AIRLINES ANALYSIS REPORT

1. Metrics explanation

Metrics	Description	DAX formula
%_lateaircraft_delay	Late aircraft delay percentage	%_lateaircraft_delay = [Num_late_aricraft_delay]/ [Total_delayed_flight]
%_NAS_delay	NAS delay percentage	%_NAS_delay = [Num_NAS_delay]/ [Total_delayed_flight]
%_weather_delay	Weather delay percentage	%_weather_delay = [Num_weather_delay]/ [Total_delayed_flight]
Avg_LateAircraft_De lay_Time	Average delay time caused by Late aircraft delay per flight	Avg_LateAircraft_Delay_Time = SUM(airlines[LATE_AIRCRAFT_DELAY])/ [Num_late_aricraft_delay]
Flight_category	Flight classifications based on planned time amount needed for the flight trip	Flight_category = SWITCH(TRUE(), airlines[CRS_ELAPSED_TIME] < 180, "Short-haul", airlines[CRS_ELAPSED_TIME] >= 180 && airlines[CRS_ELAPSED_TIME] < 360, "Medium-haul", airlines[CRS_ELAPSED_TIME] >= 360, "Long-haul", "Unknown")
Num_carrier_delay	Number of flights delayed by Carrier	Num_carrier_delay = CALCULATE(COUNTROWS(airlines), FILTER(airlines, airlines[CARRIER_DELAY] >0))
Num_late_aricraft_d elay	Number of flights delayed by Late aircraft delay	Num_late_aricraft_delay = CALCULATE(COUNTROWS(airlines), FILTER(airlines, airlines[LATE_AIRCRAFT_DELAY] >0))
Num_NAS_delay	Number of flights delayed by NAS	Num_NAS_delay = CALCULATE(COUNTROWS(airlines), FILTER(airlines, airlines[NAS_DELAY] >0))
Num_security_delay	Number of flights delayed by Security	Num_security_delay = CALCULATE(COUNTROWS(airlines), FILTER(airlines, airlines[SECURITY_DELAY] >0))
Num_weather_delay	Number of flights delayed by Weather	Num_weather_delay = CALCULATE(COUNTROWS(airlines), FILTER(airlines, airlines[WEATHER_DELAY] >0))

Total_airtime_PerAir craft_PerDay	Total airtime per aircraft per day	Total_airtime_PerAircraft_PerDay = CALCULATE(SUM(airlines[AIR_TIME]), ALLEXCEPT(airlines, airlines[OP_CARRIER_FL_NUM], airlines[FL_DATE]))
Total_days_used_Pe rAircraft	Number of days each aircraft was used	Total_days_used_PerAircraft = CALCULATE(DISTINCTCOUNT(airlines[FL_DATE]), ALLEXCEPT(airlines, airlines[OP_CARRIER_FL_NUM]))
Total_flights	Number of flights throughout the period	Total_flights = CALCULATE(COUNTROWS(airlines))
Utilization_rate	Daily average hours of usage per aircraft	Utilization_rate = DIVIDE([Total_airtime_PerAircraft_PerDay], [Total_days_used_PerAircraft], 0)/60

2. Flight delay analysis

This report focuses on analyzing flight delay reasons, including Carrier delay, NAS delay, Late aircraft delay and Weather delay.

2.1. Carrier delay & NAS delay

2.1.1. Carrier delay

- + Aircraft 15, 1, 16, 7, 3, 12, 2, 8, 19, 14 were in the top 10 aircrafts with highest utilization rates, ranging from 25.21 to 34.73 hours/ day.
- + Most of the flights assigned to these aircraft were short-haul (41.14%) and medium-haul (39.36%).
- + The delay reason occurring the most frequently in those flights was **Carrier delay**, with 7 out of 10 aircrafts having more delayed flights caused by Carrier than the others.
- ⇒ The reason caused delayed flights could be aircraft maintenance, which is included in Carrier delay:
- + High utilization rates of those aircrafts → more frequent maintenance → more potential delays.
- + The aircrafts used for short-haul & medium-haul flights are often less fuel-efficient than those of long-haul flights → maintenance might be needed to improve fuel efficiency → more delays.

2.1.2. NAS delay

- + The number of flights were high in **April**, **May**, **June**, **August**, **December**, which also had higher % of NAS delays (22.02%, 22.28%, 23.04%, 21.86%, 23.01% respectively) than the NAS monthly average % (21.79%)
- ⇒ High demand in these months seem to cause **air traffic congestion** (included in NAS delay) → higher % of NAS delays.

2.2. Late aircraft delay & Weather delay

2.2.1. Late aircraft delay

(1)

- + The long-haul flights had the highest average time of late aircraft delay per flight (53.56 minutes), followed by medium-haul flights (45.55 minutes) and short-haul flights (44.31 minutes).
- + The number of aircrafts of long-haul flights was **2.6K** the lowest one, **7.2K** for medium-haul and **2.6K** for short-haul flights .
- \Rightarrow This negative relationship between average time of late aircraft delay per flight and the number of aircraft of each flight type seems to show that if airlines had fewer available aircrafts to replace the one arriving late \rightarrow delay time increase.

(2)

- + The highest % of late aircraft delays were short-haul flights (22.20%) and in 2013 & 2014 (23.83% & 22.32%).
- + Most of the airlines which had the highest number of short-haul flights in these years also had high % of late aircraft delays (Southwest Airlines, ExpressJet, SkyWest Airlines, Envoy Air, American Airlines, United Airlines, Jetblue Airways).
- ⇒ There were many short-haul flights in those years which normally have short turnaround time between the flights
- → higher chance of late aircraft delay.

2.2.2. Weather delay

- + In the top 10 flight routes having the highest number of flights, weather delays often happened in the routes with **Georgina, Texas, Florida, California, Arizona.**
- ⇒ Tornadoes, thunderstorms, hurricanes usually occur in these states → higher % of weather delay.

3. Recommendations for minimizing flight delays

- Carrier delay: Invest in newer, more advanced aircrafts which require less maintenance compared to older ones.
- **NAS delay**: Encourage customers to choose flights during off-peak times by offering them lower flight fares, which helps manage demand for the busy routes.
- Late aircraft delay: Adjust the turnaround time among the short-haul flights and/ or investing in more aircrafts to lower the chance of delays.
- **Weather**: Use more advanced weather forecasting technology to better predict the possible delays in the states with severe weather.