Tehnologije VR

Delo s podatki (Baza časovnih vrst)

Podatki

- Kako bi odgovorili na spodnja vprašanja?
 - Kakšni podatki?
 - Strukture podatkov?
 - Količina podatkov?
 - Poizvedovajna?
 - Analiza podatkov?
- Kako bi implementirali podporo tem podatkom?
 - Katere tehnologije?
 - Infrastrokturo?

Baze časovnih vrst (Time series database - TSdb)

- Kaj je časovni podatek?
 - o Podatek, ki je opremljen s časovno značko. Npr. milisekunde, nanosekunde, ...
- Kaj je časovna vrsta?
 - Je vrsta v kateri so časovni podatki, ki opisujejo isto lastnost ob različnem času.
- Kaj je baza časovnih vrst?
 - Je podatkovna baza, ki je optimizirana za delo s časovnimi vrstami.

Primer podatkov

Področja

- Vremenski podatki
- Borza (real time analitika)
- Spremljanje delovanja avtomobila
- Spremljanje strežnikov, prog. opreme,...
 - Obremenitve, ...

Senzorji

- Pospeškometer
- o GPS, ...
- Gibanje človeka

Frekvenca

- Od 1 krat na dan, mesec, ...
- Do kilo, mega Hz (1000000 Hz)

Lastnosti časovnih podatkov

- Sam podatek ne pomeni veliko
 - Lahko hitro zastari
 - Natančnost je lahko vprašljiva (npr. na borzi se zgodi trenutno velik nakup/prodaja, motnja,...)
- Vrednost/koristnost podatkov v časovni vrsti raste
 - Trendi
 - Ciklično ponavljanje
 - Obdelava signalov
 - S časom lahko vrednost/pomembnost/natančnost podatkov pade
 - Temperatura na minuto natančno pred 100 leti ;) ,
- Število podatkov narašča veliko hitreje
 - Npr. 1 x na sekundo 8 bajtov (64 bitov) = ? v 1 letu
 - Časovna značka med 4 do 32 bajtov (odvisno od predstavitve, natančnosti, obdobja).
 - 85% podatkov je nastalo v zadnjih 2 letih (primer izračuna <u>WWW</u>)

Vrsta časovnih podatkov

- Časovno ekvidistančno pravilni podatki (regular data series oz. evenly spaced time series)
 - Čas med dvema podatkoma v vrsti je konstanten.
 - Senzor deluje sinhrono in bere v konstantnih zamikih.
- Časovno ekvidistančno nepravilni podatki (irregular data series oz. unevenly spaced time series)
 - Čas med dvema podatkoma je različen.
 - o Primer odpiranje in zapiranje vrat.
 - Senzor deluje po principu dogodkov.
 - Asinhrono delovanje (mreža, čakalna vrsta procesa).

Mešano

- Manjkajoči podatki ali generiranje ekvidistančnih podatkov
 - Tehnike preprocesiranja
 - Proces časovnega gladenja da dobimo časovno ekvidistančne podatke

Katera predstavitev je boljša (prednosti, slabosti)?

Brez časnovne značke?

Ekvidistančno pravilna?

Ekvidistančno nepravilna?

Primerjava različnih baz podatkov

- Dokumentno usmirjene baze
 - Popravljaš, združuješ, dodajaš dokumente.
 - Dodajanje posamezne vrednosti ni učinkovito (nov dokument).
 - MongoDB, CouchDB, NoSQL kategorija,...<u>WWW</u>
- Iskalne baze (search database)
 - Hierarchical databases, Network databases, Graph databases
 - o Primerne za iskanje po velikih bazah, po vseh podatkih.
 - Bolj povezujejo relacije med podatki kot pa časovno komponento.
- Relacijske baze (MySQL...)
 - o Delujejo po principu tabel, ki so sestavljene iz stolpcev in vrstic.
 - Relacije med stolpci in tabelami.
 - Povpraševanje po stolpcih...
 - Neprimerno za velike količine podatkov, ki jih hitro zavržemo.

Prednosti TSdb

- Primernost za veliko zapisov (več sto milijonov zapisov)
 - Učinkovit format
 - Narejeno v mislih za skalabilnost
- Učinkovito povzemanje podatkov (summarization of data)
 - Pridobi podatke v določenih časovnih obdobje z natančnostjo na 15minut (time tick)
- Politika vzdrževanja podatkov (RETENTION POLICY)
 - Odbrži vse
 - Po X urah hrani natančnost na Y minut
 - Po X dnevih hrani natančnost na Y ur
 - 0 ..

Primeri baz

- Trend popularnosti <u>WWW</u>
- Izbrane <u>WWW</u>
 - o InfluxDB
 - Najpopularnejša baza
 - Zastonj za single computer
 - o TimescaleDB
 - Dodatna plast nad bazo PosgresSQL
 - o OpenTSDB
 - Narejena nad bazo Apache HBase
 - Graphite
 - Orodje za nadzor podatkov
 - Vsebuje TSdb

DB ENGINE SCORE OF CATEGORIES FOR THE LAST 24 MONTHS

Jun 2019	Rank May 2019	Jun	DBMS	Database Model	Score Jun May Jun 2019 2019 2018
1.	1.	1.	InfluxDB 🚻	Time Series	17.98 -0.09 +6.65
2.	2.	2.	Kdb+ €	Time Series, Multi-model 🚺	5.80 +0.21 +2.79
3.	3.	1 4.	Graphite	Time Series	3.33 +0.10 +0.95
4.	4.	1 6.	Prometheus	Time Series	3.32 +0.21 +2.06
5.	5.	4 3.	RRDtool	Time Series	2.67 -0.23 0.00
6.	6.	4 5.	OpenTSDB	Time Series	2.24 -0.23 +0.68
7.	7.	7.	Druid	Multi-model 🔃	1.78 +0.09 +0.65
8.	8.	1 7.	TimescaleDB 🚼	Time Series, Multi-model 🚺	1.11 -0.05 +1.06
9.	9.	4 8.	KairosDB	Time Series	0.50 -0.04 +0.09
10.	10.	4 9.	eXtremeDB 🔠	Multi-model 🔟	0.41 +0.03 +0.13
11.	1 3.	1 20.	Heroic	Time Series	0.40 +0.06 +0.40
12.	12.	1 5.	GridDB 🚹	Multi-model 🔟	0.36 +0.02 +0.28
13.	4 11.	4 12.	FaunaDB 🔠	Multi-model 🔃	0.36 -0.03 +0.24

Influx DB (primer)

- Legende, metadata tags (oznake) so indeksirane.
- Seznam oznak za posamezno meritev imenujemo tag set.
- Vrednosti polja (fields) je Y os
 - o int, floats, strings,
 - Na sliki trenutno samo eno polje stock price! lahko bi bil še volume, ...HiPrice, lowPrice
 - Vsa polja field set.
- X Os
 - Timestamp (lahko nanoseconds)
- Predstvitev podatkov lineProtokol <u>WWW</u>
 - o meritev, množica značk " " množica polj " " značka časovna
 - Vrsta podatkov so vse točke v meritvi ki imajo skupne značkr (tag set)
- Single point (časnovna značka in tagi)

Primer

Influx DB

Cmd example <u>WWW</u>

Primer WWW

Primer 2 WWW