Zusätzliche Tabellen zur Masterarbeit 'Implementierung und Evaluation von Verfahren zur robusten Laufzeitberechnung in Java'

1	Bere	echnungstabellen des Kolmogoroff-Smirnov-Test	2
	1.1	Vergleich der Verfahren 1 und 2	. 2
	1.2	Vergleich der Verfahren 3 und 1	. 38
	1.3	Vergleich der Verfahren 3 und 2	50

1 Berechnungstabellen des Kolmogoroff-Smirnov-Test

1.1 Vergleich der Verfahren 1 und 2

Abbildung 1: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 100x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 2: arraylist:

Abbildung 3: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,379		0,1	0	0,1	0,1	-0,1
2		0,4316	0,1	0,1	0	0	0
3		0,7218	0,1	0,2	0,1	-0,1	0,1
4		1,0445	0,1	0,3	0,2	-0,2	0,2
5	1,546		0,2	0,3	0,1	-0,1	0,1
6	1,899		0,3	0,3	0	0	0
7	1,941		0,4	0,3	0,1	0,1	-0,1
8	2,014		0,5	0,3	0,2	0,2	-0,2
9	2,025		0,6	0,3	0,3	0,3	-0,3
10	2,072		0,7	0,3	0,4	0,4	-0,4
11		2,2029	0,7	0,4	0,3	0,3	-0,3
12	2,225		0,8	0,4	0,4	0,4	-0,4
13		2,5706	0,8	0,5	0,3	0,3	-0,3
14		2,9109	0,8	0,6	0,2	0,2	-0,2
15		3,4288	0,8	0,7	0,1	0,1	-0,1
16		4,5246	0,8	0,8	0	0	0
17		5,09	0,8	0,9	0,1	-0,1	0,1
18	5,096		0,9	0,9	0	0	0
19	5,154		1	0,9	0,1	0,1	-0,1
20	,	7,5568	1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,01		0,1	0	0,1	0,1	-0,1
2	0,03		0,2	0	0,2	0,2	-0,2
3	0,113		0,3	0	0,3	0,3	-0,3
4	0,139		0,4	0	0,4	0,4	-0,4
5	0,18		0,5	0	0,5	0,5	-0,5
6	0,181		0,6	0	0,6	0,6	-0,6
7	0,243		0,7	0	0,7	0,7	-0,7
8	0,373		0,8	0	0,8	0,8	-0,8
9	0,44		0,9	0	0,9	0,9	-0,9
10	0,585		1	0	1	1	-1
11		0,9556	1	0,1	0,9	0,9	-0,9
12		1,1108	1	0,2	0,8	0,8	-0,8
13		1,3666	1	0,3	0,7	0,7	-0,7
14		1,5126	1	0,4	0,6	0,6	-0,6
15		1,9819	1	0,5	0,5	0,5	-0,5
16		2,1435	1	0,6	0,4	0,4	-0,4
17		2,3884	1	0,7	0,3	0,3	-0,3
18		2,6991	1	0,8	0,2	0,2	-0,2
19		2,9393	1	0,9	0,1	0,1	-0,1
20		4,3409	1	1	0	0	0

Abbildung 4: path:

Abbildung 5: hash:

					0 -	1				
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2
1	0,035		0,1	0	0,1	0,1	-0,1	1	0,051	
2		0,0439	0,1	0,1	0	0	0	2	0,133	
3	0,073		0,2	0,1	0,1	0,1	-0,1	3		0,1915
4	0,073		0,3	0,1	0,2	0,2	-0,2	4	0,384	
5	0,114		0,4	0,1	0,3	0,3	-0,3	5	0,714	
6	0,134		0,5	0,1	0,4	0,4	-0,4	6		0,7379
7	0,221		0,6	0,1	0,5	0,5	-0,5	7		0,7455
8	0,238		0,7	0,1	0,6	0,6	-0,6	8	0,914	
9	0,257		0,8	0,1	0,7	0,7	-0,7	9	1,185	
10	0,262		0,9	0,1	0,8	0,8	-0,8	10	1,416	
11	0,554		1	0,1	0,9	0,9	-0,9	11	1,941	
12		1,708	1	0,2	0,8	0,8	-0,8	12		2,4281
13		6,3083	1	0,3	0,7	0,7	-0,7	13		2,6281
14		7,2778	1	0,4	0,6	0,6	-0,6	14	2,826	
15		7,3734	1	0,5	0,5	0,5	-0,5	15	3,221	
16		9,6157	1	0,6	0,4	0,4	-0,4	16		3,2826
17		10,307	1	0,7	0,3	0,3	-0,3	17		4,8323
18		11,3894	1	0,8	0,2	0,2	-0,2	18		6,0485
19		20,0709	1	0,9	0,1	0,1	-0,1	19		9,023
20		32,0877	1	1	0	0	0	20		12,0468

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,051		0,1	0	0,1	0,1	-0,1
2	0,133		0,2	0	0,2	0,2	-0,2
3		0,1915	0,2	0,1	0,1	0,1	-0,1
4	0,384		0,3	0,1	0,2	0,2	-0,2
5	0,714		0,4	0,1	0,3	0,3	-0,3
6		0,7379	0,4	0,2	0,2	0,2	-0,2
7		0,7455	0,4	0,3	0,1	0,1	-0,1
8	0,914		0,5	0,3	0,2	0,2	-0,2
9	1,185		0,6	0,3	0,3	0,3	-0,3
10	1,416		0,7	0,3	0,4	0,4	-0,4
11	1,941		0,8	0,3	0,5	0,5	-0,5
12		2,4281	0,8	0,4	0,4	0,4	-0,4
13		2,6281	0,8	0,5	0,3	0,3	-0,3
14	2,826		0,9	0,5	0,4	0,4	-0,4
15	3,221		1	0,5	0,5	0,5	-0,5
16		3,2826	1	0,6	0,4	0,4	-0,4
17		4,8323	1	0,7	0,3	0,3	-0,3
18		6,0485	1	0,8	0,2	0,2	-0,2
19		9,023	1	0,9	0,1	0,1	-0,1
20		12,0468	1	1	0	0	0

Abbildung 6: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 100x10 anhand der Standardabweichung

Abbildung 7: arraylist:

					,		
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	24		0,1	0	0,1	0,1	-0,1
2	40		0,2	0	0,2	0,2	-0,2
3	46		0,3	0	0,3	0,3	-0,3
4	46		0,4	0	0,4	0,4	-0,4
5	61		0,5	0	0,5	0,5	-0,5
6	164		0,6	0	0,6	0,6	-0,6
7		204	0,6	0,1	0,5	0,5	-0,5
8	1374		0,7	0,1	0,6	0,6	-0,6
9		2072	0,7	0,2	0,5	0,5	-0,5
10		2142	0,7	0,3	0,4	0,4	-0,4
11	2188		0,8	0,3	0,5	0,5	-0,5
12	2794		0,9	0,3	0,6	0,6	-0,6
13	2853		1	0,3	0,7	0,7	-0,7
14		3245	1	0,4	0,6	0,6	-0,6
15		3252	1	0,5	0,5	0,5	-0,5
16		3401	1	0,6	0,4	0,4	-0,4
17		7950	1	0,7	0,3	0,3	-0,3
18		8109	1	0,8	0,2	0,2	-0,2
19		9046	1	0,9	0,1	0,1	-0,1
20		9536	1	1	0	0	0

Abbildung 8: object:

			~	~~~	•	object.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	98109		0,1	0	0,1	0,1	-0,1
2	101860		0,2	0	0,2	0,2	-0,2
3		118184	0,2	0,1	0,1	0,1	-0,1
4	127420		0,3	0,1	0,2	0,2	-0,2
5	133410		0,4	0,1	0,3	0,3	-0,3
6	138633		0,5	0,1	0,4	0,4	-0,4
7	147376		0,6	0,1	0,5	0,5	-0,5
8	155757		0,7	0,1	0,6	0,6	-0,6
9	164941		0,8	0,1	0,7	0,7	-0,7
10	174152		0,9	0,1	0,8	0,8	-0,8
11	178798		1	0,1	0,9	0,9	-0,9
12		527891	1	0,2	0,8	0,8	-0,8
13		755595	1	0,3	0,7	0,7	-0,7
14		979631	1	0,4	0,6	0,6	-0,6
15		1357698	1	0,5	0,5	0,5	-0,5
16		1710719	1	0,6	0,4	0,4	-0,4
17		1757278	1	0,7	0,3	0,3	-0,3
18		1827363	1	0,8	0,2	0,2	-0,2
19		1860987	1	0,9	0,1	0,1	-0,1
20		1939330	1	1	0	0	0

Abbildung 9: path:

Abbildung 10: hash:

					0	1		TISSHAAIIS TO. Hasii.							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	21		0,1	0	0,1	0,1	-0,1	1	587		0,1	0	0,1	0,1	-0,1
2	27		0,2	0	0,2	0,2	-0,2	2	2916		0,2	0	0,2	0,2	-0,2
3	40		0,3	0	0,3	0,3	-0,3	3	3027		0,3	0	0,3	0,3	-0,3
4	54		0,4	0	0,4	0,4	-0,4	4	3135		0,4	0	0,4	0,4	-0,4
5	72		0,5	0	0,5	0,5	-0,5	5	3825		0,5	0	0,5	0,5	-0,5
6	81		0,6	0	0,6	0,6	-0,6	6	3951		0,6	0	0,6	0,6	-0,6
7	85		0,7	0	0,7	0,7	-0,7	7	3987		0,7	0	0,7	0,7	-0,7
8	93		0,8	0	0,8	0,8	-0,8	8	4400		0,8	0	0,8	0,8	-0,8
9	97		0,9	0	0,9	0,9	-0,9	9	4474		0,9	0	0,9	0,9	-0,9
10	163		1	0	1	1	-1	10	4557		1	0	1	1	-1
11		6348	1	0,1	0,9	0,9	-0,9	11		12814	1	0,1	0,9	0,9	-0,9
12		9758	1	0,2	0,8	0,8	-0,8	12		17541	1	0,2	0,8	0,8	-0,8
13		10423	1	0,3	0,7	0,7	-0,7	13		19639	1	0,3	0,7	0,7	-0,7
14		10424	1	0,4	0,6	0,6	-0,6	14		23184	1	0,4	0,6	0,6	-0,6
15		10636	1	0,5	0,5	0,5	-0,5	15		24859	1	0,5	0,5	0,5	-0,5
16		10658	1	0,6	0,4	0,4	-0,4	16		25955	1	0,6	0,4	0,4	-0,4
17		10696	1	0,7	0,3	0,3	-0,3	17		26342	1	0,7	0,3	0,3	-0,3
18		10907	1	0,8	0,2	0,2	-0,2	18		26342	1	0,8	0,2	0,2	-0,2
19		10968	1	0,9	0,1	0,1	-0,1	19		26641	1	0,9	0,1	0,1	-0,1
20		11463	1	1	Ó	Ó	Ó	20		27359	1	1	0	0	0

Abbildung 11: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 100x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 12: arraylist:

Abbildung 13: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	
1		0,2758	0	0,1	0,1	-0,1	0,1	
2		0,2784	0	0,2	0,2	-0,2	0,2	
3	0,379		0,1	0,2	0,1	-0,1	0,1	
4		0,6216	0,1	0,3	0,2	-0,2	0,2	
5		1,1185	0,1	0,4	0,3	-0,3	0,3	
6		1,3634	0,1	0,5	0,4	-0,4	0,4	
7		1,5434	0,1	0,6	0,5	-0,5	0,5	
8	1,546		0,2	0,6	0,4	-0,4	0,4	
9	1,899		0,3	0,6	0,3	-0,3	0,3	
10	1,941		0,4	0,6	0,2	-0,2	0,2	
11		1,9643	0,4	0,7	0,3	-0,3	0,3	
12	2,014		0,5	0,7	0,2	-0,2	0,2	
13	2,025		0,6	0,7	0,1	-0,1	0,1	
14	2,072		0,7	0,7	0	0	0	
15	2,225		0,8	0,7	0,1	0,1	-0,1	
16		2,4039	0,8	0,8	0	0	0	
17		2,953	0,8	0,9	0,1	-0,1	0,1	
18		3,1467	0,8	1	0,2	-0,2	0,2	
19	5,096		0,9	1	0,1	-0,1	0,1	
20	5,154		1	1	0	0	0	

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,01		0,1	0	0,1	0,1	-0,1
2	0,03		0,2	0	0,2	0,2	-0,2
3	0,113		0,3	0	0,3	0,3	-0,3
4	0,139		0,4	0	0,4	0,4	-0,4
5		0,1548	0,4	0,1	0,3	0,3	-0,3
6	0,18		0,5	0,1	0,4	0,4	-0,4
7	0,181		0,6	0,1	0,5	0,5	-0,5
8	0,243		0,7	0,1	0,6	0,6	-0,6
9	0,373		0,8	0,1	0,7	0,7	-0,7
10	0,44		0,9	0,1	0,8	0,8	-0,8
11		0,4486	0,9	0,2	0,7	0,7	-0,7
12		0,506	0,9	0,3	0,6	0,6	-0,6
13	0,585		1	0,3	0,7	0,7	-0,7
14		0,6527	1	0,4	0,6	0,6	-0,6
15		0,7785	1	0,5	0,5	0,5	-0,5
16		1,0283	1	0,6	0,4	0,4	-0,4
17		1,0975	1	0,7	0,3	0,3	-0,3
18		1,3312	1	0,8	0,2	0,2	-0,2
19		1,727	1	0,9	0,1	0,1	-0,1
20		2,8055	1	1	0	0	0

Abbildung 14: path:

Abbildung 15: hash:

						-									
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0074	0	0,1	0,1	-0,1	0,1	1	0,051		0,1	0	0,1	0,1	-0,1
2	0,035		0,1	0,1	0	0	0	2		0,1115	0,1	0,1	0	0	0
3	0,073		0,2	0,1	0,1	0,1	-0,1	3	0,133		0,2	0,1	0,1	0,1	-0,1
4	0,073		0,3	0,1	0,2	0,2	-0,2	4	0,384		0,3	0,1	0,2	0,2	-0,2
5	0,114		0,4	0,1	0,3	0,3	-0,3	5		0,4062	0,3	0,2	0,1	0,1	-0,1
6	0,134		0,5	0,1	0,4	0,4	-0,4	6	0,714		0,4	0,2	0,2	0,2	-0,2
7	0,221		0,6	0,1	0,5	0,5	-0,5	7		0,9095	0,4	0,3	0,1	0,1	-0,1
8	0,238		0,7	0,1	0,6	0,6	-0,6	8	0,914		0,5	0,3	0,2	0,2	-0,2
9	0,257		0,8	0,1	0,7	0,7	-0,7	9	1,185		0,6	0,3	0,3	0,3	-0,3
10	0,262		0,9	0,1	0,8	0,8	-0,8	10	1,416		0,7	0,3	0,4	0,4	-0,4
11	0,554		1	0,1	0,9	0,9	-0,9	11	İ	1,4504	0,7	0,4	0,3	0,3	-0,3
12		0,7985	1	0,2	0,8	0,8	-0,8	12	İ	1,6892	0,7	0,5	0,2	0,2	-0,2
13		1,6312	1	0,3	0,7	0,7	-0,7	13	1,941		0,8	0,5	0,3	0,3	-0,3
14		2,7785	1	0,4	0,6	0,6	-0,6	14		2,3684	0,8	0,6	0,2	0,2	-0,2
15		2,8008	1	0,5	0,5	0,5	-0,5	15		2,4997	0,8	0,7	0,1	0,1	-0,1
16		3,4438	1	0,6	0,4	0,4	-0,4	16		2,6129	0,8	0,8	0	0	0
17		4,6004	1	0,7	0,3	0,3	-0,3	17	2,826		0,9	0,8	0,1	0,1	-0,1
18		6,8821	1	0,8	0,2	0,2	-0,2	18		2,9395	0,9	0,9	0	0	0
19		7,3354	1	0,9	0,1	0,1	-0,1	19	3,221		1	0,9	0,1	0,1	-0,1
20		8,5882	1	1	0	0	0	20		7,0872	1	1	0	0	0

Abbildung 16: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 100x100 anhand der Standardabweichung

Abbildung 17: arraylist:

				0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	24		0,1	0	0,1	0,1	-0,1
2	40		0,2	0	0,2	0,2	-0,2
3	46		0,3	0	0,3	0,3	-0,3
4	46		0,4	0	0,4	0,4	-0,4
5	61		0,5	0	0,5	0,5	-0,5
6	164		0,6	0	0,6	0,6	-0,6
7	1374		0,7	0	0,7	0,7	-0,7
8	2188		0,8	0	0,8	0,8	-0,8
9	2794		0,9	0	0,9	0,9	-0,9
10	2853		1	0	1	1	-1
11		5151	1	0,1	0,9	0,9	-0,9
12		5543	1	0,2	0,8	0,8	-0,8
13		6533	1	0,3	0,7	0,7	-0,7
14		6928	1	0,4	0,6	0,6	-0,6
15		7454	1	0,5	0,5	0,5	-0,5
16		7518	1	0,6	0,4	0,4	-0,4
17		8203	1	0,7	0,3	0,3	-0,3
18		8574	1	0,8	0,2	0,2	-0,2
19		8668	1	0,9	0,1	0,1	-0,1
20		9132	1	1	0	0	0

Abbildung 18: object:

(x_i)

Abbildung 19: path:

Abbildung 20: hash:

	<u> </u>															
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	21		0,1	0	0,1	0,1	-0,1		1	581		0,1	0	0,1	0,1	-0,1
2	27		0,2	0	0,2	0,2	-0,2		2	2916		0,2	0	0,2	0,2	-0,2
3	40		0,3	0	0,3	0,3	-0,3		3	3027		0,3	0	0,3	0,3	-0,3
4	54		0,4	0	0,4	0,4	-0,4		4	3135		0,4	0	0,4	0,4	-0,4
5	72		0,5	0	0,5	0,5	-0,5		5	3825		0,5	0	0,5	0,5	-0,5
6	81		0,6	0	0,6	0,6	-0,6		6	3951		0,6	0	0,6	0,6	-0,6
7	85		0,7	0	0,7	0,7	-0,7		7	3987		0,7	0	0,7	0,7	-0,7
8	93		0,8	0	0,8	0,8	-0,8		8	4400		0,8	0	0,8	0,8	-0,8
9	97		0,9	0	0,9	0,9	-0,9		9	4474		0,9	0	0,9	0,9	-0,9
10	163		1	0	1	1	-1		10	4557		1	0	1	1	-1
11		10039	1	0,1	0,9	0,9	-0,9		11		22617	1	0,1	0,9	0,9	-0,9
12		10137	1	0,2	0,8	0,8	-0,8		12		24361	1	0,2	0,8	0,8	-0,8
13		10171	1	0,3	0,7	0,7	-0,7		13		25138	1	0,3	0,7	0,7	-0,7
14		10193	1	0,4	0,6	0,6	-0,6		14		25191	1	0,4	0,6	0,6	-0,6
15		10257	1	0,5	0,5	0,5	-0,5		15		25208	1	0,5	0,5	0,5	-0,5
16		10299	1	0,6	0,4	0,4	-0,4		16		25241	1	0,6	0,4	0,4	-0,4
17		10324	1	0,7	0,3	0,3	-0,3		17		25366	1	0,7	0,3	0,3	-0,3
18		10367	1	0,8	0,2	0,2	-0,2		18		25708	1	0,8	0,2	0,2	-0,2
19		10378	1	0,9	0,1	0,1	-0,1		19		25932	1	0,9	0,1	0,1	-0,1
20		10412	1	1	Ó	0	0	L	20		26388	1	1	0	0	0

Abbildung 21: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 1000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 22: arraylist:

Abbildung 23: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	
1		0,0222	0	0,1	0,1	-0,1	0,1	
2		0,0513	0	0,2	0,2	-0,2	0,2	
3		0,0712	0	0,3	0,3	-0,3	0,3	
4		0,0886	0	0,4	0,4	-0,4	0,4	
5		0,1236	0	0,5	0,5	-0,5	0,5	
6		0,1645	0	0,6	0,6	-0,6	0,6	
7		0,1971	0	0,7	0,7	-0,7	0,7	
8		0,2088	0	0,8	0,8	-0,8	0,8	
9		0,2729	0	0,9	0,9	-0,9	0,9	
10		0,3044	0	1	1	-1	1	
11	0,379		0,1	1	0,9	-0,9	0,9	
12	1,546		0,2	1	0,8	-0,8	0,8	
13	1,899		0,3	1	0,7	-0,7	0,7	
14	1,941		0,4	1	0,6	-0,6	0,6	
15	2,014		0,5	1	0,5	-0,5	0,5	
16	2,025		0,6	1	0,4	-0,4	0,4	
17	2,072		0,7	1	0,3	-0,3	0,3	
18	2,225		0,8	1	0,2	-0,2	0,2	
19	5,096		0,9	1	0,1	-0,1	0,1	
20	5,154		1	1	0	0	0	

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,01		0,1	0	0,1	0,1	-0,1
2	0,03		0,2	0	0,2	0,2	-0,2
3	0,113		0,3	0	0,3	0,3	-0,3
4		0,1383	0,3	0,1	0,2	0,2	-0,2
5	0,139		0,4	0,1	0,3	0,3	-0,3
6		0,1482	0,4	0,2	0,2	0,2	-0,2
7	0,18		0,5	0,2	0,3	0,3	-0,3
8	0,181		0,6	0,2	0,4	0,4	-0,4
9		0,1987	0,6	0,3	0,3	0,3	-0,3
10	0,243		0,7	0,3	0,4	0,4	-0,4
11		0,2614	0,7	0,4	0,3	0,3	-0,3
12		0,2716	0,7	0,5	0,2	0,2	-0,2
13		0,3533	0,7	0,6	0,1	0,1	-0,1
14	0,373		0,8	0,6	0,2	0,2	-0,2
15		0,4266	0,8	0,7	0,1	0,1	-0,1
16	0,44		0,9	0,7	0,2	0,2	-0,2
17		0,4989	0,9	0,8	0,1	0,1	-0,1
18		0,5616	0,9	0,9	0	0	0
19	0,585		1	0,9	0,1	0,1	-0,1
20		2,0189	1	1	0	0	0

Abbildung 24: path:

Abbildung 25: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0221	0	0,1	0,1	-0,1	0,1	1		0,0053	0	0,1	0,1	-0,1	0,1
2		0,0302	0	0,2	0,2	-0,2	0,2	2	0,051		0,1	0,1	0	0	0
3	0,035		0,1	0,2	0,1	-0,1	0,1	3	0,133		0,2	0,1	0,1	0,1	-0,1
4		0,0548	0,1	0,3	0,2	-0,2	0,2	4	0,384		0,3	0,1	0,2	0,2	-0,2
5		0,0711	0,1	0,4	0,3	-0,3	0,3	5		0,4327	0,3	0,2	0,1	0,1	-0,1
6		0,0711	0,1	0,5	0,4	-0,4	0,4	6		0,7133	0,3	0,3	0	0	0
7	0,073		0,2	0,5	0,3	-0,3	0,3	7	0,714		0,4	0,3	0,1	0,1	-0,1
8	0,073		0,3	0,5	0,2	-0,2	0,2	8	0,914		0,5	0,3	0,2	0,2	-0,2
9		0,1005	0,3	0,6	0,3	-0,3	0,3	9	1,185		0,6	0,3	0,3	0,3	-0,3
10		0,1005	0,3	0,7	0,4	-0,4	0,4	10	1,416		0,7	0,3	0,4	0,4	-0,4
11		0,1038	0,3	0,8	0,5	-0,5	0,5	11	1,941		0,8	0,3	0,5	0,5	-0,5
12		0,112	0,3	0,9	0,6	-0,6	0,6	12	2,826		0,9	0,3	0,6	0,6	-0,6
13	0,114		0,4	0,9	0,5	-0,5	0,5	13		3,0831	0,9	0,4	0,5	0,5	-0,5
14	0,134		0,5	0,9	0,4	-0,4	0,4	14		3,1413	0,9	0,5	0,4	0,4	-0,4
15	0,221		0,6	0,9	0,3	-0,3	0,3	15	3,221		1	0,5	0,5	0,5	-0,5
16	0,238		0,7	0,9	0,2	-0,2	0,2	16		3,3666	1	0,6	0,4	0,4	-0,4
17	0,257		0,8	0,9	0,1	-0,1	0,1	17		4,0972	1	0,7	0,3	0,3	-0,3
18	0,262		0,9	0,9	0	0	0	18		4,389	1	0,8	0,2	0,2	-0,2
19		0,264	0,9	1	0,1	-0,1	0,1	19		4,411	1	0,9	0,1	0,1	-0,1
20	0,554		1	1	0	0	0	20		5,1635	1	1	0	0	0

Abbildung 26: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 1000x10 anhand der Standardabweichung

Abbildung 27: arraylist:

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	24		0,1	0	0,1	0,1	-0,1
2		32	0,1	0,1	0	0	0
3	40		0,2	0,1	0,1	0,1	-0,1
4	46		0,3	0,1	0,2	0,2	-0,2
5	46		0,4	0,1	0,3	0,3	-0,3
6	61		0,5	0,1	0,4	0,4	-0,4
7		67	0,5	0,2	0,3	0,3	-0,3
8		71	0,5	0,3	0,2	0,2	-0,2
9		73	0,5	0,4	0,1	0,1	-0,1
10		76	0,5	0,5	0	0	0
11		88	0,5	0,6	0,1	-0,1	0,1
12		101	0,5	0,7	0,2	-0,2	0,2
13		103	0,5	0,8	0,3	-0,3	0,3
14	İ	104	0,5	0,9	0,4	-0,4	0,4
15		105	0,5	1	0,5	-0,5	0,5
16	164		0,6	1	0,4	-0,4	0,4
17	1374		0,7	1	0,3	-0,3	0,3
18	2188		0,8	1	0,2	-0,2	0,2
19	2794		0,9	1	0,1	-0,1	0,1
20	2853		1	1	0	0	0

Abbildung 28: object:

	Tibblidang 20. object.													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$							
1	98109		0,1	0	0,1	0,1	-0,1							
2	101860		0,2	0	0,2	0,2	-0,2							
3		109243	0,2	0,1	0,1	0,1	-0,1							
4	127420		0,3	0,1	0,2	0,2	-0,2							
5	133410		0,4	0,1	0,3	0,3	-0,3							
6	138633		0,5	0,1	0,4	0,4	-0,4							
7	147376		0,6	0,1	0,5	0,5	-0,5							
8	155757		0,7	0,1	0,6	0,6	-0,6							
9		161526	0,7	0,2	0,5	0,5	-0,5							
10	164941		0,8	0,2	0,6	0,6	-0,6							
11	174152		0,9	0,2	0,7	0,7	-0,7							
12		176794	0,9	0,3	0,6	0,6	-0,6							
13	178798		1	0,3	0,7	0,7	-0,7							
14		180506	1	0,4	0,6	0,6	-0,6							
15		195945	1	0,5	0,5	0,5	-0,5							
16		218741	1	0,6	0,4	0,4	-0,4							
17		222857	1	0,7	0,3	0,3	-0,3							
18		259391	1	0,8	0,2	0,2	-0,2							
19		275117	1	0,9	0,1	0,1	-0,1							
20		475548	1	1	0	0	0							

Abbildung 29: path:

					_		
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	21		0,1	0	0,1	0,1	-0,1
2	27		0,2	0	0,2	0,2	-0,2
3		32	0,2	0,1	0,1	0,1	-0,1
4		38	0,2	0,2	0	0	0
5		40	0,2	0,3	0,1	-0,1	0,1
6	40		0,3	0,3	0	0	0
7		48	0,3	0,4	0,1	-0,1	0,1
8		49	0,3	0,5	0,2	-0,2	0,2
9		50	0,3	0,6	0,3	-0,3	0,3
10	54		0,4	0,6	0,2	-0,2	0,2
11		58	0,4	0,7	0,3	-0,3	0,3
12		58	0,4	0,8	0,4	-0,4	0,4
13		59	0,4	0,9	0,5	-0,5	0,5
14	72		0,5	0,9	0,4	-0,4	0,4
15		76	0,5	1	0,5	-0,5	0,5
16	81		0,6	1	0,4	-0,4	0,4
17	85		0,7	1	0,3	-0,3	0,3
18	93		0,8	1	0,2	-0,2	0,2
19	97		0,9	1	0,1	-0,1	0,1
20	163		1	1	0	0	0

Abbildung 30: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$							
1	587		0,1	0	0,1	0,1	-0,1							
2		11024	0,1	0,1	0	0	0							
3		11271	0,1	0,2	0,1	-0,1	0,1							
4		11287	0,1	0,3	0,2	-0,2	0,2							
5		11533	0,1	0,4	0,3	-0,3	0,3							
6		14861	0,1	0,5	0,4	-0,4	0,4							
7		15027	0,1	0,6	0,5	-0,5	0,5							
8		15355	0,1	0,7	0,6	-0,6	0,6							
9		16144	0,1	0,8	0,7	-0,7	0,7							
10		16756	0,1	0,9	0,8	-0,8	0,8							
11		16868	0,1	1	0,9	-0,9	0,9							
12	2916		0,2	1	0,8	-0,8	0,8							
13	3027		0,3	1	0,7	-0,7	0,7							
14	3135		0,4	1	0,6	-0,6	0,6							
15	3825		0,5	1	0,5	-0,5	0,5							
16	3951		0,6	1	0,4	-0,4	0,4							
17	3987		0,7	1	0,3	-0,3	0,3							
18	4400		0,8	1	0,2	-0,2	0,2							
19	4474		0,9	1	0,1	-0,1	0,1							
20	4557		1	1	0	0	0							

Abbildung 31: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 1000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 32: arraylist:

Abbildung 33: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R
1		0.0146	0	0,1	0,1	-0,1	0,1	1
2		0.0146	0	0,2	0,2	-0,2	0,2	2
3		0.0321	0	0,3	0.3	-0,3	0,3	3
4		0.0438	ő	0,4	0,4	-0,4	0,4	4
5		0.0438	ő	0.5	0.5	-0,5	0,5	5
6		0.0613	0	0,6	0.6	-0,6	0,6	6
7		0.0729	ő	0.7	0,7	-0,7	0,7	7
8		0.0846	0	0,8	0.8	-0,8	0,8	8
9		0.0963	ő	0.9	0.9	-0,9	0,9	g
10		0,1021	ő	1	1	-1	1	10
11	0,379	-, -	0,1	1	0.9	-0,9	0,9	1
12	1,546		0,2	1	0,8	-0,8	0,8	1:
13	1,899		0,3	1	0,7	-0,7	0,7	1
14	1,941		0,4	1	0,6	-0,6	0,6	1.
15	2,014		0,5	1	0.5	-0,5	0,5	1.
16	2,025		0,6	1	0,4	-0,4	0,4	1
17	2,072		0,7	1	0.3	-0,3	0,3	1
18	2,225		0,8	1	0,2	-0,2	0,2	1
19	5,096		0,9	1	0,1	-0,1	0,1	1
20	5,154		1	1	0	0	0	2
	0,101						<u> </u>	

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,01		0,1	0	0,1	0,1	-0,1
2	0,03		0,2	0	0,2	0,2	-0,2
3		0,0364	0,2	0,1	0,1	0,1	-0,1
4		0,0954	0,2	0,2	0	0	0
5		0,1053	0,2	0,3	0,1	-0,1	0,1
6	0,113		0,3	0,3	0	0	0
7	0,139		0,4	0,3	0,1	0,1	-0,1
8	0,18		0,5	0,3	0,2	0,2	-0,2
9	0,181		0,6	0,3	0,3	0,3	-0,3
10	0,243		0,7	0,3	0,4	0,4	-0,4
11	0,373		0,8	0,3	0,5	0,5	-0,5
12		0,4024	0,8	0,4	0,4	0,4	-0,4
13		0,4211	0,8	0,5	0,3	0,3	-0,3
14	0,44		0,9	0,5	0,4	0,4	-0,4
15		0,5389	0,9	0,6	0,3	0,3	-0,3
16	0,585		1	0,6	0,4	0,4	-0,4
17		0,7582	1	0,7	0,3	0,3	-0,3
18		1,0105	1	0,8	0,2	0,2	-0,2
19		1,4387	1	0,9	0,1	0,1	-0,1
20		1,719	1	1	0	0	0

Abbildung 34: path:

Abbildung 35: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R	x1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0	0	0,1	0,1	-0,1	0,1	1		0,0198	0	0,1	0,1	-0,1	0,1
2		0,0082	0	0,2	0,2	-0,2	0,2		0,0	1	0,1	0,1	0	0	0
3		0,0164	0	0,3	0,3	-0,3	0,3	3	0,13	3	0,2	0,1	0,1	0,1	-0,1
4		0,0164	0	0,4	0,4	-0,4	0,4			0,228	0,2	0,2	0	0	0
5		0,0164	0	0,5	0,5	-0,5	0,5	5		0,2302	0,2	0,3	0,1	-0,1	0,1
6		0,0245	0	0,6	0,6	-0,6	0,6	6	0,38	4	0,3	0,3	0	0	0
7		0,0327	0	0,7	0,7	-0,7	0,7	7		0,5346	0,3	0,4	0,1	-0,1	0,1
8	0,035		0,1	0,7	0,6	-0,6	0,6	8		0,5944	0,3	0,5	0,2	-0,2	0,2
9		0,0409	0,1	0,8	0,7	-0,7	0,7	9		0,7087	0,3	0,6	0,3	-0,3	0,3
10		0,0409	0,1	0,9	0,8	-0,8	0,8	10	0,7	4	0,4	0,6	0,2	-0,2	0,2
11		0,0654	0,1	1	0,9	-0,9	0,9	11		0,8422	0,4	0,7	0,3	-0,3	0,3
12	0,073		0,2	1	0,8	-0,8	0,8	12	:	0,8679	0,4	0,8	0,4	-0,4	0,4
13	0,073		0,3	1	0,7	-0,7	0,7	13	0,9	4	0,5	0,8	0,3	-0,3	0,3
14	0,114		0,4	1	0,6	-0,6	0,6	14	1,18	5	0,6	0,8	0,2	-0,2	0,2
15	0,134		0,5	1	0,5	-0,5	0,5	15	1,4	.6	0,7	0,8	0,1	-0,1	0,1
16	0,221		0,6	1	0,4	-0,4	0,4	16	1,9	1	0,8	0,8	0	0	0
17	0,238		0,7	1	0,3	-0,3	0,3	17	'	2,031	0,8	0,9	0,1	-0,1	0,1
18	0,257		0,8	1	0,2	-0,2	0,2	18	:	2,1144	0,8	1	0,2	-0,2	0,2
19	0,262		0,9	1	0,1	-0,1	0,1	19	2,85	26	0,9	1	0,1	-0,1	0,1
20	0,554		1	1	0	0	0	20	3,25	1	1	1	0	0	0

Abbildung 36: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 1000x100 anhand der Standardabweichung

Abbildung 37: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	24		0,1	0	0,1	0,1	-0,1
2	40		0,2	0	0,2	0,2	-0,2
3	46		0,3	0	0,3	0,3	-0,3
4	46		0,4	0	0,4	0,4	-0,4
5	61		0,5	0	0,5	0,5	-0,5
6		89	0,5	0,1	0,4	0,4	-0,4
7		92	0,5	0,2	0,3	0,3	-0,3
8		93	0,5	0,3	0,2	0,2	-0,2
9		94	0,5	0,4	0,1	0,1	-0,1
10		95	0,5	0,5	0	0	0
11		95	0,5	0,6	0,1	-0,1	0,1
12		97	0,5	0,7	0,2	-0,2	0,2
13		98	0,5	0,8	0,3	-0,3	0,3
14		102	0,5	0,9	0,4	-0,4	0,4
15		102	0,5	1	0,5	-0,5	0,5
16	164		0,6	1	0,4	-0,4	0,4
17	1374		0,7	1	0,3	-0,3	0,3
18	2188		0,8	1	0,2	-0,2	0,2
19	2794		0,9	1	0,1	-0,1	0,1
20	2853		1	1	0	0	0

Abbildung 38: object:

		110	ona	ung	J O.	object.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	98109		0,1	0	0,1	0,1	-0,1
2	101860		0,2	0	0,2	0,2	-0,2
3	127420		0,3	0	0,3	0,3	-0,3
4	133410		0,4	0	0,4	0,4	-0,4
5	138633		0,5	0	0,5	0,5	-0,5
6	147376		0,6	0	0,6	0,6	-0,6
7	155757		0,7	0	0,7	0,7	-0,7
8	164941		0,8	0	0,8	0,8	-0,8
9	174152		0,9	0	0,9	0,9	-0,9
10	178798		1	0	1	1	-1
11		270903	1	0,1	0,9	0,9	-0,9
12		407862	1	0,2	0,8	0,8	-0,8
13		423541	1	0,3	0,7	0,7	-0,7
14		458101	1	0,4	0,6	0,6	-0,6
15		530258	1	0,5	0,5	0,5	-0,5
16		535709	1	0,6	0,4	0,4	-0,4
17		537134	1	0,7	0,3	0,3	-0,3
18		550884	1	0,8	0,2	0,2	-0,2
19		559912	1	0,9	0,1	0,1	-0,1
20		623875	1	1	0	0	0

Abbildung 39: path:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	21		0,1	0	0,1	0,1	-0,1
2	27		0,2	0	0,2	0,2	-0,2
3	40		0,3	0	0,3	0,3	-0,3
4		44	0,3	0,1	0,2	0,2	-0,2
5		44	0,3	0,2	0,1	0,1	-0,1
6		49	0,3	0,3	0	0	0
7		49	0,3	0,4	0,1	-0,1	0,1
8		50	0,3	0,5	0,2	-0,2	0,2
9		50	0,3	0,6	0,3	-0,3	0,3
10		52	0,3	0,7	0,4	-0,4	0,4
11		52	0,3	0,8	0,5	-0,5	0,5
12	54		0,4	0,8	0,4	-0,4	0,4
13		55	0,4	0,9	0,5	-0,5	0,5
14		57	0,4	1	0,6	-0,6	0,6
15	72		0,5	1	0,5	-0,5	0,5
16	81		0,6	1	0,4	-0,4	0,4
17	85		0,7	1	0,3	-0,3	0,3
18	93		0,8	1	0,2	-0,2	0,2
19	97		0,9	1	0,1	-0,1	0,1
20	163		1	1	0	0	0

Abbildung 40: hash:

		_		iaaii	0 -	O. 1100011.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	581		0,1	0	0,1	0,1	-0,1
2	2916		0,2	0	0,2	0,2	-0,2
3	3027		0,3	0	0,3	0,3	-0,3
4	3135		0,4	0	0,4	0,4	-0,4
5	3825		0,5	0	0,5	0,5	-0,5
6	3951		0,6	0	0,6	0,6	-0,6
7	3987		0,7	0	0,7	0,7	-0,7
8	4400		0,8	0	0,8	0,8	-0,8
9	4474		0,9	0	0,9	0,9	-0,9
10	4557		1	0	1	1	-1
11		7605	1	0,1	0,9	0,9	-0,9
12		10007	1	0,2	0,8	0,8	-0,8
13		10165	1	0,3	0,7	0,7	-0,7
14		10454	1	0,4	0,6	0,6	-0,6
15		10555	1	0,5	0,5	0,5	-0,5
16		11007	1	0,6	0,4	0,4	-0,4
17		11344	1	0,7	0,3	0,3	-0,3
18		11419	1	0,8	0,2	0,2	-0,2
19		11825	1	0,9	0,1	0,1	-0,1
20		12718	1	1	0	0	0

Abbildung 41: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 2000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 42: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i
1		0,0145	0	0,1	0,1	-0,1	0,1	1
2		0,0203	0	0,2	0,2	-0,2	0,2	2
3		0,0261	0	0,3	0,3	-0,3	0,3	3
4		0,0261	0	0,4	0,4	-0,4	0,4	4
5		0,0435	0	0,5	0,5	-0,5	0,5	5
6		0,0551	0	0,6	0,6	-0,6	0,6	6
7		0,0667	0	0,7	0,7	-0,7	0,7	7
8		0,0784	0	0,8	0,8	-0,8	0,8	8
9		0,1074	0	0,9	0,9	-0,9	0,9	9
10		0,1828	0	1	1	-1	1	10
11	0,379		0,1	1	0,9	-0,9	0,9	11
12	1,546		0,2	1	0,8	-0,8	0,8	12
13	1,899		0,3	1	0,7	-0,7	0,7	13
14	1,941		0,4	1	0,6	-0,6	0,6	14
15	2,014		0,5	1	0,5	-0,5	0,5	15
16	2,025		0,6	1	0,4	-0,4	0,4	16
17	2,072		0,7	1	0,3	-0,3	0,3	17
18	2,225		0,8	1	0,2	-0,2	0,2	18
19	5,096		0,9	1	0,1	-0,1	0,1	19
20	5,154		1	1	0	0	0	20

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0003	0	0,1	0,1	-0,1	0,1
2		0,0013	0	0,2	0,2	-0,2	0,2
3	0,01		0,1	0,2	0,1	-0,1	0,1
4	0,03		0,2	0,2	0	0	0
5		0,0979	0,2	0,3	0,1	-0,1	0,1
6	0,113		0,3	0,3	0	0	0
7	0,139		0,4	0,3	0,1	0,1	-0,1
8		0,1617	0,4	0,4	0	0	0
9	0,18		0,5	0,4	0,1	0,1	-0,1
10	0,181		0,6	0,4	0,2	0,2	-0,2
11		0,2208	0,6	0,5	0,1	0,1	-0,1
12	0,243		0,7	0,5	0,2	0,2	-0,2
13	0,373		0,8	0,5	0,3	0,3	-0,3
14		0,386	0,8	0,6	0,2	0,2	-0,2
15		0,4214	0,8	0,7	0,1	0,1	-0,1
16	0,44		0,9	0,7	0,2	0,2	-0,2
17		0,4727	0,9	0,8	0,1	0,1	-0,1
18		0,5206	0,9	0,9	0	0	0
19		0,5499	0,9	1	0,1	-0,1	0,1
20	0,585		1	1	0	0	0

Abbildung 44: path:

Abbildung 45: hash:

					_				_							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	l I	l_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0008	0	0,1	0,1	-0,1	0,1	1	1		0,0057	0	0,1	0,1	-0,1	0,1
2		0,0155	0	0,2	0,2	-0,2	0,2		2		0,0261	0	0,2	0,2	-0,2	0,2
3		0,0237	0	0,3	0,3	-0,3	0,3	3	3	0,051		0,1	0,2	0,1	-0,1	0,1
4		0,0237	0	0,4	0,4	-0,4	0,4	4	1		0,0515	0,1	0,3	0,2	-0,2	0,2
5		0,0335	0	0,5	0,5	-0,5	0,5	5	5		0,0709	0,1	0,4	0,3	-0,3	0,3
6	0,035		0,1	0,5	0,4	-0,4	0,4	6	3		0,0912	0,1	0,5	0,4	-0,4	0,4
7		0,0498	0,1	0,6	0,5	-0,5	0,5	7	7	0,133		0,2	0,5	0,3	-0,3	0,3
8	0,073		0,2	0,6	0,4	-0,4	0,4	8	3		0,1532	0,2	0,6	0,4	-0,4	0,4
9	0,073		0,3	0,6	0,3	-0,3	0,3	6	9		0,1659	0,2	0,7	0,5	-0,5	0,5
10		0,0825	0,3	0,7	0,4	-0,4	0,4	1	0		0,1929	0,2	0,8	0,6	-0,6	0,6
11		0,089	0,3	0,8	0,5	-0,5	0,5	1	1		0,2361	0,2	0,9	0,7	-0,7	0,7
12	0,114		0,4	0,8	0,4	-0,4	0,4	1	2		0,368	0,2	1	0,8	-0,8	0,8
13	0,134		0,5	0,8	0,3	-0,3	0,3	1	3	0,384		0,3	1	0,7	-0,7	0,7
14		0,1478	0,5	0,9	0,4	-0,4	0,4	1	4	0,714		0,4	1	0,6	-0,6	0,6
15		0,1626	0,5	1	0,5	-0,5	0,5	1	5	0,914		0,5	1	0,5	-0,5	0,5
16	0,221		0,6	1	0,4	-0,4	0,4	1	6	1,185		0,6	1	0,4	-0,4	0,4
17	0,238		0,7	1	0,3	-0,3	0,3	1	7	1,416		0,7	1	0,3	-0,3	0,3
18	0,257		0,8	1	0,2	-0,2	0,2	1	8	1,941		0,8	1	0,2	-0,2	0,2
19	0,262		0,9	1	0,1	-0,1	0,1	1	9	2,826		0,9	1	0,1	-0,1	0,1
20	0,554		1	1	0	0	0	2	0	3,221		1	1	0	0	0

Abbildung 46: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 2000x10 anhand der Standardabweichung

