Aprendizado de Máquina: Redes Neurais Artificias Clássicas

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Perceptron

- Inspirado no biológico
 - Recebe entradas numéricas
 - Pondera cada uma por um peso (ou sinapse)
 - Verifica se a soma atinge um limiar
 - Repassa informação a outros neurônios
- Realiza tomada de decisões

Perceptron (2)

Perceptron (3)

Exemplo: comprar um produto

Perceptron (4)

- Entradas (x₁, ..., x₄): sempre numéricas
 - Outros tipos de dados podem ser transformados
- Sinapses (w₁, ..., w₄)
 - Excitatórias: interesse, parcelas
 - Inibitórias: preço, prazo de entrega
 - Pesos variam de acordo com cada consumidor
 - Devem ser aprendidos automaticamente

Perceptron (5)

- Bias b: quão propensa uma pessoa é a comprar?
 - Positivo: pessoa mais gastadora
 - Negativo: pessoa mais econômica
 - Representa o quão propenso o neurônio é a disparar
 - Convenção: somado ao potencial de ativação (pode aparecer na literatura como subtração)

Perceptron (6)

- Potencial de ativação v: entradas ponderadas por seus pesos e o bias
 - Potencial alto (maior que zero no exemplo) indica que o neurônio vai disparar
 - Convenção: inclui o bias

Perceptron (7)

- Função de ativação: indica como vai ser feito o disparo
 - Idealmente não-linear: grande maioria dos problemas práticos
 - Exemplo: função passo (a seguir)
 - Outros nomes: função degrau; limiar; threshold

Perceptron (8)

Função passo

$$y = \begin{cases} +1 \text{ se } v \ge 0 \\ 0 \text{ se } v < 0 \end{cases}$$

$$y = f(v)$$

- Convenção adotada: função retorna 0 ou 1 (versão alternativa retorna -1 ou +1)
- Obs: não serve para treinar redes multicamada.

Perceptron (9)

• Exemplo: e-lógico

Perceptron (10)

- $(0, 0) \rightarrow (0)$ v = 0*1 + 0*1 - 1.5 = -1.5y = 0
- $(0, 1) \rightarrow (0)$ v = 0*1 + 1*1 - 1.5 = -0.5y = 0
- $(1, 0) \rightarrow (0)$ v = 0*1 + 1*1 - 1.5 = -0.5y = 0
- $(1, 1) \rightarrow (1)$ v = 1*1 + 1*1 - 1.5 = +0.5y = 1

Perceptron (11)

- Exercício: projete perceptrons para resolver
 - Ou-lógico
 - Implicação lógica (operador "→")
 - Não-lógico

Perceptron (12)

- RNAs são importantes devido a sua capacidade de generalizar
 - Isto é, entradas parecidas geram a saídas parecidas
 - $(1.0, 0.0) \rightarrow (0.0, 1.0)$
 - $(0.9, 0.1) \rightarrow ???$

Perceptron (13)

- Generalização não é muito relevante para no contexto do problema das operações lógicas
 - Mas é crucial para os problemas práticos
- Quão parecidas duas entradas devem ser? Varia de problema para problema
- Rede deve aprender sozinha a partir do conjunto de treinamento

MultiLayer Perceptron

- Redes MultiLayer Perceptron (MLP):
 - Organizam neurônios em camadas
 - Lidam com problemas não lineares, suprindo uma limitação séria do Perceptron
 - Problema não linear clássico: ou-exclusivo
 - Dizer se as entradas são diferentes
 - A seguir...

MultiLayer Perceptron (2)

 Exercício: mostre que a rede dada resolve o ou-exclusivo fazendo as ativações necessárias

```
A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0
```

MultiLayer Perceptron (3)

 Exemplo de rede MLP com três camadas e três neurônios por camada

Conceitos 17/31

MultiLayer Perceptron (4)

- Funções de ativações clássicas:
 - Sigmoide Logística

$$\sigma(v) = \frac{1}{1 + e^{-v}}$$

Tangente Hiperbólica

$$\tanh(v) = \frac{e^{v} - e^{-v}}{e^{v} + e^{-v}}$$

MultiLayer Perceptron (5)

- Existem várias funções de ativação usadas em redes profundas (deep learning). Dois exemplos:
- ReLU: usada em camadas ocultas

$$f(v) = max(0, v)$$

- Softmax: usada na saída.
 - Útil na classificação
 - Exemplo R³:

$$f(v_i) = \frac{e^{v_i}}{e^{v_1} + e^{v_2} + e^{v_3}}$$

MultiLayer Perceptron (6)

