Chimie des solutions

Jean-François Olivieri (jfolivie@clipper.ens.fr)

2019-04-10

Question de cours :

Les réactions de précipitation et dissolution (début) : approche expérimentale ; définition du produit de solubilité d'un sel ; critère d'apparition d'un précipité (admis) ; définition de la solubilité d'un sel et d'un gaz dans l'eau pure et calcul pour un sel.

Exercice 1.A: Le précipité d'aluminium

Le précipité d'hydroxyde d'aluminium ${\rm Al}({\rm OH})_3(s)$ est un hydroxyde amphotère peu soluble qui se dissocie suivant les réactions :

$$Al(OH)_3(s) + H^+(aq) = Al^{3+}(aq) + 3H_2O(l)$$

 $Al(OH)_3(s) + HO^-(aq) = [Al(OH)_4]^-(aq)$

 $\label{eq:figure 1} Figure \ 1 - Diagramme \ de \ solubilit\'e \ en \ fonction \ du \ pH \ de \ l'aluminium \ dans \ l'eau.$

Données (à 25 °C):

$$Al(OH)_3(s) = Al^{3+} + 3 HO^{-}(aq) pKs$$

$$Al^{3+}(aq) + 4 HO^{-}(aq) = [Al(OH)_4]^{-}(aq) log \beta = 33.4$$

- 1 Quels enseignements tirer de la présence des points anguleux?
- 2 À l'aide du diagramme de $\log s pH$, tracer les domaines de prédominance ou d'existence de l'ion Al^{3+} .
- 3 Déterminer la concentration totale en aluminium.

- 4 Calculer le produit de solubilité K_s .
- 5 Même question pour la constante de l'équilibre suivant :

$$Al(OH)_3(s) + HO^{-}(aq) = [Al(OH)_4]^{-}(aq)$$
(1)

- 6 Exprimer la solubilité en fonction de Al^{3+} et $[Al(OH)_4]^-$ entre les points anguleux. Donner l'espèce dissoute qui prédomine autour de pH = 5.8. En déduire l'équation de la droite entre pH = 4 et pH = 5.8 puis entre pH = 5.8 et pH = 10.75.
- 7 Quelle est la relation entre Al^{3+} et $[Al(OH)_4]^-$ au point pH = 5.8? En déduire les coordonnées à ce point? Vérifier que la valeur calculée est en accord avec le diagramme.

Exercice 2.A: Titrage d'un mélange d'acide nitrique et d'aluminium.

On considère les équilibres chimiques suivants de constantes d'équilibres :

$$Al(OH)_3(s) = Al^{3+}(aq) + 3OH^-(aq)$$
 K_s
 $Al^{3+}(aq) + 4HO^-(aq) = [AlOH_4]^-(aq)$ β_4

1 On considère l'équilibre thermodynamique suivant $Al(OH)_3(aq) + HO^-(aq) = Al(OH)_4^-(aq)$, de constante d'équilibre K_r° . Exprimer K_r° en fonction de K_s et de β_4 .

On réalise le titrage, suivi par pH-métrie, de 40.0 mL d'une solution d'acide nitrique à sulfate d'aluminium $(2Al^{3+}, 3SO_4^{2-})$ de concentration C_{Al} inconnue, par de la sourde à 1 mol L⁻¹.

La courbe ci-dessous donne le pH de la solution titrée en fonction du volume de sourde versé peut distinguer différentes étapes en cours de ce titrage.

Pour V=3.7~mL, on a pH = 3.7, pour V=17.6~mL, on a pH = 11.2. Les observations expérimentales sont les suivantes :

- -0 < V < 3.7 mL, la solution est claire et limpide.
- -3.7 < V < 13.8 mL, la solution devient de plus en plus trouble.
- 13.8 < V < 17.6 mL, à la fin de cette étape, la solution est à nouveau claire et limpide.
- 2 Associer à chacune de ces étapes une réaction de titrage
- 3 Evaluer la concentration C_{Al} en sulfate d'aluminium de la solution utilisée.
- 4 Déterminer les valeurs des constantes β_4 et K_s en exploitant des points judicieusement choisis sur la courbe.

Chimie des solutions

Jean-François Olivieri (jfolivie@clipper.ens.fr)

2019-04-10

Question de cours :

Diagrammes de distribution des complexes ; facteurs influençant la stabilité des complexes : stabilité comparée de complexes constitués d'un même ligand; stabilité comparée de complexes constitués d'un même cation central;

Exercice 1.B: Solubilité

Le produit de solubilité du chlorure d'argent est de $1.8 \cdot 10^{-10}$ à 25 °C. Calculer sa solubilité :

- a dans l'eau pure;
- b dans une solution de nitrate d'argent à 0.20 mol L^{-1} ;
- c dans une solution d'acide chlorhydrique à $0.50~\mathrm{mol}\,\mathrm{L}^{-1}$.

