

Ульянцев Владимир Игоревич

Генерация конечных автоматов с использованием программных средств решения задач выполнимости и удовлетворения ограничений

Диссертация на соискание ученой степени кандидата технических наук

Специальность 05.13.11 – «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей»

Научный руководитель — доктор технических наук, профессор Шалыто Анатолий Абрамович

Введение: актуальность (1)

- Компоненты аппаратного и программного обеспечения моделируются конечными автоматами
- Представление в виде наглядных диаграмм состояний, процесс верификации методом model checking
- Методы генерации автоматов: решение сложных задач, повышение надежности и уменьшение степени влияния человеческого фактора
- Можно выделить задачи автоматизированной генерации детерминированных автоматных моделей по заранее заданным примерам поведения (в основном «неточные»)
- Применение: генерация и анализ программ,
 грамматический вывод, биоинформатика, лингвистика,
 распознавание речи

Введение: актуальность (2)

- Задача генерации детерминированного конечного автомата (ДКА) с наименьшим числом состояний по обучающим словарям NP-полна
 - ⇒ актуальность разработки и реализации практически применимых методов генерации
- **Высокая производительность** программных средств решения классических NP-полных задач выполнимости и удовлетворения ограничений
- При сведении к ним
 - без изменения алгоритма расширяются границы применимости
 - точность решения обеспечена использованием поиска с возвратом

Актуальность развития существующих и разработка новых **точных методов генерации** конечных автоматов по примерам поведения **с использованием сведения** к SAT и CSP

Цель диссертационной работы — разработка точных методов генерации конечных автоматов по примерам поведения с использованием программных средств решения задач выполнимости и удовлетворения ограничений. **Задачи:**

- 1. Доказать **NP-трудность** задачи генерации управляющих конечных автоматов заданного размера по сценариям работы
- 2. Разработать и реализовать точные **методы генерации ДКА** по безошибочным и зашумленным обучающим словарям с использованием программных средств решения SAT
- 3. Разработать и реализовать точные **методы генерации управляющих автоматов** по безошибочным и зашумленным сценариям работы с использованием программных средств решения задачи CSP
- 4. Внедрить разработанные методы генерации ДКА после их публикации в инструментальное средство **DFASAT** (Делфтский технический университет)

Научная новизна, выносимые на защиту положения

- 1. Доказательство **NP-трудности** задачи построения управляющих конечных автоматов по сценариям работы
- 2. Точные методы генерации ДКА по безошибочным и зашумленным обучающим словарям
 - разработанные предикаты нарушения симметрии
 - по зашумленным словарям точный, в отличие от известных
- 3. Точные методы генерации управляющих конечных автоматов по сценариям работы
 - новые алгоритмы построения дерева сценариев и его графа совместимости
 - известные методы являются неточными
- 4. Внедрение в средство DFASAT

Глава 1. Задачи выполнимости и удовлетворения ограничений, генерация конечных автоматов

- Определения
- Обзор работ
- Формулировка задач

Задача выполнимости (SAT)

- Задача выполнимости булевых формул (задача выполнимости, SAT): нахождение выполняющей подстановки значений переменных для заданной булевой формулы
- Исторически первая NP-полная задача (теорема Кука-Левина)
- Далее по умолчанию используется КНФ (конъюнктивная нормальная форма)

$$(X1 \text{ or } X2 \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } X2 \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } X2 \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } X2 \text{ or } \overline{X3})$$

Задача удовлетворения ограничений (CSP)

- Задача удовлетворения ограничений (обобщенная задача выполнимости, constraint satisfaction problem – CSP), расширяет задачу SAT для переменных с произвольными значениями взамен булевых
- Экземпляр задачи CSP представляет собой тройку $\langle X, D, \mathcal{C} \rangle$
 - X набор переменных
 - *D* множество их наборов допустимых значений
 - \mathcal{C} множество ограничений на X

		5	3					
8							2	
	7			1		5		
4				6	5	5 3		
	1			7				6
		3	2				8	
	6		5					9
		4					3	
					9	7		

Программные средства решения **SAT**

- Точные основаны на алгоритме DPLL (1962) [32]: поиске с возвратом для решения CNF-SAT
- Ежегодные соревнования
- Выбор программного средства на основе их результатов
 - SAT Competition
 - SAT-Race
- Lingeling, CryptoMiniSat

[32] Davis M., Logemann G., Loveland D. A Machine Program for Theorem-Proving // Communications of the ACM. – 1962. – Vol. 5, no. 7. – P. 394-397

