Decision Theory and Bayesian Inference

· It's a unsfying framework for theory of Statistic including estimation and testing.

(1) Definition:

· Suppose "a" is an accion, at A. the action space.

 $\Rightarrow \text{ The choose of notion 'a' depends on:}$ $(i) \text{ Observations of } \Gamma.V.: \text{ Data } X$ where X + S. sample space. ii) a, the Accision function. i.e. $\text{A: } S \rightarrow A. \text{ dex}) = a$

 \Rightarrow The prob dist of X depends on the parameter θ , called state of parameters $\theta \in \mathcal{N}$, the space of parameters

Then we can define a loss function blown)

on $\Lambda \times A$. Since $\alpha = \Lambda(\vec{X})$: $l(\theta, \sigma) = l(\theta, \Lambda(\vec{X}))$ The expected loss of $\Lambda(\vec{X})$ is the (55k function: $R(\theta, \Lambda) = E_X(l(\theta, \Lambda(\vec{X})))$ (It depends on θ)

e.g. estimate V(0). Where $X_{\mu} \sim f(x|0)$. i.i.h. get dots \vec{X} .

We choose $l(0, A(\vec{x})) = [V(0) - A(\vec{x})]^{\frac{1}{2}}$ gradient in lass func

(2) Minimazitian:

Difficulties of $\int_{-\infty}^{\infty} R(\theta, \Lambda) kepend on unknown <math>\theta$.

Ininimizing $R(\theta, \Lambda) = ii$ for different $\theta_1, \theta_2, \lambda_1$ may hoppen: $R(\theta_2, \Lambda_1) > R(\theta_1, \Lambda_2)$ how to choose $\lambda_1 = \lambda_2 = \lambda_1 = \lambda_2 = \lambda_2$

I Then yo can define to los

O Def of minimum rate:

Consider the worst case: Sup R(O, A)

d* is the minimax rule. If sup R(O, A*)

= inf sup R(O, A), A* may not exist!

femore: It's very conservative to consider the worst case which isn't likely to occur.

@ Bayesian Rule:

We assume $\Theta \in \Theta$. Is random. With a prior list. Then the Bayesian risk of decision function λ is $B(d) = E_{\theta}(R(\theta, \lambda))$ Def: Bayesian rule is a decision func. λ^{**} attain the min(B(d))

Plont: It can be interpreted as average of york with weight form.

→ Postersor Analysss: A method for finding Bagusian Rule:

· Suppose 910) prior list of θ . $f_{X10}(x)$ condition θ of X. $\Rightarrow f_{X.0} = 910$, f_{X10} . \Rightarrow Sum/Integration: f_X .

We obtain: $h_{\theta 1X} = f_{X.0}/f_X$. Posterior list of θ .

Pef: Posterior 1884: $E_{\theta 1X}(l_{\theta 1}, d_{\theta 1X})$. \Rightarrow Priorix)

Permot: The observed later X=X updates the p-1884!

7hm. If ho(x) is a desireson func. primimizes

the posterior risk for each x. Then ho is Bayesian Rule.

Pf: $B(A) = E_0 (R(0,A)) = E_0 (E_x (L(0,A)x))$ $= \int \int \int L(0,A(x)) \int_{X(0}(x) dx \int f_0(0) dx$ $= \int \int \int L(0,A(x)) \int_{X(0}(x) dx \int f_0(x) dx$ If f(x)

If the Mux)

Aux)

Aux)

Aux)

X

=> Algoisthm:

- 1) Caculate hierx, for each x.
- 2) Cambre Exix (110, dixi)) for each x.
- 3°) Find LUXUEA niminitus every PR(0/20). fixed xo.

The above then XXX applies the first

(3) Application of Pecision Theory:

Estimation

Action space $A \longrightarrow Parameter Space N$.

Decision Func. $d(x) \longrightarrow estimator of \theta$. $d(x) = [\theta \cdot h(x)]^2$ or $[\theta \cdot h(x)]$

Thm.i) $E_{\theta|X}((\theta-\hat{\theta})^*|X) = V_{\text{arg}|X}(\theta|X) + [E_{\theta|X}(\theta|X) - \hat{\theta}]^*$ Then $\hat{\theta} = E_{\theta|X}(\theta|X)$ is the best predictor.

Es) $E_{\theta|X}(\theta-\hat{\theta}|X)$ has the best predictor: median.

Pf: For $\hat{\tau}$ $\hat{\tau}$ $E_{\theta|X}(\theta-\hat{\theta}|X)$ = $\int |\theta-\hat{\theta}| h_{\theta|X}(\theta) h_{\theta}$ $= \int_{\hat{\theta}}^{\infty} (\theta-\hat{\theta}) h_{\theta|X} h_{\theta} + \int_{-\infty}^{\hat{\theta}} (\hat{\theta}-\theta) h_{\theta|X} h_{\theta} = 0$ $\frac{\partial f}{\partial \hat{\theta}} = 0 \implies -\int_{\hat{\theta}}^{\infty} h_{\theta|X}(\theta) h_{\theta} + \int_{-\infty}^{\hat{\theta}} h_{\theta|X} h_{\theta} = 0$ $\hat{\theta} = meh_{\hat{\tau}} + meh_{\hat{\tau}} + meh_{\hat{\tau}} + meh_{\hat{\tau}} = 0$ $\hat{\theta} = meh_{\hat{\tau}} + meh_{\hat{\tau}} + meh_{\hat{\tau}} + meh_{\hat{\tau}} = 0$

Def: i) d.. d. two decision Fractions 6 A.

sags de dopoinates de: feq. d.) < Rev. de). 406 D

is) d. a decision func. dis admissable. 34 dis

not strictly dominated by any other decision Func.

Thm. i) If a is discrete. It is Bayesian rule w.r.t.

prior emf quo. where quo. >0. 40.

it) If a is dense. It is Bayesian rule w.r.t

prior phf quo. quo. >0. 40. ku.h. is conti.

of 0. 4d.

Then It is admissible.

<u>fule</u> and admissible.

Pf: If $\exists A'$. St. $R(\theta, A^*) \ge R(\phi, A')$. $\forall \theta$. $\exists \theta \circ h$. $\theta \in (\theta \circ h, \theta \circ h) \Rightarrow R(\phi, A^*) > R(\phi, A') + \epsilon$.

Then check: $B(d^*) - B(A') > 0$. contrasset!

(4) Bayesian View for prob.: (Personal Opinion)

- D Bayesian prob is personal. It varies from person to person, embolying the beliefs of person. (Subjective)
- B Bayesian rule describes the prob. evolves with experience.
- ⇒ Pofference between "B"

 and "F" Approach:

(1) Point Estimation:

[F: 8 is fixed. unknown. not random—slikelihood—maximal: Leolx) Find MLE. [B: 4 has pring last geo) — fostering: Asst Find Ecolx) heblx)

Pennik: From $\mu(\theta|x) = \frac{f(x|\theta)f(\theta)}{\int f(x|\theta)f(\theta)d\theta}$: $\mu(\theta|x) \propto f(x|\theta)f(\theta)$

Then good has little effect. hooks) of fixion; Looks)

3 Interval Estimation:

[Frequentist : $P(\Phi \in [\theta, \iota \vec{X}), \theta, \iota \vec{X})] | \theta) = 1-\alpha$. \vec{X} is random, θ fixed.

If \vec{X} is observed factor, then $P(\Phi \in [\theta, \iota \vec{X}), \theta, \iota \vec{X})] = 0$ or $[\theta, \iota, \xi]$.

Bryesian: $P(\theta \in [\theta, \iota, \xi], \theta, \iota, \xi) | \vec{X} = \vec{X}) = 1-\zeta$. θ is random. \vec{X} is the observed data. fixed.

3 Testing.

Frequentist: prob of Type I. I. error.

Bayesian: After observing lata, compare posteriar prob.

week to the work from

(5) Bayesian Inference for Normal Dist:

· Suppose XIM ~ NCM. 6). M~ NCM. 60°) of is known.

=) Posterior Rist of M is Nomi. 52). Where

 $M_i = \frac{g_0}{g+g_0} M_0 + \frac{g}{g+g_0} \times x \cdot g_1^2 = \frac{1}{g+g_0}$

9, = - 1 , g = - 1.

Pf: Since the Const. is for normalization.

We just care the ratio carbins M': $h(M(X)) \propto f(X|M)g(M) \propto e$ $h(M(X)) \propto f(X|M)g(M) \propto e$ $e^{-\frac{1}{2}(M^2 \frac{1}{\sigma^2} + \frac{1}{\sigma^2})} - 2M(\frac{X}{\sigma^2} + \frac{M^2}{\sigma^2}) + \frac{X^2}{\sigma^2} + \frac{M^2}{\sigma^2})$ $= e^{-\frac{1}{2}\frac{1}{M^2}} (M - \frac{1}{h})^2$ $\propto e^{-\frac{1}{2}\frac{1}{M^2}} (M - \frac{1}{h})^2$

Col. For n samples $\vec{\chi} = (\chi_1 \cdots \chi_n)$, i.i.d. $M \mid \vec{\chi} \rightarrow N \iota \xrightarrow{f_0} M_0 + \frac{ng}{ng+g_0} \vec{\chi}$, $\frac{1}{ng+g_0}$

Flont: i) Note that $\frac{50}{r5+50} + \frac{r5}{r5+5+} = 1$. We mix

up the prior and the Lata to generate

the posterior. (Weighted Average!)

- is) $\frac{1}{n_5+30} < 60^2$. Which means the Asst of $M/\tilde{\chi}$ is more concentrated. It courses more information (information)
- 322) If n is large enough. Then the later will dominate the prior dest!
- W) For objectiveness, the prior needs to be vague, non informative!
- (6) Bayesian Inference for Binomial Dest:

· X/9 ~ Bin.ps. p ~ Beta (a.b)

=> plx ~ Beta(n+x, n+b-x)

Similary. Most = ath ath + n+b+n. x

4 non Mpist -> 7!

Permork: Define:

She family of prior dust que for @

H: family of conductival dust fixed)

As is called conjugate prior to M:

3f the posterior of h under M wilso

belongs to h:

e.g. h: Normal dust. H= Normal Must -> 614=4

M: Binomil Asst G: Betw Asst -> 6/M=4

(7) Application of Decision Theory:

O Classification:

let $A = \{a_i : E \text{ Class } \theta_i, a_2 : E \text{ Class } \theta_2, \dots \text{ an } : E \text{ Class } \theta_m \}$.

Then $d(\cdot)$ is function to classify lates in S.

 \Rightarrow For parameter θ , let $A = I \theta i S_i^m$. $Zi = P(\Omega = \theta i)$. St. $\Xi Zi = I$. $f(x|\theta i)$ is known. I six π If lij is the loss in classifying class i to class j.

Then, we can find Bayesian fule: h(0: |x) = Is f(x10:) = P(0:0: | X=x). Let L(x) = aj IZ fixler We obtain PRijIX) = I lightoilX), Posterier 186k j to minimise Philx). for # 1525m Then d: X -> of is a Bayesin full e.g. (0-1 hss) lij = { 1, i + i is "qualstative", not "quantative") RLZ,A) = Exclets, dixi) = \(\sigma\langle \gamma\langle \gamma\langle \text{lix} = \frac{1}{2}\) $= \sum_{j \neq i} P_{\theta i} (\lambda_{ix}) = j = 1 - P_{\theta i} (\lambda_{ix}) = i)$ (From frequentist approach, minmax 3t)

 $\Rightarrow For Bayesian approach:$ $PR(j|X) = \sum_{i \neq j} P(\theta = \theta i | X) = 1 - Po(X(\theta i | X))$

-: PRCj(x) minimized (POIX (B) (x) max on j!

@ Mypothesis Testing:

Then both type I and type I errors are misclassification errors.

Bayesian approach: $p(H_1) = 2 \cdot p(H_0) = 1-2 \cdot then \text{ we obtain:}$ $\frac{p(H_1)}{p(H_0)} = \frac{p(H_0)}{p(H_0)} \cdot \frac{p(x|H_0)}{p(x|H_0)} > 1 \cdot (LMS = \frac{p(x|H_0)}{p(x|H_0)})$ $p(H_0|X) = \frac{p(x|H_0)}{p(x|H_0)} > \frac{1\cdot 2\cdot a}{2} \cdot c \cdot \text{ which means:}$ $\frac{p(x|H_0)}{p(x|H_0)} > \frac{1\cdot 2\cdot a}{2} \cdot c \cdot \text{ which means:}$ $Assign \times \frac{L}{2} \cdot H_0 \cdot \text{ when } \frac{p(x|H_0)}{p(x|H_0)} > c \cdot get$ L(x) is Bayesian law under 0-1 loss. L(x) is Bayesian law under 0-1 loss.

A*: test accept $N_0 \rightleftharpoons \frac{f_0(x)}{f_1(x)}$, C. With level α^* .

Then α^* is the most power test of level $\alpha \le \alpha^*$.

Pf: let $c^1 = \frac{z}{1-z}$. $P(N_0) = z$. $P(N_0) = 1-z$.

Pf: let $c^1 = \frac{z}{1-z}$. $P(N_0) = z$. $P(N_0) = 1-z$.

A* is the Bayesian rule with this prior with 0-1 his C is the Bayesian rule with this prior. With 0-1 his C is C is C is C in C i

+ (1-2) \mathcal{E} \mathcal{E}

: Exclimp. Atixi)) = Exclimp. duxi))
i.e. \(\beta_{A} \neq \beta_{L} = \beta_{L}. \)