Aprendizaje de Máquina Supervisado

Problemas de regresión

Los problemas de regresión son una categoría fundamental en el campo del aprendizaje automático (Machine Learning), donde el objetivo principal es predecir un valor continuo (una cantidad numérica) a partir de una o más variables de entrada (también conocidas como características o predictores).

Problemas de regresión

Objetivo

Predecir un valor continuo a partir de variables de entrada.

2 Características

Variable dependiente continua. Variables independientes numéricas o categóricas.

3 Aplicaciones

Predicción de precios, consumo de combustible, ventas y comportamientos.

Tipos de Regresión

Regresión Lineal

Relación lineal entre variables. Fórmula: $Y = \beta_0 + \beta_1 x + \epsilon$

Simple de entender e implementar. Eficiente computacionalmente.

Regresión No Lineal

Relación curvilínea entre variables. Incluye modelos polinómicos, exponenciales y logarítmicos.

Mayor flexibilidad y precisión. Riesgo de sobreajuste.

Scikit-Learn para Regresión

LinearRegression

Modelo básico para relaciones lineales. Ajusta una línea recta a los datos.

PolynomialFeatures

Transforma características en polinomios para modelar relaciones no lineales.

Ridge y Lasso

Añaden regularización para evitar sobreajuste. Ridge usa penalización L2, Lasso usa L1.

SVR

Support Vector Regression para problemas no lineales con estructuras complejas.

```
/legrission model):
scikit-learn regression models)
 wickit an-learn:
     f, regression models" regr
   make : nail {
   dear : Vas" vetl(t).
   dear : (f nand(; an((srue),
   dearn: of canrt"t carticc(lands);
   dalter (cchee));
               langel;
```

Entrenamiento de Algoritmos

Preprocesamiento

Limpieza, normalización y transformación de datos. Codificación de variables categóricas.

División de Datos

Separar en conjuntos de entrenamiento y prueba. Aplicar validación cruzada.

Selección del Modelo

Elegir tipo de regresión según naturaleza del problema.

Entrenamiento

Ajustar parámetros minimizando función de costo.

Validación

Evaluar rendimiento con métricas como MSE y R².

Métricas de Evaluación

Promedio de errores al cuadrado entre valores reales y predichos. Menor MSE indica mejor ajuste. Coeficiente de Determinación (R²)

Proporción de varianza explicada por el modelo. Valor cercano a 1 indica buen ajuste.

Promedio de errores absolutos. Menos sensible a valores atípicos que MSE.

Predicciones con el Modelo

- Entrada de Datos

 Nuevos datos con mismo formato que datos de entrenamiento.
- Uso del Modelo

 Aplicar modelo entrenado para calcular predicción.
- Interpretación

 Analizar valor continuo obtenido como estimación.
- Validación

 Verificar calidad de predicción con datos no vistos.

Selección del Modelo óptimo

Analizar Linealidad

Determinar si la relación es lineal o no lineal.

Considerar Interpretabilidad

Valorar comprensión del modelo vs precisión.

Evaluar Complejidad

Balancear simplicidad vs capacidad predictiva.

2

3

Aplicar Regularización

Usar Ridge, Lasso o Elastic Net según necesidad.

4

Medir Rendimiento

Comparar modelos con métricas y validación cruzada.

Actividad Práctica Guiada

MODELOS DE REGRESIÓN CON SCIKIT-LEARNS

Objetivo: Comprender y aplicar modelos de regresión para resolver problemas de predicción utilizando Scikit-Learn.

Pasos:

- 1. Importar librerías: numpy, matplotlib.pyplot, pandas, skalearn.
- 2. Generar datos sintéticos para mostrar una relación no lineal entre la variable independiente X y la variable dependiente Y.
- 3. Dividir los datos en conjuntos de entrenamiento y prueba.
- 4. Aplicar diferentes modelos de regresión.
- 5. Comparar los modelos y seleccionar el mejor para la ocasión.

Preguntas

Sección de preguntas

Aprendizaje de Máquina Supervisado

Continúe con las actividades