Workshop: R for datascience

Laurent Rouvière

2019, september

Overview

 Prerequisites: Basics on R, probability, statistics and computer programming

Overview

- Prerequisites: Basics on R, probability, statistics and computer programming
- Objectives: be able to control classical tools for datascience
 - import and concatenate datasets, manipulate individuals and variables
 - visualize data
 - implement some of the most important statistical algorithms on real data (IML lecture)

Overview

- Prerequisites: Basics on R, probability, statistics and computer programming
- Objectives: be able to control classical tools for datascience
 - import and concatenate datasets, manipulate individuals and variables
 - visualize data
 - implement some of the most important statistical algorithms on real data (IML lecture)
- Teacher: Laurent Rouvière, laurent.rouviere@univ-rennes2.fr
 - Research interests: nonparametric statistics, statistical learning
 - Teaching: statistics and probability (University and engineer school)
 - Consulting: energy (ERDF), banks, marketing

Resources

- Slides and sheets (1 sheet=1 or 2 concepts+exercises) available on https://Irouviere.github.io/R-for-datascience-lecture/
- The web
- Book: R for statistics, Chapman & Hall

Outline

- 1. Introduction
- 2. Some examples
- 3. Outline
- 4. Rstudio, Rmarkdown and R-packages
- 5. R objects (Review)
- 6. Reading data from files

- 7. Data manipulation with Dplyr
- 8. Visualize data
- 9. Visualization with ggplot2
- 10. Mapping with leaflet
- 11. Regression models with R
- 12. Conclusion

Introduction

Why R?

- More and more data available in many fields (energy, health, sport, economy....)
- Data science collects all the tools which allow to extract informations from data. It includes:

Why R?

- More and more data available in many fields (energy, health, sport, economy....)
- Data science collects all the tools which allow to extract informations from data. It includes:
 - to import (merge) datasets
 - to manipulate data (Data Mining)
 - to visualize data (Data Mining+Visualization)
 - to choose and fit models (Data Mining+statistical learning)
 - to visualize models (models are more and more complex...)
 - to return and visualize results (web applications)

Why R?

- More and more data available in many fields (energy, health, sport, economy....)
- Data science collects all the tools which allow to extract informations from data. It includes:
 - to import (merge) datasets
 - to manipulate data (Data Mining)
 - to visualize data (Data Mining+Visualization)
 - to choose and fit models (Data Mining+statistical learning)
 - to visualize models (models are more and more complex...)
 - to return and visualize results (web applications)

Important remark

- All these topics can be addressed with R.
- Today, R (data scientits) and Python (computer scientists) are the most important softwares to make data science.

• **R** is a free software for statistical computing and graphics.

- **R** is a free software for statistical computing and graphics.
- It is freely distributed by CRAN (Comprehensive R Archive Network) at the following address: https://www.r-project.org.

- R is a free software for statistical computing and graphics.
- It is freely distributed by CRAN (Comprehensive R Archive Network) at the following address: https://www.r-project.org.
- Each statistician contributes (everybody can create functions and distribute these functions for the community).

- R is a free software for statistical computing and graphics.
- It is freely distributed by CRAN (Comprehensive R Archive Network) at the following address: https://www.r-project.org.
- Each statistician contributes (everybody can create functions and distribute these functions for the community).

Consequence

- The software is always up to date.
- Clearly one of the reasons of the R success.

Some examples

Example: Fisher's iris

```
> data(iris)
> summary(iris)
##
   Sepal.Length Sepal.Width Petal.Length Petal.Width
         :4.300 Min. :2.000
                               Min. :1.000 Min. :0.100
##
   Min.
## 1st Qu.:5.100
                1st Qu.:2.800
                               1st Qu.:1.600 1st Qu.:0.300
##
   Median :5.800
                Median :3.000
                               Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057
                               Mean :3.758 Mean :1.199
##
   3rd Qu.:6.400
                3rd Qu.:3.300
                               3rd Qu.:5.100
                                             3rd Qu.:1.800
##
   Max. : 7.900
                Max. :4.400
                               Max. :6.900 Max. :2.500
##
        Species
##
   setosa :50
##
   versicolor:50
##
   virginica:50
##
##
##
```

Objectives

Goal

Explain species by the other variables.

Objectives

Goal

Explain species by the other variables.

- Species is a categorical variable.
- We are faced with a supervised classification problem.

Manipulate the data

```
> apply(iris[,1:4],2,mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333 3.057333 3.758000 1.199333
> apply(iris[,1:4],2,var)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 0.6856935 0.1899794 3.1162779 0.5810063
```

Manipulate the data

```
> apply(iris[,1:4],2,mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333 3.057333 3.758000 1.199333
> apply(iris[,1:4],2,var)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 0.6856935 0.1899794 3.1162779 0.5810063
```

Remark

Non-informative for the problem (highlight differences between species).

Data manipulation with dplyr

 dplyr is powerful R-package to transform and summarize tabular data with rows and columns.

```
> library(dplyr)
> iris %>% group_by(Species) %>% summarise_all(mean)
## # A tibble: 3 x 5
## Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## <fct>
                 <dbl>
                          <db1>
                                     <dbl>
                                              \langle dbl \rangle
## 1 setosa
                  5.01 3.43 1.46 0.246
## 2 versicolor
                  5.94 2.77 4.26 1.33
                  6.59
                           2.97
                                     5.55 2.03
## 3 virginica
```

• More informative: we obtain means for each species.

