第4章:线性空间

§1. 线性代数(B1)回顾

中国科学技术大学数学科学学院

2025年9月28日

数组空间

定义

设 V 是一个非空集合, $\mathbb F$ 是一个数域. V 的元素称为**向量**, $\mathbb F$ 的元素称为**纯量**. 在 V 中定义**向量加法**, 即对任意 $\alpha,\beta\in V,V$ 中有唯一的向量 $\alpha+\beta$ 与之对应, 称 $\alpha+\beta$ 为向量 α 与 β 的和;

$$V \times V \longrightarrow V,$$

 $(\alpha, \beta) \longmapsto \alpha + \beta.$

在 V 中还定义了纯量与向量的乘法, 即对任意纯量 $\lambda \in F$, 向量 $\alpha \in V$, V 中有唯一的向量 $\lambda \alpha$ 与之对应, 向量 $\lambda \alpha$ 称为纯量 λ 与向量 α 的积.

$$\mathbb{F} \times V \longrightarrow V,$$
$$(\lambda, \alpha) \longmapsto \lambda \alpha.$$

如果 V 的向量加法, 纯量与向量的乘法满足以下八条公理, 则称 V 是 \mathbb{F} 上的**线性空间**.

八条公理

易验证运算满足八条运算律: $\forall \alpha, \beta, \gamma \in V, \forall \lambda, \mu \in \mathbb{F}$

(A1)
$$\alpha + \beta = \beta + \alpha$$

(A2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

(A3)
$$\exists \mathbf{0} \in V$$
, s.t. $\alpha + \mathbf{0} = \alpha$

(A4)
$$\exists \alpha' \in V$$
, s.t. $\alpha + \alpha' = \mathbf{0}$

(D1)
$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$

(D2)
$$(\lambda + \mu)\alpha = \lambda\alpha + \mu\alpha$$

(M1)
$$\lambda(\mu\alpha) = (\lambda\mu)\alpha$$

(M2)
$$1\alpha = \alpha$$

其中 $\mathbf{0}$, 称为零向量. α' 称为 α 的负向量, 记为 $-\alpha$.

向量组的线性相关与线性无关

- 设 $\alpha_1, \alpha_2, \cdots, \alpha_s \in V, \lambda_1, \cdots, \lambda_s \in \mathbb{F}$. 称 $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots + \lambda_s \alpha_s$ 为 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的一个线性组合 (或线性表示).
- $\alpha_1, \alpha_2, \cdots, \alpha_s \in V$ 线性相关 $\stackrel{\text{def}}{\Longleftrightarrow} \exists \lambda_1, \cdots, \lambda_s \in \mathbb{F}$ 不全为零, 使 $\partial \partial \alpha_1 + \partial \alpha_2 + \cdots + \partial \alpha_s = 0$.
- $\alpha_1, \alpha_2, \cdots, \alpha_s \in V$ 线性无关 \iff 若 $\lambda_1\alpha_1 + \lambda_2\alpha_2 + \cdots + \lambda_s\alpha_s = 0$ 则有 $\lambda_1 = \lambda_2 = \cdots = \lambda_s = 0$.
- $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关 \iff " $\lambda_1\alpha_1 + \dots + \lambda_s\alpha_s = \mu_1\alpha_1 + \dots + \mu_s\alpha_s \Rightarrow \lambda_i = \mu_i, \forall 1 \leq i \leq s$ ".

考虑线性方程组 (*)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

记
$$\alpha_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$$
, $(j = 1, \dots, n)$; $\beta = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$; 记 $(*)$ 对应的齐次线性方程组

为 (**). 则有

- (**) 有非零解 $\iff \alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关.
- (**) 只有零解 $\iff \alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关.
- (*) **有多解** $\iff \beta$ 可由 $\alpha_1, \dots, \alpha_n$ 线性表示, 且 $\alpha_1, \dots, \alpha_n$ 线性相关.
- (*) **有唯一解** $\iff \beta$ 可由 $\alpha_1, \dots, \alpha_n$ 线性表示, 且 $\alpha_1, \dots, \alpha_n$ 线性无关.

