Assignment03

March 27, 2019

```
Assignment03: Visualize average images based on L2-norm Software Engineering 20154652 Lee Dong Jae
```

```
In [5]: import matplotlib.pyplot as plt
       import numpy as np
       file_data
                             = "mnist_train.csv"
       handle_file = open(file_data, "r")
       data
                                = handle_file.readlines()
       handle_file.close()
       size_row = 28  # height of the image
       size_col
                      = 28 # width of the image
                      = len(data)
       num_image
                         = 0
                                # count for the number of images/
       count
```

normalize the values of the input data to be [0, 1]

example of distance function between two vectors x and y

```
In [7]: def distance(x, y):
    d = (x - y) ** 2
    #s = np.sum(d)
    #r = np.sqrt(s)
    return(d)
```

make a matrix each column of which represents an images in a vector form

```
In [8]: list_image = np.empty((size_row * size_col, num_image), dtype=float)
        list_label = np.empty(num_image, dtype=int)
In [9]: for line in data:
           line_data = line.split(',')
            label
                     = line_data[0]
            im_vector = np.asfarray(line_data[1:])
            im_vector = normalize(im_vector)
            list_label[count]
                                    = label
           list_image[:, count]
                                    = im vector
            count += 1
  plot first 100 images out of 10,000 with their labels
In [38]: f1 = plt.figure(figsize=(10,10))
         for i in range(100):
                        = list_label[i]
             label
             im_vector = list_image[:, i]
             im_matrix
                        = im_vector.reshape((size_row, size_col))
             plt.subplot(10, 10, i+1)
             plt.subplots_adjust(hspace = 3)
             plt.title(label)
             plt.imshow(im_matrix, cmap='Greys', interpolation='None')
             frame
                     = plt.gca()
             frame.axes.get_xaxis().set_visible(False)
             frame.axes.get_yaxis().set_visible(False)
         plt.show()
```

5 3	0	4 [4]	1	9 ?	2 2	1	3 3	1	4
3 3	5 &	3 3	6 6	1	7 7	2	8	6 6	9 9
4 પ	0	9	1	1 1	2 2	4	3 3	2 2	7
3 3	8 F	6 6	9 7	0 0	5 Ø	6 6	0 Ø	7 ⊋	6 4
1 []	8	7	9	3 3	9 9	8	5 5	9	3 3
3 3	0	7 7	4	9 7	8 3	0	9 9	4 4	1 7
4 (4	4	6 6	0 Ø	4 <i>4</i>	5 5	6 6	1	0	0 5
1 1	7 2	1	6 &	3	0 Ø	2	1	1	7 7
9 9	0	2	6 Ø	7 7	8 8	3 3	9 9	0	4 4
6 G	7 2	4	6 6	8	0	7	8	3	1

Create a list of values and labels for the images

Visualize average images for each digits

```
In [14]: for i in range(10):
             label
                         = i
             im_vector = ans_list[:, i]
             im_matrix = im_vector.reshape((size_row, size_col))
            plt.subplot(2, 5, i+1)
            plt.title(label)
            plt.imshow(im_matrix, cmap='Greys', interpolation='None')
                     = plt.gca()
             frame
             frame.axes.get_xaxis().set_visible(False)
             frame.axes.get_yaxis().set_visible(False)
        plt.show()
                0
```

In []: