

NONLINEAR DIMENSIONALITY REDUCTION

Christian Bueno

University of California, Santa Barbara

MIT Center for Brain, Minds + Machines Tutorial (09/17/20)

NLDR Zoo

Principal Component Analysis (PCA)

Introduced by Pearson (1901) and named/rediscovered by Hotelling (1930)

Idea: Finds linear subspace that preserves the most variation in the data.

PCA via Covariance Eigendecomposition

Assuming centered data $\{x_1, \dots, x_n\} \subseteq \mathbb{R}^p$ the $p \times p$ sample covariance matrix is

$$C = \frac{1}{n-1} X^{T} X = \frac{1}{n-1} \sum_{i=1}^{n} x_{i} x_{i}^{T} = V \Lambda V^{T} \approx V_{d} \Lambda_{d} V_{d}^{T}$$

C is symmetric ($C^T = C$) and positive semi-definite ($u^T C u \ge 0$ for all $u \in \mathbb{R}^p$).

Has orthonormal basis (ONB) of eigenvectors v_1, v_2, \ldots, v_p with corresponding eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_q \geq \lambda_{q+1} = \cdots = \lambda_p = 0$.

 v_i is the i-th **principal axis/direction** and projection of x onto v_i is the i-th **principal component** of x. The variance of dataset in direction v_i is λ_i .

To reduce to d dimensions, keep PC-1 up to PC-d (where $d \leq q$).

$$X = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ & \vdots & \\ - & x_n^T & - \end{pmatrix} \quad n \times p$$

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_q) \quad q \times q$$

$$V = \begin{pmatrix} \begin{vmatrix} & & & \\ v_1 & \cdots & v_q \\ & & \end{vmatrix} \qquad p \times q$$

PCA via SVD is Faster and Better

$$X = \underbrace{U\Sigma V^T}_{\substack{ ext{Principal} \\ ext{Components}}}$$

PCA Projection

 $x \in \mathbb{R}^p$ (Data space) $\mapsto \mathbb{R}^d$ (PC space)

$$V_d^T x = \begin{pmatrix} v_1^T x \\ | \\ v_d^T x \end{pmatrix}$$

Out-of-Sample Extension (OoSE)

 $y \in \mathbb{R}^d$ (PC space) $\mapsto \mathbb{R}^p$ (Data space)

$$V_d y = y_1 v_1 + \dots y_d v_d$$

"Preimage"

$$C = \frac{X^T X}{n-1} = V \Lambda V^T \approx V_d \Lambda_d V_d^T$$

$$X = U\Sigma V^T$$

To map all data X down to \mathbb{R}^d

$$XV_d = \begin{pmatrix} - & x_1^T V_d & - \\ & \vdots & \\ - & x_n^T V_d & - \end{pmatrix}$$

Using SVD we can see that

$$XV = U\Sigma V^T V = U\Sigma$$

and so the projection by SVD is

$$XV_d = U_d \Sigma_d$$

PCA via Gram Matrix Eigendecomposition

The Gram matrix of $\{x_1, \dots, x_n\}$ is the $n \times n$ matrix of dot products.

$$K_{ij} = \langle x_i, x_j \rangle = x_i^T x_j$$
 $K = XX^T$

K is sym. pos. semi-definite (SPSD) \implies has ONB of eigrecs a_1, \dots, a_n & eigrals $\rho_1 \ge \dots \ge \rho_n \ge 0$.

Claim: If $Ka=\rho a$ and $\rho\neq 0$ define $v=\frac{1}{\sqrt{\rho}}X^Ta$. Then ||v||=||a|| and $Cv=\frac{\rho}{n-1}v$.

$$||v||^{2} = \left(\frac{1}{\sqrt{\rho}}X^{T}a\right)^{T} \frac{1}{\sqrt{\rho}}X^{T}a$$

$$= \frac{1}{\rho}a^{T}XX^{T}a$$

$$= \frac{1}{\rho}a^{T}XX^{T}a$$

$$= \frac{1}{n-1}X^{T}XX^{T}a \frac{1}{\sqrt{\rho}}$$

$$= \frac{1}{n-1}X^{T}Ka \frac{1}{\sqrt{\rho}}$$

$$= a^{T}a = ||a||^{2}$$

$$= \frac{\rho}{n-1}X^{T}a \frac{1}{\sqrt{\rho}} = \frac{\rho}{n-1}v$$

Bottom Line: Eigenpairs of K can be used to build principal directions of C... also K has q positive eigvals like C.

