
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2009; month=12; day=24; hr=10; min=46; sec=25; ms=165;
]

Validated By CRFValidator v 1.0.3

Application No: 10527438 Version No: 4.0

Input Set:

Output Set:

Started: 2009-12-04 15:33:02.225 **Finished:** 2009-12-04 15:33:03.649

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 424 ms

Total Warnings: 11
Total Errors: 0

No. of SeqIDs Defined: 19

Actual SeqID Count: 19

Error code		Error Description								
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(18)

SEQUENCE LISTING

<110>	Korea Research Institute of Bioscience and Biotechnology	
<120>	Method for screening of a lipase having improved enzymatic	
	activity using yeast surface display vector and the lipase	
<130>	26666U	
<140>	10527438	
<141>	2005-03-11	
	PCT/KR03/01820	
<151>	2003-09-04	
<150>	KR 2002-55575	
<151>	2002-09-13	
<160>	19	
<170>	PatentIn version 3.5	
\170×	racenerii verbion 3.3	
<210>	1	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	CALB primer 1	
	pilmoi i	
<400>	1	
ggctctt	cag ccactccttt ggtgaag	27
<210>	2	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220>	CALB primer 2	
12232	CALL PITMET 2	
<400>	2	
gcggat	cete agggggtgae gat	23
<210>	3	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	CALB primer 3	
<400>	3	
gcggat	ccgg gggtgacgat gccggag	27

```
<210> 4
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> GPD-err primer
<400> 4
                                                                        19
gcagagctaa ccaataagg
<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> T-0 primer
<400> 5
                                                                        19
tgcagttgaa cacaaccac
<210> 6
<211> 1023
<212> DNA
<213> Candida antarctica
<400> 6
                                                                        60
atgaatatat tttacatatt tttgtttttg ctgtcattcg ttcaaggtac cgccactccc
ttggtgaagc gtctgccttc cggttcggac cctgcctttt cgcagcccaa gtcggtgctc
                                                                       120
gatgegggte tgacetgeea gggtgetteg ceatectegg tetecaaace cateettete
                                                                       180
                                                                       240
gtccccggaa ccggcaccac aggtccacag tcgttcgact cgaactggat ccccctctct
gegeagetgg gttacacace etgetggate teaceceege egtteatget caaegacace
                                                                       360
caggtcaaca cggagtacat ggtcaacgcc atcaccacgc tctacgctgg ttcgggcaac
aacaagcttc ccgtgctcac ctggtcccag ggtggtctgg ttgcacagtg gggtctgacc
                                                                       420
                                                                       480
ttcttcccca gtatcaggtc caaggtcgat cgacttatgg cctttgcgcc cgactacaag
                                                                       540
ggcaccgtcc tcgccggccc tctcgatgca ctcgcggtta gtgcaccctc cgtatggcag
                                                                       600
caaaccaccg gttcggcact cactaccgca ctccgaaacg caggtggtct gacccagatc
gtgcccacca ccaacctcta ctcggcgacc gacgagatcg ttcagcctca ggtgtccaac
                                                                       660
tegecaeteg aeteateeta eetetteaae gggaagaaeg teeaggeaea ggetgtgtgt
                                                                       720
                                                                       780
```

gggccgctgt tcgtcatcga ccatgcaggc tcgctcacct cgcagttctc ctacgtcgtc

ggtcgatccg	ccctgcgctc	caccacgggc	caggctcgta	gtgcagacta	tggcattacc	840
gactgcaacc	ctcttcccgc	caatgatctg	actcccgagc	aaaaggtcgc	cgcggctgcg	900
ctcccggcgc	cggcggctgc	agccatcgtg	gcgggtccaa	agcagaactg	cgagcccgac	960
ctcatgccct	acgcccgccc	ctttgcagta	ggcaaaagga	cctgctccgg	catcgtcacc	1020
ccc						1023

<210> 7

<211> 951

<212> DNA

<213> Candida antarctica

<400> 7

ctgccttccg gttcggaccc tgccttttcg cagcccaagt cggtgctcga tgcgggtctg 60 acctgccaag gtgcttcgcc atcctcggtc tccaaaccca tccttctcgt ccccggaacc 120 180 ggcaccacag gtccacagtc gttcgactcg aactggatcc ccctctctgc gcagctgggt tacacaccct gctggatctc acccccgccg ttcatgctca acgacaccca ggtcaacacg 240 gagtacatgg tcaacgccat caccacgctc tacgctggtt cgggcaacaa caagcttccc 300 gtgctcacct ggtcccaggg tggtctggtt gcacagtggg gtctgacctt cttccccagt 360 420 atcaggtcca aggtcgatcg acttatggcc tttgcgcccg actacaaggg caccgtcctc 480 gccggccctc tcgatgcact cgcggttagt gcaccctccg tatggcagca aaccaccggt teggeactea etacegeact eegaaaegea ggtggtetga eeeagategt geeeaceace 540 aacctctact cggcgaccga cgagatcgtt cagcctcagg tgtccaactc gccactcgac 600 teatectace titteaacgg aaagaacgte caggeacagg etgigtgigg geegeagtie 660 gtcatcgacc atgcaggctc gctcacctcg cagttctcct acgtcgtcgg tcgatccgcc 780 ctgcgctcca ccacgggcca ggctcgtagt gcggactatg gcattacgga ctgcaaccct cttcccgcca atgatctgac tcccgagcaa aaggtcgccg cggctgcgct cccggcgccg 840 geggetgeag ceategtgge gggteeaaag eagaactgeg ageeegaeet eatgeeetae 951 gcccgcccct ttgcagtagg caaaaggacc tgctccggca tcgtcacccc c

<210> 8

<211> 1023

<212> DNA

<213> Candida antarctica

<400> 8

atgaatatat	tttacatatt	tttgtttttg	ctgtcattcg	ttcaaggtac	cgccactcct	60
ttggtgaagc	gtctgccttc	cggttcggac	cctgcctttt	cgcagcccaa	gtcggtgctc	120
gatgcgggtc	tgacctgcca	gggtgcttcg	ccatcctcgg	tctccaaacc	catccttctc	180
gtccccggaa	ccggcaccac	aggtccacag	tcgttcgact	cgaactggat	cccctctct	240
gcgcagctgg	gttacacacc	ctgctggatc	tcacccccgc	cgttcatgct	caacgacacc	300
caggtcaaca	cggagtacat	ggtcaacgcc	atcaccacgc	tctacgctgg	ttcgggcaac	360
aacaagcttc	ccgtgctcac	ctggtcccag	ggtggtctgg	ttgcacagtg	gggtctgacc	420
ttcttcccca	gtatcaggtc	caaggtcgat	cgacttatgg	cctttgcgcc	cgactacaag	480
ggcaccgtcc	tegeeggeee	tctcgatgca	ctcgcggtta	gtgcaccctc	cgtatggcag	540
caaaccaccg	gttcggcact	cactaccgca	ctccgaaacg	caggtggtct	gacccagatc	600
gtgcccacca	ccaacctcta	ctcggcgacc	gacgagatcg	ttcagcctca	ggtgtccaac	660
tcgccactcg	actcatccta	cctcttcaac	ggaaagaacg	tccaggcaca	ggctgtgtgt	720
gggccgcagt	tcgtcatcga	ccatgcaggc	tcgctcacct	cgcagttctc	ctacgtcgtc	780
ggtcgatccg	ccctgcgctc	caccacgggc	caggctcgta	gtgcagacta	tggcattacg	840
gactgcaacc	ctcttcccgc	caatgatctg	actcccgagc	aaaaggtcgc	cgcggctgcg	900
ctcctggcgc	cggcggctgc	agccatcgtg	gcgggtccaa	agcagaactg	cgagcccgac	960
ctcatgccct	acgecegeee	ctttgcagta	ggcaaaagga	cctgctccgg	catcgtcacc	1020
ccc						1023

