1/23 LUK et el. YOR920030604US1 (LJP)

FIG. 1A

FIG. 1B

FIG. 2A

FIG. 2B 250 200 205 \ 210 245 N+ PC <u>215</u> ~225 <u>226</u> N+ N+ STI STI p-WELL <u>230</u> 220 n ISOLATION BAND (OPTIONAL) 240 <u>235</u> p-SUBSTRATE (BULK)

FIG. 3A

FIG. 3B

GATED DIODE CAPACITANCE vs GATE-TO-SOURCE VOLTAGE (Vgs) EACH CURVE REPRESENTS A DIFFERENT GATED DIODE GATE SIZE. THRESHOLD VOLTAGE = 0.2 V

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 6

FIG. 7

FIG. 10

LINEAR CAPACITOR

GAIN = dVout/dVin = 1

FIG. 11A

 $FIG.\ 1\,1B$ gated diode amplifier representative circuit

FIG. 11C

FIG. 12A

FIG. 12B

ζ	ب
C	V
7	_
ح	5
_	-
7	٦

$Rc = Cg_gd/Cg_rg$ $GAIN = Vg_f/Vg_i$									
GAIN = 1 + Rc - (Vt_gd/Vg_i) Rc ~ 1 + Rc GAIN = $(1 + Vs/Vg_i)$ Rc/ $(1 + Rc)$	gd/Vg_i) Rc/(1 +	Rc ~ 1 Rc)	+ &	COMF	PLETE CH	ARGE TR/ CHARGE	insfer (f transfei	COMPLETE CHARGE TRANSFER (FOR SMALL Rc) CONSTRAINED CHARGE TRANSFER (LARGE Rc)	
$Vg_{-}i = 0.4 \text{ V}, Vt_{-}gd = 0$	0				EXEM	EXEMPLARY OPERATING POINT	ERATING '	POINT	
Cg_gd/Cg_rg 1 + Rc Rc/(1 + Rc) (1+Vs/Vg_i)Rc/(1+Rc) (1+Vs/Vg_i)Rc/(1+Rc) GAIN CHARGE TRANSFER	0.01 1.01 0.035 0.04 1.01	.01 0.1 1 .01 1.1 2 .01 0.09 0.5 .035 0.32 1.75 .04 0.36 2.00 .01 1.1 2	1 2 0.5 1.75 2.00 2	2 3 0.67 2.35 2.68 2.68	5 6 0.83 2.91 3.32 3.32 CONSTRA	5 10 6 11 0.83 0.91 2.91 3.19 3.32 3.64 3.32 3.64 -CONSTRAINED	100 101 0.99 3.47 3.96 3.96	$\frac{\sqrt{s}}{\sqrt{g}} = 2.5$ $\frac{\sqrt{s}}{\sqrt{g}} = 3$ $\frac{\sqrt{s}}{\sqrt{g}} = 3$	

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 26