

WELTORGANISATION FÜR GEISTIGES EI ANMELDUNG VERÖFFENTLICHT NACH

VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

(11) Internationale Veröffentlichungsnummer: WO 98/11150

C08G 73/06, 73/10, C09K 11/06

A1 (43) Internationales Veröffentlichungsdatum:

19. März 1998 (19.03.98)

(21) Internationales Aktenzeichen:

PCT/EP97/04802

(22) Internationales Anmeldedatum: 4. September 1997 (04.09.97)

(30) Prioritätsdaten:

196 37 600.9

DE 16. September 1996 (16.09.96)

196 44 930.8

29. Oktober 1996 (29.10.96)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT (DE/DE); D-51368 Leverkusen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): WEHRMANN, Rolf [DE/DE]; Scheiblerstrasse 101, D-47800 Krefeld (DE). SCHMIDT, Hans-Werner [DE/DE]; Lisztstrasse 26, D-95444 Bayreuth (DE). FINK, Ralph [DE/DE]; Hardenbergstrasse 7, D-95444 Bayreuth (DE). THELAKKAT, Mukundan [IN/DE]; Hans-Schaefer-Strasse 2, D-95448 Bayreuth (DE).
- AKTIENGE-BAYER (74) Gemeinsamer Vertreter: SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL. PT. SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Anderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: TRIAZINE POLYMERS AND THE APPLICATION THEREOF IN ELECTROLUMINESCENT ARRANGEMENTS
- (54) Bezeichnung: TRIAZINPOLYMERE UND DEREN VERWENDUNG IN ELEKTROLUMINESZIERENDEN ANORDNUNGEN
- (57) Abstract

The invention relates to new triazine polymers having formula (I) and the use thereof as a layer in electroluminescent arrangements.

(57) Zusammenfassung

Die Erfindung betrifft neue Triazinpolymere der Formel (I) und deren Verwendung als Schicht in elektrolumineszierenden Anordnungen.

$$\begin{bmatrix} X^1 & N & X^2 - Y \\ N & N & N \end{bmatrix}_q \qquad (1)$$

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL AM AT AU AZ BA BB BE BF BG BJ BR CA CF CG CH CI CM CU CZ DE DK BE	Albanien Armenien Osterreich Australien Aserbaidschan Bosnien-Herzegowina Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Belarus Kanada Zentralafrikanische Republik Kongo Schweiz Côte d'Ivoire Kamerun China Kuba Tachechische Republik Deutschland Dänemark Estland	ES FI FR GA GB GE GH GN GR HU IE IL IS IT JP KE KG KP KR LC LL LK LR	Spanien Finnland Frankreich Gabun Vereinigtes Königreich Georgien Ghana Guinea Griechenland Ungarn Irland Israel Island Italien Japan Kenia Kirgisistan Demokratische Volksrepublik Korea Republik Korea Republik Korea Kasachstan St. Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LY MC MD MG MK MN MN MN MN MN ND NZ PL PT RO RU SD SE SG	Lesotho Litauen Luxemburg Lettland Monaco Republik Moldau Madagaskar Die ehemalige jugoslawische Republik Mazedonien Malisi Mongolei Mauretanien Malawi Mexiko Niger Niederlande Norwegen Neuseeland Poten Portugal Rumänien Russische Pöderation Sudan Schweden Singapur	SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slowenien Slowakei Senegal Swasiland Tachad Togo Tadachikistan Turkei Trinidad und Tobago Ukraine Uganda Vereinigte Staaten von Amerika Usbekistan Vietnam Jugoslawien Zimbabwe
--	---	---	--	---	---	--	---

Triazinpolymere und deren Verwendung in elektrolumineszierenden Anordnungen

Eine elektrolumineszierende (EL) Anordnung ist dadurch charakterisiert, daß sie unter Anlegung einer elektrischen Spannung unter Stromfluß Licht aussendet. Derartige Anordnungen sind unter der Bezeichnung "Leuchtdioden" (LEDs = light emitting diodes) seit langem in der Technik bekannt. Die Emission von Licht kommt dadurch zustande, daß positive Ladungen ("Löcher", holes) und negative Ladungen ("Elektronen", electrons) unter Aussendung von Licht rekombinieren.

Bei der Entwicklung lichtemittierender Bauteile für Elektronik oder Photonik kommen heute hauptsächlich anorganische Halbleiter, wie Galliumarsenid, zum Einsatz. Auf Basis derartiger Substanzen können punktförmige Anzeigeelemente hergestellt werden. Großflächige Anordnungen sind nicht möglich.

- Neben den Halbleiterleuchtdioden sind elektrolumineszierende Anordnungen auf Basis aufgedampfter niedermolekularer organischer Verbindungen bekannt (US-P 4 539 507, US-P 4 769 262, US-P 5 077 142, EP-A 406 762). Auch mit diesen Materialien können bedingt durch das Herstellverfahren nur kleindimensionierte LEDs hergestellt werden.
- Weiterhin werden Polymere, wie Poly-(p-phenylene) und Poly-(p-phenylenvinylene (PPV)) als elektrolumineszierende Polymere beschrieben: G. Leising et al., Adv. Mater. 4 (1992) No. 1; Friend et al., J. Chem. Soc., Chem. Commun. 32 (1992); Saito et al., Polymer, 1990, Vol. 31, 1137; Friend et al., Physical Review B, Vol. 42, No. 18, 11670 oder WO 90/13148. Weitere Beispiele für PPV in Elektrolumineszenzanzeigen werden in EP-A 443 861, WO-A-9203490 und 92003491 beschrieben.

EP-A 0 294 061 stellt einen optischen Modulator auf Basis von Polyacetylen vor.

Zur Herstellung flexibler Polymer-LEDs haben Heeger at al. lösliche konjugierte PPV-Derivate vorgeschlagen (WO 92/16023).

Polymerblends unterschiedlicher Zusammensetzung sind ebenfalls bekannt: M. Stolka et al., Pure & Appt. Chem., Vol. 67, No. 1, pp 175-182, 1995; H.

20

25

30

Bässler et al., Adv. Mater. 1995, 7, No. 6, 551; K. Nagai et al., Appl. Phys. Lett. 67 (16), 1995, 2281; EP-A 532 798.

Die organischen EL-Anordnungen enthalten in der Regel eine oder mehrere Schichten aus organischen Ladungstransportverbindungen. Der prinzipielle Aufbau in der Reihenfolge der Schichten ist wie folgt:

- 1 Träger, Substrat
- 2 Basiselektrode
- 3 Löcher-injizierende Schicht
- 4 Löcher-transportierende Schicht
- 10 5 Licht-emittierende Schicht
 - 6 Elektronen-transportierende Schicht
 - 7 Elektronen-injizierende Schicht
 - 8 Topelektrode
 - 9 Kontakte
- 15 10 Umhüllung, Verkapselung.

Dieser Aufbau stellt den allgemeinsten Fall dar und kann vereinfacht werden, indem einzelne Schichten weggelassen werden, so daß eine Schicht mehrere Aufgaben übernimmt. Im einfachsten Fall besteht eine EL-Anordung aus zwei Elektroden, zwischen denen sich eine organische Schicht befindet, die alle Funktionen - inklusive der der Emission von Licht - erfüllt. Derartige Systeme sind z.B. in der Anmeldung WO 90/13148 auf der Basis von Poly-(p-phenylenvinylen) beschrieben.

Der Aufbau von Mehrschichtsystemen kann durch Aufdampfverfahren, bei denen die Schichten sukzessive aus der Gasphase aufgebracht werden oder durch Gießverfahren erfolgen. Gießverfahren sind aufgrund der höheren Prozeßgeschwindigkeiten bevorzugt. Allerdings stellt der Anlöseprozeß einer bereits aufgebrachten Schicht beim Überschichten mit der nächsten Schicht eine Schwierigkeit dar.

Die Aufgabe der vorliegenden Erfindung ist die Bereitstellung von elektrolumineszierenden Anordnungen mit hoher Leuchtdichte, wobei die aufzubringende Mischung gießbar aufgebracht werden kann.

10

15

20

25

Die Erfindung betrifft daher Polymere mit 1,3,5-Triazineinheiten - im folgenden Triazine genannt - und deren Verwendung in elektrolumineszierenden Anordnungen als Schicht, z.B. Elektroneninjektionsschicht, elektronenleitende oder lumineszierende Schicht. Polymere diesen Typs weisen gute Reduktionseigenschaften, bei hoher Oxidationsstabilität auf. Zudem sind sie sehr gut filmbildend, besitzen hohe Glasstufen und sind hoch temperaturstabil. Die Verarbeitung erfolgt bevorzugt aus Alkoholen, Ketonen, Ethern oder N-Methylpyrrolidon.

Polymere mit Triazineinheiten sind bekannt (D. Braun, R. Ghahary, T. Ziser, "Triazine-based polymers", Angew. Makromol. Chem. 233 (1995); M. Strukelj, J.C. Hedrick, "Synthesis and Characterization of Novel Poly(aryl) ether pyridyltriazine)s", Macromolecules 27 (1994)). Bei den beschriebenen Materialien handelt es sich zumeist um Polyamide und Polyimide, bzw. 3,5,6-Triphenyl-1,2,4-triazine, also unsymmetrisch substituierte Systeme.

Sie besitzen zumeist nur geringe Löslichkeiten in - bevorzugt - Alkoholen, Ketonen, Ethern oder N-Methylpyrrolidon (NMP). Weiterhin sind Imide auf Basis von 2,4,6-Triphenyl-triazinen bekannt (Kray, Seltzer, Winter, "S-Triazine based polybenzimidazoles and polyimides", Amer. Chem. Soc., Div. Org. Coatings Plast. Chem., Pap. (1971), 31(1)).

Die vorliegende Erfindung betrifft Polymere und/oder Copolymere mit wiederkehrenden Einheiten der Formel (I)

$$\begin{bmatrix}
X^{1} & N & X^{2} - Y \\
N & N & N
\end{bmatrix}_{q}$$
(I),

wobei die Reste X¹, X², Y, Z voneinander unabhängig variierbar sind,

q für eine ganze Zahl von 3 bis 1 000, vorzugsweise 5 bis 500,

X¹ und X² unabhängig voneinander für -O-, -NH-, Phenyl oder eine chemische Bindung stehen und

Y für einen 2-bindigen Rest steht, ausgewählt aus

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{10}$$

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

wobei X³ für C oder C steht,

CH₃ CF₃

CH₃ CF₃

$$- \sum_{N=1}^{N} \sum_{n=1}^{R'} \sum_{n=1}^{R'} \sum_{n=1}^{N} \sum_{n=1}^{R'} \sum_{n=1}^{N} \sum_{n=1}^{N}$$

$$- \sum_{N}^{N} \sum_{R^{1}}^{R^{1}} \sum_{R^{2}}^{R^{2}} \sum_{N}^{N}$$

$$-$$

wobei

 R^1 , R^2 , R^3 , R^{10} und R^{12} unabhängig voneinander für Wasserstoff, gegebenenfalls substituiertes C_1 - C_{10} -Alkyl, C_1 - C_{10} -Alkoxy, Alkoxycarbonyl-substituiertes C_1 - C_{10} -Alkyl, jeweils gegebenenfalls substituiertes Aryl, Aryl- C_1 - C_6 -alkyl oder Cycloalkyl stehen,

R¹¹ für die gleichen Reste wie R¹⁰ oder R¹² mit Ausnahme von Wasserstoff steht, wobei R¹¹ zusätzlich für Sulfonyl oder Sulfoxyl stehen kann, oder

Y für einen Rest der Formel (II) steht

$$-O \xrightarrow{(R^4)_n} A \xrightarrow{(R^5)_n} O -$$
Baustein Q

5 wobei

R⁴ und R⁵ gleich oder verschieden sind und für Halogen, vorzugsweise Fluor, Chlor und Brom, C₁-C₄-Alkyl, vorzugsweise Methyl und Ethyl, C₆-C₁₂-Aryl, vorzugsweise Phenyl und Biphenyl oder C₇-C₁₂-Aralkyl, vorzugsweise Methylphenyl und Ethylphenyl, stehen,

10 n 0 oder eine ganze Zahl von 1 bis 4, vorzugsweise 0, 1 oder 2 bedeutet,

A für eine chemische Bindung, CO, O, S, SO₂ oder einen Rest der Formel (III) oder (IV)

$$\begin{array}{cccc}
 & R^6 \\
 & C \\
 & C \\
 & C \\
 & C \\
 & (IV) \\
 & R^7 \\
 & R^8 \\
 & R^9
\end{array}$$

steht, worin

15 R⁶ und R⁷ gleich oder verschieden sind und für Wasserstoff, Halogen, bevorzugt Fluor, Chlor und Brom, C₁-C₄-Alkyl, bevorzugt Methyl und Ethyl, Halogen-C₁-C₄-alkyl, bevorzugt Trifluormethyl oder C₅-C₁₂-Cycloalkyl mit gegebenenfalls einem oder mehreren Alkylsub-

stituenten, beispielsweise Cyclohexyl, Methylcyclopentyl und Methylcyclohexyl stehen,

p eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 ist,

R⁸ und R⁹ für jedes W individuell wählbar sind und unabhängig voneinander Wasserstoff oder C₁-C₆-Alkyl, bevorzugt Wasserstoff oder Methyl, bedeuten und

W Kohlenstoff bedeutet,

5

15

mit der Maßgabe, daß an mindestens einem Atom W die Reste R⁸ und R⁹ gleichzeitig Alkyl sind,

m 0 oder eine ganze Zahl von 1 bis 3, vorzugsweise 0, 1 oder 2, besonders bevorzugt 0 oder 1, bedeutet,

Z für Wasserstoff, Halogen, CN, gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, C_1 - C_{10} -Alkoxycarbonyl substituiertes C_1 - C_{10} -Alkyl, jeweils gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, Halogen- C_1 - C_6 -alkyl und/oder C_1 - C_6 -Alkoxy substituiertes C_6 - C_{10} -Aryl, Aryl- C_1 - C_6 -alkyl, Pyridyl oder Isochinolyl, C_4 - C_{10} -Cycloalkyl oder einen Rest der Formel

wobei R^1 , R^2 und R^3 die oben genannte Bedeutung haben,

steht.

Geeignete Diphenole (Baustein Q) der Formel (II) sind z.B.:

Hydrochinon, Methylhydrochinon, Phenylhydrochinon, Resorcin, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis-(hydroxyphenyl)-cycloalkane, 5 Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, 4.4'-Dihydroxybenzophenon, 10 Hexafluorisopropyliden-diphenol, 3,3,5-Trimethyl-1,1-bis-(4-hydroxyphenyl)-cyclohexan, 3,3,5-Trimethyl-1,1-bis-(4-hydroxy-3,5-dimethylphenyl)-cyclohexan,

- 3,3,5,5-Tetramethyl-1,1-bis-(4-hydroxyphenyl)-cyclohexan,
 3,3,5,5-Tetramethyl-1,1-bis-(4-hydroxy-2,5-dimethylphenyl)-cyclohexan,
 3,3,5-Trimethyl-1,1-bis-(4-hydroxyphenyl)-cyclopentan,
 3,3,5-Trimethyl-1,1-bis-(4-hydroxy-3,5-dimethylphenyl)-cyclopentan,
 Bis-(hydroxyphenyl)-sulfoxide,
 a,a'-Bis-(hydroxyphenyl)-diisopropylbenzole
- sowie deren C₁-C₆-kernalkylierte und kern(F,Cl,Br)halogenierte Verbindungen.

Diese und weitere geeignete andere Diphenole (Baustein Q) der Formel (II) sind z.B. in den US-A 3 028 365, 2 999 835, 3 148 172, 2 069 560, 3 275 601, 2 991 273, 3 271 367, 3 062 781, 2 970 131, 2 069 573 und 2 999 846, in der DE-A 1 570 703, 2 063 050, 2 063 052, 2 211 095 und 3 832 936, der FR-A 1 561 518, der JP-A 62 093/86, 62 040/86 und 105 550/86 und in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964", beschrieben.

Bevorzugte andere Diphenole sind beispielsweise:

- 4,4'-Dihydroxydiphenyl,
- 2,2-Bis-(4-hydroxyphenyl)-propan,
- 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan,
- 1,1-Bis-(4-hydroxyphenyl)-cyclohexan,
- 5 a,a'-Bis-(4-hydroxyphenyl)-p-diisopropylbenzol,
 - 2,2-Bis-(3-methyl-hydroxyphenyl)-propan,
 - 2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan,
 - Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan,
 - 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan,
- 10 Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon,
 - 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan,
 - 1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexan,
 - a.a'-Bis-(3.5-dimethyl-4-hydroxyphenyl)-p-diisopropylbenzol,
 - 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan,
- 15 2.2.-Bis-(3.5-dibrom-4-hydroxyphenyl)-propan,
 - 2,2,-Bis-(4-hydroxyphenyl)-propan,
 - 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan
 - 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan,
 - 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan,
- 20 1,1,-Bis-(4-hydroxyphenyl)-cyclohexan,
 - 4,4'-Dihydroxydiphenylsulfon,
 - 1,6-,1,7-,2,6-,2,7-Naphthalindiol,
 - 4,4'-Dihydroxydiphenylsulfon und
 - 4,4'-Dihydroxybenzophenon.

- R¹, R², R³, R¹⁰ und R¹² können unabhängig voneinander variiert werden und stehen vorzugsweise für Wasserstoff, C₁-C₆-Alkyl durch CN oder Halogen, wie Fluor, Chlor, Brom substituiertes C₁-C₆-Alkyl, wie beispielsweise Trifluormethyl, C₁-C₆-Alkoxy, C₁-C₄-Alkoxy substituiertes C₁-C₆-Alkyl, jeweils gegebenenfalls durch C₁-C₄-Alkyl, beispielsweise Methyl, Ethyl, noder iso-Propyl, und/oder durch Halogen, wie Fluor, Chlor, Brom substituiertes Phenyl oder Phenyl-C₁-C₄-alkyl, oder gegebenenfalls durch C₁-C₄-Alkyl, beispielsweise Methyl und/oder Ethyl, substituiertes Cyclopentyl oder Cyclohexyl,
 - R¹¹ steht vorzugsweise für die gleichen Reste wie R¹⁰ oder R¹², zusätzlich noch für Sulfonyl oder Sulfoxyl, mit Ausnahme von Wasserstoff.

Besonders bevorzugte Polymere sind:

Ph - Phenyl

10

Die erfindungsgemäßen Polymere sind in gängigen Lösungsmitteln wie Alkoholen, Ketonen, Tetrahydrofuran (THF), N-Methylpyrrolidon (NMP), Dimethylformamid (DMF) oder chlorierten Kohlenwasserstoffen löslich.

Zur Herstellung von Schichten aus den erfindungsgemäßen Polymeren werden diese in einem geeigneten Lösemittel gelöst und durch Gießen, Rakeln oder spincoating auf eine geeignete Unterlage aufgebracht. Dabei kann es sich z.B. um Glas oder ein Kunststoffmaterial handeln, das mit einer transparenten Elektrode versehen ist. Als Kunststoffmaterial kann z.B. eine Folie aus Polycarbonat, Polyester wie Polyethylenterephthalat oder Polyethylennaphthalat, Polysulfon oder Polyimid eingesetzt werden.

Als transparente Elektroden sind geeignet

a)

20

25

- Metallooxide, z.B. Indium-Zinn-Oxid (ITO), Zinnoxid (NESA), Zinkoxid,
- semi-transparente Metallfime, z.B. Au, Pt, Ag, Cu etc., b)

dotiertes Zinnoxid, dotiertes Zinkoxid, etc.,

- leitfähige Polymerfilme wie Polyaniline, Polythiophene, etc. c)
- Die Metalloxid- und die semitransparenten Metallfilmelektroden werden durch 5 Techniken wie Aufdampfen, Aufsputtern, Platinierung, etc., in dünner Schicht aufgebracht. Die leitfähigen Polymerfilme werden durch Techniken wie Spincoaten, Casting, Rakeln etc. aus der Lösung aufgebracht.
- Die Dicke der transparenten Elektrode beträgt 30 Å bis etwa mehrere µm, vorzugsweise 100 Å bis 5 000 Å. 10

Die elektrolumineszierende Schicht wird direkt auf die transparente Elektrode oder auf eine gegebenenfalls vorhandene ladungstransportierende Schicht als dünner Film aufgebracht. Die Dicke des Films beträgt 10 bis 500 nm, vorzugsweise 20 bis 400 nm, besonders bevorzugt 50 bis 250 nm.

Auf die elektrolumineszierende Schicht kann eine weitere ladungstransportierende 15 Schicht eingefügt werden, bevor eine Gegenelektrode aufgebracht wird.

Eine Zusammenstellung von geeigneten ladungstransportierenden Zwischenschichten, bei denen es sich um loch- und/oder elektronenleitenden Materialien handeln kann, die in polymerer oder niedermolekularer Form gegebenenfalls als Blend vorliegen können, ist in EP-A 532 798 aufgeführt. Besonders geeignet sind speziell substituierte Polythiophene, die über lochtransporierende Eigenschaften verfügen. Sie sind beispielsweise in EP-A 686 662 beschrieben.

Der Gehalt an niedermolekularem Lochleiter in einem polymeren Binder ist im Bereich von 2 bis 85 Gew.-% variierbar; bevorzugt beträgt der Gehalt 5 bis 75 Gew.-%, besonders bevorzugt 10 bis 70 Gew.-%. Filmbildende Lochleiter können auch in reiner Form (100 %ig) eingesetzt werden.

Der Gehalt an niedermolekularen Elektronenleitern im polymeren Binder ist im Bereich von 2 bis 85 Gew.-% variierbar; bevorzugt beträgt der Gehalt 5 bis 75

20

Gew.-%, besonders bevorzugt 10 bis 70 Gew.-%. Filmbildende Elektronenleiter können auch in reiner Form (100 %ig) eingesetzt werden.

Die Gegenelektrode besteht aus einer leitfähigen Substanz, die transparent sein kann. Vorzugsweise eignen sich Metalle, z.B. Al, Au, Ag, Mg, In, etc. oder Legierungen und Oxide dieser, die durch Techniken wie Aufdampfen, Aufsputtern, Platinierung aufgebracht werden können.

Die erfindungsgemäße Anordnung wird durch zwei elektrische Zuführungen (z.B. Metalldrähte) mit den beiden Elektroden in Kontakt gebracht.

Die Anordnungen emittieren beim Anlegen einer Gleichspannung im Bereich von 0,1 bis 100 Volt Licht der Wellenlänge von 200 bis 2000 nm. Sie zeigen im Bereich von 200 bis 2000 nm Photolumineszenz.

Die erfindungsgemäßen Anordnungen sind zur Herstellung von Einheiten zur Beleuchtung und zur Informationsdarstellung geeignet.

Die Herstellung der Triazinpolymere erfolgt nach allgemein bekannten Methoden, vgl. z.B. H. R. Kricheldorf, Handbook of Polymer Synthesis, Part A, Kapitel 9 und Part B, Kapitel 15, (1992).

5-Ring Polyimide:

Das entsprechende s-Triazin Diamin wird zusammen mit einer stöchiometrischen Menge des 5-Ring-Di-Anhydrids in NMP vorgelegt (10 Gew.-%) und zunächst 4 Stunden bei Raumtemperatur gerührt. Die gebildete Polyamidcarbonsäure kann durch Fällen in Methanol gewonnen werden. Eine Imidisierung wird durch mehrstündiges Heizen der viskosen Mischung auf 200°C erreicht. (Vorschrift analog "Handbook of Polymer Synthesis", Part B, Kapitel 15, Seite 941, H.R. Kricheldorf 1992))

25 6-Ring Polyimide:

Das entsprechende s-Triazin Diamin wird zusammen mit einer stöchiometrischen Menge des 6-Ring-Di-Anhydrids in m-Kresol und einer katalytischen Menge Isochinolin vorgelegt (10 Gew.-%) und 24 Stunden auf 200°C erhitzt. Das Polymer

wird in Methanol ausgefällt. (Vorschrift analog "Handbook of Polymer Synthesis", Part B, Kapitel 15, Seite 911, H. R. Kricheldorf (1992))

Polyether:

Das entsprechende Di-halo-s-triazin wird mit einer stöchiometrischen Menge eines Diphenols in bevorzugt NMP oder Diphenylsulfon (10 Gew.-%) mit einer dem Diphenol entsprechenden Menge Kaliumcarbonat vorgelegt und mit Toluol am Wasserabscheider für 3 Stunden zum Rückfluß erhitzt. Nach Abdestillieren des Toluols wird nochmals 5 bis 12 Stunden erhitzt und dann in Methanol gefällt. (Vorschrift analog "Handbook of Polymer Synthesis", Part A, Kapitel 8, Seite 545, H. R. Kricheldorf (1992))

Im folgenden sind ausgewählte Poly-s-Triazinether hinsichtlich ihrer Synthese und ihrer Eigenschaften erwähnt:

Z N									
Z			F ₃ C	- N					
Beispiel	12	13	14	15	16				
제, 1) [g/mol] (PS-Standard) Tg (°C)	26*10 ³	18*10 ³ 247	5*10 ³ 193	6*10 ³ 186	23*10 ³ 232				
TGA [°C] (N ₂)	466	486	432	43,1	469				
λ _{abs;max} [nm]	293	304	301	305	309				
λ _{Fl;max} [nm]		411							
Solubilty*	12	13	14	15	16				
CHCl ₃		+/-	+/-	+/-	+/-				
THF	+	+	+		+				
NMP	+	+	+	+	+				
Cyclohexanon	+	+	+	+/-	+				

^{*} bezogen auf 0,1 Gew.-% Lösung

1) Molekulargewicht (Zahlenmittel)

Darstellung der Ausgangsverbindungen

Beispiele

N-Benzylidenanilin (Aldrich) (1),

4-Trifluormethyl-N-benzylidenanilin (2),

5 N-(4-Pyridylen)-aniline (3),

N-(6-Chinolyden)-aniline (4),

N-(1-Naphthyliden)-aniline (5)

Anilin und der dazu korrespondierende Aldehyd werden in einer stöchiometrischen Menge in Chloroform (10 bis 30 gew.-%ig) gelöst und 3 h am Wasserabscheider zu Rückfluß erhitzt. Die resultierende gelbe Lösung wird bis zur Trockne eingeengt und am Hochvakuum getrocknet. Ausbeute: 99 % der Theorie

¹H-NMR (CDCl₃):

- (2) $\delta = 8.74$ (1H), 8.75 (2H, arom.), 7.81 (2H, arom.), 7.28 (5H, arom.);
- (3) $\delta = 8.75$ (2H, arom.), 8,44 (1H), 7,71 (2H, arom.), 7,28 (5H, arom.);
- 15 (4) $\delta = 9.11$ (1H), 9.04 (1H, arom.), 8.85 (1H, arom.), 8.20 (1H, arom.), 7.91 (1H, arom.), 7.63 (2H, arom.), 7.35 (5H, arom.);
 - (5) $\delta = 9.09$ (1H), 9.01 (1H, arom.), 7.91 (3H, arom.), 7.51 (2H, arom.), 7.29 (5H, arom.)
 - 4-Fluor-benzamidin-hydrochlorid (7)
- 4-Fluorbenzoesäurenitril (200 mmol) und Ethanol (205 mmol) werden in 100 ml Benzol gelöst. Durch die Lösung werden ca. 40 min HCl geleitet, weitere 3 Stunden bei Raumtemperatur gerührt und in 1 l Diethylether gefällt. Das farblos anfallende Produkt wird abgesaugt und getrocknet. Ausbeute: 52 % der Theorie.

Das so entstandene 4-Fluor-benzimidoester-Hydrochlorid (100 mmol) wird dann in 250 ml ammoniakalischem Ethanol suspendiert und solange bis auf 50°C erhitzt, bis sich alles gelöst hat. Anschließend wird das Lösungsmittel abgezogen und das farblose Produkt getrocknet. Ausbeute: 98 % der Theorie.

- 5 1 H-NMR (d⁶-DMSO): $\delta = 9.41$ (4H), 8.01 (4H, arom.)
 - 4,4'-Difluor-2,4,6-triphenyl-1,3,5-triazin (8),
 - 4,4'-Difluor-4"-trifluormethyl-2,4,6-triphenyl-1,3,5-triazin (9)
 - 4,4'-Difluor-2,4-diphenyl-6-(1-naphthyl)-1,3,5-triazin (10),
 - 4.4'-Difluor-2.4-diphenyl-6-(6-pyridyl)-1,3,5-triazin (11),
- 10 4,4'-Difluor-2,4-diphenyl-6-(6-chinolyl)-1,3,5-triazin (12)

50 mmol 4-Fluor-benzamidin und 23 mmol des korrespondierenden Anilidens werden in 40 ml DMF für 24 Stunden auf 80°C erhitzt. Nach Abkühlen auf Raumtemperatur wird in 1 l Methanol gefällt, das farblose Produkt abgesaugt und durch Sublimation (220 bis 290°C; 10⁻⁶ mbar) aufgereinigt. Ausbeute: 23 bis 48 % der Theorie)

H-NMR (C2D2Cl4):

15

- (8) $\delta = 8.65$ (6H, arom.), 7.55 (3H, arom.), 7.20 (4H, arom.);
- (9) $\delta = 8.75$ (6H, arom.), 7,98 (2H, arom.), 7,43 (4H, arom.);
- (10) $\delta = 9,12$ (1H, arom.), 8,75 (4H, arom.), 8,50 (1H, arom.), 8,05 (2H, arom.), 7,62 (3H, arom.), 7,21 (4H, arom.);
 - (11) $\delta = 8.85$ (2H, arom.), 8,70 (4H, arom.), 8,49 (2H, arom.), 7,21 (4H, arom.);
 - (12) $\delta = 9.15$ (1H, arom.), 8,98 (1H, arom.), 8,65 (4H, arom.), 8,21 (2H, arom.), 7,62 (2H, arom.), 7,15 (4H, arom.)
- 25 3,3'-Diamino-2,4,6-triphenyl-1,3,5-triazin (17)

20

3-Nitro-benzamidin (Adrich) (48 mmol) und N-Benzylidenanilin (1) (22 mmol) werden in 200 ml Ethanol 24 Stunden bei 60°C erhitzt und das ausfallende farblose 3,3'-Dinitro-2,4,6-triphenyl-1,3,5-triazin wird abgesaugt und im Vakuum getrocknet. Ausbeute: 74 % der Theorie.

5 ${}^{1}H-NMR (C_2D_2Cl_4)$:

(17) $\delta = 9,40$ (2H, s), 9,05 (2H, d), 8,70 (2H, d), 8,45 (2H, d), 7,75 (2H, m), 7,15 (3H, m)

Das so entstandene 3,3'-Dinitro-2,4,6-triphenyl-1,3,5-triazin (5 mmol) wird in 50 ml Ethanol und 20 ml konzentrierter Salzsäure mit 8 g SnCl₂*2H₂O 8 Stunden zum Rückfluß erhitzt, abfiltriert und im Vakuum getrocknet. Ausbeute: 81 % der Theorie.

Das freie Amin wird durch Dispergieren in 5 %iger NaOH H₂O/Ethanol (1:1) und leichtes Erhitzen erhalten.

¹H-NMR (d⁶-DMSO):

15 (14) $\delta = 8,70$ (2H, d), 7,90 (2H, s), 7,85 (2H, d), 7,65 (3H, m), 7,25 (2H, t), 6,85 (2H, d), 5,35 (4H, s)

Polyether:

Das entsprechende Di-halo-s-triazin wird mit einer stöchiometrischen Menge eines Diphenols in bevorzugt NMP oder Diphenylsulfon (10 Gew.-%) mit einer dem Diphenol entsprechenden Menge Kaliumcarbonat vorgelegt und mit Toluol am Wasserabscheider für 3 Stunden zum Rückfluß erhitzt. Nach Abdestillation des Toluols wird nochmals 5 bis 12 Stunden auf 200°C erhitzt und dann in Methanol gefällt (Vorschrift analog "Handbook of Polymer Synthesis", Part A, Kapitel 8, H. R. Kricheldorf).

Beispiel 18:

¹H-NMR (CDCl₃: CF₃COOD (2:1): $\delta = 8.5 - 9.1$ (arom., m), 7.6 - 8.1 (arom., m)

Löslichkeit in Trifluoressigsäure und Pentafluorphenol (>> 0,1 Gew.-%)

5 5-Ring Polyimide (19/20)

10

Das entsprechende s-Triazin Diamin wird zusammen mit einer stöchiometrischen Menge des 5-Ring-Di-Anhydrids in NMP vorgelegt (10 Gew.-%) und zunächst 4 Stunden bei Raumtemperatur gerührt. Die gebildete Polyamidcarbonsäure kann durch Fällen in Methanol gewonnen werden (19). Eine Imidisierung wird durch mehrstündiges Heizen der viskosen Mischung auf 200°C erreicht (Vorschrift analog "Handbook of Polymer Synthesis", Part B, Kapitel 15, H. R. Kricheldorf) und anschließender Fällung in Aceton (20).

Beispiel 20

¹H-NMR (d⁶-DMSO): (19) $\delta = 10.80$ (s, Amid-H), 7,60 - 8,85 (arom., m)

¹H-NMR (CDCl₃): (20) $\delta = 7,60 - 8,85$ (arom., m)

5 s-Triazin-Polymere in LEDs:

10

ITO/PPV (100 nm) Beispiel (16) (100 nm)/Aluminium (1000 nm)

Als Lochleiter wird PPV verwendet (Precursorpolymer/gerakelt mit 150 µm Spalt/thermisch 3 Stunden bei 160°C eliminiert). Hierauf wird der Polyether (16) aus Cyclohexanon (0,3 Gew.-%) gerakelt (80 µm Spalt/75°C). Es wird eine Strom/Spannungskurve aufgenommen, die das Dioden-Verhalten mit und ohne Beispiel 16 charakterisiert.

	Onset Voltage [V]	PM* _{max} [A]	I _{max} [A]
ITO/PPV/Al	3	5*10 ⁻¹⁰	300
ITO/PPV/Beisp.16/Al	4	4*10 ⁻⁶ (=200 Cd/m2)	50

(* A an 200 V/stair pulse 3s/5s delay)

Patentansprüche

1. Polymere und/oder Copolymere mit wiederkehrenden Einheiten der Formel (I)

$$\begin{bmatrix} X^1 & N & X^2 - Y \\ N & N & \end{bmatrix}_q$$
 (1),

- wobei die Reste X¹, X², Y, Z voneinander unabhängig variierbar sind,
 - q für eine ganze Zahl von 3 bis 1 000,
 - X^1 und X^2 unabhängig voneinander für -O-, -NH-, Phenyl oder eine chemische Bindung stehen und
 - Y für einen 2-bindigen Rest steht, ausgewählt aus

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}

$$\mathbb{R}^3$$

$$R^1$$
 R^1

$$- \bigvee_{\mathsf{R}^1} - \bigvee_{\mathsf{R}^1}$$

$$R^2$$
 R^1

$$R^2$$
 R^1

$$\mathbb{R}^{N}$$

$$R^2$$
 R^1

$$\mathbb{R}^2$$
 \mathbb{R}^1

$$\mathbb{R}^2$$

$$R^1$$
 R^2
 R^3

$$R^1$$
 R^2
 R^3

mit p = 0 oder 1

$$R^{10}$$
 R^{11}
 R^{12}
 R^{1}
 R^{1}

$$- \bigvee_{\mathsf{R}^1} \mathsf{o} - \bigvee_{\mathsf{R}^1} \mathsf{o} - \bigvee_{\mathsf{R}^1}$$

$$- \bigvee_{\mathsf{R}^1} \circ - \bigvee_$$

$$- \bigvee_{R^1} \circ - \bigvee_{R^1} \circ - \bigvee_{R^1}$$

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

wobei X³ für

steht,

$$- \sum_{N=1}^{N} \sum_$$

$$- \sum_{N=1}^{N} \frac{1}{R^2}$$

$$-$$

wobei

- R¹, R², R³, R¹⁰ und R¹² unabhängig voneinander für Wasserstoff, gegebenenfalls substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, Alkoxycarbonyl-substituiertes C₁-C₁₀-Alkyl, jeweils gegebenenfalls substituiertes Aryl, Aryl-C₁-C₆-alkyl oder Cycloalkyl stehen,
- R¹¹ für die gleichen Reste wie R¹⁰ oder R¹² mit Ausnahme von Wasserstoff steht, wobei R¹¹ zusätzlich für Sulfonyl oder Sulfoxyl stehen kann, oder
- Y für einen Rest der Formel (II) steht

$$-O \xrightarrow{(R^4)_n} A \xrightarrow{(R^5)_n} O -$$
Baustein Q (II),

wobei

5

R⁴ und R⁵ gleich oder verschieden sind und für Halogen, C₁-C₄-Alkyl, C₆-C₁₂-Aryl oder C₇-C₁₂-Aralkyl stehen,

- n 0 oder eine ganze Zahl von 1 bis 4 bedeutet,
- A für eine chemische Bindung, CO, O, S, SO₂ oder einen Rest der Formel (III) oder (IV)

steht, worin

R⁶ und R⁷ gleich oder verschieden sind und für Wasserstoff,
Halogen, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, oder C₅-C₁₂Cycloalkyl mit gegebenenfalls einem oder mehreren
Alkylsubstituenten, stehen,

p eine ganze Zahl von 4 bis 7 ist,

R⁸ und R⁹ für jedes W individuell wählbar sind und unabhängig voneinander Wasserstoff oder C₁-C₆-Alkyl, bedeuten und

W Kohlenstoff bedeutet,

mit der Maßgabe, daß an mindestens einem Atom W die Reste R⁸ und R⁹ gleichzeitig Alkyl sind,

- m 0 oder eine ganze Zahl von 1 bis 3 bedeutet,
- Z für Wasserstoff, Halogen, CN, gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, C_1 - C_{10} -Alkoxycarbonyl substituiertes C_1 - C_{10} -Alkyl, jeweils gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, Halogen- C_1 - C_6 -alkyl und/oder C_1 - C_6 -Alkoxy substituiertes C_6 - C_{10} -

10

15

Aryl, Aryl- C_1 - C_6 -alkyl, Pyridyl oder Isochinolyl, C_4 - C_{10} -Cycloalkyl oder einen Rest der Formel

- 46 -

wobei R1, R2 und R3 die oben genannte Bedeutung haben,

steht.

- Verwendung von Polymeren und/oder Copolymeren gemäß Anspruch 1 als Schicht in elektrolumineszierender Anordnungen.
- Verwendung von Polymeren und/oder Copolymeren gemäß Anspruch 2 als Elektroneninjektionsschicht, elektronenleitende oder lumineszierende Schicht.
 - 4. Schicht in elektrolumineszierenden Anordnungen, enthaltend Polymere und/oder Copolymere gemäß Anspruch 1.
- 10 5. Elektrolumineszierende Anordnung, enthaltend eine Schicht, die Polymere und/oder Copolymere gemäß Anspruch 1 enthält.

interna* 'si Application No בץ 97/04802

INTERNATIONAL SEARCH REPORT A CLASSIFICATION OF SUB-IPC 6 CO8G73/06 C09K11/06 C08673/10 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C08G C09K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1 EP 0 668 529 A (HOECHST AG) 23 August 1995 X see claim 1 1 EP 0 129 036 A (ALLIED CORP) 27 December X 1984 see claim 1 1 US 4 102 872 A (GRIFFIN WARREN R) 25 July Α 1978 see claim 1 1 US 3 803 075 A (KRAY R ET AL) 9 April 1974 A see claim 1 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. 1 later document published after the international filing date or priority date and not in conflict with the application but or priority date and not in conflict with the application but Special categories of cited documents: cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the international search report Date of the actual completion of theinternational search 22/01/1998

1

Name and mailing address of the ISA

7 January 1998

Fax: (+31-70) 340-3016

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 apo ni.

Authorized officer

Glanddier, A

INTERNATIONAL SEARCH REPORT

Inte onal Application No PO 97/04802

		PQ 97	/04802
C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to class No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Nobrani io Grani
P,X	FINK ET AL: "Aromatic polyethers with 1,3,5-triazine units as hole blocking/electron transport materials in LEDs" PAPERS PRESENTED AT THE SAN FRANCISCO, CALIFORNIA MEETING, DIVISION OF POLYMER CHEMISTRY, INC., AMERICAN CHEMICAL SOCIETY, vol. 38, no. 1, 1 April 1997, pages 323-324, XP002049555 see the whole document		1-5

INTERNATIONAL SEARCH REPORT

IN	TERNATIONAL SEARC		el Application No 97/04802
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0668529 A	23-08-95	JP 7224162 A US 5652327 A	22-08-95 29-07-97
EP 0129036 A	27-12-84	US 4487920 A AU 565083 B AU 2807984 A CA 1214583 A DE 3485356 A JP 1900820 C JP 6017472 B JP 60042423 A	11-12-84 03-09-87 20-12-84 25-11-86 30-01-92 27-01-95 09-03-94 06-03-85
US 4102872 A	25-07-78	NONE	
US 3803075 A	09-04-74	BE 754241 A CA 944095 A DE 2038275 A FR 2057895 A GB 1332511 A NL 7011386 A US 3666723 A	01-02-71 19-03-74 18-02-71 21-05-71 03-10-73 03-02-71 30-05-72

INTERNATIONALER RECHERCHENBERICHT

Intern nales Aktenzeichen EP 97/04802

A. KLASSIFIZIERUNG DES A. DUNGSGEGENSTANDES 1PK 6 C08G73/06 - C08G73/10 C09K11/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der iPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C08G C09K

Recherchierte aber nicht zum Mindestprüfstoft gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evt), verwendete Suchbagriffe)

ategorie*	SENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
	EP 0 668 529 A (HOECHST AG) 23.August 1995	1
(siehe Anspruch 1	,
X	EP 0 129 036 A (ALLIED CORP) 27.Dezember 1984 siehe Anspruch 1	
A	US 4 102 872 A (GRIFFIN WARREN R) 25. Juli 1978	1
	siehe Anspruch 1	1
A -	US 3 803 075 A (KRAY R ET AL) 9.April 1974 siehe Anspruch 1	•
	-/	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsem anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recharchenbericht genannten Veröffentlichung belegt werder soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	werden, wenn die Veröflentlichung mit einer oder menreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheilegend ist
eine Benutzung, eine Ausstellung oder auch neuen werden. "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist. Datum des Abschlusses der internationalen Racherche	*å* Veröffentlichung, die Mitglied derselben Patentlamilie ist Absendedatum des internationalen Recherchenberichts
7.Januar 1998	22/01/1998
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter
Name und Poetanschmi de innovement, P.B. 5818 Patentiaan 2 Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 851 epo nl. Fax: (+31–70) 340–3016	Glanddier, A

INTERNATIONALER RECHERCHENBERICHT

Intern rales Aktenzeichen PC 97/04802

		PC S	7/04802	4
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	nenden Teile	Betr. Anspruch Nr.	┨
(ategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komi	TIBLIOSTI TOILO		4
P,X	FINK ET AL: "Aromatic polyethers with 1,3,5-triazine units as hole blocking/electron transport materials in LEDs" PAPERS PRESENTED AT THE SAN FRANCISCO, CALIFORNIA MEETING, DIVISION OF POLYMER CHEMISTRY, INC., AMERICAN CHEMICAL SOCIETY, Bd. 38, Nr. 1, 1.April 1997, Seiten 323-324, XP002049555 siehe das ganze Dokument		1-5	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichung

ile zur selben Patenttamilie gehören

Interna" sles Aktenzeichen P 97/04802

Angeben zu Veröffentlichung	jie zur seiben Patentiamsie galkreit.	Er 9// 04002	
Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentlamilie	Datum der Veröffentlichung
EP 0668529 A	23-08-95	JP 7224162 A US 5652327 A	22-08-95 29-07-97
EP 0129036 A	27-12-84	US 4487920 A AU 565083 B AU 2807984 A CA 1214583 A DE 3485356 A JP 1900820 C JP 6017472 B JP 60042423 A	11-12-84 03-09-87 20-12-84 25-11-86 30-01-92 27-01-95 09-03-94 06-03-85
US 4102872 A	25-07-78	KEINE	
US 3803075 A	09-04-74	BE 754241 A CA 944095 A DE 2038275 A FR 2057895 A GB 1332511 A NL 7011386 A US 3666723 A	01-02-71 19-03-74 18-02-71 21-05-71 03-10-73 03-02-71 30-05-72