Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 20

Yun Yang

- Structural covariance estimation
- High-dimensional linear regression

Approximate sparsity

- In many cases, σ has many non-zero entries, but many of them are "near-zero".
- ▶ One way to measure that is through the ℓ_q -norm of each row.
- ▶ More precisely, given a parameter $q \in [0, 1]$, assume

$$\max_{j=1,\dots,d} \sum_{k=1}^d |\Sigma_{jk}|^q \le R_q.$$

Property

Under this ℓ_q -norm constraint, for any $\lambda_n>0$ such that $\|\widehat{\Sigma}-\Sigma\|_{\max}\leq \lambda_n/2$, we have

$$||T_{\lambda_n}(\widehat{\Sigma}) - \Sigma||_{\text{op}} \le 2R_q \lambda_n^{1-q}.$$

Linear model: Formulation

- ▶ Observe a response vector $Y \in \mathbb{R}^n$, and a collection of covariates (vectors) $\{X_1, \ldots, X_d\}$
- Assume Y is linked with X_i via the linear model

$$Y = \sum_{j=1}^{d} X_j \, \theta_j^* + w = X \theta^* + w, \quad w \sim \mathcal{N}(0, \, \sigma^2 I_n).$$

- $X=(X_1,\ldots,X_d)$ is called the design matrix, and $\theta^*=(\theta_1^*,\ldots,\theta_d^*)^T$ is the unknown regression coefficient of interest.
- Scalarized form: for each index i = 1, ..., n,

$$y_i = \langle x_i, \theta^* \rangle + w_i,$$

where y_i , w_i are the *i*th component of y, w, and x_i^T is the *i*th row of X.

Sparse linear models in high dimensions

- We are interested in the high-dimensional regime where d > n
- The noiseless linear model is an under-determined linear system, and we need some form of low-dimensional structure
- ▶ A commonly made assumption is the hard sparsity assumption, meaning that the support set of θ^* ,

$$S(\theta^*) = \{j : \theta_j \neq 0\},\$$

has cardinality s = |S| substantially smaller than d.

▶ A related milder assumption is the weak sparse assumption, where θ^* belongs to the ℓ_q -ball for some $q \in [0,1]$,

$$\mathbb{B}_q(R_q) = ig\{ heta \in \mathbb{R}^d : \sum_{i=1}^d | heta_j|^q \leq R_q ig\}.$$

Gaussian sequence model

Observations are of the form

$$y_i = \sqrt{n}\theta_i^* + w_i$$
, for $i = 1, \dots, n$,

where $w_i \sim \mathcal{N}(0, \sigma^2)$ are i.i.d. noise variables.

Many non-parametric estimation problems can be reduced to an "equivalent" instance of the Gaussian sequence model.

Signal denoising in orthonormal bases

One observes corrupted samples $\widetilde{y}_i = \beta_i^* + \widetilde{w}_i$, where w_i are additive noises. Based on the observation vector $y \in \mathbb{R}^n$, the goal is to "denoise" the signal. Many classes of signals exhibit sparsity when transformed into an appropriate basis. Such transform can be represented as an orthogonal $\Psi \in \mathbb{R}^{d \times d}$, so that $\theta^* = \Psi^T \beta^*$ is expected to be sparse.

Lifting and non-linear functions

Consider polynomial functions of degree k,

$$f_{\theta}(t) = \theta_1 + \theta_2 t + \dots + \theta_{k+1} t^k.$$

Then polynomial regression $y_i = f_{\theta}(t_i) + w_i$ can be converted into an instance of the linear regression model.

More generally, we may consider lifting to linear combinations of some set of basis functions $\{\phi_1, \dots, \phi_b\}$,

$$f_{\theta}(t) = \sum_{j=1}^{b} \theta_j \phi_j(t).$$

The same ideas also apply to multivariate functions.

Signal compression in overcomplete bases

In the signal denoising example, we considered orthogonal transformations represented by the columns of an orthonormal matrix $\Psi \in \mathbb{R}^{d \times d}$. In many cases, it can be useful to consider an overcomplete set of basis functions, represented by the columns of a matrix $X \in \mathbb{R}^{n \times d}$ with d > n.

Signal compression can be performed by finding a vector $\theta \in \mathbb{R}^d$ such that $y = X\theta$. Since d > n, this equation may have multiple solutions, and the goal is to find the a sparse solution θ^* with $\|\theta^*\|_0 = s \ll n$ non-zeros.

Problems involving ℓ_0 -constraints are computationally intractable. A popular relaxation is to seek a sparse solution by solving the basis pursuit program

$$\widehat{\theta} \in \operatorname{argmin} \|\theta\|_1$$
, such that $y = X\theta$.

Compressed sensing

The classical approach to exploiting sparsity for signal compression is wasteful since it needs to compute the full vector $\theta = \Psi^T \beta^* \in \mathbb{R}^d$. This motivates compressed sensing, which is based on the combination of ℓ_1 -relaxation with the random projection method.

