Quelques rappels sur les lois conditionnelles et probabilités de transition...

Remarque : Le cours de Legall contient un chapitre sur l'espérance conditionnelle qu'il peut être bon de relire... tout comme le petit paragraphe sur les lois conditionnelles...

Soient X et Y deux variables aléatoires réelles, définies sur $(\Omega, \mathcal{F}, \mathbb{P})$, et soit p la loi de X (qui est une mesure de probabilité bien définie de manière unique sur \mathbb{R}). Soit ν une probabilité de transition de \mathbb{R} dans \mathbb{R} . Dire que $\nu(X, \mathrm{d}y)$ est la loi conditionnelle de Y sachant X peut être caractérisé de l'une quelconque des manières suivantes :

$$\mathbb{P}(X \in A, Y \in B) = \int_{A} \nu(x, B) p(\mathrm{d}x) \qquad \text{pour } A, B \in \mathcal{B}(\mathbb{R}),$$

$$\mathbb{E}[f(X)g(Y)] = \int_{\mathbb{R}} f(x) \left(\int_{\mathbb{R}} g(y) \nu(x, \mathrm{d}y) \right) p(\mathrm{d}x) \qquad \text{pour } f, g \text{ mesurables positives, (2)}$$

$$\mathbb{E}[g(Y)|X] = \int_{\mathbb{R}} g(y)\nu(X, \mathrm{d}y) \qquad \text{pour } g \text{ mesurable positive,}$$
 (3)

$$\mathbb{E}[g(X,Y)] = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} g(x,y) \nu(x,\mathrm{d}y) \right) p(\mathrm{d}x) \qquad \text{pour } g \text{ mesurable positive.}$$
 (4)

L'équivalence de ces formulations est assez claire. En particulier, le passage de (2) à (3) est la propriété fondamentale de l'espérance conditionnelle.

On remarquera que ces énoncés concernent uniquement la loi jointe de X et Y. La troisième ligne doit se lire comme la composée de l'application X avec l'application $x \mapsto \int_{\mathbb{R}} g(y)\nu(x,\mathrm{d}y)$. On peut vérifier que la mesure $\nu(x,\cdot)$, qui dépend de x, n'est déterminée que $p(\mathrm{d}x)$ - presque sûrement (Cela utilise le caractère polonais de \mathbb{R} et en particulier le fait qu'une mesure est caractérisée par sa valeur prise sur un nombre dénombrable de boréliens). Ecrire "LA" loi conditionnelle de Y sachant X est donc toujours un abus de language. Par ailleurs, si X et Y sont à valeurs dans un espace polonais, alors il existe toujours une loi conditionnelle de Y sachant X, avec la même caractérisation que ci-dessus (résultat d'intégration, ou plutôt de désintégration, assez difficile, et dont vous n'avez pas vu de démonstration)

On peut voir la loi conditionnelle $\nu(X,\cdot)$ comme une "mesure aléatoire $\sigma(X)$ -mesurable", mais pour donner un sens précis à cet énoncé, il faudrait définir une tribu sur l'ensemble des mesures de probabilités sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On peut choisir la tribu produit si une mesure est identifiée à un élément de $\mathbb{R}^{\mathcal{B}(\mathbb{R})}$. En d'autres termes, pour chaque $B \in \mathcal{B}(\mathbb{R})$, la quantité $\nu(X, B)$ est une variable aléatoire $\sigma(X)$ -mesurable.

Il n'y a pas de problème pour définir la loi conditionnelle de Y sachant une tribu \mathcal{F} (Dans (2), (3), (4), remplacer "f(X)" par "f application \mathcal{F} -mesurable"). Dans certains cas, cette loi conditionnelle pourra encore s'écrire $\nu(X,\cdot)$ pour une variable aléatoire X \mathcal{F} -mesurable (cf ci-dessous).

Pour le mouvement Brownien...

