

Technische Universität Berlin AG Konstruktion

Konstruktionslehre III SoSe 2023

2. Konstruktionsaufgabe Hubwerkseinheit eines Brückenkrans

Gruppe 4

Yassine Kraiem, 457695

Hiermit erklären wir, dass wir die vorliegende Hausaufgabe selbstständig und eigenhändig sowie ohne unerlaubte Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt haben.

> Die selbstständige und eigenhändige Anfertigung versichere ich an Eides statt.

Die selbstständige und eigenhändige Anfertigung versichere ich an Eides statt.

Berlin, den 21.5.2023

(Unterschrift)

Die selbstständige und eigenhändige Anfertigung versichere ich an Eides statt.

Wir stimmen der Nutzung unserer Zeichnung(en) in anonymisierter Form in der Konstruktionslehre an der TU Berlin zur Weiterbildung von Tutoren und Studenten zu.

Inhaltsverzeichnis Seite I

Inha	alts۱	/erz	'eic	hnis

Tal	bellenverzeichnis	Ш
Ab	obildungsverzeichnis	IV
1	Anforderungsliste Pahl/Beitz	1
2	Meilensteinplan	2
3	Triebwerksgruppe nach DIN 15020	2
4	Seilkraft4.1Sicherheitsbetrachtung4.2Seiltrommelgeometrien	2 4 4
5	Asynchronmotor5.1 Vorberechnungen5.2 Motorwahl5.3 Berechnung relevanter Motordaten	5 5 6
6	Gesamtübersetzung	7
7	Vorüberlegungen 7.1 Lösungsfindung 7.2 Übersicht 7.3 Bremse 7.4 Gehäuse 7.5 Schmiermittel 7.6 Dichtung 7.7 Stromversorgung 7.8 Verzahnung der Zahnrädern 7.9 Lager	8 8 8 9 9 9 10 10
8	Allgemeines für die Konzepte 8.1 Prinzipskizze	11 11 12 12 12
9	Konzept 1 9.1 Beschreibung 9.2 Prinzipskizze 9.3 Übersetzung 9.4 Zahnradgeometrie 9.5 Teilmomente	12 13 13 14 15
10	Konzept 2 10.1 Beschreibung 10.2 Prinzipskizze 10.3 Übersetzung 10.4 Zahnradgeometrie 10.5 Teilmomente	15 16 16 17 17
11	Konzept 3 11.1 Beschreibung	17 17

Inhaltsverzeichnis	Seite II

11.2 Prinzipskizze	18
11.3 Übersetzung	
11.4 Zahnradgeometrie	
11.5 Teilmomente	
12 Bewertung der Konzepte	19
12.1 Bewertungsystem	19
12.2 Bewertungskriterien	
12.2.1 Kompakte Bauweise	20
12.2.2 Geringes Gewicht	
12.2.3 Fertigungsaufwand	
12.2.4 Montageaufwand	21
12.2.5 Wartungsaufwand	
12.2.6 Sicherheit	21
12.2.7 Übersetzung	21
12.3 Technische Bewertung	22
12.4 Auswahl des Konzeptes	22
Literatur	23
Anlage A Ganttdiagramm	i
Anlage B Prinzipskizzen	ii
Anlage C Motor	V

Tabellenverzeichnis Seite III

Tabellenverzeichnis

1	Anforderungsliste
2	Daten für die Motorauswahl
3	relevante Motordaten
4	Motordaten
5	maximale Umfangsgeschwindigkeiten
6	Getriebegeometrien Konzept 1
7	Momente Konzept 1
8	Getriebegeometrien Konzept 2
9	Momente Konzept 2
10	Getriebegeometrien Konzept 3
11	Momente Konzept 3
12	Punkteskala
13	technische Bewertung

Abbildungsverzeichnis

1	Morphologischer Kasten	8
2	PZ Legende	11
3	PZ zwei Planetenstufen	13
4	PZ zwei Stirnradstufen	16
5	PZ drei Stirnradstufen	18

1 Anforderungsliste Pahl/Beitz

Zuerst wird eine Anforderungsliste nach Pahl/Beitz erstellt [10, S. 325]. Die Forderungen werden hinter dem Kürzel F und die Wünsche hinter dem Kürzel W aufgelistet:

Tabelle 1: Anforderungsliste

	Anforderungsliste Änderung				
Prio.	Anforderung	Verantw.	Datum		
	Rahmenbedingungen:				
	Allgemeines:	Yassine	27.5.2023		
F	- Hubwerk nach DIN 15020				
F	- Anlagenstückzahl 100				
	Abmaße:	Josua	27.5.2023		
F	- Höhe der Seiltromel ü. Boden 5 m				
F	- Hubhöhenbegrenzung 500 mm				
F	- Seilaufhängung B 600 mm				
	Fristen:	alle	27.5.2023		
F	- Abgabe Testat 1 12.6.2023				
	Lasten/Kinematik:	alle	27.5.2023		
F	- max. Tragfähigkeit 5000 kg				
F	- max. Hubgeschwindigkeit 4.5 $\frac{m}{min}$				
	Funktionalanforderungen:				
	Antrieb:	Max	29.5.2023		
F	- Asynchronmotor nach DIN EN 50347 (Kurzschlussläufer Oberflächengekühlt)				
F	- erforderliche Hochlaufzeit 0.5 s				
	Bremse Hubwerk:	Max	29.5.2023		
F	- elektromagnetisch gelüftet nach VDI 2241				
F	- erforderliche Bremszeit 0.5 s				
F	- Bremstotzeit 0.05 s				
	Qualitätsanforderungen:				
	Wirtschaftlichkeit				
W	- Platzsparend	Yassine	31.5.2023		
W	- Standard Fertigung	Josua	31.5.2023		
W	- Preiswerte Werkstoffe	Yassine	31.5.2023		
W	- möglichst einfache Wartung	Yassine	31.5.2023		
	Sicherheit				
F	- alle aus Vergleichsliteratur bestimmten Sicherheiten müssen eingehalten werden	Josua	31.5.2023		
F	F - gleiches gilt für Lebensdauern Josua 31.5.2023				
	Stand: 12. Juni 2023				

4 SEILKRAFT Seite 2

2 Meilensteinplan

Um sicherzustellen, dass die Arbeit strukturiert durchgeführt wird, wurde ein Meilensteinplan entwickelt. Dieser Plan bietet nicht nur eine übersichtliche Darstellung des Fortschritts, sondern ermöglicht auch eine klare Aufteilung der Aufgaben. Die Übersicht des Meilensteinplans ist im Anhang zu finden.

3 Triebwerksgruppe nach DIN 15020

Für die Wahl der Triebwerksgruppe wird die mittlere Laufzeit je Tag benötigt [3, S. 2]. Bei Lastkollektiven wird zunächst geprüft, ob gilt [3, S. 10]:

$$\frac{\text{Gewicht des Tragmittels}}{\text{Tragfähigkeit}} \le 0.05 \tag{1}$$

Die Bedingung ist erfüllt, so lange gilt:

Gewicht des Tragmittels
$$\leq 250 \,\mathrm{kg}$$
 (2)

Dieses Gewicht wird im vorliegenden Fall nicht überschritten.

Der kubische Mittelwert kann somit mit folgender Formel ermittelt werden [3, S. 10]:

$$k = \sqrt[3]{(\beta_1 + \gamma)^3 \cdot t_1 + \beta_2 + \gamma)^3 \cdot t_2 + \dots + \gamma^3 \cdot t\Delta}$$
 (3)

Wobei gilt [3, S. 10]:

$$\beta = \frac{\text{Nutz- oder Teillast}}{\text{Tragfähigkeit}}$$
 (4)

$$\gamma = \frac{\text{Gewicht von Lastaufnahme- und Anschlagmittel}}{\text{Tragfähigkeit}}$$
(5)

$$t = \frac{\text{Teillaufzeit Gewicht und Lastaufnahme}}{\text{Gesamtlaufzeit}}$$
(6)

$$t = \frac{\text{Gesamtlaufzeit}}{\text{Gesamtlaufzeit nur Lastaufnahme}}$$

$$t\Delta = \frac{\text{Teillaufzeit nur Lastaufnahme}}{\text{Gesamtlaufzeit}}$$
(7)

Die Daten wurden in Excel verarbeitet und es wurde ein kubischer Mittelwert von k=0.532 bestimmt. Nach Tabelle 8 der DIN 15020 liegt somit ein mittleres Belastungskollektiv vor [3, S. 10].

Die mittlere Laufzeit je Tag in Stunden lässt sich ebenfalls aus den gegebenen Daten berechnen. Hierbei wird zuerst die Gesamtlaufzeit mit der Summenfunktion von Excel zu $t_{ges} = 3047$ min berechnet Da die Lasthistorie 20 Tage umfasst und eine Stunde 60 Minuten enthält, gilt für die mittlere Laufzeit in Stunden $t_{m,h}$:

$$t_{m,h} = \frac{t_{ges}}{60 \cdot 20} \approx 2.56 \,\mathrm{h}$$
 (8)

Es liegt somit die Laufzeitklasse V_2 vor und die dazugehörige Triebwerksgruppe 2_m [3, S. 2].

4 Seilkraft

Zunächst wird der Wirkungsgrad des Flaschenzugs bestimmt. Dieser ist im Falle eines viersträngigen Flaschenzuges mit einer Wälzlagerung [11, S. 16] der Seilrolle [3, S. 9]:

$$\eta_F = 0.97 \tag{9}$$

4 SEILKRAFT Seite 3

Die maximale Seilkraft kann mit der folgenden Formel berechnet werden [11, S. 8]:

$$F_S = \frac{(m_H + m_E) \cdot g}{i \cdot z \cdot \eta_F} \tag{10}$$

Wobei *i* für die Anzahl der Mechanismenzweige steht, welche im vorliegenden Fall eins beträgt [11, S. 9]. Die Anzahl der tragenden Stränge, auch als Seilübersetzung bezeichnet [11, S. 8], des Flaschenzuges *z* summieren sich zu vier. Somit gilt:

$$i = 1 \tag{11}$$

$$z = 4 \tag{12}$$

 m_H steht für die maximale Hub- oder Nutzlast welche der Aufgabenstellung zu entnehmen ist.

$$m_H = m_T = 5000 \,\mathrm{kg}$$
 (13)

Die maximale Masse des Lastaufnahmemittels ist der gegebenen Exceltabelle zu entnehmen.

$$m_E = 70 \,\mathrm{kg} \tag{14}$$

Die maximale Seilkraft berechnet sich mit Formel (10) somit zu:

$$F_S \approx 12819 \,\mathrm{N} \tag{15}$$

Bei der Seilkraft muss ebenfalls eine Zusatzkraft berücksichtigt werden, wenn die Seilspreizung größer als $\beta=45\,^{\circ}$ in höchster Hakenstellung ist [3, S. 4]. Für die Ermittelung des Spreizwinkels werden zunächst der Durchmesser des Seils und der Durchmesser der Seiltrommel und der Seilrolle gewählt.

Der Beiwert zur Ermittelung des Seildurchmessers ergibt sich für nicht drehungsfreie Drahtseile und der Triebwerksgruppe 2_m zu [3, S. 3]:

$$c = 0.0950 \, \frac{\text{mm}}{\sqrt{N}} \tag{16}$$

Für den Seildurchmesser gilt [3, S. 2]:

$$d_{min} = c \cdot \sqrt{F_S} \approx 10.76 \,\mathrm{mm} \tag{17}$$

Der nächstgrößere Seildurchmesser ist $d_{Seil} = 11 \text{ mm } [7, \text{ S. } 9].$

Für die Berechnung der Mindestdurchmesser der Seiltrommeln, Seilrollen und Ausgleichsrollen werden die beiden Beiwerte h_1 und h_2 benötigt [3, S. 4].

