

#### Disclamer

This presentation is in no way specific to the Telenor IP network



#### Network reference model

#### **Network**

- Provider (P): Core routers with no connections to customer
- •Provider Edge (PE): Access routers connecting customers to the network





## A modern IP/MPLS based network



#### Introduction

#### MPLS (Multi Protocol Label Switching)

- Technology to tunnel any packet data across a IP based network (between PE routers)
- Leverages the benefits of circuit switched networks without the drawbacks
  - Excellent scaling properties
  - Tunnels is set up based on IGP or CSPF
  - Tunnels have QoS and traffic protection properties
  - Signalling and Auto-Discovery using Multiprotocol BGP
  - Provides separation of both L2 and L3 domains



## MPLS Terminology

LSP: Label Switched Path

•LER: Label Edge Router

LSR: Label Switch Router

•PHB: Per Hop Behaviour

•FEC: Forwarding Equivalence Class





## MPLS protocol stack

- MPLS is a layer between the Network and the Data Link layer
- A "layer 2.5" technology





## MPLS protocol stack (simplified)







#### MPLS header

- The MPLS header is prepended to a packet at ingress node after the L2 encapsulation header
- Header consists of
  - 20 bits: Label
  - 3 bits: Class of Service (known as Experimental bits)
  - 1 bit: Bottom of Stack
  - 8 bits: TTL (Time To Live)





## MPLS protocols

#### LDP RFC3036

- Invented to distribute labels
- Automatic discovery of neighbors
- Control plane
  - TCP sessions between neighbors
- Relies on a IGP
  - LSP always follows IGP's shortest path
  - A IGP change will tear down and reestablish new LSPs.
    Reconvergence has a lower boundry set by the IGP
  - LSPs are limited to IGP boundaries

#### **RSVP**

- Originally invented to create bandwidth reservations for individual traffic flows in networks (int-serv)
  - Extended to handle LSPs
    - Bandwidth reservations
    - Traffic protection
- Sessions between LERs must be configured
- Control plane
  - Own protocol number
  - Does not (necessary) follow IGP
- Path of LSP can be setup so that it can only be changed on head end LER
- Path message sent from ingress LER to egress LER
  - Request a label for the path
  - Contain addresses of nodes through which the LSP must pass
- Resv message sent from egress LER to ingress LER
  - Label object
- Periodic refresh of state
- Cross IGP domains



## Comparison RSVP vs LDP

- Configuration
  - LDP
    - Enable on interfaces only
  - RSVP
    - Enable on interfaces
    - Full mesh sessions between LERs
- Scalability
  - LDP scales by number of LDP neighbors
  - RSVP scales by # of LSPs. A full mesh topology have a N-squared problem
    - Additional state (LSPs) added by FRR
- Features
  - LDP: none
  - RSVP: Traffic engineering and fast reroute



**MPLS** 

# CAPABILITIES AND APPLICATIONS



## MPLS Capabilites

#### QoS

- •At ingress, the LER maps all traffic with the same QoS properties to a FEC
- •The FEC has a mapping to a certain Exp bits combination
- •Two PE routers can have one LSP per FEC or one LSP for all FECs with different Exp bits combinations
- •Accross the network PHB assures the same QoS behavior based on the Exp bits





15

## MPLS Capabilities

#### **Fast Reroute**

Minimize time during which the traffic is lost

- Local or end-to-end
- Link protection or node and link protection
- RSVP required
- Failure detection
  - Loss of light
  - BFD
  - IGP timeout
  - RSVP timeout





## **MPLS** Capabilities

#### **Traffic Engineering**

How to control the forwarding path explicitly to optimize network performance

- CSPF discards links or adds mandatory links
- RSVP uses the CSPF information on LSP establishment





#### **L3 VPN RFC2547**

- L3 MP2MP Virtual private network over a public infrastructure
- Used by
  - IP customers with >1 sites
  - LTE networks
  - PSTN MGWs
  - L3 Whole Sale ISPs





#### L2 Martini RFC 4905

- L2 P2P Virtual private network over a public infrastructure
- Used by
  - "Legacy" networks like
    - ATM
    - PSTN
    - 2G and 3G networks
  - Ethernet
  - L2 Whole Sale ISPs
- 1:1 vs 1:n aggregation





#### **VPLS RFC 4761/4762**

- Virtual Private Lan Service, MP2MP L2 connectivity
- Used by
  - Large business customers with own networking resources





#### **6PE RFC 4798**

- IPv6 connectivity over a MPLS core
- IPv6 service label
- Keep all the benefits
   of IPv4/MPLS with
   IPv6 without enabling
   IPv6 in the core





## Multicast by P2MP LSPs

- Collapse a SSM IP tree topology to a IP directly connected topology
- IP Multicast gets MPLS
   QoS and traffic
   protection mechanisms
- IP Multicast does no longer require an IP enabled core





#### **NG-MVPN**

#### Multicast in VPN

- P2MP LSPs for forwarding
- Multiprotocol BGP for PIM PE-PE signaling





## **MPLS** Topologies

- Traffic engineering and fast reroute in core only
  - Not neccessary in POPs
- Reduces # LSPs in core
- LSP hierarchy
  - Core LSPs
  - Tunneled LDP sessions between PE routers



## Scaling MPLS topologies



