Sequential ATPG

- Introduction
- Time-frame expansion methods
 - The Extended D-algorithm [Kubo 68]
 - 9-valued D algorithm [Muth 76]
 - Backward Time Frame Processing* (not in exam)
 - EBT [Marlett 78]
 - BACK [Cheng 88]
 - Simulation-based methods*
- Issues of Sequential ATPG*
- Conclusions

Problems of Ext. D-Algorithm

- Mixed Forward and Backward Time Frame Processing
 - Reuse existing D-algorithm
 - both forward fault propagation and backward justification
 - How many time frames ?
 - Memory requirement hard to predict

Extended Backtrace (EBT) [Marlett 78]

- Backward Time Frame Processing Only
 - 1. Select a path from fault site to PO
 - 2. Sensitize path backwards from the PO
 - 3. Justify required values backward
 - If justification fails, choose another path
- Advantage: only two time frames needed

EBT Example

- 1. Create two time frames
- 2. Choose a path

ab = 00, 1x, x1

Quiz

Q: Please redraw this into two time frames

Quiz (cont'd)

Q: Use EBT to generate test patterns for SA0 fault

State Repetition

Comparison

	Advantages	Disadvantages	Example
Mixed F/B Time Frame	©Reuse existing D algorithm	⊗ Too many time frames	Extended D
Backward TF Only	Fixed time framesState repetition recognized		EBT

Need Help to Make Smart Decision

Sequential ATPG

- Introduction
- Time-frame expansion methods
 - The Extended D-algorithm [Kubo 68]
 - 9-valued D algorithm [Muth 76]
 - Backward Time Frame Processing* (not in exam)
 - EBT [Marlett 78]
 - BACK [Cheng 88]
 - Simulation-based methods*
- Issues of Sequential ATPG*
- Conclusions

BACK Algorithm [Cheng 88]

- BACK selects a PO for fault detection,
 - Do not explicitly select a path
- PO selection based on a testability measures
 - **♦** Drivability
- Sensitized path will be created implicitly when drivability calculation

BACK Chooses PO Instead of Path

Review: SCOAP (CH 6)

- CC⁰(N), CC¹(N)
 - Minimum number of combinational PI assignments and logic levels required to control a 0 or a 1 on node N
 - Estimates effort to control signal to zero or one
 - Smaller number, easier to control

	CCº(Y)	CC¹(Y)
X_1 X_2 Y	min[CC ⁰ (X ₁),CC ⁰ (X ₂)] + 1	$CC^{1}(X_{1}) + CC^{1}(X_{2}) + 1$
X_1 X_2 Y	$CC^0(X_1) + CC^0(X_2) + 1$	min[CC ¹ (X_1),CC ¹ (X_2)] + 1
X — Y	CC ¹ (X) + 1	CC ⁰ (X) + 1
Primary inputs	1	1

Drivability: $d^{0/1}$, $d^{1/0}$

- Estimates effort to propagate a D or D' from fault site to Y
 - \bullet $d^{0/1}(Y) = drivability of D' to node Y$
 - ♦ $d^{1/0}(Y) = drivability of D$ to node Y

	d ^{0/1} (<i>Y</i>)	d ^{1/0} (Y)
X_1 X_2	min { $CC^{1}(X_{1}) + d^{0/1}(X_{2})$, $d^{0/1}(X_{1}) + CC^{1}(X_{2})$, $d^{0/1}(X_{1}) + d^{0/1}(X_{2})$ }+1	min { $CC^{1}(X_{1})+d^{1/0}(X_{2})$, $d^{1/0}(X_{1})+CC^{1}(X_{2})$, $d^{1/0}(X_{1})+d^{1/0}(X_{2})$ }+1
X_1 X_2 Y	min { $CC^0(X_1) + d^{0/1}(X_2)$, $d^{0/1}(X_1) + CC^0(X_2)$, $d^{0/1}(X_1) + d^{0/1}(X_2)$ }+1	min { $CC^0(X_1)+d^{1/0}(X_2)$, $d^{1/0}(X_1)+CC^0(X_2)$, $d^{1/0}(X_1)+d^{1/0}(X_2)$ }+1
X — Y	$d^{1/0}(X) + 1$	$d^{0/1}(X) + 1$
Y = FF out X = FF in	d ^{0/1} (<i>X</i>) + K (constant)	d ^{1/0} (<i>X</i>) + K (constant)

Example 1/2: SCOAP (BA Fig. 8.7)

Fault-free circuit

* different from textbook

Example 2/2: Drivability (BA Fig. 8.7)

K=100 When D impossible, $d^{1/0} = \infty$

Quiz

Q: Based on SCOAP, please calculate drivability of SA0 fault.

