Exercise 2

Context: given a transactional dataset $\mathbb{T} \in 2^{\{ms:2^{\mathbb{X}} \to \mathbb{N}\}}$ on the universal set of items \mathbb{X} , and a two non-empty disjoint set of items $X, Y \subseteq \mathbb{X}$, a rule-quality function $q: 2^{\{ms:\mathbb{X} \to \mathbb{N}\}} \times 2^{\mathbb{X}} \times 2^{\mathbb{X}} \to \mathbb{R}$, let $rule: X \to Y$ let us define the $cpo_{rule,\mathbb{T},q}$ on the set X as $cpo_{rule,\mathbb{T},q}(X') = q(\mathbb{T},X',Y)$ for any $X' \subseteq X$.

Assignment:

Implement and test a function:

rule-shapley:

$$2^{\{\textit{ms}:\mathbb{X}\to\mathbb{N}\}}\times\{q:2^{\{\textit{ms}:\mathbb{X}\to\mathbb{N}\}}\times2^{\mathbb{X}}\times2^{\mathbb{X}}\to\mathbb{R}\}\times2^{\mathbb{X}}\times2^{\mathbb{X}}\to\{f:\mathbb{X}\to\mathbb{R}\}$$

Such that for any transactional dataset \mathbb{T} , any rule-quality function q, any rule $\mathit{rule}:X\to Y$ the value

$$\mathit{rule-shapley}(\mathbb{T},q,X,Y)(x) = \mathit{es}_{x,\mathit{cpo}_{\mathit{rule}},\mathbb{T},q}$$

for each $x \in X$.

Where $es_{x,cpo_{rule},\mathbb{T},q}$ is computed as follows (n_s amples may be estimated empirically or apriori fixed):

```
Estimble Shyllor (CPO, X, Y, n. samplar).

pick number of X, ... Xn. number obstinct

makets of X-59)

N, D = 0,0

for i = 2 ... n. rangler:

De = |Xi|| (|X|-|Xi|-|)!

N+= Di (cpr(X,v{y})-cpr(Xi)

N+= Di (cpr(X,v{y})-cpr(Xi))

N+= Di (cpr(X,v{y})-cpr(Xi))

N+= Di (cpr(X,v{y})-cpr(Xi))

N+= Di (cpr(X,v{y})-cpr(Xi))
```