

Chapter 7

COMBINATIONAL LOGIC BUILDING BLOCKS

Introduction

- Number of gates in SSI is limited by the number of pins in the package.
- The cost of ICs is determined by the number and types of ICs employed and the number of interconnections needed to implement the given digital circuit.

Cost Reduction Methods

- MSI Components
 - standard circuits
 - perform specific
 digital functions
 commonly needed
 in the design of
 digital systems

PLD

- an IC with internal logic gates that are connected through electric fuses
- can be programmed to incorporate complex
 logic function with one
 LSI circuit

Examples of Combinational Circuits

- Adders
 - Half-Adder
 - Full-Adder
- Subtracter
 - Half-Subtracter
 - Full-Subtracter

- Magnitude Comparators
- Decoders
- Demultiplexers
- Encoders
- Multiplexers
- Code Converters
- Parity Generators or Checkers

Adders

- Half-Adder
 - a device which
 accepts two binary
 digits as inputs and
 produces two
 binary digits as
 outputs, a sum bit
 and a carry bit
- Full-Adder
 - a device which
 accepts three inputs
 including an input
 carry and
 generates a sum
 output and an
 output carry

Adders

- Serial
 - One full-adder circuit
 and a storage device
 to hold the generated
 output carry
 - The stored output carry from one pair of bits is used as input carry for the next pair of bits.

- Parallel
 - Uses n full-adder circuits
 - Output carry from one full-adder is connected to the input carry of the full-adder one position to its left

Addition of rightmost bit only

Addition of rightmost bit only

Α	В	C _{out}	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half-adder

Sum =
$$A \oplus B$$

 $C_{out} = A B$

One-bit full-adder

Full-adder logic

Sum =
$$(A \oplus B) \oplus C_{in}$$

$$C_{out} = AB + C_{in}(A \oplus B)$$

Block diagram of one-bit full-adder Sum

Cascading n full-adder circuits

 The full-adder circuit can easily be cascaded to implement addition of up to n-bit inputs:

Carry out from S_n

Example: add two 32-bit numbers

Cascading n-bit full-adder circuits

 To perform n-bit addition, you'll need to cascade n full-adder circuits, with each circuit waiting for the output (C_{out}) from a previous full-adder unit before it can compute the sum. This results into a very slow adder with a lot of data hazards.

Cascading n-bit full-adder circuits

Solution: Implement "carry look-ahead"

Carry Propagation

• It is a method used to determine the Nth carry-in without waiting for the (N-1)th full-adder to finish its operation.

Sum =
$$(A \oplus B) \oplus C_{in}$$
 $C_{out} = AB + C_{in}(A \oplus B)$

Carry Propagation

• It is a method used to determine the Nth carry-in without waiting for the (N-1)th full-adder to finish its operation.

Sum =
$$(A \oplus B) \oplus C_{in}$$
 $C_{out} = AB + C_{in}(A \oplus B)$

Let
$$P = A \oplus B$$
 and $G = AB$

Carry Propagation

• It is a method used to determine the Nth carry-in without waiting for the (N-1)th full-adder to finish its operation.

Sum =
$$(A \oplus B) \oplus C_{in}$$
 $C_{out} = AB + C_{in}(A \oplus B)$

Let
$$P = A \oplus B$$
 and $G = AB$

$$Sum = P \oplus C_{in}$$
 $P = propagate$

$$C_{out} = G + PC_{in}$$
 $G = generate$

Carry Propagation Sum

Propagate

Generate

$$S = (A \oplus B) \oplus C_{in}$$

Let
$$P = A \oplus B$$
 and

$$\mathsf{Sum} = \mathsf{P} \oplus \mathsf{C}_{\mathsf{in}}$$

$$C_{out} = AB + C_{in}(A \oplus B)$$

$$G = AB$$

$$C_{out} = G + PC_{in}$$

$$-$$
 S = (A \oplus B) \oplus C_{in}

$$C_{out} = AB + C_{in}(A \oplus B)$$

Let
$$P = A \oplus B$$
 and $G = AB$

$$Sum = P \oplus C_{in}$$

$$C_{out} = G + PC_{in}$$

For n-bit addition:

$$\mathsf{C} - \mathsf{D} \oplus \mathsf{C}$$

$$S_0 = P_0 \oplus C_{in0}$$
 and $C_{out0} = G_0 + P_0 C_{in0}$

$$S_1 = P_1 \oplus C_{in1}$$
 and $C_{out1} = G_1 + P_1 C_{in1}$

$$C_{out1} = G_1 + P_1 C_{in1}$$

$$\operatorname{S} = (A \oplus B) \oplus C_{in}$$

$$C_{out} = AB + C_{in}(A \oplus B)$$

Let
$$P = A \oplus B$$
 and $G = AB$

$$Sum = P \oplus C_{in}$$

$$C_{out} = G + PC_{in}$$

For n-bit addition:

$$S_0 = P_0 \oplus C_{in0}$$
 and $C_{out0} = G_0 + P_0 C_{in0}$

$$S_1 = P_1 \oplus C_{in1}$$

$$S_1 = P_1 \oplus C_{in1}$$
 and $C_{out1} = G_1 + P_1 C_{in1}$

$$= G_1 + P_1(G_0 + P_0C_{in0})$$

$$S_{0} = P_{0} \oplus C_{in0} \quad \text{and} \quad C_{out0} = G_{0} + P_{0}C_{in0}$$

$$S_{1} = P_{1} \oplus C_{in1} \quad \text{and} \quad C_{out1} = G_{1} + P_{1}C_{in1}$$

$$= G_{1} + P_{1}(G_{0} + P_{0}C_{in0})$$

$$S_{2} = P_{2} \oplus C_{in2} \quad \text{and} \quad C_{out2} = G_{2} + P_{2}C_{in2}$$

$$= G_{2} + P_{2}(G_{1} + P_{1}(G_{0} + P_{0}C_{in0}))$$

$$P_{0}C_{in0})$$

$$S_n = P_n \oplus C_{inn}$$
 and $C_{outn} = G_n + P_n C_{inn}$

Example: add two 32-bit numbers

32-bit Look-ahead Adder

Compromise on carry look-ahead

- Use ripple carry for a number of bits (e.g., 4)
- Do carry look-ahead for each 4-bit ripple carry adder.
- Result: 10-fold increase in speed of addition depending on number of bits.

- A combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines.
- They are called n-to-m line decoders where $m \le 2^n$.

Truth table for a 3-to-8 line decoder

A	В	С	D _o	D ₁	D ₂	D ₃	D ₄	D_5	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Only <u>one</u>
output
is <u>HIGH</u> for
each
input code
(2ⁿ codes)

Logic circuit of a 3-to-8 line decoder

 Implement a full-adder using a decoder and external gates.

Recall:
$$S = \sum (1,2,4,7)$$

and $C_{out} = \sum (3,5,6,7)$

- Since there are three inputs, n = 3, use a 3-to-8
 line decoder
- Since there are two output functions, two external OR gates are needed.

In general, any n inputs with m outputs can be implemented using n-to-2ⁿ line decoders and m OR gates.

Multiplexer (Data selectors)

- A device that selects binary information from one of many input lines and directs it to a single output line.
- Control signal pattern forms binary index of input connected to output
- Two forms:
 - Logical form (with n selection lines)
 - Functional form (with n-1 selection lines)

Example: MUX f(A,B,C)Output 4-to-1 MUX

• Implement the function $F = \sum (1,3,5,6)$ using a MUX in (a) Logical form and (b) Functional form

(a) $F = \sum (1,3,5,6)$ in Logical form (Use an 8-to-1 MUX)

(a) $F = \sum (1,3,5,6)$ in Logical form (Use an 8-to-1 MUX)

