Unit **07**

LINEAR EQUATIONS AND INEQUALITIES

Define Linear Equations

A linear equation in one unknown variable x is an equation of the form

ax + b = 0, where $a, b \in R$ and $a \neq 0$.

A solution to a linear equation is any replacement or substitution for the variable x that makes the statement true. Two linear equations are said to be equivalent if they have exactly the same solution.

Example

Solve the equation
$$\frac{3x}{2} - \frac{x-2}{3} = \frac{25}{6}$$

Solution

Multiplying each side of the given equation by 6

$$9x-2(x-2) = 25$$

$$\Rightarrow 9x-2x+4 = 25$$

$$\Rightarrow 7x = 21$$

$$\Rightarrow x = 3$$

Check

Substituting x = 3 in original equation,

$$\frac{3}{2}(3) - \frac{3-2}{3} = \frac{25}{6}$$

$$\frac{9}{2} - \frac{1}{3} = 25$$

$$\frac{25}{6} = \frac{25}{6}$$

Since x = 3 makes the original statement true, therefore the solution is correct.

Note

Some fractional equations may have no solution.

Example

Solve
$$\frac{3}{y-1} - 2 = \frac{3y}{y-1}, y \neq 1$$

Solution

Multiplying both sides by y - 1, we get

$$3-2(y-1) = 3y$$

$$\Rightarrow 3-2y+2 = 3y$$

$$\Rightarrow -5y = -5$$

$$\Rightarrow y = 1$$

Check

Substituting y = 1 in the given equation, we have

$$\frac{3}{1-1} - 2 = \frac{3(1)}{1-1}$$

$$\frac{3}{0} - 2 = \frac{3}{0}$$

But $\frac{3}{0}$ is undefined. So y=1 cannot be a solution.

Thus the given equation has not solution.

Example

Solve
$$\frac{3x-1}{3} - \frac{2x}{x-1} = x, x \ne 1$$

Solution

Multiplying each side by 3(x-1)

$$(x-1)(3x-1)-6x = 3x(x-1)$$

$$\Rightarrow 3x^2-4x+1-6x = 3x^2-3x$$

$$\Rightarrow -10x+1 = -3x$$

$$\Rightarrow -7x = -1$$

$$\Rightarrow x = \frac{1}{7}$$

Check

On substituting $x = \frac{1}{7}$ the original equation is verified a true statement. That means the restriction $x \ne 1$ has no effect on the solution because $\frac{1}{7} \neq 1$.

Hence our solution $x = \frac{1}{7}$ is correct.

Define Radical equation :

When the variable in an equation occurs under a radical, the equation is called a radical equation.

Example

Solve the equations

(a)
$$\sqrt{2x-3}-7=0$$

(b)
$$\sqrt[3]{3x+5} = \sqrt[3]{3x+5} = \sqrt[3]{x-1}$$

Solution

To isolate the radical, we can (a) rewrite the given equation as

$$\sqrt{2x-3} = 7$$

$$\Rightarrow 2x-3 = 49 \dots$$

$$\Rightarrow 2x = 52 \Rightarrow x = 26$$

Check

Let us substitute x=26 in the original equation. Then

$$\sqrt{2(26)-3}-7 = 0$$

$$\sqrt{52-3}-7 = 0$$

$$\sqrt{49} - 7 = 0$$

$$0 = 0$$

Hence the solution set is {26}.

We have (b)

$$\sqrt[3]{3x+5} = \sqrt[3]{x-1}$$

Taking cube of each side

$$\Rightarrow 3x+5 = x-1,$$

$$\Rightarrow$$
 $2x = -06$ \Rightarrow $x = -3$

Check

We substitute x = -3 in the original equation. Then

$$\sqrt[3]{3(-3)+5} = \sqrt[3]{-3-1}$$

$$\sqrt[3]{-9+5} = \sqrt[3]{-4}$$

$$\sqrt[3]{-4} = \sqrt[3]{-4}$$

$$\sqrt{-9+5} = \sqrt{-4}$$

$$\Rightarrow \quad \sqrt[3]{-4} = \sqrt[3]{-4}$$

Thus x = -3 satisfies the original equation.

Here $\sqrt[3]{-4}$ is a real number because we raised each side of the equation to an odd power.

Thus the solution set = $\{-3\}$

Example

Solve and check: $\sqrt{5x-7}$ $\sqrt{x+10} = 0$

Solution

When two terms of a radical equation contain variables in the radicand we express the equation such that one of these terms is on each side. So we rewrite the equation in this form to get

$$\sqrt{5x-7} - \sqrt{x+10} = 0$$

Squaring each side

$$5x-7 = x+10,$$

$$5x - x = 10 + 7$$

$$4x = 17 \implies x = \frac{17}{4}$$

Check

Substituting $x = \frac{17}{4}$ in original equation

$$\sqrt{5x-7} - \sqrt{x+10} \qquad = \qquad 0$$

$$\sqrt{5\left(\frac{17}{4}\right) - 7} - \sqrt{\frac{17}{4} + 10} = 0$$

$$\sqrt{\frac{57}{4}} - \sqrt{\frac{57}{4}} = 0$$

$$0 = 0$$

i.e., $x = \frac{17}{4}$ makes the given equation a true statement.

Thus solution set = $\left\{\frac{17}{4}\right\}$.

Example

Solve $\sqrt{x+7} + \sqrt{x+2} = \sqrt{6x+13}$

Solution

$\sqrt{x+7} + \sqrt{x+2} = \sqrt{6x+13}$

Squaring both sides we get

$$x+7+x+2+2\sqrt{(x+7)(x+2)}=6x+13$$

$$\Rightarrow 2\sqrt{x^2 + 9x + 14} = 4x + 4$$

$$\Rightarrow \sqrt{x^2 + 9x + 14} = 2x + 2$$

Squaring again

$$x^2 + 9x + 14 = 4x^2 + 8x + 4$$

$$\Rightarrow 3x^2 - x - 10 = 0$$

$$\Rightarrow 3x^2 - 6x + 5x - 10 = 0$$

$$\Rightarrow 3x(x-2) + 5(x-2) = 0$$

$$\Rightarrow (x-2)(3x+5) = 0$$

$$\Rightarrow x=2, \frac{-5}{3}$$

On checking, we see that x=2 satisfies the equation, but $x=\frac{-5}{3}$ does not satisfy the equation. So solution set is $\{2\}$ and $x=\frac{-5}{3}$ is an extraneous root.

Exercise 7.1

Q1. Solve the following equations.

i)
$$\frac{2}{3}x - \frac{1}{2}x = x + \frac{1}{6}$$

Sol: Multiplying both sides by 6

$${}^{2} \mathcal{B}\left(\frac{2}{\mathcal{Z}}x\right) - {}^{3} \mathcal{B}\left(\frac{1}{\mathcal{Z}}x\right) = 6(x) + \mathcal{B}\left(\frac{1}{\mathcal{B}}\right)$$

$$4x-3x=6x+1$$

$$x = 6x + 1$$

$$-1 = 6x - x$$

$$-1=5x$$

$$\Rightarrow \qquad \boxed{x = -\frac{1}{5}}$$

Check:

Substituting $x = -\frac{1}{5}$ in the given equation

$$\frac{2}{3}\left(-\frac{1}{5}\right) - \frac{1}{2}\left(-\frac{1}{5}\right) = -\frac{1}{5} + \frac{1}{6}$$

$$-\frac{2}{15} + \frac{1}{10} = -\frac{1}{5} + \frac{1}{6}$$

$$\frac{-4+3}{30} = \frac{-6+5}{30}$$
$$-\frac{1}{30} = -\frac{1}{30}$$
 which is true

