Extremal Kähler metrics

Gábor Székelyhidi

University of Notre Dame

Outline

- Introduction
- Stability
- Series Existence results on blowups
- 4 Non-existence

Canonical metrics

Question: Is there a "canonical" or "best" metric on a manifold M?

or

Canonical metrics

Question: Is there a "canonical" or "best" metric on a manifold M?

Uniformization Theorem

Let (Σ, g_0) be a closed Riemann surface. There exists a metric $g=e^\phi g_0$ in the conformal class of g with constant curvature. This metric is unique up to isometry and scaling.

Higher dimensional generalization? E.g.

- Yamabe problem
- Thurston geometrization

Kähler metrics

On a complex manifold (M, J), a metric g is Kähler if:

- g is Hermitian, i.e. g(Jv, Jw) = g(v, w),
- Associated form $\omega(v, w) = g(Jv, w)$ is closed, i.e. $d\omega = 0$.

In local holomorphic coordinates

$$g_{j\bar{k}} = \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k},$$

for a real valued function f.

Kähler classes

A Kähler metric ω determines a class $[\omega] \in H^2(M, \mathbb{R})$.

Theorem $(\partial \overline{\partial}$ -lemma)

Let M be a compact complex manifold. If ω_1 and ω_2 are two Kähler forms with $[\omega_1] = [\omega_2]$, then there is function $\phi : M \to R$ such that

$$\omega_2 = \omega_1 + i\partial \overline{\partial} \phi.$$

If $\dim_{\mathbf{C}}(M) = 1$, then

$$\omega + i\partial \overline{\partial} \phi = (1 + \Delta \phi)\omega$$
,

so "fixed Kähler class" = "fixed conformal class & area"

Extremal metrics

Definition (Calabi, 1982)

A Kähler metric ω on a compact complex manifold M^n is extremal if it is a critical point of the functional

$$\eta \mapsto \int_M S(\eta)^2 \eta^n$$
,

for η in the Kähler class $[\omega]$. Here $S(\eta)$ is the scalar curvature.

Equivalently: gradient $\nabla S(\omega)$ is holomorphic.

Examples

- Constant scalar curvature Kähler (cscK) metrics, e.g. on Riemann surfaces.
- Kähler-Einstein metrics with non-positive Ricci curvature Yau and Aubin 1978
- Non-cscK example on blowup $Bl_p \mathbb{CP}^2$ Calabi 1982
- Non-cscK examples on CP¹-bundles over high genus curves Tønnesen-Friedman 1997
- Non-cscK example on Bl_{p,q}CP² Chen-LeBrun-Weber 2007
- Both cscK and non-cscK examples on toric surfaces Donaldson 2008, Chen-Li-Sheng 2010
- Kähler-Einstein metrics with positive Ricci curvature –
 Chen-Donaldson-Sun and Tian 2012

Ruled surface example

Let genus(Σ) = 2, and $\mathcal{L} \to \Sigma$ a degree 1 line bundle.

$$M = P(\mathscr{O} \oplus \mathscr{L})$$

Up to scaling, Kähler classes on M are parametrized by k > 0 (volume of fibre relative to base).

Tønnesen-Friedman: For $k < k_1 \approx 18.89...$, there is an extremal metric on M. As $k \to k_1$, the fiber metrics degenerate.

K-stability

Tian '97, Donaldson '02

Let $L \to M$ be an ample line bundle. Using a basis of sections, embed $M \subset \mathbb{CP}^N$, and let $\lambda : \mathbb{C}^* \hookrightarrow GL(N+1,\mathbb{C})$. Can define "flat" limit

$$M_0 = \lim_{t\to 0} \lambda(t) \cdot M.$$

This is a test-configuration. Using M_0 and λ , define the generalized Futaki invariant $\operatorname{Fut}(M,\lambda)$.

Definition

(M, L) is K-stable, if $\operatorname{Fut}(M, \lambda) > 0$ for all "non-trivial" λ , and for all embeddings of M using powers L^k .

When Aut(M) is non-trivial, a modification of Fut leads to *relative* K-stability (Sz. '07).

Yau-Tian-Donaldson conjecture

Conjecture

M admits an extremal \iff (M,L) is relatively K-stable.

Analogous to Donaldson-Uhlenbeck-Yau theorem for vector bundles.

- ⇒ holds Tian, Donaldson, Mabuchi, Stoppa, Sz., Berman
- ← holds for toric surfaces Donaldson, Chen-Li-Sheng
- \leftarrow holds in the Kähler-Einstein case Yau, Aubin, Chen-Donaldson-Sun, Tian, e.g. if $L = K_M^{-1}$ and $\operatorname{Aut}(M)$ is trivial.

Note: probably ← is false in general – example by Apostolov - Calderbank - Gauduchon - Tønnesen-Friedman Need strengthening of relative K-stability.

