Melbourne Housing Prices

Main Objective: To create a model able to predict the Housing Prices in Melbourne.

- 1) Fetch the Housing Prices Dataset
- 2) Data cleaning i.e A) Remove insignificant features, B) Deal with N.A values and drop the rest unimportant data records.
- 3) Train Test Split
- 4) Determine the best fit for our model
- 5) Predictions

In [4]:

```
#import libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#Suppress Systems warnings
#Warnings.filterwarnings('ignore')
```

Load Melbourne Dataset

```
In [5]:
```

```
dataset = pd.read_csv('./Melbourne_Housing/Data/Melbourne_housing_FULL.csv')
```

Dataset before Cleaning

```
In [7]:
```

```
#View the entire Dataset
dataset.head()
```

Out[7]:

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Postcode	•••	Bathroom	Car	Laı
0	Abbotsford	68 Studley St	2	h	NaN	SS	Jellis	3/09/2016	2.5	3067.0		1.0	1.0	
1	Abbotsford	85 Turner St	2	h	1480000.0	s	Biggin	3/12/2016	2.5	3067.0		1.0	1.0	
2	Abbotsford	25 Bloomburg St	2	h	1035000.0	s	Biggin	4/02/2016	2.5	3067.0		1.0	0.0	
3	Abbotsford	18/659 Victoria St	3	u	NaN	VB	Rounds	4/02/2016	2.5	3067.0		2.0	1.0	
4	Abbotsford	5 Charles St	3	h	1465000.0	SP	Biggin	4/03/2017	2.5	3067.0		2.0	0.0	

5 rows × 21 columns

4

```
In [8]:
#View the Dataset shape
dataset.shape
Out[8]:
(34857, 21)
```

The dataset has **34857 records and 21 Features**. Now there are some features that doesnot have much effect to our price prediction model. Mreover this dataset also include **N.A values** which need to be cleaned.

DATA CLEANING

Thus, we reduced the number to columns to 15 significant features from overall 21 features.

```
In [120]:
```

```
# 3) Check for N.A values in the dataset
dataset.isna().sum()
Out[120]:
```

Suburb 0 0 Rooms 0 Type Λ Method 0 SellerG Regionname 3 3 Propertycount Distance CouncilArea 3 8217 Bedroom2 8226 Bathroom Car 8728 Landsize 11810 BuildingArea 21115 Price 7610 dtype: int64

Feeding the N.A values in the dataset with 0 or mean values where ever needed and dropping the rest columns.

```
In [108]:
```

```
# Fill with Zero
cols_to_fill_zero = ['Propertycount' , 'Distance' , 'Bedroom2' , 'Bathroom' , 'Car']
dataset[cols_to_fill_zero] = dataset[cols_to_fill_zero].fillna(0)

# Fill with mean
dataset['Landsize'] = dataset['Landsize'].fillna(dataset.Landsize.mean())
dataset['BuildingArea'] = dataset['BuildingArea'].fillna(dataset.BuildingArea.mean())
```

```
# Drop the remaining
dataset.dropna(inplace=True)
```

Dataset after Data Filtering

```
In [109]:
```

```
# Clean N.A values
dataset.isna().sum()
```

Out[109]:

Suburb 0 0 Rooms 0 Type Method 0 SellerG 0 Regionname Propertycount 0 Distance 0 0 CouncilArea 0 Bedroom2 0 Bathroom Car 0 Landsize BuildingArea 0 Price dtype: int64

Thus we cleaned all the N.A data records.

One Hot Encoding

```
In [36]:
```

```
dataset = pd.get_dummies(dataset , drop_first = True)
dataset.head()
```

```
Out[36]:
```

	Rooms	Propertycount	Distance	Bedroom2	Bathroom	Car	Landsize	BuildingArea	Price	Suburb_Aberfeldie	 Coı
1	2	4019.0	2.5	2.0	1.0	1.0	202.0	160.2564	1480000.0	0	
2	2	4019.0	2.5	2.0	1.0	0.0	156.0	79.0000	1035000.0	0	
4	3	4019.0	2.5	3.0	2.0	0.0	134.0	150.0000	1465000.0	0	
5	3	4019.0	2.5	3.0	2.0	1.0	94.0	160.2564	850000.0	0	
6	4	4019.0	2.5	3.0	1.0	2.0	120.0	142.0000	1600000.0	0	

5 rows × 745 columns

```
1
```

```
In [40]:
```

```
X = dataset.drop('Price', axis=1)
Y = dataset['Price']
```

Train-Test Split

```
In [44]:
```

```
from sklearn.model_selection import train_test_split

train_X , test_X , train_Y , test_Y = train_test_split(X , Y, test_size = 0.3 , random_s
tate= 2 )
```

Linear Regression

```
In [51]:
```

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression().fit(train_X ,train_Y)
lr_r2 = lr.score(test_X , test_Y)
print('R2 for Linear Regression : ' , lr_r2)
```

R2 for Linear Regression: 0.1385368316163994

Lasso Regression

```
In [67]:
```

```
from sklearn.linear_model import Lasso
lassoR = Lasso(alpha= 50 , max_iter= 1000 , tol=0.1)
lassoR.fit(train_X ,train_Y)
lasso_r2 = lassoR.score(test_X , test_Y)
print('R2 for Lasso Regression : ' , lasso_r2)
```

R2 for Lasso Regression : 0.6636280170612746

Ridge Regression

```
In [68]:
```

```
from sklearn.linear_model import Ridge
ridgeR = Ridge(alpha= 50 , max_iter= 1000 , tol = 0.1)
ridgeR.fit(train_X ,train_Y)
ridge_r2 = ridgeR.score(test_X , test_Y)
print('R2 for Ridge Regression : ' , ridge_r2)
```

R2 for Ridge Regression: 0.6670848945194958

In [72]:

```
methods_labels = ['Linear Regression' , 'Lasso Regression' , 'Ridge Regression']
r2_values = [ lr_r2 , lasso_r2, ridge_r2]
R2_results = pd.Series(r2_values , index= methods_labels).to_frame()
R2_results.rename(columns = {0: 'R2 Score'} , inplace=1)
R2_results
```

Out[72]:

R2 Score

```
Linear Regression 0.138537

Lasso Regression 0.663628

Ridge Regression 0.667085
```

On comparing Linear, Lasso and Ridge Regression we got the best R2 score for Ridge Regression thus, we would be using **Ridge Regression** for our price prediction model.

Now we need to **optimize** the solution thus using RidgeCV which will find the **optimal alpha value** along with **Cross Validation.**

```
In [81]:
```

```
from sklearn.linear_model import RidgeCV
alphas = [0.005,0.05,0.1,0.3,1,5,10,15,30,80]
ridgeCV = RidgeCV(alphas = alphas, cv = 4).fit(train_X, train_Y)
ridgeCV_r2 = ridgeCV.score(test_X, test_Y)
```

```
In [87]:
print('\nRidge Regression ')
print('Optimal Alpha :' , ridgeCV.alpha_ , ' , R2 Score :', ridgeCV_r2)

Ridge Regression
Optimal Alpha : 5.0 , R2 Score : 0.6743855819360092

In [89]:
#Predicted value for RidgeCV Regression for alpha = 5.0
predicted_ridgeCV_X_test = ridgeCV.predict(test_X)
```

(Graph continued on next page)

#Predicted value for Linear Regression
predicted LR X test = lr.predict(test X)

Actual Values VS Predicted Values

```
In [97]:
```

```
# Graph Actual Values VS Predicted Values

f =plt.figure(figsize= (6,6))
ax = plt.axes()
labels = ['Linear', 'Ridge']
predicted_values = [predicted_LR_X_test , predicted_ridgeCV_X_test]
for pred_val , lab in zip(predicted_values , labels):
    ax.plot(test_Y , pred_val , marker='o' , ls='' , ms=3.0 , label= lab)

leg = plt.legend(frameon =True)
leg.get_frame() .set_edgecolor('black')
leg.get_frame() .set_linewidth(1.0)
lim = (0 , test_Y.max())
ax.set(xlabel = 'Actual Price', ylabel='Predicted Value' , xlim =lim , ylim =lim , title
= 'Housing Price Predictions Model')
```

Out[97]:

```
[Text(0.5, 0, 'Actual Price'),
  Text(0, 0.5, 'Predicted Value'),
  (0.0, 8000000.0),
  (0.0, 8000000.0),
  Text(0.5, 1.0, 'Housing Price Predictions Model')]
```


Conclusion

Thus, I got best R2 score for **Ridge Regression** among other models for my **Melbourne Housing Prediction Model.** Moreover I to optimize my predictions I used RidgeCV that calculated the optimal alpha(alpha = 5.0) for this particular case along with Cross Validation. Currently my **R2 score is 0.6743855819360092** (i.e. 67.44% accuracy).

FLAWS: For now I have just filled the Null values with 0 or their mean values but need to **find the most accurate assumrd value.** Also I have

Thus, for increasing my accuracy I need to overcome my flaws and also test other predictive models ANOVA, Logistic Regression, Decision Trees, Neural Networks.