

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2010/2011 – 3rd Year Examination – Semester 5

IT5503: Computer Graphics & Image Processing Structured Question Paper with Model Answers

11th, March, 2011 (TWO HOURS)

To be completed by th	e candid	late	
BIT Examination	Index	No:	

Important Instructions:

- The duration of the paper is **2 (Two) hours**.
- The medium of instruction and questions is English.
- This paper has 4 questions and 12 pages.
- Answer all 4 questions: Each question carries 25 marks.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Non-programmable Calculators may be used.

Questions Answere				•							_
	r۵	ıρ	214	Δn	2	n	0	eti	IΔ) I	

Indicate by a cross (x), (e.g. X) the numbers of the questions answered.

	(Question numbers					
To be completed by the candidate by marking a cross (x).	1	2	3	4			
To be completed by the examiners:							

		(4 n
	ANSWER IN THIS BOX	
)	Explain the two terms 'windows' and 'viewports' in computer graphics applica	
)		
)	Explain the two terms 'windows' and 'viewports' in computer graphics applica ANSWER IN THIS BOX	
)		
)		tions. (4 n
)		
)		

Index	No:						

(c)	A point at position (X_w, Y_w) in the window is mapped into position (X_v, Y_v) in the associated viewport. Derive the equations for the viewport position of (X_v, Y_v) using normalized coordinates.
	(<i>Hint:</i> the coordinates (Xw_{min}, Yw_{min}) and (Xw_{max}, Yw_{max}) define the rectangle of the window and coordinates (Xv_{min}, Yv_{min}) and (Xv_{max}, Yv_{max}) define the rectangle of the viewport.)
	(6 marks)
	ANSWER IN THIS BOX

								(5 ma
ANSWE	R IN TH	IIS BOX	<u>【</u>					

	Give the formula for a Cubic Bezier curve.			(6 ı
Give the formula for a Cubic Bezier curve. (3	Give the formula for a Cubic Bezier curve.		ANSWER IN THIS BOX	
Give the formula for a Cubic Bezier curve. (3	Give the formula for a Cubic Bezier curve. (3)			
Give the formula for a Cubic Bezier curve. (3	Give the formula for a Cubic Bezier curve. (3)			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
(3	(3			
ANSWER IN THIS BOX	ANSWER IN THIS BOX	(Give the formula for a Cubic Bezier curve.	(31
			Give the formula for a Cubic Bezier curve.	(3 1
				(31
				(3 1
				(31
				(31
				(31
				(31
				(31

Write down the cubic Bezier curve in matrix form.	(4 marks
ANSWER IN THIS BOX	
Find the parametric representation of any point $(x(u), y(u))$ on the Bézier curve at $(2,2)$ and ends at $(4,1)$ and has control points $(0,1)$ and $(3,-1)$ respectively.	e which star
ANSWER IN THIS BOX	

(i) C0-continuity (ii) C1-continuity (iii) C2-continuity	
(m) 62 continuity	
	(6 m
	(*
ANSWER IN THIS BOX	
ANSWER IN THIS BOX	
n 3D Computer Graphics curves are represented using a parametric repres	entation
n 3D Computer Graphics, curves are represented using a parametric represhan a mathematical (analytical) representation. Why are parametric curves	
	preferred
han a mathematical (analytical) representation. Why are parametric curves	
han a mathematical (analytical) representation. Why are parametric curves	preferred
han a mathematical (analytical) representation. Why are parametric curves	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred
han a mathematical (analytical) representation. Why are parametric curves he polygonal representation?	preferred

	olications of Digital Image Process		(04 Ma
ANSWER	R IN THIS BOX		
Explain bi	iefly the following two noise remo	oval techniques	
-		-	
	(i) Neighbourhood averaging		
	(ii) Median filtering		
	(ii) Median filtering		
4.2101111	(ii) Median filtering		(06 ma
ANSWEE	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWER	(ii) Median filtering		(06 ma
ANSWEE	(ii) Median filtering		(06 ma
ANSWEF	(ii) Median filtering		(06 ma
ANSWE	(ii) Median filtering		(06 ma
ANSWER	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWER	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWE	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWEF	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWER	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWE	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWE	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWER	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWE	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWE	(ii) Median filtering R IN THIS BOX		(06 ma
ANSWER	(ii) Median filtering R IN THIS BOX		(06 ma

3)

Index	No:								

(d)	Calculate the new pixel values of the shaded pixel of the following image when the above
	two techniques are applied separately using a 3x3 neighbourhood. Give steps of your
	calculations.

3	4	6	5	4
4	5	7	6	5
7	8	0	4	6
8	7	6	5	7
9	7	8	9	8

(e)

	(06 marks)
ANSWER IN THIS BOX	
Segmentation of an image into useful regions is an important operation in image Name two image segmentation techniques.	ge analysis.
	(04 marks)
ANSWER IN THIS BOX	

	technique you would suggest?	(05 m
	ANSWER IN THIS BOX	
(a)	What operation is achieved by convoluting an image with the following mask?	
()		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1 0 -1	
		(0.4
	ANSWER IN THIS BOX	(04 ma
(b)	Give another 3v3 mask which can be used to detect edges in an image together	with the
(b)	Give another 3x3 mask which can be used to detect edges in an image together given in (a).	with the
(b)	given in (a).	with the i
(b)		
(b)	given in (a).	

Give ster	as of dotos	tion of ea	laga na							
Orve step	os of detec	tion of co	iges usi	ing the l	_aplacia:	n operat	or.			
4 11014/5									(06 r	nark
ANSWE	R IN TH	<u>12 ROX</u>								
the same	n ₂ denote informati characteriz	on, write	the for	nformati mula fo	on carry	ing unit e data re	s in two d	ata sets the R_D of the	nat represe e first da (05 r	ta se
the same (the one	informati	on, write zed by n ₁	the for	nformati mula for	on carry relative	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula foi	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ring unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ring unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se
the same (the one	information characterization	on, write zed by n ₁	the for	nformati mula for	on carry	ing unit	s in two d	ata sets the R_D of the	e first da	ta se

				(04 m
ANSWER IN TH	IS BOX			
Name one Lossless technique.	s image compression	technique and o	ne Lossy image	compression
Name one Lossless technique.	s image compression	technique and o	ne Lossy image	compression (02 m
Name one Lossless technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
technique.		technique and o	ne Lossy image	
