

図 6.26 Simulink モデル "arm_nonlinear_sim_pi_d_cont.slx"

図 6.27 非線形微分方程式 (6.64) 式のブロック線図

図 6.28 図 6.26 に含まれる Simulink ブロック "Subsystem"

表 6.6 図 6.28 における Simulink ブロックのパラメータ設定

Simulink ブロック	変更するパラメータ
Mux	入力数:3
Fcn もしくは Interpreted MATLAB Function	式:(u(3) - M*g*l*sin(u(1)) - c*u(2))/J

現すると図 6.27 となるので、これを Simulink ブロック "Subsystem"内の"In1"と "Out1"の間に記述すると、図 6.28 のようになる。ただし、パラメータは表 6.6 のように設定する。"Fcn"や"Interpreted MATLAB Function"への入力は"Mux"で 3 次元にベクトル化されており、これらの Simulink ブロックの中では 3 次元ベクトルの要素を u(1), u(2), u(3) として利用することができる。u(1), u(2), u(3) は"Mux"の上から順に割り当てられているので、それぞれ y(t), $\dot{y}(t)$, u(t) を意味する。

非線形シミュレーションを行うために,以下の M ファイルを作成する.

```
M ファイル "arm_nonlinear_pi_d_design.m" (アーム系の PI-D コントローラ設計と非線形シミュレーション)
     "arm_linear_pi_d_design.m" (p. 128) の 1 \sim 13 行目
     rc_deg = 120; rc = rc_deg*(pi/180); .......... r_{\rm c}=120~{\rm [deg]}=2\pi/3~{\rm [rad]}
 14
 15
     dc = 2;
                                          \cdots d_c = 2 [N \cdot m]
                                          ------ Simulink モデル "arm_linear_sim_pi_d_cont.slx"
 16
     sim('arm_linear_sim_pi_d_cont')
                                               により線形シミュレーションを実行
 17
     y_linear = y;
                                         ------ Simulink モデル "arm_nonlinear_sim_pi_d_cont.
 18
     sim('arm_nonlinear_sim_pi_d_cont')
 19
                                               slx"により非線形シミュレーションを実行
```

154 第7章 周波数特性

(a) ボード線図とベクトル軌跡

2 次遅れ要素 (7.58) 式の周波数伝達関数 $P(j\omega)$ は、 $\eta:=\omega/\omega_{\rm n}$ とおくと、

$$P(j\omega) = \frac{\omega_{\rm n}^2}{\omega_{\rm n}^2 - \omega^2 + j(2\zeta\omega_{\rm n}\omega)} = \frac{1}{1 - \eta^2 + j(2\zeta\eta)}$$
(7.60)

であるから、ゲイン $G_{\mathbf{g}}(\omega)$ 、位相差 $G_{\mathbf{p}}(\omega)$ は

$$G_{\rm g}(\omega) = |P(j\omega)| = \frac{1}{\sqrt{(1-\eta^2)^2 + (2\zeta\eta)^2}} \, [\stackrel{\text{\tiny (\pm)}}{\vdash}]$$
 (7.61)

$$G_{\rm p}(\omega) = \angle P(j\omega) = -\tan^{-1}\frac{2\zeta\eta}{1-\eta^2} \text{ [deg]}$$
 (7.62)

となる. (7.61), (7.62) 式より

(i) $0 < \eta = \omega/\omega_n \ll 1 \ (0 < \omega \ll \omega_n)$ のとき:

$$G_{
m g}(\omega) \simeq 1$$
 [倍] \Longrightarrow $20 \log_{10} G_{
m g}(\omega) \simeq 0$ [dB] $G_{
m p}(\omega) \simeq -{
m tan}^{-1}0 = 0$ [deg]

(ii) $\eta = \omega/\omega_n = 1 \ (\omega = \omega_n) \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}$:

$$G_{g}(\omega) = \frac{1}{2\zeta} \left[\stackrel{\triangle}{\text{H}} \right] \implies 20 \log_{10} G_{g}(\omega) = 20 \log_{10} \frac{1}{2\zeta} \left[\stackrel{\triangle}{\text{H}} \right]$$

$$G_{\rm p}(\omega) = -\tan^{-1}\infty = -90$$
 [deg]

(iii) $\eta = \omega/\omega_n \gg 1 \ (\omega \gg \omega_n) \ \mathcal{O}$ とき:

$$G_{
m g}(\omega) \simeq \frac{1}{\eta^2}$$
 [悟] \implies $20 \log_{10} G_{
m g}(\omega) \simeq -40 \log_{10} \eta$ [dB] $G_{
m p}(\omega) \simeq -{
m tan}^{-1}0 = -180$ [deg]

であるから、2 次遅れ要素のボード線図は図 7.16 (a) \sim (c)、ベクトル軌跡は 図 7.16 (d) のようになる.

