Définitions

Le cas d'une variété tropicale immergée

Diviseurs et intersection

Notions de dimension et rang

Remarques et problèmes

Mémoire de Modal: Géométrie des Surfaces Tropicales

Moaad ELMoutassim, Ziying MAI, Huaizhen YAO, Xiaowei YE

November 2024

Catalogue

Définitions

Le cas d'un variété tropicale immergée

Diviseurs et intersection

Notions de dimension et rang

Remarques e problèmes ouverts

- Définitions
- 2 Le cas d'une variété tropicale immergée
 - 3 Diviseurs et intersection
 - Somme formelle
 - Diviseurs et intersection
 - Principe de maximum
 - Motions de dimension et rang
 - Rang de contenance
 - Rang tropical et rang générateur
 - Théorème de Radon tropical
 - 5 Remarques et problèmes ouverts

Catalogue

Définitions

Le cas d'un variété tropicale immergée

Diviseurs et intersection

Notions de dimension e rang

Remarques e problèmes ouverts

- Définitions
- 2 Le cas d'une variété tropicale immergée
- 3 Diviseurs et intersection
- 4 Notions de dimension et rang
- Remarques et problèmes ouverts

intersection Notions de dimension et

Remarques e problèmes ouverts

 $\Delta_n := \{(x_1, x_2, \cdots, x_n) : x_i \in [0, 1], \forall i \in \{1, 2, \cdots, n\}; \sum_{i=1}^n x_i \leq 1\}.$

Définition (Δ -complexe)

Un Δ -complexe de dimension n est un espace topologique X muni d'une famille finie d'application $(\varphi_i : \Delta_n \to X)_{i \in I}$ t.q.

- Pour tout $i \in I$, $\varphi_i : \Delta_n \to \varphi_i(\Delta_n)$ est un homéomorphisme.
- Les images de φ_i couvre X.
- Si $i \neq j$, $\varphi_{\alpha}^{-1}(\varphi_i(\Delta_n) \cap \varphi_j(\Delta_n))$ est une face de $\varphi_{\alpha}(\Delta_n)$, $\forall \alpha \in \{i, j\}$.

On a identifié une copie de Δ_n avec l'image $\varphi_i(\Delta_n)$, l'image d'une face de Δ_n sous un φ_i est appelée une simplexe de Δ . Les simplexes de dimension 0, 1, (n-1), et n sont appelées ses sommets, arrêtes, ridges, et facets.

Diviseurs e intersectior

Notions de dimension et rang

Remarques et problèmes ouverts

Définition (complexe tropicale faible)

Un complexe tropical faible de dimension n est une paire (S, α) , où S est un Δ -complexe de dimension n qui est connexe, et α est une fonction qui envoie toute paire (v,r), formée par un sommet v de S et un ridge r contenant v, à une valeur $\alpha(v,r) \in \mathbb{Z}$ telle que pour tout ridge r,

$$\sum_{v \in r_0} \alpha(v, r) = \deg r,\tag{1}$$

où r_0 est l'ensemble des sommets de r et deg r est le nombre de simplexes de dimension n contenant r. Les valeurs $\alpha(v,r)$ sont appelés les constantes de structure du complexe tropical faible.

Diviseurs et intersection

Notions de dimension et rang

Remarques e problèmes ouverts

Définition

Soient Δ un complexe tropical faible et q une simplexe de dimension (n-2) de Δ , la matrice d'intersection locale de Δ en q est la matrice symétrique M_q dont les lignes et les colones sont indexées par les ridges r contenant q, et les coefficients sont donnés par:

$$(M_q)_{r,r'} = egin{cases} \#\{ ext{facets contenant } r ext{ et } r' \} & ext{si } r
eq r' \ -lpha(v,r) & ext{si } r = r', \end{cases}$$

où v est le sommet de r oppsé à q. Une complexe tropicale est une complexe tropicale faible Δ telle que la matrice d'intersection locale M_q admet exactement une valeur propre positive pour toute simplexe q de dimension (n-2) de Δ .

