Architektura i organizacja komputerów

Sprawozdanie z laboratorium nr 3

Temat zajęć: Mikroprogramy rozkazów przesłań i arytmetycznych

Borkowski Kamil WCY22IY1S1

Data wykonania: 2023.11.14

Treść zadania:

Lab2 WCY22IY1S1 zima 2023

Dana jest zawartość początkowa rejestrów i pamięci operacyjnej PAO jak w poniższej tabeli:

Rejestry	
А	-(1000)
LR	160+nr
RI	nr
PAO	
Adres	Zawartość
0	nr
nr	255
nr+1	5000+nr
LR	SUB 001 nr
LR+1	CMA nr
LR+2	LAI nr+1
LR+3	ADX 010 1
LR+4	STA 001 nr
LR+5	TXA 111 nr
254	2021
255	-(1000+nr)

Pozostałe komórki PAO są wyzerowane.

Stopień trudności zadania:

- Na dostatecznie poprawnie pobrać i wykonać pierwsze 3 rozkazy.
- Na dobrze poprawnie pobrać i wykonać pierwsze 4 rozkazy.
- Na bardzo dobrze poprawnie pobrać i wykonać pierwsze 5 rozkazów.

Pozostałe komórki PAO są wyzerowane.

W Pamięci Mikroprogramów mają być wpisane do wytworzenia sprawozdania (najlepiej przed zajęciami, ale niekoniecznie) mikroprogramy, realizujące wszystkie rozkazy z grup, objętych tematyką dzisiejszych zajęć (bez mnożenia i dzielenia oraz pozostałych z zestawu: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS),

np. mimo że w treści przykładowych zadań nie ma dodawania, to zarówno

- pod adresem 1 w PM ma się znajdować odpowiedni skok do 52,
- jak i pod adresem 52, 53 ma znajdować się mikroprogram dodawania.

Brak kompletnej PM dla bieżących grup rozkazów w sprawozdaniu **oznacza pół oceny w dół** - nie dotyczy: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS.

Uwaga: w trakcie tego ćwiczenia **nie wolno edytować RAPS na zero** po zakończeniu pobierania każdego rozkazu - po fazie pobrania nastąpi samoczynnie (o ile została właściwie wypełniona pamięć mikroprogramów) faza wykonania danego rozkazu maszynowego komputera LabZSK.

Wydruk zawartości PM:

0	Test	TINT	Brak przerwania
	NA	48	
1	Test	UNB	Zawsze pozytywny
	NA	52	
2	Test	UNB	Zawsze pozytywny
	NA	54	
5	Test	UNB	Zawsze pozytywny
	NA	56	
6	Test	UNB	Zawsze pozytywny
	NA	58	
7	Test	UNB	Zawsze pozytywny
	NA	60	
8	Test	UNB	Zawsze pozytywny
	NA	62	
9	Test	UNB	Zawsze pozytywny
	NA	64	

10	Test	UNB	Zawsze pozytywny
	NA	66	
4.4	T 1	LIND	7
11			Zawsze pozytywny
	NA	68	
12	Test	UNB	Zawsze pozytywny
	NA	69	
12	Tost	LINID	70,0000 000000000
13			Zawsze pozytywny
	NA	70	
33	Test	UNB	Zawsze pozytywny
	NA	106	
41	Test	UNB	Zawsze pozytywny
			zawsze pożyty wny
	IVA	124	
42	Test	UNB	Zawsze pozytywny
	NA	125	
43	Test	UNB	Zawsze pozytywny
		126	, , , ,
	147 (120	
44	Test	UNB	Zawsze pozytywny
	NA	128	
48	S1	OLR	LR -> BUS
	D1	IRAP	BUS -> RAP

	S3	ORBP RBP -> BUS
	D3	IRR BUS -> RR
	C1	RRC Rozpoczęcie RRC
49	S1	ORR RR -> BUS
	D1	ILK BUS -> LK
	S2	IRAE SUMA -> RAE
	D2	NSI LR+1 -> LR
	C2	CEA Oblicz adres efektywny
	Test	TIND Adresowanie pośrednie
	NA	50
50	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
51	S2	OX X -> BUS
	D2	IBI BUS -> RAE
	C2	OPC OP albo AOP+32 -> RAPS
52	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
	C1	RRC Rozpoczęcie RRC