(b) ピーク角周波数 $\omega_{\mathbf{p}}$ と共振ピーク $M_{\mathbf{p}}$

 $\omega=\omega_{\rm n}$ 付近の周波数領域では、減衰係数 ζ の値によって $G_{\rm g}(\omega)>1$ となる場合がある。この場合、 $\omega=\omega_{\rm n}$ 付近では正弦波入力 $u(t)=A\sin\omega t$ の振幅 A と比べて、(7.6) 式 (p. 137) に示した周波数応答 $y_{\rm app}(t)$ の振幅

$$B(\omega) = AG_{\rm g}(\omega) = \frac{A}{\sqrt{f(\eta)}}, \quad f(\eta) := (1 - \eta^2)^2 + (2\zeta\eta)^2$$
 (7.63)

の方が大きくなる $(B(\omega)>A$ となる) ため、共振を生じる.ここでは、共振が生じるような減衰係数 ζ の範囲を求めてみよう.

(7.63) 式の振幅 $B(\omega)$ が最大となるのは $f(\eta)$ が最小となるときである. $f(\eta)$ を η で微分すると,

$$\frac{\mathbf{d}f(\eta)}{\mathbf{d}\eta} = 4\eta(\eta^2 + 2\zeta^2 - 1)$$

であるから、 $\mathbf{d}f(\eta)/\mathbf{d}\eta=0$ となるのは $\eta=0,\pm\sqrt{1-2\zeta^2}$ である.そのため, $\zeta>0$ の大小により以下のように場合分けされる.

• $\mathbf{0} < \boldsymbol{\zeta} < \mathbf{1}/\sqrt{2}$ のとき : $1-2\zeta^2 > 0$ なので、 $\mathrm{d}f(\eta)/\mathrm{d}\eta = 0$ の三つの解は互いに異なる実数 $\eta = 0, \pm \eta_\mathrm{p}$ であり、三つの極値を持つ。ただし、 $\eta_\mathrm{p} = \sqrt{1-2\zeta^2}$ である。増減表は

η		$-\eta_{ m P}$		0		$\eta_{ m p}$	
$\frac{\mathrm{d}f(\eta)}{\mathrm{d}\eta}$	_	0	+	0	_	0	+
$f(\eta)$	7	f_{\min}	7	1	7	f_{\min}	7

となり、 $f(\eta)$ $(\eta > 0)$ は $\eta = \eta_p$ で最小値

$$f_{\min} := f(\eta_{\rm p}) = 4\zeta^2(1-\zeta^2)$$

を持つ. ここで、 $0 < f_{\rm min} < 1$ となることに注意する. したがって、 $\eta = \omega/\omega_{\rm n}$ と $f(\eta)$ の関係は、図 7.17 (a) のようになり、ピーク角周波数 $\omega_{\rm p}$ (= $\omega_{\rm n}\eta_{\rm p}$) と 共振ピーク $M_{\rm p}$ は

188 第8章 周波数領域での制御系解析/設計

表 8.1 関数 "pidtune", "pidTuner" により設計できる PID コントローラの形式

文字列	コントローラの形式		自動調節するパラメータ
'P'	P コントローラ	$C(s) = k_{\rm P}$	$k_{\rm P} \ (k_{\rm I} = 0, k_{\rm D} = 0, T_{\rm f} = 0)$
'I'	I コントローラ	$C(s) = \frac{k_{\rm I}}{s}$	$k_{\rm I} \ (k_{\rm P}=0,k_{\rm D}=0,T_{\rm f}=0)$
'PD'	PD コントローラ	$C(s) = k_{\rm P} + k_{\rm D} s$	$k_{\rm P}, k_{\rm D} \ (k_{\rm I} = 0, T_{\rm f} = 0)$
'PI'	PIコントローラ	$C(s) = k_{\mathrm{P}} + \frac{k_{\mathrm{I}}}{s}$	$k_{ m P},k_{ m I}(k_{ m D}=0,T_{ m f}=0)$
'PID'	PID コントローラ	$C(s) = k_{\rm P} + \frac{k_{\rm I}}{s} + k_{\rm D}s$	$k_{\rm P}, k_{\rm I}, k_{\rm D} \ (T_{\rm f} = 0)$
'PDF'	PD コントローラ (不完全微分)	$C(s) = k_{\rm P} + k_{\rm D} \frac{s}{1 + T_{\rm f} s}$	$k_{\rm P}, k_{\rm D}, T_{\rm f} \ (k_{\rm I} = 0)$
'PIDF'	PID コントローラ (不完全微分)	$C(s) = k_{\rm P} + \frac{k_{\rm I}}{s} + k_{\rm D} \frac{s}{1 + T_{\rm f} s}$	$k_{ m P},k_{ m I},k_{ m D},T_{ m f}$

