Algebraic Structures

- 1. The subgroups of $(\mathbb{Z}_{10}, +)$ are $\{\overline{0}\}$, $\langle \overline{2} \rangle$, $\langle \overline{5} \rangle$ and $\langle \overline{1} \rangle = \mathbb{Z}_{10}$. The only subgroups of $(\mathbb{Z}_{11}, +)$ are $\{\overline{0}\}$ and \mathbb{Z}_{11} . One has an isomorphism $\mathbb{Z}_{10} \cong \mathbb{Z}_{11}^*$. Since $\overline{2}$ is a generator of \mathbb{Z}_{11}^* , the map $f(k \mod 10) = 2^k \mod 11$ is an isomorphism. The subgroups of \mathbb{Z}_{11}^* are $\{\overline{1}\}$, $\langle \overline{4} \rangle$, $\langle \overline{10} \rangle$ and $\langle \overline{2} \rangle = \mathbb{Z}_{11}^*$.
- 2. The possible orders are 1, 2, 3, 6, 9, 18, 27, 54.
- 3. Homomorphism: $f(x_1 + x_2) = 5(x_1 + x_2) = 5x_1 + 5x_2 = f(x_1) + f(x_2)$. f is an isomorphism since f has an inverse map $f^{-1}(x) = 4x \mod 19$.
- 4. Suppose $m \in \mathbb{Z}_n^*$. Since ord $(\mathbb{Z}_n^*) = (p-1)(q-1)$, the congruence follows from Euler's Theorem for the group \mathbb{Z}_n^* . By reducing modulo p or modulo q, the statement follows for any $m \in \mathbb{Z}_n$.
- 5. ord $(\mathbb{Z}_{23}^*)=22$. We have $2^{11} \mod 23\equiv 1$ and hence ord $(\overline{2})=11$. Since $5^{11} \mod 23\equiv 22$ and $5^2 \mod 23\equiv 2$, we obtain ord $(\overline{5})=22$ (maximal) so that $\overline{5}$ is a generator of \mathbb{Z}_{23}^* .
- 6. ord $(\overline{2}) = 18$ (a generator of \mathbb{Z}_{19}^*) and ord $(\overline{5}) = 9$ (not a generator).
- 7. The order of any element in $\mathbb{Z}_n \times \mathbb{Z}_n$ is less than or equal to n. Since ord $(\mathbb{Z}_n \times \mathbb{Z}_n) = n^2$, this group cannot be cyclic.
- 8. $\mathbb{Z}_2^3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ and \mathbb{Z}_8 . Only \mathbb{Z}_8 is a cyclic group.
- 9. ord $(\mathbb{Z}_{12}^*) = 4$. There is no element of order 4 and therefore $\mathbb{Z}_{12}^* \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. ord $(\mathbb{Z}_{23}^*) = 22$ and $\mathbb{Z}_{23}^* \cong \mathbb{Z}_{22} \cong \mathbb{Z}_{11} \times \mathbb{Z}_2$ by the Chinese Remainder Theorem.
- 10. $a \mod n$ is a generator of the additive group \mathbb{Z}_n if and only if $\gcd(a,n)=1$.
- 11. p = 13 and q = 19. The Extended Euclidean Algorithm gives 1 = 3p 2q and hence $k = 7 \cdot (-2)q + 2 \cdot 3p = 59$.
- 12. (1,0) and (0,1) are nonzero and not invertible in $R_1 \times R_2$.
- 13. Since D is linear it suffices to show that $D(x^n x^m) = D(x^n) x^m + x^n D(x^m)$. The left side of this equation is $(n+m)x^{n+m-1}$ and the right side is $nx^{n-1+m} + mx^{n+m-1} = (n+m)x^{n+m-1}$.
- 14. a) 16 elements. It is not a field since $1 + x^2 + x^4 = (1 + x + x^2)^2$ is reducible in GF(2)[x].
 - b) 9 elements. It is a field since $1+x^2$ is irreducible in GF(3)[x]; the polynomial does not have zeros over GF(3).
 - c) 2^n elements. It is not a field since $x^n 1$ is reducible; x = 1 is a zero and (x 1) a linear factor of $x^n 1$.
- 15. $x^3 \equiv x+1, x^4 \equiv x^2+x, x^5 \equiv x^2+x+1, x^6 \equiv x^2+1, x^7 \equiv 1 \mod 1 + x + x^3$.
- 16. For example, $h(x) = 1 + x + x^6$ or $h(x) = 1 + x^3 + x^6$. Both polynomials have no zeros over GF(2). One can manually check that they are not divisible by any polynomial of degree 2 and 3. They are therefore irreducible. We may also use Sage.

```
sage: R.<x> = PolynomialRing(GF(2), 'x')
sage: h=1+x+x^6; h.is_irreducible()
True
sage: h=1+x^3+x^6; h.is_irreducible()
True
```

17. We factorize $x^{256} - x$ over GF(2).

```
sage: R.<x> = PolynomialRing(GF(2), 'x')
sage: R(x^256-x).factor()
x * (x + 1) * (x^2 + x + 1) * (x^4 + x + 1) * (x^4 + x^3 + 1) *
(x^4 + x^3 + x^2 + x + 1) * (x^8 + x^4 + x^3 + x + 1) *
(x^8 + x^4 + x^3 + x^2 + 1) * (x^8 + x^5 + x^3 + x + 1) *
(x^8 + x^5 + x^3 + x^2 + 1) *
(x^8 + x^5 + x^4 + x^3 + 1) *
(x^8 + x^5 + x^4 + x^3 + x^2 + x + 1) *
(x^8 + x^6 + x^3 + x^2 + 1) *
(x^8 + x^6 + x^4 + x^3 + x^2 + x + 1) *
(x^8 + x^6 + x^5 + x + 1) *
(x^8 + x^6 + x^5 + x^2 + 1) * (x^8 + x^6 + x^5 + x^3 + 1) *
(x^8 + x^6 + x^5 + x^4 + 1) *
(x^8 + x^6 + x^5 + x^4 + x^2 + x + 1) *
(x^8 + x^6 + x^5 + x^4 + x^3 + x + 1) *
(x^8 + x^7 + x^2 + x + 1) *
(x^8 + x^7 + x^3 + x + 1) * (x^8 + x^7 + x^3 + x^2 + 1) *
(x^8 + x^7 + x^4 + x^3 + x^2 + x + 1) *
(x^8 + x^7 + x^5 + x + 1) * (x^8 + x^7 + x^5 + x^3 + 1) *
(x^8 + x^7 + x^5 + x^4 + 1) *
(x^8 + x^7 + x^5 + x^4 + x^3 + x^2 + 1) *
(x^8 + x^7 + x^6 + x + 1) *
(x^8 + x^7 + x^6 + x^3 + x^2 + x + 1) *
(x^8 + x^7 + x^6 + x^4 + x^2 + x + 1) *
(x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + 1) *
(x^8 + x^7 + x^6 + x^5 + x^2 + x + 1)*
(x^8 + x^7 + x^6 + x^5 + x^4 + x + 1) *
(x^8 + x^7 + x^6 + x^5 + x^4 + x^2 + 1) *
(x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + 1)
```

The seventh factor is $x^8 + x^4 + x^3 + x + 1$.

- 18. The subfields of $GF(2^8)$ are $GF(2^4) = GF(2)[x](x^4 + x + 1)$, $GF(2^2) = GF(2)[x]/(x^2 + x + 1)$ and GF(2).
- 19. f(x) = x, $h(x) = x^7 + x^3 + x^2 + 1$. Then $f(x) \cdot h(x) \equiv x^8 + x^4 + x^3 + x \equiv 1 \mod(x^8 + x^4 + x^3 + x + 1)$. h(x) corresponds to 8D.
- 20. f^{-1} is given by the bit permutation (2 4 1 6 5 7 8 3). The 8 × 8 matrices A and A^{-1} corresponding to f and f^{-1} have exactly one entry equal to 1 in each row and column and the other entries are 0. The columns are the images of the unit vectors. For example, the first column of A is $(01000000)^T$ and the first column of A^{-1} is $(00100000)^T$.
- 21. The conjugate transpose of A is

$$A^* = \frac{1}{2} \begin{pmatrix} 1 - i & 1 + i \\ 1 + i & 1 - i \end{pmatrix}.$$

Since $A^* \cdot A = I_2$, the matrix A is unitary and $A^{-1} = A^*$.

22. f is bijective if and only if A is regular, i.e., an invertible matrix. Then

$$f^{-1}(x) = A^{-1}(x - b) = A^{-1}x - A^{-1}b.$$

23. f is the sum of a GF(2)-linear map and a constant translation. The linear map is given by the regular matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. The constant translation is

given by the vector
$$b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
. We have $A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ and

$$f^{-1}(x_1, x_2, x_3) = A^{-1}x - A^{-1}b = (x_1 + x_3, x_1 + x_2 + x_3, x_1 + x_2 + 1).$$

24. Suppose V and W have the column vectors v_1, v_2, v_3 and w_1, w_2, w_3 , respectively. Then AV = W and $A = WV^{-1}$.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 25. A $GF(2^8)$ -linear map on $V = GF(2^8)$ is a multiplication by an element of $GF(2^8)$ since V has dimension 1 over $GF(2^8)$. Hence there are 256 different $GF(2^8)$ -linear maps. On the other hand, a GF(2)-linear map on V is given by a 8×8 matrix over GF(2) since V has dimension 8 over GF(2). Such a matrix has 64 binary entries and there are thus 2^{64} different matrices and associated GF(2)-linear maps.
- 26. The adversary chooses m=0. If the oracle returns c=0, then the output is most likely computed by the linear function family F_k . Linear functions map zero to zero whereas the output of a random function (for any input) is almost certainly not zero. Hence the prf-advantage is close to 1.