Proof for the estimation accuracy of square spectral algorithm Chanwoo Lee, July 6, 2021

1 Theorem 2.1 and the proof

Theorem 2.1 (Estimation accuracy of square spectral algorithm). For an order-m dimensional-d data tensor, we perform SVD on the unfolded matrix $\mathrm{Mat}(\mathcal{Y}) \in d^{\lfloor m/2 \rfloor}$ -by- $d^{\lceil m/2 \rceil}$ with singular value truncation threshold $\hat{\lambda}_i \geq d^{\frac{\lceil m/2 \rceil}{2}}$. Then, the algorithm output satisfies the error bound

$$\mathcal{R}(\Theta, \hat{\Theta}) := \frac{1}{d^m} \|\hat{\Theta} - \Theta\|_F^2 \le \begin{cases} d^{-\frac{2m}{m+4}}, & \text{even } m, \\ d^{-\frac{2(m-1)}{m+3}}, & \text{odd } m. \end{cases}$$

Proof. By definition of permuted smooth tensor model, $Mat(\mathcal{Y})$ is from the permuted smooth matrix model

$$Mat(\mathcal{Y}) = M + Mat(\mathcal{E}),$$

where $M := \operatorname{Mat}(\Theta) \in \mathbb{R}^{\lfloor m/2 \rfloor \times \lceil m/2 \rceil}$ is the square unfolding of the signal tensor Θ , and $\operatorname{Mat}(\mathcal{E}) \in \mathbb{R}^{\lfloor m/2 \rfloor \times \lceil m/2 \rceil}$ is a noise matrix with i.i.d. zero-mean subGuassian entries. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{d^{\lfloor m/2 \rfloor}}$ and $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_{d^{\lfloor m/2 \rfloor}}$ denote the singular values in descending order of M and $\operatorname{Mat}(\mathcal{Y})$, respectively. By Weyl's inequality, we have

$$|\lambda_i - \hat{\lambda}_i| \le \|\operatorname{Mat}(\mathcal{E})\|_{\operatorname{sp}} \le 2d^{\frac{\lceil m/2 \rceil}{2}}, \quad \text{for all } i = 1, \dots, d^{\lfloor m/2 \rfloor}.$$
 (1)

Notice that the last inequality is from the fact that $\|\operatorname{Mat}(\mathcal{E})\|_{\operatorname{sp}} \leq 2d^{\frac{\lceil m/2 \rceil}{2}}$ with probability at least $1 - 2\exp\left(-d^{\lfloor m/2 \rfloor}/2\right)$ [1, Theorem 2.6].

Let ℓ count the number of singular values of M that are above d, i.e.,

$$\ell = \sum_{i \in [d^{\lfloor m/2 \rfloor}]} \mathbb{1}\{\lambda_i \ge d^{\frac{\lceil m/2 \rceil}{2}}\}. \tag{2}$$

Now we decompose the error as

$$\|\hat{\boldsymbol{M}} - \boldsymbol{M}\|_F^2 \le \underbrace{\|\hat{\boldsymbol{M}} - \operatorname{Rank}(\boldsymbol{M}, \ell)\|_F^2}_{\text{variance}} + \underbrace{\|\operatorname{Rank}(\boldsymbol{M}, \ell) - \boldsymbol{M}\|_F^2}_{\text{bias}}, \tag{3}$$

where $\operatorname{Rank}(\boldsymbol{M},\ell)$ denotes the best rank- ℓ approximation of the matrix \boldsymbol{M} in least square sense. We claim that, both $\hat{\boldsymbol{M}}$ and $\operatorname{Rank}(\boldsymbol{M},\ell)$ have rank bounded by ℓ . By definition, $\operatorname{Rank}(\boldsymbol{M},\ell)$ has rank ℓ . To see the rank of $\hat{\boldsymbol{M}}$, notice that by Weyl's inequality (1) and definition of ℓ in (2),

$$\hat{\lambda}_i \le \lambda_i + 2d^{\frac{\lceil m/2 \rceil}{2}} \le 3d^{\frac{\lceil m/2 \rceil}{2}}, \quad \text{for all } i = \ell + 1, \ell + 2, \dots, d^{\lfloor m/2 \rfloor}, \tag{4}$$

Therefore, $\operatorname{Mat}(\mathcal{Y})$ has at most ℓ singular values above $3d^{\frac{\lceil m/2 \rceil}{2}}$. By the construction of \hat{M} , $\operatorname{Rank}(\hat{M}) \leq \ell$.