Visualization

> boxplot(Sepal.Length~Species,data=iris)

Visualization with ggplot2

- > library(ggplot2)
- > ggplot(iris)+aes(x=Species,y=Sepal.Length)+geom_boxplot()

Modelling

```
> library(rpart)
> tree <- rpart(Species~.,data=iris)</pre>
> library(rpart.plot)
> rpart.plot(tree)
                                                                           setosa
                                                                           versicolor
                                          setosa
                                                                           virginica
                                        .33 .33 .33
                                          100%
                               yes -Petal.Length < 2.5 - no
                                                            versicolor
                                                            .00 .50 .50
                                                              67%
                                                         Petal.Width < 1.8
                      setosa
                                               versicolor
                                                                          virginica
                    1.00 .00 .00
                                              .00 .91 .09
                                                                         .00 .02 .98
                       33%
                                                 36%
                                                                           31%
```

Maps with ggmap

• Goal: draw a map of the temperatures for france.

Load the data + background map

Data are downloaded from meteofrance (temperatures for about 60 stations).

A first map

Model

 model of nearest neighbors to estimate temperatures for all longitudes and latitudes.

```
> library(FNN)
> mod <- knn.reg(train=D[,.(Latitude,Longitude)],y=D[,t],
+ test=Test1[,.(Latitude,Longitude)],k=1)$pred</pre>
```

Visualisation with ggmap.

```
> library(ggmap)
> ggmap(fond)+geom_polygon(data=Test5,
+ aes(y=Latitude,x=Longitude,
+ fill=temp1,color=temp1,group=dept),size=1)+
+ scale_fill_continuous(low="yellow",high="red")+
+ scale_color_continuous(low="yellow",high="red")
```

The temperature map

Interactive web apps with shiny

- Shiny is a R package that makes it easy to build interactive web apps straight from R.
- Example: basic graphics for a dataset.
- > library(shiny)
- > runApp('desc_app.R')

Outline

In this workshop

- 15 hours for 5 (or 6) topics
- 1 topic = slides + sheet (notebook) to complete (add comments and do exercises)

R Notebook

- document which combines R code and comments.
- code can be executed independently and interactively, with output visible immediately beneath the input.
- very nice to make high quality reports.

Schedule

 Introduction to R lecture: basics of R (objects, apply, matrices, date, control flow statements)

Schedule

 Introduction to R lecture: basics of R (objects, apply, matrices, date, control flow statements)

R for datascience

- Tuto 1: Rstudio (notebook and presentations) (1 hour)
- Tuto 2: R objects (review, 1 or 2 hours)
- Tuto 3: data manipulation with dplyr (4 hours)
- Tuto 4: data visualization with ggplot2 (4 hours)
- Tuto 5: mapping with leaflet (2 hours)
- Tuto 6: modeling with R (transition with the ISL lecture, 2 hours).

Assessment

- When ???
- combined with the machine learning lecture
 - Multiple choice test (50%)
 - Data science project (50%)

Working

- Require personal efforts.
- To Practice, to make mistakes and to correct these mistakes: only way to learn a sofware.

Working

- Require personal efforts.
- To Practice, to make mistakes and to correct these mistakes: only way to learn a sofware.
- You need to work alone between the sessions.
- Everyone can develop at its own pace (the goal is to progress, not to become a specialist of R in 15 hours), and ask questions during the sessions.
- I'm here to (try) to answer.

Rstudio, Rmarkdown and

R-packages

Rstudio

- RStudio is an integrated development environment for R.
- It makes R easier to practice.
- It includes a console, syntax-highlighting editor that supports direct code execution, tools for plotting, history, debugging and workspace management.
- It is also freely distributed at the address https://www.rstudio.com.

Rstudio

- RStudio is an integrated development environment for R.
- It makes R easier to practice.
- It includes a console, syntax-highlighting editor that supports direct code execution, tools for plotting, history, debugging and workspace management.
- It is also freely distributed at the address https://www.rstudio.com.

The screen is divided into 4 windows:

- Console: where you enter command and see output
- Workspace and History: show the active object
- Files Plots...: show all files and folders in the workspace, see output graph, install packages...
- R script: where you keep a record of your work. Don't forget to regularly save this files!

Rmarkdown

What is Rmarkdown

- An Rmarkdown (.Rmd) file is a record of your work.
- It contains code, output and comments of your work.
- It produces high quality report in many format (text documents, slides, etc...).
- These slides have been made with Rmarkdwon.

Rmarkdown

What is Rmarkdown

- An Rmarkdown (.Rmd) file is a record of your work.
- It contains code, output and comments of your work.
- It produces high quality report in many format (text documents, slides, etc...).
- These slides have been made with Rmarkdwon.
- Reproducible Research: at the click of a button, you can rerun the code in an R Markdown file to reproduce your work and export the results as a finished report.
- Dynamic Documents: you can choose to export the finished report in a wide range of outputs, including html, pdf, MS Word, or RTF documents; html or pdf based slides, Notebooks, and more.

25

- Set of R programs which supplements and enhances the functions of R
- Generally reserved for specific methods or fields of applications
- More than 15 000 packages
- Clearly one of the reasons of the success of R.

- Set of R programs which supplements and enhances the functions of R
- Generally reserved for specific methods or fields of applications
- More than 15 000 packages
- Clearly one of the reasons of the success of R.

2 steps

- Installation: install.packages(package.name) (just one time)
- Loading: library(package.name) (each time)

- Set of R programs which supplements and enhances the functions of R
- Generally reserved for specific methods or fields of applications
- More than 15 000 packages
- Clearly one of the reasons of the success of R.

2 steps

- Installation: install.packages(package.name) (just one time)
- Loading: library(package.name) (each time)
- You can also use the package icon in Rstudio.

- Set of R programs which supplements and enhances the functions of R
- Generally reserved for specific methods or fields of applications
- More than 15 000 packages
- Clearly one of the reasons of the success of R.

2 steps

- Installation: install.packages(package.name) (just one time)
- Loading: library(package.name) (each time)
- You can also use the package icon in Rstudio.

 \implies work on Tuto 1.

