Chapter 16 Acid-Base Equilibria

Review Definitions:

酸碱电离理论

- Arrhenius (Acid-base ionization theory):
 - 1) Acid is a substance that, when dissolved in water, increases the concentration of H⁺;
 - 2) Base is a substance that, when dissolved in water, increases the concentration of OH⁻; 酸碱质子理论
- Brønsted–Lowry (Acid-base proton theory):
 - 1) Acid is a substance that donates a proton to another substance;
 - 2) Base is a substance that accepts a proton from another substance;
- Lewis (Acid-base electronic theory):

路易斯酸碱

- 1) Acid is an electron pair acceptor;
- 2) Base is an electron pair donor;

两性

- Amphiprotic: A substance capable of acting as either an acid or a base.
- Conjugate Acid-Base pairs: An acid and a base that differ only in the presence or absence of a proton. 共轭酸碱对
- Relative strengths of Acids and Bases: The stronger an acid, the weaker its conjugate base; the stronger a base, the weaker its conjugate acid.

- 1) The conjugate base of a strong acid shows negligible basicity;
- 2) The conjugate base of a weak acid is a weak base;
- 3) The conjugate base of a substance with negligible acidity is a strong base;
- **Autoionization of water:** one water molecule can donate a proton to another water molecule: $H_2O(1) + H_2O(1) \rightleftharpoons OH^-(aq) + H_3O^+(aq)$.
- Ion-product constant for water:

 K_w = [H₃O⁺][OH⁻]=[H⁺][OH⁻]= 1.0×10⁻¹⁴ (T=25°C)

 水解常数

- Strong acids: $HA(aq) \rightarrow H^{+}(aq) + A^{-}(aq)$
 - 1) Strong acids completely ionized to ions in aqueous solution;
 - 2) Common strong acids: HCl, HBr, HI, HNO₃, HClO₃, HClO₄, H₂SO₄;
 - 3) For the monoprotic strong acids: $[H^+] = [acid]$;
- Strong Bases: $M(OH)_n(aq) \rightarrow M^{n+}(aq) + nOH^{-}(aq)$
 - 1) Strong bases completely ionized to ions in aqueous solution;
 - 2) Common strong bases are the ionic hydroxides of the alkali metals (NaOH, KOH) and the ionic hydroxides heavier alkaline earth metals (Sr(OH)₂, Ca(OH)₂, Ba(OH)₂);
 - 3) Strongly basic solutions are created by certain substances (Na₂O, CaO) that react with water to form OH⁻ (aq);
- Weak acids: $HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$
 - 1) Weak acids only partially ionized to ions in aqueous solution;
 - 2) Acid-dissociation constant: $K_a = [H^+][A^-]/[HA]$;
 - 3) The greater the value of K_a , the stronger is the acid;
- Weak bases: $B(aq) + H_2O(1) \rightleftharpoons HB^+(aq) + OH^-(aq)$
 - 1) Weak bases only partially ionized to ions in aqueous solution;
 - 2) Base-dissociation constant: $\mathbf{K_b} = [HB^+][OH^-]/[B]$;
 - 3) The greater the value of K_b , the stronger is the base;
 - 4) Common weak bases are neutral substances that have an atom with a nonbonding pair of electrons that can accept a proton (NH₃) and anions of weak acids (ClO⁻);

碱常数

• Relationship between K_a and K_b. (for conjugate acid-base pair)

$$HB \rightleftharpoons H^{+} + B^{-} \qquad K_{a} = \frac{[H^{+}][B^{-}]}{[HB]}$$

$$B^{-} + H_{2}O \rightleftharpoons HB + OH^{-} \qquad K_{b} = \frac{[HB][OH^{-}]}{[B^{-}]}$$

$$K_{a}K_{b} = \frac{[H^{+}][B^{-}]}{[HB]} \times \frac{[HB][OH^{-}]}{[B^{-}]} = [H^{+}][OH^{-}] = K_{w}$$

• Percent Ionization:

Percent ionization =
$$\frac{\text{concentration of ionized HA}}{\text{original concentration of HA}} \times 100\% = \frac{[\text{H}^+]_{\text{equilibrium}}}{[\text{HA}]_{\text{initial}}} \times 100\%$$
 电离度

2) Indicate the strength of a weak acid, the stronger the acid, the greater the percent ionization.

