Linear Algebra II

Felix Chen

Contents

	Normal maps
0.2	Orthogonal maps and Unitary maps
0.1	Adjoint maps

This means we always have $W \oplus W^{\perp} = V$.

The orthogonal completion is similar to the annihiltor we studied last semester, in fact, when we view $\langle \cdot, \beta \rangle$ as a function $f_{\beta} \in V^*$, $f_{\beta} \in S^0 \iff \beta \in S^{\perp}$. (Note that the inner product is linear with respect to only the first entry)

This process induces a map $\phi: V \to V^*$ by $\beta \mapsto f_{\beta}$. It's clear that ϕ is conjugate-linear. So ϕ is a linear map between *real* vector space $V \to V^*$, i.e. $\phi \in \operatorname{Hom}_{\mathbb{R}}(V, V^*)$. thus $\ker \phi = \{0\}$ implies ϕ is an isomorphism on \mathbb{R} , so ϕ is a bijection, $\phi(S^{\perp}) = S^0$.

For $E \subset V^*$, then $E^0 \subset V$, this corresponds to $\phi(S)^0 = S^{\perp}$. Indeed, $\alpha \in \phi(S)^0 \iff \forall \beta \in S, \langle \alpha, \beta \rangle = 0 \iff \alpha \in S^{\perp}$. Hence

$$\dim_{\mathbb{C}} W^{\perp} = 2 \dim_{\mathbb{R}} \phi(W^{\perp}) = 2 \dim_{\mathbb{R}} W^{0} = \dim_{\mathbb{C}} W^{0}.$$

The above proposition can be derived directly by $\dim W + \dim W^0 = \dim V$.

We can also get $W = (W^0)^0 = \phi(W^{\perp})^0 = (W^{\perp})^{\perp}$.

Definition 0.0.1 (Orthogonal projection). Since $V = W \oplus W^{\perp}$, for all $\alpha \in V$, there exists unique $\beta \in W, \gamma \in W^{\perp}$ s.t. $\alpha = \beta + \gamma$. Let $p_W : V \to W$ be the map $\alpha \mapsto \beta$, this is called the **orthogonal projection** from V to W.

§0.1 Adjoint maps

Let $\{\alpha_1, \ldots, \alpha_m\}$ be an orthonormal basis of W, then $p_W(\beta) = \sum_{j=1}^m \langle \beta, \alpha_j \rangle \alpha_j$. So p_W is a linear map. Moreover $p_W + p_{W^{\perp}} = \mathrm{id}_V$, $p_W^2 = p_W$. By our geometry intuition, $p_W \beta = \arg\min_{\alpha} \|\alpha - \beta\|$, this fact is useful in funtional analysis.

Recall that for $T \in L(V)$, $T^t \in L(V^*)$, then what's the map $\phi^{-1} \circ T^t \circ \phi$? Unluckily it's not T, but another map denoted by T^* , the **adjoint map** of T. Keep in mind that T^* depends on the inner product.

$$V^* \xrightarrow{I} V^*$$

$$\phi \uparrow \qquad \phi \uparrow$$

$$V \xrightarrow{T^*} V$$

Since $T^t \circ \phi = \phi \circ T^* \iff \langle T\alpha, \beta \rangle = \langle \alpha, T^*\beta \rangle$, $\forall \alpha, \beta \in V$, so T^* can be described as the map satisfying this relation.

Proposition 0.1.1

When \mathcal{B} is an orthonormal basis, we have $[T^*]_{\mathcal{B}} = [T]_{\mathcal{B}}^*$.

Proof. Let $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$, then $\phi(\mathcal{B})$ is the dual basis of \mathcal{B} . i.e. $\phi(\alpha_j)(\alpha_k) = \delta_{jk}$. Hence $[T^t]_{\phi(\mathcal{B})} = [T]_{\mathcal{B}}^t$. Let $[T^*]_{\mathcal{B}} = A$, then

$$T^*\alpha_k = \sum_{j=1}^n A_{jk}\alpha_j \implies \phi(T^*\alpha_k) = \sum_{j=1}^n \overline{A_{jk}}\phi(\alpha_j).$$

So $[T^t]_{\phi(\mathcal{B})} = \overline{A}$, which completes the proof.

