Application No.: 09/931,317

Office Action Dated: February 5, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application.

PATENT

Listing of Claims:

1. (Currently amended) A formulation comprising a gas microsphere liposome composite suspended in a medium, wherein the gas microsphere liposome composite comprises:

a gas-filled microsphere;

at least one of a lipid and a surfactant adsorbed onto the surface of the gasfilled microsphere; and

liquid-filled liposomes attached to the lipid or surfactant, wherein each of the liquid-filled liposomes independently has a diameter of about 20nm to about 100nm.

- 2. (Original) The formulation of claim 1 wherein the gas of the gas-filled microsphere has a solubility of less than about 1.0% (v/v) in water at 25 °C and 1 atm.
- 3. (Original) The formulation of claim 1 wherein the gas-filled microsphere has an average diameter of about $0.1\mu m$ to about $10\mu m$.
- 4. (Original) The formulation of claim 1 wherein the gas-filled microsphere has an average diameter of about $0.5\mu m$ to about $10\mu m$.
- 5. (Original) The formulation of claim 1 wherein the gas-filled microsphere comprises at least one inert gas.
- 6. (Original) The formulation of claim 5 wherein the inert gas is a noble gas.

Application No.: 09/931,317

Office Action Dated: February 5, 2003

7. (Original) The formulation of claim 5 wherein the inert gas is a perfluoroether gas.

PATENT

- 8. (Original) The formulation of claim 5 wherein the inert gas is a perfluorocarbon gas.
- 9. (Original) The formulation of claim 1 wherein the gas-filled microsphere has a lipid adsorbed onto the surface of the gas-filled microsphere.
- 10. (Original) The formulation of claim 1 wherein the gas-filled microsphere has a surfactant adsorbed onto the surface of the gas-filled microsphere.
- 11. (Original) The formulation of claim 1 wherein the lipid or surfactant forms a mono-molecular layer on the surface of the gas-filled microsphere.
- 12. (Original) The formulation of claim 1 wherein the lipid or surfactant forms a bi-molecular liposomal layer or multi-molecular liposomal layer on the surface of the gas-filled microsphere.
- 13. (Original) The formulation of claim 1 wherein the surfactant is a non-ionic surfactant, cationic surfactant, or anionic surfactant.
- 14. (Original) The formulation of claim 13 wherein the non-ionic surfactant comprises polyethylene glycol, polypropylene glycol, polyvinylpyrollidone, polyvinylalcohol, cellulose, gelatin, xanthan gum, pectin, or dextran.

Application No.: 09/931,317

Office Action Dated: February 5, 2003

15. (Original) The formulation of claim 13 wherein the cationic surfactant comprises a tetraalkyl ammonium, tetraalkyl phosphonium ion, or a suitable salt thereof.

PATENT

- 16. (Original) The formulation of claim 15 wherein the cationic surfactant comprises a tetrahexyl ammonium, tetraoctyl ammonium, tetradecyl ammonium, tetrabutyl ammonium, tetrahexyl phosphonium, tetraoctyl phosphonium, tetrabutyl phosphonium, tetraphenyl phosphonium, or a suitable salt thereof.
- 17. (Original) The formulation of claim 13 wherein the anionic surfactant comprises an alkyl sulfonate, an alkyl carboxylate, or a suitable salt thereof.
- 18. (Original) The formulation of claim 17 wherein the anionic surfactant comprises dodecyl sulfate, palmityl sulfate, dodecyl carboxylate, palmityl carboxylate, or a suitable salt thereof.
- 19. (Original) The formulation of claim 1 wherein the lipid comprises a phospholipid, glycolipid, triglyceride or fatty acid.
- 20. (Original) The formulation of claim 19 wherein the phospholipid comprises dipalmitoylphosphatidyl choline, dimyristoylphosphatidyl choline, dilauryoylphosphatidyl choline, or dioleoylphosphatidyl choline.
- 21. (Original) The formulation of claim 1 wherein the liquid-filled liposomes are attached to the adsorbed lipid or surfactant in a continuous fashion.

