Computability and Complexity COSC 4200

Undecidability

Undecidability

Some decision problems do not have an algorithmic solutions. Such problems are called *undecidable*. To prove that undecidable problems exist, we will use the technique of *diagonalization*.

First we review the original use of the technique to prove the uncountability of the real numbers.

The natural numbers is the set $\mathbb{N} = \{0, 1, 2, ...\}$. A function is a bijection if it is both one-to-one and onto.

Definition

A set X is *countable* if there is a bijection $f : \mathbb{N} \to X$.

Then f(0), f(1), f(2),..., is a listing of the elements of X.

The natural numbers is the set $\mathbb{N} = \{0, 1, 2, ...\}$. A function is a bijection if it is both one-to-one and onto.

Definition

A set X is *countable* if there is a bijection $f : \mathbb{N} \to X$.

Then f(0), f(1), f(2),..., is a listing of the elements of X.

Some countable sets:

N

The natural numbers is the set $\mathbb{N} = \{0, 1, 2, ...\}$. A function is a bijection if it is both one-to-one and onto.

Definition

A set X is *countable* if there is a bijection $f : \mathbb{N} \to X$.

Then f(0), f(1), f(2),..., is a listing of the elements of X.

- N
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

The natural numbers is the set $\mathbb{N} = \{0, 1, 2, ...\}$. A function is a bijection if it is both one-to-one and onto.

Definition

A set X is *countable* if there is a bijection $f : \mathbb{N} \to X$.

Then f(0), f(1), f(2),..., is a listing of the elements of X.

- N
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \right\}$

The natural numbers is the set $\mathbb{N} = \{0, 1, 2, \ldots\}$. A function is a bijection if it is both one-to-one and onto.

Definition

A set *X* is *countable* if there is a bijection $f : \mathbb{N} \to X$.

Then f(0), f(1), f(2),..., is a listing of the elements of X.

- N
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \right\}$
- Σ^* for any finite alphabet Σ

The natural numbers is the set $\mathbb{N} = \{0, 1, 2, \ldots\}$. A function is a bijection if it is both one-to-one and onto.

Definition

A set X is *countable* if there is a bijection $f : \mathbb{N} \to X$.

Then f(0), f(1), f(2),..., is a listing of the elements of X.

- N
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $\mathbb{Q} = \left\{ \frac{a}{b} | a, b \in \mathbb{Z} \text{ and } b \neq 0 \right\}$
- Σ^* for any finite alphabet Σ
- L(M) for any Turing machine M

The natural numbers is the set $\mathbb{N} = \{0, 1, 2, \ldots\}$. A function is a bijection if it is both one-to-one and onto.

Definition

A set X is *countable* if there is a bijection $f : \mathbb{N} \to X$.

Then f(0), f(1), f(2),..., is a listing of the elements of X.

- N
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} = \left\{ \frac{a}{b} | a, b \in \mathbb{Z} \text{ and } b \neq 0 \right\}$
- Σ^* for any finite alphabet Σ
- L(M) for any Turing machine M
- $\{M \mid M \text{ is a Turing machine}\}\$

The Real Numbers are Uncountable

Theorem (Cantor, 1874)

The set of real numbers \mathbb{R} is uncountable.

Georg Cantor (1845-1918)

Theorem (Cantor, 1874)

The set of real numbers $\mathbb R$ is uncountable.

Proof.

The set of real numbers \mathbb{R} is uncountable.

Proof.

Let f by any function mapping $\mathbb{N} \to \mathbb{R}$. We will show that f is not onto.

The set of real numbers \mathbb{R} is uncountable.

Proof.

$$f(0) = r_0.d_0^0d_0^1d_0^2d_0^3...$$

The set of real numbers \mathbb{R} is uncountable.

Proof.

$$f(0) = r_0.d_0^0d_0^1d_0^2d_0^3...$$

$$f(1) = r_1.d_1^0d_1^1d_1^2d_1^3...$$

The set of real numbers \mathbb{R} is uncountable.

Proof.

$$f(0) = r_0.d_0^0 d_0^1 d_0^2 d_0^3 \dots$$

$$f(1) = r_1.d_0^1 d_1^1 d_1^2 d_1^3 \dots$$

$$f(2) = r_2.d_0^2 d_2^1 d_2^2 d_2^3 \dots$$

The set of real numbers \mathbb{R} is uncountable.

Proof.

$$f(0) = r_0.d_0^0 d_0^1 d_0^2 d_0^3 \dots$$

$$f(1) = r_1.d_1^0 d_1^1 d_1^2 d_1^3 \dots$$

$$f(2) = r_2.d_2^0 d_2^1 d_2^2 d_2^3 \dots$$

$$\vdots \qquad \vdots$$

The set of real numbers \mathbb{R} is uncountable.

Proof.

