考试科目:《高等代数》(A卷)

学年学期: 2020 学年第1 学期	姓	名:	
学 院/系:	学	号:	
考试方式: 闭卷			
考试时长: 120 分钟			
警示			
以下为试题区域,共4道大题,总	总分 100 分	分,考生	请在答题纸上作答
Notes: we use lowercase letter (e.g. a, b, c)	to repre	sent sca	alar, lowercase letter with arrow
above (e.g. $\vec{\alpha}$, \vec{b} , \vec{c}) to represent vector and u	ppercase	letter (e.g. A, B, C) to represent matrix.
$rank(A)$ is the rank of the matrix A , $A^* = ac$ determinant of A , and A^T is the transpose of		the adju	gate matrix of A , $det(A)$ is the
一、填空题(共 2 小题,第1小题 15 分	,第2小	题 6 分	}, 共 21 分)
1. (15 分) If A is a 5×3 matrix with linearly in	depende	nt colun	nns, find each of these explicitly:
(a) The nullspace of A , i.e., Nul $A = $	·		
(b) The dimension of the nullspace of A^T	, i.e., din	n Nul A^T	¯=
(c) One particular solution \vec{x}_p to $A\vec{x}_p$ =	= column	2 of A	is
(d) The general (complete) solution to A	$\vec{x} = \text{col} \vec{v}$	ımn 2 of	f <i>A</i> is
(e) The reduced row echelon form <i>R</i> of <i>A</i>	is	·	
2. (6 分) If $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 4 & 5 \end{bmatrix}$, please compute	the deter	minants	s of the following matrices:
(a) $\det(A) =$			
(b) Let O and I_3 be the 3×3 zero mat	rix and 1	the 3×3	identity matrix, respectively. If
$B = \begin{bmatrix} 0 & -A \\ I_3 & -I_3 \end{bmatrix}, \text{ then } \det(B) = \underline{\qquad}$	_·		

(c) If
$$C = \begin{bmatrix} A & -A \\ I_3 & -I_3 \end{bmatrix}$$
, then $\det(C) = \underline{\qquad}$.

二、选择题(共2小题,每小题5分,共10分)

- 1. (5 分) The columns of an $m \times n$ matrix A span \mathbb{R}^m if and only if _____.
- (A) The columns of A are linearly dependent. (B) The rows of A are linearly dependent.
- (C) A has full row rank.

- (D) A has full column rank.
- 2. (5 %) Let N be a matrix whose columns are a basis for the null space of an $m \times n$ matrix A. Denote B as a matrix whose columns are a basis for the null space of N^T . If the rank of A is r, then _____.
- (A) B is an $m \times (m-r)$ matrix.

(B) B is an $m \times r$ matrix.

(C) B is an $n \times (n-r)$ matrix.

(D) B is an $n \times r$ matrix.

三、计算题(共 4 小题, 第1、2小题各 10 分, 第3、4小题各 15 分, 共 50 分)

1. (10分) Consider the following linear system and answer the questions.

$$\begin{cases} x_1 + x_2 = 3 \\ x_1 + x_2 + bx_3 = 2 \\ ax_1 + bx_2 + (b - a)x_3 = 1 + 3a \end{cases}$$

- (a) Choose a and b such that the system has i) no solution, ii) a unique solution, and iii) infinitely many solutions.
- (b) Calculate the solution for a = 2, b = 1.
- 2. (10分) Let $A = \begin{bmatrix} 2 & 5 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Answer the following questions.
 - (a) Is the matrix equation $A\vec{x} = \vec{b}$ consistent? If the answer is "yes", please find the general solution. Otherwise, please find the least-squares solution.
 - (b) Please calculate the orthogonal projection of \vec{b} onto Col A (i.e., the column space of A) and compute the distance from \vec{b} to Col A.
- 3. (15%) Denote \mathbb{P}_3 as the vector space of polynomials of degree at most 3 with real coefficients. Let T be a mapping from \mathbb{P}_3 to \mathbb{P}_3 defined by

$$T(f) = \frac{d^2f}{dx^2} + 2\frac{df}{dx}$$

for all $f(x) \in \mathbb{P}_3$.

- (a) Show that T is a linear transformation.
- (b) Find the matrices $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ for T relative to $\mathcal{B} = \{1, x, x^2, x^3\}$ and $\mathcal{C} = \{1, x, x^2, x^3\}$

 $\{1,1+x,1+x+x^2,1+x+x^2+x^3\}$, respectively. 题目意思:以b为基底,表示出T变换的矩阵形式 (c) Denote $P_{\mathcal{C}\leftarrow\mathcal{B}}$ as the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} . Compute the

- (c) Denote $P_{\mathcal{C} \leftarrow \mathcal{B}}$ as the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} . Compute the change-of-coordinates matrices $P_{\mathcal{C} \leftarrow \mathcal{B}}$, $P_{\mathcal{B} \leftarrow \mathcal{C}}$ and verify that $[T]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[T]_{\mathcal{B}}P_{\mathcal{B} \leftarrow \mathcal{C}}$.
- 4. (15分) Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. Answer the following questions.
 - (a) The matrix A can be written as $A = I_3 + B$, where $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and I_3 is the

 3×3 identity matrix. Find all the eigenvalues of A and B.

- (b) If possible, orthogonally diagonalize A, i.e., find an orthogonal matrix P and a diagonal matrix D, such that $A = PDP^{-1}$.
- (c) Write the vector $\vec{x}_0 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ as a combination of eigenvectors of A, and compute the vector $\vec{x}_{100} = A^{100} \vec{x}_0$.

四、证明题(共2小题,第1小题 10分,第2小题 9分,共19分)

- 1. (10分) Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.
 - (a) Prove that $rank(AB) \le min\{rank(A), rank(B)\}.$
 - (b) Prove that rank(AB) = rank(A) if and only if there is a $p \times n$ matrix X such that ABX = A.
- 2. (9%) If A is an $n \times n$ matrix of rank n-1, prove that $\operatorname{rank}(A^*) = 1$ and the null space of A is the same as the column space of A^* , i.e., Nul $A = \operatorname{Col} A^*$.