Università degli Studi Roma Tre Anno Accademico 2009/2010 AL2 - Algebra 2 Esercitazione 5

Venerdì 9 Dicembre 2009

http://www.mat.uniroma3.it/users/pappa/CORSI/AL2_09_10/AL2.htm domande/osservazioni: dibiagio@mat.uniroma1.it

1. (Dikranjan - Aritmetica e algebra - esercizio 9.24)

Sia A un anello commutativo unitario. Dimostrare che N(A) coincide con l'intersezione di tutti gli ideali primi di A.

Soluzione:

Sia $x \in N(A)$. Allora esiste n tale che $x^n = 0$. Per ogni P ideale primo di A si ha $0 \in P$, allora $x^n \in P$ e, per definizione di ideale primo, $x \in P$. Quindi per ogni P ideale primo di A, $N(A) \subseteq P$, da cui $N(A) \subseteq \cap_{P \text{ ideale primo}} P$. Dimostriamo il viceversa, ovvero dimostriamo che preso $x \notin N(A)$ esiste P ideale primo tale che $x \notin P$. Sia $S := \{x^n : n \in \mathbb{N}\}$ e si consideri la famiglia $\mathcal{I} := \{I \subsetneq A, I \text{ ideale}, I \cap S = \emptyset\}$. Siccome $x \notin N(A), \mathcal{I}$ contiene (0) e quindi \mathcal{I} è una famiglia non vuota. Si consideri l'ordine \subseteq sugli elementi di \mathcal{I} . Con tale ordine \mathcal{I} è un insieme parzialmente ordinato. Si verifica facilmente, come nella dimostrazione del teorema di Krull, che (\mathcal{I},\subseteq) è un insieme induttivo (ovvero ogni catena in \mathcal{I} ha un elemento maggiorante). Per il lemma di Zorn esiste quindi un elemento massimale per \mathcal{I} . Chiamiamolo P. Chiaramente $x \notin P$; rimane solo da verificare che P è effettivamente un ideale primo, ovvero che per ogni $a,b\in A$ con $a, b \notin P$ si ha $ab \notin P$. Dato che $a, b \notin P$ allora $P + (a) \in P + (b)$ devono, per la massimalità di P in \mathcal{I} , intersecare S. Quindi esistono $n, m \in \mathbb{N}$, $p_1, p_2 \in P$, $h_1, h_2 \in A$ tali che $x^n = p_1 + ah_1$ e $x^m = p_2 + bh_2$. Ma allora $x^{n+m} = p_1p_2 + p_1bh_2 + p_2ah_1 + abh_1h_2$ cioè $x^{n+m} \in P + (ab)$, perciò necessariamente $ab \notin P$.

2. Siano A e B anelli commutativi unitari. Dimostrare che ogni ideale $Y \subseteq A \times B$ è del tipo $I \times J$ dove I è un ideale di A e J è un ideale di B.

Soluzione

Chiaramente se I è ideale di A e J ideale di B allora $I \times J$ è un ideale di $A \times B$.

Dimostriamo il viceversa. Sia Y ideale di $A \times B$. Sia $I := \{a \in A | \exists b \in B \text{ t.c. } (a,b) \in Y\}$ e sia $J :=:= \{b \in B | \exists a \in A \text{ t.c. } (a,b) \in Y\}$. I è ideale di A, infatti è non vuoto $((0,0) \in Y \Rightarrow 0 \in I)$, è un sottogruppo (se $i_1, i_2 \in I$ allora esistono $b_1, b_2 \in B$ tali che $(i_1, b_1) \in Y$ e $(i_2, b_2) \in Y$, da cui $(i_1 - i_2, b_1 - b_2) \in Y \Rightarrow i_1 - i_2 \in I)$ ed è chiuso per il prodotto con elementi di A $((a,1)(i_1,b_1) = (ai_1,b_1) \in Y \Rightarrow ai_1 \in I)$. Analogamente J è un ideale. Dato che ovviamente $Y \subseteq I \times J$, rimane solo da verificare che $I \times J \subseteq Y$. Sia $(i,j) \in I \times J$. Per definizione esistono $a \in A, b \in B$ tali che $(i,b),(a,j) \in Y$. Allora, dato che Y è un ideale, $(1,0)(i,b) = (i,0) \in Y$ e $(0,1)(a,j) = (0,j) \in Y$, quindi anche $(i,j) = (i,0) + (0,j) \in Y$.

3. Sia A un anello commutativo unitario e I,J ideali di A tali che I+J=A. Dimostrare che $\frac{A}{I \cap I} \cong \frac{A}{I} \times \frac{A}{I}$.

Soluzione:

Si consideri l'applicazione $\phi: A \to \frac{A}{I} \times \frac{A}{J}$ tale che $\phi(a) = (a+I, a+J)$. Si verifica facilmente che ϕ è un omomorfismo di anelli: $\forall a, b \in A, \phi(a+b) = (a+b+I, a+b+J) = (a+I, a+J) + (b+I, b+J) = \phi(a) + \phi(b)$ e $\phi(ab) = (ab+I, ab+J) = (a+I, a+J)(b+I, b+J) = \phi(a)\phi(b)$.

Determiniamo il nucleo di ϕ : $\ker \phi = \{a \in A | a \in I, a \in J\} = I \cap J$.

Dimostriamo che ϕ è suriettiva: siano $a+I\in \frac{A}{I}$ e $b+J\in \frac{A}{J}$. Dato che I+J=A allora esistono $i\in I, j\in J$ tali che i+j=1. Consideriamo aj+bi. Si ha aj=a(1-i)=a-ai e bi=b-bj, quindi aj+bi+I=a+I e aj+bi+J=b+J, perciò $\phi(aj+bi)=(a+I,b+J)$.

Applicando il teorema fondamentale di omomorfismo tra anelli segue dunque che $\frac{A}{I\cap J}\cong \frac{A}{I}\times \frac{A}{J}$.

4. Scomporre i seguenti interi di Gauss in prodotto di primi di Gauss:

$$7, 13, 1 + 3i, 5i - 10;$$

dimostrare poi che $\mathbb{Z}[i]/(1+2i)$ è un campo e calcolarne il numero degli elementi.

Soluzione:

Sia δ la norma euclidea standard definita a lezione. Dato che $x \in \mathbb{Z}[i]$ è invertibile se e solo se $\delta(x) = 1$ e che $\delta(7) = 49$ allora 7 è riducibile se e solo se 7 si può scrivere come prodotto di elementi di norma 7. In $\mathbb{Z}[i]$ non esistono, però, elementi di norma 7 ($7 \equiv 3 \mod 4$, quindi 7 non si può scrivere come somma di due quadrati) quindi 7 è irriducibile in $\mathbb{Z}[i]$.

 $13 = 4 + 9 = 2^2 + 3^2 = (2 + 3i)(2 - 3i)$. $\delta(2 + 3i) = \delta(2 - 3i) = 13$, che è un numero primo, perciò 2 + 3i e 2 - 3i sono elementi irriducibili, e quindi primi dato che $\mathbb{Z}[i]$ è un ED e in particolare un UFD.

 $\delta(1+3i)=10$, quindi 1+3i o è irriducibile (primo) o è il prodotto di due elementi irriducibili di norma rispettivamente 2 e 5. Gli unici elementi di norma 2 in $\mathbb{Z}[i]$ sono $\pm 1 \pm i$; questi quattro interi di Gauss sono tutti associati tra loro, quindi è sufficiente studiare la divisibilità di 1+3i per, ad esempio, 1+i. Concludendo: 1+3i=(1+i)(2+i).

 $5i-10=5(i-2)=(1+4)(i-2)=(1+2i)(1-2i)(i-2)=(1+2i)(1-2i)i(1+2i)=i(1+2i)^2(1-2i)$ e $1+2i,\,1-2i$ sono fattori primi dato che sono irriducibili poiché $\delta(1+2i)=\delta(1-2i)=5$.

Sia I:=(1+2i). Siccome 1+2i è irriducibile e $\mathbb{Z}[i]$ è un ED, e in particolare un PID, allora (1+2i) è un ideale massimale e quindi $\mathbb{Z}[i]/I$ è un campo. Elenchiamone gli elementi. $\delta(1+2i)=5$, quindi gli elementi distinti di $\mathbb{Z}[i]/I$, a parte 0+I, si possono ricercare tra gli elementi del tipo x+I con x di norma al più 4. Gli elementi di norma al più 4 sono: $\pm 1, \pm i, \pm 1 \pm i, \pm 2, \pm 2i$. Però $1-(-1+i)=2-i=-i(1+2i)\in I$, quindi 1+I=-1+i+I. Analogamente $-1-(1-i)=-2+i=i(1+2i)\in I$, $i-(-1-i)=1+2i\in I$, $i-(-1-i)=-2i-1=-(1+2i)\in I$,

 $\begin{array}{l} 1-(-2i)=1+2i\in I,\ -1-(2i)=-1-2i\in I,\ i-2=i(1+2i)\in I,\\ -i-(-2)=-i+2=-i(1+2i)\in I.\ \text{Inoltre}\ 1+I,\ -1+I,\ i+I,\ -i+I\ \text{sono}\\ \text{tutti elementi distinti di }\mathbb{Z}[i]/I,\ \text{dato che per ragioni di norma}\ 1-(-1)=2,1-i,1-(-i)=1+i,-1-i,-1-(-i)=-1+i,i-(-i)=2i\ \text{non}\\ \text{possono appartenere a }I.\ \text{Allora}\ \mathbb{Z}[i]/I=\{0+I,1+I,-1+I,i+I,-i+I\}\\ \text{è un campo con }5\ \text{elementi.} \end{array}$