	Datum:	04. Februar 2010
	Prü	fer: Prof. DrIng. Kölze
Elektronil	k 3/ E4b	
machak,	Michael, 18	893173
Note:	4	
1,		
	Note:	Elektronik 3/ E4b Anchael, Michael, 12 Note: 4

<u>Zugelassene Hilfsmittel:</u> Vorlesungsaufzeichnungen, Skripte, Arbeitsblätter, Fachbücher, mathematische Formelsammlung, einfache Taschenrechner – kein Laptop! Handies sind auszuschalten!

<u>Achtung:</u> Beginnen Sie bitte jede Aufgabe auf einem neuen Blatt und nummerieren Sie die Blätter. Es werden nur die Lösungen anerkannt, deren Lösungswege eindeutig erkennbar und nachvollziehbar sind.

Aufgabe 1: (Impulse auf Leitungen – 32 Punkte)

Mit Hilfe eines Impulsfahrplanes sind Start- und Refexionsamplituden an den Enden einer Leitungsverbindung ($Z_L = 210~\Omega$, Signallaufzeit $\tau = 5$ ns) zwischen zwei TTL-Gattern zu bestimmen. Für den verwendeten Sendebaustein wird angegeben: $U_{QL} = 0.2$ V, $U_{QH} = 4.2$ V, $R_{QH} = 100\Omega$. Der Empfängerbaustein besitzt einen Eingangswiderstand von 3,9 k Ω .

- a) Berechnen Sie zunächst für den eingeschwungen Zustand nach einen L → H Sprung der Quelle die Spannungswerte am Anfang und Ende der Leitung.
- b) Entwickeln Sie nun einen Impulsfahrplan (Lattice-Diagramm) für einen $H \to L$ Sprung der Quelle. Zeichnen Sie dann den Spannungsverlauf am Anfang und Ende der Leitung als Funktion der Zeit im Bereich von 0... 7τ .

Aufgabe 2: (DAU, Fehleranalyse – 28 Punkte)

Eine Messreihe liefert für einen 3-Bit-DAU die folgenden Werte ($U_{rs} = 12V$):

X_D	0	1	2	3	4	5	6	7
U _A [V]	-0,2	1,37	2,65	4,64	6,38	7,23	8,22	9,61

- a) Bestimmen Sie ohne vorhergehende Korrekturmaßnahmen die sich ergebenden Offset- und Verstärkungfehler (Angabe in LSB).
- b) Korrigieren Sie nun mit einem einfachen Endpunkt-Abgleich den Offset- und Verstärkungsfehler (Angaben in LSB). Geben Sie das dazugehörige $\mathbf{U}_{\mathbf{A},\mathbf{kor}}$ an.
- c) Ermitteln Sie aus $U_{A,kor}$ den verbleibenden differentiellen und integralen Linearitätsfehler **DNL** und **INL** (Angaben in LSB).
- d) Bestimmen Sie ENOB aus dem DNL.

Aufgabe 3: (Kippschaltung – 26 Punkte)

Die hier abgebildete astabile Kippschaltung soll näher analysiert werden. Bei dem benutzen Schmitt-Trigger handelt es sich um einen CMOS-Baustein **SN74HC14** mit $U_{OH}=4,9V$ und $U_{OL}=0,1V$ sowie den beiden Schwellspannungen $U_{S1}=1,60V$ und $U_{S2}=2,80V$ (bei 5 V Betriebsspannung). Die Werte für die Widerstände sind mit $R_1=12$ k Ω und $R_2=24$ k Ω vorgegeben. Die Kapazität hat einen Wert von C=2nF. Die Diode D ist mit der Fluss-Spannung $U_{F0}=0,7V$ und dem Bahnwiderstand $r_{DF}=100\Omega$ zu berücksichtigen.