Proposition 0.1.2

 $\ker(T^*) = \operatorname{Im}(T)^{\perp}, \ \operatorname{Im}(T^*) = \ker(T)^{\perp}. \ (cT+U)^* = \overline{c}T^* + U^*, \ (TU)^* = U^*T^*, \ T^{**} = T.$

This means the map $T \mapsto T^*$ is a conjugate anti-automorphism of L(V), and it's an involution.

If $T^* = T$, then we say T is **self-adjoint**, and if $T^* = -T$, we say T is **anti self-adjoint**.

Let $F = \mathbb{C}$, T is self-adjoint iff iT is anti self-adjoint. Like a function can be written as a sum of odd and even functions, $\forall T \in L(V)$, there exists unique self-adjoint T_1, T_2 s.t. $T = T_1 + iT_2$. In fact, $T_1 = \frac{T + T^*}{2}, T_2 = \frac{T - T^*}{2i}$.

Let \mathcal{B} be an orthonormal basis, obviously T self-adjoint $\iff [T]_{\mathcal{B}}$ Hermite.

Example 0.1.3

Let $W \subset V$, p_W be the orthogonal projection. then p_W is self-adjoint as we can choose an orthonormal basis \mathcal{B} , such that $[p_W]_{\mathcal{B}} = \operatorname{diag}\{I_k, 0\}$, where $k = \dim W$.

Let V, W be inner product spaces, we'll study the linear maps $T: V \to W$ which preserves the inner products, i.e.

$$\langle \alpha, \beta \rangle_V = \langle T\alpha, T\beta \rangle_W \,.$$

If T is an isomorphism, then we say T is the isomorphism between inner product spaces.

Proposition 0.1.4

T preserves inner product \iff T is an isometry, i.e. preserves length.

In particular, isometry is always injective implies that inner product presering maps are always injective.

Proof. Trivial by polarization identity.

Proposition 0.1.5

Let V, W be finite dimensional inner product spaces, dim $V = \dim W$, $T \in \operatorname{Hom}(V, W)$, the followings are equivalent:

- (1) T preserves inner product;
- (2) T is an isomorphism between inner product spaces;
- (3) T maps all the orthonormal bases in V to orthonormal bases in W;
- (4) T maps one orthonormal basis in V to a orthonormal basis in W.

Proof. It's clear that $(1) \implies (2) \implies (3) \implies (4)$, since T injective $\implies T$ is an isomorphism of vector space.

As for $(4) \implies (1)$, just expand everything using this orthonormal basis.

Corollary 0.1.6

Inner product spaces with same dimensions are always isomorphic as inner product spaces.

Recall the positive definite matrices we defined earlier, we can also define positive definite maps: Let T be a self-adjoint map, if

$$\forall \alpha \in V \setminus \{0\}, \quad \langle T\alpha, \alpha \rangle > 0,$$

then we say T is positive definite.

The reason why we require T self-adjoint is that,

$$\langle T\alpha,\alpha\rangle=\langle\alpha,T\alpha\rangle=\overline{\langle T\alpha,\alpha\rangle}\implies \langle T\alpha,\alpha\rangle\in\mathbb{R}.$$

so we can talk about "positive" safely.

§0.2 Orthogonal maps and Unitary maps

Definition 0.2.1 (Orthogonal maps). Let V be a real inner product space, the automorphisms of V (as inner product space) are called **orthogonal maps**, denoted the set by O(V).

When V is a complex inner product space, we use **unitary maps** and U(V) instead.

Proposition 0.2.2

Let V be an inner product space,

$$T \in \mathcal{O}(V) \iff T^* = T^{-1}.$$

Proof.

$$T \in \mathcal{O}(V) \iff \langle \alpha, \beta \rangle = \langle T\alpha, T\beta \rangle = \langle \alpha, T^*T\beta \rangle, \quad \forall \alpha, \beta \in V.$$

This also holds for U(V).

