Corso di Algebra Lineare e Geometria Geometria lineare.

Dott.ssa L. Marino

Università di Catania

http://www.dmi.unict.it/lmarino

Testi consigliati

Libri **esercizi**:

- P. Bonacini, M.G. Cinquegrani, L. Marino, *Algebra Lineare: Esercizi svolti*, Ed. Cavallotto, Catania 2012
- P. Bonacini, M.G. Cinquegrani, L. Marino, *Geometria Analitica: Esercizi svolti*, Ed. Cavallotto, Catania 2012

Coordinate cartesiane e omogenee nel piano

Sia fissato un sistema di riferimento cartesiano ortogonale $\overrightarrow{O} \overrightarrow{x} \overrightarrow{y} . U$, di origine O con versori i, j.

Coordinate non omogenee: P = (x, y) e diremo che P è punto proprio Coordinate omogenee o proiettive: P = (x', y', t') e diremo che P può essere punto proprio o punto improprio.

Ad ogni P = (x, y) si può associare P = (x', y', t') in coordinate omogenee dove valgono le relazioni:

$$\begin{cases} x = \frac{x'}{t'}, \\ y = \frac{y'}{t'} \end{cases}$$

Esempio: P=(x',y',t')=(1,2,-3) corrisponde il punto $P=(x,y)=(-\frac{1}{3},-\frac{2}{3})$ Viceversa, se P=(x,y)=(1,5) corrisponde il punto P=(x',y',t')=(1,5,1). Nasce una nuova categoria di punti: Punti impropri (x',y',0)

Punti impropri e punti immaginari del piano

Ampliamo il piano ordinario introducendo una nuova categoria di punti: **punti impropri**: in coordinate omogenee sono (x', y', 0) con la terza coordinata omogenea nulla, ed x' e y' non entrambe nulle **punti immaginari**: almeno una delle coordinate omogenee è un numero complesso, non reale es. (2i, 2, i)

Attenzione alla terna (x',y',t')=(0,0,0): a questa terna di coordinate omogenee non si associa alcun punto.

I tre modi per individuare una retta nel piano

Una retta r nel piano si può individuare geometricamente in tre modi:

- 1) un punto $P_0 \in r$ ed un vettore libero $\vec{u} = (a, b) \neq (0, 0) \perp r$
- ullet 2) un punto $P_0 \in r$ ed un vettore libero $ec{v} = (I_d, m_d)
 eq (0,0) \parallel r$
- 3) due punti distinti P_1, P_2 di r.

Una e una sola direzione ortogonale alla retta nel piano

Modo n.1 per individuare una retta nel piano

$$P_0$$
, $\vec{u} \perp r$

- $\vec{u} = (a, b)$ $\overrightarrow{P_0P} = (x x_0, y y_0)$

Una retta r nel piano si può individuare geometricamente dando un punto P_0 di r ed un vettore libero $\vec{u} = (a, b)$ non nullo ortogonale a r Consideriamo un punto generico P = (x, y) sulla retta r. Avremo il vettore $\overrightarrow{P_0P}$ che giace sulla retta r.

$$\vec{u} \perp \overrightarrow{PP_0} \Leftrightarrow \vec{u} \cdot \overrightarrow{P_0P} = 0 \Rightarrow$$

$$(a, b) \cdot (x - x_0, y - y_0) = 0$$

$$a(x - x_0) + b(y - y_0) = 0 \Rightarrow$$

$$ax - ax_0 + by - by_0 = 0 \Rightarrow$$

poniamo $c = -ax_0 - by_0 \Rightarrow$

$$ax + by + c = 0$$

Essa si dice equazione della retta r in forma impilcita o semplicemente equazione cartesiana

Equazione cartesiana della retta

Si dice equazione cartesiana della retta r, la seguente forma

$$ax + by + c = 0$$

con $(a, b) \neq (0, 0)$

- a) Ogni retta del piano si può rappresentare con una equazione cartesiana e viceversa
- b) Due equazioni ax + by + c = 0 e a'x + b'y + c' = 0 rappresentano la stessa retta se e solo se esiste un numero reale k tale che la terna (a, b, c) = k(a', b', c').

Conseguenze:

- 1) Ogni retta ha infinite equazioni cartesiane, che differiscono tra loro per una costante non nulla
- 2) Data l'equazione della retta in forma cartesiana possiamo ricavare $\vec{u} = (a, b)$, dove $\vec{u} \perp r$.

Il coefficiente angolare

Sia r : ax + by + c = 0. Ricaviamo la y:

by=-ax-c. Adesso poichè si deve dividere per b, bisogna mettere la condizione $b\neq 0$:

$$r: \quad y = -\frac{a}{b}x - \frac{c}{b} \Rightarrow$$
$$r: y = m_c x + q$$

dove $m_c = -\frac{a}{b}$, $q = -\frac{c}{b}$. Essa si chiama forma esplicita di r perchè si ha chiaro chi è

$$m_c = -\frac{a}{b}, \quad b \neq 0$$

Esso è detto coefficiente angolare.

Dove $m = tg\alpha$ dove α è l'angolo formato da r e il verso positivo dell'asse delle \vec{x} .

Leviamo la condizione b = 0:

 $r: ax + c = 0 \Rightarrow x = -\frac{c}{a} \Rightarrow x = k$. Non si può avere esplicitata la y quindi la conseguenza è che le rette parallele all'asse \vec{y} non hanno coefficiente angolare.

Modo n.2 per individuare una retta nel piano

$$P_0$$
, $\vec{v} \parallel r$

- $\vec{v} = (l_d, m_d)$ $\vec{P}_0 \vec{P} = (x x_0, y y_0)$

Parametri direttori

Una retta r nel piano si può individuare geometricamente dando un punto P_0 di r ed un vettore libero $v=(I_d,m_d)$ non nullo parallelo a r Consideriamo un punto generico P=(x,y) sulla retta r.

Chiamiamo (I_d, m_d) parametri direttori della retta r Avremo il vettore $\overrightarrow{P_0P}$ che giace sulla retta r.

$$\vec{v} \parallel \overrightarrow{PP_0} \Leftrightarrow \overrightarrow{P_0P} = tv \Rightarrow$$

$$(x - x_0, y - y_0) = t(l_d, m_d)$$

$$\begin{cases} x - x_0 = l_d t \\ y - y_0 = m_d t \end{cases} \Rightarrow \begin{cases} x = x_0 + l_d t \\ y = y_0 + m_d t \end{cases}$$

Esse si dicono equazioni della retta r in forma parametrica

Equazione della retta passante per un punto P_0 e avente p.d. (I_d, m_d)

Da cui ricavando t da entrambe le equazioni del sistema e uguagliando, si $\int t = \frac{x - x_0}{x}$

ottiene:
$$\begin{cases} t = \frac{x - x_0}{l_d} \\ t = \frac{y - y_0}{m_d} \end{cases} \Rightarrow r : \frac{x - x_0}{l_d} = \frac{y - y_0}{m_d}$$

Essa è l'equazione della retta passante per un punto P_0 e avente vettore parametri direttori (I_d, m_d) .

