Generowanie sieci losowych przy użyciu modeli Albert Barabsi, Erdős-Rényi i Watts-Strogatz

2020

Sieć bezskalowa

Sieć, w której rozkład stopni wierzchołków jest równy $P(k) \sim k^{-\gamma}$

gdzie γ jest paramtrem właściwym dla danej sieci oraz $2 < \gamma < 3$

Sieć bezskalowa

Własności sieci bezskalowych: Wierzchołki o dużym stopniu (huby) Rich-gets-richer

Huby z małym współczynnikiem klasteryzacji,

pojedyncze wierzcholki z większym

Sieć bezskalowa - przykłady

Nazwa sieci	Wierzchołki	Krawędzie
sieci społeczne	ludzie	znajomości
mózg	neurony	synapsy
WWW	strony	hiperłącza
hollywood	aktorzy	filmy
środowisko naukowe	artykuły naukowe	odwołania, cytaty

Scale-free

Number of links

- □ Najpopularniejszy model sieci bezskalowych (rok 1999)
- ☐ Im więcej wierzchołek ma sąsiadów tym większa szansa że nowe wierzchołki będą z nim połączone krawędzią

Krok algorytmu:

- Wejście: graf bezskalowy (np. graf pusty)
- Dodajemy wierzchołek, po czym łączymy go m krawędziami z obecnymi wierzcholkami
- Prawdopodobieństwo połączenia nowego wierzchołka z wierzchołkiem i wynosi: $p_i = \frac{k_i}{\sum k_j}$

Model Albert-Barabasi, algorytm

Własności algorytmu:

Rozkład stopni:

$$P(k) \sim k^{-3}$$

☐ Średnia długość ścieżki:

$$l = \frac{\ln(n)}{\ln \ln(n)}$$

Model Erdős-Rényi

Tą nazwą określane są dwa podobne modele służące do generowania losowych grafów:

- ☐ G(n, M) graf jest wybierany losowo ze zbioru wszystkich grafów, które mają n wierzchołków i M krawędzi
 - □ Na przykład w modelu G(3, 2) każdy z trzech możliwych grafów z trzema wierzchołkami i dwiema krawędziami jest wybierany z prawdopodobieństwem ⅓
- ☐ G(n, p) graf jest konstruowany przez losowe dodawanie krawędzi. Każda krawędź jest uwzględniana w grafie z prawdopodobieństwem p, niezależnie od innych krawędzi
 - oxed Odpowiednio, wszystkie grafy z n węzłami i M krawędziami mają to samo prawdopodobieństwo wylosowania równe $p^M(1-p)^{\binom{n}{2}-M}$

Model Erdős-Rényi

Własności:

- $oxed{\Box}$ G(n, p) odpowiada grafowi G(n, M) z $M=inom{n}{2}p$ przy $pn^2 o\infty$
- oxed Jeśli np < 1 to graf G(n, p) prawie napewno nie będzie posiadał spójnych klik rozmiaru większego niż $oldsymbol{O}(\log(n))$
- $oxedsymbol{\square}$ Jeśli np=1 to graf G(n, p) prawie napewno będzie miał duże kliki rozmiaru rzędu $n^{2/_3}$
- \square Jeśli $p<rac{(1-arepsilon)ln\,n}{n}$ to graf G(n, p) prawie napewno nie jest spójny
- \square Jeśli $p>rac{(1+arepsilon)ln\,n}{n}$ to graf G(n, p) prawie napewno jest spójny

Model Erdős-Rényi

Ograniczenia:

☐ Ze względu na to że prawdopodobieństwo połączenia dwóch wierzchołków jest stałe, sieć ma niski współczynnik klasteryzacji (*clustering coefficient*)

Tą nazwą określany jest model służący do generowania losowych grafów z właściwościami Small World, czyli z krótką średnią długością ścieżki i wysokim współczynnikiem klasteryzacji

Algorytr	tworzenia grafu <mark>G(n, k, p)</mark> :
☐ Twor	ymy pierścień z <mark>n</mark> wierzchołków
☐ Każdy	wierzchołek łączymy z k najbliższymi sąsiadami
prawdo	ymy skróty w grafie: dla każdej krawędzi (u, v) w grafie z podobieństwem p zmień ją na nową krawędź (u, w) z jednostajnym

regular lattice: my friend's friend is always my friend small world: mostly structured with a few random connections random graph: all connections random

Właściwości:

- ☐ Średnia długość ścieżki:
 - \square przy p=0: $\frac{n}{2k}$
 - \square przy $p \rightarrow 1$: $\frac{\ln n}{\ln k}$
- Współczynnik klasteryzacji:
 - \square przy p=0: $\frac{3(k-2)}{4(k-1)} \rightarrow \frac{3}{4}$
 - \square przy $p \to 1$: $\frac{k}{n}$
- ☐ Rozkład stopni wierzchołków

Ograniczenia:

- ☐ Może tworzyć niemożliwie duży stopień wierzchołka
- ☐ Ograniczanie ilości węzłów powoduje niemożliwość jej użycia dla modelowania zwiększania/zwiększających sieci