Algoritmi Študijsko leto 2021/2022

2. domača naloga

Poročilo domače naloge

Ivo Pajer Vpisna št. 63180218

Ljubljana, 3. april 2022

Kazalo

1	1 Problem 1 - Ujemanje vzorcev	2
	1.1 A - KMP preponska funkcija	 2
	1.2 B - končni avtomat	 2
2	2 Problem 2 - IP posredovanje in vEB drevesa	3
	2.1 A - Master teorem	 3
	2.2 B - Luela algoritem	 4
	2.3 C - fixed stride številsko drevo $\dots \dots \dots \dots$	 4
3	3 Problem 3 - Kompaktne podatkovne strukture	5
	3.1 A - Ordinalno BP in LODUS	 5
	3.2 B - Kardinalno BP in LODUS	 6
	3.3 C - rmM-drevo za b=8	 6
	3 4 D - Funkcija Izberi(T i)	6

1 Problem 1 - Ujemanje vzorcev

1.1 A - KMP preponska funkcija

Za podan vzorecsmoramo izračunati KMP preponsko funkcijo $\pi.$

s = ababbabbabbabbabbabbabb

KMP preponska funkcija je definirana kot seznam števil dolžine n, kjer je $\pi[k]$ dolžina najdaljše predpone podniza s[0...k]. Rezultat funkcije je torej:

$$\pi = [0, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8]$$

1.2 B - končni avtomat

Prva naloga pri B delu je narediti končni avtomat, ki bo sprejemal pojavitve vzorca **AUGUGG**. Avtomat bomo predstavili kot:

- množica stanj $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_f\}$
- začetno stanje q_0
- vhodna abeceda $\Sigma = \{A, U, C, G\}$
- množica končnih stanj $F = \{q_f\}$
- prehoda funkcija δ

Tabela funkcije δ :

Stanje \Vhod	A	U	C	G
$\mathbf{q}0$	q1	q0	q0	q0
q1	q1	q2	q0	q0
$\mathbf{q2}$	q1	q0	q0	q3
$\mathbf{q3}$	q1	q4	q0	q0
$\mathbf{q4}$	q1	q0	q0	q5
q 5	q1	q0	q0	qf
\mathbf{qf}	q1	q0	q0	q0

Druga naloga v B delu, pa je, da naredimo končni avtomat ki bo sprejemal nize **AAUAUG** in **AACAUG**. Avtomat bomo predstavili kot:

- množica stanj $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_f\}$
- začetno stanje q_0
- vhodna abeceda $\Sigma = \{A, U, C, G\}$
- množica končnih stanj $F = \{q_f\}$
- prehoda funkcija δ

Tabela funkcije δ :

Stanje \Vhod	A	U	\mathbf{C}	\mathbf{G}
$\mathbf{q}0$	q1	q0	q0	q0
q1	q2	q0	q0	q0
q2	q2	q3	q3	q0
$\mathbf{q3}$	q4	q0	q0	q0
$\mathbf{q4}$	q1	q5	q0	q0
$\mathbf{q5}$	q1	q0	q0	qf
$\mathbf{q}\mathbf{f}$	q1	q0	q0	q0

2 Problem 2 - IP posredovanje in vEB drevesa

2.1 A - Master teorem

Naša naloga je, da z uporabo teorema Master izračunamo časovno zahtevnost operacije vEB-Tree-Successor vEB drevesa.

