Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (Canceled)
- 2. (Currently Amended) A hybrid fuel cell system in which a fuel cell and an electricity storage device are connected via a voltage converter,

wherein the voltage converter is a three phase bridge type converter, the converter comprising a plurality of phases,

a number of phases of operation can be changed in accordance with a value equivalent to an input/output conversion energy volume or operation volume of the voltage converter such that changing the number of phases of operation switches the voltage converter between a single phase drive mode and a multiple phase drive mode,

each of the phases in the voltage converter handles an alternating current and has a different phase shift with respect to the other phases, and phases,

when the number of phases used by the voltage converter is changed, the change of the number of phases is conducted in a synchronized-manner, manner,

the operation is switched to the single phase drive mode during the multiple phase drive mode when the equivalent value becomes smaller than a first value, and the operation is switched to the multiple phase drive mode during the single phase drive mode when the equivalent value is larger than a second value that is larger than the first value, and the first and second values are both set less than a threshold value at which a total loss of the voltage converter for the single phase drive mode surpasses a total loss of the voltage converter for the multiple phase drive mode.

3-5. (Canceled)

6. (Currently Amended) A method of controlling voltage conversion of a hybrid fuel cell system in which a fuel cell and an electricity storage device are connected via a voltage converter, comprising:

when the voltage converter is provided with a plurality of phases, measuring a value equivalent to power passing through the voltage converter;

changing a number of phases of operation of the voltage converter in accordance with the measured equivalent value such that changing the number of phases of operation switches the converter between a single phase drive mode and a multiple phase drive mode; and

for each of the phases in the voltage converter, handling an alternating current and having a different phase shift with respect to the other phases,

wherein when the changing of the number of phases used by the voltage converter occurs, the changing of the number of phases is conducted in a synchronized manner. manner,

the operation is switched to the single phase drive mode during the multiple

phase drive mode when the equivalent value becomes smaller than a first value, and the

operation is switched to the multiple phase drive mode during the single phase drive mode

when the equivalent value is larger than a second value that is larger than the first value, and

the first and second values are both set less than a threshold value at which a

total loss of the voltage converter for the single phase drive mode surpasses a total loss of the

voltage converter for the multiple phase drive mode.

7. (Original) The method of controlling voltage conversion of a hybrid fuel cell system according to claim 6, wherein when the equivalent value is smaller than a predetermined value, the number of phases of operation for use is fewer than the number of

phases of operation when the equivalent value is equal to or greater than the predetermined value.

- 8. (Canceled)
- 9. (Currently Amended) The hybrid fuel cell system according to claim 1, claim 2, wherein

the electricity storage device is connected to a primary side of the voltage converter,

the fuel cell is connected to a secondary side of the voltage converter, and the fuel cell is connected to load equipment so as to provide the electrical power of the fuel cell.

10. (Currently Amended) A hybrid fuel cell system in which a fuel cell and an electricity storage device are connected via a voltage converter,

wherein the voltage converter is a three phase bridge type converter, the converter comprising a plurality of phases, the system comprising a controller that changes a number of phases of operation of the voltage converter in accordance with a value equivalent to power passing through the voltage converter such that, by changing the number of phases of operation, the controller switches the voltage converter between a single phase drive mode and a multiple phase drive mode,

wherein each of the phases in the voltage converter handles an alternating current and has a different phase shift with respect to the other-phases, and phases,

wherein when the number of phases used by the voltage converter is changed, the change of the number of phases is conducted in a synchronized manner by the controller.

wherein during the multiple phase drive mode when the equivalent value
becomes smaller than a first value, the operation is switched to the single phase drive mode,
<u>and</u>
during the single phase drive mode when the equivalent value is larger than a
second value that is larger than the first value, the operation is switched to the multiple phase
drive mode, and
wherein the first and second values are both set less than a threshold value at
which a total loss of the voltage converter for the single phase drive mode surpasses a total
loss of the voltage converter for the multiple phase drive mode.

- 11. (Previously Presented) A hybrid fuel cell system according to claim 10, wherein when the equivalent value is smaller than a predetermined value, the number of phases of operation is fewer than the number of phases of operation when the equivalent value is equal to or greater than the predetermined value.
 - 12. (Canceled)