

수학 계산력 강화

(1)부정적분

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-03-15
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 부정적분의 뜻

(1) 함수 F(x)의 도함수가 f(x)일 때, 즉 F'(x) = f(x)

일 때, F(x)를 f(x)의 **부정적분**이라 하고, 이것을 기호로 $\int f(x)dx$ 와 같이 나타낸다.

(2) 함수 f(x)의 한 부정적분 F(x)라 하면

로 나타낸다. 이때 f(x)를 피적분함수, C를 적분상수, x를 적분변수라 한다.

또 함수 f(x)의 부정적분을 구하는 것을 f(x)를 적분한다고 하고, 그 계산법을 적분법이라 한다.

☑ 다음 부정적분을 구하여라.

- 1. $\int 1 dx$
- $2. \qquad \int 2dx$
- $3. \qquad \int 6 \, dx$
- $4. \qquad \int 2x \, dx$
- $\mathbf{5.} \qquad \int \left(-2x\right) \, dx$
- 6. $\int 4x dx$

- 7. $\int (2x+1)dx$
- $8. \qquad \int 3x^2 \, dx$
- $9. \qquad \int 4x^3 dx$
- **10.** $\int 5x^4 dx$
- **11.** $\int 7x^6 dx$
- **12.** $\int 10x^9 dx$
- \blacksquare 다음 등식을 만족시키는 함수 f(x)를 구하여라. (단, C는 적분 상수이다.)
- **13.** $\quad \int f(x)dx = 3x + C$
- **14.** $\int f(x)dx = 5x + C$

15.
$$\int f(x)dx = -6x + C$$

16.
$$\int f(x) dx = 2x^2 + 5x + C$$

17.
$$\int f(x) dx = 3x^2 + 4x + C$$

18.
$$\int f(x) dx = 4x^2 + 2x + C$$

19.
$$\int f(x) = 4x^2 - x + C$$

20.
$$\int f(x) = -x^2 - 2x + C$$

21.
$$\int f(x) = -3x^2 + 4x + C$$

22.
$$\int f(x) = -5x^2 + x + C$$

23.
$$\int f(x)dx = x^3 + 4x^2 + C$$

24.
$$\int f(x)dx = x^3 + x^2 + x + C$$

25.
$$\int f(x)dx = 3x^3 - 2x^2 + 5x + C$$

26.
$$\int f(x) dx = -\frac{2}{3}x^3 + 4x + C$$

27.
$$\int f(x)dx = -2x^3 + x^2 - 7x + C$$

28.
$$\int f(x)dx = -4x^3 + 2x^2 + 5x + C$$

29.
$$\int f(x) dx = x^4 + 3x^3 + x + C$$

30.
$$\int f(x)dx = 5x^4 + 4x^2 - 3x + C$$

31.
$$\int f(x)dx = x^4 + 2x^3 - 4x^2 + 3x + C$$

32.
$$\int f(x)dx = -x^4 - x^3 + 2x^2 + x + C$$

33.
$$\int f(x)dx = -2x^4 + x^2 - x + C$$

34.
$$\int f(x)dx = -5x^4 + 4x^3 + 3x^2 - 2x + C$$

$oldsymbol{\square}$ 다음 등식을 만족시키는 다항함수 f(x)를 구하여라. (단, C는

35.
$$\int xf(x) dx = x^3 + x^2 + C$$

36.
$$\int (x+2)f(x)dx = \frac{1}{3}x^3 - 4x + C$$

37.
$$\int (x+3)f(x)dx = \frac{1}{3}x^3 + \frac{5}{2}x^2 + 6x + C$$

38.
$$\int (x-1)f(x) dx = \frac{1}{3}x^3 - x + C$$

39.
$$\int (x-1)f(x)dx = 2x^3 - 6x + C$$

 \blacksquare 다음 등식을 만족하는 상수 a, b, c, d의 값을 각각 구하여라.

