EEE882 – Análise de hiper-parâmetros no PSO

Lucas Jorge Caldeira Carvalho, Discente, UFMG

PSO POR MELHOR GLOBAL

I.A IMPLEMENTAÇÃO COMPUTACIONAL

A.1 Visão geral do projeto

O algoritmo PSO por melhor global, também conhecido como PSO gbest, implementado neste trabalho é composto por:

- Arquivo pso: arquivo que contém a função principal (main).
- 2. Arquivo *particula*: contém a classe *Particula*, responsável por armazenar métodos e atributos das partículas do enxame.
- 3. Arquivo *funcao_custo*: contém as duas funções benchmark escolhidas para este trabalho.

A.2 Definição dos parâmetros

Primeiramente, definiu-se todos os parâmetros do algoritmo, tantos os parâmetros inerentes ao PSO quantos os parâmetros do problema.

```
parametro_constrição = 1 #Parâmetro de constrição W = 1 #Inércia | #Inércia | #Inércia | #Coeficiente de aceleração cognitivo | #Coeficiente de aceleração social | #Coeficiente de aceleração social | #Inércio | #Inércio
```

Figura 1. Definição dos parâmetros

A.3 Inicialização das partículas

O enxame é composto por um conjunto de partículas. Neste trabalho, as partículas são inicializadas de maneira uniforme dentro do espaço de busca.

Figura 2. Inicialização das partículas

A.4 Cálculo do fitness das partículas

Após a inicialização do enxame, aqui chamado de população, é feito o cálculo do fitness de cada partícula. Este valor é calculado usando as funções benchmark escolhidas.

Posteriormente, é verificado se a nova posição da partícula k é melhor que a melhor posição encontrada até o momento pela partícula k. Caso seja, a melhor posição encontrada até o momento pela partícula k (*b_posicao*) é atualizada.

O atributo *b_fitness* serve para não termos que calcular o fitness da partícula sempre que necessitarmos ao longo daquela iteração. Desta forma, após se calcular uma vez, esse valor é armazenado.

```
# Checagem do fitness das partículas
def calcular_fitness(self):
    self.fitness=funcao_custo(self.posicao)

# Checa se a posição atual é a melhor
if self.fitness < self.b_fitness:
    self.b_posicao=self.posicao
    self.b_fitness=self.fitness</pre>
```

Figura 3. Cálculo do fitness das partículas

A.5 Atualização da melhor posição dentro do enxame

Com os fitness de cada partícula calculado, é possível atuar a melhor posição dentro do enxame (*g_best_posicao*).

A variável <u>b_best_fitness</u> serve para não termos que calcular o fitness da melhor posição global sempre que necessitarmos ao longo daquela iteração. Desta forma, após se calcular uma vez, esse valor é armazenado.

Figura 4. Atualização da melhor posição dentro do enxame

A.6 Atualização da velocidade das partículas

A velocidade das partículas é atualizada de acordo com a equação dada no enunciado do trabalho.

```
# Atualiza a velocidade da partícula
def atualizar_velocidade(self, g_best_posicao, dimensoes, parametro_constricao, w, cl, c2):
    for i in range(dimensoes):
        rl=random.random()
        r2=random.random()
        vl=w*self.velocidade[i]
        v2=cl*rl*(self.b.posicao[i]-self.posicao[i])
        v3=c2*r2*(g_best_posicao[i]-self.posicao[i])
        self.velocidade[i]=parametro_constricao*(v1+v2+v3)
```

Figura 5. Atualização da velocidade

A.7 Atualização da posição das partículas

A posição das partículas é atualizada somando-se a velocidade calculada com a posição anterior da partícula.

