# **SPACETIME:** Causal Discovery from Non-stationary Time Series

TLDR We discover causal graphs, temporal changepoints, and repeating regimes from multiple time series datasets

# Sarah Mameche°, Lénaïg Cornanguer°, Lénaïg Cornaguer°, L

°CISPA Helmholtz Center for Information Security

\*German Aerospace Center, TU Berlin



Setting

### **Non-Stationary Time Series**



Assumptions

### **SCM with Contexts & Regimes**

### Context (k)

Group of datasets (*d*) where the same causal mechanisms apply.

### Regime (r)

Time periods (t) across which the causal mechanisms remains the same. The time indices at which a causal mechanism shifts are called regime **changepoints**.

Non-stationarity only affects the causal mechanisms, the causal structure (graph) doesn't change.

Structural causal model for each variable

$$X_t^d = f^{k,r}(\operatorname{pa}(X_t^d), N_t^d)$$

Additional assumptions: independant mechanism changes, faithfulness, consistency

Changepoints over time of the link  $P \rightarrow Q$ , at selected

sites (Martinsbruck, CH; Dunajec, Nowy Sacz, PL)

### Approach

# Iterative procedure using kernelized methods and MDL principle

Edge-Greedy Search We discover causal edges over all contexts and regimes based on the Algorithmic Algorithmic Model of Causation (AMC) and its MDL practical solution → The true causal model has the lowest description length

**Causal functional mechanism modeling** Non-parametric regression (Gaussian processes) with the identified causal parents

Changepoint Detection Kernelized changepoint detection on the prediction error using the fitted functions

→ Higher prediction error means that the true function is

different from the fitted one

Regime- & Context Partitioning Partitioning of the time interval and datasets into regimes and contexts using kernelized independance (KCI) test → Data from two subsets (two datasets or time periods), with same causal mechanisms, are independent of their subset assignment

Variability across space of the interaction strength

between  $P \rightarrow Q$  due to individual geographical character-

istics at the catchment sites

### Algorithm

### SPACETIME



# Evaluation Temporal Graph Discovery



### Case Study A

# River Discharge in European Catchments CHOC dotaset, Caseas et al. 16, Chartes et al. 25 T (Temperature) P (Precipitation) Q (River Runoff) Causal Graph Discourace samporthanual graph event male at all measuremanusates P catchment f (CH) Catchment 2 (PL) Link strength of P > Q

### Case Study B

### **Biosphere-Atmosphere Interactions**

FLUXNET database, Baldocci 14; Krich et al. 21



Ecosystems often traverse different productivity states over the year