

Computer Vision

Lecture 06: Object detection pipeline - 2

DETR Transformer

End-to-end object detection with Transformers, ECCV'20

Limitations of DETR

- Slow convergence.
- It takes 10-20 times slow compared to Faster-RCNN.
- Scale-problem:
 - It cannot effectively detect small objects.
 - Recent detection models exhibit multi-scale encoders; while DETR already takes huge complexity for one scale. Thus, it is hard to use the DETR in multi-scales.
 - Attention mechanism requires quadratic computation w.r.t. pixel numbers.
- Deformable attention is proposed to relieve the heavy complexity and slow convergence.

 Reference point is defined as: Coordinates of query pixel @ Encoder, Inferred via linear layer @ Decoder.

- Reference point is defined as:
 Coordinates of query pixel @ Encoder,
 Inferred via linear layer @ Decoder.
- Predict sampling offsets and attention weights.

- Reference point is defined as:
 Coordinates of query pixel @ Encoder,
 Inferred via linear layer @ Decoder.
- Predict sampling offsets and attention weights.
- 3. Attention is obtained for offset points of the reference points.

$$\text{MSDeformAttn}(\boldsymbol{z}_q, \hat{\boldsymbol{p}}_q, \{\boldsymbol{x}^l\}_{l=1}^L) = \sum_{m=1}^{M} \boldsymbol{W}_m \big[\sum_{l=1}^{L} \sum_{k=1}^{K} A_{mlqk} \cdot \boldsymbol{W}_m' \boldsymbol{x}^l (\phi_l(\hat{\boldsymbol{p}}_q) + \Delta \boldsymbol{p}_{mlqk}) \big]$$

- Reference point is defined as:
 Coordinates of query pixel @ Encoder,
 Inferred via linear layer @ Decoder.
- Predict sampling offsets and attention weights.
- 3. Attention is obtained for offset points of the reference points.

$$\text{MSDeformAttn}(\boldsymbol{z}_q, \hat{\boldsymbol{p}}_q, \{\boldsymbol{x}^l\}_{l=1}^L) = \sum_{m=1}^{M} \boldsymbol{W}_m \big[\sum_{l=1}^{L} \sum_{k=1}^{K} A_{mlqk} \cdot \boldsymbol{W}_m' \boldsymbol{x}^l (\phi_l(\hat{\boldsymbol{p}}_q) + \Delta \boldsymbol{p}_{mlqk}) \big]$$

 Predicted bounding boxes have relative coordinates to the reference points.

$$\hat{\boldsymbol{b}}_q = \{\sigma\big(b_{qx} + \sigma^{-1}(\hat{p}_{qx})\big), \sigma\big(b_{qy} + \sigma^{-1}(\hat{p}_{qy})\big), \sigma(b_{qw}), \sigma(b_{qh})\}$$

https://wikidocs.net/31379

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{split} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_\text{h}) W^O \\ \text{where head}_\text{i} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

$$ext{MultiHeadAttn}(oldsymbol{z}_q,oldsymbol{x}) = \sum_{m=1}^M oldsymbol{W}_mig[\sum_{k\in\Omega_k} A_{mqk}\cdotoldsymbol{W}_m'oldsymbol{x}_kig]$$

$$ext{MultiHeadAttn}(oldsymbol{z}_q, oldsymbol{x}) = \sum_{m=1}^{M} oldsymbol{W}_mig[\sum_{k \in \Omega_k} A_{mqk} \cdot oldsymbol{W}_m' oldsymbol{x}_kig]$$

$$\text{DeformAttn}(\boldsymbol{z}_q, \boldsymbol{p}_q, \boldsymbol{x}) = \sum_{m=1}^{M} \boldsymbol{W}_m \big[\sum_{k=1}^{K} A_{mqk} \cdot \boldsymbol{W}_m' \boldsymbol{x} (\boldsymbol{p}_q + \Delta \boldsymbol{p}_{mqk}) \big]$$

$$\text{MSDeformAttn}(\boldsymbol{z}_q, \hat{\boldsymbol{p}}_q, \{\boldsymbol{x}^l\}_{l=1}^L) = \sum_{m=1}^{M} \boldsymbol{W}_m \big[\sum_{l=1}^{L} \sum_{k=1}^{K} A_{mlqk} \cdot \boldsymbol{W}_m' \boldsymbol{x}^l (\phi_l(\hat{\boldsymbol{p}}_q) + \Delta \boldsymbol{p}_{mlqk}) \big]$$

Iterative Bounding Box Refinement.

