Questions for final exam

Lakshmi Arbatti

Sunday, March 29, 2015

Lecture 8a

What does the ggplot function **geom_point** do?

- The function is used to create scatterplots.
- This function is helpful to get the geometric points in a dataset.
- This function can be used to create a histogram.
- This function does not exist at all.

Lecture 8b

In statistics, what is the meaning of **multicollinearity**?

- Its a phenomenon in which two or more predictor variables in a regression model are highly correlated.
- Its a model in which many values are linear.
- There is no such thing as multicollinearity in statistics.
- It is a model in which there is no relationship between multiple variables.

Lecture 9a

Given the piece of code below:

```
N <- 100
df <- data.frame(
  var1 = runif(N, min=0, max=10),
  var2 = sample(letters[1:5], N, replace=T)
)
knitr::kable(head(df))</pre>
```

Which of the variables declared above are categorical?

- var2 is the categorical variable
- var1 is the categorical variable
- The sample does not have any categorical variable

Lecture 9b

What does floor(2.9) return?

- Returns the number 2
- Throws an error since the function floor does not exist in R
- Rounds the number 2.9 to 3
- Returns the number 2.9

Lecture 10a

What does readRDS() function do?

- Restores a single R object (in binary format) and assigns the returned object to a variable for e.g, a list
- Reads a csv data set
- There is no such function in R

Lecture 10b

Which function returns the column names of a dataframe?

- names()
- getcols()
- readRDS()
- readdata()

Lecture 11a

What is **Centrality** in the igraph package?

- Degree of the graph
- The central point in a graph
- A point in the graph
- There is no such term in igraphics package

Lecture 11b

What is **Vertex and edge betweenness()** in the igraph package?

- The number of geodesics (shortest paths) going through a vertex or an edge
- The distance between two points in a graph
- Does not really mean anything

Lecture 12a

What is the equation for a line?

- y = mx + b, where b is the y intercept, m is the slope
- y = mx + b, where y is the name of the line, m is the mean
- a + b + c = 0
- None of the choices

Lecture 12b

Which plotting function adds one or more straight lines through a current plot?

- abline()
- addline()
- moreline()
- None of the choices

Lecture 13a

What does the dplyr's **group_by** function do?

- The function groups a table by one or more variables
- The function is used in logistic regression to group similar labels
- The function groups different variables into a single variable
- There is no such function in R

Lecture 13b

In the following piece of code, what is the **cut** function used for?

```
N <- 10
age <- runif(N,7,10.5)
grade <- cut(age,breaks = 7:11,labels = 2:5,right =TRUE)</pre>
```

- To convert numeric values in the vector age to factors and store the values in the vector grade
- To cut and paste values from the vector age into vector grade
- To cut values from the vector age and store them in the environment variables
- cut throws an error

Lecture 14a

What is the **manipulate** function useful for?

- The manipulate function can be used to create interactive plots with slider, picker, checkbox or button
- The manipulate function can be used to manipulate a data frame
- The manipulate function can be used to change the data in a database table
- The manipulate function doesn't really do anything

Lecture 14b

Which function can be used to fit Generalized Linear Models

- The glm() function
- The lm() function
- The gen() function

Lecture 15a

In statistics, what is **homoscedasticity**?

- A sequence or vector is **homoscedastic** if the variables in the sequence or vector have the same finite variance
- homoscedasticity is the science of measuring the coefficients in a dataset
- There is no such term as homoscedasticity in statistics
- A sequence is homoscedastic if the variables in the sequence have no or unequal variance

Lecture 15b

Based on the video by Andrew Ng on learning curves, which of the following is a true statement for High Bias algorithms?

- If a learning algorithm is suffering from high bias, getting more data will not (by itself) help much in getting a lower cross validation or test set error
- High bias algorithms can easily be resolved with small data samples
- High bias algorithms are biased to sensitivity
- All of the statements are true