

Numerical Analysis for Partial Differential Equations

Professor: Paola Antonietti

Last updated: February 18, 2025

This document is intended for educational purposes only. These are unreviewed notes and may contain errors.

Made by Roberto Benatuil Valera

Contents

1	Nur	merical methods for diffusion problems	3
	1.1	Introduction: boundary value problems	3
	1.2	Weak formulation	4
		1.2.1 Lax-Milgram theorem	6
	1.3	Approximation: the Galerkin paradigm	8
		1.3.1 Analysis of the Galerkin method	Ć

Chapter 1

Numerical methods for diffusion problems

1.1 Introduction: boundary value problems

Consider the following problem:

$$\begin{cases} \mathcal{L}u = f & \text{in } \Omega \\ \text{B.C.} & \text{on } \partial\Omega \end{cases}$$
 (1.1)

where:

- $\Omega \subset \mathbb{R}^d$ is an open bounded domain, with d=2,3
- $\partial\Omega$ is the boundary of Ω
- f given function
- \bullet Boundary conditions (BC) to be prescribed according to $\mathcal L$
- \mathcal{L} a 2nd order differential operator

E.g.: 1. $\mathcal{L}u = -\operatorname{div}(\mu \nabla u) + \mathbf{b} \cdot \nabla u + \sigma u$ (non-conservative form)

2.
$$\mathcal{L}u = -\operatorname{div}(\mu \nabla u) + \operatorname{div}(\mathbf{b}u) + \sigma u$$
 (conservative form)

with
$$\mu \in L^{\infty}(\Omega)$$
, $\mu(x) \ge \mu_0 > 0$, $\mathbf{b} \in (L^{\infty}(\Omega))^d$, $\sigma, f \in L^2(\Omega)$.

We may propose the following boundary conditions:

$$\begin{cases} u = 0 & \text{on } \Gamma_D \\ \mu \nabla u \cdot \mathbf{n} = g & \text{on } \Gamma_N \end{cases}$$
 (1.2)

Where $g \in L^2(\Gamma_D)$, $\partial \Omega = \Gamma_D \cup \Gamma_N$, $\Gamma_D \cap \Gamma_N = \emptyset$. We call Γ_D the Dirichlet boundary and Γ_N the Neumann boundary.

Figure 1.1: Representation of Dirichlet and Neumann boundary

So in general, let us focus on the following problem:

$$\begin{cases}
-\operatorname{div}(\mu\nabla u) + \mathbf{b} \cdot \nabla u + \sigma u = f & \text{in } \Omega \\
u = 0 & \text{on } \Gamma_D \\
\mu\nabla u \cdot \mathbf{n} = g & \text{on } \Gamma_N
\end{cases}$$
(1.3)

To solve this problem, it is useful to change the way it is formulated.

1.2 Weak formulation

The idea behind the weak formulation is as follows:

1. Multiply the equation by a test function $v \in V$ (we don't know V yet)

$$(-\operatorname{div}(\mu\nabla u) + \mathbf{b}\cdot\nabla u + \sigma u)v = fv$$

2. Integrate over Ω

$$\int_{\Omega} \left(-\operatorname{div}(\mu \nabla u) + \mathbf{b} \cdot \nabla u + \sigma u \right) v \, dx = \int_{\Omega} f v \, dx$$

3. Integrate by parts

$$\int_{\Omega} \mu \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega} \mu \nabla u \cdot \mathbf{n} v \, ds + \int_{\Omega} \mathbf{b} \cdot \nabla u v \, dx + \int_{\Omega} \sigma u v \, dx = \int_{\Omega} f v \, dx$$

Note that, for the boundary terms, we have:

$$\int_{\partial\Omega} \mu \nabla u \cdot \mathbf{n} v \, ds = \int_{\Gamma_D} \mu \nabla u \cdot \mathbf{n} v \, ds + \int_{\Gamma_N} \mu \nabla u \cdot \mathbf{n} v \, ds$$

and, if we impose that v=0 on Γ_D , then the first term is zero. So we have:

$$\int_{\partial\Omega} \mu \nabla u \cdot \mathbf{n} v \, ds = \int_{\Gamma_N} g v \, ds$$

where $g = \mu \nabla u \cdot \mathbf{n}$, by the Neumann boundary condition. We rewrite the equation as:

$$\underbrace{\int_{\Omega} \mu \nabla u \cdot \nabla v \, dx + \int_{\Omega} \mathbf{b} \cdot \nabla u v \, dx + \int_{\Omega} \sigma u v \, dx}_{a(u,v)} = \underbrace{\int_{\Omega} f v \, dx + \int_{\Gamma_N} g v \, ds}_{F(v)}$$

$$\implies a(u,v) = F(v) \tag{1.4}$$

We still need to define the space V. We will define it as:

$$V = \{ v \in H^1(\Omega) \mid v = 0 \text{ on } \Gamma_D \}$$

where $H^1(\Omega)$ is the Sobolev space, formally defined as:

Definition 1.2.1. Let $\Omega \subset \mathbb{R}^d$ be an open bounded domain. The **Sobolev space** $H^1(\Omega)$ is defined as:

$$H^1(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in (L^2(\Omega))^d \}$$

where $\nabla v = (\partial_1 v, \dots, \partial_d v)$. The norm in $H^1(\Omega)$ is defined as:

$$||v||_{H^1(\Omega)} = \left(||v||_{L^2(\Omega)}^2 + ||\nabla v||_{L^2(\Omega)}^2\right)^{1/2}$$

Then, notice that V is just a subspace of $H^1(\Omega)$, where we impose the Dirichlet boundary condition. We will use the following notation:

$$H^1_{\Gamma_D}(\Omega) = \{ v \in H^1(\Omega) \mid v = 0 \text{ on } \Gamma_D \}$$

$$\tag{1.5}$$

Thus, the weak formulation of the problem, given the space V, is:

Definition 1.2.2 (Abstract weak formulation). Find $u \in V$ such that:

$$a(u, v) = F(v) \quad \forall v \in V$$

where $a: V \times V \to \mathbb{R}$ is a bilinear form and $F: V \to \mathbb{R}$ is a linear form, both defined as (1.4)

How do we know that the problem has a solution? We need to prove the existence and uniqueness of the solution, by using the Lax-Milgram theorem.

1.2.1 Lax-Milgram theorem

Theorem 1.2.1 (Lax-Milgram). Let V be a Hilbert space, $a: V \times V \to \mathbb{R}$ a bilinear form, and $F: V \to \mathbb{R}$ a linear form. Assume that:

- (i) V is a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|_{V}$.
- (ii) $F \in V'$, where V' is the dual space of V (i.e., F is bounded).
- (iii) a is continuous, i.e., $\exists M > 0$ s.t.:

$$|a(u,v)| \le M \|u\|_V \|v\|_V \quad \forall u,v \in V$$

(iv) a is coercive, i.e., $\exists \alpha > 0 \text{ s.t.}$:

$$a(u, u) \ge \alpha \|u\|_V^2 \quad \forall u \in V$$

Then, there exists a unique solution $u \in V$ to the weak formulation problem. Moreover, the solution satisfies:

$$\|u\|_{V} \le \frac{1}{\alpha} \|F\|_{V'}$$

E.g. (Diffusion equation): Let us consider the following problem:

$$\begin{cases}
-\operatorname{div}(\mu\nabla u) = f & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega = \Gamma_D
\end{cases}$$
(1.6)

We can write the weak formulation as:

$$a(u, v) = \int_{\Omega} \mu \nabla u \cdot \nabla v \, dx, \quad F(v) = \int_{\Omega} f v \, dx$$

with $V = H^1_{\Gamma_D}(\Omega)$. We need to prove that the Lax-Milgram theorem holds for this problem:

- (i) V is a Hilbert space, since $H^1_{\Gamma_D}(\Omega)$ is a closed subspace of $H^1(\Omega)$.
- (ii) $F \in V'$, since:

$$|F(v)| \le ||f||_{L^2(\Omega)} ||v||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)} ||v||_V$$

(iii) a is continuous, since:

$$\left|a(u,v)\right| = \left|\int_{\Omega} \mu \nabla u \cdot \nabla v \, dx\right| \leq \left\|\mu\right\|_{L^{\infty}(\Omega)} \left\|\nabla u\right\|_{L^{2}(\Omega)} \left\|\nabla v\right\|_{L^{2}(\Omega)} \leq M \left\|u\right\|_{V} \left\|v\right\|_{V}$$

with $M = \|\mu\|_{L^{\infty}(\Omega)}$.

(iv) a is coercive, since:

$$a(u, u) = \int_{\Omega} \mu |\nabla u|^2 dx \ge \mu_0 \|u\|_L^2(\Omega) \ge \alpha \|u\|_V^2, \quad \alpha = \frac{\mu_0}{1 + C_p^2}$$

with C_p the Poincaré constant. The last inequality is due to the Poincaré inequality, which we will state next.

Theorem 1.2.2 (Poincaré inequality). If Γ_D is a set of positive measure (in 1D, it is sufficient that is not empty), then:

$$\exists C_p > 0: \|v\|_{L^2(\Omega)}^2 \le C_p \|\nabla v\|_{L^2(\Omega)}^2 \quad \forall v \in H^1_{\Gamma_D}(\Omega)$$

Remark: The Poincaré inequality let us prove that, for $V = H^1_{\Gamma_D}(\Omega)$:

$$||v||_{V}^{2} = ||v||_{L^{2}(\Omega)}^{2} + ||\nabla v||_{L^{2}(\Omega)}^{2} \le (1 + C_{p}^{2}) ||\nabla v||_{L^{2}(\Omega)}^{2}$$

$$\implies ||\nabla v||_{L^{2}(\Omega)}^{2} \ge \frac{1}{1 + C_{p}^{2}} ||v||_{V}^{2}$$

