Introduction to Computer Vision Course

OBJECT SIZE RECOGNITION

TEAM

Alexander Tutunin

MSc-1 Energy Systems

Anuar Daurenov

MSc-1 Energy Systems

Contents

- Problem statement
- Our pipeline
- Our methods
- Our data
- Our results

Problem statement

Manual sorting of packages by size

Impact:

- Money loss (salary)
- Time loss (low-efficient work)

Who suffers from?

- Logistics companies
- Post Offices

Our solution: Automated system for automated package size recognition

Corners detection:

• Canny was used to detect all edges and contours

Corners detection:

- Canny was used to detect all edges and contours
- DBScan was used for clusterization

Corners detection:

- Canny was used to detect all edges and contours
- DBScan was used for clusterization
- cv2.convexHull was used to obtain convex hulls

After this: get corners

Depth Estimation:

- cv2.StereoBM as classical
- MiDaS as NN

They give disparity

StereoBM
2 images are required

MiDaS
Only 1 image is required

Depth Estimation:

- cv2.StereoBM as classical
- MiDaS as NN

They give disparity

To convert from disparity to depth:

- Calculate f obtain camera matrix
- Measure b:
 our case b = 16 mm

Baseline = distance between the optical centers of the two cameras

$$\frac{f}{Z_{P}} = \frac{u_{l}}{X_{P}}$$

$$\frac{f}{Z_{P}} = \frac{-u_{r}}{b - X_{P}}$$

$$Z_{P} = \frac{bf}{u_{l} - u_{r}}$$

Disparity

difference in image location of the projection of a 3D point on two image planes

Get Intrinsics:

- cv2.calibrateCamera to obtain camera intrinsics
- Chessboard procedure was used

Our data

StereoBM as triangulation requires at least 2 images

Our dataset is small and contains 2 images that was taken as stereo camera sees

Our results

Our results

```
coords_rw:

[[-0.3246397 -0.41929248 0.2071523 ]

[-0.3247203 -0.3833839 0.20475729]

[-0.3676742 -0.36567783 0.16828957]

[-0.4207823 -0.39827687 0.2537193 ]

[-0.4193317 -0.43071043 0.26418027]

[-0.38040724 -0.43633667 0.35872453]]

distances:

[0.035988454, 0.059062995, 0.105742164, 0.034109715, 0.102398165]
```

	Ours	Truth
Width	0.0360	0.040
Length	0.0590	0.060
Height	0.1057	0.105