Für h_1 gilt bei nicht drehungsfreien Drahtseilen und der gewählten Triebwerksgruppe [3, S. 4]:

$$h_{1,ST} = 18$$
 für Seiltrommeln (18)

$$h_{1,SR} = 20$$
 für Seilrollen (19)

$$h_{1,AR} = 14$$
 für Ausgleichsrollen (20)

Für h_2 gilt bei der vorliegenden Anordnung [3, S. 6]:

$$h_{2.ST} = 1$$
 für Seiltrommeln (21)

$$h_{2.SR} = 1.12$$
 für Seilrollen (22)

$$h_{2,AR} = 1$$
 für Ausgleichsrollen (23)

4 SEILKRAFT Seite 4

Die Mindestdurchmesser berechnen sich somit zu [3, S. 4]:

$$D_{min.ST} = h_{1.ST} \cdot h_{2.ST} \cdot d_{Seil} \approx 198 \,\text{mm}$$
 für Seiltrommeln (24)

$$D_{min,SR} = h_{1,SR} \cdot h_{2,SR} \cdot d_{Seil} \approx 246.4 \,\text{mm}$$
 für Seilrollen (25)

$$D_{min,AR} = h_{1,AR} \cdot h_{2,AR} \cdot d_{Seil} \approx 154 \,\text{mm}$$
 für Ausgleichsrollen (26)

Nun kann der Spreizwinkel bei der höchsten Hakenstellung mit den aus der Aufgabenstellung gegebenen Geometriegrößen berechnet werden.

$$A_{min} = 500 \,\mathrm{mm} \tag{27}$$

$$B = 600 \,\mathrm{mm} \tag{28}$$

$$\beta = 2 \cdot \arctan \frac{B - D_{min,SR}}{A_{min} \cdot 2} \approx 38.95^{\circ}$$
 (29)

Da der Winkel unter 45 Grad ist, muss der Wert für die Seilkraft nicht korrigiert werden. Ebenfalls ist es Ok, mit dem Mindestdurchmesser der Seilrolle gerechnet zu haben, da der korrekte Durchmesser größer wäre und somit der Spreizwinkel noch kleiner.

Der Radius der Seilrillen kann nun ebenfalls der DIN 15020 entnommen werden [3, S. 5]:

$$r_{Rille} = 6 \,\mathrm{mm} \tag{30}$$

4.1 Sicherheitsbetrachtung

Für die Seilsicherheit S_{Seil} wird die wirkende Seilkraft mit der Bruchkraft F_{Bruch} des ausgewählten Seils verglichen. Als Seil wird ein einlagiges Rundlitzenseil der Seilklasse 6 x 7 gewählt [7, S. 9]. Mit der Festigkeitsklasse 1770 ergibt sich für das Seil die Normbezeichnung 11 6x7-FC 1770 U sZ [6, S. 28].

Für das gewählte Drahtseil ergibt sich bei einem Seildurchmesser von $d_{Seil} = 11$ mm [7, S. 9]:

$$F_{Bruch} = 71\,100\,\mathrm{N}$$
 (31)

Somit ergibt sich eine Sicherheit von:

$$S_{Seil} = \frac{F_{Bruch}}{F_S} \approx 5.5 \tag{32}$$

Diese liegt leicht über der geforderten Sicherheit von S = 5 [7, S. 4].

4.2 Seiltrommelgeometrien

Es wird ein Seiltrommelteilkreisdurchmesser von $d_{ST}=260\,\mathrm{mm}$ gewählt. Dieser liegt über dem geforderten Mindestdurchmesser. Weiterhin wird der Seiltrommeldurchmesser ähnlich groß gewählt wie der Außendurchmesser des Motors, um eine Kollision von Seil und Motor zu verhindern.

Zur Ermittelung der Seiltrommellänge wird zunächst die Windungszahl bestimmt.

Dafür wird die Hubhöhe der Hakenflasche benötigt, welche sich aus der Aufgabenstellung ergibt:

$$H = 5 \,\mathrm{m} - 500 \,\mathrm{mm} \approx 4500 \,\mathrm{mm}$$
 (33)

Die Seilübersetzung von Formel (12) und der Durchmesser der Seiltrommel wurden bereits berechnet. Somit gilt für die Windungszahl [11, S. 19]:

$$w = \frac{z \cdot H}{D_T \cdot \pi} + 2 \approx 22.037 \tag{34}$$

Die Länge der Seiltrommel ohne Rand kann mit der folgenden Formel berechnet werden [11, S. 19]:

$$l_0 = w \cdot p \tag{35}$$

Die Rillensteigung p ergibt sich aus der Summe des Seildurchmessers d_{Seil} und der Seillücke s [11, S. 18]:

$$p = d_{Seil} + s \tag{36}$$

$$s = 0, 15 \cdot d_{Seil} \tag{37}$$

Damit folgt:

$$p = d_{Seil} + 0.15 \cdot d_{Seil} = 12.65 \,\text{mm} \tag{38}$$

Durch Einsetzen in Formel (35) ergibt sich für die Seiltrommellänge ohne Rand:

$$l_0 \approx 279 \,\mathrm{mm} \tag{39}$$

5 Asynchronmotor

5.1 Vorberechnungen

Das europäische Verbundnetz wird mit einer Frequenz von f_{Netz} = 50 Hz betrieben [9]. In der folgenden Tabelle werden die damit gegebenen Daten für die Auswahl des Asynchronmotors zusammengefasst:

BezeichnungFormelzeichenZahlenwertNetzfrequenz f_{Netz} $50\frac{1}{s}$ max. Tragfähigkeit m_T $5000 \, \mathrm{kg}$ Gravitationskonstanteg $9.81 \, \frac{\mathrm{m}}{\mathrm{s}^2}$ max. Hubgeschwindigkeit $v_{Hub,max}$ $4.5 \, \frac{\mathrm{m}}{\mathrm{min}}$

Tabelle 2: Daten für die Motorauswahl

Die Synchrondrehzahl n_s berechnet sich somit mit der in der Aufgabenstellung gegebenen Formel:

$$n_s = \frac{f_{Netz}}{p} \tag{40}$$

Es wird ein Asynchronmotor mit der Polpaarzahl p=3 gewählt. Der Vorteil gegenüber einer kleineren Polpaarzahl ist, dass die Drehzahl geringer ist und somit eine geringere Übersetzung notwendig ist. Dadurch kann ein kleineres Getriebe mit weniger Komponenten verwendet werden, was wirtschaftliche Vorteile hat. Eine größere Polpaarzahl hat auch einen größeren Motor zur Folge [8, S. 16]. Dies kann zu konstruktiven Schwierigkeiten führen, wenn der Motor wie bei den später betrachteten Konzepten 2 und 3 unterhalb der Seiltrommel verbaut ist. Deshalb ist die gewählte Polpaarzahl ein guter Kompromiss.

Durch Einsetzen in Formel (40) ergibt sich die Synchrondrehzahl für diesen Motor:

$$n_s = 1000 \frac{1}{\text{min}} \approx 16.7 \frac{1}{\text{s}}$$
 (41)

Um nun den Motor zu wählen, müssen die Getriebegrößen ermittelt werden. Zunächst wird die erforderliche Abtriebsleistung des Triebwerkes berechnet. Da laut Aufgabenstellung von

einem idealen Wirkungsgrad ausgegangen werden darf gilt [11, S. 99]:

$$P = F_{Hub} \cdot v_{Hub} \tag{42}$$

$$P_{ab} = m_T \cdot g \cdot v_{Hub,max} \approx 3679 \,\mathrm{W} \tag{43}$$

Da nach Aufgabenstellung von einem idealen Wirkungsgrad ausgegangen werden kann, gilt:

$$P_{ab} = P_{an} \approx 3679 \,\mathrm{W} \tag{44}$$

Es muss nun ein oberflächengekühlter Käfigläufer-Asynchronmotor gewählt werden, welcher mindestens diese Bemessungsleistung besitzt. Die nächstgrößere Bemessungsleistung ist 4kW [8, S. 16]. Folglich ist die maximale Antriebsleistung:

$$P_{an,max} = 4 \text{ kW} \tag{45}$$

5.2 Motorwahl

Dementsprechend wurde ein Motor von Siemens nach [8, S. 16] gewählt: SIMOTICS FL -132 M - IM B5 - 6p. Im Anhang befindet sich das Datenblatt für den SIMOTICS FL -132 M - IM B3 - 6p. Die technischen Daten sind identisch für die Baureihe. Weiterhin befindet sich im Anhang die Zeichnung des verwendeten Motors. Die wichtigsten Daten dieses Motors werden in der folgenden Tabelle dargestellt:

Bezeichnung Formelzeichen Zahlenwert
Leistung P 4kW
Baugröße - 132M
Polpaarzahl p 3

 M_N

n

Tabelle 3: relevante Motordaten

5.3 Berechnung relevanter Motordaten

Der Schlupf berechnet sich mit der Formel aus der Aufgabenstellung zu:

Nenndrehmoment

Nenndrehzahl

$$s_n = \frac{n_s - n}{n_s} \approx 0.045 \tag{46}$$

40 Nm

 $955 \frac{1}{min}$

Weil die Drehzahl n im Bereich der Synchrondrehzahl liegt, kann die Formel für die Drehmoment-Schlupf-Kennlinie aus der Aufgabenstellung bis zum 1,4-fachen Nennmoment M_N linearisiert werden:

$$M(s) = \frac{M_N}{s_N} \cdot s \tag{47}$$

Da ein idealer Wirkungsgrad angenommen werden darf, gilt:

$$P_{ab} = P_{an} = 3679 \,\text{W} \tag{48}$$

Daraus folgt:

$$P_{an} = 2 \cdot \pi \cdot n_{an} \cdot M(s) \tag{49}$$

Durch einsetzen von Formel (47) ergibt sich:

$$P_{an} = 2 \cdot \pi \cdot n_{an} \cdot \frac{M_N}{s_N} \cdot s \tag{50}$$

Zudem kann der Schlupf s wie in Formel (46) berechnet werden. Damit folgt:

$$P_{an} = 2 \cdot \pi \cdot n_{an} \cdot \frac{M_N}{s_N} \cdot \frac{n_s - n_{an}}{n_s} \tag{51}$$

Durch Umstellen nach der Antriebsdrehzahl und Nutzen der p-q-Formel entsteht folgende Gleichung:

$$n_{an} = \frac{n_s}{2} \pm \sqrt{\left(-\frac{n_s}{2}\right)^2 - \frac{P_{an} \cdot s_N \cdot n_s}{2 \cdot \pi \cdot M_N}}$$
 (52)

Es ergeben sich zwei mögliche Lösungen:

$$n_{an,1} \approx 15.980 \frac{1}{s} \approx 958.78 \frac{1}{\text{min}}$$
 (53)

$$n_{an,2} \approx 0.687 \frac{1}{s} \approx 41.22 \frac{1}{\text{min}}$$
 (54)

Die erste Lösung ist korrekt, weil sich diese Antriebsdrehzahl zwischen der Synchrondrehzahl Abschließend kann nun das Betriebsmoment M durch Umstellen der Formel (49) berechnet werden:

$$M = \frac{P_{an}}{2 \cdot \pi \cdot n_{an}} \approx 36.64 \,\text{Nm} \tag{55}$$

