# DS1\_C5\_S1\_Challenge

# In [1]:

```
#Import the required liberary
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
import statistics as st
```

# In [6]:

car = pd.read\_excel(r'E:\Aishwarya official\Aishwarya Data Scince\course 5\DS1\_C4\_S5\_Car\_Da
car

# Out[6]:

|      | SI.<br>No. | Make       | Model        | Variant          | Displacement | Cylinders | Valves_Per_Cylinder | Drivetrai                   |
|------|------------|------------|--------------|------------------|--------------|-----------|---------------------|-----------------------------|
| 0    | 0          | Tata       | Nano<br>Genx | Xt               | 624.0        | 2.0       | 2.0                 | RW<br>(Rea<br>Whea<br>Drive |
| 1    | 1          | Tata       | Nano<br>Genx | Xe               | 624.0        | 2.0       | 2.0                 | RW<br>(Rea<br>Whea<br>Drive |
| 2    | 2          | Tata       | Nano<br>Genx | Emax<br>Xm       | 624.0        | 2.0       | 2.0                 | RW<br>(Rea<br>Whea<br>Drive |
| 3    | 3          | Tata       | Nano<br>Genx | Xta              | 624.0        | 2.0       | 2.0                 | RW<br>(Rea<br>Whe<br>Drive  |
| 4    | 4          | Tata       | Nano<br>Genx | Xm               | 624.0        | 2.0       | 2.0                 | RW<br>(Rea<br>Whe<br>Drive  |
|      |            |            |              |                  | •••          | ***       |                     |                             |
| 1271 | 1271       | Honda      | City         | Vx Mt<br>Diesel  | 1498.0       | 4.0       | 4.0                 | FW<br>(Froi<br>Whe<br>Drive |
| 1272 | 1272       | Honda      | City         | Zx Mt<br>Diesel  | 1498.0       | 4.0       | 4.0                 | FW<br>(Froi<br>Whe<br>Drive |
| 1273 | 1273       | Honda      | City         | Zx Cvt<br>Petrol | 1497.0       | 4.0       | 4.0                 | FW<br>(Froi<br>Whe<br>Drive |
| 1274 | 1274       | Honda      | City         | V Cvt<br>Petrol  | 1497.0       | 4.0       | 4.0                 | FW<br>(Froi<br>Whe<br>Drive |
| 1275 | 1275       | Mitsubishi | Montero      | 3.2 At           | 3200.0       | 4.0       | 4.0                 | AWD (A<br>Whe<br>Drive      |

1276 rows × 139 columns

**→** 

# Task 1

#### In [9]:

```
for item in car.columns:
    print(item," ",car[item].isna().sum())
Cylinder_Configuration
                         13
Engine_Location
Fuel_System
Fuel_Tank_Capacity_litre
                           69
Fuel Type
Height_mm
            1
Length mm
           12
Width_mm
Body_Type
            6
Doors
City_Mileage_km_litre
Highway Mileage km litre
                           800
ARAI_Certified_Mileage
                         114
ARAI_Certified_Mileage_for_CNG
                                 1249
Kerb_Weight
              365
Gears
        105
Ground_Clearance
                   289
Front_Brakes
Rear_Brakes
              25
Front Suspension
                   59
```

#### In [8]:

```
car.isnull().sum()
```

### Out[8]:

```
Sl. No.
                        0
Make
                       75
Model
                        0
Variant
                        0
Displacement
                       12
USB Ports
                     1247
Heads-Up_Display
                     1225
Welcome_Lights
                     1207
Battery
                     1263
Electric_Range
                     1259
Length: 139, dtype: int64
```

# In [23]:

```
cr = car[['Make', 'Displacement', 'Fuel_Tank_Capacity_litre', 'City_Mileage_km_litre','Hight
cr.dropna(inplace=True)
cr
```