Abbildung 47: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	24		0,1	0	0,1	0,1	-0,1
2		26	0,1	0,1	0	0	0
3		27	0,1	0,2	0,1	-0,1	0,1
4		33	0,1	0,3	0,2	-0,2	0,2
5		35	0,1	0,4	0,3	-0,3	0,3
6		36	0,1	0,5	0,4	-0,4	0,4
7		36	0,1	0,6	0,5	-0,5	0,5
8		40	0,1	0,7	0,6	-0,6	0,6
9		40	0,1	0,8	0,7	-0,7	0,7
10	40		0,2	0,8	0,6	-0,6	0,6
11	46		0,3	0,8	0,5	-0,5	0,5
12	46		0,4	0,8	0,4	-0,4	0,4
13		47	0,4	0,9	0,5	-0,5	0,5
14		53	0,4	1	0,6	-0,6	0,6
15	61		0,5	1	0,5	-0,5	0,5
16	164		0,6	1	0,4	-0,4	0,4
17	1374		0,7	1	0,3	-0,3	0,3
18	2188		0,8	1	0,2	-0,2	0,2
19	2794		0,9	1	0,1	-0,1	0,1
20	2853		1	1	0	0	0

Abbildung 48: object:

		AD	biid	ung	40.	object.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	98109		0,1	0	0,1	0,1	-0,1
2	101860		0,2	0	0,2	0,2	-0,2
3	127420		0,3	0	0,3	0,3	-0,3
4	133410		0,4	0	0,4	0,4	-0,4
5	138633		0,5	0	0,5	0,5	-0,5
6	147376		0,6	0	0,6	0,6	-0,6
7	155757		0,7	0	0,7	0,7	-0,7
8	164941		0,8	0	0,8	0,8	-0,8
9		165301	0,8	0,1	0,7	0,7	-0,7
10	174152		0,9	0,1	0,8	0,8	-0,8
11	178798		1	0,1	0,9	0,9	-0,9
12		183234	1	0,2	0,8	0,8	-0,8
13		183634	1	0,3	0,7	0,7	-0,7
14		188716	1	0,4	0,6	0,6	-0,6
15		198905	1	0,5	0,5	0,5	-0,5
16		208518	1	0,6	0,4	0,4	-0,4
17		225359	1	0,7	0,3	0,3	-0,3
18		255022	1	0,8	0,2	0,2	-0,2
19		261698	1	0,9	0,1	0,1	-0,1
20		273035	1	1	0	0	0

Abbildung 49: path:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	21		0,1	0	0,1	0,1	-0,1
2	27		0,2	0	0,2	0,2	-0,2
3		33	0,2	0,1	0,1	0,1	-0,1
4		35	0,2	0,2	0	0	0
5		38	0,2	0,3	0,1	-0,1	0,1
6	40		0,3	0,3	0	0	0
7		43	0,3	0,4	0,1	-0,1	0,1
8		45	0,3	0,5	0,2	-0,2	0,2
9		47	0,3	0,6	0,3	-0,3	0,3
10		47	0,3	0,7	0,4	-0,4	0,4
11		49	0,3	0,8	0,5	-0,5	0,5
12	54		0,4	0,8	0,4	-0,4	0,4
13		55	0,4	0,9	0,5	-0,5	0,5
14		58	0,4	1	0,6	-0,6	0,6
15	72		0,5	1	0,5	-0,5	0,5
16	81		0,6	1	0,4	-0,4	0,4
17	85		0,7	1	0,3	-0,3	0,3
18	93		0,8	1	0,2	-0,2	0,2
19	97		0,9	1	0,1	-0,1	0,1
20	169		1 1	1 1	۱ ۵	0	

Abbildung 50: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	201	156	0	0,1	0,1	-0.1	0,1
			1				,
2		185	0	0,2	0,2	-0,2	0,2
3		202	0	0,3	0,3	-0,3	0,3
4		206	0	0,4	0,4	-0,4	0,4
5		214	0	0,5	0,5	-0,5	0,5
6		265	0	0,6	0,6	-0,6	0,6
7		442	0	0,7	0,7	-0,7	0,7
8		448	0	0,8	0,8	-0,8	0,8
9		490	0	0,9	0,9	-0,9	0,9
10		510	0	1	1	-1	1
11	581		0,1	1	0,9	-0,9	0,9
12	2916		0,2	1	0,8	-0,8	0,8
13	3027		0,3	1	0,7	-0,7	0,7
14	3135		0,4	1	0,6	-0,6	0,6
15	3825		0,5	1	0,5	-0,5	0,5
16	3951		0,6	1	0,4	-0,4	0,4
17	3987		0,7	1	0,3	-0,3	0,3
18	4400		0,8	1	0,2	-0,2	0,2
19	4474		0,9	1	0,1	-0,1	0,1
20	4557		1	1	0	0	0

Abbildung 51: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 2000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 52: arraylist:

Abbildung 53: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	x_1
1		0,0029	0	0,1	0,1	-0,1	0,1	1	0,01
2		0,0029	0	0,2	0,2	-0,2	0,2	2	0,03
3		0,0087	0	0,3	0,3	-0,3	0,3	3	
4		0,0087	0	0,4	0,4	-0,4	0,4	4	
5		0,0087	0	0,5	0,5	-0,5	0,5	5	0,113
6		0,0145	0	0,6	0,6	-0,6	0,6	6	
7		0,0203	0	0,7	0,7	-0,7	0,7	7	0,139
8		0,0261	0	0,8	0,8	-0,8	0,8	8	
9		0,0319	0	0,9	0,9	-0,9	0,9	9	
10		0,0377	0	1	1	-1	1	10	0,18
11	0,379		0,1	1	0,9	-0,9	0,9	11	0,181
12	1,546		0,2	1	0,8	-0,8	0,8	12	0,243
13	1,899		0,3	1	0,7	-0,7	0,7	13	
14	1,941		0,4	1	0,6	-0,6	0,6	14	
15	2,014		0,5	1	0,5	-0,5	0,5	15	
16	2,025		0,6	1	0,4	-0,4	0,4	16	0,373
17	2,072		0,7	1	0,3	-0,3	0,3	17	
18	2,225		0,8	1	0,2	-0,2	0,2	18	0,44
19	5,096		0,9	1	0,1	-0,1	0,1	19	
20	5,154		1	1	0	0	0	20	$0,\!585$

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,01		0,1	0	0,1	0,1	-0,1
2	0,03		0,2	0	0,2	0,2	-0,2
3		0,0576	0,2	0,1	0,1	0,1	-0,1
4		0,0625	0,2	0,2	0	0	0
5	0,113		0,3	0,2	0,1	0,1	-0,1
6		0,1368	0,3	0,3	0	0	0
7	0,139		0,4	0,3	0,1	0,1	-0,1
8		0,1432	0,4	0,4	0	0	0
9		0,1514	0,4	0,5	0,1	-0,1	0,1
10	0,18		0,5	0,5	0	0	0
11	0,181		0,6	0,5	0,1	0,1	-0,1
12	0,243		0,7	0,5	0,2	0,2	-0,2
13		0,2489	0,7	0,6	0,1	0,1	-0,1
14		0,2509	0,7	0,7	0	0	0
15		0,2745	0,7	0,8	0,1	-0,1	0,1
16	0,373		0,8	0,8	0	0	0
17		0,423	0,8	0,9	0,1	-0,1	0,1
18	0,44		0,9	0,9	0	0	0
19		0,501	0,9	1	0,1	-0,1	0,1
20	0,585		1	1	0	0	0

Abbildung 54: path:

Abbildung 55: hash:

								_								
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R	i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0033	0	0,1	0,1	-0,1	0,1	1	.		0,0099	0	0,1	0,1	-0,1	0,1
2		0,0131	0	0,2	0,2	-0,2	0,2	2	:		0,0124	0	0,2	0,2	-0,2	0,2
3		0,0212	0	0,3	0,3	-0,3	0,3	3	:		0,0156	0	0,3	0,3	-0,3	0,3
4		0,0212	0	0,4	0,4	-0,4	0,4	4	.		0,0236	0	0,4	0,4	-0,4	0,4
5		0,0278	0	0,5	0,5	-0,5	0,5	5	;		0,0315	0	0,5	0,5	-0,5	0,5
6	0,035		0,1	0,5	0,4	-0,4	0,4	6	;		0,0322	0	0,6	0,6	-0,6	0,6
7		0,0359	0,1	0,6	0,5	-0,5	0,5	7	٠		0,0331	0	0,7	0,7	-0,7	0,7
8		0,0359	0,1	0,7	0,6	-0,6	0,6	8	;	0,051		0,1	0,7	0,6	-0,6	0,6
9		0,0376	0,1	0,8	0,7	-0,7	0,7	9)		0,0513	0,1	0,8	0,7	-0,7	0,7
10	0,073		0,2	0,8	0,6	-0,6	0,6	10	0		0,0522	0,1	0,9	0,8	-0,8	0,8
11	0,073		0,3	0,8	0,5	-0,5	0,5	1	1		0,0752	0,1	1	0,9	-0,9	0,9
12		0,0931	0,3	0,9	0,6	-0,6	0,6	1:	2	0,133		0,2	1	0,8	-0,8	0,8
13		0,1029	0,3	1	0,7	-0,7	0,7	1:	3	0,384		0,3	1	0,7	-0,7	0,7
14	0,114		0,4	1	0,6	-0,6	0,6	1.	4	0,714		0,4	1	0,6	-0,6	0,6
15	0,134		0,5	1	0,5	-0,5	0,5	1.	5	0,914		0,5	1	0,5	-0,5	0,5
16	0,221		0,6	1	0,4	-0,4	0,4	10	6	1,185		0,6	1	0,4	-0,4	0,4
17	0,238		0,7	1	0,3	-0,3	0,3	1	7	1,416		0,7	1	0,3	-0,3	0,3
18	0,257		0,8	1	0,2	-0,2	0,2	13	8	1,941		0,8	1	0,2	-0,2	0,2
19	0,262		0,9	1	0,1	-0,1	0,1	19	9	2,826		0,9	1	0,1	-0,1	0,1
20	0,554		1	1	0	0	0	20	0	3,221		1	1	0	0	0

Abbildung 56: Vergleich von Verfahren 1 in der Variante 10x3 und Verfahren 2 in der Variante 2000x100 anhand der Standardabweichung

Abbildung 57: arraylist:

R	$i x_1$	- 00 -	~				
		x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	24		0,1	0	0,1	0,1	-0,1
2		36	0,1	0,1	0	0	0
3		37	0,1	0,2	0,1	-0,1	0,1
4		37	0,1	0,3	0,2	-0,2	0,2
5		39	0,1	0,4	0,3	-0,3	0,3
6		39	0,1	0,5	0,4	-0,4	0,4
7		39	0,1	0,6	0,5	-0,5	0,5
8		40	0,1	0,7	0,6	-0,6	0,6
9	40		0,2	0,7	0,5	-0,5	0,5
1)	41	0,2	0,8	0,6	-0,6	0,6
1	L	42	0,2	0,9	0,7	-0,7	0,7
1:	2	42	0,2	1	0,8	-0,8	0,8
13	3 46		0,3	1	0,7	-0,7	0,7
1.	46		0,4	1	0,6	-0,6	0,6
1.	61		0,5	1	0,5	-0,5	0,5
1	6 164		0,6	1	0,4	-0,4	0,4
1	1374		0,7	1	0,3	-0,3	0,3
18	3 2188		0,8	1	0,2	-0,2	0,2
19	2794		0,9	1	0,1	-0,1	0,1
2	2853		1	1	0	0	0

Abbildung 58: object:

		110	biid	ung	00.	object.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	98109		0,1	0	0,1	0,1	-0,1
2	101860		0,2	0	0,2	0,2	-0,2
3	127420		0,3	0	0,3	0,3	-0,3
4	133410		0,4	0	0,4	0,4	-0,4
5	138633		0,5	0	0,5	0,5	-0,5
6		146978	0,5	0,1	0,4	0,4	-0,4
7	147376		0,6	0,1	0,5	0,5	-0,5
8	155757		0,7	0,1	0,6	0,6	-0,6
9	164941		0,8	0,1	0,7	0,7	-0,7
10		174097	0,8	0,2	0,6	0,6	-0,6
11	174152		0,9	0,2	0,7	0,7	-0,7
12	178798		1	0,2	0,8	0,8	-0,8
13		180973	1	0,3	0,7	0,7	-0,7
14		206058	1	0,4	0,6	0,6	-0,6
15		213603	1	0,5	0,5	0,5	-0,5
16		216820	1	0,6	0,4	0,4	-0,4
17		218240	1	0,7	0,3	0,3	-0,3
18		226513	1	0,8	0,2	0,2	-0,2
19		233701	1	0,9	0,1	0,1	-0,1
20		393136	1	1	0	0	0

Abbildung 59: path:

					0	5 5 1 E 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	21		0,1	0	0,1	0,1	-0,1
2	27		0,2	0	0,2	0,2	-0,2
3	40		0,3	0	0,3	0,3	-0,3
4		46	0,3	0,1	0,2	0,2	-0,2
5		48	0,3	0,2	0,1	0,1	-0,1
6		48	0,3	0,3	0	0	0
7		48	0,3	0,4	0,1	-0,1	0,1
8		51	0,3	0,5	0,2	-0,2	0,2
9		51	0,3	0,6	0,3	-0,3	0,3
10		52	0,3	0,7	0,4	-0,4	0,4
11	54		0,4	0,7	0,3	-0,3	0,3
12		55	0,4	0,8	0,4	-0,4	0,4
13		56	0,4	0,9	0,5	-0,5	0,5
14		60	0,4	1	0,6	-0,6	0,6
15	72		0,5	1	0,5	-0,5	0,5
16	81		0,6	1	0,4	-0,4	0,4
17	85		0,7	1	0,3	-0,3	0,3
18	93		0,8	1	0,2	-0,2	0,2
19	97		0,9	1	0,1	-0,1	0,1
20	163		1	1	0	0	0

Abbildung 60: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	w ₁	272	0	0,1	0,1	-0,1	0,1
2			1				
1		277	0	0,2	0,2	-0,2	0,2
3		281	0	0,3	0,3	-0,3	0,3
4		325	0	0,4	0,4	-0,4	0,4
5		330	0	0,5	0,5	-0,5	0,5
6		332	0	0,6	0,6	-0,6	0,6
7		355	0	0,7	0,7	-0,7	0,7
8		374	0	0,8	0,8	-0,8	0,8
9		496	0	0,9	0,9	-0,9	0,9
10		511	0	1	1	-1	1
11	587		0,1	1	0,9	-0,9	0,9
12	2916		0,2	1	0,8	-0,8	0,8
13	3027		0,3	1	0,7	-0,7	0,7
14	3135		0,4	1	0,6	-0,6	0,6
15	3825		0,5	1	0,5	-0,5	0,5
16	3951		0,6	1	0,4	-0,4	0,4
17	3987		0,7	1	0,3	-0,3	0,3
18	4400		0,8	1	0,2	-0,2	0,2
19	4474		0,9	1	0,1	-0,1	0,1
20	4557		1	1	0	0	0

Abbildung 61: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 100x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 62: arraylist:

Abbildung 63: object:

				_		· ·			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	Г
1	0,0992		0,1	0	0,1	0,1	-0,1	1	Г
2		0,4316	0,1	0,1	0	0	0	2	
3	0,4596		0,2	0,1	0,1	0,1	-0,1	3	
4		0,7218	0,2	0,2	0	0	0	4	
5	0,8618		0,3	0,2	0,1	0,1	-0,1	5	
6		1,0445	0,3	0,3	0	0	0	6	
7	1,2587		0,4	0,3	0,1	0,1	-0,1	7	
8	1,2639		0,5	0,3	0,2	0,2	-0,2	8	
9	1,3057		0,6	0,3	0,3	0,3	-0,3	9	
10	1,3893		0,7	0,3	0,4	0,4	-0,4	10	
11	1,5668		0,8	0,3	0,5	0,5	-0,5	11	
12		2,2029	0,8	0,4	0,4	0,4	-0,4	12	
13	2,2197		0,9	0,4	0,5	0,5	-0,5	13	
14	2,2876		1	0,4	0,6	0,6	-0,6	14	
15		2,5706	1	0,5	0,5	0,5	-0,5	15	
16		2,9109	1	0,6	0,4	0,4	-0,4	16	
17		3,4288	1	0,7	0,3	0,3	-0,3	17	
18		4,5246	1	0,8	0,2	0,2	-0,2	18	
19		5,09	1	0,9	0,1	0,1	-0,1	19	
20		7,5568	1	1	0	0	0	20	L

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,008		0,1	0	0,1	0,1	-0,1
2	0,0139		0,2	0	0,2	0,2	-0,2
3	0,0189		0,3	0	0,3	0,3	-0,3
4	0,1181		0,4	0	0,4	0,4	-0,4
5	0,1914		0,5	0	0,5	0,5	-0,5
6	0,2478		0,6	0	0,6	0,6	-0,6
7	0,2623		0,7	0	0,7	0,7	-0,7
8	0,3687		0,8	0	0,8	0,8	-0,8
9	0,4759		0,9	0	0,9	0,9	-0,9
10	0,761		1	0	1	1	-1
11		0,9556	1	0,1	0,9	0,9	-0,9
12		1,1108	1	0,2	0,8	0,8	-0,8
13		1,3666	1	0,3	0,7	0,7	-0,7
14		1,5126	1	0,4	0,6	0,6	-0,6
15		1,9819	1	0,5	0,5	0,5	-0,5
16		2,1435	1	0,6	0,4	0,4	-0,4
17		2,3884	1	0,7	0,3	0,3	-0,3
18		2,6991	1	0,8	0,2	0,2	-0,2
19		2,9393	1	0,9	0,1	0,1	-0,1
20		4,3409	1	1	0	0	0

Abbildung 64: path:

Abbildung 65: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	ÌΓ	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,0247		0,1	0	0,1	0,1	-0,1		1	0,1592		0,1	0	0,1	0,1	-0,1
2	0,0412		0,2	0	0,2	0,2	-0,2		2		0,1915	0,1	0,1	0	0	0
3		0,0439	0,2	0,1	0,1	0,1	-0,1		3	0,2796		0,2	0,1	0,1	0,1	-0,1
4	0,066		0,3	0,1	0,2	0,2	-0,2		4		0,7379	0,2	0,2	0	0	0
5	0,066		0,4	0,1	0,3	0,3	-0,3		5		0,7455	0,2	0,3	0,1	-0,1	0,1
6	0,0825		0,5	0,1	0,4	0,4	-0,4		6	0,9867		0,3	0,3	0	0	0
7	0,1072		0,6	0,1	0,5	0,5	-0,5		7	1,127		0,4	0,3	0,1	0,1	-0,1
8	0,1237		0,7	0,1	0,6	0,6	-0,6		8	1,5857		0,5	0,3	0,2	0,2	-0,2
9	0,1732		0,8	0,1	0,7	0,7	-0,7		9	1,7168		0,6	0,3	0,3	0,3	-0,3
10	0,2062		0,9	0,1	0,8	0,8	-0,8		10	2,1666		0,7	0,3	0,4	0,4	-0,4
11	0,3794		1	0,1	0,9	0,9	-0,9		11		2,4281	0,7	0,4	0,3	0,3	-0,3
12		1,708	1	0,2	0,8	0,8	-0,8		12	2,4665		0,8	0,4	0,4	0,4	-0,4
13		6,3083	1	0,3	0,7	0,7	-0,7		13		2,6281	0,8	0,5	0,3	0,3	-0,3
14		7,2778	1	0,4	0,6	0,6	-0,6		14	2,903		0,9	0,5	0,4	0,4	-0,4
15		7,3734	1	0,5	0,5	0,5	-0,5		15	2,9554		1	0,5	0,5	0,5	-0,5
16		9,6157	1	0,6	0,4	0,4	-0,4		16		3,2826	1	0,6	0,4	0,4	-0,4
17		10,307	1	0,7	0,3	0,3	-0,3		17		4,8323	1	0,7	0,3	0,3	-0,3
18		11,3894	1	0,8	0,2	0,2	-0,2		18		6,0485	1	0,8	0,2	0,2	-0,2
19		20,0709	1	0,9	0,1	0,1	-0,1		19		9,023	1	0,9	0,1	0,1	-0,1
20		32,0877	1	1	0	0	0		20		12,0468	1	1	0	0	0

Abbildung 66: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 100x10 anhand der Standardabweichung

Abbildung 67: arraylist:

			00110		٠	array moo.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	26		0,1	0	0,1	0,1	-0,1
2	36		0,2	0	0,2	0,2	-0,2
3	36		0,3	0	0,3	0,3	-0,3
4	148		0,4	0	0,4	0,4	-0,4
5		204	0,4	0,1	0,3	0,3	-0,3
6	381		0,5	0,1	0,4	0,4	-0,4
7	1034		0,6	0,1	0,5	0,5	-0,5
8	1477		0,7	0,1	0,6	0,6	-0,6
9	1685		0,8	0,1	0,7	0,7	-0,7
10	2019		0,9	0,1	0,8	0,8	-0,8
11		2072	0,9	0,2	0,7	0,7	-0,7
12		2142	0,9	0,3	0,6	0,6	-0,6
13	2227		1	0,3	0,7	0,7	-0,7
14		3245	1	0,4	0,6	0,6	-0,6
15		3252	1	0,5	0,5	0,5	-0,5
16		3401	1	0,6	0,4	0,4	-0,4
17		7950	1	0,7	0,3	0,3	-0,3
18		8109	1	0,8	0,2	0,2	-0,2
19		9046	1	0,9	0,1	0,1	-0,1
20		9536	1	1	0	0	0
						1	

Abbildung 68: object:

			oma	0		object.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	117631		0,1	0	0,1	0,1	-0,1
2	117641		0,2	0	0,2	0,2	-0,2
3		118184	0,2	0,1	0,1	0,1	-0,1
4	126139		0,3	0,1	0,2	0,2	-0,2
5	129314		0,4	0,1	0,3	0,3	-0,3
6	143587		0,5	0,1	0,4	0,4	-0,4
7	145793		0,6	0,1	0,5	0,5	-0,5
8	153783		0,7	0,1	0,6	0,6	-0,6
9	156602		0,8	0,1	0,7	0,7	-0,7
10	178319		0,9	0,1	0,8	0,8	-0,8
11	183014		1	0,1	0,9	0,9	-0,9
12		527891	1	0,2	0,8	0,8	-0,8
13		755595	1	0,3	0,7	0,7	-0,7
14		979631	1	0,4	0,6	0,6	-0,6
15		1357698	1	0,5	0,5	0,5	-0,5
16		1710719	1	0,6	0,4	0,4	-0,4
17		1757278	1	0,7	0,3	0,3	-0,3
18		1827363	1	0,8	0,2	0,2	-0,2
19		1860987	1	0,9	0,1	0,1	-0,1
20		1939330	1	1	0	0	0

Abbildung 69: path:

Abbildung 70: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	Γ
1	39		0,1	0	0,1	0,1	-0,1	1	1900		Γ
2	53		0,2	0	0,2	0,2	-0,2	2	3053		l
3	59		0,3	0	0,3	0,3	-0,3	3	3207		l
4	60		0,4	0	0,4	0,4	-0,4	4	3305		l
5	68		0,5	0	0,5	0,5	-0,5	5	3413		l
6	82		0,6	0	0,6	0,6	-0,6	6	3526		l
7	88		0,7	0	0,7	0,7	-0,7	7	3705		l
8	89		0,8	0	0,8	0,8	-0,8	8	4198		l
9	90		0,9	0	0,9	0,9	-0,9	9	4520		l
10	113		1	0	1	1	-1	10	4664		l
11		6348	1	0,1	0,9	0,9	-0,9	11		12814	l
12		9758	1	0,2	0,8	0,8	-0,8	12		17541	l
13		10423	1	0,3	0,7	0,7	-0,7	13		19639	l
14		10424	1	0,4	0,6	0,6	-0,6	14		23184	l
15		10636	1	0,5	0,5	0,5	-0,5	15		24859	l
16		10658	1	0,6	0,4	0,4	-0,4	16		25955	l
17		10696	1	0,7	0,3	0,3	-0,3	17		26342	
18		10907	1	0,8	0,2	0,2	-0,2	18		26342	
19		10968	1	0,9	0,1	0,1	-0,1	19		26641	
20		11463	1	1	0	0	0	20		27359	

					_		
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	1900		0,1	0	0,1	0,1	-0,1
2	3053		0,2	0	0,2	0,2	-0,2
3	3207		0,3	0	0,3	0,3	-0,3
4	3305		0,4	0	0,4	0,4	-0,4
5	3413		0,5	0	0,5	0,5	-0,5
6	3526		0,6	0	0,6	0,6	-0,6
7	3705		0,7	0	0,7	0,7	-0,7
8	4198		0,8	0	0,8	0,8	-0,8
9	4520		0,9	0	0,9	0,9	-0,9
10	4664		1	0	1	1	-1
11		12814	1	0,1	0,9	0,9	-0,9
12		17541	1	0,2	0,8	0,8	-0,8
13		19639	1	0,3	0,7	0,7	-0,7
14		23184	1	0,4	0,6	0,6	-0,6
15		24859	1	0,5	0,5	0,5	-0,5
16		25955	1	0,6	0,4	0,4	-0,4
17		26342	1	0,7	0,3	0,3	-0,3
18		26342	1	0,8	0,2	0,2	-0,2
19		26641	1	0,9	0,1	0,1	-0,1
20		27359	1	1	0	0	0

Abbildung 71: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 100x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 72: arraylist:

Abbildung 73: object:

				_					
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	з
1	0,0992		0,1	0	0,1	0,1	-0,1	1	0,0
2		0,2758	0,1	0,1	0	0	0	2	0,0
3		0,2784	0,1	0,2	0,1	-0,1	0,1	3	0,0
4	0,4596		0,2	0,2	0	0	0	4	0,1
5		0,6216	0,2	0,3	0,1	-0,1	0,1	5	
6	0,8618		0,3	0,3	0	0	0	6	0,1
7		1,1185	0,3	0,4	0,1	-0,1	0,1	7	0,2
8	1,2587		0,4	0,4	0	0	0	8	0,2
9	1,2639		0,5	0,4	0,1	0,1	-0,1	9	0,3
10	1,3057		0,6	0,4	0,2	0,2	-0,2	10	
11		1,3634	0,6	0,5	0,1	0,1	-0,1	11	0,4
12	1,3893		0,7	0,5	0,2	0,2	-0,2	12	
13		1,5434	0,7	0,6	0,1	0,1	-0,1	13	
14	1,5668		0,8	0,6	0,2	0,2	-0,2	14	0,7
15		1,9643	0,8	0,7	0,1	0,1	-0,1	15	
16	2,2197		0,9	0,7	0,2	0,2	-0,2	16	
17	2,2876		1	0,7	0,3	0,3	-0,3	17	
18		2,4039	1	0,8	0,2	0,2	-0,2	18	
19		2,953	1	0,9	0,1	0,1	-0,1	19	
20		3,1467	1	1	0	0	0	20	
			•		•				

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,008		0,1	0	0,1	0,1	-0,1
2	0,0139		0,2	0	0,2	0,2	-0,2
3	0,0189		0,3	0	0,3	0,3	-0,3
4	0,1181		0,4	0	0,4	0,4	-0,4
5		0,1548	0,4	0,1	0,3	0,3	-0,3
6	0,1914		0,5	0,1	0,4	0,4	-0,4
7	0,2478		0,6	0,1	0,5	0,5	-0,5
8	0,2623		0,7	0,1	0,6	0,6	-0,6
9	0,3687		0,8	0,1	0,7	0,7	-0,7
10		0,4486	0,8	0,2	0,6	0,6	-0,6
11	0,4759		0,9	0,2	0,7	0,7	-0,7
12		0,506	0,9	0,3	0,6	0,6	-0,6
13		0,6527	0,9	0,4	0,5	0,5	-0,5
14	0,761		1	0,4	0,6	0,6	-0,6
15		0,7785	1	0,5	0,5	0,5	-0,5
16		1,0283	1	0,6	0,4	0,4	-0,4
17		1,0975	1	0,7	0,3	0,3	-0,3
18		1,3312	1	0,8	0,2	0,2	-0,2
19		1,727	1	0,9	0,1	0,1	-0,1
20		2,8055	1	1	0	0	0

Abbildung 74: path:

Abbildung 75: hash:

		moondaing in patin.														
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0074	0	0,1	0,1	-0,1	0,1		1		0,1115	0	0,1	0,1	-0,1	0,1
2	0,0247		0,1	0,1	0	0	0	:	2	$0,\!1592$		0,1	0,1	0	0	0
3	0,0412		0,2	0,1	0,1	0,1	-0,1	;	3	0,2796		0,2	0,1	0,1	0,1	-0,1
4	0,066		0,3	0,1	0,2	0,2	-0,2	.	4		0,4062	0,2	0,2	0	0	0
5	0,066		0,4	0,1	0,3	0,3	-0,3	;	5		0,9095	0,2	0,3	0,1	-0,1	0,1
6	0,0825		0,5	0,1	0,4	0,4	-0,4		6	0,9867		0,3	0,3	0	0	0
7	0,1072		0,6	0,1	0,5	0,5	-0,5	'	7	1,127		0,4	0,3	0,1	0,1	-0,1
8	0,1237		0,7	0,1	0,6	0,6	-0,6	:	8		1,4504	0,4	0,4	0	0	0
9	0,1732		0,8	0,1	0,7	0,7	-0,7	!	9	1,5857		0,5	0,4	0,1	0,1	-0,1
10	0,2062		0,9	0,1	0,8	0,8	-0,8	1	10		1,6892	0,5	0,5	0	0	0
11	0,3794		1	0,1	0,9	0,9	-0,9	1	11	1,7168		0,6	0,5	0,1	0,1	-0,1
12		0,7985	1	0,2	0,8	0,8	-0,8	1	12	2,1666		0,7	0,5	0,2	0,2	-0,2
13		1,6312	1	0,3	0,7	0,7	-0,7	1	13		2,3684	0,7	0,6	0,1	0,1	-0,1
14		2,7785	1	0,4	0,6	0,6	-0,6	1	14	2,4665		0,8	0,6	0,2	0,2	-0,2
15		2,8008	1	0,5	0,5	0,5	-0,5	1	15		2,4997	0,8	0,7	0,1	0,1	-0,1
16		3,4438	1	0,6	0,4	0,4	-0,4	1	16		2,6129	0,8	0,8	0	0	0
17		4,6004	1	0,7	0,3	0,3	-0,3	1	17	2,903		0,9	0,8	0,1	0,1	-0,1
18		6,8821	1	0,8	0,2	0,2	-0,2	1	18		2,9395	0,9	0,9	0	0	0
19		7,3354	1	0,9	0,1	0,1	-0,1	1	19	2,9554		1	0,9	0,1	0,1	-0,1
20		8,5882	1	1	0	0	0		20		7,0872	1	1	0	0	0

Abbildung 76: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 100x100 anhand der Standardabweichung

Abbildung 77: arraylist:

				0		v	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	26		0,1	0	0,1	0,1	-0,1
2	36		0,2	0	0,2	0,2	-0,2
3	36		0,3	0	0,3	0,3	-0,3
4	148		0,4	0	0,4	0,4	-0,4
5	381		0,5	0	0,5	0,5	-0,5
6	1034		0,6	0	0,6	0,6	-0,6
7	1477		0,7	0	0,7	0,7	-0,7
8	1685		0,8	0	0,8	0,8	-0,8
9	2019		0,9	0	0,9	0,9	-0,9
10	2227		1	0	1	1	-1
11		5151	1	0,1	0,9	0,9	-0,9
12		5543	1	0,2	0,8	0,8	-0,8
13		6533	1	0,3	0,7	0,7	-0,7
14		6928	1	0,4	0,6	0,6	-0,6
15		7454	1	0,5	0,5	0,5	-0,5
16		7518	1	0,6	0,4	0,4	-0,4
17		8203	1	0,7	0,3	0,3	-0,3
18		8574	1	0,8	0,2	0,2	-0,2
19		8668	1	0,9	0,1	0,1	-0,1
20		9132	1	1	0	0	0

Abbildung 78: object:

				0		-	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	117631		0,1	0	0,1	0,1	-0,1
2	117641		0,2	0	0,2	0,2	-0,2
3	126139		0,3	0	0,3	0,3	-0,3
4	129314		0,4	0	0,4	0,4	-0,4
5	143587		0,5	0	0,5	0,5	-0,5
6	145793		0,6	0	0,6	0,6	-0,6
7	153783		0,7	0	0,7	0,7	-0,7
8	156602		0,8	0	0,8	0,8	-0,8
9	178319		0,9	0	0,9	0,9	-0,9
10	183014		1	0	1	1	-1
11		1000076	1	0,1	0,9	0,9	-0,9
12		1181955	1	0,2	0,8	0,8	-0,8
13		1227983	1	0,3	0,7	0,7	-0,7
14		1291106	1	0,4	0,6	0,6	-0,6
15		1349631	1	0,5	0,5	0,5	-0,5
16		1386757	1	0,6	0,4	0,4	-0,4
17		1445325	1	0,7	0,3	0,3	-0,3
18		1511120	1	0,8	0,2	0,2	-0,2
19		1527414	1	0,9	0,1	0,1	-0,1
20		1603151	1	1	0	0	0

Abbildung 79: path:

Abbildung 80: hash:

	_			_		_								
Ŀ	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i
	1	39		0,1	0	0,1	0,1	-0,1	Ì	1	1900		0,1	0
	2	53		0,2	0	0,2	0,2	-0,2		2	3053		0,2	0
	3	59		0,3	0	0,3	0,3	-0,3		3	3207		0,3	0
	4	60		0,4	0	0,4	0,4	-0,4		4	3305		0,4	0
	5	68		0,5	0	0,5	0,5	-0,5		5	3413		0,5	0
	6	82		0,6	0	0,6	0,6	-0,6		6	3526		0,6	0
	7	88		0,7	0	0,7	0,7	-0,7		7	3705		0,7	0
	8	89		0,8	0	0,8	0,8	-0,8		8	4198		0,8	0
Ì	9	90		0,9	0	0,9	0,9	-0,9		9	4520		0,9	0
	10	113		1	0	1	1	-1		10	4664		1	0
	11		10039	1	0,1	0,9	0,9	-0,9		11		22617	1	0,1
	12		10137	1	0,2	0,8	0,8	-0,8		12		24361	1	0,2
	13		10171	1	0,3	0,7	0,7	-0,7		13		25138	1	0,3
	14		10193	1	0,4	0,6	0,6	-0,6		14		25191	1	0,4
	15		10257	1	0,5	0,5	0,5	-0,5		15		25208	1	0,5
	16		10299	1	0,6	0,4	0,4	-0,4		16		25241	1	0,6
	17		10324	1	0,7	0,3	0,3	-0,3		17		25366	1	0,7
	18		10367	1	0,8	0,2	0,2	-0,2		18		25708	1	0,8
	19		10378	1	0,9	0,1	0,1	-0,1		19		25932	1	0,9
1	20		10412	1	1	0	0	0		20		26388	1	1

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	1900		0,1	0	0,1	0,1	-0,1
2	3053		0,2	0	0,2	0,2	-0,2
3	3207		0,3	0	0,3	0,3	-0,3
4	3305		0,4	0	0,4	0,4	-0,4
5	3413		0,5	0	0,5	0,5	-0,5
6	3526		0,6	0	0,6	0,6	-0,6
7	3705		0,7	0	0,7	0,7	-0,7
8	4198		0,8	0	0,8	0,8	-0,8
9	4520		0,9	0	0,9	0,9	-0,9
10	4664		1	0	1	1	-1
11		22617	1	0,1	0,9	0,9	-0,9
12		24361	1	0,2	0,8	0,8	-0,8
13		25138	1	0,3	0,7	0,7	-0,7
14		25191	1	0,4	0,6	0,6	-0,6
15		25208	1	0,5	0,5	0,5	-0,5
16		25241	1	0,6	0,4	0,4	-0,4
17		25366	1	0,7	0,3	0,3	-0,3
18		25708	1	0,8	0,2	0,2	-0,2
19		25932	1	0,9	0,1	0,1	-0,1
20		26388	1	1	0	0	0

Abbildung 81: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 1000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 82: arraylist:

Abbild	ung	83:	obj	ect:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0222	0	0,1	0,1	-0,1	0,1
2		0,0513	0	0,2	0,2	-0,2	0,2
3		0,0712	0	0,3	0,3	-0,3	0,3
4		0,0886	0	0,4	0,4	-0,4	0,4
5	0,0992		0,1	0,4	0,3	-0,3	0,3
6		0,1236	0,1	0,5	0,4	-0,4	0,4
7		0,1645	0,1	0,6	0,5	-0,5	0,5
8		0,1971	0,1	0,7	0,6	-0,6	0,6
9		0,2088	0,1	0,8	0,7	-0,7	0,7
10		0,2729	0,1	0,9	0,8	-0,8	0,8
11		0,3044	0,1	1	0,9	-0,9	0,9
12	0,4596		0,2	1	0,8	-0,8	0,8
13	0,8618		0,3	1	0,7	-0,7	0,7
14	1,2587		0,4	1	0,6	-0,6	0,6
15	1,2639		0,5	1	0,5	-0,5	0,5
16	1,3057		0,6	1	0,4	-0,4	0,4
17	1,3893		0,7	1	0,3	-0,3	0,3
18	1,5668		0,8	1	0,2	-0,2	0,2
19	2,2197		0,9	1	0,1	-0,1	0,1
20	2,2876		1	1	Ó	Ó	Ó

				. 0		U	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,008		0,1	0	0,1	0,1	-0,1
2	0,0139		0,2	0	0,2	0,2	-0,2
3	0,0189		0,3	0	0,3	0,3	-0,3
4	0,1181		0,4	0	0,4	0,4	-0,4
5		0,1383	0,4	0,1	0,3	0,3	-0,3
6		0,1482	0,4	0,2	0,2	0,2	-0,2
7	0,1914		0,5	0,2	0,3	0,3	-0,3
8		0,1987	0,5	0,3	0,2	0,2	-0,2
9	0,2478		0,6	0,3	0,3	0,3	-0,3
10		0,2614	0,6	0,4	0,2	0,2	-0,2
11	0,2623		0,7	0,4	0,3	0,3	-0,3
12		0,2716	0,7	0,5	0,2	0,2	-0,2
13		0,3533	0,7	0,6	0,1	0,1	-0,1
14	0,3687		0,8	0,6	0,2	0,2	-0,2
15		0,4266	0,8	0,7	0,1	0,1	-0,1
16	0,4759		0,9	0,7	0,2	0,2	-0,2
17		0,4989	0,9	0,8	0,1	0,1	-0,1
18		0,5616	0,9	0,9	0	0	0
19	0,761		1	0,9	0,1	0,1	-0,1
20		2,0189	1	1	0	0	0

Abbildung 84: path:

Abbildung 85: hash:

	8 - I								8							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$] [R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0221	0	0,1	0,1	-0,1	0,1] [1		0,0053	0	0,1	0,1	-0,1	0,1
2	0,0247		0,1	0,1	0	0	0		2	0,1592		0,1	0,1	0	0	0
3		0,0302	0,1	0,2	0,1	-0,1	0,1		3	0,2796		0,2	0,1	0,1	0,1	-0,1
4	0,0412		0,2	0,2	0	0	0		4		0,4327	0,2	0,2	0	0	0
5		0,0548	0,2	0,3	0,1	-0,1	0,1		5		0,7133	0,2	0,3	0,1	-0,1	0,1
6	0,066		0,3	0,3	0	0	0		6	0,9867		0,3	0,3	0	0	0
7	0,066		0,4	0,3	0,1	0,1	-0,1		7	1,127		0,4	0,3	0,1	0,1	-0,1
8		0,0711	0,4	0,4	0	0	0		8	1,5857		0,5	0,3	0,2	0,2	-0,2
9		0,0711	0,4	0,5	0,1	-0,1	0,1		9	1,7168		0,6	0,3	0,3	0,3	-0,3
10	0,0825		0,5	0,5	0	0	0		10	2,1666		0,7	0,3	0,4	0,4	-0,4
11		0,1005	0,5	0,6	0,1	-0,1	0,1		11	2,4665		0,8	0,3	0,5	0,5	-0,5
12		0,1005	0,5	0,7	0,2	-0,2	0,2		12	2,903		0,9	0,3	0,6	0,6	-0,6
13		0,1038	0,5	0,8	0,3	-0,3	0,3		13	2,9554		1	0,3	0,7	0,7	-0,7
14	0,1072		0,6	0,8	0,2	-0,2	0,2		14		3,0831	1	0,4	0,6	0,6	-0,6
15		0,112	0,6	0,9	0,3	-0,3	0,3		15		3,1413	1	0,5	0,5	0,5	-0,5
16	0,1237		0,7	0,9	0,2	-0,2	0,2		16		3,3666	1	0,6	0,4	0,4	-0,4
17	0,1732		0,8	0,9	0,1	-0,1	0,1		17		4,0972	1	0,7	0,3	0,3	-0,3
18	0,2062		0,9	0,9	0	0	0		18		4,389	1	0,8	0,2	0,2	-0,2
19		0,264	0,9	1	0,1	-0,1	0,1		19		4,411	1	0,9	0,1	0,1	-0,1
20	0,3794		1	1	0	0	0		20		5,1635	1	1	0	0	0

Abbildung 86: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 1000x10 anhand der Standardabweichung

Abbildung 87: arraylist:

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	26		0,1	0	0,1	0,1	-0,1
2		32	0,1	0,1	0	0	0
3	36		0,2	0,1	0,1	0,1	-0,1
4	36		0,3	0,1	0,2	0,2	-0,2
5		67	0,3	0,2	0,1	0,1	-0,1
6		71	0,3	0,3	0	0	0
7		73	0,3	0,4	0,1	-0,1	0,1
8		76	0,3	0,5	0,2	-0,2	0,2
9		88	0,3	0,6	0,3	-0,3	0,3
10		101	0,3	0,7	0,4	-0,4	0,4
11		103	0,3	0,8	0,5	-0,5	0,5
12		104	0,3	0,9	0,6	-0,6	0,6
13		105	0,3	1	0,7	-0,7	0,7
14	148		0,4	1	0,6	-0,6	0,6
15	381		0,5	1	0,5	-0,5	0,5
16	1034		0,6	1	0,4	-0,4	0,4
17	1477		0,7	1	0,3	-0,3	0,3
18	1685		0,8	1	0,2	-0,2	0,2
19	2019		0,9	1	0,1	-0,1	0,1
20	2227		1	1	0	0	0

Abbildung 88: object:

Abblidung 66. Object.													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$						
1		109243	0	0,1	0,1	-0,1	0,1						
2	117631		0,1	0,1	0	0	0						
3	117641		0,2	0,1	0,1	0,1	-0,1						
4	126139		0,3	0,1	0,2	0,2	-0,2						
5	129314		0,4	0,1	0,3	0,3	-0,3						
6	143587		0,5	0,1	0,4	0,4	-0,4						
7	145793		0,6	0,1	0,5	0,5	-0,5						
8	153783		0,7	0,1	0,6	0,6	-0,6						
9	156602		0,8	0,1	0,7	0,7	-0,7						
10		161526	0,8	0,2	0,6	0,6	-0,6						
11		176794	0,8	0,3	0,5	0,5	-0,5						
12	178319		0,9	0,3	0,6	0,6	-0,6						
13		180506	0,9	0,4	0,5	0,5	-0,5						
14	183014		1	0,4	0,6	0,6	-0,6						
15		195945	1	0,5	0,5	0,5	-0,5						
16		218741	1	0,6	0,4	0,4	-0,4						
17		222857	1	0,7	0,3	0,3	-0,3						
18		259391	1	0,8	0,2	0,2	-0,2						
19		275117	1	0,9	0,1	0,1	-0,1						
20		475548	1	1	0	0	0						

Abbildung 89: path:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		32	0	0,1	0,1	-0,1	0,1
2		38	0	0,2	0,2	-0,2	0,2
3	39		0,1	0,2	0,1	-0,1	0,1
4		40	0,1	0,3	0,2	-0,2	0,2
5		48	0,1	0,4	0,3	-0,3	0,3
6		49	0,1	0,5	0,4	-0,4	0,4
7		50	0,1	0,6	0,5	-0,5	0,5
8	53		0,2	0,6	0,4	-0,4	0,4
9		58	0,2	0,7	0,5	-0,5	0,5
10		58	0,2	0,8	0,6	-0,6	0,6
11		59	0,2	0,9	0,7	-0,7	0,7
12	59		0,3	0,9	0,6	-0,6	0,6
13	60		0,4	0,9	0,5	-0,5	0,5
14	68		0,5	0,9	0,4	-0,4	0,4
15		76	0,5	1	0,5	-0,5	0,5
16	82		0,6	1	0,4	-0,4	0,4
17	88		0,7	1	0,3	-0,3	0,3
18	89		0,8	1	0,2	-0,2	0,2
19	90		0,9	1	0,1	-0,1	0,1
20	113		1	1	0	0	0

Abbildung 90: hash:

11001144118 00. 114011.													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$						
1	1900		0,1	0	0,1	0,1	-0,1						
2	3053		0,2	0	0,2	0,2	-0,2						
3	3207		0,3	0	0,3	0,3	-0,3						
4	3305		0,4	0	0,4	0,4	-0,4						
5	3413		0,5	0	0,5	0,5	-0,5						
6	3526		0,6	0	0,6	0,6	-0,6						
7	3705		0,7	0	0,7	0,7	-0,7						
8	4198		0,8	0	0,8	0,8	-0,8						
9	4520		0,9	0	0,9	0,9	-0,9						
10	4664		1	0	1	1	-1						
11		11024	1	0,1	0,9	0,9	-0,9						
12		11271	1	0,2	0,8	0,8	-0,8						
13		11287	1	0,3	0,7	0,7	-0,7						
14		11533	1	0,4	0,6	0,6	-0,6						
15		14861	1	0,5	0,5	0,5	-0,5						
16		15027	1	0,6	0,4	0,4	-0,4						
17		15355	1	0,7	0,3	0,3	-0,3						
18		16144	1	0,8	0,2	0,2	-0,2						
19		16756	1	0,9	0,1	0,1	-0,1						
20		16868	1	1	0	0	0						

Abbildung 91: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 1000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 92: arraylist:

					0					
I	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	x_1
	1		0,0146	0	0,1	0,1	-0,1	0,1	1	0,008
	2		0,0146	0	0,2	0,2	-0,2	0,2	2	0,0139
	3		0,0321	0	0,3	0,3	-0,3	0,3	3	0,0189
	4		0,0438	0	0,4	0,4	-0,4	0,4	4	İ
	5		0,0438	0	0,5	0,5	-0,5	0,5	5	
	6		0,0613	0	0,6	0,6	-0,6	0,6	6	
	7		0,0729	0	0,7	0,7	-0,7	0,7	7	0,118
	8		0,0846	0	0,8	0,8	-0,8	0,8	8	0,1914
	9		0,0963	0	0,9	0,9	-0,9	0,9	9	0,2478
1	10	0,0992		0,1	0,9	0,8	-0,8	0,8	10	0,2623
1	11		0,1021	0,1	1	0,9	-0,9	0,9	11	0,3687
]	12	0,4596		0,2	1	0,8	-0,8	0,8	12	
1	13	0,8618		0,3	1	0,7	-0,7	0,7	13	İ
1	14	1,2587		0,4	1	0,6	-0,6	0,6	14	0,4759
1	15	1,2639		0,5	1	0,5	-0,5	0,5	15	İ
1	16	1,3057		0,6	1	0,4	-0,4	0,4	16	
1	17	1,3893		0,7	1	0,3	-0,3	0,3	17	0,761
1	18	1,5668		0,8	1	0,2	-0,2	0,2	18	
1	19	2,2197		0,9	1	0,1	-0,1	0,1	19	
2	20	2,2876		1	1	0	0	0	20	
_	_		•				•			-

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,008		0,1	0	0,1	0,1	-0,1
2	0,0139		0,2	0	0,2	0,2	-0,2
3	0,0189		0,3	0	0,3	0,3	-0,3
4		0,0364	0,3	0,1	0,2	0,2	-0,2
5		0,0954	0,3	0,2	0,1	0,1	-0,1
6		0,1053	0,3	0,3	0	0	0
7	0,1181		0,4	0,3	0,1	0,1	-0,1
8	0,1914		0,5	0,3	0,2	0,2	-0,2
9	0,2478		0,6	0,3	0,3	0,3	-0,3
10	0,2623		0,7	0,3	0,4	0,4	-0,4
11	0,3687		0,8	0,3	0,5	0,5	-0,5
12		0,4024	0,8	0,4	0,4	0,4	-0,4
13		0,4211	0,8	0,5	0,3	0,3	-0,3
14	0,4759		0,9	0,5	0,4	0,4	-0,4
15		0,5389	0,9	0,6	0,3	0,3	-0,3
16		0,7582	0,9	0,7	0,2	0,2	-0,2
17	0,761		1	0,7	0,3	0,3	-0,3
18		1,0105	1	0,8	0,2	0,2	-0,2
19		1,4387	1	0,9	0,1	0,1	-0,1
20		1,719	1	1	0	0	0

Abbildung 94: path:

Abbildung 95: hash:

			~~	aane	. Patin										
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0	0	0,1	0,1	-0,1	0,1	1		0,0198	0	0,1	0,1	-0,1	0,1
2		0,0082	0	0,2	0,2	-0,2	0,2	2	0,1592		0,1	0,1	0	0	0
3		0,0164	0	0,3	0,3	-0,3	0,3	3		0,2281	0,1	0,2	0,1	-0,1	0,1
4		0,0164	0	0,4	0,4	-0,4	0,4	4		0,2302	0,1	0,3	0,2	-0,2	0,2
5		0,0164	0	0,5	0,5	-0,5	0,5	5	0,2796		0,2	0,3	0,1	-0,1	0,1
6		0,0245	0	0,6	0,6	-0,6	0,6	6		0,5346	0,2	0,4	0,2	-0,2	0,2
7	0,0247		0,1	0,6	0,5	-0,5	0,5	7		0,5944	0,2	0,5	0,3	-0,3	0,3
8		0,0327	0,1	0,7	0,6	-0,6	0,6	8		0,7087	0,2	0,6	0,4	-0,4	0,4
9		0,0409	0,1	0,8	0,7	-0,7	0,7	9		0,8422	0,2	0,7	0,5	-0,5	0,5
10		0,0409	0,1	0,9	0,8	-0,8	0,8	10		0,8679	0,2	0,8	0,6	-0,6	0,6
11	0,0412		0,2	0,9	0,7	-0,7	0,7	11	0,9867		0,3	0,8	0,5	-0,5	0,5
12		0,0654	0,2	1	0,8	-0,8	0,8	12	1,127		0,4	0,8	0,4	-0,4	0,4
13	0,066		0,3	1	0,7	-0,7	0,7	13	1,5857		0,5	0,8	0,3	-0,3	0,3
14	0,066		0,4	1	0,6	-0,6	0,6	14	1,7168		0,6	0,8	0,2	-0,2	0,2
15	0,0825		0,5	1	0,5	-0,5	0,5	15		2,0311	0,6	0,9	0,3	-0,3	0,3
16	0,1072		0,6	1	0,4	-0,4	0,4	16		2,1144	0,6	1	0,4	-0,4	0,4
17	0,1237		0,7	1	0,3	-0,3	0,3	17	2,1666		0,7	1	0,3	-0,3	0,3
18	0,1732		0,8	1	0,2	-0,2	0,2	18	2,4665		0,8	1	0,2	-0,2	0,2
19	0,2062		0,9	1	0,1	-0,1	0,1	19	2,903		0,9	1	0,1	-0,1	0,1
20	0,3794		1	1	0	0	0	20	2,9554		1	1	0	0	0

Abbildung 96: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 1000x100 anhand der Standardabweichung

Abbildung 97: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	26		0,1	0	0,1	0,1	-0,1
2	36		0,2	0	0,2	0,2	-0,2
3	36		0,3	0	0,3	0,3	-0,3
4		89	0,3	0,1	0,2	0,2	-0,2
5		92	0,3	0,2	0,1	0,1	-0,1
6		93	0,3	0,3	0	0	0
7		94	0,3	0,4	0,1	-0,1	0,1
8		95	0,3	0,5	0,2	-0,2	0,2
9		95	0,3	0,6	0,3	-0,3	0,3
10		97	0,3	0,7	0,4	-0,4	0,4
11		98	0,3	0,8	0,5	-0,5	0,5
12		102	0,3	0,9	0,6	-0,6	0,6
13		102	0,3	1	0,7	-0,7	0,7
14	148		0,4	1	0,6	-0,6	0,6
15	381		0,5	1	0,5	-0,5	0,5
16	1034		0,6	1	0,4	-0,4	0,4
17	1477		0,7	1	0,3	-0,3	0,3
18	1685		0,8	1	0,2	-0,2	0,2
19	2019		0,9	1	0,1	-0,1	0,1
20	2227		1	1	0	0	Ó

Abbildung 98: object:

Abblidung 98: object:												
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$					
1	117631		0,1	0	0,1	0,1	-0,1					
2	117641		0,2	0	0,2	0,2	-0,2					
3	126139		0,3	0	0,3	0,3	-0,3					
4	129314		0,4	0	0,4	0,4	-0,4					
5	143587		0,5	0	0,5	0,5	-0,5					
6	145793		0,6	0	0,6	0,6	-0,6					
7	153783		0,7	0	0,7	0,7	-0,7					
8	156602		0,8	0	0,8	0,8	-0,8					
9	178319		0,9	0	0,9	0,9	-0,9					
10	183014		1	0	1	1	-1					
11		270903	1	0,1	0,9	0,9	-0,9					
12		407862	1	0,2	0,8	0,8	-0,8					
13		423541	1	0,3	0,7	0,7	-0,7					
14		458101	1	0,4	0,6	0,6	-0,6					
15		530258	1	0,5	0,5	0,5	-0,5					
16		535709	1	0,6	0,4	0,4	-0,4					
17		537134	1	0,7	0,3	0,3	-0,3					
18		550884	1	0,8	0,2	0,2	-0,2					
19		559912	1	0,9	0,1	0,1	-0,1					
20		623875	1	1	0	0	0					

Abbildung 99: path:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	39		0,1	0	0,1	0,1	-0,1
2		44	0,1	0,1	0	0	0
3		44	0,1	0,2	0,1	-0,1	0,1
4		49	0,1	0,3	0,2	-0,2	0,2
5		49	0,1	0,4	0,3	-0,3	0,3
6		50	0,1	0,5	0,4	-0,4	0,4
7		50	0,1	0,6	0,5	-0,5	0,5
8		52	0,1	0,7	0,6	-0,6	0,6
9		52	0,1	0,8	0,7	-0,7	0,7
10	53		0,2	0,8	0,6	-0,6	0,6
11		55	0,2	0,9	0,7	-0,7	0,7
12		57	0,2	1	0,8	-0,8	0,8
13	59		0,3	1	0,7	-0,7	0,7
14	60		0,4	1	0,6	-0,6	0,6
15	68		0,5	1	0,5	-0,5	0,5
16	82		0,6	1	0,4	-0,4	0,4
17	88		0,7	1	0,3	-0,3	0,3
18	89		0,8	1	0,2	-0,2	0,2
19	90		0,9	1	0,1	-0,1	0,1
20	113		1	1	0	0	0

Abbildung 100: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	1900		0,1	0	0,1	0,1	-0,1
2	3053		0,2	0	0,2	0,2	-0,2
3	3207		0,3	0	0,3	0,3	-0,3
4	3305		0,4	0	0,4	0,4	-0,4
5	3413		0,5	0	0,5	0,5	-0,5
6	3526		0,6	0	0,6	0,6	-0,6
7	3705		0,7	0	0,7	0,7	-0,7
8	4198		0,8	0	0,8	0,8	-0,8
9	4520		0,9	0	0,9	0,9	-0,9
10	4664		1	0	1	1	-1
11		7605	1	0,1	0,9	0,9	-0,9
12		10007	1	0,2	0,8	0,8	-0,8
13		10165	1	0,3	0,7	0,7	-0,7
14		10454	1	0,4	0,6	0,6	-0,6
15		10555	1	0,5	0,5	0,5	-0,5
16		11007	1	0,6	0,4	0,4	-0,4
17		11344	1	0,7	0,3	0,3	-0,3
18		11419	1	0,8	0,2	0,2	-0,2
19		11825	1	0,9	0,1	0,1	-0,1
20		12718	1	1	0	0	0

Abbildung 101: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 2000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 102: arraylist:

Abbildung 103: object:

				_		·	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0145	0	0,1	0,1	-0,1	0,1
2		0,0203	0	0,2	0,2	-0,2	0,2
3		0,0261	0	0,3	0,3	-0,3	0,3
4		0,0261	0	0,4	0,4	-0,4	0,4
5		0,0435	0	0,5	0,5	-0,5	0,5
6		0,0551	0	0,6	0,6	-0,6	0,6
7		0,0667	0	0,7	0,7	-0,7	0,7
8		0,0784	0	0,8	0,8	-0,8	0,8
9	0,0992		0,1	0,8	0,7	-0,7	0,7
10		0,1074	0,1	0,9	0,8	-0,8	0,8
11		0,1828	0,1	1	0,9	-0,9	0,9
12	0,4596		0,2	1	0,8	-0,8	0,8
13	0,8618		0,3	1	0,7	-0,7	0,7
14	1,2587		0,4	1	0,6	-0,6	0,6
15	1,2639		0,5	1	0,5	-0,5	0,5
16	1,3057		0,6	1	0,4	-0,4	0,4
17	1,3893		0,7	1	0,3	-0,3	0,3
18	1,5668		0,8	1	0,2	-0,2	0,2
19	2,2197		0,9	1	0,1	-0,1	0,1
20	2,2876		1	1	Ó	Ó	Ó

				0		J	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0003	0	0,1	0,1	-0,1	0,1
2		0,0013	0	0,2	0,2	-0,2	0,2
3	0,008		0,1	0,2	0,1	-0,1	0,1
4	0,0139		0,2	0,2	0	0	0
5	0,0189		0,3	0,2	0,1	0,1	-0,1
6		0,0979	0,3	0,3	0	0	0
7	0,1181		0,4	0,3	0,1	0,1	-0,1
8		0,1617	0,4	0,4	0	0	0
9	0,1914		0,5	0,4	0,1	0,1	-0,1
10		0,2208	0,5	0,5	0	0	0
11	0,2478		0,6	0,5	0,1	0,1	-0,1
12	0,2623		0,7	0,5	0,2	0,2	-0,2
13	0,3687		0,8	0,5	0,3	0,3	-0,3
14		0,386	0,8	0,6	0,2	0,2	-0,2
15		0,4214	0,8	0,7	0,1	0,1	-0,1
16		0,4727	0,8	0,8	0	0	0
17	0,4759		0,9	0,8	0,1	0,1	-0,1
18		0,5206	0,9	0,9	0	0	0
19		0,5499	0,9	1	0,1	-0,1	0,1
20	0,761		1	1	0	0	0

Abbildung 104: path:

Abbildung 105: hash:

	Troondang 101: path:							Tibblidang 100. habit.							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0008	0	0,1	0,1	-0,1	0,1	1		0,0057	0	0,1	0,1	-0,1	0,1
2		0,0155	0	0,2	0,2	-0,2	0,2			0,0261	0	0,2	0,2	-0,2	0,2
3		0,0237	0	0,3	0,3	-0,3	0,3	3		0,0515	0	0,3	0,3	-0,3	0,3
4		0,0237	0	0,4	0,4	-0,4	0,4	4		0,0709	0	0,4	0,4	-0,4	0,4
5	0,0247		0,1	0,4	0,3	-0,3	0,3	5		0,0912	0	0,5	0,5	-0,5	0,5
6		0,0335	0,1	0,5	0,4	-0,4	0,4	6		0,1532	0	0,6	0,6	-0,6	0,6
7	0,0412		0,2	0,5	0,3	-0,3	0,3	7	0,1592		0,1	0,6	0,5	-0,5	0,5
8		0,0498	0,2	0,6	0,4	-0,4	0,4	8		0,1659	0,1	0,7	0,6	-0,6	0,6
9	0,066		0,3	0,6	0,3	-0,3	0,3	9		0,1929	0,1	0,8	0,7	-0,7	0,7
10	0,066		0,4	0,6	0,2	-0,2	0,2	10		0,2361	0,1	0,9	0,8	-0,8	0,8
11		0,0825	0,4	0,7	0,3	-0,3	0,3	11	0,2796		0,2	0,9	0,7	-0,7	0,7
12	0,0825		0,5	0,7	0,2	-0,2	0,2	12		0,368	0,2	1	0,8	-0,8	0,8
13		0,089	0,5	0,8	0,3	-0,3	0,3	13	0,9867		0,3	1	0,7	-0,7	0,7
14	0,1072		0,6	0,8	0,2	-0,2	0,2	14	1,127		0,4	1	0,6	-0,6	0,6
15	0,1237		0,7	0,8	0,1	-0,1	0,1	15	1,5857		0,5	1	0,5	-0,5	0,5
16		0,1478	0,7	0,9	0,2	-0,2	0,2	16	1,7168		0,6	1	0,4	-0,4	0,4
17		0,1626	0,7	1	0,3	-0,3	0,3	17	2,1666		0,7	1	0,3	-0,3	0,3
18	0,1732		0,8	1	0,2	-0,2	0,2	18	2,4665		0,8	1	0,2	-0,2	0,2
19	0,2062		0,9	1	0,1	-0,1	0,1	19	2,903		0,9	1	0,1	-0,1	0,1
20	0,3794		1	1	0	0	0	20	2,9554		1	1	0	0	0

Abbildung 106: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 2000x10 anhand der Standardabweichung

Abbildung 107: arraylist:

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	26		0,1	0	0,1	0,1	-0,1
2		26	0,1	0,1	0	0	0
3		27	0,1	0,2	0,1	-0,1	0,1
4		33	0,1	0,3	0,2	-0,2	0,2
5		35	0,1	0,4	0,3	-0,3	0,3
6		36	0,1	0,5	0,4	-0,4	0,4
7		36	0,1	0,6	0,5	-0,5	0,5
8	36		0,2	0,6	0,4	-0,4	0,4
9	36		0,3	0,6	0,3	-0,3	0,3
10		40	0,3	0,7	0,4	-0,4	0,4
11		40	0,3	0,8	0,5	-0,5	0,5
12		47	0,3	0,9	0,6	-0,6	0,6
13		53	0,3	1	0,7	-0,7	0,7
14	148		0,4	1	0,6	-0,6	0,6
15	381		0,5	1	0,5	-0,5	0,5
16	1034		0,6	1	0,4	-0,4	0,4
17	1477		0,7	1	0,3	-0,3	0,3
18	1685		0,8	1	0,2	-0,2	0,2
19	2019		0,9	1	0,1	-0,1	0,1
20	2227		1	1	0	0	0

Abbildung 108: object:

	Abbilding 106. Object.												
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$						
1	117631		0,1	0	0,1	0,1	-0,1						
2	117641		0,2	0	0,2	0,2	-0,2						
3	126139		0,3	0	0,3	0,3	-0,3						
4	129314		0,4	0	0,4	0,4	-0,4						
5	143587		0,5	0	0,5	0,5	-0,5						
6	145793		0,6	0	0,6	0,6	-0,6						
7	153783		0,7	0	0,7	0,7	-0,7						
8	156602		0,8	0	0,8	0,8	-0,8						
9		165301	0,8	0,1	0,7	0,7	-0,7						
10	178319		0,9	0,1	0,8	0,8	-0,8						
11	183014		1	0,1	0,9	0,9	-0,9						
12		183234	1	0,2	0,8	0,8	-0,8						
13		183634	1	0,3	0,7	0,7	-0,7						
14		188716	1	0,4	0,6	0,6	-0,6						
15		198905	1	0,5	0,5	0,5	-0,5						
16		208518	1	0,6	0,4	0,4	-0,4						
17		225359	1	0,7	0,3	0,3	-0,3						
18		255022	1	0,8	0,2	0,2	-0,2						
19		261698	1	0,9	0,1	0,1	-0,1						
20		273035	1	1	0	0	0						

Abbildung 109: path:

					0 -		
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		33	0	0,1	0,1	-0,1	0,1
2		35	0	0,2	0,2	-0,2	0,2
3		38	0	0,3	0,3	-0,3	0,3
4	39		0,1	0,3	0,2	-0,2	0,2
5		43	0,1	0,4	0,3	-0,3	0,3
6		45	0,1	0,5	0,4	-0,4	0,4
7		47	0,1	0,6	0,5	-0,5	0,5
8		47	0,1	0,7	0,6	-0,6	0,6
9		49	0,1	0,8	0,7	-0,7	0,7
10	53		0,2	0,8	0,6	-0,6	0,6
11		55	0,2	0,9	0,7	-0,7	0,7
12		58	0,2	1	0,8	-0,8	0,8
13	59		0,3	1	0,7	-0,7	0,7
14	60		0,4	1	0,6	-0,6	0,6
15	68		0,5	1	0,5	-0,5	0,5
16	82		0,6	1	0,4	-0,4	0,4
17	88		0,7	1	0,3	-0,3	0,3
18	89		0,8	1	0,2	-0,2	0,2
19	90		0,9	1	0,1	-0,1	0,1
20	113		1	1	0	0	0

Abbildung 110: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	w ₁	156	0	0,1	0,1	-0,1	0,1
			l				,
2		185	0	0,2	0,2	-0,2	0,2
3		202	0	0,3	0,3	-0,3	0,3
4		206	0	0,4	0,4	-0,4	0,4
5		214	0	0,5	0,5	-0,5	0,5
6		265	0	0,6	0,6	-0,6	0,6
7		442	0	0,7	0,7	-0,7	0,7
8		448	0	0,8	0,8	-0,8	0,8
9		490	0	0,9	0,9	-0,9	0,9
10		510	0	1	1	-1	1
11	1900		0,1	1	0,9	-0,9	0,9
12	3053		0,2	1	0,8	-0,8	0,8
13	3207		0,3	1	0,7	-0,7	0,7
14	3305		0,4	1	0,6	-0,6	0,6
15	3413		0,5	1	0,5	-0,5	0,5
16	3526		0,6	1	0,4	-0,4	0,4
17	3705		0,7	1	0,3	-0,3	0,3
18	4198		0,8	1	0,2	-0,2	0,2
19	4520		0,9	1	0,1	-0,1	0,1
20	4664		1	1	0	0	0

Abbildung 111: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 2000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 112: arraylist:

Abbildung 113: object:

				0 -		·	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0029	0	0,1	0,1	-0,1	0,1
2		0,0029	0	0,2	0,2	-0,2	0,2
3		0,0087	0	0,3	0,3	-0,3	0,3
4		0,0087	0	0,4	0,4	-0,4	0,4
5		0,0087	0	0,5	0,5	-0,5	0,5
6		0,0145	0	0,6	0,6	-0,6	0,6
7		0,0203	0	0,7	0,7	-0,7	0,7
8		0,0261	0	0,8	0,8	-0,8	0,8
9		0,0319	0	0,9	0,9	-0,9	0,9
10		0,0377	0	1	1	-1	1
11	0,0992		0,1	1	0,9	-0,9	0,9
12	0,4596		0,2	1	0,8	-0,8	0,8
13	0,8618		0,3	1	0,7	-0,7	0,7
14	1,2587		0,4	1	0,6	-0,6	0,6
15	1,2639		0,5	1	0,5	-0,5	0,5
16	1,3057		0,6	1	0,4	-0,4	0,4
17	1,3893		0,7	1	0,3	-0,3	0,3
18	1,5668		0,8	1	0,2	-0,2	0,2
19	2,2197		0,9	1	0,1	-0,1	0,1
20	2,2876		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$						
1	0,008		0,1	0	0,1	0,1	-0,1						
2	0,0139		0,2	0	0,2	0,2	-0,2						
3	0,0189		0,3	0	0,3	0,3	-0,3						
4		0,0576	0,3	0,1	0,2	0,2	-0,2						
5		0,0625	0,3	0,2	0,1	0,1	-0,1						
6	0,1181		0,4	0,2	0,2	0,2	-0,2						
7		0,1368	0,4	0,3	0,1	0,1	-0,1						
8		0,1432	0,4	0,4	0	0	0						
9		0,1514	0,4	0,5	0,1	-0,1	0,1						
10	0,1914		0,5	0,5	0	0	0						
11	0,2478		0,6	0,5	0,1	0,1	-0,1						
12		0,2489	0,6	0,6	0	0	0						
13		0,2509	0,6	0,7	0,1	-0,1	0,1						
14	0,2623		0,7	0,7	0	0	0						
15		0,2745	0,7	0,8	0,1	-0,1	0,1						
16	0,3687		0,8	0,8	0	0	0						
17		0,423	0,8	0,9	0,1	-0,1	0,1						
18	0,4759		0,9	0,9	0	0	0						
19		0,501	0,9	1	0,1	-0,1	0,1						
20	0,761		1	1	0	0	0						

Abbildung 114: path:

Abbildung 115: hash:

	moditalis 114. patii.								Tibblidding 119. Habit.							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	l F	l_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0033	0	0,1	0,1	-0,1	0,1		l		0,0099	0	0,1	0,1	-0,1	0,1
2		0,0131	0	0,2	0,2	-0,2	0,2	2	2		0,0124	0	0,2	0,2	-0,2	0,2
3		0,0212	0	0,3	0,3	-0,3	0,3	3	3		0,0156	0	0,3	0,3	-0,3	0,3
4		0,0212	0	0,4	0,4	-0,4	0,4	4	1		0,0236	0	0,4	0,4	-0,4	0,4
5	0,0247		0,1	0,4	0,3	-0,3	0,3	5	5		0,0315	0	0,5	0,5	-0,5	0,5
6		0,0278	0,1	0,5	0,4	-0,4	0,4	6	3		0,0322	0	0,6	0,6	-0,6	0,6
7		0,0359	0,1	0,6	0,5	-0,5	0,5	7	7		0,0331	0	0,7	0,7	-0,7	0,7
8		0,0359	0,1	0,7	0,6	-0,6	0,6	8	3		0,0513	0	0,8	0,8	-0,8	0,8
9		0,0376	0,1	0,8	0,7	-0,7	0,7	9)		0,0522	0	0,9	0,9	-0,9	0,9
10	0,0412		0,2	0,8	0,6	-0,6	0,6	1	0		0,0752	0	1	1	-1	1
11	0,066		0,3	0,8	0,5	-0,5	0,5	1	1	0,1592		0,1	1	0,9	-0,9	0,9
12	0,066		0,4	0,8	0,4	-0,4	0,4	1	2	0,2796		0,2	1	0,8	-0,8	0,8
13	0,0825		0,5	0,8	0,3	-0,3	0,3	1	3	0,9867		0,3	1	0,7	-0,7	0,7
14		0,0931	0,5	0,9	0,4	-0,4	0,4	1	4	1,127		0,4	1	0,6	-0,6	0,6
15		0,1029	0,5	1	0,5	-0,5	0,5	1	5	1,5857		0,5	1	0,5	-0,5	0,5
16	0,1072		0,6	1	0,4	-0,4	0,4	1	6	1,7168		0,6	1	0,4	-0,4	0,4
17	0,1237		0,7	1	0,3	-0,3	0,3	1	7	2,1666		0,7	1	0,3	-0,3	0,3
18	0,1732		0,8	1	0,2	-0,2	0,2	1	8	2,4665		0,8	1	0,2	-0,2	0,2
19	0,2062		0,9	1	0,1	-0,1	0,1	1	9	2,903		0,9	1	0,1	-0,1	0,1
20	0,3794		1	1	0	0	0		0	2,9554		1	1	0	0	0

Abbildung 116: Vergleich von Verfahren 1 in der Variante 20x3 und Verfahren 2 in der Variante 2000x100 anhand der Standardabweichung

Abbildung 117: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	26		0,1	0	0,1	0,1	-0,1
2	36		0,2	0	0,2	0,2	-0,2
3	36		0,3	0	0,3	0,3	-0,3
4		36	0,3	0,1	0,2	0,2	-0,2
5		37	0,3	0,2	0,1	0,1	-0,1
6		37	0,3	0,3	0	0	0
7		39	0,3	0,4	0,1	-0,1	0,1
8		39	0,3	0,5	0,2	-0,2	0,2
9		39	0,3	0,6	0,3	-0,3	0,3
10		40	0,3	0,7	0,4	-0,4	0,4
11		41	0,3	0,8	0,5	-0,5	0,5
12		42	0,3	0,9	0,6	-0,6	0,6
13		42	0,3	1	0,7	-0,7	0,7
14	148		0,4	1	0,6	-0,6	0,6
15	381		0,5	1	0,5	-0,5	0,5
16	1034		0,6	1	0,4	-0,4	0,4
17	1477		0,7	1	0,3	-0,3	0,3
18	1685		0,8	1	0,2	-0,2	0,2
19	2019		0,9	1	0,1	-0,1	0,1
20	2227		1	1	0	0	0

Abbildung 118: object:

	Abblidding 116. Object.												
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$						
1	117631		0,1	0	0,1	0,1	-0,1						
2	117641		0,2	0	0,2	0,2	-0,2						
3	126139		0,3	0	0,3	0,3	-0,3						
4	129314		0,4	0	0,4	0,4	-0,4						
5	143587		0,5	0	0,5	0,5	-0,5						
6	145793		0,6	0	0,6	0,6	-0,6						
7		146978	0,6	0,1	0,5	0,5	-0,5						
8	153783		0,7	0,1	0,6	0,6	-0,6						
9	156602		0,8	0,1	0,7	0,7	-0,7						
10		174097	0,8	0,2	0,6	0,6	-0,6						
11	178319		0,9	0,2	0,7	0,7	-0,7						
12		180973	0,9	0,3	0,6	0,6	-0,6						
13	183014		1	0,3	0,7	0,7	-0,7						
14		206058	1	0,4	0,6	0,6	-0,6						
15		213603	1	0,5	0,5	0,5	-0,5						
16		216820	1	0,6	0,4	0,4	-0,4						
17		218240	1	0,7	0,3	0,3	-0,3						
18		226513	1	0,8	0,2	0,2	-0,2						
19		233701	1	0,9	0,1	0,1	-0,1						
20		393136	1	1	0	0	0						

Abbildung 119: path:

S_2x_i D_i $S_1(x_i)$ - $S_2(x_i) \mid S_2(x_i)$ - $S_1(x_i)$ R_i 0,10,13 4 5 6 48 0,1 0,2 0,1 -0,10,1 48 0,1 0,3 -0,2 0,2 0,248 0,1 -0,3 0,3 0,3 0,40,10,5-0,40,40,40,5-0,50,5 0,1 0,7 0,6 -0,6 0,6 53 0,2 0,7 0,5 -0,5 0,5 10 -0,6 55 0,2 0,6 0,6 0,8 110,20,9 0,7 -0,7 0,759 12 0,30,90,6-0,60,6130,3-0,70,760 0,4 0,6 -0,6 0,6 15 -0,5 0,5 68 0,5 0,5 16 82 -0,4 0,6 0.40,4 1788 -0,30,30,70,318 89 0,80,2-0,20,290 0,90,1-0,10,1

Abbildung 120: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		272	0	0,1	0,1	-0,1	0,1
2		277	0	0,2	0,2	-0,2	0,2
3		281	0	0,3	0,3	-0,3	0,3
4		325	0	0,4	0,4	-0,4	0,4
5		330	0	0,5	0,5	-0,5	0,5
6		332	0	0,6	0,6	-0,6	0,6
7		355	0	0,7	0,7	-0,7	0,7
8		374	0	0,8	0,8	-0,8	0,8
9		496	0	0,9	0,9	-0,9	0,9
10		511	0	1	1	-1	1
11	1900		0,1	1	0,9	-0,9	0,9
12	3053		0,2	1	0,8	-0,8	0,8
13	3207		0,3	1	0,7	-0,7	0,7
14	3305		0,4	1	0,6	-0,6	0,6
15	3413		0,5	1	0,5	-0,5	0,5
16	3526		0,6	1	0,4	-0,4	0,4
17	3705		0,7	1	0,3	-0,3	0,3
18	4198		0,8	1	0,2	-0,2	0,2
19	4520		0,9	1	0,1	-0,1	0,1
20	4664		1	1	0	0	0

Abbildung 121: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 100×10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 122: arraylist:

Abbildung 123: object: $\begin{array}{c|cccc} D_i & S_1(x_i)\text{-}S_2(x_i) & S_2(x_i)\text{-}S_1(x_i) \\ \hline 0,1 & 0,1 & -0,1 \\ \end{array}$

0,2 0,3

0,4

0,5

0,8

0,9

0,9

0,8

0,7

0,5

0,6 $0,\!4$

0,7 0,3

 $0.8 \\ 0.9$ $_{0,2}^{0,2}$ 0,2

0,3

0,4

0,5

0,7

 0,8

0,9

0,9

0,8

0,7

0,6

0,5

 $0,\!4$ 0,30,20,1

0

-0,1 -0,2 -0,3

-0,4

-0,5 -0,6

-0,7

-0,8

-0,9 -1

-0,9

-0,8

-0,7

-0,6

-0,5-0,4

-0,3

-0,2 -0,1

0

		1100				array moo.					ona	3118	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	Ī
1	0,0163		0,1	0	0,1	0,1	-0,1	1	0,0205		0,1	0	Ī
2	0,1153		0,2	0	0,2	0,2	-0,2	2	0,0708		0,2	0	l
3	0,2891		0,3	0	0,3	0,3	-0,3	3	0,1747		0,3	0	ĺ
4		0,4316	0,3	0,1	0,2	0,2	-0,2	4	0,1822		0,4	0	l
5	0,4429		0,4	0,1	0,3	0,3	-0,3	5	0,1923		0,5	0	İ
6	0,5166		0,5	0,1	0,4	0,4	-0,4	6	0,2304		0,6	0	l
7	0,6852		0,6	0,1	0,5	0,5	-0,5	7	0,2444		0,7	0	İ
8	0,7168		0,7	0,1	0,6	0,6	-0,6	8	0,2844		0,8	0	l
9		0,7218	0,7	0,2	0,5	0,5	-0,5	9	0,2953		0,9	0	l
10	0,7484		0,8	0,2	0,6	0,6	-0,6	10	0,6386		1	0	
11		1,0445	0,8	0,3	0,5	0,5	-0,5	11		0,9556	1	0,1	l
12	1,2582		0,9	0,3	0,6	0,6	-0,6	12		1,1108	1	0,2	İ
13	1,4636		1	0,3	0,7	0,7	-0,7	13		1,3666	1	0,3	
14		2,2029	1	0,4	0,6	0,6	-0,6	14		1,5126	1	0,4	İ
15		2,5706	1	0,5	0,5	0,5	-0,5	15		1,9819	1	0,5	l
16		2,9109	1	0,6	0,4	0,4	-0,4	16		2,1435	1	0,6	İ
17		3,4288	1	0,7	0,3	0,3	-0,3	17		2,3884	1	0,7	
18		4,5246	1	0,8	0,2	0,2	-0,2	18		2,6991	1	0,8	ĺ
19		5,09	1	0,9	0,1	0,1	-0,1	19		2,9393	1	0,9	
20		7,5568	1	1	0	0	0	20		4,3409	1	1	

Abbildung	125:	hash:

Abbildung 124: path:

			ΑD	оппа	ung	120	o: nasn:	
$_{1}(x_{i})$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
	1	0,1345		0,1	0	0,1	0,1	-0,1
	2	0,1858		0,2	0	0,2	0,2	-0,2
	3		0,1915	0,2	0,1	0,1	0,1	-0,1
	4	0,2476		0,3	0,1	0,2	0,2	-0,2
	5	0,2882		0,4	0,1	0,3	0,3	-0,3
	6	0,3192		0,5	0,1	0,4	0,4	-0,4
	7	0,3959		0,6	0,1	0,5	0,5	-0,5
	8	0,6229		0,7	0,1	0,6	0,6	-0,6
	9		0,7379	0,7	0,2	0,5	0,5	-0,5
	10		0,7455	0,7	0,3	0,4	0,4	-0,4
	11	0,8196		0,8	0,3	0,5	0,5	-0,5
	12	1,3864		0,9	0,3	0,6	0,6	-0,6
	13		2,4281	0,9	0,4	0,5	0,5	-0,5
	14	2,5158		1	0,4	0,6	0,6	-0,6
	15		2,6281	1	0,5	0,5	0,5	-0,5
	16		3,2826	1	0,6	0,4	0,4	-0,4
	17		4,8323	1	0,7	0,3	0,3	-0,3
	18		6,0485	1	0,8	0,2	0,2	-0,2
	19		9,023	1	0,9	0,1	0,1	-0,1
	20		12 0468	1	1	0	0	0

				0		- F	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,0041		0,1	0	0,1	0,1	-0,1
2	0,0206		0,2	0	0,2	0,2	-0,2
3	0,0289		0,3	0	0,3	0,3	-0,3
4	0,0371		0,4	0	0,4	0,4	-0,4
5	0,0371		0,5	0	0,5	0,5	-0,5
6		0,0439	0,5	0,1	0,4	0,4	-0,4
7	0,0948		0,6	0,1	0,5	0,5	-0,5
8	0,1196		0,7	0,1	0,6	0,6	-0,6
9	0,1278		0,8	0,1	0,7	0,7	-0,7
10	0,1691		0,9	0,1	0,8	0,8	-0,8
11	0,2103		1	0,1	0,9	0,9	-0,9
12		1,708	1	0,2	0,8	0,8	-0,8
13		6,3083	1	0,3	0,7	0,7	-0,7
14		7,2778	1	0,4	0,6	0,6	-0,6
15		7,3734	1	0,5	0,5	0,5	-0,5
16		9,6157	1	0,6	0,4	0,4	-0,4
17		10,307	1	0,7	0,3	0,3	-0,3
18		11,3894	1	0,8	0,2	0,2	-0,2
19		20,0709	1	0,9	0,1	0,1	-0,1
20		32,0877	1	1	0	0	0

Abbildung 126: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 100x10 anhand der Standardabweichung

Abbildung 127: arraylist:

			ona	0		· array mo	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		204	0	0,1	0,1	-0,1	0,1
2	1343		0,1	0,1	0	0	0
3	1344		0,2	0,1	0,1	0,1	-0,1
4	1358		0,3	0,1	0,2	0,2	-0,2
5	1372		0,4	0,1	0,3	0,3	-0,3
6	1385		0,5	0,1	0,4	0,4	-0,4
7	1629		0,6	0,1	0,5	0,5	-0,5
8	1636		0,7	0,1	0,6	0,6	-0,6
9	1661		0,8	0,1	0,7	0,7	-0,7
10	2011		0,9	0,1	0,8	0,8	-0,8
11	2013		1	0,1	0,9	0,9	-0,9
12		2072	1	0,2	0,8	0,8	-0,8
13		2142	1	0,3	0,7	0,7	-0,7
14		3245	1	0,4	0,6	0,6	-0,6
15		3252	1	0,5	0,5	0,5	-0,5
16		3401	1	0,6	0,4	0,4	-0,4
17		7950	1	0,7	0,3	0,3	-0,3
18		8109	1	0,8	0,2	0,2	-0,2
19		9046	1	0,9	0,1	0,1	-0,1
20		9536	1	1	0	0	0
		•					

Abbildung 128: object:

				0 -		J J	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		118184	0	0,1	0,1	-0,1	0,1
2	125532		0,1	0,1	0	0	0
3	137323		0,2	0,1	0,1	0,1	-0,1
4	139311		0,3	0,1	0,2	0,2	-0,2
5	139487		0,4	0,1	0,3	0,3	-0,3
6	154624		0,5	0,1	0,4	0,4	-0,4
7	155554		0,6	0,1	0,5	0,5	-0,5
8	159201		0,7	0,1	0,6	0,6	-0,6
9	159828		0,8	0,1	0,7	0,7	-0,7
10	165867		0,9	0,1	0,8	0,8	-0,8
11	178688		1	0,1	0,9	0,9	-0,9
12		527891	1	0,2	0,8	0,8	-0,8
13		755595	1	0,3	0,7	0,7	-0,7
14		979631	1	0,4	0,6	0,6	-0,6
15		1357698	1	0,5	0,5	0,5	-0,5
16		1710719	1	0,6	0,4	0,4	-0,4
17		1757278	1	0,7	0,3	0,3	-0,3
18		1827363	1	0,8	0,2	0,2	-0,2
19		1860987	1	0,9	0,1	0,1	-0,1
20		1939330	1	1	0	0	0
1			1			,	,

Abbildung 129: path:

Abbildung 130: hash:

						= 1 1 = 1 1	7								
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	54		0,1	0	0,1	0,1	-0,1	1	2370		0,1	0	0,1	0,1	-0,1
2	67		0,2	0	0,2	0,2	-0,2	2	2940		0,2	0	0,2	0,2	-0,2
3	67		0,3	0	0,3	0,3	-0,3	3	3089		0,3	0	0,3	0,3	-0,3
4	68		0,4	0	0,4	0,4	-0,4	4	3162		0,4	0	0,4	0,4	-0,4
5	70		0,5	0	0,5	0,5	-0,5	5	3286		0,5	0	0,5	0,5	-0,5
6	78		0,6	0	0,6	0,6	-0,6	6	3362		0,6	0	0,6	0,6	-0,6
7	81		0,7	0	0,7	0,7	-0,7	7	3383		0,7	0	0,7	0,7	-0,7
8	89		0,8	0	0,8	0,8	-0,8	8	3418		0,8	0	0,8	0,8	-0,8
9	94		0,9	0	0,9	0,9	-0,9	9	3604		0,9	0	0,9	0,9	-0,9
10	107		1	0	1	1	-1	10	4215		1	0	1	1	-1
11		6348	1	0,1	0,9	0,9	-0,9	11		12814	1	0,1	0,9	0,9	-0,9
12		9758	1	0,2	0,8	0,8	-0,8	12		17541	1	0,2	0,8	0,8	-0,8
13		10423	1	0,3	0,7	0,7	-0,7	13		19639	1	0,3	0,7	0,7	-0,7
14		10424	1	0,4	0,6	0,6	-0,6	14		23184	1	0,4	0,6	0,6	-0,6
15		10636	1	0,5	0,5	0,5	-0,5	15		24859	1	0,5	0,5	0,5	-0,5
16		10658	1	0,6	0,4	0,4	-0,4	16		25955	1	0,6	0,4	0,4	-0,4
17		10696	1	0,7	0,3	0,3	-0,3	17		26342	1	0,7	0,3	0,3	-0,3
18		10907	1	0,8	0,2	0,2	-0,2	18		26342	1	0,8	0,2	0,2	-0,2
19		10968	1	0,9	0,1	0,1	-0,1	19		26641	1	0,9	0,1	0,1	-0,1
20		11463	1	1	Ó	Ó	Ó	20		27359	1	1	0	0	0

Abbildung 131: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 100x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 132: arraylist:

Abbild	ung	133:	obj	ect:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0163		0,1	0	0,1	0,1	-0,1
2	0,1153		0,2	0	0,2	0,2	-0,2
3		0,2758	0,2	0,1	0,1	0,1	-0,1
4		0,2784	0,2	0,2	0	0	0
5	0,2891		0,3	0,2	0,1	0,1	-0,1
6	0,4429		0,4	0,2	0,2	0,2	-0,2
7	0,5166		0,5	0,2	0,3	0,3	-0,3
8		0,6216	0,5	0,3	0,2	0,2	-0,2
9	0,6852		0,6	0,3	0,3	0,3	-0,3
10	0,7168		0,7	0,3	0,4	0,4	-0,4
11	0,7484		0,8	0,3	0,5	0,5	-0,5
12		1,1185	0,8	0,4	0,4	0,4	-0,4
13	1,2582		0,9	0,4	0,5	0,5	-0,5
14	,	1,3634	0,9	0,5	0,4	0,4	-0,4
15	1,4636		1	0,5	0,5	0,5	-0,5
16	,	1,5434	1	0,6	0,4	0,4	-0,4
17		1,9643	1	0,7	0,3	0,3	-0,3
18		2,4039	1	0,8	0,2	0,2	-0,2
19		2,953	1	0,9	0,1	0,1	-0,1
20		3,1467	1	1	Ó	Ó	Ó

				0		J	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0205		0,1	0	0,1	0,1	-0,1
2	0,0708		0,2	0	0,2	0,2	-0,2
3		0,1548	0,2	0,1	0,1	0,1	-0,1
4	0,1747		0,3	0,1	0,2	0,2	-0,2
5	0,1822		0,4	0,1	0,3	0,3	-0,3
6	0,1923		0,5	0,1	0,4	0,4	-0,4
7	0,2304		0,6	0,1	0,5	0,5	-0,5
8	0,2444		0,7	0,1	0,6	0,6	-0,6
9	0,2844		0,8	0,1	0,7	0,7	-0,7
10	0,2953		0,9	0,1	0,8	0,8	-0,8
11		0,4486	0,9	0,2	0,7	0,7	-0,7
12		0,506	0,9	0,3	0,6	0,6	-0,6
13	0,6386		1	0,3	0,7	0,7	-0,7
14		0,6527	1	0,4	0,6	0,6	-0,6
15		0,7785	1	0,5	0,5	0,5	-0,5
16		1,0283	1	0,6	0,4	0,4	-0,4
17		1,0975	1	0,7	0,3	0,3	-0,3
18		1,3312	1	0,8	0,2	0,2	-0,2
19		1,727	1	0,9	0,1	0,1	-0,1
20		2,8055	1	1	0	0	0

Abbildung 134: path:

Abbildung 135: hash:

	moditating 101. patin.														
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,0041		0,1	0	0,1	0,1	-0,1	1		0,1115	0	0,1	0,1	-0,1	0,1
2		0,0074	0,1	0,1	0	0	0	2	0,1345		0,1	0,1	0	0	0
3	0,0206		0,2	0,1	0,1	0,1	-0,1	3	0,1858		0,2	0,1	0,1	0,1	-0,1
4	0,0289		0,3	0,1	0,2	0,2	-0,2	4	0,2476		0,3	0,1	0,2	0,2	-0,2
5	0,0371		0,4	0,1	0,3	0,3	-0,3	5	0,2882		0,4	0,1	0,3	0,3	-0,3
6	0,0371		0,5	0,1	0,4	0,4	-0,4	6	0,3192		0,5	0,1	0,4	0,4	-0,4
7	0,0948		0,6	0,1	0,5	0,5	-0,5	7	0,3959		0,6	0,1	0,5	0,5	-0,5
8	0,1196		0,7	0,1	0,6	0,6	-0,6	8		0,4062	0,6	0,2	0,4	0,4	-0,4
9	0,1278		0,8	0,1	0,7	0,7	-0,7	9	0,6229		0,7	0,2	0,5	0,5	-0,5
10	0,1691		0,9	0,1	0,8	0,8	-0,8	10	0,8196		0,8	0,2	0,6	0,6	-0,6
11	0,2103		1	0,1	0,9	0,9	-0,9	11		0,9095	0,8	0,3	0,5	0,5	-0,5
12		0,7985	1	0,2	0,8	0,8	-0,8	12	1,3864		0,9	0,3	0,6	0,6	-0,6
13		1,6312	1	0,3	0,7	0,7	-0,7	13		1,4504	0,9	0,4	0,5	0,5	-0,5
14		2,7785	1	0,4	0,6	0,6	-0,6	14		1,6892	0,9	0,5	0,4	0,4	-0,4
15		2,8008	1	0,5	0,5	0,5	-0,5	15		2,3684	0,9	0,6	0,3	0,3	-0,3
16		3,4438	1	0,6	0,4	0,4	-0,4	16		2,4997	0,9	0,7	0,2	0,2	-0,2
17		4,6004	1	0,7	0,3	0,3	-0,3	17	2,5158		1	0,7	0,3	0,3	-0,3
18		6,8821	1	0,8	0,2	0,2	-0,2	18		2,6129	1	0,8	0,2	0,2	-0,2
19		7,3354	1	0,9	0,1	0,1	-0,1	19		2,9395	1	0,9	0,1	0,1	-0,1
20		8,5882	1	1	0	0	0	20		7,0872	1	1	0	0	0

Abbildung 136: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 100x100 anhand der Standardabweichung

Abbildung 137: arraylist:

			ona	0	10.	· array mo	-
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	1343		0,1	0	0,1	0,1	-0,1
2	1344		0,2	0	0,2	0,2	-0,2
3	1358		0,3	0	0,3	0,3	-0,3
4	1372		0,4	0	0,4	0,4	-0,4
5	1385		0,5	0	0,5	0,5	-0,5
6	1629		0,6	0	0,6	0,6	-0,6
7	1636		0,7	0	0,7	0,7	-0,7
8	1661		0,8	0	0,8	0,8	-0,8
9	2011		0,9	0	0,9	0,9	-0,9
10	2013		1	0	1	1	-1
11		5151	1	0,1	0,9	0,9	-0,9
12		5543	1	0,2	0,8	0,8	-0,8
13		6533	1	0,3	0,7	0,7	-0,7
14		6928	1	0,4	0,6	0,6	-0,6
15		7454	1	0,5	0,5	0,5	-0,5
16		7518	1	0,6	0,4	0,4	-0,4
17		8203	1	0,7	0,3	0,3	-0,3
18		8574	1	0,8	0,2	0,2	-0,2
19		8668	1	0,9	0,1	0,1	-0,1
20		9132	1	1	0	0	0
						1	

Abbildung 138: object:

				O		J	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	125532		0,1	0	0,1	0,1	-0,1
2	137323		0,2	0	0,2	0,2	-0,2
3	139311		0,3	0	0,3	0,3	-0,3
4	139487		0,4	0	0,4	0,4	-0,4
5	154624		0,5	0	0,5	0,5	-0,5
6	155554		0,6	0	0,6	0,6	-0,6
7	159201		0,7	0	0,7	0,7	-0,7
8	159828		0,8	0	0,8	0,8	-0,8
9	165867		0,9	0	0,9	0,9	-0,9
10	178688		1	0	1	1	-1
11		1000076	1	0,1	0,9	0,9	-0,9
12		1181955	1	0,2	0,8	0,8	-0,8
13		1227983	1	0,3	0,7	0,7	-0,7
14		1291106	1	0,4	0,6	0,6	-0,6
15		1349631	1	0,5	0,5	0,5	-0,5
16		1386757	1	0,6	0,4	0,4	-0,4
17		1445325	1	0,7	0,3	0,3	-0,3
18		1511120	1	0,8	0,2	0,2	-0,2
19		1527414	1	0,9	0,1	0,1	-0,1
20		1603151	1	1	0	0	0

Abbildung 139: path:

Abbildung 140: hash:

	Tibblidang 199. patin.							Abbildung 140; nasn;							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	54		0,1	0	0,1	0,1	-0,1	1	2370		0,1	0	0,1	0,1	-0,1
2	67		0,2	0	0,2	0,2	-0,2	2	2940		0,2	0	0,2	0,2	-0,2
3	67		0,3	0	0,3	0,3	-0,3	3	3089		0,3	0	0,3	0,3	-0,3
4	68		0,4	0	0,4	0,4	-0,4	4	3162		0,4	0	0,4	0,4	-0,4
5	70		0,5	0	0,5	0,5	-0,5	5	3286		0,5	0	0,5	0,5	-0,5
6	78		0,6	0	0,6	0,6	-0,6	6	3362		0,6	0	0,6	0,6	-0,6
7	81		0,7	0	0,7	0,7	-0,7	7	3383		0,7	0	0,7	0,7	-0,7
8	89		0,8	0	0,8	0,8	-0,8	8	3418		0,8	0	0,8	0,8	-0,8
9	94		0,9	0	0,9	0,9	-0,9	9	3604		0,9	0	0,9	0,9	-0,9
10	107		1	0	1	1	-1	10	4215		1	0	1	1	-1
11		10039	1	0,1	0,9	0,9	-0,9	11		22617	1	0,1	0,9	0,9	-0,9
12		10137	1	0,2	0,8	0,8	-0,8	12		24361	1	0,2	0,8	0,8	-0,8
13		10171	1	0,3	0,7	0,7	-0,7	13		25138	1	0,3	0,7	0,7	-0,7
14		10193	1	0,4	0,6	0,6	-0,6	14		25191	1	0,4	0,6	0,6	-0,6
15		10257	1	0,5	0,5	0,5	-0,5	15		25208	1	0,5	0,5	0,5	-0,5
16		10299	1	0,6	0,4	0,4	-0,4	16		25241	1	0,6	0,4	0,4	-0,4
17		10324	1	0,7	0,3	0,3	-0,3	17		25366	1	0,7	0,3	0,3	-0,3
18		10367	1	0,8	0,2	0,2	-0,2	18		25708	1	0,8	0,2	0,2	-0,2
19		10378	1	0,9	0,1	0,1	-0,1	19		25932	1	0,9	0,1	0,1	-0,1
20		10412	1	1	Ó	Ó	Ó	20		26388	1	1	0	0	0

Abbildung 141: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 1000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 142: arraylist:

Abbild	ung	143:	object

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0.0163	2	0,1	0	0,1	0,1	-0,1
2	0,0100	0.0222	0,1	0,1	0,1	0,1	0
3		0,0513	0,1	0,1	0.1	-0,1	0,1
4		· /	,			,	1 ' 1
		0,0712	0,1	0,3	0,2	-0,2	0,2
5		0,0886	0,1	0,4	0,3	-0,3	0,3
6	0,1153		0,2	0,4	0,2	-0,2	0,2
7		0,1236	0,2	0,5	0,3	-0,3	0,3
8		0,1645	0,2	0,6	0,4	-0,4	0,4
9		0,1971	0,2	0,7	0,5	-0,5	0,5
10		0,2088	0,2	0,8	0,6	-0,6	0,6
11		0,2729	0,2	0,9	0,7	-0,7	0,7
12	0,2891		0,3	0,9	0,6	-0,6	0,6
13		0,3044	0,3	1	0,7	-0,7	0,7
14	0,4429		0,4	1	0,6	-0,6	0,6
15	0,5166		0,5	1	0,5	-0,5	0,5
16	0,6852		0,6	1	0,4	-0,4	0,4
17	0,7168		0,7	1	0,3	-0,3	0,3
18	0,7484		0,8	1	0,2	-0,2	0,2
19	1,2582		0,9	1	0,1	-0,1	0,1
20	1,4636		1	1	0	0	0

						· ·	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0205		0,1	0	0,1	0,1	-0,1
2	0,0708		0,2	0	0,2	0,2	-0,2
3		0,1383	0,2	0,1	0,1	0,1	-0,1
4		0,1482	0,2	0,2	0	0	0
5	0,1747		0,3	0,2	0,1	0,1	-0,1
6	0,1822		0,4	0,2	0,2	0,2	-0,2
7	0,1923		0,5	0,2	0,3	0,3	-0,3
8		0,1987	0,5	0,3	0,2	0,2	-0,2
9	0,2304		0,6	0,3	0,3	0,3	-0,3
10	0,2444		0,7	0,3	0,4	0,4	-0,4
11		0,2614	0,7	0,4	0,3	0,3	-0,3
12		0,2716	0,7	0,5	0,2	0,2	-0,2
13	0,2844		0,8	0,5	0,3	0,3	-0,3
14	0,2953		0,9	0,5	0,4	0,4	-0,4
15		0,3533	0,9	0,6	0,3	0,3	-0,3
16		0,4266	0,9	0,7	0,2	0,2	-0,2
17		0,4989	0,9	0,8	0,1	0,1	-0,1
18		0,5616	0,9	0,9	0	0	0
19	0,6386		1	0,9	0,1	0,1	-0,1
20		2,0189	1	1	0	0	0

Abbildung 144: path:

Abbildung 145: hash:

	moondang 111. padii.							monading 110. maon.								
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0041		0,1	0	0,1	0,1	-0,1		1		0,0053	0	0,1	0,1	-0,1	0,1
2	0,0206		0,2	0	0,2	0,2	-0,2		2	0,1345		0,1	0,1	0	0	0
3		0,0221	0,2	0,1	0,1	0,1	-0,1		3	0,1858		0,2	0,1	0,1	0,1	-0,1
4	0,0289		0,3	0,1	0,2	0,2	-0,2		4	0,2476		0,3	0,1	0,2	0,2	-0,2
5		0,0302	0,3	0,2	0,1	0,1	-0,1		5	0,2882		0,4	0,1	0,3	0,3	-0,3
6	0,0371		0,4	0,2	0,2	0,2	-0,2		6	0,3192		0,5	0,1	0,4	0,4	-0,4
7	0,0371		0,5	0,2	0,3	0,3	-0,3		7	0,3959		0,6	0,1	0,5	0,5	-0,5
8		0,0548	0,5	0,3	0,2	0,2	-0,2		8		0,4327	0,6	0,2	0,4	0,4	-0,4
9		0,0711	0,5	0,4	0,1	0,1	-0,1		9	0,6229		0,7	0,2	0,5	0,5	-0,5
10		0,0711	0,5	0,5	0	0	0	:	10		0,7133	0,7	0,3	0,4	0,4	-0,4
11	0,0948		0,6	0,5	0,1	0,1	-0,1	:	11	0,8196		0,8	0,3	0,5	0,5	-0,5
12		0,1005	0,6	0,6	0	0	0	:	12	1,3864		0,9	0,3	0,6	0,6	-0,6
13		0,1005	0,6	0,7	0,1	-0,1	0,1	:	13	2,5158		1	0,3	0,7	0,7	-0,7
14		0,1038	0,6	0,8	0,2	-0,2	0,2	:	14		3,0831	1	0,4	0,6	0,6	-0,6
15		0,112	0,6	0,9	0,3	-0,3	0,3	:	15		3,1413	1	0,5	0,5	0,5	-0,5
16	0,1196		0,7	0,9	0,2	-0,2	0,2	:	16		3,3666	1	0,6	0,4	0,4	-0,4
17	0,1278		0,8	0,9	0,1	-0,1	0,1	:	17		4,0972	1	0,7	0,3	0,3	-0,3
18	0,1691		0,9	0,9	0	0	0	:	18		4,389	1	0,8	0,2	0,2	-0,2
19	0,2103		1	0,9	0,1	0,1	-0,1	:	19		4,411	1	0,9	0,1	0,1	-0,1
20		0,264	1	1	0	0	0	:	20		5,1635	1	1	0	0	0

Abbildung 146: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 1000x10 anhand der Standardabweichung

Abbildung 147: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		32	0	0,1	0,1	-0,1	0,1
2		67	0	0,2	0,2	-0,2	0,2
3		71	0	0,3	0,3	-0,3	0,3
4		73	0	0,4	0,4	-0,4	0,4
5		76	0	0,5	0,5	-0,5	0,5
6		88	0	0,6	0,6	-0,6	0,6
7		101	0	0,7	0,7	-0,7	0,7
8		103	0	0,8	0,8	-0,8	0,8
9		104	0	0,9	0,9	-0,9	0,9
10		105	0	1	1	-1	1
11	1343		0,1	1	0,9	-0,9	0,9
12	1344		0,2	1	0,8	-0,8	0,8
13	1358		0,3	1	0,7	-0,7	0,7
14	1372		0,4	1	0,6	-0,6	0,6
15	1385		0,5	1	0,5	-0,5	0,5
16	1629		0,6	1	0,4	-0,4	0,4
17	1636		0,7	1	0,3	-0,3	0,3
18	1661		0,8	1	0,2	-0,2	0,2
19	2011		0,9	1	0,1	-0,1	0,1
20	2013		1	1	0	0	0

Abbildung 148: object:

Abbilding 148: object:												
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$					
1		109243	0	0,1	0,1	-0,1	0,1					
2	125532		0,1	0,1	0	0	0					
3	137323		0,2	0,1	0,1	0,1	-0,1					
4	139311		0,3	0,1	0,2	0,2	-0,2					
5	139487		0,4	0,1	0,3	0,3	-0,3					
6	154624		0,5	0,1	0,4	0,4	-0,4					
7	155554		0,6	0,1	0,5	0,5	-0,5					
8	159201		0,7	0,1	0,6	0,6	-0,6					
9	159828		0,8	0,1	0,7	0,7	-0,7					
10		161526	0,8	0,2	0,6	0,6	-0,6					
11	165867		0,9	0,2	0,7	0,7	-0,7					
12		176794	0,9	0,3	0,6	0,6	-0,6					
13	178688		1	0,3	0,7	0,7	-0,7					
14		180506	1	0,4	0,6	0,6	-0,6					
15		195945	1	0,5	0,5	0,5	-0,5					
16		218741	1	0,6	0,4	0,4	-0,4					
17		222857	1	0,7	0,3	0,3	-0,3					
18		259391	1	0,8	0,2	0,2	-0,2					
19		275117	1	0,9	0,1	0,1	-0,1					
20		475548	1	1	0	0	0					

Abbildung 149: path:

					_		
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		32	0	0,1	0,1	-0,1	0,1
2		38	0	0,2	0,2	-0,2	0,2
3		40	0	0,3	0,3	-0,3	0,3
4		48	0	0,4	0,4	-0,4	0,4
5		49	0	0,5	0,5	-0,5	0,5
6		50	0	0,6	0,6	-0,6	0,6
7	54		0,1	0,6	0,5	-0,5	0,5
8		58	0,1	0,7	0,6	-0,6	0,6
9		58	0,1	0,8	0,7	-0,7	0,7
10		59	0,1	0,9	0,8	-0,8	0,8
11	67		0,2	0,9	0,7	-0,7	0,7
12	67		0,3	0,9	0,6	-0,6	0,6
13	68		0,4	0,9	0,5	-0,5	0,5
14	70		0,5	0,9	0,4	-0,4	0,4
15		76	0,5	1	0,5	-0,5	0,5
16	78		0,6	1	0,4	-0,4	0,4
17	81		0,7	1	0,3	-0,3	0,3
18	89		0,8	1	0,2	-0,2	0,2
19	94		0,9	1	0,1	-0,1	0,1
20	107		1	1	0	0	0

Abbildung 150: hash:

	11001144116 100. 1140011.													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$							
1	2370		0,1	0	0,1	0,1	-0,1							
2	2940		0,2	0	0,2	0,2	-0,2							
3	3089		0,3	0	0,3	0,3	-0,3							
4	3162		0,4	0	0,4	0,4	-0,4							
5	3286		0,5	0	0,5	0,5	-0,5							
6	3362		0,6	0	0,6	0,6	-0,6							
7	3383		0,7	0	0,7	0,7	-0,7							
8	3418		0,8	0	0,8	0,8	-0,8							
9	3604		0,9	0	0,9	0,9	-0,9							
10	4215		1	0	1	1	-1							
11		11024	1	0,1	0,9	0,9	-0,9							
12		11271	1	0,2	0,8	0,8	-0,8							
13		11287	1	0,3	0,7	0,7	-0,7							
14		11533	1	0,4	0,6	0,6	-0,6							
15		14861	1	0,5	0,5	0,5	-0,5							
16		15027	1	0,6	0,4	0,4	-0,4							
17		15355	1	0,7	0,3	0,3	-0,3							
18		16144	1	0,8	0,2	0,2	-0,2							
19		16756	1	0,9	0,1	0,1	-0,1							
20		16868	1	1	0	0	0							

Abbildung 151: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 1000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 152: arraylist:

Abbildung 153: object:

	11001144116 102. 4114/1100.													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$							
1		0,0146	0	0,1	0,1	-0,1	0,1							
2		0,0146	0	0,2	0,2	-0,2	0,2							
3	0,0163		0,1	0,2	0,1	-0,1	0,1							
4		0,0321	0,1	0,3	0,2	-0,2	0,2							
5		0,0438	0,1	0,4	0,3	-0,3	0,3							
6		0,0438	0,1	0,5	0,4	-0,4	0,4							
7		0,0613	0,1	0,6	0,5	-0,5	0,5							
8		0,0729	0,1	0,7	0,6	-0,6	0,6							
9		0,0846	0,1	0,8	0,7	-0,7	0,7							
10		0,0963	0,1	0,9	0,8	-0,8	0,8							
11		0,1021	0,1	1	0,9	-0,9	0,9							
12	0,1153		0,2	1	0,8	-0,8	0,8							
13	0,2891		0,3	1	0,7	-0,7	0,7							
14	0,4429		0,4	1	0,6	-0,6	0,6							
15	0,5166		0,5	1	0,5	-0,5	0,5							
16	0,6852		0,6	1	0,4	-0,4	0,4							
17	0,7168		0,7	1	0,3	-0,3	0,3							
18	0,7484		0,8	1	0,2	-0,2	0,2							
19	1,2582		0,9	1	0,1	-0,1	0,1							
20	1,4636		1	1	0	0	0							

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$							
1	0,0205		0,1	0	0,1	0,1	-0,1							
2		0,0364	0,1	0,1	0	0	0							
3	0,0708		0,2	0,1	0,1	0,1	-0,1							
4		0,0954	0,2	0,2	0	0	0							
5		0,1053	0,2	0,3	0,1	-0,1	0,1							
6	0,1747		0,3	0,3	0	0	0							
7	0,1822		0,4	0,3	0,1	0,1	-0,1							
8	0,1923		0,5	0,3	0,2	0,2	-0,2							
9	0,2304		0,6	0,3	0,3	0,3	-0,3							
10	0,2444		0,7	0,3	0,4	0,4	-0,4							
11	0,2844		0,8	0,3	0,5	0,5	-0,5							
12	0,2953		0,9	0,3	0,6	0,6	-0,6							
13		0,4024	0,9	0,4	0,5	0,5	-0,5							
14		0,4211	0,9	0,5	0,4	0,4	-0,4							
15		0,5389	0,9	0,6	0,3	0,3	-0,3							
16	0,6386		1	0,6	0,4	0,4	-0,4							
17		0,7582	1	0,7	0,3	0,3	-0,3							
18		1,0105	1	0,8	0,2	0,2	-0,2							
19		1,4387	1	0,9	0,1	0,1	-0,1							
20		1,719	1	1	0	0	0							

Abbildung 154: path:

Abbildung 155: hash:

	Tibblidang 194. path.							Tibbildang 199. nasn.								
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0	0	0,1	0,1	-0,1	0,1		1		0,0198	0	0,1	0,1	-0,1	0,1
2	0,0041		0,1	0,1	0	0	0		2	0,1345		0,1	0,1	0	0	0
3		0,0082	0,1	0,2	0,1	-0,1	0,1		3	0,1858		0,2	0,1	0,1	0,1	-0,1
4		0,0164	0,1	0,3	0,2	-0,2	0,2		4		0,2281	0,2	0,2	0	0	0
5		0,0164	0,1	0,4	0,3	-0,3	0,3		5		0,2302	0,2	0,3	0,1	-0,1	0,1
6		0,0164	0,1	0,5	0,4	-0,4	0,4		6	0,2476		0,3	0,3	0	0	0
7	0,0206		0,2	0,5	0,3	-0,3	0,3		7	0,2882		0,4	0,3	0,1	0,1	-0,1
8		0,0245	0,2	0,6	0,4	-0,4	0,4		8	0,3192		0,5	0,3	0,2	0,2	-0,2
9	0,0289		0,3	0,6	0,3	-0,3	0,3		9	0,3959		0,6	0,3	0,3	0,3	-0,3
10		0,0327	0,3	0,7	0,4	-0,4	0,4		10		0,5346	0,6	0,4	0,2	0,2	-0,2
11	0,0371		0,4	0,7	0,3	-0,3	0,3		11		0,5944	0,6	0,5	0,1	0,1	-0,1
12	0,0371		0,5	0,7	0,2	-0,2	0,2		12	0,6229		0,7	0,5	0,2	0,2	-0,2
13		0,0409	0,5	0,8	0,3	-0,3	0,3		13		0,7087	0,7	0,6	0,1	0,1	-0,1
14		0,0409	0,5	0,9	0,4	-0,4	0,4		14	0,8196		0,8	0,6	0,2	0,2	-0,2
15		0,0654	0,5	1	0,5	-0,5	0,5		15		0,8422	0,8	0,7	0,1	0,1	-0,1
16	0,0948		0,6	1	0,4	-0,4	0,4		16		0,8679	0,8	0,8	0	0	0
17	0,1196		0,7	1	0,3	-0,3	0,3		17	1,3864		0,9	0,8	0,1	0,1	-0,1
18	0,1278		0,8	1	0,2	-0,2	0,2		18		2,0311	0,9	0,9	0	0	0
19	0,1691		0,9	1	0,1	-0,1	0,1		19		2,1144	0,9	1	0,1	-0,1	0,1
20	0,2103		1	1	0	0	0		20	2,5158		1	1	0	0	0

Abbildung 156: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 1000x100 anhand der Standardabweichung

Abbildung 157: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		89	0	0,1	0,1	-0,1	0,1
2		92	0	0,2	0,2	-0,2	0,2
3		93	0	0,3	0,3	-0,3	0,3
4		94	0	0,4	0,4	-0,4	0,4
5		95	0	0,5	0,5	-0,5	0,5
6		95	0	0,6	0,6	-0,6	0,6
7		97	0	0,7	0,7	-0,7	0,7
8		98	0	0,8	0,8	-0,8	0,8
9		102	0	0,9	0,9	-0,9	0,9
10		102	0	1	1	-1	1
11	1343		0,1	1	0,9	-0,9	0,9
12	1344		0,2	1	0,8	-0,8	0,8
13	1358		0,3	1	0,7	-0,7	0,7
14	1372		0,4	1	0,6	-0,6	0,6
15	1385		0,5	1	0,5	-0,5	0,5
16	1629		0,6	1	0,4	-0,4	0,4
17	1636		0,7	1	0,3	-0,3	0,3
18	1661		0,8	1	0,2	-0,2	0,2
19	2011		0,9	1	0,1	-0,1	0,1
20	2013		1	1	0	0	Ó
		-			-		

Abbildung 158: object:

	Abblidding 156. Object.													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$							
1	125532		0,1	0	0,1	0,1	-0,1							
2	137323		0,2	0	0,2	0,2	-0,2							
3	139311		0,3	0	0,3	0,3	-0,3							
4	139487		0,4	0	0,4	0,4	-0,4							
5	154624		0,5	0	0,5	0,5	-0,5							
6	155554		0,6	0	0,6	0,6	-0,6							
7	159201		0,7	0	0,7	0,7	-0,7							
8	159828		0,8	0	0,8	0,8	-0,8							
9	165867		0,9	0	0,9	0,9	-0,9							
10	178688		1	0	1	1	-1							
11		270903	1	0,1	0,9	0,9	-0,9							
12		407862	1	0,2	0,8	0,8	-0,8							
13		423541	1	0,3	0,7	0,7	-0,7							
14		458101	1	0,4	0,6	0,6	-0,6							
15		530258	1	0,5	0,5	0,5	-0,5							
16		535709	1	0,6	0,4	0,4	-0,4							
17		537134	1	0,7	0,3	0,3	-0,3							
18		550884	1	0,8	0,2	0,2	-0,2							
19		559912	1	0,9	0,1	0,1	-0,1							
20		623875	1	1	0	0	0							

Abbildung 159: path:

					_	•	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		44	0	0,1	0,1	-0,1	0,1
2		44	0	0,2	0,2	-0,2	0,2
3		49	0	0,3	0,3	-0,3	0,3
4		49	0	0,4	0,4	-0,4	0,4
5		50	0	0,5	0,5	-0,5	0,5
6		50	0	0,6	0,6	-0,6	0,6
7		52	0	0,7	0,7	-0,7	0,7
8		52	0	0,8	0,8	-0,8	0,8
9	54		0,1	0,8	0,7	-0,7	0,7
10		55	0,1	0,9	0,8	-0,8	0,8
11		57	0,1	1	0,9	-0,9	0,9
12	67		0,2	1	0,8	-0,8	0,8
13	67		0,3	1	0,7	-0,7	0,7
14	68		0,4	1	0,6	-0,6	0,6
15	70		0,5	1	0,5	-0,5	0,5
16	78		0,6	1	0,4	-0,4	0,4
17	81		0,7	1	0,3	-0,3	0,3
18	89		0,8	1	0,2	-0,2	0,2
19	94		0,9	1	0,1	-0,1	0,1
20	107		1	1	0	0	0

Abbildung 160: hash:

	Tibblidding 100: Indbii:													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$							
1	2370		0,1	0	0,1	0,1	-0,1							
2	2940		0,2	0	0,2	0,2	-0,2							
3	3089		0,3	0	0,3	0,3	-0,3							
4	3162		0,4	0	0,4	0,4	-0,4							
5	3286		0,5	0	0,5	0,5	-0,5							
6	3362		0,6	0	0,6	0,6	-0,6							
7	3383		0,7	0	0,7	0,7	-0,7							
8	3418		0,8	0	0,8	0,8	-0,8							
9	3604		0,9	0	0,9	0,9	-0,9							
10	4215		1	0	1	1	-1							
11		7605	1	0,1	0,9	0,9	-0,9							
12		10007	1	0,2	0,8	0,8	-0,8							
13		10165	1	0,3	0,7	0,7	-0,7							
14		10454	1	0,4	0,6	0,6	-0,6							
15		10555	1	0,5	0,5	0,5	-0,5							
16		11007	1	0,6	0,4	0,4	-0,4							
17		11344	1	0,7	0,3	0,3	-0,3							
18		11419	1	0,8	0,2	0,2	-0,2							
19		11825	1	0,9	0,1	0,1	-0,1							
20		12718	1	1	0	0	0							

Abbildung 161: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 2000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 162: arraylist:

Abbildung 163: object:

				_					
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$		Ī
1		0,0145	0	0,1	0,1	-0,1	0,1		
2	0,0163		0,1	0,1	0	0	0		
3		0,0203	0,1	0,2	0,1	-0,1	0,1		
4		0,0261	0,1	0,3	0,2	-0,2	0,2		
5		0,0261	0,1	0,4	0,3	-0,3	0,3		
6		0,0435	0,1	0,5	0,4	-0,4	0,4		
7		0,0551	0,1	0,6	0,5	-0,5	0,5		
8		0,0667	0,1	0,7	0,6	-0,6	0,6		
9		0,0784	0,1	0,8	0,7	-0,7	0,7		
10		0,1074	0,1	0,9	0,8	-0,8	0,8		
11	0,1153		0,2	0,9	0,7	-0,7	0,7		
12		0,1828	0,2	1	0,8	-0,8	0,8		
13	0,2891		0,3	1	0,7	-0,7	0,7		
14	0,4429		0,4	1	0,6	-0,6	0,6		
15	0,5166		0,5	1	0,5	-0,5	0,5		
16	0,6852		0,6	1	0,4	-0,4	0,4		
17	0,7168		0,7	1	0,3	-0,3	0,3		
18	0,7484		0,8	1	0,2	-0,2	0,2		
19	1,2582		0,9	1	0,1	-0,1	0,1		
20	1,4636		1	1	Ó	Ó	Ó		
						1		' '	-

				0		J	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0003	0	0,1	0,1	-0,1	0,1
2		0,0013	0	0,2	0,2	-0,2	0,2
3	0,0205		0,1	0,2	0,1	-0,1	0,1
4	0,0708		0,2	0,2	0	0	0
5		0,0979	0,2	0,3	0,1	-0,1	0,1
6		0,1617	0,2	0,4	0,2	-0,2	0,2
7	0,1747		0,3	0,4	0,1	-0,1	0,1
8	0,1822		0,4	0,4	0	0	0
9	0,1923		0,5	0,4	0,1	0,1	-0,1
10		0,2208	0,5	0,5	0	0	0
11	0,2304		0,6	0,5	0,1	0,1	-0,1
12	0,2444		0,7	0,5	0,2	0,2	-0,2
13	0,2844		0,8	0,5	0,3	0,3	-0,3
14	0,2953		0,9	0,5	0,4	0,4	-0,4
15		0,386	0,9	0,6	0,3	0,3	-0,3
16		0,4214	0,9	0,7	0,2	0,2	-0,2
17		0,4727	0,9	0,8	0,1	0,1	-0,1
18		0,5206	0,9	0,9	0	0	0
19		0,5499	0,9	1	0,1	-0,1	0,1
20	0,6386		1	1	0	0	0

Abbildung 164: path:

Abbildung 165: hash:

	moditating 101: path.							110011010115 100: 110011:							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0008	0	0,1	0,1	-0,1	0,1	1		0,0057	0	0,1	0,1	-0,1	0,1
2	0,0041		0,1	0,1	0	0	0	2		0,0261	0	0,2	0,2	-0,2	0,2
3		0,0155	0,1	0,2	0,1	-0,1	0,1	3		0,0515	0	0,3	0,3	-0,3	0,3
4	0,0206		0,2	0,2	0	0	0	4		0,0709	0	0,4	0,4	-0,4	0,4
5		0,0237	0,2	0,3	0,1	-0,1	0,1	5		0,0912	0	0,5	0,5	-0,5	0,5
6		0,0237	0,2	0,4	0,2	-0,2	0,2	6	0,1345		0,1	0,5	0,4	-0,4	0,4
7	0,0289		0,3	0,4	0,1	-0,1	0,1	7		0,1532	0,1	0,6	0,5	-0,5	0,5
8		0,0335	0,3	0,5	0,2	-0,2	0,2	8		0,1659	0,1	0,7	0,6	-0,6	0,6
9	0,0371		0,4	0,5	0,1	-0,1	0,1	9	0,1858		0,2	0,7	0,5	-0,5	0,5
10	0,0371		0,5	0,5	0	0	0	10		0,1929	0,2	0,8	0,6	-0,6	0,6
11		0,0498	0,5	0,6	0,1	-0,1	0,1	11		0,2361	0,2	0,9	0,7	-0,7	0,7
12		0,0825	0,5	0,7	0,2	-0,2	0,2	12	0,2476		0,3	0,9	0,6	-0,6	0,6
13		0,089	0,5	0,8	0,3	-0,3	0,3	13	0,2882		0,4	0,9	0,5	-0,5	0,5
14	0,0948		0,6	0,8	0,2	-0,2	0,2	14	0,3192		0,5	0,9	0,4	-0,4	0,4
15	0,1196		0,7	0,8	0,1	-0,1	0,1	15		0,368	0,5	1	0,5	-0,5	0,5
16	0,1278		0,8	0,8	0	0	0	16	0,3959		0,6	1	0,4	-0,4	0,4
17		0,1478	0,8	0,9	0,1	-0,1	0,1	17	0,6229		0,7	1	0,3	-0,3	0,3
18		0,1626	0,8	1	0,2	-0,2	0,2	18	0,8196		0,8	1	0,2	-0,2	0,2
19	0,1691		0,9	1	0,1	-0,1	0,1	19	1,3864		0,9	1	0,1	-0,1	0,1
20	0,2103		1	1	0	0	0	20	2,5158		1	1	0	0	0

Abbildung 166: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 2000x10 anhand der Standardabweichung

Abbildung 167: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		26	0	0,1	0,1	-0,1	0,1
2		27	0	0,2	0,2	-0,2	0,2
3		33	0	0,3	0,3	-0,3	0,3
4		35	0	0,4	0,4	-0,4	0,4
5		36	0	0,5	0,5	-0,5	0,5
6		36	0	0,6	0,6	-0,6	0,6
7		40	0	0,7	0,7	-0,7	0,7
8		40	0	0,8	0,8	-0,8	0,8
9		47	0	0,9	0,9	-0,9	0,9
10		53	0	1	1	-1	1
11	1343		0,1	1	0,9	-0,9	0,9
12	1344		0,2	1	0,8	-0,8	0,8
13	1358		0,3	1	0,7	-0,7	0,7
14	1372		0,4	1	0,6	-0,6	0,6
15	1385		0,5	1	0,5	-0,5	0,5
16	1629		0,6	1	0,4	-0,4	0,4
17	1636		0,7	1	0,3	-0,3	0,3
18	1661		0,8	1	0,2	-0,2	0,2
19	2011		0,9	1	0,1	-0,1	0,1
20	2013		1	1	0	0	0

Abbildung 168: object:

	Abblidung 108: object:													
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$							
1	125532		0,1	0	0,1	0,1	-0,1							
2	137323		0,2	0	0,2	0,2	-0,2							
3	139311		0,3	0	0,3	0,3	-0,3							
4	139487		0,4	0	0,4	0,4	-0,4							
5	154624		0,5	0	0,5	0,5	-0,5							
6	155554		0,6	0	0,6	0,6	-0,6							
7	159201		0,7	0	0,7	0,7	-0,7							
8	159828		0,8	0	0,8	0,8	-0,8							
9		165301	0,8	0,1	0,7	0,7	-0,7							
10	165867		0,9	0,1	0,8	0,8	-0,8							
11	178688		1	0,1	0,9	0,9	-0,9							
12		183234	1	0,2	0,8	0,8	-0,8							
13		183634	1	0,3	0,7	0,7	-0,7							
14		188716	1	0,4	0,6	0,6	-0,6							
15		198905	1	0,5	0,5	0,5	-0,5							
16		208518	1	0,6	0,4	0,4	-0,4							
17		225359	1	0,7	0,3	0,3	-0,3							
18		255022	1	0,8	0,2	0,2	-0,2							
19		261698	1	0,9	0,1	0,1	-0,1							
20		273035	1	1	0	0	0							

Abbildung 169: path:

					0	oo. parti.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		33	0	0,1	0,1	-0,1	0,1
2		35	0	0,2	0,2	-0,2	0,2
3		38	0	0,3	0,3	-0,3	0,3
4		43	0	0,4	0,4	-0,4	0,4
5		45	0	0,5	0,5	-0,5	0,5
6		47	0	0,6	0,6	-0,6	0,6
7		47	0	0,7	0,7	-0,7	0,7
8		49	0	0,8	0,8	-0,8	0,8
9	54		0,1	0,8	0,7	-0,7	0,7
10		55	0,1	0,9	0,8	-0,8	0,8
11		58	0,1	1	0,9	-0,9	0,9
12	67		0,2	1	0,8	-0,8	0,8
13	67		0,3	1	0,7	-0,7	0,7
14	68		0,4	1	0,6	-0,6	0,6
15	70		0,5	1	0,5	-0,5	0,5
16	78		0,6	1	0,4	-0,4	0,4
17	81		0,7	1	0,3	-0,3	0,3
18	89		0,8	1	0,2	-0,2	0,2
19	94		0,9	1	0,1	-0,1	0,1

Abbildung 170: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	201	156	0		_		,
			l	0,1	0,1	-0,1	0,1
2		185	0	0,2	0,2	-0,2	0,2
3		202	0	0,3	0,3	-0,3	0,3
4		206	0	0,4	0,4	-0,4	0,4
5		214	0	0,5	0,5	-0,5	0,5
6		265	0	0,6	0,6	-0,6	0,6
7		442	0	0,7	0,7	-0,7	0,7
8		448	0	0,8	0,8	-0,8	0,8
9		490	0	0,9	0,9	-0,9	0,9
10		510	0	1	1	-1	1
11	2370		0,1	1	0,9	-0,9	0,9
12	2940		0,2	1	0,8	-0,8	0,8
13	3089		0,3	1	0,7	-0,7	0,7
14	3162		0,4	1	0,6	-0,6	0,6
15	3286		0,5	1	0,5	-0,5	0,5
16	3362		0,6	1	0,4	-0,4	0,4
17	3383		0,7	1	0,3	-0,3	0,3
18	3418		0,8	1	0,2	-0,2	0,2
19	3604		0,9	1	0,1	-0,1	0,1
20	4215		1	1	0	0	0

Abbildung 171: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 2000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 172: arraylist:

Abbildung 173: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$					
1		0,0029	0	0,1	0,1	-0,1	0,1					
2		0,0029	0	0,2	0,2	-0,2	0,2					
3		0,0087	0	0,3	0,3	-0,3	0,3					
4		0,0087	0	0,4	0,4	-0,4	0,4					
5		0,0087	0	0,5	0,5	-0,5	0,5					
6		0,0145	0	0,6	0,6	-0,6	0,6					
7	0,0163		0,1	0,6	0,5	-0,5	0,5					
8		0,0203	0,1	0,7	0,6	-0,6	0,6					
9		0,0261	0,1	0,8	0,7	-0,7	0,7					
10		0,0319	0,1	0,9	0,8	-0,8	0,8					
11		0,0377	0,1	1	0,9	-0,9	0,9					
12	0,1153		0,2	1	0,8	-0,8	0,8					
13	0,2891		0,3	1	0,7	-0,7	0,7					
14	0,4429		0,4	1	0,6	-0,6	0,6					
15	0,5166		0,5	1	0,5	-0,5	0,5					
16	0,6852		0,6	1	0,4	-0,4	0,4					
17	0,7168		0,7	1	0,3	-0,3	0,3					
18	0,7484		0,8	1	0,2	-0,2	0,2					
19	1,2582		0,9	1	0,1	-0,1	0,1					
20	1,4636		1	1	0	0	0					
					1							

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$					
1	0,0205		0,1	0	0,1	0,1	-0,1					
2		0,0576	0,1	0,1	0	0	0					
3		0,0625	0,1	0,2	0,1	-0,1	0,1					
4	0,0708		0,2	0,2	0	0	0					
5		0,1368	0,2	0,3	0,1	-0,1	0,1					
6		0,1432	0,2	0,4	0,2	-0,2	0,2					
7		0,1514	0,2	0,5	0,3	-0,3	0,3					
8	0,1747		0,3	0,5	0,2	-0,2	0,2					
9	0,1822		0,4	0,5	0,1	-0,1	0,1					
10	0,1923		0,5	0,5	0	0	0					
11	0,2304		0,6	0,5	0,1	0,1	-0,1					
12	0,2444		0,7	0,5	0,2	0,2	-0,2					
13		0,2489	0,7	0,6	0,1	0,1	-0,1					
14		0,2509	0,7	0,7	0	0	0					
15		0,2745	0,7	0,8	0,1	-0,1	0,1					
16	0,2844		0,8	0,8	0	0	0					
17	0,2953		0,9	0,8	0,1	0,1	-0,1					
18		0,423	0,9	0,9	0	0	0					
19		0,501	0,9	1	0,1	-0,1	0,1					
20	0,6386		1	1	0	0	0					

Abbildung 174: path:

Abbildung 175: hash:

	manual strain partir																
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	
1		0,0033	0	0,1	0,1	-0,1	0,1		1		0,0099	0	0,1	0,1	-0,1	0,1	
2	0,0041		0,1	0,1	0	0	0		2		0,0124	0	0,2	0,2	-0,2	0,2	
3		0,0131	0,1	0,2	0,1	-0,1	0,1		3		0,0156	0	0,3	0,3	-0,3	0,3	
4	0,0206		0,2	0,2	0	0	0		4		0,0236	0	0,4	0,4	-0,4	0,4	
5		0,0212	0,2	0,3	0,1	-0,1	0,1		5		0,0315	0	0,5	0,5	-0,5	0,5	
6		0,0212	0,2	0,4	0,2	-0,2	0,2		6		0,0322	0	0,6	0,6	-0,6	0,6	
7		0,0278	0,2	0,5	0,3	-0,3	0,3		7		0,0331	0	0,7	0,7	-0,7	0,7	
8	0,0289		0,3	0,5	0,2	-0,2	0,2		8		0,0513	0	0,8	0,8	-0,8	0,8	
9		0,0359	0,3	0,6	0,3	-0,3	0,3		9		0,0522	0	0,9	0,9	-0,9	0,9	
10		0,0359	0,3	0,7	0,4	-0,4	0,4		10		0,0752	0	1	1	-1	1	
11	0,0371		0,4	0,7	0,3	-0,3	0,3		11	0,1345		0,1	1	0,9	-0,9	0,9	
12	0,0371		0,5	0,7	0,2	-0,2	0,2		12	0,1858		0,2	1	0,8	-0,8	0,8	
13		0,0376	0,5	0,8	0,3	-0,3	0,3		13	0,2476		0,3	1	0,7	-0,7	0,7	
14		0,0931	0,5	0,9	0,4	-0,4	0,4		14	0,2882		0,4	1	0,6	-0,6	0,6	
15	0,0948		0,6	0,9	0,3	-0,3	0,3		15	0,3192		0,5	1	0,5	-0,5	0,5	
16		0,1029	0,6	1	0,4	-0,4	0,4		16	0,3959		0,6	1	0,4	-0,4	0,4	
17	0,1196		0,7	1	0,3	-0,3	0,3		17	0,6229		0,7	1	0,3	-0,3	0,3	
18	0,1278		0,8	1	0,2	-0,2	0,2		18	0,8196		0,8	1	0,2	-0,2	0,2	
19	0,1691		0,9	1	0,1	-0,1	0,1		19	1,3864		0,9	1	0,1	-0,1	0,1	
20	0,2103		1	1	0	0	0		20	2,5158		1	1	0	0	0	

Abbildung 176: Vergleich von Verfahren 1 in der Variante 50x3 und Verfahren 2 in der Variante 2000x100 anhand der Standardabweichung

Abbildung 177: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		36	0	0,1	0,1	-0,1	0,1
2		37	0	0,2	0,2	-0,2	0,2
3		37	0	0,3	0,3	-0,3	0,3
4		39	0	0,4	0,4	-0,4	0,4
5		39	0	0,5	0,5	-0,5	0,5
6		39	0	0,6	0,6	-0,6	0,6
7		40	0	0,7	0,7	-0,7	0,7
8		41	0	0,8	0,8	-0,8	0,8
9		42	0	0,9	0,9	-0,9	0,9
10		42	0	1	1	-1	1
11	1343		0,1	1	0,9	-0,9	0,9
12	1344		0,2	1	0,8	-0,8	0,8
13	1358		0,3	1	0,7	-0,7	0,7
14	1372		0,4	1	0,6	-0,6	0,6
15	1385		0,5	1	0,5	-0,5	0,5
16	1629		0,6	1	0,4	-0,4	0,4
17	1636		0,7	1	0,3	-0,3	0,3
18	1661		0,8	1	0,2	-0,2	0,2
19	2011		0,9	1	0,1	-0,1	0,1
20	2013		1	1	0	0	0

Abbildung 178: object:

	Plantaing 170. object.												
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$						
1	125532		0,1	0	0,1	0,1	-0,1						
2	137323		0,2	0	0,2	0,2	-0,2						
3	139311		0,3	0	0,3	0,3	-0,3						
4	139487		0,4	0	0,4	0,4	-0,4						
5		146978	0,4	0,1	0,3	0,3	-0,3						
6	154624		0,5	0,1	0,4	0,4	-0,4						
7	155554		0,6	0,1	0,5	0,5	-0,5						
8	159201		0,7	0,1	0,6	0,6	-0,6						
9	159828		0,8	0,1	0,7	0,7	-0,7						
10	165867		0,9	0,1	0,8	0,8	-0,8						
11		174097	0,9	0,2	0,7	0,7	-0,7						
12	178688		1	0,2	0,8	0,8	-0,8						
13		180973	1	0,3	0,7	0,7	-0,7						
14		206058	1	0,4	0,6	0,6	-0,6						
15		213603	1	0,5	0,5	0,5	-0,5						
16		216820	1	0,6	0,4	0,4	-0,4						
17		218240	1	0,7	0,3	0,3	-0,3						
18		226513	1	0,8	0,2	0,2	-0,2						
19		233701	1	0,9	0,1	0,1	-0,1						
20		393136	1	1	0	0	0						

