Paper SP02-2009

The Existence of Maximum Likelihood Estimates for the Logistic Regression Model

William F. McCarthy and Nan Guo Maryland Medical Research Institute, Baltimore, Maryland

ABSTRACT

The existence of maximum likelihood estimates for the binary response logistic regression model depends on the configuration of the data points in your data set. There are three mutually exclusive and exhaustive categories for the configuration of data points in a data set:

- Complete Separation
- Quasi-Complete Separation
- Overlap

For this paper, a binary response logistic regression model is considered. A 2 x 2 tabular presentation of the data set to be modeled is provided for each of the three categories mentioned above. In addition, the paper will present an example of a data set whose data points have a linear dependency.

Both unconditional maximum likelihood estimation (asymptotic inference) and exact conditional estimation (exact inference) will be considered and contrasted in terms of results. The statistical software package SAS will be used for the binary response logistic regression modeling.

KEYWORDS

logistic regression, maximum likelihood estimates, complete separation, quasi-complete separation

INTRODUCTION

The Existence of Maximum Likelihood Estimates for the Logistic Regression Model depends on the configuration of the data points in your data set (Albert and Anderson, 1984; Santner and Duffy, 1985; So, 1995). There are three mutually exclusive and exhaustive categories for the configuration of data points in a data set:

- Complete Separation
- Quasi-Complete Separation
- Overlap

Refer to So (1995) for a nice graphical illustration of these three categories. For this paper, a binary response logistic regression model is considered. A 2×2 tabular presentation of the data set to be modeled is provided for each of the three categories mentioned above. In addition, the paper will present an example of a data set whose data points have a linear dependency.

Unconditional maximum likelihood estimation (asymptotic inference) is used when matched data are not considered, provided that the total number of variables in the model is not too large relative to the number of observations (Kleinbaum, 1994). This method of inference is based on maximizing the likelihood function for parameter estimation using the unconditional formula (Kleinbaum, 1994). This is the usual large-sample asymptotic method used by most of the current statistical software packages (Kleinbaum, 1994; Mehta and Patel, 1995).

The existence and uniqueness of maximum likelihood parameter estimates for the logistic regression model depends on the pattern of the data points in the observation space (Albert and Anderson, 1984; Santer and Duffy, 1986; So, 1993).

Complete Separation of data points gives non-unique infinite parameter estimates. Thus, maximum likelihood parameter estimates do not exist. Quasi-Complete Separation of data points also gives non-unique infinite parameter estimates. Thus, maximum likelihood parameter estimates do not exist. Maximum likelihood parameter estimates exist and are unique when there is an Overlap of data points. Complete separation and quasi-complete separation of data points usually occur with small data sets. Complete separation can occur for any type of data, but quasi-complete separation is not likely for quantitative data.

To contrast unconditional maximum likelihood estimation, exact conditional estimation will be considered as well. The theory of exact conditional logistic regression analysis (exact inference) was originally laid out by Cox (1970), and the computational methods employed in PROC LOGISTIC are described in Hirji, Mehta, and Patel (1987), Hirji (1992), and Mehta, Patel, and Senchaudhuri (1992).

Exact conditional inference is based on generating the conditional distribution for the sufficient statistics of the parameters of interest. This distribution is called the permutation or exact conditional distribution. If the sufficient statistic of the β being estimated lies at one extreme of its range, a median unbiased estimate is reported (Hirji, Tsiatis, and Mehta 1989). Take home points:

- The Maximum Likelihood Estimates do not exist when you have a data set with complete separation. However, the exact option in SAS will provide you with median unbiased estimates.
- The Maximum Likelihood Estimates may not exist when you have a data set with quasi-complete separation. However, the exact option in SAS will provide you with median unbiased estimates.
- The Maximum Likelihood Estimates do exist when you have a data set with overlap. The exact option in SAS will provide you with exact conditional estimates.
- The Maximum Likelihood Estimates do exist when you have a data set with linear dependency. However, the exact option in SAS will not provide you with median unbiased estimates nor with exact conditional estimates because of the linear dependency.

This paper is based on original work done by McCarthy and Gable (1999).

METHODS

This paper will use both asymptotic and exact inference when modeling the data and will present the SAS output obtained when each of the four data sets are used for modeling. The emphasis of this paper is to show how SAS handles these four data sets when both asymptotic and exact inference is used with respect to a binary response logistic regression modeling. The outcome variable is binary (Mutation; YES, NO) and the covariate is categorical (Drug; EXPOSURE, NON-EXPOSURE). An intercept (Constant) term will be included in the model as well.

