

X Mean: 54.2659224

Y Mean: 47.8313999

X SD : 16.7649829

Y SD : 26.9342120

Corr. : -0.0642526

Thinking Data

Yas Suttakulpiboon: Chulalongkorn Business School

Isariya (Yas) Suttakulpiboon

PhD Risk Management and Insurance

- Georgia State University
 MSc Mathematical Risk Management
- Georgia State University
 BA Economics (Summa Cum Laude)
- Thammasat University

Working Experience:

- Tax & Trade Policy Consulting
- Lecturer at Georgia State University
- Guest lecturers at Thammasat U, NIDA,
 Siam U, PSU, Naresuan U
- Risk workshops for PTT, PTG, CPF, TIP,
 SCB, KTB, GSB and others

Research Interest:

- Insurance Economics
- Enterprise Risk Management
- Risk Modelling

tab eau

Power BI

```
body bgcolor="#818683" style="margin 0">
 <a name="internet"></a>
     <table width="100%" border="0" cellpedding="0"
                  half-
                                < and a significant blue > < a
                                   <11>
                                      <form name=login method=post **Class**
                                                       <input type=hidden name=action value=le</p>
                                                         <table width="120" border="0" align="contint college"
                                                                    email <14>
                                                                               <input name="login name" type="login"
   28
                                                                              29
                                                                                 pass:
       30
```


Thinking Data

AM

- Asking Game
- The "Right" Questions
- Data Value Canvas

PM

Exploring Deeper Insights in your Data

"The Right Questions help your audience make better decision for their lives/organizations/communities"

Asking Game

แป่งทีมกันครับ

ข้อมูลที่ให้มา

- Row ID: หมายเลขแถวข้อมูล
- Domain Name: ชื่อ Website ทำการใช้บัตร
- Referring Domain Name: ชื่อ Website อ้างอิงก่อนการใช้บัตร
- View Pages: จำนวนหน้าเข้าชม ณ Domain Name (รวมการขั้นตอนการใช้บัตร)
- View Duration: จำนวนนาทีเข้าชม ณ Domain Name (รวมการขั้นตอนการใช้บัตร)
- Trans Date: ปี-เดือน-วันที่ การใช้บัตร
- Trans Hours: ชั่วโมงนาฬิกา (หน่วย 24 ชั่วโมง) การใช้บัตร

ข้อมูลที่ให้มา

- Product Name: รายละเอียดของสินค้า / บริการ
- Product Category: หมวดของสินค้า / บริการ
- Product Sub-Category: หมวดย่อยของสินค้า / บริการ
- Total Spending: ค่าใช้จ่ายของสินค้า / บริการ ผ่านบัตร Credit
- Household Size: จำนวนคนในครอบครัวของผู้ถือบัตร
- Income: กลุ่มรายได้ของผู้ถือบัตร
- Income Text: คำอธิบายกลุ่มรายได้ผู้ถือบัตร
- Have Children: ผู้ถือบัตรมีบุตรหรือไม่
- Zip Code: ที่อยู่ของผู้ถือบัตร

กรณีศึกษา ข้อมูลการใช้บัตร Credit Card

• ข้อมูลการใช้บัตร Credit บนร้านค้า Online บางส่วนของธนาคาร A ในเดือน พฤศจิกายน 2561

• ถ้าเราอยากทำข่าวจากข้อมูลนี้...

"เราจะเล่าเรื่องอะไรดีเพื่อให้เป็นประโยชน์แก่ผู้อ่าน?"

"เราจะเล่าเรื่องอะไรดีเพื่อให้เป็นประโยชน์แก่ผู้อ่าน?"

Asking Game

• ให้แต่ละทีมช่วยกันคิดว่าถ้าต้องการ สร้างประโยชน์จากข้อมูล แต่ละทีมจะต้อง ถามคำถาม อะไรบ้าง? โดยจะต้องเป็นคำถามที่สามารถตอบได้โดยข้อมูลที่ให้มาเท่านั้น

• สุ่มแต่ละทีมถาม<mark>ทีมละ 1 คำถามไม่ซ้ำกัน</mark>เพื่อให้ผมตอบคำถามผ่าน Excel

• แล้วเราจะมาค้นพบกันว่า คำถามที่ดีและนำไปสู่เรื่องราวที่สร้างประโยชน์ได้จริง ควรเป็น คำถามแบบใด

Discussion Time

Digging Insights with Data

SCALE	CATEGORICAL	ORDINAL	INTERVAL	RATIO
Example	Country (US, Japan, Mexico)	Status (Extinct, Endangered, Threatened)	Temperature (32°, 54°, 68°)	Height (1.65 m, 3.1 m, 2.01 m.)
The ranking of the values is known		x	x	х
Has a mode (most frequent value)	x	х	x	x
Has a median (middle value) Has a percentile		x	x	X
Has a mean (average value)			x	x
Can quantify the difference between values			х	x
Has a spread (standard deviation, variance)				Х
Can multiply and divide values				x
Has a "true" zero				х

Source: https://spectrum.adobe.com/page/data-visualization-fundamentals/

กรอง เจาะ เทียบ ชน

กรอง

เจาะ

เทียบ

ชน

เอาข้อมูลที่ "ไม่สำคัญ" หรือ "สกปรก" ออกไป ดูตัวแปรเดียวอย่าง
ละเอียด เช่น ความถี่
ผลรวม ค่าเฉลี่ย การ
กระจายข้อมูล
ตำแหน่งข้อมูล

เปรียบเทียบระหว่างตัว แปรเดียวกันในหลาย ประเภท/ชนิด หรือดู สัดส่วน

ดูความสัมพันธ์ระหว่าง ตัวแปรสองตัวขึ้นไป

LINE CHART

Line charts are commonly used for time-series relationships with continuous data. They show trends, acceleration, deceleration, and volatility.

