

Problem Description

The travel agency is suffering from low number of sales despite the resources directed on pitch sales.

This presentation aims to:

- Explore any patterns regarding the success or fail of a sale pitch
- Build a predictive model for future customers

01

Tools

02

Dataset

03

Findings

04

Data Model

Tools

Modeling impleases and sign

imblearn and sickitlearn

- The data set is made of 4888 rows and 20 columns.
- The dataset consists of different datatypes and is a mix of ordinal, categorical and numeric data
- The data covers information both about the customer and the sale pitch interaction

#	Column		
0	CustomerID		
1	ProdTaken		
2	Age		
3	TypeofContact		
4	CityTier		
5	DurationOfPitch		
6	Occupation		
7	Gender		
8	NumberOfPersonVisiting		
9	NumberOfFollowups		
10	ProductPitched		
11	PreferredPropertyStar		
12	MaritalStatus		
13	NumberOfTrips		
14	Passport		
15	PitchSatisfactionScore		
16	0wnCar		
17	NumberOfChildrenVisiting		
18	Designation		
19	MonthlyIncome		
types: float64(7), int64(7),			
	ry usage: 763.9+ KB		

Products Taken

 We notice very low number of sales, indicating big amount of wasted time and resources

Products pitched vs. Products Bought

Personal Profile of Customers

Testing Plan

Data

- Clean data
- Clean data + Oversampling
- Clean data
 +oversampling +
 feature selection

Over Sampling

- SMOTE
- RandomOver Sampler

- Random Forest
- Logistic Regression
- XGBoost
- AdaBoost

Testing (Clean Data)

 Testing on Clean Data resulted in high accuracy 90%. The Recall was at 72%.

Testing (Over Sampling)

- Mixed and matched Oversampling algorithms with different classification models
- RandomOverSampler tends to cause overfitting of the data

RandomOverSampler + Random Forest

SMOTE+ Random Forest

RESULTS (SMOTE)

Model	Accuracy	Recall	Precision	F1
Decision Tree	90%	90%	91%	90%
Random Forest	94%	92%	97%	94%
XGBoost	90%	87%	93%	90%
AdaBoost	88%	85%	90%	87%
Logistic Regression	87%	83%	91%	87%

- Data was skewed so we needed to Over Sample
- Good results, leans toward overfitting
- Random Forest produced the highest accuracy

RESULTS (RANDOM OVER SAMPLER)

Model	Accuracy	Recall	Precision	F1
Decision Tree	96%	98%	93%	95%
Random Forest	98%	99%	97%	98%
XGBoost	82%	82%	81%	82%
AdaBoost	76%	77%	75%	76%
Logistic Regression	73%	74%	72%	73%

- Data was skewed so we needed to Over Sample
- RandomOverSampler higher results that SMOTE
- Random Forest produced too high of a result (Overfitting)

RESULTS (FEATURE SELECTION+SMOTE)

Model	Accuracy	Recall	Precision	F1
Decision Tree	89%	91%	88%	89%
Random Forest	88%	90%	87%	89%
XGBoost	90%	85%	93%	89%
AdaBoost	89%	85%	93%	89%
Logistic Regression	86%	83%	88%	86%

- Selected features based on customer profile only
- Numbers are lower >> more balanced
- XGBoost produced the highest accuracy

RESULTS (FEATURE SELECTION+OverSampler)

Model	Accuracy	Recall	Precision	F1
Decision Tree	95%	99%	91%	95%
Random Forest	95%	99%	91%	95%
XGBoost	79%	78%	80%	79%
AdaBoost	74%	75%	73%	74%
Logistic Regression	72%	74%	71%	73%

- Selected features based on customer profile only
- Overfitting
- Random Forest produced the highest accuracy

