MATH 680: Assignment 2

Annik Gougeon, David Fleischer

Last Update: 23 February, 2018

Question 1

Proof. Let $C = \{x \in \mathbb{R}^n : Ax \leq b\}$ be our set of interest. Let $x, y \in C$, and let $t \in [0, 1]$ be an arbitrary real-valued scalar. Then,

$$A(tx + (1 - t)y) = tAx + (1 - t)Ay$$

$$\leq tb + (1 - tb)$$

$$= b.$$

Thus,

$$x, y \in C \implies tx + (1-t)y \in C$$
, for all $0 \le t \le 1$.

That is, C is a convex set, as desired.

Question 2

2.1

Let f be defined as

$$f(x,y) = |xy| + a(x^2 + y^2).$$

Recall that f is a convex function if and only if its Hessian is positive semi-definite.

Case 1:
$$xy > 0 \implies f_{+}(x,y) = xy + a(x^{2} + y^{2}).$$

We begin by finding the gradient of $f_{+}(x,y)$ to be

$$\nabla f_{+}(x,y) = (y + 2ax, x + 2ay).$$

Therefore, the Hessian is

$$\nabla^2 f_+(x,y) = \begin{bmatrix} 2a & 1\\ 1 & 2a \end{bmatrix}.$$

For this Hessian to be positive semi-definite, we require its eigenvalues to be nonnegative. We find the eigenvalues to be $\lambda_1 = 2a - 1$ and $\lambda_2 = 2a + 1$. As a direct result, the Hessian is positive semi-definite (and therefore, convex) if and only if $a \ge \frac{1}{2}$.

Furthermore, in order for $f_+(x,y)$ to be *strongly* convex, we must have the eigenvalues $\lambda \left(\nabla^2 f_+(x,y) - m\mathbb{I}\right) = \{\lambda_i - m\}_{i=1,2}$ be nonnegative for some m > 0 (i.e., $\nabla^2 f_+(x,y) - m\mathbb{I}$ must be positive semidefinite for some m > 0). We see that

$$\lambda_1 - m = 2a - 1 - m\lambda_2 - m$$
 = $2a + 1 - m$.

The above eigenvalues will be nonnegative for $a > \frac{1}{2}$ and $m \le a$. Therefore, $f_+(x,y)$ is strongly convex if $a > \frac{1}{2}$.

Case 2: $xy < 0 \implies f_{-}(x, y) = -xy + a(x^{2} + y^{2}).$

The gradient of $f_{-}(x,y)$ is computed to be

$$\nabla f_{-}(x,y) = (-y + 2ax, -x + 2ay).$$

Therefore, the Hessian is

$$\nabla^2 f_-(x,y) = \begin{bmatrix} 2a & -1 \\ -1 & 2a \end{bmatrix}.$$

Once again, the Hessian to be positive semidefinite, we need its eigenvalues to be nonnegative $\lambda_i \geq 0$, i = 1, 2. As above, we find the eigenvalues to be $\lambda_1 = 2a - 1$ and $\lambda_2 = 2a + 1$. Therfore, we see that the Hessian is convex if and only if $a \geq \frac{1}{2}$ and strongly convex if $a > \frac{1}{2}$.

Case 3 xy = 0. For such a case we note three possible scenarios

$$xy = 0 \implies f_0(x, y) = \begin{cases} ay^2, & \text{if } x = 0 \text{ and } y \neq 0, \\ ax^2, & \text{if } x \neq 0 \text{ and } y = 0, \\ 0, & \text{else} \end{cases}$$
.

