Package 'cartogram'

May 26, 2023
Title Create Cartograms with R
Version 0.3.0
Description Construct continuous and non-contiguous area cartograms.
<pre>URL https://github.com/sjewo/cartogram</pre>
BugReports https://github.com/sjewo/cartogram/issues
Imports methods, sf, packcircles
Suggests
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no
Author Sebastian Jeworutzki [aut, cre]
Maintainer Sebastian Jeworutzki <sebastian.jeworutzki@ruhr-uni-bochum.de></sebastian.jeworutzki@ruhr-uni-bochum.de>
Repository CRAN
Date/Publication 2023-05-26 11:30:02 UTC
R topics documented:
cartogram_cont

2 cartogram_cont

cartogram_cont

Calculate Contiguous Cartogram Boundaries

Description

Construct a continuous area cartogram by a rubber sheet distortion algorithm (Dougenik et al. 1985)

Usage

```
cartogram_cont(
 х,
 weight,
  itermax = 15,
 maxSizeError = 1.0001,
  prepare = "adjust",
  threshold = 0.05,
  verbose = FALSE
)
## S3 method for class 'SpatialPolygonsDataFrame'
cartogram_cont(
  Х,
 weight,
  itermax = 15,
 maxSizeError = 1.0001,
  prepare = "adjust",
  threshold = 0.05,
  verbose = FALSE
## S3 method for class 'sf'
cartogram_cont(
  Х,
 weight,
  itermax = 15,
 maxSizeError = 1.0001,
  prepare = "adjust",
  threshold = 0.05,
  verbose = FALSE
)
```

Arguments

itermax

x a polygon or multiplogyon sf objectweight Name of the weighting variable in x

Maximum iterations for the cartogram transformation, if maxSizeError ist not

reached

cartogram_dorling 3

maxSizeError Stop if meanSizeError is smaller than maxSizeError

prepare Weighting values are adjusted to reach convergence much earlier. Possible meth-

ods are "adjust", adjust values to restrict the mass vector to the quantiles defined by threshold and 1-threshold (default), "remove", remove features with values

lower than quantile at threshold, "none", don't adjust weighting values

threshold Define threshold for data preparation
verbose print meanSizeError on each iteration

Value

An object of the same class as x

References

Dougenik, J. A., Chrisman, N. R., & Niemeyer, D. R. (1985). An Algorithm To Construct Continuous Area Cartograms. In The Professional Geographer, 37(1), 75-81.

Examples

```
library(sf)
library(cartogram)

nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)

# transform to NAD83 / UTM zone 16N
nc_utm <- st_transform(nc, 26916)

# Create cartogram
nc_utm_carto <- cartogram_cont(nc_utm, weight = "BIR74", itermax = 5)

# Plot
par(mfrow=c(2,1))
plot(nc[,"BIR74"], main="original", key.pos = NULL, reset = FALSE)
plot(nc_utm_carto[,"BIR74"], main="distorted", key.pos = NULL, reset = FALSE)</pre>
```

cartogram_dorling

Calculate Non-Overlapping Circles Cartogram

Description

Construct a cartogram which represents each geographic region as non-overlapping circles (Dorling 1996).

4 cartogram_dorling

Usage

```
cartogram_dorling(x, weight, k = 5, m_weight = 1, itermax = 1000)
## S3 method for class 'sf'
cartogram_dorling(x, weight, k = 5, m_weight = 1, itermax = 1000)
## S3 method for class 'SpatialPolygonsDataFrame'
cartogram_dorling(x, weight, k = 5, m_weight = 1, itermax = 1000)
```

Arguments

x a polygon or multiplogyon sf objectweight Name of the weighting variable in x

k Share of the bounding box of x filled by the larger circle

m_weight Circles' movements weights. An optional vector of numeric weights (0 to 1

inclusive) to apply to the distance each circle moves during pair-repulsion. A weight of 0 prevents any movement. A weight of 1 gives the default movement distance. A single value can be supplied for uniform weights. A vector with length less than the number of circles will be silently extended by repeating the

final value. Any values outside the range [0, 1] will be clamped to 0 or 1.

itermax Maximum iterations for the cartogram transformation.

Value

Non overlaping proportional circles of the same class as x.

References

Dorling, D. (1996). Area Cartograms: Their Use and Creation. In Concepts and Techniques in Modern Geography (CATMOG), 59.

Examples

```
library(sf)
library(cartogram)

nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)

# transform to NAD83 / UTM zone 16N
nc_utm <- st_transform(nc, 26916)

# Create cartogram
nc_utm_carto <- cartogram_dorling(nc_utm, weight = "BIR74")

# Plot
par(mfrow=c(2,1))
plot(nc[,"BIR74"], main="original", key.pos = NULL, reset = FALSE)
plot(nc_utm_carto[,"BIR74"], main="distorted", key.pos = NULL, reset = FALSE)</pre>
```

cartogram_ncont 5

cartogram_ncont

Calculate Non-Contiguous Cartogram Boundaries

Description

Construct a non-contiguous area cartogram (Olson 1976).

Usage

```
cartogram_ncont(x, weight, k = 1, inplace = TRUE)
## S3 method for class 'SpatialPolygonsDataFrame'
cartogram_ncont(x, weight, k = 1, inplace = TRUE)
## S3 method for class 'sf'
cartogram_ncont(x, weight, k = 1, inplace = TRUE)
```

Arguments

x a polygon or multiplogyon sf objectweight Name of the weighting variable in x

k Factor expansion for the unit with the greater value

inplace If TRUE, each polygon is modified in its original place, if FALSE multi-polygons

are centered on their initial centroid

Value

An object of the same class as x with resized polygon boundaries

References

Olson, J. M. (1976). Noncontiguous Area Cartograms. In The Professional Geographer, 28(4), 371-380.

Examples

```
library(sf)
library(cartogram)

nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)

# transform to NAD83 / UTM zone 16N
nc_utm <- st_transform(nc, 26916)

# Create cartogram
nc_utm_carto <- cartogram_ncont(nc_utm, weight = "BIR74")

# Plot</pre>
```

6 cartogram_ncont

```
par(mfrow=c(2,1))
plot(nc[,"BIR74"], main="original", key.pos = NULL, reset = FALSE)
plot(st_geometry(nc_utm), main="distorted", reset = FALSE)
plot(nc_utm_carto[,"BIR74"], add =TRUE)
```

Index

```
cartogram_cont, 2
cartogram_dorling, 3
cartogram_ncont, 5
```