Scalable Data Processing: By applying MapReduce in Spark

#Big-data #MapReduce #ML

Jaehyeon Kim Subin Seo

Background Research

What is Big-data?

: Any data set contains large volumes of information and complex data is called Big Data (BD). It has 4 characteristics. (4V's) [1]

- Volume which is the <u>quantity</u> of data.
- Velocity is the <u>speed</u> of the data that during handling and generating.
- Variety refers to the range of data types and sources.
- **Veracity** is related to the truth of data which is important for precision in analysis.
- **+ Value** is the importance of the data importance and this is a very significant feature in BD6.

How to process Big-data?

: apply for MapReduce to process Big Data in parallel on multiple node.

Step1. Map

- Split input data to number of slices
- Apply specific function to each to generate intermediate results

Step2. Reduce

Combine the intermediate results to make the final result.

About Data

: Customer information to predict who possible Defaulters are for Loans Product

tr	ain	.head(10)											
	ld	Income	Age	Experience	Married/Single	House_Ownership	Car_Ownership	Profession	CITY	STATE	CURRENT_JOB_YRS	CURRENT_HOUSE_YRS	Risk_Flag
0	1	1303834	23	3	single	rented	no	Mechanical_engineer	Rewa	Madhya_Pradesh	3	13	0
1	2	7574516	40	10	single	rented	no	Software_Developer	Parbhani	Maharashtra	9	13	0
2	3	3991815	66	4	married	rented	no	Technical_writer	Alappuzha	Kerala	4	10	0
3	4	6256451	41	2	single	rented	yes	Software_Developer	Bhubaneswar	Odisha	2	12	1
4	5	5768871	47	11	single	rented	no	Civil_servant	Tiruchirappalli[10]	Tamil_Nadu	3	14	1
5	6	6915937	64	0	single	rented	no	Civil_servant	Jalgaon	Maharashtra	0	12	0
6	7	3954973	58	14	married	rented	no	Librarian	Tiruppur	Tamil_Nadu	8	12	0
7	8	1706172	33	2	single	rented	no	Economist	Jamnagar	Gujarat	2	14	0
8	9	7566849	24	17	single	rented	yes	Flight_attendant	Kota[6]	Rajasthan	11	11	0
9	10	8964846	23	12	single	rented	no	Architect	Karimnagar	Telangana	5	13	0
	T۳	ain F	\ _+-	s chan	e : (2520	00 12 \	Independ	। lent variables ((X)			Dependent vari	↓ ables (`

- Irain_Data_shape : (252000, 13)
- It has 252,000 samples and 11 features.
- Independent variables are used to predict of Risk_Flag which is dependent variables.
- Risk_Flag(Y) is binary clas (0 or 1) .

We try 2 way to Implement MapReduce!

Using Python Muti processing library

Python

Modules for parallelism in Python: Multiprocessing

Pool Object

which offers a convenient means of <u>parallelizing</u> the execution of a function across multiple input values, <u>distributing the input data</u> across processes (data parallelism).

Multiprocessing: Pool Object

Python

Map

- Goal: Binary Classification with Linear Regression
- Calculate gradient by **Ordinary Least Squares (OLS)** for each partition

Reduce

- **Combines** the intermediate results and updates the model parameters
- Sum the gradients then multiplied by learning rate to return the updated parameters

Python

MapReduce with multiprocessing

	Pycharm(M1)	JupyterLab(DIONE)
Pool Worker(CPU cores)	8	48
Processing TIme	4min 2.028sec	1min 3.902sec

• Since **multiprocessing** performs <u>parallel processing based on the number of cores in the **CPU**, we were able to get faster results on the **DIONE** server with 48 CPU cores.</u>

Using Pyspark (RDDs)

Spark

Apache Spark™ is a <u>multi-language engine</u> for executing data engineering, data science, and machine learning on single-node machines or clusters.

Batch/streaming data

SQL analytics

Data science at scale

Machine learning

How does Spark do distributed and parallel processing?

< Clustering >

Spark is capable of in-memory operation and distributed processing, which speeds up.

→ Because, Cluster Manager allocates Worker nodes to CPUs on its own and performs distributed processing.

Spark RDD & DAG

< RDD >

- RDD is Spark's fundamental data abstraction concept, which is a distributed collection of data elements divided into multiple partitions.
 - → Immutable & Read-only system!

< DAG>

- DAG is a Directed Acyclic Graph that expresses dependencies between tasks.
 - → All transformation is recorded as a DAG.

Spark Process

- The data is split into multiple **partitions** (num_partitions = 4).
- The map function calculates the gradients for each partition in parallel (worker = 8).
- The reduce function combines the gradients and updates the model parameters using a learning rate.
- This process is repeated for a certain number of iterations (num_iterations = 100).

Flowchart

Current location

Data Pre-Processing

Label Encoding

Categorical data to number

features

- "married_single"
- "profession"
- "house_ownership"
- "car_ownership"
- "city"
- "state"

Down Sampling

Class0

- 221,004 samples

Class1

- 30,996 samples

Each class 30,996 samples Total 61,992 samples

Data Split

One Dataset file

- **Train** 64%
- Validation 16%
- **Test** 20%

Standard Scaling

Calibrate scale differences

Features ex.

- Income(10,000,000)
- Age(14)

Current location

Function codes

Data Partitioning & Covert to RDD


```
def split_data_into_partitions(X, y, num_partitions):
    data_partitions = []
    chunk_size = len(X) // num_partitions

for i in range(num_partitions):
    start_idx = i * chunk_size
    end_idx = (i + 1) * chunk_size
    X_partition = X[start_idx:end_idx]
    y_partition = y[start_idx:end_idx]
    data_partitions.append((X_partition, y_partition))
```

Rdd = spark.sparkContext.parallelize(data_partitions)

Current location

Function codes

MapReduce functional programming

def map_function(data_partition, params):
 X, y = data_partition
 gradients = np.dot(X.T, np.dot(X, params) - y)

return gradients

def reduce_function(intermediate_results, learning_rate):
 total_gradients = np.sum(intermediate_results, axis=0)
 updated_params = learning_rate * total_gradients

return updated_params

Current location

Spark Result

Spark					
Elapsed Time	0.0 min 41.307 sec				
Val-ACC	50.193				
Test-ACC	50.191				

- Scalable data can be distributed and processed in parallel through spark.
- And this method is effective for processing big data.

Discussion

- In this project,
 Our data set can be storage and processed with in a local storage, which has about 60,000 samples.
- => Therefore, we are going to test the model of this paper with a lot bigger data sets.

 (Use large amounts of data that are not even stored on the local storage)

Reference

- [1] Hiba Basim Alwan and Ku Ruhana Ku-Mahamud 2020 IOP Conf. Ser.: Mater. Sci. Eng. 769 012007
- [2] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing (HotCloud'10). USENIX Association, USA, 10.
- [3] Data Reference: https://www.kaggle.com/datasets/subhamjain/loan-prediction-based-on-customer-behavior?res ource=download&select=Sample+Prediction+Dataset.csv
- [4] Image Reference : https://subscription.packtpub.com/book/data/9781785889622/5/ch05lvl1sec39/linear-classification