Abbildung 179: path:

S_2x_i D_i $S_1(x_i)$ - $S_2(x_i)$ $S_2(x_i)$ - $S_1(x_i)$ R_i x_2 46 0,1 0,2-0,20,23 48 0 0,3 0,3 -0,3 0,3 4 5 6 48 0 0,4 -0,4 0,4 0,40 0,5 0,5 51 -0,5 0,5510,6 0,6 -0,6 0,6 0,7-0,70,7 0,1 0,7 0,6 -0,6 0,6 0,1 0,8 0,7 -0,7 0,7 10 -0,8 0,1 0,9 0,8 0,8 0,1 -0,9 0,9 11 0,9 67 12 $_{0,2}$ 0,8-0,8 0,8 130,7 67 0,3-0,70,4 0,6 -0,6 0,6 15 70 -0,5 0,5 0,5 0,5 16 0,6 -0,4 0,4 78 0.417-0,30,3 81 0,70,318 89 0,80,2-0,20,2940,90,1-0,1

Abbildung 180: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	w ₁	272	0	0,1	0,1	-0,1	0,1
2			l				,
1		277	0	0,2	0,2	-0,2	0,2
3		281	0	0,3	0,3	-0,3	0,3
4		325	0	0,4	0,4	-0,4	0,4
5		330	0	0,5	0,5	-0,5	0,5
6		332	0	0,6	0,6	-0,6	0,6
7		355	0	0,7	0,7	-0,7	0,7
8		374	0	0,8	0,8	-0,8	0,8
9		496	0	0,9	0,9	-0,9	0,9
10		511	0	1	1	-1	1
11	2370		0,1	1	0,9	-0,9	0,9
12	2940		0,2	1	0,8	-0,8	0,8
13	3089		0,3	1	0,7	-0,7	0,7
14	3162		0,4	1	0,6	-0,6	0,6
15	3286		0,5	1	0,5	-0,5	0,5
16	3362		0,6	1	0,4	-0,4	0,4
17	3383		0,7	1	0,3	-0,3	0,3
18	3418		0,8	1	0,2	-0,2	0,2
19	3604		0,9	1	0,1	-0,1	0,1
20	4215		1	1	0	0	0

1.2 Vergleich der Verfahren 3 und 1

Abbildung 181: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 1 in der Variante 10x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 182: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,379	0	0,1	0,1	-0,1	0,1
2	1,2983		0,1	0,1	0	0	0
3	1,3152		0,2	0,1	0,1	0,1	-0,1
4		1,546	0,2	0,2	0	0	0
5		1,899	0,2	0,3	0,1	-0,1	0,1
6		1,941	0,2	0,4	0,2	-0,2	0,2
7		2,014	0,2	0,5	0,3	-0,3	0,3
8		2,025	0,2	0,6	0,4	-0,4	0,4
9		2,072	0,2	0,7	0,5	-0,5	0,5
10		2,225	0,2	0,8	0,6	-0,6	0,6
11	3,3574		0,3	0,8	0,5	-0,5	0,5
12	3,6515		0,4	0,8	0,4	-0,4	0,4
13	3,6628		0,5	0,8	0,3	-0,3	0,3
14	3,7024		0,6	0,8	0,2	-0,2	0,2
15	3,9853		0,7	0,8	0,1	-0,1	0,1
16	4,1154		0,8	0,8	0	0	0
17	4,9583		0,9	0,8	0,1	0,1	-0,1
18		5,096	0,9	0,9	0	0	0
19		5,154	0,9	1	0,1	-0,1	0,1
20	9,2688		1	1	0	0	0

				. 0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,01	0	0,1	0,1	-0,1	0,1
2		0,03	0	0,2	0,2	-0,2	0,2
3		0,113	0	0,3	0,3	-0,3	0,3
4		0,139	0	0,4	0,4	-0,4	0,4
5		0,18	0	0,5	0,5	-0,5	0,5
6		0,181	0	0,6	0,6	-0,6	0,6
7		0,243	0	0,7	0,7	-0,7	0,7
8		0,373	0	0,8	0,8	-0,8	0,8
9		0,44	0	0,9	0,9	-0,9	0,9
10		0,585	0	1	1	-1	1
11	1,1111		0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041	İ	0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944	İ	0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0

Abbildung 184: path:

Abbildung 185: hash:

				_		•						_	•		
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0025		0,1	0	0,1	0,1	-0,1	1		0,051	0	0,1	0,1	-0,1	0,1
2	0,0025		0,2	0	0,2	0,2	-0,2	2	0,0576		0,1	0,1	0	0	0
3		0,035	0,2	0,1	0,1	0,1	-0,1	3	0,0865		0,2	0,1	0,1	0,1	-0,1
4	0,0679		0,3	0,1	0,2	0,2	-0,2	4		0,133	0,2	0,2	0	0	0
5		0,073	0,3	0,2	0,1	0,1	-0,1	5	0,1731		0,3	0,2	0,1	0,1	-0,1
6		0,073	0,3	0,3	0	0	0	6	0,1766		0,4	0,2	0,2	0,2	-0,2
7		0,114	0,3	0,4	0,1	-0,1	0,1	7	0,3194		0,5	0,2	0,3	0,3	-0,3
8		0,134	0,3	0,5	0,2	-0,2	0,2	8		0,384	0,5	0,3	0,2	0,2	-0,2
9		0,221	0,3	0,6	0,3	-0,3	0,3	9	0,5167		0,6	0,3	0,3	0,3	-0,3
10		0,238	0,3	0,7	0,4	-0,4	0,4	10		0,714	0,6	0,4	0,2	0,2	-0,2
11		0,257	0,3	0,8	0,5	-0,5	0,5	11		0,914	0,6	0,5	0,1	0,1	-0,1
12		0,262	0,3	0,9	0,6	-0,6	0,6	12	0,9547		0,7	0,5	0,2	0,2	-0,2
13	0,2858		0,4	0,9	0,5	-0,5	0,5	13	0,972		0,8	0,5	0,3	0,3	-0,3
14	0,3901		0,5	0,9	0,4	-0,4	0,4	14		1,185	0,8	0,6	0,2	0,2	-0,2
15	0,4849		0,6	0,9	0,3	-0,3	0,3	15	1,3718		0,9	0,6	0,3	0,3	-0,3
16		0,554	0,6	1	0,4	-0,4	0,4	16		1,416	0,9	0,7	0,2	0,2	-0,2
17	0,8235		0,7	1	0,3	-0,3	0,3	17		1,941	0,9	0,8	0,1	0,1	-0,1
18	0,9052		0,8	1	0,2	-0,2	0,2	18	2,0501		1	0,8	0,2	0,2	-0,2
19	0,9102		0,9	1	0,1	-0,1	0,1	19		2,826	1	0,9	0,1	0,1	-0,1
20	0,9347		1	1	0	0	0	20		3,221	1	1	0	0	0

Abbildung 186: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 1 in der Variante 20x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 187: arraylist:

Abbild ¹	nng	188:	ob:	iect:
ribbiid	uns	100.	OD	1000.

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	
1		0,0992	0	0,1	0,1	-0,1	0,1	
2		0,4596	0	0,2	0,2	-0,2	0,2	
3		0,8618	0	0,3	0,3	-0,3	0,3	
4		1,2587	0	0,4	0,4	-0,4	0,4	
5		1,2639	0	0,5	0,5	-0,5	0,5	
6	1,2983		0,1	0,5	0,4	-0,4	0,4	
7		1,3057	0,1	0,6	0,5	-0,5	0,5	
8	1,3152		0,2	0,6	0,4	-0,4	0,4	
9		1,3893	0,2	0,7	0,5	-0,5	0,5	
10		1,5668	0,2	0,8	0,6	-0,6	0,6	
11		2,2197	0,2	0,9	0,7	-0,7	0,7	
12		2,2876	0,2	1	0,8	-0,8	0,8	
13	3,3574		0,3	1	0,7	-0,7	0,7	
14	3,6515		0,4	1	0,6	-0,6	0,6	
15	3,6628		0,5	1	0,5	-0,5	0,5	
16	3,7024		0,6	1	0,4	-0,4	0,4	
17	3,9853		0,7	1	0,3	-0,3	0,3	
18	4,1154		0,8	1	0,2	-0,2	0,2	
19	4,9583		0,9	1	0,1	-0,1	0,1	
20	9,2688		1	1	0	0	0	

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,008	0	0,1	0,1	-0,1	0,1
2		0,0139	0	0,2	0,2	-0,2	0,2
3		0,0189	0	0,3	0,3	-0,3	0,3
4		0,1181	0	0,4	0,4	-0,4	0,4
5		0,1914	0	0,5	0,5	-0,5	0,5
6		0,2478	0	0,6	0,6	-0,6	0,6
7		0,2623	0	0,7	0,7	-0,7	0,7
8		0,3687	0	0,8	0,8	-0,8	0,8
9		0,4759	0	0,9	0,9	-0,9	0,9
10		0,761	0	1	1	-1	1
11	1,1111		0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041		0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944		0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0
$\overline{}$			1			I	

Abbildung 189: path:

Abbildung 190: hash:

	Tibblidang 100. path.								Tibblidaing 100. Inabii.							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,0025		0,1	0	0,1	0,1	-0,1		1	0,0576		0,1	0	0,1	0,1	-0,1
2	0,0025		0,2	0	0,2	0,2	-0,2		2	0,0865		0,2	0	0,2	0,2	-0,2
3		0,0247	0,2	0,1	0,1	0,1	-0,1		3		0,1592	0,2	0,1	0,1	0,1	-0,1
4		0,0412	0,2	0,2	0	0	0		4	0,1731		0,3	0,1	0,2	0,2	-0,2
5		0,066	0,2	0,3	0,1	-0,1	0,1		5	0,1766		0,4	0,1	0,3	0,3	-0,3
6		0,066	0,2	0,4	0,2	-0,2	0,2		6		0,2796	0,4	0,2	0,2	0,2	-0,2
7	0,0679		0,3	0,4	0,1	-0,1	0,1		7	0,3194		0,5	0,2	0,3	0,3	-0,3
8		0,0825	0,3	0,5	0,2	-0,2	0,2		8	0,5167		0,6	0,2	0,4	0,4	-0,4
9		0,1072	0,3	0,6	0,3	-0,3	0,3		9	0,9547		0,7	0,2	0,5	0,5	-0,5
10		0,1237	0,3	0,7	0,4	-0,4	0,4	:	10	0,972		0,8	0,2	0,6	0,6	-0,6
11		0,1732	0,3	0,8	0,5	-0,5	0,5	:	11		0,9867	0,8	0,3	0,5	0,5	-0,5
12		0,2062	0,3	0,9	0,6	-0,6	0,6	:	12		1,127	0,8	0,4	0,4	0,4	-0,4
13	0,2858		0,4	0,9	0,5	-0,5	0,5	:	13	1,3718		0,9	0,4	0,5	0,5	-0,5
14		0,3794	0,4	1	0,6	-0,6	0,6	:	14		1,5857	0,9	0,5	0,4	0,4	-0,4
15	0,3901		0,5	1	0,5	-0,5	0,5	:	15		1,7168	0,9	0,6	0,3	0,3	-0,3
16	0,4849		0,6	1	0,4	-0,4	0,4	:	16	2,0501		1	0,6	0,4	0,4	-0,4
17	0,8235		0,7	1	0,3	-0,3	0,3	:	17		2,1666	1	0,7	0,3	0,3	-0,3
18	0,9052		0,8	1	0,2	-0,2	0,2	:	18		2,4665	1	0,8	0,2	0,2	-0,2
19	0,9102		0,9	1	0,1	-0,1	0,1	:	19		2,903	1	0,9	0,1	0,1	-0,1
20	0,9347		1	1	0	0	0	:	20		2,9554	1	1	0	0	0

Abbildung 191: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 1 in der Variante 50x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 192: arraylist:

Abbildung 193: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0163	0	0,1	0,1	-0,1	0,1
2		0,1153	0	0,2	0,2	-0,2	0,2
3		0,2891	0	0,3	0,3	-0,3	0,3
4		0,4429	0	0,4	0,4	-0,4	0,4
5		0,5166	0	0,5	0,5	-0,5	0,5
6		0,6852	0	0,6	0,6	-0,6	0,6
7		0,7168	0	0,7	0,7	-0,7	0,7
8		0,7484	0	0,8	0,8	-0,8	0,8
9		1,2582	0	0,9	0,9	-0,9	0,9
10	1,2983		0,1	0,9	0,8	-0,8	0,8
11	1,3152		0,2	0,9	0,7	-0,7	0,7
12		1,4636	0,2	1	0,8	-0,8	0,8
13	3,3574		0,3	1	0,7	-0,7	0,7
14	3,6515		0,4	1	0,6	-0,6	0,6
15	3,6628		0,5	1	0,5	-0,5	0,5
16	3,7024		0,6	1	0,4	-0,4	0,4
17	3,9853		0,7	1	0,3	-0,3	0,3
18	4,1154		0,8	1	0,2	-0,2	0,2
19	4,9583		0,9	1	0,1	-0,1	0,1
20	9,2688		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0205	0	0,1	0,1	-0,1	0,1
2		0,0708	0	0,2	0,2	-0,2	0,2
3		0,1747	0	0,3	0,3	-0,3	0,3
4		0,1822	0	0,4	0,4	-0,4	0,4
5		0,1923	0	0,5	0,5	-0,5	0,5
6		0,2304	0	0,6	0,6	-0,6	0,6
7		0,2444	0	0,7	0,7	-0,7	0,7
8		0,2844	0	0,8	0,8	-0,8	0,8
9		0,2953	0	0,9	0,9	-0,9	0,9
10		0,6386	0	1	1	-1	1
11	1,1111		0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041		0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944		0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0

Abbildung 194: path:

Abbildung 195: hash:

Tibblidding 154. patif.							Abblidding 150. masii.									
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	Γ.	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,0025		0,1	0	0,1	0,1	-0,1		1	0,0576		0,1	0	0,1	0,1	-0,1
2	0,0025		0,2	0	0,2	0,2	-0,2		2	0,0865		0,2	0	0,2	0,2	-0,2
3		0,0041	0,2	0,1	0,1	0,1	-0,1		3		0,1345	0,2	0,1	0,1	0,1	-0,1
4		0,0206	0,2	0,2	0	0	0		4	0,1731		0,3	0,1	0,2	0,2	-0,2
5		0,0289	0,2	0,3	0,1	-0,1	0,1		5	$0,\!1766$		0,4	0,1	0,3	0,3	-0,3
6		0,0371	0,2	0,4	0,2	-0,2	0,2		6		0,1858	0,4	0,2	0,2	0,2	-0,2
7		0,0371	0,2	0,5	0,3	-0,3	0,3		7		0,2476	0,4	0,3	0,1	0,1	-0,1
8	0,0679		0,3	0,5	0,2	-0,2	0,2		8		0,2882	0,4	0,4	0	0	0
9		0,0948	0,3	0,6	0,3	-0,3	0,3		9		0,3192	0,4	0,5	0,1	-0,1	0,1
10		0,1196	0,3	0,7	0,4	-0,4	0,4		10	0,3194		0,5	0,5	0	0	0
11		0,1278	0,3	0,8	0,5	-0,5	0,5		11		0,3959	0,5	0,6	0,1	-0,1	0,1
12		0,1691	0,3	0,9	0,6	-0,6	0,6		12	0,5167		0,6	0,6	0	0	0
13		0,2103	0,3	1	0,7	-0,7	0,7		13		0,6229	0,6	0,7	0,1	-0,1	0,1
14	0,2858		0,4	1	0,6	-0,6	0,6		14		0,8196	0,6	0,8	0,2	-0,2	0,2
15	0,3901		0,5	1	0,5	-0,5	0,5		15	0,9547		0,7	0,8	0,1	-0,1	0,1
16	0,4849		0,6	1	0,4	-0,4	0,4		16	0,972		0,8	0,8	0	0	0
17	0,8235		0,7	1	0,3	-0,3	0,3		17	1,3718		0,9	0,8	0,1	0,1	-0,1
18	0,9052		0,8	1	0,2	-0,2	0,2		18		1,3864	0,9	0,9	0	0	0
19	0,9102		0,9	1	0,1	-0,1	0,1		19	2,0501		1	0,9	0,1	0,1	-0,1
20	0,9347		1	1	0	0	0	:	20		2,5158	1	1	0	0	0

Abbildung 196: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 1 in der Variante 10x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 197: arraylist:

Abbildung 198: object:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(x_i) - $S_1(x_i)$ $-0,1$ $-0,2$ $-0,1$ $-0,2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0,2 -0,1
$ \begin{vmatrix} 3 & & & & 0,379 & 0,2 & 0,1 & 0,1 & & 0,1 \\ 4 & 0,5273 & & & 0,3 & 0,1 & 0,2 & & 0,2 \\ \end{vmatrix} $	-0,1
4 0,5273 0,3 0,1 0,2 0,2	′ .
1 1 2/2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2	-0.2
	0,2
5 0,8023 0,4 0,1 0,3 0,3	-0,3
6 1,0692 0,5 0,1 0,4 0,4	-0,4
7 1,3119 0,6 0,1 0,5 0,5	-0,5
8 1,3604 0,7 0,1 0,6 0,6	-0,6
9 1,5108 0,8 0,1 0,7 0,7	-0,7
10 1,546 0,8 0,2 0,6 0,6	-0,6
11 1,899 0,8 0,3 0,5 0,5	-0,5
12 1,941 0,8 0,4 0,4 0,4	-0,4
13 1,9556 0,9 0,4 0,5 0,5	-0,5
14 2,014 0,9 0,5 0,4 0,4	-0,4
15 2,025 0,9 0,6 0,3 0,3	-0,3
16 2,072 0,9 0,7 0,2 0,2	-0,2
17 2,0851 1 0,7 0,3 0,3	-0,3
18 2,225 1 0,8 0,2 0,2	-0,2
19 5,096 1 0,9 0,1 0,1	-0,1
20 5,154 1 1 0 0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,01	0	0,1	0,1	-0,1	0,1
2		0,03	0	0,2	0,2	-0,2	0,2
3		0,113	0	0,3	0,3	-0,3	0,3
4		0,139	0	0,4	0,4	-0,4	0,4
5		0,18	0	0,5	0,5	-0,5	0,5
6		0,181	0	0,6	0,6	-0,6	0,6
7		0,243	0	0,7	0,7	-0,7	0,7
8		0,373	0	0,8	0,8	-0,8	0,8
9		0,44	0	0,9	0,9	-0,9	0,9
10		0,585	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 199: path:

Abbildung 200: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	F	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0181		0,1	0	0,1	0,1	-0,1		1		0,051	0	0,1	0,1	-0,1	0,1
2		0,035	0,1	0,1	0	0	0	1	2		0,133	0	0,2	0,2	-0,2	0,2
3		0,073	0,1	0,2	0,1	-0,1	0,1	;	3	0,3588		0,1	0,2	0,1	-0,1	0,1
4		0,073	0,1	0,3	0,2	-0,2	0,2	4	4		0,384	0,1	0,3	0,2	-0,2	0,2
5	0,0805		0,2	0,3	0,1	-0,1	0,1		5	0,6232		0,2	0,3	0,1	-0,1	0,1
6		0,114	0,2	0,4	0,2	-0,2	0,2	(6	0,7124		0,3	0,3	0	0	0
7	0,1216		0,3	0,4	0,1	-0,1	0,1		7		0,714	0,3	0,4	0,1	-0,1	0,1
8		0,134	0,3	0,5	0,2	-0,2	0,2	8	8	0,7267		0,4	0,4	0	0	0
9	0,1627		0,4	0,5	0,1	-0,1	0,1	9	9		0,914	0,4	0,5	0,1	-0,1	0,1
10	0,1956		0,5	0,5	0	0	0	1	0	0,9927		0,5	0,5	0	0	0
11		0,221	0,5	0,6	0,1	-0,1	0,1	1	1	1,1217		0,6	0,5	0,1	0,1	-0,1
12		0,238	0,5	0,7	0,2	-0,2	0,2	1	2	1,1223		0,7	0,5	0,2	0,2	-0,2
13		0,257	0,5	0,8	0,3	-0,3	0,3	1	3		1,185	0,7	0,6	0,1	0,1	-0,1
14		0,262	0,5	0,9	0,4	-0,4	0,4	1	4	1,2428		0,8	0,6	0,2	0,2	-0,2
15	0,2646		0,6	0,9	0,3	-0,3	0,3	1	5		1,416	0,8	0,7	0,1	0,1	-0,1
16	0,4174		0,7	0,9	0,2	-0,2	0,2	1	6	1,7387		0,9	0,7	0,2	0,2	-0,2
17	0,475		0,8	0,9	0,1	-0,1	0,1	1	17		1,941	0,9	0,8	0,1	0,1	-0,1
18	0,5029		0,9	0,9	0	0	0	1	18		2,826	0,9	0,9	0	0	0
19		0,554	0,9	1	0,1	-0,1	0,1	1	19	2,9172		1	0,9	0,1	0,1	-0,1
20	0,6673		1	1	0	0	0	2	20		3,221	1	1	0	0	0

Abbildung 201: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 1 in der Variante 20x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 202: arraylist:

Abbildung 203: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0992	0	0,1	0,1	-0,1	0,1
2	0,1553		0,1	0,1	0	0	0
3	0,3251		0,2	0,1	0,1	0,1	-0,1
4		0,4596	0,2	0,2	0	0	0
5	0,5273		0,3	0,2	0,1	0,1	-0,1
6	0,8023		0,4	0,2	0,2	0,2	-0,2
7		0,8618	0,4	0,3	0,1	0,1	-0,1
8	1,0692		0,5	0,3	0,2	0,2	-0,2
9		1,2587	0,5	0,4	0,1	0,1	-0,1
10		1,2639	0,5	0,5	0	0	0
11		1,3057	0,5	0,6	0,1	-0,1	0,1
12	1,3119		0,6	0,6	0	0	0
13	1,3604		0,7	0,6	0,1	0,1	-0,1
14		1,3893	0,7	0,7	0	0	0
15	1,5108		0,8	0,7	0,1	0,1	-0,1
16		1,5668	0,8	0,8	0	0	0
17	1,9556		0,9	0,8	0,1	0,1	-0,1
18	2,0851		1	0,8	0,2	0,2	-0,2
19		2,2197	1	0,9	0,1	0,1	-0,1
20		2,2876	1	1	0	0	0

				_		9	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,008	0	0,1	0,1	-0,1	0,1
2		0,0139	0	0,2	0,2	-0,2	0,2
3		0,0189	0	0,3	0,3	-0,3	0,3
4		0,1181	0	0,4	0,4	-0,4	0,4
5		0,1914	0	0,5	0,5	-0,5	0,5
6		0,2478	0	0,6	0,6	-0,6	0,6
7		0,2623	0	0,7	0,7	-0,7	0,7
8		0,3687	0	0,8	0,8	-0,8	0,8
9		0,4759	0	0,9	0,9	-0,9	0,9
10		0,761	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 204: path:

Abbildung 205: hash:

	1155haang 201: path:							Tibblidang 200. habit.							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0181		0,1	0	0,1	0,1	-0,1	1		0,1592	0	0,1	0,1	-0,1	0,1
2		0,0247	0,1	0,1	0	0	0	2		0,2796	0	0,2	0,2	-0,2	0,2
3		0,0412	0,1	0,2	0,1	-0,1	0,1	3	0,3588		0,1	0,2	0,1	-0,1	0,1
4		0,066	0,1	0,3	0,2	-0,2	0,2	4	0,6232		0,2	0,2	0	0	0
5		0,066	0,1	0,4	0,3	-0,3	0,3	5	0,7124		0,3	0,2	0,1	0,1	-0,1
6	0,0805		0,2	0,4	0,2	-0,2	0,2	6	0,7267		0,4	0,2	0,2	0,2	-0,2
7		0,0825	0,2	0,5	0,3	-0,3	0,3	7		0,9867	0,4	0,3	0,1	0,1	-0,1
8		0,1072	0,2	0,6	0,4	-0,4	0,4	8	0,9927		0,5	0,3	0,2	0,2	-0,2
9	0,1216		0,3	0,6	0,3	-0,3	0,3	9	1,1217		0,6	0,3	0,3	0,3	-0,3
10		0,1237	0,3	0,7	0,4	-0,4	0,4	10	1,1223		0,7	0,3	0,4	0,4	-0,4
11	0,1627		0,4	0,7	0,3	-0,3	0,3	11		1,127	0,7	0,4	0,3	0,3	-0,3
12		0,1732	0,4	0,8	0,4	-0,4	0,4	12	1,2428		0,8	0,4	0,4	0,4	-0,4
13	0,1956		0,5	0,8	0,3	-0,3	0,3	13		1,5857	0,8	0,5	0,3	0,3	-0,3
14		0,2062	0,5	0,9	0,4	-0,4	0,4	14		1,7168	0,8	0,6	0,2	0,2	-0,2
15	0,2646		0,6	0,9	0,3	-0,3	0,3	15	1,7387		0,9	0,6	0,3	0,3	-0,3
16		0,3794	0,6	1	0,4	-0,4	0,4	16		2,1666	0,9	0,7	0,2	0,2	-0,2
17	0,4174		0,7	1	0,3	-0,3	0,3	17		2,4665	0,9	0,8	0,1	0,1	-0,1
18	0,475		0,8	1	0,2	-0,2	0,2	18		2,903	0,9	0,9	0	0	0
19	0,5029		0,9	1	0,1	-0,1	0,1	19	2,9172		1	0,9	0,1	0,1	-0,1
20	0,6673		1	1	0	0	0	20		2,9554	1	1	0	0	0

Abbildung 206: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 1 in der Variante 50x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 207: arraylist:

Abbildung 208: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0163	0	0,1	0,1	-0,1	0,1
2		0,1153	0	0,2	0,2	-0,2	0,2
3	0,1553		0,1	0,2	0,1	-0,1	0,1
4		0,2891	0,1	0,3	0,2	-0,2	0,2
5	0,3251		0,2	0,3	0,1	-0,1	0,1
6		0,4429	0,2	0,4	0,2	-0,2	0,2
7		0,5166	0,2	0,5	0,3	-0,3	0,3
8	0,5273		0,3	0,5	0,2	-0,2	0,2
9		0,6852	0,3	0,6	0,3	-0,3	0,3
10		0,7168	0,3	0,7	0,4	-0,4	0,4
11		0,7484	0,3	0,8	0,5	-0,5	0,5
12	0,8023		0,4	0,8	0,4	-0,4	0,4
13	1,0692		0,5	0,8	0,3	-0,3	0,3
14		1,2582	0,5	0,9	0,4	-0,4	0,4
15	1,3119		0,6	0,9	0,3	-0,3	0,3
16	1,3604		0,7	0,9	0,2	-0,2	0,2
17		1,4636	0,7	1	0,3	-0,3	0,3
18	1,5108		0,8	1	0,2	-0,2	0,2
19	1,9556		0,9	1	0,1	-0,1	0,1
20	2,0851		1	1	0	0	0
20	2,0851		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0205	0	0,1	0,1	-0,1	0,1
2		0,0708	0	0,2	0,2	-0,2	0,2
3		0,1747	0	0,3	0,3	-0,3	0,3
4		0,1822	0	0,4	0,4	-0,4	0,4
5		0,1923	0	0,5	0,5	-0,5	0,5
6		0,2304	0	0,6	0,6	-0,6	0,6
7		0,2444	0	0,7	0,7	-0,7	0,7
8		0,2844	0	0,8	0,8	-0,8	0,8
9		0,2953	0	0,9	0,9	-0,9	0,9
10		0,6386	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 209: path:

Abbildung 210: hash:

	ribblidding 200. patii.							Tibblidaing 210. Habii.								
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$		R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0041	0	0,1	0,1	-0,1	0,1		1		0,1345	0	0,1	0,1	-0,1	0,1
2	0,0181		0,1	0,1	0	0	0		2		0,1858	0	0,2	0,2	-0,2	0,2
3		0,0206	0,1	0,2	0,1	-0,1	0,1		3		0,2476	0	0,3	0,3	-0,3	0,3
4		0,0289	0,1	0,3	0,2	-0,2	0,2		4		0,2882	0	0,4	0,4	-0,4	0,4
5		0,0371	0,1	0,4	0,3	-0,3	0,3		5		0,3192	0	0,5	0,5	-0,5	0,5
6		0,0371	0,1	0,5	0,4	-0,4	0,4		6	$0,\!3588$		0,1	0,5	0,4	-0,4	0,4
7	0,0805		0,2	0,5	0,3	-0,3	0,3		7		0,3959	0,1	0,6	0,5	-0,5	0,5
8		0,0948	0,2	0,6	0,4	-0,4	0,4		8		0,6229	0,1	0,7	0,6	-0,6	0,6
9		0,1196	0,2	0,7	0,5	-0,5	0,5		9	0,6232		0,2	0,7	0,5	-0,5	0,5
10	0,1216		0,3	0,7	0,4	-0,4	0,4		10	0,7124		0,3	0,7	0,4	-0,4	0,4
11		0,1278	0,3	0,8	0,5	-0,5	0,5		11	0,7267		0,4	0,7	0,3	-0,3	0,3
12	0,1627		0,4	0,8	0,4	-0,4	0,4		12		0,8196	0,4	0,8	0,4	-0,4	0,4
13		0,1691	0,4	0,9	0,5	-0,5	0,5		13	0,9927		0,5	0,8	0,3	-0,3	0,3
14	0,1956		0,5	0,9	0,4	-0,4	0,4		14	1,1217		0,6	0,8	0,2	-0,2	0,2
15		0,2103	0,5	1	0,5	-0,5	0,5		15	1,1223		0,7	0,8	0,1	-0,1	0,1
16	0,2646		0,6	1	0,4	-0,4	0,4		16	1,2428		0,8	0,8	0	0	0
17	0,4174		0,7	1	0,3	-0,3	0,3		17		1,3864	0,8	0,9	0,1	-0,1	0,1
18	0,475		0,8	1	0,2	-0,2	0,2		18	1,7387		0,9	0,9	0	0	0
19	0,5029		0,9	1	0,1	-0,1	0,1		19		2,5158	0,9	1	0,1	-0,1	0,1
20	0,6673		1	1	0	0	0		20	2,9172		1	1	0	0	0

Abbildung 211: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 1 in der Variante 10x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 212: arraylist:

Abbildung 213: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0873		0,1	0	0,1	0,1	-0,1
2	0,0873		0,2	0	0,2	0,2	-0,2
3	0,1594		0,3	0	0,3	0,3	-0,3
4		0,379	0,3	0,1	0,2	0,2	-0,2
5	0,3838		0,4	0,1	0,3	0,3	-0,3
6	0,4559		0,5	0,1	0,4	0,4	-0,4
7	0,5921		0,6	0,1	0,5	0,5	-0,5
8	0,7299		0,7	0,1	0,6	0,6	-0,6
9	0,7379		0,8	0,1	0,7	0,7	-0,7
10		1,546	0,8	0,2	0,6	0,6	-0,6
11		1,899	0,8	0,3	0,5	0,5	-0,5
12		1,941	0,8	0,4	0,4	0,4	-0,4
13	2,0021		0,9	0,4	0,5	0,5	-0,5
14		2,014	0,9	0,5	0,4	0,4	-0,4
15		2,025	0,9	0,6	0,3	0,3	-0,3
16		2,072	0,9	0,7	0,2	0,2	-0,2
17		2,225	0,9	0,8	0,1	0,1	-0,1
18	2,3001		1	0,8	0,2	0,2	-0,2
19		5,096	1	0,9	0,1	0,1	-0,1
20		5,154	1	1	0	0	0

$S_1(x_i)$
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1

Abbildung 214: path:

Abbildung 215: hash:

R_i	x_1	x_2	C	a					
		10.2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1
1		0,035	0	0,1	0,1	-0,1	0,1	1	
2	0,0469		0,1	0,1	0	0	0		
3	0,0683		0,2	0,1	0,1	0,1	-0,1	3	0,273
4		0,073	0,2	0,2	0	0	0	4	
5		0,073	0,2	0,3	0,1	-0,1	0,1	5	0,472
6		0,114	0,2	0,4	0,2	-0,2	0,2	6	
7		0,134	0,2	0,5	0,3	-0,3	0,3	7	0,855
8	0,1753		0,3	0,5	0,2	-0,2	0,2	8	
9		0,221	0,3	0,6	0,3	-0,3	0,3	9	0,920
10		0,238	0,3	0,7	0,4	-0,4	0,4	10	
11		0,257	0,3	0,8	0,5	-0,5	0,5	11	1,309
12		0,262	0,3	0,9	0,6	-0,6	0,6	12	
13	0,3234		0,4	0,9	0,5	-0,5	0,5	13	1,917
14	0,3728		0,5	0,9	0,4	-0,4	0,4	14	
15	0,4419		0,6	0,9	0,3	-0,3	0,3	15	
16	0,5044		0,7	0,9	0,2	-0,2	0,2	16	3,102
17		0,554	0,7	1	0,3	-0,3	0,3	17	3,143
18	0,5818		0,8	1	0,2	-0,2	0,2	18	3,166
19	0,6279		0,9	1	0,1	-0,1	0,1	19	
20	1,0015		1	1	0	0	0	20	14,614

				O			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,051	0	0,1	0,1	-0,1	0,1
2		0,133	0	0,2	0,2	-0,2	0,2
3	0,2738		0,1	0,2	0,1	-0,1	0,1
4		0,384	0,1	0,3	0,2	-0,2	0,2
5	0,4727		0,2	0,3	0,1	-0,1	0,1
6		0,714	0,2	0,4	0,2	-0,2	0,2
7	0,8553		0,3	0,4	0,1	-0,1	0,1
8		0,914	0,3	0,5	0,2	-0,2	0,2
9	0,9209		0,4	0,5	0,1	-0,1	0,1
10		1,185	0,4	0,6	0,2	-0,2	0,2
11	1,3098		0,5	0,6	0,1	-0,1	0,1
12		1,416	0,5	0,7	0,2	-0,2	0,2
13	1,9173		0,6	0,7	0,1	-0,1	0,1
14		1,941	0,6	0,8	0,2	-0,2	0,2
15		2,826	0,6	0,9	0,3	-0,3	0,3
16	3,1026		0,7	0,9	0,2	-0,2	0,2
17	3,1432		0,8	0,9	0,1	-0,1	0,1
18	3,1667		0,9	0,9	0	0	0
19		3,221	0,9	1	0,1	-0,1	0,1
20	14,6149		1	1	0	0	0

Abbildung 216: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 1 in der Variante 20x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 217: arraylist:

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0873		0,1	0	0,1	0,1	-0,1
2	0,0873		0,2	0	0,2	0,2	-0,2
3		0,0992	0,2	0,1	0,1	0,1	-0,1
4	0,1594		0,3	0,1	0,2	0,2	-0,2
5	0,3838		0,4	0,1	0,3	0,3	-0,3
6	0,4559		0,5	0,1	0,4	0,4	-0,4
7		0,4596	0,5	0,2	0,3	0,3	-0,3
8	0,5921		0,6	0,2	0,4	0,4	-0,4
9	0,7299		0,7	0,2	0,5	0,5	-0,5
10	0,7379		0,8	0,2	0,6	0,6	-0,6
11		0,8618	0,8	0,3	0,5	0,5	-0,5
12		1,2587	0,8	0,4	0,4	0,4	-0,4
13		1,2639	0,8	0,5	0,3	0,3	-0,3
14		1,3057	0,8	0,6	0,2	0,2	-0,2
15		1,3893	0,8	0,7	0,1	0,1	-0,1
16		1,5668	0,8	0,8	0	0	0
17	2,0021		0,9	0,8	0,1	0,1	-0,1
18		2,2197	0,9	0,9	0	0	0
19		2,2876	0,9	1	0,1	-0,1	0,1
20	2,3001		1	1	0	0	0

				0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,008	0	0,1	0,1	-0,1	0,1
2		0,0139	0	0,2	0,2	-0,2	0,2
3		0,0189	0	0,3	0,3	-0,3	0,3
4		0,1181	0	0,4	0,4	-0,4	0,4
5		0,1914	0	0,5	0,5	-0,5	0,5
6		0,2478	0	0,6	0,6	-0,6	0,6
7		0,2623	0	0,7	0,7	-0,7	0,7
8		0,3687	0	0,8	0,8	-0,8	0,8
9		0,4759	0	0,9	0,9	-0,9	0,9
10	0,6046		0,1	0,9	0,8	-0,8	0,8
11		0,761	0,1	1	0,9	-0,9	0,9
12	1,4173		0,2	1	0,8	-0,8	0,8
13	2,4356		0,3	1	0,7	-0,7	0,7
14	3,7583		0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 219: path:

Abbildung 220: hash:

				0		1		Tibblidang 220. nasn.							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0247	0	0,1	0,1	-0,1	0,1	1		0,1592	0	0,1	0,1	-0,1	0,1
2		0,0412	0	0,2	0,2	-0,2	0,2	2	0,2738		0,1	0,1	0	0	0
3	0,0469		0,1	0,2	0,1	-0,1	0,1	3		0,2796	0,1	0,2	0,1	-0,1	0,1
4		0,066	0,1	0,3	0,2	-0,2	0,2	4	0,4727		0,2	0,2	0	0	0
5		0,066	0,1	0,4	0,3	-0,3	0,3	5	0,8553		0,3	0,2	0,1	0,1	-0,1
6	0,0683		0,2	0,4	0,2	-0,2	0,2	6	0,9209		0,4	0,2	0,2	0,2	-0,2
7		0,0825	0,2	0,5	0,3	-0,3	0,3	7		0,9867	0,4	0,3	0,1	0,1	-0,1
8		0,1072	0,2	0,6	0,4	-0,4	0,4	8		1,127	0,4	0,4	0	0	0
9		0,1237	0,2	0,7	0,5	-0,5	0,5	9	1,3098		0,5	0,4	0,1	0,1	-0,1
10		0,1732	0,2	0,8	0,6	-0,6	0,6	10		1,5857	0,5	0,5	0	0	0
11	0,1753		0,3	0,8	0,5	-0,5	0,5	11		1,7168	0,5	0,6	0,1	-0,1	0,1
12		0,2062	0,3	0,9	0,6	-0,6	0,6	12	1,9173		0,6	0,6	0	0	0
13	0,3234		0,4	0,9	0,5	-0,5	0,5	13		2,1666	0,6	0,7	0,1	-0,1	0,1
14	0,3728		0,5	0,9	0,4	-0,4	0,4	14		2,4665	0,6	0,8	0,2	-0,2	0,2
15		0,3794	0,5	1	0,5	-0,5	0,5	15		2,903	0,6	0,9	0,3	-0,3	0,3
16	0,4419		0,6	1	0,4	-0,4	0,4	16		2,9554	0,6	1	0,4	-0,4	0,4
17	0,5044		0,7	1	0,3	-0,3	0,3	17	3,1026		0,7	1	0,3	-0,3	0,3
18	0,5818		0,8	1	0,2	-0,2	0,2	18	3,1432		0,8	1	0,2	-0,2	0,2
19	0,6279		0,9	1	0,1	-0,1	0,1	19	3,1667		0,9	1	0,1	-0,1	0,1
20	1,0015		1	1	0	0	0	20	14,6149		1	1	0	0	0

Abbildung 221: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 1 in der Variante 50x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 222: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0163	0	0,1	0,1	-0,1	0,1
2	0,0873		0,1	0,1	0	0	0
3	0,0873		0,2	0,1	0,1	0,1	-0,1
4		0,1153	0,2	0,2	0	0	0
5	0,1594		0,3	0,2	0,1	0,1	-0,1
6		0,2891	0,3	0,3	0	0	0
7	0,3838		0,4	0,3	0,1	0,1	-0,1
8		0,4429	0,4	0,4	0	0	0
9	0,4559		0,5	0,4	0,1	0,1	-0,1
10		0,5166	0,5	0,5	0	0	0
11	0,5921		0,6	0,5	0,1	0,1	-0,1
12		0,6852	0,6	0,6	0	0	0
13		0,7168	0,6	0,7	0,1	-0,1	0,1
14	0,7299		0,7	0,7	0	0	0
15	0,7379		0,8	0,7	0,1	0,1	-0,1
16		0,7484	0,8	0,8	0	0	0
17		1,2582	0,8	0,9	0,1	-0,1	0,1
18		1,4636	0,8	1	0,2	-0,2	0,2
19	2,0021		0,9	1	0,1	-0,1	0,1
20	2,3001		1	1	0	0	0

				0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0205	0	0,1	0,1	-0,1	0,1
2		0,0708	0	0,2	0,2	-0,2	0,2
3		0,1747	0	0,3	0,3	-0,3	0,3
4		0,1822	0	0,4	0,4	-0,4	0,4
5		0,1923	0	0,5	0,5	-0,5	0,5
6		0,2304	0	0,6	0,6	-0,6	0,6
7		0,2444	0	0,7	0,7	-0,7	0,7
8		0,2844	0	0,8	0,8	-0,8	0,8
9		0,2953	0	0,9	0,9	-0,9	0,9
10	0,6046		0,1	0,9	0,8	-0,8	0,8
11		0,6386	0,1	1	0,9	-0,9	0,9
12	1,4173		0,2	1	0,8	-0,8	0,8
13	2,4356		0,3	1	0,7	-0,7	0,7
14	3,7583		0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 224: path:

Abbildung 225: hash:

								Tibblidang 220. nasn.							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0041	0	0,1	0,1	-0,1	0,1	1		0,1345	0	0,1	0,1	-0,1	0,1
2		0,0206	0	0,2	0,2	-0,2	0,2	2		0,1858	0	0,2	0,2	-0,2	0,2
3		0,0289	0	0,3	0,3	-0,3	0,3	3		0,2476	0	0,3	0,3	-0,3	0,3
4		0,0371	0	0,4	0,4	-0,4	0,4	4	0,2738		0,1	0,3	0,2	-0,2	0,2
5		0,0371	0	0,5	0,5	-0,5	0,5	5		0,2882	0,1	0,4	0,3	-0,3	0,3
6	0,0469		0,1	0,5	0,4	-0,4	0,4	6		0,3192	0,1	0,5	0,4	-0,4	0,4
7	0,0683		0,2	0,5	0,3	-0,3	0,3	7		0,3959	0,1	0,6	0,5	-0,5	0,5
8		0,0948	0,2	0,6	0,4	-0,4	0,4	8	0,4727		0,2	0,6	0,4	-0,4	0,4
9		0,1196	0,2	0,7	0,5	-0,5	0,5	9		0,6229	0,2	0,7	0,5	-0,5	0,5
10		0,1278	0,2	0,8	0,6	-0,6	0,6	10		0,8196	0,2	0,8	0,6	-0,6	0,6
11		0,1691	0,2	0,9	0,7	-0,7	0,7	11	0,8553		0,3	0,8	0,5	-0,5	0,5
12	0,1753		0,3	0,9	0,6	-0,6	0,6	12	0,9209		0,4	0,8	0,4	-0,4	0,4
13		0,2103	0,3	1	0,7	-0,7	0,7	13	1,3098		0,5	0,8	0,3	-0,3	0,3
14	0,3234		0,4	1	0,6	-0,6	0,6	14		1,3864	0,5	0,9	0,4	-0,4	0,4
15	0,3728		0,5	1	0,5	-0,5	0,5	15	1,9173		0,6	0,9	0,3	-0,3	0,3
16	0,4419		0,6	1	0,4	-0,4	0,4	16		2,5158	0,6	1	0,4	-0,4	0,4
17	0,5044		0,7	1	0,3	-0,3	0,3	17	3,1026		0,7	1	0,3	-0,3	0,3
18	0,5818		0,8	1	0,2	-0,2	0,2	18	3,1432		0,8	1	0,2	-0,2	0,2
19	0,6279		0,9	1	0,1	-0,1	0,1	19	3,1667		0,9	1	0,1	-0,1	0,1
20	1,0015		1	1	0	0	0	20	14,6149		1	1	0	0	0

Abbildung 226: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 1 in der Variante 10x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 227: arraylist:

Abbildung 228: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$]	R_i	x_1
1		0,379	0	0,1	0,1	-0,1	0,1		1	
2		1,546	0	0,2	0,2	-0,2	0,2		2	
3		1,899	0	0,3	0,3	-0,3	0,3		3	
4		1,941	0	0,4	0,4	-0,4	0,4		4	
5		2,014	0	0,5	0,5	-0,5	0,5		5	
6		2,025	0	0,6	0,6	-0,6	0,6		6	
7		2,072	0	0,7	0,7	-0,7	0,7		7	
8		2,225	0	0,8	0,8	-0,8	0,8		8	
9		5,096	0	0,9	0,9	-0,9	0,9		9	
10		5,154	0	1	1	-1	1		10	
11	14,3329		0,1	1	0,9	-0,9	0,9		11	1,1489
12	16,8965	İ	0,2	1	0,8	-0,8	0,8		12	2,101
13	17,0842		0,3	1	0,7	-0,7	0,7		13	2,4108
14	17,2396	İ	0,4	1	0,6	-0,6	0,6		14	3,2904
15	17,4144		0,5	1	0,5	-0,5	0,5		15	4,137
16	17,5309	İ	0,6	1	0,4	-0,4	0,4		16	4,4233
17	17,628		0,7	1	0,3	-0,3	0,3		17	5,7927
18	17,8611		0,8	1	0,2	-0,2	0,2		18	7,1061
19	18,0618		0,9	1	0,1	-0,1	0,1		19	8,4673
20	18,4761		1	1	0	0	0		20	12,7334
		•	•		•			•		

