

數與式

- 學測趨勢〉這是一到四冊各章教材中最為「混亂」的一章,所介紹的觀念包山包海,從數字結 構到指數對數,因各題型之間欠缺連貫性,導致各版本教科書都有各自的編寫順序 ,請同學當成是總複習的前菜拼盤吧!
- **準備方向** 解題時為了能夠即時想到應對的方法,請同學務必反覆熟讀本章的概念。在大考試 題的「素養」要求之下,本單元各題型很容易被加工成為情境閱讀試題,請同學要 有心理上的準備。

年 度	101	102	103	104	105	106	107	108	109	110
學測命題數	1	2	3	0	2	2	0	2	1	2

- ① 分數化成小數:最簡分數 $\frac{b}{a}$ 可用除法化成小數,若分母 a 沒有 2×5 以外的質因 數,則 $\frac{b}{a}$ 可化成有限小數,否則就是無限循環小數。
- M A 下列哪些分數可化成有限小數?

(A)
$$\frac{7}{8}$$

(B)
$$\frac{8}{7}$$

(C)
$$\frac{21}{75}$$

(D)
$$\frac{3}{2^{10}}$$

- 例 B 將 $\frac{1234}{9999}$ 化成小數形式為 $0.\overline{1234}$,設小數點後第 n 位的數字為 f(n) ,求 f(1) + $f(2) + f(3) + \cdots + f(99) =$ \circ
 - ② 循環小數化成分數:利用解方程式可以把循環小數化成分數,如 $x = 1.2\overline{34}$,則 $10x = 12.\overline{34}$, $1000x = 1234.\overline{34}$,所以 1000x - 10x = 1234 - 12,得 $x = \frac{1234 - 12}{990}$ 。 依此類推,如 $3.\overline{4} = \frac{34-3}{9}$, $5.6\overline{789} = \frac{56789-56}{9990}$ 。 請注意 $0.\overline{9} = \frac{9}{9} = 1$ 。
- 例 A 設 $a \times b$ 為循環小數, $a = 0.\overline{12}$, $b = 0.\overline{01}$,則 a b 的值是下列哪一個選項?

(C)
$$\frac{1}{9}$$

(D)
$$\frac{10}{99}$$

(B) 0.1111 (C)
$$\frac{1}{9}$$
 (D) $\frac{10}{99}$ (E) $\frac{100}{999}$

答對率 80% 108 指考乙

與

3 有理數、無理數與數系構造

- (1)有限小數與循環小數都可以化成分數 $\frac{b}{a}$ 的形式,其中 $a \cdot b$ 為整數,且 $a \neq 0$, 稱為有理數,如 $\frac{-5}{1}$ 、 $\frac{2}{3}$ 、0、 $2.\overline{3}$ 。全體有理數記為Q。兩個相異有理數之間有 無限多個有理數,稱為稠密性。
- (2)不循環的無限小數無法表為分數形式,稱為無理數,如 π 、 $\sqrt{3}$ 。
- (3)有理數與無理數合稱為實數,與實數線上的點一一對應。全體實數記為R。
- (4)有理數及實數的四則運算都具有封閉性(除數不可為 0),其加法與乘法有交 换律、結合律、分配律,可利用等量公理對等式進行移項處理。
- (5)任兩個實數 $a \times b$ 可比較大小, $\lceil a > b \times a = b \times a < b \mid$ 恰有一個成立。可利用 等量公理對不等式推行移項處理。

(6)全體正整數記為 N (又稱自然數),全體整數記為 Z 。兩個相 異整數的差至少是 1 ,稱為 <mark>離散性</mark> 。數系構造如右圖。	(N Z)QR

例 A 試選出正確的選項:

(B)
$$0.\overline{34} > \frac{1}{3}$$

(C)
$$0.\overline{34} > 0.343$$

(D)
$$0.\overline{34} < 0.35$$

$$(E) 0.\overline{34} = 0.3\overline{43}$$

例 B 設 $a \times b \times c$ 為有理數, $x \times y$ 為無理數, 下列推論哪些為真?

$$(B) x + y$$
 必為無理數

 $M \subset$ 設 $a = \sqrt{7 + \sqrt{47}}$,則 a 在哪兩個連續整數之間?

