Electron = $-1.602 \ 19 \times 10^{-19} \ C$ = $9.11 \times 10^{-31} \ kg$ Proton = $1.602 \ 19 \times 10^{-19} \ C$ = $1.67 \times 10^{-27} \ kg$ Neutron = $0 \ C$ = $1.67 \times 10^{-27} \ kg$ 6.022×10^{23} atoms in one atomic mass unit e is the elementary charge: $1.602 \ 19 \times 10^{-19} \ C$

Addition of Multiple Vectors:

$$\begin{split} \vec{R} &= \vec{A} + \vec{B} + \vec{C} & \text{Resultant} = \text{Sum of the vectors} \\ \vec{R}_x &= \vec{A}_x + \vec{B}_x + \vec{C}_x & x\text{-component} & A_x = A\cos\theta \\ \vec{R}_y &= \vec{A}_y + \vec{B}_y + \vec{C}_y & y\text{-component} & A_y = A\sin\theta \\ R &= \sqrt{R_x^2 + R_y^2} & \text{Magnitude (length) of } R \\ \theta_R &= \tan^{-1}\frac{R_y}{R_x} & \text{or} & \tan\theta_R = \frac{R_y}{R_x} & \text{Angle of the resultant} \end{split}$$

ELECTRIC CHARGES AND FIELDS

Coulomb's Law: [Newtons N]

 $F = k \frac{\left|q_1\right| \left|q_2\right|}{r^2} \qquad \text{where:} \qquad F = \text{force on one charge by the other}[N]} \\ k = 8.99 \times 10^9 \left[N \cdot m^2/C^2\right] \\ q_1 = \text{charge [C]} \\ q_2 = \text{charge [C]} \\ r = \text{distance } [m]$

Electric Field: [Newtons/Coulomb or Volts/Meter] $|_{G}|_{E}|_{E}|_{E} \text{ where: } E = \text{electric field } [N/C \text{ or } V/m]$

 $= k \frac{|q|}{r^2} = \frac{|F|}{|q|}$ $k = 8.99 \times 10^9 [N \cdot m^2/C^2]$ q = charge [C] r = distance [m]

Electric Field inside a spherical shell: [N/C]

$$E = \frac{kqr}{R^3}$$
 E = electric field [N/C]
$$q = \text{charge [C]}$$

r = distance from center of sphere to the charge [m]R = radius of the sphere [m]

Electric Field outside a spherical shell: [N/C]

$$E = \frac{kq}{r^2}$$

$$E = \text{electric field [N/C]}$$

$$q = \text{charge [C]}$$

$$r = \text{distance from center of sphere to}$$
the charge [m]

Flux: the rate of flow (of an electric field) $[N \cdot m^2/C]$

$$\Phi = \oint \mathbf{E} \cdot d\mathbf{A}$$

$$= \int E(\cos \theta) dA$$

$$\Phi \text{ is the rate of flow of an electric field } [N \cdot m^2/C]$$

$$\oint \text{ integral over a closed surface}$$

$$\mathbf{E} \text{ is the electric field vector } [N/C]$$

E is the electric field vector [N/C]

A is the area vector [m²] pointing outward normal to the surface

Gauss' law:
$$\Phi_E = \oint_S \vec{\boldsymbol{E}} \cdot d\vec{\boldsymbol{A}} = \frac{Q_{enc}}{\varepsilon_0} \qquad \qquad \vec{\boldsymbol{E}} = k \int_Q \frac{dq}{r^2} \, \hat{r} = \frac{1}{4\pi\varepsilon_0} \int_Q \frac{dq}{r^2} \, \hat{r}$$

Electric potential: $V = k \int_{Q} \frac{dq}{r} = \frac{1}{4\pi\varepsilon_0} \int_{Q} \frac{dq}{r}$ relative to V = 0 at $r \to \infty$

Relationship between
$$\vec{E}$$
 and V : $V_a - V_b = \int_a^b \vec{E} \cdot d\vec{l}$ $E_i = -\frac{\partial V}{\partial x_i}$

Work done by the field in moving a charge q from a to b: $W_{ab} = U_a - U_b = q (V_a - V_b)$

Potential energy of a system of point charges: $U = \sum_{i < j} \frac{kQ_iQ_j}{r_{ij}}$

VVUIN AITU FULCTILIAI

$$\Delta U = U_f - U_i = -W$$

$$U = -W_{\infty}$$

$$W = \mathbf{F} \cdot \mathbf{d} = Fd \cos \theta$$

$$W = q \int_{s}^{f} \mathbf{E} \cdot d\mathbf{s}$$

$$\Delta V = V_f - V_i = -\frac{W}{q}$$

$$V = -\int_{i}^{f} \mathbf{E} \cdot d\mathbf{s}$$

U = electric potential energy [J]

W = work done on a particle bya field [J]

 W_{∞} = work done on a particle brought from infinity (zero potential) to its present location [J]

 \mathbf{F} = is the force vector [N]

d = is the distance vector over which the force is applied[m]

F = is the force scalar [N]

d = is the distance scalar [m]

 θ = is the angle between the force and distance vectors

ds = differential displacement of the charge [m]

V = volts[V]

q = charge[C]

Capacitors:

$$C = \frac{Q}{V}$$

Capacitance of different capacitors (for air or vacuum, $K = 1$):	
Capacitor	Capacitance
Parallel-plate capacitor with plate-area ${\cal A}$ and thickness d	$K\varepsilon_0 \frac{A}{d}$
Spherical capacitor of radii a and b	$K\varepsilon_0 \frac{4\pi ab}{b-a}$
Isolated sphere of radius a	$K\varepsilon_0 4\pi a$
Cylindrical capacitor of radii a and b , and length L	$K\varepsilon_0 \frac{2\pi L}{\ln(b/a)}$

Capacitor combinations:

Series connection:
$$\frac{1}{C_{--}}$$

$$\begin{array}{ll} \text{Series connection:} & \frac{1}{C_{eq}} = \sum\limits_{i=1}^{N} \frac{1}{C_i} & \text{Parallel connection:} & C_{eq} = \sum\limits_{i=1}^{N} C_i \\ \\ \text{Energy stored:} & U = \frac{1}{2} Q V = \frac{1}{2} C V^2 = \frac{Q^2}{2C} & \text{Energy density:} & u = \frac{1}{2} K \varepsilon_0 E^2 \\ \end{array}$$

Electric current and resistance:

$$I = \frac{dQ}{dt} = \int \vec{\boldsymbol{J}} \cdot d\vec{\boldsymbol{A}}$$
 $\vec{\boldsymbol{J}} = nq\vec{\boldsymbol{v}}_d$ $Q = \int I \ dt$

$$\vec{m{J}} = nq \vec{m{v}}$$

$$Q = \int I \, dt$$

$$V = IR$$
 $R = \rho \frac{L}{A}$

$$R = \rho \frac{L}{A}$$
 $\rho_T = \rho_0 \left[1 + \alpha \left(T - T_0 \right) \right]$ $P = IV = I^2 R = \frac{V^2}{R}$

$$P = IV = I^2R = \frac{V}{R}$$

Resistor combinations:

$$R_{eq} = \sum_{i=1}^{N} R_i$$

Parallel connection:
$$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

$$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

Kirchhoff's Rules

- 1. The sum of the currents entering a junctions is equal to the sum of the currents leaving the junction.
- The sum of the potential differences across all the 2. elements around a closed loop must be zero.

Kirchhoff's junction rule (valid at any junction):

The sum of the currents into any junction ...

$$\sum_{i=0}^{\infty} I = 0$$
 equals zero.

Kirchhoff's loop rule (valid for any closed loop):

The sum of the potential differences around any loop ...

$$\sum V = 0$$
 ... equals zero.

$+\mathcal{E}$: Travel direction from - to +:

+*IR*: Travel *opposite* to current direction:

-IR: Travel in current direction:

$$F = |q|v_{\perp}B = |q|vB\sin\phi$$

Particle's charge

Magnetic force on a moving charged particle
$$\vec{F} = \vec{q}\vec{v} \times \vec{B}$$
 Magnetic field

Particle's velocity

 $1 \text{ tesla} = 1 \text{ T} = 1 \text{ N/A} \cdot \text{m}$

Another unit of B, the gauss $(1 \text{ G} = 10^{-4} \text{ T})$

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$
 1 Wb = 1 T·m² = 1 N·m/A

$$F = |q|vB = m\frac{v^2}{R}$$
 $v = R\omega$ $f = \omega/2\pi$

$$v = \frac{E}{B} \qquad \frac{1}{2}mv^2 = eV$$

Current

Magnetic force on a straight wire segment

$$\vec{F} = \vec{H} \times \vec{B} \stackrel{\text{e----}}{\longrightarrow} \text{Magnetic field}$$

Vector length of segment (points in current direction)

Magnetic force on an infinitesimal $d\vec{F} = \vec{l} d\vec{l} \times \vec{B}$ Magnetic field wire segment Vector length of segment (points in current direction)

 $\begin{array}{c} \textbf{Magnitude of } \\ \textbf{magnetic torque} \\ \textbf{on a current loop} \end{array} \qquad \begin{array}{c} \textbf{Current} \\ \boldsymbol{\tau} = IBA \sin \phi \end{array} \qquad \begin{array}{c} \textbf{Angle between} \\ \textbf{normal to loop plane} \\ \textbf{Area of loop} \end{array} \qquad \text{and field direction} \\ \end{array}$

$$\mu = IA \quad \tau = \mu B \sin \phi$$

Vector magnetic torque $\vec{\tau} = \vec{\mu} \times \vec{B}$ Magnetic dipole moment on a current loop

Magnetic constant Magnetic field near a long, straight, current-carrying $B = \frac{\mu_0 I}{2\pi r}$ Distance from conductor

Magnetic constant Current in first conductor Magnetic force per unit length between two long, parallel, $T = \frac{\mu_0 H'}{2\pi r}$ Current in second conductor current-carrying conductors

Ampere's law:

$$\frac{\vec{B} \cdot d\vec{l}}{Scalar} = \mu_0 I_{encl}^{sc}$$
Net current enclosed by path Scalar product of magnetic field and vector segment of path

Faraday's law:
The induced emf
in a closed loop ...

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$
... equals the negative of the time rate of change of magnetic flux through the loop.

$$\mathcal{E} = -N \frac{d\Phi_B}{dt}$$

The direction of any magnetic induction effect is such as to oppose the cause of the effect.

Motional emf, conductor length and velocity $\mathcal{E} = vBL$ Conductor length perpendicular to uniform \vec{B} Magnitude of uniform magnetic field

Self-induced emf
$$\mathcal{E} = -L\frac{di}{dt}$$
 Rate of change of current in circuit

Energy stored
$$U = L \int_0^I i \, di = \frac{1}{2} L I_2^2$$
 Final current

Integral from initial (zero) value of instantaneous current to final value

Time constant
$$\tau = \frac{L_{\text{Forms}}}{R_{\text{Forms}}}$$
 Resistance

Time constant
$$\tau = \frac{L}{R}$$
 Inductance $i = \frac{\mathcal{E}}{R} (1 - e^{-(R/L)t})$ (current in an R - L circuit with emf)

$$i = I_0 e^{-(R/L)t}$$
 Current Decay in an *R-L* Circuit