CLAIMS

 An olefin polymerization catalyst represented by general formula (1), (2), or (3):
 [Chem. 1]

$$R_{f1}$$
 R_{f2}
 R_{f2}

(1)

[Chem. 2]

$$R_3$$
 R_1
 R_1
 R_1

(2)

[Chem. 3]

$$R_3$$
 R_2
 R_1

(3)

(wherein M is nickel, palladium, or platinum; E is oxygen or sulfur; X is phosphorus, arsenic, or antimony; R_1 , R_2 , and R_3 are each independently hydrogen or a hydrocarbon group

having 1 to 20 carbon atoms; $R_{\rm fl}$ and $R_{\rm f2}$ are each independently a fluorine atom or a fluorohydrocarbon group having 1 to 20 carbon atoms; F is fluorine; and m is 1 to 3).

- The olefin polymerization catalyst according to claim
 wherein M is nickel.
- The olefin polymerization catalyst according to claim
 or 2, wherein E is oxygen, and X is phosphorus.
- 4. The olefin polymerization catalyst according to any one of claims 1 to 3, wherein $R_{\rm fl}$ and $R_{\rm f2}$ are each a fluorohydrocarbon group having 1 to 20 carbon atoms.
- 5. The olefin polymerization catalyst according to claim 4, wherein $R_{\rm f1}$ is a trifluoromethyl group, and $R_{\rm f2}$ is a pentafluorophenyl group.
- 6. The olefin polymerization catalyst according to any one of claims 1 to 5, wherein $R_1,\ R_2,$ and R_3 are each a phenyl group.
- 7. The olefin polymerization catalyst according to claim 6, represented by general formula (4):
 [Chem. 4]

(4)

(wherein Ph represents a phenyl group).

- 8. An olefin polymer prepared using the olefin polymerization catalyst according to any one of claims 1 to 7.
- 9. The olefin polymer according to claim 8, wherein an olefin monomer is an α -olefin having 10 or less carbon atoms.
- 10. A method for producing the olefin polymerization catalyst according to any one of claims 1 to 7.
- 11. A method for producing the olefin polymer according to claim 8 or 9.