ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ по дисциплине «Численные методы»

Ф.И.О. Бобров И.И., Игнатьев М.В., Абдуллаев Т.М.	Ф.И.О.	Бобров И.И	Игнатьев	M.B.,	Абдуллаев	T.M.
---	--------	------------	----------	-------	-----------	------

ТЕМА курсового проекта

Рекуррентные формулы и интегрирование по Ромбергу.

ФОРМУЛИРОВКА задания:

- Создать алгоритм решения поставленной задачи, реализовать его, протестировать программы;
- Оформить и представить итоги проделанной работы в виде отчета;
- Сформулировать выводы по полученным решениям, отметить достоинства и недостатки методов.

РУКОВОДИТЕЛЬ проекта / Пак Т.В./

ДАТА ВЫДАЧИ задания 6 ноября 2021

СРОК ВЫПОЛНЕНИЯ задания 09.11.2020 - 10.01.2021

Задание получил Бобров И.И., Игнатьев М.В., Абдуллаев Т.М.

Содержание

екуррентные формулы и интегрирование по Ромбергу.
Введение
Основная часть
Постановка задач
Описание алгоритмов решения
Вычислительный эксперимент
Заключение
Источники
Приложения

Рекуррентные формулы и интегрирование по Ромбергу

Введение

Объектом исследования являются численные методы решения задач численного интегрирования.

Цель работы — ознакомиться с численными рекуррентными формулами и методами интегрирования, решить предложенные типовые задачи, сформулировать выводы по полученным решениям, отметить достоинства и недостатки методов, приобрести практические навыки и компетенции, а также опыт самостоятельной профессиональной деятельности, а именно:

- создать алгоритм решения поставленной задачи и реализовать его, протестировать программы;
- освоить теорию вычислительного эксперимента; современных компьютерных технологий;
- приобрести навыки представления итогов проделанной работы в виде отчета, оформленного в соответствии с имеющимися требованиями, с привлечением современных средств редактирования и печати.

Работа над курсовым проектом предполагает выполнение следующих задач:

- дальнейшее углубление теоретических знаний обучающихся и их систематизацию;
- получение и развитие прикладных умений и практических навыков по направлению подготовки;
- овладение методикой решения конкретных задач;
- развитие навыков самостоятельной работы;
- развитие навыков обработки полученных результатов, анализа и осмысления их с учетом имеющихся литературных данных;
- приобретение навыков оформления описаний программного продукта;
- повышение общей и профессиональной эрудиции.

Основная часть

Постановка задач

Теорема 1 (последовательные формулы трапеций). Предположим, что $J \geqslant 1$ и точки $\{x_k = a + kh\}$ делят интервал [a;b] на $2^J = 2M$ подынтервалов с одинаковым шагом $h = (b-a)/2^J$. Формулы трапеций T(f,h) и T(f,2h) удовлетворяют соотношению

Описание алгоритмов решения

Вычислительный эксперимент

Заключение

В результате работы над курсовым проектом приобрел практические навыки владения:

- современными численными методами решения задач математической экономики;
- основами алгоритмизации для численного решения задач математической экономики на одном из языков программирования;
- инструментальными средствами, поддерживающими разработку программного обеспечения для численного решения задач математической экономики;

а также навыками представления итогов проделанной работы в виде отчета, оформленного в соответствии с имеющимися требованиями, с привлечением современных средств редактирования и печати.

Список используемых источников

Источники

1. Численные методы. Использование Matlab. Третье издание. Джон Г. Мэтьюз Издательский дом "Вильямс" 2001

Приложения