Nhắc lại một số thuật toán trong lý thuyết số

Trần Vĩnh Đức

HUST

Ngày 8 tháng 4 năm 2020

Nội dung

Thuật toán Euclid

Thuật toán tính luỹ thừa

Đinh nghĩa

lackbox Ước chung của hai số nguyên a và b là số nguyên d thỏa mãn:

$$d \mid a$$
 và $d \mid b$.

► Ta ký hiệu gcd(a, b) là ước chung lớn nhất của a và b.

Định nghĩa

lacktriangle Ước chung của hai số nguyên a và b là số nguyên d thỏa mãn:

$$d \mid a$$
 và $d \mid b$.

lacktriangle Ta ký hiệu $\gcd(a,b)$ là ước chung lớn nhất của a và b.

- ▶ gcd(12,18) = 6 vì $6 \mid 12$ và $6 \mid 18$ và không có số nào lớn hơn có tính chất này.
- $ightharpoonup \gcd(748, 2014) = 44 \text{ vi}$

các ước của
$$748=\{1,2,4,11,17,22,34,44,68,187,374,748\},$$
 các ước của $2024=\{1,2,4,8,11,22,23,44,46,88,92,184,253,506,1012,2024\}.$

Định lý (Thuật toán Euclid)

Xét a,b là hai số nguyên dương với $a \ge b$. Thuật toán sau đây tính $\gcd(a,b)$ sau một số hữu hạn bước.

- 1. Đặt $r_0 = a \ var \ r_1 = b$.
- 2. Đặt i = 1.
- 3. Chia r_{i-1} cho r_i , ta được

$$r_{i-1} = r_i \cdot q_i + r_{i+1}$$
 với $0 \le r_{i+1} < r_i$.

4. Nếu $r_{i+1} = 0$, vậy thì

$$r_i = \gcd(a, b)$$

và thuật toán kết thúc.

5. Ngược lại, $r_{i+1} > 0$, vậy thì đặt i = i+1 và quay lại Bước 3.

Định lý

Phép chia (Bước 3) của Thuật toán Euclid thực hiện nhiều nhất

 $\log_2(b) + 2$ $l \hat{a} n$.

```
Thuật toán Euclid (dạng đệ quy)  \begin{array}{c} \mathsf{EUCLID}(a,b) \\ \mathbf{if} \ b == 0 \\ \mathbf{return} \ \ a \\ \mathbf{else} \\ \mathbf{return} \ \ \mathsf{EUCLID}(b,a \ \ \mathrm{mod} \ b) \end{array}
```

Thuật toán Euclid mở rộng

- ► Thuật toán Euclid có thể mở rộng để tìm thêm một số thông tin.
- lackbox Cụ thể, chúng ta mở rộng thuật toán để tính thêm hệ số x,y thỏa mãn

$$d = \gcd(a, b) = ax + by.$$

ightharpoonup Các hệ số x,y có thể âm hoặc bằng 0. Các hệ số này sẽ có ích sau này khi tích phần tử nghịch đảo trong số học modun.

Thuật toán Euclid mở rộng

- lnput : Cặp số nguyên dương (a,b)
- ightharpoonup Output: Bộ ba (d, x, y) thỏa mãn

$$d = \gcd(a, b) = ax + by.$$

```
\begin{aligned} \mathsf{EXTENDED\text{-}EUCLID}(a,b) \\ & \mathbf{if} \ b == 0 \\ & \mathbf{return} \ \ (a,1,0) \\ & \mathbf{else} \\ & (d',x',y') = \mathsf{EXTENDED\text{-}EUCLID}(b,a \mod b) \\ & (d,x,y) = (d',y',x'-\lfloor a/b \rfloor y') \\ & \mathbf{return} \ \ (d,x,y) \end{aligned}
```

Tính đúng đắn của thuật toán

ightharpoonup Thuật toán tìm (d, x, y) thỏa mãn

$$d = \gcd(a, b) = ax + by$$

Nếu b = 0, vậy thì

$$d = a = a \cdot 1 + b \cdot 0.$$

Nếu $b \neq 0$, thuật toán EXTENDED-EUCLID sẽ tính (d', x', y') thỏa mãn

$$d' = d = \gcd(b, a \mod b)$$
$$= bx' + (a \mod b)y'$$

Và vậy thì

$$d = b'x' + (a - b\lfloor a/b\rfloor)y'$$

= $ay' + b(x' - \lfloor a/b\rfloor y')$

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ▶ Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	y
99	78	1			_
78	21	3			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ▶ Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ▶ Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- lackbox Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ▶ Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_			

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ightharpoonup Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_	3	1	0