<210> 9

<211> 319

<212> PRT

<213> Candida antarctica

<400> 9

Leu Pro Ser Gly Ser Asp Pro Ala Phe Ser Gln Pro Lys Ser Val Leu 1 5 10 15

Asp Ala Gly Leu Thr Cys Gln Gly Ala Ser Pro Ser Ser Val Ser Lys 20 25 30

Pro Ile Leu Leu Val Pro Gly Thr Gly Thr Thr Gly Pro Gln Ser Phe 35 40 45

Asp Ser Asn Trp Ile Pro Leu Ser Ala Gln Leu Gly Tyr Thr Pro Cys

55 60

50

Trp Ile Ser Pro Pro Pro Phe Met Leu Asn Asp Thr Gln Val Asn Thr 65 70 75 80 Glu Tyr Met Val Asn Ala Ile Thr Thr Leu Tyr Ala Gly Ser Gly Asn 90 Asn Lys Leu Pro Val Leu Thr Trp Ser Gln Gly Gly Leu Val Ala Gln 100 105 110 Trp Gly Leu Thr Phe Phe Pro Ser Ile Arg Ser Lys Val Asp Arg Leu 115 120 125 Met Ala Phe Ala Pro Asp Tyr Lys Gly Thr Val Leu Ala Gly Pro Leu 130 135 140 Asp Ala Leu Ala Val Ser Ala Pro Ser Val Trp Gln Gln Thr Thr Gly 145 150 155 160 Ser Ala Leu Thr Thr Ala Leu Arg Asn Ala Gly Gly Leu Thr Gln Ile 165 170 175 Val Pro Thr Thr Asn Leu Tyr Ser Ala Thr Asp Glu Ile Val Gln Pro 180 185 Gln Val Ser Asn Ser Pro Leu Asp Ser Ser Tyr Leu Phe Asn Gly Lys 200 195 205 Asn Val Gln Ala Gln Ala Val Cys Gly Pro Leu Phe Val Ile Asp His 210 215 220 Ala Gly Ser Leu Thr Ser Gln Phe Ser Tyr Val Val Gly Arg Ser Ala 225 230 235 240 Leu Arg Ser Thr Thr Gly Gln Ala Arg Ser Ala Asp Tyr Gly Ile Thr 245 250 255 Asp Cys Asn Pro Leu Pro Ala Asn Asp Leu Thr Pro Glu Gln Lys Val 265 270 260

Ala Ala Ala Leu Pro Ala Pro Ala Ala Ala Ile Val Ala Gly

285

280

Pro Lys Gln Asn Cys Glu Pro Asp Leu Met Pro Tyr Ala Arg Pro Phe 290 295 300

Ala Val Gly Lys Arg Thr Cys Ser Gly Ile Val Thr Pro Gly Ser 305 310 315

<210> 10

<211> 319

<212> PRT

<213> Candida antarctica

<400> 10

Leu Pro Ser Gly Ser Asp Pro Ala Phe Ser Gln Pro Lys Ser Val Leu

1 5 10 15

Asp Ala Gly Leu Thr Cys Gln Gly Ala Ser Pro Ser Ser Val Ser Lys 20 25 30

Pro Ile Leu Leu Val Pro Gly Thr Gly Thr Thr Gly Pro Gln Ser Phe 35 40 45

Asp Ser Asn Trp Ile Pro Leu Ser Ala Gln Leu Gly Tyr Thr Pro Cys 50 55 60

Trp Ile Ser Pro Pro Pro Phe Met Leu Asn Asp Thr Gln Val Asn Thr 65 70 75 80

Glu Tyr Met Val Asn Ala Ile Thr Thr Leu Tyr Ala Gly Ser Gly Asn
85 90 95

Asn Lys Leu Pro Val Leu Thr Trp Ser Gln Gly Gly Leu Val Ala Gln 100 105 110

Trp Gly Leu Thr Phe Phe Pro Ser Ile Arg Ser Lys Val Asp Arg Leu
115 120 125

Met Ala Phe Ala Pro Asp Tyr Lys Gly Thr Val Leu Ala Gly Pro Leu 130 $$ 135 $$ 140