The idea is to take $n \ll d$ random projections of β^* , each of the form $y_i = \langle x_i, \, \beta^* \rangle$, where $x_i \in \mathbb{R}^d$ is a random vector. Then, the problem of exact reconstruction amounts to finding a solution of the under-determined linear system $y = X\beta$ such that $\Psi^T\beta$ is as sparse as possible. The transformed ℓ_1 -relaxation becomes

$$\min_{\theta \in \mathbb{R}^d} \|\theta\|_1, \quad \text{such that } y = \widetilde{X}\theta,$$

where $\widetilde{X} = X\Psi$ and the recovered signal is $\beta = \Psi^T \theta$.

Selection of Gaussian graphical models

Any zero-mean Gaussian random vector (Z_1,\ldots,Z_d) has a density of the form

$$p_{\Theta}(z_1,\ldots,z_d) = \frac{1}{\sqrt{(2\pi)^d \det(\Theta^{-1})}} \exp\left(-\frac{1}{2}z^T\Theta z\right),$$

where $\Theta \in \mathbb{R}^{d \times d}$ is the inverse covariance matrix, also known as the precision matrix. For many interesting models, the precision matrix is sparse, with relatively few non-zero entries.

This problem can be reduced to an instance of sparse linear regression. For a given index $s \in V := \{1, 2, \dots, d\}$, suppose that we are interested in recovering its neighborhood, meaning the subset $\mathcal{N}(s) = \{t \in V \mid \Theta_{st} \neq 0\}$. We can perform variable selection in linear regression

$$Z_s = \langle Z_{-s}, \theta^* \rangle + w_s, \quad w_s \sim \mathcal{N}(0, \sigma_s^2).$$

Recovery in the noiseless setting

We begin by focusing on the noiseless model

$$y = X\theta^*$$
, where $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times d}$, $\theta^* \in \mathbb{R}^d$.

- ▶ When $d \ge n$, the solution of θ^* is not unique.
- Our goal is to find the sparsest solution:

$$\min_{\theta \in \mathbb{R}^d} \|\theta\|_0$$
 such that $X\theta = y$.

- Computationally infeasible when d is large.
- Convex relaxation:

$$\min_{\theta \in \mathbb{R}^d} \|\theta\|_1$$
 such that $X\theta = y$.

Can be formulated as a linear program, we call it the basis pursuit linear program.

Exact recovery and restricted nullspace

- ▶ Question: when is solving the basis pursuit linear program equivalent to solving the original ℓ_0 -problem?
- ▶ For any subset $A \subset \{1, ..., d\}$, define the sub-vector $\theta_A = (\theta_j : j \in A)$.
- Let S denote the support of θ^* .
- Define the cone

$$\mathcal{C}(S) = \left\{ \Delta \in \mathbb{R}^d : \|\Delta_{S^c}\|_1 \le \|\Delta_S\|_1 \right\}.$$

Definition

The matrix X satisfies the restricted nullspace property with respect to S if $C(S) \cap \text{null}(X) = \{0\}$.

Exact recovery and restricted nullspace

Theorem

For any fixed subset *S*, the following two properties are equivalent:

- 1. For any $\theta^* \in \mathbb{R}^d$ with support S, the basis pursuit linear program has unique solution $\theta = \theta^*$;
- 2. The matrix *X* satisfies the restricted nullspace property with respect to *S*.

Sufficient conditions for restricted nullspace

The earliest sufficient conditions were based on the incoherence parameter of the design matrix:

$$\delta_{PI}(X) = \max_{j \neq k} \left| \frac{\langle X_j, X_k \rangle}{n} \right|.$$

Property

If the pairwise incoherence satisfies the bound

$$\delta_{PI}(X) \leq \frac{1}{3s},$$

then the restricted nullspace property holds for all subsets S of cardinality at most S.

This condition holds with high probability for sub-Gaussian random matrices with i.i.d. elements as long as $n = \Omega(s^2 \log d)$.

Restricted isometry property (RIP)

Definition

For each $s=1,\ldots,d$, the restricted isometry constant of $X\in\mathbb{R}^{n\times d}$ of order s is the smallest quantity $\delta_s(X)>0$ such that

$$\|\frac{X_S^T X_S}{n} - I_s\|_{\text{op}} \leq \delta_S(X)$$
 for all subsets S of size at most s .

- ► Connection to the incoherence parameter: If X/\sqrt{n} has unit-norm columns, then $\delta_{PI}(X) = \delta_2(X)$.
- ▶ In general, we have for $s \ge 2$,

$$\delta_{PI}(X) \leq \delta_s(X) \leq s \, \delta_{PI}(X).$$

RIP and restricted nullspace

Property

If the RIP constant of order 2s satisfies $\delta_{2s} < 1/3$, then the *uniform restricted nullspace property* holds for any subset S of cardinality $|S| \le s$.

- ▶ The RIP constants for sub-Gaussian random matrices with i.i.d. elements are well-controlled as long as $n = \Omega(s \log(d/s))$.
- Neither the pairwise incoherence condition nor the RIP condition are necessary conditions.
- ▶ Counter-example: $\Sigma = (1 \mu)I_d + \mu \mathbf{1}\mathbf{1}^T$ for $\mu \in (0, 1)$.