Let f by any function mapping $\mathbb{N} \to \mathbb{R}$. We will show that f is not onto. Consider the following table, writing the fractional part of each number in decimal:

$$f(0) = r_0.d_0^0 d_0^1 d_0^2 d_0^3 \dots$$

$$f(1) = r_1.d_1^0 d_1^1 d_1^2 d_1^3 \dots$$

$$f(2) = r_2.d_2^0 d_2^1 d_2^2 d_2^3 \dots$$

$$\vdots \qquad \vdots$$

We define a new number x by $x = 0.e_0e_1e_2e_3...$, where

$$e_i = \begin{cases} 0 & \text{if } d_i^i \neq 0 \\ 1 & \text{if } d_i^i = 0 \end{cases}$$

The set of real numbers \mathbb{R} is uncountable.

Proof.

Let f by any function mapping $\mathbb{N} \to \mathbb{R}$. We will show that f is not onto. Consider the following table, writing the fractional part of each number in decimal:

$$f(0) = r_0.d_0^0 d_0^1 d_0^2 d_0^3 \dots$$

$$f(1) = r_1.d_1^0 d_1^1 d_1^2 d_1^3 \dots$$

$$f(2) = r_2.d_2^0 d_2^1 d_2^2 d_2^3 \dots$$

$$\vdots \qquad \vdots$$

We define a new number x by $x = 0.e_0e_1e_2e_3...$, where

$$e_i = \begin{cases} 0 & \text{if } d_i^i \neq 0 \\ 1 & \text{if } d_i^i = 0 \end{cases}$$

Then for all i, $e_i \neq d_i^i$. Therefore $x \neq f(i)$ for all i, so f is not onto.

The acceptance problem for TMs:

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$

The acceptance problem for TMs:

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$

Theorem

A_{TM} is Turing-recognizable.

The acceptance problem for TMs:

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \}.$

Theorem

A_{TM} is Turing-recognizable.

Proof. The following algorithm recognizes $A_{\rm TM}$.

Algorithm *U*:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

 \bigcirc Simulate M on w.

The acceptance problem for TMs:

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$

Theorem

A_{TM} is Turing-recognizable.

Proof. The following algorithm recognizes $A_{\rm TM}$.

Algorithm *U*:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

- Simulate M on w.
- ② If M ever enters an accept state, accept. If M ever enters a reject state, reject.

The acceptance problem for TMs:

 $A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$

Theorem

A_{TM} is Turing-recognizable.

Proof. The following algorithm recognizes $A_{\rm TM}$.

Algorithm U:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

- Simulate M on w.
- ② If M ever enters an accept state, accept. If M ever enters a reject state, reject.

If M does not halt on w, then U will not halt. This is why U does not decide $A_{\rm TM}$.

 $A_{
m TM}$ is not decidable.

A_{TM} is not decidable.

Proof. Assume that $A_{\rm TM}$ is decidable. Suppose that H is a decider for $A_{\rm TM}$. Then

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w. \end{cases}$$

A_{TM} is not decidable.

Proof. Assume that $A_{\rm TM}$ is decidable. Suppose that H is a decider for $A_{\rm TM}$. Then

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w. \end{cases}$$

Algorithm D: On input $\langle M \rangle$, where M is a TM:

- **1** Run *H* on input $\langle M, \langle M \rangle \rangle$.
- 2 If H accepts, reject. If H rejects, accept.

For any M,

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$

For any M,

$$D(\langle M \rangle) = \begin{cases} ext{accept} & ext{if } M ext{ does not accept } \langle M \rangle \\ ext{reject} & ext{if } M ext{ accepts } \langle M \rangle. \end{cases}$$

What if we run D on its own code $\langle D \rangle$?

$$D(\langle D \rangle) = egin{cases} ext{accept} & ext{if } D ext{ does not accept } \langle D
angle \ ext{reject} & ext{if } D ext{ accepts } \langle D
angle. \end{cases}$$

For any M,

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$

What if we run D on its own code $\langle D \rangle$?

$$D(\langle D \rangle) = \begin{cases} \text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \text{reject} & \text{if } D \text{ accepts } \langle D \rangle. \end{cases}$$

Whatever D does, this says that D does the opposite, a contradiction. Therefore neither D or H can exist, so $A_{\rm TM}$ is undecidable.

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

Theorem

K is undecidable.

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

Theorem

K is undecidable.

Proof. Let M be any TM. We will show that M does not decide K.

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

Theorem

K is undecidable.

Proof. Let M be any TM. We will show that M does not decide K. We have two cases:

1 $\langle M \rangle \in K$. Then M does not accept $\langle M \rangle$ by definition of K.

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

Theorem

K is undecidable.