Proposition 0.2.3

Let $A \in \mathbb{R}^{n \times n}$, TFAE:

- $\bullet \ A^t A = I_n \ ;$
- The column (row) vectors of A form an orthonormal basis of \mathbb{R}^n .

Proof. Since A maps the standard basis to the column vectors of A, so the conclusion follows immediately (use A^t to get the row vectors).

Let $O(n) = \{A \in \mathbb{R}^{n \times n} \mid A^t A = I_n\}$, and $U(n) = \{A \in \mathbb{C}^{n \times n} \mid A^* A = I_n\}$. We can see that $A^t A = I_n \implies \det(A) = \pm 1$, and $A^* A = I_n \implies |\det(A)| = 1$.

Let $SO(n) = \{A \in O(n) \mid \det A = 1\}$, and $SU(n) = \{A \in U(n) \mid \det A = 1\}$. In the language of groups, SO(n) has only 2 coset in O(n), while the structure of the cosets of SU(n) in U(n) look like S^1 .

Example 0.2.4

Let's look at some low dimensional orthogonal groups. $O(1) = \{1, -1\}$, $SO(1) = \{1\} = SU(1)$, $U(1) = \{z \mid |z| = 1\}$.

The group SO(2) is the rotations of \mathbb{R}^2 :

$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mid \theta \in [0, 2\pi) \right\}.$$

While O(2) also consisting of reflections.

$$\mathrm{SU}(2) = \left\{ \begin{pmatrix} z & -\overline{w} \\ w & \overline{z} \end{pmatrix} \mid z, w \in \mathbb{C}, |z|^2 + |w|^2 = 1 \right\}.$$

In fact these groups are *lie groups*, which means they have the structure of differential manifolds. It's clear that $U(1) \simeq SO(2) \simeq S^1$, and we can see $SU(2) \simeq S^3$.

Theorem 0.2.5 (QR-decomposition)

Any invertible matrix A can be uniquely decomposed to $Q \cdot R$, where $Q \in O(n)$, R is an upper triangular matrix with positive diagonal entries. When $F = \mathbb{C}$, O(n) is replaced by U(n).

Proof. This is essentially Schmidt orthogonalozation.

Corollary 0.2.6 (Ivasawa decomposition, KAN decomposition)

For all $A \in GL_n(\mathbb{R})$, it has a unique decomposition $A = A_k A_a A_n$, $A_k \in O(n)$, A_a is diagonal, A_n is upper triangular matrix with diagonal entries 1. It also holds for \mathbb{C} .

Let $\mathcal{B}, \mathcal{B}'$ be orthonormal bases of $V, T \in L(V)$. We know that $[T]_{\mathcal{B}'} = P^{-1}[T]_{\mathcal{B}}P$ for some $P \in GL(V)$. By orthogonality, P must be an orthogonal matrix, wich means $P^t = P^{-1}$.

Definition 0.2.7. Let $A, B \in \mathbb{R}^{n \times n}$, we say they are **orthogonally similar** if $A = P^{-1}BP$ for some $P \in O(n)$. The name is changed to **unitarily similar** for complex matrices.

Theorem 0.2.8 (Schur triangularization theorem)

Let $F = \mathbb{C}$, $T \in L(V)$. There exists an orthonormal basis \mathcal{B} , such that $[T]_{\mathcal{B}}$ is upper triangular.

Proof. Recall that T is triangulable (which is always true in \mathbb{C}) iff there exists a T-invariant flag $\{0\} = W_0 \subset W_1 \subset \cdots \subset W_n = V$. We can take an orthonormal basis s.t. $W_k = \text{span}\{\alpha_1, \ldots, \alpha_k\}$. Obviously T is upper triangular under this basis.

§0.3 Normal maps

Recall that we say two matrices A, B are orthogonally similar, if there exist $P \in O(n)$ s.t. B = $P^{-1}AP$. Again, we want to find the "simpliest" matrix in each orthogonal equivalent class.