Hence solution set = $\left\{-\frac{1}{5}\right\}$

ii)
$$\frac{x-3}{3} - \frac{x-2}{2} = -1$$

Multiplying both sides by 6

$${}^{2}\mathscr{B}\left(\frac{x-3}{\mathscr{B}}\right) - {}^{3}\mathscr{B}\left(\frac{x-2}{\mathscr{Z}}\right) = 6(-1)$$

$$2x - \mathscr{B} - 3x + \mathscr{B} = -6$$

$$-x = -6$$

Check:

Substituting x = 6 in the given equation

$$\frac{6-3}{3} - \frac{6-2}{2} = -1$$

x = 6

$$\frac{3}{3} - \frac{4}{2} = -1$$

$$1-2=-1$$

-1=-1 which is true, so solution set = $\{6\}$

iii)
$$\frac{1}{2} \left(x - \frac{1}{6} \right) + \frac{2}{3} = \frac{5}{6} + \frac{1}{3} \left(\frac{1}{2} - 3x \right)$$
$$\frac{1}{2} x - \frac{1}{12} + \frac{2}{3} = \frac{5}{6} + \frac{1}{6} - \frac{1}{3} (3x)$$

Multiplying both sides by 12

$$\frac{12}{2} \left(\frac{1}{2} x \right) - \frac{12}{12} \left(\frac{1}{12} \right) + \frac{4}{12} \left(\frac{2}{2} \right) = \frac{2}{12} \left(\frac{5}{6} \right) + \frac{2}{12} \left(\frac{1}{6} \right) - 12(x)$$

$$6x-1+8=10+2-12x$$

$$6x+7=12-12x$$

$$6x+12x=12-7$$

$$18x = 5$$

$$x = \frac{5}{18}$$

Check:

Substituting $x = \frac{5}{18}$ in the given equation

$$\frac{1}{2} \left(\frac{5}{18} - \frac{1}{6} \right) + \frac{2}{3} = \frac{5}{6} + \frac{1}{3} \left(\frac{1}{2} - \cancel{3} \times \frac{5}{618} \right)$$

$$\frac{1}{2} \left(\frac{5-3}{18} \right) + \frac{2}{3} = \frac{5}{6} + \frac{1}{3} \left(\frac{3-5}{6} \right)$$

$$\frac{1}{2}\left(\frac{2}{18}\right) + \frac{2}{3} = \frac{5}{6} - \frac{2}{18}$$

$$\frac{1+12}{18} = \frac{15-2}{18}$$

$$\frac{13}{18} = \frac{13}{18}$$
 which is true, so

Solution set =
$$\left\{ \frac{5}{18} \right\}$$

(iv)
$$x + \frac{1}{3} = 2\left(x - \frac{2}{3}\right) - 6x$$

 $x + \frac{1}{3} = 2x - \frac{4}{3} - 6x$

Multiplying both sides by 3

$$3x + 3 \times \frac{1}{3} = 3(2x) - 3\left(\frac{4}{3}\right) - 3(6x)$$
$$3x + 1 = 6x - 4 - 18x$$
$$3x + 1 = -12x - 4$$
$$15x = -5$$

$$x = -\frac{5}{15}$$

$$x = -\frac{1}{3}$$

Check:

Substituting $x = -\frac{1}{3}$ in the given equation

$$-\frac{1}{3} + \frac{1}{3} = 2\left(-\frac{1}{3} - \frac{2}{3}\right) - \cancel{6}\left(-\frac{1}{\cancel{3}}\right)$$

$$0 = 2\left(-\frac{3}{3}\right) + 2$$

$$0 = -2 + 2$$

0=0 which is true, so

Solution set =
$$\left\{-\frac{1}{3}\right\}$$

v)
$$\frac{5(x-3)}{6} - x = 1 - \frac{x}{9}$$

Multiplying both sides by 18

3
18 $\times \frac{5(x-3)}{6}$ - 18 x = 18 $-^{2}$ 18 $\left(\frac{x}{6}\right)$

$$15(x-3)-18x=18-2x$$

$$15x-45-18x=18-2x$$

$$15x - 18x + 2x = 18 + 45$$

$$-x = 63$$

$$\Rightarrow x = -63$$

Substituting x = -63 in the given equation

$$\frac{5(-63-3)}{6} - (-63) = 1 - \frac{(-63)}{9}$$

$$5\frac{\left(-\frac{11}{66}\right)}{6} + 63 = 1 + \frac{63^{7}}{9}$$

$$5\frac{\left(-\frac{66}{66}\right)}{\cancel{6}} + 63 = 1 + \frac{63^{7}}{\cancel{9}}$$

$$-55+63=1+7$$

8=8 which is true, so

Solution set = $\{-63\}$

vi)
$$\frac{x}{3x-6} = 2 - \frac{2x}{x-2}$$
$$\frac{x}{3(x-2)} = 2 - \frac{2x}{x-2}$$

Multiplying both sides by 3(x-2)

$$\beta(x-2) \times \frac{x}{\beta(x-2)} = 2 \times 3(x-2) - \frac{2x}{x-2} \times 3(x-2)$$

 $x = 6x - 12 - 6x$

$$x = -12$$

Check:

Substituting x = -12 in the given equation

$$\frac{-12}{3(-12)-6} = 2 - \frac{2(-12)}{-12-2}$$

$$\frac{-12}{-36-6} = 2 - \frac{\left(-24\right)}{-14}$$

$$\frac{-12}{-42} = 2 - \frac{12}{7}$$

$$\frac{2}{7} = \frac{14 - 12}{7}$$

$$\frac{2}{7} = \frac{2}{7}$$
 which is true, so

Solution Set = $\{-12\}$

vii)
$$\frac{2x}{2x+5} = \frac{2}{3} - \frac{5}{4x+10}$$
 , $x \neq -\frac{5}{2}$

$$\frac{2x}{2x+5} = \frac{2}{3} - \frac{5}{2(2x+5)}$$

Multiplying both sides by 6(2x+5)

$$6(2x+5) \times \frac{2x}{2x+5} = \frac{2}{3} \times \frac{2}{6} (2x+5) - \frac{5}{2(2x+5)} \times \frac{3}{6} (2x+5)$$

$$12x = 8x + 20 - 15$$

$$12x - 8x = 5$$

$$4x = 5$$

$$4x = 5$$

$$x = \frac{5}{4}$$

Check:

Substituting $x = \frac{5}{4}$ in the given equation

$$\frac{2\left(\frac{5}{\cancel{A}}\right)}{2\left(\frac{5}{\cancel{A}}\right)+5} = \frac{2}{3} - \frac{5}{\cancel{A}\left(\frac{5}{\cancel{A}}\right)+10}$$

$$\frac{\frac{5}{\cancel{2}}}{\frac{5+10}{\cancel{2}}} = \frac{2}{3} - \frac{\cancel{8}}{\cancel{15}}$$

$$\frac{\cancel{8}}{\cancel{15}} = \frac{2}{3} - \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3} \text{ which is true, so}$$

Solution set =
$$\left\{\frac{5}{4}\right\}$$

viii)
$$\frac{2x}{x-1} + \frac{1}{3} = \frac{5}{6} + \frac{2}{x-1}, x \neq 1$$

Multiplying both sides by 6(x-1)

$$6(x-1) \times \frac{2x}{x-1} + {}^{2}\beta(x-1) \times \frac{1}{3}$$

$$= \beta(x-1) \times \frac{5}{\beta} + 6(x-1) \times \frac{2}{x-1}$$

$$12x + 2x - 2 = 5x - 5 + 12$$

$$12x + 2x - 5x = 2 - 5 + 12$$

$$9x = 9$$

$$x = \frac{9}{9}$$

Check:

x = 1

Substituting x=1 in the given equator

$$\frac{2(1)}{1-1} + \frac{1}{3} = \frac{5}{6} + \frac{2}{1-1}$$
$$\frac{2}{0} + \frac{1}{3} = \frac{5}{6} + \frac{2}{0}$$