Программные средства решения CSP

- Проводятся ежегодные соревнования MiniZinc Challenge
- Будут использованы программы OR-tools и Opturion CPX
- Язык MiniZinc задания ограничений

```
int: n;
int: weight max;
array [1..n] of int: values;
array [1..n] of int: weights;
array [1..n] of var int: take;
var int: profit = sum(i in 1..n) (take[i]*values[i]);
solve maximize profit;
constraint
   forall(i in 1..n) (take[i] >= 0)
   knapsack(weights, take, weight max);
% data
n = 3;
weight max = 10;
values = [23, 9, 20];
```

1.2 Конечные автоматы

- Не рассматриваются вероятностные и недетерминированные модели, вопросы их генерации
- Детерминированный конечный автомат (ДКА) это пятерка $\langle Q, \Sigma, \delta, q_S, F \rangle$
 - Q конечное множество состояний
 - Σ алфавит входных символов
 - δ : $Q \times \Sigma$ → Q функция переходов
 - q_S ∈ Q начальное (стартовое) состояние
 - $-F \subset Q$ множество допускающих состояний
- Строка $a_1a_2\dots a_n$ допускается, если, начиная работу в q_s и обработав символы строки, ДКА оказывается в допускающем состоянии $q_f\in F$

Пример ДКА для протокола входящих звонков

- Используется алфавит команд {ANSWERING_CALL, CALL_CONNECTED, CALL_RELEASED, DC, INCOMING_CALL, REJECTING CALL}
- Допускающие состояния соответствуют режимам
 «1. Бездействие» и
 «6. Разговор»
- Моделирует протокол связи с высоким уровнем абстракции [74]

[74] Digital CAS Protocols Installation and Developer's Manual: Responding to Inbound Calls. – URL: http://www.nmscommunications.com/manuals/6206-14/C-09.htm.

Управляющие конечные автоматы

- Управляющий автомат каждый переход помечен событием, последовательностью выходных воздействий, а также охранным условием, представляющим собой булеву формулу от входных переменных
- Автомат Мили
- Семерка $\langle Q, \Sigma, Z, X, \delta, \lambda, q_s \rangle$
 - Z множество выходных воздействий
 - X множество булевых входных переменных
 - $-\delta: Q \times \Sigma \times 2^{X} \to Q$
 - $-\lambda: Q \times \Sigma \times 2^{X} \to Z^{*}$
- Ключевая модель в автоматном программировании

Пример 1: торговый аппарат

- События {CHOC, COIN, START, TOFFEE}
- $-x_1$ для монеты достоинством 1, $\neg x_1$ для монеты достоинством 2
- выходное воздействие из множества {CHOC, TOFFEE, OK, NO}

[66] Using Behaviour to Optimise Regression Test Sets / Taylor R., Hall Inference M., Bogdanov K., Derrick J. // Testing Software and Systems. — Springer, 2012. — P. 184-199. — (Lecture Notes in Computer Science; 7641).

Пример 2: очередь с приоритетами из стандартной библиотеки *Java*

- события O и P соответствуют вызовам функций «offer(p)» и «poll(p)»;
- $\{x_1 = (p = v_1), x_2 = (p > v_1), x_3 = (p = v_2), x_4 = (p > v_2)\}$
- выходные воздействия соответствуют операциям над внутренними переменными

Сценарии работы

- Сценарий работы последовательность T_1, \dots, T_n троек $T_i = \langle e_i; f_i; A_i \rangle$
 - $-e_i$ входное событие
 - $-f_i$ булева формула от входных переменных, задающая охранное условие
 - $-A_i$ последовательность выходных воздействий
- Примеры для торгового аппарата
 - $\langle START; 1; OK \rangle$, $\langle COIN; x_1; OK \rangle$, $\langle COIN; \neg x_1; NO \rangle$, $\langle COIN; x_1; OK \rangle$
 - (START; 1; OK), (START; 1; OK), (TOFFEE; 1; NO), (CHOC; 1; NO)
 - $\langle START; 1; OK \rangle$, $\langle COIN; \neg x_1; OK \rangle$, $\langle TOFFEE; 1; TOFFEE \rangle$
- Аналог слова для ДКА

1.3 Методы генерации автоматов

- Генерация ДКА по обучающим словарям
 - Эвристические алгоритмы State merging
 - Метаэвристические методы
 - Использование программных средств решения NP-полных задач (SAT и раскраска графов)
- Генерация управляющих автоматов
 - Генетические, эволюционные, муравьиные алгоритмы
 - На кафедре «Компьютерные технологии» Университета ИТМО

