

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/565, C07J 1/00, C12N 9/00, C12P 33/00		A2	(11) International Publication Number: WO 97/37664 (43) International Publication Date: 16 October 1997 (16.10.97)
(21) International Application Number: PCT/GB97/00955 (22) International Filing Date: 4 April 1997 (04.04.97)		of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB). LECKIE, Caroline, McKenzie [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB).	
(30) Priority Data: 9607289.7 9 April 1996 (09.04.96) GB 9608445.4 24 April 1996 (24.04.96) GB 9704905.0 10 March 1997 (10.03.97) GB		(74) Agent: DOLAN, Anthony, Patrick; British Technology Group Ltd., Patents Dept., 101 Newington Causeway, London SE1 6BU (GB).	
(71) Applicant (for all designated States except US): BRITISH TECHNOLOGY GROUP LTD. [GB/GB]; 101 Newington Causeway, London SE1 8BU (GB).		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(72) Inventors; and (75) Inventors/Applicants (for US only): LATHE, Richard [GB/GB]; University of Edinburgh, West Mains Road, Edinburgh EH9 3JQ (GB). ROSE, Kenneth, Andrew [GB/GB]; University of Edinburgh, West Mains Road, Edinburgh EH9 3JQ (GB). SECKL, Jonathan, Robert [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB). BEST, Ruth [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB). YAU, Joyce, Lai, Wah [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(54) Title: USE OF 7 ALPHA-SUBSTITUTED STEROIDS TO TREAT NEUROPSYCHIATRIC, IMMUNE OR ENDOCRINE DISORDERS			
(57) Abstract			
<p>Use is provided for a 7α-hydroxy or 7-oxo substituted 3β-hydroxy-steroid possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, or an analogue thereof substituted independently at one or both of the 7- and 3-positions with an ester or ether group, in the manufacture of a pharmaceutical composition for the therapy of neuropsychiatric, immune and/or endocrine disorders or for inducing cognitive enhancement. Uses for Cyp7b enzymes in producing such steroids is also provided together with various novel steroids and test kits and methods for diagnosing the disorders.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

USE OF 7 ALPHA-SUBSTITUTED STEROIDS TO TREAT NEUROPSYCHIATRIC, IMMUNE OR ENDOCRINE DISORDERS

The present invention relates to novel uses for 7 α -hydroxy-substituted steroids, to a process for preparing such steroids and to novel steroids so produced.

In particular the invention relates to the use of cytochromes of the cytochrome P450 family designated Cyp7b to effect 7 α -hydroxylation of certain 3 β -OH steroids so as to produce a 7 α -hydroxy-substituted steroids. Certain of the 7 α -hydroxy-substituted steroids so produced, as well the corresponding 7-oxo derivatives, are novel and form further aspects of the invention. The invention also relates to uses of these steroids, to uses of Cyp7b enzymes and to uses of novel macromolecular species, e.g. antibodies and DNAs, which are biologically related to the Cyp7b enzymes.

Cytochromes P450 are a diverse group of heme-containing mono-oxygenases (termed CYP's; see Nelson *et al.*, DNA Cell Biol. (1993) 12, 1-51) that catalyse a variety of oxidative conversions, notably of steroids but also of fatty acids and xenobiotics. While CYP's are most abundantly expressed in the testis, ovary, placenta, adrenal and liver, it is becoming clear that the brain is a further site of CYP expression. Several CYP activities or mRNA's have been reported in the nervous system but these are predominantly of types metabolizing fatty acids and xenobiotics (subclasses CYP2C, 2D, 2E and 4). However, primary rat brain-derived glial cells have the capacity to synthesize pregnenolone and progesterone *in vitro*. Mellon and Deschepper, Brain Res. (1993), 629, 283-292(9) provided molecular evidence for the presence, in brain, of key steroidogenic enzymes CYP11A1 (ccc) and CYP11B1 (11 β) but failed to detect CYP17 (c17) or CYP11B2 (AS). Although CYP21A1 (c21) activity is reported to be present in brain, authentic CYP21A1 transcripts were not detected in this tissue.

Interest in steroid metabolism in brain has been fuelled by the finding that adrenal- and brain-derived steroids (neurosteroids) can modulate cognitive function and synaptic plasticity. For instance, pregnenolone and steroids derived from it are reported to have memory enhancing effects in mice. However, the full spectrum of steroid metabolizing CYP's in brain and the biological roles of their metabolites *in vivo* has not been established.

Many aspects of brain function are modulated by steroids. Intracellular receptors for glucocorticoids (cortisol, corticosterone) are particularly abundantly expressed in the

hippocampus (1), a brain region that plays a key role in specific aspects of memory formation, and which is an early and prominent target for dysfunction and damage in Alzheimer's disease (AD). While glucocorticoids regulate learning and memory, mood and neuroendocrine control, chronic glucocorticoid excess compromises neuronal activity, 5 synaptic plasticity and eventually survival, particularly in the hippocampus. These findings prompted the suggestion that glucocorticoid-mediated neurotoxicity might underpin some age-related brain disorders, including AD, in which plasma cortisol levels are markedly elevated (2).

Conversely, dehydroepiandrosterone (DHEA), the most abundant steroid product 10 of the human adrenal cortex, has been proposed to protect against disorders of the aging brain (3). Plasma levels of DHEA often show a striking age-associated decline which correlates with loss of cognitive function (4). In rodents, injection of DHEA or its sulfate into limbic structures improves post-training memory and enhances synaptic plasticity (5). DHEA and glucocorticoids thereby appear to exert inverse effects upon memory function 15 and synaptic plasticity, and DHEA has been advocated as an endogenous 'anti-glucocorticoid'. However, despite considerable circumstantial evidence to support this contention, there is no evidence for a direct interaction between DHEA and glucocorticoid signalling pathways in neurons.

Neurosteroidogenesis has been reported in isolated rat retina (8) and brain (9). In 20 addition to the production of pregnenolone and DHEA from cholesterol, a variety of novel steroids are made in brain extracts or cultured brain cells, including 20 α -dehydro pregnenolone, 7 α -hydroxy derivatives of pregnenolone and DHEA, progesterone, and both 3 α - and 3 β -hydroxy-5 α -pregnan-20-one (reviewed in Ref. 7). Androgens are also modified, particularly through the action of aromatase and a 5 α -reductase (reviewed in Ref. 25 10). However, the specific enzymes responsible for these and other transformations in the central nervous system have not been well characterized.

As referred to above, several Cyps are present in the central nervous system (11-22). Activities or mRNAs corresponding to key steroidogenic enzymes (23-25), in addition to 30 Cyp19 (aromatase) have been detected. Furthermore, mRNAs encoding the non-Cyp hydroxysteroid dehydrogenases (HSD) 3 α -HSD, 3 β -HSD and 11 β -HSD have been reported in the central nervous system (25, 27-29).

To investigate regulation of brain function, studies reported in copending International Patent Application No PCT/GB95/02465, published as WO 96/12810, and in Stapleton *et al* (J. Biol. Chem. 270, 29739 - 1995, December, 15 1995), focused on the hippocampus, a brain region important in learning and memory. A copy of the specification 5 of International Patent Application No PCT/GB95/02465 has been filed with the priority documents filed in respect of this specification.

That copending application, PCT/GB95/02465, describes and claims novel cytochrome P450 proteins designated Hct-1. These Hct-1 proteins have now been named as Cyp7b by the Committee on Standardized Cytochrome P450 Nomenclature and the 10 name Cyp7b will be used in this application.

The Cyp7b enzyme shares 39% sequence identity to hepatic cholesterol 7 α -hydroxylase (Cyp7a) and lesser but significant homology with other steroidogenic Cyps. The postulated steroidogenic domain (30,31), found in many of these enzymes, is present 15 in both Cyp7a and Cyp7b. Cyp7b mRNA is predominantly expressed in rodent brain, particularly in the hippocampus, unlike Cyp7a, which is liver-specific (31-33 and EP0648840 A2).

The present inventors have now investigated the substrate specificity of Cyp7b and found that Cyp7b catalyses the introduction of a hydroxyl group at the 7 α position in steroid substrates, particularly 3 β -hydroxy steroids. Cytochromes Cyp7b are thus steroid 20 hydroxylase enzymes having 7 α -specificity. The ability to produce 7 α -hydroxylated steroids is of major commercial importance, because such steroids are of particular use in the manufacture of pharmaceuticals (either as drugs *per se* or as intermediates), and in the manufacture of test kits and assays for pathological conditions associated with the presence of abnormal levels of endogenous enzyme, substrate or product.

25 The abbreviation "DHEA" will be used herein to designate dehydroepiandrosterone, thus 7 α -hydroxy-DHEA designates 7 α -hydroxydehydroepi-androsterone

The present inventors have identified substrate/product pairs associated with Cyp7b, particularly DHEA/7 α -hydroxy-DHEA (7-HD), pregnenolone/7 α -hydroxy-pregnenolone 30 (7-HP) and β -estradiol/7 α -hydroxy- β -estradiol (7-HE). They have also determined that DHEA concentration in brain tissue declines with age, whereas the concentrations of other brain steroids do not, and determined that the ageing process may be associated with

deficits in certain steroids and also with deficits in the concentration of Cyp7b itself. It is also believed that one of the products produced by Cyp7b mediated reactions, namely 7 α -hydroxy dehydroepiandrosterone, plays an important role in the operation of the immune system. Because 7 α -hydroxy-DHEA is believed to be made substantially only in the brain, the inventors hypothesize that senescence may be due to a deficit in brain-produced 7 α -hydroxy-DHEA as well as in other steroids found in the brain such as DHEA, pregnenolone and 7 α -hydroxy-pregnenolone.

The present inventors have now further determined that one of the specific properties of the 7 α -hydroxy-substituted steroids, and potentially their 7-oxo substituted steroid derivatives, provided by the present invention is that of glucocorticoid and/or mineralocorticoid antagonism, whether at receptor level or otherwise. This is particularly demonstrated by the Example 5 below with respect to 7 α -hydroxy-DHEA but is more generally applicable. Thus this activity not only gives further uses for the novel steroids of the invention but provides first and second medical uses for known 7 α -hydroxy or 7-oxo steroids made available by the present process as glucocorticoid and/or mineralocorticoid antagonists and preferably in antagonism specific to neuronal tissue such as in the CNS.

Thus, having regard to this activity and their involvement in endogenous metabolic pathways, particularly in the brain, the 7 α -hydroxy substituted 3 β -hydroxy-steroids provided by use of the Cyp7b enzyme activity, including novel compounds provided by the invention, and their 7-oxo derivatives, have utility in the therapy of neuropsychiatric, immune and endocrine disorders, particularly but not exclusively steroid associated disorders.

Use of these 7 α -hydroxy or 7-oxo substituted 3 β -hydroxy-steroids, preferably possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, or derivatives thereof substituted independently at one or both of the 7- and 3- positions with an ester or ether group, in treating these disorders and for manufacturing medicaments for such treatment is provided in a first aspect of the present invention. Particularly preferred derivatives are those wherein one or both of the ester and or ether group is metabolisable *in vivo* to produce the corresponding hydroxy compound.

Preferred derivatives include those wherein the steroid has a 3 β -substituent-OR₁ and/or a 7 α -substituent -OR₂ where -OR₁ and -OR₂ each independently represents a free

hydroxy, ester or ether group,

wherein each of R₁ and R₂ are independently selected from the group consisting of hydrogen, substituted or unsubstituted C₁₋₆ alkyl groups, groups R₅CO-, wherein R₅ may be selected from substituted or unsubstituted C₁₋₆ alkyl groups, and groups of the formula -OP(OH)₃, wherein any substituents are selected from OH, halogen (F, Cl, Br, I) amino, C₁₋₆ alkylamino, C₁₋₆ dialkylamino, COOH or COOR₄ wherein R₄ represents a C₁₋₆ alkyl group; and wherein the compounds may be in free form or in the form of acid addition salts with pharmacologically acceptable anions.

The particular disorders for which this utility is provided include

- 10 (a) deficits of cognition in aging
- (b) Alzheimer's disease
- (c) deficits of immune system in aging
- (d) deficits of immune function in HIV infection
- (e) glucocorticoid or mineralocorticoid excess
- 15 (f) diabetes
- (g) depression
- (h) osteoporosis and hypercalcemia
- (I) hyperglycemia and hyperlipidemia
- (j) muscle atrophy
- 20 (k) arterosclerosis
- (l) steroid diabetes

Further, these 7 α -hydroxy steroids, their esters, ethers and 7-oxo derivatives may be used to induce cognitive enhancement in a normal individual.

