

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

دورة: 2021

المدة: 44 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على (04) صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (07 نقاط)

1) يحتوي أمين أروماتي أحادي الوظيفة A على نسبة \$15,05 من الآزوت ونسبة \$77,42 من الكربون.

- جد الصيغة المجملة للأمين الأروماتي A.

 $M_C = 12 \text{ g.mol}^{-1} \cdot M_H = 1 \text{ g.mol}^{-1} \cdot M_N = 14 \text{ g.mol}^{-1}$

يدخل الأمين الأروماتي A في تحضير المركب X وفق التفاعلات التالية:

(B)
$$\xrightarrow{\text{KMnO}_4}$$
 \rightarrow 2 (C)

(C)
$$\xrightarrow{\text{LiAlH}_4}$$
 (D)

(D) +
$$PCl_5$$
 \longrightarrow (E) + HCl + $POCl_3$

$$(E) + (A) \longrightarrow (F) + HCl$$

$$+ Cl_2 \xrightarrow{AlCl_3} (G) + HCl$$

(F) + (G)
$$\longrightarrow$$
 N \longrightarrow N $+$ HCl $X \stackrel{CH-CH_3}{\overset{C}{CH_3}}$

- اكتب الصيغ نصف المفصلة للمركبات G · F · E · D · C · B · A - اكتب

التالى: H التالى:

$$H_2N - \hspace{-1.5cm} \begin{array}{c} \\ \\ \end{array} - \hspace{-1.5cm} NH_2$$

4) يستعمل المركب H لتحضير بوليمير الكفلار Kevlar حسب التفاعل التالى:

$$n H + n Y \longrightarrow -NH - C \longrightarrow -N$$

أ- استنتج الصيغة نصف المفصلة للمركب Y.

ب- اكتب مقطعا من البوليمير يتكون من وحدتين بنائيتين.

476000 g.mol⁻¹ هي المتوسطة للبوليمير هي أن الكتلة المولية المتوسطة للبوليمير هي $M_{\rm C}=12~{\rm g.mol^{-1}},~M_{\rm H}=1~{\rm g.mol^{-1}},~M_{\rm O}=16~{\rm g.mol^{-1}},~M_{\rm N}=14~{\rm g.mol^{-1}}$ يعطى:

التمرين الثاني: (07 نقاط)

 $I_{\rm s}$ = 186,66 له قرينة تصبن A له غليسيريد $I_{\rm s}$

- 1) جد الكتلة المولية لأحادي الغليسيريد A .
- ك) أكسدة الحمض الدهني B الذي يدخل في تركيب أحادي الغليسيريد A ببرمنغنات البوتاسيوم المركزة بوجود حمض الكبريت المركز تعطى:

$$CH_3$$
 - $(CH_2)_3$ - $COOH$ \circ $HOOC$ - $(CH_2)_x$ - $COOH$

أ- استنتج الصيغة نصف المفصلة للحمض الدهني B.

ب- احسب قرينة الحموضة للحمض الدهني B.

- 3) أعطِ الصيغ نصف المفصلة الممكنة لأحادي الغليسيريد A.
- B تتكون مادة دهنية لها قرينة تصبن $I_s=203,16$ من X أحادي الغليسيريد $I_s=203,16$ من الحمض الدهني $I_s=100$ أ- جِد التركيب المئوي لمكونات المادة الدهنية.

ب- احسب قرينة اليود للمادة الدهنية.

 $M_C = 12 \text{ g.mol}^{-1}$ ، $M_H = 1 \text{ g.mol}^{-1}$ ، $M_O = 16 \text{ g.mol}^{-1}$ ، $M_K = 39 \text{ g.mol}^{-1}$ ، $M_I = 127 \text{ g.mol}^{-1}$ يعطى:

A-B-C-D: لديك رباعي الببتيد - \mathbf{II}

- يعطي الحمض الأميني B مع الننهيدرين اللون الأصفر.
- يتفاعل الحمض الأميني $^{-1}$ مع $^{-1}$ ويتشكل أستر كتلته المولية $^{-1}$ $^{-1}$ مع $^{-1}$ $^{-1}$ فيتشكل أستر كتلته المولية $^{-1}$
 - نسبة الأزوت في الحمض الأميني D هي 18,66%.

تعطى الأحماض الأمينية المكونة لرباعي الببتيد السابق في الجدول الآتي:

pKa _R	pKa ₂	pKa ₁	كتلته المولية g.mol ⁻¹	رمزه	صيغته	الحمض الأميني
/	9,69	2,34	89	Ala	CH ₃ -CH-COOH NH ₂	الألانين
/	9,60	2,34	75	Gly	H—CH—COOH NH ₂	الغليسين
/	10,60	1,99	115	Pro	СООН	البرولين
6,00	9,17	1,82	155	His	N—————————————————————————————————————	الهستيدين

- 1) حدِّد الأحماض الأمينية D · C · B · A حدِّد
- 2) اكتب الصيغة نصف المفصلة لرباعي الببتيد السابق.
- pH=1 أعطِ الصيغة نصف المفصلة لرباعي الببتيد عند (3)
 - 4) تتأين الأحماض الأمينية بتغير قيمة الـ pH:

أ- اكتب الصيغ الأيونية للحمض الأميني الهستيدين عند تغير pH من 1 إلى 12.

- استنتج الصيغتين الأيونيتين للهستيدين عند pH=3 مع تحديد الصيغة السائدة.

التمرين الثالث: (06 نقاط)

-**I**

 $T_1=24^{\circ}{
m C}$ التحديد السعة الحرارية لمسعر، نضع فيه $m_1=200\,{
m g}$ من الماء فوجدنا درجة الحرارة عند قياسها (1 $T_1=35,5^{\circ}{
m C}$ من الماء درجة حرارته $T_2=45^{\circ}{
m C}$ وبعد الانزان نجد درجة الحرارة $m_2=300\,{
m g}$

. جِد السعة الحرارية C_{cal} لهذا المسعر

$$c_{H_2O_{\left(\ell\right)}}^{} \,=\,4,185\,J.g^{\text{--}1}.K^{\text{--}1}$$
يعطى:

اختبار في مادة: التكنولوجيا (هندسة الطرائق) / الشعبة: تقنى رياضي / بكالوريا 2021

تحترق كتلة m_3 من غاز الميثان $CH_{4(g)}$ في المسعر السابق يحتوي على و $m_4=500~{
m g}$ من الماء فترتفع درجة $\Delta T=34~{
m K}$ حرارته بمقدار

. $H_2O_{(\ell)}$ و $CO_{2(g)}$ و التام لغاز الميثان إلى المحتراق التام لغاز الميثان إلى المحتراق التام المحتراق التام المحتراق التام المحتراق المحت

ب- احسب كمية الحرارة Q الناتجة عن احتراق غاز الميثان.

