Homework 1

Problem 1.1 ADEMP Structure

Answer the following questions:

· How many simulation scenarios will you be running?

18 scenarios.

What are the estimand(s)

The average treatment effect ($\beta_{treatment}$)

· What method(s) are being evaluated/compared?

The study evaluates the multiple linear regression model and compares three methods for constructing confidence intervals: 1) Wald confidence intervals; 2) nonparametric bootstrap percentile intervals; 3) nonparametric bootstrap-t intervals.

- · What are the performance measure(s)?
 - Bias of $\hat{\beta}$
 - Coverage of β
 - Distribution of $se(\beta)$
 - · Computation time across methods

Problem 1.2 nSim

Based on desired coverage of 95% with Monte Carlo error of no more than 1%, how many simulations (n_{sim}) should we perform for each simulation scenario? Implement this number of simulations throughout your simulation study.

We should perform 475 simulations for each scenario.

Problem 1.3 Implementation

Problem 1.4 Results summary

Bias of $\beta^{\hat{}}$

Average Bias of \hat{eta} Across 475 Simulations								
n = 10			n = 50			n = 500		
β = 0	β = 0.5	β = 2	β = 0	β = 0.5	β = 2	β = 0	β = 0.5	β = 2
normal								
0.015	0.040	0.011	0.021	-0.007	-0.013	0.002	-0.006	-0.004

Average Bias of \hat{eta} Across 475 Simulations								
n = ′	n = 50			n = 500				
$\beta = 0$ $\beta = 0$	$\beta = 2$	β = 0	β = 0.5	β = 2	β = 0	β = 0.5	β = 2	
lognormal								
0.176 -0.20	09 –0.195	0.090	-0.002	0.155	-0.011	-0.040	-0.006	

Coverage of $\hat{\beta}$

Average Coverage of 95% Wald, Percentile & Bootstrap-t Cls							
family	n	beta_true	coverage_wald	coverage_percentile	coverage_t		
normal	10	0.0	0.926	0.848	0.945		
normal	10	0.5	0.951	0.869	0.976		
normal	10	2.0	0.957	0.906	0.974		
normal	50	0.0	0.926	0.926	0.931		
normal	50	0.5	0.945	0.933	0.941		
normal	50	2.0	0.922	0.912	0.926		
normal	500	0.0	0.954	0.954	0.945		
normal	500	0.5	0.939	0.943	0.937		
normal	500	2.0	0.935	0.933	0.926		
lognormal	10	0.0	0.977	0.861	0.936		
lognormal	10	0.5	0.951	0.844	0.960		
lognormal	10	2.0	0.964	0.864	0.943		
lognormal	50	0.0	0.964	0.924	0.897		
lognormal	50	0.5	0.964	0.912	0.884		
lognormal	50	2.0	0.966	0.924	0.891		
lognormal	500	0.0	0.973	0.949	0.924		
lognormal	500	0.5	0.966	0.949	0.933		
lognormal	500	2.0	0.985	0.966	0.941		

Distribution of $se(\beta)$

Comparison of Wald and Boostrap SE Estimates

Computation time across methods

Average Computation Time for Wald, Percentile & Bootstrap-t Cls						
family	n	beta_true	time_wald	time_percentile	time_t	
normal	10	0.0	0.007	0.505	169.902	
normal	10	0.5	0.007	0.509	166.921	
normal	10	2.0	0.008	0.529	168.568	
normal	50	0.0	0.007	0.517	173.953	
normal	50	0.5	0.007	0.515	173.625	
normal	50	2.0	0.007	0.516	174.564	
normal	500	0.0	0.007	0.544	200.597	
normal	500	0.5	0.007	0.553	199.982	
normal	500	2.0	0.007	0.554	199.987	
lognormal	10	0.0	0.007	0.496	168.355	

Average Computation Time for Wald, Percentile & Bootstrap-t Cls							
family	n	beta_true	time_wald	time_percentile	time_t		
lognormal	10	0.5	0.006	0.411	143.714		
lognormal	10	2.0	0.006	0.441	151.516		
lognormal	50	0.0	0.006	0.444	155.849		
lognormal	50	0.5	0.006	0.456	156.557		
lognormal	50	2.0	0.006	0.446	156.140		
lognormal	500	0.0	0.006	0.489	180.460		
lognormal	500	0.5	0.006	0.476	179.873		
lognormal	500	2.0	0.006	0.479	180.365		

Problem 1.5 Discussion

Summary of main findings:

The bias of β decreases as the sample size (n) increases. In small samples (n = 10 or 50), misspecifying the error distribution leads to biased estimates when the true error distribution is lognormal, but this bias diminishes in larger samples (n = 500). The Wald confidence interval maintains coverage near its nominal level (95%) when the error distribution is normal and slightly exceeds it when the true distribution is lognormal, likely due to conservative standard error (SE) estimates under misspecification. The bootstrap percentile interval performs poorly in small samples (n = 10) but improves with increasing n. In contrast, the bootstrap-t interval performs well in small samples but does not improve with larger n. SE estimates from the Wald and bootstrap methods are similar, with bootstrap estimates slightly higher. Under model misspecification, SE estimates exhibit greater variance and right skewness. The variance of SE estimates decreases as n increases. Regarding computation time, the Wald method is the fastest, followed by the percentile method, while the bootstrap-t method is significantly more computationally intensive. No clear trend is observed in bias, coverage, SE, or computation time across different true β values.

- Regarding computation time, the Wald method is the fastest, followed by the percentile method, while the bootstrap-t method is significantly more computationally intensive.
- The bootstrap-t method for constructing confidence intervals provides the best coverage when $\epsilon_i \sim N(0,2)$.
- The Wald method for constructing confidence intervals provides the best coverage when $\epsilon_i \sim logNormal(0, log(2))$.

GitHub repository: https://github.com/wqian22/bios731_hw1_qian.git (https://github.com/wqian22/bios731_hw1_qian.git)