Tutorial Answers Nuclear Physics

Question 1

a.) **1.0076 u**

b.) 1.67 x 10⁻²⁷ kg

Question 2

a.) **9.10** x **10**⁻³¹ kg

b.) **5.48** x **10**⁻⁴ u

Question 3

 $A = \lambda N = 1.5 \times 10^5 \text{ s}^{-1}$

Question 4

$$A = \lambda N = 200 \text{ s}^{-1} = 200 \text{ Bq}$$

After 1s, we might expect 800 nuclei to remain undecayed. The activity would then be $A = 0.2 \times 800 = 160 \text{ Bq}$

Question 5

Half life approximately 2.5 years.

Decay constant, $\lambda = 0.693 / 2.5 = 0.277 \text{ year}^{-1}$

Question 6

a.) $\lambda = 0.693 / (8 \times 24 \times 60 \times 60) = 1.0026 \times 10^{-6} \text{ s}^{-1}$

b.) $A = \lambda N = 1.0026 \times 10^{12} \text{ s}^{-1}$

c.) N = $1 \times 10^{18} \exp -(1.0026 \times 10^{-6} \times 24 \times 24 \times 3600)$

 $N = 1.27 \times 10^{17}$

d.) $A = 1.0026 \times 10^{12} \exp -(1.0026 \times 10^{-6} \times 3 \times 24 \times 3600)$

 $A = 7.73 \times 10^{11} \text{ s}^{-1}$

Question 7

a.) $\frac{1}{2}$ mv² = eV

$$\frac{1}{2}$$
 (6.8 x 10⁻²⁷) v² = 6.3 x 10⁶ x 1.6 x 10⁻¹⁹

$$v = 1.72 \times 10^6 \text{ ms}^{-1}$$

b.) $I = Q/t = 1.0 \times 10^{-9} \text{ A or } 1.0 \times 10^{-9} \text{ Cs}^{-1}$

Each electron is 1.6 x 10⁻¹⁹ C

No electrons flowing per second = no of ion-pairs produced per second

=
$$1.0 \times 10^{-9} / 1.6 \times 10^{-19} \text{ C} = 6.25 \times 10^{9} \text{ s}^{-1}$$

c.) No of ion-pairs produced by each alpha particle = $6.3 \text{ M} / 30 = 2.1 \text{ x } 10^5$

No of alpha particle emitted per second = $6.25 \times 10^9 \, \text{s}^{-1} / 2.1 \times 10^5 = 2.98 \times 10^{-4} \, \text{s}^{-1}$

d.) $A = \lambda N$

$$2.98 \times 10^4 = (0.693 / 55)(N)$$

 $N = 2.37 \times 10^6 \text{ atoms}$

Question 8

- a.) i.) **2** ${}_0^1 n$
- ii.) Fission reaction
- b.) i.) Binding energy of uranium-235 = 235 x 7.5 M = 1763 MeV Binding energy of products = 234 x 8.5 M = 1989 MeV Energy change = **225 MeV**
 - ii.) Kinetic energy of neutrons / photons (gamma ray)

Question 9

- a.) 2 protons and 2 neutrons
- b.) 13.9993 + 4.0015 = 18.0008

Change in mass = $0.0012 \text{ u} = 1.99 \text{ x } 10^{-30} \text{ kg}$

- c.) $E = mc^2 = 1.79 \times 10^{-13} J$
- d.) $(4 \times 3 \times 10^7) = 17v + (1 \times 6 \times 10^7)$

 $v = 3.5 \times 10^6 \, \text{ms}^{-1}$