线 ...

深圳大学期末考试试卷

开/闭卷 闭卷

2213990401~

课程编号 2213990408

课程名称 数字电路

线

命题人(签字)__________ 审题人(签字)__

题号	 =	三	四	五.	六	七	
得分							
评卷人							

A/B 卷 **B**卷

石头坞收集了几百门深大课程资 料, 关注领取

、填空题(每小题 **3**分,共 **15**分)

- 1. (406) 10= (010000000110
-) 8421BCD

- 2. A⊕ A = (
- A), $\overline{A} \oplus A = (\overline{A})$
- 3. 逻辑函数 $F = \overline{A}B + \overline{C}D$,其对偶式为 ($F' = (\overline{A} + B)(\overline{C} + D)$)
- 4. F(A,B,C) = AB + BC 的标准或与表达式为 ($\prod M (0,2,3,4)$)
- 5. JK 主从触发器的特性方程为($Q^{n+} = JQ^{n} + \overline{K}Q^{n}$

二、分析如下图所示的组合逻辑电路,写出逻辑表达式。 (每小题 5分, 共 10分) (1) (2)

答案

密

$$Y_1 = AB + (A \oplus B)C$$

$$Y_2 = A \oplus B \oplus C$$

$$F = \overline{A}B + A\overline{B}$$

- 三、用卡诺图化简逻辑函数,要求在卡诺图上画出卡诺圈。 (每小题 5分,共 10分)
 - (1) $F(A,B,C,D) = \sum m(0,2,5,7,8,10,14,15)$
 - (2) $F(A, B, C, D) = \sum m(0,2,3,4,8) + \sum d(10,11,12,13,14,15)$

答案:

(1) F (A,B,C,D) = \sum m (0,1,2,5,6,7,8,10,11,12,13,15 = \overline{BD} + BD

(2) $F(A, B, C, D) = \sum m(0,2,3,4,8) + \sum d(10,11,12,13,14,15) = \overline{CD} + \overline{BC}$

- 四、某厂有 10kW和 20kW两台发电机组和同为 10kW三台用电设备。已知三台用电设备可能部分工作或都不工作, 但不可能三台同时工作。 试用与非门设计一个供电控制电路,使电力负荷达到最佳匹配。 要求列出真值表, 画出逻辑电路图。 允许反变量输入。(15分)
 - 参考答案: 用电设备: 用 A、B 和 C 分别表示三台用电设备 发电机组: 用 Y表示 10kW 发电机、用 Z表示 20kW 发电机 用 0表示设备不工作、用 1表示设备工作 真值表如下

Α	В	С	Υ	Z			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	×	×			

表达式为

$$Y = \overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{ABC}$$

$$= \overline{\overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{ABC}}$$

$$= \overline{\overrightarrow{ABC} \cdot \overline{\overrightarrow{ABC}} \cdot \overline{\overrightarrow{ABC}}}$$

$$(3 \%)$$

$$Z = AB + AC + BC$$

$$= \overline{AB + AC + BC}$$

$$= \overline{AB \cdot AC \cdot BC}$$
(2 $\%$)

(5分)

(5分)

五、用如图所示的 8 选 1 数据选择器 74LS151 实现下列函数。(10 分) $Y(A,B,C,D) = \sum m(1,5,6,7,9,11,12,13,14)$

参考答案:将逻辑函数写成 8选1数据选择器的标准形式

 $Y(A,B,C,D) = \overrightarrow{ABC} \cdot D + \overrightarrow{A$

逻辑图如图所示:

六、已知上升沿翻转的 JK 边缘触发器的时钟信号和输入信号如图所示,试画出 Q 端的 波形,设触发器的初态为 Q=0。(10分)

参考答案:

七、分析下图所示的时序逻辑电路,写出它的输出方程、驱动方程、状态方程,并画出状态转换图。(**20**分)

$$\begin{cases} J_{1} = K_{1} = \overline{Q}_{3} \\ J_{2} = K_{2} = Q_{1} \\ J_{3} = Q_{1}Q_{2}; K_{3} = Q_{3} \end{cases}$$

$$\begin{cases} Q_{1}^{n+1} = \overline{Q}_{3}\overline{Q}_{1} + Q_{3}Q_{1} = Q_{3} \odot Q_{1} \\ Q_{2}^{n+1} = Q_{1}\overline{Q}_{2} + \overline{Q}_{1}Q_{2} = Q_{2} \oplus Q_{1} \\ Q_{3}^{n+1} = \overline{Q}_{3}Q_{2}Q_{1} \end{cases}$$

$$Y = Q_{3}$$

状态转换图为:

参考评分:驱动方程、状态方程正确分别给 6分,输出方程正确给 2分,状态转换图给 6分, 他未给出 扣 2分。

八、分析下图所示的计数器在 M = 0和 M = 1时各为几进制。 要求写出分析过程。 **74LS160** 的功能表如下表:

四位同步十进制加法计数器 74LS160 功能表

			输	>						输	出		
CLR	LD	EP	ET	CLK	D_0	$\mathbf{D}_{\mathbf{i}}$	D_z	\mathbf{D}_3	\mathbf{Q}_0^{n+1}	Q_1^{n+1}	\mathbf{Q}_{2}^{s+1}	\mathbf{Q}_{3}^{n+1}	工作模式
o	×	×	×	×	×	×	×	×	0	0	0	0	同步清零
1	0	×	×	•	$d_{\mathfrak{o}}$	$\mathbf{d_1}$	d_2	da	do	$\mathbf{d}_{\mathbf{i}}$	d_2	d_3	同步置数
1	1	0	1	×	×	×	×	×	Q,	Q_1''	\mathbf{Q}_{z}^{n}	Q_3''	保持
1	1	×	0	×	×	×	×	×	Q,	Q_1^n	Q_2''	Q_3''	·保持(CO=0)
1	1	1	1	↑	×	×	×	×		十进制力			计数

参考答案: 参考答案: M = 0 时,计数器的状态转换为 $0100 \rightarrow 0101 \rightarrow 0110 \rightarrow 0111 \rightarrow 1000$ → $1001 \rightarrow 1010$ 。因此计数器为七进制计算器。 (5 分)

M =1 时,计数器的状态转换为 0010→0011→0100→0101→0110→0111→1000→1001→1010。因此计数器为九进制计数器。 (5 分)

九、用下降沿触发的同步 JK 触发器和门电路设计一个可控电路, 状态转换图如下图所示。 (要求写出详细过程)。(30分)

答案: 由状态转换图可得到如下状态转换表

	输出	态	次		÷	现 态		
	Y	$Q_1^{n+1} Q_0^{n+1}$	$Q_{2}^{n+}Q_{1}^{n+}Q_{0}^{n+}$			$Q_2^n Q_1^n Q_0^n$		
		0	1	0	0	0 0 0		
		0	0	1	0	0 0 1		
		0	1	1	0	0 1 0		
		0	0	0	1	0 1 1		
		1	0	0	0	1 0 0		
		1	0	1	0	1 0 1		
		1	0	1	0	1 1 0		
		1	0	0	0	1 1 1		
(6分								

(6分)

根据状态转换表及卡诺图化简分别得到状态方程和输出方程:

$$Q_{2}^{n+1} = \overline{Q_{2}^{n}} Q_{1}^{n} Q_{0}^{n}$$

$$Q_{1}^{n+1} = \overline{Q_{1}^{n}} Q_{0}^{n} + Q_{1}^{n} \overline{Q_{0}^{n}}$$

$$Q_{0}^{n+1} = \overline{Q_{2}^{n}} \overline{Q_{0}^{n}}$$

$$Y = Q_{2}^{n}$$

$$(10 \%)$$

由 JK 触发器的特性方程为: $Q^{n+} = JQ^{n} + KQ^{n}$

$$X = Q_2^{n+} = \overline{Q_2^n} Q_1^n Q_0^n = Q_1^n Q_0^n \overline{Q_2^n} + \overline{1} Q_2^n$$

则
$$J_2 = Q_1^n Q_0^n$$
 $K_2 = 1$

$$X = \overline{Q_1^n} = \overline{Q_1^n} Q_0^n + Q_1^n \overline{Q_0^n}$$

则
$$J_1 = K_1 = Q_0^n$$

$$\mathbb{X} \quad Q_0^{n+} = \overline{Q_2^n} \ \overline{Q_0^n} \ = \overline{Q_2^n} \ \overline{Q_0^n} \ + \overline{1} \cdot Q_0^n$$

则
$$J_0 = \overline{Q_2^n}$$
 $K_0 = 1$ (6分)

逻辑电路图如下:

