Package 'pseudorank'

February 20, 2025

Title Pseudo-Ranks

```
Version 1.0.4
Date 2025-02-18
Maintainer Martin Happ <statistics@happ.co.at>
Description Efficient calculation of pseudo-ranks and (pseudo)-rank based test statis-
      tics. In case of equal sample sizes, pseudo-ranks and mid-ranks are equal. When used for infer-
      ence mid-ranks may lead to paradoxical results. Pseudo-ranks are in general not af-
      fected by such a problem. See Happ et al. (2020, <doi:10.18637/jss.v095.c01>) for details.
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0)
Imports Rcpp (>= 0.12.16), doBy
LinkingTo Rcpp
URL https://github.com/happma/pseudorank/
BugReports https://github.com/happma/pseudorank/issues/
RoxygenNote 7.3.2
Suggests testthat
NeedsCompilation yes
Author Martin Happ [aut, cre] (<a href="https://orcid.org/0000-0003-0009-2665">https://orcid.org/0000-0003-0009-2665">https://orcid.org/0000-0003-0009-2665</a>),
      Georg Zimmermann [aut],
      Arne C. Bathke [aut],
      Edgar Brunner [aut]
Repository CRAN
Date/Publication 2025-02-20 17:20:02 UTC
```

Contents

pseu	dorank-package <i>Pseudo-Ranks</i>	
Index		9
	psrank	8
	pseudorank	
	ParadoxicalRanks	5
	kruskal_wallis_test	4
	hettmansperger_norton_test	2
	pseudorank-package	2

Description

This packge provides functions to calculate pseudo-ranks. Rank based test statistics (e.g. Kruskal-Wallis test) may lead to paradoxical results as the weighted relative effects (based on ranks) depend on the sample sizes (Brunner, 2018). Pseudo-ranks do not have these problems.

Author(s)

Maintainer: Martin Happ <martin.happ@aon.at>

References

Brunner, E., Konietschke, F., Bathke, A. C., & Pauly, M. (2018). Ranks and Pseudo-Ranks-Paradoxical Results of Rank Tests. arXiv preprint arXiv:1802.05650.

Brunner, E., Bathke, A.C., and Konietschke, F. (2018a). Rank- and Pseudo-Rank Procedures for Independent Observations in Factorial Designs - Using R and SAS. Springer Series in Statistics, Springer, Heidelberg. ISBN: 978-3-030-02912-8.

Happ M, Zimmermann G, Brunner E, Bathke AC (2020). Pseudo-Ranks: How to Calculate Them Efficiently in R. Journal of Statistical Software, Code Snippets, *95*(1), 1-22. doi: 10.18637/jss.v095.c01 (URL:https://doi.org/10.18637/jss.v095.c01).

hettmansperger_norton_test

Hettmansperger-Norton Trend Test for k-Samples

Description

This function calculates the Hettmansperger-Norton trend test using pseudo-ranks under the null hypothesis H0F: $F_1 = ... F_k$.

Usage

```
hettmansperger\_norton\_test(x, ...)
## S3 method for class 'numeric'
hettmansperger_norton_test(
 х,
 na.rm = FALSE,
 alternative = c("decreasing", "increasing", "custom"),
  trend = NULL,
 pseudoranks = TRUE,
)
## S3 method for class 'formula'
hettmansperger_norton_test(
  formula,
 data,
 na.rm = FALSE,
 alternative = c("decreasing", "increasing", "custom"),
  trend = NULL,
 pseudoranks = TRUE,
)
```

Arguments

X	vector containing the observations
	further arguments are ignored
У	vector specifiying the group to which the observations from the x vector belong to
na.rm	a logical value indicating if NA values should be removed
alternative	either decreasing (trend $k, k-1,, 1$) or increasing $(1, 2,, k)$ or custom (then argument trend must be specified)
trend	custom numeric vector indicating the trend for the custom alternative, only used if alternative = "custom"
pseudoranks	logical value indicating if pseudo-ranks or ranks should be used
formula	formula object
data	data.frame containing the variables in the formula (observations and group)

Value

Returns an object.

4 kruskal_wallis_test

References

Brunner, E., Bathke, A.C., and Konietschke, F. (2018a). Rank- and Pseudo-Rank Procedures for Independent Observations in Factorial Designs - Using R and SAS. Springer Series in Statistics, Springer, Heidelberg. ISBN: 978-3-030-02912-8.

