

Machine Learning: Unsupervised Learning

Dr Chris McCool

Overview

- Introduction
 - Unsupervised Approaches vs Supervised Approaches
- Clustering
 - ► *K*-means
 - Mixture of Gaussians
- Principal Component Analysis

Introduction

Unsupervised Learning

▶ Is the problem of trying to find hidden structure in unlabelled data. "See what you can find"

Supervised Learning

▶ Is the task of inferring a function (classifier) from labelled training data. "Learn from my examples"

Training data:

Labels:

Dog

Cat

Horse

1

Introduction

Unsupervised Learning

- Clustering: Groups related data together
 - Image Segmentation
 - Finding groups of customers with similar behaviours
 - Social network analysis
 - Search results grouping

- Principal Component Analysis
 - ► Finding principal axes of variation
 - Dimensionality reduction

- Group data together
- Compactly represent data
- Automatically Extract (Detect) Patterns
 - ► Group emails or search results
 - Customer shopping patterns
 - Regions of images
- Useful when you don't know what you're looking for

- Partitioning (Flat)
 - ► K-means
 - Mixture of Gaussians
 - Spectral Clustering
- Hierarchical Algorithms
 - ► Bottom-up (Agglomerative)
 - ► Top-down (Divisive)

- Group similar instances together
- Example: using 2D points

- ► Group similar instances together
- Example: using 2D points
- ▶ The result is highly dependent on how we measure the *similarity* of the points

- What is a good result for clustering?
 - ► Internal (within the cluster) distances should be small
 - ► External (intra-cluster) distances should be large
- ► Clustering is a way to discover new categories

- How do we measure similarity?
 - ▶ One option: squared Euclidean distance

$$d(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|_2^2$$

Many other options exist

Euclidean distance

$$d(\boldsymbol{a},\boldsymbol{b}) = \sqrt{\sum_{d=1}^{D} (\boldsymbol{a}_d - \boldsymbol{b}_d)^2}$$

- ► Translation invariant
- ► Manhattan (city block) distance

$$d(\boldsymbol{a},\boldsymbol{b}) = \sum_{d=1}^{D} |\boldsymbol{a}_{d} - \boldsymbol{b}_{d}|$$

- ▶ Approximation to Euclidean distance, cheaper to compute
- Chebyshev distance

$$d(\boldsymbol{a}, \boldsymbol{b}) = \max_{1 \le d \le D} |\boldsymbol{a}_d - \boldsymbol{b}_d|$$

▶ Approximation to Euclidean distance, cheapest to compute

Cosine similarity

$$d(\boldsymbol{a},\boldsymbol{b}) = \frac{a^T \boldsymbol{b}}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}$$

- ▶ smaller the angle, larger the similarity
- scale invariant measure
- popular in text retrieval
- ► Correlation coefficient

$$d(\boldsymbol{a}, \boldsymbol{b}) = \frac{\sum_{d=1}^{D} (a_d - \mu_d)(b_d - \mu_d)}{\left[\sum_{d=1}^{D} (a_d - \mu_d)^2 \sum_{d=1}^{D} (b_d - \mu_d)^2\right]^{1/2}}$$

popular in image processing

- Simplest Algorithm
 - Using the desired distance/similarity measure
 - Go through all sample pairs
 - \blacktriangleright Put them in the same cluster if the distance between them is lower than a threshold au
 - Pros: simple to understand and implement
 - ightharpoonup Cons: very dependent on the threshold au

- Another approach
- Suppose we have N samples $(x_1, x_2, ..., x_N)$
- Set the number of subsets K and partition the samples into K subsets $(D_1, D_2, ..., D_K)$

- ▶ Can we define a function to measure the quality of a partitioning $J(\mathbf{D}_1, \mathbf{D}_2, ..., \mathbf{D}_K)$?
 - ▶ If so, the problem is well defined: the optimal clustering is the one that optimises the measure
- ▶ However, there are approximately $K^{N}/K!$ distinct partitions!

