

Amazing MazesMaterials and Teaching Checklist – lesson 8

Lesson Name: Maze Walker Programming loops and conditions

Date to be taught: 4/30/2013

"I Can" Skills:

Last Time	This Time	Next time
Create a basic maze walker program to	Create and test maze walker programs	Create and test more advanced maze
control the walkers	with loops and conditions	walker programs (breadcrumb algorithm)
	This is a slight enhancement of	
	lesson 7, since most of the students	
	were absent last week.	

Before the Lesson:

Copies to Make	Materials to Bring	Visuals to Make
	- Projector	
	- Computers with Internet connectivity	
	-	

During the Lesson:

During the	Time		
Section	(min)	I Say / Do	They Say / Do
Hook	5	This is a slight enhancement of lesson 7, since most of the students were absent last week. Review and Teach-back - Quick review and teach-back of last lesson: - left-hand walk, right-hand walk	- Students review key points of last lesson
Activity 1	15	Inside maze view algorithms – playing a game: "hide that cheese" (target) * Teacher shows the new Java applet at http://employees.org/~hmark/courses/amazingmazes/amazing-mazes-12-programming-algorithms-1.html and explains the new elements on the User Interface: O "Draw with mouse", "Left-hand walk", "Right-hand walk" * Then the teacher will explain the game "Hide that cheese" (target): — Students will build a maze of their own design, either using the "draw-path" button of the	 Students will play the game "Hide that cheese" (target) Students will try to hide the cheese so that it takes the walker the longest to find. The teacher will tabulate the longest paths, and declare a winning pair.

Ī		User Interface, or the "Draw with mouse" button.	
		One student in the pair will then place 1 walker anywhere in the maze, and the other student will place the target in the maze, in a way that they think will take the walker the most time/steps to reach.	
		Then they will start the left-hand walk algorithm and count the steps the walker takes to get to the target.	
		 The students will switch roles, and see if they can find a longer path (basically trying to "hide" the target from the walker). 	
		Teacher will tabulate the results (longest path) for each pair. The longest (i.e. the cheese is hidden the best) is the winner.	
		The motivation/questions for this mini lesson:	- Students should imagine they are the
	10	How can the maze walker "know" to walk a "left-hand (or right-hand") walk? What does it need to know/do	maze walkers positioned before a turn, and play the sequence out:
		when it faces a maze junction/intersection? Program conditions (some conditions)	 Move forward, check if there is a turn, if it's a left turn (only) then turn left
		• The teacher draws on the board a simple L shaped maze (one turn consisting of a straight segment and then a turn left)	o Similarly for a right turn
		• Place the walker in the straight segment before the turn, and ask the student what should the walker do (answer: check for any possible turns, and if the only thing possible is to turn left, then turn left. Or in programming: if-there-is-a-left-turn-only then turn-left)	-
		forward	
Mini Lesson		cft	
		if-lto tl	
		• After each step in the maze (command: forward), the walker should checks for turns (command: cft).	
		• This means that the walker is "looking" to see if it can turn left, right, forward, and back	
		Then it has a condition question:	
		• if there is a left turn only possible (if-lto) then the walker should turn left (tl).	
		Similarly (the teacher can draw a different L shaped maze with a right turn "elbow" place the waler in the maze and explain), if there is a right turn only possible (if-rto) then the walker should turn right (tr)	
		if-rto tr	

		Program loops	- Students help create the program:
		 Using the programming algorithms applet 	fd
		http://employees.org/~hmark/courses/amazingmazes/amazing-mazes-12-	fd
		programming-algorithms-1.html start with a	fd
		very simple maze: a straight line of length 10	
		- draw-path (1,1)(1,10)	fd
		 put the walker at (1,1) and the target at (1,10) 	
		 ask the students to call out the inside view 	draw-path (9,1)(9,7)
		program: turn-right, forward, forward, 9 times	– position the walker at (3,7) and the target at
		 introduce the loop structure: 	(9,7)
		repeat-until-target	– The program is:
		forward	tb
		Explain that all commands appearing after the line	repeat-until-target
		repeat-until-target will be repeated from top to bottom, and then back to the top, until we reach the	fd
		target, or hit the system limit of about 300 loops/iterations, and then stop.	fd
		 Now create a few other simple mazes, for example 	fd
		L shaped, U shaped, or staircase shaped, and ask the students to call out the repeated set of	fd
		commands within the loop.	fd
		- For the U shaped program, the walker	fd
		does a turn-back (tb), and then repeats the sequence of 6 times forward followed by one turn-left	t1
			-
Activity 2	15		
Activity 2			

Activity 3	15	Adding more program conditions Using the programming algorithms applet http://employees.org/~hmark/courses/ama zingmazes/amazing-mazes-12-programming-algorithms-1.html copy and paste 2 parts of the "Hs maze" below the applet (only the first 2 H shapes) Place the walker at (1,5) and the target at (6,1) Run the partial left-hand program above (activity 2), and show that it will fail to reach the target Ask the students to explain why, and come up with additional conditions to be added to the full left-hand-walk program: repeat-until-target fd cft if-lto tl if-rto tr if-slo tl if-sro ss if-n tb	- Students will explain why the walker fails: not all conditions and junction cases are being addressed/handled by the partial program - Students will help identify and define the missing conditions:
Activity 4	15	*The teacher copies and pastes the maze below the program at http://employees.org/~hmark/courses/amazingmazes/amazing-mazes-12-programming-algorithms-1.html (this is a "replicated H shape" from previous lessons). *The teacher creates a maze walker at (1,5), and asks the students to call out the location of the target which would result in the longest search (path, number of steps) by the walker. O This is a trick question, since the target location that's "hidden the best" depends on the walker algorithm. O For a left-hand walk the best target location is at (3,4)	- Students call out the "best location" for the target. But this actually depends on the walker algorithm/walk that we select to execute: - for left-hand walk (3,4) for right-hand walk (3,6)

		For a right-hand walk the best target location is at (3,6) * The teacher places the target in both places and shows how both algorithms/walks find the target	
Exit Tix	10	If we have time: - Hands-on activity: - the students can try to create a maze and hide the target in a way that neither a left-hand walker nor a right-hand walker will find the target (it is possible!).	- Students in pairs, build a maze and try to hide the target so that neither walking algorithm hits/finds it.
Dismiss		Remind students of our goal regarding programming: - We will learn in the next lessons how to program "fool proof" programs (programs that don't fail or break), but we'll do it in stages, refining and strengthening our programs every time.	

Thumbnails lesson outline:

- **Review and teach-back** of lesson what's a left-hand-walk maze walking program?
- Student Game "Hide the cheese" NetLogo -Programming Algorithms
 - Students create a complex maze 1 student places walker, 1 places target
 - see if left-hand or right-hand algorithms can find the target in the largest number of steps
- teacher explain loop in a straight line NetLogo -Programming Algorithms
 - staircase maze
- teacher explain turn check and some conditions NetLogo Programming Algorithms
 - replicated H maze
- teacher explain all conditions NetLogo -Programming Algorithms
 - replicated H maze
- Teacher demos/summarizes "Hide the cheese" NetLogo -Programming Algorithms
 - using the "replicated H shaped maze", place walker at (1,5), ask students where the best location for hiding the target is? (depends on which type of walk/algorithm)
- If we have time:

- students program Inside Maze view program for the Complex Maze, trying to create a maze and target location which both left and right hand walks will not find			