Preferred steroids for such use have the carbon skeleton of androsterone, pregnenolone or estradiol and particularly preferred examples are 7 α -hydroxy-DHEA and 7 α -hydroxypregnenolone. Accordingly the present invention further provides the use of novel compounds of Formula Ia and Ib shown below in the applications indicated above.

Particularly preferred uses for the antagonistic properties of these 7-substituted steroids include treatment of disorders falling within category (e) above or where reversal 30 of the effects of such corticoids, regardless of excess, is required.

A second aspect of the present invention provides pharmaceutical compositions implementing such use. The compositions in which the novel steroids and known steroids of the invention will be used will readily occur to those skilled in the art, generally comprising the steroid active in association with a pharmaceutically acceptable carrier or diluent, with formulations for example being suitable for inhalation or for gastrointestinal (e.g. oral), parenteral, topical, transdermal or transmucosal administration.

As an alternative to administering the compounds of the invention *per se*, a third aspect of the invention provides the possibility of using the gene sequences of the Cyp7b genes in gene therapy in order to compensate for a deficiency in Cyp7b enzyme. In such therapies, constructs comprising Cyp7b coding sequences can be packaged in conventional delivery systems, such as adenoviruses, vaccinia viruses, herpes viruses and liposomes and administered via a route which results in preferential targeting of a selected tissue, especially the brain. The invention further provides the possibility of using the gene sequences of the Cyp7b genes in gene therapy in order to achieve the endogenous expression of Cyp7b sequences for other purposes, e.g. in order to promote immunogenic processes. Thus for example, a vector such as a suitably modified vaccinia virus (or variant thereof) may be co-administered with a vaccine formulation so that the expressed Cyp7b sequences augment the immunogenic properties of the vaccine.

It will be realised that in the event of Cyp7b related disorders other than those involving its depletion it may be desirable to use vectors containing antisense sequences to Cyp7b effective such as to inhibit Cyp7b expression.

Macromolecules related immunologically to Cyp7b enzymes form fourth and fifth aspects of the invention and in this regard antibodies, particularly monoclonal antibodies which are capable of selectively binding Cyp7b, have utility in the diagnosis of disorders (a) to (l) referred to above. Anti-Cyp7b antibodies (including monoclonal antibodies) as well as binding molecules comprising antibody fragments may be produced by known methods and used in test kits for assays for Cyp7b enzymes.

According to a sixth aspect of the invention, there is provided a process of producing a 7 α -hydroxy-substituted steroid which comprises subjecting a corresponding steroid substrate having no hydroxyl substituent in the 7-position to hydroxylation in the presence of a Cyp7b steroid hydroxylase enzyme.

The Cyp7b steroid hydroxylase enzyme used in the process of the invention is preferably a Cyp7b enzyme described and claimed in the above-mentioned International Patent Application No PCT/GB95/02465 (and referred to therein as Hct-1). Such enzymes include (a) ones having the precise amino acid sequences described for mouse, rat and 5 human Cyp7b, (b) homologous enzymes from other species and (c) enzymes having amino acid sequences which differ from the sequences of enzymes included in definitions (a) and (b), but in which the capacity to catalyse the introduction of a 7α -hydroxyl group is not eliminated.

10 The amino acid sequence of suitable Cyp7b steroid hydroxylase enzymes may be defined in terms of the DNA coding sequences disclosed in International Patent Application No PCT/GB95/02465. Thus the Cyp7b steroid hydroxylase enzyme may have a sequence encoded by DNA coding sequences of Cyp7b enzymes selected from

- (a) Coding sequences of DNA molecules comprising the coding sequence for rat Cyp7b set forth in SEQ Id No: 1,
- 15 (b) Coding sequences of DNA molecules comprising the coding sequence for mouse Cyp7b set forth in SEQ Id No: 2,
- (c) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (a) or (b) under standard hybridization conditions defined as 2 x SSC at 65 °C.
- 20 (d) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (a), (b) or (c) under reduced stringency hybridization conditions defined as 6 x SSC at 55 °C.

The sequences (a) and (b) above represent rat and mouse Hct-1 gene sequence. 25 Homologous sequences from other vertebrate species, especially mammalian species (including man) fall within the class of DNA molecules represented by (c) or (d).

Thus for human Cyp7b, the steroid hydroxylase enzyme may comprise a sequence encoded by

- (e) DNA coding sequences selected from the following:
 - (i) the sequence designated "exon 3" in SEQ Id No 3,
 - (ii) the sequence designated "exon 4" in SEQ Id No 3, and
- 5 (f) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecules defined in (e) under standard hybridization conditions defined as 2 x SSC at 65°C.
- 10 (g) Cyp7b steroid hydroxylase encoding DNA molecules capable of hybridizing with the DNA molecule defined in (e) or (f) under reduced stringency hybridization conditions defined as 6 x SSC at 55°C.
- 15 (h) Cyp7b steroid hydroxylase-encoding DNA molecules comprising contiguous pairs of sequences selected from
 - (i) the sequence designated "exon 3" in SEQ Id No 3,
 - (ii) the sequence designated "exon 4" in SEQ Id No 3, and
- (i) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecules defined in (h) under standard hybridization conditions defined as 2 x SSC at 65°C.
- 20 (j) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (h) or (i) under reduced stringency hybridization conditions defined as 6 x SSC at 55°C.

(k) Coding sequences of DNA molecules comprising a contiguous coding sequence consisting of the sequences "exon 3" and "exon 4" in SEQ ID No 3, and

5 (l) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecules defined in (k) under standard hybridization conditions defined as 2 x SSC at 65°C.

10 (m) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (k) or (l) under reduced stringency hybridization conditions defined as 6 x SSC at 55°C.

It will be appreciated that the DNA sequences referred to may consist of or be derived from genomic DNA, but typically would consist of or be derived from cDNA. Such sequences could be obtained by probing an appropriate library (cDNA or genomic) using hybridisation probes based upon the sequences provided according to the invention 15 of International patent application No PCT/GB95/02465, or they could be prepared by chemical synthesis or by ligation of sub-sequences.

In the above definitions, Cyp7b steroid hydroxylases have been defined in terms of DNA sequence information. The Cyp7b steroid hydroxylase enzyme used in accordance with the process of the invention may alternatively or additionally be defined by reference 20 to amino acid sequence information, e.g. the amino acid sequences contained in SEQ ID NO. 4, SEQ ID NO. 5 or SEQ ID NO 6.

Thus the Cyp7b steroid hydroxylase enzyme used in accordance with the process of the invention may have sequences matching one of said sequences exactly, or alternatively, the enzymes used may have sequences which differ from the aforementioned 25 sequences, provided that the capacity to catalyse the introduction of a 7 α -hydroxyl group is not eliminated.

Thus, for example, mutant enzymes may be produced by known methods, for example site-directed mutagenesis or other PCR-based procedures, and the expression

products tested for their capacity to catalyse the introduction of a 7α -hydroxyl group in selected substrates in accordance with the procedures described herein.

Having regard to the degree of homology between the rat, mouse and human enzymes and known data relating to species divergence of hydroxylase enzymes, it is 5 preferred that by comparison with the DNA sequences of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO.3, the mutant enzymes should be encoded by sequences having at least 50% homology, more preferably at least 60% homology and most preferably at least 70% homology with said sequences over a length of 50 contiguous nucleotides.

Preferably the mutant enzymes are encoded by sequences having at least 60% 10 homology with the entire coding sequence, more preferably at least 70%.

Alternatively, by comparison with the amino acid sequences of SEQ ID NO. 4, SEQ ID NO. 5 and SEQ ID NO.6, it is preferred that mutant enzymes should have at least 50% homology, more preferably at least 60% homology and most preferably at least 70% homology with said sequences over a length of 30 contiguous amino acids. Preferably 15 the mutant enzymes have at least 60% homology and more preferably 70% homology or more with the entire amino acid sequence in each case.

It is however preferred that such mutant enzymes do not differ too drastically from the aforementioned sequences and in this regard, where amino acid substitutions are made, that the substituted amino acids are preferably so-called "synonymous" or "conservative" 20 substitutions, i.e. hydrophilic, hydrophobic, basic and acidic amino acids should preferably be substituted by amino acids in the same class (see US 5380712).

More specifically, it is preferred that the mutant enzymes differ from the precise sequences of those described herein by not more than 20, preferably not more than 10 and most preferably not more than 5 amino acid substitutions, insertions or deletions.

25 The Cyp7b enzymes described herein may be used in toxicological and drug evaluation studies and such uses form further aspects of the invention. In a particularly preferred embodiment of this aspect of the invention, a cell line capable of expressing a Cyp7b enzyme is used as a basis of an assay for one or more Cyp7b substrates. Such cell lines have utility in toxicological and drug evaluation studies. Most preferably the cell line 30 comprises a prokaryotic or eucaryotic cell line which has been transformed so as artificially to express a Cyp7b enzyme. Examples include bacteria, yeast and mammalian cells. Also

included are transgenic animals, at least one tissue of which (especially a non-brain tissue) expresses Cyp7b enzyme. Such transgenic animals may be produced by known methods for introducing foreign coding sequences into somatic or germ line cells.

The substrates used in the method of the invention are characterised by possessing 5 a 3 β -hydroxyl group and further by preferably possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, with the proviso that where the substrate has the carbon skeleton of cholesterol, the substrate has a hydroxyl group in the 25, 26 or 27-position, preferably the 25-position.

Examples of such substrates include 25-hydroxycholesterol, dehydroepiandrosterone, pregnenolone and estradiol, in which case the steroids produced will be 7 α -hydroxy-25-hydroxycholesterol, 7 α -hydroxydehydroepiandrosterone, 7 α -hydroxy pregnenolone and 7 α -hydroxyestradiol (i.e. estra 1,3,5(10)-triene-3,7 α ,17 β -triol) respectively.

15 The 7 α -hydroxylated steroid produced according to the invention may be oxidised by known enzymatic or non-enzymatic procedures to produce 7-oxo substituted steroids and this further process step forms a further aspect of the invention.

Certain 7 α -hydroxy-substituted steroids produced according to the invention and certain corresponding 7-oxo derivatives are novel and provide a further aspect of the invention. Thus the present invention further provides novel 3 β -hydroxy steroids 20 characterised in that they have a 7 α -hydroxy or 7-oxo substituent. Preferred novel steroids have the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, with the proviso that where the skeleton is that of cholesterol, the 25, 26 or 27 position is hydroxylated, most preferably the 25 position.

Particular novel steroids are of the formula

25

Ia

Ib

wherein OR₁, OR₂ and OR₃ each independently represents a free hydroxy group, an ether group or an esterified hydroxy group.

In the case where OR₁, OR₂ and OR₃ each independently represents an ether group, each of R₁, R₂ and R₃ may be selected from substituted or unsubstituted C₁₋₆ alkyl groups, any such substituents being selected from OH, halogen (F, Cl, Br, I) amino, C₁₋₆ alkylamino, C₁₋₆ dialkylamino, COOH or COOR₄ wherein R₄ represents a C₁₋₆ alkyl group which may be unsubstituted or substituted by one of the substituents referred to above.

In the case where OR₁, OR₂ and OR₃ each independently represents an esterified hydroxy group, each of R₁, R₂ and R₃ may have the formula R₅CO-, wherein R₅ may be selected from substituted or unsubstituted C₁₋₆ alkyl groups, any such substituents being selected from OH, halogen (F, Cl, Br, I) amino, C₁₋₆ alkylamino, C₁₋₆ dialkylamino, COOH or COOR₄ wherein R₄ represents a C₁₋₆ alkyl group; and groups of the formula -OP(OH)₃. Where compounds of Formula Ia or Ib include substituents such as carboxyl groups, phosphate groups, or substituted or unsubstituted amino groups, the compounds may be in free form or in the form of acid addition salts with pharmacologically acceptable anions (such as, for example, phosphate or halide ions) or cations (such as, for example, alkaline metal cations). Thus, where OR₁, OR₂ or OR₃ represents hemesuccinate HOOC(CH₂)₂CO, the resulting hemesuccinate may be in the form of, for example, an Na or K salt.

It will be realised that the present invention provides for 7 α -hydroxylated and 7-oxo steroids as described above but which are further substituted at other positions directly on the steroid skeleton.

7 α -Hydroxyestradiol and 7-oxoestradiol are specific examples of compounds of Formula Ia and Ib.

The invention will now be described in more detail with particular reference to the following Figures and Examples.

Description of Figures

Figure 1 illustrates an autoradiogram of a TLC plate used in an experiment to assess the ability of various cell extracts to hydroxylate DHEA.

