矩阵理论与方法

内容提要 CONTENTS

- □课程信息
- □课程介绍
- □ 矩阵理论与方法

第3章 矩阵分析及其应用

其他微分

函数对矩阵的导数

函数矩阵对矩阵的导数

其它微分概念

函数对矩阵的导数(包括向量)

定义:设 $X=(\xi_{ij})_{m\times n}$,mn元函数

$$f(X) = f(\xi_{11}, \xi_{12}, \dots, \xi_{1n}, \dots, \xi_{m \times n})$$

定义f(X)对矩阵X的导数为

$$\frac{df}{dX} = \left(\frac{\partial f}{\partial \xi_{ij}}\right)_{m \times n} = \begin{bmatrix} \frac{\partial f}{\partial \xi_{11}} & \dots & \frac{\partial f}{\partial \xi_{1n}} \\ \vdots & & \vdots \\ \frac{\partial f}{\partial \xi_{m1}} & \dots & \frac{\partial f}{\partial \xi_{mn}} \end{bmatrix}$$

例11:
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
: $f(x) = f(\xi_1, \xi_2, \dots, \xi_n)$
$$\frac{df}{dx} = \begin{bmatrix} \frac{\partial f}{\partial \xi_1} \\ \vdots \\ \frac{\partial f}{\partial \xi_n} \end{bmatrix}$$

例11:
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
: $f(x) = f(\xi_1, \xi_2, \dots, \xi_n)$
$$\frac{df}{dx} = \begin{bmatrix} \frac{\partial f}{\partial \xi_1} \\ \vdots \\ \frac{\partial f}{\partial \xi_n} \end{bmatrix}$$
例12: $A = (a_{ij})_{n \times n}$, $x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$: $f(x) = x^T A x$, 求 $\frac{df}{dx}$

例12:
$$A = (a_{ij})_{n \times n}, x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} : f(x) = x^T A x, 求 \frac{df}{dx}$$

例11:
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
: $f(x) = f(\xi_1, \xi_2, \dots, \xi_n)$
$$\frac{df}{dx} = \begin{bmatrix} \frac{\partial f}{\partial \xi_1} \\ \vdots \\ \frac{\partial f}{\partial \xi_n} \end{bmatrix}$$

$$\therefore \frac{df}{dx} = \left(A + A^T\right)x$$

如果
$$A = A^T$$
 , 有 $\frac{df}{dx} = 2Ax$

矩阵对矩阵的导数

定义:设
$$X = (\xi_{ij})_{m \times n}, f_{kl}(X) = f_{kl}(\xi_{11}, \xi_{12}, \dots, \xi_{1n}, \dots, \xi_{m \times n})$$

定义:设
$$X = (\xi_{ij})_{m \times n}, f_{kl}(X) = f_{kl}(\xi_{11}, \xi_{12}, \dots, \xi_{1n}, \dots, \xi_{m \times n})$$

$$F = \begin{bmatrix} f_{11} & \dots & f_{1s} \\ \vdots & & \vdots \\ f_{r1} & \dots & f_{rs} \end{bmatrix}, \qquad \frac{\partial F}{\partial \xi_{ij}} = \begin{bmatrix} \frac{\partial f_{11}}{\partial \xi_{ij}} & \dots & \frac{\partial f_{1s}}{\partial \xi_{ij}} \\ \vdots & & \vdots \\ \frac{\partial f_{r1}}{\partial \xi_{ij}} & \dots & \frac{\partial f_{rs}}{\partial \xi_{ij}} \end{bmatrix},$$

$$\mathbb{Z} \times \frac{dF}{dX} = \begin{bmatrix} \frac{\partial F}{\partial \xi_{11}} & \dots & \frac{\partial F}{\partial \xi_{1n}} \\ \vdots & & \vdots \\ \frac{\partial F}{\partial \xi_{m1}} & \dots & \frac{\partial F}{\partial \xi_{mn}} \end{bmatrix}$$

例15:
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}, F(x) = [f_1(x), f_2(x), \dots, f_l(x)]$$

$$\frac{dF}{dx} =$$

例15:
$$\mathbf{x} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
, $F(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_l(\mathbf{x})]$
$$[\partial f_1 \quad \partial f_l]$$

$$\frac{dF}{dx} = \begin{bmatrix} \frac{\partial f_1}{\partial \xi_1} & \dots & \frac{\partial f_l}{\partial \xi_1} \\ \vdots & & \vdots \\ \frac{\partial f_1}{\partial \xi_n} & \dots & \frac{\partial f_l}{\partial \xi_n} \end{bmatrix}$$

例15:
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}, F(x) = [f_1(x), f_2(x), \dots, f_l(x)]$$

$$\frac{dF}{dx} = \begin{bmatrix} \frac{\partial f_1}{\partial \xi_1} & \dots & \frac{\partial f_l}{\partial \xi_1} \\ \vdots & & \vdots \\ \frac{\partial f_1}{\partial \xi_n} & \dots & \frac{\partial f_l}{\partial \xi_n} \end{bmatrix}$$

例16:
$$A = (a_{ij})_{n \times n}$$
,

$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$

例16:
$$A = (a_{ij})_{n \times n}$$
, $x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$ $Ax = \begin{bmatrix} \sum_{j=1}^n a_{1j} \xi_j \\ \vdots \\ \sum_{j=1}^n a_{nj} \xi_j \end{bmatrix}$

$$\frac{d(Ax)}{dx^T} =$$

例15:
$$x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}, F(x) = [f_1(x), f_2(x), \dots, f_l(x)]$$

$$\frac{dF}{dx} = \begin{bmatrix}
\frac{\partial f_1}{\partial \xi_1} & \dots & \frac{\partial f_l}{\partial \xi_1} \\
\vdots & & \vdots \\
\frac{\partial f_1}{\partial \xi_n} & \dots & \frac{\partial f_l}{\partial \xi_n}
\end{bmatrix}$$

例16:
$$A = (a_{ij})_{n \times n}$$
, $x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$

$$\frac{d(Ax)}{dx^{T}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = A$$

$$Ax = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} \xi_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} \xi_{j} \end{bmatrix}$$

Types of Matrix Derivatives

Types	Scalar	Vector	Matrix
Scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
Vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	
Matrix	$\frac{\partial y}{\partial \mathbf{X}}$		

Vector-by-scalar [edit]

The derivative of a vector
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
, by a scalar x is written (in numerator layout notation) as

$$rac{\partial \mathbf{y}}{\partial x} = egin{bmatrix} rac{\partial y_1}{\partial x} \ rac{\partial y_2}{\partial x} \ dots \ rac{\partial y_m}{\partial x} \end{bmatrix}.$$

Scalar-by-vector [edit]

The derivative of a scalar
$$y$$
 by a vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, is written (in denominator layout notation) as $\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix}$.

Vector-by-vector [edit]

Each of the previous two cases can be considered as an application of the derivative of a vector with respect to a vector, using a vector of involving vectors in a corresponding way.

The derivative of a vector function (a vector whose components are functions) $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$, with respect to an input vector, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$,

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}.$$

Matrix-by-scalar [edit]

The derivative of a matrix function Y by a scalar x is known as the tangent matrix and is given (in numerator layout notation) by

$$\frac{\partial \mathbf{Y}}{\partial x} = \begin{bmatrix} \frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \cdots & \frac{\partial y_{1n}}{\partial x} \\ \frac{\partial y_{21}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \cdots & \frac{\partial y_{2n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \cdots & \frac{\partial y_{mn}}{\partial x} \end{bmatrix}.$$

Scalar-by-matrix [edit]

The derivative of a scalar y function of a $p \times q$ matrix X of independent variables, with respect to the matrix X, is given (in numerator layout notation) by

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{p1}} \\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{p2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1q}} & \frac{\partial y}{\partial x_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}} \end{bmatrix}.$$

Result of differentiating various kinds of aggregates with other kinds of aggregates

	Scalar y		Vector y (size m)		Matrix Y (size m×n)	
	Notation	Туре	Notation	Туре	Notation	Type
Scalar <i>x</i>	$\frac{\partial y}{\partial x}$	scalar	$\frac{\partial \mathbf{y}}{\partial x}$	(numerator layout) size- <i>m</i> column vector (denominator layout) size- <i>m</i> row vector	$\frac{\partial \mathbf{Y}}{\partial x}$	(numerator layout) m×n matrix
Vector x (size n)	$\frac{\partial y}{\partial \mathbf{x}}$	(numerator layout) size- <i>n</i> row vector (denominator layout) size- <i>n</i> column vector	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	(numerator layout) <i>m</i> × <i>n</i> matrix (denominator layout) <i>n</i> × <i>m</i> matrix	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$	
Matrix X (size $p \times q$)	$\frac{\partial y}{\partial \mathbf{X}}$	(numerator layout) $q \times p$ matrix (denominator layout) $p \times q$ matrix	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$		$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$	

分子布局
$$\frac{\partial y}{\partial x} = \frac{dy}{dx^T}$$

Numerator-layout notation [edit]

Using numerator-layout notation, we have:[1]

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}}{\partial x_1} & \frac{\partial \mathbf{y}}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}}{\partial x_n} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial x} \\ \frac{\partial \mathbf{y}_2}{\partial x} \\ \vdots \\ \frac{\partial \mathbf{y}_m}{\partial x} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial x_1} & \frac{\partial \mathbf{y}_1}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}_1}{\partial x_n} \\ \frac{\partial \mathbf{y}_2}{\partial x_1} & \frac{\partial \mathbf{y}_2}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{y}_m}{\partial x_1} & \frac{\partial \mathbf{y}_m}{\partial x_2} & \cdots & \frac{\partial \mathbf{y}_m}{\partial x_n} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}}{\partial x_{11}} & \frac{\partial \mathbf{y}}{\partial x_{22}} & \cdots & \frac{\partial \mathbf{y}}{\partial x_{p1}} \\ \frac{\partial \mathbf{y}}{\partial x_{12}} & \frac{\partial \mathbf{y}}{\partial x_{22}} & \cdots & \frac{\partial \mathbf{y}}{\partial x_{p2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{y}}{\partial x_{1n}} & \frac{\partial \mathbf{y}}{\partial x_{2n}} & \cdots & \frac{\partial \mathbf{y}}{\partial x_{pn}} \end{bmatrix}.$$

分母布局
$$\frac{\partial y}{\partial x} = \frac{dy^T}{dx}$$

Denominator-layout notation [edit]

Using denominator-layout notation, we have:[3]

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_m}{\partial x} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_2}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}.$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{1q}} \\ \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2q}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{n1}} & \frac{\partial y}{\partial x_{n2}} & \cdots & \frac{\partial y}{\partial x_{nq}} \end{bmatrix}.$$

Identities: vector-by-vector $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

		θX			
Condition	Expression	Numerator layout, i.e. by y and x ^T	Denominator layout, i.e. by y ^T and x		
a is not a function of x	$\frac{\partial \mathbf{a}}{\partial \mathbf{x}} =$	()		
	$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} =$	1	I		
A is not a function of x	$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	A	\mathbf{A}^{\top}		
A is not a function of x	$\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}} =$	$\mathbf{A}^{ op}$	A		
a is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial a \mathbf{u}}{\partial \mathbf{x}} =$	$arac{\partial \mathbf{u}}{\partial \mathbf{x}}$			
$a = a(\mathbf{x}), \mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial a\mathbf{u}}{\partial \mathbf{x}} =$	$a rac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u} rac{\partial a}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial a}{\partial \mathbf{x}} \mathbf{u}^\top$		
A is not a function of x, u = u(x)	$\frac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{A} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^{\top}$		
u = u(x), v = v(x)	$rac{\partial (\mathbf{u} + \mathbf{v})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$			
u = u(x)	$rac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$		
u = u (x)	$\frac{\partial f(g(u))}{\partial x} =$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$		

Identities: scalar-by-vector $rac{\partial y}{\partial \mathbf{x}} =
abla_{\mathbf{x}} y$

		∂x	
Condition	Expression	Numerator layout, i.e. by x ^T ; result is row vector	Denominator layout, i.e. by x; result is column vector
a is not a function of x	$rac{\partial a}{\partial \mathbf{x}} =$	0 [⊤] [4]	o ^[4]
a is not a function of \mathbf{x} , $u = u(\mathbf{x})$	$rac{\partial au}{\partial \mathbf{x}} =$	a	$\frac{\partial u}{\partial \mathbf{x}}$
$u = u(\mathbf{x}), \ v = v(\mathbf{x})$	$rac{\partial (u+v)}{\partial \mathbf{x}}=$	$rac{\partial u}{\partial \mathbf{x}} + rac{\partial v}{\partial \mathbf{x}}$	
$u = u(\mathbf{x}), \ v = v(\mathbf{x})$	$rac{\partial uv}{\partial \mathbf{x}} =$	$urac{\partial v}{\partial \mathbf{x}} + vrac{\partial u}{\partial \mathbf{x}}$	
$u = u(\mathbf{x})$	$rac{\partial g(u)}{\partial \mathbf{x}} =$	$rac{\partial g(u)}{\partial u} rac{\partial u}{\partial \mathbf{x}}$	
$u = u(\mathbf{x})$	$\frac{\partial f(g(u))}{\partial \mathbf{x}} =$	$\frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$	
$\mathbf{u} = \mathbf{u}(\mathbf{x}), \mathbf{v} = \mathbf{v}(\mathbf{x})$	$\frac{\partial (\mathbf{u} \cdot \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^\top \mathbf{v}}{\partial \mathbf{x}} =$	$\mathbf{u}^{\top} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ • assumes numerator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{u}$ • assumes denominator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
u = u(x), v = v(x), A is not a function of x	$\frac{\partial (\mathbf{u} \cdot \mathbf{A} \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^{\top} \mathbf{A} \mathbf{v}}{\partial \mathbf{x}} =$	$\mathbf{u}^{\top} \mathbf{A} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^{\top} \mathbf{A}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ • assumes numerator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^{\top} \mathbf{u}$ • assumes denominator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$
	$rac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^T} =$		H , the Hessian matrix ^[5]

a is not a function of x	$egin{aligned} rac{\partial (\mathbf{a} \cdot \mathbf{x})}{\partial \mathbf{x}} &= rac{\partial (\mathbf{x} \cdot \mathbf{a})}{\partial \mathbf{x}} &= \\ & rac{\partial \mathbf{a}^{ op} \mathbf{x}}{\partial \mathbf{x}} &= rac{\partial \mathbf{x}^{ op} \mathbf{a}}{\partial \mathbf{x}} &= \end{aligned}$	\mathbf{a}^{\top}	a
A is not a function of x b is not a function of x	$rac{\partial \mathbf{b}^{ op} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$\mathbf{b}^{\top}\mathbf{A}$	$\mathbf{A}^{ op}\mathbf{b}$
A is not a function of x	$rac{\partial \mathbf{x}^{ op} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$\mathbf{x}^{ op}(\mathbf{A} + \mathbf{A}^{ op})$	$(\mathbf{A} + \mathbf{A}^{\top})\mathbf{x}$
A is not a function of x A is symmetric	$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}} = \mathbf{x}$	$2\mathbf{x}^{\top}\mathbf{A}$	2Ax
A is not a function of x	$rac{\partial \mathbf{x}}{\partial \mathbf{z}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^{2}} =$	$\mathbf{A} + \mathbf{A}^{\top}$	
A is not a function of x A is symmetric	$rac{\partial^2 \mathbf{x}^{ op} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} =$	2 A	
	$\frac{\partial (\mathbf{x} \cdot \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^{\top} \mathbf{x}}{\partial \mathbf{x}} =$	$2\mathbf{x}^{\top}$	$2\mathbf{x}$
\mathbf{a} is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial (\mathbf{a} \cdot \mathbf{u})}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^{\top} \mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{a}^{ op} rac{\partial \mathbf{u}}{\partial \mathbf{x}}$ • assumes numerator layout of $rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\mathbf{a}$ • assumes denominator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
a, b are not functions of x	$\frac{\partial \mathbf{a}^{\top} \mathbf{x} \mathbf{x}^{\top} \mathbf{b}}{\partial \mathbf{x}} =$	$\mathbf{x}^\top \big(\mathbf{a} \mathbf{b}^\top + \mathbf{b} \mathbf{a}^\top \big)$	$(\mathbf{a}\mathbf{b}^{\top} + \mathbf{b}\mathbf{a}^{\top})\mathbf{x}$
A, b, C, D, e are not functions of x	$\frac{\partial \ (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top} \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{e})}{\partial \ \mathbf{x}} =$	$(\mathbf{D}\mathbf{x} + \mathbf{e})^{\top}\mathbf{C}^{\top}\mathbf{A} + (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top}\mathbf{C}\mathbf{D}$	$\mathbf{D}^{\top}\mathbf{C}^{\top}(\mathbf{A}\mathbf{x} + \mathbf{b}) + \mathbf{A}^{\top}\mathbf{C}(\mathbf{D}\mathbf{x} + \mathbf{e})$
a is not a function of x	$rac{\partial \ \mathbf{x} - \mathbf{a}\ }{\partial \mathbf{x}} =$	$\frac{(\mathbf{x} - \mathbf{a})^\top}{\ \mathbf{x} - \mathbf{a}\ }$	$\frac{\mathbf{x} - \mathbf{a}}{\ \mathbf{x} - \mathbf{a}\ }$

Identities: vector-by-scalar $\dfrac{\partial \mathbf{y}}{\partial x}$

		Out	
Condition	Expression	Numerator layout, i.e. by y, result is column vector	Denominator layout, i.e. by y ^T , result is row vector
a is not a function of x	$\frac{\partial \mathbf{a}}{\partial x} =$	0 ^[4]	
a is not a function of x , $u = u(x)$	$\frac{\partial a \mathbf{u}}{\partial x} =$	$a\frac{\partial \mathbf{u}}{\partial x}$	
A is not a function of x_i u = u(x)	$rac{\partial {f A} {f u}}{\partial x} =$	$\mathbf{A} \frac{\partial \mathbf{u}}{\partial x}$	$\frac{\partial \mathbf{u}}{\partial x} \mathbf{A}^{\top}$
$\mathbf{u} = \mathbf{u}(x)$	$\frac{\partial \mathbf{u}^\top}{\partial x} =$	$\left(rac{\partial \mathbf{u}}{\partial x} ight)^{ op}$	
$\mathbf{u} = \mathbf{u}(x), \mathbf{v} = \mathbf{v}(x)$	$rac{\partial ({f u}+{f v})}{\partial x}=$	$rac{\partial \mathbf{u}}{\partial x} + rac{\partial \mathbf{v}}{\partial x}$	
$\mathbf{u} = \mathbf{u}(x), \mathbf{v} = \mathbf{v}(x)$	$\frac{\partial (\mathbf{u}^{\top} \times \mathbf{v})}{\partial x} =$	$\left(rac{\partial \mathbf{u}}{\partial x} ight)^{ op} imes \mathbf{v} + \mathbf{u}^{ op} imes rac{\partial \mathbf{v}}{\partial x}$	$egin{aligned} rac{\partial \mathbf{u}}{\partial x} imes \mathbf{v} + \mathbf{u}^ op imes \left(rac{\partial \mathbf{v}}{\partial x} ight)^ op \end{aligned}$
u = u (<i>x</i>)	$rac{\partial \mathbf{g}(\mathbf{u})}{\partial x} =$	$\frac{\partial \mathbf{g(u)}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x}$ Assumes consistent m	$rac{\partial \mathbf{u}}{\partial x} rac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$
u = u (<i>x</i>)	$\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial x} =$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x}$	$\frac{\partial \mathbf{u}}{\partial x} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$
	O.L	Assumes consistent m	natrix layout; see below.
$\mathbf{U} = \mathbf{U}(x), \mathbf{v} = \mathbf{v}(x)$	$rac{\partial ({f U} imes {f v})}{\partial x} =$	$rac{\partial \mathbf{U}}{\partial x} imes \mathbf{v} + \mathbf{U} imes rac{\partial \mathbf{v}}{\partial x}$	$\mathbf{v}^ op imes \left(rac{\partial \mathbf{U}}{\partial x} ight) + rac{\partial \mathbf{v}}{\partial x} imes \mathbf{U}^ op$

Identities: scalar-by-matrix $\dfrac{\partial y}{\partial \mathbf{X}}$

Condition	Expression	Numerator layout, i.e. by X ^T	Denominator layout, i.e. by X
a is not a function of X	$\frac{\partial a}{\partial \mathbf{X}} =$	0 [⊤] [6]	o [6]
a is not a function of X , $u = u(X)$	$rac{\partial au}{\partial \mathbf{X}}=$	$a \frac{\partial u}{\partial \mathbf{X}}$	
$u = u(\mathbf{X}), \ v = v(\mathbf{X})$	$rac{\partial {f X}}{\partial {f X}} =$	$rac{\partial u}{\partial \mathbf{X}} + rac{\partial v}{\partial \mathbf{X}}$	
u = u(X), v = v(X)	$rac{\partial uv}{\partial \mathbf{X}} =$	$u\frac{\partial v}{\partial \mathbf{X}} + v\frac{\partial u}{\partial \mathbf{X}}$	
u = u(X)	$rac{\partial g(u)}{\partial \mathbf{X}} =$	$rac{\partial g(u)}{\partial u} rac{\partial u}{\partial \mathbf{X}}$	
u = u(X)	$rac{\partial f(g(u))}{\partial \mathbf{X}} =$	$rac{\partial f(g)}{\partial g} rac{\partial g(u)}{\partial u} rac{\partial u}{\partial \mathbf{X}}$	
U = U(X)	$^{ extstyle [5]} \;\; rac{\partial g(\mathbf{U})}{\partial X_{ij}} =$	$\mathrm{tr}igg(rac{\partial g(\mathbf{U})}{\partial \mathbf{U}}rac{\partial \mathbf{U}}{\partial X_{ij}}igg)$ Both forms assume <i>numera</i>	$\operatorname{tr} \left(\left(rac{\partial g(\mathbf{U})}{\partial \mathbf{U}} ight)^ op rac{\partial \mathbf{U}}{\partial X_{ij}} ight)$
		i.e. mixed layout if denominator	layout for X is being used.
a and b are not functions of X	$\frac{\partial a^{\top} \mathbf{X} b}{\partial \mathbf{X}} =$	$ba^{ op}$	$ab^{ op}$
a and b are not functions of X	$rac{\partial a^{ op} \mathbf{X}^{ op} b}{\partial \mathbf{X}} =$	$ab^{ op}$	$ba^{ op}$
a, b and C are not functions of X	$\frac{\partial (\mathbf{X}a+b)^{\top}\mathbf{C}(\mathbf{X}a+b)}{\partial \mathbf{X}} =$	$((\mathbf{C} + \mathbf{C}^\top)(\mathbf{X}a + b)a^\top)^\top$	$(\mathbf{C} + \mathbf{C}^\top)(\mathbf{X}a + b)a^\top$
a, b and C are not functions of X	$rac{\partial (\mathbf{X}a)^{ op}\mathbf{C}(\mathbf{X}b)}{\partial \mathbf{X}} =$	$(\mathbf{C}\mathbf{X}ba^\top + \mathbf{C}^\top\mathbf{X}ab^\top)^\top$	$\mathbf{C}\mathbf{X}ba^\top + \mathbf{C}^\top\mathbf{X}ab^\top$

Identities: matrix-by-scalar $\dfrac{\partial \mathbf{Y}}{\partial x}$

Condition	Expression	Numerator layout, i.e. by Y	
U = U (x)	$\frac{\partial a \mathbf{U}}{\partial x} =$	$a \frac{\partial \mathbf{U}}{\partial x}$	
A, B are not functions of . $U = U(x)$	$\frac{\partial \mathbf{AUB}}{\partial x} =$	$\mathbf{A} rac{\partial \mathbf{U}}{\partial x} \mathbf{B}$	
U = U(x), V = V(x)	$rac{\partial ({f U}+{f V})}{\partial x}=$	$rac{\partial \mathbf{U}}{\partial x} + rac{\partial \mathbf{V}}{\partial x}$	
$\mathbf{U} = \mathbf{U}(x), \mathbf{V} = \mathbf{V}(x)$	$\frac{\partial (\mathbf{U}\mathbf{V})}{\partial x} =$	$\mathbf{U} rac{\partial \mathbf{V}}{\partial x} + rac{\partial \mathbf{U}}{\partial x} \mathbf{V}$	
$\mathbf{U} = \mathbf{U}(x), \ \mathbf{V} = \mathbf{V}(x)$	$\frac{\partial (\mathbf{U} \otimes \mathbf{V})}{\partial x} =$	$\mathbf{U}\otimes rac{\partial \mathbf{V}}{\partial x} + rac{\partial \mathbf{U}}{\partial x}\otimes \mathbf{V}$	
U = U(x), V = V(x)	$\frac{\partial (\mathbf{U} \circ \mathbf{V})}{\partial x} =$	$\mathbf{U} \circ rac{\partial \mathbf{V}}{\partial x} + rac{\partial \mathbf{U}}{\partial x} \circ \mathbf{V}$	
$\mathbf{U} = \mathbf{U}(x)$	$rac{\partial \mathbf{U}^{-1}}{\partial x} =$	$-\mathbf{U}^{-1}rac{\partial \mathbf{U}}{\partial x}\mathbf{U}^{-1}$	
U = U (x,y)	$rac{\partial^2 \mathbf{U}^{-1}}{\partial x \partial y} =$	$\mathbf{U}^{-1} \left(\frac{\partial \mathbf{U}}{\partial x} \mathbf{U}^{-1} \frac{\partial \mathbf{U}}{\partial y} - \frac{\partial^2 \mathbf{U}}{\partial x \partial y} + \frac{\partial \mathbf{U}}{\partial y} \mathbf{U}^{-1} \frac{\partial \mathbf{U}}{\partial x} \right) \mathbf{U}^{-1}$	
any matrix function defined s its derivative, and g '(X) is	$\frac{\partial \mathbf{g}(x\mathbf{A})}{\partial x} =$	$\mathbf{A}\mathbf{g}'(x\mathbf{A}) = \mathbf{g}'(x\mathbf{A})\mathbf{A}$	
A is not a function of x	$rac{\partial e^{x{f A}}}{\partial x}=$	$\mathbf{A}e^{x\mathbf{A}}=e^{x\mathbf{A}}\mathbf{A}$	

下课,谢谢大家!