ROB 501 HW3

Yulun Zhuang yulunz@umich.edu

September 19, 2022

1

- (a) Not a subspace. Reason: Not closed under multiplication by a constant, such as -1.
- (b) A subspace. Reason: Closed under vector addition and scalar multiplication.
- (c) Not a subspace. Reason: Not closed under addition, such as $[0,1]^T + [1,0]^T = [1,1]^T$.
- (d) A subspace. Reason: Closed under vector addition and scalar multiplication.
- (e) Not a subspace. Reason: Zero vector is not included.
- (f) Not a subspace. Reason: Zero vector is not included.

 $\mathbf{2}$

Definition 2.1. Let S be a subset of a vector space (X, \mathcal{F}) . The span of S is the set of all linear combinations of elements of S. That is

$$span\{\mathcal{S}\} := \{x \in X \mid \exists n \ge 1, \alpha_1, \dots, \alpha_n \in \mathcal{F}, v_1, \dots, v_n \in \mathcal{S}, \text{ s.t. } x = \alpha_1 v_1 + \dots + \alpha_n v_n\}$$

Theorem 2.1. Given a finite set S in a vector space X, $span\{S\}$ is a subspace of X.

Proof. Let $u_1, \ldots, u_n \in \mathcal{S}_1, v_1, \ldots, v_n \in \mathcal{S}_2$, then $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathcal{S}_1 \cup \mathcal{S}_2$.

$$span\{S_1\} := \{u \in X \mid u = \alpha_1 u_1 + \dots + \alpha_n u_n\}$$

$$span\{S_2\} := \{v \in X \mid v = \beta_1 v_1 + \dots + \beta_n v_n\}$$

Then $span\{S_1\}$ and $span\{S_2\}$ are subspaces in X. The addition of the subspaces is given by

$$span\{S_1\} + span\{S_2\} = \{w \in X \mid w = \alpha_1 u_1 + \dots + \alpha_n u_n + \beta_1 v_1 + \dots + \beta_n v_n\}$$

Since $u_1, \ldots, u_n, v_1, \ldots, v_n \in S_1 \cup S_2$, we have $span\{S_1\} + span\{S_2\} \subset span\{S_1 \cup S_2\}$.

$$span\{S_1 \cup S_2\} := \{z \in X \mid z = \gamma_1 z_1 + \dots + \gamma_n z_n\}$$

Since z can be represented by a linear combination of u and v, we have $span\{S_1 \cup S_2\} \subset span\{S_1\} + span\{S_2\}$.

Hence
$$span \{S_1 \cup S_2\} = span \{S_1\} + span \{S_2\}.$$

3

3.1

Linear dependent

$$\begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

1

3.2

Linear dependent

$$\begin{bmatrix} 0 \\ 5 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} - 4 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

3.3

Linear independent, since the third component of the first vector can not be expressed as a linear combination of the rest.

4

$$\alpha_{1} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} + \alpha_{2} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} + \alpha_{3} \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \alpha_{1} + 2\alpha_{2} + 4\alpha_{3} & 2\alpha_{1} + \alpha_{2} - \alpha_{3} \\ 2\alpha_{1} + \alpha_{2} - \alpha_{3} & \alpha_{1} + \alpha_{2} + \alpha_{3} \end{bmatrix} = \mathbf{0}$$

$$\underbrace{\begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix}}_{x} = \mathbf{0}$$

$$\Rightarrow det(A) = 0$$

Choose $\alpha_1 = 2$, $\alpha_2 = -3$, $\alpha_1 = 1$ solved Ax = 0. Hence the set is linearly dependent.

5

Let (X, \mathcal{F}) be a vector space and $\mathcal{S} \subset X$. Prove that if Y is a subspace of X and $\mathcal{S} \subset Y$, then $span\{\mathcal{S}\} \subset Y$.

Proof.

$$span\{\mathcal{S}\} := \{x \in X \mid \exists n \geq 1, \alpha_1, \dots, \alpha_n \in \mathcal{F}, v_1, \dots, v_n \in \mathcal{S}, \text{ s.t. } x = \alpha_1 v_1 + \dots + \alpha_n v_n\}$$

Since $S \subset Y$, then $v_1, \ldots, v_n \in Y$. Since Y is closed under vector multiplication and scalar addition, $x \in Y$. Hence, $span\{S\} \subset Y$.

6

Let (X, \mathcal{F}) be a vector space and V and W are subspaces of X. Prove the following two statements are equivalent.

- (a) $V \cap W = \{0\}$
- (b) $\forall x \in V + W, \exists$ unique $v \in V$ and $w \in W$ s.t. x = v + w

Proof. $(a \Rightarrow b)$ Since for every $x \in V + W$, there exist $v_1 \in V$ and $w_1 \in W$ s.t. $x = v_1 + w_1$. Suppose there exist other vectors $v_2 \in V$ and $w_2 \in W$ such that $x = v_2 + w_2$. Then,

$$\mathbf{0} = (v_1 - v_2) + (w_1 - w_2) \Leftrightarrow (v_1 - v_2) = -(w_1 - w_2)$$

Therefore $v_1 - v_2 \in W$ and so $v_1 - v_2 \in V \cap W$. Since $V \cap W = \{0\}$, we then conclude that $v_1 = v_2$, which also says $w_1 = w_2$. Then $\forall x \in V + W, \exists$ unique $v \in V$ and $w \in W$ s.t. x = v + w. $(b \Rightarrow a)$ Suppose that $x_0 \in V \cap W$, then on the one hand, there exists $v_0 \in V$ such that $x_0 = v_0 + \mathbf{0}$; on the other hand, there is $w_0 \in W$ such that $x_0 = \mathbf{0} + w_0$. Therefore, $v_0 = \mathbf{0}$ and $w_0 = \mathbf{0}$, so $V \cap W = \{0\}$.