Tuto 1

- Download the .Rmd file Tuto1.Rmd in https://lrouviere.github.io/stat_grand_dim/
- Open the file in Rstudio.
- Click on File + Reopen with encoding and select utf8
- Add in the begining of the file

```
title: 'Tuto 1: RStudio environment'
output: html_notebook
---
```

Tuto 1

- Download the .Rmd file Tuto1.Rmd in https://lrouviere.github.io/stat_grand_dim/
- Open the file in Rstudio.
- Click on File + Reopen with encoding and select utf8
- Add in the begining of the file

```
title: 'Tuto 1: RStudio environment'
output: html_notebook
---
```

- Save the file in the repository of your choice and click on Preview.
- Read the tutorial and do exercices.

R objects (Review)

Numeric and characters

Numeric (easy)

```
> x <- pi
> x
## [1] 3.141593
> is.numeric(x)
## [1] TRUE
```

Characters

```
> b <- "X"
> paste(b,1:5,sep="")
## [1] "X1" "X2" "X3" "X4" "X5"
```

Vectors

Creation: c, seq, rep

```
> x1 <- c(1,3,4)
> x2 <- 1:5
> x3 <- seq(0,10,by=2)
> x4 <- rep(x1,3)
> x5 <- rep(x1,3,each=3)</pre>
```

Extraction:

```
> x3[c(1,3,4)] # same as x3[x1] ## [1] 0 4 6
```

Logical

```
> 1<2
## [1] TRUE
> 1==2
## [1] FALSE
> 1!=2
## [1] TRUE
> x <- 1:3
> test <- c(TRUE, FALSE, TRUE)
> x [test]
## [1] 1 3
```

Problem

Select size more than 174.

Problem

Select size more than 174.

```
> size>174
## [1] TRUE TRUE TRUE TRUE FALSE
> size[size>174]
## [1] 178.8362 185.0309 180.4393 185.4450
```

Factors

• For categorical variables in datasets:

```
> x1 <- factor(c("a","b","b","a","a"))
> x1
## [1] a b b a a
## Levels: a b
> levels(x1)
## [1] "a" "b"
```

Data not properly collected

Assume that data are collected: 0=man, 1=woman

```
> X <- c(1,1,0,0,1)
> summary(X)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 0.0 1.0 0.6 1.0 1.0
```

Data not properly collected

Assume that data are collected: 0=man, 1=woman

```
> X <- c(1,1,0,0,1)

> summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.0 1.0 0.6 1.0 1.0
```

■ Problem: \mathbf{R} reads X as a continuous vector \Longrightarrow it could generate problem for satistical study.

Data not properly collected

Assume that data are collected: 0=man, 1=woman

```
> X <- c(1,1,0,0,1)

> summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.0 1.0 0.6 1.0 1.0
```

- Problem: R reads X as a continuous vector ⇒ it could generate problem for satistical study.
- Solution:

```
> X <- as.factor(X)
> levels(X) <- c("man","woman")
> X
## [1] woman woman man man woman
## Levels: man woman
> summary(X)
## man woman
## 2 3
```

Matrix

Creation

```
> m <- matrix(1:4,nrow=2,byrow=TRUE)
> m
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

Extraction

```
> m[1,2]
> m[1,] #First row
> m[,2] #Second column
```

List

Allow to manage different objects

```
> mylist <- list(vector=1:5,mat=matrix(1:8,nrow=2))
> mylist
## $vector
## [1] 1 2 3 4 5
##
## $mat
##     [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
```

Extraction:

```
> mylist[[1]]
> mylist$vector
> mylist[["vector"]]
```

Dataframe

Objects for representing data in R

```
> summary(data)

## name sex size

## Charlotte:1 Min. :0.0 Min. :165.0

## Mary :1 1st Qu.:0.0 1st Qu.:168.0

## Paul :1 Median :0.0 Median :170.0

## Peter :1 Mean :0.4 Mean :171.6

## Steven :1 3rd Qu.:1.0 3rd Qu.:175.0

## Max. :1.0 Max. :180.0
```

Problem

Here **sex** is considered as a numeric variable. It is a categorical variable.

```
> data$sex <- as.factor(data$sex)</pre>
> levels(data$sex) <- c("man", "woman")</pre>
> summary(data)
             sex size
##
         name
## Charlotte:1 man :3 Min. :165.0
## Mary :1 woman:2 1st Qu.:168.0
## Paul :1
                        Median :170.0
## Peter :1
                       Mean :171.6
## Steven :1
                        3rd Qu.:175.0
##
                        Max. :180.0
```

Problem

Here **name** is considered as a variable. It is the individual names (the ID of individuals)!

```
> row.names(data) <- data$name

> data <- data[,-1] #delete column name

> data

## sex size

## Paul man 180

## Mary woman 165

## Steven man 168

## Charlotte woman 170

## Peter man 175
```

Conclusion

We always have to check that data are correctly interpreted by **R** (with summary for instance).

Tibbles

- A tibble is a modern reimagining of the data.frame, keeping what time has proven to be effective, and throwing out what is not.
- We need to load the package tidyverse to use tibble.

Example: data frame

```
> name <- c("Paul", "Mary", "Steven", "Charlotte", "Peter")</pre>
> sex <- c(0,1,0,1,0)
> size <- c(180,165,168,170,175)
> age <- c("old","young","young","old","old")</pre>
> data <- data.frame(name,sex,size,age)</pre>
> summary(data)
                    sex size
##
         name
                                             age
## Charlotte:1 Min. :0.0 Min. :165.0 old :3
## Mary :1 1st Qu.:0.0 1st Qu.:168.0 young:2
## Paul :1 Median :0.0 Median :170.0
                            Mean :171.6
## Peter :1 Mean :0.4
## Steven :1 3rd Qu.:1.0 3rd Qu.:175.0
##
                Max. :1.0 Max. :180.0
```

Example: tibble