Ser Ala Leu Thr Thr Ala Leu Arg Asn Ala Gly Gly Leu Thr Gln Ile 165 170 175 Val Pro Thr Thr Asn Leu Tyr Ser Ala Thr Asp Glu Ile Val Gln Pro 180 185 190 Gln Val Ser Asn Ser Pro Leu Asp Ser Ser Tyr Leu Phe Asn Gly Lys 195 200 205 Asn Val Gln Ala Gln Ala Val Cys Gly Pro Gln Phe Val Ile Asp His 210 215 220 Ala Gly Ser Leu Thr Ser Gln Phe Ser Tyr Val Val Gly Arg Ser Ala 225 230 235 240 Leu Arg Ser Thr Thr Gly Gln Ala Arg Ser Ala Asp Tyr Gly Ile Thr 250 255 245 Asp Cys Asn Pro Leu Pro Ala Asn Asp Leu Thr Pro Glu Gln Lys Val 260 265 270 Ala Ala Ala Leu Pro Ala Pro Ala Ala Ala Ile Val Ala Gly 275 280 285 Pro Lys Gln Asn Cys Glu Pro Asp Leu Met Pro Tyr Ala Arg Pro Phe 290 295 300 Ala Val Gly Lys Arg Thr Cys Ser Gly Ile Val Thr Pro Gly Ser 305 310 315 <210> 11 <211> 317 <212> PRT <213> Candida antarctica <400> 11 Leu Pro Ser Gly Ser Asp Pro Ala Phe Ser Gln Pro Lys Ser Val Leu 1 5 10 15 Asp Ala Gly Leu Thr Cys Gln Gly Ala Ser Pro Ser Ser Val Ser Lys 20 25 30

Pro Ile Leu Leu Val Pro Gly Thr Gly Thr Thr Gly Pro Gln Ser Phe

45

40

Asp Se:	c Asn	Trp	Ile	Pro	Leu 55	Ser	Ala	Gln	Leu	Gly 60	Tyr	Thr	Pro	Cys
Trp Ile	e Ser	Pro	Pro	Pro 70	Phe	Met	Leu	Asn	Asp 75	Thr	Gln	Val	Asn	Thr 80
Glu Ty:	c Met	Val	Asn 85	Ala	Ile	Thr	Thr	Leu 90	Tyr	Ala	Gly	Ser	Gly 95	Asn
Asn Ly:	s Leu	Pro 100	Val	Leu	Thr	Trp	Ser 105	Gln	Gly	Gly	Leu	Val 110	Ala	Gln
Trp Gl	/ Leu 115	Thr	Phe	Phe	Pro	Ser 120	Ile	Arg	Ser	Lys	Val 125	Asp	Arg	Leu
Met Ala		Ala	Pro	Asp	Tyr 135	Lys	Gly	Thr	Val	Leu 140	Ala	Gly	Pro	Leu
Asp Ala	a Leu	Ala	Val	Ser 150	Ala	Pro	Ser	Val	Trp 155	Gln	Gln	Thr	Thr	Gly 160
Ser Ala	a Leu	Thr	Thr 165	Ala	Leu	Arg	Asn	Ala 170	Gly	Gly	Leu	Thr	Gln 175	Ile
Val Pro	o Thr	Thr 180	Asn	Leu	Tyr	Ser	Ala 185	Thr	Asp	Glu	Ile	Val 190	Gln	Pro
Gln Va	l Ser 195	Asn	Ser	Pro	Leu	Asp 200	Ser	Ser	Tyr	Leu	Phe 205	Asn	Gly	Lys
Asn Val		Ala	Gln	Ala	Val 215	Cys	Gly	Pro	Gln	Phe 220	Val	Ile	Asp	His
Ala Gly 225	y Ser	Leu	Thr	Ser 230	Gln	Phe	Ser	Tyr	Val 235	Val	Gly	Arg	Ser	Ala 240
Leu Arc	g Ser	Thr	Thr 245	Gly	Gln	Ala	Arg	Ser 250	Ala	Asp	Tyr	Gly	Ile 255	Thr
Asp Cy:	s Asn	Pro 260	Leu	Pro	Ala	Asn	Asp 265	Leu	Thr	Pro	Glu	Gln 270	Lys	Val

```
Ala Ala Ala Leu Leu Ala Pro Ala Ala Ala Ile Val Ala Gly
                       280
Pro Lys Gln Asn Cys Glu Pro Asp Leu Met Pro Tyr Ala Arg Pro Phe
                    295
   290
                                      300
Ala Val Gly Lys Arg Thr Cys Ser Gly Ile Val Thr Pro
305
                310
                         315
<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> CALB primer 4
<400> 12
ctcatatgct accttccggt tcggac
                                                                26
<210> 13
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> a-amylase secretion signal
<400> 13
Met Met Val Ala Trp Trp Ser Leu Phe Leu Tyr Gly Leu Gln Val Ala
              5
                               10
Ala Pro Ala Leu Ala
  20
<210> 14
<211> 317
<212> PRT
<213> Candida antarctica
<400> 14
Leu Pro Ser Gly Ser Asp Pro Ala Phe Ser Gln Pro Lys Ser Val Leu
```

