ΜΕΡΟΣ Α

1. Θεωρήστε το παρακάτω σύνολο δεδομένων εκπαίδευσης. Έχουμε 9 εγγραφές με το ύψος και το φύλο του κάθε ατόμου, οπού το φύλο είναι class variable.

Ύψος 161 164 169 175 176 179 181 184 185 Φύλο F F М M F F M M F

Το GINI INDEX του συνόλου των δεδομένων είναι:

 $(\alpha)1-(4/9)^2-(5/9)^2$

 $(\beta)(4/9)^2+(5/9)^2$

 $(\gamma)1-[(4/9)^2-(5/9)^2]$

2. Θεωρήστε το παρακάτω σύνολο δεδομένων εκπαίδευσης. Έχουμε 9 εγγραφές με το ύψος και το φύλο του κάθε ατόμου, οπού το φύλο είναι class variable.

Ύψος 161 164 169 175 176 179 181 184 185 Φύλο F F F F F M M M M

Αν επιλέξουμε να διασπάσουμε με βάση την τιμή 165, τότε

 $(\alpha)gini(<165)=1-(0/2)^2$

 $(\beta)gini(<165)=1-(2/9)^2$

 $(\gamma)gini(>165)=1-[(4/7)^2-(3/7)^2]$

 $(\delta)gini(>165)=1-(4/7)^2-(3/7)^2$

3. Στα προηγούμενα δεδομένα, αν τελικά επιλέξουμε το 165 ως ρίζα του δέντρου απόφασης και αποφασίσουμε ότι το δέντρο μας θα έχει μόνο έναν κόμβο , τότε τα δεδομένα εκπαίδευσης που το δέντρο κατηγοριοποιεί σωστά :

(a)6

(b)9

(c)2

(d)7

4. Υποθέστε ότι υπάρχουν 50 στιγμιότυπα της κλάσης P(positive) και 150 της κλάσης N(negative) σε ένα σύνολο δεδομένων ελέγχου 200 στιγμιότυπων. Έχουμε ένα κατηγοριοποίητη που κατηγοριοποιεί 40 στιγμιότυπα ως P από τα οποία την πραγματικότητα τα 30 ανήκουν στην κλάση P. Ποιες είναι οι τιμές του precision και recall;

 $(\alpha)30/40 \text{ kal } 30/50$

 $(\beta)30/50 \, \text{kal} \, 30/40$

 $(\gamma)30/200 \, \text{kal} \, 40/200$

 $(\delta)50/150 \text{ kai } 30/150 \text{ (iows eival } 50/50 \text{ to } \pi\text{pwto)}$

5. Υποθέστε ότι υπάρχουν 50 στιγμιότυπα της κλάσης P(positive) και 150 της κλάσης N(negative) σε ένα σύνολο δεδομένων ελέγχου 200 στιγμιότυπων. Έχουμε ένα κατηγοριοποίητη που κατηγοριοποιεί 40 στιγμιότυπα ως P από τα οποία την πραγματικότητα τα 30 ανήκουν στην κλάση P. Ποιο είναι το accuracy;

(a)170/200

(b)30/50

 $(\gamma)40/50$

(d)80/100

6. Έστω τα σημεία α ως i στον μονοδιάστατο χώρο. Κάθε σημείο είναι Άσπρο(Α) ή Μαύρο(Μ)

coord	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
class		Α	Α		М		Α		М						Α		М			М
name		а	b		С		d		е						g		h			i

Αν εφαρμόσετε τον αλγόριθμο απομάκρυνσης θορύβου ENN με κ=3 στο dataset αυτό, τότε το ES(Edited Set) θα είναι το :

- (a)ES={a,b,e,h,i}
- (b)ES= $\{a,b,r,g,i\}$
- $(c)ES={a,b,e,g,h}$
- $(d)ES={a,b,d,h,i}$
- 7. Έστω τα σημεία α ως i στον μονοδιάστατο χώρο. Κάθε σημείο είναι Άσπρο(Α) ή Μαύρο(Μ)

