

OUTLINE OF CHAPTER 2

Basic Definition Axiomatic Definition of Boolean Algebra

Basic Theorems and Properties of Boolean Algebra Boolean Functions

Canonical and Standard Forms Other Logic Operations

Digital Logic Gates

Integrated Circuits

- What is an algebra?
 - Mathematical system consisting of
 - Set of elements
 - Set of operators
 - Axioms or postulates
- Why is it important?
 - Defines rules of "calculations"

- Example: arithmetic on natural numbers
 - Set of elements: $N = \{1,2,3,4,...\}$
 - Operator: +, -, *
 - Axioms: associativity, distributivity, closure, identity elements, etc.
- Note: operators with two inputs are called <u>binary</u>
 - Does not mean they are restricted to binary numbers!
 - Operator(s) with one input are called <u>unary</u>

- A set is collection of having the same property.
 - S: set, x and y: element or event
 - For example: $S = \{1, 2, 3, 4\}$
 - If x = 2, then $x \in S$.
 - If y = 5, then $y \notin S$.

- A *binary operator* defines on a set *S* of elements is a rule that assigns, to each pair of elements from *S*, a unique element from *S*.
 - For example: given a set S, consider $x^*y = z$.
 - * is a binary operator.
 - If (x, y) through * get z and $x, y, z \in S$, then
 - * is a binary operator of S.
 - if * is not a binary operator of S and X, $Y \in S$, then
 - $z \notin S$.

The most common postulates used to formulate various algebraic structures are as follows:

- 1. Closure. A set *S* is closed with respect to a binary operator if,
 - For every pair of elements of *S*, the binary operator specifies a rule for obtaining a unique element of *S*.
 - For example, natural numbers N={1,2,3,...} is closed with respect to the binary operator + by the rule of arithmetic addition, since, for any x, y∈N, there is a unique z∈N such that
 - $\bullet \quad x+y=z$
 - But operator is not closed for N, because 2-3 = -1 and $2, 3 \in N$, but
 - (-1)*∉N*.

- 2. Associative law. A binary operator * on a set *S* is said to be associative whenever
 - (x * y) * z = x * (y * z) for all $x, y, z \in S$
 - (x+y)+z = x+(y+z)
- 3. Commutative law. A binary operator * on a set 5 is said to be commutative whenever
 - x * y = y * x for all $x, y \in S$
 - x+y=y+x

- **4. Identity element.** A set **S** is said to have an identity element with respect to a binary operation * on **S** if there exists an element $e \in S$ with the property that
 - e * x = x * e = x for every $x \in S$
 - 0 + x = x + 0 = x for every $x \in I$. $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.
 - 1 * x = x * 1 = x for every $x \in I$. $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.

5. Inverse. A set S is having the identity element e with respect to the binary operator to have an inverse whenever, for every $x \in S$, there exists an element $y \in S$ such that

$$- x * y = e$$

• In the set of integers, I, the operator + over I with e = 0, the inverse of an element x is (-x) since x+(-x)=0.

6. Distributive law. If * and · are two binary operators on a set **S**, * is said to be distributive over · whenever

$$- x * (y \cdot z) = (x * y) \cdot (x * z)$$

- The field of real numbers is the basis for arithmetic and ordinary algebra. The operators and postulates have the following meanings:
 - The binary operator + defines addition.
 - The additive identity is 0.
 - The additive inverse defines subtraction.
 - The binary operator defines multiplication.
 - The multiplicative identity is 1.
 - The multiplicative inverse of x = 1/x defines division, i.e., $x \cdot 1/x = 1$.
 - The only distributive law applicable is that of over +:
 - $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$

- We need to define algebra for binary values
 - Developed by George Boole in 1854
- Huntington postulates for Boolean algebra (1904):
- $B = \{0, 1\}$ and two binary operations, + and
 - 1. Closure with respect to operator + and operator •
 - 2. Identity element 0 for operator + and 1 for operator •
 - 3. Commutativity with respect to + and ·

$$x+y=y+x$$
, $x\cdot y=y\cdot x$

- 4. Distributivity of over +, and + over
 - $x\cdot(y+z) = (x\cdot y)+(x\cdot z)$ and $x+(y\cdot z) = (x+y)\cdot(x+z)$
- 5. Complement for every element x is x' with x+x'=1, $x\cdot x'=0$
- 6. There are at least two elements $x,y \in B$ such that $x \neq y$
- Terminology:
 - Literal: A variable or its complement
 - Product term: literals connected by •
 - Sum term: literals connected by +