Proof. Let M be any TM. We will show that M does not decide K. We have two cases:

- **1** $\langle M \rangle \in K$. Then M does not accept $\langle M \rangle$ by definition of K.
- $(M) \notin K$. Then M accepts (M) by definition of K.

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

Theorem

K is undecidable.

Proof. Let M be any TM. We will show that M does not decide K. We have two cases:

- **1** $\langle M \rangle \in K$. Then M does not accept $\langle M \rangle$ by definition of K.
- $(M) \notin K$. Then M accepts (M) by definition of K.

In either case, M does not decide K correctly on input $\langle M \rangle$. Therefore M does not decide K.

A_{TM} is undecidable.

Second proof. Suppose that $A_{\rm TM}$ is decidable by some TM N. We design a TM D as follows:

A_{TM} is undecidable.

Second proof. Suppose that A_{TM} is decidable by some TM N. We design a TM D as follows:

D: On input $\langle M \rangle$, where M is a TM:

- **1** Run N on input $\langle M, \langle M \rangle \rangle$.
- If N accepts, reject.
 If N rejects, accept.

A_{TM} is undecidable.

Second proof. Suppose that A_{TM} is decidable by some TM N. We design a TM D as follows:

D: On input $\langle M \rangle$, where M is a TM:

- **1** Run N on input $\langle M, \langle M \rangle \rangle$.
- If N accepts, reject. If N rejects, accept.

Then D decides K:

• If $\langle M \rangle \in K$, then $\langle M, \langle M \rangle \rangle \notin A_{\mathrm{TM}}$, so N rejects $\langle M, \langle M \rangle \rangle$ and D accepts $\langle M \rangle$.

A_{TM} is undecidable.

Second proof. Suppose that A_{TM} is decidable by some TM N. We design a TM D as follows:

D: On input $\langle M \rangle$, where M is a TM:

- **1** Run N on input $\langle M, \langle M \rangle \rangle$.
- If N accepts, reject. If N rejects, accept.

Then D decides K:

- If $\langle M \rangle \in K$, then $\langle M, \langle M \rangle \rangle \notin A_{\text{TM}}$, so N rejects $\langle M, \langle M \rangle \rangle$ and D accepts $\langle M \rangle$.
- If $\langle M \rangle \notin K$, then $\langle M, \langle M \rangle \rangle \in A_{\mathrm{TM}}$, so N accepts $\langle M, \langle M \rangle \rangle$ and D rejects $\langle M \rangle$.

A_{TM} is undecidable.

Second proof. Suppose that A_{TM} is decidable by some TM N. We design a TM D as follows:

D: On input $\langle M \rangle$, where M is a TM:

- **1** Run N on input $\langle M, \langle M \rangle \rangle$.
- If N accepts, reject.
 If N rejects, accept.

Then D decides K:

- If $\langle M \rangle \in K$, then $\langle M, \langle M \rangle \rangle \notin A_{\text{TM}}$, so N rejects $\langle M, \langle M \rangle \rangle$ and D accepts $\langle M \rangle$.
- If $\langle M \rangle \notin K$, then $\langle M, \langle M \rangle \rangle \in A_{\mathrm{TM}}$, so N accepts $\langle M, \langle M \rangle \rangle$ and D rejects $\langle M \rangle$.

But K is undecidable, a contradiction. Therefore $A_{\rm TM}$ is undecidable.

Co-Turing-Recognizability

Definition

A language is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language.

Co-Turing-Recognizability

Definition

A language is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language.

If A is co-Turing-recognizable, then A^c is Turing-recognizable. This means there is a Turing machine M such that for all inputs w,

- $w \in A^c \Rightarrow M$ accepts w.
- $w \notin A^c \Rightarrow M$ does not accept w.

Co-Turing-Recognizability

Definition

A language is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language.

If A is co-Turing-recognizable, then A^c is Turing-recognizable. This means there is a Turing machine M such that for all inputs w,

- $w \in A^c \Rightarrow M$ accepts w.
- $w \notin A^c \Rightarrow M$ does not accept w.

Equivalently,

- $w \notin A \Rightarrow M$ accepts w.
- $w \in A \Rightarrow M$ does not accept w.

A is decidable if there is a TM M such that for all w,

- $w \in A \Rightarrow M$ accepts w.
- $w \notin A \Rightarrow M$ rejects w.

A is Turing-recognizable if there is a TM M such that for all w,

- $w \in A \Rightarrow M$ accepts w.
- $w \notin A \Rightarrow M$ does not accept w.

A is co-Turing-recognizable if there is a TM M such that for all w,

- $w \in A \Rightarrow M$ does not accept w.
- $w \notin A \Rightarrow M$ accepts w.

A is decidable if there is a TM M such that for all w,

- $w \in A \Rightarrow M$ accepts w.
- $w \notin A \Rightarrow M$ rejects w.

