

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

General purpose

Class 1, NPO

0.22 pF to 100 nF

RoHS compliant & Halogen Free

YAGEO Phícomp

<u>2</u>

SCOPE

This specification describes NP0 series chip capacitors with lead-free terminations.

APPLICATIONS

- Consumer electronics for example
 - Tuners
 - Television receivers
 - All types of cameras
- Telecommunications
- Data processing

FEATURES

- Supplied in tape on reel
- Nickel-barrier end termination
- RoHS compliant
- Halogen Free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

(I) SIZE – INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $B = \pm 0.1 pF$

 $C = \pm 0.25 \text{ pF}$

 $D = \pm 0.5 pF$

 $F = \pm 1\%$

 $G = \pm 2\%$

 $| = \pm 5\%$

 $K = \pm 10\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig.I.

DIMENSION

Table I For outlines see fig. 2

TVDE	(man)	\\/ (mm)	T (MM)	L ₂ / L ₃ (mm)		L ₄ (mm)
TYPE	L _I (mm)	W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3 ±0.03		0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05		0.20	0.30	0.40
0603	1.6 ±0.10	0.8 ±0.10	_	0.20	0.60	0.40
0805	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾		0.25	0.75	0.70
	2.0 ±0.20 ⁽²⁾	1.25 ±0.20 ⁽²⁾	Refer to - table 2 to 5	0.25	0.75	0.70
1206	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾	table 2 to 3	0.25	0.75	1.40
1200	3.2 ±0.30 ⁽²⁾	1.6 ±0.20 ⁽²⁾	_	0.25	0.75	1.40
1210	3.2 ±0.20	2.5 ±0.20	_	0.25	0.75	1.40
1812	4.5 ±0.20	3.2 ±0.20		0.25	0.75	2.20

OUTLINES

NOTE

- 1. Dimension for size 0805 and 1206, $C \le I nF$
- 2. Dimension for size 0805 and 1206, C > I nF

Product specification NP0

16 V to 50 V

General Purpose

4 14

CAPACITANCE RANGE & THICKNESS FOR NPO

Surface-Mount Ceramic Multilaver Capacitors

Table 2 Sizes from 0201 to 0603 0402 0603 0201 CAP. 25 V 50 V 16 V 25 V 50 V 16 V 25 V 50 V 0.22 pF 0.3 ± 0.03 0.3 ± 0.03 0.47 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 0.8 ± 0.1 0.82 pF 0.8±0.1 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8±0.1 1.0 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 1.0±8.0 1.0 ± 8.0 0.8 ± 0.1 1.2 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 0.8±0.1 1.5 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 1.0±8.0 0.8 ± 0.1 0.8 ± 0.1 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 1.8 pF 0.8 ± 0.1 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 0.8 ± 0.1 2.2 pF 2.7 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8±0.1 3.3 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 1.0±8.0 0.8 ± 0.1 3.9 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 0.8±0.1 4.7 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 0.8 ± 0.1 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 5.6 pF 0.5 ± 0.05 0.8 ± 0.1 6.8 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8±0.1 0.8 ± 0.1 8.2 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8±0.1 0.8 ± 0.1 10 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.5 ± 0.05 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.8±0.1 0.8±0.1 12 pF 0.5 ± 0.05 0.8 ± 0.1 15 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8±0.1 0.8 ± 0.1 0.8 ± 0.1 18 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 22 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 1.0±8.0 0.8 ± 0.1 0.8 ± 0.1 27 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8±0.1 0.8 ± 0.1 0.5 ± 0.05 0.8 ± 0.1 33 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 1.0±8.0 0.8±0.1 39 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8±0.1 0.8 ± 0.1 47 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8±0.1 0.8 ± 0.1 56 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8±0.1 0.8 ± 0.1 0.5 ± 0.05 0.8 ± 0.1 68 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 1.0±8.0 0.8 ± 0.1 82 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 100 pF 0.3 ± 0.03 0.3 ± 0.03 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

