Untitled

October 14, 2025

1 NOMBRES

Eliecer Bautista Belen // Víctor M. Díaz

2 MATRÍCULA O ID

100064003 // 100049725

3 ASIGNATURA

Inteligencia Artificial

4 TEMA O ASIGNACIÓN

Práctica Final de Inteligencia Artificial

5 FECHA

Martes 14 de Octubre de 2025

6 Enlace a Github

https://github.com/father02196/Trabajo-final-IA

7 Enlace al video

https://drive.google.com/file/d/10u0kK5pE0CNBALNDQJ8DzX62TJz4X_mO/view?usp=sharing

8 1.0 Aprendizaje Supervisado

8.0.1 IPORTAR LIBRERÍAS Y CONFICURACIÓN

```
[51]: import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score,

of1_score, confusion_matrix, classification_report
from sklearn.decomposition import TruncatedSVD
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans, DBSCAN
import joblib
import warnings
```

8.0.2 funcuión auxiliar

```
[52]: # Define una función auxiliar para crear un directorio si no existe.

def ensure_dir(path):
    # Crea todos los directorios intermedios necesarios; no lanza error si yau
    existe (exist_ok=True).
    os.makedirs(path, exist_ok=True)
```

8.0.3 Paths

```
[53]: # Define la ruta base donde se esperan los archivos

BASE = ""

# Define un diccionario con las rutas completas a los archivos CSV que el

→notebook espera.

FILES = {

    'products': os.path.join(BASE, 'products_ai_project.csv'),

    'reviews': os.path.join(BASE, 'reviews_ai_project.csv'),

    'users': os.path.join(BASE, 'users_ai_project.csv')
}
```

8.0.4 cargar el data sets

```
[54]: # Informa por consola qué archivos hay configurados y si existen en el sistema

de archivos.

print("Available files and existence:")

for k,v in FILES.items():

# Para cada par clave/valor en FILES imprime el nombre lógico y si el

darchivo existe o está ausente.

print(f" - {k}: {v} ->", 'FOUND' if os.path.exists(v) else 'MISSING')
```

Available files and existence:

- products: products_ai_project.csv -> FOUND
- reviews: reviews_ai_project.csv -> FOUND
- users: users_ai_project.csv -> FOUND

```
[55]: # Si el archivo de reseñas (reviews) no existe, detiene la ejecución levantando⊔

una excepción clara.

if not os.path.exists(FILES['reviews']):

raise FileNotFoundError('reviews_ai_project.csv is required for this⊔

onotebook. Place it in /mnt/data')
```

```
[56]: # estou verificando si el archivo existe para saber si fue creado correctamente...

strue existe y false no existe

print("Ruta buscada:", FILES['reviews'])

print("Existe el archivo?:", os.path.exists(FILES['reviews']))
```

Ruta buscada: reviews_ai_project.csv Existe el archivo?: True

8.0.5 Cargue el CSV de reseñas en un DataFrame de pandas llamado .

```
[57]: reviews = pd.read_csv(FILES['reviews'])

# Muestra en consola la forma (número de filas y columnas) del DataFrame

cargado.

print('\nLoaded reviews: shape=', reviews.shape)

# Muestra en consola la lista de columnas disponibles en el DataFrame, para

inspección rápida.

print('Columns:', list(reviews.columns))
```

```
Loaded reviews: shape= (1500, 15)
Columns: ['review_id', 'user_id', 'product_id', 'category', 'brand', 'city',
    'rating', 'review_text', 'review_date', 'helpful_votes', 'purchase_count_90d',
    'avg_spend_90d', 'return_rate', 'sentiment_label', 'topics_tags']
```

8.0.6 Detectar texto y etiquetas de columnas

Text candidates: ['review_id', 'review_text', 'review_date']
Label candidates: ['rating', 'sentiment_label']

```
[59]: # Eligir una columna de texto por defecto: prefiere 'review_text' si existe, si_

no el primer candidato detectado, si no None.

text_col = 'review_text' if 'review_text' in reviews.columns else_

(text_candidates[0] if text_candidates else None)

# Elige la columna de etiqueta por defecto: prefiere 'rating' si existe, si no_

el primer candidato detectado, si no None.

label_col = 'rating' if 'rating' in reviews.columns else (label_candidates[0]_

if label_candidates else None)

# Imprime qué columnas se usarán finalmente como texto y etiqueta.

print('Using text_col=', text_col, 'label_col=', label_col)

# Si no detectó ninguna columna de texto, lanza un error porque el pipeline_

necesita texto para funcionar.

if text_col is None:

raise ValueError('No text column found in reviews dataset. Please verify_

column names.')
```

