8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface

Features

- MCP4902: Dual 8-Bit Voltage Output DAC
- MCP4912: Dual 10-Bit Voltage Output DAC
- MCP4922: Dual 12-Bit Voltage Output DAC
- Rail-to-Rail Output
- SPI Interface with 20 MHz Clock Support
- Simultaneous Latching of the Dual DACs with LDAC pin
- Fast Settling Time of 4.5 µs
- · Selectable Unity or 2x Gain Output
- · External Voltage Reference Inputs
- · External Multiplier Mode
- · 2.7V to 5.5V Single-Supply Operation
- Extended Temperature Range: -40°C to +125°C

Applications

- · Set Point or Offset Trimming
- · Precision Selectable Voltage Reference
- · Motor Control Feedback Loop
- · Digitally-Controlled Multiplier/Divider
- · Calibration of Optical Communication Devices

Related Products⁽¹⁾

P/N	DAC Resolution	No. of ChannelS	Voltage Reference (V _{REF})
MCP4801	8	1	
MCP4811	10	1	l t
MCP4821	12	1	Internal (2.048V)
MCP4802	8	2	(2.0401)
MCP4812	10	2	
MCP4822	12	2	
MCP4901	8	1	
MCP4911	10	1	Fortower of
MCP4921	12	1	External
MCP4902	8	2	
MCP4912	10	2	
MCP4922	12	2	

Note 1: The products listed here have similar AC/DC performances.

Description

The MCP4902/4912/4922 devices are dual 8-bit, 10-bit, and 12-bit buffered voltage output Digital-to-Analog Converters (DACs), respectively. The devices operate from a single 2.7V to 5.5V supply with SPI compatible Serial Peripheral Interface. The user can configure the full-scale range of the device to be V_{REF} or 2 * V_{REF} by setting the Gain Selection Option bit (gain of 1 of 2).

The user can shut down both DAC channels by using \overline{SHDN} pin or shut down the DAC channel individually by setting the Configuration register bits. In Shutdown mode, most of the internal circuits in the shutdown channel are turned off for power savings and the output amplifier is configured to present a known high resistance output load (500 k Ω , typical).

The devices include double-buffered registers, allowing synchronous updates of two DAC outputs, using the LDAC pin. These devices also incorporate a Power-on Reset (POR) circuit to ensure reliable power-up.

The devices utilize a resistive string architecture, with its inherent advantages of low DNL error and fast settling time. These devices are specified over the extended temperature range (+125°C).

The devices provide high accuracy and low noise performance for consumer and industrial applications where calibration or compensation of signals (such as temperature, pressure and humidity) are required.

The MCP4902/4912/4922 devices are available in the PDIP, SOIC and TSSOP packages.

Package Types

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD}
All inputs and outputs w.r.t \V_{SS} –0.3V to V_{DD} +0.3V
Current at Input Pins±2 mA
Current at Supply Pins±50 mA
Current at Output Pins±25 mA
Storage temperature65°C to +150°C
Ambient temp. with power applied55°C to +125°C
ESD protection on all pins ≥ 4 kV (HBM), $\geq 400V$ (MM)
Maximum Junction Temperature (T _J)+150°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = 5V, V_{SS} = 0V, V_{REF} = 2.048V, Output Buffer Gain (G) = 2x, R_L = 5 k Ω to GND, C_L = 100 pF T_A = -40 to +85°C. Typical values are at +25°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions			
Power Requirements									
Operating Voltage	V_{DD}	2.7	_	5.5	V				
Operating Current	I _{DD}	_	350	700	μA	V _{DD} = 5V			
			250	500	μА	V_{DD} = 3V V_{REF} input is unbuffered, all digital inputs are grounded, all analog outputs (V_{OUT}) are unloaded. Code = 000h.			
Hardware Shutdown Current	I _{SHDN}	_	0.3	2	μA	Power-on Reset circuit is turned off			
Software Shutdown Current	I _{SHDN_SW}	_	3.3	6	μA	Power-on Reset circuit stays on			
Power-on-Reset Threshold	V _{POR}	_	2.0	_	V				
DC Accuracy									
MCP4902									
Resolution	n	8	_	_	Bits				
INL Error	INL	-1	±0.125	1	LSb				
DNL	DNL	-0.5	±0.1	+0.5	LSb	Note 1			
MCP4912									
Resolution	n	10	_	_	Bits				
INL Error	INL	-3.5	±0.5	3.5	LSb				
DNL	DNL	-0.5	±0.1	+0.5	LSb	Note 1			
MCP4922	MCP4922								
Resolution	n	12	_	_	Bits				
INL Error	INL	-12	±2	12	LSb				
DNL	DNL	-0.75	±0.2	+0.75	LSb	Note 1			
Offset Error	V _{OS}	_	±0.02	1	% of FSR	Code = 0x000h			

Note 1: Guaranteed monotonic by design over all codes.

2: This parameter is ensured by design, and not 100% tested.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, V_{DD} = 5V, V_{SS} = 0V, V_{REF} = 2.048V, Output Buffer Gain (G) = 2x, R_L = 5 kΩ to GND, C_L = 100 pF T_A = -40 to +85°C. Typical values are at +25°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Offset Error Temperature	V _{OS} /°C	_	0.16	_	ppm/°C	-45°C to 25°C
Coefficient		_	-0.44	_	ppm/°C	+25°C to 85°C
Gain Error	9E	_	-0.10	1	% of FSR	Code = 0xFFFh, not including off- set error
Gain Error Temperature Coefficient	∆G/°C	_	-3	_	ppm/°C	
Input Amplifier (V _{REF} Input)						
Input Range – Buffered Mode	V_{REF}	0.040	_	V _{DD} – 0.040	V	Note 2 Code = 2048
Input Range – Unbuffered Mode	V_{REF}	0	_	V _{DD}	V	V _{REF} = 0.2V p-p, f = 100 Hz and 1 kHz
Input Impedance	R _{VREF}	_	165	_	kΩ	Unbuffered Mode
Input Capacitance – Unbuffered Mode	C _{VREF}	_	7	_	pF	
Multiplier Mode -3 dB Bandwidth	f _{VREF}	_	450	_	kHz	V _{REF} = 2.5V ±0.2Vp-p, Unbuffered, G = 1x
	f _{VREF}	_	400	_	kHz	V _{REF} = 2.5V ±0.2 Vp-p, Unbuffered, G = 2x
Multiplier Mode – Total Harmonic Distortion	THD _{VREF}	_	-73	_	dB	V _{REF} = 2.5V ±0.2Vp-p, Frequency = 1 kHz
Output Amplifier						
Output Swing	V _{OUT}	_	0.01 to V _{DD} -0.04	_	V	Accuracy is better than 1 LSb for V _{OUT} = 10 mV to (V _{DD} – 40 mV)
Phase Margin	θm	_	66	_	degrees	
Slew Rate	SR	_	0.55	_	V/µs	
Short Circuit Current	I _{SC}	_	15	24	mA	
Settling Time	t _{settling}	_	4.5	_	μs	Within 1/2 LSb of final value from 1/4 to 3/4 full-scale range
Dynamic Performance (Note	2)					
DAC-to-DAC Crosstalk		_	10	_	nV-s	
Major Code Transition Glitch		_	45	_	nV-s	1 LSb change around major carry (01111111 to 10000000)
Digital Feedthrough		_	10	_	nV-s	
Analog Crosstalk		_	10	_	nV-s	

Note 1: Guaranteed monotonic by design over all codes.

^{2:} This parameter is ensured by design, and not 100% tested.

ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE

Electrical Specifications: Unless otherwise indicated, V_{DD} = 5V, V_{SS} = 0V, V_{REF} = 2.048V, Output Buffer Gain (G) = 2x, R_L = 5 kΩ to GND, C_L = 100 pF. Typical values are at +125°C by characterization or simulation.

GND, C _L = 100 pF. Typical values are at +125°C by characterization or simulation.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Power Requirements									
Operating Voltage	V_{DD}	2.7	_	5.5	V				
Operating Current	I _{DD}	_	400	_	μА	V _{REF} input is unbuffered, all digital inputs are grounded, all analog outputs (VouT) are unloaded. Code=000h			
Hardware Shutdown Current	I _{SHDN}		1.5		μA	POR circuit is turned-off			
Software Shutdown Current	I _{SHDN_SW}		5		μΑ	POR circuit stays turned-on			
Power-On Reset threshold	V _{POR}		1.85		V				
DC Accuracy									
MCP4902									
Resolution	n	8	_		Bits				
INL Error	INL		±0.25		LSb				
DNL	DNL		±0.2		LSb	Note 1			
MCP4912									
Resolution	n	10			Bits				
INL Error	INL		±1		LSb				
DNL	DNL		±0.2		LSb	Note 1			
MCP4922									
Resolution	n	12	_	_	Bits				
INL Error	INL		±4		LSb				
DNL	DNL		±0.25		LSb	Note 1			
Offset Error	V _{OS}		±0.02		% of FSR	Code 0x000h			
Offset Error Temperature Coefficient	V _{OS} /°C		-5		ppm/°C	+25°C to +125°C			
Gain Error	9 _E	_	-0.10	_	% of FSR	Code = 0xFFFh, not including off- set error			
Gain Error Temperature Coefficient	∆G/°C		-3		ppm/°C				
Input Amplifier (V _{REF} Input	')								
Input Range – Buffered Mode	V _{REF}		0.040 to V _{DD} – 0.040		V	Note 1 Code = 2048, V _{REF} = 0.2V p-p, f = 100 Hz and 1 kHz			
Input Range – Unbuffered Mode	V_{REF}	0		V_{DD}	V				
Input Impedance	R _{VREF}		174		kΩ	Unbuffered mode			
Input Capacitance – Unbuffered Mode	C _{VREF}	_	7	_	pF				

Note 1: Guaranteed monotonic by design over all codes.

2: This parameter is ensured by design, and not 100% tested.

ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE (CONTINUED)

Electrical Specifications: Unless otherwise indicated, V_{DD} = 5V, V_{SS} = 0V, V_{REF} = 2.048V, Output Buffer Gain (G) = 2x, R_L = 5 k Ω to GND, C_L = 100 pF. Typical values are at +125°C by characterization or simulation.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Multiplying Mode -3 dB Bandwidth	f _{VREF}	_	450		kHz	V_{REF} = 2.5V ±0.1 Vp-p, Unbuffered, G = 1x
	f _{VREF}	_	400	_	kHz	V_{REF} = 2.5V ±0.1 Vp-p, Unbuffered, G = 2x
Multiplying Mode – Total Harmonic Distortion	THD _{VREF}	_	_	_	dB	V_{REF} = 2.5V ±0.1Vp-p, Frequency = 1 kHz
Output Amplifier						
Output Swing	V _{OUT}	_	0.01 to V _{DD} – 0.04	_	V	Accuracy is better than 1 LSb for V_{OUT} = 10 mV to (V_{DD} – 40 mV)
Phase Margin	θm	_	66	_	degrees	
Slew Rate	SR	_	0.55	_	V/µs	
Short Circuit Current	I _{SC}	_	17	_	mA	
Settling Time	t _{settling}	_	4.5	_	μs	Within 1/2 LSb of final value from 1/4 to 3/4 full-scale range
Dynamic Performance (No	ote 2)					•
DAC to DAC Crosstalk		_	10	_	nV-s	
Major Code Transition Glitch		_	45	_	nV-s	1 LSb change around major carry (01111111 to 10000000)
Digital Feedthrough		_	10	_	nV-s	
Analog Crosstalk		_	10	_	nV-s	

Note 1: Guaranteed monotonic by design over all codes.

^{2:} This parameter is ensured by design, and not 100% tested.

AC CHARACTERISTICS (SPI TIMING SPECIFICATIONS)

Electrical Specifications: Unless otherwise indicated, V_{DD} = 2.7V – 5.5V, T_A = -40 to +125°C. Typical values are at +25°C.

Typical values are at 120 C.			_			
Parameters	Sym	Min	Тур	Max	Units	Conditions
Schmitt Trigger High-Level Input Voltage (All digital input pins)	V _{IH}	0.7 V _{DD}	_	_	V	
Schmitt Trigger Low-Level Input Voltage (All digital input pins)	V _{IL}	_	l	0.2 V _{DD}	V	
Hysteresis of Schmitt Trigger Inputs	V _{HYS}	_	0.05 V _{DD}	_	V	
Input Leakage Current	I _{LEAKAGE}	-1	_	1	μА	$\overline{SHDN} = \overline{LDAC} = \overline{CS} = SDI = SCK + V_{REF} = V_{DD} \text{ or } V_{SS}$
Digital Pin Capacitance (All inputs/outputs)	C _{IN} , C _{OUT}	_	10	_	pF	$V_{DD} = 5.0V$, $T_A = +25^{\circ}C$, $f_{CLK} = 1$ MHz (Note 1)
Clock Frequency	F _{CLK}	_	_	20	MHz	T _A = +25°C (Note 1)
Clock High Time	t _{HI}	15	_	_	ns	Note 1
Clock Low Time	t _{LO}	15	_	_	ns	Note 1
CS Fall to First Rising CLK Edge	t _{CSSR}	40	_	_	ns	Applies only when $\overline{\text{CS}}$ falls with CLK high. (Note 1)
Data Input Setup Time	t _{SU}	15	_	_	ns	Note 1
Data Input Hold Time	t _{HD}	10	_	_	ns	Note 1
SCK Rise to CS Rise Hold Time	t _{CHS}	15	l	_	ns	Note 1
CS High Time	t _{CSH}	15		_	ns	Note 1
LDAC Pulse Width	t _{LD}	100	_	_	ns	Note 1
LDAC Setup Time	t _{LS}	40	_	_	ns	Note 1
SCK Idle Time before CS Fall	t _{IDLE}	40	_	_	ns	Note 1

Note 1: This parameter is ensured by design and not 100% tested.

FIGURE 1-1: SPI Input Timing Data.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +2.7V to +5.5V, V_{SS} = GND.							
Parameters	Sym	Min	Тур	Max	Units	Conditions	
Temperature Ranges							
Specified Temperature Range	T _A	-40	_	+125	°C		
Operating Temperature Range	T _A	-40	_	+125	°C	Note 1	
Storage Temperature Range	T _A	-65	_	+150	°C		
Thermal Package Resistances							
Thermal Resistance, 14L-PDIP	$\theta_{\sf JA}$	_	70	_	°C/W		
Thermal Resistance, 14L-SOIC	$\theta_{\sf JA}$	_	120	_	°C/W		
Thermal Resistance, 14L-TSSOP	$\theta_{\sf JA}$		100	_	°C/W		

Note 1: The MCP4902/4912/4922 devices operate over this extended temperature range, but with reduced performance. Operation in this range must not cause T_J to exceed the maximum junction temperature of 150°C .