H

CC 8550 – Simulação e Teste de Software

Aula 02 – Geração de números aleatórios

Tópicos da Aula:

- Aspectos da Aleatóriedade
- Onde e porque usar numeros aleatórios ?
- O que é aleatóriedade (filosoficamente)?
- O que são Numeros Aleatórios (matematicamente)?
- Numeros Aleatórios realmente existem?
- Medidas de (não) aleatóriedade.

- Como podemos obter verdadeiros números aleatórios?
- Fontes não-eletrônicas
- Fontes eletrônicas.
 - Circuitos simples para gerador de números aleatórios
 - Exemplos
 - Nos computadores
 - Sem HW extra
 - Com adição de HW

Utilização da aleatoriedade

- Filosofia
- Matemática
- Ciência da Computação
- Segurança da Informação
- Engenharia de Software
- Eletrônica

- Estatistica
- Engenharia
- Física
- Lógica
- Economia
- Arte

Utilização da aleatoriedade ???

Tabelas de números aleatórios

- Tippett em 1927, com 41.600 dígitos gerados a partir de estatísticas obtidas em censos
- Kendall e Babington-Smith em 1939, com 100.000 dígitos, gerados a partir de um sistema mecânico, criado pelos próprios autores.
- Os esforços de tabulação praticamente se encerraram com a publicação, em 1955, da monumental tabela com um milhão de dígitos aleatórios da <u>Rand Corporation</u> obtidos a partir de uma roleta eletrônica, feita especialmente para este propósito.

Programas Geradores de Números Aleatórios

- Um GNA, é um programa computacional que deve ser capaz de gerar valores aleatórios independentes e uniformemente distribuídos (isto é, todos com a mesma probabilidade de ocorrência) no intervalo de 0 a 1.
- A busca de bons algoritmos geradores de números aleatórios só se desenvolveu plenamente quando do advento dos primeiros computadores digitais.

Números Pseudo-Aleatórios

- Por serem gerados artificialmente, os valores aleatórios obtidos são conhecidos como números pseudo-aleatórios.
- Isto significa que a sequência de números gerada por um destes algoritmos é reproduzível e, portanto, não aleatória no sentido estrito do termo.
- Estatisticamente falando, a comparação entre um conjunto de valores gerados em um computador com outro, verdadeiramente aleatório, gerado, por exemplo, pela natureza, não apresenta diferenças.
- E os números VERDADEIRAMENTE aleatórios?
- Você conhece algum gerador natural?

Tabela de Dígitos Aleatórios

2445	8615	2895	6331	5698	8294	1935	9192	4277	6365	1461	4693
8737	5112	3148	3470	1180	3662	5837	7458	7096	8545	2559	8704
8074	0700	8866	4050	5611	9691	7283	0279	0882	5464	2218	3014
8241	9290	3101	4657	8337	8247	1492	2507	1209	6216	3784	5015
6059	4324	0055	3590	7708	1107	8633	4402	8571	9892	9181	0602
0283	4899	2450	5647	7008	5411	5915	7467	4815	6311	4542	2468
6462	2135	7113	8994	2328	6156	7084	8395	4463	6345	9409	3804
2360	1613	4347	2364	9811	4581	5611	5835	2148	4565	0956	3918
0580	3417	6611	8927	3229	9247	4785	1877	5262	0646	8966	7341
6915	3167	5548	7352	3761	7086	0636	0079	0506	0718	1759	2979
8395	0617	4946	5390	8008	2785	7629	3176	5114	1410	0569	7877
3069	5769	3617	1149	0276	5783	2837	7487	8159	3478	8152	1191
1859	8790	3106	7156	5673	6967	0812	1603	1330	5588	3706	6479
9645	7574	2954	5940	6263	6559	9450	2281	1362	3000	0482	8066
1136	6008	0598	8617	2380	0960	4412	7829	2840	8729	4840	1130
4220	5296	9960	1179	9882	3223	7574	3009	0586	8087	9234	0536
2745	0643	5915	7618	4488	8871	4909	2972	6106	7307	5255	5101
2887	8586	0033	6146	6995	7415	9267	3306	4876	9378	0709	1284
1308	5453	4265	2823	3980	9271	7984	9418	1928	7429	9430	3280
5688	8902	6741	1182	5137	6712	3235	1171	7707	2947	3106	4346
7095	2239	2388	1595	4608	0700	2123	9659	1199	3279	5117	4105
4278	1820	8244	9860	1660	9044	8928	4588	1803	8097	9058	6465
1395	1223	7100	5349	2947	9933	9883	6823	5558	6412	5570	1611
3180	0778	4992	5550	0392	6390	7495	6931	7169	7232	3336	3652
3069	1381	0722	5843	1771	5534	5498	1546	5629	0224	6874	6951
4494	2202	2245	5608	3987	1528	3547	5980	9320	5533	8915	9216

Tabela da Rand Corporation

Scientists from the RAND Corporation have created this model to illustrate how a "home computer" could look like in the year sing. However the needed technology will not be economically feasible for the average bone. Also the eciratists readily admit that the computer will require not yet invented sechnology to actually north, but so years from now eciratific progress is expected to solve these problems. With taletype interface and the Fortran language, the computer will be easy to use.

Tabela da Rand Corporation

É fácil gerar números aleatórios de cabeça?

- Cada pessoa pode anotar um número entre 0 e 100 em um pedaço de papel.
- Qual o número que mais ocorreu?

"Geradores de números aleatórios não devem ser escolhidos aleatoriamente" (Ronald Knuth)

17 é um número aleatório?

•
$$17 = 2^{2^2} + 1$$

- 17 é sétimo número primo
- Podemos construir 17 gomos regulares com um compasso.

- Coincidência inédita na Mega-Sena provoca dúvidas nas redes sociais; matemáticos explicam
- Nathan Lopes Do UOL, em São Paulo 25/06/2018 13h09

A <u>Mega-Sena deste sábado</u> (23) registrou pela primeira vez em 2.052 concursos, desde o lançamento da loteria em março de 1996, seis números da mesma dezena: 50 - 51 - 56 - 57 - 58 - 59. E, por mais improvável que essa combinação seja, teve gente que acreditou nela: quatro apostadores, das cidades de Salvador (BA), Maranguape (CE), Marabá (PA) e Canoas (RS), acertaram a sena.

As quatro apostas vencedoras dividirão um prêmio de R\$ 38.510.236,84, faturando R\$ 9.627.559,21 cada uma --o prêmio estava acumulado havia seis rodadas. O concurso 2.052 ocorreu às 20h (horário de Brasília), em Campina Grande (PB).

Matematicamente, a chance de acertar as seis dezenas da Mega-Sena com um jogo simples é de uma em 50.063.860 possibilidades de combinações. Mas a aposta em seis números da mesma dezena chama ainda mais atenção por esse tipo de resultado nunca ter saído em nenhum dos 2.051 concursos anteriores ao deste sábado.

Apenas um concurso da Mega-Sena (o 1.004, de 13 de setembro de 2008) havia premiado mais de quatro números da mesma dezena, sorteando a combinação 29 · 40 - 43 - 44 - 45 - 47. Na ocasião, ninguém acertou as seis dezenas e o prêmio de R\$ 10.552.054,80 foi acumulado para o sorteio seguinte.

 Um número aleatório pode representar decisões arbitrárias ou servir como entrada para geração de tempos segundo várias distribuições.

- Como produzir números aleatórios ?
 - Dispositivos físicos (Ex. dados, roleta, moeda etc.)
 - Tabela de números aleatórios (livros)
 - Processos matemáticos
- No Excel: "=ALEATORIO()" (gera um número aleatório maior ou igual a 0 e menor do que 1)

Método do Meio Quadrado

Von Neumann (1946)

$$-r1 = 76 \Rightarrow 76^2 = 5776$$

 $-r2 = 77 \Rightarrow 77^2 = 5929$

$$- r3 = 92....$$

- Sequência gerada (76,77,92,46,11,12,14, ...)
- Quando resultar em 0, deve-se utilizar outra semente.

Método do Meio Quadrado

Método do Meio Quadrado – continuação

$$x_0 = 5497$$

$$x_1$$
: 5497² = 30217009 $\rightarrow x_1$ = 2170 $\rightarrow R_1$ = 0,2170

$$x_2$$
: 2170² = 04 $\overline{7089}$ 00 $\rightarrow x_2$ = 7089 $\rightarrow R_2$ = 0,7089

$$x_3$$
: $7089^2 = 50253921 \rightarrow x_3 = 2539 \rightarrow R_3 = 0,2539$

Desvantagem:

As condições de estado são difíceis para escolher a semente inicial que gerará uma sequência "boa".

Método do Meio Quadrado – continuação

Sequências "Ruins"

• $x_0 = 5197$

$$x_1$$
: 5197² = 27008809 $\rightarrow x_1$ = 0088 $\rightarrow R_1$ = 0,0088

$$x_2$$
: 0088² = 00007744 $\rightarrow x_2$ = 0077 $\rightarrow R_2$ = 0,0077

$$x_3$$
: 0077² = 00005929 $\rightarrow x_3$ = 0059 $\rightarrow R_3$ = 0,0059

• $x_i = 6500$

$$x_{i+1}$$
: 6500²=42250000 $\rightarrow x_{i+1}$ = 2500 $\rightarrow R_{i+1}$ = 0,2500

$$x_{i+2}$$
: 2500²=06250000 $\rightarrow x_{i+2}$ = 2500 $\rightarrow R_{i+1}$ = 0,2500

Método do Meio Quadrado – continuação

x_0	=	121				
$(121)^2$	=	014641	\Rightarrow	x_1	=	464
$(464)^2$	=	215296	\Rightarrow	x_2	=	529
$(529)^2$	=	279841	\Rightarrow	x_3	=	984
$(984)^2$	=	968256	\Rightarrow	x_4	=	825
$(825)^2$	=	680625	\Rightarrow	x_5	=	062
$(062)^2$	=	003844	\Rightarrow	x_6	=	384
$(384)^2$	=	147456	\Rightarrow	x_7	=	745
$(745)^2$	=	555025	\Rightarrow	x_8	=	502
$(502)^2$	=	252004	\Rightarrow	x_9	=	200
$(200)^2$	=	040000	\Rightarrow	x_{10}	=	000
$(000)^2$	=	000000	\Rightarrow	x_{11}	=	000

Método da Congruência Linear (LCG)

$$x_{i+1} = (ax_i + c) \mod m$$

Gerador de números inteiros entre 0 e m-1

- -"x_o" é a semente do número aleatório
- "mod" é a função módulo = mostra o resto da divisão inteira.

Ex.: $10 \mod 6 = 4$

Método da Congruência Linear (MCL)

Passo 1: Escolher os valores a, c e M. Usualmente, M é escolhido o maior possível.

Passo 2: *Escolher a semente* r_0 , *tal que*: $1 \le r_0 \le M$.

Passo 3: Calcular o próximo número aleatório pela expressão:

$$r_1 = (a \cdot r_0 + c) \mod M$$

onde: $x \mod y$ é o módulo da divisão de x por y (por exemplo: $10 \mod 6 = 4$).

Passo 4: Substitua r_0 por r_1 e volte ao passo anterior, de modo a construir a sequência de números aleatórios desejada.

Método da Congruência Linear (MCL)

Gerar números aleatórios pelo método da congruência, com a = 9, c = 1, m = 17 e $x_0 = 7$.

n	X _n	<i>y</i> =9x _n +1	<i>y</i> mod 17	<i>x</i> _{n+1} /17
0	X _o =7	9*7+1=64	13	13/17 = 0.7647
1	X ₁ =13	118	16	16/17 = 0.9412
2	X ₂ =16	145	9	0.5294
3	X ₃ =9	82	14	0.8235
4	X ₄ =14	127	8	0.4706

números **pseudo-aleatórios** inteiros entre **0 e 16** (=17-1)

números pseudoaleatórios inteiros entre 0 e 1

Exemplo 01

X	X - Norm
27	0.27
2	0.02
77	0.77
52	0.52
27	0.27
2	0.02
77	0.77
52	0.52
27	0.27
2	0.02
77	0.77
52	0.52
27	0.27

$$X_{i+1} = (aX_i + c) \mod m, i = 0,1,2,...$$

O ciclo é tamanho 4.

Isso é aceitável?

$$X0 = 27$$
, $a = 17$, $c = 43$, $m=100$,

$$0 <= X <= 99$$

O que acontece se for usada uma semente diferente ?

Exemplo 02 – Usando uma semente diferente

X0 = 3	
a = 17	
c = 43	

	1	Δ	
m =		()()	
m-	1	VV	

Agora o comprimento do ciclo é de 20

Obs:

- 1. Os dois ciclos são pequenos
- 2. O tamanho do ciclo depende da escolha da semente

3	0.03
94	0.94
41	0.41
40	0.4
23	0.23
34	0.34
21	0.21
0	0
43	0.43
74	0.74
1	0.01
60	0.6
63	0.63
14	0.14
81	0.81
20	0.2
83	0.83
54	0.54
61	0.61
80	0.8
3	0.03
94	0.94

Uso do MCL

Implementação	a	b	c	S_1
IBM RANDU	65539	0	2^{31}	123456789
Congruência Linear mínima	16807	0	$2^{31}-1$	1
função rand() linguagem C (ANSI)	1103515245	12345	2^{31}	12345
Numerical Recipes	1664525	1013904223	2^{32}	1
CRAY	44485709377909	0_	2^{48}	1
Maple	427419669081	0	$10^{12}-11$	1

Gráfico do Gerador RANDU (cubo com coordenadas)

Número de pontos gerados = 5000 pontos

Figura 01: Imagem tridimensional correspondente a 5.000 pontos gerados a partir da Implementação RANDU. Os pontos ocupam apenas 15 planos contidos no cubo! Um péssimo comportamento "aleatório".

Verificação da geração com um número de Matricula

Geração de números aleatórios no Excel

Número de pontos gerados = 5000 pontos

RSA SecurID SD600

RSA SecurID SD200

RSA SecurID SD520

RSA SecurID SID700

RSA SecurID SID800

Geradores de Números Aleatórios

Galaxy Note20 20 Ultra 5G

Pré-venda

03.09 a 17.09

Compre um Galaxy Note20 ou Note20 Ultra e

ganhe um voucher

A Samsung anunciou o lançamento de um modelo exclusivo para a operadora SK Telecom, na Coreia do Sul. Trata-se do Galaxy A Quantum, versão especial do Galaxy A71 5G equipada com um gerador quântico de números aleatórios (QRNG, na sigla em inglês).

O aparelho segue as especificações originais da versão 5G do Galaxy A71, com a inclusão do processador IDQ250C2, desenvolvido pela SK Telecom com tecnologias licenciadas da suíça ID Quantique.

Pré-venda | 03.09 a 17.09

Compre um Galaxy Note20 ou Note20 Ultra e ganhe um voucher de R\$ 2.000 para comprar mais produtos da linha Galaxy.

- Mozilla vai implementar gerador aleatório de senhas no Firefox
- Cientistas criam método para criptografar informações por meio de cristais

QRNG?

Segundo as empresas envolvidas, o uso do gerador serve para aumentar a segurança dos dados armazenados no aparelho. O processador pode ser usado para gerar senhas criptografadas realmente aleatórias em vez de se basear em informações como hora e

Cientistas criam método para criptografar informações por meio de cristais

QRNG?

Segundo as empresas envolvidas, o uso do gerador serve para aumentar a segurança dos dados armazenados no aparelho. O processador pode ser usado para gerar senhas criptografadas realmente aleatórias em vez de se basear em informações como hora e data, aumentando a imprevisibilidade da combinação utilizada.

Processadores comuns encontrados em celulares possuem geradores de números aleatórios, mas eles se baseiam em um valor inicial, conhecido como "semente", o que faz com que sejam chamados de geradores pseudo-aleatórios.

CONTINUA DEPOIS DA PUBLICIDADE

Pré-venda

03.09 a 17.09

Compre um Galaxy Note20 ou Note20 Ultra e

ganhe um voucher de R\$ 2.000

maine accompanie manie mendi ikan

/click?xai=AKAOjstz0KbmnbLZSw7vCpEz3SbmWKL7try5Wcz28Bk-Zlui_DOt1-I-mhjyWPYDW-2KA0-hzvTwSQuDnrv7GQuSKIsAFGS1jxVznZDqL9FSDpbu0yLtjl3fvmHqR4ZpNs_aoYr4SV

Os valores gerados podem ser usados, por exemplo, para criar o código que protege as comunicações feitas pelo WhatsApp – a criptografia ponta a ponta que o app menciona. Outras aplicações do gerador estão na proteção de conexões seguras, pagamentos com o celular por aproximação (NFC) e geração de códigos de autenticação.

Gerador quântico indica 2,5 milimetros de largura no paquimetro (imagem: SK Telecom)

Gerador quântico indica 2,5 milímetros de largura no paquimetro (imagem: SK Telecom)

Especificações

- · Tela: 6,7 polegadas, Super AMOLED, Full HD+
- · Chipset: Exynos 980
- · Memória RAM: 8 GB
- · Armazenamento interno: 128 GB
- Câmera traseira: 64 (principal) + 12 (ultrawide) + 5 (macro) + 5 MP (sensor de profundidade)
- · Câmera frontal: 32 megapixels
- · Bateria: 4.500 mAh, recarga a 25 W
- · Extras: 5G, NFC, gerador quântico de números aleatórios
- · Cores disponíveis:
- · Sistema operacional: Android 10 com personalização One UI 2.0

Fonte: ID Quantique