Сети беспроводного широкополосного доступа

Определите значение обобщенного стандартного отклонения сигнала по месту и по времени, если радиус зоны покрытия равен А км,  $\Delta h = B_M$ 

Стандартное отклонение сигнала по месту

$$\sigma_d = 4.1\lg(r) + 5$$

$$\sigma_d = 9.5 \lg \left(\frac{\Delta h}{50}\right) + 9$$

Стандартное отклонение сигнала по времени

$$\sigma_{t} = 6.5 \left( 1 - e^{(-0.036r)} \right)$$

Обобщенное значение стандартного отклонения сигнала по месту и по времени

$$\sigma = \sqrt{\sigma_d^2 + \sigma_t^2} = \sqrt{10^{0.1 \cdot 2 \cdot \sigma_d} + 10^{0.1 \cdot 2 \cdot \sigma_t}}$$

Определите чувствительность приемника базовой станции стандарта IEEE802.16e, если отношение сигнал/шум приемника равно A дБ, коэффициент шума равен ВдБ, потери реализации равны C дБ, используемая полоса частот равна Д МГц.

Под чувствительностью приемника понимается способность радиоприемника принимать слабые сигналы. На чувствительность оказывают влияние мощность тепловых шумов приемника, отношения сигнал/шум, коэффициент шума, а также потери реализации, учитывающие неидеальность приемника, ошибки квантования, фазовый шум и др.

$$S_R = P_{h.n.} + K_{SNR} + K_n + L_I, \tag{1}$$

где  $P_{h.n.}$  — мощность тепловых шумов приемника;

 $K_{SNR}$  — отношение сигнал/шум приемника;

 $K_n$  — коэффициент шума;

 $L_{I}$  — потери реализации.

Мощность тепловых шумов (heat noise) зависит от ширины полосы канала B (bandwidth) и может быть вычислена по формуле

$$P_{hn} = -174 + 10 \cdot lg(\Delta f),$$
 (2)

где  $\Delta f$  — используемая полоса частот.

Определите потери на входе базовой станции стандарта DECT для пригородной зоны, если потери для квазиоптимального города равны A дБ

$$L_{IIP} = L - 2\lg\left(\frac{f}{28}\right)^2 - 5.4$$

Определите уровень эффективной изотропно излучаемой мощности передатчика БС стандарта DECT, если антенна интегрирована в радиомодуль, потери в дуплексере и комбайнере равны А дБ, мощность передатчика равна В дБВт, коэффициент усиления антенны равен С.

$$P_{U3JI} = P_{IIPJI} - B_{\Phi IIPJI} - B_{JIIPJI} - B_{K} + G_{IIPJI}$$

Найти потери при распространении сигнала для комбинированной трассы, если расстояние между передающей и приемной антеннами равно A, м, длина отрезка трассы до первого препятствия (участок распространения в свободном пространстве) равна B, м, частота несущего колебания равна С ГГц; полоса пропускания приемника равна Д МГц, n=K.

$$L_{\text{TOT}}(d) = \left(\frac{\lambda}{4\pi d_0}\right)^2 \cdot \left(\frac{d_0}{d}\right)^n$$

В качестве помехоустойчивого кодера сетях беспроводного доступа используется кодер Рида-Соломона с параметрами (8,4). Определите комбинацию на его выходе, если на его вход подается комбинация ААААААА.

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
|----|----|----|---|---|---|---|---|---|---|---|---|
| 1  | 1  | 1  | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

|                | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | 20 |
|----------------|-----------------------|-----------------------|----------------|----|
| 12             | 1                     | 1                     | 0              | 0  |
| 11             | 1                     | 0                     | 1              | 1  |
| 10             | 1                     | 0                     | 1              | 0  |
| 7              | 0                     | 1                     | 1              | 1  |
| 6              | 0                     | 1                     | 1              | 0  |
| R <sub>1</sub> | 1                     | 1                     | 0              | 0  |

Рассчитайте полосу, занимаемую сигналом в стандарте IEEE 802.15.3, если используется модуляция M-КАМ, а коэффициент скругления приемного фильтра равен A.

$$\Pi = \frac{B \times (1 + \alpha)}{\log_2(M)}$$

| Тип модуляции | Скорость передачи<br>данных, Мбит/с |
|---------------|-------------------------------------|
| QPSK          | 11                                  |
| DQPSK         | 22                                  |
| 16 QAM        | 33                                  |
| 32 QAM        | 44                                  |
| 64 QAM        | 55                                  |

Определите дальность действия беспроводного канала стандарта IEEE802.11 для следующих исходных данных: запас в энергетике радиосвязи равен А дБ, суммарное усиление системы передачи равно СдБ, центральная частота рабочего канала равна В МГц.

$$D = 10^{\frac{FSL - 33}{20} - \lg(f)}$$

Потери в свободном пространстве (FSL) также можно определить по формуле, исходя из суммарного усиления системы передачи  $Y_{дБ}$ 

$$FSL = Y_{\pi 6} - SOM$$

где SOM (System Operating Margin) — запас в энергетике радиосвязи (дБ)

В качестве помехоустойчивого кодера используется сверточный кодер с параметрами (2,1,3). Приведите схему кодера и поясните принцип работы, если на его вход подается комбинация ААААА.



| 1 | 2 | 3 | вых <sub>1</sub> | вых <sub>2</sub> |
|---|---|---|------------------|------------------|
| 1 | 0 | 0 | 1                | 1                |
| 0 | 1 | 0 | 1                | 0                |
| 1 | 0 | 1 | 0                | 0                |
| 0 | 1 | 0 | 1                | 0                |

- На вход кодера подается комбинация 1010
- Комбинация на выходе кодера: 11100010

Определить минимально возможную высоту подвеса антенн приемопередатчиков базовых станций, на которой можно пренебречь помехами, вносимыми препятствиями, если радиус первой зоны Френеля в центральной точке между приемником и передатчиком равен А м, расстояние между приемопередающими устройствами равно В км. Принять, что единственным препятствием, мешающим распространению радиосигнала, является земная поверхность.



$$R_3 + h = \sqrt{\left(R_3 + R_{3\phi}\right)^2 + \left(\frac{D}{2}\right)^2}$$