CORSO DI SICUREZZA INFORMATICA 1 (A.A. 2006/2007)

Prof. A. Armando

(14 Giugno 2007)

Si risponda alle domande utilizzando lo spazio apposito. Non è consentito l'utilizzo di libri, appunti, nè dispositivi elettronici di alcun tipo.

Nome e Cognome: _			
Matricola:			

1. Crittografia simmetrica

Si assuma di avere una conoscenza parziale del seguente plaintext e del corrispondente ciphertext:

Plaintext: *UA**IAI**ERI**E
Ciphertext: I*ECFA**OH*CKSP*

dove * indica i caratteri non noti.

Si sa che il ciphertext è ottenuto dal plaintext applicando l'algoritmo di Vigenère con lunghezza del blocco pari a 4 e utilizzando l'alfabeto inglese (ovvero ABCDEFGHIJKLMNOPQRSTUVWXYZ). Si determini la chiave.

Soluzione.

Plaintext: GUARDIAIMPERIALE Ciphertext: IMECFAETOHICKSPP

Chiave: 2 18 4 11

2. Message Encryption

Si scrivano nei riquadri bianchi le proprietà di sicurezza assicurate da ciascuno dei seguenti schemi crittografici.

3. Crittografia a chiave pubblica I

Si illustri l'interazione tra PC e smartcard nelle seguenti attività:

- 1. Firma di un documento
- 2. Verifica della firma di un documento

Soluzione.

- 1. Il PC calcola e invia alla smartcard lo hash del documento da firmare. La smartcard cifra il valore ricevuto con la chiave privata in essa memorizzata e invia al PC il risultato. In nessun caso la smartcard trasmette verso l'esterno la chiave privata in essa memorizzata.
- 2. La smartcart non gioca alcun ruolo in quanto non è necessario utilizzare la chiave privata del possessore. Per la verifica della firma serve un certificato digitale di colui che ha firmato il documento.

4. Crittografia a chiave pubblica II

Si consideri l'algoritmo RSA con p = 7, q = 13 e e = 23.

- Si calcoli il testo cifrato C corrispondente al testo in chiaro M=51.
- Si calcoli la chiave di decifrazione (d, n).
- Si verifichi che decifrando C con (d, n) si riottiene M.

Si giustifichino le risposte date scrivendo tutti i calcoli intermedi.

Si utilizzino le seguenti tabulazioni (ovviamente parziali) delle funzioni di esponenziazione modulare e dell'inverso moltiplicativo modulo n:

				\boldsymbol{x}	y	$x^{-1} \mod y$
a	b	n	$a^b \mod n$	72	23	8
19	82	11	9	21	91	87
51	91	23	10	21	73	7
91	23	51	31	7	13	2
99	12	91	1	13	7	6
25	47	91	51	23	72	47
51	23	91	25	23	91	4
47	25	91	47	21	72	7
99	13	15	9	91	23	22
			•	91	23	22

Soluzione. Siccome p=7, q=13, allora n=pq=91. Quindi $C=M^e \bmod n=51^{23} \bmod 91=25$.

La chiave di decifrazione è data da (d, n) dove $d = e^{-1} \mod \Phi(n) = 23^{-1} \mod 72 = 47$. Infatti $\Phi(n) = (p-1)(q-1) = 6 * 12 = 72$.

Infine verifichiamo che $C^d \mod n = 25^{47} \mod 91 = 51 = M$.

5. Protocolli di Sicurezza

Si consideri il seguente protocollo P_1 per la creazione di una chiave condivisa tra due agenti A e B:

- 1. $A \rightarrow B : \{A, Na\}_{Kb}$
- 2. $B \rightarrow A : \{B, Nb\}_{Ka}$
- 3. $A \rightarrow B : \{zero, Msg\}_{Na \oplus Nb}$
- 4. $B \to A : \{one, Msg\}_{Na \oplus Nb}$

dove zero e one sono identificatori distinti e $Na \oplus Nb$ è lo XOR bit a bit di Na e Nb.

(a) Si descrivano i singoli passi del protocollo e le proprietà di sicurezza per il quale è stato presumibilmente progettato.

Soluzione. Il protocollo dovrebbe garantire:

- 1. la mutua autenticazione tra A e B
- 2. lo scambio confidenziale di una nuova chiave $Na \oplus Nb$ e di Msg.
- (b) Si discuta se il protocollo garantisce o meno le proprietà di sicurezza indicate nella risposta alla domanda (a). Si supponga che la crittografia sia perfetta (ovvero non è soggetta ad attacchi di crittoanalisi).

Soluzione. Il protocollo non è vulnerabile. La presenza dell'identificatore del mittente nei messaggi inviati ai passi 1 e 2 rende difficile la realizzazione di *replay attacks*. La presenza degli identificatori *zero* e *one* nei messaggi inviati ai passi 3 e 4 rende difficile la realizzazione di *reflection attacks*.

6. Controllo degli Accessi

Si consideri il modello MAC di Bell-La Padula e si indichino i permessi concessi ad un utente con security label (secret, {personnel, design, assistance}) relativamente a documenti classificati nel seguente modo:

```
    (top secret, {design}):
    (top secret, {personnel, production, design, assistance}):
    (secret, {personnel, assistance}):
    (secret, {production, design}):
    (secret, {}):
    (confidential, {personnel, assistance}):
    (confidential, {production, design}):
```

Soluzione. Ricordiamo che (r_2, c_2) domina (r_1, c_1) (in simboli, $(r_1, c_1) \le (r_2, c_2)$ se e solo se $r_1 \le r_2 \land c_1 \subseteq c_2$ e che gli accessi nel modello di Bell-LaPadula sono governati dai seguenti due principi:

- No Read-Up (detta anche Simple Security Property): Un subject con clearance x_s può leggere informazione relativa ad una risorsa con security label x_o solo se x_s domina x_o .
- No Write-Down (detta anche *-Property): Un subject con clearance x_s può scrivere informazione su un oggetto con security label x_o solo se x_o domina x_s .

Dunque le risposte sono:

8. (confidential, {}):

- 1. (top secret, {design}): nessun diritto
- 2. (top secret, {personnel, production, design, assistance}): sola scrittura
- 3. (secret, {personnel, assistance}): sola lettura
- 4. (secret, {production, design}): nessun diritto
- 5. (secret, {}): sola lettura
- $6. \ (confidential, \{personnel, assistance\}): sola \ lettura$
- 7. (confidential, {production, design}): nessun diritto
- 8. (confidential, {}): sola lettura