If x = 0 and $y \neq 0$,

$$\nabla f_0(x,y) = (0,2ay)$$

with Hessian

$$\nabla^2 f_0(x,y) = \begin{bmatrix} 0 & 0 \\ 0 & 2a \end{bmatrix}.$$

This Hessian ∇f_0^2 has only one eigenvalue $\lambda_1 = 2a$, which is nonnegative for any $a \geq 0$. It follows that $f_0(x,y)$ will also be convex for $a \geq \frac{1}{2}$ and strongly convex for $a > \frac{1}{2}$. By symmetry, the same eigenvalue is found for the case where $x \neq 0$ and y = 0, so we arrive to the same conclusions. Finally, for the last scenario with x = y = 0, we note that the domain of f_0 under x = y = 0 is defined at only a single point, trivially satisfying strong convexity

$$(\nabla f(z_1) - \nabla f(z_2))^T (z_1 - z_2) \ge m ||z_1 - z_2||_2^2$$

on all points in its domain, as desired.

Presented below figures of f evaluated on $[-1,1] \times [-1,1]$ for $a \in \{0,0.25,0.5,0.75\}$.

$$f(x, y; a), a = 0$$
 $f(x, y; a), a = 0.25$

$$f(x, y; a), a = 0.5$$

f(x, y; a), a = 0.75

2.2

2.2 (a)

For $x \in \mathbb{R}^n_{++}$ we find gradient of $f(x) = -\sum_{i=1}^n \log x_i$ to be

$$\nabla f(x) = -[x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}],$$

with corresponding Hessian

$$\nabla^2 f(x) = \begin{bmatrix} x_1^{-2} & 0 & \cdots & 0 \\ 0 & x_2^{-2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n^{-2} \end{bmatrix}.$$

Since $\nabla^2 f(x)$ is diagonal we may immediately obtain its eigenvalues $\{\lambda_i\}_{i=1}^n$,

$$\lambda_i = x_i^{-2}.$$

We see that, since $x \in \mathbb{R}^n_{++} \iff x_i > 0, i = 1, ..., n$, all eigenvalues $\lambda_i > 0$. Therefore, f must be strongly convex (\implies strictly convex, \implies convex), as desired.

2.2 (b)

2.3

Proof. (\Longrightarrow) Suppose f is convex. Then, dom(f) is a convex set, and, for all $x, y \in \text{dom}(f)$ and $t \in [0, 1]$,

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

$$\iff f(t(x - y) + y) - f(y) \le t(f(x) - f(y))$$

$$\iff \frac{f(t(x - y) + y) - f(y)}{t} \le f(x) - f(y)$$

$$\iff \frac{f(t(x - y) + y) - f(y)}{t} + f(y) \le f(x)$$

Note that if we take the limit of our first term as $t \to 0$, for finite x, y,

$$\lim_{t \to 0} \frac{f(t(x-y)+y) - f(y)}{t} = \frac{\partial}{\partial t} f(t(x-y)+y) \bigg]_{t=0}$$
$$= \nabla f(t(x-y)+y)^T (x-y) \bigg]_{t=0}$$
$$= \nabla f(y)^T (x-y).$$

Therefore, taking the limit of our inequality above as $t \to 0$,

$$\lim_{t \to 0} \left(\frac{f(t(x-y)+y) - f(y)}{t} + f(y) \right) \le \lim_{t \to 0} f(x)$$

$$\iff \nabla f(y)^{T} (x-y) + f(y) \le f(x).$$

By symmetry we swap x and y to obtain

$$f \text{ convex} \implies \text{dom}(f) \text{ convex and } f(y) \ge f(x) + \nabla f(x)^T (y-x),$$

as desired.

 (\Leftarrow) Suppose dom(f) is convex and, for $x, y \in \text{dom}(f), x \neq y$,

$$\nabla f(x)^T (y - x) + f(x) \le f(y).$$

Since dom(f) is convex we find $z = tx + (1 - t)y \in dom(f)$, $t \in [0, 1]$. Then, for such x, y, z,

$$\nabla f(z)^T (x - z) + f(z) \le f(x)$$
$$\nabla f(z)^T (y - z) + f(z) \le f(y).$$

