서울특별시 디지털계량기 프로토콜

2025. 7.

서울아리수본부 (서울물연구원)

제·개정이력

연번	제·개정 일	버전 번호	제·개정 내용	비고
1	2011. 6.	V 1.0	최초 제정	
2	2013. 6.	V 1.1	- 통신 시작 시 대기시간 규정 - 역류경고 기준 변경	
3	2021. 5.	V 1.2	 계량기 및 검침단말기의 High, Low level 전환 및 대기시간 규정 CI필드에 UDF 추가 및 정의 경고 기준(최대유량 초과, 역류, 배터리 전압) 변경 	
4	2023. 1.	V 1.3	 배터리 전압 정보 전송 추가 구경별 소숫점 기본위치 규정 경고 기준(배터리 전압) 삭제 재전송 기능 추가 	
5	2024. 7.	V 1.4	- 자석감지, 동파경보 기능 추가	
6	2025. 5.	V 1.4(수정)	- 동파경보 정보 변경	

서울특별시 디지털계량기 프로토콜

- 1. 물리 계층(Physical Layer)
 - 1.1 기기구성

- Master : 검침단말기

- Slave : 전자식 수도계량기

1.2 신호레벨: TTL Level(Tx, Rx, Gnd)

<Master와 Slave

- 1.3 Byte Format: None parity, 8 data bits, 1 stop bit
- 1.4 Baud Rate : 1,200 bps
- 1.5 전자식 수도계량기는 검침단말기와 통신을 하지 않는 상태에서는 검침 단말기와 전기적으로 절연상태이어야 한다.
- 1.6 통신을 시작할 때는 검침단말기와 계량기 모두 High Level로 20~50ms 대기 후 start bit를 시작한다.
- 1.7 검침단말기는 계량기에서 단말기로 데이터가 전송될 때 계속 High level을 유지하고, 계량기 전송이 완료되면 0~100ms 대기 후 Low level로 전환한다.
 - 1.8 계량기는 검침단말기의 검침 요청 메시지를 받은 후 Low level로

0~100ms 대기 후 High level로 전환한다.(20~50ms 대기 후 start bit 시작)

2. 데이터 링크 계층(Data Link Layer)

- 2.1 프레임 포맷(Frame Format)
 - 프레임 포맷은 KS IEC 60870-5-1의 FT 1.2 참조
 - 다음과 같은 구조의 Short Frame(검침값 요청시)과 Long Frame

(검침값 회신시)을 사용함

Short Frame	Length
Start 10h	1 Byte
C Field	1 Byte
A Field	1 Byte
Check Sum	1 Byte
Stop 16h	1 Byte

Long Frame	Length
Start 68h	1 Byte
L Field	1 Byte
L Field	1 Byte
Start 68h	1 Byte
C Field	1 Byte
A Field	1 Byte
CI Field	1 Byte
User Data	(0-252) Byte
Check Sum	1 Byte
Stop 16h	1 Byte

2.2 길이 필드(L Field, Length Field)

- C+A+CI 필드의 길이와 User data 길이의 합
- 2.3 제어 필드(C Field, Control Field)
 - 제어 필드 코딩

비트 숫자	7	6	5	4	3	2	1	0
전송 요청시	0	1	FCB	FCV	F3	F2	F1	F0
전송 회신시	0	0	ACD	DFC	F3	F2	F1	F0

- . 비트 7 : 예비(reserved) 비트
- . 비트 6 : 데이터 흐름방향("1" \Rightarrow 전송 요청)
- . 비트 0 ~ 3 : 본 프레임의 기능
- . FCB(Frame count bit) : 전송 성공
- . FCV(Frame count bit valid) : "1" ⇒ FCB가 사용됨
- . ACD(Access demand) : "1" ⇒ Slave에서 시급한 데이터 전송 희망
- . DFC(Data flow control) : "1" ⇒ Slave가 더 이상 데이터를 받을

수 없음

- 제어 필드 사례(M-Bus 프로토콜 참조)

