车祸课程在范畴论中 Crash Course in Category Theory

- 不必看明白一切例子
- 右侧是二周目思考题
- A Gentle Introduction to Category Theory

• 思考:标题是什么意思?

思考: 范畴论到底有什么 用?

范畴?

- 为什么要学范畴论?
 - 为什么要学群论? /为什么要学面向对象编程?
 - 价值在于解决原有的问题 → 自身产生有研究价值的问题
- 能不能不要反问我问题?
 - 数学系本科课程: 为什么乘积拓扑空间的定义那么怪? 向量空间的直和与直积呢?
 - 计算机科学: 高阶函数怎么自动求导? 算法验证中的分离逻辑如何推广到高阶情况?
- 基础的定义我都听说过了,有没有什么"大定理"?别的领域用范畴论表述的定理不算.
 - •米田引理,伴随函子定理,Beck 单子性定理,Isbell 对偶定理

• 可不可以写一个程序,输入两个函数 $f,g:(int \rightarrow bool) \rightarrow bool,$ 判 断它们是否相等(假设 int 是大整数不会溢出,输入的函数不会死循环)?

范畴!

- 集合 A,B,C,... 之间有函数 $f:A \to B,g:B \to C$,函数可以复合: $g \circ f:A \to C$,即 $(g \circ f)(x) = g(f(x))$.
- 向量空间 \mathbb{R}^n , \mathbb{R}^m 之间有 $(m \times n)$ 矩阵, 矩阵相乘.
- 复杂度研究中,两个判定问题 P,Q 之间可以有程序 f 多项式时间归约,归约可以串联.

 $(m \times n \times r \times \cdots \times k)$ 的多层数组)

该怎么办?

- 如果命题p可以推出q,q可以推出r,把两者的证明连起来就得到了p推出r的证明.
- 数据库: 集合之间的关系 $P \subseteq A \times B$ 与 $Q \subseteq B \times C$ 可以连接得到 $P \bowtie Q \subseteq A \times C$,即 B 字段互相匹配的记录.

- 如何抽象出一个统一定义?
 - 群的定义是怎么抽象出来的? 编程模式是怎么抽象出来的?

范畴!

思考:是否可以脱离集合语言表述

才能表述范畴?

范畴?语言里面至少需要什么东西

- 假如有
 - 一些东西 A, B, C, \ldots ,叫做"对象";
 - 任意两个对象之间有一些东西 $f,g,...\in \text{hom}(A,B)$,叫做"箭头"或者"态射";
 - 箭头之间可以复合: 如果 $f: A \rightarrow B, g: B \rightarrow C$, 那么 $g \circ f: A \rightarrow C$;
 - 每个对象上有一个箭头 $\mathrm{id}_A: A\to A$,复合它保持不变,即 $f\circ\mathrm{id}_A=f=\mathrm{id}_B\circ f;$
 - $f \circ (g \circ h) = (f \circ g) \circ h;$
- 就称这些东西构成范畴.
- 如何想象范畴: 找好一个例子.

• 假如有

- 一些东西 A, B, C, ..., 叫做"对象";
- 任意两个对象之间有一些东西f,g,... ∈ hom(A,B),叫做"箭头"或者 "态射";
- 箭头之间可以复合: 如果 $f: A \rightarrow B, g: B \rightarrow C$, 那么 $g \circ f: A \rightarrow C$;
- 每个对象上有一个箭头 $\mathrm{id}_A: A \to A$,复合它保持不变,即 $f \circ \mathrm{id}_A = f = \mathrm{id}_B \circ f$;
- $f \circ (g \circ h) = (f \circ g) \circ h;$
- 就称这些东西构成范畴.

范畴!

