## **Linear Model Selection and Regularization**

Slides on Introduction to Statistical Learning, Chapter 6

**Edward Thompson** 

March 2024

See the Typst source: https://typst.app/project/pzEmcVAtZ9sJA-\_Y4vrri0

### **Table of contents**

- 1. Introduction
- 2. Subset Selection
- 3. Shrinkage
- 4. Dimension Reduction
- 5. Summary

## Introduction

#### **Motivation**

• Linear Regression can be too flexible at the expense of accuracy and interpretability

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

- This was introduced in chapter 2:
  - ullet Particularly true when n is not much greater than p or you have highly colinear predictors
  - Introduced forward selection, backward selection and mixed selection as solutions
  - This chapter explores these solutions and more
- Three basic approaches to reducing flexibility
  - Subset selection
  - Shrinkage
  - Dimension Reduction

## **Subset Selection**

#### **Subset Selection**

- Only include some variables in your final model
- There are different ways to identify which ones to include:
  - Best Subset Selection
  - Forward Stepwise Selection
  - Backward Stepwise Selection
  - Hybrid Approaches

### Comparing models with differing numbers of predictors

- Models with more variables will have a lower  $RSS \Rightarrow$  cannot use RSS to compare
- Adjust the RSS (or  $\mathbb{R}^2$ ) to account for # variables:
  - $C_p = \frac{1}{n} (RSS + 2d\hat{\sigma}^2)$
  - AIC =  $\frac{1}{n}$ (RSS +  $2d\hat{\sigma}^2$ )
  - BIC =  $\frac{1}{n}$  (RSS + log(n) $d\hat{\sigma}^2$ )
  - Adjusted  $R^2 = 1 \frac{\frac{RSS}{n-d-1}}{\frac{TSS}{n-1}}$
- **Discussion**: why are they different?

#### **Best Subset Selection**

#### Try every model

#### Algorithm 6.1 Best subset selection

- Let M<sub>0</sub> denote the null model, which contains no predictors. This
  model simply predicts the sample mean for each observation.
- 2. For  $k = 1, 2, \dots p$ :
  - (a) Fit all  $\binom{p}{k}$  models that contain exactly k predictors.
  - (b) Pick the best among these (<sup>p</sup><sub>k</sub>) models, and call it M<sub>k</sub>. Here best is defined as having the smallest RSS, or equivalently largest R<sup>2</sup>.
- Select a single best model from among M<sub>0</sub>,..., M<sub>p</sub> using using the prediction error on a validation set, C<sub>p</sub> (AIC), BIC, or adjusted R<sup>2</sup>.
   Or use the cross-validation method.
- If using cross validation repeat step 2 on each training fold and average validation errors in step 3 to choose the best k. Then choose best given k on total training data.

## **Best Subset Selection Example**



• Very slow...

### Forward stepwise selection

#### Sequentially add predictors

#### Algorithm 6.2 Forward stepwise selection

- 1. Let  $\mathcal{M}_0$  denote the *null* model, which contains no predictors.
- 2. For  $k = 0, \ldots, p-1$ :
  - (a) Consider all p-k models that augment the predictors in  $\mathcal{M}_k$  with one additional predictor.
  - (b) Choose the *best* among these p k models, and call it  $\mathcal{M}_{k+1}$ . Here *best* is defined as having smallest RSS or highest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using the prediction error on a validation set,  $C_p$  (AIC), BIC, or adjusted  $R^2$ . Or use the cross-validation method.

### **Backward stepwise selection**

#### Sequentially remove predictors

#### Algorithm 6.3 Backward stepwise selection

- 1. Let  $\mathcal{M}_p$  denote the full model, which contains all p predictors.
- 2. For  $k = p, p 1, \dots, 1$ :
  - (a) Consider all k models that contain all but one of the predictors in  $\mathcal{M}_k$ , for a total of k-1 predictors.
  - (b) Choose the *best* among these k models, and call it  $\mathcal{M}_{k-1}$ . Here best is defined as having smallest RSS or highest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using the prediction error on a validation set,  $C_p$  (AIC), BIC, or adjusted  $R^2$ . Or use the cross-validation method.

## **Selection example**



• Using cross-validation enables using the one-standard-error rule.

# Shrinkage

## **Shrinkage Idea**

• In linear regression using least squares we are minimizing:

$$RSS = \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_i x_{ij} \right)^2$$

- In shrinkage we add a penalty term that penalizes the coefficients
- Ridge regression

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_i x_{ij} \right)^2 + \lambda \sum_{j=1}^{n} \beta_j^2$$

LASSO regression

$$\textstyle \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_i x_{ij}\right)^2 + \lambda \sum_{j=1}^n |\beta_j|$$

Need to standardise the predictors:

$$\frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(x_{ij}-\bar{x}_{j}\right)^{2}}}$$

## Ridge and Lasso Examples



## Why does this improve on Least Squares?

• Example on simulated data



### **Another Perspective**

#### • Ridge regression

$$\min_{\beta} \left\{ \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_i x_{ij} \right)^2 \right\} \text{ subject to } \sum_{j=1}^n \beta_j^2 \leq s$$

#### • LASSO regression

$$\min_{\beta} \left\{ \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_i x_{ij} \right)^2 \right\} \text{ subject to } \sum_{j=1}^n |\beta_j| \leq s$$

