Plan hyperbolique

2024-2025

Table des matières

$$\rho(z_0, z_1) := \inf_{\gamma} \int_0^1 \frac{\sqrt{\left(\frac{dx(t)}{dt}\right)^2 + \left(\frac{dy(t)}{dt}\right)^2}}{y(t)} dt$$

se réécrit $\rho(z,w)=\int_0^1 |\frac{dz(t)}{dt}|.\frac{dt}{y(t)}$ pour un chemin géodesique. Avec ça on calcule les distances hyperboliques comme suis.

$\mathbf{0.1} \quad \mathbf{PSL}_2(\mathbb{R}) \subset \mathbf{Isom}(\mathfrak{h})$

Pour ça : les $T \in \mathrm{PSL}_2(\mathbb{R})$ vérifient

$$dT(z)/dz = \frac{1}{(cz+d)^2}$$

en plus $\operatorname{Im}(T(z)) = \frac{\operatorname{Im}(z)}{(cz+d)^2}$ d'où

$$\int_0^1 \left| \frac{dT(z(t))}{dt} \right| \cdot \frac{dt}{\operatorname{Im}(T(z(t)))} = \int_0^1 \left| \frac{dz(t)}{dt} \right| \cdot \frac{dt}{y(t)}$$

ça dit en particulier que $PSL_2(\mathbb{R}) \hookrightarrow Isom(\mathfrak{h})$.

0.2 Géodésiques

Pour une droite verticale, un chemin vertical $t\mapsto a+ib(t)$ on a da(t)/dt=0 et $y(t)\geq 0$. D'où

$$\int_0^1 \left| \frac{db(t)}{dt} \right| \frac{dt}{b(t)} \ge \int_0^1 \frac{db(t)}{dt} \frac{dt}{b(t)}$$

$$= \int_{b(0)}^{b(1)} dy/y$$

$$= \ln \frac{b(1)}{b(0)}$$

en supposant ce qu'y faut supposer.

Maintenant y'a tjr une transformation qui envoie un cercle orthogonal à \mathbb{R} vers $a+i\mathbb{R}$ pour $a\in\mathbb{R}$. Comme ça préserve les distances on obtient que les géodésiques sont les cercles et les droites verticales.

0.3 Calcul de ρ par cross-ratio

Les homographies préservent les "cross-ratios"

$$(z_1, z_2; z_3, z_4) := \frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)}$$

pour les quadruplets dans $(\mathbb{C} \cup \infty)^4$.

Remarque 1. Pour retenir l'ordre, penser (1 2 3 4) en haut et (2 3 4 1) en bas.

Pour tout deux points z,w on peut noter z^* et w^* les bouts de la géodésique [z,w] avec $z^* \le z \le w \le w^*$. On peut envoyer z^* sur 0 et w^* sur ∞ via un T. Ensuite on peut dilater et envoyer z sur i. Alors en notant ir = T(w), on a

$$\rho(z, w) = \ln((w, z^*; z, w^*)) = \ln(r)$$

via $r = (ir, 0; i, \infty)$.

0.4 Calcul explicite de ρ

En explicitant la partie d'avant on obtient

$$\rho(z, w) = \ln(\frac{|z - \bar{w}| + |z - w|}{|z - \bar{w}| - |z - w|}).$$

On peut aussi expliciter des formules trigonométriques, j'en parle dans la partie associées.