计算机学院、网安学院 2018-2019 学年第一学期 本科生编译系统原理期末考试试卷(A卷)

专业:	年级: _		学号:
姓名:	成绩: _		
得 分	一、 单项选择题	(每空2分,	共 24 分)
释 2. In 等	是在 <u>A</u> 阶段 A.词法分析 C.语义分析 E.代码运行 tel 今年发布了深度学 深度学习框架,令用 运行这些框架编写的	,检查数组下 B. D. F. 习编译器 nGr 户可在 Intel C 程序,它的实 B.	规是在
3. —	A. nlogn	В.	DFA 最多有
4. 下	C. n! 「面哪个符号串可以区	分状态 D 和 E	
5. 下	A. a C. bb 可 CFG 的预测分析表 S → CC	D.	b . 以上均不对
	C → cC d A. ε C. d		c . \$

第1页,共5页

- 6. 对下面的 CFG,哪个说法不正确? ____D___。
 S→0C
 C→D1
 D→D0|0
 E→C1
 A. 删除 E 不影响文法含义 B. 与 00+1 对应相同的语言 C. 是算符文法 D. 001 是其活前缀
 7. 下面语法制导定义是___E____,其中 i 是____B___、s 是____A___。
 S→AB { B.i = f₁(S.i); A.i = f₂(B.s); S.s = f₃(A.s) }
 A. 综合属性 B. 继承属性 C. S-属性定义 D. L-属性定义 E. 以上皆错
- 8. 关于下面类型表达式, _____A____是正确的。

$record(integer \times char)$

- A. C语言对这种类型的等价判定采用名字等价方式
- B. C语言对这种类型的等价判定采用结构等价方式
- C. Pascal 语言对这种类型的等价判定采用结构等价方式
- D. 以上皆错

得分 1.

二、设计题(每题6分,共24分)

1. 设计正则表达式,接受津南区身份证号:以 120112 开头,后接4位出生年、2位出生月、2位出生日和4位序号,不考虑序号以字母结尾,不考虑年份的合理性,不考虑月/年与日的匹配。

答: 120112([0-9]{4})(0[1-9] | 11 | 12)(0[1-9] | 1[0-9] | 2[0-9] | 30 | 31)([0-9]{4})

2. 设计与下面文法接受相同符号串集合的 DFA。

 $S \rightarrow CC$

 $C \rightarrow cC \mid d$

答:等价的正则表达式 c*dc*d, DFA 为

3. 新的 C++标准增加了范围 for 语句,语法如下所示。为其设计上下文无关文法,其中类型为整型、浮点型及其引用,序列表达式为花括号包围的表达式列表。其中,表达式用 expr 表示即可,无需设计产生式描述它。

for (类型 循环变量名: 序列表达式)

答: $stmt \rightarrow for (type ID : \{ list \})$ type $\rightarrow int \mid float \mid int \& \mid float \&$

$list \rightarrow expr \mid expr \ list$

4. 设计上下文无关文法描述不包含子串 aab 的 a、b 串。

 $S \rightarrow aA \mid bS \mid \epsilon$

 $A \rightarrow aB \mid bS \mid \epsilon$

 $B \rightarrow aB \mid bC \mid \epsilon$

 $C \rightarrow aC \mid bC$

三、(25分)对下面的正则表达式。

 $(0*(1 | \epsilon))*$

1. 用 Thompson 构造法将其转换为 NFA,识别 101001。(10 分)

答:

得 分

识别的状态迁移过程

 $0 \rightarrow 1 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 9 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 9 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 9 \rightarrow 10$

2. 用子集构造法将得到的 NFA 转换为 DFA, 画出最终的状态转换图,识别 101001。(10分)

答:

 ε -closure({0})={0, 1, 2, 4, 5, 7, 8, 9, 10}=A

 $\delta(A, 0) = \varepsilon - closure(\delta(\{0, 1, 2, 4, 5, 7, 8, 9, 10\}, 0)) = \{1, 2, 3, 4, 5, 7, 8, 9, 10\} = B$

 $\delta(A, 1) = \epsilon - closure(\delta(\{0, 1, 2, 4, 5, 7, 8, 9, 10\}, 1)) = \{1, 2, 4, 5, 6, 7, 8, 9, 10\} = C$

 $\delta(B, 0) = \epsilon - closure(\delta(\{1, 2, 3, 4, 5, 7, 8, 9, 10\}, 0)) = B$

 $\delta(B, 1) = \varepsilon - closure(\delta(\{1, 2, 3, 4, 5, 7, 8, 9, 10\}, 1)) = C$