www.yageo.com

Surface-Mount Ceramic Multilayer Capacitors General Purpose NPO 16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3 Size	s from 0201 to	0603 (continu	ıed)	•				
CAP.	0201		0402			0603		
·	25 V	50 V	16 V	25 V	50 V	16 V	25 V	50 V
120 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
150 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
180 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
220 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
270 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
330 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
390 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
470 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
560 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
680 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
820 pF						0.8±0.1	0.8±0.1	0.8±0.1
I.O nF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
I.2 nF						0.8±0.1	0.8±0.1	0.8±0.1
1.5 nF						0.8±0.1	0.8±0.1	0.8±0.1
I.8 nF						0.8±0.1	0.8±0.1	0.8±0.1
2.2 nF						0.8±0.1	0.8±0.1	0.8±0.1
2.7 nF						0.8±0.1	0.8±0.1	0.8±0.1
3.3 nF						0.8±0.1	0.8±0.1	0.8±0.1
3.9 nF						0.8±0.1	0.8±0.1	0.8±0.1
4.7 nF								
5.6 nF								
6.8 nF								
8.2 nF								
IO nF						0.8±0.1	0.8±0.1	0.8±0.1
I2 nF								
15 nF								
18 nF								
22 nF								
33 nF								

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

Product specification 6 **Surface-Mount Ceramic Multilayer Capacitors** General Purpose NP0 16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 4 Siz	zes from 0805	5 to 1812							
CAP.	0805			1206			1210		1812
	16 V	25 V	50 V	16 V	25 V	50 V	25 V	50 V	50 V
0.22 pF									
0.47 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
0.82 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.0 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.5 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.8 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
2.2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
2.7 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
3.3 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
3.9 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
4.7 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
5.6 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
6.8 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
8.2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
10 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
12 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
15 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
18 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
22 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
27 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
33 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
39 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
47 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	
56 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
68 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
82 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
100 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

14

7 14

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 5 Sizes from 0805 to 1812 (continued)

CAP.	0805	3 (0 1012 (00	,	1206			1210		1812
	16 V	25 V	50 V	16 V	25 V	50 V	25 V	50 V	50 V
120 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
150 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
180 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
220 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
270 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
330 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
390 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
470 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
560 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
680 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
820 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
I.O nF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
I.2 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
I.5 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
1.8 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
2.2 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
2.7 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
3.3 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
3.9 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
4.7 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
5.6 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
6.8 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
8.2 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
10 nF	0.85±0.1 1.25±0.2	0.85±0.1 1.25±0.2	0.85±0.1 1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
I2 nF				1.25±0.2	1.25±0.2	1.25±0.2			1.25±0.2
15 nF				1.25±0.2	1.25±0.2	1.25±0.2			1.25±0.2
18 nF				1.25±0.2	1.25±0.2	1.25±0.2			1.25±0.2
22 nF				1.25±0.2	1.25±0.2	1.25±0.2	2.0±0.2	2.0±0.2	1.25±0.2
33 nF				0.85±0.1	0.85±0.1	0.85±0.1			
47 nF				1.15±0.2	1.15±0.2	1.15±0.2	1.60±0.2	1.60±0.2	
56 nF									
68 nF				1.60±0.2	1.60±0.2	1.60±0.2			
82 nF									
100 nF				1.60±0.2	1.60±0.2	1.60±0.2			

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

Surface-Mount Ceramic Multilayer Capacitors General Purpose NPO

16 V to 50 V

THICKNESS CLASSES AND PACKING QUANTITY

Table 6	
Table 0	
SIZE	

Table			Ø180 MM	/7 INCH	Ø330 MM	/ 13 INCH	
SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH – QUANTITY PER REEL	Paper	Blister	Paper	Blister	QUANTITY PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1200	1.25 ±0.2 mm	8 mm		3,000		10,000	
	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		10,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.0 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
1210	1.25 ±0.2 mm	8 mm		3,000			
	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm	I2 mm		3,000			
	1,25 ±0,2 mm	I2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
	1.5 ±0.1 mm	I2 mm		2,000			
	1.6 ±0.2 mm	I2 mm		2,000			
	2.0 ±0.2 mm	I2 mm		2,000			
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
	1.15 ±0.1 mm	I2 mm		1,000			
	1.15 ±0.15 mm	I2 mm		1,000			
1812	1.35 ±0.15 mm	I2 mm		1,000			
1012	1.5 ±0.1 mm	I2 mm		1,000			
	1.6 ±0.2 mm	I2 mm		1,000			
	2.0 ±0.2 mm	I2 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			

