Assignment-2

A) Computer Center Staffing:

8AM	12	PM	4PM		8PM	12AN
		Ft1				
			Ft2			
				Ft3		
	Pt1	Pt2		Pt3	Pt4	
M	12PM	1	4PM	8	PM	12AM

a)

Let Ft1= number of full time consultants for the morning shift (8 A.M to 4 P.M)

Ft2 = number of full time consultants for the afternoon shift (Noon to 8 P.M)

Ft3 = number of full time consultants for the Evening shift (4 P.M to Midnight)

Pt1 = number of part time consultants for the first shift (8 A.M to noon)

Pt2 = number of part time consultants for the second shift (Noon to 4 P.M)

Pt3 = number of part time consultants for the third shift (4 P.M to 8 P.M)

Pt4= number of part time consultants for the fourth shift (8 P.M to Midnight)

S.T

(8AM-Noon): Pt1 + Ft1 >= 4

(Noon -4 PM): Pt2+Ft1+Ft2 >= 8

(4 PM - 8 PM): Pt3+Ft2+Ft3 >=10

(8 PM-MidNight): Ft3+Pt4 >= 6

It is given that during every time period, at least one full-time consultant must be on duty for every part-time consultant on duty.

Ft1>=Pt1

Ft1+Ft2>=Pt2

Ft2+Ft3>=Pt3

Ft4>=Pt4

Ft1,Ft2,Ft3,Pt1,Pt2,Pt3,Pt4 >=0

<u>b)</u>

(8AM-Noon): Pt1 + Ft1 >= 4 (No Break)

(Noon -4 PM): Pt2+Ft1+Ft2+b1 >= 8 (b1= break taken by ft1 (12PM to 1PM)

(4 PM - 8 PM): Pt3+Ft2+Ft3 +b2+b3 >= 10

(b2= break taken by Ft2(4PM to 5PM),

b3=Break by Ft3(7 to 8PM))

(8 PM-MidNight): Ft3+Pt4 \geq 6 (No break)

Question 2- Backsavers

Decision Variables:

Let X = Number of Collegiate Model Backpacks Y = Number of Mini model Backpacks

Objective Function: Maximize Profit(P) = 32X+24Y

Constraints:

s.t Nylon (Sq.ft): $3X+2Y \le 5000$

Labor (Hrs): $(3/4)X+(2/3)Y \le 1400$

Sales Forecast: $X \le 1000$; $Y \le 1200$

And $X \ge 0$, $Y \ge 0$

Graphical Solution:

Algebraic solution:

 $3X+2Y \le 5000$: (X=0; Y=2500);(X=1666.67, Y=0) (1)

 $(3/4)X+(2/3)Y \le 1400$: (X=0; Y=2100); (X=1866.67, Y=0) (2)

 $X \le 1000$: (X=1000;Y=0) (3)

 $Y \le 1200$: (X=0; Y=1200) (4)

Solving (3) and (2): A(1000,975)

3/4X+2/3Y=1400

Sub X=1000; $\frac{3}{(1000)}+\frac{2}{3}Y=1400$

(2/3)Y = 1400 - 750

Y= 975

Solving(1) and (4): B(800,1200)

CPF: A(1000,975), B(800,1200), C(1000,0), D(0,1200), E(0,0)

Optimal Point: A (1000,975), Z= 55400

Question-3(Weigelt Corporation)

Decision Variables:

XP1L= Number of Large size units produced in the plant 1

XP1M= Number of Medium size units produced in the plant 1

XP1S= Number of small size units produced in the plant 1

XP2L= Number of Large size units produced in the plant 2

XP2M= Number of Medium size units produced in the plant 2

XP2S= Number of small size units produced in the plant 2

XP3L= Number of Large size units produced in the plant 3

XP3M= Number of Medium size units produced in the plant 3

XP3S= Number of Small size units produced in the plant 3

Maximize the profit:

Z= 420(XP1L+ XP2L+XP3L) + 360(XP1M+XP2M+XP3M)+300(XP1S+XP2S+XP3S)
= 420XP1L + 360XP1M + 300XP1S + 420XP2L + 360XP2M + 300XP2S+ 420XP3L+ 360XP3M+ 300XP3S
S.T)

Storage:

Storage_Plant1: 20 XP1L +15 XP1M +12 XP1S <= 13000;

Storage_Plant2: 20 XP2L +15 XP2M +12 XP2S <= 12000;

Storage_Plant3: 20 XP3L +15 XP3M +12 XP3S <= 5000;

Excess Capacity:

Excess_Cap_Plant1: XP1L +XP1M +XP1S <= 750;</pre>

Excess_Cap_Plant2: XP2L +XP2M +XP2S <= 900;

Excess_Cap_Plant3: XP3L +XP3M +XP3S <= 450;

Sales Forecast:

Sales_Large: XP1L +XP2L +XP3L <= 900;

Sales_Medium: XP1M +XP2M +XP3M <= 1200;

Sales_Small: XP1S +XP2S +XP3S <= 750;

Plants should use the same percentage of their excess capacity to produce the new product.

 $Percent_P1_P2 : 1/750(XP1L+XP1M+XP1S) - 1/900(XP2L+XP2M+XP2S) = 0 (1)$

Percent P1 P3:1/750(XP1L+XP1M+XP1S) - 1/450(XP3L+XP3M+XP3S) = 0 (2)

 $Percent_P2_P3:1/900(XP2L+XP2M+XP2S) - 1/450(XP3L+XP3M+XP3S) = 0 (3) - redundant$

While any of the 3 constraints is redundant, We can use any 2 constraints among (1),(2),(3).

I used (1) and (2) to solve the LP Model as (3) is redundant.

XP1L, XP1M, XP1S, XP2L, XP2M, XP2S, XP3L, XP3M, XP3S >= 0