Fundamentos de Microeconomia

Capítulo 1. Tecnologia de produção

Ciclo Básico 2º período / 2012

Graduação em Ciências Econômicas

Plano do capítulo

- Tecnologia de produção
- Produção com um insumo variável (trabalho)
- Produção com dois insumos variáveis
- Rendimentos de escala

Teoria da empresa

- A teoria da empresa mostra como uma empresa toma decisões de produção com base na minimização dos custos e como eles variam com o volume produzido
- As decisões das empresas sobre a produção são análogas às decisões dos consumidores sobre a compra de bens e, da mesma maneira, podem ser entendidas em três passos:
 - Tecnologia de produção
 - 2 Restrições de custo
 - 3 Escolha de insumos

Teoria da empresa

Tecnologia de produção

Precisamos de um modo prático de descrever como os insumos podem ser transformados em produção

- Insumos: trabalho, capital e matérias-primas
- Produto: carros, televisores, serviços

Um fabricante de eletrônicos pode produzir 10 mil televisores por mês

- empregando mão de obra (trabalhadores montando os aparelhos à mão) e muito pouco capital
- construindo uma fábrica intensiva em capital, totalmente automatizada, e usando pouquíssima mão de obra

Teoria da empresa

Restrições de custo

As empresas precisam levar em conta o *preço* do trabalho, do capital e de outros insumos

Escolhas de insumo

Conforme

- a tecnologia de produção
- o preço do trabalho e outros insumos

a empresa precisará decidir quanto de cada insumo usar

Se a fábrica de eletrônicos opera em um país com baixos níveis salariais, talvez opte por produzir televisores usando muito trabalho e pouco capital

Tecnologia de produção

Fatores de produção

Insumos que entram no processo produtivo (por exemplo, trabalho, capital e matérias-primas)

- O trabalho abrange trabalhadores especializados (carpinteiros, engenheiros), não especializados bem como os esforços empreendedores dos administradores de empresa
- As matérias primas incluem o aço, o plástico, a eletricidade, a água
- O capital inclui o terreno, as instalações, a maquinaria e outros equipamentos, bem como os estoques

Tecnologia de produção

Função de produção

Função que mostra o produto máximo que uma empresa pode obter para cada combinação específica de insumos

$$q = F(K, L)$$

onde K é o capital e L é o trabalho (por exemplo)

Por exemplo, a função F poderia descrever o número de computadores que poderiam ser produzidos a cada ano por uma empresa que possui uma fábrica com mil metros quadrados e determinado número de operários na linha de montagem

Função de produção

Função de produção

$$q = F(K, L) (FP)$$

- Insumos e produtos são fluxos (quantidades por exemplo por ano)
- A Equação (FP) se aplica a determinada tecnologia (grau de conhecimento a respeito dos diversos métodos)
- As funções de produção descrevem o que é tecnicamente viável quando a empresa opera eficientemente

Curto versus longo prazo

Curto prazo

Período em que as quantidades de um ou mais fatores de produção não podem ser modificadas

O fator de produção que não pode variar é chamado de insumo fixo

Longo prazo

Tempo necessário para que todos os insumos de produção possam se tornar variáveis

- Uma nova fábrica precisa ser planejada e construída
- Máquinas precisam ser encomendadas e produzidas

Remarque

Tudo insumo fixo no curto prazo corresponde ao resultado de decisões anteriores de longo prazo

Produto médio (PM)

Produto obtido por unidade de determinado insumo

Exemplo

O produto médio do trabalho é definido por

$$PM_L = \frac{\text{produto total}}{\text{insumo trabalho}} = \frac{q}{L}$$

- Cinco pessoas podem operar uma linha de montagem melhor do que duas
- Dez pessoas podem tropeçar umas nas outras

Produto marginal (PMg)

Produto adicional obtido quando se acrescenta uma unidade de determinado insumo

Exemplo

O produto marginal do trabalho é definido por

$$PMg_L = \frac{\text{variação do produto total}}{\text{variação do insumo trabalho}} = \frac{\Delta q}{\Delta L}$$

