#### Introduction to Plack Stars

Alejandro Hernández A.

Universidad de los Andes, Bogotá, Colombia

November 6, 2015

## Overwiew

- Introduction
  - Black hole solutions
- Regularized Schwarzschild metric
  - Hayward metric
- Quantum Field Theory
  - Newton Potential
  - Modified Hayward metric
- Conclusions
- References

2 / 20

#### Introduction

#### **Einstein Field Equations**

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu} \tag{1}$$

#### Minkowski metric

$$ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2 \tag{2}$$



## Black hole solutions

#### Classification of Black holes

|                      | Non-rotating $(J=0)$ | Rotating $(J \neq 0)$ |
|----------------------|----------------------|-----------------------|
| Uncharged $(Q = 0)$  | Schwarzschild        | Kerr                  |
| Charged $(Q \neq 0)$ | Reissner-Nordström   | Kerr-Newman           |

## Schwarzschild Black hole

#### Schwarzschild metric

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$
 (3)

#### Kretschmann invariant

$$\kappa = R^{\alpha\beta\gamma\delta}R_{\alpha\beta\gamma\delta} = \frac{48m^2}{r^6} \tag{4}$$

## Regularized Schwarzschild metric

According to [Hayward, 2006], we cand find metrics that are:

- Spherically symmetric.
- Static.
- Asymptotically flat (minkowski).
- Have regular center.

The resulting stress-energy tensor is physically reasonable, satisfies the weak energy condition and has components that are bounded and fall off appropriately at large distance.

# **Energy conditions**

#### Null energy condition

For every null vector x:  $T_{\mu\nu}x^{\mu}x^{\nu} \geq 0$ .

#### Weak energy condition

For every timelike vector x:  $T_{\mu\nu}x^{\mu}x^{\nu} \geq 0$ .

#### **Dominant energy condition**

For every timelike vector x:  $T_{\mu\nu}x^{\mu}x^{\nu} \geq 0$ ,  $T_{\mu\nu}T^{\nu}_{\lambda}x^{\mu}x^{\lambda} \leq 0$ .

## Strong energy condition

For every timelike vector x:  $T_{\mu\nu}x^{\mu}x^{\nu} \geq \frac{1}{2}T_{\lambda}^{\lambda}x^{\sigma}x_{\sigma}$ .

# Regularized Schwarchild metric

Consider a static, spherically symmetric metric of the form:

$$ds^{2} = -F(r)dt^{2} + \frac{1}{F(r)}dr^{2} + r^{2}d\Omega^{2}$$
 (5)

We demand

$$F(r) \sim 1 - \frac{2m}{r}$$
 as  $r \to \infty$  (6)

$$F(r) \sim 1 - \frac{r^2}{l^2} \quad as \quad r \to 0 \tag{7}$$

# Hayward metric

The so called Hayward metric [Hayward, 2006] satisfies all the required properties and is given by:

$$F(r) = 1 - \frac{2mr^2}{r^3 + 2ml^2} \tag{8}$$

where *I* encodes the central energy density  $\frac{3}{8\pi I^2}$ . Therefore

$$ds^{2} = -\left(1 - \frac{2mr^{2}}{r^{3} + 2ml^{2}}\right)dt^{2} + \frac{1}{\left(1 - \frac{2mr^{2}}{r^{3} + 2ml^{2}}\right)}dr^{2} + r^{2}d\Omega^{2}$$
 (9)

# Hayward metric

Analyzing the zeros of F(r), we get a critical mass  $m_* = \frac{3\sqrt{3}}{4}I$  and a radius  $r_* = \sqrt{3}I$ .

- No zeros if  $m < m_*$ . ( $\iff$  Regular space time with the same causal structure as a flat space-time).
- One double zero at  $r = r_*$  if  $m = m_*$ . ( $\iff$  Regular extreme black hole with degenerate Killing horizon).
- Two simple zeros at  $r=r_{\pm}$  if  $m>m_*$ . ( $\leadsto$  Regular nonextreme black hole with both outer and inner Killing horizons located at  $r_{+}\approx 2m$  and  $r_{-}\approx l$  for  $m\gg m_*$ ).



Figure : Behaviour<sup>1</sup> of  $g_{tt} = F(r)$  for different values of the parameter m.

# Hayward metric

If we use field equations 1, we note that this metric is supported by density  $-T_t^t$ , radial pressure  $T_r^r$ , and transverse pressure  $T_\theta^\theta = T_\phi^\phi$  given by:

$$G_t^t = G_r^r = -\frac{12l^2m^2}{\left(r^3 + 2l^2m\right)^2} \tag{10}$$

$$G_{\theta}^{\theta} = G_{\phi}^{\phi} = \frac{24 \left(r^3 - l^2 m\right) l^2 m^2}{\left(r^3 + 2l^2 m\right)^3} \tag{11}$$

They fall off very rapidly  $\mathcal{O}(r^{-6})$ .