• 假如有

- 一些东西 A, B, C, ..., 叫做"对象";
- 任意两个对象之间有一些东西f,g,... ∈ hom(A,B),叫做"箭头"或者 "态射";
- 箭头之间可以复合: 如果 $f: A \to B, g: B \to C$, 那么 $g \circ f: A \to C$;
- 每个对象上有一个箭头 $\mathrm{id}_A:A\to A$,复合它保持不变,即 $f\circ\mathrm{id}_A=f=\mathrm{id}_B\circ f;$
- $f \circ (g \circ h) = (f \circ g) \circ h;$
- 就称这些东西构成范畴.

范畴!

一些范畴的例子

- 所有的集合与集合之间的函数构成范畴 Set.
- 所有的集合与集合之间的关系构成范畴 Rel.
- 所有的群与群之间的同态构成范畴 Grp.
- 向量空间与线性映射构成范畴 Vect_ℝ.
- 拓扑空间与连续映射构成范畴 Top.
- 有限状态自动机与自动机之间的模拟关系构成范畴 FSM.
- 图与图同态构成范畴 Graph.
- 很多数学对象与它们之间的映射关系都可以组成范畴
 - 范畴也是数学对象

函子

- 如果有两个范畴 8, 3, 考虑
 - 从 \mathcal{C} 的对象到 \mathcal{D} 的对象的映射F;
 - 对于 \mathscr{C} 中的任何两个对象 A,B,有 $hom(A,B) \to hom(F(A),F(B))$ 的映射;
 - (编程语言中称作 map 或 fmap)
 - 此映射把 id_A 映射到 $id_{F(A)}$,把 $f \circ g$ 映射到 $map_F(f) \circ map_F(g)$.
- 我们称这构成一个函子.
- 数学家的记号: FA, FB, Ff.

- 如果有两个范畴 €, ②, 考虑
 - 从 \mathscr{C} 的对象到 \mathscr{D} 的对象的映射F;

• 如何想象函子?

- 对于 \mathscr{C} 中的任何两个对象 A, B,有 $hom(A, B) \to hom(F(A), F(B))$ 的映射;
- 此映射把 id_A 映射到 $id_{F(A)}$,把 $f \circ g$ 映射到 $map_F(f) \circ map_F(g)$.
- 我们称这构成一个函子.

函子

- 思考:如何在网的比喻中加入图表 交换性的信息?结合律呢?
- 从图表的角度: 范畴是一张网, 函子把一张网不撕裂(但允许把节点和绳子捏到一起)地嵌到另一张网里
- 从数学结构的角度: 从一类数学对象自然地构造另一类数学对象
 - 注意: 不需要构造 $A \to F(A)$ 的箭头! 区分 $A \mapsto F(A)$.
- 例子: 恒同函子 Id: ℰ → ℰ.
 - 给定拓扑空间,抛弃它的拓扑信息得到纯集合 Γ : Top \to Set.
 - 给定集合,生成以它为基底的自由向量空间 $F: \mathsf{Set} \to \mathsf{Vect}_{\mathbb{R}}$.
 - 给定集合,构造这些元素构成的列表 List: Set → Set,或者子集 𝒯: Set → Set.

- 如果有两个范畴 €, ②, 考虑
 - 从 \mathscr{C} 的对象到 \mathscr{D} 的对象的映射F;
 - 对于 \mathscr{C} 中的任何两个对象 A, B,有 $hom(A, B) \to hom(F(A), F(B))$ 的映射;
 - 此映射把 id_A 映射到 $id_{F(A)}$,把 $f \circ g$ 映射到 $map_F(f) \circ map_F(g)$.

关于相等

- 我们称这构成一个函子.
 - 态射(箭头)的相等没有问题: f = g.
 - 对象的相等:
 - $\{true, false\} \stackrel{?}{=} Bool \stackrel{?}{=} \{0,1\}$
 - $\mathbb{Z}/2\mathbb{Z} = \{1, -1\}$
 - 对象的同构: 态射 $f: A \to B$,使得存在 $g: B \to A$ 满足 $f \circ g = \mathrm{id}_B$, $g \circ f = \mathrm{id}_A$.
 - 对象之间可以有多个同构
 - 对象不应该谈相等 函子也不应该谈相等.