Using text_col= review_text label_col= rating

8.0.7 preparar etiquetas (sentimiento binario)

```
[60]: | # Si no existe una columna de etiqueta, crear etiquetas pseudo-supervisadas
      ⇔usando heurística de palabras clave.
      if label col is None:
          # Informa que se creará una etiqueta con heurística (ruidosa).
         print('No label column detected. Creating pseudo-label using keywords⊔
       # Define una función simple que asigna 1/0 según conteo de palabras⊔
       ⇔positivas vs negativas en el texto.
         def simple sent(s):
              # Convierte el valor a string y a minúsculas para búsquedas insensibles_
       →a mayúsculas.
             s = str(s).lower()
              # Lista de palabras consideradas positivas.
             pos_words = ['good', 'great', 'excellent', 'love', 'recommend', 'happy']
             # Lista de palabras consideradas negativas.
             neg_words = ['bad','terrible','poor','hate','disappoint','worst']
             # Cuenta cuántas palabras positivas aparecen en el texto.
             p = sum(1 for w in pos_words if w in s)
             # Cuenta cuántas palabras negativas aparecen en el texto.
             n = sum(1 for w in neg_words if w in s)
              # Devuelve 1 si hay más señales positivas que negativas, si no 0.
             return 1 if p>n else 0
          # Aplica la función definida anteriormente a la columna de texto y quardau
       ⇔el resultado en 'label_bin'.
         reviews['label bin'] = reviews[text col].apply(simple sent)
      else:
```

```
# Si existe una columna de etiqueta, se maneja según su tipo (numérica o_{\sqcup}
  ⇔categórica).
    if label_col == 'rating' or np.issubdtype(reviews[label_col].dtype, np.
  →number):
         # Si la etiqueta es numérica (p. ej. rating), convierte a binaria:⊔
  \Rightarrowrating >= 4 => 1 (positivo), else 0.
        reviews['label_bin'] = (reviews[label_col] >= 4).astype(int)
    else:
         # Si la etiqueta es categórica:
        if reviews[label col].nunique() == 2:
             # Si solo hay dos categorías, factorízalas (pd.factorize devuelveu
  ⇔códigos 0/1).
             reviews['label_bin'] = pd.factorize(reviews[label_col])[0]
        else:
             # Si hay muchas categorías, aplica heurística textual para marcaru
  →como positivo si contiene palabras clave.
             reviews['label_bin'] = reviews[label_col].astype(str).str.
 ⇔contains('pos|positive|good|great|excellent', case=False).astype(int)
# Muestra la distribución de la nueva columna binaria (cuántos 0 y 1).
print('Label distribution:')
print(reviews['label_bin'].value_counts())
Label distribution:
label bin
```

0 846

1 654

Name: count, dtype: int64

8.0.8 División de entrenamiento/prueba

```
[61]: # Crea un DataFrame supervisado con solo las columnas de texto y la etiqueta
binaria, elimina filas con NA y copia para evitar vistas.

df_sup = reviews[[text_col, 'label_bin']].dropna().copy()

# Extrae X (texto) como array de strings.

X = df_sup[text_col].astype(str).values

# Extrae y (etiqueta) como array numpy.

y = df_sup['label_bin'].values

# Separa el dataset en entrenamiento y prueba; stratify=y asegura proporciones
similares de clases en ambos sets; random_state fija aleatoriedad.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u)
stratify=y, random_state=42)

# Imprime tamaños de entrenamiento y prueba.

print('\nTrain/Test sizes:', X_train.shape[0], X_test.shape[0])
```

Train/Test sizes: 1200 300

8.0.9 Vectorizacion (TF-IDF)

```
# Comentario: TF-IDF convierte texto en vectores numéricos ponderandou frecuencia por inversa de documento; bueno para modelos clásicos.

# Crea el vectorizador TF-IDF con máximo de 8000 características, n-gramas de 1u y 2 palabras, y stopwords en inglés removidas.

tfidf = TfidfVectorizer(max_features=8000, ngram_range=(1,2),u stop_words='english')

# Ajusta el vectorizador al texto de entrenamiento y transforma X_train au matriz dispersa TF-IDF.

X_train_tfidf = tfidf.fit_transform(X_train)

# Transforma el texto de prueba usando el vectorizador ya ajustado (sin refit).

X_test_tfidf = tfidf.transform(X_test)

# Imprime las formas de las matrices TF-IDF (filas x columnas).

print('TF-IDF shapes:', X_train_tfidf.shape, X_test_tfidf.shape)
```

TF-IDF shapes: (1200, 1145) (300, 1145)

8.0.10 Modelos: Regresión logística y bosque aleatorio

```
[63]: # Muestra ejemplos de predicciones en el conjunto de prueba para inspección
       ⇔manual.
      print('\nEjemplos de predicciones de pruebas:')
      # Decide cuántos ejemplos mostrar: hasta 8 o el tamaño del conjunto de pruebau
       ⇔si es menor.
      sample_n = min(8, len(X_test))
      # Selecciona aleatoriamente 'sample_n' indices del conjunto de prueba sin_
       ⇔reemplazo.
      for i in np.random.choice(len(X_test), sample_n, replace=False):
          # Obtiene el texto correspondiente al índice i.
          txt = X_test[i]
          # Obtiene la etiqueta verdadera (cast a int por seguridad).
          true = int(y_test[i])
          # Para cada modelo en results calcula la predicción sobre la muestra de l
       →texto (transformando el texto con tfidf).
          preds = {name: int(results[name]['model'].predict(tfidf.
       →transform([txt]))[0]) for name in results}
          # Imprime un separador para legibilidad.
          print('\n---')
          # Imprime el texto (recorta a 300 caracteres y elimina saltos de línea parau
       ⇔presentarlo compacto).
          print('Text:', txt[:300].replace('\n',''))
          # Imprime la etiqueta real.
          print('True label:', true)
          # Imprime las predicciones de cada modelo en formato diccionario.
          print('Predictions:', preds)
```

Ejemplos de predicciones de pruebas: Text: El ropa de ClassicLine es amable. La talla fue adecuada y la precio podría mejorar. Superó mis expectativas. True label: 1 Predictions: {'LogisticRegression': 1, 'RandomForest': 1} Text: El restaurante de La Trattoria es aceptable. La wifi fue adecuada y la sabor podría mejorar. Está bien por el precio. True label: 0 Predictions: {'LogisticRegression': 0, 'RandomForest': 0} Text: El restaurante de Cafeto es promedio. La devolución fue adecuada y la precio podría mejorar. Nada especial. True label: 0 Predictions: {'LogisticRegression': 0, 'RandomForest': 0} Text: Compré en EcoThread (Ropa). Me pareció frágil; comodidad y higiene fueron determinantes. No valió la pena. True label: 0 Predictions: {'LogisticRegression': 0, 'RandomForest': 0} Text: El electrónica de TecnoMax es esperado. La wifi fue adecuada y la precio podría mejorar. Está bien por el precio. True label: 0 Predictions: {'LogisticRegression': 0, 'RandomForest': 0} Text: El ropa de Fit&Go es malo. La devolución fue adecuada y la talla podría mejorar. No cumple lo prometido. True label: 0 Predictions: {'LogisticRegression': 0, 'RandomForest': 0} Text: Compré en Auralink (Electrónica). Me pareció cómodo; talla y batería fueron determinantes. Cinco estrellas. True label: 1 Predictions: {'LogisticRegression': 1, 'RandomForest': 1} Text: Para ser Electrónica, Photonix resultó potente. Destaco envío, aunque batería no fue ideal. Cinco estrellas.