- A two- valued Boolean algebra is defined:
 - on a set of two elements, $B = \{0,1\}$,
 - with rules for the two binary operators + and •
 - The rules of operations: AND \ OR and NOT

<u>X</u>	Υ	<u> </u>
0	0	0
0	1	0
1	0	0
1	1	1

AND

X	Υ	X + Y
0	0	0
0	1	1
1	0	1
1	1	1

OR

NOI					
X	X				
1	0				
0	1				

- Huntington postulates for the set $B = \{0,1\}$ and the two binary operators defined before.
- 1. Closure law
 - 1,0∈B
- 2. Identity laws
 - 0 for + and 1 for ·
- 3. Commutative laws
 - $x+y=y+x, \quad x\cdot y=y\cdot x$
- 4. Distributive laws
 - $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$

Distributive laws

X	У	Z	y + z	$x \cdot (y + z)$	$x \cdot y$	x · z	$(x\cdot y)+(x\cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

- 5. Complement
 - $x+x'=1 \rightarrow 0+0'=0+1=1; 1+1'=1+0=1$
- 6. Has two distinct elements
 - 1 and 0, with 0 ≠ 1
- Note
 - A set of two elements
 - − +: OR operation; ·: AND operation
 - A complement operator: NOT operation
 - Binary logic is a two-valued Boolean algebra

- Duality Principle says that:
 - if an expression is valid in Boolean algebra, then
 - the dual of that expression is also valid.
- To form the dual of an expression:
 - replace all + operators with operators,
 - all · operators with + operators,
 - all 1's with 0's, and all 0's with 1's.

Form the dual of the expression

$$X + (YZ) = (X + Y)(X + Z)$$

Following the replacement rules...

$$\chi(y + z) = \chi y + \chi z$$

• Take care not to alter the location of the parentheses if they are present.

Postulates and	Theorems (of Boolean	Algebra
----------------	------------	------------	---------

Postulate 2, identity	(a) $x + 0 = x$	(b) $x \cdot 1 = x$
Postulate 5, complementarity	(a) $x + x' = 1$	(b) $x \cdot x' = 0$
Theorem 1, idempotent	(a) $x + x = x$	(b) $x \cdot x = x$
Theorem 2, involution	(a) $x + 1 = 1$	(b) $x \cdot 0 = 0$
Theorem 3, involution	(>	<')' = x
Postulate 3, commutative	(a) $x + y = y + x$	(b) $xy = yx$
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Postulate 4, distributive	(a) $x (y + z) = xy + xz$	(b) $x + yz = (x + y) (x + z)$
Theorem 5, DeMorgan	(a) $(x + y)' = x' y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) $x(x+y) = x$

- Need more rules to modify algebraic expressions
 - Theorems that are derived from postulates
- What is a theorem?
 - A formula or statement that is derived from postulates (or other proven theorems)
- Basic theorems of Boolean algebra
 - Theorem 1 (a): x + x = x (b): $x \cdot x = x$
 - Looks straightforward, but needs to be proven!

- Theorem 1 (a) show that x+x = x.
- $x+x = (x+x) \cdot 1$ by 2(b)
 - = (x+x)(x+x') by 5(a)
 - $= x + xx' \qquad \text{by 4(b)}$
 - = x+0 by 5(b)
 - = x by 2(a)

- Post. 2: (a) x+0=x, (b) $x\cdot 1=x$
- Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$
- Post. 4: (a) x(y+z) = xy+xz, (b) x+yz = (x+y)(x+z)
- Post. 5: (a) x+x'=1, (b) $x \cdot x'=0$

We can now use Theorem 1(a) in future proofs

- Theorem 1 (b) show that $x \cdot x = x$.
- $x \cdot x = xx + 0$

$$= XX+XX'$$

$$= x(x+x')$$
 by 4(a)

$$= x \cdot 1$$

by 5(b)

• Post. 2: (a)
$$x+0=x$$
, (b) $x\cdot 1=x$

• Post. 3: (a)
$$x+y=y+x$$
, (b) $x\cdot y=y\cdot x$

• Post. 4: (a)
$$x(y+z) = xy+xz$$
,
(b) $x+yz = (x+y)(x+z)$

- Post. 5: (a) x+x'=1, (b) $x \cdot x'=0$
- Th. 1: (a) x+x=x,

- Theorem 2 (a) show that x+1 = 1.
- $x + 1 = 1 \cdot (x + 1)$ by 2(b)

$$=(x + x')(x + 1)$$
 by 5(a)

$$= x + x' 1$$
 by 4(b)

$$= x + x'$$
 by 2(b)

$$= 1$$
 by 5(a)

