## Supplementary materials: Reproducibility of SNV-calling in multiple sequencing runs from single tumors

Dakota Z. Derryberry\*1, Matthew C. Cowperthwaite<sup>2,3</sup>, and Claus O. Wilke<sup>1,4</sup>

<sup>1</sup>Cell & Molecular Biology, The University of Texas at Austin, Austin, TX USA
<sup>2</sup>St. David's NeuroTexas Institute Research Foundation, Austin, TX, USA
<sup>3</sup>Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin TX, USA

<sup>4</sup>Integrative Biology, The University of Texas at Austin, Austin, TX, USA

September 30, 2015

- 1 Figures
- 2 Tables

<sup>\*</sup>Dakota Z. Derryberry: 2500 Speedway, Austin, TX, 78712; (512)232-2459; dakotaz@utexas.edu



Percentage of putative SNVs in a sample also recovered in the samples's technical replicat-

Figure 1: Number of putative SNVs in WGS versus WGA, as called by SomaticSniper before filtering. Each point represents data for a single patient. The line is y = x, so points falling below the line agree with the hypothesis that an additional amplification step produces more sequencing errors in a sample. The number of mutations found in one replicate correlates with the number of mutations found in the other replicate (Spearman  $\rho = 0.42$ , S = 16142, P = 0.002).