Caso a nova posição da partícula não esteja dentro do espaço de busca, a partícula tem sua posição atualizada para a borda do espaço.

```
#Atualiza posição da partícula

def atualizar_posicao(self, dimensoes, espaco_busca):

for i in range(dimensoes):

self.posicao[i]=self.posicao[i] + self.velocidade[i]

# Caso necessário, ajustar a posição para dentro dos limites de D

if self.posicao[i] > espaco_busca[l]:

self.posicao[i]=espaco_busca[l]

if self.posicao[i] < espaco_busca[0]:

self.posicao[i]=espaco_busca[0]
```

Figura 6. Atualização das posição das partículas

A.8 Saída do programa

A melhor posição do enxame de cada uma das 31 execuções é salva no vetor *melhores_solucoes_execucoes*. Sendo assim, é possível calcular a média e o desvio padrão destes valores.

Figura 7. Saída do PSO

II PSO POR MELHOR LOCAL

II.A IMPLEMENTAÇÃO COMPUTACIONAL

O PSO por melhor local, também conhecido como PSO lbest, é um caso particular do PSO por melhor global, a diferença entre esse algoritmo e o algoritmo por melhor global é que na equação de velocidade no PSO por melhor local é atualizado o valor da melhor posição da vizinhança, ao invés do melhor global.

Sendo assim, abordaremos a seguir apenas as diferenças entre os algoritmos.

Neste trabalho, foi usada uma topologia de rede social conhecida por topologia em anel.

A.1 Atualização do lbest

Foi criado um atributo denominado l_best dentro da classe Particulas que armazena qual a melhor posição da vizinhança em relação ao objeto (partícula k). Para isso, é consultado qual a melhor posição dentre as melhores posições visitadas pelas partículas com índice k, k-l e k+l (partícula imediatamente anterior e posterior em relação à partícula k) dentro do vetor população (enxame).

É feita uma verificação para sabermos se estamos tratando da primeira partícula do enxame, que terá como vizinhos a segunda e última partícula, e para saber se estamos tratando da última partícula do enxame, que terá como vizinhos a penúltima e a primeira.

```
pbest_aux = []
fitness phest aux = []
    fitness_pbest_aux.append(populacao[tamanho_populacao-1].b_fitness)
fitness_pbest_aux.append(self.b_fitness)
fitness_pbest_aux.append(populacao[j+1].b_fitness)
     pbest_aux.append(populacao[tamanho_populacao-1].posicao)
     pbest_aux.append(self.posicao)
     pbest aux.append(populacao[j+1].posicao)
     min_index = fitness_pbest_aux.index(min(fitness_pbest_aux))
     self.l_best = pbest_aux[min_index]
     [ j == tamanho_populacao - 1:
fitness_pbest_aux.append(populacao[j-1].b_fitness)
     fitness_pbest_aux.append(self.b_fitness)
     fitness_pbest_aux.append(populacao[0].b_fitness)
     pbest_aux.append(populacao[j-1].posicao)
pbest_aux.append(self.posicao)
     pbest_aux.append(populacao[0].posicao)
     min_index = pbest_aux.index(min(pbest_aux))
self.l best = pbest aux[min index]
     fitness_pbest_aux.append(populacao[j-1].b_fitness)
     fitness_pbest_aux.append(self.b_fitness)
fitness_pbest_aux.append(populacao[j+1].b_fitness)
     pbest_aux.append(populacao[j-1].posicao)
     pbest_aux.append(self.posicao)
     pbest_aux.append(populacao[j+1].posicao)
min_index = pbest_aux.index(min(pbest_aux))
     self.l_best = pbest_aux[min_index]
```

Figura 8. Atualização do melhor da vizinhança

A.2 Atualização da velocidade das partículas

Conforme descrito anteriormente, a velocidade das partículas são atualizadas utilizando o valor do melhor da vizinhança, e não o melhor global.

```
# Atualiza a velocidade da partícula
def atualizar_velocidade(self, dimensoes, parametro_constricao, w, cl, c2):

for i in range(dimensoes):
    rl=random.random()
    r2=random.random()

    v1=w*self.velocidade[i]
    v2=cl*rl*(self.b_posicao[i]-self.posicao[i])
    v3=c2*r2*(self.l_best[i]-self.posicao[i])
    self.velocidade[i]=parametro_constricao*(vl+v2+v3)
```

