# Optimizing RTP in Slot Machines While Preserving Reel Characteristics

By Ashley Del Sesto

University of Nevada, Reno <a href="https://github.com/delsesto-ashley/SlotMachi">https://github.com/delsesto-ashley/SlotMachi</a> neGAReelCharacteristics

## A Little Refresher

- Return to Player (RTP)
  - Average winnings returned to the player
  - o 86%, 89%, 90%, etc.
  - $\circ \quad RTP = \frac{SUM(win)}{SUM(bet)}$
- Credits
  - Unit of currency for slot machines
  - Converted from real-life currencies & denomination amounts (1¢, \$1, etc.)
- Win Patterns (or Pay Combos)
  - A pattern of symbols that yields a credit amount and/or triggers an event
  - Example: 30AK of 10 pays 5 credits



- Screen
- Lines
  - Positions on the screen that a win pattern can appear on
  - Typically evaluated Left-to-Right
- Scatter
  - Win patterns that can appear on any position in screen

## Prior Work

- Balabanov et. al., 2015: GA used to target RTP via Monte Carlo Simulations<sup>[1]</sup>
  - Each wagered game is simulated using a random seed
- Balabanov et. al., 2015: Discrete Differential Evolution (DDE) algorithm used to target 3 parameters<sup>[2]</sup>:
  - O RTP
  - Pay combo hit distribution
  - Symbol diversity
- Keremedchiev et. al., 2017: GA used to target RTP via Exact RTP calculations<sup>[3]</sup>
- Kamanas et. al., 2021: Used Variable Neighborhood Search to target RTP via Monte Carlo Simulations<sup>[4]</sup>

# **Unexplored Territory**

- Mathematical Calculation
  - Calculate probability of symbols and use math to derive RTP
  - Pros
    - Speed
    - Similar to Excel
  - o "Cons"
    - Only calculates Base Game
    - Hit frequency: No coinciding line wins
- Math Models
  - Symbol stacks
    - WILD stacks
    - Other symbol stacks
    - No stacks of a given symbol (only single-symbol appearances)
  - o Ghost/Blank symbol requirements
  - Perceived Persistence Bonus triggers
  - Base Game Feature probabilities
  - ...and many more!



Aristocrat's Gold Stacks 88 Empire Ocean Dragon Slot Machine

## Old Chromosome → New Chromosome

- 2D
- Maps 1-1 with reels
- Fixed reel length for all reels

|           | 2 |
|-----------|---|
| 4 4 2 6   |   |
|           | 7 |
| 7 2 3 1 3 | 3 |
| 5 7 4 8 9 | 5 |
| 8 3 4 5   | 4 |
| 3 9 1 3 ; | 3 |
| 2 6 7 8 6 | 3 |
| 5 4 8 6 8 | 3 |
|           |   |
|           |   |
|           |   |

- 3D
- Tuple = Stack
- (symbol, count)
- Fixed # of Tuple entries for all reels
  - variable reel lengths

| (1,4) | (6,1) | (5,2) | (3,1) | (2,1) |
|-------|-------|-------|-------|-------|
| (4,2) | (4,1) | (2,1) | (6,1) | (7,2) |
| (7,1) | (2,2) | (3,2) | (1,3) | (3,1) |
| (5,1) | (7,1) | (4,1) | (8,1) | (5,1) |
| (8,2) | (3,1) | (5,2) | (5,2) | (4,1) |
| (3,1) | (9,2) | (1,1) | (3,1) | (3,2) |
| (2,1) | (6,1) | (7,3) | (8,1) | (6,1) |
| (5,3) | (4,3) | (8,1) | (6,2) | (8,1) |
|       |       |       |       |       |
|       |       | •     |       |       |
|       | · ·   | ·     |       |       |

## Approach - GAs

- Multiple Objective Functions
  - RTP
  - Symbol Diversity
  - Bonus Hit Frequency (?)
- Fitness Function = Combination of objectives into single criteria function
- Chromosome
  - o 500 tuples, 1000 elements
  - 1 <= symbol counts <= 5 per tuple</li>
- Penalties: TBD
- Pop: 50 (?)
- Generations: 100 (?)

- Tournament Selection
- Uniform X-over
  - High probability 0.9
- Mutations
  - Chance to swap two stacks
    - High probability 0.1
  - Per tuple: chance to either
    - Shift symbol (+/- 1)\*
    - Shift symbol count (+/- 1)\*
    - Low probability 0.001 (?)

<sup>\*</sup>shifts use modulo % to prevent illegal symbols & symbol counts

## Approach - Math Model

- RTP: 70%

- Bet\*
  - 50 lines
  - 1 credit per line
  - no side bet
- "Easy" pays
- Left-to-Right

- Wild symbol 1
  - Combos evaluate to symbol 2
- Bonus
- R = 5
- L = varies per reel
- Stacks = 100 per reel

| Symbol Name/Count | 3     | 4     | 5     |
|-------------------|-------|-------|-------|
| 11                | Bonus | Bonus | Bonus |

Scatter pay combos for math model

| Symbol Name/Count | 2 | 3  | 4  | 5   |
|-------------------|---|----|----|-----|
| 2                 | 5 | 20 | 50 | 200 |
| 3                 |   | 15 | 45 | 100 |
| 4                 |   | 15 | 45 | 100 |
| 5                 |   | 10 | 30 | 75  |
| 6                 |   | 10 | 30 | 75  |
| 7                 |   | 5  | 20 | 50  |
| 8                 |   | 5  | 20 | 50  |
| 9                 |   | 5  | 20 | 50  |
| 10                |   | 5  | 20 | 50  |

Line pay combos for math model

## What I Have So Far

- RTP evaluation
- Chromosomal Decoding
- Tournament Selection
  - Fixing

- Uniform X-Over
- Mutations
  - Stack Swap
    - Fixing
  - Tuple Shift



#### User input file



### What I Plan To Do Next

- Objective function for Symbol Diversity
- Objective function for Bonus trigger frequency
- Penalty for adjacent tuples creating stack > 5 symbols
- Penalty for stacking bonus symbol (11)
- Experiment with different probabilities for X-over & mutations

## References

- 1. T. Balabanov, I. Zankinski, and B. Shumanov, "Slot machines rtp optimization with genetic algorithms," in Numerical Methods and Applications: 8th International Conference, NMA 2014, Borovets, Bulgaria, August 20-24, 2014, Revised Selected Papers 8, Springer, 2015, pp. 55–61.
- 2. T. Balabanov, I. Zankinski, and B. Shumanov, "Slot machine rtp optimization and symbols wins equalization with discrete differential evolution," in *Large-Scale Scientific Computing: 10th International Conference, LSSC 2015, Sozopol, Bulgaria, June 8-12, 2015. Revised Selected Papers 10,* Springer, 2015, pp. 210–217.
- D. Keremedchiev, P. Tomov, and M. Barova, "Slot machine base game evolutionary rtp optimization," in Numerical Analysis and Its Applications: 6th International Conference, NAA 2016, Lozenetz, Bulgaria, June 15-22, 2016, Revised Selected Papers 6, Springer, 2017, pp. 406-413.
- 4. P.-A. Kamanas, A. Sifaleras, and N. Samaras, "Slot machine rtp optimization using variable neighborhood search," *Mathematical Problems in Engineering*, vol. 2021, pp. 1–8, 2021.