Data Structure

1st Study: Basic Concepts

- Course Introduction
- Performance Analysis and Measurement

C++ Korea 옥찬호 (utilForever@gmail.com)

Course Introduction

Course Overview

- 주 교재
 - · Horowitz, Sahni, Mehta, "Fundamentals of Data Structures in C++"
- ・보충 교재
 - · Goodrich, Tamassia, "Data Structures and Algorithms in C++"
 - · Cormen, Leiserson, "Introduction to Algorithms, 3rd Edition"
 - · Heineman, Pollice, "Algorithms in a Nutshell"

Prerequisites

- · C++ 프로그래밍
 - · 명령문, 연산자, 데이터 선언, 주석문, 입출력
 - · 함수, 매개변수 전달, 함수 오버로딩, 인라인 함수, 동적 메모리 할당
 - · 객체 지향 설계, 데이터 추상화와 캡슐화
 - · 클래스, 객체, 상속, 다형성, 템플릿, 예외 처리
 - STL (Standard Library)

Schedules

- · 07/14 : 수업 소개, 성능 분석과 측정, 배열
- · 07/22 : 큐, 스택, 링크드 리스트
- 07/29 : 그래프
- · 08/11 : 트리
- · 08/25 : 정렬 / 검색 알고리즘
- 09/01 : 해싱, 균형 이진 트리

Performance Analysis and Measurement

Program Complexity

- 프로그램 복잡도에는 크게 두 종류가 있음
 - · 공간 복잡도(Space Complexity) : 프로그램을 수행하는데 필요한 메모리량
 - · 시간 복잡도(Time Complexity): 프로그램을 수행하는데 필요한 시간
- · 성능 평가 단계
 - · 성능 분석(Performance Analysis) : 사전 예측
 - ·성능 측정(Performance Measurement): 사후 검사

Space Complexity

- · 고정 부분 : 프로그램의 입출력 특성과 관계 없음
 - · 명령어 공간, 단순 변수, 일정 크기의 변수, 상수들을 위한 공간 등
- · 가변 부분 : 문제의 인스턴스를 통해 크기가 결정됨
 - · 인스턴스를 통해 크기가 결정되는 변수, 재귀 함수를 위한 공간 등
- $\cdot S(P) = c + S_P(n)$
 - $\cdot S(P)$: 프로그램 P에서 필요한 공간
 - · c : 상수
 - $\cdot n$: 인스턴스 특성 (예 : 입출력 크기, 숫자 등)

Space Complexity: ABC Function

```
float ABC(float a, float b, float c)
{
    return a + b + b * c + (a + b - c) / (a + b) + 4.0;
}
```

- · 함수 ABC에 필요한 공간은?
 - · a, b, c, 그리고 반환값이 필요
 - · 따라서, ABC에 필요한 공간은 4 워드

Space Complexity: Sum Function

```
float Sum(float* a, const int n)
{
    float s = 0;
    for (int i = 0; i < n; i++)
        s += a[i];
    return s;
}</pre>
```

- · 함수 Sum에 필요한 공간은?
 - $\cdot n$ 이 값에 의한 전달로 복사됨 : 1 워드
 - · a는 a[0]의 주소: 1 워드
 - \cdot 그러므로 함수에 필요한 공간은 n에 무관함 : $S_P(n)=0$
 - · s, i, 반환값이 필요 → Sum에 필요한 공간은 5 워드

Space Complexity: Rsum Function

```
float Rsum(float* a, const int n)
{
    if (n <= 0) return 0;
    else return (Rsum(a, n - 1) + a[n - 1]);
}</pre>
```

- · 함수 Rsum에 필요한 공간은?
 - $\cdot n$ 이 입력되었을 때, 재귀 함수의 깊이는 n+1 $(0 \sim n)$
 - · 함수를 호출할 때마다 n, a, 반환값, 반환 주소가 필요함 \rightarrow 4개의 워드 필요
 - \cdot 따라서, Rsum에 필요한 공간은 4(n+1) 워드

