HOMEWORK 4

This homework is due by Friday, 3 May, 11:59pm on Gradescope.

1. Problem 1 (16.3.2)

Determine the degrees of the splitting fields of the following polynomials over **Q**:

- $(1) x^3 2$
- (2) $x^4 1$
- (3) $x^4 + 1$

2. Problem 2 (16.6.2)

Let $K = \mathbf{Q}[\sqrt{2}, \sqrt{3}, \sqrt{5}]$. Determine $\deg K/\mathbf{Q}$, prove that K/\mathbf{Q} is a Galois extension, and determine its Galois group.

3. Problem 3

Let p be an odd prime number and $K = \mathbf{Q}[\zeta_p]$. Prove that K contains a unique degree 2 extension of \mathbf{Q} .

4. Problem 4

Find quartic polynomials in $\mathbf{Q}[x]$ whose Galois group is isomorphic to:

- (1) The Dihedral group D_4 (of order 8)
- (2) The cyclic group C_4

Remark: The general version of the above problem is a longstanding open problem called the *Inverse Galois Problem*: given a finite group G, does there always exist a polynomial in $\mathbb{Q}[x]$ with Galois group isomorphic to G?

5. Problem 5

Let $\delta \in \mathbf{Q}$ be such that $\mathbf{Q}[\sqrt{\delta}]$ is the unique degree 2 extension of \mathbf{Q} contained in $\mathbf{Q}[\zeta_p]$. For p=7, find δ .

6. Optional (Do not turn in)

This is a continuation of the last problem. You should now know the subfield $\mathbf{Q}[\sqrt{\delta}] \subset \mathbf{Q}[\zeta_p]$ for p=3,5,7. Based on this data, make a conjecture for an arbitrary odd prime p. (If you need more data, work out the case of p=11.) Then try to prove the conjecture.