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ightharpoonup Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2	3	0	1
3	0	_	3	1	0

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ightharpoonup Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	y
99	78	1			
78	21	3			
21	15	1			
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ightharpoonup Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ightharpoonup Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ightharpoonup Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1	3	-11	14
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- ▶ Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính $\lfloor a/b \rfloor$, và giá trị trả về d, x, y.
- ightharpoonup Bộ ba d,x,y được trả về trở thành bộ ba d',x',y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

Bài tập Hãy tính giá trị

 $(d, x, y) = \mathsf{EXTENDED}\text{-}\mathsf{EUCLID}(899, 493).$

Tính nghịch đảo

lacktriangle Xét n>1, nếu $\gcd(a,n)=1$ thì ta có

$$\gcd(a, n) = 1 = ax + ny$$

Vậy $ax = 1 \pmod{n}$. Tức là

$$x = a^{-1} \pmod{n}$$

Nội dung

Thuật toán Euclid

Thuật toán tính luỹ thừa

Tính lũy thừa nhanh

Ví dụ

Giả sử ta muốn tính

$$3^{218} \pmod{1000}$$
.

Đầu tiên, ta viết 218 ở dạng cơ số 2:

$$218 = 2 + 2^3 + 2^4 + 2^6 + 2^7.$$

Vậy thì 3^{218} trở thành

$$3^{218} = 3^{2+2^3+2^4+2^6+2^7} = 3^2 \cdot 3^{2^3} \cdot 3^{2^4} \cdot 3^{2^6} \cdot 3^{2^7}.$$

Để ý rằng, dễ tính các mũ

$$3, 3^2, 3^{2^2}, 3^{2^3}, 3^{2^4}, \dots$$

Ví dụ (tiếp) Ta lập bảng

	i	0	1	2	3	4	5	6	7
3^{2^i}	(mod 1000)	3	9	81	561	721	841	281	961

rồi tính

$$3^{218} = 3^2 \cdot 3^{2^3} \cdot 3^{2^4} \cdot 3^{2^6} \cdot 3^{2^7}$$

$$\equiv 9 \cdot 561 \cdot 721 \cdot 281 \cdot 961 \pmod{1000}$$

$$\equiv 489 \pmod{1000}.$$

Thuật toán tính nhanh $a^b \pmod{n}$

```
MODULAR-EXPONENTIATION(a, b, n)
     c = 0
     d = 1
     Biểu diễn b = \langle b_k, b_{k-1}, \dots, b_0 \rangle_2
     for i = k downto 0
          c=2c
          d = (d \cdot d) \pmod{n}
          if b_i == 1
               c = c + 1
               d = (d \cdot a) \pmod{n}
     return d
```

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0	0
c	1	2	4	8	17	35	70	140	280	560
d	7	49	157	526	160	241	0 70 298	166	67	1

ightharpoonup Kết quả tính $a^b \pmod{n}$ với

$$a=7, \quad b=560=\langle 1000110000 \rangle, \text{ và } n=561$$

- Giá trị được chỉ ra sau mỗi bước lặp.
- Kết quả cuối cùng bằng 1

Thuật toán đệ quy tính $a^b \mod n$

```
\begin{split} & \text{MODULAR-EXPONENTIATION}(a,b,n) \\ & \text{if } b == 0 \quad \text{then return } 1 \\ & \text{if } b == 1 \quad \text{then return } a \\ & r = \text{MODULAR-EXPONENTIATION}(a,b/2,n) \\ & r = r*r \\ & \text{if } b \mod 2 == 1 \text{ then } r = r*a \\ & \text{return } r \end{split}
```

Định lý (Định lý Fermat nhỏ)

Xét số nguyên tố p và xét số nguyên a. Khi đó

$$a^{p-1} \equiv \begin{cases} 1 \pmod{p} & \textit{n\'eu} \ p \nmid a, \\ 0 \pmod{p} & \textit{n\'eu} \ p \mid a. \end{cases}$$

Ví dụ Số p=15485863 là số nguyên tố, vậy thì $2^{15485862}\equiv 1\pmod{15485863}.$

Vậy thì, không cần tính toán ta cũng biết rằng $s \hat{o} \ 2^{15485862} - 1$ là bội số của 15485863.

Nhân xét

Định lý Fermat nhỏ và thuật toán tính nhanh lũy thừa cho ta một phương pháp hợp lý để tính nghịch đảo theo modun p. Cụ thể

$$a^{-1} \equiv a^{p-2} \pmod{p}.$$

Thời gian tính toán của phương pháp này tương tự như dùng thuật toán Euclid mở rộng.