Fonction PL

Définitions

Le cas d'un variété tropicale immergée

Diviseurs e intersection

Notions de dimension e rang

Remarques e problèmes ouverts

Définition (fonction PL)

Une fonction PL (abréviation pour piecewise linear en anglais) sur un complexe tropical faible Δ est une fonction continue ϕ dont la réstriction sur chaque simplexe de Δ est linéaire par morceaux avec pentes intègres, sous l'identification de cette simplexe avec la simplexe standard dans \mathbb{R}^k , où k est la dimension de cette simplexe.

intersection Notions de

Notions de dimension e rang

Remarques e problèmes ouverts

Construction (subdivision)

Une subdivision d'ordre m d'un complexe tropical faible Δ est comme suivante: on remplace chaque simplexe de Δ par une subdivision unimodulaire intègre de la simplexe standard multiplié par m, muni des constantes de structure suivantes: Si r' est un ridge de Δ' intersectant l'intérieur d'un facet de Δ , soient v'_1, \ldots, v'_n ses sommets, et w_1, w_2 les sommets opposés à r'. On peut écrire $\frac{w_1+w_2}{2}=c_1v'_1+\cdots+c_nv'_n$ avec $c_1+\cdots+c_n=1$. On pose $\alpha(v'_i,r')=2c_i$.

Remarques e problèmes ouverts

Construction (subdivision-continue)

Si r' est contenu dans un ridge r de Δ qui a pour degree d. On représente les points de chaque facet de Δ contenant r par (n+1) coordonnés non-négatifs qui ont pour somme m. Dans le i-ième tel facet, l'unique facet de Δ' contenant r' est engendré par r' et un seul point, dont le coordonné est $(x_{i,1},\ldots,x_{i,n},1)$, par unimodularité. Pareil, les points de r sont de coordonés constitués de n nombres réels positifs et pour somme m. Dans tels coordonnés, on représente le i-ième sommet v'_i de r' par le vecteur $(y_{i,1},\ldots,y_{i,n})$. Finalement, si v_1,\ldots,v_n sont des sommets de r, on détermine les constantes de structure de r' par l'équation:

$$\begin{pmatrix} \alpha(\mathbf{v}_{1}', \mathbf{r}') \\ \vdots \\ \alpha(\mathbf{v}_{n}', \mathbf{r}') \end{pmatrix} = \begin{pmatrix} y_{1,1} & \cdots & y_{n,1} \\ \vdots & & \vdots \\ y_{1,n} & \cdots & y_{n,n} \end{pmatrix}^{-1} \begin{pmatrix} \alpha(\mathbf{v}_{1}, \mathbf{r}) + \mathbf{x}_{1,1} + \cdots + \mathbf{x}_{d,1} \\ \vdots & & \vdots \\ \alpha(\mathbf{v}_{n}, \mathbf{r}) + \mathbf{x}_{1,n} + \cdots + \mathbf{x}_{d,n} \end{pmatrix}. \tag{2}$$

Variété tropicale

Définitions

Le cas d'un variété tropicale immergée

Diviseurs e intersectior

Notions de dimension e rang

Remarques e problèmes ouverts

Définition

On muni l'ensemble de tous les complexes tropicaux faibles avec la relation d'équivalence engendrée par les relations $\Delta \sim \Delta'$ dès que Δ' est une subdivision de Δ . Une classe d'équivalence est appelée une variété tropicale.

De plus, on muni l'ensemble de toutes les paires (Δ, f) , où Δ est un complexe tropical faible et f est une fonction PL sur Δ , avec la relation d'équivalence engendrée par les relations $(\Delta, f) \sim (\Delta', mf)$ où Δ' est une subdivision d'ordre m de Δ . Une classe d'équivalence est appelée une fonction méromorphe sur une variété tropicale.

