Stellar Classification

Presented by Parker Stratton 13 February 2022

Project Task and Purpose

<u>Task</u>: Prepare stellar classification dataset for application of Machine Learning models and conduct exploratory analysis of the dataset.

<u>Purpose</u>: Ensure data is ready to be utilized by Machine Learning algorithms, without any leakage. Provide deeper understanding of the data and its interrelated aspects that may improve modeling.

Dataset Summary

Stellar Classification Background:

- Celestial objects that emit EM radiation have "finger-prints" due to the wavelengths they absorb
- Celestial objects moving toward or away from the observer at high enough relative speeds experience red shift (elongation) or blue shift (compression) of their perceived EM emission similar to the Doppler effect on sound
- By looking at a celestial object's EM "finger-prints" and red/blue shift, a determination of the objects type can be made

<u>Dataset</u>

100,000 observations from the Sloan Digital Sky Survey (SDSS)

	<pre>df = pd.read_csv('/content/star_classification.csv') df.head()</pre>																		
	obj_ID	alpha	delta	u	g	r	i	z	run_ID	rerun_ID	cam_col	field_ID	spec_obj_ID	class	redshift	plate	MJD	fiber_ID	2
0	1.237661e+18	135.689107	32.494632	23.87882	22.27530	20.39501	19.16573	18.79371	3606	301	2	79	6.543777e+18	GALAXY	0.634794	5812	56354	171	
1	1.237665e+18	144.826101	31.274185	24.77759	22.83188	22.58444	21.16812	21.61427	4518	301	5	119	1.176014e+19	GALAXY	0.779136	10445	58158	427	
2	1.237661e+18	142.188790	35.582444	25.26307	22.66389	20.60976	19.34857	18.94827	3606	301	2	120	5.152200e+18	GALAXY	0.644195	4576	55592	299	
3	1.237663e+18	338.741038	-0.402828	22.13682	23.77656	21.61162	20.50454	19.25010	4192	301	3	214	1.030107e+19	GALAXY	0.932346	9149	58039	775	
4	1.237680e+18	345.282593	21.183866	19.43718	17.58028	16.49747	15.97711	15.54461	8102	301	3	137	6.891865e+18	GALAXY	0.116123	6121	56187	842	

Data Cleaning

```
[9] 1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 18 columns):

```
Column
                 Non-Null Count
                                  Dtype
    obj_ID
                 100000 non-null float64
    alpha
                 100000 non-null float64
    delta
                 100000 non-null float64
                 100000 non-null
                                 float64
                 100000 non-null int64
    run_ID
    rerun ID
                 100000 non-null int64
    cam_col
                 100000 non-null
                                  int64
   field_ID
                 100000 non-null int64
    spec_obj_ID 100000 non-null float64
13 class
                 100000 non-null object
   redshift
                 100000 non-null float64
    plate
15
                 100000 non-null
16 MJD
                 100000 non-null int64
                 100000 non-null int64
17 fiber ID
dtypes: float64(10), int64(7), object(1)
memory usage: 13.7+ MB
```


<class 'pandas.core.frame.DataFrame'>
Int64Index: 99999 entries, 0 to 99999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype					
0	u	99999 non-null	float64					
1	g	99999 non-null	float64					
2	r	99999 non-null	float64					
3	i	99999 non-null	float64					
4	Z	99999 non-null	float64					
5	class	99999 non-null	object					
6	redshift	99999 non-null	float64					
<pre>dtypes: float64(6), object(1)</pre>								
memory usage: 6.1+ MB								

Cleaning Actions:

- Missing data
- Duplicates
- Dropping unnecessary rows
- Checking for and handling inconsistent and unrealistic data

Key Take Away:

 Data cleaning produced a modeling ready data frame with loss of only a single row and streamlined features relevant to classification predictions

Exploratory Analysis

-0.2

redshift

Exploratory Visualizations

- Univariate Analysis
- Red Shift feature exploration
- Target class frequencies
- Feature Correlation

Key Take Aways

- High level of correlation across the features (except redshift)
- Target classes unbalanced

Conclusion

Challenges

• No significant challenges so far, however application of machine learning models may introduce unforeseen challenges with prediction

Of note:

This data set only covers the difference between galaxies, quasars, and stars. While important distinctions, this is certainly not all encompassing of the vast variety of celestial objects. With additional data, similar ML applications can be applied for more specific classification with more far reaching benefits to the scientific community

Summary

- Data is clean
- Exploratory analysis complete

Way Forward

- Development, training, and evaluating classification prediction models with cleaned data
- Intended Outcome: Enable accurate automated classification of celestial objects based on their EM emissions and redshift