(Assume K=100)

Quiz

Q: Based on SCOAP, please calculate drivability of SA0 fault.

(Assume K=100)

Summary

- Backward time frame processing has advantages:
 - Fixed time frame
 - State repetition recognized
- EBT selects one path at a time
- BACK proposes drivability to select best PO

	Advantages	Disadvantages	Example
Mixed F/B Time Frame	©Reuse existing alg.	⊗ Too many time frames	Extended D
Backward TF Only	Fixed time framesState repetition recognized	⊗ Too many paths!	EBT BACK
Forward TF Only	© No need to justify		FASTEST (PODEM-like)

FFT1

Do we need feedback to iteratively calculate Drivability?

FFT2

Q: For forward time frame processing, can we fix time frames, like EBT?

	Advantages	Disadvantages	Example
Mixed F/B Time Frame	©Reuse existing alg.	8 Too many time frames	Extended D
Backward TF Only	Fixed time framesState repetition recognized	⊗ Too many paths!	EBT BACK
Forward TF Only	© No need to justify	Hard to decide time frames	PODEM-like

Quiz

Q: Please redraw this into two time frames

Quiz (cont'd)

Q: Use EBT to generate test patterns for SA0 fault

Drivability

- Drivability estimates effort of propagating a D or D' from fault site to that signal
 - Similar to SCOAP
- Review of SCOAP

	CC ₀ (Y)	CC¹(Y)
$Y = X_1 AND X_2$	min[CC $^{0}(X_{1})$,CC $^{0}(X_{2})$] + 1	$CC^{1}(X_{1}) + CC^{1}(X_{2}) + 1$
$Y = X_1 OR X_2$	$CC^0(X_1) + CC^0(X_2) + 1$	min[CC ¹ (X_1),CC ¹ (X_2)] + 1
Y = X'	CC1(X) + 1	CC ⁰ (X) + 1
Primary inputs	1	1

Drivability is like SCOAP for a Specific Fault

Drivability: d(0/1) & d(1/0)

- $d^{0/1}(Y) = drivability of D'$
 - Effort to bring node Y to D' when the fault presents
- $d^{1/0}(Y) = drivability of D$

	d ^{0/1} (<i>Y</i>)	d ^{1/0} (Y)
Y = X1 AND X2	min { $CC^{1}(X_{1}) + d^{0/1}(X_{2})$, $d^{0/1}(X_{1}) + CC^{1}(X_{2})$, $d^{0/1}(X_{1}) + d^{0/1}(X_{2})$ }+1	min { $CC^{1}(X_{1})+d^{1/0}(X_{2})$, $d^{1/0}(X_{1})+CC^{1}(X_{2})$, $d^{1/0}(X_{1})+d^{1/0}(X_{2})$ }+1
Y = X1 OR X2	min { $CC^0(X_1) + d^{0/1}(X_2)$, $d^{0/1}(X_1) + CC^0(X_2)$, $d^{0/1}(X_1) + d^{0/1}(X_2)$ }+1	min { $CC^0(X_1)+d^{1/0}(X_2)$, $d^{1/0}(X_1)+CC^0(X_2)$, $d^{1/0}(X_1)+d^{1/0}(X_2)$ }+1
Y = X'	$d^{1/0}(X) + 1$	$d^{0/1}(X) + 1$
Y = FF out X = FF in	d ^{0/1} (<i>X</i>) + K (constant)	d ^{1/0} (<i>X</i>) + K (constant)

Drivability Example 1/2 (BA Fig. 8.7)

- K=100
- When D impossible, $d^{1/0} = \infty$

Drivability Example 2/2 (BA Fig. 8.7)

 To justify a D or D' at gate output, select gate input with smallest drivability as D or D' input