## Acides - Bases

# J. Détermination de constantes d'acidité dans l'eau

 Détermination de la constante d'acidité de l'acide acétique par conductimétrie

**OBJECTIFS** 

L'étude de la conductivité de solutions aqueuses d'un acide faible en fonction de sa concentration permet de déterminer la constante de dissociation de cet acide.







### MATÉRIEL

- 1 bain thermostaté à 25 °C
- 1 thermomètre
- 1 conductimètre
- 5 fioles jaugées de 100 ml
- 2 pipettes jaugées de 50 ml
- 2 pipettes jaugées de 20 ml
- 2 pipettes jaugées de 10 ml
- 1 pipette graduée de 10 ml
- 5 béchers de 100 ml

## PRODUITS

- solution titrée d'acide acétique,
   CH<sub>3</sub>CO<sub>2</sub>H, de concentration
   0,2 mol l<sup>-1</sup>
- solution de chlorure de potassium, KCl, de concentration 0,1 mol l<sup>-1</sup>

#### MODE OPÉRATOIRE

Préparer des solutions d'acide acétique de concentrations comprises entre  $0.2~\text{mol}\,1^{-1}$  et  $10^{-4}~\text{mol}\,1^{-1}$ . À titre d'exemple, on pourra faire les dilutions suivantes, en introduisant les volumes indiqués dans une fiole de 100~ml avant de compléter par de l'eau :

- solution 1 : 87,5 ml d'une solution d'acide acétique de concentration 0,2 mol 1<sup>-1</sup>,
- solution 2:10 ml de la solution 1,
- solution 3:50 ml de la solution 2,
- solution 4:20 ml de la solution 3,
- solution 5: 10 ml de la solution 4.

Verser environ 50 ml de chacune de ces solutions dans des béchers de 100 ml que l'on thermostatera à 25 °C. Lorsque l'équilibre thermique est atteint, mesurer la conductance de chaque solution.

Procéder de la même façon avec une solution de chlorure de potassium de concentration  $0,1 \text{ mol } l^{-1}$  afin de déterminer la constante de cellule (cf. § 1.1.1).

#### RÉSULTATS

1. La constante de cellule est définie comme le rapport de la conductance mesurée G à la conductivité de l'électrolyte  $\sigma$  (cf. § 1.1.1) :  $k=G/\sigma$ . Elle peut être déterminée grâce à la connaissance de la conductivité d'une solution de chlorure de potassium de concentration  $0,1 \mod l^{-1}$  à 25 °C :  $\sigma=1,288 \Omega^{-1} \mathrm{m}^{-1}$ .

Une expérience a donné k = 0.87 cm.

2. La conductance de la solution est due aux ions CH<sub>3</sub>CO<sub>2</sub><sup>-</sup> et H<sub>3</sub>O<sup>+</sup> provenant de la dissociation de l'acide (on néglige les ions provenant de la dissociation de l'eau) :

$$CH_3CO_2H + H_2O \Longrightarrow CH_3CO_2^- + H_3O^+$$

Soient k la constante de cellule exprimée en m,  $\lambda_i$  la conductivité molaire de l'ion i exprimée en  $\Omega^{-1}$   $m^2$   $mol^{-1}$  et c la concentration en ions acétate exprimée en mol  $l^{-1}$ , la conductance G de la solution exprimée en  $\Omega^{-1}$  est de la forme

$$G = 1000kc(\lambda_{H_3O^+} + \lambda_{CH_3CO_2^-}).$$

On suppose que la force ionique des solutions reste suffisamment faible pour pouvoir confondre la conductivité molaire de chaque ion avec sa conductivité molaire à dilution infinie :

$$\lambda_{\text{H}_3\text{O}^+} + \lambda_{\text{CH}_3\text{CO}_2^-} \approx \lambda_{\text{H}_3\text{O}^+}^\circ + \lambda_{\text{CH}_3\text{CO}_2^-}^\circ = \Lambda^\circ$$

La littérature indique que  $\Lambda^{\circ}$  vaut, à 25 °C, 3,91  $\cdot$  10<sup>-3</sup>  $\Omega^{-1}$  m<sup>2</sup> mol<sup>-1</sup>.

omprises entre s dilutions suion ml avant de

concentration

ers de 100 ml eint, mesurer

potassium de (cf. § 1.1.1).

de chlorure

provenant ation de

olaire de oprimée forme

> le pour letivité

Soit  $c_0$  la concentration initiale en acide exprimée en mol  $l^{-1}$  et  $\alpha$  le taux de dissociation de l'acide, on a

$$\alpha = c/c_0 = \Lambda/\Lambda^{\circ}$$

$$K_a = c_0 \frac{\alpha^2}{1 - \alpha} = c_0 \frac{(\Lambda/\Lambda^{\circ})^2}{1 - \Lambda/\Lambda^{\circ}}$$

d'où

$$c_0\Lambda = K_a \frac{(\Lambda^\circ)^2}{\Lambda} - K_a\Lambda^\circ$$

Le tracé de la courbe  $c_0\Lambda$  en fonction de  $1/\Lambda$  permet donc de déterminer, grâce à la pente, la valeur de la constante  $K_a$ .  $\Lambda$  est calculé à partir des mesures de conductances :

 $\Lambda = 10^{-3} \frac{G}{kg}.$ 

Dans ce traitement, il est nécessaire de conserver  $c_0$  en  $\text{mol } l^{-1}$  (expression de la loi d'action de masse) et l'on trace donc des valeurs de  $c_0\Lambda$  en unité  $\Omega^{-1}$  m<sup>2</sup> l<sup>-1</sup> soit  $10^3\Omega^{-1}$  m<sup>-1</sup>.

3. Une expérience a donné les résultats suivants (avec k = 0.87 cm):

| $c_0$ (mmol $l^{-1}$ ) | $G$ ( $\mu$ S) | $\Lambda \\ (\Omega^{-1}  \mathrm{cm}^2  \mathrm{mol}^{-1})$ | $c_0 \Lambda$<br>( $\Omega^{-1}  \mathrm{m}^2  \mathrm{l}^{-1}$ ) | $1/\Lambda$ $(\Omega  \text{m}^{-2}  \text{mol})$ |
|------------------------|----------------|--------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|
|                        |                |                                                              |                                                                   |                                                   |
| 17,5                   | 145            | 9,53                                                         | $16,7 \cdot 10^{-6}$                                              | 1 050                                             |
| 8,8                    | 111            | 14,60                                                        | $12,8 \cdot 10^{-6}$                                              | 680                                               |
| 1,8                    | 46,3           | 30,41                                                        | $5,3 \cdot 10^{-6}$                                               | 330                                               |
| 0,18                   | 13,4           | 88,60                                                        | $1,5 \cdot 10^{-6}$                                               | 110                                               |

On peut vérifier que la force ionique de ces solutions est inférieure à  $3\cdot 10^{-3}$  mol l<sup>-1</sup> ce qui justifie l'approximation  $\lambda_i \approx \lambda_i^\circ$ .

On obtient  $pK_a = 4,9$ . La littérature fournit la valeur de 4,8.

### DISCUSSION

- 1. Théoriquement, la connaissance de  $\Lambda^{\circ}$  est superflue car l'ordonnée à l'origine vaut  $-K_a\Lambda^{\circ}$ . Néanmoins, la valeur théorique est trop faible devant les autres mesures pour être déterminée avec une précision suffisante.
- 2. La prise en compte de la conductance résiduelle de l'eau utilisée ne modifie pas sensiblement les résultats (la courbe est translatée, mais sa pente n'est pas modifiée).