# Spis treści

| 1 | Wstęp                               |      |   |  | 1 |
|---|-------------------------------------|------|---|--|---|
|   | 1.1 "Prawo" Kompresji bezstratnej   | <br> |   |  | 1 |
| 2 | Kodowania                           |      |   |  | 2 |
|   | 2.1 Modelowanie danych              | <br> |   |  | 2 |
|   | 2.2 Średnia długość kodu            | <br> |   |  | 2 |
|   | 2.3 Jednoznaczna dekodowalność      | <br> |   |  | 2 |
|   | 2.3.1 Nierówność Krafta             | <br> |   |  | 2 |
|   | 2.3.2 Kod prefiksowy                | <br> |   |  | 2 |
|   | 2.4 Kod natychmiastowy              | <br> |   |  | 2 |
|   | 2.5 Statyczny Kod Huffmana          | <br> |   |  | 2 |
|   | 2.6 Kodowanie Shannon-Fano          |      |   |  | 3 |
|   | 2.7 Kodowanie Tunstalla             | <br> |   |  | 3 |
|   | 2.8 Kodowanie Golomba               |      |   |  | 3 |
|   | 2.9 Dynamiczne kodowanie Huffmana   | <br> |   |  | 3 |
| 3 | Teoria informacji                   |      |   |  | 4 |
|   | 3.1 Miara informacji                | <br> |   |  | 4 |
|   | 3.2 Entropia                        |      |   |  | 4 |
|   | 3.2.1 Entropia źródła               |      |   |  | 4 |
|   | 3.2.2 Entropia Pierwszego Rzędu     |      |   |  | 4 |
| 4 | Kodowanie uniwersalne               |      |   |  | 4 |
|   | 4.1 Kodowanie Eliasa                | <br> |   |  | 4 |
|   | $4.1.1$ $\gamma$                    |      |   |  | 4 |
|   | $4.1.2$ $\stackrel{'}{\delta}$      |      |   |  | 5 |
|   | $4.1.3$ $\omega$                    |      |   |  | 5 |
|   | 4.2 Kodowanie Fibonacciego          |      |   |  | 5 |
| _ |                                     |      |   |  | _ |
| 5 | · · · · · · · · · · · · · · · · · · |      |   |  | 5 |
|   | 5.1 Algorytm                        |      |   |  | 5 |
|   | 5.2 Wizualizacja                    | <br> | • |  | 5 |
| 6 | Kodowanie Słownikowe                |      |   |  | 5 |
|   | 6.1 Statyczne kodowanie słownikowe  | <br> |   |  | 5 |
|   | 6.2 LZ77                            |      |   |  | 6 |
|   | 6.3 LZ78                            | <br> |   |  | 6 |
|   | 6.4 LZW                             | <br> |   |  | 6 |
| 7 | bzip2                               |      |   |  | 6 |

# 1 Wstęp

Wyróżniamy dwa rodzaje kompresji. W kompresji stratnej dopuszczalny jest pewien stopień straty informacji wejściowej. W kompresji bezstratnej nie jest to dopuszczalne.

# 1.1 "Prawo" Kompresji bezstratnej

Nie istnieje algorytm, który potrafi zmniejszyć rozmiar dowolnych danych

- Kompresja bezstratna musi być bijekcją
- $\bullet$  Dowolne dane przyjmują postać ciągu bitów długości n. Jest  $2^n$  takich ciągów.
- $\bullet$  Danych krótszych niżn,np.: o jeden jest  $2^{n-1}$
- $\bullet\,$  Nie da się stworzyć bijekcji z zbioru o mocy  $2^n$  do zbioru o mocy  $2^{n-1}$

Wniosek jest taki, że koniecznym jest konstruowanie kompresji bezstratnej na podzbiorach danych, takich jak np.: obrazów, dźwięków, tekstów.

# 2 Kodowania

Kodowanie to przyporządkowanie elementom jakiegoś alfabetu ciągu binarnych. Przykładami kodowania są: ASCII, UTF-8 oraz inne. Typowym jest konstruowanie kodowania pod konkretny zestaw danych, optymalizując je pod kątem częstości występowania poszczególnych elementów.

# 2.1 Modelowanie danych

Rozważmy ciąg:  $a_n = 9, 11, 11, 11, 14, 13, 15, 17, 16, 17, 20, 21$ .  $\max(a_n) = 21$  stąd koniecznym jest 5 bitów na element. Ale jeśli wykorzystamy wzór  $e_n = a_n - n + 8$  do stworzenia nowego ciągu, to ten ciąg przyjmuje postać: 0, 1, 0, -1, 1, -1, 0, 1, -1, -1, 1, 1. Teraz wystarczą tylko 2 bity na zakodowanie elementu.

