2022-2023 MP2I

DM 7, pour le vendredi 14/01/2023

À regarder/lire/chercher en essayant de trouver des connexions entre les différentes questions pour la méthodo de la semaine prochaine :

- problème 1 : parties I et II.
- problème 2 : partie I.

PROBLÈME UNE ÉQUATION FONCTIONNELLE

On s'intéresse dans ce problème à l'ensemble des fonctions $f:\mathbb{R}\to\mathbb{R}$ continues vérifiant :

$$\forall x, y \in \mathbb{R}, \ f(x+y) + f(x-y) = 2f(x)f(y).$$

On note E l'ensemble des fonctions continues vérifiant cette propriété.

Partie I. Solutions deux fois dérivables.

- 1) Vérifier que les fonctions $x \mapsto \cos(x)$ et $x \mapsto \operatorname{ch}(x)$ sont dans E.
- 2) Soit $f \in E$.
 - a) Montrer que pour tout $\alpha \in \mathbb{R}$, la fonction $f_{\alpha} : \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & f(\alpha x) \end{array} \right.$ est dans E.
 - b) Quelles sont les valeurs possibles pour f(0)?
 - c) Montrer que si f(0) = 0, alors f est la fonction identiquement nulle.
 - d) Montrer que si f(0) = 1, alors f est une fonction paire.
- 3) On suppose dans cette question uniquement que f est une fonction de E deux fois dérivable.
 - a) Montrer que $\forall x, y \in \mathbb{R}$, f''(x+y) + f''(x-y) = 2f(x)f''y.
 - b) En déduire qu'il existe $\alpha \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, f''(x) = \alpha f(x)$.
 - c) Résoudre cette équation différentielle sur \mathbb{R} , en séparant les cas $\alpha < 0$, $\alpha = 0$ et $\alpha > 0$.
- 4) En déduire les fonctions de E qui sont deux fois dérivables.

Partie II. Solutions qui s'annulent.

On suppose dans cette partie que $f \in E$, que f s'annule au moins une fois et que f n'est pas la fonction nulle.

- 5) Justifier que f(0) = 1 et que f s'annule au moins une fois sur \mathbb{R}_+^* .
- 6) On pose $A = \{x > 0 / f(x) = 0\}.$
 - a) Vérifier que A admet une borne inférieure (que l'on notera a).
 - b) Montrer que f(a) = 0. En déduire que a > 0.
 - c) Montrer que $\forall x \in [0, a[, f(x) > 0]$.

- 7) On pose $\omega = \frac{\pi}{2a}$ et on note $g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \cos(\omega x) \end{array} \right.$
 - a) Soit $q \in \mathbb{N}$. Montrer que $f\left(\frac{a}{2^q}\right) + 1 = 2\left(f\left(\frac{a}{2^{q+1}}\right)\right)^2$.
 - b) En déduire que $\forall q \in \mathbb{N}, \ f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right).$
 - c) Montrer que $\forall p \in \mathbb{N}, \ \forall q \in \mathbb{N}, \ f\left(\frac{pa}{2^q}\right) = g\left(\frac{pa}{2^q}\right).$
 - d) Montrer que la propriété précédente est vraie pour tout $p \in \mathbb{Z}$.
- 8) On pose $D = \left\{ \frac{pa}{2^q}, \ p \in \mathbb{Z}, \ q \in \mathbb{N} \right\}.$
 - a) Soit $x \in \mathbb{R}$. Montrer que $\frac{\lfloor 2^n x \rfloor}{2^n} \to x$ quand n tend vers l'infini.
 - b) Montrer que D est dense dans \mathbb{R} .
 - c) En déduire que f = g.
- 9) Quelles sont les fonctions de E qui s'annulent?

Partie III. Solutions qui ne s'annulent pas.

On suppose dans cette partie que $f \in E$ et ne s'annule pas.

