

TEMA: PRODUTO CARTESIANO. GRÁFICO DE UMA FUNÇÃO. RESTRIÇÃO DE UMA FUNÇÃO.

TIPO: FICHA DE TRABALHO N°I

LR MAT EXPLICAÇÕES

- 1. Consider os conjuntos $A = \{-1, 1, 2\}$ e $B = \{0, 1\}$.
 - 1.1 Representa $B \times A$ em extensão.
 - 1.2 Quantos elementos tem A^2 .
 - 1.3 Indica o número de elementos de $A \times C$, sendo $C = \{-1,2,3,4,5\}$.
- 2. Seja g uma função que gráfico é: $G_g = \{(-3,1), (0,1), (1,-3), (3,1)\}.$

Indica:

- 2.1 o domínio de g;
- 2.2 a imagem de 1;
- 2.3 o contradomínio de g;
- 2.4 o objeto (original) que tem imagem -3.
- 3. Considera $A = \{a, b, c, d\}$ e $B = \{1, 2, 3, 4, 5\}$.

Diga, justificando, em qual das opções seguintes se apresenta o gráfico de uma função de A em B, Justifica porque rejeitaste as restantes opções.

- (A) $\{(a, 1), (b, 3), (c, 2)\}$
- **(B)** $\{(a, 3), (b, 1), (c, 5), (a, 1), (d, 1)\}$
- (C) $\{(a, 1), (b, 1), (c, 1), (d, 1)\}$
- **(D)** $\{(1, a), (2, b), (3, c), (4, d), (5, a)\}$
- 4. O gráfico da função f de $A = \{1, 2, 3, 4\}$ em $B = \{a, e, i, o, u\}$ é $G_f = \{(1, i), (2, i), (3, a), (4, u)\}$.
 - 4.1 Indica o domínio, o conjunto de chegada e o contradomínio de f.
 - 4.2 Define por um gráfico:
 - a) a restrição de f ao conjunto $C = \{1,2,3\}$;
 - b) $f|_D$, sendo $D = \{1,4\}$.
 - 4.3 Determina o conjunto-imagem f(E), sendo $E = \{1, 2, 4\}$.
- 5. Considera a função: $g: \{-2, -1, 0, 1, 2\} \longrightarrow \mathbb{Z}$
 - 5.1 Indica:

$$x \smile x^2$$

- a) o domínio de g;
- b) o conjunto de chegada de g;
- c) o contradomínio de g.

- 5.2 Determina o gráfico:
 - a) da restrição g a C, sendo $C = \{-1, 0, 1\}$;
 - b) $g|_D$, sendo $D = \{-2, -1, 1\}$.
- 5.3 Determina o conjunto-imagem f(E), sendo $E = \{-1, 0, 1, 2\}$.
- 6. Sejam f e g duas funções de $A = \{-1, 1, 2, 3\}$ em \mathbb{R} . Sabe-se que:
 - $G_f = \{(-1,0), (1,1), (2,4), (3,1)\};$
 - $g(x) = (x+1)^2$

Determina o contradomínio da restrição de:

- 6.1 f ao conjunto $B = \{-1, 1, 3\}$;
- 6.2 *g* ao conjunto $C = \{-1, 1, 2\}$.