Exercice 1:

Soit P un polynôme de degré 2019 vérifiant :

$$\forall k \in [0, 2019], \ P(k) = \frac{k}{k+1}.$$

On cherche à calculer ici la valeur de P(2020). Pour cela, on pose $Q = (X + 1) \times P(X) - X$.

- 1. Déterminer le degré de Q.
- 2. Déterminer toutes les racines de Q. En déduire la factorisation de Q dans $\mathbb{C}[X]$ à son coefficient dominant près.
- 3. Calculer Q(-1). En déduire le coefficient dominant de Q.
- 4. Calculer Q(2020) puis P(2020).
- 5. Écrire une fonction Python prenant en entrée un réel x et donnant en sortie P(x). On prendra soin de tester cette fonction pour qu'elle donne des résultats corrects au moins pour x "pas trop grand" et positif.

Exercice 2:

Soit f la fonction définie pour tout réel x différent de 1 par : $f(x) = \frac{e^x}{1-x}$.

1. Montrer par récurrence sur n que, pour tout entier naturel n, la dérivée n^e de f existe et est définie sur $\mathbb{R}\setminus\{1\}$ et qu'il existe un polynôme P_n à coefficients réels tel que :

$$\forall x \in \mathbb{R} \setminus \{1\}, \ f^{(n)}(x) = \frac{e^x P_n(x)}{(1-x)^{n+1}}.$$

On montrera au cours du raisonnement que l'on a la relation de récurrence valable pour tout entier naturel n:

$$P_{n+1} = (1 - X)P'_n + (n + 2 - X)P_n.$$

- 2. Donner les expressions de P_0 , P_1 , P_2 et P_3 .
- 3. Déterminer le monôme dominant de P_n (ce qui revient à la donnée du degré et du coefficient dominant de P_n).
- 4. Calculer $P_n(1)$ pour tout entier naturel n (en justifiant).

Exercice 3:

1. Soit
$$A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}$$
 et I la matrice unité de $\mathcal{M}_3(\mathbb{R})$.

- (a) De quel type est la matrice A?
- (b) Calculer A^3 . En déduire une expression de A^3 en fonction de A.
- (c) Déterminer le polynôme Q tel que $Q(X+1) = X^3 + 6X$.
- (d) Que vaut Q(A+I)? En déduire que I+A est inversible et calculer sa matrice inverse.
- 2. On passe dans cette question à un cas plus général. On suppose que M est une matrice carrée antisymétrique de taille n à coefficient dans \mathbb{C} et on note I_n la matrice unité de taille n. On admettra que $I_n + M$ est alors une matrice inversible. On pose $C = (I_n M) \times (I_n + M)^{-1}$.
 - (a) Montrer que $I_n M$ est inversible puis que C est inversible.
 - (b) Montrer que ${}^tC = (I_n M)^{-1} \times (I_n + M)$.
 - (c) i. Montrer que, si U et V sont des matrices carrées de même taille telles que V est inversible et $U \times V = V \times U$, alors

$$U \times V^{-1} = V^{-1} \times U.$$

- ii. En déduire que ${}^tC=C^{-1}$.
- 3. En reprenant les notations de la question 1), en déduire que $(I A) \times (I + A)^{-1}$ est inversible et calculer simplement sa matrice inverse.