53 S1 ___IALU A -> LALU

	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	ADD ALU = LALU + RALU
54	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
55	S1	IALU A -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	SUB ALU = LALU - RALU
56	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OMQ MQ -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
57	C1	END Koniec mikroprogramu
58	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP

	53	OA A -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
59	C1	END Koniec mikroprogramu
60	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORI RI -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
61	C1	END Koniec mikroprogramu
62	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IA BUS -> A
	C1	RRC Rozpoczęcie RRC
63	C1	END Koniec mikroprogramu
64	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IRI BUS -> RI
	C1	RRC Rozpoczęcie RRC
65	C1	END Koniec mikroprogramu

66	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OLR LR -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
67	C1	END Koniec mikroprogramu
68	S2	ORI RI -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
69	S2	OMQ MQ -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
70	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
71	S1	IXRE RI -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IRI BUS -> RI
	C1	END Koniec mikroprogramu
	ALU	ADD ALU = LALU + RALU

106	S1	IALU A -> LALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	CMA ALU = (NOT LALU)+1
124	S2	IRAE SUMA -> RAE
	S3	ORAE RAE -> BUS
	D3	IA BUS -> A
	C1	END Koniec mikroprogramu
125	S2	IRAE SUMA -> RAE
	S3	ORAE RAE -> BUS
	D3	IRI BUS -> RI
	C1	END Koniec mikroprogramu
126	S2	IRAE SUMA -> RAE
	S3	ORAE RAE -> BUS
	D3	IX BUS -> X
127	S1	IXRE RI -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IRI BUS -> RI
	C1	END Koniec mikroprogramu
	ALU	ADD ALU = LALU + RALU

128 S2 ___IRAE SUMA -> RAE

```
S3
         ORAE RAE -> BUS
   D3
           IX
               BUS -> X
129
     S1
          IXRE RI -> LALU
        OXE
                X -> RALU
   S2
        OBE
                ALU -> BUS
        IRI
               BUS -> RI
   C1
         ___END Koniec mikroprogramu
        SUB ALU = LALU - RALU
```

Wydruk zawartości PAO:

```
0
   000000000000111b
                        0007h
                                7
7
    0000000011111111b
                        00FFh
                                255
8
    0001001110001111b
                        138Fh
                                5007
167
                         1107h
     0001000100000111b
                                 OP=2
                                          XSI=001
                                                   DA=7
                         0087h
168
     0000000010000111b
                                AOP=1
                                                N=7
169
    0000010010001000b
                         0488h
                                 AOP=9
                                                N=8
170 0110101000000001b
                         6A01h
                                OP=13
                                           XSI=010
                                                   DA=1
171 0011000100000111b
                         3107h
                                OP=6
                                          XSI=001
172 0101111100000111b
                         5F07h
                                OP=11
                                          XSI=111 DA=7
254 0000011111100101b
                         07E5h
                                 2021
    1111110000010001b
255
                         FC11h
                                 -1007
```

Wydruk logu z wykonania ćwiczenia:

Start symulatora 2023-11-14 08:55:40

Stacja "WAT-KOMPUTER"

Zalogowano jako: "Student"

Wersja aplikacji: 1.2.3.0

Dostępne interfejsy sieciowe: 169.254.8.55

10.6.9.2

192.168.56.1

=====Start symulacji=====

09:03.59

=====Zawartość rejestrów======

LK = 0h 0

A = FC18h -1000

MQ = 0h 0

X = 0h

RAP = 0h 0

LALU = 0h 0

RALU = 0h 0

RBP = 0h 0

ALU = 0h 0

BUS = 0h 0

RR = 0h 0

LR = A7h 167

RI = 7h 7

RAPS = 0h 0

RAE = 0h 0

L = 0h 0

R = 0h 0

SUMA = 0h 0

MAV = 1, IA = 0, INT = 0

ZNAK = 0, XRO = 0, OFF = 0

C1 | RRC : Rozpoczęcie RRC RBP = 4359 / 1107h

Takt7:

S3 | ORBP : RBP -> BUS

BUS = 4359 / 1107h

D3 | IRR : BUS -> RR

RR = 4359 / 1107h

RAPS = 49 / 31h

MAKRO

Takt0: RBPS=68C801830032h

Takt1:

```
S1 | ORR: RR-> BUS
```

$$LK = 7 / 7h$$

C2 | CEA: Oblicz adres efektywny

$$L = 7 / 7h$$

$$R = 0 / 0h$$

$$SUMA = 7 / 7h$$

$$XRO = 0$$

Takt6:

$$RAE = 7 / 7h$$

Takt7:

TEST | TIND : Adresowanie pośrednie

$$RAPS = 50 / 32h$$

MAKRO

Takt0: RBPS=900624000000h

Takt1:

S1 | ORAE : RAE -> BUS

BUS = 7 / 7h

D1 | IRAP : BUS -> RAP

RAP = 7 / 7h

C1 | RRC : Rozpoczęcie RRC

RBP = 255 / FFh

Takt7:

S3 | ORBP : RBP -> BUS BUS = 255 / FFh D3 | IX : BUS -> X X = 255 / FFhRAPS = 51 / 33hMAKRO Takt0: RBPS=03A801600000h Takt6: S2 | OX: X -> BUS BUS = 255 / FFh D2 | IBI: BUS -> RAE RAE = 255 / FFhTakt7: C2 | OPC: OP albo AOP+32 -> RAPS RAPS = 2 / 2hMAKRO Takt0: RBPS=00000010036h Takt7: TEST | UNB : Zawsze pozytywny RAPS = 54/36h**MAKRO** ========54======== Takt0: RBPS=900624000000h

Takt1:

```
S1 | ORAE : RAE -> BUS
```

BUS = 255 / FFh

D1 | IRAP: BUS-> RAP

RAP = 255 / FFh

C1 | RRC : Rozpoczęcie RRC

RBP = -1007 / FC11h

Takt7:

S3 | ORBP : RBP -> BUS

BUS = -1007 / FC11h

D3 | IX : BUS -> X

X = -1007 / FC11h

RAPS = 55 / 37h

MAKRO

=========55=========

Takt0: RBPS=BC300E000200h

Takt1:

S1 | IALU : A -> LALU

LALU = -1000 / FC18h

D1 | OXE: X -> RALU

RALU = -1007 / FC11h

Takt2:

ALU | SUB : ALU = LALU - RALU

ALU = 7 / 7h

ZNAK = 0, OFF = 0

Takt6:

S2 | OBE : ALU -> BUS

BUS = 7 / 7h

D2 | IA: BUS -> A

```
A = 7 / 7h
```

C1 | END: (Cykl 8) Koniec mikroprogramu (09:08.06)

RAPS = 0 / 0h

MAKRO

Takt7:

Takt0: RBPS=000000020030h

Takt7:

INT = 0

TEST | TINT : Brak przerwania(INT ?= 0)

RAPS = 48 / 30h

MAKRO

Takt0: RBPS=5006C4000000h

Takt1:

S1 | OLR : LR -> BUS

BUS = 168 / A8h

D1 | IRAP: BUS-> RAP

RAP = 168 / A8h

C1 | RRC : Rozpoczęcie RRC

RBP = 135 / 87h

Takt7:

S3 | ORBP : RBP -> BUS

BUS = 135 / 87h

D3 | IRR: BUS->RR

RR = 135 / 87h

$$RAPS = 49 / 31h$$

MAKRO

Takt0: RBPS=68C801830032h

Takt1:

S1 | ORR: RR-> BUS

BUS = 135 / 87h

D1 | ILK : BUS -> LK

LK = 7 / 7h

C2 | CEA: Oblicz adres efektywny

L = 7 / 7h

R = 0 / 0h

SUMA = 7 / 7h

Takt6:

S2 | IRAE : SUMA -> RAE

RAE = 7 / 7h

D2 | NSI: LR+1 -> LR

LR = 169 / A9h

Takt7:

TEST | TIND : Adresowanie pośrednie

RAPS = 50 / 32h

MAKRO

Takt0: RBPS=900624000000h

Takt1:

S1 | ORAE : RAE -> BUS

BUS = 7 / 7h

D1 | IRAP : BUS -> RAP

RAP = 7 / 7hC1 | RRC : Rozpoczęcie RRC RBP = 255 / FFh Takt7: S3 | ORBP: RBP -> BUS BUS = 255 / FFh D3 | IX : BUS -> X X = 255 / FFhRAPS = 51 / 33h**MAKRO** Takt0: RBPS=03A801600000h Takt6: S2 | OX : X -> BUS BUS = 255 / FFh D2 | IBI: BUS -> RAE RAE = 255 / FFhTakt7: C2 | OPC: OP albo AOP+32 -> RAPS RAPS = 33 / 21hMAKRO =======33========= Takt0: RBPS=0000001006Ah

TEST | UNB : Zawsze pozytywny

RAPS = 106 / 6Ah

Takt7:

```
Takt0: RBPS=A4300E000400h
Takt1:
  S1 | IALU: A -> LALU
    LALU = 7 / 7h
Takt2:
  ALU | CMA : ALU = (NOT LALU)+1
     ALU = -7 / FFF9h
           ZNAK = 1, OFF = 0
Takt6:
  S2 | OBE : ALU -> BUS
     BUS = -7 / FFF9h
  D2 | IA: BUS -> A
      A = -7 / FFF9h
Takt7:
  C1 | END: (Cykl 15) Koniec mikroprogramu (09:11.09)
    RAPS = 0 / 0h
MAKRO
Takt0: RBPS=000000020030h
Takt7:
     INT = 0
 TEST | TINT : Brak przerwania(INT ?= 0)
    RAPS = 48 / 30h
MAKRO
```

MAKRO

```
Takt0: RBPS=5006C4000000h
Takt1:
  S1 | OLR: LR-> BUS
      BUS = 169 / A9h
  D1 | IRAP : BUS -> RAP
      RAP = 169 / A9h
  C1 | RRC : Rozpoczęcie RRC
      RBP = 1160 / 488h
Takt7:
  S3 | ORBP : RBP -> BUS
      BUS = 1160 / 488h
  D3 | IRR : BUS -> RR
      RR = 1160 / 488h
     RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
  S1 | ORR: RR-> BUS
      BUS = 1160 / 488h
  D1 | ILK : BUS -> LK
      LK = 8 / 8h
  C2 | CEA : Oblicz adres efektywny
      L = 8 / 8h
      R = 0 / 0h
```

Takt6:

S2 | IRAE : SUMA -> RAE

SUMA = 8 / 8h

```
RAE = 8 / 8h
  D2 | NSI: LR+1 -> LR
      LR = 170 / AAh
Takt7:
 TEST | TIND : Adresowanie pośrednie
     RAPS = 50 / 32h
MAKRO
========50========
Takt0: RBPS=900624000000h
Takt1:
  S1 | ORAE : RAE -> BUS
     BUS = 8 / 8h
  D1 | IRAP : BUS -> RAP
     RAP = 8 / 8h
  C1 | RRC : Rozpoczęcie RRC
     RBP = 5007 / 138Fh
Takt7:
  S3 | ORBP : RBP -> BUS
     BUS = 5007 / 138Fh
  D3 | IX : BUS -> X
      X = 5007 / 138Fh
     RAPS = 51 / 33h
MAKRO
========51=========
```

Takt0: RBPS=03A801600000h

Takt6:

S2 | OX : X -> BUS

```
BUS = 5007 / 138Fh
  D2 | IBI: BUS -> RAE
     RAE = 5007 / 138Fh
Takt7:
  C2 | OPC: OP albo AOP+32 -> RAPS
     RAPS = 41 / 29h
MAKRO
=========41===========
Takt0: RBPS=0000001007Ch
Takt7:
 TEST | UNB : Zawsze pozytywny
     RAPS = 124 / 7Ch
MAKRO
Takt0: RBPS=00846E000000h
Takt6:
  S2 | IRAE : SUMA -> RAE
     RAE = 8 / 8h
Takt7:
  S3 | ORAE : RAE -> BUS
     BUS = 8 / 8h
  D3 | IA: BUS -> A
      A = 8 / 8h
  C1 | END: (Cykl 22) Koniec mikroprogramu (09:16.43)
```

