Fonctions holomorphes

Table des matières

1	Définitions et propriétés élémentaires	2
2	Rappels sur les séries entières	5
3	Fonctions analytiques	6

1 Définitions et propriétés élémentaires

On identifie \mathbb{C} à \mathbb{R}^2 par l'isomorphisme naturel de \mathbb{R} -espace vectoriel $\iota: x+iy \mapsto (x,y)$. Si \mathcal{U} est un ouvert de \mathbb{C} , l'ensemble $\iota(\mathcal{U})$ est un ouvert de \mathbb{R}^2 que l'on notera $\tilde{\mathcal{U}}$. Si f est une application de $\mathbb{C} \to \mathbb{C}$, on notera P_f (resp. Q_f) l'application $(x,y) \mapsto \text{Re}(f(x+iy))$ (resp. $(x,y) \mapsto \text{Im}(f(x+iy))$) et \tilde{f} l'application $(x,y) \mapsto (P_f(x,y), Q_f(x,y))$. Ainsi, pour tout $z=x+iy\in\mathbb{C}$, $f(z)=P_f(x,y)+iQ_f(x,y)$.

Définition 1.0.1 : Soient \mathcal{U} un ouvert de \mathbb{C} et $f : \mathcal{U} \to \mathbb{C}$. Soit $z_0 \in \mathcal{U}$. f est \mathbb{C} -dérivable en z_0 s'il existe $\alpha \in \mathbb{C}$ tel que

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \alpha$$

Définition 1.0.2 : $f : \mathcal{U} \to \mathbb{C}$ est **holomorphe** sur \mathcal{U} si elle est \mathbb{C} -dérivable en tout point de \mathcal{U} . On note $f' : \mathcal{U} \to \mathbb{C}$ la fonction dérivée.

Théorème 1.0.1: (Admis) Si $f: \mathcal{U} \to \mathbb{C}$ est holomorphe, alors f' est continue.

Remarque: f est holomorphe sur \mathcal{U} si et seulement si elle admet un développement limité à l'ordre 1 en tout point de \mathcal{U} :

$$\forall x \in \mathcal{U}, \ f(x+h) = f(x) + f'(x)h + o(h)$$

Il est alors clair que f est continue sur \mathcal{U} .

Proposition 1.0.1 : (Équations de Cauchy-Riemann) Soit $f : \mathcal{U} \to \mathbb{C}$. Alors f est \mathbb{C} -dérivable en $z_0 = x_0 + iy_0$ si et seulement si P_f et Q_f sont différentiables en (x_0, y_0) et

$$\begin{cases} \frac{\partial P_f}{\partial x}(x_0, y_0) = \frac{\partial Q_f}{\partial y}(x_0, y_0) \\ \frac{\partial P_f}{\partial y}(x_0, y_0) = \frac{-\partial Q_f}{\partial x}(x_0, y_0) \end{cases}$$

Démonstration : On suppose d'abord que f est \mathbb{C} -dérivable en z_0 et on note $f'(z_0) = \alpha = a + ib$. Alors,

$$f(z_0 + h) = f(z_0) + \alpha \times h + o(h)$$

$$f(z_0 + h) = f(z_0) + (a + ib) \times (h_x + ih_y) + o(h)$$

$$f(z_0 + h) = f(z_0) + (ah_x - bh_y) + i(ah_y + bh_x) + o(h)$$

donc,

$$\tilde{f}(x_0 + h_x, y_0 + h_y) = \tilde{f}(x_0, y_0) + (ah_x - bh_y, ah_y + bh_x) + o(h_x, h_y)$$

que l'on peut ré-écrire

$$\tilde{f}(x_0 + h_x, y_0 + h_y) = \tilde{f}(x_0, y_0) + \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} h_x \\ h_y \end{pmatrix} + o(h_x, h_y)$$

On en déduit que $\tilde{f} = (P_f, Q_f)$ est différentiable en (x_0, y_0) et que sa jacobienne est la matrice

$$\operatorname{Jac}_{(x_0,y_0)}\tilde{f} := \begin{pmatrix} \frac{\partial P_f}{\partial x}(x_0,y_0) & \frac{\partial P_f}{\partial y}(x_0,y_0) \\ \frac{\partial Q_f}{\partial x}(x_0,y_0) & \frac{\partial Q_f}{\partial y}(x_0,y_0) \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Réciproquement, on suppose que P_f et Q_f sont différentiables en (x_0, y_0) et que

$$\begin{cases} a := \frac{\partial P_f}{\partial x}(x_0, y_0) = \frac{\partial Q_f}{\partial y}(x_0, y_0) \\ b := \frac{\partial P_f}{\partial y}(x_0, y_0) = \frac{-\partial Q_f}{\partial x}(x_0, y_0) \end{cases}$$

Alors \tilde{f} est différentiable en (x_0, z_0) et

$$\operatorname{Jac}_{(x_0,y_0)}\tilde{f} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

donc on retrouve le fait que f est \mathbb{C} -dérivable en z_0 en écrivant un développement limité à l'ordre 1 en (x_0, y_0) de \tilde{f} .

Remarque: On a de plus $f'(x_0 + iy_0) = \frac{\partial P_f}{\partial x}(x_0, y_0) - i\frac{\partial P_f}{\partial y}(x_0, y_0)$.

Exemple : La conjugaison complexe $(f: z \mapsto \bar{z})$ n'est \mathbb{C} -dérivable en aucun point de \mathbb{C} . En effet, les fonctions $P_f(x,y) = x$ et $Q_f(x,y) = -y$ ne vérifient pas les équations de Cauchy-Riemann.

Remarque : Les équations de Cauchy-Riemann peuvent être reformulées autrement : f est \mathbb{C} -dérivable en $z_0 = x_0 + iy_0$ si et seulement si \tilde{f} est différentiable en (x_0, y_0) et sa différentielle est \mathbb{C} -linéaire.

Proposition 1.0.2: Soit \mathcal{U} un ouvert de \mathbb{C} . On note $\mathcal{H}(\mathcal{U})$ l'ensemble des fonctions holomorphes sur \mathcal{U} . Alors,

- 1. $\mathcal{H}(\mathcal{U})$ est un \mathbb{C} -espace vectoriel.
- 2. Si $f, g \in \mathcal{H}(\mathcal{U})$, alors $fg \in \mathcal{H}(\mathcal{U})$ et (fg)' = f'g + fg'.
- 3. Si $f \in \mathcal{H}(\mathcal{U})$ et si f ne s'annule pas sur \mathcal{U} , alors $\frac{1}{f} \in \mathcal{H}(\mathcal{U})$ et $(\frac{1}{f})' = \frac{-f'}{f^2}$.
- 4. Si $f: \mathcal{U} \to \mathbb{C}$ et $g: \mathcal{V} \to \mathbb{C}$ sont holomorphes et que $f(\mathcal{U}) \subset \mathcal{V}$, alors $g \circ f \in \mathcal{H}(\mathcal{U})$ et $(g \circ f)' = f' \times (g' \circ f)$.

Démonstration: Même preuve que pour les fonctions dérivables sur un ouvert de \mathbb{R} .

Exemple : Les polynômes sont holomorphes sur \mathbb{C} , les fractions rationnelles sont holomorphes sur tout \mathbb{C} sauf sur leurs pôles.

Théorème 1.0.2 : (Théorème des accroissements finis) Soit E un espace vectoriel normé, \mathcal{U} un ouvert connexe de E et $f: \mathcal{U} \to \mathbb{R}$ une fonction différentiable. Alors pour tout $a, b \in \mathcal{U}$, il existe $c \in [a, b]$ tel que

$$f(a) - f(b) = D_c f(b - a)$$

Théorème 1.0.3 : (Inégalité des accroissements finis) Soient E, F deux espaces vectoriels normés, \mathcal{U} un ouvert convexe de E et $f: \mathcal{U} \subset E \to F$ un fonction différentiable. Soient $a, b \in \mathcal{U}$. Alors,

$$||f(a) - f(b)|| \le \sup_{x \in [a,b]} ||D_x f|| \cdot ||(b-a)||$$

Théorème 1.0.4: (Rappel) Soit \mathcal{U} un ouvert de \mathbb{R}^2 et $f: \mathcal{U} \to \mathbb{R}^m$. Si f admet des dérivées partielles sur \mathcal{U} et si elles sont **continues** en un point $a \in \mathcal{U}$, alors f est différentiable en a et $D_a f(h_1, h_2) = h_1 \cdot \frac{\partial f}{\partial x}(a) + h_2 \cdot \frac{\partial f}{\partial y}(a)$.

