Parenthesis

The distributed property states that a(b+c)=abc, for all $a,b,c\in\mathbb{R}$ The equivalence class of a is [a].

The set A is defined to be $\{1, 2, 3\}$.

The movie tickets costs \$11.50

$$2\left(\frac{1}{x^2 - 1}\right)$$

$$2\left(\frac{1}{x^2 - 1}\right)$$

$$2\left[\frac{1}{x^2 - 1}\right]$$

$$2\left\{\frac{1}{x^2 - 1}\right\}$$

$$2\left\langle\frac{1}{x^2 - 1}\right\rangle$$

$$2\left|\frac{1}{x^2 - 1}\right|$$

$$\frac{dy}{dx}\Big|_x = 1$$

$$\left(\frac{1}{1 + \left(\frac{1}{(x+1)}\right)}\right)$$

Tables:

x	1	2	3	4	5
f(x)	10	11	12	13	14

x	1	2	3	4	5
f(x)	$\frac{1}{3}$	11	12	13	14

Table 1: Data of the f(x)

Table 2: The relation ship between f(x) and f'(x)

f(x)	f'(x)
x > 0	The function $f(x)$ is not increasing.

Arrays

solving an eqn
$$(1)$$

$$5x^2 - 9 = x + 3 \tag{2}$$

$$5x^2 - x - 12 = 0 (3)$$

(4)

$$5x^2 - 9 = x + 3$$

$$5x^2 - x - 12 = 0$$

solving an eqn
$$(5)$$

$$5x^2 - 9 = x + 3 \tag{6}$$

$$5x^2 - x - 12 = 0 (7)$$

(8)