```
> library(tidyverse)
> data1 <- tibble(name,sex,size,age)</pre>
> summary(data1)
##
                                   size
      n.a.me
                        sex
                                                age
## Length:5 Min. :0.0 Min. :165.0 Length:5
## Class: character 1st Qu.:0.0 1st Qu.:168.0 Class: character
## Mode :character Median :0.0 Median :170.0 Mode :character
##
                   Mean :0.4 Mean :171.6
##
                   3rd Qu.:1.0 3rd Qu.:175.0
##
                   Max. :1.0 Max. :180.0
```

dataframe vs tibbles

Main difference: no factor in tibbles.

 \implies work on tuto 2.

Reading data from files

- Data is generally contained within a file in which individuals are presented in rows and variables in columns.
- Functions read.table and read.csv allow to import data from .txt or .csv files.
- .xls files need to be converted into .csv files.

```
> data <- read.table("file",...)
> data <- read.csv("file",...)</pre>
```

- Data is generally contained within a file in which individuals are presented in rows and variables in columns.
- Functions read.table and read.csv allow to import data from .txt or .csv files.
- .xls files need to be converted into .csv files.

```
> data <- read.table("file",...)
> data <- read.csv("file",...)</pre>
```

 corresponds to many options. Options are very important since the date file always contains specificities (missing data, names of the variables...)

Indicating the path

- The data file needs to be located in the working directory. Otherwise, we have to indicate the path in read.table.
- Example: Read the file data.csv located in /lectureR/Part1 :
 - Change the working directory

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

Indicating the path

- The data file needs to be located in the working directory. Otherwise, we have to indicate the path in read.table.
- Example: Read the file data.csv located in /lectureR/Part1 :
 - Change the working directory

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

Specify the directory in read.csv

```
> df <- read.csv("~/lecture_R/Part1/data.csv",...)</pre>
```

Indicating the path

- The data file needs to be located in the working directory. Otherwise, we have to indicate the path in read.table.
- Example: Read the file data.csv located in /lectureR/Part1 :
 - Change the working directory

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

- Specify the directory in read.csv
- > df <- read.csv("~/lecture_R/Part1/data.csv",...)</pre>
 - Use the **file.path** function

```
> path <- file.path("~/lecture_R/Part1/", "data.csv")
> df <- read.csv(path,...)</pre>
```

Some important options

The are many important options in read.table and read.csv:

- **sep**: the field separation character (space, comma...)
- dec: the character used for decimal points (comma, points...)
- header: a logical value indicating whether the file contains the names of the variables as its first line
- row.names: a vector of row names (to identify indivuals if needed)
- na.strings: a character vector of strings which are to be interpreted as NA values.
- . . .

Example

• File data_imp.txt

name;size;age

John;174;32

Peter;?;28

Mary;165.5;NA

Example

• File data_imp.txt

name;size;age

John;174;32

Peter;?;28

Mary;165.5;NA

Characteristics

- 3 variables
- First line=name of the variables
- Missing values: NA, ?

First try

```
> path <- file.path("~COURS/EDHEC/R/SLIDES/", "data_imp.txt")
> df <- read.table(path)
> summary(df)
## V1
## John;174;32 :1
## Mary;165.5;NA:1
## name;size;age:1
## Peter;?;28 :1
```

First try

Problem

R considers four line with one column!

Solution

```
> df <- read.table(path,header=TRUE,sep=";",dec=".",</pre>
                na.strings = c("NA","?"),row.names = 1)
> df
## size age
## John 174.0 32
## Peter NA 28
## Mary 165.5 NA
> summary(df)
## size age
## Min. :165.5 Min. :28
## 1st Qu.:167.6 1st Qu.:29
## Median :169.8 Median :30
## Mean :169.8 Mean :30
## 3rd Qu.:171.9 3rd Qu.:31
   Max. :174.0 Max. :32
##
## NA's :1 NA's :1
```

readr package

- This package makes data importation easier.
- It includes read_table and read_csv functions instead of read.table and read.csv (underscores instead of points).
- In Rstudio, we can read data with readr by clicking on the Import
 Dataset icon (it does not work when things are too complicated).

Other tools to import data

- readxl: for xls files
- sas7bdat: for sas dataset
- foreign: for SPSS or STATA datasets
- jsonlite: for json files
- rvest: webscrapping (to import data from website)

Combine tables

- Information comes (always) from several data tables.
- We need to correctly merge these tables before a statistical analysis.
- Standard R functions: rbind, cbind, cbind.data.frame, merge. . .
- Tidyverse functions: bind_rows, bind_cols, left_join, inner_join (from dplyr or tidyverse package).

An example with 2 tables

```
> df1
## # A tibble: 4 x 2
## name nation
## <chr> <chr>
## 1 Peter USA
## 2 Mary GB
## 3 John Aus
## 4 Linda USA
> df2
## # A tibble: 3 x 2
## name age
## <chr> <dbl>
## 1 John 35
## 2 Mary 41
## 3 Fred 28
```

An example with 2 tables

```
> df1
## # A tibble: 4 x 2
## name nation
## <chr> <chr>
## 1 Peter USA
## 2 Mary GB
## 3 John Aus
## 4 Linda USA
> df2
## # A tibble: 3 x 2
## name age
## <chr> <dbl>
## 1 John 35
## 2 Mary 41
## 3 Fred 28
```

Goal

One dataset with three columns: name, nation and age.

bind_rows

```
> bind_rows(df1,df2)
## # A tibble: 7 x 3
## name nation age
## <chr> <chr> <dbl>
## 1 Peter USA NA
## 2 Mary GB NA
## 3 John Aus NA
## 4 Linda USA NA
## 5 John <NA> 35
## 6 Mary <NA>
                 41
## 7 Fred <NA>
                 28
```

bind_rows

