

Calculadora Bit a Bit

Grupo 5

García Federico - García Bengolea Federico — Gómez Gonzalez Alexis — Gómez Saucedo Augusto — Gonzalez Javier

¿Donde se utiliza una calculadora bit a bit?

F=AB

Simulación y Diseño de Circuitos:

En simuladores de circuitos el uso de la calculadora permite probar y visualizar cómo se comportan las operaciones bit a bit en diferentes configuraciones de circuitos

Las operaciones bit a bit se utilizan para manipular señales digitales, como en la modulación y demodulación de señales en comunicaciones.

También es útil la implementación de la calculadora para configurar y controlar hardware mediante la manipulación de señales de control en microcontroladores y otros circuitos integrados

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

74LS86

 $F = A \oplus B$ $=AB+\overline{A}B$

Podemos construir un circuito integrado con las compuertas del la consigna del tp

0− 5V

5V

V (señal)	bit	bit	bit	bit	bit	
numA= 4	0	0	1	0	0	
NumB= 30	1	1	1	1	0	
					In	ndicador_Led

La señal de la tensión puede descomponerse en binario

Si tenemos una señal numA= 3V y una señal numB= 25 V

¿Como se puede modular?

• Realizamos la operación del numero decimal a binario

$$\frac{3}{2} = 1 con resiuo 1$$

$$\frac{1}{2} = 0$$
 con resiuo 1

• Binario de 3 = 1 1 obtengo dos señales digitales por cada termino

Podemos comparar la señal de 3 V cualquier otra señal mas grande

- NUM2= 25 V
- Realizamos la operación del numero decimal a binario
- $\frac{25}{2}$ = 12 con resiuo 1
- $\frac{12}{2}$ = 6 con resiuo 0
- $\frac{6}{2} = 3$ con residuo 0
- $\frac{3}{2} = 1$ con resiuo 1
- $\frac{1}{2} = 0$ con resido 1

 V (señal)
 bit
 bit

 numA= 4 V
 1
 0
 0

 NumB= 5 V
 1
 0
 1

• El numero 25 en binario es igual a 10011

Ahora tenemos las siguientes señales, podemos completa los bit vacíos con cero

V (señal)	bit	bit	bit	bit	bit
numA= 3				1	1
NumB= 25	1	0	0	1	1

V (señal)	bit	bit	bit	bit	bit
numA= 3	0	0	0	1	1
NumB= 25	1	0	0	1	1

¿Cómo funciona la calculadora bit a bit?

Una vez realizada la conversión del valor de la señal (numero decimal) a binario, se realiza la siguiente operación:

1. Podemos elegir que operación lógica realizar

Selección de Operación: Puedes seleccionar la operación bit a bit que deseas realizar, como AND, OR, XOR,

1. AND: Devuelve 1 solo si ambos bits son 1.

2. OR: Devuelve 1 si al menos uno de los bits es 1.

3. XOR: Devuelve 1 si solo uno de los bits es 1

Ejecutar la Operación: La calculadora aplica la operación seleccionada bit a bit entre los números ingresados. Por ejemplo, para AND entre 00011 y 10011

V (señal)	bit	bit	bit	bit	1°bit
NumA= 3	0	0	0	1	1
NumB= 25	1	0	0	1	1

V (señal)	bit	bit	bit	bit	1°bit
NumA= 3	0	0	0	1	1
NumB= 25	1	0	0	1	1

V (señal)	bit	bit	bit	bit	1°bit
NumA= 3	0	0	0	1	1
NumB= 25	1	0	0	1	1
LED	0	0	0	0	1

