FPGA - LCD

Lecturer: Wei-Hsin Huang

Advisor: Terng-Yin, Hsu

Department of Computer Science National Chiao Tung University

The Spartan-3E FPGA Starter Kit board prominently features a 2-line by 16-character liquid crystal display (LCD)

Although the LCD supports an 8-bit data interface, the Starter Kit board uses a 4-bit data to display

Character LCD Interface Signals

Signal Name	FPGA Pin		Function
SF_D<11>	M15	Data bit DB7	Shared with StrataFlash pins
SF_D<10>	P17	Data bit DB6	SF_D<11:8>
SF_D<9>	R16	Data bit DB5	
SF_D<8>	R15	Data bit DB4	
LCD_E	M18	Read/Write Enable I	Pulse
		0: Disabled 1: Read/Write opera	tion enabled
LCD_RS	L18	Register Select	
		0: Instruction registe Flash during read op 1: Data for read or w	
LCD_RW	L17	Read/Write Control	
		0: WRITE, LCD accept: 1: READ, LCD prese	

UCF Location Constraints

```
NET "LCD E" LOC = "M18"
                            IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "LCD RS" LOC = "L18"
                            IOSTANDARD = LVCMOS33
                                                   DRIVE = 4
                                                               SLEW = SLOW :
NET "LCD RW" LOC = "L17"
                           IOSTANDARD = LVCMOS33
                                                   DRIVE = 4
                                                               SLEW = SLOW ;
# The LCD four-bit data interface is shared with the StrataFlash.
NET "SF D<8>" LOC = "R15"
                            IOSTANDARD = LVCMOS33
                                                    DRIVE = 4 | SLEW = SLOW ;
NET "SF D<9>" LOC = "R16" | IOSTANDARD = LVCMOS33
                                                   DRIVE = 4 | SLEW = SLOW ;
NET "SF D<10>" LOC = "P17" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF D<11>" LOC = "M15" | IOSTANDARD = LVCMOS33
                                                    DRIVE = 4 | SLEW = SLOW ;
```


Command Set

Table 5-3: LCD Character Display Command Set

Function Clear Display Return Cursor Home Entry Mode Set Display On/Off Cursor and Display Shift	LCD_RS	RW	ı	Upper	Nibble)	Lower Nibble				
Function		ГСР	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Clear Display	0	0	0	0	0	0	0	0	0	1	
Return Cursor Home	0	0	0	0	0	0	0	0	1	-	
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	
Display On/Off	0	0	0	0	0	0	1	D	С	В	
Cursor and Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	

Table 5-3: LCD Character Display Command Set (Continued)

		RW	l	Upper	Nibble	•	Lower Nibble				
Function	CCD	CCD	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Function Set	0	0	0	0	1	0	1	0	-	-	
Set CG RAM Address	0	0	0	1	A5	A4	A3	A2	A1	A0	
Set DD RAM Address	0	0	1	A6	A5	A4	A3	A2	A1	A0	
Read Busy Flag and Address	0	1	BF	A6	A5	A4	A3	A2	A1	A0	
Write Data to CG RAM or DD RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	
Read Data from CG RAM or DD RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	

Four-Bit Data Interface

Lower 4 bits

After initializing the display and establishing communication, all commands and data transfers to the character display are via 8 bits, transferred using two sequential 4-bit operations. Each 8-bit transfer must be decomposed into two 4-bit transfers, spaced apart by at least 1 µs. The upper nibble is transferred first, followed by the lower nibble.

Upper

1 µs

LCD_RS = SF_D[11:8] = LCD_RW = LCD_E

Display flow

- 1. Initializing the Display: (before writing)
- a) Power-On Initialization
- b) Display Configuration
- 2. Writing Data to the Display
- 3. Disabling the Unused LCD

Initializing the Display

Power-On Initialization

The initialization sequence first establishes that the FPGA application wishes to use the four-bit data interface to the LCD as follows:

- Wait 15 ms or longer, although the display is generally ready when the FPGA finishes configuration. The 15 ms interval is 750,000 clock cycles at 50 MHz.
- Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.
- Wait 4.1 ms or longer, which is 205,000 clock cycles at 50 MHz.
- Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.
- Wait 100 µs or longer, which is 5,000 clock cycles at 50 MHz.
- Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.
- Wait 40 µs or longer, which is 2,000 clock cycles at 50 MHz.
- Write SF_D<11:8> = 0x2, pulse LCD_E High for 12 clock cycles.
- Wait 40 µs or longer, which is 2,000 clock cycles at 50 MHz.