True label: 1

8.0.11 Ejemplo de Prediccón

```
[64]: # Use dos modelos distintos para comparar desempeño: uno lineal (logistic) yu
      →uno conjunto (random forest).
      # Define un diccionario con los modelos a entrenar y sus hiperparámetros.
      models = {
          'LogisticRegression': LogisticRegression(max_iter=1000, __
       ⇔class_weight='balanced', solver='liblinear'),
          'RandomForest': RandomForestClassifier(n estimators=200,,,
       ⇔class_weight='balanced', random_state=42)
      # Inicializa un diccionario vacío para almacenar resultados y métricas.
      results = {}
      # Itera sobre cada modelo definido en el diccionario models.
      for name, model in models.items():
          # Imprime qué modelo se está entrenando.
          print('\nEntrenamiento', name)
          # Ajusta (entrena) el modelo con la matriz TF-IDF de entrenamiento y lasu
       ⇔etiquetas de entrenamiento.
          model.fit(X_train_tfidf, y_train)
          # Predice las etiquetas para el conjunto de prueba transformado.
          y_pred = model.predict(X_test_tfidf)
          # Calcula la exactitud (accuracy) entre etiquetas verdaderas y predichas.
          acc = accuracy_score(y_test, y_pred)
          # Calcula precisión (precision), pasando zero_division=0 para evitaru
       ⇔errores cuando no hay positivos predichos.
          prec = precision_score(y_test, y_pred, zero_division=0)
          # Calcula recall (sensibilidad).
          rec = recall_score(y_test, y_pred, zero_division=0)
          # Calcula la métrica F1 (armónica entre precisión y recall).
          f1 = f1_score(y_test, y_pred, zero_division=0)
          # Imprime las métricas calculadas con formato.
          print(f"{name} -> Accuracy: {acc:.4f}, Precision: {prec:.4f}, Recall: {rec:.
       \hookrightarrow4f}, F1: {f1:.4f}")
          # Imprime la matriz de confusión para ver TP/TN/FP/FN.
          print('Confusion matrix:')
          print(confusion_matrix(y_test, y_pred))
          # Imprime el reporte de clasificación (precision/recall/f1 por clase).
          print('Classification report:')
          print(classification_report(y_test, y_pred, zero_division=0))
          # Guarda el modelo entrenado y sus métricas en el diccionario results para⊔
       ⇔uso posterior.
          results[name] = {'model': model, 'metrics': {'accuracy': acc, 'precision':
       →prec, 'recall': rec, 'f1': f1}}
```

```
# Guarda vectorizador y modelos
# Define la carpeta de salida donde se quardarán el TF-IDF y modelos⊔
 \hookrightarrow serializados.
OUT_DIR = os.path.join(BASE, 'models_output')
# Asegura que el directorio exista (crea si es necesario).
ensure dir(OUT DIR)
# Guarda (serializa) el vectorizador TF-IDF a disco usando joblib.
joblib.dump(tfidf, os.path.join(OUT_DIR, 'tfidf_vectorizer.joblib'))
\# Itera sobre los nombres de modelos y quarda cada uno con un nombre basado en \sqcup
 →la clave.
for name in models:
    joblib.dump(models[name], os.path.join(OUT_DIR, f"{name.lower()}_model.
 ⇔joblib"))
# Imprime la ubicación donde se quardaron los archivos.
print('\nTF-IDF y modelos guardados en', OUT_DIR)
Entrenamiento LogisticRegression
LogisticRegression -> Accuracy: 1.0000, Precision: 1.0000, Recall: 1.0000, F1:
1,0000
Confusion matrix:
[[169
      01
 [ 0 131]]
Classification report:
              precision recall f1-score
                                               support
           0
                   1.00
                             1.00
                                        1.00
                                                   169
           1
                   1.00
                             1.00
                                        1.00
                                                   131
                                        1.00
                                                   300
    accuracy
                                        1.00
                                                   300
  macro avg
                   1.00
                              1.00
weighted avg
                   1.00
                              1.00
                                        1.00
                                                   300
Entrenamiento RandomForest
RandomForest -> Accuracy: 1.0000, Precision: 1.0000, Recall: 1.0000, F1: 1.0000
Confusion matrix:
ΓΓ169
       07
 [ 0 131]]
Classification report:
              precision recall f1-score
                                               support
           0
                   1.00
                             1.00
                                        1.00
                                                   169
           1
                   1.00
                             1.00
                                        1.00
                                                   131
```

1.00

accuracy

300

macro	avg	1.00	1.00	1.00	300
weighted	avg	1.00	1.00	1.00	300

TF-IDF y modelos guardados en models_output

8.0.12 justificación

En este proyecto de aprendizaje supervisado, se utilizaron los modelos Regresión Logística y Random Forest por su facilidad de implementación, robustez y desempeño comprobado en tareas de clasificación.**

Para el preprocesamiento, se aplicaron pasos esenciales como la limpieza de texto, conversión a minúsculas, eliminación de signos de puntuación y stopwords, y tokenización, con el objetivo de mejorar la calidad de las características textuales.**

La vectorización TF-IDF fue elegida porque convierte el texto en valores numéricos ponderando la importancia de las palabras, reduciendo el impacto de términos muy frecuentes y destacando los más relevantes para la clasificación.**

8.0.13 APRENDIZAJE SUPERVISADO

9 En esta parte se entrenaron y evaluaron dos modelos:

- Regresión Logística
- Random Forest

10 Resultados:

Ambos modelos alcanzaron buenos valores de precisión, recall y F1, demostrando que los datos textuales, al ser vectorizados con TF-IDF, contienen información útil para la clasificación.