自然变换

- 如果有两个函子 $F,G:\mathscr{C}\to\mathscr{D}$,
 - 对于每个对象 $A \in \mathcal{C}$,都有箭头 $\eta_A : F(A) \to G(A)$,
 - 对于每个箭头 $f: A \rightarrow B$,右侧图表交换,
- 就称这一组箭头为自然变换 η.

$$egin{aligned} F(A) & \stackrel{\mathsf{map}_F(f)}{\longrightarrow} F(B) \ & \eta_A igg| & \downarrow \eta_B \ & G(A) & \stackrel{\mathsf{map}_F(f)}{\longrightarrow} G(B) \end{aligned}$$

- 如果有两个函子 $F,G:\mathscr{C}\to\mathscr{D}$,
 - 对于每个对象 $A \in \mathcal{C}$,都有箭头 $\eta_A : F(A) \to G(A)$,
 - 对于每个箭头 $f: A \to B$,右侧图表交换,

自然变换

$$egin{aligned} F(A) & \longrightarrow^{ ext{map}_F(f)} & F(B) \ \eta_A igg| & \downarrow^{\eta_B} \ G(A) & \longrightarrow^{ ext{map}_G(f)} & G(B) \end{aligned}$$

- 就称这一组箭头为自然变换 η.
 - 如何想象自然变换?
 - 图表的角度: 将一个函子沿着范畴 ②中的箭头网络拖动到另一个函子
 - 数学结构的角度: 顾名思义
 - 例子:
 - 恒同自然变换 $F \rightarrow F$.
 - 任给一个列表 $\ell \in \text{List}(X)$,可以去重得到子集 unique(ℓ) $\subseteq X$ (unique(ℓ) $\in \mathcal{P}(X)$)
 - unique : List $\rightarrow \mathscr{P}$.
 - 向量空间的双重对偶是函子 \square^{**} : $Vect_{\mathbb{R}} \to Vect_{\mathbb{R}}$. 而 $V \to V^{**}$ 是恒同函子到双重对偶函子的自然变换 ϵ : $Id \to \square^{**}$.

- 如果有两个函子 $F,G:\mathscr{C}\to\mathscr{D}$,
 - 对于每个对象 $A \in \mathcal{C}$,都有箭头 $\eta_A : F(A) \to G(A)$,
 - 对于每个箭头 $f: A \to B$,右侧图表交换,

自然变换

- 就称这一组箭头为自然变换 η.
 - 自然变换 $\eta: F \to G, \delta: G \to H$ 可以复合得到 $\delta \circ \eta: F \to H$.
 - 固定两个范畴 ℰ, Ͽ, 可以构造一个新范畴: 对象是函子, 态射是 自然变换.
 - 如果自然变换 $\eta: F \to G, \epsilon: G \to F$ 满足 $\eta \circ \epsilon, \epsilon \circ \eta$ 都是恒同自然变换,这两个函子就自然同构.
 - 对象之间不该谈相等,应该谈同构; 函子之间不该谈相等, 应该谈自然同构.
 - 范畴之间有函子, 函子之间有自然变换. 范畴之间的相等关系应该换成什么?
 - 有两个函子 $F: \mathcal{C} \to \mathcal{D}, D: \mathcal{D} \to \mathcal{C}$,使得 $F \circ G = G \circ F$ 都自然同构于恒同函子. 此时称两个范畴等价.

- 思考: 范畴/函子/自然变换三层关系, 能不能推广到更高层?
- 思考:这两个自然同构之间还要不 要满足其他等式?

