ASSIGNMENT 6: INNER PRODUCT SPACES

MA 106: SPRING 2023

Tutorial Problems

(1) Find the projection **p** of **b** onto the column space of A by solving $A^tAx = A^tb$ and p = Ax:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

- (2) If P is a real square matrix with $P^2 = P$, show that $(I P)^2 = I P$. Suppose P is the matrix of projection onto the columns space of A. Find the space onto which I P projects.
- (3) Let the columns of A be linearly independent and $P = A(A^tA)^{-1}A^t$. Show that P is symmetric and $P^2 = P$.
- (4) In the vector space C[1, e], define $\langle f, g \rangle = \int_1^e \log x f(x) g(x) dx$.
 - (a) if $f(x) = \sqrt{x}$, compute $||f|| = \langle f, f \rangle^{1/2}$.
 - (b) Find a linear polynomial g(x) = ax + b that is orthogonal to f(x) = 1.
- (5) (a) To find the projection matrix onto the plane x y 2z = 0, choose two linearly independent vectors u, v in the plane and let A be the matrix whose column vectors are u, v. Now find $P = A(A^tA)^{-1}A^t$.
- (b) Let e be a vector perpendicular to the plane L: x y 2z = 0. Find the projection matrix $Q = \frac{ee^t}{e^t e}$. Show that P = I Q is the matrix of projection onto L. (6) Let $u \in \mathbb{R}^n$ be a unit vector. Let $H_u = I - 2uu^t$. Show that H is an orthogonal matrix.
- (6) Let $u \in \mathbb{R}^n$ be a unit vector. Let $H_u = I 2uu^t$. Show that H is an orthogonal matrix. Find $H_u(v)$ for any $v \in L(u)^{\perp}$. Find $H_u(\alpha u)$ for any $\alpha \in \mathbb{R}$. Describe the action of H_u geometrically. Using this find the matrix of the linear transformation $R : \mathbb{R}^2 \to \mathbb{R}^2$ which reflects vectors with respect to the line $y = x \tan \theta$. Find the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ Which reflects vectors with respect to the plane x + y + z = 0.
- (7) Let $V = C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$ with inner product given by $\langle f, g \rangle = \int_0^{\pi} f(t)g(t)dt$. Let $x_n(t) = \cos nt$ for $n = 0, 1, 2 \dots$ Prove that the functions y_0, y_1, y_2, \dots given by

$$y_0(t) = \frac{1}{\sqrt{\pi}}$$
 and $y_n(t) = \sqrt{\frac{2}{\pi}} \cos nt$ for $n \ge 1$

form an orthonormal set spanning the same subspace as x_0, x_1, x_2, \ldots

Practice Problems

- (8) In the real vector space C[0,2] with inner product $\langle f,g\rangle=\int_0^2 f(x)g(x)dx$, let $f(x)=e^x$. Show that the constant polynomial g nearest to e^x is $(e^2-1)/2$.
- (9) Let P be the vector space of all real polynomials in one indeterminate t. Consider the inner product $\langle p, q \rangle = \int_{-1}^{1} p(t)q(t)dt$. Consider the infinite sequence $x_n(t) = t^n$. The Gram-Schmidt process applied to this sequence gives the polynomials $y_n(t)$ for $n = 0, 1, 2, \ldots$ first encountered by the French mathematician A. M. Legendre (1752-1833). Prove that

$$y_n(t) = \frac{n!}{2n!} \frac{d^n}{dt^n} (t^2 - 1)^n.$$

- (10) Let A be an $n \times n$ square matrix with real (or complex) entries. Show that the following are equivalent. (i) A is orthogonal (unitary). (ii) A^t (resp. A^*) is orthogonal (unitary). (iii) The column vectors of A form an orthonormal set. (iv) The row vectors of A form an orthonormal set.
- (11) Orthonormalize the set $\{(1,0,0,0),(1,1,0,0),(1,1,1,1)\}$ of vectors in \mathbb{R}^4 .
- (12) On the vector space $C^1[a,b]$ of continuously differentiable real valued functions, examine whether or not $\langle f, g \rangle$, defined below is an inner product in each case. Justify your answer.

(a)
$$\langle f, g \rangle = \int_{a}^{b} f'(t)g'(t) dt$$
 (b) $\langle f, g \rangle = \int_{a}^{b} (f(t)g(t) + f'(t)g'(t)) dt$.

- (13) Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal basis for an inner product space V. Suppose $\mathbf{u} =$ $\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \text{ and } \mathbf{v} = \sum_{i=1}^{n} \beta_{i} \mathbf{v}_{i} \in V. \text{ Prove that}$ $(14) \ \alpha_{i} = \langle \mathbf{u}, \mathbf{v}_{i} \rangle \text{ and } \beta_{i} = \langle \mathbf{v}, \mathbf{v}_{i} \rangle \text{ for } i = 1, 2, \dots, n.$ $(15) \ \langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} \alpha_{i} \beta_{i} \text{ and } \|\mathbf{u}\| = \left(\sum_{i=1}^{n} \alpha_{i}^{2}\right)^{1/2}.$

- (16) Prove that in a real inner product space V, the following are equivalent: (i) $\langle x, y \rangle = 0$; (ii) ||x + y|| = ||x - y||; (iii) $||x + y||^2 = ||x||^2 + ||y||^2$.
- (17) In the vector space $\mathcal{P}_n[t]$ of all real polynomials of degree $\leq n$, define

$$\langle f, g \rangle = \sum_{j=0}^{n} f\left(\frac{j}{n}\right) g\left(\frac{j}{n}\right).$$

- (a) Prove that $\langle f, g \rangle$ is an inner product on P_n .
- (b) Compute $\langle f, g \rangle$, when f(t) = t, g(t) = at + b.
- (c) If f(t) = t, find all linear polynomials g orthogonal to f.
- (18) Write elements of \mathbb{R}^n as column vectors of length n. Let A be an $n \times n$ real matrix and A^t be its transpose. For usual inner product \langle , \rangle on \mathbb{R}^n , prove that for any two $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. $\langle A\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, A^t \mathbf{v} \rangle$. State and prove a similar result about \mathbb{C}^n .
- (19) In a real inner product space V, show that for any $x, y \in V$

$$\langle x + y, x - y \rangle = 0$$
 iff $||x|| = ||y||$.

- (20) Orthonormalize the following set of vectors in \mathbb{R}^4 , using the Gram-Schmidt process. (a) $\{(1,0,0,0),(1,1,0,0),(1,1,1,1)\}$ (b) $\{(1,-1,2,0),(1,0,1,0),(1,0,0,1)\}$.
- (21) Let V be an inner product space and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal set in V.

 - (a) Show that for all $\mathbf{v} \in V$, $\langle \mathbf{v}, \mathbf{v} \rangle \geq \sum_{i=1}^{n} |\langle \mathbf{v}, \mathbf{v}_i \rangle|^2$, (Bessel's inequality) (b) If $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis, show $\langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^{n} |\langle \mathbf{v}, \mathbf{v}_i \rangle|^2$. (Parseval's identity)
- (22) (a) Find an orthonormal basis of the subspace S of \mathbb{R}^3 spanned by the solutions of $x_1 +$ $x_2 + x_3 = 0.$
 - (b) Find an orthonormal basis of $S^{\perp} = \{u \in \mathbb{R}^3 \mid \langle u, v \rangle = 0 \text{ for all } v \in S\}.$
 - (c) Find $u \in S$ and $v \in S^{\perp}$ so that (1, 1, 1) = u + v.
- (23) Let $V = \{a + bx \mid a, b \in R\}$ be the real vector space of all polynomials in x of degree at most 1. Show that $B = \{1, x\}$ is an orthogonal basis of V if the inner product is given by $\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x)dx$. Find the best approximation of e^{x} in V.
- (24) Let V be an inner product space over \mathbb{R} and dim V = n. Let v be a unit vector in V. What is the dimension of $W = \{u \in V \mid \langle u, v \rangle = 0\}$. Justify your answer.