Time Complexity

- $T(P) = c + T_p(n)$
 - T(P): 프로그램 P를 수행하는데 걸리는 시간
 - · c : 컴파일 시간
 - T_p : 실행 시간
 - $\cdot n$: 인스턴스 특성

Program Steps

- · 프로그램 단계는 정확하지는 않지만 인스턴스 특성에 독립적인 실행 시간을 갖는 프로그램의 세그먼트(Segment)
- · 실행 시간은 인스턴스 특성과 무관함
- · 프로그램 명령문의 단계 수는 명령문의 특성에 의존함

Number of Steps

- · 주석: 0 (비실행 명령문)
- 선언문: 0
 - · 변수나 상수를 정의하는 모든 명령문(int, long, short, char, float, double, const, enum, signed, unsigned, static, extern)
 - · 사용자 정의 데이터 타입을 정의하는 모든 명령문(class, struct, union, template)
 - · 접근을 결정하는 모든 명령문(private, public, protected, friend)
 - · 함수의 타입을 결정하는 모든 명령문(void, virtual)

• 산술식 및 지정문

- · 대부분의 산술식은 1, 다만 함수 호출을 포함하는 산술식은 예외 (잠시 후에 예제로 살펴볼 예정)
- · 지정문 <variable> = <expr>은 <variable>의 크기가 인스턴스 특성의 함수가 아니라면 <expr>의 단계 수와 같음
- · 하지만 인스턴스 특성의 함수라면, <expr>의 단계 수에 <variable>의 크기를 더한 값이 됨

・ 함수 호출

- · 호출이 인스턴스 특성에 의존하는 인자를 포함하지 않으면 1
- · 인자를 포함한다면, 단계 수는 인자 크기의 합이 됨
- · 호출되는 함수가 재귀 함수라면 호출되는 함수에서 지역 변수도 고려해야 함 인스턴스에 관련된 지역 변수의 크기는 단계 수에 합쳐짐

Number of Steps

· 반복문

- for (<init-stmt>; <expr1>; <expr2>
 - · <init_stmt>, <expr1>, 또는 <expr2>가 인스턴스 특성의 함수가 아니라면 1
 - · 인스턴스 특성의 함수라면, for 명령문의 첫 번째 실행은 <init-stmt>와 <expr1>의 단계 수의 합과 같음 그 다음 실행 단계 수는 <expr1>과 <expr2>의 단계 수의 합과 같음
- · while <expr> do : <expr>에 할당된 단계 수와 같음
- · do ... while <expr> : <expr>에 할당된 단계 수와 같음

· switch 문

```
• switch (<expr>) {
      case cond1: <statement1>
      case cond2: <statement2>
      default: <statement>
```

- · switch(<expr>)의 비용은 <expr>에 할당된 비용과 같음
- · 각 조건의 비용은 자기의 비용 + 앞에서 나온 모든 조건의 비용

Number of Steps

- · if-else 문
 - if (<expr>) <statement1>;else <statement2>;
 - · <expr>, <statement1>, <statement2>에 따라 각 단계 수가 할당됨
 - · 만약 else문이 없다면 거기에 해당되는 비용도 없음
- 메모리 관리 명령문
 - · new object, delete, sizeof()를 포함
 - · 각 명령문은 1
 - · 묵시적으로 new와 delete가 호출되는 경우 함수 호출과 같은 방법으로 계산됨
- · 함수 명령문: 0 (비용이 이미 호출문에 할당됨)
- ・ 분기 명령문
 - · continue, break, goto, return, return <expr>을 포함
 - · return <expr>을 제외하면 모두 1
 - · return <expr>에서도 <expr>의 단계 수가 인스턴스 특성의 함수가 아니라면 1 인스턴스 특성의 함수라면 <expr>의 비용과 같음

Program Steps: Sum Function

```
float Sum(float* a, const int n)

{
    float s = 0;
    for (int i = 0; i < n; i++)
        s += a[i];
    return s;
}</pre>
```

s/e: 실행당 단계 수 (Step per Execution)

