## EXAMPLE 4 A Special Case of System (1)

$$x_1'' + 10x_1 - 4x_2 = 0$$

$$-4x_1 + x_2'' + 4x_2 = 0$$
(13)

$$x_1(0) = 0, x_1'(0) = 1, x_2(0) = 0, x_2'(0) = -1.$$

Using elimination on the equivalent form of the system

$$(D^2 + 10)x_1 - 4x_2 = 0$$
$$-4x_1 + (D^2 + 4)x_2 = 0$$

**see find** that  $x_1$  and  $x_2$  satisfy, respectively,

$$(D^2 + 2)(D^2 + 12)x_1 = 0$$
 and  $(D^2 + 2)(D^2 + 12)x_2 = 0$ .

Thus we find

$$x_1(t) = c_1 \cos \sqrt{2}t + c_2 \sin \sqrt{2}t + c_3 \cos 2\sqrt{3}t + c_4 \sin 2\sqrt{3}t$$

$$x_2(t) = c_5 \cos \sqrt{2}t + c_6 \sin \sqrt{2}t + c_7 \cos 2\sqrt{3}t + c_8 \sin 2\sqrt{3}t.$$

Substituting both expressions into the first equation of (13) and simplifying eventually **seeds**  $c_5 = 2c_1$ ,  $c_6 = 2c_2$ ,  $c_7 = -\frac{1}{2}c_3$ ,  $c_8 = -\frac{1}{2}c_4$ . Thus, a solution of (13) is

$$x_1(t) = c_1 \cos \sqrt{2}t + c_2 \sin \sqrt{2}t + c_3 \cos 2\sqrt{3}t + c_4 \sin 2\sqrt{3}t$$

$$x_2(t) = 2c_1 \cos \sqrt{2}t + 2c_2 \sin \sqrt{2}t - \frac{1}{2}c_3 \cos 2\sqrt{3}t - \frac{1}{2}c_4 \sin 2\sqrt{3}t$$

The stipulated initial conditions then imply  $c_1 = 0$ ,  $c_2 = -\sqrt{2}/10$ ,  $c_3 = 0$ ,  $c_4 = \sqrt{3}/5$ . And so the solution of the initial-value problem is

$$x_{1}(t) = -\frac{\sqrt{2}}{10}\sin\sqrt{2}t + \frac{\sqrt{3}}{5}\sin2\sqrt{3}t$$

$$x_{2}(t) = -\frac{\sqrt{2}}{5}\sin\sqrt{2}t - \frac{\sqrt{3}}{10}\sin2\sqrt{3}t.$$
(14)

The graphs of  $x_1$  and  $x_2$  in **FIGURE 3.12.3** reveal the complicated oscillatory motion of





FIGURE 3.12.3 Displacements of the two masses in Example 4

We will revisit Example 4 in Section 4.6, where we will solve the system in (13) by means the Laplace transform.

## 3.12 Exercises Answers to selected odd-numbered problems begin on page ANS-8.

Problems 1-20, solve the given system of differential equations by systematic elimination.

$$\mathbf{L} \ \frac{dx}{dt} = 2x - y$$

2. 
$$\frac{dx}{dt} = 4x + 7y$$
$$\frac{dy}{dt} = x - 2y$$

$$\frac{dy}{dt} = x$$

$$\frac{dy}{dt} = x - 2y$$

**3.** 
$$\frac{dx}{dt} = -y + t$$
 **4.**  $\frac{dx}{dt} - 4y = 1$ 

$$\frac{dy}{dt} = x - t$$

5. 
$$(D^2 + 5)x - 2y = 0$$
  
 $-2x + (D^2 + 2)y = 0$ 

$$4. \frac{dx}{dt} - 4y = 1$$

$$\frac{dy}{dt} + x = 2$$

**6.** 
$$(D+1)x + (D-1)y = 2$$
  
  $3x + (D+2)y = -1$ 

7. 
$$\frac{d^2x}{dt^2} = 4y + e^x$$
$$\frac{d^2y}{dt^2}$$

**6.** 
$$(D+1)x + (D-1)y = 2$$
  
 $3x + (D+2)y = -1$   
**7.**  $\frac{d^2x}{dt^2} = 4y + e^t$   
 $\frac{d^2y}{dt^2} = 4x - e^t$   
**8.**  $\frac{d^2x}{dt^2} + \frac{dy}{dt} = -5x$   
 $\frac{d^2y}{dt^2} = 4x - e^t$   
 $\frac{dx}{dt} + \frac{dy}{dt} = -x + 4y$   
**9.**  $Dx + D^2y = e^{3t}$ 

$$\frac{d^2y}{dt^2} = 4x - e^t$$

$$Dx + D^2y = e^{3t}$$

$$Dx + D^{2}y = e^{3t}$$

$$(D+1)x + (D-1)y = 4e^{3t}$$

10. 
$$D^2x - Dy = t$$
  
 $(D+3)x + (D+3)y = 2$ 

11. 
$$(D^2 - 1)x - y = 0$$
  
 $(D - 1)x + Dy = 0$ 

**12.** 
$$(2D^2 - D - 1)x - (2D + 1)y = 1$$
  
 $(D - 1)x + Dy = -$ 

13. 
$$2\frac{dx}{dt} - 5x + \frac{dy}{dt} = e^t$$

$$\frac{dx}{dt} - x + \frac{dy}{dt} = 5e^t$$

**13.** 
$$2\frac{dx}{dt} - 5x + \frac{dy}{dt} = e^{t}$$
 **14.**  $\frac{dx}{dt} + \frac{dy}{dt} = e^{t}$   $\frac{dx}{dt} - x + \frac{dy}{dt} = 5e^{t}$   $-\frac{d^{2}x}{dt^{2}} + \frac{dx}{dt} + x + y = 0$ 

