Rockchip Developement Guide 3A ISP30

文件标识: RK-KF-GX-612

发布版本: V1.1.0

日期: 2022-1-17

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2020 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文旨在描述RkAiq (Rk Auto Image Quality) 模块的作用,整体工作流程,及相关的API接口。主要给

使用RkAiq模块进行ISP功能开发的工程师提供帮助。

产品版本``

芯片名称	内核版本
RK3588	Linux 5.10

读者对象

本文档 (本指南) 主要适用于以下工程师:

ISP模块软件开发工程师

系统集成软件开发工程师

各芯片系统支持状态

芯片名称	BuildRoot	Debian	Yocto	Android
RK3588	Υ	N	N	Υ

修订记录

版本号	作者	修改日期	修改说明
v1.0.0	朱林靖、池晓芳	2022-1-5	ISP3A 开发指南初版
v1.0.1	钟以崇、朱林靖	2022-1-11	1. 增加概述部分 2. 更新"AE算法注册"章节

目录

Rockchip Developement Guide 3A ISP30

1 概述

- 1.1 设计思路
- 1.2 文件组织
- 1.3 开发模式
- 1.4 软件流程
 - 1.4.1 基础流程
 - 1.4.2 内部运行流程

2 开发者指南

2.1 AE 算法注册

```
rk_aiq_uapi2_customAE_register rk_aiq_uapi2_customAE_enable rk_aiq_uapi2_customAE_unRegister 回调函数
```

custom_ae_init

custom_ae_run

custom_ae_ctrl

custom_ae_exit

输入数据参数

输出算法结果参数

2.2 AWB 算法注册

2.2.1 API

rk_aiq_uapi_customAWB_register rk_aiq_uapi_customAWB_enable

rk_aiq_uapi_customAWB_unRegister

2.2.2 数据类型

向 ISP 库注册的回调函数

rk_aiq_customeAwb_cbs_t

统计信息

rk_aiq_customAwb_stats_t

运算结果

rk_aiq_customeAwb_results_t

rk_aiq_customeAwb_single_results_t
rk_aiq_wb_gain_t
rk_aiq_customAwb_hw_cfg_t
rk_aiq_customAwb_hw_cfg_t
rk_aiq_awb_uv_range_para_t
rk_aiq_rgb2xy_para_t
rk_aiq_awb_xy_range_para_t
rk_aiq_awb_rt3dyuv_range_para_t
rk_aiq_awb_exc_range_v201_t

2.3 开发用户AF算法

- 2.3.1 AF统计模块
- 2.3.2 AF统计窗口配置
- 2.3.3 Gamma
- 2.3.4 Focus Filter
- 2.3.5 Luma/Highlight
- 2.3.6 Luma Depend Gain
- 2.3.7 Fv threshold
- 2.3.8 Fv Calc
- 2.3.9 Fv Output
- 2.3.10 最终FV值的计算
- 2.3.11 AF统计的配置
- 2.3.12 AF统计值的获取
- 2.3.13 滤波器设计工具的使用
- 2.4 参考代码样例

1 概述

该文档主要介绍3A库的实现方式,旨在指导用户如何实现定制化的3A算法库。

3A算法库依赖于AIQ,AIQ内已包含有RK的3A算法库,并且已经默认使能。用户可根据需要按该文档方式实现定制化的3A库。

1.1 设计思路

基本设计思路如下图所示:

- 3A库通过注册方式注册给ISP库,注意RK的3A库已隐式的注册,不需要用户显示注册
- 3A库注册给ISP库后,ISP库从驱动拿到3A统计后,回调3A库接口得到新的3A参数,ISP库将新的3A参数设置给驱动

1.2 文件组织

文件组织如下图所示:

- ISP Firmware 分成应用层的librkaiq.so 和 驱动层 的 ISP 驱动以及外设驱动,包括 Sensor、VCM 及Flashlight等
- librkaiq.so 中包含了众多的算法库,如 3A 算法库、HDR算法库等等,算法库都以静态库形式存在,最后链接形成librkaiq.so。除了 librkaiq_ae/awb/af.a 3A 库是不提供源码的,其他基础库源码都是开放的。
- 框架支持所有模块的算法库都使用客户算法,但一般来说,除3A库希望定制化外,其他基础库可使用RK提供的默认库。

1.3 开发模式

支持以下三种开发模式:

- 3A库使用RK库。使用该方式时,RK的3A库API都可使用,具体包括: rk_aiq_user_api2_ae.h, rk_aiq_user_api2_af.h, rk_aiq_user_api2_awb.h。
- 3A库部分使用RK库,部分使用用户自定义库。如 AE 库使用自定义库,AWB 库使用RK库。
- 3A库自定义库和RK库同时使用。如AE库,自定义库和RK库同时跑时,会先跑RK AE 库,然后跑自定义AE库,自定义库结果覆盖RK AE库结果。此种模式用于简化自定义库开发,自定义库可不需要输出所有 AIQ 框架需要的结果,部分结果可由 RK AE 库输出。

1.4 软件流程

1.4.1 基础流程

RK 3A 算法不需要用户显示注册,AIQ 框架内部已隐式注册。自定义 3A 算法注册,以自定义 AE 算法注册为例,示例伪代码如下:

```
// 初始化使用场景,不是必须,默认为 normal, day,用于选择 json iq 文件中的场景参数
if (work_mode == RK_AIQ_WORKING_MODE_NORMAL)
        ret = rk_aiq_uapi2_sysctl_preInit_scene(sns_entity_name, "normal",
        "day");
    else
        ret = rk_aiq_uapi2_sysctl_preInit_scene(sns_entity_name, "hdr", "day");

// 根据使用模式是环视还是单Camera,初始化 Group Ctx 或者 AIQ ctx
```

```
if (!group_mode)
       ctx->aiq_ctx = rk_aiq_uapi2_sysctl_init(sns_entity_name, ctx->iqpath,
NULL, NULL);
 else {
      rk_aiq_camgroup_instance_cfg_t camgroup_cfg;
      memset(&camgroup_cfg, 0, sizeof(camgroup_cfg));
      camgroup_cfg.sns_num = 1;
      camgroup_cfg.sns_num++;
      camgroup_cfg.sns_ent_nm_array[0] = sns_entity_name;
      camgroup_cfg.sns_ent_nm_array[1] = sns_entity_name2;
      camgroup_cfg.config_file_dir = ctx->iqpath;
      camgroup_cfg.overlap_map_file = "srcOverlapMap.bin";
      ctx->camgroup_ctx = rk_aiq_uapi2_camgroup_create(&camgroup_cfg);
 }
// 如果需要注册自定义 AE 算法,则注册自定义 AE 回调
  rk_aiq_customeAe_cbs_t cbs = {
                         .pfn_ae_init = custom_ae_init,
                         .pfn_ae_run = custom_ae_run,
                         .pfn_ae_ctrl = custom_ae_ctrl,
                         .pfn_ae_exit = custom_ae_exit,
  rk_aiq_uapi2_customAE_register((const rk_aiq_sys_ctx_t*)(ctx->camgroup_ctx),
&cbs);
// 如果需要运行第三方 AE 算法,则使能自定义 AE 算法。第三方AE库注册接口,单摄和环视共用。
//当前 AIQ 版本,默认 RK 算法和第三方算法都会运行, 如果需要,可以调用
rk_aiq_uapi2_sysctl_enableAxlib 强制关掉 RK AE。
  rk_aiq_uapi2_customAE_enable((const rk_aiq_sys_ctx_t*)(ctx->camgroup_ctx),
true);
// 准备ISP pipeline 及配置 ISP、Sensor 等初始化参数
// 如果需要,可在prepare前调用模块 API,修改模块初始化参数,否则初始化参数由 IQ 文件指定,或
者是AIQ中硬代码指定,或者是芯片复位值
if (!group_mode) {
     rk_aiq_uapi2_sysctl_prepare(ctx->aiq_ctx, ctx->width, ctx->height,
work_mode);
     rk_aiq_uapi2_sysctl_start(ctx->aiq_ctx );
} else {
     rk_aiq_uapi2_camgroup_prepare(ctx->camgroup_ctx, work_mode);
     ret = rk_aiq_uapi2_camgroup_start(ctx->camgroup_ctx);
}
// 开启 VI 数据流,注意该部分未调用任何 AIQ 库接口。
start_capturing(ctx);
. . . . . .
// AIQ 内部线程循环工作: 从驱动获取 3A 统计信息,调用各算法库计算新的ISP参数、Sensor参数
等,下发新的参数给ISP驱动、Sensor驱动等。
// 此过程可调用 API 设置各算法模块参数
. . . . . .
// 退出时先停止数据流
stop_capturing(ctx);
// 停止掉 AIQ ctx 或者 Group ctx
if (!group_mode)
      rk_aiq_uapi2_sysctl_stop(ctx->aiq_ctx, false);
```

```
else
        rk_aiq_uapi2_camgroup_stop(ctx->camgroup_ctx);

// 反注册第三方 AE
    rk_aiq_uapi2_customAE_unRegister(ctx->aiq_ctx);

// 反初始化 AIQ ctx 或者 Group ctx
    if (!group_mode)
        rk_aiq_uapi2_sysctl_deinit(ctx->aiq_ctx);

else
    rk_aiq_uapi2_camgroup_destroy(ctx->camgroup_ctx);
```

