

Ù&@^œ^¦ÊÁQ}&È		HÍ »Á√ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	14.43 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	150 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 35.33$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 2.000 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	applied away from the curiace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	<u>Rear</u>	
Tensile Load =	<u>70.92</u>	6653.07 k	(
Compressive Load =	2432.07	4820.18 k	(
Lateral Load =	<u>7.86</u>	4637.67 k	(
Moment (Weak Axis) =	0.01	<u>0.00</u> k	(

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 163405.0 in-lbs Resisting Force Required = 2475.83 lbs A minimum 132in long x 32in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4126.39 lbs to resist overturning. Minimum Width = Weight Provided = 6380.00 lbs Sliding Force = 1070.08 lbs Use a 132in long x 32in wide x 18in tall Friction = 0.4 Weight Required = 2675.21 lbs ballast foundation to resist sliding. Resisting Weight = 6380.00 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1070.08 lbs Cohesion = 130 psf Use a 132in long x 32in wide x 18in tall 29.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3190.00 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f'_c =$ Length =

 $\frac{\text{Bearing Pressure}}{\text{Ballast Width}} = \frac{\text{Ballast Width}}{\frac{32 \text{ in}}{\text{Pftg}}} = \frac{33 \text{ in}}{(145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.67 \text{ ft})} = \frac{6380 \text{ lbs}}{6579 \text{ lbs}} = \frac{6779 \text{ lbs}}{6779 \text{ lbs}} = \frac{6978 \text{ lbs}}{6978 \text{ lbs}}$

ASD LC		1.0D	+ 1.0S			1.0D+	- 0.6W		1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in
FA	786 lbs	786 lbs	786 lbs	786 lbs	1002 lbs	1002 lbs	1002 lbs	1002 lbs	1242 lbs	1242 lbs	1242 lbs	1242 lbs	61 lbs	61 lbs	61 lbs	61 lbs
FB	692 lbs	692 lbs	692 lbs	692 lbs	2117 lbs	2117 lbs	2117 lbs	2117 lbs	2020 lbs	2020 lbs	2020 lbs	2020 lbs	-3065 lbs	-3065 lbs	-3065 lbs	-3065 lbs
F _V	112 lbs	112 lbs	112 lbs	112 lbs	1935 lbs	1935 lbs	1935 lbs	1935 lbs	1522 lbs	1522 lbs	1522 lbs	1522 lbs	-2140 lbs	-2140 lbs	-2140 lbs	-2140 lbs
P _{total}	7859 lbs	8058 lbs	8257 lbs	8457 lbs	9499 lbs	9698 lbs	9898 lbs	10097 lbs	9642 lbs	9841 lbs	10041 lbs	10240 lbs	824 lbs	943 lbs	1063 lbs	1182 lbs
M	2347 lbs-ft	2347 lbs-ft	2347 lbs-ft	2347 lbs-ft	2776 lbs-ft	2776 lbs-ft	2776 lbs-ft	2776 lbs-ft	3549 lbs-ft	3549 lbs-ft	3549 lbs-ft	3549 lbs-ft	4289 lbs-ft	4289 lbs-ft	4289 lbs-ft	4289 lbs-ft
е	0.30 ft	0.29 ft	0.28 ft	0.28 ft	0.29 ft	0.29 ft	0.28 ft	0.27 ft	0.37 ft	0.36 ft	0.35 ft	0.35 ft	5.21 ft	4.55 ft	4.04 ft	3.63 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	224.3 psf	224.1 psf	223.9 psf	223.7 psf	272.2 psf	270.6 psf	269.0 psf	267.5 psf	262.7 psf	261.3 psf	260.0 psf	258.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	311.5 psf	308.7 psf	306.0 psf	303.5 psf	375.4 psf	370.7 psf	366.2 psf	361.9 psf	394.7 psf	389.3 psf	384.3 psf	379.5 psf	705.5 psf	240.1 psf	170.8 psf	144.3 psf

Maximum Bearing Pressure = 706 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 645.5 \text{ ft-lbs}$

Resisting Force Required = 484.16 lbs S.F. = 1.67 Weight Required = 806.94 lbs

Minimum Width = 32 in in Weight Provided = 6380.00 lbs

A minimum 132in long x 32in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		32 in			32 in		32 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	200 lbs	461 lbs	200 lbs	493 lbs	1269 lbs	493 lbs	59 lbs	135 lbs	59 lbs	
F _V	1 lbs	0 lbs	1 lbs	3 lbs	0 lbs	3 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	8099 lbs	6380 lbs	8099 lbs	8012 lbs	6380 lbs	8012 lbs	2368 lbs	6380 lbs	2368 lbs	
М	4 lbs-ft	0 lbs-ft	4 lbs-ft	12 lbs-ft	0 lbs-ft	12 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	
f _{min}	275.8 psf	217.5 psf	275.8 psf	272.2 psf	217.5 psf	272.2 psf	80.7 psf	217.5 psf	80.7 psf	
f _{max}	276.4 psf	217.5 psf	276.4 psf	274.1 psf	217.5 psf	274.1 psf	80.8 psf	217.5 psf	80.8 psf	

Maximum Bearing Pressure = 276 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 32in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	1.871 k 12.808 k 7.421 k <u>25%</u>	Rear Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	4.394 k 12.808 k 7.421 k <u>59%</u>
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.910 k 12.808 k 7.421 k <u>39%</u>	Bolt and bearing capacities are accounting fo (ASCE 8-02, Eq. 5.3.4-1)	r double shear.
	0	Struts under compression are transfer from the girder. Single end of the strut and are subject	e M12 bolts are l

e shown to demonstrate the load gle M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 53.78 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.076 in Max Drift, Δ_{MAX} = 0.018 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **<u>\$1.5</u>**

Strong Axis:

3.4.14

$$L_{b} = 87 \text{ in}$$

$$J = 0.432$$

$$240.683$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

3.4.16

$$\begin{aligned} & \text{b/t} = & 32.195 \\ S1 = & \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\ & \text{S1} = & 12.2 \\ & S2 = & \frac{k_1 Bp}{1.6Dp} \\ & \text{S2} = & 46.7 \\ & \phi F_L = & \phi b [\text{Bp-1.6Dp*b/t}] \\ & \phi F_L = & 25.1 \text{ ksi} \end{aligned}$$

 $\phi F_1 = 28.3 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{array}{cccc} \mathsf{L_b} = & 87 \\ \mathsf{J} = & 0.432 \\ & 153.06 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} = & 29.4 \end{array}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $Ix = 897074 \text{ mm}^4$
 2.155 in^4
 $y = 41.015 \text{ mm}$

$$Sx = 1.335 \text{ in}^3$$

 $M_{max}St = 2.788 \text{ k-ft}$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L Wk = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$\chi = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$
$$S2 = C_t$$
$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 923544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$x = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

$$M_{max} W k = 3.904 \text{ k-ft}$$

Compression

b/t =

 $\phi F_L =$

3.4.9

 $\begin{array}{lll} S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 31.6 \text{ ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}}Fcy}{Dt}\right)^{2}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi c[Bt-Dt^{*}\sqrt{(Rb/t)}]$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$0.0$$

A.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_1 = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$k.Rhr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\psi \Gamma_L = 43.2 \text{ KS}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$\phi F_L = 28.2 \text{ ksi}$

3.4.16.1 Not Used Rb/t =
$$0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$\begin{aligned} \text{h/t} &= & 24.5 \\ S1 &= & \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr} \\ \text{S1} &= & 36.9 \\ \text{m} &= & 0.65 \\ \text{C}_0 &= & 27.5 \\ \text{Cc} &= & 27.5 \\ S2 &= & \frac{k_1Bbr}{mDbr} \\ \text{S2} &= & 77.3 \\ \text{\phiF}_L &= & 1.3\text{\phiyFcy} \\ \text{\phiF}_L &= & 43.2 \text{ ksi} \end{aligned}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

Section 1.3.4.16
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$

$$J = 0.942$$
 121.773

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.03$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

S14.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83271 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

Rev. 11.05.2015

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Υ	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-118.221	-118.221	0	0
2	M14	V	-118.221	-118.221	0	0
3	M15	V	-197.035	-197.035	0	0
4	M16	V	-197.035	-197.035	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	265.997	265.997	0	0
2	M14	V	206.886	206.886	0	0
3	M15	V	118.221	118.221	0	0
4	M16	V	118 221	118 221	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
	LATERAL - ASD 1.238D + 0.875E				1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	994.497	2	1196.031	2	.334	1	.001	1	Ó	1	Ó	1
2		min	-1166.084	3	-1624.947	3	.02	15	0	15	0	1	0	1
3	N7	max	.033	3	733.721	1	35	15	0	15	0	1	0	1
4		min	192	2	35.265	15	-6.049	1	011	1	0	1	0	1
5	N15	max	.186	3	1870.826	2	0	2	0	2	0	1	0	1
6		min	-1.836	2	71.228	15	0	1	0	1	0	1	0	1
7	N16	max	3257.103	2	3707.832	2	0	10	0	2	0	1	0	1
8		min	-3567.438	3	-5117.748	3	0	3	0	3	0	1	0	1
9	N23	max	.033	3	733.721	1	6.049	1	.011	1	0	1	0	1
10		min	192	2	35.265	15	.35	15	0	15	0	1	0	1
11	N24	max	994.497	2	1196.031	2	02	15	0	15	0	1	0	1
12		min	-1166.084	3	-1624.947	3	334	1	001	1	0	1	0	1
13	Totals:	max	5243.879	2	9280.551	2	0	2					·	
14		min	-5899.356	3	-8003.028	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	53.285	1	375.655	2	-7.074	15	0	15	.127	1	0	2
2			min	3.05	15	-714.085	3	-126.575	1	013	2	.007	15	0	3
3		2	max	53.285	1	261.727	2	-5.423	15	0	15	.037	1	.49	3
4			min	3.05	15	-503.346	3	-96.729	1	013	2	.002	10	257	2
5		3	max	53.285	1	147.8	2	-3.772	15	0	15	.004	3	.811	3
6			min	3.05	15	-292.607	3	-66.882	1	013	2	029	1	422	2
7		4	max	53.285	1	33.873	2	-2.121	15	0	15	002	12	.962	3
8			min	3.05	15	-81.868	3	-37.036	1	013	2	071	1	495	2
9		5	max	53.285	1	128.872	3	.278	10	0	15	005	12	.943	3
10			min	3.05	15	-80.054	2	-7.189	1	013	2	089	1	476	2
11		6	max	53.285	1	339.611	3	22.657	1	0	15	005	15	.754	3
12			min	3.05	15	-193.982	2	-1.653	3	013	2	083	1	366	2
13		7	max	53.285	1	550.35	3	52.504	1	0	15	003	15	.396	3
14			min	3.05	15	-307.909	2	.775	12	013	2	052	1	164	2
15		8	max	53.285	1	761.09	3	82.35	1	0	15	.005	2	.13	2
16			min	3.05	15	-421.836	2	2.425	12	013	2	008	3	133	3
17		9	max	53.285	1	971.829	3	112.197	1	0	15	.08	1	.516	2
18			min	3.05	15	-535.763	2	4.076	12	013	2	004	3	831	3
19		10	max	53.285	1	1182.568	3	142.043	1	.001	3	.183	1	.993	2
20			min	3.05	15	-649.69	2	5.727	12	013	2	.002	3	-1.698	3
21		11	max	53.285	1	535.763	2	-4.076	12	.013	2	.08	1	.516	2
22			min	3.05	15	-971.829	3	-112.197	1	0	15	004	3	831	3
23		12	max	53.285	1	421.836	2	-2.425	12	.013	2	.005	2	.13	2
24			min	3.05	15	-761.09	3	-82.35	1	0	15	008	3	133	3
25		13	max	53.285	1	307.909	2	775	12	.013	2	003	15	.396	3
26			min	3.05	15	-550.35	3	-52.504	1	0	15	052	1	164	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									LC
27		14	max	53.285	1	193.982	2	1.653	3	.013	2	005	15	.754	3
28			min	3.05	15	-339.611	3	-22.657	1	0	15	083	1	366	2
29		15	max	53.285	1	80.054	2	7.189	1	.013	2	005	12	.943	3
30			min	3.05	15	-128.872	3	278	10	0	15	089	1	476	2
31		16	max	53.285	1_	81.868	3	37.036	1	.013	2	002	12	.962	3
32			min	3.05	15	-33.873	2	2.121	15	0	15	071	1	495	2
33		17	max	53.285	1	292.607	3	66.882	1	.013	2	.004	3	.811	3
34			min	3.05	15	-147.8	2	3.772	15	0	15	029	1	422	2
35		18	max	53.285	1	503.346	3	96.729	1	.013	2	.037	1	.49	3
36			min	3.05	15	-261.727	2	5.423	15	0	15	.002	10	257	2
37		19	max	53.285	1	714.085	3	126.575	1	.013	2	.127	1	0	2
38			min	3.05	15	-375.655	2	7.074	15	0	15	.007	15	0	3
39	M14	1	max	30.35	1	431.637	2	-7.357	15	.011	3	.151	1	0	2
40			min	1.726	15	-589.765	3	-131.638	1	012	2	.009	15	0	3
41		2	max	30.35	1	317.71	2	-5.707	15	.011	3	.057	1	.409	3
42		_	min	1.726	15	-426.643	3	-101.791	1	012	2	.003	15	302	2
43		3	max	30.35	1	203.783	2	-4.056	15	.012	3	.006	3	.687	3
44			min	1.726	15	-263.521	3	-71.945	1	012	2	013	1	512	2
45		4		30.35	1	89.856	2	-2.405	15	.012	3	013 0	3	.834	3
		4	max												
46		-	min	1.726	15	-100.399	3	-42.098	1	012	2	059	1	63	2
47		5	max	30.35	1	62.723	3	431	10	.011	3	004	12	.849	3
48			min	1.726	15	-24.072	2	-12.252	1	012	2	081	1	<u>657</u>	2
49		6	max	30.35	1	225.845	3	17.595	1	.011	3_	004	15	.733	3
50			min	1.726	15	-137.999	2	-2.119	3	012	2	079	1_	591	2
51		7	max	30.35	1	388.967	3	47.441	1	.011	3	003	15	.485	3
52			min	1.726	15	-251.926	2	.357	3	012	2	053	1	434	2
53		8	max	30.35	1	552.09	3	77.288	1	.011	3	.003	2	.106	3
54			min	1.726	15	-365.853	2	2.117	12	012	2	008	3	185	2
55		9	max	30.35	1	715.212	3	107.134	1	.011	3	.072	1	.155	2
56			min	1.726	15	-479.781	2	3.768	12	012	2	004	3	404	3
57		10	max	30.35	1	878.334	3	136.981	1	.011	3	.17	1	.588	2
58			min	1.726	15	-593.708	2	5.418	12	012	2	.001	3	-1.046	3
59		11	max	30.35	1	479.781	2	-3.768	12	.012	2	.072	1	.155	2
60			min	1.726	15	-715.212	3	-107.134	1	011	3	004	3	404	3
61		12	max	30.35	1	365.853	2	-2.117	12	.012	2	.003	2	.106	3
62			min	1.726	15	-552.09	3	-77.288	1	011	3	008	3	185	2
63		13	max	30.35	1	251.926	2	357	3	.012	2	003	15	.485	3
64			min	1.726	15	-388.967	3	-47.441	1	011	3	053	1	434	2
65		14	max	30.35	1	137.999	2	2.119	3	.012	2	004	15	.733	3
66		1 7	min	1.726	15	-225.845	3	-17.595	1	011	3	079	1	591	2
67		15	max	30.35	1	24.072	2	12.252	1	.012	2	004	12	.849	3
68		13	min	1.726	15	-62.723	3	.431	10	011	3	081	1	657	2
69		16	max	30.35	1	100.399	3	42.098	1	.012	2	0	3	.834	3
70		10	min	1.726	15	-89.856	2	2.405	15	011	3	059	1	63	2
71		17		30.35	1	263.521	3	71.945	1	.012	2	.006	3	63 .687	3
72		17	max	1.726		-203.783	2	4.056	15		3	013	1		2
		10	min		15					011			_	512	
73		18	max	30.35	1	426.643	3	101.791	1	.012	2	.057	1	.409	3
74		40	min	1.726	15	-317.71	2	5.707	15	011	3	.003	15	302	2
75		19	max	30.35	1	589.765	3	131.638	1	.012	2	.151	1	0	2
76	N44.5	4	min	1.726	15	-431.637	2	7.357	15	011	3	.009	15	0	3
77	M15	1	max	<u>-1.795</u>	15	645.972	2	-7.355	15	.013	2	.151	1	0	2
78			min	-31.255	1	-349.024	3	-131.671	1_	01	3	.009	15	0	3
79		2	max	<u>-1.795</u>	15	468.556	2	-5.704	15	.013	2	.057	1	.244	3
80			min	-31.255	1	-257.326	3	-101.825		01	3	.003	15	449	2
81		3	max	<u>-1.795</u>	15	291.14	2	-4.053	15	.013	2	.005	3	.415	3
82			min	-31.255	1	-165.629	3	-71.978	1	01	3	013	1	755	2
83		4	max	-1.795	15	113.724	2	-2.402	15	.013	2	0	12	.511	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
84			min	-31.255	1	-73.931	3	-42.132	1	01	3	059	1	918	2
85		5	max	-1.795	15	17.766	3	518	10	.013	2	004	12	.534	3
86			min	-31.255	1	-63.693	2	-12.285	1	01	3	081	1	938	2
87		6	max	-1.795	15	109.464	3	17.561	1	.013	2	004	15	.482	3
88			min	-31.255	1	-241.109	2	-1.832	3	01	3	079	1	815	2
89		7	max	-1.795	15	201.161	3	47.408	1	.013	2	003	15	.357	3
90			min	-31.255	1	-418.525	2	.639	12	01	3	053	1	55	2
91		8	max	-1.795	15	292.859	3	77.254	1	.013	2	.003	2	.158	3
92			min	-31.255	1	-595.941	2	2.29	12	01	3	007	3	141	2
93		9	max	-1.795	15	384.557	3	107.101	1	.013	2	.072	1	.41	2
94			min	-31.255	1	-773.358	2	3.94	12	01	3	003	3	114	3
95		10	max	-1.795	15	476.254	3	136.947	1	.013	2	.17	1	1.105	2
96			min	-31.255	1	-950.774	2	5.591	12	01	3	.002	3	461	3
97		11	max	-1.795	15	773.358	2	-3.94	12	.01	3	.072	1	.41	2
98			min	-31.255	1	-384.557	3	-107.101	1	013	2	003	3	114	3
99		12	max	-1.795	15	595.941	2	-2.29	12	.01	3	.003	2	.158	3
100			min	-31.255	1	-292.859	3	-77.254	1	013	2	007	3	141	2
101		13	max	-1.795	15	418.525	2	639	12	.01	3	003	15	.357	3
102			min	-31.255	1	-201.161	3	-47.408	1	013	2	053	1	55	2
103		14	max	-1.795	15	241.109	2	1.832	3	.01	3	004	15	.482	3
104			min	-31.255	1	-109.464	3	-17.561	1	013	2	079	1	815	2
105		15	max	-1.795	15	63.693	2	12.285	1	.01	3	004	12	.534	3
106			min	-31.255	1	-17.766	3	.518	10	013	2	081	1	938	2
107		16	max	-1.795	15	73.931	3	42.132	1	.01	3	0	12	.511	3
108			min	-31.255	1	-113.724	2	2.402	15	013	2	059	1	918	2
109		17	max	-1.795	15	165.629	3	71.978	1	.01	3	.005	3	.415	3
110			min	-31.255	1	-291.14	2	4.053	15	013	2	013	1	755	2
111		18	max	-1.795	15	257.326	3	101.825	1	.01	3	.057	1	.244	3
112			min	-31.255	1	-468.556	2	5.704	15	013	2	.003	15	449	2
113		19	max	-1.795	15	349.024	3	131.671	1	.01	3	.151	1	0	2
114			min	-31.255	1	-645.972	2	7.355	15	013	2	.009	15	0	3
115	M16	1	max	-3.311	15	592.722	2	-7.082	15	.007	2	.128	1	0	2
116			min	-58.095	1	-300.357	3	-126.984	1	012	3	.007	15	0	3
117		2	max	-3.311	15	415.306	2	-5.431	15	.007	2	.038	1	.205	3
118			min	-58.095	1	-208.66	3	-97.137	1	012	3	.002	15	406	2
119		3	max	-3.311	15	237.89	2	-3.78	15	.007	2	.002	3	.336	3
120			min	-58.095	1	-116.962	3	-67.291	1	012	3	028	1	669	2
121		4	max	-3.311	15	60.474	2	-2.13	15	.007	2	002	12	.393	3
122			min	-58.095	1	-25.265	3	-37.444	1	012	3	07	1	789	2
123		5	max	-3.311	15	66.433	3	059	10	.007	2	005	12	.377	3
124			min		1	-116.943	2	-7.598	1	012	3	089	1	767	2
125		6	max		15	158.13	3	22.249	1	.007	2	005	15	.286	3
126			min	-58.095	1	-294.359	2	7	3	012	3	083	1	601	2
127		7	max	-3.311	15	249.828	3	52.095	1	.007	2	003	15	.122	3
128			min	-58.095	1	-471.775	2	1.346	12	012	3	053	1	292	2
129		8	max	-3.311	15	341.525	3	81.942	1	.007	2	.004	2	.159	2
130			min	-58.095	1	-649.192	2	2.997	12	012	3	006	3	116	3
131		9	max	-3.311	15	433.223	3	111.788	1	.007	2	.079	1	.754	2
132			min	-58.095	1	-826.608	2	4.647	12	012	3	001	3	428	3
133		10	max	-3.311	15	524.92	3	141.635	1	.007	2	.181	1	1.491	2
134			min	-58.095	1	-1004.024	2	6.298	12	012	3	.004	12	814	3
135		11	max	-3.311	15	826.608	2	-4.647	12	.012	3	.079	1	.754	2
136			min	-58.095	1	-433.223	3	-111.788	1	007	2	001	3	428	3
137		12	max	-3.311	15	649.192	2	-2.997	12	.012	3	.004	2	.159	2
138			min	-58.095	1	-341.525	3	-81.942	1	007	2	006	3	116	3
139		13	max	-3.311	15	471.775	2	-1.346	12	.012	3	003	15	.122	3
140			min	-58.095	1	-249.828	3	-52.095	1	007	2	053	1	292	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

