Homework 7: pages 184 - 185 numbers 1, 21(a)(b), 3(e), 4, 10, 13, 14 \leftarrow 14 is difficult, but not impossible! (want to show that $\lim_{n \to \infty} (1 + \frac{1}{n})^n$ exists)

Hint:

$$(1+b)^n = 1 + nb + \frac{n(n-1)}{2!}b^n + \dots + \frac{n(n-1)\dots(n-(r-1))}{r!}b^r + \dots + b^n$$

In our problem, $b = \frac{1}{2}$

In our problem, b =
$$\frac{1}{n}$$

Look at it as $1 + \sum_{r=1}^{n} \frac{n(n-1)...(n-(r-1))}{r!} \frac{1}{n^r}$

 $(1+\frac{1}{n})^n$ goes in there somewhere somehow.

About the last homework (HW 6):

(9)

If
$$s_n \leq t_n \ \forall \ n \in \mathbb{N} \ and \lim_{n \to \infty} s_n = \infty$$
,

then
$$\lim_{n\to\infty} \mathbf{t}_n = \infty$$

So,

$$\forall\;M\in\mathbb{R}\;,\,\exists\;N\in\mathbb{N}\;st$$

$$s_n > M, \forall n \geq N$$

Notice that:

$$t_n \ge s_n > M, \forall n \ge N$$

So by definition, $\lim_{n\to\infty} t_n = \infty$

Section 4.3: Monotone Sequences and Cauchy Sequences

Definition 4.3.1

A sequence (s_n) is **increasing** (or **decreasing**) if $s_n \leq s_{n+1}$ (or $s_{n+1} \leq s_n$) \forall $n \in \mathbb{N}$. A sequence is **monotonic** if it is increasing or decreasing.

Example 4.3.2

- $a. a_n = n, \forall n \in \mathbb{N}$
 - increasing
- b. $b_n = 2^n, \forall n \in \mathbb{N}$

increasing

c. $c_n = 2 - \frac{1}{n}, \forall n \in \mathbb{N}$

increasing

d. $(d_n) = 1, 1, 2, 2, 3, 3...$

increasing

e. $e_n = \frac{2}{n}, \forall ...$

decreasing

f. $f_n = -3n$

decreasing

g. $(g_n) = 1, 1, 1, ... (g_n = 1, \forall n \in \mathbb{N})$

increasing and decreasing

h. $h_n = -1^n, \forall n \in \mathbb{N}$

not monotonic

```
i. i_n = \cos(\frac{n\pi}{3}) \ \forall \ n \in \mathbb{N}
not monotonic
```

Theorem 4.3.3 (Monotone Convergence Theorem

A monotonic sequence is convergent iff it is bounded.

Proof.

Let: $\{s_n\}$ be a monotonically increasing sequence

Assume $\{s_n\}$ is convergent.

By Theorem 4.1.13, $\{s_n\}$ is bounded.

Conversely, assume $\{s_n\}$ is bounded.

Want to show: $\{s_n\}$ converges

Let the range of $\{s_n\}$ be denoted by $S = \{s_n : n \in \mathbb{N} \}$

Since $\{s_n\}$ is bounded, S is bounded above.

Thus, sup S exists.

Want to show: $\{s_n\}$ converges to sup S

Recall: The supremum is the least upper bound.

Thus,

$$s_n \leq \sup S, \forall n \in \mathbb{N}$$
 (1)

and for
$$\epsilon > 0$$
, $\exists N(\epsilon) \in \mathbb{N}$ st

$$\sup S - \epsilon < s_n$$

$$\sup S - \epsilon < s_N \le s_n \le \sup S < \sup S + \epsilon \forall n \ge N$$
 (2)

Since $\{s_n\}$ is increasing and, using (1),

From (2), we see that

$$-\epsilon < s_n - \sup S < \epsilon, \forall n \ge N$$

Hence,

$$|\mathbf{s}_n - \sup \mathbf{S}| < \epsilon, \forall \mathbf{n} \ge \mathbf{N},$$

which is equivalent to $\lim_{n \to \infty} s_n = \sup_{n \to \infty} S_n$

(since
$$|x| < a$$
 iff $-a < x < a$)

The difficult homework problem is going to come from here.

Additional help:

$$s_n = (1 + \frac{1}{n})^n$$

First thing, show that it's increasing:

$$a < s_n \le s_{n+1}$$

$$(1 + \frac{1}{n})^n \le (1 + \frac{1}{n+1})^{n+1}$$

Second thing, show this:

(mini hint: $|s_n - s| < \epsilon \ \forall \ n \ge W$ (written on board, maybe he means M?)

$$s_n < 3 \ \forall \ n \in \mathbb{N}$$

Turns up naturally:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

Example 4.3.4

Let: $s_1 = 1, s_{n+1} = \sqrt{1 + s_n} \ \forall \ n \in \mathbb{N}$ with $n \ge 2$

Prove that $\{s_n\}$ converges and find its limit.

$$s_1 = 1, s_2 = \sqrt{2}, s_3 = \sqrt{1 + \sqrt{2}}, s_4 = \sqrt{1 + \sqrt{1 + \sqrt{2}}} \dots$$

Conjecture

 $\{s_n\}$ is increasing and $1 \le s_n \le 2$, $\forall n \in \mathbb{N}$

Proposition as a function of n [P(n)]:

$$s_n \le s_{n+1}, \forall n \in \mathbb{N}$$

$$s_1 = 1 < \sqrt{2} = s_2$$

Suppose that, $\forall k \in \mathbb{N}$,

$$\sqrt{1+s_k} \le \sqrt{1+s_{k+1}}$$

Now,

$$s_{k+1} = \sqrt{1 + s_k} \le \sqrt{1 + s_{k+1}} = s_{k+2}$$

So,

$$s_k \le s_{k+1}$$

Hence, by induction, P(n): $s_n \leq s_{n+1}$ is true $\forall n \in \mathbb{N}$

$$Q(n): s_n \leq 2 \ \forall \ n \in \mathbb{N}$$

$$s_1 = 1 < 2$$

Assume for $k \in \mathbb{N}$ that $s_k < 2$

Consider:

$$s_{k+1} = \sqrt{1+s_k} < \sqrt{1+3} < \sqrt{2+2} = 2$$

Hence, by induction, Q(n): $s_n < 2$ is true $\forall n \in \mathbb{N}$

By the Montone Convergence Theorem,

$$\exists\ s\in\mathbb{R}\ st$$

$$\lim s_n = s$$

By HW problem 11, page 170.

Thus,

$$\lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} s_n = s$$

-Side Note-

$$\{s_n\} \longrightarrow s$$

$$\{t_n\}: t_n = s_{n+k}, k \in \mathbb{N}$$

So, we claim that $\lim_{n\to\infty} s_{n+1} = s = \lim_{n\to\infty} \sqrt{1+s_n} = \sqrt{1+s}$

From Example 4.2.6,

$$\lim \sqrt{t_n} = \sqrt{t}$$
 if $\lim t_n = t$

From Example 4.2.0,
$$\lim_{n\to\infty} \sqrt{t_n} = \sqrt{t} \text{ if } \lim_{n\to\infty} t_n = t$$
Also, by Theorem 4.2.1 (b),
$$\lim_{n\to\infty} \sqrt{1+s_n} = \sqrt{1+s}$$
(which is like saying $\lim_{n\to\infty} t = t$)

(which is like saying $\lim_{n\to\infty} t_n = t$)

Hence,

$$s = \sqrt{1+s}$$

$$s^{2} = 1+s$$

$$s^{2} - s - 1 = 0$$

$$s = \frac{1(+/-)\sqrt{1-(-4)}}{2}$$

$$= \frac{1(+/-)\sqrt{5}}{2}$$

But one of those limits can't be true since limits are unique.

Since $s_n \geq 0, \forall n \in \mathbb{N}$,

then $\lim_{n\to\infty} s_n = s \ge 0, \forall n \in \mathbb{N}$ (By Corollary 4.2.5)

Hence,

$$s = \frac{1(+/-)\sqrt{5}}{2}$$

 $s = \frac{1(+/-)\sqrt{5}}{2}$ $\{s_n\}$ is Cauchy if for $\epsilon > 0, \, \exists \,\, N \in \mathbb{N}$

$$|\mathbf{s}_n - \mathbf{s}_m| < \epsilon \ \forall \ \mathbf{m}, \, \mathbf{n} \ge \mathbf{N}$$