Author index of Volume 109*

Al-Rabeh, A., On the computational efficiency of certain upwinding schemes Argyris, J. and L. Tenek, A natural triangular layered element for bending	(1-2) 131-141
analysis of isotropic, sandwich, laminated composite and hybrid plates	(3-4) 197-218
Baranger, J., K. Najib and D. Sandri, Numerical analysis of a three-fields	
model for a quasi-Newtonian flow	(3-4) 281-292
Bitoulas, N., see Papadrakakis, M.	(3-4) 219-232
Chang, C.M., see Chen, W.H.	(3-4) 315-329
Chen, W.H., C.M. Chang and J.T. Yeh, An incremental relaxation finite	(2 1) 215 220
element analysis of viscoelastic problems with contact and friction	(3-4) 315-329
Christov, C.I. and I.T. Tzankov, Numerical investigation of the laminar boundary layer flow around an impulsively moved circular cylinder	(1-2) 1- 15
boundary layer now around an impulsively moved circular cylinder	(1-2) 1- 13
Dallner, R. and G. Kuhn, Efficient evaluation of volume integrals in the	
boundary element method	(1-2) 95–109
Demirdžić, I. and D. Martinović, Finite volume method for thermo-elasto-	
plastic stress analysis	(3-4) 331-349
Di, S. and E. Ramm, Hybrid stress formulation for higher-order theory of	(2 4) 250 276
laminated shell analysis Dutko, M., D. Perić and D.R.J. Owen, Universal anisotropic yield criterion	(3–4) 359–376
based on superquadric functional representation: Part 1. Algorithmic issues	
and accuracy analysis	(1-2) 73- 93
Genna, F., Integration of plasticity equations for the case of Ziegler's	(4. 0) 444 400
kinematic hardening	(1-2) 111-130
Hagiwara, I., see Tenek, L.H.	(1-2) 143-154
Hagiwara, I., see Tenek, L.H.	(1-2) 143 154 $(1-2)$ 155-167
Hugger, J., The theory of density representation of finite element meshes.	()
Examples of density operators with quadrilateral elements in the mapped	
domain	(1-2) 17- 39
Hugger, J., Recovery and few parameter representation of the optimal mesh	(4.2) 44.74
density function for near optimal finite element meshes	(1-2) 41- 71
Kaiss, A., see Le Tallec, P.	(3-4) 233-258
Kaljević, I. and S. Saigal, Stochastic boundary elements in elastostatics	(3-4) 259-280
Kuhn, G., see Dallner, R.	(1-2) 95-109
, , , , , , , , , , , , , , , , , , , ,	
Le Tallec, P., C. Rahier and A. Kaiss, Three-dimensional incompressible	
viscoelasticity in large strains: Formulation and numerical approximation	(3-4) 233-258
Marotti de Sciarra, F., see Romano, G.	(3-4) 293-314
Martinović, D., see Demirdžić, I.	(3-4) 331-349
	,

^{*} The issue number is given in front of the page numbers.

Najib, K., see Baranger, J.	(3-4) 281-292
Owen, D.R.J., see Dutko, M.	(1-2) 73- 93
Papadrakakis, M. and N. Bitoulas, Accuracy and effectiveness of preconditioned conjugate gradient algorithms for large and ill-conditioned	
problems	(3-4) 219-232
Perić, D., see Dutko, M.	(1-2) 73- 93
Poterasu, V.F., Approximate method to compute the eigenvalues and	()
eigensensitivities of mechanical systems	(1-2) 183 -192
Poterasu, V.F., see Tanaka, K.	(3-4) 377-389
Rachowicz, W., An anisotropic h-type mesh-refinement strategy	(1-2) 169-181
Rahier, C., see Le Tallec, P.	(3-4) 233–258
Ramm, E., see Di, S.	(3-4) 359 -376
Romano, G., L. Rosati and F. Marotti de Sciarra, Variational principles for a	
class of finite step elastoplastic problems with non-linear mixed hardening	(3-4) 293-314
Rosati, L., see Romano, G.	(3-4) 293-314
Saigal, S., see Kaljević, I.	(3-4) 259-280
Sandri, D., see Baranger, J.	(3-4) 281–292
Sugano, Y., see Tanaka, K.	(3-4) 377-389
Tanaka, K., Y. Tanaka, H. Watanabe, V.F. Poterasu and Y. Sugano, An improved solution to thermoelastic material design in functionally gradient	
materials: Scheme to reduce thermal stresses	(3-4) 377 -389
Tanaka, Y., see Tanaka, K.	(3-4) 377-389
Tenek, L., see Argyris, J.	(3-4) 197–218
Tenek, L.H. and I. Hagiwara, Static and vibrational shape and topology	
optimization using homogenization and mathematical programming	(1-2) 143–154
Tenek, L.H. and I. Hagiwara, Optimization of material distribution within	// a\
isotropic and anisotropic plates using homogenization	(1-2) 155-167
Tzankov, I.T., see Christov, C.I.	(1–2) 1– 15
Vibet, C., Symbolic derivation of kinematic equations of robots via computers	(3-4) 351-357
Watanabe, H., see Tanaka, K.	(3-4) 377-389
Yeh, J.T., see Chen, W.H.	(3-4) 315-329

