The study of Google's Cartographer

From Real-Time Loop Closure in 2D LIDAR SLAM

To IMPROVING GOOGLE'S CARTOGRAPHER 3D MAPPING BY CONTINUOUS-TIME SLAM

Zhang Xudong

What is loop closure detection of SLAM?

Without loop closure

With loop closure

What trouble we have

Classification of SLAM (lidar)

Main problem

What does Cartographer do?

1. Loop closure detection using submaps

2. Reduce computational complexity using branch-and-bound scan matching

What is the submap?

Discussion with the 2d lidar point cloud

$$\xi = (\xi_x, \xi_y, \xi_\theta)$$
translation rotation

$$T_{\xi}p = \underbrace{\begin{pmatrix} \cos \xi_{\theta} & -\sin \xi_{\theta} \\ \sin \xi_{\theta} & \cos \xi_{\theta} \end{pmatrix}}_{R_{\xi}} p + \underbrace{\begin{pmatrix} \xi_{x} \\ \xi_{y} \end{pmatrix}}_{t_{\xi}}.$$

What is the submap?

$$odds(p) = \frac{p}{1-p},\tag{2}$$

 $M_{\text{new}}(x) = \text{clamp}(\text{odds}^{-1}(\text{odds}(M_{\text{old}}(x)) \cdot \text{odds}(p_{\text{hit}})))$

& equivalently for misses.

Fig. 1. Grid points and associated pixels.

Fig. 2. A scan and pixels associated with *hits* (shaded and crossed out) and *misses* (shaded only).

What is the submap?

$$odds(p) = \frac{p}{1-p},\tag{2}$$

 $M_{\text{new}}(x) = \text{clamp}(\text{odds}^{-1}(\text{odds}(M_{\text{old}}(x)) \cdot \text{odds}(p_{\text{hit}})))$

& equivalently for misses.

Fig. 4. Cartographer map of the 2nd floor of the Deutsches Museum.

Classification of SLAM (lidar)

Main problem

How to produce submaps?

Ceres scan matching

$$\underset{\xi}{\operatorname{argmin}} \quad \sum_{k=1}^{K} \left(1 - M_{\text{smooth}}(T_{\xi}h_k) \right)^2 \qquad (CS) \approx ICP$$

Ceres Solver¶ ← Open source

Ceres Solver [1] is an open source C++ library for modeling and solving large, complicated optimization problems. It can be used to solve Non-linear Least Squares problems with bounds constraints and general unconstrained optimization problems. It is a mature, feature rich, and performant library that has been used in production at Google since 2010. For more, see Why?

What is the loop closure of Cartographer?

• SPA

$$\underset{\Xi^{\mathsf{m}},\Xi^{\mathsf{s}}}{\operatorname{argmin}} \quad \frac{1}{2} \sum_{ij} \rho \left(E^{2}(\xi_{i}^{\mathsf{m}}, \xi_{j}^{\mathsf{s}}; \Sigma_{ij}, \xi_{ij}) \right) \tag{SPA}$$

where the submap poses $\Xi^{\rm m} = \{\xi_i^{\rm m}\}_{i=1,\ldots,m}$ and the scan poses $\Xi^{\rm s} = \{\xi_j^{\rm s}\}_{j=1,\ldots,n}$ in the world are optimized given some *constraints*.

Efficient Sparse Pose Adjustment for 2D Mapping

Kurt Konolige
Willow Garage
Menlo Park, CA 94025
Email: konolige@willowgarage.com

Giorgio Grisetti, Rainer Kümmerle, Wolfram Burgard University of Freiburg Freiburg, Germany Email: grisetti@informatik.uni-freiburg.de

Benson Limketkai, Regis Vincent SRI International Menlo Park, CA 94025 Email: regis.vincent@sri.com

Abstract—Pose graphs have become a popular representation for solving the simultaneous localization and mapping (SLAM) problem. A pose graph is a set of robot poses connected by nonlinear constraints obtained from observations of features common to nearby poses. Optimizing large pose graphs has

How to make it fast?

Branch-and-bound scan matching → efficiency

$$\xi^{\star} = \underset{\xi \in \mathcal{W}}{\operatorname{argmax}} \sum_{k=1}^{K} M_{\text{nearest}}(T_{\xi} h_{k}), \tag{BBS}$$

$$d_{\max} = \max_{k=1,\dots,K} ||h_k||,$$
 (6)

$$\delta_{\theta} = \arccos(1 - \frac{r^2}{2d_{\text{max}}^2}). \tag{7}$$

$$w_x = \left\lceil \frac{W_x}{r} \right\rceil, \quad w_y = \left\lceil \frac{W_y}{r} \right\rceil, \quad w_\theta = \left\lceil \frac{W_\theta}{\delta_\theta} \right\rceil. \quad (8) \quad W_x = W_y = 7m$$

$$\overline{\mathcal{W}} = \{-w_x, \dots, w_x\} \times \{-w_y, \dots, w_y\} \times \{-w_\theta, \dots, w_\theta\},$$
(9)

$$\mathcal{W} = \{ \xi_0 + (rj_x, rj_y, \delta_\theta j_\theta) : (j_x, j_y, j_\theta) \in \overline{\mathcal{W}} \}. \tag{10}$$

Algorithm 1 Naive algorithm for (BBS)

```
best\_score \leftarrow -\infty
for j_x = -w_x to w_x do
   for j_y = -w_y to w_y do
      for j_{\theta} = -w_{\theta} to w_{\theta} do
          score \leftarrow \sum_{k=1}^{K} M_{\text{nearest}}(T_{\xi_0 + (rj_x, rj_y, \delta_\theta j_\theta)} h_k)
          if score > best\_score then
             match \leftarrow \xi_0 + (rj_x, rj_y, \delta_\theta j_\theta)
              best\_score \leftarrow score
          end if
       end for
   end for
end for
return best_score and match when set.
```

Is it fast enough?

• Depth-first search (DFS) ≈scale

Fig. 3. Precomputed grids of size 1, 4, 16 and 64.

Details?

$$c = (c_x, c_y, c_\theta, c_h) \in \mathbb{Z}^4$$

$$\overline{\overline{W}}_{c} = \left(\left\{ (j_{x}, j_{y}) \in \mathbb{Z}^{2} : \right. \right.$$

$$c_{x} \leq j_{x} < c_{x} + 2^{c_{h}} \\
c_{y} \leq j_{y} < c_{y} + 2^{c_{h}} \right\} \times \{c_{\theta}\} ,$$
(11)

$$\overline{\mathcal{W}}_c = \overline{\overline{\mathcal{W}}}_c \cap \overline{\mathcal{W}}. \tag{12}$$

Algorithm 2 Generic branch and bound

```
best\_score \leftarrow -\infty
\mathcal{C} \leftarrow \mathcal{C}_0
while \mathcal{C} \neq \emptyset do
   Select a node c \in \mathcal{C} and remove it from the set.
   if c is a leaf node then
      if score(c) > best\_score then
         solution \leftarrow n
         best\_score \leftarrow score(c)
      end if
   else
      if score(c) > best\_score then
         Branch: Split c into nodes C_c.
         \mathcal{C} \leftarrow \mathcal{C} \cup \mathcal{C}_c
      else
         Bound.
      end if
   end if
end while
return best_score and solution when set.
```

Algorithm 3 DFS branch and bound scan matcher for (BBS) $best_score \leftarrow score_threshold$ Compute and memorize a score for each element in C_0 . Initialize a stack C with C_0 sorted by score, the maximum score at the top. while C is not empty do Pop c from the stack C. if $score(c) > best_score$ then if c is a leaf node then $match \leftarrow \xi_c$ $best_score \leftarrow score(c)$ else Branch: Split c into nodes C_c . Compute and memorize a score for each element in \mathcal{C}_c . Push C_c onto the stack C, sorted by score, the maximum score last. end if end if end while **return** best_score and match when set.

Is it effective?

 $\begin{tabular}{l} TABLE\ I \\ QUANTITATIVE\ ERRORS\ WITH\ REVO\ LDS \\ \end{tabular}$

Laser Tape	Cartographer	Error (absolute)	Error (relative)
4.09	4.08	-0.01	-0.2%
5.40	5.43	+0.03	+0.6%
8.67	8.74	+0.07	+0.8%
15.09	15.20	+0.11	+0.7%
15.12	15.23	+0.11	+0.7%

Fig. 5. Cartographer map generated using Revo LDS sensor data.

TABLE II

QUANTITATIVE COMPARISON OF ERROR WITH [21]

	Cartographer	GM •	Graph Mapping
Aces			
Absolute translational	0.0375 ± 0.0426	0.044 ± 0.044	
Squared translational	0.0032 ± 0.0285	0.004 ± 0.009	
Absolute rotational	0.373 ± 0.469	0.4 ± 0.4	
Squared rotational	0.359 ± 3.696	0.3 ± 0.8	
Intel			
Absolute translational	0.0229 ± 0.0239	0.031 ± 0.026	
Squared translational	0.0011 ± 0.0040	0.002 ± 0.004	
Absolute rotational	0.453 ± 1.335	1.3 ± 4.7	
Squared rotational	1.986 ± 23.988	24.0 ± 166.1	
MIT Killian Court		_	
Absolute translational	0.0395 ± 0.0488	0.050 ± 0.056	
Squared translational	0.0039 ± 0.0144	0.006 ± 0.029	
Absolute rotational	0.352 ± 0.353	0.5 ± 0.5	
Squared rotational	0.248 ± 0.610	0.9 ± 0.9	
MIT CSAIL			
Absolute translational	0.0319 ± 0.0363	0.004 ± 0.009	
Squared translational	0.0023 ± 0.0099	0.0001 ± 0.0005	
Absolute rotational	0.369 ± 0.365	0.05 ± 0.08	
Squared rotational	0.270 ± 0.637	0.01 ± 0.04	

TABLE IV
LOOP CLOSURE PRECISION

Test case	No. of constraints	Precision
Aces	971	98.1%
Intel	5786	97.2%
MIT Killian Court	916	93.4%
MIT CSAIL	1857	94.1%
Freiburg bldg 79	412	99.8%
Freiburg hospital	554	77.3%

TABLE V
PERFORMANCE

Test case	Data duration (s)	Wall clock (s)
Aces	1366	41
Intel	2691	179
MIT Killian Court	7678	190
MIT CSAIL	424	35
Freiburg bldg 79	1061	62
Freiburg hospital	4820	10

Remote Sens. 2013, 5, 5871-5906; doi:10.3390/rs5115871

Remote Sensing

ISSN 2072-4292

www.mdpi.com/journal/remotesensing

Article

Algorithmic Solutions for Computing Precise Maximum Likelihood 3D Point Clouds from Mobile Laser Scanning Platforms

Jan Elseberg ¹, Dorit Borrmann ² and Andreas Nüchter ^{2,*}

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017 3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

IMPROVING GOOGLE'S CARTOGRAPHER 3D MAPPING BY CONTINUOUS-TIME SLAM

How does it work with 3D point cloud?

How does it work with 3D point cloud?

Figure 4: Results of continuous-time SLAM on Google's Cartographer sample data set Deutsches Museum in München. Left: input. Right: output of our solution. Shown are sectional views of the museum hall. Major changes in the point cloud are highlighted in red.

Figure 5: Visualization of the changes in the point cloud. Shown are two views of the optimized 3D point cloud, colored with the difference to the result from Google's Cartographer.

Figure 6: Visualization of the changes in the trajectory computed by our method to bootstraped trajectory. Left: distance. Right: orientation