Exercice 2.B: Titrage des ions Ni²⁺ par l'E.D.T.A.

L'acide éthylènediaminetétraacétate (EDTA) noté H₄Y est un tétraacide, dont la tétrabase conjuguée Y⁴⁻ peut forcer une complexe [NiY]²⁻ avec l'ion Ni²⁺.

Protocole

- Dans un erlenmeyer, introduire dans l'ordre:

 - $V_{Ni}=20~{
 m mL}$ d'une solution d'ion Ni²⁺ à titrer. $V_Y=30.0~{
 m mL}$ d'une solution d'EDTA disodique (2Na⁺ + H₂Y⁻) de concentration $C_Y=$ $1.00 \cdot 10^{-2} \text{ mol L}^{-1}$.

- 5 mL d'une solution tampon ammonical à pH = 10.
- Diluer avec 75 mL d'eau distillée.
- Ajouter une pastille de noir ériochrome T (NET).
- Effectuer le titrage par une solution de chlorure de magnésium (Mg²⁺ + 2 Cl⁻) de concentration $c_{M}g = 1.00 \cdot 10^{-2} \text{ mol L}^{-1}$.
- 1 Tracer le diagramme de prédominance de l'indicateur coloré et de l'EDTA. Quelles sont les formes prédominantes à pH=10?
- 2 Ecrire l'équation de réaction du complexe [NiY]²⁻ en faisant intervenir les ions Ni²⁺, la forme prédominante de l'EDTA ainsi que les acide et base constitutifs du tampon ammoniacal. Déterminer la constante d'équilbre de la réaction et conclure.
- 3 L'EDTA est initialement introduit en excès par rapport aux ions Ni²⁺. Quelle est l'équation de la réaction de titrage?
- 4 Le volume versé de réaction titrant à l'équivalence est $V_e=6.0~\mathrm{mL}.$
 - a Calculer la concentration C_{Ni} .
 - b Quel est le changement de couleur observé?
- $5\,$ L'utilisation d'une solution tampo pH = 5 aurait-elle été envisageable pour ce titrage ?

Données (25 °C):

- Le noir ériochrome T est un diacide H_2Ind^- , dont la dibase conjuguée Ind^{3-} donne un complexe rouge foncé avec les ions Mg^{2+} .
- Consitantes de formation des complexes :

$$Mg^{2} + (aq) + Y^{4} - (aq) = [MgY]^{2-}(aq)$$
 $\beta_{1} = 10^{8.7}$
 $Ni^{2} + (aq) + Y^{4-}(aq) = [NiY]^{2-}(aq)$ $\beta_{2} = 10^{18.6}$
 $Mg^{2} + Ind^{3-} = [MgInd]^{-}(aq)$ $\beta_{3} = 10^{7}$

— Constante d'acidité : H_4Y : $pK_{a1}=2.9$; $pK_{a2}=6.2$; $pK_{a3}=10.3$. H_3Ind : $pK_{a1}=3.9$; $pK_{a2}=6.4$; $pK_{a3}=11.5$. NH_4^+/NH_3 : $pK_a=9.2$.

Chimie des solutions

Jean-François Olivieri (jfolivie@clipper.ens.fr)

2019-04-10

Question de cours :

Influence du pH sur la stabilité des complexes ; dosages complexométriques (exemple du dosage de Ca^{2+} par l'E.D.T.A.; influence du pH du milieu sur la courbe de dosage pY = f(x)).

Exercice 1.C: Courbes de distribution de complexes succéssifs

Les ions Ce^{3+} forment trois complexes successifs avec les ions oxalate $C_2O_4^{2-}$ notés Ox^{2-} . Le graphe ci-dessous donne les courbes de distribution des complexes en fonction de $pOx = -\log \frac{[Ox^{2-}]}{c^{\circ}}$.

- 1 Attribuer une espèce à chacune des courbes.
- 2 Tracer le diagramme de prédominance des complexes $[Ce(Ox)_n]^{3-2n}$ en fonction de pOx.

Exercice 2C: Solubilité de AgBr en présence d'ions thiosulfate

Le bromure d'argent peut se dissoudre dans une solution de thiosulfate de sodium sous forme d'ion complexe dithiosulfatoargentate (I) $[Ag(S_2O_3)_2]^{3-}$. On sature en AgBr une solution à C_0 mol L⁻¹ de thiosulfate de sodium.

- 1 Écrire les équations reliant la solubilité s de AgBr aux concentrations des diverses espèces en solution.
- 2 Calculer s, $[\mathrm{S_2O_3^{2-}}]$ et $[\mathrm{Ag^+}]$ pour $C_0=0.10~\mathrm{mol}\,\mathrm{L}^{-1}$.

Données:

$$pK_s(\text{AgBr}) = 12.3;$$

 $\log \beta([\text{Ag(S}_2\text{O}_3)_2]^{3-}) = 13.3.$