Exercise: Show that the weak formulation of:

$$\begin{cases} -\operatorname{div}(\mu \nabla u) + \mathbf{b} \cdot \nabla u + \sigma u = f & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ \mu \nabla u \cdot \mathbf{n} = g & \text{on } \Gamma_N \end{cases}$$

is well-posed (or give the conditions for it to be well-posed), by proving that the Lax-Milgram theorem holds for this problem. (See class notes P1 p.13)

1.3 Approximation: the Galerkin paradigm

The Galerkin paradigm is a method to approximate the solution of a problem, by using a finite-dimensional subspace of the original space V. The Galerkin method is based on the following idea:

Definition 1.3.1 (Galerkin method). Let $V_h \subset V$ be a finite-dimensional subspace of V. The Galerkin method consists in finding $u_h \in V_h$ such that:

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

where a and F are defined as in (1.4). Note that:

- $dim(V_h) = N_h < \infty$
- By notation, $N_h \to \infty$ as $h \to 0$

To prove well-posedness of the Galerkin method, we may use 2 approaches:

Theorem 1.3.1 (Approach 1). The problem proposed by the Galerkin method is equivalent to the following linear system of equations:

$$Au = F$$

where $A \in \mathbb{R}^{N_h \times N_h}$, $\mathbf{u} \in \mathbb{R}^{N_h}$ is the vector of unknowns, and $F \in \mathbb{R}^{N_h}$

Proof. Let $\{\varphi_1, \ldots, \varphi_{N_h}\}$ be a basis of V_h . Then, we can write:

$$u_h = \sum_{j=1}^{N_h} u_j \varphi_j, \quad u_j \in \mathbb{R} \ \forall j = 1, ..., N_h$$

and if we take $v_h = \varphi_i$ in the Galerkin method, we have:

$$a\left(\sum_{i=1}^{N_h} u_j \varphi_j, \varphi_i\right) = F(\varphi_i) \quad \forall i = 1, ..., N_h$$

By linearity of a, we have:

$$\sum_{i=1}^{N_h} u_j a(\varphi_j, \varphi_i) = F(\varphi_i) \quad \forall i = 1, ..., N_h$$

which can be written as:

$$\sum_{i=1}^{N_h} A_{ij} u_j = F_i \quad \forall i = 1, ..., N_h$$

where $A_{ij} = a(\varphi_j, \varphi_i)$ and $F_i = F(\varphi_i)$. This is the linear system of equations that we wanted to prove.

Remark: By proving that the matrix A is invertible, we can prove the well-posedness of the Galerkin method. We can prove that, for the diffusion equation, the matrix A is s.d.p, and thus invertible.

The second theorem is more straightforward:

Theorem 1.3.2 (Approach 2). The Galerkin method is well-posed, if the Lax-Milgram theorem holds for V.

Proof. The proof is easy. We just need to observe that V_h is a finite-dimensional subspace of V, and thus the Lax-Milgram theorem holds for V_h trivially. Thus, the Galerkin method is well-posed.

1.3.1 Analysis of the Galerkin method

There are some important properties of the Galerkin method that we need to analyze:

- Existence and uniqueness of the solution: The Galerkin method provides a unique solution to the problem, if the Lax-Milgram theorem holds for V.
- Stability: We have the same stability properties as the Lax-Milgram theorem, i.e., the solution satisfies:

$$\left\|u_h\right\|_V \le \frac{1}{\alpha} \left\|F\right\|_{V'}$$

• Consistency: the error of the Galerking method satisfies the following:

$$a(u - u_h, v_h) = 0 \quad \forall v_h \in V_h$$

This is called the **Galerkin orthogonality**.

• Convergence: the solution of the Galerkin method satisfies the following lemma:

Lemma 1.3.3 (Céa lemma). Let $u \in V$ be the solution of the weak formulation problem, and $u_h \in V_h$ the solution of the Galerkin method. Then, the error satisfies:

$$||u - u_h||_V \le \frac{M}{\alpha} \inf_{v_h \in V_h} ||u - v_h||_V$$

where M is the continuity constant of a and α is the coercivity constant of a.

Proof. We have:

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h)$$

$$= a(u - u_h, u - v_h) + \underbrace{a(u - u_h, v_h - u_h)}_{=0 \text{(Galerkin orth.)}}$$

$$\le M \|u - u_h\|_V \|u - v_h\|_V \ \forall v_h \in V_h$$

Then:

$$||u - u_h||_V \le \frac{M}{\alpha} ||u - v_h||_V \quad \forall v_h \in V_h$$

$$\implies ||u - u_h||_V \le \frac{M}{\alpha} \inf_{v_h \in V_h} ||u - v_h||_V$$

Remark: Notice that, under the assumption of space saturation:

$$\forall v \in V, \lim_{h \to 0} \inf_{v_h \in V_h} ||v - v_h||_V = 0$$

we have that the Galerkin method converges to the solution of the weak formulation problem. Indeed, the Céa lemma along with this assumption implies that:

$$\lim_{h \to 0} \|u - u_h\|_V = 0$$