GRT Seminar Fall 2024 – Rozansky-Witten Theory

Notes by John S. Nolan, speakers listed below

January 23, 2025

Abstract

This semester, the GRT Seminar will focus on Rozansky-Witten theory.

Contents

1	9/5	(David Nadler) – Introduction	1
	1.1	What is Rozansky-Witten theory?	1
	1.2	Why do we care?	2
	1.3	What is the correct 2-category?	2
	1.4	An alternative viewpoint	2

1 9/5 (David Nadler) – Introduction

Our goal is to discuss Rozansky-Witten theory. Some related topics include:

- Quasicoherent sheaves of categories (as discussed last spring).
- Categories of matrix factorizations.¹
- The cobordism hypothesis.
- Local structure theory of holomorphic symplectic varieties.

1.1 What is Rozansky-Witten theory?

Suppose we have a hyperkähler / holomorphic symplectic manifold X. This means that X has a holomorphic (2,0)-form ω satisfying the (complex analogues of) the usual symplectic form axioms. Given such an X, there is a conjectural 3-dimensional topological field theory \mathcal{Z}_X , called *Rozansky-Witten theory* with target X.

What we mean by 3d TFT is as follows:

- Given a closed 3-manifold M^3 , we obtain a number $\mathcal{Z}_X(M^3)$.
- Closed 2-manifolds M^2 give vector spaces $\mathcal{Z}_X(M^2)$.
- Closed 1-manifolds M^1 give categories 3 $\mathcal{Z}_X(M^1)$.
- Closed 0-manifolds M^0 give 2-categories $\mathcal{Z}_X(M^0)$.

¹In more detail: given a smooth variety X and a function $f: X \to \mathbb{A}^1$, we can construct a category MF_f which categorifies the vanishing cycles of f.

²Typically with some extra structure, e.g. an orientation

 $^{^3}$ As is standard for GRT, we use the implicit ∞ convention.

In particular, $\mathcal{Z}_X(pt)$ is a 2-category. The *cobordism hypothesis* tells us that we can recover the entire theory \mathcal{Z}_X from the "3-dualizable" 2-category $\mathcal{Z}_X(pt)$. For purposes of geometric representation theory, we are most interested in the low-dimensional behavior, which captures more data about the theory.

Rozansky-Witten theory should satisfy something like:

- $Z_X(S^2) = O(X).^4$
- $Z_X(S^1) = Coh(X)$.

These end up inheriting interesting structure from the TFT.

1.2 Why do we care?

Recall that 2-dimensional mirror symmetry can be schematically understood as an equivalence between the following 2d TFTs:

- An A-model \mathcal{A} arising from symplectic geometry
- A B-model \mathcal{B}_X , coming from some Kähler manifold X, satisfying $\mathcal{B}_X(pt) \simeq \mathsf{Coh}(X)$.

In particular, $\mathcal{A}(pt)$ is often some category of geometric interest, and the equivalence $\mathcal{A}(pt) \simeq \mathcal{B}_X(pt)$ lets us resolve questions about $\mathcal{A}(pt)$.

There's an analogue in higher dimensions: we'd like to take a 3d TFT \mathcal{Y} and give an equivalence $\mathcal{Y} \simeq \mathcal{Z}_X$ for some holomorphic symplectic X. This would give an equivalence between some 2-category and $\mathcal{Z}_X(\text{pt})$.

Conjecture 1.1 (Teleman). Let G be a complex reductive group with maximal compact subgroup G_c . There is an equivalence between:

- A suitable 2-category of "categories with G_c -action."
- The Rozansky-Witten 2-category of $T^*(G^{\vee}/G^{\vee})$.

Note that $T^*(G^{\vee}/G^{\vee})$ is stacky and non-proper, which makes it impossible for the corresponding 2-category to be 3-dualizable. Thus we typically won't obtain 3-manifold invariants from such a theory. That's terrible for 3-manifold topologists, but this isn't a 3-manifold seminar.

Some other examples of interest for Rozansky-Witten theory include symplectic resolutions and cotangent bundles of smooth algebraic varieties.

1.3 What is the correct 2-category?

To rigorously construct Rozansky-Witten theory, we'd need to give a definition of the 2-category $RW_2 = \mathcal{Z}_X(pt)$. This was studied by Kapustin, Rozansky, and Saulina, but much is still unknown.

Roughly, we expect RW_2 to be a 2-category where:

- Objects are smooth Lagrangians $L \subset X$ (or some suitable generalization of these).
- 1-morphisms from L_1 to L_2 are given by some sort of category associated to $L_1 \cap L_2$. In the simplest possible case, where $X = T^*W$ is a cotangent bundle, L_1 is the zero-section, and L_2 is the graph of a differential df, then $L_1 \cap L_2$ is the critical locus of X and we assign $\operatorname{Hom}(L_1, L_2) = \operatorname{MF}_f$, the matrix factorization category of f. Work of Joyce and many others has focused on understanding how much the local setting looks like this.
- 2-morphisms and higher are "natural compatibilities" between the 1-morphisms.

One should think of the matrix factorization category MF_f as giving a categorical way to measure the critical locus of f. When the critical points of f are Morse, the category MF_f looks like a direct sum of copies of Vect (one for each critical point).

There is an important distinction between Rozansky-Witten theory and the 2d A-model. In the complex setting, there are no "instantons," so the theory is local and we don't run into the full difficulty of Floer theory. Thus Rozansky-Witten theory is a categorified version of Fukaya theory that avoids the need for instanton corrections.

⁴By our conventions, this is what is classically called $\mathbf{R}\Gamma(X,\mathcal{O})$, so there is interesting derived information.

1.4 An alternative viewpoint

If $X = T^*W$ is a cotangent bundle, then $\mathsf{ShvCat}(W)$, the 2-category of (quasicoherent) sheaves of categories on W, embeds into RW_2 . The image of this embedding consists of "conic objects." Thus we can understand a key part of Rozansky-Witten theory, at least in this simple case.

The thesis (work in progress) of Enoch Yiu relates RW_2 to $\mathsf{ShvCat}(W \times \mathbb{A}^1)$.