Graphics

Syllabus

Interactive Visualization

Course Information

- Credit
 - **3.0**
- Schedule
 - 14:00, Mon/Wed
- Attendee
 - Senior
- Text Book
 - Lecture Notes @BlackBoard
- Prerequisite
 - Data structure
 - Algorithms
 - Linear algebra
 - Computer graphics

Schedule

일정	강의 내용
9/03	Syllabus
9/05	Installing Tools: CUDA, GPU Server, OpenGL
9/10	HelloWorld: GPGPU, Primitive Drawing
9/12	Basic Drawing Assignment #1
9/17	Transformations
9/19	Scene Graph
9/24	추석 공휴일
9/26	
10/01	Shader Basic
10/03	개천절
10/08	Shader Data Transfer
10/10	Shader Lights
10/15	Shader Texture
10/17	Advanced Shader Assignment #2
10/22	Mid-Term Exam
10/24	

일정	강의 내용
10/29	GPGPU Basic
10/31	GPGPU Thread (Vector, Matrix)
11/05	GPGPU Memory Model Assignment #3
11/07	GPGPU Advanced Computing
11/12	VR Platform
11/14	VR Platform with GPGPU Assignment #4
11/19	Ray Tracing Algorithm (Mini Project 공지)
11/21	Advanced Data Structure
11/26	Ray Tracing with GPU
11/28	Particle Basic
12/03	Particle Simulation
12/05	Particle System
12/10	Application examples
12/12	Lecture Summary
12/17	Project Due Date
12/19	

In this course, you will learn...

- I. Basic Visualization: OpenGL
 - Visualization with Serial Processing
- II. Advanced Visualization: GLSL
 - OpenGL Shading Language
 - Visualization with Parallel Processing(GPU Computing)
- III. General-Purpose computing on GPU: CUDA
 - GP computing for Parallel Processing with GPU
 - Students can use public GPU Server computer.
- IV. Visualization Algorithm: Ray Tracing
 - High Quality & High Performance with GPU
- V. Application: Particle Systems

Why Visualization

- Simulations of physical phenomena such as:
 - Weather forecasting
 - Earthquake forecasting
 - Galaxy formation
 - Oil reservoir management
 - Molecular dynamics
- Data Mining: Finding needles of critical information in a haystack of data such as:
 - Bioinformatics
 - Signal processing
 - Detecting storms that might turn into hurricanes
- Visualization: turning a vast sea of data into pictures that scientists can understand.
- At its most basic level, all of these problems involve many, many complex operations.

Ray Tracing@GPU

KUCG

CPU GPU

Realtime Visualization

Mini Project: Particle+Raytracing+Physics

Particle: Collision & Response

Particle: Ray Tracing

KUCG

GPU

Particle System Applications

Course Evaluation

- Attendance(10%)
- Midterm exam(25%)
- Programming assignments(40%)
 - \blacksquare 1st(10%) + 2nd(10%) +3rd(10%) + 4th(10%)
- mini project(25%)

You will fail if you miss just one!!

Assignment Specification

Themes

- #1) HelloWorld!(CUDA, OpenGL): 9/12
- #2) Shader Programming : 10/17
- #3) GPGPU Programming : 11/05
- #4) Dynamic Link with VR Platform : 11/14

Assignment Themes

Assignment #1 : HelloWorld!(CUDA, OpenGL)

CUDA(with GPU Server), OpenGL의 기본 사용 및 이해

<CUDA: Kernel Calls in GPU Server>

<OpenGL: Drawing Teapot>

Assignment #2: Shader Programming

Mesh 파일을 읽어서 shader로 Rendering 구현

Homework Themes

Assignment #3: GPGPU Programming


```
global void matrixMultiplication(float* m1/*input*/,
                                   float* m2/*input*/,
                                   float* m3/*output*/,
                                   int sizeN){
  //Write Matrix Multiplication Function with Shared Memory
```

Assignment #4: Dynamic Link with VR Platform

+ **VR Platform**

python p

Dynamic Link with Python

Mini Project

- Particle System
 - GPGPU Coding
 - Ray Tracing
 - Do not refer to Other Source Code(Ex: Github.)
- Extra Points
 - Advance Data Structure(Octree, K-d Tree,,, etc.)
 - Collision & Response
 - Dynamic Link with VR Platform
 - Number of Particles in Real-time
- Theme Spec. Notification: 11/26
- Submission Due Date: 12/17

Contact

- 담당교수
 - 김창헌 교수(<u>chkim@korea.ac.kr</u>)
 - 심윤식 교수(neuronomicon@Hotmail.com)
- Teaching assistant
 - Qimeng Zhang(zoe1024@korea.ac.kr)
 - 박지혁 (wlgur1014@korea.ac.kr)
- 그래픽스연구실
 - 우정정보통신관 407B 호