STRUMENTI FORMALI PER LA BIOINFORMATICA

Espressioni Regolari

Introdurremo e utilizzeremo vari formalismi per la rappresentazione di linguaggi.

Introdurremo e utilizzeremo vari formalismi per la rappresentazione di linguaggi.

Un primo strumento, di natura algebrica, è costituito dalle espressioni regolari.

Introdurremo e utilizzeremo vari formalismi per la rappresentazione di linguaggi.

Un primo strumento, di natura algebrica, è costituito dalle espressioni regolari.

Esso consente di descrivere tutti i linguaggi appartenenti a un'importante classe di linguaggi, i *linguaggi regolari*.

Introdurremo e utilizzeremo vari formalismi per la rappresentazione di linguaggi.

Un primo strumento, di natura algebrica, è costituito dalle espressioni regolari.

Esso consente di descrivere tutti i linguaggi appartenenti a un'importante classe di linguaggi, i *linguaggi regolari*.

Le espressioni regolari offrono notevoli vantaggi di scrittura, e possono essere manipolate in base ad alcune loro proprietà algebriche senza modificare i linguaggi che rappresentano.

Le espressioni regolari sono un utile strumento nel progetto dei compilatori per i linguaggi di programmazione. Gli oggetti elementari in un linguaggio di programmazione, chiamati *token*, come i nomi delle variabili e le costanti, possono essere descritti con espressioni regolari.

Le espressioni regolari sono un utile strumento nel progetto dei compilatori per i linguaggi di programmazione. Gli oggetti elementari in un linguaggio di programmazione, chiamati *token*, come i nomi delle variabili e le costanti, possono essere descritti con espressioni regolari.

Una volta che la sintassi di un linguaggio di programmazione è stata descritta usando espressioni regolari per i suoi token, dei sistemi automatici possono generare l'analizzatore lessicale, la parte di un compilatore che elabora inizialmente il programma input.

Definizione ricorsiva delle espressioni regolari su un alfabeto Σ :

Definizione ricorsiva delle espressioni regolari su un alfabeto Σ :

PASSO BASE:

Per ogni $a \in \Sigma$, a è un'espressione regolare;

- ϵ è un'espressione regolare;
- Ø è un'espressione regolare.

Definizione ricorsiva delle espressioni regolari su un alfabeto Σ :

PASSO BASE:

Per ogni $a \in \Sigma$, a è un'espressione regolare;

 ϵ è un'espressione regolare;

∅ è un'espressione regolare.

PASSO RICORSIVO: Se E_1 , E_2 sono espressioni regolari, allora

 (E_1) è un'espressione regolare;

 $(E_1 + E_2)$ è un'espressione regolare;

 (E_1E_2) è un'espressione regolare;

 (E_1^*) è un'espressione regolare.

Nota. Nelle espressioni regolari, alcuni autori usano + per denotare l'operatore \cup .

Le espressioni regolari e i loro linguaggi

Un'espressione regolare E è appunto un'espressione, non un linguaggio.

Quando vogliamo riferirci al linguaggio denotato da E, useremo la notazione L(E).

È consuetudine fare riferimento a E quando effettivamente si intende L(E).

Definizione ricorsiva dei linguaggi rappresentati dalle espressioni regolari su un alfabeto Σ .

Data un'espressione regolare E, indicheremo con L(E) il linguaggio che essa rappresenta, definito come segue

Definizione ricorsiva dei linguaggi rappresentati dalle espressioni regolari su un alfabeto Σ .

Data un'espressione regolare E, indicheremo con L(E) il linguaggio che essa rappresenta, definito come segue

PASSO BASE:

```
Per ogni a \in \Sigma, L(a) = \{a\}; L(\epsilon) = \{\epsilon\}; L(\emptyset) = \emptyset.
```

Definizione ricorsiva dei linguaggi rappresentati dalle espressioni regolari su un alfabeto Σ .

Data un'espressione regolare E, indicheremo con L(E) il linguaggio che essa rappresenta, definito come segue

PASSO BASE:

Per ogni
$$a \in \Sigma$$
, $L(a) = \{a\}$; $L(\epsilon) = \{\epsilon\}$; $L(\emptyset) = \emptyset$.

PASSO RICORSIVO: Se E_1 , E_2 sono espressioni regolari, allora

$$L((E_1)) = L(E_1);$$

 $L(E_1 + E_2) = L(E_1) \cup L(E_2);$
 $L(E_1E_2) = L(E_1)L(E_2);$
 $L(E_1^*) = L(E_1)^*.$

Regole di precedenza degli operatori

Operatore	precedenza
*	1
	2
+	3

Regole di precedenza degli operatori

Operatore	precedenza
*	1
	2
+	3

L'espressione regolare $ab^* + b$ corrisponde a $(a(b)^*) + b$ ed è diversa da $(ab)^* + b$.