As $\frac{2}{0}$ is undefined, so x=1 cannot be a solution thus the given equation has no solution.

ix)
$$\frac{2}{x^2-1} - \frac{1}{x+1} = \frac{1}{x+1}$$
, $x \neq \pm 1$

$$\frac{2}{(x+1)(x-1)} - \frac{1}{x+1} = \frac{1}{x+1}$$

Multiplying both sides by (x+1)(x-1)

$$\frac{(x+1)(x-1)}{(x+1)(x-1)} \times \frac{2}{(x+1)(x-1)}$$

$$-(x+1)(x-1) \times \frac{1}{x+1} = \frac{1}{x+1} \times (x+1)(x-1)$$

$$2-x+1=x-1$$

$$2+1+1=x+x$$

$$2x=4$$

$$x = \frac{4}{2}$$

$$x = 2$$

Check:

Substituting x = 2 in the given equation

$$\frac{2}{(2)^2 - 1} - \frac{1}{2 + 1} = \frac{1}{2 + 1}$$

$$\frac{2}{4 - 1} - \frac{1}{3} = \frac{1}{3}$$

$$\frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3}$$
 which is true, so

Solution Set = $\{2\}$

x)
$$\frac{2}{3x+6} = \frac{1}{6} - \frac{1}{2x+4}$$
, $x \neq -2$
 $\frac{2}{3(x+2)} = \frac{1}{6} - \frac{1}{2(x+2)}$

Multiplying both sides by 6(x+2)

$$\frac{2}{8}(x+2) \times \frac{2}{3(x+2)} = \frac{1}{8} \times 8(x+2) - \frac{1}{2(x+2)} \times 36(x+2)$$

$$4 = x+2-3$$

$$4 = x - 1$$
$$4 + 1 = x$$
$$x = 5$$

Check:

Substituting x = 5 in the given equation

$$\frac{2}{3(5)+6} = \frac{1}{6} - \frac{1}{2(5)+4}$$

$$\frac{2}{15+6} = \frac{1}{6} - \frac{1}{10+4}$$

$$\frac{2}{21} = \frac{1}{6} - \frac{1}{14}$$

$$\frac{2}{21} = \frac{7 - 3}{42}$$

$$\frac{2}{21} = \frac{4}{42}$$

$$\frac{2}{21} = \frac{2}{21}$$

 $\frac{2}{21} = \frac{2}{21}$ which is true, so

Solution Set = $\{5\}$

Solve each question and check 02. for extraneous solution, if any.

$$i) \qquad \sqrt{3x+4} = 2$$

Squaring both sides

$$\left(\sqrt{3x+4}\right)^2 = \left(2\right)^2$$

$$3x + 4 = 4$$

$$3x = 4 - 4$$

$$3x = 0$$

$$x = \frac{0}{3}$$

$$x = 0$$

Check:

Substituting x = 0 in the given equation

$$\sqrt{3x+4} = 2$$

$$\sqrt{3(0)+4} = 2$$

$$\sqrt{0+4}=2$$

$$\sqrt{4}=2$$

2=2 which is true, so

Solution Set = $\{0\}$

ii)
$$\sqrt[3]{2x-4} - 2 = 0$$

$$\sqrt[3]{2x-4}=2$$

Taking cube of both sides

$$(\sqrt[3]{2x-4})^3 = (2)^3$$

$$2x - 4 = 8$$

$$2x = 8 + 4$$

$$2x = 12$$

$$x = \frac{\cancel{\cancel{2}}}{\cancel{\cancel{2}}}$$

$$x = 6$$

Check

Putting x = 6 in the given equation.

$$\sqrt[3]{2x-4}-2=0$$

$$\sqrt[3]{2(6)-4}-2=0$$

$$\sqrt[3]{12-4}-2=0$$

$$\sqrt[3]{8} - 2 = 0$$

$$\sqrt[3]{2^3} - 2 = 0$$

$$2-2=0$$

0=0 which is true, so

Solution Set = $\{6\}$

iii)
$$\sqrt{x-3} - 7 = 0$$

or
$$\sqrt{x-3} = 7$$

Squaring both sides

$$\left(\sqrt{x-3}\right)^2 = \left(7\right)^2$$

$$x - 3 = 49$$

$$x = 49 + 3$$

$$x = 52$$

Check:

Putting x = 52 in the given equation

$$\sqrt{x-3} - 7 = 0$$

$$\sqrt{52-3} - 7 = 0$$

$$\sqrt{49} - 7 = 0$$

$$7 - 7 = 0$$

$$0 = 0$$
 which true, so

Solution Set = $\{52\}$

Squaring both sides

$$\left(\sqrt{t+4}\right)^2 = \left(\frac{5}{2}\right)^2$$

$$t+4 = \frac{25}{4}$$

$$t = \frac{25}{4} - 4$$

$$= \frac{25-16}{4}$$

Check:

Putting $t = \frac{9}{4}$ in the given equation.

$$2\sqrt{t+4} = 5$$

$$2\sqrt{\frac{9}{4}+4} = 5$$

$$2\sqrt{\frac{9+16}{4}} = 5$$

$$2\sqrt{\frac{25}{4}} = 5$$

$$2\left(\frac{5}{2}\right) = 5$$

5=5 which is true, so

Solution Set =
$$\left\{\frac{9}{4}\right\}$$

$$\sqrt[3]{2x+3} = \sqrt[3]{x-2}$$

Taking cube of both sides

$$\left(\sqrt[3]{2x+3}\right)^3 = \left(\sqrt[3]{x-2}\right)^3$$

$$2x+3=x-2$$

$$2x - x = -2 - 3$$

$$x = -5$$

Check:

Putting x = -5 in the given equation.

$$\sqrt[3]{2x+3} = \sqrt[3]{x-2}$$

$$\sqrt[3]{2(-5)+3} = \sqrt[3]{-5-2}$$

$$\sqrt[3]{-10+3} = \sqrt[3]{-7}$$

$$\sqrt[4]{-10+3} = \sqrt[4]{-7}$$

 $\sqrt[3]{-7} = \sqrt[3]{-7}$ which is true, so

Solution Set =
$$\{-5\}$$

vi)
$$\sqrt[3]{2-t} = \sqrt[3]{2t-28}$$

Taking cube of both sides

$$\left(\sqrt[3]{2-t}\right)^3 = \left(\sqrt[3]{2t-28}\right)^3$$

$$2-t=2t-28$$

$$2+28=2t+t$$

$$3t = 30$$

$$t = \frac{30}{3}$$

$$t = 10$$

Check:

Putting t = 3 in the given equation

$$\sqrt[3]{2-t} = \sqrt[3]{2t-28}$$

$$\sqrt[3]{2-10} = \sqrt[3]{2\times10-28}$$

$$\sqrt[3]{-8} = \sqrt[3]{20 - 28}$$

 $\sqrt[3]{-8} = \sqrt[3]{-8}$ which is true, so

Solution Set = $\{10\}$

vii)
$$\sqrt{2t+6} - \sqrt{2t-5} = 0$$
 or $\sqrt{2t+6} = \sqrt{2t-5}$

Squaring both sides

$$\left(\sqrt{2t+6}\right)^2 = \left(\sqrt{2t-5}\right)^2$$

$$2t + 6 = 2t - 5$$

$$2t - 2t + 6 = -5$$

6 = -5 which is not possible, so

Solution Set = $\{ \}$

viii)
$$\sqrt{\frac{x+1}{2x+5}} = 2$$
, $x \neq -\frac{5}{2}$

Squaring both sides

$$\left(\sqrt{\frac{x+1}{2x+5}}\right)^2 = \left(2\right)^2$$

$$\frac{x+1}{2x+5} = 4$$

$$x+1=4(2x+5)$$

$$x+1 = 8x + 20$$

$$1-20 = 8x - x$$

$\Rightarrow \frac{-19 = 7x}{x = -\frac{19}{7}}$

Check:

Putting $x = -\frac{19}{7}$ in the given equation

$$\sqrt{\frac{x+1}{2x+5}} = 2$$

$$\sqrt{\frac{\frac{-19}{7} + 1}{2\left(-\frac{19}{7}\right) + 5}} = 2$$

$$\sqrt{\frac{-19+7}{\cancel{1}}} = 2$$

$$\sqrt{\frac{-12}{\sqrt{3}}} = 2$$

$$\sqrt{4}=2$$

2=2 which is true, so

Solution Set =
$$\left\{ \frac{-19}{7} \right\}$$

Definition

The absolute value of a real number 'a' denoted by |a|, is defined as

$$|a| = \begin{cases} a, & \text{if } a \ge 0 \\ -a, & \text{if } a < 0 \end{cases}$$

e.g.,
$$|6| = 6$$
, $|0| = 0$ and $|-6| = -(-6) = 6$

Some properties of Absolute

Value

If $a, b \in \mathbb{R}$, then

(i) $|a| \ge 0$

(ii)
$$|-a| = |a|$$

(iii)
$$|ab| = |a|$$
, $|b|$

(iv)
$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}, \ b \neq 0$$

Example

Solve and check, |2x + 3| = 11

Solution

By definition, depending on whether (2x + 3) is positive or negative the given equation is equivalent to

$$+(2x+3) = 11 \text{ or } -(2x+3)=11$$

In practice, these two equations are usually written as

$$2x+3 = +11 \text{ or } 2x+3 = -11$$

 $2x = 8 \text{ or } 2x = -14$
 $x = 4 \text{ or } x = -7$

Check

Substituting x = 4, in the original equation, we get

$$|2(4) + 3| = 11$$

i.e., $|11| = 11$, true
Now substituting $x = -7$, we have
 $|2(-7) + 3| = 11$
 $|-11| = 11$
 $|11| = 11$, true

Hence x = 4, -7 are the solutions to the given equation.

Or Solution set = $\{-7, 4\}$

Example

Solve |8x - 3| = |4x + 5|

Solution

Since two numbers having the same absolute value are either equal or differ in sign, therefore, the given equation is equivalent to

$$8x-3 = 4x+5 \text{ or } 8x-3 = -(4x+5)$$

 $8x-3 = 4x+5 \text{ or } 8x-3 = -4x-5$
 $8x-4x = 5+3 \text{ or } 8x+4x = -5+3$
 $4x = 8 \text{ or } 12x = -2$

$$x = 2$$
 or $x = -1/6$
On checking we find that $x=2, x=\frac{-1}{6}$ both satisfy the original equation.

Hence the solution set $\left\{-\frac{1}{6}, 2\right\}$.

Sometimes it may happen that the solution(s) obtained do not satisfy the original equation. Such solution(s) (called extraneous) must be rejected. Therefore, it is always advisable to check the solutions in the original equation.

Example 3

Solve and check |3x + 10| = 5x + 6

Solution

The given equation is equivalent to $\pm (3x+10) = 5x+6$

$$\pm (3x+10) = 5x+6$$
i.e., $3x+10 = 5x+6$ or $3x+10 = -(5x+6)$
 $3x+10 = 5x+6$ or $3x+10 = -5x-6$
 $3x-5x = 6-10$ or $3x+5x = -6-10$
 $-2x = -4$ or $8x = -16$
 $x = 2$ or $x - 2$

On checking in the original equation we see that x = -2 does not satisfy it.

Hence the only solution is x = 2.

Exercise 7.2

- Q1. Identify the following statements as True or False.
- i) |x| = 0 has only one solution. (True)
- ii) All absolute value equations have two solutions. (False)
- iii) The equation |x|=2 is equivalent to x=2 or x=-2. (True)

- iv) The equation |x-4|=-4 has no solution. (True)
- v) The equation |2x-3|=5 is equivalent to 2x-3=5 or 2x+3=5 (False.)

02. Solve for x.

i)
$$|3x-5|=4$$

$$\Rightarrow +(3x-5) = 4 \text{ or } -(3x-5) = 4$$

$$3x-5 = 4 \text{ or } 3x-5 = -4$$

$$3x = 4+5 \text{ or } 3x = -4+5$$

$$3x = 9 \text{ or } 3x = 1$$

$$x = 3 \text{ or } x = \frac{1}{3}$$

Check:

Substituting x = 3 in given equation

$$|3(3)-5|=4$$

$$|9-5|=4$$
$$|4|=4$$

4=4 which is true

Putting $x = \frac{1}{3}$ in given equation

$$\left| 3\left(\frac{1}{3}\right) - 5 \right| = 4$$

$$|1-5|=4$$

$$|-4| = 4$$

4=4 which is true, so

Solution Set = $\left\{3, \frac{1}{3}\right\}$

ii)
$$\frac{1}{2}|3x+2|-4=11$$

 $\frac{1}{2}|3x+2|=11+4$

$$\frac{1}{2}|3x+2|=15$$

$$|3x+2|=15\times 2$$

$$|3x+2|=30$$

$$+(3x+2)=30 \quad \text{or} \quad -(3x+2)=30$$

$$3x+2=30 \quad \text{or} \quad 3x+2=-30$$

$$3x = 30 - 2$$
 or $3x = -30 - 2$

$$3x = 28$$
 or $3x = -32$
 $x = \frac{28}{3}$ or $x = \frac{-32}{3}$

Check:

Putting $x = \frac{28}{3}$ in the given equation

$$\frac{1}{2} \left| \cancel{3} \left(\frac{28}{\cancel{3}} \right) + 2 \right| - 4 = 11$$

$$\frac{1}{2} \left| 28 + 2 \right| - 4 = 11$$

$$\frac{1}{2}|30|-4=11$$

$$\frac{1}{2}(30)-4=11$$

$$15 - 4 = 11$$

11 = 11 which is true

Now putting $x = -\frac{32}{3}$ in the given equation.

$$\frac{1}{2} \left| \cancel{3} \left(-\frac{32}{\cancel{3}} \right) + 2 \right| - 4 = 11$$

$$\frac{1}{2} \left| -32 + 2 \right| - 4 = 11$$

$$\frac{1}{2}$$
 $\left|-30\right|-4=11$

$$\frac{1}{2}(30)-4=11$$

$$15-4=11$$

11=11 which is true, so

Hence Solution Set =
$$\left\{ \frac{28}{3}, -\frac{32}{3} \right\}$$

iii)
$$|2x+5|=11$$

$$+(2x+5)=11$$

or
$$-(2x+5)=11$$

$$2x + 5 = 11$$

or
$$2x + 5 = -11$$

$$2x = 11 - 5$$
$$2x = 6$$

or
$$2x = -11 - 5$$

or $2x = -16$

$$x = \frac{6}{2}$$

or
$$x = \frac{-16}{2}$$

$$x = 3$$

or
$$x = -8$$

Check:

Putting x = 3 in the given equation.

$$|2(3)+5|=11$$

$$|6+5| = 11$$

$$|11| = 11$$

11=11 which is true

Now putting x = -8 in the given equation.

