- + Breathing :- Process involves inhalation and exhalation.
- + Involves exchange of gases (O2, CO2) (from air)

Respiratory System

Conducting part

- + Transport air (O₂) to alveoli
- → Prevents the entry of foreign particle, humidifies and brings the air to body temperature.

Respiratory or exchange part

- + Site of diffusion of gases (O₂ & CO₂).
- + Consists alveoli and blood vessels.

14. BREATHING AND

EXCHANGE OF GASES

Epiglottis Larynx

Trachea

membranes

Pleural fluid

-Alveoli

RESPIRATION /

Aerobic

Anaerobic

O₂ is required

O₂ is not required

Oxidation of glucose in the presence or absence of oxygen.

> ATP is produced (Adenosine triphosphate)

Respiratory Organs

- + Gills- Pisces, Aquatic arthropods, Molluscs.
- + **Skin** Earthworm.
- + Moist skin and lungs- Amphibians
- + Entire body surface- sponges. coelenterate and flatworm.
- + Tracheal System-Insects
- + Lungs- Mammals

Epiglottis

- + Cartilaginous flap
- + Prevents the entry of food during swallowing.

Mechanism of Breathing

Inspiration

+ Air is drawn in, an active process.

+ Occurs due to negative pressure.

Diaphragm and external intercoastal muscles contracts

- + Volume of thoracic chamber increases.
- + Pulmonary pressure decreases.
- → Air moves from high pressure zone to low pressure zone (PL < PA).
- + Air moves inside the lungs $(p \bowtie \frac{1}{N})$

Expiration

- + Alveolar air is expelled out, passive process
- + Occurs due to positive pressure

Diaphragm and external intercoastal muscles relax

- + Pulmonary pressure increases.
- + Air moves outside the lungs (PA < PL).
- + Volume of thoracic chamber decreases.

HUMAN RESPIRATORY SYSTEM

Diaphragm

- External nostrils
- Nasal cavities
- → Pharynx

Cut end of rib

Lung

- Larynx Voice box.
- Trachea protected by 'c' shaped cartilaginous rings.
 - prevent collapsing.
- Bronchi secrete mucous.
- Bronchioles Give rise to numerous Alveoli.

Respiratory Volumes /

Tidal volume (Tv)

(500ml: 6000-8000ml/min)

Volume of air inspired or expired per breath.

(IRV) (2500-3000 ml)

Inspiratory Reserve Volume Volume of air one inhales by forced inspiration.

Expiatory Reserve volume (ERV) (1000-1100 ml)

Extra volume of air one inhales by forced expiration.

Residual volume (RV) (1100-1200 ml)

Volume of air remaining in lungs after forced

exhalation.

Dead air volume

Not involved in gaseous exchange but present

in the lungs (150 ml).

Oxygen dissociation curve /

Factors affecting the binding of O₂ with Hb **Conditions favorable for association**

- + High pO₂, low pCO₂
- **→** Low H+ Concentration
- + Low Temperature

Conditions favorable for dissociation

- + Low pO₂, high pCO₂
- → High H+ Concentration
- + High Temperature

Exchange of gases /

- occurs by diffusion

Rate of diffusion influenced:-

- + Pressure/Concentration gradient of gases.
- + Solubility of gas & thickness of membrane.

Respiratory Capacities

Inspiratory Capacity Volume of air one inhales after normal exhalation

[IC = TV+ IRV] 3000 - 3500 ml

Expiratory Capacity Volume of air one exhales after normal inhalation

(EC = TV + ERV) 1500 - 1600 ml

Functional Residual

volume of air remaining in lungs after normal Capacity (FRC) exhalation [FRC = ERV + RV] 2100 - 2300 ml

Vital capacity (Vc) volume of air exhales or inhales after forced inhalation

or exhalation (VC = ERV + TV + IRV 3500 - 4500 ml)

Transport of Gases

0,

+ 97% through Hb (oxyhemoglobin)

+ 3% through plasma

 CO_2

- + 70% through HCO₃
- + 7% through plasma.
- + 20-25% through RBCs

Factors affecting the blinding of CO₂ /

For association

- + Low pO₂
- + High pCO₂
- + High H temp

 $HCO_3 - + H + \longrightarrow H_2CO_3$ carbonic anhydrase

For dissociation

- + High pO₂
- + Low pCO₂
- + Low H temp.

 $H_2CO_2 \longrightarrow CO_2 + H_2O$ carbonic anhydrase

Disorders

Silicosis

- + Example of occupational respiratory disorder.
- + Caused by inhalation of silica dust for long time.

Asthma

Inflammation of bronchi & bronchioles, difficulty in breathing.

Emphysema

- + Decreased respiratory surface.
- + Caused by smoking.
- + Damaged alveolar wall.