Machine, Data and Learning

Selected slides for lectures on ML Topic

Generalization & Goodness of Fit

 Based on Chapter 1 of Python Machine Learning by Example by Yuxi Liu

• **Generalization** refers to how well the concepts learned by a ML model generalizes to specific examples or data not yet seen by the model.

– ...

- Goodness of fit describes how well a model fits for a set of observations.
 - Overfitting and Underfitting

Overfitting

- Phenomenon of extracting too much information from training sets or memorization can cause overfitting
 - Makes ML model work well with training data called low bias
 - Bias refers to error due to incorrect assumptions in learning algorithm
 - However, does not generalize well or derive patterns, performs poorly on test datasets called high variance
 - Variance measures error due to small fluctuations in training set

Underfitting

- Model is underfit if it does not perform well on training sets and will not do so on test sets
- Occurs when we are not using enough data to train or if we try to fit wrong model to the data
 - E.g., if you do not read enough material for exam or if you prepare wrong syllabus
- Called high bias in ML although variance is low [i.e. consistent but in a bad way]
- May need to increase number of features since it expands the hypothesis space.

Goodness of fit

For same data:

High bias (underfit)

- If the model is too simple and has very few parameters then it may have high bias and low variance
- If the model has large number of parameters it may have high variance and low bias
- We need to find a right/good balance without overfitting or underfitting the data
- As more parameters are added to a model
 - Complexity of the model rises
 - Variance becomes primary concern while bias falls steadily.

- Suppose a training set consists of points x1, ..., xn and real values yi associated with each point xi
- We assume there is a function $y = f(x) + \mathcal{E}$, where the noise \mathcal{E} has zero mean and variance σ^2
- Find $\hat{f}(x)$, tht approximates f(x) as well as possible
- To measure how well the approximation was performed, we minimize the mean square error $(y \hat{f}(x))^2$
- A number of algorithms exist to find $\hat{f}(x)$, that generalizes to points outside of our training set

- Variance measures how far a set of (random) numbers are spread out from their average value.
- Measured as expectation of the squared deviation of a random variable from its mean.

$$Var(X) = E[(x - \mu)^{2}]$$

$$Var(X) = E[(x - E[x])^{2}]$$

$$= E[x^{2} - 2xE[x] + E[x]^{2})$$

$$= E[x^{2}] - 2E[x]E[x] + E[x]^{2}$$

$$= E[x^{2}] - E[x]^{2}$$

• Turns out expected (mean squared) error of \vec{f} on an unseen sample in general can be decomposed as:

where,
$$E\left[\left(y-\hat{f}(x)\right)^{2}\right] = (Bias[\hat{f}(x)])^{2} + Var[\hat{f}(x)] + \sigma^{2}$$
where,
$$Bias\left(\hat{f}(x)\right) = E\left[\hat{f}(x) - f(x)\right]$$

$$= E\left[\hat{f}(x)\right] - E\left[f(x)\right] = E\left[\hat{f}(x)\right] - f(x)$$
Since f is deterministic, $E[f] = f$

and
$$Var[\hat{f}(x)] = E[\hat{f}(x)^2] - E[\hat{f}(x)]^2$$

Note that all three terms are positive

Notations:

$$Var[x] = E[x^2] - (E[x])^2$$

 $E[X^2] = Var(X) + (E[x])^2$

Given
$$y = f + \varepsilon$$
 and $E[\varepsilon] = 0$, $E[y] = E[f + \varepsilon] = E[f] = f$
Since $Var[\varepsilon] = \sigma^2$, $Var[y] = E[(y - E[y])^2] = E[(y - f)^2]$
 $= E[(f + \varepsilon - f)^2] = E[\varepsilon^2] = Var[\varepsilon] + (E[\varepsilon])^2 = \sigma^2$

 The expected error on an unseen sample x can be decomposed as:

$$E[(y-\hat{f})^{2}] = E[(f+\varepsilon-\hat{f})^{2}]$$

$$= E[(f+\varepsilon-\hat{f}+E[\hat{f}]-E[\hat{f}])^{2}]$$

$$= E[(f-E[\hat{f}])^{2}] + E[\varepsilon^{2}] + E[(E(\hat{f})-\hat{f})^{2}]$$

$$+ 2E[(f-E[\hat{f}])\varepsilon] + 2E[\varepsilon(E(\hat{f})-\hat{f})] + 2E[(E(\hat{f})-\hat{f})(f-E[\hat{f}])]$$

$$= (f-E(\hat{f}))^{2} + E(\varepsilon^{2}) + E[(E[\hat{f}]-\hat{f})^{2}]$$

$$+ 2(f-E[\hat{f}])E(\varepsilon) + 2E(\varepsilon)E(E[\hat{f}]-\hat{f}] + 2E[E[\hat{f}]-\hat{f}](f-E[\hat{f}])$$

=
$$(f - E[\hat{f}])^2 + E[\varepsilon^2] + E[(E[\hat{f}] - \hat{f})^2]$$

= $(f - E[\hat{f}])^2 + Var[y] + Var[\hat{f}]$
= $Bias[\hat{f}]^2 + Var[y] + Var[\hat{f}]$
= $Bias[\hat{f}]^2 + \sigma^2 + Var[\hat{f}]$

Hence the derivation.

Avoiding Overfitting

- A variety of techniques to avoid overfitting:
 - Cross-validation
 - Regularization
 - Feature selection
 - Dimensionality reduction

Non-exhaustive Cross-validation

Exhaustive Cross-validation

Nested Cross-validation

- Popular way to tune parameters of an algorithm
- One version: k-fold cross validation with validation and test set
- Lets say parameter X needs tuning
 - Possible values 10, 20, 30, 40, 50

Nested Cross-validation

- k = 7 in our example
 - One set each picked as Test and Validation, (k-2) picked for training
- For the picked Test set
 - Perform k-fold cross validation on Train & Validation set [Here k = 6]
 - Compute the average training error for each value of X
 - Pick the best X
- Repeat for each possible Test set [i.e. 7 times]
- Pick X that was returned maximum times to outer loop

Regularization

Regularization

- Let $\hat{f}(x) = \theta_0 + \theta_1 x^2 + \theta_3 x^2 + \theta_4 x^3$
- We want to minimize the MSE:

$$\frac{1}{m} * \min_{\theta_0, \theta_1, \theta_3, \theta_4} \sum_{i=1}^{m} (\hat{f}_{\theta}(x^{(i)}) - y^{(i)})^2$$

- where m is the number of training samples, theta's are the weight parameters
- Let MSE be represented by $I(\theta)$
- Lets say we want to penalize the higher order terms (2 and 3)

Regularization

- Can add penalty terms say $+1000\theta_3 + 1000\theta_4$
- The effect of this would be that θ_3 and θ_4 need to be quite small to minimize error
- A significantly high penalty can actually convert a overfit problem to an underfit problem
 - Since all the terms with high regularization parameter would become 0 or close to 0
 - E.g. if all terms except θ_0 have a high enough regularization parameter then $\hat{f}(x)$ can become a constant !!!

Feature Selection

- Filter methods: ...
- Wrapper methods: ...
 - Recursive Feature Elimination
- Embedded methods: ...

Dimensionality Reduction

Data Preprocessing

 A popular methodology in data mining is CRoss Industry Standard Process for data mining (CRISP DM)

• ...

Feature Engineering

•

- One-hot-encoding or one-of-K: Refers to splitting the column which contains numerical *categorical* data to many columns depending on the number of categories present in that column.
 - Each column contains "0" or "1" corresponding to which column it has been placed.

Feature Engineering

Fruit	Categorical value of fruit	Price
apple	1	5
mango	2	10
apple	1	15
orange	3	20

After one hot encoding

apple	mango	orange	price
1	0	0	5
0	1	0	10
1	0	0	15
0	0	1	20

Feature Engineering

•