141		Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]		y-y Mome		z-z Mome	
143			14	max	-3.311	15	294.359	2		3		3		15	.286	3
144				min		1				1						
146			15			15								12		
146																_
147			16							-						
148			47													
148			1/													
150			40													_
151			18													
152			10													
153 M2			19													
154		Ma	1													
155		IVIZ														
156			2													-
157										-				-		
158			3										_			
159																
160			4										_			
161																
162			5									3	_			_
163													_			
164			6									3				_
165						3				15			0	15	003	
166			7	max	961.307	2					0	3	0			15
168				min		3		15		15	0	1	0	15	004	
169	167		8	max	961.828	2	1.187	4	.179	1	0	3	0	1	0	15
170 min -1389.73 3 .248 12 .01 15 0 1 0 15 004 4 171 10 max 962.869 2 .95 4 .179 1 0 3 0 1 001 15 172 min -1388.948 3 .202 12 .01 15 0 1 0 15 005 4 173 11 max 963.39 2 .853 2 .179 1 0 3 0 1 001 15 174 min -1388.949 3 .156 12 .01 15 0 1 0 15 005 4 175 12 max 963.911 2 .76 2 .179 1 0 3 0 1 001 15 176 min -1388.558 3 .109 12	168			min	-1390.121	3	.279	15	.01	15	0	1	0	15	004	4
171 10 max 962.869 2 .95 4 .179 1 0 3 0 1 001 15 172 min -1389.34 3 .202 12 .01 15 0 1 0 15 005 4 173 11 max 963.39 2 .853 2 .179 1 0 3 0 1 001 15 174 min -1388.949 3 .156 12 .01 15 0 1 0 15 005 4 175 12 max 963.911 2 .76 2 .179 1 0 3 0 1 001 15 176 min -1388.558 3 .109 12 .01 15 0 1 0 15 001 15 177 13 max 964.431 2 .668	169		9	max	962.349	2	1.068	4	.179	1	0	3	0	1	001	15
172				min						15		<u> </u>	0	15		_
173 11 max 963.39 2 .853 2 .179 1 0 3 0 1 001 15 174 min -1388.949 3 .156 12 .01 15 0 1 0 15 005 4 175 12 max 963.911 2 .76 2 .179 1 0 3 0 1 001 15 176 min -1388.558 3 .109 12 .01 15 0 1 0 15 005 4 177 13 max 964.431 2 .668 2 .179 1 0 3 0 1 001 15 178 min -1388.168 3 .063 12 .01 15 0 1 0 15 006 4 179 14 max 964.952 2 .575 2 .179 1 0 3 0 1 001 15			10	max									_			
174 min -1388.949 3 .156 12 .01 15 0 1 0 15 005 4 175 12 max 963.911 2 .76 2 .179 1 0 3 0 1 001 15 176 min -1388.558 3 .109 12 .01 15 0 1 0 15 005 4 177 13 max 964.431 2 .668 2 .179 1 0 3 0 1 001 15 178 min -1388.168 3 .063 12 .01 15 0 1 0 15 006 4 179 14 max 964.952 2 .575 2 .179 1 0 3 0 1 001 15 180 min -1387.777 3 003 3												_				
175 12 max 963.911 2 .76 2 .179 1 0 3 0 1 001 15 176 min -1388.558 3 .109 12 .01 15 0 1 0 15 005 4 177 13 max 964.431 2 .668 2 .179 1 0 3 0 1 001 15 178 min -1388.168 3 .063 12 .01 15 0 1 0 15 006 4 179 14 max 964.952 2 .575 2 .179 1 0 3 0 1 001 15 180 min -1387.777 3 003 3 .01 15 0 1 0 15 006 4 181 15 max 965.473 2 .482			11										_			
176 min -1388.558 3 .109 12 .01 15 0 1 0 15 005 4 177 13 max 964.431 2 .668 2 .179 1 0 3 0 1 001 15 178 min -1388.168 3 .063 12 .01 15 0 1 0 15 006 4 179 14 max 964.952 2 .575 2 .179 1 0 3 0 1 001 15 180 min -1387.777 3 003 3 .01 15 0 1 0 15 006 4 181 15 max 965.473 2 .482 2 .179 1 0 3 0 1 001 15 182 min -1387.387 3 073 3																
177 13 max 964.431 2 .668 2 .179 1 0 3 0 1 001 15 178 min -1388.168 3 .063 12 .01 15 0 1 0 15 006 4 179 14 max 964.952 2 .575 2 .179 1 0 3 0 1 001 15 180 min -1387.777 3 003 3 .01 15 0 1 0 15 001 15 181 15 max 965.473 2 .482 2 .179 1 0 3 0 1 001 15 182 min -1387.387 3 073 3 .01 15 0 1 0 15 006 4 183 16 max 965.994 2 .39 2 .179 1 0 3 0 1 001 15 006 </td <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			12							-						
178 min -1388.168 3 .063 12 .01 15 0 1 0 15 006 4 179 14 max 964.952 2 .575 2 .179 1 0 3 0 1 001 15 180 min -1387.777 3 003 3 .01 15 0 1 0 15 006 4 181 15 max 965.473 2 .482 2 .179 1 0 3 0 1 001 15 182 min -1387.387 3 073 3 .01 15 0 1 0 15 006 4 183 16 max 965.994 2 .39 2 .179 1 0 3 0 1 001 15 184 min -1386.996 3 142 3			40										_			
179 14 max 964.952 2 .575 2 .179 1 0 3 0 1 001 15 180 min -1387.777 3 003 3 .01 15 0 1 0 15 006 4 181 15 max 965.473 2 .482 2 .179 1 0 3 0 1 001 15 182 min -1387.387 3 073 3 .01 15 0 1 0 15 001 15 183 16 max 965.994 2 .39 2 .179 1 0 3 0 1 001 15 184 min -1386.996 3 142 3 .01 15 0 1 0 15 006 4 185 17 max 966.514 2 .297 2 .179 1 0 3 .001 1 001 12			13													
180 min -1387.777 3 003 3 .01 15 0 1 0 15 006 4 181 15 max 965.473 2 .482 2 .179 1 0 3 0 1 001 15 182 min -1387.387 3 073 3 .01 15 0 1 0 15 006 4 183 16 max 965.994 2 .39 2 .179 1 0 3 0 1 001 15 184 min -1386.996 3 142 3 .01 15 0 1 0 15 006 4 185 17 max 966.514 2 .297 2 .179 1 0 3 .001 1 001 1 001 12 186 min -1386.606 3 <td></td> <td></td> <td>4.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>			4.4										_			
181 15 max 965.473 2 .482 2 .179 1 0 3 0 1 001 15 182 min -1387.387 3 073 3 .01 15 0 1 0 15 006 4 183 16 max 965.994 2 .39 2 .179 1 0 3 0 1 001 15 184 min -1386.996 3 142 3 .01 15 0 1 0 15 006 4 185 17 max 966.514 2 .297 2 .179 1 0 3 .001 1 001 12 186 min -1386.606 3 212 3 .01 15 0 1 0 15 006 4 187 18 max 967.035 2 .204 2 .179 1 0 3 .001 1 001 12			14													
182 min -1387.387 3 073 3 .01 15 0 1 0 15 006 4 183 16 max 965.994 2 .39 2 .179 1 0 3 0 1 001 15 184 min -1386.996 3 142 3 .01 15 0 1 0 15 006 4 185 17 max 966.514 2 .297 2 .179 1 0 3 .001 1 001 12 186 min -1386.606 3 212 3 .01 15 0 1 0 15 006 4 187 18 max 967.035 2 .204 2 .179 1 0 3 .001 1 001 12 188 min -1386.215 3 281 3 .01 15 0 1 0 15 006 4 <td></td> <td></td> <td>15</td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>			15	min									_			
183 16 max 965.994 2 .39 2 .179 1 0 3 0 1 001 15 184 min -1386.996 3 142 3 .01 15 0 1 0 15 006 4 185 17 max 966.514 2 .297 2 .179 1 0 3 .001 1 001 12 186 min -1386.606 3 212 3 .01 15 0 1 0 15 006 4 187 18 max 967.035 2 .204 2 .179 1 0 3 .001 1 001 12 188 min -1386.215 3 281 3 .01 15 0 1 0 15 006 4			15	_												
184 min -1386.996 3 142 3 .01 15 0 1 0 15 006 4 185 17 max 966.514 2 .297 2 .179 1 0 3 .001 1 001 12 186 min -1386.606 3 212 3 .01 15 0 1 0 15 006 4 187 18 max 967.035 2 .204 2 .179 1 0 3 .001 1 001 12 188 min -1386.215 3 281 3 .01 15 0 1 0 15 006 4			16													_
185 17 max 966.514 2 .297 2 .179 1 0 3 .001 1 001 12 186 min -1386.606 3 212 3 .01 15 0 1 0 15 006 4 187 18 max 967.035 2 .204 2 .179 1 0 3 .001 1 001 12 188 min -1386.215 3 281 3 .01 15 0 1 0 15 006 4			10										_			
186 min -1386.606 3 212 3 .01 15 0 1 0 15 006 4 187 18 max 967.035 2 .204 2 .179 1 0 3 .001 1 001 12 188 min -1386.215 3 281 3 .01 15 0 1 0 15 006 4			17													
187			17													
188 min -1386.215 3281 3 .01 15 0 1 0 15006 4			18										_			
			10													
			10										_			_
190 min -1385.825 3351 3 .01 15 0 1 0 15006 4			13													
191 M3 1 max 860.209 2 7.663 4 .181 1 0 3 0 1 .006 4		M3	1										_			_
192 min -958.858 3 1.801 15 .01 15 0 1 0 15 .001 12		1410														
193 2 max 860.039 2 6.902 4 .181 1 0 3 0 1 .004 2			2													
194 min -958.985 3 1.623 15 .01 15 0 1 0 15 0 3																
195 3 max 859.868 2 6.141 4 .181 1 0 3 0 1 .001 2			3													
196 min -959.113 3 1.444 15 .01 15 0 1 0 15001 3										-						
197 4 max 859.698 2 5.38 4 .181 1 0 3 0 1 0 15			4	max								3				

