ANALIZA MATEMATYCZNA

LISTA ZADAŃ 14

20.01.20

- (1) Zbadaj zbieżność podanych wzorami ciągów funkcyjnych, oraz zbieżność jednostajną na podanych zbiorach:

- stajną na podanych zbiorach:

 (a) $f_n(x) = \sqrt{x^4 + \frac{x^2}{n}}$, $(-\infty, \infty)$, (b) $f_n(x) = \sqrt[n]{1 + x^{2n}}$, $(-\infty, \infty)$,

 (c) $f_n(x) = x^n x^{2n}$, [0, 1], (d) $f_n(x) = \sin\left(\frac{x}{n}\right)$, $[0, \pi]$,

 (e) $f_n(x) = \sin^n(x)$, $(-\infty, \infty)$, (f) $f_n(x) = \frac{1}{1 + x + n}$, $[0, \infty)$,

 (g) $f_n(x) = \frac{1}{1 + (x + n)^2}$, $(-\infty, \infty)$, (h) $f_n(x) = \frac{1}{nx}$, (0, 1],

 (i) $f_n(x) = \frac{nx}{1 + nx^2}$, [-1, 1], (j) $f_n(x) = \frac{nx}{1 + n^2x^2}$, [-1, 1],

 (k) $f_n(x) = n \sin\left(\frac{x}{n}\right)$, [-1, 1], (l) $f_n(x) = nx^{-nx^2}$, [-1, 1].

- (2) Wyznacz zbiór, na którym zbieżny jest podany szereg funkcyjny, oraz sprawdź, czy zbieżność jest jednostajna:

- (a) $\sum_{n=1}^{\infty} \frac{1}{n^2} e^{-nx^2}$, (b) $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{1 + nx}}$, (c) $\sum_{n=1}^{\infty} \frac{\cos(n x)}{10^n}$, (d) $\sum_{n=1}^{\infty} n e^{-nx}$, (e) $\sum_{n=1}^{\infty} \frac{1}{n! \, x^n}$, (f) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + x^2}}$, (g) $\sum_{n=1}^{\infty} \frac{3^n \, x^n}{n^2}$, (h) $\sum_{n=1}^{\infty} 2^n \, x^n$, (i) $\sum_{n=1}^{\infty} \frac{5^n \, x^n}{n}$, (j) $\sum_{n=1}^{\infty} n \left(\sqrt{x \, (1 x)}\right)^n$, (k) $\sum_{n=1}^{\infty} \frac{1}{n^x}$, (l) $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$, (m) $\sum_{n=1}^{\infty} \frac{x}{x^2 + n^2}$, (n) $\sum_{n=1}^{\infty} \sin(nx)$.

- (3) Udowodnij, że następujące szeregi funkcyjne są jednostajnie zbieżne na całej pro-

 - (a) $\sum_{n=0}^{\infty} \frac{\sin(nx)}{n!}$, (b) $\sum_{n=1}^{\infty} \frac{\cos(nx)}{10^n}$, (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^2}$.
- (4) Udowodnij, że szereg funkcyjny $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{1+nx}}$ jest zbieżny jednostajnie na zbiorze $[0,\infty)$.

1

- (5) Udowodnij, że szereg funkcyjny $\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n x^n}$ jest zbieżny punktowo, ale nie jednostajnie na zbiorze $[1, \infty)$, oraz że jest zbieżny jednostajnie na zbiorze $[2, \infty)$.
- (6) Znajdź pochodną f'oraz całkę nieoznaczoną $\int f(x)\,dx$ następujących funkcji:

(a)
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^n$$
,

(a)
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^n$$
, (b) $f(x) = \sum_{n=0}^{\infty} \frac{1}{n^2+1} x^n$, (c) $f(x) = \sum_{n=1}^{\infty} (n+1) x^n$, (d) $f(x) = \sum_{n=1}^{\infty} x^n$.

(c)
$$f(x) = \sum_{n=0}^{\infty} (n+1) x^n$$

(d)
$$f(x) = \sum_{n=1}^{\infty} x^n.$$

(7) "Zwiń" następujące szeregi potęgowe, to znaczy znajdź wzór na sumę, i określ dziedzinę tak powstałej funkcji:

(a)
$$\sum_{n=0}^{\infty} x^{2n},$$

(b)
$$\sum_{n=1}^{\infty} n \, x^{2n}$$

(c)
$$\sum_{n=1}^{\infty} n^2 x^{2n}$$
,

(d)
$$\sum_{n=1}^{\infty} (-1)^n n x^n,$$

(e)
$$\sum_{n=1}^{\infty} n(n+1) x^n$$

(a)
$$\sum_{n=0}^{\infty} x^{2n}$$
, (b) $\sum_{n=1}^{\infty} n x^{2n}$, (c) $\sum_{n=1}^{\infty} n^2 x^{2n}$, (d) $\sum_{n=1}^{\infty} (-1)^n n x^n$, (e) $\sum_{n=1}^{\infty} n (n+1) x^n$, (f) $\sum_{n=1}^{\infty} n (n+1) (n+2) x^n$.