Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA) *Universitat Politècnica de València*

Bloque Temático 2: Gestión de Procesos

Unidad Temática 4
Políticas de Planificación de Procesos

Objetivos

- Comprender la necesidad de que el Sistema
 Operativo esté dotado con un módulo de planificación de CPU
- Exponer los posibles criterios a optimizar para seleccionar un planificador adecuado
- Estudiar los distintos algoritmos de planificación de CPU

- Concepto de Planificación
- Criterios de Planificación
- Algoritmos de Planificación
 - Algoritmo FCFS
 - Algoritmo SJF
 - Algoritmo SRTF
 - Algoritmo RR
- Planificación Múltiples Colas

Bibliografía

A. Silberschatz, P. B. Galvin. "Sistemas Operativos". 7ª ed.
 Capítulo 5

- Concepto de Planificación
- Criterios de Planificación
- Algoritmos de Planificación
 - Algoritmo FCFS
 - Algoritmo SJF
 - Algoritmo SRTF
 - Algoritmo RR
- Planificación Múltiples Colas

Concepto de Planificación

Concepto de Planificación Recurso reutilizable en serie: Unicamente puedo atender a un proceso en cada instante de tiempo. Cuando finalice este proceso atenderé a otro. ¡Cuántos procesos esperando CPU! ¿Cuándo podremos utilizar la CPU? ¿Por cuánto tiempo podré utilizarla? P(b P(d P(c P(a) Vecesito Necesito Necesito Necesito Negesito

- Escasez de recursos: Muchos procesos compitiendo por un único recurso
- El Sistema Operativo tiene que aplicar una política para asignar recursos

Planificadores a Corto y Largo Plazo

Planificador: Elemento del sistema operativo que determina a qué proceso se le asigna un determinado recurso (p. e. CPU) en cada instante de tiempo, de acuerdo con alguna política

Concepto de Planificación

Planificadores a Corto, Medio y Largo Plazo

Medio Plazo: Se encarga de controlar qué procesos, de entre todos los iniciados deben estar en memoria y qué otros deben estar en el espacio de intercambio

Corto Plazo: Selecciona un proceso de la cola de procesos preparados para ejecución y le asigna la CPU.

- Tipos de Procesos: la vida activa de un proceso es una sucesión de ráfagas de CPU y ráfagas de E/S
 - Procesos Limitados por CPU: Invierte la mayor parte de su tiempo en efectuar cálculos (ej. Cálculo numérico)
 - Procesos Limitados por E/S: Emplea más tiempo en realizar E/S que en realizar cálculo (procesos interactivos)

Duración de ráfagas de CPU

Estudios estadísticos muestran que la mayoría de los procesos tienen ráfagas cortas de CPU, combinadas con sus ráfagas de E/S

- Gran número de ráfagas de CPU de corta duración
- Pequeño número de ráfagas de CPU de larga duración.

- Concepto de Planificación
- Criterios de Planificación
- Algoritmos de Planificación
 - Algoritmo FCFS
 - Algoritmo SJF
 - Algoritmo SRTF
 - Algoritmo RR
- Planificación Múltiples Colas

- ¿Cómo planificar según el tipo de sistema ?
 - Utilización de CPU: Mantener la CPU tan ocupada como sea posible.

Tiempo_recurso_ocupado / Tiempo_total

 Tasa de rendimiento: Maximizar el número de tareas procesadas por unidad de tiempo.

Número_de_procesos_terminados / Tiempo_total

 Tiempo de retorno: Tiempo transcurrido entre la llegada de un proceso y su finalización.