# Quantum Field Theory

Spacetime metric describing 'non-singular' black holes are commonly studied in the literature [De Lorenzo, 2015, Rovelli, 2014] as effective modification to the Schwarzschild solution that mimic quantum gravity effects removing the central singuarity.

To begin with, two insights from quantum cosmology [Ashtekar, 2007]:

- The onset of quantum gravitational effects is when energy density reaches the Plank scale ( $\sim 5.155 \cdot 10^{96} \ \frac{kg}{m^3}$ ).
- The dominant quantum effect at high density is a strong pressure, sufficient to counterbalance weight and reverse gravitational collapse.

## Plack scale

#### Planck scale is given by

| Quantity      | SI equivalent                     |  |
|---------------|-----------------------------------|--|
| Planck time   | $t_p = 5.39121 \cdot 10^{-44} s$  |  |
| Planck mass   | $m_p = 2.17645 \cdot 10^{-8} kg$  |  |
| Planck length | $I_p = 1.616252 \cdot 10^{-35} m$ |  |

and the Plack density is the quotient

$$\rho_p = \frac{m_p}{l_p^3} \approx 5.155 \cdot 10^{96} \, \frac{kg}{m^3} \tag{12}$$

## Quantum Field theory

For a black hole, the previous arguments imply that matter's collapse can be stopped before the central singularity is formed, yielding the formation of a central core, called a **Planck star** [Rovelli, 2014].

Nevertheless, several metrics describing non-singular black holes possess two unphysical characteristics:

- A clock in the regular center is not delayed with respect to a clock at infinity [Rovelli, 2014].
- They do not reproduce the corrections to Newton potential derived from an effective treatment of quantum gravitational theory [Bjerrum-Bohr,2003].

## Newton potential

The quantum corrections to the Newton potential can be obtained using effective field theory [Bjerrum-Bohr,2003], and reintroducing the Planck length, they are given by:

$$\Phi(r) = -\frac{m}{r} \left( 1 + \beta \frac{l_p^2}{r^2} \right) + \mathcal{O}(r^4)$$
 (13)

Since

$$\Phi(r) = -\frac{1}{2} (1 + g_{tt}) \tag{14}$$

$$g_{tt} = -F(r) = -1 + \frac{2m}{r} - \frac{4l^2m^2}{r^4} + \mathcal{O}(r^{-5})$$
 (15)

We require additional adjustments to the Hayward metric.

## Modified Hayward metric

The most general spherically symmetric, static metric that includes the previously mentioned corrections is [De Lorenzo, 2015]:

$$ds^{2} = -G(r)F(r)dt^{2} + \frac{1}{F(r)}dr^{2} + r^{2}d\Omega^{2}$$
(16)

The physical requirements imposed on G(r) are:

- Preserve the Schwarzschild behaviour at large r.
- Include the quantum corrections of the Newton potential.
- Allow a final time dilatation between r = 0 and  $r \to \infty$ .
- Near the center, the metric is still de Sitter.

In particular, we can take

$$G(r) = 1 - \frac{\beta m\alpha}{\alpha r^3 + \beta m} \tag{17}$$

DI 16:

#### Conclusions

- Spacetime singularities are unavoidable in gravitational collapse, if the classical theory of general relativity is valid at all scales and the stress-energy tensor of matter satisfies the classical energy conditions.
- General relativity cannot be valid at all scales because of quantum mechanics.
- There is a certain expectation that near the center of a physical black hole quantum effects dominate, and prevent the formation of the singularity.
- Planck stars are one possible way to include effective QFT correction in general relativity.
- Hayward metric by itself does not cover all the desirable quantum correction into the Schwarzchild metric, therefore the proposal of a modified Hayward metric.

## References



- De Lorenzo, T., Pacilio, C., Rovelli, C., Speziale, S.: On the effective metric of a Planck star. Gen. Relativ. Gravit. 47, 41 (2015).
- Mazur, P. O., Mottola, E.: Gravitational condensate stars: An alternative to black holes, arXiv:gr-qc/0109035
- Ashtekar, A., Pawlowski, T., Singh, P., Vandersloot, K.: Loop quantum cosmology of k=1 FRW models. Phys. Rev. D **75**,24035 (2007).
- Rovelli, C., Vidotto, F.: Planck Stars. Int. J. Mod. Phys. D. 23, 1142026, (2014).
  - Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum gravitational corrections to the non-relativistic scattering potential of two masses. Phys. Rev. D 67, 084033 (2003).

# The End