• Post. 2: (a)
$$x+0=x$$
, (b) $x\cdot 1=x$

• Post. 3: (a)
$$x+y=y+x$$
, (b) $x\cdot y=y\cdot x$

• Post. 4: (a)
$$x(y+z) = xy+xz$$
,
(b) $x+yz = (x+y)(x+z)$

- Post. 5: (a) x+x'=1, (b) $x \cdot x'=0$
- Th. 1: (a) x+x=x, (b) x.x=x

- Theorem 2(b): $x \cdot 0 = 0$ by duality
- Theorem 3: (x')' = x
 - Postulate 5 defines the complement of x,
 - x + x' = 1
 - $\mathbf{x} \cdot \mathbf{x}' = 0$
 - The complement of x' is x is also(x')'

- Post. 2: (a) x+0=x, (b) $x\cdot 1=x$
- Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$
- Post. 4: (a) x(y+z) = xy+xz, (b) x+yz = (x+y)(x+z)
- Post. 5: (a) x+x'=1, (b) $x\cdot x'=0$
- Th. 1: (a) x+x=x, (b) x.x=x
- Th. 2: (a) x+1=1

- Absorption Property (Covering)
 Theorem 6(a): x + xy = x
- $x + xy = x \cdot 1 + xy$ by 2(b) = x (1 + y) by 4(a) = x (y + 1) by 3(a) = $x \cdot 1$ by Th. 2(a) = x by 2(b)
- Theorem 6(b): x(x + y) = x by duality
- By means of truth table (another way to proof)

- Post. 2: (a) x+0=x, (b) $x\cdot 1=x$
- Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$
- Post. 4: x(a) x(y+z) = xy+xzx+xy(b) x+yz = (x+y)(x+z)
- Post. 5: $_{1}(a) x+x'=1$, $_{0}$ (b) $x\cdot x'=0$
- Th. 1: (a) x + x = x, $(b) x \cdot x = x$
- Th. 2: (a) x+1=1, (b) $x\cdot 0=0$

- DeMorgan's Theorem
- Theorem 5(a): (x + y)' = x'y'
- Theorem 5(b): (xy)' = x' + y'

By means of truth table

X	у	x'	y'	х+у	(x+y)'	x'y'	ху	x'+y'	(xy)'
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Consensus Theorem

1.
$$xy + x'z + yz = xy + x'z$$

2.
$$(x + y) \cdot (x' + z) \cdot (y + z) = (x + y) \cdot (x' + z) -- (dual)$$

Proof:

$$xy + x'z + yz = xy + x'z + (x + x') yz$$

= $xy + x'z + xyz + x'yz$
= $(xy + xyz) + (x'z + x'zy)$
= $xy + x'z$

- The operator precedence for evaluating Boolean Expression is
 - Parentheses
 - NOT
 - AND
 - OR
- Examples
 - -xy'+z
 - -(xy+z)'

BOOLEAN FUNCTIONS

- A Boolean function consists of:
 - Binary variables
 - Binary operators OR and AND
 - Unary operator NOT
 - Parentheses
 - The constants 0 and 1
- Examples

$$-F_1 = x y z'$$

$$- F_2 = x + y'z$$

$$- F_3 = x'y'z + x'yz + xy'$$

$$-F_4 = xy' + x'z$$

BOOLEAN FUNCTIONS

- For a given value of the binary variables, the function can be equal to either 1 or 0.
- Consider as an example the following Boolean function:
 - $F_1 = x + y'z$
 - The function $F_1 = 1$, if x = 1 OR if y' = 1 and z = 1.
 - $F_1 = 0$ otherwise.
- The complement operation dictates that when y' = 1 then y = 0.
- Therefore, we can say that
 - F1 = 1 if x = 1 OR if y = 0 and z = 1.

- A Boolean function expresses the logical relationship between binary variables.
- It is evaluated by determining the binary value of the expression for all possible values of the variables.
- A Boolean function can be represented in a truth table.

