- (1) (a) Să se defineasca urmatoarele noțiuni: relație de echivalență, funcție injectivă, subgrup, liniar independență, valoare proprie a unui endomorfism al unui spațiu vectorial.
 - (b) Să se dea câte un exemplu de funcție bijectivă de la \mathbb{N} la \mathbb{N} , element minimal in mulțimea ordonată $(\mathcal{P}^*(\{1,2,3\}),\subseteq)$, (aici $\mathcal{P}^*(\{1,2,3\})=\{X\subseteq\{1,2,3\}\mid\emptyset\neq X\}$), partiție a mulțimii $\{1,2,3,4,5\}$, spațiu vectorial de dimensiune 7, vector cu coordonatele (1,1) in baza $[(1,0),(1,1)]^t$ a spațiului vectorial real \mathbb{R}^2 .
 - (c) Fie S şi T două subspații ale unui K-spațiu vectorial V şi $\{x\}$ o baza în $S \cap T$. Dacă $\{x,y,z\}$ şi $\{x,v\}$ sunt baze în S, respectiv T, să se arate că $\{x,y,z,v\}$ este o bază în S+T.
- (2) Se consideră funcțiile: $f: \mathbb{R} \to \mathbb{R}$ și $g: [0, \infty) \to \mathbb{R}$

$$f(x) = \begin{cases} x - 2, & x \in (-\infty, 1] \\ 2x - 5, & x \in (1, \infty) \end{cases} \quad \text{si } g(x) = x^2 + 1.$$

- (a) Să se studieze injectivitatea și surjectivitatea acestor funcții.
- (b) Dacă există să se determine inversele acestor funcții.
- (c) Dacă sunt definite să se calculeze compunerile $f \circ g$ și $g \circ f$.
- (d) Să se determine numărul funcțiilor $h: \{x \in \mathbb{N} \mid 0 \le x \le 9\} \to \{a, b, c\}$ cu proprietatea că $h^{-1}(\{a\}) \le 7$.
- (3) Fie $G = \{1, -1, i, -i\}$, unde $i^2 = -1$ este unitatea imaginară.
 - (a) Să se arate că G este un subgrup al grupului \mathbb{C}^* .
 - (b) Să se arate că $f: \mathbb{Z} \to G$, $f(k) = \cos \frac{2k\pi}{4} + i \sin \frac{2k\pi}{4}$ este un morfism surjectiv de grupuri (se va arăta de asemenea că $f(k) \in G$ pentru orice $k \in \mathbb{Z}$) și să se arate că relația $(\mathbb{Z}, \mathbb{Z}, \sim)$ dată prin $x \sim y \Leftrightarrow f(x) = f(y)$ este o relație de echivalență.
 - (c) Să se arată că dacă |G| este un număr natural impar, atunci G conține un element de ordin 2.
- (4) Se consideră $S = \langle u_1, u_2, u_3 \rangle$ și $T = \langle v_1, v_2, v_3 \rangle$, unde $u_1 = (1, 2, 1, -2)$, $u_2 = (2, 3, 1, 0)$, $u_3 = (1, 2, 2, -3)$, $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 0, 1, -1)$ $v_3 = (1, 3, 0, -3)$.
 - (a) Să se arate că S este subspațiu în \mathbb{R}^3 .
 - (b) Să se determine câte o bază şi dimensiunea pentru S, T, S+T şi $S\cap T$.
 - (c) Fie $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ cu proprietatea că $(1,2,0), (-2,0,1), (0,2,1) \in \operatorname{Im}(f)$. Să se arate că f este injectivă.
- (5) Fie $f \in \operatorname{End}_R(\mathbb{R}^3)$ cu matricea în baza canonică $e = [e_1, e_2, e_3]^t$:

$$[f]_e = \left[\begin{array}{rrr} 1 & -1 & -1 \\ 2 & 0 & 1 \\ 0 & 2 & 3 \end{array} \right]$$

Să se determine:

- (a) f(x) pentru orice $x \in \mathbb{R}^3$.
- (b) Câte o bază și dimensiunea pentru Im(f) și Ker(f).
- (c) Matricea $[f]_b$ unde $b = [(1,2,1),(1,1,2),(1,1,0)]^t$ (se va arăta și că b este o bază a lui \mathbb{R}^3).

NOTĂ: Fiecare subiect este notat de la 1 la 10. Toate afirmațiile făcute trebuie sa fie justificate.