Let $T \in L(V)$ be a linear map, if there exists an orthonomal basis of V s.t. $[T]_{\mathcal{B}}$ is diagonal, then we say T is orthogonally (or unitarily) diagonalizable.

Definition 0.3.1 (Normal maps). Let V be an inner product space, $T \in L(V)$. If $TT^* = T^*T$, then we say T is a **nomal map**.

It turns out that these concepts has close relations:

Theorem 0.3.2

Let V be a finite dimentional inner product space,

- If $F = \mathbb{R}$, then T orthogonally diagonalizable \iff T self-adjoint;
- If $F = \mathbb{C}$, then T unitarily diagonalizable \iff T normal.

Lemma 0.3.3

Let $F = \mathbb{C}$, then T normal \iff there exists self-adjoint commutative maps T_1, T_2 s.t. $T = T_1 + iT_2.$

Proof. If $T=T_1+iT_2$, then $T^*=T_1-iT_2$, so $T^*T=TT^*$ since T_1,T_2 commutative. On the other hand, let $T_1=\frac{T+T^*}{2}$, $T_2=\frac{T-T^*}{2i}$. We can check that T_1,T_2 self-adjoint and are commutative.

Proof of Theorem 0.3.2. For the " \Longrightarrow " part, let \mathcal{B} be an orthonormal basis such that $[T]_{\mathcal{B}} =$ $\operatorname{diag}\{c_1,\ldots,c_n\}$. Then we have

$$[T^*]_{\mathcal{B}} = [T]_{\mathcal{B}}^* = \operatorname{diag}\{\overline{c}_1, \dots, \overline{c}_n\}.$$

If $F = \mathbb{R}$, then $T^* = T$, i.e. T self-adjoint.

If $F = \mathbb{C}$, clearly $TT^* = T^*T$, so T is normal.

As for the other part, we need a lemma first.

Lemma 0.3.4

Let V be a f.d. inner product space, $T \in L(V)$. If $W \subset V$ is a T-invariant space, then W^{\perp} is T^* -invariant.

Proof of the lemma. For all $\alpha \in W^{\perp}$,

$$0 = \langle \alpha, T\beta \rangle = \langle T^*\alpha, \beta \rangle, \quad \forall \beta \in W.$$

Thus $T^*\alpha \in W^{\perp}$.

Corollary 0.3.5

If T is self-adjoint, $W \subset V$ is T-invariant will imply W^{\perp} is also T-invariant, so T is semisimple.

Lemma 0.3.6

Let V be a f.d. inner product space, $T \in L(V)$ is self-adjoint. We must have $f_T \in \mathbb{R}[x]$, and it can be decomposed to products of polynomials of degree 1.

In particular, $\sigma(T) \subset \mathbb{R}$.

Proof. Let $f_T = \prod_{i=1}^n (x - c_i), c_i \in \mathbb{C}$.

Let \mathcal{B} be an orthonomal basis of V, then $A := [T]_{\mathcal{B}}$ is Hermite. Let X be a nonzero vector s.t. $AX = c_j X$, then

$$c_i X^* X = X^* A X = (AX)^* X = \overline{c}_i X^* X.$$

So $c_i \in \mathbb{R}$, and we're done.

Lemma 0.3.7

If T is a self-adjoint map, then all the eigenspaces of T are pairwise orthogonal.

Proof. Let $c_1, c_2 \in \mathbb{R}$ be two eigenvalues of T. Let $\alpha \in V_{c_1}, \beta \in V_{c_2}$.

$$c_1 \langle \alpha, \beta \rangle = \langle c_1 \alpha, \beta \rangle = \langle T \alpha, \beta \rangle = \langle \alpha, T \beta \rangle = \overline{c}_2 \langle \alpha, \beta \rangle = c_2 \langle \alpha, \beta \rangle.$$

Since $c_1 \neq c_2$, we must have $\alpha \perp \beta$, as desired.

Returning back to Theorem 0.3.2, when T is self-adjoint, let $\sigma(T) = \{c_1, \dots, c_r\}$.