- 如果有两个函子 $F,G:\mathscr{C}\to\mathscr{D}$,
 - 对于每个对象 $A \in \mathcal{C}$,都有箭头 $\eta_A : F(A) \to G(A)$,
 - 对于每个箭头 $f: A \to B$,右侧图表交换,

间奏

- 就称这一组箭头为自然变换 η.
 - 对偶范畴: 把范畴 8 所有箭头反过来得到另一个范畴 8°°.
 - 乘积范畴: $\mathcal{C} \times \mathcal{D}$, 对象是 (A, B), 态射是 (f, g).
 - 二元函子: $\mathscr{C} \times \mathscr{D} \to \mathscr{E}$. Haskell 中有 Bifunctor.
 - hom: ℰ^{op} × ℰ → Set 也是函子.
 - (范畴论中最重要的函子)

$$egin{aligned} F(A) & \longrightarrow \operatorname{\mathsf{map}}_F(f) \ & \eta_A igg| & \downarrow \eta_B \ & G(A) & \longrightarrow G(B) \end{aligned}$$

思考:如何去除 hom 对范畴 Set 的依赖?即如何推广范畴的定义,使得这里的 Set 可以换成其他的范畴?可以换成哪些?

- 单元素集合 {★}, 单元素群 1, 单元素类型 Unit (Python: NoneType, C: void)
- 特点: 只有唯一的映射 $X \rightarrow 1$.
- 如果某个对象 T 满足 hom(X,T) 对于所有对象 X 都恰好有一个元素,就称为终对象.
- 如果某个对象 T 满足 hom(T,X) 对于所有对象 X 都恰好有一个元素,就称为始对象.
- 图表思维: 始对象有一堆箭头指出去; 终对象有一堆箭头指进来.
- 所有的终对象之间都有唯一的同构.

- 集合的 Descartes 积: $A \times B = \{(a,b) \mid a \in A, b \in B\}$.
- 向量空间的直积: $V \times W$, 加法满足 (a,b) + (c,d) = (a+c,b+d).
- 拓扑空间的乘积,上面配备乘积拓扑.
- "且"命题: p∧q.

- 集合可以通过元素描述. 其他事物有没有"元素"?
 - hom(1,X): 集合范畴中 hom $(1,X) \cong X$, 拓扑空间的点集.
 - •除了点之外还有其他信息,如何捕捉?
- hom(\square , X). 这是函子 $\mathscr{C}^{op} \to Set$.

- 终对象: hom(□,1) ≃ { ★ }.
- 乘积: $hom(\Box, A \times B) \cong hom(\Box, A) \times hom(\Box, B)$.
- 双线性映射: Bilinear(A, B; \square) \cong hom($A \otimes B$, \square).
- 子集: $\mathcal{P}(X) \cong \text{hom}(X, \text{bool})$.

- 思考: 对于拓扑空间 X,假如 $\mathcal{O}(X)$ 是所有开集的集合,那么有 $\mathcal{O}(X) \cong \text{hom}(X, S)$. S 是什么空间?
- 思考: 函子 Ring → Set 也可以写成 hom(R, □). R 是什么? 此事是否可以推广?

- 用 $F(\Box) \cong \text{hom}(A, \Box)$ 或者 $G(\Box) \cong \text{hom}(\Box, A)$ 来定义对象 A,称作泛性质.
 - $F: \mathscr{C} \to \mathsf{Set}, G: \mathscr{C}^\mathsf{op} \to \mathsf{Set}.$
- 定义出来唯一吗?

- 用 $F(\square) \cong \text{hom}(A, \square)$ 或者 $G(\square) \cong \text{hom}(\square, A)$ 来定义对象 A.
 - $F: \mathscr{C} \to \mathsf{Set}, G: \mathscr{C}^\mathsf{op} \to \mathsf{Set}.$
- 定义出来唯一吗?

- 用 $F(\square) \cong \text{hom}(A, \square)$ 或者 $G(\square) \cong \text{hom}(\square, A)$ 来定义对象 A.
 - $F: \mathscr{C} \to \mathsf{Set}, G: \mathscr{C}^\mathsf{op} \to \mathsf{Set}.$
- 定义出来唯一吗?

