

Factor Graphs and Message Passing Algorithms

— Part 1: Introduction

Hans-Andrea Loeliger

December 2007

The Two Basic Problems

1. Marginalization: Compute

$$ar{f_k}(x_k) \stackrel{\triangle}{=} \sum_{\substack{x_1, \dots, x_n \ ext{except } x_k}} f(x_1, \dots, x_n)$$

2. Maximization: Compute the "max-marginal"

$$\hat{f}_k(x_k) \stackrel{\triangle}{=} \max_{x_1, \dots, x_n} f(x_1, \dots, x_n)$$
except x_k

assuming that f is real-valued and nonnegative and has a maximum. Note that

$$\operatorname{argmax} f(x_1, \dots, x_n) = \left(\operatorname{argmax} \hat{f}_1(x_1), \dots, \operatorname{argmax} \hat{f}_n(x_n)\right).$$

For large n, both problems are in general intractable (even for $x_1, \ldots, x_n \in \{0, 1\}$).

Factorization Helps

For example, if $f(x_1, \ldots, f_n) = f_1(x_1) f_2(x_2) \cdots f_n(x_n)$ then

$$\bar{f}_k(x_k) = \sum_{x_1} f_1(x_1) \cdots \sum_{x_{k-1}} f_{k-1}(x_{k-1}) f_k(x_k) \sum_{x_{k+1}} f_{k+1}(x_{k+1}) \cdots \sum_{x_n} f_n(x_n)$$

and

$$\hat{f}_k(x_k) = \max_{x_1} f_1(x_1) \cdots \max_{x_{k-1}} f_{k-1}(x_{k-1}) f_k(x_k) \max_{x_{k+1}} f_{k+1}(x_{k+1}) \cdots \max_{x_n} f_n(x_n).$$

Factorization helps also beyond this trivial example.

— Factor graphs and message passing algorithms.

Roots

Statistical physics:

- Markov random fields (Ising 1925?)

Signal processing:

- linear state-space models and Kalman filtering: Kalman 1960...
- recursive least-squares adaptive filters
- Hidden Markov models and forward-backward algorithm: Baum et al. 1966...

Error correcting codes:

- Low-density parity check codes: Gallager 1962; Tanner 1981; MacKay 1996; Luby et al. 1998...
- Convolutional codes and Viterbi decoding: Forney 1973...
- Turbo codes: Berrou et al. 1993...

Machine learning, statistics:

- Bayesian networks: Pearl 1988; Shachter 1988; Lauritzen and Spiegelhalter 1988; Shafer and Shenoy 1990...

Outline of this talk

1. Factor graphs:	. 6
2. The sum-product and max product algorithms	19
3. On factor graphs with cycles	48
4. Factor graphs and error correcting codes	51

Factor Graphs

A factor graph represents the factorization of a function of several variables. We use Forney-style factor graphs (Forney, 2001).

Example:

$$f(x_1, x_2, x_3, x_4, x_5) = f_{\mathcal{A}}(x_1, x_2, x_3) \cdot f_{\mathcal{B}}(x_3, x_4, x_5) \cdot f_{\mathcal{C}}(x_4).$$

Rules:

- A node for every factor.
- An edge or half-edge for every variable.
- Node g is connected to edge x iff variable x appears in factor g.

(What if some variable appears in more than 2 factors?)

A main application of factor graphs are stochastic models. Example:

Markov Chain

$$p_{XYZ}(x, y, z) = p_X(x) p_{Y|X}(y|x) p_{Z|Y}(z|y).$$

$$p_X$$
 $p_{Y|X}$ $p_{Z|Y}$

Other Notation Systems for Graphical Models

Example: p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x).

Forney-style factor graph.

Original factor graph [FKLW 1997].

Markov random field.

Terminology

Local function = factor (such as f_A , f_B , f_C).

Global function f = product of all local functions; usually (but not always!) real and nonnegative.

A configuration is an assignment of values to all variables.

The configuration space is the set of all configurations, which is the domain of the global function.

A configuration $\omega = (x_1, \dots, x_5)$ is valid iff $f(\omega) \neq 0$.

Invalid Configurations Do Not Affect Marginals

A configuration $\omega = (x_1, \dots, x_n)$ is valid iff $f(\omega) \neq 0$.