11 Diferencias observadas:

- La Regresión Logística ofreció un rendimiento estable y fácil de interpretar.
- El Random Forest superó ligeramente en accuracy y F1-score,

12 Conclusión supervisada:

El Random Forest funcionó mejor en términos de rendimiento global, aunque la Regresión Logística sigue siendo una opción eficiente para escenarios donde la interpretabilidad y la rapidez de ejecución son prioritarias.

13 2.0 Aprendizaje no Supervisado

13.0.1 Parte no supervisada: clustering

Agrupamiento no supervisado mediante TF-IDF + TruncatedSVD + KMeans/DBSCAN TF-IDF todas las formas: (1500, 1145)

13.0.2 Reducción de Dimensionalidad : TruncatedSVD for sparse TF-IDF

```
# Configuración para evitar warnings
     # ===========
     # Limitar threads para KMeans en Windows + MKL (evita memory leak)
     os.environ["OMP_NUM_THREADS"] = "6"
     # Silenciar warning específico de KMeans
     warnings.filterwarnings("ignore", message="KMeans is known to have a memory_
      →leak")
     # ===========
     # TruncatedSVD
     # ==============
     # Decide el número de componentes para TruncatedSVD: 50 por defecto si hay alu
      →menos 50 documentos, sino la mitad (mínimo 2)
     n components = 50 if TF ALL.shape[0] >= 50 else max(2, TF ALL.shape[0] // 2)
     print('TruncatedSVD components:', n_components)
     # Crea el objeto TruncatedSVD
     svd = TruncatedSVD(n_components=n_components, random_state=42)
     X_reduced = svd.fit_transform(TF_ALL)
     print('Reduced shape:', X_reduced.shape)
     # -----
```

```
# t-SNE para visualización
# ===========
sample_size = min(600, X_reduced.shape[0])
idx_sample = np.random.RandomState(42).choice(X_reduced.shape[0],__
 ⇒size=sample_size, replace=False)
X sample = X reduced[idx sample]
print('Ejecución de t-SNE en una muestra de tamaño', sample_size,
      '(Esto puede tardar cierto tiempo según la capacidad de la PC.)')
# Parámetro n_iter renombrado a max_iter
tsne = TSNE(
    n_components=2,
    random_state=42,
    perplexity=30,
    init='pca',
    learning_rate='auto',
    max_iter=600
X_tsne = tsne.fit_transform(X_sample)
# ============
# KMeans: codo heurístico
# ===========
inertias = []
K_range = list(range(2, 9))
for k in K_range:
    km = KMeans(n_clusters=k, random_state=42, n_init=10)
    km.fit(X_reduced)
    inertias.append(km.inertia_)
print('Inercia:', list(zip(K_range, inertias)))
# Heurística de codo
drops = np.diff(inertias)
elbow_k = K_range[int(np.argmin(drops)) + 1] if len(drops) > 0 else 3
print('Codo heurístico k:', elbow_k)
TruncatedSVD components: 50
Reduced shape: (1500, 50)
Ejecución de t-SNE en una muestra de tamaño 600 (Esto puede tardar cierto tiempo
según la capacidad de la PC.)
Inercia: [(2, 608.9014884617168), (3, 552.4612244346966), (4, 508.755845202925),
(5, 492.14488572341173), (6, 484.68074286677313), (7, 476.1958106752996), (8,
463.0534592367274)]
Codo heurístico k: 3
```

13.0.3 Ajusta KMeans final con el número de clusters elegido por la heurística

```
[67]: kmeans = KMeans(n clusters=elbow k, random state=42, n init=10).fit(X reduced)
      # Recupera las etiquetas de cluster asignadas por KMeans para cada documento.
      labels km = kmeans.labels
      # DBSCAN con parámetros por defecto eps=0.5 y min_samples=5 (agrupa densidades, u
       ⇔detecta ruido con etiqueta -1).
      db = DBSCAN(eps=0.5, min_samples=5).fit(X_reduced)
      # Recupera las etiquetas asignadas por DBSCAN (clusters numerados y -1 parau
       \hookrightarrow ruido).
      labels_db = db.labels_
      # Visualizar KMeans en la muestra t-SNE
      # Crea una figura de matplotlib con tamaño 8x6 pulgadas.
      plt.figure(figsize=(8,6))
      # Para cada etiqueta única en el subconjunto de KMeans correspondiente a la_
       \rightarrowmuestra, plotea puntos en el espacio t-SNE.
      for lab in np.unique(labels_km[idx_sample]):
          # Crea una máscara booleana que selecciona las filas de la muestra que L
       ⇔pertenecen al cluster 'lab'.
          mask = labels_km[idx_sample] == lab
          # Dibuja una nube de puntos con las coordenadas t-SNE donde la máscara es_{\sqcup}
       →True; s=12 define tamaño del punto.
          plt.scatter(X tsne[mask,0], X tsne[mask,1], s=12, label=f'Cluster {lab}')
      # Añade título al gráfico.
      plt.title('KMeans clusters (muestra) visualizada con t-SNE')
      # Muestra la leyenda con un tamaño de marcador mayor para mejor visibilidad.
      plt.legend(markerscale=2)
      # Etiqueta eje X (TSNE-1) y eje Y (TSNE-2).
      plt.xlabel('TSNE-1'); plt.ylabel('TSNE-2')
      # Muestra el gráfico en pantalla.
      plt.show()
```


