Feasibility of Using Machine Learning to Assess Patient Suitability for Surgery at an Ambulatory Surgical Center

James Henderson, PhD^{1,2}, Timothy P. Hofer, MD MSc^{1,2}, Anthony Cuttitta^{1,2} MPH, Bernard Jiang² MD, Wendy Benedict^{1,2} BS, Nicholas Box^{1,2} BA, Jillian Etcubañez² PA-C,
Shawna Lorch² CHES, Gretchen Pagac² MSN, RN, CNOR, Sapan Ambani² MD, Lesly Dossett^{1,2} MD, MPH

¹ Michigan Program on Value Enhancement, University of Michigan, Ann Arbor, MI; ² Michigan Medicine, Ann Arbor, MI

Background

For appropriate patients, surgery at an ambulatory surgical center (ASC) rather than a hospital-based outpatient department (HOPD) is safe, cost effective, and associated with increase patient satisfaction. We

Research Question

Is it feasible to reduce manual clinical reviews for ASC suitability while providing non-inferior outcomes by stratifying patients using machine learning?

Population Studied

N = 985 Surgical Oncology patients requested for surgery January 26 – November 1, 2023, at two freestanding ASCs within an academic health system.

Methods

- Feasibility study using a difference-indifference (DID) design.
- Intervention: Surgical cases classified by model as "Schedule @ASC w/o Review" do not require clinical review prior to scheduling.
- Intervention arm: 2 surgeons &1 scheduler
- Control arm: 3 surgeons & 1 scheduler
- Pre period: January 26-June 28, 2023
- Post period: June 29-November 1, 2023
- Statistical comparisons are average marginal effects from a DID regression design.

Machine Learning Model

- Predicts two outcomes: (1) Outcome of initial clinical review (order logit) and (2) Location (ASC vs HOPD) of completed surgery (logit).
- Random effects for surgical procedure.

Conclusion

In this feasibility study of surgical oncology patients, our machine learning model eliminated 1/3 of manual clinical reviews and was not associated with increased adverse events. A larger study (in progress) is needed to establish benefit and non-inferiority for adverse events in a broader population.

Implication

Machine learning can effectively screen for patients suitable for surgery at an ambulatory surgical center and may be useful for reducing manual clinical reviews.

We implemented a machine learning model to stratify patients by suitability for surgery at an ambulatory surgical center (ASC).

ASC Surgical Site Optimization Model

In a feasibility study, the model reduce manual clinical review by 30%, allowed surgeries to be scheduled 3 days sooner, and did not increase late cancellations or other adverse events.

Table 1. Results.

					Difference in
Measure	Intervention		Control		Differences
	Pre,	Post,	Pre,	Post,	DID
	N (%)	N (%)	N (%)	N (%)	(95% CI)
Total Cases	90	90	160	119	-
	(100)	(100)	(100)	(100)	
Scheduled w/o	2	63	4	5	66.1%
prior review	(2.2)	(70)	(2.5)	(4.2)	(55.2-76.9%)
Scheduled Cases	87	86	151	113	-
	(100)	(100)	(100)	(100)	
Days until	3.4	2.2	4.3	6.1	-2.9
scheduled,	(4.0)	(2.8)	(4.4)	(5.4)	(-4.5 to -1.3)
mean (SD)					
7-day	0	1	3	5	-2.8%
cancellations	(0.0)	(1.75)	(2.2)	(6.8)	(-9.9 to -4.3%)
Rescheduled to	1	2	3	3	0.4%
HOPD	(1.5)	(3.5)	(2.2)	(4.1)	(-7.0 to 7.8%)
CI - Confidence Interval DID - Difference in Differences					

CI = Confidence Interval, DID = Difference in Differences, HOPD = Hospital Based Outpatient Department, SD = Standard Deviation

Figure 1. Implementation Schematic

Acknowledgements

This quality improvement project was carried out by MPrOVE in cooperation with clinical partners at Michigan Medicine. The authors have no conflicts of interest to disclose.

https://jbhender.github.io/research/hsr/ Academy_Health_2024.pdf