notebook

April 11, 2022

1 Penarikan Kesimpulan dan Pengujian Hipotesis Data Matriks Kualitas Air

Tugas Besar IF2220 Probabilitas dan Statistika

Disusun oleh: 1. 13520047 Hana Fathiyah 2. 13520128 Bayu Samudra

1.1 Requirement Modul Analisis

Pada tugas besar ini, kami menggunakan modul-modul sebagai berikut. 1. Numpy versi 1.22.3 2. Pandas versi 1.4.1 3. Seaborn versi 0.11.2 4. Matplotlib versi 3.5.1 5. Jupyterlab versi 3.3.2

Modul-modul tersebut dapat di-install dengan perintah sebagai berikut.

```
pip install -r requirements.txt
```

Berikut ini kami mencoba untuk melakukan import library (pustaka) tersebut.

```
[]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
sns.set_theme()
```

1.2 Persiapan Data

Diberikan suatu dataset dengan nama water_potability.csv. Pada bagian ini, dataset tersebut akan di-import ke dalam sebuah variabel yang diberi nama data

```
[]: data = pd.read_csv("water_potability.csv")
  data.head()
```

```
[]:
        id
                         Hardness
                                         Solids
                                                 Chloramines
                                                                  Sulfate
                   Щq
     0
         1
             8.316766
                       214.373394
                                   22018.417441
                                                     8.059332
                                                               356.886136
     1
         2
             9.092223
                       181.101509
                                   17978.986339
                                                     6.546600
                                                               310.135738
     2
                                   28748.687739
                                                    7.544869
         3
             5.584087
                       188.313324
                                                               326.678363
     3
           10.223862
                       248.071735
                                  28749.716544
                                                    7.513408
                                                              393.663396
```

4 5 8.635849 203.361523 13672.091764 4.563009 303.309771

	Conductivity	OrganicCarbon	Trihalomethanes	Turbidity	Potability
0	363.266516	18.436524	100.341674	4.628771	0
1	398.410813	11.558279	31.997993	4.075075	0
2	280.467916	8.399735	54.917862	2.559708	0
3	283.651634	13.789695	84.603556	2.672989	0
4	474.607645	12.363817	62.798309	4.401425	0

Berikut ini adalah metadata dari dataset yang telah diimport

[]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2010 entries, 0 to 2009
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	id	2010 non-null	int64
1	рН	2010 non-null	float64
2	Hardness	2010 non-null	float64
3	Solids	2010 non-null	float64
4	Chloramines	2010 non-null	float64
5	Sulfate	2010 non-null	float64
6	Conductivity	2010 non-null	float64
7	OrganicCarbon	2010 non-null	float64
8	Trihalomethanes	2010 non-null	float64
9	Turbidity	2010 non-null	float64
10	Potability	2010 non-null	int64

dtypes: float64(9), int64(2)

memory usage: 172.9 KB

1.3 Nomor 1: Deskripsi Statistika

Pada nomor 1 ini, kami mencari deskripsi statistika (Descriptive Statistics) dari semua kolom pada data yang bersifat numerik, terdiri dari mean, median, modus, standar deviasi, variansi, range, nilai minimum, maksimum, kuartil, IQR, skewness dan kurtosis.

[]: data.describe()

[]:		id	рН	Hardness	Solids	Chloramines	\
	count	2010.00000	2010.000000	2010.000000	2010.000000	2010.000000	
	mean	1005.50000	7.087193	195.969209	21904.673439	7.134322	
	std	580.38134	1.572803	32.643166	8625.397911	1.585214	
	min	1.00000	0.227499	73.492234	320.942611	1.390871	
	25%	503.25000	6.090785	176.740657	15614.412962	6.138326	
	50%	1005.50000	7.029490	197.203525	20926.882155	7.142014	
	75%	1507.75000	8.053006	216.447589	27170.534649	8.109933	

max	2010.00000	14.000000	317.338124	56488.672413	13.1	27000	
	Sulfate	Conductivity	OrganicCarbo	on Trihalome	thanes	Turbidity	\
count	2010.000000	2010.000000	2010.00000	00 2010.0	000000	2010.000000	
mean	333.211376	426.476708	14.35794	40 66.4	400717	3.969497	
std	41.211111	80.701872	3.3257	70 16.0	081109	0.780471	
min	129.000000	201.619737	2.20000	8.!	577013	1.450000	
25%	307.626986	366.619219	12.12253	30 55.9	949993	3.442882	
50%	332.214113	423.438372	14.32328	86 66.4	482041	3.967374	
75%	359.268147	482.209772	16.68356	62 77.2	294613	4.514663	
max	481.030642	753.342620	27.00670	07 124.0	000000	6.494749	
	Potability						
count	2010.000000						
mean	0.402985						
std	0.490620						
min	0.000000						
25%	0.000000						
50%	0.000000						
75%	1.000000						
max	1.000000						

Data di atas menampilkan rata-rata (ditunjukkan dengan mean), median (ditunjukkan dengan baris 50%), standar deviasi (ditunjukkan dengan std), nilai minimum (ditunjukkan dengan min), nilai maksimum (ditunjukkan dengan max), dan kuartil (ditunjukkan dengan 25% (Q1), 50% (Q2), dan 75% (Q3)).

