Definição 1. Seja $\mathcal{P} = \{P_1, P_2, \dots P_k\}$ uma k-partição de d elementos distintos. Dizemos que \mathcal{P} é uma k-partição par se $|P_i|$ é par, para todo $P_i \in \mathcal{P}$.

Definição 2. Denotamos por $\mu(d,k)$ a quantidade de k-partições pares distintas de d elementos distintos.

Definição 3. Denotamos por $\varphi_2(d,k)$ a quantidade de k-partições \mathcal{P} não pares de d elementos onde somente as duas primeiras partes $P_1, P_2 \in \mathcal{P}$ possuem cardinalidade ímpar.

Definição 4. Seja \mathcal{H} um hipergrafo e seja $C:V(\mathcal{H})\to [k]$ uma k-coloração dos vértices de \mathcal{H} . Dizemos que C é uma k-coloração ímpar se, para toda aresta $e\in E(\mathcal{H})$, existe uma cor que aparece impar vezes nos vértices de e. Denotamos por $\chi_{io}(\mathcal{H})$ o menor inteiro k tal que \mathcal{H} possui uma k-coloração ímpar.

Definição 5. Seja G um grafo e seja $C:V(\mathcal{H}) \to [k]$ uma k-coloração dos vértices de G. Dizemos que C é uma k-coloração ímpar se, para todo vértice $v \in V(G)$, existe uma cor que aparece impar vezes na vizinhança de G. Denotamos por $\chi_o(\mathcal{H})$ (resp. $\chi_{io}(\mathcal{H})$) o menor inteiro k tal que G possui uma k-coloração ímpar própria (resp. não própria).

Proposição 1. Seja 2n!! o fatorial dos impares. Temos que $2n!! \le n^n$.

Teorema 1. Seja \mathcal{H} um hipergrafo tal que cada aresta $e \in E(\mathcal{H})$ possui pelo menos 2t vértices, para t>0, e cada aresta e intersecta no máximo Γ outras arestas. Temos que $\chi_{io}(\mathcal{H}) \leq t \cdot (e \cdot (\Gamma+1))^{1/t}$

Corolário 1. $\chi_{io}(\mathcal{H}) \in \mathcal{O}(ln(\Gamma) \cdot \Gamma^{1/t})$

A demonstração segue do Teorema 1. Se $t \geq 1 + ln(\Gamma + 1)$, substituindo t por $ln(e \cdot (\Gamma + 1))$, temos que $\chi_{io}(\mathcal{H}) \in \mathcal{O}(ln(\Gamma))$. Se $t < 1 + ln(\Gamma + 1)$, então $\chi_{io}(\mathcal{H}) \leq (1 + ln(\Gamma + 1)) \cdot (e \cdot (\Gamma + 1))^{1/t}$, pelo Teorema 1, e o resultado segue.

Corolário 2. Seja G um grafo com $\delta(G) \geq 2t$, para t > 0. Temos que $\chi_{io}(G) \leq t \cdot (e \cdot (\Delta^2 + 1))^{1/t}$.

Seja $\mathcal{H}=(V(G),E)$ um hipergrafo tal que $E=\bigcup_{v\in V(G)}N_G(v),$ $\emph{i.e.,}~\mathcal{H}$ possui

uma aresta e_v para cada vértice $v \in V(G)$ e cada aresta $e_v \in E(\mathcal{H})$ contém os vértices adjacentes a v em G. Note que uma k-coloração ímpar c para \mathcal{H} também é uma k-coloração ímpar para G. Como cada aresta em \mathcal{H} intersecta no máximo Δ^2 outras arestas, pelo Teorema 1, temos o resultado desejado.

Corolário 3. $\chi_{io}(G) \in \mathcal{O}(ln(\Delta) \cdot \Delta^{2/t})$.

A demonstração é similar à demonstração do Corolário 1.

Teorema 2. Seja G um grafo. Temos que $\chi_o(G) \leq \chi(G) \cdot \chi_{io}(G)$.

Corolário 4. Seja G um grafo com $\delta(G) \geq 6$. Se $\chi(G) \in \mathcal{O}(1)$, então $\chi_o(G) \leq \Delta$, para Δ suficientemente grande.

