Uniwersytet Jagielloński w Krakowie

Wydział Matematyki i Informatyki Instytut Informatyki i Matematyki Komputerowej kierunek: Matematyka Komputerowa

Daniel Blok

Algorytm znajdujący sympleksy pokolorowane wszystkimi kolorami w kolorowaniu Spernera

Promotor pracy licencjackiej: dr inż. Mateusz Przybylski

Spis treści

1	Wprowadzenie	2
	1.1 Wstęp	2
	1.2 Definicje	2
2	Konstruktywny dowód Lematu Spernera	5
3	Algorytm	8
4	Eksperymenty i wnioski	11
	4.1 Przypadek 2-wymiarowy	11
	4.2 Przypadek 4-wymiarowy	13
	4.3 Wnioski	
5	Dodatki	13
	5.1 Kod w C++	13

1 Wprowadzenie

1.1 Wstęp

W 1928 roku Emanuel Sperner udowodnił lemat mówiący o tym, że gdy mamy podział sympleksu oraz kolorowanie wierzchołków tego podziału takie, że każdy wierzchołek b podziału jest pokolorowany kolorem odpowiadającym pewnemu wierzchołkowi rozpinającemu najmniejszą ścianę wyjściowego sympleksu zawierającą b, to w tym podziale musi istnieć sympleks pokolorowany wszystkimi kolorami [1] (formalna wypowiedź tego lematu znajduje się na stronie 7).

Standardowy dowód przeprowadzany jest indukcyjnie ze względu na wymiar. Nie pokazuje on jednak w jaki sposób taki sympleks znaleźć. Problem ten rozwiązał prof. Marian Mrozek przedstawiając konstruktywny dowód Lematu Spernera [2]. Na podstawie tego dowodu, skonstruujemy algorytm wyszukujący sympleks pokolorowany wszystkimi kolorami w kolorowaniu Spernera.

Organizacja pracy jest następująca. W dalszej części Rozdziału 1 wprowadzimy kluczowe definicje. W Rozdziałe 2 przytoczymy konstruktywny dowód Lematu Spernera. Dowody pomocniczych lematów 1,3,4 oraz konstruktywny dowód Lematu Spernera pochodzą z [2]. W Rozdziałe 3 przedstawimy algorytm, który dla zadanego kolorowania Spernera podziału sympleksu znajduje sympleks pokolorowany wszystkimi kolorami oraz udowodnimy jego poprawność. W Rozdziałe 4 zbadamy eksperymentalnie działanie tego algorytmu. W Rozdziałe 5 przedstawimy przykładową implementację algorytmu z Rozdziału 3.

1.2 Definicje

Teraz wprowadzimy kilka pojęć, z których będziemy korzystać w dalszej części pracy.

Dla skończonego zbioru $V=\{v_0,...,v_k\}\subset\mathbb{R}^d$ definiujemy hiperplaszczyznę wyznaczoną przez V jako $\{\sum_{i=0}^{i\leqslant k}t_iv_i\,|\,t_0,...,t_k\in\mathbb{R},\sum_{i=0}^{i\leqslant k}t_i=1\}$ oraz oznaczamy jako HipV.

Mówimy, że skończony zbiór $V \subset \mathbb{R}^d$ jest afinicznie niezależny, gdy

$$\forall v \in V \ v \notin \operatorname{Hip}(V \setminus \{v\}).$$

Obwiednią wypukłą zbioru $V \subset \mathbb{R}^d$ nazywamy przecięcie wszystkich domkniętych i wypukłych podzbiorów \mathbb{R}^d zawierających V. Sympleksem nazywamy obwiednię wypukłą afinicznie niezależnego, niepustego zbioru punktów w \mathbb{R}^d . Sympleks rozpięty na zbiorze $V = \{a_0, a_1, ..., a_d\}$ oznaczamy jako $\langle a_0, a_1, ..., a_d \rangle$ lub $\langle V \rangle$, a liczbę card V-1 nazywamy wymiarem sympleksu. Sympleks o wymiarze k nazywamy k-sympleksem. Ścianą sympleksu $\langle V \rangle$ nazywamy sympleks $\langle W \rangle$ taki, że $W \subset V$. Jeśli $W \subsetneq V$, to $\langle W \rangle$ nazywamy ścianą właściwą sympleksu $\langle V \rangle$. Kompleksem symplicjalnym nazywamy zbiór sympleksów $\mathcal S$ taki, że zachodzi:

a) Dla każdego $\sigma \in \mathcal{S}$, każda ściana σ należy do \mathcal{S} .

b) Dla każdych $\sigma, \tau \in \mathcal{S}$, jeśli część wspólna σ i τ jest niepusta, to jest ona ich wspólną ścianą.

Wymiarem kompleksu symplicjalnego S nazywamy liczbę max $\{\dim \sigma \mid \sigma \in S\}$. Dla kompleksu symplicjalnego S definiujemy zbiór jego k-wymiarowych sympleksów jako $S_k := \{\sigma \in S \mid \dim \sigma = k\}$. Kompleks symplicjalny T nazywamy podziałem kompleksu symplicjalnego S jeśli $\bigcup T = \bigcup S$ oraz

$$\forall \tau \in \mathcal{T} \exists \sigma \in \mathcal{S} \tau \subset \sigma.$$

Kompleks symplicjalny nazywamy podziałem sympleksu Δ jeżeli jest on podziałem kompleksu symplicjalnego złożonego ze wszystkich ścian Δ . Kolorowaniem kompleksu symplicjalnego S nazywamy funkcję $v: S_0 \to \mathbb{N}_0$. Wartości funkcji v nazwiemy kolorami.

Ścianą główną sympleksu $\langle a_0, a_1, ..., a_d \rangle$ nazywamy ścianę $\langle a_0, a_1, ..., a_k \rangle$, gdzie $k \in \mathbb{Z}_{d+1} = \{0, 1, ..., d\}$. Zauważmy, że od przyjętego porządku elementów $a_0, a_1, ..., a_d$ zależy pojęcie ściany głównej oraz w konsekwencji wymiaru włożenia i jego deficytu. Wymiarem włożenia sympleksu σ nazywamy wymiar najmniejszej ściany głównej zawierającej σ oraz oznaczamy jako emb σ. Deficytem włożenia sympleksu σ nazywamy liczbę demb σ := emb σ - dim σ. Sympleks o wymiarze k nazywamy dobrze pokolorowanym, gdy zbiór kolorów jego wierzchołków jest równy $\{0, 1, ..., k\}$. Sympleks nazywamy regularnie pokolorowanym, gdy zbiór kolorów jego wierzchołków jest równy $\{0, 1, ..., k\}$ dla pewnej liczby $k \in \mathbb{Z}_{d+1}$ - tę liczbę k oznaczamy jako col σ. Deficytem koloru regularnie pokolorowanego sympleksu σ nazywamy liczbę dcol σ := dim σ - col σ. Sympleks σ nazwiemy sympleksem istotnym, jeżeli jest regularnie pokolorowany oraz demb σ + dcol σ \leqslant 1. Zbiór sympleksów istotnych w podziale \mathcal{S} sympleksu Δ oznaczmy jako \mathcal{S}_{ist} . Niech $\phi, \psi \in \mathcal{S}_{ist}$. Mówimy, że ϕ jest podporządkowany ψ jeżeli zachodzą warunki:

- (i) $\phi \subset \psi$
- (ii) $\dim \psi \dim \phi = 1$
- (iii) demb $\psi = 0$
- (iv) $\operatorname{dcol} \phi = 0$

oraz oznaczamy $\phi \to \psi$.

