

Discrete Mathematics 259 (2002) 293-300

www.elsevier.com/locate/disc

Note

On the reconstruction of the degree sequence

Charles Delorme^a, Odile Favaron^a, Dieter Rautenbach^{b,c,*,1}

^aLRI, Bât. 490, Université Paris-Sud 91405, Orsay cedex, France ^bEquipe Combinatoire, Université Pierre et Marie Curie, Paris, France ^cLehrstuhl II für Mathematik, RWTH-Aachen, 52056 Aachen, Germany

Received 4 December 2000; received in revised form 6 February 2002; accepted 25 February 2002

Abstract

Harary's edge reconstruction conjecture states that a graph G = (V, E) with at least four edges is uniquely determined by the multiset of its edge-deleted subgraphs, i.e. the graphs of the form G - e for $e \in E$. It is well-known that this multiset uniquely determines the degree sequence of a graph with at least four edges. In this note we generalize this result by showing that the degree sequence of a graph with at least four edges is uniquely determined by the *set* of the degree sequences of its edge-deleted subgraphs with one well-described class of exceptions. Moreover, the *multiset* of the degree sequences of the edge-deleted subgraphs always allows one to reconstruct the degree sequence of the graph. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph; Degree sequence; Reconstruction

1. Introduction

All graphs will be finite, simple and undirected. For a graph G = (V, E), the deletion of an edge $e \in E$ produces an *edge-deleted subgraph* of G and the multiset of the edge-deleted subgraphs of G is the *edge deck* of G. The *vertex-deleted subgraphs* and the *vertex deck* of a graph are defined similarly.

The decks of a graph play a central role in the theory of reconstruction which is motivated by two famous open conjectures: Kelly [4,5] and Ulam's [7] vertex reconstruction conjecture which states that a graph of order at least three is uniquely

0012-365X/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: \$0012-365X(02)00374-6

^{*} Corresponding author. Lehrstuhl II für Mathematik, RWTH-Aachen, Templergraben 55, 52056 Aachen, Germany. Tel.: +49-241-805470; fax: +49-241-8885222.

E-mail addresses: cd@lri.fr (C. Delorme), of@lri.fr (O. Favaron), rauten@math2.rwth-aachen.de (D. Rautenbach).

¹ Supported by a post-doctoral DONET grant.

Fig. 1. A small exceptional pair.

determined (up to isomorphism) by its vertex deck and Harary's [2] *edge reconstruction conjecture* which states that a graph with at least four edges is uniquely determined by its edge deck. For detailed information on these conjectures we refer the reader to Bondy's survey [1].

It has been shown that two graphs with the same edge (vertex) deck share many properties. The edge version of a fundamental lemma due to Kelly [5] implies, for example, that two graphs with at least four edges and the same edge deck have the same degree sequence. Manvel [6] generalized this by proving that already the *set* of the edge-deleted subgraphs is sufficient to determine the degree sequence of a graph with at least four edges.

In the present note we will further generalize this result by showing that the degree sequence of a graph with at least four edges is uniquely determined by the *set* of degree sequences of its edge-deleted subgraphs with one well-described class of exceptions. Moreover, the *multiset* of degree sequences of the edge-deleted subgraphs always allows one to reconstruct the degree sequence of the graph.

We need some notation and terminology. Let G = (V, E) be a graph. The degree of a vertex u in G will be denoted by d(u, G). The set of edge-deleted subgraphs of G will be denoted by $\mathscr{E}(G)$, i.e. $\mathscr{E}(G) = \{G - e \mid e \in E\}$.

It is convenient for our purposes to define the *degree sequence* of a graph G as the mapping $\mathbf{d}_G \colon \mathbf{N}_0 = \{0,1,2,3,\ldots\} \to \mathbf{N}_0$ with $\mathbf{d}_G(i) = |\{v \in V(G) | d(v,G) = i\}|$ for $i \geqslant 0$. This definition slightly differs from the one given in [3], but carries the same information. To wit, if $\mathbf{d}_G(\Delta) > 0$ and $\mathbf{d}_G(i) = 0$ for all $i > \Delta$, then G has maximum degree Δ , order $\sum_{i=0}^{\Delta} \mathbf{d}_G(i)$, and size $\frac{1}{2} \sum_{i=0}^{\Delta} i \mathbf{d}_G(i)$.