− → gradient detach

Decoder layers refine bounding boxes based on previous decoder layer outputs.

$$b_i = \{\sigma(\Delta b_i^x + \sigma^{-1}(b_{i-1}^x)), \sigma(\Delta b_i^y + \sigma^{-1}(b_{i-1}^y)), \ \sigma(\Delta b_i^w + \sigma^{-1}(b_{i-1}^w)), \sigma(\Delta b_i^h + \sigma^{-1}(b_{i-1}^h))\}$$

Two-Stage Deformable DETR.

- Object queries are irrelevant to the input images.
- Motivated by the two-stage object detectors such as Faster-RCNN, region proposals are generated.
- Generated region proposals are further used as the input to the Decoder input.

Performance

Method	Epochs	ΛD	A Dec	AP ₇₅	APs	AP _M	AP _L	params	FLOPs	Training	Inference
Method	Epociis	AI	AF 50							GPU hours	FPS
Faster R-CNN + FPN	109	42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	380	26
DETR	500	42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	2000	28
DETR-DC5	500	43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	7000	12
DETR-DC5	50	35.3	55.7	36.8	15.2	37.5	53.6	41M	187G	700	12
DETR-DC5 ⁺	50	36.2	57.0	37.4	16.3	39.2	53.9	41M	187G	700	12
Deformable DETR	50	43.8	62.6	47.7	26.4	47.1	58.0	40M	173G	325	19
+ iterative bounding box refinement	50	45.4	64.7	49.0	26.8	48.3	61.7	40M	173G	325	19
++ two-stage Deformable DETR	50	46.2	65.2	50.0	28.8	49.2	61.7	40M	173G	340	19

Problem: Slow convergence speed of DETRs

Conditional DETR

DETR (50 epoch)

DETR (500 epoch)

Object queries are not using the image specific information; while offering attention weight map.

It is hard to map queries to the spatial keys and it causes the slow convergence of DETRs.

Two-Stage Deformable DETR.

DETR

$$(\mathbf{c}_q + \mathbf{p}_q)^{\top} (\mathbf{c}_k + \mathbf{p}_k)$$

$$= \mathbf{c}_q^{\top} \mathbf{c}_k + \mathbf{c}_q^{\top} \mathbf{p}_k + \mathbf{p}_q^{\top} \mathbf{c}_k + \mathbf{p}_q^{\top} \mathbf{p}_k$$

$$= \mathbf{c}_q^{\top} \mathbf{c}_k + \mathbf{c}_q^{\top} \mathbf{p}_k + \mathbf{o}_q^{\top} \mathbf{c}_k + \mathbf{o}_q^{\top} \mathbf{p}_k.$$

Conditional DETR

$$\mathbf{c}_q^{ op} \mathbf{c}_k + \mathbf{p}_q^{ op} \mathbf{p}_k.$$

$$(\mathbf{s}, \mathbf{f}) \to \mathbf{p}_q,$$

s: reference point obtained from object queries. f: decoder embedding

$$\mathbf{p}_s = \text{sinusoidal}(\text{sigmoid}(\mathbf{s})).$$

To make it aligned with positional space of the key.

$$\mathbf{p}_q = \mathbf{T}\mathbf{p}_s = \mathbf{\lambda}_q \odot \mathbf{p}_s.$$

T : Diagonal matrix, this transforms the reference point to the embedding space.

 λ_q : element of T.

