ARITHMETIC Chapter 14

SUCESIONES

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144;...

¿Cómo se le llama a esta conocida sucesión?... ¿recuerdas?

SUCESIÓN LINEAL O DE PRIMER ORDEN

PROGRESIÓN ARITMÉTICA(PA)

Donde:

$$t_1; t_2; t_3; t_4, ..., t_n + r + r$$

$$t_2 = t_1 + r$$

$$t_3 = t_1 + 2r$$

$$t_4 = t_1 + 3r$$

•

Fórmula recurrente

$$t_n = t_1 + (n-1)r$$

(polinomio lineal)

Además

t₁: primer término

t_n: término n-ésimo o último

n: número de términos

r: razón de PA

$$n = \left[\begin{array}{c} \frac{t_n - t_1}{r} + 1 \end{array} \right] = \left[\begin{array}{c} \frac{t_n - t_0}{r} \end{array} \right]$$

 $(t_0 = \text{termino anterior al primero})$

SUCESIÓN ARITMÉTICA DE ORDEN SUPERIOR

SUCESIÓN CUADRÁTICA

Donde: $a, b, y c \rightarrow constantes y n \in \mathbb{N}$

Regla práctica

$$C \Rightarrow \langle t_0 \rangle \langle t_1 \rangle \langle t_2; t_3; t_4, \dots, t_n \rangle$$

$$B \Rightarrow \langle R_0 \rangle \langle R_1 \rangle \langle R_2; R_3; \dots$$

$$A \Rightarrow \langle r_0 \rangle \langle r_1 \rangle \langle r_2; \dots$$

$$t_n = \left(\frac{A}{2}\right)n^2 + \left(B - \frac{A}{2}\right)n + C$$

.

¿Cuántas cifras se han empleado para escribir 46; 48; 50;...; 382?

Recordemos:

cantidad de términos

$$n = \frac{t_n - t_0}{r}$$

RESOLUCIÓN

separando los números por su cantidad de cifras

de 2 cifras

$$\frac{98-44}{2}=27$$

de 3 cifras

$$\frac{382 - 98}{2} = 142$$

Total de cifras: 27.2 + 142.3

$$...$$
 54 + 426 = 480 cifras

480 cifras

¿Cuántas cifras se empleado al escribir los números desde el 48 al 1210?

cantidad de términos

$$n = \frac{t_n - t_0}{r}$$

RESOLUCIÓN

separando los números por su cantidad de cifras

de 2 cifras

$$99 - 47 = 52$$

de 3 cifras

$$999 - 99 = 900$$

de 4 cifras

$$1210 - 999 = 211$$

Total de cifras: 52.2 + 900.3 + 211.4

$$104 + 2700 + 844$$

3648 cifras

3. Halle el trigésimo término de la siguiente sucesión:

7; 10; 15; 22;...

Recordemos:

$$t_n = An^2 + Bn + C$$

RESOLUCIÓN

Del dato tenemos:

$$C = 6$$
 (6; 7; 10; 15; 22, ...

 $B = 1 - 1 = 0$ (3; 5; 7; ...

 $A = \frac{2}{2} = 1$ (2; 2 2 ...

 $A = 1$ B=0 C=6

Reemplazamos

$$t_{30} = 1.(30)^2 + 0.(30) + 6$$

$$t_{30} = 906$$

4. ¿Cuántos términos tiene la siguiente progresión aritmética?

recordemos:

$$n = \frac{t_n - t_0}{r}$$

RESOLUCIÓN

Del dato

Donde:

$$b = 2$$
 y $a = 1$

reemplazamos:

182; 193; 204;; 1117
$$n = \frac{1117 - 171}{11} = \frac{946}{11}$$

$$n = 86$$

5. La suma del noveno con el décimo cuarto término de una progresión aritmética es 69 y la relación del sexto al décimo séptimo término es 6/17. El término de lugar 40 es

Recordar

$$t_n = t_1 + (n-1).r$$

∗2.DO dato

$$\begin{vmatrix} t_6 = t_1 + 5.r \\ t_{17} = t_1 + 16.r \end{vmatrix} \div \frac{t_1 + 5.r}{t_1 + 16.r} = \frac{6}{17}$$

∗1.er dato

sumando:

$$t_9 = t_1 + 8.r = 9.r$$
 $t_{14} = t_1 + 13.r = 14.r$
 $t_{40} = t_1 + 39.r$
 $t_{40} = 3 + 39.(3)$
 $t_{40} = 120$

6. Al gran teatro de la UNI asistieron T personas a un concierto de piano. Hallar el valor de T si es equivalente a la suma de términos de siguiente Progresión aritmética.

$$12_{(n)}$$
; $20_{(n)}$; $22_{(n)}$; ...; $122_{(n)}$

recordemos:

$$n^{\circ} = \frac{t_n - t_0}{r}$$

RESOLUCIÓN

Del dato tenemos la P.A:

$$12_{(n)}$$
; $20_{(n)}$; $22_{(n)}$;....; $122_{(n)}$

Descomponiendo en forma polinómica

$$n + 2$$
; 2. n ; 2. $n + 2$;....; $n^2 + 2n + 2$

restando miembro a miembro

$$r = n - 2 = 2$$
 $r = 2$ y $n = 4$

reemplazamos:

$$n^{\circ} = \frac{26 - 4}{2} \quad \therefore \quad n^{\circ} = 11$$

$$n^{\circ} = 11$$

Moby Dick es una novela escritor Herman Melville publicada 1851. Narra la travesía del barco ballenero Pequod y sus tripulantes en la obsesiva persecución de cachalote gran un blanco. Si dicha novela consta de 698 páginas, ¿Cuántas cifras se han usado en la numeración de las páginas impares?

recordemos:

$$n = \frac{t_n - t_0}{r}$$

RESOLUCIÓN

Del dato tenemos:

páginas impares

N°de una cifra

N° de dos cifras

N°de tres cifras

1; 3; 5; ...; 9;

$$\frac{99-9}{2} = 45$$
 $\frac{697-99}{2} = 299$

cantidad cifras

 $= 5(1) + 45(2) + 299(3)$
 $= 5 + 90 + 897$

Cantidad de cifras

Cantidad de cifras

Cantidad de cifras