

Search Data Science

About Me

Khalifeh AlJadda

Lead Data Scientist, Search Data Science

- Joined CareerBuilder in 2013
- PhD, Computer Science University of Georgia (2014)
- BSc, MSc, Computer Science, Jordan University of Science and Technology

Activities:

- Founder and Chairman of CB Data Science Council
- Frequent public speaker in the field of data science
- Creator of (Glycomic Elucidation and Annotation Tool)

CAREERBUILDER Search by the Numbers

Powering 50+ Search Experiences Including:

Search Pro

(Search-CareerBuilder RDB. Recruitment Edge, Supply & Demand)

Small Business Resume Database (Search Basic, RDB Basic)

Talentstream Engage (Talent Network)

Candidate Sourcing Platform

Talentstream Supply & Demand

(Supply & Demand Portal)

Broadbean Resume Search (Multi-vendor Resume Search)

Talentstream Gather

StaffNurse.com

Les jeud s.com

sologig.com

Miracle Workers ...

Introduction

What is Information Retrieval (IR)?

Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).*

^{*}introduction to information retrieval: http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf

Information Retrieval (IR) vs Relational Database (RDB)

	RDB	IR	
Objects	Records Unstructured Documents		
Model	Relational	Vector Space	
Main Data Structure	Table	Inverted Index	
Queries	SQL	Free text	

The inverted index

What RDB would store:

Document ID	Content Field
doc1	once upon a time, in a land far, far away
doc2	the cow jumped over the moon.
doc3	the quick brown fox jumped over the lazy dog.
doc4	the cat in the hat
doc5	The brown cow said "moo" once.

How the content is INDEXED into Inverted Index:

Term	Documents
a	doc1 _[2x]
brown	doc3 _[1x] , doc5 _[1x]
cat	doc4 _[1x]
cow	doc2 _[1x] , doc5 _[1x]
once	doc1 [1x], doc5 [1x]
over	doc2 _[1x] , doc3 _[1x]
the	doc2 _[2x] , doc3 _[2x] , doc4 _[2x] , doc5

Vocabulary

Relevancy: Information need satisfaction

Precision: Accuracy

Recall: Coverage

Search: Find documents that match a user's query

Recommendation: Leveraging context to automatically suggest relevant results

How to Measure Relevancy

Motivation

Users will turn away if they get irrelevant results

New algorithms and features need test

A/B test is expensive since it has impact on the end users

A/B test requires days before a conclusion can be made

How to Measure Relevancy?

Precision = B/A

Recall = B/C

F1 = 2 * (Prec * Rec) / (Prec+Rec)

Assumption:

We have only 3 jobs for aquatic director in our Solr index

Precision = 2/4 = 0.5

Recall = 2/3 = 0.66

F1 = 2 * (0.5 * 0.66) / (0.5 + 0.66) = 0.56

Problem:

Assume Prec = 90% and Rec = 100% but assume the 10% irrelevant documents were ranked at the top of the results

is that OK?

Aquatic Director Jobs 4 Create Job Alert Keywords Location Posted within aguatic director Last 30 Days Filter By 7 Jobs Found Sort by: Job Title | Location | Relevance Project Director - Manager, Construction- Engineering 5905 West 74th Job type: Full-Time Street Project Manager - Construction Swimming IN - Indianapolis Pools, Water Parks and Aquatic Facilities Natare is seeking an individual for a project management position... ☆ Save Job Email Job **AQUATICS DIRECTOR** Job type: Full-Time OH - Middletown The Lakota Family YMCA is seeking a teamoriented, motivated professional for our full time Aquatics Director position. The successful candidate wi... ☆ Save Job Email Job **Aquatics Director** WA - Walla Walla Job type: Full-Time Walla YMCA of Walla Walla is seeking a teamoriented, motivated professional for our full time Aquatics Director position. The successful candidate will... ☆ Save Job Email Job Director, Human Resources Job type: Full-Time | Pay: \$130k - \$170k/year CA - Los Angeles. Moore & Associates has been retained by Motion Picture & Television Fund in Woodland Hills, CA to conduct the following recruitment: Director, Huma...

Discount Cumulative Gain (DCG)

- Position is considered in quantifying relevancy.
- Labeled dataset is required.

Rank	Relevancy
1	0.95
2	0.65
3	0.80
4	0.85

Rank	Relevancy
1	0.95
2	0.85
3	0.80
4	0.65

$$DCG_k = \sum_{i=1}^k \frac{2^{rel_i} - 1}{log_2(i+1)}$$

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

How to Label Data Set?

How to get labeled data?

- Manually
 - Pros:
 - Accuracy
 - o Cons:
 - Not scalable
 - Expensive
 - o How:
 - Hire employees, contractors, or interns
 - Crowd-sourcing
 - Less cost
 - Less accuracy
- Infer relevancy utilizing implicit user feedback

How to infer relevancy?

$$\begin{array}{ll} C_{Doc_i} = & \sum_{Doc_i} click \\ S_{Doc_i} = & \sum_{Doc_i} skip \end{array} \quad rel_{Doc_i} = \frac{C_{Doc_i}}{S_{Doc_i} + C_{Doc_i}} \end{array}$$

Query Log

Field	Example	
Query ID	Q1234567890	
browser ID	B12345ABCD789	
Session ID	S123456ABCD7890	
Raw Query	Spark or hadoop and Scala or java	
Host Site	US	
Language	EN	
Ranked Results	D1, D2, D3, D4, , Dn	

Action Log

Field	Example
Query ID	Q1234567890
Action Type*	Click
Document ID	D1
Document Location	1

^{*}Possible Action Types: Click, Download, Print, Block, Unblock, Save, Apply, Dwell time, Post-click path

The Fully Automated System

System Architecture

ETL

Field	Example
Query ID	Q1234567890
browser ID	B12345ABCD789
Session ID	S123456ABCD7890
Raw Query	Spark or hadoop and Scala or java
Ranked Results	D1, D2, D3, D4,, Dn

Field	Example
Query ID	Q1234567890
Action Type*	Click
Document ID	D1
Document Location	1

Keyword	DocumentID	Rank	Clicks	Skips	Popularity
riojnora	Docamonab	1 torrit	Chorto	Chapo	1 oparanty

Keyword

DocumentID

Relevancy

Noise Challenge

At least 10 distinct users need to take an action on a document to consider it in the nDCG calculation.

Any skip followed clicks on different sessions from the same browser ID is ignored.

Actions beyond Clicks weight more than Clicks. For example, we count Download as 20 clicks, and Print as 100 clicks

Accuracy

500 resumes had been manually reviewed by our data analyst. The accuracy of the relevancy scores calculated by our system is

96%

Dataset by the Numbers

Query Synthesizer

Synthesize Queries

Query	Docs with Relevancy	
java developer	d1,d2,d3,	-> Spark
spark or hadoop	d11,d12,d13,	Search (hadoop)

Quick Win

Relevancy Guard

Top Ranked, Low Relevancy

These jobs are top ranked in these searches, but with a low relevancy score. What would you like to do with them?

Learning to Rank (LTR)

- It applies machine learning techniques to discover the best combination of features that provide best ranking.
- It requires labeled set of documents with relevancy scores for given set of queries
- Features used for ranking are usually more computationally expensive than the ones used for matching
- It works on subset of the matched documents (e.g. top 100)

LambdaMart Example

Mohammed Korayem

Hai Liu

Chengwei Li

David Lin

Search Data Science