Эвристические алгоритмы State Merging

- 1. Построение префиксного дерева с пометками
- 2. Последовательное отождествление его состояний

$$S_{+} = \{ab, b, ba, bbb\}$$
 и $S_{-} = \{abbb, baba\}$

[41] Gold E. M. Complexity of Automaton Identification from Given Data // Information and Control. – 1978. – Vol. 37. – P. 302-320

[54] Lang K., Pearlmutter B., Price R. Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm // Grammatical Inference. – Springer, 1998. – P. 1-12. – (Lecture Notes in Computer Science; 1433)

[60] Oncina J., Garcia P. Inferring Regular Languages in Polynomial Update Time // Pattern Recognition and Image Analysys, volume 1 of Series in Machine Perception and Artificial Intelligence. — World Scientific, 1992. — P. 49-61

Метаэвристические алгоритмы

- Эволюционные стратегии, генетические алгоритмы, муравьиные алгоритмы
- Популяция особей, мутации, скещивание, функция приспособленности
- Устойчивость к шуму

Чивилихин Д.С. Генерация конечных автоматов на основе муравьиных алгоритмов

[26] Chivilikhin D., Ulyantsev V. Learning Finite-State Machines with Ant Colony Optimization // Swarm Intelligence. – Springer, 2012. – P. 268-275. – (Lecture Notes in Computer Science; 7461).

[56] Lucas S., Reynolds J. Learning Finite State Transducers: Evolution versus Heuristic State Merging // IEEE Transactions on Evolutionary Computation. – 2007. – Vol. 11, no. 3. – P. 308-325

Использование средств решения SAT

- 1. Построение префиксного дерева
- 2. Построение графа совместимости вершин префиксного дерева

- 3. Построение булевой КНФ-формулы для числа состояний ДКА *С* (которое увеличивается в случае невыполнимости формулы)
- 4. Запуск средства решения SAT для нахождения выполняющей подстановки построенной КНФ-формулы
- 5. Построение искомого автомата по подстановке [44] Heyle M. Verwer S.

Пропозициональное кодирование

Обязательная часть

$$\mathcal{F}_{1}$$

$$= \bigwedge_{v \in V} \text{ALO}\left(\left\{x_{v,i}\right\}_{i=1}^{C}\right) \land \bigwedge_{v \in V_{+}, 1 \leq i \leq C} (x_{v,i} \Rightarrow z_{i}) \land \bigwedge_{v \in V_{-}, 1 \leq i \leq C} (x_{v,i} \Rightarrow \neg z_{i})$$

$$\land \bigwedge_{v \in V, 1 \leq i, j \leq C} (x_{p(v),i} \land x_{v,j} \Rightarrow y_{l(v),i,j}) \land \bigwedge_{a \in \Sigma, 1 \leq i \leq C} \text{AMO}\left(\left\{y_{a,i,j}\right\}_{j=1}^{C}\right)$$

Дополнительная часть

$$\begin{split} & \mathcal{F}_{2} \\ &= \bigwedge_{v \in V} \mathsf{AMO}\left(\left\{x_{v,i}\right\}_{i=1}^{C}\right) \wedge \bigwedge_{a \in \Sigma, 1 \leq i \leq C} \mathsf{ALO}\left(\left\{y_{a,i,j}\right\}_{j=1}^{C}\right) \\ & \wedge \bigwedge_{v \in V, 1 \leq i, j \leq C} \left(x_{p(v),i} \wedge y_{l(v),i,j} \Rightarrow x_{v,j}\right) \wedge \bigwedge_{(v,w) \in \mathcal{G}, 1 \leq i \leq C} \left(x_{v,i} \Rightarrow \neg x_{w,i}\right) \end{split}$$

[44] *Heule M., Verwer S.* Exact DFA Identification Using SAT Solvers // Grammatical Inference: Theoretical Results and Applications. – Springer, 2010. – P. 66-79. – (Lecture Notes in Computer Science; 6339).

