Chapter 3 Growth of Functions

3.1 Asymptotic notation

Exercise 3.1-1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n),g(n))=\Theta(f(n)+g(n))$.

Answer*:

First, let's clarify what the function $\max(f(n),g(n))$ is. Let's define the function $h(n) = \max(f(n),g(n))$. Then

$$h(n) = \begin{cases} f(n) & \text{if } f(n) \ge g(n), \\ g(n) & \text{if } f(n) < g(n). \end{cases}$$

Since f(n) and g(n) are asymptotically nonnegative, there exists n_0 such that $f(n) \geq 0$ and $g(n) \geq 0$ for all $n \geq n_0$. Thus for $n \geq n_0$, $f(n) + g(n) \geq f(n) \geq 0$ and $f(n) + g(n) \geq g(n) \geq 0$. Since for any particular n, h(n) is either f(n) or g(n), we have $f(n) + g(n) \geq h(n) \geq 0$, which shows that $h(n) = \max(f(n), g(n)) \leq c_2(f(n) + g(n))$ for all $n \geq n_0$ (with $c_2 = 1$ in the definition of Θ).

Similarly, since for any particular n, h(n) is the larger of f(n) and g(n), we have for all $n \geq n_0$, $0 \leq f(n) \leq h(n)$ and $0 \leq g(n) \leq h(n)$. Adding these two inequalities yields $0 \leq f(n) + g(n) \leq 2h(n)$, or equivalently $0 \leq (f(n) + g(n))/2 \leq h(n)$, which shows that $h(n) = \max(f(n), g(n)) \geq c_1(f(n) + g(n))$ for all $n \geq n_0$ (with $c_1 = 1/2$ in the definition of Θ).

Exercise 3.1-2

Show that for any real constants a and b, where b > 0, $(n + a)^b = \Theta(n^b)$.

Answer*:

To show that $(n+a)^b = \Theta(n^b)$, we want to find constants $c_1, c_2, n_0 > 0$ such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$ for all $n \ge n_0$.

Note that

$$n+a \le n+|a|$$

 $\le 2n$ when $|a| \le n$,

and

$$n + a \ge n - |a|$$

 $\ge \frac{1}{2}n$ when $|a| \le \frac{1}{2}n$.

Thus, when $n \ge 2|a|$,

$$0 \le \frac{1}{2}n \le n + a \le 2n.$$

Since b > 0, the inequality still holds when all parts are raised to the power b:

$$0 \le \left(\frac{1}{2}n\right)^b \le (n+a)^b \le (2n)^b,$$

$$0 \le \left(\frac{1}{2}\right)^b n^b \le (n+a)^b \le 2^b n^b.$$

Thus, $c_1 = (1/2)^b$, $c_2 = 2^b$, and $n_0 = 2|a|$ satisfy the definition.

Exercise 3.1-3

Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.

Answer*:

Let the running time be T(n). $T(n) \ge O(n^2)$ means that $T(n) \ge f(n)$ for some function f(n) in the set $O(n^2)$. This statement holds for any running time T(n), since the function g(n) = 0 for all n is in $O(n^2)$, and running times are always nonnegative. Thus, the statement tells us nothing about the running time.

Exercise 3.1-4

Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

Answer*:

$$2^{n+1} = O(2^n)$$
, but $2^{2n} \neq O(2^n)$.

To show that $2^{n+1} = O(2^n)$, we must find constants $c, n_0 > 0$ such that

$$0 \le 2^{n+1} \le c \cdot 2^n$$
 for all $n \ge n_0$.

Since $2^{n+1} = 2 \cdot 2^n$ for all n, we can satisfy the definition with c = 2 and $n_0 = 1$.

To show that $2^{2n} \neq O(2^n)$, assume there exist constants $c, n_0 > 0$ such that

$$0 \le 2^{2n} \le c \cdot 2^n$$
 for all $n \ge n_0$.

Then $2^{2n} = 2^n \cdot 2^n \le c \cdot 2^n \Rightarrow 2^n \le c$. But no constant is greater than all 2^n , and so the assumption leads to a contradiction.

Exercise 3.1-5

Prove Theorem 3.1.

(For any two functions f(n) and g(n), we have $f(n) = \Theta(n)$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.)

Exercise 3.1-6

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

Exercise 3.1-7

Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

Exercise 3.1-8

We can extend our notation to the case of two parameters n and m that can go to infinity independently at different rates. For a given function g(n,m), we denote by O(g(n,m)) the set of functions

$$O(g(n,m)) = \{f(n,m) : \text{ there exist positive constants } c, n_0, \text{ and } m_0 \}$$

such that $0 \le f(n,m) \le cg(n,m)$
for all $n \ge n_0$ or $m \ge m_0 \}$.