Da cui continuando i passaggi arriviamo ad un'altra formula del coefficiente angolare:

$$r: m_d(x-x_0) = l_d(y-y_0) \Leftrightarrow y-y_0 = \frac{m_d}{l_d}(x-x_0) \Rightarrow y-y_0 = m_c(x-x_0)$$

dove

$$m_C = \frac{m_d}{I_d}$$

Dott.ssa L. Marino (Università di Catania) Corso di Algebra Lineare e Geomethtp://www.dmi.unict.it/Imarino

Modo n.3 per individuare una retta nel piano

$$P_1, P_2 \quad \overrightarrow{P_1P} \parallel \overrightarrow{P_1P_2}$$

- $\overrightarrow{P_1P} = (x x_1, y y_1)$ $\overrightarrow{P_1P_2} = (x_2 x_1, y_2 y_1)$

Una retta r nel piano si può individuare geometricamente fissando due punti distinti P_1,P_2 di r. Consideriamo un punto generico P=(x,y) sulla retta r.

Avremo i vettori $\overrightarrow{P_1P}$ e $\overrightarrow{P_1P_2}$ che giacciono sulla retta r.

$$\overrightarrow{P_1P} \parallel \overrightarrow{P_1P_2} \Leftrightarrow \overrightarrow{P_1P} = t\overrightarrow{P_1P_2} \Rightarrow$$

$$(x - x_1, y - y_1) = t(x_2 - x_1, y_2 - y_1)$$

$$\begin{cases} x - x_1 = t(x_2 - x_1) \\ y - y_1 = t(y_2 - y_1) \end{cases} \Rightarrow \begin{cases} t = \frac{x - x_1}{x_2 - x_1} \\ t = \frac{y - y_1}{y_2 - y_1} \\ \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \end{cases}$$

Essa si dice equazione della retta r passante per due punti P_1 e P_2

Retta passante per due punti con la stessa ascissa o con la stessa ordinata

Consideriamo:

1) Due punti $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_1)$, aventi la stessa ascissa e determiniamo l'equazione della retta P_1P_2 :

$$\frac{x - x_1}{0} = \frac{y - y_1}{y_2 - y_1} \Rightarrow x - x_1 = 0$$

2) Due punti $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_1)$, aventi la stessa ordinata e determiniamo l'equazione della retta P_1P_2 :

$$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{0} \Rightarrow y-y_1=0$$

I parametri direttori della retta passante per due punti

Dati due punti $P_1=(x_1,y_1)$, $P_2=(x_2,y_2)$, se consideriamo la retta r passante per essi, possiamo notare che il vettore $\vec{v}=(I_d,m_d)$ ad essa parallelo, può essere preso coincidente con il vettore P_1P_2 , cioè

$$\vec{v} = (I_d, m_d) = (x_2 - x_1, y_2 - y_1)$$

da cui

$$m_c = \frac{m_d}{l_d} = \frac{y_2 - y_1}{x_2 - x_1}$$

Alcune rette particolari

Ripassiamo insieme le equazioni di alcune rette "particolari":

- a) L'asse \vec{x} ha equazione cartesiana y = 0
- b) L'asse \vec{y} ha equazione x = 0
- c) Le rette parallele all'asse \vec{x} hanno equazione y = k
- ullet d) Le rette parallele all'asse \vec{y} , hanno equazione x=h
- e) La bisettrice del I e III quadrante ha equazione x = y
- f) La bisettrice del II e IV quadrante ha equazione x = -y.

Rette bisettrici

Rette parallele agli assi

Come trovare i parametri direttori della retta r nel piano $0\vec{x}\vec{y}$

Partiamo da

$$r: \frac{x - x_0}{l_d} = \frac{y - y_0}{m_d} \Leftrightarrow m_d(x - x_0) = l_d(y - y_0) \Leftrightarrow$$
$$m_d x - l_d y - m_d x_0 + l_d y_0 = 0 \Leftrightarrow$$

Ponendo
$$\begin{cases} m_d = a \\ -l_d = b \end{cases}$$
 si ottiene $ax + by + c = 0$, quindi

$$\vec{u} = (a, b) = (m_d, -l_d).$$

Viceversa
$$\begin{cases} I_d = -b \\ m_d = a \end{cases} \Leftrightarrow$$

$$\vec{v} = (I_d, m_d) = (-b, a)$$

Condizione di allineamento ed equazione segmentaria

I tre punti $P_0 = (x_0, y_0), P_1 = (x_1, y_1), P_2 = (x_2, y_2)$ sono allineati se e solo se

$$det \left(\begin{array}{ccc} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{array} \right) = 0$$

Sia r: ax + by + c = 0 con $a \neq 0, b \neq 0, c \neq 0$. Portiamo c al secondo membro: ax + by = -c. Dividendo tutto per (-c) si ottiene $\frac{ax}{-c} + \frac{by}{-c} = 1$ da cui

$$\frac{x}{p} + \frac{y}{q} = 1$$

dove $p = \frac{-c}{a}$, $q = \frac{-c}{b}$. Questa è detta **equazione segmentaria di r**. I punti A = (p, 0), B = (0, q) sono le intersezioni di r con gli assi.