例 D $x \cdot y \in Z$,若 $|x-7|+3(y-4)^2=2$,則數對 (x,y)=

與

4 數線上的分點公式:數線上有 $A(a) \setminus B(b)$ 兩點,則 $\overline{AB} = |a-b|$, 若點 P 在 \overline{AB} 內且 \overline{PA} : $\overline{PB} = m$: n, 則 P為 $\frac{mb+na}{m+n}$ 。反之,若 $m \cdot n$ 為正數,則點 $\frac{mb+na}{m+n}$ 必 在 $a \cdot b$ 之間,且到 $a \cdot b$ 的距離比為 $m : n \circ$

- 例A 點 P(x) 在 A(5)、B(11) 之間,且 \overline{AP} : $\overline{PB} = \sqrt{3}$: $\sqrt{2}$,則 $x = a + b\sqrt{6}$,其中 a、 *b* 為整數,求 *a* = _____。
- 例 B 已知實數 $a \times b$ 滿足 a < b,則下列哪些大小關係必定成立?

$$(A)\frac{a+b}{3} < \frac{a+b}{2}$$

(B)
$$\frac{4a+b}{5} < \frac{3a+b}{4}$$

(C)若
$$b > 0$$
,則 $\frac{2a - b}{5} < \frac{a - b}{4}$

(D)若
$$b < 0$$
,則 $\frac{2a - b}{5} < \frac{a - b}{4}$

$$\sqrt{(a+b)+2\sqrt{ab}} = \sqrt{a} + \sqrt{b}$$

$$\sqrt{(a+b)-2\sqrt{ab}} = \sqrt{a} - \sqrt{b}$$

- 例 A 設 $\sqrt{5+2\sqrt{6}} + \sqrt{6+2\sqrt{5}} = a + \sqrt{b} + \sqrt{c} + \sqrt{d}$, 其中 $a \cdot b \cdot c \cdot d$ 為由小而大的自然 數,試求a+b+c+d=。
- 例 B 無理數 $\sqrt{14+\sqrt{180}}$ 的整數部分為 , 小數部分為 _____。

₹ 讀完可以先練習範例 5

⑥ 算幾不等式:正數 a 與 b 必滿足 $\frac{a+b}{2} \ge \sqrt{ab}$,且兩邊 相等的條件為a = b。可利用右圖呈現算幾不等式。

$$y^2 =$$
 \circ

例 B 求
$$f(x) = x^2 + \frac{16}{x^2 + 1}$$
 在 $x = ____$ 時, $f(x)$ 有最小的函數值為____。

賣完可以先練習範例 6 ★ ★ ★ ★

② 三次乘法公式:其中 $(a \pm b)^3$ 可推廣成二項式定理 $(a + b)^n$,見本書第 5 章「排列組合與機率」概念 (3)。

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

 $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

例 A 請化簡 $(4+\sqrt{10})^3+(4-\sqrt{10})^3=$ _____,若 $(4+\sqrt{10})^3$ 介於自然數 n 與 n+1 之間,求 n=____。

例 B 已知
$$a - b = 3$$
, $ab = 2$, 求 $a^3 - b^3 =$

例 C 若
$$x + \frac{1}{x} = 5$$
,求 $x^3 + \frac{1}{x^3} =$ ______ \circ

讀完可以先練習範例 7 ★★★★

- 8 含絕對值的方程式不等式與區間符號:數線上x 到原點的距離為|x|, a 到 b 的距離為|a-b|。
 - (1)設 k 為正數 |x| = k 的解為 $x = \pm k$ ∘
 - (2) 設 k 為正數, $|x| \le k$ 的解為 $-k \le x \le k$,圖形為 $-k \le x \le k$, 記為 [-k, k]。
 - (3) 設 k 為正數, $|x| \ge k$ 的解為 $x \le -k$ 或 $x \ge k$,圖形為 $\frac{1}{-k}$,記為 $(-\infty, -k] \cup [k, \infty)$ 。
 - (4) f(x) = |x-a| + |x-b| 為「x到 a 與 b 的<mark>距離和</mark>」,所以f(x) 的最小值為 |a-b|。

