# Pràctica 5: Buses de Comunicació I (I2C)

### 1. Introducció

L'objectiu d'aquesta pràctica és comprendre el funcionament del bus I2C i la seva aplicació en la comunicació entre perifèrics i un microcontrolador. Aquest protocol de comunicació sèrie es caracteritza per la seva simplicitat en el cablejat i per permetre la connexió de múltiples dispositius amb només dues línies: SDA (dades) i SCL (senyal de rellotge).

Aquesta pràctica es divideix en dues parts:

- Part A: Escaneig del bus I2C per detectar dispositius connectats.
- Part B: Control d'una pantalla OLED SSD1306 mitjançant comunicació I2C.

Aquestes activitats permeten entendre com es configura i s'utilitza el bus I2C per a la comunicació amb dispositius externs en sistemes embeguts com l'ESP32-S3.

# 2. Part A: Escaneig del Bus I2C

## 2.1 Descripció del Codi

El codi desenvolupat per a aquesta part consisteix en un escàner I2C que detecta els dispositius connectats al bus i imprimeix les seves adreces. Utilitza la llibreria "Wire.h" per gestionar la comunicació I2C.

El microcontrolador ESP32-S3 utilitza els pins següents per a la comunicació I2C:

SDA: GPIO 8SCL: GPIO 9

El codi realitza un recorregut per totes les possibles adreces I2C i intenta establir comunicació amb cadascuna d'elles.

#### 2.2 Funcionament

El funcionament del programa és senzill:

- 1. Es configura la comunicació I2C amb "Wire.begin(8,9);".
- 2. Es recorren totes les adreces possibles (0x01 a 0x7F).
- 3. Si un dispositiu respon a la direcció provada, es mostra per pantalla.
- 4. Es repeteix l'escaneig cada 5 segons per detectar canvis en la connexió.

Això permet verificar quins dispositius estan connectats correctament al bus I2C.

### 2.3 Resultats Obtinguts

Quan es realitza l'escaneig, si hi ha dispositius connectats, el monitor sèrie mostra aquest resultat:



Aquest resultat confirma que els dispositius I2C han estat detectats correctament.

### 3. Part B: Control de la Pantalla OLED SSD1306

### 3.1 Descripció del Codi

En aquesta part es configura una pantalla OLED SSD1306 perquè mostri informació utilitzant comunicació I2C. El programa inicialitza la pantalla i escriu un missatge mitjançant la llibreria "Adafruit\_SSD1306.h".

El muntatge es realitza amb els següents pins:

SDA: GPIO 8SCL: GPIO 9VCC: 3.3V

• GND: Terra del microcontrolador.

#### 3.2 Funcionament

El programa segueix els següents passos:

- 1. Inicialitza la pantalla amb "display.begin(SSD1306\_SWITCHCAPVCC, 0x3C);".
- 2. Esborra la pantalla amb "display.clearDisplay();".
- 3. Escriu el text "Oriol i Pau" amb "display.println("Oriol i Pau")";.
- 4. Mostra el text a la pantalla amb "display.display();".

Això permet verificar que la comunicació I2C funciona correctament i que el display és capaç de representar informació en temps real.

# 3.3 Resultats Obtinguts

La pantalla OLED mostra correctament el text "Oriol i Pau".

#### Resultat:



#### Muntatge:



# 4. Exercici pujada de nota

Tambe hem realitzat el exercici de pujada de nota que consistia en convinar dos dispositius I2C.

En el nostre cas un senseor de temperatura i la pantalla OLED SSD1306 que ens indicava en temps real la temperatura de la classe.

Aquest ha estat el resultat:

Resultat:



# Muntatge:



# 5. Conclusions

Aquesta pràctica ha permès comprendre el funcionament del bus I2C i la seva aplicació en la comunicació amb dispositius externs.

- En la **Part A**, s'ha realitzat un escaneig del bus I2C per detectar dispositius connectats, demostrant la importància de conèixer les adreces dels perifèrics per evitar conflictes en la comunicació.
- En la **Part B**, s'ha configurat una pantalla OLED SSD1306 i s'ha verificat el correcte enviament de dades mitjançant I2C.