Jaypee Institute of Information Technology, Noida

Test – 2 Examination (Odd 2021) Solutions Key

Course Name: Theoretical Foundation of Computer Science Course Code: 15B11CI212

Note: Question 1- 10 are of one-line answer and 11-13 are of detailed answer type. Please write your answer in sequence of questions.

In PART-A one mark answers, if direct answer provided / partial correct -0.5 Mark, explanation+steps+answer -1 Mark is allotted.

In PART-B, if direct answer provided / partial correct – 1 mark, steps + partial correct/ final answer = 2 marks, correct steps + correct answer + suitable explanation = full marks are allotted.

Q1. [CO2, 1 Marks]Let (Z, *) is a group with $x * y = x + y + 1, \forall x, y \in Z$. Then find the inverse of x.

Sol.
$$-x-2$$

Q2. [CO2, 1 Marks] Show that $[\{0, 2, 4, 6\}, +8]$ is a subgroup of the group [Z8, +8].

Sol. Closure holds

+	0	2	4	6
0	0	2	4	6
2	2	4	6	0
4	4	6	0	2
6	6	0	2	4

 $0 \in \{0, 2, 4\}; 0^{-1} = 0, 4^{-1} = 4, \text{ and } 2 \text{ and } 6 \text{ are inverses of each other.}$

Q3. [CO2, 1 Marks]What is the order of the group G with all 2x2 matrices $\begin{bmatrix} w & x \\ y & z \end{bmatrix}$ where $wz - xy \neq 0$, and w, x, y, and z are integers of modulo 3 relatives to matrix multiplication.

Solution: For the first row (a, b) of a matrix in G a and b could be anything in Z_3 , but we must exclude the case a = 0 and b = 0. Hence $(3 \times 3) - 1$ possibilities for the first row. The second row should be not a multiple of the first row. Hence for the second row $(3 \times 3) - 3$ possibilities. Hence the number of elements in G is $8 \times 6 = 48$.

Q4. [CO2, 1 Marks] The values of x,y and z are given as 0,0 and 1, find the minterm and maxterm.

Sol. Minterm- x'y'z and maxterm x+y+z'

Q5. [CO4, 1 Marks] Vipin wish to invite his 7 relatives on one function. Calculate the number of ways Vipin can send the invitation letter. if he has 4 courier boys to carry the invite?

Sol. 16384 (4[^]7)

Q6. [CO4, 1 Marks]Find out how many words 2 consonants and 2 vowels can be formed out of 7 consonants and 4 vowels?

Sol.
$$7c2 * 4c2 = 126$$

Q7. [CO3, 1 Marks]Write the following statements using propositions and logical connectives

• If I am late and I have money, I'll take a cab to work.

Solution:

• P: I am late, Q: I have money, R: I'll take a cab to work, (PAQ)->R

Q8. [CO3, 1 Marks]Consider the following predicates:

If the universe of discourse is the real numbers, give the truth value of the following propositions:

- (a) $\forall x \exists y P(x, y)$
- (b) $\exists x \ \forall y \ Q \ (y, x)$

Solution:

- (a) True
- (b) False

Q9. [CO3, 1 Marks] Given the following predicates on the set P of all people who ever lived

Parent (x, y): x is the parent of y

Mother (x, y): x is the mother of y

and Universe of Discourse is set of all people.

write in the following statement using propositional variable and connectives

• Every Person has two maternal grand parents

Solution:

(a) $\forall p \exists x, y, z$: Mother(x, p) \land Parent(y, x) \land Parent(z, x) \land y \neq z

Q10. [CO3, 1 Marks]Find inverse, converse and contrapositive of following statement:

$$|AB|^2 + |BC|^2 = |AC|^2$$
 whenever ABC is right-angled triangle

Solution:

P: ABC is right-angled triangle

Q:
$$|AB|^2 + |BC|^2 = |AC|^2$$

Inverse: If ABC is not a right-angled triangle then $|AB|^2 + |BC|^2 \neq |AC|^2$

Converse: If $|AB|^2 + |BC|^2 = |AC|^2$ then ABC is right-angled triangle Contrapositive: If $|AB|^2 + |BC|^2 \neq |AC|^2$ then ABC is not a right-angled triangle

Q11. [CO2, 3 Marks] Assume that @ is an associative binary operation on $\{1, a, b, c, d\}$.

Complete the following table to define a group with identity 1

@	1	a	b	c	d
1	1				
a			c		1
b		c	d		
С		d		a	
d				b	

Sol.

@	1	a	b	c	d
1	1	a	b	c	d
a	a	b	c	d	1
b	b	c	d	1	a
С	c	d	1	a	b
d	d	1	a	b	c

Q12. [CO2, 3 Marks] Find the minimized expression of following equation using K-Map.

$$\sum m(0,1,3,8,9,13) + \sum d(2,5,7,10,15)$$

$$\bar{a}\bar{b} + \bar{c}d + \bar{b}\bar{d}$$

Hence, the argument is valid

Q13. [CO3, 4 Marks] Check the validity of the following argument.

• Every living thing on Earth is a plant or an animal. John has a cat which is not a plant. All animals have heart. Therefore, John's cat has a heart

Solution: Universe of discourse is every living thing on Earth. P(x): x is a plant A(x): x is animal H(x): x has heart Has (x, y): x has y Premises: $\forall x (P(x) \lor A(x)).....1$ $\forall x A(x) -> H(x) \dots 3$ Conclusion: H(cat) apply universal Instantiation on 1......5 P(cat) V A(cat) ~P(cat) apply simplification on 2......6 apply Disjunctive Syllogism on 5 & 6......7 A(cat) apply universal Instantiation on 3......8 $A(cat) \rightarrow H(cat)$ H(cat) apply Modus ponens on 7 & 8.