02-03 范畴当中的箭头

LATEX Definitions are here.

沿用上一节提到的自由变量。我们规定:

• $c_1 \xrightarrow{c} c_2 =$ 所有从 c_1 射向 c_2 的箭头构成的集 。

i Note

上述断言仅对于**局部小范畴**成立, 其他范畴里 $c_1 \xrightarrow{c} c_2$ 未必构成集。

范畴 C 中特定的箭头可以进行复合运算:

$$\stackrel{\mathsf{C}}{\circ} : \underbrace{ (\mathsf{c}_1 \stackrel{\mathsf{C}}{\to} \mathsf{c}_2) | \stackrel{\mathsf{Set}}{\times} (\mathsf{c}_2 \stackrel{\mathsf{C}}{\to} \mathsf{c}_3) | \stackrel{\mathsf{Set}}{\to} \underbrace{ (\mathsf{c}_1 \stackrel{\mathsf{C}}{\to} \mathsf{c}_3) |}_{} }_{} }_{} (\underbrace{ i_1} \stackrel{\mathsf{C}}{\to} \underbrace{ i_2}) | \underbrace{ (i_1 \stackrel{\mathsf{C}}{\to} i_2) |}_{}$$

如果我们还知道箭头 f_1 , i , f_2 分别属于 $c_1' \xrightarrow{c} c_1$, $c_1 \xrightarrow{c} c_2$, $c_2 \xrightarrow{c} c_2'$ 那么便可知

(f₁ ∘ i) ∘ f₂ = f₁ ∘ (i ∘ f₂),
 即箭头复合运算具有结合律。

另外固定住一侧实参便可获得新的函数:

$$\bullet \quad \overbrace{(f_1 \circ _)}^{\mathsf{C}} : \overbrace{(\mathsf{c}_1 \to _)}^{\mathsf{C}} \xrightarrow{\overset{\mathsf{Cat}}{\overset{\mathsf{Cat}}{\longrightarrow}} \mathsf{Set}} \overbrace{(\mathsf{c}_1' \to _)}^{\mathsf{C}}$$

$$i \quad \longmapsto \quad \overbrace{(f_1 \circ i)}^{\mathsf{C}}$$

称作**前复合**。下图有助于形象理解:

$$\bullet \quad \stackrel{\mathsf{C}}{(_\circ f_2)} : \stackrel{\mathsf{C}}{(_\to \mathsf{c}_2)} \stackrel{\stackrel{\mathsf{C}}{\longrightarrow} \mathsf{Set}}{\longrightarrow} \stackrel{\mathsf{C}}{(_\to \mathsf{c}_2')}$$

$$\stackrel{i}{\longmapsto} \quad \stackrel{\mathsf{C}}{(i\circ f_1)}$$

称作后复合。 下图有助于形象理解:

根据上面的定义不难得出下述结论:

- $(f_1 \circ _) \circ (_ \circ f_2) = (_ \circ f_2) \circ (f_1 \circ _)$ $(f_1 \circ _) \circ (f_2 \circ f_2) \circ (f_1 \circ _)$ $(f_1 \circ _) \circ (f_2 \circ f_2) \circ (f_2 \circ f_2)$
- $(-\circ i)$ \circ $(-\circ f_2)$ = $(-\circ (i\circ f_2))$ 前复合与复合运算的关系
- $(i \circ _)$ \circ $(f_1 \circ _) = ((f_1 \circ i) \circ _)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 c_1 的全局元素则可规定

 $\bullet \quad c_1 i = c_1 \overset{\mathsf{c}}{\circ} i$

恒等箭头

范畴 C 内的每个对象都有恒等映射:

•
$$c_1 id : c_1 \xrightarrow{c} c_1$$
 $c_1 \mapsto c_1$

如此我们便可以得出下述重要等式:

$$\begin{array}{ccc}
\bullet & \underset{:c_1}{\overset{c}{\text{id}}} \circ i &= i \\
&= i \circ \cdot \cdot c & \text{id}
\end{array}$$

此外还可以得知

- $(:c_1 \mathrm{id} \circ _): (c_1 \to _) \xrightarrow{\mathsf{C}} (c_1 \to _)$ 为恒等自然变换,可记成是 $:(c_1 \to _)$ id;
- $(-\circ_{:c_2}id): (-\to c_2) \xrightarrow{c} (-\to c_2)$ 为恒等自然变换,可记成是 $(-\to c_2)$ id 。