Now, the set of degree sequences of the elements in $\mathscr{E}(G)$ is the set of mappings $\{\mathbf{d}_H: \mathbf{N}_0 \to \mathbf{N}_0 | H \in \mathscr{E}(G)\}$ and will be denoted by $\mathscr{D}(G)$. Whenever convenient we will write a mapping $m: \mathbf{N}_0 \to \mathbf{N}_0$ as the sequence $[m(0), m(1), m(2), \ldots]$.

For two positive integers i and j an edge uv is called a i-edge of G, if $i \in \{d(u, G), d(v, G)\}$, and it is called a i, j-edge of G, if $\{i, j\} = \{d(u, G), d(v, G)\}$. A graph is said to be of type i, if all of its edges are i-edges. A graph is said to be of some (no) type, if there is some (no) integer i such that the graph is of type i.

Let *e* be an *i*, *j*-edge of the graph *G*. If $|i-j| \ge 2$, then $\mathbf{d}_{G-e}(i-1) = \mathbf{d}_G(i-1) + 1$, $\mathbf{d}_{G-e}(j-1) = \mathbf{d}_G(j-1) + 1$, $\mathbf{d}_{G-e}(i) = \mathbf{d}_G(i) - 1$, $\mathbf{d}_{G-e}(j) = \mathbf{d}_G(j) - 1$ and $\mathbf{d}_{G-e}(k) = \mathbf{d}_G(k)$ for all $k \in \mathbb{N}_0 \setminus \{i-1, j-1, i, j\}$. Similar relations hold if $|i-j| \le 1$.

Hence $\mathbf{d}_{G-e} = \mathbf{d}_G + \delta_i + \delta_j$ where for $k \ge 1$, $\delta_k : \mathbf{N}_0 \to \mathbf{Z} = \{0, \pm 1, \pm 2, ...\}$ is the mapping defined by $\delta_k(k-1) = 1$, $\delta_k(k) = -1$ and $\delta_k(l) = 0$ for $l \in \mathbf{N}_0 \setminus \{k-1, k\}$. Note that every mapping $\mathbf{f} : \mathbf{N}_0 \to \mathbf{Z}$ has a unique linear decomposition in terms of the δ_i 's.

To illustrate these notions we consider the pair of graphs G and H in Fig. 1 which is a small member of the above mentioned class of exceptions. In this example

$$\mathbf{d}_G = [0, 2, 1, 2, 0, 0, \ldots], \mathbf{d}_H = [0, 1, 3, 1, 0, 0, \ldots]$$
 and

$$\mathcal{D}(G) = \mathcal{D}(H) = \{[1, 1, 2, 1, 0, 0, \dots], [0, 3, 1, 1, 0, 0, \dots], [0, 2, 3, 0, 0, \dots]\}.$$

The exposition of our results naturally splits into three parts. In Section 2 we will consider the degenerate case of graphs G for which $|\mathcal{D}(G)|=1$. Then, in Section 3, we consider graphs that are of no type. If G is of no type, then $\mathcal{D}(G)$ has enough structure to determine \mathbf{d}_G . Finally, in Section 4, we consider graphs G of some type with $|\mathcal{D}(G)| \geqslant 2$. Our results entirely settle the question when $\mathcal{D}(G)$ uniquely determines \mathbf{d}_G for some graph G.

2. Graphs G with $|\mathcal{D}(G)|=1$

It is obvious that $|\mathscr{D}(G)|=1$ if and only if all edges of G are d_1,d_2 -edges for some $d_1,d_2 \in \mathbb{N}$. The next theorem characterizes the possible unique elements of $\mathscr{D}(G)$ in this case.

Theorem 1. Let G be a graph with at least four edges and let $d_1, d_2 \in \mathbb{N}$ with $d_1 \leq d_2$. Then all edges of G are d_1, d_2 -edges if and only if $\mathcal{D}(G) = \{\mathbf{f}\}$ for some $\mathbf{f} : \mathbb{N}_0 \to \mathbb{N}_0$ and there are integers $n(0) \in \mathbb{N}_0$ and $n(d_1), n(d_2) \in \mathbb{N}$ such that if $d_1 = d_2 = 1$, then $n(1) \geqslant 8$ and

