Topology 2

Notes taken by Junwoo Yang

Based on a lecture by Youngsik Huh in fall $2021\,$

Contents

U	Introduction	2
	0.1 Quotient topology	2
	0.2 What is algebraic topology?	2
	0.3 Fundamental group	
9	Fundamental group	5
	9.51 Homotopy of paths	5
	9.52 Fundamental group	7
		9
	9.54 Fundamental group of the circle	11
	9.55 Retractions and fixed points	14
10	Separation theorems in the plane	15
	10.63Jordan curve theorem	15
11	Seifert–Van Kampen theorem	16
	11.70The Seifert–Van Kampen theorem	17
12	Classification of surfaces	20
13	Classification of covering spaces	21
	13 80Universal covering space	24

Introduction

0.1 Quotient topology

Definition 1. An *equivalence relation* is a relation $x \sim y$ so that $x \sim x$; if $x \sim y$ then $y \sim x$; and if $x \sim y$ and $y \sim z$, then $x \sim z$. Given an equivalence relation defined on $X, X/_{\sim}$ is the set of *equivalence classes*.

Definition 2. Let $f: X \to Y$ be a surjective map from the topological space X to the set Y. Then, we define a topology on Y, called the quotient **topology**, by requiring that $O \subset Y$ be open if and only if $f^{-1}(O)$ is actually an open set of X. One checks trivially that this defines a topology on Y.

Example. Let X be the closed unit ball, $\{(x,y): x^2 + y^2 \le 1\}$, in \mathbb{R} and X^* be the partition of X consisting of all the one-point sets $\{(x,y)\}$ for which $x^2 + y^2 < 1$, along with the set $S^1 = \{(x, y) : x^2 + y^2 = 1\}$. Then X^* is homeomorphic with the subspace of \mathbb{R}^3 called the unit 2-sphere.

0.2What is algebraic topology?

Functor from category of topological spaces to the category of groups.

- Category: set of spaces and morphisms.
- Functor: $X \leadsto G_X$ and $f: X \to Y \leadsto f_*: G_X \to G_Y$ such that

$$-(f \circ g)_* = f_* \circ g_*$$

$$-(1_X)_* = 1_{G_X}$$

Two systems we'll discuss:

- fundamental groups
- homology groups

Example. Suppose we have a functor. If $G_X \ncong G_Y$, then X and Y are not homeomorphic. If 'shadows' are different, then objects themselves are different too.

Proof. Suppose X and Y are homeomorphic. Then $\exists f \colon X \to Y$ and $g \colon Y \to X$, maps (maps are always continuous in this course), such that $g \circ f = 1_X$ and $f \circ g = 1_Y$. Then $f_* \colon G_X \to G_Y$ and $g_* \colon G_Y \to G_X$ such that $(g \circ f)_* = (1_X)_*$ and $(f \circ g)_* = (1_Y)_*$. Using the rules discussed previously, we get

$$g_* \circ f_* = 1_{G_X} \quad f_* \circ g_* = 1_{G_Y},$$

which means that $f_*: G_X \to G_Y$ is an isomorphism.

0.3 Fundamental group

Pick a base point x_0 and consider it fixed. (The fundamental group will not depend on it. We assume all spaces are path connected) $X \rightsquigarrow \pi(X)$.

- A loop based at $x_0 \in X$ is a map $f: I = [0,1] \to X$, $f(0) = f(1) = x_0$.
- Loops are equivalent if one can be deformed in the other in a continuous way, with the base point fixed.
- The fundamental group consists of equivalent classes of loops.

Example. Let $X = B^2$ (2 dimensional disk). Then $\pi(B^2) = 1$, because every loop is equivalent to the 'constant' loop.

Example. Let $X = S^1$ and pick x_0 on the circle. Two options:

- The loop is trivial equivalent to the constant loop
- The loop goes around the circle.
- The loop goes around the circle, twice.
- The loop goes around the circle, clockwise, once
- . . .

 $\pi(S^1) \cong \mathbb{Z}$ (proof will follow)

The composition of loops is simply pasting them. In the case of the circle, the loop $-1\circ$ the loop 2 is the loop 1.

Suppose $\alpha: I \to X$ and $f: X \to Y$. Then we define

$$f_*[\alpha] = [f \circ \alpha].$$

Theorem 1 (Fixed point theorem of Brouwer). Any continuous map from a rectangle to itself has at least one fixed point.

Proof. Suppose there is no fixed point, so $f(x) \neq x$ for all $x \in B^2$. Then we can construct map $r \colon B^2 \to S_1$ as follows: take the intersection of the boundary and half ray between f(x) and x. If x lies on the boundary, we have the identity map. This map is continuous. Then we have $S^1 \to B^2 \to S^1$, via the inclusion and r. Looking at the fundamental groups:

$$\pi(S^1) = \mathbb{Z} \to \pi(B^2) = 1 \to \pi(S^1) = \mathbb{Z}.$$

The map from $\pi(S^1) \to \pi(S^1)$ is the identity map, but the first map maps everything on 1.

Fundamental group

9.51 Homotopy of paths

Definition 3. Let $f, g: X \to Y$ be continuous maps. Then a **homotopy** between f and g is a continuous map $H: X \times I \to Y$ such that

- H(x,0) = f(x), H(x,1) = g(x)
- For all $t \in I$, define $f_t : X \to Y$ given by $x \mapsto H(x,t)$

We say that f is **homotopic** with g, we write $f \simeq g$. If g is a constant map, we say that f is **null homotopic**.

Definition 4. Let $f,g: I \to X$ be two paths such that $f(0) = g(0) = x_0$ and $f(1) = g(1) = x_1$. Then $H: I \times I \to X$ is a **path homotopy** between f and g, if and only if

- H(s,0) = f(s) and H(s,1) = g(s) (homotopy between maps)
- $H(0,t)=x_0$ and $H(1,t)=x_1$ (start and end points fixed)

Notation: $f \simeq_p g$.

Lemma 1. \simeq and \simeq_p are equivalence relations.

Proof. • Reflective: F(x,t) = f(x)

- Symmetric: G(x,t) = H(x,1-t)
- Transitive: Suppose $f \simeq g$ and $g \simeq h$, with H_1, H_2 resp.

$$H(x,t) = \begin{cases} H_1(x,2t) & 0 \le t \le \frac{1}{2} \\ H_2(x,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}.$$

Example (Trivial, but important). Let $C \subset \mathbb{R}^n$ be a convex subset.

- Any two maps $f, g: X \to C$ are homotopic.
- Any two paths $f, g: I \to C$ with f(0) = g(0) and g(1) = f(1) are path homopotic.

Choose $H: X \times I \to C$ defined by $(x,t) \mapsto H(x,t) = (1-t)f(x) + tg(x)$.

Product of paths

Let $f: I \to X$, $g: I \to X$ be paths, f(1) = g(0). Define

$$f * g \colon I \to X$$
 given by $s \mapsto \begin{cases} f(2s) & 0 \le s \le \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \le s \le 1. \end{cases}$

Remark. If f is path homotopic to f' and g path homotopic to g' (which means that f(1) = f'(1) = g(0) = g'(0)), then $f * g \simeq_p f' * g'$.

So we can define [f] * [g] := [f * g] with $[f] := \{g : I \to X | g \simeq_p f\}$.

Theorem 2. 1. [f] * ([g] * [h]) is defined iff ([f] * [g]) * [h] is defined and in that case, they are equal.

- 2. Let e_x denote the constant path $e_x \colon I \to X$ given by $s \mapsto x$, $x \in X$. If $f(0) = x_0$ and $f(1) = x_1$ then $[e_{x_0}] * [f] = [f]$ and $[f] * [e_{x_1}] = [f]$.
- 3. Let $\overline{f}: I \to X$ given by $s \mapsto f(1-s)$. Then $[f] * [\overline{f}] = [e_{x_0}]$ and $[\overline{f}] * [f] = [e_{x_1}]$.

Proof. First two observations

- Suppose $f \simeq_p g$ via homotopy $H, f, g: I \to X$. Let $k: X \to Y$. Then $k \circ f \simeq_p k \circ g$ using $k \circ H$.
- If f * g (not necessarily path homotopic). Then $k \circ (f * g) = (k \circ f) * (k \circ g)$.

Now, the proof

2. Take $e_0: I \to I$ given by $s \mapsto 0$. Take $i: I \to I$ given by $s \mapsto s$. Then $e_0 * i$ is a path from 0 to $1 \in I$. The path i is also such a path. Because I is a convex subset, $e_0 * i$ and i are path homotopic, $e_0 * \simeq i$. Using one of our observations, we find that

$$f \circ (e_0 * i) \simeq_p f \circ i$$
$$(f \circ e_0) * (f \circ i) \simeq_p f$$
$$e_{x_0} * f \simeq_p f$$
$$[e_{x_0}] * [f] = [f].$$

3. Note that $i * \bar{i} \simeq_p e_0$. Now, applying the same rules, we get

$$f \circ (i * \overline{i}) \simeq_p f \circ e_0$$
$$f * \overline{f} \simeq_p e_{x_0}$$
$$[f] * [\overline{f}] = [e_{x_0}].$$

1. Remark: Only defined if f(1) = g(0), g(1) = h(0). Note that $f * (g * h) \neq (f * g) * h$. The trajectory is the same, but the speed is not.

Assume the product is defined. Suppose [a,b], [c,d] are intervals in \mathbb{R} . Then there is a unique positive (positive slope), linear map from $[a,b] \to [c,d]$. For any $a,b \in [0,1)$ with 0 < a < b < 1, we define a path

$$\begin{array}{c} k_{a,b} \colon [0,1] \longrightarrow X \\ [0,a] \xrightarrow{\lim} [0,1] \xrightarrow{f} X \\ [a,b] \xrightarrow{\lim} [0,1] \xrightarrow{g} X \\ [b,0] \xrightarrow{\lim} [0,1] \xrightarrow{h} X \end{array}$$

Then $f*(g*h) = k_{\frac{1}{2},\frac{3}{4}}$ and $(f*g)*h = k_{\frac{1}{4},\frac{1}{2}}$.

Let γ be that path $\gamma \colon I \to I$ with the following graphs:

Note that $\gamma \simeq_p i$. Now, using the fact that composition of positive linear maps is positive linear.

$$k_{c,d} \circ \gamma \simeq_p k_{c,d} \circ i$$

 $k_{a,b} \simeq_p k_{c,d},$

which is what we wanted to show.

9.52 Fundamental group

Definition 5. Let X be a space and $x_0 \in X$, then the **fundamental group** of X based at x_0 is

$$\pi(X, x_0) = \{ [f] \mid f \colon I \to X, f(0) = f(1) = x_0 \}.$$

(Also $\pi_1(X, x_0)$ is used, first homotopy group of X based at x_0)

For $[f], [g] \in \pi(X, x_0)$, [f] * [g] is always defined, $[e_{x_0}]$ is an identity element, * is associative and $[f]^{-1} = [\overline{f}]$. This makes $(\pi(X, x_0), *)$ a group.

Example. If $C \subset \mathbb{R}^n$, convex then $\pi(X, x_0) = 1$. E.g. $\pi(B^2, x_0) = 1$.

Remark. All groups are a fundamental group of some space.

Question: how does the group depend on the base point?

Theorem 3 (52.1). Let X be a space, $x_0, x_1 \in X$ and $\alpha: I \to X$ a path from x_0 to x_1 . Then

$$\hat{\alpha} \colon \pi(X, x_0) \longrightarrow \pi(x, x_1)$$

$$[f] \longmapsto [\overline{\alpha}] * [f] * [\alpha].$$

is an isomorphisms of groups. Note however that this isomorphism depends on α .

Proof. Let $[f], [g] \in \pi_1(X, x_0)$. Then

$$\begin{split} \widehat{\alpha}([f]*[g]) &= [\overline{\alpha}]*[f]*[g]*[\alpha] \\ &= [\overline{\alpha}]*[f]*[\alpha]*[\overline{\alpha}]*[g]*[\alpha] \\ &= \widehat{\alpha}[f]*\widehat{\alpha}[g]. \end{split}$$

We can also construct the inverse, proving that these groups are isomorphic. \Box

Figure 9.1: Construction of the group homeomorphism

Remark. If : $(x, x_0) \to (Y, y_0)$ is a map of pointed topology spaces $(f: X \to Y \text{ continuous and } f(x_0) = y_0)$. Then

$$f_* \colon \pi(X, x_0) \to \pi(Y, y_0)$$
 given by $[\gamma] \mapsto [f \circ \gamma]$

is a morphism of groups, because of the two 'rules' discussed previously, with

$$(f \circ g)_* = f_* \circ g_* \quad (1_X)_* = 1_{\pi(X, x_0)}.$$

Definition 6. Let X be a topological space, then X is **simply connected** if X is path connected and $\pi_1(X, x_0) = 0$ for some $x_0 \in X$.

Remark. If trivial for one base point, it's trivial for all base points.

Example. Any convex subset $C \subset \mathbb{R}^n$ is simply connected.

Example (Wrong proof of $\pi(S^2)$ being trivial). Let f be a path from $[0,1] \to S^2$. Then pick $y_0 \in \text{Im}(f)$. Then $S^2 \setminus \{y_0\} \approx \mathbb{R}^2$. Then use \mathbb{R}^2 .

This is wrong because we cannot always find $y_0 \in \text{Im}(f)$. Space filling loops! We'll see the correct proof later on.

Lemma 2 (52.3). Suppose X is simply connected and $\alpha, \beta: I \to X$ two paths with same start and end points. Then $\alpha \simeq_p \beta$.

Proof. Simply connected implies loops are homotopic? Consider $\alpha * \overline{\beta} \simeq_p e_{x_0}$, since the space is imply connected.

$$([\alpha] * [\overline{\beta}]) * [\beta] = [e_{x_0}] * [\beta] = [\beta]$$
$$[\alpha] * ([\overline{\beta}] * [\beta]) = [\alpha] * [e_{x_0}] = [\alpha]$$

And therefore $\alpha \simeq_p \beta$. (Note: make sure end and start point matchs when using *)

9.53 Covering spaces

Definition 7. Let $p: E \to B$ be continuous surjective map. The open set $U \subset B$ is **evenly covered** if $p^{-1}(U) = \bigcup_{\alpha \in I} V_{\alpha}$ with

- V_{α} open in E
- $V_{\alpha} \cap V_{\beta} = \emptyset$ if $\alpha \neq \beta$
- $p|_{V_{\alpha}}: V_{\alpha} \to U$ is a homeomorphism.

Remark. If $U' \subset U$, also open and U is evenly covered, then also U'.

Figure 9.2: Evenly covered

Definition 8. Let $p: E \to B$ be continuous and surjective. Then p is a **covering map** if $\forall b \in B, \exists U \subset B$ open, containing b such that U is evenly covered by p. Then (E, p) is called a **covering space**.

Example. Let $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. Take $p : \mathbb{R} \to S^1$ given by $t \mapsto e^{2\pi i t}$. Note that \mathbb{R} is an easier space than S^1 , and so will be π_1 (1 vs \mathbb{Z}).

Proposition 1. A covering map is always a open map.

Proof. Exercise.

Proposition 2. For any $b \in B$, $p^{-1}(b)$ is a discrete subset of E. (No accumulation point)

Proof. Indeed for any $\alpha \in I$, $V_{\alpha} \cap p^{-1}(b)$ is exactly one point.

Remark. A covering is always local homeomorphism. But there are surjective local homeomorphism which are not covering maps. A covering map is more than a surjective local homeomorphism.

For example, $p: \mathbb{R}_0^+ \to S^1$ given by $t \mapsto e^{2\pi i t}$. Consider the inverse image of a neighborhood around 1. When we restrict p to the part around 0, it is no longer a homeomorphism (we don't get the whole neighborhood around one).

Creating new covering spaces out of old ones

- Suppose $p: E \to B$ is a covering and $B_0 \subset B$ is a subspace with the subspace topology. Let $E_0 = p^{-1}(B_0)$ and $p_0 = p|_{E_0}$. Then (E_0, p_0) is a covering of B_0 .
- Suppose that (E, p) is a covering of B and (E', p') is a covering of B', then $(E \times E', p \times p')$ is a covering of $B \times B'$.

Example. Let $T^2 = S^1 \times S^1$.

- $p: \mathbb{R}^2 \to S^1 \times S^1$ given by $(t, s) \mapsto (e^{ait}, e^{bis})$.
- $p' : \mathbb{R} \times S^1 \to T^2$ given by $(t, z) \mapsto (e^{ait}, z^n)$. $p : S^1 \times S^1 \to T^2$ given by $(z_1, z_2) \mapsto (z_1^n, z_2^m)$.

These are the only types of coverings of the torus. We'll prove this later on.

9.54 Fundamental group of the circle

Definition 9. Let $p: E \to B$ be a map. If f is a continuous mapping of some space X into B, a *lifting* of f is a map $\hat{f}: X \to E$ such that $p \circ \hat{f} = f$.

Given f, when can f be lifted to E? In this section, we'll only consider $X = [0, 1], X = [0, 1]^2.$

Lemma 3 (54.1, Important result). Suppose (E, p) is a covering of $B, b_0 \in B$, $e_0 \in p^{-1}(b_0)$. Suppose that $f: I \to B$ is a path starting at b_0 . Then there exists a unique lift $\tilde{f}: I \to E$ of f with $\tilde{f}(0) = e_0$.

Proof. For any b of B, we choose an open U_b such that U_b is evenly covered by p. Then $\{f^{-1}(U_b) \mid b \in B\}$ is an open cover of I, which is compact. There is a number $\delta > 0$ such that any subset of I of diameter $\leq \delta$ is contained entirely in one of these opens $f^{-1}(U_b)$. (Lebesgue number lemma). Now, we divide the interval into pieces $0 = s_0 < s_1 < \cdots < s_n = 1$ such that $|s_{i+1} - s_i| \leq \delta$. For any i, we have that $f([s_i, s_{i+1}]) \subset U_b$ for

CHAPTER 9. FUNDAMENTAL GROUP

We now construct \tilde{f} by induction on $[0, s_i]$.

- $\bullet \ \tilde{f}(0) = e_0$
- Assume \tilde{f} has been defined on $[0, s_i]$. Let U be an open such that $f[s_i, s_{i+1}] \subset U_b$.

There is exactly one slice V_{α} in $p^{-1}(U_b)$ containing $\tilde{f}(s_i)$. We define $\forall s \in [s_i, s_{i+1}] : \tilde{f}(s) = (p|_{V_{\alpha}})^{-1} \circ f(s)$. By the pasting lemma, \tilde{f} is continuous

• In this way, we can construct \tilde{f} on the whole of I.

Uniqueness works in exactly the same way, by induction.

Lemma 4 (54.2). (E, p) is a covering of $B, b_0 \in B, e_0 \in E$, with $p(e_0) = b_0$. Suppose $F: I \times I \to B$ is a continuous map with $f(0, 0) = b_0$, then there is a unique $\tilde{F}: I \times I \to E$. Moreover, if F is a path homotopy, then also \tilde{F} is a path homotopy.

Proof. Same as in the one dimensional case.

Theorem 4 (54.3). Let (E, p) be a covering of B, $b_0 \in B$, $e_0 \in E$ with $p(e_0) = b_0$. Let f, g be two paths in B starting in b_0 s.t. $f \simeq_p g$ (so f and g end at the same point). Let \tilde{f}, \tilde{g} be the unique lifts of f, g starting at e_0 . Then $\tilde{f} \simeq_p \tilde{g}$, and so $\tilde{f}(1) = \tilde{g}(1)$.

Proof. $F: I \times I \to B$ is a path homotopy between f and g. Then $\tilde{F}: I \times I \to E$ with $\tilde{F}(0,0) = e_0$. Then \tilde{F} is a path homotopy, by the previous result, between $\tilde{F}(\cdot,0)$ and $\tilde{F}(\cdot,1)$. Note that $p \circ \tilde{F}(t,0) = F(t,0) = f(t)$ and $p \circ \tilde{F}(t,1) = F(t,1) = g(t)$. By uniqueness $\tilde{F}(\cdot,0) = \tilde{f}, \tilde{F}(\cdot,1) = \tilde{g}$.

We've shown that homotopy from below lifts to above. The converse is easy. Now we're ready to discuss the relation between groups and covering spaces.

Definition 10. Let (E, p) be a covering of B. $b_0 \in B$, $e_0 \in E$ and $p(e_0) = b_0$. Then the *lifting correspondence* is the map

$$\phi \colon \pi(B, b_0) \longrightarrow p^{-1}(b_0)$$

$$[f] \longmapsto \tilde{f}(1)$$

where \tilde{f} is the unique lift of f, starting at e_0 . This is well-defined because $[f] = [g] \Rightarrow \tilde{f} \simeq_p \tilde{g} \Rightarrow \tilde{f}(1) = \tilde{g}(1)$. This ϕ depends on the choice of e_0 .

Theorem 5 (54.4). It E is path connected, then ϕ is a surjective map. If E is simply connected, then ϕ is a bijective map.

