- 17. a. Let A_1 consist of the r pivot columns in A. The columns of A_1 are linearly independent. So A_1 is an $m \times r$ with rank r.
 - **b.** By the Rank Theorem applied to A_1 , the dimension of Row A is r, so A_1 has r linearly independent rows. Use them to form A_2 . Then A_2 is $r \times r$ with linearly independent rows. By the Invertible Matrix Theorem, A_2 is invertible.

19.
$$\begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 3 \\ 0 & 3 & 5 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This matrix has rank 3, so the pair (A, B) is controllable.

21. [M] rank $[B \quad AB \quad A^2B \quad A^3B] = 3$. The pair (A, B) is not controllable.

Chapter 5

Section 5.1, page 289

- 1. Yes 3. No 5. Yes, $\lambda = 0$ 7. Yes, $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$
- 9. $\lambda = 1: \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \quad \lambda = 5: \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 11. $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$
- 13. $\lambda = 1$: $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = 2$: $\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$; $\lambda = 3$: $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$
- **15.** $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ **17.** 0, 2, -1
- 19. 0. Justify your answer.
- 21. See the Study Guide, after you have written your answers.
- 23. Hint: Use Theorem 2.
- **25.** Hint: Use the equation $A\mathbf{x} = \lambda \mathbf{x}$ to find an equation involving A^{-1} .
- 27. Hint: For any λ , $(A \lambda I)^T = A^T \lambda I$. By a theorem (which one?), $A^T \lambda I$ is invertible if and only if $A \lambda I$ is invertible.
- **29.** Let **v** be the vector in \mathbb{R}^n whose entries are all 1's. Then $A\mathbf{v} = s\mathbf{v}$.
- 31. Hint: If A is the standard matrix of T, look for a nonzero vector \mathbf{v} (a point in the plane) such that $A\mathbf{v} = \mathbf{v}$.

33. **a.**
$$\mathbf{x}_{k+1} = c_1 \lambda^{k+1} \mathbf{u} + c_2 \mu^{k+1} \mathbf{v}$$

b. $A\mathbf{x}_k = A(c_1 \lambda^k \mathbf{u} + c_2 \mu^k \mathbf{v})$
 $= c_1 \lambda^k A \mathbf{u} + c_2 \mu^k A \mathbf{v}$ Linearity
 $= c_1 \lambda^k \lambda \mathbf{u} + c_2 \mu^k \mu \mathbf{v}$ **u** and **v** are eigenvectors.
 $= \mathbf{x}_{k+1}$

37. [M] $\lambda = 3$: $\begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$; $\lambda = 13$: $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. You can

speed up your calculations with the program nulbasis discussed in the Study Guide.

39. [M]
$$\lambda = -2$$
: $\begin{bmatrix} -2 \\ 7 \\ -5 \\ 5 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 7 \\ -5 \\ 0 \\ 5 \end{bmatrix}$; $\lambda = 5$: $\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

Section 5.2, page 297

- 1. $\lambda^2 4\lambda 45$; 9, -5 3. $\lambda^2 2\lambda 1$; $1 \pm \sqrt{2}$
- 5. $\lambda^2 6\lambda + 9$; 3 7. $\lambda^2 9\lambda + 32$; no real eigenvalues
- **9.** $-\lambda^3 + 4\lambda^2 9\lambda 6$ **11.** $-\lambda^3 + 9\lambda^2 26\lambda + 24$
- 13. $-\lambda^3 + 18\lambda^2 95\lambda + 150$ 15. 4, 3, 3, 1
- **17.** 3, 3, 1, 1, 0
- 19. Hint: The equation given holds for all λ .
- 21. The Study Guide has hints.
- **23.** Hint: Find an invertible matrix P so that $RQ = P^{-1}AP$.
- **25.** a. $\{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = .3$
 - **b.** $\mathbf{x}_0 = \mathbf{v}_1 \frac{1}{14}\mathbf{v}_2$
 - c. $\mathbf{x}_1 = \mathbf{v}_1 \frac{1}{14}(.3)\mathbf{v}_2, \mathbf{x}_2 = \mathbf{v}_1 \frac{1}{14}(.3)^2\mathbf{v}_2$, and $\mathbf{x}_k = \mathbf{v}_1 \frac{1}{14}(.3)^k\mathbf{v}_2$. As $k \to \infty$, $(.3)^k \to 0$ and $\mathbf{x}_k \to \mathbf{v}_1$
- 27. a. $A\mathbf{v}_1 = \mathbf{v}_1$, $A\mathbf{v}_2 = .5\mathbf{v}_2$, $A\mathbf{v}_3 = .2\mathbf{v}_3$. (This also shows that the eigenvalues of A are 1, .5, and .2.)
 - **b.** $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent because the eigenvectors correspond to distinct eigenvalues (Theorem 2). Since there are 3 vectors in the set, the set is a basis for \mathbb{R}^3 . So there exist (unique) constants such that

