This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

```
6/9/1
```

DIALOG(R) File 351: Derwent WPI

(c) 2000 Derwent Info Ltd. All rts. reserv.

010763861 **Image available**
WPI Acc No: 1996-260815/199627

XRPX Acc No: N96-219387

Guiding motor vehicle to final destination - using transmission of vehicle travel planning data to external traffic computer which provides route data

Patent Assignee: MANNESMANN AG (MANS)

Inventor: MEIS J; SCHLOTTBOM K; VAN HAUTEN S Number of Countries: 001 Number of Patents: 003

Patent Family:

Patent No Applicat No Kind Date Kind Date 199627 B DE 19519066 A1 19960530 DE 1019066 19950519 Α EP 715289 A2 19960605 EP 95250277 Α 19951116 199627 EP 715289 A3 19970205 EP 95250277 Α 19951116 199715

Priority Applications (No Type Date): DE 4444391 A 19941128

Cited Patents: No-SR.Pub; 1.Jnl.Ref; WO 9210824

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 19519066 A1 6 G08G-001/0969 EP 715289 A2 G 7 G08G-001/0968 EP 715289 A3 G08G-001/0969

Abstract (Basic): DE 19519066 A

At least one travel route is available from the start to the destination and the process considers external and/or forecast traffic data for the travel route. The vehicle is then guided to the travel destination using an on board destination guide and a digitalised road map.

From the vehicle planning data, contg. at least the start and destination positions, are transmitted to an external traffic computer and at least one travel route is determined from outside conditions and actual and/or forecast traffic data and transmitted to the on board destination guide.

ADVANTAGE - Improved vehicle guidance according to general traffic situation and traffic forecasts.

Dwq.1/1

Title Terms: GUIDE; MOTOR; VEHICLE; FINAL; DESTINATION; TRANSMISSION; VEHICLE; TRAVEL; PLAN; DATA; EXTERNAL; TRAFFIC; COMPUTER; ROUTE; DATA

Derwent Class: S02; T01; W02; W05; W06; X22

International Patent Class (Main): G08G-001/0968; G08G-001/0969

International Patent Class (Additional): G08C-017/00; G08G-001/137;
H04B-007/26

File Segment: EPI

Manual Codes (EPI/S-X): S02-B08; T01-J06B; W02-C03C; W06-A03A; W06-A08; X22-E06

(51) Int. Cl.8:

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ® DE 195 19 066 A 1

G 08 G 1/0969 G 08 C 17/00 G 08 G 1/137 H 04 B 7/26

DEUTSCHES PATENTAMT Aktenzeichen: Anmeldetag:

195 19 066.1 19. 5.95

Offenlegungstag:

30. 5.96

(3) Innere Priorität: (2) (3) (3)

28.11.94 DE 44 44 391.9

(71) Anmelder:

Mannesmann AG, 40213 Düsseldorf, DE

(74) Vertreter:

P. Meissner und Kollegen, 14199 Berlin

(7) Erfinder:

Schlottbom, Karlheinz, Dipl.-Math., 40885 Ratingen, DE; Meis, Josef, Dipl.-Math., 40479 Düsseldorf, DE; Hauten, Swen van, Dipl.-Inform., 40229 Düsseldorf,

Prüfungsantrag gem. § 44 PatG ist gestellt

(S) Verfahren und System zur Zielführung eines Fahrzeugs

Die Erfindung betrifft ein Verfahren und ein System zur Zielführung eines Fahrzeugs, bei dem mindestens eine Fahrtroute, die von einer Startposition zu einer vorgegebenen Zielposition führt, unter Berücksichtigung aktueller und/oder prognostizierter Verkehrsdaten ermittelt und das Fahrzeug durch eine mitgeführte Zielführungseinrichtung anhand einer mitgeführten digitalisierten Straßenkarte entlang einer der Fahrtrouten zur Zielposition geführt wird. Dabei werden aus dem Fahrzeug Planungsdaten, die mindestens die Startposition und die Zielposition umfassen, an einen externen Verkehrsrechner übertragen und der Verkehrsrechner überträgt unter vorgebbaren Randbedingungen und unter Berücksichtigung der aktuellen und/oder prognostizierten Verkehrsdaten Fahrtroutendaten mindestens einer Fahrtroute ermittelt und an die Zielführungseinrichtung des Fahrzeugs.