RAPS = 0 / 0h

MAKRO

```
Takt0: RBPS=00000020030h
Takt7:
    INT = 0
 TEST | TINT : Brak przerwania(INT ?= 0)
    RAPS = 48 / 30h
MAKRO
Takt0: RBPS=5006C4000000h
Takt1:
  S1 | OLR : LR -> BUS
     BUS = 170 / AAh
  D1 | IRAP : BUS -> RAP
     RAP = 170 / AAh
  C1 | RRC : Rozpoczęcie RRC
     RBP = 27137 / 6A01h
Takt7:
  S3 | ORBP : RBP -> BUS
     BUS = 27137 / 6A01h
  D3 | IRR: BUS->RR
     RR = 27137 / 6A01h
    RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
  S1 | ORR: RR-> BUS
```

```
BUS = 27137 / 6A01h
  D1 | ILK: BUS -> LK
     LK = 1/1h
  C2 | CEA: Oblicz adres efektywny
      L = 1/1h
      R = 170 / AAh
    SUMA = 171 / ABh
     XRO = 0
Takt6:
  S2 | IRAE : SUMA -> RAE
     RAE = 171 / ABh
  D2 | NSI : LR+1 -> LR
     LR = 171 / ABh
Takt7:
 TEST | TIND : Adresowanie pośrednie
    RAPS = 13 / Dh
MAKRO
Takt0: RBPS=00000010046h
Takt7:
 TEST | UNB : Zawsze pozytywny
    RAPS = 70 / 46h
MAKRO
========70========
Takt0: RBPS=900624000000h
```

Takt1:

S1 | ORAE : RAE -> BUS

```
BUS = 171 / ABh
```

D1 | IRAP : BUS -> RAP

RAP = 171 / ABh

C1 | RRC : Rozpoczęcie RRC

RBP = 12551 / 3107h

Takt7:

S3 | ORBP : RBP -> BUS

BUS = 12551 / 3107h

D3 | IX : BUS -> X

X = 12551 / 3107h

RAPS = 71 / 47h

MAKRO

Takt0: RBPS=3C200E000100h

Takt1:

S1 | IXRE : RI -> LALU

LALU = 7 / 7h

D1 | OXE: X -> RALU

RALU = 12551 / 3107h

Takt2:

ALU | ADD : ALU = LALU + RALU

ALU = 12558 / 310Eh

ZNAK = 0, OFF = 0

Takt6:

S2 | OBE : ALU -> BUS

BUS = 12558 / 310Eh

D2 | IRI : BUS -> RI

RI = 12558 / 310Eh

```
Takt7:
```

C1 | END: (Cykl 28) Koniec mikroprogramu (09:20.46)

RAPS = 0 / 0h

MAKRO

Takt0: RBPS=000000020030h

Takt7:

INT = 0

TEST | TINT : Brak przerwania(INT ?= 0)

RAPS = 48 / 30h

MAKRO

Takt0: RBPS=5006C4000000h

Takt1:

S1 | OLR: LR-> BUS

BUS = 171 / ABh

D1 | IRAP : BUS -> RAP

RAP = 171 / ABh

C1 | RRC : Rozpoczęcie RRC

RBP = 12551 / 3107h

Takt7:

S3 | ORBP : RBP -> BUS

BUS = 12551 / 3107h

D3 | IRR: BUS-> RR

RR = 12551 / 3107h

RAPS = 49 / 31h

MAKRO Takt0: RBPS=68C801830032h Takt1: S1 | ORR: RR -> BUS BUS = 12551 / 3107h D1 | ILK : BUS -> LK LK = 7 / 7hC2 | CEA : Oblicz adres efektywny L = 7 / 7hR = 0 / 0hSUMA = 7 / 7hXRO = 0Takt6: S2 | IRAE : SUMA -> RAE RAE = 7 / 7hD2 | NSI: LR+1 -> LR LR = 172 / ACh Takt7: TEST | TIND : Adresowanie pośrednie RAPS = 50 / 32hMAKRO