Happ M, Zimmermann G, Brunner E, Bathke AC (2020). Pseudo-Ranks: How to Calculate Them Efficiently in R. Journal of Statistical Software, Code Snippets, *95*(1), 1-22. doi: 10.18637/jss.v095.c01 (URL:https://doi.org/10.18637/jss.v095.c01).

Hettmansperger, T. P., & Norton, R. M. (1987). Tests for patterned alternatives in k-sample problems. Journal of the American Statistical Association, 82(397), 292-299

Examples

```
# create some data, please note that the group factor needs to be ordered
df <- data.frame(data = c(rnorm(40, 3, 1), rnorm(40, 2, 1), rnorm(20, 1, 1)),
    group = c(rep(1,40),rep(2,40),rep(3,20)))
df$group <- factor(df$group, ordered = TRUE)

# you can either test for a decreasing, increasing or custom trend
hettmansperger_norton_test(df$data, df$group, alternative="decreasing")
hettmansperger_norton_test(df$data, df$group, alternative="increasing")
hettmansperger_norton_test(df$data, df$group, alternative="custom", trend = c(1, 3, 2))</pre>
```

Description

This function calculates the Kruskal-Wallis test using pseudo-ranks under the null hypothesis H0F: $F_1 = ... F_k$.

Usage

```
kruskal_wallis_test(x, ...)
## S3 method for class 'numeric'
kruskal_wallis_test(x, grp, na.rm = FALSE, pseudoranks = TRUE, ...)
## S3 method for class 'formula'
kruskal_wallis_test(formula, data, na.rm = FALSE, pseudoranks = TRUE, ...)
```

Arguments

```
    x numeric vector containing the data
    ... further arguments are ignored
    grp factor specifying the groups
    na.rm a logical value indicating if NA values should be removed
```

ParadoxicalRanks 5

pseudoranks logical value indicating if pseudo-ranks or ranks should be used

formula optional formula object

data optional data.frame of the data

Value

Returns an object of class 'pseudorank'

References

Brunner, E., Bathke, A.C., and Konietschke, F. (2018a). Rank- and Pseudo-Rank Procedures for Independent Observations in Factorial Designs - Using R and SAS. Springer Series in Statistics, Springer, Heidelberg. ISBN: 978-3-030-02912-8.

Examples

```
x = c(1, 1, 1, 1, 2, 3, 4, 5, 6)
grp = as.factor(c('A','A','B','B','B','D','D','D','D','D'))
# calculate Kruskal-Wallis test using pseudo-ranks
kruskal_wallis_test(x, grp, na.rm = FALSE, pseudoranks = TRUE)
```

ParadoxicalRanks

Artifical data of 54 subjects

Description

An artificial dataset containing data of 54 subjects where where a substance was administered in three different concentrations (1,2 and 3). This data set can be used to show the paradoxical results obtained from rank tests, i.e., the Hettmansperger-Norton test.

Usage

```
data(ParadoxicalRanks)
```

Format

A data frame with 54 rows and 2 variables.

Details

The columns are as follows:

- conc. Grouping variable specifying which concentration was used. This factor is ordered, i.e., 1 < 2 < 3.
- score. The response variable.

6 pseudorank

References

Happ M, Zimmermann G, Brunner E, Bathke AC (2020). Pseudo-Ranks: How to Calculate Them Efficiently in R. Journal of Statistical Software, Code Snippets, *95*(1), 1-22. doi: 10.18637/jss.v095.c01 (URL:https://doi.org/10.18637/jss.v095.c01).

Examples

```
data("ParadoxicalRanks")
dat <- ParadoxicalRanks
set.seed(1)
n <- c(60, 360, 120)
x1 <- sample(subset(dat, dat$conc == 1)$score, n[1], replace = TRUE)</pre>
x2 <- sample(subset(dat, dat$conc == 2)$score, n[2], replace = TRUE)</pre>
x3 <- sample(subset(dat, dat$conc == 3)$score, n[3], replace = TRUE)
dat \leftarrow data.frame(score = c(x1, x2, x3),
  conc = factor(c( rep(1,n[1]), rep(2,n[2]), rep(5,n[3]) ), ordered=TRUE) )
# Hettmansperger-Norton test with ranks (pseudorannks = FALSE) returns a small p-value (0.011).
# In contrast, the pseudo-rank test returns a large p-value (0.42). By changing the ratio of
# group sizes, we can also obtain a significant decreasing trend with ranks, e.g.
# n <- c(260, 20, 260) and the same seed.
hettmansperger_norton_test(score ~ conc, data = dat, pseudoranks = FALSE,
  alternative = "increasing")
hettmansperger_norton_test(score ~ conc, data = dat, pseudoranks = TRUE,
  alternative = "increasing")
```