Rigorosamente,

$$PMg_L = \frac{\partial F}{\partial L} = \lim_{\varepsilon \to 0} \frac{F(K, L + \varepsilon) - F(K, L)}{\varepsilon}$$

O produto marginal do trabalho (e o PM_L) depende do nível de trabalho L mas também da quantidade de capital (insumo fixo) empregado

$$PMg_L = \frac{\partial F}{\partial L}(K, L)$$

- \bullet Se o insumo capital aumentar, é bastante provável que o PMg_L aumente
- Porque os trabalhadores adicionais possivelmente serão mais produtivos se tiverem mais capital para utilizar

TABELA 6.1	Produção com um insu	ımo variável		
Quantidade de trabalho (L)	Quantidade de capital (K)	Produto total (q)	Produto médio (q/L)	Produto marginal $(\triangle q/\triangle L)$
0	10	0	_	_
1	10	10	10	10
2	10	30	15	20
3	10	60	20	30
4	10	80	20	20
5	10	95	19	15
6	10	108	18	13
7	10	112	16	4
8	10	112	14	0
9	10	108	12	-4
10	10	100	10	-8

Quando todos os insumos são fixos, exceto o trabalho, a curva de produção total representa os volumes de produção correspondentes a diferentes quantidades do insumo trabalho

Produção eficiente

Nunca pode ser lucrativo utilizar quantidades adicionais de um insumo dispendioso para gerar uma produção *menor*

Os produtos médio e marginal são obtidos diretamente da curva de produção

No ponto A, o produto marginal é 20, pois a tangente da curva de produção tem inclinação igual a 20

No ponto B, o produto médio do trabalho é 20, pois essa é a inclinação da linha 0B

O produto médio do trabalho no ponto C é dado pela inclinação da linha 0C

À esquerda do ponto E, o produto marginal está acima do produto médio, que está crescendo

À direita do ponto E, o produto marginal está abaixo do produto médio, que está decrescendo

E representa o ponto em que os produtos médio e marginal são iguais, quando o produto médio alcança seu máximo

 \bullet O produto marginal ${\rm PMg}_L$ é sempre positivo quando o volume de produção é crescente, sendo negativo quando o volume de produção é decrescente

$$\mathrm{PMg}_L = \frac{\partial F}{\partial L}(K, L)$$

- Quando o produto marginal é maior do que o produto médio, o produto médio é crescente
 - Se o produto de um trabalhador adicional é maior do que o produto médio de cada uma dos trabalhadores existentes, quando se acrescenta esse trabalhador, o produto médio aumenta
- Quando o produto marginal é menor do que o produto médio, o produto médio é decrescente
- Quando o produto médio atingir o seu valor máximo, o produto marginal deverá ser igual ao produto médio

Lei dos rendimentos marginais decrescentes

No exemplo anterior a curva do produto marginal é crescente primeiro para depois se tonar decrescente

Lei dos rendimentos marginais decrescentes

Princípio segundo o qual, conforme a utilização de um insumo aumenta, com outros insumos mantidos constantes, a produção adicional diminui

- Temos rendimentos marginais decrescentes quando a função $L\mapsto \mathrm{PMg}_L(K,L)$ é decrescente
- O produto marginal decrescente do trabalho ocorre na maioria dos processos de produção

Lei dos rendimentos marginais decrescentes

Importante

Não confunda a lei dos rendimentos marginais decrescentes com possíveis alterações na *qualidade* da mão de obra à medida que aumentam as unidades de insumo trabalho

- Por exemplo, se todos os trabalhadores com alta qualificação fossem contratados em primeiro lugar, e aqueles com menor qualificação fossem contratados por último
- Em nossa análise da produção, adotamos a premissa de que todas as unidades do insumo trabalho têm igual qualidade
- Os rendimentos decrescentes resultam de limitações no uso dos demais insumos mantidos inalterados (como equipamentos), e não do declínio da qualidade dos trabalhadores

Lei dos rendimentos marginais decrescentes

Efeitos dos avanços tecnológicos

A produtividade da mão de obra (volume de produção por unidade de trabalho) pode aumentar se houver avanços tecnológicos, mesmo que determinado processo produtivo apresente rendimentos decrescentes para o insumo trabalho

