76. Seen to we cologoria addiso y X & consider por sumanches directos. Entonces 00 X y X es cerrado you isomortismos.

Demostración.

Sean XXV & & tales que X = W. Lugo 7 9.X > W

Isomerfismo en W. En particular y es un split-mono
4 por lo tanto W en conjudo a la familia 39:X > W?

es un approducto para X. De modo que si X e X, por
ser cerrada por sumandos directos, entoreos We X.

De lo antrior se sigue que X es errada por somerfismos.

n



## Ejercicios 54-71

## Luis Gerardo Arruti Sebastian Sergio Rosado Zúñiga

- **Ej 54.** Sea  $G: \mathscr{A} \longrightarrow \mathscr{B}$  un funtor contravariante entre categorías abelianas. Pruebe que las siguientes condiciones son equivalentes:
  - a) G es exacto a izquierda (derecha).
  - b)  $G_{op} := G \circ D_{\mathscr{A}^{op}} : \mathscr{A}^{op} \longrightarrow \mathscr{B}$  es exacto a izquierda (derecha).
  - c)  $G^{op} := D_{\mathscr{B}} \circ G \colon \mathscr{A} \longrightarrow \mathscr{B}^{op}$  es exacto a derecha (izquierda).

Observamos que, como  $D_{\mathscr{A}^{op}}$  es contravariante, entonces  $G_{op}$  es covariante. Sea  $0 \longrightarrow M_1 \xrightarrow{f_1^{op}} M_2 \xrightarrow{f_2^{op}} M_3$  una sucesión exacta en  $\mathscr{A}^{op}$ . Como  $\mathscr{A}$  y  $\mathscr{B}$  son categorías abelianas en particular son exactas y  $\mathscr{A}^{op}$ ,  $\mathscr{B}^{op}$  también lo son, así,  $M_3 \xrightarrow{f_2} M_2 \xrightarrow{f_1} M_1 \longrightarrow 0$  es exacta en  $\mathscr{A}$ , y como G es exacto a izquierda, entonces

$$0 \longrightarrow G(M_1) \xrightarrow{G(f_1)} G(M_2) \xrightarrow{G(f_2)} G(M_3)$$
 es exacta.

Como  $G(f_i) = G \circ D_{\mathscr{A}^{op}}(f_i^{op})$  para  $i \in \{1, 2\},$  y  $G(M_j) = G \circ D_{\mathscr{A}^{op}}(M_j)$  para  $j \in \{1, 2, 3\},$  entonces  $0 \longrightarrow G_{op}(M_1) \xrightarrow{G_{op}(f_1^{op})} G_{op}(M_2) \xrightarrow{G_{op}(f_2^{op})} G_{op}(M_3)$  es exacta y en consecuencia  $G_{op}$  es exacta a izquierda.

 $b \Rightarrow a$  Supongamos  $G_{op}$  es exacta a izquierda.

Sea  $M_3 \xrightarrow{f_2} M_2 \xrightarrow{f_1} M_1 \longrightarrow 0$  una sucesión exacta en  $\mathscr{A}$ , entonces  $0 \longrightarrow M_1 \xrightarrow{f_1^{op}} M_2 \xrightarrow{f_2^{op}} M_3$  es exacta en  $\mathscr{A}^{op}$ . Como  $G_{op}$  es exacta a izquierda  $0 \longrightarrow G_{op}(M_1) \xrightarrow{G_{op}(f_1^{op})} G_{op}(M_2) \xrightarrow{G_{op}(f_2^{op})} G_{op}(M_3)$  es exacta en  $\mathscr{B}$ , pero  $G_{op}(M_i) = G(M_i)$  para  $i \in \{1, 2\}$  entonces  $0 \longrightarrow G(M_1) \xrightarrow{G(f_1)} G(M_2) \xrightarrow{G(f_2)} G(M_3)$  es exacta en  $\mathscr{B}$  y en consecuencia G es exacta.

 $\overline{(a) \Rightarrow c)}$  Supongamos G es exacta a izquierda.

Observemos que  $G^{op}$  es covariante por ser  $D_{\mathscr{B}}$  contravariante. Sea  $M_1 \stackrel{f_1}{\longrightarrow} M_2 \stackrel{f_2}{\longrightarrow} M_3 \longrightarrow 0$  una sucesión exacta en  $\mathscr{A}$ , entonces  $0 \longrightarrow G(M_3) \stackrel{G(f_2)}{\longrightarrow} G(M_2) \stackrel{G(f_1)}{\longrightarrow} G(M_1)$  es exacta en  $\mathscr{B}$  por ser G exacta, así por 1.7.3  $G(M_1) \stackrel{G(f_1))^{op}}{\longrightarrow} G(M_2) \stackrel{G(f_2))^{op}}{\longrightarrow} G(M_3) \longrightarrow 0$  es exacta en  $\mathscr{B}^{op}$ . Pero  $D_{\mathscr{B}}$  manda  $B \stackrel{f^{op}}{\longrightarrow} A$  en  $A \stackrel{f}{\longrightarrow} B$ , entonces  $G(M_i) = D_{\mathscr{B}} \circ G(M_i)$  para  $i \in \{1, 2, 3\}$  y  $D_{\mathscr{B}} \circ G(f_j) = (G(f_j))^{op}$  para  $j \in \{1, 2\}$ , así  $G^{op}(M_1) \stackrel{G^{op}(f_1)}{\longrightarrow} G^{op}(M_2) \stackrel{G^{op}(f_2)}{\longrightarrow} G^{op}(M_3) \longrightarrow 0$  es exacta en  $\mathscr{B}^{op}$ , y así  $G^{op}$  es exacta a derecha.

 $c) \Rightarrow a$  Supongamos  $G^{op}$  es exacta a derecha.

Sea  $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xrightarrow{} 0$  una sucesión exacta en  $\mathscr A$  entonces, como  $G^{op}$  es exacta a derecha,

$$G^{op}(M_1) \xrightarrow{G^{op}(f_1)} G^{op}(M_2) \xrightarrow{G^{op}(f_2)} G^{op}(M_3) \longrightarrow 0$$
 es exacta en  $\mathscr{B}^{op}$ .

Asi  $0 \longrightarrow G^{op}(M_3) \stackrel{(G^{op}(f_2))^{op}}{\longrightarrow} G^{op}(M_2) \stackrel{(G^{op}(f_1))^{op}}{\longrightarrow} G^{op}(M_1)$  es exacta en  $\mathscr{B}$  pero  $G(M_i) = D_{\mathscr{B}} \circ G(M_i)$  para  $i \in \{1,2,3\}$  y  $D_{\mathscr{B}} \circ G(f_j) = (G(f_j))^{op}$  para  $j \in \{1,2\}$ . Entonces  $0 \longrightarrow G(M_3) \stackrel{G(f_2)}{\longrightarrow} G(M_2) \stackrel{G(f_1)}{\longrightarrow} G(M_1)$  es exacto, es decir, G es exacto a izquierda.