相关性质

- (1). α_1 线性相关 \iff $\alpha_1 = 0$.
- (2). 设 $s \ge 2$, 则: $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关 $\iff \exists 1 \le i \le s$, s.t. α_i 是 $\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_s$ 的线性组合.
- (3). 设 $s \geqslant 2$, 则: $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关 $\iff \exists 1 \leqslant i \leqslant s$, s.t. α_i 是 $\alpha_1, \cdots, \alpha_{i-1}$ 的线性组合. 约定: 空集的线性组合是零向量.
- (4). 若向量组 $\alpha_1, \dots, \alpha_s$ 线性无关, 而 $\alpha_1, \dots, \alpha_s$ 线性相关, 则 β 可以表示成 $\alpha_1, \dots, \alpha_s$ 的线性组合, **且表示唯一**.
- (5). 设 Γ : $\alpha_1, \alpha_2, \cdots, \alpha_s$ 为一向量组.
 - ① 若存在 Γ 的一个部分组 Γ_1 , 使得 Γ_1 线性相关, 则 Γ 也线性相关.
 - ② 若 Γ 线性无关, 则 Γ 的任意部分组 Γ_1 也线性无关.
- - ① 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,则 $\beta_1, \beta_2, \dots, \beta_s$ 也线性无关.
 - ② 若 $\beta_1, \beta_2, \dots, \beta_s$ 线性相关,则 $\alpha_1, \alpha_2, \dots, \alpha_s$ 也线性相关.

陈洪佳 (中国科大) §1. 线性代数(B1)回顾 2025年9月28日 6 / 2

子空间

设
$$W\subseteq V,$$
 称 W 为 V 的**子空间** $\stackrel{\stackrel{\stackrel{\sim}{\longleftarrow}}{\Longleftrightarrow}}{\Longleftrightarrow}$ $\begin{cases} W\neq\varnothing,\\ \beta,\beta'\in W\Rightarrow\beta+\beta'\in W,\\ \beta\in W,\mu\in\mathbb{F}\Rightarrow\mu\beta\in W. \end{cases}$

生成子空间

• 任意取定 $\alpha_1, \alpha_2, \cdots, \alpha_k \in V$, 则

$$W = \{\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_k \alpha_k \mid \lambda_i \in \mathbb{F}\}\$$

是 V 的子空间, 称为由 $\alpha_1, \dots, \alpha_k$ 生成的子空间, 记作 $\langle \alpha_1, \dots, \alpha_k \rangle$ 或 $V(\alpha_1, \dots, \alpha_k)$, 向量组 $\alpha_1, \alpha_2, \dots, \alpha_k$ 称为 W 的一组生成元.

• 任意取定 $S \subseteq V$,

$$V(S) := \{ \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_k \alpha_k \mid k \in \mathbb{Z}_{>0}, \, \lambda_i \in \mathbb{F}, \, \alpha_i \in S \}$$

是 V 的子空间, 称为由 S 生成的子空间.

陈洪佳 (中国科大) §1. 线性代数(B1)回顾 2025年9月28日 7 / 23

考虑线性方程组 (*)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$
 记 $\alpha_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$; $\beta = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$; (*) 对应的齐次线性方程组为 (**).

- (1). 考虑 \mathbb{F}^m 的子空间 $\langle \alpha_1, \alpha_2, \cdots, \alpha_n \rangle$. 则(*) **有解** $\iff \beta \in \langle \alpha_1, \alpha_2, \cdots, \alpha_n \rangle$.
- (2). 记 V_A 为 (**) 的解集合, 则 V_A 为 \mathbb{F}^n 的子空间, 称为 (**) 的解空间.
- (3). 记 W 为 (*) 的解集合, 当 $\beta \neq 0$ 时, W 不是 \mathbb{F}^n 的子空间.

极大线性无关组

设 Γ 为一向量组, Γ' 为 Γ 的一个部分组.若满足:

- Γ' 线性无关.
- 从 Γ 中任意添加一个向量至 Γ' , 所得的新的部分组都线性相关.

则称 Γ' 为 Γ 的**一个极大线性无关组**. 极大线性无关组一定存在, 但一般不唯一.

线性表示/线性组合

如果向量组 Γ_2 中每一个向量都可由向量组 Γ_1 中的向量线性表示, 则称 Γ_2 可由 Γ_1 线性表示 (或 Γ_2 是 Γ_1 的线性组合).

向量组等价

如果 Γ_2 和 Γ_1 可以相互线性表示, 则称 Γ_2 与 Γ_1 等价.

注记

• 向量组之间的等价关系是等价关系.

