Foundation Algebra (CELEN036)

Problem Sheet 6

Topics: Numerical Methods

Topic 1: Intermediate value theorem

1. Show that each of the following equation has a root in the given intervals.

(i)
$$x^3 - x + 5 = 0$$
; $-2 < x < -1$

(i)
$$x^3 - x + 5 = 0$$
; $-2 < x < -1$ (ii) $x^5 - 5x^3 - 10 = 0$; $2 < x < 3$

(iii)
$$\sqrt[3]{x} - \cos x = 0$$
; $0.5 < x < 0.6$ (iv) $\sin x - \ln x = 0$; $2.2 < x < 2.3$

(iv)
$$\sin x - \ln x = 0$$
; $2.2 < x < 2.3$

(v)
$$e^{-x} = x^2$$
; $0.7 < x < 0.71$

(vi)
$$e^x + 2x - 3 = 0$$
; $0.5 < x < 0.6$

2. Show that
$$x-\sqrt{\sin x+\cos x}=0$$
 ; $0\leq x\leq \frac{3\pi}{4}$ has a root between $x=\frac{\pi}{3}$ and $x=\frac{\pi}{2}$.

Topic 2: Bisection method

- 3. Given that a root of the equation $x^3 3x^2 2x + 5 = 0$ lies between x = 3 and x = 4. Use the Bisection method to approximate this root, correct to 2 decimal places.
- 4. Use the Bisection method to solve the following equations (correct to 2 decimal places):

(i)
$$x = \cos x$$

(ii)
$$e^{-x} = \ln x$$

(ii)
$$e^{-x} = \ln x$$
 (iii) $e^x + x^4 + x = 2$ (Root lies in $(0,1)$)

Topic 3: Iteration method

5. The equation $x^3 - 5x - 2 = 0$ has a root between 2 and 3. Use the iterative formula

$$x_{n+1} = \frac{2x_n^3 + 2}{3x_n^2 - 5}$$

starting with $x_0=2$, to find this root correct to 5 decimal places.

6. Consider solving numerically the equation

$$2x^3 - x - 4 = 0. (1)$$

Show that equation (1) can be rearranged to give the iterative formula

$$x_{n+1} = \sqrt{\frac{2}{x_n} + \frac{1}{2}}. (2)$$

Use (2) with $x_0 = 1.35$ to find the root of (1), correct to 3 decimal places.

7. Use the iterative formula

$$x_{n+1} = 2\sin x_n$$

with $x_0 = 1$, to find the root of the equation $x = 2 \sin x$, correct to 3 decimal places.

- 8. Given $f(x) = 5x 4\sin x 2$, where x is in radians.
 - (i) Find f(1.1) and f(1.15) and state whether the equation f(x)=0 has a root in the interval (1.1,1.15) or not.
 - (ii) If the iteration formula is of the form $x_{n+1} = p \sin x_n + q$, find the constants p and q.
 - (iii) Use this iteration formula with $x_0=1.1$ to find x_4 correct to 4 decimal places.
- 9. Show that the two possible arrangements of

$$x^3 - 4x + 1 = 0 ag{3}$$

lead to the iterative formulae

$$x_{n+1} = \frac{1}{4} \left(x_n^3 + 1 \right) \text{ and}$$
 (4)

$$x_{n+1} = \sqrt[3]{4x_n - 1} \tag{5}$$

(i) By taking $x_0 = 1$, use (4) to calculate the positive root of (3), correct to 3 d.p..

- (ii) By taking $x_0 = 2$, use (5) to calculate the root of (3), correct to 3 d.p..
- (iii) Show that with $x_0 = 2$, the iterative scheme (4) leads to a divergent sequence.
- 10. Show that the three possible arrangements of

$$x^3 - 6x - 2 = 0 ag{6}$$

lead to the iterative formulae

$$x_{n+1} = \frac{x_n^3 - 2}{6} \tag{7}$$

$$x_{n+1} = \sqrt[3]{6x_n + 2} \tag{8}$$

$$x_{n+1} = \frac{6x_n + 2}{x_n^2} \tag{9}$$

Find the roots of (6), correct to 4 decimal places by starting with

- (i) $x_0 = -2$ in (7)
- (ii) $x_0 = 1$ in (8)
- (iii) $x_0 = -2$ in (9)
- 11. By putting $x_{n+1} = x_n = x$ in the iterative formula

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{12}{x_n} \right) \tag{10}$$

show that the sequence converges to $\sqrt{12}$.

Use the iterative scheme (10) with $x_0=2$ to approximate $\sqrt{12}$, correct to 4 decimal places.

12. (i) Show that

$$x^3 - 3x^2 - 2x + 5 = 0 (11)$$

has a root in the interval 3 < x < 4.

- (ii) Use the iteration formula $x_{n+1} = \sqrt{\frac{x_n^3 2x_n + 5}{3}}$ to find an approximation for the root, correct to 4 decimal places of the equation (11) by taking $x_0 = 3$.
- (iii) What happens if you take starting value as $x_0 = 3.5$? (Compare with Q.3)
- 13 (i) Show that

$$e^x - x = 4 \tag{12}$$

has a root between 1 and 2.

(ii) Show that the iterative formula

$$x_{n+1} = \frac{e^{x_n}(x_n - 1) + 4}{e^{x_n} - 1} \tag{13}$$

leads to a solution of the equation (12).

- (iii) Use $x_0 = 1$ in the iterative formula (13) to find a root, correct to 4 decimal places, of the equation (12).
- (iv) Hence find a root of $e^{2\cos x} 2\cos x = 4$, correct to 4 decimal places.

Answers

3. 3.13

4. (i) 0.74

(ii) 1.31

(iii) 0.43

5. 2.41421

6. 1.392

7. 1.895

8. (i) f(1.1) = -0.0648, f(1.15) = 0.0989 (ii) $p = \frac{4}{5}$ and $q = \frac{2}{5}$ (iii) 1.1200

9. (i) 0.254

(ii) 1.861

(iii) $x_5 = 365869.5225$, thus divergent

10. (i) -0.3399

(ii) 2.6016

(iii) -2.2618 (extremely slow convergence)

11. 3.4641

12. (ii) 1.2017

(iii) The sequence of approximations is divergent

13. (iii) 1.7490

0.5064 radians(iv)