Obligatorisk Innlevering 10

Eirik Isene

29. oktober 2013

Oppgave 17.9

- a) $R^M = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$
- b) $R^M = \{(1, 1), (1, 2)\}$
- c) $R^M = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle\}$
- d) $R^M = \{\langle 1, 2 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle\}$

Oppgave 17.12

Oppgave a)

Vis at $Pa \lor Pb \to \exists xPx$ er gyldig Ved motsigelsesbevis:

- 1. Vi prøver å gjøre $Pa \lor Pb \to \exists xPx$ usann
- 2. Det medfører at $Pa \vee Pb$ må være sann
- 3. Det medfører at Pa er sann, eller at Pb er sann
- 4. Det medfører at det finnes en x som gjør Px sann
- 5. Det medfører at hele formelen er sann, ergo er den ikke falsifiserbar, men gyldig.

Oppgave b)

Vis at $\forall x Px \rightarrow Pa \land Pb$ er gyldig Ved motsigelsesbevis:

- 1. Vi prøver å gjøre $\forall x Px \rightarrow Pa \land Pb$ usann
- 2. Det medfører at $\forall xPx$ må være sann
- 3. Det medfører at Pa er sann og Pb er sann
- 4. Det medfører at $Pa \wedge Pb$ er sann
- 5. Det medfører at hele formelen er sannm ergo er den ikke falsifiserbar, men gyldig.