Al 2002 – Artificial Intelligence

Practice Questions (Propositional Logic)

QUESTION 1:

Which of the following are correct? Validate your answers using truth-table.

- a) False |= True.
- b) True |= False.
- c) $(A \wedge B) \models (A \Leftrightarrow B)$.
- d) $A \Leftrightarrow B \models A \lor B$.
- e) $A \Leftrightarrow B \models \neg A \lor B$.
- f) $(A \land B) \Rightarrow C \models (A \Rightarrow C) \lor (B \Rightarrow C)$.
- g) $(C \lor (\neg A \land \neg B)) \equiv ((A \Rightarrow C) \land (B \Rightarrow C)).$
- h) $(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B)$.
- i) $(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B) \land (\neg D \lor E).$
- j) $(A \lor B) \land \neg(A \Rightarrow B)$ is satisfiable.
- k) $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable.
- (A ⇔ B) ⇔ C has the same number of models as (A ⇔ B) for any fixed set of proposition symbols that includes A, B, C.

QUESTION 2:

Decide whether each of the following sentences is valid, unsatisfiable, or neither. Verify your answers using the equivalence rules.

- a) Smoke \Rightarrow Smoke
- b) Smoke ⇒ Fire
- c) (Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)
- d) Smoke v Fire v ¬Fire
- e) ((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))
- f) (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)
- g) Big \vee Dumb \vee (Big \Rightarrow Dumb)

QUESTION 3:

Consider the following sentence:

$$[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party]$$

- a) Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable.
- b) Convert the left-hand and right-hand sides of the main implication into Conjunctive Normal Form (CNF), showing each step, and explain how the results confirm your answer to (a).
- c) Prove your answer to (a) using resolution.

QUESTION 4:

Suppose the agent has progressed to the point shown in the figure below, having perceived nothing in [1,1], a breeze in [2,1], and a stench in [1,2], and is now concerned with the contents of [1,3], [2,2], and [3,1]. Each of these can contain a pit, and at most one can contain a wumpus.

1,4	2,4	3,4	4,4
^{1,3} w:	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

- a) Create a knowledge base to represent the necessary environment rules and agent's observations.
- b) b. Prove that KB \mid = α 1 using resolution theorem where α 1 = "There is no pit in [2,2]."
- c) c. Prove that KB \mid = $\alpha 2$ using inference rules where $\alpha 2$ = "There is a wumpus in [1,3]."