Linear Programming: Production Planning

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 11

Linear programming

- Constraints and objective to be optimized are linear functions
 - Constraints: $a_1x_1 + a_2x_2 + \cdots + a_mx_m \le K$, $b_1x_1 + b_2x_2 + \cdots + b_mx_m \ge L$, ...
 - lacktriangle Objective: $c_1x_1 + c_2x_2 + \cdots + c_mx_m$
- Defines a convex feasible region remember the resulting area has to be a convex shape
- 1. a_1, a_2, ..., b_1, b_2... are coefficients.
- 2. Remember in the Halwa, Barfi problem, we had a constraint that $\frac{b+h<400}{b+h<400}$ in this constraint we have coefficients $a_1=1$, $a_2=1$
- 3. We also had a constraint that b >= 0, in this constraint we have coefficient $b_1 = 1$
- 4. NOTE: All the constraints were linear, in other words there was no constraint where b*h occurred
- ps: b = number of barfi boxes, h = no. of halwa boxes
- 1. Also we had objective function which as again a linear function, 100b + 600h
- 2. 100Rs. per barfi and 600Rs. per halwa box is the profit

Linear programming

- Constraints and objective to be optimized are linear functions
 - Constraints: $a_1x_1 + a_2x_2 + \cdots + a_mx_m \le K$, $b_1x_1 + b_2x_2 + \cdots + b_mx_m \ge L$, ...
 - Objective: $c_1x_1 + c_2x_2 + \cdots + c_mx_m$
- Defines a convex feasible region

Simplex algorithm

Which in this case is the profit

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop

Linear programming

- Constraints and objective to be optimized are linear functions
 - Constraints: $a_1x_1 + a_2x_2 + \cdots + a_mx_m \le K$, $b_1x_1 + b_2x_2 + \cdots + b_mx_m \ge L$, ...
 - Objective: $c_1x_1 + c_2x_2 + \cdots + c_mx_m$
- Defines a convex feasible region

Simplex algorithm

- Start at any vertex, evaluate objective
- If an adjacent vertex has a better value, move
- If current vertex is better than all neighbours, stop
- Can be exponential, but efficient in practice
- Theoretically efficient algorithms exist

LP duality

When you have an LP: (Linear Programming Problem), with constraints and objective function then you...

- Can always construct a linear combination of constraints that tightly captures upper bound on objective function
- Dual LP problem
 - Minimize linear combination of constraints
 - Variables are multipliers for the linear combination
 - Implicit constraint: multipliers are non-negative
 - Optimum solution solves both the original (primal) and the dual LP

Linear programming duality allows transforming an LP problem into a dual problem by multiplying the constraints by constants and introducing new variables. These multipliers have constraints of being non-negative. Solving the dual problem yields a solution to the original problem.

STILL NOT CLEAR? SKIP THIS SLIDE

Handwoven carpets

Handwoven carpets

- 30 employees,
 - Each produces 20 carpets a month
 - Salary Rs 20,000
 - Labour cost: Rs 1000 per carpet

Handwoven carpets

- 30 employees,
 - Each produces 20 carpets a month
 - Salary Rs 20,000
 - Labour cost: Rs 1000 per carpet
- Seasonal monthly demand
 - **d**₁, d_2, \ldots, d_{12} , demand from January to December

Like in the sweet shop case where the daily demand was the same, here the demand in each month changes.

Handwoven carpets

- 30 employees,
 - Each produces 20 carpets a month
 - Salary Rs 20,000
 - Labour cost: Rs 1000 per carpet
- Seasonal monthly demand
 - d_1, d_2, \ldots, d_{12} , demand from January to December

Coping with varying demand

So what are possible ways to managing production of these carpets with changing monthly demand?

Handwoven carpets

- 30 employees,
 - Each produces 20 carpets a month
 - Salary Rs 20,000
 - Labour cost: Rs 1000 per carpet
- Seasonal monthly demand
 - **d**₁, d_2, \ldots, d_{12} , demand from January to December

Coping with varying demand

- Overtime
 - Pay 80% extra
 - Overtime limit is 30% per worker

- Overtime means every carpet produced after 20th carpet by the worker is considered as overtime
- 2. We pay 80% extra for overtime, so 1800/carpet.
- 3. Overtime limit is 30% per worker, this means worker can do a maximum overtime of 30%*20 = 6 carpets. So a worker can produce a max of 26 carpet per month

Handwoven carpets

- 30 employees,
 - Each produces 20 carpets a month
 - Salary Rs 20,000
 - Labour cost: Rs 1000 per carpet
- Seasonal monthly demand
 - **d**₁, d_2, \ldots, d_{12} , demand from January to December