# 2.2 Średnia długość kodu

$$I = \sum_{i=1}^{n} p_i \cdot l_i$$

gdzie  $p_i$  to prawdopodobieństwo wystąpienia elementu i, a  $l_i$  to długość kodu dla elementu i.

#### 2.3 Jednoznaczna dekodowalność

Jeśli dla dowolnego ciągu znaków istnieje tylko jedno jego rozkodowanie to kod jest jednoznacznie dekodowalny. Aby sprawdzić czy kod jest jednoznacznie dekodowalny, należy zastosować następujący algorytm.

- 1. Stwórz pustą listę
- 2. Dla każdej pary słów kodowych sprawdź czy jedno jest prefiksem drugiego. Jeśli tak, dodaj sufiks drugiego słowa do listy, jeśli już go tam nie ma.
- 3. Jeśli na liście jest słowo kodowe, to kod nie jest jednoznacznie dekodowalny.

#### 2.3.1 Nierówność Krafta

Jeżeli  $\mathcal{C}$  jest kodem jednoznacznie dekodowalnym z n słowami to:

$$K(\mathcal{C}) = \sum_{i=1}^{n} 2^{-l_i} \le 1$$

Jest to warunek konieczny bycia kodem jednoznacznie dekodowalnym.

# 2.3.2 Kod prefiksowy

Kod w którym żadne słowo kodowe nie jest prefiksem innego słowa kodowego. Wszystkie kody prefiksowe są jednoznacznie dekodowalne.

## 2.4 Kod natychmiastowy

Jest kodem pozwalającym stwierdzić w którym miejscu zakończone jest słowo kodowe w momencie odczytania ostatniej litery.

## 2.5 Statyczny Kod Huffmana

Kod Huffmana to kod prefiksowy o minimalnej średniej długości kodu. Są one optymalne wśród kodów prefiksowych. Dla alfabetu  $\mathcal{A}$  o długości n i prawdopodobieństwach wystąpienia  $p_1, \ldots, p_n$  algorytm tworzenia kodu Huffmana wygląda następująco: Znajdź dwa najrzadziej występujące elementy i połącz je w jeden element o prawdopodobieństwie  $p_1 + p_2$ . Rozróżnij je 0 lub 1. Powtórz ten krok na liście n-1 długiej aż zostanie jeden element.



Diagram 1: Przykład kodu Huffmana dla P(a) = 0.5, P(b) = 0.25, P(c) = 0.15, P(d) = 0.1

## 2.6 Kodowanie Shannon-Fano

Dla symboli  $a_1, \ldots, a_n$  o prawdopodobieństwach  $p_1, \ldots, p_n$ , ustalmy kody długości  $l_n = \lceil -\log p_i \rceil$ . Następnie zdefiniujmy zmienne pomocnicze  $w_1, \ldots w_n$  jako:

$$w_1 = 0, w_j = \sum_{i=1}^{j-1} 2^{l_j - l_i}$$

Jeżeli  $\lceil \log w_j \rceil = l_j$  to j-te słowo kodowe jest binarną reprezentacją  $w_j$ . Jeżeli  $\lceil \log w_j \rceil < l_j$  to reprezentację uzupełniamy zerami z lewej strony.

Dla 
$$P(a) = \frac{1}{3}$$
,  $P(b) = \frac{1}{4}$ ,  $P(c) = \frac{1}{4}$ ,  $P(d) = \frac{1}{6}$  mamy:

$$l_a = 2, l_b = 2, l_c = 2, l_d = 3$$
 
$$w_1 = 0, w_2 = 2, w_3 = 2, w_4 = 6$$
 
$$kod(a) = 00, kod(b) = 01, kod(c) = 10, kod(d) = 110$$

#### 2.7 Kodowanie Tunstalla

Chcemy stworzyć kod na n bitach dla  $a_1, \ldots, a_m$  symboli o prawdopodobieństwach  $p_1, \ldots, p_m$ . Tworzenie kodu Tunstalla polega na iteracyjnym wyborze ze zbioru symbolu o największym prawdopodobieństwie S i łączenie go z wszystkimi innymi symbolami tworząc symbole  $Sa_m$ , nadając im prawdopodobieństwa  $P \cdot p_m$ . Proces ten powtarzamy aż do uzyskania kodu o długości n.

## 2.8 Kodowanie Golomba

Kody Golomba są parametryzowane liczbą m>0. Każda liczba n jest zapisywana za pomocą  $q=\lfloor\frac{n}{m}\rfloor$  oraz  $r=n-q\cdot m$  w postaci

$$(q)_1(r)_2$$

# 2.9 Dynamiczne kodowanie Huffmana

Głównym problemem kodowania Huffmana jest konieczność znania całego ciągu danych przed rozpoczęciem kodowania. Rozwiązaniem tego problemu jest dynamiczne kodowanie, gdzie stosujemy kodowanie Huffmana dla k+1 symbolu na podstawie kodowania dla k symboli. W tym celu tworzymy dynamicznie drzewo, gdzie każdy liść ma wagę równą ilości wystąpień danego symbolu. Drzewo zaczyna się od liścia z symbolem EOF o wadze 0.



Diagram 2: Przykład kodowania dynamicznego

# 3 Teoria informacji

Teoria informacji to dziedzina zajmująca się przetwarzaniem informacji.

# 3.1 Miara informacji

Miarą informacji, którą niesie ze sobą zdarzenie A jest:

$$I(A) = -\log_x P(A)$$

gdzie x to baza systemu liczbowego. Jeśli miarą informacji jest bit to x=2. Jeśli zdarzenia A i B są niezależne to:

$$I(AB) = I(A) + I(B)$$

# 3.2 Entropia

Entropia to miara średniej informacji przekazywanej przez źródło. Kody jednoznacznie dekodowalne w modelu z niezależnymi wystąpieniami symboli muszą mieć średnią długość co najmniej równą entropii.

## 3.2.1 Entropia źródła

Dla źródła danych S generującego ciąg X nad alfabetem  $\mathcal{A} = \{1, 2, \dots m\}$ 

$$H(S) = \lim_{n \to \infty} \frac{G_n}{n}$$

$$G_n = -\sum_i \cdots \sum_j P(X_1 = i, \dots, X_n = j) \log P(X_1 = i, \dots, X_n = j)$$

#### 3.2.2 Entropia Pierwszego Rzędu

Dla źródła informacji X, z zbiorem wiadomości (zdarzeń)  $A_1, \ldots, A_n$ , gdzie  $P(A_i)$  to prawdopodobieństwo wystąpienia zdarzenia  $A_i$  i zdarzenia są niezależne to entropia źródła to:

$$H(X) = \sum_{i=1}^{n} P(A_i)I(A_i)$$

# 4 Kodowanie uniwersalne

Szukamy sposobu na kodowanie dowolnej liczby  $n \in \mathbb{N}$ . Problem polega na skonstruowaniu kodu, który będzie jednoznacznie dekodowalny i uniwersalny. To oznacza, że ma się skalować w nieskończoność.

#### 4.1 Kodowanie Eliasa

Kodowanie Eliasa to kodowanie uniwersalne, które wykorzystuje kodowanie unarne do zapisania długości kodu binarnego liczby n.

$$n = |\log_2(x)| + 1$$

## 4.1.1 $\gamma$

Jest to najprostsze z kodowań Eliasa. Polega na zakodowaniu liczby x w postaci binarnej, a następnie dodaniu przed nią liczby n-1 zer.

$$\gamma(x) = 0^{n-1}(x)_2$$

$$(13)_{10} = 1101_2 \Rightarrow \gamma(13) = 0001101$$

#### 4.1.2 $\delta$

Cały trik kodu  $\delta$  polega na zakodowaniu długości kodu binarnego liczby x przy pomocy kodu  $\gamma$ . Istotnym trikiem jest usunięcie najstarszego bitu z zakodowanej liczby x.

$$\delta(x) = \gamma(n) + (x)_2$$
 (13)<sub>10</sub> = 1101<sub>2</sub>  $\Rightarrow$   $\delta$ (13) = 00100101

Jak widać, jest on bardziej efektywny dla większych liczb. Długość kodu  $\delta$  to  $2 \cdot \lceil \log_2(\lceil \log_2 x \rceil) \rceil - 1 + \lceil \log_2 x \rceil - 1$ .

#### 4.1.3 $\omega$

Jest to kodowanie rekurencyjne, które działa jak kodowanie  $\delta$ , ale w nieskończoność. Na koniec umieszczane jest 0, potem kodowana jest liczba k=x. Potem ten krok jest powtarzany dla k=n-1 gdzie n to liczba bitów z poprzedniego kroku.

$$(13)_{10} = 1101_2 \Rightarrow \omega(13) = 1111010$$

# 4.2 Kodowanie Fibonacciego

Liczba Fibonacciego ma postać:

$$f_0 = f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} : n \ge 2$$

Kodowanie fibonacciego polega na reprezentacji liczby x jako sumę liczb fibonacciego.

$$x = \sum_{i=0}^{n} a_i \cdot f_i, a_i \in \{0, 1\}$$

$$(13)_{10} = f_7 = 1101_2 \Rightarrow Fib(13) = 0000011$$

# 5 Kodowanie arytmetyczne

Kodowanie arytmetyczne to kodowanie, które odwzorowywuje dowolny ciąg wejściowy na liczbę z zakresu [0,1). Głównym pomysłem stojącym za algorytmem, jest iteracyjne przypisywanie coraz to mniejszych przedziałów do kolejnych symboli ciągu wejściowego.