表 8.2 "pidtuneOptions" における設定値 (抜粋)

設定パラメータ	設定値	デフォルト
CrossoverFrequency	目標とするゲイン交差角周波数 $\omega_{ m gc}~{ m [rad/s]}$ の値	_
PhaseMargin	目標とする位相余裕 $P_{ m m}$ [deg] の値	60
DesignFocus ^(注8)	'balanced' (目標値追従と外乱抑制のバランスを重視)	'balanced'
	'reference-tracking' (目標値追従を重視)	
	'disturbance-rejection' (外乱抑制を重視)	

ullet 目標とする位相余裕 $P_{
m m}$ の値を設定してから設計するには、

とする. ここで、 $P_{\rm m}$ を大きくすると、安定度が高くなることに注意する.

● 目標値追従と外乱抑制のいずれを重視するのか,あるいは両者のバランスを重視 するのかを設定してから設計するには,

などとする. デフォルトは 'balanced' であるが, $P_{\rm m}$, $\omega_{\rm gc}$ を目標とする値に一致させることを重視する場合は、'disturbance-rejection' と設定する.

2番目の出力引数 info を

```
[sysC info] = pidtune(sysP,'PIDF') … 2番目の出力引数 info を設定
```

のように設定することにより、設計された PID 制御系が安定かどうか (安定である場合は 1 が表示される) や、PID 制御系のゲイン交差角周波数 $\omega_{\rm gc}$ 、位相余裕 $P_{\rm m}$ の値を得ることができる.これらの値はそれぞれ

⁽^(注 8) DesignFocus を設定できるのは R2015a 以降のバージョンである.

206 第 9 章 現代制御

図 9.11 目標値からのフィードフォワードを利用した目標値追従

9.5.2 積分型サーボ制御

ここでは、外乱 d(t) を考慮した可制御な制御対象

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}(u(t) + d(t)) \\ y(t) = \boldsymbol{C}\boldsymbol{x}(t) \end{cases}$$
(9.73)

に対して, 積分器を含ませたコントローラ

積分型コントローラ -

$$u(t) = Kx(t) + Gw(t), \quad w(t) := \int_0^t e(\tau)d\tau, \quad e(t) = r - y(t) \quad (9.74)$$

を用い、定値 (もしくはステップ状に変化する) の目標値 r(t) や外乱 d(t) に対して、 $\lceil t \to \infty \rfloor$ で $\lceil e(t) \to 0 \rfloor$ を実現する. このときのフィードバック制御系を**積分型サー**

図 9.12 積分型サーボ系

236 付録 B MATLAB の基本的な操作

B.5.2 数式処理における MATLAB 関数

関数名	使用例	説明
syms	syms x y	x, y を複素数のシンボリック変数として定義
	syms x y real	x, y を実数のシンボリック変数として定義
	syms x y positive	x, y を正数のシンボリック変数として定義
	syms x y integer	x, y を整数のシンボリック変数として定義
simplify	simplify(fx)	f(x) を単純化
collect	collect(fx)	f(x) をべき乗でまとめる
	collect(fx,x)	f(x) を x に関するべき乗でまとめる
factor	factor(fx)	f(x) を因数分解したときの因数
	<pre>prod(factor(fx))</pre>	f(x) を因数分解
expand	expand(fx)	f(x) の展開
subs	subs(fx,x,a)	$f(x)$ の x に a を代入 $(f(x) _{x=a})$
limit	limit(fx,x,a)	極限 $\lim_{x \to a} f(x)$
fplot	fplot(fx)	グラフの描画
	<pre>fplot(fx,[xmin xmax])</pre>	グラフの描画 (横軸の範囲を指定)
laplace	Fs = laplace(ft)	$f(t)$ のラプラス変換 $F(s) = \mathcal{L}[f(t)]$
ilaplace	ft = ilaplace(Fs)	$F(s)$ の逆ラプラス変換 $f(t) = \mathcal{L}^{-1} \big[F(s) \big]$
taylor	taylor(fx)	f(x) の 5 次までのマクローリン展開
	taylor(fx,x,'Order',n)	f(x) の n 次までのマクローリン展開
	taylor(fx,x,a)	f(x) の $x=a$ における 5 次までのテイラー展開
	taylor(fx,x,a,'Order',n)	f(x) の $x=a$ における n 次までのテイラー展開