Proof. Suppose E is path connected, and let $e_0, e_1 \in p^{-1}(b_0)$. Consider a path $\tilde{f}: I \to E$ with $\tilde{f}(0) = e_0$ and $\tilde{f}(1) = e_1$. This is possible because E is path connected. Let $f = p \circ \tilde{f}: I \to B$ with $f(0) = p(e_0) = b_0$ and

 $f(1) = p(e_1) = b_0$, so f is a loop based at b_0 . So f is a loop at b_0 and its unique lift to E starting at e_0 is \tilde{f} . Hence $\phi[f] = \tilde{f}(1) = e_1$, which shows that ϕ is surjective.

Now assume that E is simply connected (group is trivial). Consider $[f], [g] \in \pi(B_0)$ with $\phi[f] = \phi[g]$. This implies $\tilde{f}(1) = \tilde{g}(1)$. These start at e_0 . It follows from Lemma 2 that $\tilde{f} \simeq_p \tilde{g}$.

Example. Take the circle and the real line as covering space. Then $p^{-1}(1) = \mathbb{Z}$. So we know that as a set $\pi(S^1)$ is countable. Therefore, $p \circ \tilde{f} \simeq_p p \circ \tilde{g}$. This implies that $f \simeq_p g$, and therefore [f] = [g].

Theorem 6 (54.5). $\pi_1(S^1, 1) \cong (\mathbb{Z}, +)$.

Proof. Take $b_0 = 1$ and $e_0 = 0$ and $p: \mathbb{R} \to S^1$ given by $t \mapsto e^{2\pi i t}$. Then $p^{-1}(b_0) = \mathbb{Z}$. And since, \mathbb{R} is simply connected, we have that $\pi: \pi(S, 1) \to \mathbb{Z}$ given by $[f] \mapsto \tilde{f}(1)$ is a bijection.

Now we'll show that it's a morphism. Let [f] and [g] elements of the fundamental group of S^1 and assume that $\phi[f] = \tilde{f}(1) = m$ and $\phi[g] = \tilde{g}(1) = n$.

We're going to prove that $\phi([f]*[g]) = \phi([f]) + \phi([g]) = n+n$. Define $\tilde{g}: I \to \mathbb{R}$ given by $t \mapsto \tilde{g}(t) + m$. Then $p \circ \tilde{g} = g$, as p(s+m) = p(s) for all m. Now, look at $\tilde{f}*\tilde{g}$. This is a lift of $p \circ (\tilde{f}*\tilde{g}) = (p \circ \tilde{f})*(p \circ \tilde{g}) = f*g$, which starts at 0. Hence, $\phi([f]*[g]) = \phi([f*g]) = \text{the end point of } \tilde{f}*\tilde{g}$, so $\tilde{g}(1) = \tilde{g}(1) + m = n + m$.

The following lema makes the fact that the covering space is simpler than the space itself exact.

Lemma 5 (54.6). Let (E,p) be a covering of $B, b_0 \in B, e_0 \in E$ and $p(e_0) = b_0$. Then

- 1. $p_*: \pi(E, e_0) \to \pi(B, b_0)$ is a monomorphism (injective).
- 2. Let $H = p_*(\pi_1(E, e_0))$. The lifting correspondence induces a well defined map

$$\Phi \colon \pi_1(B, b_0)/H \longrightarrow p^{-1}(b_0)$$

$$H * [f] \longmapsto \phi[f],$$

so ϕ is constant on right cosets. Dividing by H makes ϕ always bijective, even when E is not simply connected.

- 3. Let f be a loop based at b_0 , then \tilde{f} is a loop at e_0 iff $[f] \in H$.
- **Proof.** 1. Let $\tilde{f}: I \to E$ be a loop at e_0 and assume that $p_*[\tilde{f}] = 1$. (Then we'd like to show that f itself is trivial.) This implies $p \circ \tilde{f} \simeq_p e_{b_0}$. This implies that $\tilde{f} \simeq_p \tilde{e}_{b_0} = e_{e_0}$, or $[\tilde{f}] = 1$.
 - 2. We have to prove two things:

Well defined $H * [f] = H[g] \Rightarrow \phi(f) = \phi(g)$.

Assume $[f] \in H * [g]$, or H * [f] = H * [g]. This means that [f] = [h] * [g], were $h = p \circ \tilde{h}$ for some loop \tilde{h} at e_0 . In other words [f] = [h * g], or $f \simeq_p h * g$. Let \tilde{f} be the unique lift of f starting at e_0 . Let \tilde{g} be the unique lift of g starting at e_0 . Then $\tilde{h} * \tilde{g}$ (which is allowed, \tilde{h} is a loop) the unique lift of h * g starting at e_0 .

 $\tilde{f}(1) = \phi(f) = \phi(h * g) = (\tilde{h} * \tilde{g})(1) = \tilde{g}(1) = \phi(g)$. If the cosets are the same, then the end points of the lifts are also the same.

Injective $H * [f] = H * [g] \Leftarrow \phi(f) = \phi(g)$.

The end points of f and g are the same. Now consider $\tilde{h} = \tilde{f} * \overline{\tilde{g}}$. Then $[\tilde{h}] * [\tilde{g}] = [\tilde{f}] * [\tilde{g}] * [\tilde{g}] = [\tilde{f}]$. By applying p_* , [h] * [g] = [f].

