Unidad I: Altavoz en Pantalla Infinita Parte 3 – Parámetros Thiele Small

Recinto para Altavoces Prof. Ing. Andrés Barrera A.

1.1.- Frecuencia de Resonancia (mecánica) del altavoz

$$f_{S} = \frac{1}{2\pi\sqrt{MmsCms}} = \frac{1}{2\pi\sqrt{MasCas}} = \frac{1}{2\pi\sqrt{CmesLces}}$$

1.2.- Volumen de Aire Equivalente a la elasticidad de la Suspensión (Vas)

$$Vas = \rho_0 c^2 Cas$$

1.3.- Factor de Pérdidas del Altavoz considerando sólo las pérdidas mecánicas (Qms)

Versión mecánica:

$$Qms = \frac{\omega_S Mms}{Rms}$$

Como:
$$Rms = Cmes \cdot (Bl)^{2}$$

$$Rms = \frac{(Bl)^{2}}{Res}$$

Versión eléctrica:

$$Qms = \omega_s Cmes \cdot Res$$

1.3.- Factor de Pérdidas del Altavoz considerando sólo las pérdidas mecánicas (Qms)

Versión acústica:

$$Qms = \frac{\omega_S Mas}{Ras}$$

1.4.- Factor de Pérdidas del Altavoz considerando sólo las pérdidas eléctricas (Qes)

$$Qes = \omega_s Cmes \cdot (Re + Rg)$$

Cuando Re actúa sola, es decir, para Rg = 0 tenemos:

$$Qes = \omega_s Cmes \cdot Re$$

1.4.- Factor de Pérdidas del Altavoz considerando sólo las pérdidas eléctricas (Qes)

Versión mecánica:

$$Qes = \frac{\omega_S Mms}{\frac{(Bl)^2}{Rg + Re}} \approx \frac{\omega_S Mms Re}{(Bl)^2}$$

Versión acústica: Mm

$$Mms = Mas \cdot Sd^2$$

$$Qes = \frac{\omega_S Mas \cdot Sd^2 \text{ Re}}{(Bl)^2}$$

1.5.- Factor de Pérdidas Total del Altavoz considerando las pérdidas eléctricas y mecánicas (Qts)

$$Qts = \frac{\omega_S Mas}{Rat} = \frac{\omega_S Mas}{\frac{(Bl)^2}{(Rg + Re)Sd^2} + Ras} \approx \frac{1}{\frac{(Bl)^2}{\omega_S Mas(Re)Sd^2} + \frac{Ras}{\omega_S Mas}}$$

$$Qts = \frac{1}{\frac{1}{Qes} + \frac{1}{Qms}} \Rightarrow \therefore Qts = \frac{Qms \cdot Qes}{Qms + Qes}$$

Parámetros TS

KAPPALITE™ 3012HO

Neodymium

Recommended for vented professional audio enclosures for full-range or as mids.

Thiele & Small Parameters

Resonant Frequency (fs)	51.5Hz
DC Resistance (Re)	5.5
Coil Inductance (Le)	0.98mH
Mechanical Q (Qms)	6.94
Electromagnetic Q (Qes)	0.33
Total Q (Qts)	0.32
Compliance Equivalent Volume (Vas)	81.10 liters / 2.86 cu.ft.
Peak Diaphragm Displacement Volume (Vd)	330cc
Mechanical Compliance of Suspension (Cms)	0.20mm/N
BL Product (BL)	15.9 T-M
Diaphragm Mass inc. Airload (Mms)	46.9 grams
Efficiency Bandwidth Product (EBP)	157.4
Maximum Linear Excursion (Xmax)	6.2mm
Surface Area of Cone (Sd)	532.4 cm2
Maximum Mechanical Limit (Xlim)	12.5mm

Parámetros TS

Unidad I: Altavoz en Pantalla Infinita Parte 3 – Parámetros Thiele Small

Recinto para Altavoces Prof. Ing. Andrés Barrera A.