Ficha 5 - Limites e Continuidade de funções

Indicações de Resolução

Exercício 1

Determine os seguintes limites:

$$\begin{array}{ll} \text{(a)} \lim_{x \to (e-1)} \ln(1+x) & \text{(b)} \lim_{x \to 2} \frac{4-x^2}{2+x} & \text{(c)} \lim_{x \to (-2)} \frac{4-x^2}{2+x} & \text{(d)} \lim_{x \to 0} \cos(x^{-1}) \sin(x) \\ \text{(e)} \lim_{x \to -\infty} \sqrt{2x+x^2} + x & \text{(f)} \lim_{x \to +\infty} \frac{e^{\cos(x)}}{x} & \text{(g)} \lim_{x \to 0^+} e^{\frac{1}{x}} & \text{(h)} \lim_{x \to 0^-} e^{\frac{1}{x}} \\ \end{array}$$

(e)
$$\lim_{x \to -\infty} \sqrt{2x + x^2} + x$$
 (f) $\lim_{x \to +\infty} \frac{e^{\cos(x)}}{x}$ (g) $\lim_{x \to 0^+} e^{\frac{1}{x}}$ (h) $\lim_{x \to 0^-} e^{\frac{1}{x}}$

Indicações:

(c) Escreva
$$\frac{(2-x)(2+x)}{2+x}$$
;

- (d) O limite é 0 pois trata-se do produto de um infinitésimo em x=0 por uma função limitada, com valores compreendidos entre -1 e 1);
- (e) Escreva $\frac{2x}{\sqrt{2x+x^2}-x}$. Tenha em conta que, se x é negativo, $\sqrt{x^2}=-x$. Conclua que o limite é -1.

Exercício 2

Mostre que as seguintes funções não têm limite nos pontos indicados.

(a)
$$\frac{x}{|x|}$$
 $(x = 0)$, (b) $\frac{x^2 - 1}{|x - 1|}$ $(x = 1)$, (c) $\arctan(e^{\frac{1}{x}})$ $(x = 0)$,

(d)
$$e^{\cos(x)}$$
 $(x = +\infty)$, (e) $\sin(\ln(|x|))$ $(x = 0)$.

Indicações:

(a) Considere as sucessões $x_n = \frac{1}{n}$ e $z_n = -\frac{1}{n}$ e verifique que

$$\lim \frac{x_n}{|x_n|} = 1 \neq -1 = \lim \frac{z_n}{|z_n|}$$

Alternativamente, estude o limite à esquerda e o limite à direita no ponto x=0 e verifique que estes limites não são iguais.

(e) Indique, por exemplo, uma sucessão (x_n) convergindo para zero e tal que $\ln(|x_n|) = -n\pi$ com $n \in \mathbb{N}$.

Exercício 3

Utilizando os limites conhecidos

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

determine os seguintes limites:

(a)
$$\lim_{x \to 0} \frac{\tan(x)}{x}$$
 (b) $\lim_{x \to 0} \frac{1 - e^{2x}}{x}$ (c) $\lim_{x \to 0} \frac{1 - e^{2x}}{\sin(3x)}$ (d) $\lim_{x \to 0} \frac{\ln(x+1)}{x}$

(e)
$$\lim_{x \to 0} \frac{1 - \cos(3x)}{x^2}$$
 (f) $\lim_{x \to 0} \frac{e^x - e^{\sin(x)}}{x}$ (g) $\lim_{x \to 0} \frac{\arcsin(3x)}{x}$

Indicações:

(b) -2; (c) $\frac{2}{3}$; (e) Multiplique numerador e denominador por $(1 + \cos(3x))$.

(f) Escreva
$$\frac{e^x-1}{x}-\frac{1-e^{\sin(x)}}{x}$$
 e conclua que o limite é zero.

Exercício 4

Considere a função H definida em $\mathbb R$ por

$$H(x) = \begin{cases} 0 & \text{se } x < 0 \\ 1 & \text{se } x \ge 0 \end{cases}$$

- (a) Justifique que a função H não tem limite em x=0.
- (b) Determine os pontos em que as seguintes funções **não** são contínuas:

(i)
$$H(x-1)$$
 (ii) $(H(x) - H(x-1)) \cdot x$ (iii) $H(1-x) \cdot H(x)$ (iv) $H(\sin(x))$

Indicações:

Pontos de descontinuidade: (i) x=1; (ii) x=1; (iii) x=0 e x=1; (iv) $x=k\pi$.

Problema 5

Considere a função

$$h(x) = \begin{cases} |x| & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Determine o conjunto dos pontos em que h é contínua.

 Indicações: Verifique que h é contínua em $\boldsymbol{x}=0$ utilizando o enquadramento

$$0 \le h(x) \le |x|$$

e o Teorema dos Limites Enquadrados.

Para justificar que, se $x \neq 0$, a função não é contínua em x considere que uma sucessão de racionais (r_n) convergindo para x vê a respectiva sucessão das imagens $h(r_n)$ convergir para |x|. Se (x_n) fôr uma sucessão de números irracionais tendendo para x, $h(x_n)$ é constante e igual a zero.

Exercício 6

Dê um exemplo de uma função f definida em $\mathbb R$ tal que:

- (a) f é monótona e não é contínua.
- (b) f verifica a propriedade do valor intermédio e não é contínua.
- (c) f é contínua e, para todo o $k \in \mathbb{R}$, a equação f(x) = k tem infinitas soluções.
 - (d) o seu conjunto de pontos de discontinuidade é \mathbb{Z} .
 - (e) o seu conjunto de pontos de discontinuidade é R.

Indicações:

- (b) Considere a função definida em \mathbb{R} por $f(x) = \sin(\frac{1}{x})$ se $x \neq 0$ e f(0) = 0.
- (c) $f(x) = x\sin(x)$.
- (d) Considere a função "parte inteira" de x.
- (e) Considere a função que vale 0 nos racionais e 1 nos irracionais.

Exercício 7

Estude o prolongamento por continuidade das seguintes funções aos pontos fronteiros dos respectivos domínios.

(a)
$$f(x) = \frac{\sin(x^2)}{x}$$
, $x \in \mathbb{R} \setminus \{0\}$; (b) $g(x) = e^{-\frac{1}{1-x^2}}$, $x \in]-1,1[$;

(c)
$$h(x) = e^{\tan(x)}, x \in]-\frac{\pi}{2}, \frac{\pi}{2}[;$$
 (d) $i(x) = \frac{x \ln(x)}{1-x}, x \in]0,1[.$

Indicações:

- (a) Definir f(0) = 0; (b) Definir g(-1) = g(1) = 0;
- (c) Definir $h(-\pi/2)=0$. Verifique que h não tem limite finito em $x=\pi/2;$
- (d) Utilizando mudanças de variável, verifique que i tem limite zero em x=0e limite -1 em x=1.

Problema 8

Seja Ium intervalo aberto e sejam $f,g:I\mapsto \mathbb{R}$ funções contínuas tais que

$$f(x) = g(x) \qquad \forall x \in I \cap \mathbb{Q}$$

Mostre que f = g.

Indicações:

Todo o número irracional pode ser aproximado por uma sucessão de racionais. Utilize a definição de continuidade por sucessões.