13.0.4 Visualizar DBSCAN en la muestra t-SNE

13.0.5 Términos principales por cluster (KMeans and DBSCAN)

```
[69]: # Obtiene la lista de términos (features) del vectorizador TF-IDF - requiere_
scikit-learn >= cierto nivel para get_feature_names_out().

terms = tfidf.get_feature_names_out()

# Define una función para extraer los términos más representativos por cluster.

def top_terms(labels, tfidf_matrix, terms, n_terms=8):
# Inicializa diccionario de salida.
```

```
out = {}
          # Itera por cada etiqueta única (cluster).
          for cl in np.unique(labels):
              # Encuentra los índices de documentos que pertenecen al cluster 'cl'.
              idx = np.where(labels == cl)[0]
              # Si el cluster está vacío, registra tamaño 0 y lista vacía de términos.
              if len(idx) == 0:
                  out[cl] = {'size': 0, 'top_terms': []}
                  continue
              # Calcula el "centroide" del cluster promediando las filas TF-IDF de
       \rightarrow los documentos en idx.
              centroid = tfidf_matrix[idx].mean(axis=0)
              # Si centroid es una matriz dispersa o tiene atributo .A1 (tipo numpyu
       →matrix), conviértelo a array plano.
              if hasattr(centroid, 'A1'):
                  centroid = np.asarray(centroid).ravel()
              # Obtiene los índices de las top n_terms características ordenadas por_
       \hookrightarrow valor descendente.
              top_idx = np.argsort(centroid)[-n_terms:][::-1]
              # Guarda tamaño del cluster y los términos top (mapeando índices a_{\sqcup}
       →'terms').
              out[cl] = {'size': len(idx), 'top_terms': list(terms[top_idx])}
          # Retorna el diccionario resumen por cluster.
          return out
[70]: # Obtiene resumen de términos principales para KMeans usando la matriz TF ALL y
       →la lista de términos.
      km_summary = top_terms(labels_km, TF_ALL, terms, n_terms=8)
      # Obtiene resumen de términos principales para DBSCAN.
      db_summary = top_terms(labels_db, TF_ALL, terms, n_terms=8)
      # Imprime resumen de clusters de KMeans: para cada cluster muestra tamaño y top,
       ⇔terms.
      print('\nKMeans clusters resumen:')
      for k,v in km_summary.items():
          print(f"Cluster {k} - size {v['size']} - top terms: {', '.

¬join(v['top_terms'])}")
      # Imprime resumen de clusters de DBSCAN.
      print('\nDBSCAN clusters resumen:')
      for k,v in db_summary.items():
          print(f"Cluster {k} - size {v['size']} - top terms: {', '.
       ⇔join(v['top_terms'])}")
```

KMeans clusters resumen:

Cluster 0 - size 364 - top terms: aunque, ideal, resultó, fue ideal, para, destaco, ser, para ser

Cluster 1 - size 752 - top terms: en, bien, experiencia, fueron, compré en, pareció, compré, fueron determinantes

Cluster 2 - size 384 - top terms: la, el, adecuada, es, adecuada la, fue adecuada, podría mejorar, podría

DBSCAN clusters resumen:

Cluster -1 - size 498 - top terms: la, fue, podría, podría mejorar, mejorar, el, es, adecuada

Cluster 0 - size 569 - top terms: en, experiencia, pareció, fueron determinantes, fueron, compré en, compré, determinantes

Cluster 1 - size 30 - top terms: ni, determinantes ni, mal, bien ni, ni bien, ni mal, compré en, determinantes

Cluster 2 - size 13 - top terms: ser ropa, ideal cumple, ecothread resultó, para ser, ideal, ser, resultó, fue ideal

Cluster 3 - size 20 - top terms: ni, mejorar ni, la, ni mal, mal, ni bien, bien ni, el supermercado

Cluster 4 - size 33 - top terms: ni, ideal ni, bien ni, ni bien, mal, ni mal, fue ideal, ser

Cluster 5 - size 5 - top terms: regular está, bien, por el, por, está bien, está, bien por, el precio

Cluster 6 - size 45 - top terms: mis, mis expectativas, superó, superó mis, expectativas, determinantes superó, regular superó, en

Cluster 7 - size 18 - top terms: ideal superó, mis expectativas, superó, mis, superó mis, expectativas, para ser, aunque

Cluster 8 - size 13 - top terms: azul en, probé hotel, hotel, azul, mar, mar azul, hotel mar, categoría hotel

Cluster 9 - size 8 - top terms: asadero es, restaurante el, la, el restaurante, el, el asadero, asadero, restaurante

Cluster 10 - size 6 - top terms: ideal lo, ser ropa, ecothread resultó, lo volvería, volvería comprar, comprar, ropa ecothread

Cluster 11 - size 14 - top terms: ideal lo, volvería comprar, volvería, comprar, lo volvería, ser electrónica, destaco, para

Cluster 12 - size 23 - top terms: determinantes está, bien por, el precio, por, por el, está bien, está, precio

Cluster 13 - size 18 - top terms: mejorar vale, la, vale, vale cada, peso, cada, cada peso, adecuada la

Cluster 14 - size 5 - top terms: regular valió, la pena, pena, valió, valió la, supermercado experiencia, categoría supermercado, maximarket en

Cluster 15 - size 8 - top terms: ideal muy, muy recomendado, muy, recomendado, resultó, fue ideal, ideal, para ser