Model	#epochs	GFLOPs	#params (M)	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
DETR-R50	500	86	41	42.0	62.4	44.2	20.5	45.8	61.1
DETR-R50	50	86	41	34.9	55.5	36.0	14.4	37.2	54.5
Conditional DETR-R50	50	90	44	40.9	61.8	43.3	20.8	44.6	59.2
Conditional DETR-R50	75	90	44	42.1	62.9	44.8	21.6	45.4	60.2
Conditional DETR-R50	108	90	44	43.0	64.0	45.7	22.7	46.7	61.5
DETR-DC5-R50	500	187	41	43.3	63.1	45.9	22.5	47.3	61.1
DETR-DC5-R50	50	187	41	36.7	57.6	38.2	15.4	39.8	56.3
Conditional DETR-DC5-R50	50	195	44	43.8	64.4	46.7	24.0	47.6	60.7
Conditional DETR-DC5-R50	75	195	44	44.5	65.2	47.3	24.4	48.1	62.1
Conditional DETR-DC5-R50	108	195	44	45.1	65.4	48.5	25.3	49.0	62.2
DETR-R101	500	152	60	43.5	63.8	46.4	21.9	48.0	61.8
DETR-R101	50	152	60	36.9	57.8	38.6	15.5	40.6	55.6
Conditional DETR-R101	50	156	63	42.8	63.7	46.0	21.7	46.6	60.9
Conditional DETR-R101	75	156	63	43.7	64.9	46.8	23.3	48.0	61.7
Conditional DETR-R101	108	156	63	44.5	65.6	47.5	23.6	48.4	63.6
DETR-DC5-R101	500	253	60	44.9	64.7	47.7	23.7	49.5	62.3
DETR-DC5-R101	50	253	60	38.6	59.7	40.7	17.2	42.2	57.4
Conditional DETR-DC5-R101	50	262	63	45.0	65.5	48.4	26.1	48.9	62.8
Conditional DETR-DC5-R101	75	262	63	45.6	66.5	48.8	25.5	49.7	63.3
Conditional DETR-DC5-R101	108	262	63	45.9	66.8	49.5	27.2	50.3	63.3
Other single-scale DETR variants									
Deformable DETR-R50-SS*	50	78	34	39.4	59.6	42.3	20.6	43.0	55.5
UP-DETR-R50 [5]	150	86	41	40.5	60.8	42.6	19.0	44.4	60.0
UP-DETR-R50 [5]	300	86	41	42.8	63.0	45.3	20.8	47.1	61.7
Deformable DETR-DC5-R50-SS*	50	128	34	41.5	61.8	44.9	24.1	45.3	56.0

Visualization of attentions of positional queries and positional keys.

- (a) Unconcentrated and too small/too big attentions.
- (b) Gaussian-like attentions, object scale is not considered.
- (c) Sharp attentions.

q-th anchor $A_q = (x_q, y_q, w_q, h_q)$

$$\operatorname{PE}(A_q) = \operatorname{PE}(x_q, y_q, w_q, h_q) = \operatorname{Cat}(\operatorname{PE}(x_q), \operatorname{PE}(y_q), \operatorname{PE}(w_q), \operatorname{PE}(h_q)).$$

PE: $\mathbb{R} \to \mathbb{R}^{D/2}$: Positional encoding function that generates sinusoidal embedding from float numbers.

- DETR, Conditional DETR -> High-dimensional query
- No direct relationship between query values and bounding box locations.
- Directly used bounding box values as the queries.

positional query
$$P_q = \text{MLP}(\text{PE}(A_q)),$$

q-th anchor $A_q = (x_q, y_q, w_q, h_q)$

$$PE(A_q) = PE(x_q, y_q, w_q, h_q) = Cat(PE(x_q), PE(y_q), PE(w_q), PE(h_q)).$$

PE: $\mathbb{R} \to \mathbb{R}^{D/2}$: Positional encoding function that generates sinusoidal embedding from float numbers.

