Лекция 1. Первообразная и неопределённый интеграл.

<u>Определение</u>: Функция F(x) называется первообразной для функции f(x) на некотором отрезке [a,b], если для всех из этого отрезка выполняется равенство:

$$F'(x)=f(x)$$
.

Пример: F(x) = -cos(x) + C; f(x) = sin(x);

Теорема. Если F1(x) и F2(x) какие-либо первообразные для функции f(x) на отрезке [a,b], то выполняется соотношение:

$$F1(x) - F2(x) = C;$$

Доказательство.

Следствие.: Если F(x) первообразная для f(x), то (F(x)+C) тоже первообразная.

Определение. Совокупность всех первообразных, т.е. (F(x)+C), для f(x) на [a,b] называ ется неопределенным интегралом от f(x) и обозначается: $\int f(x) dx = F(x) + C$, причем F'(x) = f(x),

Теорема. Свойства неопределенного интеграла:

- $1. (\int f(x) dx)' = f(x);$
- $2. d \int f(x) dx = f(x) dx;$
- $3. \int dF(x) = F(x) + C;$
- $4. \int (f I(x) + f 2(x)) dx = \int f I(x) dx + \int f 2(x) dx.$
- 5. $\int k \cdot f(x) dx = k \cdot \int f(x) dx$, где k постоянный множитель.
- 6. Формулы интегрирования не меняют свой вид при подстановке вместо независимой пе ременной х некоторой функции u(x), т.е. если $\int f(x) dx = F(x) + C$;

$$\int f(\mathbf{u}) d\mathbf{u} = F(\mathbf{u}) + C;$$

Доказательство.

Таблица неопределённых интегралов основных элементарных функций.

1.
$$x^n dx = \frac{x^{n+1}}{n+1} + c \quad (n \neq -1)$$

2.
$$\int \frac{dx}{x} = \ln|x| + c \quad (n = -1)$$

3.
$$a^{n}dx = \frac{a^{x}}{\ln a} + c \Rightarrow \int e^{x}dx = e^{x} + c$$
$$\int e^{x}dx = e^{x} + c$$

$$4. \int \cos x dx = \sin x + c$$

$$5. \int \sin x dx = -\cos x + c$$

$$6. \int \frac{dx}{\cos^2 x} = tgx + c$$

7.
$$\int \frac{dx}{\sin^2 x} = -ctgx + c$$

$$8. \int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c$$

9.
$$\int \frac{dx}{\sqrt{1-x^2}} = -\arccos x + c$$

10.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + c$$
$$(\int \frac{dx}{x^2 + 1} = \arctan x + c \quad npu \ a = 1)$$

11.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left(\frac{x}{a} \pm \sqrt{\frac{x^2}{a^2} + 1}\right) + c$$
$$\left(\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln\left(x \pm \sqrt{x^2 + 1}\right)\right) + c \quad , npu \quad a = 1$$

12.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c$$

$$13. \int tgx dx = -\ln|\cos x| + c$$

$$14. \int ctgx dx = \ln|\sin x| + c$$

15.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c$$

Замена переменной в неопределенном интеграле (метод подстановки).

Теорема.Пусть функция $x = \varphi(t)$ — строго монотонная и непрерывно дифференцируемая на некотором интервале функции $\varphi(t)$. Если функция f(x) интегрируема на соответст вующем интервале изменений x, то имеет место равенство:

$$\int f(x)dx = \int f(\varphi(t)) \cdot \varphi'(t)dt$$

Доказательство.

Определение: Если функция f(x) непрерывна на отрезке [a,b], то существует неопреде ленный интеграл $\int f(x)dx$, а функция f(x) в этом случае называется **интегрируемой**.

Интегрирование по частям.

Пусть U(x) и V(x) дифференцируемые функции на некотором интервале, причём известно, что $d(UV) = U \cdot dV + V \cdot dU$.

Теорема.

 $\int U \cdot dV = UV - \int V \cdot dU - \phi$ ормула интегрирования по частям.

Доказательство.

Замечание: классы функций интегрируемых по частям.

I класс — это интегралы вида: $\int P_n(x) \cdot e^{ax} dx$; $\int P_n(x) \cdot \sin(a \cdot x) dx$; $\int P_n(x) \cdot \cos(a \cdot x) dx$, где $P_n(x)$ — это многочлен первой степени, в этом случае $U = P_n(x)$;

II класс – это интегралы вида: $1.\int P_n(x) \cdot ln(a\cdot x) dx$; $2.\int P_n(x) \cdot arcsin(x) dx$;

 $3.\int P_n(x) \cdot arctg(x) dx$, где в качестве $1.U = ln(a\cdot x)$; 2.U = arcsin(x); 3.U = arctg(x);

Примеры.

Лекция 2-3. Интегрирование рациональных функций.

Многчлены с вещественными коэффициентами.

Определение. Многочленом п-ой степени называется функция вида

$$Q_n(x) = \sum_{k=0}^n a_k x^k, \quad (1)$$

где a_k постоянные коэффициенты вещественные или комплексные, x- nеременная , при нимающая любые комплексные значения.

Теорема (**Безу**). Для того, чтобы многочлен $Q_n(x)$ имел комплексный корень x_0 , необхо димо и достаточно, чтобы он делился на $(x-x_0)$.

Доказательство.

Основная теорема алгебры. Любой многочлен вида (1) имеет хотя бы один комплекс ный корень.

Теорема. Многочлен (1) с ненулевым старшим коэффициентом имеет п комплексных корней с учётом кратности, то есть

$$Q_n(x) = a_n(x - x_1)^{p_1} \dots (x - x_l)^{p_l}$$
, где $p_1 + p_2 + \dots + p_l = n$.

Доказательство.

Примеры.

Теорема.

Если $z_0=\alpha+i\beta$, ($\beta\neq 0$) -комплексный корень κ -й кратности многочлена с вещественны ми коэффициентами $Q_n(z)$, то $\bar{z}_0=\alpha-i\beta$ есть тоже корень этого многочлена той же кратности и

$$Q_n(z) = [(z - \alpha)^2 + \beta^2]^k Q_{n-2k}(z),$$

где $Q_{n-2k}(z)$ вещественный многочлен степени n-2k , не имеющий корнями z_0 и \bar{z}_0 .

Доказательство.

Примеры.

Теорема.

Многочлен с вещественными коэффициентами $Q_n(z)$ с ненулевым старшим коэффициен

том
$$a_n \neq 0$$
 единственным образом представляется в виде произведения $Q_n(z) = a_n \prod_{j=1}^r (z - c_j)^{\mu_j} \prod_{j=1}^s (z^2 + p_j z + q_j)^{\tau_j}$, (2)

где $z^2 + p_j z + q_j$ - действительные многочлены второй степени, имеющие комплексные корни $\alpha_i \pm i\beta_i$.

Доказательство.

Примеры.

Интегрирование рациональных функций

$$O$$
пределение. Дробь вида $\frac{P_m(x)}{Q_n(x)}$, (*)

где- $P_m(x)$ и $Q_n(x)$ многочлены степеней n и m называется рациональной. Целая ра

циональная функция, т.е. многочлен, интегрируется непосредственно. Интеграл от дробно-рациональной функции можно найти путем разложения на слагаемые, которые стандартным образом преобразуются к основным табличным интегралам.

Определение. Дробь $\frac{P_m(x)}{Q_n(x)}$ называется правильной, если степень числителя m меньше степени знаменателя n. Дробь, у которой степень числителя больше или равна степени знаменателя, называется неправильной.

Теорема.

Любую неправильную дробь можно представить в виде суммы многочлена и правиль ной дроби. Это делается посредством деления многочлена на многочлен в соответст вии с алгоритмом Евклида, подобно делению чисел.

Доказательство.

Примеры.

Теорема. Пусть знаменатель правильной рациональной дроби (*) разложен в произве дение $Q_n(z) = a_n \prod_{j=1}^r (z-c_j)^{\mu_j} \prod_{j=1}^s (z^2+p_jz+q_j)^{\tau_j}$ неприводимых многочленов первой и второй степени. Тогда дробь единственным образом представляется в виде сум мы *простейших* дробей:

$$\frac{P_m(x)}{Q_n(x)} = \frac{A_{1,1}}{(x-c_1)^{\mu_1}} + \frac{A_{1,2}}{(x-c_1)^{\mu_1-1}} + \dots + \frac{A_{1,\mu_1}}{(x-c_1)^{\mu_1}} + \dots$$

.....

$$+ \frac{A_{r,1}}{(x-c_1)^{\mu_r}} + \frac{A_{r,2}}{(x-c_1)^{\mu_r-1}} + \dots + \frac{A_{r,\mu_1}}{(x-c_1)^{\mu_r}} + \\ + \frac{B_{1,1}x + C_{1,1}}{(x^2 + p_1x + q_1)^{\tau_1}} + \frac{B_{1,2}x + C_{1,2}}{(x^2 + p_1x + q_1)^{\tau_1-1}} + \dots + \frac{B_{1,\tau_1} + C_{1,\tau_1}}{x^2 + p_1x + q_1} + \dots$$

.....

$$\frac{B_{s,1}x + C_{s,1}}{(x^2 + p_s x + q_s)^{\tau_s}} + \frac{B_{s,2}x + C_{s,2}}{(x^2 + p_s x + q_s)^{\tau_{s-1}}} + \dots + \frac{B_{s,\tau_s} + C_{s,\tau_s}}{x^2 + p_s x + q_s}.$$

Доказательство.

Примеры.

Интегрирование простейших дробей.

Примеры.

Интегрирование произвольных рациональных дробей.

Примеры.

Лекция 4. Интегрирование тригонометрических функций.

Пусть $R(\sin x, \cos x)dx$ - дробно-рациональная функция от переменных $\sin x$ и $\cos x$.

Найти $\int R(\sin x, \cos x) dx$.

1. Дробь нечётная относительно sinx.

$$R(-\sin x,\cos x)=-R(\sin x,\cos x)$$

В этом случае делается замена переменной $t = \cos x$. Она приводит к интегралу от дроб но-рациональной функции переменной t.

Примеры.

- 2. $R(\sin x, \cos x)$ нечётная относительно $\cos x$.
- В этом случае делается замена переменной $t = \sin x$
- 3. $R(\sin x, \cos x)$ дробь, чётная относительно $\sin x, \cos x$, т.е. $R(-\sin x, -\cos x) = R(\sin x, \cos x)$.

В этом случае делается замена переменной $\operatorname{tg} x = t$.

Примеры.

4. Если у дроби отсутствует симметрия предыдущих типов, делается замена $tg\frac{x}{2}=t$.

Примеры.

5. Функции вида $\int \sin kx \cos mx dx$, $\int \sin kx \sin mx dx$, $\int \cos kx \cos mx dx$.

Используем формулы:

$$sin kx cos mx = 1/2(sin(k+m)x+sin(k-m)x)$$

 $sin kx sin mx = 1/2(-cos(k+m)x+cos(k-m)x)$
 $cos kx cos mx = 1/2(cos(k+m)x+cos(k-m)x)$.

Примеры.

6. Интегралы вида $\int \sin^{2k} x \cos^{2l} x dx$. Понижаем степень с формулами : $\cos^2 x = \frac{1-\cos 2x}{2}$, $\sin^2 x = \frac{1+\cos 2x}{2}$. Примеры.

Лекция 5. Интегрирование иррациональных функций.

Интегралы от рациональных функций двух переменных:

 $\int R(x, \sqrt{ax^2 + bx + c}dx)$, $a \neq 0$. Применяем метод выделения полного квадрата:

$$ax^{2} + bx + c = \left(x + \frac{b}{2a} = t\right) = |a|(\pm t^{2} \pm k^{2}).$$

Как результат, получаем интеграл вида

$$\int R(t, \sqrt{\pm t^2 \pm k^2}) dx.$$

Возможны варианты:

а)
$$\int R(t, \sqrt{\pm t^2 \pm k^2}) dx = \int R(t, \sqrt{t^2 \pm k^2}) dx = \int R(t, (t-k) \sqrt{\frac{t+k}{t-k}}) dx$$
, после чего

заменой $\sqrt{\frac{t+k}{t-k}}=u$ всё сводится к интегралу от рациональной функции.

Примеры.

б) $\int R(t, \sqrt{\pm t^2 \pm k^2}) dx = \int R(t, \sqrt{t^2 + k^2}) dx$. В этом случае можно сделать подстановку Эйлера $y = \sqrt{t^2 + k^2} + t$ или тригонометрическую $t = k \ tg \ y$ или гиперболическую $t = k \ sh \ y$. После чего всё сводится к интегралу от рациональной функции.

Примеры.

в)
$$\int R(t, \sqrt{\pm t^2 \pm k^2}) dx = \int R(t, \sqrt{k^2 - t^2}) dx$$
. В этом случае делаем замену

 $t = k \sin y$, $t = k \cos y$.

Примеры.

Лекция 6-7. Определённый интеграл.

Понятие определенного интеграла.

Пусть функция y = f(x) определена на отрезке [a, b], a < b.Выполним следующие действия:

- 1) разобьем отрезок [a,b] точками $a=x_0 < x_1 < \ldots < x_{i-1} < x_i < \ldots < x_n = b$ на n частичных отрезков $[x_0,x_1],[x_1,x_2],\ldots,[x_{i-1},x_i],\ldots,[x_{n-1},x_n]$;
- 2) в каждом из отрезков $[x_{i-1}, x_i]$, i = 1, 2, ..., n выберем произвольную точку $z_i \in [x_{i-1}, x_i]$ и вычислим значение функции в этой точку $f(z_i)$;
- 3) найдем произведения $f(z_i) \cdot \Delta x_i$, где Δx_i длина частичного отрезка $[x_{i-1}, x_i]$, $i=1,2,\ldots,n$;
- 4) составим сумму $\sigma = f(z_1) \Delta x_1 + f(z_2) \Delta x_2 + \ldots + f(z_n) \Delta x_n = \sum_{i=1}^n f(z_i) \Delta x_i$, которая называется интегральной суммой функции y = f(x) на отрезке [a, b].

Геометрически интегральная сумма σ равна сумме площадей прямоугольников, основаниями которых являются отрезки $[x_0,x_1],[x_1,x_2],...,[x_{i-1},x_i],...,[x_{n-1},x_n]$, а высоты равны $f(z_1),\,f(z_2),...,f(z_n)$ соответственно . Обозначим через λ длину

наибольшего частичного отрезка $\lambda = \max_{1 \le i \le n} \Delta x_i$;

1) найдем предел интегральной суммы, когда $\lambda \to 0$. Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка [a,b] на частичные отрезки, ни от выбора точек z_i в них, то этот предел называется определенным интегралом от функции y = f(x) на отрезке [a,b] и обозначается $\int_a^b f(x) dx$ (2).

Таким образом, $\int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(z_{i}) \Delta x_{i}$. В этом случае функция f(x) называется интегрируемой на [a, b]. Числа а и b называются соответственно нижним и верхним пределами интегрирования, f(x) — подынтегральной функцией, f(x)dx —

подынтегральным выражением, x — переменной интегрирования; отрезок [a, b] называется промежутком интегрирования.

Теорема.

Если функция y = f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

Доказательство в конце лекции.

Геометрический смысл определенного интеграла

Пусть на отрезке [a,b] задана непрерывная неотрицательная функция y=f(x) . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y=f(x), снизу — осью Ox, слева и справа — прямыми x=a и x=b . Определенный интеграл $\int_a^b f(x)dx$ от неотрицательной функции y=f(x) с геометрической точки зрения численно равен площади криволинейной трапеции, ограниченной сверху графиком функции y=f(x), слева и справа — отрезками прямых x=a и x=b, снизу — отрезком [a,b] оси Ox.

Основные свойства определенного интеграла

Теорема. 1.Значение определенного интеграла не зависит отобозначения переменной интегрирования: $\int\limits_{a}^{b} f(x) dx = \int\limits_{a}^{b} f(z) dz = \int\limits_{a}^{b} f(t) dt = ... 2.$ Определенный

интеграл с одинаковыми пределами интегрирования равен нулю: $\int_{a}^{a} f(x)dx = 0$.

3. Если a > b, то, по определению, полагаем $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$. 4. Постоянный множитель можно выносить за знак определенного интеграла: $\int_{a}^{b} k \cdot f(x)dx = k \int_{a}^{b} f(x)dx$.

5.Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций: $\int\limits_a^b (f(x)\pm g(x))dx = \int\limits_a^b f(x)dx \pm \int\limits_a^b g(x)dx \, .$

6. Если функция f(x) интегрируема на [a,b] и a < c < b , то

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

7.(**теорема о среднем**). Если функция y = f(x) непрерывна на отрезке [a, b], то на этом отрезке существует точка $\tilde{n} \in [a, b]$, такая, что $\int_{a}^{b} f(x) dx = f(c) \cdot (b - a)$.

Доказательство.

Формула Ньютона-Лейбница

Теорема. Если функция y = f(x) непрерывна на отрезке [a, b] и F(x) – какаялибо ее первообразная на этом отрезке, то справедлива следующая формула:

$$\int_{a}^{b} f(x)dx = F(b) - F(a), (3)$$

которая называется формулой Ньютона–Лейбница. Разность F(b)-F(a) принято записывать следующим образом: $F(b)-F(a)=F(x)\big|_a^b$, где символ $\big|_a^b$ называется знаком двойной подстановки. Имеем:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$
 (4)

Пример. Вычислить интеграл $\int_{1}^{3} x^2 dx$.

Для подынтегральной функции $f(x) = x^2$ произвольная первообразная имеет вид $F(x) = \frac{x^3}{3} + \tilde{N}$. Для вычисления интеграла возьмем первообразную, имеющую наиболее простой вид: $F(x) = \frac{x^3}{3}$. Тогда $\int_{3}^{3} x^2 dx = \frac{x^3}{3} \Big|_{3}^{3} = \frac{3^3}{3} - \frac{1^3}{3} = 9 - \frac{1}{3} = 8\frac{1}{3}$.

Замена переменной в определенном интеграле

Теорема. Пусть функция f(x) непрерывна на отрезке [a,b]. Тогда, если: 1) функция $x = \varphi(t)$ и ее производная $\varphi'(t)$ непрерывны при $t \in [\alpha,\beta]$; 2) множеством значений функции $x = \varphi(t)$ при $t \in [\alpha,\beta]$ является отрезок [a,b]; 3) $\varphi(\alpha) = \hat{a}$, $\varphi(\beta) = b$, то справедлива формула

$$\int_{a}^{b} f(x)dx = \int_{a}^{\beta} f[\varphi(t)] \cdot \varphi'(t)dt, (5)$$

которая называется формулой замены переменной в определенном интеграле.

Доказательство.

На практике часто вместо подстановки $x = \varphi(t)$ используют подстановку t = g(x). В этом случае нахождение новых пределов интегрирования по переменной t упрощается: $\alpha = g(a)$, $\beta = g(b)$.

Пример 3. Вычислить интеграл
$$\int_{3}^{8} \frac{x dx}{\sqrt{1+x}}$$

Введем переменную равенством $\sqrt{1+x}=t$. Определим x и dx. Возведя в квадрат $\sqrt{1+x}=t$, получим $1+x=t^2$, откуда $x=t^2-1$, $dx=(t^2-1)'dt=2tdt$. Находим новые пределы интегрирования: в формулу $\sqrt{1+x}=t$ подставим старые пределы x=3 и x=8. Получим: $\sqrt{1+3}=t$, откуда t=2 и,следовательно, $\alpha=2$; $\sqrt{1+8}=t$,откуда t=3 и, следовательно, $\beta=3$. Таким образом: $\frac{8}{3}\frac{xdx}{\sqrt{1+x}}=\frac{3}{2}\frac{(t^2-1)2tdt}{t}=2\int\limits_2^3(t^2-1)dt=2\int\limits_2^3t^2dt-2\int\limits_2^3dt=2\cdot\frac{t^3}{3}\Big|_2^3-2t\Big|_2^3=$

$$\int_{3}^{6} \frac{x dx}{\sqrt{1+x}} = \int_{2}^{3} \frac{(t^{2}-1)^{2}t dt}{t} = 2\int_{2}^{3} (t^{2}-1) dt = 2\int_{2}^{3} t^{2} dt - 2\int_{2}^{3} dt = 2 \cdot \frac{t^{3}}{3} \Big|_{2}^{2} - 2t \Big|_{2}^{3} = \frac{2}{3} (3^{3}-2^{3}) - 2(3-2) = \frac{2}{3} \cdot 19 - 2 = \frac{32}{3} = 10\frac{2}{3}.$$

Лекция 8.

Суммы Дарбу. Условия существования интеграла.

Определение верхней и нижней сумм. Пусть f(x) —ограниченная на отрезке [a,b] функция и $\{x_k\}$ — произвольное разбиение этого сегмента. Так как f(x) ограничена на сегменте [a,b], то она ограничена и на любом частичном сегменте $[x_{k-1},x_k]$, а поэтому у функции f(x) существуют точная нижняя грань m_k и точная верхняя грань Mk на частичном сегменте $[x_{k-1},x_k]$. Итак, пусть

$$m_k = \inf_{\substack{x_{k-1} < x \leqslant x_k}} f(x), \ M_k = \sup_{\substack{x_{k-1} \leqslant x \leqslant x_k}} f(x).$$

Определение 1. Суммы

$$S = M_1 \Delta x_1 + M_2 \Delta x_2 + \ldots + M_n \Delta x_n = \sum_{k=1}^n M_k \Delta x_k$$

$$s = m_1 \Delta x_1 + m_2 \Delta x_2 + \ldots + m_n \Delta x_n = \sum_{k=1}^n m_k \Delta x_k$$

u

будем называть соответственно верхней и нижней суммами функции f(x) для данного разбиения $\{x_k\}$ сегмента [a, b].

Основные свойства верхних и нижних сумм.

Лемма. Пусть $\sigma(x_k, \xi_k)$ — интегральная сумма, отвечающая данному разбиению $\{x_k\}$. Тогда при любом выборе промежуточных точек ξ_k всегда справедливы неравенства $s \leq \sigma \leq S$, где s и S — соответственно нижняя и верхняя суммы, отвечающие тому же разбиению.

Доказательство.

Лемма. Пусть $\{x_k\}$ — произвольное фиксированное разбиение сегмента [a, b], \mathcal{E} — произвольное положительное число. Тогда можно выбрать промежуточные точки ξ_k так, чтобы интегральная сумма $\sigma(x_k, \xi_k)$ и верхняя сумма S удовлетворяли неравенству $0 < S - \sigma(x_k, \xi_k) < \varepsilon$. Промежуточные точки η_k можно выбрать и таким образом, чтобы для интегральной суммы $\sigma(x_k, \eta_k)$ и нижней суммы S выполнялись неравенства $0 < \sigma(x_k, \eta_k) - S < \varepsilon$.

Доказательство.

Следствие. Для любого фиксированного разбиения $\{x_k\}$ справедливы следующие соотношения

$$S = \sup_{\xi_k} \sigma(x_k, \xi_k), s = \inf_{\eta_k} \sigma(x_k, \eta_k),$$

Лемма. При измельчении данного разбиения верхняя сумма может только уменьшиться, а нижняя сумма — только увеличиться.

Доказательство.

Лемма. Для двух произвольных и, вообще говоря, различных разбиений сегмента [a, b] нижняя сумма одного из этих разбиений не превосходит верхней суммы другого разбиения.

Доказательство.

Определение. Верхним интегралом Дарбу от функции f(x) называется число I^* , равное точной нижней грани множества верхних сумм $\{S\}$ данной функции f(x) для всевозможных разбиений сегмента [a, b]. Нижним интегралом Дарбу от функции f(x) называется число I_{\star} , равное точной верхней грани множества нижних сумм $\{s\}$ данной функции f(x) для всевозможных разбиений сегмента [a, b].

Лемма 5. Нижний интеграл Дарбу всегда не превосходит верхнего интеграла Дарбу, т. е. $I_{\star} \leqslant I^{\star}$.

Доказательство.

Лемма. Для разностей S—S' и s'—s выполняются следующие неравенства S—S′ \leq (M—m)ld, s′—s \leq (M—m)ld

Доказательство.

Определение. Число A называется пределом верхних сумм S при стремлении к нулю диаметра разбиений d, если для любого положительного числа ϵ можно указать положительное число δ такое, что при условии $d < \delta$ выполняется неравенство $|S-A| < \epsilon$. Для обозначения указанного предела естественно употреблять символ $A = \lim_{d \to 0} S$. Аналогично определяется предел B нижних сумм S при стремлении d к нулю.

Основная лемма Дарбу. Верхний интеграл Дарбу I^* является пределом верхних $I^* = \lim S$ сумм S при стремлении диаметра d разбиений к нулю, т. е. $d \rightarrow 0$. Аналогично $I_* = \lim_{d \rightarrow 0} S$.

Доказательство.

Необходимые и достаточные условия интегрируемости.

Теорема. Для того чтобы ограниченная на сегменте [a, b] функция f(x) была интегрируема на этом сегменте, необходимо и достаточно, чтобы выполнялось равенство $I_* = I^*$.

Доказательство.

Основная теорема. Для того чтобы ограниченная на сегменте [a, b] функция f(x) была интегрируемой на этом сегменте, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ нашлось такое разбиение $\{x_k\}_{\text{сегмента}}$ [a, b], для которого $S - s < \varepsilon$.

Доказательство.

Теорема. Если функция f(x) непрерывна на [a,b], то она интегрируема на [a,b].

Доказательство.

Теорема. Монотонная на отрезке функция интегрируема на этом отрезке.

Доказательство.

Лекция 9. Несобственные интегралы.

Пусть функция f(x) определена на полуинтервале [a,b), где b либо конечное либо равно ∞ . Предположим, что она интегрируема на любом отрезке [a, t], где a < t < b. Если $t=\infty$ или f(x) неограничена в окрестности точки b, то её интеграл Римана на [a,b) не существует. Тем не менее может оказаться, что существует предел $\lim_{t\to b} \int_a^t f(x) dx$, отличный от бесконечности. В этом случае данный предел называется несобственным интегралом от f(x) на отрезке [a,b] и пишут

$$\int_{a}^{b} f(x)dx = \lim_{t \to b} \int_{a}^{t} f(x)dx \tag{1}$$

Говорят также, что интеграл сходится. Если предел не существует или равен бесконечности, то говорят, что интеграл расходится.

Если выполнены условия начала предыдущего абзаца, то будем называть

$$\int_{a}^{b} f(x) dx \quad (2)$$

интегралом от f(x) с единственной особенностью в точке b. Аналогично определяется интеграл с единственной особенностью в точке a.

Теорема.

Пусть задан интеграл (2) с единственной особенностью в точке b. Для его сходимости необходимо и достаточно выолнения условия Коши:

$$\forall \ arepsilon > 0 \ \exists \ b_0 > 0 \colon \left| \int_c^d f(x) dx \right| < arepsilon \quad , \qquad$$
 для любых $b_0 < \mathbf{c} < d < b$. Доказательство.

Примеры.

Определение. Интеграл (2) сходится абсолютно, если сходится интеграл

$$\int_{a}^{b} |f(x)| dx .$$
(3)

 J_a ју (х)јих. Теорема. Если несобственный интеграл сходится абсолютно, то он сходится. Доказательство.

Теорема. Пусть функции $f(x) \ge 0$, $g(x) \ge 0$ на [a,b], интегралы $\int_a^b f(x) dx$ (4), $\int_a^b g(x) dx$ (5)

имеют единственную особенность в точке b и на промежутке [a,b) выполняются условия

$$0 \le f(x) \le g(x).$$

Тогда из сходимости интеграла (5) следует сходимость интеграла (4), а из расходимости (4) следует расходимость (5).

Доказательство.

Примеры.

Теорема. Пусть интегралы (4) и (5) из предыдущей теоремы имеют единственную особенность в точке b, подинтегральные функции положительны и

$$\exists \lim_{x \to b} \frac{f(x)}{g(x)} = A > 0.$$

Тогда эти интегралы сходятся и расходятся одновременно.

Примеры.

Пример. Интеграл $\int_a^\infty \frac{\sin x}{x} dx$ сходится, но не сходится абсолютно.

Лекция 10. Приложения определённых интегралов.

1. Площадь фигуры.

а) в декартовых координатах:

Теорема. если фигура ограничена сверху кривой y = f(x), снизу - кривой y = g(x), слева и справа - отрезками прямых x = a и x = b, то ее площадь равна $\int_a^b |f(x) - g(x)| dx.$

Доказательство.

Примеры.

б) в полярных координатах:

Теорема. Если область D - сектор, ограниченный лучами

 $\varphi=lpha, \varphi=eta$ и кривой $ho=
ho(\varphi),$ то площадь сектора $m{D}$ равна $\int_{lpha}^{eta}
ho^2(\varphi) d \varphi$.

Доказательство.

Примеры.

2. Объём тела.

а). По площадям поперечных сечений.

Теорема. Пусть тело V расположено в пространстве между плоскостями x = a и x = b, и для $\forall x \in [a, b]$ известна площадь его поперечного сечения S = S(x). Тогда объём тела равен

$$\int_a^b S(x) dx.$$

Доказательство.

Примеры.

б) Объём тела вращения.

Теорема. Если объём V получается в результате вращения кривой y=f(x), $a \le x \le b$ вокруг оси Ox, то объём тела равен

$$\pi \int_a^b f^2(x) dx \qquad .$$

Доказательство.

Примеры.

3. Длина дуги кривой.

Теорема. Гладкая кривая Γ , определяемая равенствами $\begin{cases} x = \alpha(t) \\ y = \beta(t) \\ z = \gamma(t), \ t \in [a,b] \end{cases}$ (1)

спрямляема. Её длина дуги равна

$$|\Gamma| = \int_a^b \sqrt{[\alpha(t)]^2 + [\beta(t)]^2 + [\gamma(t)]^2} dt.$$

Доказательство.

Следствие. Длина дуги плоской кривой y=f(x), $a \le x \le b$ равна

$$\int_a^b \sqrt{1 + y(x)^2} \, dx.$$

Доказательство.

Примеры.

4. Площадь поверхности тела вращения.

Теорема. Если поверхность S получается в результате вращения кривой y=f(x), $a \le x \le b$ вокруг оси Ox, то площадь поверхности тела вращения равна

$$2\pi \int_a^b |f(x)| \sqrt{1 + f(x)^2} \, dx.$$

Доказательство.

Примеры.

Лекция 11. Мера Жордана.

Все определения будут приведены для двумерных множеств на плоскости и для двумерной меры Жордана. Случай произвольного пространства \mathbb{R}^n и $\mathbb{R}^$ Жордана разбирается аналогично.

Фиксируем натуральное число N и две системы прямых на плоскости: x = kh, y = lh, $(k, l \in \mathbf{Z}), h = 2^{-N}$, образующих на плоскости прямоугольную h-сетку, состоящую из квадратов со стороной h. При переходе от N k N+1 каждый квадрат h-сетки разрезается на 4 равных квадратика. Последние образуют уже $h=2^{-N-1}$ - сетку.

Пусть G - произвольное ограниченное множество на плоскости и для данного Nопределим два множества $G_N u G^N$. Первое из них G_N - есть объединение квадратиков сетки, целиком принадлежащих G, назовём G_N внутренней фигурой множества G, определяемой данной h-сеткой. Второе множество G^N назовём внешней фигурой множества G. Оно состоит из квадратиков, имеющих с G непустое пересечение. Имеем $G_N \subseteq G \subseteq G^N$ и площади фигур удовлетворяют неравенству $|G_N| \le |G^N|$, для

любого N. Очевидно, что

 $|G_1| \le |G_2| \le |G_3| \le \dots \le |G| \le \dots \le |G^3| \le |G^2| \le |G^1|$, следовательно $|G_N| \le |G^M|$ для любых натуральных M u N.

Теорема. Существуют пределы $\lim_{N\to\infty}|G_N|=m_iG$ и $\lim_{N\to\infty}|G^N|=m_eG$, называемые внешней и внутренней мерой Жордана множества ${\it G}\,$, причём

$$m_iG \leq m_eG$$
.

Доказательство.

Oпределение. Множество G называют измеримым по Жордану в двумерном смысле, если $m_i G = m_e G = m G$ и число m G называют двумерной мерой Жордана множества G. Примеры.

Теорема. Множество плоскости G измеримо по Жордану если и только если мера его границы равняется нулю $m\Gamma = 0$.

Доказательство.

Примеры.

Теорема. Непрерывная кривая Γ : $y = f(x), x \in [a, b]$ имеет двумерную меру нуль (m Γ =0).

Доказательство.

Теорема. Пусть поверхность S задана в трёхмерном пространстве уравнением z = f(x, y), где $(x, y) \in \bar{G}$ - ограниченной замкнутой области на плоскости. Тогда трёхмерная мера Жордана поверхности S равна нулю.

Доказательство.

Примеры.

Лекция 12.

Решение задач типового расчёта по темам: неопределённый интеграл, определённый интеграл, несобственный интеграл.

Лекция 13. Определение двойного интеграла. Свойства двойного интеграла.

Пусть f(x, y) ограниченная функция, определенная в некоторой ограниченной, замкнутой области D плоскости Oxy. Разобьем D произвольным образом на n измеримых по Жордану областей $D_1, D_2, ..., D_n$, не имеющих общих внутренних точек, в каждой области D_k возьмем произвольную точку $N_k(x_k, y_k)$, вычислим значение $f(N_k)$ и составим сумму

$$\sum_{k=1}^{n} f(x_k, y_k) m(D_k)$$
 (1)

где $m(D_k)$ – площаль (двумерная мера Жордана) множества D_k . Данную сумму назовём интегральной суммой функции f(x,y) для разбиения R множества $D = D_1 \cup D_2 \cup ... \cup D_n$, и выбора внутренних точек $N_k \in D_k$.

Назовём диаметром множества D_k число $d(D_k) = \sup_{N,M\in D_k} \rho(N,M)$ - точную верхнюю грань расстояний между всеми парами точек D_k . Назовём диаметром разбиения R число $d(R) = \max_{1 \le k \le n} d_k$, где $d_k = d(D_k)$.

Определение.

Если существует предел интегральной суммы (1) при $d(R) \to 0$, не зависящий от разбиения R множества D и выбора точек $N_k(x_k, y_k)$ в них, то он называется двойным интегралом от функции f(x, y) по области D и обозначается $\iint_D f(x, y) dx dy$,

Таким образом

$$\lim_{d(R)\to 0} \sum_{k=1}^n f(x_k, y_k) m(D_k) = \iint_D f(x, y) dx dy$$

и f(x, y) называется интегрируемой функцией на множестве D.

Геометрический смысл двойного интеграла — объём цилиндрического тела с основаниями D и графиком z = f(x, y) над множеством D и образующей, параллельной оси Oz.

Рисунок.

Примеры.

Свойства двойного интеграла.

Теорема. Пусть функция f(x,y) непрерывна на ограниченном, замкнутом, измеримом по Жордану множестве D, тогда f(x,y) интегрируема на D.

Доказательство.

Примеры.

Теорема. a) $\int_D 1 dx = m(D)$.

6)
$$\int_D (\alpha f(x) + \beta g(x)) dx = \alpha \int_D f(x) dx + \beta \int_D g(x) dx$$
.

в) если
$$f(x) \le g(x)$$
 , то $\int_D f(x) dx \le \int_D g(x) dx$.

$$\Gamma \int_{D} |f(x)| dx \ge \left| \int_{D} g(x) dx \right|.$$

Доказательство.

Примеры.

Теорема. Пусть функция f(x, y) непрерывна на замыкании \overline{D} ограниченного, измеримого по Жордану множества D с кусочно-гладкой границей , тогда f(x,y) интегрируема на D.

Доказательство.

Примеры.

Теорема (о среднем). Пусть функция f(x, y) непрерывна на ограниченном, замкнутом, измеримом по Жордану множестве D ,которое является связным, тогда существует $x_0 \in D$, такая что $\int_D f(x) dx = f(x_0) \cdot m(D)$.

Доказательство.

Примеры.

Лекция 14. Сведение двойного интеграла к повторным.

Теорема. Пусть функция f(x,y) непрерывна множестве $D = \{(x,y) \in \mathbb{R}^2, a \le x \le b, \mu(x) \le y \le \varphi(x) \}$, тогда $\iint_D f(x,y) dx dy = \int_a^b (\int_{\mu(x)}^{\varphi(x)} f(x,y) dy) dx$.

Доказательство.

Примеры.

Разбор задач типового расчёта.

Список литературы.

- 1. Бугров Я.С., Никольский С.М. "Высшая математика. В 3 томах. Том 3. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. - М.: Наука.
- 2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. М.: Наука, Главная редакция физико-математической литературы, 1988, 432 с.
- 3. Бугров Я. С., Никольский С. М. Высшая математика. Дифференциальное и интегральное исчисление. М.: Наука, Главная редакция физикоматематической литературы, 1988, 432 с.
- 4. 2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 1. СПб.: Лань, 2016. 608 с.
- 5. 3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 2. СПб.: Лань, 2016. 800 с.
- 6. 4. Кудрявцев Л.Д. Краткий курс математического анализа. Т.1. Дифференциальное и интегральное исчисления функций одной переменной. — М.: ФИЗМАТЛИТ, 2015. – 444 с.
- 7. Кудрявцев Л.Д. Краткий курс математического анализа. Т.2. Дифференциальное и интегральное исчисления функций многих переменных. Гармонический анализ. М.: ФИЗМАТЛИТ, 2003. 424 с.
- 8. Сборник задач по математике для втузов: [в 4 ч.] / Под ред. А. В. Ефимова; А. С. Поспелова. М.: ФИЗМАТЛИТ, 2004. Ч. 1. 288 с.
- 9. Сборник задач по математике для втузов; под ред. А. В. Ефимова, А. С. Поспелова. Ч. 2. М.: ФИЗМАТЛИТ, 2009. 432 с.