Selanjutnya akan dicari nilai variansi untuk setiap kolom pada dataset water_potability.csv tersebut

[]: data.var()

[]:	id	3.368425e+05
	рН	2.473709e+00
	Hardness	1.065576e+03
	Solids	7.439749e+07
	Chloramines	2.512904e+00
	Sulfate	1.698356e+03
	Conductivity	6.512792e+03
	OrganicCarbon	1.106075e+01
	Trihalomethanes	2.586021e+02
	Turbidity	6.091350e-01
	Potability	2.407079e-01
	dtype: float64	

Selanjutnya, akan dicari nilai range untuk setiap kolom pada dataset water_potability.csv tersebut

[]: data.max() - data.min()

```
[]: id
                         2009.000000
                            13.772501
    рΗ
     Hardness
                          243.845890
     Solids
                        56167.729801
     Chloramines
                            11.736129
     Sulfate
                          352.030642
     Conductivity
                          551.722883
     OrganicCarbon
                            24.806707
     Trihalomethanes
                          115.422987
     Turbidity
                             5.044749
     Potability
                             1.000000
     dtype: float64
```

Selanjutnya akan dicari nilai IQR untuk setiap kolom pada dataset water_potability.csv tersebut

```
[]: q1 = data.quantile(0.25)
q3 = data.quantile(0.75)
q3 - q1
```

[]:	id	1004.500000
	рН	1.962221
	Hardness	39.706932
	Solids	11556.121687
	Chloramines	1.971607
	Sulfate	51.641161
	Conductivity	115.590553
	OrganicCarbon	4.561031
	Trihalomethanes	21.344620
	Turbidity	1.071781
	Potability	1.000000

Selanjutnya akan dicari nilai skewness untuk setiap kolom pada dataset water_potability.csv tersebut

[]: data.skew()

dtype: float64

```
[]: id
                         0.000000
                         0.048535
    рΗ
     Hardness
                        -0.085321
     Solids
                        0.591011
     Chloramines
                        0.013003
     Sulfate
                        -0.045728
     Conductivity
                        0.268012
     OrganicCarbon
                        -0.020220
```

Trihalomethanes -0.051383
Turbidity -0.032266
Potability 0.395873

dtype: float64

Selanjutnya ditentukan nilai kurtosis untuk setiap kolom pada dataset water_potability.csv tersebut

[]: data.kurtosis()

[]: id -1.200000 0.626904 рΗ Hardness 0.525480 Solids 0.337320 Chloramines 0.549782 Sulfate 0.786854 Conductivity -0.237206 OrganicCarbon 0.031018 Trihalomethanes 0.223017 Turbidity -0.049831 Potability -1.845122

dtype: float64

Selanjutnya akan dicari nilai modus untuk setiap kolom pada dataset water_potability.csv tersebut

[]: data.mode()

[]:		id	На	Hardness	Solids (Chloramines	Sulfate	\
	0	1	0.227499	73.492234	320.942611	1.390871	129.000000	
	1	2	0.989912	77.459586	1198.943699	1.920271	180.206746	
	2	3	1.431782	81.710895	1351.906979	2.397985	182.397370	
	3	4	1.757037	94.091307	1372.091043	2.456014	187.170714	
	4	5	1.985383	94.812545	2552.962804	2.458609	187.424131	
	•••	•••	•••	•••		•••		
	2005	2006	11.568768	286.567991	50793.898917	12.580026	458.441072	
	2006	2007	11.898078	287.975540	53735.899194	12.626900	460.107069	
	2007	2008	12.246928	300.292476	55334.702799	12.653362	475.737460	
	2008	2009	13.349889	306.627481	56351.396304	13.043806	476.539717	
	2009	2010	14.000000	317.338124	56488.672413	13.127000	481.030642	
		Condu	ctivity Or	ganicCarbon	Trihalomethanes	Turbidity	Potability	
	0	201	.619737	2.200000	8.577013	1.450000	0.0	
	1	210	.319182	4.371899	14.343161	1.492207	NaN	
	2	233	.907965	4.466772	15.684877	1.496101	NaN	
	3	245	.859632	4.861631	16.291505	1.680554	NaN	
	4	252	.968328	4.966862	17.527765	1.812529	NaN	
	•••		•••	•••	•••			