$$|2(-8)+5|=11$$

$$|-16+5|=11$$

$$|-11| = 11$$

$$11 = 11$$

which is true, so

Solution Set = $\{3, -8\}$

iv)
$$|3+2x| = |6x-7|$$

$$\frac{|3+2x|}{|6x-7|} = 1$$

$$\left|\frac{3+2x}{6x-7}\right|=1$$

$$+\left(\frac{3+2x}{6x-7}\right)=1$$
 or $-\left(\frac{3+2x}{6x-7}\right)=1$

$$\frac{3+2x}{6x-7} = 1 \qquad \text{or} \qquad \frac{3+2x}{6x-7} = -1$$

$$3+2x = 6x-7 \quad \text{or} \qquad 3+2x = -6x+7$$

$$3+7 = 6x-2x \quad \text{or} \qquad 2x+6x = 7-3$$

$$10 = 4x \qquad \text{or} \qquad 8x = 4$$

$$\Rightarrow x = \frac{10}{4} \qquad \text{or} \qquad x = \frac{4}{8}$$

Check:

 $x = \frac{5}{2}$

Putting $x = \frac{5}{2}$ in the given equation

$$\begin{vmatrix} 3+2\left(\frac{5}{2}\right) = \begin{vmatrix} 36\left(\frac{5}{2}\right) - 7 \end{vmatrix}$$
$$|3+5| = |15-7|$$
$$|8| = |8|$$

or $x = \frac{1}{2}$

$$8=8$$
 which is true

Now putting $x = \frac{1}{2}$ in the given equation

$$\begin{vmatrix} 3+2\left(\frac{1}{2}\right) \\ |3+1| = |3-7| \end{vmatrix}$$
$$|4| = |-4|$$

4=4 which is true, so

Solution Set =
$$\left\{ \frac{5}{2}, \frac{1}{2} \right\}$$

v)
$$|x+2|-3=5-|x-2|$$

 $|x+2|+|x+2|=5+3$
 $2|x+2|=8$
 $|x+2|=\frac{8}{2}$

|x+2| = 4

$$+(x+2)=4$$
 or $-(x+2)=4$
 $x+2=4$ or $x+2=-4$
 $x=4-2$ or $x=-4-2$
 $x=2$ or $x=-6$

Check:

Putting x = 2 in the give equation

$$|2+2|-3=5-|2+2|$$

$$|4|-3=5-|4|$$

$$4 - 3 = 5 - 4$$

l=1 which is true

Now putting x = -6 in the given equation.

$$|-6+2|-3=5-|-6+2|$$

$$|-4|-3=5-|-4|$$

$$4 - 3 = 5 - 4$$

1=1 which is true, so

Solution Set = $\{2, -6\}$

vi)
$$\frac{1}{2}|x+3|+21=9$$
$$\frac{1}{2}|x+3|=9-21$$
$$\frac{1}{2}|x+3|=-12$$
$$|x+3|=-24$$

As the value of absolute cannot be negative, so Solution Set = $\{$

vii)
$$\left| \frac{3-5x}{4} \right| - \frac{1}{3} = \frac{2}{3}$$
$$\left| \frac{3-5x}{4} \right| = \frac{2}{3} + \frac{1}{3}$$
$$\left| \frac{3-5x}{4} \right| = \frac{\cancel{3}}{\cancel{3}}$$
$$\left| \frac{3-5x}{4} \right| = 1$$

$$+\left(\frac{3-5x}{4}\right) = 1 \text{ or } -\left(\frac{3-5x}{4}\right) = 1$$

$$\frac{3-5x}{4} = 1 \text{ or } \frac{3-5x}{4} = -1$$

$$3-5x = 4 \text{ or } 3-5x = -4$$

$$3-4 = 5x \text{ or } 3+4 = 5x$$

$$-1 = 5x \text{ or } 7 = 5x$$

$$x = -\frac{1}{5} \text{ or } x = \frac{7}{5}$$

Check:

Putting $x = -\frac{1}{5}$ in the given equation

$$\left| \frac{3 - 5\left(-\frac{1}{5}\right)}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

$$\left| \frac{3+1}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

$$\left| \frac{4}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

$$|1| - \frac{1}{3} = \frac{2}{3}$$

$$1 - \frac{1}{3} = \frac{2}{3}$$

$$\frac{3-1}{3} = \frac{2}{3}$$

$$\frac{2}{3} = \frac{2}{3}$$

which is true,

Now putting $x = \frac{7}{5}$ in the given equation

$$\left| \frac{3 - \mathcal{S}\left(\frac{7}{\mathcal{S}}\right)}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

$$\left| \frac{3-7}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

$$\left| -\frac{4}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

$$\left| -1 \right| - \frac{1}{3} = \frac{2}{3}$$

$$1 - \frac{1}{3} = \frac{2}{3}$$

$$\frac{2}{3} = \frac{2}{3} \text{ which is true}$$

So, solution set =
$$\left\{-\frac{1}{5}, \frac{7}{5}\right\}$$

viii)
$$\left| \frac{x+5}{2-x} \right| = 6$$

 $+\left(\frac{x+5}{2-x} \right) = 6$ or $-\left(\frac{x+5}{2-x} \right) = 6$
 $\frac{x+5}{2-x} = 6$ or $\frac{x+5}{2-x} = -6$
 $x+5=12-6x$ or $x+5=12+6x$
 $x+6x=12-5$ or $5+12=6x-x$
 $7x=7$ or $17=5x$
 $x=1$ or $x=\frac{17}{5}$

Putting x = 1 in the given equation.

$$\left| \frac{1+5}{2-1} \right| = 6$$

$$\left| \frac{6}{1} \right| = 6$$

$$\left| 6 \right| = 6$$

$$6 = 6$$

Now putting $x = \frac{17}{5}$ in the given equation

$$\left| \frac{\frac{17}{5} + 5}{2 - \frac{17}{5}} \right| = 6$$

$$\left| \frac{\frac{17+25}{\cancel{5}}}{\frac{10-17}{\cancel{5}}} \right| = 6$$

$$\left| \frac{42}{-7} \right| = 6$$

$$\left| -6 \right| = 6$$
which is

6=6 which is true

So, solution set = $\left\{1, \frac{17}{5}\right\}$

Definition of inequality

Let a, b be real numbers, then a is greater than b if the difference a – b is positive and we denote this order relation by the inequality a > b. An equivalent statement is that b is less than a, symbolized by b < a. Similarly, if a - b is negative, then a is less than b and expressed in symbols as a < b.

Properties of Inequalities

1. Law of Trichotomy

For any $a,b \in \mathbb{R}$, one and only on of the following statements is true.

$$a < b$$
 or $a = b$, or

a > b

An important special case of thi property is the case for b = 0, namely,

a < 0 or a = 0 or a > 0 for any $a \in \mathbb{R}$

2. Transitive Property

Let $a, b, c \in \mathbb{R}$.

- (i) If a > b and b > c, then a > c
- (ii) If a < b and b < c, then a < c

3. Additive Closure Property

For $a, b, c \in \mathbb{R}$,

- If a > b, then a + c > b + c(i) If a < b, then a + c > b + c
- If a > 0 and b > 0, then a + b > 0(ii)

If a < 0 and b < 0, then a + b < 0

4. Multiplicative Property

Let $a, b, c, d \in \mathbb{R}$,

- (i) If a > 0 and b > 0, then ab > 0, whereas a < 0 and $b < 0 \Rightarrow ab > 0$
- (ii) If a > b and c > 0, then ac > bcOr if a < b and c > 0, then ac < bc
- (iii) If a > b and c < 0, then ac < bcOr if a < b and c < 0, then ac > bcThe above property (iii) states that the sign of inequality is reversed if each side is multiplied by a negative real number.
- (iv) If a > b and c > d, then ac > bd

Example

Solve 9-7x>19-2x, where $x \in \mathbb{R}$.