1.4.2 内部运行流程

AIQ 内部运行如下图所示:

- 获取统计线程。该线程不断从ISP驱动获取 3A 统计, 然后发送给 3A 计算线程。
- 3A计算线程。该线程收到统计后,开始调用各模块算法(包括第三方算法回调),计算新的参数,然后将新参数发给 ISP参数设置线程和 SOF线程。
- ISP参数设置线程。该线程收到新的ISP参数设置请求后,在合适时机下发给ISP驱动。
- SOF线程。该线程为 Sensor 帧头事件的响应函数,该线程收到新的曝光设置请求后,从队列中取出新曝光参数设置给Sensor驱动。

2 开发者指南

2.1 AE 算法注册

AE算法注册流程涉及算法注册、算法使能、算法注销,注册调用rk_aiq_uapi_customAE_register接口,使能调用rk_aiq_uapi_customAE_enable接口,注销调用rk_aiq_uapi_customAE_unRegister接口

rk_aiq_uapi2_customAE_register

【描述】

注册AE算法库

【语法】

```
XCamReturn
rk_aiq_uapi2_customAE_register(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_customeAe_cbs_t* cbs)
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针,可兼容单摄及环视应用	输入
cbs	回调函数指针	

【返回值】

返回值	描述
0	成功
∃E 0	失败,详见错误码表

rk_aiq_uapi2_customAE_enable

【描述】

注册AE算法库

【语法】

```
XCamReturn
rk_aiq_uapi2_customAE_enable(const rk_aiq_sys_ctx_t* ctx, bool enable);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针,可兼容单摄及环视应用	输入
enable	AE算法使能位	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

rk_aiq_uapi2_customAE_unRegister

【描述】

注册AE算法库

【语法】

```
XCamReturn
rk_aiq_uapi2_customAE_unRegister(const rk_aiq_sys_ctx_t* ctx);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针,可兼容单摄及环视应用	输入

【返回值】

返回值	描述
0	成功
非0	失败,详见错误码表

回调函数

用户需要在自开发定制的AE库中实现以下回调函数:

```
rk_aiq_customeAe_cbs_t cbs = {
    .pfn_ae_init = custom_ae_init,
    .pfn_ae_run = custom_ae_run,
    .pfn_ae_ctrl = custom_ae_ctrl,
    .pfn_ae_exit = custom_ae_exit,
};
```

成员名称	描述
pfn_ae_init	初始化AE的回调函数指针
pfn_ae_run	运行AE的回调函数指针
pfn_ae_ctrl	控制AE内部状态的回调函数指针【该参数暂时无效】
pfn_ae_exit	销毁AE的回调函数指针

custom_ae_init

【描述】

初始化AE算法库

【语法】

```
int32_t custom_ae_init(void* ctx);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针,可兼容单摄及环视应用	输入

【返回值】

返回值	描述
0	成功
⊒⊨0	失败,详见错误码表

custom_ae_run

【描述】

运行AE算法库,计算得到sensor的曝光时间和增益、ISP的数字增益,及更新硬件配置参数

【语法】

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针,可兼容单摄及环视应用	输入
pstAeInfo	输入数据参数指针,包含AE硬件统计信息及其同步的曝光信息	输入
pstAeResult	输出算法结果指针,包含sensor的曝光结果参数,及更新硬件配置 参数	输出

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

custom_ae_ctrl

【描述】

改变算法库内部状态,暂无法使用

【语法】

int32_t custom_ae_ctrl(void* ctx, uint32_t u32Cmd, void *pValue);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针,可兼容单摄及环视应用	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

custom_ae_exit

【描述】

注销AE算法库

【语法】

int32_t custom_ae_exit(void* ctx);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针,可兼容单摄及环视应用	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

输入数据参数

【说明】

第三方AE输入数据参数包括图像亮度统计值及对应的曝光参数值,可兼容单摄和环视应用 【定义】

```
#define RK_AIQ_MAX_HDR_FRAME (3)
typedef struct rk_aiq_customAe_stats_s
{
    //hw stats
    Aec_Stat_Res_t rawae_stat[RK_AIQ_MAX_HDR_FRAME]; // before awb gain
    Aec_Stat_Res_t extra; // after awb gain, lsc, TMO

    //exposure
    RkAiqExpParamComb_t linear_exp;
    RkAiqExpParamComb_t hdr_exp[RK_AIQ_MAX_HDR_FRAME];

    struct rk_aiq_customAe_stats_s* next; // for surround view(multiple cams)
} rk_aiq_customAe_stats_t;
```

【成员】

成员名称	描述	
rawae_stat[RK_AIQ_MAX_HDR_FRAME]	基于raw图的前置硬件统计信息,最多支持3帧raw图统计。线性曝光模式下,仅rawae_stat[0]有效;Hdr曝光模式下,rawae_stat[0-2]依次表示短、中、长帧的硬件统计信息	
extra	基于raw图的后置硬件统计信息,Hdr模式下:代表合成帧硬件统计信息	
linear_exp	线性模式下的曝光参数,与硬件统计信息同步	
hdr_exp[RK_AIQ_MAX_HDR_FRAME]	Hdr模式下的曝光参数,与硬件统计信息同步,其中 0~2分别表示短、中、长帧的曝光参数	
next	仅环视多摄应用下有效,该指针指向下一个camera 的输入数据参数,各camera对应的输入参数成员内 容相同;非环视多摄应用,该指针为空	

【说明】

- 输入数据参数分为两类参数,分别是图像的硬件统计信息与图像所对应的曝光参数
- 输入数据参数可兼容单摄及环视多摄应用,通过next指针获取多个camera的输入数据参数
- 图像的硬件统计信息数据类型为Aec_Stat_Res_t,曝光信息数据类型为RkAiqExpParamComb_t,数据类型说明详见《Rockchip_Development_Guide_ISP30》文档
- RK_AIQ_MAX_HDR_FRAME表示RK至多支持3帧HDR

