MODELING AND ANALYSIS OF THERMAL META MATERIAL

A PROJECT REPORT

Submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

MECHANICAL ENGINEERING

BY

PAPPALA JEEEVANKUMAR

CHAPPIDI ANTONY KUMAR

VIJJINA TANOO MYTHILI

SAYALA DIVYA SUMANTH

Under the esteemed guidance of

Er. MD. TOUSEEFAHAMED

ASSISTANT PROFESSOR

Dept. of Mechanical Engineering

2018-2022

DEPARTMENT OF MECHANICAL ENGINEERING UNIVERSITY COLLEGE OF ENGINEERING & TECHNOLOGY

Acharya Nagarjuna University, Nagarjuna Nagar GUNTUR- 522510, A.P, INDIA.

CERTIFICATE

This is to certify that the project work entitled "MODELING AND ANALYSIS OF THERMAL META MATERIAL" submitted by

PAPPALA JEEVANKUMAR	L19ME3266
CHAPPIDI ANTONY KUMAR	Y18ME3206
VIJJINA TANOO MYTHILI	Y18ME3258
SAVALA DIVVA SUMANTH	V18MF3248

In the fulfillment of the requirements for the award of the degree of Bachelor of Technology in **Mechanical Engineering** during the year 2018-2022.

PROJECT GUIDE

Er. MD. TOUSEEF AHAMED

HEAD OF THE DEPARTMENT

Dr M. GOPI KRISHNA

EVALUATION SHEET

1. Name of the can	didates:
	PAPPALA JEEVANKUMAR
	CHAPPIDI ANTONY KUMAR
	VIJJINA TANOO MYTHILI
	SAYALA DIVYA SUMANTH
2. Title of the proj	ect:
MODELIN	IG AND ANALYSIS OF THERMAL META MATERIAL
3. Specialization: 1	B. TECH (MECHANICAL)
4. Date of examina	ntion/viva voce:
External Examino	er:
Internal Examine	r:

ACKNOWLEDGEMENT

We wish to take this opportunity to express our deep gratitude to all the people who have extended their co-operation in various ways in doing our project work successfully. It is our pleasure to acknowledge the help of all the individuals.

I sincerely express my gratitude to **Prof. E SRINIVASA REDDY**, Acharya Nagarjuna University College of Egg & Tech, Guntur. I express heartly thanks to **Dr. M. GOPI KRISHNA**, Asst. Prof and HOD, Department of Mechanical Engineering for his support and encouragement. We express profound sense of gratitude for our guide **Sri. TOUSEEF AHAMED**, Asst. Prof, Department of Mechanical Engineering for her valuable guidance we have received during the project work.

We would wish to thank **Sri MD. TOUSEEF AHAMED,** Asst. Prof, Department of mechanical engineering for his valuable support. we whole heartedly thank all the staff of Mechanical Engineering department for giving me their assistance, signifying the requirements at college and encourage me at every time.

Last but not least, we would like to thank all of our friends for their co-operation.

PAPPALA JEEVANKUMAR CHAPPIDI ANTONY KUMAR VIJJINA TANOO MYTHILI SAYALA DIVYA SUMANTH

ABSTRACT

Metamaterials are defined as artificially designed micro-architectures with unusual physical properties, including optical, electromagnetic, mechanical, and thermal properties. This study proposes a thermal metamaterial that provides an efficient thermal cycle with two conflicting objectives:

- (i) high thermal resistance as a thermal insulator and
- (ii) high cooling capability as a heat exchanger.

To enable these conflicting objectives, we used cellular lattice structures fabricated by additive manufacturing (AM). An efficient design method based on a finite element (FE) mesh was developed to obtain boundary-conformal lattices for arbitrary 3D shapes. FE analyses were then conducted to evaluate the structural and thermal behaviors of the lattice structures. The designed lattice structures were fabricated by powder-bed fusion (PBF) type AM using ABS material.

