Vecteurs, droites et plans de l'espace

1 Vecteurs

1.1 Vecteurs du plan de l'espace

Définition 1.

Les points A et B étant distincts, le vecteur \overrightarrow{AB} est caractérisé par

- sa direction, la droite (AB).
- son **sens**, de A vers B,
- sa **norme**, notée $\|\overrightarrow{AB}\|$, qui est la longueur de AB.

Propriétés :

A, B, C et D sont quatre points de l'espace.

- P1 $\overrightarrow{AB} = \overrightarrow{CD}$, si et seulement si, ABDC est un parallélogramme.
- P2 D est l'image de C par par la **translation** de vecteur \overrightarrow{AB} si et seulement si $\overrightarrow{CD} = \overrightarrow{AB}$
- P3 Pour tout vecteur \overrightarrow{u} et tout point O, il existe un unique point M tel que $\overrightarrow{OM} = \overrightarrow{u}$.

1.2 Opérations sur les vecteurs de l'espace

1.2.1 Somme de deux vecteurs

La somme des vecteurs \overrightarrow{u} et \overrightarrow{v} , \overrightarrow{u} + \overrightarrow{v} peut s'obtenir soit par

- la relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$
- la **règle du parallélogramme** : $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, si et seulement si, ABDC est un parallélogramme.

1.2.2 Produit d'un vecteur par un réel et colinéarité

Définition 2.

Deux vecteurs non nuls sont colinéaires si et seulement si ils ont la même direction. Autrement dit, les vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si il existe un réel k tel que $\overrightarrow{u} = k \overrightarrow{v}$.

Propriétés :

 $A,\,B,\,C$ et D sont quatre points de l'espace.

- P4 Les points A, B et C sont alignés si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- P5 Les droites (AB) et (CD) sont parallèles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

1.2.3 Combinaisons linéaires de vecteurs

Définition 3.

On considère trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} de l'espace.

On dit que le vecteur \overrightarrow{u} est **combinaison linéaire** des vecteurs \overrightarrow{v} et \overrightarrow{w} si et seulement si \overrightarrow{u} peut s'écrire sous la forme

 $\overrightarrow{u} = a\overrightarrow{v} + b\overrightarrow{w}$, où a et b sont des réels.

Définition 4.

Trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont dit linéairement indépendants s'il n'est pas possible d'exprimer l'un comme combinaison linéaire des deux autres.

Propriété:

P6 • Les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont linéairement indépendants si et seulement si,

l'égalité
$$a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$$
 implique $a = b = c = 0$,

1.2.4 Application 1

Sur la figure ci-contre, MNPR est un tétraèdre.

S est le point de l'espace tel que $\overrightarrow{MS} = \frac{1}{2}\overrightarrow{MR} + \frac{1}{4}\overrightarrow{RN}$.

T est le point de l'espace tel que $\overrightarrow{PT} = \frac{3}{4}\overrightarrow{PM}$.

U est le point de l'espace tel que $\overrightarrow{PU} = \frac{3}{4}\overrightarrow{PR} + \frac{3}{4}\overrightarrow{PN}$.

- 1. Placer les points S, T et U.
- 2. Exprimer \overrightarrow{MS} en fonction de \overrightarrow{PM} , \overrightarrow{PR} et \overrightarrow{PN} .
- 3. Montrer que $\overrightarrow{TS} = -\frac{1}{4}\overrightarrow{PM} + \frac{1}{4}\overrightarrow{PR} + \frac{1}{4}\overrightarrow{PN}$.
- 4. En déduire une expression de \overrightarrow{TU} en fonction de \overrightarrow{TS} .

- exercices 1 et 2 page 51 (résolus)
- les exercices 43 et 47 page 66 (entrainement ; corrigés en classe)
- exercices 129 et 130 page 72 (en autonomie, réponse en fin de livre)

2 Droites et plans dans l'espace

2.0.1 Caractérisation d'une droite de l'espace

Définition 5.

A et B sont deux points distincts de l'espace.

