

Observation of CP violation in charm decays

Tracking Meeting

Michael Eliachevitch(michael.eliachevitch@kit.edu) | 25 June 2019

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP) – KIT

CP violation in the Standard Model

- CP-violation (CPV): breaking of the invariance with respect to the combined transformation charge conjugation (C) and parity inversion (P)
- Sakharov: theoretical requirement for baryon-asymmetry of the universe
- arises in SM from a non-vanishing complex phase for a quark mixing matrix with 3 (V_{CKM}) or more generations
- suppressed for charm $\mathcal{O}(A_{CP}) = 10^{-4} 10^{-3}$

$$\begin{pmatrix} \mathsf{d} & \mathsf{s} & \mathsf{b} \\ \mathsf{1} & \lambda & \lambda^3 e^{i\phi} \\ -\lambda & \mathsf{1} & \lambda^2 \\ -\lambda^3 e^{-i\phi} & -\lambda^2 & \mathsf{1} \end{pmatrix} \mathsf{u}$$

$$(\lambda \approx 0.22)$$

Reminder: Different types of CPV

CPV in decay (direct):

$$\Gamma(M \to f) \neq \Gamma(\bar{M} \to \bar{f})$$

CPV from mixing (indirect)

$$\Gamma(\textit{M}^{0} \rightarrow \bar{\textit{M}}^{0}) \neq \Gamma(\bar{\textit{M}}^{0} \rightarrow \textit{M}^{0})$$

CPV from interference of mixing and decay

$$\Gamma(M^0 \to f_{CP})
eq \Gamma(\bar{M}^0 \to f_{CP})$$

Motivation: Why bother?

CPV discoveries so far

- 1956 Wu: Discovery of parity violation
- 1964 Cronin, Fitch: CPV in K decays (mixing)
- 1973 Kobayashi, Mask's: CKM matrix
- 1999 NA31/48, KTeV: Direct CPV in K decays
- 2001 BaBar and Belle: CPV in $B^0 o J/\psi K_S^0$
 - ⇒ CPV well-established

Motivation: Why bother?

CPV discoveries so far

- 1956 Wu: Discovery of parity violation
- 1964 Cronin, Fitch: CPV in K decays (mixing)
- 1973 Kobayashi, Mask's: CKM matrix
- 1999 NA31/48, KTeV: Direct CPV in K decays
- 2001 BaBar and Belle: CPV in $B^0 \rightarrow J/\psi K_s^0$
 - ⇒ CPV well-established

Motivation for charm studies

- CPV too low in SM to explain baryon-asymmetry
 - → NP contributions?
- small SM CPV in charm → sensitive to NP
- CPV with up-type quarks
- theory challenge: low-energy QCD

The LHCb Experiment

- "single-arm forward spectrometer"
- pp @ 13 TeV: large cross-section for B and D-meson production
- large boosts → displaced vertices
- good PID capabilities
- analysis used 5.9 fb⁻¹
- triggers: 1 hardware, 2 software ("turbo stream" online reco)

Tagged $D^0 o K^+K^-/\pi^+\pi^-$ decays at **LHCb**

 π tagged

- prompt decays $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow h^+ h^-)$
- kaons/pions from D⁰ form displaced vertex
- pion charge determines flavor, forms D*+vertex at primary vertex

 μ tagged

- semileptonic B decays $\mathsf{B}^- o \mu \overline{
 u}_\mu \mathsf{D}^0 (o h^+ h^-)$
- muon paired with D⁰ at displaced vertex tags flavor
- $m_{\rm corr}$ is the D⁰ μ^- mass corrected for the missing neutrino p_T

Measuring charge asymmetry

CP asymmetry (time-integrated)

$$A_{CP}(\mathsf{D}^0 \to h^+ h^-) = \frac{\Gamma(\mathsf{D}^0 \to h^+ h^-) - \Gamma(\overline{\mathsf{D}}^0 \to h^+ h^-)}{\Gamma(\mathsf{D}^0 \to h^+ h^-) + \Gamma(\overline{\mathsf{D}}^0 \to h^+ h^-)}$$

Raw measured asymmetry

$$A_{\text{raw}}(\mathsf{D}^0 \to h^+ h^-) = \frac{N(\mathsf{D}^0 \to h^+ h^-) - N(\overline{\mathsf{D}}^0 \to h^+ h^-)}{N(\mathsf{D}^0 \to h^+ h^-) + N(\overline{\mathsf{D}}^0 \to h^+ h^-)}$$

$$\approx A_{CP}(\mathsf{D}^0 \to h^+ h^-) + A_D(\pi/\mu) + A_P(\mathsf{D}^*/\mathsf{B}^-)$$

- A_D detection asymmetries: charge-dependent reconstruction efficiencies for pions/muons
- A_P production asymmetries: from hadronization asymmetries of D* and b in pp-collisions

