Actions de groupes et théorèmes de Sylow

1 Exercice 1.

Soit G un groupe infini possédant un sous-groupe strict d'indice fini. Montrer que G n'est pas simple.

Soit $H \leq G$ un groupe tel que [G:H] est fini.

L'idée est que l'on réalise l'action $G \curvearrowright G/H$ avec $g \cdot xH := (gx)H$. On considère le morphisme

$$\varphi: G \longrightarrow \mathfrak{S}(G/H)$$
$$g \longmapsto (xH \mapsto g \cdot xH).$$

On a $\ker \varphi \triangleleft G$ et $\ker \varphi \neq \{e\}$ par cardinalité. En effet, $\#G = +\infty$ et puis $\#\mathfrak{S}(G/H) = [G:H]!$ qui est fini.

Montrons que $\ker \varphi \neq G$. Si $g \in \ker \varphi$ alors pour tout $g' \in G$, on a

$$gg'H = g'H$$
,

ce qui est vrai si et seulement si $(g')^{-1}gg' \in H$. En particulier pour g':=e, on a $g\in H$. Mais H est un sous-groupe strict de G d'où ker $\varphi\neq G$.

On en conclut que G n'est pas simple.

2 Exercice 2. *Nombre de sous-espaces vectoriels*

Soient \mathbb{k} un corps fini de cardinal q et $m \leq n$ deux entiers. Notons X l'ensemble des sous-espaces vectoriels de dimension m de \mathbb{k}^n . En étudiant l'action de $\mathrm{GL}_n(\mathbb{k})$ sur X, calculer le nombre de sous-espaces vectoriels de dimension m de \mathbb{k}^n .

3 Exercice 3.

Soit G un groupe fini.

- 1. Soit p un nombre premier qui divise l'ordre de G et soit S un p-Sylow de G. Montrer que les trois conditions suivantes sont équivalentes :
 - a) S est l'unique p-Sylow de G;
 - **b)** S est distingué dans G;
 - c) S est stable par tout automorphisme de G (on dit que S est un sous-groupe caractétistique de G).
- **2.** On va généraliser ce résultat à d'autres groupes que les p-Sylow. Soit k un entier divisant #G et tek que k est premier à $\frac{\#G}{k}$. On pose X_k l'ensemble des sous-groupes $H \leq G$ d'ordre k.
 - a) Montrer que si X_k contient un unique sous-groupe G alors G est caractéristique (et donc distingué).
 - **b)** Montrer réciproquement que si $H \in X_k$ est distingué alors on a $X_k = \{H\}$.

 On pourra considérer la projection $\pi : H' \to G/H$ où H' est un élément de X_k .

1.

 \triangleright « 1a \Longrightarrow 1b ». Montrons que S est distingué dans G. Pour tout $g \in G$, gSg^{-1} est un p-Sylow, donc $gSg^{-1} = S$.

- \triangleright « 1b \Longrightarrow 1a ». Soient S et S' deux p-Sylow. Alors, ils sont conjugués : il existe $g \in G$ tel que $S' = gSg^{-1}$. Or, S est distingué donc $S' = gSg^{-1} = S$.
- \triangleright « 1a \Longrightarrow 1c ». Soit $\varphi \in \operatorname{Aut}(G)$. Alors $\#\varphi(S) = \#S$ car φ bijectif. D'où $\varphi(S)$ est un p-Sylow de G et donc $\varphi(S) = S$.
- \triangleright « 1c \Longrightarrow 1b ». Soit $g \in G$ et doit

$$\operatorname{Aut}(G) \ni \varphi_g : G \longrightarrow G$$

$$h \longmapsto ghq^{-1}.$$

Alors, $\varphi_q(S) = gSg^{-1} = S$ par hypothèse et donc $S \triangleleft G$.

2.

4 Exercice 4. *Groupes d'ordre* pq

- 1. Soit G un groupe d'ordre 15.
 - a) Compter le nombre de 3-Sylow et le nombre de 5-Sylow de G.
 - **b)** En déduire que G est forcément cyclique.
- **2.** Plus généralement, soit G un groupe d'ordre pq avec p < q et où p,q sont premiers.
 - a) On suppose que $q \not\equiv 1 \pmod{p}$. Démontrer que G est cyclique.
 - **b)** Exhiber des nombres premiers p et q et un groupe d'ordre pq non abélien.
- 1. a) Par les théorèmes de Sylow, on sait que n_3 , le nombre de 3-Sylow dans G vérifie $n_3 \not\equiv 1 \pmod{3}$ et $n_3 \mid 5$, d'où $n_3 = 1$. De même, on a que $n_5 = 1$.
 - b) Soit S_3 et S_5 les uniques 3-Sylow et 5-Sylow de G. On sait que S_3 contient e et deux éléments d'ordre 3. De même, on sait que S_5 contient e et 4 éléments d'ordre 5. De plus, $\#(G\setminus (S_3\cup S_5))=8$ donc si $x\in G\setminus (S_3\cup S_5)$ alors $x\neq e$ et x n'est pas d'ordre 3 (car sinon $x\in S_3$) et il n'est pas d'ordre 5 pour la même raison. On en déduit que x est d'ordre 15 et $G=\langle x\rangle$.

2. a) Avec les notations précédentes, on a $n_q \mid p$ et $n_q \equiv 1 \pmod{q}$ donc $n_q \in \{1, p\}$. De plus, p < q donc $p \not\equiv 1 \pmod{q}$ d'où $n_q = 1$. De même, $n_p \equiv 1 \pmod{p}$ et $n_p \mid q$ d'où $n_p \in \{1, q\}$. Or, $q \not\equiv 1 \pmod{p}$ et donc $n_p = 1$.

Soient S_p et S_q les uniques p- et q-Sylow de G. Ainsi

- $\triangleright S_p$ contient e est (p-1) éléments d'ordre p;
- $\triangleright S_q$ contient e est (q-1) éléments d'ordre q.

Et,

$$\#(G \setminus S_p \cup S_q) = pq - 1 - (p-1) - (q-1) = (p-1)(q-1) > 0.$$

Si $x \in G \setminus (S_p \cup S_q) \neq \emptyset$ alors x n'est pas d'ordre 1, ni p ni q. D'où ord x = pq (par Lagrange) et donc $G = \langle x \rangle \cong \mathbb{Z}/pq\mathbb{Z}$.

b) Avec p = 2 et q = 3 on a $3 \equiv 1 \pmod{2}$ mais

$$G = \mathfrak{S}_3 \ncong \mathbb{Z}/6\mathbb{Z}$$
.

5 Exercice 5. Théorèmes de Sylow et simplicité des groupes

Soit G un groupe.

- 1. a) Montrer que si #G = 20 alors G n'est pas simple.
 - **b)** Plus généralement, montrer que si $\#G = p^a k$ avec p premier et k un entier non divisible par p et 1 < k < p, alors G n'est pas simple.
- **2.** Montrer que si #G = 40 alors G n'est pas simple (fonctionne aussi avec #G = 45).
- **3.** En faisant agir G par conjugaison sur l'ensemble de ses p-Sylow pour un p bien choisi, montrer que si #G = 48 alors G n'est pas simple.
- **4.** (Plus difficile) Montrer que si #G = 30 ou 56, alors G n'est pas simple.
- **5.** Conclure qu'un groupe simple de cardinal non premier est d'ordre au moins 60.

