Teil I: Klärung

Einordnung

Übersicht

Allgemeine Aspekte

Charakterisierung Entwicklungsprozeß

Beschreibung des komplexen Produkts

0. Vorbemerkungen

Ziele:

Inhalt und Ablauf der Vorlesung klären allgemeine Hinweise und Literatur

Stand: 01.10.1999

Inhalt

Teil I: Klärung

0.	Vorbemerkungen zur Veranstaltung, Organisatorisches/Ablauf, Literatur
1.	Einführung/Grundbegriffe Motivation die Realität Einordnung Vision Fragen Aufg. zu Kap. 1, Lit. zu Kap. 1
2.	Aktivitäten und Dokumente im Lebenszyklus Aktivitäten/Dokumente für ein Phasenmodell Arbeitsbereiche und deren Zusammenhang Diskussion Lebenszyklusmodelle Zusammenfassung/Einordnung Aufg. zu Kap. 2, Lit. zu Kap. 2
3.	Der Entwicklungs-/Wartungsprozeß: allg. Aspekte zum Problem der Wartung Kritische Bereiche des Prozesses Eigenschaften von Programmsystemen Die Modellierungsproblematik Produktmodellierungsprinzipien Vorgehensprinzipien Allg. Begriffe der Softwaretechnik Konfigurationen und Prozesse Dynamik/stat. Bestimmtheit auf Konfigurationen Werkzeuge zur Softwareentwicklung Aufg. zu Kap. 3, Lit. zu Kap. 3
Γeil	II: Sprachen, Methoden, Vorgehen für techn. Aufgaben
4.	Requirements Engineering Übersicht und Klärung Strukturierung des Prozesses Gliederung der Ergebnisse Anforderungsermittlung und Anforderungsspezifikation

	Hinweise/Probleme Prüfungen und Rollen Zusammenhang der Ergebnisse Gewünschte Werkzeugunterstützung Aufg. zu Kap. 4, Lit. zu Kap. 4
5.	Die Anforderungsspezifikation und zugehörige Notationen Sprachen für das RE Probleme der RE-Sprachen/-Modellierung Fallstudie Bibliothek Methodik: Regeln zur Modellierung mit SA/ER SA, EER, Kontrollmodelle SAD Historisches: PSL/PSA, Datenflußpläne, Ablaufpläne, ET Aufg. zu Kap. 5, Lit. zu Kap. 5
6.	Entwurf/Architekturerstellung Was ist eine SW-Architektur? Das Architekturparadigma Zur Bedeutung der Architekturmodellierung Architekturen und Entwurfsprozesse Bezüge zu anderen Arbeitsbereichen Gewünschte Werkzeugunterstützung Aufg. zu Kap. 6, Lit. zu Kap. 6
7.	Notationen für Architekturen Module verschiedener Arten Beziehungen verschiedener Arten Konsistenzbedingungen, Teilsysteme, Generizität OO-Notationen JSP/JSD Historisches: HIPO, SD Aufg. zu Kap. 7, Lit. zu Kap. 7
<u>De</u>	monstration von IPSEN-Werkzeugen
8.	Formale Spezifikation Einordnung/Klassifizierung von Spezifikationen. Spezifikation nach PARNAS. Algebraische Spezifikation Aufg. zu Kap. 8, Lit. zu Kap. 8.

PROGRES-Demo

Teil III: Begleitende Aktivitäten

9.	Projektorganisation: Teilaspekte
	Schätzverfahren: Übersicht
	COCOMO
	Projektmanagement: Übersicht
	Einige PM-Ansätze
	Zusammenfassung PO
	Aufg. zu Kap. 9, Lit. zu Kap. 9
10.	Dokumentation
	Dokumentation: Übersicht und Eigenschaften
	Benutzerdokumentation
	Entwicklungsdokumentation
	Aufg. zu Kap. 10, Lit. zu Kap. 10
11	Ovalitätasiahawung
11.	Qualitätssicherung OS: Sprachgebrauch Vlaggifikation und häufiggte Arten
	QS: Sprachgebrauch, Klassifikation und häufigste Arten
	Bedeutung der Q
	Menschliche Überprüfungen
	Modul-/Teilsystemtest
	Integrationstest
	Abnahmetest
	Testplanung und Testbeendigung
	Aufg. zu Kap. 11, Lit. zu Kap. 11
	1141g. 24 114p. 11, 24 114p. 11
Γeil	IV: Abschluß, Ausblick
12.	Wertung
	Zusammenschau: Nutzen und Defizite
	Produkte, Prozesse und ihr Verstehen
	Einladung zur Mitarbeit
	Aufg. zu Kap. 12, Lit. zu Kap. 12
Fra	genkatalog zur Vorlesung
Glo	ossar