- 例 A 方程式 |2x+1|=9 的解為 x=。
- 例 B 不等式 $|-2x+7| \le 10$ 的整數解有 個。
- 例 C f(x) = |x+1| + |x-5|,則 f(x) 的最小值為_____,此時 x 的範圍為 _____

 - ② 指數符號的定義:若 $a \neq 0$,則 $a^0 = 1$, $a^{-n} = \frac{1}{a^n}$ 。若 a > 0,可取分數次方為 $a^{\frac{n}{m}} = \sqrt[m]{a^n}$, 其中 $m \times n$ 為正整數且 $m \ge 2$ 。無理數次方可用分數次方來估計。
- 例A 下列哪一個選項是正確的? (A) $(-2)^{-3} = 8$ (B) $3^{-1} = \frac{1}{3}$ (C) $16^{-\frac{3}{4}} = -8$ (D) $(-\frac{1}{8})^{\frac{1}{3}} = -\frac{1}{2}$

(A)
$$(-2)^{-3} = 8$$

(B)
$$3^{-1} = \frac{1}{3}$$

(C)
$$16^{-\frac{3}{4}} = -8$$

- 例 B 對任意實數 x 而言, $27^{(x^2+\frac{2}{3})}$ 的最小值為_____ (A) 3 (B) $\sqrt{3}$ (C) 9 (D) 27 (E) $81\sqrt{3}$
- 例 $\left(\frac{8}{27}\right)^{-\frac{2}{3}} \times (0.25)^{-2.5} =$ _____ \circ

賣完可以先練習範例 8 ★★★★

① 指數律:指數符號皆能滿足指數律,如 $a \cdot b > 0$, $x \cdot y$ 為實數,則:

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad (a^{x})^{y} = a^{xy} \qquad a^{x} \cdot b^{x} = (ab)^{x} \qquad \frac{a^{x}}{b^{x}} = (\frac{a}{b})^{x}$$

$$\frac{a^x}{a^y} = a^{x-y}$$

$$(a^x)^y = a^{xy}$$

$$a^x \cdot b^x = (ab)^x$$

$$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

- 例 B $\frac{(2^{-5})^{\frac{7}{3}}}{8^{\frac{4}{9}}} = 16^x$,則 x =

例(下列哪些選項 (A) 3 ^{4x}		$(C) (3^x)^4$	(D) 9^{2x}	(E) $9^{(x^2)}$
					/ ★★★★
0	號表法。若 n 點後第 $ n $ 位	≥ 0 ,則 x 的整始不為 0 ,如 3	數部分有 $n+1$ 位	;若 n < 0,則 數,7.18×10	数,稱為 x 的 <mark>科學記</mark> x 為純小數且自小數 4 自小數點後第 4 位
例A			所含的粒子數,數 位數,最高值		× 10 ²³ ,此數值共有 4 。
例 B			:10 ⁻²⁸ 公克,此數 的數字,此數字》	المارية الماية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية المارية الماي المارية المارية المارية المارية المارية الماري الماني الماي الماي المارية المارية الماري الماري الماري الماري الماري الماري الماري الماري الماري الماري الماري الماري الماري	效數字,自小數點後以先練習範例9、10
12	常用對數:設	: a 為正實數,k	為實數,滿足 10		
			7符號的替換可得		· ·
		· ·	10, log 3 ≈ 0.4771 以 10 為底數,再月		2,10 ^{0.4771} ≈3。利用 學記號。
例A	已知 log 2 ≈ (
	,位).3010,log3 ≈ s計 k 的大小為_		6,則次數 k 用	常用對數表示為 k =
例 B		s計 k 的大小為_	•		常用對數表示為 $k =$ 0 ,且 n 為正整數。若
	將 (∛49) ¹⁰⁰ 寫	s計 k 的大小為_ 写成科學記號 (¾ ·為 m, 則數對 ($\sqrt[6]{49}$) ¹⁰⁰ = $a \times 10^n$,	其中 1 ≤ a < 10	

範例 1 有理數與無理數

學校園遊會的摸彩攤位有消費滿額的獎金放送活動,主辦人阿財準備了一個摸彩箱 ,箱中有五張字卡,每張字卡各有一個數值,分別是

> $\sqrt{10}$ $3.\overline{57}$ $1 + \sqrt{5}$ $(1+\sqrt{2})^2+(1-\sqrt{2})^2$ $|\sqrt{2}+2|+|\sqrt{2}-2|$

同學同時從摸彩箱取出三張字卡,獲得三個字卡的數字後,根據下列規則領取獎金:

/最大數比4還小 ⇒ 獲得獎金10元 、最大數比4還大 ⇒ 獲得獎金8元 ~最大數比4還小 ⇒ 獲得獎金5元 「有理數的個數比無理數還多」 、最大數比4還大 ⇒ 獲得獎金3元

請回答下列問題:

(1) 若小華抽得的三張字卡是 3. $\overline{57}$ 1+ $\sqrt{5}$

 $|(1+\sqrt{2})^2+(1-\sqrt{2})^2|$, 請問小華獲得的獎金為下列哪一個選項?

(A) 10 元

解

- (B) 8 元
- (C) 5 元
- (D) 3 元
- (2) 若小明獲得獎金 10 元,請問他抽得哪三張字卡?
- (3) 許多人抽完字卡領得獎金之後,阿財發現有一個獎額都沒有人領過,請問是哪一 個? 。為什麼沒人領到這個獎額?
- (4)阿財設計這個活動時,本以為人人有獎,結果卻發現有人領不到獎金,請問有哪 些情形會導致沒有獎金?請全部列出。

●小小叮嚀

這是結合情境的素養題型, 符合 108 課綱教學新趨勢

- (A) $\sqrt{13} > 3.5$ (B) $\sqrt{13} < 3.6$
- (C) $\sqrt{13} \sqrt{3} > \sqrt{10}$

- - (D) $\sqrt{13} + \sqrt{3} > \sqrt{16}$ (E) $\frac{1}{\sqrt{13} \sqrt{3}} > 0.6$

全對率 59% 103 學測

類題 2 考慮有理數 $\frac{n}{m}$, 其中 $m \times n$ 為正整數且 $1 \le mn \le 8$ 。則這樣的數值 (例如 $\frac{1}{2}$ 與 $\frac{2}{4}$ 同值,只算一個) 共有幾個? _____

- (A) 14 個 (B) 15 個 (C) 16 個 (D) 17 個 (E) 18 個 答對率 60% 105 指考乙

與

範例2 實數的大小與範圍

請問下列選項哪些正確?

(A) $9\sqrt{5} < 20$

- (B) $\sqrt{7} + \sqrt{2} > 4$
- (C) $\sqrt{13} \sqrt{10} < \sqrt{11} 2\sqrt{2}$ (D) 若 $-1 \le x \le 3$,則 $1 \le x^2 \le 9$
- (E)若 $-2 \le x \le 5$ 且 $2 \le y \le 3$,則 $-6 \le x 2y \le -1$

類題 3 設實數 $a \times b$ 滿足 $0 < a < 1 \times 0 < b < 1 \times 1$,則下列選項哪些必定為真?

- (A) 0 < a + b < 2 (B) 0 < ab < 1
- (C) -1 < b a < 0
- (D) $0 < \frac{a}{b} < 1$ (E) |a b| < 1

類題 4 $x \setminus y$ 為實數, 若 $|2x-1| \le 7$, $|y-4| \le 2$, 則下列選項哪些必成立?

