ANALISIS KETIDAKSEIMBANGAN BEBAN PADA JARINGAN DISTRIBUSI SEKUNDER GARDU DISTRIBUSI DS 0587 DI PT. PLN (Persero) DISTRIBUSI BALI RAYON DENPASAR

W. Susongko¹, I N. Setiawan², I N. Budiastra³

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Denpasar - Bali Email: wahyu.ngquyu@gmail.com¹, setiawan@ee.unud.ac.id², budiastra@ee.unud.ac.id³

Abstrak

Suatu sistem JaringanTegangan Rendah (JTR), ketidakseimbangan beban selalu terjadi. Hal ini disebabkan oleh tidak meratanya pemakaian beban satu fasa yang berasal dari peralatan listrik rumah tangga, yang pada akhirnya akan menyebabkan terjadinya rugi-rugi pada jaringan. Pemerataan beban tiap fasanya merupakan salah satu cara yang ditempuh untuk menekan rugi-rugi. Penelitian ini dilakukan dengan menganalisis rugi-rugi daya keadaan seimbang dan keadaan tidak seimbang pada waktu siang dan malam hari di JTR dan SR gardu distribusi DS 0587.Berdasarkan hasil analisis, adanya ketidakseimbangan beban pada JTR DS 0587 telah menyebabkan terjadinya rugi-rugi daya. Besar rugi-rugi daya beban seimbang pada siang hari sebesar 0,54 kW dengan persentase rugi-rugi sebesar 0,86%, dan waktu malam hari sebesar 1,2 kW dengan persentase rugi-rugi sebesar 1,48%. Sedangkan rugi-rugi untuk beban tidak seimbang waktu siang hari sebesar 0,66 kW dengan persentase rugi-rugi sebesar 1,06%, dan waktu malam hari sebesar 1,46 kW dengan persentase rugi-rugi sebesar 1,8%.Jadi semakin besar persentase ketidakseimbangan beban pada suatu jaringan distribusi tenaga listrik, maka akan semakin besar pula rugi-rugi yang ditimbulkannya.

Kata Kunci: beban seimbang dan tidak seimbang, rugi-rugi daya, jaringan distribusi, gardu distribusi

Abstract

In a system of Low Voltage Network (JTR) there is always an occurrence of imbalanced load. This is caused by the unequal use of single phase loads that derived from household electrical appliances, which ultimately led to power losses in the networks. The load balancing of each phase is one of the ways adopted to reduce losses. This research was conducted by analyzing the power loss of balanced and unbalanced conditions at day and night on Low Voltage Network and SR of Distribution Substation of DS 0587. Based on the results of analysis, the imbalance in the load on the Low Voltage Network of DS 0587 has caused the power loss. The magnitude of power loss of balanced load during the day was 0.54 kW with the percentage power losses of 0.86%, while at night was 1.2 kW with a percentage of power loss of 1.48%. In the meantime, the loss of power in the imbalanced load during the day was 0.66 kW with the percentage of power losses of 1.06%, and at night by 1.46 kW with the percentage of power losses of 1.8%. Thus, the greater the percentage of imbalanced load in a power distribution network, the greater the loss of power generated.

Keywords: balanced and unbalanced loads, power losses, distribution networks, distribution substation

1. PENDAHULUAN

Penyaluran energi listrik untuk wilayah Panjer dan sekitarnya, disuplai oleh penyulang Sidakarya yang bersumber dari Gardu Induk (GI) Sanur. Salah satu transformator distribusi yang terdapat pada penyulang Sidakarya adalah transformator DS 0587, yang terletak di JI. Tukad Batanghari, yang

menyuplai energi listrik untuk pelanggan PT. PLN (Persero) di kawasan Jl. Tukad Batanghari dan sekitarnya.

Pemakaian energi listrik yang tidak merata pada jaringan tegangan rendah, menyebabkan ketidakseimbangan beban disetiap fasanya. Salah satu penyebabnya ada-

lah banyaknya beban satu fasa yang beroperasi tidak merata. Beberapa penelitian yang pernah dilakukan tentang rugi-rugi daya, ketidakseimbangan beban merupakan salah satu faktor yang menyebabkan rugi-rugi daya pada saluran [1].

Berdasarkan permasalahan tersebut di atas, maka dalam penelitian ini perlu dilakukan kajian mengenai pengaruh ketidakseimbangan beban terhadap rugi-rugi daya pada jaringan tegangan rendah transformator distribusi DS 0587.

2. TINJAUAN PUSTAKA

2.1 Sistem Distribusi Tenaga Listrik

Sistem distribusi tenaga listrik merupakan semua bagian dari suatu sistem tenaga listrik yang terletak diantara sumber listrik besar (GI) hingga jaringan pelayanan pelanggan [2].

