Inferencia Estadística Computacional

Juan Zamora Osorio juan.zamora@pucv.cl

Instituto de Estadística Pontificia Universidad Católica de Valparaíso

6 de noviembre de 2023

Inferencia

Hemos aprendido sobre...

- Describir datos.
- Probabilidades.
- Variables aleatorias.

Objetivo

Contrastar datos reales con modelos basados en probabilidades.

¿Qué necesitamos?

- Inferencia estadística.
- Contrastar hipótesis.

Recordar

Probabilidades

▶ ¿Dado un proceso que genera datos, cuáles son las propiedades que observaremos?

Inferencia estadística

▶ ¿Dadas las observaciones, qué podemos decir sobre el proceso que genera los datos?

Recuerdo

Media muestral

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i = \frac{\sum_{i=1}^n x_i}{n}.$$

Busca estimar la media de la población, denotada como μ.

Ejemplo: temperaturas máximas durante enero

- ▶ 22, 24, 21, 22, 25, 26, 25, 24, 23, 25, 25, 26, 27, 25, 26, 25, 26, 27, 27, 28, 29, 29, 29, 28, 30, 29, 30, 31, 30, 28, 29.
- $\bar{x} = \frac{22+24+21+\dots+28+29}{31} = 26,48 \text{ }^{\circ}\text{C}.$

Muestra

Resultados obtenidos de experimentos aleatorios

- Cantidad es finita.
- Generalmente se supone independencia.
- Generalmente se supone misma distribución en cada experimento.

Estadístico

Función calculada a partir de la muestra.

Ejemplo: 10 lanzamientos de un dado

- Cantidad de datos: 10.
- Cada lanzamiento independiente del anterior.
- Cada lanzamiento posee la misma distribución: multinomial.

Muestra

Ejemplo: 10 tomas de temperatura a medio día en días distintos

- Cantidad de datos: 10.
- ¿Cada medición es independiente de la anterior?
- ¿Cada medición posee misma distribución?

Ejemplo: 10 nombres de estudiantes del curso

- Cantidad de datos: 10.
- ¿Cada nombre es independiente del anterior?
- ¿Cada nombre posee la misma distribución?

Queremos que la muestra sea representativa.

Técnicas de muestreo

Sesgo

Una técnica es sesgada si el estadístico calculado con la muestra obtenida es mayor o menor, en promedio, que el parámetro estimado.

Sesgo de selección

La manera en que se construye la muestra introduce sesgo.

Sesgo de respuesta

La técnica para obtener la respuesta introduce sesgo.

Sesgo de selección

Ejemplo – tamaño

Los pacientes que pasan más días en un hospital son más propensos a ser elegidos para una muestra.

Ejemplo – respuesta voluntaria

Las opiniones recolectadas por llamados a un programa de televisión sobre representan a quienes les importa el asunto y no representan a quienes no les interesa.

Ejemplo – conveniencia

Selecciono a mis amigo/as como muestra para estudiar la opinión de la población.

Sesgo de selección

Ejemplo - juicio experto

➤ Se intenta recolectar un grupo de personas con ciertas características: tantos hombres, tantas mujeres, tantos sobre 40, tantos empleados, etc. creyendo que se mejora representatividad, pero se agrega sesgo.

Ejemplo – marco

Se selecciona a partir de una lista que debería corresponder a la población.

Sesgo de respuesta

No hay respuesta

Alguien que se niega a participar en una encuesta podría ser diferente a los demás.

Respuesta incorrecta o error de medición

- Mentira intencional.
- Memoria imprecisa.
- Medición imprecisa.
- Ejemplos:
 - Muchas personas no admiten ver un programa de televisión.
 - Pacientes que dicen que siguen indicaciones médicas.
 - ¿Cuánto tiempo pasan en el celular al día?

Sesgo de respuesta

Cuestionario

► La respuesta depende de la pregunta, del tono de voz del entrevistador, el orden de las preguntas, etc.

Ejemplo: muestra de localización de daños en bombarderos

Muestra aleatoria

No introduce sesgo.

Aleatoria simple

► Todas las observaciones son igual de probables.

Aleatoria estratificada

► Se divide la población en grupos que no se traslapan.

Ejemplo: Plaza Pública CADEM

Metodología

Técnica

Encuestas Telefónicas aplicadas a través de sistema Cati a celulares de prepago y postpago.

Universo

Hombres y mujeres de 18 años o más, habitantes en las 16 regiones del país.

Muestreo

Muestreo probabilístico con selección aleatoria de individuo y estratificado previamente por región.

_Muestra y cobertura semanal

703 casos. Margen de error de ±3,7 puntos porcentuales al 95% de confianza.

Se alcanzó una cobertura total de 190 comunas. El 90% de la muestra fue aplicada en población urbana y el 10% en población rural.

_Tasa de logro

Para lograr los 703 casos efectivos se realizaron un total de 4.059 llamados, lo que representa una tasa de éxito del 17,3%.

_Ponderación

Los datos fueron ponderados a nivel de sujetos por zona, género y edad, obteniendo una muestra de representación nacional para el universo en estudio.

_Fecha de terreno

Jueves 23 al viernes 24 de septiembre de 2021.

Muestra aleatoria

Independientes e idénticamente distribuidos (iid)

- Cantidad de datos finita.
- Cada dato es independiente del anterior.
- Cada dato posee misma distribución.

Inferencia

- Como todos tienen misma distribución, podemos inferir sobre ella.
- Modelos estadísticos que suponen cantidad finita de parámetros se llaman paramétricos.
- Ejemplo: $\mathcal{N}(\mu, \sigma^2)$ tiene solo dos parámetros.
- Un estadístico que busca estimar un parámetro de la población se llama estimador.

Muestra aleatoria

Independientes e idénticamente distribuidos (iid)

- \triangleright Cada dato puede modelarse como una variable aleatoria $X^{(i)}$.
- ► Cada dato podría ser multivariado, $X^{(i)} = (X_1^{(i)}, \dots, X_J^{(i)})$.
- Matriz de datos:

$$X = \begin{bmatrix} X^{(1)} & & & & X_{j}^{(1)} & \cdots & X_{j}^{(1)} \\ \vdots & & & & \vdots & \ddots & \vdots \\ X^{(i)} & & & & \vdots & & \ddots & \vdots \\ X_{1}^{(i)} & & & & & X_{j}^{(i)} & \cdots & X_{j}^{(i)} \\ \vdots & & & & & \vdots & \ddots & \vdots \\ X_{1}^{(n)} & & & & & X_{j}^{(n)} & \cdots & X_{j}^{(n)} \end{bmatrix}$$

Media muestral

Estadístico

- Sea X una muestra iid univariada.
- ► Sea $T_n = \sum_{i=1}^n X^{(i)}$, un estadístico.
- ► Sea $\bar{X}_n = \frac{1}{n} T_n = \frac{1}{n} \sum_{i=1}^n X^{(i)}$, un estadístico.

Propiedades

- Si cada observación sigue una distribución con media μ y varianza σ^2 :
- $\blacktriangleright \mathbb{E}\big[\bar{X}_n\big] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\big[X^{(i)}\big] = \frac{1}{n} n\mu = \mu.$
- $\blacktriangleright \mathbb{V}\big[\bar{X}_n\big] = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V}\big[X^{(i)}\big] = \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}.$

▶ ¿Qué significa que \bar{X}_n sea una variable aleatoria con media μ y varianza $\frac{\sigma^2}{n}$?

Sobre los estimadores

Funciones de la muestra aleatoria

- $\hat{\theta}_n = g(X^{(1)}, X^{(2)}, \dots, X^{(n)}).$
- Son estimadores puntuales, nos entregan un valor para una muestra.

¡Son variables aleatorias!

Su valor depende del resultado de un experimento aleatorio.

Media muestral

Ejemplo: tragamonedas

- Cada tirada tiene valor esperado —\$1000 y desviación estándar de \$10000.
- ▶ ¿Qué se espera en promedio luego de jugar...
 - ▶ 1 vez?
 - ▶ 10 veces?
 - ▶ 100 veces?
 - ▶ 1000 veces?

Sabemos que

- $\blacktriangleright \mathbb{E}\big[X^{(i)}\big] = -1000.$
- $\blacktriangleright \mathbb{V}[X^{(i)}] = 10^8.$
- $\blacktriangleright \mathbb{E}\big[\bar{X}_n\big] = -1000.$
- $\blacktriangleright \mathbb{V}\big[\bar{X}_n\big] = \frac{10^8}{n}.$

- ► Suponiendo $X^{(i)} \sim U(-3000, 1000)$.
- ▶ 1 juego.

- ► Suponiendo $X^{(i)} \sim U(-3000, 1000)$.
- ▶ 10 juegos.

- ► Suponiendo $X^{(i)} \sim U(-3000, 1000)$.
- ▶ 100 juegos.

- ► Suponiendo $X^{(i)} \sim U(-3000, 1000)$.
- ▶ 1000 juegos.

Ley de los grandes números

Media muestral

- ▶ Sea X una variable aleatoria con media μ y varianza σ^2 .
- ▶ Sea $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X^{(i)}$ media de $n \in \mathbb{N}$ observaciones.

Teorema: Ley débil de los grandes números

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0.$$

- Para todo $\epsilon > 0 \in \mathbb{R}$ elegido se cumple.
- Para todo $\epsilon, \delta > 0 \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que $P(|\bar{X}_n \mu| \ge \epsilon) < \delta$.

Nota: Tipos de convergencia

En probabilidad (ley débil)

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0.$$

Para todo $\epsilon, \delta > 0 \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que $P(|\bar{X}_n - \mu| \ge \epsilon) < \delta$.

$$\bar{X}_n \stackrel{P}{\to} \mu$$
.

Casi segura o casi en todas partes (ley fuerte)

$$P\left(\lim_{n\to\infty}\bar{X}_n=\mu\right)=1.$$

Para toda secuencia infinita observada ω , la media \bar{X}_n converge a μ , exceptuando, a lo más, un conjunto de probabilidad 0.

$$\bar{X}_{25} \overset{\text{c.s.}}{\to} \mu.$$

Ley débil de los grandes números – demostración

Teorema: Ley débil de los grandes números

$$\lim_{n\to\infty} P(\left|\bar{X}_n - \mu\right| \ge \epsilon) = 0.$$

Para todo $\epsilon, \delta > 0 \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que $P(|\bar{X}_n - \mu| \ge \epsilon) < \delta$.

Desigualdad de Chebyschev

- Sea $k > 0 \in \mathbb{R}$ y X una variable aleatoria con media μ y varianza σ^2 .
- Entonces:

$$P(|X-\mu| \ge k\sigma) \le \frac{1}{k^2}.$$

Ley débil de los grandes números – demostración

Demostración desigualdad de Chebyschev

$$P(|X - \mu| \ge k\sigma) = P(X \le \mu - k\sigma) + P(X \ge \mu + k\sigma)$$

$$= \int_{-\infty}^{\mu - k\sigma} p_X(x)dx + \int_{\mu + k\sigma}^{+\infty} p_X(x)dx$$

$$\le \int_{-\infty}^{\mu - k\sigma} \frac{(x - \mu)^2}{k^2\sigma^2} p_X(x)dx + \int_{\mu + k\sigma}^{+\infty} \frac{(x - \mu)^2}{k^2\sigma^2} p_X(x)dx$$

$$= \frac{1}{k^2\sigma^2} \left(\int_{-\infty}^{\mu - k\sigma} (x - \mu)^2 p_X(x)dx + \int_{\mu + k\sigma}^{+\infty} (x - \mu)^2 p_X(x)dx \right)$$

$$\le \frac{1}{k^2\sigma^2} \int_{-\infty}^{+\infty} (x - \mu)^2 p_X(x)dx = \frac{1}{k^2\sigma^2}\sigma^2 = \frac{1}{k^2}$$

$$\Rightarrow P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Ley débil de los grandes números – demostración

Teorema: Ley débil de los grandes números

Para todo $\epsilon, \delta > 0 \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que $P(|\bar{X}_n - \mu| \ge \epsilon) < \delta$: $\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0.$

Demostración

- ► Sabemos que $\mathbb{V}[\bar{X}_n] = \frac{\sigma^2}{n}$.
- ▶ Entonces, para todo $k > 0 \in \mathbb{R}$:

$$P\left(\left|\bar{X}_n-\mu\right|\geq \frac{k\sigma}{\sqrt{n}}\right)\leq \frac{1}{k^2}.$$

▶ Basta elegir $k = \frac{\epsilon \sqrt{n}}{\sigma}$ y se tiene:

$$P(|\bar{X}_n - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2 n}$$

Finalmente, basta tomar $\eta_2 > \frac{\sigma^2}{\epsilon^2 \delta}$ y se tiene que

Ley de los grandes números

Ejemplo

- ▶ Sea $X \sim \text{Bernoulli}(\frac{\pi}{4})$.
- ► Sabemos que $\mathbb{E}[X] = \mu = \frac{\pi}{4}$ y $\mathbb{V}[X] = \sigma^2 = \frac{\pi}{4} (1 \frac{\pi}{4})$.
- Por ley de los grandes números, sabemos que \bar{X}_n converge a $\mu = \frac{\pi}{4}$.

Cálculo de π

- lacktriangle Obtenemos n observaciones de X y calculamos la media \bar{X}_n .
- ▶ Sabemos que $\bar{X}_n \to \frac{\pi}{4}$.
- ▶ Entonces, aproximamos $\pi \approx 4\bar{X}_n$.
- ¿Y cómo obtenemos observaciones de X?

Ley de los grandes números

Simulando $X \sim \text{Bernoulli}(\frac{\pi}{4})$

- ► Sean $X_1, X_2 \sim U(-\frac{1}{2}, \frac{1}{2})$.
- Sea $X = \begin{cases} 1 \text{ si } (X_1, X_2) \text{ dentro de círculo radio } \frac{1}{2} \text{ y centro } (0, 0) \\ 0 \text{ si no} \end{cases}$
- Notar que el espacio muestral $\Omega = X_1 \times X_2$ es un cuadrado de lado 1.
- ► El área que corresponde a X = 1 es el área del cículo de radio $\frac{1}{2}$.
- $P(X=1) = \frac{\pi}{4} \text{ y } P(X=0) = 1 \frac{\pi}{4}. \text{ Es decir,}$ $X \sim \text{Bernoulli}(\frac{\pi}{4}).$

Aproximando π

Aproximando π

Esta metodología se llama aproximación de Monte Carlo.

Teorema del límite central

Media muestral

- Sea X una variable aleatoria con media μ y varianza σ^2 .
- ▶ Sea $T_n = \sum_{i=1}^n X^{(i)}$, suma de $n \in \mathbb{N}$ observaciones.
- ▶ Sea $\bar{X}_n = \frac{1}{n}T_n = \frac{1}{n}\sum_{i=1}^n X^{(i)}$ media de $n \in \mathbb{N}$ observaciones.

Teorema

La variable aleatoria Z_n siguiente converge a una distribución normal estándar $\mathcal{N}(0,1)$:

$$Z_n = \frac{T_n - n\mu}{\sigma\sqrt{n}} = \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}}$$

• Equivalentemente, $\bar{X}_n \sim \mathcal{N}\Big(\mu, \frac{\sigma^2}{n}\Big)$.

- ► Suponiendo $Y^{(i)} \sim \text{Beta}(0,5,1,5)$ y $X^{(i)} = 4000Y^{(i)} 3000$.
- ▶ 1 juego.

- ► Suponiendo $Y^{(i)} \sim \text{Beta}(0,5,1,5)$ y $X^{(i)} = 4000Y^{(i)} 3000$.
- ▶ 10 juegos.

- ► Suponiendo $Y^{(i)} \sim \text{Beta}(0,5,1,5)$ y $X^{(i)} = 4000Y^{(i)} 3000$.
- ▶ 100 juegos.

Media muestral – simulación

Ejemplo: tragamonedas

- ► Suponiendo $Y^{(i)} \sim \text{Beta}(0,5,1,5)$ y $X^{(i)} = 4000Y^{(i)} 3000$.
- ▶ 1000 juegos.

Ejemplo: aproximación de Monte Carlo de π

Supuesto

- ▶ $X \sim \text{Bernoulli}(\frac{\pi}{4})$.
- $\triangleright \mathbb{E}[X] = \mu = \frac{\pi}{4}.$
- $V[X] = \sigma^2 = \frac{\pi}{4} (1 \frac{\pi}{4}).$

Teorema del límite central

Ejemplo: aproximación de Monte Carlo de π

Teorema del límite central

$$\begin{array}{c} \bar{X}_n \sim \mathcal{N} \bigg(\frac{\pi}{4}, \frac{\frac{\pi}{4} \big(1 - \frac{\pi}{4} \big)}{n} \bigg). \text{ Si } Y_n = 4 \bar{X}_n \text{, entonces} \\ Y_n \sim \mathcal{N} \bigg(\pi, \frac{\pi (4 - \pi)}{n} \bigg). \end{array}$$

n	100	1000	10000	100000
Secuencia 1	3,00	3,088	3,1616	3,13976
Secuencia 2	3,12	3,104	3,1652	3,14968
Secuencia 3	3,04	3,164	3,1496	3,14356
$\mathbb{E}[Y_n]$	3,14	3,142	3,1416	3,14159
$\sqrt{\mathbb{V}[Y_n]}$	0,16	0,052	0,0164	0,00519
	NO N	700	200 - 21 23 16 11 22 33 34 1	2.00 \$ 300 1 300 2 30 20 30 31 32 33 34 35

Algunas aproximaciones

Media

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X^{(i)} \to \mathbb{E}[X].$$

Varianza (con media conocida)

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n \left(X^{(i)} - \mathbb{E}[X] \right)^2 \to \mathbb{V}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right].$$

Función de distribución acumulada

$$\frac{1}{n} \left| \left\{ X^{(i)} \text{ tal que } X^{(i)} \leq c \right\} \right| \to F_X(c) = \mathbb{E} \left[\mathbb{1}_{(-\infty,c)}(X) \right].$$

Ejemplo

Errores en un programa computacional

- Sea X variable aleatoria asociada a cantidad de errores por semana.
- ▶ Supongamos X sigue una distribución de Poisson Pois $(\lambda = 5)$.
- Hay 125 programas independientes corriendo.
- ¿Probabilidad de que cantidad de errores promedio sea menor a 5,5?

Ejemplo

Errores en un programa computacional

- Sea X variable aleatoria asociada a cantidad de errores por semana.
- Supongamos X sigue una distribución de Poisson Pois($\lambda = 5$).
- ► Hay 125 programas independientes corriendo.
- ¿Probabilidad de que cantidad de errores promedio sea menor a 5.5?

Desarrollo

- ▶ $\mathbb{E}[X] = \mu = 5$.
- $\blacktriangleright \mathbb{V}[X] = \sigma^2 = 5.$

► Sabemos que
$$\bar{X}_{125}$$
 se parece a $\mathcal{N}\left(\mu, \frac{\sigma^2}{125}\right) = \mathcal{N}\left(5, \frac{1}{25}\right)$.
$$P\left(\bar{X}_{125} < 5, 5\right) = F_{\bar{X}_{125}}(5, 5) = \Phi\left(\frac{5, 5 - 5}{\sqrt{\frac{1}{25}}}\right) = \Phi(2, 5) \approx 0,9938.$$

Errores en un programa computacional

- Sea X variable aleatoria asociada a cantidad de errores por semana.
- Supongamos X sigue una distribución con media desconocida μ y varianza $\sigma^2=5$.
- Hay 125 programas independientes corriendo una semana.
- Medimos la cantidad de errores promedio, obteniendo $\bar{x}_{125} = 6$.
- $ightharpoonup ar{x}_{125} = 6$ es una estimación puntual de μ .
- \blacktriangleright ¿Entre qué valores está μ , con un 89 % de probabilidad?

Errores en un programa computacional

- lacktriangle $ar{x}_{125}=6$ es una estimación puntual de μ .
- ▶ ¿Entre qué valores está μ , con un 89 % de probabilidad?

Desarrollo

- ▶ Sabemos que \bar{X}_{125} se parece a $\mathcal{N}\left(\mu, \frac{\sigma^2}{125}\right) = \mathcal{N}\left(\mu, \frac{1}{25}\right)$.
- ▶ Podemos escribir $\bar{X}_{125} \approx \frac{1}{5}Z + \mu$, con $Z \sim \mathcal{N}(0,1)$.
- Buscamos el intervalo centrado en 0 para Z: $P(-1,598 \le Z < 1,598) \approx 0,89$.
- \triangleright Resolvemos para μ :

$$P(-1,598 \le 5(\bar{X}_{125} - \mu) < 1,598) \approx 0,89$$

 $\Rightarrow -6,32 \le -\mu < -5,68 \Rightarrow \mu \in (5,68,6,32]$.

En general

- ▶ Dado un $\alpha \in [0,1]$.
- **b** Buscamos un intervalo con un nivel dado de *confianza* 1α .
- ▶ En este curso vamos a suponer intervalos centrados.

Si conocemos varianza σ^2 y queremos estimar μ

- ▶ Sabemos que \bar{X}_n se parece a $\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.
- ▶ Podemos escribir $\bar{X}_n \approx \frac{\sigma}{\sqrt{n}}Z + \mu$, con $Z \sim \mathcal{N}(0,1)$.
- ▶ Buscamos intervalo centrado para Z: $P\left(-z_{\frac{\alpha}{2}} \leq Z < z_{\frac{\alpha}{2}}\right) = 1 \alpha.$
- Resolvemos para μ :

$$P\left(-z_{\frac{\alpha}{2}} \leq \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} < z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\Rightarrow \bar{X}_n - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}} < \mu \leq \bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}.$$

Límites del intervalo

Notar que $\bar{X}_n - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}$ y $\bar{X}_n + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}$ son variables aleatorias...

Nota: Bootstrap

Obtener intervalos de confianza usando distintas muestras generadas basadas la muestra original, con repetición.

Frecuentista

- ightharpoonup En este caso μ tiene un valor fijo.
- La distribución es de \bar{X}_n y los límites del intervalo.

Interpretación

Si se usa \bar{X}_n para estimar μ , se tiene confianza de $1-\alpha$ de que el error no excede $\frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}$.

Interpretación

Si se usa \bar{X}_n para estimar μ , se tiene confianza de $1-\alpha$ de que el error no excede e cuando la muestra es de tamaño $n=\left(\frac{\sigma}{e}z_{\frac{\alpha}{2}}\right)^2$.

Si no conocemos varianza σ^2 y queremos estimar μ

- ▶ Supongamos que $X^{(i)}$ tiene distribución normal $\mathcal{N}(\mu, \sigma^2)$.
- ightharpoonup Podemos estimar σ^2 con el estadístico varianza muestral

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X^{(i)} - \bar{X}_n)^2.$$

Distribución de la media y varianza muestrales

- ▶ Sabemos que $\bar{X}_n \sim \mathcal{N}\Big(\mu, \frac{\sigma^2}{n}\Big)$.
- ▶ Sabemos que $Z = \frac{\sqrt{n}\left(\bar{X}_n \mu\right)}{\sigma}$ es normal estándar, $Z \sim \mathcal{N}(0, 1)$.
- $V = \frac{(n-1)S_n^2}{\sigma^2}$ tiene distribución ji al cuadrado con n-1 grados de libertad, $V \sim \chi^2(n-1)$:

de libertad,
$$V \sim \chi^2(n-1)$$
: $p_V(v) = \frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} v^{\frac{n-1}{2}-1} e^{-\frac{v}{2}}, \text{ con } v \in [0,+\infty).$

Distribución de la media y varianza muestrales

- ▶ Sabemos que $\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.
- ▶ Sabemos que $Z = \frac{\sqrt{n}(\bar{X}_{n} \mu)}{\sigma}$ es normal estándar, $Z \sim \mathcal{N}(0, 1)$.
- $V = \frac{(n-1)S_n^2}{\sigma^2}$ tiene distribución ji al cuadrado con n-1 grados de libertad, $V \sim \chi^2(n-1)$:

de libertad,
$$V \sim \chi^2(n-1)$$
: $p_V(v) = \frac{1}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} v^{\frac{n-1}{2}-1} e^{-\frac{v}{2}}, \text{ con } v \in [0,+\infty).$

Teorema

La variable aleatoria $T = \frac{Z}{\sqrt{\frac{V}{n-1}}}$ es distribución t de Student con n-1 grados de libertad:

$$p_{T}(t) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)\sqrt{\pi(n-1)}}\left(1 + \frac{t^{2}}{n-1}\right)^{-\frac{n}{2}}.$$

Distribución de la media y varianza muestrales

- lacksquare Sabemos que $Z=rac{\sqrt{n}\left(ar{X}_n-\mu
 ight)}{\sigma}$ es normal estándar, $Z\sim\mathcal{N}(0,1)$.
- $V=rac{(n-1)S_n^2}{\sigma^2}$ tiene distribución ji al cuadrado con n-1 grados de libertad, $V\sim \chi^2(n-1)$.

Reescribimos T

La variable aleatoria $T = \frac{Z}{\sqrt{\frac{V}{n-1}}}$ es distribución t de Student con n-1 grados de libertad. $T = \frac{Z}{\sqrt{\frac{V}{n-1}}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma \sqrt{\frac{(n-1)S_n^2}{\sigma^2(n-1)}}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sqrt{S_n^2}}.$

Distribución t de Student con ν grados de libertad $t(\nu)$

Definición

$$p(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}.$$

Propiedades

$$\blacktriangleright \mathbb{E}_{X \sim t(\nu)}[X] = \mu_X = 0.$$

$$\mathbb{V}_{X \sim t(\nu)}[X] = \sigma_X^2 = \begin{cases} +\infty & \text{si } \nu \le 2, \\ \frac{\nu}{\nu - 2} & \text{si } \nu > 2 \end{cases} .$$

Si no conocemos varianza σ^2 y queremos estimar μ

- ▶ Supongamos que $X^{(i)}$ tiene distribución normal $\mathcal{N}(\mu, \sigma^2)$.
- ► Calculamos media y varianza muestrales \bar{X}_n y S_n^2 .
- ▶ Sabemos que $T = \frac{\sqrt{n}(\bar{X}_n \mu)}{\sqrt{S_n^2}}$ sigue distribución t(n-1).
- Buscamos intervalo centrado para T: $P\left(-t_{\frac{\alpha}{2}} \leq T < t_{\frac{\alpha}{2}}\right) = 1 \alpha.$
- \triangleright Resolvemos para μ :

$$\begin{split} P\bigg(-t_{\frac{\alpha}{2}} &\leq \sqrt{n}\frac{\bar{X}_n - \mu}{\sqrt{S_n^2}} < t_{\frac{\alpha}{2}}\bigg) = 1 - \alpha \\ &\Rightarrow \bar{X}_n - \frac{\sqrt{S_n^2}}{\sqrt{n}}t_{\frac{\alpha}{2}} < \mu \leq \bar{X}_n + \frac{\sqrt{S_n^2}}{\sqrt{n}}t_{\frac{\alpha}{2}}. \end{split}$$

Si conocemos μ y queremos estimar σ^2

- ▶ Supongamos que $X^{(i)}$ tiene distribución normal $\mathcal{N}(\mu, \sigma^2)$.
- Sabemos que $V = \frac{(n-1)S_n^2}{\sigma^2}$ tiene distribución ji al cuadrado con n-1 grados de libertad, $V \sim \chi^2(n-1)$.
- ▶ Buscamos intervalo centrado para V: $P\left(v_{\frac{\alpha}{2}} \leq V < v_{1-\frac{\alpha}{2}}\right) = 1 \alpha.$
- ▶ Resolvemos para σ^2 :

$$P\left(v_{\frac{\alpha}{2}} \le \frac{(n-1)S_n^2}{\sigma^2} < v_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\Rightarrow \frac{(n-1)S_n^2}{v_{\frac{1-\alpha}{2}}} < \sigma^2 \le \frac{(n-1)S_n^2}{v_{\frac{\alpha}{2}}}.$$

Distribución ji al cuadrado v grados de libertad $\chi^2(v)$

Definición

$$p(x) = \frac{x^{\frac{\nu}{2}-1}e^{-\frac{\nu}{2}}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}.$$

Propiedades

- $\blacktriangleright \mathbb{E}_{X \sim \chi^2(v)}[X] = \mu_X = v.$
- $\blacktriangleright \mathbb{V}_{X \sim \chi^2(v)}[X] = \sigma_X^2 = 2v.$

XKCD

Estimador insesgado

- Un estimador $\hat{\theta}$ es *insesgado* si $\mathbb{E}\Big[\hat{\theta}\Big] = \theta$ para cualquier valor de θ .
- ▶ En caso contrario, el estimador es sesgado y $\mathbb{E}\Big[\hat{\theta}\Big] \theta$ se llama sesgo.

Ejemplo: varianza muestral

Consideremos el siguiente estimador de la varianza:

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X^{(i)} - \bar{X}_n)^2.$$

► ¿Es sesgado?

Ejemplo: varianza muestral

$$\mathbb{E}[\hat{\sigma}_{n}^{2}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(X^{(i)} - \bar{X}_{n}\right)^{2}\right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X^{(i)2} + \bar{X}_{n}^{2} - 2X^{(i)}\bar{X}_{n}\right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}\left[X^{(i)2}\right] + \mathbb{E}\left[\bar{X}_{n}^{2}\right] - 2\mathbb{E}\left[X^{(i)}\bar{X}_{n}\right]\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}\left[X^{(i)2}\right] + \mathbb{E}\left[\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} X^{(j)} X^{(k)}\right] - 2\mathbb{E}\left[\frac{1}{n} X^{(i)} \sum_{j=1}^{n} X^{(j)}\right]\right)$$

Ejemplo: varianza muestral

$$= \sum_{i=1}^{n} \left(\frac{\sigma^2 + \mu^2}{n} + \frac{(n^2 - n)\mu^2 + n(\sigma^2 + \mu^2)}{n^3} - \frac{2((n-1)\mu^2 + \sigma^2 + \mu^2)}{n^2} \right)$$

$$= \frac{1}{n^2} (n^2 \sigma^2 + n^2 \mu^2 + n^2 \mu^2 + n\sigma^2 - 2n^2 \mu^2 - 2n\sigma^2)$$

$$= \frac{(n^2 - n)}{n^2} \sigma^2 = \frac{n - 1}{n} \sigma^2.$$

Ejemplo: varianza muestral

- ightharpoonup ¡El estimador $\hat{\sigma}_n^2$ es sesgado!
- $\blacktriangleright \mathbb{E}[\hat{\sigma}_n^2] = \frac{n-1}{n}\sigma^2.$

Corrección: varianza muestral con n-1

Consideremos el siguiente estimador de la varianza:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X^{(i)} - \bar{X}_n)^2 = \frac{n}{n-1} \hat{\sigma}_n^2.$$

► Ahora tenemos que:

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1}\mathbb{E}\left[\hat{\sigma}_n^2\right] = \frac{n}{n-1}\frac{n-1}{n}\sigma^2 = \sigma^2.$$

Otros estimadores

¿Cómo podemos obtener estimadores?

- Minimizar una función de error.
- Máxima verosimilitud.
- Máximo a posteriori.

Estimador insesgado de mínima varianza (MVUE)

Definición

ightharpoonup Estimador insesgado de θ :

$$\mathbb{E}\Big[\hat{\theta}\Big] = \theta.$$

► Menor varianza:

$$\hat{ heta} = \mathop{\mathsf{arg}}\limits_{e \; \mathsf{estimador} \; \mathsf{insesgado}} \mathbb{E} \Big[(e - heta)^2 \Big].$$

Nota

▶ Si es que existe, es único. - No siempre existe.

Minimizar una función de error

Error cuadático medio

Definición:

$$\mathsf{MSE}\!\left(\hat{\theta}\right) = \mathbb{E}\!\left[\left(\hat{\theta} - \theta\right)^2\right].$$

► Al igual que antes, se minimiza MSE:

$$\hat{\theta} = \underset{e \text{ estimador}}{\operatorname{arg \, min}} \, \operatorname{MSE}\Big(\hat{\theta}\Big) = \underset{e \text{ estimador}}{\operatorname{arg \, min}} \, \mathbb{E}\Big[(e-\theta)^2\Big].$$

Descomposición

$$\begin{split} \mathsf{MSE}\Big(\hat{\theta}\Big) &= \mathbb{E}\bigg[\Big(\hat{\theta} - \mathbb{E}\Big[\hat{\theta}\Big] + \mathbb{E}\Big[\hat{\theta}\Big] - \theta\Big)^2\bigg] \\ &= \underbrace{\mathbb{E}\bigg[\Big(\hat{\theta} - \mathbb{E}\Big[\hat{\theta}\Big]\Big)^2\bigg]}_{\mathsf{varianza}} + \underbrace{\Big(\mathbb{E}\Big[\hat{\theta}\Big] - \theta\Big)^2}_{\mathsf{sesgo}^2} \end{split}$$

Minimizar una función de error

Ejemplo

- ► Sea $\hat{\theta}_{MVUE}$ el estimador insesgado de mínima varianza.
- ► Sea $\hat{\theta}_{\alpha} = (1 + \alpha)\hat{\theta}_{\text{MVUE}}$ otro estimador.
- Notar que $\mathbb{E}\Big[\hat{ heta}_{lpha}\Big]=(1+lpha) heta$. Si lpha
 eq 0, es sesgado.

Se tiene que

$$\mathsf{MSE}\Big(\hat{\theta}_{\alpha}\Big) = (1+\alpha)^2 \mathsf{MSE}\Big(\hat{\theta}_{\mathsf{MVUE}}\Big) + \alpha^2 \theta^2.$$

El error es menor si

$$-\frac{2\mathsf{MSE}\Big(\hat{\theta}_{\mathsf{MVUE}}\Big)}{\mathsf{MSE}\Big(\hat{\theta}_{\mathsf{MVUE}}\Big)+\theta^2}<\alpha<0.$$

Consistencia

Definición

▶ Un estimador $\hat{\theta}_n$ es consistente si converge a θ cuando $n \to \infty$.

¿Por qué?

- ▶ Todo estimador cuyo sesgo y varianza convergen a 0 si $n \to \infty$, es consistente.
- \triangleright Un estimador insesgado lo es para todo n.
- Aquí nos interesa que sea bueno cuando n es grande.
- ▶ La media muestral \bar{X}_n es consistente.

Recordar – estimadores

Funciones de la muestra aleatoria

- $\hat{\theta}_n = g(X^{(1)}, X^{(2)}, \dots, X^{(n)}).$
- Son variables aleatorias: tienen una distribución de probabilidad.

En realidad no conocemos θ

► Bayes:

$$p(\theta \mid X_n) = \frac{p(X_n \mid \theta)p(\theta)}{p(X_n)}.$$

Enfoque bayesiano

En realidad no conocemos θ

$$p(\theta \mid \mathsf{X}_n) = \frac{p(\mathsf{X}_n \mid \theta)p(\theta)}{p(\mathsf{X}_n)}.$$

Ejemplo: modelo de distribución normal

Datos

► Logaritmo de cantidad de horas jugadas en promedio de 3000 juegos de plataforma Steam.

Modelo

- ▶ Supongamos un modelo como $\mathcal{N}(\mu, \sigma^2)$.
- ▶ Queremos estimar μ y σ^2 .

Distribución conjunta de μ y σ^2

$$p(\mu, \sigma^2 \mid \mathsf{X}_n) = \underbrace{\frac{p(\mathsf{X}_n \mid \mu, \sigma^2)}{p(\mathsf{X}_n \mid \mu, \sigma^2)} \underbrace{p(\mu, \sigma^2)}_{\text{evidencia}}}_{\text{evidencia}}.$$

Componentes

► Verosimilitud:

$$p(X_n \mid \mu, \sigma^2) = \prod_{i=1}^n p(x^{(i)} \mid \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}}.$$

Componentes

- A priori: veremos dos casos:
 - 1. $\mu \sim \mathcal{N}(0,1)$ y $\sigma^2 \sim \Gamma(1,5,0,01)$.
 - 2. $\mu \sim U(-4,4) \text{ y } \sigma^2 \sim U(0,1,2)$.
- Evidencia: cte. de normalización para $\iint p(\mu, \sigma^2 \mid X_n) d\mu d\sigma^2 = 1.$

Ejemplo: modelo de distribución normal - caso 1

Ejemplo: modelo de distribución normal – caso 2

Enfoque bayesiano

Distribución de θ

$$p(\theta \mid X_n) = \frac{p(X_n \mid \theta)p(\theta)}{p(X_n)}.$$

Una posibilidad: buscar el máximo de $p(\theta \mid X_n)$

$$\begin{split} \hat{\theta}_n &= \arg \max_{\theta} p(\theta \mid \mathsf{X}_n) = \arg \max_{\theta} \frac{p(\mathsf{X}_n \mid \theta) p(\theta)}{p(\mathsf{X}_n)} \\ &= \arg \max_{\theta} p(\mathsf{X}_n \mid \theta) p(\theta). \end{split}$$

Máximo de $p(\theta \mid X_n)$

- En este enfoque, se ignora la distribución a priori.
- En caso de que θ es acotado, sería equivalente a una distribución uniforme a priori.

$$\hat{\theta}_n = \arg \max_{\theta} p(X_n \mid \theta).$$

Máximo de $p(\theta \mid X_n)$

$$\hat{\theta}_n = \arg \max_{\theta} p(X_n \mid \theta).$$

Ejemplo: modelo de distribución normal $\mathcal{N}(\mu, \sigma^2)$

Verosimilitud:

$$p(X_n \mid \mu, \sigma^2) = \prod_{i=1}^n p(x^{(i)} \mid \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}}.$$

Maximizamos logaritmo con respecto a μ , derivando e igualando a 0:

$$\frac{d\left[\ln\left(p\left(X_n\mid\mu,\sigma^2\right)\right)\right]}{d\mu} = \sum_{i=1}^n \frac{1}{\sigma^2} \left(x^{(i)} - \mu\right) = 0 \Rightarrow \hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n x^{(i)}.$$

Máximo de $p(\theta \mid X_n)$

$$\hat{\theta}_n = \arg \max_{\alpha} p(X_n \mid \theta).$$

Ejemplo: modelo de distribución normal $\mathcal{N}(\mu, \sigma^2)$

$$p(X_n \mid \mu, \sigma^2) = \prod_{i=1}^n p(x^{(i)} \mid \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}}.$$

Maximizamos logaritmo con respecto a σ^2 , derivando e

igualando a 0:
$$d\left[\ln\left(p(X_n \mid \mu, \sigma^2)\right)\right] = \frac{n}{r} d\left[1/r^2 + \frac{1}{r^2}\right] d\left[1/r^2 + \frac{1}$$

$$\frac{d\left[\ln\left(p\left(\mathsf{X}_{n}\mid\mu,\sigma^{2}\right)\right)\right]}{d\sigma^{2}} = \sum_{i=1}^{n} \frac{d}{d\sigma^{2}} \left[-\frac{1}{2}\left(\ln\left(\sigma^{2}\right) + \frac{\left(x^{(i)}-\mu\right)^{2}}{\sigma^{2}}\right)\right]$$

$$= \sum_{i=1}^{n} -\frac{1}{2}\left(\frac{1}{\sigma^{2}} - \frac{\left(x^{(i)}-\mu\right)^{2}}{\left(\sigma^{2}\right)^{28}}\right) = 0 \Rightarrow \hat{\sigma}_{n}^{2} = \frac{1}{n}\sum_{i=1}^{n}\left(x^{(i)}-\mu\right)^{2}.$$

Máxima verosimilitud (Maximum likelihood estimate MLE) Máximo de $p(\theta \mid X_n)$

$$\hat{ heta}_n = rg \max_{lpha} p(\mathsf{X}_n \mid heta).$$

Ejemplo: modelo de distribución normal $\mathcal{N}(\mu, \sigma^2)$

Estimadores de máxima verosimilitud (MLE):

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n x^{(i)} \text{ y } \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (x^{(i)} - \mu)^2.$$

Máximo de $p(\theta \mid X_n)$

- En este enfoque, se ignora la distribución a priori.
- ightharpoonup En caso de que θ es acotado, sería equivalente a una distribución uniforme a priori.

$$\hat{\theta}_n = \arg \max_{\theta} p(X_n \mid \theta).$$

Propiedades

- **E** Es asintóticamente insesgado: $\lim_{n\to\infty} \mathbb{E}\left[\hat{\theta}_n\right] = \theta$.
- ightharpoonup Es asintóticamente consistente: lím $_{n o \infty} P\Big(\Big| \hat{\theta}_n \theta \Big| > \epsilon \Big) = 0.$
- Es *eficiente* (su varianza es la menor posible para un estimador insesgado. Buscar teorema de Cramér-Rao).
- Si existe un estadístico suficiente para θ, el estimador de máxima verosimilitud se puede expresar en base a ese estadístico.

Ejemplo: distribución de Poisson

- ► Muestra $\{x^{(1)}, \dots, x^{(n)}\}$ de tamaño n.
- ► Recordar: $f(x^{(i)}) = e^{-\lambda} \frac{\lambda^{x^{(i)}}}{x^{(i)}!}$.
- ightharpoonup ¿Estimador $\hat{\lambda}_n^{\mathsf{MLE}}$ de λ ?

Desarrollo

Verosimilitud:

$$P(X_n \mid \lambda) = \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{x^{(i)}}}{x^{(i)!}} = e^{-\lambda n} \frac{\lambda^{\sum_{i=1}^n x^{(i)}}}{\prod_{i=1}^n x^{(i)!}}.$$

Maximizamos derivando con respecto a λ e igualando a 0:

$$\left(-n+\frac{1}{\lambda}\sum_{i=1}^{n}x^{(i)}\right)e^{-\lambda n+\ln(\lambda)\sum_{i=1}^{n}x^{(i)}}=0\Rightarrow\hat{\lambda}_{n}^{\mathsf{MLE}}=\frac{1}{n}\sum_{i=1}^{n}x^{(i)}.$$

Ejemplo: distribución Gamma

- Muestra $\{x^{(1)}, \dots, x^{(n)}\}$ de tamaño n.
- ► Recordar: $p(x^{(i)}) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{(i)^{\alpha-1}} e^{-\beta x^{(i)}}$.
- \triangleright ¿Estimador $\hat{\beta}_n^{\text{MLE}}$ de β , si α es conocido?

Desarrollo

Verosimilitud:
$$p(X_n \mid \alpha, \beta) = \prod_{i=1}^n \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{(i)^{\alpha-1}} e^{-\beta x^{(i)}} = \frac{\beta^{\alpha n} e^{-\beta \sum_{i=1}^n x^{(i)}}}{\Gamma(\alpha)^n} \prod_{i=1}^n x^{(i)^{\alpha-1}}.$$

Maximizamos derivando con respecto a β e igualando a 0:

$$\left(\frac{\alpha n}{\beta} - \sum_{i=1}^{n} x^{(i)}\right) e^{-\beta \sum_{i=1}^{n} x^{(i)} + \ln(\beta) \alpha n} = 0 \Rightarrow \hat{\beta}_{n}^{\mathsf{MLE}} = \frac{\alpha n}{\sum_{i=1}^{n} x^{(i)}}.$$

Enfoque bayesiano

Distribución de θ

$$p(\theta \mid X_n) = \frac{p(X_n \mid \theta)p(\theta)}{p(X_n)}.$$

Una posibilidad: buscar el máximo de $p(\theta \mid X_n)$

$$\begin{split} \hat{\theta}_n &= \arg \max_{\theta} p(\theta \mid \mathsf{X}_n) = \arg \max_{\theta} \frac{p(\mathsf{X}_n \mid \theta) p(\theta)}{p(\mathsf{X}_n)} \\ &= \arg \max_{\theta} p(\mathsf{X}_n \mid \theta) p(\theta). \end{split}$$

Máximo de $p(\theta \mid X_n)$

- ► En este enfoque, se debe definir un a priori.
- ► Como vimos, es más importante cuando *n* es pequeño.

$$\hat{\theta}_n = \arg \max_{\theta} p(X_n \mid \theta) p(\theta).$$

Máximo de $p(\theta \mid X_n)$

$$\hat{\theta}_n = \arg \max_{\theta} p(X_n \mid \theta) p(\theta).$$

Ejemplo: modelo de distribución normal $\mathcal{N}(\mu, \sigma^2)$ y prior $\mathcal{N}(0, 1)$

$$p(X_n \mid \mu, \sigma^2) p(\mu, \sigma^2) = p(\sigma^2) \frac{1}{\sqrt{2\pi}} e^{-\frac{\mu^2}{2}} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(x^{(i)} - \mu\right)^2}{2\sigma^2}}.$$

▶ Supongamos σ^2 conocido, y estimemos μ :

$$p(X_n \mid \mu)p(\mu) = \frac{1}{\sqrt{2\pi}}e^{-\frac{\mu^2}{2}} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{\left(x^{(i)} - \mu\right)^2}{2\sigma^2}}.$$

Máximo de $p(\theta \mid X_n)$

$$\hat{\theta}_n = \arg \max_{\alpha} p(X_n \mid \theta) p(\theta).$$

Ejemplo: modelo de distribución normal $\mathcal{N}(\mu, \sigma^2)$ y prior $\mathcal{N}(0, 1)$

$$p(X_n \mid \mu)p(\mu) = \frac{1}{\sqrt{2\pi}}e^{-\frac{\mu^2}{2}}\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{\left(x^{(i)}-\mu\right)^2}{2\sigma^2}}.$$

Maximizamos logaritmo con respecto a μ , derivando e igualando a 0:

$$\frac{d\left[\ln\left(p\left(\mathsf{X}_{n}\mid\mu,\sigma^{2}\right)p\left(\mu,\sigma^{2}\right)\right)\right]}{d\mu} = -\mu + \sum_{i=1}^{n} \frac{1}{\sigma^{2}}\left(x^{(i)} - \mu\right) = 0$$

$$\Rightarrow \hat{\mu}_n = \frac{1}{n + \sigma^2} \sum_{i=1}^n x^{(i)}.$$

Máximo de $p(\theta \mid X_n)$

$$\hat{\theta}_n = \arg \max_{\theta} p(X_n \mid \theta) p(\theta).$$

Ejemplo: modelo de distribución normal $\mathcal{N}(\mu, \sigma^2)$ y prior $\mathcal{N}(0, 1)$

- ► Suponiendo:
 - $ightharpoonup \sigma^2$ conocido.
 - ▶ A priori $\mu \sim \mathcal{N}(0,1)$.
- ▶ Entonces el estimador de máximo a posteriori (MAP) de μ es:

$$\hat{\mu}_n = \frac{1}{n+\sigma^2} \sum_{i=1}^n x^{(i)}.$$

Ejemplo: Modelo de lenguaje GPT-3

Model Name	n_{params}	n_{layers}	d_{model}	n_{heads}	d_{head}	Batch Size	Learning Rate
GPT-3 Small	125 M	12	768	12	64	0,5 M	6.0×10^{-4}
GPT-3 Med.	350 M	24	1024	16	64	0,5 M	3.0×10^{-4}
GPT-3 Large	760 M	24	1536	16	96	0,5 M	$2,5 \times 10^{-4}$
GPT-3 XL	1,3 B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2,7 B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6,7 B	32	4096	32	128	2 M	$1,2 \times 10^{-4}$
GPT-3 13B	13,0 B	40	5140	40	128	2 M	1.0×10^{-4}
GPT-3 175B	175,0 B	96	12288	96	128	3,2 M	0.6×10^{-4}
o "GPT-3"							

Total Compute Used During Training

Ejemplo

Se desea modelar una varibale aleatoria con un modelo de mezcla de dos Gaussianas:

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \pi_k \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

- ightharpoonup k = 1,2 indica la etiqueta de la Guassiana.
- Ambas tienen la misma varianza σ^2 , pero distintas medias μ_1 y μ_2 .
- Se supone una probabilidad a priori para cada clase $\pi_1 = \frac{1}{2}$ y $\pi_2 = \frac{1}{2}$.
- ▶ Se tiene una muestra iid de N datos, donde cada uno proviene de una Gaussiana.

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \pi_k \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

Modelo

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

Posterior de clases

ightharpoonup Sea k_i la clase asociada al dato i.

$$\begin{aligned} p_1^{(i)} &= p\Big(k_i = 1 \mid x^{(i)}, \mu_1, \mu_2, \sigma^2\Big) \\ &= \frac{p\big(x^{(i)} \mid k_i = 1, \mu_1, \mu_2, \sigma^2\big) p(k_i = 1)}{p\big(x^{(i)} \mid \mu_1, \mu_2, \sigma^2\big)} \\ &= \frac{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(x-\mu_1\right)^2}{2\sigma^2} \frac{1}{2}}}{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(x-\mu_1\right)^2}{2\sigma^2} \frac{1}{2}} + \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(x-\mu_2\right)^2}{2\sigma^2} \frac{1}{2}}} = \frac{e^{-\frac{\left(x-\mu_1\right)^2}{2\sigma^2}}}{e^{-\frac{\left(x-\mu_1\right)^2}{2\sigma^2}} + e^{-\frac{\left(x-\mu_2\right)^2}{2\sigma^2}}} \end{aligned}$$

Modelo

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

Posterior de clases

$$\begin{split} \rho_1^{(i)} &= \frac{e^{-\frac{\left(x-\mu_1\right)^2}{2\sigma^2}}}{e^{-\frac{\left(x-\mu_1\right)^2}{2\sigma^2}} + e^{-\frac{\left(x-\mu_2\right)^2}{2\sigma^2}}} = \frac{1}{1 + e^{\frac{2x^{(i)}(\mu_2 - \mu_1) - \left(\mu_2^2 - \mu_1^2\right)}{2\sigma^2}}}, \\ \rho_2^{(i)} &= \frac{1}{1 + e^{\frac{-2x^{(i)}(\mu_2 - \mu_1) + \left(\mu_2^2 - \mu_1^2\right)}{2\sigma^2}}}. \end{split}$$

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

Si no conocemos μ_1 y μ_2

Los buscamos por MLE (máxima verosimilitud):

$$\begin{split} \frac{d}{d\mu_{k}} \ln \prod_{i=1}^{n} p\Big(x^{(i)} \mid \mu_{1}, \mu_{2}, \sigma^{2}\Big) &= \sum_{i=1}^{n} \frac{d}{d\mu_{k}} \ln \left[\sum_{k'=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{\left(x^{(i)} - \mu_{k'}\right)^{2}}{2\sigma^{2}}}\right] \\ &= \sum_{i=1}^{n} \frac{\frac{1}{2} \left(x^{(i)} - \mu_{k}\right) e^{-\frac{\left(x^{(i)} - \mu_{k}\right)^{2}}{2\sigma^{2}}}}{\sqrt{2\pi\sigma^{2}} \sigma^{2} \left[\frac{1}{2\sqrt{2\pi\sigma^{2}}} e^{-\frac{\left(x^{(i)} - \mu_{k}\right)^{2}}{2\sigma^{2}}} + \frac{1}{2\sqrt{2\pi\sigma^{2}}} e^{-\frac{\left(x^{(i)} - \mu_{k}\right)^{2}}{2\sigma^{2}}}\right]} \\ &= \sum_{i=1}^{n} p_{k}^{(i)} \frac{\left(x^{(i)} - \mu_{k}\right)}{\sigma^{2}} = 0. \end{split}$$

Modelo

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

Si no conocemos μ_1 y μ_2

- ► Tenemos que $\hat{\mu}_k = \frac{\sum_{i=1}^n p_k^{(i)} \chi^{(i)}}{\sum_{i=1}^n p_k^{(i)}}$, una media muestral "con pesos".
- Pero $p_k^{(i)}$ depende de μ_k .
- Se resuelve con algoritmo que actualiza $p_k^{(i)}$ y $\hat{\mu}_k$ iterativamente.

Ejercicio

 Verifique que la segunda derivada de la verosimilitud es negativa (es un máximo local).

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

$$t=0 \qquad t=1 \qquad t=2 \qquad t=3 \qquad t=9$$

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

Modelo

$$p(x \mid \mu_1, \mu_2, \sigma^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}.$$

$$p(x \mid \mu_1, \mu_2, \sigma_1^2, \sigma_2^2) = \sum_{k=1}^{2} \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-\frac{(x-\mu_k)^2}{2\sigma_k^2}}.$$

$$t=0 \qquad t=1 \qquad t=2 \qquad t=3 \qquad t=9$$