- la **droite** (AB) est l'ensemble des points de M de l'espace tels que $\overrightarrow{AM} = k\overrightarrow{AB}$ où k est un nombre réel.
- \overrightarrow{AB} est un vecteur directeur de la droite (AB).

Conséquence :

Une droite (d) est définie par un point A et un vecteur directeur \overrightarrow{u} ; on la note $d(A, \overrightarrow{u})$.

2.0.2 Caractérisation d'un plan de l'espace

Définition 6.

 $A,\,B$ et C sont trois points de l'espace non alignés.

- le **plan** (\overrightarrow{ABD}) est l'ensemble des points de M de l'espace tels que $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AD}$ où x et y sont des nombres réels.
- \overrightarrow{AB} et \overrightarrow{AD} sont des vecteurs directeurs du plan (ABD).

Conséquence :

Un plan \mathscr{P} est défini par un point A et deux vecteurs directeurs \overrightarrow{u} e \overrightarrow{v} ; on le note $\mathscr{P}(A, \overrightarrow{u}, \overrightarrow{v})$.

2.0.3 Vecteurs coplanaires

Définition 7.

 $\overrightarrow{u}\,,\,\overrightarrow{v}$ et \overrightarrow{w} sont trois vecteurs de l'espace.

 $O, A, B \text{ et } C \text{ sont des points tels que } \overrightarrow{u} = \overrightarrow{OA}, \overrightarrow{v} = \overrightarrow{OB} \text{ et } \overrightarrow{w} = \overrightarrow{OC}.$

Les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont dit **coplanaires** si les points O, A, B et C sont coplanaires (c'est à dire dans le même plan).

Propriétés:

P7 • Trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont **coplanaires** si et seulement si \overrightarrow{w} est combinaison linéaire de \overrightarrow{u} et \overrightarrow{v} , soit $\overrightarrow{w} = a\overrightarrow{u} + b\overrightarrow{v}$ où a et b sont des réels.

P8 • Trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} ne sont pas coplanaires si et seulement si

l'égalité
$$a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$$
 implique $a = b = c = 0$.

2.0.4 Application 2

ABCDEFGH est un pavé droit de centre O.

I et J sont les centres respectifs des faces AEHD et BFGC, K est le milieu de [EF] et M celui de [EK]. L est le symétrique de O par rapport à K.

1. Montrer que I, M et L sont alignés.

2. (a) Montrer qu'il existe deux nombres réels a et b tels que $\overrightarrow{CL} = a$ $\overrightarrow{JF} + b$ \overrightarrow{CI} .

(b) Que peut-on conclure sur les vecteurs \overrightarrow{CL} , \overrightarrow{CI} et \overrightarrow{JF} ?

3. Démontrer que les vecteurs \overrightarrow{CL} , \overrightarrow{CI} et \overrightarrow{CJ} sont coplanaires.

4. Conclure sur la position des points C, I, L et J.

A faire:

• exercices 3 et 4 page 53 (résolus)

• les exercices 50 et 57 page 66 (entrainement ; corrigés en classe)

• exercices 131 et 132 page 73 (en autonomie, réponse en fin de livre)

3 Positions relatives de droites et de plans de l'espace

3.0.1 Positions relatives de deux droites

P9 • Si d et d' sont coplanaires, alors :

P10 • Pour tout point de l'espace, il passe une unique droite parallèle une droite donnée.

3.0.2 Positions relatives de deux plans

Propriétés:

P11 • Deux plans sont **parallèles** lorsqu'ils sont confondus ou n'ont aucun point commun.

 \mathcal{P} et \mathcal{P}' sont parallèles si deux vecteurs directeurs de l'un peuvent être vecteur directeurs de l'autre.

P12 • Deux plans sont **sécants** lorsqu'ils ne sont pas parallèles. Leur **intersection** est une **droite**.

3.0.3 Positions relatives d'une droite et d'un plan

Définition 8.

 $d(A, \overrightarrow{u})$ est une droite de l'espace et $\mathscr{P}(C, \overrightarrow{v}, \overrightarrow{w})$ est plan de l'espace. La droite d est **parallèle** au plan \mathscr{P} si \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont **coplanaires**.

