

Chương 4: Vec tơ ngẫu nhiên 4.2 Vec tơ ngẫu nhiên liên tục

Nguyễn Văn Hợi

Trường Đại học Công nghệ Thông tin Bô môn Toán - Lý

Nội dung

- Khái niệm.
- Hàm mật độ xác suất đồng thời (the joint probability density functions).
- Hàm mật độ xác suất thành phần (the marginal density functions).
- Hàm mật độ xác suất có điều kiện (the conditional density functions).

- \square X,Y: Biến ngẫu nhiên rời rạc, (X,Y): Vec tơ ngẫu nhiên rời rạc:
 - ppxs đồng thời:

$$\sum_{i} \sum_{j} p_{XY}(x_i, y_j) = 1.$$

ppxs thành phần theo X:

$$p_X(x_i) = \sum_i p_{XY}(x_i, y_j).$$

ppxs có điều kiện:

$$p_{X|Y}(x_i|y_j) = \begin{cases} \frac{p_{XY}(x_i,y_j)}{p_Y(y_j)}, & p_Y(y_j) \neq 0 \\ 0, & \text{t/h khác.} \end{cases}$$

Độc lập: $p_{XY}(x_i, y_j) = p_X(x_i)p_Y(y_j)$.

- $\square X, Y$: Biến ngẫu nhiên liên tục, (X,Y): Vec tơ ngẫu nhiên liên tục:
 - Hàm mật độ đồng thời: $f_{XY}(x,y) \geq 0; \quad \iint_{\mathbb{R}^2} f_{XY}(x,y) dA = 1.$
 - Hàm mật đô thành phần theo X:

$$f_X(x) = \int^{+\infty} f_{XY}(x, y) dy.$$

• Hàm mật đô có điều kiên:

$$f_{X|Y}(x|y) = \begin{cases} \frac{f_{XY}(x,y)}{f_Y(y)}, & f_Y(y) \neq 0 \\ 0, & \text{t/h khác.} \end{cases}$$

• Độc lập: $f_{XY}(x,y) = f_X(x)f_Y(y)$.

☐ Tính chất 1:

$$P((X,Y) \in D) = \iint_D f_{XY}(x,y)dA.$$

Ví dụ 1: Hàm mật độ xác suất đồng thời của các biến ngẫu nhiên X và Y được cho như sau

$$f_{XY}(x,y) = \begin{cases} Ce^{-x}e^{-2y}, & \text{n\'eu } x>0, y>0\\ 0, & \text{t/h kh\'ac}. \end{cases}$$

a. Tìm *C*.

Trước tiên, C phải thỏa điều kiện $f(x,y)\geq 0$ với mọi x,y. Nếu x>0,y>0 thì $f_{XY}(x,y)=Ce^{-x}e^{-2y}$. Vì $f_{XY}(x,y)\geq 0$ nên $C\geq 0$. Ngoài ra,

$$\iint_{\mathbb{R}^2} f_{XY}(x,y) dA = 1.$$

Biểu diễn miền xác định dương của $f_{XY} \ (f_{XY}(x,y) \geq 0)$.

$$f_{XY}(x,y) = 0$$

$$f_{XY}(x,y) \ge 0$$

$$\iint_{\mathbb{R}^2} f_{XY}(x,y) dA = \int_0^\infty \int_0^\infty C e^{-x} e^{-2y} dx dy = \int_0^\infty C e^{-2y} dy = -\frac{C}{2} e^{-2y} \mid_0^\infty = \frac{C}{2}.$$

Từ đó suy ra C=2>0 (thỏa).

b. Tính P(X > 1, Y < 1).

$$P(X > 1, Y < 1) = P((X, Y) \in D = \{(x, y) : x > 1, y < 1\}) = \iint_D f_{XY}(x, y) dA.$$

$$\iint_{\mathbb{R}} f_{XY}(x,y)dA = \int_{0}^{1} \int_{1}^{\infty} 2e^{-x}e^{-2y}dxdy = \int_{0}^{1} 2e^{-2y-1}dy = -e^{-2y-1} \mid_{0}^{1} = e^{-1} - e^{-3}.$$

c. Tính P(X < Y).

$$P(X < Y) = P((X, Y) \in D = \{(x, y) : x < y\}) = \iint_{D} f_{XY}(x, y) dA = I.$$

$$I = \int_0^\infty \int_0^y 2e^{-x}e^{-2y}dxdy = \int_0^\infty 2(e^{-2y} - e^{-3y})dy = (-e^{-2y} + \frac{2}{3}e^{-3y}) \mid_0^\infty = \frac{1}{3}.$$

d. Tính $f_X(x)$

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy.$$

Chia các trường hợp "CH \hat{I} " ứng với x để tính.