PCA via Gram Matrix Eigendecomposition

So $Ka_i=\rho_ia_i$ and $v_i=\frac{1}{\sqrt{\rho_i}}X^Ta_i$ for $i=1,\ldots,q.$ In matrix form that is

$$KA = AR \qquad V = X^T \begin{pmatrix} \begin{vmatrix} & & \\ & & \\ a_1 & \cdots & a_q \\ & & \end{vmatrix} \begin{pmatrix} \rho_1^{-1/2} & & 0 \\ & & \ddots & \\ 0 & & \rho_q^{-1/2} \end{pmatrix} = X^T A R^{-1/2}$$

Bonus-1: By above we can directly get principal components.

$$\frac{\text{Projected}}{\text{data}} = XV = XX^{T}AR^{-1/2} = KAR^{-1/2} = ARR^{-1/2} = AR^{1/2}$$

Bonus-2: Eigendecomposition shows rows of $AR^{1/2}$ yield the same Gram matrix.

$$K = XX^{T} = ARA^{T} = AR^{1/2}R^{1/2}A^{T} = (AR^{1/2})(AR^{1/2})^{T}$$

Question: Given only the Euclidean distances between points $d_{ij} = ||x_i - x_j||...$ Can we recover the configuration of points (up to rigid motion)?

Answer: Yes! Observe that

$$d_{ij}^2 = ||x_i - x_j||^2 = \langle x_i - x_j, x_i - x_j \rangle = ||x_i||^2 + ||x_j||^2 - 2\langle x_i, x_j \rangle$$

Removing mean $\mu = \frac{1}{n} \sum_i x_i$ from the data can be achieved by "double-centering"

$$K_{ij} := \langle x_i - \mu, x_j - \mu \rangle = -\frac{1}{2} \left(d_{ij}^2 - \frac{1}{n} \sum_j d_{ij}^2 - \frac{1}{n} \sum_i d_{ij}^2 + \frac{1}{n^2} \sum_{i,j} d_{ij}^2 \right)$$

Amazingly we have the mean-centered Gram matrix K solely in terms d_{ij} ! If we use the i-th rows of $AR^{1/2}$ as coordinates for x_i , i.e. letting $AR^{1/2}$ be the $n \times q$ data matrix, then we win.

$$x_i = \left(\sqrt{\rho_1} a_{1i}, \dots, \sqrt{\rho_q} a_{qi}\right)^T$$

Not all distances come from Euclidean space!

Perfect Euclidean representation is sometimes impossible

Example: Here each edge is distance 1 and d(A,D)=d(B,C)=2.

Not all distances come from Euclidean space!

Perfect Euclidean representation is sometimes impossible

Example: Here each edge is distance 1 and d(A,D)=d(B,C)=2.

 $\Rightarrow B$ is the midpoint of AD

Not all distances come from Euclidean space!
Perfect Euclidean representation is sometimes impossible

Example: Here each edge is distance 1 and d(A,D)=d(B,C)=2.

- $\Rightarrow B$ is the midpoint of AD
- \Rightarrow C is also the midpoint of AD

Not all distances come from Euclidean space!

Perfect Euclidean representation is sometimes impossible

Example: Here each edge is distance 1 and d(A,D)=d(B,C)=2.

- $\Rightarrow B$ is the midpoint of AD
- \Rightarrow C is also the midpoint of AD
- $\Rightarrow B = C$ even though d(B, C) = 2

Contradiction!