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

Then

$$\mathbf{w}^T \mathbf{x}_0 = c_1 \mathbf{w}^T \mathbf{v}_1 + c_2 \mathbf{w}^T \mathbf{v}_2 + c_3 \mathbf{w}^T \mathbf{v}_3 \tag{*}$$

Since \mathbf{x}_0 and \mathbf{v}_1 are probability vectors and since the entries in \mathbf{v}_2 and in \mathbf{v}_3 each sum to 0, (*) shows that $1 = c_1$.

c. By (b),

$$\mathbf{x}_0 = \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

Using (a),

$$\mathbf{x}_k = A^k \mathbf{x}_0 = A^k \mathbf{v}_1 + c_2 A^k \mathbf{v}_2 + c_3 A^k \mathbf{v}_3$$

= $\mathbf{v}_1 + c_2 (.5)^k \mathbf{v}_2 + c_3 (.2)^k \mathbf{v}_3$
 $\rightarrow \mathbf{v}_1 \text{ as } k \rightarrow \infty$

29. [M] Report your results and conclusions. You can avoid tedious calculations if you use the program gauss discussed in the *Study Guide*.

Section 5.3, page 304

1.
$$\begin{bmatrix} 226 & -525 \\ 90 & -209 \end{bmatrix}$$
 3. $\begin{bmatrix} a^k & 0 \\ 3(a^k - b^k) & b^k \end{bmatrix}$

5.
$$\lambda = 5$$
: $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$; $\lambda = 1$: $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$

When an answer involves a diagonalization, $A = PDP^{-1}$, the factors P and D are not unique, so your answer may differ from that given here.

7.
$$P = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 9. Not diagonalizable

11.
$$P = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 4 & 3 & 1 \end{bmatrix}, D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

13.
$$P = \begin{bmatrix} -1 & 2 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

15.
$$P = \begin{bmatrix} -1 & -4 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}, D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

17. Not diagonalizable

$$\mathbf{19.} \ \ P = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

21. See the Study Guide. 23. Yes. (Explain why.)

25. No, A must be diagonalizable. (Explain why.)

27. Hint: Write $A = PDP^{-1}$. Since A is invertible, 0 is not an eigenvalue of A, so D has nonzero entries on its diagonal.

29. One answer is $P_1 = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$, whose columns are eigenvectors corresponding to the eigenvalues in D_1 .

31. Hint: Construct a suitable 2×2 triangular matrix.

33. [M]
$$P = \begin{bmatrix} 2 & 2 & 1 & 6 \\ 1 & -1 & 1 & -3 \\ -1 & -7 & 1 & 0 \\ 2 & 2 & 0 & 4 \end{bmatrix},$$
$$D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