Beschreibung

Die Erfindung betrifft ein Verfahren und ein System zur Zielführung eines Fahrzeugs, bei dem mindestens eine Fahrtroute, die von einer Startposition zu einer 5 vorgegebenen Zielposition führt, unter Berücksichtigung aktueller und/oder prognostizierter Verkehrsdaten ermittelt und das Fahrzeug durch eine mitgeführte Zielführungseinrichtung anhand einer mitgeführten digitalisierten Straßenkarte entlang einer der Fahrtrouten 10 zur Zielposition geführt wird.

Ein solches System zur Zielführung eines Fahrzeugs ist in dem Beitrag "Im Kreisverkehr dritte Ausfahrt!" in der Zeitschrift "ADAC motorwelt", Heft 11, 1994, S. 7 ff. beschrieben. Bei der Zielführung eines Fahrzeugs wird 15 dabei zunächst die gewünschte Zielposition von Hand eingegeben und anschließend die aktuelle geographische Position durch eine im Fahrzeug installierte Zielführungseinrichtung mittels eines Satelliten-Navigationssystems bestimmt. Die Zielführungseinrichtung bestimmt dann eine Fahrtroute anhand einer digitalen Straßenkarte, die auf einer mitgeführten CD-ROM gespeichert ist. Die CD-ROM enthält digital abgespeichert geographische Daten der gesamten Bundesrepublik Deutschland: alle Autobahnen, Bundes-, Landes- und 25 Kreisstraßen, alle Großstädte mit sämtlichen befahrbaren Straßen und Plätzen, außerdem rund 100 000 kleinere Orte. Während der Zielführung vergleicht die Zielführungseinrichtung laufend die aktuellen Positionsdaten mit den gespeicherten geographischen Daten auf 30 der CD-ROM entlang der ermittelten Fahrtroute und erteilt dem Fahrer entsprechende Fahrhinweise durch eine Stimme aus den Lautsprechern. Zusätzlich zeigt ein Display zur Orientierung des Fahrers eine elektronische Landkarte, auf der sich ein Punkt - das Fahrzeug langsam auf sein Ziel zubewegt.

Nachteilig ist bei diesem System, daß nur diejenigen
Verkehrsdaten berücksichtigt werden, die bei der Herstellung der CD-ROM bekannt waren und mit den geographischen Daten auf der CD-ROM abgespeichert worden sind. Die aktuellen und/oder prognostizierten Verkehrsdaten (z. B. Verkehrsdichten, Umleitungen) für das Gebiet der digitalisierten Landkarte durch einen Verkehrsrechner an die Zielführungseinrichtung zu übermitteln, ist bei diesem Zielführungssystem nicht vorgesehen, da dazu eine sehr große Datenmenge in gewissen sich zyklisch wiederholenden Zeitabständen zu jedem zielgeführten Fahrzeug zu übertragen und im Fahrzeug abzuspeichern wäre, was wiederum mit großem technischen Aufwand und entsprechenden Kosten verbunden wäre.

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren und ein System zur Zielführung eines Fahrzeugs anzugeben, bei dem das Fahrzeug zum Ziel geführt wird entlang einer günstigen Fahrtroute, die von einer Startposition zu einer vorgegebenen Zielposition führt, unter Berücksichtigung aktueller und/oder prognostizierter Verkehrsdaten und unter vorgebbaren Randbedingungen, beispielsweise die Fahrtzeit betreffend.

Die Lösung dieser Aufgabe hinsichtlich des Verfahrens ist erfindungsgemäß gekennzeichnet durch die im Patentanspruch 1 angegebenen Merkmale. Durch die kennzeichnenden Merkmale der Unteransprüche 2 bis 16 ist dieses Verfahren in vorteilhafter Weise weiter ausgestaltbar. Ein System zur Durchführung des erfindungsgemäßen Verfahrens weist die Merkmale des Patentanspruchs 17 auf; durch die kennzeichnenden Merkmale der Unteransprüche 18 bis 25 ist dieses System in

vorteilhafter Weise weiter ausgestaltbar.

Die Erfindung sieht vor, daß aus dem Fahrzeug Planungsdaten, die mindestens die Startposition und die Zielposition umfassen, an einen externen Verkehrsrechsener übertragen werden und der Verkehrsrechner unter vorgebbaren Randbedingungen und unter Berücksichtigung der aktuellen und/oder prognostizierten Verkehrsdaten Fahrtroutendaten mindestens einer Fahrtroute ermittelt und an die Zielführungseinrichtung des Fahrzeugs überträgt. Dabei sind die an den externen Verkehrsrechner übertragenen Planungsdaten vorzugsweise die aktuelle geographische Position und die Zielposition des Fahrzeugs und/oder bereits im Fahrzeug ermittelte Fahrtrouten, aus denen der Verkehrsrechner mindestens eine günstige Fahrtroute beispielsweise mit Hilfe eines Rechenalgorithmus ermittelt.

Hierdurch wird erreicht, daß die sehr großen Datenmengen, nämlich die aktuellen und/oder prognostizierten Verkehrsdaten des entsprechenden Verkehrsraums, nicht an das Fahrzeug übertragen und als Grundlage für eine optimale Routenplanung zwischengespeichert werden müssen. Trotzdem wird das Fahrzeug durch die mitgeführte Zielführungseinrichtung anhand der mitgeführten digitalisierten Straßenkarte entlang einer günstigen Fahrtroute zur Zielposition geführt, wobei die Fahrtroutenbestimmung oder -auswahl unter Berücksichtigung vorgebbarer Randbedingungen erfolgt.

Um auf eine veränderte Verkehrssituation z. B. durch einen Unfall schnell und wirksam reagieren zu können, wird mit der Erfindung vorgeschlagen, daß der Verkehrsrechner bei Eintritt bestimmter Bedingungen, z. B. eines Staus auf einem Streckenabschnitt der Fahrtroute, sofort mindestens eine aktualisierte Fahrtroute zusätzlich an das Fahrzeug überträgt. Zweckmäßigerweise übermittelt das Fahrzeug dazu in gewissen zeitlichen Abständen seine aktuelle Position an den Verkehrsrechner.

Eine noch größere Unabhängigkeit der Zielführungseinrichtung im Fahrzeug vom Verkehrsrechner wird dadurch erreicht, daß die Anzahl der aus den Fahrtroutendaten vom Verkehrsrechner zu ermittelnden alternativen Fahrtrouten vom Fahrzeug, vorgegeben wird, d. h. daß das Fahrzeug mehrere Fahrtrouten zur selben Zielposition vom Verkehrsrechner ermitteln oder auswählen läßt.

Der Einsatzbereich des Verfahrens läßt sich dadurch verbessern, daß der Verkehrsrechner die Fahrtroute in Abhängigkeit von speziellen vom Fahrzeug vorgebbaren Randbedingungen bestimmt, die an die konkreten Wünsche des Fahrzeugführers dieses Fahrzeugs zum Ausdruck bringen. So kann beispielsweise eine zweite Zielposition an den Verkehrsrechner übertragen werden, damit der Verkehrsrechner eine Fahrtroute bestimmt, die einen Umweg über die zweite Zielposition zufweict.

Zweckmäßigerweise wird vorgeschlagen, daß der Verkehrsrechner mit der Fahrtroute eine im Bereich der Fahrtroute aktualisierte Straßenkarte an das Fahrzeug überträgt, so daß die Zielführungseinrichtung im Bedarfsfall Fahrtroutenkorrekturen unter Berücksichtigung der aktuellen und/oder prognostizierten Verkehrsdaten selbständig vornehmen kann. Diese Möglichkeit wird noch dadurch verbessert, daß die Straßenkarte im aktualisierten Bereich zusammen mit aktuellen und/oder prognostizierten Verkehrsdaten für diesen Bereich übertragen wird. Insbesondere umfassen die aktuellen und/oder prognostizierten Verkehrsdaten die mittlere Geschwindigkeit der Fahrzeuge auf den Stra-

Benabschnitten der Fahrtroute.

Die vom Verkehrsrechner an das Fahrzeug zu übertragenden Fahrtrouten weisen eine besonders geringe Datenmenge auf, wenn die Fahrtrouten als Vektorzug in Form von aufeinanderfolgenden Wegpunkten übermittelt werden.

Es ist weiterhin zweckmäßig, als Randbedingung die Fahrzeit, die das Fahrzeug für die gesamte Fahrtroute benötigt, zu verwenden.