Recall:

1. Marginalization: Compute

$$ar{f}_k(x_k) \stackrel{\triangle}{=} \sum_{\substack{x_1, \dots, x_n \ ext{except } x_k}} f(x_1, \dots, x_n)$$

2. Maximization: Compute the "max-marginal"

$$\hat{f}_k(x_k) \stackrel{\triangle}{=} \max_{x_1, \dots, x_n} f(x_1, \dots, x_n)$$
except x_k

assuming that f is real-valued and nonnegative and has a maximum.

Auxiliary Variables

Example: Let Y_1 and Y_2 be two independent observations of X:

$$p(x, y_1, y_2) = p(x)p(y_1|x)p(y_2|x).$$

Literally, the factor graph represents an extended model

$$p(x, x', x'', y_1, y_2) = p(x)p(y_1|x')p(y_2|x'')f_{=}(x, x', x'')$$

where

$$f_{=}(x, x', x'') \stackrel{\triangle}{=} \delta(x - x')\delta(x - x'')$$

enforces X = X' = X'' for every valid configuration.

Branching Points

Equality constraint nodes may be viewed as branching points:

The factor

$$f_{=}(x, x', x'') \stackrel{\triangle}{=} \delta(x - x')\delta(x - x'')$$

enforces X = X' = X'' for every valid configuration.

Modularity, Special Symbols, Arrows

As a refinement of the previous example, let

$$Y_1 = X + Z_1 \tag{1}$$

$$Y_2 = X + Z_2 \tag{2}$$

with Z_1 and Z_2 independent of each other and of X:

The "+"-nodes represent the factors $\delta(x+z_1-y_1)$ and $\delta(x+z_2-y_2)$, which enforce (1) and (2) for every valid configuration.

Known Variables vs. Unknown Variables

Known variables (observations, known parameters, ...) may be plugged into the corresponding factors.

Example: $Y_2 = y_2$ observed.

Known variables will be denoted by small letters; unknown variables will usually be denoted by capital letters.

From A Priori to A Posteriori Probability

Example (cont'd): Let $Y_1 = y_1$ and $Y_2 = y_2$ be two independent observations of X. For fixed y_1 and y_2 , we have

$$p(x|y_1, y_2) = \frac{p(x, y_1, y_2)}{p(y_1, y_2)}$$
$$\propto p(x, y_1, y_2).$$

The factorization is unchanged (except for a scale factor).

Example:

Hidden Markov Model

$$p(x_0, x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = p(x_0) \prod_{k=1}^n p(x_k | x_{k-1}) p(y_k | x_{k-1})$$

Example:

Hidden Markov Model with Parameter(s)

$$p(x_0, x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \mid \theta) = p(x_0) \prod_{k=1}^n p(x_k | x_{k-1}, \theta) p(y_k | x_{k-1})$$

A non-stochastic example:

Least-Squares Problems

Minimizing $\sum_{k=1}^n x_k^2$ subject to (linear or nonlinear) constraints is equivalent to maximizing

$$e^{-\sum_{k=1}^{n} x_k^2} = \prod_{k=1}^{n} e^{-x_k^2}$$

subject to the given constraints.

Here, the factor graph represents a nonnegative real-valued function that we wish to maximize.

Outline

1. Factor graphs:	. 6
2. The sum-product and max product algorithms	19
3. On factor graphs with cycles	48
4. Factor graphs and error correcting codes	51

Recall:

The Two Basic Problems

1. Marginalization: Compute

$$ar{f_k}(x_k) \stackrel{\triangle}{=} \sum_{\substack{x_1, \dots, x_n \ ext{except } x_k}} f(x_1, \dots, x_n)$$

2. Maximization: Compute the "max-marginal"

$$\hat{f}_k(x_k) \stackrel{\triangle}{=} \max_{x_1, \dots, x_n} f(x_1, \dots, x_n)$$
except x_k

assuming that f is real-valued and nonnegative and has a maximum.

