Fast and Accurate Network Embeddings via Very Sparse Random Projection

Haochen Chen¹, Syed Fahad Sultan¹, Yingtao Tian¹, Muhao Chen², Steven Skiena¹

Stony Brook University¹
University of California, Los Angeles²

One-sentence Summary

 FastRP: a network embedding method almost as performant as DeepWalk but runs 4,000 times faster

Outline

- Background and Motivation
- FastRP Fast NE via Very Sparse Random Projection
- Evaluation

Outline

- Background and Motivation
- FastRP Fast NE via Very Sparse Random Projection
- Evaluation

Background

- What is network embedding?
 - Low-dimensional latent representation of nodes in a network

Adjacency Matrix (or its transformation)

Latent Representations

 Node Classification **Link Prediction**

Clustering

The Task of Network Embedding

Formally: given a network G = (V, E)

We aim to learn a mapping $\Phi:V\mapsto\mathbb{R}^{|V|\times d}$ from each vertex to a d-dimensional vector in the real space

Two Questions to Answer...

- What is an appropriate input matrix to use?
 - Transition matrix, the (normalized) Laplacian matrix, or the powers of the Node Similarity Matrix Construction.
 - And sometimes we sample from an input matrix instead of explicitly construct it
- What dimension reduction techniques should be applied on this input matrix? Dimension Reduction.
 - Many choices: skip-gram, SVD, random projection, etc.

DeepWalk's Answer to the Two Questions

Algorithm 3: NetMF for a Small Window Size *T* Input matrix: Trix:

Coll 1 Compute P^1, \dots, P^T ;

1 Compute $M = \frac{\text{vol}(G)}{bT} \left(\sum_{r=1}^T P^r \right) D^{-1}$;

2 Compute $M' = \max(M, 1)$;

4 Rank-d approximation by SVD: $\log M' = U_d \Sigma_d V_d^T$;

5 **return** $U_d \sqrt{\Sigma_d}$ as network embedding. Element-wise transformation Powers of the transition matrix

 $(n^2 \text{ elements!})$

- (Note: direct computation of this matrix is not feasible, so DeepWalk samples from it instead)
- Dimension reduction: implicitly matrix factorization with Skip-gram

Motivation: Why is DeepWalk slow?

- DeepWalk samples node pairs from different powers of the transition matrix A, and then apply Skip-gram on these samples
- Drawback #1: huge number of samples needed
 - for a graph with 1M nodes, DeepWalk samples 80 random walks of length 40, and set the window size in Skip-gram to 10
 - Around 1M * 80 * 40 * 10 = 30B node pairs are sampled!
- Drawback #2: Skip-gram is not that fast
 - SGD-based optimization

Motivation: Scalability Issue with Existing Methods

- It takes about 30 days of CPU time to run DeepWalk on the Youtube graph (with 1M nodes)
 - Still, DeepWalk is one of the most scalable network embedding method

Can we design a more scalable network embedding algorithm?

Motivation

We want a network embedding method that overcomes these drawbacks via:

- Design a proper input matrix with lessons learn from DeepWalk:
 - Raise *A* to higher power
 - Proper transformation / normalization of matrix elements
- Employ a scalable dimension reduction technique

Outline

- Background and Motivation
- FastRP Fast NE via Very Sparse Random Projection
- Evaluation

Very Sparse Random Projection: Scalable Dimension Reduction

- Random projection: optimization-free method for dimension reduction
- Given a input similarity matrix $S \in \mathbb{R}^{N \times N}$, simply compute $U = S \cdot R$, $R \in \mathbb{R}^{N \times d}$ as the embedding matrix where each element of R is sampled from the following distribution:

$$\mathbf{R}_{ij} = \begin{cases} \sqrt{s} \text{ with probability } \frac{1}{2s} \\ 0 \text{ with probability } 1 - \frac{1}{s} \\ -\sqrt{s} \text{ with probability } \frac{1}{2s} \end{cases}$$

Random Projection: Input Similarity Matrix

 Similar to DeepWalk, we can take a weighted combination of different powers of A:

$$S = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_k A^k$$

- k = 5 is usually enough
- But we are missing the element-wise log transformation part and we want to avoid that
 - But why is the transformation important anyway?

Why is element-wise transformation important?

Intuitive explanation:

$$\mathbf{A}_{ij}^k o d_j/2m$$
 when $k o \infty$

- The distribution of entries in A follows the node degree distribution of G
 - 。 which is usually skewed,不是对称的(幂律分布)
- The element-wise log-transformation reduces data skewness

Our alternative element-wise transformation

- ullet Leverage the fact that $\,{f A}^k_{ij} o d_j/2m_j$
- We take $\tilde{\mathbf{A}}_{ij}^k = \mathbf{A}_{ij}^k \cdot \left(\frac{d_j}{2m}\right)^{\lambda-1} pprox \mathbf{A}_{ij}^k \cdot \left(\mathbf{A}_{ij}^k\right)^{\lambda-1} pprox \left(\mathbf{A}_{ij}^k\right)^{\lambda}$
- This is similar to the idea of Tukey transformation
- λ is a tunable parameter between 0 and 1
- λ =0.5: taking squared root of features

$$\tilde{\mathbf{A}}^k = \mathbf{A}^k \cdot \mathbf{L} \text{ where } \mathbf{L} = \operatorname{diag}\left[\left(\frac{d_1}{2m}\right)^{\beta}, \dots, \left(\frac{d_n}{2m}\right)^{\beta}\right]$$

Our Algorithm

Given an input transition matrix A, simply compute:

$$\mathbf{N} = \left(\alpha_1 \tilde{\mathbf{A}} + \alpha_2 \tilde{\mathbf{A}}^2 + \ldots + \alpha_k \tilde{\mathbf{A}}^k\right) \cdot \mathbf{R}$$

Where R is a sparse random matrix.

• Essentially, we only need to compute $ilde{A}\cdot R, ilde{A}^2\cdot R, \cdots, ilde{A}^k\cdot R$

Our Algorithm

- But computing \tilde{A}^k is still slow can we avoid it?
- Yes!

$$\tilde{A}^{2} \cdot R = A \cdot (\tilde{A} \cdot R)$$

$$\tilde{A}^{3} \cdot R = A \cdot (\tilde{A}^{2} \cdot R)$$
...
$$\tilde{A}^{k} \cdot R = A \cdot (\tilde{A}^{k-1} \cdot R)$$

- $R, \tilde{A} \cdot R, \tilde{A}^2 \cdot R, \cdots$ are all $N \times d$ matrix We always multiply an $N \times d$ matrix with a very sparse $N \times N$ matrix

Our Algorithm

Algorithm 1 FastRP(**A**)

Input:

graph transition matrix **A**, embedding dimensionality d, maximum power k, normalization strength β , weights $\alpha_1, \alpha_2, \ldots, \alpha_k$

Output: matrix of node representations $N \in \mathbb{R}^{n \times d}$

1: Produce $\mathbf{R} \in \mathbb{R}^{n \times d}$ according to Eq. 6

2:
$$\mathbf{N}_1 \leftarrow \mathbf{A} \cdot \mathbf{L} \cdot \mathbf{R}$$
 where $\mathbf{L}_{ij} = \left(\frac{d_j}{2m}\right)^{\bar{\beta}}$

3: **for** i = 2 to n **do**

$$4: \qquad \mathbf{N}_i \leftarrow \mathbf{A} \cdot \mathbf{N}_{i-1}$$

5: end for

6:
$$\mathbf{N} = \alpha_1 \mathbf{N}_1 + \ldots + \alpha_k \mathbf{N}_k$$

7: return N

Time complexity: $O((n+m) \cdot k \cdot d)$

Outline

- Background and Motivation
- FastRP Fast NE via Very Sparse Random Projection
- Evaluation

CPU Time Comparison

Dataset		Speedup over				
	FastRP	RandNE	LINE	DeepWalk	node2vec	DeepWalk
WWW-200K	136.0 seconds	169.8 seconds	4.6 hours	6.9 days	63.8 days	4383x
WWW-10K	7.8 seconds	13.6 seconds	3.2 hours	9.2 hours	59.8 hours	4246x
Blogcatalog	6.0 seconds	10.5 seconds	3.0 hours	8.7 hours	41.2 hours	5220x
Flickr	33.1 seconds	45.1 seconds	4.2 hours	3.1 days	28.5 days	8091x

4000x faster than DeepWalk

Visualization

FastRP

DeepWalk

RandNE

KNN from Node Embeddings

Methods	FastRP	DeepWalk	RandNE	FastRP	DeepWalk	RandNE
Websites	nytimes.com			delta.com		
Neighbors	huffingtonpost.com washingtonpost.com cnn.com npr.org latimes.com	washingtonpost.com huffingtonpost.com cnn.com cbsnews.com time.com	huffingtonpost.com washingtonpost.com forbes.com cnn.com npr.org	aa.com united.com usairways.com alaskaair.com jetblue.com	aa.com united.com usairways.com southwest.com jetblue.com	aa.com southwest.com united.com expedia.com priceline.com
Methods	FastRP	DeepWalk	RandNE	FastRP	DeepWalk	RandNE
Websites		vldb.org			arsenal.com	
Neighbors	sigmod.org comp.nus.edu.sg sigops.org cidrdb.org cse.iitb.ac.in	sigmod.org morganclaypool.com kdd.org doi.acm.org informatic.uni-trier.de	comp.nus.edu.sg cs.sfu.ca cs.rpi.edu nlp.stanford.edu theory.stanford.edu	chelseafc.com mcfc.co.uk nufc.co.uk avfc.co.uk tottenhamhotspur.com	chelseafc.com tottenhamhotspur.com manutd.com mcfc.co.uk thefa.com	liverpoolfc.com manutd.com chelseafc.com skysports.com tottenhamhotspur.com

Multi-label Node Classification

Algorithm	Dataset				
	WWW-10K	BlogCatalog	Flickr		
LINE	6.66	19.63	10.69		
node2vec	27.42	21.44	11.89		
DeepWalk	25.54	21.30	14.00		
RandNE	15.68	20.88	13.64		
FastRP	26.92	23.43	15.02		

Table 4: Macro F_1 scores of all methods on WWW-10K, BlogCatalog, and Flickr in percentage (Section 4.6).

FastRP has best or almost the best performance

Detailed Node Classification Result

Normalization is Important

- $\beta = \lambda 1$ $\beta = 0$: no normalization

Thanks!

• Code is available at: http://bit.ly/fastrp-cikm

• For questions, feel free to contact me at haocchen@cs.stonybrook.edu

Check out our poster tonight!