FYS3120 Classical Mechanics and Electrodynamics

Problem set 11

April 24, 2017

Problem 1 A non-relativistic particle, with electric charge q and mass m moves in a magnetic dipole field, given by the vector potential

$$\vec{A} = \frac{\mu_0}{4\pi r^3} (\vec{\mu} \times \vec{r}),\tag{1}$$

where $\vec{\mu}$ is the magnetic dipole moment of a static charge distribution centered at the origin. (We use the notation $\vec{\mu}$ for the dipole moment to avoid confusion with the particle mass m).

a) Show that the Lagrangian is

$$L = \frac{1}{2}m\vec{v}^2 + \frac{q\mu_0}{4\pi mr^3}\,\vec{\mu}\cdot\vec{\ell},\tag{2}$$

where $\vec{\ell} = m \, \vec{r} \times \vec{v}$ is the particle's orbital angular momentum.

We now make the assumption that the magnetic dipole moment is oriented along the z-axis and that the particle moves in the (x, y)-plane. Choose in the following $r = |\vec{r}|$ and the angle ϕ between the x-axis and the position vector \vec{r} as coordinates.

b) Show that the Lagrangian of the particle, when expressed in terms of r, ϕ , and their time derivatives, takes the form

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) + \lambda \frac{\dot{\phi}}{r},$$
 (3)

with $\lambda \equiv q\mu_0|\vec{\mu}|/4\pi$. Find the canonical momentum p_{ϕ} conjugate to ϕ , and give a physical interpretation of this quantity. Also comment on the consequence of L having no explicit time dependence.

c) Write Lagrange's equation for the coordinate r, expressed in terms of r, \ddot{r} and p_{ϕ} , and use the equation to find \dot{r}^2 as a function of r and p_{ϕ} . Compare the expression with that of the particle's kinetic energy.

Problem 2 Figure 1 shows a rectangular current loop ABCD. In the loop's rest frame, S, the loop has length a in the x direction and width b in the y direction, the current is I and the charge density is zero. We remind you of the following general definitions of the electric dipole moment \vec{p} , and the magnetic dipole moment \vec{m} , for a given current distribution:

$$\vec{p} = \int \vec{r} \rho(\vec{r}) d^3 r \,, \quad \vec{m} = \frac{1}{2} \int (\vec{r} \times \vec{j}(\vec{r})) d^3 r.$$
 (4)

a) Show that in the rest frame the loop's electric dipole moment is zero and the magnetic moment is $\vec{m} = I\vec{a} \times \vec{b}$, where $I = j\Delta$ with j as the current density and Δ as the cross section area of the current wire.

Figure 1: Illustration of current loop.

In the following we will examine how the loop is observed in a reference frame S', where the loop is moving with velocity \vec{v} to the right $(\beta = v/c)$ and $\gamma = 1/\sqrt{1-\beta^2}$. The Lorentz transformation formulas for charge and current denisities may be useful when solving the problems below.

- b) What is the length and width of the loop in S'?
- c) Show that the parts AB and CD of the loop have charge $\pm aIv/c^2$ in S'.
- d) Show that in S' the loop's electric dipole moment is $\vec{p}' = -\frac{1}{c^2}\vec{m} \times \vec{v}$, and the magnetic dipole moment is $\vec{m}' = (1 \beta^2/2)\vec{m}$.
- e) Show that the current is $I\gamma$ in the AB and CD and I/γ in BC and DA.
- f) Show that the result in e) is consistent with charge conservation.

Problem 3 An electric point charge q is moving with constant velocity \vec{v} along the x-axis of the inertial frame S, as illustrated in Fig. 2. Assume it passes the origin of S at t = 0.

- a) Give the expression for the scalar potential ϕ' and the vector potential \vec{A}' set up by the charge in its rest frame S'. In the relativistic description the scalar and vector potentials define the four potential A'^{μ} , with the time component related to the scalar potential as $A'^{\mu} = \phi'/c$. Make use of the transformation properties of the four potential to determine its components A^{μ} in reference frame S as functions of the coordinates (ct, x, y, z) in the same frame.
- **b)** Determine (the components of) the electric field \vec{E} in the reference frame S, as functions of (ct, x, y, z).
- c) Determine similarly the magnetic field \vec{B} in reference frame S.

Figure 2: Charge on the move.

A magnetic dipole, with dipole moment \vec{m} , is at rest in S, at the position (x, y, z) = (0, d, 0). The dipole vector \vec{m} points in the x-direction.

- d) The field from the moving charge acts with a time dependent torque on the dipole, $\vec{M} = \vec{m} \times \vec{B}$. Find the expression for the torque.
- e) Assuming the magnetic dipole can be viewed as a small current loop, the force on the dipole from the field produced by the moving charge is $\vec{F} = \vec{\nabla}(\vec{m} \cdot \vec{B})$. Determine the force.