Veranstaltungen des Lehrstuhls III

a) für das Vertiefungsgebiet Softwaretechnik

Einführung in die Softwaretechnik

Software-Architekturmodellierung

Die Softwaretechnik-Programmiersprache Ada 95

Softwaretechnik-Projektpraktikum

Graph-Grammatiken

Visuelles Programmieren

Administrative Aspekte von Softwareprojekten

Software-Entwicklungsumgebungen

Arbeitsgemeinschaft Softwaretechnik

Seminar spezielle Kapitel der Softwaretechnik

b) Nutzung für das Prüfungsgebiet Praktische Informatik

$$_{ST} \mathop{}_{\textstyle \stackrel{\textstyle \sim}{=}} \stackrel{PiG}{Ada}$$

. . .

Betriebssysteme, Compiler, Datenbanksysteme, Kommunikation I + II (2 daraus)

Zielsetzung, Wert und Charakter der Vorlesung

- alle Problemklassen anzusprechen, die es bei der Erstellung großer Softwaresystem gibt
- Problembewußtsein wecken
- Hinweise zu Lösungen und Vorgehensweisen geben
- wenig formal: Stand der Technik, bis auf spezielle Entwicklungsprozesse
 oder Teile von Entwicklungsprozessen
- Einordung, Präzisierung von undeutlichen Begriffen
- Was sind die Ergebnisse der Softwareentwicklung?
- Wie sieht der Softwareentwicklungsprozeß aus?
- Welche spezifischen Prozesse gibt es in bestimmten Anwendungsfeldern, für bestimmte Klassen von Systemen etc.
- Abstraktionen in der Softwaretechnik
- wichtig für das spätere Berufsleben!
- Beispiele:IPSEN-Demo, PROGRES-Demo

In der Vorlesung nicht (kaum) angesprochene Gebiete:

- Bedienungsschnittstellengestaltung
- Metriken für Softwarequalität
- Prototyping
- Wiederverwendung → Architektur-Vorlesung
- einzelne wichtige Programmiersprachen und ihre Eignung für die Softwaretechnik → Ada-Vorlesung
- Überlegungen zu (Standard-)Architekturen für Softwaresysteme → Architektur-Vorlesung
- Techniken zur "Erzeugung" von Programmen
- Werkzeuge zur Erstellung/Pflege von Softwaresystemen:
 Softwareentwicklungs-/(Softwaretechnik-)umgebungen,
 - → Vorlesung Softwareentwicklungsumgebungen
- Projektmanagement Spezialgebiete Versions-, Varianten-,
 Konfigurationskontrolle → Vorlesung Projektorganisation
- psychologische oder soziale Aspekte der Durchführung eines Softwareprojektes und der Einführung des Softwareprodukts

Kleine Literaturauswahl

1. Allgemeine Literatur

- /Bal 9x/ H. Balzert: Lehrbuch der Software-Technik, Band I, II, Spektrum-Verlag, 1996, 1997
- /Cha 86/ R.N. Charette: Software Engineering Environments: Concepts and Technology, McGraw-Hill, 1986
- /Den 91/ E. Denert: Software Engineering, Springer, 1991
- /Fai 85/ R.E. Fairley: Software Engineering Concepts, McGraw-Hill, 1985
- /Ghe 91/ M. Ghezzi, M. Jazayeri, D. Mandrioli: Fundamentals of Software Engineering, Prentice Hall, 1991
- /Jal 91/ P. Jalote: An Integrated Approach to Software Engineering, Springer, 1991
- /KKS 79/ R. Kimm, W. Koch, W. Simonsmeier, F. Tontsch: Einführung in Software Engineering, Walter de Gruyter, 1979
- /Myn 90/ B.T. Mynatt: Software Engineering with Student Project Guidance, Prentice Hall, 1990
- /Nag 90/ M. Nagl: Softwaretechnik: Methodisches Programmieren im Großen, Springer, 1990, Kap. 1 und 2
- /Nag 96/ M. Nagl (Ed.): Building Tightly-Integrated Software Development Environments: The IPSEN Approach, LNCS 1170, Springer, 1996
- /Nag 99/ M. Nagl: Die Softwaretechnik-Programmiersprache Ada '95, Vieweg, 1999
- /PS 94/ P.U. Pagel, H.-W. Six: Software Engineering, Band 1: Die Phasen der Softwareentwicklung, Addison-Wesley, 1994
- /Pom 87/ G. Pomberger: Softwaretechnik und Modula-2, 2. Aufl., Hanser, 1987
- /Pre 87/ R.S. Pressman: Software Engineering, A Practitioner's Approach, McGraw-Hill, 1987
- /Pre 88/ R.S. Pressman: Software Engineering, A Beginner's Guide, Mc-Graw-Hill, 1988
- /Som 92/ I. Sommerville: Software Engineering, 4. Aufl., Addison-Wesley, 1992
- /SS 93/ R. Suhr, R. Suhr: Software Engineering, Technik und Methode, Oldenbourg, 1993
- /Ze 79/ M. Zelkowitz et al.: Principles of Software Engineering and Design, Prentice Hall, 1979