Figure 2 depicts the ability of various tissues to release radioactivity from 7β -³H-pregnenolone.

Figure 3 illustrates the principal steroid interconversions mediated by Cyp7b.

Figure 4 is a histogram plotting fold induction of luciferase expression with
5 concentration of various steroids as described in Example 5.

Figure 5 illustrates the attenuation of Cyp7b gene expression in Alzheimer's as described in Example 5.

Figure 6 shows mass spectrometer plots of 7α -hydroxy-DHEA produced by the present process and a reference sample thereof.

10 **EXAMPLE 1 - Identification of substrate specificity of Mu Cyp7b**

A. **Preparation of vaccinia expression construct**

To identify the reaction catalysed by Cyp7b a cDNA encoding the mouse enzyme, reported by Lathe, Rose and Stapleton (PCT/GB95/02465) and by Stapleton et al. (J. Biol. Chem. 270, 29739-1995, December 15 1995), was modified to introduce a translation

15 initiation consensus sequence at the 5' end of the Cyp7b open reading frame as described therein. The modified cDNA was introduced into the genome of vaccinia virus by recombinational exchange according to standard procedures (see, for instance, Gonzalez et al.. Meth. Enzymol. 206, 85-92, 1991 and references therein) as described in Lathe et al.

20 **B. Production of Cyp7b enzyme extracts.**

HeLa cells were grown to semi confluence (10^6 cells per 5 cm dish; 5 ml medium) and infected with recombinant (VV-Cyp7b) and control (VV Copenhagen strain) vaccinia viruses at 0.1 pfu per cell; 16 hours later infected cells were washed and taken up into W (Waxman) buffer (0.1 M KP04, 1 mM EDTA, 20% glycerol pH 7.5; 500 μ l per plate) and
25 recentrifuged (5 min., 1000 rpm).

For whole cell extracts cells were resuspended into 1/100 volume (50 μ l per plate) of W buffer and stored frozen at -70°C. For microsome preparation (Waxman, Biochem. J. 260, 81-85, 1989) cells were resuspended in 1/10 original volume of W buffer (500 μ l per plate); sonicated 6 x 5 seconds on ice, and unbroken cells were removed by
30 centrifugation (10 min., 4°C, 3000 rpm).

The microsomal fraction was prepared from the supernatant by centrifugation

(100,000 g, 45 min., 4°C, Beckman SW50.1 rotor) and resuspended using a Potter homogeniser in 1/50 original volume of W buffer (100 µl per plate) before storage at -70°C.

Control extracts were prepared from liver and brain from male rat by homogenising 5 fresh tissue in W buffer (2.5 ml/g), clarifying briefly by centrifugation (4000 rpm, 5 min, 4°C); the supernatant was stored at -70°C.

C. Substrate identification by thin-layer chromatography.

10 ¹⁴C or ³H-labelled steroids were purchased from DuPont-NEN (¹⁴C-labelled molecules: specific activities 45-60 mCi/mmol.; ³H: specific activities 70-100 mCi/mmol). 1 nMol aliquots of labelled substrate were dried down, microsomes or cell and tissue extracts were added (25 to 50 µl), and diluted to a volume of 175 µl with W buffer.

Reaction was started by the addition of 25 µl of 8 mM NADPH. After incubation at 37°C for 15 minutes the reaction was shaken with 500 µl of ethyl acetate (BDH). The 15 organic phase was removed, dried down, and suspended into 10 µl ethyl acetate. Aliquots (5 x 2 µl) were applied to thin layer chromatography (TLC) sheets (Merck) and developed in ethyl acetate/n-hexane/acetic acid 16:8:1 (solvent system N of Waxman, Meth. Enzymol. 206, 462-476, 1991). After drying, chromatograms ¹⁴C were visualised by exposure to X-ray film. ³H-labelled chromatograms were treated with EN³HANCETM (DuPont-NEN) 20 spray prior to exposure.

D. Results

Figure 1 is an autoradiogram of a TLC plate run in solvent system N; substrate was ³H-DHEA and samples were extracted with ethyl acetate and dried prior to application to the TLC plate (origin at bottom of figure). Extracts were 1, Microsomes from Hela cells 25 infected with control vaccinia virus (negative control); 2, Microsomes from Hela cells infected with VVCyp7b; 3, Duplicate preparation of microsomes from Hela cells infected with VVCyp7b; 4, Rat brain homogenate.

As can be seen from Figure 1, microsomes from cells infected with recombinant vaccinia expressing Cyp7b converted ¹⁴C-dehydroepiandrosterone (DHEA) to a lower 30 mobility form most consistent with hydroxylation. Brain extracts yielded a product of indistinguishable mobility, consistent with our earlier demonstration that Cyp7b is

expressed in brain. From the relative mobility of the product we surmised that Cyp7b could be hydroxylating DHEA at the 7 position. Progesterone, corticosterone, cortisol and testosterone were at best inefficiently metabolised, if at all. However, pregnenolone and estradiol were both converted by the enzymes, as was 25-hydroxy cholesterol. All these
5 substrates are distinguished by a 3β hydroxy group.

EXAMPLE 2 - Identification of the position of the modification by 3 H-release.

To Identify the position of the modification, 3 H-pregnenolone (NEN) was employed in which the 3 H substitution was predominantly at the 7 position on the steroid backbone. Microsomal extracts were incubated with 3 H-pregnenolone under the same conditions as
10 used earlier. Following reaction, labelled steroids were extracted with ethyl acetate (2 x 1 ml), and discarded; release of 3 H into the aqueous phase was monitored by liquid scintillation counting.

Referring to Figure 2, $7\text{-}^3\text{H}$ -pregnenolone was incubated with extracts and assayed for release of radioactivity into the aqueous phase following extraction with ethyl acetate.
15 Extracts were 1, Microsomes from Hela cells infected with control vaccinia virus (negative control); 2, Microsomes from Hela cells infected with VVCyp7b; 3, Duplicate preparation of microsomes from Hela cells infected with VVCyp7b; 4, Rat brain homogenate; 5, Rat liver homogenate.

As seen in Figure 2 microsomes from cells infected with recombinant
20 vaccinia expressing Cyp7b efficiently released 3 H into the aqueous phase. Brain also performed this reaction but not liver. Release of 3 H from the 7 position of pregnenolone demonstrates that Cyp7b hydroxylates pregnenolone at the 7-position to generate 7-hydroxy pregnenolone (7HP); it may be concluded that Cyp7b also hydroxylates DHEA (to generate 7-hydroxy DHEA [7HD]) and estradiol to generate 7-hydroxy estradiol [7HE].
25

EXAMPLE 3 - Stereochemistry of the Cyp7b hydroxylation.

Steroids hydroxylated at a variety of positions (egs. 2, 6, 7, 15, 16) differ in their mobility on TLC depending on whether the modification is in the α - or the β -position (Waxman, Meth. Enzymol. 206, 462-476, 1991). Purified 7α -hydroxy DHEA was
30 obtained (kind gift of Dr. H.A. Lardy, Enzyme Institute, University of Wisconsin), mixed with the product of Cyp7b action on DHEA, and subjected to TLC. The product

comigrated with 7α - hydroxy-DHEA, demonstrating that Cyp7b is a 7α hydroxylase.

EXAMPLE 4 - Activity of enzyme in 7α -hydroxylation of pregnenolone and DHEA

To examine the catalytic activity of the enzyme Cyp7b cDNAs were expressed in mammalian cell lines. Cell extracts showed substantial NADPH-dependent conversion of

5 DHEA (K_m 13.3 μM ; V_{max} 288pmol/min/mg) and pregnenolone (K_m 3.6 μM ; V_{max} 34 pmol/min/mg) to slower migrating forms on thin layer chromatography. Products of identical mobility were generated by rat brain extracts. The expressed enzyme was less active against 25-hydroxycholesterol, 17β -estradiol and 5α -androstane- 3β , 17β -diol, with low to undetectable activity against progesterone, corticosterone and testosterone. When 10 $[^3H-7\alpha]$ pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7α -position. In gas chromatography and mass spectrometry of the modified steroid arising from incubation of DHEA with Cyp7b extracts, the retention time and fragmentation patterns were identical to those obtained with authentic 7α -hydroxy DHEA (7HD); the 15 reaction product also co-migrating with 7HD on TLC.

Mass spectrometry: A 10x scaled up reaction was employed using 95% unlabelled DHEA (Sigma) and 5% [^{14}C]-DHEA (final specific activity 2.25-3mCi/mmol) and reaction time was extended to 1 hour. Product was purified by TLC, excised and extracted with ethyl acetate before drying down. The dried residue and authentic 7HD (50mg) were 20 converted to their methoxime-trimethylsilyl (MO-TMS) derivatives. Analysis of these products was performed using a Trio 100 mass spectrometer operating in electron impact (EI) mode, linked to a HP5890 gas chromatograph fitted with a HP-1 cross-linked methyl siloxane column (25m, i.d. 0.25mm, 0.17 mm film) under the following conditions: electron energy 70eV, source temperature 200°C, interface temperature 280°C, oven 25 temperature 50°C increasing at 30°C per minute to 200°C, and then 10°C per minute to 300°C, injection temperature 280°C.

EXAMPLE 5 - Cis-trans co-transfection assay; demonstration of antagonism.

Chinese hamster ovary (CHO) cells were maintained and transfected in Dulbecco's 30 modification of Eagle's medium (DMEM) supplemented with 15% foetal bovine serum, 100IU/ml penicillin, 100 $\mu g/ml$ streptomycin and 200mM L-glutamine (all Gibco BRL,

Paisley, UK).

24 hours prior to transfection CHO cells were plated at a density of 3×10^5 /60 mm dish (Costar UK). Cells were transfected by the calcium phosphate method. Briefly, 5 μ g of MMTV-LUC and 1 μ g of pRShGR or 5 μ g of pSV2 as a control for transfection efficiency were made up to a total of 10 μ g/plate of DNA with pGEM3. 30 μ l of 2.5M CaCl₂ was diluted ten-fold with sterile water and 300 μ l was added to the DNA. Next 300 μ l of 2 x Hepes buffered saline (280 mM NaCl, 10mM Kcl, 1.5mM Na₂HPO₄.2H₂O), 50mM Hepes, 12mM dextrose, pH 7.05) was added slowly with swirling to the DNA/CaCl₂ mixture. This solution was left for 30 minutes in order for a fine precipitate to form and 10 600 μ l was added dropwise to each plate. After 24 hours the medium was removed and the cells were washed in serum free medium and culture for a further 24 hours in medium containing 10% charcoal-stripped serum together with the appropriate concentrations of DHEA/7 α -hydroxy-DHEA.

15 Six hours after the addition of DHEA/7 α -hydroxyDHEA either B or Dex was added to each plate. The following day the cells were washed in PBS, lysed with 0.3ml of lysis buffer (25mM Tris-phosphate pH 7.8, 2mM DTT, 1% Triton X-100 and 10% glycerol), scraped, centrifuged and the supernatant assayed in duplicate in a Berthold luminometer in a total volume of 250 μ l, comprising 40 μ l of cell extract, 5 μ l of 30mM ATP, 100 μ l of assay buffer (20mM tricine, 1.07nM (MgCO₃)₄.Mg(OH)₂.%H₂O, 2.67mM MgSO₄, 20 0.1mM EDTA, 33.3mM DTT, 0.2mg/ml coenzyme A) and 105 μ l luciferin (Promega UK) injected to initiate the reaction. Light emission was measured over 10 seconds and relative light units/microgram of protein was calculated.

25 Results are shown in Figure 4 wherein the fold induction of luciferase is illustrated by histogram for control, additions of DHEA, 7 α -hydroxy-DHEA (7HD) alone and these additions in presence of an GR activating concentration of corticosterone. This result shows that 7HD, but not DHEA, acts as an antagonist of corticosterone effect in activating the GR-mediated transcription.

EXAMPLE 6 - Cyp7b expression in Alzheimers neurons

30 Cryostat brain sections (10 μ m) from control and Alzheimer's hippocampus were cut, thaw mounted onto gelatine-subbed poly-L-lysine coated slides and stored at -80°C.

For *in-situ* hybridization studies, brain sections were post-fixed in 4%

paraformaldehyde by acetylation (0.25% acetic anhydride in 0.1M triethanolamine, pH 8.0) for 10 minutes, rinsed in phosphate buffered saline, dehydrated through graded alcohols and air dried. Hybridization was carried out using 200 μ l of [35 S]-UTP-labelled cRNA antisense probe (10×10^6 dpm/ml in hybridization buffer) synthesized *in vitro* from a 500 5 bp XbaI/PstI fragment of the human Cyp7b pMMCtl clone linearised with XbaI and transcribed with T3 RNA for sense probes. Sections were prehybridized with 20 μ l of prehybridization buffer (as hybridization buffer but omitting the dextran sulphate) per slide at 50°C for 3 hours.

