CALCULUS AND PROBABILITY BASED STATISTICS

MARK ANDREW GERADS

1. Finite uniform statistics

1.1. **Introduction.** The purpose of this text is to have statistics built on a solid foundation of probability and calculus.

Definition 1.1. A is an independently repeatable event.

Definition 1.2. $p \in [0,1]$ is the probability that A will happen when A is given a chance to happen. For simplicity, we assume that p is the same every time A is given a chance to happen.

Definition 1.3. $n \in \mathbb{W}$ is the number of times A had a chance to happen.

Definition 1.4. $k \in \mathbb{W}$ is the number of times A actually happened.

Remark 1.5. $k \leq n$.

Definition 1.6. f_p is the prior probability distribution for p. In the uniform statistics section, we assume $f_p = 1$.

Remark 1.7. $1 = \int_0^1 f_p dp$

Definition 1.8. $f_{p|n,k}$ is the updated probability distribution for p.

Remark 1.9. $1 = \int_0^1 f_{p|n,k} dp$

Remark 1.10. k/n is the expected probability of p and is where the maximum value of the function $f_{p|n,k}$ is.

Definition 1.11. (a,b) is the confidence interval of p such that b-a is minimized.

Definition 1.12. c is the desired certainty for the confidence interval of p.

Remark 1.13. $0 \le c = \int_a^b f_{p|n,k} dp \le 1$

Remark 1.14. $0 \le a \le b \le 1$

Remark 1.15. The symmetry mentioned is where you swap p with 1-p and k with n-k and A with $\neg A$.

1.2. The General Prior Probability Problem. n, k, c are known, and we must solve for a, b. Remark 1.16. The probability of k events given n chances is $\binom{n}{k}p^k(1-p)^{n-k}$, but we must scale it to satisfy 1.9:

$$(1.1) f_{p|n,k} = \frac{\binom{n}{k} p^k (1-p)^{n-k}}{\int\limits_0^1 \binom{n}{k} p^k (1-p)^{n-k} dp} = \frac{p^k (1-p)^{n-k}}{\int\limits_0^1 p^k (1-p)^{n-k} dp} = (n+1) \binom{n}{k} p^k (1-p)^{n-k}$$

1.3. The Uniform Prior Probability Problem. n, k, c are known, and we must solve for a, b. Remark 1.17. The probability of k events given n chances is $\binom{n}{k}p^k(1-p)^{n-k}$, but we must scale it to satisfy 1.9:

$$(1.2) f_{p|n,k} = \frac{\binom{n}{k} p^k (1-p)^{n-k}}{\int\limits_0^1 \binom{n}{k} p^k (1-p)^{n-k} dp} = \frac{p^k (1-p)^{n-k}}{\int\limits_0^1 p^k (1-p)^{n-k} dp} = (n+1) \binom{n}{k} p^k (1-p)^{n-k}$$

Date: March 1, 2016.

1

1.4. The 4 cases of finding the interval.

1.4.1. Case n = k = 0. This case is can be self-symmetrical.

Remark 1.18. We have the general solution

$$(a,b) = (a,a+0.5)$$

, but the self-symmetric solution is

(1.4)
$$(a,b) = \left(\frac{1-c}{2}, \frac{1+c}{2}\right)$$

1.4.2. Case n > k = 0. This case is symmetrical to case 1.4.3.

Remark 1.19. We can solve

(1.5)
$$\int_0^b (n+1)(1-p)^n dp = c = 1 - (1-b)^{n+1}$$

Remark 1.20. We have

(1.6)
$$(a,b) = \left(0, 1 - (1-c)^{\frac{1}{n+1}}\right)$$

Example 1.21. Now we can analyze the old saying "Third time's the charm." n=2.

$$(1.7) c = 0.5 \Rightarrow b \approx 0.2062994740, c = 0.95 \Rightarrow b \approx 0.6315968501$$

We can now see that if you fail at something twice, then success before the 8th try is worth approximately a coin flip. The expected time to find success can be calculated through this formula: $\left\lceil n + \frac{1}{h} \right\rceil$.

Example 1.22. Suppose we were repeatedly trying a difficult task. How many times of trying without success must there be for us to conclude with c = 0.99 that $b \le 0.01$?

(1.8)
$$n = \frac{2\log(3) + \log(11)}{2\log(2) - 2\log(3) + 2\log(5) - \log(11)} \approx 457.2105766$$

We can see "If at first you don't succeed, try, try again." is sensible for things that we want to be certain are improbable before giving up.

1.4.3. Case n = k > 0. This case is symmetrical to case 1.4.2.

Remark 1.23. We can solve

(1.9)
$$\int_{a}^{1} (k+1)p^{k} dp = c = 1 - a^{k+1}$$

Remark 1.24. We have

$$(1.10) (a,b) = \left((1-c)^{\frac{1}{k+1}}, 1 \right)$$

1.4.4. Case n > k > 0. This case is self-symmetrical.

 $Remark\ 1.25.$ We desire to solve

(1.11)

$$\int_{a}^{b} (n+1) {n \choose k} p^{k} (1-p)^{n-k} dp = c = (n+1) {n \choose k} (B_{b}(k+1, -k+n+1) - B_{a}(k+1, -k+n+1))$$

where B is the incomplete beta function.

