

Introduction to digital integrated circuits

INTEGRATED CIRCUITS AND MICROELECTRONICS

Outline

- ☐ 1.1 Integrated Circuits. Advantages and disadvantages over non integrated circuits.
 - Digital Circuits Implementation
 - Advantages of ICs
 - ❖ Moore's Law
- 1.2 Design process of an integrated circuit.Abstraction Levels.
 - Bottom-up and bottom-down methodologies.
 - Design process: steps and tools.
 - Abstraction levels

Digital Circuits Implementation (I)

- Discrete components (standard)
 - **❖**74xx, 54xx
- ☐ Integrated Circuits
 - *ASIC: Application Specific Integrated circuit
- ☐ Programmable circuits
 - ❖ PLD, SPLD: (Simple) Programmable Logic Devices
 - CPLD: Complex Programmable Logic Devices
 - ❖ FPGA: Field Programmable Gate Array

Digital Circuits Implementation (II)

- Microprocessor systems
 - Microprocessor and additional components (standard components)
 - SoC: System on Chip (ASIC)
 - SoPC: System on Programmable Chip (FPGA)
 - ➤ Soft core
 - > Hard core
- Design:
 - ❖ Board Level Hardware Design
 - ❖Software Design
 - ➤ Tools: compilers

Digital Circuits Implementation (III)

	Discrete components	CPLD	FPGA	ASIC
Integration (Number of logic gates)	Very low	Medium	High	Very High
Speed	Low < 100 MHz	Medium <200 MHz	Medium <500 MHz	Very High <4 GHz
Power consumption	High	Medium	Medium	Low
Initial cost (design+prototype)	High	Medium	Medium	Very High
Cost per unit	High	Medium	Medium	Very Low

INTRODUCCIÓN

Moore's Law (Intel co-founder)

☐ The maximum number of transistors that can be integrated in a I.C. will double about every 2 years (20 months)

CPU Transistor Counts 1971-2008 & Moore's Law

extrapolated vs time.

Abstraction Levels

- Levels:
 - System
 - Algorithm
 - Register Transfer Level (RTL)
 - Logic: logic gates
 - Physical: transistors

Design Process

- Bottom-up Methodology
 - Specification
 - Block partition
 - Logic gates design (schematic)
 - Block assembly
 - Physical design

- Top-down Methodology
 - Specification
 - Architectural design
 - Detailed design
 - Physical design

Automatic

- Use of Hardware Description Languages (HDL)
- Intensive use of simulation and automatic synthesis

INTRODUCCIÓN

Design process of integrated circuits

Automatic Tools

- ☐ Functional specification
 - System description, chronograms
- Architectural design
 - *RTL design (registers, buses, state machines...)
- Detailed design
 - Automatic Synthesis
 - Logic Design (gates, flip-flops, ...)
- Physical design
 - Transistors, place & route
- ☐ Manufacturing and test, or programming
- Operation

Design tools

- Simulation
 - Functional description
 - RTL description (synthesizable)
 - List of gates (netlist)
 - With or without delays

- Synthesis
 - Transform RTL descriptions into logic gates
 - Optimize logic for area and/or speed
 - Determine gate delays
- ☐ Place & Route/Implementation
 - Place and interconnect logic gates
 - Extract delays of interconnections

INTRODUCCIÓN

Hardware Description Languages (HDLs)

- ☐ HDLs allow us to:
 - Design at a higher abstraction level -> Increase productivity
 - Simulate designs for operation validation
 - ➤ Simulation is more efficient when performed at a higher abstraction level
 - Synthesize designs to obtain an optimal implementation, depending on the target:
 - ➤ Area
 - **≻**Speed
 - Increase portability and reuse
- ☐ Essential for modern design for:
 - Complex designs(>10K gates)
 - **♦** ASIC or CPLD/FPGA technologies

Goals

- ☐ Basic digital circuits
 - Combinational circuits:
 - Logic gates, multiplexers, decoders, arithmetic circuits...
 - Sequential circuits:
 - > Flip-flops, registers, counters, finite state machines, memories
- VHDL
 - Functional description
 - Hierarchy: blocks and components
 - Simulation: testbenches
 - Synthesis
- Circuit Design
 - ❖ Datapath, control