9/23

注记

向量组 Γ_2 : β_1 , β_2 , \dots , β_t 可由向量组 Γ_1 : α_1 , α_2 , \dots , α_s 线性表示

$$\iff \forall 1 \leqslant i \leqslant t, \exists \begin{pmatrix} \lambda_{1i} \\ \lambda_{2i} \\ \vdots \\ \lambda_{si} \end{pmatrix} \in \mathbb{F}^s, \text{ s,t. } \beta_i = (\alpha_1, \alpha_2, \cdots, \alpha_s) \begin{pmatrix} \lambda_{1i} \\ \lambda_{2i} \\ \vdots \\ \lambda_{si} \end{pmatrix}$$

$$\iff (\beta_1, \beta_2, \cdots, \beta_t) = (\alpha_1, \alpha_2, \cdots, \alpha_s) \begin{pmatrix} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1t} \\ \lambda_{21} & \lambda_{22} & \cdots & \lambda_{2t} \\ \vdots & \vdots & & \vdots \\ \lambda_{s1} & \lambda_{s2} & \cdots & \lambda_{st} \end{pmatrix}.$$

因此, Γ_2 可由 Γ_1 线性表示 $\Longrightarrow \exists T \in \mathbb{F}^{s \times t}$, s.t. $(\beta_1 \cdots \beta_t) = (\alpha_1 \cdots \alpha_s)T$.

主要结论

• 向量组 Γ 与它的极大线性无关组等价, 从而, Γ 的**任意两个极大线性无关组** 等价.

•
$$\beta_1, \dots, \beta_t$$
 可由 $\alpha_1, \dots, \alpha_s$ 线性表示 $t > s$ $\Rightarrow \beta_1, \dots, \beta_t$ 线性相关.

- β_1, \dots, β_t 可由 $\alpha_1, \dots, \alpha_s$ 线性表示 β_1, \dots, β_t 线性无关 $\Rightarrow t \leq s$.
- 两个线性无关的等价向量组必含有相同个数的向量.
- 一个向量组的不同的极大线性无关组都含有相同个数的向量.

向量组的秩

向量组 Γ 的极大线性无关组所含向量的个数称为**向量组** Γ **的秩**, 记作 rank(Γ), 或 rank($\alpha_1, \alpha_2, \dots, \alpha_s$).

注记

- (1). $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关\iff rank $(\alpha_1, \alpha_2, \dots, \alpha_s) = s$, $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关\iff rank $(\alpha_1, \alpha_2, \dots, \alpha_s) < s$.
- (2). $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $\beta_1, \beta_2, \dots, \beta_t$ 线性表示,则 $\operatorname{rank}(\alpha_1, \alpha_2, \dots, \alpha_s) \leqslant \operatorname{rank}(\beta_1, \beta_2, \dots, \beta_t).$
- (3). $\alpha_1, \alpha_2, \dots, \alpha_s = \beta_1, \beta_2, \dots, \beta_t$ 等价, 则 $\operatorname{rank}(\alpha_1, \alpha_2, \dots, \alpha_s) = \operatorname{rank}(\beta_1, \beta_2, \dots, \beta_t).$

求向量组的极大线性无关组

方法1: 逐个排查

理论依据: 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 中, 每个 α_i 都不是它前面向量的线性组合, 则 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关.

方法2: 初等行变换(仅对 \mathbb{F}^n 中向量组)

第一步: 将
$$\Gamma$$
: $\alpha_1, \alpha_2, \dots, \alpha_m$, 写成列向量形式, 记 $A = (\alpha_1, \alpha_2, \dots, \alpha_m)$.

第二步:
$$A \xrightarrow{\overline{0}$$
等行变换 $B = \begin{pmatrix} 0 & \cdots & 0 & b_{1j_1} & * & \cdots & \cdots & * & * \\ 0 & \cdots & \cdots & 0 & b_{2j_2} & * & \cdots & \cdots & * \\ 0 & \cdots & \cdots & 0 & b_{rj_r} & * & \cdots & * \\ 0 & \cdots & \cdots & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 &$

其中 $1 \leq j_1 < j_2 < \cdots < j_r \leq m, b_{1j_1}b_{2j_2} \cdots b_{rj_r} \neq 0.$

结论: 则 $\alpha_{j_1}, \alpha_{j_2}, \cdots, \alpha_{j_r}$ 为 Γ 的一个极大线性无关组.