2. Literatur zu speziellen Gebieten

2.1 Spezialgebiete der Softwaretechnik nach Einteilung der Vorlesung:

wird in den entsprechenden Kapiteln der Vorlesung gegeben

2.2 Übergreifende Themen, spezielle Aspekte:

a) Prototyping

- /BKK 92/ R. Budde, K. Kautz, K. Kuhlenkamp, H. Züllighoven: Prototyping An Approach to Evolutionary System Development, Springer, 1992
- /BP 92/ W. Bischofberger, G. Pomberger: Prototyping-oriented Software Development Concepts and Tools, Springer, 1992

b) Metriken

- /Ebe 96/ C. Ebert, R. Dumke: Software-Metriken in der Praxis, Springer, 1996
- /Fen 91/ N.E. Fenton: Software metrics: a rigorous approach, Chapman & Hall, 1991
- /MP 93/ K.-H. Möller, D.J. Paulisch: Software-Metriken in der Praxis, Oldenbourg, 1993
- /Tha 94/ G.E. Thaller: Software-Metriken einsetzen, bewerten, messen, Heise, 1994

c) Wiederverwendbarkeit

- /Che 91/ R.O. Chester, J.W. Hooper: Software Reuse: Guidelines and Methods, Plenum Press, 1991
- /Free 87/ P. Freeman (Ed.): Software reusability: Tutorial, IEEE, 1987
- /Kar 95/ E.-A. Karlsson: Software Reuse: A Holistic Approach, Wiley, 1995
- /Mac 92/ C. MacClure: The three Rs of software automation: re-engineering, repository, reusability, Prentice Hall, 1992
- /Schä 94/ W. Schäfer, R. Prieto-Díaz, M. Matsumoto (Eds.): Software reusability, Horwood, 1994
- /Tra 88/ W. Tracz: Software reuse: Emerging Technology Tutorial, IEEE, 1988

d) Re-Engineering, Reverse Engineering

/Arn 93/ R.S. Arnold: Software Engineering, IEEE, 1993

- /BS 95/ M.L. Brodie, M. Stonebraker: Migrating Legacy Systems: Gateways, Interfaces & the Incremental Approach, Morgan Kaufmann Publ., 1995
- /CC 90/ E.J. Chikofsky, J.H. Cross: Reverse Engineering and Design Recovery: A Taxonomy, IEEE Software 7, 1, 13-17, 1990
- /JL 91/ I. Jacobson, F. Lindström: Re-engineering of old systems to an object-oriented architecture, in Proc. OOPSLA 1991, 340-350

/Mac 92/ siehe c)

e) Softwareentwicklungsumgebungen

eine ausführliche Bibliographie hierzu findet sich in /Nag 96/

f) Integration/Verteilung

- /CDK 94/ G. Colouris, J. Dollimore, T. Kindberg: Distributed Systems Concepts and Design, Addison Wesley, 1994
- /Cra 94/ J. Cramer: Distributed Software Engineering State-of-the-Art report, Imperial College, London, 1994
- /NW98/ M. Nagl, B. Westfechtel: Integration von Entwicklungsprozessen Substantielle Verbesserung der Entwicklungsprozesse, Berlin: Springer-Verlag, 1998.
- /Mul 93/ S. Mullender (Ed.): Distributed Systems, 2. Aufl., Addison Wesley, 1993
- /OMG 95/ Object Management Group: The Common Object Request Broker: Architecture and Specification, Rev. 2.0, OMG Document 96–03–04, 1995
- /Schi 96/ A. Schill: Distributed Platforms, Encyclopedia of Microcomputers, Marcel Dekker Publ., 1996
- /SW 89/ S.M. Shatz, J.-P. Wang (Eds.): Tutorial: Distributed Software Engineering, IEEE, 1989

g) Human Aspects/Human Engineering

- /Cur 86/ B. Curtis: Human Factors in Software Development, 2nd. ed., IEEE Comp. Soc. Press, 1986
- /Ell 91/ C.A. Ellis et al.: Groupware: Some Issues and Experiences, Comm. ACM 34, 1, 1991
- /Vee 88/ G. van der Veer et al.: Working with Computers: Theory versus Outcome, Academinc Press, 1988
- /Wein 71/ G.M. Weinberg: The Psychology of Computer Programming, van Nostrand Reinhold, 1971