- The truth table of 2ⁿ entries
- $F_1 = x y z'$, $F_2 = x + y'z$, $F_3 = x' y' z + x' y z + x y'$, $F_4 = x y' + x' z$
- Two Boolean expressions may specify the same function $F_3 = F_4$

X	у	Z	x'	у′	z'	y'z	x'y'z	x'yz	xy'	x'z	F1	F2	F3	F4
0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	1	1	0	0	1	0	1	1	1
0	1	0	1	0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	1	0	1	0	0	1	1
1	0	0	0	1	1	0	0	0	1	0	0	1	1	1
1	0	1	0	1	0	1	0	0	1	0	0	1	1	1
1	1	0	0	0	1	0	0	0	0	0	1	1	0	0
1	1	1	0	0	0	0	0	0	0	0	0	1	0	0

• Implementation with logic gates

• F_4 is more economical

Algebraic Manipulation

- When a Boolean expression is implemented with logic gates,
 - Each term requires a gate
 - Each variable within the term designates an input to the gate
 - Literal is a single variable within a term that may be complemented or not.

Example:

$$-F_1 = x y z'$$

$$- F_2 = x + y'z$$

$$- F_3 = x'y'z + x'yz + xy'$$

$$- F_{\Delta} = x y' + x' z$$

1 term and 3 literals

2 terms and 3 literals

3 terms and 8 literals

2 terms and 4 literals

 Manipulation of Boolean algebra consists mostly of reducing an expression by reducing the number of terms, the number of literals, or both in a Boolean expression, it is often possible to obtain a simpler, less area, cheaper circuit.

Simplify the following functions to a minimum number of literals.

I. =
$$(x x') + (x y)$$
 by post (4a)

II. =
$$0 + xy$$
 by post (5b)

III. =
$$xy$$
 by post (2a)

I. =
$$(x + x')(x + y)$$
 by post (4b)

II. =
$$1(x + y)$$
 by post (5a)

III. =
$$x + y$$
 by post (2b)

•
$$(x + y)(x + y')$$

I.
$$= x + y y'$$
 post (4b)

II.
$$= x + 0$$
 post (5b)

III. =
$$x$$
 post (2a)

•
$$(x + y)(x' + z)(y + z) = (x + y)(x' + z)$$

consesus theorem with duality.

Simplify the following functions to a minimum number of literals.

•
$$xy + x'z + yz$$

I.
$$= x y + x' z + 1 y z$$

II. =
$$x y + x' z + (x + x') y z$$
 post (5a)

III. =
$$xy + x'z + xyz + x'yz$$
 post (4a)

IV. =
$$x y + x y z + x' z + x' y z$$
 post (3a)

V. =
$$x y (1 + z) + x'z (1 + y)$$
 post (4a)

VI. =
$$x y 1 + x' z 1$$
 Theo(2a)

VII. =
$$x y + x' z$$
 post (2b)

- The complement of a function F is F' and is obtained from
 - An interchange of 0's for 1's and 1's for 0's in the value of F.
- The complement of a function may be derived algebraically through De Morgan's theorem.
 - De Morgan's theorem can be extended to three or more variables.

by theorem (4b) (associative)

•
$$(A + B + C)' = (A + x)'$$
 let $B + C = x$

$$= A' x'$$
 by theorem (5a) De Morgan
$$= A' (B + C)'$$
 substitute $B + C = x$

$$= A' (B' C')$$
 by theorem (5a) De Morgan

= A' B' C'

- Generalizations:
 - Function is obtained by interchanging AND and OR operators and complementing each literal.
 - (A+B+C+D+...+F)' = A'B'C'D'...F'
 - (ABCD ... F)' = A' + B' + C' + D' ... + F'

Find the complement of the function F_1 by applying De Morgan's theorem as many times as necessary

•
$$F_1' = (x'yz' + x'y'z)'$$
.

• =
$$(x' y z')' (x' y' z)'$$

• =
$$(x + y' + z)(x + y + z')$$

•
$$F_2' = x (y'z' + y z)$$
.