Now we bound the estimation error (3). For the variance term,

$$\begin{split} \|\hat{\boldsymbol{M}} - \operatorname{Rank}(\boldsymbol{M}, \ell)\|_{F} &\leq \sqrt{\ell} \|\hat{\boldsymbol{M}} - \operatorname{Rank}(\boldsymbol{M}, \ell)\|_{\operatorname{sp}} \\ &\leq \sqrt{\ell} \left(\underbrace{\|\hat{\boldsymbol{M}} - \operatorname{Mat}(\boldsymbol{\mathcal{Y}})\|_{\operatorname{sp}}}_{\operatorname{goodness-of-fit}} + \underbrace{\|\operatorname{Mat}(\boldsymbol{\mathcal{Y}}) - \boldsymbol{M}\|_{\operatorname{sp}}}_{\operatorname{noise}} + \underbrace{\|\boldsymbol{M} - \operatorname{Rank}(\boldsymbol{M}, \ell)\|_{\operatorname{sp}}}_{\operatorname{bias}} \right) \\ &\leq \sqrt{\ell} (\hat{\lambda}_{\ell+1} + 2d^{\frac{\lceil m/2 \rceil}{2}} + \lambda_{\ell+1}) \\ &\lesssim \sqrt{\ell} d^{\frac{\lceil m/2 \rceil}{2}}, \end{split}$$

where the third inequality uses the fact that $\|\text{Mat}(\mathcal{Y}) - \boldsymbol{M}\|_{\text{sp}} = \|\text{Mat}(\mathcal{E})\|_{\text{sp}} \leq 2d^{\frac{\lceil m/2 \rceil}{2}}$ with probability at least $1 - 2\exp\left(-d^{\lfloor m/2 \rfloor}/2\right)$ [1, Theorem 2.6], and the last inequality is from (4). Therefore, (3) has the upper bound,

$$\|\hat{\boldsymbol{M}} - \boldsymbol{M}\|_F^2 \lesssim \ell d^{\lceil m/2 \rceil} + \|\operatorname{Rank}(\boldsymbol{M}, \ell) - \boldsymbol{M}\|_F^2$$

$$\leq r d^{\lceil m/2 \rceil} + \|\operatorname{Rank}(\boldsymbol{M}, r) - \boldsymbol{M}\|_F^2, \quad \text{for all } r = 1, 2, \dots, d^{\lfloor m/2 \rfloor},$$
(5)

where the last line uses the fact that $\ell = \sum_{i \in [d^{\lfloor m/2 \rfloor}]} \mathbb{1}\{\lambda_i \geq d^{\frac{\lceil m/2 \rceil}{2}}\}$ is the global optimizer of the function

$$g(r) = rd^{\lceil m/2 \rceil} + \sum_{i \geq r+1} \lambda_i^2.$$

Finally, by Lemma 4, for every integer k, there exists a (k, \ldots, k) -block tensor such that

$$\|\operatorname{Block}(\Theta; k) - \Theta\|_F^2 \lesssim \frac{d^m}{k^2},$$

where $\operatorname{Block}(\Theta; k)$ denotes the block tensor with k blocks on each of the modes. Based on the relationship $\mathbf{M} = \operatorname{Mat}(\Theta)$ and the fact that $\operatorname{Mat}(\operatorname{Block}(\Theta; k))$ is of rank at most $k^{\lfloor m/2 \rfloor}$, we conclude from (5) that

$$\|\hat{\boldsymbol{M}}-\boldsymbol{M}\|_F^2 \lesssim rd^{\lceil m/2 \rceil} + \|\Theta - \operatorname{Block}(\Theta, r^{1/\lfloor m/2 \rfloor})\|_F \leq rd^{\lceil m/2 \rceil} + \frac{d^m}{r^{2/\lfloor m/2 \rfloor}}, \quad \text{ for all } r = 1, \dots, d^{\lfloor m/2 \rfloor}.$$

Taking $r = d^{\frac{m - \lceil m/2 \rceil}{1 + 2/\lfloor m/2 \rfloor}}$ yields,

$$\|\hat{\boldsymbol{M}} - \boldsymbol{M}\|_F^2 \lesssim \begin{cases} d^{\frac{m^2 + 2m}{m+4}}, & \text{even } m, \\ d^{\frac{m^2 + m + 2}{m+3}}, & \text{odd } m. \end{cases}$$

Therefore, we have the final upper bound as

$$\mathcal{R}(\Theta, \hat{\Theta}) := \frac{1}{d^m} \|\hat{\Theta} - \Theta\|_F^2 = \frac{1}{d^m} \|\hat{\boldsymbol{M}} - \boldsymbol{M}\|_F^2 \le \begin{cases} d^{-\frac{2m}{m+4}}, & \text{even } m, \\ d^{-\frac{2(m-1)}{m+3}}, & \text{odd } m. \end{cases}$$