35. [M]
$$P = \begin{bmatrix} 6 & 3 & 2 & 4 & 3 \\ -1 & -1 & -1 & -3 & -1 \\ -3 & -3 & -4 & -2 & -4 \\ 3 & 0 & -1 & 5 & 0 \\ 0 & 3 & 4 & 0 & 5 \end{bmatrix},$$

$$D = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Section 5.4, page 311

1.
$$\begin{bmatrix} 3 & -1 & 0 \\ -5 & 6 & 4 \end{bmatrix}$$

3. a.
$$T(\mathbf{e}_1) = -\mathbf{b}_2 + \mathbf{b}_3$$
, $T(\mathbf{e}_2) = -\mathbf{b}_1 - \mathbf{b}_3$, $T(\mathbf{e}_3) = \mathbf{b}_1 - \mathbf{b}_2$

b.
$$[T(\mathbf{e}_1)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, [T(\mathbf{e}_2)]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix},$$
 $[T(\mathbf{e}_3)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$

c.
$$\begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

5. a.
$$10-3t+4t^2+t^3$$

b. For any \mathbf{p} , \mathbf{q} in \mathbb{P}_2 and any scalar c,

$$T[\mathbf{p}(t) + \mathbf{q}(t)] = (t+5)[\mathbf{p}(t) + \mathbf{q}(t)]$$

$$= (t+5)\mathbf{p}(t) + (t+5)\mathbf{q}(t)$$

$$= T[\mathbf{p}(t)] + T[\mathbf{q}(t)]$$

$$T[c \cdot \mathbf{p}(t)] = (t+5)[c \cdot \mathbf{p}(t)] = c \cdot (t+5)\mathbf{p}(t)$$

$$= c \cdot T[\mathbf{p}(t)]$$

$$\mathbf{c.} \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

7.
$$\begin{bmatrix} 3 & 0 & 0 \\ 5 & -2 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

9. a.
$$\begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$$

b. Hint: Compute $T(\mathbf{p} + \mathbf{q})$ and $T(c \cdot \mathbf{p})$ for arbitrary \mathbf{p} , \mathbf{q} in \mathbb{P}_2 and an arbitrary scalar c.

c.
$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

11.
$$\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$$
 13. $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

$$_{15.} \mathbf{b}_{1} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \mathbf{b}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

17. **a.** $A\mathbf{b}_1 = 2\mathbf{b}_1$, so \mathbf{b}_1 is an eigenvector of A. However, A has only one eigenvalue, $\lambda = 2$, and the eigenspace is only one-dimensional, so A is not diagonalizable.

$$\mathbf{b.} \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix}$$

- 19. By definition, if A is similar to B, there exists an invertible matrix P such that $P^{-1}AP = B$. (See Section 5.2.) Then B is invertible because it is the product of invertible matrices. To show that A^{-1} is similar to B^{-1} , use the equation $P^{-1}AP = B$. See the *Study Guide*.
- 21. Hint: Review Practice Problem 2.
- 23. Hint: Compute $B(P^{-1}\mathbf{x})$.
- 25. Hint: Write $A = PBP^{-1} = (PB)P^{-1}$, and use the trace property.
- 27. For each j, $I(\mathbf{b}_j) = \mathbf{b}_j$. Since the standard coordinate vector of any vector in \mathbb{R}^n is just the vector itself, $[I(\mathbf{b}_j)]_{\mathcal{E}} = \mathbf{b}_j$. Thus the matrix for I relative to \mathcal{B} and the standard basis \mathcal{E} is simply $[\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$. This matrix is precisely the *change-of-coordinates* matrix $P_{\mathcal{B}}$ defined in Section 4.4.
- 29. The \mathcal{B} -matrix for the identity transformation is I_n , because the \mathcal{B} -coordinate vector of the jth basis vector \mathbf{b}_j is the jth column of I_n .

