Michael Chillemi Hw 1

- 1. Solve using modular arithmetic
 - a) 15*29 mod 13 = 435 mod 13 = 6
 - b) 2 * 29 mod 11 = 58 mod 11 = 3
 - c) 21 * 36 mod 17 = 273 mod 17 =8
 - d) -11 * 59 mod 19 = -649 Mod 19 =16
- 2. Compute the following
 - a) $\frac{1}{5}$ mod 13 = 0.2
 - b) 1/2 mod 7 = 0.2
 - c) 3 * % mod 17 = 1.2

3. Z4

+	0	1	2	3
0	0	1	2	3
1	1	2	3	4
2	2	3	4	5
3	3	4	5	6

a) Z4

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	4	6
3	0	3	6	9

b) Z5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	5

2	2	3	4	5	6
3	3	4	5	6	7
4	4	5	6	7	8

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	6	8
3	0	3	6	9	12
4	0	4	8	12	16

Z6

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	6
2	2	3	4	5	6	7
3	3	4	5	6	7	8
4	4	5	6	7	8	9
5	5	6	7	8	9	10

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	6	8	10

3	0	3	6	9	12	15
4	0	4	8	12	16	20
5	0	5	10	15	20	25

c)

In Z4 the elements that do not have a multiplicative inverse are 2 and 0. In Z6 the elements that do not have a multiplicative inverse are 2, 3, 4 and 0.

d)

There exist a multiplicative inverse for all non-zero elements in Z5 because 5 is prime and all non-zero elements smaller than 5 are relatively prime to 5.

*	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	8	10	12
3	0	3	6	9	12	15	18
4	0	4	8	12	16	20	24
5	0	5	10	15	20	25	30
6	0	6	12	18	24	30	36

Inverse

$$1^{-1} = 1$$

$$2^{-1} = 4$$

$$3^{-1} - 5$$

$$4^{-1} = 2$$

$$5^{-1} = 3$$

$$6^{-1} = 6$$

e) Z11{0,1,2,3,4,5,6,7,8,9,10}

The multiplicative inverse of 5 in Z11 is 9.

Z12{0,1,2,3,4,5,6,7,8,9,10,11}

The multiplicative inverse of 5 in Z12 is 5.

Z13{0,1,2,3,4,5,6,7,8,9,10,11,12}

The multiplicative inverse of 5 in Z13 is 8.

f) Z21{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

$$0^2 = 0$$

$$1^2 = 1$$

$$2^2 = 4$$

$$3^2 = 9$$

$$4^2 = 16$$

$$5^2 = 25 r = 4$$

$$6^2 = 36 r = 15$$

$$7^2 = 49 r = 7$$

$$8^2 = 64 r = 1$$

$$9^2 = 81 r = 18$$

$$10^2 = 100 \, r = 16$$

$$11^2 = 121 r = 16$$

$$12^2 = 144 r = 18$$

$$13^2 = 169 r = 1$$

$$14^2 = 196 r = 7$$

$$15^2 = 225 r = 15$$

$$16^2 = 256 r = 4$$

$$17^2 = 289 r = 16$$

$$18^2 = 324 r = 9$$

$$19^2 = 361 \, r = 4$$

$$20^2 = 400 \, r = 1$$

4.

a)
$$7^{100} \pmod{13} = 9$$

b)
$$2^{197} \pmod{13} = 6$$