Example

Let $M = \mathbb{CP}^1$, and $M \hookrightarrow \mathbb{CP}^2$ as conic $xz - y^2 = 0$. Let $\rho(t)(a,b,c) = (ta,b,c)$. Then $\rho(t) \cdot M$ has equation $xz - ty^2 = 0$.

Limit M_0 as $t \to 0$ is union of lines xz = 0.

Can compute $\operatorname{Fut}(M, \rho) = \frac{1}{2} > 0$. However, similar degeneration of a family of \mathbb{CP}^1 s can destabilize a ruled surface (Sz. '07).

Filtrations

When $M \subset PH^0(L^k)^*$ and $\lambda : \mathbb{C}^* \hookrightarrow GL(H^0(L^k))$, then only the weight-filtration on $H^0(L^k)$ matters for $\operatorname{Fut}(M,\lambda)$.

This data can be encoded (Witt Nyström '10), independently of k, in a filtration of the co-ordinate ring

$$R = \bigoplus_{k \geqslant 0} H^0(L^k).$$

We can then allow general filtrations χ , and define $\operatorname{Fut}(M,\chi)$ and a norm $\|\chi\| - \mathbf{Sz}$. '11.

Theorem (Boucksom-Sz. '12)

If M admits a cscK metric in $c_1(L)$ and $Aut(M) = \{1\}$, then $Fut(M, \chi) > 0$ for all filtrations with $||\chi|| > 0$.

Futaki invariant

Given a filtration F_iR , define d_k and "total weight" w_k on $H^0(L^k)$:

$$d_k = \dim H^0(L^k),$$

 $w_k = \sum_i i \cdot (\dim F_i H^0(L^k) - \dim F_{i-1} H^0(L^k)).$

Define

$$d_{\infty} = \lim_{k \to \infty} \frac{\dim H^0(L^k)}{k^n}, \quad w_{\infty} = \lim_{k \to \infty} \frac{w_k}{k^{n+1}}.$$

Then

$$Fut = \liminf_{k \to \infty} \left(\frac{w_k}{d_k} - \frac{kw_\infty}{d_\infty} \right).$$

Test-configurations vs. filtrations

• Every rational, piecewise linear convex function $f:[0,1] \to \mathbb{R}$ defines a test-configuration for $(\mathbb{CP}^1, \mathcal{O}(1))$:

Embed $\mathbb{CP}^1 \hookrightarrow \mathbb{CP}^N$ for large enough N, and use the values of f for the weights of a diagonal \mathbb{C}^* -action.

 Every convex function f: [0,1] → R defines a filtration for (CP¹, O(1)):

Co-ordinate ring is C[x,y]. The ith filtered piece is

$$F_i \mathbf{C}[x,y] = \operatorname{span} \left\{ x^p y^{k-p} : f(p/k) < i/k \right\}.$$

In both cases: Fut(f) =
$$f(0) + f(1) - 2 \int_0^1 f(x) dx$$
.

Existence results on blowups

Let (M, ω) be extremal, and $p \in M$. For small $\epsilon > 0$, the blowup $\mathrm{Bl}_p M$ has Kähler classes

$$\Omega_{\epsilon} = \pi^*[\omega] - \epsilon^2[E].$$

Question: Does $\mathrm{Bl}_p M$ admit an extremal metric in Ω_ϵ ? Goes back to work of LeBrun-Singer, Rollin-Singer

Theorem (Arezzo-Pacard, '06, '09, Arezzo-Pacard-Singer '11)

- If $\operatorname{Aut}(M) = \{1\}$, then $\operatorname{Bl}_p M$ admits a cscK metric in Ω_{ϵ} for $\epsilon \ll 1$.
- In general $\mathrm{Bl}_p M$ admits an extremal metric in Ω_ϵ only under certain conditions. These conditions are easier to satisfy if we blow up many points.

When Aut(M) is non-trivial

Let $G = \operatorname{Isom}_H(M, \omega)$ – Hamiltonian isometries

Moment map: $\mu: M \rightarrow g$.

 $g = \text{Lie}(G) \subset \{\text{Hamiltonian functions}\}, g \cong g^* \text{ using } L^2\text{-product}.$

Theorem (Arezzo-Pacard-Singer '11, Sz. '12)

If (M, ω) is extremal and

• $\mu(p)$ vanishes at p,

then $\mathrm{Bl}_p M$ admits an extremal metric in Ω_ϵ for $\epsilon \ll 1$.

Corollary (Sz. '12)

If (M,ω) is Kähler-Einstein, then for $\epsilon \ll 1$, if $(\mathrm{Bl}_p M,\Omega_\epsilon)$ is K-stable, then $\mathrm{Bl}_p M$ admits a cscK metric in Ω_ϵ .

Sharper results – assume $\dim M > 2$

Theorem (Sz. '13)

If (M, ω) is extremal and

• $\mu(p) + \delta \Delta \mu(p)$ vanishes at p for some $\delta \ll 1$, then $\mathrm{Bl}_p M$ admits an extremal metric in Ω_ϵ for $\epsilon \ll 1$.

