Bootstrap_Simulation

PUBLISHED

November 19, 2024

Aim

To find the smallest number of simulations (m) and sample size (n) needed to accurately calculate bootstrap parameters for different distributions with known parameters.

Distributions (5)

- 1. Normal Distribution
- 2. t-Distribution
- 3. Gamma Distribution
- 4. Lognormal Distribution
- 5. Weibull Distribution

Resamples (m, 5) 200, 500, 1000, 2000, 5000, 10000

Sample size (n, 5) 10, 50, 100, 1000

Estimators

- T-Interval
- Likelihood Interval (MLE)
- Likelihood Interval (LR)
- Non-Param BS Interval

Unique combinations of $n \cdot m \cdot 5 = 120$

Number of Bootstrap Resamples Required Per n per Distribution

$$\sum_{\substack{m=[200,500,1000,\\2000,5000,10000]}}^{\square} m \cdot 4 \cdot 5$$

374,000 resamples

Methods

Parameters

```
set.seed(123)

m_list <- list(200, 500, 1000, 2000, 5000, 10000) # num
#m_list <- list(20, 50, 100, 200, 500, 1000) # number o
n_list <- list(10, 50, 100, 1000) # sample size</pre>
```

Distributions of Interest

1. Normal Distribution

The probability density function (PDF) of a normal distribution is given by:

$$f(x;\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

where () is the mean and () is the standard deviation.

2. t-Distribution

The PDF of the t-distribution is:

$$f(x;
u) = rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{
u\pi}\Gamma\left(rac{
u}{2}
ight)}igg(1+rac{x^2}{
u}igg)^{-rac{
u+1}{2}}$$

where () is the degrees of freedom and () is the gamma function.

3. Gamma Distribution

The PDF of the gamma distribution is:

$$f(x;lpha,eta)=rac{eta^{lpha}x^{lpha-1}e^{-eta x}}{\Gamma(lpha)}$$

where () is the shape parameter and () is the rate parameter.

4. Lognormal Distribution

The PDF of the lognormal distribution is:

$$f(x;\mu,\sigma) = rac{1}{x\sigma\sqrt{2\pi}}e^{-rac{(\ln x-\mu)^2}{2\sigma^2}}$$

where () and () are the mean and standard deviation of the variable's natural logarithm.

5. Weibull Distribution

The PDF of the Weibull distribution is:

$$f(x;\lambda,k) = rac{k}{\lambda} \Big(rac{x}{\lambda}\Big)^{k-1} e^{-\left(rac{x}{\lambda}
ight)^k}$$

where () is the scale parameter and (k) is the shape parameter.

Simulate Distributions

```
library(MASS)

# Set params here
simulate_distributions <- function(distribution, n) {</pre>
```

Estimators of Interest

1) T-Interval

The t-interval is calculated as the 2.5th and 97.5th percentiles of the bootstrap sample means:

$$T-Interval = Quantile(means, \{0.025, 0.975\})$$

2) Likelihood Interval Based on MLE

The likelihood interval based on the maximum likelihood estimate (MLE) uses the sample mean (()) and the standard error ((SE)):

$$\text{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$SE = rac{\mathrm{SD}(\mathrm{data})}{\sqrt{n}}$$

The interval is then:

 $ext{Likelihood Interval (MLE)} = [ext{MLE} - 1.96 imes SE, ext{MLE} + 1.96 imes SE]$

3) Likelihood Interval Based on Likelihood Ratio

The likelihood interval based on the likelihood ratio uses the negative log-likelihood function:

$$\ell(\mu) = -\sum_{i=1}^n \log\left(f(x_i;\mu,\sigma)
ight)$$

Where $(f(x_i; ,))$ is the normal PDF:

$$f(x_i;\mu,\sigma) = rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}\left(-rac{(x_i-\mu)^2}{2\sigma^2}
ight)$$

The MLE for () minimizes (()):

$$\hat{\mu} = \arg\min_{\mu} \ell(\mu)$$

The likelihood interval is calculated as:

Likelihood Interval (Likelihood Ratio) = $[\hat{\mu} - 1.96 \times SE, \hat{\mu} + 1.96 \times SE]$

4) Non-Parametric Bootstrap Interval

The non-parametric bootstrap interval is calculated as the 2.5th and 97.5th percentiles of the bootstrap sample means:

Non-Parametric Bootstrap Interval = Quantile (means, 0.025, 0.975)

Functions for Estimators

```
# 1) T-Interval
calculate_t_interval <- function(means) {</pre>
  quantile(means, c(0.025, 0.975))
}
# 2) Likelihood Interval Based on MLE
calculate_likelihood_interval_mle <- function(data) {</pre>
  mle <- mean(data)</pre>
  n <- length(data)</pre>
  se <- sd(data) / sgrt(n)
  c(mle - 1.96 * se, mle + 1.96 * se)
}
# 3) Likelihood Interval Based on Likelihood Ratio
calculate_likelihood_interval_lr <- function(data) {</pre>
  log_likelihood <- function(mean) {</pre>
    -sum(dnorm(data, mean = mean, sd = sd(data), log =
  mle_mean <- optimize(log_likelihood, interval = range</pre>
  n <- length(data)</pre>
  se <- sd(data) / sqrt(n)</pre>
  c(mle\_mean - 1.96 * se, mle\_mean + 1.96 * se)
}
```

```
# 4) Non-Parametric Bootstrap Interval
calculate_nonparametric_interval <- function(means) {
   quantile(means, c(0.025, 0.975))
}</pre>
```

Expected Analytic Values

```
# Define expected analytic values for each distribution
expected_analytic_values <- function(dist_name, n) {</pre>
  switch(dist_name,
         "normal" = list(mean = 0, se = 1 / sqrt(n)),
         "t" = list(mean = 0, se = sqrt(10 / (10 - 2))
         "gamma" = list(mean = 2 / 1, se = sqrt(2 / (1^{\circ})
         "lognormal" = list(mean = exp(0 + (1^2) / 2),
         "weibull" = list(mean = 2 * gamma(1 + 1 / 2),
  )
}
# Generate a table of analytic values
generate analytic table <- function(m list, n list, dis</pre>
  analytic_table <- do.call(rbind, lapply(n_list, funct</pre>
    do.call(rbind, lapply(distributions, function(dist_
      analytic_values <- expected_analytic_values(dist_</pre>
      analytic_mean <- analytic_values$mean</pre>
      analytic_se <- analytic_values$se</pre>
      analytic_t_interval <- c(analytic_mean - 1.96 * a
      data.frame(
        n = n \text{ value.}
        distribution = dist_name,
        analytic_mean = analytic_mean,
        analytic_se = analytic_se,
        analytic_t_interval_lower = analytic_t_interval
        analytic_t_interval_upper = analytic_t_interval
      )
    }))
  }))
  return(analytic_table)
}
analytic_table <- generate_analytic_table(m_list, n_lis</pre>
# Display the analytic table
```

```
print(head(analytic_table,5))
```

```
n distribution analytic_mean analytic_se
analytic_t_interval_lower
1 10
           normal
                        0.000000
                                   0.3162278
-0.6198064
2 10
                t
                        0.000000
                                   0.3535534
-0.6929646
3 10
                        2.000000
                                   0.4472136
            gamma
1.1234614
4 10
        lognormal
                        1.648721
                                   0.6834306
0.3091972
5 10
          weibull
                        1.772454
                                   0.2929859
1.1982015
  analytic_t_interval_upper
                  0.6198064
1
2
                   0.6929646
3
                  2.8765386
4
                   2.9882453
5
                  2.3467062
```