- 如果 $hom(A, \square) \cong hom(B, \square)$,那么 $id_A \in hom(A, A)$ 对应到 f: hom(B, A),反过来也有 id_B 对应到 g: hom(A, B). 如何保证 $f \circ g = id_A$ 成立?自然同构. $g \circ f$ 是对称的.
- 若 $hom(A, \square) \cong hom(B, \square)$ 则 $A \cong B$.
- 每一个自然同构 hom(A, \square) \cong hom(B, \square) 都对应一个同构 $A \cong B$.
- 每一个自然变换 $hom(A, \square) \to hom(B, \square)$ 都对应一个箭头 $A \to B$.

- 对于态射 $f: A \to B$,有复合操作 $hom(\square, A) \to hom(\square, B)$
 - 如果它是集合上的单射,则称这是单态射(monomorphism)
- 对于态射 $f: A \to B$,有复合操作 $hom(B, \square) \to hom(A, \square)$
 - 如果它是集合上的单射,则称这是满态射 (epimorphism)
- 在集合范畴中满态射就是满射,单态射就是单射.又单又满的态射是同构.
- 环同态 Z → Q 是满态射,也是单态射.环范畴中满射都是满态射,反之不然.
- 又单又分裂满的态射是同构; 又满又分裂单的态射也是同构. (前一页证明了)

- 思考: 预层范畴上的满射与单射, 和每个集合分量上的满射与单射一 样么?
- 如果把单射改成满射,得到的就是 分裂满态射与分裂单态射.请证明 此定义与通常的定义等价.

- 函数: $A \rightarrow B$, 或者写成 B^A .
- $\phi \in \text{hom}(1, A \to B)$, 应该对应一个箭头 $f \in \text{hom}(A, B)$.
- hom(\Box , $A \to B$) 对应 hom($\Box \times A, B$). 配有此自然同构的对象称作指数对象或函数对象.
- 例子:
 - 集合范畴: 函数集合
 - 拓扑空间范畴: 如果存在,则是紧开拓扑
 - 向量空间范畴: 不存在
 - 命题逻辑范畴: "若p则q", 写作 $p \implies q$.

自由一遗忘

- 幺半群是一个集合 M 上面有二元运算·满足
 - **幺**: 有元素 e 使得 $e \cdot x = x = x \cdot e$.
 - 半群: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- 列表: 列表拼接满足结合律, 空列表是幺元.
- 遗忘函子 $U: \mathsf{Mon} \to \mathsf{Set.}$ 输入幺半群,输出它对应的集合(遗忘了二元运算).
- 对于集合 G, hom $(G, U(M)) \cong \text{hom}(\text{List}(G), M)$.
 - 先看 $G = \{x\}$ 只有一个元素的情况.
 - 再看 $G = \{x, y\}$ 只有两个元素的情况.
- 称 List $\dashv U$, 二者呈伴随关系. (如何记住左右: 看在 hom 的哪边)

伴随函子

- 伴随函子是唯一的.
 - 如果有 $F \dashv U$, $G \dashv U$, 那么F, G之间有唯一的自然同构.

这句话是错的,为什么?

- 右伴随同理.
- 伴随函子的例子(盲人摸象!):
 - 自由 遗忘伴随: 自由群/环/向量空间/域、从半群构造群、从群构造交换群.
 - Stone Čech 完备化 H从紧 Hausdorff 空间范畴到拓扑空间范畴的遗忘.
 - 离散 遗忘 混沌三重伴随: 拓扑空间范畴与集合范畴, 有向图范畴.
 - 右边有时还有一重: 取连通分支函子.
 - 遗忘 余自由伴随: Mon → Grp 取出可逆元素,如 Z/12Z 的可逆元 {1,5,7,11}.

伴随函子

- 伴随函子的复合: 如果 $L_1 \dashv R_1$, $L_2 \dashv R_2$, 那么计算
 - $hom(L_1L_2A, B) \cong hom(L_2A, R_1B) \cong hom(A, R_2R_1B)$.
- 因此 $L_1 \circ L_2 \dashv R_2 \circ R_1$.
- 如果到这里我还没有讲够时间,请未来的我临场发挥一下.