

Session 10: Gemischte Modelle 1

Dominic Schmitz & Janina Esser

Verein für Diversität in der Linguistik

- Stell dir vor, dass du Elternteil von 6 Kindern bist
- Jedes Jahr misst du die Körpergröße deiner Kinder an ihren Geburtstagen

	Kate	Eve	Tess	Max	Neil	Jack
12	149.8	156.3	145.8	149.1	143.3	159.3
13	156.7	163.2	153.7	156.2	150.4	166.4
14	158.7	165.2	160.7	163.8	158.0	174
15	159.7	166.2	162.7	170.1	164.3	180.3
16	162.5	169.0	167.5	173.4	167.6	183.6
17	162.5	169.0	172.5	175.2	169.4	185.4
18	163.0	169.5	178.0	175.7	169.9	185.9

Mit deinem Wissen über Simple Lineare Regression erstellst du ein Model:

Laut des Modells wachsen alle Kinder mit gleicher Geschwindigkeit (Steigung / Slope)

Mit deinem Wissen über Multiple Lineare Regression erstellst du ein Model:

 Laut des Modells wachsen alle Kinder mit gleicher Geschwindigkeit (Steigung / Slope), aber Mädchen sind konsistent kleiner als Jungs (Achsenabschnitte / Intercepts)

Aber stimmt das?

	Kate	Eve	Tess	Max	Neil	Jack
12	149.8	156.3	145.8	149.1	143.3	159.3
13	156.7	163.2	153.7	156.2	150.4	166.4
14	158.7	165.2	160.7	163.8	158.0	174
15	159.7	166.2	162.7	170.1	164.3	180.3
16	162.5	169.0	167.5	173.4	167.6	183.6
17	162.5	169.0	172.5	175.2	169.4	185.4
18	163.0	169.5	178.0	175.7	169.9	185.9

Mit deinem Wissen über Multiple Lineare Regression erstellst du ein Model:

Frage: Was müssen wir tun, damit das Modell realistischer wird?

Mit deinem baldigen Wissen über Gemischte Modelle erstellst du ein Model:

$$lm(height \sim age + bsex + (1 | name), data_h)$$

 Laut des Modells startet jedes Kind mit einer eigenen Größe (Achsenabschnitte / Intercepts), während alle Kinder mit gleicher Geschwindigkeit (Steigung / Slope) wachsen

Aber stimmt das?

	Kate		Tess	
12	149.8		145.8	
13	156.7	6.9	153.7	4.9
14	158.7	2.0	160.7	7.0
15	159.7	1.0	162.7	2.0
16	162.5	2.5	167.5	4.8
17	162.5	0.0	172.5	5.0
18	163.0	0.5	178.0	5.5

Mit deinem baldigen Wissen über Gemischte Modelle erstellst du ein Model:

$$lm(height \sim age + bsex + (1 | name), data_h)$$

Frage: Was müssen wir tun, damit das Modell realistischer wird?

Mit deinem baldigen Wissen über Gemischte Modelle erstellst du ein Model:

$$lm(height \sim age + bsex + (age | name), data_h)$$

 Laut des Modells startet jedes Kind mit einer eigenen Größe (Achsenabschnitte / Intercepts) und wächst mit einer individuellen Geschwindigkeit (Steigung / Slopes)

 Offenbar sind Gemischte Modelle besser darin als Simple oder Multiple Lineare Modelle, die Realität (der Daten) zu erfassen

Einfache Lineare Regression

Multiple Lineare Regression: Formel

Random Intercept Formula

Random Slope Formula

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Stressed Vowels sind kürzer je nachdem wie viele Konsonanten ihnen folgen:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Unabhängig von diesem Vowel Shortening gilt, dass offene Vokale länger sind als halb-offene Vokale, und halb-offene Vokale sind länger als geschlossene Vokale:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

• Bisher haben wir Vokaldauer mit Simpler Linearer Regression...

lm(duration ~ rate, data_v)

• ... und Multipler Linearer Regression gemodellt

lm(duration ~ rate + structure + vowel, data_v)

 Mittlerweile wissen wir aber, dass Gemischte Modelle besser geeignet sind, zum Beispiel:

In Gemischten Modellen arbeiten wir mit zwei Arten von Prädikatoren:

1. Fixed Effects

- erklärende Variablen
- Variablen, die im Mittelpunkt stehen
- wiederholbar

2. Random Effects

- Ursprung chaotischer Variation in den Daten
- zufällig, nicht wiederholbar

Das vorherige Modell zu Vokaldauern:

- Wenn wir also Daten anhand Gemischter Modelle analysieren möchten, müssen wir nicht nur entscheiden, welche Variablen wir sinnvoller Weise nutzen sollten...
- sondern auch, welche Variablen sich als Fixed Effects eignen und welche Variablen eher Random Effects entsprechen

• Typische Beispiele für Fixed Effects sind Variablen, für welche es Vorhersagen durch vorherige Studien und Literatur gibt, z.B.

Frequenz

frequenter = kürzere Dauer, kürzere RT

Neighourboods

denser = kürzere Dauer

gemessene Dauern

lange Base = lange Affix

Wortlänge

mehr Buchstabend = höhere RT

Videospielfrequenz

frequenter = kürzere RT

• ..

 Typische Beispiele für Random Effects sind Variablen, für welche es keine klaren Vorhersagen gibt, z.B.

subject

alle TN sind unterschiedlich

items

alle Wörter sind unterschiedlich

item order

Priming? wer weiß

• ...

• Zurück zum Beispiel der Vokaldauern; hier haben wir folgende Variablen:

speech rate

höher = kürzere Dauer

structure

komplexer = kürzere Dauer

vowel

offener = längere Dauer

speaker

???

word

???

• Zurück zum Beispiel der Vokaldauern; hier haben wir folgende Variablen:

• speech rate	höher = kürzere Dauer
• structure	komplexer = kürzere Dauer fixed effects
• vowel	offener = längere Dauer
• speaker	???
• word	random effects

Gemischte Modelle in R

- Wie wir bereits festgestellt haben, bedeuten mehr Variablen auch mehr Arbeitsschritte
- Typische Schritte sind
 - 1. Verteilung der abhängigen Variable überprüfen
 - 2. Check der Korrelationen wegen Kollinearität
 - 3. "volles" Modell erstellen
 - 4. "bestes" Modell finden
 - 5. Annahmen überprüfen
 - 6. Modell interpretieren

Gemischte Modelle in R

- Wie wir bereits festgestellt haben, bedeuten mehr Variablen auch mehr Arbeitsschritte
- Typische Schritte sind
 - 1. Verteilung der abhängigen Variable überprüfen ✓
 - 2. Check der Korrelationen wegen Kollinearität
 - 3. "volles" Modell erstellen
 - 4. "bestes" Modell finden
 - 5. Annahmen überprüfen
 - 6. Modell interpretieren

Check der Korrelationen

kein Problem, da es sich hierbei um einen festen Effekt und bei der anderen um eine Variable mit zufälligem Effekt handelt

Gemischte Modelle in R

- Wie wir bereits festgestellt haben, bedeuten mehr Variablen auch mehr Arbeitsschritte
- Typische Schritte sind
 - Verteilung der abhängigen Variable überprüfen ✓
 - 2. Check der Korrelationen wegen Kollinearität ✓
 - 3. "volles" Modell erstellen
 - 4. "bestes" Modell finden
 - 5. Annahmen überprüfen
 - 6. Modell interpretieren

"Volles" Modell erstellen

Erstellung eines vollen Modells:

```
library(lme4)
```

Gemischte Modelle in R

- Wie wir bereits festgestellt haben, bedeuten mehr Variablen auch mehr Arbeitsschritte
- Typische Schritte sind
 - 1. Verteilung der abhängigen Variable überprüfen ✓
 - 2. Check der Korrelationen wegen Kollinearität ✓
 - 3. "volles" Modell erstellen ✓
 - 4. "bestes" Modell finden
 - 5. Annahmen überprüfen
 - 6. Modell interpretieren

"Bestes" Modell finden

Finden des "besten" Modells

```
step(mdl)
...
...
...
Model found:
durationLog ~ structure + vowel + (structure | speaker)
```