이름	기능	프레임 포맷	C field (Binary)	C field (Hex.)
REQ_UD2	데이터 요청	Short Frame	01F1 1011	5B/7B
REP_UD	User data 회신	Long Frame	00AD 1000	08/18/28/38

- . 본 프로토콜은 검침값 요청 및 회신 만을 수행하여 통신구조가 간단 하므로 제어필드로 각각 5B, 08 만을 사용함
- 2.4 주소 필드(A Field, Address Field)
 - 데이터 요청시 Slave의 주소와 회신시 Slave의 주소 표시
- 1 Byte 길이이므로 주소로서 0에서 255까지 사용가능하며, 실제 사용시는 1에서 250까지 할당함
 - 2.5 검사함(Check sum)
 - C field+A Field+CI field+User Data의 hexa값 함
 - 1 Byte가 할당되어 있으므로 하위 2개 숫자(hex.)로 표시
- 3. 응용 계층(Application Layer)
 - ※ 제어정보 필드와 User Data의 구성

CI Field		User Data										
	MDH	Ident. Nr.	Status1	DIF	S2&VIF	Data	UDF					
1 Byte (78h)	1 Byte (0Fh)	4 Byte	1 Byte	1 Byte	1 Byte	4 Byte	(0-240) Byte					

- 3.1 CI Field(Control Information Field, 제어정보 필드)
 - CI=78h는 M-Bus 프로토콜에서 Data Header가 없음을 의미(첨자 h는 16진수를 의미)
- 3.2 MDH(Manufacturer Specific Data Header)
 - 우리시는 독자적 User Data를 구성하므로 M-Bus 프로토콜에서

규정한 MDH=0Fh를 따름

- 3.3 Ident. Nr(Identification Number, 기물번호): 8 digit BCD
 - ex) $09-123456 \Rightarrow 56/34/12/09$
 - ex) $\underline{09}$ -X015-00 $\underline{123456}$ => 56/34/12/09
- 3.4 Status 1(상태 감지시 1)

Bit	7	6	5	4	3	2	1	0		
Value	Q ₃ 초과	역류	옥내누수	배터리 전압정보						

- 7번 Bit의 Q₃는 "수도미터 기술기준"의 최대유량이며, 최대유량을 초과하는 유량으로 5분 이상 통수 시 표시함
- ⇒ 최대유량 표시 시점에서 1시간 동안 유지하고 이후 정상 유량 통 수 시 리셋(reset)함
 - 6번 Bit의 역류경고 기능은 역방향으로 1분 이상 지속적으로 흐름 이 발생 하면 표시
 - ⇒ 역류 발생 시점에서 1시간 동안 표시하고 이후 정상 통수 시 리셋(reset)함
 - 5번 Bit의 옥내누수경고 기능은 7일 이상 지속적으로 유량이 감지 되면 정보를 전송함
 - ⇒ 유량이 감지되지 않으면 즉시 리셋(reset)함
 - 4,3,2,1,0번 Bit의 배터리 전압 정보 기능은 배터리 전압 구간별로 해당 정보를 전송함(0.1V 단위)

배터리 전압	4,3,2,1,0 Bit
3.7V 이상	00000
3.6이상 3.7미만	00001
3.5이상 3.6미만	00010
3.4이상 3.5미만	00011
3.3이상 3.4미만	00100
3.2이상 3.3미만	00101
:	:
0.7V 미만	11111

⇒ 배터리전압은 단말기로부터 검침데이터 요청시 업데이트함

3.5 DIF(Data Information Field)

Bit	7	6	5	4	3	2	1	0
Value		계량기] 구경		검	침값 길	이와 코	딩

① 계량기 구경

구경(mm)	15	20	25	32	40	50	80	100	150	200	250	300
Hex	1	2	3	4	5	6	7	8	9	A	В	С

- ② 검침값 길이와 코딩 : 8 digit BCD(1100b ⇒ Ch)
 - ※ 검침값 길이와 코딩값은 M-Bus 규격 참조
 - ex) 15mm 구경의 8자리 BCD 검침값: 1Ch

