

Computational Simulation for Self-assembled Nanogel with MOLSIM

Tonje Skjong Hye-jeong Cheon Anders Hagen Jarmund

Molecular Biophysics (TFY4310, H17)

Department of Physics

Norges Teknisk-Naturvitenskapelige Universitet

Introduction

http://www.sciencedirect.com/science/article/pii/S0928493115305749

Introduction

https://www.ncbi.nlm.nih.gov/pubmed/28423990

System: Scheme

System: Simulation para.

Simulation ModeMonte Carlo
Canonical ensemble

	Parameters for Simulation							
Parameter	nct	npptct(1,1)	Npptct(1,2)	npt	nppt	natpt	massat	radat
Units	#	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	g/mol	À
XG w/o CH (CHXG0)	2	50,0	2,0	2	560,0	1,1	10.0	2.0
XG w/ single CH (CHXG1)	2	50,0	2,2	2	560,160	1,1	10.0	2.0
XG w/ double CH (CHXG2)	2	50,0	2,4	2	560,320	1,1	10.0	2.0

System: L-J Potential

XG w/o CH (CHXG0)

XG w/ single CH (CHXG1)

XG w/ double CH (CHXG2)

XG w/o CH (CHXG0) XG w/ single CH (CHXG1)

XG w/ double CH (CHXG2)

XG w/o CH (CHXG0) XG w/ single CH (CHXG1) XG w/ double CH (CHXG2)

XG w/o CH (CHXG0) XG w/ single CH (CHXG1)

XG w/ double CH (CHXG2)

XG w/o CH (CHXG1) XG w/ single CH (CHXG1)

Results: Ree

 R_{g}

Results: Rdf

Results: Radius of gyration

 R_{g}

Conclusion & Future Work

- Increasing Cholesterol group self assembly ↑
- → Relationship between # of Cholesterol Self assembly(Rg)
- : Questions about limitation of increasing CH group
- How do we improve self-assembly?
- → Increasing # of CH group
- → Structure of Cholesterol/Xyloglucan
- : # or side chain, Structure(Un/Saturated), Persistent length
- How do we improve simulation method?
- → Changing assumption for Cholesterol structure

References

Background image

http://molsim.lifesciences.autodesk.com

- Introduction
- New progress and prospects: The application of nanogel in drug delivery, Hui Zhang, Materials Science and Engineering: C, 2015 Nov

http://www.sciencedirect.com/science/article/pii/S0928493115305749

 Self-assembled nanogel of cholesterol-bearing xyloglucan as a drug delivery nano carrier, Sawada SI, J Biomater Sci Polym, 2017 April

https://www.ncbi.nlm.nih.gov/pubmed/28423990

- Systems
- Self-assembled nanogel of cholesterol-bearing xyloglucan as a drug delivery nano carrier, Sawada SI, J Biomater Sci Polym

https://www.ncbi.nlm.nih.gov/pubmed/28423990