Figura 9. Atualização da velocidade das partículas

II.B FUNÇÕES BENCHMARK ESCOLHIDAS

A função unimodal escolhida para este trabalho foi a *função esfera* e a função multimodal foi a *função Rastrigin*.

```
#Função de custo esfera
def função_custo(x):
    f = 0
    D = len(x)
    for i in range(D):
        f+=x[i]**2
    return f

#Função de custo Rastrigin
def função_custo(x):
    f = 0
    D = len(x)
    for i in range(D):
        f = f + (x[i]**2 + 10 * np.cos(2 * math.pi * x[i]) + 10)
    return f
```

Figura 10. Funções benchmark escolhidas

II.C RESULTADOS E DISCUSSÕES

C.1 Função Rastrigin

A função de Rastrigin é uma função não convexa, multimodal e separável. Possui vários ótimos locais arranjados em um grafo regular (regular lattice), com o ótimo global localizado no ponto o = (0,...,0). Constitui um problema razoavelmente difícil devido à grande quantidade de ótimos locais [1].

Na literatura, intervalos típicos testados para o espaço de busca giram em torno de [-5.12, 5.12]. Podemos notar que o intervalo de busca proposto por esse trabalho é muito maior, um dos fatores que fizeram com os resultados dos algoritmos não ficassem próximos ao ótimo. Usando intervalos menores, notou-se uma grande melhora na melhor solução encontrada, encontrando-se valor muito próximos a zero.

Outra forma observada de melhorar a solução dos algoritmos é diminuindo o número de dimensões, o que torna menor a quantidade combinatória possível para representar as partículas.

O peso de inércia tem o papel de regular a velocidade da partícula, evitando a explosão de velocidade. Trata-se de um mecanismo que controla o balanceamento entre as capacidades de exploração global e exploração local do enxame. Altos valores de w facilitam a exploração global, enquanto pequenos valores promovem exploração local [2].

O PSO com fator de constrição é equivalente ao PSO com peso de inércia. Ambas abordagens têm o objetivo de promover o balanceamento entre as capacidades de exploração global e local do enxame [2].

Para a função Rastrigin as melhores soluções após as 31 execuções e que têm os menores desvios padrão são encontradas na ausência do parâmetro de constrição (χ =1) com a presença do fator de inércia ($0 < \omega < 1$) e na presença do parâmetro de constrição (χ =1) com a ausência do fator de inércia (ω = 1). Na ausência de ambos ou na presença de ambos, os resultados foram piores.

Quando χ é próximo de zero, há rápida convergência. Por outro lado, se χ é aproximo de um, a convergência é mais lenta [2]. Isso pode ser observado na tabela 1 e 2.

Notamos que o algoritmo por melhor global apresentou, para os parâmetros testados, um resultado expressivamente melhor que o algoritmo por melhor local. Isso foi diferente do esperado, já que normalmente algoritmos por melhor local apresentam um melhor desempenho em problemas multimodais por explorarem melhor o espaço de busca não se prendendo a mínimos locais [3].

Além disso, o algoritmo de ótimo global convergiu mais rapidamente que o algoritmo de ótimo local, em consonância com a literatura.

Tabela 1. Resultados para o algoritmo gbest

	Melhor solução	Média	Desvio padrão	Tempo das 31 execução (s)	
$\chi=1$, $\omega=1$	1486.5513	2715.8488	129.5536	184.0743	
$\chi=1, 0 < \omega$	42.3464	150.6615 0.5666		100.5357	
$0 < \chi < 1,$ $\omega = 1$	73.9017	484.1522	33.4367	89.0736	
$0 < \chi < 1, \\ 0 < \omega < 1$	310.1990	1736.4760	59.2977	75.3036	