Remark 1 (Connection between ℓ and r). In the proof, we set rank $r = d^{\frac{m - \lceil m/2 \rceil}{1 + 2/\lceil m/2 \rceil}}$ and obtain the upper bound.

$$\begin{split} \|\hat{\boldsymbol{M}} - \boldsymbol{M}\|_F^2 &\lesssim \ell d^{\lceil m/2 \rceil} + \|\text{Rank}(\boldsymbol{M}, \ell) - \boldsymbol{M}\|_F^2 \\ &\leq \min_{r \in [d^{\lfloor m/2 \rfloor}]} \left(r d^{\lceil m/2 \rceil} + \|\text{Rank}(\boldsymbol{M}, r) - \boldsymbol{M}\|_F^2 \right) \end{split}$$

Originally, $\|\operatorname{Rank}(\boldsymbol{M},r) - \boldsymbol{M}\|_F^2$ depends on the signal matrix $\boldsymbol{M} := \operatorname{Mat}(\Theta)$. To be specific, Theorem 1 in [2] has the error bound consisting of tails of eigenvalues of \boldsymbol{M} . Since $\|\operatorname{Rank}(\boldsymbol{M},r) - \boldsymbol{M}\|_F^2$ has closely related to tails of eigenvalues of \boldsymbol{M} , it is hard to obtain the general bound. This is why the author assume the distribution of tails of eigenvalues of \boldsymbol{M} in the Corollary 1.

Instead of assuming the distribution of eigenvalues of M, we assume that the signal tensor Θ is from the Lipchitz smooth tensor. With block approximation technique, this assumption allows us to obtain the upper bound of $\|\text{Rank}(M,r) - M\|_F^2$ independent of M but dependent on r. Therefore, the major difference between r and ℓ is that the rank $r = d^{\frac{m - \lceil m/2 \rceil}{1 + 2/\lceil m/2 \rceil}}$ is independent of M while ℓ is directly connected to the eigenvalues of M.

Notice that Proposition 1 in [2] uses the similar technique assuming Hölder condition or Soblev condition on graphon to bound $\|\text{Rank}(\boldsymbol{M},r)-\boldsymbol{M}\|_F^2$ independently of \boldsymbol{M} .

Lemma 4 (Approximation error). For every fixed integer $k \leq d$, we have

$$\|\operatorname{Block}(\Theta; k) - \Theta\|_F^2 \lesssim \frac{d^m}{k^2}.$$

Proof. Notice that for any $\omega \in [d]^m$,

$$([\operatorname{Block}(\Theta; k)]_{\omega} - \Theta_{\omega})^{2} = \left(\frac{1}{h^{m}} \sum_{\substack{\omega' \in \left[\lfloor \frac{\omega-1}{h} \rfloor h+1, \lfloor \frac{\omega-1}{h} \rfloor h+h \right]}} (\Theta_{\omega'} - \Theta_{\omega})\right)^{2}.$$
 (6)

We bound each summand by

$$|\Theta_{\omega'} - \Theta_{\omega}|^2 \le \frac{L^2 |\omega' - \omega|_1^2}{d^2}$$

$$\lesssim \frac{1}{k^2},$$
(7)

where the last inequality uses the fact that $\omega_i' \in \left[\left\lfloor \frac{\omega_i - 1}{h} \right\rfloor h + 1, \left\lfloor \frac{\omega_i - 1}{h} \right\rfloor h + h \right]$ for all $i \in [m]$. Therefore, plugging (7) into (6) yields

$$\|\operatorname{Block}(\Theta;k) - \Theta\|_F^2 \lesssim \frac{d^m}{k^2}$$
.

2 Illustrative figure of \mathcal{R} vs. m.

Figure 1 shows the error rate of MLE and spectral method according to different tensor order m. We check that our error bound is very close to gold-criteria MLE bound $d^{\frac{-2m}{m+2}}$.

Error rate vs Order-m — MLE — Ours 5 10 15 20

Figure 1: An illustration figure of error rate \mathcal{R} and tensor order-m. Red colored line is MLE error bound while black one is spectral estimation error bound. We set tensor dimension d = 20.

Order-m

References

- [1] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singular values. In *Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures*, pages 1576–1602. World Scientific, 2010.
- [2] Jiaming Xu. Rates of convergence of spectral methods for graphon estimation. In *International Conference on Machine Learning*, pages 5433–5442. PMLR, 2018.