Multiplying our first inequality by t and the second by (1-t), and then adding the two yields

$$t \left[\nabla f(z)^{T}(x-z) + f(z) \right] + (1-t) \left[\nabla f(z)^{T}(y-z) + f(z) \right] \le t f(x) + (1-t) f(y)$$

$$\iff t \nabla f(z)^{T}(x-z) + (1-t) \nabla f(z)^{T}(y-z) + f(z) \le t f(x) + (1-t) f(y)$$

$$\iff \nabla f(z)^{T} \left[t(x-z) + (1-t)(y-z) \right] + f(z) \le t f(x) + (1-t) f(y)$$

$$\iff \nabla f(z)^{T} \left[tx + (1-t)y - z \right] + f(z) \le t f(x) + (1-t) f(y)$$

$$\iff f(tx + (1-t)y) \le t f(x) + (1-t) f(y),$$

where the final line was achieved by recalling that z = tx + (1 - t)y. Therefore,

$$f \text{ convex} \iff \text{dom}(f) \text{ convex and } f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

as desired.

Question 3

(a)

Proof. $(1 \implies 2)$

 $(2 \implies 3)$

 $(3 \implies 4)$

 $(4 \implies 1)$

(b)

Proof. Let f be convex and twice differentiable.

 $(1 \implies 2)$ If ∇f is L-Lipschitz then, for $x, y \in \text{dom}(f), L > 0$,

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2.$$

 $(2 \implies 3)$

 $(3 \implies 4)$

 $(4 \implies 1)$

Question 4

(a)

For parts 1 and 2 we load CVXR in order to solve the (convex) 2d fused lasso problem.

```
library(CVXR)
```

1.

We load our data circle.csv and define some useful constants

```
circle <- as.matrix(read.csv("../data/circle.csv", header = F))
n <- length(circle); nr <- nrow(circle); nc <- ncol(circle)</pre>
```

Next, we translate the 2d fused lasso penalty

$$\lambda \sum_{\{i,j\}\in E} |\theta_i - \theta_j|, \quad E = \text{set of edges } \{(i,j)\} \text{ connecting adjascent pixels}$$

into a CVXR compatible function

```
fused_lasso_2d <- function(theta, lambda = 0) {
    nr <- nrow(theta); nc <- ncol(theta)
    S <- theta[1:(nr - 1),] - theta[2:nr,] # SOUTH
    N <- theta[2:nr,] - theta[1:(nr - 1),] # NORTH
    E <- theta[,1:(nc - 1)] - theta[,2:nc] # EAST
    W <- theta[,2:nc] - theta[,1:(nc - 1)] # WEST
    lambda * (sum(abs(S)) + sum(abs(N)) + sum(abs(E)) + sum(abs(W)))
}</pre>
```

as well as defining some parameters and variables, as well as our ℓ_2 loss $\frac{1}{2}||Y-\theta||_2^2$

```
lambda <- 1
theta <- Variable(nr, nc)
theta_hat <- matrix(0, nrow = nr, ncol = nc)
loss <- sum(0.5 * (circle - theta)^2)</pre>
```

Finally, we run run CVXR on the problem

```
obj <- loss + fused_lasso_2d(theta, lambda)
prob <- Problem(Minimize(obj))
res <- solve(prob)
theta_hat <- res$getValue(theta)</pre>
```

Comparing the original data with the fused fit we see that the fused fit of the circle is essentially a square with truncated/rounded corners, as seen below.

Target

Fused Lasso Fit: $\lambda = 1$

We can understand such behaviour by the noting the conflicting behaviour of the ℓ_2 term and the ℓ_1 fused term in our objective function. The ℓ_2 -loss term

$$\frac{1}{2}\sum_{i=1}^{n} (y_i - \theta_i)^2$$

is minimized as $\hat{\theta}_i \longrightarrow y_i$, while the ℓ_1 -fused term

$$\lambda \sum_{\{i,j\} \in E} |\theta_i - \theta_j|$$

is minimized when adjascent cells are 'close' to each other (and as $\lambda \to \infty$ we obtain $\hat{\theta}_i \to \bar{y}$). Deep in the interior/far out in the extertior of the circle, the objective estimates $\hat{\theta}_i \approx y_i$ since essentially all adjascent values will correspond to 0 (black) or 1 (white), respectively. However, along the boundary of the two regions we balance the two objectives by detecting a 'changepoint' in the data (as a consequence of using the ℓ_1 norm), inside of which most observations are close to 0 and beyond which most observations are close to 1.