输出算法结果参数

【说明】

第三方AE输出结果参数包括曝光参数、硬件参数等,兼容单摄和环视应用

【定义】

```
unsigned int* pRegValue;
    unsigned int* pDelayFrames;
} rk_aiq_i2c_data_t;
typedef struct rk_aiq_customeAe_results_singel_s
    //exposure result (including:reg value & real value)
    RkAiqExpParamComb_t linear_exp;
    RkAiqExpParamComb_t hdr_exp[RK_AIQ_MAX_HDR_FRAME];
    rk_aiq_i2c_data_t exp_i2c_params;
   //hw result
    struct window meas_win;
    unsigned char meas_weight[15 * 15];
    struct rk_aiq_customeAe_results_singel_s* next; // for surround
view(multiple cams)
} rk_aiq_customeAe_results_single_t;
typedef struct rk_aiq_customeAe_results_s
    //exposure result (including:reg value & real value)
    RkAiqExpParamComb_t linear_exp;
    RkAiqExpParamComb_t hdr_exp[RK_AIQ_MAX_HDR_FRAME];
    rk_aiq_i2c_data_t exp_i2c_params;
   //hw result
    struct window meas_win;
    unsigned char meas_weight[15 * 15];
    RkAiqIrisParamComb_t Iris;
    uint32_t frame_length_lines;
           is_longfrm_mode;
    bool
    struct rk_aiq_customeAe_results_singel_s* next; // for surround
view(multiple cams)
} rk_aiq_customeAe_results_t;
```

成员名称	子成员	描述
linear_exp	exp_real_params exp_sensor_params	线性模式下的曝光参数,包含曝光实际值(exp_real_params)和RK格式的寄存值(exp_sensor_params)
hdr_exp[RK_AIQ_MAX_HDR_FRAME]	exp_real_params exp_sensor_params	Hdr模式下的曝光参数,包含曝光实际值(exp_real_params)和RK格式的寄存值(exp_sensor_params)其中0~2分别表示短、中、长帧的曝光参数,对于HDR2帧合成,0与1元素有效,对于HDR3帧合成,0-2皆有效
exp_i2c_params	bValid nNumRegs pRegAddr pRegValue pDelayFrames	i2c寄存器值参数 当bValid为true时,使用 exp_i2c_params参数进行寄存器值设 置;当bValid为false时,使用上述 linear_exp或hdr_exp中的RK格式寄存 器值参数进行寄存器设置
frame_length_lines		sensor的vts值,与帧率设置有关
is_longfrm_mode		长帧模式使能位 true:开启长帧模式;false:关闭长帧 模式 该参数仅在Hdr模式下有效
Iris	PIris DCIris	光圈设置参数,包含P光圈和DC光圈设置参数
meas_win	h_offs v_offs h_size v_size	硬件统计窗口区域参数 h/v_offs分别表示窗口左上角顶点相对 于感光区域左上角顶点沿水平、竖直 方向的偏移; h/v_size分别表示窗口沿水平、竖直方 向的尺寸大小
meas_weight		硬件统计权重参数,包含15X15个权重 参数,取值范围0~32
next		非环视应用,该指针需为空; 环视应用,若多个camera需要设置相同的算法结果,该指针需为空,仅需设置rk_aiq_customeAe_results_t中的成员,而后所有camera皆使用rk_aiq_customeAe_results_t中的算法结果作为各自的最终结果;若多个camera需要设置不同的算法结果,需由用户自行申请next指针内存,添加下一个camera的算法结果

【注意事项】

- 输出算法结果,可兼容单摄应用及环视多摄应用。环视多摄应用下,可兼容单一算法结果和多个算法结果。
- meas_win为AE硬件统计的窗口区域参数,硬件统计(分块亮度、直方图)将基于窗口区域展开。 对于HDR多帧曝光应用,默认所有帧的硬件统计窗口一致。

- meas_weight为加权直方图统计所需的权重参数,一般该参数需与分块加权亮度均值所使用的的权重(软件权重)一致
- 设置曝光时,需要配置曝光实际值及对应寄存器值。曝光实际值包括:曝光时间(单位:秒)、曝光增益(单位:倍数)、DCG状态(0:LCG,1:HCG),供其他算法模块使用;曝光寄存器值为与sensor对接的寄存器值,支持RK格式和第三方格式。
- 设置曝光寄存器值时,支持使用RK格式和第三方格式。RK格式的寄存器值无需客户设置,内部自 行根据曝光实际值转换,要求exp_i2c_params中的bValid值为false;第三方格式需要用户设置所 需寄存器值及对应地址,要求exp_i2c_params中的bValid值为true.
- 对于环视应用,如环视中所有camera需设置相同的曝光和硬件值,仅需设置 rk_aiq_customeAe_results_t内的参数,next指针为空;如环视中各camera需要设置不同的曝光 和硬件中,则需要按照顺序依次设置结果值,为next指针分配内存指向下一个camera算法结果。 需要注意的是,rk_aiq_customeAe_results_t与rk_aiq_customeAe_results_single_t中的参数存在 不同之处,前者相较于二者多了个别结果参数,其作为公共参数,默认所有camera都设置相同 值。
- 图像的硬件统计信息数据类型为Aec_Stat_Res_t, RK曝光信息数据类型为 RkAiqExpParamComb_t, RK光圈参数数据类型为RkAiqIrisParamComb_t, 上述数据类型说明详 见《Rockchip_Development_Guide_ISP30》文档

2.2 AWB 算法注册

RK AWB 算法实现了一个 rk_aiq_uapi_customAWB_register 的注册函数,用户调用注册函数以实现向 ISP 注册 Custom AWB 算法,示例和 AE 算法库注册类似,并通过 rk_aiq_uapi_customAWB_enable 去使能Custom AWB 算法。

注: 为顺利开展移植工作, 在移植前建议查看:

- (1)《Rockchip_Color_Optimization_Guide》文档的以下内容,
 - (a)"2 AWB/2.1功能描述"章节内容及AWB流程图内容
 - (b)"2 AWB/2.2关键参数/硬件的白点检测流程"章节中图 AWB 白点检测流程图
- (2)《Rockchip_Development_Guide_ISP30》"统计信息 / 数据类型 / rk_aiq_isp_awb_stats2_v3x_t " 章节

2.2.1 API

rk_aiq_uapi_customAWB_register

【描述】

Custom AWB 算法注册。

【语法】

XCamReturn

rk_aiq_uapi_customAWB_register(const rk_aiq_sys_ctx_t* ctx,
rk_aiq_customeAwb_cbs_t* cbs);

【参数】

参数 名称	描述	输入/ 输出
ctx	AIQ上下文指针	输入
cbs	Custom AWB 算法向 ISP 库注册的回调函数,参考后面的 rk_aiq_customeAwb_cbs_t 结构体说明	输入

【返回值】

返回值	描述
0	成功
≢ E0	失败,详见错误码表

【注意】

• 须先调用 rk_aiq_uapi_sysctl_init 初始化AIQ上下文指针 ctx。

【需求】

• 头文件: rk_aiq_user_api_custom_awb.h

• 库文件: librkaiq.so

rk_aiq_uapi_customAWB_enable

【描述】

Custom AWB 算法使能。

【语法】

XCamReturn

rk_aiq_uapi_customAWB_enable(const rk_aiq_sys_ctx_t* ctx, bool enable);

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入
enable	Custom AWB 使能开关 取值: true / false 默认值: false	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【注意】

• 须在 rk_aiq_uapi_customAWB_register 完成 Custom AWB 算法注册之后调用。

【需求】

• 头文件: rk_aiq_user_api_custom_awb.h

• 库文件: librkaiq.so

rk_aiq_uapi_customAWB_unRegister

【描述】

Custom AWB 算法注销。

【语法】

```
XCamReturn
rk_aiq_uapi_customAWB_unRegister(const rk_aiq_sys_ctx_t* ctx);
```

【参数】

参数名称	描述	输入/输出
ctx	AIQ上下文指针	输入

【返回值】

返回值	描述
0	成功
非0	失败, 详见错误码表

【注意】

• 须在 rk_aiq_uapi_customAWB_register 完成 Custom AWB 算法注册之后调用。

【需求】

• 头文件: rk_aiq_user_api_custom_awb.h

• 库文件: librkaiq.so

2.2.2 数据类型

向 ISP 库注册的回调函数

rk_aiq_customeAwb_cbs_t

【说明】

定义Custom AWB 算法向 ISP 库注册的回调函数。

【定义】

```
typedef struct rk_aiq_customeAwb_cbs_s
{
   int32_t (*pfn_awb_init)(void* ctx);
   int32_t (*pfn_awb_run)(void* ctx, const rk_aiq_customAwb_stats_t*
pstAwbInfo, rk_aiq_customeAwb_results_t* pstAwbResult);
   int32_t (*pfn_awb_run)(void* ctx, uint32_t u32Cmd, void *pValue);
   int32_t (*pfn_awb_exit)(void* ctx);
} rk_aiq_customeAwb_cbs_t;
```

