Algorithms

Solve the following exercises.

- An undirected graph is connected if there is a path from any node, to any other node. A
 directed graph is strongly connected if there is a well-directed path from any node, to any
 other node.
 - What is the minimum number of edges of a connected undirected graph composed of $n \ge 2$ nodes?
 - What is the minimum number of arcs of a strongly connected directed graph composed of $n \ge 2$ nodes?
- 2. You want to hike a long trail (possibly, over multiple days). You start at km $x_0 = 0$ on the trail; the trail contains resting areas at kms $0 < x_1 < x_2 < \cdots < x_k$, and ends at km $x_{k+1} > x_k$. In a day, you can hike at most d kms; then, you have to stop at a resting area for the night. Assuming that $x_{i+1} x_i \le d$ for each $i \in \{0, 1, 2, \dots, k\}$, prepare a schedule that minimizes the number of days of the hike. Prove that your algorithm is correct and bound its running time. More points will be awarded to faster solutions.

Example 1: if k = 2 and $x_1 = 4$, $x_2 = 8$, $x_3 = 11$, and d = 4, then the optimal hike lasts 3 days — the hiker should stop at x_1 for the first night, and at x_2 for the second.

Example 2: if k = 4 and $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$, $x_5 = 7$, and d = 4, then the optimal hike lasts 2 days — for instance, the hiker can stop at x_2 for the first and only night (alternatively, the hiker could stop at x_3 for the first and only night).