

Sistemas Não-Lineares e Caos

Alexandre Barbosa^{1*}, Camila Costa², Francisco Pais³, Francisca Góis⁴

Laboratório de Física Experimental Avançada Mestrado Integrado em Engenharia Física Tecnológica

Solitões

Os solitões são fenómenos ondulatórios que:

- são localizados
- mantêm a forma, mesmo quando colidem com outros (partículas)
- não dissipam energia

No laboratório são perturbações ao nível da água e resultam de um balanço de dissipação/não-linearidade.

J. Scott Russel, "Report on Waves", 14th Meeting of the British Association for the Advancement of Science, 311-390 (1845)

Aproximações e solução KdV

• Ondas infinitesimais $\frac{\eta}{L} = \frac{A}{4B} \ll 1$

• Ondas largas e pouco profundas
$$\varepsilon_2 = \left(\frac{h}{L}\right)^2 = \frac{h^2}{4B^2} \ll 1$$
 $U = \frac{\varepsilon_1}{\varepsilon_2} = \frac{2AB^2}{h^3} \sim 1$

• Perturbações menores altura água $\varepsilon_1 = \frac{\eta}{\hbar} = \frac{A}{2\hbar} \ll 1$

Número de Ursell

$$U = \frac{\varepsilon_1}{\varepsilon_2} = \frac{2AB^2}{h^3} \sim 1$$

Equação KdV
$$\boxed{ \frac{\partial \eta}{\partial t} + v_0 \frac{\partial \eta}{\partial x} + \frac{3}{2} \frac{v_0}{h} \eta \frac{\partial^2 \eta}{\partial x^2} + \frac{v_0 h^2}{6} \frac{\partial^3 \eta}{\partial x^3} = 0 }$$

que tem como solução $\eta(x,t) = \mathrm{sech}^2\left(\frac{x-ct}{r}\right)$

Objetivos

Comparar com as previsões de KdV medições de

• número de solitões
$$N=1+\mathrm{int}\Big(\frac{S}{\pi}\Big)$$
 onde $S=\sqrt{\frac{3\eta}{2h}}\frac{L}{h}$

- amplitude $\eta = \frac{A}{2}$
- velocidade $v = \sqrt{gh} \left(1 + \frac{\eta}{2h} \right)$

por observação direta e por reflexão de lasers na superfície da água

• Estabelecer os limites da teoria KdV, em função de $\varepsilon_1, \varepsilon_2 \in U$

Montagem Experimental

Incertezas Experimentais

δh

7 medições de h ao longo da tina maior desvio à média: δh = 0.5 cm

δΑ

3 medições dentro da comporta maior desvio à média: δA = 0.2 cm

δt

10 ensaios tempo de reaçãodobro do tempo de reação: δt = 0.5 s

Análise de Dados - Cinéris

Criámos um *notebook* para calcular:

- Número de Solitões: picos de amplitude superior a um threshold (70 % da amplitude máxima)
- Amplitude: diferença entre máximo do primeiro pico e pontos iniciais
- Velocidade: tempo entre o movimento dos lasers azul e verde.

Desvios à Teoria KdV – Número Solitões (ε₁,ε₂)

Desvios à Teoria KdV – Velocidade ($\varepsilon_1, \varepsilon_2$)

Desvios à Teoria KdV em função de η/L

- Observação Direta
 - Cinéris

Desvios à Teoria KdV em função de ε₁

- Observação Direta
 - Cinéris

Desvios à Teoria KdV em função de U

- Observação Direta
 - Cinéris

Desvios à Teoria KdV – Número de Solitões (U,ε1)

Desvios à Teoria KdV – Velocidade (U,ε1)

10

Região de Validade KdV

Região de Validade (Desvios < 30%)

Observação Direta

- U < 50
- $\epsilon_1 < 0.5$

Reflexão Lasers

- U < 18
- $\epsilon_1 < 0.5$

Região Crítica (Desvios > 30% Solitões ✓)

Observação Direta

- 50 < U < 500
- $0.5 < \varepsilon_1 < 1.0$

Reflexão Lasers

- 18 < U < 50
- $0.5 < \epsilon_1 < 1.0$

Os valores de ε_2 e η/L explorados estão dentro dos limites da teoria KdV, dada a geometria da montagem, logo pouco afetam a validade da teoria.