40.
$$\int (3x^2 + 2ax + b) dx = cx^3 + 2x^2 + 3x + C$$

41.
$$\int (2x^2 + ax - b)dx = cx^3 - x^2 + 4x + C$$

42.
$$\int (4x^3 + ax^2 + 2x + b)dx = cx^4 + 2x^3 + dx^2 - 4x + C$$

43.
$$\int (ax^3 - 3x^2 + bx + 1)dx = 2x^4 + cx^3 - x^2 + dx + C$$

02 / 부정적분과 미분의 관계

(1)
$$\frac{d}{dx} \left\{ \int f(x) dx \right\} = f(x)$$

(2)
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx = f(x) + C$$
 (단, C는 적분상수)

$$\qquad \qquad \frac{d}{dx} \Big\{ \int f(x) dx \Big\} \neq \int \Big\{ \frac{d}{dx} f(x) \Big\} dx$$

$m ec f(x) = -x^2 + 4x$ 일 때, 다음을 계산하고 그 결과를 비교하여

44.
$$\frac{d}{dx} \left\{ \int f(x) dx \right\}$$

45.
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx$$

46.
$$\frac{d}{dx} \left\{ \int f(x) dx \right\} \square \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

47.
$$\frac{d}{dx} \left\{ \int f(x) dx \right\}$$

48.
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx$$

49.
$$\frac{d}{dx} \left\{ \int f(x) dx \right\} \square \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

 $oldsymbol{\square}$ $f(x)=3x^2+2x+5$ 일 때, 다음을 계산하고 그 결과를 비교하

$$50. \quad \frac{d}{dx} \Big\{ \int f(x) dx \Big\}$$

51.
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx$$

52.
$$\frac{d}{dx} \left\{ \int f(x) dx \right\} \prod \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

 $oldsymbol{\square}$ $f(x)=4x^3+2x-1$ 일 때, 다음을 계산하고 그 결과를 비교하

54.
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx$$

55.
$$\frac{d}{dx} \left\{ \int f(x) dx \right\} \square \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

☑ 다음을 구하여라.

56.
$$f(x) = \int (2x^3 + 3x^2 - 4x) dx$$
일 때, $f'(1)$ 의 값

57.
$$f(x) = \int (x^3 - 3x^2 + 1) dx$$
일 때, $f'(2)$ 의 값

58.
$$\int \{f(x) + 2x\} dx = x^3 - 6x^2 + 4x + C$$
일 때, $f(-2)$ 의 값 (단, C 는 적분상수)

59.
$$\int \{f(x) + x^2\} dx = x^3 - x^2 + x + C$$
일 때, $f(-1)$ 의 값 (단, C 는 적분상수)

60. 함수
$$f(x) = \int \left\{ \frac{d}{dx} (2x^3 + x^2 - 3) \right\} dx$$
에 대하여 $f(2) = 10$ 일 때, $f(1)$ 의 값