$$\mathbf{f}: \mathbf{N}_0 \to \mathbf{N}_0: \mathbf{f}(i) = \begin{cases} n(0) + 2 & \text{if } i = 0, \\ n(1) - 2 & \text{if } i = 1, \\ 0 & \text{else}, \end{cases}$$

if $d_1 = d_2 \geqslant 2$, then $n(d_1) \geqslant 4$ and

$$\mathbf{f}: \mathbf{N}_0 \to \mathbf{N}_0: \mathbf{f}(i) = \begin{cases} n(0) & \text{if } i = 0, \\ 2 & \text{if } i = d_1 - 1, \\ n(d_1) - 2 & \text{if } i = d_1, \\ 0 & \text{else} \end{cases}$$

and if $d_1 < d_2$, then $d_1 n(d_1) = d_2 n(d_2) \ge 4$ and $\mathbf{f} = \mathbf{d} + \delta_{d_1} + \delta_{d_2}$ for

$$\mathbf{d}: \mathbf{N}_0 \to \mathbf{N}_0: \mathbf{d}(i) = \begin{cases} n(0) & \text{if } i = 0, \\ n(d_1) & \text{if } i = d_1, \\ n(d_2) & \text{if } i = d_2, \\ 0 & \text{else.} \end{cases}$$

Proof. If all edges of G are d_1, d_2 -edges, then trivially $\mathcal{D}(G) = \{\mathbf{f}\}$ for some \mathbf{f} as in the statement of the theorem.

Conversely, let $\mathcal{D}(G) = \{\mathbf{f}\}\$ for some \mathbf{f} as in the statement of the theorem. It is straightforward (but tedious) to verify, that $d_1, d_2, n(0), n(d_1)$ and $n(d_2)$ are uniquely

determined. Since $|\mathcal{D}(G)| = 1$, all edges of G are d'_1, d'_2 -edges for some $d'_1, d'_2 \in \mathbb{N}$ with $d'_1 \leq d'_2$.

As d_1 and d_2 are uniquely determined, we obtain that $d_1' = d_1$, $d_2' = d_2$ and $\mathbf{d}_G = \mathbf{f} - \delta_{d_1} - \delta_{d_2}$. This completes the proof. \square

Note that the following corollary contains the case of regular graphs. The straightforward proof is left to the reader.

Corollary 2. Let G be a graph with at least four edges.

- (i) Given $\mathcal{D}(G)$, it is possible to decide whether there are integers $d_1, d_2 \in \mathbb{N}$ such that all edges of G are d_1, d_2 -edges and to determine d_1 and d_2 , if they exist.
- (ii) Given $\mathcal{D}(G)$, it is possible to determine \mathbf{d}_G , if all edges of G are d_1, d_2 -edges for some $d_1, d_2 \in \mathbf{N}$.
- (iii) Given $\mathcal{D}(G)$ and one graph in $\mathcal{E}(G)$, it is possible to determine G, if all edges of G are d_1, d_2 -edges for some $d_1, d_2 \in \mathbb{N}$.

3. Graphs of no type

Theorem 3. Let G be a graph with at least four edges.

- (i) Given $\mathcal{D}(G)$, it is possible to decide whether there is an integer $d \in \mathbb{N}$ such that G is of type d.
- (ii) Given $\mathcal{D}(G)$, it is possible to determine the degree sequence \mathbf{d}_G of G, if there is no integer $d \in \mathbb{N}$ such that G is of type d.

Proof. In view of Corollary 2, we can assume that $|\mathcal{D}(G)| \ge 2$. We fix an arbitrary element $\mathbf{f}_1 = \mathbf{d}_G + \delta_{i_1} + \delta_{i_2} \in \mathcal{D}(G)$ and consider the set $\mathcal{D}' = \{\mathbf{f}_1 - \mathbf{f} | \mathbf{f} \in \mathcal{D}(G), \mathbf{f} \ne \mathbf{f}_1\}$. All elements of \mathcal{D}' have a unique minimal linear decomposition using either two or four δ_i 's.

If $\mathbf{f}' = \delta_{i_1} + \delta_{i_2} - \delta_{i_3} - \delta_{i_4}$ for some $\mathbf{f}' \in \mathcal{D}'$, then there exist edges e_1 and e_2 in G such that e_1 is incident with vertices of degree i_1 and i_2 , respectively, and e_2 is incident with vertices of degree i_3 and i_4 , respectively, with $\{i_1,i_2\} \cap \{i_3,i_4\} = \emptyset$. Hence, G is of no type, \mathbf{f}' determines $\{i_1,i_2\}$ and \mathbf{f}_1 and $\{i_1,i_2\}$ determine the degree sequence \mathbf{d}_G of G as $\mathbf{d}_G = \mathbf{f}_1 - \delta_{i_1} - \delta_{i_2}$.