 $\mathrm{CH}_{4(g)}$ الميثان الكتلة m_3 لغاز الميثان

 $M_{\rm C} = 12 \; {\rm g.mol^{-1}} \; \cdot \; \; M_{\rm H} = 1 \; {\rm g.mol^{-1}} \; \; \cdot \; \; \Delta H_{\rm comb}^{^{\circ}} ({\rm CH_4})_{\rm g} = \; -890,7 \; {\rm kJ.mol^{-1}} \; \; {\rm cmp^{-1}} \; \; {\rm cmp^{-$

-II

 $Q = -881 \; kJ$ من الأكريلونتريل السائل عند 298K وضغط 1atm ناشرا حرارة قدرها 0.5 mol وفق التفاعل الآتى:

$$C_{3}H_{3}N_{(\ell)} + \ O_{2(g)} \ \longrightarrow \ \ CO_{2(g)} \ + \ H_{2}O_{(\ell)} + \ N_{2(g)} \ \ \Delta H_{_{1}}^{\circ} = \ kJ.mol^{_{-1}}$$

أ- وازن معادلة تفاعل احتراق الأكريلونتريل السائل.

 $_{f U}$ بستنتج قيمة $_{f L}^{\circ}$. $_{f L}$

ج- احسب انطالبي التشكل للأكريلونتريل السائل علما أنّ:

$$\Delta H_{f(CO_{2(g)})}^{\circ} = -393,5 \text{ kJ.mol}^{-1} \text{ ; } \Delta H_{f(H_2O_{(\ell)})}^{\circ} = -286 \text{ kJ.mol}^{-1}$$

د- جِد التغير في الطاقة الداخلية لتفاعل الاحتراق.

يعطى: R=8,314 J.mol⁻¹.K⁻¹

2) يتشكل الأكريلونتريل الغازي انطلاقا من الأسيتيلين وحمض السيانيد وفق التفاعل الآتي:

- احسب الانطالبي $^{\circ}_{2}$ عند $^{\circ}_{3}$ علما أنّ:

$$\begin{split} &C_{2}H_{2(g)} \ + \ \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + H_{2}O_{(\ell)} \\ &+ CO_{2(g)} + \frac{5}{4}O_{2(g)} \longrightarrow CO_{2(g)} + \frac{1}{2}H_{2}O_{(\ell)} + \frac{1}{2}N_{2(g)} \\ &\Delta H_{4}^{\circ} = -671,1 \text{ kJ.mol}^{-1} \\ &\Delta H_{vap}^{\circ} \left(C_{3}H_{3}N_{(\ell)}\right) = 32,64 \text{ kJ.mol}^{-1} \end{split}$$

الموضوع الثانى

يحتوي الموضوع الثاني على (04) صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (07 نقاط)

- 1) مركبان عضويان (A) و (B) لهما نفس الصيغة المجملة C_nH_{2n} و أكسدتهما بالأوزون المتبوعة بالإماهة تتتج مركبين (C) و (D) لهما نفس الكثافة البخارية بالنسبة للهواء d=2
 - يتفاعل المركب (C) مع الـ DNPH و يعطى نتيجة إيجابية مع محلول فهلينغ.
 - يتفاعل المركب (D) مع الـ DNPH و لا يتفاعل مع محلول فهلينغ.
 - أ- جد الصيغة المجملة ثم الصيغة نصف المفصلة لكل من المركبين (C) و (D).

 $M_{\rm C}$ =12 g.mol⁻¹، $M_{\rm H}$ =1 g.mol⁻¹، $M_{\rm O}$ =16 g.mol⁻¹ یعطی:

ب- من خلال التفاعلين التاليين:

(A) +
$$O_3 \xrightarrow{H_2O} 2$$
 (C) + H_2O_2
(B) + $O_3 \xrightarrow{H_2O} 2$ (D) + H_2O_2

- استنتج الصيغة نصف المفصلة لكل من المركبين (A) و (B).

2) من أجل تحضير البوليمير (P) نجري انطلاقا من المركب (D) سلسلة التفاعلات التالية:

أ- أعطِ الصيغ نصف المفصلة للمركبات من (E) إلى (J).

ب- بلمرة المركب (J) تعطى البوليمير (P):

$$n(J) \longrightarrow (P) + mH_2O$$

- جِد الصيغة نصف المفصلة للبوليمير (P).

ج- مثّل مقطعاً من البوليمير (P) يتكون من ثلاث وحدات بنائية.

3) يمكن الحصول على المركب (B) انطلاقا من المركبين (D) و (F) وفق التفاعلات الآتية:

$$(F)$$
 + Mg \xrightarrow{ether} (K)

(D) + (K)
$$\xrightarrow{\text{H}_2\text{O}}$$
 (L) + MgClOH
(L) $\xrightarrow{\text{H}_2\text{SO}_4}$ (B) + H₂O

- اكتب الصيغة نصف المفصلة لكل من (K) و (L) .
- 4) اقترح سلسلة التفاعلات التي تسمح بتحضير المركب (A) انطلاقا من:

.PCl₅ ' Mg ' Ether '
$$H_2O$$
 ' H_2SO_4/Δ ' H_2 ' Ni و (C) المركب (D) المركب

التمرين الثاني: (07 نقاط)

- I- لديك الحمضين الدهنيين (A) و (B) التاليين:
- الحمض الدهني (A) له قرينة الحموضة I_a =218,75 و قرينة اليود
- أكسدة الحمض الدهني (B) بـ KMnO₄ المركزة في وسط حمضي أعطت ثلاثة أحماض وفق التفاعل التالي:

(B)
$$\xrightarrow{\text{KMnO}_4 \text{ conc}}$$
 (C) + (D) + HOOC $\xrightarrow{\text{CH}_2}$ COOH

الحمض (C) أحادي الوظيفة الحمضية كتلته المولية $^{-1}$ 116g.mol و الحمض (D) ثنائي الوظيفة الحمضية صيغته المجملة $C_3H_4O_4$.