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-959.241	3	1.265	15	.01	15	0	1	0	15	003	3
199		5	max	859.528	2	4.619	4	.181	1	0	3	0	1	0	15
200			min	-959.369	3	1.086	15	.01	15	0	1	0	15	004	4
201		6	max	859.357	2	3.858	4	.181	1	0	3	0	1	001	15
202			min	-959.496	3	.907	15	.01	15	0	1	0	15	006	4
203		7	max	859.187	2	3.097	4	.181	1	0	3	0	1	002	15
204			min	-959.624	3	.728	15	.01	15	0	1	0	15	007	4
205		8	max	859.017	2	2.336	4	.181	1	0	3	0	1	002	15
206			min	-959.752	3	.549	15	.01	15	0	1	0	15	008	4
207		9	max	858.846	2	1.575	4	.181	1	0	3	0	1	002	15
208			min	-959.88	3	.37	15	.01	15	0	1	0	15	009	4
209		10	max		2	.814	4	.181	1	0	3	0	1	002	15
210		10	min	-960.007	3	.173	12	.01	15	0	1	0	15	01	4
211		11	max		2	.217	2	.181	1	0	3	0	1	002	15
212			min	-960.135	3	209	3	.01	15	0	1	0	15	01	4
213		12	max	858.335	2	166	15	.181	1	0	3	.001	1	002	15
214		12	min	-960.263	3	708	4	.01	15	0	1	0	15	01	4
215		13		858.165	2	345	15	.181	1	0	3	.001	1	002	15
		13	max					.01	15		1	0	15		
216		14	min	-960.391	3	-1.469	4			0		_		009	4
217		14	max	857.995	2	524 -2.23	15	.181	15	0	1	.001	1 15	002	15
218		4.5	min	-960.518	3		4			0	_	0		009	4
219		15	max		2	703	15	.181	1	0	3	.001	1	002	15
220		4.0	min	-960.646	3	-2.991	4	.01	15	0	1	0	15	008	4
221		16	max		2	882	15	.181	1	0	3	.001	1	001	15
222		4.7	min	-960.774	3	-3.752	4	.01	15	0	1	0	15	006	4
223		17	max	857.484	2	-1.061	15	.181	1	0	3	.001	1	001	15
224		1.0	min	-960.902	3	-4.513	4	.01	15	0	1	0	15	004	4
225		18	max	857.313	2	-1.24	15	.181	1	0	3	.001	1	0	15
226			min	-961.03	3	-5.274	4	.01	15	0	1	0	15	002	4
227		19	max	857.143	2	-1.418	15	.181	1	0	3	.002	1	0	1
228			min	-961.157	3	-6.035	4	.01	15	0	1	0	15	0	1
229	M4	1	max	730.655	1	0	1	35	15	0	1	.001	1	0	1
230			min	34.34	15	0	1	-6.167	1	0	1	0	15	0	1
231		2	max	730.825	1_	0	1	35	15	0	1	0	1_	0	1
232			min	34.391	15	0	1	-6.167	1	0	1	0	15	0	1
233		3	max	730.995	1_	0	1	35	15	0	_1_	0	1_	0	1
234			min	34.443	15	0	1	-6.167	1	0	1	0	10	0	1
235		4	max	731.166	1	0	1	35	15	0	1	0	15	0	1
236			min	34.494	15	0	1	-6.167	1	0	1	0	1	0	1
237		5	max	731.336	1	0	1	35	15	0	1	0	15	0	1
238			min	34.545	15	0	1	-6.167	1	0	1	001	1	0	1
239		6	max	731.506	1	0	1	35	15	0	1	0	15	0	1
240			min	34.597	15	0	1	-6.167	1	0	1	002	1	0	1
241		7		731.677	1	0	1	35	15	0	1	0	15	0	1
242			min	34.648	15	0	1	-6.167	1	0	1	003	1	0	1
243		8	max		1	0	1	35	15	0	1	0	15	0	1
244			min	34.7	15	0	1	-6.167	1	0	1	003	1	0	1
245		9	max		1	0	1	35	15	0	1	0	15	0	1
246			min	34.751	15	0	1	-6.167	1	0	1	004	1	0	1
247		10	max		1	0	1	35	15	0	1	0	15	0	1
248		· Ŭ	min	34.802	15	0	1	-6.167	1	0	1	005	1	0	1
249		11	max		1	0	1	35	15	0	1	0	15	0	1
250			min	34.854	15	0	1	-6.167	1	0	1	006	1	0	1
251		12		732.528	1	0	1	35	15	0	1	0	15	0	1
252		14	min	34.905	15	0	1	-6.167	1	0	1	006	1	0	1
253		13	max		1	0	1	35	15	0	1	0	15	0	1
254		13				0	1	-6.167	1		1	007	1		1
204			min	34.957	15	U		-0.107		0		007		0	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14	max	732.869	1	0	1	35	15	0	1	0	15	0	1
256			min	35.008	15	0	1	-6.167	1	0	1	008	1	0	1
257		15	max	733.039	1	0	1	35	15	0	1	0	15	0	1
258			min	35.059	15	0	1	-6.167	1	0	1	008	1	0	1
259		16	max	733.21	1	0	1	35	15	0	1	0	15	0	1
260			min	35.111	15	0	1	-6.167	1	0	1	009	1	0	1
261		17	max	733.38	1	0	1	35	15	0	1	0	15	0	1
262			min	35.162	15	0	1	-6.167	1	0	1	01	1	0	1
263		18	max	733.55	1	0	1	35	15	0	1	0	15	0	1
264			min	35.213	15	0	1	-6.167	1	0	1	011	1	0	1
265		19	max	733.721	1	0	1	35	15	0	1	0	15	0	1
266			min	35.265	15	0	1	-6.167	1	0	1	011	1	0	1
267	M6	1	max	2950.168	2	2.238	2	0	1	0	1	0	1	0	1
268			min	-4394.305	3	.268	12	0	1	0	1	0	1	0	1
269		2	max	2950.689	2	2.145	2	0	1	0	1	0	1	0	12
270			min	-4393.915	3	.221	12	0	1	0	1	0	1	0	2
271		3	max	2951.21	2	2.053	2	0	1	0	1	0	1	0	12
272			min	-4393.524	3	.175	12	0	1	0	1	0	1	002	2
273		4	max	2951.73	2	1.96	2	0	1	0	1	0	1	0	12
274			min	-4393.133	3	.106	3	0	1	0	1	0	1	002	2
275		5		2952.251	2	1.867	2	0	1	0	1	0	1	0	12
276			min	-4392.743	3	.037	3	0	1	0	1	0	1	003	2
277		6	max	2952.772	2	1.775	2	0	1	0	1	0	1	0	3
278			min	-4392.352	3	033	3	0	1	0	1	0	1	004	2
279		7		2953.292	2	1.682	2	0	1	0	1	0	1	0	3
280			min	-4391.962	3	102	3	0	1	0	1	0	1	004	2
281		8		2953.813	2	1.59	2	0	1	0	1	0	1	0	3
282			min	-4391.571	3	172	3	0	1	0	1	0	1	005	2
283		9		2954.334	2	1.497	2	0	1	0	1	0	1	0	3
284		Ť	min	-4391.181	3	241	3	0	1	0	1	0	1	005	2
285		10		2954.854	2	1.404	2	0	1	0	1	0	1	0	3
286		'	min	-4390.79	3	311	3	0	1	0	1	0	1	006	2
287		11		2955.375	2	1.312	2	0	1	0	1	0	1	0	3
288			min	-4390.4	3	38	3	0	1	0	1	0	1	006	2
289		12		2955.896	2	1.219	2	0	1	0	1	0	1	0	3
290		12	min	-4390.009	3	449	3	0	1	0	1	0	1	007	2
291		13		2956.417	2	1.127	2	0	1	0	1	0	1	0	3
292		'	min	-4389.619	3	519	3	0	1	0	1	0	1	007	2
293		14		2956.937	2	1.034	2	0	1	0	1	0	1	0	3
294		17	min	-4389.228	3	588	3	0	1	0	1	0	1	008	2
295		15	may	2957.458	2	.941	2	0	1	0	1	0	1	0	3
296		10	min		3	658	3	0	1	0	1	0	1	008	2
297		16		2957.979	2	.849	2	0	1	0	1	0	1	.001	3
298		10	min		3	727	3	0	1	0	1	0	1	008	2
299		17		2958.499	2	.756	2	0	1	0	1	0	1	.001	3
300		17	min	-4388.057	3	797	3	0	1	0	1	0	1	009	2
301		10		2959.02	2	.663	2	0	1	0	1	0	1	.002	3
302		10	min	-4387.666	3	866	3	0	1	0	1		1	009	2
		19		2959.541	_	.571	2		1		1	0	1	.002	3
303		19		-4387.276	2		3	0	1	0	1	0	1		2
304	N /1-7	1	min		3	936 7.692		_	1	0	1	0	1	009	
305	<u>M7</u>			2852.254	2	7.682	4	0	-	0	<u> </u>	0		.009	2
306		_	min		3	1.805	15	0	1	0	1	0	1	002	3
307		2		2852.083	2	6.921	4	0	1	0	1	0	1	.006	2
308			min		3_	1.626	15	0	1	0	1	0	1	003	3
309		3		2851.913	2	6.16	4	0	1	0	1	0	1	.004	2
310			min	-2907.625	3	1.447	15	0	1	0	1	0	1	005	3
311		4	max	2851.743	2	5.399	4	0	1	0	1	0	1	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
312			min	-2907.753	3	1.268	15	0	1	0	1	0	1	006	3
313		5	max	2851.572	2	4.638	4	0	1	0	_1_	0	_1_	0	2
314			min	-2907.881	3	1.089	15	0	1	0	1	0	1	007	3
315		6	max	2851.402	2	3.877	4	0	1	0	_1_	0	1	001	15
316			min	-2908.009	3	.91	15	0	1	0	1	0	1	007	3
317		7	max	2851.231	2	3.116	4	0	1	0	_1_	0	1	002	15
318			min	-2908.136	3	.731	15	0	1	0	1	0	1	008	3
319		8	max	2851.061	2	2.39	2	0	1	0	1	0	1	002	15
320			min	-2908.264	3	.465	12	0	1	0	1	0	1	008	4
321		9	max	2850.891	2	1.797	2	0	1	0	1	0	1	002	15
322			min	-2908.392	3	.169	12	0	1	0	1	0	1	009	4
323		10	max	2850.72	2	1.204	2	0	1	0	_1_	0	1_	002	15
324			min	-2908.52	3	266	3	0	1	0	1	0	1	01	4
325		11	max	2850.55	2	.611	2	0	1	0	_1	0	1	002	15
326			min	-2908.647	3	711	3	0	1	0	1	0	1	01	4
327		12	max	2850.38	2	.018	2	0	1	0	1	0	1	002	15
328			min	-2908.775	3	-1.156	3	0	1	0	1	0	1	01	4
329		13	max	2850.209	2	342	15	0	1	0	1	0	1	002	15
330			min	-2908.903	3	-1.6	3	0	1	0	1	0	1	009	4
331		14	max	2850.039	2	521	15	0	1	0	1	0	1	002	15
332			min	-2909.031	3	-2.211	4	0	1	0	1	0	1	009	4
333		15	max	2849.869	2	7	15	0	1	0	1	0	1	002	15
334			min	-2909.159	3	-2.972	4	0	1	0	1	0	1	007	4
335		16	max	2849.698	2	879	15	0	1	0	1	0	1	001	15
336			min	-2909.286	3	-3.733	4	0	1	0	1	0	1	006	4
337		17	max	2849.528	2	-1.057	15	0	1	0	1	0	1	001	15
338			min	-2909.414	3	-4.494	4	0	1	0	1	0	1	004	4
339		18	max	2849.358	2	-1.236	15	0	1	0	1	0	1	0	15
340			min	-2909.542	3	-5.255	4	0	1	0	1	0	1	002	4
341		19	max	2849.187	2	-1.415	15	0	1	0	1	0	1	0	1
342			min	-2909.67	3	-6.016	4	0	1	0	1	0	1	0	1
343	M8	1	max	1867.759	2	0	1	0	1	0	1	0	1	0	1
344			min	70.303	15	0	1	0	1	0	1	0	1	0	1
345		2	max	1867.93	2	0	1	0	1	0	1	0	1	0	1
346			min	70.354	15	0	1	0	1	0	1	0	1	0	1
347		3	max	1868.1	2	0	1	0	1	0	1	0	1	0	1
348			min	70.406	15	0	1	0	1	0	1	0	1	0	1
349		4	max	1868.27	2	0	1	0	1	0	1	0	1	0	1
350			min	70.457	15	0	1	0	1	0	1	0	1	0	1
351		5	max	1868.441	2	0	1	0	1	0	1	0	1	0	1
352			min	70.509	15	0	1	0	1	0	1	0	1	0	1
353		6	max	1868.611	2	0	1	0	1	0	1	0	1	0	1
354			min	70.56	15	0	1	0	1	0	1	0	1	0	1
355		7		1868.781	2	0	1	0	1	0	1	0	1	0	1
356			min	70.611	15	0	1	0	1	0	1	0	1	0	1
357		8		1868.952	2	0	1	0	1	0	1	0	1	0	1
358			min	70.663	15	0	1	0	1	0	1	0	1	0	1
359		9		1869.122	2	0	1	0	1	0	1	0	1	0	1
360			min		15	0	1	0	1	0	1	0	1	0	1
361		10		1869.292	2	0	1	0	1	0	1	0	1	0	1
362		_ · ·	min		15	0	1	0	1	0	1	0	1	0	1
363		11		1869.463	2	0	1	0	1	0	1	0	1	0	1
364			min	70.817	15	0	1	0	1	0	1	0	1	0	1
365		12		1869.633	_	0	1	0	1	0	1	0	1	0	1
366		14	min	70.868	15	0	1	0	1	0	1	0	1	0	1
367		13		1869.803		0	1	0	1	0	1	0	1	0	1
368		'	min	70.92	15	0	1	0	1	0	1	0	1	0	1
000			111111	10.02	10							•			1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
369		14	max	1869.974	2	0	1	0	1	0	1	0	1	0	1
370			min	70.971	15	0	1	0	1	0	1	0	1	0	1
371		15	max	1870.144	2	0	1	0	1	0	1	0	1	0	1
372			min	71.022	15	0	1	0	1	0	1	0	1	0	1
373		16	max	1870.315	2	0	1	0	1	0	1	0	1	0	1
374			min	71.074	15	0	1	0	1	0	1	0	1	0	1
375		17	max	1870.485	2	0	1	0	1	0	1	0	1	0	1
376			min	71.125	15	0	1	0	1	0	1	0	1	0	1
377		18	max	1870.655	2	0	1	0	1	0	1	0	1	0	1
378			min	71.177	15	0	1	0	1	0	1	0	1	0	1
379		19	max	1870.826	2	0	1	0	1	0	1	0	1	0	1
380			min	71.228	15	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	958.183	2	2.019	4	01	15	0	1	0	2	0	1
382			min	-1392.854	3	.475	15	179	1	0	3	0	3	0	1
383		2	max	958.704	2	1.9	4	01	15	0	1	0	10	0	15
384			min	-1392.464	3	.447	15	179	1	0	3	0	1	0	4
385		3	max	959.224	2	1.782	4	01	15	0	1	0	15	0	15
386			min	-1392.073	3	.419	15	179	1	0	3	0	1	001	4
387		4	max	959.745	2	1.663	4	01	15	0	1	0	15	0	15
388			min	-1391.683	3	.391	15	179	1	0	3	0	1	002	4
389		5	max		2	1.544	4	01	15	0	1	0	15	0	15
390			min	-1391.292	3	.363	15	179	1	0	3	0	1	003	4
391		6	max	960.787	2	1.425	4	01	15	0	1	0	15	0	15
392			min	-1390.902	3	.335	15	179	1	0	3	0	1	003	4
393		7	max	961.307	2	1.306	4	01	15	0	1	0	15	0	15
394			min	-1390.511	3	.307	15	179	1	0	3	Ö	1	004	4
395		8	max		2	1.187	4	01	15	0	1	0	15	0	15
396			min	-1390.121	3	.279	15	179	1	0	3	0	1	004	4
397		9	max		2	1.068	4	01	15	0	1	0	15	001	15
398		Ť	min	-1389.73	3	.248	12	179	1	0	3	0	1	004	4
399		10	max		2	.95	4	01	15	0	1	0	15	001	15
400		1.0	min	-1389.34	3	.202	12	179	1	0	3	0	1	005	4
401		11	max	963.39	2	.853	2	01	15	0	1	0	15	001	15
402			min	-1388.949	3	.156	12	179	1	0	3	0	1	005	4
403		12	max	963.911	2	.76	2	01	15	0	1	0	15	001	15
404		12	min	-1388.558	3	.109	12	179	1	0	3	0	1	005	4
405		13	max		2	.668	2	01	15	0	1	0	15	001	15
406		'	min	-1388.168	3	.063	12	179	1	0	3	0	1	006	4