Pour un (\mathcal{F}_t) -mouvement Brownien unidimensionnel, la propriété de Markov (simple) nous dit en particulier que la loi conditionnelle de B_{t+s} sachant \mathcal{F}_s s'écrit $p(t, B_s, \cdot)$ où

$$p(t, x, dy) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{|y - x|^2}{2t}\right) dy.$$

Une autre manière d'écrire $p(t, x, \cdot)$ est de dire que c'est la loi de B_t sous \mathbb{P}_x . Par économie de rédaction, on dit souvent directement que la loi conditionnelle de B_{t+s} sachant \mathcal{F}_s est la loi de \tilde{B}_t si \tilde{B} est un mouvement Brownien partant de B_s , ou encore $\mathbb{P}_{B_s}(\tilde{B}_t \in \cdot)$. Enfin, en considérant l'ensemble du processus, on peut dire que la loi de $(B_{s+t})_{t\geq 0}$ sachant \mathcal{F}_s est \mathbb{P}_{B_s} .

Maintenant, déduisons la propriété de Markov pour le processus |B|. En utilisant la propriété de Markov du mouvement Brownien, on sait que la loi conditionnelle de $|B_{t+s}|$ sachant \mathcal{F}_s est $\mathbb{P}_{B_s}(|\tilde{B}_t| \in \cdot)$. Mais par symétrie, on a clairement

$$\mathbb{P}_{B_s}(|\tilde{B}_t| \in \cdot) = \mathbb{P}_{-B_s}(|\tilde{B}_t| \in \cdot) = \mathbb{P}_{|B_s|}(|\tilde{B}_t| \in \cdot).$$

Ainsi, la loi conditionnelle de $|B_{t+s}|$ sachant \mathcal{F}_s est la loi de $|\tilde{B}_t|$ sous $\mathbb{P}_{|B_s|}$. Cela montre la propriété de Markov (simple) du processus |B|. Comme dernière remarque, observons que |B| est un (\mathcal{F}_t) -processus de Markov (dont on a déterminer le noyau de transition), mais aussi par conséquent un processus de Markov pour sa filtration canonique (plus petite que (\mathcal{F}_t)).

On peut maintenant déduire le Théorème de Lévy (1948). Soit $X_t = \sup_{0 \le s \le t} B_s - B_t$, il s'agissait de montrer que X est un (\mathcal{F}_t) -processus de Markov de même noyau de transition que |B|. Pour cela il faut montrer que la loi de X_{t+s} sachant \mathcal{F}_s peut s'écrire $\mathbb{P}_{X_s}(|B_t| \in \cdot)$. Mais on avait écrit

$$X_{t+s} = \left(\sup_{u \in [0,t]} B_u^{(s)} - B_t^{(s)}\right) \mathbb{1}_{\sup_{u \in [0,t]} B_u^{(s)} \le X_s} + (X_s - B_t^{(s)}) \mathbb{1}_{\sup_{u \in [0,t]} B_u^{(s)} > X_s}$$
$$= g(X_s, B^{(s)}),$$

pour g fonction mesurable positive de X_s et de la trajectoire $B^{(s)}$. On peut utiliser la propriété de Markov du mouvement Brownien. La variable aléatoire X_s est \mathcal{F}_s mesurable, tandis que la loi conditionnelle de $B^{(s)}$ sachant \mathcal{F}_s est simplement \mathbb{P}_0 . Il est clair, en utilisant (4) (et (2)) que la loi conditionnelle de X_{s+t} sachant \mathcal{F}_s s'écrit $\nu(X_s, \cdot)$, où $\nu(x, \cdot)$ est la loi de g(x, B) sous \mathbb{P}_0 . Cela explique la suite de la démonstration. On se fixe $x \geq 0$ et B un mouvement brownien issu de 0, et on cherche à comprendre la loi de g(x, B)... pour finalement montrer que c'est $\mathbb{P}_x(|B_t| \in \cdot)$.