Projecto Técnico: Controle de Braço Robótico via Bluetooth com Arduino

* Resumo

Este projeto consiste no desenvolvimento de um sistema de controle de um braço robótico de 4 graus de liberdade, comandado por um smartphone via comunicação Bluetooth. A interface é baseada em comandos de texto enviados por um aplicativo serial Bluetooth, que são interpretados por um Arduino Uno para movimentar servomotores com precisão. O projeto foi concebido como parte da formação em Engenharia de Telecomunicações, com foco na aplicação prática de conceitos de sistemas embarcados, comunicação sem fio e automação.

Objectivo do Projecto

Criar um sistema simples e eficiente de automação que permite controlar um braço robótico usando comandos personalizados via Bluetooth, utilizando tecnologias acessíveis como Arduino, HC-05 e servomotores.

🧩 Componentes e Ferramentas Utilizadas

Componente	Quantidade	Função
Arduino Uno	1	Unidade de controle principal
Módulo Bluetooth HC-05	1	Comunicação sem fio com smartphone
Servomotor SG90	4	Movimento das articulações do braço
App Serial Bluetooth	1	Envio de comandos via Android
Jumpers	Diversos	Conexões entre os componentes
Fonte (3.3v/5v)	1	Alimentação dos servos
IDE Arduino	1	Desenvolvimento do código em C++
Smartphone Android	1	Dispositivo emissor de comandos

Funcionamento do Sistema

- 1. O HC-05 é pareado com o smartphone.
- 2. O usuário envia comandos no formato AXX, BXX, etc., onde a letra representa o servo e XX o ângulo (ex.: A90 move a base para 90°).
- 3. O Arduino lê os comandos via SoftwareSerial, interpreta o identificador (A, B, C, D) e move o respectivo servo para o ângulo definido.
- 4. O sistema fornece feedback no monitor serial em caso de comando inválido ou erro.

Estrutura do Código

O código é desenvolvido na IDE do Arduino em linguagem C/C++ e possui as seguintes seções principais:

- Configuração Inicial (setup()):
 - o Inicialização da comunicação serial.
 - o Definição das posições iniciais dos servos.
- Loop Principal (loop()):
 - Leitura dos comandos seriais via Bluetooth.
 - o Condições if ou switch-case para interpretar e executar os comandos.
 - o Movimento dos servos com a biblioteca Servo.h.

Mapeamento dos Servos

Letra	Servo	Porta PWM	Função
Α	servoBase	3	Gira a base
В	servoOmbro	5	Levanta braço
С	servoCotovelo	6	Dobra braço
D	servoGarra	9	Abre/fecha garra

***** Esquema

- **HC-05 RX** → Arduino D11
- **HC-05 TX** → Arduino D10

- **Servos PWM** → Pinos 3, 5, 6, 9
- GND/VCC → Fonte de alimentação externa

Comandos Disponíveis

Comando	Ação
A90	Base para 90°
B45	Ombro para 45°
C120	Cotovelo para 120°
D0	Fecha a garra totalmente
D90	Abre a garra completamente

Resultados e Aplicações Futuras

O projeto funcionou com sucesso, permitindo controle responsivo e suave do braço robótico. Com pequenas adaptações, pode ser expandido para:

- Controle por voz (com Android + TTS)
- Integração com sensores (ultrassom, pressão, etc.)
- Automação de tarefas repetitivas em maquetes industriais
- Interface gráfica com aplicativo próprio

Conclusão

Este projeto demonstrou na prática o uso da comunicação sem fio para controlar sistemas eletromecânicos, reunindo conceitos de telecomunicações, eletrônica embarcada e automação. É uma base sólida para futuras soluções mais complexas em robótica e IoT.

Transportation Arquivos Disponíveis

- Código-fonte .ino
- Esquema de ligação (.png)
- Manual de uso (README)
- Imagens e vídeo de demonstração