Gemischte Modelle in R

- Wie wir bereits festgestellt haben, bedeuten mehr Variablen auch mehr Arbeitsschritte
- Typische Schritte sind
 - 1. Verteilung der abhängigen Variable überprüfen ✓
 - 2. Check der Korrelationen wegen Kollinearität ✓
 - 3. "volles" Modell erstellen ✓
 - 4. "bestes" Modell finden ✓
 - 5. Annahmen überprüfen
 - 6. Modell interpretieren

Assumptions überprüfen

- Multiple Lineare Regression folgt den gleichen Annahmen, denen auch Einfache und Multiple Lineare Regression folgen
 - Linearität
 - Homoskedastizität
 - Normalität
 - Unabhängigkeit

• **Hinweis**: Die SfL Datensätze sind i.d.R. zu klein um Gemischte Modelle zu erstellen, die allen Annahmen entsprechen.

Gemischte Modelle in R

- Wie wir bereits festgestellt haben, bedeuten mehr Variablen auch mehr Arbeitsschritte
- Typische Schritte sind
 - 1. Verteilung der abhängigen Variable überprüfen ✓
 - 2. Check der Korrelationen wegen Kollinearität ✓
 - 3. "volles" Modell erstellen ✓
 - 4. "bestes" Modell finden ✓
 - 5. Annahmen überprüfen ✓
 - 6. Modell interpretieren

- Generell sind wir an zwei Dingen interessiert:
 - 1. die p-Werte der einzelnen Prädikatoren
 - 2. die Effekte der einzelnen Prädikatoren

1. Mit der anova() Funktion erhalten wir p-Werte

```
Type III Analysis of Variance Table with Satterthwaite's method

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

structure 3.6769 1.83845 2 11.76 100.222 4.111e-08 ***

vowel 3.6894 0.92234 4 423.03 50.281 < 2.2e-16 ***
```


1. Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädikatoren werfen

Fixed effects:

	Estimate	Std. Error	df	t value	Pr(> t)	
(Intercept)	-1.83695	0.07645	9.54001	-24.029	7.41e-10	***
structureopen	0.43271	0.03064	9.03857	14.125	1.82e-07	***
structuresingle	0.12182	0.01797	18.54869	6.777	2.04e-06	***
vowele	-0.15059	0.02031	423.07910	-7.414	6.73e-13	***
voweli	-0.24876	0.02031	423.07910	-12.248	< 2e-16	***
vowelo	-0.13248	0.02031	423.07910	-6.523	1.98e-10	***
vowelu	-0.24566	0.02031	423.07910	-12.095	< 2e-16	***

Der s.g. "Tukey-Contrast" zeigt uns die Unterschiede innerhalb eines kategorischen Prädikators

	Estimate	Std. Error z value	e Pr(> z)
open - double == 0	0.43271	0.03064 14.125	<1e-10 ***
single - double == 0	0.12182	0.01797 6.777	<1e-10 ***
single - open == 0	-0.31089	0.02832 -10.979	<1e-10 ***

Der s.g. "Tukey-Contrast" zeigt uns die Unterschiede innerhalb eines kategorischen Prädikators

```
Estimate Std. Error z value Pr(>|z|)
e - a == 0 -0.150590
                     0.020311 -7.414 < 1e-05 ***
i - a == 0 - 0.248762 \quad 0.020311 - 12.248 < 1e - 05 ***
o - a == 0 - 0.132478  0.020311 - 6.523 < 1e - 0.5 ***
                     0.020311 -12.095 < 1e-05
                                                 ***
 - a == 0 -0.245664
                     0.020190 -4.862 1.22e-05 ***
i - e == 0 - 0.098171
                      0.020190 0.897
o - e == 0 \quad 0.018113
                                           0.898
u - e == 0 -0.095074
                      0.020190 -4.709 2.10e-05
                      0.020190 5.759 < 1e-05 ***
o - i == 0 \quad 0.116284
                     0.020190 0.153
u - i == 0 \quad 0.003098
                                           1.000
u - o == 0 -0.113186
                      0.020190 -5.606 < 1e-05 ***
```