Um jedes Fahrzeug zu jedem beliebigen Zeitpunkt zu 10 erreichen, wird mit der Erfindung vorgeschlagen, daß der Datenaustausch mit dem Verkehrsrechner über ein Funktelefon erfolgt.

Schaltungstechnisch besonders einfach läßt sich die Zielführung im Fahrzeug durch einen Bordcomputer 15 durchführen.

Zur Erreichung einer störungsfreien Zielführung wird weiter vorgeschlagen, daß der Verkehrsrechner mit einem Verkehrsleitsystem verbunden ist, das z.B. die Fahrtrouten der zielgeführten Fahrzeuge bei der Ver- 20 kehrsleitung berücksichtigt.

Besonders einfach läßt sich die aktuelle geographische Position durch ein Satelliten-Navigations-System im Fahrzeug ermitteln.

Mit besonders geringem technischen Aufwand läßt 25 sich die aktuelle geographische Position durch ein Funkpeilsystem ermitteln.

Zur Durchführung des Verfahrens zur Zielführung eines Fahrzeugs wird ein System vorgeschlagen bestehend aus einer fahrzeuginternen Zielführungseinrich- 30 tung mit einer Empfangseinheit für drahtlos übermittelte Informationen zur Erkennung der aktuellen geographischen Position, einer Recheneinheit zur Steuerung der Datenübertragungen, intern innerhalb des Fahreinheit insbesondere zur Eingabe einer Zielposition und einer Ausgabeeinheit insbesondere zur Ausgabe von Wegführungsinformationen, und einem außerhalb des Fahrzeugs angeordneten Verkehrsrechner, der eine digitalisierte Straßenkarte mit den aktuellen und/oder 40 prognostizierten Verkehrsdaten aufweist. Dabei ist die Zielführungseinrichtung zusätzlich mit einer Sende-/Empfangseinrichtung ausgebildet und jederzeit über die Sende-/Empfangseinrichtung drahtlos mit dem Verkehrsrechner datentechnisch verbindbar.

Mit Vorteil wird vorgeschlagen, daß die Empfangseinheit für drahtlos übermittelte Informationen zur Erkennung der aktuellen geographischen Position entweder ein Satelliten-Navigationssystem oder alternativ dastimmung der aktuellen geographischen Position mit relativ geringem Aufwand. Die Genauigkeit der Ortsbestimmung läßt sich insbesondere beim Satelliten-Navigationssystem dadurch verbessern, daß die Empfangstet ist, mit denen die Genauigkeit der Positionserkennung verbessert werden kann.

Als besonders zweckmäßig hat es sich erwiesen, wenn die Ausgabe- und/oder Eingabeeinheit eine Spracheingabe- und/oder Sprachausgabeeinheit aufweist. Dabei 60 ist es zweckmäßig, wenn die Ausgabeeinheit außerdem ein Display umfaßt und auf dem Display die aktuelle Position mit einer Umgebungskarte anzeigbar ist.

Eine besonders kompakte Ein- und Ausgabeeinheit ergibt sich, wenn die Ausgabeeinheit gleichzeitig als 65 Eingabeeinheit ausgebildet ist, wobei die Eingabe insbesondere der Zielposition durch Markieren oder handschriftliche Eingabe auf dem Display erfolgt.

Die Sende-/Empfangseinrichtung ist wegen des geringen zusätzlichen Aufwandes vorzugsweise als Funktelefon ausgebildet.

Anhand des in der einzigen Figur dargestellten Sy-5 stems zur zur Zielführung eines Fahrzeugs unter Berücksichtigung aktueller und/oder prognostizierter Verkehrsdaten wird die Erfindung nachfolgend näher erläu-

Die Figur zeigt schematisch eine fahrzeuginterne Zielführungseinrichtung, die eine Eingabeeinheit 1 insbesondere zur Eingabe einer Zielposition mittels einer Tastatur umfaßt; die Eingabeeinheit 1 ist datentechnisch mit einer Recheneinheit (CPU) 2 verbunden. Weiter weist die Zielführungseinrichtung eine Empfangseinheit für drahtlos übermittelte Informationen zur Erkennung der aktuellen geographischen Position auf, z.B. einen GPS-Empfänger 3 (Global Positioning System) für die Satelliten-Navigation. Alternativ kann auch ein Funkpeilsystem vorgesehen sein. Die aktuelle geographische Position des Fahrzeugs ist aus den empfangenen Zeitsignalen des GPS-Empfängers 3 bestimmbar, wobei der GPS-Empfänger 3 vorzugsweise zum Empfang von Korrektursignalen eingerichtet ist, mit denen die Genauigkeit der Positionserkennung verbessert werden kann. Zur Bestimmung der aktuellen geographischen Position des Fahrzeugs aus den empfangenen Zeitsignalen des GPS-Empfängers 3 ist auch der GPS-Empfänger 3 mit der Recheneinheit (CPU) 2 verbunden. Die Recheneinheit (CPU) 2 hat außer dem Zugriff auf eine digitalisierte Straßenkarte 4, die z. B. auf einer CD-ROM abgespeichert ist. Die CD-ROM enthält das gesamte Straßennetz der Bundesrepublik Deutschland: alle Autobahnen, Bundes-, Landes- und Kreisstraßen, alle Großstädte mit sämtlichen befahrbaren Straßen und zeugs und extern zum Verkehrsrechner, einer Eingabe- 35 Plätzen. Anhand der geographischen Daten auf der CD-ROM kann die Recheneinheit (CPU) 2 völlig unabhängig von anderen fahrzeugexternen Systemen eine oder mehrere Fahrtrouten ermitteln, die die aktuelle geographische Position des Fahrzeugs und die Zielposition miteinander verbindet. Die Fahrhinweise (Wegführungsinformationen) für den Fahrer werden über eine mit der Recheneinheit (CPU) 2 verbundene Ausgabeeinheit 5 ausgegeben. Die Ausgabeeinheit 5 umfaßt ein Display sowie eine Sprachausgabeeinrichtung. Bei Bedarf ist auf dem Display die aktuelle Position mit einer Umgebungskarte anzeigbar. In einer speziellen Ausführungsform ist Ausgabeeinheit gleichzeitig als Eingabeeinheit ausgebildet ist, wobei die Eingabe insbesondere der Zielposition durch Markieren oder handschriftliche Einzu ein Funkpeilsystem ist. Beide ermöglichen eine Be- 50 gabe auf dem Display erfolgen kann. Zur Kommunikation mit externen Einrichtungen ist die Recheneinheit (CPU) 2 mit einer Sende-/Empfangseinrichtung 6 versehen, welche zweckmäßig als Funktelefon ausgebildet ist.

Über die Sende-/Empfangseinrichtung 6 ist die Zieleinheit zum Empfang von Korrektursignalen eingerich- 55 führungseinrichtung des Fahrzeugs mit einem extern angeordneten Verkehrsrechner 7 datentechnisch verbindbar. Zum Datenaustausch mit den zielgeführten Fahrzeugen ist der Verkehrsrechner 7 mit einem Sender/Empfänger 8 verbunden. Die Fahrtroutenbestimmung durch den Verkehrsrechner 7 auf Anforderung durch das Fahrzeug erfolgt anhand mindestens einer gespeicherten digitalisierten Straßenkarte 9, auf die der Verkehrsrechner 7 direkten Zugriff hat. Der Verkehrsrechner 7 ist Bestandteil eines Verkehrsleitsystems 10 oder an dieses angeschlossen. Über das Verkehrsleitsystem 10 stehen dem Verkehrsrechner 7 die aktuellen und/oder prognostizierten Verkehrsdaten zur Verfügung. Es ist aber auch vorgesehen, daß der Verkehrsrechner 7 nicht nur Zugriff auf die Verkehrsdaten des Verkehrsleitsystems 10 hat, sondern daß die Routenplanung in direkter Abstimmung mit der Verkehrsleitung des Verkehrsleitsystems 10 erfolgt.

