Exercice 1 : (Les questions 1 et 2 sont indépendantes)

1. On peut énumérer les entiers relatifs ainsi :

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots, n, -n, \dots\}$$

Soit $f: \mathbb{N} \to \mathbb{Z}$ l'application réalisant cette énumération, c'est-à-dire telle que :

$$(f(0), f(1), f(2), f(3), f(4), f(5), f(6), \ldots) = (0, 1, -1, 2, -2, 3, -3, \ldots)$$

- (a) Soit $n \in \mathbb{N}$. Déterminer explicitement f(n) en fonction de n (on pourra utiliser la notation de la partie entière d'un réel.).
- (b) Montrer que f est bijective et déterminer l'application réciproque f^{-1} .
- 2. On va montrer ici qu'il existe une bijection de \mathbb{N} sur \mathbb{N}^2 . Pour tout entier naturel p, on notera S_p la somme définie par $S_p = \sum_{k=0}^{p} k$.
 - (a) Pour $p \in \mathbb{N}$, rappeler la valeur de S_p et déterminer $\lim_{p \to +\infty} S_p$. Pour tout entier naturel n, on en déduit qu'il existe un plus grand entier p tel que $S_p \leqslant n$. On notera p_n cet entier. Autrement dit, pour tout entier naturel n, l'entier p_n est caractérisé par la propriété : $S_{p_n} \leqslant n < S_{1+p_n}$.

Dans la suite, on notera g l'application de $\mathbb N$ dans $\mathbb N^2$ définie par :

$$\forall n \in \mathbb{N}, g(n) = (n - S_{p_n}, S_{1+p_n} - 1 - n).$$

- (b) Calculer g(0) puis g(1) et g(2), puis g(3), g(4) et g(5).
- (c) Soit $(p,q) \in \mathbb{N}^2$. On suppose que n est un entier naturel tel que g(n) = (p,q). Calculer p+q et en déduire une expression de n en fonction de S_{p+q} et p.
- (d) Montrer que g est bijective et déterminer l'application réciproque g^{-1} .

Exercice 2:

- 1. Quel est le domaine de définition de la fonction qui à un réel x associe $1 + \tan^2(\pi x)$?
- 2. Pour $x \in \left[\frac{1}{2}, \frac{3}{2}\right]$, on pose $f(x) = 1 + \tan^2(\pi x)$.
 - (a) Dresser le tableau de variations de f sur $\left|\frac{1}{2}, \frac{3}{2}\right|$.
 - (b) L'application $f: \left] \frac{1}{2}, \frac{3}{2} \right[\to \mathbb{R}$ est-elle injective? Surjective?
 - (c) Déterminer un ensemble J tel que $f: \left]\frac{1}{2}, \frac{3}{2}\right[\to J$ soit surjective.
 - (d) Soit J l'ensemble déterminé à la question précédente. Montrer que f réalise une bijection de $\left[1,\frac{3}{2}\right[$ sur J et déterminer l'application réciproque f^{-1} .

Exercice 3:

Soit a et b des réels strictement positifs. Soit (u_n) la suite définie par : $\begin{cases} u_0 = a \\ \text{et} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{b}{u_n^2} \end{cases}$

- 1. Proposer une fonction Python prenant en entrée a, b et n, et donnant en sortie la valeur de u_n .
- 2. Montrer que, pour tout entier $n \ge 0$, il existe des entiers relatifs α_n et β_n tels que $u_n = a^{\alpha_n} b^{\beta_n}$. De quels types sont les suites $(\alpha_n)_{n \in \mathbb{N}}$ et $(\beta_n)_{n \in \mathbb{N}}$?

Indication: on montrera par récurrence que la proposition $\exists (\alpha_n, \beta_n) \in \mathbb{Z}^2 / u_n = a^{\alpha_n} b^{\beta_n}$ est vraie pour tout entier naturel n. Pour cela, on définira convenablement α_0 et β_0 dans l'initialisation puis on définira α_{n+1} et β_{n+1} en fonction de α_n et β_n dans l'étape d'hérédité.

- 3. Déterminer les expressions de $\alpha_n, \, \beta_n$ puis u_n en fonction de n.
- 4. Dans quels cas la suite (u_n) converge-t-elle?