Bellman szabályok

Üzleti Intelligencia

2. Előadás: Bevezetés a megerősítéses tanulásba

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 1.félév

Bevezetés

Bevezetés

- Markov döntési folyamatok
- Értékfügvények
- Bellman szabályok
- Politika javítása

- Bevezetés
- Markov döntési folyamatol
- ⑤ Értékfügvények
- 4 Bellman szabályok
- Politika javítása

Bevezetés

000000000

A három fő típus, ahova be lehet sorolni a gépi tanulási algoritmusokat:

- Felügyelt tanítás
- Felügyelet nélküli tanítás
- Megerősítéses tanulás

Hol vagyunk?

A megerősítéses tanulás számos tudományterület együttese.

A fő elképzelése az, hogy az emberi illetve evolúcióból ismerős módszerekkel tanítson helyzethez alkalmazkodni tudó, intelligens modelleket valamilyen módszertan alapján.

A megerősítéses tanulás

A megerősítéses tanuló modell célja, hogy a legjobb döntéseket hozza egymás után, egy adott kontextusban, hogy maximalizálja a sikert mérő értéket. A döntéshozó entitás próbákkal és hibákkal tanul. Nincs megadva, hogy milyen döntéseket hozzon, hanem ő maga tanulja meg azáltal, hogy kipróbálja azokat.

Ügynök

Az autonóm cselekvő, ami a feladat végrehajtására törekszik.

Környezet

Egy fekete doboz, amely az ügynök cselekvéseinek helyszíne.

Idő

RL folyamán az időlépések diszkrétek: $t \in 1, 2, 3, \dots$

Állapot

Az ügynök megfigyelése a környezetre vonatkozóan. A környezetet leíró változók összessége. Jelölés: $s \in S$, ahol S az összes állapot halmaza.

Jutalom

Az ügynök cselekvésének jóságát jelző skalár. Jelölés: $r \in \mathbb{R}$

Cselekvés

Az ügynök által végrehajtott művelet, ami a környezetet befolyásolja. Jelölés: $a \in A$, ahol A az összes cselekvés halmaza.

Politika

Egy állapot → cselekvés leképezés. Az ügynök cselekvéseinek szabályait adja meg.

- Jelölés:
 - Determinisztikus: $\pi \in S \rightarrow A$
 - Sztochasztikus: $\pi \in S \times A \rightarrow [0,1]$ Röviden: $\pi(s,a)$ Vagy: $\pi(a|s)$

Bevezetés

 Az ügynök és a környezet egymásra hatnak. Az ügynök cselekszik, ennek hatására a környezet megváltozik. Az ügynök megfigyeli a környezetet, majd ismét cselekszik:

$$s_1 \rightarrow a_1 \rightarrow s_2 \rightarrow a_2 \rightarrow \dots \rightarrow s_t \rightarrow a_t$$

- A jutalom azonnali, és cselekvés-állapot párosért jár: R(s, a)
- A környezet változását az átmeneti valószínűségek adják: P(s'|s,a), ami s' következő állapot valószínűsége sállapotból, a cselekvést követően. Ez a körnvezet dinamikája.

 Az ügynök célja a lehető legmagasabb jutalom összegyűjtése hosszú távon:

$$E_{\pi}(r_1 + r_2 + r_3 + \dots) \to max$$

A kredit hozzárendelési probléma

A megerősítéses tanulásban a jutalmak általában ritkák és késleltetettek. Például: ha az ügynök életben maradt 100 lépésen keresztül, és a 101. lépésben meghal, honnan tudjuk, melyik lépés volt érte a felelős?

A probléma megoldására a tanulás egy diszkont rátát (γ) alkalmaz. A diszkont ráta megadja a jövőbeli jutalmak jelenbeli értékét. Valamely r

jutalom értéke k időlépés után γ^{k-1} .

Cselekvés: Jobb Jobb Jobb Jutalom: +10 0 -50
Hozam: -22 80% -40 80% -50
Diszkont ráta

A kredit hozzárendelési probléma

Ha az ügynök háromszor egymás után jobbra megy, és +10 jutalmat kap az első lépés után, 0-t a második lépés után, és végül -50-et a harmadik lépés után, akkor feltéve, hogy $\gamma = 0.8$ diszkontálási tényezőt használ, az első lépés hozama $10 + \gamma 0 + \gamma^2(-50) = -22$ lesz.

Ha a diszkontálási tényező közel van a 0-hoz, akkor a jövőbeli jutalmak nem számítanak sokat az azonnali jutalmakhoz képest. Ha viszont a diszkontálási tényező közel van 1-hez, akkor a jutalmak a jövőben majdnem ugyanannyit számítanak, mint az azonnali jutalmak.