Parallelismo tra due rette

Condizione di parallelismo tra due rette

$$r \parallel r' \Leftrightarrow \vec{v} \parallel \vec{v}' \Leftrightarrow \vec{v} = \lambda \vec{v}'$$

Dove $\vec{v}=(\mathit{I}_d,\mathit{m}_d)$ e $\vec{v}'=(\mathit{I}'_d,\mathit{m}'_d)$, quindi

$$(I_d, m_d) = \lambda(I'_d, m'_d) \Rightarrow \begin{cases} I_d = \lambda I'_d \\ m_d = \lambda m'_d \end{cases} \Rightarrow$$

ricavando λ da entrambe e uguagliando si ottiene la condizione di parallelismo tra r ed r'

$$\frac{I_d}{m_d} = \frac{I_d'}{m_d'}$$

Parallelismo tra due rette

Notiamo che se $r \parallel r'$ anche i vettori ortogonali saranno tra loro paralleli, cioè $\vec{u} \parallel \vec{u}'$. Quindi la condizione di parallelismo si può scrivere anche come

$$\frac{a}{b} = \frac{a'}{b'}$$

L'affermazione due rette parallele hanno lo stesso coefficiente angolare deriva dalla condizione di parallelismo:

$$\frac{a}{b} = \frac{a'}{b'} \Rightarrow -\frac{a}{b} = -\frac{a'}{b'} \Rightarrow m_c = m'_c$$
 cvd

Ortogonalità tra due rette

Condizione di ortogonalità tra due rette

$$r \perp r' \Leftrightarrow \vec{v} \perp \vec{v}' \Leftrightarrow \vec{v} \cdot \vec{v}' = 0$$

Dove $\vec{v}=(\emph{I}_d,\emph{m}_d)$ e $\vec{v}'=(\emph{I}'_d,\emph{m}'_d)$, quindi

$$(I_d, m_d) \cdot (I'_d, m'_d) = 0 \Rightarrow I_d I'_d + m_d m'_d = 0$$

Essa è la condizione di ortogonalità tra due rette.

Ortogonalità tra due rette

L'affermazione due rette perpendicolari hanno i coefficienti angolari, l'uno il reciproco e l'opposto dell'altro deriva dalla condizione di ortogonalità:

$$\vec{u} \perp \vec{u}'$$

dove
$$\vec{u} = (a, b)$$
 e $\vec{u}' = (a', b')$

$$ec{u}\cdotec{u}'=0\Rightarrow aa'+bb'=0\Leftrightarrow m_c=-rac{1}{m_c'}$$

Angolo tra due rette e coseni direttori di una retta

Due rette r e s individuano 4 angoli che sono a due a due uguali e a due a due supplementari; noto, quindi, uno degli angoli sono noti gli altri tre: è, perciò, lecito parlare di "angolo" \hat{rs} individuato da due rette r e s.

- Siano r ed s due rette ed \vec{v}, \vec{v}' due vettori ad essi paralleli. Allora l'angolo (r, s) coincide con l'angolo formato dai due vettori \vec{v}, \vec{v}'
- Pertanto dalla definizione di prodotto scalare tra due vettori:

$$\vec{v} \cdot \vec{v}' = |\vec{v}| \cdot |\vec{v}'| \cdot cos \hat{rs}$$

si può agevolmente calcolare la sua funzione trigonometrica $cos \hat{rs} = \frac{v \cdot v'}{|v| \cdot |v'|} = \frac{ll' + mm'}{\sqrt{l^2 + m^2} \sqrt{l'^2 + m'^2}}$

Intersezione di due rette in forma cartesiana

Date le rette r ed r', le loro eventuali intersezioni si cercano risolvendo il sistema tra le due equazioni

$$\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$$

- Sistema determinato ⇒ le rette sono incidenti
- Sistema impossibile ⇒ le rette sono parallele e distinte
- Sistema indeterminato ⇒ le rette sono coincidenti

Fascio di rette

Fascio di rette per un punto

Sia P_0 un punto del piano. Il **fascio di rette** per P_0 è l'insieme di tutte le rette del piano passanti per P_0 .

Tutte e sole le rette del fascio per il punto P_0 hanno equazioni del tipo

$$\lambda f + \mu g = 0, \quad (\lambda, \mu) \neq (0, 0)$$

dove con f e con g indichiamo le equazioni di due rette r_1 ed r_2 rispettivamente.

Adesso dividiamo per λ , quindi vi è la condizione $\lambda \neq 0 \Rightarrow$:

$$f + \frac{\mu}{\lambda}g = 0 \Rightarrow f + kg = 0$$

Essa è detta equazione del fascio con un solo parametro $k=\frac{\mu}{\lambda}$

Se $\lambda=0$ non possiamo dividere per λ , quindi sostituendo si ottiene:

$$\mu g = 0, \quad \lambda = 0, \mu \neq 0 \Rightarrow g = 0 \Rightarrow r_2$$

quindi se $\lambda \neq 0$ si è esclusa la seconda retta del fascio r_2 .

Distanza tra due punti

La distanza $d(P_1, P_2)$ dei due punti $P_1 = (x_1, y_1)$ e $P_2 = (x_2, y_2)$ è il modulo del vettore P_1P_2 , cioè

$$d(P_1, P_2) = \sqrt{(\overline{P_1 H})^2 + (\overline{HP_2})^2} = \sqrt{(x_2 - x_1)^2 + (y_1 - y_2)^2}$$

Punto medio di un segmento $\overline{P_1P_2}$

Il **Punto medio di un segmento** $\overline{P_1P_2}$ è il punto $M(x_M,y_M)$ tale che $P_1M=MP_2$. Quindi, eguagliando le componenti, si ottiene $(x_M-x_1,y_M-y_1)=(x_2-x_M,y_2-y_M)$ ovvero $M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$

Distanza Punto retta nel piano

Sia r: ax + by + c = 0 e sia $P_0 = (x_0, y_0)$. La distanza di P_0 dalla retta r è la distanza di P_0 dalla sua proiezione ortogonale H sulla retta r, cioè $d(P_0, r) = \overline{P_0 H}$:

Si vede che:

$$d(P_0, r) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

Asse di un segmento \overline{AB}

Asse di un segmento \overline{AB}

Costruiamo l'asse di un segmento ricordando che l'asse è la retta passante per il punto medio del segmento e perpendicolare alla retta contenente il segmento.

Applichiamo la formula della retta passante per un punto al punto M:

$$y - y_M = m(x - x_M)$$

Il coefficiente della retta passante per i due punti A e B:

$$m_c = \frac{y_2 - y_1}{x_2 - x_1}$$

Capovoglo e cambio di segno:

$$y - y_M = -\frac{(x_2 - x_1)}{y_2 - y_1}(x - x_M) \Rightarrow (y - y_M)(y_2 - y_1) = -(x_2 - x_1)(x - x_M)$$

Quindi l'equazione dell'asse è:

$$(x_2-x_1)(x-x_M)+(y_2-y_1)(y-y_M)=0$$

Cambiamenti di riferimento

- Sia r: ax + by + c = 0 una retta nel riferimento $O\vec{x}\vec{y}$. Sia $O'\vec{X}\vec{Y}$ un altro riferimento con coordinate maiuscole X, Y. La stessa retta r ha equazione AX + BY + C = 0 rispetto a quest'ultimo.
- Siano

$$(*) \begin{cases} x = x_0 + X\cos\alpha - Y\sin\alpha \\ y = y_0 + X\sin\alpha + Y\cos\alpha \end{cases}$$

le equazioni del cambiamento di riferimento. L'equazione AX + BY + C = 0 si ottiene allora semplicemente sostituendo le (*) nell'equazioni ax + by + c = 0

