Designing Machine Learning Workflows

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

End-to-end machine learning workflows

Local, distributed, and cloud-based training and prediction

Understanding the need for ensemble techniques

Choosing the right neural network based on the problem

Machine Learning Workflow

Basic Machine Learning Workflow

What Data Do You Have to Work With?

Load and Store Data

Data Preprocessing

Decision Trees, Support Vector Machines?

Training to Find Model Parameters

Evaluate the Model

Score the Model

Different Algorithm, More Data, More Training?

Iterate Till Model Finalized

Model Used for Predictions

Retrained Using New Data

Basic Machine Learning Workflow

Case Study: PyTorch on the Cloud

PyTorch

A deep learning framework for fast, flexible experimentation.

https://pytorch.org/

Tight Python Integration

Deeply tied to Python

Approach similar to NumPy/scikit-learn

Create neural networks in Python

Use existing Python libraries and debuggers

GPU-ready Tensor Library

Tensors for either CPU or GPU
Powerful, fast NumPy-like functionality

- slicing
- indexing
- reductions
- linear algebra

GPU (Graphics Processing Unit)

Specialized chips with highly parallel architecture that makes them an order of magnitude faster than CPUs for some deep learning applications

PyTorch Tensors have been architected to make optimal use of GPUs for massively parallel computations

GPUs for ML

Usage of GPUs has gone far beyond video/graphics processing

Widely used in Big Data and Machine Learning applications

Speedup of 10-50X where parallelization yields big wins

Training Options

Local training as starter option

Fine for prototyping

Can not leverage GPUs

Out-of-memory issues

Hours and hours for training

Training Options

Distributed training

- More epochs
- Performance dramatically rises
- Scaling needs additional hardware

Training Options

On-cloud training

- Pay-as-you-go
- Elastic and scalable
- CUDA and GPU support
- Frameworks and platform support

ML Design Choices

PyTorch on the Cloud

PyTorch on the Cloud

Notebook

Cloud-hosted Python notebook. Could be platformagnostic (Jupyter) or platform-specific (e.g. Datalab on GCP)

PyTorch on the Cloud

PyTorch on the Cloud

Deep Learning VM

Cloud-specific virtual machine instance (e.g. EC2 on AWS, GCE on GCP) equipped with GPUs for optimized PyTorch performance

PyTorch on the Cloud

PyTorch on the Cloud

Estimator

High-level API, specific to a cloud platform, that helps build, train, and deploy PyTorch models

Quick Overview of Ensemble Learning

Machine learning technique in which several learners are combined to obtain a better performance than any of the learners individually.

Machine learning technique in which several learners are combined to obtain a better performance than any of the learners individually.

Machine learning technique in which several learners are combined to obtain a better performance than any of the learners individually.

What kind of individual learners to use?

How should individual learners be trained?

What kind of individual learners to use?

How should individual learners be trained?

Choice of Individual Learners

Individual learners (models) could be of absolutely any type

Each learner should be as different as possible from other learners

Choice of Individual Learners

Decision trees are most often used

An ensemble of decision trees is a Random Forest

Random forests make it easy to build uncorrelated learners

What kind of individual learners to use?

How should individual learners be trained?

Training Individual Learners

If learners are different, each learner can be trained on the entire dataset

For similar learners:

- Each model is trained on random samples of training data
- Can also use random set of features to train different models

What kind of individual learners to use?

How should individual learners be trained?

Combining Classifier Predictions

Combining Individual Learners

Hard voting: Majority vote of individual learners (classification)

Soft voting: Probability-weighted average

Stacking: Train additional model to combine predictions from individual learners

Ensemble Learning Techniques

What kind of individual learners to use?

How should individual learners be trained?

What kind of individual learners to use?

How should individual learners be trained?

Averaging and Boosting

Averaging

Train predictors in parallel and average scores of individual predictors

Boosting

Train predictors in sequence where each predictor learns from earlier mistakes

Averaging vs. Boosting

Averaging

Individual learners are independent

Can build trees in parallel

Learners do not learn from mistakes of other learners

Boosting

Individual learners are linked to previous learners

Need to build tree sequentially

Individual learners explicitly configured to learn from previous mistakes

What kind of individual learners to use?

How should individual learners be trained?

Voting and Stacking

Voting

Majority vote of the individual predictors is the final prediction of the ensemble

Stacking

Fit a model on the individual predictions to get the final prediction of the ensemble

Neural Network Models

Deep Learning Models

Fully-connected, dense neural networks

Convolutional neural networks

Recurrent neural networks

Dense Neural Networks

Work well with numeric features

Traditional classification, regression

Layers of interconnected neurons

All neurons in one layer connected to neurons in the previous and next layers

Convolutional Neural Networks

Specialize in working with image data

Designed to mimic the visual cortex of the brain

Sparse neural networks

Convolutional layers for feature detection

Pooling layers for subsampling of inputs

Recurrent Neural Networks

Specialize in sequential data such as text or time series data

Neurons have "memory" or state

Neural network layers represent instances in time

Summary

End-to-end machine learning workflows

Local, distributed, and cloud-based training and prediction

Understanding the need for ensemble techniques

Choosing the right neural network based on the problem