

Master 1

Visualisation de données

Contrôle de Travaux pratiques

(le code python associé à ce sujet est disponible dans votre environnement de travail)

Mise en œuvre de la méthode Locally Linear Embedding (LLE)

Au cours de cet exercice vous allez programmer la méthode LLE en complétant le programme my_LLE.py qui est fourni.

On rappelle que la méthode se décompose en 3 étapes

Etape 1 : détermination du graphe des plus proches voisins

Etape 2 : calcule des vecteurs de poids des voisins, réalisée par la méthode LLE_weight(). En pratique pour éviter les problèmes de valeur singulière on calcule les poids

Etape 3 : calcule des points projetés

Dans la méthode LLE_weight() on vous demande d'insérer à l'endroit indiqué, le calcul de la matrice de Gram Gi associée à chaque exemple, puis de calculer les valeurs propres et vecteurs de poids. Pour éviter les problèmes d'instabilité numérique on programmera les formules suivantes

$$w_i = \frac{(G_i + \alpha I_k)^{-1} 1_k}{1^T (G_i + \alpha I_k)^{-1} 1_k}$$

avec α un réel de faible valeur (10⁻³ par exemple)

- Comparer vos résultats à ceux de la méthode de scikitlearn pour les deux dataset IRIS et MNIST
- Fraire vérifier vos résultats par l'enseignant
- > sauvegarder votre programme dans votre environnement de travail

Mise en œuvre de la méthode Out of Sample *Locally Linear Embedding (OS_LLE)* Dans le code fourni, la méthode OS_LLE() calcule l'embedding du point passé en argument.

- On vous demande de programmer l'étape 2 qui calcule le vecteur W des poids des k plus proches voisins.
- Fraire vérifier vos résultats par l'enseignant