TRADITIONAL MACHINE LEARNING VS NEURAL NETWORK

I. INTRODUCTION

Traditional Machine Learning (ML) includes algorithms like Linear Regression, Decision Trees, Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Random Forest. These models are often used for tasks involving structured/tabular data and require manual feature selection. Neural Networks (NNs), particularly in deep learning, are inspired by the human brain. They consist of layers of interconnected "neurons" and learn patterns through representation learning—automatically extracting useful features from raw data.

II. KEY DIFFERENCES

Feature	Traditional ML	Neural Networks
Data type	Works well with	Excels with
	structured data	unstructured data
Feature Engineering	Requires manual	Learns feature
	feature extraction	manually
Complexity	Simpler models,	Can model complex
	easier to interpret	relations, but harder
		to interpret
Training time	Typically faster	Slower, with deep
		architectures
Hardware	Runs on a normal	Often requires GPUs
dependency	CPU	For efficient training
Data requirement	Performs well on	Needs larger
	small to medium	datasets for good
	datasets	performance
Interpreteblity	High	Low

III. IDEAL SCENARIOS FOR TRADITIONAL MACHINE LEARNING

- 1. Small, structured datasets (e.g., customer info, stock prices)
- 2. Need for fast training and quick deployment

- 3. High interpretability is required
- 4. Fewer computational resources available

IV. IDEAL SCENARIOS FOR NEURAL NETWORKS{DEEP LEARNING)

- 1. Large amounts of unstructured data:
 - -> Images (e.g., object detection)
 - -> Text (e.g., language translation, sentiment analysis)
 - -> Audio (e.g., voice recognition)
- 2. Complex pattern recognition that's hard to capture with manual features
- 3. End-to-end learning tasks (input to output without manual design)

V. REAL-WORLD DEEP LEARNING ADVANTAGES

Scenario	Advantage
Image classification	Automatically detects edges, shapes,
	and complex patterns (e.g., cats vs
	dogs)
Natural Language Processing	Learns word meanings and context
	(e.g., chatbots, translation)
Autonomous driving	Processes real-time camera and
	sensor data for decision making
Fraud detection	Identifies subtle patterns in large
	transaction datasets

VI. CONCLUSION

Traditional ML is effective for structured problems with less data and when interpretability is key. Neural networks, especially deep learning models, outperform traditional algorithms in tasks involving large-scale unstructured data and complex relationships.