【成员】

成员名称	描述
pfn_awb_init	初始化 第一次初始化后将被 AwbDemoPrepare 函数调用
pfn_awb_ctrl	控制 Custom AWB 内部状态的回调函数指针,暂不支持。
pfn_awb_run	运行 Custom AWB 的回调函数指针 rk_aiq_customAwb_stats_t 及 rk_aiq_customeAwb_results_t 参考后面的说明 被 AwbDemoProcessing 调用 若 pstAwbResult==nullptr 表示为初始化那一次,用于配置初始化时的 pstAwbResult,否则需实现基于统计信息 pstAwbInfo 计算 pstAwbResult 的 功能 若为环视模式时,且所有 camera 配置参数均相同,按前述实现即可;否则需 配置 pstAwbResult->next(对应于第一个camera),pstAwbResult->next->next(对应于第二个camera),等所有camera(注: pstAwbResult 对应于第 0个camera的配置)
pfn_awb_exit	释放申请的内存等 被AwbDemoDestroyCtx调用

【注意】

- 用户需要在自开发定制的 AWB 库中实现以上回调函数。
- pfn_awb_run实现可参考third_party_awb_algo.cpp 的custom_awb_run函数中的伪代码

统计信息

rk_aiq_customAwb_stats_t

【说明】

定义Custom AWB 算法获取的白平衡硬件统计信息。

【定义】

```
typedef struct rk_aiq_customAwb_stats_s
{
    rk_aiq_awb_stat_wp_res_light_v201_t light[RK_AIQ_AWB_MAX_WHITEREGIONS_NUM];
    int WpNo2[RK_AIQ_AWB_MAX_WHITEREGIONS_NUM];
    rk_aiq_awb_stat_blk_res_v201_t blockResult[RK_AIQ_AWB_GRID_NUM_TOTAL];
    rk_aiq_awb_stat_wp_res_light_v201_t multiwindowLightResult[4];
    rk_aiq_awb_stat_wp_res_v201_t
excWpRangeResult[RK_AIQ_AWB_STAT_WP_RANGE_NUM_V201];
    unsigned int WpNoHist[RK_AIQ_AWB_WP_HIST_BIN_NUM];
    struct rk_aiq_customAwb_stats_s* next;
} rk_aiq_customAwb_stats_t;
```

成员名称	描述
light	主窗口下不同光源下的白点统计结果,最多 RK_AIQ_AWB_MAX_WHITEREGIONS_NUM 个光源。
WpNo2	主窗口下不同光源下的xy域和uv域交集的白点个数,没有小数位。
blockResult	每个块的 RGB 累加 图像采用均匀分块方式,共 15x15(RK_AIQ_AWB_GRID_NUM_TOTAL)块。
multiwindowLightResult	几个子窗口内不同光源下的白点统计结果(只记录前4个光源,可以 用时分复用方法记录所有光源),最多4个子窗口。
excWpRangeResult	落在 excludeWpRange 区域里的点的统计结果(只会记录 excludeWpRange 前四个区域),最多4个区域。
WpNoHist	白点直方图每个 bin 的白点个数,没有小数位; 统计的是 XY 大框还是 XY 中框的白点由寄存器 xyRangeTypeForWpHist 确定。
next	仅环视多摄应用下有用,该指针指向下一个camera的白平衡硬件统计信息;

• 各成员详见《Rockchip_Development_Guide_ISP30》"统计信息/数据类型" 章节 rk_aiq_isp_awb_stats2_v3x_t 结构体成员的定义。

运算结果

rk_aiq_customeAwb_results_t

【说明】

定义Custom AWB 算法的配置参数及运算结果。

【定义】

```
typedef struct rk_aiq_customeAwb_results_s
{
   bool IsConverged; //true: converged; false: not converged
   rk_aiq_wb_gain_t awb_gain_algo;
   float awb_smooth_factor;
   rk_aiq_customAwb_hw_cfg_t awbHwConfig;
   rk_aiq_customeAwb_single_results_t *next;//defalut vaue is nullptr,which
means all cameras with the same cfg;
} rk_aiq_customeAwb_results_t;
```

成员名称	描述
IsConverged	表征当前AWBgain是否收敛; true 已收敛,false 未收敛; 默认值:false; 必须配置。
awb_gain_algo	Custom AWB 算法得出的R、Gr、Gb、B 颜色通道的增益; 默认值: {1.0, 1.0, 1.0, 1.0}, 不做白平衡校正; 必须配置。
awb_smooth_factor	提供给 CCM 和 LSC 的帧间平滑因子,值越大当前帧的权重越小;取值范围:[0,1]; 默认值:0.5; 可以不配置。
awbHwConfig	Custom AWB 算法的硬件配置参数; 大部分参数和模组相关需配置正确,其他参数均已配置了默认值,可以 不更新; 详情看后面 rk_aiq_customAwb_hw_cfg_t 结构体说明。
next	非环视无需关心; 环视应用,若多个camera需要设置相同的算法结果,该指针需为空即可,而后所有camera皆使用rk_aiq_customeAwb_results_t中的算法结果作为各自的最终结果;若多个camera需要设置不同的rk_aiq_customeAwb_single_results_t成员结果,需由用户自行申请next指针内存,添加下一个camera的rk_aiq_customeAwb_single_results_t结果,则next对应的成员数值将取代rk_aiq_customeAwb_results_t中的成员数值rk_aiq_customeAwb_single_results_t定义看后面描述

$rk_aiq_customeAwb_single_results_t$

【说明】

定义Custom AWB 算法的环视模式下各个camera的配置参数及运算结果,非环视无需关心

【定义】

```
typedef struct rk_aiq_customeAwb_single_results_s
{
    rk_aiq_wb_gain_t awb_gain_algo;//for each camera
    rk_aiq_customAwb_single_hw_cfg_t awbHwConfig;//for each camera
    struct rk_aiq_customeAwb_single_results_s *next;
} rk_aiq_customeAwb_single_results_t;
```

成员名称	描述
awb_gain_algo	同rk_aiq_customeAwb_results_s中awb_gain_algo成员的含义
awbHwConfig	该结构体成员与rk_aiq_customeAwb_results_s中awbHwConfig结构体中相同名字的成员含义相同
next	同rk_aiq_customeAwb_results_s中anext成员的含义

