CSE1003	DIGITAL LOGIC AND DESIGN	I	T	P	J	C
		3	0	2	0	4
Pre-requisite	NIL	Syllabus version				
					V	1.1

Course Objectives:

- 1. Introduce the concept of digital and binary systems.
- 2. Analyze and Design combinational and sequential logic circuits.
- 3. Reinforce theory and techniques taught in the classroom through experiments in the laboratory.

Expected Course Outcome:

- 1. Comprehend the different types of number system.
- 2. Evaluate and simplify logic functions using Boolean Algebra and K-map.
- 3. Design minimal combinational logic circuits.
- 4. Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder, multiplexer, demultiplexer.
- 5. Analyze and Design the Basic Sequential Logic Circuits
- 6. Outline the construction of Basic Arithmetic and Logic Circuits
- 7. Acquire design thinking capability, ability to design a component with realistic constraints, to solve real world engineering problems and analyze the results.

Student Learning Outcomes (SLO): 1,2,5,14

Module:1 INTRODUCTION

3 hours

Number System - Base Conversion - Binary Codes - Complements(Binary and Decimal)

Module:2 | **BOOLEAN ALGEBRA**

8 hours

Boolean algebra - Properties of Boolean algebra - Boolean functions - Canonical and Standard forms - Logic gates - Universal gates - Karnaugh map - Don't care conditions - Tabulation Method

Module:3 | COMBINATIONAL CIRCUIT - I

4 hours

Adder - Subtractor - Code Converter - Analyzing a Combinational Circuit

Module:4 | COMBINATIONAL CIRCUIT -II

6 hours

Binary Parallel Adder- Look ahead carry - Magnitude Comparator - Decoders - Encoders - Multiplexers - Demultiplexers.

Module:5 | SEQUENTIAL CIRCUITS – I

6 hours

Flip Flops - Sequential Circuit: Design and Analysis - Finite State Machine: Moore and Mealy model - Sequence Detector.

Module:6 | SEQUENTIAL CIRCUITS – II

7 hours

Registers - Shift Registers - Counters - Ripple and Synchronous Counters - Modulo counters - Ring and Johnson counters

Module:7 | ARITHMETIC LOGIC UNIT

9 hours

Bus Organization - ALU - Design of ALU - Status Register - Design of Shifter - Processor Unit - Design of specific Arithmetic Circuits Accumulator - Design of Accumulator.

Module:8	Contemporary Issues: RECENT TRENDS		2 hours				
	Total Lecture hours:		45 hours				
Text Book((s)						
1. M. M	orris Mano and Michael D.Ciletti- Digital Design:	With an introduction	on to Verilog				
HDL, F	Pearson Education – 5th Edition- 2014. ISBN:97893	32535763.					
Reference l	Books						
	on, L.L. and Davie, B.S., 2007. Computer networks:						
	s L Floyd. 2015. Digital Fundamentals. Pearson Edu						
	Malvino, A.P. and Leach, D.P. and Goutam Saha. 2014. Digital Principles and Applications						
` /	Tata McGraw Hill. ISBN: 9789339203405.						
	Mano, M. and Michael D.Ciletti. 2014. Digital Desi	gn: With an introdu	action to				
	g HDL. Pearson Education. ISBN:9789332535763						
	raluation: CAT / Assignment / Quiz / FAT / Project /	Seminar					
	llenging Experiments (Indicative)						
	ation of Logic gates using discrete components, v		4.5 hours				
	or logic gates, realization of basic gates using NAND						
	nentation of Logic Circuits by verification of Boolea	n laws	3 hours				
	rification of De Morgans law						
	and Subtractor circuit realization by implementation		4.5 hours				
	ull-Adder, and by implementation of Half-Subt	ractor and Full-					
Subtrac							
	national circuit design i. Design of Decoder and Enc	_	4.5 hours				
_	lexer and De multiplexer iii. Design of Magnitud	e Comparator iv.					
	of Code Converter		4.5 hours				
	Sequential circuit design i. Design of Mealy and Moore circuit ii.						
	nentation of Shift registers iii. Design of 4-bit Coun	nter iv. Design of					
Ring C			4.5 hours				
-	Implementation of different circuits to solve real world problems:						
_	ally controlled locker works based on a control swi						
	are entered by the user. Each key has a 2-bit binary	-					
	atrol switch is pressed, the locking system will pass						
	ys into the controller unit. Otherwise, the locking sy the two numbers to the controller unit. Design a cir						
	ut to the controller unit.	icuit to determine					
	nentation of different circuits to solve real world pro	hlems:	4.5 hours				
-	queuing system has a capacity of 5 customers whi		4.5 110018				
	first served basis. A display unit is used to display						
	ers waiting in the queue. Whenever a customer leave	· ·					
	s reduced by one and the count is increased by one i	-					
	e. Two sensors (control signals) are used to sense of	· ·					
	ning the queue respectively. Design a circuit that dis						
	omers waiting in the queue in binary format using I	* *					
	ented by LED glow and 0 otherwise.	,					
		aboratory Hours	30 hours				
Mode of ass	sessment: Project/Activity	•					
	ded by Board of Studies						

Approved by Academic Council	No. 47	Date	05.10.2017