1. Descrição das Estratégias de Escolha do Pivô e número de Elementos

- **Primeiro Pivô**: O algoritmo sempre seleciona o primeiro elemento do array como pivô.
- Último Pivô: O último elemento do array é escolhido como pivô.
- **Pivô Aleatório**: Um elemento aleatório dentro do intervalo atual é escolhido como pivô.
- **Mediana de Três**: O algoritmo escolhe como pivô a mediana de três elementos: o primeiro, o último e o elemento do meio do array.
- **Número de Elementos do Array**: Foram escolhido arrays de 5000 / 10.000 / 15.000 elementos, sendo os arrays crescente, parcialmente crescente, decrescente, parcialmente decrescente e aleatório.

2. Resultados de Desempenho

a) Array Crescente

- O **Pivô Aleatório** apresentou os melhores tempos em todas as amostras (5000, 10.000 e 15.000 elementos), com uma diferença significativa em comparação às outras estratégias.
- A Mediana de Três teve desempenho médio, mas consistentemente mais lento que o pivô aleatório.
- O **Primeiro Pivô** e o **Último Pivô** foram mais lentos, com o **Primeiro Pivô** tendo uma leve vantagem em arrays maiores (15.000 elementos).

Tamanho do Array	Primeiro Pivô (s)	Ultimo Pivô (s)	Random Pivô (s)	Mediana de Três (s)
5.000	0,028	0,036	0,005	0,063
10.000	0,095	0,082	0,006	0,136
15.000	0,184	0,150	0,008	0,181

Tamanho do Array

c) Array Parcialmente Crescente

- A diferença de tempos entre as estratégias foi mínima, mas o **Primeiro Pivô** e o **Último Pivô** foram mais rápidos com arrays menores (5000 elementos).
- Para arrays maiores, o **Pivô Aleatório** teve melhor desempenho.

Tamanho do Array	Ultimo Pivô (s)	Ultimo Pivô (s)	Random Pivô (s)	Mediana de Três (s)
5.000	0,002	0,003	0,005	0,003
10.000	0,005	0,003	0,006	0,006
15.000	0,012	0,004	0,007	0,006

d) Array Parcialmente Decrescente

- Similar aos arrays decrescentes, as estratégias se comportaram de maneira próxima.
- O **Pivô pela Mediana** manteve-se entre os mais constante para todas as amostras.
- O **Pivô Aleatório** teve um tempo maior

Tamanho do Array	Primeiro Pivô (s)	Primeiro Pivô (s)	Random Pivô (s)	Mediana de Três (s)
5.000	0,002	0,002	0,005	0,002
10.000	0,003	0,004	0,006	0,004
15.000	0,006	0,006	0,011	0,008

e) Array Aleatório

6000

• O Mediana de Três se destacou mais uma vez, seguido pelo Pivô Aleatório .

8000

• Os pivôs **Primeiro** e **Último** apresentaram tempos consistentes e semelhantes.

Tamanho do Array	Primeiro Pivô (s)	Ultimo Pivô (s)	Random Pivô (s)	Mediana de Três (s)
5.000	0,002	0,003	0,008	0,003
10.000	0,003	0,003	0,006	0,004
15.000	0,005	0,005	0,008	0,007

10000

Tamanho do Array

12000

14000

3. Conclusão e Discussão

Com base nos resultados, é possível tirar as seguintes conclusões:

- Pivô Aleatório: Foi, de maneira geral, a segunda estratégia mais eficiente, especialmente em arrays grandes e com diferentes padrões (ordenados, parcialmente ordenados e aleatórios).
 Isso pode ser atribuído ao fato de que a escolha aleatória distribui melhor as divisões e evita a criação de partições desbalanceadas, um problema comum com pivôs fixos.
- **Primeiro e Último Pivô**: Essas estratégias se mostraram menos eficientes em arrays ordenados, especialmente o **Primeiro Pivô**, que teve tempos significativamente maiores. Isso se deve ao fato de que, em arrays já ordenados, esses pivôs criam partições desbalanceadas, resultando em tempos mais longos.
- **Mediana de Três**: Apresentou um desempenho estável em todos os cenários, mostrou-se uma boa estratégia, especialmente em arrays parcialmente ordenados, onde consegue evitar partições desbalanceadas.

Nome: Luis Henrique Ferreira Costa

4. Sugestões para Otimização

• **Mediana de Três** também pode ser uma boa escolha, embora tenha um custo computacional maior devido à necessidade de calcular a mediana, ela se tornou a melhor opção