VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Projekt IAL, 2018Z

Obarvení grafu

Projekt č.6 05. prosince 2018

Tým:

Adámek Josef, xadame42 Barnová Diana, xbarno00 Vanický Jozef, xvanic09 Weigel Filip, xweige01

Obsah

1	Zadanie				
2	Práca v týme 2.1 Príprava a plán	2			
3	Teoretická časť 3.1 Priblíženie problematiky	2 2 3			
5	Implementácia5.1 Struktury5.2 Algoritmus5.3 Analýza složitosti algoritmu	3			
6	Záver	3			
7	Zdroje	3			

1 Zadanie

Vytvoriť program pre hľadanie **minimálneho zafarbenia neorientovaných grafov.** Ak existuje viacej riešení, stačí nájsť len jedno. Výsledky prezentujte vhodným spôsobom. Súčasťou projektu bude načítavanie grafov zo soúboru a vhodné testovacie grafy. V dokumentácii uveď te teoretickú zložitosť úlohy a porovnejte ju s experimentálnymi výsledkami.

2 Práca v týme

2.1 Príprava a plán

Pred začiatkom vývoja boli vziate do úvahy schopnosti každého člena týmu, na základe ktorých boli pridelené úlohy. Časové rámce jednotlivých častí boli len orientačné pre udržanie prehľadu nad postupom a zostávajúcim časom do ukončenia projektu. Byl vytvorený privátny repozitár na Githube, fungujúci na technológii Git pre ľahké verzovanie projektu. Možnosti vytvorit jednotlivé vetvy pro každú soúčasť a nezávislý vývoj a pre prípadnú orientaciu mezi verziami či vrátenia k predchádzjúcej verzii. Pro statickú analýzu kódu sme využili službu Codacy.

2.2 Postup a rozdelenie práce

Pri tomto projekte sme sa rozhodli využiť metódu Test-driven development a to z dôvodu zefektivnenia celeho vývoja. Najskôr bol napísaný test k súčasti, která bola až následně naprogramovaná. Tak sa zabránilo k zavedeniu chybu do už funkčnej časti.

2.3 Komunikácia

Komunikácia v týme prebiehala prostredníctvom služby Messenger ale aj osobne na pravidenlých stretnutiach, ktoré sme si dohodli už na začiatku riešenia projektu.

3 Teoretická časť

3.1 Priblíženie problematiky

Graf (všeobecne) je definovaný trojicou G=(N, E, I), kde

- N je množina uzlov, ktorým je možné priradiť hodnotu
- E je množina hrán, ktorým je možné priradiť hodnotu. Každá hrana spojuje dva uzly a môže byť orientovaná.
 Ak je hrana orientovaná tak sa hovorí o orientovanom grafe. V našom prípade sa teda jedná o neorientovaný graf, pretože hrany sú neorientované.
- I je množina spojenia, ktorá jednoznačne určuje dvojice uzlov daného grafu

	A	В	C	D	E
A	0	1	1	1	1
В	1	0	0	0	0
С	1	0	0	1	0
D	1	0	1	0	1
E	1	0	0	1	0

Obrázek 1: Príklad neorientovaného grafu a jeho matice

Implementácia neorientovaného grafu je pomocou matice koincidencie t.j spojenia. Táto matica je symetrická podľa hlavniej diagonály.

Zafarbením grafu rozumieme priradenie farieb uzlom grafu, pričom žiadne dve susedné uzly nesmú byť zafarbené rovnako. Minimálny počet použitých farieb se nazýva **chromatické číslo**. Práve toto chromatické číslo v našom projekte hľadáme.

[EDIT: Právě řešení s tímto chromatickým číslem v našem projektě hledáme.]

3.2 Popis projektu

Spúštanie: ./main -f FILENAME [-h] [-b], kde

- -f FILENAME je názov súboru, ktorý obsahuje maticu grafu
- -b je volitelný parameter, ktorý má na starosti...
- -h je volitelný parameter, ktorý má na starosti vytlačiť spravu pre používanie na stdout

4 Testování projektu

Projekt sme najskôr testovani na menšich testovacích grafoch, ktoré sme vytvorili a vedeli aj odkontrolovať. Neskôr sme na generovanie grafov vytvorili skript, ktory vytvoril aj väčšie grafy. Testovanie prebiehalo na platforme Ubuntu, MacOS a FreeBSD.

5 Implementácia

[EDIT: Všechno pod tímto přeložit]

- 5.1 Struktury
- 5.2 Algoritmus
- 5.3 Analýza složitosti algoritmu
- 6 Záver

TBD

7 Zdroje

opora ial, izu prednasky, prednasky ial,