Tiempo de salida - Tiempo de entrada = \sum TCPU + \sum TE/S + \sum TColas

- Tiempo de espera: Tiempo que un proceso está en la cola de procesos preparados.
- Tiempo de respuesta: Tiempo que transcurre desde que se lanza un proceso hasta que la CPU comienza a ejecutar su primera instrucción.
- Equidad: Garantizar que cada proceso obtiene la proporción justa de CPU. Es decir, que los procesos sean tratados de manera igualitaria. El extremo opuesto a equidad sería inanición

La **multiprogramación** en sí misma supone una mejora de muchos de los criterios de planificación respecto a la ejecución secuencial

 La multiprogramación en sí misma supone una mejora de muchos de los criterios de planificación respecto a la ejecución secuencial

- Concepto de Planificación
- Criterios de Planificación
- Algoritmos de Planificación
 - Algoritmo FCFS
 - Algoritmo SJF
 - Algoritmo SRTF
 - Algoritmo RR
- Planificación Múltiples Colas

Planificador a Corto Plazo

- Objetivo: Decidir a qué proceso de los que están en la cola de procesos preparados se le asignará <u>la CPU</u>
- Se ejecuta cuando
 - la CPU se encuentra ociosa

CPU ociosa cuando:

- -Finaliza proceso
- -El proceso solicita E/S

- Políticas de Planificación: No Expulsiva / Expulsiva
 - No Expulsiva o No Apropiativa ("Non preemptive"):
 - » el proceso que está en CPU la abandona voluntariamente (ej. FCFS)
 - Menos cambios de contexto, posible acaparamiento de CPU, más equidad (Ej. Windows 3.11)
 - Expulsiva o Apropiativa ("Preemptive"):
 - » el planificador puede desalojar al proceso que está en CPU
 - Necesaria para implementar tiempo compartido y tiempo real: Unix, Windows NT/XP, Mac OS X

FCFS: First-Come First-Served

– SJF: Shortest-Job-First

- SRTF: Shortest-Remaining-Time-First
- RR: Round-Robin o por Turno Rotatorio EXPULSIVO
- Prioridades
 - No expulsivo /Expulsivo ("Preemptive")
 - Estáticos / Dinámicos
- Planificación con Múltiples Colas

- Planificación FCFS (First-Come, First-Served)
 - No Expulsivo: Cuando un proceso tiene asignada la CPU la mantiene hasta fin o E/S
 - La CPU es asignada a los procesos por Orden de Llegada a la cola de preparados
 - Ventajas: Es fácil de implementar
 - Inconvenientes:
 - No optimiza tiempo de espera
 - **Efecto convoy**: trabajos largos retrasan a cortos
 - No adecuado para sistemas interactivos

Proceso	Instante de Ilegada	Ráfaga CPU
P1	0	24
P2	0	3
P3	0	3

Caso 1) Orden de llegada P1, P2, P3

Tiempo medio de espera:

$$(0 + 24 + 27) / 3 = 17$$

Caso 2) Orden de llegada P2, P3, P1

Tiempo medio de espera : (6 + 0 + 3) / 3 = 3

SJF (Shortest-Job-First)

- Se asocia a cada trabajo el tiempo de la siguiente ráfaga de CPU.
- Se asigna la CPU al trabajo con menor tiempo asociado.
- No expulsivo

Procesos	Instante de llegada	Ráfaga CPU
P1	0	7
P2	2	4
P3	4	1
P4	5	4

Instante Llegada

Tiempo de espera medio: (0 + 6 + 3 + 7) / 4 = 4

- SRTF (Shortest-Remaining-Time-First)
 - La CPU es asignada al proceso que le queda menos tiempo para finalizar ráfaga
 - Expulsivo/Apropiativo
 - Ventajas: Optimiza la media de tiempo de espera
 - Inconvenientes:

Diagrama de Gantt

- Predecir la duración del siguiente intervalo de CPU
- Posibilidad de inanición a trabajos largos

Procesos	Instante Llegada	Ráfaga CPU
P1	0	7
P2	2	4
P3	4	1
P4	5	4

SRTF (Shortest-Remaining-Time-First)