3.0.4 Application 3

Sur la figure ci-contre, ABCDEFGH est un cube. M est le milieu de [EF] et N le symétrique de M par rapport à E. Figure à compléter ...

- 1. Montrer que les plans (MGC) et (NHD) sont parallèles.
- $2.\ I$ et J sont les points de l'espace tels que :

$$\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB} \text{ et } \overrightarrow{HJ} = \frac{3}{4}\overrightarrow{HE}$$
 On admet que
$$\overrightarrow{EJ} = \overrightarrow{EH} + \frac{3}{4}\overrightarrow{HE} = \frac{1}{4}\overrightarrow{EH}$$

- (a) Montrer que $\overrightarrow{IJ} = \frac{1}{4}\overrightarrow{BD} + \overrightarrow{BF}$.
- (b) En déduire que la droite (IJ) est strictement parallèle au plan (FDB).

- exercices 5 et 6 page 55 (résolus)
- les exercices 64 et 69 pages 67-68 (entrainement ; corrigés en classe)
- exercices 133 et 134 page 73 (en autonomie, réponse en fin de livre)

4 Bases et repères de l'espace

4.1 Décomposition d'un vecteur dans une base

Définition 9.

- Une base de l'espace est un triplet $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de vecteurs non coplanaires.
- Un **repère de l'espace** est formé d'un point O, origine du repère, et d'une base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$; on le note $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$

Propriétés :

Soit $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ une base de l'espace.

P14 • Pour tout vecteur \overrightarrow{u} , il existe un triplet (x,y,z) de réels tel que :

$$\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$
. On le note aussi : $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

4.2 Décomposition d'un vecteur dans un repère

Définition 10.

 $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est un repère de l'espace et M est un point de l'espace.

- Si $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$, où x, y et z sont des nombres réels, on dit que (x; y; z) sont les **coordonnées du point** M dans $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On le note M(x; y; z).
- x est l'abscisse , y est l'ordonnée et z est la cote du point M dans ce repère.

Propriétés:

Soit $(A; x_A, y_A, z_A)$ et $(B; x_B, y_B, z_B)$ deux points dans le repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

P15 • Le vecteur \overrightarrow{AB} a pour coordonnées $(x_B - x_A ; y_B - y_A ; z_B - z_A)$.

P16 • Le milieu I de [AB] a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$.

4.2.1 Application 4

A(-2~;~8;~9~), B(-4~;~4;~5~), C(0~;~4;~-3~), D(-8~;~6;~7~) et E(1~;~-2;~3~) sont des points de l'espace muni d'un repère $(O;\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$.

On note I et J les milieux respectifs de [AB] et [DC].

- 1. Les points A, B et C sont-ils alignés ?
- 2. Calculer les coordonnées des points I et J.
- 3. Calculer les coordonnées du point L tel que $\overrightarrow{BL} = \frac{1}{4}\overrightarrow{BC}$.
- 4. Montrer que les points I, J, L et E sont coplanaires.

- exercices 7 et 8 page 57 (résolus)
- les exercices 79 et 80 pages 68 (entrainement ; corrigés en classe)
- exercices 135 et 136 page 73 (en autonomie, réponse en fin de livre)

Représentation paramétrique d'une droite 5

Propriété P17 • :

Soit $A(x_A; y_A; z_A)$ un point de la droite d de vecteur directeur $\overrightarrow{u}(a; b; c)$.

M(x;y;z) appartient à la droite d si et seulement si, il existe un nombre réel t tel que $\begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases}$

Démonstration :

Soit un point M de la droite d et les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.

Donc il existe un réel t tel que $\overrightarrow{AM} = t\overrightarrow{u}$.

$$\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \\ z - z_A \end{pmatrix}$$
, et $t\overrightarrow{u} \begin{pmatrix} at \\ bt \\ ct \end{pmatrix}$.

$$\overrightarrow{AM} = t \overrightarrow{u} \iff \begin{pmatrix} x - x_A \\ y - y_A \\ z - z_A \end{pmatrix} = \begin{pmatrix} at \\ bt \\ ct \end{pmatrix}. \text{ Donc } \begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases}$$

Définition 11.