Недостатки существующих методов

- ▼ Быстродействие существующих точных методов генерации
 ДКА по безошибочным обучающим словарям при большом
 числе состояний искомого автомата
- ✔ Неточность существующих методов генерации управляющих конечных автоматов по сценариям работы. Существующие методы основаны на метаэвристиках, применение которых позволяет решать практические задачи, но не гарантирует в общем случае того, что автомат будет сгенерирован за конечное время

Решаемые задачи

- 1. Задача генерации ДКА по незашумленным примерам. Одна из самых популярных задач грамматического вывода.
- 2. Задача генерации ДКА по примерам с ошибками в пометках слов. Предлагалось участникам соревнования «Learning DFA from Noisy Samples» конференции GECCO 2004
- 3. Задача генерации управляющих автоматов по безошибочным сценариям работы
- 4. Задача генерации управляющих автоматов по сценариям работы с ошибками в выходных воздействиях

Для задачи 1 извесно точное решение, для остальных нет

Глава 2. Теоретическая оценка сложности поставленных задач генерации управляющих автоматов

Известные результаты теории сложности

- В работе 1978 года Е. М. Голд доказал [41], что в общем случае задача генерации ДКА с заданным числом состояний по обучающим словарям является NP-полной
- В работе 1993 года [61] теоретическая сложность была усилена — задача нахождения ДКА с числом состояний, приближенным к заданному, также является полной в NP
- Первый результат используется для проводимого доказательства

[41] Gold E. M. Complexity of Automaton Identification from Given Data // Information and Control. — 1978. — Vol. 37. — P. 302-320.

[61] *Pitt L., Warmuth M. K.* The Minimum Consistent DFA Problem Cannot be Approximated Within any Polynomial // Journal of the ACM. – 1993. – Vol. 40, no. 1. – P. 95-142.

Язык задачи

- Докажем трудность задач генерации управляющих автоматов в классе NP
- $L_{\rm EFSM}$ множество пар $\langle S,C \rangle$, для которых существует управляющий автомат $\mathcal{A}_{\rm EFSM}$ размера C, удовлетворяющий сценариям из S
 - S набор сценариев работы программы
 - С натуральное число
- К поставленной задаче можно **свести задачу построения ДКА** с заданным числом состояний по заданным обучающим словарям с языком $L_{
 m DFA}$
 - множество троек $\langle S^+, S^-, C \rangle$ таких, что существует конечный ДКА размера C, который принимает слова из словаря S^+ , не принимает слова из словаря S^-

Доказательство

- Доказано, что если $w=\langle S^+,S^-,C\rangle$ принадлежит L_{DFA} , то $f(w)=\langle S,C\rangle$ принадлежит языку L_{EFSM}
- Доказано, что если f(w) принадлежит языку $L_{
 m EFSM}$, то w принадлежит языку $L_{
 m DFA}$
- Следовательно существует функция f(w) такая, что w принадлежит L_{DFA} тогда и только тогда, когда элемент f(w) принадлежит L_{EFSM}
 - ⇒ NP-трудность

Глава 3. Генерация детерминированных конечных автоматов по обучающим словарям

- 3.1. Метод генерации по безошибочным обучающим словарям
- 3.2. Метод генерации по зашумленным обучающим словарям
- 3.3. Реализация и экспериментальные исследования разработанных методов генерации

Первый разработанный метод

function NoiselessDFAGeneration(S_+, S_-)

```
S_{+}, S_{-} – непересекающиеся наборы слов
 \mathcal{T} \leftarrow APTA(S_+, S_-)
 \mathcal{G} \leftarrow \text{consistencyGraph}(\mathcal{T})
 clique \leftarrow largeClique(\mathcal{G})
 for C \leftarrow |\text{clique}| ... |\mathcal{T}| \text{ do}
   f_{\text{SAT}} \leftarrow \mathcal{F}_{\text{SAT}}(\mathcal{T}, \mathcal{G}, \mathcal{C})
   solution \leftarrow solveSAT(f_{SAT})
   if solution \neq {} then
     \mathcal{A} \leftarrow \mathrm{DFA}(C, \mathcal{T}, \mathrm{solution})
      return \mathcal{A}
    end if
  end for
end function
```


Предикаты нарушения симметрии

 Используются для сокращения пространства поиска поставленной задачи

– Если формула выполнима, то после добавления предикатов ${m \mathcal F}_{\mathrm{SB}}$ останется выполнимой –

 Для генерации автоматов с нумерованными состояниями естественной симметрией является изоморфизм автоматов

Основная идея новых предикатов

- Фиксирование номеров состояний в порядке некоторого однозначного обхода автомата
- Изоморфные решения не должны рассматриваться: среди автоматов для решений $\mathcal{F}_{\mathrm{SAT}}$ для одного найдется соответствующая выполняющая подстановка формулы $\mathcal{F}_{\mathrm{SAT}}$ \wedge $\mathcal{F}_{\mathrm{SB}}$
- Обход в ширину

