# Les opérations arithmétiques en binaire et les nombres binaires signés

### Addition en binaire

Règles d'addition:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 avec retenue de 1

#### exemple:

## **Applications:**

faire en binaire l'addition des nombres suivants :

101001 + 101 ; 11101010 + 10101 ; 1101011 + 10111 + 101

les nombres binaires signés (cas d'un nombre de 8bits)

On représente un nombre un nombre binaire signé sur un format de 8 bits de la manière suivante :



- N<sub>0</sub> à N<sub>6</sub> : Bits significatifs
- S: Bit de signe
  - Si S=0 le nombre est positif
  - Si S=1 le nombre est négatif

Pour déterminer l'opposé d'un nombre positif on utilise la notation dite 'complément à 2',

Exemple : Cherchons l'opposé de 9 codé sur 8 bits :  $9 = \frac{0}{0} 0001001_{(2)}$ 

le *complément* de 9 est : 11110110

Ajoutons lui 1 : 11110110 + 1 = 11110111

Donc, en notation 'complément à 2' -9 =  $\frac{1}{1}$  1110111<sub>(2)</sub>

Lycée AGORA, Classe de BTS SN 1ere année

En notation 'Complément à 2' sur 8 bits il est possible de coder 256 valeur de -128 à +127.

**Remarque** : 0 est considéré comme un nombre positif

| Nombres codés sur 8 bits |                  |                           |                               |  |  |  |  |  |
|--------------------------|------------------|---------------------------|-------------------------------|--|--|--|--|--|
| Lu en<br>hexadécimal     | Lu en<br>binaire | Lu en<br>décimal<br>signé | Lu en<br>décimal<br>non signé |  |  |  |  |  |
| 7F                       | 0111 1111        | +127                      | 127                           |  |  |  |  |  |
| 7E                       | 0111 1110        | +126                      | 126                           |  |  |  |  |  |
| •••                      | •••              | •••                       | •••                           |  |  |  |  |  |
| 10                       | 0001 0000        | +16                       | 16                            |  |  |  |  |  |
| 0F                       | 0000 1111        | 0000 1111 +15             |                               |  |  |  |  |  |
| 0E                       | 0000 1110        | +14                       | 14                            |  |  |  |  |  |
| 0D                       | 0000 1101        | +13                       | 13                            |  |  |  |  |  |
| 0C                       | 0000 1100        | +12                       | 12                            |  |  |  |  |  |
| 0B                       | 0000 1011        | +11                       | 11                            |  |  |  |  |  |
| 0A                       | 0000 1010        | +10                       | 10                            |  |  |  |  |  |
| •••                      | •••              | •••                       | •••                           |  |  |  |  |  |
| 02                       | 0000 0010        | +2                        | 2                             |  |  |  |  |  |
| 01                       | 0000 0001        | +1                        | 1                             |  |  |  |  |  |
| 00                       | 0000 0000        | +0                        | 0                             |  |  |  |  |  |
| FF                       | 1111 1111        | -1                        | 255                           |  |  |  |  |  |
| FE                       | 1111 1110        | -2                        | 254                           |  |  |  |  |  |
| FD                       | 1111 1101        | -3                        | 253                           |  |  |  |  |  |
| FC                       | 1111 1100        | -4                        | 252                           |  |  |  |  |  |
| FB                       | 1111 1011        | -5                        | 251                           |  |  |  |  |  |
| FA                       | 1111 1010        | -6                        | 250                           |  |  |  |  |  |
| •••                      | •••              | •••                       | •••                           |  |  |  |  |  |
| 85                       | 1000 0101        | -123                      | 133                           |  |  |  |  |  |
| 84                       | 1000 0100        | -124                      | 132                           |  |  |  |  |  |
| 83                       | 1000 0011        | -125                      | 131                           |  |  |  |  |  |
| 82                       | 1000 0010        | -126                      | 130                           |  |  |  |  |  |
| 81                       | 1000 0001        | -127                      | 129                           |  |  |  |  |  |
| 80                       | 1000 0000        | -128                      | 128                           |  |  |  |  |  |

# Lycée AGORA, Classe de BTS SN 1ere année

### Soustraction en binaire

1ere méthode : complément à 1 et addition

Exemple: soustrayons les nombres 1101011101 et 1011100111

le complément a 1 de 101110011 est 0100011000



**Remarque** : Si le Diminueur est plus grand que le diminuande, intervertir les termes et affecter le résultat du signe moins.

2eme méthode : complément à 2 et addition

Exemple: soustrayons 17 à 25

$$25 - 17 = 25 + (-17) = ?$$

$$25 = 00011001_{(2)}$$

$$17 = 00010001_{(2)}$$

Donc:  $25 - 17 = 00011001_{(2)} + 11101111_{(2)} =$ 

On remarque que le résultat est écrit sur 9 bits, ce qui *dépasse* le format d'écriture de 8 bits. Dans ce cas on ignore le bit le plus a gauche (appelé *dépassement*) et dont le résultat est bien : 00001000<sub>(2)</sub>.

# Multiplication en binaires

On multiplie des nombres en binaire de la même manière qu'on multiplie des nombres décimaux.

Exemple : Multiplions  $9 = 1001_{(2)}$  par  $11 = 1011_{(2)}$ 

Ecrivons la multiplication :

|   |   |   | 1 | 0 | 0 | 1 | $\leftarrow$ Multiplicande  |
|---|---|---|---|---|---|---|-----------------------------|
|   |   | х | 1 | 0 | 1 | 1 | $\leftarrow$ Multiplicateur |
|   |   |   |   |   |   |   |                             |
|   |   | 1 | 1 | 0 | 0 | 1 |                             |
|   | 1 | 1 | 0 | 0 | 1 | 0 |                             |
|   | 0 | 0 | 0 | 0 | 0 | 0 |                             |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |                             |
|   |   |   |   |   |   |   |                             |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 | = 64 + 32 + 2 + 1 = 99      |

# Division en binaires

Le principe est le même que pour une division en décimal.

Exemple divisons 81 par 3:



Lycée AGORA, Classe de BTS SN 1ere année

#### Exercices\_:

Effectuer les additions binaires suivantes et donner le résultat en décimal:

1101111 + 1110000 ; 101111101 + 111111011 ; 110111,01 + 11011,11 ; 1011,1101 + 110,1011

Effectuer les soustractions binaires suivantes en utilisant t le complément à 1 et donner le résultat en décimal:

111111011 - 101111101 ; 110111,01 - 110011,11 ; 1011,1101 - 110,1011

Effectuer les soustractions binaires suivantes en utilisant t le complément à 2 et donner le résultat en décimal:

1110000 - 1101111 ; 1101111 - 1011101 ; 10001 - 11001

Soient les 2 nombres codés suivant la norme IEEE 754 et représentés en hexadécimal : 3EE00000 et 3D800000. Calculez en la somme et donnez le résultat sous forme IEEE 754 et sous forme décimale. Même question avec les nombres : C8 80 00 00 et C8 00 00 00.

Effectuer les multiplications binaires suivantes et donner le résultat en décimal:

110111 x 10001; 10111,11 x 110

Effectuer les divisions binaires suivantes et donner le résultat en décimal:

11011 /11 ; 1101111 / 1010