Notas de Álgebra Moderna IV. Una introducción a la teoría de categorías.

Cristo Daniel Alvarado

21 de febrero de 2024

Índice general

1.	Clases y conjuntos	2
	1.1. Axiomas de Von-Newmann-Gödel	2
2.	Categorias	5
	2.1. Conceptos Fundamentales	5

Capítulo 1

Clases y conjuntos

1.1. Axiomas de Von-Newmann-Gödel

Antes de decantarnos totalmente a nuestro estudio de las categorías, primero nos enfocaremos en estudiar a los objetos que se van a usar (las clases).

Aceptamos la existencia de *objetos primitivos*, las cuales son clases y conjuntos, dotadas de dos relaciones primitivas, la pertenencia \in e igualdad =. Denotamos a los objetos primitivos por letras en mayúsculas.

Definición 1.1.1 (Axiomas de NBG)

Se tienen los siguientes axiomas:

- A1. Todo conjunto es una clase.
- A2. Si $x \in A$, $\forall x \in B$ y $x \in B$, $\forall x \in A$, entonces A = B.
- A3. Si $A \in B$, entonces A es un conjunto.
- A4. Si P(x) es una propiedad definida sobre el parámetro x que se recorre sobre conjuntos, entonces existe una clase [x|P(x)] tal que para cada conjunto y.

$$y \in [x|P(x)] \iff P(y)$$

- A5. Si X, Y son conjuntos, entonces [X, Y] es un conjunto y se denota por $\{X, Y\}$ (ver ejemplo 1.1.3).
- A6. Si X es un conjunto, entonces $\{X\}$, $\{X, \{X\}\}$,... son conjuntos.
- A7. Existe un conjunto inductivo.
- A8. Sea A conjunto, entonces existe un conjunto denotado por $\mathcal{P}(A)$ tal que $B \in \mathcal{P}(A)$ si y sólo si $B \subseteq A$.
- A9. Si $f: A \to B$ donde A es un conjunto, entonces f(A) es un conjunto.

Ejemplo 1.1.1

Construimos al **conjunto vacío** \emptyset como $\emptyset = [x | x \neq x]$ (usando a A4).

Ejemplo 1.1.2

Set = [x|x = x] (usando a A4).

Ejemplo 1.1.3

Si X y Y son conjuntos, entonces

$$[X,Y] = [z|z = x \text{ o } z = y]$$

(construida por el A4).

Ejemplo 1.1.4

Si X es un conjunto, entonces $X \cup \{X\}$ es un conjunto y se denomina el **sucesor de** X.

Definición 1.1.2

Sea A una clase. Se define

$$\bigcup A = \bigcup_{X \in A} X = [x \big| \exists X \in A \text{ tal que } x \in X]$$

Si A es un conjunto, $\bigcup A$ es un conjunto.

Definición 1.1.3

Un conjunto A se denomina **inductivo** si

- I. $\emptyset \in A$.
- II. $X \in A \Rightarrow X \cup \{X\} \in A$.

Proposición 1.1.1

 \emptyset es un conjunto.

Demostración:

Sea A un conjunto inductivo (el cual existe por A7), entonces $\emptyset \in A$, luego por A3, \emptyset es un conjunto.

Definición 1.1.4

Se dice que B es subclase de A, si $x \in A$ para todo $x \in B$, y se denota por $B \subseteq A$.

Proposición 1.1.2

Si $B \subseteq A$ y A es conjunto, entonces B es conjunto.

Demostración:

Como $B \subseteq A$, entonces $B \in \mathcal{P}(A)$, luego B por A3, B es conjunto.

Esta proposición es necesaria pues no sabemos si las subclases de conjuntos son conjuntos.

Definición 1.1.5

Si x, y son conjuntos, se define:

$$(x,y) = \{\{x\}, \{x,y\}\}$$

Si A y B son clases, se define

$$A \times B = [(x, y) | x \in A \ y \ y \in B]$$

Ejercicio 1.1.1

Si A y B son conjuntos, entonces $A \times B$ es conjunto.

