Corrrelation and Linear regression

Daniel Hammarström

2019-10-21

Association between variables

▶ A measure of association between continuous variables is the correlation (Pearson's correlation coefficient).

Correlation gives a unitless "strength of association"

- ▶ Estimates of association (r) is limited to $-1 \le r \le 1$.
- \blacktriangleright When r approaches ± 1 , the association is stronger, estimates close to 0 suggest no association.

Assumptions in correlation

- Continuous variables, paired observations
- ▶ Bivariate normal distribution(?) Both variables should be bell shaped.
- ► Linear relationship between variables
- ▶ Be careful when there are outliers, examine the effect of extreme data points.

Correlation in R

```
Y_j \leftarrow c(25.2, 26.9, 21.7, 15.8,
        26.0, 20.4, 18.5, 15.5, 15.6, 16.0)
Yk \leftarrow c(21.9, 25.7, 23.6, 29.6,
        24.9, 23.4, 23.5, 25.1, 24.0, 21.5)
# The Pearson's product moment
# correlation coefficient
cor(Yk, Yj, method = "pearson")
# The Pearson's product moment
# correlation coefficient with
# test statistic
cor.test(Yk, Yj, method = "pearson")
```

Regression models the relationship between variables

- ► The regression model describe more aspects of the relationship between variables than the correlation.
- ▶ The equation for the straight line:

Regression estimates the line that best fits the data

► The basic univariate regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$

- \triangleright β_0 is the model intercept (or constant)
- \triangleright β_1 is the slope of the straight line
- $ightharpoonup \epsilon$ is the unexplained error
- ▶ Model parameters (β_0, β_1) are estimated using sample data

Interpret slopes and intercepts

Estimating the best fit line

Estimating the best fit line

- ► The best fit line can be estimated by minimizing the vertical distances between **observed** and **predicted** values.
- ► The distance between bobserved and predicted values are called **residuals**, these can help us *diagnose* the regression.
- ► The residuals are also used to estimate the standard errors of the parameters in the model.

The standard error of the regression parameter is an estimate of the SD of the sampling distribution

Assumptions in linear regression

- ▶ There is a linear relationship between *x* and *y*
- ightharpoonup Residuals are normally distributed (with mean = 0)
- Residuals have an equal spread along the the fitted range (homoskedasticity)
- Observations are independent

Why are assumptions important

- ▶ We assume taht errors in our model $(\hat{y} y)$ are well behaved
- ► The errors are used to calculate standard errors
- ▶ If the assumptions are wrong our standard errors are biased
- ▶ Biased standard errors will lead to bad inference

Model diagnostics

What can be done with heteroscedasticity?

- Transformation of the data can reduce increased variation with increased values
- ▶ The most common transformation is the log
- ► log-transformed data

```
df$y \leftarrow log(df$y)
```

Log-transfomed data

Interpreting log-transformed data in a regression

Interpreting log-transformed data in a regression

Paramter	Estimate	SE	t-value	p-value	Model
(Intercept)	800.90	89.396	8.96	0.000	Linear scale
groupb	370.73	126.425	2.93	0.005	Linear scale
(Intercept)	6.56	0.097	68.01	0.000	Log-transformed
groupb	0.41	0.136	3.03	0.004	Log-transformed

$$log(a) + log(b) = log(a \times b)$$
$$log(a) - log(b) = log(a/b)$$
$$e^{log(x)} = x$$

Categorical data can be used as predictor variables

- We can use categorical data as the independent variable
- ► Categories are (automatically in R) converted to "dummy varaibles"
- ▶ If we have two groups (e.g. men and women), in the univariate model, men will be represented by the intercept and women by the slope.

$$y = \beta_0 + \beta_1 x + \epsilon$$

$$y = MEN + \beta_1 \times WOMEN + \epsilon$$

► If there are more levels, additional dummy variables are added to the model