

이론, 실습, 시뮬레이션 디지털논리회로

Chapter 03. 디지털 코드

학습목표 및 목차

- 다양한 디지털 코드를 구분하여 이해할 수 있다.
- 문자와 숫자를 나타내는 코드를 이해할 수 있다.
- 가중치 코드와 비가중치 코드를 이해하고 이를 활용할 수 있다.
- 에러 검출 코드를 이해하고 이를 활용할 수 있다.

01. BCD 코드와 3초과 코드

02. 다양한 2진 코드들

03. 그레이 코드

04. 에러 검출 코드

05. 영숫자 코드

01 BCD 코드와 3초과 코드

- BCD 코드(Binary Coded Decimal Code : 2진화 10진 코드, 8421코드)
 - BCD코드는 10진수 0(0000)부터 9(1001)까지를 2진화한 코드
 - 표기는 2진수이지만 의미는 10진수
 - 1010부터 1111까지 6개는 사용하지 않음

10진수	BCD 코드	10진수	BCD 코드	10진수	BCD 코드
0	0000	10	0001 0000	20	0010 0000
1	0001	11	0001 0001	31	0011 0001
2	0010	12	0001 0010	42	0100 0010
3	0011	13	0001 0011	53	0101 0011
4	0100	14	0001 0100	64	0110 0100
5	0101	15	0001 0101	75	0111 0101
6	0110	16	0001 0110	86	1000 0110
7	0111	17	0001 0111	97	1001 0111
8	1000	18	0001 1000	196	0001 1001 0110
9	1001	19	0001 1001	237	0010 0011 0111

01 BCD 코드와 3초과 코드

■ BCD 코드의 연산

■ 계산 결과가 BCD코드를 벗어나는 즉, 9(1001)를 <mark>초과</mark>하는 경우에는 계산 결과에 6(0110)을 더해준다.

$$\begin{array}{r}
1000 \\
+ 0111 \\
\hline
1111 \\
+ 0110 \\
\hline
0001 0101
\end{array}$$

01 BCD 코드와 3초과 코드

■ 3초과 코드

- BCD코드(8421코드)로 표현된 값에 3을 더해 준 값으로 나타내는 코드
- 자기 보수의 성질

10진수	BCD 코드	3-초과 코드		
0	0000 +3(00	011) > 0011		
1	0001	0100	_	ı İ
2	0010	0101	$\overline{}$	П
3	0011	0110		П
4	0100	0111	<u> </u> ←∏	보수
5	0101	1000	_	관계
6	0110	1001	— —	П
7	0111	1010		П
8	1000	1011	_	۱ ا
9	1001	1100	_	_

■ 가중치 코드(Weighted Code)

■ 그 위치에 따라 정해진 값을 갖는 코드

10진수	8421코드 (BCD)	2421 코드	5421 ±=	84-2-1 코드	5 <u>111</u> 1	바이퀴너리코드 (Biquinary Code) 5043210	링 카운터 (ring counter) 9876543210
0	0000	0000	0000	0000	00000	0100001	0000000001
1	0001	0001	0001	0111	00001	0100010	0000000010
2	0010	0010	0010	0110	00011	0100100	000000100
3	0011	0011	0011	0101	00111	0101000	0000001000
4	0100	0100	0100	0100	01111	0110000	0000010000
5	0101	1011	1000	1011	10000	1000001	0000100000
6	0110	1100	1001	1010	11000	1000010	0001000000
7	0111	1101	1010	1001	11100	1000100	0010000000
8	1000	1110	1011	1000	11110	1001000	0100000000
9	1001	1111	1100	1111	11111	1010000	1000000000

❖ 8421 코드(BCD 코드)

10진수	8421코드	10진수 계산
0	0000	$8 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 0$
1	0001	$8 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$
3	0011	$8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$
4	0100	$8 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 4$
5	0101	$8 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	0110	$8 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 6$
7	0111	$8 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1000	$8 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 8$
9	1001	$8 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 9$

☞ 자기보수 성질 없음

❖ 2421 코드

10진수	2421 코드	10진수 계산	2421 코드	10진수 계산
0	0000	2×0+4×0+2×0+1×0=0	0000	2×0+4×0+2×0+1×0=0
1	0001	$2 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$	0001	$2 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$2 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$	1000	$2 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 2$
3	0011	$2 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$	1001	$2 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 3$
4	0100	2×0+4×1+2×0+1×0=4	1010	2×1+4×0+2×1+1×0=4
5	1011	$2 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 5$	0101	$2 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	1100	2×1+4×1+2×0+1×0=6	0110	2×0+4×1+2×1+1×0=6
7	1101	$2 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 7$	0111	$2 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1110	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 8$	1110	2×1+4×1+2×1+1×0=8
9	1111	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 9$	1111	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 9$

☞ 자기보수 성질을 가짐

❖ 5421 코드

10진수	5421 코드	10진수 계산	5421 코드	10진수 계산
0	0000	5×0+4×0+2×0+1×0=0	0000	5×0+4×0+2×0+1×0=0
1	0001	$5 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$	0001	5×0+4×0+2×0+1×1=1
2	0010	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$	0010	5×0+4×0+2×1+1×0=2
3	0011	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$	0011	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$
4	0100	5×0+4×1+2×0+1×0=4	0100	5×0+4×1+2×0+1×0=4
5	1000	5×1+4×0+2×0+1×0=5	0101	5×0+4×1+2×0+1×1=5
6	1001	$5 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 6$	0110	5×0+4×1+2×1+1×0=6
7	1010	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 7$	0111	$5 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1011	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 8$	1011	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 8$
9	1100	$5 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 9$	1100	5×1+4×1+2×0+1×0=9

☞ 자기보수 성질 없음

❖ 84-2-1 코드

10진수	84-2-1코드	10진수 계산
0	0000	8×0+4×0-2×0-1×0=0
1	0111	$8 \times 0 + 4 \times 1 - 2 \times 1 - 1 \times 1 = 1$
2	0110	$8 \times 0 + 4 \times 1 - 2 \times 1 - 1 \times 0 = 2$
3	0101	$8 \times 0 + 4 \times 1 - 2 \times 0 - 1 \times 1 = 3$
4	0100	8×0+4×1-2×0-1×0=4
5	1011	$8 \times 1 + 4 \times 0 - 2 \times 1 - 1 \times 1 = 5$
6	1010	$8 \times 1 + 4 \times 0 - 2 \times 1 - 1 \times 0 = 6$
7	1001	$8 \times 1 + 4 \times 0 - 2 \times 0 - 1 \times 1 = 7$
8	1000	$8 \times 1 + 4 \times 0 - 2 \times 0 - 1 \times 0 = 8$
9	1111	$8 \times 1 + 4 \times 1 - 2 \times 1 - 1 \times 1 = 9$

[☞] 자기보수 성질을 가짐

■ 비가중치코드(non-weighted code)

- 각각의 위치에 해당하는 값이 없는 코드
- 데이터 변환과 같은 특수한 용도로 사용되기 위한 코드 (2-out-of-5)

10진수	3-초과 코드	5중 2코드 (2-out-of-5)	shift counter	그레이코드
0	0011	11000	00000	0000
1	0100	00011	00001	0001
2	0101	00101	00011	0011
3	0110	00110	00111	0010
4	0111	01001	01111	0110
5	1000	01010	11111	0111
6	1001	01100	11110	0101
7	1010	10001	11100	0100
8	1011	10010	11000	1100
9	1100	10100	10000	1101

03 그레이 코드

■ 그레이 코드(Gray Code)

- 가중치가 없는 코드이기 때문에 연산에는 부적당하지만, 아날로그-디지털 변환기나 입출력 장치 코드로 주로 쓰인다.
- 연속되는 코드들 간에 하나의 비트만 변화하여 새로운 코드가 된다.

10진수	2진 코드	그레이 코드	10진수	2진 코드	그레이 코드	
0	0000	0000	8	1000	1100	
1	0001	0001	9	1001	1101	시 이웃히
2	0010	0011	10	1010	1111	한 비
3	0011	0010	11	1011	1110	
4	0100	0110	12	1100	1010	\prec
5	0101	0111	13	1101	1011	
6	0110	0101	14	1110	1001	
7	0111	0100	15	1111	1000	-

이웃하는 코드간에 한 비트만 다르다.