Geometria lineare nello spazio

Piani coordinati: 1) Piano $\vec{x}\vec{y}$: z=0, 2) Piano $\vec{x}\vec{z}$: y=0, 3) Piano $\vec{y}\vec{z}$: x=0

Le tre componenti di $v = \overrightarrow{OP}$

 $\overrightarrow{OP_x}, \overrightarrow{OP_y}, \overrightarrow{OP_z}$ sono le proiezioni ortogonali di $\vec{v} = \overrightarrow{OP}$ sugli assi $\vec{x}, \vec{y}, \vec{z}$, per cui:

$$v_{x} = (\vec{v} \cdot \vec{i})$$

$$v_y = (\vec{v} \cdot \vec{j})$$

$$v_z = (\vec{v} \cdot \vec{k})$$

$$\Rightarrow \vec{v} = (\vec{v} \cdot \vec{i})\vec{i} + (\vec{v} \cdot \vec{j})\vec{j} + (\vec{v} \cdot \vec{k})\vec{k} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

Coordinate cartesiane e omogenee nello spazio

Sia fissato un sistema di riferimento cartesiano ortogonale $O\vec{x}\vec{y}\vec{z}$, di origine O con versori $\vec{i}, \vec{j}, \vec{k}$.

Coordinate non omogenee: P = (x, y, z) e diremo che P è **punto proprio**

Coordinate omogenee o proiettive: P = (x', y', z', t') e diremo che P può essere punto proprio o punto improprio.

Ad ogni P = (x, y, z) si può associare P = (x', y', z', t') in coordinate omogenee dove valgono le relazioni:

$$\begin{cases} x = \frac{x'}{t'}, \\ y = \frac{y'}{t'}, \\ z = \frac{z'}{t'} \end{cases}$$

Esempio: P=(x',y',z',t')=(1,2,-3,4) corrisponde il punto $P=(x,y,z)=(-\frac{1}{4},-\frac{2}{4},-\frac{3}{4})$ Viceversa, se P=(x,y,z)=(1,5,2) corrisponde il punto P=(x',y',z',t')=(1,5,2,1). Nasce una nuova categoria di punti: Punti impropri (x',y',z',0)

Punti impropri e punti immaginari dello spazio

Ampliamo il piano ordinario introducendo una nuova categoria di punti: **punti impropri**: in coordinate omogenee sono (x', y', z', 0) con la quarta coordinata omogenea nulla ed x', y', z' non entrambe nulle **punti immaginari** quando almeno una delle coordinate omogenee è un numero complesso, non reale es. (2i, 2, i, 3) (0,0,0,0) a questa quaterna di coordinate omogenee non si associa alcun punto Attenzione alla quaterna (x',y',z',t')=(0,0,0,0): a questa quaterna di coordinate omogenee non si associa alcun punto.

I due modi per individuare una retta nello spazio

Una retta r nello spazio si può individuare geometricamente in due modi:

- 1) un punto $P_0 \in r$ ed un vettore libero $\vec{v} = (l_d, m_d, n_d) \neq (0, 0, 0) \parallel r$
- 2) due punti distinti P_1, P_2 di r.

Infinite direzioni ortogonali alla retta nello spazio

Oppure immaginiamo così...

Osserviamo quindi che i modi per individuare una non sono più tre ma due. Diamone una motivazione.

Di rette ortogonali ad \vec{u} e passanti per P_0 ce ne sono infinite, come qui mostrato e non più una ed una sola come invece accadeva nel piano.

Modo n.1 per individuare una retta nello spazio

Una retta r nello spazio si può individuare geometricamente dando un punto $P_0 \in r$ ed un vettore libero

$$ec{v}=(I_d,m_d,n_d)
eq (0,0,0)\parallel r$$
 $ec{v}$

Per il postulato della parallela esiste una e

una sola retta passante per P_0 e parallela a $\vec{v} = l\hat{i} + m\hat{j} + n\hat{k}$ con l, m, nnon entrambi nulli.

Allora un punto P dello spazio sta sulla retta r se e solo se il vettore $P_0P\parallel \vec{v}\Rightarrow P_0P=t\vec{v}$ da cui

$$\begin{cases} x - x_0 = It \\ y - y_0 = mt \\ z - z_0 = nt \end{cases}$$

queste sono dette equazioni parametriche di r

Equazione della retta passante per un punto P_0 e avente p.d. (I, m, n)

Da cui ricavando t da entrambe le equazioni del sistema e uguagliando, si

ottiene:
$$\begin{cases} t = \frac{x - x_0}{l} \\ t = \frac{y - y_0}{m} \Rightarrow \\ t = \frac{z - z_0}{n} \end{cases}$$
$$r : \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$$

Essa è l'equazione della retta passante per un punto P_0 e avente vettore parametri direttori (I, m, n).

Modo n.2 per individuare una retta nello spazio

Una retta r nello spazio si può individuare geometricamente fissando due punti distinti P_1,P_2 di r. Consideriamo un punto generico P=(x,y,z) sulla retta r.

Avremo i vettori $\overrightarrow{P_1P}$ e $\overrightarrow{P_1P_2}$ che giacciono sulla retta r.

$$\overrightarrow{P_1P} \parallel \overrightarrow{P_1P_2} \Leftrightarrow \overrightarrow{P_1P} = t\overrightarrow{P_1P_2} \Rightarrow (x - x_1, y - y_1, z - z_1) = t(x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\begin{cases} x - x_1 = t(x_2 - x_1) \\ y - y_1 = t(y_2 - y_1) \\ z - z_1 = t(z_2 - z_1) \end{cases} \Rightarrow \begin{cases} t = \frac{x - x_1}{x_2 - x_1} \\ t = \frac{y - y_1}{y_2 - y_1} \\ t = \frac{z - z_1}{z_2 - z_1} \end{cases}$$

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Essa si dice equazione della retta r passante per due punti P_1 e P_2

Quando tre punti sono allineati

Tre punti P_0, P_1, P_2 sono allineati se e solo se i vettori P_1P_0 e P_2P_0 sono paralleli. Ciò vuol dire che

$$\rho\left(\begin{array}{cccc} x_1-x_0 & y_1-y_0 & z_1-z_0 \\ x_2-x_0 & y_2-y_0 & z_2-z_0 \end{array}\right) < 2$$

Naturalmente si potrebbe scrivere la retta per due dei tre punti e controllare se il terzo punto appartiene o no alla retta.