Дополнительные переменные

- Переменные наличия перехода. $t_{i,j} = 1 \Leftrightarrow$ в автомате существует хотя бы один переход из состояния i в состояние j
- Переменные предка в обходе. $p_{j,i} = 1 \Leftrightarrow$ при обходе ДКА в ширину вершина j была добавлена в очередь при просмотре исходящих ребер из i
- Переменные наименьшего символа. $m_{l,i,j} = 1 \Leftrightarrow l$ является лексикографически наименьшим символом, который встретился на данных переходах $i \to j$

Дополнительные предикаты

$$\mathcal{F}_{SB} = \mathcal{F}_{t} \wedge \mathcal{F}_{p} \wedge \mathcal{F}_{ALO(p)} \wedge \mathcal{F}_{BFS(p)} \wedge \mathcal{F}_{m} \wedge \mathcal{F}_{BFS(m)}$$

$$\mathcal{F}_{t} = \bigwedge_{1 \leq i < j \leq C} (t_{i,j} \Leftrightarrow \bigvee_{l \in \Sigma} y_{l,i,j});$$

$$\mathcal{F}_{p} = \bigwedge_{1 \leq i < j \leq C} (p_{j,i} \Leftrightarrow t_{i,j} \wedge \bigwedge_{1 \leq k < i} \neg t_{k,j});$$

$$\mathcal{F}_{ALO(p)} = \bigwedge_{1 < j \leq C} ALO(\{p_{j,i}\}_{i=1}^{j-1});$$

$$\mathcal{F}_{BFS(p)} = \bigwedge_{1 \leq k < i < j < C} (p_{j,i} \Rightarrow \neg p_{j+1,k});$$

$$\mathcal{F}_{m} = \bigwedge_{1 \leq i < j \leq C, l \in \Sigma} (m_{l,i,j} \Leftrightarrow y_{l,i,j} \wedge \bigwedge_{l^* \in \Sigma, l^* < l} \neg y_{l^*,i,j});$$

$$\mathcal{F}_{BFS(m)} = \bigwedge_{1 \leq i < j < C} \bigwedge_{l,l^* \in \Sigma, l^* < l} (p_{j,i} \wedge p_{j+1,i} \wedge m_{l,i,j} \Rightarrow \neg m_{l^*,i,j+1}).$$

Второй разработанный метод

```
function NoisyDFAGeneration(S_+, S_-, K)
 S_{+}, S_{-} — непересекающиеся наборы слов
 K — допустимое число ошибочных меток слов
 \mathcal{T} \leftarrow APTA(S_+, S_-)
 for C \leftarrow 1 ... |\mathcal{T}| do
   f_{\text{SAT}} \leftarrow \boldsymbol{\mathcal{F}}_{\text{SAT}}(\mathcal{T}, \mathcal{C}, K)
   solution \leftarrow solveSAT(f_{SAT})
   if solution \neq {} then
     \mathcal{A} \leftarrow \mathrm{DFA}(\mathcal{C}, \mathcal{T}, \mathrm{solution})
     return \mathcal{A}
   end if
  end for
end function
```

метки в вершинах префиксного дерева могут быть ошибочными \Rightarrow граф совместимости \mathcal{G} строить не целесообразно

Идея обработки ошибочных пометок

Для каждой вершины префиксного дерева \mathcal{T} с допускающей или недопускающей меткой будем хранить булеву переменную, истинность которой допускает ошибочность метки

Предикаты обработки ошибочных пометок

$$\boldsymbol{\mathcal{F}}_{\text{NOISY}} = \boldsymbol{\mathcal{F}}_{fr} \wedge \boldsymbol{\mathcal{F}}_o \wedge \boldsymbol{\mathcal{F}}_{\text{AMO}(r)}$$

$$\boldsymbol{\mathcal{F}}_{fr} = \bigwedge_{v \in V_+} (f_v \iff \bigvee_{1 \leq k \leq K} r_{k,v});$$

$$\begin{split} \mathcal{F}_o &= \bigwedge_{1 \leq k \leq K, 1 \leq j < W} \left(o_{k, v_{j+1}} \Rightarrow o_{k, v_j} \right) \wedge \bigwedge_{1 \leq k < K, 1 \leq j < W} \left(o_{k, v_j} \Rightarrow o_{k+1, v_{j+1}} \right); \end{split}$$

$$\mathbf{\mathcal{F}}_{\mathrm{AMO}(r)} = \left(r_{K,v_W} \Leftrightarrow o_{K,v_W}\right) \wedge \bigwedge_{1 \leq k \leq K, 1 \leq j < W} \left(r_{k,v_j} \Leftrightarrow o_{k,v_j} \wedge \sigma_{k,v_{j+1}}\right);$$