• =
$$[x(y'z' + yz)]'$$

•
$$= x' + (y' z' + y z)'$$

•
$$= x + (y' z')' (y z)'$$

•
$$= x' (y+z) (y' + z')$$

- Simpler procedure:
 - Take the dual of the function and complement each literal
- Find the complement of the function F_1
 - $F_1 = (x'yz' + x'y'z)'.$
 - $\qquad = (x' \lor z')' (x' \lor z)'$
 - The dual of $F_1 = (x' + y + z')(x' + y' z)$.
 - Complement each literal = $(x + y' + z)(x + y + z') = F_1'$

• Find the complement of the function F_2

$$- F_2 = x (y'z' + y z).$$

$$- = x (y' z') + (y z)$$

- The dual of $F_2 = x + (y' + z') (y + z)$
- Complement each literal = $x' + (y + z) (y' + z') = F_2'$

- A binary variable may appear either in its normal for (x) or in its complement form (x').
- Consider:
 - x AND y.
- Each variable may appear in either form, there are four possible combinations:
 - x'y'
 - x'y
 - $\times y'$
 - xy

- Each of these four AND term is called a minterm or a standard product.
- n variables can be combined to form 2ⁿ minterms.

- In a similar fashion,
 - n variables forming and OR term,
 - with each variable being primed or unprimed,
 - provide 2ⁿ possible combinations,
 - called maxterms or standard sums.
- Each maxterm is the complement of its corresponding minterm, and vice versa.

		_	Minterms		Max	kterms
X	У	Z	Term	Designation	Term	Designation
0	0	0	x' y' z'	m_0	x + y + z	M_0
0	0	1	x' y' z	m_1	x + y + z'	M_1
0	1	0	x' y z'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	x y' z'	m_4	x' + y + z	M_4
1	0	1	x y' z	m_5	x' + y + z'	M_5
1	1	0	x y z'	m_6	x' + y' + z	M_6
1	1	1	хух	m_7	x' + y' + z'	M_7

- A Boolean function can be expressed algebraically by
 - A truth table
 - Sum of minterms
 - Each of these **minterms** results in $f_1 = 1$.

x	У	z	f1	
0	0	0	0	
0	0	1	1	→ x'y'z
0	1	0	0	
0	1	1	0	
1	0	0	1	→ xy"z"
1	0	1	0	
1	1	0	0	
1	1	1	1	→ xy z

$$f_1 = = m_1 + m_4 + m_7$$
 (Minterms)

X	У	z	f2	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	→ x″yz
1	0	0	0	
1	0	1	1	→ xy′z
1	1	0	1	→ xy"z → xyz" → xyz
1	1	1	1	→ xy z

$$f_2 = = m_3 + m_5 + m_6 + m_7$$
 (Minterms)

- These examples demonstrate an important property of Boolean algebra:
 - Any Boolean function can be expressed as a sum (ORing) of minterms.
- Consider the complement of a Boolean function.
 - From the truth table
 - A minterm for each combination that produces a 0
 - Then ORing those terms.

• The complement of f_1 :

$$- f_1' = m_0 + m_2 + m_3 + m_5 + m_6$$

$$-$$
 = $x'y'z' + x'yz' + x'yz + xy'z + xyz'$

- If we take the complement of f_1 , then we obtain f_1

$$-(f_1)' = (x'y'z' + x'yz' + x'yz + xy'z + xyz')'$$

$$- f_1 = (x + y + z) (x + y' + z) (x + y' + z') (x' + y' + z)$$

$$- = M_0 M_2 M_3 M_5 M_6$$

X	У	Z	f1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

• The complement of f_2 :

$$- f_2' = m_0 + m_1 + m_2 + m_4$$

$$-$$
 = $x'y'z' + x'y'z + x'yz' + xy'z'$

- If we take the complement of f_2 , then we obtain f_2

$$- (f_2')' = (x'y'z' + x'y'z + x'yz' + xy'z')'$$

$$- f_2 = (x + y + z) (x + y + z') (x + y' + z) (x' + y + z)$$

$$- = M_0 M_1 M_2 M_4$$

X	У	Z	f2
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- These examples demonstrate a second property of Boolean algebra:
 - Any Boolean function can be expressed as a product of (ANDing) of maxterms.
- Consider the complement of a Boolean function.
 - From the truth table
 - A maxterm for each combination that produces a 0
 - Then ANDing those terms.
- Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form.

Sum of minterms:

- There are 2ⁿ minterms and
- 2²ⁿ combinations of function with n Boolean variables.
- It is sometimes convenient to express the Boolean function in its sum of minterms form.
- If not in this form, it can be made so by first expanding the expression into a sum of AND terms.
- Each term is then inspected to see if it contains all the variables.
- If it misses one or more variables, it is ANDed with an expression such as x + x', where x is one of the missing variables.

- Example: express F = A + B'C in a sum of minterms.
 - Step1: A is missing two variable B and C!
 - 1st include B
 - -A = A(B + B')
 - = AB + AB'
 - 2nd include C
 - A = AB (C + C') + AB' (C+C')
 - = ABC + ABC' + AB'C + AB'C'

- Step2: B'C is missing one variable A!
- Include A
- -B'C = B'C (A + A')= AB'C + A'B'C
- Step3: Combine all terms
- F = ABC + ABC' + AB'C' + AB'C' + AB'C' + A'B'C'according to Theorem 1 (x + x = x),

 it is possible to remove one of there

it is possible to remove one of them

 $- F = ABC + ABC' + AB'C' + AB'C + A'B'C = m_1 + m_4 + m_5 + m_6 + m_7$

$$-$$
 F = ABC + ABC' + AB'C' + AB'C + A'B'C

$$- = m_1 + m_4 + m_5 + m_6 + m_7$$

 When in its sum of minterms the Boolean function can be expressed as:

$$- F(A, B, C) = \sum (1, 4, 5, 6, 7)$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

February , 2024

Product of maxterms:

- 2²ⁿ functions of n binary variables can be also expressed as product of maxterms.
- To express the Boolean functions as a product of maxterms
 - It must first be brought into a form of OR terms.
- This may be done by using the distributive law, x + yz = (x + y) (x + z).
- Then any missing variable x in each OR term is ORed with x x'.

- Example: express F = x y + x' z in a product of maxterm.
- Step1: using distributive law

$$- = (xy + x')(xy + z)$$

Step2: using distributive law

$$- = (x + x') (y + x') (x + z) (y + z)$$

$$- = 1 (x' + y) (x + z) (y + z)$$

$$- = (x' + y) (x + z) (y + z)$$

$$- = (x' + y) (x + z) (y + z)$$

• Function has three variables x, y and z. Each OR term is missing one variable.

$$- (x' + y) = x' + y + z z' = (x' + y + z)(x' + y + z')$$

$$- (x + z) = x + z + y y' = (x + y + z)(x + y' + z)$$

$$- (y + z) = y + z + x x' = (x + y + z)(x' + y + z)$$

Combine all the terms and remove the ones that appear twice

$$- F = (x + y + z) (x + y' + z) (x' + y + z) (x' + y + z')$$

$$- F = x'yz' + x'yz + xy'z + xyz$$

$$- = M_0 M_2 M_4 M_5$$

 Convenient way to express this function is:

-
$$F(x, y, z) = \prod (0, 2, 4, 5)$$

X	у	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- The complement of a function expressed as:
 - The sum of minterms = the sum of minterms missing from the original function
 - Because the original function is expressed by those minterms that make the function equal to 1, where its complement is 0.
 - Example:
 - $F(A, B, C) = \sum (1, 4, 5, 6, 7)$
 - F'(A, B, C)= \sum (0, 2, 3) = m_0 + m_2 + m_3

Example:

- $F(A, B, C) = \sum (1, 4, 5, 6, 7)$
- Thus F'(A, B, C)= \sum (0, 2, 3) = m_0 + m_2 + m_3
- Complement of F' by DeMorgan's theorem
 - $F = (m_0 + m_2 + m_3)' = m_0' m_2' m_3' = M_0 M_2 M_3 = \prod (0, 2, 3)$
- $-m_0'=M_j$

- Sum of minterms = product of maxterms
- Interchange the symbols Σ and Π and list those numbers missing from the original form
 - Σ of 1's
 - ∏ of 0's

• Example: F = x y + x' z

$$- xy = xy(z + z') = xyz + xyz'$$

$$- x'z = x'z (y + y') = x' y z + x' y' z$$

$$- F = x y z + x y z' + x' y z + x' y' z$$

$$- F(x, y, z) = \sum (1, 3, 6, 7)$$

- with 1's
- $F(x, y, z) = \prod (0, 2, 4, 5)$
 - with 0's

Х	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- The two canonical forms of Boolean algebra are basic forms that one obtains from reading a function from the truth table.
- These forms are very seldom the ones with the least number of literals, because each minterm or maxterm must contain, by definition, all the variables either complemented or uncomplemented.
- Standard form, the terms that form the function may contain one, two, or any number of literals.
 - Sum of products and products of sum

Sum of products

- Contains AND terms (product terms) of one or more literals each.
- The sum denotes the ORing of these terms.
- Example:
 - $F_1 = y' + x y + x' y z'$
 - 3 product terms of one, two and three literals.
 - Their sum is in effect an OR operation.