Zur Zielführung eines Fahrzeugs wird zunächst die Zielposition über die Eingabeeinheit 1 vom Fahrer des Fahrzeugs eingegeben. Die Startposition ist die aktuelle geographische Position, die die Recheneinheit (CPU) 2 durch Abfrage vom GPS-Empfänger 3 erhält. Die Starttelefon (Sende-/Empfangseinrichtung 6) an den Verkehrsrechner 7 übertragen. Soll mehr als eine Fahrtroute vom Verkehrsrechner 7 ermittelt werden, wird die Anzahl der zu ermittelnden alternativen Fahrtrouten vom Fahrzeug vorgegeben; soll der Verkehrsrechner 7 15 die Fahrtrouten in Abhängigkeit von vom Fahrzeug vorgebbaren Optimierungsbedingungen bestimmen, werden die Optimierungsbedingungen ebenfalls übermittelt. So ist es z. B. möglich, daß die Fahrtrouten unabhängig von den Kosten wie Autobahngebühren usw., 20 allein unter dem Gesichtspunkt einer minimalen Fahrzeit, bestimmt werden sollen. Hat der Verkehrsrechner 7 die Aufgabe erhalten, nur eine einzige Fahrtroute zu ermitteln, so bestimmt der Verkehrsrechner 7 anhand günstige) Fahrtroute, die die aktuelle geographische Position mit der Zielposition verbindet. Dabei werden die aktuellen und/oder prognostizierten Verkehrsdaten berücksichtigt. Der Verkehrsrechner 7 ermittelt auf Basis der zur Verfügung stehenden Verkehrsdaten von den 30 möglichen Fahrtrouten beispielsweise die mit der kürzesten Fahrzeit, die das Fahrzeug für die gesamte Fahrtroute benötigt, indem er die mittlere Geschwindigkeit der Fahrzeuge auf den einzelnen Straßenabschnitten der Fahrtrouten berücksichtigt. Anschließend wird die 35 vollständige Fahrtroute an das Fahrzeug übertragen. Zusätzlich zur ermittelten Fahrtroute kann es auch vorgesehen sein, daß der Verkehrsrechner mit der Fahrtroute eine im Bereich der Fahrtroute aktualisierte Strade Datenmenge ist in einem solchen Fall sehr gering, da nur ein kleiner Ausschnitt der gesamten Straßenkarte 9 an das Fahrzeug zu übertragen ist. Auch ist es alternativ möglich, daß die Straßenkarte im aktualisierten Bereich zusammen mit aktuellen und/oder prognostizierten 45 Verkehrsdaten übertragen wird. Zweckmäßigerweise wird die Fahrtroute als Vektorzug in Form von aufeinanderfolgenden Wegpunkten vom Verkehrsrechner an das Fahrzeug übermittelt; dadurch verringert sich einerseits die zu übertragende Datenmenge, andererseits 50 3 GPS-Empfänger vereinfacht der Vektorzug die Zielführung des Fahrzeugs. Die Datenübertragung an das zielgeführte Fahrzeug erfolgt mittels eines Funktelefons (Sender/Emp-

Die vollständige Fahrtroute wird von der Sende- 55 8 Sender/Empfänger /Empfangseinrichtung 6 empfangen; anhand der digitalisierten Straßenkarte 4 erfolgt anschließend die Zielführung des Fahrzeugs durch die im Fahrzeug installierte Zielführungseinrichtung. Dazu erhält der Fahrer in Abhängigkeit von der aktuellen Position des Fahrzeugs 60 die entsprechenden Fahrhinweise über Lautsprecher mitgeteilt. Zusätzlich werden auf dem Display die Fahrhinweise der Ausgabeeinheit 5 optisch angezeigt. Welches die nächste Richtungsänderung ist, ermittelt die Zielführungseinrichtung durch Vergleich der aktuellen 65 Position mit der Fahrtroute anhand der digitalisierten Straßenkarte 4. Die Zielführung erfolgt im Fahrzeug durch einen Bordcomputer (Recheneinheit 2), der auch

den Datenaustausch mit dem Verkehrsrechner 7 steuert. Kommt es auf der Fahrtroute z. B. zu einem Unfall, kann also die Fahrtroute nur noch mit sehr geringer Fahrgeschwindigkeit passiert werden, wird von dem Verkehrsrechner 7 selbständig oder auf Anforderung eine aktualisierte Fahrtroute ermittelt und an das Fahrzeug übertragen. Das zielgeführte Fahrzeug verfügt also immer über die optimale Fahrtroute. Abweichungen von der vorgegebenen Fahrtroute sind jederzeit korriund die Zielposition werden anschließend mittels Funk- 10 gierbar, da das Fahrzeug über eine autonome Zielführungseinrichtung verfügt. Somit ist es also auch möglich, den Fahrer des Fahrzeugs zur Fahrtroute zurückzuführen, wenn dieser sich trotz der Fahrhinweise verfahren hat oder wenn eine Verkehrsstörung vorliegt, die dem Verkehrsrechner 7 nicht bekannt war. In letzterem Falle

ist die Zielführungseinrichtung auch von sich aus in der

Lage, die Verkehrsstörung zu umfahren.