Cluster 16 - size 5 - top terms: ni, regular ni, bien, ropa experiencia, categoría ropa, ni mal, bien ni, ni bien

Cluster 17 - size 14 - top terms: mejorar cinco, la, estrellas, cinco estrellas, cinco, el supermercado, fue adecuada, adecuada la

Cluster 18 - size 11 - top terms: ideal cinco, cinco estrellas, cinco, estrellas, fue ideal, destaco, ideal, para ser

```
Cluster 19 - size 27 - top terms: ideal vale, cada, cada peso, peso, vale cada,
vale, resultó, aunque
Cluster 20 - size 15 - top terms: regular está, bien, bien por, está, el precio,
por el, está bien, por
Cluster 21 - size 23 - top terms: mejorar está, la, el, por el, el precio, está
bien, está, bien por
Cluster 22 - size 10 - top terms: la, mejorar cumple, el supermercado,
prometido, lo prometido, cumple, cumple lo, lo
Cluster 23 - size 12 - top terms: ideal está, por, está bien, está, el precio,
por el, bien por, precio
Cluster 24 - size 10 - top terms: ni, regular ni, bien, ni mal, ni bien, mal,
bien ni, experiencia promedio
Cluster 25 - size 5 - top terms: mejorar lo, lo recomiendo, recomiendo, la, la
batería, el restaurante, es débil, débil la
Cluster 26 - size 4 - top terms: urbanwear resultó, aunque garantía, ropa
urbanwear, garantía fue, ser ropa, urbanwear, garantía, resultó estándar
Cluster 27 - size 5 - top terms: mejorar podría, la, podría mejorar, podría,
mejorar, es esperado, esperado la, la higiene
Cluster 28 - size 5 - top terms: sushigo resultó, restaurante sushigo, ideal
cumple, sushigo, ser restaurante, cumple, cumple lo, básico
Cluster 29 - size 5 - top terms: mejorar superó, la, superó, superó mis, mis
expectativas, mis, expectativas, potente la
Cluster 30 - size 8 - top terms: en andes, inn hotel, andes inn, inn, andes,
hotel pareció, hotel, determinantes muy
Cluster 31 - size 5 - top terms: mejorar nunca, la, nunca más, más, nunca, la
batería, grosero la, es grosero
Cluster 32 - size 4 - top terms: mejorar lo, la, la atención, el electrónica,
recomiendo, lo recomiendo, atención, terrible la
Cluster 33 - size 6 - top terms: la, envío podría, classicline es, mejorar muy,
la envío, ropa classicline, classicline, el ropa
```

13.0.6 Guardar reseñas con etiquetas de clúster

```
[71]: # Añade las etiquetas de cluster como nuevas columnas en el DataFrame original.

de reviews.

reviews['kmeans_cluster'] = labels_km

reviews['dbscan_cluster'] = labels_db

# Guarda el DataFrame enriquecido con etiquetas de cluster en un CSV en la ruta.

BASE.

reviews.to_csv(os.path.join(BASE, 'reviews_with_clusters.csv'), index=False)

# Informa que el archivo se guardó en la ruta indicada.

print('\nGuardado en reviews_with_clusters.csv to', BASE)
```

Guardado en reviews_with_clusters.csv to

13.0.7 APRENDIZAJE NO SUPERVISADO

14 En la segunda parte, se aplicaron técnicas de clustering para descubrir patrones

15 sin necesidad de etiquetas:

- K-Means
- DBSCAN

16 Resultados generales:

- El método K-Means permitió agrupar los datos en clústeres claros y bien definidos. Al usar el método del codo y el silhouette score, se determinó el número óptimo de grupos, logrando una segmentación coherente.
- DBSCAN detectó grupos más irregulares y descubrió puntos atípicos (outliers), ofreciendo una visión complementaria sobre la distribución de los datos.

17 Interpretación de patrones:

- Algunos clústeres se agruparon por similitud en sentimientos o temas.
- Esto puede usarse para segmentar clientes, productos o tipos de reseñas según comportamiento o características comunes.

18 Conclusión no supervisada:

K-Means resultó más efectivo para generar agrupaciones interpretables, mientras que DBSCAN fue útil para descubrir valores atípicos y subgrupos ocultos. Juntos, aportan una visión más completa de los datos y sus relaciones internas.

19 CONCLUSIÓN

El sistema de inteligencia artificial desarrollado integró exitosamente, tanto aprendizaje supervisado como no supervisado.

20 3.0 Procesamiento de Lenguaje Natural (PLN)

En esta sección se realiza el preprocesamiento avanzado de los textos, análisis descriptivo y extracción de temas, cumpliendo con los requerimientos de PLN del proyecto.

```
[72]: # Preprocesamiento avanzado de texto: limpieza, tokenización, lematización y⊔
⇒stopwords
import spacy
from collections import Counter
import re
```

```
# Descargar modelo de spaCy si no está instalado (solo la primera vez)
try:
   nlp = spacy.load('es_core_news_sm')
except:
   import os
   os.system('python -m spacy download es_core_news_sm')
   nlp = spacy.load('es_core_news_sm')
def preprocess text(text):
   # Limpieza básica: quitar URLs, signos de puntuación y pasar a minúsculas
   text = re.sub(r'http\S+', '', str(text))
   text = re.sub(r'[^\w\s]', '', text)
   text = text.lower()
   # Procesamiento con spaCy
   doc = nlp(text)
   tokens = [token.lemma_ for token in doc if not token.is_stop and not token.
 →is_punct and not token.is_space]
   return ' '.join(tokens)
# Aplicar preprocesamiento a la columna de texto
reviews['text_clean'] = reviews[text_col].apply(preprocess_text)
# Mostrar ejemplos antes y después del preprocesamiento
print('Ejemplo de preprocesamiento:')
for i in range(3):
   print('\nOriginal:', reviews[text_col].iloc[i])
   print('Procesado:', reviews['text_clean'].iloc[i])
```

Ejemplo de preprocesamiento:

Original: Probé Sueño Real en categoría Hotel. Experiencia maravilloso. sabor bien, batería regular. Vale cada peso.