Corollary (Sz. '13)

If (M, ω) is cscK, then for $\epsilon \ll 1$, if $(\mathrm{Bl}_p M, \Omega_{\epsilon})$ is K-stable, then $\mathrm{Bl}_p M$ admits a cscK metric in Ω_{ϵ} .

So the Yau-Tian-Donaldson conjecture holds for such "perturbed" manifolds. Similar existence results hold for \mathbb{CP}^k -bundles and fibered manifolds (Hong '02, Fine '04), but no relation to K-stability has been shown.

Method of proof – gluing

Step 1. Construct approximate solution ω_ϵ

Glue metrics near p using Kähler potentials:

$$\omega = i\partial \overline{\partial} \left[|z|^2 + O(|z|^3) \right]$$

$$\epsilon^2 \eta = i\partial \overline{\partial} \left[|z|^2 + O(\epsilon^{2n-2}|z|^{4-2n}) \right]$$
Cut off these terms.

For sharper results use better expansions and cut off fewer terms.

Step 2. Perturb ω_{ϵ}

Use Implicit Function Theorem to find ϕ , such that $\omega_{\epsilon} + i\partial \overline{\partial} \phi$ is extremal. This is obstructed if $\operatorname{Aut}(M)$ is non-trivial.

Obstruction is encoded in an element $f_{\epsilon}(p) \in g$:

• If $f_{\epsilon}(p)$ vanishes at p, then we get an extremal metric on $\mathrm{Bl}_p M$.

Conclusions obtained by computing expansion of $f_{\epsilon}(p)$ in ϵ .

$$f_{\epsilon}(p) = \mu(p) + \epsilon^2 \Delta \mu(p) + o(\epsilon^2).$$
A-P-S '11, Sz. '12

Sharper results (e.g. $\dim M = 2$) need more terms.

Step 3. Relate to K-stability

If there is no $q \in G^c \cdot p$ with $\mu(q) + \delta \Delta \mu(q)$ vanishing at q, then the Hilbert-Mumford criterion in Geometric Invariant Theory gives a \mathbf{C}^* -action $\lambda \subset \operatorname{Aut}(M)$, s.t.

$$q = \lim_{t \to 0} \lambda(t) \cdot p$$
, and $\operatorname{Fut}(\operatorname{Bl}_q M, \lambda) \leq 0$.

This implies that Bl_pM is not K-stable.

Test-configuration:

$$\mathrm{Bl}_{\lambda(t)\cdot p}M \xrightarrow{t \to 0} \mathrm{Bl}_qM$$

What if no extremal metric exists?

Theorem (Donaldson, '05)

For M with an ample line bundle L, we have

$$\inf_{\omega \in c_1(L)} ||S(\omega) - \widehat{S}||_{L^2} \geqslant \sup_{\lambda \text{ test-config}} \frac{-\operatorname{Fut}(M, \lambda)}{||\lambda||}.$$

Here \hat{S} is the average scalar curvature.

Conjecture: Equality holds above.

Analogous conjecture for vector bundles is known.

(Atiyah-Bott '83, Jacob '12)

Toric manifolds

Theorem (Sz. '08)

Assume that the Calabi flow exists for all time on a toric manifold M, with a toric initial metric in $c_1(L)$. Then

$$\inf_{\omega \in c_1(L)} \|S(\omega) - \widehat{S}\|_{L^2} = \sup_{\lambda \text{ test-config}} \frac{-\operatorname{Fut}(M, \lambda)}{\|\lambda\|}.$$

Calabi flow:

$$\frac{\partial}{\partial t}\omega = i\partial \overline{\partial} S(\omega).$$

Unfortunately existence is rarely known.

Partial results by Chen-He '06, Chen-Huang-Sheng '13

Ruled surface revisited

Theorem (Sz. '07)

Let $M = P(\mathcal{O} \oplus \mathcal{L})$ over a genus 2 curve. For any ample $L \to M$,

$$\inf_{\omega \in c_1(L)} \|S(\omega) - \widehat{S}\|_{L^2} = \sup_{\lambda \text{ test-config}} \frac{-\operatorname{Fut}(M, \lambda)}{\|\lambda\|}.$$

What does a minimizing sequence ω_k for the Calabi functional look like? In some Kähler classes, fiber metrics behave as:

The algebraic side – maximize $\frac{-\operatorname{Fut}(M,\lambda)}{\|\lambda\|}$

We can write down (Sz. '07) a sequence of test-configurations λ_k , realizing the supremum. On the fibers, λ_k degenerates a line into a chain of normal crossing lines:

The sequence λ_k can be encoded as a filtration.

Questions

• Does there always exist an "optimal destabilizing filtration"?

Almost known in toric case (Sz. '08).

Analogous to the Harder-Narasimhan filtration of unstable vector bundles (Bruasse-Teleman, '05).

 What relationship is there between metric degenerations and filtrations?

Relevant for other problems in Kähler geometry, e.g. J-flow.

Thank you!