Psychoinformatics & Neuroinformatics

Week 15

Parallel & Distributed

Computing of Big Data

by Tsung-Ren (Tren) Huang 黄從仁

Analyzing Big Data

We're done w/ variety & moving on to volume.

But how big is big?
Try loading info_15_network.txt,
which is only 32MB in size.

Excel can only load up to 2^{20} =1048,576 rows.

Sequential Computing vs. Parallel Computing

Topics for today

Asynchronous Execution on one thread

Parallel Computing on one computer

Distributed Computing across multiple computers

Topics for today

Asynchronous Execution on one thread

Parallel Computing on one computer

Distributed Computing across multiple computers

Correlational vs. Experimental Methods

Powered by Twisted's Async I/O JS's & Node's Async I/O


```
Callback Hell
a(function (resultsFromA) {
    b(resultsFromA, function (resultsFromB) {
        c(resultsFromB, function (resultsFromC) {
            d(resultsFromC, function (resultsFromD) {
                e(resultsFromD, function (resultsFromE) {
                    f(resultsFromE, function (resultsFromF) {
                        console.log(resultsFromF);
                })
           })
       })
   })
});
```

Synchronous vs. Asynchronous Exec. (1/2)

Async exec. best for massive, slow, & non-independent I/O

Async vs. Await in "asyncio"

Co-routines f1() & f(2) seem to run simultaneously

asyncio.run(async main()) or asyncio.gather(async f1(), async f2())

Topics for today

Asynchronous Execution on one thread

Parallel Computing on one computer

Distributed Computing across multiple computers

Asynchronous vs Multithreading

Asynchronous execution uses only one thread by default; Each thread can be executed by one CPU core!

The upper bound of speedup

Amdahl's Law: Sequential portion is the bottle-neck!

Speedup(N) =1/[B+(1-B)/N] 1 B when N= $^{\infty}$

Revisiting "map" from Week 1

```
import math
def adjust_score(old):
    new=math.sqrt(old)*10
    return new
```

print(list(map(adjust_score,range(0,101,10))))

Unlike the map() in <u>multiprocessing</u> or <u>MapReduce</u>, the map() here is actually a sequential operation.

Python: concurrent.futures

list(new)

which allows for multithreading & multiprocessing

```
import math, concurrent futures as cf
def adjust_score(old):
new=math.sqrt(old)*10
return new
with cf.ThreadPoolExecutor(max_workers=2) as pool:
#with cf.ProcessPoolExecutor(max_workers=2) as pool:
new=pool.map(adjust_score, range(100))
```

MultiProcessing vs. MultiThreading

A process = a program w/ its own CPU/RAM resources

Multiprocessing

Multithreading

for CPU-heavy tasks

for I/O-heavy tasks

CPU vs. GPU

Compared to a CPU, a GPU has more simpler cores

Topics for today

Asynchronous Execution on one thread

Parallel Computing on one computer

Distributed Computing across multiple computers

Types of Computer Clusters

High-Performance Computing (Centralized Storage)

Big Data Analytics (Distributed Storage)

Types of Computing Tasks

HPC=High Perf.; HTC=High Throughput; MTC=Many-Task

What is MapReduce?

Same Instruction Multiple Data

Merging MAP Results

Map

Reduce

The Evolution of MapReduce Environments

Apache Spark: The King of Big Data

An Example of MapReduce in Spark

Even word counting is tedious when implemented by MapReduce

The overall MapReduce word count process

(Near) Real-Time Processing: λ vs. κ

κ is gradually replacing λ

Attributes	Lambda	Карра
Adoption	Easy. Exsiting ETL can be used	Complex. New system, new tech
Implementation	Simpler	Complex
Maintenance	Not easy. Maintaining 2 systems	Easier
Performance	Better	Event duplication, sequencing, etc.
Resource	Many required	Few required
Code Duplication	Yes, due to batch & stream	Mostly No
Use Case	Data is to be retained, History Data	Typically online

Twitter moving from λ to κ

Google Cloud Platform: BigQuery

擷取 準備和儲存 分析和 ML

管理和自動化

Topics for today

Asynchronous Execution on one thread

Parallel Computing on one computer

Distributed Computing across multiple computers

Reviewing the whole semester

週次	日期	單元主題
第1週	9/5	課程簡介+基本程式設計 (Python)+基本資料分析 (NumPy & Pandas)
第2週	9/12	單機版實驗程式的設計 (PsychoPy & Socket Programming)
第3週	9/19	網路資料的搜集1/2 (Web APIs)
第4週	9/26	網路資料的搜集2/2 (LXML, Scrapy, & Selenium)
第5週	10/3	網頁與手機實驗1/3 (Frontend: Javascript)
第6週	10/10	國慶日放假
第7週	10/17	網頁與手機實驗2/3 (Backend & Databases: Node.js, FastAPI, & SQLite)
第8週	10/24	網頁與手機實驗3/3 (Smartphone Apps: PWA, Hybrid Apps, Compiled Apps)
第9週	10/31	機器學習的應用1/3 (Scikit-learn: Unsupervised & Supervised Learning; Causal ML)
第10週	11/7	機器學習的應用2/3 (Advanced topics: Hyperparameter tuning & Ensemble models)
第11週	11/14	機器學習的應用3/3 (Deep Learning: Keras; XAI)
第12週	11/21	文字資料的處理 (Regular Expressions & Basic NLP)
第13週	11/28	影像資料的處理 (Image Processing & Computer Vision)
第14週	12/5	聲音資料的處理 (Audio & Speech Processing; Chatbots)
第15週	12/12	巨量資料的處理 (Asynchronous, Parallel, & Distributed Computing)
第16週	12/19	無期末考/課程