```
> bind_rows(df1,df2)
## # A tibble: 7 x 3
## name nation age
## <chr> <chr> <dbl>
## 1 Peter USA NA
## 2 Mary GB NA
## 3 John Aus NA
## 4 Linda USA NA
## 5 John <NA> 35
## 6 Mary <NA>
             41
## 7 Fred <NA>
                 28
```

⇒ not a safe choice here (two lines for some individuals).

full_join

full_join

 \Longrightarrow we keep all the individuals (NA are added for missing data)

left_join

⇒ we keep only individuals of the first (left) dataset.

inner_join

 \implies we keep only individuals for which both nation and age are observed.

inner_join

⇒ we keep only individuals for which both nation and age are observed.

Conclusion

- Many options to merge datasets.
- Find the good function according to our problem.
- \implies work on tuto 3 Part 1

Data manipulation with Dplyr

- dplyr is a powerful R-package to transform and summarize tabular data with rows and columns.
- It offers a clear syntax (based on a grammar) to manipulate data.

- dplyr is a powerful R-package to transform and summarize tabular data with rows and columns.
- It offers a clear syntax (based on a grammar) to manipulate data.
- For instance, to compute the mean of Sepal.Length for setosa, we usually use

- dplyr is a powerful R-package to transform and summarize tabular data with rows and columns.
- It offers a clear syntax (based on a grammar) to manipulate data.
- For instance, to compute the mean of Sepal.Length for setosa, we usually use

```
> mean(iris[iris$Species=="setosa",]$Sepal.Length)
## [1] 5.006
```

- dplyr is a powerful R-package to transform and summarize tabular data with rows and columns.
- It offers a clear syntax (based on a grammar) to manipulate data.
- For instance, to compute the mean of Sepal.Length for setosa, we usually use

```
> mean(iris[iris$Species=="setosa",]$Sepal.Length)
## [1] 5.006
```

We can do the same with dplyr

```
> library(dplyr)
> iris %>% filter(Species=="setosa") %>%
+ summarise(mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

Grammar

dplyr contains a grammar with the following verbs:

- select() select columns (variables)
- filter() filter rows (individuals)
- arrange() re-order or arrange rows
- mutate() create new columns (new variables)
- summarise() summarise values (compute statistics summaries)
- group_by() allows for group operations in the "split-apply-combine" concept

Dont't forget to look at the cheat sheet

Select

Goal

To select variables.

```
> df <- select(iris,Sepal.Length,Petal.Length)</pre>
> head(df)
    Sepal.Length Petal.Length
##
           5.1
## 1
                      1.4
## 2
           4.9
                    1.4
                1.3
## 3
           4.7
         4.6
## 4
                    1.5
      5.0 1.4
## 5
## 6
           5.4
                      1.7
```

Filter

Goal

To filter individuals.

```
> df <- filter(iris,Species=="versicolor")</pre>
> head(df)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
             7.0
## 1
                        3.2
                                     4.7
                                                 1.4 versicolor
## 2
             6.4
                        3.2
                                     4.5
                                               1.5 versicolor
             6.9
                        3.1
                                     4.9
                                               1.5 versicolor
## 3
## 4
             5.5
                        2.3
                                     4.0
                                                1.3 versicolor
## 5
            6.5
                        2.8
                                     4.6
                                               1.5 versicolor
             5.7
                        2.8
                                             1.3 versicolor
## 6
                                     4.5
```

Arrange

Goal

To order individuals according to a variable.

```
> df <- arrange(iris,Sepal.Length)</pre>
> head(df)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
           4.3
                    3.0
                               1.1
                                         0.1 setosa
## 2
           4.4 2.9
                             1.4
                                         0.2 setosa
           4.4
                    3.0
                               1.3
                                         0.2 setosa
## 3
           4.4
                  3.2
                            1.3
                                         0.2 setosa
## 4
## 5
           4.5
                 2.3
                            1.3
                                         0.3 setosa
           4.6
## 6
                    3.1
                               1.5
                                         0.2 setosa
```

Mutate

Goal

To define new variables in the dataset.

```
> df <- mutate(iris,diff_petal=Petal.Length-Petal.Width)</pre>
> head(select(df,Petal.Length,Petal.Width,diff_petal))
    Petal.Length Petal.Width diff_petal
##
                     0.2 1.2
## 1
           1.4
           1.4
                     0.2 1.2
## 2
           1.3
                    0.2 1.1
## 3
## 4
     1.5
                    0.2 1.3
## 5
        1.4
                    0.2 1.2
## 6
           1.7
                     0.4
                             1.3
```

Summarise

Goal

To compute statistical summaries.

```
> summarise(iris,mean=mean(Petal.Length),var=var(Petal.Length))
## mean var
## 1 3.758 3.116278
```

group_by

Goal

To apply operations for group of data.

The pipe operator

- The pipe operator %>% allows to organize commands step by step.
- For instance, to calculate the mean of variable Sepal.Length for setosa, we can do

```
> mean(iris[iris$Species=="setosa","Sepal.Length"])
## [1] 5.006

or (more readable)
> df1 <- iris[iris$Species=="setosa",]
> df2 <- df1$Sepal.Length
> mean(df2)
## [1] 5.006
```

or (more readable with **dplyr**)

```
> df1 <- filter(iris,Species=="setosa")
> df2 <- select(df1,Sepal.Length)
> summarize(df2,mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

- With the pipe operator, we expand the operations:
- 1. the data
- > iris
 - 2. Filter individuals according to setosa specie
- > iris %>% filter(Species=="setosa")

- 3. Select the variable of interest
- > iris %>% filter(Species=="setosa") %>% select(Sepal.Length)
 - 4. Compute the mean

```
> iris %>% filter(Species=="setosa") %>%
+ select(Sepal.Length)%>% summarize_all(mean)
## Sepal.Length
## 1 5.006
```

More generally

■ The pipe opartor %>% merge the left object with the first component of the right object.

