Mathematical and Logical Foundations of Computer Science

Lecture 7 - Propositional Logic (Semantics)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- ► Symbolic logic
- ► Propositional logic
- ▶ Predicate logic

Today

- semantics of propositional logic
- satisfiability & validity
- truth tables
- soundness & completeness

Further reading:

Chapter 6 of http://leanprover.github.io/logic_and_proof/

Recap: Propositional logic syntax

Syntax:

$$P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$$

Two special atoms:

- ▶ T which stands for True
- ▶ ⊥ which stands for False

We also introduced four connectives:

- $P \wedge Q$: we have a proof of both P and Q
- $P \vee Q$: we have a proof of at least one of P and Q
- ▶ $P \rightarrow Q$: if we have a proof of P then we have a proof of Q
- ▶ $\neg P$: stands for $P \rightarrow \bot$

Syntax vs. Semantics

Syntax

- Rules for allowable formulas in the language
- Syntax for propositional logic:

$$P ::= a \mid P \land P \mid P \lor P \mid P \rightarrow P \mid \neg P$$

Semantics

- Assigning meaning/interpretations with formulas
- Semantics for propositional logic: This lecture!

Syntax and Semantics for the English language?

- Syntax: alphabet and grammar
- Semantics: meanings for words

Semantics for Propositional Logic

Semantics assigns meanings/interpretrations with formulas

The basic notion we use is "truth value"

The two standard truth values are "true" and "false" We use the symbols **T** and **F** respectively

This is a classical notion of truth

- ▶ i.e., interpretation of each proposition is either true or false
- **Excluded Middle**: for each A we have $A \vee \neg A$
- \blacktriangleright Here it means for each A, we have that A is either true or false.

WARNING: This is just one possible way to assign meanings!

Semantics for Propositional Logic (continued)

Truth assignment

- Function assigning a truth value for each atomic proposition
- ▶ E.g., given 2 atomic propositions p, q, if the formula is $p \lor q$
- then one truth assignment ϕ is $\phi(p) = \mathbf{T}$ and $\phi(q) = \mathbf{F}$
- Also called an "interpretation" or a "valuation"

How many truth valuations do we need to consider for $p \vee q$?

- $^{\triangleright} 2^2 = 4$
- $\begin{array}{c} \blacktriangleright \ \phi(p) = \mathbf{T}, \phi(q) = \mathbf{T} \ \text{and} \ \phi(p) = \mathbf{T}, \phi(q) = \mathbf{F} \ \text{and} \\ \phi(p) = \mathbf{F}, \phi(q) = \mathbf{T} \ \text{and} \ \phi(p) = \mathbf{F}, \phi(q) = \mathbf{F} \end{array}$

Conventions:

- ▶ The atoms \top , \bot have the interpretations \top , \vdash respectively
- $\phi(\top) = \mathbf{T}$ and $\phi(\bot) = \mathbf{F}$

How to extend the notion of semantics to **compound formulas?** Define semantics for the four logical connectives: \lor , \land , \rightarrow , \neg

This is done **recursively bottom-up** over the structure of propositions.

For example given a conjunction $A \wedge B$, we first have to evaluate the truth-values of A and B to compute the truth-value of $A \wedge B$.

I.e.,
$$\phi(A \wedge B) = \mathbf{T}$$
 iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$.

The **extended valuation function** is recursively defined as follows:

- \bullet $\phi(\top) = \mathbf{T}$
- \bullet $\phi(\bot) = \mathbf{F}$
- $\phi(A \vee B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
- $\phi(A \wedge B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
- $\phi(A \to B) = \mathbf{T}$ iff $\phi(B) = \mathbf{T}$ whenever $\phi(A) = \mathbf{T}$
- $\phi(\neg A) = \mathbf{T} \text{ iff } \phi(A) = \mathbf{F}$

What is
$$\phi(2>1\land 1>0)$$
? (inequalities are atomic propositions) $\phi(2>1\land 1>0)=\mathbf{T}$ because $\phi(2>1)=\mathbf{T}$ and $\phi(1>0)=\mathbf{T}$ What is $\phi(2>1\land 0>1)$? $\phi(2>1\land 0>1)=\mathbf{F}$ because $\phi(0>1)=\mathbf{F}$ What is $\phi(x>1\land 3>x)$? we don't know: it depends on $\phi(x>1)$ and $\phi(3>x)$ What is $\phi(x>1\lor 2>x)$? it depends on $\phi(x>1)$ and $\phi(2>x)$? it depends on $\phi(x>1)$ and $\phi(2>x)$ $\phi(x>1\lor 2>x)=\mathbf{T}$ for all combinations only 2 possible combinations (the atoms are interdependent): $\phi(x>1)=\mathbf{T}, \phi(2>x)=\mathbf{F}$ and $\phi(x>1)=\mathbf{F}, \phi(2>x)=\mathbf{T}$

What is
$$\phi(2>0\to 1>0)$$
? (inequalities are atomic propositions) $\phi(2>0\to 1>0)=\mathbf{T}$ because $\phi(1>0)=\mathbf{T}$ What is $\phi(0>2\to 1>0)$? still $\phi(0>2\to 1>0)=\mathbf{T}$ because $\phi(1>0)=\mathbf{T}$ What is $\phi(2>0\to 0>1)$? $\phi(2>0\to 0>1)=\mathbf{F}$ because $\phi(0>1)=\mathbf{F}$ while $\phi(2>0)=\mathbf{T}$ What is $\phi(0>2\to 0>1)$? $\phi(0>2\to 0>1)=\mathbf{T}$ because $\phi(0>2)=\mathbf{F}$ What is $\phi(0>2\to 0>1)=\mathbf{T}$ because $\phi(0>2)=\mathbf{F}$ What is $\phi(x>2\to x>1)=\mathbf{T}$ because $\phi(0>2)=\mathbf{F}$ while $\phi(x>2\to x>1)=\mathbf{T}$ for all possible combinations (the atoms are interdependent): $\phi(x>2)=\mathbf{T}$, $\phi(x>1)=\mathbf{T}$ and $\phi(x>2)=\mathbf{F}$, $\phi(x>1)=\mathbf{F}$

Satisfiability & Validity

The above technique allows answering the following question:

What is the truth value of a formula w.r.t. a given valuation of its atoms?

To analyze the meaning of a formula, we also want to analyze its truth value w.r.t. **all possible combinations** of assignments of truth values with its atoms.

Satisfaction & validity

- Given a valuation ϕ on all atomic propositions, we say that ϕ satisfies A if $\phi(A) = \mathbf{T}$.
- A is **satisfiable** if there exists a valuation ϕ on atomic propositions such that $\phi(A) = \mathbf{T}$.
- A is valid if $\phi(A) = T$ for all possible valuations ϕ .

A method to check satisfiability and validity: truth tables

Semantics for "or"

$$\phi(A \vee B) = \mathbf{T}$$
 iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$

Truth table for "or"

A	B	$A \lor B$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

- One row for each valuation
- Last column has the truth value for the corresponding valuation

Semantics for "and"

$$\phi(A \wedge B) = \mathbf{T} \text{ iff both } \phi(A) = \mathbf{T} \text{ and } \phi(B) = \mathbf{T}$$

Truth table for "and"

A	B	$A \wedge B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Semantics for "implies"

$$\phi(A \to B) = \mathbf{T} \text{ iff } \phi(B) = \mathbf{T} \text{ whenever } \phi(A) = \mathbf{T}$$

Truth table for "implies"

A	B	$A \to B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Semantics for "not"

$$\phi(\neg A) = \mathbf{T} \text{ iff } \phi(A) = \mathbf{F}$$

Truth table for "not"

A	$\neg A$
Т	F
F	Т

Semantics for compound formulas

We can now construct a truth table for any propositional formula

- consider all possible truth assignments for the atoms
- then use truth tables for each connective recursively

What is the truth table for $(p \rightarrow q) \land \neg q$?

p	q	$p \rightarrow q$	$\neg q$	$(p \to q) \land \neg q$
Т	Т	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	F
	F			

- 2 atoms, and hence $2^2 = 4$ rows (one per interpretation)
- Use intermediate columns to evaluate sub-formulas
- ▶ 2 atoms and 3 connectives hence 2 + 3 = 5 columns
- Rightmost column gives values of the formula

Satisfiability & validity

A formula is **satisfiable** iff there is a valuation that satisfies it i.e., if there is a **T** in the rightmost column of its truth table example: $p \wedge q$ because of the valuation $\phi(p) = \mathbf{T}, \phi(q) = \mathbf{T}$