407		14	max		2	.575	2	01	15	0	1	0	15	001	15
408		17	min	-1387.777	3	003	3	179	1	0	3	0	1	006	4
409		15		965.473		.482	2	01	15	0	1	0	15	001	15
410		10	min	-1387.387	3	073	3	179	1	0	3	0	1	006	4
411		16		965.994	2	.39	2	01	15	0	1	0	15	001	15
412		10	min	-1386.996	3	142	3	179	1	0	3	0	1	006	4
413		17	max		2	.297	2	173 01	15	0	1	0	15	001	12
414		17	min	-1386.606	3	212	3	179	1	0	3	001	1	006	4
415		18		967.035	2	.204	2	01	15	0	1	0	15	001	12
416		10	min	-1386.215	3	281	3	179	1	0	3	001	1	006	4
		10											-		12
417 418		19	max	967.556	3	.112 351	3	01 179	15	0 0	3	001	15	001 006	4
	M11	1	min	860.209					15		1		15		_
419 420	IVI I I				2	7.663	15	01	1	0	3	0	1	.006	12
		2	min	-958.858	3	1.801	15	181		0		0	_	.001	
421		4		860.039	2	6.902	4	01	15	0	1	0	<u>15</u>	.004	2
422		2		-958.985	3	1.623	15	181	1	0	3	0		0	3
423		3	max		2	6.141	4	01	15	0	3	0	15	.001	2
424		A	min	-959.113	3	1.444	15	181	1	0		0	1 1 5	001	3
425		4	тах	859.698	2	5.38	4	01	15	0	1	0	15	00	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-959.241	3	1.265	15	181	1	0	3	0	1	003	3
427		5	max	859.528	2	4.619	4	01	15	0	1	0	15	0	15
428			min	-959.369	3	1.086	15	181	1	0	3	0	1	004	4
429		6	max	859.357	2	3.858	4	01	15	0	1	0	15	001	15
430			min	-959.496	3	.907	15	181	1	0	3	0	1	006	4
431		7	max	859.187	2	3.097	4	01	15	0	1	0	15	002	15
432			min	-959.624	3	.728	15	181	1	0	3	0	1	007	4
433		8	max	859.017	2	2.336	4	01	15	0	1	0	15	002	15
434			min	-959.752	3	.549	15	181	1	0	3	0	1	008	4
435		9	max	858.846	2	1.575	4	01	15	0	1	0	15	002	15
436			min	-959.88	3	.37	15	181	1	0	3	0	1	009	4
437		10	max	858.676	2	.814	4	01	15	0	1	0	15	002	15
438			min	-960.007	3	.173	12	181	1	0	3	0	1	01	4
439		11	max	858.506	2	.217	2	01	15	0	1	0	15	002	15
440			min	-960.135	3	209	3	181	1	0	3	0	1	01	4
441		12	max	858.335	2	166	15	01	15	0	1	0	15	002	15
442			min	-960.263	3	708	4	181	1	0	3	001	1	01	4
443		13	max	858.165	2	345	15	01	15	0	1	0	15	002	15
444			min	-960.391	3	-1.469	4	181	1	0	3	001	1	009	4
445		14	max	857.995	2	524	15	01	15	0	1	0	15	002	15
446			min	-960.518	3	-2.23	4	181	1	0	3	001	1	009	4
447		15	max	857.824	2	703	15	01	15	0	1	0	15	002	15
448			min	-960.646	3	-2.991	4	181	1	0	3	001	1	008	4
449		16	max	857.654	2	882	15	01	15	0	1	0	15	001	15
450			min	-960.774	3	-3.752	4	181	1	0	3	001	1	006	4
451		17	max	857.484	2	-1.061	15	01	15	0	1	0	15	001	15
452			min	-960.902	3	-4.513	4	181	1	0	3	001	1	004	4
453		18	max		2	-1.24	15	01	15	0	1	0	15	0	15
454			min	-961.03	3	-5.274	4	181	1	0	3	001	1	002	4
455		19	max	857.143	2	-1.418	15	01	15	0	1	0	15	0	1
456			min	-961.157	3	-6.035	4	181	1	0	3	002	1	0	1
457	M12	1	max	730.655	1	0	1	6.167	1	0	1	0	15	0	1
458			min	34.34	15	0	1	.35	15	0	1	001	1	0	1
459		2	max	730.825	1	0	1	6.167	1	0	1	0	15	0	1
460			min	34.391	15	0	1	.35	15	0	1	0	1	0	1
461		3	max	730.995	1	0	1	6.167	1	0	1	0	10	0	1
462			min	34.443	15	0	1	.35	15	0	1	0	1	0	1
463		4	max	731.166	1	0	1	6.167	1	0	1	0	1	0	1
464			min	34.494	15	0	1	.35	15	0	1	0	15	0	1
465		5	max	731.336	1	0	1	6.167	1	0	1	.001	1	0	1
466			min	34.545	15	0	1	.35	15	0	1	0	15	0	1
467		6		731.506	1	0	1	6.167	1	0	1	.002	1	0	1
468			min	34.597	15	0	1	.35	15	0	1	0	15	0	1
469		7	max	731.677	1	0	1	6.167	1	0	1	.003	1	0	1
470			min	34.648	15	0	1	.35	15	0	1	0	15	0	1
471		8	max		1	0	1	6.167	1	0	1	.003	1	0	1
472			min	34.7	15	0	1	.35	15	0	1	0	15	0	1
473		9	max		1	0	1	6.167	1	0	1	.004	1	0	1
474			min	34.751	15	0	1	.35	15	0	1	0	15	0	1
475		10	max	732.188	1	0	1	6.167	1	0	1	.005	1	0	1
476			min	34.802	15	0	1	.35	15	0	1	0	15	0	1
477		11		732.358	1	0	1	6.167	1	0	1	.006	1	0	1
478			min	34.854	15	0	1	.35	15	0	1	0	15	0	1
479		12	max		1	0	1	6.167	1	0	1	.006	1	0	1
480			min	34.905	15	0	1	.35	15	0	1	0	15	0	1
481		13	max		1	0	1	6.167	1	0	1	.007	1	0	1
482			min	34.957	15	0	1	.35	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	732.869	1	0	1	6.167	1	0	1_	.008	1	0	1
484			min	35.008	15	0	1	.35	15	0	1_	0	15	0	1
485		15	max	733.039	1	0	1	6.167	1_	0	<u>1</u>	.008	1	0	1
486			min	35.059	15	0	1	.35	15	0	1_	0	15	0	1
487		16	max	733.21	1	0	1	6.167	1	0	1_	.009	1	0	1
488			min	35.111	15	0	1	.35	15	0	1_	0	15	0	1
489		17	max	733.38	1	0	1	6.167	1_	0	<u>1</u>	.01	1	0	1
490			min	35.162	15	0	1	.35	15	0	1_	0	15	0	1
491		18	max	733.55	1	0	1	6.167	1	0	_1_	.011	1	0	1
492			min	35.213	15	0	1	.35	15	0	1_	0	15	0	1
493		19	max	733.721	1	0	1	6.167	1	0	_1_	.011	1	0	1
494			min	35.265	15	0	1	.35	15	0	1_	0	15	0	1
495	M1	1	max	126.58	1	714.029	3	-3.05	15	0	2	.127	1	0	15
496			min	7.074	15	-375.144	2	-53.239	1	0	3	.007	15	013	2
497		2	max	127.402	1	713.149	3	-3.05	15	0	2	.099	1	.185	2
498			min	7.322	15	-376.317	2	-53.239	1	0	3	.006	15	378	3
499		3	max	602.567	3	488.246	2	-3.04	15	0	3	.07	1	.374	2
500			min	-347.044	2	-555.028	3	-53.123	1	0	2	.004	15	739	3
501		4	max	603.184	3	487.073	2	-3.04	15	0	3	.042	1	.117	2
502			min	-346.223	2	-555.908	3	-53.123	1	0	2	.002	15	445	3
503		5	max	603.8	3	485.9	2	-3.04	15	0	3	.014	1	003	15
504			min	-345.401	2	-556.788	3	-53.123	1	0	2	0	15	152	3
505		6	max	604.416	3	484.726	2	-3.04	15	0	3	0	15	.142	3
506			min	-344.579	2	-557.668	3	-53.123	1	0	2	014	1	396	2
507		7	max	605.032	3	483.553	2	-3.04	15	0	3	002	15	.437	3
508			min	-343.758	2	-558.548	3	-53.123	1	0	2	042	1	652	2
509		8	max	605.649	3	482.38	2	-3.04	15	0	3	004	15	.732	3
510			min	-342.936	2	-559.428	3	-53.123	1	0	2	07	1	907	2
511		9	max	620.763	3	53.092	2	-4.766	15	0	9	.044	1	.85	3
512			min	-286.534	2	.359	15	-83.497	1	0	3	.002	15	-1.037	2
513		10	max		3	51.919	2	-4.766	15	0	9	0	10	.832	3
514			min	-285.712	2	.005	15	-83.497	1	0	3	0	1	-1.064	2
515		11	max	621.995	3	50.745	2	-4.766	15	0	9	003	15	.815	3
516			min	-284.89	2	-1.448	4	-83.497	1	0	3	044	1	-1.092	2
517		12	max	636.824	3	385.118	3	-2.972	15	0	2	.069	1	.714	3
518			min	-228.355	2	-594.194	2	-52.252	1	0	3	.004	15	97	2
519		13	max	637.44	3	384.238	3	-2.972	15	0	2	.041	1	.511	3
520			min	-227.533	2	-595.367	2	-52.252	1	0	3	.002	15	656	2
521		14	max	638.057	3	383.358	3	-2.972	15	0	2	.014	1	.309	3
522			min	-226.712	2	-596.54	2	-52.252	1	0	3	0	15	342	2
523		15	max	638.673	3	382.478	3	-2.972	15	0	2	0	15	.106	3
524			min		2	-597.714	2	-52.252	1	0	3	014	1	037	1
525		16	max	639.289	3	381.598	3	-2.972	15	0	2	002	15	.289	2
526			min	-225.069	2	-598.887	2	-52.252	1	0	3	041	1	095	3
527		17		639.905	3	380.718	3	-2.972	15	0	2	004	15	.605	2
528			min	-224.247	2	-600.061	2	-52.252	1	0	3	069	1	296	3
529		18	max		15	594.335	2	-3.311	15	0	3	006	15	.306	2
530			min		1	-299.571	3	-58.14	1	0	2	098	1	147	3
531		19	max		15	593.161	2	-3.311	15	0	3	007	15	.012	3
532		l . J	min	-126.98	1	-300.451	3	-58.14	1	0	2	128	1	007	2
533	M5	1	max		1	2365.066	3	0	1	0	1	0	1	.026	2
534		Ė	min	11.455	12	-1296.878	2	0	1	0	1	0	1	0	15
535		2	max		1	2364.186	3	0	1	0	1	0	1	.71	2
536		_	min	11.865	12	-1298.051	2	0	1	0	1	0	1	-1.245	3
537		3		1866.633	3	1348.725	2	0	1	0	1	0	1	1.364	2
538			min	-1111.612	2	-1656.072	3	0	1	0	1	0	1	-2.444	3
539		4		1867.249		1347.551	2	0	1	0	1	0	1	.652	2
UUU			πιαλ	1001.243	U	10-71.001							1 1	.002	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-1110.791	2	-1656.952	3	0	1	0	1	0	1	-1.57	3
541		5		1867.866	3	1346.378	2	0	1	0	1	0	1	.014	9
542			min	-1109.969	2	-1657.832	3	0	1	0	1	0	1	696	3
543		6	max	1868.482	3	1345.205	2	0	1	0	1	0	1	.179	3
544			min	-1109.148	2	-1658.712	3	0	1	0	1	0	1	768	2
545		7	max	1869.098	3	1344.031	2	0	1	0	1	0	1	1.055	3
546			min	-1108.326	2	-1659.592	3	0	1	0	1	0	1	-1.478	2
547		8	max	1869.714	3	1342.858	2	0	1	0	1	0	1	1.931	3
548			min	-1107.504	2	-1660.472	3	0	1	0	1	0	1	-2.187	2
549		9	max	1885.902	3	179.834	2	0	1	0	1	0	1	2.218	3
550				-982.235	2	.35	15	0	1	0	1	0	1	-2.503	2
551		10	max	1886.518	3	178.66	2	0	1	0	1	0	1	2.151	3
552				-981.413	2	004	15	0	1	0	1	0	1	-2.598	2
553		11	max	1887.134	3	177.487	2	0	1	0	1	0	1	2.084	3
554				-980.591	2	-1.423	4	0	1	0	1	0	1	-2.692	2
555		12		1903.893	3	1114.339	3	0	1	0	1	0	1	1.829	3
556				-855.588	2	-1705.122	2	0	1	0	1	0	1	-2.414	2
557		13		1904.509	3	1113.459	3	0	1	0	1	0	1	1.242	3
558				-854.766	2	-1706.295	2	0	1	0	1	0	1	-1.514	2
559		14		1905.125	3	1112.579	3	0	1	0	1	0	1	.654	3
560		17		-853.944	2	-1707.469	2	0	1	0	1	0	1	613	2
561		15		1905.742	3	1111.699	3	0	1	0	1	0	1	.288	2
562		13		-853.123	2	-1708.642	2	0	1	0	1	0	1	0	13
563		16		1906.358	3	1110.819	3	0	1	0	1	0	1	1.19	2
564		10		-852.301	2	-1709.815	2	0	1	0	1	0	1	519	3
565		17	min		3	1109.939	3	0	1	0	1	0	1	2.092	2
		17		1906.974	2	-1710.989	2	0	1	0	1	_	1		3
566		4.0	min	-851.48		2011.11	2			-	1	0	1	<u>-1.105</u>	
567		18	max		12			0	1	0	1	0	1	1.076	2
568		40		-284.099	1_	-1049.28	3	0	•	0		0		577	3
569		19	max	-12.595	12	2009.937	2	0	1	0	1	0	1	.015	2
570	MO	4		-283.277	1_	-1050.16	3	•		0		0		023	3
571	<u>M9</u>	1_	max	126.58	1_	714.029	3	53.239	1	0	3	007	15	0	15
572			min	7.074	<u>15</u>	-375.144	2	3.05	15	0	2	127	1	013	2
573		2	max	127.402	1_	713.149	3	53.239	1	0	3	006	15	.185	2
574			min	7.322	<u>15</u>	-376.317	2	3.05	15	0	2	099	1	378	3
575		3	max		3_	488.246	2	53.123	1	0	2	004	15	.374	2
576				-347.044	2	-555.028	3	3.04	15	0	3	07	1	739	3
577		4	max		3	487.073	2	53.123	1	0	2	002	15	.117	2
578				-346.223	2	-555.908	3	3.04	15	0	3	042	1	445	3
579		5	max	603.8	3	485.9	2	53.123	1	0	2	0	15	003	15
580				-345.401		-556.788			15	0	3	014	1	152	3
581		6		604.416	3_	484.726	2	53.123	1	0	2	.014	1	.142	3
582				-344.579	2	-557.668	3	3.04	15	0	3	0	15	396	2
583		7		605.032	3	483.553	2	53.123	1	0	2	.042	1	.437	3
584				-343.758	2	-558.548	3	3.04	15	0	3	.002	15	652	2
585		8		605.649	3_	482.38	2	53.123	1	0	2	.07	1	.732	3
586			min	-342.936	2	-559.428	3	3.04	15	0	3	.004	15	907	2
587		9	max	620.763	3	53.092	2	83.497	1	0	3	002	15	.85	3
588			min	-286.534	2	.359	15	4.766	15	0	9	044	1	-1.037	2
589		10	max		3	51.919	2	83.497	1	0	3	0	1	.832	3
590			min	-285.712	2	.005	15	4.766	15	0	9	0	10	-1.064	2
591		11		621.995	3	50.745	2	83.497	1	0	3	.044	1	.815	3
592				-284.89	2	-1.448	4	4.766	15	0	9	.003	15	-1.092	2
593		12		636.824	3	385.118	3	52.252	1	0	3	004	15	.714	3
594			min	-228.355	2	-594.194	2	2.972	15	0	2	069	1	97	2
595		13		637.44	3	384.238	3	52.252	1	0	3	002	15	.511	3
596				-227.533	2	-595.367	2	2.972	15	0	2	041	1	656	2
				1000		0001001	_			_					

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	638.057	3	383.358	3	52.252	1	0	3	0	15	.309	3
598			min	-226.712	2	-596.54	2	2.972	15	0	2	014	1	342	2
599		15	max	638.673	3	382.478	3	52.252	1	0	3	.014	1	.106	3
600			min	-225.89	2	-597.714	2	2.972	15	0	2	0	15	037	1
601		16	max	639.289	3	381.598	3	52.252	1	0	3	.041	1	.289	2
602			min	-225.069	2	-598.887	2	2.972	15	0	2	.002	15	095	3
603		17	max	639.905	3	380.718	3	52.252	1	0	3	.069	1	.605	2
604			min	-224.247	2	-600.061	2	2.972	15	0	2	.004	15	296	3
605		18	max	-7.33	15	594.335	2	58.14	1	0	2	.098	1	.306	2
606			min	-127.802	1	-299.571	3	3.311	15	0	3	.006	15	147	3
607		19	max	-7.082	15	593.161	2	58.14	1	0	2	.128	1	.012	3
608			min	-126.98	1	-300.451	3	3.311	15	0	3	.007	15	007	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate	r LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.112	2	.01	3 9.493e-		NC	1_	NC	1
2			min	0	15	03	3	006	2 -2.991e	-3 3	NC	1	NC	1
3		2	max	0	1	.103	3	.012	3 1.041e	2 2	NC	4	NC	1
4			min	0	15	.001	15	003	10 -2.905e	-3 3	1313.353	3	NC	1
5		3	max	0	1	.211	3	.027	1 1.132e-	2 2	NC	4	NC	2
6			min	0	15	003	9	001	10 -2.819e	-3 3	723.647	3	6234.536	1
7		4	max	0	1	.278	3	.04	1 1.223e-	2 2	NC	4	NC	2
8			min	0	15	012	1	0	10 -2.733e	-3 3	566.072	3	4238.165	1
9		5	max	0	1	.296	3	.046	1 1.314e-	2 2	NC	4	NC	2
10			min	0	15	009	1	0	10 -2.647e		534.535	3	3697.443	1
11		6	max	0	1	.266	3	.043	1 1.406e	2 2	NC	4	NC	2
12			min	0	15	002	9	002	10 -2.561e	-3 3	588.178	3	3947.539	1
13		7	max	0	1	.198	3	.032	1 1.497e	2 2	NC	4	NC	2
14			min	0	15	.001	15	005	10 -2.475e		763.04	3	5312.044	1
15		8	max	0	1	.134	2	.03	3 1.588e-		NC	1	NC	1
16			min	0	15	.002	15	01	2 -2.389e		1237.605	3	8710.727	3
17		9	max	0	1	.182	2	.031	3 1.679e-		NC	4	NC	1
18			min	0	15	.003	15	018	2 -2.303e		2479.793	2	8527.698	3
19		10	max	0	1	.204	2	.031	3 1.771e		NC	4	NC	1
20			min	0	1	006	3	022	2 -2.218e		1896.897	2	8515.845	3
21		11	max	0	15	.182	2	.031	3 1.679e		NC	4	NC	1
22			min	0	1	.003	15	018	2 -2.303e		2479.793	2	8527.698	3
23		12	max	0	15	.134	2	.03	3 1.588e-		NC	1	NC	1
24			min	0	1	.002	15	01	2 -2.389e		1237.605	3	8710.727	3
25		13	max	0	15	.198	3	.032	1 1.497e		NC	4	NC	2
26			min	0	1	.001	15	005	10 -2.475e		763.04	3	5312.044	1
27		14	max	0	15	.266	3	.043	1 1.406e-		NC	4	NC	2
28			min	0	1	002	9	002	10 -2.561e		588.178	3	3947.539	
29		15	max	0	15	.296	3	.046	1 1.314e-		NC	4	NC	2
30			min	0	1	009	1	0	10 -2.647e		534.535	3	3697.443	
31		16	max	0	15	.278	3	.04	1 1.223e-		NC	4	NC	2
32			min	0	1	012	1	0	10 -2.733e		566.072	3	4238.165	
33		17	max	0	15	.211	3	.027	1 1.132e-		NC	4	NC	2
34			min	0	1	003	9	001	10 -2.819e		723.647	3	6234.536	1
35		18	max	0	15	.103	3	.012	3 1.041e		NC	4	NC	1
36			min	0	1	.001	15	003	10 -2.905e		1313.353	3	NC	1
37		19	max	0	15	.112	2	.01	3 9.493e		NC	1	NC	1
38			min	0	1	03	3	006	2 -2.991e		NC	1	NC	1
39	M14	1	max	0	1	.264	3	.009	3 5.237e-		NC	1	NC	1
40			min	0	15	354	2	006	2 -4.449e		NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
41		2	max	0	1	.429	3	.01	3	6.071e-3	2	NC	_4_	NC	1
42			min	0	15	502	2	003	2	-5.23e-3	3	1057.235	3	NC	1
43		3	max	0	1	.573	3	.021	1	6.906e-3	2	NC	<u>5</u>	NC	2
44			min	0	15	634	2	001	10	-6.012e-3	3	563.757	3	8164.517	1
45		4	max	0	1	.682	3	.033	1	7.74e-3	2	NC	_5_	NC	2
46			min	0	15	741	2	0	10	-6.794e-3	3	416.393	3	5136.292	1
47		5	max	0	1	.749	3	.04	1	8.574e-3	2	NC	5	NC	2
48			min	0	15	816	2	0	10		3	358.966	3	4291.234	
49		6	max	0	1	<u>.773</u>	3	.038	1	9.409e-3	2	NC	5	NC	2
50		_	min	0	15	858	2	002	10	-8.358e-3	3	342.239	3_	4454.655	
51		7	max	0	1	<u>.759</u>	3	.029	1	1.024e-2	2	NC	5	NC	2
52			min	0	15	<u>869</u>	2	005	10	-9.14e-3	3	337.619	2	5871.099	
53		8	max	0	1	.721	3	.027	3	1.108e-2	2	NC	5	NC NC	1
54			min	0	15	858	2	009	2	-9.922e-3	3	344.715	2	9874.153	
55		9_	max	0	1	<u>.679</u>	3	.027	3	1.191e-2	2	NC	5_	NC 2015 200	1
56		40	min	0	15	839	2	017	2	-1.07e-2	3	358.764	2	9615.299	
57		10	max	0	1	.657	3	.027	3	1.275e-2	2	NC	5	NC 0507.075	1
58		- 4.4	min	0	1	827	2	02	2	-1.149e-2	3	367.388	2	9587.275	3
59		11	max	0	15	<u>.679</u>	3	.027	3	1.191e-2	2	NC 050.704	5_	NC 2015 200	1
60		40	min	0	1	839	2	017	2	-1.07e-2	3	358.764	2	9615.299	
61		12	max	0	15	.721	3	.027	3	1.108e-2	2	NC O44.745	5	NC 0074.450	1
62		40	min	0	1	858	2	009	2	-9.922e-3	3	344.715	2	9874.153	
63		13	max	0	15	.759	3	.029	1	1.024e-2	2	NC 207.040	5	NC F074 000	2
64		4.4	min	0	1	869	2	005	10	-9.14e-3	3	337.619	2	5871.099	
65		14	max	0	15	.773	3	.038	1	9.409e-3	2	NC 242.220	5	NC 4454 CEE	2
66		4.5	min	0	1	858	2	002	10		3	342.239	3	4454.655	
67		15	max	0	15	.749	3	.04	1	8.574e-3	2	NC 250,000	5	NC 4004 004	2
68		40	min	0	1	816	2	0		-7.576e-3	3	358.966	3_	4291.234	
69		16	max	0	15	.682	3	.033	1	7.74e-3	2	NC	5	NC F42C 202	2
70		17	min	<u> </u>	15	741 .573	3	0 .021	10	-6.794e-3	2	416.393 NC	<u>3</u> 5	5136.292 NC	2
72		17	max	0	1	634	2	001	10	6.906e-3 -6.012e-3	3	563.757	3	8164.517	1
73		18	min	0	15	<u>634</u> .429	3	001 .01	3	6.071e-3		NC		NC	1
74		10	max	0	1	502	2		2	-5.23e-3	3	1057.235	3	NC NC	1
75		19		0	15	.264	3	003 .009	3	5.237e-3	2	NC	<u>ა</u> 1	NC NC	1
76		19	max	0	1	354	2	006	2	-4.449e-3	3	NC NC	1	NC NC	1
77	M15	1	max	0	15	.268	3	.008	3	3.958e-3	3	NC	1	NC	1
78	IVITO		min	0	1	352	2	005	2	-5.512e-3	2	NC	1	NC	1
79		2	max	0	15	.39	3	.01	3	4.656e-3	3	NC	4	NC	1
80			min	0	1	539	2	003	10	-6.399e-3	2	932.548	2	NC	1
81		3	max	0	15	- <u>559</u> .5	3	.021	1	5.354e-3		NC	5		2
82			min	0	1	703	2	001			2	496.195		8125.448	
83		4	max	0	15	.588	3	.033	1	6.052e-3	3	NC	5	NC	2
84			min	0	1	829	2	0		-8.171e-3	2	365.169	2	5112.468	
85		5	max	0	15	.651	3	.04	1	6.75e-3	3	NC	5	NC	2
86			min	0	1	908	2	0		-9.058e-3	2	313.143	2	4268.878	
87		6	max	0	15	.686	3	.039	1	7.448e-3	3	NC	5	NC	2
88			min	0	1	94	2	002		-9.944e-3	2	296.358	2	4424.846	
89		7	max	0	15	.697	3	.029	1	8.146e-3	3	NC	5	NC	2
90			min	0	1	93	2	004	10	-1.083e-2	2	301.441	2	5810.811	1
91		8	max	0	15	.69	3	.025	3	8.844e-3	3	NC	5	NC	1
92			min	0	1	892	2	008	2	-1.172e-2	2	322.441	2	NC	1
93		9	max	0	15	.675	3	.025	3	9.542e-3	3	NC	5	NC	1
94			min	0	1	848	2	015	2	-1.26e-2	2	351.237	2	NC	1
95		10	max	0	1	.666	3	.025	3	1.024e-2	3	NC	5	NC	1
96			min	0	1	825	2	019	2	-1.349e-2	2	367.944	2	NC	1
97		11	max	0	1	.675	3	.025	3	9.542e-3	3	NC	5	NC	1

