Experiment No: 05 Date: 12-09-2024

Linear Convolution using Circular Convolution and Vice versa

Aim

- 1. To perform Linear Convolution using Circular Convolution.
- 2. To perform Circular Convolution using Linear Convolution.

Theory

Performing Linear Convolution Using Circular Convolution

Method:

- 1. Zero-Padding:
 - Pad both sequences x[n] and h[n] with zeros to a length of at least 2N-1, where N is the maximum length of the two sequences. This ensures that the circular convolution will not wrap around and introduce artificial periodicity.
- 2. Circular Convolution:
 - Perform circular convolution on the zero-padded sequences.
- 3. Truncation:
 - Truncate the result of the circular convolution to the length N1 + N2 1, where N1 and N2 are the lengths of the original sequences x[n] and h[n], respectively.

Performing Circular Convolution Using Linear Convolution

Method:

- 1. Zero-Padding:
 - Pad both sequences x[n] and h[n] to a length of at least 2N-1, where N is the maximum length of the two sequences.
- 2. Linear Convolution:
 - Perform linear convolution on the zero-padded sequences.
- 3. Modulus Operation:
 - Apply the modulus operation to the indices of the linear convolution result, using the period N. This effectively wraps around the ends of the sequence, making it circular.

Program

clc;

a)Linear convolution using circular convolution

```
clear;
close all;
x=[1 2 3 4];
h=[1 1 1];
n=length(x)+length(h)-1;
x=[x zeros(1,n-length(x))];
h=[h zeros(1,n-length(h))];
x1=fft(x);
h1=fft(h);
y1=x1.*h1;
y=ifft(y1);
disp("Linear Convolution using Circular Convolution :");
disp(y);
b)Circular convolution using linear convolution
clc;
clear all;
close all;
x=[1 2 3 4];
h=[1 1 1];
y=conv(x,h);
conv_len=max(length(x),length(h));
result=[y(1:conv_len)];
new_arr=[y(conv_len+1:length(y)) zeros(1,length(y)-conv_len)];
```

	onvolution using Lir	near Convolution:")	
disp(result);			
Result			
Performed a) Linear Co Convolution and verifie	nvolution using Circular Cond d result.	volution; b) Circular Convol	ution using Linear

Observation			
a)Linear convolution t	ısing circular convolution		
Linear Convolution usin	ng Circular Convolution:		
1 3 6 9 7	4		
b)Circular convolution	using linear convolution		
Circular convolution us	ing Linear Convolution:		
8 7 6 9			