Give corresponding definitions for $\Omega(g(n,m))$ and $\Theta(g(n,m))$.

Answer*:

$$\begin{split} \Omega(g(n,m)) &= \big\{ f(n,m) : & \text{ there exist positive constants } c, n_0, \text{ and } m_0 \\ & \text{ such that } 0 \leq cg(n,m) \leq f(n,m) \\ & \text{ for all } n \geq n_0 \text{ or } m \geq m_0 \big\}. \\ \Theta(g(n,m)) &= \big\{ f(n,m) : & \text{ there exist positive constants } c_1, c_2, n_0, \text{ and } m_0 \\ & \text{ such that } 0 \leq c_1 g(n,m) \leq f(n,m) \leq c_2 g(n,m) \\ & \text{ for all } n \geq n_0 \text{ or } m \geq m_0 \big\}. \end{split}$$

3.2 Standard notations and common functions

Exercise 3.2-1

Show that if f(n) and g(n) are monotonically increasing functions, then so are the functions f(n) + g(n) and f(g(n)), and if f(n) and g(n) are in addition nonnegative, then $f(n) \cdot g(n)$ is monotonically increasing.

Exercise 3.2-2

Prove equation (3.16) $(a^{\log_b c} = c^{\log_b a})$.

Answer:

$$a^{\log_b c} = c^{\log_c a \cdot \log_b c}$$

$$= c^{\log_b \binom{\log_c a}{c}}$$

$$= c^{\log_b a}$$

Exercise 3.2-3

Prove equation (3.19) ($\lg(n!) = \Theta(n \lg n)$). Also prove that $n! = \omega(2^n)$ and $n! = o(n^n)$.

Answer:

$$\begin{split} \lg(n!) &= \lg\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)\right) \\ &= \lg\sqrt{2\pi n} + \lg\left(\frac{n}{e}\right)^n + \lg\left(1 + \Theta\left(\frac{1}{n}\right)\right) \\ &= \Theta(\lg n) + \Theta(n\lg n) + O(1) \\ &= \Theta(n\lg n) \end{split}$$

$$n! = 4! \cdot \prod_{k=5}^{n-1} k \cdot n$$

$$> 2^4 \cdot \prod_{k=5}^{n-1} 2 \cdot 2c \qquad \left(n > \frac{c}{2}, n \ge 5 \right)$$

$$= 2^n c$$

$$= \omega(2^n)$$

$$n! = 1 \cdot \prod_{k=2}^{n} k$$

$$< cn \cdot \prod_{k=2}^{n} n \qquad \left(n \ge 3, n > \frac{1}{c}\right)$$

$$= cn^{n}$$

$$= o(n^{n})$$

Is the function $\lceil \lg n \rceil!$ polynomially bounded? Is the function $\lceil \lg \lg n \rceil!$ polynomially bounded?

Answer*:

 $\lceil \lg n \rceil!$ is not polynomially bounded, but $\lceil \lg \lg n \rceil!$ is.

Proving that a function f(n) is polynomially bounded is equivalent to proving that $\lg(f(n)) = O(\lg n)$ for the following reasons.

- If f is polynomially bounded, then there exist constants c, k, n_0 such that for all $n \ge n_0$, $f(n) \le cn^k$. Hence, $\lg(f(n)) \le kc \lg n$, which, since c and k are constants, means that $\lg(f(n)) = O(\lg n)$.
- Similarly, if $\lg(f(n)) = O(\lg n)$, then f is polynomially bounded.

In the following proofs, we will make use of the following two facts:

- 1. $\lg(n!) = \Theta(n \lg n)$ (by equation (3.19)).
- 2. $\lceil \lg n \rceil = \Theta(\lg n)$, because
- $\lceil \lg n \rceil \ge \lg n$
- $\lceil \lg n \rceil < \lg n + 1 \le 2 \lg n$ for all $n \ge 2$

$$lg(\lceil \lg n \rceil!) = \Theta(\lceil \lg n \rceil \lg \lceil \lg n \rceil)
= \Theta(\lg n \lg \lg n)
= \omega(\lg n)$$

Therefore, $\lg(\lceil \lg n \rceil!) \neq O(\lg n)$, and so $\lceil \lg n \rceil!$ is not polynomially bounded.

$$\begin{split} \lg(\lceil \lg \lg n \rceil!) &= \Theta(\lceil \lg \lg n \rceil \lg \lceil \lg \lg n \rceil) \\ &= \Theta(\lg \lg n \lg \lg \lg \lg n) \\ &= o((\lg \lg n)^2) \\ &= o(\lg^2(\lg n)) \\ &= o(\lg n). \end{split}$$

The last step above follows from the property that any polylogarithmic function grows more slowly than any positive polynomial function, i.e., that for constants a, b > 0, we have $\lg^b n = o(n^a)$. Substitute $\lg n$ for n, 2 for b, and 1 for a, giving $\lg^2(\lg n) = o(\lg n)$.