Bootstrap Function

```
# Usage within the bootstrap_intervals function
bootstrap_intervals <- function(data, m) {
    n <- length(data)
    means <- numeric(m)
    for (i in 1:m) {
        sample_data <- sample(data, size = n, replace = TRU
        means[i] <- mean(sample_data)
    }

list(
    t_interval = calculate_t_interval(means),
    likelihood_interval_mle = calculate_likelihood_inter
    likelihood_interval_lr = calculate_likelihood_inter
    nonparametric_interval = calculate_nonparametric_in
)</pre>
```

Iterate through all combinations of each distribution

```
results <- list()

for (m in m_list) {
    for (n in n_list) {
        for (dist_name in distributions) {
            set.seed(123) # Ensure reproducibility
            data <- simulate_distributions(dist_name, n)
            intervals <- bootstrap_intervals(data, m)
            results[[paste("m", m, "n", n, dist_name, sep = "]
            }
        }
    }
}</pre>
```

Bootstrap Results

```
# Define expected parameter values for each distribu to
distribution params <- list(</pre>
  normal = list(mean = 0, sd = 1),
  t = list(df = 10),
  gamma = list(shape = 2, rate = 1),
  lognormal = list(meanlog = 0, sdlog = 1),
  weibull = list(shape = 2, scale = 1)
)
# Convert results list to a data frame with parameter v
results_table <- do.call(rbind, lapply(names(results),</pre>
  # Extract m, n, and distribution from the name
  split_name <- strsplit(name, "_")[[1]]</pre>
  m_value <- as.numeric(split_name[2])</pre>
  n_value <- as.numeric(split_name[4])</pre>
  dist_name <- split_name[5]</pre>
  # Extract intervals
  intervals <- results[[name]]</pre>
  # Extract parameters for the distribution
  params <- distribution_params[[dist_name]]</pre>
  BS_mean <- mean(intervals$t_interval)</pre>
```

```
# Create a row
  data.frame(
    m = m \text{ value,}
    n = n_value,
    distribution = dist_name,
    expected_params = paste(names(params), unlist(param
    bs_mean = BS_mean,
    t_interval_lower = intervals$t_interval[1],
    t_interval_upper = intervals$t_interval[2],
    likelihood mle lower = intervals$likelihood interva
    likelihood_mle_upper = intervals$likelihood_interva
    likelihood_lr_lower = intervals$likelihood_interval
    likelihood_lr_upper = intervals$likelihood_interval
    nonparametric_lower = intervals$nonparametric_inter
    nonparametric_upper = intervals$nonparametric_inter
  )
}))
# Display the table
print(head(results_table,5))
```

```
m n distribution
                              expected_params
                                                 bs_mean
t_interval_lower
2.5% 200 10
                   normal
                                 mean=0, sd=1 0.08382257
-0.4757399
2.5%1 200 10
                                        df=10 0.08037697
                        t
-0.5735814
2.5%2 200 10
                              shape=2, rate=1 1.77881286
                    gamma
0.9761261
2.5%3 200 10
                lognormal meanlog=0, sdlog=1 1.76782387
0.6961665
2.5%4 200 10
                  weibull
                             shape=2, scale=1 0.79270562
0.5438618
      t_interval_upper likelihood_mle_lower
likelihood_mle_upper
2.5%
             0.6433850
                                  -0.5165358
0.6657871
2.5%1
             0.7343354
                                  -0.7777221
0.8275486
2.5%2
             2.5814996
                                   0.9101920
2.7482641
2.5%3
             2.8394813
                                   0.5287796
2.8507046
```

```
2.5%4
             1.0415495
                                   0.4887924
1.0513919
      likelihood_lr_lower likelihood_lr_upper
nonparametric_lower
2.5%
               -0.5165358
                                     0.6657871
-0.4757399
2.5%1
               -0.7777221
                                     0.8275486
-0.5735814
2.5%2
                0.9101920
                                     2.7482641
0.9761261
2.5%3
                0.5287796
                                     2.8507046
0.6961665
2.5%4
                0.4887924
                                     1.0513919
0.5438618
      nonparametric_upper
2.5%
                0.6433850
2.5%1
                0.7343354
2.5%2
                2.5814996
2.5%3
                2.8394813
2.5%4
                1.0415495
         # Save the table as a CSV file
         write.csv(results_table, "results_table_with_params.csv
```

