

不可感知性

对载体的破坏程度

主观评价

客观评价

水印容量、可感 知性、健壮性三 者之间的平衡

透明性

透明性,也称不可感知性、不可见性或保真性,被用于标评价数字水印算法对载体感观质量的影响。

- ✓ 一般要求算法不显著影响载体的视听觉效果。即要求嵌入信息后, 宿主数据的感观质量没有明显下降。
- ✓ 算法通常利用人类的感知系统的冗余来达到"透明"嵌入的效果。
- ✓ 人类视觉系统(Human Visual System, HVS)存在冗余。图像等数字水印和隐写算法正是利用了HVS的这一特点设计的。
- ✓ 图像视觉质量的下降程度与算法在其中嵌入的数据量成正比关系, 算法嵌入的数据量大,图像视觉质量下降程度就大。

对水印算法性能的完整评价,不仅包括稳健性,还包括透明性等其他指标。

主观评价

- ✓ 由人来评价算法引入的图像质量的下降。
- ✓ 最常用的方法: 平均意见分(Mean Opinion Score, MOS)。 MOS评价过程: 组织人员参与评测,提供图像质量评分等级 及其对应的描述,要求参评者独立地观测图像并根据描述给出评 分,平均所有参评者打分所得即为图像的MOS分。

ITU-R Rec.500图像质量度量

等级级别	损害	质 量
5	不可察觉	优
4	可察觉,不让人厌烦	良
3	轻微地让人厌烦	中
2	让人厌烦	差
1	非常让人厌烦	极差

主观评价的优缺点

优点:

主观评价直接反映了人对图像质量的感受,准确性是其优点,适用评估成熟、稳定的水印算法。

缺点:

- ✓ 结果具有主观性, 各次主观评价的差异可能较大。
- ✓ 为了降低评价结果的随机性,提高可信度,评价时需要大量的 参评人员参与评价,单次评价过程开销大。

客观评价

- ✓ 通常以图像某类属性的"误差"度量原图和水印图的差异,以此 作为图像质量的评价。
- ✓ 常用的图像客观评价指标: 差分失真度量、相关性失真度量等。

客观失真度量

差分失真度量		
平均绝对差分	$AD = \frac{1}{XY} \sum_{x,y} \left p_{x,y} - \widetilde{p}_{x,y} \right $	
均方误差	$MSE = \frac{1}{XY} \sum_{x,y} (p_{x,y} - \widetilde{p}_{x,y})^2$	
L ^p - 范数	$L^{p} = \left(\frac{1}{XY}\sum_{x,y}\left p_{x,y}-\widetilde{p}_{x,y}\right ^{p}\right)^{\frac{1}{p}}$	
拉普拉斯均方误差	$LMSE = \sum_{x,y} \left(\nabla^2 p_{x,y} - \nabla^2 \widetilde{p}_{x,y} \right)^2 / \sum_{x,y} \left(\nabla^2 p_{x,y} \right)^2$	
信噪比	$SNR = \sum_{x,y} p_{x,y}^{2} / \sum_{x,y} (p_{x,y} - \widetilde{p}_{x,y})^{2}$	
峰值信噪比	$PSNR = XY \max_{x,y} p_{x,y}^{2} / \sum_{x,y} (p_{x,y} - \widetilde{p}_{x,y})^{2}$	

相关失真度量

归一化互相关	$NC = \sum p_{x,y} \widetilde{p}_{x,y}$	$\sum p_{x,y}^2$
	$\overline{x,y}$	

相关质量
$$CQ = \sum_{x,y} p_{x,y} \widetilde{p}_{x,y} / \sum_{x,y} p_{x,y}$$

客观失真度量

其它

全局西格马信噪比

$$GSSNR = \sum_{b} \sigma_{b}^{2} / \sum_{b} (\sigma_{b} - \widetilde{\sigma}_{b})^{2}$$
其中,
$$\sigma_{b} = \sqrt{\frac{1}{n} \sum_{\Re b} p_{x,y}^{2} - \left(\frac{1}{n} \sum_{\Re b} p_{x,y}\right)^{2}}$$

直方图相似性

$$HS = \sum_{c=0}^{255} |f_I(c) - f_{\widetilde{I}}(c)|$$

信噪比和峰值信噪比

信噪比:

- ✓ 信噪比(Signal Noise Ratio, SNR)
- ✓ 通常以分贝(dB)来表示。

峰值信噪比:

- ✓ 峰值信噪比(Peak Signal Noise Ratio, PSNR)。
- ✓ 通常以分贝(dB)来表示。

客观指标与主观评价不总一致?

客观评价的优缺点

优点:

- ✓ 客观评价方法不受主观因素干扰,可重复性强。
- ✓ 客观评价过程简单。
- ✓ 不需要额外组织人员参与。

缺点:

客观指标难以准确反映主观感受。