행 번호	s/e	빈도	단계 수
1	0	0	0
2	1	1	1
3	1	n+1	n+1
4	1	n	n
5	1	1	1
6	0	1	0
	총디	<u>'</u> 계 수	2n + 3

Program Steps: Rsum Function

```
float Rsum(float* a, const int n)

{
     if (n <= 0) return 0;
     else return (Rsum(a, n - 1) + a[n - 1]);
4 }</pre>
```

s/e: 실행당 단계 수 (Step per Execution)

행 번호	s/e	빈	도		단계 수
Ö LY	3/6	n = 0	n > 0	n = 0	n > 0
1	0	1	1	0	0
2(a)	1	1	1	1	1
2(b)	1	1	0	1	0
3	$1 + t_{Rsum}(n-1)$	0	1	0	$1 + t_{Rsum}(n-1)$
4	0	1	1	0	0
	총 단계 수			2	$2 + t_{Rsum}(n-1)$

Program Steps: Rsum Function

$$t_{rsum}(n) = 2 + t_{rsum}(n-1)$$

$$= 2 + 2 + t_{rsum}(n-2)$$

$$= 2 * 2 + t_{rsum}(n-2)$$

$$= \cdots$$

$$= 2n + t_{rsum}(0)$$

$$= 2n + 2$$

Program Steps: Add Function

```
void Add(int** a, int** b, int** c, int m, int n)
1 {
2    for (int i = 0; i < m; i++)
3        for (int j = 0; j < n; j++)
4        c[i][j] = a[i][j] + b[i][j];
5 }</pre>
```

s/e: 실행당 단계 수 (Step per Execution)

행 번호	s/e	빈도	단계 수
1	0	0	0
2	1	m+1	m+1
3	1	m(n+1)	mn + m
4	1	mn	mn
5	0	1	0
	총	단계 수	2mn + 2m + 1

Three Kinds of Step Counts

- · 최상의 경우(Best Case): 주어진 매개변수에 대해 실행될 수 있는 단계 수가 최소인 경우
- · 최악의 경우(Worst Case) : 주어진 매개변수에 대해 실행될 수 있는 단계 수가 최대인 경우
- · 평균(Average Case): 주어진 매개변수에 대해 이스턴스가 실행되는 평균 단계 수

Asymptotic Notation (O, Ω , Θ)

- · 프로그램의 정확한 단계 수를 결정하는 작업은 매우 어려움
 - · 단계 수를 정확하게 결정하는데 드는 노력은 개념 자체가 부정확하기 때문에 낭비를 초래할 수 있음
- · 점근 표기법은 어떤 함수의 증가 양상을 다른 함수와 비교로 표현하는 수론과 해석학의 방법
 - → 알고리즘의 복잡도를 단순화할 때 사용
 - · 대문자 O 표기법, 소문자 o 표기법
 - \cdot 대문자 Ω 표기법, 소문자 ω 표기법
 - · 대문자 🛭 표기법

Definition of Big "oh" (O)

- · 모든 $n, n \ge n_0$ 에 대해 $f(n) \le cg(n)$ 인 조건을 만족시키는 두 양의 상수 c와 n_0 가 존재하기만 하면 f(n) = O(g(n))
 - $n \ge 2$ 일 때, $3n + 2 \le 4n$ 이므로 3n + 2 = O(n)
 - $n \ge 5$ 일 때, $10n^2 + 4n \le 11n^2$ 이므로 $10n^2 + 4n = O(n^2)$
 - $n \ge 2$ 일 때, $10n^2 + 4n \le 10n^4$ 이므로 $10n^2 + 4n = O(n^4)$
- · 모든 n에 대해 g(n) 값은 f(n)의 상한값 (Upper Bound)
 - \cdot 의미상으로 유익하기 위해서는 g(n)이 가능한 작아야 함
 - $\cdot 3n + 2 = O(n)$ 이라고 하지만 $3n + 2 = O(n^2)$ 이라고 하지는 않음
 - · 물론 후자가 틀린 것은 아님

Definition of Omega (Ω)