2005	666.690618	23.569645	114.034946	6.307678	NaN
2006	669.725086	23.604298	114.208671	6.357439	NaN
2007	695.369528	23.917601	116.161622	6.389161	NaN
2008	708.226364	24.755392	120.030077	6.494249	NaN
2009	753.342620	27.006707	124.000000	6.494749	NaN

[2010 rows x 11 columns]

[]: data.shape

[]: (2010, 11)

Pada data di atas, terlihat bahwa nilai modus pada kolom selain kolom *portability* memiliki nilai lebih dari satu. Lebih jauh lagi, setiap kolom numerik selain kolom *portability* memiliki data yang unik sehingga semua nilai merupakan nilai modus.

1.4 Nomor 2: Visualisasi

Pada nomor ini, akan ditampilkan visualisasi distribusi plot untuk setiap kolom numerik

1.4.1 Data pH

Berikut ini adalah histogram untuk data pH pada dataset water_portability.csv

```
[]: sns.histplot(data,x="pH")
```

[]: <AxesSubplot:xlabel='pH', ylabel='Count'>

Berikut ini adalah boxplot untuk data pH pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "pH")
```

[]: <AxesSubplot:xlabel='pH'>

1.4.2 Data Hardness

Berikut ini adalah histogram untuk data Hardness pada dataset water_portability.csv

```
[]: sns.histplot(data,x="Hardness")
```

[]: <AxesSubplot:xlabel='Hardness', ylabel='Count'>

Berikut ini adalah boxplot untuk data Hardness pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "Hardness")
```

[]: <AxesSubplot:xlabel='Hardness'>

1.4.3 Data Solids

Berikut ini adalah histogram untuk data Solids pada dataset water_portability.csv

```
[]: sns.histplot(data,x="Solids")
```

[]: <AxesSubplot:xlabel='Solids', ylabel='Count'>

Berikut ini adalah boxplot untuk data Solids pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "Solids")
```

[]: <AxesSubplot:xlabel='Solids'>

1.4.4 Data Chloramines

Berikut ini adalah histogram untuk data Chloramines pada dataset water_portability.csv

```
[]: sns.histplot(data,x="Chloramines")
```

[]: <AxesSubplot:xlabel='Chloramines', ylabel='Count'>

Berikut ini adalah boxplot untuk data Chloramines pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "Chloramines")
```

[]: <AxesSubplot:xlabel='Chloramines'>

1.4.5 Data Sulfate

Berikut ini adalah histogram untuk data Sulfate pada dataset water_portability.csv

```
[]: sns.histplot(data,x="Sulfate")
```

[]: <AxesSubplot:xlabel='Sulfate', ylabel='Count'>

Berikut ini adalah boxplot untuk data Sulfate pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "Sulfate")
```

[]: <AxesSubplot:xlabel='Sulfate'>

1.4.6 Data Conductivity

Berikut ini adalah histogram untuk data Conductivity pada dataset water_portability.csv

- []: sns.histplot(data,x="Conductivity")
- []: <AxesSubplot:xlabel='Conductivity', ylabel='Count'>

Berikut ini adalah boxplot untuk data Conductivity pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "Conductivity")
```

[]: <AxesSubplot:xlabel='Conductivity'>

1.4.7 Data OrganicCarbon

Berikut ini adalah histogram untuk data OrganicCarbon pada dataset water_portability.csv

```
[]: sns.histplot(data,x="OrganicCarbon")
```

[]: <AxesSubplot:xlabel='OrganicCarbon', ylabel='Count'>

Berikut ini adalah boxplot untuk data OrganicCarbon pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "OrganicCarbon")
```

[]: <AxesSubplot:xlabel='OrganicCarbon'>

1.4.8 Data Trihalomethanes

Berikut ini adalah histogram untuk data Trihalomethanes pada dataset water_portability.csv

```
[]: sns.histplot(data,x="Trihalomethanes")
```

[]: <AxesSubplot:xlabel='Trihalomethanes', ylabel='Count'>

Berikut ini adalah boxplot untuk data Trihalomethanes pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "Trihalomethanes")
```

[]: <AxesSubplot:xlabel='Trihalomethanes'>

1.4.9 Data Turbidity

Berikut ini adalah histogram untuk data Turbidity pada dataset water_portability.csv

```
[]: sns.histplot(data,x="Turbidity")
```

[]: <AxesSubplot:xlabel='Turbidity', ylabel='Count'>

Berikut ini adalah boxplot untuk data Turbidity pada dataset water_portability.csv

```
[]: sns.boxplot(data = data, x = "Turbidity")
```

[]: <AxesSubplot:xlabel='Turbidity'>

1.5 Nomor 3: Tes Distribusi Normal

Pada bagian ini, akan dites apakah setiap kolom berdistribusi normal atau tidak. Kolom yang akan dianalisis adalah kolom numerik, yaiur kolom 2 sampai dengan kolom 10.