Efeitos dos avanços tecnológicos

À medida que nos movemos do ponto A, na curva O1, para B, na curva O2, e para C, na curva O3, ao longo do tempo, a produtividade da mão de obra aumenta

Malthus e a crise de alimentos

- A lei dos rendimentos decrescentes foi de fundamental importância para o pensamento do economista Thomas Malthus (1766–1834)
- Malthus acreditava que a quantidade relativamente fixa de terras existentes em nosso planeta seria insuficiente para o suprimento de quantidades necessárias de alimento, à medida que a população mundial crescesse
- Segundo suas previsões, quando ocorresse a queda tanto da produtividade marginal quanto da produtividade média da mão de obra e ainda houvesse mais pessoas para serem alimentadas, o resultado seria a fome em larga escala
- Malthus estava enganado (embora estivesse correto a respeito da aplicação da lei dos rendimentos decrescentes para o trabalho)

Efeitos dos avanços tecnológicos

TABELA 6.2 Índice da produção alimentar	Índice da produção alimentar mundial <i>per capita</i>				
Ano	Índice				
1948–1952	100				
1960	115				
1970	123				
1980	128				
1990	138				
2000	150				
2005	156				

Avanços tecnológicos modificaram significativamente a produção de alimentos na maioria dos países

- Melhores fertilizantes
- Novas variedades de sementes de alto rendimento e alta resistências às pragas
- Melhores colheitadeiras

Efeitos dos avanços tecnológicos

- A produção de cereais vem aumentando continuamente
- O preço médio mundial da alimentação aumentou temporariamente no início da década de 1970, mas vem declinando desde então: aumentos da oferta (crescimento da produtividade) superaram o crescimento da demanda

Produtividade da mão de obra

Produtividade da mão de obra

Produto médio da mão de obra em um setor ou na economia como um todo

Ligação entre produtividade e padrão de vida

Em qualquer ano, o valor agregado dos bens e serviços produzidos é igual aos pagamentos feitos a todos os insumos, inclusive salários, locação de capital e lucros de empresas

São os consumidores que, em última análise, recebem esses pagamentos de insumos, quaisquer que sejam as formas de pagamento

Produtividade da mão de obra

Fontes de crescimento

- Estoque de capital: quantidade total de capital disponível para emprego na produção
- Mudança tecnológica: desenvolvimento de novas tecnologias que permitem que os fatores de produção sejam utilizados mais eficientemente

Produtividade do trabalho e padrão de vida

TABELA 6.3	Produtividade do trabalho nos países desenvolvidos						
	Estados Unidos	Japão	França	Alemanha	Reino Unido		
	Produção real por trabalhador (2006)						
	\$ 82.158	\$ 57.721	\$ 72.949	\$ 60.692	\$ 65.224		
Anos	Taxa de crescimento anual da produtividade da mão de obra (%)						
1960-1973	2,29	7,86	4,70	3,98	2,84		
1974-1982	0,22	2,29	1,73	2,28	1,53		
1983-1991	1,54	2,64	1,50	2,07	1,57		
1992-2000	1,94	1,08	1,40	1,64	2,22		
2001-2006	1,78	1,73	1,02	1,10	1,47		

- O nível de produção por trabalhador nos Estados Unidos em 2006 foi substancialmente mais elevado do que em outras importantes nações desenvolvidas
- Até a década de 1990, o crescimento da produtividade nos Estados Unidos foi, em média, mais lento do que o da maioria das outras nações desenvolvidas
- Para todas as nações desenvolvidas, o crescimento da produtividade entre 1974 e 2006 foi substancialmente mais baixo do que havia sido no passado

Produção com dois insumos variáveis

TABELA 6.4	Produção con	n dois insumos v	variáveis		
	Insumo trabalho				
Insumo capital	1	2	3	4	5
1	20	40	55	65	75
2	40	60	75	85	90
3	55	75)	90	100	105
4	65	85	100	110	115
5	75)	90	105	115	120

Isoquanta

Curva que mostra todas as combinações possíveis de insumos que geram o mesmo volume de produção

