Building a SNARK, Part I

Dan Boneh
Stanford University

Review: Preprocessing argument systems

Public arithmetic circuit: $C(x, w) \to \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

Preprocessing (setup): $S(C) \rightarrow \text{public parameters } (S_p, S_v)$

Preprocessing argument System

A preprocessing argument system is a triple (S, P, V):

• $S(C) \rightarrow \text{public parameters } (S_p, S_v)$ for prover and verifier

• $P(S_p, x, w) \rightarrow \text{proof } \pi$

• $V(S_v, x, \pi) \rightarrow \text{accept or reject}$

Requirements (informal)

Prover
$$P(S_p, \mathbf{x}, \mathbf{w})$$
 $proof \pi$

accept or reject

Complete:
$$\forall x, w : C(x, w) = 0 \Rightarrow Pr[V(S_v, x, P(S_p, x, w)) = accept] = 1$$

Knowledge sound: V accepts
$$\Rightarrow$$
 P "knows" \mathbf{w} s.t. $C(\mathbf{x}, \mathbf{w}) = 0$

example: P "knows"
$$\mathbf{w}$$
 s.t. $[H(\mathbf{w}) = \mathbf{x} \text{ and } 0 \le \mathbf{w} \le 2^{128}]$

Optional: **Zero knowledge**: (S_v, \mathbf{x}, π) "reveals nothing" about \mathbf{w}

SNARK: a **Succinct** ARgument of Knowledge

A <u>succinct</u> preprocessing argument system is a triple (S, P, V):

• $S(C) \rightarrow \text{public parameters } (S_p, S_v)$ for prover and verifier

- $P(S_p, x, w) \rightarrow \underline{short} \operatorname{proof} \pi$; $|\pi| = O_{\lambda}(\log(|C|))$
- $V(S_v, x, \pi)$ fast to verify;

short "summary" of circuit

time(V) =
$$O_{\lambda}(|x|, \log(|C|))$$

 $\lambda \coloneqq$ security parameter = 128

Building an efficient SNARK

General paradigm: two steps

A functional (1)commitment scheme (zk)SNARK for general circuits A compatible (2) interactive oracle proof (IOP) Let's explain each concept ...

(1) Commitments

Cryptographic commitment: emulates an envelope

Recall: commitments

Two algorithms:

- $commit(m, r) \rightarrow com$ (r chose at random)
- $verify(m, com, r) \rightarrow accept or reject$

Properties:

- binding: cannot produce com and two valid openings for com
- hiding: com reveals nothing about committed data

A standard construction

Fix a hash function $H: \mathcal{M} \times \mathcal{R} \to \mathcal{C}$

```
commit(m,r): com := H(m,r)
```

verify(m, com, r): accept if com = H(m, r)

Hiding and Binding for a suitable function H

Committing to a function

choose a family of functions $\mathcal{F} = \{f: X \to Y\}$

Committing to a function: syntax

A functional commitment scheme for \mathcal{F} :

- $\underline{setup}(\lambda) \rightarrow pp$, outputs public parameters pp
- $\underline{commit}(pp, f, r) \rightarrow \underline{com}_f$ commitment to $f \in \mathcal{F}$ with $r \in \mathcal{R}$ a **binding** (and optionally **hiding**) commitment scheme for \mathcal{F}
- <u>eval(Prover P, verifier V)</u>: for a given com_f and $x \in X$, $y \in Y$: $P(pp, f, x, y, r) \rightarrow \text{short proof } \pi$ $a \text{ SNARK for the relation:} f(x) = y \text{ and } f \in \mathcal{F} \text{ and } f$

 $V(pp, com_f, x, y, \pi) \rightarrow accept/reject$

f(x) = y and $f \in \mathcal{F}$ and $commit(pp, f, r) = com_f$

Three examples

Polynomial commitments:

• Committing to a univariate polynomial f(X) in $\mathbb{F}_p^{(\leq d)}[X]$ (univariate polynomials of degree at most d)

Multilinear commitments:

• Committing to a multilinear polynomial in $\mathbb{F}_p^{(\leq 1)}[X_1, ..., X_k]$

e.g.,
$$f(x_1, ..., x_k) = x_1x_3 + x_1x_4x_5 + x_7$$

Linear commitments:

• Committing to a linear function $f_{\vec{v}}(\vec{u}) = \langle \vec{u}, \vec{v} \rangle = \sum_{i=1}^n u_i v_i$

Polynomial Commitment Scheme (PCS)

A PCS is a functional commitment for the family $\mathcal{F} = \mathbb{F}_p^{(\leq d)}[X]$

 \implies prover commits to a univariate polynomial f in $\mathbb{F}_p^{(\leq d)}[X]$, later, can prove that v=f(u) for public $u,v\in\mathbb{F}_p$

Examples:

Proof size and verifier time should be $\,O_{\lambda}(oldsymbol{log}\,oldsymbol{d})$