Na rysunku 1 zaznaczono sympleksy istotne ramkami wokół ich środków ciężkości. Sympleksy $\sigma \in \mathcal{S}_{ist}$ takie, że demb $\sigma = \operatorname{dcol}\sigma = 0$ oznaczono pomarańczowymi ramkami. Jeśli demb $\sigma = 0$ oraz dcol $\sigma = 1$, to σ zaznaczono fioletową ramką. Jeżeli natomiast demb $\sigma = 1$ oraz dcol $\sigma = 0$, to σ oznaczono brązową ramką. Dodatkowo pary sympleksów istotnych w relacji podporządkowania oznaczono szarymi strzałkami.

Rysunek 1: Sympleksy istotne (oznaczone ramkami). Na pomarańczowo sympleksy σ takie, że demb $\sigma=\operatorname{dcol}\sigma=0$, na fioletowo sympleksy σ takie, że demb $\sigma=0$ oraz dcol $\sigma=1$, na brązowo sympleksy σ takie, że demb $\sigma=1$ oraz dcol $\sigma=0$.

W [2] podano dodatkowy warunek podporządkowania sympleksów istotnych, który wynika z pozostałych.

Uwaga (por.[2, warunek 5.25]). *Jeżeli \phi jest podporządkowany* ψ , to emb ψ – emb $\phi \leq 1$

 $Dow \acute{o}d. \ \operatorname{emb} \psi - \operatorname{emb} \phi = (\operatorname{demb} \psi + \operatorname{dim} \psi) - (\operatorname{demb} \phi + \operatorname{dim} \phi) = (\operatorname{dim} \psi - \operatorname{dim} \phi) - \operatorname{demb} \phi = 1 - \operatorname{demb} \phi \leqslant 1$

Dla $\sigma \in \mathcal{S}_{ist}$ zdefiniujmy zbiory:

$$U_{\sigma} := \{ \tau \in \mathcal{S}_{ist} \, | \, \sigma \to \tau \}$$

$$L_{\sigma} := \{ \tau \in \mathcal{S}_{ist} \, | \, \tau \to \sigma \}$$

W celu określenia liczebności zbiorów U_{σ} i L_{σ} , dla $\sigma \in \mathcal{S}_{ist}$ zdefiniujmy zbiory:

$$E_{\sigma} := \{ \tau \in \mathcal{S}_{\dim \sigma + 1} \mid \sigma \subset \tau \wedge \operatorname{emb} \tau \leqslant \dim \sigma + 1 \}$$

$$K_{\sigma} := \{ \tau \in \mathcal{S} \mid \tau \subsetneq \sigma \land v(\text{Vert}(\tau)) = \{0, 1, ..., \dim \sigma - 1\} \}$$

Dla kompleksu S definiujemy graf G = (V, E) taki, że $V = S_{ist}$ oraz $E = \{\{\sigma, \tau\} \mid \sigma \to \tau \lor \tau \to \sigma\}.$

Dla $\sigma \in S_{ist}$ oznaczmy stopień σ w grafie G jako deg $\sigma \coloneqq \operatorname{card}\{e \in E \mid \sigma \in e\}$. Definiujemy ścieżkę w grafie G = (V, E) jako ciąg wierzchołków $(v_0, ..., v_k)$ taki, że dla każdego $i \in \{0, 1, ..., k-1\}$ zachodzi $\{v_i, v_{i+1}\} \in E$. Ścieżkę $(v_0, ..., v_k)$, w której wierzchołki są parami różne nazywamy ścieżką prostą.

2 Konstruktywny dowód Lematu Spernera

W dalszej części pracy, dla uproszczenia notacji, utożsammy sympleksy $\sigma \in \mathcal{S}$ ze zbiorami Vert (σ) . W konsekwencji będziemy pisać $v(\sigma)$, mając na myśli $v(\operatorname{Vert} \sigma)$.

Załóżmy, że $\Delta := \langle a_0, a_1, ..., a_d \rangle$ jest d-wymiarowym sympleksem o zbiorze wierzchołków $\text{Vert}(\Delta) = \{a_0, a_1, ..., a_d\}$. Niech \mathcal{S} będzie podziałem sympleksu Δ , a $v \colon \mathcal{S}_0 \to \{0, 1, ..., d\}$ niech będzie odwzorowaniem o tej własności, że dla każdego wierzchołka $b \in \mathcal{S}_0$ i ściany $\langle a_{i_0}, a_{i_1}, ..., a_{i_k} \rangle$ sympleksu Δ zachodzi

$$b \in \langle a_{i_0}, a_{i_1}, ..., a_{i_k} \rangle \implies v(b) \in \{i_0, i_1, ..., i_k\}.$$

Lemat 1 (por.[2, Lemat 5.4,6, Lemat 5.4.7]). Dla $\sigma \in \mathcal{S}_{ist}$ takiego, $\dot{z}e \, \mathrm{dcol} \, \sigma = 0$ zachodzi

$$U_{\sigma} = E_{\sigma}.\tag{1}$$

Dowód. Ustalmy $\sigma \in \mathcal{S}_{ist}$ takie, że $\operatorname{dcol} \sigma = 0$. Niech $\tau \in U_{\sigma}$. Wtedy $\sigma \to \tau$, skąd wynika, że $\sigma \subset \tau$ oraz $\dim \tau = \dim \sigma + 1$. Dodatkowo demb $\tau = 0$, więc emb $\tau = \dim \tau + 1$. Oznacza to, że $\tau \in E_{\sigma}$, z czego dostajemy $U_{\sigma} \subset E_{\sigma}$.

