Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

1	Диофантовы приближения, теорема Дирихле	2
	1.1 Теорема Минковского. Еще одно доказательство теоремы Дирихле	2
2	Цепные дроби	3
	2.1. Конечная пепная пробъ	3

1 Диофантовы приближения, теорема Дирихле

Рассмотрим число $\pi = 3.1415926...$

$$\left| \pi - \frac{314}{100} \right| = 0.0015926... \quad \left| \pi - \frac{22}{7} \right| = 0.0012...$$

Теорема 1.1. (Дирихле) Пусть $\alpha \notin Q$. Тогда \exists <u>бесконечно много</u> дробей $\frac{p}{q}$, что

$$\left|\alpha - \frac{p}{q}\right| \leqslant \frac{1}{q^2}$$

Доказательство. $Q \in \mathbb{N}$. Рассмотрим деление отрезка [0,1] на отрезки длины $\frac{1}{Q}$. Рассмотрим $\{\alpha x\}$, где $x=0,1,\ldots,Q$. $\exists x_1,x_2:\ x_1>x_2$ и $|\{\alpha x_1-\alpha x_2\}|\leqslant \frac{1}{Q}$

$$|\alpha x_1 - [\alpha x_1] - \alpha x_2 + [\alpha x_2]| \leqslant \frac{1}{Q}$$

$$\left| \alpha \underbrace{(x_1 - x_2)}_{q} - \underbrace{([\alpha x_1] - [\alpha x_2])}_{p} \right| \leqslant \frac{1}{Q}$$

Если $q \leqslant Q$

$$\left|\alpha - \frac{p}{q}\right| \leqslant \frac{1}{qQ} \leqslant \frac{1}{q^2}$$

Замечание. Покажем, как получать новые дроби:

Пусть
$$\alpha = \left| \alpha - \frac{p}{q} \right|, \alpha \leqslant \frac{1}{q^2}, a > 0$$

Возьмем $Q_1 \in \mathbb{N} : \frac{1}{Q_1} \leqslant a$. По Q_1 найдем соответствующие ей $\frac{p_1}{q_1}$.

Почему полученные p_1, q_1 не совпадают с p, q?

Как мы доказали, верно следующее:

$$\left|\alpha - \frac{p_1}{q_1}\right| \leqslant \frac{1}{\underbrace{q_1 Q_1}} \leqslant \frac{1}{q_1^2}.$$

$$\left|\alpha - \frac{p_1}{q_1}\right| \leqslant \frac{1}{q_1 Q_1} \leqslant \frac{\alpha}{q_1} \leqslant \left|\alpha - \frac{p}{q}\right| \Longrightarrow \frac{p_1}{q_1} \neq \frac{p}{q}$$

1.1 Теорема Минковского. Еще одно доказательство теоремы Дирихле

Теорема 1.2. (Минковского) Пусть $\Omega \subset \mathbb{R}^2$: Ω выпукло, симметрично относительно $0, S(\Omega) > 4$. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus 0 \neq \emptyset$

 \mathcal{A} оказательство. Рассмотрим N_p - все координаты в $\mathbb{Z}^2 \cap \Omega$, имеющие вид $(\frac{a}{p}, \frac{b}{p}), a, b, p \in \mathbb{N}$.

$$rac{N_p}{p^2} o S(\Omega) > 4,$$
при $p o \infty$

Этот факт оставляется без доказательства. Обещали не спрашивать его на экзамене.

$$\exists P: \forall p \geqslant O \ \frac{N_p}{p^2} > 4$$

$$N_p > (2p)^2 \Longrightarrow \exists a = \left(\frac{a_1}{p}, \frac{a_2}{p}\right), b = \left(\frac{b_1}{p}, \frac{b_2}{p}\right) : a \neq b, a_1 \equiv b_1(2p), a_2 \equiv b_2(2p)$$

Рассмотрим $\frac{a-b}{2} = \left(\frac{a_1-b_1}{2p}, \frac{a_2-b_2}{2p}\right) \in \mathbb{Z}^2$

- 1. $-b \in \Omega$, так как Ω центрально смметричная.
- 2. $\frac{a-b}{2} \in \Omega$, так как Ω выпукло.

Замечание. Есть еще усиление теоремы Минковского - в случае замкнутого множества оценка становится нестрогой ($\geqslant 4$).

Приведем еще одно доказательство теоремы Дирихле

Доказательство. $\Omega = \{(x,y): |y-\alpha x| \leq \frac{1}{Q}, |x| \leq Q\}$. Если нарисовать на плоскости фигуру, то получится параллелограмм. По формуле площади:

$$S(\Omega) = 4 \Longrightarrow$$
 по теореме $\exists (q, p) \in \Omega, q > 0$

$$|p - \alpha q| \leqslant \frac{1}{Q} \Longrightarrow \left|\alpha - \frac{p}{q}\right| \leqslant \frac{1}{qQ} \leqslant \frac{1}{q^2}$$

2 Цепные дроби

2.1 Конечная цепная дробь

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

 $a_0 \in \mathbb{Z}, a_i \in \mathbb{N} \ \forall i \geqslant 1.$

Раскрыв скобки, получим $\alpha := [a_0; a_1, a_2, a_3, \dots, a_n] \in Q$

Определим теперь цепную дробь индуктивно:

1.
$$[a_0] = \frac{a_0}{1}$$

2.
$$[a_0; a_1, \dots, a_n] = a_0 + \frac{1}{[a_1; a_2, \dots, a_n]} = a_0 + \frac{1}{\frac{p}{q}} = a_0 + \frac{q}{p} = \frac{a_0 p + q}{p}$$

Определение 2.1. Подходящая дробь к α - дробь $\frac{p_k}{q_k} = [a_0; a_1, a_2, ..., a_k].$

Теорема 2.1.

$$p_{k+2} = a_{k+2}p_{k+1} + p_k$$

$$q_{k+2} = a_{k+2}q_{k1} + q_k$$

Доказательство. Успеем проверить только переход :(

$$\begin{split} \frac{p_0}{q_0} &= [a_0] = \frac{a_0}{1} \\ \frac{p_1}{q_1} &= [a_0; a_1] = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_1} \\ \frac{p_2}{q_2} &= [a_0; a_1, a_2] = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = a_0 + \frac{a_2}{a_1 a_2 + 1} = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1} \end{split}$$

Теперь проверяем утверждение:

$$p_2 = a_2 p_1 + p_0 = a_2 a_0 a_1 + a_2 + a_0$$

 $q_2 = a_2 q_1 + q_0 = a_2 a_1 + 1$

Пытаемся успеть сделать переход: $[a_0; a_1, ..., a_m] = a_0 + \frac{1}{[a_1; a_2, ..., a_m]}$ Не успели...