Initializing the Display

Display Configuration

After the power-on initialization is completed, the four-bit interface is now established. The next part of the sequence configures the display:

- Issue a Function Set command, 0x28, to configure the display for operation on the Spartan-3E Starter Kit board.
- Issue an Entry Mode Set command, 0x06, to set the display to automatically increment the address pointer.
- Issue a Display On/Off command, 0x0C, to turn the display on and disables the cursor and blinking.
- Finally, issue a Clear Display command. Allow at least 1.64 ms (82,000 clock cycles) after issuing this command.
- Function Set : Execution Time = 40 μs
 Display On/Off : Execution Time = 40 μs
- Entry Mode Set :Execution Time = 40 μs Clear Display:Execution Time = 1.64ms

Writing Data to Display

Writing Data to the Display

To write data to the display, specify the start address, followed by one or more data values.

Before writing any data, issue a Set DD RAM Address command to specify the initial 7-bit address in the DD RAM. See Figure 5-3 for DD RAM locations.

							aracto	. 5.5	nay m	uu. 00							Ac	ddress	es
1	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10		27
2	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50		67
'	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		40

Character Display Addresses

Figure 5-3: DD RAM Hexadecimal Addresses (No Display Shifting)

- 00 : after initial
- Write Data to DD RAM : Execution Time = 40 μs

Undisplayed

For example, a hexadecimal character code of 0x53 stored in a DD RAM location displays the character 'S'. The upper nibble of 0x53 equates to DB[7:4]="0101" binary and the lower nibble equates to DB[3:0] = "0011" binary.

For example:

You'll print out "0"

Continuing to write characters, however, eventually falls off the end of the first display line. The additional characters do not automatically appear on the second line because the DD RAM map is not consecutive from the first line to the second.

- ➤ Then, you need to change line (Set DD RAM Address)
- > Set DD RAM Address: Execution Time = 40 us

	RS	RW		Upper	Nibble	•	Lower Nibble						
Function		_CD_	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
Function Set	0	0	0	0	1	0	1	0	-	-			
Set CG RAM Address		0	0	1	A5	A4	A3	A2	A1	A0			
Set DD RAM Address	0	0	1	A6	A5	A4	A3	A2	A1	A0			

Undisplayed **Character Display Addresses Addresses** 0C 0F 0A 0B 0D 0E 4B 4C 4D 4E 4F 4A

Figure 5-3: DD RAM Hexadecimal Addresses (No Display Shifting)

7 bits to present the display address: (A6, A5, A4, A3, A2, A1, A0) $1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \Rightarrow 40$

For example:

You'll change the first character of second line into "40"

$$((A6A5A4) = 4, (A3A2A1A0) = 0)$$

1 0 0 0 0 0

Disabling the Unused LCD

If the FPGA application does not use the character LCD screen, drive the LCD_E pin Low to disable it. Also drive the LCD_RW pin Low to prevent the LCD screen from presenting data.

 \triangleright Read Busy Flag and Address : Execution Time = 1 μ s

	RS	RW	l	Upper	Nibble	•	Lower Nibble				
Function	ГС	_CCD_	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Function Set	0	0	0	0	1	0	1	0	-	-	
Set CG RAM Address	0	0	0	1	A5	A4	A3	A2	A1	A0	
Set DD RAM Address	0	0	1	A6	A5	A4	A3	A2	A1	A0	
Read Busy Flag and Address	0	1	BF	A6	A5	A4	A3	A2	A1	A0	

Source:

http://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf

END

THANKS

