

Forecasting U.S. Domestic Flight Prices:

A Predictive Model Using Historical Data and Seasonal Trends

Group 5

Thao Nguyen, Maralmaa Batnasan, Hazel Foo Arial Huang, Hana Kalinova

PROJECT SUMMARY

Executive Summary

Goal: Develop a robust and accurate model for flight price prediction based on historical data to support strategic pricing decisions.

Findings:

- Data Preprocessing and Feature Engineering: Introduce dummy variables and lagged features to capture temporal patterns, seasonality, and route-specific aspects.
- Modeling and Model Selection: Experiment with time-series and tree-based models and select XGBoost as final model
- Understanding Feature Importance:
 - Short-haul flight impact pricing strategies
 - Market shares of low fare carriers and popular carriers shape pricing decisions
 - Specific regional markets have stronger impacts on price

Executive Summary

Business Implications

Strategic Pricing

Prioritize pricing strategies for short haul flights and focus on route-specific adjustments/expansions for popular regional markets

Market Share Insights:

highlight the need to monitor competitive dynamics to inform pricing strategies

Time-Dependency:

highlight the need to incorporate quarterly and yearly trends into pricing decisions

Key Analytical Problems

Predictive Modeling

Seasonal and Year-Over-Year Analysis

Stakeholder Business Value

DATASET

Data Description

- Data source: <u>U.S. Department of Transportation</u> <u>Domestic Airline Consumer Airfare Report</u>
- Target variable: Average fare
- Potential predictors:

Year, quarter, city1 and city 2 (directionless), non-stop market miles, passenger per day, Carrier with the Largest Market Share/Percentage of Share/Average fare, Carrier with the Lowest Average Fare/Percentage of Share/Average fare

Data Description

Year/Quarter	Airfare prices fluctuate seasonally and over time due to economic conditions, holidays, and other factors like oil prices and demand.
Global Price of Brent Crude	Fuel is a significant operational cost for airlines, and fluctuations in crude oil prices directly affect ticket prices.
City pair	The specific cities being connected affect pricing due to demand, competition, and market size.
Non-stop Market Miles	Distance is a critical factor in airfare pricing, with longer routes generally costing more.
Passenger per Day	Higher demand typically leads to higher prices.
Overall Average Fare	Baseline fare used to compare with specific carriers and identify trends.
Carrier with the Largest Market Share/Market Share/Average fare	The dominant carrier can influence prices significantly due to market control.
Carrier with the Lowest Fare/Market Share/Average fare	Price competition is key, and low-cost carriers often drive overall fare reductions.
Fare	Average fare of the indicated year, quarter, and city pair

Data Description

Dataset			
Row count	617,305		
Unique route (city pair)	9,694		
Target Variable: Fare			
mean	236.3		
min	50.45		
25%	184.05		
50%	232.54		
75%	283.11		
max	770.65		

- Add external data –
 brent crude oil price
- Remove routes lacking complete data from 2010Q1 to 2024Q1
- Dummify year, quarter, and city pairs

Map nsmiles to haul category			
~900 miles	Short haul		
901~2200 miles	Medium haul		
2201~ miles	Long haul		

Map carriers to service category			
DL, AA, AS, UA, NW, US, CO	Full service		
FL, B6, VX, WN, YX, U5	lcc		
MX, G4, XP, SY, NK, F9	Ultra lcc		

Remove outliers

Average passengers per day		
mean	181	
min	10	
25%	17	
50%	33	
75%	100	
max	25,471	

• Fare difference

(carrier with largest market share / carrier with lowest avg fare)

Fare	Average fare of carrier with largest market share	Fare difference
100	110	10

Lagged features: using historical data to predict future fare

Year, quarter	Fare	Lagged 1 fare	pctchange	Lagged 1 pctchange
2022 Q1	100	-	-	-
2022 Q2	120	100	0.2	-
2022 Q3	150	120	0.25	0.2
2022 Q4	150	150	0	0.25
2023 Q1	120	150	-0.2	0
2023 Q2	180	120	0.5	-0.2
2023 Q3	200	180	0.11	0.5
2023 Q4	200	200	0	0.11

- Lagged 1 fare (2022 Q3)
 - = Fare (2022 Q2)
- pctchange (2023 Q3)

$$= \frac{Fare (2023 Q3)}{Fare (2023 Q2)} - 1 = 0.25$$

- Lagged 1 pctchange (2022 Q3)
 - = Lagged 1 pctchange (2022 Q2)

• Lagged features: using historical data to predict future fare

- Lagged 4 fare (2023 Q1)
 - = Fare (2022 Q1)
- pctchange (2023 Q1)

$$= \frac{Fare\ (2023\ Q1)}{Fare\ (2022\ Q1)} - 1 = 0.2$$

- Lagged 4 pctchange (2023 Q1)
 - = Lagged 4 pctchange (2022 Q1)


```
X = df_sample[['lagged1_fare', 'lagged4_fare',
    'lagged1_fare_pctchange', 'lagged4_fare_pctchange']]
y = df_sample['fare']

model = LinearRegression()
model.fit(X, y)

fig, ax = plt.subplots()
ax.bar(X.columns, model.coef_)
ax.set(xlabel='Coefficient name', ylabel='Coefficient value')

plt.setp(ax.get_xticklabels(), rotation=45,
horizontalalignment='right')
plt.show()
```

