# Napredna računalniška orodja - 1. domača naloga

Maj Šinkovec, 23211085

Oktober 2023





#### Kazalo

1 Uvod

2 Izdelava naloge

3 Zaključek



# Definicija naloge

Skozi to predstavitev bomo z uporabo metode Monte Carlo aproksimirali vrednost števila  $\pi$ . Aproksimacijo bomo izvedli s pomočjo numeričnega programskega paketa Matlab.



Slika: Nekatere decimalke števila  $\pi$ , vir:tasmeemme.com



# Opis uporabe metode Monte Carlo

Za določitev vrednosti števila  $\pi$  bomo generirali izbrano število naključnih točk v ravnini. Pri metodi ustvarimo kvadrat stranice 2r in mu v središču vrišemo krog polmera r. Upoštevali bomo enačbo za ploščino kroga  $A_{krog}=\pi\cdot r^2$  in enačbo za ploščino kvadrata  $A_{kvadrat}=(2r)^2=4r^2$ . Razmerje med ploščino kroga in ploščino kvadrata tako znaša  $\frac{A_{krog}}{A_{kvadrat}}=\frac{\pi}{4}$ . Enako zvezo uporabimo s številom generiranih točk.

Število  $\pi$  lahko zapišemo kot  $\pi=4\cdot \frac{\check{\text{S}}\text{tevilo točk znotraj kroga}}{\check{\text{S}}\text{tevilo točk znotraj kvadrata}}.$ 



#### Kazalo

1 Uvod

- 2 Izdelava naloge
- 3 Zaključek



#### Potek reševanja

Reševanja smo se lotili na enotski krožnici s središčem v koordinatnem izhodišču. Najprej smo v funkcijski datoteki ustvarili funkcijo mcc\_pi, ki nam glede na podano število generiranih točk poda, katere ležijo znotraj kroga in katere ne. To dosežemo z preverjanjem pogoja enačbe krožnice, ki je za naš primer  $x^2+y^2 \leq 1$ , kjer sta x in y koordinati naših točk. Nato smo s pomočjo funkcije area\_pi izračunali vrednost števila  $\pi$  in preverili njeno odstopanje od vrednosti shranjene v Matlabu. Definirali smo tudi anonimno funkcijo, ki izračuna točke na loku naše krožnice.

### Rezultati reševanja

Za lažjo predstavo smo točke znotraj kroga, znotraj kvadrata in na krožnem loku prikazali na grafu, ki je prikazan pri različnem številu izbranih naključnih točk (označenem z n).



### Rezultati reševanja

Za lažjo predstavo smo točke znotraj kroga, znotraj kvadrata in na krožnem loku prikazali na grafu, ki je prikazan pri različnem številu izbranih naključnih točk (označenem z n).



Dobljene vrednosti števila  $\pi$  in njegovo odstopanje (označeno z  $\Delta$ ) od shranjene vrednosti v Matlabu smo prikazali v tabeli.

| n        | 10      | 10.000 | 1.000.000              |
|----------|---------|--------|------------------------|
|          | 3,0400  | ,      | ,                      |
| $\Delta$ | -0,1016 | 0,0112 | $6,7135 \cdot 10^{-4}$ |



#### Kazalo

1 Uvod

- 2 Izdelava naloge
- 3 Zaključek



# Zaključek

Skozi domačo nalogo smo pridobili dodatno znanje v Matlabu in pobliže spoznali metodo Monte Carlo. Z povečevanjem števila dodatnih točk smo se pričakovano čedalje bolj približevali vrednosti števila  $\pi$ . Z povečevanjem števila točk, sicer dosežemo večjo natančnost, vendar se povečuje tudi potrebem računski čas.