

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

VIETNAM - KOREA UNIVERSITY OF INFORMATION AND COMMUNICATION TECHNOLOGY

한-베정보통신기술대학교

Nhân bản – Phụng sự – Khai phóng

Algorithm Analysis

VKL

CONTENTS

- Introduction to algorithm
- Algorithm analysis
- Estimating running time
- Algorithm growth rates (Big O, Omega, Theta)
- Worst-Case, Best-Case, Average-Case

CONTENTS

- Introduction to algorithm
- Algorithm analysis
- Estimating running time
- Algorithm growth rates (Big O, Omega, Theta)
- Worst-Case, Best-Case, Average-Case

- An algorithm is a sequence of instructions to be followed to solve a problem
 - There are often many solutions/algorithms to solve a given problem
 - An algorithm can be implemented using different programming languages on different platforms

An algorithm must be correct. It should correctly solve the problem

 Once we have a correct algorithm for a problem, we have to determine the efficiency of that algorithm

• Program = Data structures + Algorithms

- Correctness
 - An algorithm is said to be **correct** if for every input instance, it halts with the correct output.
- Efficiency
 - Computing time and memory space are two important resources.

• Time

- Instructions take time
- How fast does the algorithm perform?
- What affects its running time?

Space

- Data structures take space
- What kind of data structures can be used?
- How does choice of data structure affect the running time?

⇒ Focusing on **running time**

- How to estimate the time required for an algorithm?
- How to reduce the required time?

CONTENTS

Introduction to algorithm

- Algorithm analysis
- Estimating running time
- Algorithm growth rates (Big O, Omega, Theta)
- Worst-Case, Best-Case, Average-Case

- Why do we need algorithm analysis?
 - Showing the algorithm is correct
 - Writing a working program is not good enough
 - The program may be inefficient
 - If the program is run on a large data set, then the running time becomes an issue

- Example: Selection Problem (1/3)
 - Given a list of N numbers, determine the kth largest, where $k \le N$.

- Algorithm 1
 - (1) Read **N** numbers into an array
 - (2) Sort the array in decreasing order by some simple algorithm
 - (3) Return the element in position k

- Example: Selection Problem (2/3)
 - Algorithm 2
 - (1) Read the first k elements into an array and sort them in decreasing order
 - (2) Each remaining element is read one by one
 - -If smaller than the kth element, then it is ignored
 - Otherwise, it is placed in its correct position in the array,
 getting one element out of the array
 - (3) The element in the kth position is returned as the answer

- Example: Selection Problem (3/3)
 - Which algorithm is better when

2.
$$N = 100$$
 and $k = 1$?

- Factors affecting the running time
 - computer
 - compiler
 - algorithm
 - input to the algorithm
 - The content of the input affects the running time
 - typically, the input size (number of items in the input) is the main consideration
 - E.g. sorting problem \Rightarrow the number of items to be sorted
 - E.g. multiply 2 matrices together ⇒ the total number of elements in the 2 matrices

Analyzing algorithms

 Employing mathematical techniques that analyze algorithms independently of specific compilers, computers.

• To analyze algorithms:

- 1. Starting to count the number of **significant operations** in a particular solution to assess its efficiency
- 2. Expressing the efficiency of algorithms using growth functions: T(n)

CONTENTS

- Introduction to algorithm
- Algorithm analysis
- Estimating running time
- Algorithm growth rates (Big O, Omega, Theta)
- Worst-Case, Best-Case, Average-Case

- Each operation in algorithm/program has a cost
 - ⇒ Each operation takes a certain of running time

```
Ex: count = count + 1;
```

⇒ takes a certain amount of time, but it is **constant: 1**

A **sequence** of operations:

```
count = count + 1;  //cost: c1
sum = sum + count;  //cost: c2
```

 \Rightarrow Total Cost = c1 + c2

• Ex: Simple If-Statement

	Cost	<u>Times</u>
if (n < 0)	c1	1
absval = -n	c2	1
else		
absval = n;	c3	1

 \Rightarrow Total Cost <= c1 + max(c2,c3)

• Ex: Simple Loop

```
i = 1; c1 1

sum = 0; c2 1

while (i <= n) { c3 n+1
    i = i + 1; c4 n
    sum = sum + i; c5 n
```

- \Rightarrow Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
- \Rightarrow The time required for this algorithm is proportional to n: T(n)=n
 - When n tends to infinity