Catalogue

Définitions

Le cas d'une variété tropicale immergée

Diviseurs e

Notions de dimension e rang

Remarques e problèmes ouverts

- Définitions
- 2 Le cas d'une variété tropicale immergée
- 3 Diviseurs et intersection
- 4 Notions de dimension et rang
- 5 Remarques et problèmes ouverts

Diviseurs et intersection

Notions de dimension et rang

Remarques e problèmes ouverts Dans cette section, on considère un Δ -complexe $X \subset \mathbb{R}^k$ de dimension n dont chaque simplexe est un polytope de \mathbb{R}^k définie par des inégalités affines avec pentes intègres.

Définition (espace tagnent)

Soit s une simplexe de X, on note

$$T(s) := \{c(x - y) : c \in \mathbb{R}, (x, y) \in s^2\}$$

l'espace tangent de s et $T_{\mathbb{Z}}(s) := T(s) \cap \mathbb{Z}^k$.

intersection Notions de

Remarques e problèmes

Définition

Une structure tropicale sur X est une paire d'application: la première application m, appelée l'application de poids, envoie chaque facet à un nombre entier; et la deuxième application v, envoie chaque paire (f,r) avec f un facet et r un ridge telle que $r \subset f$, à un vecteur $v(f,r) \in \mathbb{Z}^k$ qui vérifier les conditions suivantes:

- v(f,r) pointe vers l'intérieur de f depuis r;
- l'image de v(f,r) dans $T_{\mathbb{Z}}(f)/T_{\mathbb{Z}}(r)$ est génératrice;
- la condition d'équilibre suivante soit satisfaite pour tout ridge r:

$$\sum_{r\subset f} m(f)v(f,r)=0.$$

Remarques et problèmes ouverts

Soit $F: X \to \mathbb{R}$ une fonction continue dont la restriction sur chaque simplexe est linéaire de pentes entiers, on peut définir *l'ordre d'annulation* de F le long d'un ridge r comme:

$$ord_r(F) := -\sum_{f\supset r} m(f)F_f(v(f,r)),$$

où F_f est la forme linéaire induite par $F|_f$.

Théorème

Si $m \equiv 1$, alors sur le skeleton de dimension n-1 de X muni de l'application de poids $r \mapsto \operatorname{ord}_r(F)$, on peut construire une application e qui envoie chaque paire (r,t), où r est un facet (donc ridge de X) et t un ridge (donc simplexe de X de dimension n-2), à un vecteur $e(r,t) \in \mathbb{Z}^k$, qui donne lieu à une structure tropicale.

La condition d'équilibre qu'on a vue en cours pour les courbes tropicales planes peuvent être vues comme un cas particuliers de la version "infinie" ce théorème.

Catalogue

Définitions

Le cas d'un variété tropicale immergée

Diviseurs et intersection

Somme forme Diviseurs et intersection Principe de maximum

Notions de dimension e

Remarques e problèmes

- Définitions
- 2 Le cas d'une variété tropicale immergée
 - 3 Diviseurs et intersection
 - Somme formelle
 - Diviseurs et intersection
 - Principe de maximum
 - 4 Notions de dimension et rang
 - 6 Remarques et problèmes ouverts

intersection
Somme formelle
Diviseurs et

Diviseurs et intersection Principe de maximum

Notions de dimension e rang

Remarques e problèmes ouverts Soit X une variété tropicale. On considère des sommes formelles finies de polyhèdres de dimension n-1 de X à coefficients intègres dans cette section, où un *polyhèdre* de X est une simplexe d'un représentant de X.

Deux telles sommes sont dites équivalentes si elles diffèrent par un élément dans le sous-groupe engendré par l'ensemble des sommes $[P]-[Q_1]-\cdots[Q_r]$, où P est un polyhèdre de dimension (n-1), et Q_1,\cdots,Q_r sont des polyhèdres qui donnent une subdivision de P.

