ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant,

$$G = 6.67 \times 10^{-11} \,\text{m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \,\text{N} \cdot \text{m}^2/\text{kg}^2$$

1 atmosphere of pressure,

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

Magnitude of the acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$ Magnitude of the gravitational field strength at Earth's surface, g = 9.8 N/kg

	PREFIXES	
Factor	Prefix	Symbol
10 ¹²	tera	Т
10 ⁹	giga	G
10^{6}	mega	M
10 ³	kilo	k
10^{-2}	centi	c
10 ⁻³	milli	m
10^{-6}	micro	μ
10 ⁻⁹	nano	n
10^{-12}	pico	р

	hertz,	Hz	newton,	N
UNIT	joule,	J	pascal,	Pa
SYMBOLS	kilogram,	kg	second,	S
	meter,	m	watt,	W

V	ALUES			ETRIC I I ANGLI		ONS FO	R
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

	C	GEOMETRY AND TRIGONO	METRY	
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base $C = circumference$	$a^2 + b^2 = c^2$
Triangle	Cylinder	S	h = height	$\sin \theta = \frac{a}{a}$
$A = \frac{1}{2}bh$	$V = \pi r^2 \ell$	$\frac{\partial}{\partial r}$	$\ell = \text{length}$ $r = \text{radius}$	$\cos \theta = \frac{b}{a}$
2	$S = 2\pi r\ell + 2\pi r^2$		s = arc length	$\cos \theta = \frac{-}{c}$
Circle	Sphere		S = surface area $V = $ volume	$\tan \theta = \frac{a}{b}$
$A = \pi r^2$	$V = \frac{4}{3}\pi r^3$		w = width	$\frac{c}{a}$
$C = 2\pi r$			θ = angle	θ 90° _□
$s = r\theta$	$S = 4\pi r^2$			b

MECHANICS AND FLUIDS

r = radius, distance, or

$\begin{aligned} v_x &= v_{x0} + a_x t & a &= acceleration \\ x &= x_0 + v_{x0} t + \frac{1}{2} a_x t^2 & E &= energy \\ v_x^2 &= v_{x0}^2 + 2 a_x \left(x - x_0 \right) & J &= impulse \\ \vec{x}_{cm} &= \frac{\sum m_i \vec{x}_i}{\sum m_i} & k &= spring constant \\ \vec{x}_{em} &= \frac{\sum \vec{F}}{m_{sys}} = \frac{\vec{F}_{net}}{m_{sys}} & p &= momentum \\ \vec{F}_g &= G \frac{m_1 m_2}{r^2} & t &= time \\ \vec{F}_g &\leq \mu \vec{F}_n & U &= potential energy \\ \vec{F}_s &= -k \Delta \vec{x} & W &= work \\ a_c &= \frac{v^2}{r} & y &= height \\ \vec{W} &= F_{\parallel} d &= F d \cos \theta \\ \Delta K &= \sum W_i &= \sum F_{\parallel,i} d_i \\ U_g &= mg \Delta y & W &\Delta E \end{aligned}$
$P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ $P_{\text{inst}} = F_{\parallel} v = F v \cos \theta$ $\vec{p} = m \vec{v}$ $\vec{F}_{\text{net}} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$

$$\begin{array}{c} a = \operatorname{acceleration} \\ a = \operatorname{acceleration} \\ a = \operatorname{distance} \\ E = \operatorname{energy} \\ F = \operatorname{force} \\ J = \operatorname{impulse} \\ k = \operatorname{spring constant} \\ K = \operatorname{skinetic energy} \\ m = \operatorname{mass} \\ p = \operatorname{momentum} \\ P = \operatorname{power} \\ r = \operatorname{radius, distance, or} \\ position \\ t = \operatorname{time} \\ U = \operatorname{potential energy} \\ v = \operatorname{velocity or speed} \\ W = \operatorname{work} \\ x = \operatorname{position} \\ y = \operatorname{height} \\ \theta = \operatorname{angle} \\ \mu = \operatorname{coefficient of friction} \\ T = \frac{1}{f} \\ T_{s} = 2\pi \sqrt{\frac{f}{k}} \\ T_{p} = \frac{F_{h}}{A} \\ P = \frac{F_{h}}{A} \\ P$$