KU LEUVEN

Scalable Rule Learning in Probabilistic Knowledge Bases

SafeLearner

Knowledge Bases (KBs) are becoming increasingly: Larger Probabilistic Incomplete

What is new?

To do completion of uncertain knowledge bases, we use Lifted Probabilistic Inference

Why SafeLearner?

- Significantly faster than ProbFOIL⁺
- Scales as good as AMIE+

How much/fast does it scale? SafeLearner has demonstrated the learning of rules on a KB with 14k+ tuples under 2.5 hours

Problem specification

Given:

A probabilistic KB (PDB) : D

A target predicate : target of arity k

Loss Function

Set of target examples : $E = \{\langle t_i, p_i \rangle | i = 1, ... M\}$

To Find: $H^* \in L_H$ such that it minimizes cross-entropy

```
H^* = \operatorname{argmax} Cross Entropy (H, E, D)
       = \operatorname{argmin} \sum_{(t_i, p_i) \in E} (p_i \log q_i + (1 - p_i) \log(1 - q_i))
where q_i is the predicted probability of i<sup>th</sup> atom t_i.
```

What are Probabilistic Databases?

In any database, if one considers all the tables with n columns as predicates with arity n, then one can construct a set of atoms where each atom is a tuple of the form predicate(constants). Assigning a probability value to each atom in a database will form a PDB.

Thus, a PDB is a set of tuples of form (atom, probability).

Example

researcher	researcher	р
alice	edwin	0.2
alice	fred	0.3
bob	carl	0.4
bob	greg	0.5
bob	harry	0.6
bob	ian	0.7
carl	greg	8.0
carl	harry	0.9
carl	ian	8.0
dave	edwin	0.7
dave	fred	0.6
edwin	fred	0.5
greg	harry	0.4
greg	ian	0.3
ian	ian	0.2

researcher	paper	р
bob	plp	0.9
carl	plp	0.6
greg	plp	0.7
ian	db	0.9
harry	db	8.0

author/2

researcher	university	р
edwin	harvard	1.0
fred	harvard	0.9
alice	mit	0.6
dave	mit	0.7

target: coauthor/2

location/2

Learned Rules (H*):

- 0.241::coauthor(A, B): location(A, C), location(B, C).
- 0.992::coauthor(A, B): author(A, C), author(B, C).

Key features

- · Uses Lifted Inference in rule learning, thereby avoiding the use of grounding for knowledge compilation
- Uses memoization/caching to store the canonical structures of all the gueries with their probability expressions
- Breaks larger queries into independent subqueries for better performance
- Uses Sequential Least SQuares Programming (SLSQP) Algorithm to simultaneously optimize probabilistic weights of all the rules in the hypothesis
- Uses the input format of ProbFOIL+

Algorithm 1 SafeLearner – Main Algorithm

- 1: Input: PDB D, target, loss L
- 2: $E := \text{Set of all } target \text{ tuples in } \mathcal{D}$
- 3: H:= Set of all the type consistent and significant (deterministic) rules from AMIE+ using $\mathcal D$ with target in head
- 4: Initialize probability p_{h_i} for each rule h_i in H
- 5: Embed rule probabilities $p_h = \{p_{h_1}, p_{h_2}, \dots, p_{h_n}\}$ in H
- 6: Sample target tuples in E_2 and E_3 and compute their respective sampling weights w_2 and w_3
- 7: Q := QueryConstructor(H)
- 8: for i in range(0, MaxIterations) do Randomly select an example e from all the target examples $E \cup E_2 \cup E_3$ 9:
- 10: y := ProbabilityPredictor(Q, e)
- if $e \in E$ then 11:
- 12: x := actual probability of e from ECompute \mathcal{L} for e using x, y with sampling weight := 1
- 13:
- else if $e \in E_2$ then 14: Compute \mathcal{L} for e using x := 0 and y with sampling weight $:= w_2$
- 15: 16:
 - else if $e \in E_3$ then
 - Compute \mathcal{L} for e using x := 0 and y with sampling weight $:= w_3$
- 18: Get gradient of \mathcal{L} at current p_h Update p_h
- 20: Remove rules with insignificant rule weights from ${\cal H}$
- 21: return H

Reference: https://openreview.net/pdf?id=Hkyl-5667, 1st conference on Automated KB Construction 2019

17:

Los Angeles

 $\triangleright y$ is a function of p_h