Question number	Scheme	Marks
8 (a)	2x - 75 = -31,211	M1A1
	x = 22, 143	A1
		(3)
(b)	$2\frac{\sin y^{\circ}}{\cos y^{\circ}} + 5\sin y^{\circ} = 0$	M1
	$\sin y^{\circ} \left(\frac{2}{\cos y^{\circ}} + 5 \right) = 0$	M1
	$\cos y^{\circ} = -\frac{2}{5} \qquad (\sin y^{\circ} = 0)$	
	$y = 113.6^{\circ}$	A1
	$y = 0^{\circ}, 180^{\circ}$	B1
		(4)
(c)	$3(1 - \sin^2 \theta) - 3\sin^2 \theta + \sin \theta + 12 = 0$ $6\sin^2 \theta - \sin \theta - 15 = 0$	M1
	$(2\sin\theta + 3)(3\sin\theta - 5) = 0$	M1
	$\sin\theta = -\frac{3}{2}\sin\theta = \frac{5}{2}$	A1
	As $-1 \le \sin \theta \le 1$ no such values for θ exist	B1
		(4)
		[11]

Part	Mark	Additional Guidance		
(a)		For finding at least one correct value of $(2x-75) = -31^{\circ}$ or 211°		
	M1	and attempting to find one value of $x \implies x = \frac{-31 + 75}{2}$ or $x = \frac{211 + 75}{2}$		
	A1	For $x = 22$ or 143		
	A1	For $x = 22$ and 143 Extra values within range – A0 Extra values outside of the range - ignore		
.(b)	M1	C 03 <i>y</i>		
	M1	For factorising their expression and finding values for $\sin y^{\circ}$ and $\cos y^{\circ}$ $\sin y^{\circ} \left(\frac{2}{\cos y^{\circ}} + 5 \right) = 0 \Rightarrow \sin y^{\circ} = 0, \cos y^{\circ} = -\frac{2}{5} \Rightarrow y = \dots$		
	A1	For $y = 113.6$ if there are extra values within range – A0		
	B1			
	ALT			
	M1	For multiplying $\sin y \times \frac{\cos y}{\cos y} \Rightarrow \tan y \cos y \Rightarrow (2 \tan y + 5 \tan y \cos y = 0)$		
	M1	For factorising the above expression and finding values for $\tan y^{\circ}$ and $\cos y^{\circ}$ $2 \tan y + 5 \tan y \cos y = 0 \Rightarrow \tan y (2 + 5 \cos y) = 0$ $\Rightarrow \tan y = 0$, $\cos y = -\frac{2}{5} \Rightarrow y =$		
	A1	For $y = 113.6$ Extra values within range – A0 Extra values outside of the range - ignore		
	B1	For both $y = 0$ and 180 Both required		
	SC	$2\frac{\sin y}{\cos y} = -5\sin y \Rightarrow \cos y = -\frac{2}{5} \Rightarrow y = 113.6 \text{ no evidence of factorising - award}$ M1M0A1B0 only (unless there is later recovery)		
(c)	M1	For using the identity $\cos^2 \theta + \sin^2 \theta = 1 \Rightarrow 3(1 - \sin^2 \theta) - 3\sin^2 \theta + \sin \theta + 12 = 0$ to form a 3TQ in terms of $\sin \theta$ Minimally acceptable attempt is $6\sin^2 \theta \pm \sin \theta \pm 15 = 0$		
	M1	For an attempt to solve their 3TQ (see general guidance for the definition of an attempt $6\sin^2\theta - \sin\theta - 15 = 0 \Rightarrow (2\sin\theta + 3)(3\sin\theta - 5) = 0 \Rightarrow \sin\theta =,$		
	A1	$\sin\theta = -\frac{3}{2}, \ \frac{5}{3}$		
	B1	For the conclusion; $ \sin \theta > 1$ therefore no values exist for $\sin \theta$ Do not accept 'undefined' without an explanation that $ \sin \theta > 1$		
Penali	Penalise rounding only once in this question			