- Using basic elliptic curves: Bulletproofs (verifier's work is linear in d)
- Using bilinear groups: KZG'10 (trusted setup), Dory'20
- Using groups of unknown order: Dark'20
- Using hash functions only: based on FRI

Group
$$\mathbb{G} \coloneqq \{0, G, 2 \cdot G, 3 \cdot G, \dots, (p-1) \cdot G\}$$
 of order p .

setup(λ) → *pp*:

- Sample random $\alpha \in \mathbb{F}_p$
- $pp = (H_0 = G, H_1 = \alpha \cdot G, H_2 = \alpha^2 \cdot G, H_d = \alpha^d \cdot G) \in \mathbb{G}^{d+1}$ delete α !! (trusted setup)

$$\underline{commit}(pp, f) \rightarrow com_f \quad \text{where} \quad com_f := f(\alpha) \cdot G \in \mathbb{G}$$

• $f(X) = f_0 + f_1 X + \dots + f_d X^d \Rightarrow com_f = f_0 \cdot H_0 + \dots + f_d \cdot H_d$ $= f_0 \cdot G + f_1 \alpha \cdot G + f_2 \alpha^2 \cdot G + \dots = f(\alpha) \cdot G$

a binding commitment, but not hiding

$$\underline{commit}(pp, f) \rightarrow com_f$$
 where $com_f = f(\alpha) \cdot G \in \mathbb{G}$

eval: Prover(pp,
$$f$$
, u , v)

Goal: prove $f(u) = v$

$$f(u) = v \iff u \text{ is a root of } \hat{f} \coloneqq f - v \iff (X - u) \text{ divides } \hat{f}$$

$$\Leftrightarrow$$
 exists $q \in \mathbb{F}_p[X]$ s.t. $q(X) \cdot (X - u) = f(X) - v$

compute
$$q(X)$$
 $\pi := com_q \in \mathbb{G}$ accept if and com_q (short: proof size indep. of d) $(\alpha - u) \cdot com_q = com_f - v \cdot G$

<u>comr</u> How to prove that this is a secure PCS? Not today ... Prover(pp, f, u, v) *Verifier(pp, com_f, u, v)* prove Verifier does not know α An expensive ot of ⇒ uses a "pairing" computation for large d (and only needs G, H_1 from pp) exists $q \in \mathbb{F}_p$ compute q(X)accept if $\pi \coloneqq \mathbf{com_a} \in \mathbb{G}$ and coma $(\alpha - u) \cdot com_a = com_f - v \cdot G$ (short: proof size indep. of d)

Generalizations:

- KZG for committing to k-variate polynomials [PST'13] (eprint/2011/587) ... but eval proof size is k group elements
- Batch proofs:
 - suppose verifier has commitments com_{f1} , ... com_{fn}
 - prover wants to prove $f_i(u_{i,j}) = v_{i,j}$ for $i \in [n]$, $j \in [m]$
 - \Rightarrow batch proof π is one or two group elements!

The Dory polynomial commitment

Difficulties with KZG: trusted setup for pp, and pp size is linear in d.

Dory:

- transparent setup: no secret randomness in setup
- com_f is a single group element (independent of degree d)
- eval proof size for $f \in \mathbb{F}_p^{(\leq d)}[X]$ is $\left| \mathsf{O}(\log d) \right|$ group elements
- eval verify time is $O(\log d)$ Prover time: O(d)

PCS have many applications

Example: vector commitment (a drop-in replacement for Merkle trees)

Component 2: Polynomial IOP

Component 2: Polynomial IOP

Let C(x, w) be some arithmetic circuit. Let $x \in \mathbb{F}_p^n$.

Poly-IOP: a proof system that proves $\exists w : C(x, w) = 0$ as follows:

Setup(C) \rightarrow public parameters S_p and $S_v = (f_0, f_{-1}, ..., f_{-s})$

Polynomial IOP

Properties

• Complete: if $\exists w : C(x, w) = 0$ then verifier always accepts

• **Knowledge sound**: (informal) Let $x \in \mathbb{F}_p^n$. for every P* that convinces the verifier with prob. $\geq 1/10^6$ there is an efficient extractor E s.t.

$$\Pr[E(x, f_1, r_1, ..., r_{t-1}, f_t) \rightarrow w \text{ s.t. } C(x, w) = 0] \ge 1/10^6 - \varepsilon$$

Optional: zero knowledge (for a zk-SNARK)

The resulting SNARK

```
(t, q) Poly-IOP: t := \#polys. committed, q := \# eval queries in verify 

The SNARK: (usually t, q <math>\leq 3)
```

- Prover sends t poly commitments
- During poly-IOP verify: run PCS eval protocol q times
- Use Fiat-Shamir to make the proof system non-interactive

```
Length of SNARK proof: t poly-commits + q eval proofs
```

Verifier time: q × time(eval verify) + time(IOP-verify)

Prover time: $t \times time(commit) + q \times time(prove) + time(IOP-prover)$

END OF LECTURE

Next lecture: Constructing a Poly-IOP