

PROJETO CASA INTELIGENTE

Requisitos da disciplina Modelagem de Software e Arquitetura de Sistemas

INTEGRANTES DO PROJETO e RA'S

Ana Beatriz Almagro	-	25027846
André Ferreira	-	25027670
Cauan Moreira Da Silva Lima	-	25027645
Victor Bancatelli Lucena Lopes	-	25027658

São Paulo

2025

Sumário 1 INTRODUÇÃO 3 2. DOCUMENTO DE ABERTURA DO PROJETOS 4 2.1 - Project Charter 4 2.2 - Histórias do Usuário 5 3. DESIGN SPRINT – Ideação e prototipação do desafio 6 3.1 Desafio 6 3.2 Entender Mapear 6 3.3 Ideação – desenho da solução (trilha do usuário) 6 3.4 Prototipagem 6 **4.REQUISITOS DE SISTEMA** 6 4.1 REQUISITOS FUNCIONAIS DE SOFTWARE 6 4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE 5. CASOS DE USO 8 6. DIAGRAMA DE CLASSE 8 7. ARQUITETURA DO SISTEMA 8 8. REFERÊNCIAS BIBLIOGRÁFICAS 8

FECAP

1 INTRODUÇÃO

Tendo:

Smart Cities/Smart House

Nome da Instituição: Flex Automation

Objetivo da Aplicação:

ADS1 O objetivo do desafio é gerar um dashboard de uma cidade/casa inteligente que permita o

controle de sensores e atuadores.

Este desafio busca, de forma modular, introduzir como uma cidade/casa inteligente pode ser

controlada, tratando seus dados de forma a aprimorar o sistema e otimizando a sustentabilidade.

Seu dashboard deverá receber e enviar sinais de/para um simulador de casa/cidade inteligente,

provenientes da rede/internet. O servidor será fornecido pelos professores.

Desafio:

O projeto da Flex Automation, assim como outras iniciativas, trabalha para poder criar cidades

inteligentes buscando a sustentabilidade, o melhor uso dos recursos planetários e o menor impacto

na natureza. Para que isso ocorra é necessário ter uma alta capacidade de mensuração e controle

para a otimização da vida na cidade, desde recursos até o tráfego de pedestres. Também, a

conscientização da população de como uma cidade inteligente funciona e/ou é controlada, de forma

a instruir sobre as melhores maneiras para a cidade a ser sustentável.

Personas a Serem Atendidas:

-Usuário final do sistema, que deseja controlar sua casa de forma a gastar menos e otimizar os

recursos da cidade. Considere que o usuário possui conhecimento básico para utilizar dispositivos

mobile.

-Controlador da cidade, um funcionário da cidade que deve acompanhar um

dashboard/mapa/painel informativo da cidade, tratando situações inesperadas, acompanhando os

dados dos sensores e acionando os programas da cidade. Considere que ele tem um conhecimento

médio para avançado de tecnologia.

FECAP

Recursos:

https://store.steampowered.com/app/949230/Cities_Skylines_II/

https://store.steampowered.com/app/2741560/SimCity_3000_Unlimited/

https://planetsmartcity.com/ https://flexautomation.com.br

2. DOCUMENTO DE ABERTURA DO PROJETOS

2.1 - Project Charter

Prefácio

Esse documento interessa ao cliente, contratante do serviço, aos envolvidos no

desenvolvimento do projeto, e a comunidade interessada.

Introdução

O desenvolvimento deste software tem como fim atender ao desafio de criar uma

casa inteligente, proporcionando aos usuários finais, a conscientização do consumo

residencial de energia elétrica e de água. Visando promover a economia desses

recursos fundamentais.

O sistema deverá se relacionar com os sensores das casas inteligentes, de

forma a coletar as informações a cerca do consumo do sistema elétrico e hídrico. Além

de demonstrar ao usuário, valores e representações gráficas de acordo com as

métricas das distribuidoras.

Glossário

Dashboard: Painel

Deve definir os termos técnicos usados no documento. Você não deve fazer suposições sobre a

experiência ou o conhecimento do leitor.

Definição de requisitos de usuário

Deve descrever os serviços fornecidos ao usuário. Os requisitos não funcionais de sistema também devem ser descritos nessa seção. Essa descrição pode usar a linguagem natural, diagramas ou outras notações compreensíveis para os clientes. Normas de produto e processos que devem ser seguidos devem ser especificados.

Arquitetura do sistema

Deve apresentar uma visão geral em alto nível da arquitetura do sistema previsto, mostrando a distribuição de funções entre os módulos do sistema. Componentes de arquitetura que são reusados devem ser destacados.

Especificação de requisitos do sistema

Deve descrever em detalhes os requisitos funcionais e não funcionais. Se necessário, também podem ser adicionados mais detalhes aos requisitos não funcionais. Interfaces com outros sistemas podem ser definidas.

Modelos do sistema

Pode incluir modelos gráficos do sistema que mostram os relacionamentos entre os componentes do sistema, o sistema e seu ambiente. Exemplos de possíveis modelos são modelos de objetos, modelos de fluxo de dados ou modelos semânticos de dados.

Evolução do sistema

Deve descrever os pressupostos fundamentais em que o sistema se baseia, bem como quaisquer mudanças previstas, em decorrência da evolução de hardware, de mudanças nas necessidades do usuário etc. Essa seção é útil para projetistas de sistema, pois pode ajudá-los a evitar decisões capazes de restringir possíveis mudanças futuras no sistema.

Apêndices

Deve fornecer informações detalhadas e específicas relacionadas à aplicação em desenvolvimento, além de descrições de hardware e banco de dados, por exemplo. Os requisitos de hardware definem as configurações mínimas ideais para o sistema. Requisitos de banco de dados definem a organização lógica dos dados usados pelo sistema e os relacionamentos entre esses dados.

2.2 - Histórias do Usuário

Alguns detalhes sobre a casa inteligente que cujos dados estão no arquivo anexo:

-2 Pessoas vivem nesta casa

-A casa possuí 2 quartos, 1 sala, 1 cozinha e 1 piscina e são identificados respectivamente pelos sensores de ID: 1, 2, 3, 4, 5.

-O gasto energético médio para deixar cada local ligado é:

Quartos (ID 1 e 2) - 1,5KWatts/Hora (Considerando 1 TV,1 lâmpada e um ar-condicionado) Sala

(ID 3) – 50Watts/Hora (Considerando 1 TV e 5 lâmpadas)

Cozinha (ID 4) - 3KWatts/Hora (Considerando 1 Micro-ondas, 1 máquina de lavar louça e 3 lâmpadas)

Piscina (ID 5) – 7KWatts/Hora (Bomba + Aquecedor)

Você tem a possibilidade de adicionar comandos separados para controlar cada um dos elementos descritos acima.

EXEMPLO DA BASE DOS SENSORES

TimeStamp	ID_Sensor	Temperatura	Umidade	Movimento
28/4/25 0:18	3	39	71	0
22/5/25 4:43	4	19	82	0
20/4/25 20:38	3	24	71	0
12/2/25 0:03	1	22	22	0
14/4/25 1:33	2	19	46	1
27/1/25 14:21	2	37	27	0
30/5/25 7:19	1	10	87	0
21/7/25 6:17	1	34	88	0
21/1/25 9:20	3	39	28	0
2/2/25 23:55	4	28	33	0
22/6/25 14:15	3	17	32	0
24/6/25 15:22	2	38	29	0
30/4/25 0:32	2	18	88	1
26/6/25 2:00	2	26	63	0
26/6/25 10:09	2	21	50	0
1/3/25 7:15	5	40	30	1
27/6/25 7:02	3	15	28	1

3. DESIGN SPRINT – Ideação e prototipação do desafio

3.1 Desafio

O projeto da Flex Automation, assim como outras iniciativas, trabalha para poder criar cidades inteligentes buscando a sustentabilidade, o melhor uso dos recursos planetários e o menor impacto na natureza. Para que isso ocorra é necessário ter uma alta capacidade de mensuração e controle para a otimização da vida na cidade, desde recursos até o tráfego de pedestres. Também, a conscientização da população de como uma cidade inteligente funciona e/ou é controlada, de forma a instruir sobre as melhores maneiras para a cidade a ser sustentável.

3.2 Entender Mapear

- · O desafio se baseia em produzir um software capaz de gerir uma cidade / casa inteligente e fazer com que os usuários economizem água e energia elétrica;
- Para solucionar esse problema criaremos um Dashboard interativo, capaz de receber e concentrar todas as informações da casa inteligente;
- Deveremos produzir um software que se conecte aos sensores e eletrodomésticos do ambiente inteligente;
- O produto final do software será apresentado para o cliente.

3.3 Ideação – desenho da solução (trilha do usuário)

#TODOS USUARIOS

- Instalar / Abrir o Dashboard da SmartHouse;
- Tela de Login e Cadastramento;
- Se não possuir conta no Dashboard, deverá se cadastrar. Se possuir, apenas colocar as informações de login;
- Se for o primeiro acesso, deverá passar pelo conteúdo de apresentação, junto ao guia de utilização;
- Se não for o primeiro acesso chegará ao Dashboard automaticamente
- O usuário deverá conectar a sua casa inteligente (sensores, eletrodomésticos...) ao dashboard;
- O usuário terá acesso a todas as informações de consumo coletados pelos sensores

- O Dashboard fará cálculos dos gastos com o consumo de energia elétrica e de água
- O Dashboard apresentará gráficos
- O Dashboard terá uma sessão de sistema de recompensa pela economia desses recursos

3.4 Prototipagem

4.REQUISITOS DE SISTEMA

4.1 REQUISITOS FUNCIONAIS DE SOFTWARE

	Coletar dados elétricos e hídricos dos sensores
Função	Captar o consumo de energia elétrica e de água
Descrição	Captar dados coletados dos sensores elétricos e hídricos
Entradas	Sensor
Fonte	Dados coletados pelos sensores
Saídas	Dados do consumo de energia em kw/h e em litros
Ação	Fazer com que o sistema capte os dados coletados dos sensores

Calcular o consumo de acordo com as métricas	
Função	Calcular o consumo aplicando os métodos de contagem das distribuidoras dos recursos
Descrição	Fazer o calculo dentro do sistema em todos os dados de consumo coletados pelos sensores
Entradas	Funções atualizadas constantemente de acordo com as distribuidoras
Fonte	Sensores
Saídas	Dados do consumo de água
Ação	Fazer com que o sistema faça o cálculo do consumo de energia elétrica e de água baseado nos dados coletados pelos sensores

Concentração de dados no banco	
Função	Unir todos os dados coletados no banco de dados
Descrição	Unir todos os dados de consumo coletados dos sensores
Entradas	Sistema
Fonte	Sensores
Saídas	Banco de dados do consumo
Ação	Consolidar os dados captados dos sensores no banco de dados

Representação dos dados no Dashboard	
Função	Representar os dados graficamente
Descrição	Criar gráficos baseados nos dados coletados
Entradas	graficos
Fonte	Banco de dados
Saídas	Representação gráfica dos dados

5666666	566666666666666666
Ação	Fazer a representação dos dados de consumo consolidados no banco de dados

Conexão do sistema com os sensores		
Função	Conectar o software com os sensores das residências	
Descrição	Fazer a comunicação dos sensores	
Entradas	Sensores, software	
Fonte	sensores	
Saídas	Conexão do sistema com os sensores	
Ação	Fazer a conexão do sistema com os sensores	

Cadastramento de usuários	
Função	Cadastrar usuários no sistema
Descrição	Abrir cadastro de usuários
Entradas	Software
Fonte	Banco de dados
Saídas	Novo usuario

5	333333333333	
	Ação	Fazer um processo de cadastro para acesso ao software final

Banco de dados informacional do usuário		
Função	Concentrar dados informacionais do usuario	
Descrição	Coletar e reservar seguramente as informações do usuário e de sua residencia	
Entradas		
Fonte		
Saídas		
Ação		

Coletar dados de sensores movimento, aproximação, presença	
Função	Coleta de dados dos sensores
Descrição	Coletar todos os dados dos diferentes tipos de sensores
Entradas	Coleta de Dados
Fonte	Sensores

Saídas	Dados dos Sensores concentrados
6666666	
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
A 6 6 6	Coletar dados dos sensores
Ação	Coletar dados dos sensores

Atualizar parâmetros				
Função	Aualizar parâmetros			
Descrição	Atualizar parâmetros de consumo de acordo com as mudanças da distribuição			
Entradas				
Fonte				
Saídas				
Ação	Atualizar constantemente os parâmetros			

4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE

Função	Interface intuitiva e responsiva
Descrição	O sistema deve apresentar uma interface gráfica que seja de fácil compreensão para o usuário, com layout claro, navegação simples e design responsivo, garantindo boa usabilidade tanto em desktops quanto em dispositivos móveis (celulares e tablets).
Entradas	Acesso do usuário ao sistema por meio de navegador web ou dispositivos móveis, com diferentes telas de tamanhos diferentes.
Fonte	Boas práticas de User Experience
Saídas	Interface visual adaptada ao dispositivo utilizado, com componentes exibidos corretamente, navegação funcional e interação fluida.
Ação	Garantir que o dashboard siga princípios de responsividade e seja testado em dispositivos e resoluções variadas.

Função	Alta disponibilidade
Descrição	O sistema deve estar disponível para uso grande parte do tempo, com baixa indisponibilidades e interrupções
Entradas	Acesso dos usuários
Fonte	Boas práticas de sistemas
Saídas	Sistema funcional e acessível quase todo o tempo, com poucas interrupções.
	Utilizar infraestrutura com tolerância a falhas e realiza monitoramento contínuo.

Função	Tempo de resposta inferior a 2 segundos			
Descrição	O sistema deve garantir que as ações realizadas pelos usuários sejam executadas com tempo de resposta de até 2 segundos.			
Entradas	Comandos do usuário no dashboard			
Fonte	Padrão de usabilidade			
Saídas	Ações realizadas com tempo de resposta inferior a 2 segundos.			
Ação	Otimizar o backend e a comunicação com os dispositivos para garantir baixa latência.			

		Inovação e Excelência desde 1902

Função	Compatibilidade entre diferentes sistemas operacionais:
Descrição	O sistema deve funcionar corretamente em diferentes sistemas operacionais como Android, iOS, Windows e Linux
Entradas	Acesso via diferentes dispositivos com sistemas operacionais variados
Fonte	Tendência de multiplataforma
Saídas	Interface e funcionalidades do sistema acessíveis e funcionais em todos os sistemas operacionais especificados.

3	66666	5555	6	3 6	8	F	5 6	E E	F	8	1 8 8
S	66666	3666	BB	3 6	8	18	9 8	B B	18	8 8	3 63 6
	Ação		Con Con Con Con Con Con								

Função	Segurança dos dados dos usuários
Descrição	O sistema deve proteger todas as informações sensíveis dos usuários, evitando acessos não autorizados e vazamentos de dados.
Entradas	Dados de login e dados de sensores.
Fonte	Lei Geral de Proteção de Dados
Saídas	Dados armazenados de forma segura e acessados somente por usuários autorizados.

	Implementar autenticação segura, criptografia e controle de permissões.
Ação	

Função	Escalabilidade para novos sensores/atuadores
Descrição	O sistema deve ser escalável, permitindo a adição de novos sensores e atuadores sem necessidade de grandes alterações no código ou na arquitetura.
Entradas	Integração de novos dispositivos à casa inteligente.
Fonte	Necessidade de expansão futura.
Saídas	Novos dispositivos integrados com bom funcionamento
Ação	Usar padrões de comunicação abertos

5. CASOS DE USO

Apresentar 3 casos de uso do sistema

6. DIAGRAMA DE CLASSE

7. ARQUITETURA DO SISTEMA

8. REFERÊNCIAS BIBLIOGRÁFICAS

SOMMERVILLE, I. Engenharia de Software. 11ª Edição. São Paulo: Pearson Addison-Wesley, 2017.

