光栅组合实验报告

基科 32 曾柯又 2013012266

Part I

基础实验部分

1 实验目的

- (1) 根据已知波长的谱线,利用正入射,斜入射法测量光栅的光栅常量。
- (2) 用已知波长的 He-Ne 光谱作参考,测量氢原子较强可见光谱线的波长,计算氢的里德伯常量。

2 实验原理

2.1 平面光栅的衍射

平面反射光栅是刻有一系列等间距平行划痕的反射平面镜,设光栅常量为 *d*,则可以得到出射光束相干涉出现极大值的条件为:

$$d(\sin \theta_{rk} - \sin \theta_i) = d(\sin(\phi_n - \phi_{rk}) - \sin(\phi_n - \phi_i)) = K\lambda, K = 0, \pm 1, \pm 2 \cdots$$

式中, ϕ_n 为光栅表面方位角, $\theta_i = \phi_n - \phi_i$ 为入射角, $\theta_{rk} = \phi_n - \phi_{rk}$ 为衍射角, λ 是波长,于是在满足上式的一系列出射角 θ_{rk} 的方向上将观察到亮谱线。实验中的测量一般采用两种方式。

(1) 正入射法

对于入射角 $\theta_i = 0$, 衍射公式简化为:

$$d\sin\theta_{rk} = K\lambda$$

(2) 斜入射法

即对应入射角 $\theta_i \neq 0$, 衍射公式仍为:

$$d(\sin\theta_{rk} - \sin\theta_i) = K\lambda$$

利用上述两式,测得不同级次下已知波长谱线的衍射角,即可求得光栅的 光栅常量d。

3 巴尔末公式与里德伯常量

巴尔末线系 4 条可见光谱线的经验公式可以写为: $\lambda_0=R_H^{-1}\left(\frac{1}{2^2}-\frac{1}{N^2}\right)$, 式中 λ_0 是真空波长, R_H 是氢的里德伯常量。又由波尔的量子论可得:

$$\lambda_0 = R_{\infty}^{-1} (1 + \frac{m_e}{m_p}) (\frac{1}{2^2} - \frac{1}{N^2})^{-1}$$

上式中, R_{∞} 是里德伯常量, m_e 为电子质量, m_p 为质子质量,在考虑到空气 折射率的影响后,可由下式计算 R_{∞} :

$$R_{\infty} \approx (1.00028\lambda)^{-1} (1 + \frac{m_e}{m_p}) \left(\frac{1}{2^2} - \frac{1}{N^2}\right)$$

在实验中,测定氦氖谱线和氢的谱线的衍射方位角,利用已知氦氖谱线波长,求得一次回归方程:

$$\phi = b_0 + b_1 \lambda$$

或二次回归方程

$$\phi = b_0 + b_1 \lambda + b_2 \lambda^2$$

将氢的衍射角 ϕ_H 带入回归方程,即可求得氢红线谱线波长 λ_H ,进而可以求得里德伯常量。

4 实验数据及处理

4.1 正入射法

		K = 1	K = 2	K = 3
蓝紫	蓝紫 $\phi_1/^{\circ}$		15.15	23.08
$\lambda = 435.83 \phi_2/^{\circ}$		7.52	15.15	23.08
$d = \frac{K\lambda}{\sin\phi}$		3331.6621	3335.2599	3334.8421
黄绿	黄绿 $\phi_1/^{\circ}$		19.13	29.44
$\lambda = 546.07 \phi_2/^{\circ}$		9.43	19.13	29.44
$d = \frac{K\lambda}{\sin\phi}$		3331.7287	3333.4535	3332.8302

4 实验数据及处理

3

平均值为:

$$\bar{d} = 3333.296125$$
nm $= 3.333296 \times 10^{-6}$ m

4.2 斜入射法

以15° 斜入射

		K = 1	K = 2	K = 3
蓝紫	蓝紫 $\phi_1/^{\circ}$		0.15	-7.625
$\lambda = 435.83 \phi_2/^{\circ}$		-7.3583	0.15	7.625
d		3333.4443	3334.1106	3339.6259
黄绿	$\phi_1/^{\circ}$	-5.4583	3.925	13.425
$\lambda = 546.07$	$\phi_2/^\circ$	-5.4583	3.925	13.425
d		3335.8544	3337.1258	3336.5351

平均值为:

$$\bar{d} = 3336.1160$$
nm $= 3.336116 \times 10^{-6}$ m

4.3 不同级次谱线测量的误差讨论

正入射情况下:

$$d = \frac{K\lambda}{\sin\phi}$$

可以得到:

$$\frac{\Delta d}{d} = \frac{\Delta \phi}{\phi}$$

可以看出,测量 d 时,当 $\Delta \phi$ 一定时, ϕ 越大, Δd 越小,因此测量的级次越高, Δd 越小。但是衍射的级次越高,谱线的形变越厉害,并且级次越高,谱线也越难以观察,因此需要综合考虑。

4.4 比较法测里德伯常量

λ/nm	λ^2/nm	φ/°
638.2992	407425.8687	184.95
640.2246	409887.5384	185.0917
650.6528	423349.0661	185.8083
653.2882	426785.4723	185.9917
659.8953	435461.807	186.4417
667.815	445976.8742	186.9917
671.743	451238.658	187.25

 $\phi_H = 186.2^{\circ}$

4.4.1 一次拟合结果

b_0	b_0 s_{b_0}		s_{b_1}	
141.0527	0.1117	0.0688	1.7067×10^{-4}	

因变量标准差 $s_{\phi} = 0.00536^{\circ}$

可以解出 $\lambda_H = 656.3771nm$

进而求得: $R_{\infty} = 1097220.676 \mathrm{m}^{-1}$

4.4.2 二次拟合结果

b_0		s_{b_0}	b_1	s_{b_1}	b_2	s_{b_2}
130.2	325	6.4981	0.1018	0.0198	-2.5253×10^{-5}	1.5164×10^{-5}

因变量标准差 $s_{\phi} = 0.0046^{\circ}$

解出 $\lambda_H = 656.3263$ nm

进而解得 $R_{\infty}=1097305.506\mathrm{m}^{-1}$

可以发现直线拟合的 s_{ϕ} 和二次拟合的 s_{ϕ} 相差不大, $\frac{|s_{\phi 1}-s_{\phi 2}|}{s_{\phi 2}}=10.56\%$,并且结果也相差不大,并且直线拟合更加简便,因此一般用直线拟合就足够了。

Part II

探究性实验部分

5 实验目的

我选择的实验是氢原子光谱及其的同位素位移的观测。即利用长焦数码相 机成像的方法,计算与测量氢氘混合气体放电管的红光光谱波长差,研究验证 氢原子光谱的同位素位移率。

6 实验原理

光栅衍射的基本原理同前基础实验部分,这里主要补充氢原子光谱的同位 素位移率

6.1