Fachrichtung Mathematik

Institut für Analysis

Prof. Dr. S. Siegmund

PD Dr. A. Kalauch

Übung 23.01. bis 27.01.2023

Analysis I

14. Übungsblatt: Komplexe Exponentialfunktion, trigonometrische Funktionen

Aufgabe 14.1

Prove or disprove:

(a)
$$\forall z \in \mathbb{C} \setminus \{iy; y \in \mathbb{R}\}:$$
 $\operatorname{Re} \frac{1}{z} = \frac{1}{\operatorname{Re} z},$

(b)
$$\forall z \in \mathbb{C} \setminus \{0\}$$
: $\operatorname{Im} \frac{1}{z} = -\frac{1}{|z|^2} \operatorname{Im} z$,

(c)
$$\forall z \in \mathbb{C} \setminus \{0\}$$
: $\operatorname{Re}\left(z + \frac{1}{z}\right) = 0 \iff \operatorname{Re} z = 0.$

Aufgabe 14.2

(a) Beweisen oder widerlegen Sie:

$$\forall z \in \mathbb{C} : \operatorname{Re}(\exp(z)) = \exp(\operatorname{Re}z).$$

Wie lautet die Formel für Im(exp(z))?

(b) Für welche $x \in \mathbb{R}$ ist jeweils die folgende Gleichung erfüllt?

(i)
$$\frac{1}{2} + ix = \exp(i\frac{\pi}{3})$$
 (ii) $\frac{\cos x - i\sin x}{e^{-1-ix}} = e$

Aufgabe 14.3

(a) Bestätigen Sie die Moivresche Formel

$$(\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi \qquad (n \in \mathbb{N}_0, \varphi \in \mathbb{R}).$$

(b) Wählen Sie in der Moivreschen Formel n=3 und wenden Sie auf die linke Seite den binomischen Satz an. Welche Formeln erhält man durch Vergleich von Real- und Imaginärteil?

(c) Sei $\varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ und $x = \tan \varphi$. Zeigen Sie:

$$\frac{1+\mathrm{i}x}{1-\mathrm{i}x} = \exp(2\mathrm{i}\varphi).$$

Aufgabe 14.4

Die Funktionen Cosinus und Sinus werden im Komplexen wie folgt definiert:

cos:
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \frac{1}{2} \left(\exp(iz) + \exp(-iz) \right)$
sin: $\mathbb{C} \to \mathbb{C}$, $z \mapsto \frac{1}{2i} \left(\exp(iz) - \exp(-iz) \right)$

Zeigen Sie, dass für alle $x, y \in \mathbb{R}$ gilt:

$$\cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$$
$$\sin(x + iy) = \sin x \cosh y + i \cos x \sinh y$$

Aufgabe 14.5

Beweisen Sie für alle $x, y \in \mathbb{R}$, für die $\tan x$, $\tan y$ und $\tan(x+y)$ definiert sind, das Additionstheorem des Tangens:

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$