Lipiec Mateusz

Dipiec Mateusz	
Nr indeksu: 410 542	
Wygenerowane na UPEL dane (Ćwiczenie nr 10 – korekcja układów nieliniowych)	
B:	
B =	
3	
a1:	
a1 =	
0.0500	
a2:	
a2 =	
0.0730	
tau:	
tau =	
0.1100	
K:	
K =	
0.3000	
Tm:	
Tm =	
0.6000	

```
Tt1 =
Tt1 =
0.3000

Tt2 =
Tt2 =
0.6000

Tt3 =
Tt3 =
```

Projekt układu modelującego przekaźnik trójpołożeniowy

Schemat blokowy układu modelującego przekaźnik trójpołożeniowy z Symulink'a:

Parametry bloku Relay 1:

switch off point :0.05

switch on point :0.073

output when on :3

output when off:0

Parametry bloku Relay 2:

switch off point :-0.073

switch on point :-0.05

output when on :0

output when off:-3

Charakterystyka statyczna zamodelowanego przekaźnika trójpołożeniowego z zaznaczonymi parametrami a1, a2, B oraz opisanymi osiami współrzędnych

Parametry obiektu z rys.5:

 $\mathbf{K} = \mathbf{0.3}$

Tm = 0.6

tau = 0.11

Trajektoria fazowa dla układu ze stała tachometryczną Tt1 (należy wykorzystać sygnał uchybu). Osie układu współrzędnych mają być podpisane.

Schemat blokowy układów ze sprzężeniem tachometrycznym z rys.5 dla stalej tachometrycznej Tt2 =0.6

Trajektoria fazowa dla układu ze stała tachometryczną Tt2 (należy wykorzystać sygnał uchybu). Osie układu współrzędnych mają być podpisane.

Schemat blokowy układów ze sprzężeniem tachometrycznym z rys.5 dla stałej tachometrycznej Tt3 =1

Trajektoria fazowa dla układu ze stała tachometryczną Tt3 (należy wykorzystać sygnał uchybu). Osie układu współrzędnych mają być podpisane.

Charakterystyki czasowe układów ze stałymi tachometrycznymi: Tt1, Tt2 i Tt3. Osie układu współrzędnych mają być podpisane (w jednym układzie współrzędnych trzy charakterystyki). Czas symulacji proszę przyjąć 15 do 30 sekund

Wnioski (jaki charakter mają przebiegi dla kolejnych stałych tachometrycznych: periodyczny czy aperiodyczny):

Dla Tt1:

Dla Tt2:

Dla Tt3:

Dla której wartości stałej tachometrycznej jakość sterowania jest najlepsza (uzasadnić):

Najlepszy sygnał jest kolorem niebieskim ponieważ nie zaobserwowano drgań własnych oraz uchybu