```
> X <- as.numeric(c(1:10,"NA"))
> mean(X,na.rm = TRUE)
## [1] 5.5

or equivalently
```

```
> X %>% mean(na.rm=TRUE)
## [1] 5.5
```

Reshaping data

- Some statistical analysis requires a particular shape for the data
- A toy example

```
> df <- iris %>% group_by(Species) %>%
   summarize_all(funs(mean))
> head(df)
## # A tibble: 3 x 5
\#\# Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## <fct>
                    <dbl>
                               \langle db \, l \rangle
                                           <dbl>
                                                      \langle dbl \rangle
## 1 setosa
                     5.01
                                3.43
                                            1.46 0.246
                                2.77
                                           4.26
## 2 versicolor
                     5.94
                                                     1.33
                    6.59
                                2.97
                                            5.55
                                                     2.03
## 3 virginica
```

gather

Gather columns into rows with gather:

```
> df1 <- df %>% gather(key=variable, value=value, -Species)
> head(df1)
## # A tibble: 6 x 3
## Species variable value
## \langle fct \rangle \langle chr \rangle
## 1 setosa Sepal.Length 5.01
## 2 versicolor Sepal.Length 5.94
## 3 virginica Sepal.Length 6.59
## 4 setosa Sepal.Width 3.43
## 5 versicolor Sepal.Width 2.77
## 6 virginica Sepal. Width 2.97
```

Remark

Same information with a different shape.

Spread

Spread rows into columns with spread:

Separate

Separate one column into several

```
> df <- tibble(date=as.Date(c("01/03/2015","05/18/2017",</pre>
           "09/14/2018"), "%m/%d/%Y"), temp=c(18,21,15))
> df1 <- df %>% separate(date,into = c("year","month","day"))
> df1
## # A tibble: 3 x 4
## year month day temp
## <chr> <chr> <chr> <chr> <dbl>
## 1 2015 01 03 18
## 2 2017 05 18 21
## 3 2018 09 14
                        15
```

Unite

Unite several columns into one

Unite

Unite several columns into one

 \implies work on tuto 3, part 2.

Visualize data

- Graphs are often the starting point for statistical analysis.
- One of the main advantages of R is how easy it is for the user to create many different kinds of graphs.
- We begin by a (short) review on conventional graphs,
- followed by an examination of some more complex representations, especially with ggplot2 package.

The plot function

- It is a generic function to represent all kind of data.
- For a scatter plot, we have to specify a vector for the x-axis and a vector for the y axis.

```
> x <- seq(-2*pi,2*pi,by=0.1)
> plot(x,sin(x),type="l",xlab="x",ylab="sin(x)")
> abline(h=c(-1,1))
```


76

Graphs for datasets

- Many kind of representations are needed according to the variables we want to visualize.
- Histogram for continuous variables, barplot for categorical variables.
- scatterplot for 2 continous variables.
- boxplot to visualize distributions.

Graphs for datasets

- Many kind of representations are needed according to the variables we want to visualize.
- Histogram for continuous variables, barplot for categorical variables.
- scatterplot for 2 continous variables.
- boxplot to visualize distributions.

Fortunately

There is a R function for all the representations.

Scatter plot for dataset

> plot(Sepal.Length~Sepal.Width,data=iris)

- > #same as
- > plot(iris\$Sepal.Width,iris\$Sepal.Length)

Histogram for continous variable

> hist(iris\$Sepal.Length,col="red")

Histogram of iris\$Sepal.Length

iris\$Sepal.Length

Barplot for categorical variables

> barplot(table(iris\$Species)) 50 10 20 30 40 versicolor setosa virginica

Boxplot

> boxplot(Sepal.Length~Species,data=iris)

Visualization with ggplot2

- ggplot2 is a plotting system for R based on the grammar of graphics (as dplyr to manipulate data).
- Graphs ggplot are clearly nice looking (conventionnal R graphs are not always very nice).

For a given dataset, a graph is defined from many **layers**. We have to specify:

- the data
- the variables we want to plot
- the type of representation (scatterplot, boxplot...).

Ggplot graphs are defined from these layers. We indicate

- the data with **ggplot**
- the variables with aes (aesthetics)
- the type of representation with geom_

The grammar

Main elements of the grammar are:

- Data (ggplot): the dataset, it should be a dataframe or a tibble
- Aesthetics (aes): to describe the way that variables in the data are mapped. All the variables used in the graph should be specified in aes
- Geometrics (geom_...): to control the type of plot
- Statistics (stat_...): to describe transformation of the data
- Scales (scale_...): to control the mapping from data to aesthetic attributes (change colors, size...)

All these elements are combined with a +.

An example

> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()

Color and size

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+
+ geom_point(color="blue",size=2)
```


Color by (categorical) variable

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Species)+geom_point()
```


Color by (continous) variable

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()
```


Color by (continous) variable

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()+
+ scale_color_continuous(low="yellow",high="red")
```


Histogram

> ggplot(iris)+aes(x=Sepal.Length)+geom_histogram(fill="red")

Barplot

> ggplot(iris)+aes(x=Species)+geom_bar(fill="blue")

Facetting (more complex)

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()+
+ geom_smooth(method="lm")+facet_wrap(~Species)
```