9 14

Surface-Mount Ceramic Multilayer CanacitorsGeneral Purpose

NP0

16 V to 50 V

ELECTRICAL CHARACTERISTICS

NP0 DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise stated all electrical values apply at an ambient temperature of 20±1 °C, an atmospheric pressure of 86 to 106 kPa, and a relative humidity of 63 to 67%.

Table 7

lable /		
DESCRIPTION		VALUE
Capacitance range		0.22 pF to 100 nF
Capacitance tolerance		
	C < 10 pF	±0.1 pF, ±0.25 pF, ±0.5 pF
	C ≥ 10 pF	±1%, ±2%, ±5%, ±10%
Dissipation factor (D.F.)		
	C < 30 pF	≤ I / (400 + 20C)
	C ≥ 30 pF	≤ 0.1 %
Insulation resistance after	er I minute at U _r (DC)	$R_{\rm ins} \ge 10~{\rm G}\Omega$ or $R_{\rm ins} \times C_r \ge 500$ seconds whichever is less
Maximum capacitance cl	hange as a function of temperature	
(temperature characteri	stic/coefficient):	±30 ppm/°C
Operating temperature	range:	_55 °C to +125 °C

Surface-Mount Ceramic Multilayer Capacitors General Purpose NPO 16 V to 50 V

SOLDERING RECOMMENDATION

Table 8

SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

14

TESTS AND REQUIREMENTS

Table 9 Test procedures and requirements

TEST	TEST MET	HOD	REQUIREMENTS		
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual inspection and dimensio n check		4.4	Any applicable method using × 10 magnification	In accordance with specification	
Capacitance		4.5.1	Class I: $f = I \text{ MHz for C} \le I \text{ nF, measuring at voltage I V}_{rms} \text{ at } 20 \text{ °C}$ $f = I \text{ KHz for C} > I \text{ nF, measuring at voltage I V}_{rms} \text{ at } 20 \text{ °C}$	Within specified tolerance	
Dissipation factor (D.F.)		4.5.2	Class I: $f = 1 \text{ MHz for C} \le 1 \text{ nF} \text{ , measuring at voltage } 1 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz for C} > 1 \text{ nF, measuring at voltage } 1 \text{ V}_{rms} \text{ at } 20 \text{ °C}$	In accordance with specification	
Insulation resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification	
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. Step	<general purpose="" series=""> Class1: Δ C/C: ±30ppm Class2: X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82% <high capacitance="" series=""> Class2: X7R/X5R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%</high></general>	

Surface-Mount Ceramic Multilayer Capacitors General Purpose

NP0

16 V to 50 V

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Adhesion		4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N
Bond strength of plating on		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
end face			Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	<pre><general purpose="" series=""> ΔC/C Class 1: NP0: within ±1% or 0.5 pF whichever is greater</general></pre>
Resistance to soldering heat	IEC 60384- 21/22	4.9	Precondition: 150 +0/−10 °C for I hour, then keep for 24 ±1 hours at room temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for I minute Preheating: for size > 1206: 100 °C to 120 °C for I minute	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			and 170 °C to 200 °C for 1 minute Solder bath temperature: 260 \pm 5 °C Dipping time: 10 \pm 0.5 seconds Recovery time: 24 \pm 2 hours	<general purpose="" series=""> ΔC/C Class 1: NP0: within ±0.5% or 0.5 pF whichever is greater</general>
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			 Temperature: 235±5°C / Dipping time: 2 ±0.5 s Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free)Depth of immersion: 10mm 	
Rapid change of temperature		4.11	Preconditioning; 150 +0/-10 °C for 1 hour, then keep for 24 ±1 hours at room temperature	No visual damage General purpose series>
			5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature	ΔC/C Class 1: NP0: within ±1% or 1 pF whichever is greater
			Recovery time 24 ±2 hours	D.F. meet initial specified value R _{ins} meet initial specified value

