Dr. Michael Fix mfix@gsu.edu

Georgia State University

20 February 2025

Note: The slides are distributed for use by students in POLS 8810. Please do not reproduce or redistribute these slides to others without express permission from Dr. Fix.

The Model

Multiple regression:

$$\mathbf{Y}_{\mathsf{N}\times 1} = \mathbf{X}_{\mathsf{N}\times\mathsf{K}_{\mathsf{K}\times 1}} + \mathbf{u}_{\mathsf{N}\times 1}$$

or:

Estimation **•**000

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_K X_{Ki} + u_i$$

or:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{21} & \cdots & X_{K1} \\ 1 & X_{12} & X_{22} & \cdots & X_{K2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1N} & X_{2N} & \cdots & X_{KN} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_K \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}$$

Estimating β

• Residuals:

$$\mathbf{u} = \mathbf{Y} - \mathbf{X}\beta$$

• The inner product of **u**:

$$\mathbf{u}\mathbf{u}' = \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix}$$
$$= u_1^2 + u_2^2 + \dots + u_N^2$$
$$= \sum_{i=1}^N u_i^2$$

• We want to minimize the squared erros, so start with:

$$\mathbf{u}'\mathbf{u} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
$$= \mathbf{Y}'\mathbf{Y} - 2\boldsymbol{\beta}'\mathbf{X}'\mathbf{Y}' + \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$$

Now get:

Estimation

$$\frac{\partial \mathbf{u}' \mathbf{u}}{\partial \boldsymbol{\beta}} = -2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$$

Estimating β

Solve:

$$-2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = 0$$

$$-\mathbf{X}'\mathbf{Y} + \mathbf{X}'\mathbf{X}\boldsymbol{\beta} = 0$$

$$\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

 Important Note: Unlike bivariate OLS, we do not compute the estimates using (X'X)⁻¹X'Y

1. Linearity

- The CLRM as specified in the form $Y_i = \beta_1 + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + u_i$ specifies a linear relationship between y and x_1, x_2, \ldots, x_k .
- 2. Full Rank (No Perfect Multicollinearity)
 - All columns in X are linearly independent
 - N > K

3. $E(\mathbf{u}) = 0$

- This assumption implies that the disturbance term should have a conditional expected value of 0 at every observation.
- For the full set of observations, we can write this as:

$$E(\mathbf{u}|\mathbf{X}) = \begin{bmatrix} E[u_1|\mathbf{X}] \\ E[u_2|\mathbf{X}] \\ \vdots \\ E[u_n|\mathbf{X}] \end{bmatrix} = 0$$
 (1)

• The assumption in equation [1] is essential, as it implies that:

$$E(\mathbf{y}|\mathbf{X}) = \mathbf{X}\beta \tag{2}$$

Assumptions of the CLRM

- 4. Spherical Disturbances (Homoskedasticity and Nonautocorrelation)
- $Var(\mathbf{u}|\mathbf{X}) = \sigma^2$, for all i = 1, ..., n,
- and
- Cov $(u_i, u_i | \mathbf{X}]$) = 0, for all $i \neq j$
- State that the disturbance terms in the CLRM possess consistant variance and that they are uncorrelated across observations

Assumptions of the CLRM

Additionally, these assumptions imply that:

$$E(\mathbf{u}\mathbf{u}'|\mathbf{X}) = \begin{bmatrix} E[u_1u_1|\mathbf{X}] & E[u_1u_2|\mathbf{X}] & \dots & E[u_1u_n|\mathbf{X}] \\ E[u_2u_1|\mathbf{X}] & E[u_2u_2|\mathbf{X}] & \dots & E[u_2u_n|\mathbf{X}] \\ \vdots & \vdots & \vdots & \vdots \\ E[u_nu_1|\mathbf{X}] & E[u_nu_2|\mathbf{X}] & \dots & E[u_nu_n|\mathbf{X}] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma^2 & 0 & \dots & 0 \\ 0 & \sigma^2 & \dots & 0 \\ & \vdots & & \vdots \\ 0 & 0 & \dots & \sigma^2 \end{bmatrix}$$