Asp Ala Gly Leu Thr Cys Gln Gly Ala Ser Pro Ser Ser Val Ser Lys
20 25 30

10

Pro Ile Leu 35	Leu Val	Pro Gly	Thr Gly	Thr Thr	Gly Pro 45	Gln Ser	Phe
Asp Ser Asn '	Trp Ile	Pro Leu 55	Ser Ala	Gln Leu	Gly Tyr 60	Thr Pro	Суз
Trp Ile Ser 1		Pro Phe 70	Met Leu	Asn Asp 75	Thr Gln	Val Asn	Thr 80
Glu Tyr Met '	Val Asn 85	Ala Ile	Thr Thr	Leu Tyr 90	Ala Gly	Ser Gly 95	Asn
Asn Lys Leu 1	Pro Val 100	Leu Thr	Trp Ser 105	Gln Gly	Gly Leu	Val Ala 110	Gln
Trp Gly Leu '	Thr Phe	Phe Pro	Ser Ile 120	Arg Ser	Lys Val 125	Asp Arg	Leu
Met Ala Phe 2	Ala Pro	Asp Tyr 135	Lys Gly	Thr Val	Leu Ala 140	Gly Pro	Leu
Asp Ala Leu 2		Ser Ala 150	Pro Ser	Val Trp 155	Gln Gln	Thr Thr	Gly 160
Ser Ala Leu '	Thr Thr 165	Ala Leu	Arg Asn	Ala Gly 170	Gly Leu	Thr Gln 175	Ile
Val Pro Thr	Thr Asn 180	Leu Tyr	Ser Ala 185	Thr Asp	Glu Ile	Val Gln 190	Pro
Gln Val Ser 1	Asn Ser	Pro Leu	Asp Ser 200	Ser Tyr	Leu Phe 205	Asn Gly	Lys
Asn Val Gln 2 210	Ala Gln	Ala Val 215	Cys Gly	Pro Leu	Phe Val 220	Ile Asp	His
Ala Gly Ser : 225	Leu Thr	Ser Gln 230	Phe Ser	Tyr Val 235	Val Gly	Arg Ser	Ala 240
Leu Arg Ser '	Thr Thr 245	Gly Gln	Ala Arg	Ser Ala 250	Asp Tyr	Gly Ile 255	Thr

Asp Cys Asn Pro Leu Pro Ala Asn Asp Leu Thr Pro Glu Gln Lys Val 260 265 270 Ala Ala Ala Leu Leu Ala Pro Ala Ala Ala Ile Val Ala Gly 275 280 285 Pro Lys Gln Asn Cys Glu Pro Asp Leu Met Pro Tyr Ala Arg Pro Phe 300 290 295 Ala Val Gly Lys Arg Thr Cys Ser Gly Ile Val Thr Pro 310 <210> 15 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> LQ53 primer <400> 15 gctgtgtgt ggccgcagtt cgtcatcg 28 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LQ35 primer <400> 16 30 gcatggtcga tgacgaactg cggcccacac <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LP53 primer <400> 17 30 gtcgccgcgg ctgcgctccc ggcgccggcg <210> 18 <211> 29

<212> DNA <213>