

Central dogma of Molecular Biology

Genotype

Phenotype

Levels of gene regulation

- Evolutionary or Genomic Level (species)
- Individual level (genotype)
- Chromosomal level (open or closed, transcription factors)
- mRNA Level (regulated initiation, splicing, degradation)
- Protein Level (regulated initiation, modifications, sorting, degradation)
- Composite Outcome + environment (phenotype)

Levels of gene regulation

- Evolutionary or Genomic Level (species)
- Individual level (genotype)

Complex diseases are more likely to be due to genetic variation in regions that control gene activity than regions that encode proteins

Control of gene expression is important!

Levels of regulation

- Evolutionary or Genomic Level (species)
- Individual level (genotype)
- Chromosomal level (open or closed, transcription factors)
- mRNA Level (regulated initiation, splicing, degradation)
- Protein Level (regulated initiation, modifications, sorting, degradation)
- Composite Outcome + environment (phenotype)

A shift in the way we examine gene function

Classic

Classic direction of genetic study

- Mutant phenotype
 - → protein
 - → geneotype

Reverse genetics

- Mutant genotype
 - → protein
 - → phenotype

Reverse

Knockout mouse example

- Vitamin D₃ implicated in premature aging
- Vitamin D₃ receptor (VDR) KO mouse

What is recombinant DNA technology?

Recombinant DNA technology

- Cloned gene or protein of interest
- Mutagenesis
- Transformed into a cell
- Integrated into genome
- Expressed in daughter cells (whole organism)

Recombinant DNA technology

- Cloned gene or protein of interest
- Mutagenesis
- Transformed into a cell
- Integrated into genome
- Expressed in daughter cells (whole organism)

Recombinant DNA technology (cont.)

Why make a transgenic animal?

- To study gene function
- To produce human proteins for therapy or study
- To create a disease model to test therapeutics
- To improve organism traits

Virology Blog, Wikipedia

Why make a transgenic animal? (cont.)

- To study gene function
- To produce human proteins for therapy or study
- To create a disease model to test therapeutics
- To improve organism traits

Why make a transgenic animal (cont.)

- To study gene function
- To produce human proteins for therapy or study
- To create a disease model to test therapeutics
- To improve organism traits

Why make a transgenic animal (cont.)

- To study gene function
- To produce human proteins for therapy or study
- To create a disease model to test therapeutics
- To improve organism traits

Why make a transgenic animal (cont.)

- To study gene function
- To produce human proteins for therapy or study
- To create a disease model to test therapeutics
- To improve organism traits

Making a transgenic animal

5 major recombinant DNA techniques

Restriction	cutting at a specific site using restriction enzymes
Hybridization	using a specific fragment of DNA or RNA to identify related sequences
Sequencing	determining the nucleotide sequence of a DNA fragment
DNA cloning	taking a single DNA molecule and making billions of identical copies
DNA engineering	altering DNA sequences to modify gene function
DNA microarray	Monitoring the expression of every gene using nucleic acid microarrays

Restriction - isolating the DNA sequence

Restriction Endonucleases

BamH1 HindIII EcoR1

... (Alul, Haelll)

Ligase

Hybridization - detecting a sequence

Hybridization - detecting a sequence (cont.)

Hybridization - detecting a sequence (cont.)

DNA – DNA

RNA – RNA

DNA – RNA

Hybridization - detecting a sequence (cont.)

Sequencing - reading the sequence

Sanger or chain termination method

Sequencing - reading the sequence (cont.)

Sanger or chain termination method

RCN 26

Sequencing - reading the sequence (cont.)

Sanger or chain termination method

RCN 27

Cloning - copying the DNA sequence

Cloning - copying the DNA sequence

Cloning Vector Technique

Cloning - copying the DNA sequence

Cloning Vector Technique