- 10) Montrer que f est strictement positive sur \mathbb{R} .
- 11) On suppose par l'absurde que f(1) < 1 et pour $n \in \mathbb{N}$, on pose $u_n = f(2^n)$. D'après la question précédente, $(u_n)_{n \in \mathbb{N}}$ est strictement positive.
 - a) Vérifier que $\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n^2 1$.
 - b) On pose $h: x \mapsto 2x^2 1 x$. Vérifier que h est négative sur [0,1[et en déduire que la suite (u_n) est décroissante.
 - c) En déduire alors une absurdité.
- 12) Montrer qu'il existe $\alpha \in \mathbb{R}_+$ tel que $f(1) = \operatorname{ch}(\alpha)$.
- 13) On pose alors $g: \left\{ \begin{array}{l} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \mathrm{ch}(\alpha x) \end{array} \right.$ En reprenant les questions 7 et 8 de la partie précédente (avec a=1 et en essayant de faire le moins de calcul possible), montrer que f=g.
- 14) En déduire finalement les fonctions présentes dans l'ensemble E.

PROBLÈME

RÉSOLUTION D'UNE ÉQUATION DIOPHANTIENNE

L'objectif de ce problème est de déterminer tous les couples $(a,b) \in \mathbb{Z}^2$ tels que $a^2 - 2b^2 = \pm 1$.

On note $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, (a, b) \in \mathbb{Z}^2\}.$

Partie I. Étude de $\mathbb{Z}[\sqrt{2}]$

- 1) Montrer que $(\mathbb{Z}[\sqrt{2}], +, \times)$ est un anneau.
- 2) Vérifier que l'on a unicité de l'écriture dans $\mathbb{Z}[\sqrt{2}]$, c'est à dire que :

$$\forall x \in \mathbb{Z}[\sqrt{2}], \ \exists !(a,b) \in \mathbb{Z}^2 \ / \ x = a + b\sqrt{2}.$$

On pose alors $\overline{x} = a - b\sqrt{2}$ le conjugué de x. On remarque que $\overline{x} \in \mathbb{Z}[\sqrt{2}]$.

- 3) Vérifier que $\forall x, x' \in \mathbb{Z}[\sqrt{2}], \overline{x+x'} = \overline{x} + \overline{x'}$ et $\overline{xx'} = \overline{x} \times \overline{x'}$.
- 4) Pour $x \in \mathbb{Z}[\sqrt{2}]$, on pose $N(x) = x\overline{x}$.
 - a) Montrer que $\forall x \in \mathbb{Z}[\sqrt{2}], \ N(x) \in \mathbb{Z}.$
 - b) Montrer que $\forall x, x' \in \mathbb{Z}[\sqrt{2}], \ N(xx') = N(x)N(x').$
 - c) Montrer que $x \in \mathbb{Z}[\sqrt{2}]$ est inversible (pour la loi \times) si et seulement si $N(x) \in \{1, -1\}$.
 - d) On pose $H = \{x \in \mathbb{Z}[\sqrt{2}] / N(x) = \pm 1\}$. Justifier que H est un groupe pour la loi \times .

Partie II. Étude de H

On va décrire entièrement l'ensemble H, ce qui répondra à la question initialement proposée.

- 5) Soit $x = a + b\sqrt{2} \in H$. Montrer que:
 - a) $a \ge 0$ et $b \ge 0 \Rightarrow x \ge 1$.
 - b) $a \le 0$ et $b \le 0 \Rightarrow x \le -1$.
 - c) $ab \le 0 \Rightarrow |x| \le 1$.
- 6) On pose $H_+ = \{x \in H / x > 1\}.$
 - a) Montrer que si $x = a + b\sqrt{2} \in H_+$, alors a > 0 et b > 0.
 - b) En déduire que $u = 1 + \sqrt{2}$ est le minimum de H_+ .
- 7) Soit $x \in H_+$.
 - a) Montrer qu'il existe un unique entier naturel $n \in \mathbb{N}^*$ tel que $u^n \leq x < u^{n+1}$.
 - b) En déduire que $x = u^n$.
 - c) Conclure que $H = \{ \pm u^n, \ n \in \mathbb{Z} \}.$