1.5.1 Metode Tes

Metode pengetesan akan dilakukan dengan dua cara, yaitu metode grafik dan statistik.

Metode Grafik Pada metode grafik, kami akan menggunakan QQ Plot dengan histogram. Pada tahap ini kami hanya mengamati seberapa dekat suatu kolom dengan normalnya.

Pembuatan grafik QQ dapat dilakukan dengan menjadikan setiap data merupakan quantiles dari semua data. Setelah itu, setiap quantiles dihitung korespondensinya terhadap tabel normal. Setelah itu akan dilakukan plotting menggunakan scatter plot dan dibuat regresinya. Apabila kebanyakan titik berada pada garis, maka data berdistribusi normal.

Berikut ini adalah fungsi yang akan membantu membuat QQ Plot

```
[]: def QQ_Plot(data):
    dataset = np.sort(data)
    norm = scipy.stats.norm()
    normalDataset = np.array([
         norm.ppf((i+0.5)/len(dataset)) for i in range(len(dataset))
])
```

```
sns.regplot(x=normalDataset, y=dataset)
plt.xlabel("Normal Quantiles")
plt.ylabel("Data Quantiles")
```

Metode Statistik Pada metode statistik, kami menggunakan D'Agostino-Pearson Omnibus test untuk pengujian statistik. Pengetesan akan dilakukan dengan menggunakan pengujian hipotestis.

Berikut ini adalah hipotesinya: 1. Hipotesis nol (H_0) dari pengetesan ini adalah kolom berdistribusi normal. 2. Hipotesis slternatif (H_1) dari pengetesan ini adalah kolom tidak berdistribusi normal.

Tingkat signifikansi yang digunakan adalah $\alpha = 0.05$

Berikut ini adalah langkah pengujian statistik yang dilakukan: 1. Kurtosis dan juga skewness dari sebuah kolom perlu dihitung terlebih dahulu. 2. Menghitung error standard untuk skewness. Rumus untuk perhitungan skewness standard error adalah sebagai berikut:

$$s.e = \sqrt{\frac{6n(n-1)}{(n-2)(n+1)(n+3)}}$$

3. Menghitung error standar untuk kurtosis. Rumus untuk melakukan perhitungan ini adalah sebagai berikut:

$$k.e = 2 \cdot (s.e) \cdot \sqrt{\frac{n^2 - 1}{(n-3)(n+5)}}$$

4. Perlu dihtung standar score untu skewness. Berikut ini adalah rumusnya:

$$z_s = \frac{Sk}{s.e}$$

5. Perlu dihitung standar error untuk kurtosis. Berikut ini adalah rumusnya:

$$z_k = \frac{Kur}{k \ e}$$

6. Jumlah kuadrat dari Nilai dari standar skor untuk skewness dan kurtosis dapat didekatkan dengan distribusi chi-square derajat dua.

$$z_x^2 + z_k^2 \approx \chi_\alpha^2$$

Oleh karena itu, nilai p dapat dihitung dengan mencari distribusi dari chi-square berderajat 2.

Proses diatas dapat dilakukan dengan menggunakan library dari scipy, yaitu scipy.stat.normaltest.

Pada langkah terakhir, akan diperiksa apakah nilai p
 kurang dari level signifikansi. Bila kurang, maka hipotesi
s ${\cal H}_0$ dapat ditolak.

1.5.2 Data pH

Pada bagian ini, akan dicoba untuk melakukan test normal pada data pH. Berikut ini adalah histogram dan juga QQ plot dari data pH.

```
[]: QQ_Plot(data["pH"])
plt.title("QQ Plot pH")
```

[]: Text(0.5, 1.0, 'QQ Plot pH')


```
[]: sns.histplot(data=data, x="pH", kde=True) plt.title("Histogram data pH")
```

[]: Text(0.5, 1.0, 'Histogram data pH')

Dari kedua grafik diatas, data pH terlihat data bisa jadi tidak berdistribusi normal. Hal ini terlihat pada ujung kiri dan ujung kanan QQ Plot yang menjauh dari garis.