Niech $\tau \in E_{\sigma}$. Mamy emb $\tau \leq \dim \sigma + 1$ oraz emb $\tau \geq \dim \tau = \dim \sigma + 1$, więc emb $\tau = \dim \sigma + 1$, z czego wynika, że demb $\tau = \operatorname{emb} \tau - \dim \tau = (\dim \sigma + 1) - (\dim \sigma + 1) = 0$. Sympleks σ jest regularnie pokolorowany, $\operatorname{dcol} \sigma = 0$ oraz $\tau \in \langle a_0, a_1, ..., a_{\dim \sigma + 1} \rangle$, więc $\{0, 1, ..., \dim \sigma\} = v(\sigma) \subset v(\tau) \subset \{0, 1, ..., \dim \sigma + 1\}$, co oznacza, że $v(\tau) = \{0, 1, ..., \dim \sigma\}$ lub $v(\tau) = \{0, 1, ..., \dim \sigma + 1\}$, więc τ jest regularnie pokolorowany oraz $\operatorname{dcol} \tau \in \{0, 1\}$. Mamy więc $\operatorname{demb} \tau + \operatorname{dcol} \tau \leq 0 + 1 = 1$, co oznacza, że $\tau \in \mathcal{S}_{ist}$. Zachodzi też $\sigma \subset \tau$, $\operatorname{dim} \tau - \operatorname{dim} \sigma = 1$, $\operatorname{demb} \tau = 0$, oraz $\operatorname{dcol} \sigma = 0$, więc $\sigma \to \tau$, czyli $\tau \in U_{\sigma}$, z czego dostajemy $E_{\sigma} \subset U_{\sigma}$.

Lemat 2 (por.[2, wniosek 5.4,8]). Dla $\sigma \in S_{ist}$ takiego, że dcol $\sigma = 0$ zachodzi

$$\operatorname{card} U_{\sigma} = \begin{cases} 1 + \operatorname{demb} \sigma & \operatorname{gdy} \operatorname{dim} \sigma < d \\ 0 & \operatorname{w} \operatorname{przeciwnym} \operatorname{razie}. \end{cases}$$
 (2)

Dowód. Jeśli dim $\sigma = d$, to $U_{\sigma} = \emptyset$. Załóżmy więc, że dim $\sigma < d$. Żeby pokazać, że card $U_{\sigma} = 1 + \text{demb}\,\sigma$, na mocy Lematu 1 wystarczy, że pokażemy card $E_{\sigma} = 1 + \text{demb}\,\sigma$.

Jeśli demb $\sigma=0$, to sympleks σ leży w ścianie $\langle a_0,a_1,...,a_{\dim\sigma}\rangle$ sympleksu $\langle a_0,a_1,...,a_{\dim\sigma+1}\rangle$, z czego wynika, że σ jest ścianą dokładnie jednego (dim $\sigma+1$)-wymiarowego sympleksu z $\mathcal S$ leżącego w $\langle a_0,a_1,...,a_{\dim\sigma+1}\rangle$, czyli card $E_\sigma=1$.

Jeśli demb $\sigma=1$, to z dcol $\sigma=0$ wynika, że $v(\sigma)=\{0,1,...,\dim\sigma\}$, więc gdyby sympleks σ leżał w pewnej ścianie właściwej sympleksu $\langle a_0,a_1,...,a_{\dim\sigma+1}\rangle$, to musiałaby to być ściana $\langle a_0,a_1,...,a_{\dim\sigma}\rangle$, co jest niemożliwe, gdyż emb $\sigma=\dim\sigma+1$. Sympleks σ nie leży więc w żadnej ścianie właściwej sympleksu $\langle a_0,a_1,...,a_{\dim\sigma+1}\rangle$, z czego wynika, że sympleks σ jest ścianą dokładnie dwóch $(\dim\sigma+1)$ -wymiarowych sympleksów z $\mathcal S$ leżących w $\langle a_0,a_1,...,a_{\dim\sigma+1}\rangle$, czyli card $E_\sigma=2$.

Lemat 3 (por.[2, Lemat 5.4,9]). Dla $\sigma \in \mathcal{S}_{ist}$ takiego, że demb $\sigma = 0$ zachodzi

$$L_{\sigma} = K_{\sigma}. \tag{3}$$

Dowód. Ustalmy $\sigma \in S_{ist}$ takie, że demb $\sigma = 0$. Jeśli dim $\sigma = 0$, to $L_{\sigma} = \emptyset = K_{\sigma}$. Załóżmy więc, że dim $\sigma > 0$. Niech $\tau \in L_{\sigma}$. Wtedy $\tau \to \sigma$. Mamy $\tau \subset \sigma$ oraz dim $\tau = \dim \sigma - 1$, więc $\tau \subsetneq \sigma$. Dodatkowo τ jest regularnie pokolorowany, oraz dcol $\tau = 0$, więc $v(\tau) = \{0, 1, ..., \dim \tau\} = \{0, 1, ..., \dim \sigma - 1\}$. Oznacza to, że $\tau \in K_{\sigma}$, z czego dostajemy $L_{\sigma} \subset K_{\sigma}$.

Niech $\tau \in K_{\sigma}$. Wtedy $\dim \tau < \dim \sigma$, ponieważ $\tau \subsetneq \sigma$ oraz $\dim \tau \geqslant \dim \sigma - 1$, ponieważ v odwzorowuje surjektywnie τ na $\{0,1,...,\dim \sigma - 1\}$. Oznacza to, że $\dim \tau = \dim \sigma - 1$. Zachodzi $v(\tau) = \{0,1,...,\dim \sigma - 1\}$, więc τ jest regularnie pokolorowany oraz $\cot \tau = \dim \sigma - 1$. Zatem $\operatorname{dcol} \tau = \dim \tau - \operatorname{col} \tau = (\dim \sigma - 1) - (\dim \sigma - 1) = 0$. Mamy też $\operatorname{emb} \tau \leqslant \operatorname{emb} \sigma = \dim \sigma$, więc $\operatorname{demb} \tau = \operatorname{emb} \tau - \dim \tau \leqslant \dim \sigma - (\dim \sigma - 1) = 1$, skąd dostajemy $\operatorname{demb} \tau + \operatorname{dcol} \tau \leqslant 1 + 0 = 1$, co oznacza, że $\tau \in \mathcal{S}_{ist}$. Zachodzi też $\tau \subset \sigma$, $\dim \sigma - \dim \tau = 1$, $\operatorname{demb} \sigma = 0$, oraz $\operatorname{dcol} \tau = 0$, więc $\tau \to \sigma$, czyli $\tau \in L_{\sigma}$, z czego dostajemy $K_{\sigma} \subset L_{\sigma}$.

Lemat 4 (por.[2, Lemat 5.4,9]). Dla $\sigma \in \mathcal{S}_{ist}$ takiego, $\dot{z}e \ \text{demb} \ \sigma = 0$ zachodzi

$$\operatorname{card} L_{\sigma} = \begin{cases} 1 + \operatorname{dcol} \sigma & \operatorname{gdy} \operatorname{dim} \sigma > 0 \\ 0 & \operatorname{w} \operatorname{przeciwnym} \operatorname{razie}. \end{cases}$$
 (4)

Dowód. Jeśli $\dim \sigma = 0$, to $L_{\sigma} = \emptyset$. Załóżmy więc, że $\dim \sigma > 0$. Na mocy Lematu 3 wystarczy pokazać, że $\operatorname{card} K_{\sigma} = 1 + \operatorname{dcol} \sigma$. Ponieważ $\sigma \in \mathcal{S}_{ist}$, mamy $\operatorname{dcol} \sigma \leqslant 1$.

Rozważmy przypadek dcol $\sigma=0$. Wtedy $v(\sigma)=\{0,1,...,\dim\sigma\}$. Elementy K_{σ} muszą być wymiaru dim $\sigma-1$. Wierzchołki σ są pokolorowane różnymi kolorami, więc warunek $v(\tau)=\{0,1,...,\dim\sigma-1\}$ dla $\tau\subsetneq\sigma$ zachodzi wtedy i tylko wtedy, gdy $\tau=\sigma\setminus\{b\}$ dla takiego $b\in\sigma$, że $v(b)=\dim\sigma$. Istnieje dokładnie jeden taki wierzchołek b, więc card $L_{\sigma}=\mathrm{card}\,K_{\sigma}=1=1+\mathrm{dcol}\,\sigma$.

Rozważmy przypadek dcol $\sigma=1$. Wtedy $v(\sigma)=\{0,1,...,\dim \sigma-1\}$. Elementy K_{σ} muszą być wymiaru dim $\sigma-1$. Istnieje dokładnie jeden dubleton $\{b_1,b_2\}\subset \sigma$ taki, że $b_1\neq b_2$ oraz $v(b_1)=v(b_2)$. Warunek $v(\tau)=\{0,1,...,\dim \sigma-1\}$ dla

 $\tau \subsetneq \sigma$ zachodzi wtedy i tylko wtedy, gdy $\tau = \sigma \setminus \{b_1\}$ lub $\tau = \sigma \setminus \{b_2\}$, więc card $L_{\sigma} = \operatorname{card} K_{\sigma} = 2 = 1 + \operatorname{dcol} \sigma$.

Lemat 5 (por.[2, Lemat 5.4,10]). Niech G będzie grafem zdefiniowanym dla kompleksu S jak w Rozdziale 1.2. Dla każdego $\sigma \in S_{ist}$ zachodzi

$$\deg \sigma = \begin{cases} 1 & gdy \operatorname{dcol} \sigma = \operatorname{demb} \sigma = 0 \wedge \dim \sigma \in \{0, d\} \\ 2 & w \text{ przeciwnym razie.} \end{cases}$$
 (5)

 $Dow \acute{o}d$. Mamy $\deg \sigma = \operatorname{card} L_{\sigma} + \operatorname{card} U_{\sigma}$. Ponieważ σ jest sympleksem istotnym, zachodzi demb $\sigma + \operatorname{dcol} \sigma \leqslant 1$. Rozważmy zatem trzy przypadki:

Przypadek pierwszy: demb $\sigma=\operatorname{dcol}\sigma=0$. Jeśli $\dim\sigma=0$ to $\operatorname{card}U_{\sigma}=1$ z Lematu 2 oraz $\operatorname{card}L_{\sigma}=0$ z Lematu 4, więc deg $\sigma=1$. Natomiast jeśli $\dim\sigma>0$ i dim $\sigma<d$ to $\operatorname{card}U_{\sigma}=1$ z Lematu 2 oraz $\operatorname{card}L_{\sigma}=1$ z Lematu 4, więc deg $\sigma=2$. Przyjmując dim $\sigma=d$, z Lematu 2 dostajemy $\operatorname{card}U_{\sigma}=0$ oraz $\operatorname{card}L_{\sigma}=1$ z Lematu 4. Zatem deg $\sigma=1$.

Przypadek drugi: demb $\sigma = 0$, dcol $\sigma = 1$. Jeśli dim $\sigma = 0$ to dcol $\sigma = \dim \sigma - \operatorname{col} \sigma \leqslant \dim \sigma = 0$. Otrzymujemy sprzeczność z dcol $\sigma = 1$, więc ten przypadek nigdy nie zachodzi. Jeśli dim $\sigma > 0$ to card $L_{\sigma} = 2$ z Lematu 4 oraz $U_{\sigma} = \emptyset$ z uwagi na warunek (iv) relacji podporządkowania, więc deg $\sigma = 2$.

Przypadek trzeci: demb $\sigma=1$, dcol $\sigma=0$. Jeśli dim $\sigma< d$ to card $U_{\sigma}=2$ z Lematu 2 oraz $L_{\sigma}=\emptyset$ z uwagi na warunek (iii) relacji podporządkowania, więc deg $\sigma=2$. Natomiast jeśli dim $\sigma=d$ to emb $\sigma=$ demb $\sigma+$ dim $\sigma=d+1$, ale $\sigma\subset\langle a_0,a_1,...,a_d\rangle,$ więc emb $\sigma\leqslant d$. Otrzymujemy sprzeczność, więc ten przypadek nigdy nie zachodzi.

Twierdzenie 1 (Lemat Spernera, por.[2, Lemat 5.4,1]). Załóżmy, że $\Delta := \langle a_0, a_1, ..., a_d \rangle$ jest d-wymiarowym sympleksem o zbiorze wierzchołków $\text{Vert}(\Delta) = \{a_0, a_1, ..., a_d\}$. Niech \mathcal{S} będzie podziałem sympleksu Δ , a $v: \mathcal{S}_0 \to \{0, 1, ..., d\}$ niech będzie odwzorowaniem o tej własności, że dla każdego wierzchołka $b \in \mathcal{S}_0$ i ściany $\langle a_{i_0}, a_{i_1}, ..., a_{i_k} \rangle$ sympleksu Δ zachodzi

$$b \in \langle a_{i_0}, a_{i_1}, ..., a_{i_k} \rangle \implies v(b) \in \{i_0, i_1, ..., i_k\}.$$
 (6)

Wtedy istnieje co najmniej jeden sympleks $\sigma \in \mathcal{S}$ taki, że $v(\text{Vert }\sigma) = \{0, 1, ..., d\}$.

