MODALITATEA DE DESFĂȘURARE A EXAMENULUI LA DISCIPLINA "PROGRAMAREA ALGORITMILOR"

- Examenul la disciplina "Programarea algoritmilor" se va desfășura în ziua de 20.01.2022, între orele 9⁰⁰ și 11³⁰, astfel:
 - 09⁰⁰ 09³⁰: efectuarea prezenței studenților
 - 09³⁰ 11³⁰: desfășurarea examenului
 - 11³⁰ 12⁰⁰: verificarea faptului că sursele trimise de către studenți au fost salvate pe platforma MS Teams
- Testul se va desfășura pe platforma MS Teams, iar pe tot parcursul desfășurării sale, de la ora 09⁰⁰ la ora 12⁰⁰, studenții trebuie să fie conectați pe canalul dedicat cursului de "Programarea algoritmilor" corespunzător seriei lor.
- În momentul efectuării prezenței, fiecare student trebuie să aibă pornită camera video în MS Teams și să prezinte buletinul sau cartea de identitate. Dacă dorește să-și protejeze datele personale, studentul poate să acopere codul numeric personal și/sau adresa!
- În timpul desfășurării testului studenții pot să închidă camera video, dar trebuie să o deschidă dacă li se solicită acest lucru de către un cadru didactic!
- Toate subjectele se vor rezolva folosind limbajul Python.
- Subiectul 1 este obligatoriu, iar dintre subiectele 2, 3 și 4 se vor rezolva CEL MULT DOUĂ, la alegere.
- Citirea datelor de intrare se va realiza de la tastatură, iar rezultatele vor fi afișate pe ecran.
- Se garantează faptul că datele de intrare sunt corecte.
- Operațiile de sortare se vor efectua folosind funcții sau metode predefinite din limbajul Python.
- Pentru subiectul 1 nu contează complexitatea soluției propuse.
- Rezolvările subiectelor alese dintre subiectele 2, 3 și 4 trebuie să conțină:
 - o scurtă descriere a algoritmului și o argumentare a faptului că acesta se încadrează într-o anumită tehnică de programare;
 - în cazul problemelor rezolvate folosind metoda Greedy sau metoda programării dinamice se va argumenta corectitudinea criteriului de selecție sau a relațiilor de calcul;
 - în cazul subiectelor unde se precizează complexitatea maximă pe care trebuie să o aibă soluția, se va argumenta complexitatea soluției propuse și vor primi punctaj maxim doar soluțiile corecte care se încadrează în complexitatea cerută;
 - în cazul problemei rezolvate folosind metoda backtracking nu contează complexitatea soluției propuse, dar se va ține cont de eficiența condițiilor de continuare;
 - în fiecare program Python se va preciza, pe scurt, sub forma unor comentarii, semnificația variabilelor utilizate.
- Rezolvările corecte care nu respectă restricțiile indicate vor primi punctaje parțiale.
- Se acordă 1 punct din oficiu.
- Rezolvările tuturor subiectelor se vor scrie de mână, folosind pix/stilou cu culoarea pastei/cernelii albastră sau neagră. Pe fiecare pagina studentul își va scrie numele și grupa, iar paginile trebuie să fie numerotate.
- Înainte de expirarea timpului alocat examenului, toate paginile vor fi fotografiate/scanate clar, în ordinea corectă, și transformate într-un singur fișier PDF care va fi încărcat în Google Drive folosind un anumit formular.
- Numele fișierului PDF trebuie să respecte șablonul *grupa_nume_prenume.pdf*. De exemplu, un student cu numele Popescu Ion Mihai din grupa 131 trebuie să denumească fișierul care conține rezolvările tuturor subiectelor astfel: *131 Popescu Ion Mihai.pdf*.

Subjectul 1 - limbajul Python - 3 p.

- a) Scrieți o funcție palindrom care primește un număr variabil de cuvinte formate doar din litere mici ale alfabetului englez și returnează informații despre cuvintele palindrom sub forma unui dicționar de perechi {cuvant palindrom: lista de litere}. Cheia este cuvântul primit ca parametru dacă acesta este palindrom, iar lista de litere este formată din vocalele cuvântului dacă numărul vocalelor este mai mare decât numărul consoanelor, altfel lista va fi formată din consoanele cuvântului. Listele de litere vor fi sortate în ordine lexicografică. De exemplu, pentru apelul palindrom ('asa', 'merem', 'palindrom') funcția va returna dicționarul {'asa': ['a'], 'merem': ['m', 'r']} (1.5 p.)
- b) Știind că matricea pătratică m este memorată sub forma unei liste de liste, înlocuiți punctele de suspensie din instrucțiunea numere = [...] cu o secvență de inițializare (*list comprehension*) astfel încât, după executarea sa, lista să conțină pătratul elementelor aflate pe diagonala principală a matricei m. De exemplu, pentru matricea m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] trebuie ca lista numere să fie [1, 25, 81]. (0.5 p.)
- c) Considerăm următoarea funcție recursivă:

```
def f(lista):
    if len(lista) <= 2:
        return sum(lista)
    k = len(lista) // 3
    aux_1 = lista[:k]
    aux_2 = lista[k: 2*k]
    aux_3 = lista[2*k:]
    return f(aux_1) + f(aux_2) + f(aux_3)</pre>
```

Determinați complexitatea funcției apelată pentru o listă L formată din n numere întregi astfel: f(L). (1 p.)

Subjectul 2 – metoda Greedy (3 p.)

Complexitatea maximă a soluției: $O(n \log_2 n)$

La ora de sport, profesorul vrea să execute exerciții de gimnastică cu grupe de câte 2 elevi, dar pentru a putea realiza acest lucru trebuie ca valoarea absolută a diferenței dintre înălțimile celor 2 elevi dintr-o grupă să fie strict mai mică decât un număr natural h. Scrieți un program Python care citește de la tastatură două numere naturale n și h, precum și numele și înălțimile a n elevi, după care afișează pe ecran, în forma indicată în exemplu, numărul maxim de grupe formate din câte 2 elevi care se pot realiza respectând condiția indicată anterior, precum și numele elevilor din grupele respective. Evident, un elev poate să facă parte din cel mult o grupă! Înălțimile tuturor elevilor și diferența h sunt exprimate în centimetri. Nu contează ordinea în care se vor afișa grupele de elevi și nici ordinea numelor elevilor dintr-o grupă.

Exemplu:

Date de intrare	Date de ieșire
8	3
10	Popescu Ion, Georgescu Ioana
Popescu Ion 172	Mihai Ana, Constantinescu Radu
Mihai Ana 162	Ionescu Ion, Dumitrescu George
Popescu Dana 190	
Ionescu Ion 181	
Georgescu Ioana 170	
Dumitrescu George 188	
Constantinescu Radu 165	
Georgescu Anca 210	
_	

Explicații: Avem n = 8 și h = 10. Se pot forma maxim 3 grupe de câte 2 elevi cu proprietatea că valoarea absolută a diferenței dintre înălțimile lor este strict mai mică decât 10 centimetri. Soluția nu este unică, o altă soluție corectă obținându-se, de exemplu, înlocuind grupa *Ionescu Ion, Dumitrescu George* cu grupa *Ionescu Ion, Popescu Dana*.

Subjectul 3 – metoda Programării Dinamice (3 p.)

Complexitatea maximă a soluției: O(n²)

Schiorel a urcat cu telecabina până în vârful stațiunii și își dorește să ajungă cât mai obosit la una din cabanele stațiunii ca să se poată hidrata cât mai intens. Stațiunea e reprezentată ca o matrice pătratică de dimensiune n în care în fiecare pătrat avem gradul de oboseală pe care îl va acumula Schiorel dacă trece prin acel câmp sau -1, însemnând că în acel câmp avem o cabană. Schiorel poate începe traseul de oriunde de pe linia de sus și se poate opri la orice cabană, voi trebuie să-l ajutați să ajungă cât mai obosit! Schiorel poate coborî drept sau în diagonală, adică din (i,j) în {(i+1,j-1), (i+1, j), (i+1, j+1)} evident fără a părăsi stațiunea.

Scrieți un program Python care citește de la tastatură dimensiunea tablei n și pentru fiecare pătrățică de coordonate (i,j) (cu i=1,...,n, j=1,...,n) o valoare c_{ij} cu semnificația:

- dacă c_{ij} este număr natural, el reprezintă gradul de oboseală acumulat de Schiorel când trece prin acea zona a stațiunii.
- dacă c_{ii} este -1, atunci în acea zonă se află o cabană!

și afișează un traseu al lui Schiorel până la o cabană, astfel încât să ajungă cât mai obosit (odată ajuns la o cabană, Schiorel se oprește și nu mai continuă drumul).

	Intrare de la tastatură			leşire pe ecran
4 5 -1 4 1	2 7 10 6	6 1 3 -1	11 -1 5 2	Gradul de oboseala maxim 23 1 3 2 2 3 2 4 3

Explicații: Părtia este o matrice de dimensiuni 4x4 în care elementele reprezintă oboseala acumulată trecând prin acel punct, respectiv -1 în locul în care avem cabană. Pe traseul (1,3), (2,2), (3,2), (4,3) acumulează oboseala 23 (!traseul trebuie să înceapă pe prima linie și să se termine cu o pătrățică de valoare -1).

	Intrar	e de la	tastatură	leşire pe ecran
4				Gradul de oboseala maxim 31
5	2	6	31	1 4
-1	7	-1	-1	2 3
4	10	3	5	
1	6	-1	2	

Odată ajuns la o cabana, Schiorel se oprește din schiat. P.S. Lui Schiorel îi place oboseala.

Subjectul 4 - metoda Backtracking (3 p.)

a) Moş Crăciun are nevoie de m maşinuțe și apelează din nou la cei n spiriduși ai săi. El îl roagă pe fiecare spiriduș i $(1 \le i \le n)$ să-i spună care este numărul minim a_i și numărul maxim b_i de mașinuțe pe care ar vrea să le facă. Moş Crăciun ar vrea să îi pună pe spiriduși să facă cele m mașinuțe care-i trebuie pentru Crăciun, dar respectând opțiunile fiecărui spiriduș. Dacă vreți să primiți și voi una dintre mașinuțe, trebuie să-l ajutați pe Moș Crăciun scriind un program Python care să citească de la tastatură numerele m,n și opțiunile a_i și b_i ale fiecăruia dintre cei n spiriduși, după care să afișeze pe ecran toate modalitățile în care Moş Crăciun poate distribui producția de mașinuțe spiridușilor astfel încât spiridușul i să producă un număr de mașinuțe cuprins între a_i și b_i de mașinuțe sau mesajul "lmposibil" dacă nu există nicio modalitate de distribuție care să respecte cerințele precizate anterior. (2.5 p.)

Exemplu:

Pentru m = 16, n = 3, $a_1 = 1$, $b_1 = 6$, $a_2 = 0$, $b_2 = 7$, $a_3 = 4$, $b_3 = 8$ trebuie să fie afișate următoarele 20 de modalități de distribuție (nu neapărat în această ordine):

b) Modificați o singură instrucțiune din program astfel încât să fie afișate doar soluțiile în care spiridușul 1 și spiridușul 2 produc același număr de mașini. **(0.5 p.)**