Exemplo: diagnóstico de doenças (classificação)

MultiLayer Perceptron (7)

- RNAs só permitem entradas e saídas numéricas
 - Pode ser qualquer valor numérico
 - Para o exemplo, consideraremos valores entre entre 0 e 1 para as entradas
 - mancha=0: nenhuma mancha
 - mancha=1: muitas manchas

MultiLayer Perceptron (8)

- Saída obtida também varia entre 0 e 1 no exemplo.
 Saída desejada é um caso especial no formato one-hot:
 - Dengue: (1, 0, 0)
 - Chicungunha: (0, 1, 0)
 - Zika: (0, 0, 1)
- Um vetor one-hot têm 1 em uma de suas posições, as demais recebem 0. Usado para classificação.

MultiLayer Perceptron (9)

- Exemplo: reconhecimento de dígitos escritos a mão: https://www.youtube.com/watch?v=aircAruvnKk
 - Redes neurais, não sem razão, têm a fama de serem caixas pretas
 - Muitas vezes é difícil ou até inviável entender como dada rede opera
 - Veremos um exemplo para criar intuição de como uma rede trabalha usando a base Mnist (cerca de 70.000 dígitos)

MultiLayer Perceptron (10)

Cada dígito é uma matriz de pixels 28x28

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	12	0	11	39	137	37	0	152	147	84	0	0	0
0	0	1	0	0	0	41	160	250	255	235	162	255	238	206	11	13	0
0	0	0	16	9	9	150	251	45	21	184	159	154	255	233	40	0	0
10	0	0	0	0	0	145	146	3	10	0	11	124	253	255	107	0	0
0	0	3	0	4	15	236	216	0	0	38	109	247	240	169	0	11	0
1	0	2	0	0	0	253	253	23	62	224	241	255	164	0	5	0	0
6	0	0	4	0	3	252	250	228	255	255	234	112	28	0	2	17	0
0	2	1	4	0	21	255	253	251	255	172	31	8	0	1	0	0	0
0	0	4	0	163	225	251	255	229	120	0	0	0	0	0	11	0	0
0	0	21	162	255	255	254	255	126	6	0	10	14	6	0	0	9	0
3	79	242	255	141	66	255	245	189	7	8	0	0	5	0	0	0	0
26	221	237	98	0	67	251	255	144	0	8	0	0	7	0	0	11	0
125	255	141	0	87	244	255	208	3	0	0	13	0	1	0	1	0	0
145	248	228	116	235	255	141	34	0	11	0	1	0	0	0	1	3	0
85	237	253	246	255	210	21	1	0	1	0	0	6	2	4	0	0	0
6	23	112	157	114	32	0	0	0	0	2	0	8	0	7	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MultiLayer Perceptron (11)

- Para simplificar o exemplo, usaremos negativos (imagens em fundo preto e dígito em branco)
- Na rede de exemplo, matrizes 28x28 são transformadas em vetores de 784 posições

MultiLayer Perceptron (12)

 Rede de exemplo

MultiLayer Perceptron (13)

- Reconhecer um dígito é complexo. Estratégia "dividir para conquistar":
 - Cada dígito é quebrado em formas geométricas mais simples
 - Cada forma geométrica é quebrada em formas ainda mais simples
 - Até obter-se um pequeno conjuntos de bordas

MultiLayer Perceptron (14)

 Camada de Saída: recebe formas simples e retorna os dígitos

 2a camada oculta: recebe bordas e retorna formas simples

 1a camada oculta: recebe pixeis da camada de entrada e retorna bordas

MultiLayer Perceptron (15)

Neurônio que busca uma borda específica:

- Idealmente w₁₄ · · · w₁₇ excitam o neurônio
- Já W₇ . . . W₁₃, W₁₈ . . W₂₄ devem inibi-lo (se for ficar muito espesso pode tratar-se de outra borda)
- Demais pesos idealmente próximos a zero

MultiLayer Perceptron (16)

- Treinamento evolutivo: visão intuitiva do processo.
 - Mudar os pesos aleatoriamente
 - Testar no dataset
 - Se melhorou acerto, manter alteração
 - Caso contrário, reverter alterações

MultiLayer Perceptron (17)

- Treinamento por Backpropagation e gradiente descendente
 - Algoritmo usado na prática
 - Considera a ativação da RNA como uma grande função ŷ = f(x̂)
 - Usa f(x̂) várias fazes no dataset para computar o erro, chamado de função de custo ê = j(x̂)
 - Usa -j'(x) para minimizar o erro