Coping with varying demand

- Overtime
 - Pay 80% extra
 - Overtime limit is 30% per worker
- Hiring and firing
 - Hiring costs Rs 3200 per worker
 - Firing costs Rs 4000 per worker

Hiring when demand goes up and Firing when demand goes down

Handwoven carpets

- 30 employees,
 - Each produces 20 carpets a month
 - Salary Rs 20,000
 - Labour cost: Rs 1000 per carpet
- Seasonal monthly demand
 - **d**₁, d_2, \ldots, d_{12} , demand from January to December

Coping with varying demand

- Overtime
 - Pay 80% extra
 - Overtime limit is 30% per worker
- Hiring and firing
 - Hiring costs Rs 3200 per worker
 - Firing costs Rs 4000 per worker
- Make surplus and store
 - Costs Rs 80 per carpet

If you make surplus you need to spend 80Rs. for storing each carpet

Target is to find the minimum cost I need to incur to meet these monthly demand

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

• w_i : workers in month i, $w_0 = 30$

i = 1, 2,..., 12

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

- w_i : workers in month i, $w_0 = 30$
- \mathbf{x}_i : carpets made in month i

Ideally you want to make d_i carpets

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

- w_i : workers in month i, $w_0 = 30$
- \mathbf{x}_i : carpets made in month i
- o_i: carpets made in overtime, month i

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

- w_i : workers in month i, $w_0 = 30$
- \mathbf{x}_i : carpets made in month i
- $o_i : carpets made in overtime, month i$
- h_i: workers hired at start of month i

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

- w_i : workers in month i, $w_0 = 30$
- \mathbf{x}_i : carpets made in month i
- $o_i : carpets made in overtime, month i$
- h_i: workers hired at start of month i
- f_i: workers fired at start of month i

So f_1 = 3 means in the month of Jan we have 27 workers

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

- w_i : workers in month i, $w_0 = 30$
- \mathbf{x}_i : carpets made in month i
- $o_i : carpets made in overtime, month i$
- h_i: workers hired at start of month i
- s_i: surplus carpets after month i
 - $= s_0 = 0$

We start the year with no inventory so s_0 is 0

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

w_i: workers in month i, w₀ = 30

$$x_i$$
: carpets made in month i

 o_i : carpets made in overtime, month i

 h_i : workers hired at start of month i

 f_i : workers fired at start of month i

 s_i : surplus carpets after month i

 $s_0 = 0$

72 variables, plus w_0 , s_0

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Monthly demand d_1, d_2, \ldots, d_{12}
- Overtime: pay 80% extra, overtime limit is 30% per worker
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Montly demand d_1, \ldots, d_{12}
- Overtime: 80% extra, limit 30%
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet
- w_i : workers in month i, $w_0 = 30$
- x_i : carpets made in month i
- $o_i : carpets made in overtime, month i$
- \blacksquare h_i : workers hired at start of month i
- f_i: workers fired at start of month i
- \bullet s_i : surplus after month i, $s_0 = 0$

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Montly demand d_1, \ldots, d_{12}
- Overtime: 80% extra, limit 30%
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet
- w_i : workers in month i, $w_0 = 30$
- x_i : carpets made in month i
- $o_i : carpets made in overtime, month i$
- \blacksquare h_i : workers hired at start of month i
- f_i : workers fired at start of month i
- \bullet s_i : surplus after month i, $s_0 = 0$

- All variables are nonnegative
 - $w_i, x_i, o_i, h_i, f_i, s_i \geq 0$

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Montly demand d_1, \ldots, d_{12}
- Overtime: 80% extra, limit 30%
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet
- w_i : workers in month i, $w_0 = 30$
- x_i : carpets made in month i
- o_i : carpets made in overtime, month i
- h_i: workers hired at start of month i
- f_i : workers fired at start of month i
- \bullet s_i : surplus after month i, $s_0 = 0$

- All variables are nonnegative
 - $\mathbf{w}_i, x_i, o_i, h_i, f_i, s_i \geq 0$
- Carpets made = regular + overtime
 - $x_i = 20w_i + o_i$

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Montly demand d_1, \ldots, d_{12}
- Overtime: 80% extra, limit 30%
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet
- w_i : workers in month i, $w_0 = 30$
- \mathbf{x}_i : carpets made in month i
- o_i : carpets made in overtime, month i
- h_i: workers hired at start of month i
- \bullet f_i : workers fired at start of month i
- \bullet s_i : surplus after month i, $s_0 = 0$

- All variables are nonnegative
 - $\mathbf{w}_i, x_i, o_i, h_i, f_i, s_i \geq 0$
- Carpets made = regular + overtime
 - $x_i = 20w_i + o_i$
- Number of workers match hiring/firing
 - $w_i = w_{i-1} + h_i f_i$

