Remote Priority Flow Control (Remote PFC)

OCP Summit 2021

Contact: jeremias.blendin@intel.com

Team: Jeremias Blendin, Yanfang Le, JK Lee, Grzegorz Jereczek

Intel, Barefoot Switch Division

Remote PFC at a Glance

Remote Priority Flow Control (Remote PFC) specifically improves the performance of incast (many senders, one receiver) heavy workloads such as Al deep learning clusters. It does so by "flattening the curve" of incast traffic and achieves a significant reduction of the data center switch queue utilization and flow completion time (FCT) compared to the state of the art. Remote PFC uses Intel® Tofino™ 2 Programmable Ethernet Switch ASIC's & Intel® Tofino™ 3 Intelligent Fabric Processor's unique programmability features and SONiC PINS' flexibility to achieve sub round trip time (RTT) edge-to-edge signaling of congestion in data centers.

Incast Congestion in Data Centers

Incast

- Cause: many-to-one traffic pattern
- Mostly at the last-hop
- Governs max/tail latency
- Tail latency can have a big performance impact on RDMA-style workloads
- High incast ratios require reaction at congestion-free base network RTT scale

Solution space

- Edge-to-edge (e2e) congestion control
 - Detect congestion in e2e path and adjust TX rates
 - Requires multiple RTTs to react
 - Part of e2e transport such as TCP, RoCEv2
- Hop-by-hop flow control by example of IEEE 802.1Qbb PFC
 - Low-latency xon/xoff signal to previous hop queue
 - Designed to prevent packet loss
 - Complex configuration and operational side-effects
 - Incurs head-of-line blocking (HoL)
 - PFC storm, deadlocks

Need for a new, low-latency edge-to-edge flow control mechanism!

Remote PFC's Approach to Flow Control

Remote PFC is an in-network flow control mechanism. Remote PFC leverages Intel® Tofino™ 2 Programmable Ethernet Switch ASIC's advanced programmability to detect queue build and to signal congestion across the data center to stop the contributing sender NICs directly. PFC is used for flow control enforcement between top-of-rack (ToR) switches and NICs for backwards compatibility and low latency. Thereby, Remote PFC combines the strength of edge-to-edge signaling with the strength of low-latency flow control to implement sub-RTT remote PFC signaling.

Remote PFC Edge-to-Edge View

What is Remote PFC?

- Edge-to-Edge signaling of congestion
- Flow control that instantly 'flattens the curve'
- Signaling + 'source' flow ctrl all in sub-RTT

Remote PFC does not target/does target

- aim 100% lossless vs min switch buffering
- e2e congestion ctrl-vs NIC flow ctrl
- Pause Agg/Core switches → no PFC side effects
- Need greenfield deployment → ToR-only upgrade

Intelligent Congestion Detection

- The programmable logic checks the congestion status of an outgoing queue before enqueuing a packet
- 2. If congestion is detected, a notification packet is created that skips the congestion and is sent directly back to the sender

Remote PFC's Effect on Queue Depth

Remote PFC's Effect on Flow Completion Time

See backup for workloads and configurations. Results may vary.

Summary

Remote PFC

- Flattens the buffer utilization curve for incast workloads in data centers
- Leverages the programmability of Intel® Tofino™ 2/Tofino™ 3-based ToR switches for sub-RTT edge-to-edge congestion signaling
- Compatible with standard NICs that support IEEE 802.1Qbb PFC
- SONIC PINS enables Remote PFC's rapid deployment in production environments

Future

- Upstream to SAI
- Ongoing efforts to standardize Remote PFC at IEEE 802.1
- Generalize the Remote PFC approach to providing flow control directly in the protocol engine in the sender as Source Flow Control (SFC)

Notices and Disclaimers

- Performance varies by use, configuration and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.
- Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.
- Your costs and results may vary.
- Intel technologies may require enabled hardware, software or service activation.
- © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Switch Config

	Switch Config1 (Remote PFC "off", PFC "on")	Switch Config2 (Remote PFC "on", PFC "off")	
Test by		Intel	
Test date	04/08	04/08/2021	
SUT Setup			
Platform	Accton ASS	Accton AS9516 32d-r0	
# Switches	2 (ToR:	2 (ToR1, ToR2)	
HWSKU	New	Newport	
Ethernet switch ASIC	Intel® Tofino™ 2 Programı	Intel® Tofino™ 2 Programmable Ethernet Switch ASIC	
SDE version	9.5.0-9	9.5.0-9388-pr	
OS	SONiC.master.111-di	SONiC.master.111-dirty-20210201.022355	
Buffer Pool allocation Ingress Lossless pool size is 7.6ME		MB and lossy pool size is 7.6MB.	
	Egress lossless pool size is 16.7MB, and lossy pool size		
Remote PFC threshold	N/A	100KB	
PFC threshold	Headroom size is 184KB,	N/A	
	dynamic threshold is 4.		

Barefoot Switch Division intel

Server Config

	Two server models (A and B) are used at the same time in the testbed		
Server model	Model A	Model B	
Test by	Intel	Intel	
Test date	04/08/2021	04/08/2021	
Server Setup			
Platform	Intel S2600WFT	Supermicro X10DRW-i	
# Nodes	3 (Send 6, Recv 1, 2)	5 (Send 1, 2, 3, 4, 5)	
# Sockets	2	2	
CPU	Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz	
Cores/socket, Threads/socket	18/36	8/16	
Microcode	0x5003003	0xb000038	
нт	On	On	
Turbo	On	On	
Power management (disabled/enabled)	enabled	enabled	
# NUMA nodes per socket (1, 2, 4)	2	2	
Prefetcher'e enabled (svr_info)	Yes	Yes	
BIOS version	SE5C620.86B.02.01.0008.031920191559	3.0a	
System DDR Mem Config: slots / cap / speed	6 slots / 16GB / 2934 (*)	8 slots / 32 GB / 2133	
Total Memory/Node (DDR, DCPMM)	96, 0	256, 0	
NIC	1x 2x100GbE Mellanox ConnectX-6 NIC	1x 2x100GbE Mellanox ConnectX-6 NIC	
PCH	Intel C620	Intel C610/X99	
Other HW (Accelerator)	RoCEv2 protocol engine in Mellanox ConnectX-6 NIC	RoCEv2 protocol engine in Mellanox ConnectX-6 NIC	
OS	<u>Ubuntu 20.04.2 LTS</u>	<u>Ubuntu 20.04.2 LTS</u>	
Kernel	<u>5.4.0-66-generic</u>	<u>5.4.0-66-generic</u>	
Workload	Custom trace based on Homa (Sigcomm 2018)	Custom trace based on Homa (Sigcomm 2018)	
	"Facebook Hadoop" dataset	"Facebook Hadoop" dataset	
Compiler	gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0	gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0	
Libraries	MLNX_OFED_LINUX-5.1-2.5.8.0 (OFED-5.1-2.5.8)	MLNX_OFED_LINUX-5.1-2.5.8.0 (OFED-5.1-2.5.8)	
NIC driver	mlx5_core	mlx5_core	
NIC driver version	5.1-2.5.8	5.1-2.5.8	
NIC Firmware version	20.28.2006 (MT_0000000224)	20.28.2006 (MT_0000000224)	