Universidade Federal de Sergipe

ÁRVORE B

<u>Alunos</u>: Gabriel Carvalho, Marcos Antônio, Phelipe Matos, Rafael Silva e Victor Reikdal. <u>Professor</u>: Alberto Costa Neto

Surgimento

- Inventado em 1971, por Rudolf Bayer e Edward Meyers McCreight.
- Desenvolvida no Boeing Scientific Research Labs.
- A origem do "B" é desconhecida.
 Hipóteses: Boeing Scientific Research
 Labs, Bayer-trees;
- Projetada para funcionar especialmente em memória secundária.

Definição

- Árvores B são uma generalização das árvores binária.
- Elas são uma estrutura que organiza os dados de forma hierárquica e ordenada.
- Elas também permite fazer isso numa complexidade temporal logarítmica.

Complexidade

Algoritmos	Tempo
Busca	O(log n)
Inserção	O(log n)
Remoção	O(log n)

• Nota: "n" é o número total de elementos na árvore B.

Vantagens e Desvantagens

VANTAGENS:

- Inserção, remoção e busca em complexidade logarítmica.
- Mantém os dados ordenados e balanceados.
- Uso eficiente do espaço de armazenamento.

DESVANTAGENS:

- Complexidade adicional na implementação.
- Manter o balanceamento.
- Requer um espaço maior.

Memórias

- Os dispositivos de memória de um computador consistem na memória principal e secundária, cada qual com suas características.
- A <u>memória primária</u> é mais conhecida como <u>memória volátil de endereçamento</u>
 <u>direto</u> (RAM). Ela apresenta baixo tempo de acesso, portanto armazena um volume relativamente pequeno de informação e possui altos custos.
- A <u>memória secundária</u> possui um endereçamento indireto (*HDD*, *SSD*), armazena um grande volume de informação e possui um acesso (seek) muito lento quando comparada com a memória primária.

Aplicações em Disco

- Alta capacidade de armazenamento.
- Informações armazenadas em trilhas.
- A quantidade de dados manipulados não cabe na memória primária.

Página

- Uma página é um conjunto de registros(itens) e apontadores para seus filhos.
- Estrutura da página:
 - N: Número de elementos presentes na página;
 - **P**: Ponteiro para o i-ésimo filho;
 - **C**: Chave do registro (geralmente um código);
 - **D**: Dados (ex.: endereço do registro no arquivo);

Ordem da Árvore

- De acordo com Bayer e McCreight, e outros, definem a ordem como sendo o número mínimo de chaves que uma página pode conter, exceto a raiz.
- De acordo com Knuth, a ordem é o número máximo de páginas filhas que toda página pode conter.

Página Folha

- Bayer e McCreight definem como as páginas mais distantes da raiz, ou aquelas que contém chaves no nível mais baixo da árvore.
- Já Knuth define o termo como as páginas que estão abaixo do último nível da árvore, ou seja, páginas que não contém nenhuma chave.

Regras

- Ordem de Árvore de Knuth:
- Máximo de n páginas filhas.
- Exceto raiz e folhas, cada página tem pelo menos (n/2) páginas filhas.
- Raiz tem no mínimo duas páginas filhas, a menos que seja uma folha.
- Todas as páginas folha têm mesma profundidade (altura da árvore).
- Chaves:
- Página não folha com n páginas filha tem n-1 chaves.
- Página folha tem no mínimo (n/2)-1 chaves e no máximo n-1 chaves.

Fatos Interessantes

A <u>altura mínima</u> da árvore B que pode existir com n número de nós e m é
o número máximo de filhos que um nó pode ter é:

$$hmin = [\log m(n+1) - 1]$$

• A <u>altura máxima</u> da árvore B que pode existir com n número de nós e t é o número mínimo de filhos que um nó não raiz pode ter é:

$$hmax = \left[\frac{\log t(n+1)}{2}\right] \quad t = \frac{m}{2}$$

IMPLEMENTAÇÃO

Estrutura Geral

Busca

Inserção

Remoção (Caso 1)

Remoção (Caso 2)

Remoção (Caso 2)

Remoção (Caso 3)

Remoção (Caso 3)

Remoção (Caso 4)

Remoção (Caso 4)

Remoção (Caso 5)

Remoção (Caso 5)

Aplicações Gerais

- Bancos de dados (MongoDB, MySql).
- Tabelas de símbolos.
- Sistema de arquivos.
- Sistemas operacionais.
- Roteadores de rede.
- Servidores DNS.

Referências Bibliográficas:

- Introduction of B-Tree. Disponível em:
 https://www.geeksforgeeks.org/introduction-of-b-tree-2/
- b-tree-visualization Javatpoint. Disponível em:
 https://www.javatpoint.com/b-tree-visualization/
- ZIVIANI, Nivio. Projeto de Algoritmos com Implementações em Pascal e C. 3. ed. São Paulo:
 Cengage, 2010.

OBRIGADO!