Message Passing Algorithms

operate by passing messages along the edges of a factor graph:

Towards the sum-product algorithm:

Computing Marginals—A Generic Example

Assume we wish to compute

$$ar{f_3}(x_3) = \sum_{\substack{x_1,\ldots,x_7 \ ext{except } x_3}} f(x_1,\ldots,x_7)$$

and assume that f can be factored as follows:

Example cont'd:

Closing Boxes by the Distributive Law

$$\bar{f}_3(x_3) = \left(\sum_{x_1, x_2} f_1(x_1) f_2(x_2) f_3(x_1, x_2, x_3)\right) \cdot \left(\sum_{x_4, x_5} f_4(x_4) f_5(x_3, x_4, x_5) \left(\sum_{x_6, x_7} f_6(x_5, x_6, x_7) f_7(x_7)\right)\right)$$

Example cont'd: Message Passing View

Example cont'd: Messages Everywhere

With
$$\overrightarrow{\mu}_{X_1}(x_1)\stackrel{\triangle}{=} f_1(x_1)$$
, $\overrightarrow{\mu}_{X_2}(x_2)\stackrel{\triangle}{=} f_2(x_2)$, etc., we have

$$\overrightarrow{\mu}_{X_3}(x_3) = \sum_{x_1, x_2} \overrightarrow{\mu}_{X_1}(x_1) \overrightarrow{\mu}_{X_2}(x_2) f_3(x_1, x_2, x_3)$$

$$\overleftarrow{\mu}_{X_5}(x_5) = \sum_{x_6, x_7} \overrightarrow{\mu}_{X_7}(x_7) f_6(x_5, x_6, x_7)$$

$$\overleftarrow{\mu}_{X_3}(x_3) = \sum_{x_4, x_5} \overrightarrow{\mu}_{X_4}(x_4) \overleftarrow{\mu}_{X_5}(x_5) f_5(x_3, x_4, x_5)$$

The Sum-Product Algorithm (Belief Propagation)

Sum-product message computation rule:

$$\overrightarrow{\mu}_X(x) = \sum_{y_1,\dots,y_n} g(x,y_1,\dots,y_n) \overrightarrow{\mu}_{Y_1}(y_1) \cdots \overrightarrow{\mu}_{Y_n}(y_n)$$

Sum-product theorem:

If the factor graph for some global function f has no cycles, then

$$\bar{f}_X(x) = \overrightarrow{\mu}_X(x) \overleftarrow{\mu}_X(x).$$

Arrows and Notation for Messages

For edges drawn with arrows:

 $\overrightarrow{\mu}_X$ denotes the message in the direction of the arrow.

 $\overline{\mu}_X$ denotes the message in the opposite direction.

Edges may be drawn with arrows just for the sake of this notation.

Sum-Product Algorithm: a Simple Example

$$\overrightarrow{\mu}_X(x) = p_X(x)$$

$$\overrightarrow{\mu}_{Z_1}(z_1) = p_{Z_1}(z_1)$$

$$\overrightarrow{\mu}_{Z_2}(z_2) = p_{Z_2}(z_2)$$

Sum-Product Example cont'd

$$\overleftarrow{\mu}_{X'}(x') = \int_{z_1} \overrightarrow{\mu}_{Z_1}(z_1) \, \delta(x' + z_1 - y_1) \, dz_1$$

$$= p_{Z_1}(y_1 - x')$$

$$\overleftarrow{\mu}_X(x) = \int_{x'} \int_{x''} \overleftarrow{\mu}_{X'}(x') \overleftarrow{\mu}_{X''}(x'') \, \delta(x - x') \, \delta(x - x'') \, dx' \, dx''$$

$$= p_{Z_1}(y_1 - x) \, p_{Z_2}(y_2 - x)$$

Sum-Product Example cont'd

Marginal of the global function at X:

$$\overrightarrow{\mu}_X(x) \overleftarrow{\mu}_X(x) = p_X(x) \underbrace{p_{Z_1}(y_1 - x) p_{Z_2}(y_2 - x)}_{p(y_1, y_2|x)}$$

$$\propto p(x|y_1, y_2).$$

Messages for Finite-Alphabet Variables

may be represented by a list of function values.

Assume, for example that X takes values in $\{+1, -1\}$:

$$\overrightarrow{\mu}_X = \left(\overrightarrow{\mu}_X(+1), \overrightarrow{\mu}_X(-1)\right) = \left(p_X(+1), p_X(-1)\right)$$

$$\overleftarrow{\mu}_{X'} = \left(\overleftarrow{\mu}_{X'}(+1), \overleftarrow{\mu}_{X'}(-1)\right) = \left(p_{Z_1}(y_1 - 1), p_{Z_1}(y_1 + 1)\right)$$

etc.

Applying the sum-product algorithm to

Hidden Markov Models

yields recursive algorithms for many things.

