3.6

(3) SPACE BASIS

$$col(A)$$
 $\{(1,1,0), (3,4,1)\}$
 $row(A)$ $\{(0,1,2,3,4), (0,0,0,1,2)\}$ (or RI \neq R2 of A)

 $nol(A)$ $\{(1,0,0,0,0), (0,2,-1,0,0), (0,2,0,-2,1)\}$
 $L nol(A)$ $\{(4,-1,1)\}$

(4) a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 b) if nullspace has basis, $\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \}$, then A must be 3×3 , which is impossible.

We need $n = \#$ of columns $= \dim(col(A)) + \dim(nul(A))$.

- (9) a) rowspace b) column space L nollspace.
- (I) a) no $solh \Rightarrow r < m$ (since we have rows of zeros) we know $r \le n$.

 don't know about $n \notin m$
 - 3) Since m-r > 0, there is something non-triv. in L nullspace.

(13) A) F
$$\begin{cases} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{cases}$$
 b) T c) Any two invertible nxn matrices have row space = colspace = \mathbb{R}^n null space = L. null = $\{\vec{\sigma}\}$.

14) rowspace basis if the rows of 4
noll space basis of A: let
$$x_4 = 1$$

 $x_3 = -2$
 $x_2 = -2x_3 - 3x_4 = 4 - 3 = 1$
 $x_1 = -2x_2 - 3x_3 - 4x_4 = -2 + 6 - 4 = 0$
50 $\left\{ (0, 1, -2, 1) \right\}$ is a basis.

colspace basis has dimension 3, same as rowspace. And it is a subspace of \mathbb{R}^3 , it is could be $\{(1,0,0),(0,1,0),(0,0,1)\}$. L nullspace has empty set-

- the colspace of AT, make the vowspace of A.

 ÿ is unique when the L. rollspace contains only the
 zero vect.
 - (25) a) T (rank is the same.)

 (b) F e.g. $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$ (c) F e.g. $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (d) T the subspaces are the same for $A \neq -A$.
- The rowspaces are the same.

 Therefore, each row of B can be expressed as a lin. combo of the rows of A.

 consider row 1 of B. [10...0 Gin Giz... Gin]

 but b/c of the first columns I, this can only be a multiple of the first row of A, and in fact must be equal.

 repeat for each row to see that A=B.

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{lll}
O & = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} & \text{Null} A = \left[\frac{1}{6} \right] \neq \left[\frac{1}{6} \right].
\end{array}$$

(2)
$$A^{T} = \begin{bmatrix} -1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 left not $A = \{k(1,-1,1) : k \in R\}$.

$$\begin{bmatrix}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{bmatrix}$$

$$= 4$$

corresponds

Any vector (b1, b1+b3, b3) can be

but eig (1, 1, 1) has no solt.

The vect. (1,-1,1) is in the L. nollspace of those 6s.

(5)
$$A^{T}\vec{y} = \vec{f}$$
 Solvable for $\vec{f} = (1, -1, 0)$
 not 11 $\vec{f} = (1, 0, 0)$.

This is Kircahoff's corrent law.

7 nodes => spanning tree has 6 edges. The non-tree edges comprise the cycles ("loops") There is only 1 loop.

- (17 a) 9 nodes => max independent rows (which gives # of independent columns) is 8.
 - b) if has the property that it is not space.
 - c) 24. Each edge goes into 2 nodes. There are 12 nodes in the graph. So diags must sum to 24.

(3) let V_1 w be subspaces ABA of ABA

$$V = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_m \end{bmatrix} \qquad W = \begin{bmatrix} \vec{w}_1 & \cdots & \vec{w}_p \end{bmatrix}$$

man x m

now v^Tw is the $m \times p$ matrix whose entries are the dot product of \vec{v}_i and \vec{w}_j .

If VTW = Zero matrix, then all such products are zero.

=> every basis element of V is I to every basis
element of W.

Any other element of V can be written in terms of these basis elements. Therefore, V I W.

We want $\overrightarrow{Ax} = \overrightarrow{Bx}$.

or
$$A\vec{x} - B\hat{x} = \vec{0}$$

write
$$\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} \vec{x} \\ -\hat{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

so we are looking for elements in the null space of [AB]. The nullspace must be non-trivial, since

[AB] is 3 x 4 (not every col can be a pivot col).

$$\begin{bmatrix} 1 & 2 & 5 & 4 \\ 1 & 3 & 6 & 3 \\ 1 & 2 & 5 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 5 & 4 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & x_3 & \text{free} \\ 0 & 1 & 0 & -3 \end{bmatrix}$$

 $x_4 = 0$ let $x_3 = 1$ then $x_2 = -1$, $x_1 = 2-5 = -3$.

$$\hat{x} = (-3, -1)$$
 and $(-1, 0) = \hat{x}$.