Lemme

Soient $Z = \sum a_i[P_i]$ et $Z' = \sum a_i'[P_i']$ des sommes formelles équivalents sur une variété tropicale.

- Supposons que les coefficients a'_i de Z' sont positifs, alors les coefficients a_i de Z sont positifs.
- ② Si les coefficients a_i et a_i' sont strictement positifs, alors $\bigcup P_i = \bigcup P_i'$.

Définition

Le cas d'un variété tropicale immergée

Diviseurs et intersection Somme formelle Diviseurs et intersection Principe de

Notions de dimension e rang

Remarques e problèmes ouverts

Définition

Une classe d'équivalence de sommes formelles de polyèdres est dite positive si elle contient une somme formelle dont tous les coefficients sont positifs.

D'aprês le lemme : (1) la définition précédente est indépendante du représentant choisi, (2) la définition suivante est indépendante du représentant choisi.

Définition

Le support d'une classe d'équivalence positive de sommes formelles est l'union des polyèdres dans un représentant à coefficients strictement positifs.

Définition

Soit (Δ, f) un représentant d'une fonction sur une variété tropicale telle que f est linéaire sur chaque simplexe de Δ . On définit le diviseur de f comme

$$\operatorname{div}_{\Delta}(f) = \sum_{r \ ridge} \left(\sum_{v \sim r} f(v) - \sum_{v \in r} \alpha(v, r) f(v) \right) [r],$$

où $v \sim r$ signifie que v et le sommet opposé à r dans un facet qui contient r.

Lemme

Le diviseur d'une fonction est bien une somme formelle à coefficients entiers.

Lemme

Soit Δ' une subdivision de Δ d'ordre m, alors $\operatorname{div}_{\Delta}(f) = \operatorname{div}_{\Delta'}(mf)$. Le diviseur est donc indépendnant du choix de représentant.

Remarques et problèmes ouverts

Définition

Une fonction est dite linéaire si son diviseur est trivial, i. e. div(f) = 0.

Corollaire

Soit Δ' une subdivision d'ordre m d'une complexe tropicale faible Δ , alors (Δ, ϕ) représente une fonction linéaire si et seulement si $(\Delta', m\phi)$ représente une fonction linéaire.

Notions de dimension e rang

Remarques et problèmes ouverts

Définition

Soient Z une somme formelle d'arrêt et Q un sommet d'un terme de Z. Soit ϕ une fonction PL sur un voisinage de Q. Notons a_i la pente de ϕ le long de P_i et m_i est la multiplicité de P_i dans Z, alors on définit la multiplicité de ϕ le long de Q de Z comme:

$$\mathsf{mult}_{Z,Q}(\phi) = \sum \mathsf{a}_i \mathsf{m}_i.$$

On dit que Z est équilibrée si tout sommet Q d'un terme de Z vérifie $\operatorname{mult}_{Z,Q}(\phi) = 0$ pour toute fonction linéaire ϕ dans un voisinage de Q.

Lemme

Soit Z et Z' des sommes formelles équivalentes, alors Z est équilibrée si et seulement si Z' l'est.

Notions de dimension (rang

Remarques et problèmes ouverts

Définition

Sur une surface tropicale X, un diviseur D est une classe d'équivalence de sommes formelles de segments telle que D est localement définie par une fonction PL, au sens où il existe un recouvrement ouvert U_1, \dots, U_m de X et des fonctions PL ϕ_i sur U_i telles que $D|_{U_i} = \operatorname{div}(\phi_i)$ pour chaque i.