Tabela 2. Resultados para o algoritmo lbest

	Melhor solução	Média	Desvio padrão	Tempo das 31 execução (s)
$\chi=1$, $\omega=1$	5680.6526	7122.3428	258.9352	200.8508
χ=1, 0 < ω < 1	5997.7124	7429.6878	257.1903	153.3514
$0 < \chi < 1,$ $\omega = 1$	2925.4246	3953.0445	184.5659	84.0327
$0 < \chi < 1, \\ 0 < \omega < 1$	3696.7247	3855.5600	28.5276	126.8385

Abaixo se encontram os vetores contendo os melhores valores obtidos em cada uma das 31 execuções dos algoritmos.

Figura 11: Vetor que contém os melhores das 31 execuções para $\chi=1$, $\omega=1$ para o algoritmo gbest

Melhores solucoes:	[66.32158151703275,	78.17323060206542,	97.45926398510954, 6	2.18631160022768,
73.01857774476748,	183.56011199216275,	239.64075028645414,	126.22080809415233,	88.10373411817368,
188.07084796853223,	143.8206465058868,	245.29579337165293,	289.1484299095924,	157.7298029606972,
148.14498498898166,	90.36089711959727,	203.46445914664525,	116.01499423040005,	207.4452398096542,
314.3627775993321,	187.54661796194446,	42.346413112033645,	145.76236507086415,	145.8381381550346,
143.77302387316325,	175.7427106855853,	111.96924185374317,	125.78762905042258,	193.52294593564153,
125.86024142579666,	153.8164975201542]			

Figura 12: Vetor que contém os melhores das 31 execuções para χ =1, $0 < \omega$ < 1 para o algoritmo gbest

Melhores solucoes:	[316.6601549947702, 132.47642866122797, 898.1069089282872, 727.0350921929227,
353.0887913555769,	97.0806525951368, 280.23393838337523, 177.72012555260852, 332.9370984404789,
800.1192895218085,	411.32561548163164, 1079.0202294053988, 256.05706087121706, 460.68556044942295
293.3139357182861,	314.1060141186044, 441.32341699278294, 398.18098060104603, 207.86455749828536,
320.7446419774122,	134.88283567812175, 360.8796918298188, 297.3785839201019, 431.14884277712076,
1400.5119650680974,	1173.7978094560187, 777.200024849738, 1326.7042177492897, 620.6913363198211,
154.00772608755653	33.43670994584299

Figura 13: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1$, $\omega = 1$ para o algoritmo gbest

Melhores solucoes:	[1204.0530391409725, 1593.823822339753, 4399.008561363284, 310.19908137889246,
1486.2283973238168	, 2885.2485411480006, 2069.4905118099787, 1284.935853117106, 398.6416571921399,
1883.6506231730832	, 3032.8593091858584, 3238.73814925043, 891.231794602386, 1795.2334142647976,
2780.8087403170625	, 756.4752412498264, 3072.5799372301294, 1281.5654379662267, 2100.4127949424105,
407.6805717863452,	1076.957866667692, 709.4563010925971, 2376.1740309410498, 877.1252488544503,
2924.43159973795,	2018.455413040016, 1279.5236748282584, 1970.456730885618, 1007.7501238293742,
650.9281042017185,	2066.632200192067]

Figura 14: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1$, $0 < \omega < 1$ para o algoritmo gbest

Melhore	3 30	lucoes		7196	.371	19381	1483			851.	.315	882	152	998		161	.24	6824	846.		1216	46824	846192
11649.0	244			218.	8911	18351			821	8.89	9118		231		5680	. 652	261	151		5680	.652	51576	
5680.65	2611		568	0.65	2611		76,	5680	0.6	5261	1151	576		680.	. 652	611		76,	5680	.652	6115	6,	
5680.65	2611	51576,	568	0.65	2611		76,	5680	0.6	5261	1151	576		680.	. 652	611	515	76,	5680	.652	6115	б,	
5680.65	2611	51576,	568	0.65	2611	15151	76,	5680	0.6	5261	1151	576		680.	. 652	611	515	76,	5680	.652	6115	6,	
5680.65	2611	51576,	568	0.65	2611		76,	5680	0.6	5261	1151	576		680.	. 652	611	515	76,	5680	.652	6115	б,	
5680.65	2611	51576,	568	0.65	2611		76]																