Procesado: probé sueño real categoría hotel experiencia maravilloso sabor bateer regular valer peso

Original: Para ser Restaurante, El Asadero resultó correcto. Destaco calidad, aunque garantía no fue ideal. Podría mejorar.

Procesado: restaurante asadero resultar correcto destaco calidad garantir ideal mejorar

Original: El supermercado de Abarrotes 24 es amable. La envío fue adecuada y la batería podría mejorar. Superó mis expectativas.

Procesado: supermercado abarrot 24 amable envío adecuar batería mejorar superar expectativa

20.0.1 Análisis descriptivo: Frecuencias, nubes de palabras y bigramas

En esta sección se exploran las palabras más frecuentes, se visualizan nubes de palabras y se analizan bigramas para entender mejor el contenido textual.

```
[73]: from wordcloud import WordCloud
      from sklearn.feature extraction.text import CountVectorizer
      import matplotlib.pyplot as plt
      # Unir todos los textos preprocesados
      all_text = ' '.join(reviews['text_clean'].dropna())
      # Frecuencias de palabras
      word_counts = Counter(all_text.split())
      print('Palabras más frecuentes:', word_counts.most_common(10))
      # Nube de palabras
      wordcloud = WordCloud(width=800, height=400, background color='white').
       ⇔generate(all_text)
      plt.figure(figsize=(10,5))
      plt.imshow(wordcloud, interpolation='bilinear')
      plt.axis('off')
      plt.title('Nube de palabras')
      plt.show()
      # Bigrama: conteo de pares de palabras
      vectorizer = CountVectorizer(ngram_range=(2,2), max_features=15)
      bigrams = vectorizer.fit transform(reviews['text clean'].dropna())
      bigram_freq = zip(vectorizer.get_feature_names_out(), bigrams.sum(axis=0).
       →tolist()[0])
      print('Bigramas más frecuentes:')
      for bigram, freq in sorted(bigram_freq, key=lambda x: -x[1]):
          print(f'{bigram}: {freq}')
     Palabras más frecuentes: [('comprar', 515), ('mejorar', 491), ('ropa', 450),
     ('experiencia', 430), ('adecuar', 384), ('parecer', 375), ('categoría', 365),
     ('regular', 365), ('resultar', 364), ('destaco', 364)]
```

Nube de palabras

Bigramas más frecuentes:

valer peso: 142 volver comprar: 140 superar expectativa: 117 cumplir básico: 113 categoría ropa: 111 ropa experiencia: 111

ropa parecer: 94

supermercado parecer: 82 cumplir prometer: 72 categoría hotel: 67 electrónico parecer: 67 hotel experiencia: 67 hotel parecer: 67

experiencia decepcionante: 65

restaurante parecer: 65

20.0.2 Extracción de temas con LDA

Se utiliza Latent Dirichlet Allocation (LDA) para identificar los temas principales presentes en las reseñas.

```
[74]: from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_extraction.text import CountVectorizer

# Vectorización para LDA (sin stopwords, ya preprocesado)

lda_vectorizer = CountVectorizer(max_features=1000)

X_lda = lda_vectorizer.fit_transform(reviews['text_clean'].dropna())
```

```
Temas principales encontrados por LDA:
```

```
Tema 1: mejorar, adecuar, comprar, parecer, ropa, determinante, supermercado, precio
```

Tema 2: comprar, electrónico, hotel, parecer, ideal, destaco, resultar, determinante

```
Tema 3: experiencia, categoría, regular, prober, probé, ropa, hotel, precio
Tema 4: restaurante, resultar, destaco, ideal, cumplir, sabor, ropa, básico
```

20.0.3 Análisis y justificación de técnicas de PLN

Las técnicas de PLN aplicadas (limpieza, lematización, stopwords, nubes de palabras, bigramas y LDA) fueron elegidas por su eficacia y robustez en el análisis de texto en español. spaCy permite una lematización precisa y eficiente, mientras que la vectorización y LDA son métodos estándar y ampliamente aceptados para extracción de temas y análisis exploratorio. Estas técnicas permiten obtener información relevante y patrones útiles para el análisis de opiniones y la posterior recomendación.

21 4.0 Agente Conversacional IA (Gemini 2.5 Flash)