Структура разработанного инструментального средства DFAInducer

Схема проведения экспериментов

Сравнение с DFASAT

С	$ \mathcal{T} $	clique	T_1 , c	T_2 , c
10	1351	5	71,4	100,7
11	1495	5	96,4	166,3
12	1644	5	136,8	751,2
13	1789	6	174,4	3600*
14	1928	6	219,2	3600*
15	2067	6	273,3	3600*
16	2200	6	333,4	3600*
17	2329	6	410,1	3600*
18	2455	6	500,4	3600*
19	2581	7	598,2	3600*
20	2703	7	708,8	3600*

Производительность первого метода

Экспериментальные сравнения второго метода с MuACO

Глава 4. Генерация управляющих конечных автоматов по сценариям работы

- 4.1. Метод генерации управляющих конечных автоматов по безошибочным сценариям работы
- 4.2. Метод генерации по зашумленным сценариям работы
- 4.3. Реализация и экспериментальные исследования методов

Третий разработанный метод

```
function NoiselessEFSMGeneration(S)
 S — набор непротиворечивых сценариев
работы
 \mathcal{T} \leftarrow \text{scenariosTree}(S)
 \mathcal{G} \leftarrow \text{consistencyGraph}(\mathcal{T})
 for C \leftarrow 1 ... |\mathcal{T}| do
   f_{\text{CSP}} \leftarrow \mathcal{F}_{\text{CSP}}(\mathcal{T}, \mathcal{G}, \mathcal{C})
   solution \leftarrow solveCSP(f_{CSP})
   if solution \neq {} then
     \mathcal{A} \leftarrow \text{EFSM}(C, \mathcal{T}, \text{solution})
     return \mathcal{A}
   end if
 end for
end function
```


Построение дерева сценариев и графа

совместимости

Аналогично построению бора

- Алгоритм прерывается, если найдено противоречие
- Вершины графа совпадают с вершинами дерева
- Вершины соединены ребром, если существует последовательность, различающая их
- Используется динамическое программирование

Ограничения на целочисленные переменные

- x_v соответствуют цвету каждой вершины дерева сценариев
- Переменные переходов $y_{i,e}$
- Переменные использования переходов $u_{i,e}$
- $-x_{v} ≠ x_{u}$ для всех $(v, u) ∈ \mathcal{G}$.
- $-\ (x_v=i)\Rightarrow (x_u=y_{i,e})$ для $i\in 1\dots C$ и каждого ребра $(v,u)\in \mathcal{T}.$
- $(u_{i,e}=1) \Leftrightarrow \bigvee_{v \in V(e)} (x_v=i)$ для $i \in 1 \dots C$, $e \in \Sigma_X$.
- $-\sum_{e\in\Sigma_{\mathbf{X}}: \mathrm{event}(e)=e_o}(u_{i,e}\cdot c(e))\in\{0,2^m\}$ для $i\in1\dots C$, $e_o\in\Sigma$.
- + предикаты нарушения симметрии

Четвертый разработанный метод

function NoisyEFSMGeneration(*S*, *K*)

S — набор непротиворечивых сценариев работы

K — допустимое число ошибочных выходных

```
последовательностей
 for C \leftarrow 1...\Sigma(S) do
  f_{\text{CSP}} \leftarrow \mathcal{F}_{\text{CSP}}(S, C, K)
   solution \leftarrow solveCSP(f_{CSP})
   if solution \neq {} then
    \mathcal{A} \leftarrow \text{EFSM}(C, S, \text{solution})
     return \mathcal{A}
   end if
 end for
 return {}
end function
```


Предлагаемое сведение

- $x_v = 1 (v \in V_b)$
- $x_{v+1} = y_{x_v,e(v)} (v \in V \setminus V_e)$
- $(f_v = 0) \Rightarrow \left(z_{x_v, e(v)} = z(v)\right) (v \in V \setminus V_e)$
- $\sum_{v \in V \setminus V_e} f_v \leq K$ суммарное число ошибок f_v ограничено заданным числом K

 $\mathcal{O}(|V|)$ ограничений четырех типов

+ Предикаты нарушения = $\mathcal{O}(C^2 + |V|)$

Используется $\mathcal{O}(\mathcal{C}(\mathcal{C}+|\Sigma_{\mathrm{X}}|)+|V|)$ целочисленных переменных