- a) Berechnen Sie für eine Periode T den genauen zeitlichen Verlauf der Kondensatorspannung U_c der astabilen Kippschaltung. Stellen Sie Ihr Ergebnis anhand von qualitativ richtigen Signal-Zeit-Diagrammen für U_c und U_q graphisch dar.
- b) Bestimmen Sie die Frequenz des periodischen Ausgangssignals U_Q . Wie groß ist das Tastverhältnis $v_T = T_D / T$?

Aufgabe 4: (Sigma-Delta-ADU - 12 Punkte)

Gegeben ist die folgende Sigma-Delta-ADU-Schaltung. Es gilt:

$$0V \leq U_E \leq 1V \,, \quad B = \frac{1}{T} \int A dt \,, \qquad B \leq 0 \,: \; U_A = 0 \,, \; C = 0V \,, \qquad B > 0 \,: \; U_A = 1 \,, \; C = 1V \,.$$

Zeichnen Sie für $U_E = 6/8V$ die zeitlichen Verläufe von B und U_A in die vorbereitenden Diagramme und kennzeichnen Sie eine Periode von U_A . Die Anfangsbedingungen sind $U_A = 0V$ und B = 0V. Überprüfen Sie das Ergebnis.

Skizzieren Sie den Logikteil einer CMOS-Schaltung, die folgende Funktion realisiert:

$$Q = (\overline{E}_1 \vee \overline{E}_2) \wedge \overline{E}_3 \wedge E_4$$

1893173 Michael Konschak Rax= 100m (T=Snn) ZL= 210152) 20= 3,9KW) Relex Ations laktor am Ende der Leitung Referktionalaktor am Antang der Leitung 100W - 210W = 1-0,355 = r Ua(t=0)=10 = 20 = Uhn Urn=re-Uhn Who=ra-Urn-rare, (Ualto) (1/4) = Vald re 3 ra 3 - fp, 1V o Valst = alldst +Uhy (13) = dald-ro3. 1/2 0,26V 4,232+ (-0,14) = 4,131 AKO(47)=A(6/37)+Uh347 (1/3)= Ua(0)-ro2-ra2=9,3 3,974+0,264= 4,234 ((h2) - Ua(0) -ra-ro= -0 91V 3,68V+0,29W=3,97V (1)=re . ((a(0)-2,56) (14) = Walo = 400 2,85V 2,85V+2,56V=5,41V Va(0) = (4,24) 210w+100m = 3,85V Up[V] Dun Kann dod 1234567 not 1220 Antany der Leitung

1893173 Michael Konnchak (UF5=12U a) 2,65 4,64 6,38 7,23 8,22 1,37 - O, 2 [V] Univerte 6 7,5 10,5 4,5 1,5 [V] Unideal -0,13 |-0,35 0,14 0,38 |-0,27 |-0,78 |-0,89 V Abweichung UA-UA, idea -0,2 1,47 2,85 4,94 6,77 7,72 8,81 10,5 b) Karkor IV] -0,02 -0,1 0,29 0,51 0,15 -0,18 0 () INL in LSB 0 |-0,02 |-0,08 | 0,4 | 0,22 |-0,37 |-0,27 0,13 DNL in LSB a) ULSB = UFS = 12V = 12V = 1.5V Unideal = Xo · ULSB Nullpunktfeliler DUO Offretfehler Well= -0,2 V (= 1,66% F5 = -0,133 L5B) Ver står Rungafehler o Umax Ugain = -0,89V (=7,4166%F5=1 -0,5933 LSB) (2 Verntar Bungs fehler mit Abgleich Ellgain- Well) 6) -0,89V- (-0,2V) = -0,69 V (= -5,7590 1-0,46 658) UA, Kor = UA-Welf-(Ugain - Welf) XD max 1-0,03 1-0,15 10,44 10,77 10,22 -0,19 0 () UA, Kor-UAideal INL in V 0 1 2 3 4 5 6 7 0,12 0,59 0,33 (-0,55) -0,41 0,19 Ui-Ui-1-ULSB DNL

