SISTEMAS DIGITALS

UFCD 0825 – Tipologias de Redes

Prof. Nuno Ramos

Conceitos Introdutórios

- Os Sistemas digitais ou circuitos digitais, ou ainda circuitos lógicos;
- São definidos como circuitos eletrônicos que empregam a utilização de sinais elétricos em apenas dois níveis de tensão de forma a definir uma representação de valores binária.
- Os sinais elétricos transportados por estes circuitos são chamados de sinais digitais ou sinais binários

0 que é um Sistema Digital?

Um sistema que trabalha com sinais digitais

(em oposição aos sistemas analógicos, que trabalham com sinais analógicos)

Sinal analógico:

- Quantidade do mundo real medida continuamente no tempo
- O valor medido pertence ao conjunto dos números reais

Sinal digital:

- Quantidade do mundo real medida em intervalos de tempo discretos
- A medição (valor) pertence ao conjunto dos números racionais

3

Sinal Analógico vs Sinal Digital

- Medido continuamente no tempo
- As medições são valores reais

Medições discretas com valores racionais

 Os computadores representam os sinais digitais apenas por 0's e 1's!

Porquê usar sinais digitais?

- Circuitos digitais são:
 - Consideravelmente baratos
 - Mais fáceis de desenhar que os circuitos analógicos
 - Permitem realizar cálculos avançados
 - Permitem guardar informação facilmente
 - Insensíveis a ruído
- As principais vantagens dos sinais digitais são:
 - Os sinais digitais são muito mais imunes a distorções, ruídos e interferências.
 - Os circuitos digitais são mais confiáveis e robustos.
 - Os circuitos digitais são fáceis de projetar e mais baratos.
 - A implementação de hardware em circuitos digitais é mais flexível.

5

Conversores Analógicos para Digitais e Vice-Versa

- Os sinais do mundo físico são analógicos, é necessário convertê-los para sinais digitais e viceversa sempre que os sinais digitais tenham que interagir com os sinais do meio físico.
- A maioria dos sistemas digitais é utilizado para processar sinais oriundos de sensores analógicos, como por exemplo, microfones, sensores de temperatura, sensores de luminosidade etc.
- Sinais são primeiro convertidos de analógicos para digitais para só então serem processados.
- Este processamento é então realizado por circuitos digitais projetados para este fim.
- Os resultados deste processamento são também sinais digitais, que devem então ser convertidos em sinais analógicos, utilizando um conversor digital analógico.
- Os sinais analógicos resultantes podem então ser enviado para atuadores, como por exemplo, alto falantes, motores etc.

A origem dos números

- No sistema de numeração utilizado no dia a dia, usamos um sistema com dez símbolos para representar os números existentes.
- Esses símbolos vão de 0 a 9 e representam o sistema de numeração decimal, precisamente por conter 10 símbolos diferentes, denominados algarismos.
- Para os números superiores a 9 é usada uma convenção de escrita, que atribui um significado diferente ao local onde é colocado o novo dígito.
- Por exemplo, em virtude das posições ocupadas o número 6903 tem um significado numérico calculado da forma:

$$6903 = 6 \times 1000 + 9 \times 100 + 0 \times 10 + 3$$

• Ou colocando sob a forma de potências de 10:

$$6903 = 6 \times 10^3 + 9 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$$

Sinais digitais Vs bit (Binary digit)

- A nomenclatura utilizada para os sinais digitais é o bit (Binary digit). A seguir são apresentadas as principais notações utilizadas para grupos de bits.
 - Um sinal composto por apenas um bit é um sinal binário único.
 - Um sinal composto por quatro Bits é chamado de nibble.
 - Um sinal composto por oito Bits é chamado de byte.
 - Um sinal composto por dezesseis Bits é chamado de word.

Bytes

- Um bit é raro aparecer sozinho.
- Os primeiros computadores a aparecer no mundo, trabalhavam com conjuntos de 8 bits.
- A este conjunto de 8 bits convencionou-se chamar byte (tradução octeto).
- À medida que os computadores iam evoluindo tecnologicamente, o conjunto de bits com que trabalhavam também o foi aparecendo outros nomes para conjuntos de bits diferentes.

Número de Bits	Nome
4	Nibble
8	Byte
16	Word (palavra)
32	Double Word
64	Long Word

Potenciação em base binária

- Com dois bits poderemos representar 22 números, ou seja, 4.
- Com três bits poderemos representar 23 números, ou seja 8.
- Com um byte, ou seja, 8 bits, poderemos então representar 28 números. Fazendo as contas, obtemos 256 números diferentes, com apenas 8 bits.
- Assim, poderemos construir uma tabela de potenciação com os valores possíveis de obter em base binária, para determinado número de bits.

Número de bits	Potenciação	Quantidade
1	2 ¹	2
2	2 ²	4
3	2 ³	8
4	2 ⁴	16
5	2 ⁵	32
6	2 ⁶	64
7	27	128
8	28	256
9	2 ⁹	512
10	2 ¹⁰	1024

Contagem de Bytes

MEDIDA	SIMBOLOGÍA	EQUIVALENCIA	EQUIVALENCIA EN BYTES
Byte	b	8 bits	1
kilobyte	КВ	1024 bytes	1 024
megabyte	МВ	1024 KB	1 048 576
gigabyte	GB	1024 MB	1 073 741 824
terabyte	ТВ	1024 GB	1 099 511 627 776
petabyte	РВ	1024 TB	1 125 899 906 842 624
exabyte	EB	1024 PB	1 152 921 504 606 846 976
zettabyte	ZB	1024 EB	1 180 591 620 717 411 303 424
yottabyte	YB	1024 ZB	1 208 925 819 614 629 174 706 176
brontobyte	ВВ	1024 YB	1 237 940 039 285 380 274 899 124 224
geopbyte	GEB	1024 BB	1 267 650 600 228 229 401 496 703 205 376

Sistemas de numeração

• Vamos estudar neste ponto quatro bases de numeração: binária, octal, decimal, hexadecimal.

Base	Al	fat	et	0												
binária	0	1														
octal	0	1	2	3	4	5	6	7								
decimal	0	1	2	3	4	5	6	7	8	9						
hexadecimal	0	1	2	3	4	5	6	7	8	9	А	В	C	D	Е	F

ais 12

Sistema decimal

- O sistema decimal é o mais conhecido sistema de numeração e é amplamente empregado em todo o mundo.
- Este sistema utiliza um conjunto de 10 caracteres ou símbolos (0, 1, 2, 3, 4, 5, 6, 7, 8 e 9) para representar ou números.
- Estes caracteres são também chamados de dígitos.
- Como são 10 caracteres que compõe a base do sistema decimal, este sistema é também conhecido como sistema de base 10.

$$5 * 10^{3} + 4 * 10^{2} + 3 * 10^{1} + 2 * 10^{0} + 7 * 10^{-1} + 8 * 10^{-2} + 8 * 10^{-3} = 5432,789$$

Sistema binário

- O sistema binário segue a mesma lógica, porém ele utiliza um conjunto de apenas 2 caracteres ou símbolos (0 e 1) para representar ou números.
- Este sistema de numeração é chamado de sistema de base 2.
- Quando a base de um número é diferente da base 10 é comum colocar-se o número da base subscrita no final do número, assim o número anterior seria 1000110_2 .

$$1000110_2 = 1 * 2^6 + 0 * 2^5 + 0 * 2^4 + 0 * 2^3 + 1 * 2^2 + 1 * 2^1 + 0 * 2^0 = 70_{10}$$

Sistema octal

- O sistema octal possui este nome porque utiliza um conjunto de 8 caracteres ou símbolos (0, 1, 2, 3, 4, 5, 6 e 7) para representar ou números.
- Assim este sistema de numeração é chamado de sistema de base 8.

$$4205,47_8 = 4 * 8^3 + 2 * 8^2 + 0 * 8^1 + 5 * 8^0 + 4 * 8^{-1} + 7 * 8^{-2} = 2181,609375_{10}$$

 O sistema octal é importante para os estudos de sistemas digitais pois os números (0 a 7) podem ser representados por 3 bits, assim a representação binária de números em formato octal é facilitada.

	4			2			0			5			4			7	
1	0	0	0	1	0	0	0	0	1	0	1	1	0	0	1	1	1

Sistema hexadecimal

- O sistema hexadecimal é parecido com o sistema octal, porém utiliza 4 bits cara cada caractere.
- Utiliza um conjunto de 16 caracteres ou símbolos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F) para representar ou números.
- Sistema de numeração é chamado de sistema de base 16.
- Neste sistema as letras A, B, C, D, E e F, ou seja, A=10, B=11, C=12, D=13, E=14 e F=15.

$$3A4,F2_{16} = 3 * 16^2 + A * 16^1 + 4 * 16^0 + F * 16^{-1} + 2 * 16^{-2} = 932,9453125_{10}$$

O sistema hexadecimal é importante para os estudos de sistemas digitais pois os números (0 a F)
podem ser representados por 4 bits, assim a representação binária de números em formato
hexadecimal é facilitada.

Hexadecimal		3		Α				4			F				2					
Decimal		3	3			1	0			2	1		15		L5		2			
Binário	0	0	1	1	1	0	1	0	0	1	0	0	1	1	1	1	0	0	1	0

Decimal, Binário, Octal e Hexadecimal

Decimal		Bi	nár	io		Oc	tal	He	exa
0					0		0		0
1					1		1		1
2				1	0		2		2
3				1	1		3		3
4			1	0	0		4		4
5			1	0	1		5		5
6			1	1	0		6		6
7			1	1	1		7		7
8		1	0	0	0	1	0		8
9		1	0	0	1	1	1		9
10		1	0	1	0	1	2		Α
11		1	0	1	1	1	3		В
12		1	1	0	0	1	4		С
13		1	1	0	1	1	5		D
14		1	1	1	0	1	6		E
15		1	1	1	1	1	7		F
16	1	0	0	0	0	2	0	1	0
17	1	0	0	0	1	2	1	1	1
18	1	0	0	1	0	2	2	1	2
19	1	0	0	1	1	2	3	1	3
20	1	0	1	0	0	2	4	1	4
Deces	16	0	4	2	1	0	1	16	1

Pesos - 16 8 4 2 1 8 1 16 1

Exemplos de Conversões — para Decimal

Pretende-se converter para decimal o seguinte número em binário $10110101_{(2)}$.

Resolução

Primeiro reescrevemos o número e por cima de cada dígito, numeramos a sua posição. Começa-se sempre no zero, numerando da direita para a esquerda.

Para este número, o limite do somatório da fórmula geral será entre 0 e 7. A base na qual estamos a trabalhar é a base binária, pelo que, na fórmula, temos base = 2.

Finalmente, o dígito será o correspondente à posição. Preenchendo a fórmula geral, temos:

$$\sum_{\text{Post}_{n},0}^{7} \textit{digito*2}^{\text{Post}}$$

A primeira iteração será:

Agora temos de fazer o mesmo para os restantes dígitos, somando-os como se mostra a seguir.

$$= 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 0 \times 2^3 + 1 \times 2^4 + 1 \times 2^5 + 0 \times 2^6 + 1 \times 2^7 = 181_{[10]}$$

Que número representa 2374[8] em decimal?

Resolução

Seguindo a lógica do exercício anterior, comecemos por numerar as posições:

Base = 8

Pos \rightarrow de 0 a 3.

Escrevendo os dígitos da direita para a esquerda, temos:

$$2374_{\{8\}} = \sum_{\rho_{05}=0}^{3} digito*8^{\rho_{05}} = 4 \times 8^{0} + 7 \times 8^{1} + 3 \times 8^{2} + 2 \times 8^{3} = 1276_{\{10\}}$$

Como se pode constatar, a única diferença entre o método de resolução anterior (binário \rightarrow decimal) e este é a base. Neste caso particular, a base é 8, enquanto no anterior a base era 2. Todo o resto se mantém.

Qual o número decimal a que corresponde 3D6[16]?

Resolução

Mais uma vez, começamos por numerar as posições.

Base = 16

Pos \rightarrow de 0 a 2.

Escrevendo os dígitos da direita para a esquerda, temos:

$$3D6_{(16)} = \sum_{p_{05}=0}^{2} digito*16^{p_{05}} = 6 \times 16^{0} + D \times 16^{1} + 3 \times 16^{2}$$

Parece haver um problema na expressão anterior. Como vamos multiplicar letras por números? A resposta é muito simples: através de uma tabela de correspondência entre os valores hexadecimais e decimais, a conversão é imediata.

Exemplos de Conversões — Decimal para 2, 8 e 16

Converta o número 463₍₁₀₎ para binário.

Resolução

 $N._{(10)}^{\circ} = 463_{(10)}$ Rase = 2

1.ª Iteração	2.ª Iteração	3.ª Iteração			
463 ₍₁₀₎ + 2 = 231,5	231+2=115,5	$115 \div 2 = 57,5$			
231×2=462	$115 \times 2 = 230$	$57 \times 2 = 114$			
463 - 462 = 1 → Resto	231 – 230 = 1 → Resto	115 – 114 = 1 → Resto			
4.ª Iteração	5.ª Iteração	6.ª Iteração			
57 ÷ 2 = 28,5	28 ÷ 2 = 14	$14 \div 2 = 7$			
$28 \times 2 = 56$	$14 \times 2 = 28$	$7 \times 2 = 14$			
57 – 56 = 1 → Resto	28 - 28 = 0 → Resto	14 - 14 = 0 → Resto			
7.ª Iteração	8.ª Iteração	9.ª Iteração			
$7 \div 2 = 3,5$	$3 \div 2 = 1,5$	Como 1 < 2 então			
$3 \times 2 = 6$	$1 \times 2 = 2$	paramos e fica o			
$7 - 6 = 1 \rightarrow Resto$	$3-2=1 \rightarrow Resto$	1 como resto Resto → 1			

O resultado escreve-se do dígito mais significativo (MSB – Most Significant Bit) para o menos significativo (LSB – Least Significant Bit). Escrevemos o resultado a partir do resto da 9.º iteração para a 1.º iteração

MSB 1 1100111 1 [2].

Então, $463_{(10)} = 111001111_{(2)}$.

Converta o número $1081_{(10)}$ para hexadecimal.

Resolução

N.° $_{(10)} = 1081_{(10)}$ Base = 16.

1.° Iteração
2.° Iteração
3.° Iteração
1081 $_{(10)} \div 16 = 67,5625$ 67 $\div 16 = 4,1875$ 67 $\times 6 = 1072$ 4 $\times 16 = 64$ 1081 $- 1072 = 9 \rightarrow \text{Resto}$ 67 $- 64 = 3 \rightarrow \text{Resto}$ Como 4 < 16, então paramos e fica o 4 como resto.

Resto $\rightarrow 4$

Escrevendo, mais uma vez, o resultado da última iteração para a primeira,

1081(10) = 439(16)

temos:

Exemplos de Conversões — Binário Vs Octal

um conjunto de 3 bits em binário. O resultado será o agrupar desses conjun-

tos de bits. Neste caso, o resultado será $576_{(8)} = 1011111110_{(2)}$.

Exemplos de Conversões — Binário Vs Hexadecimal

Converta o número 1101101(2) para hexadecimal.

Resolução

Primeiro agrupamos em grupos de 4 bits, da direita para a esquerda.

No entanto, parece que temos um bit a menos no segundo grupo. O que fazer? Para resolver esta situação, necessitamos de acrescentar um zero à esquerda do número. Os zeros à esquerda não alteram o número, pelo que podem ser acrescentados quantos forem necessários.

Exemplos de Conversões — Hexadecimal Vs Octal

Converta o número 1726_[8] para hexadecimal.

Resolução

Primeiro, passamos cada dígito do número octal para binário (ver a tabela anterior) em grupos de 3 bits. De seguida, agrupamos todos os conjuntos de 3 bits, resultando em 001111010110_[2].

Para se obter o número em hexadecimal, temos agora de agrupar este resultado em grupos de 4 bits e fazer a conversão tal e qual aprendemos anteriormente.

Converta o número F10A(16) para octal.

Resolução

A diferença deste método para o anterior reside na quantidade de bits a agrupar. No método anterior, começámos por fazer a correspondência de cada dígito para 3 bits, agrupando-os de seguida em 4 bits para obter o resultado. Neste exercício, primeiro fazemos corresponder cada dígito a 4 bits, agrupando-o de seguida em grupos de 3 bits para obter o resultado final. Vejamos a resolução:

O resultado será $111100010001010_{(2)}$. Agora temos de agrupar em grupos de 3 bits, para obter o número em octal. Assim:

 $F10A_{[16]} = 170412_{(8)}$

Resumo de Conversões

Sistemas Digitais

Sistema BCD (do inglês Binary Coded Decimal)

• É uma forma diferente de codificar números decimais em binário.

• Nesta codificação, cada dígito de um número decimal é codificado separadamente por uma

combinação de 4 bits.

Codifique o número 9526₍₁₀₎ em BCD 8421. Resolução Sabendo que cada dígito terá de ser codificado em 4 bits, teremos um resultado final com 16 bits. Assim, analisando cada dígito separadamente, temos: 9526[10] 1001 0110 0101 0010 O resultado final será o agrupar destes conjuntos de 4 bits, ou seja, 1001010100100110_(8CD).

	rabela at	CATOCOCCOCCOCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC	
Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Tabela de Valores

ASCII (American Standard Code for Information Interchange)

Conhecido por associar conjuntos de 7 bits a carateres alfanuméricos.

7654321	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	•	р
0001	SOH	DC1	!	1	A	Q	а	q
0010	STX	DC2		2	В	R	Ь	r
0011	ETX	DC3	#	3	С	S	С	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	е	u
0110	ACK	SYN	8	6	F	٧	f	V
0111	BEL	ETB	1	7	G	W	g	W
1000	BS	CAN	[8	Н	Х	h	х
1001	HT	EM)	9	1	Υ	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	К	[k	{
1100	FF	FS	,	<	L	1	l	1
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	٨	n	As :
1111	SI	US	1	?	0	-	0	DEL

Código ASCII (American Standard Code for Information Interchange)

• é um código muito popular usado em todos os sistemas digitais, ele utiliza 7 bits para

representar 128 caracteres;

Decimal	Binário	Símbolo	Decimal	Binário	Símbolo	Decimal	Binário	Símbolo	Decimal	Binário	Símbolo
0	0	NUL	32	100000	espaço	64	1000000	@	96	1100000	`
1	1	SOH	33	100001	1	65	1000001	A	97	1100001	a
2	10	STX	34	100010	"	66	1000010	В	98	1100010	b
3	11	ETX	35	100011	#	67	1000011	С	99	1100011	С
4	100	EOT	36	100100	\$	68	1000100	D	100	1100100	d
5	101	ENQ	37	100101	%	69	1000101	E	101	1100101	e
6	110	ACK	38	100110	&	70	1000110	F	102	1100110	f
7	111	BEL	39	100111		71	1000111	G	103	1100111	g
8	1000	BS	40	101000	(72	1001000	H	104	1101000	h
9	1001	HT	41	101001)	73	1001001	I	105	1101001	i
10	1010	LF	42	101010	*	74	1001010	J	106	1101010	j
11	1011	VT	43	101011	+	75	1001011	K	107	1101011	k
12	1100	FF	44	101100	,	76	1001100	L	108	1101100	1
13	1101	CR	45	101101	-	77	1001101	M	109	1101101	m
14	1110	SO	46	101110		78	1001110	N	110	1101110	n
15	1111	SI	47	101111	/	79	1001111	0	111	1101111	0
16	10000	DLE	48	110000	0	80	1010000	P	112	1110000	P
17	10001	DC1	49	110001	1	81	1010001	Q	113	1110001	q
18	10010	DC2	50	110010	2	82	1010010	R	114	1110010	г
19	10011	DC3	51	110011	3	83	1010011	S	115	1110011	S
20	10100	DC4	52	110100	4	84	1010100	T	116	1110100	t
21	10101	NAK	53	110101	5	85	1010101	U	117	1110101	u
22	10110	SYN	54	110110	6	86	1010110	V	118	1110110	v
23	10111	ETB	55	110111	7	87	1010111	W	119	1110111	W
24	11000	CAN	56	111000	8	88	1011000	X	120	1111000	X
25	11001	EM	57	111001	9	89	1011001	Y	121	1111001	y
26	11010	SUB	58	111010	:	90	1011010	Z	122	1111010	Z
27	11011	ESC	59	111011	;	91	1011011]	123	1111011	{
28	11100	FS	60	111100	<	92	1011100	\	124	11111100	
29	11101	GS	61	111101	=	93	1011101]	125	1111101	}
30	11110	RS	62	111110	>	94	1011110	٨	126	1111110	~
31	11111	US	63	111111	?	95	1011111		127	1111111	Delete

Tabela ASCII - versão expandida

• Esta versão expandida contempla os caracteres de 128 a 255.

Decimal	Binário	Símbolo	Decimal	Binário	Símb olo	Decimal	Binário	Símbolo	Decimal	Binário	Símbolo
128	10000000	Ç	160	10100000	á	192	11000000	L	224	11100000	Ò
129	10000001	ü	161	10100001	ĺ	193	11000001		225	11100001	ß
130	10000010	é	162	10100010	ó	194	11000010	Т	226	11100010	Ö
131	10000011	â	163	10100011	ú	195	11000011	-	227	11100011	Ó
132	10000100	ä	164	10100100	ñ	196	11000100	_	228	11100100	õ
133	10000101	à	165	10100101	Ň	197	11000101	+	229	11100101	Ö
134	10000110	å	166	10100110	a	198	11000110	ã	230	11100110	μ
135	10000111	ç	167	10100111	0	199	11000111	Ä	231	11100111	þ
136	10001000	ê	168	10101000	Ċ	200	11001000	L	232	11101000	Þ
137	10001001	ë	169	10101001	®	201	11001001	F	233	11101001	Ú
138	10001010	è	170	10101010	_	202	11001010	<u>_T</u>	234	11101010	Ü
139	10001011	ï	171	10101011	1/2	203	11001011	ī	235	11101011	Ű
140	10001100	î	172	10101100	1/4	204	11001100	F	236	11101100	ý
141	10001101	ì	173	10101101	i	205	11001101	=	237	11101101	Y
142	10001110	Α	174	10101110	«	206	11001110	#	238	11101110	_
143	10001111	Å	175	10101111	»	207	11001111	0	239	11101111	,
144	10010000	Ė	176	10110000	5000 5000 5000	208	11010000	ð	240	11110000	
145	10010001	æ	177	10110001	2424 4042	209	11010001	Ð	241	11110001	±
146	10010010	Æ	178	10110010		210	11010010	Ë	242	11110010	_
147	10010011	ô	179	10110011		211	11010011	Ë	243	11110011	= ³ / ₄
148	10010100	Ö	180	10110100	-	212	11010100	Ė	244	11110100	¶
149	10010101	ò	181	10110101	À	213	11010101	1	245	11110101	§
150	10010110	û	182	10110110	Ä	214	11010110	i	246	11110110	÷
151	10010111	ù	183	10110111	À	215	11010111	Ï	247	11110111	,
152	10011000	ÿ	184	10111000	©	216	11011000	Ĩ	248	11111000	0
153	10011001	Ö	185	10111001	4	217	11011001		249	11111001	
154	10011010	Ü	186	10111010		218	11011010	г	250	11111010	
155	10011011	Ø	187	10111011	7	219	11011011		251	11111011	1
156	10011100	£	188	10111100	j	220	11011100		252	11111100	3
157	10011101	Ø	189	10111101	¢	221	11011101	- - -	253	11111101	2
158	10011110	×	190	10111110	¥	222	11011110	i	254	11111110	•
159	10011111	f	191	10111111	٦	223	11011111		255	11111111	

Ficha de Trabalho 2 - Sistemas Digitais — Bases de Numeração

- Pesquise e apresente uma tabela com contagem de Bytes.
- Pesquise e apresente uma tabela para as quatro bases de numeração: binária, octal, decimal, hexadecimal.
- Explique como funciona o sistema Binário. Poderá usar imagens para ajudar na explicação.
- Explique como funciona o sistema Octal. Poderá usar imagens para ajudar na explicação.
- Explique como funciona o sistema Hexadecimal. Poderá usar imagens para ajudar na explicação.
- Diga o que entende pelo Código ASCII (American Standard Code for Information Interchange).
- Assinale com uma cruz identificando na tabela, em que sistemas numéricos podem estar representados os seguintes números:
- Converta os valores para Bytes .
 - a) 1 kB = b) 23 kB = c) 755 MB =
- d) 6 GB =

- Quantas combinações consegue com:
 - a) 1 bit
- b) 2 Byte
- c) 4 bit
- d) 16 bit

Complete a seguinte tabela:

Número de bits	Nome
l	bit
4	
	Byte
16	
	Double Word
64	