875,000 732,000 804,000 803,667 Staph. Staph. 11,800 12,600 9,500 11,300 107 99.05 15367 98.09 15200 18300 12600 128 108 85 657,000 542,000 743,000 647,333 Clostrid Clostrid 10,400 9,067 9,600 7,200 156 182 295 211 97.67 22933 96.46 26900 19400

Results: Day 1

Results:

Day	
N	

00.00	; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
000 00	99 24	98,91	97.00	98.16	avg % reduction
165	112	315	486	309	avg
198	86	313	445	367	نب
176	152	295	527	268	- N
122	87	336	486	293	- 1
	-			inv	Composition of the present
8,467	14,733	49,000	+0,400	10,000	я «С
0,000		30 000	16 200	7000	377
8-800	16,200	27,200	14,700	15,600	ω
9,400	13,300	31,600	18,300	18,800	N
7,200	14,700	28,200	15,600	16,100	בן
			-		Control
Clostrid.	Staph.	Listeria	Salmon.	E. Coli	Low Level
					Day 2
97.69	97.96	98.27	99.00	99,10	avg % reduction
15200	21033	48300	17067	24933	avg
18200	20700	51500	18200	27200	نب
15600	19300	50200	17400	22000) K
11800	23100	43200	15600	25600)
				μ.	Composition of the present
659,333	1,033,333	2,796,667	1,700,000	2,773,333	avg
757,000	1,110,000	2,560,000	1,960,000	2,350,000	
627,000	970,000	3,040,000	1,420,000	3,140,000	*
594,000	1,020,000	2,790,000	1,720,000	2,830,000	щ
Clostrid.	Staph.	Listeria	Salmon.	E. Coli	High Level Control

Composition of the 1 2 3 avg avg % reduction	Control 1 2 3 avg	Day 4 Low Level	Composition of the 1 2 3 avg avg % reduction	High Level Control 1 2 3 avg
Composition of the present invention 1 156 2 453 3 245 avg 285 avg 8 reduction 98.58	21,300 20,700 18,200 20,067	E. Coli	the present invention 20800 22900 23500 23400 22400 99.33	E. Coli 3,950,000 3,320,000 2,760,000 3,343,333
336 367 408 370 370	18,900 13,800 17,200 16,633	Salmon.	18800 15600 12700 15700 99.28	Salmon. 1,820,000 2,230,000 2,470,000 2,173,333
170 226 256 217 99.29	26,000 29,600 36,100 30,567	Listeria	44700 38900 40300 41300 98.61	Listeria 2,790,000 3,130,000 2,980,000 2,966,667
101 75 83 86 86	19,400 20,300 22,600 20,767	Staph.	28000 17200 13100 19433 98.14	Staph. 1,010,000 1,050,000 1,080,000 1,046,667
113 124 206 148 98.33	10,400 8,300 7,800 8,833	Clostrid.	14100 10400 6500 10333 98.42	Clostrid. 702,000 657,000 602,000 653,667

ı		

Composition of the I 1 2 3 avg avg % reduction	Day 7 Low Level Control 2 2 3 avg	Composition of the 1 1 2 3 avg % reduction	High Level Control 1 2 3 avg
the present invention 220 180 300 233 ction 99.27	E. Coli 34,800 38,200 23,200 32,067	present invention 34600 18200 24300 25700 99.49	E. Coli 5,640,000 4,360,000 5,250,000 5,083,333
550 360 290 400 98.05	Salmon. 22,100 17,800 21,700 20,533	12700 14300 14800 13933 99.47	Salmon. 2,070,000 3,210,000 2,670,000 2,650,000
143 192 243 193 99.54	Listeria 45,600 38,000 42,000 41,867	33500 42600 32100 36067 99.09	Listeria 2,990,000 4,720,000 4,230,000 3,980,000
156 62 112 110 99.53	Staph. 28,300 16,500 25,700 23,500	13700 22400 20600 18900 98.58	Staph. 1,420,000 1,250,000 1,320,000 1,330,000
92 180 240 171 98,15	Clostrid. 7,100 11,400 9,200 9,233	10600 9600 12500 10900 98.56	Clostrid 814,000 727,000 733,000 758,000

Table 3 Results:

Day 0		-			
High Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid.
-	2,760,000	1,300,000	2,760,000	867,000	907,000
7	1,950,000	1,420,000	1,140,000	765,000	973,000
m		1,160,000	2,250,000	843,000	892,000
avg		1,293,333	2,050,000	825,000	924,000
Composition of the present	resent invention				
ਜ '	37600	8560	59200	13100	32000
7	41600	7150	53200	11700	25200
м	34100	7320	51400	11900	31000
avg	37767	7677	54600	12233	29400
avg % reduction	98.39	99.41	97.34	98.52	96.82
Day 0					
Low Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid.
101111111111111111111111111111111111111	24,100	12,700	36,200	10,700	12,100
7	20,300	15,200	28,400	11,400	10,600
м	18,300	14,700	31,000	10,100	10,200
a < G	20,900	14,200	31,867	10,733	10,967
1					
composition or the present		מ	, 00 t	121	320
н с		450	U 10	117	252
ım	276	662	514	119	310
avg	243	547	546	122	294
avg % reduction	98.84	96.15	98.29	98.86	97.32

••
Ø
ų
ᅼ
2
Ö
~

c	4
	کران ا

••
W
ı
Ĥ.
ø
įΩ
ø
W.

*		ŀ
1		
į	ľ	ĺ

High Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid.
Control	000		000 000 6	1.010.000	702 000
⊣ (000,000,0	1,040,000 000,000		0000	
7	3,320,000	2,230,000	3, 130, 000	000'0c0'T	0001/60
м	2,760,000	2,470,000	2,980,000	1,080,000	602,000
avg	3,343,333	2,173,333	2,966,667	1,046,667	653,667
Composition of the present	esent invention				
+	20800	18800	44700	28000	14100
7	22900	15600	38900	17200	10400
m	23500	12700	40300	13100	6500
avg	22400	15700	41300	19433	10333
avg % reduction	99.33	99.28	98.61	98.14	98.42
Day 4	,				
Low Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid.
Control					
н	21,300	18,900	26,000	19,400	10,400
7	20,700	13,800	29,600	20,300	8,300
m	18,200	17,200	36,100	22,600	7,800
avg	20,067	16,633	30,567	20,767	8,833
art to to the series	nosent intention				
		ሃሮ	170	101	113
4 0	4 t	367	75.0	75	124
ו ויי	245 745	408	25	83	206
DAR	285	370	217	86	148
avg % reduction	98.58	77.76	99.29	99.58	98.33

4	٠	
ŧ	Q	
ł	د	
r	4	
;	3	
ŧ	Q	
(Ď	

	,	,			
High Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid.
Control					
н	5,640,000	2,070,000	2,990,000	1,420,000	814,000
71	4,360,000	3,210,000	4,720,000	1,250,000	727,000
m	_	2,670,000	4,230,000	1,320,000	733,000
avg	5,083,333	2,650,000	3,980,000	1,330,000	758,000
Composition of the present invention	resent invention				~
ਜ	34600	12700	33500	13700	10600
Ø	18200	14300	42600	22400	0096
m	24300	14800	32100	20600	12500
avg.	25700	13933	36067	18900	10900
avg % reduction	99.49	99.47	60.66	98.58	98.56
Low Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid,
Control					
F	34,800	22,100	45,600	28,300	7,100
7	38,200	17,800	38,000	16,500	11,400
m	23,200	21,700	42,000	25,700	9,200
avg	32,067	20,533	41,867	23,500	9,233
Commosition of the present invention	resent invention				
	000	r C	143	עע	92
i (180	360	192	9 29	180
ım	900	290	243	112	240
- D∧&	233	400	193	110	171
avg % reduction	99.27	98.05	99.54	99.53	98.15

	•	1
	ζ	É
	ı	3
t		1
	2	1
	į	į
	i	ľ

Day 14					
High Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid
1 T	6,240,000	2,850,000	4,770,000	1,620,000	779,000
7	7,500,000	2,680,000	4,480,000	1,170,000	882,000
m	6,300,000	3,210,000	3,950,000	1,720,000	823,000
avg	6,680,000	2,913,333	4,400,000	1,503,333	828,000
Composition of the present invention	sent invention				
ਜ '	22600	9600	51000	14000	11200
N	28500	8200	28000	12300	8400
ิ ๓	14600	16700	22100	16300	9500
avg	21900	11500	33700	14200	9700
avg % reduction	99.67	99.61	99.23	99.06	98.83
Day 14					
Low Level	E. Coli	Salmon.	Listeria	Staph.	Clostrid
Control		,			
Ħ	55,000	28,000	44,100	33,100	8,400
7	44,000	23,200	46,200	15,000	12,100
m	52,000	29,000	39,000	28,900	7,800
avg	50,333	26,733	43,100	25,667	9,433
	1				
Composition of the present invention		000	0077	7	7
H	160	330	D8T	TPO	חדד
7	183	180	106	87	75
m	254	300	200	65	175
avg	199	270	162	76	120
avg % reduction	99.60	98.99	99.65	99.63	98.73

In an examination of Beef and Chicken at Ameritech Laboratories, the analysis requested was a Microbiology Challenge Study of Listeria and E. Coli.