Remark 1.26. We can use the hints

(1.12)
$$a^{k}(1-a)^{n-k} = b^{k}(1-b)^{n-k}$$

Remark 1.27. By solving

$$\frac{\partial f_p}{\partial p} = 0$$

, we get

$$\lim_{c \to 0} (a, b) = \left(\frac{k}{n}, \frac{k}{n}\right), m = (n+1) \binom{n}{k} \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k}$$

1.5. Table of small trial half probability intervals. Table with $c = \frac{1}{2}$:

		la 1		1, - 2	I - 4
	k=0	k = 1	k=2	k = 3	k=4
n = 0	$a \approx 0.2500000000$				
	$b \approx 0.7500000000$				
n = 1	$a \approx 0.000000000$	$a \approx 0.7071067812$			
	$b \approx 0.2928932188$	$b \approx 1.000000000$			
n=2	$a \approx 0.000000000$	$a\approx 0.326351822$	$a \approx 0.7937005260$		
	$b \approx 0.2062994740$	$b \approx 0.673648178$	$b \approx 1.000000000$		
n=3	$a \approx 0.000000000$	$a \approx 0.1966713241$	$a \approx 0.507800700$	$a \approx 0.8408964153$	
	$b \approx 0.1591035847$	$b\approx 0.4921993002$	$b \approx 0.803328676$	$b \approx 1.0000000000$	
n=4	$a \approx 0.000000000$	$a \approx 0.1387754454$	$a \approx 0.3594361648$	$a \approx 0.610595575$	$a \approx 0.8705505633$
	$b \approx 0.1294494367$	$b \approx 0.3894044243$	$b \approx 0.640563835$	$b \approx 0.861224555$	$b \approx 1.000000000$
n=5	$a \approx 0.000000000$	$a \approx 0.1065967785$	$a \approx 0.2770309506$	$a \approx 0.4678740055$	$a \approx 0.677308916$
	$b \approx 0.1091012819$	$b \approx 0.3226910840$	$b \approx 0.532125995$	$b \approx 0.722969050$	$b \approx 0.893403222$
n=6	$a \approx 0.000000000$	$a \approx 0.0862905298$	$a \approx 0.2249291772$	$a \approx 0.3788484407$	$a \approx 0.544881432$
	$b \approx 0.09427633574$	$b\approx 0.2757178692$	$b \approx 0.4551185682$	$b \approx 0.621151559$	$b \approx 0.775070823$
n=7	$a \approx 0.000000000$	$a \approx 0.07237321411$	$a \approx 0.1891248358$	$a \approx 0.3180913474$	$a \approx 0.4559323705$
	$b \approx 0.08299595680$	$b \approx 0.2407853463$	$b \approx 0.3976355162$	$b \approx 0.544067630$	$b \approx 0.681908652$
n=8	$a \approx 0.000000000$	$a \approx 0.06226629927$	$a \approx 0.1630534052$	$a \approx 0.2740192600$	$a \approx 0.3919638426$
	$b \approx 0.07412528771$	$b\approx 0.2137614499$	$b \approx 0.3530822174$	$b \approx 0.4838784786$	$b \approx 0.608036157$
	k = 5	k = 6	k = 7	k = 8	
n=5	$a \approx 0.8908987181$	'			
	$b \approx 1.000000000$				
n=6	$a \approx 0.724282131$	$a \approx 0.9057236643$			
	$b \approx 0.913709470$	$b \approx 1.000000000$			
n=7	$a \approx 0.602364484$	$a \approx 0.759214654$	$a \approx 0.9170040432$		
	$b \approx 0.810875164$	$b\approx 0.927626786$	$b \approx 1.000000000$		
n = 8	$a \approx 0.516121520$	$a \approx 0.646917782$	$a \approx 0.786238550$	$a \approx 0.9258747123$	
	$b \approx 0.725980740$	$b \approx 0.836946595$	$b \approx 0.937733701$	$b\approx 1.000000000$	

2. The second trial and consistency

Suppose we had a first trial with k_0 events occurring out of n_0 chances to occur. Then the prior probability distribution would be:

(2.1)
$$f_p = (n_0 + 1) \binom{n_0}{k_0} p^{k_0} (1 - p)^{n_0 - k_0}$$

The second trial has k_1 events occurring out of n_1 chances to occur. By treating both trials as a single, larger trial we can jump ahead to get this equation:

(2.2)
$$f_{p|n_1,k_1} = (n_0 + n_1 + 1) \binom{n_0 + n_1}{k_0 + k_1} p^{k_0 + k_1} (1 - p)^{n_0 + n_1 - k_0 - k_1}$$

We will also show this the long way.

318 Thomas Drive, Marshalltown, Iowa, 50158 $E\text{-}mail\ address:}$ MGerads11@winona.edu, nazgand@gmail.com