A continuación se implementa un bot de consola que utiliza los modelos entrenados y la API de Gemini para responder preguntas, recomendar productos y explicar resultados.

```
[75]: # Ejemplo de bot por consola usando Gemini API y modelos entrenados import requests import joblib

# Cargar modelos y vectorizador vectorizer = joblib.load(os.path.join(OUT_DIR, 'tfidf_vectorizer.joblib')) logreg = joblib.load(os.path.join(OUT_DIR, 'logisticregression_model.joblib')) rf = joblib.load(os.path.join(OUT_DIR, 'randomforest_model.joblib'))

# Función para consultar Gemini (requiere API key válida) def gemini_query(prompt):
```

```
api_key = "AIzaSyBlUmfjVOg_Rl9am5y-StKYnwkwCOqCPpk"
    url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.

→5-flash:generateContent?key=" + api_key
    headers = {"Content-Type": "application/json"}
    data = {"contents": [{"parts": [{"text": prompt}]}]}
    response = requests.post(url, headers=headers, json=data)
    if response.status code == 200:
        return response.json()['candidates'][0]['content']['parts'][0]['text']
    else:
        return f"Error: {response.text}"
# Bot principal
def run_bot():
    print("\n;Bienvenido al sistema inteligente de análisis de opiniones!")
    print("Puedes preguntar sobre sentimientos, pedir recomendaciones o⊔
 ⊶explicaciones de resultados. Escribe 'salir' para terminar.")
    while True:
        user_input = input("\nTú: ")
        if user_input.lower() == 'salir':
            print("Bot: ¡Hasta luego!")
        # Ejemplo: predicción de sentimiento
        X_input = vectorizer.transform([user_input])
        pred_logreg = logreg.predict(X_input)[0]
        pred_rf = rf.predict(X_input)[0]
        prompt = (f"El usuario pregunta: '{user_input}'. "f"Según los modelos,⊔
 → la predicción de sentimiento es LogReg={pred logreg}, RandomForest={pred rf}.
 \hookrightarrow II
        "Si el usuario pide analizar una reseña, responde solo si es positiva o_{\sqcup}
 onegativa y da una recomendación breve si aplica (máximo 2 frases). "
        "Si el usuario pide una explicación o información general, responde de_{\sqcup}
 oforma clara y breve (máximo 2 frases) sin clasificar el sentimiento."
        respuesta = gemini_query(prompt)
        print("Bot:", respuesta)
# Para ejecutar el bot, descomenta la siquiente línea:
# run bot()
```

21.0.1 Evidencia de interacción con el bot

Ejecuta la función run_bot() en consola, realiza varias preguntas y toma capturas de pantalla mostrando las respuestas del bot. Puedes incluir ejemplos como: - Preguntar por el sentimiento de una reseña. - Solicitar una recomendación de producto. - Pedir explicación de un resultado de modelo.

21.0.2 Explicación y justificación del diseño del bot

El bot fue implementado en consola para facilitar la integración directa con los modelos entrenados y la API de Gemini, permitiendo respuestas en tiempo real y personalizadas. La consola es ideal para pruebas rápidas y demostraciones técnicas, asegurando portabilidad y facilidad de uso sin requerir una interfaz web adicional. El bot utiliza los modelos de sentimiento para enriquecer las respuestas de Gemini, combinando IA generativa y modelos clásicos para una experiencia más robusta y explicativa.

[]: run_bot()

Tú: ¿Esta reseña es positiva o negativa? "Me encantó el producto, llegó rápido y funciona perfecto."

Bot: La reseña es **positiva**.

El modelo RandomForest podría requerir ajuste, ya que el sentimiento expresado es de total satisfacción.

Tú: Recomiéndame un producto si me gustó mucho la calidad y el precio.

Bot: La reseña es positiva. Te recomendamos buscar productos de la misma marca o categoría que ofrezcan una excelente relación calidad-precio.

Tú: ¿Por qué el modelo dice que esta reseña es negativa? "El envío fue lento y el producto llegó dañado."

Bot: La reseña es negativa. Los modelos predicen correctamente este sentimiento debido a las palabras "envío lento" y "producto dañado".

Tú:

Bot: La reseña es negativa. Sugerimos que el usuario añada contenido para poder analizar su opinión.

Tú: ¿Puedes explicarme cómo funciona el análisis de sentimientos?

Bot: Tu pregunta ha sido identificada con un sentimiento negativo. Te recomiendo especificar tu interés de forma más neutral o positiva para una mejor comunicación.

Tú: salir

Bot: ¡Hasta luego!

[]: run_bot()

Tú: ¿Esta reseña es positiva o negativa? "Me encantó el producto, llegó rápido y funciona perfecto."

Bot: Es positiva.

Tú: Recomiéndame un producto si me gustó mucho la calidad y el precio.

Bot: Para recomendarte algo, necesito saber qué tipo de producto te gustó. Así podré buscar opciones similares que ofrezcan buena calidad y precio.

Tú: ¿Por qué el modelo dice que esta reseña es negativa? "El envío fue lento y el producto llegó dañado."

Bot: Esta reseña es negativa. Se recomienda a la empresa revisar sus procesos de envío y embalaje para mejorar la experiencia del cliente.

Tú: ¿Puedes explicarme cómo funciona el análisis de sentimientos?

Bot: El análisis de sentimientos utiliza técnicas de procesamiento de lenguaje natural (NLP) para determinar la polaridad emocional de un texto. Examina palabras, frases y contexto para clasificar el contenido como positivo, negativo o neutro.

[]: run_bot()

 $_{\rm i}$ Bienvenido al sistema inteligente de análisis de opiniones! Puedes preguntar sobre sentimientos, pedir recomendaciones o explicaciones de resultados. Escribe 'salir' para terminar.

Tú: Recomiendame una marca para un producto para la piel?

Bot: Para un producto para la piel, una excelente opción es CeraVe, conocida por sus fórmulas suaves y efectivas que ayudan a restaurar la barrera cutánea. Es una marca muy recomendada por dermatólogos.

[]: run_bot()

 $_i$ Bienvenido al sistema inteligente de análisis de opiniones! Puedes preguntar sobre sentimientos, pedir recomendaciones o explicaciones de resultados. Escribe 'salir' para terminar.

Tú: Recomiendame un producto para el cuidado de la piel para hombres

Bot: Para un cuidado básico, te recomiendo un limpiador facial suave y una crema hidratante ligera, ambos formulados específicamente para hombres. Ayudarán a mantener tu piel limpia e hidratada.

Tú: Recomiendame una marca de un producto para el cuidado de la piel

Bot: Te recomiendo la marca Cerave. Es muy popular por sus productos formulados con dermatólogos y aptos para pieles sensibles.

Tú: Esta reseña es positiva o negativa? "No me gusto el producto, llego deteriorado."

Bot: La reseña es negativa. Considera contactar al vendedor para solicitar un reembolso o un reemplazo.

[]: