

2025年06月16日

小组成员:谢浩志_ZY2406222 黄星阳_ZY2406437

CONTENTS

01

背景与问题定义

02

研究现状与主要挑战

03

论文方法介绍

04

复现挑战与解决方法

05

实验结果与分析

背景与问题定义

口长时间序列预测的背景

- 数据难题:长时间序列通常具有跨度大、特征维度高、噪声干扰强等特点,增加了建模难度与预测不确定性。
- 模型难题:传统模型如RNN在长序列建模中易出现梯度消失或爆炸,难以捕捉长期依赖结构, 预测精度受限。

口问题形式化定义

- \triangleright 给定历史序列为 $X = x_1, x_2, ..., x_I \in \mathbb{R}^{I \times D}$,目标是预测未来序列 $Y = y_1, y_2, ..., y_O \in \mathbb{R}^{O \times D}$ 。
- ➤ 任务形式为Encoder-Decoder序列建模的过程,需要最小化预测值和真实值的误差,即

$$\min_{ heta} \mathcal{L}(heta) = rac{1}{O} \sum_{t=1}^O \|\hat{y}_{I+t} - y_{I+t}\|^2$$

研究现状与主要挑战

 $\alpha'_{2,3}$

 $b^2 = \sum \alpha'_{2,i} v^i$

 $\alpha'_{2,4}$

口时间序列相关研究

传统模型 (ARIMA): RNN-based模型: 难以 Transformer模型:

无法建模非线性关系

捕捉长期依赖

使用较为广泛

挑战1: 自注意力计算开销大 0.0 -0.5-1.0200 600 800 400

Self-attention

 $\alpha'_{2,1}$

挑战2: 难以捕捉季节/趋势特征

研究核心难点:降低计算成本、捕捉时序数据的全局结构特征

□ FEDformer模型结构与核心机制

- ▶ 核心结构1: 引入序列分解机制,将预测任务分解为趋势建模与季节建模【把握全局特征】;
- \triangleright 核心结构2:使用 Fourier / Wavelet 变换在频域执行注意力计算,减少复杂度至 O(L) 【加速】。

复现挑战与解决方法

口迁移适配主要问题

- ▶ **问题一:** 昇腾平台不支持 FFTWithSize, 频域模块无法运行
 - ➤ 迁移至 NVIDIA Tesla P100 显卡环 境执行;
- ▶ **问题二:** Grad 算子不支持复数
 - 将复数计算模块封装为实部/虚部 分离表示,规避反向传播问题;
- ▶ 问题三: 图模式支持有限
 - ➤ 整体采用 PYNATIVE 模式运行, 确保训练稳定性与模块兼容性。

```
def complex_mul(a_real, a_imag, b_real, b_imag, mode):
"""使用实数表示执行复数乘法"""
einsum = ops.Einsum(mode)
real = einsum((a_real, b_real)) - einsum((a_imag, b_imag))
imag = einsum((a_real, b_imag)) + einsum((a_imag, b_real))
return real, imag # 返回实部和虚部的实数张量
```

复数计算封装

```
def _set_device(self):
if self.args.use_gpu:
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", dev
    # context.set_context(mode=context.GRAPH_MODE, device_target="GPU", devi
    # context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend"
    print(f"Using GPU: {self.args.gpu}")
else:
    context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
    print("Using CPU")
```

运行模式设定

实验结果与分析

口实验设置与结果分析

> 实验设置:

- ➤ 对比模型: Transformer、Informer、Autoformer;
- ➤ 数据集: Electricity, Exchange, Traffic, Weather;
- ▶ 设置:预测步长为96,多变量预测任务;

> 结果分析:

- ➤ FEDformer在Exchange与Weather数据集表现领先, 针对**季节性趋势性数据预测效果良好**;
- ▶ 与原文结果存在差距。原因包括**平台差异、复数运 算近似**、动态图运行限制等;
- ▶ 总体趋势一致,验证了FEDformer频域建模在长序 列预测中的有效性与鲁棒性。

原始结果表

Methods	Metric	Electricity			Exchange			Traffic			Weather						
Methods	Metric	96	192	336	720	96	192	336	720	96	192	336	720	96	192	336	720
FEDformer-f		0.193 0.308										0.621 0.383	0.626 0.382				
FEDformer-w												0.570 0.323					
Autoformer												0.622 0.337					
Informer												0.777 0.420					
LogTrans												0.7337 0.408					
Reformer	MSE MAE												0.755 423		0.752 0.638		

