Analyse Numérique

Travaux Pratiques 2013 – 2014 Séance 3

1. Calculez le conditionnement du système linéaire

$$A\mathbf{x} = \mathbf{b}$$

avec les données suivantes :

$$A = \begin{pmatrix} 5 & 1 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 1 & 5 & 1 & 1 \\ 1 & 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 1 & 5 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \\ 9 \end{pmatrix}; \tag{1}$$

$$A = \begin{pmatrix} 1 & -1000 \\ 1 & 1 & -1000 \\ & 1 & 1 & -1000 \\ & & 1 & 1 & -1000 \\ & & & 1 & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 999 \\ 998 \\ 998 \\ 998 \\ -2 \end{pmatrix}; (2)$$

$$A = \begin{pmatrix} 1 & -1000 \\ 1 & 1 & -1000 \\ & 1 & 1 & -1000 \\ & & 1 & 1 & -1000 \\ & & & 1 & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 999 \\ 998 \\ 998 \\ -2 \end{pmatrix}; (2)$$

$$A = \begin{pmatrix} 1 & -1000 \\ 1 & 1 & -1000 \\ & & 1 & 1 & -1000 \\ & & 1 & 1 & -1000 \\ & & & 1 & 1 & -1000 \\ & & & 1 & 1 & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 999 \\ 998 \\$$

les trois systèmes ont comme solution un vecteur constant. Avec quelle précision doivent-ils être résolus par une méthode qui a la stabilité directe?

- 2. Ecrivez un programme Octave pour calculer la factorisation LU d'une matrice: expliquez comment ce programme peut être utilisé pour résoudre un système linéaire régulier. Testez votre programme avec les systèmes de l'exercice 1. La résolution des systèmes (1-3) basée sur la factorisation LU permette-elle d'atteindre la précision voulue?
- 3. Pour ceux des systèmes (1-3) pour lesquels l'algorithme de l'exercice 2 ne permet pas d'obtenir la précision d'une méthode stable, résolvez le système en utilisant la factorisation PA = LU (utilisez l'instruction lu d'Octave) et vérifiez que l'erreur relative sur la solution est satisfaisante.