Larger absolute values of coefficients mean that a given feature has a large impact on the output variable

Feature Selection

Dummies

year, quarter, city pairs, haul category

Lagged 1

carrier service category, fare difference, market share of carrier with lowest fare

Lagged 1 pctchange

fare, passengers, brent crude

Lagged 4

market share of carrier with largest market share

Lagged 4 pctchange

fare, passengers

Exploratory Results

Exploratory Results

MODEL SELECTION

Model Options

SARIMA

XGBoost

Model Options

SARIMA

XGBoost

Random Forest – Characteristics

Ensemble model:
Combines multiple
trees for robust
predictions

Randomness with Bagging technique

Capture non-linear relationship well

Less prone to overfitting thanks to averaging across multiple trees

Random Forest – Rationale

Good at handling large datasets with high dimensions (~190 variables)

Good at handling heterogeneous data (numerical and categorical)

Capture non-linear relationships well

Less sensitive to outliers

More time efficient: require less parameter tuning (XGBoosts) and computational power(ANN)

Random Forest – Limitations

LIMITATIONS

MITIGATIONS

Computational Costs: increase number of n_estimators (number of trees) can be computationally expensive

Identify diminishing returns for additional trees and fine tune n_estimators as performance starts to plateau.

Time Series Trends: Random Forest does not capture sequential trends

Incorporate lagged variables to capture time dependencies.

Use TimeSeriesSplit for CV evaluation to make sure that CV follows temporal order.

Random Forest – Results

Best Parameters

max_depth: 30

max_features: None

min_samples_leaf: 1

min_samples_split: 2

n_estimators: 500

Results and Interpretations

MSE = 1761.03

- Average of squared differences between predicted and actual values
- Used to compare performance between different models

R2 = 0.55

 55% of variability in flight prices (fare) can be explained by the model MAPE = 0.14

 On average, the model predictions deviate from the actual values by approximately 14% MAE = 31.71

 On average, the model predictions deviate from the actual fare by approximately \$31.71

Model Options

SARIMA

XGBoost

SARIMA – Characteristics

Seasonality (S): identifies and models repeated patterns over time

Integrated (I): transforms nonstationary data into stationary by differencing

Moving average (MA): models dependency between current value and prediction errors

Exogenous (X): incorporates external predictors not intrinsic to historical trends/ patterns

Autoregressive (AR):

captures relationship between current and past data

SARIMA – Limitations

Univariate model

Assumes linearity

Assumes stationarity

Computationally intensive

SARIMA - Results

Best Parameters and Interpretations AR order (p): 0 differencing (d): 0 MA order (q): 1 seasonality (s): 4 No autoregressive s=4 when data is The model includes one Data is assumed to be component created recorded quarterly, stationary because the lagged error term through the model capturing the seasonality features are in lagged (a moving average because we've already component of order 1). that occurs every year. state. included lagged features

Results

MSE = 1640.53

Model Options

Random Forest

SARIMA

XGBoost

XGBoost – Characteristics

- Type of gradient boosted tree algorithm
- Combines predictions from multiple decision trees to build a strong, robust model
- Optimises the model iteratively by minimizing the difference between predicted and actual values
- Builds decision trees sequentially, with each one prioritising the errors from previous trees
- Special features
 - In-built regularisation to prevent overfitting
 - o Parallelisation to build trees faster

XGBoost – Rationale

High predictive accuracy

Straightforward & interpretable

Ability to incorporate temporal dynamics and early stopping

Scalable & more computationally efficient

Tree specific parameters: define how trees are constructed

max_depth, min_child_weight, colsample_bytree, subsample

Boosting parameters: control how boosting is performed

learning_rate, n_estimators

Regularisation parameters

lambda, alpha, gamma

Tree specific parameters: define how trees are constructed

max_depth, min_child_weight, colsample_bytree, subsample

Boosting parameters: control how boosting is performed

learning_rate, n_estimators

Regularisation parameters

lambda, alpha, gamma

Hyperparameter testing using GridSearchCV

n_estimators, learning_rate, max_depth, subsample, min_child_weight, colsample_bytree

Cross-validation approach: TimeSeriesSplit

Cross-validation strategy for time series data

Avoids data leakage

Retains seasonality and time-based features

Performance evaluation

MSE, MAPE, MAE, R squared

Best Parameters

n_estimators 2000 max_depth 8 learning_rate 0.04 Subsample 0.7

colsample_bytree 0.8

min_child_weight 5

Results and Interpretations

MSE = 932.22

 Lowest MSE across 3 different models, suggesting XGBoost model provides more accurate and consistent forecasts R2 = 0.67

- 32.6% of the price variability is unexplained by the model
- Note: High variability in flight prices makes achieving a perfect R² difficult

MAPE = 12.59

 On average, the predictions are 12.59% off from the actual prices relative to their magnitude MAE = 28.30

