B) Threat.C) Vulnerability.D) Risk.

					Midter	<u>m</u>				
	Nai	me:	•••••		ID:			Section#	#:	
1: Choos	e the corre	ct answei	:: <u>5 points</u>							
# Answer	1	2	3	4	5	6	7	8	9	10
A) NB) SC) S		cy.	em, e.g., a h	igh-level sp	ecification or	an abstrac	t machine o	description	of what the s	ystem doe
A) N B) S C) S		cy.	y requireme	ents for a giv	en system:					
A) M B) S C) S	•	cy.	e used to sh	now that a p	olicy is satist	fied by a sy	stem:			
A) M B) S C) S	n Model + S Model. ecurity Poli ecurity Mod Verification.	cy. <mark>iel.</mark>	olicy =	_:						
A) C B) II C) A	iba model for confidentialing tegrity. I wailability. I raceability.	ity.	:							
A) C B) Ii C) A	ell-LaPadul Confidentiali ntegrity. vailability. raceability.	ity.	nodel focus	es on:						
-	ential cause	of an unw	anted incid	ent which m	nay result in l	narm to a sy	ystem or or	ganization:		

- 8) A weakness in an asset or group of assets which can be exploited by a threat:
 - A) Asset.
 - B) Threat.
 - C) VulneD) Risk.
- 9) The potential that a given threat will exploit vulnerabilities of an asset or group of assets to cause loss or damage to the assets:
 - A) Asset.B) Threat.

 - C) Vulnerability.D) Risk.
- 10) Anything that has value to the organization:

- B) Threat.C) Vulnerability.
- D) Risk.
- Q2: Match the correct answer from column A to column B: 5 points

#	А	The answer	В
1	No read up, No write down	2	Biba Model
2	No write up, No read down	1	BLP Model
3	Can be implemented via an Access Control List or via a Capabilities List	4	Clarke-Wilson Model
4	Deals with two types of transactions, namely Integrity verification procedures (IVPs) and transaction procedures (TPs).	3	HRU Model
5	Top Secret > Secret > Confidential > Unclassified	6	The Chinese Wall Model
6	Focused on conflict of interest, once you access the data belonging to one side, the other side's data becomes unavailable or inaccessible.	5	Security levels
7	A data security process that enables organizations to manage who is authorized to access corporate data and resources.	7	Access Control

Q3: Put (T) for correct sentences and (F) for wrong sentences: 5 points

- 1) Both Clarke-Wilson and Biba models focus on Confidentiality (F)
- Multi-level Security (MLS) uses Mandatory Access Control (MAC) because Discretionary Access Control (DAC) fails to achieve MLS's goals. (T)
- 3) Both BLP and HRU models focus on Integrity. (F)
- 4) BLP model has no mechanisms for changing access rights or for the creation and deletion of subjects and objects. (T)
- 5) The disadvantage of the Access Control List (ACL) is that it is difficult to determine which subjects are able to access specific objects by looking at the object itself. (F)
- 6) The Constrained Data Items (CDIs) can be manipulated by users via primitive read and write operations. (F)
- 7) Zero Trust assumes that there is a traditional network edge. (F)
- 8) Using design patterns requires extensive knowledge is one of design patterns disadvantages. (T)
- 9) Reusability in countless projects to solve problems with a common pattern is one of design patterns advantages. (T)
- 10) Formal Security Risk Assessment is a less systematic and more intuitive approach to identify, assess and prioritize potential risks e.g. meetings and brainstorming sessions. (F)

Q4: Answer the following questions: 5 points

- 1) List four types of security models.
 - 1. Bell-LaPadula (BLP) Model.
 - 2. Biba Model / Biba Integrity Model.
 - 3. The Harrison-Ruzzo-Ullman Model.
 - 4. The Clark-Wilson Model.
 - The Chinese Wall Model.
- 2) List three components of Access Control.
 - 1. Authentication.
 - 2. Authorization.
 - 3. Access.
 - 4. Manage.
 - 5. Audit.
- 3) List the three stages of Implementing Zero Trust.
 - Visualize.
 - 2. Mitigate.
 - Optimize.

Commented [R.1]: Integrity

Commented [R.2]: Confidentiality

Commented [R.3]: Capabilities List

Commented [R.4]: Unconstrained Data Items (UDIs)

Commented [R.5]: there is NO traditional

Commented [R.6]: Informal

- 4) List the three Types of Design Patterns.
 - 1. Creational.
 - 2. Structural.
 - 3. Behavioral.
- 5) List the four Advantages of Design Patterns.
 - 1. Reusability in countless projects to solve problems with a common pattern.
 - 2. Spend less time figuring out how to solve a particular issue.
 - 3. Spend a safe time on implementing the solution and improve the quality of the software product.
 - 4. Provides more value for money.