03 그레이 코드

2진 코드를 그레이 코드로 변환하는 방법

그레이 코드를 2진 코드로 변환하는 방법

<XOR 진리표>

입력	출력
A B	F
0 0	0
0 1	1
1 0	1
1 1	0

 $F=A \oplus B$

03 그레이 코드

■ 그레이 코드 입력장치 적용 예

1. 패리티 비트

- 짝수패리티(even parity): 데이터에서 1의 개수를 짝수 개로 맞춤
- 홀수패리티(odd parity): 1의 개수를 홀수 개로 맞춤
- 패리티 비트는 데이터 전송과정에서 에러 검사를 위한 추가 비트 패리티는 단지 에러 검출만 가능하며, 여러 비트에 에러가 발생할 경우에는 검출 이 안될 수도 있음

■ 7비트 ASCII 코드에 패리티 비트를 추가한 코드

데이터	짝수패리티	홀수패리티
•••	•••	•••
A	0 1000001	1 1000001
В	0 1000010	1 1000010
C	1 1000011	0 1000011
D	0 1000100	1 1000100
•••	•••	•••

■ 병렬 패리티(parallel parity)

패리티를 블록 데이터에 적용해서 가로와 세로 데이터들에 대해서 패리티를 적용하면 에러를 검출하여 그 위치를 찾아 정정할 수 있다.

1	0	1	0	1	1	1	1	0
1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0
1	0	1	1	1	0	0	1	1
0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	0
0	1	1	1	1	0	0	0	0
1	0	1	0	0	1	0	1	0

1	0	1	0	1	1	1	1	0
1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0
1	0	1	1	0	0	0	1	1
0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	0
0	1	1	1	1	0	0	0	0
1	0	1	0	0	1	0	1	0

원래 데이터 블록

가로세로 모두 1의 개수가 짝수임 에러가 발생한 블록

가로세로 회색 부분에 1의 개수가 흘수임: 겹치는 부분 에러

■ 데이터 전송 시스템에서 패리티 비트를 사용한 에러 검출

 에러를 검출하기 위하여 송신측에 패리티 발생기를 구성하고 수신측에는 패리 티 검출기를 구성하여 그 출력을 보고 에러 발생 여부를 판단

 짝수 패리티
 Y=0(에러 없음), Y=1(에러 발생)

 홀수 패리티
 Y=1(에러 없음), Y=0(에러 발생)

2. 에러 정정 코드: 해밍코드(Hamming Code)

- 에러를 정정할 수 있는 코드
- 추가적으로 많은 비트가 필요하므로 많은 양의 데이터 전달이 필요
- 데이터 비트와 패리티 비트와의 관계

$$2^{p-1} - p + 1 \le d \le 2^p - p - 1$$

p는 패리티 비트의 수, d는 데이터 비트의 수, $p \ge 2$

- p=4일 때, 2⁴⁻¹-4+1≤ d ≤2⁴-4-1이므로 5≤ d ≤11이다.
- 따라서 데이터 비트수가 5개 이상 11개 이하일 때 패리티는 4개가 필요하다.
- 패리티 비트의 위치는 앞에서 부터 2⁰, 2¹, 2², 2³, 2⁴, ... 번째, 즉 1, 2, 4, 8, 16, ... 번째이다.
- 데이터 비트는 나머지 위치에 순서대로 들어간다.

■ 해밍코드에서는 짝수 패리티를 사용

비트 위치	1	2	3	4	5	6	7	8	9	10	11	12
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
P_1 영역	√											
P_2 영역		✓	✓			✓	✓			✓	✓	
P_4 영역				√	√	√	√					✓
P_8 영역								√	√	√	√	✓

■ 8비트 데이터의 에러 정정 코드

$$\begin{split} P_1 &= D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11} \\ P_2 &= D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11} \\ P_4 &= D_5 \oplus D_6 \oplus D_7 \oplus D_{12} \\ P_8 &= D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12} \end{split}$$

For Example

P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
		0		0	1	0		1	1	1	0

$$P_{1} = D_{3} \oplus D_{5} \oplus D_{7} \oplus D_{9} \oplus D_{11} = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$P_{2} = D_{3} \oplus D_{6} \oplus D_{7} \oplus D_{10} \oplus D_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$P_{4} = D_{5} \oplus D_{6} \oplus D_{7} \oplus D_{12} = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$P_{8} = D_{9} \oplus D_{10} \oplus D_{11} \oplus D_{12} = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

■ 해밍코드에서 패리티 비트 생성 과정

비트위치	1	2	3	4	5	6	7	8	9	10	11	12
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
원본 데이터			0		0	1	0		1	1	1	0
P_1 영역	0		0		0		0		1		1	
P_2 영역		1	0			1	0			1	1	
P_4 영역				1	0	1	0					0
P_8 영역								1	1	1	1	0
			1								1	
생성된 코드	0	1	0	1	0	1	0	1	1	1	1	0