Amplitude e Velocidade

As retas esperadas para cada h seguem a relação

$$v = \sqrt{gh} \left(1 + \frac{\eta}{2h} \right)$$

Ajustes com h livre resultam em

Medição (cm)	2.13 ± 0.16	3.55 ± 0.20	6.04 ± 0.20
Ajuste (cm)	3.35 ± 0.04	3.95 ± 0.09	4.44 ± 0.20
σ	30.5	4.44	-8

h = 3.55 cm

h = 2.13 cm

Conclusões

- A teoria KdV descreve bem o número e velocidade dos solitões formados para ε₁ < 0.5 e U < 18
- A amplitude dos solitões não é bem descrita pela teoria KdV
- A execução da experiência podia ser melhorada com uma comporta mais estanque e rígida e uma tina e/ou bancada mais nivelada
- Com uma tina mais alta, poderíamos explorar valores de ε₂ maiores, dentro dos limites que estabelecemos para U

Caos em Sistemas Não-Lineares

Os sistemas não lineares são muitas vezes muito sensíveis às condições iniciais, o que os torna imprevisíveis e levam a um comportamento caótico.

Apesar da complexidade destes sistemas, há comportamentos universais como a duplicação de período no caminho para o caos ao variar um parâmetro externo.

Constantes de Feigenbaum

As razões de convergência de cada intervalo de bifurcação são universais

$$\delta = 4.6692016 \dots$$

$$\alpha = 2.5029078 \dots$$

Diagrama de Bifurcações

A partir de um mapa de bifurcações, é possível estimar as constantes de Feigenbaum.

$$\delta = \lim_{n \to \infty} \frac{b_n - b_{n-1}}{b_{n+1} - b_n}$$

$$\alpha = \lim_{n \to \infty} \frac{d_n}{d_{n+1}}$$

Objetivos

Usando um circuito RLC com um díodo varicap, modelar caos e

- Construir um mapa de bifurcações variando a tensão de offset
- Obter um mapa de intervalo e o itinerário entre pontos fixos
- Obter aproximações das constantes de Feigenbaum, através de
 - trajetórias

• frequências espectrais

e comparar com simulações numéricas, em que obtivemos

$$\delta = 4.66920$$

$$\alpha = 2.50291...$$

Frequência de Ressonância

$$U(f) = \frac{U_0 f_0^2}{\sqrt{(f^2 - f_0^2)^2 + 4f^2 \gamma^2}}$$
 com
$$\gamma = \frac{R}{2\pi 2L} \ \text{e} \ f_0 = \frac{1}{2\pi \sqrt{LC}}$$

Parâmetro	Valor
U_0 (V)	0.097 ± 0.022
f_0 (kHz)	418.3 ± 3.1
$\gamma (\mathrm{kHz})$	12.4 ± 3.2

Duplicação de Período e Caos

Aumentando a tensão de offset, observamos a sequência de períodos

$$1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow \text{Caos} \rightarrow 3 \rightarrow \text{Caos} \rightarrow 5$$

$$\rightarrow \text{Caos} \rightarrow 6 \rightarrow \text{Caos} \rightarrow 12 \rightarrow \text{Caos} \rightarrow 3 \rightarrow \text{Caos} \rightarrow 2 \rightarrow 1$$

para uma frequência $f = (390.50 \pm 0.02) \; \mathrm{KHz}$, perto da ressonância.

Mapa de Bifurcações

Ao varrer a tensão de *offset* com uma onda triangular de baixa frequência, conseguimos ver no osciloscópio um mapa de bifurcações e janelas de estabilidade dentro do caos.

Determinação das Constantes de Feigenbaum

Método 1 Offset na Bifurcação das Trajetórias (Osciloscópio Modo XY)

Período	δ	Desvio (%)	Desvio (σ)	
$1 \to 2 \to 4 \to 8$	3.21 ± 0.18	31.2	-8.0	
$2 \rightarrow 4 \rightarrow 8 \rightarrow 16$	7.94 ± 1.75	70.0	1.87	

onde
$$\sigma_{\delta} = \sqrt{\left(rac{\sigma_{\Delta b_n}}{\Delta b_{n+1}}
ight)^2 + \left(rac{\sigma_{\Delta b_{n+1}} \ \Delta b_n}{\Delta b_{n+1}}
ight)^2}$$

Método 2 Análise das Frequências Espectrais (Picoscope)

Transição	α	δ_{α} (%; σ)	δ	δ_{δ} (%; σ)
2→4	2.46 ± 0.62	1.6; 0.02	2.00 + 1.40	147.024
4→8	1.80 ± 0.63	33.0; 0.41	3.98 ± 1.48	14.7; 0.34

Estimativa da Incerteza: $\delta_f \sim 0.37 \text{ kHz}$

Mapas de Intervalo e Itinerários

Mapas de Intervalo – Período 8

RRRRLRLR

O ponto crítico está antes de c (entre os pontos 4 e 5)

Conclusões

- Um circuito RLC com díodo varicap permite modelar caos e caracterizá-lo.
- Observámos a duplicação de período no caminho para o caos e janelas de estabilidade dentro do caos.
- A análise das frequências espectrais permite determinar com maior precisão e exatidão as constantes de Feigenbaum, em comparação com as trajetórias.
- Usando o Cinéris, ao filmar o osciloscópio enquanto se aumenta o offset, poderíamos obter o diagrama de bifurcações (ou então gravar o que vimos).

Bibliografia

Além da disponibilizada na página da cadeira:

David Tong (2005), TASI Lectures on Solitons, damtp.cam.ac.uk/user/tong/tasi.html

Haidar Esseili (2018), Calculating the Feigenbaum Constants In A Nonlinear RLD Circuit, physics.wooster.edu/JrlS/Files/Web_Article_Esseili.pdf

Keith Briggs (2001), Feigenbaum Scaling in Discrete Dynamical Systems, Tese de Doutoramento, Universidade de Melbourne, <u>keithbriggs.info/documents/Keith_Briggs_PhD.pdf</u>

 Com mais cuidado, aquilo que fizemos não é muito diferente de trabalhos que deram origem a publicações em revistas internacionais de boa qualidade:

Hanias, Michael et al. (2009). *Period Doubling, Feigenbaum Constant and Time Series Prediction in an Experimental Chaotic RLD Circuit*. Chaos, Solitons & Fractals.

Solitões

No Parque das Nações, muitas crianças divertem-se a observar solitões. Quando o "vulcão" entra em erupção, formam-se solitões - mantêm a forma mesmo depois de serem refletidos!

Ensaios Solitões

27 Ensaios, passo uniforme

- h = 2, 4, 6 cm
- A = 2, 4, 6 cm
- B = 10, 30, 50 cm

9 ensaios U < 50

12 ensaios 50 < U < 500

6 ensaios U > 500

h (cm)	A (cm)	B (cm)	a (cm)	L (cm)	S	N	v (cm/s)	ε1	ε2	U
	2	10	1	20	8.66	3	55.34	0.5	0.01	50
		30		60	25.98	9	55.34	0.5	0.0011	450
		50		100	43.3	14	55.34	0.5	0.0004	1250
	4	10		20	12.25	4	66.41	1	0.01	100
2		30	2	60	36.74	12	66.41	1	0.0011	900
		50		100	61.24	20	66.41	1	0.0004	2500
	6	10		20	15	5	77.48	1.5	0.01	150
		30	3	60	45	15	77.48	1.5	0.0011	1350
		50		100	75	24	77.48	1.5	0.0004	3750
		10		20	3.06	1	70.44	0.25	0.04	6.25
	2	30	1	60	9.19	3	70.44	0.25	0.0044	56.25
		50		100	15.31	5	70.44	0.25	0.0016	156.25
	4	10		20	4.33	2	78.26	0.5	0.04	12.5
4		30	2	60	12.99	5	78.26	0.5	0.0044	112.5
		50		100	21.65	7	78.26	0.5	0.0016	312.5
	6	10		20	5.3	2	86.09	0.75	0.04	18.75
		30	3	60	15.91	6	86.09	0.75	0.0044	168.75
		50		100	26.52	9	86.09	0.75	0.0016	468.75
	2	10		20	1.67	1	83.07	0.167	0.09	1.85
		30	1	60	5	2	83.07	0.167	0.01	16.67
		50		100	8.33	3	83.07	0.167	0.0036	46.3
	4	10		20	2.36	1	89.46	0.333	0.09	3.7
6		30	2	60	7.07	3	89.46	0.333	0.01	33.33
		50		100	11.79	4	89.46	0.333	0.0036	92.59
	6	10		20	2.89	1	95.85	0.5	0.09	5.56
		30	3	60	8.66	3	95.85	0.5	0.01	50
		50		100	14.43	5	95.85	0.5	0.0036	138.89