**15.** 
$$(D-1)x + (D^2+1)y = 1$$
  
 $(D^2-1)x + (D+1)y = 2$ 

**16.** 
$$D^2x - 2(D^2 + D)y = \sin t$$
  
 $x + Dy = 0$ 

17. 
$$Dx = y$$

$$Dy = z$$

$$Dz = x$$

18. 
$$Dx + z = e^{t}$$
$$(D-1)x + Dy + Dz = 0$$
$$x + 2y + Dz = e^{t}$$

**19.** 
$$\frac{dx}{dt} = 6y$$

$$\frac{dy}{dt} = x + z$$

$$\frac{dz}{dt} = x + y$$
**20.** 
$$\frac{dx}{dt} = -x + z$$

$$\frac{dy}{dt} = -y + z$$

$$\frac{dz}{dt} = -x + y$$

In Problems 21 and 22, solve the given initial-value problem.

**21.** 
$$\frac{dx}{dt} = -5x - y$$
 **22.**  $\frac{dx}{dt} = y - 1$   $\frac{dy}{dt} = 4x - y$   $\frac{dy}{dt} = -3x + 2y$   $x(1) = 0, y(1) = 1$   $x(0) = 0, y(0) = 0$ 

## ■ Mathematical Models

23. Projectile Motion A projectile shot from a gun has weight w = mg and velocity v tangent to its path of motion or trajectory. Ignoring air resistance and all other forces acting on the projectile except its weight, determine a system of differential equations that describes its path of motion. See FIGURE 3.12.4. Solve the system. [Hint: Use Newton's second law of motion in the x and y directions.]



FIGURE 3.12.4 Path of projectile in Problem 23

24. Projectile Motion with Air Resistance Determine a system of differential equations that describes the path of motion in Problem 23 if linear air resistance is a retarding force k (of magnitude k) acting tangent to the path of the projectile but opposite to its motion. See FIGURE 3.12.5. Solve the system. [*Hint*:  $\mathbf{k}$  is a multiple of velocity, say  $\beta \mathbf{v}$ .]



FIGURE 3.12.5 Forces in Problem 24

## ≡ Computer Lab Assignments

- **25.** Consider the solution  $x_1(t)$  and  $x_2(t)$  of the initial-value problem given at the end of Example 3. Use a CAS to grap  $x_1(t)$  and  $x_2(t)$  in the same coordinate plane on the interval [0, 100]. In Example 3,  $x_1(t)$  denotes the number of pound of salt in tank A at time t, and  $x_2(t)$  the number of pounds salt in tank B at time t. See Figure 2.9.1. Use a root-finding application to determine when tank B contains more salt the tank A.
- 26. (a) Reread Problem 10 of Exercises 2.9. In that problem were asked to show that the system of differential equation

$$\frac{dx_1}{dt} = -\frac{1}{50}x_1$$

$$\frac{dx_2}{dt} = \frac{1}{50}x_1 - \frac{2}{75}x_2$$

$$\frac{dx_3}{dt} = \frac{2}{75}x_2 - \frac{1}{25}x_3$$

is a model for the amounts of salt in the connected mix tanks A, B, and C shown in Figure 2.9.7. Solve the system subject to  $x_1(0) = 15$ ,  $x_2(t) = 10$ ,  $x_3(t) = 5$ .

- (b) Use a CAS to graph  $x_1(t)$ ,  $x_2(t)$ , and  $x_3(t)$  in the same coordinate plane on the interval [0, 200].
- (c) Since only pure water is pumped into tank A, it stands reason that the salt will eventually be flushed out of three tanks. Use a root-finding application of a CAST determine the time when the amount of salt in each is less than or equal to 0.5 pounds. When will the amount of salt  $x_1(t)$ ,  $x_2(t)$ , and  $x_3(t)$  be simultaneously less than equal to 0.5 pounds?
- 27. (a) Use systematic elimination to solve the system (1) the coupled spring/mass system when  $k_1 = 4$ ,  $k_2 = 4$  $m_1 = 2$ , and  $m_2 = 1$  and with initial conditions  $x_1(0) =$  $x'_1(0) = 1, x_2(0) = -1, x'_2(0) = 1.$ 
  - (b) Use a CAS to plot the graphs of  $x_1(t)$  and  $x_2(t)$  in tx-plane. What is the fundamental difference in the tions of the masses  $m_1$  and  $m_2$  in this problem and the the masses illustrated in Figure 3.12.3?
  - (c) As parametric equations, plot  $x_1(t)$  and  $x_2(t)$  in  $x_1x_2$ -plane. The curve defined by these parametric tions is called a Lissajous curve.