COMP 424 - Artificial Intelligence Lecture 19: Supervised Learning

Instructor: Jackie CK Cheung (jcheung@cs.mcgill.ca)

Readings: R&N Ch 18

Machine learning at work

ImageNet dataset: predict object type among 10,000 categories.

(Krizhevsky et al., 2012)

Error rates now down a few percent, for top-5 results.

Object Detection in Images

Locate and detect objects in images

E.g.

- sunglasses microphone

accordion

- guitar
- person
- violin

 LSVRC 2014 Challege: http://imagenet.org/challenges/LSVRC/2015/ui/det.html

Performance on classification and localization in 2017: <3%

Applications of machine learning

- Spam filtering
- Fraud detection
- Weather prediction
- Customer segmentation
- Categorization of news articles by topic
- •

Many successful approaches do not use probabilistic (Bayesian) models.

General learning problem

- Given a set of labelled examples $\langle x_1, x_2, x_3, ..., x_n, y \rangle$ where x_j are input variables and y is the desired output
- We want to learn a function $h: X_1 \times X_2 \times ... \times X_n \rightarrow Y$ which maps the input variables onto the output domain
- How does that differ from learning parameters for Bayes nets?

Supervised learning - Classification

Goal: Learning a function for a categorical output.

E.g.: Spam filtering. The output ("Spam?") is binary.

	Sender in address book?	Header keyword	Word 1	Word 2		Spam?
x1	Yes	Schedule	Hi	Profesor		No
x2	Yes	meeting	Jackie	1		No
х3	No	urgent	Unsecured	Business	***	Yes
x4	No	offer	Hello	I		Yes
x5	No	cash	We'll	Help		Yes
x6	No	comp-424	Dear	Professor		No
• • •						

Supervised learning - Regression

Sometimes the output value is **continuous**, rather than discrete.

E.g.: Predict the sentiment score associated with a movie, predict stock prices

MOVIES OPENING THIS WEEK

93%	Logan
% 19%	The Shack
3 %	Before I Fall
% 18%	Table 19
** 74%	Lovesong

Terminology

- Inputs called input variables or features or attributes.
- Predictions called output variables or targets.
- A data set consists of training examples or instances.

e.g., let's identify these components in the table:

	Sender in address book?	Header keyword	Word 1	Word 2	 Spam?
x1	Yes	Schedule	Hi	Profesor	 No
x2	Yes	meeting	Jackie	I	 No
х3	No	urgent	Unsecured	Business	 Yes
x4	No	offer	Hello	I	 Yes
x5	No	cash	We'll	Help	 Yes
x6	No	comp-424	Dear	Professor	 No

Notation

- A training example *i* has the form $\langle x_{i,1}, x_{i,2}, ... x_{i,n}, y_i \rangle$, where *n* is the number of attributes.
- Notation x_i denotes the column vector with elements $x_{i,1,1}$, ..., $x_{i,n}$.
- The training set consists of m training examples.
- Let $X = X_1 \times X_2 \times ... \times X_n$ denote the space of input values.
- Let Y denote the space of output values.

Supervised learning problem

- Given a dataset $D = X \times Y$, find a function: $h : X \to Y$ such that h(x) is a good predictor for the value of y.
- Formally, h is called the hypothesis.
- Output Y can have many types:
 - If $Y = \Re$, this problem is called **regression**.
 - If Y is a finite discrete set, the problem is called classification.
 - If Y has 2 elements, the problem is called binary classification.

Supervised Learning Example

What hypothesis class should we pick?

X	<u> </u>
0.86	2.49
0.09	0.83
-0.85	-0.25
0.87	3.10
-0.44	0.87
-0.43	0.02
-1.1	-0.12
0.40	1.81
-0.96	-0.83
0.17	0.43

Linear hypothesis

Suppose Y is a linear function of X:

$$f_{\mathbf{W}}(\mathbf{X}) = w_0 + w_1 x_1 + ... + w_m x_m$$

= $w_0 + \sum_{j=1:m} w_j x_j$

- The w_i are called **parameters** or **weights**
- m = the dimension of observation space, i.e. number of features.
- To simplify notation, we add an attribute $x_0=1$ to the m other attributes (also called bias term or intercept).

How should we pick the weights?

Least-squares solution method

- The linear regression problem: $f_{\mathbf{w}}(X) = w_0 + \sum_{j=1:m} w_j x_j$
- Goal: Find the best linear model given the data.
- Many different possible evaluation criteria!
- Most common choice is to find the w that minimizes:

$$Err(w) = \sum_{i=1:n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

(A note on notation: Here w and x are column vectors of size m+1.)

Least-squares solution method

Re-write in matrix notation:

$$f_{\mathbf{w}}(X) = X\mathbf{w}$$

 $Err(\mathbf{w}) = (Y - X\mathbf{w})^{T}(Y - X\mathbf{w})$

where X is the n x m matrix of input data,Y is the n x 1 vector of output data,w is the m x 1 vector of weights.