생성된 패리티

■ 해밍코드에서 패리티 비트 검사 과정

전송된 데이터: 010111011110

P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
0	1	0	1	1	1	0	1	1	1	1	0

☞ 패리티들을 포함하여 검사

$$P_1 = P_1 \oplus D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11} = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$P_2 = P_2 \oplus D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$P_4 = P_4 \oplus D_5 \oplus D_6 \oplus D_7 \oplus D_{12} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$P_8 = P_8 \oplus D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

- lacktriangle 검사된 패리티를 $P_8 P_4 P_2 P_1$ 순서대로 정렬
- 모든 패리티가 0이면 에러 없음
- 하나라도 1이 있으면 에러 발생: 결과가 0101이므로 에러 있음
- 0101을 10진수로 바꾸면 5이며, 수신된 데이터에서 앞에서 5번째 비트 010111011110에 에러가 발생한 것이므로 010101011110으로 바꾸어 주면 에러가 정정된다.

■ 해밍코드에서 에러가 발생한 경우 교정

비트위치	1	2	3	4	5	6	7	8	9	10	11	12
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
Error 해밍코드	0	1	0	1	1	1	0	1	1	1	1	0
P ₁ 계산 1	0		0		1		0		1		1	
P ₂ 계산 0		1	0			1	0			1	1	
P ₄ 계산 1				1	1	1	0					0
P ₈ 계산 0								1	1	1	1	0

 $P_8 P_4 P_2 P_1 = 0101 = 5:5$ 번째 비트에 에러 발생, $1 \to 0$ 으로 교정

1. ASCII(American Standard Code for Information Interchange) 코드

- 미국 국립 표준 연구소(ANSI)가 제정한 정보 교환용 미국 표준 코드
- 128가지의 문자를 표현 가능

■ ASCII 코드의 구성

parity		zone bit			digi	t bit	
7	6	5	4	3	2	1	0
	1	0	0	영문	문자 A~O	(0001~1	111)
C	1	0	1	영문	문자 P~Z	(0000~1	010)
	0	1	1	숫	자 0~9(0	0000~100	01)

■ 표준 ASCII 코드표

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	SOH	STX	ETX	ЕОТ	ENQ	ACK	BEL	BS	TAB	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	**	#	\$	%	&	•	()	*	+	,	ı	•	/
3	0	1	2	3	4	5	6	7	8	9		• •		II	^	?
4	@	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О
5	P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	^	_
6	,	a	b	c	d	e	f	g	h	i	j	k	-	m	n	0
7	p	q	r	S	t	u	V	w	X	у	Z	{		}	~	DEL

■ 확장 ASCII 코드표

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
8	Ç	ü	é	â	ä	à	å	ç	ê	ë	è	ï	î	ì	Ä	Å
9	É	æ	Æ	ô	ö	ò	û	ù	ÿ	Ö	Ü	¢	£	¥	Pt	f
A	á	í	ó	ú	ñ	Ñ	a	0	i	Γ		1/2	1/4	i	«	»
В		******			4	=	-	П	7	4		7	ال	Ш	٦	٦
C	L	上	Т	H	_	+	F	╟	L	F	<u>JL</u>	T	ŀ	=	#	<u></u>
D	Ш	〒	π	Ш	F	F	Г	#	+	J	Г	I				
E	α	β	Γ	π	Σ	σ	μ	τ	Ф	Θ	Ω	δ	∞	Ø	3	\cap
F	=	土	2	<u> </u>	ſ	J	÷	a	0	•	•	√	n	2		

2. 표준 BCD 코드

- 6비트로 하나의 문자를 표현
- 최대 64문자까지 표현 가능한 코드

코드의 구성

parity	zone	e bit		digi	t bit					
6	5	4	3	2	1	0				
	1	1	영문자 A~I(0001~1001)							
	1	0	영문자 J~R(0001~1001)							
C	0	1	영 :	01)						
	0	0	숫	는자 0~9(0	0001~101	0)				
	혼	용	특수문자 및 기타문자							

■ 표준 BCD 코드표

문자	C ZZ8421	문자	C ZZ8421	문자	C ZZ8421	문자	C ZZ8421	문자	C ZZ8421
A	0 110001	J	1 100001	S	1 010010	1	0 000001	=	0 001011
В	0 110010	K	1 100010	T	0 010011	2	0 000010	>	1 001100
C	1 110011	L	0 100011	U	1 010100	3	1 000011	+	0 010000
D	0 110100	M	1 100100	V	0 010101	4	0 000100	,	1 011011
E	1 110101	N	0 100101	W	0 010110	5	1 000101)	0 011100
F	1 110110	О	0 100110	X	1 010111	6	1 000110	%	1 011101
G	0 110111	P	1 100111	Y	1 011000	7	0 000111	?	0 011111
Н	0 111000	Q	1 101000	Z	0 011001	8	0 001000	-	1 100001
I	1 111001	R	0 101001			9	1 001001	@	1 111010
						0	1 001010	\$	1 111111

3. EBCDIC(Extended Binary Coded Decimal Interchange Code) 코드

- 대형 컴퓨터와 IBM 계열 컴퓨터에서 많이 사용되고 있는 8비트 코드(IBM에서 개발)
- 256종류의 문자 코드를 표현할 수 있는 영숫자 코드

코드의 구성

b_9	$b_8 b_7 b_6 b_5$	$b_4 b_3 b_2 b_1$
패리티	존(zone)	디지트(digit)
1	4	4

$b_8 b_7$		$b_6 b_5$	
0 0	통신제어문자		
0 1	특수문자		
		0 0	a ∼i
1 0	소문자	0 1	j~r
	ンセス	1 0	S~Z
		1 1	
		0 0	A~I
1 1	대문자/숫자	0 1	J~R
	네군자/굿자	1 0	S~Z
		1 1	0~9

■ EBCDIC 코드표

16진		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	2진	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	NUL	SOH	STX	ETX		HT		DEL				VT	FF	CR	SO	SI
1	0001	DLE						BS		CAN	EM			IFS	IGS	IRS	IUS
2	0010						LF	ETB	ESC						ENQ	ACK	BEL
3	0011			SYN					EOT						NAK		SUB
4	0100	space										[•		(+	
5	0101	&										!	\$	*)		٨
6	0110	-	/										,	%	_	>	?
7	0111										•	•	#	@	í	=	"
8	1000		a	b	c	d	e	f	g	h	i						
9	1001		j	k	1	m	n	О	p	q	r						
A	1010		~	S	t	u	V	W	X	у	Z						
В	1011																
C	1100	{	A	В	С	D	Е	F	G	Н	I						
D	1101	}	J	K	L	M	N	О	P	Q	R						
Е	1110	\		S	T	U	V	W	X	Y	Z						
F	1111	0	1	2	3	4	5	6	7	8	9						

4. 유닉코드(Unicode)

- ASCII 코드의 한계성을 극복하기 위하여 개발된 인터넷 시대의 표준
- 유니코드 컨소시엄(IBM, Novell, Microsoft, DEC, Apple 등)에 의해서 32(UTF-32), 16(UTF-16), 8bit(UTF-8)의 세 가지 기본 코드
- 미국, 유럽, 동아시아, 아프리카, 아시아 태평양 지역 등의 주요 언어들에 적용될수 있다.
- 유니코드는 유럽, 중동, 아시아 등 거의 대부분의 문자를 포함하고 있으며, 10만 개 이상의 문자로 구성되어 있다.
- 특히 아시아의 중국, 일본, 한국, 타이완, 베트남, 싱가포르에서 사용하는 표의 문자(한자) 70,207개를 나타낼 수 있다.
- 구두표시, 수학기호, 전문기호, 기하학적 모양, 딩벳 기호 등을 포함
- 앞으로도 계속해서 산업계의 요구나 새로운 문자들을 추가하여 나갈 것이다.

5. 한글코드

- 한글은 ASCII코드를 기반으로 16비트를 사용하여 하나의 문자를 표현
- 조합형과 완성형으로 분류

丕

합

형

 조합형으로 표현된 한글은 때에 따라서 다른 응용프로그램에서는 사용할 수 없는 문자들이 많다.

 조합형은 자음과 모음으로 조합 가능한 모든 한글을 사용할 수 있으며, 심지어 우리나라 고어(古語)까지 취급할 수 있는 장점이 있으나, 출력 시다시 모아 써야 하는 불편이 있다는 것이 단점이다.

두번째 바이트							첫번째 바이트										
1																	
	초성						중성					종성					

완 성 형

• 1987년 정부가 한국표준으로 정한 것으로 가장 많이 사용되는 한글 음절을 2 바이트의 2진수와 1 대 1로 대응하여 표현하는 방법

감사합니다 ☺