pseudorank

Calculation of Pseudo-Ranks

Description

Calculation of (mid) pseudo-ranks of a sample. In case of ties (i.e. equal values), the average of min pseudo-ranks and max-pseudo-ranks are taken (similar to rank with ties.method="average").

Usage

```
pseudorank(x, ...)
## S3 method for class 'numeric'
pseudorank(x, y, na.last = NA, ties.method = c("average", "max", "min"), ...)
## S3 method for class 'formula'
pseudorank(
  formula,
  data,
```

pseudorank 7

```
na.last = NA,
ties.method = c("average", "max", "min"),
...
)
```

Arguments

X	vector containing the observations
	further arguments
У	vector specifiying the group to which the observations from the x vector belong to
na.last	for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed (recommended).
ties.method	type of pseudo-ranks: either 'average' (recommended), 'min' or 'max'.
formula	formula object
data	data.frame containing the variables in the formula (observations and group)

Value

Returns a numerical vector containing the pseudo-ranks.

References

Brunner, E., Bathke, A.C., and Konietschke, F. (2018a). Rank- and Pseudo-Rank Procedures for Independent Observations in Factorial Designs - Using R and SAS. Springer Series in Statistics, Springer, Heidelberg. ISBN: 978-3-030-02912-8.

Happ M, Zimmermann G, Brunner E, Bathke AC (2020). Pseudo-Ranks: How to Calculate Them Efficiently in R. Journal of Statistical Software, Code Snippets, *95*(1), 1-22. doi: 10.18637/jss.v095.c01 (URL:https://doi.org/10.18637/jss.v095.c01).

Examples

```
df <- data.frame(data = round(rnorm(100)), group = c(rep(1,40),rep(2,40),rep(3,20)))
df$group <- as.factor(df$group)

## two ways to calculate pseudo-ranks

# Variant 1: use a vector for the data and a group vector
pseudorank(df$data,df$group)

# Variant 2: use a formula object, Note that only one group factor can be used
# that is, in data~group*group2 only 'group' will be used
pseudorank(data~group,df)</pre>
```

8 psrank

psrank

Calculation of Pseudo-Ranks (Deprecated)

Description

Calculation of (mid) pseudo-ranks of a sample. In case of ties (i.e. equal values), the average of min pseudo-ranks and max-pseudo-ranks are taken (similar to rank with ties.method="average").

Usage

```
psrank(x, ...)
```

Arguments

- x vector containing the observations
- ... further arguments (see help for pseudorank)

Value

Returns a numerical vector containing the pseudo-ranks.

References

Happ M, Zimmermann G, Brunner E, Bathke AC (2020). Pseudo-Ranks: How to Calculate Them Efficiently in R. Journal of Statistical Software, Code Snippets, *95*(1), 1-22. doi: 10.18637/jss.v095.c01 (URL:https://doi.org/10.18637/jss.v095.c01).

Examples

```
df <- data.frame(data = round(rnorm(100)), group = c(rep(1,40),rep(2,40),rep(3,20)))
df$group <- as.factor(df$group)

## two ways to calculate pseudo-ranks

# Variant 1: use a vector for the data and a group vector
pseudorank(df$data,df$group)

# Variant 2: use a formula object, Note that only one group factor can be used
# that is, in data~group*group2 only 'group' will be used
pseudorank(data~group,df)</pre>
```

Index

```
* datasets
    ParadoxicalRanks, 5
* export
    hettmansperger_norton_test, 2
    kruskal_wallis_test, 4
    pseudorank, 6
    psrank, 8
* package
    pseudorank-package, 2
hettmansperger_norton_test, 2
kruskal_wallis_test, 4
ParadoxicalRanks, 5
pseudorank, 6
pseudorank-package, 2
psrank, 8
```