

Fraternité

TRAITEMENT D'IMAGES

Partie Introductive

Frédéric Cointault
Institut Agro Dijon
Responsable Equipe ATIP
UMR Agroécologie
26 Bd Dr Petitjean
21000 Dijon
+33 3 80 77 27 54
frederic.cointault@agrosupdijon.fr

L'INSTITUT NATIONAL D'ENSEIGNEMENT SUPÉRIEUR POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

III – 1a Histogramme

• L'histogramme peut être interprété comme la densité de probabilité discrète des intensités si les effectifs sont normalisés par le nombre de pixels $M \times N$:

$$p(i) = \frac{n_i}{M \times N}$$

• L'histogramme donne une information globale sur les intensités de l'image, mais perd l'information spatiale de l'image. Ainsi, deux images très différentes peuvent avoir le même histogramme

• Le nombre et la largeurs des barres (bins) est choisi par l'utilisateur.

III – 1a Histogramme: transformation d'intensité

III - 1b Binarisation

Image originale THRESHOLDING Image binaire

Algorithme de Seuillage:

Exemple avec une image de 512x512 Pixels

```
Pour y=0 à 511
Pour x=0 à 511
si f(x,y)<seuil alors f(x,y)=Gris1
sinon f(x,y)=Gris2
Fin x
Fin y
```

Cette méthode nécessite une analyse « manuelle » de l'Histogramme

Possibilité de calculer automatiquement les seuils pour des images

Calcul automatique d'un seuil pour la binarisation d'images:

Moments Statistiques Image Originale

$$m_{i} = \frac{1}{N} \sum_{x} \sum_{y} f^{i}(x, y)$$

$$= \frac{1}{N} \sum_{j=0}^{gris_{\text{max}}} n_{j}(z_{j})^{i}$$

$$= \sum_{j=0}^{gris_{\text{max}}-1} P_{j}(z_{j})^{i}$$

Avec:

 m_i = moment d'ordre i N= Nombre total de pixels de l'image n_j = Nombre pixels ayant niveau gris z_j f(x,y)= Niveau gris du pixel (x,y)

Moments Statistiques Image Binaire: 2 niveaux de gris z_0 et z_1

$$m'_{i} = \sum_{j=0}^{1} P_{j} \left(z_{j}\right)^{i}$$

Principe de la conservation des moments statistiques: $m_i = m'_i$

$$m_0 = P_0(z_0)^0 + P_1(z_1)^0$$

$$m_1 = P_0(z_0)^1 + P_1(z_1)^1$$

$$m_2 = P_0(z_0)^2 + P_1(z_1)^2$$

$$m_3 = P_0(z_0)^3 + P_1(z_1)^3$$

 \implies Systèmes de 4 équations non linéaires à 4 inconnues (P_0, P_1, z_0, z_1)

Résolution du Système d'équations non linéaires:

Introduction des coefficients C_0 et C_1 pour linéariser le système:

$$C_0 m_0 + C_1 m_1 = -m_2$$

$$C_0 m_1 + C_1 m_2 = -m_3$$

Equation de Newton:

$$C_0 + C_1 \cdot z + z^2 = 0$$
 \Longrightarrow z_0, z_1 \Longrightarrow $seuil = \frac{z_0 + z_1}{2}$

Bilan:

- calcul de l'histogramme
- calcul de m_0 , m_1 , m_2 , m_3
- déduction de C_0 , C_1 puis de z_0 et z_1
- obtention du seuil

Exemple de calcul du Seuil pour une image de 8x8 pixels codés sur 4 bits:

0	0	1	3	5	3	2	2
1	1	2	4	6	4	3	2
1	1	2	4	6	5	3	2
1	1	2	12	13	14	3	2
1	1	2	13	14	15	3	3
1	1	2	12	10	11	2	3
1	1	2	4	6	5	3	2
1	1	2	3	4	4	3	2

Histogramme de l'Image:

gris	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Histo(gris)	2	15	15	11	6	3	3	0	0	0	1	1	2	2	2	1

Calcul des moments:

$$m_0=1$$
 $m_1=3.89$
 $m_2=29.96$
 $m_3=326.3$

12

III – 2 Egalisationd'histogramme

L'histogramme d'une image est rarement plat => entropie non maximale

<u>Egalisation => « aplatir » l'histogramme pour :</u>

1/ améliorer le contraste

2/ augmenter artificiellement la clarté d'une image

1500

Original

Histogramme

Image égalisée

Histogramme égalisé

Quelques rappels sur les probabilités:

Densité de Probabilité d'une VA continue : $p(\omega)$

Fonction de répartition d'une VA continue: $s(r) = \int_{0}^{r} p(\omega) d\omega$

Probabilité d'une VA discrète : $P(r_k) = \frac{N_k}{N}$ avec :

 $N_{m{k}}$ le nombre de pixels ayant le niveau de gris $\mathbf{r}_{\mathbf{k}}$

N le nombre de pixels total de l'image

Fonction de répartition d'une VA discrète: $s(r_k) = \sum_{i=0}^{k} P(r_i)$

Algorithme de l'Egalisation d'Histogramme:

Format de l'image: Ymaxi lignes x Xmaxi colonnes avec kmaxi niveaux de gris

Cours L3 ESIREM

16

Trois Types de Filtrage

- PSF: Point Spread Function (ou Fonction d'Étalement Spectrale)
- MTF: Modulation Transfer Function (ou Fonction de Transfert)
- Filtre Passe-bas : diminue le bruit mais attênue les détails de l'image
- Filtre Passe-haut : accentue les contours et les détails de l'image mais amplifie le bruit
- Filtre Passe-bande : élimine certaines fréquences indésirables présentes dans l'image

- 4 Neighbouring - 3x3 SMOOTHING FILTER

Position of the Processed Pixel

- 8 Neighbouring - 3x3 SMOOTHING FILTER

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Image of 512x512 pixels coded with 8 bits (256 K Pixels)

Spatial filter algorithm

Total Computations:

- 256 K Readings
- 8x256 K Additions
- 9x256 K Multiplications
- 256 K Writings

<u>Calcul en temps réel</u> :

Toutes ces opérations en moins de 40ms!!

Filtre 3 x 3

Filtre 5 x 5

Exemple de filtre moyenneur passe-bas

Coefficients obtenus par le binôme de Newton

Filtre 1D binômial d'ordre $4 \Rightarrow \text{vecteur } v = 1/16 (1 4 6 4 1)$

Exemples de filtres binômiaux

Filtre 2D binômial d'ordre 4

$\frac{1}{256}$.	1	4	6	4	1
	4	16	24	16	4
	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

Exemples de filtres médians

Image bruitée « Poivre et sel »

Cours L3 ESIREM

25

Problèmes sur les bords

Complétion avec des zéros

Périodisation

Reproduire le bord

Miroir