- 1) احسب الكتلة المولية للحمض الدهني (A) ثم استنتج صيغته نصف المفصلة.
 - . (D) و (C) جِد الصيغة نصف المفصلة لكل من الحمضين (C) و (2)
- 3) حرِّد الصيغة نصف المفصلة للحمض الدهني (B) علما أنه يحتوي على رابطة مضاعفة في ذرة الكربون رقم 9.
 - 4) اكتب معادلة تفاعل هلجنة الحمض الدهني (B) باليود.
 - A و β و جزيئة من الحمض الدهني (B) في الموضعين α و β وجزيئة من الحمض الدهني (5) يرتبط الغليسيرول مع جزيئتين من الحمض الدهني لينتج المركب α .
 - أ- ما طبيعة المركب X؟
 - ب- اكتب معادلة تفاعل تشكل المركب X .
 - ج احسب قربنة التصبن و قربنة اليود للمركب X.

 $\mathbf{M_{C}} = 12 \text{ g.mol}^{\text{-1}}, \ \mathbf{M_{H}} = 1 \text{ g.mol}^{\text{-1}}, \ \mathbf{M_{O}} = 16 \text{ g.mol}^{\text{-1}}, \ \mathbf{M_{K}} = 39 \text{ g.mol}^{\text{-1}}, \ \mathbf{M_{I}} = 127 \text{ g.mol}^{\text{-1}}$

-II

الريجين (Rigin) هو رباعي ببتيد يقوي المناعة و يساهم في زيادة تكوين المركبات الأكسيجينية اللازمة في الجسم. ينتج عن التحلل المائي للريجين مزيج M من الأحماض الأمينية، وللتعرف عليه نقوم بالتحليل الكروماتوغرافي للمزيج و النتائج موضحة في الكروماتوغرام التالي:

- 1) استنتج الأحماض الأمينية الموجودة في المزيج M.
- Gly Gln Pro Arg : (الريجين) الببتيد (المنصلة لرباعي الببتيد (الريجين)
 ب- أعط اسم رباعي الببتيد السابق.
- .p $H_i = 10,76$ أَحَد الأحماض الأمينية المكونة للريجين عبارة عن حمض أميني قاعدي ذو (3
 - احسب قيمة pKa_R الموافقة له.

- 4) مَثِّل المماكبات الضوئية للحمض الأميني الميثيونين Met
- 5) اكتب الصيغ الأيونية للحمض الأميني Pro عند تغير قيم الـ pH من 1 الى 12.

$$pKa_1 = 1,99$$
 ، $pKa_2 = 10,60$ یعطی:

Met	Gly	Gln	Pro	Arg	الرمز
H ₂ N-CH-COOH CH-CH ₃ OH	H ₂ N-CH ₂ -COOH	H ₂ N-CH-COOH (CH ₂) ₂ C=O NH ₂	СООН	H ₂ N-CH-COOH (CH ₂) ₃ NH C=NH NH ₂	الحمض الأميني

اختبار في مادة: التكنولوجيا (هندسة الطرائق) / الشعبة: تقنى رياضي / بكالوريا 2021

التمرين الثالث: (06 نقاط)

يخضع 1 mole من غاز مثالي يتميز بـ $(P_1 = 1,97$ atm $\cdot V_1 = 14 L)$ للتحولات العكسية وفق الدورة الآتية:

- التحوّل (a): تمدد عند ضغط ثابت $\mathbf{P} = \mathbf{C}^{\text{ste}}$ من الحالة 1 إلى الحالة 2 التي يضاعف فيها حجمه.
- . V_1 من الحالة 2 إلى الحالة 3 يعيده إلى حجمه الأول $T = \mathbf{C}^{\mathsf{ste}}$ من الحالة 2 إلى الحالة 3 يعيده إلى حجمه الأول 3
 - . 1 من الحالة 3 يرجعه إلى الحالة $\mathbf{V} = \mathbf{C}^{\mathsf{ste}}$ من الحالة 3 تبريد عند حجم ثابت $\mathbf{v} = \mathbf{C}^{\mathsf{ste}}$
 - . P_3 و P_2 ، V_3 ، V_2 ، T_3 ، T_2 ، T_1 و (1
 - . $P=f\left(V\right)$ مثِّل مختلف تحولات الغاز على البيان (2
 - . V_1 و P_1 بدلالة $W_{2 o 3}$ و $W_{1 o 2}$ بدلالة العرفية للعمل (3

.
$$Q_{3\rightarrow1}$$
 ، $Q_{2\rightarrow3}$ ، $Q_{1\rightarrow2}$ ، $W_{3\rightarrow1}$ ، $W_{2\rightarrow3}$ ، $W_{1\rightarrow2}$ من على من ب

$$\gamma = \frac{C_P}{C_W} = 1,4$$
 ' $R = 0,082 \text{ L.atm.K}^{-1}.\text{mol}^{-1}$ ' $1 \text{ L.atm} = 101,3 \text{ J}$ ' $\ln 2 = 0,69$: يعطى

