Graph Features 2

Machine Learning with Graphs

Department of Computer Science University of Massachusetts, Lowell Spring 2021

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Centrality
 - Degree Centrality

 - Closeness CentralityBetweenness Centrality

Centrality

- What characterizes an important node in a network?
 - Most influential people in social nets
 - Key infrastructure nodes in the Internet
 - Main spreaders of disease
 - Etc.
- Structural view:
 - Importance of a node is related to its position in the network.

Centrality Measures

- Different centrality measures capture different structural characteristics of nodes!
- There is often a high correlation between these measures!
- Sometimes the most important node might depend on which measure is used!

- C : Centrality
 - □ C (i): Centrality for node i
 - C(A): Centrality for a group of nodes $A \in N$

Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Degree Centrality

- A node is central if it has links to many nodes.
 - Look at the node degree

Degree Centrality- Cnt.

- A node is central if it has links to many nodes.
 - Look at the node degree

	n1	n_2	n_3	n_4	n_5	
n ₁	0	1	1	1	0	3
n_2	1	0	0	0	0	1
n_3	1	0	0	0	0	1
n ₄	1	0	0	0	1	2
n_5	0	0	0	1	0	1
	3	1	1	2	1	

Adjacency Matrix (A)

- Standardized Degree Centrality
 - Divide by the maximum possible degree centrality

	n1	n_2	n_3	n_4	n_5	
n_1	0	1	1	1	0	3/4
n_2	1	0	0	0	0	1/4
n_3	1	0	0	0	0	1/4
n_4	1	0	0	0	1	1/2
n_5	0	O	0	1	0	1/4

Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Closeness Centrality

- A node is central if it is close to other nodes.
 - Look at distance btw nodes
 - Closeness: 1 / Sum of distance to other nodes

$$C(n_1) = 1/(\sum_{j=1}^{n} D_{1j}) = 1/(\sum_{i=1}^{n} D_{i1}) = 1/4$$

n_1	0	1	1	1	1	1/4
n_2	1	0	2	2	2	1/7
n_3	1	2	0	2	2	1/7
n_4	1	2	2	0	2	1/7
n_5	1	2	2	2	0	1/7

 $-\mathbf{n}_3$ \mathbf{n}_4 \mathbf{n}_5

Distance Matrix (D)

Closeness Centrality- Cnt.

- Standardized Closeness Centrality
 - Divide by the maximum possible closeness centrality value!

$$C(n_1) = (N-1)/(\sum_{j=1}^{n} D_{1j}) = (N-1)/(\sum_{i=1}^{n} D_{i1}) = 4/4$$

	n1	n_2	n_3	n_4	n_5	
n ₁	0	1	1	1	1	4/4
n_2	1	0	2	2	2	4/7
n_3	1	2	0	2	2	4/7
n_4	1	2	2	0	2	4/7
n_5	1	2	2	2	0	4/7

Distance Matrix (D)

Closeness Centrality- Cnt.

 How to compute Closeness Centrality in networks with disconnected components?

- Only consider the giant component?
- Only consider nodes that are reachable in paths of length 1, 2, ... This is called k-Step Reach!

Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

UMASS

Betweenness Centrality

- A node is central if other nodes have to go through it to reach each other.
 - Look at shortest paths between nodes

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - ?

Betweenness Centrality- Cnt.

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2) 2 the number of other pairs of nodes (exclude the node itself)

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2)/2: the number of other pairs of nodes (exclude the node itself)

Betwee	nness	Stnd. Betweenness		
n1	5	5/6 = 0.83		
n2	0	0/6 = 0.00		
n3	0	0/6 = 0.00		
n4	3	3/6 = 0.50		
n5	0	0/6 = 0.00		

Edge Betweenness

- Edge Betweenness:
 - Let's assume 1 unit of "flow" will pass over all shortest paths btw any pair of nodes A and B.
 - If there are *k* shortest path btw A and B, then 1/k units of flow will go along each shortest path!
 - Betweenness of an edge is the total amount of flow it carries!

• Ch.o3 Strong and Weak Ties [NCM]