# 5.1 Algorytm

Dla zakresu początkowego [l,p) = [0,1), ciągu symboli wejściowych  $a_j$ , dystrybuanty F(j) i prawdopodobieństw  $p_j$  algorytm wygląda następująco:

- d = p l
- $p = l + d \cdot F(j+1)$
- l = l + F(i)d

Powyższe kroki wykonujemy dla każdego symbolu ciągu wejściowego. Na koniec dostajemy zakres, z którego potem możemy wybrać dowolną liczbę jako wynik kodowania.

#### 5.2 Wizualizacja

## 6 Kodowanie Słownikowe

#### 6.1 Statyczne kodowanie słownikowe

Zawczasu określamy jakiś słownik słów. Następnie przypisujemy każdemu słowu kod binarny. W ten sposób kodujemy cały tekst. Takie kodowanie ma sporo wad, głównie związanych z koniecznością przesyłania słownika oraz z słabą odpornością na błędy i zmienność danych wejściowych.



Diagram 3: Wizualizacja kodowania arytmetycznego

#### 6.2 LZ77

Słownikiem jest zakodowana/odkodowana część tekstu. W ten sposób jesteśmy bardzo elastyczni w zakresie zmiany danych wejściowych, oraz nie musimy przesyłać słownika. Kodem jest trójka (o, l, k) gdzie o to przesunięcie, l to długość, a k to kolejny znak. W ten sposób (0, 0, n), (1, 1, k) dekoduje się jako "nnk". Proces kodowania jest parametryzowany n i m, gdzie o < n i l < m.

# 6.3 LZ78

Istnieje osobny słownik, do którego trafiają kolejne słowa. Podczas kodowania kolejno szukamy w słowniku najdłuższego słowa, które jest prefiksem ciągu wejściowego. Jeśli nic nie znajdziemy to dodajemy pierwszą literę do słownika, lecz jeśli znajdziemy taki prefiks, to kodujemy go jako indeks w słowniku, wraz z kodem następnej litery. Zatem kod (0,k), (1,a)(2,b) oznacza "kkakab", a słownik s zawiera s(1) = k, s(2) = ka, s(3) = kab.

#### 6.4 LZW

Ta wersja algorytmu pozbywa się drugiego elementu pary z kodowania LZ78. Z kolei potrzebny jest słownik początkowy zawierający wszystkie możliwe symbole. Poza tą mała różnicą, algorytm jest identyczny z LZ78. Zatem ze słownikiem s gdzie s(1) = a, s(2) = b, s(3) = c, kod: 34 znaczy "cbcb", ponieważ s(4) = cb po pierwszym kroku.

# 7 bzip2

Mając blok danych o długości n, tworzymy wszystkie n rotacji tego bloku. Następnie sortujemy je leksykograficznie. W ten sposób otrzymujemy blok transformowany.

| 0 | e | 1 | 1 | О | h |
|---|---|---|---|---|---|
| 1 | h | е | 1 | 1 | О |
| 2 | 1 | 1 | О | h | е |
| 3 | 1 | О | h | e | l |
| 4 | О | h | е | l | l |

Tabela 1: Przykład bloku transformowanego dla słowa "hello"

Na podstawie tej tabeli zapisujemy numer wiersza, w którym znajduje się oryginalne słowo, oraz ostatnią kolumnę. W ten sposób uzyskujemy kod 1, "hoell". Mając tylko te dane, jesteśmy bardzo łatwo w stanie odtworzyć oryginalne słowo. Najpierw sortujemy nasz kod leksykograficznie, zapamiętując indeksy.

| 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| е | h | l | 1 | О |
| 2 | 0 | 3 | 4 | 1 |

Tabela 2: Tabela dekodowania dla kodu 1, "hoell"

Mając taką tabelę, następnie konstruujemy ciąg, traktując tabelę jak permutację, zaczynając od indeksu zawartego w kodzie. W naszym przypadku powstaje permutacja cykliczna (1,0,2,3,4). Wykorzystując tę permutację, odtwarzamy oryginalne słowo.