رمة	العلا	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأول)
		التمرين الأول: (07 نقاط)
		1) إيجاد الصيغة المجملة للأمين الأروماتي A .
01.50		$\mathrm{C_xH_yN}$:بما أن المركب A أمين احادي الوظيفة تكون صيغته المجملة من الشكل
01,50		$\frac{M}{100} = \frac{14}{15,05} \Rightarrow M = \frac{14 \times 100}{15,05}$
	0,50	$M = 93g \cdot mol^{-1}$
		$\frac{M}{100} = \frac{12x}{77,42} \Rightarrow x = \frac{93 \times 77,42}{1200}$
	0,25	x = 6
		12x + y + 14 = 93
		$y = 93 - 14 - (12 \times 6)$
	0,25	y = 7
	0.50	$C_6H_7N:$ الصيغة المجملة للمركب A هي $C_6H_7N:$
		2) كتابة الصيغ نصف المفصلة للمركبات A, B, C, D, E, F, G :
03,50		$-$ CH $_3$ CH $_3$
, , , , ,		$A \leftarrow \longrightarrow NH_2 \qquad B \qquad C = C$
		CH ₃ CH ₃
	0,50	Q OH
	× 7	C CH_3 $-CH_3$ D CH_3 $-CH$ $-CH_3$
	7	ÇI ÇH₃
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		G CI
		3) اقتراح طريقة لتحضير المركب H انطلاقا من المركب A:
	0,25	NH_2 + HNO_3 H_2SO_4 O_2N NH_2 + H_2O
00,50	0,25	O_2N \longrightarrow NH_2 \longrightarrow H_2N \longrightarrow NH_2
		يقبل أي عامل مرجع مناسب

تابع للإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقني رياضي/ بكالوريا: 2021

رمة	العا	/ t \$11 a · · ti\ 7 1 b21 1 · a
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأول)
		4) أ- استنتاج الصيغة نصف المفصلة للمركب Y:
01,50	0,50	ноос—соон
		ب- كتابة مقطع من البوليمير يتكون من وحدتين بنائيتين:
	0,50	O O O O O O O O O O O O O O O O O O O
		ج- حساب درجة البلمرة:
		$n = \frac{M_{P}}{M_{m}}$
	0,25	$M_{\rm m} = 14M_{\rm C} + 10M_{\rm H} + 2M_{\rm O} + 2M_{\rm N}$
	,	$M_{\rm m}$ =238g.mol ⁻¹
	0,25	$n = \frac{476000}{238} \Rightarrow \qquad \boxed{n = 2000}$
		التمرين الثاني: (07 نقاط)
		1 - I) إيجاد الكتلة المولية لأحادي الغليسيريد A:
		$1mol(MG) \longrightarrow 1mol(KOH)$
00,25		$M_A \rightarrow M_{KOH}$
00,20		$M_A \rightarrow 56$
		$1g \longrightarrow I_S \times 10^{-3}$
	0,25	$M_A = \frac{56}{I_S \times 10^{-3}} \Rightarrow M_A = 300 \text{ g.mol}^{-1}$
		(2
		${ m B}$ اً استنتاج الصيغة نصف المفصلة للحمض الدهني ${ m B}$ ا ${ m M}_A+{ m M}_{H_2O}={ m M}_{Glyc\acute{e}rol}+{ m M}_B$
01,00		$M_B = M_A + M_{H_2O} - M_{Glyc\acute{e}rol}$
	0,25	$M_B = 300 + 18 - 92 = 226 \text{ g.mol}^{-1}$
		بما أن أكسدة الحمض الدهني B تعطي حمضين
		$CH_3 - (CH_2)_3 - COOH$, $HOOC - (CH_2)_x - COOH$
		فهو يحتوي رابطة مزدوجة واحدة وتكون صيغته نصف المفصلة على الشكل:
		$CH_3 - (CH_2)_3 - CH = CH - (CH_2)_x - COOH$

تابع للإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقني رياضي/ بكالوريا: 2021

رمة	العلا			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)		
		M = 15 + 42 + 26 + 14x + 45 = 226		
		14x = 226 - 128		
	0.25	$x = \frac{98}{14} = \boxed{7}$		
	0,25	14		
	0.25	الصيغة نصف المفصلة للحمض الدهني B هي:		
	0,25	$CH_3 - (CH_2)_3 - CH = CH - (CH_2)_7 - COOH$		
		ب- حساب قرينة الحموضة للحمض الدهني B		
		$1mol(AG) \longrightarrow 1mol(KOH)$		
		$ \begin{array}{ccc} M_{AG} & \longrightarrow & M_{KOH} \\ M_{AG} & \longrightarrow & 56 \end{array} $		
		$1g \longrightarrow I_a \times 10^{-3}$		
	0,25	$I_a = \frac{56}{226 \times 10^{-3}} \Rightarrow I_a = 247,79$		
	0,23	220/10		
		3) الصيغ نصف المفصلة الممكنة لأحادي الغليسيريد A:		
		CH_{2} O $C'_{(CH_{2})_{7}}$ $-CH$ $=CH$ $-(CH_{2})_{3}$ $-CH_{3}$		
01,00	0.50			
	0.50 ×	CH2—OH CH2—OH		
	2	CH_2 -OH CH_2 -OH= CH_2 -CH= CH_3 -CH ₃		
		CH ₂ —OH		
		4) أ- ايجاد التركيب المئوى لمكونات المادة الدهنية:		
		$\begin{cases} I_{S} = \frac{x}{100} \times I_{S(MG)} + \frac{y}{100} \times I_{a(AG)} \\ x + y = 100 \end{cases}$		
		x + y = 100		
01,25		$\begin{cases} 203,16 = \frac{x}{100} \times 186,66 + \frac{y}{100} \times 247,79 \end{cases}$		
		$\begin{cases} 100 & 100 \\ x = 100 - y \end{cases}$		
		$203,16 = \frac{100 - y}{100} \times 186,66 + \frac{y}{100} \times 247,79$		
	0,25	100		
	×	$203,16 = 1,8666(100 - y) + 2,4779y$ $y = 27\%$ $x = 100 - y \Rightarrow x = 73\%$		
	2			