- Bevezeté:
- Markov döntési folyamatok
- Értékfügvények
- 4 Bellman szabályok
- Politika javítása

Markov láncok

Markov lánc

Memória nélküli sztochasztikus folyamat fix számosságú állapottal, amely véletlenszerűen vált állapotot minden lépésben.

Az átmeneti valószínűség az aktuális állapotból (s) a következő állapotba (s')előre meghatározott, és csak az (s, s')pároson múlik, múltbeli állapotokon nem.

Markov láncok

Markov tulajdonság

Az ügynök nem nyerhet semmit azáltal, hogy ismeri az előző állapotokat.

- Miért fontos ez?
- Milyen példákat lehet mondani ilyen játékokra?

Markov döntési folyamatok

Markov döntési folyamat (MDP)

Az ügynök minden lépésben választhat egy cselekvés közül. A környezet állapot átmeneti valószínűsége a következő állapotba a választott cselekvésen fog múlni. Ezenkívül némelyik állapot átmenetek jutalommal (pozitív vagy negatív) járnak.

Markov döntési folyamatok

Ha az ügynök az s_0 állapotban kezd, választhat az a_0 , a_1 vagy a_2 cselekvések között. Ha az a₁ cselekvést választja. biztosan az s_0 állapotban marad jutalom nélkül. De ha az a_0 cselekvést választja, akkor 70% esélye van arra, hogy +10jutalmat kapjon és az s_0 állapotban maradjon. Előbb-utóbb az s_1 állapotba fog megérkezni. Itt csak két lehetséges cselekvés van: a_0 és a_2 . Az a_0 cselekvéssel ugyanabban az állapotban marad, vagy továbblép az s_2 állapotba és -50 jutalmat kap. Az s_2 állapotban csak az a_1 cselekvést teheti meg, amely visszavezeti az s_0 állapotba, +40 jutalommal.

Bellman szabályok

A Markov döntési folyamat medoldása

A probléma felírása:

- ullet Az ügynök s_0 kezdőállapotból indul.
- ullet Minden cselekvését π politika határozza meg.
- A környezet az állapot és a cselekvés alapján ad jutalmat:

$$s_{t+1} \sim P(s_t, a_t); \ r_{t+1} \sim R(s_t, a_t)$$

 A politika optimális, ha a kumulált diszkontált jutalma (hozama) maximális:

$$G_t = (r_1 + \gamma r_2 + \gamma^2 r_3 + \dots) =$$

$$= \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \to max$$

 A cél az optimális politika megtalálása.

17		
	(X)	

Bevezeté:

Bevezetés

- Markov döntési folyamatok
- ⑤ Értékfügvények
- 4 Bellman szabályok
- Politika javítása

Állapot-érték függvény

Az értékfüggvények az állapotok függvényei amik megadják, hogy mennyire jó az ügynöknek, hogy egy adott állapotban áll.

Állapot-érték függvény (value)

Egy s állapot állapot-értéke $(v_\pi(s))$ valamely π politika szerint a várható hozam, ha az ügynök s állapotból indul, és utána π szerint hozza döntéseit:

$$V_{\pi}(s) = E_{\pi} \left[G_t | S_t = s \right] =$$

$$= E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid S_t = s \right]$$

Példa: golfozásban a putter a kis hatótávú golfütőre vonatkozik. A diagramon azt látjuk, mennyire jó egy adott pozícióból ütni annak az ügynöknek, aki csak a putter ütőt használja. A terminális állapotban az érték 0, és minél távolabb van tőle, annál inkább csökken az értéke. A homokon a politika $-\infty$ értéket kap.

Állapot-értékek a Breakout-ban

A Breakout egy retró Atari játék, amiben a cél az, hogy az ütővel a játékos leüsse az összes téglát. A diagramon az adott állapothoz tartozó állapot-érték látható. Amikor felkerül a labda az állapot-érték is magasabb, mert ott potenciálisan több téglát tud kiütni.

Állapot-cselekvés minőség függvény

Hasonlóan az előzőhöz lehetséges definiálni egy adott állapot-cselekvés páros minőségének függvényét, amely megadja mennyire jó az ügynöknek, hogy egy adott állapotban áll, majd adott cselekvést hajt végre.