Teorem Master pravi:

$$T(n) = aT(\frac{n}{b}) + \mathcal{O}(n^c)$$

kjer $a \ge 1, b \ge 2, d \ge 0$, potem

$$T(n) = \begin{cases} \Theta(n^d), \text{ \'e } a < b^d \\ \Theta(n^d log n), \text{ \'e } a = b^d \\ \Theta(n^{log_b a}), \text{ \'e } a > b^d \end{cases}$$

- a nam pove, koliko podproblemov problem razdelimo
- b nam pove, koliko manjši je naš pod-problem
- d nam pove, zahtevnost operacije deljenja

Predpostavili smo, da je univerzum dolžine M, ta pa je oblike 2^k . Koren eVB drevesa ima seznam \sqrt{M} otrok. ker je delitev konstantne zahtevnosti, lahko sklepamo, da je d enak 0. Vsak podproblem je torej reda $\sqrt{M} = \mathcal{O}(M^{\frac{1}{2}})$, in ker je M oblike 2^k , lahko sklepamo, da je podproblem reda $\mathcal{O}(2^{\frac{k}{2}})$, ker pomeni, da je vrednost b enaka 2. Vrednost a je 1, ker problem razdelimo na 1 podproblem. Enačba master theorema se zato glasi:

$$T(k) = T(\frac{k}{2}) + \mathcal{O}(1)$$

Iz a,b,c, lahko sklepamo, da imamo drugi scenarij, saj $1=2^0$. Iz tega nato sledi, da

$$T(k) = \mathcal{O}(k^0 log k) = \mathcal{O}(log log M)$$

2.2 B - Luela algoritem

Pri naivnemu pristopu štetju bitov z Luela algoritmom potrebujemo 3 pomn. reference. Naša naloga je, da razložimo, kako prva dva dostopa lahko združimo v enega.

Luela algoritem kot že omenjeno zahteva 3 pomn. reference in sicer na: povzetkovno tabelo, bitno polje in polje vozlišča. Bitno polje razdelimo na enako velike kose, kar nam omogoči, da ti tabeli združimo v eno tabelo s tem, da podatke na istem nivoju konkatiniramo med seboj. Rezultat je ena tabela, ki vsebuje podatke obeh tabel skupaj, kar zniža pomnilniške dostope iz 3 na 2.

2.3 C - fixed stride številsko drevo

Naša naloga je sestaviti fixed stride številsko drevo s stride velikostjo 2 za omrežja 100*, 01*, 001*, 11*, 1011* in 1*.

Slika 1: Fixed stride številsko drevo

3 Problem 3 - Kompaktne podatkovne strukture

Podano imamo drevo:

Slika 2: Podano drevo

3.1 A - Ordinalno BP in LODUS

Ordinalna drevesa so takšna, da imajo vozlišča razvrščena po vrsti (angl. ordered), v našem primeru je drevo urejeno po abecedi.

 \mathbf{BP} : ((()(()))((()())))

LOUDS: 1011011010010110000

3.2 B - Kardinalno BP in LODUS

Kardinalna drevesa imajo konstantno število otrok. Ti so ali prazni ali pa imajo svoje otroke.

 \mathbf{BP} : (((()())((()())()))(()((()()()()))))

Slika 3: Kardinalno drevo

3.3 C - rmM-drevo za b=8

3.4 D - Funkcija Izberi(T,i)

Naloga je napisati algoritem $\mathbf{Izberi}(\mathbf{T}, \mathbf{i})$, ki bo našel i-ti element v razširjenem iskalnem dvojiškem drevesu. Naše drevo bo T. i bo predstavljal indeks, ki ga iščemo (prvi element ima indeks 0). Drevo ima v vsakem vozlišču podatek, kolikšna je moč levega pod-drevesa (koliko vrednosti je manjših od vrednosti v vozlišču), ki je označen z |L|. Funkcija vrne T.value oz. vrednost vozlišča, če je indeks enak |L|. Če je indeks manjši od |L|, potem vemo, da je iskana vrednost v levem poddrevesu. V nasprotnem primeru pa iščemo naprej v desnem poddrevesu, s tem, da indeksu odštejemo |L|+1.

Algorithm 1 Izberi

```
1: function IZBERI(T, i)

2: if i == |L| then

3: return T.value \triangleright Vrednost i-tega elementa

4: else

5: if i < |L| then

6: return Izberi(T.left, i)

7: else

8: return Izberi(T.right, i - |L| - 1)
```