رمة	العلا	(1 \$1) a : 10 7 1 N1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		I_i حساب قرينة اليود للمادة الدهنية:
		$I_{i(AG)}$ حسابة قرينة اليود للحمض الدهني
		$1mol(AG) \longrightarrow 1mol(I_2)$
		$M_{AG} \longrightarrow 1 \times M_{I_2}$
	0.25	$ \begin{vmatrix} 226g - \longrightarrow 254g \\ 100g - \longrightarrow I_{i(AG)} \end{vmatrix} \Rightarrow \boxed{I_{i(AG)} = 112,39} $
	0,25	$100g \longrightarrow I_{i(AG)} \int I_{i(AG)} I_{i($
		: $I_{i(MG)}$ حساب قرينة اليود لأحادي الغليسريد
		$1mol(AG) \longrightarrow 1mol(I_2)$
		$M_{MG} \longrightarrow M_{I_2}$
	0,25	$ \begin{vmatrix} 300g & \longrightarrow 254g \\ 100g & \longrightarrow I_{i(MG)} \end{vmatrix} \Rightarrow \boxed{I_{i(MG)} = 84,66} $
		و منه قربنة اليود للمادة الدهنية:
		$I_i = \frac{73}{100} \times I_{i(MG)} + \frac{27}{100} \times I_{i(AG)}$
		100
		$I_i = \frac{73}{100} \times 84,66 + \frac{27}{100} \times 112,39$
	0,25	$I_i = 92,15$
	0.25	1-II) تحديد الأحماض الأمينية:
01,00	0,25	- يعطي الحمض الأميني B مع النينهيدرين اللون الأصفر فهو البرولين Pro.
		يتفاعل الحمض الأميني C مع $\operatorname{CH}_3-\operatorname{CH}_2-\operatorname{OH}$ فيتشكل أستر كتلته المولية
		فإن: $M=117g\ /mol$
		$M_{Ester} + M_{H_2O} = M_C + M_{Alcool}$ $M_C = M_{Ester} + M_{H_2O} - M_{Alcool}$
		$M_C = 117 + 18 - 46 = 89 \text{ g/mol}$
	0,25	وهي الكتلة المولية للألانين، ومنه الحمض الأميني C هو الألانين Ala.
		- الحمض الأميني D نسبة الأزوت فيه %18,66:
		$\frac{\mathrm{M}_{\mathrm{D}}}{100} = \frac{14}{18,66} \Longrightarrow \mathrm{M}_{\mathrm{D}} = 75 \mathrm{g/mol}$
	0,25	وهي الكتلة المولية للغليسين، اذن الحمض الأميني D هو الغليسين Gly.
	0,25	- يبقى الحمض الأميني الأخير A هو الهيستيدين His.

لامة	العا	عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عقاصر (قبحبه (الموصوع الاون)
00,25	0,25	2) كتابة الصيغة نصف المفصلة للببتيد السابق: O O O O H ₂ N-CH-C NH-CH-C NH-CH ₂ -COOH CH ₂ CH ₃
00,25	0,25	pH=1 عند السابق عند (3) الصيغة نصف المفصلة للببتيد السابق عند $pH=1$ عند
02,00	0.25 × 4	PKa ₁ =1,82 pKa _R =6,00 pHi=7,58 pKa ₂ =9,17 pH H ₃ N ⁺ -CH-COO H ₃ N ⁺ -CH-COO H ₂ N-CH-COO CH ₂ CH ₂ CH ₂ OH CH ₂ OH NH
	0.25 × 2	$pH=3$ بالصيغ الأيونية للهستدين عند $pH=3 \Rightarrow pK_{a_1} \prec pH \prec pH_e = \frac{1,82+6,00}{2} = 3,91$ $H_3N^+CH-COOH$ $H_3N^+CH-COO-CH_2$; CH_2
	0.25	$H_3N^+-CH-COO^ CH_2$ NH HN^+ NH HN^+ PH الذي يهجر فيه الهستدين على الشكل PH :
	0.25	$pH \succ pH_i \Rightarrow pH \succ 7,58$

رمة	العا	/ 1 \$11 - · · · 10 T 1 \$21
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		التمرين الثالث: (06 نقاط)
		I
		1) إيجاد السعة الحرارية C _{cal} للمسعر : T -25°C - T -25
	0.25	$m_1 = 200g$, $T_1 = 24^{\circ}C$, $m_2 = 300g$, $T_2 = 45^{\circ}C$, $T_f = 35.5^{\circ}C$ $m_1c_e(T_f - T_1) + C_{cal}(T_f - T_1) + m_2c_e(T_f - T_2) = 0$
00,75	0,25	$ m_1 c_e (1_f - 1_1) + C_{cal} (1_f - 1_1) + m_2 c_e (1_f - 1_2) = 0 $ $ 200 \times 4,185(35,5-24) + C_{cal} (35,5-24) + 300 \times 4,185(35,5-45) = 0 $
		$200 \times 4,185(11,5) + C_{cal}(11,5) + 300 \times 4,185(9,5) = 0$
	0.50	
	0,50	$C_{\text{cal}} = \frac{2301,75}{11,5} = 200,15 \text{ J.K}^{-1}$
		2) أ- كتابة معادلة احتراق غاز الميثان:
	0,50	$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(\ell)}$
02,00		ب- حساب كمية الحرارة Q الناتجة عن احتراق غاز الميثان:
,		$\sum Q = Q_e + Q_{cal} + Q_{comb} = 0$
		$Q_{cal} = C_{cal} \Delta T$ $Q_e = m_e c_e \Delta T$
		$Q_{comb} = -Q_e - Q_{cal}$
	0,25	$Q_{comb} = -C_{cal}\Delta T - m_1 c_e \Delta T$
		$Q_{comb} = -(200 \times 34) - (500 \times 4, 185 \times 34) = -77945 J$
	0,50	$Q_{comb} = -77,945 \text{ kJ}$
		$ ext{CH}_{4(g)}$ استنتاج الكتلة $ ext{m}_3$ لغاز الميثان
	0,25	$Q_{comb} = n \times \Delta H_{(comb)}$
		$Q_{comb} = \frac{m_3}{M_{CH_4}} \times \Delta H_{(comb)}$
	0,50	$m_3 = \frac{Q_{comb} \times M_3}{\Delta H_{(comb)}} = \frac{-77,945 \times 16}{-890,7}$ $m_3 = 1,4 \text{ g}$
		11 II) أ- موازنة معادلة تفاعل احتراق الأكريلونتريل السائل:
	0,50	$C_3H_3N_{(\ell)} + \frac{15}{4}O_{2(g)} \longrightarrow 3CO_{2(g)} + \frac{3}{2}H_2O_{(\ell)} + \frac{1}{2}N_{2(g)}$
02,50	·	
		$\Delta H_{_1}^{\circ}$: $\Delta H_{_1}^{\circ}$: $\Delta H_{_1}^{\circ}$: $\Delta H_{_1}^{\circ}$
	0,25	$\Delta H_1^O = \frac{Q}{n} \; ; \; \Delta H_1^O = \frac{-881}{0,50} \Longrightarrow$
	0,25	$\Delta H_1^O = -1762kJ.mol^{-1}$

رمة (العلا	/ + Ext +10 T + 5x1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0,25	$3 \Delta H_{1}^{o} = 3 \Delta H_{f(co_{2(g)})}^{o} + \frac{3}{2} \Delta H_{f(h_{2}o_{(f)})}^{o} + \frac{1}{2} \Delta H_{f(N_{2(g)})}^{o} - \Delta H_{f(c_{3}H_{3}N_{(f)})}^{o} - \frac{15}{4} \Delta H_{f(o_{2(g)})}^{o} + \Delta H_{f(co_{2(g)})}^{o} + \Delta H_{f(co_{2(g)})}^{o} - \Delta H_{f(co_{2(g)})}^{o} - \Delta H_{f(co_{2(g)})}^{o} - \Delta H_{f(co_{2(g)})}^{o} + \Delta H_{f(co_{2(g)})}^{o} + \Delta H_{f(co_{2(g)})}^{o} - \Delta H_{f(co_{2(g)}$
	0,25	$\Delta H_{f(C_3H_3N_{(\ell)})}^{o} = 3 \times (-393.5) + \frac{3}{2}(-286) - (-1762)$
	0,25	$\Delta H_{f(C_3H_3N_{(\ell)})}^{o} = 152,5 \text{ kJ.mol}^{-1}$
	0,25	د- ايجاد التغير في الطاقة الداخلية لتفاعل الاحتراق: $\Delta H = \Delta U + \Delta n_g \times RT \Rightarrow \Delta U = \Delta H - \Delta n_g \times RT$
	0,25	$\Delta n_g = 3 + \frac{1}{2} - \frac{15}{4} = -\frac{1}{4}$
		$\Delta U = -1762 - (-\frac{1}{4} \times 8,314 \times 10^{-3} \times 298)$
	0,25	ΔU = $-1761,38~kJ.mol^{-1}$: 298K عند ΔH_2^o حساب الانطالبي (2
00,75	0,25	$-1 \times \left(C_{3}H_{3}N_{(1)} + \frac{15}{4}O_{2(g)} \longrightarrow 3CO_{2(g)} + \frac{3}{2}H_{2}O_{(1)} + \frac{1}{2}N_{2(g)} \Delta H_{1}^{o} = -1762 \text{ kJ.mol}^{-1} \right)$ $1 \times \left(C_{2}H_{2(g)} + \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + H_{2}O_{(1)} \Delta H_{3}^{o} = -1300 \text{ kJ.mol}^{-1} \right)$ $1 \times \left(HCN_{(g)} + \frac{5}{4}O_{2(g)} \longrightarrow CO_{2(g)} + \frac{1}{2}H_{2}O_{(1)} + \frac{1}{2}N_{2(g)} \Delta H_{4}^{o} = -671,1 \text{ kJ.mol}^{-1} \right)$ $1 \times \left(C_{3}H_{3}N_{(1)} \longrightarrow C_{3}H_{3}N_{(g)} \Delta H_{vap}^{o} = 32,64 \text{ kJ.mol}^{-1} \right)$ $C_{2}H_{2(g)} + HCN_{(g)} \longrightarrow C_{3}H_{3}N_{(g)} \Delta H_{2}^{o} = ?$
	0,25	$\Delta H_2^o = -\Delta H_1^o + \Delta H_3^o + \Delta H_4^o + \Delta H_{vap}^o$ $\Delta H_2^o = -(-1762) - 1300 - 671, 1 + 32, 64$ $\Delta H_2^o = -176.46 \text{ kJ.mol}^{-1}$

زمة	العلا	/ *!**!
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (07) نقاط) (1) (D) التمرين الأول: (C) نقاط) (D) و (D) . $d=\frac{M}{29}$ $d=d imes29$
	0,25	$M = 2 \times 29 = 58 \text{ g.mol}^{-1}$ $M = 2 \times 29 = 58 \text{ g.mol}^{-1}$ $M = 2 \times 29 = 58 \text{ g.mol}^{-1}$ $M = 2 \times 29 = 58 \text{ g.mol}^{-1}$ $M_{(C)} = M_{(D)} = 12n + 2n + 32 = 58$
	0,25	$58 = 14n + 32 \implies \boxed{n = 3}$
03,00	0,50	الصيغة المجملة للمركبين (C) و (D) هي: C_3H_6O المركب (C) هو ألدهيد صيغته نصف المفصلة :
	0,50	CH ₃ -CH ₂ -C-H المركب (D) هو سيتون صيغته نصف المفصلة :
	0,50	CH_3 $-C$ $-CH_3$
	2 x 0,50	(B) و (A) و (B) : (B) من المركبين (A) و (B) : (B) (B) (B) (B) (B) (B)
02,50	6 x 0,25	(2) : (J) والي (E) الي (E) الي المفصلة للمركبات من (J) إلى (E) CH ₃ -CH-CH ₃ CH ₃ -CH-CH ₃ (E) (F) (G) CH ₃ -CH-CH ₃ CH ₃ -CH-CH ₃ CH ₃ -CH-CH ₃ (E) (F) (G)

رمة	العلا	/ *1±91 * *1\ 7 4 \\ \ 1 *
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,50	ب- الصيغة نصف المفصلة للبوليمير (P): O U NH C NH (P)
	0,50	ج- مقطع من البوليمير (P) يتكون من ثلاث وحدات بنائية: O O O O II II II
01,00	2 x 0,50	CH ₃ (CH ₃ (CH ₃ CH ₃ (K) MgCl (L) OH CH ₃ (K) MgCl (L) OH CH ₃ (4)
00,50	0,50	$CH_{\overline{3}}CH_{\overline{2}}CH_{\overline{2}}CH_{\overline{1}} + H_{2} \xrightarrow{N_{i}} CH_{\overline{3}}CH_{\overline{2}}CH_{\overline{2}}CH_{\overline{2}}OH$ $CH_{\overline{3}}CH_{\overline{2}}CH_{\overline{2}}CH_{\overline{2}} + PCl_{5} \xrightarrow{CH_{\overline{3}}CH_{\overline{2}}CH_{\overline{2}}CH_{\overline{2}}} CH_{\overline{2}}CH_{\overline{2}$
00,75	0,25	(A) التمرين الثاني: (70 نقاط) $ (A) = M_{(A)} \longrightarrow 10^3 M_{(A)} \longrightarrow M_{(A)} = \frac{10^3 M_{(A)}}{I_a} = \frac{56 \times 1000}{218,75} = 256 $ $ M_{(A)} = 256 \mathrm{g.mol}^{-1} $

