Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №6

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Сравнение протоколов Port-Level I/O

Задание 1

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	4
3.	Скрипт	5
4.	Решение 1	6
	4.1. Директивы	6
	4.2. Моделирование	
	4.3. Синтез	
5.	Решение 2	7
	5.1. Директивы	7
	5.2. Моделирование	7
	5.3. Синтез	8
	5.4. C/RTL моделирование	
6.	Вывол	11

1. Задание

- 1. Создать проект lab6 1
- 2. Микросхема: xa7a12tcsg325-1q
- 3. Создать Си код на основе слайда (функция foo)

- 4. Создать тест lab6_1_test.c на основе слайда выше.
- 5. Сделать solution1
 - задать: clock period 6; clock_uncertainty 0.1
 - осуществить моделирование (на основе слайда выше, с выводом результатов в консоль)
 - осуществить синтез (с настройками по умолчанию интерфейс ap-fifo)
 - привести в отчете:
 - * performance estimates=>summary
 - * utilization estimates=>summary
 - * Performance Profile
 - * interface estimates=>summary
 - · объяснить какой интерфейс использован для блока (и какие сигналы входят) и для портов (и какие сигналы входят).
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Осуществить С|RTL моделирование
 - Привести результаты из консоли
 - Открыть временную диаграмму (все сигналы)
 - * Отобразить два цикла обработки на одном экране
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- 6. Сделать solution2
 - Задать протокол
 - a: ap bus

- осуществить моделирование
- осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary
 - * utilization estimates=>summary
 - * Performance Profile
 - * interface estimates=>summary
 - · объяснить какой интерфейс использован для блока (и какие сигналы входят) и для портов (и какие сигналы входят).
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Осуществить C|RTL моделирование
 - Привести результаты из консоли
 - Открыть временную диаграмму (все сигналы)
 - * Отобразить два цикла обработки на одном экране
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval

7. Выводы

• Объяснить отличие протоколов

2. Исходный код

Ниже приведен исходный код устройства и теста, использованных в лабораторной работе.

```
void lab6_1(int* d){
    static int acc = 0;
    int i;
    for(i = 0; i < 4; i++) {
        acc += *(d + i + 1);
        *(d + i) = acc;
    }
}</pre>
```

Рис. 2.1. Исходный код устройства

```
1 #include < stdio.h>
2
3
  int main() {
4
   int pass = 1;
5
   int i;
6
   int d[5];
7
   int expected [5] = \{6, 13, 21, 30, 9\};
8
9
   for (i = 0; i < 5; i++) {
10
     d[i] = i + 5;
11
12
13
   lab6 1(d);
14
15
    for (i = 0; i < 5; i++) {
      fprintf(stdout, "%d:\_Expeced\_%d\_Actual\_%d\n", i, expected[i], d[i]);
16
17
      if (expected [i] != d[i]) {
       pass = 0;
18
19
20
    }
21
22
23
    if (pass)
24
      25
26
     return 0;
27
28
    else
29
      30
31
     return 1;
32
33 }
```

Рис. 2.2. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open project -reset lab6 1
2 add_files lab6_1.c
3 set_top lab6_1
4 add_files -tb lab6_1_test.c
6
  open_solution solution1 -reset
7
  set_part \{xa7a12tcsg325-1q\}
  create_clock -period 6ns
9
  set clock uncertainty 0.1
10
11 csim_design
12 # csynth design
13 # cosim design -trace level all
14
15
16 open solution solution 2 -reset
17 \operatorname{set}_{part} \left\{ xa7a12tcsg325-1q \right\}
18 create_clock -period 6ns
19 set_clock_uncertainty 0.1
20
  set_directive_interface -mode ap_bus lab6_1 d
21
22
23
  csim\_design
  csynth design
  cosim_design -trace_level all
26
27
28
  exit
```

Рис. 3.1. Скрипт

4. Решение 1

4.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 4.1. Директивы

4.2. Моделирование

Ниже приведены результаты моделирования.

Рис. 4.2. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

4.3. Синтез

При синтезе возникает ошибка, приведённая ниже.

```
ERROR: [SYNCHK 200-61] lab6_1.c:5: unsupported memory access on variable 'd' which is (or contains) an array with unkn
own size at compile time.
INFO: [SYNCHK 200-10] 1 error(s), 0 warning(s).
ERROR: [HLS 200-70] Synthesizability check failed.
```

Рис. 4.3. Ошибка синтеза

5. Решение 2

5.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 5.1. Директивы

5.2. Моделирование

Ниже приведены результаты моделирования.

Рис. 5.2. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

5.3. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates Iming (ns) Summary Clock Target Estimated Uncertainty ap_clk 6.00 5.900 0.10 Latency (clock cycles)

□ Summary

Late	ency	Inte		
min	max	min	max	Туре
25	25	25	25	none

Рис. 5.3. Performance estimates

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	60
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	65
Register	-	-	109	-
Total	0	0	109	125
Available	40	40	16000	8000
Utilization (%)	0	0	~0	1

Рис. 5.4. Utilization estimates

Рис. 5.5. Performance profile

Interface

∃ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	lab6_1	return value
ap_rst	in	1	ap_ctrl_hs	lab6_1	return value
ap_start	in	1	ap_ctrl_hs	lab6_1	return value
ap_done	out	1	ap_ctrl_hs	lab6_1	return value
ap_idle	out	1	ap_ctrl_hs	lab6_1	return value
ap_ready	out	1	ap_ctrl_hs	lab6_1	return value
d_req_din	out	1	ap_bus	d	pointer
d_req_full_n	in	1	ap_bus	d	pointer
d_req_write	out	1	ap_bus	d	pointer
d_rsp_empty_n	in	1	ap_bus	d	pointer
d_rsp_read	out	1	ap_bus	d	pointer
d_address	out	32	ap_bus	d	pointer
d_datain	in	32	ap_bus	d	pointer
d_dataout	out	32	ap_bus	d	pointer
d_size	out	32	ap_bus	d	pointer

Рис. 5.6. Interface estimates

По списку сигналов в проекте видно, что для заданного порта установлен протокол ар_bus. Также видно, что для этого протокола требуются дополнительные сигналы.

Рис. 5.7. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5	C6
1	⊡I/O Ports							
2	d							
3	∃Expressions							
4	i_1_fu_76		+					
5	i_phi_fu_62		phi_mux					
6	exitcond_fu_70		icmp					
7	tmp_1_fu_96						+	

Рис. 5.8. Resource viewer

5.4. С/RTL моделирование

Рис. 5.9. Временная диаграмма

По временной диаграмме видно, что latency составляет 25 тактов, а II – 26 тактов.

6. Вывод

В данной лабораторной работе были рассмотрены протоколы Port-Level I/O. Выяснено, что для арифметических операций с указателем необходим протокол ap_bus.