- $(A) 5 \le x y \le 2$
- (B) $9 \le x^2 \le 16$
- $(C) 27 \le x^3 \le 64$

- (D) $-6 \le xy \le 24$
- $(E)\frac{1}{6} \le \frac{1}{v} \le \frac{1}{2}$

範例3 分點公式

全對率 38% 103 指考乙

三相異實數 $a \cdot b \cdot c$ 滿足 $b = \frac{4}{5}a + \frac{1}{5}c$, 若將 $a \cdot b \cdot c$ 標示在數線上,則:

(A) b 在 a 與 c 之間

- (B) c > b
- (C)若 $d = \frac{4}{3}a \frac{1}{3}c$,則 d 在 a 與 b 之間 (D) a 到 c 的距離是 a 到 b 的距離的 5 倍
- (E)如果 $|b| = \frac{4}{5}|a| + \frac{1}{5}|c|$, 則 $a \cdot b \cdot c > 0$

【解)

❷ 關鍵想法 —

注意 $\frac{4}{5} + \frac{1}{5} = 1$,所以 b 在 $a \cdot c$ 之間,且距離比例固定

類題 5 數線上 $P(3) \setminus Q(6) \setminus R(x)$ 三點都在 $A \setminus B$ 兩點之間,已知 $\overline{PA} : \overline{PB} = 2:3$ \overline{OA} : \overline{OB} = 4:9, \overline{RA} : \overline{RB} = 6:5, \overline{X} x =

類題 6 數線上由 A(-4) 出發朝右步行到達 P(x), 再騎上單車朝右駛抵達 B(88), 已 知步行的速度是每秒 3 單位,騎單車的速度是每秒 10 單位,且 A 到 P 的時間 是P到B的一半,求 \overline{PA} : \overline{PB} = ,x= 。

範例 4	根式的化簡

設 $\sqrt{7+4\sqrt{3}}$ 的整數部分為 a , 純小數部分為 b , 則 $a+\frac{b^2}{1-b}$ 之值為_____。

fx 應用公式 $a \ge b \ge 0$, \blacksquare

$$\sqrt{a+b\pm2\sqrt{ab}} = \sqrt{a}\pm\sqrt{b}$$

類題 7 介於 $\frac{4}{2+\sqrt{3}}$ 與 $\frac{11}{\sqrt{13-4\sqrt{3}}}$ 之間的整數共有_____個。 ($\sqrt{3}\approx 1.732$)

類題 8 設方程式 $\sqrt{2}x^2 + \sqrt{6}x - 1 = 0$ 的負實根為 α ,則下列何者正確?

(A)
$$-1 < \alpha < 0$$

(B)
$$-2 < \alpha < -$$

(C)
$$-3 < \alpha < -2$$

(A)
$$-1 < \alpha < 0$$
 (B) $-2 < \alpha < -1$ (C) $-3 < \alpha < -2$ (D) $-4 < \alpha < -3$

範例 5 算幾不等式

答對率 57% 101 指考甲

當(x,y)在直線2x+y=3上變動時,關於 $K=9^x+3^y$ 的敘述,試問下列哪個選項 是正確的?

- (A) K 有最大值 28、最小值 $6\sqrt{3}$ (B) K 有最大值 28、但沒有最小值
- (C) K 沒有最大值、但有最小值 12
- (D) K 沒有最大值、但有最小值 $6\sqrt{3}$
- (E) K 沒有最大值也沒有最小值

解

注意到 $9^x = 3^{2x}$,而且 $3^{2x} \cdot 3^y = 3^{2x+y}$

類題 9 若實數 x imes y 滿足 $9x^4 + 25y^4 = 270$,求乘積 xy 的最大值為 。

類題 10	如右圖, ΔABC	面積為 25,	BC 邊上的高為	\overline{AH} , \bigcirc
	的最小值為	0		

範例 6 三次乘法公式			答對率72%	100 學測
多項式 $4(x^2+1)+(x+1)$ (A) $x(x+1)^2$	(B) $2x(x-1)^2$	列哪一個選項 (C) x (x-1	· —	-
(D) $2(x-1)^2(x+1)$	(E) $2x(x-1)(x+1)$			
			$3 = a^3 + 3a^2b$ $3 = a^3 - 3a^2b$	