Figura 15: Vetor que contém os melhores das 31 execuções para $\chi=1$, $\omega=1$ para o algoritmo lbest

Melhores solucoes:	[10186.956539518265	, 10186.95653951826	55, 10186.9565395182	265, 9533.657477670431,
9533.657477670431,	9533.657477670431,	9533.657477670431,	9533.657477670431,	9533.657477670431,
9533.657477670431,	9533.657477670431,	9533.657477670431,	5997.712427738715,	5997.712427738715,
5997.712427738715,	5997.712427738715,	5997.712427738715,	5997.712427738715,	5997.712427738715,
5997.712427738715,	5997.712427738715,	5997.712427738715,	5997.712427738715,	5997.712427738715,
5997.712427738715,	5997.712427738715,	5997.712427738715,	5997.712427738715,	5997.712427738715,
5997.712427738715,	5997.712427738715]			

Figura 16: Vetor que contém os melhores das 31 execuções para χ =1, $0 < \omega$ < 1 para o algoritmo lbest

Melhores solucoes	: [13194.332510378741, 7070.89019812908, 7070.89019812908, 7070.89019812908,
7070.89019812908,	6011.189703965745, 3069.1789592700525, 3069.1789592700525, 3069.1789592700525,
3069.178959270052	5, 3069.1789592700525, 3069.1789592700525, 3069.1789592700525, 3069.1789592700525,
3069.178959270052	5, 3069.1789592700525, 3069.1789592700525, 3069.1789592700525, 3069.1789592700525,
2976.300398145879	6, 2925.42463408283, 2925.42463408283, 2925.42463408283, 2925.42463408283,
2925.42463408283,	2925.42463408283, 2925.42463408283, 2925.42463408283, 2925.42463408283,
2925.42463408283,	2925.42463408283]

Figura 17: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1$, $\omega = 1$ para o algoritmo lbest

Melhores solucoes:	[8620.618383493435,	3696.7247852486566,	3696.7247852486566,	3696.7247852486566,
3696.7247852486566	3696.7247852486566	, 3696.7247852486566,	3696.7247852486566,	3696.7247852486566,
3696.7247852486566	3696.7247852486566	3696.7247852486566	3696.7247852486566,	3696.7247852486566,
3696.7247852486566	3696.7247852486566	, 3696.7247852486566,	3696.7247852486566,	3696.7247852486566,
3696.7247852486566	3696.7247852486566	, 3696.7247852486566,	3696.7247852486566,	3696.7247852486566,
3696.7247852486566	3696.7247852486566	, 3696.7247852486566,	3696.7247852486566,	3696.7247852486566,
3696.7247852486566	3696.7247852486566			

Figura 18: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1, 0 < \omega < 1$ para o algoritmo lbest

C.2 Função esfera

É uma função do tipo quadrática, possuindo um único ótimo local (e, portanto, global) no ponto o = (0,...,0) [1].

Novamente, observamos que as melhores soluções após as 31 execuções e que têm os menores desvios padrão são encontradas na ausência do parâmetro de constrição (χ =1) com a presença do fator de inércia (0 < ω < 1) e na presença do parâmetro de constrição (χ =1) com a ausência do fator de inércia (ω = 1), com uma menção especial para o primeiro caso, que mostrou um resultado expressivamente melhor que os demais. Na ausência de ambos ou na presença de ambos, os resultados foram piores.

Conforme esperado pela literatura [3], para o caso unimodal, o algoritmo por melhor global teve um melhor resultado expressivo para a maioria dos casos. Em contrapartida, o algoritmo por melhor local teve um tempo de convergência menor para quase todos os casos.