- 1. a) On a $\#G = 2^2 \times 5$ donc on a $n_5 = 1$. Par l'3, on sait qu'il existe un unique 5-Sylow et donc qu'il est distingué.
 - b) Pour $\#G = p^a k$ avec $p \nmid k$ et 1 < k < p on a $n_p \mid k$ d'où $n_p \leq k$. De plus, $n_p \equiv 1 \pmod{p}$ donc si $n_p \neq 1$ alors $n_p \geq p+1 > k$, **absurde**. On en déduit que $n_p = 1$ et donc que l'unique p-Sylow est distingué. On en conclut que G n'est pas simple.
- 2. On a $n_5 \mid 8$ et $n_5 \equiv 1 \pmod{5}$ donc $n_5 = 1$. On procède comme précédemment.
- 3. On a $\#G = 48 = 2^3 \times 3$. On sait que $n_2 \in \{1,3\}$ et $n_3 \in \{1,4,16\}$. On fait agir G sur $\mathrm{Syl}_2(G)$ l'ensemble des 2-Sylow de G par :

$$g \cdot S := gSg^{-1}.$$

Ceci induit un morphisme

$$\varphi: G \longrightarrow \mathfrak{S}_{n_2}.$$

On a deux cas:

- \triangleright si $n_2 = 1$, alors on a fini;
- \triangleright si $n_2 = 3$ alors $\ker \varphi \neq \{e\}$ (car #G = 48 et $\#\mathfrak{S}_3 = 3! = 6$) et, de plus, par les théorèmes de Sylow, l'action est transitive, d'où $\ker \varphi \triangleleft G$ et $\{e\} \neq \ker \varphi \neq G$ d'où G n'est pas simple.

6 Exercice 6.

Soit G un groupe fini simple d'ordre supérieur ou égal à 3.

- **1.** Soit $H \leq G$ un sous-groupe strict de G. Montrer qu'il existe un morphisme injectif $\varphi : G \hookrightarrow \mathfrak{S}(G/H)$ et donc que $\#G \mid [G:H]!$. (Indication: faire agir G sur G/H.)
- **2.** Montrer que $\varphi(G) \subseteq \mathfrak{A}(G/H)$ et donc que $\#G \mid \frac{1}{2}[G:H]!$.
- **3.** Soit p un nombre premier divisant #G. On note n_p le nombre de p-Sylow de G.
 - a) Montrer qu'il existe un morphisme injectif $\varphi_p: G \hookrightarrow \mathfrak{A}_{n_p}$ et donc que $\#G \mid \frac{1}{2}n_p!$.

- b) En déduire qu'un groupe d'ordre 80 ou 112 n'est pas simple.
- 1. On fait agir G sur G/H en posant $g \cdot (g'H) := (gg')H$. Ceci induit un morphisme $\varphi : G \to \mathfrak{S}(G/H)$. Il est injectif car ker $\varphi \triangleleft G$ donc, par simplicité de G,
 - $\triangleright \ker \varphi = \{e\};$
 - $\,\triangleright\, \ker \varphi = G$ mais l'ordre de G est supérieur à 3 donc φ est non-nulle.

Enfin, par le premier théorème d'isomorphisme :

$$G/\ker \varphi = G \cong \operatorname{im} \varphi \leq \mathfrak{S}(G/H),$$

d'où $\#G \mid [G:H]!$ par cardinalité et Lagrange.

2. Montrons que $\varphi(G) \subseteq \mathfrak{A}(G/H)$ en montrant $\varphi^{-1}(\mathfrak{A}(G/H)) = G$. On sait que $\mathfrak{A}(G/H) \triangleleft \mathfrak{S}(G/H)$ d'où $\varphi^{-1}(\mathfrak{A}(G/H)) \triangleleft G$. Par cardinalité, il est impossible que $\varphi^{-1}(\mathfrak{A}(G/H)) = \{e\}$. On en conclut que $\varphi^{-1}(\mathfrak{A}(G/H)) = G$.

Table des matières

Actions de groupes et théorèmes de Sylow		1
1	Exercice 1	1
2	Exercice 2. Nombre de sous-espaces vectoriels	2
3	Exercice 3	2
4	Exercice 4. Groupes d'ordre pq	3
5	Exercice 5. Théorèmes de Sylow et simplicité des groupes	4
6	Exercice 6	5