Takt1:

S1 | ORAE : RAE -> BUS BUS = 7 / 7h

Takt0: RBPS=900624000000h

D1 | IRAP : BUS -> RAP

RAP = 7 / 7hC1 | RRC : Rozpoczęcie RRC RBP = 255 / FFh Takt7: S3 | ORBP: RBP -> BUS BUS = 255 / FFh D3 | IX : BUS -> X X = 255 / FFhRAPS = 51/33h**MAKRO** Takt0: RBPS=03A801600000h Takt6: S2 | OX : X -> BUS BUS = 255 / FFh D2 | IBI: BUS -> RAE RAE = 255 / FFhTakt7: C2 | OPC: OP albo AOP+32 -> RAPS RAPS = 6 / 6hMAKRO Takt0: RBPS=0000001003Ah Takt7:

RAPS = 58 / 3Ah

TEST | UNB : Zawsze pozytywny

```
MAKRO
```

Takt0: RBPS=9003D2000000h

Takt1:

S1 | ORAE : RAE -> BUS

BUS = 255 / FFh

D1 | IRAP : BUS -> RAP

RAP = 255 / FFh

Takt7:

S3 | OA: A -> BUS

BUS = 8 / 8h

D3 | IRBP : BUS -> RBP

RBP = 8 / 8h

C1 | CWC : Rozpoczęcie CWC

PAO[255] = 0xFC11 -zmiana-> PAO[255] = 0x0008

RAPS = 59 / 3Bh

MAKRO

Takt0: RBPS=00000E000000h

Takt7:

C1 | END: (Cykl 36) Koniec mikroprogramu (09:24.30)

RAPS = 0 / 0h

09:29.24

=====Stop symulacji=====

Ocena: 5 Błędy: 0

戧恦

Zrzut ekranu z obrazem ze stanem końcowym LabZSK:

Krótkie uzasadnienie końcowej zawartości: LR, RAPS, RAE na koniec mikroprogramu pobrania rozkazu dla każdego wykonanego rozkazu:

Rozkaz 1 – SUB 001 7

LR:

Wartość komórki LR wzrasta o jeden na wskutek mikrooperacji NSI i na koniec pobierania rozkazu wynosi 168.

RAPS:

```
C2 | OPC : OP albo AOP+32 -> RAPS
RAPS = 2 / 2h
```

Mikrooperacja OPC przekazuje sterowanie do odpowiedniej komórki Pamięci Stałej. Ponieważ w RR znajduje się obecnie rozkaz zwykły, to nowa wartość RAPS będzie równa wartości 2 OP aktualnie wykonywanego rozkazu.

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 7 / 7h

R = 0 / 0h

SUMA = 7 / 7h

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 7 / 7h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania DA aktualnego rozkazu oraz 0, co wynika z adresowania rozkazu.

```
S1 | ORAE : RAE -> BUS

BUS = 7 / 7h

D1 | IRAP : BUS -> RAP

RAP = 7 / 7h

C1 | RRC : Rozpoczęcie RRC

RBP = 255 / FFh
```

Przesłano magistralą wartość RAE do RAP i wykonano mikrorozkaz RRC, który uzupełnił RBP wartością PAO[RAP] równą 255.

```
S3 | ORBP: RBP -> BUS
```

BUS = 255 / FFh

D3 | IX : BUS -> X

X = 255 / FFh

S2 | OX : X -> BUS

BUS = 255 / FFh

D2 | IBI : BUS -> RAE

RAE = 255 / FFh

Przesłano wartość 255 z RBP magistralą do komórki X, następnie z X przez magistralę do RAE.

Wartość 255 z RAE przysyłana jest przez magistrale do RAP, następnie mikrorozkaz RRC uzupełnia komórkę RBP wartością -1007 PAO[RAP]. Potem wartość -1007 z RBP przesyłana jest magistralą do X. Wartosc (-1000) z komórki A przechodzi do komórki LALU, a wartość (-1007) z komórki X do komórki RALU. Mikrorozkaz SUB uzupełnia komórkę ALU różnicą wartości z LALU i RALU, czyli ALU = (-1000) – (-1007) = 7. ZNAK = 0 ponieważ wartość ALU nie jest ujemna i OFF = 0 ponieważ nie wystąpił nadmiar. Na koniec rozkazu przesyłamy

magistralą wartość 7 z ALU do A i ustawiamy RAPS na 0.