A is Turing-recognizable if there is a TM M such that for all w,

- $w \in A \Rightarrow M$ accepts w.
- $w \notin A \Rightarrow M$ does not accept w.

A is co-Turing-recognizable if there is a TM M such that for all w,

- $w \in A \Rightarrow M$ does not accept w.
- $w \notin A \Rightarrow M$ accepts w.

Theorem

A language is decidable if and only if both it is both Turing-recognizable and co-Turing-recognizable.

Theorem

A language is decidable if and only if both it is both Turing-recognizable and co-Turing-recognizable.

The theorem says the green region is empty.

Theorem

A language is decidable if and only if both it is both Turing-recognizable and co-Turing-recognizable.

Theorem

A language A is decidable if and only if A is both Turing-recognizable and co-Turing-recognizable.

Theorem

A language A is decidable if and only if A is both Turing-recognizable and co-Turing-recognizable.

Proof. Let A be a language.

 (\Rightarrow) If A is decidable, then A^c is also decidable.

Since every decidable language is Turing-recognizable, both A and A^c are Turing-recognizable.

(\Leftarrow) Suppose that A and A^c are Turing-recognizable. Let M_1 be a recognizer for A and let M_2 be a recognizer for A^c .

Then

- $w \in A \Rightarrow M_1$ accepts w.
- $w \notin A \Rightarrow M_1$ does not accept w.

and

- $w \in A \Rightarrow M_2$ does not accept w.
- $w \notin A \Rightarrow M_2$ accepts w.

When M_1 or M_2 does not accept, they may run forever.

Let *M* be the following TM:

M: On input w:

- ① Run both M_1 and M_2 on w in parallel.
- ② If M_1 accepts, accept. If M_2 accepts, reject.

Let M be the following TM:

M: On input w:

- **1** Run both M_1 and M_2 on w in parallel.
- ② If M_1 accepts, accept. If M_2 accepts, reject.

Running in "parallel" means using two tapes (which can be simulated by a one-tape TM).

- Copy the input from the first tape to the second tape. Move both tape heads to the beginning.
- Run M_1 on the first tape and M_2 on the second tape simultaneously.
- Accept if M_1 accepts. Reject if M_2 accepts.

We have

$$w \in A \Rightarrow M_1 \text{ accepts } w$$

 $\Rightarrow M \text{ accepts } w$

and

$$w \notin A \Rightarrow M_2 \text{ accepts } w$$

 $\Rightarrow M \text{ rejects } w.$

We have

$$w \in A \Rightarrow M_1 \text{ accepts } w$$

 $\Rightarrow M \text{ accepts } w$

and

$$w \notin A \Rightarrow M_2 \text{ accepts } w$$

 $\Rightarrow M \text{ rejects } w.$

Then M decides A, so A is decidable.

A language A is decidable if and only if A is Turing-recognizable and co-Turing-recognizable.

A language A is decidable if and only if A is Turing-recognizable and co-Turing-recognizable.

Corollary

- If A is Turing-recognizable but not decidable, then A is not co-Turing-recognizable.
- ② If A is co-Turing-recognizable but not decidable, then A is not Turing-recognizable.

 $A_{\rm TM}$ is not co-Turing-recognizable.

A_{TM} is not co-Turing-recognizable.

Proof.

We know that $A_{\rm TM}$ is Turing-recognizable. If $A_{\rm TM}$ is also

co-Turing-recognizable, then $A_{\rm TM}$ is decidable, but it is not.

$$K = \{ \langle M \rangle \mid M \text{ does not accept } \langle M \rangle \}$$

K is not Turing-recognizable.

$$K = \{ \langle M \rangle \mid M \text{ does not accept } \langle M \rangle \}$$

K is not Turing-recognizable.

Proof. This is because K is co-Turing-recognizable but not decidable.

$$K = \{ \langle M \rangle \mid M \text{ does not accept } \langle M \rangle \}$$

K is not Turing-recognizable.

Proof. This is because K is co-Turing-recognizable but not decidable.

To see that K is co-Turing-recognizable, consider the following TM R:

R: On input $\langle M \rangle$:

- **1** Run M on input $\langle M \rangle$.
- If M accepts, accept. If M rejects, reject.

$$K = \{ \langle M \rangle \mid M \text{ does not accept } \langle M \rangle \}$$

K is not Turing-recognizable.

Proof. This is because K is co-Turing-recognizable but not decidable.

To see that K is co-Turing-recognizable, consider the following TM R:

R: On input $\langle M \rangle$:

- **1** Run M on input $\langle M \rangle$.
- If M accepts, accept. If M rejects, reject.

Then R recognizes K^c :

- If $\langle M \rangle \in K$, then M does not accept $\langle M \rangle$, so R will not accept $\langle M \rangle$.
- If $\langle M \rangle \notin K$, then M accepts $\langle M \rangle$, so R will accept $\langle M \rangle$. \square

The halting problem for TMs:

 $HALT_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \}.$

The *halting problem* for TMs:

 $HALT_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \}.$

Theorem

 $HALT_{\rm TM}$ is Turing-recognizable.

The *halting problem* for TMs:

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \}.$

Theorem

HALT_{TM} is Turing-recognizable.

Proof. The following algorithm recognizes $HALT_{\rm TM}$.

Algorithm *U*:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

① Simulate M on w.

The *halting problem* for TMs:

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \}.$

Theorem

HALT_{TM} is Turing-recognizable.

Proof. The following algorithm recognizes $HALT_{\rm TM}$.

Algorithm U:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

- Simulate M on w.
- ② If M halts, accept.

The halting problem for TMs:

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \}.$

Theorem

HALT_{TM} is Turing-recognizable.

Proof. The following algorithm recognizes $HALT_{\rm TM}$.

Algorithm *U*:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

- ① Simulate M on w.
- ② If M halts, accept.

If M does not halt on w, then U will not halt. This is why U does not decide $HALT_{TM}$.

 $HALT_{\rm TM}$ is undecidable.

Proof. Suppose that $HALT_{\rm TM}$ is decidable. We will show that $A_{\rm TM}$ is also decidable, obtaining a contradiction.

HALT_{TM} is undecidable.

Proof. Suppose that $HALT_{\rm TM}$ is decidable. We will show that $A_{\rm TM}$ is also decidable, obtaining a contradiction.

Let R be a decider for $HALT_{\rm TM}$. We construct the following TM S to decide $A_{\rm TM}$.

 $HALT_{\mathrm{TM}}$ is undecidable.

Proof. Suppose that $HALT_{TM}$ is decidable. We will show that A_{TM} is also decidable, obtaining a contradiction.

Let R be a decider for $HALT_{\rm TM}$. We construct the following TM S to decide $A_{\rm TM}$.

S: On input $\langle M, w \rangle$, where M is a TM and w is a string:

- **1** Run TM R on input $\langle M, w \rangle$.
- If R rejects, reject.

 $HALT_{\mathrm{TM}}$ is undecidable.

Proof. Suppose that $HALT_{TM}$ is decidable. We will show that A_{TM} is also decidable, obtaining a contradiction.

Let R be a decider for $HALT_{\rm TM}$. We construct the following TM S to decide $A_{\rm TM}$.

- S: On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - **1** Run TM R on input $\langle M, w \rangle$.
 - 2 If R rejects, reject.
 - If R accepts, simulate M on w until it halts.
 - If M accepts, accept.
 - If M rejects, reject.

$$\langle M, w \rangle \in A_{\mathrm{TM}} \ \Rightarrow \ M \text{ accepts } w$$

$$\langle M, w \rangle \in A_{\text{TM}} \Rightarrow M \text{ accepts } w$$

 $\Rightarrow M \text{ halts on } w$

 \Rightarrow R accepts $\langle M, w \rangle$

$$\langle M, w \rangle \in A_{\text{TM}} \Rightarrow M \text{ accepts } w$$

 $\Rightarrow M \text{ halts on } w$

$$\begin{split} \langle M,w\rangle \in A_{\mathrm{TM}} & \Rightarrow M \text{ accepts } w \\ & \Rightarrow M \text{ halts on } w \\ & \Rightarrow R \text{ accepts } \langle M,w\rangle \end{split}$$

$$\Rightarrow$$
 S simulates M on w

$$\begin{split} \langle M,w\rangle \in A_{\mathrm{TM}} & \Rightarrow M \text{ accepts } w \\ & \Rightarrow M \text{ halts on } w \\ & \Rightarrow R \text{ accepts } \langle M,w\rangle \\ & \Rightarrow S \text{ simulates } M \text{ on } w \\ & \Rightarrow S \text{ finds that } M \text{ accepts } w \end{split}$$

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow M \text{ halts on } w$$

$$\Rightarrow R \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow S \text{ simulates } M \text{ on } w$$

$$\Rightarrow S \text{ finds that } M \text{ accepts } w$$

$$\Rightarrow S \text{ accepts } \langle M, w \rangle$$

M rejects $w \Rightarrow M$ halts on w

$$M$$
 rejects $w \Rightarrow M$ halts on w
 $\Rightarrow R$ accepts $\langle M, w \rangle$

$$M \text{ rejects } w \Rightarrow M \text{ halts on } w$$

$$\Rightarrow R \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow S \text{ simulates } M \text{ on } w$$

$$M$$
 rejects $w \Rightarrow M$ halts on w
 $\Rightarrow R$ accepts $\langle M, w \rangle$
 $\Rightarrow S$ simulates M on w
 $\Rightarrow S$ finds that M rejects w