Piani

Un piano π dello spazio può essere individuato nei due modi seguenti:

- 1) un punto P_0 di π e un vettore non nullo ortogonale ad π , detto $\vec{u} = (a, b, c)$.
- 2) tre punti **non allineati** P_0, P_1, P_2 di π

Modo n.1 per individuare l'equazione del piano

Un piano π dello spazio può essere individuato dando un punto $P_0=(x_0,y_0,z_0)$ di π e un vettore non nullo ortogonale ad π , detto $\vec{u}=(a,b,c)$. Dato $P\in\pi$ osserviamo che

$$\overrightarrow{P_0P} \perp \overrightarrow{u} \Leftrightarrow \overrightarrow{P_0P} \cdot \overrightarrow{u} = 0$$

da cui

$$(x - x_0, y - y_0, z - z_0) \cdot (a, b, c) = 0 \Leftrightarrow ax + by + cz + d = 0$$

dove $d = -ax_0 - by_0 - cz_0$, si ottiene cosiddetta equazione cartesiana del piano π .

Modo n.2 per individuare l'equazione del piano

Un piano π dello spazio può essere individuato dando tre punti **non** allineati di $\pi: P_0 = (x_0, y_0, z_0)$, $P_1 = (x_1, y_1, z_1)$, $P_2 = (x_2, y_2, z_2)$.

$$P_0P \cdot P_0P_1 \wedge P_0P_2 = 0$$

Esplicitando il prodotto misto in termini di componenti si trova l'equazione cartesiana

$$\det \begin{pmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{pmatrix} = 0$$

Vettore ortogonale al piano: p.d.

Dato un piano π di equazione:

$$ax + by + cz + d = 0$$

chiamiamo parametri direttori del piano π le componenti del vettore ortogonale $\vec{u} = (a, b, c)$.

Retta nello spazio vista come intersezione di due piani

Si vede che una retta passante per un punto P_0 e avente p.d. v = (I, m, n) è un sistema di due equazioni lineari nelle variabili x, y, z, quindi due piani:

$$r: \begin{cases} ax + by + cz + d = 0 & \pi_1 \\ a'x + b'y + c'z + d' = 0 & \pi_2 \end{cases}$$

con (a, b, c) terna non proporzionale a (a', b', c').

Equazione del piano in forma omogenea

Data l'equazione di un piano π : ax + by + cz + d = 0. Se sostituiamo $\begin{cases} x = \frac{x'}{t'}, \\ y = \frac{y'}{t'} \end{cases}$ l'equazione del piano diventa $a\frac{x'}{t'} + b\frac{y'}{t'} + c\frac{z'}{t'} + d = 0$. $z = \frac{z'}{t'}$

Moltiplicando ambo i membri per t' si ottiene l'equazione del piano forma omogenea

$$ax' + by' + cz' + dt' = 0$$

Il luogo di "tutti" i punti impropri dello spazio sono caratterizzati dall'equazione

$$t'=0$$

che è detta equazione del piano improprio.

Equazione del piano improprio π_{∞}

Il luogo di "tutti" i punti impropri P_{∞} dello spazio sono caratterizzati dall'equazione

$$\pi_{\infty}: t'=0$$

che è detta equazione del piano improprio.

Retta impropria del piano π

Dato un piano π di equazione ax'+by'+cz'+dt'=0. Intersechiamo il piano π con il piano improprio π_{∞} : t'=0

$$\begin{cases} ax' + by' + cz' + dt' = 0 & (\pi) \\ t' = 0 & (\pi_{\infty}) \end{cases} \Rightarrow$$

$$r_{\infty}^{\pi} : \begin{cases} ax' + by' + cz' = 0 \\ t' = 0 \end{cases}$$

Essa è detta la retta impropria del piano π e si indica con $r_{\infty}^{(\pi)}$. Quindi ogni piano ha la sua retta impropria.

Ogni piano π ha la sua retta impropria r_{∞} .

Piani paralleli hanno la stessa retta impropria

Questo è dovuto al fatto che

$$r_{\infty}^{\pi}: \begin{cases} ax' + by' + cz' = 0 \\ t' = 0 \end{cases}$$

e non avendo termine noto, piani paralleli hanno (a, b, c) uguale o differiscono per un fattore di proporzionalità, quindi è sempre lo stesso sistema.

Punto improprio e parametri direttori di una retta nello spazio P_{∞}

Consideriamo adesso la retta
$$r: \begin{cases} ax + by + cz + d = 0 & (\pi_1) \\ a'x + b'y + c'z + d' = 0 & (\pi_2) \end{cases}$$
 Per

trovare il punto improprio di r bisogna intersecare la retta con il piano improprio π_{∞} . Allora risolviamo il sistema, portando in coordinate omogenee, tra le equazioni della retta e l'equazione de piano π_{∞} :

$$\begin{cases} ax + by + cz + dt = 0 \\ a'x + b'y + c'z + d't = 0 \end{cases} \Rightarrow \begin{cases} ax + by + cz = 0 \\ a'x + b'y + c'z = 0 \end{cases} \Rightarrow t = 0$$

la soluzione del sistema sarà:

$$P_{\infty} = (I, m, n, 0)$$

Proposizione : Le prime tre coordinate del punto improprio di una retta sono parametri direttori della retta

$$\vec{v} = (I, m, n)$$

Rette parallele hanno lo stesso punto improprio

Dalla proposizione deriva che retta parallele avendo stessi parametri direttori o proporzionali allora hanno stesso punto improprio P_{∞} .

Condizione di parallelismo tra due rette nello spazio

$$r \parallel r' \Leftrightarrow \vec{v} \parallel \vec{v}' \Rightarrow \vec{v} = \lambda \vec{v}' \Rightarrow$$

$$I = \lambda I', m = \lambda m', n = \lambda n' \Rightarrow \frac{I}{I'} = \frac{m}{m'} = \frac{n}{n'}$$

condizione di parallelismo tra due rette.

Condizione di ortogonalità tra due rette nello spazio

$$r \perp r' \Leftrightarrow \vec{v} \perp \vec{v}' \Leftrightarrow \vec{v} \cdot \vec{v}' = 0 \Rightarrow (i, m, n) \cdot (l', m', n') = 0$$

$$ll' + mm' + nn' = 0$$

condizione di ortogonalità tra due rette.

Condizione di parallelismo tra due piani

I piani π ed π' sono paralleli se e solo se $\vec{u} \parallel \vec{u}'$ sono paralleli, cioè $a = \lambda a', b = \lambda b', c = \lambda c' \Rightarrow$

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

$$\uparrow \vec{u}$$

$$\uparrow \vec{u}'$$

Condizione di ortogonalità tra due piani

Due piani π ed π' sono ortogonali se esolo se $\vec{u} \perp \vec{u}'$, cioè $\vec{u} \cdot \vec{u}' = 0 \Rightarrow$

$$aa' + bb' + cc' = 0$$

Condizione di parallelismo tra una retta e un piano

Il piano
$$\pi$$
 eè $\vec{u} \cdot \vec{v} = 0 \Rightarrow$

al + bm + cn = 0

Condizione di ortogonalità tra una retta e un piano

Il piano π ed la retta r sono ortogonali se e solo se $\vec{u} \parallel \vec{v} \Rightarrow a = \lambda I$, $b = \lambda m, c = \lambda \Rightarrow$

$$\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$$

Angolo tra due rette

Due rette r e s individuano 4 angoli che sono a due a due uguali e a due a due supplementari; noto, quindi, uno degli angoli sono noti gli altri tre: è, perciò, lecito parlare di "angolo" \hat{rs} individuato da due rette r e s.

Due rette r ed s dello spazio non necessariamente incidenti formano un angolo \hat{rs} se esistono un vettore $\vec{v}=(l,m,n)$ parallelo ad r e un vettore $\vec{w}=(l',m',n')$ parallelo ad s formanti un angolo \hat{rs}

$$cos \hat{rs} = \pm \frac{v \cdot w}{|v||w|} = \pm \frac{ll' + mm' + nn'}{\sqrt{l^2 + m^2 + n^2} \sqrt{l'^2 + m'^2 + n'^2}}$$

Rette sghembe

Date due rette r, s esse si dicono sono sghembe se non esiste alcun piano che le contiene. In modo equivalente, due rette sono sghembe se e solo se non sono nè incidenti, nè parallele distinte, nè parallele coincidenti. Mettendo a sistema le equazioni di r ed s in coordinate omogenee, si ottiene un sistema lineare omogeneo di 4 equazioni in 4 incognite (x, y, z, t).

Applico Cramer: $det A \neq 0$ se e solo se il sistema ammette una e una sola soluzione.

Nel nostro caso, dato che è omogeneo, la soluzione sarebbe (0,0,0,0) (che non ha significato geometrico dato che non vi è associato alcun punto). Questo è il caso che vorrei in modo che le rette così non sono nè incidenti, nè parallele distinte, nè parallele coincidenti, quindi sghembe.

Condizione per rette sghembe

r, s sghembe
$$\Leftrightarrow \det A \neq 0 \Leftrightarrow \det \begin{pmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ a_4 & b_4 & c_4 & d_4 \end{pmatrix} \neq 0$$

Fascio di piani

Chiamiamo fascio di piani la seguente equazione:

$$\lambda \pi_1 + \mu \pi_2 = 0, \quad (\lambda, \mu) \neq (0, 0)$$

dove con π_1 e con π_2 indichiamo le equazioni di due piani.

Adesso dividiamo per λ , quindi vi è la condizione $\lambda \neq 0 \Rightarrow$:

$$\pi_1 + \frac{\mu}{\lambda}\pi_2 = 0 \Rightarrow \pi_1 + k\pi_2 = 0$$

Essa è detta equazione del fascio con un solo parametro $k=\frac{\mu}{\lambda}$

Se $\lambda=0$ non possiamo dividere per λ , quindi sostituendo si ottiene:

$$\mu\pi_2 = 0, \quad \lambda = 0, \mu \neq 0 \Rightarrow \pi_2 = 0$$

quindi se $\lambda \neq 0$ si è escluso il secondo piano del fascio π_2 .

Fasci di piani contenenti una retta

Sia data una retta
$$r: \begin{cases} \pi_1 & \text{nello spazio. Chiamiamo} \\ \pi_2 & \end{cases}$$
 $\mathcal{F}: \ \lambda \cdot \pi_1 + \mu \cdot \pi_2 = 0 \quad (\lambda, \mu) \neq (0, 0)$

fascio di piani avente per asse la retta r, gli infiniti piani che contengono la retta r.

Il piano contenente due rette

Come trovare il piano contenente due rette r_1, r_2 , dove $r_1 = \pi_1 \cap \pi_2$: è sufficiente controllare che le rette non sono sghembe e quindi complanari. Verificata la complanarità,

• scrivere il fascio di piani che ha per asse la prima retta, esempio r_1 , cioè

$$\mathcal{F}': \pi_1 + k \cdot \pi_2 = 0 \quad k = \frac{\mu}{\lambda}, \lambda \neq 0$$

- scegliamo un punto $P_0 \in r_2$, specifico
- imponiamo il passaggio del fascio di piani \mathcal{F}' per P_0 per trovare k e sostiuiamo in \mathcal{F}' . Esso sarà il piano cercato.
 - Ovviamente P_0 non deve coincidere con il punto di intersezione tra le due rette r_1, r_2 , cioè $P_0 \neq r_1 \cap r_2$.

Piano contenente due rette

Determinare la retta passante per un punto P_0 e ortogonale e incidente a r

Dati il punto $P_0 = (0, 1, 0)$ e la retta:

$$r: \begin{cases} x+y-1=0\\ y-z=0, \end{cases}$$

determinare la retta s ortogonale e incidente r.

Sia π il piano passante per P_0 e ortogonale a r e sia $H = r \cap \pi$. Allora la retta s cercata è la retta congiungente i punti H e P_0 .

Possiamo determinare questa retta HP_0 nel seguente modo.

Determiniamo per prima cosa il punto $H = r \cap \pi$, dove

 π : lx + my + nz + d = 0, con (l, m, n) p.d. delle retta data r.

Imponiamo il passaggio per il punto P_0 e ricaviamo d, quindi π . A questo punto ricavo pure le coordinate di $H=r\cap\pi$ risolvendo il sistema, e scrivo la retta passante per i due punti H e P_0 .

Determinare la retta incidente a r e a s e passante per un punto P_0

Date le rette:

r:
$$\begin{cases} x - y + 2z - 1 = 0 \\ x - z + 1 = 0 \end{cases}$$
 e s:
$$\begin{cases} x - 2y + 3 = 0 \\ y + 2z - 1 = 0 \end{cases}$$

e dato il punto $P_0 = (1, 2, -1)$, determinare la retta t incidente r e s e passante per P_0 .

