Homework 6

** Problem 1. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and let L be the derivative of f at $x_0 \in \mathbb{R}^n$. Show that L is unique.

Proof. Let L and M be the derivatives of f at x_0 . Then we have

$$\lim_{h \to 0} \frac{|Lh - Mh|}{|h|} = \lim_{h \to 0} \frac{|(Lh - f(x_0 + h) + f(x_0)) + (f(x_0 + h) - f(x_0) - Mh)|}{|h|}$$

$$\leq \lim_{h \to 0} \frac{|f(x_0 + h) - f(x_0) - Lh|}{|h|} + \lim_{h \to 0} \frac{|f(x_0 + h) - f(x_0) - Mh|}{|h|}.$$

If $x \in \mathbb{R}^n$, then $tx \to 0$ as $t \to 0$. Thus for $x \neq 0$ we have

$$0 = \lim_{t \to 0} \frac{|M(tx) - L(tx)|}{|tx|} = \frac{M(x) - L(x)|}{|x|}$$

and M = L.

** Problem 2. Suppose $f, g : \mathbb{R}^n \to \mathbb{R}^m$ are differentiable at $x \in \mathbb{R}^n$. Show that f + g and αf are differentiable at x for $\alpha \in \mathbb{R}$ and

$$D(f+g)(x) = Df(x) + Dg(x)$$

and

$$D(\alpha f)(x) = \alpha Df(x).$$

Proof. We have

$$Df(x) + Dg(x) = \lim_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|} + \lim_{h \to 0} \frac{|g(x+h) - g(x)|}{|h|}$$

$$= \lim_{h \to 0} \frac{|f(x+h) - f(x)| + |g(x+h) - g(x)|}{|h|}$$

$$= \lim_{h \to 0} \frac{|f(x+h) + g(x+h) - f(x) - g(x)|}{|h|}$$

$$= D(f+g)(x)$$

for small enough values of h. Also

$$\alpha Df(x) = \lim_{h \to \infty} \frac{\alpha |f(x+h) - f(x)|}{|h|}$$

$$= \lim_{h \to \infty} \frac{|\alpha (f(x+h) - f(x))|}{|h|}$$

$$= \lim_{h \to \infty} \frac{|(\alpha f)(x+h) - (\alpha f)(x)|}{|h|}$$

$$= D(\alpha f)(x)$$

and this limit exists because scalar multiples apply to limits.

** Problem 3. Show that if $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at x then $D_v f(x)$ exists for all $v \in \mathbb{R}^n$.

Proof. Let $v \in \mathbb{R}^n$. Since f is differentiable at x we have for a given $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\frac{|f(x+h) - f(x)|}{|h|} < \varepsilon$$

whenever $|h| < \delta$. So choose $|h| < \delta$ and choose $t \in \mathbb{R}$ such that $0 < |h| < |t| < \delta$. Then we have

$$\frac{f(x+tv)-f(x)}{t}<\frac{|f(x+h)-f(x)|}{|h|}<\varepsilon.$$

Thus $D_v f(x)$ exists.

** Problem 4. Find $f: \mathbb{R}^n \to \mathbb{R}$ defined on an open set $U \subseteq \mathbb{R}^n$ and $x \in U$ such that $D_v f(x)$ exists for all $v \in \mathbb{R}^n$ but f is not differentiable at x.

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}$ be the norm on ℓ_n^2 denoted by $|\cdot|$. Let U be the open unit ball in \mathbb{R}^n and let x = 0. Then we have

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - Df(h)|}{|h|} = \lim_{h \to 0} \frac{||h| - Df(h)|}{|h|}.$$

Thus, Df must be a linear transformation which is always positive, if |h| - Df(h) = 0. But a linear transformation from \mathbb{R}^n to \mathbb{R} must take on values less than 0. Thus Df(0) doesn't exist. Now consider

$$D_v f(0) = \lim_{t \to 0} \frac{|tv|}{t} = \lim_{t \to 0} \frac{t|v|}{t} = |v|.$$

Thus $D_v f(0)$ exists for all $v \in \mathbb{R}^n$.

** Problem 5. If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}^n$ then

$$Df(a) = (D_1f(a), D_2f(a), \dots, D_nf(x)).$$

Proof. Define $g: \mathbb{R} \to \mathbb{R}^n$ by $g(x) = (a_1, a_2, \dots, x, \dots, a_n)$ where x is in the jth place. Then $D_j f(a) = D(f \circ g)(a_j)$ and $D(f \circ g)(a_j) = Df(a) \cdot Dh(a_j)$. But this last term is a vector with only one nonzero entry. Thus $D_j f(a)$ is the jth entry in the matrix $(D_1 f(a), D_2 f(a), \dots, D_n f(x))$.