Mayuri Bhavan, Vijayawada RPTM-8

Subject: Physics Date: 21-09-2023

 O1. A block of mass m slides down an inclined plane of inclination θ with uniform speed. The coefficient of friction between the block and plane is μ. The contact force between the block and the plane is (D)√(mg sin θ)² + (μmg cos θ)² O2. Two men weighing 100 kg and 50 kg run a 100 m race. The coefficient of friction between their shoes and ground is 0.5. They (A) mg (B) mg sin θ√(1 + μ²) (C) mg sin θ (D)√(mg sin θ)² + (μmg cos θ)² (A) 100 kg man (B) 50 kg man 			
A block of mass m slides down an inclined plane of inclination θ with uniform speed. The coefficient of friction between the block and plane is μ. The contact force between the block and the plane is 102. Two men weighing 100 kg and 50 kg run a 100 m race. The coefficient of friction between their shoes and ground is 0.5. They (B) mg sin θ√(1 + μ²) (C) mg sin θ (D) √(mg sin θ)² + (μmg cos θ)² (A) 100 kg man (B) 50 kg man			
The coefficient of friction between the block and plane is μ. The contact force between the block and the plane is O2. Two men weighing 100 kg and 50 kg run a 100 m race. The coefficient of friction between their shoes and ground is 0.5. They (C) mg sin θ (D) √(mg sin θ)² + (μmg cos θ)² (A) 100 kg man (B) 50 kg man			
and plane is μ. The contact force between the block and the plane is (D)√(mg sin θ)² + (μmg cos θ)² Two men weighing 100 kg and 50 kg run a 100 m race. The coefficient of friction between their shoes and ground is 0.5. They (B)50 kg man	(B) $\operatorname{mg} \sin \theta \sqrt{1 + \mu^2}$		
the block and the plane is (D)√(mg sin θ)² + (μmg cos θ)² 102. Two men weighing 100 kg and 50 kg run a 100 m race. The coefficient of friction 100 hetween their shoes and ground is 0.5. They 103 (B)50 kg man 104 (B)50 kg man	(C) $mg \sin \theta$		
02. Two men weighing 100 kg and 50 kg run a 100 m race. The coefficient of friction between their shoes and ground is 0.5. They (B) 50 kg man			
100 m race. The coefficient of friction (B)50 kg man			
between their shoes and ground is 0.5. They (B)50 kg man			
/C\ T 1 11 C 1 1	(B) 50 kg man (C) Both will finish at same time		
Tun with maximum possible acceleration.			
Who will win the race. (D) Data given is insufficient to answ	(D) Data given is insufficient to answer question		
03 A force F is applied on a block of mass m as			
shown in the figure. What will be the			
maximum value of F such that the block will			
not move. The coefficient of friction between			
block and floor is $\mu \left[\theta = constant \right]$			
μmg μmg			
$(A)F = \frac{\mu mg}{\sin \theta} \qquad (C)\frac{\mu mg}{\cos \theta}$			
uma			
$(B)F = \frac{\mu mg}{\cos \theta + \mu \sin \theta} (D) \frac{\mu mg}{\sin \theta + \mu \cos \theta}$			
τους τη επίτο			
04. The minimum acceleration (from the given			
option) that must be imparted to the cart in			
the figure so that the block A will not fall			
(given $\mu = 0.2$ is the coefficient of friction	777		
between the surfaces of block and cart) is (A) 25m/s ² (B) 15 m/s	s^2		
given by (C) 5.4 m/s ² (D) 50 m/s	s ²		
05. 20kg	E		
	1		
	t		
shown in the figure then friction on the block			
exerted by norizontal surface is (system is	1		
released from rest) (C) 130 N (D) 100N			
06.			
A horizontal force of 10 N is necessary to			
just hold a block stationary against a wall the			
coefficient of friction between the block and			
the wall is 0.2. The weight of the block is (A) 2 N (B) 20 N (C) 50 N	(D) 100 N		

Sri Chaitanya IIT Academy, India.

MPC Speed Test

A cart of mass M has a block of mass m in contact with it is shown in figure. The coefficient of friction between the block and car is µ. The correct options are

(A) minimum acceleration of car, so that block

m does not fall is g

(B) Minimum acceleration is μg

- (C) Normal force between block and car is µma
- (D) The magnitude of friction force between block and cart is greater than mg.
- 08. A body of mass M is kept on a rough horizontal surface (friction coefficient = μ). A person is trying to pull the body by applying a horizontal force but the body is not mov-The force by the surface on the body is F where:
- A) F = mg
- B) $Mg \leq F \leq Mg\sqrt{1+\mu^2}$
- C) $F = \mu Mg$
- D) $Mg \ge F \ge Mg\sqrt{1-\mu^2}$
- 09. A body of mass 2 kg is held at rest against a rough vertical wall by passing a horizontal (nomal) force of 45 N. Coefficient of friction between wall and the block is equal to 0.5. Now a horizontal force of 15 N (tangential to wall) is also applied on the block. Then the block will:
- A) Move horizontally with acceleration of $5 m/s^2$
- B) Start to move with an acceleration of magnitude 1.25 m/s^2
- C) Remain stationary
- D) Start to move horizontally with acceleration greater than $5 m/s^2$
- 10. Two blocks A & B attached to each other by a mass-less spring, are kept on a rough horizontal surface $\mu = 0.1 \& a$ constant force F = 200N is applied on block B horizon tally as shown below. If at some instant the acceleration of 10 kg mass is $12 m/s^2$. then the acceleration of 20 kg mass is:

- A) 2.5 m/s^2 or 15.5 m/s^2 C) 3.6 m/s^2 or 4.1 m/s^2
- B) $4 m/s^2$ or $10 m/s^2$
- D) $1.2 \ m/s^2 \ or 1.3 \ m/s^2$
- 11. For the arrangement shown in figure, the maximum tension in the string (the block does not accelerate) is :

- A) 6N
- B) 6.4 N
- C) 12.4 N
- D) None of these

Sri C	haitanya IIT Academy, India.	MPC Speed Test
12.	The force F_1 required to just moving a body	
	up an inclined plane is double the force	
	F, required to just prevent the body from	
	sliding down the plane. The coefficient of A	A) $\tan^{-1} \mu$ B) $\tan^{-1} \frac{\mu}{2}$
	friction is μ , the inclination θ of the	t) $\tan \mu$ B) $\tan 2$
		C) $\tan^{-1} 2\mu$ D) $\tan^{-1} 3\mu$
13.	Match the column $-(g = 10 \ m/s^2)$	
	Column-I A) Block of mass 2 kg on a rough horizontal surface pulled by a horizontal force of 20 N, $\mu_s = 0.5$ B) Block of mass 2kg pulled with constant speed up an incline of inclination 30° and coefficient of friction $1/\sqrt{3}$ C) Block of mass 0.75 kg pulled by a constant force of 7.5N upon incline of inclination 30° and coefficient of friction $1/\sqrt{3}$ D) Block of mass $2 \log m$ and $2 \log m$ and $2 \log m$.	Colmun-II p) Tension at the mid point of block is 10N q) Acceleration of block is 5 r) Force of friction acting is N s) Resultant force on the block is zero t) Force of friction is 10N
14.	D) Block of mass 2 kg pulled vertically by a force 20N	A) Statement-I is true, Statmement-II is true
	Statement-I: Coefficient of friction can be greater that nunity Statement-II: Force of friction is dependent of normal reaction and ratio of force of friction and normal reaction cannot exceed unity	B) Statmement-I is true, Statmement-II is true Statmement-II is not a correct explanation for Statmement-I
15.	Statement-I: Pulling [fig (a)] is easier than pushing [Fig.(b)] on a rough	A) Statement-I is true, Statmement-II is true
16.	Statement-II: Normal reaction is less in pulling than in pushing F, F2 (a) (b)	Statmement-II is a correct explanation for Statmement-I B) Statmement-I is true, Statmement-II is true Statmement-II is not a correct explanation for Statmement-I C) Statmement-I is true, Statmement-II is false D) Statmement-I is false, Statmement-II is true
10.		30° A B
	Two blocks A and B of mass 10 kg and 2	(A) tension in the string is 306 N
	kg respectively are placed as shwon i	(A) tension in the string is 300 N (B) tension in the string is 132 N
	figure. Coefficient of friction between all th	(C) acceleration of block B is 2.6 m/s ²
	surfaces is 0.2 ($g = 10 \text{ m/s}^2$). Then	(D) acceleration of block B is 4.7 m/s ²
<u> </u>		

