머신러님을 위한 수학

03 미분법

Copyright Elice. All Rights Reserved

/* elice */

목차

- 01. 함수의 극한
- 02. 미분과 도함수
- 03. 다양한 함수의 미분법
- 04. 편 미분

러리큘럼

1. 함수의 극한

함수의 극한에 대해 학습합니다.

2. 미분과 도함수

미분의 정의와 도함수의 정의에 대해 학습합니다.

다양한 종류의 함수들을 직접 미분해봅니다.

4. 편 미 분

다양한 변수의 편미분에 대해 학습합니다.

▼ 추천대상

1. 머신러닝 입문자

머신러닝을 얼핏 알지만, 이해는 못하는 사람

2. 데이터 분석 입문자

파이썬 라이브러리를 실용적으로 활용해보고 싶은사람

3. 벡터 행렬을 모르는 사람

머신러닝의 이해에 필수적인 벡터와 행렬에 대해모르는 사람

1. 머신러닝의 전반에 대해 이해합니다.

인공지능과 머신러닝의 차이를 알고, 일반적인머신러닝의 구조를 이해합니다.

2. 머신러닝 속의 본질적 수학 지식을 이해합니다.

막연하고 이해하기 어려웠던 지식을 체계적으로 배우며 익힙니다.

3. 어떤 머신러닝 기법을 마주하더라도 두렵지 않습니다.

익힌 수학 지식으로 머신러닝 속의 여러 기법들을 접해도 어렵지 않습니다. 01

함수의 극한

기계 학습을 위한 함수(function) 개요

- 기계는 미지의 함수(black-box)를 학습함.
- 어떤 함수를 배울 수 있는지 알기 위해서는 함수의 전반에 대해 알아야 할 필요가 있음.

함수(function)

- 정의: x라는 입력을 넣으면 f(x)라는 출력을 만들어주는 모든 f를 함수라고 부름.
- 예시) 다리 개수 출력 함수 f
- f(" 개 ") = 4, f(" 사람 ") = 2

함수(function)의 시각화

- 입력이 x 한 개 이면 평면(2차원)에 표현이 가능하다.
- 입력이 x,y 두 개 이면 공간(3차원)에 표현이 가능하다.
- •
- 평면에 "그래프" 로 표현함. 아래는 일차함수 f(x) = x를 그린 것임.

함수의 조건

- 하나의 입력에 대응되는 출력은 항상 1개여야 함. 2개 이상이 되면 안됨.
- 아래의 그림을 통해 이해할 수 있음.

함수(function)의 연속성

- 함수가 연속하는 것은 모든 점들이 이어져있는 것을 의미함.
- Q1) 아래는 모두 함수일까?
- Q2) 모두 연속한가?

함수(function)의 극한

- 좌극한과 우극한이 존재함.
- 좌극한: 왼쪽에서 오른쪽으로 목표로 이동했을 때 수렴하는 극한값.
- 우극한: 오른쪽에서 왼쪽으로 목표로 이동했을 때 수렴하는 극한값.

좌극한:
$$\lim_{x \to p_{-}} f(x) = A$$

우극한:
$$\lim_{x \to p_+} f(x) = B$$

좌극한:
$$\lim_{x \to g_{-}} f(x) = C$$

우극한:
$$\lim_{x \to q_+} f(x) = D$$

함수(function)의 극한

• 좌극한과 우극한이 같더라도, 연속이 아닐 수 있음.

함수(function)의 극한

- 좌극한과 우극한이 모든 x에 대해 같을 때 극한값이 존재한다고 함.
- 위의 수렴값이 함수 값 f(x)와 같으면 함수가 x에서 연속하다고 함.
- 모든 정의역 x에 대해 함수 f가 연속이면 연속 함수라고 함.

극한:
$$\lim_{x \to p_{-}} f(x) = \lim_{x \to p_{+}} f(x) = A$$

극한:
$$\lim_{x \to q_{-}} f(x) = \lim_{x \to q_{+}} f(x) = D$$

02

미분과 도함수

- Q) 기계가 미지의 함수(black-box)를 배우는 방법은?
- 가장 대중적인 방법 중 하나는 미분(derivative)를 구하는 것임.
- 구체적인 방법은 다음 강의에서 주로 다룰 것임. 하지만, 이를 위해 미분의 기본 개념을 익힐 필요가 있음.

미분이란?

- 함수의 그래프에서의 접선의 기울기(평균변화율)를 의미함.
- Q1) 모든 함수는 접선이 존재할까?
- Q2) 접선은 어떻게 구할까?

미분 방법 (1)

- x = p에서의 접선의 기울기는 f'(p)로 표기함.
- $x = p + \epsilon \ (\epsilon > 0)$ 점과의 기울기를 먼저 살펴봄.

기울기

$$\frac{f(p+\epsilon)-f(p)}{(p+\epsilon)-p} = \frac{f(p+\epsilon)-f(p)}{\epsilon}$$

미분 방법 (2)

- 기울기에서 epsilon을 0으로 극한을 보냄.
- $\lim_{\epsilon \to 0} \frac{f(p+\epsilon)-f(p)}{\epsilon}$ 이 아래 그림에서의 접선의 기울기가 됨. 미분계수라고도 부름.