Osserviamo che le due rette sono sghembe. Infatti:

$$\begin{vmatrix} 1 & -1 & 2 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -2 & 0 & 3 \\ 0 & 1 & 2 & -1 \end{vmatrix} = -15 \neq 0.$$

Trovare t come intersezione di due piani. Precisamente, se π_1 è il piano contenente r e passante per P_0 e se π_2 è il piano contenente s e passante per P_0 , allora $t=\pi_1\cap\pi_2$. In tal modo, infatti, t passa per P_0 ed è complanare con entrambe le rette. (Osserviamo che, essendo le due rette sghembe, i due piani sono necessariamente distinti).

 $\pi_1 = \pi_2$

Determinare la retta ortogonale e incidente a due rette sgembe

Date le rette sghembe:

r:
$$\begin{cases} x - y + 2 = 0 \\ 2x + z + 3 = 0 \end{cases}$$
 e s:
$$\begin{cases} x + z - 3 = 0 \\ y - z - 1 = 0, \end{cases}$$

determinare la retta t ortogonale e incidente a entrambe le rette.

Due modi

I METODO. La retta t cercata avrà parametri direttori (I, m, n) e , dovendo essere ortogonale sia a r sia a s, deve essere:

$$\begin{cases} (I_t, m_t, n_t) \cdot (I_r, m_r, n_r) = 0 \\ (I_t, m_t, n_t) \cdot (I_s, m_s, n_s) = 0 \end{cases}$$

Dunque, da qui ricaviamo i parametri direttori di t sono (I_t, m_t, n_t) . Questo vuol dire che t ha come punto improprio il punto $P_{\infty}=(I_t,m_t,n_t,0)$. Quindi, la retta t è la retta incidente r e s e passante per il punto improprio $P_{\infty}=(I_t,m_t,n_t,0)$. A questo punto, se chiamo π_1 il piano contenente r e passante per P_{∞} e se π_2 il piano contenente s e passante per P_{∞} abbiamo che $t=\pi_1\cap\pi_2$.

II METODO. Dalle equazioni delle rette date r ed s otteniamo che ogni punto di r ha coordinate del tipo generiche (a,a+2,-2a-3), al variare di $a \in \mathbb{R}$, e che ogni punto di s ha coordinate generiche del tipo (-b+3,b+1,b), al variare di $b \in \mathbb{R}$. Dato che la retta t deve incontrare sia r che s, possiamo dire che t è la retta congiungente RS. Tra tutte le rette che si ottengono in questo modo noi cerchiamo quella ortogonale a r e s.

Imponiamo subito l'ortogonalità tra i parametri direttori di t (che sappiamo dato che si ottengono come la differenza delle coordinate di R e S, cioè sono (a+b-3,a-b+1,-2a-b-3)). e quelli di r e successivamente quelli di s. Dunque, deve essere:

$$\begin{cases} (a+b-3)+(a-b+1)-2(-2a-b-3)=0\\ -(a+b-3)+(a-b+1)+(-2a-b-3)=0 \end{cases} \Rightarrow \begin{cases} 6a+2b+4=0\\ -2a-3b+1=0 \end{cases} \Rightarrow \begin{cases} a=-1\\ b=1. \end{cases} \text{ Quindi, avendo } a\in b \text{ abbiamo i } due \text{ punti specifici } R=(-1,1,-1) \in S=(2,2,1). \text{ Allora } t \text{ è precisamente} \end{cases}$$

due punti specifici R = (-1, 1, -1) e S = (2, 2, 1). Allora t è precisamente la retta passante per i due punti R e S :

$$t: \frac{x+1}{3} = y - 1 = \frac{z+1}{2} \Rightarrow t: \begin{cases} x - 3y + 4 = 0 \\ 2y - z - 3 = 0. \end{cases}$$

Distanza $d(P_0, \pi)$

Sia π : ax + by + cz + d = 0 un piano e sia $P_0 = (x_0, y_0, z_0)$ un punto. Allora $d(P_0, \pi)$ è la distanza del punto P_0 dal piano π ed è la distanza del punto P_0 dalla sua proiezione ortogonale H sul piano π :

Dunque, $d(P_0, \pi) = \overline{P_0 H}$ e vale la formula:

$$d(P_0,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Proiezione ortogonale di un punto su una retta r

Calcolo il piano passante per il punto P e ortogonale ad r avente parametri direttori v=(l,m,n), quindi $\pi:lx+my+nz+d=0 \Rightarrow H=\pi\cap r$ H è la proiezione cercata del punto P.

Figura: H è la proiezione ortogonale di P su r

Proiezione ortogonale di un punto su un piano π

Dato il piano π di equazione ax+by+cz+d=0. Il suo vettore direttivo è $\vec{u}=(a,b,c)$. La proiezione ortogonale di P su π è il punto $K=s\cap\pi$, dove s è la retta passante per P e ortogonale a π , del tipo $\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}$ da cui $\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}$, poichè come vettore direttivo di s possiamo scegliere \vec{u} a noi noto.

Figura: K è la proiezione ortogonale di P su π

Proiezione ortogonale di una retta su un piano π

Sia $r:\pi_1\cap\pi_2$ e consideriamo il piano $\beta:\pi_1+k\pi_2=0$ $(\lambda\neq0)$ contenente r e imponiamo l'ortogonalità con π , ricordando che il prodotto scalare tra i due vettori direttivi di β e quello di π deve essere zero. Da qui ricaviamo il valore del parametro k e quindi β . Allora, la proiezione

ortogonale
$$t$$
 di r su π è $t = \beta \cap \pi \Leftrightarrow \begin{cases} \beta \\ \pi \end{cases}$

Angolo tra una retta e un piano

Si definisce angolo tra una retta r e un piano α l'angolo acuto individuato dalla retta r e dalla sua proiezione ortogonale t sul piano α . Tale angolo è il complementare dell'angolo acuto individuato dalla retta r e da una retta ortogonale al piano α .

Esercizio sull'angolo tra due rette

Dato un punto P(0,0,1) e l'asse \vec{z}

$$r: \begin{cases} x = 0 \\ y = 0 \end{cases}$$

trovare il luogo descritto dalla retta generica passante per P e formante con \vec{z} un angolo di $\frac{\pi}{4}$. Per risolvere questo esercizio abbiamo bisogno di sapere come si trovano i parametri direttori di una retta nello spazio e di conseguenza nel piano

Retta generica passante per un punto

$$\begin{cases} x - x_0 = h(z - z_0) \\ y - y_0 = k(z - z_0) \end{cases}$$

di parametri direttori (h, k, 1) mentre i parametri direttori dell'asse \vec{z} sono (0,0,1) e applichiamo la formula del $\cos \hat{rs}$ e troviamo $h^2 + k^2 - 1 = 0$. Dalla generica si ricavano h e k e si sostituiscono qui.