By.

Application No.: 09/931,317

Office Action Dated: February 5, 2003

22. (Original) The formulation of claim 1 wherein the liquid-filled liposomes occupy greater than about 50% of the outer surface of the gas-filled microsphere area.

PATENT

- 23. (Original) The formulation of claim 1 wherein each of the liquid-filled liposomes independently has a diameter of about 10nm to about 200nm.
- 24. (Canceled).
- 25. (Original) The formulation of claim 1 wherein each of the liquid-filled liposomes independently has a diameter that is less than about 10% of the diameter of the gas-filled microsphere.
- 26. (Original) The formulation of claim 1 wherein each of the liquid-filled liposomes independently comprises a therapeutic agent or diagnostic agent in the interior of the liquid-filled liposomes.
- 27. (Original) The formulation of claim 26 wherein the therapeutic agent is an anticoagulant, thrombolytic, antineoplastic agent, or anti-inflammatory agent.
- 28. (Original) The formulation of claim 26 wherein the therapeutic agent comprises doxorubicin, cyclophosphamide, adriamycin, methotrexate, gemcitabine, navelbine, cisplatin, tissue plasminogen activator, integrelin, roxifiban, methotrexate or enbrel.
- 29. (Original) The formulation of claim 26 wherein the diagnostic agent comprises an X-ray contrast agent or an MRI contrast agent.

By

DOCKET NO.: PH-7103 (BMS-0698)

Application No.: 00/031 315

Application No.: 09/931,317

Office Action Dated: February 5, 2003

30. (Original) The formulation of claim 1 wherein each of the liquid-filled liposomes independently has high affinity, targeting moieties attached to the surface of the liquid-filled liposomes.

31. (Original) The formulation of claim 30 wherein the high affinity targeting moiety attached to the surface of the gas microsphere liposome composite comprises:

a ligand which binds to a receptor which is up-regulated in angiogenesis;

a ligand which binds to a receptor which is up-regulated in inflammation; or

a ligand which binds to a receptor which is up-regulated in atherosclerosis.

32. (Original) The formulation of claim 30 wherein the high affinity targeting moiety attached to the surface of the gas microsphere liposome composite comprises:

a ligand which binds to the integrons $\alpha_v\beta_3$, $\alpha_v\beta_5$ or GpIIb/IIIa;

a ligand which binds to a matrix metalloproteinase; or

a ligand which binds to the LTB₄ receptor.

33. (Original) The formulation of claim 30 wherein the high affinity targeting moiety attached to the surface of the gas microsphere liposome composite comprises:

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-cyclo(Arg-Gly-Asp-D-Phe-Lys)-dodecanoate;

DPPE-PEG3400-cyclo(Arg-Gly-Asp-D-Phe-Lys)-dodecanoate;

1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)- α , ω -dicarbonyl PEG₃₄₀₀-2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}-N-(3-aminopropyl)acetamide; or

Application No.: 09/931,317

Office Action Dated: February 5, 2003

 $1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha, \omega-dicarbonyl PEG_{3400}-[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-N-{[4-$

PATENT

(aminomethyl)phenyl]methyl}carboxamide.

34. (Original) The formulation of claim 1 wherein each of the liquid-filled liposomes independently comprises liquid from the medium of suspension.

35. (Original) The formulation of claim 1 wherein the gas microsphere liposome composite has a mean diameter of about $0.1\mu m$ to about $10\mu m$.

36. (Original) The formulation of claim 1 wherein the gas microsphere liposome

composite has a mean diameter of about $0.2\mu m$ to about $4\mu m$.

37. (Original) The formulation of claim 1 wherein the gas microsphere liposome composite exists as an aggregate of two or more gas microsphere liposome composites.

38. (Original) The formulation of claim 37 wherein the aggregate has a diameter

of about $1\mu m$ to about $100\mu m$.

39. (Original) The formulation of claim 1 wherein the gas microsphere liposome composite has a density of about 0.90 to about 1.10 of the density of the medium.