Állapot-cselekvés minőség függvény (quality)

Egy (s,a) állapot-cselekvés páros minőség függvénye valamely π politika szerint a várható hozam, ha az ügynök s állapotból indul, a cselekvést hajtja végre, majd utána π szerint hozza döntéseit:

$$Q_{\pi}(s, a) = E_{\pi} [G_t | S_t = s, A_t = a] =$$

$$= E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | S_t = s, A_t = a \right]$$

Példa: golfozásban a driver a nagy hatótávú ütőre vonatkozik. Ebben az esetben a q(s, driver) minőség függvény azt adja meg mennyire jövedelmező a játékosnak egy adott helyen állni, és onnan a driver ütőt választani a következő lövéshez.

Bevezetés

- Értékfügvények
- Bellman szabályok

Állapot-érték Bellman szabály

Az értékfüggvények egy alapvető tulajdonsága, hogy betartanak egy rekurzív kapcsolati rendszert. Minden π politikára és bármely s állapot esetén érvényes a következő konzisztencia kritérium sállapot és s' következő állapotai között:

Állapot-érték Bellman szabálv

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p\left(s',r|s,a\right) \left[r + \gamma v_{\pi}\left(s'\right)\right]$$

$$minden \ s \in S - re$$

- $\pi(a|s)$: a cselekvés valószínűsége s állapotból π politika szerint.
- p(s', r|s, a): s' következő állapot és r jutalom valószínűsége, ha adott s állapot és a cselekvés.

Állapot-cselekvés minőség Bellman szabály

Hogyan lehet javítani egy π politikát? Azt tudjuk, hogy mennyire jövedelmező egy sállapotból π -t követni - ez a $v_{\pi}(s)$. Érdemes lenne eltérni π politikától egy adott acselekvést választva?

Ezt adja meg az állapot-cselekvés minőség függvény: mennyire jövedelmező egy ügynöknek s állapotból acselekvést választani, majd utána π politikát követni:

Állapot-cselekvés minőség Bellman szabály

$$Q_{\pi}(s, a) = \sum_{s', r} p\left(s', r | s, a\right) \left[r + \gamma v_{\pi}\left(s'\right)\right]$$

• p(s', r|s, a): s' következő állapot és r jutalom valószínűsége, ha adott s állapot és a cselekvés.

Bevezetés

- Értékfügvények
- Politika javítása

Mohó ügynök

Hogyan válasszon cselekvést az ügynök? A legegyszerűbb cselekvés kiválasztási szabály, ha az ügynök mindig a számára elérhető legnagyobb értékű cselekvést választja. Ha több ilyen is van, tetszőlegesen választhat közöttük.

Mohó cselekvés választás

$$a_t = \underset{a}{\operatorname{argmax}} Q_t(a)$$

- Mindig a mohó a legjobb megoldás?
- A legjobb megoldás mohó?

Melyik úton jutna el a mohó ügynök a kezdő városból a cél városba, ha a lehető legkevesebbet akarja költeni üzemanyagra?

Mohó ügynök

Hogyan válasszon cselekvést az ügynök? A legegyszerűbb cselekvés kiválasztási szabály, ha az ügynök mindig a számára elérhető legnagyobb értékű cselekvést választja. Ha több ilyen is van, tetszőlegesen választhat közöttük.

Mohó cselekvés választás

$$a_t = \underset{a}{\operatorname{argmax}} Q_t(a)$$

- Mindig a mohó a legjobb megoldás?
- A legjobb megoldás mohó?

Melyik úton jutna el a mohó ügynök a kezdő városból a cél városba, ha a lehető legkevesebbet akarja költeni üzemanyagra?

Bevezetés

Véletlen politika értéke (V_k)

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Mohó stratégia V_k szerint

Bevezetés

A példában egy egyszerű GridWorld játéknak láthatóak az állapot-értékei (jobb) és a mohó ügynök adott állapot-értékhez tartozó cselekvései politika javítás során. A játék célja, hogy az ügynök elérje valamelyik szürke zónát.

Véletlen politika értéke (V_k)

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

Mohó stratégia V_k szerint

Bevezetés

A példában egy egyszerű GridWorld játéknak láthatóak az állapot-értékei (jobb) és a mohó ügynök adott állapot-értékhez tartozó cselekvései politika javítás során. A játék célja, hogy az ügynök elérje valamelyik szürke zónát.

Véletlen politika értéke (V_k)

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Mohó stratégia V_k szerint

Bellman szabálvok

Bevezetés

Véletlen politika értéke (V_k)

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

Mohó stratégia V_k szerint

$$k = 3$$

Bevezetés

Véletlen politika értéke (V_k)

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

Mohó stratégia V_k szerint

$$k = 10$$

Bevezetés

Véletlen politika értéke (V_k)

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Mohó stratégia V_k szerint

$$k = \infty$$