Análise de Dados - Cinéris

Programa de Contagem de Solitões

Para um conjunto de pontos $\{t_i, x_i\}_{i=1}^N$

$$\Delta = Max[\{x_i\}_{i=1}^{N}] - Min[\{x_i\}_{i=1}^{N}]$$

- Cálculo da amplitude de oscilação e do nível inicial da água:
- Escolhe-se uma tolerância de aceitação e percorrem-se os dados, procurando conjuntos de pontos que satisfaçam:

$$|x_i - \mu| \geqslant (1 - tol)\Delta$$

• Em cada um desse conjuntos, procuram-se zonas onde o sinal da derivada mude de + para - e procuram-se os máximos nessas zonas.

Programas de Cálculo da Velocidade e Amplitude

Velocidade: Procuram-se as primeiras zonas de grande oscilação da água para os dois lasers. Sabendo a distância entre lasers, é então possível calcular a velocidade. Havendo

dados em que o laser azul desaparece, considera-se que as oscilações começaram no último ponto disponível.

Amplitude: Sabendo a posição dos solitões, basta tomar a maior das amplitudes e subtrair o nível inicial da água.

$$v = \frac{L}{\tau_2 - \tau_1}$$
 $\frac{\eta}{2} = |\text{Max}[\{y_1(t_i)\}_{i=1}^{N_s}] - \mu|$

Desvios à Teoria KdV em função de ε2

- Observação Direta
 - Cinéris

Desvios à Teoria KdV – Número de solitões (η/L,ε1)

Desvios à Teoria KdV – Velocidade (η/L,ε1)

Relação entre Amplitudes

Tendência geral observada: amplitude diminui em solitões sucessivos existência de dissipação de energia.

Ajuste à Solução KdV

Ajuste a uma função da forma

$$\eta(x,t) = \operatorname{sech}^2\left(\frac{x-ct}{L}\right)$$

para um ensaio (2) dentro das condições da teoria (U = 12.5, ε 1 = 0.5)

Colisões e Ultrapassagens

Colisões

A forma dos solitões manteve-se após a colisão

Ultrapassagens

• $A_1 > A_2$ para $v_1 > v_2$. Os ensaios foram inconclusivos.

Determinação Numérica Constantes Feigenbaum

We consider the sequence of polynomials in a defined by

$$b_k(a) = a - [b_{k-1}(a)]^2, \quad k = 1, 2, 3, ...$$

 $b_0(a) = 0.$

The following property makes these polynomials useful for our purposes.

Lemma 3 Let $k = 2^n$. Then f_a has a superstable k-cycle iff $b_k(a) = 0$.

$$\begin{array}{rcl} a_i^0 & = & a_{i-1} + \frac{a_{i-1} - a_{i-2}}{\delta_{i-1}}, & i = 2, 3, 4, \dots \\ \\ a_i^{j+1} & = & a_i^j - \frac{b_{2^i}(a_i^j)}{b'_{2^i}(a_i^j)}, & j = 0, 1, 2, \dots \\ \\ b'_k(a) & = & 1 - 2b'_{k-1}(a)b_{k-1}(a), & k = 1, 2, 3, \dots \\ \\ a_i & = & \lim_{j \to \infty} a_i^j \\ \\ \delta_i & = & \frac{a_{i-1} - a_{i-2}}{a_i - a_{i-1}} \\ \\ \delta & = & \lim_{i \to \infty} \delta_i \end{array}$$