Regole di precedenza degli operatori

Operatore	precedenza
*	1
	2
+	3

L'espressione regolare $ab^* + b$ corrisponde a $(a(b)^*) + b$ ed è diversa da $(ab)^* + b$.

L'espressione regolare $ab^* + b$ è anche diversa da $a(b^* + b)$.

L'espressione regolare (a + (b(cd))) definita sull'alfabeto $\Sigma = \{a, b, c, d\}$ può essere sostituita da a + bcd.

L'espressione regolare $(a+b)^*a$ rappresenta il linguaggio

L'espressione regolare $(a + b)^*a$ rappresenta il linguaggio

$$L((a + b)^*a) = L((a + b)^*)L(a)$$

$$= (L(a + b))^*L(a)$$

$$= (L(a) \cup L(b))^*L(a)$$

$$= (\{a\} \cup \{b\})^*\{a\}$$

$$= \{a, b\}^*\{a\}$$

$$= \{w \mid w \in \{a, b\}^+, w \text{ termina con } a\}$$

Negli esempi seguenti, assumiamo che l'alfabeto Σ sia $\{0,1\}.$

• $L(0*10*) = \{w \mid w \text{ contiene un solo } 1\}$

- $L(0*10*) = \{w \mid w \text{ contiene un solo } 1\}$
- $L(\Sigma^*1\Sigma^*) = \{w \mid w \text{ ha almeno un } 1\}$

- $L(0*10*) = \{w \mid w \text{ contiene un solo } 1\}$
- $L(\Sigma^*1\Sigma^*) = \{w \mid w \text{ ha almeno un } 1\}$
- $L(\Sigma^*001\Sigma^*) = \{w \mid w \text{ contiene la stringa } 001 \text{ come sottostringa}\}$

- $L(0*10*) = \{w \mid w \text{ contiene un solo } 1\}$
- $L(\Sigma^*1\Sigma^*) = \{w \mid w \text{ ha almeno un } 1\}$
- $L(\Sigma^*001\Sigma^*) = \{w \mid w \text{ contiene la stringa } 001 \text{ come sottostringa}\}$
- $L(1^*(011^*)^*) = \{w \mid \text{ogni 0 in } w \text{ è seguito da almeno un } 1\}$

- $L(0*10*) = \{w \mid w \text{ contiene un solo } 1\}$
- $L(\Sigma^*1\Sigma^*) = \{w \mid w \text{ ha almeno un } 1\}$
- $L(\Sigma^*001\Sigma^*) = \{w \mid w \text{ contiene la stringa } 001 \text{ come sottostringa}\}$
- $L(1^*(011^*)^*) = \{w \mid \text{ogni 0 in } w \text{ è seguito da almeno un 1}\}$
- $L((\Sigma\Sigma)^*) = \{w \mid w \text{ è una stringa di lunghezza pari}\}$

Negli esempi seguenti, assumiamo che l'alfabeto Σ sia $\{0,1\}.$

• $L((\Sigma\Sigma\Sigma)^*) = \{w \mid w \text{ la lunghezza di } w \text{ è un multiplo di } 3\}$

- $L((\Sigma\Sigma\Sigma)^*) = \{w \mid w \text{ la lunghezza di } w \text{ è un multiplo di } 3\}$
- $L(01+10) = \{01, 10\}$

- $L((\Sigma\Sigma\Sigma)^*) = \{w \mid w \text{ la lunghezza di } w \text{ è un multiplo di } 3\}$
- $L(01+10) = \{01, 10\}$
- $L(0\Sigma^*0 + 1\Sigma^*1 + 0 + 1) = \{w \mid w \text{ inizia e termina con lo stesso simbolo}\}$

- $L((\Sigma\Sigma\Sigma)^*) = \{w \mid w \text{ la lunghezza di } w \text{ è un multiplo di } 3\}$
- $L(01+10) = \{01, 10\}$
- $L(0\Sigma^*0 + 1\Sigma^*1 + 0 + 1) = \{w \mid w \text{ inizia e termina con lo stesso simbolo}\}$
- $(0+\epsilon)1^* = 01^* + 1^*$

- $L((\Sigma\Sigma\Sigma)^*) = \{w \mid w \text{ la lunghezza di } w \text{ è un multiplo di 3}\}$
- $L(01+10)=\{01,10\}$
- $L(0\Sigma^*0 + 1\Sigma^*1 + 0 + 1) = \{w \mid w \text{ inizia e termina con lo stesso simbolo}\}$
- $(0+\epsilon)1^* = 01^* + 1^*$
- $L((0+\epsilon)(1+\epsilon)) = {\epsilon, 0, 1, 01}$

Esercizi

Esercizio.

Determinare l'espressione regolare che, sull'alfabeto $\{a,b\}$, definisce l'insieme delle stringhe il cui terzultimo carattere è una b.

