Matemática Discreta I - 2020 - 2^{do} semestre

Práctico 7: Relaciones (1^{ra} Parte).

Ref. Grimaldi 5.1, 7.1 y 7.2

Aclaración: En todos los ejercicios R^{-1} denota la relación inversa, i.e. $R^{-1} = \{(x,y) : (y,x) \in R\},\$ \overline{R} la relación complementaria, i.e., $\overline{R} = \{(x,y) : (x,y) \notin R\}$ y RS el producto de las relaciones R y S (denotado como $R \circ S$ en el libro de Grimaldi), i.e. $RS = \{(x, z) : \exists y, (x, y) \in R \ y \ (y, z) \in S\}$.

Ejercicio 1 Determine si las siguientes relaciones son reflexivas, irreflexivas $(\forall x, (x, x) \notin R)$, simétricas, antisimétricas, asimétricas $((x,y) \in R \Rightarrow (y,x) \notin R)$ o transitivas en $A = \{1,2,3,4\}$:

a.
$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}.$$

b.
$$R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}.$$

c.
$$R = \{(1,3), (1,1), (3,1), (1,2), (3,3), (4,4)\}.$$

$$\mathbf{d}$$
. $R = \emptyset$.

e.
$$R = A \times A$$
.

- e. $K = A \wedge A$.

 f. Las relaciones cuyas matrices son i) $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$, ii) $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- **g**. Para $A = \{1, 2, 3, 4, 5\}$ y las relaciones dadas por los grafos dirigidos siguientes

Ejercicio 2 Considere el conjunto de propiedades $P = \{\text{reflexiva, simétrica, transitiva}\}$. Para cada subconjunto T de P, encuentre una relación que cumpla las propiedades de T y no cumpla las de $P \setminus T$.

Ejercicio 3 Sean R y S relaciones en un conjunto $A = \{a_1, a_2, ..., a_n\}$.

- a. Elabore un criterio para decidir si R es o no simétrica basándose en la matriz de R.
- **b.** Si R y S son simétricas: ¿lo serán también \overline{R} , R^{-1} , RS, $R \cup S$, $R \cap S$?
- c. Ídem a los casos anteriores sustituvendo simétrica por reflexivas, irreflexivas, antisimétricas, asimétricas y transitivas.

1

Ejercicio 4 (Parcial 2000) Halle el número de relaciones R en el conjunto $A = \{a, b, c, d\}$ que verifican simultáneamente las tres condiciones siguientes: R es simétrica; $(a, b) \in R$; $(c, c) \in R$. Construya la matriz y el diagrama de flechas (o digrafo) de una de estas relaciones.

Ejercicio 5 ¿Cuántas relaciones binarias

a. reflexivas,

b. simétricas,

c. asimétricas,

d. antisimétricas

son definibles sobre un conjunto con n elementos?

Ejercicio 6 Sea A un conjunto con n elementos y R una relación sobre A. Considere cada una de las siguientes proposiciones. Demuéstrela en caso que sea verdadera y encuentre un contraejemplo en el caso que sea falsa.

- **a.** Si R es reflexiva sobre A, entonces $|R| \ge n$.
- **b.** Si $|R| \ge n^2 k$, con k < n entonces $\exists a \in A$ tal que $(a, a) \in R$.

EJERCICIOS COMPLEMENTARIOS

Ejercicio 7 (Parcial 2001) Sea R una relación compatible (es decir, es no vacia, reflexiva y transitiva). Considere las relaciones R^{-1} y $S = (RR^{-1}) \cup (R^{-1}R)$. Investigar si R^{-1} es compatible o un orden parcial, si S es simétrica, si S es irreflexiva y si $R \subseteq S$.

Ejercicio 8 Demuestre o halle un contraejemplo a las siguientes afirmaciones:

- a. El producto de dos relaciones puede ser una función sin que ninguna de ellas lo sea.
- b. La inversa de una relación puede ser una función sin que ella misma lo sea.
- c. El producto de dos relaciones puede dar la relación vacía sin que ninguna de ellas lo sea

Ejercicio 9 Sea R relación reflexiva y simétrica; T relación desconocida, y S relación antisimétrica. Indique verdadero o falso, justifique:

a. R^2 es reflexiva.

d. $T \cap T^{-1}$ es reflexiva si y solo si T es reflexiva.

b. R^2 es simétrica.

e. T^2 es simétrica si y solo si T es simétrica.

c. Si SR es simétrica entonces S es reflexiva.

Ejercicio 10 (Examen febrero de 2016 Ej2) Sean R y S relaciones sobre un conjunto A, con S reflexiva y antisimétrica. Decir cual de las siguientes afirmaciones son verdaderas:

- a. $R \cap R^{-1}$ es relación simétrica, y es reflexiva si y solo si R lo es.
- **b**. RS es reflexiva entonces R lo es.