- $F_1 = y' + xy + x'yz'$
- Logic diagram of sum-of-products
 - Each product term requires and AND gate except for a term with a single literal.
 - The logic sum is formed with an OR gate.

Product of sums

- Contains OR terms (sum terms) of one or more literals each.
- The product denotes the ANDing of these terms.
- Example:
 - $F_2 = x (y' + z) (x' + y + z')$
 - 3 sum terms of one, two and three literals.
 - Their product is in effect an AND operation.

- $F_2 = x (y' + z) (x' + y + z')$
- Logic diagram of product of sums
 - Each product term requires and AND gate except for a term with a single literal.
 - The logic sum is formed with an OR gate.

Multi-level implementation

$$- F_3 = AB + C (D + E)$$

Neither in sum of products nor in products of sums.

Change it to a standard form by using the distributive law

$$- F_3 = AB + C (D + E) = AB + CD + CE$$

OTHER LOGIC OPERATIONS

- 2ⁿ rows in the truth table of n binary variables.
- 2²ⁿ functions for n binary variables.
- n = 2, and the number of possible Boolean functions is 16.

X	У	\mathbf{F}_{0}	\mathbf{F}_{1}	F_2	F_3	F_4	F_5	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

OTHER LOGIC OPERATIONS

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary Constant 0
$F_1 = x y$	x·y	AND	x and y
$F_2 = x y'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X'
F ₄ = x' y	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	У
$F_6 = x y' + x' y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	x↓y	NOR	NOT- OR
$F_9 = (x y + x' y')$	(x ⊕ y) '	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	NOT y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	X'	Complement	NOT x
$F_{13} = x' + y$	$x\supset y$	Implication	If x, then y
$F_{14} = (xy)'$	x † y	NAND	NOT- AND
F ₁₅ = 1		Identity	Binary constant 1

OTHER LOGIC OPERATIONS

- The functions are determined from the 16 binary combinations that can be assigned to F.
- The 16 functions can be expressed algebraically by means of Boolean functions.
- The Boolean expressions listed are simplified to their minimum number of literals.
- All the new symbols shown, except for the exclusive-OR symbol ⊕ are not in common use by digital designers.

- Boolean expression: AND, OR and NOT operations
- Constructing gates of other logic operations
 - 1. The feasibility and economy;
 - 2. The possibility of extending gate's inputs;
 - 3. The basic properties of the binary operations (commutative and associative);
 - 4. The ability of the gate to implement Boolean functions.

- Consider the 16 functions in Table (slide 82)
 - Two are equal to a constant (F_0 and F_{15}).
 - Four are repeated twice (F_4 , F_5 , F_{10} and F_{11}).
 - Inhibition (F_2) and implication (F_{13}) are not commutative or associative.
 - The other eight: complement (F_{12}) , transfer (F_3) , AND (F_1) , OR (F_7) , NAND (F_{14}) , NOR (F_8) , XOR (F_6) , and equivalence (XNOR) (F_9) are used as standard gates.
 - Complement: inverter.
 - Transfer: buffer (increasing drive strength).
 - Equivalence: XNOR.

Name	Graphic Symbol	Algebraic Function	Truth Table		ole
	х F		Х	У	F
			0	0	0
AND		F = x y	0	1	0
			1	0	0
			1	1	1
			Χ	У	F
	х у F	F = x + y	0	0	0
OR			0	1	1
			1	0	1
			1	1	1
	х	F = x '	X		У
INVERTER			0		1
			1		0

Name	Graphic Symbol Algebraic Function		Truth Table		
			Х		У
BUFFER	X F	F = x	0		0
			X	у	F
	х у F	F = (x y) '	0	0	1
NAND			0	1	1
	,		1	0	1
			1	1	0 F
	х у F	F = (x + y) '	х 0	у О	1
NOR			0	1	0
			1	0	0
			1	1	0

Name	Graphic Symbol	Algebraic Function	Tr	le	
			Х	У	F
		$F = x \oplus y$	0	0	0
XOR	х У		0	1	1
			1	0	1
			1	1	0
			Х	У	F
	$F = (x \oplus y)'$		0	0	1
XNOR		$F = (x \oplus y)'$	0	1	0
			1	0	0
			1	1	1

- Extension to multiple inputs
 - A gate can be extended to multiple inputs.
 - If its binary operation is commutative and associative.
 - AND and OR are commutative and associative.
 - OR
 - x + y = y + x
 - (x + y) + z = x + (y + z) = x + y + z
 - AND
 - xy = yx
 - (x y) z = x (y z) = x y z

