Recitation #11

ENEE 313: Introduction to Device Physics

Fall, 2018

1 Week Notes Summary

Summary for preparation of 2nd mid-term exam.

- 1. PN junction
 - (a) built-in potential
 - (b) width of depletion region
 - (c) diode capacitance
 - (d) diode current equation
- 2. Generation/Recombination effects: Understand the Shockley-Read-Hall recombination equation.
- 3. MOS capacitors
 - (a) bulk potential of semiconductor of MOSFET
 - (b) width of MOSFET depletion region (maximum)
 - (c) Minimum capacitance
 - (d) threshold voltage for ideal and non-ideal MOSFET
- 4. MOS transistors Current formulas
 - (a) linear region
 - (b) saturation region

Exercise 1. Ideal PN junction

Given a Si PN junction, if the bulk resistivity of Si is $1\Omega m$,

- 1. find the built-in potential for the Si PN junction at room temperature
- 2. find the width of depletion region if the applied voltage is 1V
- 3. find the maximum electric field in condition of the applied voltage is 1V

- 4. What is the capacitance of the junction when the applied voltage 1V, given the junction cross sectional area is $0.01cm^2$?
- 5. if the N-side has a resistivity $1\Omega m$, what should be the resistivity of the P-side so that 99% of the total width of the space charge region would be located in the N-side?
- 6. At room temperature under the forward bias of 0.15 V the current through the PN junction is $1.66 \, mA$. What will be the current through the junction under reverse bias?
- 7. Now, if we heavily doped the junction with Boron so that it become a $p^+ n$ junction whose reverse current at room temperature is 0.9 nA/cm^2 , calculate the minority-carrier lifetime.

Note that Silicon's $\mu_n = 1500 cm^2 / Vs$, $\mu_p = 500 cm^2 / Vs$ and $n_i = 10^{10} cm^{-3}$

Solution. The built-in potential is

$$\phi_{bt} = \frac{kT}{q} ln(\frac{N_a N_d}{n_i^2})$$

To find N_a and N_d , we need to apply the fact that, on N side, $n_i << n \approx N_d$; on P side, $n_i << p \approx N_a$. Therefore, at the quasi-neutral region of both P side and N side,

$$\sigma_n = q\mu_n n$$

$$\to N_d \approx n = \frac{\sigma_n}{q\mu_n}$$

$$\to N_d = 4.17 \times 10^{17} cm^{-3}$$

$$\sigma_p = q\mu_p p$$

$$\to N_a \approx p = \frac{\sigma_p}{q\mu_p}$$

$$\to N_a = 1.25 \times 10^{18} cm^{-3}$$

Thus, $\phi_{bt} = 0.88V$.

To calculate the depletion region width,

$$x_{sc} = \sqrt{\frac{\epsilon(\phi_{bt} - V)}{q} \left(\frac{N_a N_d}{N_a + N_d}\right)} = 1.58 \mu m$$

The electric field comes from, on P side,

$$E(x) = \frac{q}{\epsilon} N_a(x_p - x), 0 \le x \le x_p$$

So, the maximum electric field is,

$$E_{max} = E(0) = 7.58 \times 10^4 V/cm$$

where $x_p = x_{sc}N_d/(N_d + N_a)$

The capacitance of the junction is

$$C = \frac{\epsilon}{x_s c} = 6.6 \times 10^{-7} Fd/cm^2$$
$$C_{PN} = C \times area = 6.6nF$$

Since $\frac{x_p}{x_n} = \frac{N_d}{N_a}$, $x_n = 0.99x_{sc}$ and $x_p = 0.01x_{sc}$, we have $N_a = 99N_d$. Furthermore, the resistivity of the N-side is $1\Omega m$, we have

$$n = \frac{1}{q\mu_n\rho} = 4.17 \times 10^{13} cm^{-3}$$

Therefore, $Na = 99N_d \approx 99n = 4.12 \times 10^{15} cm^{-3}$ According to the diode current equation,

$$I(V) = I_0 exp(\frac{-qV}{kT} - 1)$$

Since I(0.15) = 1.66mA, we have $I_0 = 1.7\mu A$

The reverse current of a $p^+ - n$ junction is

$$I_0 = \frac{qD_p n_i^2}{N_d L_p} = \frac{qn_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}}$$