Définition (produit d'intersection)

Soit D un diviseur sur une surface tropicale avec représentant Δ et C une somme formelle de segments. Par définition, il existe un recouvrement ouvert $\{U_i\}$ de Δ tel que sur chaque $\{U_i\}$, le diviseur D est défini par une fonction PL ϕ_i . On définit le produit d'intersection $D \cdot C$ comme suivant: dans chaque U_i , on a la restriction

$$(D \cdot C)|_{U_i} = \sum_{p \in U_i \cap C} \mathsf{mult}_{p,C}(\phi_i)[p]. \tag{3}$$

Définitions

Le cas d'une variété tropicale immergée

Diviseurs of intersection

Diviseurs et intersection Principe de maximum

Notions de dimension e rang

Remarques e problèmes ouverts

Proposition

Le produit d'intersection entre les diviseurs sur une surface tropicale est symétrique.

Proposition (condition d'équilibre)

Un diviseur est équilibrée.

Remarque

L'intersection $D \cdot C$ est une somme formelle intègre de points bien définie.

Remarques o problèmes ouverts

Définition

Deux diviseurs D et D' sur un surface tropicale sont linéairement équivalents si $D - D' = \text{div}(\phi)$ pour ϕ une fonction PL.

Lemme

Soit Δ' une subdivision d'ordre m d'un complexe tropical faible Δ . Alors une somme formelle de polyèdres est un diviseur sur Δ si et seulement si elle est un diviseur sur Δ' .

Lemme

Soit Δ' une subdivision d'ordre m d'un complexe tropical faible Δ , et soit chaque arête de Δ contenue dans une facette. Alors, les diviseurs sur Δ sont linéairement équivalents si et seulement s'ils sont linéairement équivalents sur Δ' .

Principe de maximum

Définitions

Le cas d'un variété tropicale immergée

Diviseurs et intersection

Somme formel Diviseurs et intersection

Principe de maximum

Notions de dimension rang

Remarques e problèmes

Theorem

Soit (Δ, f) une fonction méromorphe sur une surface tropicale dont le diviseur est positif, on suppose en outre que la complexe tropicale sous-jacente est forte, et que pour tout point p sur la surface, il existe un voisinage U de p tel que $U \setminus \{p\}$ est connexe, alors f est constante.

Soit p un sommet où f atteint son maximum. On choisit un nombre c suffisamment grand, tel que toutes les entrées de $M_p + cI$ soient non négatives, où I est la matrice identité.

Remarques e problèmes ouverts

Définition

Une matrice $M \in \mathcal{M}_n(\mathbf{R})$ est dite irréductible au sens de Perron-Frobenius s'il n'existe pas de sous-ensemble $J \subset \{1, \cdots, n\}$ non vide et propre J tel que les entrées $M_{i,j}$ soient nulles pour tout $i \in J$ et $j \notin J$.

Notre matrice M_p est irreductible au sens de Perron-Frobenius par l'hypothèse sur la connexité du voisinage. (Un tel ensemble J pour M_p correspondrait à une composante connexe non triviale dans $\mathrm{link}_{\Sigma}(p)$, ce qui contredirait l'hypothèse de connexité locale.)

Notions de dimension or rang

Remarques et problèmes ouverts Par conséquent, selon le théorème de Perron-Frobenius $M_p + cI$ a un unique vecteur propre w, avec des entrées strictement positives, dont la valeur propre λ a une norme maximale parmi toutes les valeurs propres de $M_p + cI$.

Ainsi, w est un vecteur propre de M_p avec pour valeur propre $\lambda-c$, qui est plus grande que toutes les autres valeurs propres de M_p .

Définitions

Le cas d'un variété tropicale immergée

Diviseurs et intersection Somme formelle Diviseurs et intersection Principe de

Notions de dimension (

Remarques et problèmes ouverts

Étant donné que Δ est une surface tropicale,On a M_p a une unique valeur propre positive, et donc $\lambda-c$ doit être cette valeur propre positive. Soit maintenant x le vecteur contenant les pentes sortantes de f en p. Alors, $M_p x$ contient les coefficients du diviseur de f dans un voisinage de p, et nous avons supposé que ces coefficients sont positifs.

Toutes les entrées de w sont positives, et donc

$$w^T M_{p,\Sigma} x = (\lambda - c) w^T x$$

est positif, et comme $\lambda-c$ est strictement positif, les entrées de w^Tx sont également positives.