 The NAND and NOR functions are commutative, but they are not associative

-
$$(x \downarrow y) \downarrow z \neq x (y \downarrow z)$$

• $(x \downarrow y) \downarrow z = [(x + y)' + z]'$
= $(x + y) z' = x z' + y z'$
• $x (y \downarrow z) = [x + (y + z)']'$
= $x' (y + z) = x' y + x' z$

- The NAND and NOR functions are commutative, and their gates can be extended to have more than two inputs, provided that the definition of the operation is slightly modified.
- The difficulty is that the NAND and NOR operators are not associative
 - $(x \downarrow y) \downarrow z \neq x (y \downarrow z)$
 - $(x \downarrow y) \downarrow z = [(x + y)' + z]' = (x + y) z' = x z' + y z'$
 - $x(y \downarrow z) = [x + (y + z)']' = x'(y + z) = x'y + x'z$
- To overcome this;
 - Define the multiple NOR (or NAND) gate as complemented OR (or AND) gate.
 - $x \downarrow y \downarrow z = (x + y + z)'$
 - $x \uparrow y \uparrow z = (x \ y \ z)'$

- Multiple NOR = a complement of OR gate,
- Multiple NAND = a complement of AND.
- The cascaded NAND operations = sum of products.
- The cascaded NOR operations = product of sums.

- The XOR and XNOR gates are commutative and associative.
- Multiple-input XOR gates are uncommon?
- XOR is an odd function: it is equal to 1 if the inputs variables have an

odd number of 1's.

x	у	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- The binary signals at the inputs and outputs of any gate has one of two values, except during transition.
 - One signal value represents logic-1
 - The other logic-0.
- Two signal values are assigned to two logic values
- There exist two different assignments of signal level to logic value.

- The higher signal level is designated by H and the lower signal level by L.
- Choosing the high-level H to represent logic-1 defines a positive logic system.
- Choosing the low-level L to represent logic-0 defines a negative logic system.

X	У	F					
L	Н	L	Digital gate F	1			
Н	L	L	_ y —				
Н	Н	Н					
	(b) Gate block diagram						
X	У	X					
0	0	0					
0	1	0)—z				
1	0	0					
1	1	1					
	(d) Positive logic AND gate	e					

- The physical behaviour of the gate when H is 3 volts and L is 0 volts.
- Truth table of (c) assumes positive logic assignment, with H = 1 and L = 0.

Х	У	Z	
0	0	1	· ~
0	1	1	Z
1	0	1	7
1	1	0	
	(f) Negative logic OR gate		

• Truth table of (e) assumes positive logic assignment, with H = 0 and L = 1.

Level of Integration

- An IC (a chip)
- Examples:
 - Small-scale Integration (SSI): < 10 gates
 - Medium-scale Integration (MSI): 10 ~ 100 gates
 - Large-scale Integration (LSI): 100 ~ xk gates
 - Very Large-scale Integration (VLSI): > xk gates

- VLSI
 - Small size (compact size)
 - Low cost
 - Low power consumption
 - High reliability
 - High speed

- Digital logic families: circuit technology
 - TTL: transistor-transistor logic (dying?)
 - ECL: emitter-coupled logic (high speed, high power consumption)
 - MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - BiCMOS: high speed, high density

- The characteristics of digital logic families
 - Fan-out: the number of standard loads that the output of a typical gate can drive.
 - Power dissipation.
 - Propagation delay: the average transition delay time for the signal to propagate from input to output.
 - Noise margin: the minimum of external noise voltage that caused an undesirable change in the circuit output.

- CAD Computer-Aided Design
 - Millions of transistors
 - Computer-based representation and aid
 - Automatic the design process
 - Design entry
 - Schematic capture
 - HDL Hardware Description Language
 - Verilog, VHDL
 - Simulation
 - Physical realization
 - ASIC, FPGA, PLD

- Why is it better to have more gates on a single chip?
 - Easier to build systems
 - Lower power consumption
 - Higher clock frequencies
- What are the drawbacks of large circuits?
 - Complex to design
 - Chips have design constraints
 - Hard to test

- Need tools to help develop integrated circuits
 - Computer Aided Design (CAD) tools
 - Automate tedious steps of design process
 - Hardware description language (HDL) describe circuits
 - VHDL (see the lab) is one such system