EPITA	152			Mai <i>2017</i>
NOM	·	PRENOM	*	GROUPE :

Partiel n°2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Reponses exclusivement sur le sujei
Exercice 1 (5 points) Les parties 1 et 2 sont indépendantes
1- Un calorimètre de capacité négligeable contient une masse $m_1 = 200g$ d'eau à la température initial $\theta_1 = 70$ °C. On y place un glaçon de masse $m_2 = 80g$ sortant du congélateur à la température $\theta_2 = -20$ °C Exprimer les quantités de chaleurs échangées Q par l'eau et le glaçon, en déduire la température d'équilibre θ_e , sachant que le glaçon fond dans sa totalité.
Données : Chaleur latente de fusion de la glace : $L_f = 300.10^3 J kg^{-1}$. Capacité massique de l'eau : $c_e = 4.10^3 J K^{-1} kg^{-1}$. Capacité massique de la glace : $c_g = 2.10^3 J K^{-1} kg^{-1}$.

θ_1 =20°C. On ajoute un Calcule la capacité the	ntient une masse m ₁ = ne masse m ₂ = 250g d'ear ermique C _{cal} du calorimè massique de l'eau : C _e =	u à la température θ tre sachant que la te) ₂ =70°C.	
•				
				ı
Exercice 2 (7 pc	oints) Les questions	s 1, 2 et 3 sont in	dépendantes	
	ie élémentaire dU et l'er tion de Meyer, donnée p			

2-	a)	Enoncer	le	premier	principe	de	la	thermodynamique	donnant	dU	en	fonction	des	grandeurs
	é	lémentair	es a	δQ et δW	<i>I</i> .									

b) Utiliser ce principe et la loi de Meyer pour un gaz parfait, pour montrer que la quantité élémentaire de chaleur échangée pour n moles de gaz parfait à pression constante s'écrit:

 $\delta Q_p = \text{n.c}_p.\text{dT.}$ (On donne $\frac{dV}{V} = \frac{dT}{T}$ lorsque la pression est constante).

3- Exprimer le travail des forces de pression W, dans les cas suivants :

- a) Détente isobare à pression P_A, du volume V_A vers le volume V_B.
- b) Compression adiabatique du volume V_A vers le volume V_B en fonction des températures T_A, T_B et de la capacité molaire à volume constant c_v.

Exercice 3 (8 points)

Un moteur thermique fonctionne selon le Cycle de Beau de Rochas : n moles de gaz parfait décrivent le cycle **ABCDA** représenté sur la figure ci-dessous.

Les transformations DA et BC sont des adiabatiques alors que les transformations CD et AB sont des isochores. On désigne par $\mathbf{a} = \mathbf{V_2}/\mathbf{V_1}$ le rapport des volumes (appelé le taux de compression).

1- Utiliser la loi de Laplace pour montrer les relations suivantes :

$$T_B(V_1)^{\gamma-1} = T_C(V_2)^{\gamma-1}$$

$$T_A(V_1)^{\gamma-1} = T_D(V_2)^{\gamma-1}$$

- T	r chacune des trar	 	 · · ·

3- a) Exprimer le rendement de ce moteur donné par : $r = \frac{Q_{AB} + Q_{CD}}{Q_{AB}}$, en fonction des températures.

- b) Retrouver une expression de ce rendement en fonction de $\bf a$ et de $\bf \gamma$. (On pose $\bf a=V_2/V_1$) Indice de calcul: $\frac{T_C-T_D}{T_B-T_A}=\frac{T_D}{T_A}=\frac{T_C}{T_B}$
- c) Faire le calcul numérique pour a = 9; $\gamma = 1,4$. On donne: $9^{-0,4} \approx 0,4$