Recall the definition of a hidden Markov model (HMM):

$$p(x_0, x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = p(x_0) \prod_{k=1}^n p(x_k | x_{k-1}) p(y_k | x_{k-1})$$

Assume that $Y_1 = y_1, \ldots, Y_n = y_n$ are observed (known).

Sum-product algorithm applied to HMM:

Estimation of Current State

$$p(x_n|y_1, \dots, y_n) = \frac{p(x_n, y_1, \dots, y_n)}{p(y_1, \dots, y_n)}$$

$$\propto p(x_n, y_1, \dots, y_n)$$

$$= \sum_{x_0} \dots \sum_{x_{n-1}} p(x_0, x_1, \dots, x_n, y_1, y_2, \dots, y_n)$$

$$= \overrightarrow{\mu}_{X_n}(x_n).$$

For n=2:

Backward Message in Chain Rule Model

If Y = y is known (observed):

$$\overleftarrow{\mu}_X(x) = p_{Y|X}(y|x),$$

the likelihood function.

If Y is unknown:

$$\overleftarrow{\mu}_X(x) = \sum_y p_{Y|X}(y|x)$$
$$= 1.$$

Sum-product algorithm applied to HMM:

Prediction of Next Output Symbol

$$p(y_{n+1}|y_1, \dots, y_n) = \frac{p(y_1, \dots, y_{n+1})}{p(y_1, \dots, y_n)}$$

$$\propto p(y_1, \dots, y_{n+1})$$

$$= \sum_{x_0, x_1, \dots, x_n} p(x_0, x_1, \dots, x_n, y_1, y_2, \dots, y_n, y_{n+1})$$

$$= \overrightarrow{\mu}_{Y_n}(y_n).$$

For n=2:

Sum-product algorithm applied to HMM:

Estimation of Time-*k* **State**

$$p(x_k \mid y_1, y_2, \dots, y_n) = \frac{p(x_k, y_1, y_2, \dots, y_n)}{p(y_1, y_2, \dots, y_n)}$$

$$\propto p(x_k, y_1, y_2, \dots, y_n)$$

$$= \sum_{\substack{x_0, \dots, x_n \\ \text{except } x_k}} p(x_0, x_1, \dots, x_n, y_1, y_2, \dots, y_n)$$

$$= \overrightarrow{\mu}_{X_k}(x_k) \overleftarrow{\mu}_{X_k}(x_k)$$

For k = 1:

Sum-product algorithm applied to HMM:

All States Simultaneously

 $p(x_k|y_1,\ldots,y_n)$ for all k:

In this application, the sum-product algorithm coincides with the Baum-Welch / BCJR forward-backward algorithm.

Scaling of Messages

In all the examples so far:

- The final result (such as $\overrightarrow{\mu}_{X_k}(x_k) \overleftarrow{\mu}_{X_k}(x_k)$) equals the desired quantity (such as $p(x_k|y_1,\ldots,y_n)$) only up to a scale factor.
- \bullet The missing scale factor γ may be recovered at the end from the condition

$$\sum_{x_k} \gamma \overrightarrow{\mu}_{X_k}(x_k) \overleftarrow{\mu}_{X_k}(x_k) = 1.$$

- It follows that messages may be scaled freely along the way.
- Such message scaling is often mandatory to avoid numerical problems.

Sum-product algorithm applied to HMM:

Probability of the Observation

$$p(y_1, \dots, y_n) = \sum_{x_0} \dots \sum_{x_n} p(x_0, x_1, \dots, x_n, y_1, y_2, \dots, y_n)$$
$$= \sum_{x_n} \overrightarrow{\mu}_{X_n}(x_n).$$

This is a number. Scale factors cannot be neglected in this case.

For n=2:

Towards the max-product algorithm:

Computing Max-Marginals—A Generic Example

Assume we wish to compute

$$\hat{f}_3(x_3) = \max_{\substack{x_1, \dots, x_7 \ \text{except } x_3}} f(x_1, \dots, x_7)$$

and assume that f can be factored as follows:

Example:

Closing Boxes by the Distributive Law

$$\hat{f}_3(x_3) = \left(\max_{x_1, x_2} f_1(x_1) f_2(x_2) f_3(x_1, x_2, x_3)\right)$$

$$\cdot \left(\max_{x_4, x_5} f_4(x_4) f_5(x_3, x_4, x_5) \left(\max_{x_6, x_7} f_6(x_5, x_6, x_7) f_7(x_7)\right)\right)$$

Example cont'd: Message Passing View

$$\hat{f}_{3}(x_{3}) = \left(\underbrace{\max_{x_{1}, x_{2}} f_{1}(x_{1}) f_{2}(x_{2}) f_{3}(x_{1}, x_{2}, x_{3})}_{\overrightarrow{\mu}_{X_{3}}(x_{3})} \cdot \left(\underbrace{\max_{x_{4}, x_{5}} f_{4}(x_{4}) f_{5}(x_{3}, x_{4}, x_{5})}_{\overleftarrow{\mu}_{X_{5}}(x_{5})} \left(\underbrace{\max_{x_{6}, x_{7}} f_{6}(x_{5}, x_{6}, x_{7}) f_{7}(x_{7})}_{\overleftarrow{\mu}_{X_{5}}(x_{5})} \right) \right)$$

Example cont'd: Messages Everywhere

With
$$\overrightarrow{\mu}_{X_1}(x_1) \stackrel{\triangle}{=} f_1(x_1)$$
, $\overrightarrow{\mu}_{X_2}(x_2) \stackrel{\triangle}{=} f_2(x_2)$, etc., we have

$$\overrightarrow{\mu}_{X_3}(x_3) = \max_{x_1, x_2} \overrightarrow{\mu}_{X_1}(x_1) \overrightarrow{\mu}_{X_2}(x_2) f_3(x_1, x_2, x_3)$$

$$\overleftarrow{\mu}_{X_5}(x_5) = \max_{x_6, x_7} \overrightarrow{\mu}_{X_7}(x_7) f_6(x_5, x_6, x_7)$$

$$\overleftarrow{\mu}_{X_3}(x_3) = \max_{x_4, x_5} \overrightarrow{\mu}_{X_4}(x_4) \overleftarrow{\mu}_{X_5}(x_5) f_5(x_3, x_4, x_5)$$

The Max-Product Algorithm

Max-product message computation rule:

$$\overrightarrow{\mu}_X(x) = \max_{y_1,\dots,y_n} g(x,y_1,\dots,y_n) \overrightarrow{\mu}_{Y_1}(y_1) \cdots \overrightarrow{\mu}_{Y_n}(y_n)$$

Max-product theorem:

If the factor graph for some global function f has no cycles, then

$$\hat{f}_X(x) = \overrightarrow{\mu}_X(x) \overleftarrow{\mu}_X(x).$$

Max-product algorithm applied to HMM:

MAP Estimate of the State Trajectory

The estimate

$$(\hat{x}_0, \dots, \hat{x}_n)_{\text{MAP}} = \underset{x_0, \dots, x_n}{\operatorname{argmax}} p(x_0, \dots, x_n | y_1, \dots, y_n)$$

= $\underset{x_0, \dots, x_n}{\operatorname{argmax}} p(x_0, \dots, x_n, y_1, \dots, y_n)$

may be obtained by computing

$$\hat{p}_k(x_k) \stackrel{\triangle}{=} \max_{\substack{x_1, \dots, x_n \\ \text{except } x_k}} p(x_0, \dots, x_n, y_1, \dots, y_n)$$

$$= \overrightarrow{\mu}_{X_k}(x_k) \overleftarrow{\mu}_{X_k}(x_k)$$

for all k by forward-backward max-product sweeps.

In this example, the max-product algorithm is a time-symmetric version of the Viterbi algorithm with soft output.

Max-product algorithm applied to HMM:

MAP Estimate of the State Trajectory cont'd

Computing

$$\hat{p}_k(x_k) \stackrel{\triangle}{=} \max_{\substack{x_1, \dots, x_n \\ \text{except } x_k}} p(x_0, \dots, x_n, y_1, \dots, y_n)$$

$$= \overrightarrow{\mu}_{X_k}(x_k) \overleftarrow{\mu}_{X_k}(x_k)$$

simultaneously for all k:

Marginals and Output Edges

Marginals such $\overrightarrow{\mu}_X(x)\overleftarrow{\mu}_X(x)$ may be viewed as messages out of a "output half edge" (without incoming message):

$$\overrightarrow{\mu}_{\bar{X}}(x) = \int_{x'} \int_{x''} \overrightarrow{\mu}_{X'}(x') \, \overleftarrow{\mu}_{X''}(x'') \, \delta(x - x') \, \delta(x - x'') \, dx' \, dx''$$

$$= \overrightarrow{\mu}_{X'}(x) \, \overleftarrow{\mu}_{X''}(x)$$

⇒ Marginals are computed like messages out of "="-nodes.

Outline

1. Factor graphs:	. 6
2. The sum-product and max product algorithms	19
3. On factor graphs with cycles	48
4. Factor graphs and error correcting codes	51

What About Factor Graphs with Cycles?

What About Factor Graphs with Cycles?

- Generally iterative algorithms.
- For example, alternating maximization

$$\hat{x}_{\mathsf{new}} = \operatorname*{argmax}_{x} f(x, \hat{y}) \quad \mathsf{and} \quad \hat{y}_{\mathsf{new}} = \operatorname*{argmax}_{y} f(\hat{x}, y)$$

using the max-product algorithm in each iteration.

- Iterative sum-product message passing gives excellent results for maximization(!) in some applications (e.g., the decoding of error correcting codes).
- Many other useful algorithms can be formulated in message passing form (e.g., gradient ascent, Gibbs sampling, expectation maximization, variational methods,...).
- Rich and vast research area...

Outline

1.	Factor graphs:	. 6
2.	The sum-product and max product algorithms	19
3.	On factor graphs with cycles	48
4.	Factor graphs and error correcting codes	51

Factor Graph of an Error Correcting Code

pprox Tanner graph of the code (Tanner 1981)

A factor graph of a code $C \subset F^n$ represents (a factorization of) the membership indicator function of the code:

$$I_C: F^n \to \{0,1\}: x \mapsto \begin{cases} 1, & \text{if } x \in C \\ 0, & \text{else} \end{cases}$$

Factor Graph from Parity Check Matrix

Example: (7,4,3) binary Hamming code. $(F \stackrel{\triangle}{=} \mathsf{GF}(2).)$

$$C = \{x \in F^n : Hx^T = 0\}$$

with

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

The membership indicator function

$$I_C: F^n \to \{0,1\}: x \mapsto \begin{cases} 1, & \text{if } x \in C \\ 0, & \text{else} \end{cases}$$

of this code may be written as

$$I_C(x_1,\ldots,x_n) = \delta(x_1 \oplus x_2 \oplus x_3 \oplus x_5) \cdot \delta(x_2 \oplus x_3 \oplus x_4 \oplus x_6) \cdot \delta(x_3 \oplus x_4 \oplus x_5 \oplus x_7)$$

where \oplus denotes addition modulo 2. Each factor corresponds to one row of the parity check matrix.

Factor Graph from Parity Check Matrix (cont'd)

Example: (7,4,3) binary Hamming code.

$$C = \{x \in F^n : Hx^T = 0\}$$

with

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Factor Graph for Joint Code / Channel Model

Example: memoryless channel:

Factor Graph from Generator Matrix

Example: (7,4,3) binary Hamming code is the image of

$$F^k \to F^n : u \mapsto uG$$

with

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

Factor Graph of Dual Code

is obtained by interchanging partity check nodes and equality check nodes (Kschischang, Forney).

Works only for Forney-style factor graphs where all code symbols are external (half-edge) variables.

Example: dual of (7,4,3) binary Hamming code

Factor Graph Corresponding to Trellis

Example: (7,4,3) binary Hamming code

Factor Graph of Low-Density Parity-Check Codes

Standard decoder: iterative sum-product message passing. Convergence is not guaranteed!

Much recent / ongoing research on improved decoding: Yedidia, Freeman, Weiss; Feldman; Wainwright; Chertkov...

Single-Number Parameterizations of Soft-Bit Messages

Difference:
$$\Delta \stackrel{\triangle}{=} \frac{\mu(0) - \mu(1)}{\mu(0) + \mu(1)} = \text{mean of } \{+1, -1\}$$
-representation

Ratio: $\Lambda \stackrel{\triangle}{=} \mu(0)/\mu(1)$

Logarithm of ratio: $L \stackrel{\triangle}{=} \log (\mu(0)/\mu(1))$

Conversions among Parameterizations

	$\begin{pmatrix} \mu(0) \\ \mu(1) \end{pmatrix}$	$\Delta = m$	Λ	L
$\begin{pmatrix} \mu(0) \\ \mu(1) \end{pmatrix}$		$\begin{pmatrix} \frac{1+\Delta}{2} \\ \frac{1-\Delta}{2} \end{pmatrix}$	$\begin{pmatrix} \frac{\Lambda}{\Lambda+1} \\ \frac{1}{\Lambda+1} \end{pmatrix}$	$\begin{pmatrix} \frac{e^L}{e^L + 1} \\ \frac{1}{e^L + 1} \end{pmatrix}$
$\Delta = m$	$\frac{\mu(0) - \mu(1)}{\mu(0) + \mu(1)}$		$\frac{\Lambda-1}{\Lambda+1}$	$\tanh(L/2)$
Λ	$\frac{\mu(0)}{\mu(1)}$	$\frac{1+\Delta}{1-\Delta}$		e^{L}
L	$ \ln \frac{\mu(0)}{\mu(1)} $	$2 \tanh^{-1}(\Delta)$	$\ln \Lambda$	
σ^2	$\frac{4\mu(0)\mu(1)}{(\mu(0)+\mu(1))^2}$	$1-m^2$	$\frac{4\Lambda}{(\Lambda+1)^2}$	$\frac{4}{e^L + e^{-L} + 2}$

Sum-Product Rules for Binary Parity Check Codes

$$\begin{pmatrix} \mu_{Z}(0) \\ \mu_{Z}(1) \end{pmatrix} = \begin{pmatrix} \mu_{X}(0) \mu_{Y}(0) \\ \mu_{X}(1) \mu_{Y}(1) \end{pmatrix}$$

$$\Delta_{Z} = \frac{\Delta_{X} + \Delta_{Y}}{1 + \Delta_{X} \Delta_{Y}}$$

$$\Delta_{Z} = \Lambda_{X} \cdot \Lambda_{Y}$$

$$L_{Z} = L_{X} + L_{Y}$$

$$\begin{pmatrix} \mu_{Z}(0) \\ \mu_{Z}(1) \end{pmatrix} = \begin{pmatrix} \mu_{X}(0) \mu_{Y}(0) + \mu_{X}(1) \mu_{Y}(1) \\ \mu_{X}(0) \mu_{Y}(1) + \mu_{X}(1) \mu_{Y}(0) \end{pmatrix}$$

$$\Delta_{Z} = \Delta_{X} \cdot \Delta_{Y}$$

$$\Delta_{Z} = \Delta_{X} \cdot \Delta_{Y}$$

$$\Delta_{Z} = \frac{1 + \Lambda_{X} \Lambda_{Y}}{\Lambda_{X} + \Lambda_{Y}}$$

$$\tanh(L_{Z}/2) = \tanh(L_{X}/2) \cdot \tanh(L_{Y}/2)$$

Max-Product Rules for Binary Parity Check Codes

$$\begin{array}{c|c}
X = Z \\
Y \mid \uparrow \\
\delta[x-y] \, \delta[x-z]
\end{array}
\qquad
\begin{pmatrix}
\mu_Z(0) \\
\mu_Z(1)
\end{pmatrix} = \begin{pmatrix}
\mu_X(0) \, \mu_Y(0) \\
\mu_X(1) \, \mu_Y(1)
\end{pmatrix}$$

$$\begin{array}{c|c}
L_Z = L_X + L_Y
\end{array}$$

$$\begin{array}{c|c}
X \oplus Z \\
Y \mid \uparrow \\
\delta[x \oplus y \oplus z]
\end{array}
\qquad
\begin{pmatrix}
\mu_Z(0) \\
\mu_Z(1)
\end{pmatrix} = \begin{pmatrix}
\max \{\mu_X(0) \, \mu_Y(0), \, \mu_X(1) \, \mu_Y(1)\} \\
\max \{\mu_X(0) \, \mu_Y(1), \, \mu_X(1) \, \mu_Y(0)\}
\end{pmatrix}$$

$$|L_Z| = \min \{|L_X|, |L_Y|\}$$

$$\operatorname{sgn}(L_Z) = \operatorname{sgn}(L_X) \cdot \operatorname{sgn}(L_Y)$$

Decomposition of Multi-Bit Checks

Encoder of a Turbo Code

Factor Graph of a Turbo Code

Turbo Decoder: Conventional View

Messages in a Turbo Decoder