 $\delta(C, 0) = \varepsilon - closure(\delta(\{1, 2, 4, 5, 6, 7, 8, 9, 10\}, 0)) = B$

 $\delta(C, 1) = \epsilon - \text{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8, 9, 10\}, 1)) = C$

状态迁移过程: $A\rightarrow C\rightarrow B\rightarrow C\rightarrow B\rightarrow B\rightarrow C$

3. 将 DFA 最小化, 画出最终的状态转换图。(5 分)

答: A、B、C均为终态,初始分组{A、B、C}

{A、B、C}0→{B}, 不可区分

{A、B、C}1→{C}, 不可区分

因此 A、B、C 合并

最终 DFA 为

得 分

四、 (17 分)下面文法接受正则表达式集合,单词 c、e 分别表示字母表中符号和ε,连接运算符用.表示。对此文法:

- 1. 指出其终结符集合、非终结符集合、开始符号(4分)
- 2. 分析算符(终结符)优先关系,给出优先关系表(8分)
- 3. 对(c|e)*进行语法分析(5分)。

 $R \rightarrow c |e|R'|R|R.R|R*|(R)$

(1) 答: 终结符集合{c, e, |, ., *, (,)}

非终结符集合{R}

开始符号 R

(2) 答:

	c	e			*	()	\$
c			⊳	≫	⊳		⊳	⊳
e			⊳	⊳	⊳		⊳	⊳
	<	<	<	<	< -	< −	⊳	⊳
	<	<	⊳	<	< -	< −	⊳	⊳
*	<	<	⊳	⊳	< -	< −	⊳	⊳
(<	<	<	<	<	< <	≐	
)			⊳	≫	⊳		⊳	⊳
\$	<	<	<	<	< -	<		

(3) 答:

	输入	动作
\$	(c e) *\$	移进
\$(c e) *\$	移进
\$(c	e) *\$	归约 R → c

\$(e) *\$	移进
\$(e) *\$	移进
\$(e) *\$	归约 R → e
\$() *\$	归约 R → R ' ' R
\$() *\$	移进
\$()	*\$	归约 R → (R)
\$	*\$	移进
\$ *	\$	归约 R → R*
\$	\$	accept

得 分

五、(10 分)对第四题中文法,为其设计语法制导定义,实现正则表达式到 NFA 的转换。NFA 用五元组表示,例如下面的 NFA,表示为($\{0,1\}$, $\{a\}$, $\{(0,a)\rightarrow 1\}$, $\{0,1\}$)。即,语法制导定义翻译结果能得到这五部分即可。

$$\frac{\text{start}}{0} \underbrace{0} \underbrace{a}$$

```
答: 设翻译之前将全局变量 n 赋值为 0
R \rightarrow c \{ R.s = \{n++, n++\}; R.l = \{c.v\}; R.f = \{(n-2,c.v) \rightarrow n-1\};
                     R.i=n-2; R.t=n-1 }
R \rightarrow e \{ R.s = \{n++, n++\}; R.l = \{ \}; R.f = \{(n-2, \varepsilon) \rightarrow n-1 \};
                     R.i=n-2; R.t=n-1 }
R \rightarrow R_1 \parallel R_2 \{ R.s = R_1.s \cup R_2.s \cup \{n++, n++\}; R.l = R_1.l \cup R_2.l; \}
                            R.f = R_1.f \cup R_2.f \cup \{(n-2,\varepsilon) \rightarrow R_1.i, (n-2,\varepsilon) \rightarrow R_2.i,
                                                        (R_1.t,\varepsilon) \rightarrow n-1, (R_2.t,\varepsilon) \rightarrow n-1;
                            R.i=n-2; R.t=\{n-1\} \}
R \rightarrow R_1 . R_2 \{ R.s = R_1.s \cup R_2.s; R.l = R_1.l \cup R_2.l; \}
                            R.f = R_1.f \cup R_2.f \cup \{(R_1.t,\varepsilon) \rightarrow R_2.i\};
                            R.i = R_1.i; R.t = R_2.t
R \rightarrow R_1 * \{ R.s=R_1.s \cup \{n++, n++\}; R.l=R_1.l; \}
                            R.f = R_1.f \cup R_2.f \cup \{(n-2,\varepsilon) \rightarrow R_1.i, (n-2,\varepsilon) \rightarrow n-1,
                                                        (R_1.t,\varepsilon) \rightarrow R_1.i, (R_1.t,\varepsilon) \rightarrow n-1;
                     R.i = n-2; R.t = n-1
R \rightarrow (R_1) \{ R.s = R_1.s; R.l = R_1.l; R.f = R_1.f; R.i = R_1.i; R.t = R_2.t \}
```