Communication Systems Quadrature Amplitude Modulation ENG473

Shane REYNOLDS

November 1, 2019

Date Performed: October 09, 2016 Instructor: Dr Sina Vafi

1 Objective

Verify the performance of Quadrature Amplitude Modulation (QAM). The experiment passes a randomly generated 30000 symbol binary stream through a simulated channel with Additive White Gaussian Noise to assess the performance of modulation and demodulation using QAM-16 with and without cyclic encoding.

2 Part 1: Process & Results

Modulation allows us to take a baseband signal, like voice or music, and transmit it over a bandpass channel which attenuates higher and lower frequencies. In particular, the modulation process sees us multiply our signal, say x(t), with a carrier signal which is in the form of a cosine function:

$$y(t) = x(t) \cdot (A_c \cdot \cos(\omega_c t + \phi_c)) \tag{1}$$

The parameters A_c , ω_c and ϕ_c are the parameters of the carrier signal, and we manipulate these in order the transmit the digital data along the carrier channel. The Quadrature carrier description is identical to the one shown above, except that we define our signal x(t) as two components, the in-phase component, $x_i(t)$, and the quadrature component, $x_q(t)$. We thus redefine equation (1) as follows:

$$y(t) = A_c \cdot \left[x_i(t) \cdot \cos(\omega_c \cdot t + \phi_c) - x_q(t) \cdot \sin(\omega_c \cdot t + \phi_c) \right]$$
 (2)

This provides us with an in-phase/quadrature plane in which we can specify locations for our symbols. This experiment focuses on 16 specific locations on the quadrature plane and distinguishes between them using the amplitude of

the carrier signal, A_c . A random stream of 30000 binary bits are generated - a plot of the first 50 bits can be seen in Figure 1.

Random Symbols

12

10

978

8

4

2

10

12

3

4

5

Symbol Index

Figure 1: The first 50 random bits in the 30000 bit stream.

Figure 2: The first 10 4-bit symbols of the data for in preparation for modulation and transmission.

In order to modulate the data stream with 16-QAM, the data streams need to be converted to 4-bit symbols - there are a total of 16 different permutations which we represent as a number from 1 to 16. A plot of the first 10 symbols can be seen in Figure 2.

Figure 3: Signal constellation with received modulated data passed through noisy transmission channel.

The data stream was modulated and passed through a simulated noisy channel. The simulated noise was Gaussian. The received signal can be seen in Figure 3 - the green dots represent the received data through the noisy channel and the black dots represent the actual signal constellation for the 16-QAM modulation scheme. The data was demodulated and the experiment repeated for different values of signal to noise ratio (SNR). The bit error ratio was calculated for each SNR value, the results of which can be seen in Table 1. Further, a plot of the data can be seen in Figure 4.

Table 1: 16-QAM BER for received modulated data through noisy transmission channel for various SNR.

\mathbf{SNR} (dB)	\mathbf{BER}	\mathbf{SNR} (dB)	\mathbf{BER}
6.0206	0.1846	14.0206	0.0124
6.5206	0.1713	14.5206	0.0086
7.0206	0.1574	15.0206	0.0058
7.5206	0.1435	15.5206	0.0038
8.0206	0.1301	16.0206	0.0024
8.5206	0.1164	16.5206	0.0014
9.0206	0.1031	17.0206	0.0008
9.5206	0.0905	17.5206	0.0004
10.0206	0.0782	18.0206	0.0002
10.5206	0.0667	18.5206	0.0001
11.0206	0.0560	19.0206	0.0000
11.5206	0.0459	19.5206	0.0000
12.0206	0.0372	20.0206	0.0000
12.5206	0.0293	20.5206	0.0000
13.0206	0.0226	21.0206	0.0000
13.5206	0.0170		

Figure 4: BER of 16-QAM scheme for 30000-bit data stream, modulated in 4-bit words, for various values of SNR.

3 Part 2: Process, Results & Discussion

Table 2: text

SNR (dB)	BER	$\mathbf{SNR}\ (\mathrm{dB})$	BER
5.7744	23.4570	13.2744	2.6970
6.2744	22.0420	13.7744	1.9400
6.7744	20.4820	14.2744	1.3270
7.2744	18.8730	14.7744	0.9170
7.7744	16.8720	15.2744	0.5630
8.2744	15.4700	15.7744	0.3300
8.7744	14.1700	16.2744	0.1900
9.2744	12.2940	16.7744	0.1040
9.7744	10.5670	17.2744	0.0320
10.2744	9.2560	17.7744	0.0430
10.7744	8.0370	18.2744	0.0030
11.2744	6.8200	18.7744	0.0040
11.7744	5.5280	19.2744	0.0060
12.2744	4.6530	19.7744	0

Figure 5: text

- 4 Conclusion
- 5 Appendix A
- 6 Appendix B