Bonus: The algorithm is still useful even if d_{ij} is non-Euclidean b/c we don't need dot products to know K.

$$K_{ij} = -\frac{1}{2} \left(d_{ij}^2 - \frac{1}{n} \sum_{j} d_{ij}^2 - \frac{1}{n} \sum_{i} d_{ij}^2 + \frac{1}{n^2} \sum_{i,j} d_{ij}^2 \right)$$

Algorithm: Write $K = ARA^T \approx A_q R_q A_q^T$ where we keep the q largest eigvals>0. Return $A_q R_q^{1/2}$ as data matrix.

Theorem: The d_{ij} can be perfectly realized as Euclidean points if and only if K is SPSD.

Theorem: This algorithm minimizes "Strain" which is given by

$$Strain(x_1, \dots, x_n) = \sum_{i,j=1}^{n} (K_{ij} - \langle x_i, x_j \rangle)^2$$

Stress Minimizing MDS

Other approaches directly minimize the "Stress" which is given by

$$Stress(x_1, ..., x_n) = \sum_{i,j=1}^{n} (d_{ij} - ||x_i - x_j||)^2$$

These approaches need to be iterative and there is no closed form solution

PCA via Reconstruction Error

Minimize Reconstruction Error subject to constraint

$$\min_{V} \sum_{i} \|x_i - V_d V_d^T x_i\|^2$$

Subject to
$$V_d^T V_d = I$$

PCA via Reconstruction Error

Minimize Reconstruction Error subject to constraint

$$\underset{V}{\text{minimize}} \qquad \sum_{i} \|x_i - V_d V_d^T x_i\|^2$$

Subject to

$$V_d^T V_d = I$$

Linear Autoencoder

→ Deep Autoencoders

Introduce nonlinearities + Minimize reconstruction error.

Pros:

Far more general than PCA. Can be trained online. Out-of-Sample Extension & Preimage are immediate.

Cons:

Lots of hyperparameters (architecture, activations, training, etc). Changing latent dimension means retraining.

Deep Hidden Representations

Many supervised DNNs discover good hidden representations.

Take the hidden representation of deep networks as embedding.

Examples such as Word2Vec show the wide utility of such approaches.

Nonlinear Dimensionality Enlargement?

$$\Phi: \mathbb{R}^p \to \mathbb{R}^?$$

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle$$

Apply PCA/MDS upstairs

The Kernel Trick

Exists Feature Map:

$$\Phi: \mathbb{R}^p \to H$$

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle$$

Mercer Condition:

 $k\colon \Omega \times \Omega \to R$ is continuous, symmetric and the matrix $K_{ij} = k\big(x_i, x_j\big)$ is SPSD for every choice of $\{x_1, \dots, x_n\}$ in Ω .

Kernel PCA (KPCA)

To do PCA, same argument for Gram matrix works here

Claim: If
$$Ka=\rho a$$
 and $\rho\neq 0$ define $v=\frac{1}{\sqrt{\rho}}X^Ta$. Then $||v||=||a||$ and $Cv=\frac{\rho}{n-1}v$. (Here $X^Ta=a_1\Phi(x_1)+\cdots+a_n\Phi(x_n)$)

But we must do double centering first

$$K' = K - 1_n K - K 1_n + 1_n K 1_n$$

Then correctly projected data is given by $AR^{1/2}$

TOPOLOGY AND RIEMANNIAN GEOMETRY

Compact manifolds

Manifold with Boundary

Closed manifolds

1D Compact Manifolds

Curve Segments

Closed Loops

2D Closed Orientable Manifolds

Riemannian Metrics and Geodesics

Riemannian metric $g_{ij}=g\left(\partial_i,\partial_j\right)$ gives local notion of scale and angle

This yields a notion of arclength of for smooth curves.

Geodesic distance from p to q is arclength of shortest path from p to q on manifold.

Not very interesting on 1D manifolds.