31. [M]
$$\begin{bmatrix} -7 & -2 & -6 \\ 0 & -4 & -6 \\ 0 & 0 & -1 \end{bmatrix}$$

Section 5.5, page 318

1.
$$\lambda = 2 + i$$
, $\begin{bmatrix} -1 + i \\ 1 \end{bmatrix}$; $\lambda = 2 - i$, $\begin{bmatrix} -1 - i \\ 1 \end{bmatrix}$

3.
$$\lambda = 2 + 3i$$
, $\begin{bmatrix} 1 - 3i \\ 2 \end{bmatrix}$; $\lambda = 2 - 3i$, $\begin{bmatrix} 1 + 3i \\ 2 \end{bmatrix}$

5.
$$\lambda = 2 + 2i$$
, $\begin{bmatrix} 1 \\ 2 + 2i \end{bmatrix}$; $\lambda = 2 - 2i$, $\begin{bmatrix} 1 \\ 2 - 2i \end{bmatrix}$

7.
$$\lambda = \sqrt{3} \pm i$$
, $\varphi = \pi/6$ radian, $r = 2$

9.
$$\lambda = -\sqrt{3}/2 \pm (1/2)i$$
, $\varphi = -5\pi/6$ radians, $r = 1$

11.
$$\lambda = .1 \pm .1i$$
, $\omega = -\pi/4$ radian, $r = \sqrt{2}/10$

In Exercises 13–20, other answers are possible. Any P that makes $P^{-1}AP$ equal to the given C or to C^T is a satisfactory answer. First find P; then compute $P^{-1}AP$.

13.
$$P = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$

15.
$$P = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$$

17.
$$P = \begin{bmatrix} 2 & -1 \\ 5 & 0 \end{bmatrix}, C = \begin{bmatrix} -.6 & -.8 \\ .8 & -.6 \end{bmatrix}$$

19.
$$P = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} .96 & -.28 \\ .28 & .96 \end{bmatrix}$$

21.
$$\mathbf{y} = \begin{bmatrix} 2 \\ -1+2i \end{bmatrix} = \frac{-1+2i}{5} \begin{bmatrix} -2-4i \\ 5 \end{bmatrix}$$

- 23. (a) Properties of conjugates and the fact that $\overline{\mathbf{x}}^T = \overline{\mathbf{x}}^T$; (b) $\overline{A}\overline{\mathbf{x}} = A\overline{\mathbf{x}}$ and A is real; (c) because $\mathbf{x}^T A\overline{\mathbf{x}}$ is a scalar and hence may be viewed as a 1×1 matrix; (d) properties of transposes; (e) $A^T = A$, definition of q
- 25. Hint: First write x = Re x + i(Im x).

27. [M]
$$P = \begin{bmatrix} 1 & -1 & -2 & 0 \\ -4 & 0 & 0 & 2 \\ 0 & 0 & -3 & -1 \\ 2 & 0 & 4 & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} .2 & -.5 & 0 & 0 \\ .5 & .2 & 0 & 0 \\ 0 & 0 & .3 & -.1 \\ 0 & 0 & .1 & .3 \end{bmatrix}$$

Other choices are possible, but C must equal $P^{-1}AP$.

Section 5.6, page 327

- **1. a.** Hint: Find c_1 , c_2 such that $\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$. Use this representation and the fact that \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of A to compute $\mathbf{x}_1 = \begin{bmatrix} 49/3 \\ 41/3 \end{bmatrix}$.
 - **b.** In general, $\mathbf{x}_k = 5(3)^k \mathbf{v}_1 4(\frac{1}{3})^k \mathbf{v}_2$ for $k \ge 0$.
- 3. When p = .2, the eigenvalues of A are .9 and .7, and

$$\mathbf{x}_k = c_1(.9)^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2(.7)^k \begin{bmatrix} 2 \\ 1 \end{bmatrix} \to \mathbf{0} \quad \text{as } k \to \infty$$

The higher predation rate cuts down the owls' food supply, and eventually both predator and prey populations perish.

- 5. If p = .325, the eigenvalues are 1.05 and .55. Since 1.05 > 1, both populations will grow at 5% per year. An eigenvector for 1.05 is (6, 13), so eventually there will be approximately 6 spotted owls to every 13 (thousand) flying squirrels.
- 7. a. The origin is a saddle point because A has one eigenvalue larger than 1 and one smaller than 1 (in absolute value).