Presentación (4GIA y 3G) Curso 2021/2022

Tecnologías de los Sistemas de Información en la Red

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

En el momento actual, como consecuencia de la pandemia, estamos sometidos a directrices muy variables que afectan a toda la organización docente, incluyendo horarios, espacios y condiciones de acceso.

Ausencia de fechas para los actos de evaluación

El profesor, horarios

- José <u>Ramón García</u> Escrivá, DSIC
 - Despacho ID42, edificio IF
 - Tutorías previa cita (<u>rgarcia@upv.es</u>)
 - Utilizad <u>siempre</u> remitentes de la UPV
- Docencia en TSR
 - Aula y labo 4GIA (IE I.I)
 - Aula y labo 3G (IE I.4)

Тео	Sesión I	Sesión 2
4GIA	L 08:00-09:30	× 09:30-11:00
3G	X 08:00-09:30	V 11:30-13:00

Labo	Labo LI	Labo L2
4GIA	L 12:00-13:30	L 13:30-15:00
3G	M 11:30-13:00	V 09:30-11:00

- Alternancia de turnos...
 - Regla general para 3G, excepción para 4GIA

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- I. Entender las propiedades de sistemas distribuidos
- Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- 1. Entender las propiedades de sistemas distribuidos
 - Problemas que aparecen, y que hay que resolver
 - Propiedades obtenibles, ámbitos de aplicación
 - Influencia de la estructura de un sistema (arquitectura) para resolver/mitigar problemas y obtener propiedades deseables.
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- Entender las propiedades de sistemas distribuidos
- Conocer algunas de las tecnologías y aproximaciones existentes más importantes
 - Programación asíncrona para la implementación de componentes
 - Middleware para facilitar la interacción entre componentes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- I. Entender las propiedades de sistemas distribuidos
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos
 - Estudio de ejemplos de sistemas y su estructura
 - Uso de tecnologías relevantes para la resolución de problemas de laboratorio

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

2. Estructura

- Asignatura con 6 créditos
 - Teoría y seminarios se estructuran en una misma secuencia de temas
- ▶ Teoría (1.5 cr)
 - Principios generales
 - Propiedades
 - Problemas
- Seminarios (3 cr)
 - Tecnologías básicas
 - Ejemplos, estudio de casos y resolución de problemas
- Laboratorio (1.5 cr)
 - Implementación de soluciones a problemas sencillos

2. Estructura

Asignatura con 6 créditos

Teoría y seminarios se estructuran en una misma secuencia de

temas

▶ Teoría (1.5 cr)

Principios generales

Propiedades

Problemas

Seminarios (3 cr)

Tecnologías básicas

Ejemplos, estudio de casos y resolución de problemas

Laboratorio (1.5 cr)

Implementación de soluciones a problemas sencillos

Estas dos partes se imparten en el aula. Se considerarán conjuntamente como "teoría" en las próximas secciones.

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

3. Teoría. Temario

- I. Introducción
- JavaScript y NodeJS
- 3. Middleware. ZeroMQ
- 4. Despliegue de servicios. Docker
- 5. Gestión de fallos
- 6. Escalabilidad

3. Teoría. Temario

Considerando las 28 clases del cuatrimestre, los temas se distribuirán en las siguientes sesiones:

Introducción		Middleware. ZeroMQ			Escalabilidad
3	7	6	6	3	3

- Para cada tema, PoliformaT contiene...
 - Algunos vídeos (screencasts) que describen cada uno de sus apartados.
 - Disponibles en PoliformaT, en su sección de "Docencia Inversa"
 - Accesibles para todos los grupos
 - Complementados con boletines de ejercicios específicos
 - Hay exámenes de autoevaluación para cada apartado.
 - Disponibles en PoliformaT, sección "Exámenes"

3. Teoría. Calendario completo 3G

El viernes 17/09 a las 9.30h habrá una clase adicional

3. Teoría. Calendario completo 4GIA

El lunes 13/09 a las 12h habrá una clase adicional, y otra (sin fecha) en el segundo cuatrimestre

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

4. Laboratorios

- Hay sesiones preparatorias que podéis/debéis comenzar la próxima semana
 - Proyecto 0: <u>JavaScript</u> básico. Sin supervisión
 - Software necesario instalado en PoliLabs (DSIC-LINUX)
 - URL https://polilabs.upv.es/
- También se dispone de una imagen para VirtualBox que podéis descargar e instalar
 - https://filesender.rediris.es/?s=download&token=37577234-6e82-ffc8-fc44-287c30c01c6f
 - La versión actual (tsr-vbox-2122_e.ova) ocupa 6.5GBs
- En el proyecto 3 haremos uso de máquinas virtuales de portal, tipo tsr-mivirtual-2122.dsicv.upv.es
 - ▶ El dominio dsicv.upv.es solo es accesible dentro de la UPV

4. Laboratorios: Calendario de los proyectos

	Proyecto 0	I Proxy inverso	2 NodeJS con ØMQ	3 Despliegue
4GIA LI y L2 (Lunes)	Antes del 27/09	27/09, 04/10, 11/10	18/10, 25/10, 15/11, 22/11	29/11, 13/12, 20/12
3G LI (Martes)	Antes del 28/09	28/09, 05/10, 19/10	26/10, 09/11, 16/11, 23/11	30/11, 14/12, 21/12
3G L2 (Viernes)	Antes del 01/10	01/10, 08/10, 22/10	29/10, 12/11, 19/11, 26/11	03/12, 10/12, 17/12

La asistencia es presencial o remota dependiendo del turno (LI y L2) y la semana (ver "Calendario completo" del grupo)

- Tecnologías a usar:
 - JavaScript + NodeJS
 - ØMQ (y su adaptación a NodeJS)
 - Docker

Tres proyectos que hacen uso de las tecnologías anteriores:

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)

Se comentan a continuación...

- Proxy inverso TCP/IP (3 sesiones)
 - Tecnología: JavaScript, NodeJS
 - Objetivos: Iniciación al desarrollo con JS+NodeJS, programación asincrónica en el servidor, callbacks, desarrollo de aplicaciones
 - Evaluación: junto al primer parcial
- 2. Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
 - Tecnología: ØMQ, JSON
 - Desarrollar aplicaciones distribuidas en las que los componentes son procesos que se comunican mediante un sistema de mensajería (ØMQ) adoptando roles específicos
 - Evaluación: examen online
 - ▶ 10 de diciembre
- 3. Despliegue (3 sesiones)

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)
 - Tecnología puntera: Docker
 - Objetivos: Entender y preparar el despliegue de un servicio distribuido multi-componente, incluyendo tecnologías actuales de contenerización y de configuración del despliegue
 - Evaluación: mediante test junto al segundo parcial

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

- Deben considerarse dos partes:
 - I. Teoría (60%)
 - 2. Laboratorio (40%)
- Esas dos partes se estructuran en tres exámenes:
 - I. Primer parcial:
 - Teoría: Temas 1, 2 y (parte del) 3 (30%)
 - Práctica I (10%)
 - 2. Práctica 2 (20%)
 - 3. Segundo parcial:
 - Teoría: Temas (fin del 3), 4, 5 y 6 (30%)
 - Práctica 3 (10%)

- Dos exámenes parciales, recuperables (80%)
 - Exámenes tipo test individuales
 - Cuestiones de opción múltiple
 - Nota mínima: 3 puntos
 - Estas pruebas incluirán este contenido:
 - ► Teoría (60% de la nota global)
 - Prácticas I y 3 (20% de la nota global)
 - Fechas:
 - ▶ 16 de noviembre (primer parcial)
 - 26 de enero (segundo parcial)
 - 8 de febrero (recuperación)

- Dos exámenes parciales, recuperables (80%)
- Examen de la segunda práctica, recuperable (20%)
 - Ejercicio individual
 - ▶ 10 de diciembre
 - Se requiere una calificación mínima de 3 puntos.
- Examen de recuperación
 - Permite recuperar los exámenes anteriores
 - La fecha se comunicará en un anuncio vía PoliformaT
 - Su nota prevalece sobre la del examen a recuperar

Resumen de fechas:

- I 6 de noviembre: primer parcial
- 10 de diciembre: examen individual sobre la práctica 2
- 26 de enero: segundo parcial
- 8 de febrero: recuperaciones de todas las pruebas
 - La nota de la recuperación prevalece sobre el acto original a recuperar

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

6. Bibliografía

- No existe un texto que se adecúe a los contenidos del curso.
 - Para cada unidad se ha elaborado una guía del estudiante
 - También se dispone de pequeñas presentaciones que explican varios conceptos importantes
- Existe mucho material disperso
 - Gran parte del material está en inglés, con algún texto traducido al español.
- Textos generales de consulta y sitios web para profundizar en los materiales presentados en clase

6. Bibliografía

Consulta general

- Distributed Systems: Principles and Paradigms (2nd Edition). Andrew S. Tanenbaum and Maarten van Steen. Prentice Hall International, 2006. (Existe traducción al español)
- Distributed Systems: Concepts and Design (5th Edition). George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. Addison-Wesley, 2011. (Existe traducción al español)
- http://zguide.zeromq.org. Buena fuente de discusiones y ejemplos sobre estructuras de componentes distribuidos.

6. Bibliografía

Tecnología

- Se presenta una bibliografía básica.
 - http://nodejs.org
 - http://zguide.zeromq.org
 - http://mongodb.org
 - http://docker.com/

Estudio de casos

Las referencias serán suministradas en su caso por cada profesor.