2.

We load the lenna_64.csv data and define some useful constants

```
lenna <- as.matrix(read.csv("../data/lenna_64.csv", header = F))
n <- length(lenna); nr <- nrow(lenna); nc <- ncol(lenna)</pre>
```

and run CVXR on the 2d fused lasso problem in the same way as we did for circle.csv, but now over a vector of tuning parameters $\{\lambda_k\}_{k=0,\dots,8} = \{10^{-k/4}\}_{k=0,\dots,8}$

Note that as $\lambda \to 0$ we find the distribution of $\hat{\theta}_i$ generally becomes less and less kurt. That is, when λ is large we see nearly all the fits to be near the mean \bar{y} , and becoming more and more dispersed (towards $\hat{\theta}_i \to y_i$) as λ shrinks.

(b)

1.

Note that our expression

$$||(x,y)||_1^3 \le 5x + 7$$

is successfully recognized as convex without any serious manipulations. That is, in DCP we write this as

$$\|(x,y)\|_1^3 \le 5x + 7 \quad \mapsto \quad \text{pow(norm1(x, y), 3) <= 5 * x + 7},$$

as desired.

2.

We now consider the expression

$$\frac{2}{x} + \frac{9}{z - y} \le 3.$$

Since DCP automatically constraining the argument to be within the function's domain handling the domain, DCP does not allow division $\frac{a}{b}$ to be input as \mathbf{a}/\mathbf{b} , as we may expect. Instead, DCP accepts $\mathtt{inv_pos}(\mathbf{x})$ as $\frac{1}{x}$ and restricts x to x>0 to enforce convexity. Therefore, we replace any instance of $\frac{1}{x}$ with $\mathtt{inv_pos}(\mathbf{x})$ to yield

$$\frac{2}{x} + \frac{9}{z - y} \le 3 \quad \mapsto \quad 2 \, * \, \text{inv_pos(x)} \, + \, 9 \, * \, \text{inv_pos(z - y)} \, <= \, 3$$

as desired.

3.

We have the expression

$$\sqrt{x^2 + 4} + 2y \le -5x.$$

The RHS is valid as-is, while the LHS requires some manipulation in order for the problem to be recognized as convex since $\sqrt{\cdot}$ is treated as concave, independent of its arguments. To get around this we make use of the ℓ_2 norm (which is classified as convex)

$$\|(x_1, x_2)\|_2 = \sqrt{x_1^2 + x_2^2}.$$

Hence,

$$||(x,2)||_2 = \sqrt{x^2 + 4}.$$

This gives us the following DCP expressions

$$\sqrt{x^2 + 4} + 2y \le -5x \mapsto \text{norm2}(x, 2) + 2 * y \le -5 * x$$

as desired.

4.

We begin with the problem

$$(x+3) \cdot z \cdot (y-5) \ge 8$$
, $x \ge -3$, $z \ge 0$, $y \ge 5$.

To translate into DCP we first note that this is equivalent to the problem

$$x \cdot z \cdot y \ge 8$$
, $x \ge 0$, $z \ge 0$, $y \ge 0$.

To enforce the (new) domain $x, y, z \ge 0$ we apply the geometric mean

$$geo_mean(x1, \ldots, xk) = (x_1 \cdot \cdots \cdot x_k)^{\frac{1}{k}}$$

since DCP automatically restricts each argument as $x_i \ge 0$. We now wish to remove the k^{th} -root term. However, if we were to raise our geometric mean expression to the k^{th} power then DCP would no longer treat the LHS as a concave expression since x^k , k > 1, is always considered to be convex (independent of the form x takes). A solution is to instead take the k^{th} root of the RHS. This gives us the DCP expression

$$(x+3)\cdot z\cdot (y-5)\geq 8,\quad x\geq -3,\, z\geq 0,\, y\geq 5\quad \mapsto\quad \texttt{geo_mean(x, y, z)} >= 2,$$

as desired.

5.

Our expression

$$\frac{(x+3z)^2}{\log(y-1)} + 2y^2 \le 10$$

is translated into DCP by making use of the function $\frac{s^2}{t} \mapsto \text{quad_over_lin(s, t)}$. Without other major issues we translate this expression directly into DCP via

$$\frac{(x+3z)^2}{\log{(y-1)}} + 2y^2 \le 10 \quad \mapsto \quad \text{quad_over_lin(x + 3 * z, log(y - 1)) + 2 * square(y)} <= 10,$$

as desired.

6.

We wish to translate the following into DCP interpretable format

$$\log\left(e^{-\sqrt{x}} + e^{2z}\right) \le -e^{5y}.$$

DCP has a unique function designed to handle logarithms of sums of exponential terms. In paritcular,

$$\log(e^{x_1} + \cdots + e^{x_k}) \mapsto \log_{\infty}(x_1, \ldots, x_k).$$

Using this scheme we translate our expression into DCP as

$$\log\left(e^{-\sqrt{x}}+e^{2z}\right) \leq -e^{5y} \quad \mapsto \quad \log_{-\text{sum_exp(-sqrt(x), 2 * z)}} <= -\exp(5 * y),$$

as desired.

7.

We begin by noting the string of equivalences of our target expression

$$\sqrt{\|(2x - 3y, y + x)\|_1} = 0 \iff \|(2x - 3y, y + x)\|_1 = 0$$
$$\iff \|(2x - 3y, y + x)\|_1 < 0.$$

This yields the DCP expression

$$\sqrt{\|(2x-3y,y+x)\|_1} = 0 \quad \mapsto \quad \text{norm1(2 * x - 3 * y, y + x) <= 0}.$$

as desired.

8.

We wish to translate the following inequality

$$y\log\left(\frac{y}{2x}\right) \le y+x, \quad x>0, \ y>0.$$

DCP handles the LHS via the Kullback–Leibler function $y\log\frac{y}{x}-y+x\mapsto \mathtt{kl_div}(\mathtt{y},\ \mathtt{x}).$ This function automatically handles the domain restriction of x,y>0. Thus,

$$y\log\left(\frac{y}{2x}\right) \leq y+x, \quad x>0, \, y>0 \quad \mapsto \quad \texttt{kl_div(y, 2 * x) + x - y <= y + x - 30},$$

as desired.

Appendix

Question 2.1 (Alternate Solution)

Below we present an alternate (and terrible) solution to proving that $f(x,y) = |xy| + a(x^2 + y^2)$ is convex $\iff a \ge \frac{1}{2}$ and strictly convex $\iff a > \frac{1}{2}$.

Proof. Recall that a (continuous, twice differentiable) function f(z), $z \in C$, is convex on C if and only if its Hessian is positive semidefinite for all z on the interior of C,

$$\nabla^2 f(z) \in \mathbb{S}^n_+,$$

and strongly convex with parameter m > 0 if and only if

$$\nabla^2 f(z) - m \mathbb{I}_n \in \mathbb{S}_+^n.$$

Furthermore, a matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if all eigenvalues of M are nonnegative. Since f is nondifferentiable along x = 0, y = 0 we first apply a differentiable approximation f_{ϵ}

$$f_{\epsilon}(x,y) = \sqrt{x^2y^2 + \epsilon} + a\left(x^2 + y^2\right) \underset{\epsilon \to 0}{\longrightarrow} |xy| + a\left(x^2 + y^2\right) = f(x,y)$$

