Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный гехнический университет имени

Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4 «ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ В MULTISIM»

по курсу «Основы электроники»

Студент: Платонова Марина Игоревна		
Группа: ИУ7-31Б		
Студент	подпись, дата	Платонова М.И.
Преподаватель	подпись, дата	_ Оглоблин Д. И.
Оценка		

Оглавление

Параметры диода	3
Задание №5 «Исследование ВАХ полупроводниковых диодов с использованием прибора IV Analyzer»	3
Проверка влияния температуры на диод	5
Задание №6 «Исследование вольтфарадной характеристики полупроводникового диода»	7
Задание №6 «Исследование вольтфарадной характеристики полупроводникового диода»	,

Параметры диода

В работе используется вариант диода №* Variant 92

```
* Variant 92
.model D2C447A D(Is=31.47f Rs=9.494 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=220p M=.5959
+ Vj=.75 Fc=.5 Isr=2.035n Nr=2 Bv=4.7 Ibv=43m
* Nbv=10 Ibv1=3m Nbv1=180
+ Tbv1=-800u)
```

Задание №5 «Исследование ВАХ полупроводниковых диодов с использованием прибора IV Analyzer»

Добавление прибора и диода, в соответствии с вариантом, далее выставление значения и запуск, чтобы получить график:

Точка для вычислений:

V = 0.448507 Вольт

I = 0.00803 Ампер

Вычисление значения сопротивления R1, чтобы при напряжении источника в 1 Вольт работал диод в точке:

 $R1 = (1 - 0.448507) / 0.000000803 \sim 686790 \text{ Om}.$

Проверили экспериментально:

Получили близкие значения, значит эксперимент проведён успешно.

Проверка влияния температуры на диод

Проверим влияние температуры на диод, выставив нужные параметры в окне «Temperature Sweep»:

После этого были получены графики зависимости:

Заметно, что ток на диоде изменился – с 0.000016575A до 0.000016925 A, а изменения напряжения на диоде незаметны.

Задание №6 «Исследование вольтфарадной характеристики полупроводникового диода»

Для получения данных для расчёта параметров диода, нужно провести два анализа: DC Sweep, где будем изменять напряжение источника V2 и AC Analysis, где будем менять частоту V1:

Получаем несколько кривых, которые изображены на графике. Они показывают зависимость напряжения на диоде от частоты источника V1 при напряжении источника управления V2.

Добавим курсор:

	V(2), vvl dc=0	V(2), vvl dc=0.8	V(2), vvl dc=1.6	V(2), vvl dc=2.4	V(2), vv1 dc=3.2	V(2),
«l	148.6531k	148.6531k	148.6531k	148.6531k	148.6531k	
71	12.3364m	11.3284m	10.9648m	10.7681m	10.6418m	
£2	422.7533k	422.7533k	422.7533k	422.7533k	422.7533k	
72	25.6308m	54.0088m	97.9090m	181.1414m	397.6771m	
ix	274.1002k	274.1002k	274.1002k	274.1002k	274.1002k	
ly	13.2944m	42.6803m	86.9442m	170.3733m	387.0353m	
iy/dx	48.5020n	155.7107n	317.1986n	621.5731n	1.4120µ	
l/dx	3.6483µ	3.6483µ	3.6483µ		3.6483µ	
				SWFFP#6: 498 884	kH7	

После чего начнем все данные вводить в MathCAD:

$$i := 0..5 \quad Fr = \frac{1}{2 \cdot pi \cdot \sqrt{(Ck + Cd) \cdot Lk}}$$

$$Lk := 10^{-3} \quad Ck := 70 \times 10^{-12} \quad pi := 3.14 \quad Fr_i := Fmax_i$$

$$Cd := \frac{-\left[Ck \cdot Lk - \left(\frac{1}{4 \cdot Fr^2 \cdot pi^2}\right)\right]}{Lk}$$

Minerr(CJ0, VJ0, M) =
$$\begin{pmatrix} 2.171 \times 10^{-10} \\ 0.67 \\ 0.569 \end{pmatrix}$$

Сравним полученные значения со значениями из библиотеки диодов:

Исходное M = 0.5959, полученное = 0.569

Исходное VJ0 = 0.75, полученное = 0.67

Исходное CJ0 = 22*10-11, полученное = 21*10-11

Полученные значения приблизительно равны значениям из библиотеки диодов.