Planting trees

1 second, 256 MB

A field of width \mathbf{R} and length \mathbf{C} is divided into unit $\mathbf{R} \times \mathbf{C}$ cells of size 1×1 . Each cell is referred to by its row \mathbf{i} ($1 <= \mathbf{i} <= \mathbf{R}$) and its column \mathbf{j} ($1 <= \mathbf{j} <= \mathbf{C}$). \mathbf{N} trees will be planted in \mathbf{N} of these cells. For $1 <= \mathbf{k} <= \mathbf{N}$, tree \mathbf{k} will be planted in the cell at row \mathbf{A}_k and column \mathbf{B}_k . Trees on the same row and trees on the same column look very beautiful together. You want to find a tree that *maximizes* the number of trees on the same row and the same column.

Consider the following example where R = 5, C = 7, and N = 6. The trees will be planted in to the following cells

k	1	2	3	4	5	6
A_k	1	3	3	5	5	3
B_k	3	3	1	6	4	4

The locations in the field can be shown below. The cells contain the tree number. For example, tree 1 will be planted at the cell at row $A_1=1$ and column $B_1=3$.

	1		7	
3	2	6		
		5	4	

You want to find the index \mathbf{k} such that the number of trees in the same row or same column as tree \mathbf{k} (including tree \mathbf{k} itself) is maximized. If there are many trees, you should answer the smallest index. In the example above, there are 4 trees in the same row or same column with tree 2. There are also 4 trees in the same row or colum with tree 6. But you should answer the smallest index; therefore, the correct answer for this case is 2.

Input

The first line contains three integers **R C** and **N**. (1 <= **R** <= 100,000; 1 <= **C** <= 100,000; 1 <= **N** <= 100,000) There are test cases worth 30% points that **R** <= 100, **C** <= 100, and **N** <= 1,000.

The next N lines describe the cell locations. More specifically, for $1 \le k \le N$, line 1+k contains two integers A_k and B_k ($1 \le A_k \le R$; $1 \le B_k \le C$). No pairs of trees will be planted on the same cell.

Output

You program should output two integers: the **index** \mathbf{k} of the tree with the maximum number of trees on the same row or column and the **number** of trees on the same row or column of tree \mathbf{k} .

Example

Example		
Input	Output	
5 7 6	2 4	
1 3		
3 3		
3 1		
5 6		
5 4		
3 4		