Calcular δ

Encontrar zeros do polinómio $b_{2^n}(a)$ usando o método de Newton

Calcular
$$\alpha$$
 $\lim_{i \to \infty} \frac{b'_{i+1}(a_{i+1})}{b'_{i}(a_{i})} = \delta/\alpha.$

Determinação Numérica Constantes Feigenbaum

Ao fim de 10 iterações, obtemos 5 algarismos certos para as constantes de Feigenbaum

O *notebook* de Mathematica com o código usado para a determinação das constantes e para o *plot* dos mapas de bifurcação de diferentes funções pode ser descarregado <u>aqui</u>

Iteração	α	δ
1	1.0	3.0
2	1.85603	3.21851
3	2.39488	4.38568
4	2.47533	4.60095
5	2.49740	4.65513
6	2.50168	4.66611
7	2.50265	4.66855
8	2.50285	4.66906
9	2.50290	4.66917
10	2.50291	4.6692

Diagrama de Bifurcações

Alguns dos regimes aperiódicos são ergódicos. Após período 3, todos são possíveis.

Porque é que há Caos num Circuito RLD?

A capacidade do díodo *varicap* depende da tensão aos seus terminais.

Uma vez que ao ser excitado por uma onda sinusoidal, alterna entre *bias* positivo e negativo.

Se o sinal tiver frequência elevada, não há tempo para se atingir equilíbrio e a resposta do díodo depende do estado anterior, induzindo um comportamento caótico.

FIG. 4: Schematic of a pn-junction in operation .In (a) forward bias of pn-junction characterized by the depletion region getting smaller, and (b) reverse bias of a pn-junction characterized by the depletion region getting wider.

Haidar Esseili, *Calculating the Feigenbaum Constants In A Nonlinear RLD Circuit*, College of Wooster, 2018

Determinação Constante Feigenbaum - Trajetórias

As tensões correspondentes a cada transição são (estimando a incerteza como sendo da ordem da largura do feixe – diferente quando mudamos de escala no osciloscópio):

Transição	Tensão (V)
$1 \rightarrow 2$	1.36 ± 0.01
$2 \to 4$	0.952 ± 0.002
$4 \rightarrow 8$	0.825 ± 0.002
$8 \rightarrow 16$	0.809 ± 0.002

A incerteza na transição é bastante maior, porque é difícil distinguir onde é que ocorre exatamente, pelo que estimamos

$$\Delta b_n \approx 0.03 \text{ V}$$

que é a diferença entre $8 \to 16$ e a transição seguinte para o caos, que eram próximas o suficiente para a distinção ser difícil (até porque há histerese).

Cálculo de δ e α a partir do espetro (*picoscope*)

- 1. Para cada transição, escolher uma janela de frequências que (idealmente) só apanhe um período do espetro.
- 2. Aplicar 'FindPeaks' do Mathematica com uma largura de busca em frequência (~ variância) não nula facilita o reconhecimento dos picos que queremos, uma vez que os dados são discretos e há muitos "picos fortuitos".
- 3. Ordenar os picos do maior para o menor e escolher apenas os N=2ⁱ primeiros. Ordená-los de novo por frequência crescente.
- 4. Calcular diferenças entre picos (tensões) de cada período: obtém-se α (2 valores foram possíveis porque há 3 períodos).
- 5. Calcular diferenças entre frequências onde ocorrem bifurcações (para períodos sucessivos): obtém-se δ (1 valor foi possível porque há 3 períodos).

Ensaio 1:

Diferenças entre picos:

Período 2: 42.7317

Período 4: 63.5613, -67.3325, 21.6865

Período 8: -57.9376, 12.2691, -9.12581, 12.1991, -14.455, 9.95416, -6.64715

Diferenças entre frequências de bifurcações (kHz):

2->4: 194.371

4->8: 48.8162, 47.9817, 49.6507

δ
15
3.915
46
88
)

Simulação do Circuito

Simulação do Circuito - Resultados

Uma pequena mudança na resistência do potenciómetro resulta na separação de alguns picos e no surgimento de outros!

Circuito Alternativo

Circuito Alternativo – Resultados