類題 11 求 2¹⁵ + 1 的最大質因數為

類題 12 已知實係數多項式方程式 $x^3 + ax^2 + bx + 8 = 0$ 的三根相同,請問 b 的值等於下 列哪一個選項? (A) 6 (B) 8 (C) 10 (D) 12 (E) 14 答對率 78% 101 指考乙

範例 7 絕對值方程式與不等式

大雄的家在數線上點 A(1) 處,學校在點 B(9) 處,有一天大雄和小夫相約在此數 線的 K(x) 處要把所借的漫畫還給他,大雄從 A 走到 K 才發現漫畫忘記帶,又走 回A,但在家中卻找不到漫畫,只好再走到K處和小夫商量,這時小夫告訴大雄漫 畫可能放在學校,大雄就再從K走到B,發現漫畫真的放在學校,拿到漫畫後便走 回 K 還給小夫。這樣子糊塗的大雄前前後後總共走了 74 單位的距離才把漫畫還給

小夫,請算出 x =	0
<u> </u>	

② 怎麼解決 遇到實數的絕對值問題,如果 想不到好的方法,就用「分段 討論」來解

類題 14 試問數線上有多少個整數點與點 $\sqrt{101}$ 的距離小於 5 ,但與點 $\sqrt{38}$ 的距離大於

3 ? (A) 1 個

(B) 4 個

(C) 6 個

(D) 8 個

(E) 10 個

答對率 68% 109 學測

範例8 指數符號與指數律

設 a 與 b 均為正實數,滿足 $a^{\sqrt{2}} = \sqrt{2}$ 目 $b^{\sqrt{3}} = \sqrt{3}$,試問:

(1)關於數值 a 的關係式,下列各選項哪些正確?

(A)
$$a^2 = 2$$

(B)
$$a^{3\sqrt{2}} = 2\sqrt{2}$$

(A)
$$a^2 = 2$$
 (B) $a^{3\sqrt{2}} = 2\sqrt{2}$ (C) $a^{\frac{1}{\sqrt{2}}} = \sqrt{\frac{1}{2}}$ (D) $a^{-\sqrt{2}} = \frac{\sqrt{2}}{2}$

(D)
$$a^{-\sqrt{2}} = \frac{\sqrt{2}}{2}$$

(2)化簡 a^{12} 與 b^{12} ,並判別 a 與 b 的大小關係。

(3)請使用計算機,求出 a 與 b 的近似值到小數點後第四位。

解

108 課綱強調使用計 算機,希望大考能配 合使用, 這是未來的 考試趨勢

類題 15	設 $a = (\frac{1}{2})^{\frac{1}{2}}$,	$b = (\frac{1}{2})^{\frac{1}{3}}$,	$c = (\frac{1}{4})^{\frac{1}{4}}$,	下列選項何者為真?	
	_	3	4		

- (A) a > b > c
- (B) a < b < c
- (C) a = c > b

- (D) a = c < b
- (E) a = b = c

類題 16 某個手機程式,每次點擊螢幕上的數 a 後,螢幕上的數會變成 a^2 。當一開始時 螢幕上的數 b 為正且連續點擊螢幕三次後,螢幕上的數接近 81^3 。試問實數 b最接近下列哪一個選項?

(A) 1.7

(B) 3

(C) 5.2

(D) **9**

(E) 81

答對率 51% 106 學測

範例 9 常用對數與計算機的操作

小明手機開啟計算機的應用程式後,發現許多看不懂的符號按鍵,能夠理解的只有 $\left[x^{2}\right]$ 、 $\left[\frac{1}{x}\right]$ 、 $\left[\sqrt{2}/x\right]$ 、 $\left[10^{x}\right]$ 、 $\left[\log_{10}\right]$ 、…等幾個,試問:

- (1)小明隨意輸入一個比1大的數字,再按下列哪些按鍵會讓螢幕顯示的數字比原來 澴小?
- $(B)\left(\frac{1}{x}\right) \qquad \qquad (C)\left(\frac{2\sqrt{x}}{\sqrt{x}}\right)$
- (D) $[10^x]$
- (2) 若小明清除數值資料後,輸入一個比1小的正數,再按下列哪些按鍵會讓螢幕顯 示的數字比原來還大?
- (B) $\left(\frac{1}{x}\right)$ (C) $\left(\frac{2\sqrt{x}}{x}\right)$ (D) $\left(10^{x}\right)$
- $(E) \log_{10}$
- (3)小明輸入 0.2,依序按下 (x^2) $\rightarrow (\frac{1}{x})$ $\rightarrow (2\sqrt{x})$ $\rightarrow (10^x)$ $\rightarrow (\log_{10})$,請問最終螢幕顯示 的數字為何?

類題 18 設正實數 b 滿足 $(\log 100)(\log b) + \log 100 + \log b = 7$ 。試選出正確的選項。

- (A) $1 \le b \le \sqrt{10}$
- (B) $\sqrt{10} \le b \le 10$ (C) $10 \le b \le 10\sqrt{10}$
- (D) $10\sqrt{10} \le b \le 100$ (E) $100 \le b \le 100\sqrt{10}$

答對率 54% 108 學測

數 與

範例 10 使用對數求科學記號

小華操作計算機得知 $\log 278 \approx 2.44404$ 與 $\log 2.5351 \approx 0.40400$,請利用這兩個對數值 ,求 278¹⁰⁰ 乘開後的科學記號表法,取三位有效數字為 ,可知 278¹⁰⁰ 乘開後為 位數字。

解

類題 19 觀察 2 的次方所形成的等比數列: $2,2^2,2^3,2^4,\dots$, 設其中出現的第一個 13 位數為

類題 20 若 $(\frac{2}{3})^{100} = 0.00 \cdots 0 a_1 a_2 a_3 \cdots$,其中 $a_1 \cdot a_2 \cdot a_3 \cdot \cdots \in \{0, 1, 2, 3, \cdots, 9\}$, $a_1 \neq 0$,

答對率 59% 101 指考乙

則數對 $(n, a_1) =$ $(\log 2 \approx 0.3010, \log 3 \approx 0.4771)$

一單選題

(A)
$$a = b = c$$

(B)
$$a > b = c$$

(C)
$$a > b > c$$

(D)
$$c > a > b$$

(E)
$$b = c > a$$

2. 請問下列哪一個選項的數不是有理數?

(A)
$$0.\overline{23}$$

(B)
$$\sqrt{361}$$

(D)
$$10^{0.301}$$

(E)
$$\sqrt{1\frac{9}{16}}$$

____3. 設 $k = (\frac{1}{25})^{\frac{1}{4}}$,其中 $\sqrt{2} \approx 1.414$, $\sqrt{5} \approx 2.236$,則下列哪一個選項正確?

(A)
$$0.2 < k < 0.3$$

(B)
$$0.3 < k < 0.4$$

(C)
$$0.4 < k < 0.5$$

(D)
$$0.5 < k < 0.6$$

(E)
$$0.6 < k < 0.7$$

- _____4. 水溶液中氫離子的濃度 $[H^+]$ (單位為莫耳/升)可定義此溶液的酸鹼 pH 值,公式為 $pH = -\log[H^+]$,若某一水溶液的氫離子濃度為 $[H^+] = 5.5 \times 10^{-4}$ 莫耳/升,則此溶液的 pH 值約為下列哪一個選項?($55 \approx 10^{1.74}$)
 - (A) 3.26

(B) 3.52

(C) 4

(D) 4.52

(E) 5

二多選題

- 5. 已知 $a \times b$ 是有理數, $c \times d$ 是無理數, 下列選項哪些是正確的?
 - (A) a+b 是有理數

(B) a + c 是無理數

(C) $c \times d$ 是無理數

(D) c + d 是無理數

$$(E)$$
 $a+c=b+d$,則 $a=b$ 且 $c=d$

6. 下列關於數值比較的選項,哪些是正確的?