العلامة		(2129)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الصيغة نصف المفصلة لـ (A)
		$C_nH_{2n}O_2$
	0,25	$M_{(A)} = 12 n + 12 n + 32 \implies n = \frac{256 - 32}{14} \boxed{n = 16}$
		ومنه الصيغة نصف المفصلة للحمض الدهني (A):
	0,25	CH_3 $(CH_2)_{14}$ $COOH$
		كما يمكن الإجابة بالطريقة التالية:
		$CH_3 - (CH_2)_x - COOH$
		$M_{(A)} = 15 + 14 x + 45$
		$256 = 14 \text{ x} + 60 \implies \boxed{\text{x} = 14} \qquad \text{CH}_3 - (\text{CH}_2)_{14} - \text{COOH}$
		2) إيجاد الصيغة نصف المفصلة لكل من الحمضين (C) و (D) .
		الحمض (C) أحادي الوظيفة الحمضية :
		$CH_3 + COOH$
		$\mathbf{M}_{(C)} = 116 = 15 + 14\mathbf{n} + 45$
		116 = 14n + 60 $n = 4$
		ومنه تصبح صيغته نصف المفصلة:
	0,25	$CH_3 + COOH$
00,50		الصيغة نصف المفصلة للحمض (D):
	0,25	HOOC—CH ₂ —COOH
	0.07	3) الصبيغة نصف المفصلة للحمض الدهني (B):
00,25	0,25	CH_3 CH_2 $CH=CH-CH_2$ $CH=CH-(CH_2)_7$ $COOH$
		4) معادلة تفاعل هلجنة الحمض الدهني (B) باليود:
		$CH_3 + CH_2 + CH = CH - CH_2 - CH = CH + (CH_2)_7 COOH + 2 I_2$
00,25	0,25	
		$CH_{3} \xrightarrow{\text{CH}_{2}} CH - CH - CH_{2} \xrightarrow{\text{CH}_{2}} CH - CH \xrightarrow{\text{CH}_{2}} COOH $

العلامة		/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	5) أ- طبيعة المركب X عبارة عن ثلاثي غليسيريد (تقبل الإجابة ليبيد) ب- كتابة معادلة تفاعل تشكل المركب X: ب- كتابة معادلة تفاعل تشكل المركب CH ₂ -OH
01,50	0,50	$CH_{-}OH_{+} + 2CH_{3} - (CH_{2})_{4} - CH_{-}CH_{-}CH_{2} - CH_{-}CH_{-}CH_{-}CH_{-}CH_{3} + CH_{3} - (CH_{2})_{14} - COOH_{-}$ $CH_{2}-OH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{3}$ $CH_{2}-O-C-(CH_{2})_{7} - CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{3}$ O $CH_{2}-O-C-(CH_{2})_{7} - CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{3}$ $CH_{2}-O-C-(CH_{2})_{14} - CH_{3}$
	0,25	$A + 2B + \text{glycérol} \longrightarrow TG + 3H_2O$ $M_{TG} = M_{(A)} + 2 M_{(B)} + M_{(\text{glycérol})} - 3 M_{(H_2O)}$ $M_{TG} = 256 + 2(280) + 92 - 3(18) = 854 \text{ g.mol}^{-1}$ $M_{TG} \longrightarrow 10^3 M_{KOH}$ $1 \text{ g} \longrightarrow I_s$ $\Rightarrow I_s = \frac{10^3 \times 3M_{KOH}}{M_{TG}} = \frac{3 \times 56000}{854}$ $\boxed{I_s = 196,72}$ $M \longrightarrow 4M$ $100 \times 4M \longrightarrow 254$
	0,25	$ \frac{M_{TG} \longrightarrow 4M_{I_2}}{100 \text{ g}} \Longrightarrow I_i = \frac{100 \times 4M_{I_2}}{M_{(X)}} = \frac{100 \times 4 \times 254}{854} $ $ \boxed{I_i = 118,96} $
01,00	4 x 0,25	II - II Pro, Arg, Gln, Gly: M استنتاج الأحماض الأمينية الموجودة في المزيج (12 Clv, Cln, Pro, Arg
00,75	0,50	Gly - Gln - Pro - Arg :
	0,25	ب- إسم هذا الببتيد: غليسيل غلوتامينيل بروليل أرغنين.

العلامة		(15th a 1 th Th btt 1 th
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
00,25	0,25	:Arg الحمض الأميني القاعدي pKa_R قيمة $pKa_R = pKa_2 + pKa_R \Rightarrow pKa_R = 2pH_i - pKa_2$ $pKa_R = 2(10,76) - 9,04 \qquad pKa_R = 12,48$ $pKa_R = 12,48$: المماكبات الضوئية :
01,00	4 x 0,25	COOH COOH COOH H2N—H H H NH2 H H NH2 HO—H H H OH HO—H HO—H HO—H CH3 CH3 CH3 CH3 AKeظة: تقبل الإجابة في حالة كتابة صيغتي الحمض الكبريتي الميثيونين
00,75	3 x 0,25	(5) الصيغ الأيونية للحمض الأميني (B) عند تغير قيم الـ pH من 1 إلى 12. PKa ₁ pH _i pKa ₂ pKa ₂ PH ₁ COO NH COO NH COO NH COO NH COO HH COO NH COO NH COO HH COO NH COO N
01,75	0,25	$: T_3 \ , \ T_2 \ , \ T_1 \) \ (1)$ $(n=1 \ , \ P_1 = 1,97 atm \ , \ V_1 = 14 \ L)$ $P_1 V_1 = nR T_1 \Rightarrow T_1 = \frac{P_1 V_1}{nR} = \frac{1,97 \times 14}{1 \times 0,082}$ $\boxed{T_1 = 336,34 \ K}$ $(P_2 = P_1 = 1,97 atm \ , \ V_2 = 2V_1 = 28 \ L)$ $P_2 V_2 = nR T_2 \Rightarrow T_2 = \frac{P_2 V_2}{nR} = \frac{2P_1 V_1}{nR} = \frac{1,97 \times 28}{1 \times 0,082}$ $\boxed{T_2 = 672,68 \ K}$
	0,25	$T_3 = T_2$ $T_3 = 672,68 \text{ K}$

