Table of Contents

(i)	Table of Contents	1
(ii)	List of Figures	2
(iii)	List of Tables	4
(iv)	List of Acronyms	5
(v)	Abstract	6
(vi)	Introduction	7
(vii)	Executive Summary	8
(viii)	Field Methods	9
1.	Sample Design, Stratification, and Plots Weights	12
2.	Vegetation Re-classification	. 21
3.	Ecological Site Descriptions Completion Assessment	26
4.	Increase Range around Narrow Ecological Site Benchmarks	29
5.	Ecological Site Description and Ecological Site Group Comparison - Vegetation 'Benchmarks' \dots	. 31
6.	An Assessment of Drought Conditions	. 36
7.	An Overview of the Analytic Sections	. 41
8.	Bare ground	. 42
9.	Soil Stability	45
10.	Invasive Species	49
11.	Plant Functional Diversity - Cover	. 54
12.	Plant Functional Diversity - Species	66
13.	Rare Species	. 71
14.	Floristic Quality Index	77
15.	Glossary	. 84
16.	Acknowledgements	87

List of Figures

1.	Figure	VIII.1 Layout of an AIM plot
2.	Figure	1.1 All AIM plots sampled in the field office
3.	Figure	$\textbf{1.2} \text{ AIM plots sampled near Dominguez-Escalente NCA} \\ \dots \\ \dots \\ 17$
4.	Figure	1.3 AIM plots sampled near Gunnison-Gorge NCA
5.	Figure	1.4 Summary of Plot Sampling Effort and Plot Fates
6.	Figure	2.1 Relationships between diagnostic metrics for vegetation types
7.	Figure	2.2 Percent Land Cover
8.	Figure	2.3 Movement of Pixels from stratification to post stratification
9.	Figure	3.1 Number of AIM plots per Ecological Site
10.	Figure	3.2 Number of plots which have Quantitative Benchmarks
l1.	Figure	4.1 Imputed Ranges Around Mean Values
12.	Figure	5.1 Proportion of Plots mapped to their Ecological Site Groups
13.	_	5.2 Initial Relationship Between Field Verified ESD and ESG extracted from the gridded
14.	Figure	${f 5.3}$ Relationships Between ESDs and ESGs midway through the cleaning process 33
l5.	Figure	${f 5.4}$ Relationship between ESDs and ESGs at end of classification process
16.	Figure	5.5 Mean Benchmarks ESD and ESG
17.	Figure	6.1 Stylized topographic map of the area of analysis
18.	Figure	6.2 SPEI of the Uncompangre Field Office Area
19.	Figure	6.3 Drought Status of the Uncompangre Field Office Area
20.	Figure	8.2 ESD and ESG derived Benchmarks [bare ground]
21.	Figure	8.3 Bare ground
22.	Figure	8.4 Land Meeting Benchmarks (Bare Ground)
23.	Figure	9.1 Estimates of Median Soil Stability
24.	Figure	9.2 Land Meeting Benchmarks (Soil Stability)
25.	Figure	10.1 Composite "Invasive Index"
26.	Figure	10.2 Invasive Species Index
27.	Figure	10.3 Invasive Species in the NE Field Office
28.	Figure	10.4 Land Meeting Benchmarks (Invasive Species)
29.	Figure	11.1 Validation of Calculations
30.	Figure	11.2 Forb Cover [Benchmarks]
31.	Figure	11.3 Shrub Cover [Benchmarks] 58

32.	Figure 11.4	Tree Cover [Benchmarks]	59
33.	Figure 11.5	Grass Cover [Benchmarks]	60
34.	Figure 11.6	Proportion of Plots Meeting Benchmark	61
35.	Figure 11.7	Total area of each stratum and the overall status of benchmarks	62
36.	Figure 12.1	Number of Species per Functional Group across ESD	67
37.	Figure 12.2	Species Observed per AIM Plot	68
38.	Figure 13.1	Species Occurrences	73
39.	Figure 14.1	Measured Floristic Quality	78
40.	Figure 14.2	Comparison of Median Values by Stratum	80
41.	Figure 14.3	Predicted Floristic Quality	80
42.	Figure 14.4	Model Selection Table	82
43.	Figure 15.1	Alternative Stable States	84
44.	Figure 15.2	A Sample Frame with Five Panels	. 86

Note, digits refer to the section which the figure is located in, and the decimal to the figures number within that section.

List of Tables

1.	Figure VIII.1 Core Indicators and Methods to Collect them
2.	Table 1.1 Original Sample Design for the Entire Sample Frame
3.	Table 1.2 Realized Weighted Sample Design for the Entire Sample Frame
4.	Table 1.3 Original Sample Design for Areas of Critical Environmental Concern and Wilderness Study Areas
5.	Table 1.4 Number of Plots Drawn per ACEC 16
6.	Table 1.5 Realized Weighted Sample Design for the Entire Sample Frame
7.	Table 1.6 Original Sample Design for Dominguez-Escalante 17
8.	Table 1.7 Realized Weighted Sample Design for Dominguez-Escalante 18
9.	Table 1.8 Original Sample Design for Gunnison Gorge 18
10.	Table 1.9 Realized Weighted Sample Design for Gunnison Gorge 19
l1.	Table 3.1 Variation of Benchmarks
12.	Table 5.1 Variables to calculate Potential Evaporation via the Penman-Montieth equation 37
l3.	Table 5.2 SPI Values Interpretation 38
14.	Table 10.1 Land Meeting Benchmarks by Administrative Unit 63
l5.	Table 12.1 Seven Forms of Rarity - Conceptual 71
16.	Table 12.2 Seven Forms of Rarity - Examples