Since $\mu = qD/kT$, we can obtain $\tau_p = 0.66ps$

Exercise 2. MOS capacitor and transistors

For an ideal $SiO_2 - Si$ MOS capacitor on p substrate at room temperature with d = 10nm, $N_a = 5 \times 10^{17} cm^3$, and dielectric permittivities of Si and SiO_2 are 11.8 and 3.9.

- 1. Find the applied voltage at the interface required to make the silicon surface intrinsic
- 2. Again, Find it to bring about a strong inversion
- 3. Find the turn-on (threshold) voltage under high-frequency condition $\frac{1}{2}$
- 4. Find the minimum capacitance under high-frequency regime

Solution. The applied voltage appears partially across the insulator, V_i and the semiconductor, ϕ_s is

$$V = V_i + \phi_s$$

The voltage across the insulator is

$$V_i = \frac{-Q_s}{C_i}$$
, where $C_i = \frac{\epsilon_i}{d}$

If the voltage across the semiconductor is less than the one needed to bring about a strong inversion, Q_s is

$$Q_s = -qN_aW$$
, where $W = \sqrt{\frac{\epsilon_s\phi_s}{qN_a}}$

Thus, we have

$$V = \phi_s + \frac{d}{\epsilon_i} \sqrt{q \epsilon_s N_a \phi_s}$$

To make the surface intrinsic, we need

$$\phi_s = \phi_F = \frac{kT}{q} ln(\frac{N_a}{n_i})$$

To make the surface strong inversion, we need

$$\phi_s = 2\phi_F = 2\frac{kT}{q}ln(\frac{N_a}{n_i})$$

where ϕ_F is the bulk potential of the semiconductor. Therefore, the surface becomes intrinsic when V = 1.03V; strong inversion when V = 1.73V.

To find the minimum capacitance, we already have C_i and need to find C_d , which is $C_d = \frac{\epsilon_s}{W_{max}}$. W is the maximum width of the depletion region.

$$W_{max} = \sqrt{\frac{2\epsilon_s 2\phi_F}{qN_a}} = 4.9\mu m$$

Thus, $C_d = 0.21 \mu F$. We know $C_i = \frac{\epsilon_i}{d} = 0.34 \mu F$. By the minimum capacitance formula,

$$C_{min} = \frac{C_i C_d}{C_i + C_d} = 0.13 \mu F$$

On the other hand, since $V_{TH}=2\phi_F-\frac{Q_d}{C_i}$ and $Q_d=-qN_aW_{max},$ we have $V_{TH}=2.05V$

Exercise 3. SRH recombination

An N type Silicon substrate with $N_d = 7 \times 10^{15} cm^{-3}$ contains the trap energy level located at the Fermi level and the relaxation time $\tau = 10^{-7} s$.

- 1. Calculate the recombination rate if n and p are much lower than the equilibrium value
- 2. if only p is less than n_i , what's the recombination rate?

Solution. According to the SRH recombination equation,

$$R = \frac{1}{\tau} \frac{np - n_i^2}{n + p + 2n_i \cosh(\frac{E_t - E_F}{kT})}$$

And the trap energy level locates at the Fermi level. If $n < n_i$ and $p < n_i$, we have

$$R = \frac{1}{\tau} \frac{np - n_i^2}{n + p + 2n_i cosh(\frac{E_t - E_F}{kT})} = -\frac{n_i}{2\tau} = -5.3 \times 10^{16} cm^{-3}/s$$

Since $p < n_i$, $n \approx N_d >> n_i$,

$$R = -\frac{n_i^2}{\tau N_d} = -1.4 \times 10^{11} cm^{-3}$$