: Schletter, Inc. : HCV

Job Number : Model Name : Standard F

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
98			min	0	15	848	2	015	2	-1.26e-2	2	351.237	2	NC	1
99		12	max	0	1	.69	3	.025	3	8.844e-3	3	NC	5	NC	1_
100			min	0	15	892	2	008	2	-1.172e-2	2	322.441	2	NC	1
101		13	max	0	1	.697	3	.029	1	8.146e-3	3	NC	5	NC	2
102			min	0	15	93	2	004	10	-1.083e-2	2	301.441	2	5810.811	1
103		14	max	0	1	.686	3	.039	1	7.448e-3	3	NC	5	NC	2
104		ļ.,_	min	0	15	94	2	002	10	-9.944e-3	2	296.358	2	4424.846	
105		15	max	0	1	.651	3	.04	1	6.75e-3	3	NC	_5_	NC	2
106			min	0	15	908	2	0	10	-9.058e-3	2	313.143	2	4268.878	
107		16	max	0	1	.588	3	.033	1	6.052e-3	3_	NC	_5_	NC	2
108			min	0	15	829	2	0	10	-8.171e-3	2	365.169	2	5112.468	
109		17	max	0	1	5	3	.021	1	5.354e-3	3	NC	5	NC	2
110			min	0	15	703	2	001	10	-7.285e-3	2	496.195	2	8125.448	
111		18	max	0	1	.39	3	.01	3	4.656e-3	3	NC	4	NC	1
112			min	0	15	539	2	003	10	-6.399e-3	2	932.548	2	NC	1
113		19	max	0	1	.268	3	.008	3	3.958e-3	3	NC	_1_	NC	1
114			min	0	15	352	2	005	2	-5.512e-3	2	NC	_1_	NC	1
115	<u>M16</u>	1	max	0	15	.099	2	.007	3	7.263e-3	3	NC	1	NC	1
116			min	0	1	089	3	005	2	-7.778e-3	2	NC	1_	NC	1
117		2	max	0	15	.012	1	.011	1	8.095e-3	3_	NC	_4_	NC	1
118			min	0	1	049	3	002	10	-8.305e-3	2	1786.746	2	NC	1
119		3	max	0	15	.002	4	.027	1	8.926e-3	3	NC	4	NC	2
120			min	0	1	076	2	0	10	-8.832e-3	2	997.286	2	6214.387	1
121		4	max	0	15	0	13	.041	1	9.758e-3	3_	NC	_4_	NC	2
122		_	min	0	1	119	2	.001	10	-9.359e-3	2	799.186	2	4207.765	1
123		5	max	0	15	0	13	.047	1	1.059e-2	3_	NC	4	NC	2
124			min	0	1	122	2	.001	10	-9.887e-3	2	787.547	2	3653.608	
125		6	max	00	15	.003	4	.044	1_	1.142e-2	3_	NC	_4_	NC	2
126			min	0	1	087	2	0	10	-1.041e-2	2	939.028	2	3871.961	1
127		7	max	0	15	.013	9	.033	1_	1.225e-2	3	NC	3_	NC	2
128			min	0	1	079	3	003	10		2	1458.16	2	5131.888	
129		8	max	0	15	.061	1	.022	3	1.308e-2	3	NC	1_	NC	2
130			min	0	1	125	3	006	10	-1.147e-2	2	4470.565	2	9872.911	1
131		9	max	0	15	.131	2	.022	3	1.392e-2	3	NC	4	NC	1
132			min	0	1	166	3	014	2	-1.2e-2	2	2280.581	3_	NC	1
133		10	max	0	1	.164	2	.022	3	1.475e-2	3	NC	4_	NC	1
134			min	0	1	183	3	017	2	-1.252e-2	2	1850.785	3	NC	1
135		11	max	0	1	.131	2	.022	3	1.392e-2	3	NC	_4_	NC	1
136			min	0	15	166	3	014	2	-1.2e-2	2	2280.581	3	NC	1
137		12	max	0	1	.061	1	.022	3	1.308e-2	3	NC	1_	NC	2
138		1.0	min	0	15	125	3	006		-1.147e-2					
139		13	max	0	1	.013	9	.033	1	1.225e-2	3	NC 1 150 10	3_	NC 5404,000	2
140			min	0	15	<u>079</u>	3	003		-1.094e-2	2	1458.16	2	5131.888	
141		14	max	0	1	.003	4	.044	1	1.142e-2	3_	NC	4_	NC	2
142		4-	min	0	15	087	2	0	10	-1.041e-2	2	939.028	2	3871.961	1
143		15	max	0	1	0	13	.047	1	1.059e-2	3	NC	4_	NC	2
144		1.0	min	0	15	122	2	.001	10	-9.887e-3	2	787.547	2	3653.608	
145		16	max	0	1	0	13	.041	1	9.758e-3	3	NC	_4_	NC	2
146			min	0	15	119	2	.001	10	-9.359e-3	2	799.186	2	4207.765	
147		17	max	0	1	.002	4	.027	1	8.926e-3	3_	NC	4_	NC 0044.007	2
148			min	0	15	076	2	0		-8.832e-3	2	997.286	2	6214.387	1
149		18	max	0	1	.012	1	.011	1	8.095e-3	3	NC 4700.740	4_	NC NC	1
150		1	min	0	15	049	3	002	10		2	1786.746	2	NC NC	1
151		19	max	0	1	.099	2	.007	3	7.263e-3	3	NC	1_	NC NC	1
152	• • •		min	0	15	089	3	005	2	-7.778e-3	2_	NC	1_	NC	1
153	M2	1	max	.007	2	.01	2	.004	1_	-6.456e-6	<u>15</u>	NC	1	NC	1
154			min	01	3	016	3	0	15	-1.124e-4	<u>1</u>	7425.377	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
155		2	max	.007	2	.009	2	.004	1	-6.124e-6	15	NC	1_	NC	1
156			min	01	3	01 <u>5</u>	3	0	15	-1.066e-4	1_	8607.117	2	NC	1
157		3	max	.006	2	.008	2	.003	1	-5.791e-6	<u>15</u>	NC	1	NC	1
158		4	min	009	3	015	3	0			1_	NC NC	1_	NC NC	1
159		4	max	.006	2	.006	3	.003	1	-5.459e-6	<u>15</u>	NC NC	1	NC NC	1
160 161		5	min	009 .006	2	014 .005	2	.003	15	-9.498e-5 -5.126e-6	<u>1</u> 15	NC NC	1	NC NC	1
162		5	max	008	3	014	3	<u>.003</u>	15	-8.919e-5	1	NC NC	1	NC NC	1
163		6	max	.005	2	.004	2	.002	1	-4.794e-6	_	NC	1	NC	1
164		0	min	007	3	013	3	0	15	-8.339e-5	1	NC NC	1	NC	1
165		7	max	.005	2	.002	2	.002	1	-4.462e-6	15	NC	1	NC	1
166			min	007	3	013	3	0	15	-7.76e-5	1	NC	1	NC	1
167		8	max	.004	2	.001	2	.002	1	-4.129e-6		NC	1	NC	1
168			min	006	3	012	3	0	15	-7.181e-5	1	NC	1	NC	1
169		9	max	.004	2	0	2	.002	1	-3.797e-6	15	NC	1	NC	1
170			min	006	3	011	3	0	15	-6.602e-5	1	NC	1	NC	1
171		10	max	.004	2	0	2	.001	1	-3.464e-6	15	NC	1	NC	1
172			min	005	3	01	3	0	15	-6.023e-5	1	NC	1	NC	1
173		11	max	.003	2	0	2	.001	1	-3.132e-6	15	NC	1_	NC	1
174			min	005	3	009	3	0	15	-5.444e-5	1_	NC	1_	NC	1
175		12	max	.003	2	001	2	0	1	-2.799e-6	15	NC	1_	NC	1
176			min	004	3	008	3	0	15	-4.865e-5	<u>1</u>	NC	1_	NC	1
177		13	max	.002	2	001	15	0	1	-2.467e-6	15	NC	1_	NC	1
178			min	003	3	007	3	0	15	-4.286e-5	_1_	NC	1_	NC	1
179		14	max	.002	2	001	15	0	1_	-2.134e-6	<u>15</u>	NC	1	NC NC	1
180		4.5	min	003	3	006	3	0	15	-3.707e-5	1_	NC NC	1_	NC	1
181		15	max	.002	2	001	15	0	1	-1.802e-6		NC NC	1	NC NC	1
182		16	min	002	3	<u>005</u> 0	3	0	1 <u>5</u>	-3.127e-5	1_	NC NC	<u>1</u> 1	NC NC	1 1
183 184		16	max	.001 002	3	004	15	0 0	15	-1.47e-6 -2.548e-5	<u>15</u> 1	NC NC	1	NC NC	1
185		17	max	<u>002</u> 0	2	004 0	15	0	1	-1.137e-6	15	NC NC	1	NC NC	1
186		17	min	001	3	003	3	0	15	-1.969e-5	1	NC	1	NC	1
187		18	max	0	2	0	15	0	1	-8.047e-7	15	NC	1	NC	1
188		10	min	0	3	001	4	0	15	-1.39e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	-4.723e-7	15	NC	1	NC	1
190			min	0	1	0	1	0	1	-8.11e-6	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	1.837e-6	1	NC	1	NC	1
192			min	0	1	0	1	0	1	1.074e-7	15	NC	1	NC	1
193		2	max	0	3	0	15	0	15	1.235e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	1	7.032e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	15	2.286e-5		NC	1	NC	1
196			min	0	2	004	4	0	1	1.299e-6	15	NC	1	NC	1
197		4	max	.001	3	001	15	0	15		_1_	NC	_1_	NC	1
198			min	001	2	006	4	0	1	1.895e-6	15	NC	1_	NC	1
199		5	max	.002	3	002	15	0	15	4.389e-5	_1_	NC	1	NC	1
200			min	002	2	008	4	0	1	2.49e-6	<u>15</u>	NC NC	1_	NC NC	1
201		6	max	.002	3	002	15	0	10	5.44e-5	1_	NC	1	NC	1
202		-	min	002	2	01	4	0	1	3.086e-6		9256.496	4	NC NC	1
203		7	max	.003	3	003	15	0 0	1	6.492e-5	1_	NC 8004.397	1_4	NC NC	1
204		8	min	002 .003	3	011 003	15	0	1	3.682e-6 7.543e-5	<u>15</u> 1	NC	<u>4</u> 2	NC NC	1
206		0	max min	003	2	003 013	4	0	12			7233.839	4	NC NC	1
207		9	max	.004	3	003	15	0	1	8.594e-5	1	NC	5	NC	1
208			min	003	2	003 014	4	0	12			6784.246	4	NC	1
209		10	max	.004	3	003	15	0	1	9.646e-5	1	NC	5	NC	1
210		1.0	min	004	2	014	4	0	15	5.469e-6		6578.301	4	NC	1
211		11	max	.005	3	003	15	0	1	1.07e-4	1	NC	5	NC	1
		<u> </u>											_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	004	2	014	4	0	15	6.065e-6		6585.934	4	NC	1
213		12	max	.005	3	003	15	0	1	1.175e-4	_1_	NC	5	NC	1
214			min	005	2	014	4	0	15	6.66e-6	15	6812.77	4	NC	1
215		13	max	.006	3	003	15	.001	1	1.28e-4	_1_	NC	2	NC	1
216			min	005	2	013	4	0	15	7.256e-6	15	7303.795	4_	NC	1
217		14	max	.006	3	003	15	.001	11	1.385e-4	1_	NC 2402.42	1	NC NC	1
218		45	min	005	2	011	4	0	15	7.852e-6	15	8166.12	4	NC NC	1
219		15	max	.006	3	002	15	.002	1	1.49e-4	1_	NC	1_	NC NC	1
220		4.0	min	006	2	01	4	0	15	8.448e-6		9635.075	4	NC NC	1
221		16	max	.007	3	002 008	15	.002	1 15	1.595e-4	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	006 .007	3		15	.003		9.043e-6 1.701e-4	<u>15</u>	NC NC	1	NC NC	1
224		17	max	007	2	001 006	3	<u>.003</u>	1 15	9.639e-6	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min max	.007	3	<u>006</u> 0	15	.003	1	1.806e-4	1 1	NC NC	1	NC NC	1
226		10	min	007	2	004	3	003 	15	1.023e-5	15	NC	1	NC	1
227		19	max	.008	3	004	2	.004	1	1.911e-4	1	NC	1	NC	1
228		13	min	007	2	003	3	0	15	1.083e-5	15	NC	1	NC	1
229	M4	1	max	.002	1	.007	2	0	15	7.523e-5	1	NC	1	NC	2
230	IVIT	'	min	0	15	009	3	004	1	4.287e-6	15	NC	1	6209.692	1
231		2	max	.002	1	.007	2	<u>.004</u>	15	7.523e-5	1	NC	1	NC	2
232			min	0	15	008	3	004	1	4.287e-6	15	NC	1	6728.531	1
233		3	max	.002	1	.006	2	0	15	7.523e-5	1	NC	1	NC	2
234			min	0	15	008	3	003	1	4.287e-6	15	NC	1	7347.606	1
235		4	max	.001	1	.006	2	0	15	7.523e-5	1	NC	1	NC	2
236			min	0	15	007	3	003	1	4.287e-6	15	NC	1	8092.681	1
237		5	max	.001	1	.006	2	0	15	7.523e-5	1	NC	1	NC	2
238			min	0	15	007	3	003	1	4.287e-6	15	NC	1	8998.79	1
239		6	max	.001	1	.005	2	0	15	7.523e-5	1	NC	1	NC	1
240			min	0	15	006	3	002	1	4.287e-6	15	NC	1	NC	1
241		7	max	.001	1	.005	2	0	15	7.523e-5	1_	NC	1_	NC	1
242			min	0	15	006	3	002	1	4.287e-6	15	NC	1	NC	1
243		8	max	.001	1	.004	2	0	15	7.523e-5	_1_	NC	_1_	NC	1
244			min	0	15	005	3	002	1	4.287e-6	15	NC	_1_	NC	1
245		9	max	0	1	.004	2	0	15	7.523e-5	_1_	NC	_1_	NC	1
246		10	min	0	15	005	3	002	1	4.287e-6	<u>15</u>	NC	1_	NC	1
247		10	max	0	1	.004	2	0	15	7.523e-5	1_	NC	1	NC NC	1
248		4.4	min	0	15	004	3	001	1_	4.287e-6	<u>15</u>	NC	1_	NC NC	1
249		11	max	0	1	.003	2	0	15	7.523e-5	1_	NC	1	NC NC	1
250		40	min	0	15	004	3	001	1_45	4.287e-6	<u>15</u>	NC NC	1_	NC NC	1
251 252		12	max	<u> </u>	15	.003	3	0	15	7.523e-5 4.287e-6	1_	NC NC	1	NC NC	1
		12	min		1	003	2						1		1
253 254		13	max min	<u> </u>	15	.002 003	3	0 0	1	7.523e-5 4.287e-6	<u>1</u> 15	NC NC	1	NC NC	1
255		14	max	0	1	.002	2	0		7.523e-5	10	NC	1	NC NC	1
256		14	min	0	15	002	3	0	1	4.287e-6	15	NC	1	NC	1
257		15	max	0	1	.002	2	0	15	7.523e-5	1 <u>5</u>	NC	1	NC	1
258		13	min	0	15	002	3	0	1	4.287e-6	15	NC	1	NC	1
259		16	max	0	1	.002	2	0	15		1	NC	1	NC	1
260		10	min	0	15	001	3	0	1	4.287e-6		NC	1	NC	1
261		17	max	0	1	0	2	0	15	7.523e-5	1	NC	1	NC	1
262		17	min	0	15	0	3	0	1	4.287e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	7.523e-5	1	NC	1	NC	1
264		1.0	min	0	15	0	3	0	1	4.287e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	7.523e-5	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	4.287e-6	15	NC	1	NC	1
267	M6	1	max	.022	2	.034	2	0	1	0	1	NC	4	NC	1
268	-		min	033	3	049	3	0	1	0	1	1576.774	3	NC	1
					_								_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio L			1
269		2	max	.021	2	.031	2	0	1_	0	_1_		4	NC	1
270			min	031	3	046	3	0	1	0	1_		3	NC	1
271		3	max	.019	2	.028	2	0	1	0	_1_		4	NC	1
272			min	029	3	043	3	0	1	0	1		3	NC	1
273		4	max	.018	2	.025	2	0	1	0	_1_		4	NC	1
274			min	027	3	041	3	0	1	0	1_		3	NC	1
275		5	max	.017	2	.022	2	0	1	0	_1_		4	NC	1
276			min	025	3	038	3	0	1	0	1		3	NC	1
277		6	max	.016	2	.02	2	0	1	0	1_		4	NC	1_
278			min	023	3	035	3	0	1	0	1	2186.229	3	NC	1
279		7	max	.015	2	.017	2	0	1	0	1		1	NC	1
280			min	022	3	032	3	0	1	0	1		3	NC	1
281		8	max	.013	2	.014	2	0	1	0	1	NC	1	NC	1
282			min	02	3	03	3	0	1	0	1	2590.476	3	NC	1
283		9	max	.012	2	.012	2	0	1	0	1	NC	1	NC	1
284			min	018	3	027	3	0	1	0	1	2855.365	3	NC	1
285		10	max	.011	2	.01	2	0	1	0	1		1	NC	1
286			min	016	3	024	3	0	1	0	1		3	NC	1
287		11	max	.01	2	.008	2	0	1	0	1		1	NC	1
288			min	014	3	021	3	0	1	0	1		3	NC	1
289		12	max	.009	2	.006	2	0	1	0	1		1	NC	1
290			min	013	3	019	3	0	1	0	1		3	NC	1
291		13	max	.007	2	.004	2	0	1	0	1		1	NC	1
292			min	011	3	016	3	0	1	0	1		3	NC	1
293		14	max	.006	2	.003	2	0	1	0	1		1	NC	1
294			min	009	3	013	3	0	1	Ō	1		3	NC	1
295		15	max	.005	2	.002	2	0	1	0	1		1	NC	1
296		-10	min	007	3	01	3	0	1	0	1		3	NC	1
297		16	max	.004	2	0	2	0	1	0	1		1	NC	1
298		10	min	005	3	008	3	0	1	0	1		3	NC	1
299		17	max	.002	2	<u>000</u>	2	0	1	0	1		<u>ე</u>	NC	1
300		17	min	004	3	005	3	0	1	0	1		1	NC	1
301		18	max	.004	2	<u>003</u> 0	2	0	1	0	1		1	NC	1
302		10	min	002	3	003	3	0	1	0	1		1	NC	1
303		19		<u>002</u> 0	1	<u>003</u> 0	1	0	1		1		1	NC	1
304		19	max	0	1	0	1	0	1	0	1		1	NC	1
	N/7	1	min		1		1		1		1		1	NC	1
305	M7	-	max	0	1	0		0	1	0	1		1	NC NC	1
306		_	min	0	-	0	1	0	1	0			•		
307		2	max	.001	3	0	2	0		0	1		1	NC NC	1
308		_	min	001	2	003	3	0	1	0	1_	110	1	NC NC	1
309		3	max	.003	3	0	2	0	1	0	1	NC NC	1	NC NC	1
310		4	min	003	2	006	3	0	1	0	1_		1	NC NC	1
311		4	max	.004	3	001	15	0	1	0	1		1	NC NC	1
312		_	min	004	2	008	3	0	1	0	1_		1	NC NC	1
313		5	max	.006	3	002	15	0	1	0	1		1	NC NC	1
314			min	005	2	01	3	0	1	0	1	110	1	NC	1
315		6	max	.007	3	002	15	0	1	0	1		1	NC	1
316			min	007	2	012	3	0	1	0	1_		3	NC	1
317		7	max	.008	3	003	15	0	1	0	1		1	NC	1
318			min	008	2	014	3	0	1	0	1_		3	NC	1
319		8	max	.01	3	003	15	0	1	0	1		1_	NC	1
320			min	01	2	015	3	0	1	0	1		3	NC	1
321		9	max	.011	3	003	15	0	1	0	_1_		1_	NC	1
322			min	011	2	016	3	0	1	0	1		4	NC	1
323		10	max	.013	3	003	15	0	1	0	1_		1_	NC	1
324			min	012	2	017	3	0	1	0	1		4	NC	1
325		11	max	.014	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC_
326			min	014	2	017	3	0	1	0	1	6645.548	4	NC	1
327		12	max	.015	3	003	15	0	1	0	_1_	NC	_1_	NC	1
328			min	015	2	017	3	0	1	0	1_	6871.785	4	NC	1
329		13	max	.017	3	003	15	0	1	0	1_	NC	_1_	NC	1
330		4.4	min	016	2	<u>016</u>	3	0	1	0	1_	7364.662	4_	NC	1
331		14	max	.018	3	003	15	0	1	0	1	NC	1_	NC	1
332		45	min	018	2	01 <u>5</u>	3	0	1	0	1_	8231.931	4_	NC NC	1
333		15	max	.02	3	002	15	0	1	0	1_	NC 0740 FF0	1_	NC	1
334		4.0	min	019	2	014	3	0		0	1_	9710.558	4	NC NC	1
335		16	max	.021 021	3	002	15	<u>0</u> 	1	0	1	NC NC	<u>1</u> 1	NC NC	1
336		17	min	.021		013 0	2		1		•	NC NC	1	NC NC	1
337		17	max min	022	3	011	3	0	1	0	1	NC NC	1	NC NC	1
339		18		.024	3	<u>011</u> 0	2	0	1	0	1	NC NC	1	NC NC	1
340		10	max	023	2	009	3	0	1	0	1	NC	1	NC	1
341		19	max	.025	3	.002	2	0	1	0	1	NC	1	NC	1
342		13	min	025	2	008	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.004	2	.024	2	0	1	0	1	NC	1	NC	1
344	IVIO	'	min	0	15	026	3	0	1	0	1	NC	1	NC	1
345		2	max	.004	2	.023	2	0	1	0	1	NC	1	NC	1
346		_	min	0	15	025	3	0	1	0	1	NC	1	NC	1
347		3	max	.004	2	.022	2	0	1	0	1	NC	1	NC	1
348			min	0	15	023	3	0	1	0	1	NC	1	NC	1
349		4	max	.004	2	.02	2	0	1	0	1	NC	1	NC	1
350			min	0	15	022	3	0	1	0	1	NC	1	NC	1
351		5	max	.003	2	.019	2	0	1	0	1	NC	1	NC	1
352			min	0	15	02	3	0	1	0	1	NC	1	NC	1
353		6	max	.003	2	.018	2	0	1	0	1	NC	1	NC	1
354			min	0	15	019	3	0	1	0	1	NC	1	NC	1
355		7	max	.003	2	.016	2	0	1	0	1_	NC	1_	NC	1
356			min	0	15	018	3	0	1	0	1	NC	1_	NC	1
357		8	max	.003	2	.015	2	0	1	0	_1_	NC	_1_	NC	1
358			min	0	15	016	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.002	2	.014	2	00	1	0	_1_	NC	_1_	NC	1
360			min	0	15	015	3	0	1	0	1_	NC	1_	NC	1
361		10	max	.002	2	.012	2	0	1	0	1_	NC	1_	NC	1
362			min	0	15	<u>013</u>	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.002	2	.011	2	0	1	0	1	NC	1	NC	1
364		40	min	0	15	012	3	0	1	0	1_	NC	_1_	NC	1
365		12	max	.002	2	.009	2	0	1	0	1_	NC	1_	NC NC	1
366		10	min	0	15	01	3	0	1	0	1	NC NC	1	NC NC	1
367		13	max	.001	2	.008	2	0	1	0	1	NC NC	1	NC NC	1
368		1.1	min	001	15 2	009 007	2	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
369		14	max	.001	15	.007	3	0 0	1	0	1	NC NC	1	NC NC	1
370 371		15	min max	<u> </u>	2	007 .005	2	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
372		13	min	0	15	006	3	0	1	0	1	NC	1	NC	1
373		16		0	2	.004	2	0	1	0	1	NC	1	NC	1
374		10	max min	0	15	004 004	3	0	1	0	1	NC NC	1	NC NC	1
375		17	max	0	2	.003	2	0	1	0	1	NC	1	NC	1
376		17	min	0	15	003	3	0	1	0	1	NC NC	1	NC NC	1
377		18	max	0	2	.003	2	0	1	0	1	NC	1	NC	1
378		10	min	0	15	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.5	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.01	2	0	15	1.124e-4	1	NC	1	NC	1
382			min	01	3	016	3	004	1	6.456e-6	15		2	NC	1
													_		

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC) LC
383		2	max	.007	2	.009	2	0	15	1.066e-4	1_	NC	_1_	NC	1
384			min	01	3	01 <u>5</u>	3	004	1	6.124e-6	15	8607.117	2	NC	1
385		3	max	.006	2	.008	2	0	15	1.008e-4	_1_	NC	_1_	NC	1
386			min	009	3	015	3	003	1	5.791e-6	15	NC	1_	NC	1
387		4	max	.006	2	.006	2	0	15	9.498e-5	1_	NC	_1_	NC	1
388		_	min	009	3	014	3	003	1_	5.459e-6	<u>15</u>	NC NC	1_	NC NC	1
389		5	max	.006	2	.005	2	0	15	8.919e-5	1_	NC	1	NC	1
390			min	008	3	014	3	003	1_1_	5.126e-6	<u>15</u>	NC NC	1_	NC NC	1
391		6	max	.005	2	.004	2	0	15	8.339e-5	1_	NC NC	1_1	NC	1
392 393		7	min	007	2	013 .002	2	002	15	4.794e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
394			max	.005 007	3	013	3	0 002	1	7.76e-5 4.462e-6	<u>1</u> 15	NC NC	1	NC NC	1
395		8	min	007 .004	2	013 .001	2	<u>002</u> 0	15	7.181e-5	<u>15</u> 1	NC NC	1	NC NC	1
396		0	max	004	3	012	3	002	1	4.129e-6	15	NC NC	1	NC NC	1
397		9	max	.004	2	<u>012</u> 0	2	<u>002</u> 0	15	6.602e-5	1	NC	1	NC	1
398		3	min	006	3	011	3	002	1	3.797e-6	15	NC	1	NC	1
399		10	max	.004	2	0	2	0	15	6.023e-5	1	NC	1	NC	1
400		10	min	005	3	01	3	001	1	3.464e-6	15	NC	1	NC	1
401		11	max	.003	2	0	2	0	15	5.444e-5	1	NC	1	NC	1
402			min	005	3	009	3	001	1	3.132e-6	15	NC	1	NC	1
403		12	max	.003	2	001	2	0	15	4.865e-5	1	NC	1	NC	1
404		i -	min	004	3	008	3	0	1	2.799e-6	15	NC	1	NC	1
405		13	max	.002	2	001	15	0	15	4.286e-5	1	NC	1	NC	1
406			min	003	3	007	3	0	1	2.467e-6	15	NC	1	NC	1
407		14	max	.002	2	001	15	0	15	3.707e-5	1	NC	1	NC	1
408			min	003	3	006	3	0	1	2.134e-6	15	NC	1	NC	1
409		15	max	.002	2	001	15	0	15	3.127e-5	1	NC	1	NC	1
410			min	002	3	005	3	0	1	1.802e-6	15	NC	1	NC	1
411		16	max	.001	2	0	15	0	15	2.548e-5	1	NC	1	NC	1
412			min	002	3	004	3	0	1	1.47e-6	15	NC	1_	NC	1
413		17	max	0	2	0	15	0	15	1.969e-5	1_	NC	_1_	NC	1
414			min	001	3	003	3	0	1	1.137e-6	15	NC	1_	NC	1
415		18	max	0	2	0	15	0	15	1.39e-5	_1_	NC	1_	NC	1
416			min	0	3	001	4	0	1	8.047e-7	15	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	8.11e-6	1_	NC	_1_	NC	1
418			min	0	1	0	1	0	1	4.723e-7	15	NC	1_	NC NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	-1.074e-7	<u>15</u>	NC	1_	NC NC	1
420			min	0	1	0	1	0	1	-1.837e-6	1_	NC	1_	NC NC	1
421		2	max	0	3	0	15	0	1	-7.032e-7	<u>15</u>	NC NC	1_	NC	1
422 423		3	min	0	3	002	15	0	1 <u>5</u>	-1.235e-5 -1.299e-6	1_	NC NC	<u>1</u> 1	NC NC	1
		3	max	0	2	0		0		-1.299e-6 -2.286e-5			1		1
424 425		4	min	.001	3	004 001	15	0	1	-2.266e-5 -1.895e-6	1_	NC NC	1	NC NC	1
426		4	max min	001	2	001	4	0		-3.338e-5	1	NC NC	1	NC NC	1
427		5	max	.002	3	002	15	0	1	-3.336e-3 -2.49e-6	15	NC	1	NC	1
428		5	min	002	2	002	4	0	15	-4.389e-5	1	NC NC	1	NC	1
429		6	max	.002	3	002	15	0	1	-3.086e-6		NC	1	NC	1
430		-	min	002	2	002	4	0	10	-5.44e-5	1	9256.496	4	NC	1
431		7	max	.003	3	003	15	0	3	-3.682e-6	_	NC	1	NC	1
432			min	002	2	003 011	4	0	1	-6.492e-5	1	8004.397	4	NC	1
433		8	max	.003	3	003	15	0	12	-4.278e-6	•	NC	2	NC	1
434			min	003	2	013	4	0	1	-7.543e-5	1	7233.839	4	NC	1
435		9	max	.004	3	003	15	0	12	-4.873e-6		NC	5	NC	1
436			min	003	2	014	4	0	1	-8.594e-5	1	6784.246	4	NC	1
437		10	max	.004	3	003	15	0	15	-5.469e-6		NC	5	NC	1
438			min	004	2	014	4	0	1	-9.646e-5	1	6578.301	4	NC	1
439		11	max	.005	3	003	15	0	15	-6.065e-6		NC	5	NC	1
			,										_		