Two pieces of meat, Beef and Chicken, of Uniform thickness (approx. ½") were cut into 1 cm squares, immersed in hot water at 185 deg C. for 2 minutes, and then put in the refrigerator to cool.

The pieces were divided into 4 sets which were handled in the following manner; set 1 - no further treatment, Sets 2, 3 & 4 were immersed in Listeria or E. Coli cultures to coat the pieces with these organisms. Removed, held at room temperature for 6 hours, and then all 4 sets were refrigerated overnight.

The following morning, the samples were removed from the refrigerator. Set #4 was treated with "Composition of the present invention" according to the usual procedure, following which sets 3 and 4 were washed with warm tap water.

All sets of both beef and chicken were then analyzed for bacteria counts.

Table 4 Results:

Beef-Listeria	#1	#2	#3	#4	#4 % reduction (#4/#2) X 100
1	ND	1650000	790000	31600	98.1
2	ND	1470000	720000		99.2
3	ND	1870000	970000		98.9
4	ND	1380000	662000		99.3
5	ND	2060000	1160000		98.8
6	ND	1540000	617000		99.4
	ND	13-10000	017000	,,,,,	
* = 100 - ((#4/#2) X 100)	ı				
ND = Not detected		,			
Beef-E. Coli	#1	#2	#3	#4	#4 % reduction (#4/#2) X 100
1	ND	2700000	670000	19900	99.3
2	ND	2200000	912000	48200	97.8
3	ND	2940000	574000	35200	98.8
4	ND	2030000	294000	31300	98.5
5	ND	3020000	720000	23100	99.2
6	ND	2570000	454000	12400	99.5
Chicken –	#1	#2	#3	#4	#4 % reduction
Listeria				(#4/#2)	X 100
1	ND	1350000	116000	9500	99.3
2	ND	1660000	362000	8700	99.5
3	ND	1920000	268000	16000	99.2
4	ND	1560000	253000	19400	98.8
5	ND	1620000	147000	12700	99.2
6	ND	1770000	247000	8300	_99.5
Chicken -	#1	#2	#3	#4	#4 % reduction
E. Coli					(#4/#2) X 100
1	ND	2910000	389000	27600	99.1
2	ND	2470000		27500	98.9
3	ND	3120000	374000	22400	99.3
4	ND	3040000	242000	16200	99.5
5	ND	2190000	227000	9500	99.6
6	ND	2570000	462000	12000	99.5

^{* = 100 - ((#4/#2)} X 100) ND = Not detected

The Composition of the present invention was studied as a Surface Cleaner for food preparation surfaces.

The purpose of this study was to determine the effectiveness of Composition of the present invention as a cleaning agent for equipment and structural surfaces.

The following materials were tested using square, smooth, flat surfaces: aluminum, stainless steel, ceramic tile, glass, porcelain and PVC plastic.

Stock cultures of the following bacteria were prepared:

E. Coli, Salmonella typimurium, Listeria Monocytogenes and

Staphylococcus Aureus. These cultures were prepared so as
to have approximately 1 million bacteria per milliliter.

The 2 milliliters of each culture was applied to an area 2 inches square on 9 samples of each surface type. The culture was spread evenly and allowed to dry and then stay overnight.

The nine samples of each surface type were divided into three groups of three. One group was used as the control group. The second and third group were treated with Composition of the present invention by spraying the material on the surface until 100 percent of the test area was covered. One of these sets was allowed to sit for 15 minutes which was followed by a warm water (approximately 45 deg. C) spray rinse. The spray rinse was adjusted so as to have a moderate speed and force. The last set of samples

was treated the same as the second with the exception at the end of the 15 minute waiting period the surface was scrubbed with moderate force with a brush with moderately stiff bristles prior to the water rinse.

At the end of the treatments, all three sets of samples were tested for bacteria counts using the swab technique covering the full 2 square inches.

