

TRENDS IN HYBRID FIBER-COPPER ACCESS NETWORKS

Jochen Maes, Broadband Innovation, Bell Labs Alcatel-Lucent Keynote @ IEEE Globecom Standards Workshop, 2014

FTTH

THE NEXT BIG THING SINCE DECADES

Optical fibers 1989 reach into homes

Paul W. Shumate Jr. Bell Communications Research Inc.

FIBER TO THE HOME: PRACTICALLY A REALITY

John Bourne

1988

BNR

An Optimal Investment Strategy Model for Fiber to the Home

Marvin A. Sirbu and David P. Reed

Carnegie Mellon University

Delays and unexpected cost increase due to

- Difficulties in mobilizing a large workforce
- Delays in finalizing agreements among parties involved
- Network turned out less fiber-ready than expected

Kudelka

REALITY: GRADUAL EXPANSION OF THE FIBER NETWORK

Leverage legacy network for rapid nation-wide service upgrades

BROADBAND OVER A HYBRID FIBER-COPPER NETWORK

DRIVERS FOR BANDWIDTH

Regional incentives

ACCESS NETWORKS AROUND THE GLOBE CONTINUOUSLY NEED TO TRANSFORM TO KEEP UP WITH BANDWIDTH DEMANDS

100 Mb/s tier driven by national incentives

GRADUAL FIBER DEPLOYMENT

VDSL2 VECTORING CONCEPT

Vectoring = noise cancellation headphones for your copper plant

G.VECTOR: CROSS-WHISPERING

VECTORING IS ON THE RISE HELPS OPERATORS GET MORE FROM THEIR DSL COPPER NETWORKS

GRADUAL FIBER DEPLOYMENT CONTINUES

G.FAST: CROSS-SHOUTING

- Channel no longer diagonally dominant
- Power constraints must be met
- Alternatives to linear zeroforcing become interesting

M. Guenach, et al., IEEE Globecom 2014

Transmit signal above PSD mask

Transmit

Precoder

 $\begin{bmatrix} x_3 \end{bmatrix} \begin{bmatrix} P_{31} & P_{32} \end{bmatrix}$ Power on line

Power of user signal

· Alcatel·Lucent

User

VECTOR 2.0

MEASURED

2 pairs active in same cable

SIMULATED

The numbers are in

- Trials show huge impact of crosstalk
- And huge benefit of Vector 2.0
- High variability in cable quality, both single user and crosstalk

Rate/reach

- G.fast cable model (CAD55)
- One 99% worst case crosstalker

FTTDP ARCHITECTURE

652 MBit/s US+DS TRAFFIC

(74m in-house cable)

Ultrabreitband mit G.fast

Source: A1 in cooperation with ALU

G.FAST GIVES HUNDREDS OF MBIT/S OVER LEGACY TWISTED PAIRS

ALSO WORKS ON COAX

G.fast on twisted pair in overlay with VDSL2 17a

G.fast equally works on coax!

Source: BT Labs in cooperation with ALU

Source: test by ALU in operator lab

G.FAST OFFERS CONTROL OVER UP/DOWN BIT RATE RATIO

 G.fast makes use of Time Division Duplexing allowing a flexible configuration of the upstream / downstream ratio

- All G.fast lines in the same cable need to be synchronized, with the same up/down split
 - In presence of crosstalk

Source (bit rate figure): Orange Labs in cooperation with ALU

G.FAST ALLOWS FOR END-USER SELF-INSTALLATION SOME (MODEST) BIT RATE LOSS IN CASE OF BRIDGED TAPS IN-HOUSE

bridged tap 2m, 10m, 20m

BT length	DS loss	US loss
no	0%	0%
20m	-6%	-5%
10m	-6%	-4%
2m	-13%	-8%

Bit rate loss may increase if multiple bridged taps

Source: ChuangHwa Telecom Labs (CHT-TL) in cooperation with ALU

G.FAST ALLOWS CO-EXISTENCE WITH VDSL2 AND RADIO SERVICES

- ITU-T G.9700 specifies power spectral density (PSD) mask requirements for G.fast and a set of tools to reduce the transmit PSD mask for compliance with:
 - Regional requirements
 - Operator requirements e.g. spectrum compatibility and coexistence with other xDSL access and home network technologies
 - Radio services
 - EMC requirements

Source (PSD figure): BT Labs in cooperation with ALU

G.fast start frequency (e.g. 23 MHz) for compatibility with VDSL2 in same cable E.g. spectral notches or tone masking for protecting sensitive radio bands

Alcatel·Lucent

GRADUAL EXPANSION OF THE FIBER NETWORK

HOMES PASSED FIBER NETWORK HOMES CONNECTED COPPER NETWORK

Alcatel·Lucent (

LEOPARD XG-FAST PLATFORM WORLD RECORD SPEEDS

SPEED UP ADOPTION OF ULTRA BROADBAND SERVICES THROUGH HYBRID FIBER-COPPER NETWORKS

VDSL2 VECT

G.fast

>200 METER >100 SUBSCRIBERS

<200 METER 10s OF SUBCRIBERS **XG-FAST**

10s OF METERS 1 SUBSCRIBER www.alcatel-lucent.com