- 모든 $n, n \ge n_0$ 에 대해 $f(n) \ge cg(n)$ 인 조건을 만족시키는 두 양의 상수 c와 n_0 가 존재하기만 하면 $f(n) = \Omega(g(n))$
 - $n \ge 1$ 일 때, $3n + 2 \ge 3n$ 이므로 $3n + 2 = \Omega(n)$
 - $n \ge 1$ 일 때, $10n^2 + 4n \ge n^2$ 이므로 $10n^2 + 4n = \Omega(n^2)$
 - $\cdot n \ge 1$ 일 때, $10n^2 + 4n \ge 1$ 이므로 $10n^2 + 4n = \Omega(1)$
- 모든 n에 대해 g(n) 값은 f(n)의 하한값 (Lower Bound)
 - \cdot 의미상으로 유익하기 위해서는 g(n)이 가능한 커야 함
 - \cdot $3n + 2 = \Omega(n)$ 이라고 하지만 $3n + 2 = \Omega(1)$ 이라고 하지는 않음
 - · 물론 후자가 틀린 것은 아님

Definition of Theta (Θ)

- · 모든 $n, n \ge n_0$ 에 대해 $c_1g(n) \le f(n) \le c_2g(n)$ 인 조건을 만족시키는 세 양의 상수 c_1, c_2 와 n_0 가 존재하기만 하면 $f(n) = \Theta(g(n))$
 - $\cdot n \ge 2$ 일 때, $3n + 2 \ge 3n$ 이고 $3n + 2 \le 4n$ 이므로 $3n + 2 = \Theta(n)$
- · 모든 n에 대해 g(n) 값은 f(n)의 상한값이자 하한값

Asymptotic Notation: Sum Function

```
float Sum(float* a, const int n)

{
    float s = 0;
    for (int i = 0; i < n; i++)
        s += a[i];
    return s;
}</pre>
```

s/e: 실행당 단계 수 (Step per Execution)

행 번호	s/e	빈도	단계 수
1	0	0	$\Theta(0)$
2	1	1	$\Theta(1)$
3	1	n+1	$\Theta(n)$
4	1	n	$\Theta(n)$
5	1	1	$\Theta(1)$
6	0	1	$\Theta(0)$
	$t_{Sum}(n)$	$=\Theta(\max_{1\leq i\leq 6}\{g_i(n)\}$	$\overline{\}) = \Theta(n)$

Asymptotic Notation: Rsum Function

float Rsum(float* a, const int n)

1

```
if (n <= 0) return 0;
else return (Rsum(a, n - 1) + a[n - 1]);
                                                          s/e: 실행당 단계 수 (Step per Execution)
                                                           빈도
                                                                                 단계 수
                          행 번호
                                          s/e
                                                      n = 0 n > 0 n = 0
                                                                                     n > 0
                                           0
                                                                        0
                                                                                     \Theta(0)
                           2(a)
                                                                                     \Theta(1)
                           2(b)
                                                                                     \Theta(0)
                                   1 + t_{Rsum}(n-1)
                                                                              \Theta(1+t_{Rsum}(n-1))
                                                                                     \Theta(0)
                                                         t_{Rsum}(n) =
                                                                        2
                                                                              \Theta(1+t_{Rsum}(n-1))
```

Asymptotic Notation: Add Function

```
void Add(int** a, int** b, int** c, int m, int n)

{
    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
        c[i][j] = a[i][j] + b[i][j];
}</pre>
```

s/e : 실행당 단계 수 (Step per Execution)

행 번호	s/e	빈도	단계 수
1	0	0	Θ(0)
2	1	$\Theta(m)$	$\Theta(m)$
3	1	$\Theta(mn)$	$\Theta(mn)$
4	1	$\Theta(mn)$	$\Theta(mn)$
5	0	1	$\Theta(0)$
	총디	단계 수	$\Theta(mn)$