Mapa de isoquantas

- As isoquantas de produção mostram as várias combinações de insumos necessárias para que a empresa possa obter determinado volume de produção (produto)
- Um conjunto de isoquantas, ou mapa de isoquantas, descreve a função de produção da empresa

Mapa de isoquantas

Gráfico no qual são combinadas diversas isoquantas, usado para descrever uma função de produção

Mapa de isoquantas

O volume de produção aumenta quando nos movemos da isoquanta q_1 (na qual 55 unidades são produzidas por ano em pontos como o A e o D) para a isoquanta q_2 (75 unidades por ano em pontos como o B) e para a isoquanta q_3 (90 unidades por ano em pontos como o C e o E)

Mapa de isoquantas

- As isoquantas mostram a flexibilidade que as empresas têm quando tomam decisões de produção
- As empresas podem obter determinado volume de produção por meio de uso de diversas combinações de insumos

Exemplo

- Restaurantes de fast-food defrontam-se nos E.U. com escassez de trabalho jovem e de baixa remuneração
- Eles enfrentaram essa situação por meio de automatização (self-service para salas, equipamentos mais sofisticados) e emprego de pessoas mais velhas

Rendimentos marginais decrescentes

Podemos entender a razão da existência de rendimentos decrescentes no trabalho desenhando uma linha horizontal em determinado nível de capital, digamos 3

Podemos observar que cada unidade adicional de trabalho é capaz de gerar volumes cada vez menores de produção adicional

Substituição entre insumos

Taxa marginal de substituição técnica (TMST)

- Decréscimo máximo possível na quantidade de um insumo quando uma unidade adicional de outro insumo é utilizada, mantendo-se o produto constante
- Aumento mínimo na quantidade de um insumo quando é reduzida de uma unidade a quantidade do outro insumo, mantendo-se o produto constante

A taxa marginal de substituição de trabalho por capital é definida por

$$\text{TMST}_{L,K} \equiv -\frac{\text{Variação do insumo capital}}{\text{variação do insumo trabalho}} = -\frac{\Delta K}{\Delta L}$$

para um nível constante de q

Taxa marginal de substituição técnica (TMST)

Taxa marginal de substituição técnica (TMST)

- Na isoquanta q_2 , a TMST cai de 2 para 1, depois para 2/3 e finalmente para 1/3
- Em geral, isoquantas possuem inclinação descendente e são convexas, assim como as curvas de indiferença
- A inclinação da isoquanta em qualquer ponto mede a taxa marginal de substituição técnica a capacidade da empresa em trocar capital por trabalho, mantendo o mesmo nível de produção

Produtos marginais

Produto marginal do trabalho

É a proporção de produto adicional resultante da maior utilização do trabalho

$$\mathrm{PMg}_L = \frac{\Delta q}{\Delta L}$$

Formalmente,

$$PMg_L \equiv \frac{\partial F}{\partial L} = \lim_{\varepsilon \to 0} \frac{F(K, L + \varepsilon) - F(K, L)}{\varepsilon}$$

O produto marginal do trabalho é sempre calculado em um nível de insumos (K,L), deveríamos usar a notação $\mathrm{PMg}_L(K,L)$

Aproximação

Quando ΔL é pequeno temos

$$\Delta q = F(K, L + \Delta L) - F(K, L) \approx PMg_L \times \Delta L$$

Produtos marginais

Produto marginal do capital

 $\acute{\rm E}$ a proporção de produto adicional resultante da maior utilização do capital

$$\mathrm{PMg}_K = \frac{\Delta q}{\Delta K}$$

Formalmente,

$$PMg_K \equiv \frac{\partial F}{\partial K} = \lim_{\varepsilon \to 0} \frac{F(K + \varepsilon, L) - F(K, L)}{\varepsilon}$$

O produto marginal do capital é sempre calculado em um nível de insumos (K,L), deveríamos usar a notação $\mathrm{PMg}_K(K,L)$