접선의 기울기

$$f'(p) = \lim_{\epsilon \to 0} \frac{f(p+\epsilon) - f(p)}{\epsilon}$$

미분 방법 (3)

- 당연히 모든 함수에 대해서 접선의 기울기가 존재하지 않음.
- 1. 기울기의 좌극한과 우극한이 다를 때
- 2. 함수가 불연속할 때

접선의 기울기

$$f'(p) = \lim_{\epsilon \to 0} \frac{f(p+\epsilon) - f(p)}{\epsilon}$$

도함수의 정의

- 임의의 점 x에서의 미분계수를 나타내는 함수임.
- 각점에 대해 극한을 계산하는 것은 너무 많은 노동 작업이기 때문임...
- 도함수는 공식이 있음.

- $f(x) = x^n$ (n: 자연수) *실수여도 괜찮음.
- $f'(x) = nx^{n-1}$
- $\bullet \quad f(x) = a^x (a > 0)$
- $f'(x) = a^x lna$

도함수의 예시

- 1. f(x) = c (단, c는 상수) 이면 f'(x) = 0
- 2. $\{cf(x)\}' = cf'(x)$
- 3. $\{f(x) \pm g(x)\}' = f'(x) \pm g'(x)$
- 4. $\{f(x)g(x)\}' = f(x)g'(x) + f'(x)g(x)$
- 5. $\left\{\frac{f(x)}{g(x)}\right\}' = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$ (단, $g(x) \neq 0$)

y = f(x)일 때, 도함수 f'(x)는 $\frac{dy}{dx}$ 라고도 표현함.

03

다양한함수의 미분법

- 기본적인 미분 규칙을 대중적 함수 예시를 통해서 직접 미분해보는 것이 중요함.
- 본 장에서는 미분법에 대한 완전한 이해를 위해 몇가지 예시를 극한을 통해 직접 도함수를 구해보는 것을 해볼 것임.

로그함수

예시1) $f(x) = e^x$ 의 도함수를 구해라.

풀이)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= e^x \cdot \lim_{h \to 0} \frac{e^h - e^0}{h} = e^x$$

$$(\lim_{h \to 0} \frac{e^h - e^0}{h} = 1)$$

예시2) $f(x) = a^x$ 의 도함수를 구해라.

풀이)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

한편, $a=e^{lna}$,

$$= a^{x} \cdot \lim_{h \to 0} \frac{a^{h} - a^{0}}{h} = a^{x} \cdot \lim_{h \to 0} \frac{a^{h} - a^{0}}{h} = a^{x} \ln a$$

$$(\lim_{h\to 0} \frac{a^h - e^0}{h} = \lim_{h\to 0} \frac{e^{h(lna)} - e^0}{h(lna)} * lna = lna)$$

예시3) f(x) = lnx의 도함수를 구해라.

정답)

$$f'(x)=\frac{1}{x}$$

예시4) $f(x) = log_a x$ 의 도함수를 구해라.

정답)

$$f'(x) = \frac{1}{x lna}$$

예시5)
$$f(x) = x^2 + 2x + 7$$
의 도함수를 구해라.

정답)

$$f'(x)=2x+2$$

04

편 미 분

편 미 분

- f(x)와 같은 한개의 변수가 아닌 다변수 함수의 미분을 말함.
- f(x,y,z,...) 등으로 표기할 수 있음.
- 일반적으로 굉장히 많은 변수들이 있을 때는 $f(x_1, x_2, ..., x_n)$ 의 n개다변수함수로 표현할 수 있음.
- Partial derivative 라고 부름.

- z = f(x,y)로 표현된다면 각각의 편미분은 $\frac{\partial z}{\partial x}$ 및 $\frac{\partial z}{\partial x}$ 로 표기함.
- 다변수함수 $f(x_1,x_2,...,x_n)$ 에 대해 각각의 편미분을 $\frac{\partial f}{\partial x_i}$ 로 표기함

편미분 방법

- 다변수 함수의 변수들간의 미분은 상수 취급을 함.
- 가령 y를 x로 편미분하면 y는 상수로 간주할 수 있음.

$$\frac{\partial y}{\partial y} x^3 \longrightarrow x^3 \frac{\partial y}{\partial y'} \frac{\partial x^3}{\partial x} y \longrightarrow y \frac{\partial x^3}{\partial x}$$

예시) $z = x^3 y = x$ 와 y에 대해 편미분하시오.

■ y에 대하여 편미분 (x를 상수 취급)

$$\frac{\partial z}{\partial y} = \frac{\partial (x^3 y)}{\partial y} = \frac{\partial y}{\partial y} x^3 = x^3$$

■ x에 대하여 편미분 (y를 상수 취급)

$$\frac{\partial z}{\partial x} = \frac{\partial (x^3 y)}{\partial x} = \frac{\partial x^3}{\partial x} y = 3x^2 y$$

편미분의 기하학적 의미

- z = f(x, y)는 x,y,z 축의 3차원 위의 평명/곡면을 나타냄.
- (x,y) = (0,0)에서 아래 곡면에 접하는 평면을 구하고자 함.
- (0,0)에서 각 변수 x와 y에 대한 편미분을 통해 접선을 구하고, 이를 활용해 평면을 구함.
- 접선의 확장임.

평면(2차원)	공간(3차원)
접선(1차원)	접평면(2차원)

크레딧

/* elice */

코스 매니저

콘텐츠 제작자

강사

감수자

디자이너

연락처

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

