sublevel letter. For example, the orbital notations for hydrogen and helium are written as follows.

$$H \frac{\uparrow}{1s}$$
 $He \frac{\uparrow\downarrow}{1s}$

Electron-Configuration Notation

Electron-configuration notation eliminates the lines and arrows of orbital notation. Instead, the number of electrons in a sublevel is shown by adding a superscript to the sublevel designation. The hydrogen configuration is represented by $1s^1$. The superscript indicates that one electron is present in hydrogen's 1s orbital. The helium configuration is represented by $1s^2$. Here the superscript indicates that there are two electrons in helium's 1s orbital.

SAMPLE PROBLEM A

For more help, go to the Math Tutor at the end of Chapter 5.

The electron configuration of boron is $1s^22s^22p^1$. How many electrons are present in an atom of boron? What is the atomic number for boron? Write the orbital notation for boron.

SOLUTION

The number of electrons in a boron atom is equal to the sum of the superscripts in its electron-configuration notation: 2 + 2 + 1 = 5 electrons. The number of protons equals the number of electrons in a neutral atom. So we know that boron has 5 protons and thus has an atomic number of 5. To write the orbital notation, first draw the lines representing orbitals.

$$1s$$
 $2s$ $2p$

Next, add arrows showing the electron locations. The first two electrons occupy n = 1 energy level and fill the 1s orbital.

$$\frac{\uparrow\downarrow}{1s}$$
 $\frac{}{2s}$ $\underline{\qquad}$

The next three electrons occupy the n = 2 main energy level. Two of these occupy the lower-energy 2s orbital. The third occupies a higher-energy p orbital.

$$\frac{\uparrow\downarrow}{1s}$$
 $\frac{\uparrow\downarrow}{2s}$ $\frac{\uparrow}{2p}$

PRACTICE

Answers in Appendix E

- **1.** The electron configuration of nitrogen is $1s^22s^22p^3$. How many electrons are present in a nitrogen atom? What is the atomic number of nitrogen? Write the orbital notation for nitrogen.
- **2.** The electron configuration of fluorine is $1s^22s^22p^5$. What is the atomic number of fluorine? How many of its p orbitals are filled?

Go to **go.hrw.com** for more practice problems that deal with electron configurations.