What is measured: ΔA_{CP}

detection and production asymmetries cancel in difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

$$\approx A_{raw}(K^+K^-) - A_{raw}(\pi^+\pi^-)$$

Interpretation: Approx. the CP asymmetry in first order via

$$\mathcal{A}_{CP}(f) pprox a_{CP}^{ ext{dir}}(f) - rac{\langle t(f)
angle}{ au(\mathsf{D}^0)} \mathcal{A}_{\Gamma}(f) \Rightarrow \Delta \mathcal{A}_{CP} pprox \Delta a_{CP}^{ ext{dir}} - rac{\Delta \left\langle t
ight
angle}{ au(\mathsf{D}^0)} \mathcal{A}_{\Gamma}$$

 $\Delta a_{CP}^{\text{dir}}$: difference in **direct CP asymmetry**

 $\frac{\Delta \langle \bar{t} \rangle}{\tau(D^0)}$: ≈ 0.1 , diff. in mean reconstructed $D^0 \to h^+ h^-$ decay times normalized to D^0 lifetime

 A_{Γ} : asymmetry of $D^0/\overline{D}^0 \to h^+h^-$ effective decay widths, $\mathcal{O}(10^{-4})$ in SM

Event selection: Fiducial requirements

- exclude kinematic regions, where tagging pions of only a specific charge curve out of the acceptance
- high $A_D \Rightarrow$ raw asymmetry close to 100%

soft pions leave outer acceptance

soft pions enter beam-pipe

Reweighting of kinematic distributions

- \bullet A_D and A_P depend on kinematics
- lacktriangle might not cancel well if kin. distributions of $D^0 o f$ differ for $f = K^+K^-$ and $f = \pi^+\pi^-$
- ightharpoonup ightharpoonup event-by-event reweighting of K⁺K⁻ sample in p_T , η , ϕ of D*+/D⁰
- result: effect on ΔA_{CP} below 10^{-4}

\emph{A}_{raw} measurement: Fit of mass distributions

- extract A_{raw} signal by simultaneous least-squares fits of binned mass distributions
- advantage: distributions the same for K^+ K^- and π^+ π^-
- \blacksquare π tagged
 - simultaneous fit of $m(D^0\pi^+)$ and $m(\overline{D}^0\pi^-)$
 - A_{raw} parameter shared
 - lacktriangle signal mass model: sum of 3 gaussians and Johnson S_U function ("asymm. gaussian")
 - background: empirical function of two free parameters

μ tagged

- simultaneous fit of $m(D^0)$ and $m(\overline{D}^0)$
- A_{raw} parameter shared
- signal mass model: sum of 2 gaussians convolved with truncated power law for FSR
- background: exponential function
- feed-down from K^+ π^- modeled as tail of additional gaussian

Fit results: π tagged

• 44 and 14 million K^+ K^- and π^+ π^- events, respectively

Fit: μ tagged

lacksquare 9 and 3 million K⁺ K⁻ and π^+ π^- events, respectively

Systematic uncertainties

\blacksquare π -tagged systematics dominated by

- fit model (from from fitting alternative models to toy-MC)
- misreconstructed background peaking in m(D⁰π⁺) and not in m(D⁰) (from yield and asymmetries of backgrounds on m(D⁰) distributions)

• μ -tagged systematics dominated by

- mistag: wrong muon from K⁻ π⁺ control sample
- B reconstruction efficiency as function of decay time between K⁺ K⁻ and π⁺ π⁻, might worsen cancellation of A_P

Source	π -tagged	μ-tagged
Fit model	0.6	2
Mistag	_	4
Weighting	0.2	1
Secondary decays	0.3	_
B fractions	_	1
B reco. efficiency	-	2
Peaking background	0.5	-
Total	0.9	5

13

Results

$$\begin{array}{lcl} \Delta A_{CP}^{\pi-\mathrm{tagged}} &=& [-18.2 \pm 3.2 (\mathrm{stat.}) \pm 0.9 (\mathrm{syst.})] \times 10^{-4} \\ \Delta A_{CP}^{\mu-\mathrm{tagged}} &=& [-9 \pm 8 (\mathrm{stat.}) \pm 5 (\mathrm{syst.})] \times 10^{-4} \end{array}$$

Combined

$$\Delta A_{CP} = (-15.4 \pm 2.9)) \times 10^{-4}$$

- 5.3 σ significance for deviation from 0
- first observation of CP violation in charm

Results II and outlook

With A_{Γ} and $\Delta < t >$ from LHCb averages and world average D⁰ lifetime:

$$\Delta a_{CP}^{
m dir} = (-15.7 \pm 2.9) imes 10^{-4} \Rightarrow$$
 mostly direct CPV

- results at upper limit but compatible with SM
- further measurements and theoretical improvements necessary

Thanks for listening