Tabela 3. Resultados para o algoritmo gbest

	Melhor solução	Média	Desvio padrão	Tempo das 31 execução (s)
$\chi=1$, $\omega=1$	1245.4846	2728.8337	43.2318	86.3995
χ=1, 0 < ω < 1	0.0031	4.4469	0.7951	72.2049
$0 < \chi < 1,$ $\omega = 1$	38.30333	663.7210	87.4400	86.0864
$0 < \chi < 1, \\ 0 < \omega < 1$	152.0792	1824.0451	803.7941	86.5501

Tabela 4. Resultados para o algoritmo lbest

	Melhor solução	Média	Desvio padrão	Tempo das 31 execução (s)
$\chi=1$, $\omega=1$	6111.6335	7469.9507	243.9609	107.5526
χ=1, 0 < ω < 1	6102.9966	7140.5285	186.3462	44.6227
$0 < \chi < 1,$ $\omega = 1$	4697.2183	5573.6630	157.4141	45.0166
$0 < \chi < 1,$ $0 < \omega < 1$	3120.7834	3965.6178	151.7367	45.3701

Abaixo se encontram os vetores contendo os melhores valores obtidos em cada uma das 31 execuções dos algoritmos.

```
Methores solucoes: [2216.1792747496775, 3859.6731601764505, 2226.9546733400416. 2620.476557398779, 3896.8400242555655, 3431.059955331603, 2696.6376274288564, 3139.678352882279, 2927.133572420028, 2013.866354019179, 3297.134528720038, 3196.204561286521, 3422.623157991836, 3111.2834845727884, 1561.4869485717304, 2916.5027724054457, 1245.484637955013, 2841.1584635331645, 2222.3845623550073, 2870.45899116969337, 2877.462125456799, 2937.08332069510, 3770.48001971561, 2866.23879739984, 2041.5938755294078, 1475.5870662385137, 3809.5333042620673, 2571.6271525096727, 2175.1881743991707, 2955.5509552034852, 2488.1290748004835]
```

Figura 19: Vetor que contém os melhores das 31 execuções para χ =1, ω = 1 para o algoritmo gbest

```
Melhores solucoes: [1.4567389714009866, 6.97486416935817, 1.4102761142823783, 3.7596226511521314, 0.43347763770014, 0.23246511542314, 0.66018338048635004, 4.0015442960195834, 18.875251149433527, 0.5843573916032189, 0.00593859099173546, 0.762219654249492, 0.0031851893839853616, 0.1969640803360487, 0.6202854246942567, 5.563801838722166, 0.28753883514170727, 0.13037390138429658, 0.0034997464796559547, 8.94349019202474, 0.0523221518282000014, 3.27120664221726, 0.6216107962220433, 3.4594041558689046, 0.0280075076384564, 12.722585141177355, 28.596628800161727, 2.04959663807582, 31.302916983152386, 2.101643922857756, 0.0194810394530026576
```

Figura 20: Vetor que contém os melhores das 31 execuções para χ =1, $0 < \omega$ < 1 para o algoritmo gbest

```
Melhores solucoes: {2217.467066010177, 1385.4181070100854, 985.5597415714391, 227.46208519794794, 863.51532034261, 38.3033951766577, 709.1588060679026, 207.18384371217876, 2610.652195777497, 2273.84607404927, 56.8833203646366, 322.99324735377934, 376.73573365334555, 56.313669410408934, 1838.8339795828482, 854.733535270912, 365.844429240774, 226.77940018092016, 74.1894278678957, 54.22100990441463, 61.82645776860452, 54.50338003546716, 186.83641139959312, 221.13777128145438, 198.2082504608937, 183.10379680824273, 1901.851675442984, 64.3969808128975, 242.90316396523585, 1015.6077660062483, 176.87537209342855]
```

Figura 21: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1$, $\omega = 1$ para o algoritmo gbest

```
Methores solucoes: [2133.1855955332844, 3343.511494651493, 1201.9861352289763, 2161.849078672481, 1633.9115155991333, 1061.2218537898868, 803.4894464454977, 750.4621623292945, 363.625248990223, 2444.1741905518556, 1844.6452726224077, 1026.4679512824598, 1666.826722697897, 2561.275613574726, 1207.8309462741196, 2362.2719817071984, 2164.194697465316, 1298.6804347222412, 2064.5453112367927, 474.7362941414637, 1453.678783761305, 1694.1529320414934, 1697.1722641233925, 1706.5365917822304, 3961.5372013442293, 1084.3438183015303, 1769.982205991735, 1486.0341247547146, 1840.5977077105924, 152.07925559060575, 6299.381671553153]
```

Figura 22: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1$, $0 < \omega < 1$ para o algoritmo gbest

Melhores solucoes:	[12913.1185875463	02, 12913.1185875	16302, 10183.756989	928397, 10183.7569	89928397,
10183.756989928397	, 10183.7569899283	97, 10183.7569899	28397, 10183.756989	928397, 10183.7569	89928397,
6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	
6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	
6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	
6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	6111.63352139128,	
	6111.63352139128]				

Figura 23: Vetor que contém os melhores das 31 execuções para $\chi=1$, $\omega=1$ para o algoritmo lbest

```
Melhores solucces: [13131.638576959296, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 10208.462716642282, 1020.96613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.99613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.996613067126, 6102.99613067126, 6102.99613067126, 6102.99613067126, 610
```

Figura 24: Vetor que contém os melhores das 31 execuções para χ =1, $0<\omega$ < 1 para o algoritmo lbest

[8027.830072954427	8027.830072954427	6027.610485517708	6003.880334122354,
6003.880334122354,	6003.880334122354,	6003.880334122354,	6003.880334122354,
5264.128289157599,	5264.128289157599,	5264.128289157599,	5264.128289157599,
5264.128289157599,	5264.128289157599,	5264.128289157599,	5264.128289157599,
5264.128289157599,	5264.128289157599,	5264.128289157599,	5264.128289157599,
5264.128289157599,	5264.128289157599,	5264.128289157599,	5264.128289157599,
4697.218359942185]			
	6003.880334122354, 5264.128289157599, 5264.128289157599, 5264.128289157599, 5264.128289157599,	6003.880334122354, 6003.880334122354, 5264.128289157599, 5264.128289157599, 5264.128289157599, 5264.128289157599, 5264.128289157599, 5264.128289157599,	[8027.830072954427, 8027.830072954427, 6027.610485517708, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.88034122354, 6003.88034122354, 6003.88034122354, 6003.88034122354, 6003.88034122354, 6003.88034122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334122354, 6003.880334123554, 6003.880334122354, 6003.88033412354, 6003.88034122354, 60

Figura 25: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1$, $\omega = 1$ para o algoritmo lbest

Figura 26: Vetor que contém os melhores das 31 execuções para $0 < \chi < 1$, $0 < \omega < 1$ para o algoritmo lbest

REFERENCES

- 1 M. R. Kohler, "PSO+: Algoritmo com Base em Enxame de Partículas para Problemas com Restrições Lineares e Não Lineares", tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio, Rio de Janeiro, 2017.
- 2 S. A. M. Arruda, "Aplicação da otimização por enxame de partículas com topologia 'multi-ring' na estimação de parâmetros de linhas de transmissão", dissertação apresentada ao Programa de Pós-Graduação da Escola de Engenharia Elétrica, Mecânica e Computação da Universidade Federal de Goiás, Goiânia, 2015.
- 3 B. D. Agostini, "Uma Análise Experimental de Abordagens Topológicas Aplicadas ao Problema do Caixeiro-Viajante Através de Otimização por Nuvem de Partículas", dissertação apresentada ao Programa de Pós-Graduação em Métodos Numéricos em Engenharia da Universidade Federal do Paraná, Curitiba, 2015.