Combining ggplot with dplyr

- One has to build a good dataframe (or tibble) to obtain an efficient graph.
- For instance

```
> head(df)
## # A tibble: 6 x 3
##
  size weight.20 weight.50
## <dbl>
        <dbl> <dbl>
## 1 153 61.2 81.4
## 2 169 67.5
                   81.4
## 3 168
            69.4
                   80.3
        66.1 81.9
## 4 169
## 5 176
        70.4
               79.2
## 6
     169
            67.6
                   88.9
```


dplyr step

Gather column weight.M and weight.W into one column weight:

```
> df1 <- df %>% gather(key=age, value=weight, -size)
> df1 %>% head()
## # A tibble: 6 x 3
## size age weight
## <dbl> <chr> <dbl>
## 1 153 weight.20 61.2
## 2 169 weight.20 67.5
## 3 168 weight.20 69.4
## 4 169 weight.20 66.1
## 5 176 weight.20 70.4
## 6 169 weight.20 67.6
> df1 <- df1 %>% mutate(age=recode(age,
    "weight.20"="20", "weight.50"="50"))
```

ggplot step

```
> ggplot(df1)+aes(x=size,y=weight,color=age)+
+ geom_point()+geom_smooth(method="lm")+theme_classic()
```


Complement: some demos

```
> demo(image)
> example(contour)
> demo(persp)
> library("lattice");demo(lattice)
> example(wireframe)
> library("rgl");demo(rgl)
> example(persp3d)
> demo(plotmath);demo(Hershey)
```

Complement: some demos

 \implies Work on tuto 4.

```
> demo(image)
> example(contour)
> demo(persp)
> library("lattice");demo(lattice)
> example(wireframe)
> library("rgl");demo(rgl)
> example(persp3d)
> demo(plotmath);demo(Hershey)
```

Mapping with leaflet

Introduction

- In many applications, it could be interesting to make mapping to visualize a dataset or the result of a model.
- A lot of R packages: ggmap, RgoogleMaps, maps. . .
- In this part: leaflet.

Background map

- Leaflet is one of the most popular open-source JavaScript libraries for interactive maps.
- Documentation: here
- > library(leaflet)
- > leaflet() %>% addTiles()

Many background style

> Paris <- c(2.35222,48.856614)
> leaflet() %>% addTiles() %>%
+ setView(lng = Paris[1], lat = Paris[2],zoom=12)

> leaflet() %>% addProviderTiles("Stamen.Toner") %>%
+ setView(lng = Paris[1], lat = Paris[2], zoom = 12)

Leaflet with dataset

Location of 1000 seismics event near Fiji

```
> data(quakes)
> head(quakes)
## lat long depth mag stations
## 1 -20.42 181.62 562 4.8 41
## 2 -20.62 181.03 650 4.2 15
## 3 -26.00 184.10 42 5.4 43
## 4 -17.97 181.66 626 4.1 19
## 5 -20.42 181.96 649 4.0 11
## 6 -19.68 184.31 195 4.0 12
```

Visualize seismics with magnitude more then 5.5

> quakes1 <- quakes %>% filter(mag>5.5)
> leaflet(data = quakes1) %>% addTiles() %>%
+ addMarkers(~long, ~lat, popup = ~as.character(mag))

Remark

When you click on a marker, you visualize the magnitude.

addCircleMarkers

```
> leaflet(data = quakes1) %>% addTiles() %>%
+ addCircleMarkers(~long, ~lat, popup=~as.character(mag),
+ radius=3,fillOpacity = 0.8,color="red")
```


Regression models with R

- Goal: present classical functions to make regression with *R*.
- Transition with the Machine Learning lecture.
- Focus on R tools, mathematical tools will be (or have been) presented in other lectures (statistical model, data mining, machine learning).

Data

Goal

Explain or predict output Y by inputs X_1, \ldots, X_p .

Example: ozone

Goal

Explain or predict the daily maximum one-hour-average ozone (maxO3 column) by the other variables.

Statistical model

• There exists an unknown function $m: \mathbb{R}^p \to \mathbb{R}$ such that

$$Y = m(X_1, \ldots, X_p) + \varepsilon.$$

• ε : error terms (as small as possible).

Statistical model

• There exists an unknown function $m: \mathbb{R}^p \to \mathbb{R}$ such that

$$Y = m(X_1, \ldots, X_p) + \varepsilon.$$

- ε : error terms (as small as possible).
- Statistician's job: find a good estimate \widehat{m} of m from the data $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$.

Statistical models

Allow to find such estimates.

An example: the linear model

Assumption: the unknwon function is linear

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon,$$

 $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ are the unknown parameters.

An example: the linear model

Assumption: the unknwon function is linear

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon,$$

 $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ are the unknown parameters.

Least square estimates:

$$\widehat{\beta} = (X^t X)^{-1} X^t Y.$$

Estimate of m:

$$\widehat{m}(x) = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots \widehat{\beta}_p x_p.$$

Models with R

- Models on R are always fitted in the same way:
- > method(formula,data=...,options)

where

- method refers to the name of the model
- formula specifies the input Y and the outputs X_j
- data is the name of the dataset
- options refers to many options depending on the method.

Methods

Remark

Each model corresponds to a R function.

R function	algorithm	Package	Problem
lm	linear model		Reg
glm	logistic model		Class
lda	linear discriminant analysis	MASS	Class
svm	Support Vector Machine	e1071	Class
knn.reg	nearest neighbor	FNN	Reg
knn	nearest neighbor	class	Class
rpart	tree	rpart	Reg and Class
glmnet	ridge and lasso	glmnet	Reg and Class

Remark

To specify input and outputs.

> lm(Y~X1+X3,data=df)

Remark

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

Remark

To specify input and outputs.

