

Лекция 4 Сверточные нейронные сети

Савинкина Дарья

29 сентября 2022 г.

Перцептрон

- ▶ Моделилинейная/логистическая регрессия
- ► Может моделирова**№**СТ, AND, OR
- ▶ Не может моделировасов.

Сети с одним скрытым слоем

Теорема (универсальный аппроксиматор)

Любую непрерывную на компакте функцию можно равномерно приблизить нейронной сетью с одним скрытым слоем.

¹Отличная визуализация:

Проблемы нейронных сетей

Проблемы полносвязных нейронных сетей:

- ▶ Требуется огромное количество нейронов
- ▶ Серьезное переобучение

Проблемы нейронных сетей

Проблемы полносвязных нейронных сетей:

- ▶ Требуется огромное количество нейронов
- ▶ Серьезное переобучение

Возможное решение — введение новых типов слоев:

- Сверточные слои (сегодня)
- Пулинг (сегодня)
- Dropout (лекция 5)
- Нормализация (лекция 5)
- **.**..

Сверточные нейронные сети

ImageNet

- 1000 классов
- около 1000 изображений в каждом классе
- около 1 000 000 изображений всего
- несколько номинаций, в том числе распознавание и детектирование/локализация

ImageNet

Figure: Примеры прогнозов

ImageNet

Objection classification error rate

Внутренние инварианты

(a) Кот

Внутренние инварианты

(a) Кот

Внутренние инварианты

(a) Кот

Одномерная свертка (convolution)

Определение

Результатом операции свертки массива m с ядром a называетс сигнаm: $n[k] = \sum_{i=-w}^{w} m[k+i]a[-i]$. Обозначениe:= m * a

Одномерная свертка (convolution)

Padding

Нулевой отступ

Продолжение границы

Зеркальный отступ

C B **A B C** B A

Циклический отступ

Двумерная свертка (чб картинки)

Figure: 2D convolution

²https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

Примеры ядер

Тождественное

0	0	0
0	1	0
0	0	0

Детектор границ

0	1	0
1	-4	1
0	1	0

Увеличение резкости

0	1	0
1	5	1
0	1	0

Свертка в нейронных сетях

Pooling

- Голосованивобеждают наиболее активные нейроны
- Вырабатывается инвариантность к небольшим сдвигам
- Увеличение рецептивной области
- Уменьшение вычислительных затрат
- ▶ Кроме max-пулин**п**æan, weighted, root-mean-square, ...

8

ПримерУGG-16

Интерпретация обученных

моделей

Извлечение признаков

Figure: Классический подход к извлечению признаков

Извлечение признаков, история

Figure: Глубинное обучение

³Learning visuralpresentations (Andrea Vedaldi)

Модель Хьюбеля-Визеля

Показано, что мозг обрабатывает визуальную информацию иерархическоначала находятся границы, углы, а на более глуб слоях — сложные объекты.

Deconvolution сети

Figure: Схема deconvolution сети

Deconvolution сети

Figure: Convolution transposed

⁴https://github.com/vdumoulin/conv_arithmetic

Deconvolution сети

Figure: Convolution transposed

⁵http://www.vlfeat.org/matconvnet/matconvnet-manual.pdf

Выучиваемые признаки

Figure: Visualizing and Understanding Convoletionals

⁶Matthew D. Zeiler and Rob Fergus

Выучиваемые признаки

Figure: Visualizing and Understanding Convoletionals

⁷Matthew D. Zeiler and Rob Fergus

Выучиваемые признаки

Figure: Visualizing and Understanding Convoletionals

⁸Matthew D. Zeiler and Rob Fergus

Transfer learning

Figure: Модель решения задачи в рамках парадигмы трансфера зн

Transfer learning

Figure: Трансфер между двумя глубинными сетями

⁹Learning visuralpresentations (Andrea Vedaldi)

Transfer learnling

Figure: Цели трансфера знаний

- ▶ higher start хорошее начальное приближение из-за апри информации о распределении весов
- ▶ higher slope ускорение сходимости алгоритма обучения
- higher asymptote улучшение верхней достижимой грани качества

¹⁰ftp:

 $^{/\!/}ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.handbook 09.pdf$

Transfer learning

All Hypotheses

All Hypotheses

Figure: Трансфер знаний можно также рассматривать как некоторую регуляризацию, которая ограничивает пространство поиска до определенного набора допустимых и хороших гипотез

CNN для распознавания речи

Figure: Выученные фильтры для спектрограмм голосового сигнал

¹¹http://ai.stanford.edu/~ang/papers/nips09-AudioConvolutionalDBN.pdf

CNN для текст 6^{13}

Figure: Обработка изображения представляющего текст

¹²http://arxiv.org/pdf/1502.01710v1.pdf

¹³http://nal.co/papers/Kalchbrenner_DCNN_ACL14

Вопросы