Therefore, $\lg(\lceil \lg \lg n \rceil!) = O(\lg n)$, and so $\lceil \lg \lg n \rceil!$ is polynomially bounded.

Exercise 3.2-5 ★

Which is asymptotically larger: $\lg(\lg^* n)$ or $\lg^*(\lg n)$?

Answer*:

 $\lg^*(\lg n)$ is asymptotically larger because $\lg^*(\lg n) = \lg^* n - 1$.

Exercise 3.2-6

Show that the golden ratio ϕ and its conjugate $\hat{\phi}$ both satisfy the equation $x^2 = x + 1$.

Answer*:

Both ϕ^2 and $\phi + 1$ equal $(3 + \sqrt{5})/2$, and both $\hat{\phi}^2$ and $\hat{\phi} + 1$ equal $(3 - \sqrt{5})/2$.

Exercise 3.2-7

Prove by induction that the *i*th Fibonacci number satisfies the equality

$$F_i = \frac{\phi^i - \widehat{\phi}^i}{\sqrt{5}},$$

where ϕ is the golden ratio and $\widehat{\phi}$ is its conjugate.

Answer*:

We have two base cases: i = 0 and i = 1. For i = 0, we have

$$\frac{\phi^0 - \hat{\phi}^0}{\sqrt{5}} = \frac{1 - 1}{\sqrt{5}}$$

$$= 0$$

$$= F_0$$

and for i = 1, we have

$$\frac{\phi^{1} - \hat{\phi}^{1}}{\sqrt{5}} = \frac{(1 + \sqrt{5}) - (1 - \sqrt{5})}{2\sqrt{5}}$$

$$= \frac{2\sqrt{5}}{2\sqrt{5}}$$

$$= 1$$

$$= F_{1}$$

For the inductive case, the inductive hypothesis is that $F_{i-1}=(\phi^{i-1}-\widehat{\phi}^{i-1})/\sqrt{5}$ and $F_{i-2}=(\phi^{i-2}-\widehat{\phi}^{i-2})/\sqrt{5}$. We have

$$F_{i} = F_{i-1} + F_{i-2}$$
 (equation (3.22))
$$= \frac{\phi^{i-1} - \hat{\phi}^{i-1}}{\sqrt{5}} + \frac{\phi^{i-2} - \hat{\phi}^{i-2}}{\sqrt{5}}$$
 (inductive hypothesis)
$$= \frac{\phi^{i-2}(\phi + 1) - \hat{\phi}^{i-2}(\hat{\phi} + 1)}{\sqrt{5}}$$

$$= \frac{\phi^{i-2}\phi^{2} - \hat{\phi}^{i-2}\hat{\phi}^{2}}{\sqrt{5}}$$
 (Exercise 3.2-6)
$$= \frac{\phi^{i} - \hat{\phi}^{i}}{\sqrt{5}}.$$

Exercise 3.2-8

Show that $k \ln k = \Theta(n)$ implies $k = \Theta(n/\ln n)$.

Answer:

$$n = \Theta(k \ln k)$$

$$\ln n = \Theta(\ln k + \ln \ln k)$$

$$= \Theta(\ln k)$$

$$\frac{n}{\ln n} = \Theta\left(\frac{k \ln k}{\ln k}\right)$$

$$= \Theta(k)$$

$$k = \Theta\left(\frac{n}{\ln n}\right)$$

Problems

Problem 3-1 Asymptotic behavior of polynomials

Let

$$p(n) = \sum_{i=0}^{d} a_i n^i,$$

where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties.

a. If
$$k \ge d$$
, then $p(n) = O(n^k)$.

b. If
$$k \le d$$
, then $p(n) = \Omega(n^k)$.

c. If
$$k = d$$
, then $p(n) = \Theta(n^k)$.

d. If
$$k > d$$
, then $p(n) = o(n^k)$.

e. If
$$k < d$$
, then $p(n) = \omega(n^k)$.