$$M$$
 rejects $w \Rightarrow M$ halts on w

$$\Rightarrow R \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow S \text{ simulates } M \text{ on } w$$

$$\Rightarrow S \text{ finds that } M \text{ rejects } w$$

$$\Rightarrow S \text{ rejects } \langle M, w \rangle$$

$$M$$
 rejects $w \Rightarrow M$ halts on w

$$\Rightarrow R \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow S \text{ simulates } M \text{ on } w$$

$$\Rightarrow S \text{ finds that } M \text{ rejects } w$$

$$\Rightarrow S \text{ rejects } \langle M, w \rangle$$

M does not halt on $w \Rightarrow R$ rejects $\langle M, w \rangle$

$$M$$
 rejects $w \Rightarrow M$ halts on w

$$\Rightarrow R \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow S \text{ simulates } M \text{ on } w$$

$$\Rightarrow S \text{ finds that } M \text{ rejects } w$$

$$\Rightarrow S \text{ rejects } \langle M, w \rangle$$

$$M$$
 does not halt on $w \Rightarrow R$ rejects $\langle M, w \rangle$
 $\Rightarrow S$ rejects $\langle M, w \rangle$

$$M$$
 rejects $w \Rightarrow M$ halts on w

$$\Rightarrow R \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow S \text{ simulates } M \text{ on } w$$

$$\Rightarrow S \text{ finds that } M \text{ rejects } w$$

$$\Rightarrow S \text{ rejects } \langle M, w \rangle$$

$$M$$
 does not halt on $w \Rightarrow R$ rejects $\langle M, w \rangle$
 $\Rightarrow S$ rejects $\langle M, w \rangle$

In either case, S rejects $\langle M, w \rangle$.

Since A_{TM} is undecidable, decider S does not exist.

Therefore decider R for $HALT_{TM}$ does not exist and $HALT_{TM}$

must be undecidable.

The emptiness problem for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

The *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

Theorem

 $E_{\rm TM}$ is undecidable.

The *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

Theorem

E_{TM} is undecidable.

Proof. Suppose that $E_{\rm TM}$ is decidable. We will show that $A_{\rm TM}$ is also decidable.

The *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

Theorem

E_{TM} is undecidable.

Proof. Suppose that $E_{\rm TM}$ is decidable. We will show that $A_{\rm TM}$ is also decidable.

The idea of the proof is that given any instance $\langle M, w \rangle$ of $A_{\rm TM}$, we can construct an instance $\langle M_{(w)} \rangle$ of $E_{\rm TM}$ so that:

The *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

Theorem

 $E_{\rm TM}$ is undecidable.

Proof. Suppose that $E_{\rm TM}$ is decidable. We will show that $A_{\rm TM}$ is also decidable.

The idea of the proof is that given any instance $\langle M, w \rangle$ of $A_{\rm TM}$, we can construct an instance $\langle M_{(w)} \rangle$ of $E_{\rm TM}$ so that:

• If M accepts w, then $L(M_{(w)}) \neq \emptyset$.

The *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

Theorem

 $E_{\rm TM}$ is undecidable.

Proof. Suppose that $E_{\rm TM}$ is decidable. We will show that $A_{\rm TM}$ is also decidable.

The idea of the proof is that given any instance $\langle M, w \rangle$ of $A_{\rm TM}$, we can construct an instance $\langle M_{(w)} \rangle$ of $E_{\rm TM}$ so that:

- If M accepts w, then $L(M_{(w)}) \neq \emptyset$.
- If M does not accept w, then $L(M_{(w)}) = \emptyset$.

Let M be a TM and w be an input for M. Here is the description of $M_{(w)}$. Note that w is hardcoded into $M_{(w)}$.

 $M_{(w)}$: on any input x:

- 1 If $x \neq w$, reject.
- ② If x = w, then run M on input w and accept if M does.

Let M be a TM and w be an input for M. Here is the description of $M_{(w)}$. Note that w is hardcoded into $M_{(w)}$.

 $M_{(w)}$: on any input x:

- ① If $x \neq w$, reject.
- ② If x = w, then run M on input w and accept if M does.

Then if M accepts w, $L(M_{(w)}) = \{w\}$.

If M does not accept w, $L(M_{(w)}) = \emptyset$.

 $E_{\rm TM}$ to solve $A_{\rm TM}$. Suppose R is a TM that decides $E_{\rm TM}$.

Now, assuming that E_{TM} is decidable, we can use an algorithm for

Now, assuming that $E_{\rm TM}$ is decidable, we can use an algorithm for $E_{\rm TM}$ to solve $A_{\rm TM}$. Suppose R is a TM that decides $E_{\rm TM}$.