Solution

$$9-7x>19-2$$

 $9-5x>19$
 $-5x>10$
 $x<-2$

Hence the solution set = $\{x \mid x < -2\}$

Example

Solve $\frac{1}{2}x - \frac{2}{3} \le x + \frac{1}{3}$, where $x \in \mathbb{R}$.

Solution

$$\frac{1}{2}x - \frac{2}{3} \le x + \frac{1}{3}$$

To clear fractions we multiply each side by 6, the L.C.M of 2 and 3 and get

$$6\left[\frac{1}{2}x - \frac{2}{3}\right] \le 6\left[x + \frac{1}{3}\right]$$

$$6 \times \frac{1}{2}x - \frac{6 \times 2}{3} \le 6x + 6 \times \frac{1}{3}$$
or
$$3x - 4 \le 6x + 2$$
or
$$-4 - 2 \le 6x - 3x$$

or
$$-6 \le 3x$$

or $-\frac{6}{3} \le x$
 $-2 \le x \Rightarrow x \ge -2$

Hence the solution set

$$= \{x \mid x \ge -2\}$$

Example

Solve the double inequality $-2 < \frac{1-2x}{3} < 1$, where $x \in \mathbb{R}$.

Solution

The given inequality is a double inequality and represents two separate inequalities

$$-2 < \frac{1-2x}{3} \text{ and } \frac{1-2x}{3} < 1$$

$$-2 < \frac{1-2x}{3} < 1$$
or
$$-6 < 1-2x < 3$$
or
$$-7 < -2x < 2$$
or
$$\frac{7}{2} > x > -1$$
i.e.,
$$-1 < x < 3.5$$

Hence S.S =
$$\{x \mid -1 < x < 3.5\}$$

Example

Solve the inequality $4x-1 \le 3 \le 7+2x$, where $x \in \mathbb{R}$.

Solution

The given inequality holds if and only if both the separate inequalities $4x-1 \le 3$ and $3 \le 7+2x$ hold. We solve each of these inequalities separately.

The first inequality $4x-1 \le 3$ gives $4x \le 4$ i.e., $x \le 1$ (i)

$$3 \le 7 + 2x \Rightarrow -4 \le 2x$$

$$-2 \le x \Rightarrow x \ge -2$$

Combining (i) and (ii) we have $-2 \le x \le 1$

Thus the solution set = $\{x \mid -2 \le x \le 1\}$.

Exercise 7.3

Q1. Solve the following in equalities.

i)
$$3x+1<5x-4$$

$$1+4 < 5x-3x$$

$$\frac{5}{2} < x$$

$$x > \frac{5}{2}$$

Solution Set =
$$\left\{ x \mid x > \frac{5}{2} \right\}$$

ii)
$$4x-10.3 \le 21x-1.8$$

$$4x - 21x \le 10.3 - 1.8$$

$$-17x \le 8.5$$

$$17x \ge -8.5$$

$$x \ge -\frac{17}{17}$$

$$x \ge -0.5$$

Solution Set =
$$\{x \mid x \ge -0.5\}$$

iii)
$$4 - \frac{1}{2}x \ge -7 + \frac{1}{4}x$$

$$4+7 \ge \frac{1}{4}x + \frac{1}{2}x$$

$$11 \ge \frac{x+2x}{4}$$

$$11 \ge \frac{3}{4}x$$

$$\frac{11\times4}{3} \ge x$$

$$\frac{44}{3} \ge x$$

or
$$x \le \frac{44}{3}$$

Solution Set =
$$\left\{ x \mid x \le \frac{44}{3} \right\}$$

iv)
$$x-2(5-2x) \ge 6x-3\frac{1}{2}$$

$$x-2(5-2x) \ge 6x-\frac{7}{2}$$

Multiplying both sides by 2

$$2x-4(5-2x) \ge 12x-7$$

$$2x-20+8x \ge 12x-7$$

$$2x + 8x - 12x \ge 20 - 7$$

$$-2x \ge 13$$

$$2x \le -13$$

$$x \le -\frac{13}{2}$$

Solution Set =
$$\left\{ x \mid x \le -\frac{13}{2} \right\}$$

$$\mathbf{v}$$
) $\frac{3x+2}{9} - \frac{2x+1}{3} > -1$

Multiplying both sides by 9

$$3x+2-3(2x+1)>-9$$

$$3x+2-6x-3>-9$$

$$-3x-1 > -9$$

$$-3x > 1 - 9$$

$$-3x > -8$$

$$x < \frac{-8}{-3}$$

$$x < \frac{8}{3}$$

Solution Set =
$$\left\{x \mid x < \frac{8}{3}\right\}$$

vi) $3(2x+1)-2(2x+5)<5(3x-2)$
 $6x+3-4x-10<15x-10$
 $2x-7<15x-10$
 $10-7<15x-2x$
 $3<13x$
or $x>\frac{3}{13}< x$
or $x>\frac{3}{13}$
Solution Set = $\left\{x \mid x>\frac{3}{13}\right\}$
vii) $3(x-1)-(x-2)>-2(x+4)$
 $3x-3-x+2>-2x-8$
 $2x-1>-2x-8$
 $2x+2x>1-8$
 $4x>-7$
 $x>-\frac{7}{4}$
Solution Set = $\left\{x \mid x>-\frac{7}{4}\right\}$
viii) $2\frac{2}{3}x+\frac{2}{3}(5x-4)>-\frac{1}{3}(8x+7)$
 $\frac{8}{3}x+\frac{2}{3}(5x-4)>-\frac{1}{3}(8x+7)$
Multiplying both sides by 3
 $8x+2(5x-4)>-(8x+7)$
 $8x+10x-8>-8x-7$
 $18x-8>-8x-7$

18x + 8x > 8 - 7

26x > 1

 $x > \frac{1}{26}$

Solution Set =
$$\left\{ x \mid x > \frac{1}{26} \right\}$$

Q2. Solve the following inequalities.

i)
$$-4 < 3x + 5 < 8$$

 $-4 < 3x + 5$ and $3x + 5 < 8$
 $-4 - 5 < 3x$ and $3x < 8 - 5$
 $-9 < 3x$ and $3x < 3$
 $-\frac{9}{3} < x$ and $x < \frac{3}{3}$
 $-3 < x$ and $x < 1$

Solution Set =
$$\{x \mid -3 < x < 1\}$$

ii)
$$-5 \le \frac{4-3x}{2} < 1$$

 $-5 \le \frac{4-3x}{2}$ and $\frac{4-3x}{2} < 1$
 $-10x \le 4-3x$ and $4-3x < 2$
 $-10-4 \le -3x$ and $-3x < 2-4$
 $-14 \le -3x$ and $-3x < -2$
 $14 \ge 3x$ and $3x > 2$
 $\frac{14}{3} \ge x$ and $x > \frac{2}{3}$

Solution Set =
$$\left\{ x \mid \frac{14}{3} \ge x > \frac{2}{3} \right\}$$

iii)
$$-6 < \frac{x-2}{4} < 6$$

 $-6 < \frac{x-2}{4}$ and $\frac{x-2}{4} < 6$
 $-24 < x-2$ and $x-2 < 24$
 $-24 + 2 < x$ and $x < 24 + 2$
 $-22 < x$ and $x < 26$