Démonstration : On note $a = (a_1, a_2)$, $D(h = (h_1, h_2)) = h_1 \cdot \frac{\partial f}{\partial x}(a) + h_2 \cdot \frac{\partial f}{\partial y}(a)$ et u(h) = f(a+h) - f(a) - D(h) et on va montrer que u(h) = o(h). Soit $\varepsilon > 0$. Les dérivées partielles de f sont continues donc il existe $\delta > 0$ tel que pour tout $z \in B(0, \delta)$,

$$\|\frac{\partial f}{\partial x \text{ (resp. } \partial y)}(a+z) - \frac{\partial f}{\partial x \text{ (resp. } \partial y)}(a)\| \le \varepsilon$$

Soit $(h_1, h_2) \in B(0, \delta)$. On écrit

$$u(h_1, h_2) = f(a_1 + h_1, a_2 + h_2) - f(a_1, a_2) - h_1 \cdot \frac{\partial f}{\partial x}(a) - h_2 \cdot \frac{\partial f}{\partial y}(a)$$

$$= \left[f(a_1 + h_1, a_2 + h_2) - f(a_1, a_2 + h_2) - h_1 \cdot \frac{\partial f}{\partial x}(a) \right] + \left[f(a_1, a_2 + h_2) - f(a_1, a_2) - h_2 \cdot \frac{\partial f}{\partial y}(a) \right]$$
(1)

et on pose

$$v(t) = f(a_1 + t, a_2 + h_2) - f(a_1, h_2 + h_2) - t \cdot \frac{\partial f}{\partial x}(a)$$
$$w(t) = f(a_1, a_2 + t) - f(a_1, a_2) - t \cdot \frac{\partial f}{\partial y}(a)$$

v est dérivable sur $[0, h_1]$ et pour tout $t \in [0, h_1]$, $v'(t) = \frac{\partial f}{\partial x}(a_1 + t, a_2 + h_2) - \frac{\partial f}{\partial x}(a)$ donc $||v'(t)|| \le \varepsilon$. De même, pour tout $t \in h_2$, $||w'(t)|| \le \varepsilon$. On déduit de l'inégalité des accroissements finis que $||v(h_1)|| \le |h_1|\varepsilon$ et $||w(h_2)|| \le |h_2|\varepsilon$. En utilisant l'expression (1) puis l'inégalité triangulaire, on trouve

$$||u(h_1, h_2)|| \le |h_1|\varepsilon + |h_2|\varepsilon \le 2\varepsilon \cdot ||h||_{\infty}$$

ce qui permet de conclure.

Proposition 1.0.3 : Soient $\mathcal{U} \subset \mathbb{C}$ un ouvert **convexe** et $f : \mathcal{U} \to \mathbb{C}$ holomorphe. f est constante sur \mathcal{U} si et seulement si f' = 0.

Démonstration : Si f est constante, on écrit le taux d'accroissement et on a bien f' = 0.

Supposons maintenant que f'=0. Alors, les applications $\frac{\partial P_f}{\partial x}$ et $\frac{\partial P_f}{\partial y}$ sont nulles, et donc continues. Comme f est holomorphes, on en déduit que les dérivées partielles de Q_f sont aussi nulles. Selon le théorème (1.0.3), P_f et Q_f sont différentiables et leurs différentielles sont nulles. En appliquant le théorème des accroissements finis sur \tilde{U} , on trouve que P_f et Q_f y sont constantes, et donc que f est constante sur U.

2 Rappels sur les séries entières

Définition 2.0.1 : Soit $\sum a_n z^n$ une série entière.

Le rayon de convergence de $\sum a_n z^n$ est sup $(\{t \ge 0, |a_n t^n| \text{ est bornée } \})$ et est noté R_a .

Proposition 2.0.1 : Soit $\sum a_n z^n$ une série entière. Soit $z \in \mathbb{C}$. Si $|z| < R_a$, alors la série $\sum a_n z^n$ est absolument convergente. Si $|z| > R_a$, alors la série $\sum a_n z^n$ diverge. Si $|z| = R_a$, la série peut converger ou diverger.

