CTF на Физтехе

Занятие 5

Асимметричное

шифрование

Асимметричное шифрование

• Для шифрования и расшифровки используются разные ключи

• Открытый ключ известен всем и используется для шифрования

• Закрытый ключ используется для расшифровки

 По открытому ключу нельзя (вычислительно сложно) восстановить закрытый

Протокол Диффи-Хеллмана

Diffie-Hellman Key Exchange

Step	Alice	Bob
1	Parameters: p, g	
2	A = random()	$\operatorname{random}() = B$
	$a = g^A \pmod{p}$	$g^B \pmod{p} = b$
3	$a\longrightarrow$	
	$\leftarrow b$	
4	$K = g^{BA} \pmod{p} = b^A \pmod{p}$	$a^B \pmod{p} = g^{AB} \pmod{p} = K$
5	$\leftarrow E_K(data) \longrightarrow$	

Протокол Диффи-Хеллмана: Пример

Domain parameters p=29, $\alpha=2$

Alice

Bob

$$k_{prA} = a = 5$$

Choose random private key

$$k_{prB} = b = 12$$

Compute corresponding public key

$$k_{pubA} = A = 2^5 = 3 \mod 29$$

A

В

Compute correspondig public key

$$k_{pubB} = B = 2^{12} = 7 \mod 29$$

Compute common secret

$$k_{AB} = B^a = 7^5 = 16 \mod 29$$

Compute common secret

$$k_{AB} = A^b = 3^{12} = 16 \mod 29$$

Атака Man-In-The-Middle

Man in the middle (MITM) attack

Протокол Диффи-Хеллмана: Атака Man-In-The-Middle

Протокол Диффи-Хеллмана на практике

- Для задачи дискретного логарифмирования нет известного эффективного решения
 - о При правильной реализации

- Для конкретного простого числа р длиной 512 бит
 - Неделя предпосчета на тысячах СРО
 - Минута для решения задачи дискретного логарифмирования на 36 СРU
- Для конретного простого числа р длиной 1024 бит
 - Можно построить систему для взлома DH имея достаточный бюджет (~100kk \$)

• Использования простых чисел длиной 2048 бит и больше считается безопасным

RSA

RSA

RSA на практике

- Для задачи факторизации нет известного эффективного решения
 - При правильной реализации

- Для конкретного числа N длиной 512 бит
 - Успешная факторизация за 73 дня на обычной машине в 2009 году
- Самое длинное факторизованное число имеет длину 768 бит
 - Потребовалось 2 года реального времени
 - Известно как RSA-768 в RSA Factoring Challenge

- В теории разложение чисел длиной 1024 скоро будет возможно
- Использования чисел длиной 2048 бит и больше считается безопасным

что произошло бы В РЕАЛЬНОСТИ: НА ЕГО НОУТЕ ВСЁ ЗАШИФРОВАНО. DAU EMY HAPKOTH U DYBACH TUM LYEAHPIN KYHOAOM 3A 5 BAKCOB, NOKA OH НЕ СКАЖЕТ ПАРОЛЬ. леноп.

DH & RSA

- Протокол Диффи-Хеллмана
 - Полагается на отсутствие эффективного решения у задачи дискретного логарифмирования
 - Используется для генерации общего секретного ключа
 - Далее общий ключ обычно используется для шифрования с помощью какого-нибудь алгоритма симетричного шифрования (например AES)

RSA

- Полагается на отсутствие эффективного решения у задачи факторизации
- Используется для генерации закрытого и открытого ключа
- Далее эти ключи обычно используются для
 - передачи ключа для какого-нибудь алгоритма симметричного шифрования
 - или электронной цифровой подписи

Электронная цифровая подпись

Сертификат открытого ключа

https://upload.wikimedia.org/wikipedia/commons/9/96/Usage-of-Digital-Certificate.svg

Certificate Authorities

Root Certificate Authority

Intermediate Certificate Authority

End-User

HTTP vs HTTPS

- Протокол НТТР
 - Используется для получения информации с веб сайтов
 - Небезопасен

- Протокол HTTPS
 - HTTPS = HTTP Secure = HTTP + TLS (SSL)
 - Обеспечивает шифрование
 - Предотвращает Man-In-The-Middle

Как работает HTTPS

HTTPS: Demo

Как получить сертификат

- 1. Купить
 - от 5\$ до 100\$ в год

- 2. Получить бесплатно
 - Let's Encrypt открытая бета стартует завтра (3 декабря 2015)

Вопросы?