Avaliação A1 - Inferência Estatística

Professor: Philip Thompson Monitores: Eduardo Adame & Ezequiel Braga

6 de outubro de 2023

Instruções

- A prova vale **10 pontos**. Verifique a pontuação de cada questão e trace sua estratégia para resolvê-las.
- Respostas sem justificativas serão desconsideradas;
- Demarque com clareza sua **resposta final** para cada questão. Sugerimos que circule ou desenhe um retângulo em volta desses resultados;
- A questão bônus é um desafio. Deixe-a para o final;
- Apenas **uma folha de "cola"** de tamanho A4 frente e verso poderá ser trazida e utilizada como consulta durante a avaliação. A mesma deverá ser **entregue** junto de suas soluções.

Dados úteis

• Se $X \sim \text{Beta}(\alpha, \beta), \alpha > 0, \beta > 0$, então

-
$$f_X(x \mid \alpha, \beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, x \in (0, 1), B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

- $\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}$

- Se $X \sim \operatorname{Pareto}(\theta_0, \alpha)$ com parâmetros $\theta_0 > 0, \, \alpha > 0$, mostre que

$$\mathbb{E}[X] = \begin{cases} \frac{\alpha \theta_0}{\alpha - 1}, & \text{se } \alpha > 1\\ \infty, & \text{se } \alpha \le 1 \end{cases}$$

• Se necessário, você pode usar o resultado de que a composição de função bijetora com uma estatística suficiente também é uma estatística suficiente.

Questões

Questão 1 (2 pontos). Uma variável aleatória θ seguindo a distribuição de Pareto com parâmetros θ_0, α positivos tem densidade

$$f(\theta \mid \theta_0, \alpha) := \begin{cases} \frac{\alpha \theta_0^{\alpha}}{\theta^{\alpha+1}}, & \theta \ge \theta_0, \\ 0, & \theta < \theta_0. \end{cases}$$

- a) Mostre que a distribuição de Pareto é a *priori* conjugada para amostras seguindo a distribuição Uniforme no intervalo $[0, \theta]$, onde o parâmetro θ é desconhecido.
- b) Seja X_1,\ldots,X_n uma amostra iid de uma distribuição uniforme no intervalo $[0,\theta]$, onde o parâmetro θ é desconhecido. Tomando como distribuição *a priori* $\xi(\theta)$ a distribuição de Pareto com parâmetros θ_0,α e a função custo quadrática, determine o estimador de Bayes para o parâmetro θ .

Questão 2 (2 pontos). Seja X_1, \ldots, X_n uma amostra iid de uma distribuição Bernoulli com parâmetro p desconhecido. Tome uma distribuição a priori para p sendo a distribuição Beta (α, β) com parâmetros α, β positivos.

- a) Determine o estimador de Bayes \hat{p} usando o custo quadrático.
- a) Justifique afirmativamente ou negativamente: \hat{p} é uma estatística suficiente mínima?

Questão 3 (1 ponto). Uma distribuição pertence a família exponencial com parâmetro unidimensional $\theta \in \mathbb{R}$ se a densidade tem forma

$$f(x \mid \theta) = b(\theta)h(x) \exp{\{\eta(\theta)T(x)\}},$$

para funções b, h, η e T. Seja X_1, \ldots, X_n uma amostra desta distribuição e considere a estatística $T(\boldsymbol{X}) = \sum_{i=1}^n T(X_i)$.

- a) Mostre que T(X) é suficiente.
- b) Mostre que $T(\boldsymbol{X})$ é eficiente. Dica: Lembre-se que um estimador $T(\boldsymbol{X})$ é eficiente se, e somente se, existem funções de θ que permitem escrever $T(\boldsymbol{X})$ satisfazendo uma certa relação, especificada no livro texto.

 $\it Quest\~ao$ 4 (2.5 pontos). Seja X_1,\ldots,X_n uma amostra de uma distribuição parametrizada por $\theta>0$ com densidade

$$f(x \mid \theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \\ 0, & \text{caso contrário.} \end{cases}$$

- a) Determine o MLE para θ .
- b) Justifique afirmativamente ou negativamente se o MLE para θ é suficiente.

c) Justifique afirmativamente ou negativamente se o MLE para θ é suficiente mínimo.

Questão 5 (2.5 pontos). Seja X_1,\ldots,X_n uma amostra de uma distribuição Poisson (λ) .

- a) Encontre o estimador MLE para λ .
- b) Compute a informação de Fisher $I(\lambda)$.

Questão 6 (Questão bônus - 1 ponto). O modelo "bag-of-words" é utilizado na área de processamento de linguagem natural. Neste modelo, há um alfabeto de k palavras ($k \ge 2$) e a i-ézima palavra tem probabilidade θ_i de ocorrer. Aqui, $0 \le \theta_i \le 1$ e $\theta_1 + \ldots + \theta_k = 1$.

Numa amostra de n palavras, denotamos por x_i o números de ocorrências da i-ézima palavra; portanto $x_1 + x_2 + \ldots + x_n = n$. Determine o MLE desta amostra para estimar o vetor $\theta = (\theta_1, \ldots, \theta_k)$.

Dica: a distribuição em questão é chamada distribuição multinomial. Ela generaliza a distribuição binomial (k=2) onde há apenas duas palavras (por exemplo, 'cara' e 'coroa').