We can now assume that $\mathbf{f}' = \delta_i - \delta_j$ with $i \in \{i_1, i_2\}$ for every $\mathbf{f}' \in \mathcal{D}'$. This implies that each edge of G is incident with a vertex of degree i_1 or a vertex of degree i_2 .

Therefore, either G is of type i_1 or i_2 or G is of no type and there exist edges e_1 , e_2 and e_3 in G such that e_1 is incident with vertices of degree i_1 and i_2 , respectively, e_2 is incident with vertices of degree i_1 and i_3 , respectively, and e_3 is incident with vertices of degree i_2 and i_3 , respectively, with $|\{i_1,i_2,i_3\}|=3$.

If G is of type i_1 or i_2 , say i_1 , then $\mathbf{f}' = \delta_{i_2} - \delta_j$ for every $\mathbf{f}' \in \mathcal{D}'$. If G is of no type, then $\mathbf{f}'_1 = \delta_{i_1} - \delta_j$ and $\mathbf{f}'_2 = \delta_{i_2} - \delta_{j'}$ for some $\mathbf{f}'_1, \mathbf{f}'_2 \in \mathcal{D}'$. Therefore, we can differentiate between these two possibilities. Moreover, if G is of no type, then \mathcal{D}' determines $\{i_1, i_2\}$ and \mathbf{f}_1 and $\{i_1, i_2\}$ determine the degree sequence \mathbf{d}_G of G as above. \Box

4. Graphs G of some type with $|\mathcal{D}(G)| \ge 2$

The following theorem gives a complete description of the pairs of degree sequences of graphs G and H with $\mathbf{d}_G \neq \mathbf{d}_H$ and $\mathscr{D}(G) = \mathscr{D}(H)$. By Theorem 3, these graphs are necessarily of some type.

Theorem 4. Let G and H be graphs with at least 4 edges such that $\mathbf{d}_G \neq \mathbf{d}_H$ and $\mathcal{D}(G) = \mathcal{D}(H)$. Then G is of type i and H is of type j, for some $i, j \in \mathbb{N}$ with i > j, $|\mathcal{D}(G)| = |\mathcal{D}(H)| \ge 2$, and

either (i) $i \ge 3$, j=i-1, and there is some $k \in \mathbb{N}_0$ such that

$$\mathbf{d}_{G} : \mathbf{N}_{0} \to \mathbf{N}_{0} : \mathbf{d}_{G}(l) = \begin{cases} (i-1) + k(i-1) & \text{if } l = i, \\ (i-2) + ki & \text{if } l = i-1, \\ 2 & \text{if } l = i-2, \\ \mathbf{d}_{G}(0) & \text{if } l = 0, \\ 0 & \text{else} \end{cases}$$

and

$$\mathbf{d}_{H}: \mathbf{N}_{0} \to \mathbf{N}_{0}: \mathbf{d}_{H}(l) = \begin{cases} (i-2) + k(i-1) & \text{if } l = i, \\ i + ki & \text{if } l = i-1, \\ 1 & \text{if } l = i-2, \\ \mathbf{d}_{G}(0) & \text{if } l = 0, \\ 0 & \text{else} \end{cases}$$

and G has exactly one i,i-edge and H has exactly one (i-1),(i-1)-edge or (ii) i=2, the connected components of G are one path on 4 vertices, $\ell \geqslant 1$ paths on 3 vertices, and $\mathbf{d}_G(0) \geqslant 1$ isolated vertices, and the connected components of H are one path on two vertices, $\ell + 1$ paths on 3 vertices, and $\mathbf{d}_G(0) - 1$ isolated vertices.