Die Daten des Motors werden abschließend in dieser Tabelle zusammengefasst:

Tabelle 4: Motordaten

Bezeichnung	Formelzeichen	Zahlenwert
Synchrondrehzahl	n_s	$1000 \frac{1}{min}$
Antriebsleistung	P_{an}	3679 W
Antriebsdrehzahl	n_{an}	$958.78 \frac{1}{min}$
Betriebsmoment	M	36.64 Nm

6 Gesamtübersetzung

Für die erforderliche Übersetzung wird zunächst die Abtriebsdrehzahl und das Abtriebsmoment berechnet. Die maximale Abtriebsdrehzahl ergibt sich aus der Seilübersetzung z=4 dem Trommeldurchmesser und der maximalen Hubgeschwindigkeit:

$$n_{ab} = \frac{v_{Hub,max} \cdot z}{d_{ST} \cdot \pi} \approx 22.037 \frac{1}{\min}$$
 (56)

Für das Abtriebsmoment gilt:

Die zu realisierende Getriebeübersetzung berechnet sich zu:

$$i_{ges,Getriebe} = \frac{n_{an}}{n_{ab}} \approx 43.508 \tag{57}$$

7 Vorüberlegungen

7.1 Lösungsfindung

Nachdem anfangs die Anforderungsliste nach Pahl/Beitz erstellt wurde, muss nun eine geeignete Methode zur Lösungsfindung verwendet werden. Das Kollektionsverfahren ist eine dafür geeignete Methode. Diese Methode basiert auf Literaturrecherche sowie der Untersuchung vorhandener Lösungen und Systeme, die Ähnlichkeiten mit dem zu entwickelnden System aufweisen [10, S. 259]. Das System wird in Teilprobleme aufgeteilt und die möglichen Lösungen werden später im morphologischen Kasten dargestellt, um die Kombination der Teillösungen zu erleichtern.

7.2 Übersicht

Anhand des morphologischen Kastens nach Zwicky [10, S. 300] werden die Probleme in Teilprobleme aufgeteilt. Die Lösungsmöglichkeiten für die Teilprobleme werden in Reihen eingetragen und kombiniert, um eine sinnvolle Gesamtlösung zu erhalten. Es werden hierbei die wichtigsten Ideen, die realisierbar sind und mit den Anforderungen übereinstimmen, zusammengefasst. Die drei farbig markierten Linien stehen für die drei Konzepte, welche später näher ausgeführt werden.

Fu	nktion	en	3	2	Konzept	e <u>1</u>		
1	o	Stufe 1	Stirnradgetrie Gradverzahnu		Sonr Abtrieb:	trieb: nenrad Stegwelle Hohlrad	Sch	rnradgetriebe rägverzahnung
2	Getriebe	Stufe 2	Stirnradgetrie Gradverzahnu		Antrieb: Abtrie	engetrieb : Sonnenra b: Hohlrad Stegwelle	ad d	Kettentrieb
3		Stufe 3	Stirnradg Gradverz				Kei	ne
	Strom	nversorgung	Schleifl	eitun	g		Schlep	okabel
4	Positi Brems	on der se	An der Ant (zwischen A Antrieb	Motor	r und			riebswelle melseite)
5	Schmi	ierungsmittel	Fe	tt			Ö	1
6		usegestaltung Igsarten	Troggehäuse	Topf	gehäuse	Kastenge	häuse	Topfgehäuse mit beidseitigem Lagerschild (Seiltrommel)

Abbildung 1: Morphologischer Kasten

Die einzelnen Vorüberlegungen werden im Folgenden genauer ausgeführt.

7.3 Bremse

Wie in der Aufgabenstellung erwähnt, muss eine elektromagnetisch gelüftete Bremseinheit nach VDI 2241 ausgelegt werden. Bei dem verbauten Bremsentyp handelt es sich um eine Notstoppbremse, welche eine Bremszeit von 0,5s nicht überschreitet. Es muss eine Notstoppbremse verwendet werden, um die Last im Fall einer Notsituation wie zum Beispiel eines Stromausfalls zu halten [13, S. 130].

Damit das Gewicht, der Preis und die Dimensionen dieser Kupplung gering bleiben, ist die Bremse da einzubauen, wo das kleinste Drehmoment und die größte Drehzahl wirkt. Deswegen wir die Bremse bei der Motorwelle eingebaut. Denn an der Motorwelle wirkt das kleinste Drehmoment und die größte Drehzahl.[18, S. 508]

7.4 Gehäuse

Die allgemeinen Gestaltungsregeln nach [1, S. 445 f.] besagen, dass geschweißte Gehäuse für Einzelfertigung geeignet sind. Werden mehr als drei Stück gefertigt, sollen gegossene Gehäuse bevorzugt werden. Weil das Hubwerk 100 mal bestellt ist, wird Gießen als Fertigungsverfahren ausgewählt.

Für Konzept 1 ist die Seiltrommel ein Teil des Gehäuses. Für alle Konzepte wird sie als Drehteil gefertigt [4]. Für Konzept 2 und 3 gilt, um die Größenunterschiede zwischen Seiltrommel und Abtriebswelle zu realisieren, werden die Teile miteinander verschweißt.

Zudem werden auch die kleinen Deckel als Drehteile gefertigt.

7.5 Schmiermittel

Für die Wahl des Schmiermittels sind unter anderem die maximalen Umfangsgeschwindigkeiten der Getriebe ausschlaggebend. Weil ins langsame übersetzt wird, treten die schnellsten Geschwindigkeiten jeweils bei dem Zahnrad auf der Antriebswelle auf. Diese berechnen sich mit der Formel:

$$v_u = \frac{n_{an}}{60} \cdot \frac{d_a}{1000} \cdot \pi \tag{58}$$

Die maximalen Umfangsgeschwindigkeiten werden für die einzelnen Konzepte in der folgenden Tabelle zusammengefasst. Die Kopfkreisdurchmesser werden aus den Tabellen 6, 8 und 10 entnommen:

Tabelle 5: maximale Umfangsgeschwindigkeiten

	9	0
Konzept	Kopfkreisdurchmesser	Umfangsgeschwindigkeit
Konzept 1	37.5 mm	1.9 m/s
Konzept 2	46 mm	$2.3 \frac{m}{s}$
Konzept 3	50 mm	$2.5 \frac{m}{s}$

Somit wird die empfohlene Geschwindigkeit für eine Öltauchschmierung nicht überschritten. Für eine Tauchschmierung spricht dazu ihre Einfachheit und Zuverlässigkeit. [18, S. 753] Deswegen wurde bei den Konzepten mit den Stirnradgetrieben die Öltauchschmierung gewählt.

Für das Planetengetriebe wird eine Fettschmierung verwendet, weil eine Öltauchschmierung aufgrund der Rotation der Seiltrommel ungünstig ist. Eine Fettschmierung ist zudem anwendbar, weil die Geschwindigkeit $v_{1,K1}$ jeden Schmierstoff zulässt. [14, S. 207]

7.6 Dichtung

Für die Konstruktion werden sowohl statische als auch dynamische Dichtungen benötigt. Um die Montage und Demontage zu erleichtern, wurden lösbare Dichtungen ausgewählt.

Da Konzept 1 mit Fett geschmiert wird, sind Filzringe hier geeignet als dynamische Dichtungen an der Antriebs- und Abtriebsseite. Diese sind preiswerte Dichtungen und sind geeignet bei einer Geschwindigkeit bis $4\frac{m}{s}$ und eine Temperatur bis $100\,^{\circ}\text{C}$ [18, TB 19-10 S. 293]. Die Abdichtung gegen Fettverlust und Verschmutzung erfolgt durch Filzringe [18, S. 566]. Bei Konzept 2 sowie Konzept 3 werden als dynamische Dichtungen an der Antriebs- und Abtriebsseite, aufgrund der hohen Drehgeschwindigkeit und der gewählten Schmiermethode, Radialwellendichtringe als dynamische Dichtungen eingesetzt. Diese RWDR können [DIN 3760, S.5] Drehzahlen von bis zu $3000\,\frac{1}{\text{min}}$ und eine Umfangsgeschwindigkeit von $5.6\,\frac{\text{m}}{\text{s}}$ vertragen [5, S. 5]. Sie verfügen über eine hohe Lebensdauer und eine effektive Dichtwirkung [18, S. 739]. Als statische Dichtung wird für die beiden Gehäuseteile eine Flachdichtung verwendet, da diese für Flüssigkeiten geeignet ist [12, S. 7]. Zusätzlich müssen Ringdichtungen zwischen dem Deckel und dem Gehäuse angebracht werden, um eine vollständige Abdichtung des Systems zu gewährleisten.

7.7 Stromversorgung

Die Stromversorgung für Einschienenlaufkatzen kann nach [11, S. 119] mittels Kleinschleifleitungen oder Schleppkabel durchgeführt werden. Mit den Preisvergleichen unter [17] und [16] wurde festgestellt, dass die Stromversorgung mithilfe von einem Schleppkabel günstiger ist. Deswegen wurde die Variante mit dem Schleppkabel für die Stromversorgung ausgewählt.

7.8 Verzahnung der Zahnrädern

Es wurden Geradstirnräder gewählt, weil diese am einfachsten herstellbar und somit am günstigsten sind. Nachteile von Geradvezahnung sind ein ungünstigeres Geräuschverhalten sowie eine schlechtere Laufruhe. Diese Punkte sind aber für diesen Anwendungszweck nicht zu priorisieren, da die Lautstärke und die Laufruhe bei einer Hubwerkseinheit eines Brückenkrans nicht entscheidend sind. Zudem treten bei der Geradverzahnung im Gegensatz zur Schrägverzahnung keine Axialkräfte auf, wodurch Kosten bei der Lagerung eingespart werden können. Insgesamt überwiegen damit die Vorteile der Geradverzahnung gegenüber ihren Nachteilen. [14, S. 5]

7.9 Lager

Für alle Wellen wird eine Fest-Los-Lagerung verwendet, da die Zahnräder geradverzahnt sind und somit kein resultierenden Axialkräfte auftreten. Die Planeten bei Konzept 1 werden schwimmend gelagert, weil dies eine konstruktiv einfache und damit wirtschaftliche Lösung ist [15, S. 15].

8 Allgemeines für die Konzepte

8.1 Prinzipskizze

Die Legende der Prinzipskizzen wird, inspiriert von der Legende aus dem ISIS Kurs, im Folgenden tabellarisch zusammengefasst.

Prinzipielle Darstellungen				
Motor	MOTOR	Starre Kupplung	* * * * * * * * * * * * * * * * * * *	
Stromkabel		Kopfschraube	 - ×	
Antriebsmoment	Man	Durchsteckschraube	* *	
Abtriebsmoment	₩ab	Befestigung an dem Gehäuse	777	
Fest-Los-Lagerung		Bremse	= =	
schwimmende Lagerung		Schweißverbindung		
		RWDR	- bd-	
Festlager		Filtzring		
Loslager	+	Flachdichtung		
Stirnrad, geradverzahnt	7	O-ring	0	
		Axial-Radial Festlegung		
Hohlrad				
				

Abbildung 2: PZ Legende

Die Prinzipskizzen werden in den einzelnen Konzepten einmal abgebildet, sind jedoch im

9 KONZEPT 1 Seite 12

Anhang nochmal in Großformat zu finden.

8.2 Übersetzung

Mit Stirnrädern können üblicherweise Übersetzungen von bis zu $i \le 6$ pro Stufe realisiert werden [18, S. 753]. Mit Planetengetrieben lassen sich Übersetzungen pro Stufe bis zu $i \le 13$ realisieren [14, S. 6]. Das erste und zweite Getriebekonzept wird mit zwei Getriebestufen ausgeführt. Bei dem ersten Konzept werden zwei Planetenstufen gewählt, bei dem zweiten Konzept werden zwei Stirnradstufen gewählt.