rk_aiq_wb_gain_t

• 详见《Rockchip_Development_Guide_ISP30》"AWB/功能级API/数据类型"章节rk_aig_wb_gain_t 结构体定义。

rk_aiq_customAwb_hw_cfg_t

【说明】

定义Custom AWB 算法的硬件配置参数,包括UV、XY、YUV 域 AWB 白点统计参数,主窗口多窗口配置,非白点和附加白点区间配置,统计帧选择等。

【定义】

```
typedef struct rk_aiq_customAwb_hw_cfg_s {
    bool awbEnable;
    bool lscBypEnable;
    uint8_t frameChoose;
    unsigned short windowSet[4];
    unsigned char lightNum;
    unsigned short maxR;
    unsigned short minR;
    unsigned short maxG;
    unsigned short minG;
    unsigned short maxB;
    unsigned short minB;
    unsigned short maxY;
    unsigned short minY;
    bool uvDetectionEnable;
    rk_aiq_awb_uv_range_para_t uvRange_param[RK_AIQ_AWB_MAX_WHITEREGIONS_NUM];
    bool xyDetectionEnable;
    rk_aiq_rgb2xy_para_t
                              rgb2xy_param;
    rk_aiq_awb_xy_range_para_t
 xyRange_param[RK_AIQ_AWB_MAX_WHITEREGIONS_NUM];
    bool threeDyuvEnable;
    unsigned short threeDyuvIllu[RK_AIQ_AWB_YUV_LS_PARA_NUM];
           icrgb2RYuv_matrix[12];
    short
    rk_aiq_awb_rt3dyuv_range_para_t
ic3Dyuv2Range_param[RK_AIQ_AWB_YUV_LS_PARA_NUM];
    bool multiwindow_en;
    unsigned short multiwindow[RK_AIQ_AWB_MULTIWINDOW_NUM_V201][4];
    rk_aiq_awb_exc_range_v201_t excludeWpRange[RK_AIQ_AWB_EXCLUDE_WP_RANGE_NUM];
    bool wpDiffWeiEnable;
    unsigned char wpDiffwei_y[RK_AIQ_AWBWP_WEIGHT_CURVE_DOT_NUM];
    unsigned char wpDiffwei_w[RK_AIQ_AWBWP_WEIGHT_CURVE_DOT_NUM];
    rk_aiq_awb_xy_type_v201_t xyRangeTypeForWpHist;
    bool blkWeightEnable;
    unsigned char blkweight[RK_AIQ_AWB_GRID_NUM_TOTAL];
    rk_aiq_awb_blk_stat_mode_v201_t blkMeasureMode;
    rk_aiq_awb_xy_type_v201_t xyRangeTypeForBlkStatistics;
    rk_aiq_awb_blk_stat_realwp_ill_e illIdxForBlkStatistics;
} rk_aiq_customAwb_hw_cfg_t;
```

成员名称	描述
awbEnable	AWB 统计使能开关; true 使能,false 未使能; 默认值: true。
lscBypEnable	AWB 统计通路的 LSC bypass 使能开关; true 使能(不经过LSC),false 未使能(经过LSC); 默认值:false。
frameChoose	AWB 硬件统计的输入帧选择; 取值范围:{0,1,2},分别表示短、中、长帧; 默认值:线性模式为0,宽动态模式为1。
windowSet	AWB 统计主窗口配置; windowSet=[h_offset,v_offset,h_size,v_size], h: 水平方向, v: 垂直方向; 取值范围: [0x0, 0xfff]; h_size* v_size 需小于 5120*2880; 默认值: {0, 0, RawWidth, RawHeight}, 全窗口,若不改变窗口,无需配置。
lightNum	参与统计的光源数量; 取值范围: [0, 7]; 默认值: 7。 需依据标定时采用的光源数配置,标定工具会输出。
maxR	RGB 域统计白点信息时,白点检测的R通道上限; 取值范围: [0x0, 0xff]; 默认值: 230。
minR	RGB 域统计白点信息时,白点检测的R通道下限; 取值范围: [0x0, 0xff]; 默认值: 3。
maxG	RGB 域统计白点信息时,白点检测的G通道上限; 取值范围: [0x0, 0xff]; 默认值: 230。
minG	RGB 域统计白点信息时,白点检测的G通道下限; 取值范围: [0x0, 0xff]; 默认值: 3。
maxB	RGB 域统计白点信息时,白点检测的B通道上限; 取值范围:[0x0, 0xff]; 默认值:230。
minB	RGB 域统计白点信息时,白点检测的B通道下限; 取值范围: [0x0, 0xff]; 默认值: 3。
maxY	RGB 域统计白点信息时,白点检测的Y通道上限; 取值范围: [0x0, 0xff]; 默认值: 230。

成员名称	描述
minY	RGB 域统计白点信息时,白点检测的Y通道下限; 取值范围: [0x0, 0xff]; 默认值: 3。
uvDetectionEnable	UV 域白点检测使能开关; true 使能(在 UV 域白点区间内的点为白点),false 未使能 (所有点均为白点); 默认值:true。
uvRange_param	UV 域四边形白点区域限制参数,最多支持7个光源; 和模组相关,当 uvDetectionEnable 为 ture 时必须配置正确; 可以由标定工具得到未定点化的参数; 详见后面 rk_aiq_awb_uv_range_para_t 结构体说明。
xyDetectionEnable	XY 域白点检测使能开关; true 使能(在 XY 域白点区间内的点为白点),false 未使能 (所有点均为白点); 默认值:true。
rgb2xy_param	RGB 域到 XY 域变换参数; 和模组相关,当 xyDetectionEnable 为 true 时必须配置正确; 可以由标定工具得到未定点化的参数 详见后面rk_aiq_rgb2xy_para_t结构体说明。
xyRange_param	XY 域四边形白点区域限制参数,最多支持7个光源; 和模组相关,当 xyDetectionEnable 为 true 时必须配置正确; 可以由标定工具得到未定点化的参数; 详见后面 rk_aiq_awb_xy_range_para_t 结构体说明。
threeDyuvEnable	YUV 域白点检测使能开关; true 使能,false 未使能; 默认值:true。
threeDyuvIllu	YUV 域白点检测的光源选择,最多支持4个光源; 取值范围: [0, 7], 7 表示禁用 YUV 域白点检测(所有点均为白点), 其他数字表示使能相应的光源; 默认值: {7, 7, 7, 7}。
icrgb2RYuv_matrix	RGB 域到YUV 域旋转矩阵参数; 和模组相关,当 threeDyuvEnable 且 turethreeDyuvIllu 不为7时,必须配置正确; 取值范围: 最后一列[-2^12,2^12-1],其余[-2^9,2^9-1]可以由标定工具得到未定点化的参数;
ic3Dyuv2Range_param	YUV 域白点限制参数; 和模组相关,当 threeDyuvEnable且turethreeDyuvIllu 不为7时,必须配置正确; 可以由标定工具得到未定点化的参数; 详见 rk_aiq_awb_rt3dyuv_range_para_t 结构体说明。
multiwindow_en	AWB 多窗口统计使能开关; true 使能,false 未使能; 默认值:false。

成员名称	描述
multiwindow	AWB 多窗口配置,最多支持4个窗口,multiwindow[i]= [h_offset,v_offset,h_size,v_size],h: 水平方向,v: 垂直方向; 取值范围: [0x0, 0xfff]。
excludeWpRange	UV或XY域白点区间或非白点区间,最多可支持配置7个,其中前4个可配置附加白点区间;和模组相关。 详见后面rk_aiq_awb_exc_range_v201_t结构体说明
wpDiffWeiEnable	白点亮度权重调节配置使能开关; true 使能,false 未使能; 默认值:false。
wpDiffwei_y	白点亮度直方图的亮度分区间,共9个端点; 取值范围: [0x0, 0xff] wpDiffwei_y 需满足相邻间隔为2的幂次方。
wpDiffwei_w	wpDiffwei_y 各点对应的权重; 取值范围: [0, 31], 5bit小数位; 默认值: 31。
xyRangeTypeForWpHist	选择白点亮度直方图的统计是在大框还是中框; 取值范围: RK_AIQ_AWB_XY_TYPE_NORMAL_V201 或 RK_AIQ_AWB_XY_TYPE_BIG_V201,分别表示选择中框和大 框; 默认值: RK_AIQ_AWB_XY_TYPE_NORMAL_V201。
blkWeightEn	块权重配置使能开关; true 使能,false 未使能; 默认值:false。
blkWeight	块权重; 取值范围: [0,63], 6bit小数位。
blkMeasureMode	用于选择块统计的是白点还是所有点; 取值范围: RK_AIQ_AWB_BLK_STAT_MODE_ALL_V201 或 RK_AIQ_AWB_BLK_STAT_MODE_REALWP_V201, 分别表示块 内所有点和只有块内白点参与统计; 默认值: RK_AIQ_AWB_BLK_STAT_MODE_ALL_V201。
xyRangeTypeForBlkStatistics	用于选择块统计的是白点是大框的还是中框的(当blkMeasureMode 为RK_AIQ_AWB_BLK_STAT_MODE_REALWP_V201,该配置才有意义); 取值范围: RK_AIQ_AWB_XY_TYPE_NORMAL_V201或RK_AIQ_AWB_XY_TYPE_BIG_V201,分别表示 Normal 和 Big 区域;默认值: RK_AIQ_AWB_XY_TYPE_NORMAL_V201。

