Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №1
З дисципліни «Методи оптимізації та планування»
Загальні принципи організації експериментів з
довільними значеннями факторів

ВИКОНАВ: Студент II курсу ФІОТ Групи ІО-92 Уткін Владислав Варіант №219

ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета:

Вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Варіант завдання:

219	- ТеҮ	

Код програми:

number = i

```
import numpy as np
from random import uniform
from prettytable import PrettyTable
table0 = PrettyTable()
table0.field_names = (["Студент", "Группа"])
name = "Уткін Владислав"
group = "IO-92"
table0.add_row([name, group])
print(table0)
Max = 20
a0 = 1
a1 = 2
a2 = 3
a3 = 5
X = np.empty((8, 3), dtype=float)
Y = np.empty(8)
X0 = \text{np.empty}(3)
DX = np.empty(3)
XNormalized = np.empty((8, 3), dtype=float)
  for j in range(3):
    X[i, j] = uniform(Min, Max)
  Y[i] = a0 + a1 * X[i, 0] + a2 * X[i, 1] + a3 * X[i, 2]
  X0[i] = (X[:, i].max() + X[:, i].min()) / 2
  DX[i] = X[:, i].max() - X0[i]
Y_{et} = a0 + a1 * X0[0] + a2 * X0[1] + a3 * X0[2]
     XNormalized[i, j] = (X[i, j] - X0[j]) / DX[j]
dY = 9999999
number = -1
for i in range(8):
  if Y[i] - Y_{et} < dY and Y[i] - Y_{et} > 0:
     dY = Y[i] - Y_et
```

```
Y2 = a0 + a1 * X[number, 0] + a2 * X[number, 1] + a3 * X[number, 2]
print("X: \n", X)
print("X0: \n", X0)
print("Y_et = ", Y_et)
print("XNormalized: \n", XNormalized.round(4))
print("number = ", number)
```

Контрольні запитання:

1. З чого складається план експерименту?

Сукупність усіх точок плану - векторів Xi (для i = 1, 2, ..., N) утворює план експерименту. Таким чином, план експерименту описується матрицею, яка містить N рядків і K стовбців. Кожен рядок матриці означає точку плану експерименту, а стовпчик — фактор експерименту.

2. Що називається спектром плану?

Сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактора (різних строк матриці планування), називається спектром плану.

3. Чим відрізняються активні та пасивні експерименти?

В пасивному експерименті існують контрольовані, але некеровані вхідні параметри — ми не маємо можливості втручатись в хід проведення експерименту, і виступаємо в ролі пасивного користувача. В активному — існують керовані і контрольовані вхідні параметри — ми самі являємось адміністраторами нашої системи.

4. Чим характеризується об'єкт досліджень? Дайте визначення факторному простору.

Об'єкт досліджень розглядається як «чорний ящик». Аналізуються деякі властивості та якості, які можуть описуватися числовими значеннями. Вектор $X_1...X_k$ представляє собою групу контрольованих та керованих величин, котрі можуть змінюватись необхідним чином при проведенні експерименту, Цю групу характеристик $X_1...X_k$ також називають факторами або керованими впливами.

Факторний простір — це множина зовнішніх і внутрішніх параметрів моделі, значення яких дослідник може контролювати в ході підготовки і проведення модельного експерименту.

Результат виконання коду

```
C:\Anaconda3\envs\labs\python.exe C:/Users/Влад/РусharmProjects/labs/Lab1Mope.py
     Студент | Группа |
| Уткін Владислав | IO-92 |
[[14.88562645 13.87886059 0.53535691]
[ 9.36721333 13.04123669 8.07539864]
[ 8.33040036 11.04629879 19.41653214]
[ 0.30570499  9.33411422  18.87284341]
[17.55957757 9.58127497 11.23317118]
[16.21361847 14.85978384 9.80142584]
[16.89666992 17.58166528 13.0362438 ]
[ 6.53558764   1.90742006   2.82334249]]
Υ:
[ 75.08461924 99.23512992 147.8823578 123.97796969 121.02883592
127.01371763 152.71955469 33.9101479 ]
X0:
[8.93264128 9.74454267 9.97594453]
Y_et = 97.97863321293882
XNormalized:
[[ 0.69  0.5275 -1. ]
[ 0.0504  0.4207 -0.2013]
[-0.0698 0.1661 1. ]
[-1. -0.0524 0.9424]
        -0.0208 0.1332]
[ 0.844  0.6527 -0.0185]
[ 0.9232 1. 0.3242]
[-0.2779 -1. -0.7576]]
number = 1
```

Висновок:

Під час лаб.роботи ми вивчили основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчили побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпили отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.