3. Trivial. Exercise. Apply 2 with the constant path.

Remark. $k: X \to Y$ induces a morphism k_* , we've proved that earlier. Here we only showed injectiveness.

9.55 Retractions and fixed points

Definition 11. Let $A \subset X$, then A is a **retract** of X iff there exists a map $r: X \to A$ such that $r|_A = 1|_A$, i.e. r(a) = a for all $a \in A$. The map r is called a **retraction**.

Separation theorems in the plane

10.63 Jordan curve theorem

https://en.wikipedia.org/wiki/Jordan_curve_theorem

Seifert-Van Kampen theorem

https://en.wikipedia.org/wiki/Seifert%E2%80%93Van_Kampen_theorem

Note. This doesn't follow the book very well.

Definition 12. A *free group* on a set X consists of a group F_X and a map $i: X \to F_X$ such that the following holds: For any group G and any map $f: X \to G$, there exists a unique morphism of groups $\phi: F_X \to G$ such that

$$X \xrightarrow{i} F_X \\ \downarrow f \\ \downarrow \exists ! \phi \\ G$$

Note. The free group of a set is unique. Suppose $i: X \to F_X$ and $j: X \to F_X'$ are free groups.

$$X \xrightarrow{i} F_X \qquad X \xrightarrow{j} F'_X$$

$$\downarrow^j \qquad \downarrow^{\exists \phi} \qquad \downarrow^i \qquad \downarrow^{\exists \psi}$$

$$F'_X \qquad \qquad F_X \qquad .$$

Then

$$X \xrightarrow{i} F_X \downarrow \psi \circ \phi \\ F_X$$

Then by uniqueness, $\psi \circ \phi$ is 1_{F_X} , and likewise for $\phi \circ \psi$.

Note. The free group on a set always exists. You can construct it using "irreducible words".

Example. Consider $X = \{a, b\}$. An example of a word is $aaba^{-1}baa^{-1}bbb^{-1}a$. This is not a irreducible word. The reduced form is $aaba^{-1}bba = a^2ba^{-1}b^2a$. Then F_X is the set of irreducible words.

Example. If $X = \{a\}$, then $F_x = \{a^z \mid z \in \mathbb{Z}\} \cong (\mathbb{Z}, +)$. Exercise: check that \mathbb{Z} satisfies the universal property.

Example. If $X = \emptyset$, then $F_X = 1$.

Definition 13. Let G_i with $i \in I$, be a set of groups. Then the **free product** of these groups denoted by $*_{i \in I}G_i$ is a group G together with morphisms $j_i : G_i \to G$ such that the following universal property holds: Given any group H and a collection of morphisms $f_i : G_i \to H$, then there exists a unique morphism $f : G \to H$, such that for all $i \in I$, the following diagram commutes:

Note. Again, $*_{i \in I}G_i$ is unique.

Example. Construction is similar to the construction of a free group. Let $I = \{1,2\}$ and $G_1 = G$, $G_2 = H$. Then G*H. Elements of G*H are "words" of the form $g_1h_1g_2h_2g_3$, $g_1h_1g_2h_2$, or $h_1g_1h_2g_2h_3g_3$ or $h_1g_1h_2$, \cdots with $g_j \in G$, $h_j \in H$.

Note. G*H is always infinite and nonabelian if $G \neq 1 \neq H$. Even if G, H are very small, for example $\mathbb{Z}_2*\mathbb{Z}_2 = \{1,t\}*\{1,s\}$. Then $ts \neq st$ and the order of ts is infinite.

Note. $\mathbb{Z} * \mathbb{Z} = F_{a,b}$. In general: $F_X = *_{x \in X} \mathbb{Z}$.

11.70 The Seifert-Van Kampen theorem

Theorem 7 (70.1, Seifert-Van Kampen theorem). Let $X = U \cup V$ where $U, V, U \cap V$ are open and path connected.^a Let $x_0 \in U \cap V$. For any group H and 2 morphisms $\Phi_1 \colon \pi(U, x_0) \to H$ and $\Phi_2 \colon \pi(V, x_0) \to H$ such that $\Phi_1 \circ i_1$ and $\Phi_2 \circ i_2$, there exists exactly one $\Phi \colon \pi(X, x_0) \to H$ making the diagram commute

 i_1, i_2, i, j_1, j_2 are induced by inclusions.

Theorem 8 (70.2, Seifert–Van Kampen theorem (classical version)). Assume the hypotheses of the Theorem 7. Let $j: \pi(U, x_0) * \pi(V, x_0) \to \pi(X, x_0)$ (induced by j_1 and j_2). On elements of $\pi(U, x_0)$ it acts like j_1 , on elements of $\pi(V, x_0)$ it acts like j_2 .

Then j is surjective^a and the kernel of j is the normal subgroup of $\pi(U, x_0) * \pi(U, x_0)$ generated by all elements of the form $i_1(g)^{-1}i_2(g)$, were $g \in \pi(U \cap V, x_0)$.

Proof. • j is surjective. (later)

- Let N be the normal subgroup generated by $i_1(g)^{-1}i_2(g)$. Then we claim that $N \subset \ker(j)$. This means we have to show that $i_1(g)^{-1}i_2(g) \in \ker j$. $j(i_1(g)) = j_1(i_1(g))$ by definition of j. Looking at the diagram, we find that $j_1(i_1(g)) = j_2(i_2(g)) = i(g) = j(i_2(g))$. Therefore $j(i_1(g)^{-1}i_2(g)) = 1$, which proves that elements of the form $i_1(g)^{-1}i_2(g)$ are in the kernel.
- Since $N \subset \ker j$, there is an induced morphism

$$k: (\pi_1(U, x_0) * \pi_1((V, x_0))/N \longrightarrow \pi_1(X, x_0)$$

$$aN \longmapsto i(a).$$

^aNote that U, V should also be path connected!

