

Les angles

1APC

Codage de l'angle

I_Angle:

1/ Définition:

Un angle est une figure formée par deux demi-droites de même origine.

- */ Les demi-droites s'appellent les côtés de l'angle.
- */ L'origine commune s'appelle le sommet de l'angle.

2/ Notation:

On note un angle à l'aide de trois lettres surmontées d'un chapeau. La lettre centrale indique toujours le sommet.

3/ Exemple:

On considère l'angle suivant :

*/ Cet angle est noté : $A\hat{O}B$.

*/ Les demi-droites [OA) et [OB) sont les côtés de l'angle $A\hat{O}B$.

*/ Le point O c'est le sommet de l'angle $A\hat{O}B$.

4/ Mesure d'angle :

- */ Pour mesurer un angle on utilise le rapporteur.
- */ L'unité de mesure des angles est le degré.

II Les differents types d'angles :

1/ Angle nul:

a) Définition:

L'angle nul est un angle dont la mesure est égale à 0°

b)_Exemple:

Soit \hat{AOB} un angle nul.

On écrit : $A\hat{O}B = 0$

Remarque:

Les côtés d'un angle nul sont deux demi-droites confondues

2/ Angle aigu:

a)_Définition:

L'angle aigu est un angle dont la mesure est comprise strictement entre 0° et 90° .

b)_Exemple:

Soit MÊN un angle aigu.

- 3/ Angle droit:
 - a)_Définition:

L'angle droit est un angle dont la mesure est égale à 90°.

b)_Exemple:

Soit EMF un angle droit.

- 4/ Angle obtus:
 - a) Définition:

L'angle obtus est un angle dont la mesure est comprise strictement entre 90° et 180°.

b)_Exemple:

Soit \hat{IJK} un angle obtus.

- 5/ Angle plat :
 - a)_Définition :

L'angle plat est un angle dont la mesure est égale à 180°.

b)_Exemple:

Soit $A\hat{O}B$ un angle droit.

On écrit : $\hat{AOB} = 180^{\circ}$

Remarque:

Les côtés d'un angle plat sont deux demi-droites opposées

6/ Angle plein:

a)_Définition:

L'angle plein est un angle dont la mesure est égale à 360°.

b)_Exemple:

Soit *MÔN* un angle plein.

On écrit : $\hat{MON} = 360^{\circ}$

Remarque:

Les côtés d'un angle plein sont deux demi-droites confondues

III_ Relation entre deux angles :

1/ Angles adjacents :

a)_Définition:

Deux angles adjacents sont deux angles qui ont :

- */ Le même sommet.
- */ Un côté commun.
- */ Sont situés de part et d'autre de ce côté commun.

b)_Exemple:

Soient \hat{AOB} et \hat{BOC} deux angles adjacents.

2/ Angles complémentaires :

a)_Définition :

Deux angles complémentaires sont deux angles dont la somme de leurs mesures est égale à 90°.

b)_Exemple:

Soient \hat{ABC} et \hat{EFG} deux angles tels que : $\hat{ABC} = 25^{\circ}$ et $\hat{EFG} = 65^{\circ}$.

On a:
$$A\hat{B}C + E\hat{F}G = 25^{\circ} + 65^{\circ}$$

$$= 90^{\circ}$$

Donc : $A\hat{B}C$ et $E\hat{F}G$ sont deux angles complémentaires.

3/ Angles supplémentaires :

a)_Définition:

Deux angles supplémentaires sont deux angles dont la somme de leurs mesures est égale à 180°.

b)_Exemple:

Soient \hat{ABC} et \hat{EFG} deux angles tels que : $\hat{ABC} = 75^{\circ}$ et $\hat{EFG} = 105^{\circ}$.

On a:
$$A\hat{B}C + E\hat{F}G = 75^{\circ} + 105^{\circ}$$

= 180°

Donc : $A\hat{B}C$ et $E\hat{F}G$ sont deux angles supplémentaires.

4/ Angles opposés par le sommet :

a)_Définition:

Deux angles opposés par le sommet sont deux angles qui ont le même sommet et leurs côtés sont dans le prolongement l'un de l'autre.

b)_Exemple:

On considère la figure suivante :

On dit que : $A\hat{O}B$ et $C\hat{O}D$ deux angles opposés par le sommet O.

Ainsi que les angles \hat{AOC} et \hat{BOD} sont opposés par le sommet O.

5/ Angles isométriques (égaux) :

Deux angles isométriques (égaux) sont deux angles de même mesure.

*/ Remarque importante: Deux angles opposés par le sommet sont égaux (isométriques)

IV_Bissectrice d'un angle:

1/ Définition:

La bissectrice d'un angle est une demi-droite qui partage l'angle en deux angles adjacents isométriques.

2/ Exemples:

Soient $A\hat{O}B$ un angle et OE sa bissectrice.

3/ Propriété:

Si [OE) est la bissectrice d'un angle $A\hat{O}B$, alors :

$$A\hat{O}E = \frac{A\hat{O}B}{2}$$
 et $E\hat{O}B = \frac{A\hat{O}B}{2}$;; $A\hat{O}B = 2 \times A\hat{O}E$ et $A\hat{O}B = 2 \times E\hat{O}B$

4/ Applications:

1/_ Soient $E\hat{O}F$ un angle et OM sa bissectrice tel que : $E\hat{O}F = 60^{\circ}$. Calculons $E\hat{O}M$ et $M\hat{O}F$.

Puisque [OM] est la bissectrice de l'angle $E\hat{O}F$, alors : $E\hat{O}M = \frac{E\hat{O}F}{2}$ et $M\hat{O}F = \frac{E\hat{O}F}{2}$

Donc: $\begin{cases} E\hat{O}M = \frac{60^{\circ}}{2} \\ M\hat{O}F = \frac{60^{\circ}}{2} \end{cases}$; D'où : $E\hat{O}M = 30^{\circ} \text{ et } M\hat{O}F = 30^{\circ}$

2/_ Soient $E\hat{O}F$ un angle et OM sa bissectrice tel que : $E\hat{O}M = 35^{\circ}$. Calculons $E\hat{O}F$.

Puisque [OM] est la bissectrice de l'angle $E\hat{O}F$, alors : $E\hat{O}F = 2 \times E\hat{O}M$.

Donc : $E\hat{O}F = 2 \times 35^{\circ}$; D'où : $E\hat{O}F = 70^{\circ}$