Схема реализованного инструментального средства EFSMTools

Пример применения разработанного средства к задаче генерации автомата для торгового аппарата

```
digraph EFSM {
  node [shape = circle];
         [label = "START
          [label = "START
                                (OK)"];
         [label = "TOFFEE
                                 (NO)"];
         [label = "CHOC
                          [x1]
  1 -> 2
         [label = "COIN
  1 -> 3 [label = "COIN
                                 (OK)"];
  2 -> 2
         [label = "CHOC
  2 -> 2
         [label = "COIN
                         [~x1]
         [label = "START
                                (OK)"];
  2 \rightarrow 1
          [label = "TOFFEE
                                 (TOFFEE)"];
                          [x1]
  2 \rightarrow 3
          [label = "COIN
                                (OK)"];
         [label = "START
                                (OK)"];
  3 -> 1 [label = "CHOC [1] (CHOC)"];
  3 -> 2 [label = "TOFFEE"
                                 (TOFFEE)"];
  3 -> 3 [label = "COIN [1]
```

- 25 сценариев
- $|\mathcal{T}| = 340$
- 12884 ребер в *G*
- 15240 ограничений на 1870 целочисленных переменных
- 8,7 c (c Opturion CPX)

Сравнение с переборным решением

С	T_1 , c	T_2 , c
4	3,2	0,3
5	7,0	3,2
6	13,3	38,3
7	22,1	600*
8	34,1	600*
9	54,5	600*
10	92,8	600*
11	160,0	1800*
12	351,3	1800*
13	632,5	1800*

Производительность третьего метода

Сравнение четвертого метода с MuACO и поиском с возвратом

С	<i>K</i> , %	T_1 , c	T_2 , c	<i>T</i> ₃ , c
5	1	9,7	3,8	1,2
5	2	19,6	4,1	3,3
6	1	11,0	10,6	2,1
6	2	21,2	11,5	13,9
7	1	12,9	16,5	7,5
7	2	26,5	15,2	125,9
8	1	15,5	24,4	48,9
8	2	28,2	25,4	300*
9	1	19,6	39,4	300*
9	2	30,0	52,8	300*

Глава 5. Внедрение результатов работы

Внедрение в DFASAT

- DFASAT метод и средство, разработанное М. Хеуле (Техасский университет в Остине, США) и С. Вервером (Делфтский технический университет, Нидерланды)
- Контакт установлен после выступления на *LATA*-2015
- С. Вервер реализовал предложенные автором предикаты симметрии в коде DFASAT
- На одном из примеров
 - До внедрения: 885 с
 - После внедрения: 25 с

Statement of the adoption of results of Vladimir Ulyantsev's candidate dissertation

This statement is to certify that some results of Vladimir Ulyantsev's candidate dissertation on inferring finite-state machines with SAT and CSP solvers have been used in a tool for inferring deterministic finite automata DFASAT. Namely, we used the BFS-based symmetry-breaking predicates, which significantly speeds up the algorithm on many problem instances.

03-09-2015

Dr. Sicco Verwer
Assistant Professor in Cyber Security
Delft University of Technology

Внедрение в образовательный процесс

- Произведено на кафедре «Компьютерные технологии»
 Университета ИТМО
- Курс «Теория автоматов и программирование»
- При руководстве двумя бакалаврскими и выполнении двух магистерских работ:
 - Закирзянов И. Т. Бакалаврская работа, 2015
 - Мельник М. В. Бакалаврская работа, 2015
 - Агапова А. И. Магистерская диссертация, 2014
 - Панченко Е. В. Магистерская диссертация, 2013

Заключение

Апробация

Свидетельства

Публикации

Гранты

Апробация результатов

- Всероссийская научная конференция по проблемам информатики СПИСОК. 2011-2014, Матмех СПбГУ
- Всероссийский конгресс молодых ученых. 2011-2013,
 Университет ИТМО
- Всероссийское совещание по проблемам управления.
 2014, Институт проблем управления РАН, Москва
- 14th IFAC Symposium «Information Control Problems in Manufacturing – INCOM'12». 2012, Бухарест, Румыния
- International Conference on Machine Learning and
 Applications. 2011 Гонолулу, США. 2014 Детройт, США
- 9th International Conference on Language and Automata
 Theory and Applications. 2015, Ницца, Франция

Свидетельства о регистрации

- № 2012 616462 от 18.07.2012 г. «Программное средство для построения графа совместимости вершин дерева сценариев работы программы»
- № 2012 660438 от 20.11.2012 г. «Программное средство для построения КНФ-формулы по графу совместимости вершин дерева сценариев работы программы»
- № 2013 619840 от 17.10.2013 г. «Программный комплекс для построения и тестирования управляющих конечных автоматов»
- № 2015 619224 от 27.08.2015 г. «Программное средство преобразования полученных методами машинного обучения управляющих автоматов в формат MATLAB/Stateflow»