Las equivalencias entre

- a) G es exacto a derecha.
- b)  $G_{op}:=G\circ D_{\mathscr{A}^{op}}\colon \mathscr{A}^{op}\longrightarrow \mathscr{B}$  es exacto a derecha.
- c)  $G^{op} := D_{\mathscr{B}} \circ G \colon \mathscr{A} \longrightarrow \mathscr{B}^{op}$  es exacto a izquierda.

se demuestra de manera análoga a lo anterior.

**Ej 55.** Sean  $\mathscr{A}$  una categoría abeliana y  $A \in \mathscr{A}$ . Entonces los funtores  $Hom_{\mathscr{A}}(A, -)$ :  $\mathscr{A} \to Ab$  y  $Hom_{\mathscr{A}}(-, A) : \mathscr{A} \to Ab$  son aditivos y exactos a izquierda.

Demostraci'on. content...

**Ej 56.** Sean R, S anillos y  $M \in {}_{R}Mod_{S}$ . Entonces el funtor  $M \otimes_{S} - : Mod(S) \rightarrow Mod(R)$  es aditivo y exacto a derecha.

Demostración. content...

**Ej 57.** Sea  $F: \mathscr{A} \longrightarrow \mathscr{B}$  un funtor entre categorías abelianas. Pruebe que F es exacto izquierdo  $\iff F^{op}_{op} := D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}} : \mathscr{A}^{op} \longrightarrow \mathscr{B}^{op}$  es exacto a derecha.

Demostración. Primero observemos que  $F_{op}^{op} = (F_{op})^{op} = (F^{op})_{op}$  $F = (F^{op})^{op}$  y  $F = (F_{op})_{op}$ . Esto pasa por lo siguiente:

$$(F_{op})^{op} = D_{\mathscr{B}} \circ F_{op} = D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}} = F_{op}^{op}.$$

$$(F^{op})_{op} = F^{op} \circ D_{\mathscr{A}^{op}} = D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}} = F_{op}^{op}.$$

$$(F^{op})^{op} = D_{\mathscr{B}^{op}} \circ D_{\mathscr{B}} \circ F = 1_{\mathscr{B}}F = F.$$

$$(F_{op})_{op} = F \circ D_{\mathscr{A}^{op}} \circ D_{\mathscr{A}} = F1_{\circ}D_{\mathscr{A}} = F.$$

Caso 1) F es covariante.

En este caso se tiene que, como  $D_{\mathscr{C}}:\mathscr{C}\longrightarrow\mathscr{C}^{op}$  es un funtor contravariante para cualquier categoría  $\mathscr{C}$ , entonces  $F^{op}_{op}$  es covariante y  $F_{op}$  es contravariante. Como  $F^{op}_{op}=(F_{op})^{op}$  entonces por el ejercicio 54  $F^{op}_{op}$  es exacto a derecha si y sólo si  $F_{op}$  es exacto a izquierda, y como  $(F_{op})_{op}=F$ , entonces  $F_{op}$  es exacto a izquierda si y sólo si  $(F_{op})_{op}=F$  es exacto a izquierda.

Caso 2) F es contravariante.

En este caso se tiene que  $F_{op}^{op}$  es contravariante y  $F_{op}$  es covariante. Como F es contravariante entonces por el ejercicio 54  $F_{op}$  es exacto a izquierda si y sólo si F es exacto a izquierda, y como  $(F_{op}^{op})^{op} = ((F_{op})^{op})^{op} = F^{op}$  entonces por el ejercicio 54  $F_{op}^{op}$  es exacto a derecha si y sólo si  $(F_{op}^{op})^{op} = F^{op}$  es exacto a izquierda. Por lo tanto F es exacto a izquierda si y sólo si  $F_{op}^{op}$  es exacta a derecha.

- **Ej 58.** Para un funtor  $F: \mathscr{A} \longrightarrow \mathscr{B}$  entre categorías abelianas, pruebe que las siguientes condiciones son equivalentes.
  - a) F es exacto a derecha.
  - b) F preserva cokernels, i.e.

$$F(Coker(X \xrightarrow{\alpha} Y)) \simeq Coker(F(X) \xrightarrow{F(\alpha)} F(Y)).$$

c) Para toda sucesión exacta  $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$  en  $\mathscr{A}$ , se tiene que  $F(K) \xrightarrow{F(f)} F(L) \xrightarrow{F(g)} F(M) \longrightarrow 0$  es exacta en  $\mathscr{B}$ .

$$(F_{op}^{op})_{op}^{op} = \{[(F_{op})^{op}]^{op}\}_{op} = (f_{op})_{op} = F$$

por lo tanto  $F_{op}^{op}$  es exacto a izquierda  $\iff$  F es exacto a derecha.

Así por 1.10.3 las siguientes condiciones son equivalentes:

- a\*)  $F_{op}^{op}$  es exacto a derecha.
- b\*)  $F_{op}^{op}$  preserva kernels.
- c\*) Para toda sucesión exacta  $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$  en  $\mathscr{A}^{op}$ , se tiene que  $0 \longrightarrow F^{op}_{op}(K) \xrightarrow{F^{op}_{op}(f)} F^{op}_{op}(L) \xrightarrow{F^{op}_{op}(g)} F^{op}_{op}(M)$  es exacta en  $\mathscr{B}^{op}$ .

Entonces F es exacta a izquierda si y sólo si

para toda sucesión exacta  $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$  en  $\mathscr{A}^{op}$ , se tiene que  $0 \longrightarrow F_{op}^{op}(K) \xrightarrow{F_{op}^{op}(f)} F_{op}^{op}(L) \xrightarrow{F_{op}^{op}(g)} F_{op}^{op}(M)$  es exacta en  $\mathscr{B}^{op}$  si y sólo si

Para toda sucesión exacta  $0 \longrightarrow M \xrightarrow{g^{op}} L \xrightarrow{f^{op}} K \longrightarrow 0$  en  $\mathscr{A}$ , se tiene que  $F_{op}^{op}(M) \xrightarrow{F_{op}^{op}(g)]^{op}} F_{op}^{op}(L) \xrightarrow{F_{op}^{op}(K)]^{op}} F_{op}^{op}(K) \longrightarrow 0$  es exacta en  $\mathscr{B}$ .