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x.
   int left = 0, right = n - 1;
   while (left <= right)
   { // There are more elements
      int middle = (left + right) / 2;
      if (x < a[middle]) right = middle - 1;
      else if (x > a[middle]) left = middle + 1;
      else return middle;
   } // End of while
   return -1; // Not found
}
```


값이 정렬된 배열이 있을 때, Best Case는 찾는 값이 middle에 바로 있는 경우(9를 검색)

x = 9, a[middle] = a[2] = 9이므로 9가 있는 위치 2를 반환이 때, 시간 복잡도는 <math>O(1)!

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], \ldots, a[n-1] for x.
    int left = 0, right = n - 1;
                                                      Worst Case는 배열에 없는 값을 검색할 때
    while (left <= right)</pre>
                                                       (24를 검색)
    { // There are more elements
        int middle = (left + right) / 2;
                                                                       15
        if (x < a[middle]) right = middle - 1;</pre>
        else if (x > a[middle]) left = middle + 1;
        else return middle;
                                                       left
                                                              middle
                                                                           right
    } // End of while
                                                       (0) (0+5)/2=2.5\approx 2
    return -1; // Not found
                                                      x = 24, a[middle] = a[2] = 9이므로
                                                      left를 3으로 바꾼 뒤 다시 수행
```

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], \ldots, a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)</pre>
                                                                         15
                                                                             18
    { // There are more elements
        int middle = (left + right) / 2;
                                                                             right
                                                                     left
        if (x < a[middle]) right = middle - 1;</pre>
                                                                     (3)
                                                                             (5)
        else if (x > a[middle]) left = middle + 1;
                                                                        middle
        else return middle;
                                                                      (3+5)/2=4
    } // End of while
                                                       x = 24, a[middle] = a[4] = 15이므로
    return -1; // Not found
                                                        left를 5로 바꾼 뒤 다시 수행
```

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)
    { // There are more elements
        int middle = (left + right) / 2;
        if (x < a[middle]) right = middle - 1;
        else if (x > a[middle]) left = middle + 1;
        else return middle;
    } // End of while
    return -1; // Not found
}
```


x = 24, a[middle] = a[5] = 18이므로 left를 6로 바꾼 뒤 다시 수행

하지만, while (left <= right) 문에서 left = 6, right = 5이므로 while (false), while 문을 빠져나오게 되어 -1을 반환

이 때, 시간 복잡도는?

