Math2033 TA note 2

Yang Yunfei, Chen Yipei, Liu Ping February 19, 2019

1 Logic

Direct proof: Assume p and show q.

Proof by contrapositive: Assume $\sim q$ and show $\sim p$.

(This corresponds to the equivalence $p \Rightarrow q \equiv \sim q \Rightarrow \sim p$)

Proof by contradiction: First assuming that the opposite proposition is true, and then shows that such an assumption leads to a contradiction. For a conditional statement, assume p and $\sim q$ and derive a contradiction.

(This corresponds to the equivalences

$$p \Rightarrow q \equiv \sim \sim (p \Rightarrow q) \equiv \sim (p \Rightarrow q) \Rightarrow \bot \equiv (p \ and \sim q) \Rightarrow \bot,$$

where \perp is the logical contradiction, or *false* value.).

Example 1. Suppose $a \in \mathbb{Z}$. If a^2 is even, then a is even.

Proof. For the sake of contradiction, suppose a^2 is even *and* a is not even. Then a^2 is even, and a is odd.

Since *a* is odd, there is an integer *c* for which a = 2c + 1. Then

$$a^2 = (2c+1)^2 = 4c^2 + 4c + 1 = 2(2c^2 + 2c) + 1,$$

so a^2 is odd.

Thus a^2 is even and a^2 is not even, a contradiction.

(And since we have arrived at a contradiction, our original supposition that a^2 is even and a is odd could not be true.)

Reference material could be find in http://cgm.cs.mcgill.ca/ godfried/teaching/dm-reading-assignments/Contradiction-Proofs.pdf

2 Basics of set theory

Definition 2. For sets $A_1, A_2, ..., A_n$,

(i) their union is

$$\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup \dots \cup A_n = \{x : x \in A_1 \text{ or } x \in A_2 \text{ or } \dots \text{ or } x \in A_n\},$$

(ii) their intersection is

$$\bigcap_{k=1}^{n} A_k = A_1 \cap A_2 \cap \cdots \cap A_n = \{x : x \in A_1 \ and \ x \in A_2 \ and \cdots \ and \ x \in A_n\},$$

(iii) their Cartesian product is

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \dots, x_n) : x \in A_1 \text{ and } x \in A_2 \text{ and } \cdots \text{ and } x \in A_n\},$$

(iv) the complement of A_2 in A_1 is

$$A_1 \setminus A_2 = \{x : x \in A_1 \ and \ x \notin A_2\}$$

Notation: The notation $A_1 \cup A_2 \cup A_3 \cup \cdots$ may be abbreviated as $\bigcup_{k=1}^{\infty} A_k$ or $\bigcup_{k \in \mathbb{N}} A_k$. If for every $x \in S$, there is a set A_x , then the union of all the sets A_x 's for all $x \in S$ is denoted by $\bigcup_{k \in \mathbb{N}} A_k$. Similar abbreviations exit for intersection and Cartesian product.

Example 3.
$$\bigcap_{n \in \mathbb{N}} [0, 1 + \frac{1}{n}) = [0, 2) \cap [0, \frac{3}{2}) \cap [0, \frac{4}{3}) \cap [0, \frac{5}{4}) \cap \dots = [0, 1].$$

Proof. Denoted
$$A_n = [0, 1 + \frac{1}{n}), A = \bigcap_{n \in \mathbb{N}} A_n, B = [0, 1].$$

To show A = B, we need to show $A \subseteq B$ and $A \supseteq B$.

Step 1, to show $A \subseteq B$, by definition of subset, we only need to show if $x \in A$, then $x \in B$.

Further, we only need to show its contrapositive statement, if $x \notin B$, then $x \notin A$.

For x < 0, it is clear that $x \notin A_n$ and hence $x \notin A$.

For x > 1, there $\exists n \in \mathbb{N}$ such that $1 + \frac{1}{n} < x$ and hence $x \notin A_n \Rightarrow x \notin A = \bigcap_{n \in \mathbb{N}} A_n$.

Step 2, it is simpler to show $A \supseteq B$.

Since $A_n \supseteq B$ and $A = \bigcap_{n \in \mathbb{N}} A_n$, we can conclude that $A \supseteq B$. Therefore, we show that $\bigcap_{n \in \mathbb{N}} [0, 1 + \frac{1}{n}) = A = B = [0, 1]$.

Therefore, we show that
$$\bigcap_{n \in \mathbb{N}} [0, 1 + \frac{1}{n}) = A = B = [0, 1].$$

Example 4. For all sets A, B, C, it is always true that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$?

Proof. LHS = $A \setminus (B \cup C) = \{x : x \in A \text{ and } x \notin (B \cup C)\}$ (Definition of complement) Since $x \in A$ and $x \notin (B \cup C)$

- $\Leftrightarrow x \in A \ and \sim (x \in (B \cup C))$ (Negation of statement)
- $\Leftrightarrow x \in A \ and \sim (x \in B \ or \ x \in C))$ (Definition of union)
- $\Leftrightarrow x \in A \ and (x \notin B \ and \ x \notin C))$ (Negation of statement)
- \Leftrightarrow $(x \in A \ and \ x \notin B) \ and \ (x \in A \ and \ x \notin C))$
- $\Leftrightarrow x \in (A \setminus B) \ and \ x \in (A \setminus C)$ (Definition of complement)
- $\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C)$ (Definition of intersection)

Therefore, LHS=
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C) = RHS$$

3 FUNCTION

3.1 Function composition

Given two functions $f: A \rightarrow B$, $g: B \rightarrow C$, the composition of g by f is

$$g \circ f : A \to C$$
 $g \circ f(x) = g(f(x))$ for any $x \in A$.

Note that for any $x \in A$, we have $f(x) \in B$, therefore $g(f(x)) \in C$ and $g \circ f$ is well-defined. Example: If $f : \mathbb{R} \to \mathbb{R}$ is given by f(x) = 2x + 4 and $g : \mathbb{R} \to \mathbb{R}$ is given by $g(x) = x^2$. Then

$$g \circ f(x) = g(f(x)) = g(2x+4) = (2x+4)^2,$$

$$f \circ g(x) = f(g(x)) = f(x^2) = 2x^2 + 4.$$

3.2 BIJECTION:

Let $f: A \rightarrow B$ be a function,

- (1) f is surjective iff f(A) = B.
- (2) f is injective iff f(x) = f(y) implies x = y.
- (3) f is bijective iff f is injective and surjective.
- (4) If f is injective, define $f^{-1}: f(A) \to A$ by $f^{-1}(f(x)) = x$. f^{-1} is called the inverse of f. f^{-1} is well-defined because for any $y \in f(A)$ there exists only one $x \in A$ such that f(x) = y, and for such x we have $f^{-1}(y) = f^{-1}(f(x)) = x$.

Theorem 5. $f: A \to B$ is bijective iff $\exists g: B \to A$ such that $g \circ f = I_A$ and $f \circ g = I_B$.

Proof. \Leftarrow : Let $x, y \in A$ and f(x) = f(y), then

$$x = I_A(x) = g \circ f(x) = g(f(x)) = g(f(y)) = g \circ f(y) = I_A(y) = y.$$

Therefore, f is injective.

By the definition of f, $f(A) \subseteq B$. We are going to prove $B \subseteq f(A)$. Let $y \in B$, then $g(y) \in A$ and

$$y = I_B(y) = f \circ g(y) = f(g(y)) \in f(A).$$

Thus, $B \subseteq f(A)$. Consequently, B = f(A). So f is surjective.

 \Rightarrow : Since f is injective, $f^{-1}: f(A) \to A$ is well-defined. Since f is surjective, f(A) = B. Let $g = f^{-1}: B \to A$. Then, by the definition of f^{-1} , for any $x \in A$,

$$g(f(x)) = f^{-1}(f(x)) = x = I_A(x),$$

which means $g \circ f = I_A$.

For any $y \in B = f(A)$, there exists $x \in A$ such that f(x) = y. Thus,

$$f(g(y)) = f(g(f(x))) = f(f^{-1}(f(x))) = f(x) = y = I_B(y),$$

which means $f \circ g = I_B$.

4 EQUIVALENCE RELATION

Definition: A relation on set S is any subset of $S \times S$. A relation on a set S is an equivalence relation iff

- 1. $\forall x \in S, (x, x) \in R$ (Reflexive)
- 2. $(x, y) \in R \implies (y, x) \in R$ (Symmetry)
- 3. $(x, y) \in R, (y, z) \in R \Longrightarrow (x, z) \in R$ (Transitive)

Remark: To avoid some paradox in some example, we do not specify the set S. We write $x \sim y$ when x, y are equivalent, then the equivalent class satisfies that

- 1. $x \sim x$
- 2. $x \sim y \implies y \sim x$
- 3. $x \sim y, y \sim z \implies x \sim z$

Example: S = the set of all triangles in the plane \mathbb{R}^2 . Define a relation R on S by

$$R = \{(T_1, T_2), T_1 \text{ and } T_2 \text{ are congruent, that is}$$
(after some rigid transform (reflection, translation, rotation), T_1 can be T_2)}

We check that *R* is an equivalence relation.

- 1. For x in S, choosing identity transform (translate 0, rotation 0), we have x can be x. That is $(x, x) \in R$.
- 2. For $(x, y) \in R$, by definition we have some rigid transform F such that Fx = y. Then we choose the inverse transform of F as F^{-1} , it is still a rigid transform. So we get $x = F^{-1}y$ and we have $(y, x) \in R$.

3. For $(x, y) \in R$, $(y, z) \in R$, by definition we have some rigid transform F_1, F_2 such that $F_1x = y, F_2y = z$. So we have $F_2 \circ F_1x = z$ and $F_2 \circ F_1$ is still a rigid transform. So we have $(x, z) \in R$.