Table 5 Results:

6 avg avg % reduction	-4a TU	1 2 avg	Aluminum	9 avg % reduction	7	avg % reduction	On UI sh	1 2 3 avg	Stainless Steel
11060 9033 99.178	13500 2540	1042000 943000 1310000 1098333	E. Coli	89 46 99.996	36 12	8340 99.340	7920 4920 12180	1240000 1070000 1480000 1263333	臣. Coli
18900 21567 98.736	10500 35300	1560000 1720000 1840000 1706667	Salmon.	5 44 99.997	24 103	14600 99.046	24200 7500 12100	1720000 1310000 1560000 1530000	Salmon.
11200 25977 97.888	8430 58300	1140000 1530000 1020000 1230000	Listeria	22 101 99.991	150 131	12623 98.882	18600 1870 17400	986000 1320000 1080000 1128667	Listeria
6340 10147 99.441	12700 11 4 00	1820000 1710000 1920000 1816667	Staph.	17 69 99.996	104 87	16373 98.944	14500 24900 9720	1650000 1780000 1220000 1550000	Staph.

4 5 6 avg % reduction	Glass 1 2 3 avg	7 8 9 avg % reduction	avg 4 5 6 avg reduction	Ceramic Tile 1 2	7 8 9 avg % reduction
37800 26500 19600 27967 97.854	E. Coli 1250000 1430000 1230000 1303333	350 56 16 141 99.990	1406667 1406667 4920 12750 31300 16323 98.840	E. Coli 1540000 1260000	156 8 67 77 99.993
9700 28300 16500 18167 98.874	Salmon. 1420000 1670000 1750000 1613333	17 135 45 66 99.996	1586667 1586667 64500 39400 11020 38307 97.586	Salmon. 1820000 1620000	0 54 127 60 99.986
6650 11400 33400 17150 98.545	Listeria 956000 1450000 1130000 1178667	27 91 14 44 99.996	921000 1060333 24500 11430 6520 14150 98.666	Listeria 1190000 1070000	11 5 37 18 99.999
17900 6970 12400 12423 99.268	Staph. 1690000 1570000 1830000 1696667	61 30 87 39 99.997	1480000 1480000 9760 25600 31500 22287 98.494	Staph. 1370000 1450000	158 62 19 80 99.996

on on the	1 2 3	avg avg % reduction PVC Plastic	9 8	4 5 6 avg % reduction	1 2 3 3	Results: Porcelain	7 8 9 avg % reduction
7820 44400 21300	1570000 1640000 1420000 1543333	138 99.989 E. Coli	247 102 65	23700 13400 10300 15800 99.797	1370000 1420000 1150000 1313333	E. Coli	156 8 67 77 99.994
23100 69500 13700	1650000 1320000 1720000 1563333	23 99.998 Salmon.	47 0 23	32400 54200 15300 33967 97.625	1360000 1310000 1620000 1430000	Salmon.	0 54 127 60 99.996
16000 10400 4320	945000 894000 1160000 999667	99.993 Listeria	75 165	18200 13100 7400 12900 98.888	1140000 1100000 1240000 1160000	Listeria	11 5 37 18 99.999
16700 42000 32800	1570000 1430000 1810000 1603333	69 99.996 Staph.	104 87 17	21300 10400 8300 13333 99.190	1470000 1850000 1620000 1646667	Staph.	158 62 19 80 99.995

avg % reduction avg % reduction 98.412 99.997 99.997 97.733 99.991 98.976 122 97.954 99.998

Based on the above results, the composition of the present invention can produce a

significant reduction in surface bacteria on the materials studied.

In further tests by Associated Analytical Laboratories, Inc. of New York, N.Y. a test was made of a sample of the composition of the present invention as an all natural antibacterial Marinade to reduce E. Coli & Salmonella by over 95%

Batch #C99175-3 21:13 - made in Canada

Test:

verify claimed effectiveness.

Reference Procedures: Official Methods of Analysis of

A.O.A.C. International,

16th Ed, A.O.A.C. method 960.09

Cultures used for Exposure:

Escherichia Coli, ATCC #11229 Salmonella Cholerasuis, ATCC

#98-12

Table 6 REPORT OF FINDINGS

	E. Coli	<u>Salmonella</u>
INITIAL BACTERIA COUNT/ml	5.13 x 10ninth	4.49 x 10ninth
BACTERIA COUNT/ml, after 5 minute exposure	1.48 x 10eighth	1.44 x 10eighth
% REDUCTION after 5 minute exposure	97.1150 %	96.7929 %

BACTERIA COUNT/ml after 7 day exposure	7.54 x 10seventh	5.94 x 10seventh
% REDUCTION after 7 day exposure	99.1150 %	98.6771 %
NUMBER CONTROL	5.13 x 10ninth	4.46 x 10ninth
INTERPRETATION:	EFFECTIVE	EFFECTIVE

In another test by Associated Analytical Laboratories, Inc. a sample of the composition of the present invention was tested as an all natural anti-bacterial Marinade said to reduce numbers of pathogenic bacteria:

Batch #C99175-3 21:13 - made in Canada

Test:

verify claimed effectiveness.

Reference Procedures:

Official Methods of Analysis of

A.O.A.C. International, 16th Ed, A.O.A.C. method 960.09

Cultures used for Exposure:

STAPHYLOCOCCUS AUREUS, ATCC 6538 CAMPYLOBACTER, JEJUNI, ATCC 33560

Table 7 REPORT OF FINDINGS

	STAPHYLOCOCCUS	CAMPYLOBACTER
INITIAL BACTERIA COUNT/ml	5.03 x 10ninth	3.33 X 10ninth
BACTERIA COUNT/ml, after 5 minute exposure	3.33 x 10eighth	1.08 x 10ninth
% REDUCTION after 5 minute exposure	93.3797 %	67.5676 %

BACTERIA COUNT/ml after 7 day exposure	1.60 x 10ninth	8.87 x 10eighth
% REDUCTION after 7 day exposure	96.8191 %	73.3634 %
NUMBER CONTROL	5.02 x 10ninth	3.32 x 10ninth
INTERPRETATION:	EFFECTIVE @>96%	EFFECTIVE @>73 %

In yet another test by Associated Analytical
Laboratories, Inc., a sample of the composition of the
present invention was made as an all natural anti-bacterial
Marinade said to reduce numbers of pathogenic bacteria.

Batch #C99175-3 21:13 - made in Canada

Test:

verify claimed effectiveness.

Reference Procedures: Official Methods of Analysis of

A.O.A.C. International,

16th Ed, A.O.A.C. method 960.09

Cultures used for Exposure:

CLOSTRIDIUM PERFRINGENS, ATCC

3624

YERSINIA ENTEROCOLITICA, ATCC

55075

TABLE 8 REPORT OF FINDINGS

	CLOSTRIDIUM	<u>YERSINIA</u>
INITIAL BACTERIA COUNT/ml	5.26 x 10ninth	3.61 x 10ninth
BACTERIA COUNT/ml, after 5 minute exposure	5.98 x 10eighth	6.20 X 10eighth
% REDUCTION after 5 minute exposure	88.6312 %	82.8255 %

BACTERIA COUNT/ml after 7 day exposure	2.944 x 10eighth	4.09 x 10eighth
% REDUCTION after 7 day exposure	94.4106 %	88.6704 %
NUMBER CONTROL	5.25 x 10ninth	3.62 x 10ninth
INTERPRETATION:	EFFECTIVE @>94 %	EFFECTIVE @ > 88 %

In another example, a test by Assciated Anaylitical Laboratories studied Batch #C99175-3 21:13, which was made in Canada to verify claimed effectiveness against Listeria Monocytogenes, ATCC 4428 and Vibrio Cholerae, ATCC 582.

Reference Procedures:

Official Methods of Analysis of

A.O.A.C. International, 16th Ed, A.O.A.C. method 960.09

Cultures used for Exposure:

LISTERIA MONOCYTOGENES, ATC

4428

VIBRIO CHOLERAE, ATCC 582

Table 9 REPORT OF FINDINGS

• • • • • • • • • • • • • • • • • • •	<u>LISTERIA</u>	<u>VIBRIO</u>
INITIAL BACTERIA COUNT/ml	1.61 x 10ninth	3.98 x 10ninth
BACTERIA COUNT/ml, after 5 minute exposure	4.04 x 10eighth	1.21 X 10ninth
% REDUCTION after 5 minute exposure	74.9068 %	69.5980 %

BACTERIA COUNT/ml after 7 day exposure	6.82 x 10seventh	5.35 x 10eighth
% REDUCTION after 7 day exposure	95.7640 %	88.5578 %
NUMBER CONTROL	1.60 x 10ninth	3.99 x 10ninth
INTERPRETATION:	EFFECTIVE @ > 95 %	EFFECTIVE @ > 88 %

5

The above results clearly point to the efficacy of the present invention in reducing the bacteria count of food samples treated therewith. The results are properly characterized as consistent and dramatic in reducing bacteria on food to be cooked.

While a preferred embodiment of the invention has been described and shown, it is to be clearly understood that the same is susceptible to numerous changes and modifications apparent to those skilled in the art without departing from the scope of the appended claims.