정답 및 해설

1) x + C

$$\Rightarrow$$
 $(x)' = 1$ 이므로 $\int 1 dx = x + C$

$$\Rightarrow$$
 $(2x)' = 2$ 이므로 $\int 2dx = 2x + C$

3) 6x + C

$$\Rightarrow$$
 $(6x)' = 6$ 이므로
$$\int 6 dx = 6x + C$$

4) $x^2 + C$

$$\Rightarrow$$
 $(x^2)' = 2x$ 이므로 $\int 2x \, dx = x^2 + C$

5) $-x^2 + C$

$$\Leftrightarrow (-x^2)' = -2x$$
이므로 $\int (-2x) dx = -x^2 + C$

6) $2x^2 + C$

$$\Rightarrow$$
 $(2x^2)' = 4x$ 이므로 $\int 4x dx = 2x^2 + C$

7) $x^2 + x + C$

$$\Rightarrow (x^2+x)' = 2x+1$$
이므로 $\int (2x+1)dx = x^2+x+C$

8) $x^3 + C$

$$\Rightarrow$$
 $(x^3)' = 3x^2$ 이므로 $\int 3x^2 dx = x^3 + C$

9) $x^4 + C$

$$\Rightarrow$$
 $(x^4)' = 4x^3$ 이므로 $\int 4x^3 dx = x^4 + C$

10) $x^5 + C$

$$\Rightarrow (x^5)' = 5x^4$$
이므로 $\int 5x^4 dx = x^5 + C$

11) $x^7 + C$

$$\Rightarrow (x^7)' = 7x^6$$
이므로 $\int 7x^6 dx = x^7 + C$

12) $x^{10} + C$

$$\Rightarrow (x^{10})' = 10x^9$$
이므로 $\int 10x^9 dx = x^{10} + C$

13) f(x) = 3

⇒ 양변을 x에 대하여 미분하면 f(x) = (3x + C)' = 3

14) f(x) = 5

⇒ 양변을 x에 대하여 미분하면 f(x) = (5x + C)' = 5

15) f(x) = -6

⇒ 양변을 x에 대하여 미분하면 f(x) = (-6x + C)' = -6

16) f(x) = 4x + 5

$$\Rightarrow f(x) = (2x^2 + 5x + C)' = 4x + 5$$

17) f(x) = 6x + 4

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (3x^2 + 4x + C)' = 6x + 4$$

18) f(x) = 8x + 2

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (4x^2 + 2x + C)' = 8x + 2$$

19) f(x) = 8x - 1

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (4x^2 - x + C)' = 8x - 1$$

20) f(x) = -2x-2

⇒ 양변을 x에 대하여 미분하면 $f(x) = (-x^2 - 2x + C)' = -2x - 2$

21) f(x) = -6x + 4

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (-3x^2 + 4x + C)' = -6x + 4$$

22) f(x) = -10x + 1

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (-5x^2 + x + C)' = -10x + 1$$

23) $f(x) = 3x^2 + 8x$

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (x^3 + 4x^2 + C)' = 3x^2 + 8x$$

24) $f(x) = 3x^2 + 2x + 1$

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (x^3 + x^2 + x + C)' = 3x^2 + 2x + 1$$

25) $f(x) = 9x^2 - 4x + 5$

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (3x^3 - 2x^2 + 5x + C)' = 9x^2 - 4x + 5$$

26) $f(x) = -2x^2 + 4$

$$\Rightarrow f(x) = \left(-\frac{2}{3}x^3 + 4x + C\right)' = -2x^2 + 4$$

27) $f(x) = -6x^2 + 2x - 7$

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (-2x^3 + x^2 - 7x + C)' = -6x^2 + 2x - 7$$

28) $f(x) = -12x^2 + 4x + 5$

⇒ 양변을 x에 대하여 미분하면

$$f(x) = (-4x^3 + 2x^2 + 5x + C)' = -12x^2 + 4x + 5$$

29)
$$f(x) = 4x^3 + 9x^2 + 1$$

$$\Rightarrow f(x) = (x^4 + 3x^3 + x + C)' = 4x^3 + 9x^2 + 1$$

30)
$$f(x) = 20x^3 + 8x - 3$$

$$f(x) = (5x^4 + 4x^2 - 3x + C)' = 20x^3 + 8x - 3$$

31)
$$f(x) = 4x^3 + 6x^2 - 8x + 3$$

$$\Rightarrow$$
 양변을 x 에 대하여 미분하면

$$f(x) = (x^4 + 2x^3 - 4x^2 + 3x + C)' = 4x^3 + 6x^2 - 8x + 3$$

32)
$$f(x) = -4x^3 - 3x^2 + 4x + 1$$

$$f(x) = (-x^4 - x^3 + 2x^2 + x + C)' = -4x^3 - 3x^2 + 4x + 1$$

33)
$$f(x) = -8x^3 + 2x - 1$$

$$f(x) = (-2x^4 + x^2 - x + C)' = -8x^3 + 2x - 1$$

34)
$$f(x) = -20x^3 + 12x^2 + 6x - 2$$

$$f(x) = (-5x^4 + 4x^3 + 3x^2 - 2x + C)'$$

$$=-20x^3+12x^2+6x-2$$

35)
$$f(x) = 3x + 2$$

$$\Rightarrow xf(x) = (x^3 + x^2 + C)' = 3x^2 + 2x$$

$$\therefore f(x) = 3x + 2$$

36)
$$f(x) = x - 2$$

$$\Rightarrow$$
 $(x+2)f(x) = \left(\frac{1}{3}x^3 - 4x + C\right)'$ 이므로

$$(x+2)f(x) = x^2-4$$

$$(x+2)f(x) = (x+2)(x-2)$$
 :: $f(x) = x-2$

37)
$$f(x) = x + 2$$

$$\Rightarrow (x+3)f(x) = \left(\frac{1}{3}x^3 + \frac{5}{2}x^2 + 6x + C\right)'$$
이므로

