

Un enfoque multi-objetivo para maximizar la diversidad

Pedro Casas-Martínez Alejandra Casado-Ceballos Jesús Sánchez-Oro Calvo Eduardo G. Pardo

Máxima diversidad

- Seleccionar un subconjunto de elementos de maximizando la distancia entre ellos.
 - Kuby, 1988

Máxima diversidad

- ¿Cuál es la mejor métrica?
 - Max-Sum, Max-Min, Min-Diff, etc.
- ¿Son equivalentes? ¿Hay algunas de ellas en conflicto?
- ¿Qué aporta cada métrica?

Propuesta

- Enfoque multi-objetivo
- Optimización de 5 de las métricas más extendidas de forma simultánea
 - Max-Sum, Max-Min, Max-MinSum, Min-Diff, Min-pCenter
 - Vera, K., et al. (2017)

Max-Sum Diversity

$$MSD(S) = \sum_{\substack{i,j \in S \\ i < j}} d_{ij}$$

 Maximizar la suma de distancias entre seleccionados

Max-Min Diversity

$$MMD(S) = \min_{i,j \in S} d_{ij}$$
$$i < j$$

- La suma puede incluir dos elementos muy cercanos entre sí.
- Si la distancia mínima es alta, el resto será aún más alta.

Max-Min Sum Diversity

$$MMSD(S) = \min_{i \in S} \sum_{j \in (S \setminus \{i\})} d_{ij}$$

- Maximizar la mínima suma de cada seleccionado al resto.
- Intenta **agregar** características de las dos anteriores.

Min-Diff Diversity

$$MDD(S) = \max_{i \in S} \sum_{j \in (S \setminus \{i\})} d_{ij} - \min_{i \in S} \sum_{j \in (S \setminus \{i\})} d_{ij}$$

- En MMSD, puede que la **mínima** suma sea muy **pequeña** y el resto muy **grandes**.
- Balancear las diferencias.

Min-pCenter Diversity

$$MPCD(S) = \max_{i \in (N \setminus S)} \left\{ \min_{j \in S} d_{ij} \right\}$$

- Los elementos no seleccionados deben acudir a los seleccionados (clientes).
- Trata de minimizar la máxima distancia entre cada no seleccionado y el seleccionado más cercano.

objetivo?

Solución	MSD	MMD	MMSD	MDD	MPCD
S_1	20.34	5.39	12.09	2.86	4.47
S_2	24.34	5.66	14.14	4.54	4.47

Propuesta algorítmica

Construcción

Algorithm 1 GRASP Constructive(N,p,lpha)

```
1: i \leftarrow RND(N)
 2: S \leftarrow \{i\}
 3: CL \leftarrow N \setminus \{i\}
 4: while |S| < p do
           g_{\min} \leftarrow \min_{c \in CL} g(c)
 5:
         g_{\max} \leftarrow \max_{c \in CL} g(c)
 6:
        \mu \leftarrow g_{\text{máx}} - \alpha \cdot (g_{\text{máx}} - g_{\text{mín}})
 7:
        RCL \leftarrow \{c \in CL : g(c) \ge \mu\}
 8:
      i \leftarrow RND(RCL)
 9:
       CL \leftarrow CL \setminus \{i\}
10:
           S \leftarrow S \cup \{i\}
11:
12: end while
13: return S
```

¿Cómo elegimos la función voraz en un problema multi-objetivo?

Construcción

Joint Alternate Evaluation of Objectives (JALEO)

 Cada solución se construye utilizando como función voraz una de las funciones objetivo, alternando en cada construcción.

Mixed Objective Function Algorithm (MOFA)

- En cada construcción se consideran todas las métricas.
- •Se añade cada elemento en función de una métrica diferente.

Búsqueda Local

- Movimiento: intercambio, elimina un elemento e introduce otro en su lugar.
- Se explora el vecindario formado por las soluciones que pueden ser alcanzadas con un único movimiento de intercambio.
- No trata de optimizar ninguna función objetivo en concreto.

Búsqueda Local

- First Improvement
- Orden basado en la distancia a los seleccionados.
 - Seleccionados: del más cercano al más lejano.
 - No seleccionados: del más lejano al más cercano.
- Mejora: la solución entra al conjunto de soluciones no dominadas.

Resultados

- AMD EPYC 7282 (2.8 GHz) 8 GB RAM
- MDPLIB
 - •145 instancias
 - •10 500 elementos
 - 2 50 seleccionados

Métricas

- No se conoce óptimo: frente de referencia (FR)
- Cobertura: soluciones cubiertas por el FR
- Hipervolumen: volumen cubierto por el frente
- Epsilon: mínima distancia de cada punto al FR
- Distancia generacional inversa: distancia con el FR
- Tiempo de cómputo en segundos

Experimentación preliminar

- Subconjunto de 20 instancias
- Parámetro $\alpha = \{0.25, 0.50, 0.75, RND\}$
- JALEO notablemente mejor que MOFA
 - La construcción simultánea en varios objetivos no produce buenos resultados
- Pruebas desde 100 hasta 1000 construcciones
 - Mejor valor: 700 construcciones

Experimentación final

Algoritmo	$C(R, \hat{E})$	HV	EPS	IGD +	Time(s)	Ê
GRASP – JALEO	0.27	0.42	0.15	202.01	1.73	762.45
OMOPSO	0.71	0.23	0.39	256.52	3.35	78.62
NSGA - II	0.45	0.35	0.28	213.73	22.23	87.07
MOEA/D	0.28	0.36	0.30	183.62	25.29	20.56
<i>SMPSO</i>	0.74	0.22	0.40	261.46	5.83	58.09
AbYSS	0.65	0.29	0.25	220.04	8.41	68.91

Conclusiones

- Construir una solución con todos los objetivos a la vez no produce buenos resultados
- La búsqueda local explora de manera muy eficiente el vecindario
- No es necesaria ninguna adaptación para considerar métricas adicionales de diversidad
- https://grafo.etsii.urjc.es/momdp

Un enfoque multi-objetivo para maximizar la diversidad

Pedro Casas-Martínez Alejandra Casado-Ceballos Jesús Sánchez-Oro Calvo Eduardo G. Pardo