Pelo Teorema 2 e o Corolário 2, temos que $\chi_o(G) \leq \chi(G) \cdot 3 \cdot (\Delta^2 + 1))^{1/3}$. Para Δ suficientemente grande, temos que $3 \cdot \chi(G) \cdot (\Delta^2 + 1))^{1/3} \leq \Delta$, pois $3 \cdot \chi(G)$ é uma constante.

Corolário 5. Seja G um grafo com $\delta(G) \geq 2t$. Se $\chi(G) \in \mathcal{O}(1)$, então $\chi_o(G) \in \mathcal{O}(\ln(\Delta) \cdot \Delta^{2/t})$.

Pelo Teorema 2 e o Corolário 3, temos o resultado desejado.

Teorema 3. Sejam d e k inteiros positivos, com d par. Para qualquer $1 \le t \le \frac{d}{2}$, temos que:

$$\sum_{i=0}^{k} i^{d} \le k^{d-t} \cdot t^{t} \cdot 2^{2k-t-1} \tag{1}$$

Corolário 6. Sejam d e k inteiros positivos, com $d \ge 3$ ímpar. Para qualquer $1 \le t \le \left\lfloor \frac{d}{2} \right\rfloor$, temos que:

$$\sum_{i=0}^{k} i^{d} \le k^{d-t} \cdot t^{t} \cdot 2^{2k-t-1} \tag{2}$$

Note que $\sum\limits_{i=0}^k i^d = \sum\limits_{i=0}^k i \cdot i^{d-1} \leq k \cdot \sum\limits_{i=0}^k i^{d-1}$. Pelo Teorema 3, temos que $k \cdot \sum\limits_{i=0}^k i^{d-1} \leq k \cdot k^{d-1-t} \cdot t^t \cdot 2^{2k-t-1} = k^{d-t} \cdot t^t \cdot 2^{2k-t-1}$, como desejado.

1. Demonstração do Teorema 1

Lema 1. $\mu(2d, k) \leq (2d - 1) \cdot k \cdot \mu(2d - 2, k)$, para $d \geq 1$.

Demonstração. Iremos construir as k-partições pares \mathcal{P} possíveis de 2d elementos com base nas escolhas que temos para um determinado elemento $x \in [2d]$. Devemos escolher uma parte P_i para x pertencer e temos k partes disponíveis para x. Como cada parte tem tamanho par, devemos escolher um elemento $y \in [2d]$ diferente de x para pertencer também à parte P_i . Temos 2d-1 escolhas para este caso. Por fim, devemos particionar os 2d-2 elementos restantes em k partes de modo que cada parte tenha tamanho par. Sendo assim, devemos escolher uma k-partição par \mathcal{P}' de 2d-2 elementos. Logo, $\mu(2d,k) \leq (2d-1) \cdot k \cdot \mu(2d-2,k)$.

Lema 2. $\mu(2d, k) \leq (d \cdot k)^d$, para $d \geq 1$.

Demonstração. Iremos demonstrar por indução em d que $\mu(2d,k) \leq 2d!! \cdot k^d$. Como $2d!! \leq d^d$, pela Proposição 1, disto segue que $\mu(2d,k) \leq (d \cdot k)^d$.

Base (d=1): Pelo Lema 1, temos que $\mu(2,k) \leq k \cdot \mu(0,k) = 2!! \cdot k$ e o resultado segue.

Passo (d>1): Suponha que $\mu(2\ell,k)\leq (2\ell)!!\cdot k^\ell$, para $1\leq \ell < d$. Pelo Lema 1, $\mu(2d,k)\leq (2d-1)\cdot k\cdot \mu(2\cdot (d-1),k)$. Por HI, temos que:

$$\mu(2 \cdot (d-1), k) \le (2d-2)!! \cdot k^{d-1} \tag{3}$$

Portanto:

$$\mu(2d, k) \le (2d - 1) \cdot k \cdot \mu(2 \cdot (d - 1), k)
\le (2d - 1) \cdot k \cdot (2d - 2)!! \cdot k^{d - 1}
\le 2d!! \cdot k^d$$
(4)

Lema 3.

$$\mu(2d,k) = \begin{cases} 1 & k = 1\\ \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2i,k-1) & c.c. \end{cases}$$
 (5)

Demonstração. Se k=1, então $\mu(2d,k)=1$, pois os 2d elementos devem estar contidos em uma única parte. Sendo assim, considere que k>1. Agora, iremos construir as k-partições pares $\mathcal{P}=\{P_1,P_2,\ldots P_k\}$ possíveis de 2d elementos. Primeiro, devemos escolher quantos dos 2d elementos irão pertencer a parte P_k . Como $|P_k|$ é par, podemos escolher qualquer inteiro i entre 0 e d, de modo que $|P_k|=2i$. Como os 2d elementos são distintos, temos $\binom{2d}{2i}=\binom{2d}{2d-2i}$ maneiras de escolher 2i elementos para a parte P_k . Após isso, devemos particionar os 2d-2i elementos restantes em (k-1) partes

de tamanho par, sendo assim, devemos escolher uma (k-1)-partição par \mathcal{P}' de 2d-2i elementos. Portanto:

$$\mu(2d, k) = \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2d - 2i, k - 1)$$

$$= \sum_{i=0}^{d} {2d \choose 2d - 2i} \cdot \mu(2d - 2i, k - 1)$$

$$= \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2i, k - 1)$$
(6)

Lema 4.

$$\varphi_{2}(2d,k) = \begin{cases} 0 & \text{se } k \leq 1\\ 2^{2d-1} & \text{se } k = 2\\ \sum_{i=1}^{d} {2d \choose 2i} \cdot \varphi_{2}(2i,k-1) & \text{c. c.} \end{cases}$$
 (7)

Demonstração. Iremos analisar cada caso da recorrência separadamente.

Caso 1 ($k \le 1$): Se $k \le 1$, então não há como k-particionar os 2d elementos de modo que apenas as partes P_1 e P_2 tenham tamanho ímpar. Portanto, $\varphi(2d,k)=0$.

Caso 2 (k=2): Se k=2, então qualquer k-partição $\mathcal{P}=\{P_1,P_2\}$ de 2d elementos é contada em $\mu(2d,2)$ ou em $\varphi_2(2d,2)$, pois como temos um número par de elementos, ambas partes P_1 e P_2 têm tamanho par ou ímpar. Logo $\mu(2d,2)+\varphi_2(2d,2)=2^{2d}$, pois 2^{2d} é o total de 2-partições possíveis de 2d elementos. Pelo Lema 3:

$$\mu(2d,2) = \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2i,1) = \sum_{i=0}^{d} {2d \choose 2i} = 2^{2d-1}$$
 (8)

Logo, temos que $\varphi_2(2d,2)=2^{2d}-2^{2d-1}=2^{2d-1}$ e o resultado segue.

Caso 3 (k>2): Iremos construir as k-partições não pares $\mathcal{P}=\{P_1,P_2,\dots P_k\}$ possíveis de 2d elementos. Como k>2, existe uma parte $P_i\in\mathcal{P}$, onde $|P_i|$ é par. Sendo assim, a demonstração segue de modo análogo à demonstração do Lema 3, com a única restrição de que $|P_i|<2d$, pois as partes P_1 e P_2 tem ao menos um elemento. \square

Lema 5.
$$\mu(2d, k) \le \mu(2d - 2, k) \cdot k^2$$
, para $d \ge 1$.

Demonstração. Iremos provar que $\mu(2d,k)=k\cdot\mu(2d-2,k)+(k^2-k)\cdot\varphi_2(2d-2,k)$. Disto segue que $\mu(2d,k)\leq\mu(2d-2,k)\cdot k^2$, pois, pelos Lemas 3 e 4, temos que $\varphi_2(2d-2,k)\leq\mu(2d-2,k)$, considerando que ambos possuem uma recorrência similar e ainda

 $\varphi_2(2d,2)=\mu(2d,2)$. Sejam dois elementos distintos $x,y\in[2d]$. Iremos construir uma k-partição par $\mathcal P$ de 2d elementos com base em duas escolhas: se x e y irão pertencer a mesma parte $P_i\in\mathcal P$ ou não.

Caso 1: Se escolhermos que x e y irão pertencer a mesma parte $P_i \in \mathcal{P}$, então devemos escolher uma parte P_i das k partes disponíveis. Após, devemos escolher uma k-partição par \mathcal{P}' de 2d-2 elementos para os elementos restantes. Sendo assim, para este caso, temos $k \cdot \mu(2d-2,k)$ partições possíveis.

Caso 2: Se escolhermos que $x \in P_i$ e $y \in P_j$, onde $P_i \neq P_j$, então devemos escolher primeiro quais são as partes P_i e P_j dentre as k partes que irão conter x e y respectivamente. Temos $2 \cdot \binom{k}{2} = k^2 - k$ formas de escolher P_i e P_j , pois há $\binom{k}{2}$ maneiras de escolher duas das k partes disponíveis e há duas maneiras de escolher qual das duas partes irá conter cada elemento. Após, devemos escolher uma k-partição não par \mathcal{P}' onde apenas as partes P_i e P_j tenham tamanho ímpar. Por simetria das partes, há exatamente $\varphi_2(2d-2,k)$ partições \mathcal{P}' distintas. Logo, para este caso, temos $(k^2-k)\cdot \varphi_2(2d-2,k)$ partições possíveis.

Demonstração do Teorema 1. Pinte os vértices de \mathcal{H} com $k=t\cdot(e\cdot(\Gamma+1))^{1/t}$ cores aleatoriamente e independentemente. Seja X_e o evento da aresta $e\in E(\mathcal{H})$ não ter uma cor que apareça ímpar vezes, onde |e| é ímpar. Note que $\mathbb{P}[X_e]=\frac{\mu(|e|,k)}{k^{|e|}}$. Como $|e|\geq 2t$, pelo Lema 5, temos que:

$$\mu(|e|,k) \le \mu(|e| - (|e| - 2t), k) \cdot k^{|e| - 2t} = \mu(2t,k) \cdot k^{|e| - 2t}$$
(9)

Pelo Lema 2:

$$\mu(2t,k) \le (t \cdot k)^t \tag{10}$$

Portanto, por (7) e (8):

$$\mathbb{P}[X_e] = \frac{\mu(|e|, k)}{k^{|e|}} \le \left(\frac{t}{k}\right)^t = \left(\frac{t}{t \cdot (e \cdot (\Gamma + 1))^{1/t}}\right)^t = \frac{1}{e \cdot (\Gamma + 1)} \tag{11}$$

Sendo assim, pelo Lema Local de Lovász, temos que $\mathbb{P}[\bigcap_{e \in E(\mathcal{H})} \overline{X_e}] > 0$. Portanto, existe uma k-coloração tal que existe uma cor que aparece ímpar vezes nos vértices de e, para toda aresta $e \in E(\mathcal{H})$. Logo, $\chi_{io}(\mathcal{H}) \leq k = t \cdot (e \cdot (\Gamma + 1))^{1/t}$.

2. Demonstração do Teorema 2

Demonstração do Teorema 2. Iremos provar que $\chi_o(G) \leq \chi(G) \cdot \chi_{io}(G)$. Disto segue que $\chi_o(G) \leq \chi(G) \cdot t \cdot (e \cdot (\Delta^2 + 1))^{1/t}$, pois, pelo, Corolário 2, temos que $\chi_{io}(G) \leq t \cdot (e \cdot (\Delta^2 + 1))^{1/t}$. Seja $\mathcal{P} = \{P_1, P_2 \dots, P_k\}$ uma k-coloração ímpar mínima. Para cada parte $P_i \in \mathcal{P}$, pinte os vértices de P_i com uma coloração própria mínima de $G[P_i]$, utilizando cores distintas para cada parte $P_i \in \mathcal{P}$. Ao final, temos uma coloração c de G utilizando no máximo $\chi(G) \cdot \chi_{io}(G)$ cores. Afirmamos que c é uma coloração ímpar e própria. Note que c é própria, pois tome $uv \in E(G)$, se $u \in P_i$ e $v \in P_j$, tal que $i \neq j$ e P_i , $P_j \in \mathcal{P}$, então u e v possuem cores distintas, pela construção da coloração, se $u, v \in P_i$, então u e v possuem cores distintas, pois P_i é colorido propriamente com $\chi(G[P_i])$ cores. Observe que, para todo $v \in V(G)$, existe uma parte $P_i \in \mathcal{P}$, tal que |S| é ímpar, onde $S = P_i \cap N_G(v)$. Seja $T = N_G(v) \setminus S$. Note que existe uma cor em c que aparece ímpar vezes em S, pois |S| é ímpar. Como $c(s) \neq c(t)$, para $s \in S$ e $t \in T$, pois s e t pertencem a partes distintas de \mathcal{P} , temos que existe uma cor que aparece ímpar vezes em S, pois t0.

3. Demonstração do Teorema 3

Lembrete:

$$e^{x} = \sum_{i=0}^{\infty} \frac{x^{i}}{i!} = x^{0} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$e^{-x} = \sum_{i=0}^{\infty} (-1)^{i} \cdot \frac{x^{i}}{i!} = x^{0} + -\frac{x^{1}}{1!} + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \dots$$

$$\frac{e^{x} + e^{-x}}{2} = \sum_{i=0}^{\infty} \frac{x^{2}}{2i!} = x^{0} + -\frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots$$

Lema 6.
$$\mu(d,k) = \frac{1}{2^k} \cdot \sum_{i=0}^k \binom{k}{i} \cdot (k-2i)^d$$

Demonstração. Note que:

$$\mu(d,k) = \sum_{\substack{a_1 + a_2 + \dots a_k = d \\ \text{com } a_i \text{ par } p/1 \le i \le k}} \binom{d}{a_1, a_2, \dots, a_k}$$
(12)

Ou seja, $\mu(d, k)$ é igual ao somatório multinomial de todas as possibilidades onde $a_1 + a_2 + \dots a_k = d$ com a_i par, para todo $1 \le i \le k$. Sendo assim:

$$\mu(d,k) = \sum_{\substack{a_1 + a_2 + \dots a_k = d \\ \cos a_i \text{ par p}/1 \le i \le k}} \binom{d}{a_1, a_2, \dots, a_k}$$

$$= \sum_{\substack{a_1 + a_2 + \dots a_k = d \\ \cos a_i \text{ par p}/1 \le i \le k}} \frac{d!}{a_1! \cdot a_2! \dots \cdot a_k!}$$

$$\therefore \frac{\mu(d,k)}{d!} = \sum_{\substack{a_1 + a_2 + \dots a_k = 2 \\ \cos a_i \text{ par p}/1 \le i \le k}} \frac{1}{a_1! \cdot a_2! \dots \cdot a_k!}$$
(13)

Note que $\sum_{\substack{a_1+a_2+\dots a_k=d\\ \cos a_i \text{ par } p' \ 1 \ \leq \ i \ \leq \ k}} \frac{1}{a_1! \cdot a_2! \dots \cdot a_k!}$ é o coeficiente de x^d na série de potência $\left(\frac{e^x+e^{-x}}{2}\right)^k$. Sendo assim, agora iremos calcular qual o valor do coeficiente x^d nesta série. Note que:

$$\left(\frac{e^{x} + e^{-x}}{2}\right)^{k} = \frac{1}{2^{k}} \cdot (e^{x} + e^{-x})^{k}$$

$$= \frac{1}{2^{k}} \cdot \sum_{i=0}^{k} {k \choose i} (e^{x})^{k-i} \cdot (e^{-x})^{i}$$

$$= \frac{1}{2^{k}} \cdot \sum_{i=0}^{k} {k \choose i} (e^{x})^{k-i} \cdot (e^{x})^{-i}$$

$$= \frac{1}{2^{k}} \cdot \sum_{i=0}^{k} {k \choose i} (e^{x})^{k-2i}$$

$$= \frac{1}{2^{k}} \cdot \sum_{i=0}^{k} {k \choose i} e^{x \cdot (k-2i)}$$
(14)

Observe que:

$$e^{x \cdot (k-2i)} = \sum_{j=0}^{\infty} \frac{(x \cdot (k-2i))^j}{j!} = \sum_{j=0}^{\infty} \frac{x^j \cdot (k-2i)^j}{j!}$$
 (15)

Por (13), (14) e (15), temos que:

$$\sum_{\substack{a_1+a_2+\dots a_k=d\\ \text{com } a_i \text{ par } p/1 \le i \le k}} \frac{1}{a_1! \cdot a_2! \dots \cdot a_k!} = \frac{1}{2^k} \cdot \sum_{i=0}^k \binom{k}{i} \cdot \frac{(k-2i)^d}{d!}$$

$$\therefore \mu(d,k) = \frac{1}{2^k} \cdot \sum_{i=0}^k \binom{k}{i} \cdot (k-2i)^d$$
(16)

Demonstração do Teorema 3. Pelo Lema 6:

$$\mu(d,k) = \frac{1}{2^k} \cdot \sum_{i=0}^k \binom{k}{i} \cdot (k-2i)^d$$

$$= \frac{1}{2^k} \cdot \left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} \binom{k}{i} \cdot (k-2i)^d + \sum_{i=\lfloor \frac{k}{2} \rfloor + 1}^k \binom{k}{i} \cdot (k-2i)^d\right)$$
(17)

Sejam $x = \sum_{i=0}^{\left \lfloor \frac{k}{2} \right \rfloor} \binom{k}{i} \cdot (k-2i)^d$ e $y = \sum_{i=\left \lfloor \frac{k}{2} \right \rfloor+1}^k \binom{k}{i} \cdot (k-2i)^d$. Iremos provar que

x=y. Para isso, suponha que k é par. Temos que:

$$x = \binom{k}{0}k^d + \binom{k}{1}(k-2)^d + \binom{k}{2}(k-4)^d \dots + \binom{k}{\frac{k}{2}-1}2^d + \binom{k}{\frac{k}{2}}0^d$$
 (18)

Note que:

$$y = {k \choose \frac{k}{2} + 1} (-2)^d + {k \choose \frac{k}{2} + 2} (-4)^d \dots + {k \choose k - 1} (-(k - 2))^d + {k \choose k} (-k)^d$$

$$= {k \choose \frac{k}{2} - 1} 2^d + {k \choose \frac{k}{2} - 2} 4^d \dots + {k \choose 1} (k - 2)^d + {k \choose 0} k^d$$
(19)

Logo x = y. Sendo assim:

$$\mu(d,k) = \frac{2}{2^k} \cdot \sum_{i=0}^{\frac{k}{2}} {k \choose i} \cdot (k-2i)^d$$

$$= \frac{1}{2^{k-1}} \cdot \sum_{i=0}^{\frac{k}{2}} {k \choose i} \cdot (k-2i)^d$$

$$\geq \frac{1}{2^{k-1}} \cdot \sum_{i=0}^{\frac{k}{2}} (k-2i)^d$$

$$\geq \frac{1}{2^{k-1}} \cdot \sum_{i=0}^{\frac{k}{2}} 2i^d$$

$$\geq \frac{2^d}{2^{k-1}} \cdot \sum_{i=0}^{\frac{k}{2}} i^d$$
(20)

Pelos Lema 2 e 5:

$$\mu(d,k) \le \mu(2t,k) \cdot k^{d-2t} \le (t \cdot k)^t \cdot k^{d-2t} \le t^t \cdot k^{d-t}, \text{ para } 1 \le t \le \frac{d}{2}$$
 (21)

Por (20) e (21), temos que:

$$\sum_{i=0}^{\frac{k}{2}} i^d \le \left(\frac{k}{2}\right)^d \cdot \left(\frac{t}{k}\right)^t \cdot 2^{k-1}$$

$$(\to) \sum_{i=0}^k i^d \le k^d \cdot \left(\frac{t}{2k}\right)^t \cdot 2^{2k-1}$$

$$(\to) \sum_{i=0}^k i^d \le k^{d-t} \cdot t^t \cdot 2^{2k-t-1}$$

$$(22)$$