 $[^]a\mathrm{This}$ is the only place where algebraic topology is used. We've proved this last week. The groups U and V generate the whole group. The rest of this theorem follows from the previous theorem.

To prove that $N = \ker j$, we have to show that k is injective. Because this would mean that we've divided out the whole kernel of j.

Now we're ready to use the previous theorem. Let $H = (\pi(U) * \pi(V))/N$. Repeating the diagram:

Now, we define $\Phi_1: \pi(U, x_0) \to H$ given by $g \mapsto gN$, and $\Phi_2: \pi(V, x_0) \to H$ given by $g \mapsto gN$. For the theorem to work, we needed that $\Phi_1 \circ i_1 = \Phi_2 \circ i_2$. This is indeed the case: let $g \in \pi(U \cap V)$. Then $\Phi_1(i_1(g)) = i_1(g)N$ and $\Phi_2(i_2(g)) = i_2(g)N$ and $i_1(g)N = i_2(g)N$ because $i_1(g)^{-1}i_2(g) \in N$.

The conditions of the previous theorem are satisfied, so there exists a Φ such that the diagram commutes.

Note that we also have $k: H \to \pi(X)$. We claim that $\Phi \circ k = 1_H$, which would mean that k is injective, concluding the proof. It's enough to prove that

Corollary 8.1. Suppose $U \cap V$ is simply connected, so $\pi_1(U \cap V, x_0)$ is the trivial group. In this case $N = \ker j = 1$, hence $\pi(U, x_0) * \pi(V, x_0) \to \pi(X, x_0)$ is an isomorphism.

Corollary 8.2. Suppose U is simply connected. Then $\pi(X, x_0) \cong \pi(V, x_0)/N$ where N is the normal subgroup generated by the image of $i_2 \colon \pi(U \cap V) \to \pi(V, x_0)$.

Example. Let X be the figure 8 space.

Classification of surfaces

Classification of covering spaces

Lemma 6 (79.1, General lifting lemma). Let $p: E \to B$ be a covering, Y a space. Assume B, E, Y are path connected, and locally path connected. a Let $f: Y \to B$, $y_0 \in Y$, $b_0 = f(y_0)$. Let $e_0 \in E$ such that $p(e_0) = b_0$. Then $\exists \tilde{f}: Y \to E$ with $\tilde{f}(y_0) = e_0$ and $p \circ \tilde{f} = f$

$$(E, e_0)$$

$$\downarrow^{\tilde{f}} \qquad \downarrow^p$$

$$(Y, y_0) \xrightarrow{-f} (B, b_0)$$

iff $f_*(\pi(Y, y_0)) \subset p_*\pi(E, e_0)$. If \tilde{f} exists then it is unique.

Proof. Suppose \tilde{f} exists. Then $p \circ \tilde{f} = f$, so $(p \circ \tilde{f})_*\pi(Y, y_0) = \pi(Y, y_0)$. The left hand side is of course $p_*(\tilde{f}_*(\pi(Y, y_0)) \subset p_*(\pi(E, e_0))$, so $p_*(\pi(E, e_0)) \subset f_*(\pi(Y, y_0))$.

Conversely, we'll show the uniqueness first. Suppose \tilde{f} exists.

 $p \circ (\tilde{f} \circ \alpha) = f \circ \alpha$, so $\tilde{f} \circ \alpha$ is the unique lift of $f \circ \alpha$ starting at e_0 . Hence f(y) the endpoint of the unique lift of $f \circ \alpha$ to E starting at e_0 .

This also shows how you can define \tilde{f} : choose a path α from y_0 to y. Lift $f \circ \alpha$ to a path starting at e_0 . Define $\tilde{f}(y) =$ the end point of this lift. Is this well defined? Is \tilde{f} continuous?

Well defined As $[\alpha] * [\overline{\beta}] \in \pi(Y, y_0)$,

$$f_*([\alpha] * [\overline{\beta}]) = ([f \circ \alpha] * [f \circ \overline{\beta}) \in f_*(\pi_1(Y, y_0))$$

which is by assumption a subgroup of $p_*(\pi(E, e_0)) = H$.

And now, by Lemma 3, a loop in the base space lifts to a loop in E if the loop is in H. This lift is of course just $\gamma * \delta$, so the end points in

 $[^]a$ From now on, all spaces are locally path connected: Every neighborhood contains an open that is path connected.

the drawing should be connected! this means that $\bar{\delta}$ is the lift of $f \circ \beta$ starting at e_0 , so the endpoint of the lift of $f \circ \beta$ is the endpoint of the lift of $f \circ \alpha$. Therefore $\tilde{f}(y)$ is well defined.

Figure 13.1: General lifting lemma

Continuity We prove that \tilde{f} is continuous.

- Choose a neighborhood of $\tilde{f}(y_1)$, say N.
- Take U, a path connected open neighborhood of $f(y_1)$ which is evenly covered, such that the slice $p^{-1}(U)$ containing $\tilde{f}(y_1)$ is completely contained in N.

