Санкт-Петербуртский национальный исследовательский университет информационных технологий, механики и оттики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3110	К работе допущен						
Студент Романов Артём Максимович	Работа выполнена						
Преподаватель <u>Коробков М.П.</u>	Отчет принят						
Рабочий протокол и отчет по							
лабораторной работе № 1.04							
Исследование равноускоренн	ного вращательного движения						

(маятник Обербека)

1. Цель работы.

- 1. Проверить основной закон динамики вращения.
- 2. Проверить зависимость момента инерции от положения масс относительно оси вращения.

2. Объект исследования.

Равноускоренное вращательное движение

2. Метод экспериментального исследования.

- 1. Многократные прямые измерения
- 2. Косвенные измерения

3. Рабочие формулы и исходные данные.

$$ma = mg - T$$
 $a = \frac{2h}{t^2}$

$$\varepsilon = \frac{2a}{d}$$
 - угловое ускорение

$$T = m(g - a)$$
 – сила натяжения нити

$$M = \frac{md}{2}(g-a)$$
 – момент этой силы

 $I\varepsilon=M-M_{ip}$ - основной закон динамики вращения для крестовины

 $I=I_0+4m_{yr}R^2$ - момент инерции крестовины зависит от расстояния между центрами грузов и осью вращения, где I_0 - сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей

6. Измерительные приборы.

Таблица 1

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Секундомер	электронный	0-100 с	0,1	
2	Линейка у каретки	механический	0-800 мм	0,5 м	

7. Схема установки

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Таблица 2

Наименование	Значение	Погрешность
Масса каретки	47Γ	0,5г
Масса шайбы	220г	0,5г
Масса грузов на крестовине	408Γ	0,5г
Расстояние от первой риски до оси	57мм	0,5мм
Расстояние между рисками	25мм	0,2мм
Диаметр ступицы	46мм	0,5мм
Диаметр груза на крестовине	40мм	0,5мм
Высота груза на крестовине	40мм	0,5мм

8. Результаты прямых измерений и их обработки

POMANOB APTEM MAKCUMOBUY P3110

Macca	Положение утяжелителей							
груза, г	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска		
	-4,5	3,47	6,29	7,69	9,03	10,59		
m_1	4,53	5,57	6,47	7,84	8,97	10,62		
<i>***</i> 1	4,65	5,4	6,1	7,69	8,81	10,4		
	4,44	5,47	6,04	7,75	8,84	10,53		
	3,22	3,94	4,47	5,35	6,38	7,16		
m_2	3,4	3,78	4,41	5,5	6,31	7,16		
1112	3,35	3.88	4,6	5,28	6,25	7,03		
	3,41	3,02	4,41	5,44	6,4	7,06		
m_3	2,69	3,09	3,81	4,59	5,12	5,53		
	2,6	3,29	3,63	4,21	4,94	5,69		
	2,59	3,22	3,66	4,34	4,9	5,65		
	2.85	3,1	3,71	4,43	5,16	5,69		
m_4	2,34	2,78	3,19	3,72	4,28	4,9		
	2,25	2,82	3,34	3,81	4,31	4,9		
	2,35	2,72	3,21	3,62	4,47	4,88		
	2,22	2,78	3,19	3,88	4,41	4,85		

John Mark

Расчет результатов косвенных измерений

Для первого значения t_{cp} рассчитаем погрешность среднего значения времени Δt .

$$t\alpha$$
, $N = 4.3c$

$$\Delta t = t\alpha, N \sqrt{\frac{\sum (t_i - t')^2}{\sqrt{N - 1}\sqrt{N}}} = 0.22c \qquad \varepsilon_t = 4.84 \%$$

Используя найденные значения $t_{\rm cp}$ рассчитаем ускорение a груза, угловое ускорение ε крестовины и момент M силы натяжения нити. Результаты оформим в виде таблицы

$$\varepsilon = \frac{2a}{d}$$

$$a = \frac{2h}{t^2}$$

$$M = \frac{md}{2}(g - a)$$

Таблица 3

Macca	Парамотры	Положение утяжелителей					
груза, г	Параметры	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска
0.267	а	0,07	0,05	0,04	0,02	0,02	0,01
	3	2,9	2,0	1,5	1,0	0,8	0,5
	М	0,06	0,06	0,06	0,06	0,06	0,06
0.487	а	0,13	0,09	0,07	0,05	0,04	0,03
	3	5,51	4,07	3,01	2,11	1,53	1,21
	М	0,11	0,11	0,11	0,11	0,11	0,11
0.707	а	0,20	0,14	0,10	0,07	0,06	0,04
	3	8,82	5,94	4,45	3,18	2,44	1,92
	М	0,16	0,16	0,16	0,16	0,16	0,16
0.927	а	0,26	0,18	0,13	0,10	0,07	0,06
	3	11,37	7,91	5,77	4,41	3,21	2,54
	М	0,20	0,21	0,21	0,21	0,21	0,21