B.5.3 制御工学に関連した MATLAB 関数

■ モデルの定義

関数名	使用例	説明
tf	sys = tf(num,den)	(B.1) 式の形式の伝達関数 $P(s)$ を定義
	sys = tf(sys)	$(\mathrm{B.1})$ 式の形式の伝達関数 $P(s)$ に変換
	s = tf('s')	ラプラス演算子 s の定義
zpk	sys = zpk(z,p,K)	(B.2) 式の形式の伝達関数 $P(s)$ の定義
	sys = zpk(sys)	$(\mathrm{B.2})$ 式の形式の伝達関数 $P(s)$ に変換
ss	sys = ss(A,B,C,D)	状態空間表現 (B.3) 式の定義
	sys = ss(sys)	状態空間表現 (B.3) 式に変換

$$P(s) = \frac{N(s)}{D(s)}, \quad \begin{cases} N(s) = b_m s^m + \dots + b_1 s + b_0 \\ D(s) = a_n s^n + \dots + a_1 s + a_0 \end{cases} \implies \begin{cases} \text{num = [bm \dots b1 b0]} \\ \text{den = [an \dots a1 a0]} \end{cases}$$
(B.1)

$$P(s) = \frac{k(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} \implies \begin{cases} \mathbf{z} = [\mathtt{z1} \ \mathtt{z2} \ \cdots \ \mathtt{zm}] \\ \mathbf{p} = [\mathtt{p1} \ \mathtt{p2} \ \cdots \ \mathtt{pn}] \end{cases} \tag{B.2}$$

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t) + \boldsymbol{D}\boldsymbol{u}(t) \end{cases}$$
(B.3)

238 付録 B MATLAB の基本的な操作

関数名	使用例	説明
margin	margin(sys)	ボード線図の描画と安定余裕の表示
	<pre>[invL Pm wpc wgc] = margin(sys) Gm = 20*log10(invL)</pre>	ゲイン余裕 $G_{\mathbf{m}}$,位相余裕 $P_{\mathbf{m}}$,位相交差角周波数 ω_{pc} ,ゲイン交差角周波数 ω_{gc} の計算

■ PID コントローラの設計

関数名	使用例	説明
pidtune	<pre>sysC = pidtune(sysP,type)</pre>	制御対象のモデル sysP に対し,形式を type とした PID コントローラの設計
	<pre>sysC = pidtune(sysP,type,wgc)</pre>	開ループ伝達関数のゲイン交差角周波数 ωgc を指定
	<pre>sysC = pidtune(sysP,type,opts)</pre>	"pidtuneOptions"により位相余裕や、目標値追 従と外乱抑制のバランスを設定
pidTuner	pidTuner(sysP)	制御対象のモデル sysP に対し,PID コントローラ を視覚的に設計

■ 状態空間表現に基づく解析

関数名	使用例	説明
initial	initial(sys,x0)	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $oldsymbol{y}(t)$ の描画 (時間指定なし)
	initial(sys,x0,t)	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $oldsymbol{y}(t)$ の描画 (時間指定あり)
	<pre>y = initial(sys,x0,t);</pre>	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $y(t)$ の計算
ctrb	Vc = ctrb(A,B)	可制御性行列 $oldsymbol{V}_{ ext{c}} = \left[oldsymbol{B} \ oldsymbol{A} oldsymbol{B} \ \cdots \ oldsymbol{A}^{n-1} oldsymbol{B} ight]$ の計算
obsv	Vo = obsv(A,C)	可制御性行列 $oldsymbol{V}_{ m o}=\left[egin{array}{c} oldsymbol{C} oldsymbol{C} \ oldsymbol{C} oldsymbol{A} \ dots \ oldsymbol{C} oldsymbol{A}^{n-1} \end{array} ight]$ の計算 $oldsymbol{C} oldsymbol{C} oldsymbol{C} oldsymbol{A} oldsymbol{C} oldsymbol{A} \ oldsymbol{C} oldsymbol{A} \ oldsymbol{C} \ oldsymbol{C} oldsymbol{A} \ oldsymbol{C} \ oldsymbol{C} \ oldsymbol{C} \ oldsymbol{C} \ oldsymbol{C} \ oldsymbol{C} \ oldsymbol{V}_{ m o} = oldsymbol{C} \ \ oldsymbol{C} \$

$$\left\{ \begin{array}{l} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t) \end{array} \right. \implies \text{ sys = ss(A,[],C,[]);}$$