				•						•									•	
coord	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
class		Α	Α		M		Α		М						Α		М			М
name		а	b		С		d		е						g		h			i

Αν εφαρμόσετε τον αλγόριθμο IB2 στο dataset αυτό, τότε το CS(Edited Set) θα είναι το :

- (a)CS={a,c,d,e,g,h}
- (b)CS={a,c,d,e,g,i}
- $(c)CS={a,c,d,e,f,h}$
- $(d)CS={a,b,d,e,g,h}$
- 8. Έστω τα σημεία α ως i στον μονοδιάστατο χώρο. Σας δίνονται τα πέντε πρώτα βήματα της ιεραρχικής συσταδοποιησης με μέτρο απόστασης των συστάδων τη μέθοδο MAX distance(complete linkage). Ποιο είναι το βήμα 6; (Σε περίπτωση ισοπαλιών , επιλέξτε την επιλογή αριστερά)

coord	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
class		а	b		С		d		е		f				g		h			i

Στην εκφώνηση έδινε τα πρώτα βήματα και ζητούσε να επιλέξουμε το 6°

9. Έστω τα σημεία a ως i στον μονοδιάστατο χώρο. Εφαρμοστέ DBSCAN με minpoints=3 και epsilon=2

coord	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
class		а	b		С		d		е		f				g		h			i

Ποια είναι τα CORE POINTS;

- (a)CORE={b,c,d,e}
- (b)CORE={b,c,d,e,g}
- (c)CORE={b,c,d,e,g,h}
- (d)CORE={a,b,c,d,e}
- 10. Έστω τα σημεία a ως i στον μονοδιάστατο χώρο. Εφαρμοστέ DBSCAN με minpoints=3 και epsilon=2

coord	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
class		а	b		С		d		е		f				g		h			i

Ποια είναι τα NOISE POINTS;

(a)NOISE={g,h,i}

(b)NOISE={d,g,h,i}

(c)NOISE={g,i}

(d)NOISE={i}

11. Έστω τα σημεία a ως i στον μονοδιάστατο χώρο. Εφαρμοστέ DBSCAN με minpoints=3 και epsilon=2

coord	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
class		а	b		С		d		е		f				g		h			i

Ποια είναι τα BORDER POINTS;

(a)BORDER={a,f}

(b)BORDER={c,f}

(c)BORDER={a,g}

(d)BORDER={a,c,f,h}

ΜΕΡΟΣ Β [60 μονάδες]

1) Θέμα 1°

Για τις παρακάτω δοσοληψίες και minsup=60% και mincof=80%

Δοσοληψία	Αντικείμενα
1	A, B, C, D, E, F
2	B, C, D, E, F, G
3	A, D, E, H
4	A, D, F, I, J
5	B, D, E, K

- a) Κυκλώστε τα συχνά στοιχειοσυνολα
 - {A, B} {A, D} {A, E} {A, F} {B, D} {B, E} {B, F} {D, E} {D, F} {E, F} {A, B, D} {A, D, F} {B, D, E} {B, D, F} {D, E, F}
- b) Γράψτε μόνο τους κανόνες(ή κανόνα) που πληρούν τους περιορισμούς και περιέχουν το D στο αριστερό μέρος .
- c) Υπολογίστε και το interest/lift για τον/τους κανόνα/νες του Β.

2) ΘΕΜΑ 2⁰

	DOC id	Λέξεις Εγγράφου	Μαγειρική
	1	φούρνος, τηγάνι,	Ναι
		λάδι	
Σύνολο Εκπαίδευσης	2	φούρνος, φούρνος	Ναι
		,γάλα, ζάχαρη	
	3	πλυντήριο, ψυγείο,	Όχι
		στεγνωτήριο	
	4	φούρνος, ψυγείο	Όχι
		,ψυγείο, πλυντήριο,	
		στεγνωτήριο	
Σύνολο Ελέγχου	5	φούρνος, φούρνος,	
		φούρνος	

- a) Η κατηγορία του 5° εγγράφου με χρήση του κατηγοριοποιητή Naïve Bayes. Γράψτε τους υπολογισμούς σας.
- b) Η κατηγορία του 5° εγγράφου με χρήση του κατηγοριοποιητή Binary Multinomial Naïve Bayes. Γράψτε τους υπολογισμούς σας.

2) ΘΕΜΑ 3^o

a) Θεωρήστε το παρακάτω web log:

	•	U			
#	IP Address	TIME	URL		Agent
1	IP2	9/Nov/05:03:05:06	GET A.HTML		Agent2
2	IP1	9/Nov/05:03:05:26	GET A.HTML		Agent1
3	IP2	9/Nov/05:03:06:06	GET X.HTML	A.HTML	Agent2
4	IP2	9/Nov/05:03:06:39	GET B.HTML	A.HTML	Agent2
5	IP1	9/Nov/05:03:07:03	GET C.HTML	A.HTML	Agent1
6	IP1	9/Nov/05:03:07:20	GET D.HTML	C.HTML	Agent1
7	IP1	9/Nov/05:03:08:40	GET E.HTML	C.HTML	Agent1
8	IP1	9/Nov/05:03:29:06	GET	A.HTML	Agent1
			W.HTML		
9	IP2	9/Nov/05:04:10:06	GET Z.HTML		Agent2
10	IP2	9/Nov/05:04:15:46	GET O.HTML	Z.HTML	Agent2

Διαιρέστε το log sessions ανά χρήση, αφού εντοπίσετε και τους διαφορετικούς χρήστες, χρησιμοποιώντας time out 5 λεπτών για παραμονή στην ιδιά σελίδα. Η απάντηση θα είναι της μορφής Χρήστης 1- Session 1:1,2,3 (όπου οι αριθμοί αντιστοιχούν στις γραμμές του log), Χρήστης 1-Session 2: 4,5,6

- b) Επιλέξτε τα συμπληρωμένα μονοπάτια που αντιστοιχούν σε sessions του Α
 - i) A->C->D->C->A->E
 - ii) A->C->A->E
 - iii) A->C->D->C->A->E->W
 - iv) A->C->A->E->W
 - v) A->X
 - vi) A->X->B->C->D->E->W

vii) Z->D

viii) A->X->A->B

ix) A->W

x) C->D

xi) A->X->B

xii) A->X->B->D->E->W

3) ΘΕΜΑ 4°

a) Θεωρήστε τον γράφο που δίνεται από τον παρακάτω πίνακα γειτνίασης

	P1	P2	P3	P4
P1	0	1	1	0
P2	1	0	1	1
P3	0	1	0	0
P4	1	0	1	1

Γράψτε με διατύπωση πινάκων την 1^n επανάληψη για τα power iterations του PageRank (δηλαδή την διατύπωση με χρήση πινάκων M και r , χωρίς να κάνετε τον υπολογισμό)

b) Γράψτε με διατύπωση πινάκων την 1η επανάληψη για τα power iterations του PageRank με β =0,8 (παρόμοια με το A)

4) ΘΕΜΑ 5°

a) Για το παρακάτω γράφο

Υπολογίστε το edge betweenness για την ακμή που έχει την μεγαλύτερη τιμή

- b) Ταξινομήστε τις ακμές σε φθίνουσα σειρά με βάση το edge betweenness. Σε περίπτωση ισοβάθμιας προηγείται η ακμή με το μικρότερο λεξικογραφικό άκρο. Δεν απαιτείται ο υπολογισμός όλων των τιμών αν δεν θέλετε.
- c) Δώστε τα ιεραρχικά clusters που θα προκύψουν με την εφαρμογή του αλγορίθμου Girvan-Newman και αν υποθέσουμε ότι εκμεταλλευόμαστε τα αποτελέσματα του Β, χωρίς επαναυπολογισμό του edge betweenness σε κάθε βήμα. Για την αναπαράσταση χρησιμοποιείστε δενδρόγραμμα.