Solution Set =
$$\{x \mid -22 < x < 26\}$$

iv)
$$3 \ge \frac{7-x}{2} \ge 1$$

$$3 \ge \frac{7-x}{2}$$
 and $\frac{7-x}{2} \ge 1$
 $6 \ge 7-x$ and $7-x \ge 2$
 $6-7 \ge -x$ and $-x \ge 2-7$
 $-1 \ge -x$ and $-x \ge -5$
 $1 \le x$ and $x \le 5$

Solution Set = $\{x | 1 \le x \le 5\}$

v)
$$3x-10 \le 5 < x+3$$

 $3x-10 \le 5$ and $5 < x+3$
 $-5-10 \le -3x$ and $-x < 3-5$
 $-15 \le -3x$ and $-x < -2$
 $15 \ge 3x$ and $x > 2$
 $5 \ge x > 2$

Solution Set = $\{x \mid 5 \ge x > 2\}$

vi)
$$-3 \le \frac{x-4}{-5} < 4$$

 $-3 \le \frac{x-4}{-5}$ and $\frac{x-4}{-5} < 4$

$$\Rightarrow 3 \ge \frac{x-4}{5} \quad \text{and} \quad \frac{x-4}{5} > -4$$

$$15 \ge x-4 \quad \text{and} \quad x-4 > 20$$

$$15+4 \ge x \quad \text{and} \quad x > 4-20$$

$$19 \ge x \quad \text{and} \quad x > -16$$

$$19 \ge x \ge -16$$

Solution Set = $\{x \mid 19 \ge x > -16\}$

vii)
$$1-2x < 5-x \le 25-6x$$

 $1-2x < 5-x$ and $5-x \le 25-6x$
 $1-5 \le 2x-x$ and $6x-x \le 25-5$
 $-4 < x$ and $5x \le 20$
 $-4 < x$ and $x \le 4$
 $-4 < x \le 4$

Solution Set = $\{x \mid -4 < x \le 4\}$

viii)
$$3x-2 < 2x+1 < 4x+17$$

 $3x-2 < 2x+1$ and $2x+1 < 4x+17$
 $-2-1 < 2x-3x$ and $2x-4x < 17-1$
 $-3 < -x$ and $-2x < 16$
 $3 > x$ and $2x > -16$
 $3 > x$ and $x > -8$ $3 > x > -8$
Solution Set = $\{x \mid 3 > x > -8\}$

Review Exercise 7

- Q3. Answer the following short questions.
- Define a linear inequality in one variable.

Ans. Linear Inequality in one variable
Let a, b be real numbers, then a is greater
than b if the difference a - b is positive and
we denote this order relation by the
inequality a > b. An equivalent statement is
that b is less than a, symbolized by b < a.
Similarly, if a - b is negative, then a is less
than b and expressed in symbols as a < b.

ii) State the trichotomy and transitive properties of inequality.

Ans. Trichotomy Property of

inequality Property

For any $a,b \in R$, one and only one of the following statements is true.

$$a < b$$
 or $a = b$, or $a > b$

Transitive Property of inequality

Let $a, b, c \in R$

- i) If a > b and b > c, then a > c
- ii) If a > b and b < c, then a < c

The formula relating degrees Fahrenheit to degrees Celcius is
$$F = \frac{9}{5}C + 32$$
. For what value of C is $F < 0$.

Ins. According to formula "F" will be zero, if
$$\frac{9}{5}$$
C+32=0
$$\frac{9}{5}$$
C=-32

$$\frac{9}{5}C = -32$$

$$C = -\frac{32}{9} \times 5$$

$$C = -\frac{160}{9}$$

$$\log \text{et } F < 0 \text{ i.e. negative } C < -\frac{160}{9}$$

- Seven times the sum of an integer and 12 is at least 50 and at most 60. Write and solve the inequality that expresses this relationship.
- 18. Let the required integer be x then $50 \le x + 12 \le 60$ $50 \le x + 12$ and $x + 12 \le 60$ $50 - 12 \le x$ and $x \le 60 - 12$ $38 \le x$ and x < 48

$$38 \le x \le 48$$

Solve each of the following and check for extraneous solution, if any.

$$\sqrt{2t+4} = \sqrt{t-1}$$

Squaring both sides

$$\left(\sqrt{2t+4}\right)^2 = \left(\sqrt{t-1}\right)^2$$

$$2t + 4 = t - 1$$

$$2t - t = -1 - 4$$

$$t = -5$$

ck:

$$\sqrt{2t+4} = \sqrt{t-1}$$

$$\sqrt{2(-5)+4} = \sqrt{-5-1}$$

$$\sqrt{-10+4} = \sqrt{-6}$$

$$\sqrt{-6} = \sqrt{-6} \text{ Which is true, so}$$
solution Set = {-5}

ii)
$$\sqrt{3x-1} - 2\sqrt{8-2x} = 0$$

$$\sqrt{3x-1} = 2\sqrt{8-2x}$$
Squaring both sides

$$(\sqrt{3x-1})^2 = (2\sqrt{8-2x})^2$$

$$3x-1=4(8-2x)$$

$$3x-1=32-8x$$

$$3x + 8x = 32 + 1$$

$$11x = 33$$

$$x = \frac{33}{11}$$

$$x = 3$$

Check:

$$\sqrt{3x-1} - 2\sqrt{8} - 2x = 0$$

$$\sqrt{3(3)-1} - 2\sqrt{8} - 2(3) = 0$$

$$\sqrt{9-1} - 2\sqrt{8} - 6 = 0$$

$$\sqrt{8} - 2\sqrt{2} = 0$$

$$2\sqrt{2} - 2\sqrt{2} = 0$$

$$0 = 0 \text{ Which is true, so}$$

solution set $= \{3\}$

Solve for x O5.

i)
$$|3x+14|-2=5x$$

 $|3x+14|=5x+2$
 $\pm (3x+14)=5x+2$
 $3x+14=\pm (5x+2)$
 $3x+14=5x+2$ or $3x+14=-5x-2$
 $3x-5x=2-14$ or $3x+5x=-2-14$
 $-2x=-12$ or $8x=-16$

$$x = \frac{12}{2}$$
 or $x = -\frac{16}{8}$

$$x = 6$$
 or $x = -2$

Check:

Put
$$x = 6$$
 in

$$|3x+14|-2=5x$$

$$|3(6)+14|-2=5(6)$$

$$|18+14|-2=30$$

$$|32|-2=30$$

$$30-2=30$$

30 = 30, which is true

Now put x = -2

$$|3(-2)+14|-2 \neq 5(-2)$$

$$|-6+14|-2 \neq -10$$

$$|8| - 2 \neq -10$$

$$8 - 2 \neq -10$$

 $6 \neq -10$ which is not true

So, Solution Set =
$$\{6\}$$

ii)
$$\frac{1}{3}|x-3| = \frac{1}{2}|x+2|$$
$$\frac{|x-3|}{|x+2|} = \frac{3}{2}$$
$$\frac{|x-3|}{|x+2|} = \frac{3}{2}$$
$$\pm \left(\frac{x-3}{x+2}\right) = \frac{3}{2}$$

$$\frac{1}{3}|-3| = \frac{1}{2}|2|$$

$$\frac{3}{3} = \frac{2}{2}$$

l=1, which is true

So, Solution Set = $\{-12,0\}$

Q6. Solve the following inequality.

i)
$$-\frac{1}{3}x+5 \le 1$$
$$-\frac{1}{3}x \le 1-5$$
$$-\frac{1}{3}x \le -4$$

Multiplying both sides by -3

Solution Set = $\{x \mid x \ge 12\}$

or
$$\frac{x-3}{x+2} = \pm \frac{3}{2}$$

 $\frac{x-3}{x+2} = \frac{3}{2}$ or $\frac{x-3}{x+2} = -\frac{3}{2}$
 $2(x-3) = 3(x+2)$ or $2(x-3) = -3(x+2)$
 $2x-6 = 3x+6$ or $2x+3x=6-6$
 $-x = 12$ or $5x = 0$
 $x = -12$ or $x = 0$