Observando que  $F_{op}^{op}(A) = F(A)$  para cada  $A \in \mathscr{A}$  y que para cada

$$\alpha \in Mor(\mathscr{A}^{op}) \ F_{op}^{op}(\alpha) = D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}(\alpha) = [F(\alpha^{op})]^{op}$$

Entonces se tiene que F es exacta a izquierda si y sólo si para toda sucesión exacta  $0 \longrightarrow M \xrightarrow{g^{op}} L \xrightarrow{f^{op}} K \longrightarrow 0$  en  $\mathscr A$  se tiene que  $F(M) \xrightarrow{F(g^{op})} F(L) \xrightarrow{F(f^{op})} F(K) \longrightarrow 0$  en  $\mathscr A$ .

 $a)\Rightarrow b)$  Sea  $\alpha:X\to Y$  en  $\mathscr{A}$ . Luego, se tiene la sucesión exacta  $X\stackrel{\alpha}{\longrightarrow} Y\stackrel{C_{\alpha}}{\longrightarrow} Coker(\alpha)\longrightarrow 0$  en  $\mathscr{A}$ . Ahora, como F es exacta a derecha tenemos que  $F(X)\stackrel{F(\alpha)}{\longrightarrow} F(Y)\stackrel{F(C_{\alpha})}{\longrightarrow} F(Coker(\alpha))\longrightarrow 0$  es exac-

ta en  $\mathscr{B}$ , por lo tanto  $F(C_{\alpha}) \simeq CoIm(F_{\alpha}) \simeq Coker(F_{\alpha})$  en  $Epi_{\mathscr{B}}(\bullet, F(Y))$ .

 $b) \Rightarrow c)$  Supongamos F preserva cokerneles.

Sea  $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$  una sucesión exacta en  $\mathscr{A}^{op}$ . Luego,  $(M \longrightarrow 0) \simeq Coker(L \xrightarrow{g} M)$  y  $(L \xrightarrow{g} M) \simeq Coker(K \xrightarrow{f} L) \dots (*)$  por la exactitud en L; y como F preserva cokernels, aseguramos que F(0) = 0.

En efecto, como ( 0 —  $^{1_0}\!\!\!>\!0$  )  $\simeq Coker($  0 —  $^{1_0}\!\!\!>\!0$  ), y F preserva cokernels, se tiene que

$$(\ F(0) \xrightarrow{1_{F(0)}} F(0)\ ) \simeq Coker(\ F(0) \xrightarrow{1_{F(0)}} F(0)\ ) \simeq Coker(\ F(0) \xrightarrow{0} F(0)\ ).$$
 Por lo tanto  $1_{F(0)} = 0$  y por el ejercicio 51, se tiene que  $F(0) = 0.$ 

Ahora bien, por  $(\ast)$ y dado que F preserva cokerneles, se tiene que

$$(F(M) \longrightarrow 0) \simeq Coker(F(L) \xrightarrow{F(g)} F(M))$$

У

$$(\ F(L) \xrightarrow{F(g)} F(M)\ ) \simeq Coker(\ F(K) \xrightarrow{F(f)} F(L)\ )$$

de donde se sigue que  $F(K) \xrightarrow{F(f)} F(L) \xrightarrow{F(g)} F(M) \longrightarrow 0$  es exacta en  $\mathscr{B}$ .

- **Ej 59.** Si  $G: \mathscr{A} \to \mathscr{B}$  es un funtor contravariante entre categorías abelianas, entonces las siguientes condiciones son equivalentes
  - (a) G es exacto a izquierda.
  - (b) G manda cokerneles en kerneles.
  - (c) Si  $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$  es una sucesión exacta en  $\mathscr{A}$ , entonces  $0 \longrightarrow GM \xrightarrow{Gg} BL \xrightarrow{Gf} GK$  es exacta en  $\mathscr{B}$ .

Demostración.  $(a) \implies (b)$  Bajo estas condiciones, por el Ej. 54c),  $D_{\mathscr{B}}G$  es exacto a derecha y por tanto, por el Ej. 58, preserva cokerneles. Sea

 $\alpha: X \to Y$  en  $\mathscr{A}$ , entonces

$$\begin{split} G\left(Coker\left(\begin{array}{c} X \stackrel{\alpha}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} Y \end{array}\right)\right) &= D_{\mathscr{B}^{op}}\left(D_{\mathscr{B}}G\left(Coker\left(\begin{array}{c} X \stackrel{\alpha}{-\!\!\!\!-\!\!\!-\!\!\!-} Y \end{array}\right)\right)\right) \\ &\simeq D_{\mathscr{B}^{op}}\left(Coker\left(\begin{array}{c} GX \stackrel{G\alpha^{op}}{-\!\!\!\!-\!\!\!-} GY \end{array}\right)\right) \\ &\simeq Ker\left(\begin{array}{c} GY \stackrel{G\alpha}{-\!\!\!\!-\!\!\!\!-} GX \end{array}\right). \end{split}$$

Lo anterior implica que G manda cokerneles en kerneles.

 $(a) \iff (b)$  Sea  $\alpha: X \to Y$  en  $\mathscr{A}$ . Bajo estas hipótesis se tiene que

$$\begin{split} D_{\mathscr{B}}G\left(Coker\left(\begin{array}{c} X \stackrel{\alpha}{-\!-\!-\!-\!-} Y \end{array}\right)\right) &= D_{\mathscr{B}}\left(G\left(Coker\left(\begin{array}{c} X \stackrel{\alpha}{-\!-\!-\!-} Y \end{array}\right)\right)\right) \\ &\simeq D_{\mathscr{B}}\left(Ker\left(\begin{array}{c} GY \stackrel{G\alpha}{-\!-\!-\!-} GX \end{array}\right)\right) \\ &\simeq Coker\left(\begin{array}{c} GX \stackrel{G\alpha^{op}}{-\!-\!-} GY \end{array}\right). \end{split}$$

Lo cual garantiza que  $D_{\mathscr{B}}G$  preserva cokerneles, por lo tanto este funtor es exacto a derecha (por el Ej 58) y así (por el Ej. 54) G es exacto a izquierda.6

 $(a) \iff (c)$  Empleando nuevamente las hipótesis en conjunto los Ejercicios 54 y 58 se tiene que G es exacto a izquierda si y sólo si  $D_{\mathscr{B}}G$  es exacto a derecha, lo cual a su vez es equivalente a que para toda

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} L \stackrel{g}{\longrightarrow} M \longrightarrow 0$$

sucesión exacta en  $\mathscr A$  se tenga que

$$D_BG(K) \xrightarrow{D_BG(f)} D_BG(L) \xrightarrow{D_BG(g)} D_BG(M) \longrightarrow 0$$

es exacta en  $\mathscr{B}^{op}$ . Esto último sucede si y sólo si para toda

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} L \stackrel{g}{\longrightarrow} M \longrightarrow 0$$

sucesión exacta en  $\mathcal{A}$  se tiene que

$$G\left(K\right) \xrightarrow{\left(Gf\right)^{op}} G\left(L\right) \xrightarrow{\left(Gg\right)^{op}} G\left(M\right) \longrightarrow 0$$

es exacta en  $\mathscr{B}^{op}$ , lo cual por su parte es equivalente a que para toda

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} L \stackrel{g}{\longrightarrow} M \longrightarrow 0$$

sucesión exacta en  $\mathscr A$  se tenga que

$$0 \longrightarrow G(M) \xrightarrow{G(g)} G(L) \xrightarrow{G(f)} G(K)$$

es exacta en  $\mathcal{B}$ .

- **Ej 60.** Si  $G: \mathscr{A} \to \mathscr{B}$  es un funtor contravariante entre categorías abelianas, entonces las siguientes condiciones son equivalentes
  - (a) G es exacto a derecha.
  - (b) G manda kerneles en cokerneles.
  - (c) Si  $0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$  es una sucesión exacta en  $\mathscr{A}$ , entonces  $GM \xrightarrow{Gg} BL \xrightarrow{Gf} GK \longrightarrow 0$  es exacta en  $\mathscr{B}$ .

Demostración.  $(a) \iff (b)$  Verificar esta equivalencia se realiza en forma análoga a lo realizado para probar la equivalencia entre los incisos (a) y (b) del Ej. 59, empleando ahora que por el 54 G es exacto a derecha si y sólo si  $D_{\mathscr{B}}G$  es exacto a izquierda, y que por el Teorema 1.10.3  $D_{\mathscr{B}}G$  es exacto a izquierda si y sólo si  $D_{\mathscr{B}}G$  preserva kerneles.

 $(a) \iff (c)$  Se demuestra en forma análoga a lo realizado para probar la equivalencia entre los incisos (a) y (c) del Ej. 59, empleando ahoa que por el 54 G es exacto a derecha si y sólo si  $D_{\mathscr{B}}G$  es exacto a izquierda, y que por el Teorema 1.10.3  $D_{\mathscr{B}}G$  es exacto a izquierda si y sólo si para toda

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} L \stackrel{g}{\longrightarrow} M \longrightarrow 0$$

sucesión exacta en  $\mathcal A$  se tiene que

$$0 \longrightarrow G(K) \xrightarrow{(Gf)^{op}} G(L) \xrightarrow{(Gg)^{op}} G(M)$$

es exacta en  $\mathscr{B}^{op}$ .

- **Ej 61.** Para un funtor  $F: \mathscr{A} \longrightarrow \mathscr{B}$ , entre categorías abelianas, pruebe que las siguientes condiciones son equivalentes:
  - a) F es exacto.
  - b)  $\forall \mathscr{D} = \{A \xrightarrow{f} B \xrightarrow{g} C \}$  en  $\mathscr{A}$ , se tiene que:  $\mathscr{D}$  es exacto en  $\mathscr{A} \Rightarrow F(\mathscr{D})$  es exacto en  $\mathscr{B}$ .

Demostraci'on.

Ej 62. Consideremos el siguiente diagrama conmutativo

$$A_{1} \xrightarrow{u_{1}} A_{2} \xrightarrow{u_{2}} A_{3} \xrightarrow{u_{3}} A_{4} \xrightarrow{u_{4}} A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$A'_{1} \xrightarrow{u'_{1}} A'_{2} \xrightarrow{u'_{2}} A'_{3} \xrightarrow{u'_{3}} A'_{4} \xrightarrow{u'_{4}} A'_{5}$$

y con filas exactas en una categoría abeliana  ${\mathscr A}.$  Pruebe que:

- a) Si  $f_2$  y  $f_4$  son monos y  $f_1$  es epi, entonces  $f_3$  es mono.
- b) Si  $f_2$  y  $f_4$  son epis y  $f_5$  es mono, entonces  $f_3$  es epi.

Demostración. Por el teorema 1.10.9 existe una subcategoría abeliana  $\mathscr{A}'$  de  $\mathscr{A}$  tal que  $\mathscr{A}'$  es subcategoría plena y pequeña de  $\mathscr{A}$  y  $\mathscr{D} \subseteq \mathscr{A}'$ . Por 1.10.10 existe un anillo R y un funtor fiel, pleno y exacto  $F: \mathscr{A}' \longrightarrow Mod(R)$ .

Considerando el diagrama  $F(\mathcal{D})$  en Mod(R)

$$F(A_1) \xrightarrow{F(u_1)} F(A_2) \xrightarrow{F(u_2)} F(A_3) \xrightarrow{F(u_3)} F(A_4) \xrightarrow{F(u_4)} F(A_5)$$

$$\downarrow F(f_1) \qquad \downarrow F(f_2) \qquad \downarrow F(f_3) \qquad \downarrow F(f_4) \qquad \downarrow F(f_5)$$

$$F(A_1') \xrightarrow{F(u_1')} F(A_2') \xrightarrow{F(u_2')} F(A_3') \xrightarrow{F(u_3')} F(A_4') \xrightarrow{F(u_4')} F(A_5')$$

por 1.10.7 se tiene que  $F(\mathcal{D})$  es conmutativo y con filas exactas en Mod(R). Veamos que a) y b) se cumplen para el diagrama en Mod(R).

a) Si  $F(f_2)$  y  $F(f_4)$  son monos y  $F(f_1)$  es epi afirmamos que  $Ker(F(f_3)) = 0$ .

Sea  $x \in Ker(F(f_3)) \le F(A_3)$ , en particular  $F(f_4)F(u_3)(x) = F(u_3')F(f_3)(x)$  el cual es 0, entonces  $x \in Ker(F(f_4)F(u_3)) = Ker(F(u_3))$  pues  $F(f_4)$  es mono, así, como los renglones son exactos,  $x \in Ker(F(u_3)) = Im(F(u_2))$  y por lo tanto existe  $y \in F(A_2)$  tal que  $F(u_2)(y) = x$ .

Ahora,  $F(f_3)(x) = 0$  entonces  $0 = F(f_3)F(u_2)(y) = F(u_2')F(f_2)(y)$  por lo que  $y \in Ker(F(u_2')F(f_2))$  entonces, como  $F(f_2)$  es mono,  $F(f_2)(y) \in Ker(F(u_2')) = Im(F(u_1'))$ . Por lo anterior, se tiene entonces que  $\exists z' \in F(A_1')$  tal que  $F(u_1')(z') = F(f_2)(y)$ , y como  $F(f_1)$  es epi, entonces existe  $z \in F(A_1)$  tal que  $F(f_1)(z) = z'$ , es decir,  $F(u_1')F(f_1)(z) = F(f_2)(y)$  y esto implica que  $F(f_2)(y) = F(f_2)F(u_1)(z)$  pero  $F(f_2)$  es mono en Mod(R), entonces es inyectivo, por lo que  $y = F(u_1)(z)$  y así  $x = F(u_2)F(u_1)(z) = 0$ . Por lo tanto  $F(f_3)$  es mono.

b) Dado un diagrama en  $\mathscr A$  como se muestra en las hipótesis se tiene que el siguiente diagrama es un diagrama conmutativo con renglones exactos en  $\mathscr A^{op}$ 

$$A_{5}^{\prime} \xrightarrow{u_{4}^{\prime op}} A_{4}^{\prime} \xrightarrow{u_{3}^{\prime op}} A_{3}^{\prime} \xrightarrow{u_{2}^{\prime op}} A_{2}^{\prime} \xrightarrow{u_{1}^{\prime op}} A_{1}^{\prime}$$

$$\downarrow f_{5}^{op} \qquad \downarrow f_{4}^{op} \qquad \downarrow f_{3}^{op} \qquad \downarrow f_{2}^{op} \qquad \downarrow f_{1}^{op}$$

$$A_{5} \xrightarrow{u_{4}^{op}} A_{4} \xrightarrow{u_{3}^{op}} A_{3} \xrightarrow{u_{2}^{op}} A_{2} \xrightarrow{u_{1}^{op}} A_{1}$$

Ahora, si  $f_2$  y  $f_4$  son epi y  $f_5$  es mono, entonces  $f_2^{op}$  y  $f_4^{op}$  son monos y  $f_5^{op}$  es epi, así por el inciso a) se tiene que  $f_3^{op}$  es mono lo cual implica que  $f_3$  es epi.

**Ej 63.** Sean  $\mathscr C$  una categoría aditiva, sean  $f:X\to Z,g:Y\to Z$  en  $\mathscr C$ . Si  $\alpha$ , o  $\beta$ , es epi, entonces  $h:X\coprod Y\to Z$  el morfismo asociado a la matriz  $(f\ g)$  es epi.

Demostraci'on. Esta resultado ya fue probado previamente (ver Ej. 48b)).

Ej 64. Sean  $\mathcal A$  una categoría abeliana y el siguiente diagrama

$$A \xrightarrow{\alpha_1} A_1$$

$$\downarrow^{\alpha_2} \qquad \downarrow^{\beta_1}$$

$$A_2 \xrightarrow{\beta_2} Q$$

un push-out en  $\mathscr{A}$ . Así:

- (a) si  $\alpha_1$  es mono, entonces  $\beta_2$  es mono;
- (b)  $\alpha_2$  se factoriza a través de  $\alpha_1$  si y sólo si  $\beta_2$  es split-mono.

Demostración. Notemos primeramente que

$$\begin{array}{ccc} A & \xrightarrow{\alpha_1} & A_1 \\ \alpha_2 & & & \downarrow \beta_1 \\ A_2 & \xrightarrow{\beta_2} & Q \end{array}$$

es un push-out en  $\mathcal A$  si y sólo si

$$Q \xrightarrow{\beta_2^{op}} A_2$$

$$\beta_1^{op} \downarrow \qquad \qquad \downarrow_{\alpha_2^{op}} A_1 \xrightarrow[\alpha_1^{op}]{} A$$

es un pull-back en  $\mathscr{A}^{op}$ . Dado que por el Ej. 48a)  $\mathscr{A}$  es abeliana si y sólo si  $\mathscr{A}^{op}$  lo es, entonces por el corolario 1.10.15 se tiene que:  $\boxed{(a)}$ 

$$\alpha_1$$
 es mono  $\implies {\alpha_1}^{op}$  es epi
$$\implies {\beta_2}^{op} \text{ es epi}$$
$$\implies \beta_2 \text{ es mono.}$$

(b)

$$\alpha_2$$
 se factoriza a través de  $\alpha_1 \iff \alpha_2^{op}$  se factoriza a través de  $\alpha_1^{op}$   $\iff \beta_2^{op}$  es split-epi  $\iff \beta_2$  es split-mono.

**Ej 65.** Pruebe que para una sucesión exacta  $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$  en una categoría abeliana  $\mathscr{A}$  y  $\gamma \in \operatorname{Hom}_{\mathscr{A}}(A, A')$ , las siguientes condiciones se satisfacen:

a) Si  $(B', \alpha', \gamma')$  es un push-out de  $A' \xleftarrow{\gamma} A \xrightarrow{\alpha} B$ , entonces existe  $\beta': B' \to C$  tal que hace conmutar el siguiente diagrama

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\downarrow^{\gamma} \qquad \downarrow^{\gamma'} \qquad \parallel$$

$$0 \longrightarrow A' \xrightarrow{\alpha'} B' \xrightarrow{\beta'} C' \longrightarrow 0 \qquad \dots (*)$$

en  $\mathcal{A}$ , cuyas filas son sucesiones exactas.

b) Si se tiene un diagrama conmutativo como en (\*), con filas exactas, entonces  $(B', \alpha', \gamma')$  es un push-out de  $A' \stackrel{\gamma}{\longleftarrow} A \stackrel{\alpha}{\longrightarrow} B$ .

 $\begin{array}{lll} \textit{Demostraci\'on.} & \text{Puesto que } \mathscr{A} \text{ es abeliana y } 0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0 \text{ es exacta, se tiene entonces que } 0 \longrightarrow C \stackrel{\beta^{op}}{\longrightarrow} B \stackrel{\alpha^{op}}{\longrightarrow} A \longrightarrow 0 \text{ es exacta en } \mathscr{A}^{op}, \text{ además por hip\'otesis } \gamma \in \operatorname{Hom}_{\mathscr{A}}(A,A'), \text{ entonces } \gamma^{op} \in \operatorname{Hom}_{\mathscr{A}^{op}}(A',A). \end{array}$ 

Sea  $(B',\alpha',\gamma')$  un push-out de  $A' \stackrel{\gamma}{\longleftarrow} A \stackrel{\alpha}{\longrightarrow} B$ , entonces  $(B',(\alpha')^{op},(\gamma')^{op})$  es un pull-back de  $A' \stackrel{\gamma^{op}}{\longrightarrow} A \stackrel{\alpha^{op}}{\longleftarrow} B$ , así por 1.10.16 existe  $(\beta')^{op}: C \to B'$  tal que hace conmutar el siguiente diagrama:

$$0 \longrightarrow C \xrightarrow{(\beta')^{op}} B' \xrightarrow{(\alpha')^{op}} A' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

en  $\mathcal{A}^{op}$  cuyas silas son exactas.

Así,  $\beta':B'\to C$  es tal que hace conmutar el siguiente diagrama en  $\mathscr{A}$ , cuyas filas son exactas

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\downarrow^{\gamma} \qquad \downarrow^{\gamma'} \qquad \parallel$$

$$0 \longrightarrow A' \xrightarrow{\alpha'} B' \xrightarrow{\beta'} C' \longrightarrow 0$$

Veamos ahora que se cumple b). Si tenemos un diagrama conmutativo como en (\*) con filas exactas en  $\mathscr{A}$ , entonces tenemos un diagrama conmutativo con filas exactas en  $\mathscr{A}^{op}$  como se muestra en (1). Así, por 1.10.16  $(B', (\alpha')^{op}, (\gamma')^{op})$  es un pull-back de  $A' \xrightarrow{\gamma^{op}} A \xleftarrow{\alpha^{op}} B$  por lo que  $(B', \alpha', \gamma')$  es un push-out de  $A' \xleftarrow{\gamma} A \xrightarrow{\alpha} B$  en  $\mathscr{A}$ .

**Ej 66.** Para una categoría abeliana  $\mathcal{A}$ , pruebe que las siguientes condiciones son equivalentes.

a) El diagrama  $A \xrightarrow{\alpha_2} A_2$  es un Push-out en  $\mathscr{A}$ .  $\begin{array}{c|c} \alpha_1 & & & \\ & & & \downarrow \\ & A_1 \xrightarrow{\beta_1} & Q \end{array}$ 

b) La sucesión

$$A \xrightarrow{\begin{pmatrix} \alpha_1 \\ -\alpha_2 \end{pmatrix}} A_1 \coprod A_2 \xrightarrow{(\beta_1 \ \beta_2)} Q \longrightarrow 0$$

es exacta en  $\mathscr{A}$ .

Demostración. El diagrama  $A \xrightarrow{\quad \alpha_2 \quad} A_2 \quad \text{es un Push-out en } \mathscr A \text{ si y sólo}$   $\alpha_1 \bigg|_{\beta_2} \bigg|_{\beta_2}$   $A_1 \xrightarrow{\quad \beta_1 \quad} Q$ 

si el diagrama

 $Q \xrightarrow{(\beta_2)^{op}} A_2$  es un Pull-back en  $\mathscr{A}^{op}$  lo cual, por la proposición  $(\beta_1)^{op} \bigvee_{A_1} (\alpha_2)^{op} A$ 

1.10.17, es equivalente a que la sucesión

$$0 \longrightarrow Q \xrightarrow{\left(\beta_1^{op}\right)} A_1 \coprod A_2 \xrightarrow{\left(\alpha_1^{op} \left(-\alpha_2\right)^{op}\right)} A$$

es exacta en  $\mathcal{A}^{op}$ . Pero esto pasa si y sólo si

$$A \xrightarrow{\quad (\alpha_1^{op} \ (-\alpha_2)^{op})^{op}} A_1 \prod A_2 \xrightarrow{\quad \left(\beta_2^{op}\right)^{op} \\ \beta_2^{op}\right)} Q \xrightarrow{\quad > 0}$$

es exacta en  $\mathcal A$  si y sólo si

$$A \xrightarrow{\begin{pmatrix} \alpha_1 \\ -\alpha_2 \end{pmatrix}} A_1 \coprod A_2 \xrightarrow{(\beta_1 \ \beta_2)} Q \longrightarrow 0$$

es exacta en  $\mathscr{A}$ .

Ej 67. Sean \( \mathre{A}\) una categoría abeliana y

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\uparrow \downarrow \qquad \qquad \downarrow \gamma' \qquad \downarrow Id_C$$

$$0 \longrightarrow A' \xrightarrow{\alpha'} B' \longrightarrow C \longrightarrow 0$$

un diagrama conmutativo y de filas exactas en  $\mathscr{A}$ . Entonces

$$0 \longrightarrow A \xrightarrow{\begin{pmatrix} \gamma \\ -\alpha \end{pmatrix}} A' \prod B \xrightarrow{\begin{pmatrix} \alpha' & \gamma' \end{pmatrix}} B' \longrightarrow 0$$

Demostración. Notemos que bajo estas hipótesis al pasar a la categoría opuesta se tiene que

es un diagrama conmutativo de filas exactas en  $\mathscr{A}^{op},$  lo cual por el Coloralio 1.10.18 implica que

$$0 \longrightarrow B' \xrightarrow{\begin{pmatrix} \gamma'^{op} \\ \alpha'^{op} \end{pmatrix}} B \coprod A' \xrightarrow{-\gamma^{op}} A \longrightarrow 0$$

es una sucesión exacta en  $\mathscr{A}^{op},$  lo cual sucede si y sólo si

$$0 \longrightarrow A \xrightarrow{-\begin{pmatrix} \gamma \\ -\alpha \end{pmatrix}} A' \prod B \xrightarrow{\begin{pmatrix} \alpha' & \gamma' \end{pmatrix}} B' \longrightarrow 0$$

es una sucesión exacta en  $\mathscr{A}$ , puesto que  $B\coprod A'$  es un biproducto en  $\mathscr{A}$  y en  $\mathscr{A}^{op}$  y además  $A'\coprod B\simeq B\coprod A'$ . Dado que claramente en toda categoría abeliana sucede que si  $f,g\in\mathscr{C}$ 

- a) f es mono si y sólo si -f lo es;
- b) f es un kernel para g si y sólo si -f lo es,

con lo anterior se tiene lo deseado.

**Ej 68.** Sean  $\mathscr A$  una categoría abeliana,  $\{\mu_i\}_{i=1}^n$  una familia de sucesiones en  $\mathscr A$ , con

$$\mu_i: A_i \xrightarrow{f_i} B_i \xrightarrow{g_i} C_i \quad \forall i \in [1, n],$$

$$A := \coprod_{i=1}^{n} A_i, B := \coprod_{i=1}^{n} B_i, C := \coprod_{i=1}^{n} C_i, f = \begin{pmatrix} f_1 & 0 \\ & \ddots & \\ 0 & f_n \end{pmatrix}, g = \begin{pmatrix} g_1 & 0 \\ & \ddots & \\ 0 & g_n \end{pmatrix}$$

$$\mu := \coprod_{i=1}^{n} \mu_i : A \xrightarrow{f} B \xrightarrow{g} C .$$

Entonces  $\mu$  es exacta en  $\mathscr{A}$  si y sólo si  $\forall i \in [1, n] \ \mu_i$  es exacta en  $\mathscr{A}$ .

Demostraci'on. content...

**Ej 68\*.** Sean  $\mathscr A$  una categoría abeliana y  $M \in \mathscr A$ . Pruebe que

- a)  $M \in Proj(\mathscr{A}) \iff \operatorname{Hom}_{\mathscr{A}}(M, \bullet) : \mathscr{A} \to Ab$  es exacto.
- a)  $M \in Inj(\mathscr{A}) \iff \operatorname{Hom}_{\mathscr{A}}(\bullet, M) : \mathscr{A} \to Ab$  es exacto.

Demostración. Observemos que  $\operatorname{Hom}_{\mathscr{A}}(M, \bullet)$  y  $\operatorname{Hom}_{\mathscr{A}}(\bullet, M)$  son aditivos y exactos a izquierda por el ejercicio 55.

 $a), \Rightarrow)$  Supongamos  $M \in Proj(\mathscr{A})$  y sea  $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$  una sucesión exacta en  $\mathscr{A}$ . Como  $\operatorname{Hom}_{\mathscr{A}}(M, \bullet)$  es exacta a izquierda, se tiene que

 $0 \longrightarrow \operatorname{Hom}_{\mathscr{A}}(M,A) \overset{\operatorname{Hom}_{\mathscr{A}}(M,f)}{\longrightarrow} \operatorname{Hom}_{\mathscr{A}}(M,B) \overset{\operatorname{Hom}_{\mathscr{A}}(M,g)}{\longrightarrow} \operatorname{Hom}_{\mathscr{A}}(M,C)$ es exacta en Ab.

Basta mostrar que  $\operatorname{Hom}_{\mathscr{A}}(M,g)$  es epi en Ab. Mostraremos que, de hecho,  $\operatorname{Hom}_{\mathscr{A}}(M,g)$  es suprayectiva.

Sea  $\alpha \in \operatorname{Hom}_{\mathscr{A}}(M,C)$ , como  $0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$  es exacta, se tiene que g es epi y  $g \in \operatorname{Hom}_{\mathscr{A}}(B,C)$  así, como M es proyectivo, existe un  $\eta \in \operatorname{Hom}_{\mathscr{A}}(M,B)$  tal que  $g\eta = \alpha$ , por lo tanto  $\operatorname{Hom}_{\mathscr{A}}(M,g)$  es suprayectivo y en particular es epi, por lo tanto la sucesión

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{A}}(M,A) \xrightarrow{\operatorname{Hom}_{\mathscr{A}}(M,f)} \operatorname{Hom}_{\mathscr{A}}(M,B) \xrightarrow{\operatorname{Hom}_{\mathscr{A}}(M,g)} \operatorname{Hom}_{\mathscr{A}}(M,C) \longrightarrow 0$$
es exacta en  $Ab$ .

 $a), \Leftarrow)$  Supongamos ahora que  $\operatorname{Hom}_{\mathscr{A}}(M, \bullet)$  es exacto. Sea  $h \in \operatorname{Hom}_{\mathscr{A}}(M, C)$  y  $\gamma \in \operatorname{Hom}_{\mathscr{A}}(X, C)$  en epi, entonces tenemos el siguiente diagrama con renglón exacto

$$X \xrightarrow{\gamma} C \longrightarrow 0$$

Como  $\operatorname{Hom}_{\mathscr{A}}(M, \bullet)$  es exacto, entonces

$$\operatorname{Hom}_{\mathscr{A}}(M,X) \xrightarrow[\operatorname{Hom}_{\mathscr{A}}(M,g)]{} \operatorname{Hom}_{\mathscr{A}}(M,C) \longrightarrow 0$$

es exacto en Ab, por lo tanto  $\operatorname{Hom}_{\mathscr{A}}(M,g)$  es epi y en consecuencia suprayectivo. Así como  $\eta \in \operatorname{Hom}_{\mathscr{A}}(M,C)$ , existe  $f \in \operatorname{Hom}_{\mathscr{A}}(M,X)$  tal que  $\operatorname{Hom}_{\mathscr{A}}(M,\gamma)(f) = \eta$  es decir,  $\gamma f = \eta$ , por lo tanto M es proyectivo.

 $b),\Rightarrow)$  Supongamos M es inyectivo en  $\mathscr{A}.$  Sea

 $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$  una sucesión exacta en  $\mathscr{A}$ . Como  $\operatorname{Hom}_{\mathscr{A}}(\bullet,M)$  es un funtor exacto izquierdo contravariante, por el ejercicio 55, entonces

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{A}}(C,M) \xrightarrow{\operatorname{Hom}_{\mathscr{A}}(g,M)} \operatorname{Hom}_{\mathscr{A}}(B,M) \xrightarrow{\operatorname{Hom}_{\mathscr{A}}(f,M)} \operatorname{Hom}_{\mathscr{A}}(A,M)$$
es exacta. Basta probar entonces que  $\operatorname{Hom}_{\mathscr{A}}(f,M)$  es suprayectivo.

Sea  $\eta \in \operatorname{Hom}_{\mathscr{A}}(A,M)$ , como  $0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$  una sucesión exacta en  $\mathscr{A}$ , en particular f es mono así, como M es inyectivo, se tiene entonces que  $\exists \gamma \in \operatorname{Hom}_{\mathscr{A}}(B,M)$  tal que  $\eta = \gamma f$  por lo tanto  $\operatorname{Hom}_{\mathscr{A}}(f,M)$  es suprayectivo, en particular es epi. Así

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{A}}(C,M) \xrightarrow{\operatorname{Hom}_{\mathscr{A}}(g,M)} \operatorname{Hom}_{\mathscr{A}}(B,M) \xrightarrow{\operatorname{Hom}_{\mathscr{A}}(f,M)} \operatorname{Hom}_{\mathscr{A}}(A,M)$$
es exacta en  $Ab$  lo que implica que  $\operatorname{Hom}_{\mathscr{A}}(\bullet,M)$  es exacto.

 $b, \Leftarrow)$  Supongamos  $\operatorname{Hom}_{\mathscr{A}}(\bullet, M)$  es exacto. Si  $\eta \in \operatorname{Hom}_{\mathscr{A}}(A, M)$  y  $\alpha \in \operatorname{Hom}_{\mathscr{A}}(A, X)$  es mono, entonces se tiene el siguiente diagrama con renglón exacto

$$0 \longrightarrow A \xrightarrow{\alpha} X$$

$$\downarrow \\ M$$

como  $\operatorname{Hom}_{\mathscr{A}}(\bullet, M)$  es exacto, entonces

$$\operatorname{Hom}_{\mathscr{A}}(X,M) \overset{\operatorname{Hom}_{\mathscr{A}}(\alpha,M)}{\Longrightarrow} \operatorname{Hom}_{\mathscr{A}}(A,M) \xrightarrow{} 0$$

es exacto, entonces  $\operatorname{Hom}_{\mathscr{A}}(\alpha, M)$  es epi en Ab por lo tanto es suprayectivo.

Así, como  $\eta \in \operatorname{Hom}_{\mathscr{A}}(A, M)$ ,  $\exists \gamma \in \operatorname{Hom}_{\mathscr{A}}(X, M)$  tal que  $\eta = \operatorname{Hom}_{\mathscr{A}}(\alpha, M)(\gamma) = \gamma \circ \alpha$ . Por lo tanto M es proyectivo.

**Ej 69.** Sea  $\mathscr{A}$  una categoría abeliana y  $\beta: I \twoheadrightarrow M$  un split-epi en  $\mathscr{A}$ , con  $I \in Inj(\mathscr{A})$ . Pruebe que  $M \in Inj(\mathscr{A})$ .

Demostración. Sea  $\alpha:M\to I$  tal que  $\beta\alpha=1_M,$  este morfismo existe por ser  $\beta$  split-epi, y consideremos un diagrama en  $\mathscr A$  de la forma

$$A \xrightarrow{f} B$$

$$\downarrow g \qquad \qquad M$$

$$M$$

Como  $\alpha \in \operatorname{Hom}_{\mathscr{A}}(M,I)$ , entonces  $\alpha g:A \to I$ . Como I es inyectivo en  $\mathscr{A}$  existe  $\eta:B \to I$  tal que  $\alpha g=\eta f$ , entonces  $\beta \eta f=\beta \alpha g=1_M g=g$ . Por lo tanto M es inyectivo en A.

- **Ej 70.** Para una categoría abeliana A e  $I \in A$ , pruebe las siguientes condiciones equivalentes
  - a)  $I \in Inj(\mathscr{A})$ .
  - b) Todo mono  $\alpha:I\to X$  en  $\mathscr A$  es split-mono.

Demostración.  $a) \Rightarrow b$  Supongamos I es inyectivo en  $\mathscr A$  y  $\alpha: I \to X$  es mono, entonces se tiene el siguiente diagrama

$$I \xrightarrow{\alpha} X$$

$$Id_{I} \downarrow \qquad \qquad I \qquad .$$

Como I es inyectivo  $\exists \beta: X \to I$  tal que  $\beta \alpha = Id_I$ , es decir,  $\alpha$  es splitmono.

 $b)\Rightarrow a)$ Supongamos que todo mono  $\alpha:I\to X$  en  ${\mathscr A}$  es split-mono.

Consideremos el diagrama en  ${\mathscr A}$ 

$$A \xrightarrow{f} B$$

$$\downarrow \eta \qquad \qquad \downarrow$$

$$I \qquad \qquad .$$

Como  ${\mathscr A}$ es abeliana, existe el Push-out de f y  $\eta$ 



Por el ejercicio 64 a) se tiene que, como f es mono,  $\alpha_2$  es mono, y por el ejercicio 64 b), que  $\eta$  se factoriza a travéz de f si y sólo si  $\alpha_2$  es split-mono. Pero por hipótesis  $\alpha_2$  al ser mono, tiene que ser split-mono, por lo tanto  $\eta$  se factoriza a travéz de f e implica que I es inyectivo.

**Ej 71.** Sean  $\mathscr{A}$  una categoría abeliana y  $\{Q_i\}_{i\in I}$  una familia de objetos en  $\mathscr{A}$  que admite un producto Q. Entonces  $Q\in Inj(\mathscr{A})$  si y sólo si  $\forall i\in I$   $Q_i\in Inj(\mathscr{A})$ .

Demostración. Sean  $\{\mu_i: Q_i \to Q\}_{i \in I}$  y  $\{\pi_i: Q \to Q_i\}_{i \in I}$  las inclusiones y proyecciones naturales de Q y la familia  $\{Q_i\}_{i \in I}$ .

 $\Longrightarrow$  Dado que  $\forall i \in I \ \pi_i \mu_i = 1_{Q_i}$ , se tiene que  $\forall i \in I \ \pi_i : Q \to Q_i$  es un split-epi, con  $Q \in Inj(\mathscr{A})$ . De modo que por el Ej. 69  $\forall i \in I \ Q_i \in Inj(\mathscr{A})$ .

Consideremos un diagrama de la forma

$$\begin{array}{c} X \stackrel{g}{\longrightarrow} Y \\ \downarrow \\ Q \end{array}$$

con g un mono. Luego para cada  $i \in I$  se tiene el siguiente diagrama conmutativo

$$\begin{array}{c} X \stackrel{g}{\longrightarrow} Y \\ f \downarrow & \downarrow \exists \ f_i \ . \\ Q \stackrel{\pi_i}{\longrightarrow} Q_i \end{array}$$

Así, aplicando la propiedad universal del producto a la familia  $\{f_i:Y\to Q_i\}$ , se tiene que  $\exists \ f'\in Hom_{\mathscr{A}}(Y,Q)$  tal que  $\forall \ i\in I \ \pi_if'=f_i$ . Así, si  $i\in I$ ,

$$\pi_i (f'g) = (\pi_i f') g$$

$$= f_i g$$

$$= \pi_i f.$$

Lo anterior, por la propiedad universal del porducto, garantiza que  $f^\prime g = f$  y así se tiene lo deseado.

75. Sen it una categoria balanceado y XEADO SI Codo es del que admite una X-convolvente, entenos este es orienteste esconocifismos.

Demostración. Sean f: C>X y f: C>X X-encluntos de C. Luego se trene el diagrama

cfx fyinish, y fl x váhr

hehif = he (hif) = be fl = f, con lo rual el diagrama

f X

Thehi => hehi es un isomerficamo pues f

x es minimal a izquierdo por ser una

X-envolverte de (...

Anailogamente se obtiene que hihe es un isomorfismo en A, empleando abora la minimalidad a iequiendo de f!

De lo anterior se sique que hi es mono (pues hehi lo es) y esepi (pue hihe lo es), con lo eval hi X > X', ya que de se balanceada.

Ejercicio 87. Secon (X,Y) un para la cotorsión on derechon en una contegorían abelianon A, con sufficientes injectivos. Si y es envolvente, entonces y es envolvente especial.

Den:

Sen (X1Y) un par le cotossión on derecho en una contegoría abeliana A, con sufficientes injectivos y Y envolvente.

Por el vj. 84.- (YP) es un par de cotorsión a derecha en la antegoría ACP (la cuales abeliana), como A tiene suficientes injectivos, entonces ACP tiene suficientes projectivos, mus avin, y Pes encotorités, cubrientes.

Agri per 2.4.2 yor es cubriente especial, entonces y es actionnes envolvente especial.