CALCUL DE LA POSITION DU CENTRE DE POUSSÉE

Enoncé

Vous êtes un ingénieur hydraulique travaillant sur la conception d'un barrage. Une des étapes clés de la conception est de déterminer la stabilité du barrage face à la pression de l'eau.

Pour cela, il est essentiel d'estimer la position du centre de poussée sur une paroi du barrage.

Données:

- Forme de la paroi du barrage : La paroi est un rectangle vertical.
- Hauteur de la paroi (H): 15 mètres.
- Largeur de la paroi (W) : 10 mètres.
- Profondeur de l'eau (D) : 12 mètres.

Vous pouvez ignorer la pression atmosphérique et supposer que la paroi est parfaitement verticale et lisse.

Objectif:

Estimez la position du centre de poussée (point d'application de la résultante des forces de pression hydrostatique) sur la paroi du barrage.

Questions:

- 1. Quelle est la valeur de la force totale exercée par l'eau sur la paroi du barrage ?
- 2. À quelle hauteur du bas de la paroi se trouve le centre de poussée ?

CORRECTION

1. CALCUL DE LA FORCE TOTALE EXERCÉE PAR L'EAU

La pression hydrostatique à une profondeur y est donnée par :

$$p(y)=\rho \times g \times y$$

où $\rho = 1000 \text{kg/m}_3$ et $g = 9.81 \text{m/s}_2$.

La force différentielle exercée par l'eau sur un élément de surface à la profondeur y est : $dF=p(y)\times dA$

où $dA=W\times dy$ (avec W=10m).

La force totale F sur la paroi est donc l'intégrale de dF sur la hauteur immergée D=12m :

$$F = \int_0^{12} 1000 imes 9.81 imes y imes 10 \, dy$$

Calculons cette intégrale :

$$F = 1000 imes 9.81 imes 10 imes \int_0^{12} y \, dy$$

$$F = 98100 imes \left[\frac{y^2}{2} \right]_0^{12}$$

$$F = 98100 imes \left(\frac{12^2}{2} \right)$$

$$F = 98100 imes 72$$

$$F = 7063200 imes$$
 N

2. CALCUL DE LA POSITION DU CENTRE DE POUSSÉE

La position du centre de poussée yc est donnée par :

$$y_c = rac{\int_0^D y imes dF}{F}$$

où dF= $98100 \times ydy$.

Calculons:

$$\int_0^{12} y \times dF$$
:

Alors:

$$\int_0^{12} y imes (98100 imes y) \, dy = 98100 imes \int_0^{12} y^2 \, dy$$
 $\int_0^{12} y^2 \, dy = \left[rac{y^3}{3}
ight]_0^{12}$ $\int_0^{12} y^2 \, dy = rac{12^3}{3}$ $\int_0^{12} y^2 \, dy = 576$

Moment=98100×576

Moment=56505600

Maintenant, trouvons ye:

$$y_c=8m$$

CONCLUSION

- La force totale exercée par l'eau sur la paroi est de 7063200 N.
- Le centre de poussée se trouve à une hauteur de 8 mètres du bas de la paroi.