Distanza $d(P_0, r)$ nello spazio

Sia $P_0=(x_0,y_0,z_0)$ un punto e sia r una retta di p.d. (I,m,n). Costruiamo un piano π che passa per P_0 ed è ortogonale ad r, quindi di equazione: $\pi: Ix + my + nz + d = 0$. Poi calcolo $H=\pi \cap r$ La distanza di $d(P_0,r) = P_0H = \sqrt{(x_0-x_H)^2 + (y_0-y_H)^2 + (z_0-z_H)^2}$

Distanza retta-piano incidenti

Figura: una retta e un piano incidenti hanno distanza pari a 0

Distanza retta-piano paralleli

Data una retta s e un piano π paralleli, la distanza la calcoliamo, scegliendo noi un punto $P_0 \in s$ e applicando la formula distanza punto-piano $d(s,\pi) = d(P_0,\pi) = \frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$

Figura: la distanza tra una retta e un piano paralleli

Distanza tra due rette incidenti

Figura: due rette incidenti hanno distanza nulla

Distanza tra due rette parallele

Date due rette parallele r,t di parametri direttori (I,m,n), scriviamo l'equazione del piano ortogonale $\pi: Ix + my + nz + d = 0$ e ne scegliamo uno di questi, ad esempio d=0, quindi $\pi: Ix + my + nz = 0$. Calcoliamo $R=\pi\cap r$ e $T=\pi\cap T$, dunque $d(r,t)=\overline{RT}$

Figura: la distanza tra due rette parallele

Distanza tra due rette sghembe: modo n.1

Per calcolare d(r, s) possiamo procedere in due modi. Calcolare la minima distanza tra le due rette sghembe:

$$r:$$
 $\begin{cases} x+y=1 \\ z=1 \end{cases}$ e $s:$ $\begin{cases} x=0 \\ y=2. \end{cases}$

Per calcolare d(r,s) possiamo procedere in due modi. I METODO. Se t è la retta ortogonale incidente le due rette sghembe r e s e se $R = t \cap r$ e $S = t \cap s$, allora $d(r,s) = \overline{RS}$.

Il generico punto di r ha coordinate R=(a,1-a,1), e quello di s ha coordinate S=(0,2,b). Allora i parametri direttori di t sono $v=(x_2-x_1,y_2-y_1,z_2-z_1)=(a,-1-a,1-b)$.

Dovendo t essere ortogonale sia a r, che ha parametri direttori (1, -1, 0), sia a s, che ha parametri direttori (0, 0, 1), deve accadere:

$$\begin{cases} a+1+a=0\\ 1-b=0 \end{cases} \Rightarrow \begin{cases} a=-\frac{1}{2}\\ b=1. \end{cases}$$

Dunque, $R=\left(-\frac{1}{2},\frac{3}{2},1\right)$ e $S=\left(0,2,1\right)$. La retta t è la retta RS e la distanza tra r e s è la distanza tra questi due punti: $d(r,s)=\overline{RS}=\frac{\sqrt{2}}{2}$.

Distanza tra due rette sghembe: modo n.2

Il METODO Prendiamo il piano π contenente s e parallelo a r. Allora la distanza tra r e s coincide con la distanza tra r e il piano π . Naturalmente lo stesso vale se scambiamo i ruoli di r e s.

I piani contenenti s hanno equazione:

$$\lambda x + \mu(y-2) = 0 \Rightarrow \lambda x + \mu y - 2\mu = 0.$$

Il piano ha come vettore normale il vettore $\vec{n}=\lambda\vec{i}+\mu\vec{j}$. La retta r ha parametri direttori (1,-1,0), cioè il vettore $\vec{v}=\vec{i}-\vec{j}$ è parallelo a r. π è parallelo a r se \vec{n} e \vec{v} sono ortogonali. Dunque, deve accadere:

$$\vec{n} \cdot \vec{v} = 0 \Leftrightarrow \lambda - \mu = 0.$$

Prendendo $\lambda=\mu=1$, troviamo che $\pi\colon x+y-2=0$. A questo punto, sappiamo che $d(r,s)=d(r,\pi)$. Per calcolare $d(r,\pi)$, basta scegliere un qualsiasi punto P di r e $d(r,\pi)=d(P,\pi)$. Dato che:

$$r: \begin{cases} x+y=1\\ z=1, \end{cases}$$

possiamo prendere $P = (1, 0, 1) \in r$ e otteniamo:

$$d(r,s) = d(r,\pi) = d(P,\pi) = \frac{|1-2|}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

Distanza tra due piani incidenti

Figura: la distanza tra piani incidenti è 0

Distanza tra due piani paralleli

Dati due piani paralleli π, β . In tal caso la distanza di β da π coincide con la distanza di un qualsiasi punto $P_0 \in \beta$ scelto da noi, da π

Figura: distanza tra piani paralleli

Naturalmente scambiando i ruoli di β e π non cambia nulla.

Piani bisettori

I piani bisettori di π_1 e π_2 sono i due piani che individuano il luogo dei punti equidistanti da π_1 e π_2 .

Se P = (x, y, z) è un punto dello spazio, allora sappiamo che:

$$d(P, \pi_1) = \frac{|a_1x + b_1y + c_1z + d_1|}{\sqrt{a_1^2 + b_1^2 + c_1^2}}$$

e che:

$$d(P, \pi_2) = \frac{|a_2x + b_2y + c_2z + d_2|}{\sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Per trovare i piani bisettori dobbiamo, dunque, uguagliare queste due quantità:

$$d(P,\pi_1) = d(P,\pi_2) \Leftrightarrow \frac{|a_1x + b_1y + c_1z + d_1|}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \frac{|a_2x + b_2y + c_2z + d_2|}{\sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Da qui otteniamo due uguaglianze, che ci danno le equazioni dei due piani bisettori:

$$\frac{a_1x + b_1y + c_1z + d_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \pm \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Rette bisettrici

Date due rette incidenti r,s. Osserviamo che, per poter calcolare le bisettrici di due rette, esse devono essere necessariamente incidenti. Per prima cosa, troviamo il piano π che contiene entrambe le rette e, successivamente, determiniamo il piano π_1 contenente r e ortogonale a π e il piano π_2 contenente s e ortogonale a π . Poi, consideriamo i piani α e β bisettori di π_1 e π_2 . Le bisettrici di r e s sono $\pi \cap \alpha$ e $\pi \cap \beta$.

Simmetrico di un punto rispetto ad un punto

Simmetrico di un punto rispetto ad una retta

Simmetrico di un punto rispetto ad un piano

Simmetrica di una retta rispetto ad un piano

Riassumendo...