Pada bagian selanjutnya, data akan diuji menggunakan pendekatan statistik.

```
[]: _, p = scipy.stats.normaltest(data["pH"])
print(f"p = {p}")

if p < alpha:
   print("Data tidak berdistribusi normal")
else:
   print("Data berdistribusi normal")</pre>
```

p = 2.6514813346797777e-05Data tidak berdistribusi normal

Berdasarkan pengujian statistik, terlihat bahwa data tidak berdistribusi normal. Hal ini dikarenakan nilai p < 0.05 sehingga hipotesis H_0 dapat ditolak.

Kesimpulan dari pengujian ini adalah data pH bukan merupakan data yang berdistribusi normal

1.5.3 Data OrganicCarbon

Pada bagian ini, akan dicoba untuk melakukan test normal pada data OrganicCarbon. Berikut ini adalah histogram dan juga QQ plot dari data pH.

```
[]: QQ_Plot(data["OrganicCarbon"])
plt.title("QQ Plot pH")
```

[]: Text(0.5, 1.0, 'QQ Plot pH')


```
[]: sns.histplot(data=data, x="OrganicCarbon", kde=True) plt.title("Histogram data OrganicCarbon")
```

[]: Text(0.5, 1.0, 'Histogram data OrganicCarbon')

Dari kedua grafik diatas, data OrganicCarbon terlihat mendekati bentuk normal. Hal ini dapat terlihat bahwa pada QQ plot, sebagian besar titik berada pada garis. Oleh karena itu, dapat disimpulkan bahwa pH merupakan data yang berkemungkinan berdistribusi normal.

Pada bagian selanjutnya, data akan diuji menggunakan pendekatan statistik.

```
[]: _, p = scipy.stats.normaltest(data["OrganicCarbon"])
print(f"p = {p}")

if p < alpha:
   print("Data tidak berdistribusi normal")
else:
   print("Data berdistribusi normal")</pre>
```

p = 0.8825496581408284 Data berdistribusi normal

Berdasarkan pengujian statistik, terlihat bahwa berdistribusi normal. Hal ini ditunjukan bahwa nilai p>0.05. Oleh karena itu, hipotesis H_0 tidak dapat ditolak.

Kesimpulan dari pengujian ini adalah data OrganicCarbon bukan merupakan data yang berdistribusi normal

1.6 Nomor 6: Korelasi

[]: data.corr()

[]:

]:		id	pH Har	dness Solids	Chloramines \	
	id		-	14818 -0.021336	0.004946	
	oH.	-0.031175		08959 -0.085582	-0.024767	
-	Hardness	-0.014818		00000 -0.053282	-0.022684	
	Solids		-0.085582 -0.0		-0.051933	
	Chloramines			22684 -0.051933	1.000000	
	Sulfate			08509 -0.164106	0.006248	
	Conductivity	-0.034291		11778 -0.007045	-0.028300	
	OrganicCarbon	0.035022		13219 -0.005290	-0.023806	
	[rihalomethanes			15400 -0.015729	0.014990	
	Turbidity		-0.035416 -0.0		0.013132	
	Potability	0.122027	0.015475 -0.0		0.020779	
		a 14 .				,
	. ,	Sulfate	Conductivity	~	Trihalomethanes	\
	id 	0.052322	-0.034291	0.035022	-0.026509	
-	oH -	0.011028	0.015089	0.028285	0.018302	
	Hardness	-0.108509	0.011778	0.013219	-0.015400	
	Solids	-0.164106	-0.007045	-0.005290	-0.015729	
	Chloramines	0.006248	-0.028300	-0.023806	0.014990	
	Sulfate	1.000000	-0.016600	0.026823	-0.023355	
C	Conductivity	-0.016600	1.000000	0.015739	0.004879	
	OrganicCarbon	0.026823	0.015739	1.000000	-0.005666	
Τ	Γ rihalomethanes	-0.023355	0.004879	-0.005666	1.000000	
Τ	Γurbidity	-0.010129	0.012133	-0.015388	-0.020504	
P	Potability	-0.015703	-0.016257	-0.015488	0.009237	
		Turbidity	Potability			
i	id	0.024003	•			
	ЭН	-0.035416				
-	Hardness	-0.034813				
	Solids	0.018569				
	Chloramines	0.013132				
	Sulfate	-0.010129				
C	Conductivity	0.012133				
	OrganicCarbon	-0.015388				
	Trihalomethanes	-0.020504				
Т						
	Turbidity	1.000000	0.022331			