

Hollet tearen i bolar sur ar W w underson and 
$$\mathbb{R}^{3}$$
?

They ar  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They are  $\mathbb{N} = \{alle \times e \mathbb{R}^{3} : a \}$ 

They ar

Modulism 5: 
$$\begin{cases} \vec{x} \cdot \vec{v}_1 = 0 \\ \vec{x} \cdot \vec{v}_p = \delta \end{cases}$$

V.a.  $\vec{x} \in Span\{\vec{v}_1 \dots \vec{v}_p\}^{\perp}$ .

 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p \vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p \vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{a}_1 \vec{v}_1 + \dots + \vec{a}_p \vec{v}_p) = \vec{a}_1(\vec{x}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{a}_1(\vec{v}_1 \vec{v}_1) + \dots + \vec{a}_p(\vec{v}_p)$ 
 $\vec{x} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{a}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{x} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{a}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{x} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{a}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{x} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{a}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{x} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{v}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{x} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{v}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{v} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{v}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{v} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{v}_1(\vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{v} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p) = \vec{v}_1(\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec{v}_p)$ 
 $\vec{v} \cdot (\vec{v}_1 \vec{v}_1 + \dots + \vec{v}_p \vec$ 

6.27 
$$V_1 = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$
  $V_2 = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$   $V_3 = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}$ 

$$V_1 \cdot V_2 = -12 + 21 - 9 = 0$$

$$V_1 \cdot V_3 = 6 - 7 + 1 = 0$$

$$V_2 \cdot V_3 = -18 - 3 - 9 \neq 0$$

$$V_3 \cdot V_3 = -18 - 3 - 9 \neq 0$$

$$V_4 \cdot V_3 = -18 - 3 - 9 \neq 0$$

$$V_1 \cdot V_3 = -18 - 3 - 9 \neq 0$$

$$V_2 \cdot V_3 = -18 - 3 - 9 \neq 0$$

$$V_3 \cdot V_4 = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}$$

$$V_4 \cdot V_5 = -18 - 3 - 9 \neq 0$$

$$V_4 \cdot V_5 = -18 - 3 - 9 \neq 0$$

$$V_4 \cdot V_5 = -18 - 3 - 9 \neq 0$$

$$V_4 \cdot V_5 = -18 - 3 - 9 \neq 0$$

$$V_4 \cdot V_5 = -18 - 3 - 9 \neq 0$$

$$V_4 \cdot V_5 = -18 - 3 - 9 \neq 0$$

$$V_5 \cdot V_5 = -18 - 3 - 9 \neq 0$$

$$V_7 \cdot V_7 = -18 - 18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_7 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 - 9 \neq 0$$

$$V_8 \cdot V_8 = -18 + 9 \neq 0$$

$$V_8 \cdot V_8 = -18 + 9 \neq 0$$

$$V_8 \cdot V_8 = -18 + 9 \neq 0$$

$$V_8 \cdot V_8 = -18 + 9$$





6.230

A (se 5.346)

$$g_{XY}$$
 -matrix

 $g_{XY}$  - matrix

 $g_{XY}$  -  $g_{XY}$  -  $g_{XY}$  -  $g_{XY}$ 
 $g_{XY}$  -  $g_{XY}$  -  $g_{XY}$  -  $g_{XY}$ 
 $g_{XY}$  -  $g_{X$ 

okt 29-15:30

Side 
$$(G(V))^{\perp} = |V_{U}|| |V|| \text{ or } du$$
  
Not is splite on  $|V| = |V_{U}|| |V|| \approx 10^{-15} \approx 0$ .  
 $|V_{AMLAB}| = |V| = |V| = 10^{-15} \approx 0$ .  
 $|V_{AMLAB}| = |V| = 10^{-15} \approx 0$ .

A) deg make til or  $\hat{y} = \hat{p} + \hat{z}$ . My  $\hat{p} \in GlA$ .

For the heater  $\hat{z} \in Gl(A)$ .

Foly fool: GI(A) = GI(O).

Moral: extra vetters 
$$\hat{V}$$
 for shores som sum  $\hat{V} = \hat{\rho} + \hat{Z}$ 
 $\hat{V} = \hat{V} + \hat{Z$