To minimize, take the derivative w.r.t. w:

$$\partial Err(\mathbf{w})/\partial \mathbf{w} = -2 X^{T} (Y-X\mathbf{w})$$

- You get a system of m equations with m unknowns.
- Set these equations to 0: $X^T (Y Xw) = 0$

Least-squares solution for $X \in \Re^2$

Least-squares solution method

We want to solve for w:

$$X^T (Y - Xw) = 0$$

Try a little algebra:

$$X^T Y = X^T X \mathbf{w}$$

 $\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$
($\hat{\mathbf{w}}$ denotes the estimated weights)

The fitted data:

$$\hat{Y} = X\hat{\boldsymbol{w}} = X (X^T X)^{-1} X^T Y$$

To predict new data $X' \rightarrow Y'$: $Y' = X'\hat{\mathbf{w}} = X'(X^TX)^{-1}X^TY$

$$Y' = X'\hat{\boldsymbol{w}} = X'(X^TX)^{-1}X^TY$$

Example of linear regression

x	y
0.86	2.49
0.09	0.83
-0.85	-0.25
0.87	3.10
-0.44	0.87
-0.43	0.02
-1.10	-0.12
0.40	1.81
-0.96	-0.83
0.17	0.43

What is a plausible estimate of **w**?

Data matrices

Data matrices

$$X^{T}Y = \begin{bmatrix} 0.86\ 0.09 & -0.85\ 0.87 & -0.44 & -0.43 & -1.10\ 0.40 & -0.96\ 0.17 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 2.49 & 0.83 & -0.25 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.03 & 0.43 & 0.43 \end{bmatrix} \\ = \begin{bmatrix} 6.49 & 0.83 & 0.43 & 0.43 & 0.43 & 0.43 & 0.43 & 0.43 & 0.43 & 0.04 & 0.09$$

Solving the problem

$$\mathbf{w} = (X^T X)^{-1} X^T Y = \begin{bmatrix} 4.95 & -1.39 \\ -1.39 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 6.49 \\ 8.34 \end{bmatrix} = \begin{bmatrix} 1.60 \\ 1.05 \end{bmatrix}$$

So the best fit line is y = 1.60x + 1.05.

Sum of squared errors

Computational cost of linear regression

- What operations are necessary?
 - Matrix multiplication:
 - For $A^{nxm} \times B^{mxp}$: We need nmp operations.
 - Matrix inversion:
 - For A^{mxm} : We need m^3 operations.
 - In total: 1 matrix inversion + 3 matrix multiplications
- So we can do linear regression in polynomial time, i.e. $O(n^3)$.

Steps in supervised learning

- 1. Decide what the input-output pairs are.
- 2. Decide how to encode inputs and outputs.
 - This defines the input space X and output space Y.
- 3. Choose a class of hypotheses / representations H.
 - e.g., linear functions.
- 4. Choose an error function (cost function) to define best hypothesis.
 - e.g., Least-mean squares.
- 5. Choose an algorithm for searching through space of hypotheses.
 - e.g., Taking derivatives of the error function wrt parameters of the hypothesis, setting to 0 and solving the resulting system of equations.

Polynomial fits

 Suppose we want to fit a higher-degree polynomial to the data.

e.g.,
$$y = w_0 + w_1 x + w_2 x^2$$

- Suppose for now that there is a single input variable, x. Do we need to change our method?
 - No! Output is still a linear function with respect to the weights!
 - Only difference is that now we have more inputs (x^2 is an input feature).
- If we have more than one input variable, cross factors also have to be considered:

e.g.,
$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2$$

Example: $y = 0.68 x^2 + 1.74 x + 0.73$

Order-3 fit

Order-4 fit

Order-5 fit

Order-6 fit

Order-7 fit

Order-8 fit

Order-9 fit

"There is a linear relationship between these points"

Something's wrong with this argument...

Overfitting

- We can find a hypothesis that explains perfectly the training data, but does not generalize well to new data.
 - E.g. a look-up table of all training examples!
- In the example above, there are enough parameters for the hypothesis to "memorize" the data points, but it is "wild" everywhere else!
- A general, very important problem for all machine learning algorithms.

Overfitting

- The d=degree polynomial with d=8 has zero training error!
 - Looking at the data and the different hypotheses, we see d=1 and d=2
 are better fits (and suspect they have lower error.)

Results on training set vs validation set

 Hold out a validation set (from available data) to estimate true error.

Underfitting for d < 2.

Optimal choice: d=2.

Overfitting for d > 2.

d	Error _{train}	Error _{valid}		
1	0.2188	0.3558		
2	0.1504	0.3095		
3	0.1384	0.4764		
4	0.1259	1.1770		
5	0.0742	1.2828		
6	0.0598	1.3896		
7	0.0458	38.819		
8	0.0000	6097.5		

Learning complex non-linear functions

Connectionist models

Hypothesis: A computational architecture similar to the brain could duplicate (at least some of its) wonderful abilities.

Properties of Artificial Neural Networks (ANNs):

- Many neuron-like threshold switching units.
- Many weighted interconnections among units.
- Highly parallel, distributed process.
- Emphasis on tuning weights automatically.

Many different kinds of architectures, motivated both by biology and mathematics/efficiency of computation.

Sigmoid computation unit

• σ is the sigmoid function:

- $\sigma(z) = \frac{1}{1 + e^{-z}}$
- It has the following nice property: $\frac{d\sigma(z)}{dz} = \sigma(z)(1 \sigma(z))$
 - Why would we care what the derivative is?

Networks of simple units

- **Neurons** with sigmoid activation, arranged in layers.
 - Layer 0 is the <u>input layer</u>, its units just copy the input.
 - Last layer (layer K) is the <u>output layer</u>, its units provide the output.
 - Layers 1, .., K-1 are <u>hidden layers</u>, cannot be detected outside of network.

Feed-forward neural networks

Notation:

- w_{ji} denotes weight on connection from unit i to unit j.
- By convention, $x_{i0} = 1$, $\forall j$
- Output of unit j, denoted o_j is computed using a sigmoid:

$$o_j = \sigma(\mathbf{w_j} \cdot \mathbf{x_j})$$

where w_j is vector of weights entering unit j x_i is vector of inputs to unit j

• By definition, $x_{ii} = o_i$.

Computations with Neural Networks

- 1. Given the input, compute the output
 - Go through network from inputs to output neurons, passing the signals through the activation functions
- 2. Learn good weights for the neural network
 - What is good? Need an objective function
 - e.g., mean squared error loss just as in regression
 - There are also alternatives for discrete outcomes, such as categorical cross-entropy.
 - Also need an learning algorithm. Popular choice: gradient descent

Gradient descent

- The gradient of f at a point $\langle w_0, w_1, ..., w_n \rangle$ can be thought of as a vector indicating which way is "uphill".
 - We're doing hill climbing in continuous space!

• If this is an error function, we want to move "downhill" on it, i.e. in the direction opposite to the gradient.

Gradient descent

- Standard operation: $\mathbf{w}^{k+1} = \mathbf{w}^k \alpha_k \nabla f(\mathbf{w}^k)$ where $\alpha_k > 0$ is the step size or learning rate for iteration k.
- The basic algorithm assumes that $\nabla f(w)$ is computable.
 - Need partial derivative w.r.t. each weight w_i :
 - Easy to compute for a linear function!
- $\nabla f = \left\langle \frac{\partial}{\partial w_0} f, \frac{\partial}{\partial w_1} f, \dots, \frac{\partial}{\partial w_n} f \right\rangle$ Also easy to compute for sigmoid functions!
- Produces a sequence of vectors \mathbf{w}^1 , \mathbf{w}^2 , \mathbf{w}^3 ,... with the goal that:
 - $f(\mathbf{w}^1) > f(\mathbf{w}^2) > f(\mathbf{w}^3) > ...$
 - $\lim_{k\to\infty} \mathbf{w}^k = \mathbf{w}$, locally optimal

Example gradient descent traces

Backpropagation algorithm

- Just do gradient descent over all the weights in the network!
- We put together two phases:
 - 1. <u>Forward pass</u>: Compute the output of all units in the network, o_k , k=N+1,...,N+H+1, going in increasing order or layers.
 - 2. <u>Backward pass</u>: Compute the δ_k updates described before, going from k=N+H+1 down to k=N+1 (in decreasing order of the layers).
 - **3. Update** all the weights in the network:

$$w_{i,j} \leftarrow w_{i,j} + \alpha_{i,j} \delta_i x_{i,j}$$

Overfitting in feed-forward networks

Overfitting in neural networks comes from three sources:

- Too many weights.
- Training for too long.
- Weights that have become too extreme.

Dropout (Srivastava et al., 2014)

 Randomly drop units and connections in the network during training to fight overfitting

 Helps prevent network from "co-adapting" to the training set, memorizing specific cues in it which do not generalize

The deep learning objective

slightly higher level representation

raw input vector representation:

Convolutional neural nets

- S1: Convolve filters (one per feature map) over the image space.
 - Filter: Weight vector + sigmoid.
- C1: Aggregate locally data from feature maps.
 - E.g. Average / max function.
- S2 / C2: Repeat.
- Fully connected layer at the end. Train full network using backprop.

Basic model:

Basic model:

Training results: 96 learned low-level filters

Results for image retrieval (query items in leftmost column):

What you should know

- Formal problem definition for supervised learning.
- Linear regression (hypothesis class, cost function, algorithm).
- Polynomial regression (hypothesis class, cost function, algorithm).
- Underfitting and overfitting
- High-level idea of neural networks (not detailed mathematical formulation.)