 On average, predictions deviate from the actual prices by \$28.30

Feature	Importance
haul_category_short	0.057432
city_Aspen, CO	0.055768
city_Atlantic City, NJ	0.054937
lagged1_ms_lf	0.051260
city_Tampa, FL (Metropolitan Area)	0.030351
city_Huntsville, AL	0.027704
city_Fayetteville, AR	0.027576
city_Las Vegas, NV	0.026694
city_Orlando, FL	0.023969
lagged4_ms_lm	0.017254

RESULTS & IMPLICATION

Observation 1:

Short-haul category is the most significant factor in determining flight prices

- Implement dynamic pricing strategies to maximize revenue and provide differentiated offerings to attract price-sensitive travelers
- Optimize fleet utilization by assigning the right aircraft (e.g., smaller, more fuel-efficient planes) to minimize operational costs

Observation 2:

Flight prices from the previous quarter for the airline with the lowest fare emerged as the one of the most influential factors

- Monitor the price adjustments in lowest-fare airline to set competitive prices
- Airlines can design campaigns to counteract the influence of the lowest-fare carrier
- Partner with the lowest-fare airline on specific routes or codesharing agreements by pooling resources and reducing operational costs

Observation 3:

Flight price of the carrier with largest market share from the previous year showed a relatively significant influence on prediction

- Develop dynamic pricing models that respond quickly to changes in the market leader's pricing
- Refine revenue management practices by tracking the pricing history
 of the market leader and aligning promotions or fare structures to
 maintain competitiveness in key markets
- Use the market leader's historical pricing to competitively price new routes while ensuring profitability

Observation 4:

Specific cities are influential in predicting flight prices

2 main categories:

- Emerging/niche markets
 - Huntsville, Fayetteville
- Major markets/ travel hubs
 - Aspen, Las Vegas, Tampa, Orlando, Atlantic City

Observation 4

Emerging/ Niche Markets

Represent untapped markets where lower prices might stimulate greater demand

- Could position them as an affordable entry point to expand market share, offering competitive fares to attract customers
- Tailor offerings to cater to the specific needs of businesses or institutions like NASA (Huntsville) or University of Arkansas (Fayetteville)
- Can serve as testing grounds for innovative pricing strategies, loyalty programs, or route expansions
- Ensure connectivity with major hubs (Dallas, Atlanta, Chicago, etc.) to meet unmet demand

Observation 4

Major Markets/Travel hubs

- High-volume, high-demand destinations with robust competition between carriers
- Flight pricing is closely tied to external factors like seasonality, local events, or economic activity
 - Airlines could capitalize on premium pricing during peak seasons while ensuring adequate capacity to meet demand
 - Partnerships with local attractions can be established to offer bundles to stimulate demand
 - Tracking local events to dynamically adjust prices

Implication of Results in Business

Travel Platforms

(Expedia, Kayak, Booking)

- Offer personalized price alerts and predictive tools to improve user engagement and booking decisions.
- Leverage seasonal and regional trends to optimize marketing strategies and promotions.

Airlines

(Delta, American Airlines, Southwest, United Airlines, JetBlue, etc.)

- Use forecasts to adjust fares dynamically and optimize route planning and demand management
- Build customer trust by offering consistent, transparent, and competitive pricing.

Travel Agencies

(AAA, Flight Centre, Travel Leaders, Carlson Wagonlit, TUI Group)

- Align travel package pricing with seasonal trends to maximize value for customers.
- Prepare for peak travel periods by optimizing resources and tailoring deals effectively.

Consumers

- Access cost-saving tools and make informed travel decisions based on reliable price predictions.
- Build loyalty to platforms offering transparency and clear pricing insights.

Feasibility and Practicality of Implications

Travel Platforms

- Implementation: Integrate predictive models via APIs or plugins into existing platforms.
- Feasibility: Low cost, high user engagement, and adaptable for various destinations.

Airlines

- Implementation: Leverage existing data systems for deploying forecasting tools.
- Feasibility: High ROI with improved pricing strategies and efficient demand management.

Travel Agencies

- Implementation: Use predictive insights for creating dynamic travel packages.
- Feasibility: Cost-effective adoption with tailored offerings to maximize revenue.

Consumers

- Implementation: Deliver insights via user-friendly apps and platforms.
- Feasibility: Easy adoption requiring no technical expertise, fostering trust and transparency.

References

Resources:

- https://www.datacamp.com/tutorial/tutorial-time-series-forecasting
- https://www.geeksforgeeks.org/time-series-analysis-and-forecasting/
- https://www.statista.com/markets/424/topic/488/airlines/
- https://www.geeksforgeeks.org/sarima-seasonal-autoregressive-integrated-moving-average/#:~:text=SARIMA%2C%20which%20stands%20for%20Seasonal,handle%20data%20with%20seasonal%20patterns.

Dataset:

- https://www.transportation.gov/policy/aviation-policy/domestic-airline-consumer-airfare-report
- https://fred.stlouisfed.org/series/POILBREUSDQ

THANK YOU