Following hybridization with probe at 50°C overnight sections were treated with 10 RNase A (30 μ g/ml, 45 minutes at 37°C) and washed to a final stringency of 0.1 x SSC at 60°C. Slides were dehydrated, dipped in photographic emulsion (NTB-2, Kodak) and exposed at 4°C for 5 weeks before being developed and counterstained with 1% pyronin. The density of silver grains was assessed over individual hippocampal neurons by computer-assisted grain counting using an image analysis system (Seescan plc, Cambridge, 15 UK), with the analysis carried out blind (sections were cut and coded by a separate individual). For each slide, one hippocampal section represents each subject. 6-10 neurons/subregion were assessed and background, counted over areas of white matter, was subtracted. Data were assessed by ANOVA followed by Scheffe post hoc test. Significance was set at $p < 0.05$. Values are means \pm S.E.M.

20 Figure 5 is a histogram showing Cyp7b expression as indicated by grain count per neuron in the dentate gyrus. CA1 and CA3 subfields of Alzheimer's disease samples as compared to the age matched control brains.

CONCLUSIONS

It can be concluded that Cyp7b, and cognate enzymes from rat, human and other 25 mammalian species, are 7 α -hydroxylases specific for steroid substrates with a 3 β hydroxy group. While activities for 7-hydroxylating DHEA, pregnenolone and cholesterol have been recorded previously in a variety of crude tissue homogenates (eg. Akwa et al., Biochem. J. 288, 959-964, 1992) no characterisation of the enzyme responsible was performed 30 previously and no activity on estradiol was recorded. Recombinant organisms expressing Cyp7b thus provide a route to the large scale manufacture of 7HP, 7HD, and 7HE, principally but not exclusively for therapeutic use or for the production of further steroid derivatives such as 7-oxo molecules.

REFERENCES

1. Joels, M. and de Kloet, E.R. (1994). Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. *Prog. Neurobiol.* 43, 1-36.
- 5 2. Sapolsky, R.M., Krey, L.C. and McEwen, B.S. (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. *Endocrin. Rev.* 7, 284-301; Landfield, P.W. (1994) The role of glucocorticoids in brain aging and Alzheimer's disease: an integrative physiological hypothesis. *Exp. Gerontol.* 29, 3-11; Seckl, J. R. and Olsson, T. (1995) Glucocorticoid hypersecretion and the age-impaired hippocampus: cause or
10 effect? *J. Endocrinol.* 145, 201-211.
3. Morales, A.J., Nolan, J.J., Nelson, J.C. and Yen, S.S. (1994) *J. Clin. Endocrinol. Metab.* 78, 1360-1367; Bellino, F.L., Daynes, R.Y., Mornsby, P.J., Lavrin, D.H. and Nestler, J.E. (1995). Dehydroepiandrosterone and aging. *Ann NY Acad Sci* 774, 1-351.
4. Meusy-Dessolle, N. and Dang, D.C. (1985). Plasma concentrations of testosterone,
15 dihydrotestosterone, delta 4-androstenedione, dehydroepiandrosterone and estradiol-17beta in the crab-eating monkey (*Macaca fascicularis*) from birth to adulthood. *J. Reprod. Fert.* 74, 347-359; Orentreich, N., Brind, J. L., Vogelman, J. H., Andres, R. and Baldwin, H. (1992). Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. *J. Clin. Endocrinol. Metab.* 75, 1002-1004; Sapolsky, R.M., Vogelman,
20 J.H., Orentreich, N., and Altmann, J. (1993). Senescent decline in serum dehydroepiandrosterone sulfate concentrations in a population of wild baboons. *J. Gerontol.* 48, B196-200; Belanger, A., Candas, B., Dupont, A., Cusan, L., Diamond, P., Gomez, J.L., and Labrie, F. (1994). Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-year-old men. *J. Clin. Endocrinol. Metab.* 79, 1086-1090;
25 Birkenhager-Gillesse, E.G., Derkzen, J., and Lagaay, A.M. (1994). Dehydroepiandrosterone sulphate (DHEAS) in the oldest old, aged 85 and over. *Ann. NY Acad. Sci.* 719, 543-552; Shealy, C.N. (1995). A review of dehydroepiandrosterone (DHEA). *Integ. Physiol. Behav. Sci* 30, 308-313.
5. Flood, J.F., Smith, G.E., and Roberts, E. (1988). Dehydroepiandrosterone and its
30 sulfate enhance memory retention in mice. *Brain Res.* 447, 269-278; Flood, J.F. and Roberts, E. (1988). Dehydroepiandrosterone sulfate improves memory in aging mice. *Brain Res.* 448, 178-181; Flood, J.F., Morley, J.E., and Roberts, E. (1992).

Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc. Natl. Acad. Sci. USA 89, 1567-1571; Flood, J.F., Morley, J.E., and Roberts, E. (1995). Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive. Proc. Natl. Acad. Sci. USA 92, 10806-10810; Yoo, A., Harris, J., and Dubrovsky, B. (1996). Dose-response study of dehydroepiandrosterone sulfate on dentate gyrus long-term potentiation. Exp. Neurol. 137, 151-156; Robel, P. and Baulieu, E.E. (1995). Dehydroepiandrosterone (DHEA) is a neuroactive neurosteroid. Ann. NY Acad. Sci. 774, 82-110; Mayo, W., Dellu, F., Robel, P., Cherkaoui, J., Le Moal, M., and Baulieu, E.E. (1993). Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res. 607, 324-328; Mathis, C., Paul, S.M., and Crawley, J.N. (1994). The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology 116, 201-206; Isaacson, R.L., Varner, J.A., Baars, J.M., and de Wied, D. (1995). The effects of pregnenolone sulfate and ethylestrenol on retention of a passive avoidance task. Brain Res. 689, 79-84.

6. Stapleton, G., Steel, M., Richardson, M., Mason, J.O., Rose, K.A., Morris, R.G.M., and Lathe, R. (1995). A novel cytochrome P450 expressed primarily in brain. J. Biol. Chem. 270, 29739-29745.

7. Robel, P. & Baulieu, E.E. (1995). In: P.E. Micevych & R.P. Hammer, eds. *Neurobiological Effects of Sex Steroid Hormones* (Cambridge: Cambridge University Press), pp. 281-296.

8. Guarneri, P., Guarneri, R., Cascio, C., Pavasant, P., Piccoli, F. & Papadopoulos, V. (1994) *J. Neurochem.* **63**, 86-96

9. Jung-Testas, I., Hu, Z.Y., Baulieu, E.E. & Robel, P. (1996). *J. Steroid Biochem.* **34**, 511-519

10. Martini, L. & Melcangi, R.C. (1991). *J. Steroid Biochem. Molec. Biol.* **39**, 819-828

11. Walther, B., Ghersi-Egea, J.F., Minn, A. & Siest, G. (1986). *Brain Res.* **375**, 338-344

12. Kapitulnik, J., Gelboin, H.V., Guengerich, F.P. & Jacobowitz, D.M. (1987). *Neuroscience* **20**, 829-833

13. Warner, M., Kohler, C., Hansson, T. & Gustafsson, J.Å. (1988). *J. Neurochem.* **50**, 1057-1065

14. Warner, M., Strömstedt, M., Möller, L. & Gustafsson, J.Å. (1989). *Endocrinology* **124**, 2699-2706
15. Warner, M., Wyss, A., Yoshida, S. & Gustafsson, J.Å. (1994). *Meth. Neurosci.* **22**, 51-66
- 5 16. Warner, M. & Gustafsson, J.Å. (1995). *Front. Neuroendocrinol.* **16**, 224-236
17. Akwa, Y., Morfin, R.F. & Baulieu, E.E. (1992). *Biochem. J.* **288**, 959-964
18. Bhamre, S., Anandatheerathavarada, H.K., Shankar, S.K. & Ravindranath, V. (1992). *Biochem. Pharmacol.* **44**, 1223-1225
19. Bhamre, S., Anandatheerathavarada, H.K., Shankar, S.K., Boyd, M.R. &
- 10 Ravindranath, V. (1993). *Arch. Biochem. Biophys.* **301**, 251-255
20. Komori, M. (1993). *Biochem. Biophys. Res. Comm.* **196**, 721-728
21. Strömstedt, M., Warner, M. & Gustafsson, J.Å. (1994). *J. Neurochem.* **63**, 671-676
22. Kawashima, H. & Strobel, H.W. (1995). *Biochem. Biophys. Res. Comm.* **209**, 535-540
- 15 23. Le Goascogne, C., Robel, P., Gouezou, M., Sananes, N., Baulieu, E.E. & Waterman, M. (1987). *Science* **237**, 1212-1215
24. Mellon, S.H. & Deschepper, C.F. (1993). *Brain Res.* **629**, 283-292
25. Sanne, J.L. & Krueger, K.E. (1995). *J. Neurochem.* **65**, 528-536
26. Lauber, M.E. & Lichtensteiger, W. (1994). *Endocrinology* **135**, 1661-1668
- 20 27. Khanna, M., Qin, K.N., Wang, D.P. & Cheng, K.C. (1995). *J. Biol. Chem.* **270**, 20162-20168
28. Guennoun, R., Fiddes, R.J., Gouézou, M., Lombés, M. & Baulieu, E.E. (1995). *Mol. Brain Res.* **30**, 287-300
29. Rajan, V., Edwards, C.R.W. & Seckl, J.R. (1996). *J. Neurosci.* **16**, 65-70
- 25 30. Chung, B.C., Picado-Leonard, J., Haniu, M., Bienkowski, M., Hall, P.F., Shively, J.E. & Miller, W.L. (1987). *Proc. Natl. Acad. Sci. USA* **84**, 407-411
31. Noshiro, M. & Okuda, K. (1990). *FEBS Lett.* **268**, 137-140
32. Noshiro, M., Nishimoto, M., Morohashi, K. & Okuda, K. (1989). *FEBS Lett.* **257**, 97-100
- 30 33. Jelinek, D.F., Andersson, S., Slaughter, C.A. & Russell, D.W. (1990). *J. Biol. Chem.* **265**, 8190-8197

CLAIMS

1. The use of a 7α -hydroxy or 7-oxo substituted 3β -hydroxy-steroid, or a derivative thereof substituted independently at one or both of the 7- and 3- positions with an ester or ether group, in the manufacture of a pharmaceutical composition for the therapy of neuropsychiatric, immune and/or endocrine disorders or for inducing cognitive enhancement.
5
2. The use according to Claim 1 wherein said disorders are selected from
 - (a) deficits of cognition in aging
 - 10 (b) Alzheimer's disease
 - (c) deficits of immune system in aging
 - (d) deficits of immune function in HIV infection
 - (e) glucocorticoid or mineralocorticoid excess
 - (f) diabetes
 - 15 (g) depression
 - (h) osteoporosis and hypercalcemia
 - (I) hyperglycemia and hyperlipidemia
 - (j) muscle atrophy
 - (k) arterosclerosis
 - 20 (l) steroid diabetes
3. The use as claimed in claim 1 or claim 2 wherein the steroid has a 3β -substituent- OR_1 and/or a 7α -substituent - OR_2 where -OR_1 and -OR_2 each independently represents a free hydroxy, ester or ether group,
25 wherein each of R_1 and R_2 are independently selected from the group consisting of hydrogen, substituted or unsubstituted C_{1-6} alkyl groups, groups $\text{R}_5\text{CO-}$, wherein R_5 may be selected from substituted or unsubstituted C_{1-6} alkyl groups, and groups of the formula -OP(OH)_3 , wherein any substituents are selected from OH, halogen (F, Cl, Br, I) amino, C_{1-6} alkylamino, C_{1-6} dialkylamino, COOH or COOR_4 wherein R_4 represents a

C₁₋₆ alkyl group; and wherein the compounds may be in free form or in the form of acid addition salts with pharmacologically acceptable anions.

4. The use as claimed in any one of claims 1 to 3 characterised in that the steroid is one possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol,

5 5. The use of a Cyp7b steroid hydroxylase enzyme in the manufacture of a test kit for use in the diagnosis of neuropsychiatric, immune and endocrine disorders.