# Out[23]:

|      | Make       | Displacement | Fuel_Tank_Capacity_litre | City_Mileage_km_litre | Highway_Mileage |
|------|------------|--------------|--------------------------|-----------------------|-----------------|
| 6    | Datsun     | 799.0        | 28.0                     | 21.38                 |                 |
| 7    | Datsun     | 799.0        | 28.0                     | 21.38                 |                 |
| 8    | Datsun     | 799.0        | 28.0                     | 21.38                 |                 |
| 9    | Datsun     | 799.0        | 28.0                     | 21.38                 |                 |
| 24   | Suzuki     | 1196.0       | 40.0                     | 12.00                 |                 |
|      |            |              |                          |                       |                 |
| 1271 | Honda      | 1498.0       | 40.0                     | 22.60                 |                 |
| 1272 | Honda      | 1498.0       | 40.0                     | 22.60                 |                 |
| 1273 | Honda      | 1497.0       | 40.0                     | 18.00                 |                 |
| 1274 | Honda      | 1497.0       | 40.0                     | 14.30                 |                 |
| 1275 | Mitsubishi | 3200.0       | 88.0                     | 8.25                  |                 |

338 rows × 6 columns

**→** 

# In [38]:

```
cr=cr.groupby(['Make'])['Displacement','Fuel_Tank_Capacity_litre','City_Mileage_km_litre','
cr
```

Out[38]:

|             | Displacement | Fuel_Tank_Capacity_litre | City_Mileage_km_litre | Highway_Mileage_km |
|-------------|--------------|--------------------------|-----------------------|--------------------|
| Make        |              |                          |                       |                    |
| Audi        | 18098.0      | 375.0                    | 41.30                 |                    |
| Bentley     | 22741.0      | 360.0                    | 15.50                 |                    |
| Bmw         | 28919.0      | 788.0                    | 171.32                | 2                  |
| Datsun      | 3196.0       | 112.0                    | 85.52                 |                    |
| Dc          | 2000.0       | 60.0                     | 8.00                  |                    |
| Fiat        | 11516.0      | 405.0                    | 130.00                | 1                  |
| Force       | 10384.0      | 252.0                    | 56.00                 |                    |
| Ford        | 7594.0       | 240.0                    | 26.30                 |                    |
| Honda       | 28946.0      | 796.0                    | 309.50                | 3                  |
| Hyundai     | 32460.0      | 1101.0                   | 415.20                | 4                  |
| Icml        | 21934.0      | 550.0                    | 94.60                 | 1                  |
| Isuzu       | 5998.0       | 152.0                    | 27.60                 |                    |
| Jaguar      | 23974.0      | 690.0                    | 64.81                 | 1                  |
| Lamborghini | 6498.0       | 90.0                     | 3.60                  |                    |
| Mahindra    | 76908.0      | 2225.0                   | 548.05                | E                  |
| Maserati    | 12369.0      | 231.0                    | 13.80                 |                    |
| Mitsubishi  | 15585.0      | 438.0                    | 40.75                 |                    |
| Nissan      | 10364.0      | 341.0                    | 112.90                | 1                  |
| Porsche     | 11988.0      | 270.0                    | 21.30                 |                    |
| Premier     | 8061.0       | 276.0                    | 82.00                 | 1                  |
| Renault     | 13260.0      | 450.0                    | 126.20                | 1                  |
| Skoda       | 50630.0      | 1782.0                   | 418.60                | ٤                  |
| Suzuki      | 47594.0      | 1693.0                   | 825.68                | ç                  |
| Tata        | 41682.0      | 1279.0                   | 510.48                | ٤                  |
| Toyota      | 68947.0      | 2129.0                   | 629.01                | 7                  |
| Volkswagen  | 12881.0      | 450.0                    | 171.00                | 1                  |
| Volvo       | 5549.0       | 177.0                    | 38.25                 |                    |



```
In [41]:
```

```
mean =[]
mode =[]
median =[]

for col in cr:
    mean.append(st.mean(cr[col]))
    mode.append(st.mode(cr[col]))
    median.append(st.median(cr[col]))

row_head = ['mean', 'mode', 'median']
col_name = ['Displacement', 'Fuel_Tank_Capacity_litr', 'City_Mileage_km_litre', 'Highway_Milea
# create dataframe of mean , median ,mode
d_data = pd.DataFrame ([mean, mode, median], columns = col_name)
d_data
# insert column
d_data.insert(0, "Measures", row_head)
d_data
```

