

http://lwasser.github.io/NEON_HigherEd/

For some overview videos about LiDAR data...

Returned Energy

LiDAR Records Geographic Location of Returns

LiDAR Records Travel Time

LiDAR Records

Amount of Light (Intensity)

LiDAR Data Provides X,Y,Z + Intensity

- 1. Geographic Location (x,y)
- 2. Travel Time (elevation / z)
- 3. Amount of light (intensity)

Discrete LiDAR - Multiple Returns

Returned Energy

Discrete LiDAR

Plas.io

We Derive Rasters From LiDAR Data

PLAS.IO

Let's check out some LiDAR data before going any further.

http://neoninc.org/leah_test/ESA2014/DTM.html

DSM – DEM = Canopy Height Model (CHM)

www.neoninc.org

Science and Geolocation with LiDAR

LiDAR Data Products

Raster