成员名称	描述
illIdxForBlkStatistics	用于选择统计的是哪个光源的白点(当blkMeasureMode 为RK_AIQ_AWB_BLK_STAT_MODE_REALWP_V201,该配置才有意义) 取值范围: {RK_AIQ_AWB_BLK_STAT_REALWP_ILL0, RK_AIQ_AWB_BLK_STAT_REALWP_ILL1, RK_AIQ_AWB_BLK_STAT_REALWP_ILL2, RK_AIQ_AWB_BLK_STAT_REALWP_ILL3, RK_AIQ_AWB_BLK_STAT_REALWP_ILL4, RK_AIQ_AWB_BLK_STAT_REALWP_ILL5, RK_AIQ_AWB_BLK_STAT_REALWP_ILL5, RK_AIQ_AWB_BLK_STAT_REALWP_ILL6, RK_AIQ_AWB_BLK_STAT_REALWP_ALL}; 默认值: RK_AIQ_AWB_BLK_STAT_REALWP_ALL, 即所有白点。

- 标黑的参数配置需注意,其他参数可直接使用已配置的默认值
- 更深入了解这些参数可参考《Rockchip_Color_Optimization_Guide》文档的以下内容,
 - (a)"2 AWB/2.1功能描述"章节内容及AWB流程图内容
 - (b)"2 AWB/2.2关键参数/硬件的白点检测流程"章节中图 AWB 白点检测流程图

rk_aiq_customAwb_hw_cfg_t

【说明】

定义环视模式下各个camea差异化的硬件配置, 非环视无需关心

【定义】

```
typedef struct rk_aiq_customAwb_single_hw_cfg_t {
   unsigned short windowSet[4];
  bool multiwindow_en;
  unsigned short multiwindow[RK_AIQ_AWB_MULTIWINDOW_NUM_v201][4];
  bool blkWeightEnable;
  unsigned char blkWeight[RK_AIQ_AWB_GRID_NUM_TOTAL];
} rk_aiq_customAwb_single_hw_cfg_t;
```

【成员】

成员名称	描述
windowSet	同rk_aiq_customAwb_hw_cfg_t中windowSet含义
multiwindow_en	同rk_aiq_customAwb_hw_cfg_t中multiwindow_en含义
multiwindow	同rk_aiq_customAwb_hw_cfg_t中multiwindow含义
blkWeightEnable	同rk_aiq_customAwb_hw_cfg_t中blkWeightEnable含义
blkWeight	同rk_aiq_customAwb_hw_cfg_t中blkWeight含义

rk_aiq_awb_uv_range_para_t

定义Custom AWB 算法的 UV 域四边形白点区域限制参数

【定义】

```
typedef struct rk_aiq_awb_uv_range_para_s {
   unsigned short pu_region[5];
   unsigned short pv_region[5];
   int slope_inv[4];
} rk_aiq_awb_uv_range_para_t;
```

【成员】

成员名称	描述
pu_region	UV 域白点区域的 U 坐标,构成一个闭环,如 [u0, u1,u2, u3, u0]; 取值范围:[0x0, 0x1ff],1比特小数位。
pv_region	UV 域白点区域的 V 坐标,构成一个闭环,如 [v0, v1, v2, v3, v0]; 取值范围: [0x0, 0x1ff],1比特小数位。
slope_inv	UV 域白点区域四条边的斜率倒数; 取值范围: [-2^19, 2^19-1], 10比特小数位。

【注意】

- 基于《Rockchip_Color_Optimization_Guide_ISP30》"AWB/UV domain white points detector" 章节的参数定点化或换算而来,而该参数由标定工具获取
- 和模组相关, 当uvDetectionEnable为ture时必须配置正确

rk_aiq_rgb2xy_para_t

【说明】

定义Custom AWB 算法的 RGB 域到 XY 域变换参数。

【定义】

```
typedef struct rk_aiq_rgb2xy_para_s {
   unsigned short pseudoLuminanceWeight[3];
   short rotationMat[9];
} rk_aiq_rgb2xy_para_t;
```

成员名称	描述
pseudoLuminanceWeight	RGB 域到 XY 域变换参数; 取值范围: [0, 2^12-1],12bit小数位。
rotationMat	RGB 域到 XY 域变换参数; 取值范围: [-2^14, 2^14-1],12bit小数位。

- 基于《Rockchip_Color_Optimization_Guide_ISP30》"AWB/RGB2XY" 章节的参数定点化而来, 而该参数由标定工具获取
- 和模组相关,当xyDetectionEnable为ture时必须配置正确

rk_aiq_awb_xy_range_para_t

【说明】

定义Custom AWB 算法的 XY 域四边形白点区域限制参数。

【定义】

```
typedef struct rk_aiq_awb_xy_range_para_s {
   int NorrangeY[2];
   int SperangeX[2];
   int SperangeY[2];
   int SmalrangeX[2];
   int SmalrangeX[2];
   int SmalrangeY[2];
} rk_aiq_awb_xy_range_para_t;
```

成员名称	描述
NorrangeX	XY 域中框白点区间的水平方向起止坐标 [x0,x1]; 取值范围: [-2^13, 2^13-1],10bit小数位。
NorrangeY	XY 域中框白点区间的竖直方向起止坐标 [y0,y1]; 取值范围: [-2^13, 2^13-1],10bit小数位。
SperangeX	XY 域大框白点区间的水平方向起止坐标 [x0,x1]; 取值范围: [-2^13, 2^13-1],10bit小数位。
SperangeY	XY 域大框白点区间的竖直方向起止坐标 [y0,y1]; 取值范围: [-2^13, 2^13-1],10bit小数位。
SmalrangeX	XY 域小框白点区间的水平方向起止坐标 [x0,x1],目前版本不支持; 取值范围:[-2^13, 2^13-1],10bit小数位。
SmalrangeY	XY 域小框白点区间的竖直方向起止坐标 [y0,y1],目前版本不支持; 取值范围:[-2^13, 2^13-1],10bit小数位。

- 基于《Rockchip_Color_Optimization_Guide_ISP30》"AWB/XY domain white points detector" 章节的参数定点化而来,而该参数由标定工具获取
- 和模组相关,当xyDetectionEnable为ture时必须配置正确

rk_aiq_awb_rt3dyuv_range_para_t

【说明】

定义Custom AWB 算法的 YUV 域白点限制参数。

【定义】

```
typedef struct rk_aiq_awb_rt3dyuv_range_para_s {
   unsigned char thcurve_u[6];
   unsigned short thcure_th[6];
   unsigned short lineP1[3];
   short vP1P2[3];
   unsigned char disP1P2;
} rk_aiq_awb_rt3dyuv_range_para_t;
```

成员名称	描述
thcurve_u	分段直线 u-th 的u分量; 取值范围: [0x0, 0xff]; 注: 需满足相邻两个 u 分量的差为2的幂次方。
thcure_th	分段直线 u-th 的 th 分量; 取值范围: [0x0, 0xfff], 4bit小数位; 注: 分段直线 u-th 必须为单调递增。
lineP1	计算理论白点(y', u0, v0)所需参数, YUV 域 p1 点坐标; 每个分量取值范围: [0x0, 0xfff], 4bit小数位。
vP1P2	计算理论白点(y', u0, v0)所需参数, YUV 域 p1点到p2点的向量; 每个分量取值范围: [-2^12, 2^12-1], 4bit小数位。
disP1P2	p1、p2两点间的欧式距离为 2^disP1P2; 取值范围:[0,5]。

