1 (a) wyznacz dziedzinę funkcji f(x) $\sqrt{-2x^2+3x+2}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{x^2 - 3x + 1}{2 - x},$ zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(-\frac{10}{x^5} + 3x^3 + \frac{12}{\sqrt[4]{x^3}}\right)'$, (b) $\left(\frac{\operatorname{tg} x}{\operatorname{arcsin} x}\right)'$, (c) $\left(\cos(3x)\operatorname{arctg}\left(x^2\right)\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{1-2x}{x+3}$ w okolicy $x_0 = -2$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -1.9.

dziedzinę funkcji f(x)1 (a) wyznacz $\sqrt{-2x^2+3x+2}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{x^2 - 3x + 1}{2 - x}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(-\frac{10}{x^5} + 3x^3 + \frac{12}{\sqrt[4]{x^3}}\right)'$, (b) $\left(\frac{\operatorname{tg} x}{\operatorname{arcsin} x}\right)'$, (c) $\left(\cos(3x) \operatorname{arctg}\left(x^2\right)\right)'$. 3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{1-2x}{x+3}$ w oko-

licy $x_0 = -2$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -1.9.

dziedzinę funkcji f(x)(a) wyznacz $\sqrt{-2x^2+3x+2}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{x^2 - 3x + 1}{2 - x}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(-\frac{10}{x^5} + 3x^3 + \frac{12}{\sqrt[4]{x^3}}\right)'$, (b)

 $\left(\frac{\operatorname{tg} x}{\operatorname{arcsin} x}\right)'$, (c) $\left(\cos(3x)\operatorname{arctg}\left(x^2\right)\right)'$. 3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{1-2x}{x+3}$ w okolicy $x_0 = -2$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -1.9.

dziedzinę funkcji f(x)(a) wyznacz $\sqrt{-2x^2+3x+2}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{x^2 - 3x + 1}{2 - x}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(-\frac{10}{x^5} + 3x^3 + \frac{12}{\sqrt[4]{x^3}}\right)'$, (b) $\left(\frac{\operatorname{tg} x}{\operatorname{arcsin} x}\right)'$, (c) $\left(\cos(3x)\operatorname{arctg}\left(x^2\right)\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{1-2x}{x+3}$ w okolicy $x_0 = -2$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -1.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x} - \frac{2}{x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{5x-3}{3-2x}$, zapisz równania asymptot, naszkicuj wykres funkcji

2 Oblicz pochodne: (a) $(2x^6 - \sqrt[3]{x^4} + \frac{20}{\sqrt[3]{x}})'$, (b) $\left(\frac{2^x}{\sin x}\right)'$, (c) $\left(\operatorname{ctg}^3(5x)\right)'$.

 $\mathbf{\hat{3}}$ Zapisz wzór Taylora dla funkcji $f(x) = \frac{x}{2x+1}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x} - \frac{2}{x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{5x-3}{3-2x}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(2x^6 - \sqrt[3]{x^4} + \frac{20}{\sqrt[3]{x}}\right)'$, (b) $\left(\frac{2^x}{\sin x}\right)'$, (c) $\left(\operatorname{ctg}^3(5x)\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{x}{2x+1}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x} - \frac{2}{x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{5x-3}{3-2x}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: (a) $\left(2x^6 - \sqrt[3]{x^4} + \frac{20}{\sqrt[3]{x}}\right)'$, (b) $\left(\frac{2^x}{\sin x}\right)'$, (c) $\left(\operatorname{ctg}^3(5x)\right)'$.

 $\mathbf{\hat{3}}$ Zapisz wzór Taylora dla funkcji $f(x) = \frac{x}{2x+1}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x} - \frac{2}{x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{5x-3}{3-2x}$, zapisz równania asymptot, naszkicuj wykres funkcji

2 Oblicz pochodne: (a) $\left(2x^6 - \sqrt[3]{x^4} + \frac{20}{\sqrt[3]{x}}\right)'$, $\left(\frac{2^x}{\sin x}\right)'$, (c) $\left(\operatorname{ctg}^3(5x)\right)'$.

3 Zapisz wzór Taylora dla funkcji $f(x) = \frac{x}{2x+1}$ w okolicy $x_0 = -1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj otrzymany wzór do obliczenia przybliżonej wartości funkcji dla x = -0.9.