Intrinsic Curvature

Zero Curvature

Positive Curvature

MANIFOLD LEARNING

Isomap

Replace point cloud with a neighborhood graph.

Trust local distances.

Geodisic distance ↔ Shortest graph path

Create matrix G of all pairwise geodesic distances

Find low-dimensionsal embedding by applying cMDS on G.

Spectral Graph Theory Perspective:

Treat data as weighted graph (vertices are data points)

• Close or similar data points ightarrow High weights $\mathbf{w}_{ij} \geq 0$

Idea: Embed vertices into \mathbb{R}^d in way that minimizes spring-like potential

$$\underset{\substack{R^T R = I \\ R^T \mathbf{1} = 0}}{\operatorname{arg \, min}} \quad \frac{1}{2} \sum_{i,j} w_{ij} \| \rho(v_i) - \rho(v_j) \|^2$$

Can be solved by finding eigenvectors of $\boldsymbol{L} = \boldsymbol{D} - \boldsymbol{W}$

Graph
Laplacian
Matrix

Laplace-Beltrami Operator (a.k.a The Laplacian)

Riemannian Metric:

$$g_{ij} = g\left(\partial_i, \partial_j\right)$$

Coordinate-Free:

$$\Delta_g f = \operatorname{div}_g \nabla_g f$$

In Coordinates:

$$\Delta_g f = \frac{1}{\sqrt{|\det(g)|}} \sum_{ij} \partial_i \left(\sqrt{|\det(g)|} \ g^{ij} \ \partial_j f \right)$$

Examples:

$$\Delta_{\mathbb{R}^2} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \qquad \Delta_{\mathbb{S}^2} = \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \varphi^2}$$

Spectral Geometry

Neumann Eigenvalues/Eigenfunctions

For compact M

$$-\Delta_{M} \varphi_{i} = \lambda_{i} \varphi_{i}, \quad \text{in int}(M)$$

$$\frac{\partial \varphi_{i}}{\partial \hat{n}} = 0, \quad \text{in } \partial M$$

$$0 = \lambda_0 \le \lambda_1 \le \lambda_2 \le \cdots \to \infty$$

Weyl's Law (1911) for closed M says eigenvalues determine volume.

John Milnor (1964) found non-isometric 16-dimensional torii with same eigenvalues.

Spectral Embedding

Let *M* be closed and t>0

$$\psi_t: M \to \ell^2$$

$$x \mapsto \left\{ e^{-\lambda_j t} \varphi_j(x) \right\}_{j=1}^{\infty}$$

P. Bérard, et. al. (1994) showed that continuously embeds M into ℓ^2 .

Jones, Maggioni, Schul (2013) showed one can do something similar to obtain local charts.

Laplacian Eigenmaps

Dataset:
$$D = \{x_i\}_{i=1}^m \in \mathbb{R}^N$$

Construct Kernel Weight Matrix:

$$K_{ij} = \exp\left(-\frac{\left|x_i - x_j\right|^2}{\epsilon}\right)$$

Degree Normalize:

$$P_{ij} = \frac{K_{ij}}{d_i}$$
 where $d_i = \sum_j K_{ij}$

Get Eigenvalues:

$$1 \ge \lambda_0 \ge \cdots \ge \lambda_{m-1} \ge 0$$

Get Eigenvectors:

$$w_k = (w_{1k}, w_{2k}, ..., w_{mk})^T$$

Laplacian Eigenmaps:

$$\Psi: D \to \mathbb{R}^{\wedge} d$$

$$\Psi(x_i) = (w_{i1}, w_{i2}, ..., w_{id})^T$$

$$d \in \{1, 2 ..., m - 1\}$$

Scale Parameter ϵ

Parameter ϵ controls influence of neighbors:

- Larger ϵ → Coarser scale (Global features)
- Smaller $\epsilon \to \text{Finer scale}$ (Local features)

$$K_{ij} = \exp\left(-\frac{\left|x_i - x_j\right|^2}{\epsilon}\right)$$

Trefoil 2D image as ϵ goes to zero:

- Tangled → Untangled
- Sampling density matters
- Unstable as ϵ gets too small (not shown)

Connection to Laplace-Beltrami Operator

If M is sampled uniformly \rightarrow Eigenvectors in Laplacian Eigenmaps correspond to Neumann eigenfunctions of Δ_M ... Namely $w_{ik} \approx \varphi_k(x_i)$.