Sri C	haitanya IIT Academy, India.	MPC Speed Test				
17.		(A) the acceleration of m w.r.t. ground is $\frac{F}{}$.				
	In the figure small block is kept on m then	(B) the acceleration of m w.r.t. ground is zero				
		26				
	μ=0 m μ=0	(C) the time taken by m to separate from M is $\sqrt{\frac{2 \ell m}{F}}$				
	M F A P B	(D) the time taken by m to separate from M is $\sqrt{\frac{2\ell M}{F}}$				
18.	A block A of mass m is placed over a plank					
	B of mass 2 m. Plank B is placed over a					
	smooth horizontal surface. The coefficient of	f				
	friction between A and B is $\frac{1}{2}$. Block A is	(A) Acceleration of A is $\frac{g}{2}$				
	given a velocity $\mathbf{v}_{\scriptscriptstyle{0}}$ towards right. Then	(B) Acceleration of A is g				
	$\begin{array}{c} A \longrightarrow^{V_0} \\ B \end{array}$	(C) Acceleration of B relative to A is $\frac{3}{4}$ g 3				
	smooth	(D) Acceleration of A is zero				
19.		F√θ				
		M µ:				
		A) If $\theta > \tan^{-1} \mu$ the block cannot be pushed				
		forward for any value of F				
	In the situation shown in the figure the fi	ric - B) If $\theta < \tan^{-1} \mu$ the block cannot be pushed				
	tion coefficient between M and the horizon- forward for any value of F					
	tal surface is μ . The force F is applied at	C) As θ decreases the magnitude of force				
	angle θ with vertical. The correct state-					
	ments are	creases				
20.		D) None of these				
20.		_				
		AM_T				
		2m B				
	In the among count shows a section to the	the thister				
	In the arrangement shown coefficient of f	A) T = 11 max P) F = 2				
	tion for all the surfaces is μ and blocks	alt .				
21.	moving with constant speeds, then: A Body of mass 5Kg is under the action of 50N	C) $T_1 = 2 \mu mg$ D) $F = 5 \mu mg$ Non the horizontal surface. If coefficient of friction in				
41.	between the surface is one, the distance it travels	s in 3 s is				
22.	A block of weight 100N is pushed by a force F of 1 m/s^2 , when force is doubled its acceleration be $(g = 10 \text{ms}^{-2})$	on a horizontal rough plane move with an acceleration ecomes 10 m/s ² . The coefficient of friction is				
23.	A person of mass 72 kg sitting on ice pushes a b	block of mass of 30kg on ice horizontally with a speed				
	of 12ms^{-1} . The coefficient of friction between the 10 ms^{-2} , the distances between man and the blue of the second sec	he man and ice and between block and ice in 0.02. If g				

Sri Chaitanya IIT Academy, India.

MPC Speed Test

- 24. When a car of mass 1200 kg is moving with a velocity of 15ms⁻¹ on a rough horizontal road, its engine is switched off. How far does the car travel before it comes to rest if the coefficient of kinetic friction between the road and tyres of the car is 0.5? (g=10ms⁻¹)
- 25. An eraser weighing 2N is pressed against the black board with a force of 5N. If the co-efficient of friction is 0.4. How much force parallel to the black board is required to slide the eraser upwards.
- 26. A block B is mass 5kg is placed on a slab A of mass 20 kg which lies on a frictionless surface as shown in the figure. The coefficient of satic friction between the block and the slab is 0.4 and that of kinetic friction is 0.2. If a force F = 25N acts on B, the acceleration of the slab will be $(g = 10ms^{-2})$
- A block slides down a slope of angle θ with constant velocity. It is then projected up with a velocity of 10ms^{-1} , $g = 10 \text{ms}^{-2}$ & $\theta = 30^{\circ}$. The maximum distance it can go up the plane before coming tostop is
- 28. An engine of one metric ton is going up an inclined plane, 1 in 2 at the rate of 36 kmph. If the coefficient of friction is $1/\sqrt{3}$, the power of engine is
- 29. The minimum force required to move a body up an inclined plane is three times the minimum force required to prevent it from sliding down the plane. If co-efficient of friction between the body and inclined plane.
- 30. A body of mass 10kg is on a rough inclined plane having an inclination of 30° with the horizontal. If coefficient of friction between the surfaces of contact of the body and the plane is 0.5. The least force required to put the body up the plane is

PHYSICS

1)	2)	3)	4)	5)	6)
7)	8)	9)	10)	11)	12)
13)	14)	15)	16)	17)	18)
19)	20)	21)	22)	23)	24)
25)	26)	27)	28)	29)	30)