Problem 3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \geq 1$, $\epsilon \leq 1$ and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	\boldsymbol{A}	B	O	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}	Yes	Yes	No	No	No
\overline{b} .	n^k	C^n	Yes	Yes	No	No	No
<i>c</i> .	\sqrt{n}	$n^{\sin n}$	No	No	No	No	No
\overline{d} .	2^n	$2^{n/2}$	No	No	Yes	Yes	No
e.	$n^{\lg c}$	$c^{\lg n}$	Yes	No	Yes	No	Yes
\overline{f} .	lg n!	$\lg(n^n)$	Yes	No	Yes	No	Yes

Problem 3-3 Ordering by asymptotic growth rates

- **a.** Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.
- **b.** Give an example of a single nonnegative function f(n) such that for all functions $g_i(n)$ in part (a), f(n) is neither $O(g_i(n))$ nor $\Omega(g_i(n))$.

Answer*:

a.

Here is the ordering, where functions on the same line are in the same equivalence class, and those higher on the page are Ω of those below them:

```
2^{2^{n+1}}
2^{2^n}
(n + 1)!
                          see justification 7
n!
e^n
                          see justification 1
n \cdot 2^n
2^n
(3/2)^n
(\lg n)^{\lg n} = n^{\lg \lg n}
                         see identity 1
(\lg n)!
                          see justification 2,8
n^3
n^2 = 4^{\lg n}
                       see identity 2
n \lg n and \lg (n!) see justification 6
n = 2^{\lg n}
                          see identity 3
(\sqrt{2})^{\lg n} (= \sqrt{n})
                          see identity 6, justification 3
2^{\sqrt{2 \lg n}}
                          see identity 5, justification 4
lg^2 n
\ln n
\sqrt{\lg n}
\ln \ln n
                          see justification 5
2^{\lg^* n}
\lg^* n and \lg^* (\lg n) see identity 7
\lg(\lg^*)n
n^{1/\lg n} (=2) and 1 see identity 4
```

Much of the ranking is based on the following properties:

- Exponential functions grow faster than polynomial functions, which grow faster than polylogarithmic functions.
- The base of a logarithm doesn't matter asymptotically, but the base of an exponential and the degree of a polynomial do matter.

We have the following identities:

```
1. (\lg n)^{\lg n} = n^{\lg \lg n} because a^{\log_b c} = c^{\log_b a}.

2. 4^{\lg n} = n^2 because a^{\log_b c} = c^{\log_b a}.

3. 2^{\lg n} = n.

4. 2 = n^{1/\lg n} by raising identity 3 to the power 1/\lg n.

5. 2^{\sqrt{2 \lg n}} = n^{\sqrt{2/\lg n}} by raising identity 4 to the power \sqrt{2 \lg n}.

6. (\sqrt{2})^{\lg n} = \sqrt{n} because (\sqrt{2})^{\lg n} = 2^{(1/2) \lg n} = 2^{\lg \sqrt{n}} = \sqrt{n}.

7. \lg^*(\lg n) = \lg^* n - 1.
```

The following *justifications* explain some of the rankings:

1.
$$e^n = 2^n (e/2)^n = \omega(n2^n)$$
, since $(e/2)^n = \omega(n)$.
2. $(\lg n)! = \omega(n^3)$ by taking logs: $\lg(\lg n)! = \Theta(\lg n \lg \lg n)$ by Stirling's approximation, $\lg(n^3) = 3 \lg n$. $\lg \lg n = \omega(3)$.
3. $(\sqrt{2})^{\lg n} = \omega(2^{\sqrt{2 \lg n}})$ by taking logs: $\lg(\sqrt{2})^{\lg n} = (1/2) \lg n$, $\lg 2^{\sqrt{2 \lg n}} = \sqrt{2 \lg n}$. $(1/2) \lg n = \omega(\sqrt{2 \lg n})$.

- 4. $2^{\sqrt{2 \lg n}} = \omega(\lg^2 n)$ by taking logs: $\lg 2^{\sqrt{2 \lg n}} = \sqrt{2 \lg n}$, $\lg \lg^2 n = 2 \lg \lg n$. $\sqrt{2 \lg n} = \omega(2 \lg \lg n)$.
- 5. $\ln \ln n = \omega(2^{\lg^* n})$ by taking logs: $\lg 2^{\lg^* n} = \lg^* n$. $\lg \ln \ln n = \omega(\lg^* n)$.
- 6. $\lg(n!) = \Theta(n \lg n)$ (equation (3.19)).
- 7. $n! = \Theta(n^{n+1/2}e^{-n})$ by dropping constants and low-order terms in equation (3.18) ($n! = \sqrt{2\pi n} (n/e)^n (1 + \Theta(1/n))$.
- 8. $(\lg n)! = \Theta((\lg n)^{\lg n + 1/2}e^{-\lg n})$ by substituting $\lg n$ for n in the previous justification. $(\lg n)! = \Theta((\lg n)^{\lg n + 1/2}n^{-\lg e})$ because $a^{\log_b c} = c^{\log_b a}$.

b.

The following f(n) is nonnegative, and for all functions $g_i(n)$ in part (a), f(n) is neither $O(g_i(n))$ nor $\Omega(g_i(n))$.

$$f(n) = \begin{cases} 2^{2^{n+2}} & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

Problem 3-4 Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

- **a.** f(n) = O(g(n)) implies g(n) = O(f(n)). (False)
- **b.** $f(n) + g(n) = \Theta(\min(f(n), g(n)))$. (False)
- **c.** f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n. (True)
- **d.** f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$. (False)
- **e.** $f(n) = O(f(n)^2)$. (False)
- **f.** f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$. (True)
- **g.** $f(n) = \Theta(f(n/2))$. (False)
- **h.** $f(n) + o(f(n)) = \Theta(f(n))$. (True)

Problem 3-5 Variations on O and Ω

Some authors define Ω in a slightly different way than we do; let's use $\overset{\infty}{\Omega}$ (read "omega infinity") for this alternative definition. We say that $f(n) = \overset{\infty}{\Omega}(g(n))$ if there exists a positive constant c such that $f(n) \geq cg(n) \geq 0$ for infinitely many integers n.

- **a.** Show that for any two functions f(n) and g(n) that are asymptotically nonnegative, either f(n) = O(g(n)) or $f(n) = \overset{\infty}{\Omega}(g(n))$ or both, whereas this is not true if we use Ω in place of $\overset{\infty}{\Omega}$.
- **b.** Describe the potential advantages and disadvantages of using Ω instead of Ω to characterize the running times of programs.

Some authors also define O in a slightly different manner; let's use O' for the alternative definition. We say that f(n) = O'(g(n)) if and only if |f(n)| = O(g(n)).

c. What happens to each direction of the "if and only if" in Theorem 3.1 if we substitute O' for O but still use Ω ?

Some authors define \widetilde{O} (read "soft-oh") to mean O with logarithmic factors ignored:

$$\widetilde{O}(g(n)) = \{f(n) : \text{ there exist positive constants } c, k, \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \lg^k(n) \text{ for all } n \ge n_0 \}.$$

d. Define $\widetilde{\Omega}$ and $\widetilde{\Theta}$, in a similar manner. Prove the corresponding analog to Theorem 3.1.

Answer:

a.

$$f(n) \neq \overset{\infty}{\Omega}(g(n)) \Rightarrow f(n) = O(g(n))$$

$$f(n) \neq O(g(n)) \Rightarrow f(n) = \overset{\infty}{\Omega}(g(n))$$

C.

Does not change.

d.

$$\widetilde{\Omega}(g(n)) = \{f(n): \text{ there exist positive constants } c, k, \text{ and } n_0 \text{ such that } 0 \leq cg(n) \lg^k(n) \leq f(n) \text{ for all } n \geq n_0 \}$$

$$\widetilde{\Theta}(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, k_1, k_2 \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \lg^{k_1}(n) \leq f(n) \leq c_2 g(n) \lg^{k_2}(n) \text{ for all } n \geq n_0 \}$$

Problem 3-6 Iterated functions

We can apply the iteration operator * used in the \lg^* function to any monotonically increasing function f(n) over the reals. For a given constant $c \in \mathbb{R}$, we define the iterated function f_c^* by

$$f_c^*(n) = \min \{i \ge 0 : f^{(i)}(n) \le c\},$$

which need not be well defined in all cases. In other words, the quantity $f_c^*(n)$ is the number of iterated applications of the function f required to reduce its argument down to c or less.

For each of the following functions f(n) and constants c, give as tight a bound as possible on f_c^* .

Answer:

$$\begin{array}{c|ccccc} f(n) & c & f_c^*(n) \\ \hline a. & n-1 & 0 & \lceil n \rceil \\ \hline b. & \lg n & 1 & \lg^* n \\ \hline c. & n/2 & 1 & \lceil \lg n \rceil \\ \hline d. & n/2 & 2 & \lceil \lg n \rceil - 1 \\ \hline e. & \sqrt{n} & 2 & \lg \lg n \\ \hline f. & \sqrt{n} & 1 & \infty \\ \hline g. & n^{1/3} & 2 & \log_3 \lg n \\ \hline h. & n/\lg n & 2 & \Omega(\lg n/\lg \lg n) \\ \hline \end{array}$$