Eigenvectors are highly sensitive to sampling distribution.

Laplacian Eigenmaps ≈ discrete truncation of the continuous spectral embedding

EXAMPLE: Unit Interval [0,1]

EXAMPLE: Unit Sphere

Sampling of the Sphere

Laplacian Eigenmap Components ≈ Spherical Harmonics

EXAMPLE: Flat Torus

$f(\theta, \varphi) = (\cos \theta, \sin \theta, \cos \varphi, \sin \varphi) \in \mathbb{R}^4$

DIFFUSION DISTANCE

$$D_t^2(p,q) = ||f_t^p - f_t^q||_2^2 = \int_M |f_t^p - f_t^q|^2 dx$$

Diffusion Maps - Nonlinear Denoising

Recall Laplacian Eigenmaps

Dataset:
$$D = \{x_i\}_{i=1}^m \in \mathbb{R}^N$$

Construct Kernel Weight Matrix:

$$K_{ij} = \exp\left(-\frac{|x_i - x_j|^2}{\epsilon}\right)$$
 $d_i = \sum_j K_{ij}$

Degree Normalize:

$$P_{ij} = \frac{K_{ij}}{d_i}$$

Get Eigenvalues:

$$1 \ge \lambda_0 \ge \cdots \ge \lambda_{m-1} \ge 0$$

Get Eigenvectors:

$$w_k = (w_{1k}, w_{2k}, ..., w_{mk})^T$$

Laplacian Eigenmaps:

$$\Psi: D \to \mathbb{R}^{\wedge} d$$

$$\Psi(x_i) = (w_{i1}, w_{i2}, ..., w_{id})^T$$

$$d \in \{1, 2 ..., m - 1\}$$

Data set:

$$D = \{x_i\}_{i=1}^m \subseteq \mathbb{R}^N$$

Parameters:

$$0 \le \alpha \le 1, \epsilon > 0$$

Data set:

$$D = \{x_i\}_{i=1}^m \subseteq \mathbb{R}^N$$

Parameters:

$$0 \le \alpha \le 1, \epsilon > 0$$

Kernels, Operators and Densities:

Isotropic Kernel
$$K_{\epsilon}(x,y) = \exp\left(-\frac{\|x-y\|^2}{\epsilon}\right)^{\text{Kernel Density Estimate}} q_{\epsilon}(x) = \sum_{\cdot} K_{\epsilon}(x,x_j)$$

$$q_{\epsilon}(x) = \sum K_{\epsilon}(x, x_j)$$

Anisotropic Kernel

$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$

Anisotropic Kernel Density

Anisotropic Kernel
$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$
 Anisotropic Kernel Density Estimate $d_{\epsilon,\alpha}(x) = \sum_{j} S_{\epsilon,\alpha}(x,x_{j})$

$$J_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon,\alpha}(x,y)}{\sqrt{d_{\epsilon,\alpha}(x)d_{\epsilon,\alpha}(y)}} \quad \begin{array}{c} \text{Random Walk Kernel} \\ P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)} \end{array}$$

$$P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)}$$

Data set:

$$D = \{x_i\}_{i=1}^m \subseteq \mathbb{R}^N$$

Parameters:

$$0 \le \alpha \le 1, \epsilon > 0$$

Kernels, Operators and Densities:

Isotropic Kernel
$$K_{\epsilon}(x,y) = \exp\left(-\frac{\|x-y\|^2}{\epsilon}\right)^{\text{Kernel Density Estimate}} q_{\epsilon}(x) = \sum_{j} K_{\epsilon}(x,x_j)$$

$$q_{\epsilon}(x) = \sum K_{\epsilon}(x, x_j)$$

Anisotropic Kernel

$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$

Anisotropic Kernel
$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$
 Anisotropic Kernel Density Estimate $d_{\epsilon,\alpha}(x) = \sum_{j} S_{\epsilon,\alpha}(x,x_{j})$

$$J_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon,\alpha}(x,y)}{\sqrt{d_{\epsilon,\alpha}(x)d_{\epsilon,\alpha}(y)}} \quad \begin{array}{c} \text{Random Walk Kernel} \\ P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)} \end{array}$$

$$P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)}$$

Matrices:

$$J_{\epsilon,\alpha}[i,j] = J_{\epsilon,\alpha}(x_i,x_j)$$

$$P_{\epsilon,\alpha}[i,j] = P_{\epsilon,\alpha}(x_i, x_j)$$

Data set:

$$D = \{x_i\}_{i=1}^m \subseteq \mathbb{R}^N$$

Parameters:

$$0 \le \alpha \le 1, \epsilon > 0$$

Need:

Spectral decomposition of $P_{\epsilon,\alpha}[i,j]$

Kernels, Operators and Densities:

Isotropic Kernel
$$K_{\epsilon}(x,y) = \exp\left(-\frac{\|x-y\|^2}{\epsilon}\right)^{\text{Kernel Density Estimate}} q_{\epsilon}(x) = \sum_{j} K_{\epsilon}(x,x_j)$$

$$q_{\epsilon}(x) = \sum K_{\epsilon}(x, x_j)$$

$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$

Anisotropic Kernel
$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$
 Anisotropic Kernel Density Estimate
$$d_{\epsilon,\alpha}(x) = \sum_{j} S_{\epsilon,\alpha}(x,x_{j})$$
 Diffusion Maps Kernel

$$J_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon,\alpha}(x,y)}{\sqrt{d_{\epsilon,\alpha}(x)d_{\epsilon,\alpha}(y)}} \quad \begin{array}{c} \text{Random Walk Kernel} \\ P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)} \end{array}$$

$$P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)}$$

Matrices:

$$J_{\epsilon,\alpha}[i,j] = J_{\epsilon,\alpha}(x_i,x_j)$$

$$P_{\epsilon,\alpha}[i,j] = P_{\epsilon,\alpha}(x_i, x_j)$$

Data set:

$$D = \{x_i\}_{i=1}^m \subseteq \mathbb{R}^N$$

Parameters:

$$0 \le \alpha \le 1, \epsilon > 0$$

Kernels, Operators and Densities:

Isotropic Kernel
$$K_{\epsilon}(x,y) = \exp\left(-\frac{\|x-y\|^2}{\epsilon}\right)^{\text{Kernel Density Estimate}} q_{\epsilon}(x) = \sum_{j} K_{\epsilon}(x,x_j)$$
 Anisotropic Kernel Density

$$q_{\epsilon}(x) = \sum K_{\epsilon}(x, x_j)$$

Anisotropic Kernel

$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$

nisotropic Kernel
$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$
 Anisotropic Kernel Density Estimate $d_{\epsilon,\alpha}(x) = \sum_{j} S_{\epsilon,\alpha}(x,x_{j})$

$$J_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon,\alpha}(x,y)}{\sqrt{d_{\epsilon,\alpha}(x)d_{\epsilon,\alpha}(y)}} \quad \begin{array}{c} \text{Random Walk Kernel} \\ P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)} \end{array}$$

$$P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)}$$

Matrices:

$$J_{\epsilon,\alpha}[i,j] = J_{\epsilon,\alpha}(x_i,x_j)$$

$$P_{\epsilon,\alpha}[i,j] = P_{\epsilon,\alpha}(x_i,x_j)$$

Need:

Spectral decomposition of $P_{\epsilon,\alpha}[i,j]$

Eigenvalues:

$$1 \ge \lambda_0 \ge \dots \ge \lambda_{m-1} \ge 0$$

Eigenvectors:

$$w_k = (w_{1k}, \dots, w_{mk})^T$$

Data set:

$$D = \{x_i\}_{i=1}^m \subseteq \mathbb{R}^N$$

Parameters:

$$0 \le \alpha \le 1, \epsilon > 0$$

Kernels, Operators and Densities:

Isotropic Kernel
$$K_{\epsilon}(x,y) = \exp\left(-\frac{\|x-y\|^2}{\epsilon}\right)^{\text{Kernel Density Estimate}} q_{\epsilon}(x) = \sum_{j} K_{\epsilon}(x,x_j)$$

$$q_{\epsilon}(x) = \sum K_{\epsilon}(x, x_j)$$

Anisotropic Kernel

$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$

nisotropic Kernel
$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}}$$
 Estimate $d_{\epsilon,\alpha}(x) = \sum_{j} S_{\epsilon,\alpha}(x,x_{j})$

Diffusion Maps Kernel

$$J_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon,\alpha}(x,y)}{\sqrt{d_{\epsilon,\alpha}(x)d_{\epsilon,\alpha}(y)}} \quad \begin{array}{c} \text{Random Walk Kernel} \\ P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)} \end{array}$$

$$P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)}$$

Matrices:

$$J_{\epsilon,\alpha}[i,j] = J_{\epsilon,\alpha}(x_i,x_j)$$

$$P_{\epsilon,\alpha}[i,j] = P_{\epsilon,\alpha}(x_i, x_j)$$

Need:

Spectral decomposition of $P_{\epsilon,\alpha}[i,j]$

Eigenvalues:

$$1 \ge \lambda_0 \ge \dots \ge \lambda_{m-1} \ge 0$$

Eigenvectors:

$$w_k = (w_{1k}, \dots, w_{mk})^T$$

Diffusion

Maps:

$$\Psi: D \to \mathbb{R}^d$$

$$\Psi(x_i) = (\lambda_1^t w_{i1}, \dots, \lambda_d^t w_{id})^T$$

$$d \in \{1, ..., m-1\}, t \ge 0$$

Significance of Parameter lpha

Sample with density q on M:

$$(\alpha=0) \rightarrow \text{Laplacian Eigenmaps}$$

$$(\alpha = 1/2) \rightarrow Intermediate$$
 (Fokker-Planck operator)

$$(\alpha = 1) \rightarrow Independent of sampling$$

$$L_{\epsilon,\alpha} = \frac{I - P_{\epsilon,\alpha}}{\epsilon}$$

$$\lim_{\epsilon \to 0} L_{\epsilon,\alpha} f = \frac{\Delta_M(fq^{1-\alpha})}{q^{1-\alpha}} + \frac{\Delta_M(q^{1-\alpha})}{q^{1-\alpha}} f$$

Large data limit

Out-of-Sample-Extension (OOSE)

 $J_{\epsilon,lpha}$ is a data-dependent Mercer kernel ightarrow Diffusion maps related KPCA

$$K_{\epsilon}(x,y) = \exp\left(-\frac{\|x-y\|^2}{\epsilon}\right) \qquad q_{\epsilon}(x) = \sum_{j} K_{\epsilon}(x,x_{j})$$

$$S_{\epsilon,\alpha}(x,y) = \frac{K_{\epsilon}(x,y)}{q_{\epsilon}(x)^{\alpha}q_{\epsilon}(y)^{\alpha}} \qquad d_{\epsilon,\alpha}(x) = \sum_{j} S_{\epsilon,\alpha}(x,x_{j})$$

$$J_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon,\alpha}(x,y)}{\sqrt{d_{\epsilon,\alpha}(x)d_{\epsilon,\alpha}(y)}} \qquad P_{\epsilon,\alpha}(x,y) = \frac{S_{\epsilon}(x,y)}{d_{\epsilon,\alpha}(x)}$$

