	(1º Avalia	ção da disci	30pts		
Nome:		alaite		plina MAP-199 Valor: Matrícula:	Nota:	
Turma: () T5			

Informações importantes:

- É obrigatório deixar as resoluções das questões objetivas abaixo das alternativas de respostas.
- A prova pode ser respondida a lápis, mas as respostas devem estar a caneta.
- É permitido o uso de calculadora científica modelo básica. Não é permitido o uso da calculadora do aparelho celular.
- 1) (4 pontos) Determine o domínio da função $f(x) = \frac{3x+1}{\sqrt{-2x^2+4x+6}}$

2) (4 pontos) Determine a função exponencial f cuja valor inicial é 592 gramas (isto é, f(0) = 592), sabendo-se que a quantidade de massa cai pela metade a cada 6 anos.

Resolução:	que { f(0) = 592 . Além disso f(x) = K	(.a. ^X .
Hessa fo	orma $f(0) = K \cdot \alpha^{2} = K = 592$. Por our $g_{1} = \frac{1}{3} = 1$	tw lado
lonta	nto:	
Resposta:	$(x) = 592 (3)^{1/2} = 592 \cdot 2^{-3/6}$	

3) (4 pontos) Resolva a equação $\log_{10}(x-3)(x+4) = 3\log_{10} 2$.

4) (4 pontos) Encontre todos os valores de x no intervalo de $[0,2\pi]$ que satisfaçam a equação $\cos 2x = -\sin x$.

5) (5 pontos) Calcule o seguinte limite $\lim_{x\to 1} \frac{x+x-2}{x^2+3x-4}$

6) (9 pontos) Faça um esboço do gráfico, indique o conjunto domínio e imagem das seguintes funções: a) $f(x) = -2^x$; b) $f(x) = \log_2 x + 1$; c) $f(x) = |\cos x|$.

Resposta A)

