Комбинаторика

Актобе КТЛ

January 20, 2018

1 Комбинаторные объекты

1.1 Комбинаторные объекты

Комбинаторные объекты (англ. combinatorial objects) — конечные множества, на элементы которых могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.

1.2

Если два комбинаторных объекта, различающихся только порядком элементов, считаются различными, то они называются $\underline{\text{упорядоченными}}$ (англ. ordered).

2 Примеры комбинаторных объектов

2.1 Битовые вектора

Битовые вектора (англ. bit vectors) — последовательность нулей и единиц заданной длины.

2.2 Перестановки

Перестановки[1] (англ. permutations) — упорядоченный набор чисел $1,2,\ldots,n$ обычно трактуемый как биекция на множестве $\{1,2,\ldots,n\}$, которая числу i ставит соответствие i-й элемент из набора. Примером перестановки может служить задача о рассадке n человек за стол по n местам.

2.3 Перестановки с повторениями

Перестановки с повторениями (англ. permutations with repetitions) — те же перестановки, однако некоторые элементы могут встречаться несколько раз. В пример можно привести следующую задачу: имеется набор книг $\{a_1, a_2, \ldots, a_n\}$,

каждая из которых имеется в k_1, k_2, \dots, k_n экземплярах соответственно. Сколько существует способов переставить книги на полке?

2.4 Размещения

Размещение[2] (англ. arrangement) из n по k- упорядоченный набор из k различных элементов некоторого n-элементного множества. Примером размещения может служить задача о рассадке k человек за стол по n местам, где n>k.

2.5 Размещения с повторениями

Размещение с повторениями (англ. arrangement with repetitions), составленное из данных n элементов по k — отображение множества k первых натуральных чисел $1,2,\ldots,k$ в данное множество $\{a_1,a_2,\ldots,a_n\}$. В пример можно привести следующую задачу: имеется n книг, каждая в k экземплярах. Сколькими способами может быть сделан выбор книг из числа данных?

2.6 Сочетания

Сочетания[3] (англ. combinations) из n по k — набор k элементов, выбранных из данных n элементов. Примером сочетания может служить задача о выборе k книг из n вариантов.

2.7 Сочетания с повторениями

Сочетания с повторениями (англ. combinations with repetitions) — те же сочетания, только теперь даны n типов элементов, из которых нужно выбрать k элементов, причем элементов каждого типа неограниченное количество, и элементы одного типа должны стоять подряд друг за другом.

3 Число комбинаторных объектов

Битовые вектора	2^n
Перестановки	$P_n = n!$
Перестановки с повторениями	$\frac{(k_1 + k_2 + \dots + k_n)!}{k_1! k_2! \dots k_n!}$
Размещения	$A_n^k = \frac{n!}{(n-k)!}$
Размещения с повторениями	n^k
Размещения с повторениями	n^k
Сочетания	$C_n^k = \frac{n!}{k!(n-k)!}$
Сочетания с повторениями	$\widetilde{C}_n^k = \frac{(n+k-1)!}{k!(n-1)!} = C_{n+k-1}^k$

4 Некоторые доказательства и свойства

4.1

Для $n \geq 1$. Каждое n-элементное множество имеет 2^{n-1} подмножеств с четным кол-ом элементов и 2^{n-1} подмножеств с нечетным количеством элементов.

Доказательство. Давайте зафиксируем элемент $a \in X$. Любое подмножество $A \subseteq X \setminus \{a\}$ можно дополнить до $A' \subseteq X$ по такому правилу: если |A| нечетно, то A' = A, если четно то $A' = A \cup \{a\}$. Легко заметить что таким образом мы можем назначить биекцию от $X \setminus \{a\}$ ко всем нечетным подмножествам X коих 2^{n-1} .

Определение 1. Сочетание обозначается как: $\binom{n}{k}$

4.2 Задача

Сколько существует способов представить неотрицательное целое число m как сумму r слагаемых где порядок слагаемых важен? В других словах сколько r-элементных упорядоченных векторов (i_1,i_2,\ldots,i_r) таких что: $i_1+i_2+\ldots+i_r=m$