- **29.** (a) Figure 9.10 shows g(x), a mystery power function. If you learn that the point (-1,3) lies on its graph, do you have enough information to write a formula for g(x)?
 - (b) If you are told that the point (1, -3) also lies on the graph, what new deductions can you make?
 - (c) If the point (2, -96) lies on the graph g, in addition to the points already given, state three other points which also lie on it.

Figure 9.10

30. Figure 9.11 shows the power function y=c(t). Is c(t)=1/t the only possible formula for c? Could there be others?

Figure 9.11

- **31.** (a) One of the graphs in Figure 9.12 is $y = x^n$ and the other is $y = x^{1/n}$, where n is a positive integer. Which is which? How do you know?
 - (b) What are the coordinates of point A?

Figure 9.12

32. The circulation time of a mammal—that is, the average time it takes for all the blood in the body to circulate once and return to the heart—is governed by the equation

$$t = 17.4m^{1/4}$$

where m is the body mass of the mammal in kilograms, and t is the circulation time in seconds.³

- (a) Complete Table 9.4 which shows typical body masses in kilograms for various mammals.⁴
- (b) If the circulation time of one mammal is twice that of another, what is the relationship between their body masses?

Table 9.4

5.00000000 00000 0		
Animal	Body mass (kg)	Circulation time (sec)
Blue whale	91000	
African elephant	5450	
White rhinoceros	3000	i .
Hippopotamus	2520	
Black rhinoceros	1170	
Horse	700	
Lion	180	
Human	70	

- 33. Three ounces of broiled ground beef contains 245 calories. Is the number of calories directly or inversely proportional to the number of ounces? Explain your reasoning and write a formula for the proportion. How many calories are there in 4 ounces of broiled hamburger?
- **34.** A 30-second commercial during Super Bowl XL in 2006 cost advertisers \$2.5 million. For the first Super Bowl in 1967, an advertiser could have purchased approximately 28.699 minutes of advertising time for the same amount of money.⁶
 - (a) Assuming that cost is proportional to time, find the cost of advertising, in dollars/second, during the 1967 and 2006 Super Bowls.
 - **(b)** How many times more expensive was Super Bowl advertising in 2006 than in 1967?
- 35. A group of friends rent a house at the beach for spring break. If nine of them share the house, it costs \$150 each. Is the cost to each person directly or inversely proportional to the number of people sharing the house? Explain your reasoning and write a formula for the proportion. How many people are needed to share the house if each student wants to pay a maximum of \$100 each?

³K. Schmidt-Nielsen, Scaling, Why is Animal Size so Important? (Cambridge: CUP, 1984).

⁴R. McNeill Alexander, *Dynamics of Dinosaurs and Other Extinct Giants*. (New York: Columbia University Press, 1989).

⁵The World Almanac Book of Facts, 1999 p. 718

⁶money.cnn.com/2006/01/03/news/companies/superbowlads, accessed January 15, 2006.