• Với x > 0,

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy = \int_{0}^{+\infty} 2e^{-x}e^{-2y} dy = e^{-x}.$$

(\mathring{O} đây, ta tìm chặn trên nhỏ nhất và dưới lớn nhất cho y).

• Với $x \leq 0$,

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0.$$

Ví dụ 2: Hàm mật độ xác suất đồng thời của các biến ngẫu nhiên X và Y được cho như sau

$$f_{XY}(x,y) = egin{cases} Cx^2y, & ext{n\'eu } 0 \leq y \leq x \leq 1 \ 0, & ext{t/h kh\'ac}. \end{cases}$$

a. Tìm *C*.

Trước tiên, C phải thỏa điều kiện $f_{XY}(x,y)\geq 0$ với mọi x,y. Nếu x>0,y>0 thì, $f_{XY}(x,y)=Cx^2y$. Vì $f_{XY}(x,y)\geq 0$ nên $C\geq 0$. Ngoài ra.

$$\iint_{\mathbb{R}^2} f_{XY}(x, y) dA = 1.$$

$$\iint_{\mathbb{R}^2} f_{XY}(x,y) dA = \int_0^1 \int_0^x Cx^2 y dy dx = \int_0^1 \frac{C}{2} x^4 dx = \frac{C}{10}.$$

Suy ra C = 10 > 0 (thỏa).

b. Tính $P(Y \ge \frac{1}{2}X)$.

$$P(Y \ge \frac{1}{2}X) = P((X,Y) \in D = \{(x,y) : y \ge \frac{1}{2}x\}) = \iint_D f_{XY}(x,y)dA = I.$$

$$I = \int_0^1 \int_{\frac{x}{2}}^x 10x^2y dy dx = \int_0^1 5x^2(x^2 - \frac{x^2}{4}) dx = \frac{3}{4}.$$

c. Tính $f_X(x), f_Y(y)$

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy.$$

Chia các trường hợp "CH \mathring{I} " ứng với x để tính.

• Với 0 < x < 1,

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy = \int_{0}^{x} 10x^2 y dy = 5x^4.$$

(\mathring{O} đây, ta tìm chặn trên nhỏ nhất và dưới lớn nhất cho y).

• Trường hợp khác,

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy = \int_{-\infty}^{+\infty} 0 dy = 0.$$

c. Tính $f_X(x), f_Y(y)$

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx.$$

Chia các trường hợp "CH \mathring{I} " ứng với y để tính.

• Với $0 \le y \le 1$,

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx = \int_y^1 10x^2 y dx = \frac{10}{3}y(1 - y^3).$$

 $\mathring{\text{O}}$ đây, ta tìm chặn trên nhỏ nhất và dưới lớn nhất cho x.

Trường hợp khác, ta được

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx = \int_{-\infty}^{+\infty} 0 dx = 0.$$

d. Hai biến ngẫu nhiên X, Y có độc lập với nhau hay không?

$$f_{XY}(1,1) = 10 \neq f_X(1)f_Y(1) = 0.$$

Suy ra chúng không độc lập.

- **e.** Tìm hàm mật độ có điều kiện $f_{X|Y}(x|y)$.
 - Với 0 < y < 1, ta được $f_Y(y) \neq 0$. Khi đó

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = \frac{10x^2y}{(10/3)(y-y^4)} = \frac{3x^2}{1-y^3}, \ \ 0 < y \le x \le 1.$$

• Trường hợp khác, theo định nghĩa ta được

$$f_{X|Y}(x|y) = 0.$$

☐ Tính chất 2:

$$P(X \in A|Y \in B) = \int_A \int_B f_{X|Y}(x|y) dy dx, \quad P(X \in A|Y = b) = \int_A f_{X|Y}(x|b) dx.$$

f. Tính

$$\begin{split} P(X > \frac{1}{3}|Y > \frac{1}{4}) &= \int_{\frac{1}{3}}^{\infty} \int_{\frac{1}{4}}^{\infty} f_{X|Y}(x|y) dy dx \\ &= \int_{\frac{1}{3}}^{1} \int_{\frac{1}{4}}^{x} \frac{3x^{2}}{1 - y^{3}} dy dx \\ &= \int_{\frac{1}{4}}^{1} \int_{y}^{1} \frac{3x^{2}}{1 - y^{3}} dx dy \\ &= \int_{\frac{1}{4}}^{1} 1 dy = 1 - \frac{1}{4} = \frac{3}{4}. \end{split}$$