Now, f_{ϵ} admits gradient

$$\nabla f_{\epsilon}(x,y) = \left(2ax + \frac{xy^2}{\sqrt{x^2y^2 + \epsilon}}, 2ay + \frac{x^2y}{\sqrt{x^2y^2 + \epsilon}}\right),$$

and Hessian

$$\nabla^2 f_{\epsilon}(x,y) = \begin{bmatrix} -\frac{x^2 y^4}{(x^2 y^2 + \epsilon)^{3/2}} + \frac{y^2}{\sqrt{x^2 y^2 + \epsilon}} + 2a & \frac{2xy}{\sqrt{x^2 y^2 + \epsilon}} - \frac{x^3 y^3}{(x^2 y^2 + \epsilon)^{3/2}} \\ \frac{2xy}{\sqrt{x^2 y^2 + \epsilon}} - \frac{x^3 y^3}{(x^2 y^2 + \epsilon)^{3/2}} & -\frac{y^2 x^4}{(x^2 y^2 + \epsilon)^{3/2}} + \frac{x^2}{\sqrt{x^2 y^2 + \epsilon}} + 2a \end{bmatrix}.$$

We find $\nabla^2 f_{\epsilon}(x,y)$ to have eigenvalues¹

$$\lambda_{\epsilon,1} = \frac{x^2 \left(4 a y^2 \sqrt{x^2 y^2 + \epsilon} + \epsilon\right) + 4 a \epsilon \sqrt{x^2 y^2 + \epsilon} - \sqrt{4 x^6 y^6 + x^4 \epsilon \left(16 y^4 + \epsilon\right) + 14 x^2 y^2 \epsilon^2 + y^4 \epsilon^2} + y^2 \epsilon}{2 \left(x^2 y^2 + \epsilon\right)^{3/2}}$$

$$\lambda_{\epsilon,2} = \frac{x^2 \left(4 a y^2 \sqrt{x^2 y^2 + \epsilon} + \epsilon\right) + 4 a \epsilon \sqrt{x^2 y^2 + \epsilon} + \sqrt{4 x^6 y^6 + x^4 \epsilon \left(16 y^4 + \epsilon\right) + 14 x^2 y^2 \epsilon^2 + y^4 \epsilon^2} + y^2 \epsilon}{2 \left(x^2 y^2 + \epsilon\right)^{3/2}}.$$

Taking the limits of $\lambda_{\epsilon,1}$ and $\lambda_{\epsilon,2}$ as $\epsilon \to 0$,

$$\lambda_1 = \lim_{\epsilon \to 0} \lambda_{\epsilon,1} = \frac{4ax^2y^2\sqrt{x^2y^2} - 2\sqrt{x^6y^6}}{2(x^2y^2)^{3/2}}$$

$$= 2a - \frac{(x^2y^2)^{3/2}}{\sqrt{x^6y^6}}$$

$$= 2a - 1,$$

$$\lambda_2 = \lim_{\epsilon \to 0} \lambda_{\epsilon,2} = \frac{4ax^2y^2\sqrt{x^2y^2} + 2\sqrt{x^6y^6}}{2(x^2y^2)^{3/2}}$$

$$= 2a + \frac{(x^2y^2)^{3/2}}{\sqrt{x^6y^6}}$$

$$= 2a + 1.$$

¹Details left as an exercise.

In this form we see that $\nabla^2 f(x,y)$ has nonnegative eigenvalues if and only if $a \geq \frac{1}{2}$, and so f is convex for $a \geq \frac{1}{2}$. To show strong convexity, we use the result that if matrix M has eigenvalues $\{\lambda_i\}_{i=1}^n$ then $M - k\mathbb{I}_n$ has eigenvalues $\{\lambda_i - k\}_{i=1}^n$. Therefore, $\nabla^2 f(x,y) - m\mathbb{I}_2$ has eigenvalues

$$\lambda_{m,1} = 2a - 1 - m$$
$$\lambda_{m,2} = 2a + 1 - m.$$

To ensure $\lambda_{m,1}, \lambda_{m,2}$ are nonnegative we set $a > \frac{1}{2}$ and $m \le a$. Therefore, f is strongly convex with parameter $m, a \ge m > 0$, as desired.