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,01	0	0,1	0,1	-0,1	0,1
2		0,03	0	0,2	0,2	-0,2	0,2
3		0,113	0	0,3	0,3	-0,3	0,3
4		0,139	0	0,4	0,4	-0,4	0,4
5		0,18	0	0,5	0,5	-0,5	0,5
6		0,181	0	0,6	0,6	-0,6	0,6
7		0,243	0	0,7	0,7	-0,7	0,7
8		0,373	0	0,8	0,8	-0,8	0,8
9		0,44	0	0,9	0,9	-0,9	0,9
10		0,585	0	1	1	-1	1
11	1,1489		0,1	1	0,9	-0,9	0,9
12	2,101		0,2	1	0,8	-0,8	0,8
13	2,4108		0,3	1	0,7	-0,7	0,7
14	3,2904		0,4	1	0,6	-0,6	0,6
15	4,137		0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 229: path:

Abbildung 230: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R	i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,035	0	0,1	0,1	-0,1	0,1	1			0,051	0	0,1	0,1	-0,1	0,1
2		0,073	0	0,2	0,2	-0,2	0,2		:		0,133	0	0,2	0,2	-0,2	0,2
3		0,073	0	0,3	0,3	-0,3	0,3	3	:		0,384	0	0,3	0,3	-0,3	0,3
4	0,1098		0,1	0,3	0,2	-0,2	0,2				0,714	0	0,4	0,4	-0,4	0,4
5		0,114	0,1	0,4	0,3	-0,3	0,3	5	1		0,914	0	0,5	0,5	-0,5	0,5
6		0,134	0,1	0,5	0,4	-0,4	0,4	6	;		1,185	0	0,6	0,6	-0,6	0,6
7		0,221	0,1	0,6	0,5	-0,5	0,5	7			1,416	0	0,7	0,7	-0,7	0,7
8		0,238	0,1	0,7	0,6	-0,6	0,6	8	:		1,941	0	0,8	0,8	-0,8	0,8
9		0,257	0,1	0,8	0,7	-0,7	0,7	9	١.		2,826	0	0,9	0,9	-0,9	0,9
10		0,262	0,1	0,9	0,8	-0,8	0,8	10	О	3,1312		0,1	0,9	0,8	-0,8	0,8
11	0,3228		0,2	0,9	0,7	-0,7	0,7	1:	1		3,221	0,1	1	0,9	-0,9	0,9
12	0,4866		0,3	0,9	0,6	-0,6	0,6	12	2	3,2936		0,2	1	0,8	-0,8	0,8
13		0,554	0,3	1	0,7	-0,7	0,7	13	3	3,8651		0,3	1	0,7	-0,7	0,7
14	0,6751		0,4	1	0,6	-0,6	0,6	14	4	3,9293		0,4	1	0,6	-0,6	0,6
15	0,757		0,5	1	0,5	-0,5	0,5	15	5	4,3284		0,5	1	0,5	-0,5	0,5
16	0,9044		0,6	1	0,4	-0,4	0,4	16	6	4,3384		0,6	1	0,4	-0,4	0,4
17	0,9208		0,7	1	0,3	-0,3	0,3	17	7	4,4186		0,7	1	0,3	-0,3	0,3
18	1,1912		0,8	1	0,2	-0,2	0,2	18	8	4,5469		0,8	1	0,2	-0,2	0,2
19	1,2076		0,9	1	0,1	-0,1	0,1	19	9	4,9901		0,9	1	0,1	-0,1	0,1
20	6,5752		1	1	Ó	0	Ô	20	0	36,8416		1	1	0	0	0

Abbildung 231: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 1 in der Variante 20x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 232: arraylist:

Abbildung 233: object:

				0		·				
F	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$]	R_i	x_1
	1	0,0992	0	0,1	0,1	-0,1	0,1		1	
2	1	0,4596	0	0,2	0,2	-0,2	0,2		2	
;	3	0,8618	0	0,3	0,3	-0,3	0,3		3	
4	!	1,2587	0	0,4	0,4	-0,4	0,4		4	
	5	1,2639	0	0,5	0,5	-0,5	0,5		5	
6	5	1,3057	0	0,6	0,6	-0,6	0,6		6	
1 7	'	1,3893	0	0,7	0,7	-0,7	0,7		7	
8	3	1,5668	0	0,8	0,8	-0,8	0,8		8	
1)	2,2197	0	0,9	0,9	-0,9	0,9		9	
1	0	2,2876	0	1	1	-1	1		10	
1	1 14,3329		0,1	1	0,9	-0,9	0,9		11	1,14
1	2 16,8965		0,2	1	0,8	-0,8	0,8		12	2,10
1	3 17,0842		0,3	1	0,7	-0,7	0,7		13	2,41
1	4 17,2396		0,4	1	0,6	-0,6	0,6		14	3,29
1	5 17,4144		0,5	1	0,5	-0,5	0,5		15	4,13
1	6 17,5309		0,6	1	0,4	-0,4	0,4		16	4,42
1	7 17,628		0,7	1	0,3	-0,3	0,3		17	5,79
1	8 17,8611		0,8	1	0,2	-0,2	0,2		18	7,10
1	9 18,0618		0,9	1	0,1	-0,1	0,1		19	8,46
2	0 18,4761		1	1	0	0	0		20	12,73

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,008	0	0,1	0,1	-0,1	0,1
2		0,0139	0	0,2	0,2	-0,2	0,2
3		0,0189	0	0,3	0,3	-0,3	0,3
4		0,1181	0	0,4	0,4	-0,4	0,4
5		0,1914	0	0,5	0,5	-0,5	0,5
6		0,2478	0	0,6	0,6	-0,6	0,6
7		0,2623	0	0,7	0,7	-0,7	0,7
8		0,3687	0	0,8	0,8	-0,8	0,8
9		0,4759	0	0,9	0,9	-0,9	0,9
10		0,761	0	1	1	-1	1
11	1,1489		0,1	1	0,9	-0,9	0,9
12	2,101		0,2	1	0,8	-0,8	0,8
13	2,4108		0,3	1	0,7	-0,7	0,7
14	3,2904		0,4	1	0,6	-0,6	0,6
15	4,137		0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 234: path:

Abbildung 235: hash:

				0		1		(x_i) R_i x_i x_2 $S_i x_i$ $S_i x_i$ R_i							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0247	0	0,1	0,1	-0,1	0,1	1		0,1592	0	0,1	0,1	-0,1	0,1
2		0,0412	0	0,2	0,2	-0,2	0,2	2		0,2796	0	0,2	0,2	-0,2	0,2
3		0,066	0	0,3	0,3	-0,3	0,3	3		0,9867	0	0,3	0,3	-0,3	0,3
4		0,066	0	0,4	0,4	-0,4	0,4	4		1,127	0	0,4	0,4	-0,4	0,4
5		0,0825	0	0,5	0,5	-0,5	0,5	5		1,5857	0	0,5	0,5	-0,5	0,5
6		0,1072	0	0,6	0,6	-0,6	0,6	6		1,7168	0	0,6	0,6	-0,6	0,6
7	0,1098		0,1	0,6	0,5	-0,5	0,5	7		2,1666	0	0,7	0,7	-0,7	0,7
8		0,1237	0,1	0,7	0,6	-0,6	0,6	8		2,4665	0	0,8	0,8	-0,8	0,8
9		0,1732	0,1	0,8	0,7	-0,7	0,7	9		2,903	0	0,9	0,9	-0,9	0,9
10		0,2062	0,1	0,9	0,8	-0,8	0,8	10		2,9554	0	1	1	-1	1
11	0,3228		0,2	0,9	0,7	-0,7	0,7	11	3,1312		0,1	1	0,9	-0,9	0,9
12		0,3794	0,2	1	0,8	-0,8	0,8	12	3,2936		0,2	1	0,8	-0,8	0,8
13	0,4866		0,3	1	0,7	-0,7	0,7	13	3,8651		0,3	1	0,7	-0,7	0,7
14	0,6751		0,4	1	0,6	-0,6	0,6	14	3,9293		0,4	1	0,6	-0,6	0,6
15	0,757		0,5	1	0,5	-0,5	0,5	15	4,3284		0,5	1	0,5	-0,5	0,5
16	0,9044		0,6	1	0,4	-0,4	0,4	16	4,3384		0,6	1	0,4	-0,4	0,4
17	0,9208		0,7	1	0,3	-0,3	0,3	17	4,4186		0,7	1	0,3	-0,3	0,3
18	1,1912		0,8	1	0,2	-0,2	0,2	18	4,5469		0,8	1	0,2	-0,2	0,2
19	1,2076		0,9	1	0,1	-0,1	0,1	19	4,9901		0,9	1	0,1	-0,1	0,1
20	6,5752		1	1	0	0	0	20	36,8416		1	1	0	0	0

Abbildung 236: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 1 in der Variante 50x3 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 237: arraylist:

Abbild	lung	238:	ob:	iect:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2
1		0,0163	0	0,1	0,1	-0,1	0,1	1		0,02
2		0,1153	0	0,2	0,2	-0,2	0,2	2		0,07
3		0,2891	0	0,3	0,3	-0,3	0,3	3		0,17
4		0,4429	0	0,4	0,4	-0,4	0,4	4		0,18
5		0,5166	0	0,5	0,5	-0,5	0,5	5		0,19
6		0,6852	0	0,6	0,6	-0,6	0,6	6		0,23
7		0,7168	0	0,7	0,7	-0,7	0,7	7		0,24
8		0,7484	0	0,8	0,8	-0,8	0,8	8		0,28
9		1,2582	0	0,9	0,9	-0,9	0,9	9		0,29
10		1,4636	0	1	1	-1	1	10		0,63
11	14,3329		0,1	1	0,9	-0,9	0,9	11	1,1489	
12	16,8965		0,2	1	0,8	-0,8	0,8	12	2,101	
13	17,0842		0,3	1	0,7	-0,7	0,7	13	2,4108	
14	17,2396		0,4	1	0,6	-0,6	0,6	14	3,2904	
15	17,4144		0,5	1	0,5	-0,5	0,5	15	4,137	
16	17,5309		0,6	1	0,4	-0,4	0,4	16	4,4233	
17	17,628		0,7	1	0,3	-0,3	0,3	17	5,7927	
18	17,8611		0,8	1	0,2	-0,2	0,2	18	7,1061	
19	18,0618		0,9	1	0,1	-0,1	0,1	19	8,4673	
20	18,4761		1	1	0	0	0	20	12,7334	

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0205	0	0,1	0,1	-0,1	0,1
2		0,0708	0	0,2	0,2	-0,2	0,2
3		0,1747	0	0,3	0,3	-0,3	0,3
4		0,1822	0	0,4	0,4	-0,4	0,4
5		0,1923	0	0,5	0,5	-0,5	0,5
6		0,2304	0	0,6	0,6	-0,6	0,6
7		0,2444	0	0,7	0,7	-0,7	0,7
8		0,2844	0	0,8	0,8	-0,8	0,8
9		0,2953	0	0,9	0,9	-0,9	0,9
10		0,6386	0	1	1	-1	1
11	1,1489		0,1	1	0,9	-0,9	0,9
12	2,101		0,2	1	0,8	-0,8	0,8
13	2,4108		0,3	1	0,7	-0,7	0,7
14	3,2904		0,4	1	0,6	-0,6	0,6
15	4,137		0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 239: path:

Abbildung 240: hash:

												O			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0041	0	0,1	0,1	-0,1	0,1	1		0,1345	0	0,1	0,1	-0,1	0,1
2		0,0206	0	0,2	0,2	-0,2	0,2			0,1858	0	0,2	0,2	-0,2	0,2
3		0,0289	0	0,3	0,3	-0,3	0,3	3		0,2476	0	0,3	0,3	-0,3	0,3
4		0,0371	0	0,4	0,4	-0,4	0,4	4		0,2882	0	0,4	0,4	-0,4	0,4
5		0,0371	0	0,5	0,5	-0,5	0,5	5		0,3192	0	0,5	0,5	-0,5	0,5
6		0,0948	0	0,6	0,6	-0,6	0,6	6		0,3959	0	0,6	0,6	-0,6	0,6
7	0,1098		0,1	0,6	0,5	-0,5	0,5	7		0,6229	0	0,7	0,7	-0,7	0,7
8		0,1196	0,1	0,7	0,6	-0,6	0,6	8		0,8196	0	0,8	0,8	-0,8	0,8
9		0,1278	0,1	0,8	0,7	-0,7	0,7	9		1,3864	0	0,9	0,9	-0,9	0,9
10		0,1691	0,1	0,9	0,8	-0,8	0,8	10		2,5158	0	1	1	-1	1
11		0,2103	0,1	1	0,9	-0,9	0,9	11	3,1312		0,1	1	0,9	-0,9	0,9
12	0,3228		0,2	1	0,8	-0,8	0,8	12	3,2936		0,2	1	0,8	-0,8	0,8
13	0,4866		0,3	1	0,7	-0,7	0,7	13	3,8651		0,3	1	0,7	-0,7	0,7
14	0,6751		0,4	1	0,6	-0,6	0,6	14	3,9293		0,4	1	0,6	-0,6	0,6
15	0,757		0,5	1	0,5	-0,5	0,5	15	4,3284		0,5	1	0,5	-0,5	0,5
16	0,9044		0,6	1	0,4	-0,4	0,4	16	4,3384		0,6	1	0,4	-0,4	0,4
17	0,9208		0,7	1	0,3	-0,3	0,3	17	4,4186		0,7	1	0,3	-0,3	0,3
18	1,1912		0,8	1	0,2	-0,2	0,2	18	4,5469		0,8	1	0,2	-0,2	0,2
19	1,2076		0,9	1	0,1	-0,1	0,1	19	4,9901		0,9	1	0,1	-0,1	0,1
20	6,5752		1	1	0	0	0	20	36,8416		1	1	0	0	0

1.3 Vergleich der Verfahren 3 und 2

Abbildung 241: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 2 in der Variante 100x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 242: arraylist:

Abbildung 243: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,4316	0	0,1	0,1	-0,1	0,1
2		0,7218	0	0,2	0,2	-0,2	0,2
3		1,0445	0	0,3	0,3	-0,3	0,3
4	1,2983		0,1	0,3	0,2	-0,2	0,2
5	1,3152		0,2	0,3	0,1	-0,1	0,1
6		2,2029	0,2	0,4	0,2	-0,2	0,2
7		2,5706	0,2	0,5	0,3	-0,3	0,3
8		2,9109	0,2	0,6	0,4	-0,4	0,4
9	3,3574		0,3	0,6	0,3	-0,3	0,3
10		3,4288	0,3	0,7	0,4	-0,4	0,4
11	3,6515		0,4	0,7	0,3	-0,3	0,3
12	3,6628		0,5	0,7	0,2	-0,2	0,2
13	3,7024		0,6	0,7	0,1	-0,1	0,1
14	3,9853		0,7	0,7	0	0	0
15	4,1154		0,8	0,7	0,1	0,1	-0,1
16		4,5246	0,8	0,8	0	0	0
17	4,9583		0,9	0,8	0,1	0,1	-0,1
18		5,09	0,9	0,9	0	0	0
19		7,5568	0,9	1	0,1	-0,1	0,1
20	9,2688		1	1	0	0	0

				0		J ·	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,9556	0	0,1	0,1	-0,1	0,1
2		1,1108	0	0,2	0,2	-0,2	0,2
3	1,1111		0,1	0,2	0,1	-0,1	0,1
4		1,3666	0,1	0,3	0,2	-0,2	0,2
5		1,5126	0,1	0,4	0,3	-0,3	0,3
6		1,9819	0,1	0,5	0,4	-0,4	0,4
7		2,1435	0,1	0,6	0,5	-0,5	0,5
8		2,3884	0,1	0,7	0,6	-0,6	0,6
9		2,6991	0,1	0,8	0,7	-0,7	0,7
10		2,9393	0,1	0,9	0,8	-0,8	0,8
11		4,3409	0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041		0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944		0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0

Abbildung 244: path:

Abbildung 245: hash:

D	1		α	а	D	a () a ()	a () a ()		D			а	а	D	a () a ()	$a \wedge a \wedge a \wedge a \wedge a \wedge a \wedge a \wedge a \wedge a \wedge a \wedge$
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	L	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0025		0,1	0	0,1	0,1	-0,1		1	0,0576		0,1	0	0,1	0,1	-0,1
2	0,0025		0,2	0	0,2	0,2	-0,2		2	0,0865		0,2	0	0,2	0,2	-0,2
3		0,0439	0,2	0,1	0,1	0,1	-0,1		3	0,1731		0,3	0	0,3	0,3	-0,3
4	0,0679		0,3	0,1	0,2	0,2	-0,2		4	$0,\!1766$		0,4	0	0,4	0,4	-0,4
5	0,2858		0,4	0,1	0,3	0,3	-0,3		5		0,1915	0,4	0,1	0,3	0,3	-0,3
6	0,3901		0,5	0,1	0,4	0,4	-0,4		6	0,3194		0,5	0,1	0,4	0,4	-0,4
7	0,4849		0,6	0,1	0,5	0,5	-0,5		7	0,5167		0,6	0,1	0,5	0,5	-0,5
8	0,8235		0,7	0,1	0,6	0,6	-0,6		8		0,7379	0,6	0,2	0,4	0,4	-0,4
9	0,9052		0,8	0,1	0,7	0,7	-0,7		9		0,7455	0,6	0,3	0,3	0,3	-0,3
10	0,9102		0,9	0,1	0,8	0,8	-0,8		10	0,9547		0,7	0,3	0,4	0,4	-0,4
11	0,9347		1	0,1	0,9	0,9	-0,9		11	0,972		0,8	0,3	0,5	0,5	-0,5
12		1,708	1	0,2	0,8	0,8	-0,8		12	1,3718		0,9	0,3	0,6	0,6	-0,6
13		6,3083	1	0,3	0,7	0,7	-0,7		13	2,0501		1	0,3	0,7	0,7	-0,7
14		7,2778	1	0,4	0,6	0,6	-0,6		14		2,4281	1	0,4	0,6	0,6	-0,6
15		7,3734	1	0,5	0,5	0,5	-0,5		15		2,6281	1	0,5	0,5	0,5	-0,5
16		9,6157	1	0,6	0,4	0,4	-0,4		16		3,2826	1	0,6	0,4	0,4	-0,4
17		10,307	1	0,7	0,3	0,3	-0,3		17		4,8323	1	0,7	0,3	0,3	-0,3
18		11,3894	1	0,8	0,2	0,2	-0,2		18		6,0485	1	0,8	0,2	0,2	-0,2
19		20,0709	1	0,9	0,1	0,1	-0,1		19		9,023	1	0,9	0,1	0,1	-0,1
20		32,0877	1	1	0	0	0		20		12,0468	1	1	0	0	0

Abbildung 246: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 2 in der Variante 100×100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 247: arraylist:

Abbild	ung	248:	ob:	iect:
1100110	·	2 10.	$^{\circ}$	

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,2758	0	0,1	0,1	-0,1	0,1
2		0,2784	0	0,2	0,2	-0,2	0,2
3		0,6216	0	0,3	0,3	-0,3	0,3
4		1,1185	0	0,4	0,4	-0,4	0,4
5	1,2983		0,1	0,4	0,3	-0,3	0,3
6	1,3152		0,2	0,4	0,2	-0,2	0,2
7		1,3634	0,2	0,5	0,3	-0,3	0,3
8		1,5434	0,2	0,6	0,4	-0,4	0,4
9		1,9643	0,2	0,7	0,5	-0,5	0,5
10		2,4039	0,2	0,8	0,6	-0,6	0,6
11		2,953	0,2	0,9	0,7	-0,7	0,7
12		3,1467	0,2	1	0,8	-0,8	0,8
13	3,3574		0,3	1	0,7	-0,7	0,7
14	3,6515		0,4	1	0,6	-0,6	0,6
15	3,6628		0,5	1	0,5	-0,5	0,5
16	3,7024		0,6	1	0,4	-0,4	0,4
17	3,9853		0,7	1	0,3	-0,3	0,3
18	4,1154		0,8	1	0,2	-0,2	0,2
19	4,9583		0,9	1	0,1	-0,1	0,1
20	9,2688		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1548	0	0,1	0,1	-0,1	0,1
2		0,4486	0	0,2	0,2	-0,2	0,2
3		0,506	0	0,3	0,3	-0,3	0,3
4		0,6527	0	0,4	0,4	-0,4	0,4
5		0,7785	0	0,5	0,5	-0,5	0,5
6		1,0283	0	0,6	0,6	-0,6	0,6
7		1,0975	0	0,7	0,7	-0,7	0,7
8	1,1111		0,1	0,7	0,6	-0,6	0,6
9		1,3312	0,1	0,8	0,7	-0,7	0,7
10		1,727	0,1	0,9	0,8	-0,8	0,8
11		2,8055	0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041		0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944		0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0
					•		

Abbildung 249: path:

Abbildung 250: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,0025		0,1	0	0,1	0,1	-0,1	1	0,0576		0,1	0	0,1	0,1	-0,1
2	0,0025		0,2	0	0,2	0,2	-0,2	2	0,0865		0,2	0	0,2	0,2	-0,2
3		0,0074	0,2	0,1	0,1	0,1	-0,1	3		0,1115	0,2	0,1	0,1	0,1	-0,1
4	0,0679		0,3	0,1	0,2	0,2	-0,2	4	0,1731		0,3	0,1	0,2	0,2	-0,2
5	0,2858		0,4	0,1	0,3	0,3	-0,3	5	0,1766		0,4	0,1	0,3	0,3	-0,3
6	0,3901		0,5	0,1	0,4	0,4	-0,4	6	0,3194		0,5	0,1	0,4	0,4	-0,4
7	0,4849		0,6	0,1	0,5	0,5	-0,5	7		0,4062	0,5	0,2	0,3	0,3	-0,3
8		0,7985	0,6	0,2	0,4	0,4	-0,4	8	0,5167		0,6	0,2	0,4	0,4	-0,4
9	0,8235		0,7	0,2	0,5	0,5	-0,5	9		0,9095	0,6	0,3	0,3	0,3	-0,3
10	0,9052		0,8	0,2	0,6	0,6	-0,6	10	0,9547		0,7	0,3	0,4	0,4	-0,4
11	0,9102		0,9	0,2	0,7	0,7	-0,7	11	0,972		0,8	0,3	0,5	0,5	-0,5
12	0,9347		1	0,2	0,8	0,8	-0,8	12	1,3718		0,9	0,3	0,6	0,6	-0,6
13		1,6312	1	0,3	0,7	0,7	-0,7	13		1,4504	0,9	0,4	0,5	0,5	-0,5
14		2,7785	1	0,4	0,6	0,6	-0,6	14		1,6892	0,9	0,5	0,4	0,4	-0,4
15		2,8008	1	0,5	0,5	0,5	-0,5	15	2,0501		1	0,5	0,5	0,5	-0,5
16		3,4438	1	0,6	0,4	0,4	-0,4	16		2,3684	1	0,6	0,4	0,4	-0,4
17		4,6004	1	0,7	0,3	0,3	-0,3	17		2,4997	1	0,7	0,3	0,3	-0,3
18		6,8821	1	0,8	0,2	0,2	-0,2	18		2,6129	1	0,8	0,2	0,2	-0,2
19		7,3354	1	0,9	0,1	0,1	-0,1	19		2,9395	1	0,9	0,1	0,1	-0,1
20		8,5882	1	1	0	0	0	20		7,0872	1	1	0	0	0

Abbildung 251: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 2 in der Variante 1000×10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 252: arraylist:

Abbildung 253: object:

-			~	- C	ъ	0 () 0 ()	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0222	0	0,1	0,1	-0,1	0,1
2		0,0513	0	0,2	0,2	-0,2	0,2
3		0,0712	0	0,3	0,3	-0,3	0,3
4		0,0886	0	0,4	0,4	-0,4	0,4
5		0,1236	0	0,5	0,5	-0,5	0,5
6		0,1645	0	0,6	0,6	-0,6	0,6
7		0,1971	0	0,7	0,7	-0,7	0,7
8		0,2088	0	0,8	0,8	-0,8	0,8
9		0,2729	0	0,9	0,9	-0,9	0,9
10		0,3044	0	1	1	-1	1
11	1,2983		0,1	1	0,9	-0,9	0,9
12	1,3152		0,2	1	0,8	-0,8	0,8
13	3,3574		0,3	1	0,7	-0,7	0,7
14	3,6515		0,4	1	0,6	-0,6	0,6
15	3,6628		0,5	1	0,5	-0,5	0,5
16	3,7024		0,6	1	0,4	-0,4	0,4
17	3,9853		0,7	1	0,3	-0,3	0,3
18	4,1154		0,8	1	0,2	-0,2	0,2
19	4,9583		0,9	1	0,1	-0,1	0,1
20	9,2688		1	1	0	0	0
20	3,2000		1	1	U	0	

				_		9	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1383	0	0,1	0,1	-0,1	0,1
2		0,1482	0	0,2	0,2	-0,2	0,2
3		0,1987	0	0,3	0,3	-0,3	0,3
4		0,2614	0	0,4	0,4	-0,4	0,4
5		0,2716	0	0,5	0,5	-0,5	0,5
6		0,3533	0	0,6	0,6	-0,6	0,6
7		0,4266	0	0,7	0,7	-0,7	0,7
8		0,4989	0	0,8	0,8	-0,8	0,8
9		0,5616	0	0,9	0,9	-0,9	0,9
10	1,1111		0,1	0,9	0,8	-0,8	0,8
11		2,0189	0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041		0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944		0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0

Abbildung 254: path:

Abbildung 255: hash:

	modificating 2011 patent								11001144116 2001 11400111							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	Γ.	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0025		0,1	0	0,1	0,1	-0,1		1		0,0053	0	0,1	0,1	-0,1	0,1
2	0,0025		0,2	0	0,2	0,2	-0,2		2	0,0576		0,1	0,1	0	0	0
3		0,0221	0,2	0,1	0,1	0,1	-0,1		3	0,0865		0,2	0,1	0,1	0,1	-0,1
4		0,0302	0,2	0,2	0	0	0		4	0,1731		0,3	0,1	0,2	0,2	-0,2
5		0,0548	0,2	0,3	0,1	-0,1	0,1		5	$0,\!1766$		0,4	0,1	0,3	0,3	-0,3
6	0,0679		0,3	0,3	0	0	0		6	0,3194		0,5	0,1	0,4	0,4	-0,4
7		0,0711	0,3	0,4	0,1	-0,1	0,1		7		0,4327	0,5	0,2	0,3	0,3	-0,3
8		0,0711	0,3	0,5	0,2	-0,2	0,2		8	0,5167		0,6	0,2	0,4	0,4	-0,4
9		0,1005	0,3	0,6	0,3	-0,3	0,3		9		0,7133	0,6	0,3	0,3	0,3	-0,3
10		0,1005	0,3	0,7	0,4	-0,4	0,4		10	0,9547		0,7	0,3	0,4	0,4	-0,4
11		0,1038	0,3	0,8	0,5	-0,5	0,5		11	0,972		0,8	0,3	0,5	0,5	-0,5
12		0,112	0,3	0,9	0,6	-0,6	0,6		12	1,3718		0,9	0,3	0,6	0,6	-0,6
13		0,264	0,3	1	0,7	-0,7	0,7		13	2,0501		1	0,3	0,7	0,7	-0,7
14	0,2858		0,4	1	0,6	-0,6	0,6		14		3,0831	1	0,4	0,6	0,6	-0,6
15	0,3901		0,5	1	0,5	-0,5	0,5		15		3,1413	1	0,5	0,5	0,5	-0,5
16	0,4849		0,6	1	0,4	-0,4	0,4		16		3,3666	1	0,6	0,4	0,4	-0,4
17	0,8235		0,7	1	0,3	-0,3	0,3		17		4,0972	1	0,7	0,3	0,3	-0,3
18	0,9052		0,8	1	0,2	-0,2	0,2		18		4,389	1	0,8	0,2	0,2	-0,2
19	0,9102		0,9	1	0,1	-0,1	0,1		19		4,411	1	0,9	0,1	0,1	-0,1
20	0,9347		1	1	0	0	0	:	20		5,1635	1	1	0	0	0

Abbildung 256: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 2 in der Variante 1000×100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 257: arraylist:

Abbildung	258:	object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0146	0	0,1	0,1	-0,1	0,1
2		0,0146	0	0,2	0,2	-0,2	0,2
3		0,0321	0	0,3	0,3	-0,3	0,3
4		0,0438	0	0,4	0,4	-0,4	0,4
5		0,0438	0	0,5	0,5	-0,5	0,5
6		0,0613	0	0,6	0,6	-0,6	0,6
7		0,0729	0	0,7	0,7	-0,7	0,7
8		0,0846	0	0,8	0,8	-0,8	0,8
9		0,0963	0	0,9	0,9	-0,9	0,9
10		0,1021	0	1	1	-1	1
11	1,2983		0,1	1	0,9	-0,9	0,9
12	1,3152		0,2	1	0,8	-0,8	0,8
13	3,3574		0,3	1	0,7	-0,7	0,7
14	3,6515		0,4	1	0,6	-0,6	0,6
15	3,6628		0,5	1	0,5	-0,5	0,5
16	3,7024		0,6	1	0,4	-0,4	0,4
17	3,9853		0,7	1	0,3	-0,3	0,3
18	4,1154		0,8	1	0,2	-0,2	0,2
19	4,9583		0,9	1	0,1	-0,1	0,1
20	9,2688		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0364	0	0,1	0,1	-0,1	0,1
2		0,0954	0	0,2	0,2	-0,2	0,2
3		0,1053	0	0,3	0,3	-0,3	0,3
4		0,4024	0	0,4	0,4	-0,4	0,4
5		0,4211	0	0,5	0,5	-0,5	0,5
6		0,5389	0	0,6	0,6	-0,6	0,6
7		0,7582	0	0,7	0,7	-0,7	0,7
8		1,0105	0	0,8	0,8	-0,8	0,8
9	1,1111		0,1	0,8	0,7	-0,7	0,7
10		1,4387	0,1	0,9	0,8	-0,8	0,8
11		1,719	0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041		0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944		0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0

Abbildung 259: path:

Abbildung 260: hash:

	moditating 200: patti:							Tibblidang 200: nabii:								
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	F	l_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0	0	0,1	0,1	-0,1	0,1		L		0,0198	0	0,1	0,1	-0,1	0,1
2	0,0025		0,1	0,1	0	0	0	2	2	0,0576		0,1	0,1	0	0	0
3	0,0025		0,2	0,1	0,1	0,1	-0,1	3	3	0,0865		0,2	0,1	0,1	0,1	-0,1
4		0,0082	0,2	0,2	0	0	0	4	1	0,1731		0,3	0,1	0,2	0,2	-0,2
5		0,0164	0,2	0,3	0,1	-0,1	0,1		5	0,1766		0,4	0,1	0,3	0,3	-0,3
6		0,0164	0,2	0,4	0,2	-0,2	0,2	(3		0,2281	0,4	0,2	0,2	0,2	-0,2
7		0,0164	0,2	0,5	0,3	-0,3	0,3	7	7		0,2302	0,4	0,3	0,1	0,1	-0,1
8		0,0245	0,2	0,6	0,4	-0,4	0,4	8	3	0,3194		0,5	0,3	0,2	0,2	-0,2
9		0,0327	0,2	0,7	0,5	-0,5	0,5)	0,5167		0,6	0,3	0,3	0,3	-0,3
10		0,0409	0,2	0,8	0,6	-0,6	0,6	1	0		0,5346	0,6	0,4	0,2	0,2	-0,2
11		0,0409	0,2	0,9	0,7	-0,7	0,7	1	1		0,5944	0,6	0,5	0,1	0,1	-0,1
12		0,0654	0,2	1	0,8	-0,8	0,8	1	2		0,7087	0,6	0,6	0	0	0
13	0,0679		0,3	1	0,7	-0,7	0,7	1	3		0,8422	0,6	0,7	0,1	-0,1	0,1
14	0,2858		0,4	1	0,6	-0,6	0,6	1	4		0,8679	0,6	0,8	0,2	-0,2	0,2
15	0,3901		0,5	1	0,5	-0,5	0,5	1	5	0,9547		0,7	0,8	0,1	-0,1	0,1
16	0,4849		0,6	1	0,4	-0,4	0,4	1	6	0,972		0,8	0,8	0	0	0
17	0,8235		0,7	1	0,3	-0,3	0,3	1	7	1,3718		0,9	0,8	0,1	0,1	-0,1
18	0,9052		0,8	1	0,2	-0,2	0,2	1	8		2,0311	0,9	0,9	0	0	0
19	0,9102		0,9	1	0,1	-0,1	0,1	1	9	2,0501		1	0,9	0,1	0,1	-0,1
20	0,9347		1	1	0	0	0	2	0		2,1144	1	1	0	0	0

Abbildung 261: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 2 in der Variante 2000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 262: arraylist:

Abbildung 263: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0145	0	0,1	0,1	-0,1	0,1
2		0,0203	0	0,2	0,2	-0,2	0,2
3		0,0261	0	0,3	0,3	-0,3	0,3
4		0,0261	0	0,4	0,4	-0,4	0,4
5		0,0435	0	0,5	0,5	-0,5	0,5
6		0,0551	0	0,6	0,6	-0,6	0,6
7		0,0667	0	0,7	0,7	-0,7	0,7
8		0,0784	0	0,8	0,8	-0,8	0,8
9		0,1074	0	0,9	0,9	-0,9	0,9
10		0,1828	0	1	1	-1	1
11	1,2983		0,1	1	0,9	-0,9	0,9
12	1,3152		0,2	1	0,8	-0,8	0,8
13	3,3574		0,3	1	0,7	-0,7	0,7
14	3,6515		0,4	1	0,6	-0,6	0,6
15	3,6628		0,5	1	0,5	-0,5	0,5
16	3,7024		0,6	1	0,4	-0,4	0,4
17	3,9853		0,7	1	0,3	-0,3	0,3
18	4,1154		0,8	1	0,2	-0,2	0,2
19	4,9583		0,9	1	0,1	-0,1	0,1
20	9,2688		1	1	0	0	0
20	9,2688		1	1	0	0	0

				0		J	
R	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0003	0	0,1	0,1	-0,1	0,1
2	:	0,0013	0	0,2	0,2	-0,2	0,2
3		0,0979	0	0,3	0,3	-0,3	0,3
4	.	0,1617	0	0,4	0,4	-0,4	0,4
5	.	0,2208	0	0,5	0,5	-0,5	0,5
ϵ		0,386	0	0,6	0,6	-0,6	0,6
7	•	0,4214	0	0,7	0,7	-0,7	0,7
8		0,4727	0	0,8	0,8	-0,8	0,8
6		0,5206	0	0,9	0,9	-0,9	0,9
1)	0,5499	0	1	1	-1	1
1	1,1111		0,1	1	0,9	-0,9	0,9
1:	2 4,4		0,2	1	0,8	-0,8	0,8
1	6,2041		0,3	1	0,7	-0,7	0,7
1.	6,2386		0,4	1	0,6	-0,6	0,6
1.	6,9944		0,5	1	0,5	-0,5	0,5
1	5 10,2613		0,6	1	0,4	-0,4	0,4
1	7 10,385		0,7	1	0,3	-0,3	0,3
1	8 12,2133		0,8	1	0,2	-0,2	0,2
1	9 12,543		0,9	1	0,1	-0,1	0,1
2	12,847		1	1	0	0	0

Abbildung 264: path:

Abbildung 265: hash:

	x_1 x_2 x_3 x_4 x_5 x_4 x_5												-		
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0008	0	0,1	0,1	-0,1	0,1	1		0,0057	0	0,1	0,1	-0,1	0,1
2	0,0025		0,1	0,1	0	0	0	2		0,0261	0	0,2	0,2	-0,2	0,2
3	0,0025		0,2	0,1	0,1	0,1	-0,1	3		0,0515	0	0,3	0,3	-0,3	0,3
4		0,0155	0,2	0,2	0	0	0	4	0,0576		0,1	0,3	0,2	-0,2	0,2
5		0,0237	0,2	0,3	0,1	-0,1	0,1	5		0,0709	0,1	0,4	0,3	-0,3	0,3
6		0,0237	0,2	0,4	0,2	-0,2	0,2	6	0,0865		0,2	0,4	0,2	-0,2	0,2
7		0,0335	0,2	0,5	0,3	-0,3	0,3	7		0,0912	0,2	0,5	0,3	-0,3	0,3
8		0,0498	0,2	0,6	0,4	-0,4	0,4	8		0,1532	0,2	0,6	0,4	-0,4	0,4
9	0,0679		0,3	0,6	0,3	-0,3	0,3	9		0,1659	0,2	0,7	0,5	-0,5	0,5
10		0,0825	0,3	0,7	0,4	-0,4	0,4	10	0,1731		0,3	0,7	0,4	-0,4	0,4
11		0,089	0,3	0,8	0,5	-0,5	0,5	11	$0,\!1766$		0,4	0,7	0,3	-0,3	0,3
12		0,1478	0,3	0,9	0,6	-0,6	0,6	12		0,1929	0,4	0,8	0,4	-0,4	0,4
13		0,1626	0,3	1	0,7	-0,7	0,7	13		0,2361	0,4	0,9	0,5	-0,5	0,5
14	0,2858		0,4	1	0,6	-0,6	0,6	14	0,3194		0,5	0,9	0,4	-0,4	0,4
15	0,3901		0,5	1	0,5	-0,5	0,5	15		0,368	0,5	1	0,5	-0,5	0,5
16	0,4849		0,6	1	0,4	-0,4	0,4	16	0,5167		0,6	1	0,4	-0,4	0,4
17	0,8235		0,7	1	0,3	-0,3	0,3	17	0,9547		0,7	1	0,3	-0,3	0,3
18	0,9052		0,8	1	0,2	-0,2	0,2	18	0,972		0,8	1	0,2	-0,2	0,2
19	0,9102		0,9	1	0,1	-0,1	0,1	19	1,3718		0,9	1	0,1	-0,1	0,1
20	0,9347		1	1	0	0	0	20	2,0501		1	1	0	0	0

Abbildung 266: Vergleich von Verfahren 3 in der Variante 10k und Verfahren 2 in der Variante 2000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 267: arraylist:

Abbildung 268: object:

x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
	0,0029	0	0,1	0,1	-0,1	0,1
	0,0029	0	0,2	0,2	-0,2	0,2
	0,0087	0	0,3	0,3	-0,3	0,3
	0,0087	0	0,4	0,4	-0,4	0,4
	0,0087	0	0,5	0,5	-0,5	0,5
	0,0145	0	0,6	0,6	-0,6	0,6
	0,0203	0	0,7	0,7	-0,7	0,7
	0,0261	0	0,8	0,8	-0,8	0,8
	0,0319	0	0,9	0,9	-0,9	0,9
	0,0377	0	1	1	-1	1
1,2983		0,1	1	0,9	-0,9	0,9
1,3152		0,2	1	0,8	-0,8	0,8
3,3574		0,3	1	0,7	-0,7	0,7
3,6515		0,4	1	0,6	-0,6	0,6
3,6628		0,5	1	0,5	-0,5	0,5
3,7024		0,6	1	0,4	-0,4	0,4
3,9853		0,7	1	0,3	-0,3	0,3
4,1154		0,8	1	0,2	-0,2	0,2
4,9583		0,9	1	0,1	-0,1	0,1
9,2688		1	1	0	0	0
	1,2983 1,3152 3,3574 3,6515 3,6628 3,7024 3,9853 4,1154 4,9583	0,0029 0,0029 0,0029 0,0087 0,0087 0,0145 0,0203 0,0261 0,0319 0,0377 1,2983 1,3152 3,3574 3,6515 3,6628 3,7024 3,9853 4,1154 4,9583	0,0029 0 0,0029 0 0,0087 0 0,0087 0 0,0087 0 0,0145 0 0,0261 0 0,0319 0 0,0319 0 0,0377 0 1,2983 0,1 1,3152 0,2 3,3574 0,3 3,6515 0,4 3,6628 0,5 3,7024 0,6 3,9853 0,7 4,1154 0,8 4,9583 0,9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0576	0	0,1	0,1	-0,1	0,1
2		0,0625	0	0,2	0,2	-0,2	0,2
3		0,1368	0	0,3	0,3	-0,3	0,3
4		0,1432	0	0,4	0,4	-0,4	0,4
5		0,1514	0	0,5	0,5	-0,5	0,5
6		0,2489	0	0,6	0,6	-0,6	0,6
7		0,2509	0	0,7	0,7	-0,7	0,7
8		0,2745	0	0,8	0,8	-0,8	0,8
9		0,423	0	0,9	0,9	-0,9	0,9
10		0,501	0	1	1	-1	1
11	1,1111		0,1	1	0,9	-0,9	0,9
12	4,4		0,2	1	0,8	-0,8	0,8
13	6,2041		0,3	1	0,7	-0,7	0,7
14	6,2386		0,4	1	0,6	-0,6	0,6
15	6,9944		0,5	1	0,5	-0,5	0,5
16	10,2613		0,6	1	0,4	-0,4	0,4
17	10,385		0,7	1	0,3	-0,3	0,3
18	12,2133		0,8	1	0,2	-0,2	0,2
19	12,543		0,9	1	0,1	-0,1	0,1
20	12,847		1	1	0	0	0

Abbildung 269: path:

Abbildung 270: hash:

	x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- •	o. masm.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$] [R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0025		0,1	0	0,1	0,1	-0,1	ĺĺ	1		0,0099	0	0,1	0,1	-0,1	0,1
2	0,0025		0,2	0	0,2	0,2	-0,2	Ш	2		0,0124	0	0,2	0,2	-0,2	0,2
3		0,0033	0,2	0,1	0,1	0,1	-0,1		3		0,0156	0	0,3	0,3	-0,3	0,3
4		0,0131	0,2	0,2	0	0	0	Ш	4		0,0236	0	0,4	0,4	-0,4	0,4
5		0,0212	0,2	0,3	0,1	-0,1	0,1		5		0,0315	0	0,5	0,5	-0,5	0,5
6		0,0212	0,2	0,4	0,2	-0,2	0,2	Ш	6		0,0322	0	0,6	0,6	-0,6	0,6
7		0,0278	0,2	0,5	0,3	-0,3	0,3		7		0,0331	0	0,7	0,7	-0,7	0,7
8		0,0359	0,2	0,6	0,4	-0,4	0,4	Ш	8		0,0513	0	0,8	0,8	-0,8	0,8
9		0,0359	0,2	0,7	0,5	-0,5	0,5	Ш	9		0,0522	0	0,9	0,9	-0,9	0,9
10		0,0376	0,2	0,8	0,6	-0,6	0,6		10	0,0576		0,1	0,9	0,8	-0,8	0,8
11	0,0679		0,3	0,8	0,5	-0,5	0,5	Ш	11		0,0752	0,1	1	0,9	-0,9	0,9
12		0,0931	0,3	0,9	0,6	-0,6	0,6		12	0,0865		0,2	1	0,8	-0,8	0,8
13		0,1029	0,3	1	0,7	-0,7	0,7	Ш	13	0,1731		0,3	1	0,7	-0,7	0,7
14	0,2858		0,4	1	0,6	-0,6	0,6		14	0,1766		0,4	1	0,6	-0,6	0,6
15	0,3901		0,5	1	0,5	-0,5	0,5	Ш	15	0,3194		0,5	1	0,5	-0,5	0,5
16	0,4849		0,6	1	0,4	-0,4	0,4		16	0,5167		0,6	1	0,4	-0,4	0,4
17	0,8235		0,7	1	0,3	-0,3	0,3		17	0,9547		0,7	1	0,3	-0,3	0,3
18	0,9052		0,8	1	0,2	-0,2	0,2		18	0,972		0,8	1	0,2	-0,2	0,2
19	0,9102		0,9	1	0,1	-0,1	0,1		19	1,3718		0,9	1	0,1	-0,1	0,1
20	0,9347		1	1	0	0	0		20	2,0501		1	1	0	0	0

Abbildung 271: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 2 in der Variante 100x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 272: arraylist:

Abbildung 273: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,1553		0,1	0	0,1	0,1	-0,1
2	0,3251		0,2	0	0,2	0,2	-0,2
3		0,4316	0,2	0,1	0,1	0,1	-0,1
4	0,5273		0,3	0,1	0,2	0,2	-0,2
5		0,7218	0,3	0,2	0,1	0,1	-0,1
6	0,8023		0,4	0,2	0,2	0,2	-0,2
7		1,0445	0,4	0,3	0,1	0,1	-0,1
8	1,0692		0,5	0,3	0,2	0,2	-0,2
9	1,3119		0,6	0,3	0,3	0,3	-0,3
10	1,3604		0,7	0,3	0,4	0,4	-0,4
11	1,5108		0,8	0,3	0,5	0,5	-0,5
12	1,9556		0,9	0,3	0,6	0,6	-0,6
13	2,0851		1	0,3	0,7	0,7	-0,7
14		2,2029	1	0,4	0,6	0,6	-0,6
15		2,5706	1	0,5	0,5	0,5	-0,5
16		2,9109	1	0,6	0,4	0,4	-0,4
17		3,4288	1	0,7	0,3	0,3	-0,3
18		4,5246	1	0,8	0,2	0,2	-0,2
19		5,09	1	0,9	0,1	0,1	-0,1
20		7,5568	1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,9556	0	0,1	0,1	-0,1	0,1
2		1,1108	0	0,2	0,2	-0,2	0,2
3		1,3666	0	0,3	0,3	-0,3	0,3
4		1,5126	0	0,4	0,4	-0,4	0,4
5		1,9819	0	0,5	0,5	-0,5	0,5
6		2,1435	0	0,6	0,6	-0,6	0,6
7		2,3884	0	0,7	0,7	-0,7	0,7
8		2,6991	0	0,8	0,8	-0,8	0,8
9		2,9393	0	0,9	0,9	-0,9	0,9
10	2,9587		0,1	0,9	0,8	-0,8	0,8
11	4,2884		0,2	0,9	0,7	-0,7	0,7
12		4,3409	0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 274: path:

Abbildung 275: hash:

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									110	DIIG	4118). II((())II.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	0,0181		0,1	0	0,1	0,1	-0,1	1		0,1915	0	0,1	0,1	-0,1	0,1
2		0,0439	0,1	0,1	0	0	0	2	0,3588		0,1	0,1	0	0	0
3	0,0805		0,2	0,1	0,1	0,1	-0,1	3	0,6232		0,2	0,1	0,1	0,1	-0,1
4	0,1216		0,3	0,1	0,2	0,2	-0,2	4	0,7124		0,3	0,1	0,2	0,2	-0,2
5	0,1627		0,4	0,1	0,3	0,3	-0,3	5	0,7267		0,4	0,1	0,3	0,3	-0,3
6	0,1956		0,5	0,1	0,4	0,4	-0,4	6		0,7379	0,4	0,2	0,2	0,2	-0,2
7	0,2646		0,6	0,1	0,5	0,5	-0,5	7		0,7455	0,4	0,3	0,1	0,1	-0,1
8	0,4174		0,7	0,1	0,6	0,6	-0,6	8	0,9927		0,5	0,3	0,2	0,2	-0,2
9	0,475		0,8	0,1	0,7	0,7	-0,7	9	1,1217		0,6	0,3	0,3	0,3	-0,3
10	0,5029		0,9	0,1	0,8	0,8	-0,8	10	1,1223		0,7	0,3	0,4	0,4	-0,4
11	0,6673		1	0,1	0,9	0,9	-0,9	11	1,2428		0,8	0,3	0,5	0,5	-0,5
12		1,708	1	0,2	0,8	0,8	-0,8	12	1,7387		0,9	0,3	0,6	0,6	-0,6
13		6,3083	1	0,3	0,7	0,7	-0,7	13		2,4281	0,9	0,4	0,5	0,5	-0,5
14		7,2778	1	0,4	0,6	0,6	-0,6	14		2,6281	0,9	0,5	0,4	0,4	-0,4
15		7,3734	1	0,5	0,5	0,5	-0,5	15	2,9172		1	0,5	0,5	0,5	-0,5
16		9,6157	1	0,6	0,4	0,4	-0,4	16		3,2826	1	0,6	0,4	0,4	-0,4
17		10,307	1	0,7	0,3	0,3	-0,3	17		4,8323	1	0,7	0,3	0,3	-0,3
18		11,3894	1	0,8	0,2	0,2	-0,2	18		6,0485	1	0,8	0,2	0,2	-0,2
19		20,0709	1	0,9	0,1	0,1	-0,1	19		9,023	1	0,9	0,1	0,1	-0,1
20		32,0877	1	1	0	0	0	20		12,0468	1	1	0	0	0

Abbildung 276: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 2 in der Variante 100x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 277: arraylist:

Abbildung 278: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,1553		0,1	0	0,1	0,1	-0,1
2		0,2758	0,1	0,1	0	0	0
3		0,2784	0,1	0,2	0,1	-0,1	0,1
4	0,3251		0,2	0,2	0	0	0
5	0,5273		0,3	0,2	0,1	0,1	-0,1
6		0,6216	0,3	0,3	0	0	0
7	0,8023		0,4	0,3	0,1	0,1	-0,1
8	1,0692		0,5	0,3	0,2	0,2	-0,2
9		1,1185	0,5	0,4	0,1	0,1	-0,1
10	1,3119		0,6	0,4	0,2	0,2	-0,2
11	1,3604		0,7	0,4	0,3	0,3	-0,3
12		1,3634	0,7	0,5	0,2	0,2	-0,2
13	1,5108		0,8	0,5	0,3	0,3	-0,3
14		1,5434	0,8	0,6	0,2	0,2	-0,2
15	1,9556		0,9	0,6	0,3	0,3	-0,3
16		1,9643	0,9	0,7	0,2	0,2	-0,2
17	2,0851		1	0,7	0,3	0,3	-0,3
18		2,4039	1	0,8	0,2	0,2	-0,2
19		2,953	1	0,9	0,1	0,1	-0,1
20		3,1467	1	1	0	0	0

				0		J	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1548	0	0,1	0,1	-0,1	0,1
2		0,4486	0	0,2	0,2	-0,2	0,2
3		0,506	0	0,3	0,3	-0,3	0,3
4		0,6527	0	0,4	0,4	-0,4	0,4
5		0,7785	0	0,5	0,5	-0,5	0,5
6		1,0283	0	0,6	0,6	-0,6	0,6
7		1,0975	0	0,7	0,7	-0,7	0,7
8		1,3312	0	0,8	0,8	-0,8	0,8
9		1,727	0	0,9	0,9	-0,9	0,9
10		2,8055	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 279: path:

Abbildung 280: hash:

						1									
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0074	0	0,1	0,1	-0,1	0,1	1		0,1115	0	0,1	0,1	-0,1	0,1
2	0,0181		0,1	0,1	0	0	0	2	0,3588		0,1	0,1	0	0	0
3	0,0805		0,2	0,1	0,1	0,1	-0,1	3		0,4062	0,1	0,2	0,1	-0,1	0,1
4	0,1216		0,3	0,1	0,2	0,2	-0,2	4	0,6232		0,2	0,2	0	0	0
5	0,1627		0,4	0,1	0,3	0,3	-0,3	5	0,7124		0,3	0,2	0,1	0,1	-0,1
6	0,1956		0,5	0,1	0,4	0,4	-0,4	6	0,7267		0,4	0,2	0,2	0,2	-0,2
7	0,2646		0,6	0,1	0,5	0,5	-0,5	7		0,9095	0,4	0,3	0,1	0,1	-0,1
8	0,4174		0,7	0,1	0,6	0,6	-0,6	8	0,9927		0,5	0,3	0,2	0,2	-0,2
9	0,475		0,8	0,1	0,7	0,7	-0,7	9	1,1217		0,6	0,3	0,3	0,3	-0,3
10	0,5029		0,9	0,1	0,8	0,8	-0,8	10	1,1223		0,7	0,3	0,4	0,4	-0,4
11	0,6673		1	0,1	0,9	0,9	-0,9	11	1,2428		0,8	0,3	0,5	0,5	-0,5
12		0,7985	1	0,2	0,8	0,8	-0,8	12		1,4504	0,8	0,4	0,4	0,4	-0,4
13		1,6312	1	0,3	0,7	0,7	-0,7	13		1,6892	0,8	0,5	0,3	0,3	-0,3
14		2,7785	1	0,4	0,6	0,6	-0,6	14	1,7387		0,9	0,5	0,4	0,4	-0,4
15		2,8008	1	0,5	0,5	0,5	-0,5	15		2,3684	0,9	0,6	0,3	0,3	-0,3
16		3,4438	1	0,6	0,4	0,4	-0,4	16		2,4997	0,9	0,7	0,2	0,2	-0,2
17		4,6004	1	0,7	0,3	0,3	-0,3	17		2,6129	0,9	0,8	0,1	0,1	-0,1
18		6,8821	1	0,8	0,2	0,2	-0,2	18	2,9172		1	0,8	0,2	0,2	-0,2
19		7,3354	1	0,9	0,1	0,1	-0,1	19		2,9395	1	0,9	0,1	0,1	-0,1
20		8,5882	1	1	0	0	0	20		7,0872	1	1	0	0	0

1		0,1115	0	0,1	0,1	-0,1	0,1
2	0,3588		0,1	0,1	0	0	0
3		0,4062	0,1	0,2	0,1	-0,1	0,1
4	0,6232		0,2	0,2	0	0	0
5	0,7124		0,3	0,2	0,1	0,1	-0,1
6	0,7267		0,4	0,2	0,2	0,2	-0,2
7		0,9095	0,4	0,3	0,1	0,1	-0,1
8	0,9927		0,5	0,3	0,2	0,2	-0,2
9	1,1217		0,6	0,3	0,3	0,3	-0,3
10	1,1223		0,7	0,3	0,4	0,4	-0,4
11	1,2428		0,8	0,3	0,5	0,5	-0,5
12		1,4504	0,8	0,4	0,4	0,4	-0,4
13		1,6892	0,8	0,5	0,3	0,3	-0,3
14	1,7387		0,9	0,5	0,4	0,4	-0,4
15		2,3684	0,9	0,6	0,3	0,3	-0,3
16		2,4997	0,9	0,7	0,2	0,2	-0,2
17		2,6129	0,9	0,8	0,1	0,1	-0,1
18	2,9172		1	0,8	0,2	0,2	-0,2
19		2,9395	1	0,9	0,1	0,1	-0,1
20		7,0872	1	1	0	0	0

Abbildung 281: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 2 in der Variante 1000×10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 282: arraylist:

Abbildung 283: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0222	0	0,1	0,1	-0,1	0,1
2		0,0513	0	0,2	0,2	-0,2	0,2
3		0,0712	0	0,3	0,3	-0,3	0,3
4		0,0886	0	0,4	0,4	-0,4	0,4
5		0,1236	0	0,5	0,5	-0,5	0,5
6	0,1553		0,1	0,5	0,4	-0,4	0,4
7		0,1645	0,1	0,6	0,5	-0,5	0,5
8		0,1971	0,1	0,7	0,6	-0,6	0,6
9		0,2088	0,1	0,8	0,7	-0,7	0,7
10		0,2729	0,1	0,9	0,8	-0,8	0,8
11		0,3044	0,1	1	0,9	-0,9	0,9
12	0,3251		0,2	1	0,8	-0,8	0,8
13	0,5273		0,3	1	0,7	-0,7	0,7
14	0,8023		0,4	1	0,6	-0,6	0,6
15	1,0692		0,5	1	0,5	-0,5	0,5
16	1,3119		0,6	1	0,4	-0,4	0,4
17	1,3604		0,7	1	0,3	-0,3	0,3
18	1,5108		0,8	1	0,2	-0,2	0,2
19	1,9556		0,9	1	0,1	-0,1	0,1
20	2,0851		1	1	Ó	Ó	Ó

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1383	0	0,1	0,1	-0,1	0,1
2		0,1482	0	0,2	0,2	-0,2	0,2
3		0,1987	0	0,3	0,3	-0,3	0,3
4		0,2614	0	0,4	0,4	-0,4	0,4
5		0,2716	0	0,5	0,5	-0,5	0,5
6		0,3533	0	0,6	0,6	-0,6	0,6
7		0,4266	0	0,7	0,7	-0,7	0,7
8		0,4989	0	0,8	0,8	-0,8	0,8
9		0,5616	0	0,9	0,9	-0,9	0,9
10		2,0189	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 284: path:

Abbildung 285: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$] [R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0181		0,1	0	0,1	0,1	-0,1	Ìſ	1		0,0053	0	0,1	0,1	-0,1	0,1
2		0,0221	0,1	0,1	0	0	0		2	$0,\!3588$		0,1	0,1	0	0	0
3		0,0302	0,1	0,2	0,1	-0,1	0,1		3		0,4327	0,1	0,2	0,1	-0,1	0,1
4		0,0548	0,1	0,3	0,2	-0,2	0,2		4	0,6232		0,2	0,2	0	0	0
5		0,0711	0,1	0,4	0,3	-0,3	0,3		5	0,7124		0,3	0,2	0,1	0,1	-0,1
6		0,0711	0,1	0,5	0,4	-0,4	0,4		6		0,7133	0,3	0,3	0	0	0
7	0,0805		0,2	0,5	0,3	-0,3	0,3		7	0,7267		0,4	0,3	0,1	0,1	-0,1
8		0,1005	0,2	0,6	0,4	-0,4	0,4		8	0,9927		0,5	0,3	0,2	0,2	-0,2
9		0,1005	0,2	0,7	0,5	-0,5	0,5		9	1,1217		0,6	0,3	0,3	0,3	-0,3
10		0,1038	0,2	0,8	0,6	-0,6	0,6		10	1,1223		0,7	0,3	0,4	0,4	-0,4
11		0,112	0,2	0,9	0,7	-0,7	0,7		11	1,2428		0,8	0,3	0,5	0,5	-0,5
12	0,1216		0,3	0,9	0,6	-0,6	0,6		12	1,7387		0,9	0,3	0,6	0,6	-0,6
13		0,264	0,3	1	0,7	-0,7	0,7		13	2,9172		1	0,3	0,7	0,7	-0,7
14	0,1627		0,4	1	0,6	-0,6	0,6		14		3,0831	1	0,4	0,6	0,6	-0,6
15	0,1956		0,5	1	0,5	-0,5	0,5		15		3,1413	1	0,5	0,5	0,5	-0,5
16	0,2646		0,6	1	0,4	-0,4	0,4		16		3,3666	1	0,6	0,4	0,4	-0,4
17	0,4174		0,7	1	0,3	-0,3	0,3		17		4,0972	1	0,7	0,3	0,3	-0,3
18	0,475		0,8	1	0,2	-0,2	0,2		18		4,389	1	0,8	0,2	0,2	-0,2
19	0,5029		0,9	1	0,1	-0,1	0,1		19		4,411	1	0,9	0,1	0,1	-0,1
20	0,6673		1	1	0	0	0		20		5,1635	1	1	0	0	0

Abbildung 286: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 2 in der Variante 1000×100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 287: arraylist:

Abbild	บทฐ	288:	object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0146	0	0,1	0,1	-0,1	0,1
2		0,0146	0	0,2	0,2	-0,2	0,2
3		0,0321	0	0,3	0,3	-0,3	0,3
4		0,0438	0	0,4	0,4	-0,4	0,4
5		0,0438	0	0,5	0,5	-0,5	0,5
6		0,0613	0	0,6	0,6	-0,6	0,6
7		0,0729	0	0,7	0,7	-0,7	0,7
8		0,0846	0	0,8	0,8	-0,8	0,8
9		0,0963	0	0,9	0,9	-0,9	0,9
10		0,1021	0	1	1	-1	1
11	0,1553		0,1	1	0,9	-0,9	0,9
12	0,3251		0,2	1	0,8	-0,8	0,8
13	0,5273		0,3	1	0,7	-0,7	0,7
14	0,8023		0,4	1	0,6	-0,6	0,6
15	1,0692		0,5	1	0,5	-0,5	0,5
16	1,3119		0,6	1	0,4	-0,4	0,4
17	1,3604		0,7	1	0,3	-0,3	0,3
18	1,5108		0,8	1	0,2	-0,2	0,2
19	1,9556		0,9	1	0,1	-0,1	0,1
20	2,0851		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0364	0	0,1	0,1	-0,1	0,1
2		0,0954	0	0,2	0,2	-0,2	0,2
3		0,1053	0	0,3	0,3	-0,3	0,3
4		0,4024	0	0,4	0,4	-0,4	0,4
5		0,4211	0	0,5	0,5	-0,5	0,5
6		0,5389	0	0,6	0,6	-0,6	0,6
7		0,7582	0	0,7	0,7	-0,7	0,7
8		1,0105	0	0,8	0,8	-0,8	0,8
9		1,4387	0	0,9	0,9	-0,9	0,9
10		1,719	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 289: path:

Abbildung 290: hash:

	moondang 200. patin								Tibblidding 200. Habii.						
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0	0	0,1	0,1	-0,1	0,1	1		0,0198	0	0,1	0,1	-0,1	0,1
2		0,0082	0	0,2	0,2	-0,2	0,2	2		0,2281	0	0,2	0,2	-0,2	0,2
3		0,0164	0	0,3	0,3	-0,3	0,3	3		0,2302	0	0,3	0,3	-0,3	0,3
4		0,0164	0	0,4	0,4	-0,4	0,4	4	0,3588		0,1	0,3	0,2	-0,2	0,2
5		0,0164	0	0,5	0,5	-0,5	0,5	5		0,5346	0,1	0,4	0,3	-0,3	0,3
6	0,0181		0,1	0,5	0,4	-0,4	0,4	6		0,5944	0,1	0,5	0,4	-0,4	0,4
7		0,0245	0,1	0,6	0,5	-0,5	0,5	7	0,6232		0,2	0,5	0,3	-0,3	0,3
8		0,0327	0,1	0,7	0,6	-0,6	0,6	8		0,7087	0,2	0,6	0,4	-0,4	0,4
9		0,0409	0,1	0,8	0,7	-0,7	0,7	9	0,7124		0,3	0,6	0,3	-0,3	0,3
10		0,0409	0,1	0,9	0,8	-0,8	0,8	10	0,7267		0,4	0,6	0,2	-0,2	0,2
11		0,0654	0,1	1	0,9	-0,9	0,9	11		0,8422	0,4	0,7	0,3	-0,3	0,3
12	0,0805		0,2	1	0,8	-0,8	0,8	12	:	0,8679	0,4	0,8	0,4	-0,4	0,4
13	0,1216		0,3	1	0,7	-0,7	0,7	13	0,9927		0,5	0,8	0,3	-0,3	0,3
14	0,1627		0,4	1	0,6	-0,6	0,6	14	1,1217		0,6	0,8	0,2	-0,2	0,2
15	0,1956		0,5	1	0,5	-0,5	0,5	15	1,1223		0,7	0,8	0,1	-0,1	0,1
16	0,2646		0,6	1	0,4	-0,4	0,4	16	1,2428		0,8	0,8	0	0	0
17	0,4174		0,7	1	0,3	-0,3	0,3	17	1,7387		0,9	0,8	0,1	0,1	-0,1
18	0,475		0,8	1	0,2	-0,2	0,2	18		2,0311	0,9	0,9	0	0	0
19	0,5029		0,9	1	0,1	-0,1	0,1	19		2,1144	0,9	1	0,1	-0,1	0,1
20	0,6673		1	1	0	0	0	20	2,9172		1	1	0	0	0

Abbildung 291: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 2 in der Variante 2000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 292: arraylist:

Abbild	lung	293:	ob:	iect:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0145	0	0,1	0,1	-0,1	0,1
2		0,0203	0	0,2	0,2	-0,2	0,2
3		0,0261	0	0,3	0,3	-0,3	0,3
4		0,0261	0	0,4	0,4	-0,4	0,4
5		0,0435	0	0,5	0,5	-0,5	0,5
6		0,0551	0	0,6	0,6	-0,6	0,6
7		0,0667	0	0,7	0,7	-0,7	0,7
8		0,0784	0	0,8	0,8	-0,8	0,8
9		0,1074	0	0,9	0,9	-0,9	0,9
10	0,1553		0,1	0,9	0,8	-0,8	0,8
11		0,1828	0,1	1	0,9	-0,9	0,9
12	0,3251		0,2	1	0,8	-0,8	0,8
13	0,5273		0,3	1	0,7	-0,7	0,7
14	0,8023		0,4	1	0,6	-0,6	0,6
15	1,0692		0,5	1	0,5	-0,5	0,5
16	1,3119		0,6	1	0,4	-0,4	0,4
17	1,3604		0,7	1	0,3	-0,3	0,3
18	1,5108		0,8	1	0,2	-0,2	0,2
19	1,9556		0,9	1	0,1	-0,1	0,1
20	2,0851		1	1	Ó	0	0

				0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0003	0	0,1	0,1	-0,1	0,1
2		0,0013	0	0,2	0,2	-0,2	0,2
3		0,0979	0	0,3	0,3	-0,3	0,3
4		0,1617	0	0,4	0,4	-0,4	0,4
5		0,2208	0	0,5	0,5	-0,5	0,5
6		0,386	0	0,6	0,6	-0,6	0,6
7		0,4214	0	0,7	0,7	-0,7	0,7
8		0,4727	0	0,8	0,8	-0,8	0,8
9		0,5206	0	0,9	0,9	-0,9	0,9
10		0,5499	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 294: path:

Abbildung 295: hash:

								8 - 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$) [R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0008	0	0,1	0,1	-0,1	0,1	1 [1		0,0057	0	0,1	0,1	-0,1	0,1
2		0,0155	0	0,2	0,2	-0,2	0,2		2		0,0261	0	0,2	0,2	-0,2	0,2
3	0,0181		0,1	0,2	0,1	-0,1	0,1		3		0,0515	0	0,3	0,3	-0,3	0,3
4		0,0237	0,1	0,3	0,2	-0,2	0,2		4		0,0709	0	0,4	0,4	-0,4	0,4
5		0,0237	0,1	0,4	0,3	-0,3	0,3		5		0,0912	0	0,5	0,5	-0,5	0,5
6		0,0335	0,1	0,5	0,4	-0,4	0,4		6		0,1532	0	0,6	0,6	-0,6	0,6
7		0,0498	0,1	0,6	0,5	-0,5	0,5		7		0,1659	0	0,7	0,7	-0,7	0,7
8	0,0805		0,2	0,6	0,4	-0,4	0,4		8		0,1929	0	0,8	0,8	-0,8	0,8
9		0,0825	0,2	0,7	0,5	-0,5	0,5		9		0,2361	0	0,9	0,9	-0,9	0,9
10		0,089	0,2	0,8	0,6	-0,6	0,6		10	0,3588		0,1	0,9	0,8	-0,8	0,8
11	0,1216		0,3	0,8	0,5	-0,5	0,5		11		0,368	0,1	1	0,9	-0,9	0,9
12		0,1478	0,3	0,9	0,6	-0,6	0,6		12	0,6232		0,2	1	0,8	-0,8	0,8
13		0,1626	0,3	1	0,7	-0,7	0,7		13	0,7124		0,3	1	0,7	-0,7	0,7
14	0,1627		0,4	1	0,6	-0,6	0,6		14	0,7267		0,4	1	0,6	-0,6	0,6
15	0,1956		0,5	1	0,5	-0,5	0,5		15	0,9927		0,5	1	0,5	-0,5	0,5
16	0,2646		0,6	1	0,4	-0,4	0,4		16	1,1217		0,6	1	0,4	-0,4	0,4
17	0,4174		0,7	1	0,3	-0,3	0,3		17	1,1223		0,7	1	0,3	-0,3	0,3
18	0,475		0,8	1	0,2	-0,2	0,2		18	1,2428		0,8	1	0,2	-0,2	0,2
19	0,5029		0,9	1	0,1	-0,1	0,1		19	1,7387		0,9	1	0,1	-0,1	0,1
20	0,6673		1	1	0	0	0		20	2,9172		1	1	0	0	0

Abbildung 296: Vergleich von Verfahren 3 in der Variante 20k und Verfahren 2 in der Variante 2000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 297: arraylist:

Abbildung 298: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0029	0	0,1	0,1	-0,1	0,1
2		0,0029	0	0,2	0,2	-0,2	0,2
3		0,0087	0	0,3	0,3	-0,3	0,3
4		0,0087	0	0,4	0,4	-0,4	0,4
5		0,0087	0	0,5	0,5	-0,5	0,5
6		0,0145	0	0,6	0,6	-0,6	0,6
7		0,0203	0	0,7	0,7	-0,7	0,7
8		0,0261	0	0,8	0,8	-0,8	0,8
9		0,0319	0	0,9	0,9	-0,9	0,9
10		0,0377	0	1	1	-1	1
11	0,1553		0,1	1	0,9	-0,9	0,9
12	0,3251		0,2	1	0,8	-0,8	0,8
13	0,5273		0,3	1	0,7	-0,7	0,7
14	0,8023		0,4	1	0,6	-0,6	0,6
15	1,0692		0,5	1	0,5	-0,5	0,5
16	1,3119		0,6	1	0,4	-0,4	0,4
17	1,3604		0,7	1	0,3	-0,3	0,3
18	1,5108		0,8	1	0,2	-0,2	0,2
19	1,9556		0,9	1	0,1	-0,1	0,1
20	2,0851		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0576	0	0,1	0,1	-0,1	0,1
2		0,0625	0	0,2	0,2	-0,2	0,2
3		0,1368	0	0,3	0,3	-0,3	0,3
4		0,1432	0	0,4	0,4	-0,4	0,4
5		0,1514	0	0,5	0,5	-0,5	0,5
6		0,2489	0	0,6	0,6	-0,6	0,6
7		0,2509	0	0,7	0,7	-0,7	0,7
8		0,2745	0	0,8	0,8	-0,8	0,8
9		0,423	0	0,9	0,9	-0,9	0,9
10		0,501	0	1	1	-1	1
11	2,9587		0,1	1	0,9	-0,9	0,9
12	4,2884		0,2	1	0,8	-0,8	0,8
13	4,8997		0,3	1	0,7	-0,7	0,7
14	6,6419		0,4	1	0,6	-0,6	0,6
15	8,0033		0,5	1	0,5	-0,5	0,5
16	9,579		0,6	1	0,4	-0,4	0,4
17	9,6059		0,7	1	0,3	-0,3	0,3
18	11,2353		0,8	1	0,2	-0,2	0,2
19	16,6623		0,9	1	0,1	-0,1	0,1
20	18,0793		1	1	0	0	0

Abbildung 299: path:

Abbildung 300: hash:

	1100maang 200. patin.															
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$] [R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0033	0	0,1	0,1	-0,1	0,1	1	1		0,0099	0	0,1	0,1	-0,1	0,1
2		0,0131	0	0,2	0,2	-0,2	0,2		2		0,0124	0	0,2	0,2	-0,2	0,2
3	0,0181		0,1	0,2	0,1	-0,1	0,1		3		0,0156	0	0,3	0,3	-0,3	0,3
4		0,0212	0,1	0,3	0,2	-0,2	0,2		4		0,0236	0	0,4	0,4	-0,4	0,4
5		0,0212	0,1	0,4	0,3	-0,3	0,3		5		0,0315	0	0,5	0,5	-0,5	0,5
6		0,0278	0,1	0,5	0,4	-0,4	0,4		6		0,0322	0	0,6	0,6	-0,6	0,6
7		0,0359	0,1	0,6	0,5	-0,5	0,5		7		0,0331	0	0,7	0,7	-0,7	0,7
8		0,0359	0,1	0,7	0,6	-0,6	0,6		8		0,0513	0	0,8	0,8	-0,8	0,8
9		0,0376	0,1	0,8	0,7	-0,7	0,7		9		0,0522	0	0,9	0,9	-0,9	0,9
10	0,0805		0,2	0,8	0,6	-0,6	0,6		10		0,0752	0	1	1	-1	1
11		0,0931	0,2	0,9	0,7	-0,7	0,7		11	0,3588		0,1	1	0,9	-0,9	0,9
12		0,1029	0,2	1	0,8	-0,8	0,8		12	0,6232		0,2	1	0,8	-0,8	0,8
13	0,1216		0,3	1	0,7	-0,7	0,7		13	0,7124		0,3	1	0,7	-0,7	0,7
14	0,1627		0,4	1	0,6	-0,6	0,6		14	0,7267		0,4	1	0,6	-0,6	0,6
15	0,1956		0,5	1	0,5	-0,5	0,5		15	0,9927		0,5	1	0,5	-0,5	0,5
16	0,2646		0,6	1	0,4	-0,4	0,4		16	1,1217		0,6	1	0,4	-0,4	0,4
17	0,4174		0,7	1	0,3	-0,3	0,3		17	1,1223		0,7	1	0,3	-0,3	0,3
18	0,475		0,8	1	0,2	-0,2	0,2		18	1,2428		0,8	1	0,2	-0,2	0,2
19	0,5029		0,9	1	0,1	-0,1	0,1		19	1,7387		0,9	1	0,1	-0,1	0,1
20	0,6673		1	1	0	0	0		20	2,9172		1	1	0	0	0

Abbildung 301: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 2 in der Variante 100x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 302: arraylist:

Abbildung 303: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0873		0,1	0	0,1	0,1	-0,1
2	0,0873		0,2	0	0,2	0,2	-0,2
3	0,1594		0,3	0	0,3	0,3	-0,3
4	0,3838		0,4	0	0,4	0,4	-0,4
5		0,4316	0,4	0,1	0,3	0,3	-0,3
6	0,4559		0,5	0,1	0,4	0,4	-0,4
7	0,5921		0,6	0,1	0,5	0,5	-0,5
8		0,7218	0,6	0,2	0,4	0,4	-0,4
9	0,7299		0,7	0,2	0,5	0,5	-0,5
10	0,7379		0,8	0,2	0,6	0,6	-0,6
11		1,0445	0,8	0,3	0,5	0,5	-0,5
12	2,0021		0,9	0,3	0,6	0,6	-0,6
13		2,2029	0,9	0,4	0,5	0,5	-0,5
14	2,3001		1	0,4	0,6	0,6	-0,6
15		2,5706	1	0,5	0,5	0,5	-0,5
16		2,9109	1	0,6	0,4	0,4	-0,4
17		3,4288	1	0,7	0,3	0,3	-0,3
18		4,5246	1	0,8	0,2	0,2	-0,2
19		5,09	1	0,9	0,1	0,1	-0,1
20		7,5568	1	1	0	0	0
		,					

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,6046		0,1	0	0,1	0,1	-0,1
2		0,9556	0,1	0,1	0	0	0
3		1,1108	0,1	0,2	0,1	-0,1	0,1
4		1,3666	0,1	0,3	0,2	-0,2	0,2
5	1,4173		0,2	0,3	0,1	-0,1	0,1
6		1,5126	0,2	0,4	0,2	-0,2	0,2
7		1,9819	0,2	0,5	0,3	-0,3	0,3
8		2,1435	0,2	0,6	0,4	-0,4	0,4
9		2,3884	0,2	0,7	0,5	-0,5	0,5
10	2,4356		0,3	0,7	0,4	-0,4	0,4
11		2,6991	0,3	0,8	0,5	-0,5	0,5
12		2,9393	0,3	0,9	0,6	-0,6	0,6
13	3,7583		0,4	0,9	0,5	-0,5	0,5
14		4,3409	0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 304: path:

Abbildung 305: hash:

 $S_2(x_i)$ - $S_1(x_i)$ 0,1 0

-0,1

0,1 0 -0,1 -0,2 -0,3

-0,2 -0,1 -0,2 -0,3 -0,4 -0,3 -0,3 -0,2 -0,1 0 0,1

						F				110	OII CI	3118	000	. 110011.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	Ī
1		0,0439	0	0,1	0,1	-0,1	0,1	1		0,1915	0	0,1	0,1	-0,1	Ī
2	0,0469		0,1	0,1	0	0	0	2	0,2738		0,1	0,1	0	0	l
3	0,0683		0,2	0,1	0,1	0,1	-0,1	3	0,4727		0,2	0,1	0,1	0,1	l
4	0,1753		0,3	0,1	0,2	0,2	-0,2	4		0,7379	0,2	0,2	0	0	l
5	0,3234		0,4	0,1	0,3	0,3	-0,3	5		0,7455	0,2	0,3	0,1	-0,1	l
6	0,3728		0,5	0,1	0,4	0,4	-0,4	6	0,8553		0,3	0,3	0	0	l
7	0,4419		0,6	0,1	0,5	0,5	-0,5	7	0,9209		0,4	0,3	0,1	0,1	l
8	0,5044		0,7	0,1	0,6	0,6	-0,6	8	1,3098		0,5	0,3	0,2	0,2	l
9	0,5818		0,8	0,1	0,7	0,7	-0,7	9	1,9173		0,6	0,3	0,3	0,3	l
10	0,6279		0,9	0,1	0,8	0,8	-0,8	10		2,4281	0,6	0,4	0,2	0,2	l
11	1,0015		1	0,1	0,9	0,9	-0,9	11		2,6281	0,6	0,5	0,1	0,1	l
12		1,708	1	0,2	0,8	0,8	-0,8	12	3,1026		0,7	0,5	0,2	0,2	l
13		6,3083	1	0,3	0,7	0,7	-0,7	13	3,1432		0,8	0,5	0,3	0,3	l
14		7,2778	1	0,4	0,6	0,6	-0,6	14	3,1667		0,9	0,5	0,4	0,4	l
15		7,3734	1	0,5	0,5	0,5	-0,5	15		3,2826	0,9	0,6	0,3	0,3	ĺ
16		9,6157	1	0,6	0,4	0,4	-0,4	16		4,8323	0,9	0,7	0,2	0,2	ĺ
17		10,307	1	0,7	0,3	0,3	-0,3	17		6,0485	0,9	0,8	0,1	0,1	ĺ
18		11,3894	1	0,8	0,2	0,2	-0,2	18		9,023	0,9	0,9	0	0	ĺ
19		20,0709	1	0,9	0,1	0,1	-0,1	19		12,0468	0,9	1	0,1	-0,1	ĺ
20		32,0877	1	1	0	0	0	20	14,6149		1	1	0	0	L

Abbildung 306: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 2 in der Variante 100×100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 307: arraylist:

Abbildu	mg 308:	object:

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1	0,0873		0,1	0	0,1	0,1	-0,1
2	0,0873		0,2	0	0,2	0,2	-0,2
3	0,1594		0,3	0	0,3	0,3	-0,3
4		0,2758	0,3	0,1	0,2	0,2	-0,2
5		0,2784	0,3	0,2	0,1	0,1	-0,1
6	0,3838		0,4	0,2	0,2	0,2	-0,2
7	0,4559		0,5	0,2	0,3	0,3	-0,3
8	0,5921		0,6	0,2	0,4	0,4	-0,4
9		0,6216	0,6	0,3	0,3	0,3	-0,3
10	0,7299		0,7	0,3	0,4	0,4	-0,4
11	0,7379		0,8	0,3	0,5	0,5	-0,5
12		1,1185	0,8	0,4	0,4	0,4	-0,4
13		1,3634	0,8	0,5	0,3	0,3	-0,3
14		1,5434	0,8	0,6	0,2	0,2	-0,2
15		1,9643	0,8	0,7	0,1	0,1	-0,1
16	2,0021		0,9	0,7	0,2	0,2	-0,2
17	2,3001		1	0,7	0,3	0,3	-0,3
18		2,4039	1	0,8	0,2	0,2	-0,2
19		2,953	1	0,9	0,1	0,1	-0,1
20		3,1467	1	1	0	0	0
19		2,953	1	0,9	0,1	0,1	-0,1

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1548	0	0,1	0,1	-0,1	0,1
2		0,4486	0	0,2	0,2	-0,2	0,2
3		0,506	0	0,3	0,3	-0,3	0,3
4	0,6046		0,1	0,3	0,2	-0,2	0,2
5		0,6527	0,1	0,4	0,3	-0,3	0,3
6		0,7785	0,1	0,5	0,4	-0,4	0,4
7		1,0283	0,1	0,6	0,5	-0,5	0,5
8		1,0975	0,1	0,7	0,6	-0,6	0,6
9		1,3312	0,1	0,8	0,7	-0,7	0,7
10	1,4173		0,2	0,8	0,6	-0,6	0,6
11		1,727	0,2	0,9	0,7	-0,7	0,7
12	2,4356		0,3	0,9	0,6	-0,6	0,6
13		2,8055	0,3	1	0,7	-0,7	0,7
14	3,7583		0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 309: path:

Abbildung 310: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	.5
1		0,0074	0	0,1	0,1	-0,1	0,1	1		0,1115	0	Г
2	0,0469		0,1	0,1	0	0	0		0,2738		0,1	
3	0,0683		0,2	0,1	0,1	0,1	-0,1	3		0,4062	0,1	
4	0,1753		0,3	0,1	0,2	0,2	-0,2	4	0,4727		0,2	İ
5	0,3234		0,4	0,1	0,3	0,3	-0,3	5	0,8553		0,3	İ
6	0,3728		0,5	0,1	0,4	0,4	-0,4	6		0,9095	0,3	İ
7	0,4419		0,6	0,1	0,5	0,5	-0,5	7	0,9209		0,4	
8	0,5044		0,7	0,1	0,6	0,6	-0,6	8	1,3098		0,5	
9	0,5818		0,8	0,1	0,7	0,7	-0,7	9		1,4504	0,5	
10	0,6279		0,9	0,1	0,8	0,8	-0,8	10		1,6892	0,5	İ
11		0,7985	0,9	0,2	0,7	0,7	-0,7	11	1,9173		0,6	
12	1,0015		1	0,2	0,8	0,8	-0,8	12		2,3684	0,6	
13		1,6312	1	0,3	0,7	0,7	-0,7	13		2,4997	0,6	İ
14		2,7785	1	0,4	0,6	0,6	-0,6	14		2,6129	0,6	İ
15		2,8008	1	0,5	0,5	0,5	-0,5	15		2,9395	0,6	İ
16		3,4438	1	0,6	0,4	0,4	-0,4	16	3,1026		0,7	
17		4,6004	1	0,7	0,3	0,3	-0,3	17	3,1432		0,8	İ
18		6,8821	1	0,8	0,2	0,2	-0,2	18	3,1667		0,9	
19		7,3354	1	0,9	0,1	0,1	-0,1	19		7,0872	0,9	
20		8,5882	1	1	0	0	0	20	14,6149		1	

				. 0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,1115	0	0,1	0,1	-0,1	0,1
2	0,2738		0,1	0,1	0	0	0
3		0,4062	0,1	0,2	0,1	-0,1	0,1
4	0,4727		0,2	0,2	0	0	0
5	0,8553		0,3	0,2	0,1	0,1	-0,1
6		0,9095	0,3	0,3	0	0	0
7	0,9209		0,4	0,3	0,1	0,1	-0,1
8	1,3098		0,5	0,3	0,2	0,2	-0,2
9		1,4504	0,5	0,4	0,1	0,1	-0,1
10		1,6892	0,5	0,5	0	0	0
11	1,9173		0,6	0,5	0,1	0,1	-0,1
12		2,3684	0,6	0,6	0	0	0
13		2,4997	0,6	0,7	0,1	-0,1	0,1
14		2,6129	0,6	0,8	0,2	-0,2	0,2
15		2,9395	0,6	0,9	0,3	-0,3	0,3
16	3,1026		0,7	0,9	0,2	-0,2	0,2
17	3,1432		0,8	0,9	0,1	-0,1	0,1
18	3,1667		0,9	0,9	0	0	0
19		7,0872	0,9	1	0,1	-0,1	0,1
20	14,6149		1	1	0	0	0

Abbildung 311: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 2 in der Variante 1000×10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 312: arraylist:

Abbildung 313: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0222	0	0,1	0,1	-0,1	0,1
2		0,0513	0	0,2	0,2	-0,2	0,2
3		0,0712	0	0,3	0,3	-0,3	0,3
4	0,0873		0,1	0,3	0,2	-0,2	0,2
5	0,0873		0,2	0,3	0,1	-0,1	0,1
6		0,0886	0,2	0,4	0,2	-0,2	0,2
7		0,1236	0,2	0,5	0,3	-0,3	0,3
8	0,1594		0,3	0,5	0,2	-0,2	0,2
9		0,1645	0,3	0,6	0,3	-0,3	0,3
10		0,1971	0,3	0,7	0,4	-0,4	0,4
11		0,2088	0,3	0,8	0,5	-0,5	0,5
12		0,2729	0,3	0,9	0,6	-0,6	0,6
13		0,3044	0,3	1	0,7	-0,7	0,7
14	0,3838		0,4	1	0,6	-0,6	0,6
15	0,4559		0,5	1	0,5	-0,5	0,5
16	0,5921		0,6	1	0,4	-0,4	0,4
17	0,7299		0,7	1	0,3	-0,3	0,3
18	0,7379		0,8	1	0,2	-0,2	0,2
19	2,0021		0,9	1	0,1	-0,1	0,1
20	2,3001		1	1	0	0	0

				0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1383	0	0,1	0,1	-0,1	0,1
2		0,1482	0	0,2	0,2	-0,2	0,2
3		0,1987	0	0,3	0,3	-0,3	0,3
4		0,2614	0	0,4	0,4	-0,4	0,4
5		0,2716	0	0,5	0,5	-0,5	0,5
6		0,3533	0	0,6	0,6	-0,6	0,6
7		0,4266	0	0,7	0,7	-0,7	0,7
8		0,4989	0	0,8	0,8	-0,8	0,8
9		0,5616	0	0,9	0,9	-0,9	0,9
10	0,6046		0,1	0,9	0,8	-0,8	0,8
11	1,4173		0,2	0,9	0,7	-0,7	0,7
12		2,0189	0,2	1	0,8	-0,8	0,8
13	2,4356		0,3	1	0,7	-0,7	0,7
14	3,7583		0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 314: path:

Abbildung 315: hash:

						r. patir.				110	biid	ung	OIC). IIasii.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0221	0	0,1	0,1	-0,1	0,1	1		0,0053	0	0,1	0,1	-0,1	0,1
2		0,0302	0	0,2	0,2	-0,2	0,2	2	0,2738		0,1	0,1	0	0	0
3	0,0469		0,1	0,2	0,1	-0,1	0,1	3		0,4327	0,1	0,2	0,1	-0,1	0,1
4		0,0548	0,1	0,3	0,2	-0,2	0,2	4	0,4727		0,2	0,2	0	0	0
5	0,0683		0,2	0,3	0,1	-0,1	0,1	5		0,7133	0,2	0,3	0,1	-0,1	0,1
6		0,0711	0,2	0,4	0,2	-0,2	0,2	6	0,8553		0,3	0,3	0	0	0
7		0,0711	0,2	0,5	0,3	-0,3	0,3	7	0,9209		0,4	0,3	0,1	0,1	-0,1
8		0,1005	0,2	0,6	0,4	-0,4	0,4	8	1,3098		0,5	0,3	0,2	0,2	-0,2
9		0,1005	0,2	0,7	0,5	-0,5	0,5	9	1,9173		0,6	0,3	0,3	0,3	-0,3
10		0,1038	0,2	0,8	0,6	-0,6	0,6	10		3,0831	0,6	0,4	0,2	0,2	-0,2
11		0,112	0,2	0,9	0,7	-0,7	0,7	11	3,1026		0,7	0,4	0,3	0,3	-0,3
12	0,1753		0,3	0,9	0,6	-0,6	0,6	12		3,1413	0,7	0,5	0,2	0,2	-0,2
13		0,264	0,3	1	0,7	-0,7	0,7	13	3,1432		0,8	0,5	0,3	0,3	-0,3
14	0,3234		0,4	1	0,6	-0,6	0,6	14	3,1667		0,9	0,5	0,4	0,4	-0,4
15	0,3728		0,5	1	0,5	-0,5	0,5	15		3,3666	0,9	0,6	0,3	0,3	-0,3
16	0,4419		0,6	1	0,4	-0,4	0,4	16		4,0972	0,9	0,7	0,2	0,2	-0,2
17	0,5044		0,7	1	0,3	-0,3	0,3	17		4,389	0,9	0,8	0,1	0,1	-0,1
18	0,5818		0,8	1	0,2	-0,2	0,2	18		4,411	0,9	0,9	0	0	0
19	0,6279		0,9	1	0,1	-0,1	0,1	19		5,1635	0,9	1	0,1	-0,1	0,1
20	1,0015		1	1	0	0	0	20	14,6149		1	1	0	0	0

Abbildung 316: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 2 in der Variante 1000×100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 317: arraylist:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	
1		0,0146	0	0,1	0,1	-0,1	0,1	
2		0,0146	0	0,2	0,2	-0,2	0,2	
3		0,0321	0	0,3	0,3	-0,3	0,3	
4		0,0438	0	0,4	0,4	-0,4	0,4	
5		0,0438	0	0,5	0,5	-0,5	0,5	
6		0,0613	0	0,6	0,6	-0,6	0,6	
7		0,0729	0	0,7	0,7	-0,7	0,7	
8		0,0846	0	0,8	0,8	-0,8	0,8	
9	0,0873		0,1	0,8	0,7	-0,7	0,7	
10	0,0873		0,2	0,8	0,6	-0,6	0,6	
11		0,0963	0,2	0,9	0,7	-0,7	0,7	
12		0,1021	0,2	1	0,8	-0,8	0,8	
13	0,1594		0,3	1	0,7	-0,7	0,7	
14	0,3838		0,4	1	0,6	-0,6	0,6	
15	0,4559		0,5	1	0,5	-0,5	0,5	
16	0,5921		0,6	1	0,4	-0,4	0,4	
17	0,7299		0,7	1	0,3	-0,3	0,3	
18	0,7379		0,8	1	0,2	-0,2	0,2	
19	2,0021		0,9	1	0,1	-0,1	0,1	
20	2,3001		1	1	0	0	0	