Some algebra + KPCA theory yields associated smooth extension formula

$$f_k(x) = \lambda^{t-1} \sum_{j=1}^m P_{\epsilon,\alpha}(x, x_j) w_{jk}$$

$$Agreement on data$$

$$f_k(x_i) = \lambda^{t-1} \sum_{j=1}^m P_{\epsilon,\alpha}[i,j] w_{jk} = \lambda_k^{t-1} \lambda_k w_{ik} = \Psi(x_i)_k$$

STOCHASTIC DYNAMICAL SYSTEMS

Ongoing work with Paul J. Atzberger

NLDR of simulations

In some (stochastic) dynamical systems, the overall behavior doesn't deviate far from a manifold.

Applying Diffusion Maps to molecular dynamics can reveal reaction coordinates (right)

Rohrdanz, Zheng, Maggioni, Clementi (2011)

Itô diffusion

Integral Form:

$$X_{t} = X_{0} + \int_{0}^{t} a(s, X_{s})ds + \int_{0}^{t} b(s, X_{s})dW_{t}$$
Ordinary
Integral
Integral

Differential Notation:

$$dX_t = a(t, X_t)dt + b(t, X_t)dW_t$$
Drift Term Diffusion Term

Itô Lemma (Stochastic Chain Rule):

$$d[f(t,X_t)] = \frac{\partial f}{\partial t}(t,X_t)dt + \frac{\partial f}{\partial x}(t,X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t,X_t)dX_t \cdot dX_t$$

$$dt \cdot dt = dt \cdot dW_t = 0 \text{ and } dW_t \cdot dW_t = dt$$

Geometric Brownian Motion (1D)

Langevin Dynamics (2D)

Itô Diffusion Assumption

 $X_t \in \mathbb{R}^N$ High dimensional SDE:

$$Z_t = \Psi(X_t) \in \mathbb{R}^n$$
 (n<< N) Low dimensional SDE:
$$dZ_t = \tilde{a}(Z_t)dt + \tilde{b}(Z_t)dW_t$$

Downsample (Optional)

Apply Diffusion Maps

Estimate Drift and Diffusion Coefficients

REFERENCES

- M. Kac, "Can One Hear the Shape of a Drum?" (1966).
- D. E. Rumelhart, G. E. Hinton, R. J. Williams, "Learning representations by back-propagating errors." (1986).
- B. Schölkopf, A. Smola, K. R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem." (1998).
- M. do Carmo, "Riemmanian Geometry." (1992).
- P. Bérard, G. Besson, S. Gallot, "Embedding Riemannian Manifolds by their Heat Kernel." (1994)
- F. R. Chung, "Lectures on spectral graph theory." CBMS Lectures, Fresno, (1996).
- I. T. Jolliffe, "Principal Component Analysis." 2nd Edition (2002).
- B. Øksendal, "Stochastic Differential Equations: An Introduction with Applications." (2003).
- M. Belkin, P. Niyogi, "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation." (2003).
- Y. Bengio, J. F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, M. Ouimet, "Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering." (2004)
- R. Coifman, S. Lafon, "Diffusion Maps." (2006).
- M. A. A. Cox, and T. F. Cox., "Multidimensional scaling." (2008).
- P.W. Jones, M. Maggioni, R. Schul, "Manifold Parametrizations by eigenfunctions of the Laplacian and heat kernels." (2008).
- R. Coifman, I.G. Kevrekidis, S. Lafon, M. Maggioni, B. Nadler, "Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems." (2008).
- L. Maaten, E. Postma, J. Herik, "Dimensionality Reduction: A Comparative Review." (2009)
- M. A. Rohrdanz, W. Zheng, M. Maggioni, C. Clementi, "Determination of reaction coordinates via locally scaled diffusion map." (2011).
- T. Mikolov, K. Chen, G. Corrado, J. Dean, "Efficient estimation of word representations in vector space." (2013).
- H. Strange, R. Zwiggelaar, "Open Problems in Spectral Dimensionality Reduction." (2014).

THANK YOU FOR YOUR TIME!