- Let N_i be the number of samples in D_k the mean of the samples in D_k is $\mu_k = \frac{1}{N_i} \sum_{n=1}^N r_{nk} x_n$
- $ightharpoonup x_n$ is the n-th sample
- μ_k is the k-th mean
- r_{nk} an indicator variable (1 or 0), does the n-th sample belong to the k-th mean?
- ▶ Then the sum-of-squared errors criterion function (to minimise) is

$$J_{SSE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \mathbf{x}_n - \mathbf{\mu}_k \|^2$$

▶ Where the number of clusters *K* is fixed

- ▶ Other criterion functions can be obtained by replacing $\|x_n \mu_k\|^2$ by other distance functions
 - Median
 - Maximum
 - and more...
- ▶ But, given there are approximately $K^N/K!$ distinct partitions how do we find the optimal clustering?
- ▶ We can find a local optimum by using an iterative approach
 - ► Find a reasonable partition
 - Move samples from one group to another such that (s.t.) the object function J is improved

- Example: *K*-means
- One of the most famous algorithms and still commonly used today
- Uses the SSE

$$J_{SSE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \boldsymbol{x}_n - \boldsymbol{\mu}_k \|^2$$

- Fix K and take an initial guess at what the means $(\mu_1, \mu_2, ..., \mu_K)$ should be
- 1. Assign the n-th sample x_n to the mean closest to it. Do this for all N samples.
- 2. Compute the sample mean for each of the K means using

$$\mu_k = \frac{1}{N_i} \sum_{n=1}^N r_{nk} x_n$$

3. If not converged, repeat steps 2 and 3

K-means

- ► This is an example of a well known Expectation Maximisation (EM) Algorithm)
- ▶ Iteratively minimises *J*

$$J_{SSE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \boldsymbol{x}_{n} - \boldsymbol{\mu}_{k} \|^{2}$$

- 1. Keeping μ_k constant and solving for r_{nk} [Expectation or E-Step]
- 2. Keeping r_{nk} constant and solving for μ_k [Maximisation or M-Step]

E-Step: solving for r_{nk}

Objective function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \mathbf{x}_n - \mathbf{\mu}_k \|^2$$

- > r_{nk} can be optimised by choosing the k (the mean) which minimises $\| \mathbf{x}_n \mathbf{\mu}_k \|^2$
- ightharpoonup Setting r_{nk} to 1 for this k and the remainder to 0

$$r_{nk} = \begin{cases} 1 & if \ k = argmin_j \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & otherwise \end{cases}$$

M-Step: solving for μ_k

Objective function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \boldsymbol{x}_{n} - \boldsymbol{\mu}_{k} \|^{2}$$

ightharpoonup Differentiate with respect to μ_k

$$\frac{\partial J}{\partial \boldsymbol{\mu}_k} = 2 \sum_{n=1}^N r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k)$$

Minimise by setting to 0

$$0 = 2\sum_{n=1}^{N} r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k)$$

ightharpoonup Re-arrange to solve for μ_k

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \, \boldsymbol{x}_n}{\sum_n r_{nk}}$$

- ▶ Practical examples of what *K*-means can be used for
- ► Image compression: vector quantisation
 - ightharpoonup Take a colour image, each pixel (RGB) is a sample x_n find the means that will encode this image compactly
 - Using K values instead of 256^3 possible values
 - In this example the means are called $\mu_1, \mu_2, ..., \mu_K$ code-book vectors
 - ► This trick is also used to extract features for image classification (bag-of-visual-words)

$$K = 4$$

$$K = 8$$

$$K = 16$$

$$K = 32$$

K-means

- Is a common approach to clustering
- Finds a local optimum (not a global one)
 - ▶ Usually good enough, but has several failure cases
 - ▶ Initialisation is difficult many approaches (*K*-means++)
- ► *K* is hard to choose and very important
- ► Hard assignment of samples to a "centroid"
 - Probabilistic extension: mixture of Gaussians
- ▶ This and other approaches are used in audio/image classification
 - ▶ bag of visual words, Gaussian mixture models (GMMs), fishervectors

Unsupervised Learning

- ▶ Complexity increases as the number of dimensions *D* increases
- ▶ Yet, we often have high dimensional data (images, audio, etc.)
- \blacktriangleright Many methods have complexity of $O(ND^2)$
 - ► *N* is the number of samples
- For example, a covariance matrix has D^2 parameters

$$\begin{bmatrix} \sigma_{11}^2 & \cdots & \sigma_{1D}^2 \\ \vdots & \ddots & \vdots \\ \sigma_{D1}^2 & \cdots & \sigma_{DD}^2 \end{bmatrix}$$

- ightharpoonup To accurately estimate this N should be much bigger than D^2
- Otherwise model is too complicated for the data (overfitting)

Overfitting

Suppose we want to use the nearest neighbour (NN) approach with D=1

- ► This will not be discriminative enough (classes aren't well separated)
- \triangleright So... we decide to use D=2
 - ▶ Problem for NN to work well we need a lot of samples (dense)
- To maintain the same density as D=1 (9 samples per unit length) how many samples do we need?

- ▶ We could decide to continue, even if we don't have any more samples
- ▶ Problem: this will be too sparse for NN to work well

- ▶ Things become even more problematic as we go from D = 2 to D = 3
- ▶ If 9 samples was for D = 1 then for D = 3 we need 729 samples!

► For a fixed number of samples was we add features, the graph of classification error

 \triangleright For each fixed sample size N there is an optimal number of features to use

- ▶ Generally: we should avoid trying to create a lot of features
- ▶ Often, this is not possible because we start with a lot of features

- ▶ This image has $H \times W$ pixels $(D = H \times W)$
- ▶ Even for a small image, this is a lot of pixels
 - ► For a H = W = 20 (20×20) image this is D = 400
- ▶ If 10 samples is dense enough for D = 1 then we would need 10^{400} samples!

 \triangleright Even though we have set this up as a problem with D=400 dimesions

- ▶ This does not mean it really is...
- Space of all $H \times W$ images has D = 400 dimensions
 - ▶ But this is for all images, not just faces
- \blacktriangleright Space of all $H \times W$ faces must be much smaller
- Most likely we are not setting the problem up with the right features
- If we had better features than we wouldn't need D = 400

- ▶ High dimensional data is challenging and often redundant
- ► There are often repeating patterns
- It is natural to try to reduce dimensionality

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} \to f \left(\begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} \right) = \begin{bmatrix} y_1 \\ \vdots \\ y_K \end{bmatrix} = \mathbf{y}$$

- \blacktriangleright Where K < D
- **Example:**

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_2 \\ x_3 + x_4 \end{bmatrix} = \mathbf{y}$$

- ▶ Ideally the new (reduced dimension) vector *y* should contain all the important information for classification
- ▶ Most likely this will be a non-linear function
 - ▶ But, linear functions are easier to find
- If we assume that f(x) is a linear mapping we can represent this as a matrix W

$$\begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} \to \boldsymbol{W} \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} = \begin{bmatrix} w_{11} & \cdots & w_{1D} \\ \vdots & \ddots & \vdots \\ w_{K1} & \cdots & w_{KD} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_K \end{bmatrix}$$

- Main idea: seek an accurate data representation in a lower dimensional space
- ► Example for 2D

Note: the good line to use for projection lies in the direction of largest variance

After the data is projected onto the best line we can transform the coordinate system to a D=1 representation for y

- lacktriangle The new data y has the same variance as the old data x in the direction of the green line
- Intuition: we should exploit the variance in the dataset in some way

- Let's consider what we are searching for
 - ▶ We have an input space *X*
 - ▶ We want to find a feature map *W*
 - ► So that the weights decorrelate: minimise the relationship (redundancy) between dimensions

$$(WX)(WX)^T = NI$$

► How can we solve this?

$$WXX^TW^T = NI$$

$$WCov(X)W^T = I$$

▶ How can we solve this?

$$(WX)(WX)^T = NI$$
$$WXX^TW^T = NI$$

$$WCov(X)W^T = I$$

- Covariance matrices are symmetric positive definite and have orthogonal eigenvectors and eigenvalues
- ▶ Also, can be factorised by

$$UAU^T = \Lambda$$

lackbox Where U has eigenvectors of A in its columns and Λ has the eigenvalues on the diagonal

- What does this mean?
 - ▶ The eigenvectors are the "unit" vectors that decorrelate the original input space
 - ▶ The eigenvalues are the variance represented by the eigenvector
- Practical examples
 - ▶ We have 2D data and want to find the ellipsoid (potentially rotated) that represents this

We have a 3D object and want to find the orientation of the object

- PCA for dimensionality reduction
- ► Face Recognition (eigen-faces)
- ► Take a set of training data
 - $\blacksquare \ \ \, \mathsf{Image of size D} = H \times W$
 - ► Find the *K* principal "representations" using PCA
- ▶ What do the principal components look like?

PCA

Each face image can now be represented by a linear combination of the representations

- PCA in a nutshell
 - ▶ Remove the mean from the data
 - ▶ Form the covariance matrix
 - Diagonalise the covariance matrix
 - Retain the most directions (unit vector)
 - ▶ Weight by the eigenvalue to get their importance (variance)

PCA

▶ Each face image can now be represented by a linear combination of the representations

PCA

- A good *unsupervised* way of doing dimensionality reduction
- ▶ Other *supervised* methods also exist
 - Fisher linear discriminant analysis
 - And more...
- At the end, we aim to get a compact representation that can be used for something else, often a *supervised* task
 - Classification
 - Regression

Supervised Learning

Classifiers

- Support Vector Machines
- Naïve Bayes Classifiers
- Boosted Classifiers
- Neural Networks (and deep learning)
- Random Forests

Classifiers

- Supervised Learning
 - Classification Tasks
- ls the topic for next week