(A)
$$\sqrt{(\pi - 3.15)^2} = \pi - 3.15$$

(B)
$$0.\overline{9} < 1$$

(C)
$$\sqrt{100} - \sqrt{99} < \sqrt{99} - \sqrt{98}$$

(D)
$$\left(\frac{1}{2}\right)^{\frac{1}{2}} > \left(\frac{1}{3}\right)^{\frac{1}{3}}$$

(E)
$$\frac{1}{2}$$
 (8 + 11) > $2\sqrt{22}$

7. 下列各選項的數值算式有哪些是正確的?

(A)
$$\left(\frac{1}{0.125}\right)^{-\frac{2}{3}} = \frac{1}{4}$$

(B)
$$(10\sqrt{10})^{\log 8} = 4$$

(C)
$$\sqrt[4]{27} \times \sqrt[6]{81} = \sqrt[17]{3^{12}}$$

(D)
$$7^{-\frac{3}{2}} \times 63^{\frac{1}{2}} = \frac{3}{7}$$

(E) $7.85 \times 10^{-6} - 8.3 \times 10^{-7}$ 以科學記號表示為 7.02×10^{-6}

16

- 8. 計算機的按鍵 $\sqrt[3]{x}$ 、 $\sqrt{10^x}$ 、 \log_{10} 的功能如下:
 - (1)按下 $\sqrt[2]{x}$ 會把螢幕上的正數開根號,如輸入9再按 $\sqrt[2]{x}$ 得到3
 - (2)按下 (10^x) 會把螢幕上的數當成 10 的次數,如輸入 2 再按 (10^x) 得到 100
 - (3)按下 log₁₀ 會把螢幕上的正數以10為底取對數,如輸入1000再按 log₁₀ 得到3

清除螢幕資料後,輸入正數a,其中a > 1,依序按下 $\sqrt[2]{x}$ 、 $\sqrt{10^x}$ 、 $\sqrt{\log_{10}}$ 所得到的結果與下列哪些選項的操作會有相同的結果?

- (A)輸入a,再依序按下 $\sqrt[2]{x}$ 、 \log_{10} 、 $\sqrt{10^x}$
- (B)輸入a,再依序按下 10^x $\sqrt{2\sqrt{x}}$ $\sqrt{\log_{10}}$
- (C)輸入a,再依序按下 10^x $\sqrt{\log_{10}}$ $\sqrt{2\sqrt{x}}$
- (D)輸入a,再依序按下 \log_{10} 、 $\sqrt{2/x}$ 、 $\sqrt{10^x}$
- (E)輸入a,再依序按下 \log_{10} 、 10^x 、 $2\sqrt{x}$

三填充題

- 9. 某種細菌繁殖,每經過一天細菌數目會增加 a 倍,已知從正式實驗開始計算,2 天後細菌數為 300 個,5 天後細菌數為 37500 個,則_____天後細菌數目為 937500 個。
- 11. 已知 $a \cdot b$ 為有理數,若 $(\sqrt{6-2\sqrt{5}})^3 = a+b\sqrt{5}$,則數對 (a,b)=
- 12. 若 $k = 269 \times 271 \times (270^2 + 270 + 1)(270^2 270 + 1)$,化簡後整數 k 為_____位數。 (已知 $\log 3 \approx 0.48$)

四素養導向試題

13. 社區規劃建造一個面積為 360 平方公尺的矩形場地 ,此矩形場地的其中一面是利用原有的舊牆並新建 其他三面圍牆。另外,在舊牆對面的新牆上要留一 個寬 2 公尺的出口,如右圖所示。已知舊牆維修費 用為每 1 公尺 180 元,新牆的造價為每 1 公尺 720 元。假設利用舊牆的長度為 x 公尺,修建此矩形場 地的總費用為 y 元。

- (1)將 y 表為 x 的函數為
- (2) 當 x 為 時,可求得最少的修建費用為 元。