S: on input $\langle M, w \rangle$, where M is a TM and w is a string:

• Use the description of M and w to construct the TM $M_{(w)}$ as described above.

Now, assuming that $E_{\rm TM}$ is decidable, we can use an algorithm for $E_{\rm TM}$ to solve $A_{\rm TM}$. Suppose R is a TM that decides $E_{\rm TM}$.

S: on input $\langle M, w \rangle$, where M is a TM and w is a string:

- Use the description of M and w to construct the TM $M_{(w)}$ as described above.
- **2** Run R on input $\langle M_{(w)} \rangle$.

Now, assuming that $E_{\rm TM}$ is decidable, we can use an algorithm for $E_{\rm TM}$ to solve $A_{\rm TM}$. Suppose R is a TM that decides $E_{\rm TM}$.

S: on input $\langle M, w \rangle$, where M is a TM and w is a string:

- ① Use the description of M and w to construct the TM $M_{(w)}$ as described above.
- 2 Run R on input $\langle M_{(w)} \rangle$.
 - If R accepts, reject.
 - If R rejects, accept.

We verify that S decides A_{TM} .

$$\langle M, w \rangle \in A_{\mathrm{TM}} \ \Rightarrow \ M \ \mathrm{accepts} \ w$$

We verify that S decides $A_{\rm TM}$.

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

 $\Rightarrow L(M_{(w)}) = \{w\}$

We verify that S decides A_{TM} .

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

 $\Rightarrow L(M_{(w)}) = \{w\}$
 $\Rightarrow L(M_{(w)}) \neq \emptyset$

We verify that S decides $A_{\rm TM}$.

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow L(M_{(w)}) = \{w\}$$

$$\Rightarrow L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

We verify that ${\it S}$ decides ${\it A}_{\rm TM}.$

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow L(M_{(w)}) = \{w\}$$

$$\Rightarrow L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

 \Rightarrow R rejects $\langle M_{(w)} \rangle$

We verify that S decides A_{TM} .

$$\langle M, w \rangle \in A_{\mathrm{TM}} \quad \Rightarrow \quad M \text{ accepts } w$$

$$\Rightarrow \quad L(M_{(w)}) = \{w\}$$

$$\Rightarrow \quad L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \quad \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

$$\Rightarrow \quad R \text{ rejects } \langle M_{(w)} \rangle$$

 \Rightarrow S accepts $\langle M, w \rangle$

We verify that S decides $A_{\rm TM}$.

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow L(M_{(w)}) = \{w\}$$

$$\Rightarrow L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

$$\Rightarrow R \text{ rejects } \langle M_{(w)} \rangle$$

 $\langle M, w \rangle \notin A_{\text{TM}} \Rightarrow M \text{ does not accept } w$

 \Rightarrow S accepts $\langle M, w \rangle$

We verify that S decides A_{TM} .

$$\langle M, w \rangle \in A_{\mathrm{TM}} \quad \Rightarrow \quad M \text{ accepts } w$$

$$\Rightarrow \quad L(M_{(w)}) = \{w\}$$

$$\Rightarrow \quad L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \quad \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

$$\Rightarrow \quad R \text{ rejects } \langle M_{(w)} \rangle$$

 \Rightarrow S accepts $\langle M, w \rangle$

$$\langle M, w \rangle \notin A_{\mathrm{TM}} \Rightarrow M \text{ does not accept } w$$

 $\Rightarrow L(M_{(w)}) = \emptyset$

We verify that S decides A_{TM} .

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow L(M_{(w)}) = \{w\}$$

$$\Rightarrow L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

$$\Rightarrow R \text{ rejects } \langle M_{(w)} \rangle$$

$$\Rightarrow S \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow \quad \text{S accepts } \langle M, w \rangle$$

$$\langle M, w \rangle \notin A_{\text{TM}} \quad \Rightarrow \quad M \text{ does not accept } w$$

$$\Rightarrow \quad L(M_{(w)}) = \emptyset$$

$$\Rightarrow \quad \langle M_{(w)} \rangle \in E_{\text{TM}}$$

We verify that S decides $A_{\mathrm{TM}}.$

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow L(M_{(w)}) = \{w\}$$

$$\Rightarrow L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

$$\Rightarrow R \text{ rejects } \langle M_{(w)} \rangle$$

$$\Rightarrow S \text{ accepts } \langle M, w \rangle$$

$$\langle M, w \rangle \notin A_{\mathrm{TM}} \Rightarrow M \text{ does not accept } w$$

 $\Rightarrow L(M_{(w)}) = \emptyset$
 $\Rightarrow \langle M_{(w)} \rangle \in E_{\mathrm{TM}}$

 \Rightarrow R accepts $\langle M_{(w)} \rangle$

We verify that S decides A_{TM} .