Ex: Nested Loop

```
<u>Cost</u>
                                                            <u>Times</u>
i=1;
                                          c1
                                          c2
sum = 0;
while (i <= n) {
                                          c3
                                                            n+1
        j=1;
                                          c4
        while (j <= n) {
                                                           n*(n+1)
                                          c5
                 sum = sum + i;
                                          c6
                                                            n*n
                                          c7
                 j = j + 1;
                                                            n*n
        i = i + 1;
                                          c8
                                                            n
```

- \Rightarrow Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8
- \Rightarrow The time required for this algorithm is proportional to n^2 : $T(n)=n^2$
 - When n tends to infinity

- General rules for running time estimation
 - Consecutive Statements: Just add the running times of those consecutive statements
 - Conditional Statements (If/Else): Never more than the running time of the test plus the larger of running times of two branches
 - Loops: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations
 - Recursion: Determine and solve the recurrence relation (we don't focus on this case in this course)

Consecutive Statements

Just add the running times of those consecutive statements

$$T(n) = n$$

$$T(n) = n^2$$

Conditional Statement

 Less more than the running time of the test plus the larger of the running times of S1 and S2

```
if (condition)
$1
else
$2
```


Loops

• The running time of a loop is at most the running time of the statements inside of that loop (including tests) times the **number of iterations**

$$T(n) = n$$

Nested loops

 The total runing time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops

$$T(n) = n^2$$

Function calls

- Non recursive calls
 - A function call is considered as a statement
 ⇒ The runing time of a function call is considered as the runing time of a statement

- Recursive calls
 - Set up the recurrence relation
 - Solve the recurrence
 - May be very complicated

Example

$$T(n) = n$$

Example

sum++;

 $T(n) = n^2$

Example

$$T(n) = n^3$$

```
sum = 0

for (j=0; j<n; j++)

for (k=0; k<n*n; k++)

sum++;
```

Example

$$T(n) = n^4$$

```
sum = 0;

for (j=0; j<n; j++)

for (k=0; k<j*j; k++)

if (k%j == 0)

for (m=0; m<k; m++)

sum++;
```


Example

```
int fact(int n){
    if (n==0)
        return 1;
    else
        return (n * fact(n-1));
}
```

Recurrence relation

$$C(n) = C(n-1) + 1, C(0) = 0$$

$$T(n) = n$$

CONTENTS

- Introduction to algorithm
- Algorithm analysis
- Estimating running time
- Algorithm growth rates (Big O, Omega, Theta)
- Worst-Case, Best-Case, Average-Case

- Measuring an algorithm's time requirement as a function of the problem size
- Problem size depends on the application

Ex: number of elements in a list for a sorting algorithm

If the problem size is n:

- Algorithm A requires 5*n² time units to solve a problem of size n
- Algorithm B requires 7*n time units to solve a problem of size n
- The algorithm's time requirement grows as a function of the problem size
 - Algorithm A requires time proportional to n²: T(n) = n²
 - Algorithm B requires time proportional to n: T(n) = n
- An algorithm's proportional time requirement is known as growth rate
- Comparing the efficiency of 2 algorithms by comparing their growth rates

Common Growth Rates

Function	Growth Rate Name	
C	Constant	
log N	Logarithmic	
$\log^2 N$	Log-squared	
N	Linear	
N log N	Log-linear	
N^2	Quadratic	
N^3	Cubic	
2 ^N	Exponential	

Running Times for Small Inputs

Running Times for Large Inputs

- Asymptotic notations
 - Upper bound O(g(n)
 - Lower bound $\Omega(g(n))$
 - Tight bound $\Theta(g(n))$

• Big O

- f(n) = O(g(n))
- There are positive constants c and n₀ such that

$$f(n) \le c g(n)$$
 when $n \ge n_0$

- growth rate of $f(n) \leq growth$ rate of g(n)
- g(n) is an *upper bound* on f(n)

• Big O

- If **Algorithm A requires time proportional to g(n)**, Algorithm A is said to be **order g(n)**, and it is denoted as **O(g(n))**.
- The function g(n) is called the algorithm's growth-rate function.
- The capital O is used in the notation
 ⇒ called the Big O notation.
- If Algorithm A requires time proportional to n², it is O(n²).
- If Algorithm A requires time proportional to n, it is O(n).

Big O – Example

- Let $f(n) = 2n^2$. Then
 - $f(n) = O(n^4)$
 - $f(n) = O(n^3)$
 - $f(n) = O(n^2)$ (best answer, asymptotically tight)

• O(n²): reads "order n-squared" or "Big-O n-squared"

• Big O – Some rules

- Ignore the lower order terms
- Ignore the coefficients of the highest-order term
- If T(n) is an asymptotically positive polynomial of degree k,
 then T(n) = O(n^k)

Ex:
$$7n^2 + 10n + 3 = O(n^2)$$

• Big O – Some rules

- No need to specify the base of logarithm
 - Changing the base from one constant to another changes the value of the logarithm by only a constant factor
- For logarithmic functions,

$$T(\log_m n) = O(\log n)$$
, (use: $T(\log_m n) = T((\log_2 n) / (\log_2 n))$)

- If $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$,
 - $T_1(n) + T_2(n) = max(O(f(n)), O(g(n)))$
 - $T_1(n) * T_2(n) = O(f(n) * g(n))$

• Big O – more example

•
$$n^2 / 2 - 3n = O(n^2)$$

•
$$1 + 4n = O(n)$$

•
$$7n^2 + 10n + 3 = O(n^2)$$

•
$$\log_{10} n = \log_2 n / \log_2 10 = O(\log_2 n) = O(\log n)$$

•
$$10 = O(1), 10^{10} = O(1)$$

• $\log n + n = O(n)$

$$\sum_{i=1}^{N} i \le N \cdot N = O(N^2) \qquad \sum_{i=1}^{N} i^2 \le N \cdot N^2 = O(N^3)$$

Big Omega

- $f(n) = \Omega(g(n))$
- There are positive constants c and n₀ such that

$$f(n) \ge c g(n)$$
 when $n \ge n_0$

- growth rate of $f(n) \ge growth rate of g(n)$
- g(n) is a lower bound on f(n)
- f(n) grows no slower than g(n) for "large" n

• Big Omega – Examples

- Let $f(n) = 2n^2$
 - $f(n) = \Omega(n)$
 - $f(n) = \Omega(n^2)$ (best answer)

Big Theta

•
$$f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

- growth rate of f(n) = growth rate of g(n)
- Big-Theta means the bound is the tightest possible

- Example: Let $f(n)=2n^2$, $g(n)=n^2$
 - since f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, thus $f(n) = \Theta(g(n))$

• Big Theta – Some rules

 If T(n) is a asymptotically positive polynomial of degree k, then T(n) = Θ(n^k)

For logarithmic functions,

$$T(\log_m n) = \Theta(\log n)$$
, (use: $T(\log_m n) = T((\log_2 n) / (\log_2 n))$)

A Comparison of Growth-Rate Functions

				n		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10^{2}	10^{3}	104	105	106
n ∗ log₂n	30	664	9,965	105	106	10 ⁷
n²	10 ²	10^{4}	10 ⁶	108	1010	1012
n ³	10 ³	10^{6}	10 ⁹	1012	1015	1018
2 ⁿ	10 ³	1030	1030	1 103,0	10 10 ^{30,}	103 10301,030

- Asymptotic notations
 - When n goes to infinity
 - Upper bound O(g(n)
 - -the most popular
 - Lower bound $\Omega(g(n))$
 - Tight bound $\Theta(g(n))$

Growth-Rate Functions

O(1) Time requirement is constan	and it is independent of the problem's size.
----------------------------------	--

O(log₂n) Time requirement for a logarithmic algorithm increases increases slowly as the problem size increases.

O(n) Time requirement for a **linear** algorithm increases directly with the size of the problem.

O(n*log₂n) Time requirement for a **n*log₂n** algorithm increases more rapidly than a linear algorithm.

O(n²) Time requirement for a quadratic algorithm increases rapidly with the size of the problem.

O(n³) Time requirement for a **cubic** algorithm increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm.

O(2ⁿ) As the size of the problem increases, the time requirement for an **exponential** algorithm increases too rapidly to be practical.

Reminder of Properties of Growth-Rate Functions

- We can ignore low-order terms in an algorithm's growth-rate function.
 - If an algorithm is $O(n^3+4n^2+3n)$, it is also $O(n^3)$.
 - We only use the higher-order term as algorithm's growth-rate function.
- We can ignore a multiplicative constant in the higher-order term of an algorithm's growth-rate function.
 - If an algorithm is O(5n³), it is also O(n³).
- O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - If an algorithm is $O(n^3) + O(4n)$, it is also $O(n^3 + 4n) \Rightarrow$ it is $O(n^3)$
- O(f(n)) * O(g(n)) = O(f(n) * g(n))

• Example 1

```
i = 1; & c1 & 1 \\ sum = 0; & c2 & 1 \\ while (i <= n) { c3 & n+1 \\ i = i + 1; & c4 & n \\ sum = sum + i; & c5 & n \\ }
```

$$T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5$$
$$= (c3+c4+c5)*n + (c1+c2+c3)$$
$$= a*n + b$$