40. (Original) The formulation of claim 1 wherein the lipid or surfactant comprises a high affinity targeting moiety.

Spid ()

Page 7 of 14

PATENT

DOCKET NO.: PH-7103 (BMS-0698)

Application No.: 09/931,317

Office Action Dated: February 5, 2003

- 41. (Original) The formulation of claim 1 wherein the lipid or surfactant comprises a therapeutic agent.
- 42. (Original) The formulation of claim 41 wherein the therapeutic agent is doxorubicin, cyclophosphamide, adriamycin, methotrexate, gemcitabine, navelbine, cisplatin, tissue plasminogen activator, integrelin, roxifiban, methotrexate or enbrel.
- 43. (Original) The formulation of claim 1 wherein the medium comprises a diagnostic agent.
- 44. (Original) The formulation of claim 43 wherein the diagnostic agent is an X-ray or MRI contrast agent.
- 45. (Original) The formulation of claim 40 wherein the high affinity targeting moiety comprises:
- 1,2-dipalmitoyl-*sn*-glycero-3-phosphoethanolamine-cyclo(Arg-Gly-Asp-D-Phe-Lys)-dodecanoate;

DPPE-PEG₃₄₀₀-cyclo(Arg-Gly-Asp-D-Phe-Lys)-dodecanoate:

1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)- α , ω -dicarbonyl PEG₃₄₀₀-2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}-N-(3-aminopropyl)acetamide; or

 $1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha, \omega-dicarbonyl PEG_{3400}-[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-N-{[4-(aminomethyl)phenyl]methyl}carboxamide.$

DOCKET NO.: PH-7103 (BMS-0698)

Application No.: 00/031 313

Application No.: 09/931,317

Office Action Dated: February 5, 2003

46. (Previously amended) A method of ultrasound imaging in a patient in need of such ultrasound imaging comprising:

administering to the patient an effective amount of a formulation of claim 1; allowing a sufficient period of time for the circulation of the gas microsphere composite to reach the targeted area; and

performing ultrasound imaging on the patient.

47. (Original) The method of claim 46 wherein the patient is a human.

48. (Original) The method of claim 46 wherein the effective amount of the formulation comprises about 10^3 to about 10^{10} gas microsphere liposome composites.

- 49. (Original) The method of claim 46 wherein the sufficient period of time is about 5 minutes to about 2 hours.
- 50. (Original) The method of claim 46 wherein the sufficient period of time is about 5 to about 30 minutes.
- 51. (Previously amended) A method of treating heart disease, inflammation, infection, cancer or thromboembolic disease in a patient in need of such treatment comprising:

administering to the patient an effective amount of a formulation of claim 1, wherein one or more of the liquid-filled liposomes independently comprises a therapeutic agent;

Application No.: 09/931,317

Office Action Dated: February 5, 2003

allowing a sufficient period of time for the circulation of the gas microsphere composite to the targeted area; and

PATENT

applying ultrasound energy to the region of pathology in the patient sufficient to cause the therapeutic agent to be released from the microsphere liposome composite at the region of pathology.

- 52. (Original) The method of claim 51 wherein the patient is a human.
- 53. (Original) The method of claim 51 wherein each of the liquid-filled liposomes independently comprises a therapeutic agent.
- 54. (Original) The method of claim 51 wherein the effective amount of the formulation comprises about 10^3 to about 10^{10} gas microsphere liposome composites.
- 55 to 68. (Canceled)
- 69. (Currently amended) A formulation comprising a gas microsphere liposome composite suspended in a medium, wherein the gas microsphere liposome composite comprises:

a gas-filled microsphere;

at least one of a lipid and a surfactant adsorbed onto the surface of the gas-filled microsphere; and

liquid-filled liposomes attached to the lipid or surfactant;

for use in medical therapy or diagnosis, wherein each of the liquid-filled liposomes independently has a diameter of about 20nm to about 100nm.

DOCKET NO.: PH-7103 (BMS-0698) Application No.: 09/931,317 Office Action Dated: February 5, 2003

PATENT

₹ 70 to 72.

(Canceled).