Self-Attn:
$$Q_q = C_q + P_q$$
, $K_q = C_q + P_q$, $V_q = C_q$,

Cross-Attn:
$$Q_q = \operatorname{Cat}(C_q, \operatorname{PE}(x_q, y_q) \cdot \operatorname{MLP}^{(\operatorname{csq})}(C_q)),$$

 $K_{x,y} = \operatorname{Cat}(F_{x,y}, \operatorname{PE}(x,y)), \quad V_{x,y} = F_{x,y},$

-> MLP^(csq) is used similarly to Conditional DETR.

Image

Spatial

Features

Spatial Positional

Encodings

DAB-DETR

New Anchor boxes

(x', y', w', h')

 (w_{ref}, h_{ref})

Anchor Sine Encodinas

Anchor Boxes

(x, y, w, h)

MLP

(x, y, w, h)

Nx

Variables

Modules

MLP

Output

Add & Norm

FFN

Add & Norm

Vidth & Height-

Modulated

Multi-Head Cross-Attention

Add & Norm

Multi-Head

Decoder

Embeddings

 $(\Delta x, \Delta y,$ $\Delta w, \Delta h$)

Original positional attention map

$$Attn((x, y), (x_{ref}, y_{ref})) = (PE(x) \cdot PE(x_{ref}) + PE(y) \cdot PE(y_{ref})) / \sqrt{D},$$

Modulate positional attention maps

$$\begin{aligned} \text{ModulateAttn}((x,y),(x_{\text{ref}},y_{\text{ref}})) &= (\text{PE}(x) \cdot \text{PE}(x_{\text{ref}}) \frac{w_{q,\text{ref}}}{w_q} + \text{PE}(y) \cdot \text{PE}(y_{\text{ref}}) \frac{h_{q,\text{ref}}}{h_q}) / \sqrt{D}, \\ \\ w_{q,\text{ref}},h_{q,\text{ref}} &= \sigma(\text{MLP}(C_q)). \end{aligned}$$

Temperature Tuning

$$PE(x)_{2i} = \sin(\frac{x}{T^{2i/D}}), \quad PE(x)_{2i+1} = \cos(\frac{x}{T^{2i/D}}),$$

It affects the size of positional priors.

DAB-DETR: Dynamic Anchor Boxes are better queries for DETR, ICLR 2022

# row	Model	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L	Params
1	Deformable DETR	43.8	62.6	47.7	26.4	47.1	58.0	40M
2	Deformable DETR+	45.4	64.7	49.0	26.8	48.3	61.7	40M
3	Deformable DETR+ (open source)	46.3	65.3	50.2	28.6	49.3	62.1	47M
4	DAB-Deformable-DETR(Ours)	46.8	66.0	50.4	29.1	49.8	62.3	47M

- Previous works focused on improving the decoder and its queries.
- Slow convergence issue is caused by unstable bipartite graph matching in the early stage.
- For the same image, queries unstably matched with different objects in different epochs; thus the training goes unstable.
- DN-DETR proposed the query denoising method that stabilizes the bipartite graph matching during the training process.
- It can be easily applicable to DETR-like methods.

- Training process of DETR-like models -> two stage : learning "good anchor" and learning "relative offset"
- Learning offsets could be difficult when "good anchor" is not clear.
- It makes relative offset learning works better as denoising task can bypass the bipartite matching. Noised query is similar to GT anchor and it can be regarded as good anchor.

$$\begin{aligned} &\text{prediction} \quad \mathbf{O^i} = \left\{O_0^i, O_1^i, ..., O_{N-1}^i\right\} \\ &\text{GT} \qquad \mathbf{T} = \left\{T_0, T_1, T_2, ..., T_{M-1}\right\} \\ &V_n^i = \left\{\begin{array}{ll} m, & \text{if } O_n^i \text{ matches } T_m \\ -1, & \text{if } O_n^i \text{ matches nothing} \end{array} \right. \\ &IS^i = \sum_{j=0}^N \mathbbm{1}(V_n^i \neq V_n^{i-1}) \end{aligned}$$

- Decoder is composed of two parts: Denosing part, Matching part
- Matching part is samely trained as previous DETRs via bipartite matching.
- Denoising part : input noised GT object.