Surface-Mount Ceramic Multilayer Capacitors General Purpose NPO 16 V to 50 V

IEC 60384-	4.13	1 D 197 1 1 2 1	
21/22		1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for	No visual damage after recovery
		24 ±1 hour at room temp	<general purpose="" series=""></general>
		·	ΔC/C
			Class I:
			NP0: within ±2% or 1 pF
		500 ± 12 hours at 40 ± 2 °C;	whichever is greater
		90 to 95% R.H. 1.0 U _r applied	D.F.
		4. Recovery:	Class I:
		Class 1: 6 to 24 hours	NP0: ≤ 2 × specified value
		5. Final measure: C, D, IR	R _{ins}
			Class I:
		P.S. If the capacitance value is less than the minimum value	NP0: \geq 2,500 M Ω or R _{ins} \times C _r \geq 25s
		permitted, then after the other measurements have been	whichever is less
		made the capacitor shall be preconditioned according to	
		"IEC 60384 4.1" and then the requirement shall be met.	
	4 4	1 Proceeditioning class 2 only	No visual damage
	1.1 1	· · ·	140 visual darriage
		·	<general purpose="" series=""></general>
		·	ΔC/C
			Class I:
			NP0: within ±2% or 1 pF
			whichever is greater
			D.F.
		- · · ·	Class I:
			NP0: ≤ 2 × specified value
			R _{ins}
			Class I:
		P.S. If the capacitance value is less than the minimum value	
			NP0: \geq 4,000 M Ω or $R_{ins} \times C_r \geq$ 40s whichever is less
		•	Willchever is less
		"IEC 60384 4.1" and then the requirement shall be met.	
IEC 60384-1	4.6	Specified stress voltage applied for 1 minute	No breakdown or flashover
		$U_r \le 100 \text{ V}$: series applied 2.5 U_r $100 \text{ V} < U_r \le 200 \text{ V}$ series applied (1.5 $U_r + 100$) $200 \text{ V} < U_r \le 500 \text{ V}$ series applied (1.3 $U_r + 100$) $U_r > 500 \text{ V}$: 1.3 U_r	
		I: 7.5 mA	
	IEC 60384-1	4.14 IEC 60384-1 4.6	 90 to 95% R.H. I.0 U_r applied 4. Recovery: Class I: 6 to 24 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met. 4.14 1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Endurance test: Temperature: NPO: 125 °C Specified stress voltage applied for I,000 hours: Applied 2.0 × U_r for general product. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met. IEC 60384-1 4.6 Specified stress voltage applied for I minute U_r ≤ 100 V: series applied 2.5 U_r 100 V < U_r ≤ 200 V series applied (1.5 U_r + 100) 200 V < U_r ≤ 500 V: series applied (1.5 U_r + 100) U_r > 500 V: I.3 U_r

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 16	Mar. 7, 2017	-	- 0805 L4 spec updated
Version 15	Nov. 21, 2016	-	- Product range updated
Version 14	Jul. 22, 2016	-	- Add 0805/8.2nF and 10nF/ 16V to 50V, T=1.25mm
Version 13	May. 16, 2016	-	- Product range updated
Version 12	Feb. 16, 2016	-	- Product range updated
Version II	Sep. 11, 2014	-	- Product range updated
Version 10	Feb. 18, 2014	-	- Product range updated
Version 9	Jun. 17, 2013	-	- Product range updated
Version 8	Aug 05, 2011	-	- Dimension updated
Version 7	Jun 14, 2011	-	- Size I 2 I 0 T= I.0mm SPQ added - Dimension updated
Version 6	Jan 06, 2011	-	- Dimension updated
Version 5	Dec 29, 2010	-	- Dimension updated
Version 4	Nov 23, 2010	-	- Dimension updated
Version 3	Apr 20, 2010	-	- The statement of "Halogen Free" on the cover added - Dimension updated
Version 2	Oct 26, 2009	-	- Typo updated
Version I	Jun 02, 2009	-	- I2NC code updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose NPO series with RoHS compliant - Replace the "I6V to 50V" part of pdf files: NPO_I6V_7, NPO_I6V-to-I00V_6, NPO_25V_7, NPO_50-to-500V_II
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NP0X5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen Free compliant" added

