

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Relatividad Especial Diego Sarceño 201900109 31 de enero de 2022

Tarea 1

1. Tema 1 (Espacios Vectoriales)

Un espacio vectorial V es un conjunto de elementos llamados vectores, caracterizado por los siguientes axiomas

1. Cerraduras:

Respecto a la Suma: Para cualesquiera $u, v \in V$ se cumple que $u + v \in V$.

Respecto al Producto Escalar: Dado $v \in V$ y $\lambda \in \mathbb{F}$ se cumple que $\lambda v \in V$.

2. Conmutatividad: Para cualesquiera $u, v, w \in V$ se tiene que u + v = v + u.

3. Asociatividad: u + (v + w) = (u + v) + w y a(bv) = (ab)v para todo $u, v, w \in V$, $a, b \in \mathbb{F}$.

4. Identidad Aditiva: Existe un elemento $\mathbf{0} \in V$ tal que $v + \mathbf{0} = v$ para todo $v \in V$.

5. Identidad Multiplicativa: Existe un elemento $1 \in \mathbb{F}$ tal que 1v = v para todo $v \in V$.

6. Inverso Aditivo: Para cada $v \in V$ existe un único $w \in V$ tal que v + w = 0.

7. Distributividad: a(u+v) = au + av y (a+b)v = av + bv para todo $a,b \in \mathbb{F}$ y todo $u,v \in V$.

2. Tema 2 (Transformaciones Lineales No-Singulares)

Sean A y B dos matrices no-singulares de dimensión $n \times n$, se tiene

$$(AB)(B^{-1}A^{-1}) =$$

por asociatividad

$$= A(BB^{-1})A^{-1} = A\underbrace{(BB^{-1})}_{I_n}A^{-1} = AI_nA^{-1},$$

dado que $AI_n = A$, entonces

$$=AA^{-1}=I_n \Rightarrow (AB)^{-1}=(B^{-1}A^{-1}).$$