

Literature Review: Portfolio Optimisation

- Modern Portfolio Theory (MPT)
 - A core part of the framework is Harry Markowitz's mean-variance model (1952),
 - Tells us factors on how to build a good portfolio:
 - The trade-off between risk and return
 - Diversification: risk can be minimized by investing in a range of assets
- Capital Asset Pricing Model (CAPM)
 - Introduced by Sharpe (1964), based on Markowitz's model
 - Used to give a fair price on shares
 - Looks at the relationship between systematic/market risk and return
 - Bearing higher systematic risk rewards the investors with higher return
 - This relationship concludes that the market must be efficient → The best investment is the market

Literature Review: Portfolio Optimisation

INDEX TRACKING

- Index tracking is a form of passive fund management.
- For investors who are risk averse
- Proxy for investing the market
- This form of investment is to be as close to a reference financial index (such as CAC, FTSE,...) as possible using a subset of assets, rather than investing in every asset in the reference financial index

Literature Review: Genetic Algorithm

Based on Darwin's theory of evolution

Population-based algorithm \rightarrow looks at multiple solutions \rightarrow works quickly

Fitness function → selection operation → crossover operation → mutation operation → repeat until stopping criteria Is met

Intelligent Population, helps GA look into finding solution quicker

Need to choose each aspects of the GA carefully or a good solution won't be found

Aims and Objectives

- Develop a portfolio optimisation model that considers practical issues such as cardinality (i.e., the maximum number of assets in the portfolio) and threshold constraints (i.e., minimum or maximum weights for certain assets).
- Evaluate the effectiveness of the model in creating efficient portfolios in different markets.
- Implement a genetic algorithm (GA) in which the portfolio closely follows the market based on historical data.
- Test the GA-based model on four different markets (CAC 40, DAX 40, FTSE 100, S&P 500)
- Fine-tune the GA code by adjusting parameters.

Index Tracking Model

- On the right is the cardinality-constrained optimization problem used to track the index.
- This model acted as our fitness function telling us how good each portfolios were by tracking the index tracking error.

SETS:

T=1..N denotes time I=1..A denotes assets I'=1..F denotes assets forced in I''=I-I' denotes assets that may or may not be in portfolio

DATA:

 $r_{i,t}$ denotes return of asset i at time t

 rm_t denotes market return at time t

denotes minimum investment if an asset is to be held

U denotes maximum investment if an asset is to be held

K denotes maximum stock chosen

T' denotes target return

VARIABLES:

 $\omega_i \geq 0$ denotes weight in asset $i, i \in I$ $\delta_i = 0/1$ binary variable, indicating 1 if we have invested in asset i, 0 if we haven't, $i \in I''$ $u_t \geq 0$ amount over the index return $t, t \in T$ $\rho_t \geq 0$ amount under the index return $t, t \in T$ $\rho_t = 0$ denotes portfolio return at time $t, t \in T$

minimise: $\sum_{t \in T} (o_t + u_t)$

subject to: $\sum_{i \in I} \omega_i = 1 \tag{1}$

$$\sum_{i \in I} r_{i,t} \cdot \omega_i = rm_t + o_t - u_t \qquad t \in T$$
 (2)

$$l\delta_i \le \omega_i \le U\delta_i \qquad \qquad i \in I'' \tag{3}$$

$$l \le \omega_i \le U \qquad \qquad i \in I' \tag{4}$$

$$|I'| + \sum_{i \in I''} \delta_i \le K \tag{5}$$

$$P_t = \sum_{i \in I} r_{i,t} \cdot \omega_i \qquad t \in T \tag{6}$$

$$\sum_{t \in T} \frac{P_t}{|T|} \ge T' \tag{7}$$

Genetic algorithm Pseudocode

- Here is the pseudocode representing the AMPL code of the genetic algorithm.
- The GA only forms half of the portfolio called set I".
 The rest is formed by the CPLEX solver.

```
1 P_p := sets of assets for portfolio p;
<sup>2</sup> C_a := capital market value for asset a;
W_a := \text{weight of asset } a;
 4 E_p := tracking error for portfolio p;
 5 B_g := best solution for Generation g;
 6 for p = 1..P do
       if p = 1 then
            SORT (C_a) by capital market value;
            Let I' = \text{the } \frac{K}{2} assets of highest capital market value;
9
       else if p = 2 then
10
            SORT (W_a) by weight from the LP relaxed solution;
            Let I' = \text{the } \frac{K}{2} assets of highest weight;
12
13
            Generate randomly \frac{K}{2} assets Let I' = \frac{K}{2} randomly generated assets;
14
15
       end
       I^{\prime\prime}=I-I^{\prime};
16
17
       SOLVE:
       SAVE E_n;
       Let P_p = I' \cup \{i \in I'' | \delta_i = 1\};
20 end
21 Let g = 1;
22 \text{ Let } B_1 = \min_{p \in P} E_p;
23 repeat
       for p = 2...P do
25
            Let T = P_m \cup P_f;
             W'_i = max(w_{m,i}, w_{f,i}) \quad i \in T;
26
27
            SORT (W'_i) by weight;
            Let I' = \frac{K}{2} assets of highest weight in T;
28
            SOLVE;
29
30
            SAVE E_n;
            Let P_p = I' \cup \{i \in I'' | \delta_i = 1\};
32
            Let g = g + 1;
       end
       Let B_g = \min E_p
35 until B_g = B_{g-1} where B_g is the best portfolio generation;
```

Results

Market	GA solution limit 10	CPU TIME	GA solution limit 20	CPU TIME2
CAC 40	0.000889017	2090.25	0.000889017	2094.83
DAX 40	0.00174613	298.109	0.00174613	654.766
FTSE 100	<mark>0.000547758</mark>	<mark>17536.1</mark>	0.000547943	29656.8
S&P 500	0.000292391	45158.2	<mark>0.000278454</mark>	92738.7

Market	GA child-loop 1	CPU TIME	GA child-loop 2	CPU TIME2
CAC 40	0.000889017	2094.83	0.000889017	2216.7
DAX 40	0.00174613	654.766	0.00174613	478.453
FTSE 100	0.000547943	29656.8	<mark>0.000547758</mark>	<mark>27115.3</mark>
S&P 500	<mark>0.000278454</mark>	92738.7	0.000281021	91472.4

GA solution limit 10 v. GA solution limit 20

GA child-loop 1 v. GA child-loop 2

Market	GA (Year 1)	CPU TIME	GA (Year 2)	CPU TIME2
CAC 40	0.000889017	2094.83	0.00179318	9.95312
DAX 40	0.00174613	654.766	0.00429514	2.39062
FTSE 100	0.000547758	17536.1	0.000526216	41699
S&P 500	0.000278454	92738.7	0.000741659	66381.4

Market	Benchmark	CPU TIME	GA	CPU TIME2
CAC 40	0.000889017	746.578	0.000889017	2094.83
DAX 40	0.001746129	84	0.00174613	654.766
FTSE 100	<mark>0.000559224</mark>	715.312	<mark>0.000547758</mark>	17536.1
S&P 500	0.000372042	4004.06	<mark>0.000278454</mark>	92738.7

GA (Year 1) v. GA (Year 2)

Benchmark v. GA

Conclusion

- The genetic algorithm worked extremely well with us in achieving our expected results
- Year 1 and Year 2 data were not similar but that is most likely when the data was taken
- Child-loop 2 is quicker but doesn't necessarily produce a better solution
- To improve the code, running the code at a higher solution limit and time limit would lead us to smaller index tracking errors.
- Additionally, add mutation operation to maintain diversity
- Compare different types of GA to know how successful the code was