方法2的理论依据

定理 5.3.1

设 $\alpha_1,\alpha_2,\cdots,\alpha_m\in\mathbb{F}^n$ 为一组向量, $A=(\alpha_1,\cdots,\alpha_m)$ 是以 α_1,\cdots,α_m 为列 构成的 $n\times m$ 矩阵, 将 A 经过**初等行变换**化为矩阵 $B=(\beta_1,\beta_2,\cdots,\beta_m)$. 则

- (1). $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关 (无关) $\iff \beta_1, \beta_2, \cdots, \beta_m$ 线性相关 (无关).
- (2). $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_r}$ 是 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 的极大无关组 $\iff \beta_{i_1}, \beta_{i_2}, \cdots, \beta_{i_r}$ 是 $\beta_1, \beta_2, \cdots, \beta_m$ 的极大无关组.

基与维数

线性空间的基

线性空间 V 的一个极大线性无关组称为 V 的一组基.

注记

向量组
$$\{\alpha_1,\alpha_2,\cdots,\alpha_r\}$$
是 V 的一组基 \iff $\begin{cases} \langle \alpha_1,\ \alpha_2,\cdots,\alpha_r \rangle = V; \\ \alpha_1,\ \alpha_2,\cdots,\alpha_r \end{cases}$ 线性无关.
$$\iff \text{任意 }V \text{ 中向量 }\beta \text{ 可唯一表示成}$$
 $\alpha_1,\alpha_2,\cdots,\alpha_r \text{ 的线性组合}$ $\beta=\lambda_1\alpha_1+\lambda_2\alpha_2+\cdots+\lambda_r\alpha_r.$

坐标与维数

- 此时, 称 $(\lambda_1, \lambda_2, \dots, \lambda_r)$ 为 β 在基 $\{\alpha_1, \alpha_2, \dots, \alpha_r\}$ 下的**坐标**.
- 称 V 的**维数**为 r, 记为 dim(V) = r.

注记

(1). $\{\alpha_1, \alpha_2, \cdots, \alpha_r\}$ 为 V 的一组基 $\iff \forall \beta \in V, \exists! \begin{pmatrix} \alpha_1 \\ \lambda_2 \\ \vdots \\ \lambda_r \end{pmatrix} \in \mathbb{F}^r, \text{ s.t. }$

$$\beta = (\alpha_1, \alpha_2, \cdots, \alpha_r) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_r \end{pmatrix}.$$

- (2). 规定零子空间 $0 = \{0\}$ 的基为 \emptyset , dim $\{0\} = 0$.
- (3). 若已知 $\dim V = r$, 则 V 中任意 r 个线性无关的向量组都是 V 的一组基. 特别的, $\dim(\mathbb{F}^n) = n$.
- (4). 注意 V 中向量做成的向量组 Γ 与 V 的子空间 W 的区别.
- (5). 注意极大线性无关组与基的区别.

16 / 23

与矩阵 A 相关的子空间

记号

•
$$A = (a_{ij})_{m \times n} = (\alpha_1, \alpha_2, \cdots, \alpha_n) = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$$
.

• 记向量组 Γ_1 : $\alpha_1, \alpha_2, \cdots, \alpha_n$; 向量组 Γ_2 : $\beta_1, \beta_2, \cdots, \beta_m$.

列空间和列秩

- 称 $V(\Gamma_1) = \langle \alpha_1, \alpha_2, \cdots, \alpha_n \rangle \subseteq \mathbb{F}^m$ 为 A 的**列空间**, 记为 C(A).
- Γ_1 的极大线性无关组是 C(A) 的一组基.
- $\operatorname{rank}(\Gamma_1) = \dim C(A)$. $\operatorname{k} \operatorname{rank}(\Gamma_1) \operatorname{h} A \operatorname{h} \operatorname{h} \operatorname{h} \operatorname{h}$.

行空间和行秩

- 称 $V(\Gamma_2) = \langle \beta_1, \beta_2, \cdots, \beta_m \rangle \subseteq \mathbb{F}^n$ 为 A 的行空间, 记为 R(A), (或 $C(A^T)$).
- Γ_2 的极大无关组是 R(A) 的一组基, 称 $\operatorname{rank}(\Gamma_2) = \dim R(A)$ 为 A 的**行秩**.

定理

任何矩阵的行秩等于它的列秩,等于该矩阵的秩.

证明

证明依赖于:

- 初等变换不改变矩阵的列秩.
- 初等变换不改变矩阵的行秩.
- 初等变换不改变矩阵的秩.
- 行秩不变性: 交换两行、某行乘以非零常数、某行加上另一行的倍数都得 到等价的行向量, 故不改变行秩.
- 列秩不变性: 由定理 5.3.1 直接得到.
- 秩不变性: 由第四章定理 4.4.3 可得.
- 相抵标准形 $\begin{pmatrix} I_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}$ 的**行秩=列秩**=秩.