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

```
CC0402CRNPO9BN1R8 CC0402BRNPO9BN1R0 CC0402BRNPO9BN2R7 CC0402BRNPO9BN2R2
CC0402BRNPO9BN1R8 CC0402BRNPO9BN1R2 CC0402BRNPO9BNR68 CC0402BRNPO9BNR56
CC0402BRNPO9BNR47 CC0402BRNPO9BN1R5 CC0402BRNPO9BN4R7 CC0402BRNPO9BN6R8
CC0402BRNPO9BN3R3 CC0402CRNPO9BN5R6 CC0402JRNPO9BN121 CC0402JRNPO9BN120
CC0402JRNPO9BN101 CC0402JRNPO9BN100 CC0402JRNPO7BN391 CC0402GRNPO9BN470
CC0402FRNPO9BN121 CC0402DRNPO9BN8R2 CC0402DRNPO9BN6R8 CC0402DRNPO9BN5R6
CC0402CRNPO9BN6R8 CC0402JRNPO9BN180 CC0402CRNPO9BN4R7 CC0402CRNPO9BN3R9
CC0402CRNPO9BN3R3 CC0402CRNPO9BN2R7 CC0402CRNPO9BN2R2 CC0402CRNPO9BN1R5
CC0402CRNPO9BN1R2 CC0402CRNPO9BN1R0 CC0402CRNPO9BNR82 CC0402CRNPO9BNR47
CC0402CRNPO9BN8R2 CC0402JRNPO9BN150 CC0402JRNPO9BN151 CC0402JRNPO9BN820
CC0402JRNPO9BN680 CC0402JRNPO9BN560 CC0402JRNPO9BN470 CC0402JRNPO9BN390
CC0402JRNPO9BN330 CC0402JRNPO9BN270 CC0402JRNPO9BN221 CC0402JRNPO9BN220
CC0603JRNPO9BN221 CC0603JRNPO9BN181 CC0603JRNPO9BN271 CC0603JRNPO9BN151
CC0603JRNPO9BN391 CC0603JRNPO9BN331 CC0603JRNPO9BN121 CC0603FRNPO9BN680
CC0603FRNPO9BN560 CC0603FRNPO9BN391 CC0603FRNPO9BN181 CC0603FRNPO9BN151
CC0603GRNPO9BN100 CC0603FRNPO9BN101 CC0603GRNPO9BN101 CC0603FPNPO9BN221
CC0603DRNPO9BN8R2 CC0603DRNPO9BN6R8 CC0603DRNPO9BN5R6 CC0603CRNPO9BNR82
CC0603BRNPO9BNR56
                  CC0603FRNPO9BN121
                                    CC0603JRNPO9BN101
                                                      CC0603JRNPO8BN821
CC0603JRNPO8BN152 CC0603JRNPO8BN102 CC0603FRNPO9BN820 CC0603JPNPO9BN470
CC0603JPNPO9BN270 CC0603GRNPO9BN820 CC0603GRNPO9BN471 CC0603GRNPO9BN331
CC0603GRNPO9BN180 CC0603GRNPO9BN120 CC0603JRNPO9BN681 CC0603JRNPO9BN820
CC0603JRNPO9BN680 CC0603JRNPO9BN560 CC0603JRNPO9BN471 CC0805JRNPO9BN151
CC0805JRNPO8BN332 CC0805JRNPO9BN101 CC0805JRNPO9BN330 CC0805JRNPO9BN681
CC0805JRNPO9BN471 CC0805JRNPO9BN102 CC0805JRNPO9BN331 CC0805JRNPO9BN120
CC0805JRNPO9BN271 CC0805JRNPO9BN270 CC0805JRNPO9BN221 CC0805JRNPO9BN181
```