Esercizi

Esercizio.

Determinare l'espressione regolare che, sull'alfabeto $\{a,b\}$, definisce l'insieme delle stringhe il cui terzultimo carattere è una b.

Esercizio.

Determinare il linguaggio definito dall'espressione regolare

$$a^*((aa)^*b+(bb)^*a)b^*$$

Esercizi

Fornire espressioni regolari che generino i seguenti linguaggi sull'alfabeto $\{0,1\}$:

Fornire espressioni regolari che generino i seguenti linguaggi sull'alfabeto $\{0,1\}$:

• $\{w \mid w \text{ inizia con un } 1 \text{ e termina con uno } 0\}$

- $\{w \mid w \text{ inizia con un } 1 \text{ e termina con uno } 0\}$
- $\{w \mid w \text{ contiene almeno tre simboli uguali a } 1\}$

- $\{w \mid w \text{ inizia con un } 1 \text{ e termina con uno } 0\}$
- $\{w \mid w \text{ contiene almeno tre simboli uguali a } 1\}$
- $\{w \mid w \text{ contiene la sottostringa 0101 (cioè, } w = x0101y \text{ per qualche } x \text{ e } y)\}$

- $\{w \mid w \text{ inizia con un } 1 \text{ e termina con uno } 0\}$
- $\{w \mid w \text{ contiene almeno tre simboli uguali a } 1\}$
- $\{w \mid w \text{ contiene la sottostringa 0101 (cioè, } w = x0101y \text{ per qualche } x \text{ e } y)\}$
- $\{w \mid w \text{ ha lunghezza almeno 3 e il suo terzo simbolo è uno 0}\}$

- $\{w \mid w \text{ inizia con un } 1 \text{ e termina con uno } 0\}$
- $\{w \mid w \text{ contiene almeno tre simboli uguali a } 1\}$
- $\{w \mid w \text{ contiene la sottostringa 0101 (cioè, } w = x0101y \text{ per qualche } x \text{ e } y)\}$
- $\{w \mid w \text{ ha lunghezza almeno 3 e il suo terzo simbolo è uno 0}\}$
- $\{w \mid w \text{ inizia con uno } 0 \text{ e ha lunghezza dispari oppure inizia con un } 1 \text{ e ha lunghezza pari}\}$

Fornire espressioni regolari che generino i seguenti linguaggi sull'alfabeto $\{0,1\}$:

• $\{w \mid \text{ la lunghezza di } w \text{ è al più } 5\}$

- $\{w \mid \text{ la lunghezza di } w \text{ è al più 5}\}$
- $\{w \mid w \text{ è una stringa diversa da } 11 \text{ e } 111\}$

- $\{w \mid \text{ la lunghezza di } w \text{ è al più } 5\}$
- $\{w \mid w \text{ è una stringa diversa da } 11 \text{ e } 111\}$
- $\{w \mid \text{ in ogni posizione dispari di } w \text{ c'è il simbolo } 1\}$

- $\{w \mid \text{ la lunghezza di } w \text{ è al più 5}\}$
- $\{w \mid w \text{ è una stringa diversa da } 11 \text{ e } 111\}$
- $\{w \mid \text{ in ogni posizione dispari di } w \text{ c'è il simbolo } 1\}$
- $\{w \mid w \text{ contiene almeno due simboli uguali a 0 e al più un 1}\}$

Fornire espressioni regolari che generino i seguenti linguaggi sull'alfabeto $\{0,1\}$:

• {*ϵ*, 0}

- {*ϵ*, 0}
- L'insieme vuoto

- {*ϵ*, 0}
- L'insieme vuoto
- Tutte le stringhe eccetto la stringa vuota.

Per ciascuna delle seguenti espressioni regolari, fornire due stringhe che sono elementi dei corrispondenti linguaggi e due stringhe che non lo sono - un totale di quattro stringhe per ogni linguaggio. Assumere che l'alfabeto sia $\Sigma = \{a,b\}$ per ognuno di essi.

a* b*

- a* b*
- a(ba)*b

- a* b*
- a(ba)*b
- $a^* + b^*$

- a* b*
- a(ba)*b
- $a^* + b^*$
- (aaa)*

Per ciascuna delle seguenti espressioni regolari, fornire due stringhe che sono elementi dei corrispondenti linguaggi e due stringhe che *non* lo sono—un totale di quattro stringhe per ogni linguaggio. Assumere che l'alfabeto sia $\Sigma = \{a, b\}$ per ognuno di essi.

Σ*aΣ*bΣ*aΣ*

- Σ*aΣ*bΣ*aΣ*
- aba + bab

- Σ*aΣ*bΣ*aΣ*
- aba + bab
- $(\epsilon + a)b$

- Σ*aΣ*bΣ*aΣ*
- aba + bab
- $(\epsilon + a)b$
- $(a + ba + bb)\Sigma^*$