Solution TD 6

2022

Loi de probabilite

Pour que P_X definit une loi de probabilite il faut que:

$$1 = \sum_{x} \mathbf{P}_{x}(x)$$

$$1 = \mathbf{P}_{x}(-3) + \mathbf{P}_{x}(-2) + \mathbf{P}_{x}(-1) + \mathbf{P}_{x}(3) + \mathbf{P}_{x}(2) + \mathbf{P}_{x}(1)$$

$$1 = 2\left(\frac{9}{a}\right) + 2\left(\frac{4}{a}\right) + 2\left(\frac{1}{a}\right)$$

$$= \frac{28}{a}$$

Ainsi

$$a = 28$$

Soit $Z = X^2$, on cherche la loi de probabilite de Z. On a:

$$\mathbf{P}_Z(k) = \mathbf{P}_X(x^2 = k)$$

Ainsi l'ensembles des valeurs k que peut prendre Z est $\{1,4,9\}$.

On obtient alors:

$$P_Z(k) = \begin{cases} \frac{2}{28} & k = 1\\ \frac{4}{28} & k = 4\\ \frac{18}{28} & k = 9 \end{cases}$$

Loi d'un de truque

La variables X prend des valeurs dans $\{1, 2, \dots, 6\}$. Par hypothese, il existe un reel a tel que

$$\mathbf{P}_X(k) = ka$$

Ce reel doit verifier la relation:

$$\sum_{x=1}^{6} \mathbf{P}_{X}(x) = 1$$

$$a \times \left(\frac{6 \times 7}{2}\right) = 1$$

$$\frac{21}{a} = 1$$
(2)

$$a \times \left(\frac{6 \times 7}{2}\right) = 1 \tag{2}$$

$$\frac{21}{3} = 1$$
 (3)

Figure 1: Loi de X

Figure 2: Loi de Z

D'ou **a** = $\frac{1}{21}$

On obtient ainsi la loi suivante:

k	1	2	3	4	5	6
$\mathbf{P}_X(x=k)$	<u>1</u>	<u>2</u>	3	<u>4</u>	<u>5</u>	<u>6</u>
	21	21	21	21	21	21

Calculons maintenant l'**esperance** de *X*.

$$\mathbf{E}[X] = \sum_{x=1}^{6} x \mathbf{P}_X(x)$$
$$= \frac{1}{21} \sum_{x=1}^{6} x^2$$
$$= \frac{91}{21}$$
$$= \frac{13}{3}$$

Soit Y une variable definie par $\frac{1}{X}$. Alors la loi de Y est donne par:

$\frac{1}{k}$	1/1	1/2	<u>1</u> 3	$\frac{1}{4}$	1 5	$\frac{1}{6}$
$\mathbf{P}_{Y}(=k)$	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
	21	21	21	21	21	21

Si on calcule l'esperance de Y, on trouve:

$$\mathbf{E}(Y) = \frac{2}{7} \tag{4}$$

Le but est d'introduire aux etudiantes l'erreur classique que

$$\mathbf{E}(g(X)) \neq g(E(X))$$

Table 1: Loi de distribution du de

Table 2: Loi de probaiblite de Y