MAT 2384: Numerical Methods Lecture Notes

Last Updated:

May 10, 2023

Contents

1	\mathbf{Iter}	eative Methods to Solve The Equation $f(x) = 0$	2
	1.1	Fixed-Point Iteration	3
		1.1.1 Steps to Solving Using Fixed-Point Iteration	4
	1.2	Newton's Method	5

Chapter 1

Iterative Methods to Solve The Equation f(x) = 0

Given a continuous function f, the goal of this chapter is to estimate the solution of the equation f(x) = 0 in a certain interval I numerically.

Theorem 1.0.1 (Intermediate Value Theorem). Let $f : [a,b] \to \mathbb{R}$ be a continous function. Let $y \in \mathbb{R}$ be any value between f(a) and f(b). Then there exists $z \in [a,b]$ such that f(z) = y.

Bolzano's Theorem is a special case of the Intermediate Value Theorem, which states

Theorem 1.0.2 (Bolzano's Theorem). If a continuous function defined on an interval I is sometimes positive and sometimes negative, then it must be 0 at some point. So there exists $x_0 \in I$ such that $f(x_0) = 0$.

Proof. Without loss of generality, assume $f(a) \leq f(b)$. Let $y \in [f(a), f(b)]$. Set

$$S := \{x \in [a, b] : f(x) \le y_0\}$$

S is a subset of [a,b] so it is bounded, $a \in S$ since $f(a) \leq y_0$. Therefore $S \neq \emptyset$. Thus by completeness, there exists $x_0 \coloneqq \sup S \in [a,b]$. We want $f(x_0) = y_0$. Consider the cases where $f(x_0) = y_0$, $f(x_0) < y_0$, and $f(x_0) \geq y_0$.

- Case 1: $f(x_0) = y_0$ This case is trivial since this is the result we want.
- Case 2: $f(x_0) < y_0$ Set $\epsilon := y_0 f(x_0)$. Since f is continous at x_0 , $\exists \delta > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

Since $f(x_0) < y_0 \le f(b)$, we can find $x > x_0$ such that $x \in [a,b]$ and $|x - x_0| < \delta$. Then $f(x) < f(x_0) + \epsilon = y_0$. So $x \in S$ by the definition of S, but $x > x_0$ which contradicts the fact that $x_0 = \sup S$.

• Case 3: $f(x_0) > y_0$ Set $\epsilon := f(x_0) - y_0$. Since f is continous at x_0 , $\exists \delta > 0$ such that if $x \in [a,b]$ and $|x-x_0| < \delta$, then $|f(x)-f(x_0)| < \epsilon$. So $f(x) > f(x_0) - \epsilon = y_0$ and $x_0 > a$. We can assume that $x - \delta > a$ since δ can be arbitrarly small, and we claim $x_0 - \delta$ is an upper bound for S. To prove this, if $x > x - \delta$, then either $|x - x_0| < \delta$, in which case $f(x) > f(x_0) - \epsilon = y_0$, or $x > x_0$ then $x \neq S$ since x_0 is an upper bound for S. Therefore, if $x > x_0 - \delta$, then $x \neq S$, thus proving the claim. This contradicts that x_0 is the supremum of S.

Example. Prove that the equation

$$2x^3 + 2x - 4 = 0$$

has a unique root in [0, 1].

Proof. Set $f(x) := 3x^2 + 2x - 4$, this function is continuous since it is a polynomial. We have f(0) = -4 < 0 and f(1) = 1 > 0, so by the intermediate value theorem, there exists $c \in [0,1]$ such that f(c) = 0. It follows that c is unique since the polynomial is injective by virtue of x^3 and x being injective.

1.1 Fixed-Point Iteration

Definition 1.1.1. We say that the value x = r is a fixed point for a function g(x) if g(r) = r.

Example. $g(x) = \frac{5-x^2}{4}$. r = 1 is a fixed-point for g since g(1) = 1.

Graphically, fixed-point of g(x) correspond to the intersection of the graph of g(x) and the line y = x. Given an equation f(x) = 0, we can write it under the form

$$g(x) = x$$

by isolating one x in the equation.