Für die Übersetzung von Stirnrädern gilt weiterhin [18, S. 780]:

$$i = \frac{z_2}{z_1} \tag{59}$$

8.3 Zahnradgeometrie

Die Teilkreisdurchmesser der Zahnräder berechnet sich, unter Verwendung des Moduls *m* mit der Formel [18, S. 778]:

$$d_t = m \cdot z \tag{60}$$

Für den Fußkreisdurchmesser gilt [18, S. 780]:

$$d_f = m \cdot (z - 2.5) \tag{61}$$

Für den Kopfkreisdurchmesser gilt [18, S. 780]:

$$d_a = m \cdot (z+2) \tag{62}$$

Für den Achsabstand gilt [18, S. 780]:

$$a = \frac{m}{2} \cdot (z_1 + z_2) \tag{63}$$

Für die Getriebe wird jeweils ein Modul m aus der Vorzugsreihe nach DIN 780 gewählt. Weiterhin wird darauf geachtet, dass pro Zahnradpaarung eine Zähnezahl als Primzahl gewählt wird, um ein periodisches Aufeinandertreffen der Zähne zu verhindern [2, S. 640].

8.4 Teilmomente

Das Antriebsmoment wurde bereits in Formel (55) berechnet. Für die Momente die auf die einzelnen Wellen wirken muss das Moment welches auf die vorherige Welle wirkt mit der jeweiligen Teilübersetzung multipliziert werden.

$$M_{Welle2} = M_{Welle1} \cdot i_{Teil,korrekt} \tag{64}$$

9 Konzept 1

9.1 Beschreibung

In diesem Konzept wurde darüber nachgedacht, die kompakteste Konstruktion zu bauen. Das Konzept besteht aus seriell geschalteten Planetenstufen, die in der Seiltrommel integriert sind. Über eine Kupplung wird die Antriebswelle mit der Sonnenradwelle verbunden. Auf der Sonnenradwelle befindet sich die Bremseinheit, welche gemäß VDI 2241 ausgelegt wird. Das Drehmoment wird über das Sonnenrad auf die Stegwelle übertragen. Das Hohlrad von der ersten Getriebestufe ist fest mit dem Tragwerk verbunden. Die Stegwelle der ersten Stufe treibt die Sonnenradwelle der zweiten Stufe an. Die Stegwelle der zweiten Stufe ist ebenfalls durch

9 KONZEPT 1 Seite 13

eine abgedichtete Einschraubverbindung fest mit dem Tragwerk verbunden. Somit kann sich das zweite Hohlrad drehen und treibt die darauf befestigte Seiltrommel an. Die Seiltrommel wird durch eine Fest-Los-Lagerung gelagert.

Der Lastausgleich zum Ausgleich der Fertigungstoleranzen bei Planetengetrieben wird durch eine nachgiebige Befestigung der Planetenbolzen im jeweiligen Steg realisiert [14, S. 363 f.]. Diese besondere Befestigung wird jedoch in der Prinzipskizze nicht dargestellt.

Die Planeten werden durch eine schwimmende Lagerung und die Wellen mit einer Fest-Los-Lagerung gelagert. Das Gehäuse ist in diesem Fall ein Topfgehäuse mit beidseitigem Lagerschild. Es besteht aus der Seiltrommel und dem Tragwerk. Das Konzept wird auf dem Tragwerk mit einer Durchsteckverbindung befestigt.

Die Seiltrommel wird als Drehteil gefertigt.

Das Konzept wird durch Fettschmierung geschmiert. Die Abdichtung erfolgt in diesem Konzept über zwei Filzringe an beiden Seiten der Seiltrommel. Zusätzlich werden O-Ringe als statische Dichtungen auf dem Deckel verwendet.

9.2 Prinzipskizze

Konzept 1

Abbildung 3: PZ zwei Planetenstufen

9.3 Übersetzung

Die ungefähre Teilübersetzung berechnet sich zu:

$$i_{teil} = \sqrt{i_{ges,Getriebe}} \approx 6.596$$
 (65)

Bei Planetenstufen berechnet sich die Übersetzung je nachdem welche Welle angetrieben wird unterschiedlich. Im vorliegenden Konzept wird bei der ersten Stufe das Hohlrad festgehalten (am Gehäuse verschraubt) und der Antrieb erfolgt über die Sonnenradwelle. Bei der zweiten Stufe erfolgt der Antrieb über die Sonnenradwelle der Planetensteg wird festgehalten und das Hohlrad ist direkt mit der Seiltrommel verbunden. Für die erste Stufe lässt sich die Teilüberset-

KONZEPT 1 Seite 14

zung mit folgender Formel berechnen [14, S. 361]

$$i_{Stufe1,teil} = 1 - \frac{z_{Z2,Stufe1}}{z_{Z1,Stufe1}} \tag{66}$$

Für die zweite Stufe gilt [14, S. 361]:

$$i_{Stufe2,teil} = -\frac{z_{Z2,Stufe2}}{z_{Z1,Stufe2}} \tag{67}$$

Die Zähnezahlen werden so gewählt, dass beide Stufen in etwa die gleiche Teilübersetzung haben, das Hohlrad der ersten Stufe jedoch ein wenig kleiner als das Hohlrad der zweiten Stufe ist und die Zähnezahlbedingung gilt. Die Zähnezahlen und korrekten Übersetzungen lauten:

$$z_{Z1,Stufe1-2} = 23 (68)$$

$$z_{Z2,Stufe1} = -139 (69)$$

$$z_{Z2,Stufe2} = -145 (70)$$

$$i_{Stufe1,teil,korrekt} \approx 7.043$$
 (71)

$$i_{Stufe2,teil,korrekt} \approx 6.304$$
 (72)

$$i_{ges,korrekt} = i_{Stufe1,teil,korrekt} \cdot i_{Stufe2,teil,korrekt} \approx 44.405$$
 (73)

Als Nächstes wird die Zähnezahlbedingung für die beiden Planetenstufen überprüft. Es wird von 3 Planeten ausgegangen. Somit gilt [14, S. 363]:

$$\frac{z_{Z1,Stufe1} - z_{Z2,Stufe1}}{3} = 54\tag{74}$$

$$\frac{z_{Z1,Stufe1} - z_{Z2,Stufe1}}{3} = 54$$

$$\frac{z_{Z1,Stufe2} - z_{Z2,Stufe2}}{3} = 56$$
(74)

Die Zähnezahlbedingung gilt somit für beide Stufen.

Für die Zähnezahlen der Planeten bei Null-Verzahnung gilt [14, S. 363]:

$$z_{Zp,Stufe1} = \frac{-z_{Z1,Stufe1} - z_{Z2,Stufe1}}{2} \approx 58$$
 (76)

$$z_{Zp,Stufe1} = \frac{-z_{Z1,Stufe1} - z_{Z2,Stufe1}}{2} \approx 58$$

$$z_{Zp,Stufe2} = \frac{-z_{Z1,Stufe2} - z_{Z2,Stufe2}}{2} \approx 61$$
(76)

(78)

9.4 Zahnradgeometrie

Für das erste Konzept eignet sich ein Modul von m = 1.5 mm. Die Zahnradgeometrien berechnen sich somit zu:

10 KONZEPT 2 Seite 15

Tabelle 6: Getriebegeometrien Konzept 1

Bezeichnung	Formelzeichen	Zahlenwert
Teilkreisdurchmesser Z1 Stufe 1-2	$d_{t,Z1,Stufe1-2}$	34.5 mm
Teilkreisdurchmesser Zp Stufe 1	$d_{t,Zp,Stufe1}$	87 mm
Teilkreisdurchmesser Zp Stufe 2	$d_{t,Zp,Stufe2}$	91.5 mm
Teilkreisdurchmesser Z2 Stufe 1	$d_{t,Z2,Stufe1}$	$208.5\mathrm{mm}$
Teilkreisdurchmesser Z2 Stufe 2	$d_{t,Z2,Stufe2}$	217.5 mm
Fußkreisdurchmesser Z1 Stufe 1-2	$d_{f,Z1,Stufe1-2}$	31 mm
Fußkreisdurchmesser Zp Stufe 1	$d_{f,Zp,Stufe1}$	83.5 mm
Fußkreisdurchmesser Zp Stufe 2	$d_{f,Zp,Stufe2}$	88 mm
Fußkreisdurchmesser Z2 Stufe 1	$d_{f,Z2,Stufe1}$	212 mm
Fußkreisdurchmesser Z2 Stufe 2	$d_{f,Z2,Stufe2}$	221 mm
Kopfkreisdurchmesser Z1 Stufe 1-2	$d_{a,Z1,Stufe1-2}$	37.5 mm
Kopfkreisdurchmesser Zp Stufe 1	$d_{a,Zp,Stufe1}$	90 mm
Kopfkreisdurchmesser Zp Stufe 2	$d_{a,Zp,Stufe2}$	94.5 mm
Kopfkreisdurchmesser Z2 Stufe 1	$d_{a,Z2,Stufe1}$	$205.5\mathrm{mm}$
Kopfkreisdurchmesser Z2 Stufe 2	$d_{a,Z2,Stufe2}$	214.5 mm
Achsabstand Planet/Sonne Stufe 1	a _{Stufe1}	60.75 mm
Achsabstand Planet/Sonne Stufe 2	a_{Stufe2}	63 mm

9.5 Teilmomente

Für die Teilmomente der Planetenstufen gilt:

Tabelle 7: Momente Konzept 1

	1	
Bezeichnung	Formelzeichen	Zahlenwert
Moment auf Sonnenradwelle 1	M_{an}	36.64 Nm
Moment auf Stegwelle 1/ Sonnenradwelle 2	M_{zw}	258.07 Nm
Moment auf Hohlrad 2/ Seiltrommel	M_{ab}	1627 Nm

10 Konzept 2

10.1 Beschreibung

Es wurde sich für dieses Konzept entschieden, da es eine wirtschaftliche Lösung ist und für die Montage sowie die Wartungsarbeit relativ einfach gestaltet ist.

Es werden zwei Stirnradstufen als erstes Konzept verwendet. Die Verbindung zwischen der Antriebswelle und der Abtriebswelle des Motors erfolgt über eine Kupplung. Auf der Antriebswelle befindet sich die Bremseinheit, welche gemäß VDI 2241 ausgelegt wird. Das Drehmoment wird über die erste Stirnradstufe auf eine Zwischenwelle übertragen. Anschließend wird es über die zweite Stirnradstufe auf die Abtriebswelle übertragen. Die Abtriebswelle ist mit der Seiltrommel verbunden.

Alle Wellen sind mit einem Festlager und einem Loslager gelagert. Das Gehäuse wird in Form eines Topfgehäuses gegossen. Die Abdichtung der Gehäuse zwischen den zwei Gehäusehälften erfolgt über eine Flachdichtung. Zusätzlich wird an den An- und Abtriebswellen ein Radialwellendichtring als dynamische Dichtung vorgesehen. Alle Dichtungen an den restlichen Deckeln und an den Ölein- und Ölauslassschrauben, sowie beim Ölschauglas werden durch statische Dichtungen gewährleistet. Die Zahnräder werden durch eine Tauchschmierung mit Öl geschmiert. Dafür sollten auch Ölkanäle vorhanden sein, um eine ausreichende Zirkulation des Öls in allen zu schmierenden Getriebeteilen zu gewährleisten [18, S. 100]. Zur Kontrolle des

KONZEPT 2 Seite 16 10

Ölstands wird ein Ölschauglas eingebaut.

