T13

- 1. Para las siguientes funciones, determinar la fórmula de Taylor de segundo orden en los puntos dados.
 - (a) $f(x,y) = (x+2y)^2$, en $x_0 = 0$, $y_0 = 0$.
 - (b) $f(x,y) = \frac{1}{1+x^2+y^2}$, en $x_0 = 0$, $y_0 = 0$.
 - (c) $f(x,y) = e^{(x-1)^2} \cos(y)$, en $x_0 = 1$, $y_0 = 0$.

Definición 1. Sea $f: U \to \mathbb{R}$, una función diferenciable en el abierto $U \subseteq \mathbb{R}^n$. Decimos que un $p_0 \in U$ es un punto crítico o estacionario de f si $\nabla_{p_0} f = 0$. Es decir, si todas las derivadas parciales de f se anulan en p_0 .

- 2. Para las siguientes funciones encuentra sus puntos críticos.
 - (a) $f(x,y) = x^2 y^2 + xy$,
 - (b) $f(x,y) = x^2 + y^2 xy$,
 - (c) $f(x,y) = e^{1+x^2-y^2}$,
 - (d) $f(x,y) = x^2 3xy + 5x 2y + 6y^2 + 8$,
 - (e) $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$.

Definición 2. Sea $f: U \to \mathbb{R}$ una función definida en el abierto $U \subseteq \mathbb{R}^n$, tal que tiene derivadas parciales de segundo orden, $\partial_{p_i p_j}^2 f(p_0)$, $i, j = 1, \ldots, n$ en $p_0 \in U$. El Hessiano de f en p_0 , denotado $H_{p_0} f$ o $H f(p_0)$ es la función cuadrática dada por

$$H_{p_0}f(p) := \frac{1}{2} \sum_{i,j=1}^n \partial_{p_i p_j}^2 f(p_0) p_i p_j$$

donde $p = (p_1, \ldots, p_n) \in \mathbb{R}^n$.

- 3. Para cada una de las funciones del ejercicio 2 encuentra el Hessiano en los puntos críticos y determina si es definitivamente positivo, negativo o ninguno.
- 4. Sea $n \ge 2$ un entero y define $f(x,y) = ax^n + cy^n$, donde a y c satisfacen $ac \ne 0$.
 - (a) prueba que f tiene un único punto crítico;
 - (b) calcula el Hessiano de f en dicho punto crítico y determina si es definitivamente positivo o definitivamente negativo o ninguno.
- 5. Encuentra los puntos críticos de

$$f(x, y, z) = x^2 + y^2 + z^2 + xy$$

Después calcula el Hessiano en dichos puntos y determina si es definitivamente positivo, definitivamente negativo o ninguno.