18AKSOA/19AKSPG – CONTROLLI AUTOMATICI

(esame del 15/09/2016)

 ${f 1}$ Dato il sistema in variabili di stato avente ingresso u(t) ed uscita y(t) e descritto dalle seguenti matrici

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $D = 0$, determinare $\frac{Y(s)}{U(s)}$.

B)
$$\frac{s-2}{s^2-4s+3}$$

A)
$$\frac{s^2}{s^2 - 4^2}$$
; B) $\frac{s - 2}{s^2 - 4s + 3}$; C) $\frac{s - 2}{s^2 + 4s + 3}$; D) $\frac{1}{s^2 - 4s}$

D)
$$\frac{1}{s^2 - 4s}$$

 $oldsymbol{2}$) Un sistema lineare tempo invariante a tempo continuo ha come matrice di stato

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & k - 3 \end{bmatrix}$$

Dire per quali valori del parametro k il sistema è asintoticamente stabile:

- A) per nessun valore di k;
- B) per k < 3;
- C) per -3 < k < 3
- D) per tutti i valori di k

3) Un sistema lineare tempo invariante a tempo discreto ha come funzione di trasferimento $G(z) \doteq \frac{y(z)}{u(z)} = \frac{1}{z^2 + 0.5z - 0.5}$. Sono date le seguenti condizioni iniziali: y(i = 0) = 0, y(i = 1) = 0 e l'ingresso $u(i) = 3 \ \forall i \ge 0$. Calcolare il valore di y(i) per $i \to \infty$.

 $oldsymbol{4}$) Un sistema lineare tempo invariante a tempo continuo ha come funzione di trasferimento

$$G(s) = \frac{s-1}{s^2 + 9s + 11}$$

Una sua realizzazione in forma di stato minima

A)
$$A = \begin{bmatrix} 0 & 1 \\ 9 & 11 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$; $C = \begin{bmatrix} 1 & -1 \end{bmatrix}$

B)
$$A = \begin{bmatrix} 9 & 0 \\ 0 & 11 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

C)
$$A = \begin{bmatrix} 0 & 1 \\ -11 & -9 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} -1 & 1 \end{bmatrix}$

D) A=-11; B=-9; C=-1; D=1

5) Un sistema a tempo discreto è caratterizzato dalla fdt $G(z) = \frac{z+1}{z^2 + K(z+1)}$. Determinare i valori di Kper cui il sistema risulta essere asintoticamente stabile.

A)
$$-2 < K < 1$$

B)
$$K > 1$$
, $K < -0.5$

C)
$$-0.5 < K < 1$$
 D) $0 < K < \infty$

D)
$$0 < K < \infty$$

6) Dato il sistema lineare tempo invariante descritto dalla seguente forma di stato

$$A = \begin{bmatrix} 1 & 3 \\ k & 4 \end{bmatrix}; B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

determinare i valori di k per cui è possibile progettare un osservatore asintotico dello stato

- A) per nessun valore di k
- B) per $k \neq 0$
- C) per k=0
- D) per k>0

7) Data la fdt $G(z) = \frac{K(z+a)}{(z-1)(z-0.25)+K(z+a)}$, indicare i valori di K,a per cui i poli del sistema sono asintoticamente stabili e a parte reale null

- A) K = 0.75 B) K = 0.75 C) K = 1.25 D) D) K = 1.25 D) K = 1.25 D) D) K = 1.25 D) D) D) D) D) D D) D) D) D) D) D D) D) D) D) D)

8) Un sistema lineare e tempo invariante è descritto dalle seguenti equazioni di stato e trasformazione di uscita:

$$\dot{x}_1 = x_2
\dot{x}_2 = -3x_1 - 2x_2 + 2u
y = x_1 + x_2$$

la funzione di trasferimento $G(s) = \frac{Y(s)}{U(s)}$ è

A) $G(s) = \frac{2s+2}{s^2+2s+3}$;

B) $G(s) = \frac{s+1}{s^2+2s+3}$;

C) $G(s) = \frac{s+1}{s^2-2s-3}$;

D) $G(s) = \frac{s+2}{s+3}$

A)
$$G(s) = \frac{2s+2}{s^2+2s+3}$$

B)
$$G(s) = \frac{s+1}{s^2+2s+3}$$

C)
$$G(s) = \frac{s+1}{s^2-2s-3}$$

D)
$$G(s) = \frac{s+2}{s+3}$$

9) Dato il sistema non lineare

$$\dot{x}_1 = \frac{x_2}{\left(1 + x_2\right)^2}$$

$$\dot{x}_2 = x_1^2 + 2x_1x_2 + u$$
; $y = x_1 + u$.

