Ζαπαλίδη Ιωάννα 1115201400044

Προαιρετική Εργασία 2η

Αλγοριθμική Επιχειρησιακή Έρευνα

2017-2018

<u>Θέμα</u>: Εκτέλεση του αλγορίθμου simplex για το παράδειγμα που μελετήθηκε στην τάξη αλλά εισάγοντας στην αρχή την άλλη μεταβλητή.

Λύση:

Αρχικά έχουμε $z = max (8x_1 + 6x_2) \Rightarrow z = max (4x_1 + 3x_2)$

Οι μεταβλητές απόφασης είναι οι x₁, x₂ και οι μεταβλητές απόκλισης οι x₃, x₄, x₅.

Οι βασικές μεταβλητές $\mathbf{B} = \{ x_3, x_4, x_5 \}$ και οι εκτός βάσης $\mathbf{EB} = \{ x_1, x_2 \}$.

Για το 1ο λεξικό (Λ1) έχουμε ότι

$$x_3 = -5x_1 - 3x_2 + 30$$

$$x_4 = -2x_1 - 3x_2 + 24$$

$$x_5 = -x_1 - 3x_2 + 18$$

Η αρχική βασική εφικτή λύση είναι η $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 30, 24, 18)$.

Για x_2 = 0, ελέγχω μέχρι που παραμένουν θετικές οι υπόλοιπες μεταβλητές μέσα στη βάση:

$$x_3 \ge 0$$
 $-5x_1 + 30 \ge 0$ $x_1 \le 6$
 $x_2 = 0 \Rightarrow x_4 \ge 0 \Rightarrow -2x_1 + 24 \ge 0 \Rightarrow x_1 \le 12$
 $x_5 \ge 0$ $-x_1 + 18 \ge 0$ $x_1 \le 18$

Η τομή των τριών ανισοτήτων είναι ότι \mathbf{x}_1 ≤ **6**.

Ζαπαλίδη Ιωάννα 1115201400044

Για $\mathbf{x}_1 = \mathbf{6}$, παρατηρούμε ότι $\mathbf{x}_3 = \mathbf{0}$, οπότε έχουμε αλλαγή βάσης:

$$B = \{x_1, x_4, x_5\}, EB = \{x_2, x_3\}$$

Στον τύπο του x_3 , λύνουμε ως προς x_1 , οπότε προκύπτει ότι $x_1 = -\frac{1}{5} x_3 - \frac{3}{5} x_2 + 6$

Αντικαθιστώ:

$$x_4 = -\frac{9}{5} x_2 + \frac{2}{5} x_3 + 36$$

$$x_5 = -\frac{12}{5} x_2 + \frac{1}{5} x_3 + 12$$

$$z = \frac{3}{5} x_2 - \frac{4}{5} x_3 + 24$$

Μηδενίζοντας τις μεταβλητές της βάσης παίρνω την επόμενη εφικτή λύση:

$$(x_1, x_2, x_3, x_4, x_5) = (6, 0, 0, 36, 12).$$

Παρατηρώ ότι για το z, όσο αυξάνω το x₃, μειώνεται. Οπότε αυξάνω την τιμή του x₂.

Για x₃ = 0, ελέγχω μέχρι που παραμένουν θετικές οι υπόλοιπες μεταβλητές μέσα στη βάση:

$$x_1 \ge 0$$
 $-\frac{3}{5} x_2 - 6 \ge 0$ $x_2 \le 10$
 $x_3 = 0 \Rightarrow x_4 \ge 0 \Rightarrow -\frac{9}{5} x_2 + 36 \ge 0 \Rightarrow x_2 \le 20$
 $x_5 \ge 0$ $-\frac{12}{5} x_2 + 12 \ge 0$ $x_2 \le 5$

Η τομή των τριών ανισοτήτων είναι ότι $\mathbf{x}_2 \le \mathbf{5}$.

Για $\mathbf{x}_2 = \mathbf{5}$, παρατηρούμε ότι $\mathbf{x}_5 = \mathbf{0}$, οπότε έχουμε αλλαγή βάσης:

$$B = \{x_1, x_2, x_4\}, EB = \{x_3, x_5\}.$$

Στον τύπο του x_5 , λύνουμε ως προς x_2 , οπότε προκύπτει ότι $x_2 = -\frac{1}{12}$ $x_3 - \frac{5}{12}$ $x_5 + 5$

Αντικαθιστώ:

$$x_1 = \frac{1}{4} \quad x_3 + \frac{1}{4} \quad x_5 + 3$$

$$x_4 = \frac{1}{4} \quad x_3 + \frac{3}{5} \quad x_5 + 3$$

Ζαπαλίδη Ιωάννα 1115201400044

$$z = -\frac{3}{4} x_3 - \frac{1}{4} x_5 + 27$$

Μηδενίζοντας τις μεταβλητές της βάσης παίρνω την επόμενη εφικτή λύση:

$$(x_1, x_2, x_3, x_4, x_5) = (3, 5, 0, 3, 0).$$

Παρατηρώ ότι για το z, όσο αυξάνω το x_3 , μειώνεται, καθώς και όσο αυξάνω το x_5 , οπότε παύω.

Οπότε η βέλτιστη εφικτή λύση είναι η x_1 = 3, x_2 = 5.