6. The use according to Claim 5 wherein said disorders are selected from

- (a) deficits of cognition in aging
- (b) Alzheimer's disease
- 10 (c) deficits of immune system in aging
- (d) deficits of immune function in HIV infection
- (e) glucocorticoid or mineralocorticoid excess
- (f) diabetes
- (g) depression
- 15 (h) osteoporosis and hypercalcemia
- (i) hyperglycemia and hyperlipidemia
- (j) muscle atrophy
- (k) arterosclerosis
- (l) steroid diabetes

20 7. An antibody, especially a monoclonal antibody, characterised by specifically binding Cyp7b enzymes.

8. The use of an antibody as claimed in Claim 5 in a test kit for assaying for the presence of Cyp7b enzymes.

9. The use of Cyp7b coding sequences or antisense sequences in the manufacture of
25 a targeted drug for gene therapy of Cyp deficiencies or excesses or for promoting immunogenic processes.

10. The use claimed in Claim 9 wherein a vector is co-administered with a vaccine formulation, whereby on administration, a Cyp7b sequence is expressed and the produced expression product augments an immunogenic property of the vaccine.

11. A process of producing a 7α -hydroxy-substituted steroid which comprises
5 subjecting a corresponding steroid substrate having no substituent in the 7-position to hydroxylation in the presence of a Cyp7b steroid hydroxylase enzyme.

12. A process according to Claim 11 wherein the enzyme is a mouse, rat or human Cyp7b steroid hydroxylase enzyme.

13. A process according to Claim 11 wherein the Cyp7b steroid hydroxylase enzyme
10 has a sequence encoded by DNA coding sequences of Cyp7b enzymes selected from

(a) Coding sequences of DNA molecules comprising the coding sequence for rat Cyp7b set forth in SEQ Id No: 1,

(b) Coding sequences of DNA molecules comprising the coding sequence for mouse Cyp7b set forth in SEQ Id No: 2,

15 (c) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (a) or (b) under standard hybridization conditions defined as 2 x SSC at 65°C.

20 (d) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (a), (b) or (c) under reduced stringency hybridization conditions defined as 6 x SSC at 55°C.

14. A process according to Claim 11 wherein the Cyp7b steroid hydroxylase enzyme has a sequence encoded by DNA coding sequences of Cyp7b enzymes selected from

(e) DNA coding sequences selected from the following:

(i) the sequence designated "exon 3" in SEQ Id No 3,
(ii) the sequence designated "exon 4" in SEQ Id No 3, and

(f) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecules defined in (e) under standard hybridization conditions defined as 2 x SSC at 65°C.

(g) Cyp7b steroid hydroxylase encoding DNA molecules capable of hybridizing with the DNA molecule defined in (e) or (f) under reduced stringency hybridization conditions defined as 6 x SSC at 55°C.

(h) Cyp7b steroid hydroxylase-encoding DNA molecules comprising contiguous pairs of sequences selected from

(i) the sequence designated "exon 3" in SEQ Id No 3,
(ii) the sequence designated "exon 4" in SEQ Id No 3, and

(i) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecules defined in (h) under standard hybridization conditions defined as 2 x SSC at 65°C.

(j) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (h) or (i) under reduced stringency hybridization conditions defined as 6 x SSC at 55°C.

(k) Coding sequences of DNA molecules comprising a contiguous coding sequence consisting of the sequences "exon 3" and "exon 4" in SEQ Id No 3, and

(l) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecules defined in (k) under standard hybridization conditions defined as 2 x SSC at 65°C.

5 (m) Cyp7b steroid hydroxylase-encoding DNA molecules capable of hybridizing with the DNA molecule defined in (k) or (l) under reduced stringency hybridization conditions defined as 6 x SSC at 55°C.

10 15. A process according to Claim 11 wherein the Cyp7b steroid hydroxylase enzyme has a sequence encoded by DNA coding sequences of Cyp7b enzymes selected from the amino acid sequences contained in SEQ ID NO. 4, SEQ ID NO. 5 or SEQ ID NO 6 or a sequence which has at least 50% homology with one or more of the aforementioned sequences, provided that the capacity to catalyse the introduction of a 7 α -hydroxyl group is not eliminated.

15 16. A process according to Claim 15 wherein the Cyp7b steroid hydroxylase enzyme has a sequence encoded by a DNA coding sequence which has at least 60% homology, and preferably at least 70% homology with one or more of the aforementioned sequences, provided that the capacity to catalyse the introduction of a 7 α -hydroxyl group is not eliminated.

20 17. A process according to Claim 15 wherein the Cyp7b steroid hydroxylase enzyme has a sequence which differs from the amino acid sequences contained in SEQ ID NO. 4, SEQ ID NO. 5 or SEQ ID NO 6 by not more than 20, preferably not more than 10 and most preferably not more than 5 amino acid substitutions, insertions or deletions.

25 18. A process according to any preceding claim wherein substrate is a steroid possessing a 3 β -hydroxyl group.

19. A process according to any preceding claim wherein the substrate is a steroid possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, with

the proviso that where the substrate has the carbon skeleton of cholesterol, the substrate has a hydroxyl group in the 25, 26 or 27-position.

20. A process according to Claim 19 wherein the substrate is 25-hydroxycholesterol, dehydroepiandrosterone, pregnenolone or estradiol.

5 21. A process according to any preceding claim wherein the produced 7α -hydroxy-substituted steroid is 7α -hydroxyestradiol, 7α -hydroxypregnenolone or 7α -hydroxydehydroepiandrosterone.

22. A process according to any preceding claim wherein produced steroid is subjected to an oxidation step to convert an H,OH to an oxo group.

10 23. A steroid of the formula

Ia

Ib

wherein OR₁, OR₂ and OR₃ each independently represents a free hydroxy group, an ether group or an esterified hydroxy group.

24. A steroid according to Claim 23 wherein

15 each of R₁, R₂ and R₃ may be selected from substituted or unsubstituted C₁₋₆ alkyl groups, any such substituents being selected from OH, halogen (F, Cl, Br, I) amino, (C₁₋₆) alkylamino, C₁₋₆ dialkylamino, COOH or COOR₄ wherein R₄ represents a C₁₋₆ alkyl group which may be unsubstituted or substituted by one of the substituents referred to above; or

OR₁, OR₂ and OR₃ each independently represents an esterified hydroxy group, of the formula R₅COO-, wherein R₅ may be selected from substituted or unsubstituted C₁₋₆ alkyl groups, any such substituents being selected from OH, halogen (F, Cl, Br, I) amino, C₁₋₆ alkylamino, C₁₋₆ dialkylamino, COOH or COOR₄ wherein R₄ represents a C₁₋₆ alkyl group;
5 or

OR₁, OR₂ and OR₃ each independently represents an esterified hydroxy group of formula -OP(OH)₃,
or a pharmacologically acceptable salt of such a compound.

10 25. 7 α -Hydroxyestradiol or 7-oxoestradiol.

26. A steroid as claimed in Claim 23 characterised in that it is a 3 β -hydroxy steroid.

27. A process of producing an oxo-substituted steroid which comprises subjecting 7 α -hydroxyestradiol, 7 α -hydroxypregnenolone or 7 α -hydroxydehydroepiandrosterone to oxidation.

15 28. A method for treating a human or animal requiring therapy for a neuropsychiatric, immune and endocrine disorder or for inducing cognitive enhancement comprising the administration of an effective amount of a 7 α -hydroxy or 7-oxo substituted 3 β -hydroxy-steroid or derivative thereof independently substituted at one or both of the 7-and 3-positions by an ester or ether group.

20 29. A method according to Claim 28 wherein said disorders are selected from

- (a) deficits of cognition in aging
- (b) Alzheimer's disease
- (c) deficits of immune system in aging
- 25 (d) deficits of immune function in HIV infection
- (e) glucocorticoid or mineralocorticoid excess
- (f) diabetes
- (g) depression

- (h) osteoporosis and hypercalcemia
- (i) hyperglycemia and hyperlipidemia
- (j) muscle atrophy
- (k) arterosclerosis
- 5 (l) steroid diabetes

30. A method as claimed in claim 28 wherein the steroid possesses the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol and has a 3β -substituent- OR_1 and/or a 7α -substituent - OR_2 where - OR_1 and - OR_2 each independently represents a free hydroxy, 10 ester or ether group,

wherein each of R_1 and R_2 are independently selected from the group consisting of hydrogen, substituted or unsubstituted C_{1-6} alkyl groups, groups $\text{R}_5\text{CO}-$, wherein R_5 may be selected from substituted or unsubstituted C_{1-6} alkyl groups, and groups of the formula - $\text{OP}(\text{OH})_3$, wherein any substituents are selected from OH, halogen (F, Cl, Br, I) 15 amino, C_{1-6} alkylamino, C_{1-6} dialkylamino, COOH or COOR_4 wherein R_4 represents a C_{1-6} alkyl group; and wherein the compounds may be in free form or in the form of acid addition salts with pharmacologically acceptable anions.

31. A 7α -hydroxy or 7-oxo substituted 3β -hydroxy-steroid possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, or a derivative thereof 20 substituted independently at one or both of the 7 - and 3 - positions with an ester or ether group for use in therapy.

32. A steroid as claimed in claim 31 selected from 7α -hydroxydehydroepiandrosterone, 7α -hydroxypregnenolone and 7α -hydroxyestradiol.

25 33. A pharmaceutical composition characterised in that it comprises a 7α -hydroxy or 7-oxo substituted 3β -hydroxy steroid possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, or a derivative thereof substituted independently at one or both of the 7 - and 3 - positions with an ester or ether group, in association with a pharmaceutically acceptable carrier or diluent in a sterile and pyrogen free form.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

5 (A) NAME: British Technology Group Ltd
(B) STREET: 101 Newington Causeway
(C) CITY: London
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): SE1 6BU

10 (A) NAME: Richard Frank LATHE
(B) STREET: Centre for Genome Research, The University of Edinburgh
(C) CITY: Edinburgh
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): EH9 3JQ

15 (A) NAME: Ken A ROSE
(B) STREET: Centre for Genome Research, The University of Edinburgh
(C) CITY: Edinburgh
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): EH9 3JQ

20 (A) NAME: Jonathan Robert SECKL
(B) STREET: Molecular Medicine Centre, The University of Edinburgh
(C) CITY: Edinburgh
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): EH4 2XU

25 (A) NAME: Ruth BEST
(B) STREET: Molecular Medicine Centre, The University of Edinburgh
(C) CITY: Edinburgh
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): EH4 2XU

30 (A) NAME: Joyce Lai Wah YAU
(B) STREET: Molecular Medicine Centre, The University of Edinburgh
(C) CITY: Edinburgh
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): EH4 2XU

35 (A) NAME: Caroline McKenzie LECKIE
(B) STREET: Molecular Medicine Centre, The University of Edinburgh
(C) CITY: Edinburgh
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): EH4 2XU

40 (A) NAME: Caroline McKenzie LECKIE
(B) STREET: Molecular Medicine Centre, The University of Edinburgh
(C) CITY: Edinburgh
(E) COUNTRY: GB
(F) POSTAL CODE (ZIP): EH4 2XU

45 (ii) TITLE OF INVENTION: NEUROSTEROIDS

(iii) NUMBER OF SEQUENCES: 6

(iv) COMPUTER READABLE FORM:

- 5 (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(v) CURRENT APPLICATION DATA:

APPLICATION NUMBER: *****

10 (2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1763 base pairs
- (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1245

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GCC TTG GAG TAC CAG TAT GTA ATG AAA AAC CCA AAA CAA TTA AGC TTT
48

Ala Leu Glu Tyr Gln Tyr Val Met Lys Asn Pro Lys Gln Leu Ser Phe
1 5 10 15

25 GAG AAG TTC AGC CGA AGA TTA TCA GCG AAA GCC TTC TCT GTC AAG AAG
96

Glu Lys Phe Ser Arg Arg Leu Ser Ala Lys Ala Phe Ser Val Lys Lys
20 25 30

30 CTG CTA ACT AAT GAC GAC CTT AGC AAT GAC ATT CAC AGA GGC TAT CTT 144
Leu Leu Thr Asn Asp Asp Leu Ser Asn Asp Ile His Arg Gly Tyr Leu
35 40 45

CTT TTA CAA GGC AAA TCT CTG GAT GGT CTT CTG GAA ACC ATG ATC CAA 192
Leu Leu Gln Gly Lys Ser Leu Asp Gly Leu Leu Glu Thr Met Ile Gln
50 55 60

35 GAA GTA AAA GAA ATA TTT GAG TCC AGA CTG CTA AAA CTC ACA GAT TGG 240
Glu Val Lys Glu Ile Phe Glu Ser Arg Leu Leu Lys Leu Thr Asp Trp
65 70 75 80