A formula is **falsifiable** iff there is a valuation that makes it false i.e., if there is a **F** in the rightmost column of its truth table example: $p \wedge q$ because of the valuation $\phi(p) = \mathbf{F}, \phi(q) = \mathbf{T}$

A formula is **unsatisfiable** iff no valuation satisfies it i.e., the cells of the rightmost column of its truth table all contain **F** example: $p \land \neg p$ (contradiction)

A formula is **valid** iff every valuation satisfies it i.e., the cells of the rightmost column of its truth table all contain **T** example: $p \lor \neg p$ (tautology)

Validity of arguments using semantics

Validity of an argument

- syntactically: we can derive the conclusion from the premises
- semantically: the conclusion is true whenever the premises are

Formally, we write

$$P_1,\ldots,P_n\models C$$

if the corresponding argument is semantically valid i.e., every valuation that evaluates each of the premises P_1, \ldots, P_n to $\mathbf T$ also evaluates the conclusion C to $\mathbf T$

Checking validity

- Already seen how to do this using "natural deduction"
- Truth tables is yet another way
- Bonus: yields counterexample if argument is invalid

Checking (semantic) validity

Is $P \to Q$, $\neg Q \models \neg P$ (semantically) valid?

P	Q	$P \to Q$	$\neg Q$	$\neg P$
Т	Т	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

Argument is valid: any row where conclusion is ${\bf F}$ then at least one of the premises is also ${\bf F}$

Note that checking $P_1, \ldots, P_n \models C$ is equivalent to checking the validity of $P_1 \to \cdots P_n \to C$

i.e., that the cells of the rightmost column of the truth table for $P_1 \to \cdots P_n \to C$ all contain **T**

Checking (semantic) validity

Is
$$\neg P \rightarrow \neg R, R \models \neg P$$
 (semantically) valid?

P	R	$\neg P$	$\neg R$	$\neg P \rightarrow \neg R$	R	$\neg P$
Т	Т	F	F	T	Т	F
Т	F	F	T	T	F	F
F	Т	T	F	F	Т	T
F	F	T	T	T	F	T

Argument is invalid

- Look at the first row
- Conclusion is F, but both premises are T
- Can we add a premise to make the argument valid?
 - ightharpoonup Yes, we can add $\neg R$, which would be **F** in the first row

Proving anything using contradictions!

Is $P, \neg P \models C$ is (semantically) valid?

P	C	$\neg P$	C
Т	Т	F	Т
Т	F	F	F
F	Т	T	Т
F	F	T	F

Argument is (trivially) valid:

- Look at any row (we only have to look at rows where the conclusion is F)
- One of P and $\neg P$ is **F**

Truth Tables vs. Natural Deduction

Pros and cons of two ways of checking validity

Truth tables	Natural deduction	
shows validity in a restricted	checks validity in general set-	
setting (Boolean truth values)	ting (by an actual proof!)	
simple, easy to automate	more difficult to automate	
size of truth table is huge: ex-	typically scales better than	
ponential in number of atoms	brute force search	
generates counterexamples if	no easy way to check validity	
invalid	(other than actually proving)	

Soundness & Completeness

Given a deduction system such as Natural deduction, a formula is said to be **provable** if there is a proof of it in that deduction system

- ▶ This is a syntactic notion
- it asserts the existence of a syntactic object: a proof
- typically written $\vdash A$

A formula A is valid if $\phi(A) = \mathbf{T}$ for all possible valuations ϕ

- it is a semantic notion
- ▶ it is checked w.r.t. valuations that give meaning to formulas

Soundness: a deduction system is sound w.r.t. a semantics if every provable formula is valid

• i.e., if $\vdash A$ then $\models A$

Completeness: a deduction system is complete w.r.t. a semantics if every valid formula is provable

▶ i.e., if
$$\models A$$
 then $\vdash A$

Soundness & Completeness

Classical Natural Deduction is

- sound and
- complete

w.r.t. the truth table semantics

Proving those properties is done within the metatheory

Soundness is easy. It requires proving that each rule is valid. For example:

$$\frac{A}{A \wedge B} [\wedge I]$$

is valid because $A, B \models A \land B$

Completeness is harder

We will not prove them here

Conclusion

What did we cover today?

- semantics of propositional logic
- satisfiability & validity
- truth tables
- soundness & completeness

Further reading

Chapter 6 of http://leanprover.github.io/logic_and_proof/

Next time?

- equivalences
- normal forms