2.2 Jaringan Distribusi Primer

Jaringan distribusi primer adalah bagian dari sistem tenaga listrik yang terletak diantara Gardu Induk (GI) dan Gardu Distribusi. Pada umumnya jaringan distribusi primer merupakan sistem jaringan tiga fasa, tiga atau empat kawat. Jaringan distribusi primer mempunyai tegangan kerja sebesar 20 kV, yang biasa dikenal dengan Jaringan Tegangan Menengah (JTM) [3].

2.3 Jaringan Distribusi Sekunder

Jaringan distribusi sekunder atau biasa disebut dengan Jaringan Tegangan Rendah (JTR) merupakan bagian yang berhubungan langsung dengan sisi beban/pelanggan. Pada jaringan distribusi primer, tegangan 20 kV diturunkan menjadi sistem tegangan rendah 380/220 V dengan menggunakan transformator penurun tegangan yang terdapat pada gardu distribusi.

2.4 Impedansi Saluran

Sebuah konduktor selalu mempunyai resistansi dan reaktansi. Kombinasi antara resistansi dan reaktansi disebut impedansi yang dinyatakan dalam Persamaan [4]:

$$Z = R + jX \tag{1}$$

Maka:

$$Z = \sqrt{R^2 + X^2} \tag{2}$$

Keterangan:

Z adalah impedansi (Ohm)

R adalah resistansi (Ohm)

X adalah reaktansi (Ohm)

2.4.1 Resistansi

Tiap konduktor selalu memberi tahanan terhadap mengalirnya arus listrik. Hal ini dinamakan resistansi yang dinyatakan dengan Persamaan berikut [5].

$$R = \rho \frac{l}{A} \tag{3}$$

Keterangan:

R adalah resistansi (Ohm)

ρ adalah tahanan jenis kawat (Ohm.mm²/m)

l adalah panjang kawat (meter)

A adalah luas penampang kawat (mm²)

2.4.2 Reaktansi

Reaktansi penghantar untuk jaringan distribusi pada umumnya terdiri dari induktansi, maka reaktansinya disebut reaktansi induktif (X_L) yang dapat dihitung dengan menggunakan Persamaan berikut [5].

$$X_L = 2\pi f L \tag{4}$$

Keterangan:

 X_L adalah reaktansi jaringan (Ohm)

f adalah frekuensi jaringan (Hz)

L adalah induktansi (Henry)

2.5 Sistem Tiga Fasa

Secara umum, sebuah sistem kelistrikan didesain dengan sistem tiga fasa. Dasarnya adalah alasan ekonomi dan kestabilan beban. Alasan ekonomi dikarenakan penggunaan penghantar menjadi lebih sedikit. Sedangkan alasan teknis adalah tentang kestabilan aliran daya.

2.6 Keadaan Seimbang dan Tidak Seimbang

Suplai daya pada sistem tiga fasa, merupakan sistem yang seimbang untuk arus dan tegangannya.

Maksud dari keadaan seimbang adalah suatu keadaan dimana:

- a) Ketiga vektor tegangan / arus sama besar.
- b) Ketiga vektor saling membentuk sudut 120° satu sama lain.

Sedangkan maksud dari keadaan tidak seimbang adalah keadaan dimana:

 a) Ketiga vektor sama besar tetapi tidak membentuk sudut 120° satu sama lain.

- b) Ketiga vektor tidak sama besar tetapi membentuk sudut 120° satu sama lain.
- Ketiga vektor tidak sama besar dan tidak membentuk sudut 120° satu sama lain.

2.7 Transformator Distribusi

Transformator distribusi adalah transformator yang berfungsi mengubah tegangan listrik arus bolak-balik dari tegangan menengah 20 kV menjadi arus bolak-balik tegangan rendah 380/220 V dengan frekuensi tetap [6].

2.7.1 Arus Beban PenuhTransformator

Daya transformator apabila ditinjau dari sisi tegangan tinggi dapat dihitung dengan Persamaan sebagai berikut [7].

$$S = V. I \tag{5}$$

Keterangan:

S adalah daya transformator (kVA)

V adalah tegangan sisi primer trafo (kV)

I adalah arus jala-jala (A)

Sehingga untuk menghitung arus beban penuh transformator (full load) dapat menggunakan Persamaan berikut [6].

$$I_{FL} = \frac{S}{\sqrt{3}.V} \tag{6}$$

Keterangan:

 I_{FL} adalah arus beban penuh (A)

S adalah daya trafo (kVA)

V adalah tegangan sisi sekunder trafo (kV)

$$I_{rata-rata} = \frac{I_R + I_S + I_T}{3} \tag{7}$$

Keterangan:

 $I_{rata-rata}$ adalaharus ketiga fasa (A)

 I_R adalah arus fasa R (A)

 I_S adalah arus fasa S (A)

 I_T adalah arus fasa T (A)

Persentase pembebanan transformator, dapat dihitung menggunakan Persamaan berikut.

