Protocols

Graphical programming for Icy

a.k.a. programming, for the rest of us

Quote: "Results aren't much if they can't be reproduced!"
 (your boss, your reviewers, your colleagues, you!)

- Quote: "Results aren't much if they can't be reproduced!"
- Fact: Most journals now reject papers without proper quantification
 [...] Image quantification was <u>carefully</u> conducted using Photoshop. [...]

- Quote: "Results aren't much if they can't be reproduced!"
- Fact: Most journals now reject papers without proper quantification
- Conclusion: Image quantification is a protocol in its on right...

- Quote: "Results aren't much if they can't be reproduced!"
- Fact: Most journals now reject papers without proper quantification
- Conclusion: Image quantification is a protocol in its on right...
- Icy makes these protocols easy to read / write / use / adapt

- Quote: "Results aren't much if they can't be reproduced!"
- Fact: Most journals now reject papers without proper quantification
- Conclusion: Image quantification is a protocol in its on right...
- Icy makes these protocols easy to read / write / use / adapt
 - Design a protocol once, run on thousands of images
 - Upload your protocol and share with the world (within publications)
 - Download other protocols, run them out-of-the-box
 - Extend any protocol to meet your needs and share/publish again

all in just a few clicks, no programming knowledge required.

A protocol is a <u>workflow</u> linking processing <u>blocks</u> together

http://icy.bioimageanalysis.org/protocol/Extract_channels

- Standardised design: all blocks look the same
- Strong modularity: one block = one task

• The protocols editor: http://icy.bioimageanalysis.org/plugin/Protocols

Blocks are organised by groups

More ideas on how to tidy things up? Let us know!

Question: how would you find the nuclei in this image?

Outline:

- Extract the channel of interest
- 2. Clean the data
- 3. Find an intensity threshold
- 4. Threshold the image
- 5. Extract the regions of interest
- 6. Quantify

(notice how generic this outline is...)

Question: how would you find the nuclei in this image?

Outline:

- Extract the channel of interest
- 2. Clean the data
- 3. Find an intensity threshold
- 4. Threshold the image
- 5. Extract the regions of interest
- 6. Quantify

Menu: Sequence > Extract Channel

NOTE: channel index starts at 0...

Question: how would you find the nuclei in this image?

Outline:

- Extract the channel of interest
- 2. Clean the data
- 3. Find an intensity threshold
- 4. Threshold the image
- 5. Extract the regions of interest
- 6. Quantify

Menu: Blocks > Gaussian Filter

Diffuses the intensity contained in each pixel (i.e. makes the image look blurry)

Adapt the diffusion to the image noise Too much diffusion: edges fade away!

Question: how would you find the nuclei in this image?

Outline:

- 1. Extract the channel of interest
- Clean the data
- 3. Find an intensity threshold
- 4. Threshold the image
- 5. Extract the regions of interest
- 6. Quantify

Menu: Blocks > KMeans Threshold

Finds the optimal separation(s) between the histogram modes (i.e. intensity classes)

2 modes => 1 threshold (3 => 2, etc.)

Question: how would you find the nuclei in this image?

Outline:

- Extract the channel of interest
- 2. Clean the data
- 3. Find an intensity threshold
- 4. Threshold the image
- 5. Extract the regions of interest
- 6. Quantify

Menu: Blocks > Thresholder

Creates a labeled image by classifying pixel intensities according to the threshold(s)

1 threshold => [0;1] (binary) image 2 thresholds => [0;1;2] (labeled) image etc.

Question: how would you find the nuclei in this image?

Outline:

- Extract the channel of interest
- 2. Clean the data
- 3. Find an intensity threshold
- 4. Threshold the image
- 5. Extract the regions of interest
- 6. Quantify

Menu: Blocks > Label Extractor

Extracts objects from a labeled image using connected component analysis

Question: how would you find the nuclei in this image?

Outline:

- Extract the channel of interest
- 2. Clean the data
- 3. Find an intensity threshold
- 4. Threshold the image
- 5. Extract the regions of interest
- 6. Quantify

Menu: ROI > ROI Statistics

Calculates size, dimensions, intensity statistics, etc.

How about batch processing?

How about batch processing?

- Most plugins have their corresponding Block
- What if the one you need isn't there (yet)?
 - #1: Leave a comment on the plug-in's page online

- Most plugins have their corresponding Block
- What if the one you need isn't there (yet)?
 - #1: Leave a comment on the plug-in's page online
 - #2: The "DIY" (Do It Yourself) approach

Interested? We'll be back, after the break!