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	004	2	014	4	0	1	-1.07e-4	1_	6585.934	4	NC	1
441		12	max	.005	3	003	15	0	15		15	NC	5	NC	1
442			min	005	2	014	4	0	1	-1.175e-4	1_	6812.77	4	NC	1
443		13	max	.006	3	003	15	0	15		15	NC	2	NC	1
444			min	005	2	<u>013</u>	4	001	1_	-1.28e-4	1_	7303.795	4_	NC	1
445		14	max	.006	3	003	15	0	15		<u>15</u>	NC 0400.40	1_	NC NC	1
446		45	min	005	2	011	4	001	1	-1.385e-4	1_	8166.12	4	NC NC	1
447		15	max	.006	3	002	15	0	15		<u>15</u>	NC	1_	NC NC	1
448		4.0	min	006	2	01	4	002	1	-1.49e-4	1_	9635.075	4_	NC NC	1
449		16	max	.007	3	002 008	15	0 002	15	-9.043e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	006 .007	3		15	<u>002</u> 0	15	-1.595e-4	1_	NC NC	1	NC NC	1
451		1/	max	007	2	001 006	3	003	1	-9.639e-6 -1.701e-4	<u>15</u> 1	NC NC	1	NC NC	1
452		18	max	.007	3	<u>006</u> 0	15	<u>003</u> 0	15		15	NC NC	1	NC NC	1
454		10	min	007	2	004	3	003	1	-1.806e-4	1	NC	1	NC	1
455		19	max	.008	3	004	2	<u>003</u> 0	15		15	NC	1	NC	1
456		13	min	007	2	003	3	004	1	-1.911e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.007	2	.004	1	-4.287e-6	15	NC	1	NC	2
458	10112	•	min	0	15	009	3	0	_	-7.523e-5	1	NC	1	6209.692	1
459		2	max	.002	1	.007	2	.004	1	-4.287e-6	15	NC	1	NC	2
460			min	0	15	008	3	0	15		1	NC	1	6728.531	1
461		3	max	.002	1	.006	2	.003	1	-4.287e-6	15	NC	1	NC	2
462			min	0	15	008	3	0	15	-7.523e-5	1	NC	1	7347.606	1
463		4	max	.001	1	.006	2	.003	1	-4.287e-6	15	NC	1	NC	2
464			min	0	15	007	3	0	15	-7.523e-5	1	NC	1	8092.681	1
465		5	max	.001	1	.006	2	.003	1	-4.287e-6	15	NC	1	NC	2
466			min	0	15	007	3	0	15	-7.523e-5	1	NC	1	8998.79	1
467		6	max	.001	1	.005	2	.002	1	-4.287e-6	15	NC	1	NC	1
468			min	0	15	006	3	0	15	-7.523e-5	1	NC	1	NC	1
469		7	max	.001	1	.005	2	.002	1	-4.287e-6	<u>15</u>	NC	1_	NC	1_
470			min	0	15	006	3	0	15		1_	NC	1_	NC	1
471		8	max	.001	1	.004	2	.002	1	-4.287e-6	15	NC	1_	NC	1
472			min	0	15	005	3	0	15		1_	NC	1_	NC	1
473		9	max	0	1	.004	2	.002	1	-4.287e-6	<u>15</u>	NC	_1_	NC	1
474			min	0	15	005	3	0	15	-7.523e-5	_1_	NC	1_	NC	1
475		10	max	0	1	.004	2	.001	1	-4.287e-6	<u>15</u>	NC	_1_	NC	1
476			min	0	15	004	3	0	15	-7.523e-5	_1_	NC	1_	NC	1
477		11	max	0	1	.003	2	.001	1	-4.287e-6	<u>15</u>	NC	1_	NC NC	1
478		40	min	0	15	004	3	0	15		1_	NC	1_	NC NC	1
479		12	max	0	1	.003	2	0	1		<u>15</u>	NC NC	1_	NC NC	1
480		40	min		15	003	3	0		-7.523e-5		NC NC	1	NC NC	1
481		13	max	0	1	.002	2	0	1	-4.287e-6		NC NC	1_1	NC	1
482		1.1	min	0	15	003	2	0		-7.523e-5	1_	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	15	.002	3	0 0	1 1 5	-4.287e-6		NC NC	1	NC NC	1
484 485		15	min	0	1	002 .002	2	0	1 <u>5</u>	-7.523e-5 -4.287e-6	1_	NC NC	1	NC NC	1
486		15	max min	0	15	002	3	0		-4.287e-6	1	NC	1	NC	1
487		16	max	0	1	.002	2	0	1	-4.287e-6		NC	1	NC	1
488		10	min	0	15	001	3	0	_	-4.287e-6	1	NC	1	NC	1
489		17		0	1	0	2	0	1	-4.287e-6	•	NC	1	NC	1
490		11/	max min	0	15	0	3	0	<u> </u>	-7.523e-5	1	NC NC	1	NC	1
491		18	max	0	1	0	2	0	1	-4.287e-6	•	NC	1	NC	1
492		10	min	0	15	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-4.287e-6	•	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-7.523e-5	1	NC	1	NC	1
495	M1	1	max	.01	3	.112	2	0	1	5.887e-3	2	NC	1	NC	1
496			min	006	2	03	3	0		-1.423e-2	3	NC	1	NC	1
					_					O O Z			_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.01	3	.052	2	0	15	2.887e-3	2	NC	4	NC	1
498			min	006	2	01	3	003	1	-7.043e-3	3	1913.373	2	NC	1
499		3	max	.01	3	.017	3	0	15	2.39e-5	10	NC	5	NC	1
500			min	006	2	012	2	004	1	-9.621e-5	3	927.688	2	NC	1
501		4	max	.01	3	.058	3	0	15	2.909e-3	2		5	NC_	1
502		_	min	006	2	083	2	004	1	-3.31e-3	3	590.724	2	NC NC	1
503		5	max	.01	3	.108	3	0	15	5.798e-3	2	NC 400 500	5	NC NC	1
504		_	min	006	2	1 <u>56</u>	2	003	1_1_	-6.524e-3	3	429.522	2	NC NC	1
505		6	max	.01	3	.16	3	0	15	8.687e-3	2	NC 240.057	5	NC NC	1
506 507		7	min max	006 .009	3	<u>227</u> .21	3	<u>001</u> 0	1	<u>-9.738e-3</u> 1.158e-2	2	340.257 NC	<u>2</u> 15	NC NC	1
508		-	min	006	2	289	2	0	3	-1.295e-2	3	287.332	2	NC	1
509		8	max	.009	3	.252	3	0	1	1.446e-2	2		15	NC	1
510			min	006	2	339	2	0	15	-1.617e-2	3	255.923	2	NC	1
511		9	max	.009	3	.278	3	0	15	1.639e-2	2		15	NC	1
512			min	006	2	37	2	0	1	-1.659e-2	3	239.532	2	NC	1
513		10	max	.009	3	.288	3	0	1	1.769e-2	2		15	NC	1
514			min	006	2	38	2	0	15	-1.515e-2	3	234.758	2	NC	1
515		11	max	.009	3	.281	3	0	1	1.899e-2	2	NC	15	NC	1
516			min	006	2	369	2	0	15	-1.371e-2	3	240.498	2	NC	1
517		12	max	.008	3	.257	3	0	15	1.832e-2	2		15	NC	1
518			min	005	2	337	2	0	1	-1.19e-2	3	258.81	2	NC	1
519		13	max	.008	3	.219	3	0	15	1.469e-2	2		15	NC	1
520			min	005	2	284	2	0	1	-9.525e-3	3	294.25	2	NC	1
521		14	max	.008	3	.171	3	.001	1	1.106e-2	2	NC NC	5	NC NC	1
522		4.5	min	005	2	219	2	0	15	-7.149e-3	3	354.847	2	NC NC	1
523		15	max	.008	3	.117	3	.002	1	7.429e-3	2	NC 450.464	5	NC NC	1
524		16	min	005 .007	3	147	3	001	1 <u>5</u>	-4.773e-3	3	459.164 NC	5	NC NC	1
525 526		16	max	005	2	.06 074	2	<u>.004</u> 0	15	3.8e-3 -2.397e-3	3	652.332	2	NC NC	1
527		17	min max	.005	3	.006	3	.004	1	2.816e-4	<u>3</u> 1	NC	5	NC NC	1
528		17	min	005	2	007	2	0	15	-2.111e-5	3	1065.234	2	NC	1
529		18	max	.007	3	.049	2	.003	1	5.239e-3	2	NC	4	NC	1
530			min	005	2	043	3	0	15	-2.153e-3	3	2260.14	2	NC	1
531		19	max	.007	3	.099	2	0	15	1.051e-2	2	NC	1	NC	1
532			min	005	2	089	3	0	1	-4.391e-3	3	NC	1	NC	1
533	M5	1	max	.031	3	.204	2	0	1	0	1	NC	1	NC	1
534			min	022	2	006	3	0	1	0	1	NC	1	NC	1
535		2	max	.031	3	.09	2	0	1	0	1	NC	5	NC	1
536			min	022	2	.002	15	0	1	0	1_	1024.298	2	NC	1
537		3	max	.031	3	.052	3	0	1	0	_1_		5	NC NC	1
538			min	022	2	038	2	0	1	0	1_	481.323	2	NC NC	1
539		4	max	.03	3	.138	3	0	1	0	1_1	NC 204.42C	5	NC NC	1
540		F	min	022	2	191	2	0	1	0	1	294.136	2	NC NC	1
541 542		_5_	max	.029 021	3	.256	3	<u> </u>	1	0	1		<u>15</u> 2	NC NC	1
543		6	min	.021	3	356 .388	3	0	1	0	1		<u>-</u> 15	NC NC	1
544		6	max min	021	2	521	2	0	1	0	1		2	NC NC	1
545		7	max	.028	3	.517	3	0	1	0	1		<u>-</u> 15	NC NC	1
546		,	min	02	2	671	2	0	1	0	1		2	NC	1
547		8	max	.027	3	.624	3	0	1	0	1		15	NC	1
548			min	02	2	791	2	0	1	0	1		2	NC	1
549		9	max	.027	3	.693	3	0	1	0	1		15	NC	1
550			min	02	2	867	2	0	1	0	1		2	NC	1
551		10	max	.026	3	.717	3	0	1	0	1		15	NC	1
552			min	019	2	893	2	0	1	0	1	105.896	2	NC	1
553		11	max	.026	3	.697	3	0	1	0	1	5763.868	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	019	2	867	2	0	1	0	1	108.753	2	NC	1
555		12	max	.025	3	.636	3	0	1	0	1_	6207.381	15	NC	1
556			min	019	2	786	2	0	1	0	1	118.051	2	NC	1
557		13	max	.024	3	.539	3	0	1	0	1_	7073.682	15	NC	1
558			min	019	2	658	2	0	1	0	1	136.571	2	NC	1
559		14	max	.024	3	.416	3	0	1_	0	_1_	8567.44	15	NC	1
560			min	018	2	499	2	0	1	0	1	169.258	2	NC	1
561		15	max	.023	3	.281	3	0	1	0	1_	NC	15	NC	1
562			min	018	2	328	2	0	1	0	1	227.965	2	NC	1
563		16	max	.022	3	.144	3	0	1	0	1	NC	5	NC	1
564			min	018	2	162	2	0	1	0	1	342.991	2	NC	1
565		17	max	.022	3	.017	3	0	1	0	1	NC	5	NC	1
566			min	017	2	02	2	0	1	0	1	604.912	2	NC	1
567		18	max	.022	3	.082	2	0	1	0	1	NC	5	NC	1
568			min	017	2	089	3	0	1	0	1	1346.341	3	NC	1
569		19	max	.022	3	.164	2	0	1	0	1	NC	1	NC	1
570			min	017	2	183	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.01	3	.112	2	0	15	1.423e-2	3	NC	1	NC	1
572			min	006	2	03	3	0	1	-5.887e-3	2	NC	1	NC	1
573		2	max	.01	3	.052	2	.003	1	7.043e-3	3	NC	4	NC	1
574			min	006	2	01	3	0	15	-2.887e-3	2	1913.373	2	NC	1
575		3	max	.01	3	.017	3	.004	1	9.621e-5	3	NC	5	NC	1
576			min	006	2	012	2	0	15	-2.39e-5	10	927.688	2	NC	1
577		4	max	.01	3	.058	3	.004	1	3.31e-3	3	NC	5	NC	1
578			min	006	2	083	2	0	15	-2.909e-3	2	590.724	2	NC	1
579		5	max	.01	3	.108	3	.003	1	6.524e-3	3	NC	5	NC	1
580			min	006	2	156	2	0	15	-5.798e-3	2	429.522	2	NC	1
581		6	max	.01	3	.16	3	.001	1	9.738e-3	3	NC	5	NC	1
582			min	006	2	227	2	0	15	-8.687e-3	2	340.257	2	NC	1
583		7	max	.009	3	.21	3	0	3	1.295e-2	3	NC	15	NC	1
584			min	006	2	289	2	0	1	-1.158e-2	2	287.332	2	NC	1
585		8	max	.009	3	.252	3	0	15	1.617e-2	3	NC	15	NC	1
586			min	006	2	339	2	0	1	-1.446e-2	2	255.923	2	NC	1
587		9	max	.009	3	.278	3	0	1	1.659e-2	3	NC	15	NC	1
588			min	006	2	37	2	0	15	-1.639e-2	2	239.532	2	NC	1
589		10	max	.009	3	.288	3	0	15	1.515e-2	3	NC	15	NC	1
590			min	006	2	38	2	0	1	-1.769e-2	2	234.758	2	NC	1
591		11	max	.009	3	.281	3	0	15	1.371e-2	3	NC	15	NC	1
592			min	006	2	369	2	0	1	-1.899e-2	2	240.498	2	NC	1
593		12	max	.008	3	.257	3	0	1	1.19e-2	3	NC	15	NC	1
594			min		2	337	2	0	15	-1.832e-2		258.81	2	NC	1
595		13	max	.008	3	.219	3	0	1	9.525e-3	3	NC	15	NC	1
596			min	005	2	284	2	0	15	-1.469e-2	2	294.25	2	NC	1
597		14	max	.008	3	.171	3	0		7.149e-3	3	NC	5	NC	1
598			min	005	2	219	2	001	1	-1.106e-2	2	354.847	2	NC	1
599		15	max	.008	3	.117	3	0	15	4.773e-3	3	NC	5	NC	1
600			min	005	2	147	2	002	1	-7.429e-3	2	459.164	2	NC	1
601		16	max	.007	3	.06	3	0	15	2.397e-3	3	NC	5	NC	1
602		· Ŭ	min	005	2	074	2	004	1	-3.8e-3	2	652.332	2	NC	1
603		17	max	.007	3	.006	3	0	15	2.111e-5	3	NC	5	NC	1
604			min	005	2	007	2	004	1	-2.816e-4	1	1065.234	2	NC	1
605		18	max	.007	3	.049	2	0	15	2.153e-3	3	NC	4	NC	1
606		1.0	min	005	2	043	3	003	1	-5.239e-3	2	2260.14	2	NC	1
607		19	max	.007	3	.099	2	0	1	4.391e-3	3	NC	1	NC	1
608		1.0	min	005	2	089	3	0		-1.051e-2	2	NC	1	NC	1
					_						_				

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2559	6071	0.42	Pass
Concrete breakout	5118	10231	0.50	Pass
Adhesive	5118	8093	0.63	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1784	3156	0.57	Pass (Governs)
T Concrete breakout x+	3567	8641	0.41	Pass
Concrete breakout y-	1784	22862	0.08	Pass
Pryout	3567	20601	0.17	Pass
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.