Das Hubwerk ist mittels Einschraubverbindung mit dem Tragwerk verbunden. Die Seiltrommel ist im Tragwerk gelagert. Der Motor ist über weitere Durchsteckverbindungen an dem Gehäuse des Hubwerks verschraubt.

10.2 Prinzipskizze

Abbildung 4: PZ zwei Stirnradstufen

10.3 Übersetzung

Die ungefähre Teilübersetzung berechnet sich zu:

$$i_{teil} = \sqrt{i_{ges,Getriebe}} \approx 6.596$$
 (79)

Für die jeweils kleine Stirnräder wird eine Zähnezahl von z_1 = 21 gewählt. Somit gilt:

$$z_2 = i_{teil} \cdot z_1 \approx 139 \tag{80}$$

Da die Zähnezahl auf den nächst größeren geraden Wert aufgerundet wurde, ergeben sich für die Teil- und Gesamtübersetzung leichte Abweichungen:

$$i_{teil,korrekt} = \frac{z_2}{z_1} \approx 6.619$$
 (81)
 $i_{ges,korrekt} = i_{teil,korrekt}^2 \approx 43.812$ (82)

$$i_{ges,korrekt} = i_{teil,korrekt}^2 \approx 43.812 \tag{82}$$

11 KONZEPT 3 Seite 17

10.4 Zahnradgeometrie

Für beide Getriebestufen werden die gleichen Getriebeabmessungen gewählt. Für das Modul gilt:

$$m = 2 \,\mathrm{mm} \tag{83}$$

Somit berechnen sich die Zahnradgeometrien zu:

Tabelle 8: Getriebegeometrien Konzept 2

Bezeichnung	Formelzeichen	Zahlenwert
Teilkreisdurchmesser Z1	$d_{t,Z1}$	42 mm
Teilkreisdurchmesser Z2	$d_{t,Z2}$	278 mm
Fußkreisdurchmesser Z1	$d_{f,Z1}$	37.5 mm
Fußkreisdurchmesser Z2	$d_{f,Z2}$	273.5 mm
Kopfkreisdurchmesser Z1	$d_{a,Z1}$	46 mm
Kopfkreisdurchmesser Z2	$d_{a,Z2}$	282 mm
Achsabstand	а	160 mm

10.5 Teilmomente

Für die Teilmomente der Stirnradstufen gilt:

Tabelle 9: Momente Konzept 2

Bezeichnung	Formelzeichen	Zahlenwert
Moment auf Stirnradwelle 1	M_{an}	36.64 Nm
Moment auf Stirnradwelle 2	M_{zw}	242.52 Nm
Moment auf Stirnradwelle 3/ Seiltrommel	M_{ab}	1605.25 Nm

11 Konzept 3

11.1 Beschreibung

Es wird ein dreistufiges Stirnradgetriebe als drittes Konzept verwendet. Die Verbindung zwischen der Antriebswelle und der Abtriebswelle des Motors erfolgt erneut über eine Kupplung. Auf der Antriebswelle befindet sich die Bremseinheit gemäß VDI 2241. Das Drehmoment wird über die erste Stirnradstufe auf eine Zwischenwelle übertragen. Anschließend wird es über die zweite Stirnradstufe auf eine weitere Zwischenwelle übertragen und von dort über die letzte Stirnradstufe auf die Abtriebswelle übertragen. Die Abtriebswelle ist mit der Seiltrommel verbunden.

Alle Wellen sind mit einem Festlager und einem Loslager gelagert. Das Gehäuse wird in Form eines Topfgehäuses gegossen. Die Abdichtung der Gehäuse zwischen die zwei Gehäusehälften erfolgt über eine Flachdichtung.

Zusätzlich wird an den An- und Abtriebswellen ein Radialwellendichtring als dynamische Dichtung vorgesehen. Alle Dichtungen an den restlichen Deckeln und an den Ölein- und Ölauslassschrauben, sowie beim Ölschauglas werden durch statische Dichtungen gewährleistet. Die Zahnräder werden durch eine Tauchschmierung mit Öl geschmiert. Dafür sollten auch Ölkanäle vorhanden sein, um eine ausreichende Zirkulation des Öls in allen zu schmierenden Getriebeteilen zu gewährleisten [18, S. 100]. Zur Kontrolle des Ölstands wird ein Ölschauglas eingebaut.

11 KONZEPT 3 Seite 18

Das Hubwerk ist mittels Einschraubverbindung mit dem Tragwerk verbunden. Die Seiltrommel ist im Tragwerk gelagert. Der Motor ist über weitere Durchsteckverbindungen mit dem Gehäuse des Hubwerks verbunden.

11.2 Prinzipskizze

Konzept 3

Abbildung 5: PZ drei Stirnradstufen

11.3 Übersetzung

Als drittes Getriebekonzept werden drei Stirnradstufen gewählt. Für die erste Stufe wird eine kleinere Übersetzung gewählt als für die zweite und dritte Stufe, damit die Zahnräder nicht mit der Welle kollidieren. Somit gilt für die Zähnezahlen:

$$z_{1,Stufe1-3} = 23 (84)$$

$$Z_{2,Stufe1} = 60$$
 (85)

$$Z_{2,Stufe2-3} = 94$$
 (86)

(87)

Die korrekten Teil- und Gesamtübersetzung berechnen sich zu:

$$i_{Stufe1,teil,korrekt} \approx 2.609$$
 (88)

$$i_{Stufe2-3,teil,korrekt} \approx 4.087$$
 (89)

$$i_{ges,korrekt} = i_{Stufe1,teil,korrekt} \cdot i_{Stufe2-3,teil,korrekt}^3 \approx 43.574$$
 (90)

11.4 Zahnradgeometrie

Bezeichnung	Formelzeichen	Zahlenwert
Teilkreisdurchmesser Z1 Stufe 1-3	$d_{t,Z1,Stufe1-3}$	46 mm
Teilkreisdurchmesser Z2 Stufe 1	$d_{t,Z2,Stufe1}$	120 mm
Teilkreisdurchmesser Z2 Stufe 2-3	$d_{t,Z2,Stufe2-3}$	188 mm
Fußkreisdurchmesser Z1 Stufe 1-3	d _{f,Z1,Stufe1-3}	41.5 mm
Fußkreisdurchmesser Z2 Stufe 1	d _{f,Z2,Stufe1}	115.5 mm
Fußkreisdurchmesser Z2 Stufe 2-3	$d_{f,Z2,Stufe2-3}$	183.5 mm
Kopfkreisdurchmesser Z1 Stufe 1-3	$d_{a,Z1,Stufe1-3}$	50 mm

 $d_{a,Z2,Stufe1}$

 $d_{a,Z2,Stufe2-3}$

 a_{Stufe1}

 $a_{Stufe2-3}$

124 mm

192 mm

83 mm

117 mm

Tabelle 10: Getriebegeometrien Konzept 3

11.5 Teilmomente

Für die Teilmomente der Stirnradstufen gilt:

Kopfkreisdurchmesser Z2 Stufe 1

Kopfkreisdurchmesser Z2 Stufe 2-3

Achsabstand Stufe 1

Achsabstand Stufe 2-3

Tabelle 11: Momente Konzept 3

Bezeichnung	Formelzeichen	Zahlenwert
Moment auf Stirnradwelle 1	M_{an}	36.64 Nm
Moment auf Stirnradwelle 2	M_{zw1}	95.58 Nm
Moment auf Stirnradwelle 3	M_{zw2}	390.64 Nm
Moment auf Stirnradwelle 4/ Seiltrommel	M_{ab}	1596.53 Nm

12 Bewertung der Konzepte

12.1 Bewertungsystem

Für die drei Konzepte wird nun nach [18, S. 13] eine Punktebewertung mit Gewichtung von verschiedenen Bewertungskriterien durchgeführt. Bei der Punktvergabe wird sich dabei an folgender Tabelle orientiert [18, S. 14]:

Tabelle 12: Punkteskala

Grad der Annäherung	Punktzahl
sehr gut (ideal)	4
gut	3
ausreichend	2
gerade noch tragbar	1
unbefriedigend	0

Die Gewichtung wird durchgeführt, weil einige Bewertungskriterien von größerer Wichtigkeit als andere sind. Dieser Gewichtungsfaktor wird sich im Rahmen von eins bis fünf bewegen, wie in dem Beispiel von [18, S. 14].

12.2 Bewertungskriterien

Im Folgenden werden die einzelnen Kriterien, nach denen bewertet wird, vorgestellt. Dabei wird die Gewichtung der Punkte begründet und die Punktevergabe für die Konzepte erklärt.

12.2.1 Kompakte Bauweise

In die kompakte Bauweise fließt die Anordnung von Getriebe und Motor ein und wie viel Platz insgesamt benötigt wird. Jedoch spielt die Kompaktheit bei Hubwerken nicht die größte Rolle, weil Hubwerke im Allgemeinen sehr große Bauteile sind und keine großen Einschränkungen in der Raumbegrenzung bestehen. Deswegen wurde für diesen Punkt nur eine Gewichtung mit dem Faktor 2 gewählt.

Der Vorteil beim ersten Konzept ist, dass der Raum in der Seiltrommel genutzt werden kann und damit am wenigsten Platz von allen Konzepten in Anspruch genommen wird. Deshalb wird es mit einer 4 bewertet.

Konzepte 2 und 3 lassen den Raum in der Seiltrommel ungenutzt. Außerdem benötigt Konzept 2 aufgrund der großen Übersetzungsstufen mehr Platz für die Zahnräder. Daher bekommt Konzept 2 nur einen Punkt. Das dritte Konzept hat aufgrund kleinerer Übersetzungsstufen ein deutlich kompakteres Getriebe und kann deswegen mit einer drei bewertet werden.

12.2.2 Geringes Gewicht

Ein geringes Gewicht ist in der Handhabbarkeit förderlich. Zudem kann durch Gewichtseinsparungen auch Kosten reduziert werden. Dieses Kriterium wird dennoch nur mit dem Faktor 1 gewichtet, weil das Hubwerk im Verhältnis zur maximalen Tragfähigkeit $m_T = 5000 \, \mathrm{kg}$ nicht besonders ins Gewicht fällt.

Das erste Konzept kann durch eine kompakte Bauweise besonders Gewicht beim Gehäuse aber auch beim Getriebe einsparen und hat damit das geringste Gewicht aller Konzepte. Somit erhält dieses Konzept die Idealpunktzahl vier. Die anderen beiden Konzepte sind deutlich schwerer, da durch die Platzierung des Getriebes größere Gehäuse verwendet werden müssen. Konzept 3 ist insgesamt leichter als Konzept 2, weil kleinere Zahnräder verbaut sind und somit auch nur ein kleineres Gehäuse benötigt wird. Dies führt zu einer Bewertung von zwei Punkten für Konzept 3 und ein Punkt für Konzept 2.

12.2.3 Fertigungsaufwand

Der Fertigungsaufwand berücksichtigt wie viele Teile gefertigt werden müssen und mit welchem Fertigungsverfahren diese hergestellt werden. Es ist das wichtigste Bewertungskriterium, weil es wirtschaftlich die größten Auswirkungen im Vergleich zu den anderen Punkten hat. Da es sich mit einer Stückzahl von 100 nicht um eine Massenproduktion handelt, ist darauf zu achten, dass keine Spezialwerkzeuge für die Herstellung benötigt werden. Aus diesen Gründen wird dieser Punkt mit dem Faktor fünf gewichtet.

Da alle Konzepte mit konventionellen Fertigungsverfahren hergestellt werden können, wird bei der Bewertung speziell die Teileanzahl berücksichtigt. Weil bei Planetengetrieben mehr Teile benötigt werden, ist hier der Fertigungsaufwand am größten. Somit werden für Konzept 1 die meisten Komponenten gefertigt. Außerdem benötigt die Seiltrommel eine besondere Innengeometrie, weil sich in ihr das Getriebe befindet. Das bedeutet, dass für die Seiltrommel mehr Fertigungsschritte als bei den anderen Konzepten durchgeführt werden. Da wie erwähnt jedoch alles mit konventionellen Fertigungsverfahren hergestellt werden kann, wird es immerhin noch mit einer 2 bewertet. Weil Konzept 2 die wenigsten Einzelkomponenten hat, wird es mit einer 4 bewertet. Konzept 3 benötigt zwar etwas mehr Teile als Konzept 2, aber die einzelnen Komponenten ähneln sich. Deswegen erhält das dritte Konzept drei Punkte.

12.2.4 Montageaufwand

Dieses Bewertungskriterium beurteilt, wie lange es dauert, alle Montageprozesse durchzuführen. Dabei wird zum einen die Teileanzahl sowie zum anderen die Schwierigkeit der Montage berücksichtigt. Dieser Punkt wurde als zweitwichtigster gewichtet, weil die Montage nach der Fertigung wirtschaftlich und zeitlich am aufwändigsten ist. Deswegen wird das Kriterium mit dem Faktor drei gewichtet.

Das erste Konzept hat den größten Montageaufwand, weil es am schwierigsten ist an alle Montagepositionen ranzukommen. Zudem gibt es mehr Teile, die zu montieren sind. die Teile kleiner, was zu einer schlechteren Handhabung führt. Bei den beiden anderen Konzepten ist es einfacher alle Montageschritte durchzuführen, weil der Aufbau es erleichtert überall ranzukommen. Zudem ähneln sich die Konzepte, wodurch auch die Montageschritte miteinander vergleichbar sind. Deswegen beide Konzepte mit einer Punktzahl von vier die gleiche Bewertung und zwei für Konzept 1.

12.2.5 Wartungsaufwand

Beim Wartungsaufwand wird berücksichtigt, wie einfach die Instandhaltung, zum Beispiel ein Ölwechsel, möglich ist. Außerdem ist zu beachten, wie simpel es ist, Teile im Schadensfall auszutauschen. Gewichtet wird dieser Punkt mit dem Faktor 2. Theoretisch beansprucht die Instandhaltung nicht besonders viel Zeit. Schäden können allerdings immer auftreten und diese zu beheben, dauert meistens länger. Daher wurde dieser Gewichtungsfaktor gewählt.

Konzept 2 und 3 schneiden bei diesem Kriterium am besten ab, weil alle Bereiche der Konstruktion gut zu erreichen sind und im Schadensfall Komponenten einfach auszutauschen sind. Zudem wird durch ein Ölschauglas bei beiden Konzepten die Inspektion erleichtert. Beide Konzepte erhalten deswegen vier Punkte. Das Planetengetriebe ermöglicht im Schadensfall einen deutlich schwierigeren Austausch kaputter Teile, weil mehr demontiert werden muss. Zudem ist der Schmierungszustand schwieriger zu prüfen bzw. aufzufrischen, weil auch dafür sehr viele Teile demontiert werden müssten. Somit wird das erste Konzept mit einer zwei bewertet.

12.2.6 Sicherheit

Da die einzelnen Sicherheiten und Lebensdauern des Getriebes erst im Verlaufe der weiteren Konstruktion berechnet werden, gehen diese nur mit dem Faktor eins in die Bewertung ein. Weiterhin müssten die geforderten Sicherheiten mit jedem Getriebe eingehalten werden, weshalb von einer idealen Bewertung ausgegangen werden wird.

12.2.7 Übersetzung

Für die Bewertung wird zunächst geguckt, welche Gesamtübersetzung im Vergleich zur geforderten Mindestübersetzung realisiert wurde. Je näher der idealen Übersetzung gekommen wird, desto besser wird das Konzept bewertet. Hierbei schneidet das Planetengetriebe am schlechtesten ab, da hier die Zähnezahlbedingung und die weiteren vorliegenden Bedingungen zu einer leicht größeren Gesamtübersetzung geführt haben. Die beiden Stirnradkonzepte unterscheiden sich hier nicht wesentlich.

Weiterhin wird überprüft, was die empfohlene Teilübersetzung im Vergleich zur vorliegenden Teilübersetzung für die jeweilige Getriebeart ist. Hierbei fällt auf, dass das zweistufige Stirnradgetriebe relativ große Teilübersetzungen im Vergleich zu üblichen Stirnradstufen hat. Eine solche Übersetzung würde sich zwar Realisieren lassen [18, S. 753], wird jedoch, da es nicht empfohlen wird, schlechter bewertet. Bei Überlagerung der beiden Kriterien ergibt sich für das erste Konzept eine Bewertung von zwei, für das zweite Konzept ebenfalls eine zwei und für das dritte Konzept eine vier.

12.3 Technische Bewertung

Somit ergibt sich die Bewertung, wobei das Kürzel G den Gewichtungsfaktor und E die Einschätzung bzw. die Punktzahl darstellt:

Konzept 1 Konzept 2 Konzept 3 ideal Technische Anforderungen $G \cdot E$ G $G\cdot E$ $G \cdot E$ Ε $G\cdot E$ E kompakte Bauweise geringes Gewicht Fertigungsaufwand Montageaufwand Wartungsaufwand Sicherheit Übersetzung Summe technischer Wert x 0.86 0.63 0.81 1.00

Tabelle 13: technische Bewertung

12.4 Auswahl des Konzeptes

Aus der technischen Bewertung geht hervor, dass Konzept 3 den höchsten technischen Wert erhalten hat. Somit ist es das beste Konzept für die gewählten Anforderungen und wird für den weiteren Verlauf der Hubwerkauslegung ausgewählt.

Literatur Seite 23

Literatur

[1] Beate Bender and Dietmar Göhlich. *Dubbel Taschenbuch für den Maschinenbau Anwendungen*. Springer, 2020.

- [2] Karl-Heinz Decker, Karlheinz Kabus, Frank Rieg, Reinhard Hackenschmidt, Gerhard Engelken, and Frank Weidermann. *Maschinenelemente: Funktion, Gestaltung und Berechnung; mit...* 164 Berechnungsbeispielen.... 18. Hanser, 2011.
- [3] DIN 15020 Rillenprofile für Seiltrommeln, 2. 1974.
- [4] DIN 15061-2 Grundsätze für Seiltriebe, 8. 1977.
- [5] DIN 3760 Radial-Wellendichringe, 9. 19996.
- [6] DIN EN 12385-2 Drahtseile aus Stahldraht, 6. 2008.
- [7] DIN EN 12385-4 Drahtseile aus Stahldraht, 6. 2008.
- [8] DIN EN 50347 Drehstromasynchronmotoren, 9. 2003.
- [9] Dr.-Ing. Thomas Gobmaier. Messung der Netzfrequenz, 05 2022. htt-ps://www.netzfrequenzmessung.de/.
- [10] Jörg Feldhusen, Karl-Heinrich Grote, Jan Göpfert, and Gerhard Tretow. Technische systeme. *Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung*, pages 237–279, 2013.
- [11] Rudolf Griemert and Peter Römisch. Fördertechnik- Auswahl und Berechnung von Elementen und Baugruppen. Springer Fachmedien Wiesbaden, 2020.
- [12] W Haas. Grundlehrgang dichtungstechnik. *Institut für Maschinenelemente, Bereich Dichtungstechnik, Universität Stuttgart; Stuttgart, Germany*, 2014.
- [13] Edwin Kiel. Antriebslösungen: Mechatronik für Produktion und Logistik. Springer, 2007.
- [14] G. Niemann and H. Winter. *Maschinenelemente: Band 2: Getriebe allgemein, Zahnradgetriebe Grundlagen, Stirnradgetriebe*. Springer Berlin Heidelberg, 2003.
- [15] Schaeffler Technologies. Planetenradlagerungen in Industriegetrieben, 5 2014. https://www.at.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/tpi/downloads_8/tpi_008_de_de.pdf.
- [16] TOMANRO. C-Schienen Set mit Flachkabel 6 m, 6 2023. https://www.tomanro.de/288-Wampfler_C_Schienen_Set_mit_Flachkabel_6_m-Produkte.
- [17] TOMANRO. Kastenschleifleitung System 6,0 m, 6 2023. https://www.tomanro.de/710-Wampfler_Kastenschleifleitung_System_6_0_m-Produkte#.
- [18] H. Wittel, D. Jannasch, J. Voßiek, and C. Spura. *Roloff/Matek Maschinenelemente: Normung, Berechnung, Gestaltung.* Springer Fachmedien Wiesbaden, 2017.

Konzept 1

Konzept 2

Konzept 3

Anlage C Motor Seite v

D-1-	-11	f = = (l-		0 '		Na. ((DIMOTIO	0									
<u>Data</u>	sheet	for the	<u>ee-pha</u>	ise Squiri	<u>rel-Cage</u>	-Motors :	SIMOTIC	<u>S</u>								C	
Motor Client ord)AV3132	С		Ito	SIMC m-No.	TICS FL -	132 M -	IM B3 -	6р	Ic	offer no.					
Cilentoro	iei iio.				ite	III-INO.						niei no.					
Order no.					Co	nsignment no.					Р	roject					
Remarks																	
Electri	ectrical data Safe area																
U	Δ/Υ	f	Р	Р	I	n	М		η			cos φ		I_A/I_N	M_A/M_N	M_K/M_N	IE-CL
[V]		[Hz]	[kW]	[hp]	[A]	[1/min]	[Nm]	4/4	3/4	2/4	4/4	3/4	2/4	I _I /I _N	T _I /T _N	T _B /T _N	
400	Δ	50	4	-	8.9	955	40	86.8	88.5	88.7	0.75	-	-	6	2.3	3.4	IE3
690	Y	50	4	-	5.1	955	40	86.8	88.5	88.7	0.75	-	-	6	2.3	3.4	IE3
IM	B3		FS 132	2 M		IP 55		IEC/EN	I 60034	l II	EC, DIN, IS	O. VDE. E	EN				
		Enviro		conditions :	-20°C - +40		m					-,, -					
Macha	nical d																
	evel (SPI	L / SWL) a	nt	:	57 / 69 dB(A)		-/-	Vibrat	ion seve	ity grade					A		
	of inertia	a			0.0	3045 kg m2		Insula	tion						155(F) to	130(B)	
Bearing	DE ND	E			6208 2Z C3	620	08 2Z C3	Duty t	ype						S1		
_	lifetime							Direct	ion of rot	ation				bidirectional			
L _{10mh} F _R 50 60Hz	lad min for	coupling o	peration		40000 h		-	Frame material aluminum									
Lubrica				Unirex N3					Net weight of the motor (IM B3)					63 kg			
Regreas	sing devi	ce				no		Coating (paint finish) Standard					andard pair	ard paint finish C2			
Grease	nipple							Color, paint shade RAL7030									
Type of	bearing				floated be	aring DE and	NDE	Motor protection (A) without (Standard))			
Conden	sate drai	nage hole	s			no		Metho	d of cool	ing				IC411 - se	elf ventilate	d, surface	cooled
Externa	l earthing	g terminal				no											
Termir	nal box																
Termina	al box pos	sition				top		Cable	diamete	from	to				18 mm - 2	5 mm	
Material	of termin	nal box			;	aluminum		Cable	entry					МЗ	2 x 1.5 + N	132 x 1.5	
Type of	terminal	box				-		Cable	gland						2 gland	ds	
Contact	-screw th	read				M4											
Max. cro	oss-secti	onal area				6 mm2											
Specia	al desig	n															
respons	ible dep.			technical refere	nce	created b	y nfigurator		арр	roved by				ata are subject t			
IVIC	v .v.			document type		2.00			1			ument sta		Doctrool Gald	customer	Praco values.	
SI	EN	/IEI	NS	datasheet								eased ument nur	mber		-		
				1LE0323-1	CC23-4AA	1					rev.	cre	ation date		language	page	
© SIE	MENS A	AG 2022									01		0.0		en	1/2	

Anlage C Motor Seite vi

Efficiency documentation for 50/60Hz three-phase Squirrel-Cage-Motors SIMOTICS

MLFB: 1LE0323-1CC23-4AA4

Motortype:	0AV3132C

motor rating								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
400	Δ	50	4	8.9	955	40		

Power losses acc. to COMMISION REGULATION (EU) 2019/1781

operating point (n:T)	losses P _L [W]	relative losses P _L /P _N [%]
P ₁ (90:100)	607	15.2
P ₂ (50:100)	539	13.5
P ₃ (25:100)	498	12.5
P ₄ (90:50)	289	7.2
P ₅ (50:50)	239	6
P ₆ (50:25)	166	4.2
P ₇ (25:25)	134	3.4

Map of losses - relative losses P_L/P_N [%]

Notes / Definitions

T as relative T: T/T_N [%] n as relative n: n/n_N [%]

responsible dep.	technical reference	created by	approved by	Technical data are subject to		change! There may be	
DI MC LVM		DT Configurator		discrepancies between calcu		ated and rating plate	values.
CIENTENIC	document type datasheet			document s released		customer	
SIEMENS	title 1LE0323-1CC23-4AA4			document n	umber		
© SIEMENS AG 2022				rev. c	reation date		page 2/2

Technische Universität Berlin AG Konstruktion

Konstruktionslehre III SoSe 2023

2. Konstruktionsaufgabe Hubwerkseinheit eines Brückenkrans

Gruppe 4

Yassine <u>Kraiem</u>, 457695

Hiermit erklären wir, dass wir die vorliegende Hausaufgabe selbstständig und eigenhändig sowie ohne unerlaubte Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt haben.

> Die selbstständige und eigenhändige Anfertigung versichere ich an Eides statt.

> > Berlin, den 21.5.2023
> >
> > (Unterschrift)

Die selbstständige und eigenhändige Anfertigung versichere ich an Eides statt.

Berlin, den 21.5.2023 (Unterschrift)

Die selbstständige und eigenhändige Anfertigung versichere ich an Eides statt.

Berlin, den 21.5.2023

Wir stimmen der Nutzung unserer Zeichnung(en) in anonymisierter Form in der Konstruktionslehre an der TU Berlin zur Weiterbildung von Tutoren und Studenten zu.

1 Konstruktionshinweise

In der Konstruktion wurde nur der Zylinderstift ISO 2338 - 4 m6 x 18 - St verbaut. Weiterhin wurde auf der fest sitzenden Seite immer die Toleranz H7/m6 und auf der locker sitzenden Seite immer F8/m6 gewählt. Da die Stifte immer gleich sind, wird darauf verzichtet bei jedem Stift die Passung anzutragen.

Bei den Außenlamellen wurde in der Stückliste ein Gusswerkstoff eingetragen. Um dennoch die gewünschte Reibpaarung der Lamellen zu erzielen, werden die Außenlamellen mit einem organischen Material beschichtet.

SOLID EDGE AGADEMIC COPY

Marstab

1:1

Werkstoff

Format
A0

Dokumentenart
Zusammenbauzeichnung

Titel, zusatzlicher Titel
Hubwerkseinheit

Matrikel-Nr.

Datum
09.07.2023

Blatt
Von

	Pos	Me	Benennung			Sachnun	nmer/Norm-	Kurzbezeichnun	Bemerku	ng
	1	1	Grundplatte						S275JR	
	2	1	Seiltrommel						S275JR	
	3	1	Gehäusetrog						EN-GJL-	150
	4	1	Gehäusetrogded	kel					EN-GJL-	150
	5	1	Motorgrundplat	te					S275JR	
	6	1	Seiltrommelfuß	links					S275JR	
	7	1	Seiltrommelfuß	rechts					S275JR	
	8	1	Seiltrommel Abs	stützung] links				EN-GJL-	150
	9	1	Seiltrommel Abs	stützung	j rechts				EN-GJL-	150
	10	1	Seiltrommel Zw	ischenso	cheibe links				S275JR	
	11	1	Seiltrommel Zw	ischenso	cheibe rechts				S275JR	
	12	1	Abtriebswelle li	nks					C45	
	13	1	Abtriebswelle ro	echts					C45	
	14	1	Zwischenwelle2						C45	
	15	1	Zwischenwelle1						C45	
	16	1	Antriebswelle						C45	
	17	1	Zahnrad 6						EN-GJL-	150
	18	1	Zahnrad 4						C45	
	19	1	Zahnrad 2						C45	
	20	1	Zahnrad 5						C45	
	21	1	Zahnrad 3						C45	
	22	1	Zahnrad 1						C45	
	23	1	Zahnrad Bremse	<u>-</u>					C45	
•	Maßstab Werkstof	f	Gewicht	Format A4	Allgemeintoleranz	Oberfläche	Tutor Tutorium:	Özben Orul stermin:	 кси	
				Dokument	enart Stückliste	1	Name	Max Reche-Emden	, Josua Höd	tke,
			Ë	Titel, zusät	zlicher Titel		Matrikel-	Yassine Kraiem -Nr. 454741	<u>457275</u>	
			berlin		Hubwerksei	nheit		457695		
		FM(GE ACAR) DEM			Datum	09.07.2023	Blatt 4	von 13
				لاتالاكات			l			<u> </u>

Pos	Me	Benennung		Sachnummer/	Norm-Kurzbezeichnun	Bemerkung	
24	1	Deckel Abtriebswelle				EN-GJL-150)
25	1	Deckel Zwischenwelle 2				EN-GJL-150)
26	1	Deckel Zwischenwelle 1				EN-GJL-150)
27	1	Deckel Antriebswelle links				EN-GJL-150)
28	1	Deckel Antriebswelle rechts				EN-GJL-150)
29	1	Bremse Abdeckung				S275JR	
30	1	Seilklemme				S275JR	
31	1	Druckring				C45	
32	4	Außenlamellen Bremse				EN-GJL-300)
33	3	Innenlamellen Bremse				EN-GJL-300)
34	1	Spule mit Kabel und Mantel				E-Cu	
35	1	Elektromagnet				M270-35A	
36	3	Führungshülse				S275JR	
37	1	Bremse Stützscheibe				C45	
38	3	Druckfeder				51CrV4	
39	1	Seilführung Teil1				EN-GJL-150)
40	1	Seilführung Teil2				EN-GJL-150)
41	1	Lageraufsatz Seilführung				S275JR	
42	1	Gleitstab				C45	
43	1	Metallbalgkupplung		norelem 2300	00–170		
44	1	Motor		SIMOTICS FL	– 132 M – IM B5 – 6р		
45	1	Rillenkugellager (ab links)		SKF 211			
46	1	Rillenkugellager (ab rechts)		SKF W 61906	– 2RS1		
Maßstab Werkstof		Lewicht Format A44	anz Ob	perfläche	Tutor Özben Oru Tutoriumstermin:	ıkcu	
		Dokumentenart Stü	ickliste		Name Max Reche-Emder Yassine Kro	•	e
		Titel, zusätzlicher Titel Hubw	erkseinhe	it	Matrikel-Nr. 454741, 45747!		
					Datum 09.07.2023	Blatt vor	13

Pos	Me	Benennung			Sachnummer/	Norm-Kurzbezeichnun	Bemerkung		
47	1	Rillenkugellage	r (zw2 l	inks)	SKF 206				
48	1	Rillenkugellage	r (zw2 r	echts)	SKF 306				
49	1	Rillenkugellage	r (zw1 li	nks)	SKF 6205				
50	1	Rillenkugellage	r(zw1r	echts)	SKF 6004				
51	1	Rillenkugellage	r (an lin	ıks)	SKF 6202				
52	1	Rillenkugellage	r (an re	chts)	SKF 61807				
53	1	Gleitlager			23761 Gleitla	ager mit Bund	SINT A50		
54	1	Ölschauglas			GN 743-7-M	14x1,5-A			
55	2	Öl Ein-Ablasssc	hrauben		DIN 908-ST-	M8x1-AA			
56	4	Passfeder			DIN 6885 - A	14 x 9 x 56	C45		
57	2	Passfeder			DIN 6885 - A	A 12 x 8 x 32	C45		
58	2	Passfeder			DIN 6885 - A	DIN 6885 - A 10 x 8 x 25			
59	3	Passfeder			DIN 6885 - A	A 8 x 7 x 18	C45		
60	1	Passfeder			DIN 6885 - A	A 6 x 6 x 18	C45		
61	1	Passfeder			DIN 6885 - A	A 6 x 6 x 14	C45		
62	1	Sicherungsring '	Welle		DIN 471 - 55	x 2			
63	2	Sicherungsring '	Welle		DIN 471 – 45 x 1,75				
64	1	Sicherungsring '	Welle		DIN 471 – 42 x 1,75				
65	1	Sicherungsring '	Welle		DIN 471 – 40	x 1,75			
66	1	Sicherungsring '	Welle		DIN 471 – 35	x 1,5			
67	1	Sicherungsring '	Welle		DIN 471 - 32	x 1,5			
68	4	Sicherungsring '	Welle		DIN 471 - 30	x 1,5			
69	1	Sicherungsring '	Welle		DIN 471 - 28	3 x 1,5			
Maßstab		(Gewicht		Allgemeintoleranz	Oberfläche	Tutoriumetormin			
Werkstof	Г		Format A4	ongot		Tutoriumstermin:			
		berlin	Dokument Titel, zusät	Stücklis: zlicher Titel	te .	Yassine Matrikel-Nr.	Kraiem		
				Hubwerksei		Datum 09.07.2023	Blatt von 6 13		