Proposition 2.0.2: (Règle de d'Alembert) Soit $\sum_{n} a_n z^n$ une série entière telle que la suite (a_n) est non nulle à partir d'un certain rang. On suppose de la suite $\frac{|a_{n+1}|}{|a_n|}$ converge vers $l \in \mathbb{R}$. Alors $R_a = 1/l$, avec les conventions $1/0 = +\infty$ et $\frac{1}{+\infty} = 0$.

Proposition 2.0.3: (Règle de Cauchy) Soit $\sum a_n z^n$ une série entière. Si $|a_n|^{1/n}$ converge vers $l \in \mathbb{R}$, alors $R_a = 1/l$ (avec les mêmes conventions que précédemment).

Proposition 2.0.4: (Règle de Cauchy améliorée) Soit $\sum a_n z^n$ une série entière. Alors $1/R_a = \limsup a_n^{1/n}$.

Définition 2.0.2 : Soit $\sum a_n z^n$ une série entière. La **série dérivée** de $\sum a_n z^n$ est la série $\sum (n+1)a_{n+1}z^n$. Son rayon de convergence est noté R'_a .

Proposition 2.0.5 : Soit $\sum a_n z^n$ une série entière. Alors, $R_a = R'_a$.

Démonstration : Supposons que $R_a < R'_a$. Soit $z_0 \in \mathbb{C}$ tel que $R_a < |z_0| < R'_a$. Alors,

$$|a_{n+1}z_0^{n+1}| \le (n+1)|a_{n+1}z_0^n||z_0|$$

La suite de droite est bornée donc celle de gauche aussi, ce qui est absurde. Supposons maintenant que $R'_a < R_a$. Soient $z_0 \in \mathbb{C}$ et l > 0 tels que $R'_a < |z_0| < l < R_a$. On note M > 0 un majorant de la suite $|a_n t^n|$. Alors,

$$|(n+1)a_{n+1}z_0^{n+1}| = (n+1)|a_{n+1}l^{n+1}|(z_0/l)^{n+1} \le (n+1)M(z_0/l)^{n+1}$$

Par croissances comparées, on sait que la série des $(n+1)M(z_0/l)^{n+1}$ converge, donc celle des $|(n+1)a_{n+1}z^n|$ aussi, ce qui est absurde.

3 Fonctions analytiques

Proposition 3.0.1: Soit $\sum a_n z^n$ une série entière. On note $f: B(0, R_a) \to \mathbb{C}, \ z \mapsto \sum_{n=0}^{+\infty} a_n z^n$. f est holomorphe sur $B(0, R_a)$ et pour tout $z \in B(0, R_a), \ f'(z) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}z^n$.

Démonstration : Soit $z \in B(0, R_a)$ et r > 0 tel que $|z| < r < R_a$. Pour tout $h \in \mathbb{C}$ tel que |z| + |h| < r,

$$\frac{f(z+h) - f(z)}{h} - \sum_{n=0}^{+\infty} (n+1)a_{n+1}z^n = \frac{1}{h} \sum_{n=0}^{+\infty} a_n \left[(z+h)^n - z^n \right] - \sum_{n=0}^{+\infty} (n+1)a_{n+1}z^n$$
$$= \sum_{n=1}^{+\infty} a_n \left[\frac{(z+h)^n - z^n}{h} - nz^{n-1} \right]$$

Pour tout $n \geq 1$, on pose

$$v_n(h) = \frac{(z+h)^n - z^n}{h} - nz^{n-1}$$

Il est clair que $\lim_{h\to 0} v_n(h) = 0$. De plus,

$$|v_n(h)| = \left| \frac{(z+h)^n - z^n}{h} - nz^{n-1} \right|$$

$$= \left| \sum_{k=0}^{n-1} (z+h)^k z^{n-k} - nz^{n-1} \right|$$

$$\leq \sum_{k=0}^{n-1} |z+h|^k |z|^{n-k} + n|z|^{n-1}$$

$$\leq 2nr^{n-1}$$

car $|z| \le |z| + |h| < r$. On en déduit que la série $\sum a_n v_n(h)$ est converge normalement. On peut donc passer à la limite dans la série :

$$\lim_{h \to 0} \sum_{n=1}^{+\infty} a_n \left[\frac{(z+h)^n - z^n}{h} - nz^{n-1} \right] = \sum_{n=1}^{+\infty} a_n \cdot \lim_{h \to 0} \left[\frac{(z+h)^n - z^n}{h} - nz^{n-1} \right]$$

$$= 0$$

Remarque : On en déduit que f est infiniment \mathbb{C} -dérivable sur $B(0,R_a)$ et que pour tout $n \in \mathbb{N}$, $a_n = f^{(n)}(0)/n!$. On peut alors écrire le **développement en série de Taylor en 0** de f:

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} z^n$$

Définition 3.0.1 : Soit \mathcal{U} un ouvert de \mathbb{C} . Une fonction $f:\mathcal{U}\to\mathbb{C}$ est **analytique** lorsque pour tout $z_0\in\mathcal{U}$, il existe $B(z_0,R)\subset\mathcal{U}$ et une série entière $\sum a_nz^n$ telle que $R\leq R_a$ et $f(z)=\sum_{n=0}^{+\infty}(z-z_0)^n$ pour tout $z\in B(0,R)$.

Proposition 3.0.2 : Soit $f : \mathcal{U} \to \mathbb{C}$ analytique. Alors f est holomorphe sur \mathcal{U} et admet des dérivées de tous ordres qui sont toutes holomorphes.

Démonstration : En effet, si $z_0 \in \mathcal{U}$, il existe une série entière $\sum a_n z^n$ telle que pour tout $z \in B(0, R_a) \cap \mathcal{U}$,

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
$$= \left[(h \mapsto \sum_{z=0}^{+\infty} a_n h^n) \circ (u \mapsto u - z_0) \right] (z)$$

Ces deux fonctions sont holomorphes donc leur composition l'est aussi.

Proposition 3.0.3 : Soit $\sum a_n z^n$ une série entière. Alors la fonction $f: B(0, R_a) \to \mathbb{C}$ associée à cette série est analytique.

Démonstration : Soit $z_0 \in B(0, R_a)$. On veut montrer qu'il existe une série entière $\sum b_n z^n$ telle que pour tout $z \in B(z_0, R_b) \cap B(0, R_a)$, on ait

$$f(z) = \sum b_n (z - z_0)^n$$

Soit $p \in \mathbb{N}$.

$$f^{(p)}(z_0) = \sum_{n=p}^{+\infty} n(n-1)...(n-p+1)a_n z_0^{n-p}$$

$$= \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!} a_n z_0^{n-p}$$

$$= \sum_{q=0}^{+\infty} \frac{(p+q)!}{q!} a_{p+q} z_0^q \text{ (changement de variable } q = n-p)$$

$$= \sum_{q=0}^{+\infty} p! \binom{p+q}{q} a_{p+q} z_0^q$$

On en déduit que la série entière $\sum (f^{(p)}(z_0)/p!)z^n$ a un rayon de convergence supérieur à $R_a - |z_0|$. En effet, si $r < R_a - |z_0|$, alors

$$\left| \frac{f^{(p)}(z_0)}{p!} r^p \right| \le \sum_{q=0}^{+\infty} \binom{p+q}{q} |a_{p+q}| \cdot |z_0|^q r^p$$

$$\le \sum_{n=p}^{+\infty} \binom{n}{n-p} |a_n| \cdot \max(|z_0|, r)^n \quad \text{(changement de variable } n = p+q)$$

$$< +\infty$$

car $\max(|z_0|, r) < R_a$. Soit $z \in \mathbb{C}$ tel que $|z - z_0| < R_a - |z_0|$. Alors,

$$\sum_{p=0}^{+\infty} \frac{f^{(p)}(z_0)}{p!} (z - z_0)^n = \sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} \binom{p+q}{q} a_{p+q} z_0^q (z - z_0)^p$$

$$= \sum_{n=0}^{+\infty} a_n \sum_{p+q=n} \binom{n}{q} z_0^q (z - z_0)^{n-q} \quad (1)$$

$$= \sum_{n=0}^{+\infty} a_n z^n$$

$$= f(z)$$

(1) vient du fait que la série est absolument convergente donc on peut la réordonner comme on veut : $\mathbb{N}^2 = \cup_{n=0}^{+\infty} \{(p,q) \in \mathbb{N}^2, \ p+q=n\}$