Subject index of Volume 109*

Asymptotic methods	
Symbolic derivation of kinematic equations of robots via computers, C. Vibet	(3-4) 351-357
Boundary element methods	
Efficient evaluation of volume integrals in the boundary element method, R. Dallner and G. Kuhn Approximate method to compute the eigenvalues and eigensensitivities of mechanical systems, V.F. Poterasu Stochastic boundary elements in elastostatics, I. Kaljević and S. Saigal	(1-2) 95-109 (1-2) 183-192 (3-4) 259-280
Boundary layers	
Numerical investigation of the laminar boundary layer flow around an impulsively moved circular cylinder, C.I. Christov and I.T. Tzankov	(1-2) 1- 15
Coupled problems	
Finite volume method for thermo-elasto-plastic stress analysis, I. Demirdžić and D. Martinović	(3-4) 331-349
Design of programs	
Symbolic derivation of kinematic equations of robots via computers, C. Vibet	(3-4) 351-357
Elasticity	
Approximate method to compute the eigenvalues and eigensensitivities of mechanical systems, V.F. Poterasu A natural triangular layered element for bending analysis of isotropic,	(1-2) 183-192
sandwich, laminated composite and hybrid plates, J. Argyris and L. Tenek Stochastic boundary elements in elastostatics, I. Kaljević and S. Saigal Finite volume method for thermo-elasto-plastic stress analysis, I. Demirdžić	(3-4) 197-218 (3-4) 259-280
and D. Martinović	(3-4) 331-349
Hybrid stress formulation for higher-order theory of laminated shell analysis, S. Di and E. Ramm	(3-4) 359-376
Finite difference methods	
On the computational efficiency of certain upwinding schemes, A. Al-Rabeh	(1-2) 131-141
Finite element and matrix methods	
The theory of density representation of finite element meshes. Examples of density operators with quadrilateral elements in the mapped domain, J.	(1.0) 17.00
Hugger Recovery and few parameter representation of the optimal mesh density	(1–2) 17– 39
function for near optimal finite element meshes, J. Hugger	(1-2) 41- 71

^{*} The issue number is given in front of the page numbers.

	`
Universal anisotropic yield criterion based on superquadric functional representation: Part 1. Algorithmic issues and accuracy analysis, M. Dutko,	(1 a) =a 00
D. Perić and D.R.J. Owen An anisotropic h-type mesh-refinement strategy, W. Rachowicz A natural triangular layered element for bending analysis of isotropic,	(1-2) 73- 93 (1-2) 169-181
sandwich, laminated composite and hybrid plates, J. Argyris and L. Tenek Accuracy and effectiveness of preconditioned conjugate gradient algorithms for	(3-4) 197-218
large and ill-conditioned problems, M. Papadrakakis and N. Bitoulas Three-dimensional incompressible viscoelasticity in large strains: Formulation	(3-4) 219-232
and numerical approximation, P. Le Tallec, C. Rahier and A. Kaiss Numerical analysis of a three-fields model for a quasi-Newtonian flow, J.	(3-4) 233-258
Baranger, K. Najib and D. Sandri An incremental relaxation finite element analysis of viscoelastic problems with	(3-4) 281-292
contact and friction, W.H. Chen, C.M. Chang and J.T. Yeh Hybrid stress formulation for higher-order theory of laminated shell analysis, S.	(3-4) 315-329
Di and E. Ramm	(3-4) 359-376
Fluid mechanics	
On the computational efficiency of certain upwinding schemes, A. Al-Rabeh Approximate method to compute the eigenvalues and eigensensitivities of	(1-2) 131-141
mechanical systems, V.F. Poterasu Numerical analysis of a three-fields model for a quasi-Newtonian flow, J.	(1-2) 183-192
Baranger, K. Najib and D. Sandri	(3-4) 281-292
Incompressible and near incompressible media	
Three-dimensional incompressible viscoelasticity in large strains: Formulation and numerical approximation, P. Le Tallec, C. Rahier and A. Kaiss	(3-4) 233-258
Kinematics	
Symbolic derivation of kinematic equations of robots via computers, C. Vibet	(3-4) 351-357
Material physics	
A natural triangular layered element for bending analysis of isotropic, sandwich, laminated composite and hybrid plates, J. Argyris and L. Tenek	(3-4) 197-218
Matrix calculus	
Approximate method to compute the eigenvalues and eigensensitivities of mechanical systems, V.F. Poterasu	(1-2) 183-192
Nonlinear mechanics	
Efficient evaluation of volume integrals in the boundary element method, R. Dallner and G. Kuhn Variational principles for a class of finite step elastoplastic problems with	(1-2) 95-109
non-linear mixed hardening, G. Romano, L. Rosati and F. Marotti de Sciarra	(3-4) 293-314
An incremental relaxation finite element analysis of viscoelastic problems with contact and friction, W.H. Chen, C.M. Chang and J.T. Yeh	(3-4) 315-329
Numerical solution procedures	
The theory of density representation of finite element meshes. Examples of density operators with quadrilateral elements in the mapped domain, J.	
Hugger	(1–2) 17– 39

Recovery and few parameter representation of the optimal mesh density function for near optimal finite element meshes, J. Hugger Universal anisotropic yield criterion based on superquadric functional	(1-2) 41- 71
representation: Part 1. Algorithmic issues and accuracy analysis, M. Dutko, D. Perić and D.R.J. Owen	(1–2) 73– 93
Integration of plasticity equations for the case of Ziegler's kinematic hardening, F. Genna	(1-2) 111-130
On the computational efficiency of certain upwinding schemes, A. Al-Rabeh	(1-2) 131–141
An anisotropic h-type mesh-refinement strategy, W. Rachowicz	(1-2) 169–181
Accuracy and effectiveness of preconditioned conjugate gradient algorithms for large and ill-conditioned problems, M. Papadrakakis and N. Bitoulas Finite volume method for thermo-elasto-plastic stress analysis, I. Demirdžić	(3-4) 219-232
and D. Martinović	(3-4) 331-349
Optimization	
Static and vibrational shape and topology optimization using homogenization	
and mathematical programming, L.H. Tenek and I. Hagiwara	(1-2) 143–154
Optimization and design of structures	
Optimization of material distribution within isotropic and anisotropic plates using homogenization, L.H. Tenek and I. Hagiwara	(1-2) 155-167
An improved solution to thermoelastic material design in functionally gradient materials: Scheme to reduce thermal stresses, K. Tanaka, Y. Tanaka, H. Watanabe, V.F. Poterasu and Y. Sugano	(3-4) 377-389
Plasticity	(3-4) 311-30)
Universal anisotropic yield criterion based on superquadric functional representation: Part 1. Algorithmic issues and accuracy analysis, M. Dutko, D. Perić and D.R.J. Owen	(1-2) 73- 93
Efficient evaluation of volume integrals in the boundary element method, R. Dallner and G. Kuhn	(1-2) 95-109
Integration of plasticity equations for the case of Ziegler's kinematic hardening, F. Genna	(1-2) 111-130
Variational principles for a class of finite step elastoplastic problems with non-linear mixed hardening, G. Romano, L. Rosati and F. Marotti de	(5 2) 555 555
Sciarra Finite volume method for thermo-elasto-plastic stress analysis, I. Demirdžić	(3-4) 293-314
and D. Martinović	(3-4) 331-349
Shells and plates	
Optimization of material distribution within isotropic and anisotropic plates using homogenization, L.H. Tenek and I. Hagiwara	(1-2) 155-167
A natural triangular layered element for bending analysis of isotropic, sandwich, laminated composite and hybrid plates, J. Argyris and L. Tenek	(3-4) 197-218
Hybrid stress formulation for higher-order theory of laminated shell analysis, S. Di and E. Ramm	(3-4) 359-376
Solution of differential equations	
On the computational efficiency of certain upwinding schemes, A. Al-Rabeh	(1-2) 131-141
Solutions of ordinary and partial differential equations	
On the computational efficiency of certain upwinding schemes, A. Al-Rabeh	(1-2) 131-141

Stochastic	processes
------------	-----------

Stochastic boundary elements in elastostatics, I. Kaljević and S. Saigal (3-4) 259-280

Structural mechanics

- A natural triangular layered element for bending analysis of isotropic, sandwich, laminated composite and hybrid plates, J. Argyris and L. Tenek (3-4) 197-218
- Variational principles for a class of finite step elastoplastic problems with non-linear mixed hardening, G. Romano, L. Rosati and F. Marotti de Sciarra
- Sciarra (3-4) 293-314 An incremental relaxation finite element analysis of viscoelastic problems with
- contact and friction, W.H. Chen, C.M. Chang and J.T. Yeh

 Hybrid stress formulation for higher-order theory of laminated shell analysis, S.

 Di and E. Ramm

 (3-4) 315-329

 (3-4) 359-376

Systems of linear and nonlinear simultaneous equations

Accuracy and effectiveness of preconditioned conjugate gradient algorithms for large and ill-conditioned problems, M. Papadrakakis and N. Bitoulas (3-4) 219-232

Viscoelastic and viscoplastic media

- Three-dimensional incompressible viscoelasticity in large strains: Formulation and numerical approximation, P. Le Tallec, C. Rahier and A. Kaiss (3-4) 233-258
- An incremental relaxation finite element analysis of viscoelastic problems with contact and friction, W.H. Chen, C.M. Chang and J.T. Yeh (3-4) 315-329

Viscous flow

Numerical analysis of a three-fields model for a quasi-Newtonian flow, J.

Baranger, K. Najib and D. Sandri (3-4) 281-292

Workhardening structures

Integration of plasticity equations for the case of Ziegler's kinematic hardening, F. Genna (1-2) 111-130