复现结果表

方法	指标\数据集	Electricity	Exchange	Traffic	Weather
	MAE	0.830	1.418	0.911	1.580
Transformer	RMSE	1.014	1.784	1.315	2.066
	MAPE	3.238	12.247	5.847	25.460
	MAE	0.938	1.589	0.963	1.743
Informer	RMSE	1.133	1.954	1.353	2.233
	MAPE	5.320	9.693	7.462	31.488
Autoformer	MAE	1.698	0.278	1.941	2.379
	RMSE	2.016	0.385	2.265	3.797
	MAPE	13.925	1.691	25.638	87.032
	MAE	1.326	0.278	1.795	0.319
FEDformer	RMSE	1.562	0.386	2.101	0.501
	MAPE	10.921	1.699	24.045	18.864

实验验证结论:特定数据性能领先,与原框架实现有一定差异

[1]Box G E P, Jenkins G M. Some recent advances in forecasting and control[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1968, 17(2): 91-109.

[2]Box G E P, Pierce D A. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[J]. Journal of the American statistical Association, 1970, 65(332): 1509-1526.

[3]Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.

[4]Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.

[5]Salinas D, Flunkert V, Gasthaus J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J]. International journal of forecasting, 2020, 36(3): 1181-1191.

[6]Qin Y, Song D, Chen H, et al. A dual-stage attention-based recurrent neural network for time series prediction[J]. arXiv preprint arXiv:1704.02971, 2017.

[7]Sen R, Yu H F, Dhillon I S. Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting[J]. Advances in neural information processing systems, 2019, 32.

[8] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.

[9]Beltagy I, Peters M E, Cohan A. Longformer: The long-document transformer[J]. arXiv preprint arXiv:2004.05150, 2020.

[10]Li S, Jin X, Xuan Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting [J]. Advances in neural information processing systems, 2019, 32.

[11]Zhu Z, Soricut R. H-transformer-1d: Fast one-dimensional hierarchical attention for sequences[J]. arXiv preprint arXiv:2107.11906, 2021.

[12]Zhou H, Zhang S, Peng J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2021, 35(12): 11106-11115.

[13] Wu H, Xu J, Wang J, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting [J]. Advances in neural information processing systems, 2021, 34: 22419-22430.

[14] Wang S, Li B Z, Khabsa M, et al. Linformer: Self-attention with linear complexity[J]. arXiv preprint arXiv:2006.04768, 2020.

[15]Ma X, Kong X, Wang S, et al. Luna: Linear unified nested attention[J]. Advances in Neural Information Processing Systems, 2021, 34: 2441-2453.

[16]Xiong Y, Zeng Z, Chakraborty R, et al. Nyströmformer: A nyström-based algorithm for approximating self-attention[C]//Proceedings of the AAAI conference on artificial intelligence. 2021, 35(16): 14138-14148.

[17] Choromanski K, Likhosherstov V, Dohan D, et al. Rethinking attention with performers [J]. arXiv preprint arXiv:2009.14794, 2020.

[18] Mathieu M, Henaff M, LeCun Y. Fast training of convolutional networks through ffts[J]. arXiv preprint arXiv:1312.5851, 2013.

[19]Wen Q, He K, Sun L, et al. RobustPeriod: Robust time-frequency mining for multiple periodicity detection [C]//Proceedings of the 2021 international conference on management of data. 2021: 2328-2337.

[20]Li Z, Kovachki N, Azizzadenesheli K, et al. Fourier neural operator for parametric partial differential equations[J]. arXiv preprint arXiv:2010.08895, 2020.

[21]Gupta G, Xiao X, Bogdan P. Multiwavelet-based operator learning for differential equations[J]. Advances in neural information processing systems, 2021, 34: 24048-24062.

[22] Rahimi A, Recht B. Random features for large-scale kernel machines [J]. Advances in neural information processing systems, 2007, 20.

[23] Rawat A S, Chen J, Yu F X X, et al. Sampled softmax with random fourier features [J]. Advances in Neural Information Processing Systems, 2019, 32.

[24] Lee-Thorp J, Ainslie J, Eckstein I, et al. Fnet: Mixing tokens with fourier transforms [J]. arXiv preprint arXiv:2105.03824, 2021.

Thanks!

艰苦朴素勤奋好学全面发展勇于创新

2025年06月16日

小组成员:谢浩志_ZY2406222 黄星阳_ZY2406437