Algorithm 1 Euclidean Norm Projection onto the l^1 ball of radius t.

 $\overline{\mathbf{input}} \colon v \in \mathbb{R}^n \text{ and } t > 0$

output: w

- 1 Take absolute value of v u: $u_1 = |v_1|, u_2 = |v_2|, \ldots, u_n = |v_n|$ 2 Sort u into descending order $\mu: \mu_1 \geq \mu_2 \geq \ldots \geq \mu_\rho$ 3 Find $\rho = \max\{j \in 1, \ldots, n \mid \mu_j \frac{1}{j}(\sum_{r=1}^j \mu_r t) > 0\}$ 4 Define $\theta = \frac{1}{\rho}(\sum_{i=1}^\rho \mu_i t)$ 5 Output w given by $w_i = sign(v_i) * \max\{u_i \theta, 0\}$