Analysis 1: Chapter 5 The Real Numbers

Remark. A common problem solving technique we'll see again and again is to start with the conclusion and work backwards to a point that we can conclude from our hypothesis. The solution to the problem below was obtained in this manner (try it!).

Problem. The sequence $(a_n)_{n=1}^{\infty}$ defined by $a_n := \frac{1}{n}$ is a cauchy sequence.

Proof. Given a positive $\epsilon>0$ we have that there exists a natural number N such that $\frac{1}{\epsilon}\leq N$ which implies that $\epsilon\geq\frac{1}{N}$ and for all $j,k\geq N$ we have that $|\frac{1}{j}-\frac{1}{k}|\leq\frac{1}{N}$ and the result follows as desired.

Proof. Let $(a_n)_{n=1}^{\infty}$ be a cauchy sequence. We have then that $(a_n)_n^{\infty}$ is eventually 1-steady that is there exists a $N \geq 1$ such that for all j,k we have $|a_j - a_k| \leq 1$. We can then split $(a_n)_{n=1}^{\infty}$ into two parts $(a_i')_{i=1}^{N-1}$ and $(b_n')_{n'=N}^{\infty}$. Observe that $(a_i')_{i=1}^{N-1}$ is finite so it is bounded that is there exists some $M \geq 0$ such that $M \geq |a_i|$ for all $1 \leq i \leq N-1$. We also have that $(b_n')_{n'=N}^{\infty}$ is bounded since for $j \geq N$ we have that $|b_j - b_N| + |b_N| \leq |b_j - b_N| + |b_N| \leq 1 + |b_N|$. Take the max of $1 + |b_N|$ and M and the result follows. \square