Домашнее задание 1

Дедлайн: 2024-09-16, 21:00.

- 1. Вася решает три задачи по теории вероятностей. Вероятности решить эти задачи равны $0.1,\,0.2$ и 0.3. Решения задач никак не связаны между собой, знание ни одной из задач не помогает решить ни одну другую. Обозначим буквой N общее количество решенных задач.
 - а) Найдите все значения N и их вероятности.
 - б) Найдите $\mathbb{P}(N > 1)$, $\mathbb{E}(N)$ и $\mathbb{E}(N^2)$.
- 2. За работу Вася получает случайное целое количество ξ баллов, равновероятно распределённое от 1 до n.

Найдите $\mathbb{E}(\xi)$, $\mathbb{E}(\xi^2)$, $\mathbb{E}(\xi^3)$.

3. Берём набор данных по ссылке

https://github.com/bdemeshev/hse_pmi_probability_2024_2025/raw/main/home_assignments/ha01_data.csv.

Здесь две переменных: y_i — количество просмотренных Васей рилзов в день i и бинарная переменная x_i ($x_i = A$ — обычный день, $x_i = B$ — день дедлайна по теории вероятностей).

Рассмотрим две гипотезы. Нулевая гипотеза H_0 : приближение дедлайна по вероятностям никак не влияет на количество просмотренных рилзов. Альтернативная гипотеза H_1 : приближение дедлайна в среднем снижает количество просмотренных рилзов.

- а) Посчитайте фактическое значение статистики $S = \bar{y}_B \bar{y}_A$.
- б) Предполагая, что H_0 верна, сгенерируйте 10000 случайных перестановок меток x и для каждой перестановки посчитайте значение статистики $S^{\rm new}=\bar{y}_B^{\rm new}-\bar{y}_A^{\rm new}.$
- в) Оцените p-значение, в данном случае p-значение это вероятность $\mathbb{P}(S^{\text{new}} \leq S \mid S, H_0)$.
- г) Для принятия решения, отвергать или нет H_0 , мы используем уровень значимости $\alpha=0.05$. Отвергаем ли мы H_0 ?

Домашнее задание 2

Дедлайн: 2024-09-23, 21:00.

1. Монетка выпадает орлом T с вероятностью 0.2 и решкой H — с вероятностью 0.8. Илон Маск подбрасывает её 100 раз. За каждую выпавшую комбинацию THT он получает 1\$, а за каждую комбинацию HHHHHH — платит 1\$.

Чему равен ожидаемый выигрыш Маска в эту игру?

Уточнение: комбинации могут пересекаться, например, за THTHT Маск получит 2\$.

2. Бармен Огненной Зебры разбавляет каждую кружку пива независимо от других с общеизвестной вероятностью $p \in (0;1)$. Ковбой Джо заходит в бар и первым делом сразу заказывает три кружки пива и выпивает их. Затем Джо заказывает по две кружки пива за один раз.

После 3-й, 5-й, 7-й, 9-й, 11-й и далее через каждые две кружки Джо прислушивается к своим ощущениям. Если не менее двух кружек пива из последних трёх кружек разбавлены, то Джо разносит бар к чертям собачьим.

- а) Сколько кружек пива в среднем успеет выпить Джо прежде чем разнесёт Огненную Зебру?
- б) Если все три последние кружки пива разбавлены, то Джо разносит не только Огненную Зебру, но и всю прилежащую улицу. Какова вероятность данного сценария?

3. Ретроградный Меркурий.

Маша решает задачи по теории вероятностей как во время ретроградного Меркурия, так и без оного. Всего она решила 50 задач, из них 11 она решила правильно. Из 30 решённых во время ретроградного Меркурия задач S=5 были решены правильно.

Рассмотрим две гипотезы. Нулевая гипотеза H_0 : ретроградный Меркурий не оказывает влияния на вероятность решения задачи. Альтернативная гипотеза H_1 : ретроградный Меркурий снижает вероятность верно решить задачу.

- а) Предполагая, что H_0 верна, сгенерируйте 10000 случайных выборок. В каждой выборке должно быть всего ровно 50 задач, ровно 30 задач должны приходится на ретроградный Меркурий, всего ровно 11 задач должны быть решены верно. Для каждой выборки посчитайте S^{new} количество верно решённых во время ретроградного Меркурия задач.
- б) Оцените p-значение по 10000 экспериментов. В данном случае p-значение это вероятность $\mathbb{P}(S^{\text{new}} \leq S \mid S, H_0)$.
- в) Найдите точное p-значение в данной задаче.
- г) Для принятия решения, отвергать или нет H_0 , мы используем уровень значимости $\alpha=0.05$. Отвергаем ли мы H_0 ?