#### Out[41]:

|   | Measures | Displacement | Fuel_Tank_Capacity_litr | City_Mileage_km_litre | Highway_Mileage_km |
|---|----------|--------------|-------------------------|-----------------------|--------------------|
| 0 | mean     | 22225.037037 | 656.0                   | 184.713704            | 219.90             |
| 1 | mode     | 18098.000000 | 450.0                   | 41.300000             | 54.60              |
| 2 | median   | 13260.000000 | 405.0                   | 85.520000             | 122.32             |
| 4 |          |              |                         |                       | <b>&gt;</b>        |

```
In [44]:
```

```
mean= []
SD = []
CV=[]
# iterate each column
for col in cr:
    col_mean= cr[col].mean() #creating mean of each column
    mean.append(col mean)
                                      #storing the calculated mean in mean named folder
    col_std= cr[col].std()
                               #calculating standard deviation of each column
                                      #storing the calculated SDin SD name folder
    SD.append(col std)
    CV.append(col std/col mean*100)
row_head = ['mean', 'SD', 'CV']
col_name = ['Displacement', Fuel_Tank_Capacity_litr', City_Mileage_km_litre', Highway_Milea
# create dataframe of mean , median ,mode
d data1 = pd.DataFrame ([mean, SD, CV], columns = col name)
d data1
# insert column
d_data1.insert(0,"Measures", row_head)
d_data1
```

#### Out[44]:

|   | Measures | Displacement | Fuel_Tank_Capacity_litr | City_Mileage_km_litre | Highway_Mileage_km |
|---|----------|--------------|-------------------------|-----------------------|--------------------|
| 0 | mean     | 22225.037037 | 656.000000              | 184.713704            | 219.90             |
| 1 | SD       | 19612.814181 | 630.529753              | 223.802065            | 255.17             |
| 2 | CV       | 88.246486    | 96.117340               | 121.161593            | 116.03             |
| 4 |          |              |                         |                       | <b>&gt;</b>        |

#### In [21]:

```
su = cr[cr.Make == 'Suzuki']
to = cr[cr.Make == 'Mahindra']
ma = cr[cr.Make == 'Toyota']
```

#### In [55]:

```
Suzuki_data = su['Displacement'].tolist()
Mahindra_data = to['Displacement'].tolist()
Toyota_data = ma['Displacement'].tolist()
```

#### In [56]:

```
plt.boxplot([Suzuki_data, Mahindra_data, Toyota_data], vert=0)
plt.yticks([1,2,3],['Suzuki', 'Mahindra', 'Toyota'])
```

### Out[56]:

```
([<matplotlib.axis.YTick at 0x1ccd97de3d0>,
  <matplotlib.axis.YTick at 0x1ccd97c1d30>,
  <matplotlib.axis.YTick at 0x1ccd97f3880>],
  [Text(0, 1, 'Suzuki'), Text(0, 2, 'Mahindra'), Text(0, 3, 'Toyota')])
```



# Task 2

### In [54]:

```
import seaborn as sns
```

#### In [71]:

```
make = car.groupby(['Make'])['Displacement','Fuel_Tank_Capacity_litre', 'City_Mileage_km_li
```

# In [72]:

```
corr = make[['Displacement','Fuel_Tank_Capacity_litre','City_Mileage_km_litre','Cylinders',
corr
```

# Out[72]:

|                          | Displacement      | Fuel_Tank_Capacity_litre | City_Mileage_km_litre | Cylinder  |
|--------------------------|-------------------|--------------------------|-----------------------|-----------|
| Displacement             | 1.000000          | 0.881811                 | -0.736779             | 0.97103   |
| Fuel_Tank_Capacity_litre | 0.881811          | 1.000000                 | -0.758070             | 0.79227   |
| City_Mileage_km_litre    | <b>-</b> 0.736779 | -0.758070                | 1.000000              | -0.666110 |
| Cylinders                | 0.971032          | 0.792271                 | -0.666116             | 1.00000   |
| Height_mm                | <b>-</b> 0.448780 | -0.114598                | 0.252883              | -0.52274  |
| 4                        |                   |                          |                       | •         |

# In [73]:

sns.heatmap(corr)

# Out[73]:

# <AxesSubplot:>



```
In [67]:
make['Displacement'].corr(make['City_Mileage_km_litre'])
Out[67]:
-0.7367789216015502
In [ ]:
make['Displacement'].corr(make[''])
In [68]:
make['Displacement'].corr(make['Cylinders'])
Out[68]:
0.9710315137022268
In [70]:
make['Displacement'].corr(make['Height_mm'])
Out[70]:
```

-0.4487804365986555

Conclusion: - From above heatmap and correalation coefficient its observable that number of cylinders have the highest correlation with mileage and followed by displacement