Proof. By the results of Section 2, we have that $|\mathcal{D}(G)| = |\mathcal{D}(H)| \ge 2$ and, by the results of Section 3, we have that G is of type i and H is of type j for some $i, j \in \mathbb{N}$. Let $\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{D}(G) = \mathcal{D}(H)$ with $\mathbf{f}_1 \ne \mathbf{f}_2$. Then

$$\mathbf{f}_1 = \mathbf{d}_G + \delta_i + \delta_{i_1} = \mathbf{d}_H + \delta_j + \delta_{j_1}$$
 and $\mathbf{f}_2 = \mathbf{d}_G + \delta_i + \delta_{i_2} = \mathbf{d}_H + \delta_j + \delta_{j_2}$.

Therefore, $\mathbf{f}_1 - \mathbf{f}_2 = \delta_{i_1} - \delta_{i_2} = \delta_{j_1} - \delta_{j_2}$ which implies that $i_1 = j_1$, $i_2 = j_2$, and

$$\mathbf{d}_G + \delta_i = \mathbf{d}_H + \delta_i$$
.

Hence $i \neq j$ and we may assume without loss of generality that j < i.

Let $n_l = \mathbf{d}_G(l)$ for all $l \ge 0$. Since G is of type i, we have that

$$in_i \geqslant \sum_{l \neq i} ln_l.$$
 (1)

We assume that $j \le i - 2$. Since H is of type j and $\mathbf{d}_H = \mathbf{d}_G + \delta_i - \delta_j$, we have that

$$j(n_j+1)\geqslant (j-1)(n_{j-1}-1)+(i-1)(n_{i-1}+1)+i(n_i-1)+\sum_{l\notin\{j-1,j,i-1,i\}}ln_l$$

which implies

$$jn_j \geqslant \sum_{l \neq j} ln_l - 2j. \tag{2}$$

By (1) and (2), we have

$$j \geqslant \sum_{l \notin \{j,i\}} ln_l \tag{3}$$

which implies that $n_l = 0$ for all j < l < i. Since $\mathbf{d}_H(i-1) = \mathbf{d}_G(i-1) + \delta_i(i-1) - \delta_j(i-1) = 1$, the graph H has a j, (i-1)-edge. Since G has no i, (i-1)-edge, this yields that

$$\mathbf{d}_H + \delta_i + \delta_{i-1} = \mathbf{d}_G + \delta_i + \delta_{i-1} \in \mathcal{D}(H) \setminus \mathcal{D}(G),$$

which is a contradiction. This implies that j=i-1.

Let m_G be the number of i, i-edges of G and let m_H be the number of (i-1), (i-1)-edges of H. As above, we obtain

$$in_i \ge (i-1)n_{i-1} + (i-2)n_{i-2} + \sum_{l \notin \{i-2, i-1, i\}} ln_l + 2m_G$$
 (4)

and

$$(i-1)n_{i-1} \ge in_i + (i-2)n_{i-2} - 4i + 4 + \sum_{l \notin \{i-2, i-1, i\}} ln_l + 2m_H, \tag{5}$$

which implies

$$(i-2)n_{i-2} + 2m_G \leqslant in_i - (i-1)n_{i-1} \leqslant 4i - 4 - (i-2)n_{i-2} - 2m_H. \tag{6}$$

We have that $n_i \ge 2$, since otherwise G would be a star contradicting $|\mathcal{D}(G)| \ge 2$. This implies that $\mathbf{d}_H(i) \ge 1$.

If $m_G = 0$, then

$$\mathbf{d}_H + \delta_i + \delta_i = \mathbf{d}_G + 2\delta_i \in \mathcal{D}(H) \setminus \mathcal{D}(G),$$

which is a contradiction.

If $n_{i-1}=0$, then $\mathbf{d}_H(i-1)=0+1+1=2$. Since $n_i \ge 2$ and H is of type i-1, we have that i=2 and $n_i=2$. Since there is no graph with degree sequence $[\mathbf{d}_G(0), 0, 2, 0, \ldots]$, this is a contradiction. Hence $n_{i-1} \ge 1$.

If $m_H = 0$, then

$$\mathbf{d}_G + \delta_i + \delta_{i-1} = \mathbf{d}_H + 2\delta_{i-1} \in \mathcal{D}(G) \setminus \mathcal{D}(H),$$

which is a contradiction. Hence $m_G, m_H \ge 1$.

If i=2, then (6) yields $2n_2 - n_1 = 2$. Together with (4) this implies that $n_l = 0$ for $l \notin \{0,1,2\}$ and $m_G = m_H = 1$. Hence, G consists of one path on 4 vertices, $\ell \geqslant 1$ paths on three vertices, and n_0 isolated vertices and H consists of one path on 2 vertices, $\ell + 1$ paths on three vertices, and $n_0 - 1$ isolated vertices.