Soit x_0, y_0, z_0, a, b et c des réels tels que $(a; b; c) \neq (0; 0; 0)$. Le système d'équations $\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$ avec $t \in \mathbb{R}$, définit une **représentation paramétrique**

de la droite d passant par le point $A(x_0; y_0; z_0)$ et de vecteur directeur $\overrightarrow{u}(a; b; c)$. Un tel système est aussi appelé système d'équations paramétriques de d.

Remarque: il existe une infinité de représentations paramétriques d'une droite.

5.0.1Application 5

On se place dans un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

- 1. Donner une représentation paramétrique de la droite (AB) où A(1; -3; 1) et B(-1; 1; 4).
- 2. Les points C(-1; 1; 4) et D(2; 4; 2) appartiennent-ils à la droite (AB)?

- exercices 9,10, 11, 12, 13 et 14 pages 59,60,61 (résolus)
- les exercices 112, 116 et 128 pages 70 (entrainement ; corrigés en classe)
 - exercices 140 et 141 page 73 (en autonomie, réponse en fin de livre)

Synthèse sur les vecteurs, droites et plans de l'espace Page 72

Colinéarité

• \vec{u} et \vec{v} non nuls sont colinéaires si, et seulement si, il existe un réel \vec{k} tel que $\vec{u} = \vec{k}\vec{v}$

Coplanarité

• \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires si, et seulement si, il existe trois réels a, b et c non tous nuls tels que $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$.

Base de l'espace

- Triplet $(\vec{i}, \vec{j}, \vec{k})$ de vecteurs non coplanaires.
- Coordonnées de $u = x\vec{i} + y\vec{j} + z\vec{k}$ dans cette base : (x; y; z). Repère de l'espace
- Quadruplet (O ; \vec{i} , \vec{j} , \vec{k}) où O est un point et (\vec{i} , \vec{j} , \vec{k}) est une base de l'espace.

Caractérisation vectorielle d'un plan

- Si \vec{u} et \vec{v} sont deux vecteurs non colinéaires de la direction d'un plan \mathcal{P} , alors (\vec{u}, \vec{v}) est une base de \mathcal{P} .
- Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs non colinéaires, l'ensemble des points M tels que $\overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}$, avec x et y réels quelconque, est un plan passant par A.

Vecteurs de l'espace

Représentation paramétrique

Droite passant par $A(x_A; y_A; z_A)$ et de vecteur directeur

$$\vec{u}(a;b;c): \begin{cases} x = x_{\mathsf{A}} + at \\ y = y_{\mathsf{A}} + bt \text{ avec } t \in \mathbb{R}. \\ z = z_{\mathsf{A}} + ct \end{cases}$$

Plans de l'espace

Droites de l'espace

• \mathcal{P} et \mathcal{P}_2 sont sécants selon la droite $d(\overrightarrow{u}, \overrightarrow{v})$ et \overrightarrow{w} ne sont pas coplanaires). • \mathcal{P}_2 et \mathcal{P}_3 sont parallèles : $(\overrightarrow{u}, \overrightarrow{v})$ est une base de \mathcal{P}_2 et de \mathcal{P}_3 .

- d_1 et \mathcal{P} sont sécants en M ($\overrightarrow{u_1}$, \overrightarrow{v} et \overrightarrow{w} ne sont pas coplanaires).
- d_2 est parallèle à $\mathcal{P}(\overrightarrow{u_2}, \overrightarrow{v}$ et \overrightarrow{w} sont coplanaires).

- d_1 et d_2 sont parallèles ($\vec{u_1}$ et $\vec{u_2}$ sont colinéaires).
- d_1 et Δ sont sécantes ($\overrightarrow{u_1}$ et \overrightarrow{v} ne sont pas colinéaires).
- d_2 et Δ ne sont pas coplanaires ($\vec{u_2}$ et \vec{v} ne sont pas colinéaires).

