

1 Finding Limits Graphically

1.
$$\begin{cases} f(1) = \\ \lim_{x \to 1^{-}} f(x) = \\ \lim_{x \to 1^{+}} f(x) = \\ \lim_{x \to 1} f(x) = \end{cases}$$

4.
$$\begin{cases} f(4) = \\ \lim_{x \to 4^{-}} f(x) = \\ \lim_{x \to 4^{+}} f(x) = \\ \lim_{x \to 4} f(x) = \end{cases}$$

7.
$$\begin{cases} f(7) = \\ \lim_{x \to \mathbf{7}^{-}} f(x) = \\ \lim_{x \to \mathbf{7}^{+}} f(x) = \\ \lim_{x \to \mathbf{7}} f(x) = \end{cases}$$

2.
$$\begin{cases} f(2) = \\ \lim_{x \to \mathbf{2}^{-}} f(x) = \\ \lim_{x \to \mathbf{2}^{+}} f(x) = \\ \lim_{x \to \mathbf{2}} f(x) = \end{cases}$$

5.
$$\begin{cases} f(5) = \\ \lim_{x \to \mathbf{5}^{-}} f(x) = \\ \lim_{x \to \mathbf{5}^{+}} f(x) = \\ \lim_{x \to \mathbf{5}} f(x) = \end{cases}$$

3.
$$\begin{cases} f(3) = \\ \lim_{x \to 3^{-}} f(x) = \\ \lim_{x \to 3^{+}} f(x) = \\ \lim_{x \to 3} f(x) = \end{cases}$$

6.
$$\begin{cases} f(6) = \\ \lim_{x \to \mathbf{6}^{-}} f(x) = \\ \lim_{x \to \mathbf{6}^{+}} f(x) = \\ \lim_{x \to \mathbf{6}} f(x) = \end{cases}$$

2 Finding Limits Involving Infinity Graphically

8.
$$\begin{cases} f(8) = \\ \lim_{x \to 8^{-}} f(x) = \\ \lim_{x \to 8^{+}} f(x) = \\ \lim_{x \to 8} f(x) = \end{cases}$$

10.
$$\begin{cases} f(10) = \\ \lim_{x \to \mathbf{10}^{-}} f(x) = \\ \lim_{x \to \mathbf{10}^{+}} f(x) = \\ \lim_{x \to \mathbf{10}} f(x) = \end{cases}$$

12.
$$\begin{cases} f(12) = \\ \lim_{x \to 12^{-}} f(x) = \\ \lim_{x \to 12^{+}} f(x) = \\ \lim_{x \to 12} f(x) = \end{cases}$$

9.
$$\begin{cases} f(9) = \\ \lim_{x \to 9^{-}} f(x) = \\ \lim_{x \to 9^{+}} f(x) = \\ \lim_{x \to 9} f(x) = \end{cases}$$

11.
$$\begin{cases} x \to \mathbf{10} \\ f(11) = \\ \lim_{x \to \mathbf{11}^{-}} f(x) = \\ \lim_{x \to \mathbf{11}^{+}} f(x) = \\ \lim_{x \to \mathbf{11}^{+}} f(x) = \end{cases}$$

$$13. \lim_{x \to -\infty} f(x) =$$

$$14. \lim_{x \to +\infty} f(x) =$$

Famous Functions 3

$$f(x) = 1/x$$

$$f(0) = \lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}} f(x) = \lim_{x \to \mathbf{$$

 $\lim f(x) =$

 $x \rightarrow +\infty$

$$f(x) = 1/x^2$$

$$f(0) = \lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \\ \lim_{x \to \mathbf{0}^{+}} f(x) = \\ \lim_{x \to \mathbf{0}^{+}} f(x) = \\ \lim_{x \to -\infty} f(x) = \\ \lim_{x \to -\infty} f(x) = \\ \\ x \to +\infty$$

$$f(x) = |x|$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}} f(x) = \lim_{x \to -\infty} f(x$$

 $x \rightarrow +\infty$

$$f(x) = \sqrt[3]{x}$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^{+}} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$$

$$f(x) = x^3$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^-} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} f(x)$$

$$\begin{array}{ccc}
& & & \\
x \to 0 & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{\substack{x \to 0 \\ \text{lim } f(x) = \\ x \to -\infty \\ \text{lim } f(x) = \\ x \to +\infty}} f(x) =$$

$$f(x) = e^x$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}} f(x$$

$$\lim_{x \to \mathbf{0}} f(x) = \lim_{x \to \mathbf{0}} f(x) = \lim_{x$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty}$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = \ln(x)$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^-} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} f(x)$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = \frac{|x|}{x}$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = \cos(x)$$

$$f(0) =$$

$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to \mathbf{0}^+} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = \frac{\sin(x)}{x}$$

$$f(0) = \lim_{x \to 0^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^-} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = \sin(1/x)$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^-} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} f(x)$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = x\sin(1/x)$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

Identify Continuity/Discontinuity at a Point 4

27.	We say $f(x)$ is	if $\lim_{x\to a} f(x)$ exists and equals $f(a)$.	
28.	We say $f(x)$ has a	at $x = a$ if $\lim_{x \to a} f(x)$ exists and does <i>not</i> equal $f(a)$.	
29.	We say $f(x)$ has a	if $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist and are <i>un</i> equal.	
30.	We say $f(x)$ has an	if either $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$ equals either ∞ or $-\infty$.	
31.	The function $f(x)$ is continuous at $x = $		
32.	2. The function $f(x)$ is has a removable discontinuity at $x = $		
33.	. The function $f(x)$ is has a jump discontinuity at $x = $		

Identify Left and Right Continuity at a Point 5

34. The function f(x) is has an **infinite discontinuity at** x = 1

35.	We say $f(x)$ is	if $\lim_{x\to a^-} f(x)$ exists and equals $f(a)$.
36.	We say $f(x)$ is	if $\lim_{x\to a^+} f(x)$ exists and equals $f(a)$.
37.	The function $f(x)$ is left continuous at $x = $	·
38.	The function $f(x)$ is right continuous at $x = $	

Continuity on an Interval 6

We say f(x) is **continuous on** (a, b) if f(x) is continuous at x = c for all c in (a, b). 39. We say f(x) is **continuous on** [a, b] if f(x) is continuous at x = c for all c in (a, b), _____ and ___ 40. We say f(x) is **continuous everywhere** if f(x) is continuous at x = c for all c in ______. 41. We say f(x) is **continuous** if it is continuous on every open interval in ____ 42. Find the union of all open intervals (a, b) such that f(x) is **continuous on (a, b)**. Use interval notation.

43. The function f(x) fails to be **continuous** (on every open interval in its domain). It fails at $x = \bot$