Claim 0.3.8. $V = \bigoplus_{i=1}^{r} V_{c_i}$, i.e. T is diagonalizable.

Let $W = \bigoplus_{i=1}^r V_{c_i}$, if $W^{\perp} \neq \{0\}$, then W^{\perp} is T-invariant.

When $F = \mathbb{C}$, then $T_{W^{\perp}}$ has eigenvectors; when $F = \mathbb{R}$, then $T_{W^{\perp}}$ is self-adjoint, so it must have a eigenvector (by lemma).

Since V_{c_i} are pairwise orthogonal, so we can actually take an orthonomal basis of V_{c_i} to get an orthonomal basis of V. Hence T is orthogonally diagonalizable.

Now for the case when T is normal, let T_1, T_2 be self-adjoint maps s.t. $T = T_1 + iT_2$. Since T_1, T_2 commute, the proof is nearly identical to the simutaneously diagonalizable property.

Let $V = \bigoplus_{i=1}^r V_{c_i}$ be the eigenspace decomposition of T_1 . Note that V_{c_i} are also T_2 -invariant. Since $(T_2)_{V_{c_i}}$ self-adjoint, $(T_2)_{V_{c_i}}$ is unitarily diagonalizable. Therefore we can concatenate those basis to get a basis of V, and T_1, T_2 are both diagonal under this basis.

There's another proof of " \Leftarrow " part of the theorem:

Proposition 0.3.9

Let V be an inner product space, $T \in L(V)$ normal. Let $W \subset V$ be a T-invariant space, then W^{\perp} is T-invariant, and W is T^* -invariant.

Proof. Take an orthonomal basis of W, W^{\perp} , so $A := [T]_{\mathcal{B}}$ normal.

Since W is T-invariant, $A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$. Note that:

$$AA^* = \begin{pmatrix} BB^* + CC^* & * \\ * & * \end{pmatrix}, \quad A^*A = \begin{pmatrix} B^*B & * \\ * & * \end{pmatrix}.$$

As A normal, $BB^* + CC^* = B^*B$, by looking at the trace of both sides, we get $\operatorname{tr}(CC^*) = 0 \implies C = 0$, the conclusion follows.

Corollary 0.3.10

Let $A \in \mathbb{C}^{n \times n}$ be an upper triangular martix, then A normal \iff A diagonal.

Proposition 0.3.11

Let T be a normal map, then the eigenspaces of T are pairwise orthogonal.

Proof. Let $\alpha \in V_{c_1}, \beta \in V_{c_2}$, since span $\{\beta\}$ is a T-invariant space, so $T^*\beta \in \text{span}\{\beta\}$,

$$\langle T^*\beta, \beta \rangle = \langle \beta, T\beta \rangle = \overline{c}_2 \langle \beta, \beta \rangle.$$

Thus $T^*\beta = \overline{c}_2\beta$.

$$c_1 \langle \alpha, \beta \rangle = \langle T\alpha, \beta \rangle = \langle \alpha, T^*\beta \rangle = c_2 \langle \alpha, \beta \rangle.$$

But $c_1 \neq c_2$, we have $\alpha \perp \beta$.

When $F = \mathbb{C}$: Let $W = \bigoplus_{i=1}^r V_{c_i}$. Since W^{\perp} is T-invariant, so when $W \perp \neq \{0\}$, T must have eigenvalues in W^{\perp} , contradiction!

Now we've proved that V_{c_i} are pairwise orthogonal, so T is unitarily diagonalizable.

Proposition 0.3.12

Let V be a complex inner product space, $T \in L(V)$ normal,

- T self-adjoint $\iff \sigma(T) \subset \mathbb{R}$;
- T anti self-adjoint $\iff \sigma(T) \subset i\mathbb{R};$
- T unitary $\iff \sigma(T) \subset \{z : |z| = 1\}.$

Proof. Take an orthonomal basis s.t. $[T]_{\mathcal{B}}$ diagonal. The rest is trivial.