Data Sets that will be considered in this paper:

Complete Separation

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	0	14	14
Drug=EXPOSURE	37	0	37
Total	37	14	51

Quasi-Complete Separation

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	12	0	12
Drug=EXPOSURE	25	14	39
Total	37	14	51

Overlap

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	9	3	12
Drug=EXPOSURE	25	14	39
Total	34	17	51

Linear Dependency

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	0	0	0
Drug=EXPOSURE	37	14	51
Total	37	14	51

SAS Output

The SAS output for asymptotic and exact inference when considering the Complete Separation data set is presented below.

Complete Separation

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	0	14	14
Drug=EXPOSURE	37	0	37
Total	37	14	51

The LOGISTIC Procedure

Model Information

Data Set	WORK.TEST
Response Variable	mutation
Number of Response Levels	2
Number of Observations	51
Model	binary logit
Optimization Technique	Fisher's scoring

Response Profile

Ordered		Total
Value	mutation	Frequency
1	1	14
2	0	37

Probability modeled is mutation=1.

Model Convergence Status

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	61.945	4.007
SC	63.877	7.871
-2 Log L	59.945	0.007

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	59.9375	1	<.0001
Score	51.0000	1	<.0001
Wald	0.2295	1	0.6319

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	9.7773	35.4872	0.0759	0.7829
drug	1	-19.2725	40.2338	0.2295	0.6319

The LOGISTIC Procedure

WARNING: The validity of the model fit is questionable.

Odds Ratio Estimates

	Point	95%	Wald
Effect	Estimate	Confide	nce Limits
drug	<0.001	<0.001	>999.999

Association of Predicted Probabilities and Observed Responses

Percent Concordant	100.0	Somers' D	1.000
Percent Discordant	0.0	Gamma	1.000
Percent Tied	0.0	Tau-a	0.406
Pairs	518	С	1.000

Wald Confidence Interval for Parameters

Parameter	Estimate	95% Confide	nce Limits
Intercept	9.7773	-59.7764	79.3309
drug	-19.2725	-98.1293	59.5842

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

			p-Va	alue
Effect	Test	Statistic	Exact	Mid
Intercept	Score	14.0000	0.0001	<.0001
	Probability	0.000061	0.0001	<.0001
drug	Score	50.0000	<.0001	<.0001
	Probability	7.74E-13	<.0001	<.0001

Exact Parameter Estimates

95% Confidence

Parameter	Estimate	Limits		p-Value
Intercept	2.9807*	1.1991	Infinity	0.0001
drug	-6.4343*	-Infinity	-4.1539	<.0001

NOTE: * indicates a median unbiased estimate.

The SAS output for asymptotic and exact inference when considering the Quasi-Complete Separation data set is presented below.

Quasi-Complete Separation

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	12	0	12
Drug=EXPOSURE	25	14	39
Total	37	14	51

The LOGISTIC Procedure

Model Information

Data Set	WORK.TEST
Response Variable	mutation
Number of Response Levels	2
Number of Observations	51
Model	binary logit
Optimization Technique	Fisher's scoring

Response Profile

Ordered		Total
Value	mutation	Frequency
1	1	14
2	0	37

Probability modeled is mutation=1.

Model Convergence Status

Quasi-complete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

Model Fit Statistics

	Intercept	Intercept and
Criterion	Only	Covariates
AIC	61.945	54.920
SC	63.877	58.784
-2 Log L	59.945	50.920

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	9.0242	1	0.0027
Score	5.9376	1	0.0148
Wald	0.0028	1	0.9581

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-13.4954	246.0	0.0030	0.9562
drug	1	12.9155	246.0	0.0028	0.9581

The LOGISTIC Procedure

WARNING: The validity of the model fit is questionable.

Odds Ratio Estimates

	Point	95%	Wald
Effect	Estimate	Confiden	ce Limits
drug	>999.999	<0.001	>999.999

Association of Predicted Probabilities and Observed Responses

Percent	Concordant	32.4	Somers' D	0.324
Percent	Discordant	0.0	Gamma	1.000
Percent	Tied	67.6	Tau-a	0.132
Pairs		518	С	0.662

Wald Confidence Interval for Parameters

Parameter	Estimate	95% Confidence	Limits
Intercept	-13.4954	-495.6	468.6
drug	12.9155	-469.2	495.0

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

			p-Value	
Effect	Test	Statistic	Exact	Mid
Intercept	Score	12.0000	0.0005	0.0004
	Probability	0.000244	0.0005	0.0004
drug	Score	5.8212	0.0224	0.0166
	Probability	0.0117	0.0224	0.0166

Exact Parameter Estimates

95% Confidence

Parameter	Estimate	Lim	its	p-Value
Intercept	-2.8224*	-Infinity	-1.0219	0.0005
drug	2.1708*	0.2484	Infinity	0.0233

NOTE: * indicates a median unbiased estimate.

The SAS output for asymptotic and exact inference when considering the Overlap data set is presented below.

Overlap

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	9	3	12
Drug=EXPOSURE	25	14	39
Total	34	17	51

The LOGISTIC Procedure

Model Information

Data Set	WORK.TEST
Response Variable	mutation
Number of Response Levels	2
Number of Observations	51
Model	binary logit
Optimization Technique	Fisher's scoring

Response Profile

Ordered Value	mutation	Total Frequency
1	1	17
2	0	34

Probability modeled is mutation=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	66.924	68.416
SC	68.856	72.280
-2 Log L	64.924	64.416

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	0.5080	1	0.4760
Score	0.4904	1	0.4838
Wald	0.4838	1	0.4867

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-1.0984	0.6666	2.7148	0.0994
drug	1	0.5186	0.7455	0.4838	0.4867

Odds Ratio Estimates

	Point	95% Wald	Nald	
Effect	Estimate	Confidence Lim	its	
drua	1.680	0.390 7	.241	

The LOGISTIC Procedure

Association of Predicted Probabilities and Observed Responses

Percent	Concordant	21.8	Somers' D	0.088
Percent	Discordant	13.0	Gamma	0.254
Percent	Tied	65.2	Tau-a	0.040
Pairs		578	С	0.544

Wald Confidence Interval for Parameters

Parameter	Estimate	95% Confiden	ce Limits
Intercept	-1.0984	-2.4050	0.2082
drug	0.5186	-0.9427	1.9798

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

			p-Value	
Effect	Test	Statistic	Exact	Mid
Intercept	Score	3.0000	0.1460	0.1191
	Probability	0.0537	0.1460	0.1191
drug	Score	0.4808	0.7278	0.6155
	Probability	0.2247	0.7278	0.6155

Exact Parameter Estimates

95% Confidence

Parameter	Estimate	Limi	ts	p-Value
Intercept	-1.0986	-2.8465	0.2894	0.1460
drug	0.5091	-1.0858	2.4087	0.7422

The SAS output for asymptotic and exact inference when considering the Linear Dependency data set is presented below.

Linear Dependency

	Mutation=NO	Mutation=YES	Total
Drug=NON-EXPOSURE	0	0	0
Drug=EXPOSURE	37	14	51
Total	37	14	51

The LOGISTIC Procedure

Model Information

Data Set	WORK.TEST	
Response Variable	mutation	
Number of Response Levels	2	
Number of Observations	51	
Model	binary logit	
Optimization Technique	Fisher's scoring	

Response Profile

Total Frequency	Ordered Value mutation		
14	1	1	
37	0	2	

Probability modeled is mutation=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

drug = Intercept

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-0.9719	0.3138	9.5933	0.0020
drug	U	U		•	•

Wald Confidence Interval for Parameters

Paramete	r Estimate	95% Conf	idence Limits
Intercep	t -0.9719	-1.5869	-0.3569

There was no SAS Output for Exact Conditional Analysis.

RESULTS

Complete Separation Data Set:

Unconditional maximum likelihood estimation (asymptotic inference)

The SAS output provided the following information:

Model Convergence Status

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not exist.
WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

The standard errors of the point estimates for the intercept (se= 35.4872) and drug (se= 40.2338) were very large compared to the point estimates for the intercept (β = 9.7773) and drug (β = -19.2725). This is typically seen when the maximum likelihood parameter estimates do not converge during the modeling procedure. In addition, one sees that p-values were both non-significant (p>0.05) for the intercept (p=0.7829) and drug (p=0.6319).

Exact conditional estimation (exact inference)

The SAS output provided the following information:

A median unbiased estimate of the intercept (MU β = 2.9807, 95% exact CI [1.1991, ∞]) and drug (MU β = -6.4343, 95% exact CI [- ∞ , -4.1539]) are provided. One also sees that the exact p-values were both significant (intercept, p=0.0001; drug, p<0.0001).

Quasi-Complete Separation Data Set:

• Unconditional maximum likelihood estimation (asymptotic inference)

The SAS output provided the following information:

Model Convergence Status

 ${\tt Quasi-complete}\ \ {\tt separation}\ \ {\tt of}\ \ {\tt data}\ \ {\tt points}\ \ {\tt detected}.$

WARNING: The maximum likelihood estimate may not exist.
WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

The standard errors of the point estimates for the intercept (se= 246.0) and drug (se= 246.0) were very large compared to the point estimates for the intercept (β = -13.4954) and drug (β = 12.9155). This is typically seen when the maximum likelihood parameter estimates do not converge during the modeling procedure. In addition, one sees that p-values were both non-significant (p>0.05) for the intercept (p=0.9562) and drug (p=0.9581).

Exact conditional estimation (exact inference)

The SAS output provided the following information:

A median unbiased estimate of the intercept (MU β = -2.8224, 95% exact CI [- ∞ , -1.0219]) and drug (MU β = 2.1708, 95% exact CI [0.2484, ∞]) are provided. One also sees that the exact p-values were both significant (intercept, p=0.0005; drug, p<0.0233).

Overlap Data Set:

• Unconditional maximum likelihood estimation (asymptotic inference)

The SAS output provided the following information:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

The standard errors of the point estimates for the intercept (se= 0.6666) and drug (se= 0.7455) were of reasonable size compared to the point estimates for the intercept (β = -1.0984) and drug (β = 0.5186). This is typically seen when the maximum likelihood parameter estimates does converge during the modeling procedure. In addition, one sees that p-values were both non-significant (p>0.05) for the intercept (p=0.0994) and drug (p=0.4867).

Exact conditional estimation (exact inference)

The SAS output provided the following information:

An exact estimate of the intercept (β = -1.0986, 95% exact CI [-2.8465, 0.2894]) and drug (β = 0.5091, 95% exact CI [-1.0858, 2.4087]) are provided. One also sees that the exact p-values were both non-significant (intercept, p=0.1460; drug, p=0.7422).

Linear Dependency Data Set:

Unconditional maximum likelihood estimation (asymptotic inference)

The SAS output provided the following information:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

```
drug = Intercept
```

The standard error of the point estimate for the intercept (se= 0.3138) was of reasonable size compared to the point estimates for the intercept (β = -0.9719). This is typically seen when the maximum likelihood parameter estimates does converge during the modeling procedure. The point estimate and the standard error of the point estimate for drug were not computed because of the linear dependency between the two parameters. The p-value for the intercept was significant (p=0.0020).

Exact conditional estimation (exact inference)

The SAS output provided the following information:

Because of the linear dependency, no SAS output was generated for the exact conditional analysis.

REFERENCES

- Albert A. and Anderson JA (1984). On the existence of maximum likelihood estimates in logistic regression models. Biometrika, 71, pp 1-10.
- 2. Cox, D.R. (1970), Analysis of Binary Data, New York: Chapman and Hall.
- Hirji, K.F., Mehta, C.R., and Patel, N.R. (1987), "Computing Distributions for Exact Logistic Regression," Journal of the American Statistical Association, 82, 1110 - 1117.
- 4. Hirji, K.F., Tsiatis, A.A., and Mehta, C.R. (1989), "Median Unbiased Estimation for Binary Data," American Statistician, 43, 7 11.
- 5. Hirji, K.F. (1992), "Computing Exact Distributions for Polytomous Response Data," Journal of the American Statistical Association, 87, 487 492.
- 6. Kleinbaum, D.G. (1994). Logistic regression: a self-learning text. Springer-Verlag, NY, NY. [pages 104-119].
- McCarthy and Gable in 1999: McCarthy, W. and J. Gable (1999). A Comparison of Two Methods for Making Inferences About the Parameters of the Logistic Regression Model, Program and Abstracts of the 1999 Spring Meeting of the International Biometric Society Eastern North American Region, Biometric Bulletin, Atlanta, GA, March 28-31. Paper presentation.
- 8. Mehta, C.R., Patel, N. and Senchaudhuri, P. (1992), "Exact Stratified Linear Rank Tests for Ordered Categorical and Binary Data," Journal of Computational and Graphical Statistics, 1, 21 40.
- 9. Mehta, C.R. and Patel, N.R. (1995), "Exact Logistic Regression: Theory and Examples," Statistics in Medicine, 14, 2143 2160.
- 10. Santner TJ and Duffy ED (1986). A note on A. Albert and J.A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models. Biometrika, 73, pp. 755-758.
- 11. So Y (1995). A tutorial on logistic regression. SUGI Proceedings.

CONTACT INFORMATION

William F. McCarthy
Principal Statistician
Director of Clinical Trial Statistics and SAS Programming
Maryland Medical Research Institute
600 Wyndhurst Avenue
Baltimore, Maryland 21210-2425
(410) 435-4200
www.mmri.org
wmccarthy@mmri.org

Nan Guo Senior Lead SAS Programmer SAS Certified Advanced Programmer for SAS9 Maryland Medical Research Institute 600 Wyndhurst Avenue Baltimore, Maryland 21210-2425 (410) 435-4200 www.mmri.org nguo@mmri.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.