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow L(M_{(w)}) = \{w\}$$

$$\Rightarrow L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

$$\Rightarrow R \text{ rejects } \langle M_{(w)} \rangle$$

$$\Rightarrow S \text{ accepts } \langle M, w \rangle$$

$$\Rightarrow S \text{ accepts } \langle M, w \rangle$$

$$\langle M, w \rangle \notin A_{\text{TM}} \Rightarrow M \text{ does not accept } w$$

$$\Rightarrow L(M_{(w)}) = \emptyset$$

$$\Rightarrow \langle M_{(x)} \rangle \in F_{\text{TM}}$$

 \Rightarrow S rejects $\langle M, w \rangle$

$$\Rightarrow S \text{ accepts } \langle M, w \rangle$$

$$\langle M, w \rangle \notin A_{\text{TM}} \Rightarrow M \text{ does not accept}$$

$$\Rightarrow L(M_{(w)}) = \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \in E_{\text{TM}}$$

$$\Rightarrow R \text{ accepts } \langle M_{(w)} \rangle$$

We verify that S decides $A_{\rm TM}$.

$$\langle M, w \rangle \in A_{\mathrm{TM}} \Rightarrow M \text{ accepts } w$$

$$\Rightarrow L(M_{(w)}) = \{w\}$$

$$\Rightarrow L(M_{(w)}) \neq \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \notin E_{\mathrm{TM}}$$

$$\Rightarrow R \text{ rejects } \langle M_{(w)} \rangle$$

$$\Rightarrow S \text{ accepts } \langle M, w \rangle$$

$$\langle M, w \rangle \notin A_{\mathrm{TM}} \Rightarrow M \text{ does not accept } w$$

$$\Rightarrow L(M_{(w)}) = \emptyset$$

$$\Rightarrow \langle M_{(w)} \rangle \in E_{\mathrm{TM}}$$

$$\Rightarrow R \text{ accepts } \langle M_{(w)} \rangle$$

$$\Rightarrow S \text{ rejects } \langle M, w \rangle$$

Therefore S decides $A_{\rm TM}$, a contradiction, so $E_{\rm TM}$ is undecidable.

We just proved $E_{\rm TM}$ is undecidable. Is it Turing-recognizable?

Theorem

 $E_{\rm TM}$ is co-Turing-recognizable.

We just proved E_{TM} is undecidable. Is it Turing-recognizable?

Theorem

E_{TM} is co-Turing-recognizable.

Proof. Let s_1, s_2, \ldots be an enumeration of all strings in Σ^* .

```
Algorithm A: On input \langle M \rangle: for i=1,2,\ldots for j=1 to i Run M on input s_j for i steps. If M accepts, accept.
```

We just proved E_{TM} is undecidable. Is it Turing-recognizable?

Theorem

 $E_{\rm TM}$ is co-Turing-recognizable.

Proof. Let s_1, s_2, \ldots be an enumeration of all strings in Σ^* .

```
Algorithm A: On input \langle M \rangle: for i=1,2,\ldots for j=1 to i Run M on input s_j for i steps. If M accepts, accept.
```

• If $L(M) \neq \emptyset$, then some string is accepted by M, so A will accept $\langle M \rangle$.

We just proved $E_{\rm TM}$ is undecidable. Is it Turing-recognizable?

Theorem

 $E_{\rm TM}$ is co-Turing-recognizable.

Proof. Let s_1, s_2, \ldots be an enumeration of all strings in Σ^* .

```
Algorithm A: On input \langle M \rangle:

for i=1,2,\ldots

for j=1 to i

Run M on input s_j for i steps.

If M accepts, accept.
```

- If $L(M) \neq \emptyset$, then some string is accepted by M, so A will accept $\langle M \rangle$.
- If $L(M) = \emptyset$, then no string is accepted by M, and A will run forever on $\langle M \rangle$.

We just proved $E_{\rm TM}$ is undecidable. Is it Turing-recognizable?

Theorem

E_{TM} is co-Turing-recognizable.

Proof. Let s_1, s_2, \ldots be an enumeration of all strings in Σ^* .

```
Algorithm A: On input \langle M \rangle: for i=1,2,\ldots for j=1 to i Run M on input s_j for i steps. If M accepts, accept.
```

- If $L(M) \neq \emptyset$, then some string is accepted by M, so A will accept $\langle M \rangle$.
- If $L(M) = \emptyset$, then no string is accepted by M, and A will run forever on $\langle M \rangle$.

Therefore E_{TM}^c is Turing-recognizable.

Theorem

 $E_{
m TM}$ is undecidable.

Theorem

 E_{TM} is co-Turing-recognizable.

Theorem

 $E_{\rm TM}$ is undecidable.

Theorem

 E_{TM} is co-Turing-recognizable.

Corollary

 $E_{\rm TM}$ is not Turing-recognizable.