Définitions

Le cas d'une variété tropicale immergée

Diviseurs e intersection Somme formell Diviseurs et intersection

Motions de dimension

Remarques et problèmes ouverts

Par ailleurs, f est maximale en p, donc les entrées de x sont negatives, et la seule façon pour w^Tx d'être positif est que x soit nul. Ainsi, f est constante dans un voisinage de p.

Ainsi l'ensemble des points où la fonction f atteint son maximum est un ouvert, et il est fermé par continuité de f, ainsi f doit être constant.

Catalogue

Définitions

Le cas d'un variété tropicale immergée

Diviseurs e intersection

Notions de dimension et rang

> tang de contenance lang tropical et ran énérateur 'héorème de Radon ropical

Remarques e problèmes ouverts

- Définitions
- 2 Le cas d'une variété tropicale immergée
- 3 Diviseurs et intersection
- 4 Notions de dimension et rang
 - Rang de contenance
 - Rang tropical et rang générateur
 - Théorème de Radon tropical
- 5 Remarques et problèmes ouverts

Soit D un diviseur sur une variété tropicale X.

Définition

$$\mathcal{M}(D) := \{ f \in PL(X) : \operatorname{div}(f) + D \ge 0 \}.$$

Notion 1: rang de contenance

r(D) := le nombre maximal m tel que pour m points rationnels p_1, \dots, p_m arbitraires, il existe $D' \in \mathcal{D}$ tel que son support contient tous ces points.

Proposition

Si dim X = 1, cette notion coincide avec celle qu'on a vu en cours.

Démonstration: C. f. D. Cartwright. A specialization inequality for tropical complexes. In: Compositio Mathematica (2021).

Remarques e problèmes ouverts

Notion 2: rang d'indépendence

 $r_{ind} :=$ le cardinal maximal d'ensemble indéendent.

Remarque

Un ensemble F est dit dépendant s'il existe $f_1, \dots, f_n \in F$ et $c_1, \dots, c_n \in \mathbb{R}$ t.q. le minimum dans l'expression suivant est atteint ≥ 2 fois partout:

$$\bigoplus_{i=1}^n (c_i \otimes f_i).$$

Notion 3: rang générateur

 $r_g:=$ le cardinal minimal d'ensemble générateur $\{f_1,\cdots,f_n\}$: toute fonction $f\in\mathcal{M}(D)$ s'écrit comme

$$\bigoplus_{i=1}^n (c_i \otimes f_i)$$

Théorème

 $r_{ind}(D) \leq r_g(D)$.

Sketch de la démonstration:

Step 1: Se ramener dans \mathbb{R}^n_+ .

Step 2: Théorème de Radon tropical.

Step 3: Pour montrer Théorème de Radon Tropical, on se ramene à montrer Théorème de Radon classique.

Théorème (théorème de Radon classique)

Soit $S \subset \mathbb{R}^n$ un ensemble contenant au moins n+2 points, alors il existe une partition non-triviale $S=A_1 \sqcup A_2$ telle que les enveloppe convexe de A_1 et A_2 s'intersectent.

Remarques e problèmes ouverts $\varphi_r(x) := \exp(-rx)$ et $\Phi_r(x_1, \dots, x_n) := (\varphi_r(x_1), \dots, \varphi_r(x_n))$. Notons pour tout ensemble fini $A \subset \mathbb{R}^n$

$$Conv^r(A) := \Phi_r^{-1}(Conv(\Phi_r(A)))$$

Limite au sens de Kuratowski-Painlevé, définie comme suivante

$$Conv^{\infty}(A) := \bigcap_{n \geq 0} \overline{\bigcup_{k \geq 0} Conv^{n+k}(A)},$$

c'est l'ensemble des points p dont il existe une suite $p_k \in Conv^k(A)$ ayant pour point d'adhérence p.