Demostración:

Definición 1.1.6

Una función de A en B es una subclase $F \subseteq A \times B$ tal que $(x, y), (x, z) \in F \Rightarrow y = z$.

Ejemplo 1.1.5

Set no es un conjunto.

Demostración:

Supóngase que Set es un conjunto. Sea

$$X = [x \big| x \notin x]$$

Si $x \in X$, entonces x es un conjunto (por A3) luego $x \in$ Set, es decir que x es un conjunto. Por tanto, $X \subseteq$ Set, esto es que X es un conjunto. Luego sucede que $X \in X$ o $X \notin X$ (por como se formó la clase X a partir de A4).

Por ende, $X \in X \iff X \notin X \#_c$. Luego Set no es un conjunto.

Ejemplo 1.1.6

Denotamos por $\mathcal{G} = [G|G \text{ es grupo}]$, y $\mathcal{S} = [S_X|X \in \text{Set}]$. Si sucediera que S fuese conjunto, tomando $f: \mathcal{S} \to \text{Set}$, $S_X \mapsto X$ es una función, luego $F(\mathcal{S}) = \text{Set}$ es un conjunto, lo cual no puede ser. Por tanto, como $\mathcal{S} \subseteq \mathcal{G}$, se sigue que \mathcal{G} es clase.

Capítulo 2

Categorias

2.1. Conceptos Fundamentales

Antes de comenzar aceptaremos como válido al siguiente axioma:

A10. Limitación de tamaño. Una clase es un conjunto si y sólo si no es biyectivo con Set.

Ahora si con la parte de categorías.

Definición 2.1.1

Una categoría \mathcal{C} consta de lo siguiente:

- 1. Una clase $Obj(\mathcal{C})$ cuyos elementos son llamados **objetos**.
- 2. Para cada par $A, B \in \text{Obj}(\mathcal{C})$ existe un conjunto $\text{Hom}_{\mathcal{C}}(A, B)$ cuyos elementos llamaremos morfismos y, dado un morfismo $f \in \text{Hom}_{\mathcal{C}}(A, B)$ lo denotaremos por $f : A \to B$.
- 3. Para cada objeto $A \in \text{Obj}(\mathcal{C})$ hay un morfismo $1_A \in \text{Hom}_{\mathcal{C}}(A, A)$ llamado la **identidad** de A.
- 4. Hay una ley de composición para una terna de objetos A, B y C:

$$\operatorname{Hom}_{\mathcal{C}}(A, B) \times \operatorname{Hom}_{\mathcal{C}}(B, C) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$$

 $(f, g) \mapsto g \circ f$

que satisface lo siguiente:

I) (Asociatividad). Dado $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ y $g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$ y $h \in \operatorname{Hom}_{\mathcal{C}}(C, D)$ se cumple que:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

II) Dado un morfismo $f \in \text{Hom}_{\mathcal{C}}(A, B)$, se tiene que:

$$f \circ 1_A = f = 1_B \circ f$$

Definición 2.1.2

Si la clase de objetos de la categoría \mathcal{C} es un conjunto, diremos que \mathcal{C} es una categoría pequeña. Más aún, si tenemos un número finito de morfismos, diremos que \mathcal{C} es una categoría finita.

Dadas las definciones anteriores, no se nos da ejemplos concretos de lo que es una categoría, por lo cual procederemos a dar ejemplos de la misma.

Ejemplo 2.1.1

Sea X un conjunto. Denotamos por \mathcal{C}_X a una categoría formada por $\mathrm{Obj}(\mathcal{C}_X) = X$, y tendremos para cualquier par de elementos $x, y \in \mathrm{Obj}(\mathcal{C}_X)$ definimos:

$$\operatorname{Hom}_{\mathcal{C}_X}(x,y) = \begin{cases} \emptyset & \operatorname{si} \quad x \neq y \\ 1_x & \operatorname{si} \quad x = y \end{cases}$$

Ejemplo 2.1.2

Definimos a n por la categoría de un conjunto con n elementos, donde $n \in \mathbb{N}$.