g. Tính

$$P(X > \frac{1}{5}|Y = \frac{1}{4}).$$

Ta có

$$f_{X|Y}(x|y) = \frac{3x^2}{1 - y^3}, \quad 0 < y \le x \le 1.$$

Do đó khi $y=\frac{1}{4}$ cố định, ta có

$$f_{X|Y}(x|\frac{1}{4}) = \frac{3x^2}{1 - (1/4)^3}, \quad 1 \ge x \ge \frac{1}{4}.$$

Suy ra

$$P(X > \frac{1}{5}|Y = \frac{1}{4}) = \int_{\frac{1}{4}}^{\infty} f_{X|Y}(x|\frac{1}{4})dx = \int_{\frac{1}{4}}^{1} \frac{3x^2}{1 - (1/4)^3} dx = \frac{1 - (1/4)^3}{1 - (1/4)^3} = 1.$$

Hàm phân phối xác suất đồng thời

 \Box Cho X,Y là hai biến ngẫu nhiên khi đó hàm phân phối xác suất đồng thời (the joint probability distribution function) được định nghĩa bởi

$$F(a,b) = P(X \leq a, Y \leq b) = \begin{cases} \sum_{x_i \leq a} \sum_{y_j \leq b} p_{XY}(x_i, y_j), & \text{n\'eu } X, Y \text{ r\'oi rạc,} \\ \int_{-\infty}^a \int_{-\infty}^b f_{XY}(x, y) dy dx, & \text{n\'eu } X, Y \text{ liên tục.} \end{cases}$$

 \square Nếu X,Y là hai biến ngẫu nhiên liên tục khi đó

$$f_{XY}(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}.$$

Ví dụ 3: Hàm mật độ xác suất đồng thời của các biến ngẫu nhiên X và Y được cho như sau

$$f_{XY}(x,y) = \begin{cases} 10x^2y, & \text{n\'eu } 0 \leq y \leq x \leq 1 \\ 0, & \text{t/h kh\'ac.} \end{cases}$$

(1) Nếu $a \leq 0$ thì $f_{XY}(x,y) = 0$ và do đó

$$F(a,b) = \int_{-a}^{a} \int_{-a}^{b} f_{XY}(x,y)dydx = 0.$$

(2) Nếu $b \le 0$ thì $f_{XY}(x,y) = 0$ và do đó

$$F(a,b) = \int_{-a}^{a} \int_{-b}^{b} f_{XY}(x,y)dydx = 0.$$

(3) Nếu $1 \ge a \ge b > 0$ thì $f_{XY}(x,y) = 10x^2y$ và do đó

$$F(a,b) = \int_0^b \int_y^a 10x^2y dx dy$$
$$= \frac{5}{3}a^3b^2 - \frac{2}{3}b^5.$$

(4) Nếu a > 1 > b > 0 thì

$$F(a,b) = \int_0^b \int_y^1 10x^2y dx dy$$
$$= \frac{5}{2}b^2 - \frac{2}{2}b^5.$$

(5) Nếu $1 \ge b \ge a > 0$ thì

$$F(a,b) = \int_0^a \int_0^x 10x^2 y dy dx = a^5.$$

(6) Nếu $b > 1 \ge a > 0$ thì

$$F(a,b) = \int_{0}^{a} \int_{0}^{x} 10x^{2}y dy dx = a^{5}.$$

(7) Nếu a > 1 và b > 1 thì

$$F(a,b) = \int_0^1 \int_0^x 10x^2y dy dx = 1.$$

Bài tập

Hàm mật độ xác suất đồng thời của các biến ngẫu nhiên X và Y được cho như sau

$$f_{XY}(x,y) = egin{cases} Cx^2y, & ext{n\'eu}\ 0 \leq y \leq x \leq 1 \ 0, & ext{t/h kh\'ec}. \end{cases}$$

- **a**. Tính $f_{Y|X}(y|x)$.
- **b.** Tính

$$P(Y < \frac{1}{8}|X = \frac{1}{4}).$$

c. Tính

$$P(Y > 1 | X = \frac{1}{3}).$$