Aproximação

Quando ΔK é pequeno temos

$$\Delta q = F(K + \Delta K, L) - F(K, L) \approx PMg_K \times \Delta K$$

Produtos marginais e TMST

Seja ΔL e ΔK tais que

$$F(K + \Delta K, L + \Delta L) = F(K, L)$$

Se ambos são pequenos temos então

$$PMg_K \times \Delta K + PMg_L \times \Delta L \approx 0$$

No limite (quando ambos convergem para 0) temos

$$TMST_{L,K} = \lim_{\Delta L \to 0} -\frac{\Delta K}{\Delta L} = \frac{PMg_L}{PMg_K}$$

Substitutos perfeitos

- Quando as isoquantas são linhas retas, a TMST é constante
- Isso significa que a taxa em que capital e trabalho podem substituir um ao outro é a mesma, não importando o nível de insumos que esteja sendo utilizado

Substitutos perfeitos: exemplo

- Suponhamos que estejamos produzindo deveres escolares de casa
- Os insumos são lápis vermelhos e azuis
- A quantidade de deveres produzidos depende apenas da quantidade total de lápis
- \bullet Exemplo de função de produção com substitutos perfeitos: $f(x_1,x_2)=x_1+x_2$
- Outro exemplo: instrumentos musicais podem ser manufaturados quase inteiramente com máquinas ou então com algumas poucas ferramentas mas com mão de obra altamente especializada

Função de produção de proporções fixas

- Quando as isoquantas possuem formato em L, apenas determinada combinação de trabalho e capital pode ser utilizada para obter determinado nível de produto
- Acréscimo apenas de trabalho, ou apenas de capital, não aumenta o volume de produção

Função de produção de proporções fixas

- Função de produção com isoquantas que têm a forma de um L, de tal modo que apenas uma combinação de trabalho e capital pode ser empregada para produzir cada nível de produto
- A função de produção de proporções fixas descreve situações nas quais os métodos de produção de que dispõem as empresas são limitados
- Exemplo:
 - Suponhamos que produzimos buracos e que a única forma de fazer um buraco seja com o emprego de um homem e de uma pá
 - Pás extras e mais homens não têm seventia
 - Portanto, o número total de buracos que se pode obter será o mínimo entre o número de homens e o número de pás disponíveis
 - A função de produção é $f(x_1, x_2) = \min\{x_1, x_2\}$

44 / 59

Exemplo: função de produção para o trigo

- Um processo mais intensivo em capital é representado pelo ponto A, e um processo mais intensivo em trabalho, pelo ponto B
- A taxa marginal de substituição técnica entre A e B é 10/260 = 0,04

Rendimentos de escala

Rendimentos (retornos) de escala: taxa de crescimento do produto à medida que os insumos crescem proporcionalmente

Rendimentos crescentes de escala

Situação em que a produção cresce mais do que o dobro quando se dobram a quantidade de todos os insumos

Rendimentos constantes de escala

Situação em que a produção dobra quando se dobram a quantidade de todos os insumos

Rendimentos decrescentes de escala

Situação em que a produção aumenta em menos do que o dobro quando se dobram a quantidade de todos os insumos

Rendimentos de escala

Dado um nível (K, L) de insumos, analisamos a função

$$\lambda \mapsto q(\lambda) \equiv \frac{F(\lambda K, \lambda L)}{\lambda F(K, L)}$$

- Se $q(\lambda) \ge 1$ para cada $\lambda \ge 1$ temos retornos crescentes de escala
- Se $q(\lambda) = 1$ para cada $\lambda \ge 1$ temos retornos constantes de escala
- Se $q(\lambda) \leq 1$ para cada $\lambda \geq 1$ temos retornos decrescentes de escala

Rendimentos constantes de escala

Quando o processo de produção de uma empresa apresenta rendimentos constantes de escala, como mostrado pelo movimento ao longo da linha 0A, o espaço entre as isoquantas é igual, à medida que a produção aumenta proporcionalmente

Rendimentos crescentes de escala

Quando há rendimentos crescentes de escala, as isoquantas situam-se cada vez mais próximas, à medida que os insumos aumentam ao longo da linha 0A

2° semestre, 2012

Exemplo: indústria de tapetes

- Na primeira metade do século XX, a indústria de tapetes era relativamente pequena com muitas empresas também pequenas
- O setor cresceu rapidamente e se tornou um grande setor com um elevado número de empresas de todos os tamanhos