Dowód. Jedynym zero-wymiarowym sympleksem istotnym, którego stopień w grafie G jest równy 1 jest $\sigma_0 := \{v_0\}$ dla $\mathcal{S}_0 \ni v_0 = a_0 \in \Delta$. Rozważmy najdłuższą ścieżkę prostą $\sigma_0, \sigma_1, ..., \sigma_k$ rozpoczynającą się w wierzchołku σ_0 grafu G. Z Lematu 5 wnosimy, że jest ona wyznaczona jednoznacznie. Dodatkowo deg $\sigma_0 = 1$, więc k > 0. Ponieważ ścieżka jest najdłuższa, deg $\sigma_k = 1$. Dodatkowo $\sigma_0 \ne \sigma_k$, gdyż ścieżka jest prosta. Z Lematu 5 wynika, że dim $\sigma_k = d$ oraz dcol $\sigma_k = \text{demb } \sigma_k = 0$, więc σ_k jest d-wymiarowym sympleksem pokolorowanym wszystkimi kolorami.

3 Algorytm

W tym rozdziale przedstawimy algorytm, który mając na wejściu podział sympleksu oraz jego kolorowanie spełniające założenia z Twierdzenia 1, zwraca sympleks pokolorowany wszystkimi kolorami. Następnie udowodnimy jego poprawność.

```
Data: Simplicial complex S, coloring v: S_0 \to \{0, 1, ..., d\}
Result: Simplex \sigma such that v(\text{Vert }\sigma) = \{0, 1, ..., d\}
\sigma \coloneqq \{a_0\};
r \coloneqq a_0;
while \operatorname{dcol} \sigma \neq 0 or \operatorname{dim} \sigma \neq \operatorname{dim} \mathcal{S} do
     if dcol \sigma = 1 then
           Find vertex b \in \sigma such that b \neq r and v(b) = v(r);
           \sigma \coloneqq \sigma \setminus \{b\};
           r := b:
     end
     else if demb \sigma = 0 and r \notin \sigma then
           Find vertex b \in \sigma such that v(b) = \dim \sigma;
           \sigma \coloneqq \sigma \setminus \{b\};
          r \coloneqq b;
     end
     else
           Find vertex b \notin \sigma such that \sigma \cup \{b\} \in \mathcal{S}, b \neq r and
            emb\{b\} \leq \dim \sigma + 1;
           \sigma \coloneqq \sigma \cup \{b\};
          r := b;
     end
end
return \sigma;
```

Tabela 1: Algorytm odnajdywania dobrze pokolorowanego d-sympleksu.

Twierdzenie 2. Niech S będzie podziałem sympleksu $\langle a_0, ..., a_d \rangle$ oraz $v : S_0 \rightarrow \{0, 1, ..., d\}$ odwzorowaniem zadanym jak w Twierdzeniu 1. Wtedy algorytm w Tabeli 1 się zatrzymuje i zwraca dobrze pokolorowany sympleks wymiaru dim S.

Dowód. Na podstawie przedstawionego dowodu Lematu Spernera wiemy, że każdy wierzchołek w grafie G dla kompleksu S ma stopień co najwyżej 2 oraz że najdłuższa ścieżka w grafie G rozpoczynająca się w wierzchołku a_0 kończy się w wierzchołku, który jest dobrze pokolorowanym sympleksem wymiaru dim S. Wystarczy więc pokazać następujące fakty:

- (a) $\{a_0\}$ jest sympleksem istotnym.
- (b) Dla każdej trójki $(\sigma_1, \sigma_2, \sigma_3)$ sympleksów w trzech kolejnych iteracjach pętli głównej mamy $\sigma_1 \neq \sigma_3$ (stwierdzamy tym samym, że nie cofamy się do poprzednio wybranych sympleksów).

(c) W każdym przebiegu pętli mając na początku sympleks istotny σ będziemy w stanie znaleźć sympleks istotny τ taki, że $\sigma \to \tau$ lub $\tau \to \sigma$.

W celu udowodnienia faktu (a) zauważmy, że $v(a_0) = 0$, więc sympleks $\{a_0\}$ jest regularnie pokolorowany, demb $\{a_0\} = 0$ oraz dcol $\{a_0\} = 0$, więc $\{a_0\}$ jest istotny.

Żeby udowodnić fakt (b), oznaczmy jako $r_2 \in \mathcal{S}$ taki wierzchołek, że $\sigma_2 = \sigma_1 \cup \{r_2\}$ lub $\sigma_2 = \sigma_1 \setminus \{r_2\}$

Rozważmy trzy przypadki (każdy przypadek będzie odpowiadał jednemu blokowi warunkowemu algorytmu).

W przypadku pierwszym dcol $\sigma_2 = 1$. Przechodząc z sympleksu σ_2 do σ_3 , algorytm skorzysta z pierwszego bloku warunkowego. Wtedy $\sigma_3 = \sigma_2 \setminus \{b\}$ dla pewnego $b \in \sigma_2$ takiego, że $b \neq r_2$, a $\sigma_1 = \sigma_2 \setminus \{r_2\}$ lub $\sigma_1 = \sigma_2 \cup \{r_2\}$, więc $\sigma_1 \neq \sigma_3$.

W drugim przypadku dcol $\sigma_2 = 0 \land \text{demb} \ \sigma_2 = 0 \land r_2 \notin \sigma_2$. Przechodząc z sympleksu σ_2 do σ_3 , algorytm skorzysta z drugiego bloku warunkowego, ponieważ nie zachodzi warunek dcol $\sigma_2 = 1$ oraz jest spełniony warunek demb $\sigma_2 = 0 \land r_2 \notin \sigma_2$. Wtedy $\sigma_1 = \sigma_2 \cup \{r_2\}$ oraz $\sigma_3 = \sigma_2 \setminus \{b\}$ dla pewnego b, więc $\sigma_1 \neq \sigma_3$.

W trzecim przypadku zajdzie tylko dcol $\sigma_2 = 0 \land (\text{demb}\,\sigma_2 = 1 \lor r_2 \in \sigma_2)$. Przechodząc z sympleksu σ_2 do σ_3 , algorytm skorzysta z ostatniego bloku warunkowego, ponieważ nie zachodzą warunki dcol $\sigma_2 = 1$ oraz demb $\sigma_2 = 0 \land r_2 \notin \sigma_2$. Wtedy $\sigma_3 = \sigma_2 \cup \{b\}$ dla pewnego $b \notin \sigma_2$ takiego, że $b \neq r_2$, a $\sigma_1 = \sigma_2 \setminus \{r_2\}$ lub $\sigma_1 = \sigma_2 \cup \{r_2\}$, więc $\sigma_1 \neq \sigma_3$.

Dowód faktu (c) przeprowadzimy indukcyjnie.

Dla pierwszego przebiegu pętli mamy $\operatorname{dcol} \sigma = 0$ oraz $r \in \sigma$. Z faktu (a) wynika $\sigma \in \mathcal{S}_{ist}$. Zachodzi $\operatorname{dcol} \sigma = \operatorname{demb} \sigma = \dim \sigma = 0$, więc na podstawie Lematu 2 możemy stwierdzić, że $\operatorname{card} U_{\sigma} = 1$. Z Lematu 1 możemy stwierdzić, że istnieje dokładnie jeden wierzchołek $b \notin \sigma$ taki, że $\sigma \cup \{b\} \in \mathcal{S}$ i $\operatorname{emb}(\sigma \cup \{b\}) \leq \dim \sigma + 1$ oraz jedyny sympleks należący do U_{σ} to $\sigma \cup \{b\}$. Zachodzi $\operatorname{dcol} \sigma = 0$ oraz $r \in \sigma$, więc algorytm skorzysta z ostatniego bloku warunkowego. Rzeczywiście, mamy $\operatorname{emb} \sigma = 0$ oraz dla każdego $c \in \mathcal{S}_0$ zachodzi $\operatorname{emb}(\sigma \cup \{c\}) = \max(\operatorname{emb} \sigma, \operatorname{emb}\{c\})$, więc dla naszego σ zachodzi

$$\forall c \in \mathcal{S}_0 \text{ emb}(\sigma \cup \{c\}) \leq \dim \sigma + 1 \iff \text{emb}\{c\} \leq \dim \sigma + 1,$$

co oznacza, że istnieje dokładnie jeden wierzchołek $b \notin \sigma$ taki, że $\sigma \cup \{b\} \in \mathcal{S}$ oraz emb $\{b\} \leqslant \dim \sigma + 1$. Dodatkowo $\sigma \cup \{b\} \in U_{\sigma}$, więc w szczególności $\sigma \cup \{b\}$ jest sympleksem istotnym oraz $\sigma \to (\sigma \cup \{b\})$. Zauważmy, że $b \notin \sigma$ oraz $r \in \sigma$, więc $b \neq r$. Algorytm doda ten wierzchołek do σ .

Załóżmy, że fakt (c) jest spełniony dla poprzedniej iteracji. Wtedy $\sigma \cup \{r\} \in U_{\sigma}$ lub $\sigma \setminus \{r\} \in L_{\sigma}$. Rozważmy trzy przypadki (każdy przypadek będzie odpowiadał jednemu blokowi warunkowemu algorytmu):

W przypadku pierwszym dcol $\sigma=1$. Algorytm skorzysta z pierwszego bloku warunkowego. Na podstawie dowodu Lematu 5 możemy stwierdzić, że card $L_{\sigma}=2$. Z Lematu 3 oraz dowodu Lematu 4 możemy stwierdzić, że istnieje dokładnie

jedna para różnych wierzchołków b_1 oraz b_2 należących do σ o takim samym kolorze oraz jedyne sympleksy należące do L_{σ} to $\sigma \setminus \{b_1\}$ oraz $\sigma \setminus \{b_2\}$. Z założenia indukcyjnego wnosimy, że $\sigma \setminus \{r\} \in L_{\sigma}$, więc musi istnieć wierzchołek $b \in \sigma$ taki, że $b \neq r$ oraz v(b) = v(r). Dodatkowo $\sigma \setminus \{b\} \in L_{\sigma}$, więc w szczególności $\sigma \setminus \{b\}$ jest sympleksem istotnym oraz $\sigma \to (\sigma \setminus \{b\})$. Algorytm w tym przypadku wybierze ten sympleks.

W drugim przypadku dcol $\sigma=0 \land \text{demb}\ \sigma=0 \land r \notin \sigma$. Algorytm skorzysta z drugiego bloku warunkowego, ponieważ nie zachodzi warunek dcol $\sigma=1$ oraz jest spełniony warunek demb $\sigma=0 \land r \notin \sigma$. Z faktu (b) wnosimy, że $\sigma \neq \{a_0\}$. Sympleks $\{a_0\}$ jest jedynym zero-wymiarowym sympleksem istotnym o deficycie włożenia równym 0, więc dim $\sigma>0$. Na podstawie Lematu 4 możemy stwierdzić, że card $L_{\sigma}=1$. Z Lematu 3 oraz dowodu Lematu 4 możemy stwierdzić, że istnieje wierzchołek $b\in \sigma$ taki, że $v(b)=\dim \sigma$. Dodatkowo $\sigma\setminus\{b\}\in L_{\sigma}$, więc w szczególności $\sigma\setminus\{b\}$ jest sympleksem istotnym oraz $\sigma\to(\sigma\setminus\{b\})$. Algorytm w tym przypadku wybierze ten sympleks.

W trzecim przypadku zajdzie tylko dcol $\sigma=0$ \land (demb $\sigma=1$ \lor $r\in\sigma$). Algorytm skorzysta z ostatniego bloku warunkowego, ponieważ nie zachodzą warunki dcol $\sigma=1$ oraz demb $\sigma=0$ \land $r\notin\sigma$. Jeśli zachodzi demb $\sigma=1$, to na podstawie Lematu 2 możemy stwierdzić, że card $U_{\sigma}=2$. Z Lematu 1 możemy stwierdzić, że istnieją dokładnie dwa różne wierzchołki $b_1\notin\sigma$ oraz $b_2\notin\sigma$ takie, że $\sigma\cup\{b_k\}\in\mathcal{S}$ i emb $(\sigma\cup\{b_k\})\leqslant\dim\sigma+1$ dla $k\in\{1,2\}$ oraz jedyne sympleksy należące do U_{σ} to $\sigma\cup\{b_1\}$ oraz $\sigma\cup\{b_2\}$. Mamy emb $\sigma=\dim\sigma+1$ oraz dla każdego $c\in\mathcal{S}_0$ zachodzi emb $(\sigma\cup\{c\})=\max(\text{emb}\,\sigma,\text{emb}\{c\})$, więc dla naszego σ zachodzi

$$\forall c \in \mathcal{S}_0 \text{ emb}(\sigma \cup \{c\}) \leq \dim \sigma + 1 \iff \text{emb}\{c\} \leq \dim \sigma + 1.$$

Istnieją więc dokładnie dwa wierzchołki $b_1, b_2 \notin \sigma$ takie, że $\sigma \cup \{b_k\} \in \mathcal{S}$ oraz emb $\{b_k\} \leqslant \dim \sigma + 1$ dla $k \in \{1,2\}$. Sympleksy $\sigma \cup \{b_1\}$ oraz $\sigma \cup \{b_2\}$ należą do U_{σ} , więc w szczególności są to sympleksy istotne oraz $\sigma \to (\sigma \cup \{b_k\})$ dla $k \in \{1,2\}$. Jeden z wierzchołków b_1, b_2 musi być różny od r. Algorytm w tym przypadku doda ten wierzchołek do σ .