Публикации в ВАК

- Панченко Е. В., Ульянцев В. И. Применение методов решения задачи о выполнимости квантифицированной булевой функции для построения управляющих конечных автоматов по сценариям работы и темпоральным свойствам // Научнотехнический вестник информационных технологий, механики и оптики. 2013. № 4(86). С. 151-153. 0,188 п. л. / 0,1 п. л.
- Ульянцев В. И., Царев Ф. Н. Применение методов решения задачи о выполнимости булевой формулы для построения управляющих ко-нечных автоматов по сценариям работы // Научно-технический вестник информационных технологий, механики и оптики. 2012. № 1(77). С. 96-100. 0,313 п. л. / 0,16 п. л.

Публикации в Scopus (BAK)

- Chivilikhin D., **Ulyantsev V.**, Shalyto A. Combining Exact And Metaheuristic Techniques For Learning Extended Finite-State Machines From Test Scenarios and Temporal Properties // Proceedings of the 13th International Conference on Machine Learning and Applications (ICMLA'14). 2014. P. 350-355. 0,375 п.л. / 0,15 п.л.
- Ulyantsev V., Tsarev F. Extended Finite-State Machine Induction using SAT-Solver
 / Proceedings of the Tenth International Conference on Machine Learning and
 Applications. IEEE, 2011. Vol. 2. P. 346-349. 0,25 п. л. / 0,125 п. л.
- **Ulyantsev V.**, Zakirzyanov I., Shalyto A. BFS-Based Symmetry Breaking Predicates for DFA Identification / Language and Automata Theory and Applications. Springer, 2015. P. 611-622. (Lecture Notes in Computer Science; 8977). 0,375 п. л. / 0,2 п. л.
- Ulyantsev V., Tsarev F. Extended Finite-State Machine Induction using SAT-Solver
 / Proceedings of the 14th IFAC Symposium «Information Control Problems in
 Manufacturing INCOM'12». IFAC, 2012. P. 512-517. 0,375 п. л. / 0,25 п. л.

Другие публикации

- Ведерников Н. В., Демьянюк В. Ю., Кротков П. А., Ульянцев
 В. И., Шалыто А. А. Применение методов машинного обучения для автоматизированного построения управляющих автоматов в высокоуровневых средствах проектирования систем // Труды XII Всероссийского совещания по проблемам управления ВСПУ-2014. М.: Институт проблем управления им. В.А.
 Трапезникова РАН, 2014. С. 3159-3166. 0,5 п. л. / 0,2 п. л.
- И 7 других на конференциях в вузах Санкт-Петербурга

Гранты – руководитель

- ✓ «Построение управляющих автоматов с помощью методов решения задачи удовлетворения ограничений» (программа «У.М.Н.И.К.», 2012)

Гранты – исполнитель

- ▼ «Разработка метода машинного обучения на основе алгоритмов решения задачи о выполнимости булевой формулы для построения управляющих конечных автоматов» (ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009—2013 годы, 2011-2013);
- ▼ «Технология разработки программного обеспечения систем управления ответственными объектами на основе методов машинного обучения и конечных автоматов» (научно-исследовательская работа в рамках проектной части государственного задания в сфере научной деятельности, Минобрнауки, 2014-2016)

Результаты

- Теоретическое доказательство NP-трудности задачи генерации управляющих конечных автоматов по сценариям работы.
- ▼ Точные методы генерации детерминированных конечных автоматов по безошибочным и зашумленным обучающим словарям
 - Сведение к задаче выполнимости булевой формулы
 - Безошибочные данные ускорение по времени
 - По зашумленным данным точных методов не известно
- ▼ Точные методы генерации управляющих конечных автоматов по безошибочным и зашумленным сценариям работы
 - Сведение к задаче удовлетворения ограничений
 - Точные методы не известны
- Внедрение разработанных методов, осуществленное при разработке программного средства DFASAT (Делфтский технический университет) и на кафедре «Компьютерные технологии» Университета ИТМО.

Спасибо за внимание!

Ульянцев Владимир Игоревич

Генерация конечных автоматов с использованием программных средств решения задач выполнимости и удовлетворения ограничений

Диссертация на соискание ученой степени кандидата технических наук

Специальность 05.13.11 – «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей»