Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 04

- 1. Let \mathbb{F} be a field, and let $a,b,c\in\mathbb{F}$. Prove that: if a+b=a+c, then b=c.
- 2. Let \mathbb{F} be a field, and let $a, b, c \in \mathbb{F}$. Prove that: if $a \cdot b = a \cdot c$, then b = c.
- 3. Let \mathbb{F} be a field, and let $a, b \in \mathbb{F}$. Prove that: if $a \cdot b = 0$, then a = 0 or b = 0. In particular, fields have no (nonzero) zero divisors.
- 4. Prove that the set $\mathbb{Q}(i) := \{a + ib : a, b \in \mathbb{Q}\}$ is field.
- 5. Let *V* be a vector space. Then:
 - (a) The zero vector is unique.
 - (b) The additive inverse vector of any vector \mathbf{u} is unique; we use the notation $-\mathbf{u}$ for the inverse vector.
 - (c) $0\mathbf{u} = \mathbf{0}$ for every vector \mathbf{u} .
 - (d) $c\mathbf{0} = \mathbf{0}$ for every scalar c.
 - (e) $-\mathbf{u} = (-1)\mathbf{u}$ for every vector \mathbf{u} .
- 6. Given any vector space V, show that if $c\mathbf{v} = \mathbf{0}$, where \mathbf{v} is non-zero vector, then the scalar c = 0.
- 7. (a) Show that every vector space V satisfies the (additive) **cancellation law**, i.e. show that if $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, for $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{v} = \mathbf{w}$.
 - (b) Give an example of a set *X* and an operation involving elements of *X*, which does not satisfy the cancellation law. Briefly justify your answer.
- 8. Verify the properties of a vector space for the space $\mathbb{R}^{m \times n}$ of $m \times n$ matrices with real entries using the field of real numbers as the underlying field of scalars.
- 9. Verify the properties of a vector space for the space \mathbb{R}^{∞} of real sequences using the field of real numbers as the underlying field of scalars.
- 10. Verify the properties of a vector space for the space C[0,1] of continuous real-valued functions defined on the closed interval [0,1] using the field of real numbers as the underlying field of scalars.

Remark: Note that we can use any closed interval [a,b] as the domain for the continuous functions under consideration.

11.	Verify and write explicit	ly all the	e 10 proper	ties of a vec	tor space fo	r all the	examples
	discussed in Lecture 13.				-		-