Check:

Put
$$x = -12$$

 $\frac{1}{3}|x-3| = \frac{1}{2}|x+2|$
 $\frac{1}{3}|-12-3| = \frac{1}{2}|-12+2|$
 $\frac{1}{3}|-15| = \frac{1}{2}|-10|$
 $\frac{15}{3} = \frac{10}{2}$

5=5, which is true

Now put x = 0

$$\frac{1}{3}|0-3| = \frac{1}{2}|0+2|$$

ii)
$$-3 < \frac{1-2x}{5} < 1$$

 $-3 < \frac{1-2x}{5}$ and $\frac{1-2x}{5} < 1$

Multiplying both sides by 5

$$-15 < 1-2x$$
 and $1-2x < 5$
 $-15-1 < -2x$ and $-2x < 5-1$
 $-16 < -2x$ and $-2x < 4$

Multiplying both sides by -1

$$\begin{array}{ccccc}
16 > 2x & \text{and} & 2x > -4 \\
\frac{16}{2} > x & \text{and} & x > \frac{-4}{2} \\
8 > x & \text{and} & x > -2 \\
8 > x > -2 & & & \\
\end{array}$$

Solution Set =
$$\{x/8 > x > -2\}$$

Objective

Which of the following is the solution of the inequality

 $3 - 4x \le 11$?

- (a) $x \ge -8$
- (b) x≥-2

 $(c) x \ge \frac{-14}{4}$

- (d) None of these
- 2. A statement involving any of the symbols <, > or \le or \ge is called:
 - (a) Equation
- (b) Identity
- (c) Inequality (d) Linear equation
- 3. x =____ is a solution of the inequality $-2 < x < \frac{3}{2}$
 - (a) -5 (b) 3
 - (c) 0 (d)
- 4. If x is not larger than 10, then
 - (a) $x \ge 8$ (b) $x \le 10$
 - (c) x < 10 (d) x > 10
- 5.1 If the capacity c of an elevator is at most 1600 pounds, then ___
 - (a) c < 1600 (b) $c \ge 1600$
 - (c) $c \le 1600$ (d) c > 1600
- 6. x = 0 is a solution of the inequality
 - (a) x > 0
- (b) 3x + 5 < 0
- (c) x+2<0 (d) x-2<0
- 7. The linear equation in one variable x is:
 - (a) ax + b = 0
 - (b) $ax^2 + bx + c = 0$
 - (c) ax + by + c = 0
 - (d) $ax^2 + by^2 + c = 0$

- 8. An inconsistent equation is that whose solution set is:
 - (a) Empty (b) Not empty
 - (c) Zero (d)None of these
- 9. Absolute value of a real number a

The designation of

- (a) $|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a, & \text{if } a < 0 \end{cases}$
- (b) |a| = $\begin{cases} a & \text{if } a \le 0 \\ -a & \text{if } a > 0 \end{cases}$
- (c) $|a| = \begin{cases} a & \text{if } a > 0 \\ -a & \text{if } a < 0 \end{cases}$
- (d) None of these
- 10. |x| = a is equivalent to:
 - (a) x = a or x = -a
 - (b) $x = \frac{1}{a} \text{ or } x = \frac{-1}{a}$
 - (c) $x = a \text{ or } x = \frac{-1}{a}$
 - (d) None of these
 - 11. A linear inequality in one variable x is:
 - (a) a x + b > 0, $a \neq 0$
 - (b) $ax^2 + bx + c < 0, a \ne 0$
 - (c) $ax + by + c > 0, a \neq 0$
 - (d) $ax^2 + by^2 + c < 0, a \ne 0$
 - 12. Law of Trichotomy is ...
 - $(a,b \in R)$
 - (a) a < b or a = b or a > b
 - (b) a < b or a = b
 - (c) a < b or a > b
 - (d) None of these

13	. Transitive law is		9				
	(a) $a < b$ and $b < c$, then $a < c$		(c) $x = 2 \text{ or } x = \frac{1}{2}$				
	(b) $a > b$ and $b < c$, then $a > c$						
	(c) $a > b$ and $b < c$, then $a > c$		(d) $x = 2 \text{ or } x = \frac{-1}{2}$				
25-200-0	(d) None of these	21.	0 - 0				
14	- , - · · · · · · · · · · · · · · · · ·		The second section of				
	(a) $a c < bc$ (b) $ac > bc$		by every number for which both sides are defined:				
	(c) $ac = bc$ (d) None		(a) Identity (b) Conditional				
15.	-, v - v dion.		(c) Inconsistent (c) None				
	(a) $\frac{a}{c} > \frac{b}{c}$ (b) $\frac{a}{c} < \frac{b}{c}$	22.					
			whose solution set is the empty set:				
	(c) $\frac{\mathbf{a}}{\mathbf{c}} = \frac{\mathbf{b}}{\mathbf{c}}$ (d) $\frac{\mathbf{b}}{\mathbf{c}} \neq \frac{\mathbf{b}}{\mathbf{c}}$		(a) Identity (b) Conditional				
17			(c) Inconsistent (d) None				
16.	us o, o to, then.	23.	A equation is an equation that				
	(a) $\frac{a}{c} < \frac{b}{c}$ (b) $\frac{a}{c} > \frac{b}{c}$		is satisfied by atleast one number				
		1	but is not an identity:				
	(c) $\frac{a}{c} = \frac{b}{c}$ (d) $\frac{a}{c} \le \frac{b}{c}$		(a) Identity (b) Conditional				
		24.	(c) Inconsistent (d) None				
17.	If $a, b \in R$ then:		x + 4 = 4 + x is equation:				
	(a) $\left \frac{\mathbf{a}}{\mathbf{b}} \right = \frac{ \mathbf{a} }{ \mathbf{b} }$ (b) $ \mathbf{a}\mathbf{b} = \frac{ \mathbf{a} }{ \mathbf{b} }$		(a) Identity (b) Conditional				
		25	(c) Inconsistent (d) None				
	(c) $\left \frac{b}{a} \right = \frac{ b }{ a }$ (d) None of these	25.	=== =qualion.				
N.	a = a (d) None of these		(a) Identity (b) Conditional				
18.	When the variable in an equation	26.	(c) Inconsistent (d) None				
	occurs under a radical, the equation	20.	x = x + 5 is equation:				
	is called aequation.		(a) Identity (b) Conditional (c) Inconsistent (d) None				
E)	(a) Radical (b) Absolute value	27.	Equations having exactly the same				
	(c) Linear (d) None of these	177.5.30	solution are called equations.				
19.	x =0 has only solution.		(a) equivalent (b) Linear				
	(a) one (b) two		(c) Inconsistent (c) None				
	(c) three (d) none of	28.	A solution that does not satisfy the				
	these		original equation is called				
20.	The equation $ x =2$ is equivalent to		solution:				
985i	and the second s		(a) Extraneous (b) Root				
	(a)		(c) General (d) None				
	(b) $x = -2$ or $x = -2$	<u> </u>					

ANSWER KEY

1.	b	2.	c	3.	c	4.	b	5.	С
6.	d	7.	a	8.	a	9.	a	10.	a
11.	a	12.	a	13.	a	14.	b	15.	a
16.	a	17.	a	18.	a	19.	а	20.	a
21.	a	22.	С	23.	b	24.	a	25.	ь
26.	С	27.	a	28.	a	,			

opStudyWorld.com