₩BOOTH SCHOOL OF ENGINEERING PRACTICE AND TECHNOLOGY

McMaster-Mohawk Bachelor of Technology Partnership

SEPT 785: Machine Learning

Overview

This project provides hands-on experience in applying machine learning techniques to a real-world dataset. Students will work in teams (maximum of 3) or individually to complete the project in structured phases.

Project Timeline & Deliverables	Grading Breakdown
Week 5 (Starting Tuesday, February 6): Project Groups and	5
Topic Selection	
Deliverable (Due by Friday, February 9): Submit a brief project	
proposal (1-2 pages) that includes:	
 Project title and description 	
Team members (if applicable)	
Problem statement	
 Dataset source (or plan for data collection) 	
Expected outcome	
Evaluation Criteria: Clarity of problem statement,	
feasibility, and relevance to ML.	
Weeks 6-7 (February 12 - February 23): Data Collection and	10
Pre-processing	
Deliverable: Submit a Jupyter Notebook/Python script	
demonstrating:	
 Data acquisition (if applicable) 	
 Cleaning, handling missing values, and feature 	
engineering	
 Exploratory Data Analysis (EDA) with visualizations 	
Recommended Tools: Pandas, NumPy, Matplotlib,	
Seaborn, Scikit-learn	
Evaluation Criteria: Completeness of preprocessing,	
quality of visualizations, justification of preprocessing	
steps.	
Weeks 8-10 (February 26 - March 15): Choosing and Applying	20
ML Algorithm(s)	
Deliverable: Submit a Jupyter Notebook/Python script covering:	
Selection of ML model(s) and justification	

 Model training and hyperparameter tuning 	
 Performance evaluation (e.g., accuracy, precision, recall, 	
F1-score)	
Recommended Tools: Scikit-learn, TensorFlow/PyTorch	
Evaluation Criteria: Justification of ML model choice,	
performance metrics, and interpretation of results.	
Weeks 11-12 (March 18 - March 29): Video Presentation	20
Deliverable (Due by March 29): A 10-minute recorded video	
explaining:	
Project objective & dataset overview	
ML model selection and key findings	
Challenges faced and future improvements	
Evaluation Criteria: Clarity, engagement, technical	
depth, and communication.	
Week 13 (April 1 - April 5): Peer Review and Discussion	5
Deliverable: Each student must review and provide constructive	
comments on 5 other projects.	
Evaluation Criteria: Thoughtfulness, depth of feedback, and	
relevance to ML concepts.	