$$X(y) = \begin{cases} 1 & \text{i. true} \\ 0 & \text{i. true} \\ 1 & \text{i. true} \end{cases}$$

Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 2. Tydzień rozpoczynający się 9. marca Zadania

- 1. Niech Σ będzie σ -cialem zbiorów.
 - (a) Sprawdzić, że Ø ∈ Σ.
- (b) Załóżmy, że $A_k \in \Sigma$, dla $k=1,2,3,\ldots$ Wykazać, że $\bigcap A_k \in \Sigma$.
- 2. Niech $\Omega = \{a, b, c\}$.
 - (a) Opisać σ -ciała zbiorów tej przestrzeni zdarzeń.
 - (b) Podać przykład funkcji X,Y takich, że X jest zmienną losową, a Y nie jest zmienną losową.
- \checkmark 3. Niech $\Omega=\{1,2,3,4,5\}$ oraz $S=\{1,4\}.$ Wyznaczyć najmniejsze $\sigma\text{-cialo}$ zbiorów zawierające S
- 4. Wyznaczyć dystrybuantę i obliczyć wartość oczekiwaną zmiennej X o rozkładzie

$$x_i$$
 2 3 4 5 p_i 0.2 0.4 0.1 0.3

5. Dystrybuanta F zmiennej losowej X określona jest następująco:

Podać postać funkcji gestości f(x).

- \checkmark 6. Niech X będzie zmienną losową typu dyskretnego. Udowodnić, że $\mathrm{E}(aX+b)=a\,\mathrm{E}(X)+b$.
- \checkmark 7. Niech Xbędzie zmienną losową typu ciąglego. Udowodnić, że $\mathrm{E}(aX+b)=a\,\mathrm{E}(X)+b.$
- ✓8. 2p. Sprawdzić, że

$$\label{eq:definition} \begin{array}{l} \checkmark(\mathbf{a}) \ B(p,q+1) = B(p,q) \, \frac{q}{p+q}, \\ \checkmark(\mathbf{b}) \ B(p,q) = B(p,q+1) + B(p+1,q). \end{array}$$

$$\checkmark$$
(b) $B(p,q) = B(p,q+1) + B(p+1,q)$

- 9. 2
p. Udowodnić, że $\Gamma(p)\,\Gamma(q)=\Gamma(p+q)\,B(p,q),$ gdzie $p,q\in\mathbb{R}^+$ (czyli wszystkie potrzebne calki
- DEF. Funkcją beta nazywamy wartość calki

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt, \quad p > 0, \quad q > 0.$$

Witold Karczewski

