

Revise. 1. KNINI as a Classification of Regression Algo. 2. Templates use for Classification of Regri Algo. 3. Evaluation Methics of Classification Algo. (a) Precision (d) Confusion Matrix (a) Recall (e) Error Rate (c) Accurracy (A) Classification Report 4. KNIN on a Regrossion data.

Agenda:-

1. Regression Metrics in python wing scikit

2. K-Means (lustering Algorithm.

3. Implementation of K Mean in python ung skleam.

** Regression Evaluation Metaics

(1) Mean Abrolute Error

(2) Mean Squared Error

(3) Root Mean Squared Error

(4) R² Error V & Very Imp

(5) Adjusted R² Error. V &

 \times Euclidean distance colci from (entroid Pont to dota pont)

(2, 4)

(2, 4)

(2, 4)

$$= \sqrt{(8-2)^2 + (4-4)^2}$$

$$= \sqrt{6^2 + 0^2} = \sqrt{36} = 6$$

$$\frac{CP}{n} := \frac{\chi_{1} + \chi_{2} + \chi_{3}}{n}, \quad \frac{y_{1} + y_{2} + y_{3} + \dots}{n}$$

$$= \left(2 + 2 + 4, \quad 4 + 6 + 7\right)$$

$$C1 = \left(2.67, 5.67\right)$$
(12)

Revision: 1. Dataset looks in a Unsupervised ML Algo (Target is obsent) 2. Solved a problem using K-Means Clustering. Before a K-Means Algorithm. 4. Kin K-Means represent the number of clusters.

4. Kn K-Moons represent the number of clusters.
5. Implentation of K-Means in python.

Agenda!-

1. Implementation of K-Meons using skleam in

2. Ideal method to select k (no of clusters)

3. Elbow method.

5. Data preprocessing techniques.

Elbow Method:- $K = 1 \rightarrow C_1$ $K = 2 \rightarrow C_1, C_2$ $K = 3 \rightarrow C_1, C_2, C_3$ $K = 4 \rightarrow C_1, ..., C_4$ $K = 5 \rightarrow C_1, ..., C_5$ $K = 20 \rightarrow C_1, ..., C_5$

WCSS:- Within Cluster

Sum 6 & Squares

:- Wed for judging

the upbmalk.

Since We have check for a each value of k between 1 to 20

- 1) We have use a for loop
- 2 wcss []
- 3 loup rummy

(a) We create avisual to identify the optimal k.

Standard KMeans Algorithm:

1. Sensitive to the initialization of centraids or
the mean points. If the centraid is very far,
then that cluster will not have any point
associated with it

K-means++

K-mens + 11 the Standard K-Means Algorithm
Coupled with Smart mitralization of centroid

ponts

* Sandom- state = 42 * Smply used to make the prediction static K=1 133 15 132.5 00 133.5 co 134

ML Algorithms:-1. You cannot supply a missing data 2. If any column (variable) is having higher values then ML Argo mill give importance to that. 3. MIL algo do not undostand text data.

Nu.

eg:- E-112 E-Name Clindi Agr Schang Yns. Exp.

Quick Notes Page 15

Revision: -

1. Implementation of K-Meons Algorithm in python Wing skleum library

2. Elbon Method for aptimal (K) no of clusions

3. Data Preprocessing:a. Missing Value Analysis. Agenda:1. Missing Value Treatment techniques.
1. Mean, Median, Mode, Forward, Backward fill.
2. Sklearn method for Missing Value imputation.

2. Dota Encoding Techniques

(1) Missing volue Techniques:data.drojona() Country Age Salary Purchased 44 72000 No 48000 Yes Spain 30 54000 No Germany son gets delen he 48 79000 Yes France 50 83000 No France 37 67000 Yes Dropping the column:
data.drop ('Age', axis=1)

data drop (Sai)

data drop ('Su', Oxis=1)

data drop ('Gender' axis=1)

Country	Age	Salary	Purchas ed		
France	44	72000	No		
Spain	27	48000	Yes		
Germa ny	30	54000	No No		
Spain	38	61000			
Germa ny	40	\bigcirc	Yes		
France	35	58000	Yes No		
Spain	\circ	52000			
France	48	79000	Yes		
Germa ny	50	83000	No		
France	37	67000	Yes		

Age: - Replace all missing with mean at Age.

Salony: - Replace all missing values with mean of Salary

Mode: Most - frequent value in the dataset

ey:- [Apple, Gronge, Apple, Mango, Banana, Apple) 1 Apple - 3 C Apple is the mode data Grange - 1 Mango - 1 Banana - 1

1) Missing Value Analysis.
2) It does not accept (ategorical (Shing) data.

Convert (ate data to Mum. data

Data Encoding

Data Encoding: - Applicable only on
(ategorical data

Mominal (No order)

John Dramal
(Specific Order)

Label Encoding

One Hot Encoding

Label Encoding: - For Monial data.

	Country	Age	Salary	Purchased
>	France	44	72000	No
	Spain	27	48000	Yes
	Germany	30	54000	No
	Spain	38	61000	No
	Germany	40		Yes
	France	35	58000	Yes
	Spain		52000	No
	France	48	79000	Yes
	Germany	50	83000	No
	France	37	67000	Yes

Country Columnia the Momial data

			7	
Country	Age		Salary	Purchased
0	4	1	72000	No
1	2	7	48000	Yes
2	3	0	54000	No
1	3	3	61000	No
2	4	0		Yes
0	3	5	58000	Yes
1			52000	No
0	4	3	79000	Yes
2	5	0	83000	No
0	3	7	67000	Yes

France - O

	13 March 2			101	t -	E	٥٥٥	din	1	_ (<u>)</u> ~d	سرا (ما	d	lata	\{ \(\)	BS- BO MS- 1	achelor Marker Doct
->	Country France Spain	Education BS MS	Age 44 27						Country France Spain Germany	Education_Ms 0	Education_PHD	2	48000	Yes		(PHD-	Doct
	Germany Spain Germany France		30 38 40 35			_(OHE		Spain	1 0 0	0	38	61000	No		Ţ	0 HE	Incomer
	Spain France Germany France	MS BS PHD BS	48 50 37	52000 79000 83000 67000	No Yes No Yes Yes	_	,		France Germany France	0 0	0 1 0	48	79000 8 79000 9 83000 7 67000	Yes No Yes		,	the	no of in data.
		4	E	.du	cohi	r f	BE	S	ĒJ	u cah	n - [√1S		Edu	1cotton-	PHD	the	data
					<u>1</u>					<u>1</u>) =				0			
						0				•	s 1)				0 <u>1</u>			