Thème : Ondes et signaux	P5 : ondes et signaux			
Activité 2 : caractéristique d'un dipôle				

Objectifs:

- -représenter un nuage de points associé à la caractéristique d'un dipôle
- modéliser la caractéristique de ce dipôle à l'aide d'un langage de programmation.

Document 1 : protocole expérimental

NE PAS ALLUMER LE GENERATEUR TANT QUE LE PROFESSEUR N'A PAS VERIFIE LEMONTAGE

Brancher en série, le générateur , le multimètre en mode ampèremètre et une des trois résistances du boitier (au choix) .

Appeler le professeur pour qu'il valide le montage.

Faire varier la tension aux bornes du générateur grâce au sélecteur.

Mesurer les valeurs d'intensités dans le circuit.

Document 2: Loi d'Ohm

La tension aux bornes d'une résistance est égale au produit de la résistance par celui de l'intensité aux bornes de la résistance.

Document 3 : code Python avec quelques explications

Aller sur le logiciel Edupython. Ouvrir le fichier Caractéristique résistance.py dans le dossier PC\$> 2ndeMMe LOGHMARI>P5> caractéristique résistance.py

```
1
    import numpy as np
                                                              Importation des bibliothèques
 2
    import matplotlib.pyplot as plt
 3
    import scipy.stats as sc
                                                              np.array() permet de créer des tableaux
 4
                                                              de valeurs à partir d'une liste.
 5
    # Valeurs expérimentales
    ...=np.array([...,..,..,..,..,..,...,...]) #I en mA
 6
 7
    ...=np.array([...,..,..,..,..,..,..,...]) #U en V
 8
 9
    # Représentation d'un nuage de points
                                                              Cette instruction permet de tracer le
   plt.plot(I,U,'o',color='green')
10
                                                              graphique de la tension en fonction de
11
                                                              l'intensité. Chaque point est représenté par
   # Modélisation d'un graphique
12
                                                              un rond ('o') vert (color='green').
13 droite=sc.linregress(I,U)
   coefficient=droite.slope
14
                                                              sc.linregress(I,U)
                                                                                        calcule
15 print ("Coefficient directeur :", coefficient)
                                                              coefficient directeur et l'ordonnée à l'origine
    oorigine=droite.intercept
                                                              de la droite de régression.
16
   print ("Ordonnée à l'origine : ", oorigine)
                                                              La ligne 14 attribue à la variable
17
                                                              coefficient le coefficient directeur de la
18 # Tracé de la droite de régression
                                                              droite.
19 U modele=...*I+...
                                                              La ligne 16 attribue à la variable oorigine
20 plt.plot(I,U_modele,color='red')
                                                              l'ordonnée à l'origine.
21
                                                              Les lignes 15 et 17 affichent les valeurs des
22
   # Configuration du graphique
                                                              variables coefficient et oorigine.
23 plt.xlabel("...")
24 plt.ylabel("...")
25 plt.title("...")
                                                              Cette instruction crée un tableau de valeurs
                                                              en calculant U_modele à partir de
26 plt.grid()
27
                                                              l'équation de la droite de régression.
28
   # Affichage
29 plt.show() <
30
                                                              Cette instruction permet de tracer la droite
                                                              de régression en rouge (color='red').
plt.show() permet
d'afficher le graphique.
                       Options de présentation : titre axes
                                  et graphique
                      plt.grid() affiche un quadrillage.
```

Document 4 : valeur théorique de la résistance

Aller sur le site https://www.digikey.fr/fr/resources/conversion-calculators/conversion-calculator-resistor-color-code-4-band et suivez le guide!

Questions

- 1. Réaliser le montage expérimental décrit dans le document 1. Montrer, grâce à la loi des mailles, que la tension aux bornes du générateur est égale à la tension aux bornes de la résistance (on s'aidera également d'un schéma).
- 2. Consigner les résultats obtenus dans un tableau.
- 3. Ouvrir le fichier python comme décrit dans le document 3.

On souhaiterait tracer la caractéristique de la résistance, c'est-à-dire U en fonction de l.

- 4. Quelles lignes de code faut-il modifier (que faut-il mettre dans les pointillés ?)pour tracer cette caractéristique ?
 - a) Entrer les modifications dans le code.
 - b) Exécuter le code.
 - c) Donner l'équation de la droite.
- 5. Proposer une méthode afin de retrouver, grâce à vos résultats **expérimentaux**, la valeur de la résistance inconnue.

Appeler le professeur pour lui montrer votre graphique et présenter votre méthode.

6. Comparer la valeur obtenue avec la valeur théorique de la résistance choisie.

Aides partielles

Modif 1 : quelles valeurs expérimentales faut il entrer dans la ligne 6 ?

Modif 2 : quelles valeurs expérimentales faut il entrer dans la ligne 7 ?

Modif 3 : ligne 19 penser à y = a. x + b

Ici, U_modele est y, I est x ...

Regarder dans le paragraphe précédent qui est a, et qui est b, et compléter la ligne 19.

Question 5:

Utiliser la loi d'Ohm

Q	SAP	ANA	REA	VAL	СОМ
1. Sans aide / Aide partielle			***		
2. Tableau de valeurs Unités			*****		
4. MODIF CODE Lignes 6 et 7 : on nomme I et U (en x et en y) avec valeurs numériques			Lignes 6 et 7 : * * ** **		
Ligne 19 : U_modele = coefficient * I + oorigine			** **		
Lignes 24, 25 et 26 : X : I Y :U Titre : U en fonction de I			* *		
Equation droite	**				
5. On s'ide de la droite : U= R x I → R = U/I Aide ?		**			
6. Valeur théorique grâce au site.				**	
TOTAL /					