In einer zweiten Ausführungsform bestimmt die Recheneinheit (CPU) 2 anhand der digitalisierten Straßenkarte 4 nach Eingabe der Zielposition mehrere alternative Fahrtrouten, die an den externen Verkehrsrechner übertragen werden. Der Verkehrsrechner 7 wählt dann unter Berücksichtigung der aktuellen und/oder prognostizierten Verkehrsdaten aus den übermittelten Fahrtder digitalisierten Straßenkarte 9 genau eine (möglichst 25 routen diejenige aus, die unter Berücksichtigung der aktuellen Verkehrslage den Standardbedingungen oder den vorgegebenen Bedingungen am besten entspricht, und übermittelt das Ergebnis an das zielgeführte Fahrzeug. Im Einzelfall ist es auch möglich, daß nur eine einzige Fahrtroute an den Verkehrsrechner 7 übermittelt wird und daß dieser beispielsweise die Gesamtfahrzeit unter Berücksichtigung der aktuellen und/oder prognostizierten Verkehrsdaten bestimmt.

In einer dritten Ausführungsform ist es vorgesehen, daß alle Fahrzeuge einer organisatorischen Einheit, z. B. eines Taxiunternehmens, ihre Fahrtrouten vom Verkehrsrechner 7 unter Berücksichtigung der aktuellen und/oder prognostizierten Verkehrsdaten ermittelt bekommen, wobei zusätzlich organisatorische Anforde-Benkarte an das Fahrzeug überträgt. Die zu übertragen- 40 rungen z. B. des Taxiunternehmens berücksichtigt werden. Die organisatorischen Anforderungen könnten z. B. darin bestehen, daß die Fahrtrouten der einzelnen Fahrzeuge möglichst gleichmäßig über die Stadt verteilt sein sollen usw.

Bezugszeichenliste

1 Eingabeeinheit 2 Recheneinheit (CPU) 4 digitalisierte Straßenkarte 5 Ausgabeeinheit 6 Sende-/Empfangseinrichtung 7 Verkehrsrechner 9 digitalisierten Straßenkarte 10 Verkehrsleitsystems

Patentansprüche

1. Verfahren zur Zielführung eines Fahrzeugs, bei dem mindestens eine Fahrtroute, die von einer Startposition zu einer vorgegebenen Zielposition führt, unter Berücksichtigung aktueller und/oder prognostizierter Verkehrsdaten ermittelt und das Fahrzeug durch eine mitgeführte Zielführungseinrichtung anhand einer mitgeführten digitalisierten Straßenkarte entlang einer der Fahrtrouten zur Zielposition geführt wird, dadurch gekennzeichnet, daß aus dem Fahrzeug Planungsdaten, die mindestens die Startposition und die Zielposition umfassen, an einen externen Verkehrsrechner übertragen werden und der Verkehrsrechner unter vorgebbaren Randbedingungen und unter Berücksichtigung der aktuellen und/oder prognostizierten Verkehrsdaten Fahrtroutendaten mindestens einer Fahrtroute ermittelt und an die Zielführungseinrichtung des Fahrzeugs überträgt.

2. Verfahren nach Anspruch I, dadurch gekennzeichnet, daß die an den externen Verkehrsrechner übertragenen Planungsdaten als Startposition die aktuelle geographische Position umfassen.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die an den externen Verkehrsrechner übertragenen Planungsdaten im Fahrzeug ermittelte Fahrtrouten sind.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Anzahl der vom 20 Verkehrsrechner zu ermittelnden alternativen günstigen Fahrtrouten vom Fahrzeug vorgegeben wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Verkehrsrechner 25 bei Eintritt bestimmter Bedingungen mindestens eine aktualisierte günstige Fahrtroute ermittelt und an das Fahrzeug überträgt.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Verkehrsrechner 30 die Fahrtrouten in Abhängigkeit von vom Fahrzeug vorgebbaren Randbedingungen bestimmt.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Verkehrsrechner mit den Fahrtrouten jeweils eine im Bereich der 35 Fahrtrouten aktualisierte Straßenkarte an das Fahrzeug überträgt.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Straßenkarte im aktualisierten Bereich zusammen mit aktuellen und/oder prognostizierten Verkehrsdaten übertragen wird.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die aktuellen und/ oder prognostizierten Verkehrsdaten die mittlere Geschwindigkeit der Fahrzeuge auf den Straßen- 45 abschnitten der Fahrtroute umfassen.

