Statistički praktikum 1 - 36. zadatak

Hermina Petric Maretić

22. siječnja 2014.

Opis zadatka

- List indijanske penjačice može biti šaren ili jednoličan, te istovremeno blijed ili normalne boje.
- Postavljeno je pitanje jesu li te dvije karakteristike nezavisne.
- Prijašnji eksperimenti su pokazali da će mladica s vjerojatnosti ¹/₄ biti blijeda (a normalne boje s vjerojatnosti ³/₄). Isto tako lišće mladica ce s vjerojatnosti ¹/₄ biti šareno (a s vjerojatnosti ³/₄ jednolično).
- Na slučajan način prikupljen je uzorak od 290 mladica indijske penjačice.

	normalne boje	blijedo
jednolično	187	35
šareno	37	31

- Neka je X stanje prve karakteristike (šareno ili lišće jednolične boje), a Y stanje druge karakteristike (blijedo lišće ili normalne boje).
- Na osnovi danog uzorka, procijenite zajedničku razdiobu varijabli X i Y, tj. procijenite razdiobu vektora (X,Y) i grafički je predstavite.
- Također, graficki je usporedite s razdiobom u kojoj su X i Y nezavisne, a marginalne razdiobe su u skladu s prijašnjim saznanjima.

Razdioba vektora (X,Y)

Usporedba procijenjene i nezavisne razdiobe

- Testirajte da li su X i Y nezavisne s pretpostavljenim marginalnim razdiobama kao u tekstu zadatka.
- Postavljamo hipoteze:
- H₀= X i Y su nezavisne s pretpostavljenim marginalnim razdiobama
- H₀= X i Y nisu neazavisne s pretpostavljenim marginalnim razdiobama
- Za testiranje koristimo Pearsonov χ^2 -test o pripadnosti distribuciji s testnom statistikom

$$H = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(f_{i,j} - f'_{i,j})^2}{f'_{i,j}} \sim \chi^2(r * c - d - 1)$$

- Kritično područje: $[7.815, \infty)$
- Vrijednost testne statistike: h=25.096
- Odbacujemo nultu hipotezu na razini značajnosti od 5%
- P-vrijednost: $1.47 * 10^{-5}$

- Odredite jakost testa iz (b) uz značajnost 5%
- Postavljamo hipoteze:
- $H_0: p = p^{(0)}$
- $H_1: p=p^{(0)}-rac{1}{\sqrt{n}}\delta$, za neki $\delta
 eq 0$

• Testna statistika je

$$H = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(f_{i,j} - f'_{i,j})^2}{f'_{i,j}} \sim \chi^2(r * c - d - 1)$$

- Ako vrijedi hipoteza H_1 , tada je $H \sim A_{\chi^2}(k-1,\lambda)$, gdje je $\lambda = \sum_{k=1}^k \frac{\delta_i^2}{p_i^0}$ parametar necentralnosti.
- Tada funkciju jakosti Pearsonovog χ^2 -testa možemo prikazati ovako:

$$\gamma(\lambda) = P(H \ge \chi^2(k-1)|p = p^0 - \frac{1}{\sqrt{n}} * \delta) = 1 - P_{\chi^2(k-1,\lambda)}(\chi^2_{\alpha}(k-1))$$

• Minimum se postiže u točki 0 i iznosi 0.05. To proizlazi iz činjenice da hipoteza H_0 govori upravo da je $\lambda = 0$ i iz činjenice da test ima razinu značajnosti 5%.

• Prema jednoj drugoj teoriji, razdioba od (X,Y) je oblika

ΧY	normalne boje	blijedo
jednolično	$9/16 + \theta$	$3/16 - \theta$
šareno	$3/16 - \theta$	$^{1/16} + \theta$

gdje je H nepoznati parametar. Odredite parametarski prostor i pomoću χ^2 -testa testirajte tu hipotezu, pri čemu nepoznati parametar procjenite minimum χ^2 -metodom.

- Parametarski prostor: $\theta \in [-1/16, 3/16]$
- Minimum χ^2 -metoda se temelji na tome da za funkciju $h(\theta):\Theta \to R,\ h(\theta)=\sum_{i=1}^k\sum_{j=1}^c \frac{(f_{i,j}-f'_{i,j}(\theta))^2}{f'_{i,j}(\theta)}$ tražimo vrijednost $\hat{\theta}$ u kojoj ona postiže minimum.

• Kao što i otprilike vidimo na grafu, minimum se postiže u točki 0.0586, pa je baš to naš $\hat{\theta}$.

- Testiramo hipotezu da je razdioba našeg slučajnog vektora iz zadanog modela
- Iskoristimo procijenjeni parametar θ i provodimo χ^2 -test s 2 (d=1 jer imamo jedan procijenjeni parametar) stupnja slobode.
- P-vrijednost: 0.6371446
- P-vrijednost je velika, pa ne možemo odbaciti hipotezu o pripadnosti zadanom modelu.

- Procijenite nepoznati prametar iz modela u (d) metodom maksimalne vjerodostojnosti i usporedite ga s minimum χ^2 -procjenom
- Definiramo funkciju vjerodostojnosti $L:\Theta\to R$, sa $L(\theta)=\prod_{i=1}^n f(x_i|\theta)$. Tražimo θ koji maksimizira ovu funkciju i zovemo ga procjenom metodom maksimalne vjerodostojnosti.

Graf derivacije funkcije vjerodostojnosti

• $\hat{\theta} = 0.05840407$

Hvala na pažnji!