$$(x+3)f(x) = x^2 + 5x + 6$$

$$(x+3)f(x) = (x+2)(x+3)$$
 : $f(x) = x+2$

38)
$$f(x) = x + 1$$

$$\Rightarrow (x-1)f(x) = \left(\frac{1}{3}x^3 - x + C\right)'$$

$$=x^2-1=(x+1)(x-1)$$

$$\therefore f(x) = x + 1$$

39)
$$f(x) = 6x + 6$$

$$\Rightarrow (x-1)f(x) = (2x^3 - 6x + C)'$$
이므로

$$(x-1)f(x) = 6x^2 - 6$$

$$(x-1)f(x) = 6(x+1)(x-1)$$

$$\therefore f(x) = 6x + 6$$

40)
$$a=2$$
, $b=3$, $c=1$

$$\Rightarrow 3x^2 + 2ax + b = (cx^3 + 2x^2 + 3x + C)'$$
이므로

$$3x^2 + 2ax + b = 3cx^2 + 4x + 3$$

$$3 = 3c$$
, $2a = 4$, $b = 3$ $\therefore a = 2$, $b = 3$, $c = 1$

41)
$$a = -2$$
, $b = -4$, $c = \frac{2}{3}$

$$\Rightarrow \int (2x^2 + ax - b)dx = cx^3 - x^2 + 4x + C$$

$$2x^2 + ax - b = (cx^3 - x^2 + 4x + C)'$$
이므로

$$2x^2 + ax - b = 3cx^2 - 2x + 4$$

위의 식이
$$x$$
에 대한 항등식이므로

$$2=3c, a=-2, -b=4$$
 $\therefore a=-2, b=-4, c=\frac{2}{3}$

42)
$$a = 6$$
, $b = -4$, $c = 1$, $d = 1$

$$\Rightarrow 4x^3 + ax^2 + 2x + b = (cx^4 + 2x^3 + dx^2 - 4x + C)' \circ \Box \Box$$

$$4x^3 + ax^2 + 2x + b = 4cx^3 + 6x^2 + 2dx - 4$$

위의 식이
$$x$$
에 대한 항등식이므로

$$4 = 4c$$
, $a = 6$, $2 = 2d$, $b = -4$

$$a = 6, b = -4, c = 1, d = 1$$

43)
$$a = 8$$
, $b = -2$, $c = -1$, $d = 1$

$$\Rightarrow ax^3 - 3x^2 + bx + 1 = (2x^4 + cx^3 - x^2 + dx + C)' \circ] =$$

$$ax^3 - 3x^2 + bx + 1 = 8x^3 + 3cx^2 - 2x + d$$

위의 식이
$$x$$
에 대한 항등식이므로

$$a = 8$$
. $-3 = 3c$. $b = -2$. $1 = d$

$$\therefore a = 8, b = -2, c = -1, d = 1$$

44)
$$-x^2+4x$$

$$\Rightarrow \frac{d}{dx} \left\{ \int f(x) dx \right\} = \frac{d}{dx} \left\{ \int (-x^2 + 4x) dx \right\}$$

$$= \frac{d}{dx} \left(-\frac{1}{3}x^3 + 2x^2 + C \right)$$

$$=-x^2+4x$$

45)
$$-x^2+4x+C$$

$$\Rightarrow \int \left\{ \frac{d}{dx} f(x) \right\} dx = \int \left\{ \frac{d}{dx} (-x^2 + 4x) \right\} dx$$
$$= \int (-2x + 4) dx$$