- 基于《Rockchip_Color_Optimization_Guide_ISP30》"AWB/YUV domain white points detector" 章节的参数定点化或换算而来,而该参数由标定工具获取
- 和模组相关,当 threeDyuvEnable 为 ture且threeDyuvIllu 不为7时必须配置正确

rk_aiq_awb_exc_range_v201_t

【说明)

定义Custom AWB 算法的 UV 或 XY 域白点排除/附加区域限制参数。

【定义】

```
typedef struct rk_aiq_awb_exc_range_v201_s {
    rk_aiq_awb_exc_range_domain_t domain;
    bool excludeEnable[RK_AIQ_AWB_XY_TYPE_MAX_v201];
    bool measureEnable;
    int xu[2];
    int yv[2];
} rk_aiq_awb_exc_range_v201_t;
```

成员名称	描述
rk_aiq_awb_exc_range_domain_t	控制排除/附加区白点区间在xy域或uv与的选择; 取值范围: RK_AIQ_AWB_EXC_RANGE_DOMAIN_UV 或 RK_AIQ_AWB_EXC_RANGE_DOMAIN_XY,分别表示 UV 和 XY域。
excludeEnable	排除区域使能开关; true 使能,false 未使能; 默认值:true。
measureEnable	是否统计排除/附加区域内 RGain BGain通道的累加和; true 统计,false 不统计; 默认值:false。
xu	UV 或 XY 域白点排除/附加区域的水平方向起止坐标, xu = {x0, x1}; 取值范围: [-2^13,2^13-1]。
yv	UV 或 XY 域白点排除/附加区域的竖直方向起止坐标, yv = {y0, y1}; 取值范围: [-2^13,2^13-1]。

• 最多可支持配置7个窗口,但只有前4个measureEnable可配置为true。

2.3 开发用户AF算法

用户不使用RK AF算法库时,可以根据3A统计值开发AF算法,实现变倍对焦等功能。

- 1. 首先调用rk_aiq_user_api2_af_SetAttrib进行AF统计相关的配置;
- 2. 其次使用rk_aiq_uapi_sysctl_get3AStatsBlk获取3A统计值,该API为阻塞式API,当有新3A统计值 生成时,会立即返回;
- 3. 然后用户AF算法可以根据3A统计值进行相关运算,驱动变倍马达、对焦马达进行移动;
- 4. 最后需要调用rk_aig_uapi_sysctl_release3AStatsRef释放获取的3A统计值;

算法整体流程如下图所示。

用户实现AF算法时,

2.3.1 AF统计模块

如果sensor输入HDR图像,AF模块可选择 HDR短/中/长曝的输出图像或HDR合成后的图像的一路数据,作为AF统计的输入数据。

如果sensor输入Normal图像,AF模块可选择sensor的输入图像或debayer后图像作为AF统计的输入数据。

一共支持两个窗口,主窗口A和独立窗口B。

独立窗口B使用固定算子进行FV值计算,可输出一个FV值、亮度值和高亮统计值。

2.3.2 AF统计窗口配置

主窗口A和独立窗口B支持矩形窗口配置。可配置矩形窗口左上角坐标和窗口宽高。

2.3.3 Gamma

Gamma将sensor输入raw图转换为人眼对自然亮度感知的程度。 x坐标分段为0 to 1023:

16 16 16 16 32 32 32 32 64 64 64 128 128 128 128 128 y坐标取值范围为0 to 1023。

2.3.4 Focus Filter

主窗口A提供V1/V2/H1/H2四个滤波器进行设置,独立窗口B使用固定算子进行计算。 V1/V2/H1/H2四个滤波器的频带可以调整,使用滤波器设计工具,生成滤波器寄存器值。

2.3.5 Luma/Highlight

主窗口A提供亮度统计和高亮计数统计。

FV值容易受到光源的影响,在聚焦模糊的时候因为光晕扩散,图像中低频分量会增加,会出现图像模糊 反而FV值变大的现象。

一般的解决方法是使用高亮计数器,聚焦模糊的时候因为光晕扩大,高亮点的个数会增加,清晰的时候,高亮点的个数会最小。

2.3.6 Luma Depend Gain

光源的影响也可以通过 LDG功能进行去除,根据像素亮度对FV值进行衰减,降低过亮点和过暗点处FV值。

亮度值在[ldg_xl, ldg_xh]之间时, Gain值输出为1, FV值不进行衰减;

亮度值在[0, ldg_xl]之间时,Gain值按照斜率ldg_kl进行衰减,Gain值最小为ldg_yl;

 $gain = 256 - ldg_kl*(ldg_xl - x)/256;$

gain = max(gain, ldg_yl);

亮度值在[ldg_xh, 255]之间时,Gain值按照斜率ldg_kh进行衰减,Gain值最小为ldg_yh;

gain = 256 - ldg_kh*(x-ldg_xh)/256;

gain = max(gain, ldg_yh);

水平方向H1/H2共享一条LDG曲线,垂直方向V1/V2共享一条LDG曲线。

2.3.7 Fv threshold

在Fv值计算时, 当Fv值小于Fv threshold阈值信息时, 不计入最后的输出, 可减少噪声的影响。

Fv threshold阈值是对滤波结果之后的LDG输出值做的阈值。

2.3.8 Fv Calc

Fv值支持绝对值模式和平方模式,平方模式将Fv值做平方运算,可增大清晰位置的FV值的比重。

为防止最后输出的Fv值溢出,主窗口A可设置v1/v2/h1/h2四个右移shift值,独立窗口可配置fv/luma 两个右移shift值。

2.3.9 Fv Output

主窗口A的输出包含15 * 15的v1/v2/h1/h2 Fv信息和15 * 15的luma/ highlight信息。

独立窗口B的输出包含一个Fv信息、一个亮度信息和一个高亮统计值。

主窗口A的输出在图像上的分布如下图

2.3.10 最终FV值的计算

可将H1和V1配置为低通频带,用于粗搜索,将H2和V2配置为高通频带,用于精搜索。

水平滤波输出H和垂直滤波输出V,可以用一定的权重进行加权。

```
FV = FvH * weight + FvV * (1-weight)
```

从各个block得到的FV值也可以根据需要按照一定的权重进行加权。

2.3.11 AF统计的配置

使用rk aig user api2 af SetAttrib进行配置

```
XCamReturn
rk_aiq_user_api2_af_SetAttrib(const rk_aiq_sys_ctx_t* sys_ctx,
rk_aiq_af_attrib_t attr);
```

参数名称	描述	输入/输出
sys_ctx	AIQ上下文指针	输入
attr	对焦的参数属性	输入

参数rk_aiq_af_attrib_t中的rk_aiq_af_algo_meas_v30_t说明如下:

```
typedef struct {
   unsigned char af_en;
   unsigned char rawaf_sel;
   unsigned char gamma_en;
   unsigned char gaus_en;
   unsigned char v1_fir_sel;
   unsigned char hiir_en;
   unsigned char viir_en;
   unsigned char v1_fv_outmode;
                                  // O square, 1 absolute
   unsigned char v2_fv_outmode; // 0 square, 1 absolute
   unsigned char h1_fv_outmode; // 0 square, 1 absolute
   unsigned char h2_fv_outmode;
                                  // 0 square, 1 absolute
   unsigned char ldg_en;
   unsigned char accu_8bit_mode; // fix to 1
   unsigned char ae_mode;
   unsigned char y_mode;
                                  // fix to 0
   unsigned char line_en[RKAIQ_RAWAF_LINE_NUM];
   unsigned char line_num[RKAIO_RAWAF_LINE_NUM];
   unsigned char window_num;
   unsigned short wina_h_offs;
   unsigned short wina_v_offs;
   unsigned short wina_h_size;
   unsigned short wina_v_size;
   unsigned short winb_h_offs;
   unsigned short winb_v_offs;
   unsigned short winb_h_size;
   unsigned short winb_v_size;
   unsigned short gamma_y[RKAIQ_RAWAF_GAMMA_NUM];
   // [old version param]
   unsigned short thres;
   unsigned char shift_sum_a;
   unsigned char shift_sum_b;
```

```
unsigned char shift_y_a;
    unsigned char shift_y_b;
   /********[Vertical IIR (v1 & v2)]********/
    short v1_iir_coe[9];
    short v1_fir_coe[3];
    short v2_iir_coe[3];
    short v2_fir_coe[3];
    /*******[Horizontal IIR (h1 & h2)]********/
    short h1_iir1_coe[6];
    short h2_iir1_coe[6];
    short h1_iir2_coe[6];
    short h2_iir2_coe[6];
   /********[Focus value statistic param]*******/
   // level depended gain
    // input8 lumi, output8bit gain
   unsigned char h_ldg_lumth[2]; //luminance thresh
                                  //gain for [minLum,maxLum]
    unsigned char h_ldg_gain[2];
    unsigned short h_ldg_gslp[2]; //[slope_low,-slope_high]
    unsigned char v_ldg_lumth[2];
    unsigned char v_ldg_gain[2];
    unsigned short v_ldg_gslp[2];
   // coring
    unsigned short v_fv_thresh;
    unsigned short h_fv_thresh;
    // left shift, more needed if outmode=square
    unsigned char v1_fv_shift; //only for sel1
    unsigned char v2_fv_shift;
    unsigned char h1_fv_shift;
    unsigned char h2_fv_shift;
   /*********[High light]*******/
   unsigned short highlit_thresh;
} rk_aiq_af_algo_meas_v30_t;
```

