Subset Selection with Shrinkage

Xiaoqian Wang

2023-02-16

Mazumder, R., Radchenko, P., & Dedieu, A. (2022). Subset selection with shrinkage: Sparse linear modeling when the SNR is low. Operations Research.

Hazimeh, H., & Mazumder, R. (2020). Fast best subset selection: Coordinate descent and local combinatorial optimization algorithms. Operations Research, 68(5), 1517-1537.

1 Best Subset Selection

Suppose that the data are generated from a linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\epsilon}$, where matrix \mathbf{X} is deterministic and the elements of $\boldsymbol{\epsilon} \in \mathbb{R}^n$ are independent $N\left(0, \sigma^2\right)$.

$$\underset{\boldsymbol{\beta}}{\text{minimize}} \quad \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 \quad \text{ s.t. } \quad \|\boldsymbol{\beta}\|_0 \leq k$$

- 1. Computationally infeasible
- 2. Signal to noise ratio (SNR) \longrightarrow Overfit
 - 1. Measured by $\|\boldsymbol{\beta}^*\|_1 / \sigma$, $\|\boldsymbol{\beta}^*\|_2 / \sigma$, $\|\mathbf{X}\boldsymbol{\beta}^*\|_2^2 / \|\epsilon\|_2^2$.
 - 2. When SNR is low, $\hat{\beta}$ is instable.
 - 3. The impossibility of variable selection when the signal is weak.
 - 4. The un-regularized fit can be improved by shrinkage when σ is large.

So. it's note a right approach when the noise level is high.

Q: How to fix the problem?

- Continuous shrinkage methods
 - 1. Lasso and ridge regression trade off an increase in bias with a decrease in variance.
 - 2. The estimated models are **denser** than those produced by best subset selection.
- Sparsity & Shrinkage

2 Subset Selection with Shrinkage

$$\underset{\boldsymbol{\beta}}{\operatorname{minimize}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \underbrace{\lambda \|\boldsymbol{\beta}\|_q}_{\text{Shrinkage}} \qquad \text{s.t. } \underbrace{\|\boldsymbol{\beta}\|_0 \leq k}_{\text{Sparsity}}.$$

- separate out the effects of shrinkage and sparsity.

2.1 Mixed Integer Optimization formulations

minimize
$$\frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_q$$

s.t. $-\mathcal{M}z_j \leq \beta_j \leq \mathcal{M}z_j, j \in [p];$
 $\mathbf{z} \in \{0,1\}^p;$
 $\sum_j z_j = k$

This can be written as follows:

minimize
$$u/2 + \lambda v$$

s.t. $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 \le u$
 $\|\boldsymbol{\beta}\|_q \le v$
 $-\mathcal{M}z_j \le \beta_j \le \mathcal{M}z_j, j \in [p];$
 $\mathbf{z} \in \{0,1\}^p;$
 $\sum_j z_j = k$

Computational performance of MISOCO solvers (Gurobi, for example) is found to improve by adding structural implied inequalities, or cuts, to the basic formulation.

A structured version of the above formulation with additional implied inequalities (cuts) for improved lower bounds is:

$$\min z u/2 + \lambda v$$
s.t. $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} \leq u$

$$\|\boldsymbol{\beta}\|_{q} \leq v$$

$$-\mathcal{M}_{j}z_{j} \leq \beta_{j} \leq \mathcal{M}_{j}z_{j}, j \in [p]$$

$$z_{j} \in \{0, 1\}, j \in [p]$$

$$\sum_{j} z_{j} = k$$

$$-\mathcal{M}_{i} \leq \beta_{i} \leq \mathcal{M}_{i}, i \in [p]$$

$$-\overline{\mathcal{M}}_{i}^{-} \leq \langle \mathbf{x}_{i}, \boldsymbol{\beta} \rangle \leq \overline{\mathcal{M}}_{i}^{+}, i \in [n]$$

$$\|\boldsymbol{\beta}\|_{1} \leq \mathcal{M}_{\ell_{1}}$$

- $\mathcal{M}_i, i \in [p]$ denote bounds on β_i 's.
- $-\overline{\mathcal{M}}_i^-, \overline{\mathcal{M}}_i^+$ denote bounds on the predicted values $\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle$ for $i \in [n]$.
- \mathcal{M}_{ℓ_1} denotes an upper bound on the ℓ_1 -norm of the regression coefficients $\|\boldsymbol{\beta}\|_1$.

Consider the following extended family of L_0 -based estimators. That is, L_0L_q -regularized regression problems of the form:

$$\underset{\beta}{\text{minimize}} \quad \frac{1}{2}\|y - X\beta\|_2^2 + \lambda_0\|\beta\|_0 + \lambda_q\|\beta\|_q^q$$

where $q \in \{1,2\}$ determines the type of the additional regularization (i.e., L_1 or L_2).