Rozkaz 2 – CMA 7

LR:

```
D2 | NSI: LR+1 -> LR
LR = 169 / A9h
```

Wartość komórki LR wzrasta o jeden na wskutek mikrooperacji NSI i na koniec pobierania rozkazu wynosi 169.

RAPS:

```
C2 | OPC : OP albo AOP+32 -> RAPS
RAPS = 33 / 21h
```

Mikrooperacja OPC przekazuje sterowanie do odpowiedniej komórki Pamięci Stałej. Ponieważ w RR znajduje się obecnie rozkaz rozszerzony, to nowa wartość RAPS będzie równa wartości 1 pola AOP aktualnie wykonywanego rozkazu plus 32, co daje 33.

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 7 / 7h

R = 0 / 0h

SUMA = 7 / 7h

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 7 / 7h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania N aktualnego rozkazu oraz 0, ponieważ rozkaz jest typu rozszerzonego.

```
S1 | ORAE : RAE -> BUS

BUS = 7 / 7h

D1 | IRAP : BUS -> RAP

RAP = 7 / 7h

C1 | RRC : Rozpoczęcie RRC

RBP = 255 / FFh
```

Przesłano magistralą wartość RAE do RAP i wykonano mikrorozkaz RRC, który uzupełnił RBP wartością PAO[RAP] równą 255.

```
S3 | ORBP : RBP -> BUS

BUS = 255 / FFh

D3 | IX : BUS -> X

X = 255 / FFh

S2 | OX : X -> BUS

BUS = 255 / FFh

D2 | IBI : BUS -> RAE

RAE = 255 / FFh
```

Przesłano wartość 255 z RBP magistralą do komórki X, następnie z X przez magistralę do RAE.

Rozkaz CMA zaczyna działanie od przesłanie wartości 7 z komórki A do LALU. Mikrorozkaz CMA przepisuje wartość 7 ze zmienionym znakiem do komórki ALU czyli wartość (-7). ZNAK = 1 ponieważ wartość ALU jest ujemna, OFF = 0 ponieważ nie wystąpił nadmiar. Na koniec rozkazu przesyłamy magistralą wartość (-7) z ALU do A i ustawiamy RAPS na 0.

Rozkaz 3 – LAI 8

LR:

D2 | NSI: LR+1 -> LR

LR = 170 / AAh

Wartość komórki LR wzrasta o jeden na wskutek mikrooperacji NSI i na koniec pobierania rozkazu wynosi 170.

RAPS:

Mikrooperacja OPC przekazuje sterowanie do odpowiedniej komórki Pamięci Stałej. Ponieważ w RR znajduje się obecnie rozkaz rozszerzony, to nowa wartość RAPS będzie równa wartości 9 pola AOP aktualnie wykonywanego rozkazu plus 32, co daje 41.

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 8 / 8h

R = 0 / 0h

SUMA = 8 / 8h

S2 | IRAE : SUMA -> RAE

RAE = 8 / 8h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania N aktualnego rozkazu oraz 0, ponieważ rozkaz jest typu rozszerzonego.

```
S1 | ORAE : RAE -> BUS

BUS = 8 / 8h

D1 | IRAP : BUS -> RAP

RAP = 8 / 8h

C1 | RRC : Rozpoczęcie RRC

RBP = 5007 / 138Fh
```

Przesłano magistralą wartość RAE do RAP i wykonano mikrorozkaz RRC, który uzupełnił RBP wartością PAO[RAP] równą 5007.

```
S3 | ORBP : RBP -> BUS

BUS = 5007 / 138Fh

D3 | IX : BUS -> X

X = 5007 / 138Fh

S2 | OX : X -> BUS

BUS = 5007 / 138Fh

D2 | IBI : BUS -> RAE

RAE = 5007 / 138Fh
```

Przesłano wartość 5007 z RBP magistralą do komórki X, następnie z X przez magistralę do RAE.

Mikrorozkaz IRAE przesyła wartość 8 równą N aktualnego rozkazu spod komórki SUMA do RAE. Wartość 8 z RAE jest przesyłana magistralą do A. Na koniec rozkazu RAPS ustawiany jest na 0.

Rozkaz 4 – ADX 010 1

LR:

D2 | NSI: LR+1 -> LR

LR = 171 / ABh

Wartość komórki LR wzrasta o jeden na wskutek mikrooperacji NSI i na koniec pobierania rozkazu wynosi 171.

RAPS:

TEST | TIND : Adresowanie pośrednie

RAPS = 13 / Dh

RAPS został ustawiony na wartość 13 z pola OP aktualnego rozkazu, ponieważ rozkaz nie jest rozkazem rozszerzonym ani nie wykorzystuje adresowania pośredniego (I=0).

RAE:

C2 | CEA : Oblicz adres efektywny

```
L = 1 / 1h

R = 170 / AAh

SUMA = 171 / ABh

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 171 / ABh
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania DA aktualnego rozkazu oraz wartości komórki LR równej 170, co wynika z metody adresacji rozkazu.

Rozkaz ADX rozpoczyna się od przesłania magistralą wartości 171 spod RAE do RAP. Mikrorozkaz RRC uzupełnia komórkę RBP wartością 12551 PAO[RAP]. Wartosc z RBP przesyłana jest magistralą do X. Wartosc 7 spod komórki RI przechodzi do LALU, a wartość 12551 spod X do RALU. Mikrorozkaz ADD uzupełnia ALU sumą LALU i RALU, czyli 12558. ZNAK = 0 ponieważ wartość ALU jest nieujemna, OFF = 0 ponieważ nie wystąpił nadmiar. Na koniec rozkazu wartość 12558 spod ALU przesyłana jest magistralą do RI i następnie RAPS ustawiony zostaje na 0.

Rozkaz 5 – STA 001 7

LR:

Wartość komórki LR wzrasta o jeden na wskutek mikrooperacji NSI i na koniec pobierania rozkazu wynosi 172.

RAPS:

```
C2 | OPC : OP albo AOP+32 -> RAPS

RAPS = 6 / 6h
```

Mikrooperacja OPC przekazuje sterowanie do odpowiedniej komórki Pamięci Stałej. Ponieważ w RR znajduje się obecnie rozkaz zwykły, to nowa wartość RAPS będzie równa wartości 6 OP aktualnie wykonywanego rozkazu.

RAE:

```
C2 | CEA : Oblicz adres efektywny

L = 7 / 7h

R = 0 / 0h

SUMA = 7 / 7h

XRO = 0

S2 | IRAE : SUMA -> RAE

RAE = 7 / 7h
```

Wprowadzono do RAE wartość komórki SUMA, która jest wynikiem dodawania DA aktualnego rozkazu oraz 0, co wynika z metody adresacji rozkazu.

```
S1 | ORAE : RAE -> BUS

BUS = 7 / 7h

D1 | IRAP : BUS -> RAP

RAP = 7 / 7h

C1 | RRC : Rozpoczęcie RRC

RBP = 255 / FFh
```

Przesłano magistralą wartość RAE do RAP i wykonano mikrorozkaz RRC, który uzupełnił RBP wartością PAO[RAP] równą 255.

```
S3 | ORBP : RBP -> BUS
```

BUS = 255 / FFh

D3 | IX : BUS -> X

X = 255 / FFh

S2 | OX : X -> BUS

BUS = 255 / FFh

D2 | IBI: BUS -> RAE

RAE = 255 / FFh

Przesłano wartość 255 z RBP magistralą do komórki X, następnie z X przez magistralę do RAE.

Wartość 255 RAE przesyłana jest magistralą do RAP, a wartość 8 A do RBP. Mikrorozkaz CWC zmienia aktualne PAO[255] = 0xFC11 na PAO[255] = 0x0008 (PAO[RBP]). RAPS zostaje ustawiony na 0.