Example. $3x^3 + 2x - 5 = 0$. We can write this as

$$x = \frac{5 - 3x^3}{2}$$

Set $g(x) := \frac{5-3x^3}{2}$. Then g(x) = x. Finding a root for f(x) = 0 is equivalent to finding a fixed-point for g(x).

1.1.1 Steps to Solving Using Fixed-Point Iteration

Start with a first estimation x_0 (will be given) of the root, and form the following sequence (known as the *iteration sequence*)

$$x_0, x_1 = g(x_0), x_2 = g(x_1), \dots, x_n = g(x_{n-1})$$

If this sequence converges to a value a, then we can prove that a is a fixed-point for g, hence a root for f(x) = 0.

Theorem 1.1.1. Assume that the function g has a fixed-point s on an interval I, if

- (i) g(x) is continuous on I
- (ii) g'(x) is continuous on I
- (iii) |g'(x)| < 1 for all $x \in I$

Then the iteration sequence converges.

The steps for solving are as follows

- 1. Start with f(x) = 0
- 2. Rewrite f(x) = 0 under the form x = g(x)
- 3. Verify that the sequence $x_0, x_1 = g(x_0), x_2 = g(x_1), \dots, x_n = g(x_{n-1})$ converges using the above theorem (or otherwise)
- 4. Compute terms of the above sequence and stop when you reach the required accuracy

Example. Consider the equation

$$x^3 + 12x - 3 = 0$$

- 1. Prove that the equation has a unique root in [-1.9, 1.9]
- 2. Use the Fixed-Point iteration method to estimate the value of the root to 6 decimal points starting with $x_0=1.8$

Solution: Using the steps, we have

- 1. Set $f(x) := x^3 + 12x 3$. Since f(x) is a polynomial, it is continuous, so by the intermediate value theorem, we have there exists $c \in [-1.9, 1.9]$ such that f(c) = 0. f(x) is injective since x^3 and x are injective, so c is unique.
- 2. Set $g(x) := \frac{3-x^3}{12}$.

3. Checking the conditions of the theorem, g(x) is continuous since it is a polynomial, $g'(x) = -\frac{x^2}{4}$ is continuous since it is a polynomial. Then

$$|g'(x)| = \frac{x^2}{4} \le \frac{1.9^2}{4} = 0.902 < 1$$

Therefore, the sequence converges.

4. We have to calculate the terms of the iteration sequence,

$$x_0 = 1.8$$

$$x_1 = g(x_0) = \frac{3 - 1.8^2}{12} = -0.236000$$

$$x_2 = g(x_1) = \frac{3 - (0.236)^2}{12} = 0.251095$$

$$x_3 = g(x_2) = \frac{3 - (0.251095)^2}{12} = 0.24861$$

$$x_4 = g(x_3) = \frac{3 - (0.24861)^2}{12} = 0.248718$$

$$x_5 = g(x_4) = \frac{3 - (0.248718)^2}{12} = 0.248718$$

We stop when 2 consecutive terms agree on the first 6 decimal points. So the root is 0.248718 correct to 6 decimal points.

1.2 Newton's Method

Newton's method is a technique for solving equations of the form f(x) = 0 by successive approximation. The idea is to pick an initial guess x_0 such that $f(x_0)$ is reasonably close to 0. We then find the equation of the line tangent to y = f(x) at $x = x_0$, and determine where this tangent line intersects the x axis at the new point x_1 . So,

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

We then find the equation of the line tangent to y = f(x) at $x = x_1$, and repeat this process, so we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Example. Using Newton's method, estimate the value of the root of the equation

$$x^3 + 12x - 3 = 0$$

on [0,2]. Start by showing that the equation has a unique root on [0,2], then approximate (to 6 decimal places) with the starting point $x_0 = 1.8$.

Solution. We have $f(x) = x^3 + 12x - 3$, and

$$f(0) = -3$$
 and $f(2) = 29$

Therefore by the intermediate value theorem, there exists $c \in [0,2]$ such that f(c) = 0. f(x) is injective since $f'(x) = 2x^2 + 12$ is strictly increasing on [0,2], so c is unique. Now using Newton's method,

$$x_0 = 1.8$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.675138$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.270469$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.248748$$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = 0.248718$$

$$x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} = 0.248718$$

Therefore, the our root is 0.248718 correct to 6 decimal places.