Attention mask

the noised GT objects are divided into the group.

$$\mathbf{q} = \{\mathbf{g_0}, \mathbf{g_1}, ..., \mathbf{g_{P-1}}\}$$

- Each denoising group includes N number of queries
- $\mathbf{g_p} = \{q_0^p, q_1^p, ..., q_{M-1}^p\}$
- The aim of attention mask is to prevent the information leakage
 - It prevents matching part refer to denoising part.
 - It prevents the reference among denoising group.

Denoising

- 1. Box noising:
 - a. center shifting,

$$|\Delta x| < \frac{\lambda_1 w}{2}$$
 and $|\Delta y| < \frac{\lambda_1 h}{2}$, where $\lambda_1 \in (0,1)$

the center of noise box belongs to the original box.

a. box scaling

$$[(1 - \lambda_2)w, (1 + \lambda_2)w] [(1 - \lambda_2)h, (1 + \lambda_2)h] \qquad \lambda_2 \in (0, 1)$$

Randomly sampled within the ranges.

- 2. Label noising
 - a. randomly flip
- 3. Reconstruction losses
 - a. L1, GIOU loss -> box
 - b. focal loss -> class

- Decoder is composed of two parts: Denosing part, Matching part
- Matching part is samely trained as previous DETRs via bipartite matching.
- Denoising part: input noised GT object. Only used in training.

Model	#epochs	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L	GFLOPs	Params
DETR-R50 [1]	500	42.0	62.4	44.2	20.5	45.8	61.1	86	41M
Faster RCNN-FPN-R50 [15]	108	42.0	62.1	45.5	26.6	45.5	53.4	180	42M
Anchor DETR-R50 [18]	50	42.1	63.1	44.9	22.3	46.2	60.0	-	39M
Conditional DETR-R50 [12]	50	40.9	61.8	43.3	20.8	44.6	59.2	90	44M
DAB-DETR-R50 [11]	50	42.2	63.1	44.7	21.5	45.7	60.3	94	44M
DN-DETR-R50	50	44.1(+1.9)	64.4	46.7	22.9	48.0	63.4	94	44M
DETR-R101 [1]	500	43.5	63.8	46.4	21.9	48.0	61.8	152	60M
Faster RCNN-FPN-R101 [15]	108	44.0	63.9	47.8	27.2	48.1	56.0	246	60M
Anchor DETR-R101 [18]	50	43.5	64.3	46.6	23.2	47.7	61.4	_	58M
Conditional DETR-R101 [12]	50	42.8	63.7	46.0	21.7	46.6	60.9	156	63M
DAB-DETR-R101 [11]	50	43.5	63.9	46.6	23.6	47.3	61.5	174	63M
DN-DETR-R101	50	45.2(+1.7)	65.5	48.3	24.1	49.1	65.1	174	63M
DETR-DC5-R50 [1]	500	43.3	63.1	45.9	22.5	47.3	61.1	187	41M
Anchor DETR-DC5-R50 [18]	50	44.2	64.7	47.5	24.7	48.2	60.6	151	39 M
Conditional DETR-DC5-R50 [12]	50	43.8	64.4	46.7	24.0	47.6	60.7	195	44M
DAB-DETR-DC5-R50 [11]	50	44.5	65.1	47.7	25.3	48.2	62.3	202	44M
DN-DETR-DC5-R50	50	46.3(+1.8)	66.4	49.7	26.7	50.0	64.3	202	44M
DETR-DC5-R101 [1]	500	44.9	64.7	47.7	23.7	49.5	62.3	253	60M
Anchor DETR-R101 [18]	50	45.1	65.7	48.8	25.8	49.4	61.6	_	58M
Conditional DETR-DC5-R101 [12]	50	45.0	65.5	48.4	26.1	48.9	62.8	262	63M
DAB-DETR-DC5-R101 [11]	50	45.8	65.9	49.3	27.0	49.8	63.8	282	63M
DN-DETR-DC5-R101	50	47.3(+1.5)	67.5	50.8	28.6	51.5	65.0	282	63M