⇒ the growth-rate function for this algorithm is O(n)

Example 2

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$$

 \Rightarrow the growth-rate function for this algorithm is $O(n^3)$

<u>Times</u>

Example 3

```
Cost
  i=1;
                                     c1
  sum = 0;
                                     c2
  while (i \le n) {
                                     c3
                                                      n+1
       j=1;
                                     c4
                                                      n
       while (j \le n) \{ c5
                                     n*(n+1)
         sum = sum + i;
                                     c6
                                                      n*n
         j = j + 1;
                                     c7
                                                      n*n
    i = i + 1;
                                     c8
                                                      n
       = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8
T(n)
       = (c5+c6+c7)*n^2 + (c3+c4+c5+c8)*n + (c1+c2+c3)
       = a*n^2 + b*n + c
```

Data Structures & Algorithms

⇒ the growth-rate function for this algorithm is O(n²)

CONTENTS

- Introduction to algorithm
- Algorithm analysis
- Estimating running time
- Algorithm growth rates (Big O, Omega, Theta)
- Worst-Case, Best-Case, Average-Case

- An algorithm can require different times to solve different problems of the same size.
 - Eg. Searching an item in a list of n elements using sequential search. \rightarrow Cost: 1,2,...,n

Worst-Case

- The maximum amount of time that an algorithm require to solve a problem of size n.
- This gives an upper bound for the time complexity of an algorithm.
- Normally, we try to find worst-case behavior of an algorithm.

Best-Case

- The minimum amount of time that an algorithm require to solve a problem of size n.
- The best case behavior of an algorithm is NOT so useful.

Average-Case

- The average amount of time that an algorithm require to solve a problem of size n.
- Sometimes, it is difficult to find the average-case behavior of an algorithm.
- We have to look at all possible data organizations of a given size n, and their distribution probabilities of these organizations.
- Worst-case analysis is more common than average-case analysis.

Sequential Search – Analysis

- Unsuccessful Search: O(n)
- Successful Search:

Best-Case: item is in the first location of the array \Rightarrow O(1)

Worst-Case: item is in the last location of the array \Rightarrow O(n)

Average-Case: The number of key comparisons 1, 2, ..., n

$$\frac{\sum_{i=1}^{n} i}{n} = \frac{(n^2 + n)/2}{n} \Rightarrow O(n)$$

Binary Search – Analysis

```
int binarySearch(int a[], int size, int x) {
  int low =0;
  int high = size -1;
  int mid;
                        // mid will be the index of target when it's found.
  while (low <= high) {
      mid = (low + high)/2;
      if (a[mid] < x) low = mid + 1;
      else if (a[mid] > x) high = mid - 1;
                              return mid;
           else
  return -1;
                                 We can do binary search if the array is sorted
```


Binary Search – Analysis

- Unsuccessful Search
 - The size of the list for each iteration: n/2, n/2², n/2³, ..., n/2^k
 - Loop stops when $n/2^k = 1$, where k is the number of iterations
 - Then, the number of iterations k in the loop is $log_2 n \Rightarrow O(log_2 n)$
 - Successful Search

Best-Case: The number of iterations is 1 \Rightarrow O(1)

Worst-Case: The number of iterations is $log_2 n \Rightarrow O(log_2 n)$

Average-Case: The avg. number of iterations $< \log_2 n \Rightarrow O(\log_2 n)$

How much better is O(log₂n)?

· <u>n</u>		$O(\log_2 n)$	<u>)</u>
1	6	4	
6	4	6	
2.	56	8	
10	024	10	
10	6,384	14	
1.	31,072	17	
20	62,144	18	
52	24,288	19	
1,	,048,576	20	
1,	,073,741,824	30	

- Running time depends on
 - Input size
 - A function of n (input size)
 - Running time is significant, when n goes to infinity
 - Input contents
 - Best-case, Average-case, Worst-case
- Steps for estimating running time (compelxity)
 - 1. Counting the number of significant operations/statements
 - We often consider the worst-case
 - 2. Applying the growth rate functions (\mathbf{O} , Ω , Θ)
 - When n goes to infinity
 - O is the most popularly used
 - 3. Classifying the algorithm running time/complexity
 - The algorithm is **impractical**, if its running time is more than O(n³)

SUMMARY

- Introduction to algorithm
- Algorithm analysis
- Estimating running time
- Algorithm growth rates
- Worst-Case, Best-Case, Average-Case

ĐẠI HỌC ĐÀ NẪNG

ĐẠI HỌC ĐÀ NANG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN What pháng

Nhân bản – Phụng sự – Khai phóng

Enjoy the Course...!