List of Acronyms

ACEC Area of Critical Environmental Concern

AIM Terrestrial Assess, Inventory, and Monitor

BLM Bureau of Land Management

DEM Digital Elevation Model

ES Ecological Site

 \mathbf{ESD} Ecological Site Description

 \mathbf{ESG} Ecological Site Group

MLRA Major Land Resource Area

NCA National Conservation Area

NOC National Operations Center

 ${f NGO}$ Non-Governmental Organization

 \mathbf{NPS} National Park Service

NRCS National Resource Conservation Service

 ${\bf RMP}$ Resource Management Plan

USFS United States Forest Service

 ${\bf USGS}$ United States Geological Survey

 \mathbf{WSA} Wilderness Study Area

Abstract

The Uncompander Field office completed the first Terrestrial Assess, Inventory, and Monitor panel which it initiated in summer of 2022. This report summarizes the status and conditions of several key indicators from the AIM data set, in comparison to the reference conditions contained in Ecological Site Descriptions, or when required Ecological Site Groups. All comparisons are made using spatially explicit inferential statistics which allow for the interpretation of the percent of the field office falling into different categories which are meeting management conditions as specified in the Resource Management Plan (RMP).

Virtually all work was conducted in the statistical Programming language R, with occasional use of 'bash' and python. Most project 'styling' and report elements were designed using Latex in an Rmarkdown/Rstudio environment. All work was tracked using the version control software 'git' and is stored on a website known as Github, which contains logs of all major incremental changes in the sections. We hope that these steps make it easy for others to replicate our work, in short order build upon, and then readily surpass it.

Introduction

This document can be considered in two parts. The first four sections, i.e. the sections up to 'An Assessment of Drought Conditions' are materials which do not directly relate to the analyses in the remaining portion of the document. Rather they reflect import processes in establishing the framework which we used to compare plots, and interpret results. The first section, 'Sample Design, Stratification, and Plots Weights', relates to an initial oversight regarding the sample design which made us very slightly re-assign the weights of plots associated with the three different areas of the field office which have different management objectives under the Resource Management Plan. The section 'Ecological Side Descriptions Completion Assessment' was essential to evaluate the progress made, and remaining to be made, regarding the establishment of Ecological Sites, and their documentation via the formal Ecological Site Description process. Many of the plots had benchmarks which were very narrow, and did not reflect either uncertainty associated with sampling errors, or natural variation, we slightly adjusted the range of these benchmarks in 'Increase Range around Narrow Ecological Site Benchmarks'. While we intended to use benchmarks directly from Ecological Site Descriptions, the Natural Resource Conservation Service still has many to complete in our area, largely focused in a Major Land Resource Area which contains most of our higher elevation lands. In order to utilize benchmarks across the entirety of the field office, we turned to Ecological Site Groups, a framework recently developed by the United State Geological Survey for the Colorado Plateau. We had to undertake multiple steps to ensure that the NRCS and USGS approaches would be congruent for the report which are detailed in 'Ecological Site Description and Ecological Site Group Comparison - Vegetation 'Benchmarks'. The final section 'An Assessment of Drought Conditions' relates to an aspect of the AIM sample design regarding time series data. Some other AIM analysts have made note of using time as a predictor of variation in responses within a single 5-year panel, which allows them to weight plots sampled in years with normal of above normal precipitation more than plots in drier years. However, we believed that the drought conditions over the sample period were too great to consider years in isolation, and pooled these data. These sections all served to inform how we carried out the analysis of the AIM indicators in the remaining work.

The second part, the next several sections, up to 'Plant Functional Diversity - Species', form the main body of work, and deal with a number of the Assess, Inventory, and Monitor, Indicators, for which we had enough data to investigate in a meaningful manner. These sections proceed in fashion of increasing ecological and biological complexity, but are written to largely be independent of each other; i.e. modular. Notably, the earlier sections refer to more detailed phenomena which are described in the introductions to the later sections. The first section 'Bareground' documents how much soil across the field office is exposed to wind and precipitation. 'Soil Stability' contextualizes how these soils, based on their aggregate stability, have different potential to soil erosion, and the effects of this process on the field office and adjacent areas. 'Noxious Species' investigates the distribution of weeds across the field office, the taxonomic identities of them, and identifies areas with considerable presence of invasive species. We next turn to investigating the cover of each of the major plant functional types in comparison to reference conditions in Plant Functional Diversity - Cover, and believe this to be the most integral portion of the document. We then identify the number of species in the major, and some finer resolution, functional groups in 'Plant Functional Diversity - Species'.

The remaining sections, 'Rare Species' and 'Floristic Quality Index', show opportunistic applications of the AIM data set outside of the realm of Ecological Sites. In 'Rare Species' we identify the species of conservation concern, across a variety of agencies and Non-Governmental Organizations, as well as species rare under two other non-conservation related metrics. Finally we compute the 'Floristic Quality Index' and model it across the field office using Species Richness data, this metric is commonly used in Midwestern and Eastern states, and we believed it's results were largely congruent to the efforts from the combined AIM indicators.