

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral II — Avaliação PS Prof. Adriano Barbosa

05/09/2023

1	
2	
3	
4	
5	
Nota	

 $\Delta \operatorname{luno}(a)$.

Todas as respostas devem ser justificadas.

Química

Avaliação P1:

- 1. Calcule a integral indefinida $\int x^{1/2} \cos(1 + x^{3/2}) dx$.
- 2. Calcule a integral $\int_1^3 \frac{1}{\sqrt{x-1}} dx$.
- 3. Determine o valor da integral definida $\int_{1}^{2} x \ln x \ dx$.
- 4. Determine se as afirmações abaixo são verdadeiras ou falsas. Reescreva a soma de frações parciais correta para as falsas. Não é necessário calcular as constantes A, B e C.
 - (a) $\frac{x(x^2+9)}{x^2-9}$ pode ser escrita como soma de frações parciais da forma $\frac{A}{x+3}+\frac{B}{x-3}$.
 - (b) $\frac{x^2+9}{x(x^2-9)}$ pode ser escrita como soma de frações parciais da forma $\frac{A}{x}+\frac{B}{x+3}+\frac{C}{x-3}$.
 - (c) $\frac{x^2+9}{x^2(x-9)}$ pode ser escrita como soma de frações parciais da forma $\frac{A}{x^2} + \frac{B}{x-9}$.
 - (d) $\frac{x^2-9}{x(x^2+9)}$ pode ser escrita como soma de frações parciais da forma $\frac{A}{x}+\frac{B}{x^2+9}$.
- 5. Determine se a integral imprópria $\int_{1}^{\infty} e^{-3x} dx$ é convergente ou divergente e calcule seu valor se for convergente.

Avaliação P2:

- 1. Use a mudança de variáveis u=y/x para resolver a EDO $xy'=y+xe^{y/x}$.
- 2. Resolva a equação diferencial $y' + y = \cos(e^x)$.
- 3. Resolva o problema de valor inicial y'' 3y' + 2y = 0, y(0) = 2 e y'(0) = 1.
- 4. Determine se a série $-3+4-\frac{16}{3}+\frac{64}{9}+\dots$ é convergente e calcule sua soma, se possível.
- 5. Encontre a série de Maclaurin de $f(x) = \cos(x)$ e determine seu intervalo de convergência.