Находим погрешности а,
$$\varepsilon$$
 и М для первой конфигурации:
$$\Delta a = \sqrt{\left(\frac{da}{dh} \cdot \Delta h_{_{\rm H}} \cdot \frac{2}{3}\right)^2 + \left(\frac{da}{dt} \cdot \Delta t_{_{\rm H}} \cdot \frac{2}{3}\right)^2} = 0.065 \frac{_{\rm M}}{c^2}$$

$$\Delta \varepsilon = \sqrt{\left(\frac{d\varepsilon}{da} \cdot \Delta a\right)^2 + \left(\frac{d\varepsilon}{dd} \cdot \Delta d_{_{\rm H}} \cdot \frac{2}{3}\right)^2} = \sqrt{\left(\frac{2}{d} \cdot \Delta a\right)^2 + \left(\frac{-2a}{d^2} \cdot 0.0005 \cdot \frac{2}{3}\right)^2} = 0.0286c^{-2}$$

$$\Delta M = \sqrt{\left(\frac{dM}{da} \cdot \Delta a\right)^2 + \left(\frac{dM}{dd} \cdot \Delta d_{_{\rm H}} \cdot \frac{2}{3}\right)^2 + \left(\frac{dM}{dm} \cdot \Delta m_{_{\rm H}} \cdot \frac{2}{3}\right)^2} = 0.000661 {\rm H.} \, c$$

$$a = 0.07 \pm 0.065 \frac{M}{c^2}$$
 $\varepsilon_x = 9.69\%$ $\varepsilon = 2.9 \pm 0.286 c^{-2}$ $\varepsilon_e = 9.75\%$ $M = 0.06 \pm 0.000661 \text{ H. c}$ $\varepsilon_x = 1.105\%$

Поставим на графике точки (ϵ ;M) на графике зависимости M(ϵ), разделяя серии по номеру риски.

Найдём коэффициенты I (момент инерции крестовины с утяжелителями) и Мтр (момент силы трения) в зависимости $M=M_{\rm Tp}+I\varepsilon$ по методу МНК, запишем в таблицу 4 и начертим аппроксимирующие прямые на графике М(ε).

$$I = \frac{(i - \varepsilon)(M - M)}{\sum (\varepsilon_i - \varepsilon)^2}$$

Для нахождения зависимости момента инерции от расстояния утяжелителей от центра крестовины найдём это расстояние и его квадрат

$$R = l_1 + l_0(n-1) + \frac{1}{2}b$$

Таблица 4

Параметры	Положение утяжелителей						
Парамстры	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска	
€ cp	7,159	4,989	3,694	2,676	1,985	1,557	
M _{cp}	0,13	0,13	0,13	0,13	0,13	0,13	
I	0,02	0,02	0,03	0,04	0,06	0,07	
M _{mp}	0,013	0,009	0,006	0,017	0,016	0,020	
R	0,077	0,102	0,127	0,152	0,177	0,202	
R ²	0,006	0,010	0,016	0,023	0,031	0,041	

Поставим на графике $I(R^2)$ точки $(R^2; I)$ из таблицы.

По методу МНК найдём коэффициенты зависимости $I=I_0+4m_{
m yr}R^2$ и их погрешности.

$$\begin{split} \varGamma &= 0.0421 \text{kg} \\ \varGamma &= 0.0421 \text{kg} \\ Mm_{\text{yt}} = \frac{1}{4} \cdot \frac{(R_i^2 - R^2 \cdot)(I_i - \varGamma)}{(R_i^2 - R^2 \cdot)^2} = 0.408 \text{kg} \\ I_0 &= \underline{I} - 4m_{\text{yt}} R^2 = 0.00746 \text{ kg} \cdot \text{m} \\ D &= \sum \qquad \left(R_i^2 - \underline{R^2}\right)^2 = 0.0008660 \text{ m}^4 \\ \Delta m_{\text{yt}} &= t_{0.95,6} \quad \frac{1}{D} \cdot \frac{d_i}{N-2} = 0.112 \text{ kg} \quad \varepsilon_{m_{\text{yt}}} = 34,002\% \\ \Delta I_0 &= t_{0.95,6} \quad \frac{\left(\frac{1}{N} + \frac{R^2 \cdot 2}{D}\right)}{N-2} = 0.00278 \text{kg} \cdot \text{m} \quad \varepsilon_{I_0} = 37,29\% \end{split}$$

11. Графики

График зависимости $M(\varepsilon)$ - Приложение 1.1 График зависимости $I(R^2)$ - Приложение 1.2

12. Окончательные результаты.

Моменты инерции для разных положений утяжелителей представлены в виде таблицы

Таблица 5

	Положение утяжелителей							
	1.риска 2.риска 3.риска 4.риска 5.риска 6.риска							
Ι	0,0167	0,0248	0,0345	0,0435	0,0594	0,0735		
\mathbb{R}^2	0,0059 0,0104 0,0161 0,0231 0,0313 0,0408							

Масса утяжелителя и сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей.

$$m_{\mathrm{yt}} = (0.408 \pm 0.0284)$$
 кг $\varepsilon_{m_{\mathrm{yt}}} = 34.002\% I_0 = (0.00746 \pm 0.00278)$ кг м $\varepsilon_{I_0} = 37,29\%$

13. Выводы и анализ результатов работы

В данной лабораторной работе я проверял основной закон динамики вращения и зависимость момента инерции от положения масс относительно оси вращения. В результате проведения данного исследования получилось, что зависимости, которые теоретически должны являться линейными действительно получились линейными.