(13)
$$A = \begin{cases} 1 & 2 \\ 5 & 2 \\ 2 & 2 \end{cases}$$

(2) Two vectors that span
$$S^{\perp}$$
 are the nollspace of
$$A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 2 & 3 \\ 0 & 1 & 1 & -1 \end{bmatrix} \xrightarrow{\times_3, \times_4} \text{ free}$$

nullspace is spanned by

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \chi_3 \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + \chi_4 \begin{bmatrix} -5 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

23) If
$$\vec{x} \in V_{2}^{\perp}$$
 then \vec{x} is \perp to everything in V_{2} .
Since $S \subseteq V_{2}$, \vec{x} is also \perp to everything in S_{2} $\vec{x} \in S_{2}^{\perp}$.

The dot prod. of the first row of A
$$\overline{\omega}$$
 the first column of A-1 is nonzero.

The dot prod of the second row of A $\overline{\omega}$ the first col of A-1 is $\overline{2}$ to $\overline{2}$ the first col of $\overline{2}$ and $\overline{2}$ the same for $\overline{2}$ the rows.

- (28) a) The planes are not parallel, therefore they meet in a line.

 Any vector on this line is not orthogonal to both either.
- But a subspace of dimension 2.

 But a subspace of dim 2 has outhog comploment of dimension 3.

c) consider two lines:

(32) row space
$$\perp$$
 to nullspace $\vec{r} \cdot \vec{r} = 0$
col space \perp to Lucilspace $\vec{l} \cdot \vec{r} = \vec{0}$

The matrix
$$\vec{c}\vec{r}^T$$
 has this property. (As does any scalar multiple). Since $\vec{l}^T(\vec{c}\vec{r}^T) = \vec{0}$ and $(\vec{c}\vec{r}^T)\vec{n} = \vec{0}$

Additional problems.

1) Let
$$\vec{x}$$
 be set $\vec{x}^T \vec{v}_j = 0$ for $1 \le j \le p$.

Homa Any vector $\vec{v} \in W$ can be expressed as a linear combo of the \vec{v}_j 's.

$$\vec{N} = c_1 \vec{V}_1 + \dots + c_p \vec{V}_p$$

Then
$$\vec{x} \cdot \vec{w} = \vec{x}^T \vec{w} = \vec{x}^T \left(c_1 \vec{v}_1 + \dots + c_p \vec{v}_p \right)$$

$$= c_1 \vec{x}^T \vec{v}_1 + \dots + c_p \vec{x}^T \vec{v}_p$$

$$= 0 + \dots + 0$$

hence is orthog. to everything in W.

(2) We want to show that W^{+} is a subspace of \mathbb{R}^{n} first note $\overrightarrow{O} \in W^{+}$ since $\overrightarrow{O} \cdot \overrightarrow{X} = \overrightarrow{O} \overrightarrow{X} = \overrightarrow{O}$ for every vector $\overrightarrow{X} \in \mathbb{R}^{n}$

Now let $\overrightarrow{W}_1 + \overrightarrow{W}_2$ is also in \overrightarrow{W}_1 . Let $\overrightarrow{X} \in \overrightarrow{W}_1$. We want to show that

consider
$$(\vec{w}_1 + \vec{w}_2) \cdot \vec{X} = (\vec{w}_1 + \vec{w}_2)^T \cdot \vec{X} = (\vec{w}_1^T + \vec{w}_2^T) \vec{X} = \vec{w}_1^T \vec{X} + \vec{w}_2^T \vec{X}$$

$$= 0 + 0$$
Since $\vec{w}_1, \vec{w}_2 \in \vec{w}$

So wit is closed under vector addition.

Finally, consider $c\vec{w} \cdot \vec{x}$, where $\vec{w} \in W^{\perp}, \vec{x} \in W^{\perp}, c \in \mathbb{R}$.

Then $c\vec{w} \cdot \vec{x} = (c\vec{w})^{\top} \vec{x} = c\vec{w}^{\top} \vec{x} = c\vec{0} = 0$ So w^{\perp} is also closed under scalar multiplication.

Since w^{\perp} contains the zero vector, and is closed under vector add \vec{x} \vec{x} \vec{x} \vec{y} $\vec{y$

٠. ز