Abstract

Project Paradox is an advanced web-based smart farming platform designed to modernize agriculture and empower farmers by providing intelligent digital tools. The platform incorporates four essential features aimed at addressing critical farming challenges. The Crop Recommendation System utilizes location and soil type data, sourced from the OpenCage API, to recommend the most suitable crops for optimal yields. The Grow Guide offers farmers immediate access to helpful resources such as YouTube videos and articles tailored to specific crops, aiding in effective cultivation practices. The Crop Disease Detection feature employs machine learning to analyze images of affected crops, identify potential diseases, and provide recommended remedies. Finally, the Services Section connects farmers with nearby agricultural service providers such as tractor rentals, fertilizer stores, and expert consultants through a location-based search function. Built using Django, React.js, Tailwind CSS, MySQL, and integrated external APIs, Project Paradox is designed to scale, with plans for future enhancements like mobile app support and personalized, climate-based farming advice. By bridging the gap between traditional farming methods and modern technology, Project Paradox aims to increase agricultural productivity, reduce uncertainty, and promote sustainable farming practices for the future

ACKNOWLEDGEMENT

It is our proud privilege and duty to acknowledge the kind help and guidance received

from several persons in preparation of this project. It would not have been possible to prepare

this project in this form without their valuable help, cooperation and guidance.

First and foremost, we wish to record our sincere gratitude to Management of this

college and to our beloved principal, Dr Praveen Chitti, Maratha Mandal's Engineering

College, Belagavi for his constant support and for making available library and laboratory

facilities needed to prepare this project.

Our sincere thanks are also due to Prof. Swati Patil, Head, Department of

Computer Science and Engineering MMEC, Belagavi for the valuable suggestions and

guidance through the period of preparation of this report.

We would like to express our sincere thanks to Prof. Madhu Salunke Assistant

Professor and project coordinator, Department of Computer Science and Engineering MMEC,

Belagavi for his continuous guidance and support from beginning to completion of this project.

We express our sincere gratitude to our beloved guide, Prof. Mahesh Marigeri,

Assistant Professor in the Department of Computer Science and Engineering MMEC, Belagavi

for guiding us in investigations for this project. Our numerous discussions with him were

extremely helpful. We hold him in esteem for guidance, encouragement and inspiration

received from him.

We would also like to extend our heartfelt gratitude towards the entire Department

of Computer Science and Engineering MMEC, Belagavi, for their continuous support

throughout the project work which would otherwise be impossible.

Last but not the least, we wish to thank our family members for financing our studies

in this college as well as for constantly encouraging us to learn engineering. Their personal

sacrifices in providing us this opportunity to learn engineering is gratefully acknowledged.

Miss. Amruta P Yadav (2MM21CS006)

Mr.Pranav S Badaskar (2MM21CS031)

Mr. Prathamesh H Patil (2MM21CS034)

Mr Rohil Uday Gurav (2MM21CS039

Place: Belagavi

CONTENTS

Chapter No	Description	Page No
CHAPTER 1	INTRODUCTION	1–6
1.1	Purpose of the Project	1–2
1.2	Motivation	2
1.3	Problem Statement	2–3
1.4	Scope of the Project	3–4
1.5	Existing System	4
1.5.1	Disadvantages of Existing Systems	4–5
1.5.2	How the Proposed Project Solves this Disadvantage	6
CHAPTER 2	LITERATURE SURVEY	7–10
2.1	Use of ICT in Boosting Agriculture Productivity in Rural India	8
2.2	CNN-based Plant Disease Detection Using Mobile Applications	8
2.3	Smart AgriBot: An AI-based Conversational Agent for Agriculture Support	9

2.4	Machine Learning Algorithms for Predicting Crop Recommendation	9
2.5	Source: District Irrigation Plan – Belagavi	10
CHAPTER 3	PROBLEM DEFINITION AND OBJECTIVES	11–13
3.1	Problem Definition	11
3.2	Objectives	11–13
CHAPTER 4	SYSTEM ANALYSIS	14–16
4.1	Hardware Requirements	14–15
4.2	Software Requirements	15–16
CHAPTER 5	SYSTEM DESIGN	17–25
5.1	Workflow Diagram	19–20
5.2	Use Case Diagram	21
5.3	Activity Diagram	22–23
5.4	Class Diagram	24–25
CHAPTER 6	IMPLEMENTATION	26–28
6.1	Technologies Used	26–28

CHAPTER 7	TEST CASES	29–30
CHAPTER 8	RESULTS AND ANALYSIS	31–33
8.1	Results	31–32
8.2	Analysis	32–33
CHAPTER 9	Snapshots	34–38
CHAPTER 10	Approx Cost	39
	CONCLUSION	40–41
	REFERENCES	42–43

TABLE OF FIGURE

Figure No	Title of Figure	Page No
Ei., 5.1	Warlday Diamon	10
Fig 5.1	Workflow Diagram	19
Fig 5.2	Usecase Diagram	21
Fig 5.3	Activity Diagram	22
Fig 5.4	Class Diagram	24
Fig 9.1	Landing Page	34
Fig 9.2	Registration Page	34
Fig 9.3	Login Page	35
Fig 9.4	Homepage	35
Fig 9.5	Crop Recommendation Page	36
Fig 9.6	Guide to Grow Crops	36
Fig 9.7	Services Page	37
Fig 9.8	Disease Detection Page	37
Fig 9.9	Predicted Disease	38
	Information	