Notions de dimension et rang

Rang de contenance Rang tropical et rang générateur Théorème de Radon tropical

Remarques et problèmes ouverts

Théorème (enveloppe convexe tropical)

Pour tout ensemble fini $A \subset \bar{\mathbb{R}}^n_+$, on a

$$Conv^{\infty}(A) = \{\bigoplus_{x \in A} (t_x \otimes x) : \min_{x \in A} t_x = 0\}.$$

intersection

dimension et

Rang de contenance Rang tropical et rang générateur Théorème de Radon tropical

Remarques et problèmes ouverts

Théorème (théorème de Radon tropical)

Soit $S \subset \mathbb{R}^n$ avec $|S| \ge n+2$, alors il existe une partition non-triviale $S = A_1 \sqcup A_2$ telle que

$$\mathit{Conv}^\infty(A_1) \cap \mathit{Conv}^\infty(A_2) \neq \varnothing.$$

Démonstration: D'après Théorème de Radon classique, il existe des partitions

$$S = A_1^{(r)} \sqcup A_2^{(r)}$$
 telles qu'il existe $x_r \in Conv^r(A_1^{(r)}) \cap Conv^r(A_2^{(r)}) \neq \varnothing$.

S est fini \implies sous-suite (r_k) t.q. $A_1^{(r_k)}$ et $A_2^{(r)}$ restent constante.

Compacité \implies sous-suite t.q. x_{r_k} converge, la limite est dans

$$Conv^{\infty}(A_1) \cap Conv^{\infty}(A_2).$$

Remarques et problèmes ouverts

Corollaire

Soit $v_1, \dots, v_{n+1} \in \mathbb{R}^n$, alors il existe deux ensemble non-vides disjoints $I, J \subset \{1, \dots, n+1\}$ et des constantes $(a_i, b_j)_{i \in I, j \in J}$ tel que

$$\bigoplus_{i\in I}(a_i\otimes v_i)=\bigoplus_{j\in J}(b_i\otimes v_j).$$

Démonstration: Le résultat s'en suit en prenant les n+2 points comme les n+1 vecteurs donnés et le point (∞, \dots, ∞) .

Catalogue

Définitions

Le cas d'un variété tropicale immergée

Diviseurs et intersection

Notions de dimension e rang

Remarques et problèmes ouverts

- Définitions
- 2 Le cas d'une variété tropicale immergée
- 3 Diviseurs et intersection
- 4 Notions de dimension et rang
- 6 Remarques et problèmes ouverts

Diviseurs et intersection

Notions de dimension et rang

Remarques et problèmes ouverts

Pour une surface tropicale X avec représentant Δ , on peut définir

$$K_X := \sum_{r \text{ ridge}} (\deg(r) - 2)[r]$$

qui généralise la définition de diviseur canonique pour le cas de graphe vue en cours.

Question

Pour quelles surfaces tropicales K_x est un diviseur (défini par fonction PL localement)?

Diviseurs et intersection

Notions de dimension et rang

Remarques et problèmes ouverts

Conjecture (Riemann-Roch)

Soit D un diviseur sur une surface tropicale X tel que K_X est un diviseur, alors on a

$$r(D) + r(K_X - D) \ge \frac{\deg D \cdot (D - K_X)}{2} + \chi(X),$$

où χ signifie la caractéristique d'Euler.

Définition

On dit qu'un diviseur D sur une surface tropicale X est ample si $\deg D \cdot D > 0$ et si $(r(K_X - mD))_{m \in \mathbb{N}}$ est bornée.

Conjecture

Soit D un diviseur ample sur une surface tropicale X tel que K_X est un diviseur, alors il existe une constante C(D) telle que $r(mD) \ge C(D)m^2$.

Définitions

Le cas d'une variété tropicale immergée

Diviseurs et intersection

Notions de dimension et rang

Remarques et problèmes ouverts

Merci pour votre écoute!