

planetmath.org

Math for the people, by the people.

representing a distributive lattice by ring of sets

Canonical name Representing ADistributive Lattice By Ring Of Sets

Date of creation 2013-03-22 19:08:24 Last modified on 2013-03-22 19:08:24

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Theorem
Classification msc 06D99
Classification msc 06D05
Related topic RingOfSets

 $Related\ topic \qquad Representing A Boolean Lattice By Field Of Sets$

In this entry, we present the proof of a fundamental fact that every distributive lattice is lattice isomorphic to a ring of sets, originally proved by Birkhoff and Stone in the 1930's. The proof uses the http://planetmath.org/BirkhoffPrimeIdea ideal theorem of Birkhoff. First, a simple results from the prime ideal theorem:

Lemma 1. Let L be a distributive lattice and $a, b \in L$ with $a \neq b$. Then there is a prime ideal containing one or the other.

Proof. Let $I = \langle a \rangle$ and $J = \langle b \rangle$, the principal ideals generated by a, b respectively. If I = J, then $b \leq a$ and $a \leq b$, or a = b, contradicting the assumption. So $I \neq J$, which means either $a \notin J$ or $b \notin I$. In either case, apply the prime ideal theorem to obtain a prime ideal containing I (or J) not containing b (or a).

Before proving the theorem, we have one more concept to introduce:

Definition. Let L be a distributive lattice, and X the set of all prime ideals of L. Define $F: L \to P(X)$, the powerset of X, by

$$F(a) := \{ P \mid a \notin P \}.$$

Proposition 1. F is an injection.

Proof. If $a \neq b$, then by the lemma there is a prime ideal P containing one but not another, say $a \in P$ and $b \notin P$. Then $P \notin F(a)$ and $P \in F(b)$, so that $F(a) \neq F(b)$.

Proposition 2. F is a lattice homomorphism.

Proof. There are two things to show:

- F preserves \wedge : If $P \in F(a \wedge b)$, then $a \wedge b \notin P$, so that $a \notin P$ and $b \notin P$, since P is a sublattice. So $P \in F(a)$ and $P \in F(b)$ as a result. On the other hand, if $P \in F(a) \cap F(b)$, then $a \notin P$ and $b \notin P$. Since P is prime, $a \wedge b \notin P$, so that $P \in F(a \wedge b)$. Therefore, $F(a \wedge b) = F(a) \cap F(b)$.
- F preserves \vee : If $P \in F(a \vee b)$, then $a \vee b \notin P$, which implies that $a \notin P$ or $b \notin P$, since P is a sublattice of L. So $P \in F(a) \cup F(b)$. On the other hand, if $P \in F(a) \cup F(b)$, then $a \vee b \notin P$, since P is a lattice ideal. Hence $F(a \vee b) = F(a) \cup F(b)$.

Therefore, F is a lattice homomorphism.

The function F is called the *canonical embedding* of L into P(X).

Theorem 1. Every distributive lattice is isomorphic to a ring of sets.

Proof. Let L, X, F be as above. Since $F : L \to P(X)$ is an embedding, L is lattice isomorphic to F(L), which is a ring of sets.

Remark. Using the result above, one can show that if L is a Boolean algebra, then L is isomorphic to a field of sets. See link below for more detail.