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Fahrtroute als Vektorzug in Form von aufeinanderfolgenden Wegpunkten vom Verkehrsrechner an das Fahr- 50

zeug übermittelt wird.

11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die vorgebbare Randbedingung die kleinste Fahrzeit ist, die das Fahrzeug für die gesamte Fahrtroute benötigt.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Datenaustausch mit dem Verkehrsrechner über ein Funktelefon erfolgt.

13. Verfahren nach einem der Ansprüche 1 bis 12, 60 dadurch gekennzeichnet, daß die Zielführung im Fahrzeug durch einen Bordcomputer durchgeführt wird.

14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Verkehrsrechner 65 mit einem Verkehrsleitsystem verbunden ist.

15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die aktuelle geogra-

phischen Position durch ein Satelliten-Navigations-System im Fahrzeug ermittelt wird.

16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die aktuelle geographische Position durch ein Funkpeilsystem ermittelt wird.

17. System zur Zielführung eines Fahrzeugs, bestehend aus einer fahrzeuginternen Zielführungseinrichtung mit

— einer Empfangseinheit (3) für drahtlos übermittelte Informationen zur Erkennung der aktuellen geographischen Position,

— einer Recheneinheit (CPU) (2) zur Steuerung der internen und externen Datenübertra-

- einer Eingabeeinheit (1) insbesondere zur Eingabe einer Zielposition und

- einer Ausgabeeinheit (5) insbesondere zur Ausgabe von Wegführungsinformationen,

und einem außerhalb des Fahrzeugs angeordneten Verkehrsrechner (7), der eine digitalisierte Straßenkarte (9) mit den aktuellen und/oder prognostizierten Verkehrsdaten aufweist,

wobei die Zielführungseinrichtung zusätzlich mit einer Sende-/Empfangseinrichtung (6) ausgebildet und jederzeit über die Sende-/Empfangseinrichtung (6) drahtlos mit dem Verkehrsrechner (7) datentechnisch verbindbar ist.

18. System nach Anspruch 17, dadurch gekennzeichnet, daß die Empfangseinheit (3) für drahtlos übermittelte Informationen zur Erkennung der aktuellen geographischen Position ein Funkpeilsystem ist.

19. System nach einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, daß die Empfangseinheit (3) für drahtlos übermittelte Informationen zur Erkennung der aktuellen geographischen Position ein Satelliten-Navigationssystem ist.

20. System nach Anspruch 19, dadurch gekennzeichnet, daß die Empfangseinheit (3) zum Empfang von Korrektursignalen eingerichtet ist, mit denen die Genauigkeit der Positionserkennung verbessert werden kann.

21. System nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, daß die Ausgabe- (5) und/ oder Eingabeeinheit (1) eine Spracheingabeund/ oder Sprachausgabeeinheit aufweist.

22. System nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß die Ausgabeeinheit (5) ein Display aufweist.

23. System nach Anspruch 22, dadurch gekennzeichnet, daß auf dem Display (5) die aktuelle Position mit einer Umgebungskarte anzeigbar ist.

24. System nach einem der Ansprüche 18 bis 23, dadurch gekennzeichnet, daß die Ausgabeeinheit (5) gleichzeitig als Eingabeeinheit (1) ausgebildet ist, wobei die Eingabe insbesondere der Zielposition durch Markieren oder handschriftliche Eingabe auf dem Display (5) erfolgen kann.

25. System nach einem der Ansprüche 18 bis 24, dadurch gekennzeichnet, daß die Sende-/Empfangseinrichtung (6) als Funktelefon ausgebildet ist.

Hierzu 1 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶: DE 195 19 066 A1 G 08 G 1/0969

Offenlegungstag:

30. Mai 1996