- La CPU es asignada al proceso que le queda menos tiempo para finalizar ráfaga
- Expulsivo/Apropiativo
- Ventajas: Optimiza la media de tiempo de espera
- Inconvenientes:
 - Predecir la duración del siguiente intervalo de CPU
 - Posibilidad de inanición a trabajos largos

Procesos	Instante Llegada	Ráfaga CPU
P1	0	7
P2	2	4
P3	4	1
P4	5	4

Planificación por Prioridades (Expulsivo)

 Se asocia a cada proceso un número (entero), llamado prioridad, de acuerdo con algún criterio

Se asigna la CPU al trabajo con mayor prioridad (normalmente,

Cronograma por procesos

Tiempo medio de espera: (9 + 1 + 0 + 2) / 4 = 3

Planificación por Prioridades (Expulsivo)

 Se asocia a cada proceso un número (entero), llamado prioridad, de acuerdo con algún criterio

Se asigna la CPU al trabajo con mayor prioridad (normalmente,

Planificación por Prioridades (No Expulsivo)

 Se asocia a cada proceso un número (entero), llamado prioridad, de acuerdo con algún criterio.

Se asigna la CPU al trabajo con mayor prioridad (normalmente,

menor número).

		,		Procesos	Instante Llegada	Ráfaga CPU	Prioridad	Menos	
				P1	0	7	15	Prioritario	J
				P2	2	4	10		
Diagrama de Gantt			P3	4	1	5	Mas		
_				P4	5	4	10	Prioritario	
(P1)	(P2)	(P3)	(P4)						
	P1			P3	P2		P4		
b	2	4	5	7 8		12		16	

Cronograma por procesos

Planificación por Prioridades (No Expulsivo)

Algoritmos de Planificación

 Se asocia a cada proceso un número (entero), llamado prioridad, de acuerdo con algún criterio.

Se asigna la CPU al trabajo con mayor prioridad (normalmente,

manor númera)

mend	or numer	0).							
		,		Procesos	Instante Llegada	Ráfaga CPU	Prioridad	Men	
				P1	0	7	15	Priorit	ario
				P2	2	4	10		
Diagrama de Gantt			P3	4	1	5	Ma	s	
•		(50)	(5.4)	P4	5	4	10	Priorit	ario
(P1)	(P2)	(P3)	(P4)						
	P1			P3	P2		P4		
				7 0		12			
U	2	4	5	7 8		12		16	
			P2 P4			Croņo	grama por	proces	SOS
P1									
_								\longrightarrow	
P2 }								\longrightarrow	
P3 		P2	P3P4						
T D1								─	
P1				Tioms	⁰ 4	ocnora:	(0 + 6 + 3 +	7)//	- 1
				Hellipo I	neulo de	espera.	(0 + 0 + 3 +	7	– 4 Pág. 27

Round-Robin (RR) o Planificación Circular

- A cada proceso se le asigna un tiempo de CPU o "quantum"
- Si la ráfaga de CPU es mayor que "quantum", entonces el proceso es expulsado de la CPU y vuelve a la cola de preparados
- Si hay n procesos en preparados, cada uno obtiene 1/n del tiempo de la CPU en intervalos de q unidades

Cronograma por procesos

Tiempo medio de espera: (14 + 4 + 15) / 3 = 11

- Concepto de Planificación
- Criterios de Planificación
- Algoritmos de Planificación
 - Algoritmo FCFS
 - Algoritmo SJF
 - Algoritmo SRTF
 - Algoritmo RR
- Planificación Múltiples Colas

Varias colas de procesos preparados

- Cada cola está gestionada con una política de planificación
- Necesaria una planificación entre colas
 - Prioridades expulsivas
 - Prioridades basadas en el % de uso de CPU

Planificación Múltiples Colas

Múltiples Colas con Realimentación

- Parámetros
 - Número de colas.
 - Algoritmo de cada cola
 - Prioridad de cada cola.
 - Método de promoción de un proceso.
 - Método de degradación de un proceso.
 - Método para determinar la cola de entrada de un proceso.