Model	MultiScale	#epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	GFLOPs	Params
Faster R50-FPN 1x [15]	✓	12	37.9	58.8	41.1	22.4	41.1	49.1	180	40M
DETR-R50 1x [1]		12	15.5	29.4	14.5	4.3	15.1	26.7	86	41M
DAB-DETR-DC5-R50 [11]		12	38.0	60.3	39.8	19.2	40.9	55.4	216	44M
DN-DETR-DC5-R50		12	41.7(+3.7)	61.4	44.1	21.2	45.0	60.2	216	44M
Deformable DETR-R50 1x [20]	✓	12	37.2	55.5	40.5	21.1	40.7	50.5	173	40M
Dynamic DETR-R50 [†] 1x (without dynamic encoder)	✓	12	40.2	58.6	43.4		_	_	_	_
Dynamic DETR-R50 [†] 1x [4]	✓	12	42.9	61.0	46.3	24.6	44.9	54.4	_	_
DN-Deformable-DETR-R50 [4]	✓	12	43.4	61.9	47.2	24.8	46.8	59.4	195	48M
DAB-DETR-DC5-R101 [11]		12	40.3	62.6	42.7	22.2	44.0	57.3	282	63M
DN-DETR-DC5-R101		12	42.8(+2.5)	62.9	45.7	23.3	46.6	61.3	282	63M
Faster R101 FPN [15]	✓	108	44.0	63.9	47.8	27.2	48.1	56.0	246	60M
DN-Deformable-DETR-R101	✓	12	44.1	62.8	47.9	26.0	47.8	61.3	275	67M

Based on deformable, DAB, DN DETR

- Denoising training
- Query initialization
- iterative box prediction

DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection, ICLR'23

DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection, ICLR'23

Contrastive DeNoising Training

- DN-DETR is effective for queries that have GT box, while it lacks the ability to estimate background as "no object" since there is no GT box for background.
- This can be relieved via CDN training.

Positive queries within the inner square: noise scale is smaller than lambda_1

Negative queries between the inner and outer squares: noise scale is larger than lambda_1 but smaller than lambda_2

Mixed Query Selection

- Selected features could include multiple objects or contains only partial object. This causes confusion.
- Exploiting only positional queries while retaining contents queries as before.

Look Forward Twice

- In Deformable DETR, iterative box refinement does not involve the gradient back propagation for stability.
- It helps to improve the early layer's box prediction if we involve later layer's improved box information as input.

Model	Epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Faster-RCNN [30]	108	42.0	62.4	44.2	20.5	45.8	61.1
DETR(DC5) [41]	500	43.3	63.1	45.9	22.5	47.3	61.1
Deformable DETR [41]	50	46.2	65.2	50.0	28.8	49.2	61.7
SMCA-R [11]	50	43.7	63.6	47.2	24.2	47.0	60.4
TSP-RCNN-R [34]	96	45.0	64.5	49.6	29.7	47.7	58.0
Dynamic DETR(5scale) [7]	50	47.2	65.9	51.1	28.6	49.3	59.1
DAB-Deformable-DETR [21]	50	46.9	66.0	50.8	30.1	50.4	62.5
DN-Deformable-DETR [17]	50	48.6	67.4	52.7	31.0	52.0	63.7
DINO-4scale	24	50.4 (+1.8)	68.3	54.8	33.3	53.7	64.8
DINO-5scale	24	51.3(+2.7)	69.1	56.0	34.5	54.2	65.8
DINO-4scale	36	50.9(+2.3)	69.0	55.3	34.6	54.1	64.6
DINO-5scale	36	51.2(+2.6)	69.0	55.8	35.0	54.3	65.3