TABELA 6.5 A indústria de tapetes nos Estados Unidos	
Vendas de tapetes, 2005 (milhões de dólares por ano)	
1. Shaw	4346
2. Mohawk	3779
3. Beaulieu	1115
4. Interface	421
5. Royalty	298

O capital físico (fábrica e equipamentos) é responsável por cerca de 77% dos custos, enquanto o trabalho é responsável apenas pelos 23% restantes

Exemplo: indústria de tapetes

- Ao longo to tempo, os maiores fabricantes aumentaram a escala de suas operações pondo em funcionamento máquinas maiores, e ao mesmo tempo aumento o emprego de mão de obra
- \bullet Dobrar os insumos capital e trabalho fazia com que o produto crescesse 110%
- Temos rendimentos crescentes nas fábricas grandes
- Esse padrão não é uniforme em todo setor: pequenos fabricantes descobriram que pequenas mudanças de escala tinham pouco ou nenhum efeito na produção
- Temos rendimentos constantes nas fábricas pequenas

Exemplos de tecnologia

• Se a função de produção tiver a forma

$$f(K,L) = AK^aL^b$$

dizemos que ela é uma função de produção de Cobb-Douglas

- Na função de produção, a grandeza numérica é relevante, não podemos nos reduzir ao caso A=1 e a+b=1
- O parâmetro A mede a escala de produção: quanto de produto obteríamos se utilizássemos uma unidade de cada insumo
- Os parâmetros a e b medem como a quantidade de produção responde às variações dos insumos

Resumo 1.

Uma função de produção mostra a produção máxima que uma empresa pode obter para cada combinação específica de insumos

$$(K,L) \longmapsto F(K,L)$$

Resumo 2.

No curto prazo um ou mais insumos do processo produtivo são fixos, enquanto no longo prazo todos os insumos são potencialmente variáveis

$$L \longmapsto f(L) \equiv F(K, L)$$

Resumo 3.

A produção com um insumo variável (o trabalho) pode ser utilmente descrita em termos do

• produto médio que mede o produto por unidade de insumo

$$PM_L = \frac{q}{L} = \frac{F(K, L)}{L}$$

• produto marginal que mede a produção adicional em proporção do aumenta de insumo

$$\mathrm{PMg}_L = \frac{\Delta q}{\Delta L} = \frac{\partial F}{\partial L}(K, L)$$

Resumo 4.

De acordo com a lei dos rendimentos decrescentes, quando um ou mais insumos são fixos, o insumo variável apresenta um produto marginal que diminui à medida que o nível de produção aumenta

$$\left\lceil L \mapsto \mathrm{PMg}_L(K,L) = \frac{\partial F}{\partial K}(K,L) \right\rceil \searrow$$

Resumo 5.

- Uma isoquanta é uma curva que mostra todas as combinações de insumos que resultam em determinado nível de produção
 - ightharpoonup Isoquanta de produto \bar{q}

$$\{(K,L)\,:\; F(K,L)=\bar{q}\}$$

• A função de produção de uma empresa pode ser representada por uma série de isoquantas associadas a diferentes níveis de produção

Resumo 6.

- O formata de cada isoquanta pode ser descrito pela TMST
- A taxa marginal de substituição técnica do trabalho pelo capital corresponde à quantidade em que se deve aumentar o capital em proporção de uma redução de insumo trabalho, de tal forma que a produção permaneça constante

$$\mathrm{TMST}_{L,K} \equiv \frac{\Delta K}{\Delta L}$$

Rigorosamente

$$TMST_{L,K}(K,L) = \frac{PMg_L}{PMg_K}(K,L)$$

Resumo 7.

Na análise de longo prazo, tendemos a pensar no problema de escolha da empresa em termos de escala ou tamanho de operação

- Rendimentos constantes de escala significam que, dobrando-se todos os insumos, obtém-se o dobro da produção
- Rendimentos crescentes de escala ocorrem quando a produção aumenta em mais do que o dobro quando se dobram os insumos
- Rendimentos decrescentes de escala acontecem quando a produção não chega a dobrar