例子

$$\stackrel{\text{iff}}{\not\sim} A = \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -1 & 1 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 6 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix}.$$

- (1). 分别写出 α_1 , α_2 , α_3 , α_4 , α_5 和 β_1 , β_2 , β_3 , β_4 的一个极大线性无关组.
- (2). 分别写出 C(A) 和 R(A) 的一组基.
- (3). 以 A 为系数矩阵的齐次线性方程组的解空间称为 A 的零空间, 记为 V_A , 探索 V_A 与 C(A) 的关系.

基与坐标

设 $V \in \mathcal{F}$ 维线性空间, $B_1: \alpha_1, \alpha_2, \cdots, \alpha_r$ 和 $B_2: \beta_1, \beta_2, \cdots, \beta_r \in V$ 的两组基. 设 $\eta \in V$ 在基 B_1 和 B_2 下的坐标分别为 $(x_1, x_2, \cdots, x_r)^T$ 和 $(y_1, y_2, \cdots, y_r)^T$.

基变换公式

存在 可逆方阵 $T \in \mathbb{F}^{r \times r}$, 使得 $(\beta_1, \beta_2, \cdots, \beta_r) = (\alpha_1, \alpha_2, \cdots, \alpha_r)T$ (基变换公式), 矩阵 T 称为由基 $\{\alpha_1, \alpha_2, \cdots, \alpha_r\}$ 到基 $\{\beta_1, \beta_2, \cdots, \beta_r\}$ 的过渡矩阵.

坐标变换公式

$$\eta = (\alpha_1, \alpha_2, \cdots, \alpha_r) \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = (\beta_1, \beta_2, \cdots, \beta_r) \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix} = (\alpha_1, \alpha_2, \cdots, \alpha_r) T \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix}$$

$$\Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = T \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix}, \quad \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix} = T^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} 称为坐标变换公式.$$

陈洪佳 (中国科大) \$1. 线性代数(B1)回顾 2025年9月28日 20 / 23

定理

设 V 是 r 维线性空间, $\{\alpha_1,\alpha_2,\cdots,\alpha_r\}$ 是 V 的一组基, $\beta_1,\ \beta_2,\cdots,\beta_r$ 是 V 中向量, 且有 $(\beta_1,\beta_2,\cdots,\beta_r)=(\alpha_1,\alpha_2,\cdots,\alpha_r)T$, 则

 $\{\beta_1, \beta_2, \cdots, \beta_r\}$ 也是 V 的基 \iff T 可逆.

注记

(1). 事实上, 有等式

$$\operatorname{rank}(\beta_1, \beta_2, \cdots, \beta_r) = \operatorname{rank}(T).$$

(2). 进一步, 设 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是 V 中一组线性无关的向量, $\beta_1, \beta_2, \cdots, \beta_t$ 是 V 中向量, 且有 $(\beta_1, \beta_2, \cdots, \beta_t) = (\alpha_1 \alpha_2, \cdots, \alpha_r)T$, 则同样有

$$rank(\beta_1, \beta_2, \cdots, \beta_t) = rank(T).$$

基扩充!

定理

设 W 是 n 维线性空间 V 的 m 维子空间, $\{\alpha_1, \cdots, \alpha_m\}$ 是 W 的一组基. 则存在 V 中向量 $\alpha_{m+1}, \cdots, \alpha_n$, 使得 $\{\alpha_1, \cdots, \alpha_m, \alpha_{m+1}, \cdots, \alpha_n\}$ 为 V 的一组基.

注记

- (1). 称 $\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_n$ 为 $\alpha_1, \dots, \alpha_m$ 的扩充基.
- (2). 实际操作时, 如何寻找扩充基?
- (3). 反之未必!

定理

设线性空间 $U \subset V$, 且满足 $\dim U = \dim V < +\infty$, 则 U = V.

Steinitz替换定理

设向量 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,并且可以由向量 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表示,则有 $s \leq t$. 并且可以用向量 $\alpha_1, \cdots, \alpha_s$ 替换向量 β_1, \cdots, β_t 中某·s 个向量,不妨设为 β_1, \cdots, β_s 使得向量组 $\alpha_1, \cdots, \alpha_s, \beta_{s+1}, \cdots, \beta_t$ 与向量组 β_1, \cdots, β_t 等价.

后续内容预告

- 线性空间的同构
- 子空间运算
- 线性空间的直和
- 商空间