Probabilistic Counting

Partially based on slides from:

http://infolab.stanford.edu/~ullman/mining/2009/index.html

Anand Rajaraman & Jeff Ullman

Counting Distinct Elements

- □ Problem: a data stream consists of elements chosen from a set of size n (n very big!). How to maintain the count of the number of distinct elements seen so far?
- Obvious approach: maintain the set of elements seen (costs O(n) memory!)
- ☐ Use less memory (and accept loss of accuracy)

Applications

- ☐ How many different URLs have we seen so far?
- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate "artificial pages"
- How many different Web pages does each customer requests in a week?
- How many distinct elements in a column of a table? (optimization of the join operation of two tables)
- How many distinct <source, destination> pairs through a router? (detection of DoS attacks)

Using Small Storage

☐ Real Problem:

what if we do not have space to store the complete set?

Estimate the count in an unbiased way.

☐ Accept that the count may be in error, but limit the probability that the error is large.

A simple idea: MinTopK estimate

- ☐ Hash incoming objects into doubles from the interval [0, 1] and count them shrinking the interval if needed.
- □ Due to limited memory, maintain only the K biggest values ("TopK"), say, K=1000.
- Let s denote the minimum of our set (MinTopK)
- \square The number of distinct elements $\approx K/(1-s)$
- What about the accuracy? The number of bits?

Flajolet-Martin Approach

```
X_1 \rightarrow 10001110 \rightarrow 1

X_2 \rightarrow 01010010 \rightarrow 1

X_3 \rightarrow 10011011 \rightarrow 0

X_4 \rightarrow 00101000 \rightarrow 3

X_5 \rightarrow 01011110 \rightarrow 1
```

#bits

 $N \rightarrow \log_2(N) \rightarrow \log_2(\log_2(N))$

 $eg.: log_2(log_2(1.000.000)) < 5$

#bits

- ☐ Key idea:
 - hash passing elements into short bitstrings,
 - store only the length of the longest tail of 0's,
 - "the more distinct elements" the longer the longest tail of 0's.
- Pick a hash function h that maps each of the m elements to $\log_2 m$ bits.
- For each stream element a, let r (a) be the number of trailing 0's in h(a).
- \square Record R = the maximum r(a) seen.
- \square Estimate the number of distinct elements as 2^R . WHY?

Why does it Work?

- The probability that a given h(a) ends in at least r(0)'s is 2^{-r} .
- If there are m different elements, the probability that $R \ge r$ is $1 (1 2^{-r})^m$

Prob. all h(a)'s end in fewer than r 0's.

Prob. a given h(a) ends in fewer than r 0's.

Why does it Work - (2)

 \square Since 2^{-r} is small, 1 - $(1-2^{-r})^m \approx 1 - e^{-m/2^r}$

 \square If $2^r >> m$, $1 - (1 - 2^{-r})^m \approx 1 - 1 = 0$

 \square If $2^r << m$, 1 - $(1 - 2^{-r})^m \approx 1 - 0 = 1$

 \square Thus, 2^R will almost always be around m

Why It Doesn't Work?

- \square 2^R is always a power of 2
- ☐ Bad luck can result in huge errors...
- □ Workaround: run in parallel several copies of this algorithm, using different hash functions and average the results
- ☐ How do we average results?
 - MEAN? What if one very large value?
 - MEDIAN? All values are a power of 2!

Solution

- ☐ The Book:
 - Partition your <u>hash functions</u> into several groups.
 - Calculate the average of each group.
 - Then take the median of the averages.
- ☐ Does it really work?
- Check the original papers of Fajolet et al.
- ☐ Many variants (about 20), 1983-....

Durand, Flajolet: the LogLog algorithm

- ☐ Key ideas: *stochastic averaging + calibration*
 - Partition your <u>samples</u> into $n=2^l$ groups, using the first l bits of the hash function as a selector
 - Calculate R₁, ..., R_n, (R_i for group i) and return: a_n*n*2^mean(R₁, ..., R_n) where a_n="a correction factor" (pre-computed)
 - n=1024 (10 extra bits!) => relative error 3% -4%

Complexity

- Required memory
 - We work with bit strings of length log₂n
 - We only have to maintain
 "the length of the longest tail of 0's" log₂(log₂n)
 almost nothing:
 - 8 bits=>2^256 =10^77 objects
 - **5 bits**=>2^32=10^9 objects
 - Multiply it by the number of hash functions:
 - **□** 1024*5=640 bytes of memory
- ☐ Time
 - processing an element requires computing values of ONE hash function (linear in the length of input).

Summary (Durand&Flajolet, 2003):

The basic LogLog counting algorithm makes it possible to estimate cardinalities till **10**⁸ with a standard error of **4**% using **1024 registers of 5 bits** each, that is, a table of **640 bytes in total**.

The LogLog Algorithm with m=256 condenses the whole of Shakespeare's works to a table of 256 "small bytes" of 4 bits each. The estimate of the number of distinct words is here $n^{\circ}=30897$ (true answer: n=28239), i.e., a relative error of +9.4%.

Recommended papers:

- P. Flajolet:
 - **Counting by Coin Tossings**

- M. Durand and P. Flajolet:Loglog Counting of Large Cardinalities
- ☐ A. Metwally, D. Agrawal and A. El Abbadi: Why Go Logarithmic if We Can Go Linear?