成员名称	描述
af_en	是否使能AF 信息统计,0为关闭,1为打开
rawaf_sel	选择AF信息统计的通道,取值范围0-3,对应hdr模式的长/中/短/合成帧通道 选择,一般AF选择中帧通道,非hdr模式设置为0,hdr模式设置为1
gamma_en	gamma模块使能开关,0为关闭,1为打开
gaus_en	需固定设置为1
v1_fir_sel	需固定设置为1
hiir_en	H1/H2通道使能开关,0为关闭,1为打开
viir_en	V1/V2通道使能开关,0为关闭,1为打开。需要注意gamma_en打开时, viir_en必须设置为1
v1_fv_outmode	V1通道FV输出模式选择,0为平方模式,1为绝对值模式
v2_fv_outmode	V2通道FV输出模式选择,0为平方模式,1为绝对值模式
h1_fv_outmode	H1通道FV输出模式选择,0为平方模式,1为绝对值模式
h2_fv_outmode	H2通道FV输出模式选择,0为平方模式,1为绝对值模式
ldg_en	LDG功能使能开关,0为关闭,1为打开
accu_8bit_mode	需固定设置为1
ae_mode	当ae_mode设置为1,RAWAF使能15x15亮度均值统计,复用了RAWAE_BIG模块的逻辑
y_mode	需固定设置为0
line_en	目前暂未生效
line_num	目前暂未生效
window_num	生效的窗口数,window_num为1时,wina(主窗口)生效;window_num为2时,wina(主窗口)和winb(独立窗口)生效
wina_h_offs	wina(主窗口)左上角第一个像素的水平坐标,该值必须大于等于2
wina_v_offs	wina(主窗口)左上角第一个像素的垂直坐标,该值必须大于等于1
wina_h_size	wina(主窗口)的窗口宽度,该值必须小于图像宽度-2-wina_h_offs;同时该值必须为15的倍数;
wina_v_size	wina(主窗口)的窗口高度,该值必须小于图像高度-2-wina_v_offs;同时该值必须为15的倍数;
winb_h_offs	winb(独立窗口)左上角第一个像素的水平坐标,该值必须大于等于2
winb_v_offs	winb(独立窗口)左上角第一个像素的垂直坐标,该值必须大于等于1
winb_h_size	winb(独立窗口)的窗口宽度,该值必须小于图像宽度-2-wina_h_offs
winb_v_size	winb(独立窗口)的窗口高度,该值必须小于图像高度-2-wina_v_offs

成员名称	描述
gamma_y	gamma table的y值,取值范围0-1023;x坐标分段为0 to 1023: 16 16 16 16 32 32 32 32 64 64 64 128 128 128 128
thres	win b(独立窗口)的AF统计阈值,计算出的fv值小于该值时,fv值改为0,可减少噪声的影响,取值范围为0-0xFFFF
shift_sum_a	目前无法使用,固定设置为0即可
shift_sum_b	win b(独立窗口)的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
shift_y_a	目前无法使用,固定设置为0即可
shift_y_b	win b(独立窗口)的luma值的shit bit值,会按照该值将luma值向右移位,避免得到的luma值溢出,取值范围为0-7
v1_iir_coe[9]	用于V1通道的3X3 IIR系数,按照AF滤波器系数生成工具的输出进行设置
v1_fir_coe[3]	用于V1通道的1x3 FIR系数,按照AF滤波器系数生成工具的输出进行设置
v2_iir_coe[3]	用于V2通道的1x3 IIR系数,按照AF滤波器系数生成工具的输出进行设置
v2_fir_coe[3]	用于V2通道的1x3 FIR系数,按照AF滤波器系数生成工具的输出进行设置
h1_iir1_coe[6]	用于H1通道的1X6 IIR1系数,按照AF滤波器系数生成工具的输出进行设置
h2_iir1_coe[6]	用于H2通道的1X6 IIR1系数,按照AF滤波器系数生成工具的输出进行设置
h1_iir2_coe[6]	用于H1通道的1X6 IIR2系数,按照AF滤波器系数生成工具的输出进行设置
h2_iir2_coe[6]	用于H2通道的1X6 IIR2系数,按照AF滤波器系数生成工具的输出进行设置
h_ldg_lumth[2]	用于H1/H2通道的ldg模块的亮度阈值系数,0为左边暗区设置,1为右边高亮区设置,取值范围为0~255
h_ldg_gain[2]	用于H1/H2通道的ldg模块的最小gain值,0为左边暗区设置,1为右边高亮区设置,取值范围为0~255
h_ldg_gslp[2]	用于H1/H2通道的ldg模块的斜率系数,0为左边暗区设置,1为右边高亮区设置,取值范围为0~65535
v_ldg_lumth[2]	用于V1/V2通道的ldg模块的亮度阈值系数,0为左边暗区设置,1为右边高亮区设置,取值范围为0~255
v_ldg_gain[2]	用于V1/V2通道的ldg模块的最小gain值,0为左边暗区设置,1为右边高亮区设置,取值范围为0~255
v_ldg_gslp[2]	用于V1/V2通道的ldg模块的最小gain值,0为左边暗区设置,1为右边高亮区设置,取值范围为0~255
v_fv_thresh	用于V1/V2通道的AF统计阈值,计算出的fv值小于该值时,fv值改为0,可减少噪声的影响,取值范围为0-0x0FFF
h_fv_thresh	用于H1/H2通道的AF统计阈值,计算出的fv值小于该值时,fv值改为0,可减少噪声的影响,取值范围为0-0x0FFF

成员名称	描述
v1_fv_shift	用于V1通道的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
v2_fv_shift	用于V2通道的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
h1_fv_shift	用于H1通道的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
h2_fv_shift	用于H2通道的fv值的shit bit值,会按照该值将fv值向右移位,避免得到的fv值溢出,取值范围为0-7
highlit_thresh	表示高亮统计的阈值,当高于该值则认为是高亮点,纳入统计,只累加每个区域的高亮点的个数,取值范围为0-0x0FFF

2.3.12 AF统计值的获取

详见《Rockchip_Development_Guide_ISP30》"统计信息"章节
rk_aiq_uapi_sysctl_get3AStatsBlk () / rk_aiq_uapi_sysctl_release3AStatsRef()
AF统计结果的相关结构体为rk_aiq_af_algo_stat_v30_t

2.3.13 滤波器设计工具的使用

请参考滤波器设计工具相关文档

2.4 参考代码样例

客户3A算法实现参考代码样例,可以参考:

目录: AIQ根目录/rkisp_demo/demo/