$$=-x^2+4x+C$$

$$\Rightarrow : \frac{d}{dx} \left\{ \int f(x) dx \right\} \not= \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

$$\Rightarrow \frac{d}{dx} \left\{ \int f(x) dx \right\} = \frac{d}{dx} \left\{ \int x^3 dx \right\}$$

$$=\frac{d}{dx}\left(\frac{1}{4}x^4+C\right)$$

$$=x^3$$

48)
$$x^3 + C$$

$$\Rightarrow \int \left\{ \frac{d}{dx} f(x) \right\} dx = \int \left(\frac{d}{dx} x^3 \right) dx$$

$$= \int 3x^2 dx = x^3 + C$$

$$\Rightarrow \therefore \frac{d}{dx} \left\{ \int f(x) dx \right\} \not\equiv \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

50)
$$3x^2 + 2x + 5$$

$$\Rightarrow \frac{d}{dx} \left\{ \int f(x) dx \right\} = \frac{d}{dx} \left\{ \int (3x^2 + 2x + 5) dx \right\}$$
$$= \frac{d}{dx} (x^3 + x^2 + 5x + C)$$

$$=3x^2+2x+5$$

51)
$$3x^2 + 2x + C$$

$$\Rightarrow \int \left\{ \frac{d}{dx} f(x) \right\} dx = \int \left\{ \frac{d}{dx} (3x^2 + 2x + 5) \right\} dx$$
$$= \int (6x + 2) dx$$
$$= 3x^2 + 2x + C$$

$$\Rightarrow \therefore \frac{d}{dx} \left\{ \int f(x) dx \right\} \not\equiv \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

53)
$$4x^3 + 2x - 1$$

$$\Rightarrow \frac{d}{dx} \left\{ \int f(x) dx \right\} = \frac{d}{dx} \left\{ \int (4x^3 + 2x - 1) dx \right\}$$
$$= \frac{d}{dx} (x^4 + x^2 - x + C)$$

$$=4x^3+2x-1$$

54)
$$4x^3 + 2x + C$$

$$\Rightarrow \int \left\{ \frac{d}{dx} f(x) \right\} dx = \int \left\{ \frac{d}{dx} (4x^3 + 2x - 1) \right\} dx$$
$$= \int (12x^2 + 2) dx$$
$$= 4x^3 + 2x + C$$

$$\Rightarrow \therefore \frac{d}{dx} \left\{ \int f(x) dx \right\} \not\equiv \int \left\{ \frac{d}{dx} f(x) \right\} dx$$

56) 1

다
$$f(x) = \int (2x^3 + 3x^2 - 4x) dx$$
의 양변을 x 에 대하여 미분하면 $f'(x) = 2x^3 + 3x^2 - 4x$ 이므로
$$f'(1) = 2 \times 1^3 + 3 \times 1^2 - 4 \times 1 = 1$$

$$57) -3$$

$$f(x) = \int (x^3 - 3x^2 + 1) dx$$
의 양변을 x 에 대하여 미분하면 $f'(x) = x^3 - 3x^2 + 1$ 이므로

$$f'(2) = 2^3 - 3 \times 2^2 + 1 = -3$$

$$\Rightarrow \int \{f(x) + 2x\} dx = x^3 - 6x^2 + 4x + C$$
의 양변을 x 에 대하여 미분하면 $f(x) + 2x = 3x^2 - 12x + 4$ 따라서 $f(x) = 3x^2 - 14x + 4$ 이므로 $f(-2) = 3 \times (-2)^2 - 14 \times (-2) + 4 = 44$

59) 5

$$\Rightarrow f(x) = \int \left\{ \frac{d}{dx} (2x^3 + x^2 - 3) \right\} dx \text{ on } A$$

$$f(x) = 2x^3 + x^2 + C$$
 (C는 적분상수)

이때.
$$f(2) = 2 \times 2^3 + 2^2 + C = 20 + C = 10$$
에서

$$C=-10$$
이므로 $f(x)=2x^3+x^2-10$

$$f(1) = 2 \times 1^3 + 1^2 - 10 = -7$$