■ 状態空間表現に基づくコントローラ設計

関数名	使用例	説明
acker	<pre>K = - acker(A,B,p)</pre>	極配置法:1入力 n 次系の制御対象に対し, $A+BK$ の固有
		値を $\boldsymbol{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ とする $\boldsymbol{u}(t) = \boldsymbol{K}\boldsymbol{x}(t)$ を設計
place	<pre>K = - place(A,B,p)</pre>	極配置法: m 入力 n 次系の制御対象に対し, $A+BK$ の固
		有値を $\mathbf{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ とする $\mathbf{u}(t) = \mathbf{K}\mathbf{x}(t)$ を設
		計 $(p_i の重複は m を超えてはならない)$
lqr	K = - lqr(A,B,Q,R)	最適レギュレータ:評価関数
		$J = \int_0^\infty (\boldsymbol{x}(t)^\top \boldsymbol{Q} \boldsymbol{x}(t) + \boldsymbol{u}(t)^\top \boldsymbol{R} \boldsymbol{u}(t)) dt$
		を最小化する $u(t) = \boldsymbol{K} \boldsymbol{x}(t)$ を設計
care	P = care(A,B,Q,R)	リカッチ方程式
		$PA + A^{\top}P - PBR^{-1}B^{\top}P + Q = O$
		の解 $\mathbf{P} = \mathbf{P}^{\top} > 0$ を求める

第3章の解答

問題 3.1 (1) 極は $s=-1,\,-2$ なので安定であり, $y_\infty=rac{1}{2}$

(2) 極は s=1,-2 なので不安定 (3) 極は $s=1\pm j$ なので不安定

(4) 極は $s=-1, -1\pm j$ なので安定であり、 $y_{\infty}=1$

問題 3.2 $\zeta > 0$

問題 3.3 (1) 条件 A は満足するが、条件 B" を満足しない $(H_2=-26<0$ となる) ので不

(2) 条件 A を満足し、条件 B" も満足する ($H_3 = 260 > 0$ となる) ので安定

問題 3.4 $y(t) = 1 - e^{-2t} \left(\cos 3t + \frac{2}{3}\sin 3t\right), T_{\rm p} = \frac{1}{3}\pi, A_{\rm max} = e^{-\frac{2}{3}\pi}, T = \frac{2}{3}\pi, \lambda = e^{-\frac{4}{3}\pi}$

問題 3.5 $y(t) = 1 + \frac{3}{2}e^{-t} - \frac{5}{2}e^{-3t}, T_p = \frac{1}{2}\log_e 5, A_{\text{max}} = \frac{1}{\sqrt{5}}$

問題 4.1 (1) $T = \frac{L}{R}, K = \frac{1}{R}$

(2) $i(t) = KE_0 \left(1 - e^{-\frac{1}{T}t} \right) = \frac{E_0}{R} \left(1 - e^{-\frac{R}{L}t} \right), i_\infty = \frac{E_0}{R}$

(3) 「 $R \to$ 大」とすると「 $T \to 0$ 」となるので、速応性が向上する (反応がはやくな る). 一方、「 $L \to$ 大」とすると「 $T \to$ 大」となるので、速応性が悪化する (反応 が遅くなる).

問題 4.2 $R = 50 \; [\Omega], \; L = 0.2 \; [\mathrm{H}]$

問題 4.3 $0 < R < 2\sqrt{\frac{L}{C}}$

問題 4.4 (1) $K=y_{\infty}=0.5,\;\xi=-\frac{1}{T_{\mathrm{p}}}\log_{e}\frac{A_{\mathrm{max}}}{y_{\infty}}\simeq0.80472,\;\omega_{\mathrm{n}}=\sqrt{\xi^{2}+\left(\frac{\pi}{T_{\mathrm{p}}}\right)^{2}}\simeq$ 1.7649, $\zeta = \frac{\xi}{\omega_{\rm n}} \simeq 0.45595$

(2) $k = \frac{1}{K} = 2, M = \frac{k}{\omega_z^2} \simeq 0.64206, c = 2\zeta\omega_n M \simeq 1.0334$