% pembebanan =
$$\frac{I_{rata-rata}}{I_{FL}} x100\%$$
 (8)

2.7.2 Ketidakseimbangan Beban Transformator

Pada penyaluran daya dengan keadaan tidak seimbang, besarnya arus tiap fasa dapat dinyatakan dengan koefisien a, b, dan c sebagai berikut.

$$\begin{bmatrix} I_R \end{bmatrix} = a \begin{bmatrix} I \end{bmatrix}$$
$$\begin{bmatrix} I_S \end{bmatrix} = a \begin{bmatrix} I \end{bmatrix}$$
$$\begin{bmatrix} I_T \end{bmatrix} = a \begin{bmatrix} I \end{bmatrix}$$

Arus I_{R, I_S} , dan I_T berturut-turut adalah arus difasa R, S, dan T.

Koefisien a, b, dan c dapat diketahui besarnya, dimana besarnya arus fasa dalam keadaan seimbang (1) sama dengan besarnya arus rata-rata (I_{rata}) dapat digunakan Persamaan sebagai berikut.

$$I_S = b.I_{rata-rata} \text{ maka: } b = \frac{I_S}{I_{rata-rata}}$$
 (10)

$$I_T = c.I_{rata-rata} \text{ maka: } c = \frac{I_T}{I_{rata-rata}}$$
 (11)

Sebuah transformatar dalam keadaan seimbang, jika nilai koefisiensi a, b, dan c = 1.

Jadi rata-rata ketidakseimbangan beban (%) adalah :

$$= \frac{\{|a-1|+|b-1|+|c-1|\}}{3}x100\%$$
 (12)

2.8 Rugi-rugi Daya pada Jaringan Distribusi

Rugi-rugi daya merupakan besarnya daya yang hilang pada suatu jaringan.

Besarnya rugi-rugi daya satu fasa dinyatakan dengan Persamaan berikut [8].

$$\Delta P = I^2 R \tag{13}$$

Keterangan:

 ΔP adalah rugi-rugi daya pada jaringan (W) I adalah arus beban pada jaringan (A) R adalah tahanan murni (Ω)

Besarnya rugi-rugi daya tiga fasa dapat dinyatakan dengan persamaan berikut [8].

$$\Delta P = 3I^2 R \tag{14}$$

3. METODE PENELITIAN

Data yang digunakan dalam penelitin ini merupakan data primer yang bersumber dari pengukuran langsung diseluruh pelanggan tegangan rendah PT. PLN (Persero) Rayon Denpasar yang bersumber dari gardu distribusi DS 0587. Serta beberapa data sekunder yang bersumber dari PT. PLN (Persero) Rayon Denpasar.

Berikut tahapan proses analisis:

- Pengumpulan data beban masingmasing pelanggan PT. PLN (Persero), nilai resistansi dan reaktansi penghantar JTR dan SR, data Transformator DS 0587, dan data konfigurasi JTR dan SR existing.
- 2. Rekapitulasi nilai beban masing-masing jurusan JTR berdasarkan data beban masing-masing pelanggan.
- 3. Menghitung rugi-rugi daya pada penghantar LVTC dan NFA2X, untuk kondisi beban seimbang dan tidak seimbang untuk waktu siang dan malam hari.

4. HASIL DAN PEMBAHASAN

4.1 Sistem Kelistrikan di JTR DS 0587

Sistem kelistrikan JTR DS 0587 mempunyai data teknis sebagai berikut [9].

1. Beban Terpasang: 188,2 kVA.

2. Jumlah Pelanggan : 116 Pelanggan.

3. Konfigurasi JTR : Sistem Radial.

4. Jumlah Jurusan : Dua Jurusan.5. Panjang Jaringan : 763,8 m (JTR)

1.442 m (SR).

6. Jenis Penghantar : LVTC (JTR)

NFA2X (SR).

Konfigurasi JTR untuk gardu distribusi DS 0587 seperti tertera pada Gambar 1.

Gambar 1. Konfigurasi JTR DS 0587

Pengukuran tegangan dan arus dilakukan di masing-masing pelanggan dengan kondisi siang dan malam hari, yang terbagi pada dua jurusan JTR. Hasil pengukuran pada masing-masing jurusan seperti tertera dalam Tabel 1.

Tabel 1. Hasil pengukuran beban jurusan

	Her	Urajan Data Beban (A)							
No	Olaiali		Siang M			Malam		Panjang (m)	
	Jurusan C	Jurusan C1	R	S	T	R	S	T	
1	LVTC 1		6,1		12,4	5,8		6,1	36
2	LVTC 2		16,9	4	16,3	12,1	0,9	17	33
3	LVTC 3								26,4
4	LVTC 4		4,8	6,6	0,9	8,1	11,1	2	46,2
5	LVTC 5		7,1	7,6		10,9	16,4		51
6	LVTC 6			16,1			19,7		24
7	LVTC 7		8,7			24,5			46,8
8	LVTC 8		3,1	2	8,1	13,1	8,3	15,1	37,8
9	LVTC 9				4,1			4,8	31,8
10	LVTC 10								36
11	LVTC 11								24
12	LVTC 12								42
13		LVTC 13	13,5	13,3	4,1	8,1	7,6	1,1	36
14		LVTC 14	16,1	7,4	6,5	16,5	10,6	10,3	33
15		LVTC 15	4,5			2,1			26,4
16		LVTC 16	11,4	7,4	8,2	26,8	3,1	15	30
17		LVTC 17							39
18		LVTC 18	7,7		22,8	13,7		26,9	42,6
19		LVTC 19	5,1		3,4	7,8		0,9	36
20		LVTC 20			4			6,1	34,2
21		LVTC 21	9,2	5,9	8,5	9,4	7,8	10,4	31,8
22		LVTC 22	0,6			3,7			19,8

Hasil pengukuran beban pelanggan pada masing-masing jurusan, kemudian direkapitulasi seperti tertera dalam Tabel 2.

Tabel 2. Rekapitulasi hasil pengukuran

	Hasil Pengukuran					
Waktu	T (1)	Arus (A)				
	Tegangan (V)	R	S	Т		
Siang	222	114,6	70,3	99,3		
Malam	222	162,6	85,5	115,7		

Besar daya JTR keseluruhan dapat dihitung menggunakan persamaan (5), dengan perhitungan seperti berikut.

waktu siang hari:

Arus $I_R = 114,6 \text{ A}$

 $S_R = V. I$

= 222. 114,6

= 25441,2 VA

Arus $I_S = 70,3 \text{ A}$

 $S_S = V. I$

= 222.70,3

= 15606,6 VA

Arus $I_T = 99,3 \text{ A}$

 $S_T = V. I$

= 222.99,3

= 22044,6 VA

Sehingga dapat diketahui besar daya JTR untuk siang hari adalah $S_R + S_S + S_T = 63092,4 \text{ VA} \approx 63,1 \text{ kVA}$. Besarnya daya JTR untuk malam hari, penghitungan sama dengan siang hari. Jadi diperoleh hasil 80,7 kVA. Hasil-hasil tersebut dapat dlihat pada Tabel 3.

Tabel 3. Total Daya JTR

	Hasil Pengukuran					
Waktu	Tegangan		(kVA)			
	(V)	R	S	Т	R+S+T	
Siang	222	114,6	70,3	99,3	63,1	
Malam	222	162,6	85,5	115,7	80,7	

4.2 Persentase Pembebanan Transformator

Arus beban penuh transformator dihitung menggunakan Persamaan (6),dengan perhitungan sebagai berikut.

$$I_{FL} = \frac{S}{\sqrt{3}V} = \frac{100000}{\sqrt{3}.400} = 144,3A$$

Rata-rata arus ketiga fasa dihitung menggunakan Persamaan (7), dengan perhitungan sebagai berikut.

waktu siang hari:

$$I_{rata-rata} = \frac{I_R + I_S + I_T}{3}$$
$$= \frac{114,8 + 70,3 + 99,3}{3} = 94,80A$$

waktu malam hari :

$$I_{rata-rata} = \frac{I_R + I_S + I_T}{3}$$
$$= \frac{162, 6 + 85, 5 + 115, 7}{3} = 121, 27A$$

Persentase pembebanan transformator dihitung menggunakan Persamaan (8), dengan perhitungan sebagai berikut. waktu siang hari:

% pembebanan =
$$\frac{I_{rata-rata}}{I_{FL}} x100\%$$

= $\frac{94,80}{144,3} x100\%$
= 65.69%

malam hari:

% pembebanan =
$$\frac{I_{rata-rata}}{I_{FL}} x100\%$$

= $\frac{121,27}{144,3} x100\%$
= 84%

Hasil penghitungan persentase pembebanan transformator untuk waktu siang dan malam hari dapat dilihat pada Tabel 4.

Tabel 4. Persentase Pembebanan

raber 4. i ersentase i embebanan						
Waktu	Arus Rata-rata	Persentase Pembebanar				
waktu	(A)	(%)				
Siang	94,8	65,69				
Malam	121,27	84				

4.3 Persentase Ketidakseimbangan Beban

Persentase ketidakseimbangan beban transformator dihitung menggunakan Persamaan (9), (10),dan (11). Dan untuk mencari nilai koefisiensi a, b, dan c sebagai berikut.

waktu siang hari:

$$a = \frac{I_R}{I_{rata-rata}} = \frac{114,8}{94,80} = 1,2$$

$$b = \frac{I_S}{I_{rata-rata}} = \frac{70,3}{94,80} = 0,7$$

$$a = \frac{I_T}{I_{rata-rata}} = \frac{99,3}{94,80} = 1$$

Dihitung menggunakan Persamaan (12), maka persentase ketidakseimbangan beban waktu siang hari adalah :

$$= \frac{\{|a-1|+|b-1|+|c-1|\}}{3}x100\%$$

$$= \frac{\{|1,2-1|+|0,7-1|+|1-1|\}}{3}x100\%$$

$$= \frac{\{|0,2|+|0,3|+|0|\}}{3}x100\%$$

$$= 13.86\%$$

Hasil dari penghitungan yang sama dengan waktu siang hari, maka besar persentase untuk ketidakseimbangan beban waktu malam hari adalah sebesar 22,7 %. Seperti tertera dalam Tabel 5.

Tabel 5. Persentase Ketidakseimbangan

Waktu	ŀ	Coefisie	n	Persentase
vvaktu	а	b	С	Ketidakseimbangan
Siang	1,2	0,7	1	13,86
Malam	1,3	0,7	0,9	22,70

4.4 Analisis Rugi Daya JTR DS 0587 4.4.1 Analisis Pada Kondisi Beban Seimbang

Rugi-rugi daya pada penghantar LVTC kondisi seimbang, dihitung menggunakan Persamaan (14) dengan perhitungan berikut.

Rugi-rugi daya untuk penghantar LVTC 1. waktu siang hari :

$$I_{LVTC1} = I_{LVTC1} + I_{LVTC2} + I_{LVTC3} + I_{LVTC4} + I_{LVTC5} + I_{LVTC6} + I_{LVTC7} + I_{LVTC8} + I_{LVTC9}$$

$$I_{rata-rata\ LVTC1} = 41,60\ A$$

$$L_{LVTC1}$$
 = 36 meter = 0,036 km
 R_{LVTC1} = 0,5155 Ohm/km
= 0,5155 . 0,036
= 0,0186 Ohm

$$\Delta P_{LVTCI} = 3 \cdot I^2 \cdot R$$

= 3 \cdot 41,60² \cdot 0,0186
= 96,34 Watt

waktu malam hari :

 $I_{rata-rata\ LVTCI}$ = 58,6 A L_{LVTCI} = 36 meter = 0,036 km R_{LVTCI} = 0,5155 Ohm/km = 0,5155 . 0,036

= 0,0186 Ohm

 $\Delta P_{LVTCI} = 3 \cdot I^2 \cdot R$

 $= 3.58,6^2.0,0186$

= 191,4 Watt

Hasil dari penghitungan rugi-rugi daya yang sama dengan LVTC₁, maka dapat dianalisis rugi-rugi daya untuk seluruh penghantar LVTC yang lain pada masingmasing jurusan seperti pada Tabel 6.

Tabel 6. Rugi-rugi daya beban seimbang pada

penghantar LVTC

penghantal EVTO										
	No Uraian -			[ata Be		•		Rug-rugi Daya (W)	
No			Siang		Malam			rtag ragi baja (11)		
	Jurusan C	Jurusan C1	R	S	Т	R	S	Т	Siang	Malam
1	LVTC 1		6,1		12,4	5,8		6,1	96,34	191,40
2	LVTC 2		16,9	4	16,3	12,1	0,9	17	64,07	142,51
3	LVTC 3								21,66	81,46
4	LVTC 4		4,8	6,6	0,9	8,1	11,1	2	37,90	142,56
5	LVTC 5		7,1	7,6		10,9	16,4		28,27	111,50
6	LVTC 6			16,1			19,7		7,31	30,15
7	LVTC 7		8,7			24,5			5,44	34,82
8	LVTC 8		3,1	2	8,1	13,1	8,3	15,1	1,94	11,08
9	LVTC 9				4,1			4,8	0,092	0,13
10	LVTC 10									
11	LVTC 11									
12	LVTC 12									
13		LVTC 13	13,5	13,3	4,1	8,1	7,6	1,1	157,57	218,40
14		LVTC 14	16,1	7,4	6,5	16,5	10,6	10,3	21,45	40,39
15		LVTC 15	4,5			2,1			4,50	10,02
16		LVTC 16	11,4	7,4	8,2	26,8	3,1	15	3,76	10,39
17		LVTC 17								
18		LVTC 18	7,7		22,8	13,7		26,9	33,06	55,02
19		LVTC 19	5,1		3,4	7,8		0,9	8,33	13,15
20		LVTC 20			4			6,1	4,67	8,22
21		LVTC 21	9,2	5,9	8,5	9,4	7,8	10,4	3,20	5,35
22		LVTC 22	0,6			3,7			0,001	0,47

Besar rugi-rugi daya yang tertera pada Tabel 6, selanjutnya direkapitulasi seperti tertera pada Tabel 7 berikut.

Table 7. Total Rugi-rugi Daya Penghantar LVTC untuk

Beban Seimbang

Beban Selmbang						
Uraian JTR	Rugi-rugi Daya (W)					
Uraian JTR	Siang	Malam				
Jurusan C	263,03	755,61				
Jurusan C1	236,55	361,41				
Total	499,58	1117,02				

Rugi-rugi daya pada penghantar NFA2X kondisi seimbang, dihitung menggunakan Persamaan (14) dengan perhitungan berikut.

Rugi-rugi daya untuk penghantar NFA2X SR1.

waktu siang hari:

 $I_{rata-rataSR1} = 0,933 \text{ A}$

 L_{SRI} = 24 meter = 0,024 km

 R_{SRI} = 2,433 Ohm/km = 2,433 . 0,024

= 0,058 Ohm. = $3 \cdot I^2 \cdot R$

 $\Delta P_{SRI} = 3 \cdot I^2 \cdot R$ = 3 \cdot 0,933² \cdot 0,058 = 0,1526 Watt.

waktu malam hari:

 $I_{rata-rataSR1} = 1,4 A$

 L_{SRI} = 24 meter = 0,024 km

 R_{SRI} = 2,433 Ohm/km = 2,433 . 0,024

= 0,058 Ohm.

 ΔP_{SRI} = 3 · I^2 · R= 3 · 1, 4^2 · 0,058

= 0,4485 Watt.

Hasil dari penghitungan yang sama dengan penghantar NFA2X SR1, dapat dianalisis untuk seluruh penghantar NFA2X dengan jumlah 116 penghantar seperti pada Tabel 8.

Tabel 8. Total Rugi-rugi Daya Penghantar NFA2X Beban Seimbang

202411 00111124119						
Uraian Penghantar	Rugi-rugi Daya (W)					
Oralan Penghania	Siang	Malam				
NFA2X	45,5	83,69				

Hasil dari penghitungan rugi-rugi daya beban seimbang pada penghantar LVTC dan NFA2X, maka akan didapat hasil total rugi-rugi daya beban seimbang dengan cara menjumlahkan hasil rugi-rugi daya penghantar LVTC dengan NFA2X seperti tertera pada Tabel 9.

Tabel 9. Total Rugi-rugi Daya Beban Seimbang

Waktu		gi Daya luran (W)	Total Rugi-rugi Daya
	LVTC NFA2X		(W)
Siang	499,58	45,5	545,08
Malam	1117,02	83,69	1200,71

Besarnya rugi-rugi daya beban seimbang pada saluran untuk waktu siang hari jika dinyatakan dalam persentase adalah :

% rugi – rugi =
$$\frac{total \ rugi \ daya \ pada \ saluran(kW)}{daya \ dari \ PLN(kVA)} x100\%$$
$$= \frac{0.54}{63.14} x100\%$$
$$= 0.86\%$$

Hasil dari penghitungan yang sama dengan rugi-rugi daya beban seimbang waktu siang hari, maka rugi-rugi daya beban seimbang pada saluran untuk waktu malam hari jika dinyatakan dalam persentase adalah sebesar 1,48 %.

4.4.2 Analisis Pada Kondisi Beban Tidak Seimbang

Rugi-rugi daya beban tidak seimbang pada penghantar LVTC, dihitung menggu-

nakan Persamaan (13) dengan perhitungan berikut.

Rugi-rugi daya untuk penghantar LVTC 1 waktu siang hari :

```
=I_{LVTC1} + I_{LVTC2} + I_{LVTC3} + I_{LVTC4} +
             I_{LVTC5} + I_{LVTC6} + I_{LVTC7} + I_{LVTC8} +
             I_{LVTC9}
I_{RLVTC1} = 46,7 A
I_{SLVTCI} = 36,3A
I_{TLVTCI} = 41,8 \text{ A}
L_{LVTCI} = 36 meter = 0,036 km
R_{LVTC1} = 0.5155 \text{ Ohm/km}
           = 0.5155 . 0.036
           = 0.0186 \text{ Ohm}
Arus I_{RLVTCI} = 46,7 A

\Delta P_{LVTCI} = I^2 . R_2
           =46,7^2.0,0186
           = 40,47 Watt
Arus I_{SLVTCI} = 36,3 A

\Delta P_{LVTCI} = I^2 . R_2
           = 36,3^2 \cdot 0,0186
           = 24,45 Watt
Arus I_{RLVTCI} = 41,8 A
\Delta P_{LVTCI} = I^2 \cdot R
           =41.8^2 \cdot 0.0186
           = 32.42 Watt
```

Dari perhitungan yang didapat, diketahui total rugi-rugi daya pada LVTC 1 untuk waktu siang hari adalah sebesar $\Delta P_R + \Delta P_S + \Delta P_T = 40,47 + 24,45 + 32,42 = 97,35$ Watt.

waktu malam hari:

```
I_{LVTC1} = I_{LVTC1} + I_{LVTC2} + I_{LVTC3} + I_{LVTC4} +
            I_{LVTC5} + I_{LVTC6} + I_{LVTC7} + I_{LVTC8} +
            I_{LVTC9}
I_{RLVTCI} = 74,5 A
I_{SLVTCI} = 56,4A
I_{TLVTCI} = 45 \text{ A}
L_{LVTCI} = 36 meter = 0,036 km
R_{LVTCI} = 0,5155 \text{ Ohm/km}
          = 0,5155 . 0,036
          = 0.0186 Ohm
Arus I_{RLVTCI} = 74,5 A
\Delta P_{LVTCI} = I^2 \cdot R
          = 74.5^{2} \cdot 0.0186
          = 103 Watt
Arus I_{SLVTCI}= 56,4 A
\Delta P_{LVTC1} = I^2 . R
          = 56,4^2 \cdot 0,0186
          = 59.03 Watt
Arus I_{RLVTCI} = 45 \text{ A}

\Delta P_{LVTCI} = I^2 \cdot R
          =45^2 \cdot 0,0186
          = 37,58  Watt
Hasil dari perhitungan yang diperoleh,
diketahui total rugi-rugi daya pada LVTC 1
```

untuk waktu malam hari adalah sebesar

 $\Delta P_R + \Delta P_S + \Delta P_T = 103 + 59,03 + 37,58 = 199,61$ Watt.

Hasil dari penghitungan yang sama dengan LVTC₁, dapat dianalisis untuk seluruh penghantar LVTC yang lain seperti pada Tabel 10.

Tabel 10. Rugi-rugi Daya Beban Tidak Seimbang pada Penghantar LVTC

	Hea	nian	Rugi-rugi Daya (Watt)						
No	Ula		Siang		Malam				
	Jurusan C	Jurusan C1	R	S	T	R	S	T	
1	LVTC 1		40,47	25,45	32,42	103	59,03	37,58	
2	LVTC 2		30,59	36,3	16,04	80,29	54,11	25,74	
3	LVTC 3		7,64	14,2	2,33	43,6	41,92	6,53	
4	LVTC 4		13,38	24,85	4,09	76,3	73,36	11,42	
5	LVTC 5		9,39	17,36	3,91	61,84	51,83	10,41	
6	LVTC 6		1,72	4,05	1,84	17,49	9,7	4,89	
7	LVTC 7		3,36	0,1	3,9	34,11	1,66	9,55	
8	LVTC 8		0,19	0,05	2,9	3,34	1,34	7,72	
9	LVTC 9				0,28			0,38	
10	LVTC 10								
11	LVTC 11								
12	LVTC 12								
13		LVTC 13	86,06	21,45	61,36	144,04	15,71	92,76	
14		LVTC 14	17,42	3,72	3,67	35,06	3,19	10,89	
15		LVTC 15	3,44	0,74	0,91	11,37	0,13	3,06	
16		LVTC 16	2,01	0,84	1,04	11,11	0,15	3,48	
17		LVTC 17							
18		LVTC 18	11,22	0,76	32,89	26,29	1,34	43,09	
19		LVTC 19	4,12	0,65	4,69	8,11	1,13	5,62	
20		LVTC 20	1,69	0,61	2,75	3,03	1,07	4,8	
21		LVTC 21	1,57	0,57	1,18	2,81	0,99	1,77	
22		LVTC 22	0,004			0,14			

Besar rugi-rugi daya yang tertera pada Tabel 10, selanjutnya direkapitulasi seperti tertera pada Tabel 11 berikut.

Table 11. Total Rugi-rugi Daya Penghantar LVTC untuk Behan Tidak Seimbang

antak Besair Haak Comisang						
Uraian JTR	Rugi-rugi Daya (W)					
Oraian JTR	Siang	Malam				
Jurusan C	295,53	827,14				
Jurusan C1	265,36	431,14				
Total	560,89	1258,28				

Rugi-rugi daya pada penghantar NFA2X kondisi tidak seimbang, dihitung menggunakan persamaan (13) dengan perhitungan berikut.

Rugi-rugi Daya untuk penghantar NFA2X SR1.

waktu siang hari:

$$I_{R \, SRI} = 2.8 \, \text{Å}$$
 $I_{S \, SRI} = 0 \, \text{A}$
 $I_{T \, SRI} = 0 \, \text{A}$
 $L_{SRI} = 24 \, \text{meter} = 0,024 \, \text{km}$
 $R_{SRI} = 2,433 \, \text{Ohm/km}$
 $= 2,433 \, .0,024$
 $= 0,058 \, \text{Ohm}$
Arus $I_{R \, SRI} = 2,8 \, \text{A}$
 $\Delta P_{SR \, I} = I^2 \, .R$
 $= 2,8^2 \, .0,058$
 $= 0,4578 \, \text{Watt}$
Arus $I_{S \, SRI} = 0 \, \text{A}$
 $\Delta P_{SRI} = I^2 \, .R$
 $= 0^2 \, .0,058$

$$= 0 \text{ Watt}$$
Arus $I_{RSRI} = 0 \text{ A}$

$$\Delta P_{SRI} = I^2 \cdot R$$

$$= 0^2 \cdot 0,0186$$

$$= 0 \text{ Watt}$$

Hasil dari penghitungan yang sama dengan NFA2X SR1, dapat dianalisis untuk seluruh penghantar NFA2X dengan jumlah 116 penghantar, seperti pada Tabel 12.

Tabel 12. Total Rugi-rugi Daya Penghantar NFA2X Beban Tidak Seimbang

Ureian Denghanter	Rugi-rugi Daya (W)			
Uraian Penghantar	Siang	Malam		
NFA2X	107,18	199,79		

Hasil dari penghitungan rugi-rugi daya beban tidak seimbang pada penghantar LVTC dan NFA2X, maka akan didapat hasil total rugi-rugi daya beban tidak seimbang dengan cara menjumlahkan hasil rugi-rugi daya penghantar LVTC dengan NFA2X seperti tertera pada Tabel 13.

Tabel 13. Total Rugi-rugi Daya Beban Tidak Seimbang

Seimbang						
Waktu	Rugi-rugi Daya Pada Saluran (W)		Total Rugi-rugi Daya			
	LVTC	NFA2X	(W)			
Siang	560,89	107,18	668,07			
Malam	1258,28	199,79	1458,07			

Besarnya rugi-rugi daya beban tidak seimbang pada saluran untuk waktu siang hari jika dinyatakan dalam persentase adalah:

$$\% rugi - rugi = \frac{total \ rugi \ daya \ pada \ saluran (kW)}{daya \ dari \ PLN \ (kVA)} x100\%$$
$$= \frac{0,668}{63,14} x100\%$$
$$= 1.06\%$$

Hasil dari penghitungan yang sama dengan rugi-rugi beban tidak seimbang waktu siang hari, maka rugi-rugi daya beban tidak seimbang pada saluran untuk waktu malam hari jika dinyatakan dalam persentase adalah sebesar 1,8 %.

4.5 Hasil Perbandingan Rugi-rugi Dava

Berikut adalah tabel perbandingan rugi-rugi daya pada JTR DS 0587 beban seimbang dan tidak seimbang untuk waktu siang dan malam hari.

Tabel 14. Perbandingan Rugi-rugi Daya pada JTR DS 0587

Waktu	Kondisi	Total Rugi-rugi (Watt)	Persentse Rugi-rugi (%)
Seimbang	Siang	545,08	0,86
	Malam	1200,71	1,48
Tidak	Siang	668,07	1,06
Seimbang	Malam	1458,07	1,8

5. KESIMPULAN

Beberapa hal yang dapat disimpulkan dari penelitian ini adalah sebagai berikut :

- Persentase pembebanan Transformator distribusi DS 0587 untuk waktu siang hari adalah sebesar 65,69%, sedangkan untuk waktu malam hari adalah sebesar 84%. Besarnya persentase pembebanan pada waktu malam hari, diakibatkan oleh besarnya kebutuhan energi listrik pada malam hari.
- Persentase ketidakseimbangan beban pada Jaringan Distribusi Sekunder DS 0587 pada waktu siang hari adalah 13,86 %, sedangkan untuk waktu malam hari adalah 22,70%. Tingginya persentase ketidak seimbangan beban diakibatkan oleh besarnya perbedaan arus yang mengalir pada masing-masing fasa.
- Besarnya rugi-rugi daya pada Jaringan Distribusi Sekunder DS 0587 beban seimbang untuk waktu siang hari adalah sebesar 0,54 kW dengan persentase rugi-rugi sebesar 0,86%, sedangkan untuk waktu malam hari adalah sebesar 1,20 kW dengan persentase rugi-rugi sebesar 1,48%.
- 4. Besarnya rugi-rugi daya pada Jaringan Distribusi Sekunder DS 0587 beban tidak seimbang untuk waktu siang hari adalah sebesar 0,66 kW dengan persentase rugi-rugi sebesar 1,06%, sedangkan untuk waktu malam hari adalah sebesar 1,46 kW dengan persentase rugi-rugi sebesar 1,80%.

6. DAFTAR PUSTAKA

- [1] Setiadji, 2006. Pengaruh Ketidakseimbangan Beban Terhadap Arus Netral Dan Losses Pada Trafo Distribusi. Jurnal Teknik Elektro, Volume 6, No. 1.
- [2] Arismunandar, A, 1991. Buku Pegangan Tenaga Listrik - Gardu Induk. Jakarta : PT. Pradnya Paramita.
- [3] Barnett. H. G and Parsons. J. S, 1950 Elektrical Transmission Distribution

- **Reference Book.**Pennsylvania USA : Westinghouse Electric Corporation.
- [4] Gonen. T, 1986. Electric Power Distribution System Engineering. USA: McGraw - Hill.
- [5] Grainger. J. J dan Stevenson, Jr. W. D, 1994. *Power System Analisys*. USA: McGraw – Hill.
- [6] Pansini. Antony J. E. E., P. E. 2006. Electrical Distribution Engineering, 3rd Edition. Georgia – USA: The Fairmont Press, Inc.
- [7] John. J, Winers. Jr, 2002. Power Transformers Principles and Applications. Pannsylvania: Marcel Dekker. Inc.
- [8] Suhadi, 2008. Teknik Distribusi Tenaga Listrik Jilid 1. Jakarta : Direktorat Pembinaan Sekolah Kejuruan, Departemen Pendidikan Nasional.
- [9] ...Data Pelanggan JTR DS 0587 PT. PLN (Persero) Distribusi Bali Rayon Denpasar Tahun 2015.