单满态以及同构

接下来给出单/满态和同构的定义。

• i 为**单态**当且仅当对任意 c_1' 若有 $f_1, f_1': \overline{c_1' \to c_1}$ 满足 $\overline{f_1 \circ i} = \overline{f_1' \circ i}$ 则有 $f_1 = f_1'$ 。详情见下图:

• i 为**满态**当且仅当对任意 \mathbf{c}_2' 若有 \mathbf{f}_2 , \mathbf{f}_2' : $\mathbf{c}_2 \xrightarrow{\mathbf{c}} \mathbf{c}_2'$ 满足 $\mathbf{i} \circ \mathbf{f}_2 = \mathbf{i} \circ \mathbf{f}_2'$ 则有 $\mathbf{f}_2 = \mathbf{f}_2'$ 。详情见下图:

• i 为**同构**当且仅当存在 i': $c_2 \xrightarrow{c} c_1$ 使得 $i \circ i' = {}_{:c_1} \mathrm{id} \ \exists \ i' \circ i = {}_{:c_2} \mathrm{id} \ \circ$ 此时 c_1, c_2 间的关系可记作 $c_1 \cong c_2$ 。

若还知道 $i = i_1$ 且 $i_2 : c_2 \xrightarrow{\mathsf{c}} c_3$ 则有

- 若 i₁, i₂ 为单态 / 满态 / 同构
 则 i₁ i₂ 为单态 / 满态 / 同构;
- 若 i₁ o i₂ 为同构
 且 i₁, i₂ 中有一个为同构
 则 i₁, i₂ 两者皆构成同构。

不仅如此我们还可以得出下述结论:

- c_1 为单态 , 由 $c_1!$ 的唯一性可知 ;
- $_{:0}!=_{:1}$;为同构 , 因为 $0\overset{\mathsf{C}}{\to}0=\{_{:0}\mathrm{id}\}$ 并且 $1\overset{\mathsf{C}}{\to}1=\{_{:1}\mathrm{id}\}$

同构与自然性

下图即为自然性对应的形象解释。 后面会将自然性进行进一步推广。

现提供自然变换 η_2 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $\mathbf{f}: (\mathbf{c}' \xrightarrow{\mathbf{c}} \mathbf{c})$ 都有 $\mathbf{f}: (\mathbf{f} \xrightarrow{\mathbf{c}} \mathbf{c}_2) \overset{\text{Set}}{\circ} (\mathbf{f} \xrightarrow{\mathbf{c}} \mathbf{c}_2')$:

那么我们便会有下述结论:

 c
 c₂ ≅ c₂ 当且仅当对任意 C 中的对象 c c⁷² 都是同构 。此时称 <mark>72</mark> 为**自然同构** 。

现提供自然变换 η_1 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $f: c \xrightarrow{C} c'$ 都有 $(c_1 \xrightarrow{C} f) \circ c'^{n_1} = c^{n_1} \circ (c'_1 \xrightarrow{C} f)$:

那么我们便会有下述结论:

 $c_1 \cong c_1'$ 当且仅当对任意 C 中的对象 $c_2 \cong c_1'$ c⁷¹ 都是同构 。此时称 <mark>71</mark> 为**自然同构** 。

上一页的第一条定理若用交换图表示则应为

 \Rightarrow 易证, \Leftarrow 用到了米田技巧 将 c 换成 c_2 :

为了方便就用 etc 表示 c_2 id c^{η_2} 。由上图 知 $f(c'^{\eta_2}) = (f \circ etc)$ 右图底部和右侧箭头,故 $c'^{\eta_2} = c' \rightarrow etc$ 注意到箭头 $f: c' \rightarrow c$;而 $c'^{\eta_2} = c' \rightarrow etc = c' \circ etc$ 始终是同构 故 etc: $c_2 \rightarrow c'_2$ 也是同构 。

高亮部分省去了部分推理过程, 具体在**米田嵌入**处会详细介绍。

上一页的第二条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_1 :

为了方便就用 etc 表示 $:_{c_1}id(c^n)$ 。由上图 知 $f(c'^n) = (etc \circ f)$ 右图底部和右侧箭头,故 $c'^n = etc \to c'$ 注意到箭头 $f: c \to c'$;而 $c'^n = etc \to c' = c'^{(etc\circ)}$ 始终是同构故 $etc: c_1 \to c'_1$ 也是同构 。

高亮部分省去了部分推理过程, 具体在**米田嵌入**处会详细介绍。