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Montly demand d_1, \ldots, d_{12}
- Overtime: 80% extra, limit 30%
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet
- w_i : workers in month i, $w_0 = 30$
- x_i : carpets made in month i
- $o_i : carpets made in overtime, month i$
- \blacksquare h_i : workers hired at start of month i
- f_i : workers fired at start of month i
- \blacksquare s_i: surplus after month i, s₀ = 0

- All variables are nonnegative
 - $\mathbf{w}_i, x_i, o_i, h_i, f_i, s_i \geq 0$
- Carpets made = regular + overtime
 - $x_i = 20w_i + o_i$
- Number of workers match hiring/firing

- Number of stored carpets connected to earlier stock, production, demand
 - $s_i = s_{i-1} + x_i d_i$

- 30 employees, each 20 carpets a month, salary Rs 20,000, Rs 1000 per carpet
- Montly demand d_1, \ldots, d_{12}
- Overtime: 80% extra, limit 30%
- Hiring cost Rs 3200, firing cost Rs 4000
- Surplus storage cost: Rs 80 per carpet
- w_i : workers in month i, $w_0 = 30$
- \mathbf{x}_i : carpets made in month i
- o_i : carpets made in overtime, month i
- h_i: workers hired at start of month i
- f_i : workers fired at start of month i
- $s_i : surplus after month i, s_0 = 0$

Constraints

- All variables are nonnegative
 - $\mathbf{w}_i, x_i, o_i, h_i, f_i, s_i \geq 0$
- Carpets made = regular + overtime
 - $x_i = 20w_i + o_i$
- Number of workers match hiring/firing

$$w_i = w_{i-1} + h_i - f_i$$

 Number of stored carpets connected to earlier stock, production, demand

$$s_i = s_{i-1} + x_i - d_i$$

- Overtime production at most 6 carpets per worker (30% of regular production)
 - Overall at most each worker can make 6 $o_i \le 6w_i$ carpets in overtime

Constraints

$$w_0 = 30, s_0 = 0$$

For each $i \in \{1, 2, ..., 12\}$

- $w_i, x_i, o_i, h_i, f_i, s_i > 0$
- $x_i = 20w_i + o_i$
- $w_i = w_{i-1} + h_i f_i$
- $s_i = s_{i-1} + x_i d_i$
- $o_i < 6w_i$

Constraints

$$w_0 = 30, s_0 = 0$$

For each $i \in \{1, 2, ..., 12\}$

$$\mathbf{w}_i, x_i, o_i, h_i, f_i, s_i \geq 0$$

$$x_i = 20w_i + o_i$$

$$w_i = w_{i-1} + h_i - f_i$$

$$s_i = s_{i-1} + x_i - d_i$$

$$o_i \leq 6w_i$$

Objective

Minimize the cost

William Ze the cost

$$20000(w_1 + w_2 + \cdots + w_{12}) +$$

$$3200(h_1+h_2+\cdots+h_{12})+$$

$$4000(f_1+f_2+\cdots+f_{12})+$$

$$80(s_1 + s_2 + \cdots + s_{12}) +$$

$$1800(o_1 + o_2 + \cdots + o_{12})$$

Salary costs for each month

Hiring cost for each month

firing cost for each month

Run Simplex and find a solution

After running the algorithm you will get optimal value for each variable. Remember in total you have 74 variables

- Run Simplex and find a solution
- Are we done?

- Run Simplex and find a solution
- Are we done?
- Optimum may have fractional values
 - Hire 10.6 workers in March

- Run Simplex and find a solution
- Are we done?
- Optimum may have fractional values
 - Hire 10.6 workers in March

Handling fractional solutions

- Run Simplex and find a solution
- Are we done?
- Optimum may have fractional values
 - Hire 10.6 workers in March

Handling fractional solutions

Round off to 10 or 11 and recompute cost

- Run Simplex and find a solution
- Are we done?
- Optimum may have fractional values
 - Hire 10.6 workers in March

Handling fractional solutions

- Round off to 10 or 11 and recompute cost
- If values are "large", rounding does not affect quality of solution much

- Run Simplex and find a solution
- Are we done?
- Optimum may have fractional values
 - Hire 10.6 workers in March

Handling fractional solutions

- Round off to 10 or 11 and recompute cost
- If values are "large", rounding does not affect quality of solution much
- Values are "small", need more care when rounding

- Run Simplex and find a solution
- Are we done?
- Optimum may have fractional values
 - Hire 10.6 workers in March

Handling fractional solutions

- Round off to 10 or 11 and recompute cost
- If values are "large", rounding does not affect quality of solution much
- Values are "small", need more care when rounding
- Insisting on integer solutions makes the problem computationally intractable

Integer Linear Programming