AAT ACA GCA AGA GTA TTT GAT TTC TGT AGT TCA CTG GTA TTT GAA ATC 288
Asn Thr Ala Arg Val Phe Asp Phe Cys Ser Ser Leu Val Phe Glu Ile
40 85 90 95

ACA TTT ACA ACT ATA TAT GGA AAA ATT CTT GCT GCT AAC AAA AAA CAA 336
Thr Phe Thr Thr Ile Tyr Gly Ile Leu Ala Ala Asn Lys Lys Gln

	100	105	110	
ATT ATC AGT GAG CTG AGG GAT GAT TTT TTA AAA TTT GAT GAC CAT TTC Ile Ile Ser Glu Leu Arg Asp Asp Phe Leu Lys Phe Asp Asp His Phe				384
115	120	125		
5 CCA TAC TTA GTA TCT GAC ATA CCT ATT CAG CTT CTA AGA AAT GCA GAA Pro Tyr Leu Val Ser Asp Ile Pro Ile Gln Leu Leu Arg Asn Ala Glu				432
130	135	140		
TTT ATG CAG AAG AAA ATT ATA AAA TGT CTC ACA CCA GAA AAA GTA GCT Phe Met Gln Lys Lys Ile Ile Lys Cys Leu Thr Pro Glu Lys Val Ala				480
10 145	150	155	160	
CAG ATG CAA AGA CGG TCA GAA ATT GTT CAG GAG CAG GAG ATG CTG Gln Met Gln Arg Arg Ser Glu Ile Val Gln Glu Arg Gln Glu Met Leu				528
165	170	175		
AAA AAA TAC TAC GGG CAT GAA GAG TTT GAA ATA GGA GCA CAT CAT CTT Lys Lys Tyr Tyr Gly His Glu Glu Phe Glu Ile Gly Ala His His Leu				576
15 180	185	190		
GGC TTG CTC TGG GCC TCT CTA GCA AAC ACC ATT CCA GCT ATG TTC TGG Gly Leu Leu Trp Ala Ser Leu Ala Asn Thr Ile Pro Ala Met Phe Trp				624
195	200	205		
20 GCA ATG TAT TAT CTT CTT CAG CAT CCA GAA GCT ATG GAA GTC CTG CGT Ala Met Tyr Tyr Leu Leu Gln His Pro Glu Ala Met Glu Val Leu Arg				672
210	215	220		
GAC GAA ATT GAC AGC TTC CTG CAG TCA ACA GGT CAA AAG AAA GGA CCT Asp Glu Ile Asp Ser Phe Leu Gln Ser Thr Gly Gln Lys Lys Gly Pro				720
25 225	230	235	240	
GGA ATT TCT GTC CAC TTC ACC AGA GAA CAA TTG GAC AGC TTG GTC TGC Gly Ile Ser Val His Phe Thr Arg Glu Gln Leu Asp Ser Leu Val Cys				768
245	250	255		
CTG GAA AGC GCT ATT CTT GAG GTT CTG AGG TTG TGC TCC TAC TCC AGC Leu Glu Ser Ala Ile Leu Glu Val Leu Arg Leu Cys Ser Tyr Ser Ser				816
30 260	265	270		
ATC ATC CGT GAA GTG CAA GAG GAT ATG GAT TTC AGC TCA GAG AGT AGG Ile Ile Arg Glu Val Gln Glu Asp Met Asp Phe Ser Ser Glu Ser Arg				864
275	280	285		
35 AGC TAC CGT CTG CGG AAA GGA GAC TTT GTA GCT GTC TTT CCT CCA ATG Ser Tyr Arg Leu Arg Lys Gly Asp Phe Val Ala Val Phe Pro Pro Met				912
290	295	300		
ATA CAC AAT GAC CCA GAA GTC TTC GAT GCT CCA AAG GAC TTT AGG TTT Ile His Asn Asp Pro Glu Val Phe Asp Ala Pro Lys Asp Phe Arg Phe				960
40 305	310	315	320	
GAT CGC TTC GTA GAA GAT GGT AAG AAG AAA ACA ACG TTT TTC AAA GGA Asp Arg Phe Val Glu Asp Gly Lys Lys Lys Thr Thr Phe Phe Lys Gly				1008

	325	330	335	
	GGA AAA AAG CTG AAG AGT TAC ATT ATA CCA TTT GGA CTT GGA ACA AGC Gly Lys Lys Leu Lys Ser Tyr Ile Ile Pro Phe Gly Leu Gly Thr Ser 340			1056
5	AAA TGT CCA GGC AGA TAC TTT GCA ATT AAT GAA ATG AAG CTA CTA GTG Lys Cys Pro Gly Arg Tyr Phe Ala Ile Asn Glu Met Lys Leu Leu Val 355	360	365	1104
10	ATT ATA CTT TTA ACT TAT TTT GAT TTA GAA GTC ATT GAC ACT AAG CCT Ile Ile Leu Leu Thr Tyr Phe Asp Leu Glu Val Ile Asp Thr Lys Pro 370	375	380	1152
	ATA GGA CTA AAC CAC AGT CGC ATG TTT CTG GGC ATT CAG CAT CCA GAC Ile Gly Leu Asn His Ser Arg Met Phe Leu Gly Ile Gln His Pro Asp 385	390	395	1200
15	TCT GAC ATC TCA TTT AGG TAC AAG GCA AAA TCT TGG AGA TCC TGA Ser Asp Ile Ser Phe Arg Tyr Lys Ala Lys Ser Trp Arg Ser *	405	410	1245
	AAGGGTGGCA GAGAAGCTTA GCGGAATAAG GCTGCACATG CTGAGCTCTG TGATTGCTG			1305
	TACTCCCCAA ATGCAGCCAC TATTCTTGTGTT TGTTAGAAAA TGGCAAATTT TTATTTGATT			1365
	GCGATCCATC CAGTTGTTT TGGGTACCAA AACCTGTCAT AAAATAAACG GCTGTCATGG			1425
20	TGTAAAAAAA TGTCAATGGCA ATCATTTCAG GATAAGGTAA AATAACGTTT TCAAGTTGTT ACTTACTATG ATTTTTATCA TTTGTAGTGA ATGTGCTTTT CCAGTAATAA ATTTGCGCCA GGGTGATTTT TTTTAATTAC TGAAATCCTC TAATATCGGT TTTATGTGCT GCCAGAAAAG TGTGCCATCA ATGGACAGTA TAACAATTTC CAGTTTCCA GAGAAGGGAG AAATTAAGCC CCATGAGTTA CGCTGTATAA AATTGTTCTC TTCAACTATA ATATCAATAA TGTCTATATC			1485
25	ACCAGGTTAC CTTTGCAATTA AATCGAGTTT TGCAAAAG			1725
				1763

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1880 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 81..1604

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GGCAGGCACA GCCTCTGGTC TAAGAAGAGA GGGCACTGTG CAGAAGCCAT CGCTCCCTAC
 60
 AGAGCCGCCA GCTCGTCGGG ATG CAG GGA GCC ACG ACC CTA GAT GCC GCC 110
 Met Gln Gly Ala Thr Thr Leu Asp Ala Ala
 420 425
 5
 TCG CCA GGG CCT CTC GCC CTC CTA GGC CTT CTC TTT GCC GCC ACC TTA 158
 Ser Pro Gly Pro Leu Ala Leu Leu Gly Leu Leu Phe Ala Ala Thr Leu
 430 435 440
 CTG CTC TCG GCC CTG TTC CTC ACC CGG CGC ACC AGG CGC CCT CGT 206
 10 Leu Leu Ser Ala Leu Phe Leu Leu Thr Arg Arg Thr Arg Arg Pro Arg
 445 450 455
 GAA CCA CCC TTG ATA AAA GGT TGG CTT CCT TAT CTT GGC ATG GCC CTG 254
 Glu Pro Pro Leu Ile Lys Gly Trp Leu Pro Tyr Leu Gly Met Ala Leu
 460 465 470
 15 AAA TTC TTT AAG GAT CCG TTA ACT TTC TTG AAA ACT CTT CAA AGG CAA 302
 Lys Phe Phe Lys Asp Pro Leu Thr Phe Leu Lys Thr Leu Gln Arg Gln
 475 480 485
 CAT GGT GAC ACT TTC ACT GTC TTC CTT GTG GGG AAG TAT ATA ACA TTT 350
 His Gly Asp Thr Phe Thr Val Phe Leu Val Gly Lys Tyr Ile Thr Phe
 20 490 495 500 505
 GTT CTG AAC CCT TTC CAG TAC CAG TAT GTA ACG AAA AAC CCA AAA CAA 398
 Val Leu Asn Pro Phe Gln Tyr Gln Tyr Val Thr Lys Asn Pro Lys Gln
 510 515 520
 TTA AGC TTT CAG AAG TTC AGC AGC CGA TTA TCA GCG AAA GCC TTC TCT 446
 25 Leu Ser Phe Gln Lys Phe Ser Ser Arg Leu Ser Ala Lys Ala Phe Ser
 525 530 535
 GTC AAG AAG CTG CTT ACT GAT GAC GAC CTT AAT GAA GAC GTT CAC AGA 494
 Val Lys Lys Leu Leu Thr Asp Asp Asp Leu Asn Glu Asp Val His Arg
 540 545 550
 30 GCC TAT CTA CTT CTA CAA GGC AAA CCT TTG GAT GCT CTT CTG GAA ACT 542
 Ala Tyr Leu Leu Gln Gly Lys Pro Leu Asp Ala Leu Leu Glu Thr
 555 560 565
 ATG ATC CAA GAA GTA AAA GAA TTA TTT GAG TCC CAA CTG CTA AAA ATC 590
 Met Ile Gln Glu Val Lys Glu Leu Phe Glu Ser Gln Leu Leu Lys Ile
 35 570 575 580 585
 ACA GAT TGG AAC ACA GAA AGA ATA TTT GCA TTC TGT GGC TCA CTG GTA 638
 Thr Asp Trp Asn Thr Glu Arg Ile Phe Ala Phe Cys Gly Ser Leu Val
 590 595 600
 TTT GAG ATC ACA TTT GCG ACT CTA TAT GGA AAA ATT CTT GCT GGT AAC 686
 40 Phe Glu Ile Thr Phe Ala Thr Leu Tyr Gly Lys Ile Leu Ala Gly Asn
 605 610 615
 AAG AAA CAA ATT ATC AGT GAG CTA AGG GAT GAT TTT TTT AAA TTT GAT 734

	Lys Lys Gln Ile Ile Ser Glu Leu Arg Asp Asp Phe Phe Lys Phe Asp			
	620	625	630	
	GAC ATG TTC CCA TAC TTA GTA TCT GAC ATA CCT ATT CAG CTT CTA AGA		782	
5	Asp Met Phe Pro Tyr Leu Val Ser Asp Ile Pro Ile Gln Leu Leu Arg			
	635	640	645	
	AAT GAA GAA TCT ATG CAG AAG AAA ATT ATA AAA TGC CTC ACA TCA GAA		830	
	Asn Glu Glu Ser Met Gln Lys Lys Ile Ile Lys Cys Leu Thr Ser Glu			
	650	655	660	665
10	AAA GTA GCT CAG ATG CAA GGA CAG TCA AAA ATT GTT CAG GAA AGC CAA		878	
	Lys Val Ala Gln Met Gln Gly Gln Ser Lys Ile Val Gln Glu Ser Gln			
	670	675	680	
	GAT CTG CTG AAA AGA TAC TAT AGG CAT GAC GAT TCT GAA ATA GGA GCA		926	
	Asp Leu Leu Lys Arg Tyr Tyr Arg His Asp Asp Ser Glu Ile Gly Ala			
	685	690	695	
15	CAT CAT CTT GGC TTT CTC TGG GCC TCT CTA GCA AAC ACC ATT CCA GCT		974	
	His His Leu Gly Phe Leu Trp Ala Ser Leu Ala Asn Thr Ile Pro Ala			
	700	705	710	
20	ATG TTC TGG GCA ATG TAT ATT CTT CGG CAT CCT GAA GCT ATG GAA		1022	
	Met Phe Trp Ala Met Tyr Tyr Ile Leu Arg His Pro Glu Ala Met Glu			
	715	720	725	
	GCC CTG CGT GAC GAA ATT GAC AGT TTC CTG CAG TCA ACA GGT CAA AAG		1070	
	Ala Leu Arg Asp Glu Ile Asp Ser Phe Leu Gln Ser Thr Gly Gln Lys			
	730	735	740	745
25	AAA GGG CCT GGA ATT TCA GTC CAC TTC ACC AGA GAA CAA TTG GAC AGC		1118	
	Lys Gly Pro Gly Ile Ser Val His Phe Thr Arg Glu Gln Leu Asp Ser			
	750	755	760	
	TTG GTC TGC CTG GAA AGC ACT ATT CTT GAG GTT CTG AGG CTG TGC TCA		1166	
	Leu Val Cys Leu Glu Ser Thr Ile Leu Glu Val Leu Arg Leu Cys Ser			
	765	770	775	
30	TAC TCC AGC ATC ATC CGA GAA GTG CAG GAG GAT ATG AAT CTC AGC TTA		1214	
	Tyr Ser Ser Ile Ile Arg Glu Val Gln Glu Asp Met Asn Leu Ser Leu			
	780	785	790	
35	GAG AGT AAG AGT TTC TCT CTG CGG AAA GGA GAT TTT GTA GCC CTC TTT		1262	
	Glu Ser Lys Ser Phe Ser Leu Arg Lys Gly Asp Phe Val Ala Leu Phe			
	795	800	805	
	CCT CCA CTC ATA CAC AAT GAC CCG GAA ATC TTC GAT GCT CCA AAG GAA		1310	
	Pro Pro Leu Ile His Asn Asp Pro Glu Ile Phe Asp Ala Pro Lys Glu			
	810	815	820	825
40	TTT AGG TTC GAT CGG TTC ATA GAA GAT GGT AAG AAG AAA AGC ACG TTT		1358	
	Phe Arg Phe Asp Arg Phe Ile Glu Asp Gly Lys Lys Ser Thr Phe			
	830	835	840	
	TTC AAA GGA GGG AAG AGG CTG AAG ACT TAC GTT ATG CCT TTT GGA CTC		1406	
	Phe Lys Gly Gly Lys Arg Leu Lys Thr Tyr Val Met Pro Phe Gly Leu			

	845	850	855	
	GGA ACA AGC AAA TGT CCA GGG AGA TAT TTT GCA GTG AAC GAA ATG AAG			1454
	Gly Thr Ser Lys Cys Pro Gly Arg Tyr Phe Ala Val Asn Glu Met Lys			
	860	865	870	
5	CTA CTG CTG ATT GAG CTT TTA ACT TAT TTT GAT TTA GAA ATT ATC GAC			1502
	Leu Leu Leu Ile Glu Leu Leu Thr Tyr Phe Asp Leu Glu Ile Ile Asp			
	875	880	885	
10	AGG AAG CCT ATA GGG CTA AAT CAC AGT CGG ATG TTT TTA GGT ATT CAG			1550
	Arg Lys Pro Ile Gly Leu Asn His Ser Arg Met Phe Leu Gly Ile Gln			
	890	895	900	905
	CAC CCC GAT TCT GCC GTC TCC TTT AGG TAC AAA GCA AAA TCT TGG AGA			1598
	His Pro Asp Ser Ala Val Ser Phe Arg Tyr Lys Ala Lys Ser Trp Arg			
	910	915	920	
15	AGC TGA AAGTGTGGCA GAGAAGCTTT GCAGAGTAAG GCTGCATGTG CTGAGCTCCG			1654
	Ser *			
	TGATTTGGTG CACTCCCCCA AATGCAACCG CTACTCTTGT TTGAAAATGG CAAATTATA			1714
	TTTGGTTGAG ATCAATCCAG TTGGTTTGG GTCACAAAAC CTGTCATAAA ATAAAGCAGT			1774
	GTGATGGTTT AAAAAATGTC ATGGCAATCA TTTCAGGATA AGGTAAAATA ACATTTCAA			1834
20	GTGGTACTT ACTATGATTT TTATCATTG TAGTGAATGT GCTTTT			1880

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3846 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 831..2078

- (ix) FEATURE:
 - (A) NAME/KEY: exon (3)
 - (B) LOCATION: 831..1422

- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 1423..1872

(ix) FEATURE:

(A) NAME/KEY: exon (4)
 (B) LOCATION: 1873..2078

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

5	GGATCCAACC AAGTTCCAG ATCTTATAAA TGTGGTGAAT GGTGAATGAC TTCTGAAGA 60	
	ATGGATGAAT GGATGTGTC TAGTTGGAA TCCTGTGTCA GTCACAAGTC AATATGTGAC	120
	CTTGAACATG TTATTAAATC TCCCACATCC ATAAAAGTGA AAATGCTGGC ATTAGTGGAT	180
	TTTGCCAGT GTTGAATTAG ACATTTATT GTGAGTACCT GCTCCATACA GTATGGTCAT	240
10	TTATTTGAGT TAAAATTGTT GTATTTGAAC AAAACTCAGA TGACACCTAA GCATGAAAAA GCTCTTTATG AAGTATAAAAT ACTCAGAAAT GGAATGGCAT GTGCCAATT TGTTTCTGC	300
	TTTATTGAGG GAAATATATG AGAAGTATT AAGTCAGGGG ATTATGAGGA ATATTAAAG	360
	GATANNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN	420
	NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN	480
15	NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN	540
	NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNTCTAGA GTGTTTCCA CCATCTTCA	600
	AAGGAAACAT GTACTGTACC TTCAATGAA ATGGATTGT ATTAAACTTT TTGCCTTAGT	660
	TATTAGGGTC TTTCTAATT TTGATTAACA TATTTTTTA ATTTGTGGTG TTTATTTCTG	720
	TTTTTATTAA CAAACGAAC TATGCTCC TCTCTTTTT TTTTTTTCT GGAAAGTACA	780
20	TAACATTTAT ACCTGGACCC TTCCAGTACC AGCTAGTGT AAAAATCAT AAACAATTAA GCTTCGAGT ATCTTCTAAT AAATTATCAG AGAAAGCATT TAGCATCAGT CAGTTGCAA	840
	AAAATCATGA CATGAATGAT GAGCTTCACC TCTGCTATCA ATTTTGCAA GGCAAATCTT	900
	TGGACATACT CTTGGAAAGC ATGATGCAGA ATCTAAAACA AGTTTTGAA CCCCAGCTGT	960
	TAAAAACCAC AAGTTGGGAC ACGGCAGAAC TGTATCCATT CTGCAGCTCA ATAATATTG	1020
25	AGATCACATT TACAACATA TATGGAAAAG TTATTGTTG TGACAACAAC AAATTATTA GTGAGCTAAG AGATGATT TTAAAATTG ATGACAAGTT TGCAATTAA GTATCCAACA	1080
	TACCCATTGA GCTTCTAGGA AATGTCAAGT CTATTAGAGA GAAAATTATA AAATGCTTCT	1140
	CATCAGAAAA GTTAGCCAAG ATGCAAGGAT GGTCAGAAGT TTTCAAAGC AGGCAAGATG	1200
	ACCTGGAGAA ATATTATGTG CACGAGGACC TTGAAATAGG AGGTAAGAAC TTCTGAATGA	1260
30	GCACTTGCCT AAATAAAAT CATTACATA GACCTCTGAA ATAAAAAAAG ACAAAATGGC	1320
		1380
		1440
		1500

	CCTCCCAGGT TTGGTCAATG TTCACCCTCN GTGCCATTG AGGAAAATGC CCNNNNNGTT	3240
	CTAGAGATTG TTCTCACTTC TCAGGCTAAG GCCCATTGAG CAATGCCAGA AAGCATGCCT	3300
	TATACTAGCA GTCAATTGAG AAGTTTGAG TTTGTGTCTT TAGCATAGGT TATCAAATAA	3360
	ATTTTATATT TNCTTTAAA AAAATCTCAA CATTACTAAA ATACAAATAT CCTTTTATTT	3420
5	TTCTTCAG AATTATCGGG GAACAAATCC AGAAAATTG TGTAATTTC GGGTAGTTGC	3480
	TCCACTTGAT ACACAGTATT TCTGCATATT GTAATTCTA TGAAGATCTA GGTTGCATT	3540
	CCCATACATT CAAGCAGTTT CCATTGCATT TTTATGAATA AGATGACGCA TACTGGAAAG	3600
	TAAGGCAAAT AACTAAAAG GAATATGTGT TTGTATTCTG TATAGTTATT ACTCTTAAAA	3660
	AAAGTAGTTG TAATTCCATCC ACTCTTTTA CTTTCAACTT TTTGCTATTA AAAAATCATT	3720
10	TTTAAATTTC AGTATTAAG CAGAAACATT TAAATTTATT AGACCAGAAA AATAACAGAT	3780
	TCTAGAACTA TAATTTGAAT CCATTTAACGC CCATAGCTAG AGCTAGAGAT TTTCACTATT	3840
	GGATCC	3846

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 415 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

20	Ala Leu Glu Tyr Gln Tyr Val Met Lys Asn Pro Lys Gln Leu Ser Phe			
	1	5	10	15
	Glu Lys Phe Ser Arg Arg Leu Ser Ala Lys Ala Phe Ser Val Lys Lys			
	20	25	30	
25	Leu Leu Thr Asn Asp Asp Leu Ser Asn Asp Ile His Arg Gly Tyr Leu			
	35	40	45	
	Leu Leu Gln Gly Lys Ser Leu Asp Gly Leu Leu Glu Thr Met Ile Gln			
	50	55	60	
	Glu Val Lys Glu Ile Phe Glu Ser Arg Leu Leu Lys Leu Thr Asp Trp			
	65	70	75	80
30	Asn Thr Ala Arg Val Phe Asp Phe Cys Ser Ser Leu Val Phe Glu Ile			
	85	90	95	
	Thr Phe Thr Thr Ile Tyr Gly Lys Ile Leu Ala Ala Asn Lys Lys Gln			
	100	105	110	
	Ile Ile Ser Glu Leu Arg Asp Asp Phe Leu Lys Phe Asp Asp His Phe			

	115	120	125	
	Pro Tyr Leu Val Ser Asp Ile Pro Ile Gln Leu Leu Arg Asn Ala Glu			
	130	135	140	
	Phe Met Gln Lys Lys Ile Ile Lys Cys Leu Thr Pro Glu Lys Val Ala			
5	145	150	155	160
	Gln Met Gln Arg Arg Ser Glu Ile Val Gln Glu Arg Gln Glu Met Leu			
	165	170	175	
	Lys Lys Tyr Tyr Gly His Glu Glu Phe Glu Ile Gly Ala His His Leu			
	180	185	190	
10	Gly Leu Leu Trp Ala Ser Leu Ala Asn Thr Ile Pro Ala Met Phe Trp			
	195	200	205	
	Ala Met Tyr Tyr Leu Leu Gln His Pro Glu Ala Met Glu Val Leu Arg			
	210	215	220	
15	Asp Glu Ile Asp Ser Phe Leu Gln Ser Thr Gly Gln Lys Lys Gly Pro			
	225	230	235	240
	Gly Ile Ser Val His Phe Thr Arg Glu Gln Leu Asp Ser Leu Val Cys			
	245	250	255	
	Leu Glu Ser Ala Ile Leu Glu Val Leu Arg Leu Cys Ser Tyr Ser Ser			
	260	265	270	
20	Ile Ile Arg Glu Val Gln Glu Asp Met Asp Phe Ser Ser Glu Ser Arg			
	275	280	285	
	Ser Tyr Arg Leu Arg Lys Gly Asp Phe Val Ala Val Phe Pro Pro Met			
	290	295	300	
25	Ile His Asn Asp Pro Glu Val Phe Asp Ala Pro Lys Asp Phe Arg Phe			
	305	310	315	320
	Asp Arg Phe Val Glu Asp Gly Lys Lys Lys Thr Thr Phe Phe Lys Gly			
	325	330	335	
	Gly Lys Lys Leu Lys Ser Tyr Ile Ile Pro Phe Gly Leu Gly Thr Ser			
	340	345	350	
30	Lys Cys Pro Gly Arg Tyr Phe Ala Ile Asn Glu Met Lys Leu Leu Val			
	355	360	365	
	Ile Ile Leu Leu Thr Tyr Phe Asp Leu Glu Val Ile Asp Thr Lys Pro			
	370	375	380	
35	Ile Gly Leu Asn His Ser Arg Met Phe Leu Gly Ile Gln His Pro Asp			
	385	390	395	400
	Ser Asp Ile Ser Phe Arg Tyr Lys Ala Lys Ser Trp Arg Ser *			
	405	410	415	

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 508 amino acids
 (B) TYPE: amino acid
 5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

	Met Gln Gly Ala Thr Thr Leu Asp Ala Ala Ser Pro Gly Pro Leu Ala				
1	5	10	15		
10	Leu Leu Gly Leu Leu Phe Ala Ala Thr Leu Leu Leu Ser Ala Leu Phe	20	25	30	
	Leu Leu Thr Arg Arg Thr Arg Arg Pro Arg Glu Pro Pro Leu Ile Lys	35	40	45	
15	Gly Trp Leu Pro Tyr Leu Gly Met Ala Leu Lys Phe Phe Lys Asp Pro	50	55	60	
	Leu Thr Phe Leu Lys Thr Leu Gln Arg Gln His Gly Asp Thr Phe Thr	65	70	75	80
	Val Phe Leu Val Gly Lys Tyr Ile Thr Phe Val Leu Asn Pro Phe Gln	85	90	95	
20	Tyr Gln Tyr Val Thr Lys Asn Pro Lys Gln Leu Ser Phe Gln Lys Phe	100	105	110	
	Ser Ser Arg Leu Ser Ala Lys Ala Phe Ser Val Lys Lys Leu Leu Thr	115	120	125	
25	Asp Asp Asp Leu Asn Glu Asp Val His Arg Ala Tyr Leu Leu Gln	130	135	140	
	Gly Lys Pro Leu Asp Ala Leu Leu Glu Thr Met Ile Gln Glu Val Lys	145	150	155	160
	Glu Leu Phe Glu Ser Gln Leu Leu Lys Ile Thr Asp Trp Asn Thr Glu	165	170	175	
30	Arg Ile Phe Ala Phe Cys Gly Ser Leu Val Phe Glu Ile Thr Phe Ala	180	185	190	
	Thr Leu Tyr Gly Lys Ile Leu Ala Gly Asn Lys Lys Gln Ile Ile Ser	195	200	205	
35	Glu Leu Arg Asp Asp Phe Phe Lys Phe Asp Asp Met Phe Pro Tyr Leu	210	215	220	
	Val Ser Asp Ile Pro Ile Gln Leu Leu Arg Asn Glu Glu Ser Met Gln	225	230	235	240
	Lys Lys Ile Ile Lys Cys Leu Thr Ser Glu Lys Val Ala Gln Met Gln				

	245	250	255
	Gly Gln Ser Lys Ile Val Gln Glu Ser Gln Asp Leu Leu Lys Arg Tyr		
	260	265	270
	Tyr Arg His Asp Asp Ser Glu Ile Gly Ala His His Leu Gly Phe Leu		
5	275	280	285
	Trp Ala Ser Leu Ala Asn Thr Ile Pro Ala Met Phe Trp Ala Met Tyr		
	290	295	300
	Tyr Ile Leu Arg His Pro Glu Ala Met Glu Ala Leu Arg Asp Glu Ile		
	305	310	315
10	Tyr Ile Leu Arg His Pro Glu Ala Met Glu Ala Leu Arg Asp Glu Ile		
	325	330	335
	Asp Ser Phe Leu Gln Ser Thr Gly Gln Lys Lys Gly Pro Gly Ile Ser		
	Val His Phe Thr Arg Glu Gln Leu Asp Ser Leu Val Cys Leu Glu Ser		
	340	345	350
	Thr Ile Leu Glu Val Leu Arg Leu Cys Ser Tyr Ser Ser Ile Ile Arg		
15	355	360	365
	Glu Val Gln Glu Asp Met Asn Leu Ser Leu Glu Ser Lys Ser Phe Ser		
	370	375	380
	Leu Arg Lys Gly Asp Phe Val Ala Leu Phe Pro Pro Leu Ile His Asn		
	385	390	395
20	Leu Arg Lys Gly Asp Phe Val Ala Leu Phe Pro Pro Leu Ile His Asn		
	405	410	415
	Asp Pro Glu Ile Phe Asp Ala Pro Lys Glu Phe Arg Phe Asp Arg Phe		
	Ile Glu Asp Gly Lys Lys Ser Thr Phe Phe Lys Gly Gly Lys Arg		
	420	425	430
	Ile Glu Asp Gly Lys Lys Ser Thr Phe Phe Lys Gly Gly Lys Arg		
25	435	440	445
	Leu Lys Thr Tyr Val Met Pro Phe Gly Leu Gly Thr Ser Lys Cys Pro		
	Gly Arg Tyr Phe Ala Val Asn Glu Met Lys Leu Leu Ile Glu Leu		
	450	455	460
	Gly Arg Tyr Phe Ala Val Asn Glu Met Lys Leu Leu Ile Glu Leu		
	465	470	475
30	Leu Thr Tyr Phe Asp Leu Glu Ile Ile Asp Arg Lys Pro Ile Gly Leu		
	485	490	495
	Asn His Ser Arg Met Phe Leu Gly Ile Gln His Pro Asp Ser Ala Val		
	Ser Phe Arg Tyr Lys Ala Lys Ser Trp Arg Ser *		
	500	505	

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 266 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Gly Lys Tyr Ile Thr Phe Ile Pro Gly Pro Phe Gln Tyr Gln Leu Val
 1 5 10 15
 Ile Lys Asn His Lys Asn Leu Ser Phe Arg Val Ser Ser Asn Lys Leu
 20 25 30
 Ser Glu Lys Ala Phe Ser Ile Ser Gln Leu Gln Lys Asn His Asp Met
 35 40 45
 Asn Asp Glu Leu His Leu Cys Tyr Gln Phe Leu Gln Gly Lys Ser Leu
 50 55 60
 Asp Ile Leu Leu Glu Ser Met Met Gln Asn Leu Lys Gln Val Phe Glu
 65 70 75 80
 Pro Gln Leu Leu Lys Thr Thr Ser Trp Asp Thr Ala Glu Leu Tyr Pro
 85 90 95
 Phe Cys Ser Ser Ile Ile Phe Glu Ile Thr Phe Thr Thr Ile Tyr Gly
 100 105 110
 Lys Val Ile Val Cys Asp Asn Asn Lys Phe Ile Ser Glu Leu Arg Asp
 115 120 125
 Asp Phe Leu Lys Phe Asp Asp Lys Phe Ala Tyr Leu Val Ser Asn Ile
 130 135 140
 Pro Ile Glu Leu Leu Gly Asn Val Lys Ser Ile Arg Glu Lys Ile Ile
 145 150 155 160
 Lys Cys Phe Ser Ser Glu Lys Leu Ala Lys Met Gln Gly Trp Ser Glu
 165 170 175
 Val Phe Gln Ser Arg Gln Asp Asp Leu Glu Lys Tyr Tyr Val His Glu
 180 185 190
 Asp Leu Glu Ile Gly Ala His His Phe Gly Phe Leu Trp Val Ser Val
 195 200 205
 Ala Ser Thr Ile Pro Thr Met Phe Trp Ala Thr Tyr Tyr Leu Leu Arg
 210 215 220

His Pro Glu Ala Met Ala Ala Val Arg Asp Glu Ile Asp Arg Leu Leu
225 230 235 240

Gln Ser Thr Gly Gln Lys Glu Gly Ser Gly Phe Pro Ile His Leu Thr
245 250 255

5 Arg Glu Gln Leu Asp Ser Leu Ile Cys Leu
260 265

Fig. 1

2/5

Fig. 2

3 / 5

Fig. 3

4/5

Fig. 4

Fig. 5

5 / 5

Fig. 6a

Fig. 6b

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/565, C07J 1/00, C12P 33/00, A61K 39/395		A3	(11) International Publication Number: WO 97/37664 (43) International Publication Date: 16 October 1997 (16.10.97)
(21) International Application Number: PCT/GB97/00955		of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB). LECKIE, Caroline, McKenzie [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB).	
(22) International Filing Date: 4 April 1997 (04.04.97)			
(30) Priority Data: 9607289.7 9 April 1996 (09.04.96) GB 9608445.4 24 April 1996 (24.04.96) GB 9704905.0 10 March 1997 (10.03.97) GB		(74) Agent: DOLAN, Anthony, Patrick; British Technology Group Ltd., Patents Dept., 101 Newington Causeway, London SE1 6BU (GB).	
(71) Applicant (for all designated States except US): BRITISH TECHNOLOGY GROUP LTD. [GB/GB]; 101 Newington Causeway, London SE1 8BU (GB).		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(72) Inventors; and		Published	
(75) Inventors/Applicants (for US only): LATHE, Richard [GB/GB]; University of Edinburgh, West Mains Road, Edinburgh EH9 3JQ (GB). ROSE, Kenneth, Andrew [GB/GB]; University of Edinburgh, West Mains Road, Edinburgh EH9 3JQ (GB). SECKL, Jonathan, Robert [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB). BEST, Ruth [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (GB). YAU, Joyce, Lai, Wah [GB/GB]; Molecular Medicine Centre, Molecular Endocrinology, The University		With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(54) Title: USE OF 7 ALPHA-SUBSTITUTED STEROIDS TO TREAT NEUROPSYCHIATRIC, IMMUNE OR ENDOCRINE DISORDERS		(88) Date of publication of the international search report: 4 December 1997 (04.12.97)	
(57) Abstract			
Use is provided for a 7 α -hydroxy or 7-oxo substituted 3 β -hydroxy-steroid possessing the carbon skeleton of cholesterol, androsterone, pregnenolone or estradiol, or an analogue thereof substituted independently at one or both of the 7- and 3-positions with an ester or ether group, in the manufacture of a pharmaceutical composition for the therapy of neuropsychiatric, immune and/or endocrine disorders or for inducing cognitive enhancement. Uses for Cyp7b enzymes in producing such steroids is also provided together with various novel steroids and test kits and methods for diagnosing the disorders.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/GB 97/00955

A. CLASSIFICATION OF SUBJECT MATTER	IPC 6 A61K31/565 C07J1/00 C12P33/00 A61K39/395
-------------------------------------	--

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A61K C07J C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 94 03176 A (HUMANETICS CORP.) 17 February 1994 see claims; examples ---	1-4, 28-33
P,X	WO 96 12810 A (UNIVERSITY OF EDINBURGH) 2 May 1996 cited in the application see claim 20 ---	7
P,X	K.A. ROSE ET AL.: "Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7 alpha-hydroxy pregnenolone." BIOCHEMISTRY, vol. 94, no. 10, 1997, pages 4925-4930, XP002042014 see the whole document ---	11,12, 18-21

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

^b Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"g" document member of the same patent family

2

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

29 September 1997

17.10.97

Name and mailing address of the ISA	Authorized officer
-------------------------------------	--------------------

European Patent Office, P.O. Box 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Klaver, T

INTERNATIONAL SEARCH REPORT

Inte	nal Application No
PCT/GB 97/00955	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P,X	K.A. ROSE ET AL.: "Steroid modification in brain: hydroxylation of pregnenolone and DHEA by the novel cytochrome P450, Cyp7b." J. ENDOCRINOL., vol. 152, 1997, page P280 XP002042015 see the whole document ---	11,12, 18-21
A	G. STAPLETON ET AL.: "A novel cytochrome P450 expressed primarily in brain." J. BIOL. CHEM., vol. 270, no. 50, 1995, pages 29739-29745, XP002042016 see the whole document ---	
A	EP 0 648 842 A (NORTHEASTERN OHIO UNIVERSITIES) 19 April 1995 -----	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/GB 97/00955

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: 1, 28 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
It is not clear which compounds are described by "...or a derivative thereof..." nor is it clear which diseases are meant by descriptions like "...neuro-psychiatric, immune and/or endocrine disorders...". The search has therefore been limited to the examples mentioned in the claims and/or description.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See annex

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/GB 97 00955

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

- 1) Claims 1-4, 28-33: Use of 7-substituted 3 β -hydroxy steroids and novel steroids, for the treatment of neuropsychiatric, immune and/or endocrine disorders.
- 2) Claims 5 - 2 : Use of Cyp7b to manufacture assay kits, to produce 7-hydroxy steroids, antibodies, and targeted drugs for gene therapy.
- 3) Claims 23 - 27 : Novel steroids of formula 1a and 1b.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l	Application No
	PCT/GB 97/00955

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9403176 A	17-02-94	US 5292730 A AU 4997093 A CA 2141436 A EP 0746322 A JP 8505602 T US 5585371 A US 5641766 A		08-03-94 03-03-94 17-02-94 11-12-96 18-06-96 17-12-96 24-06-97
WO 9612810 A	02-05-96	AU 3670395 A EP 0795017 A		15-05-96 17-09-97
EP 648842 A	19-04-95	US 5420028 A EP 0648840 A JP 7284393 A JP 7284388 A		30-05-95 19-04-95 31-10-95 31-10-95