Can we do this? The inverse image of U is a pile of pancakes. One of these pancakes contains $\tilde{f}(y_1)$. Then, because N is a neighborhood of $\tilde{f}(y_1)$, we can shrink the pancake such that it is contained in N.

- Choose a path connected open which contains y_1 such that $f(W) \subset U$. We can do this because of continuity of f.
- Take $y \in W$. Take a path β in W from y_1 to y. (Here we use that W is path connected.) Now consider $p|_V$ and defined

Example. Take Y = [0, 1]. Then f is a path, then we showed that every map can be lifted. And indeed, the condition holds: $f_*(\pi(Y, y_0)) = 1$, the trivial group, which is a subgroup of all groups.

Lemma 7 (General lifting lemma, short statement). Short statement:

$$(E, e_0)$$

$$\downarrow^{\tilde{f}} \qquad \downarrow^p$$

$$(Y, y_0) \xrightarrow{f} (B, b_0)$$

 $\exists ! \tilde{f} \Longleftrightarrow f_*(\pi(Y, y_0)) \subset p_*\pi(E, e_0).$

CHAPTER 13. CLASSIFICATION OF COVERING SPACES

Definition 14. Let (E,p) and (E',p') be two coverings of a space B. An **equivalence** between (E,p) and (E',p') is a homeomorphism $h: E \to E'$ such that

is commutative. $p' \circ h = p$.

Theorem 9 (79.2). Let $p: (E, e_0) \to (B, b_0)$ and $p': (E', e'_0) \to (B, b_0)$ be coverings, and $H_0 = p_*\pi(E, e_0)$ and $H'_0 = p'_*\pi(E', e'_0) \le \pi(B, b_0)$. Then there exists and equivalence $h: (E, p) \to (E', p')$ with $h(e_0) = e'_0$ iff $H_0 - H'_0$. Not isomorphic, but really the same as a subgroup of $\pi(B, b_0)$. In that case, h is unique.

Proof. \implies Suppose h exists. Then

$$(E, e_0) \xrightarrow{h} (E', e'_0)$$

$$\downarrow^p \qquad \downarrow^{p'}$$

$$(B, b_0)$$

Therefore $p_*\pi(E,e_0)=p'_*(h_*\pi(E,e_0))$. Since h is a homeomorphism, it induces an isomorphism, so $p'_*(h_*\pi(E,e_0))=p'_*(\pi(E',e'_0))$.

 \Leftarrow

$$(E', e'_0) \xrightarrow{k} \ \ \downarrow^{p'} \ (E, e_0) \xrightarrow{p} (B, b_0)$$

By the previous lemma, there exists a unique k iff $p_*\pi(E, e_0) \subset p'_*\pi(E', e'_0)$ or equivalently $H_0 \subset H'_0$, which is the case. Reversing the roles, we get

$$(E, e_0)$$

$$\downarrow^p$$

$$(E', e'_0) \xrightarrow{p'} (B, b_0)$$

for the same reasoning, l exists. Now, composing the diagrams

$$(E, e_0) \qquad (E', e'_0)$$

$$\downarrow^{l \circ k} \qquad \downarrow^{p} \qquad \qquad \downarrow^{k \circ l} \qquad \downarrow^{p'}$$

$$(E, e_0) \xrightarrow{p} (B, b_0) \qquad (E', e'_0) \xrightarrow{p'} (B, b_0)$$

But placing the identity in place of $l \circ k$ or $k \circ l$, this diagram also commutes! By unicity, we have that $l \circ k = 1_E$ and $k \circ l = 1_{E'}$. Therefore, k and l are homeomorphism $k(e_0) = e'_0$.

Uniqueness is trivial, because of the general lifting theorem.

Note that this doesn't answer the question 'is there a equivalence between two coverings', it only answers the question 'is there an equivalence between two coverings mapping $e_0 \to e_0'$ '. So now, we seek to understand the dependence of H_0 on the base point.

Lemma 8 (79.3). Let (E, p) be a covering of B. Let $e_0, e_1 \in p^{-1}(b_0)$. Let $H_0 = p_*\pi(E, e_0), H_1 = p_*\pi(E, e_1)$.

- Let γ be a path from e_0 to e_1 and let $p \circ \gamma = \alpha$ be the induced *loop* at b_0 . Then $H_0 = [\alpha] * H_1 * [\alpha]^{-1}$, so H_0 and H_1 are conjugate inside $\pi(B, b_0)$.
- Let H be a subgroup of $\pi(B, b_0)$ which is conjugate to H_0 , then there is a point $e \in p^{-1}(b_0)$ such that $H = p_*\pi(E, e)$.

So a covering space induces a conjugacy class of a subgroup of $\pi(B, b_0)$.

This completely answers the question: when are two covering spaces equivalent?

```
Corollary 9.1. Let (E, p) and (E', p') be two coverings, e_0 \in E, e'_0 \in E' with p(e_0) = p(e'_0) = b_0. Let H_0 = p_*\pi(E, e_0), H'_0 = p'_*\pi(E', e'_0). Then (E, p) and (E', p') are equivalent iff H_0 and H'_0 are conjugate inside \pi(B, b_0).
```

Question: can we reach every possible subgroup? Answer: yes, in some conditions.

13.80 Universal covering space

Definition 15. Let B be a path connected and locally path connected space. A covering space (E, p) of B is called a **universal covering space** if E is simply connected, so $\pi(E, e_0) = 1$.