Jeżeli natomiast zachodzi demb $\sigma \neq 1$, to demb $\sigma = 0$ oraz $r \in \sigma$. Mamy dim $\sigma < d$, ponieważ w przeciwnym wypadku pętla zakończyłaby się. Na podstawie Lematu 2 możemy stwierdzić, że card $U_{\sigma} = 1$. Z Lematu 1 możemy stwierdzić, że istnieje dokładnie jeden wierzchołek $b \notin \sigma$ taki, że $\sigma \cup \{b\} \in \mathcal{S}$ i emb $(\sigma \cup \{b\}) \leqslant \dim \sigma + 1$. Analogicznie jak we wcześniejszej części dowodu, dla naszego σ zachodzi

$$\forall c \in \mathcal{S}_0 \text{ emb}(\sigma \cup \{c\}) \leq \dim \sigma + 1 \iff \text{emb}\{c\} \leq \dim \sigma + 1.$$

Istnieje więc dokładnie jeden wierzchołek $b \notin \sigma$ taki, że $\sigma \cup \{b\} \in \mathcal{S}$ oraz emb $\{b\} \leq \dim \sigma + 1$. Sympleks $\sigma \cup \{b\}$ należy do U_{σ} , więc w szczególności $\sigma \cup \{b\}$ jest sympleksem istotnym oraz $\sigma \to (\sigma \cup \{b\})$. Dodatkowo $b \notin \sigma$ oraz $r \in \sigma$, więc $r \neq b$. Algorytm w tym przypadku doda ten wierzchołek do σ .

Fakty (a), (b) i (c) pokazują, że poruszamy się wzdłuż ścieżki w grafie G rozpoczynającej się w $\{a_0\}$. Na podstawie dowodu Twierdzenia 1, po skończonej ilości kroków, dojdziemy do sympleksu pokolorowanego wszystkimi kolorami ze zbioru $\{0,1,...,d\}$, czyli inaczej sympleksu $\sigma \in \mathcal{S}_{ist}$ takiego, że dim $\sigma = d$ oraz dcol $\sigma = 0$. Algorytm więc zatrzyma się i zwróci dobrze pokolorowany d-sympleks.

4 Eksperymenty i wnioski

W tym rozdziale zbadamy zachowanie algorytmu z Tabeli 1 dla różnych danych wejściowych pod kątem szybkości osiągania dobrze pokolorowanego d-sympleksu w zależności od częstości występowania kolorów. W tym celu dla zadanego podziału $\mathcal S$ d-sympleksu Δ rozważmy ciąg $(w_0,w_1,...,w_d)$ - nazwijmy go ciągiem wag prawdopodobieństwa, a elementy tego ciągu wagami prawdopodobieństwa. Dla każdego wierzchołka $b \in \mathcal S_{ist}$ takiego, że najmniejszą ścianą Δ , w której leży b jest $\langle a_{i_0}, a_{i_1}, ..., a_{i_k} \rangle$ będziemy losować kolor wierzchołka b spośród kolorów ze zbioru $\{i_0, i_1, ..., i_k\}$ tak, że prawdopodobieństwo wylosowania koloru i_j będzie wynosiło $\frac{w_{i_j}}{\sum_{c \in \{i_0, i_1, ..., i_k\}} w_c}$. Jak łatwo zauważyć, prawdopodobieństwa sumują się do 1.

4.1 Przypadek 2-wymiarowy

Jako Δ przyjmijmy 2-wymiarowy sympleks $\langle a_0, a_1, a_2 \rangle$. Jako $\mathcal S$ przyjmijmy szósty podział barycentryczny Δ (czyli $\mathcal S$ ma 140161 sympleksów). Dla każdego trzyelementowego ciągu wag prawdopodobieństwa o wagach prawdopodobieństwa ze zbioru $\{1,5,25\}$ wygenerujmy 100 kolorowań $\mathcal S$.

Na Wykresie 1 przedstawiona została zależność średniej liczby kroków algorytmu z Tabeli 1 (jako liczbę kroków rozumiemy liczbę przejrzanych sympleksów) od ciągu wag prawdopodobieństwa. Pozioma oś odpowiada za wzrost stosunku wagi prawdopodobieństwa w_1 do wagi prawdopodobieństwa w_0 , pionowa oś odpowiada za wzrost stosunku w_2 do w_0 , a kolor punktu odpowiada za średnią liczbę kroków - im cieplejszy kolor, tym większa średnia liczba kroków.

Na Wykresie 2 przedstawiona została zależność stosunku średniej liczby kroków algorytmu z Tabeli 1 do średniej liczby kroków algorytmu losowego od ciągu wag prawdopodobieństwa. Im ten stosunek jest większy, tym kolor punktu na wykresie jest cieplejszy, a pozostałe osie są analogiczne do Wykresu 1. Przez algorytm losowy rozumiemy algorytm, który losuje sympleks z $\mathcal S$ dopóki nie natrafi na sympleks pokolorowany wszystkimi kolorami. Wartość oczekiwaną liczby kroków takiego algorytmu losowego można wyznaczyć licząc stosunek ilości sympleksów w $\mathcal S$ do ilości sympleksów pokolorowanych wszystkimi kolorami w $\mathcal S$.

Wykres 1: Zależność średniej liczby kroków algorytmu w zależności od ciągu wag prawdopodobieństwa.

Wykres 2: Zależność stosunku średniej liczby kroków algorytmu do średniej liczby kroków algorytmu losowego w zależności od ciągu wag prawdopodobieństwa.

4.2 Przypadek 4-wymiarowy

Jako Δ przyjmijmy 4-wymiarowy sympleks $\langle a_0, a_1, a_2, a_3, a_4 \rangle$. Jako \mathcal{S} przyjmijmy trzeci podział barycentryczny Δ (czyli \mathcal{S} ma 11066401 sympleksów). Dla każdego pięcioelementowego ciągu wag prawdopodobieństwa o wagach prawdopodobieństwa ze zbioru $\{1, 5, 25\}$ wygenerujmy 8 kolorowań \mathcal{S} .

Na Wykresie 3 przedstawiona została zależność średniej liczby kroków algorytmu z Tabeli 1 od ciągu wag prawdopodobieństwa. Pozioma oś w pojedynczym wykresie odpowiada za wzrost stosunku w_1 do w_0 , pionowa oś w pojedynczym wykresie odpowiada za wzrost stosunku w_2 do w_0 , kolejne rzędy wykresów odpowiadają za zmianę stosunku w_3 do w_0 (wykresy u góry odpowiadają za większą wartość tego stosunku), kolejne kolumny wykresów odpowiadają za zmianę stosunku w_4 do w_0 (wykresy z prawej strony odpowiadają za większą wartość tego stosunku), a kolor punktu odpowiada za średnią liczbę kroków - im cieplejszy kolor, tym większa średnia liczba kroków. Wykres został transponowany w celu zwiększenia przejrzystości.