						. object.	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0364	0	0,1	0,1	-0,1	0,1
2		0,0954	0	0,2	0,2	-0,2	0,2
3		0,1053	0	0,3	0,3	-0,3	0,3
4		0,4024	0	0,4	0,4	-0,4	0,4
5		0,4211	0	0,5	0,5	-0,5	0,5
6		0,5389	0	0,6	0,6	-0,6	0,6
7	0,6046		0,1	0,6	0,5	-0,5	0,5
8		0,7582	0,1	0,7	0,6	-0,6	0,6
9		1,0105	0,1	0,8	0,7	-0,7	0,7
10	1,4173		0,2	0,8	0,6	-0,6	0,6
11		1,4387	0,2	0,9	0,7	-0,7	0,7
12		1,719	0,2	1	0,8	-0,8	0,8
13	2,4356		0,3	1	0,7	-0,7	0,7
14	3,7583		0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 319: path:

Abbildung 320: hash:

_ D			- 0	- 0	D	0 () 0 ()	0 () 0 ()	١							
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0	0	0,1	0,1	-0,1	0,1	1		0,0198	0	0,1	0,1	-0,1	0,1
2		0,0082	0	0,2	0,2	-0,2	0,2	2		0,2281	0	0,2	0,2	-0,2	0,2
3		0,0164	0	0,3	0,3	-0,3	0,3	3		0,2302	0	0,3	0,3	-0,3	0,3
4		0,0164	0	0,4	0,4	-0,4	0,4	4	0,2738		0,1	0,3	0,2	-0,2	0,2
5		0,0164	0	0,5	0,5	-0,5	0,5	5	0,4727		0,2	0,3	0,1	-0,1	0,1
6		0,0245	0	0,6	0,6	-0,6	0,6	6		0,5346	0,2	0,4	0,2	-0,2	0,2
7		0,0327	0	0,7	0,7	-0,7	0,7	7		0,5944	0,2	0,5	0,3	-0,3	0,3
8		0,0409	0	0,8	0,8	-0,8	0,8	8		0,7087	0,2	0,6	0,4	-0,4	0,4
9		0,0409	0	0,9	0,9	-0,9	0,9	9		0,8422	0,2	0,7	0,5	-0,5	0,5
10	0,0469		0,1	0,9	0,8	-0,8	0,8	10	0,8553		0,3	0,7	0,4	-0,4	0,4
11		0,0654	0,1	1	0,9	-0,9	0,9	11		0,8679	0,3	0,8	0,5	-0,5	0,5
12	0,0683		0,2	1	0,8	-0,8	0,8	12	0,9209		0,4	0,8	0,4	-0,4	0,4
13	0,1753		0,3	1	0,7	-0,7	0,7	13	1,3098		0,5	0,8	0,3	-0,3	0,3
14	0,3234		0,4	1	0,6	-0,6	0,6	14	1,9173		0,6	0,8	0,2	-0,2	0,2
15	0,3728		0,5	1	0,5	-0,5	0,5	15		2,0311	0,6	0,9	0,3	-0,3	0,3
16	0,4419		0,6	1	0,4	-0,4	0,4	16		2,1144	0,6	1	0,4	-0,4	0,4
17	0,5044		0,7	1	0,3	-0,3	0,3	17	3,1026		0,7	1	0,3	-0,3	0,3
18	0,5818		0,8	1	0,2	-0,2	0,2	18	3,1432		0,8	1	0,2	-0,2	0,2
19	0,6279		0,9	1	0,1	-0,1	0,1	19	3,1667		0,9	1	0,1	-0,1	0,1
20	1,0015		1	1	Ó	o o	Ó	20	14,6149		1	1	0	0	0

Abbildung 321: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 2 in der Variante 2000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 322: arraylist:

Abbildung 323: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0145	0	0,1	0,1	-0,1	0,1
2		0,0203	0	0,2	0,2	-0,2	0,2
3		0,0261	0	0,3	0,3	-0,3	0,3
4		0,0261	0	0,4	0,4	-0,4	0,4
5		0,0435	0	0,5	0,5	-0,5	0,5
6		0,0551	0	0,6	0,6	-0,6	0,6
7		0,0667	0	0,7	0,7	-0,7	0,7
8		0,0784	0	0,8	0,8	-0,8	0,8
9	0,0873		0,1	0,8	0,7	-0,7	0,7
10	0,0873		0,2	0,8	0,6	-0,6	0,6
11		0,1074	0,2	0,9	0,7	-0,7	0,7
12	0,1594		0,3	0,9	0,6	-0,6	0,6
13		0,1828	0,3	1	0,7	-0,7	0,7
14	0,3838		0,4	1	0,6	-0,6	0,6
15	0,4559		0,5	1	0,5	-0,5	0,5
16	0,5921		0,6	1	0,4	-0,4	0,4
17	0,7299		0,7	1	0,3	-0,3	0,3
18	0,7379		0,8	1	0,2	-0,2	0,2
19	2,0021		0,9	1	0,1	-0,1	0,1
20	2,3001		1	1	0	0	0

				0		J	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0003	0	0,1	0,1	-0,1	0,1
2		0,0013	0	0,2	0,2	-0,2	0,2
3		0,0979	0	0,3	0,3	-0,3	0,3
4		0,1617	0	0,4	0,4	-0,4	0,4
5		0,2208	0	0,5	0,5	-0,5	0,5
6		0,386	0	0,6	0,6	-0,6	0,6
7		0,4214	0	0,7	0,7	-0,7	0,7
8		0,4727	0	0,8	0,8	-0,8	0,8
9		0,5206	0	0,9	0,9	-0,9	0,9
10		0,5499	0	1	1	-1	1
11	0,6046		0,1	1	0,9	-0,9	0,9
12	1,4173		0,2	1	0,8	-0,8	0,8
13	2,4356		0,3	1	0,7	-0,7	0,7
14	3,7583		0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 324: path:

Abbildung 325: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R	i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0008	0	0,1	0,1	-0,1	0,1	1			0,0057	0	0,1	0,1	-0,1	0,1
2		0,0155	0	0,2	0,2	-0,2	0,2	2	:		0,0261	0	0,2	0,2	-0,2	0,2
3		0,0237	0	0,3	0,3	-0,3	0,3	3	:		0,0515	0	0,3	0,3	-0,3	0,3
4		0,0237	0	0,4	0,4	-0,4	0,4	4			0,0709	0	0,4	0,4	-0,4	0,4
5		0,0335	0	0,5	0,5	-0,5	0,5	5			0,0912	0	0,5	0,5	-0,5	0,5
6	0,0469		0,1	0,5	0,4	-0,4	0,4	6	;		0,1532	0	0,6	0,6	-0,6	0,6
7		0,0498	0,1	0,6	0,5	-0,5	0,5	7	٠		0,1659	0	0,7	0,7	-0,7	0,7
8	0,0683		0,2	0,6	0,4	-0,4	0,4	8	;		0,1929	0	0,8	0,8	-0,8	0,8
9		0,0825	0,2	0,7	0,5	-0,5	0,5	9	1		0,2361	0	0,9	0,9	-0,9	0,9
10		0,089	0,2	0,8	0,6	-0,6	0,6	1	0	0,2738		0,1	0,9	0,8	-0,8	0,8
11		0,1478	0,2	0,9	0,7	-0,7	0,7	1	1		0,368	0,1	1	0,9	-0,9	0,9
12		0,1626	0,2	1	0,8	-0,8	0,8	13	2	0,4727		0,2	1	0,8	-0,8	0,8
13	0,1753		0,3	1	0,7	-0,7	0,7	13	3	0,8553		0,3	1	0,7	-0,7	0,7
14	0,3234		0,4	1	0,6	-0,6	0,6	1.	4	0,9209		0,4	1	0,6	-0,6	0,6
15	0,3728		0,5	1	0,5	-0,5	0,5	1.	5	1,3098		0,5	1	0,5	-0,5	0,5
16	0,4419		0,6	1	0,4	-0,4	0,4	10	6	1,9173		0,6	1	0,4	-0,4	0,4
17	0,5044		0,7	1	0,3	-0,3	0,3	1	7	3,1026		0,7	1	0,3	-0,3	0,3
18	0,5818		0,8	1	0,2	-0,2	0,2	13	8	3,1432		0,8	1	0,2	-0,2	0,2
19	0,6279		0,9	1	0,1	-0,1	0,1	1	9	3,1667		0,9	1	0,1	-0,1	0,1
20	1,0015		1	1	0	0	0	20	0	14,6149		1	1	0	0	0

Abbildung 326: Vergleich von Verfahren 3 in der Variante 50k und Verfahren 2 in der Variante 2000×100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 327: arraylist:

Abbildung 328: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1	1	0.0029	0	0,1	0.1	-0,1	0,1
2		0.0029	0	0,1	0,2	-0,2	0,2
3		0.0087	0	0,3	0.3	-0,3	0,3
4		0.0087	0	0,4	0,4	-0,4	0,4
5		0.0087	ő	0,5	0,5	-0,5	0,5
6		0.0145	0	0,6	0.6	-0,6	0,6
7		0,0203	ő	0,7	0,7	-0,7	0,7
8		0.0261	0	0,8	0.8	-0,8	0,8
9		0.0319	0	0,9	0,9	-0,9	0,9
10		0.0377	0	1	1	-1	1
11	0,0873	.,	0,1	1	0.9	-0,9	0,9
12	0.0873		0,2	1	0.8	-0,8	0,8
13	0.1594		0,3	1	0.7	-0,7	0,7
14	0,3838		0,4	1	0,6	-0,6	0,6
15	0.4559		0,5	1	0.5	-0,5	0,5
16	0.5921		0,6	1	0,4	-0,4	0,4
17	0,7299		0.7	1	0.3	-0,3	0,3
18	0.7379		0,8	1	0,2	-0,2	0,2
19	2,0021		0,9	1	0,1	-0,1	0,1
20	2,3001		1	1	Ó	0	0

				_		9	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0576	0	0,1	0,1	-0,1	0,1
2		0,0625	0	0,2	0,2	-0,2	0,2
3		0,1368	0	0,3	0,3	-0,3	0,3
4		0,1432	0	0,4	0,4	-0,4	0,4
5		0,1514	0	0,5	0,5	-0,5	0,5
6		0,2489	0	0,6	0,6	-0,6	0,6
7		0,2509	0	0,7	0,7	-0,7	0,7
8		0,2745	0	0,8	0,8	-0,8	0,8
9		0,423	0	0,9	0,9	-0,9	0,9
10		0,501	0	1	1	-1	1
11	0,6046		0,1	1	0,9	-0,9	0,9
12	1,4173		0,2	1	0,8	-0,8	0,8
13	2,4356		0,3	1	0,7	-0,7	0,7
14	3,7583		0,4	1	0,6	-0,6	0,6
15	4,3799		0,5	1	0,5	-0,5	0,5
16	6,3967		0,6	1	0,4	-0,4	0,4
17	8,7918		0,7	1	0,3	-0,3	0,3
18	9,0212		0,8	1	0,2	-0,2	0,2
19	15,1119		0,9	1	0,1	-0,1	0,1
20	34,2525		1	1	0	0	0

Abbildung 329: path:

Abbildung 330: hash:

	Tibblidaing 020. patin.								Abblidding 550. masii.						
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0033	0	0,1	0,1	-0,1	0,1	1		0,0099	0	0,1	0,1	-0,1	0,1
2		0,0131	0	0,2	0,2	-0,2	0,2	2		0,0124	0	0,2	0,2	-0,2	0,2
3		0,0212	0	0,3	0,3	-0,3	0,3	3		0,0156	0	0,3	0,3	-0,3	0,3
4		0,0212	0	0,4	0,4	-0,4	0,4	4		0,0236	0	0,4	0,4	-0,4	0,4
5		0,0278	0	0,5	0,5	-0,5	0,5	5		0,0315	0	0,5	0,5	-0,5	0,5
6		0,0359	0	0,6	0,6	-0,6	0,6	6		0,0322	0	0,6	0,6	-0,6	0,6
7		0,0359	0	0,7	0,7	-0,7	0,7	7		0,0331	0	0,7	0,7	-0,7	0,7
8		0,0376	0	0,8	0,8	-0,8	0,8	8		0,0513	0	0,8	0,8	-0,8	0,8
9	0,0469		0,1	0,8	0,7	-0,7	0,7	9		0,0522	0	0,9	0,9	-0,9	0,9
10	0,0683		0,2	0,8	0,6	-0,6	0,6	10		0,0752	0	1	1	-1	1
11		0,0931	0,2	0,9	0,7	-0,7	0,7	11	0,2738		0,1	1	0,9	-0,9	0,9
12		0,1029	0,2	1	0,8	-0,8	0,8	12	0,4727		0,2	1	0,8	-0,8	0,8
13	0,1753		0,3	1	0,7	-0,7	0,7	13	0,8553		0,3	1	0,7	-0,7	0,7
14	0,3234		0,4	1	0,6	-0,6	0,6	14	0,9209		0,4	1	0,6	-0,6	0,6
15	0,3728		0,5	1	0,5	-0,5	0,5	15	1,3098		0,5	1	0,5	-0,5	0,5
16	0,4419		0,6	1	0,4	-0,4	0,4	16	1,9173		0,6	1	0,4	-0,4	0,4
17	0,5044		0,7	1	0,3	-0,3	0,3	17	3,1026		0,7	1	0,3	-0,3	0,3
18	0,5818		0,8	1	0,2	-0,2	0,2	18	3,1432		0,8	1	0,2	-0,2	0,2
19	0,6279		0,9	1	0,1	-0,1	0,1	19	3,1667		0,9	1	0,1	-0,1	0,1
20	1,0015		1	1	0	0	0	20	14,6149		1	1	0	0	0

Abbildung 331: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 2 in der Variante 100x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 332: arraylist:

Abbildung 333: object:

				_				
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i
1		0,4316	0	0,1	0,1	-0,1	0,1	1
2		0,7218	0	0,2	0,2	-0,2	0,2	2
3		1,0445	0	0,3	0,3	-0,3	0,3	3
4		2,2029	0	0,4	0,4	-0,4	0,4	4
5		2,5706	0	0,5	0,5	-0,5	0,5	5
6		2,9109	0	0,6	0,6	-0,6	0,6	6
7		3,4288	0	0,7	0,7	-0,7	0,7	7
8		4,5246	0	0,8	0,8	-0,8	0,8	8
9		5,09	0	0,9	0,9	-0,9	0,9	9
10		7,5568	0	1	1	-1	1	10
11	14,3329		0,1	1	0,9	-0,9	0,9	11
12	16,8965		0,2	1	0,8	-0,8	0,8	12
13	17,0842		0,3	1	0,7	-0,7	0,7	13
14	17,2396		0,4	1	0,6	-0,6	0,6	14
15	17,4144		0,5	1	0,5	-0,5	0,5	15
16	17,5309		0,6	1	0,4	-0,4	0,4	16
17	17,628		0,7	1	0,3	-0,3	0,3	17
18	17,8611		0,8	1	0,2	-0,2	0,2	18
19	18,0618		0,9	1	0,1	-0,1	0,1	19
20	18,4761		1	1	0	0	0	20

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,9556	0	0,1	0,1	-0,1	0,1
2		1,1108	0	0,2	0,2	-0,2	0,2
3	1,1489		0,1	0,2	0,1	-0,1	0,1
4		1,3666	0,1	0,3	0,2	-0,2	0,2
5		1,5126	0,1	0,4	0,3	-0,3	0,3
6		1,9819	0,1	0,5	0,4	-0,4	0,4
7	2,101		0,2	0,5	0,3	-0,3	0,3
8		2,1435	0,2	0,6	0,4	-0,4	0,4
9		2,3884	0,2	0,7	0,5	-0,5	0,5
10	2,4108		0,3	0,7	0,4	-0,4	0,4
11		2,6991	0,3	0,8	0,5	-0,5	0,5
12		2,9393	0,3	0,9	0,6	-0,6	0,6
13	3,2904		0,4	0,9	0,5	-0,5	0,5
14	4,137		0,5	0,9	0,4	-0,4	0,4
15		4,3409	0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 334: path:

													. 0
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$] [R_i	x_1	x_2	S_1x_i	S_2x_i
1		0,0439	0	0,1	0,1	-0,1	0,1	lÌ	1		0,1915	0	0,1
2	0,1098		0,1	0,1	0	0	0		2		0,7379	0	0,2
3	0,3228		0,2	0,1	0,1	0,1	-0,1		3		0,7455	0	0,3
4	0,4866		0,3	0,1	0,2	0,2	-0,2	H	4		2,4281	0	0,4
5	0,6751		0,4	0,1	0,3	0,3	-0,3	Ιİ	5		2,6281	0	0,5
6	0,757		0,5	0,1	0,4	0,4	-0,4	Ιİ	6	3,1312		0,1	0,5
7	0,9044		0,6	0,1	0,5	0,5	-0,5	Ιİ	7		3,2826	0,1	0,6
8	0,9208		0,7	0,1	0,6	0,6	-0,6	H	8	3,2936		0,2	0,6
9	1,1912		0,8	0,1	0,7	0,7	-0,7	H	9	3,8651		0,3	0,6
10	1,2076		0,9	0,1	0,8	0,8	-0,8	П	10	3,9293		0,4	0,6
11		1,708	0,9	0,2	0,7	0,7	-0,7		11	4,3284		0,5	0,6
12		6,3083	0,9	0,3	0,6	0,6	-0,6		12	4,3384		0,6	0,6
13	6,5752		1	0,3	0,7	0,7	-0,7		13	4,4186		0,7	0,6
14		7,2778	1	0,4	0,6	0,6	-0,6		14	4,5469		0,8	0,6
15		7,3734	1	0,5	0,5	0,5	-0,5		15		4,8323	0,8	0,7
16		9,6157	1	0,6	0,4	0,4	-0,4		16	4,9901		0,9	0,7
17		10,307	1	0,7	0,3	0,3	-0,3		17		6,0485	0,9	0,8
18		11,3894	1	0,8	0,2	0,2	-0,2		18		9,023	0,9	0,9
19		20,0709	1	0,9	0,1	0,1	-0,1		19		12,0468	0,9	1
20		32,0877	1	1	0	0	0		20	36,8416		1	1

Abbildung 336: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 2 in der Variante 100x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 337: arraylist:

Abbildung 338: object:

_								_	_	
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	L	R_i	x_1
1		0,2758	0	0,1	0,1	-0,1	0,1		1	
2		0,2784	0	0,2	0,2	-0,2	0,2		2	
3		0,6216	0	0,3	0,3	-0,3	0,3		3	
4		1,1185	0	0,4	0,4	-0,4	0,4		4	
5		1,3634	0	0,5	0,5	-0,5	0,5		5	
6		1,5434	0	0,6	0,6	-0,6	0,6		6	
7		1,9643	0	0,7	0,7	-0,7	0,7		7	
8		2,4039	0	0,8	0,8	-0,8	0,8		8	1,148
9		2,953	0	0,9	0,9	-0,9	0,9		9	
10		3,1467	0	1	1	-1	1		10	
11	14,3329		0,1	1	0,9	-0,9	0,9		11	2,101
12	16,8965		0,2	1	0,8	-0,8	0,8		12	2,410
13	17,0842		0,3	1	0,7	-0,7	0,7		13	
14	17,2396		0,4	1	0,6	-0,6	0,6		14	3,290
15	17,4144		0,5	1	0,5	-0,5	0,5		15	4,137
16	17,5309		0,6	1	0,4	-0,4	0,4		16	4,423
17	17,628		0,7	1	0,3	-0,3	0,3		17	5,792
18	17,8611		0,8	1	0,2	-0,2	0,2		18	7,106
19	18,0618		0,9	1	0,1	-0,1	0,1		19	8,467
20	18,4761		1	1	Ó	o o	Ó		20	12,733

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1548	0	0,1	0,1	-0,1	0,1
2		0,4486	0	0,2	0,2	-0,2	0,2
3		0,506	0	0,3	0,3	-0,3	0,3
4		0,6527	0	0,4	0,4	-0,4	0,4
5		0,7785	0	0,5	0,5	-0,5	0,5
6		1,0283	0	0,6	0,6	-0,6	0,6
7		1,0975	0	0,7	0,7	-0,7	0,7
8	1,1489		0,1	0,7	0,6	-0,6	0,6
9		1,3312	0,1	0,8	0,7	-0,7	0,7
10		1,727	0,1	0,9	0,8	-0,8	0,8
11	2,101		0,2	0,9	0,7	-0,7	0,7
12	2,4108		0,3	0,9	0,6	-0,6	0,6
13		2,8055	0,3	1	0,7	-0,7	0,7
14	3,2904		0,4	1	0,6	-0,6	0,6
15	4,137		0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 339: path:

Abbildung 340: hash:

						*									
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0074	0	0,1	0,1	-0,1	0,1	1		0,1115	0	0,1	0,1	-0,1	0,1
2	0,1098		0,1	0,1	0	0	0	2		0,4062	0	0,2	0,2	-0,2	0,2
3	0,3228		0,2	0,1	0,1	0,1	-0,1	3		0,9095	0	0,3	0,3	-0,3	0,3
4	0,4866		0,3	0,1	0,2	0,2	-0,2	4		1,4504	0	0,4	0,4	-0,4	0,4
5	0,6751		0,4	0,1	0,3	0,3	-0,3	5		1,6892	0	0,5	0,5	-0,5	0,5
6	0,757		0,5	0,1	0,4	0,4	-0,4	6		2,3684	0	0,6	0,6	-0,6	0,6
7		0,7985	0,5	0,2	0,3	0,3	-0,3	7		2,4997	0	0,7	0,7	-0,7	0,7
8	0,9044		0,6	0,2	0,4	0,4	-0,4	8		2,6129	0	0,8	0,8	-0,8	0,8
9	0,9208		0,7	0,2	0,5	0,5	-0,5	9		2,9395	0	0,9	0,9	-0,9	0,9
10	1,1912		0,8	0,2	0,6	0,6	-0,6	10	3,1312		0,1	0,9	0,8	-0,8	0,8
11	1,2076		0,9	0,2	0,7	0,7	-0,7	11	3,2936		0,2	0,9	0,7	-0,7	0,7
12		1,6312	0,9	0,3	0,6	0,6	-0,6	12	3,8651		0,3	0,9	0,6	-0,6	0,6
13		2,7785	0,9	0,4	0,5	0,5	-0,5	13	3,9293		0,4	0,9	0,5	-0,5	0,5
14		2,8008	0,9	0,5	0,4	0,4	-0,4	14	4,3284		0,5	0,9	0,4	-0,4	0,4
15		3,4438	0,9	0,6	0,3	0,3	-0,3	15	4,3384		0,6	0,9	0,3	-0,3	0,3
16		4,6004	0,9	0,7	0,2	0,2	-0,2	16	4,4186		0,7	0,9	0,2	-0,2	0,2
17	6,5752		1	0,7	0,3	0,3	-0,3	17	4,5469		0,8	0,9	0,1	-0,1	0,1
18		6,8821	1	0,8	0,2	0,2	-0,2	18	4,9901		0,9	0,9	0	0	0
19		7,3354	1	0,9	0,1	0,1	-0,1	19		7,0872	0,9	1	0,1	-0,1	0,1
20		8,5882	1	1	0	0	0	20	36,8416		1	1	0	0	0

Abbildung 341: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 2 in der Variante 1000x10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 342: arraylist:

Abbildung 343: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$		R_i	x_1
1		0,0222	0	0,1	0,1	-0,1	0,1		1	
2		0,0513	0	0,2	0,2	-0,2	0,2		2	
3		0,0712	0	0,3	0,3	-0,3	0,3		3	
4		0,0886	0	0,4	0,4	-0,4	0,4		4	
5		0,1236	0	0,5	0,5	-0,5	0,5		5	
6		0,1645	0	0,6	0,6	-0,6	0,6		6	
7		0,1971	0	0,7	0,7	-0,7	0,7		7	
8		0,2088	0	0,8	0,8	-0,8	0,8		8	
9		0,2729	0	0,9	0,9	-0,9	0,9		9	
10		0,3044	0	1	1	-1	1		10	1,148
11	14,3329		0,1	1	0,9	-0,9	0,9		11	
12	16,8965		0,2	1	0,8	-0,8	0,8		12	2,10
13	17,0842		0,3	1	0,7	-0,7	0,7		13	2,410
14	17,2396		0,4	1	0,6	-0,6	0,6		14	3,290
15	17,4144		0,5	1	0,5	-0,5	0,5		15	4,13
16	17,5309		0,6	1	0,4	-0,4	0,4		16	4,423
17	17,628		0,7	1	0,3	-0,3	0,3		17	5,792
18	17,8611		0,8	1	0,2	-0,2	0,2		18	7,106
19	18,0618		0,9	1	0,1	-0,1	0,1		19	8,467
20	18,4761		1	1	0	0	0		20	12,73
					•			_		

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,1383	0	0,1	0,1	-0,1	0,1
2		0,1482	0	0,2	0,2	-0,2	0,2
3		0,1987	0	0,3	0,3	-0,3	0,3
4		0,2614	0	0,4	0,4	-0,4	0,4
5		0,2716	0	0,5	0,5	-0,5	0,5
6		0,3533	0	0,6	0,6	-0,6	0,6
7		0,4266	0	0,7	0,7	-0,7	0,7
8		0,4989	0	0,8	0,8	-0,8	0,8
9		0,5616	0	0,9	0,9	-0,9	0,9
10	1,1489		0,1	0,9	0,8	-0,8	0,8
11		2,0189	0,1	1	0,9	-0,9	0,9
12	2,101		0,2	1	0,8	-0,8	0,8
13	2,4108		0,3	1	0,7	-0,7	0,7
14	3,2904		0,4	1	0,6	-0,6	0,6
15	4,137		0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 344: path:

Abbildung 345: hash:

				0											
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0221	0	0,1	0,1	-0,1	0,1	1		0,0053	0	0,1	0,1	-0,1	0,1
2		0,0302	0	0,2	0,2	-0,2	0,2	2		0,4327	0	0,2	0,2	-0,2	0,2
3		0,0548	0	0,3	0,3	-0,3	0,3	3		0,7133	0	0,3	0,3	-0,3	0,3
4		0,0711	0	0,4	0,4	-0,4	0,4	4		3,0831	0	0,4	0,4	-0,4	0,4
5		0,0711	0	0,5	0,5	-0,5	0,5	5	3,1312		0,1	0,4	0,3	-0,3	0,3
6		0,1005	0	0,6	0,6	-0,6	0,6	6		3,1413	0,1	0,5	0,4	-0,4	0,4
7		0,1005	0	0,7	0,7	-0,7	0,7	7	3,2936		0,2	0,5	0,3	-0,3	0,3
8		0,1038	0	0,8	0,8	-0,8	0,8	8		3,3666	0,2	0,6	0,4	-0,4	0,4
9	0,1098		0,1	0,8	0,7	-0,7	0,7	9	3,8651		0,3	0,6	0,3	-0,3	0,3
10		0,112	0,1	0,9	0,8	-0,8	0,8	10	3,9293		0,4	0,6	0,2	-0,2	0,2
11		0,264	0,1	1	0,9	-0,9	0,9	11		4,0972	0,4	0,7	0,3	-0,3	0,3
12	0,3228		0,2	1	0,8	-0,8	0,8	12	4,3284		0,5	0,7	0,2	-0,2	0,2
13	0,4866		0,3	1	0,7	-0,7	0,7	13	4,3384		0,6	0,7	0,1	-0,1	0,1
14	0,6751		0,4	1	0,6	-0,6	0,6	14		4,389	0,6	0,8	0,2	-0,2	0,2
15	0,757		0,5	1	0,5	-0,5	0,5	15		4,411	0,6	0,9	0,3	-0,3	0,3
16	0,9044		0,6	1	0,4	-0,4	0,4	16	4,4186		0,7	0,9	0,2	-0,2	0,2
17	0,9208		0,7	1	0,3	-0,3	0,3	17	4,5469		0,8	0,9	0,1	-0,1	0,1
18	1,1912		0,8	1	0,2	-0,2	0,2	18	4,9901		0,9	0,9	0	0	0
19	1,2076		0,9	1	0,1	-0,1	0,1	19		5,1635	0,9	1	0,1	-0,1	0,1
20	6,5752		1	1	0	0	0	20	36,8416		1	1	0	0	0

Abbildung 346: Vergleich von Verfahren 3 in der Variante 100
k und Verfahren 2 in der Variante 1000x100 anhand der prozentualen Abweichung vom Gesamt
mittelwert

Abbildung 347: arraylist:

Abbildung 348: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0146	0	0,1	0,1	-0,1	0,1
2		0,0146	0	0,2	0,2	-0,2	0,2
3		0,0321	0	0,3	0,3	-0,3	0,3
4		0,0438	0	0,4	0,4	-0,4	0,4
5		0,0438	0	0,5	0,5	-0,5	0,5
6		0,0613	0	0,6	0,6	-0,6	0,6
7		0,0729	0	0,7	0,7	-0,7	0,7
8		0,0846	0	0,8	0,8	-0,8	0,8
9		0,0963	0	0,9	0,9	-0,9	0,9
10		0,1021	0	1	1	-1	1
11	14,3329		0,1	1	0,9	-0,9	0,9
12	16,8965		0,2	1	0,8	-0,8	0,8
13	17,0842		0,3	1	0,7	-0,7	0,7
14	17,2396		0,4	1	0,6	-0,6	0,6
15	17,4144		0,5	1	0,5	-0,5	0,5
16	17,5309		0,6	1	0,4	-0,4	0,4
17	17,628		0,7	1	0,3	-0,3	0,3
18	17,8611		0,8	1	0,2	-0,2	0,2
19	18,0618		0,9	1	0,1	-0,1	0,1
20	18,4761		1	1	0	0	0

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0364	0	0,1	0,1	-0,1	0,1
2		0,0954	0	0,2	0,2	-0,2	0,2
3		0,1053	0	0,3	0,3	-0,3	0,3
4		0,4024	0	0,4	0,4	-0,4	0,4
5		0,4211	0	0,5	0,5	-0,5	0,5
6		0,5389	0	0,6	0,6	-0,6	0,6
7		0,7582	0	0,7	0,7	-0,7	0,7
8		1,0105	0	0,8	0,8	-0,8	0,8
9	1,1489		0,1	0,8	0,7	-0,7	0,7
10		1,4387	0,1	0,9	0,8	-0,8	0,8
11		1,719	0,1	1	0,9	-0,9	0,9
12	2,101		0,2	1	0,8	-0,8	0,8
13	2,4108		0,3	1	0,7	-0,7	0,7
14	3,2904		0,4	1	0,6	-0,6	0,6
15	4,137		0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 349: path:

Abbildung 350: hash:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0	0	0,1	0,1	-0,1	0,1
2		0,0082	0	0,2	0,2	-0,2	0,2
3		0,0164	0	0,3	0,3	-0,3	0,3
4		0,0164	0	0,4	0,4	-0,4	0,4
5		0,0164	0	0,5	0,5	-0,5	0,5
6		0,0245	0	0,6	0,6	-0,6	0,6
7		0,0327	0	0,7	0,7	-0,7	0,7
8		0,0409	0	0,8	0,8	-0,8	0,8
9		0,0409	0	0,9	0,9	-0,9	0,9
10		0,0654	0	1	1	-1	1
11	0,1098		0,1	1	0,9	-0,9	0,9
12	0,3228		0,2	1	0,8	-0,8	0,8
13	0,4866		0,3	1	0,7	-0,7	0,7
14	0,6751		0,4	1	0,6	-0,6	0,6
15	0,757		0,5	1	0,5	-0,5	0,5
16	0,9044		0,6	1	0,4	-0,4	0,4
17	0,9208		0,7	1	0,3	-0,3	0,3
18	1,1912		0,8	1	0,2	-0,2	0,2
19	1,2076		0,9	1	0,1	-0,1	0,1
20	6,5752		1	1	0	0	0

				. 0			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0198	0	0,1	0,1	-0,1	0,1
2		0,2281	0	0,2	0,2	-0,2	0,2
3		0,2302	0	0,3	0,3	-0,3	0,3
4		0,5346	0	0,4	0,4	-0,4	0,4
5		0,5944	0	0,5	0,5	-0,5	0,5
6		0,7087	0	0,6	0,6	-0,6	0,6
7		0,8422	0	0,7	0,7	-0,7	0,7
8		0,8679	0	0,8	0,8	-0,8	0,8
9		2,0311	0	0,9	0,9	-0,9	0,9
10		2,1144	0	1	1	-1	1
11	3,1312		0,1	1	0,9	-0,9	0,9
12	3,2936		0,2	1	0,8	-0,8	0,8
13	3,8651		0,3	1	0,7	-0,7	0,7
14	3,9293		0,4	1	0,6	-0,6	0,6
15	4,3284		0,5	1	0,5	-0,5	0,5
16	4,3384		0,6	1	0,4	-0,4	0,4
17	4,4186		0,7	1	0,3	-0,3	0,3
18	4,5469		0,8	1	0,2	-0,2	0,2
19	4,9901		0,9	1	0,1	-0,1	0,1
20	36,8416		1	1	0	0	0

Abbildung 351: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 2 in der Variante 2000×10 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 352: arraylist:

Abbildung 353: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	
1		0,0145	0	0,1	0,1	-0,1	0,1	1	
2		0,0203	0	0,2	0,2	-0,2	0,2	2	
3		0,0261	0	0,3	0,3	-0,3	0,3	3	
4		0,0261	0	0,4	0,4	-0,4	0,4	4	
5		0,0435	0	0,5	0,5	-0,5	0,5	5	
6		0,0551	0	0,6	0,6	-0,6	0,6	6	
7		0,0667	0	0,7	0,7	-0,7	0,7	7	
8		0,0784	0	0,8	0,8	-0,8	0,8	8	
9		0,1074	0	0,9	0,9	-0,9	0,9	9	
10		0,1828	0	1	1	-1	1	10	
11	14,3329		0,1	1	0,9	-0,9	0,9	11	1.
12	16,8965		0,2	1	0,8	-0,8	0,8	12	2
13	17,0842		0,3	1	0,7	-0,7	0,7	13	2
14	17,2396		0,4	1	0,6	-0,6	0,6	14	3.
15	17,4144		0,5	1	0,5	-0,5	0,5	15	4
16	17,5309		0,6	1	0,4	-0,4	0,4	16	4
17	17,628		0,7	1	0,3	-0,3	0,3	17	5
18	17,8611		0,8	1	0,2	-0,2	0,2	18	7.
19	18,0618		0,9	1	0,1	-0,1	0,1	19	8
20	18,4761		1	1	0	0	0	20	12
			•						

	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
ſ	1		0,0003	0	0,1	0,1	-0,1	0,1
	2		0,0013	0	0,2	0,2	-0,2	0,2
	3		0,0979	0	0,3	0,3	-0,3	0,3
	4		0,1617	0	0,4	0,4	-0,4	0,4
	5		0,2208	0	0,5	0,5	-0,5	0,5
	6		0,386	0	0,6	0,6	-0,6	0,6
	7		0,4214	0	0,7	0,7	-0,7	0,7
	8		0,4727	0	0,8	0,8	-0,8	0,8
	9		0,5206	0	0,9	0,9	-0,9	0,9
	10		0,5499	0	1	1	-1	1
	11	1,1489		0,1	1	0,9	-0,9	0,9
	12	2,101		0,2	1	0,8	-0,8	0,8
	13	2,4108		0,3	1	0,7	-0,7	0,7
	14	3,2904		0,4	1	0,6	-0,6	0,6
	15	4,137		0,5	1	0,5	-0,5	0,5
	16	4,4233		0,6	1	0,4	-0,4	0,4
	17	5,7927		0,7	1	0,3	-0,3	0,3
	18	7,1061		0,8	1	0,2	-0,2	0,2
	19	8,4673		0,9	1	0,1	-0,1	0,1
	20	12,7334		1	1	0	0	0

Abbildung 354: path:

Abbildung 355: hash:

				0		1									
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$
1		0,0008	0	0,1	0,1	-0,1	0,1	1		0,0057	0	0,1	0,1	-0,1	0,1
2		0,0155	0	0,2	0,2	-0,2	0,2	2		0,0261	0	0,2	0,2	-0,2	0,2
3		0,0237	0	0,3	0,3	-0,3	0,3	3		0,0515	0	0,3	0,3	-0,3	0,3
4		0,0237	0	0,4	0,4	-0,4	0,4	4		0,0709	0	0,4	0,4	-0,4	0,4
5		0,0335	0	0,5	0,5	-0,5	0,5	5		0,0912	0	0,5	0,5	-0,5	0,5
6		0,0498	0	0,6	0,6	-0,6	0,6	6		0,1532	0	0,6	0,6	-0,6	0,6
7		0,0825	0	0,7	0,7	-0,7	0,7	7		0,1659	0	0,7	0,7	-0,7	0,7
8		0,089	0	0,8	0,8	-0,8	0,8	8		0,1929	0	0,8	0,8	-0,8	0,8
9	0,1098		0,1	0,8	0,7	-0,7	0,7	9		0,2361	0	0,9	0,9	-0,9	0,9
10		0,1478	0,1	0,9	0,8	-0,8	0,8	10		0,368	0	1	1	-1	1
11		0,1626	0,1	1	0,9	-0,9	0,9	11	3,1312		0,1	1	0,9	-0,9	0,9
12	0,3228		0,2	1	0,8	-0,8	0,8	12	3,2936		0,2	1	0,8	-0,8	0,8
13	0,4866		0,3	1	0,7	-0,7	0,7	13	3,8651		0,3	1	0,7	-0,7	0,7
14	0,6751		0,4	1	0,6	-0,6	0,6	14	3,9293		0,4	1	0,6	-0,6	0,6
15	0,757		0,5	1	0,5	-0,5	0,5	15	4,3284		0,5	1	0,5	-0,5	0,5
16	0,9044		0,6	1	0,4	-0,4	0,4	16	4,3384		0,6	1	0,4	-0,4	0,4
17	0,9208		0,7	1	0,3	-0,3	0,3	17	4,4186		0,7	1	0,3	-0,3	0,3
18	1,1912		0,8	1	0,2	-0,2	0,2	18	4,5469		0,8	1	0,2	-0,2	0,2
19	1,2076		0,9	1	0,1	-0,1	0,1	19	4,9901		0,9	1	0,1	-0,1	0,1
20	6,5752		1	1	0	0	0	20	36,8416		1	1	0	0	0

Abbildung 356: Vergleich von Verfahren 3 in der Variante 100k und Verfahren 2 in der Variante 2000x100 anhand der prozentualen Abweichung vom Gesamtmittelwert

Abbildung 357: arraylist:

Abbildung 358: object:

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)-S_2(x_i)$	$S_2(x_i)-S_1(x_i)$	R_i	3
1		0,0029	0	0,1	0,1	-0,1	0,1	1	
2		0,0029	0	0,2	0,2	-0,2	0,2	2	
3		0,0087	0	0,3	0,3	-0,3	0,3	3	
4		0,0087	0	0,4	0,4	-0,4	0,4	4	
5		0,0087	0	0,5	0,5	-0,5	0,5	5	
6		0,0145	0	0,6	0,6	-0,6	0,6	6	
7		0,0203	0	0,7	0,7	-0,7	0,7	7	
8		0,0261	0	0,8	0,8	-0,8	0,8	8	
9		0,0319	0	0,9	0,9	-0,9	0,9	9	
10		0,0377	0	1	1	-1	1	10	
11	14,3329		0,1	1	0,9	-0,9	0,9	11	1,1
12	16,8965		0,2	1	0,8	-0,8	0,8	12	2,
13	17,0842		0,3	1	0,7	-0,7	0,7	13	2,4
14	17,2396		0,4	1	0,6	-0,6	0,6	14	3,2
15	17,4144		0,5	1	0,5	-0,5	0,5	15	4,
16	17,5309		0,6	1	0,4	-0,4	0,4	16	4,4
17	17,628		0,7	1	0,3	-0,3	0,3	17	5,7
18	17,8611		0,8	1	0,2	-0,2	0,2	18	7,1
19	18,0618		0,9	1	0,1	-0,1	0,1	19	8,4
20	18,4761		1	1	0	0	0	20	12,

R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0576	0	0,1	0,1	-0,1	0,1
2		0,0625	0	0,2	0,2	-0,2	0,2
3		0,1368	0	0,3	0,3	-0,3	0,3
4		0,1432	0	0,4	0,4	-0,4	0,4
5		0,1514	0	0,5	0,5	-0,5	0,5
6		0,2489	0	0,6	0,6	-0,6	0,6
7		0,2509	0	0,7	0,7	-0,7	0,7
8		0,2745	0	0,8	0,8	-0,8	0,8
9		0,423	0	0,9	0,9	-0,9	0,9
10		0,501	0	1	1	-1	1
11	1,1489		0,1	1	0,9	-0,9	0,9
12	2,101		0,2	1	0,8	-0,8	0,8
13	2,4108		0,3	1	0,7	-0,7	0,7
14	3,2904		0,4	1	0,6	-0,6	0,6
15	4,137		0,5	1	0,5	-0,5	0,5
16	4,4233		0,6	1	0,4	-0,4	0,4
17	5,7927		0,7	1	0,3	-0,3	0,3
18	7,1061		0,8	1	0,2	-0,2	0,2
19	8,4673		0,9	1	0,1	-0,1	0,1
20	12,7334		1	1	0	0	0

Abbildung 359: path:

Abbildung 360: hash:

												. 0
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$	R_i	x_1	x_2	S_1x_i	S_2x_i
1		0,0033	0	0,1	0,1	-0,1	0,1	1		0,0099	0	0,1
2		0,0131	0	0,2	0,2	-0,2	0,2	2		0,0124	0	0,2
3		0,0212	0	0,3	0,3	-0,3	0,3	3		0,0156	0	0,3
4		0,0212	0	0,4	0,4	-0,4	0,4	4		0,0236	0	0,4
5		0,0278	0	0,5	0,5	-0,5	0,5	5		0,0315	0	0,5
6		0,0359	0	0,6	0,6	-0,6	0,6	6		0,0322	0	0,6
7		0,0359	0	0,7	0,7	-0,7	0,7	7		0,0331	0	0,7
8		0,0376	0	0,8	0,8	-0,8	0,8	8		0,0513	0	0,8
9		0,0931	0	0,9	0,9	-0,9	0,9	9		0,0522	0	0,9
10		0,1029	0	1	1	-1	1	10		0,0752	0	1
11	0,1098		0,1	1	0,9	-0,9	0,9	11	3,1312		0,1	1
12	0,3228		0,2	1	0,8	-0,8	0,8	12	3,2936		0,2	1
13	0,4866		0,3	1	0,7	-0,7	0,7	13	3,8651		0,3	1
14	0,6751		0,4	1	0,6	-0,6	0,6	14	3,9293		0,4	1
15	0,757		0,5	1	0,5	-0,5	0,5	15	4,3284		0,5	1
16	0,9044		0,6	1	0,4	-0,4	0,4	16	4,3384		0,6	1
17	0,9208		0,7	1	0,3	-0,3	0,3	17	4,4186		0,7	1
18	1,1912		0,8	1	0,2	-0,2	0,2	18	4,5469		0,8	1
19	1,2076		0,9	1	0,1	-0,1	0,1	19	4,9901		0,9	1
20	6,5752		1	1	0	0	0	20	36,8416		1	1

				_			
R_i	x_1	x_2	S_1x_i	S_2x_i	D_i	$S_1(x_i)$ - $S_2(x_i)$	$S_2(x_i)$ - $S_1(x_i)$
1		0,0099	0	0,1	0,1	-0,1	0,1
2		0,0124	0	0,2	0,2	-0,2	0,2
3		0,0156	0	0,3	0,3	-0,3	0,3
4		0,0236	0	0,4	0,4	-0,4	0,4
5		0,0315	0	0,5	0,5	-0,5	0,5
6		0,0322	0	0,6	0,6	-0,6	0,6
7		0,0331	0	0,7	0,7	-0,7	0,7
8		0,0513	0	0,8	0,8	-0,8	0,8
9		0,0522	0	0,9	0,9	-0,9	0,9
10		0,0752	0	1	1	-1	1
11	3,1312		0,1	1	0,9	-0,9	0,9
12	3,2936		0,2	1	0,8	-0,8	0,8
13	3,8651		0,3	1	0,7	-0,7	0,7
14	3,9293		0,4	1	0,6	-0,6	0,6
15	4,3284		0,5	1	0,5	-0,5	0,5
16	4,3384		0,6	1	0,4	-0,4	0,4
17	4,4186		0,7	1	0,3	-0,3	0,3
18	4,5469		0,8	1	0,2	-0,2	0,2
19	4,9901		0,9	1	0,1	-0,1	0,1
20	36,8416		1	1	0	0	0