If $i \ge 3$, then (6) yields that $n_{i-2} \le 2$. If $n_{i-2} \le 1$, then $\mathbf{d}_H(i-2) = 0$ and $n_{i-2} = 1$ and

$$\mathbf{d}_G + \delta_i + \delta_{i-2} = \mathbf{d}_H + \delta_{i-1} + \delta_{i-2} \in \mathcal{D}(G) \setminus \mathcal{D}(H),$$

which is a contradiction. Hence $n_{i-2}=2$. By (6), we have that $in_i-(i-1)n_{i-1}=2i-2$. This equality has the following integer solutions

$$n_i = (i-1) + k(i-1)$$

 $n_{i-1} = (i-2) + ki$

for some $k \ge 0$. By (4), we have that $n_l = 0$ for $l \notin \{0, i - 2, i - 1, i\}$. Furthermore, by (6), we have that $m_G = m_H = 1$ and the proof is complete. \square

The graphs with the degree sequences described in Theorem 4 are not uniquely determined for $i \ge 4$ and $k \ge 1$. (If k = 0, then the graphs are the uniquely determined, see e.g. Fig. 1 for the case i = 3).

We have the following corollary.

Corollary 5. Let G be a graph with at least four edges.

- (i) The multiset $\mathcal{D}_m(G)$ of the degree sequences of the edge-deleted subgraphs of G uniquely determines the degree sequence of G.
- (ii) (Manvel [6]) $\mathscr{E}(G)$ uniquely determines the degree sequence of G.

Proof. Trivially, if $\mathcal{D}(G)$ uniquely determines \mathbf{d}_G , then also either $\mathcal{D}_m(G)$ or $\mathcal{E}(G)$ does. Hence we assume that $\mathcal{D}(G)$ does not uniquely determine \mathbf{d}_G .

By Theorems 3 and 4, G is either of type i for some $i \ge 2$ and has the first degree sequence \mathbf{d}_1 given in Theorem 4 or G is of type i-1 and has the second degree sequence \mathbf{d}_2 given in Theorem 4.

We have seen in the proof of Theorem 4 that $\mathcal{D}(G)$ uniquely determines $\mathbf{d}_1 + \delta_i = \mathbf{d}_2 + \delta_{i-1}$. If G has degree sequence \mathbf{d}_1 , then the degree sequence $\mathbf{d}_1 + \delta_i + \delta_i = \mathbf{d}_2 + \delta_{i-1} + \delta_i$ appears exactly once (since $m_G = 1$) in $\mathcal{D}_m(G)$, and, if G has degree sequence \mathbf{d}_2 , then it appears at least $i \ge 2$ times in $\mathcal{D}_m(G)$. This proves (i).

If $i \ge 3$, then G has degree sequence \mathbf{d}_1 if and only if $\mathscr{E}(G)$ contains no graph with an (i-2),(i-2)-edge. If i=2, then G has degree sequence \mathbf{d}_1 , if and only if one graph in $\mathscr{E}(G)$ has a path on four vertices as a connected component. This proves (ii). \square

It is possible to generalize the above results to graphs with loops or multiple edges. This leads to larger classes of exceptions.

References

- [1] J.A. Bondy, A graph reconstructor's manual, in: Surveys in combinatorics, Proceedings of the 13th British Combinatorial Conference, Guildford, UK, 1991, London Mathematical Society Lecture Note Series, Vol. 166, 1991, pp. 221–252.
- [2] F. Harary, On the reconstruction of a graph from a collection of subgraphs, in: M. Fiedler (Ed.), Theory of Graphs and its Applications, Proceedings of the Symposium held in Prague, Czechoslovak Academy of Sciences, Prague; reprinted by Academic Press, New York, 1964, pp. 47–52.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [4] P.J. Kelly, On isometric transformations, Ph.D. Thesis, University of Wisconsin, 1942.
- [5] P.J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957) 961-968.
- [6] B. Manvel, On reconstructing graphs from their sets of subgraphs, J. Combin. Theory Ser. B 21 (1976) 156–165.
- [7] S.M. Ulam, A Collection of Mathematical Problems, Wiley, Interscience, New York, 1960, p. 29.