Pos	Me	Benennung	Sachnummer/Norm-Kurzbezeichnun	Bemerkung				
70	1	Sicherungsring Welle	DIN 471 – 25 x 1,2					
71	1	Sicherungsring Welle	DIN 471 – 22 x 1,2					
72	2	Sicherungsring Welle	DIN 471 – 20 x 1,2					
73	31	Zylinderschraube mit Innensechskant	DIN 912 - M4 x 10 - 10.9					
74	8	Zylinderschraube mit Innensechskant	DIN 912 - M5 x 45 - 8.8					
75	13	Sechskantschraube	DIN EN 24017 - M12 x 30 - 8.8					
76	14	Zylinderschraube mit Innensechskant	DIN 912 - M10 x 25 - 8.8					
77	18	Sechskantschraube	DIN 933 - M12 x 20 - 8.8					
78	6	Zylinderschraube mit Innensechskant	DIN 912 - M6 x 20 - 10.9					
79	4	Sechskantschraube	DIN 933 - M12 x 20 - 8.8					
80	4	Sechskantschraube	DIN 933 - M10 x 40 - 8.8					
81	4	Sechskantmutter	ISO 4032 - M10 - 10					
82	8	Unterlegscheibe	ISo 7091 – 10 – 100 HV					
83	1	Seil	11 6x7–Fc 1770 U sZ					
84	14	Zylinderstift	ISO 2338 - 4 m6 x 18 - St					
85	1	Radialwellendichtring	DIN 3760 - A 50x65x8 - NBR					
86	1	Radialwellendichtring	DIN 3760 - A 28x40x7 - NBR					
87	1	0-Ring	ISO 3601-1 26B-31.47 x 1,78					
88	1	0-Ring	ISO 3601-1 32B-47.35 x 1,78					
89	1	0-Ring	ISO 3601-1 35B-56.87 x 1,78					
90	1	0-Ring	ISO 3601-1 44B-94.97 x 1,78					
91	1	0-Ring	ISO 3601-1 31B-44.17 x 1,78					
Maßstab		Gewicht Allgemeintoleranz Ot	perfläche Tutor					
Werkstof	f	Format Augemennoterunz	Tutoriumstermin:					
	-	A4 Dokumentenart	Name					
		Stücklis		Krniem				

Werkstoff	Format A4			Tutoriumstermin:			
	Dokumentenart Stückliste			Name Yassine Kraiem			
berlin	Titel, zusätzlicher Titel			Matrikel-Nr.			
		Hubwerks	einheit –	Datum		Blatt	VON
SOLID EDGE ACAD)EM	IC COPY	7	09	0.07.2023	7	13

Passmaß	Tolei	ranzbeze	ichnung		Abmaße		Spiel/Übermaß	3
<i>ል</i>	H7				+0,046 +0,000		max. Spiel: 0,0	75
Φ 250 H7/h6	h6				+0,000 -0,029		max. Übermaß	s: 0,000
ф 100 U7/b(H7				+0,035 +0,000		max. Spiel: 0,0	57
Φ 109 H7/h6	h6	h6					max. Übermaß	5: 0,000
Φ 104 H7/h6	H7				+0,035 +0,000		max. Spiel: 0,0	57
Ψ 104 Π//116	h6				+0,000 -0,022		max. Übermaß	5: 0,000
Φ 100 H7/h6	H7				+0,035 +0,000		max. Spiel: 0,0	57
Ψ 100 Π//116	h6				+0,000 -0,022		max. Übermaß	5: 0,000
₫ 100 H7/DN	H7	H7					max. Spiel: 0,0	40
Φ 100 H7/PN	PN				+0,000 -0,015		max. Übermaß	s: 0,000
ф 72 H7/DN	H7				+0,030 +0,000		max. Spiel: 0,0	43
Φ 72 H7/PN	PN				+0,000 -0,013		max. Übermaß: 0,000	
ለ (2 U7/b/	H7				+0,030 +0,000		max. Spiel: 0,0	49
Φ 62 H7/h6 h6					+0,000 -0,019		max. Übermaß	5: 0,000
Maßstab	Gewicht		Allgemeintoleranz	Oberflä	che	Tutor		
Werkstoff		Format A4				Tutoriumstermi	in:	•
		Dokument				Nam		
	<u>=</u>		Passungstabe	elle			Yassine Kraie	מים.
	berlin	Titel, zusät	zlicher Titel			Matrikel No		
	ľ		Hubwerkseint	neit	Datum Blatt			Blatt von

09.07.2023

Passmaß	Toler	anzbeze	eichnung		Abmaße		Spiel/Übermaß	
φ (2 U7/DN	H7				+0,030 +0,000		max. Spiel: 0,043	
Φ 62 H7/PN	PN				+0,000 -0,013		max. Übermaß: 0,000	
φ ΕΕ DN/:/	PN				+0,000 -0,015		max. Spiel: 0,007	
Φ 55 PN/j6	ј6				+0,012 -0,007		max.Übermaß: 0,027	
H7					+0,030 +0,000		max. Spiel: 0,049	
Ψ 52 Η//Π6	h6				+0,000 -0,019		max. Übermaß: 0,000	
φ Ε3 Π <u>3/</u> Γ/	H7				+0,030 +0,000		max. Spiel: 0,041	
Φ 52 H7/P6	P6				+0,000 -0,011		max. Übermaß: 0,000	
4.17.117.11.4	H7				+0,025 +0,000		max. Spiel: 0,041	
Φ 47 H7/h6	h6				+0,000 -0,016		max. Übermaß: 0,000	
<i>4</i> (7 U7/DU	H7				+0,025 +0,000		max. Spiel: 0,036	
Φ 47 H7/PN	PN				+0,000 -0,011		max. Übermaß: 0,000	
4 / F 117 11 /	H7				+0,025 +0,000		max. Spiel: 0,041	
Φ 45 H7/h6	h6				+0,000 -0,016		max. Übermaß: 0,000	
Maßstab	Gewicht		Allgemeintoleranz	Oberflö	iche	Tutor		
Werkstoff		Format A4	1			Tutoriumsterm	in:	
	_	Dokumen		ab all a		Name		
		T: 1 -	Passungsti	חהנוה		M / " · · ·	Yassine Kraiem	
	berlin	Titel, zusä	tzlicher Titel		Matrikel-Nr.			
			Hubwerkse	einheit		Datum	Blatt von	

09.07.2023

Passmaß	Toler	anzbeze	ichnung		Abmaße		Spiel/Übermaß
д 12 U7Љ(H7				+0,025 +0,000		max. Spiel: 0,041
Φ 42 H7/h6	h6				+0,000 -0,016		max. Übermaß: 0,000
A 12 UZ/D(H7				+0,025 +0,000		max. Spiel: 0,034
Φ 42 H7/P6	P6	P6					max. Übermaß: 0,000
ф /0 U7/b(H7				+0,025 +0,000		max. Spiel: 0,041
Φ 40 H7/h6	h6				+0,000 -0,016		max. Übermaß: 0,000
Φ 35 H7/h6	H7				+0,025 +0,000		max. Spiel: 0,041
Ψ 35 Π//IIb	h6				+0,000 -0,016		max. Übermaß: 0,000
d of DNViC	PN				+0,000 -0,012		max. Spiel: 0,005
Φ 35 PN/j6	ј6				+0,011 -0,005		max. Übermaß: 0,023
Φ 35 H7/P6	H7				+0,025 +0,000		max. Spiel: 0,034
Ψ >> Π//٢٥	P6				+0,000 -0,009		max. Übermaß: 0,000
д ээ цт/ь(H7				+0,025 +0,000		max. Spiel: 0,041
Φ 32 H7/h6	h6				+0,000 -0,016		max. Übermaß: 0,000
Maßstab	Gewicht		Allgemeintoleranz	Oberflä	che	Tutor	
Werkstoff		Format A4				Tutoriumstermi	D:
		Dokument				Name	
	Ē		Passungsta	lDelle			Yassine Kraiem
	berlin	Titel, zusät	zlicher Titel			Matrikel-Nr.	
			Hubwerkseir	nheit		Datum	Blatt von

09.07.2023

Passmaß	Toleranzbe:	zeichnung	Abmo	ıße	Spiel/Übermaß		
d 20 117/h(H7		+0,00		max. Spiel: 0,034		
Φ 30 H7/h6	h6		+0,0		max. Übermaß: 0,000		
4 20 DM//	PN		+0,0		max. Spiel: 0,004		
Φ 30 PN/j6	ј6	6			max. Übermaß: 0,019		
ф 20 U7/b(H7		+0,00		max. Spiel: 0,034		
Φ 28 H7/h6	h6		+0,0		max. Übermaß: 0,000		
d 25 D(1)(P6		+0,00		max. Spiel: 0,004		
Φ 25 P6/j6	ј6		+0,0		max. Übermaß: 0,017		
Φ 22 H7/h6	H7	7			max. Spiel: 0,034		
Ψ ΖΖ Π///ΙΙδ	h6		+0,0		max. Übermaß: 0,000		
φ 20 H7/h/	H7		+0,0		max. Spiel: 0,034		
Φ 20 H7/h6	h6		+0,0		max. Übermaß: 0,000		
Φ 20 P6/j6	P6		+0,0		max. Spiel: 0,004		
Ψ 20 F0/J0	j6		+0,0		max. Übermaß: 0,017		
Maßstab	Gewicht	Allgemeintoleranz	Oberfläche	Tutor			
Werkstoff	Format A4			Tutoriu	mstermin:		
		entenart Passungsto	ıbelle	Name	Vaccino Vaccion		
	Titel, zi	ısätzlicher Titel		Matrike	Yassine Kraiem el-Nr.		
	Titel, zi	Hubwerkse		Datum			

Passmaß	Tole	ranzbeze	ichnung	#	Abmaße		Spiel/Über	maß	
ф 1F U71e7	H7				-0,018 -0,000		min. Überm	iαß: 0,010	
Φ 15 H7/s7	s7				-0,046 -0,028		max. Überr	naß: 0,04	6
φ 1E D(l)(P6				-0,000 -0,007		max. Spiel:	0,003	
Φ 15 P6/j6	ј6			I .	-0,008 -0,003		max. Überr	naß: 0,01	-
ф 10 ГЛ/h(G7				-0,024 -0,006		max. Spiel:	0,035	
Φ 12 G7/h6	h6			I .	-0,000 -0,011		min. Spiel:	0,006	
<i>ል ገ ሀግሌ</i>	H7				-0,015 -0,000		max. Spiel:	0,024	
Φ 7 H7/h6	h6				-0,000 -0,009		max. Überr	naß: 0,00	0
4.7.117 1.7	H7			I .	-0,015 -0,000		min. Überm	ıαß: 0,004	ŀ
Φ 7 H7/r6	r6			I .	-0,028 -0,019		max. Überr	nαß: 0,02	8
<i>Å (</i> 11714 (H7			I .	-0,012 -0,000		max. Spiel:	0,020	
Φ 6 H7/h6	h6			I .	-0,000 -0,008		max. Überr	naß: 0,00	0
A (1171 (H7			I .	-0,015 -0,000		min. Überm	Iaß: 0,003	}
Φ 6 H7/r6	۲6			I .	-0,023 -0,015		max. Überr	naß: 0,02	3
Maßstab	Gewicht		Allgemeintoleranz	Oberflä ch	2	Tutor			
Verkstoff		Format A4				Tutoriumstern	nin:		
	B	Dokument	L Tenart Passungstal	belle		Name	Yassine K	raiem	
	berlin	Titel, zusä	tzlicher Titel			Matrikel-Nr.			
			Hubwerkseii	nheit		Datum	200 27 2022	Blatt	von

09.07.2023

12

Passmaß	Toleranzbezeichnung	Abmaße	Spiel/Übermaß
Φ 4 F8/m6	F8	+0,028 +0,010	max. Spiel: 0,024
Ψ 4 ΓΟ/ΙΙΙΟ	т6	+0,012 +0,004	max. Übermaß: 0,002
ф / U7/m/	H7	+0,012 +0,000	max. Spiel: 0,008
Φ 4 H7/m6	m6	+0,012 +0,004	max. Übermaß: 0,012

Maßstab	Gewicht		Allgemeintoleranz	Oberflä che	Tutor				
Werkstoff		Format A4			Tutoriumstermin:				
		Dokumen	tenart	'	Nam				
	<u>.</u>		Passungst	abelle	Yass	Yassine Kraiem			
	Derlin Lite		tzlicher Titel		Matrikel-Nr.				
			Hubwerkseinl	Datum		Blatt	von		
	GE ACA	DEM			09.07.202	<u> </u>	13	13	