Da quale delle seguenti quaterne di matrici sono descritte le equazioni di stato del sistema linearizzato nell'intorno dello stato $x_1 = 0$, $x_2 = 0$ per u = 0?

Risposte:

A)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
;

A)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$; $D = 0$.

$$B) A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix};$$

B)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$; $D = 1$.

C)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
;

C)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$; $D = 1$.

D)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
;

D)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$; $D = 1$.

10) Un sistema lineare tempo invariante ha come funzione di trasferimento

$$G(s) = \frac{1}{s^2 + s}$$

alimentando il sistema in ingresso con un gradino unitario, la sua risposta per $t\rightarrow\infty$ è

B)
$$y_{\infty} = \infty$$
;

C)
$$y_{\infty} = 0$$
;

A)
$$y_{\infty} = 1;$$
 B) $y_{\infty} = \infty;$ C) $y_{\infty} = 0;$ D) $y_{\infty} = \sin t$;

11) Dato un sistema descritto dalla funzione di trasferimento

$$F(s) = \frac{1}{(s+1)^2 (s+4)^2 (s^2 + 14s + 100)}$$

progettare un controllore PID "reale" con il metodo di Ziegler-Nichols in catena chiusa (si scelga N=20 nella realizzazione del polo di chiusura).

IMPORTANTE: si realizzi il controllo con il PID nella struttura "modificata".

Della catena chiusa così ottenuta valutare:

- il tempo di salita 10%÷90%, t_r, della risposta al gradino unitario
- la sovraelongazione $\hat{s}_{\%}$
- la banda passante ω_B
- OPZIONALE: i margini di stabilità, m_G e m_Φ, della catena aperta.
- **12)** Progettare il compensatore C(z) per il seguente sistema di controllo:

Dati

F(s) =
$$0.1 \frac{s + 20}{s(s+1)(s^2 + 2s + 100)}$$
; d(t) = $+0.5 + 0.1t$ (costante + rampa)

ADC e DAC sono caratterizzati dal medesimo numero di bit, dalla medesima dinamica in tensione e dal medesimo passo di campionamento Ts.

Specifiche relative alla catena chiusa (da verificare con il compensatore C(z) a tempo discreto!)

- 1. errore stazionario indotto dal disturbo d(t), $|e_d| \le 0.04$;
- 2. errore stazionario di inseguimento del gradino unitario, $|e_g| = 0$;
- 3. errore stazionario di inseguimento alla rampa unitaria, $|e_r| = 0$;
- 4. tempo di salita, $t_s = 6 \ (\pm 10\%) \ s$;
- 5. sovraelongazione, $\hat{s} \le 30\%$.

Riportare la fdt del compensatore C(s) nella seguente forma: $C(s) = \frac{K_c}{s^h} \cdot \frac{(1 + \tau_{z1} s) \cdot \cdots \cdot (1 + \tau_$

Riportare inoltre il metodo di discretizzazione utilizzato per derivare C(z) da C(s) e il passo di campionamento T_s scelto.

Scrivere una breve relazione relativa al progetto (spiegare per esempio come si è arrivati al C(s), al T_s e al C(z)). Riportare infine i valori effettivamente ottenuti - con C(z)! - per le grandezze elencate nella tabella.

PAGINA DELLE RISPOSTE

cognome (in stampatello)						nome				
problem	a 1	2	3	4	5	6	7	8	9	10
risposta				-		•	<u> </u>			
problem 11	\overline{K}_{p}	$\overline{\mathrm{T}}$	K_p	Tı	T_D	t _r (10-90)%	ŝ _%	ωв	m _G	m_{ϕ}
						(10-90)%				
						l				
problema 12										
Breve relazione:										
									1 :	
C(s)								metodo di discretizzaz. di C(s)		T_s
·										
puls. di	margine/i	margine/i	tempo	sovraelon-	banda	picco		errore staz.	err. staz.	
cross. ωc	$di fase \\ m_{\phi}$	di guad. m _G	di salita t _s	gazione $\hat{s}_{\%}$	passante ω _B	risonar $M_{r,d}$		$ e_d $	parabola e _p	u _{max}
	·									

Valori effettivamente ottenuti <u>con C(z)</u>

N.B: $|u_{max}|$ rappresenta il valore massimo in modulo del comando $u(\cdot)$ indotto da un riferimento r a gradino unitario.