1. Naj bo $\mathbf{a} = [1,1,1]^\mathsf{T} \in \mathbb{R}^3$. Katere od spodaj naštetih množic so in katere niso vektorski podprostori v \mathbb{R}^3 ? V vsakem od podprostorov poišči vsaj eno neprazno linearno neodvisno podmnožico vektorjev, tj. bazo tega vektorskega podprostora!

- 2. Naj bo $W \le \mathbb{R}^4$ vektorski podprostor vseh vektorjev $\mathbf{x} = [x_1, x_2, x_3, x_4]^\mathsf{T}$, za katere velja $x_1 x_2 + x_3 x_4 = 0$.
 - (a) Preveri, da sta vektorja $\mathbf{u} = [1, 1, 0, 0]^T$ in $\mathbf{v} = [1, 1, 3, 3]^T$ vsebovana v W.
 - (b) Dopolni množico $\{u, v\}$ do baze za W (če je to potrebno).

Rešitev: (b) Dodamo npr. $\mathbf{w} = [1, 0, 0, 1]^T$.

3. Naj bo $W \leq \mathbb{R}^4$ linearna ogrinjača vektorjev iz množice

$$L = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -3 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 4 \\ -4 \end{bmatrix} \right\},\,$$

tj. $W = \mathcal{L}(L)$. Naj bo $\mathbf{v} = [-2, 2, -6, 2]^{\mathsf{T}}$.

- (a) Zapiši vektor **v** kot linearno kombinacijo vektorjev iz *L*. Lahko to storimo na več načinov?
- (b) Opiši vse linearne kombinacije vektorjev iz *L*, ki so enake **0**.
- (c) Utemelji: Če iz L odstranimo en (katerikoli) vektor, dobimo linearno neodvisno množico vektorjev.
- (d) Poišči bazo za W.

Rešitev: Naj bodo \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 po vrsti vektorji iz L. (a) $\mathbf{v} = \mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_3$. Da, lahko.

- (b) $\alpha \mathbf{v}_1 + \alpha \mathbf{v}_2 + \alpha \mathbf{v}_3 + \alpha \mathbf{v}_4 = \mathbf{0}$. (c) To postane jasno po Gaussovi eliminaciji.
- (d) $B_W = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}.$

4. Dani so vektorji

$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} -1 \\ 5 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} 4 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \text{ in } \mathbf{w} = \begin{bmatrix} 1 \\ 5 \\ 4 \\ -8 \end{bmatrix}.$$

- (a) Iz tega nabora vektorjev izberi največji možen nabor linearno neodvisnih vektorjev.
- (b) Ali izbran nabor vektorjev predstavlja bazo prostora \mathbb{R}^4 ?
- (c) Kako bi ostale vektorje izrazil kot linearne kombinacije prej izbranih?

Rešitev: (a) Recimo \mathbf{x} , \mathbf{y} , \mathbf{z} , \mathbf{v} . (b) Da. (c) $\mathbf{u} = \mathbf{x} + \mathbf{y}$, $\mathbf{w} = 7\mathbf{v} - 2\mathbf{x} - \mathbf{y}$.