#### Best Subset Selection

$$\min_{\beta} \left\{ \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_i x_{ij} \right)^2 \right\} \text{ subject to } \sum_{j=1}^n I \left( \beta_j \neq 0 \right) \leq s$$

## Why does LASSO Lead To Subset Selection?



### Why does LASSO Lead To Subset Selection?

• 
$$X = I$$
,  $n = p$ ,  $\beta_0 = 0$ 

Ridge: 
$$\sum_{j=1}^{p} \left(y_{j} - eta_{j}
ight)^{2} + \lambda eta_{j}^{2}$$

$$\text{Ridge: } \textstyle \sum_{j=1}^{p} \left(y_j - \beta_j\right)^2 + \lambda \beta_j^2 \qquad \text{Lasso: } \textstyle \sum_{j=1}^{p} \left(y_j - \beta_j\right)^2 + \lambda \ |\beta_j|$$



# Is LASSO or Ridge better? It depends.

All variables

Few variables





## **Bayesian Interpretation**



From Bayes' theorem:

$$p(\beta \mid X, Y) \propto f(Y \mid X, \beta) p(\beta \mid X) = f(Y, X, \beta) p(\beta)$$

- Assume:
- $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon$
- $p(\beta) = \prod_{j=1}^p g(\beta_j)$  for some density g
- Errors are independent and Gaussian
- Then:
  - g is Gaussian  $\Rightarrow$  posterior mode of  $\beta$  is Ridge
  - g is Laplacian  $\Rightarrow$  posterior mode is LASSO



## **How Should You Pick The Tuning Parameter?**

#### Cross Validation



## **Dimension Reduction**

#### **Dimension Reduction**

- Combine your predictors to reduce their number
- Original predictors:  $X_1$ , ...,  $X_p$
- New predictors  $Z_1$ , ...,  $Z_M$ , where M < p:

$$Z_m = f_m(X_1, ..., X_p)$$

• We simplify by restricting to **linear combinations**:

$$Z_m = \sum_{j=1}^p \phi_{jm} X_j$$

• Fit regression model:

$$y_{i} = \theta_{0} + \sum_{m=1}^{M} \theta_{m} z_{im} + \epsilon_{i}, \quad i = 1, ..., n$$

• Equivalent to constraining the values of  $\beta$ :

$$eta_j = \sum_{m=1}^M \theta_m \phi_{jm}$$

## How do you decide what linear combinations to use?

- Heuristics
- Principal Component Regression
- Partial Least Squares

## **Principal Component Regression**

- ullet Pick first M directions along which your predictor data varies most
- For a data matrix X of observations  $x_i \in \mathbb{R}^p$ , choose the first direction  $\phi_1 \in \mathbb{R}^p$ :

$$\phi_1 = \operatorname{argmax}_{\|\phi\|=1} \left\{ \sum_i \left( \boldsymbol{x_i} \cdot \boldsymbol{\phi} \right)^2 \right\}$$

• To find subsequent directions repeat on  $\widehat{m{X}}_k$  which has the first k-1 directions removed:

$$\widehat{m{X}}_k = m{X} - \sum_{s=1}^{k-1} m{X} m{\phi}_s m{\phi}_s^T$$



## **Principal Component Regression Example**

ullet Example where first 5 components explain Y



## **Principal Component Regression Notes**

- This is *not* feature selection all predictors are used
- Should standardise predictors otherwise those will dominate the error
- ullet In practise use eigen-decomposition of the covariance matrix of X.
- ullet Implicitly assuming features describing  $oldsymbol{X}$  describe Y is unsupervised

### **Partial Least Squares**

- ullet Pick first directions that are most related to the response Y
- Choose the first direction  $Z_1$  by setting  $\phi_{j1}$  equal to the coefficient from a simple linear regression.
- ullet Choose subsequent direction k by regressing predictors on directions  $Z_1,...,Z_{k-1}$  and taking the residual.

### **Partial Least Squares**

- ullet Pick first directions that are most related to the response Y
- Choose the first direction  $Z_1$  by setting  $\phi_{j1}$  equal to the coefficient from a simple linear regression.
- ullet Choose subsequent direction k by regressing predictors on directions  $Z_1,...,Z_{k-1}$  and taking the residual.

# Summary

## **High dimensions**

- Cannot use training  $\mathbb{R}^2$ , AIC, BIC or  $\mathbb{C}_p$ .
- Regularisation methods help but are not a panacea. E.g. with n=100 and "correct" p=20:



## Summary

| Method                  | Feature Select? | Fast?      | Supervised? | Transparent? | Smooth?  |
|-------------------------|-----------------|------------|-------------|--------------|----------|
| <b>Best Subset</b>      |                 | $\gg$      |             |              |          |
| Forw'd Stepwise         |                 | $\bigcirc$ |             |              | $\times$ |
| <b>Backw'd Stepwise</b> |                 | $\bigcirc$ |             |              | $\times$ |
| Ridge                   | $\times$        | $\bigcirc$ | $\bigcirc$  |              |          |
| Lasso                   |                 | $\bigcirc$ | $\bigcirc$  |              | $\times$ |
| PCR                     | $\times$        | $\bigcirc$ | $\times$    | $\times$     | $\times$ |
| Partial Least Sqr       | $\times$        | $\bigcirc$ | $\bigcirc$  | $\checkmark$ | ×        |

• **Discussion**: What do people recommend?