العلامة		(150 - 10 T 1 b) 1 -
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		\cdot ایجاد قیم کل من $\cdot V_2$ و $\cdot V_3$
	0,25	$V_2 = 2V_1 \qquad \boxed{V_2 = 28 \text{ L}}$
	0,25	$V_3 = V_1$ $V_3 = 14 L$
		$\cdot P_3$ ایجاد قیم کل من $\cdot P_3$ ایجاد قیم کا من ایران ایرا
	0,25	$P_2 = P_1$ $P_2 = 1,97$ atm
		$(n=1, T_3 = 672,68K, V_3 = 14L)$
	0,25	$P_3V_3 = nRT_3 \Rightarrow P_3 = \frac{nRT_3}{V_3} = \frac{1 \times 0,082 \times 672,68}{14}$ $\boxed{P_3 = 3,94 \text{ atm}}$
		$P=f\left(V ight)$ تمثیل مختلف تحولات الغاز علی البیان P $\left(V ight)$ تمثیل مختلف تحولات الغاز علی البیان P $\left(v ight)$
		P(atm)
	3	P_3
00,75	x 0.25	
	0,23	$P_1=P_2$
		V V V V V V V V V V V V V V V V V V V
		V_1 $V_2=2V_1$ $V(L)$
		تقبل الإجابة حالة تمثيل كل تحول على حدى
		V_1 أ- العلاقة الحرفية لـ: $W_{1 o 2}$ و $W_{2 o 3}$ بدلالة P_1 و P_1 التحوّل (a) : تمدد عند ضغط ثابت $P=\mathbf{C}^{ste}$
		$V_2 = 2V_1$. المدل على على المدل على المدل ا
	0,50	$W_{1\to 2} = -P_1\Delta V = -P_1(V_2 - V_1)$
	0,25	$W_{1\to 2} = -P_1(2V_1 - V_1) = -PV_1$ $W_{1\to 2} = -P_1V_1$
03,50		$T=C^{ste}$ الضغط عند درجة حرارة ثابتة
00,00	0,50	
	0,50	$W_{2\to 3} = -nRT_2 \ln \frac{V_3}{V_2} = nRT_2 \ln \frac{V_2}{V_3}$
		$T_2 = 2T_1$, $V_2 = 2V_1$, $V_3 = V_1$
	0,25	$W_{2\to 3} = nR(2T_1) ln \frac{2V_1}{V_1} \implies W_{2\to 3} = 2nRT_1 ln 2$ $W_{2\to 3} = 2P_1V_1 ln 2$
		\mathbf{v}_1

العلامة		(01291 .
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$W_{3 o 1}$, $W_{2 o 3}$, $W_{1 o 2}$: $W_{3 o 1}$, $W_{1 o 2}$: $W_{1 o 2}$. $W_{1 o 2}$ تقبل الإجابة في حالة الاكتفاء بحساب العمل وكمية الحرارة بـ (L .atm)دون تحويل إلى $W_{2 o 2}$
	0,25	$W_{1\to 2} = -PV_1 = (-1,97 \times 14) \times 101,3$ $W_{1\to 2} = -2793,8 \text{ J}$
	0,25	$W_{2\to 3} = 2P_1V_1 \ln 2 = (2 \times 1,97 \times 14 \ln 2)101,3$ $W_{2\to 3} = 3855,5$ J
		$V_3 = V_1$
	0,25	$W_{3\rightarrow 1} = -\int P_3 dV$ $V = C^{ste}$ \Rightarrow $dV = 0$ $W_{3\rightarrow 1} = 0$
	0.25	$:$ $Q_{3 ext{-}1}$, $Q_{2 ext{-}3}$, $Q_{l ext{-}2}$ کل من $Q_{l ext{-}2}$, $Q_{l ext{-}2}$ حساب قیمهٔ کل من
	0,25	$Q_{1\to 2} = nC_p \Delta T = nC_p (T_2 - T_1)$
		$ \begin{vmatrix} C_p - C_v = R \\ C_p \\ C_v \end{vmatrix} \Rightarrow C_p = 1,4C_p - 1,4R \Rightarrow C_p = \frac{1,4R}{0,4} = 3,5R $
	0,25	$Q_{1\to 2} = 3.5 \text{nR} (T_2 - T_1) = 3.5 \times 1 \times 0.082(672, 68 - 336, 34) = 96.53 \text{ L.atm}$
		$Q_{1\to 2} = 96,53 \times 101,3 = \boxed{9778,5 \text{ J}}$
		$\Delta \mathbf{U}_{2\to 3} = \mathbf{Q}_{2\to 3} + \mathbf{W}_{2\to 3}$
	0,25	$\Delta U_{2\rightarrow 3} = 0 \implies Q_{2\rightarrow 3} = -W_{2\rightarrow 3}$ $Q_{2\rightarrow 3} = -3855,5 \text{ J}$
		$\left[\mathbf{Q}_{2\rightarrow3}^{2}\right] $
	0,25	1 \(\sigma_1\) \(\
		$\begin{bmatrix} C_p - C_v = R \\ C_p - C_v = R \end{bmatrix}$
		$ \begin{vmatrix} C_p - C_v = R \\ C_p \\ C_v \end{vmatrix} \Rightarrow C_v + R = 1, 4C_v \Rightarrow C_v = \frac{R}{0, 4} = 2,5R $
	0,25	$Q_{3\rightarrow 1} = 2.5 \text{nR} (T_1 - T_3) = 2.5 \times 1 \times 0.082(336, 34 - 672, 68) = -68.95 \text{ L.atm}$
		$Q_{3\to 1} = -68,95 \times 101,3 = \boxed{-6984,6 \text{ J}}$