Universität Bonn Mathematisches Institut Dr. Michael Welter

11. Arbeitsblatt Analysis (BA-INF022)

== Sommersemester 2023 ==

Woche: 26.-30.6.

Thema: Stammfunktionen und Differentialgleichungen

Videos: Video-15-Stammfunktionen, Video-16-Differentialgleichungen

I. Präsenzaufgaben für die Übungsstunden:

Aufgabe P1.

Bestimmen Sie die folgenden unbestimmten Integrale.

- (i) $\int x^2 \cos x dx$,
- (ii) $\int \sin^4 x \cos x dx$,
- (iii) $\int \log x dx$,
- (iv) $\int \frac{1}{x^2 4x + 4} dx$,
- (v) $\int \frac{1}{x^2+x-2} dx,$ (vi) $\int x\sqrt{x^2+1} dx.$

Tipp zu (iii): $\log x = 1 \cdot \log x$

Aufgabe P2.

Bestimmen Sie die Lösungen der folgenden Anfangswertprobleme und geben Sie jeweils den Definitionsbereich der Lösung an.

- (i) y' = xy mit y(1) = 1,
- (ii) $y' = e^y \sin x \text{ mit } y(0) = 0$,
- (iii) $(1 + e^x) \cdot y' = ye^x \text{ mit } y(0) = 2,$
- (iv) $xy' = y + x^2 \text{ mit } y(1) = 1,$
- (v) $y' + \frac{y}{x} = \sin(x) \text{ mit } y(\pi/2) = 1.$

II. Schriftliche Aufgaben: Die Abgabe ist freiwillig. Die Aufgaben sind aber klausurrelevant.

Für jede Aufgabe gibt es maximal 10 Punkte.

Aufgabe 1.

Bestimmen Sie die folgenden unbestimmten Integrale.

- (i) $\int x^2 \sin x dx$,
- (i) $\int \cos^5 x \sin x dx$, (ii) $\int \cos^5 x \sin x dx$, (iii) $\int \frac{1}{x^2 2x + 1} dx$, (iv) $\int \frac{1}{x^2 + x + 1} dx$, (v) $\int x \sin(x^2) dx$,

Aufgabe 2.

Bestimmen Sie die Lösungen der folgenden Anfangswertprobleme und geben Sie jeweils den Definitionsbereich der Lösung an.

- (i) $y' = xy^2 \text{ mit } y(1) = 1$,
- (ii) $y' = e^y \cos x \text{ mit } y(0) = 0,$
- (iii) $xy' + y = 2x\cos(x^2)$ mit y(1) = 1,
- (iv) $(x^2+2)y'-2xy=3(x^2+2)^2$ mit y(2)=1.

Aufgabe 3.

Es seien $\alpha \in \mathbb{R}$, I ein Intervall und $p,q:I \to \mathbb{R}$ stetige Funktionen. Eine Differentialgleichung der Form

$$y'(x) = p(x)y(x) + q(x)(y(x))^{\alpha}$$

heißt Bernoullische Differentialgleichung.

(i) Zeigen Sie: Ist y eine Lösung einer Bernoullischen Differentialgleichung, die sich als

$$y(x) = (u(x))^{\frac{1}{1-\alpha}}$$

mit einer anderen Funktion u schreiben lässt, so löst u eine lineare Differentialgleichung 1. Ordnung.

(ii) Bestimmen Sie die Lösung des Anfangswertproblems

$$y'(x) = \frac{y(x)}{x} + \frac{x}{y(x)}$$

mit y(1) = 1.