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], \ldots, a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)</pre>
                                                                       15
                                                                                 T(n)
    { // There are more elements
         int middle = (left + right) / 2;
                                                                                    +0(1)
                                                                           right
                                                       left
         if (x < a[middle]) right = middle - 1;</pre>
         else if (x > a[middle]) left = middle + 1;
                                                                           18
                                                                       15
                                                                               T(n/2)
        else return middle;
       // End of while
                                                                                    +0(1)
                                                                           right
                                                                    left
    return -1; // Not found
                                                                       15
                                                                           18
                                                            5
                                                                                T(n/4)
시간 복잡도 계산의 핵심은 "while 문이 얼마나 반복되었는가?"
                                                                         left = right
   부분이 얼마나 많이 수행되었느냐가 관건
 \Box 부분은 상수 시간에 수행되므로 O(1)
                                                       따라서, 시간 복잡도는
                                                       T(n) = T\left(\frac{n}{2}\right) + O(1)!
```

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$= T\left(\frac{n}{2^2}\right) + 2O(1)$$

$$= \cdots$$

$$= T\left(\frac{n}{2^k}\right) + kO(1)$$

$$n = 2^k$$
, $T(1) = O(1)$ 라면
 $T(n) = T(1) + kO(1)$
 $T(n) = (k+1)O(1)$

Orders of Common Functions

Name	Complexity class	Running time (T(n))
constant time		O(1)
inverse Ackermann time		O(a(n))
iterated logarithmic time		O(log* n)
log-logarithmic		O(log log n)
logarithmic time	DLOGTIME	O(log n)
polylogarithmic time		poly(log n)
fractional power		$O(n^c)$ where $0 < c < 1$
linear time		O(n)
"n log star n" time		$O(n \log^* n)$
linearithmic time		$O(n \log n)$
quadratic time		O(n ²)
cubic time		O(n ³)
polynomial time	Р	$2^{O(\log n)} = \text{poly}(n)$
quasi-polynomial time	QP	2 ^{poly(log n)}
sub-exponential time (first definition)	SUBEXP	$O(2^{n^{\epsilon}})$ for all $\epsilon > 0$
sub-exponential time (second definition)		2 ^{o(n)}
exponential time (with linear exponent)	Е	2 ^{O(n)}
exponential time	EXPTIME	2 ^{poly(n)}
factorial time		O(n!)
double exponential time	2-EXPTIME	2 ^{2poly(n)}

https://en.wikipedia.org/wiki/Big_O_notation http://bigocheatsheet.com/

Data Structure Operations

Data Structure	Time Comp	Time Complexity								
	Average				Worst	Worst				
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion		
Array	0(1)	0(n)	0(n)	0(n)	0(1)	O(n)	0(n)	0(n)	0(n)	
Stack	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)	
Singly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)	
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	O(n)	0(1)	0(1)	0(n)	
Skip List	O(log(n))	O(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	O(n log(n))	
Hash Table	-	0(1)	0(1)	0(1)	-	0(n)	0(n)	0(n)	0(n)	
Binary Search Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)	
Cartesian Tree	-	0(log(n))	0(log(n))	0(log(n))	-	0(n)	0(n)	0(n)	0(n)	
B-Tree	O(log(n))	O(log(n))	0(log(n))	0(log(n))	O(log(n))	O(log(n))	0(log(n))	0(log(n))	0(n)	
Red-Black Tree	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	
Splay Tree	-	O(log(n))	O(log(n))	O(log(n))	-	O(log(n))	O(log(n))	O(log(n))	0(n)	
AVL Tree	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(n)	

Array Sorting Algorithms

Algorithm	Time Complexity			Space Complexity
	Best	Average	Worst	Worst
Quicksort	O(n log(n))	O(n log(n))	O(n^2)	O(log(n))
Mergesort	O(n log(n))	O(n log(n))	O(n log(n))	O(n)
Timsort	O(n)	O(n log(n))	O(n log(n))	O(n)
Heapsort	O(n log(n))	O(n log(n))	O(n log(n))	0(1)
Bubble Sort	0(n)	O(n^2)	O(n^2)	0(1)
Insertion Sort	O(n)	O(n^2)	O(n^2)	0(1)
Selection Sort	O(n^2)	O(n^2)	O(n^2)	0(1)
Shell Sort	O(n)	O((nlog(n))^2)	O((nlog(n))^2)	0(1)
Bucket Sort	O(n+k)	0(n+k)	O(n^2)	O(n)
Radix Sort	O(nk)	0(nk)	O(nk)	0(n+k)

Graph & Heap Operations

Node / Edge Management	Storage	Add Vertex	Add Edge	Remove Vertex	Remove Edge	Query
Adjacency list	O(V + E)	0(1)	0(1)	O(V + E)	0(E)	0(V)
Incidence list	O(V + E)	0(1)	0(1)	0(E)	0(E)	0(E)
Adjacency matrix	0(V ^2)	0(V ^2)	0(1)	0(V ^2)	0(1)	0(1)
Incidence matrix	O(V · E)	O(V · E)	O(E)			

Туре	Time Complexity							
	Heapify	Find Max	Extract Max	Increase Key	Insert	Delete	Merge	
Linked List (sorted)	-	0(1)	0(1)	O(n)	0(n)	0(1)	O(m+n)	
Linked List (unsorted)	-	O(n)	O(n)	0(1)	0(1)	0(1)	0(1)	
Binary Heap	0(n)	0(1)	O(log(n))	O(log(n))	O(log(n))	0(log(n))	O(m+n)	
Binomial Heap	-	0(1)	O(log(n))	O(log(n))	0(1)	0(log(n))	0(log(n))	
Fibonacci Heap	-	0(1)	O(log(n))	0(1)	0(1)	O(log(n))	0(1)	

http://bigocheatsheet.com/