Combine Expected and Analytic Values

```
analytic_table$n == n_value & analytic_table$dist
    # Create a combined row
    data.frame(
      m = m_value,
      n = n_value,
      distribution = dist name,
      analytic_mean = analytic_row$analytic_mean,
      analytic_se = analytic_row$analytic_se,
      analytic_t_interval_lower = analytic_row$analytic
      analytic_t_interval_upper = analytic_row$analytic
      bs_mean = BS_mean,
      t_interval_lower = intervals$t_interval[1],
      t_interval_upper = intervals$t_interval[2],
      likelihood_mle_lower = intervals$likelihood_inter
      likelihood_mle_upper = intervals$likelihood_inter
      likelihood_lr_lower = intervals$likelihood_interv
      likelihood lr upper = intervals$likelihood interv
      nonparametric_lower = intervals$nonparametric_int
      nonparametric_upper = intervals$nonparametric_int
  }))
  return(combined_table)
}
# combine tables
combined_table <- combine_bootstrap_and_analytic(result</pre>
# Rearrange columns for better comparison
combined_table <- combined_table[, c(</pre>
  "m", "n", "distribution",
  "analytic_mean", "bs_mean",
  "t_interval_lower", "analytic_t_interval_lower", "t_i
  "analytic se",
  "likelihood_mle_lower", "likelihood_lr_lower", "nonpa
  "likelihood_mle_upper", "likelihood_lr_upper", "nonpa
) ]
# Re-name columns with BS results to include 'BS' prefi
colnames(combined_table) <- sub("^(t_interval|likelihoo")</pre>
# Save the rearranged table as a CSV file
write.csv(combined_table, "rearranged_combined_bootstra
```

Display the combined table
print(head(combined_table,5))

```
m n distribution analytic_mean
                                            bs mean
BS t interval lower
2.5% 200 10
                   normal
                                0.000000 0.08382257
-0.4757399
2.5%1 200 10
                                0.000000 0.08037697
                        t
-0.5735814
2.5%2 200 10
                    gamma
                                2.000000 1.77881286
0.9761261
2.5%3 200 10
                lognormal
                               1.648721 1.76782387
0.6961665
2.5%4 200 10
                  weibull
                                1.772454 0.79270562
0.5438618
      analytic_t_interval_lower BS_t_interval_upper
analytic_t_interval_upper
2.5%
                     -0.6198064
                                           0.6433850
0.6198064
2.5%1
                     -0.6929646
                                           0.7343354
0.6929646
2.5%2
                      1.1234614
                                           2.5814996
2.8765386
2.5%3
                      0.3091972
                                           2.8394813
2.9882453
2.5%4
                      1.1982015
                                           1.0415495
2.3467062
      analytic_se BS_likelihood_mle_lower
BS_likelihood_lr_lower
2.5%
        0.3162278
                               -0.5165358
-0.5165358
2.5%1
        0.3535534
                               -0.7777221
-0.7777221
2.5%2
        0.4472136
                                0.9101920
0.9101920
2.5%3
        0.6834306
                                 0.5287796
0.5287796
2.5%4
        0.2929859
                                 0.4887924
0.4887924
      BS_nonparametric_lower BS_likelihood_mle_upper
BS_likelihood_lr_upper
2.5%
                  -0.4757399
                                            0.6657871
0.6657871
2.5%1
                  -0.5735814
                                            0.8275486
```

0.9761261	2.7482641
0.6961665	2.8507046
0.5438618	1.0513919
ametric_upper	
0.6433850	
0.7343354	
2.5814996	
2.8394813	
1.0415495	
	0.6961665 0.5438618 Tametric_upper 0.6433850 0.7343354 2.5814996 2.8394813

http://localhost:5015/
Page 13 of 13