3.6 Status 2 & VIF(Value Information Field)

Field		Status 2		VIF					
Bit	7	6	5	4	3	2	1	0	
Value	자석감지	동파경보	reserved	단위	소수점 위치				

① Status 2

- 7번 Bit의 자석감지 기능은 유량감지센서에 영향을 끼치는 자기 장이 5분 이상 감지되면 표시
- ⇒ 자기장 감지 시점에서 1시간 동안 유지함
- 6번 Bit의 동파경보 기능은 0℃ 이하의 온도가 1분 이상 감지되면 표시
- ⇒ 동파경보 시점에서 6시간 동안 유지함
- ② 단위 : $\mathring{\text{m}}^{3} \Rightarrow 1$
- ③ 소수점 위치 : 자리수에 따라 해당 16진수 할당

※초기 소숫점 기본위치를 구경별로 정하여 검침값을 전송하며 이후 사용량이 증가하여 자릿수가 증가할 경우 소숫점 정보를 1 씩 감소하여 전송함

구경(mm)	15	20	25	32	40	50	80	100	150	200	250	300
소숫점		3							4	2		

ex) 80mm 999999.99톤 => 소숫점 2자리, 1000000.00톤 => 소숫점 1자리 ex) ㎡ 단위의 소수점 3자리 : 13h

3.7 검침값(Data) : 8 digit BCD

ex) 12345.678 전송 ⇒ 78/56/34/12.

3.8 UDF(User Defined Field)

- 향후 전송 데이터의 확장성을 고려하여 사용자 필요에 따라 정의하여 사용
 - . 별도 정의가 없을 때는 0 Byte로 함
 - * UDF 적용사례

CI Field	User Data									
	MDH	Ident. Nr.	Status	DIF	VIF	Data	Pro Ver.	UDF Ver. Mo	Man. Code	
1 Byte (78h)	1 Byte (0Fh)	4 Byte	1 Byte	1 Byte	1 Byte		1 Byte			

- . 프로토콜 버전(Protocol Version): 2 digit BCD (ex. 12 ⇒ 1.2버전)
- . 검정 월(Verification Month) : 2 digit BCD, 해당 계량기 검정 월 (ex. 12 ⇒ 12월)
- . 제조사 코드(Manufacturer Code) : 2 Byte Char(Upper Byte : 00h, Lower Byte : 영문 코드)
 - ※ 서울시 수도자재관리센터에서 부여하는 수도계량기 기물번호 참

조(대소문자 구분)

4. Frame Examples

- 4.1 검침단말기에서 전자식 수도계량기(1번 주소)로 검침데이터 요청
 - 검침데이터 미수신시 재요청 1~2회 수행

Short Frame	Value(Hex.)	Length	
Start	10	1 Byte	
C Field	5B	1 Byte	
A Field	01	1 Byte	
Check Sum	5C	1 Byte	
Stop	16	1 Byte	

4.2 디지털 수도계량기(1번 주소)에서 검침단말기로 검침데이터 전송

- 기물번호: 09-123456

- Status : 정상

- 계량기 구경 : 15mm

- 검침값 : 12345.678㎡

Long	Frame	Value(Hex.)	Length	
St	art	68	1 Byte	
LI	Field	0F	1 Byte	
LI	Field	0F	1 Byte	
St	art	68	1 Byte	
C I	Field	08	1 Byte	
A I	Field	01	1 Byte	
CI	Field	78	1 Byte	
	MDH	0F	1 Byte	
	Ident. Nr.	56 34 12 09	4 Byte	
User Data	Status	00	1 Byte	
USEI Data	DIF	1C	1 Byte	
	S2&VIF	13	1 Byte	
	Data	78 56 34 12	4 Byte	
Chec	k Sum	78	1 Byte	
S1	top	16	1 Byte	