Polyprotic Acids:

- 1) Acids that have more than one ionized H atom are polyprotic acids;
- 2) $H_2A(aq) \rightleftharpoons H^+(aq) + HA^-(aq)$ K_{a1} $HA^-(aq) \rightleftharpoons H^+(aq) + A^{2-}(aq)$ K_{a2}
- 3) K_{a2} refers to the equilibrium involving removal of the second proton of a polyprotic acid;
- 4) It is always easier to remove the first proton from a polyprotic acid than to remove the second;
- Acid-Base Properties of Salts: we assume that any salt dissolved in water is completely dissociated, so the acid-base properties of salt solutions are due to the behavior of the cations and anions.
- Anions:
 - 1) Anions of strong acids are neutral (Cl⁻);
 - 2) Anions of weak acids are conjugate bases and create OH⁻ in water (CH₃COO⁻);

3) Protonated anions from polyprotic acids can be acids or bases (if $K_a > K_b$, the anion will be acidic; if $K_b > K_a$, the anion will be basic);

• Cations:

1) Group I or Group II metal cations are neutral (Ca^{2+}) ;

2) Polyatomic cations contain one or more protons can be considered the conjugate acids of a weak base (NH₄⁺);

3) Transition and post-transition metal cations are acidic;

Cation	K _a
Fe ²⁺ Zn ²⁺ Ni ²⁺	3.2×10^{-10}
Zn ²⁺	2.5×10^{-10}
Ni ²⁺	2.5×10^{-11}
Fe ³⁺	6.3×10^{-3}
Cr ³⁺	1.6×10^{-4}
Al ³⁺	1.4×10^{-5}

• Factors that Affect Acid Strength:

- 1) **Polarity of H-A bond**: A molecule containing H will act an acid only if the H-A bond is polarized such that the H atom has a partial positive charge;
- 2) **Strength of H-A bond**: Weaker H-A bonds can be broken more easily, making the acid stronger;
- 3) **Stability of conjugate base**: In general, the greater the stability of the conjugate base, the stronger the acid;

The strength of an acid is often a combination of all three factors.

- Binary Acids: consist of H and one other element.
 - 1) Within a group, the **strength of H-A bond** is the major factor to determine acid strength, acidity increase as the bond strength decreases;
 - 2) Within a period, **bond polarity** is the major factor to determine acid strength, acidity increases as the electronegativity of A increases;

含氧酸 ● Oxyacids: Y-OH, consist of H, O, and one other element.

- 1) If Y is a metal, the compounds would behave as a base (NaOH);
- 2) If Y is an nonmetal, the compounds would be acidic or neutral. Dissociation of an oxoacid involves breaking an O-H bond. Any factor that weakens the O-H bond or increases its polarity increases the strength of the acid.
- a) For oxoacids that contain the same number of OH groups and the same number of O atoms, acid strength increases with increasing **electronegativity** of Y. e.g.,
 - ✓ In a same group, the acidity of acid follows the order: HClO>HBrO>HIO;
 - ✓ In a same period, the acidity of acid follows the order: HClO₄>H₂SO₄>H₃PO₄;
- b) For oxoacids that contain the same atom Y but different amounts of oxygen atoms, acid strength increases with increasing **oxidation number** of Y. (HClO₄>HClO₃>HClO₂>HClO);

羧酸

- **Carboxylic Acids:** organic acids that contain the –COOH group; *Factors contributing to their acidic behavior:*
 - 1) The additional O atom attached to the C of the carboxyl group draws electron density from the O-H bond, increasing the polarity and helping to stabilize the conjugate base;

2) The conjugate base of a carboxyl acid can exhibit resonance, which contributes to the stability of the anion by spreading the negative charge over several atoms;