> lm(Y~X1+X3,data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

> lm(Y~X1+I(X3^2),data=df)

Remark

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon$$

Remark

- > lm(Y~X1+X3,data=df)
- $\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$
- > lm(Y~X1+I(X3^2),data=df)
- $\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon$
- > lm(Y~.,data=df)

Remark

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon$$

$$\implies Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

Example

Example

- Model: $maxO3 = \beta_0 + \beta_1 T 12 + \beta_2 Ne9 + \varepsilon$.
- Estimates: $\hat{\beta}_0 = 7.638, \hat{\beta}_1 = 4.457, \hat{\beta}_2 = -2.696.$

Example

- Model: $maxO3 = \beta_0 + \beta_1 T 12 + \beta_2 Ne9 + \varepsilon$.
- Estimates: $\hat{\beta}_0 = 7.638, \hat{\beta}_1 = 4.457, \hat{\beta}_2 = -2.696.$

Estimate of *m*

$$\widehat{m}(x) = 7.638 + 4.457 T12 - 2.696 Ne9.$$

Making predictions

• Once the model has been fitted, we can use it to make predictions.

Example

- Meteofrance predicts for tomorrow: T12=20 and Ne9=4.9.
- What does our model predict for the ozone concentration?

Making predictions

• Once the model has been fitted, we can use it to make predictions.

Example

- Meteofrance predicts for tomorrow: T12=20 and Ne9=4.9.
- What does our model predict for the ozone concentration?
- Answer:

$$\widehat{\mathit{m}}(\mathit{T}12=20,\mathit{Ne}9=4.9)=7.638+4.457*20-2.696*4.9=83.5676$$

.

Predict function

 predict is a generic function: we can use it to make predictions for all models (linear, logistic, tree. . .)

```
> predict(model.name,newdata=newdataset,...)
```

Predict function

- predict is a generic function: we can use it to make predictions for all models (linear, logistic, tree...)
- > predict(model.name,newdata=newdataset,...)
 - Example

```
> new.df <- data.frame(T12=20,Ne9=4.9)
> predict(mod.lin,newdata=new.df)
## 1
## 83.57509
```

Very important

Use the same structure for both dataframes.

Estimating the mean square error (ISL lecture)

• The performance of an estimate \hat{m} can be measured by its mean square error:

$$MSE(\widehat{m}) = E[(Y - \widehat{m}(X))^2].$$

Estimating the mean square error (ISL lecture)

• The performance of an estimate \hat{m} can be measured by its mean square error:

$$MSE(\widehat{m}) = E[(Y - \widehat{m}(X))^2].$$

- This (unknown) error is generally estimated by validation hold out:
 - Split the data into a train set and a test set
 - Fit the model on the train set $\Longrightarrow \widehat{m}$
 - Estimate the MSE by

$$\frac{1}{n_{test}} \sum_{i \in test} (y_i - \widehat{m}(x_i))^2.$$

An example

Data splitting

```
> library(caret)
> set.seed(12345)
> index.train <- createDataPartition(1:nrow(ozone),p=2/3)
> train <- ozone %>% slice(index.train$Resample1)
> test <- ozone %>% slice(-index.train$Resample1)
```

An example

Data splitting

```
> library(caret)
> set.seed(12345)
> index.train <- createDataPartition(1:nrow(ozone),p=2/3)
> train <- ozone %>% slice(index.train$Resample1)
> test <- ozone %>% slice(-index.train$Resample1)
```

- Model fitting
- > mod <- lm(max03~.,data=train)</pre>

An example

Data splitting

```
> library(caret)
> set.seed(12345)
> index.train <- createDataPartition(1:nrow(ozone),p=2/3)
> train <- ozone %>% slice(index.train$Resample1)
> test <- ozone %>% slice(-index.train$Resample1)
```

- Model fitting
- > mod <- lm(max03~.,data=train)</pre>
 - Estimated MSE

In practice

- Very useful to choose one model.
- Example: many models (linear, tree, random forest...)

Method

- 1. Estimate MSE for all algorithms;
- 2. Choose the algorithm with the smallest MSE.

In practice

- Very useful to choose one model.
- Example: many models (linear, tree, random forest...)

Method

- 1. Estimate MSE for all algorithms;
- 2. Choose the algorithm with the smallest MSE.

 \implies Work on tuto 6.

Conclusion

Project

- Group of 3 or 4
- Find a dataset for a supervised learning problem (explain one variable by other variables). This dataset should contain at least 800 individuals and 30 variables (continuous or categorical)
- There are many datasets on the web, you can look at the following websites for instance:
 - UCI machine learning repository
 - kaggle datasets (you have to register but it's free)
 - other websites of your choice

- You will address the following topics in the study
 - identify the practical problem
 - translate the practical problem into a mathematical problem
 - describe the dataset according to the problem (with dplyr)
 - visualize the dataset according to the problem (with ggplot)
 - develop machine learning methods (nearest neighbor, linear/logistic models, penalized linear/logistic models, trees, random forest). You should provide a brief description of each algorithm in the context of your problem.
 - make a comparison of the different models (quadratic error, misclassification error, ROC curves, AUC...)

- From now on, you can:
 - choose the dataset
 - make the description of the dataset (dplyr) and the visualization of the dataset (ggplot).

Be careful

- The goal is not to provide a list of statistical summaries or graphs.
- Find relevant summaries and you should explain the output (with text!).

- Each group should provide a notebook (.rmd file) and send by email (laurent.rouviere@univ-rennes2.fr):
 - the notebook (only the .rmd file, not the html file)
 - the dataset (txt or csv file)
- I will run all the chunks of the notebook (the notebook should be complete!), if there is a problem with one chunk, I will not be able to see the output.

Balance sheet

- Many (modern) tools to manipulate data.
- Sufficient to perform a wide range of statistical analysis.
- Many lectures where you will use R.
- Try to force yourself to use these tools (when you want to make a graph, try to do it in ggplot).

Balance sheet

- Many (modern) tools to manipulate data.
- Sufficient to perform a wide range of statistical analysis.
- Many lectures where you will use R.
- Try to force yourself to use these tools (when you want to make a graph, try to do it in ggplot).

Thank you