Thermal Analysis were then performed to evaluate the thermal resistance of the lattices with various strut diameters, and the resulting thermal resistance increased five to fifteen times in comparison with that of the pure material. Flow Analysis was also performed to evaluate the cooling capability of the lattices, which showed that the lattice structures could act not only as a thermal insulator but also as a heat exchanger. Consequently, the developed lattice structures can be regarded as a thermal metamaterial that is useful in various applications that require a high thermal cycle of heating and cooling.

CONTENTS	Page.no
Certificate	ii
Evaluation Sheet	iii
Acknowledgement	iv
Abstract	V
CHAPTER 1	
INTRODUCTION	
1.1 Introduction of Meta Materials	1
1.2 History of Meta Materials	2
CHAPTER 2	
LITERATURE REVIEW	
2.1 Literature review	4
CHAPTER 3	
METHODOLOGY	
3.1 Additive Manufacturing	7
3.2 Acrylonitrite butadiene styrene	
3.3 3D printing of ABS	11

3.4 Modelling	
3.4.1 Software	14
3.4.2 Modelling	16
CHAPTER 4	
ANALYSIS	
4.1 Thermal Analysis	18
4.1.1 Steady-state thermal analysis	18
4.2 flow analysis	20
4.2.1 Internal flow Analysis	20
CHAPTER 5	
TESTING	
5.1 Thermal Conductivity	29
5.2 Guarded Hot Plate	31
5.3 Testing of Heat Transfer	35
5.4 Radial Heat Conduction	37
CHAPTER 6	
RESULTS & DISCUSSION	NS
6.1 Model Information	40
6.2 Study Properties	41
6.3 Units	41
6.4 Material Properties	42
6.5 Mesh Information	42
6.6 Mesh Information-Details	43
6.7 Study Results	44
CONCLUCION	
CONCLUSION	
REFERENES	

LIST OF FIGURES

	TITLE	Page No
Figure 1.1	BCC Lattice Structure	2
Figure 1.2	Optical Meta Material	3
Figure 3.1	Specification Tree	16
Figure 3.2	Boss-Extruded Solid	16
Figure 3.3	Cut-Extruded Solid	16
Figure 3.4	Double Cut-Extruded Solid	17
Figure 4.1	Heat Power Input	18
Figure 4.2	Convectional Heat Transfer	19
Figure 4.3	Max & Min Temperatures	19
Figure 4.4	Project Specification Tree	20
Figure 4.5	Create Lids	21
Figure 4.6	3D Flow Model	21
Figure 4.7	Flow Simulation Menu	21
Figure 4.8	Defining Project	22
Figure 4.9	Defining Units	22
Figure 4.10	Defining Flow Type	23
Figure 4.11	Adding Flow To Analysis	24
Figure 4.12	Defining wall	24
Figure 4.13	Atmospheric Condition	25
Figure 4.14	Boundary Condition	25
Figure 4.15	Goal Plot	26
Figure 4.16	Flow Trajectories	27
Figure 4.17	Surface Plot	28
Figure 4.18	Cut Plot	28
Figure 5.1	Guarded Plate Method	32
Figure 5.2	Convection	35
Figure 5.3	Conduction	36
Figure 5.4	Radiation	37
Figure 5.5	Radial Heat Conduction Equipment	37
Figure 5.6	Heat Transfer Module	38
Figure 5.7	Schematic Representation of Linear Conduction Experiment Unit	38
Figure 6.1	Metamaterial FCC 5mm	40
Figure 6.2	Meshed Model	43
Figure 6.3	Study Results	44
Figure 6.4	Temperature variation along length when used as insulator	44

LIST OF TABLES

	TITLE	Page No
Table 3.1	Physical properties of ABS	11
Table 3.2	Mechanical Properties of ABS	12
Table 3.3	Thermal Properties of ABS	13
Table 6.1	Model Information	40
Table 6.2	Study Properties	41
Table 6.3	Units	41
Table 6.4	Material Properties	42
Table 6.5	Mesh Information	42
Table 6.6	Meshed Model	43
Table 6.7	Study Results	44