第5章の解答

問題 5.1
$$G_{yr}(s) = \frac{P(s)(C_1(s) + C_2(s))}{1 + P(s)C_2(s)}, G_{er}(s) = 1 - G_{yr}(s) = \frac{1 - P(s)C_1(s)}{1 + P(s)C_2(s)}$$

問題 5.2
$$G_{vw}(s) = \frac{P_2(s)C_2(s)}{1 + P_2(s)C_2(s)}, G_{yr}(s) = \frac{P_1(s)C_1(s)P_2(s)C_2(s)}{1 + P_2(s)C_2(s)(1 + P_1(s)C_1(s))}$$

問題 5.3 (1) 特性方程式の解は $s=\frac{-1\pm\sqrt{5}}{2}$ であり、正の実数を含むので内部安定ではない.

(2) 特性方程式の解は $s=-1, \frac{-5\pm\sqrt{3}j}{2}$ であり、実部がすべて負なので内部安定

(3) 特性方程式の解は $s=\pm 1,-2$ であり、正の実数を含むので内部安定ではない.

問題 5.4 (1) $\frac{1}{2} < k_{\rm P} < \frac{21}{2}$

(2) $0 < k_{\rm I} < \frac{91}{32}$

問題 5.5 (1) $e_{\rm p} = -\frac{1}{7}$

(2) $e_{\rm p} = 0$

問題 5.6 (1) $y_{\rm s} = \frac{2}{7}$

(2) $y_{\rm s} = 0$

	(1-2)
zpkdata (伝達関数の零点、極、ゲインの抽出)	Ports and Subsystems (サブシステム)
24, 237	242, 243
, (行列の共役転置) 227	Signal Attributes (信号属性の変更)
* (スカラー変数の乗算) 225	240, 242
* (データ列の乗算)	Signal Routing (信号経路) 240, 242
* (行列の乗算)	Sinks (信号の受け渡し) 240, 241
* (直列結合) 97, 237	Sources (信号の生成) 240, 241
+ (スカラー変数の加算) 225	User-Defined Functions (カスタム関数)
+ (データ列の加算) 226	242, 243
+ (行列の加算) 227	Simulink モデル
+, - (並列結合) 97, 237	— の作成
- (スカラー変数の減算) 225	— の実行
- (データ列の減算) 226	
- (行列の減算)	Simulink ライブラリブラウザ 240
` '	固定ステップサイズ245
., (行列の転置)	非線形シミュレーション 130
.* (データ列どうしの乗算) 226	ヘルプ機能
(長い命令文の改行) 129	モデルコンフィギュレーションパラメータ 245
./ (データ列どうしの除算) 226	ルンゲ・クッタ法 245
.^ (データ列のべき乗) 226	
/ (スカラー変数の除算) 225	Ciarrella I Tomb
/ (データ列の除算) 226	Simulink ブロック
; (値の非表示)	Band-Limited White Noise (ホワイトノイズの生
¥, \ (行列の左除算) 227	成)
^ (スカラー変数のべき乗) 225	Clock (時刻の生成) 48, 103, 129, 161, 212, 245
^ (行列のべき乗) 227	Demux (ベクトル信号の要素抽出) 212
	Derivative (微分器)
	Fcn (非線形関数)
Simulink 関連	Gain (ゲイン)
	In (入力端子/外部入力) 123, 212, 248
Simulink スタートページ 240	Integrator (積分器)
Simulink の起動	Interpreted MATLAB Function (MATLAB 関数
Simulink ブロック	や式の利用)131
— の移動 244	Out (出力端子/外部出力) ····································
— の回転	PID Controller (2D0F) (2 自由度 PID コント
— の結線	ローラ) 134
— のパラメータ設定 245	Scope (信号の観測)
Simulink ブロックライブラリ 240	Sine Wave (時刻の生成)
Commonly Used Blocks (よく使用されるブロッ	State-Space (状態空間表現)
ク) ····································	Step (ステップ信号の生成) 48, 103, 129, 245
Continuous (連続時間要素) 240, 241	Subsystem (ブロックのグループ化) 131
Discontinuities (不連続関数) ····· 240, 242	Sum (加減算) ······· 102, 103, 129, 161, 245, 246
Discrete (離散時間要素) 240, 241	To Workspace (データの書き出し)
Logic and Bit Operations (論理/ビット演	- 10 workspace (アータの音さ出じ)
第)	Transfer Fcn (伝達関数)
	, · · · · · · · · · · · · · · · · · · ·
Math Operations (数学操作) 240, 242	48, 102, 103, 129, 161, 245