Chapter 1.4 - Delay, Loss, and Throughput in Networks

10/05/2018 [Th]

Loss and Delay

- Loss and delay can occur if packets arrive at a router faster than the router's output capacity.
- There are four sources of packet delay $(d_{nodal} = d_{proc} + d_{queue} + d_{trans} + d_{prop})$:
 - d_{proc} is the **nodal processing**. It checks the bits for errors and determines the output link. It is typically very fast (< msec).
 - d_{queue} is the **queuing delay**. It is the time that must be waited at the output link *before transmission*. The delay depends on the router's congestion level.
 - d_{trans} is the **transmission delay**. It is equal to the packet length divided by the link bandwidth $(d_{trans} = L/R)$.
 - d_{prop} is the **propagation delay**. It is equal to the length of the physical link divided by the propagation speed $(d_{prop} = d/s)$.
- Car analogy: Slides 1-46 and 1-47.
- A closer look at queuing delay, where a equals average arrival rate. If:
 - La/R \sim 0: the average queuing delay is very small.
 - La/R \rightarrow 1: the average queuing delay grows larger.
 - La/R > 1: the average queuing delay is infinite (more work arriving than can be serviced).
- Packet loss occurs when packets arrive at a link with a *finite buffer* and a *full queue*. When there is packet loss, additional packets are dropped.
- The lost packet may or may not be retransmitted by the previous node or by the source end system.

Throughput

Rate at which bits are transferred between the sender and receiver.

- Instantaneous throughput is the rate at a given point in time.
- Average throughput is the rate over a longer period of time.
- A **bottleneck link** is a link on the end of a path that constrains end-end throughput.
- The bottleneck link can be found by looking for the link that is at capacity even though a link further down/upstream is not.