Na Wykresie 4 przedstawiona została zależność stosunku średniej liczby kroków algorytmu z Tabeli 1 do średniej liczby kroków algorytmu losowego od ciągu wag prawdopodobieństwa. Im ten stosunek jest większy, tym kolor punktu na wykresie jest cieplejszy, a pozostałe osie są analogiczne do Wykresu 3. Algorytm losowy jest zdefiniowany tak, jak w przypadku 2-wymiarowym. Wykres został transponowany w celu zwiększenia przejrzystości.

4.3 Wnioski

Z analizy wykresów z tego rozdziału można wywnioskować, że w przypadku równych wag prawdopodobieństwa, algorytm z Tabeli 1 wykonuje małą liczbę kroków, ale nie wypada znacząco lepiej od algorytmu losowego. Natomiast w przypadku różnych wag prawdopodobieństwa, można zauważyć, że algorytm z Tabeli 1 radzi sobie o wiele lepiej, gdy ciąg wag prawdopodobieństwa jest ciągiem rosnącym. Można więc oczekiwać, że w celu przyspieszenia algorytmu w sytuacji, gdy wiemy, że pewnych kolorów w $\mathcal S$ jest więcej niż innych, należałoby najpierw ustawić kolejność wierzchołków sympleksu Δ i odpowiadających im kolorów w taki sposób, aby kolory częściej występujące miały większą wartość.

5 Dodatki

$5.1 \quad \text{Kod w C} + +$

Do kompilacji poniższego kodu potrzebny jest kompilator wspierający standard $\mathrm{C}{+}{+}11.$

Wierzchołki są kolejnymi liczbami całkowitymi. Liczba 0 jest wierzchołkiem startowym odpowiadającym wierzchołkowi $a_0 \in \Delta$.

Wykres 3: Zależność średniej liczby kroków algorytmu w zależności od ciągu wag prawdopodobieństwa.

Wykres 4: Zależność stosunku średniej liczby kroków algorytmu do średniej liczby kroków algorytmu losowego w zależności od ciągu wag prawdopodobieństwa.

Wejście do funkcji sperner: adj - listy sąsiedztwa wierzchołków - $b \in \text{adj}[a]$, gdy $\{a,b\} \in \mathcal{S}$. cols - wektor kolorów wierzchołków. embs - wektor wymiarów włożenia wierzchołków. dim - wymiar sympleksu Δ .

Wyjście z funkcji Sperner - wektor wierzchołków rozpinających sympleks pokolorowany wszystkimi kolorami.

```
#include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;
int nowy_emb(vector<int>& sympleks, vector<int>& embs){
     int emb=0;
     for(auto v: sympleks)
         emb=max(emb,embs[v]);
     return emb;
vector <int > sperner (vector <vector <int >> & adj, vector <int >& cols,
                         vector < int > & embs, int dim) {
     //adj - listy sasiedztwa
     //cols - kolory wierzcholkow
//embs - wymiar wlozenia wierzcholkow
     //(wymiar minimalnej sciany glownej zawierajacej dany wierzcholek)
     //dim - wymiar kompleksu
     vector<int> sympleks=vector<int>({0}); // aktualny sympleks
    // (przyjmujemy, ze 0 jest wierzcholkiem startowym)
int s_dim=0,s_col=0,s_emb=0,roznica=0;
     // s_dim - wymiar aktualnego sympleksu
    // s_alm - wymiar aktualnego sympleksu
// s_col - maksymalny kolor wierzcholkow aktualnego sympleksu
// s_emb - wymiar minimalnej sciany glownej zawierajacej aktualny sympleks
// roznica - wierzcholek, ktory ostatnio dodalismy lub usunelismy
     unordered_map <int, int > wspolne;
     for(auto x:adj[0])
          wspolne[x]=1;
     while (s_dim!=dim||s_dim!=s_col){
          if(s_col!=s_dim){
               -//przypadek 1 – przechodzimy do sympleksu nizej wymiarowego,
//gdy mamy pare takich samych kolorow
               for(auto &v: sympleks)
                   if(cols[v] == cols[roznica]&&v!=roznica){
                        roznica=v;
                        for(auto x:adj[v])
                             wspolne[x]-
                        v=sympleks[sympleks.size()-1];
                        sympleks.pop_back();
                        s_dim --;
                         s_emb=nowy_emb(sympleks,embs);
                        break:
          else if(s_dim==s_emb&&sympleks[sympleks.size()-1]!=roznica){
                    //przypadek 2 - przechodzimy do sympleksu nizej wymiarowego,
                    //gdy mamy parami rozne kolory
                    for(int i=0;i<=s_dim;i++){
                        if(cols[sympleks[i]] == s_dim){
                             if(sympleks[i]!=roznica){
                                  roznica=sympleks[i];
                                  for(auto x:adj[roznica])
                                       wspolne[x]--;
                                   sympleks[i]=sympleks[sympleks.size()-1];
                                  sympleks.pop_back();
                                  s_col--;
```

```
s_dim --;
                                     s_emb=nowy_emb(sympleks,embs);
                               }
                               break;
                         }
                  }
      }
else{
            //przypadek 3 - przechodzimy do sympleksu wyzej wymiarowego
int ind_min=0;
for(int i=1;i<=s_dim;i++)
    if(adj[sympleks[i]].size()<adj[sympleks[ind_min]].size())</pre>
            ind_min=i;
for(auto v: adj[sympleks[ind_min]])
  if(wspolne[v]==s_dim+1&&v!=roznica&&embs[v]<=s_dim+1){
    sympleks.push_back(v);</pre>
                         roznica=v;
                         for(auto x:adj[v]){
                               if(wspolne.find(x)!=wspolne.end())
                                    wspolne[x]++;
                               else
                                     wspolne[x]=1;
                        }
                         s_dim++;
                         s_emb=s_dim;
                         s_col=max(s_col,cols[v]);
                         break;
                  }
      }
return sympleks;
```

Literatura

- [1] Emanuel Sperner, Ein Satz über Untermenger einer endlichen Menge, Math.Z. 27 (1928), 544-548
- [2] Marian Mrozek, Wprowadzenie do Topologii i Topologia Obliczeniowa, Notatki do wykładu dla studentów Matematyki Komputerowej, (11 listopada 2022), 99-106.