Which we neatly summarize as:

$$E(\mathbf{u}\mathbf{u}'|\mathbf{X}) = \sigma^2 \mathbf{I} \tag{3}$$

Assumptions of the CLRM

- Nonstochastic Regressors
- This assumption simply holds that all values in the matrix X are fixed
- Or: Cov(X, u) = 0
- In practice, this assumption does not match the reality of social science data where many of our independent variables of theoretical interest are random
- Thus our assumption is more about the data generating process that produces x; as being fixed
- Also assumes no measurement error

- 6. Normality
- Here we simply add to the list of assumptions about the disturbances by assuming they are normally distributed
- Formally, we state:

$$\mathbf{u} \sim N[0, \sigma^2 \mathbf{I}] \tag{4}$$

• Start with:

$$Y = X\beta + u$$

• Substitute OLS $\hat{\beta}$:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \mathbf{u})$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$$

$$= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$$

and so:

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}.$$

• By $Cov(\mathbf{X}, \mathbf{u}) = 0$, we have $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$.

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \tag{5}$$

• Since $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \mathbf{u})$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$$

$$= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$$
(6)

Taking expected value:

$$E[\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}] = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E[\mathbf{u}|\mathbf{X}]$$
 (7)

• Since $E[\mathbf{u}|\mathbf{X}] = 0$ (by assumption):

$$E[\hat{\beta} - \beta] = 0$$

$$E[\hat{\beta}] = \beta$$
(8)

- In addition to Unbiasedness and Consistency, the least squares estimator is also the minimum variance, or most efficient of all unbiased linear estimators
- This can be shown via the Gauss-Markov Theorem, as we saw last week

Two Approaches

F-test

- Compares the model as specified (the unrestricted model) to a restricted model
- Default in all (?) software is to effectively compare to a null model
- This doesn't tell us much
- Mathematically, it is pretty straightforward (we'll omit that here)

Two Approaches

R²

- Often discussed as a measure of the amount of variance explained
- $\bullet \ \ \, \text{Effectively calculated as} \ 1 \frac{\text{Residual Sum of Squared errors}}{\text{Total Sum of Squares}}$
- Bounded by 0 (no points on regression line) and 1 (perfect fit, all points on regression line)
- Can be manipulated by Increases when adding additional independent variables

- All (?) software will provide an F-test, R^2 and R^2_{adj}
- Always report these
- Don't pretend that they mean more than they do.

Let's start with a toy model

```
• • •
### Load necessary packages ----
# Use install.packages() if you do not have this package
library(tidvverse) # Data manipulation
library(stargazer) # Creates nice regression output tables
library(lmtest) # Breusch-Pagan test
library(psych) # Histograms and correlations for a data matrix
### Load vour data ----
# We are using V-Dem version 12
my_data <- readRDS("data/vdem12.rds")</pre>
# Let's change names of some of these variables for the sake of simplicity
# I am also subsetting it to only US
us data <- my data |>
  filter(country name == "United States of America") |>
  rename(democracy = v2x_polyarchy,
         gdp_per_capita = e_gdppc,
         urbanization = e miurbani)
### Bivariate OLS ----
# Let's fit a bivariate and multivariate models
simple <- lm(democracy ~ gdp_per_capita, data = us_data)</pre>
multiple <- lm(democracy ~ gdp_per_capita + urbanization, data = us_data)</pre>
# View model summary
```

Factors explaining democracy in the US				
	Dependent variable:			
	Democracy			
	Simple OLS (1)	Multiple OLS (2)		
GDP per capita	0.012 (0.0003) p = 0.000*	0.013 (0.0003) p = 0.000*		
Urbanization		0.253 (0.056) p = 0.00001*		
Constant	0.332 (0.006) p = 0.000*	0.264 (0.010) p = 0.000*		
Observations R2 Adjusted R2 Residual Std. Error F Statistic	231 0.904 0.904 0.063 (df = 229) 2,164.562* (df = 1; 229)			
Notes	p < 0.05. Standard errors are in parentheses.			

```
### Gauss-Markov assumptions using other functions ----
# You can use visuals or tests
# Looking for heteroskedasticity - plotting residuals ~ fitted.values
multiple |>
 qqplot(aes(x = .fitted, v = .resid)) +
 geom point(col = 'blue') +
 geom_abline(slope = 0) +
  labs(x = "Fitted values", v = "Residuals") +
 theme bw()
# Perform Breusch-Pagan test
bptest(multiple)
# Since the p-value is less than 0.05, we reject the null hypothesis.
# We have sufficient evidence to say that heteroscedasticity is present in the model.
```

Gauss-Markov assumptions: Homoskedasticity

Gauss-Markov assumptions: Normality of residuals

```
# Testing for multicollinearity
us_data |>
select(democracy, gdp_per_capita, urbanization) |>
pairs.panels(lm = T,
method = "pearson")
```

Histogram of multiple\$residuals

Gauss-Markov assumptions: Normality of residuals

Use qqnorm and qqlipe to examine normality of residuals
qqnorm(residuals(multiple), ylab = "Residuals")
qqline(residuals(multiple))

Gauss-Markov assumptions: Autocorrelation

Series multiple\$residuals

First, A Pretty Table

Table: A Toy Model

	Coefficient	<i>p</i> -Value
GDP per Capita	0.011	0.000
	(0.000)	
Urbanization	0.253	0.000
	(0.056)	
Intercept	0.264	0.000
	(0.010)	
N	201.	
R^2	0.942	
R_{adj}^2	0.942	

Note: Dependent variable is Democracy. Standard errors in parentheses.

TEXCode for Table

```
\begin{table}[h!]
    \begin{center}
          \caption{A Toy Model}
          \begin{tabular}{ | r@{.}| r@{.}| }
               \hline
               \hline
               & \multicolumn{2}{c}{Coefficient}& \multicolumn{2}{c}{$p$-Value}\\
               \hline
              GDP per Capita  0  0  011  0  0  000  \\
               &(0 & 000) &\multicolumn{2}{c}}\\
               Urbanization & 0 & 253 & 0 & 000 \\
               &(0 & 056) &\multicolumn{2\fc\f\}
                                                     - \ \
               Intercept & 0&264&0&000\\
               &(0 & 010) &\multicolumn{2\c\}
                                                    11
               \hline
               N & 201 & &\multicolumn{2}{c}}\\
              $R^2$& 0 & 942&\multicolumn{2\c\}\\
              $R^2_{adi}$& 0 & 942&\multicolumn{2}{c}{}\\
               \hline
               \hline
         \end{tabular}\\
     \end{center}
     \medskip
    Note: Dependent variable is XXX. Standard errors in parentheses.
end{table}
```

Interpreting Estimates

- Beyond begin BLUE, OLS is nice because of the ability to interpret coefficient estimates as independent effects
- We can write the information in the table as an equation to help think about interpretation:

$$DV = 0.264 + 0.011GDP + 0.253Urban$$

 We can thus say "a one unit increase in GDP corresponds with a 0.011 unit increase in DV."

"Standardized" Coefficients

- An alternative to presenting our estimates of $\hat{\beta}$ is to present "standardized" coefficients
- The logic is to be able to compare effect sizes for things that are not on a common scale. E.g. can we say that GDP or Urbanization has a greater substantive effect on DV?

"Standardized" Coefficients

- The issue is that standardizing coefficient alters our interpretation.
- Now we can only say that "a one standard deviation increase in GDP the DV increases by XXXX standard deviations"
- Great! Now we can sort of directly compare effects sizes, but...
 - What does this mean?
 - For other issues, see King (1986, 669–674)