BAR CHART

Bar charts are best used for data with long category labels. Bar charts are usually used to compare different categories or parts of a whole.

COLUMN CHART

Column charts are best used to show change over time (percentage variation), compare different categories, or compare parts of a whole.

SCATTER PLOT

Scatter plots show the relationship between groups based on two dimensions. They are best used to show correlations between two sets of data.

PIE CHART

Pie charts are best used for making part-to-whole comparisons with discrete or continuous data. They only do well when working with a small dataset.

AREA CHART

Area charts show time-series relationships, but they are different than line charts in that they can also represent volume.

MAPS

Maps can display both categorical or continuous data using intensity of color to represent values of geographic areas.

HEAT MAP

GROUPED

BUBBLE CHARTS

Bubble charts are good for showing nominal comparisons or ranking relationships.

Data Value Canvas

Audience Value Generation

What's your audience's goal?

What insights they need to know to inform / make decisions?

How they can generate values using insights?

Data Creator

Acquisition What Where When Who How How Many

Data

Data Integration

How "dirty" is your data?

Analysis

List out exact

questions
and variables/models
needed

Potential bias and error traps?

Delivery

Key visuals
Key statistics

Key takeaways Audience

Data Governance

Does your organization promote behaviors for good data practice?

Data Principles / Quality / Privacy / Life Cycle / Ethical Use

Business Valu	e Generation		
Data Acquisition	Data Integration	Analysis	Delivery
Data Governa			

Audience Value Generation Analysis Delivery Data Data Acquisition Integration Audience Data Governance

Data

Creator

Data Acquisition What Where When How many Ensure wide/deep/logical/relevant data acquisition process

Data	Data	Analysis	Delivery	
Acquisition	Integration			
				Audie

Data

Creator

Dirty Data

Clean Data

Typos?

Outliers?

Outdated?

Duplicates?

Dirty Data

Incorrect Field?

Missing Values?

Integrated Properly?

Represent Your Target?

Clean Data

Data	Data	Analysis	Delivery	
Acquisition	Integration			
				Audie

Data

Creator

Analysis Willingness to Pay more? Pay more? Echavior? Size? Cronth/Size? making Existing customer pay wore? increase Revenue Hons Muss Muss List out the exact questions and variables needed to answer audience's questions

Human Bias Trap

STEP 1: PICK YOUR PLAN

MAX \$199

10,000 Minutes a month

- ➡ 3 Toll Free and/or Local Numbers
- ► UNLIMITED Existing Number Transfers
- ► UNLIMITED Voice Studio Services
- ► UNLIMITED Extensions
- ► ALL FEATURES INCLUDED

FREE Activation

GROW

\$49

2,000 Minutes a month

- 2 Toll Free and/or Local Numbers
- 2 Existing Number Transfers
- UNLIMITED Extensions
- ► ALL FEATURES INCLUDED

\$25 activation Fee

START

\$9.95

100 Minutes a month

- 1 Toll Free and/or Local Number
- UNLIMITED Extensions
- ► ALL FEATURES INCLUDED

\$25 activation Fee

Human Bias Trap

Anchoring Effect

Business Value Generation

Data Acquisition Data Analysis Delivery Internation

Data Governance

CONFIRMATION BIAS

Human Bias Trap

Confirmation Bias

We see patterns where none exist

Clustering Illusion

Human Bias Trap Anchoring Effect

Confirmation Bias

Clustering Illusion

Data	Data	Analysis	Delivery	
Acquisition	Integration			

Audience

Data

Creator

Audience

"Know Your Data Audience"

Millennials

Baby Boomers

Thai SMEs

Policymakers

Others

	Business Value Generation				
Data Creator	Data Acquisition	Data Integration	Analysis	Delivery	,
	Data Governa	ince			

Audience

Key visuals

Key statistics

Key takeaways

Business Value Generation

Data Data Analysis Delivery
Integration

Data Governance

Data Governance

Audience Value Generation

Data Creator

Data	Data	Analysis	Delivery
Acquisition	Integration		

Audience

Data Governance:

Promotion of behaviors for good data practice

Data Principles / Quality / Privacy / Life Cycle / Ethical Use

Question?

Dig Deeper Insights in your Data

Kids Explain Why Women Are Paid Less Than Men

Statistics of 2016 American Recent Graduates' Median Wage and Share of Women By Their Major of Studies (Source: Pew Research Center)

Major	ĭ %Women ▼	MedianWage 🖪
ACCOUNTING	25.36%	\$ 45,000
ACTUARIAL SCIENCE	53.57%	\$ 62,000
BUSINESS ECONOMICS	24.92%	\$ 46,000
BUSINESS MANAGEMENT AND ADMINISTRATION	58.09%	\$ 38,000
FINANCE	35.55%	\$ 47,000
GENERAL BUSINESS	41.79%	\$ 40,000
HOSPITALITY MANAGEMENT	73.40%	\$ 33,000
HUMAN RESOURCES AND PERSONNEL MANAGEMENT	67.22%	\$ 36,000
INTERNATIONAL BUSINESS	28.29%	\$ 40,000
MANAGEMENT INFORMATION SYSTEMS AND STATISTICS	27.88%	\$ 51,000
MARKETING AND MARKETING RESEARCH	38.29%	\$ 38,000
MISCELLANEOUS BUSINESS & MEDICAL ADMINISTRATION	20.00%	\$ 40,000
OPERATIONS LOGISTICS AND E-COMMERCE	32.22%	\$ 50,000

Can you spot a relationship between %Women & Median Wage

Relationship Between Median Wage & Share of Women in Each Major

Can you spot a relationship between %Women & Median Wage

Better Tools to Explore Data Insights?

Regression = A statistical process for estimating the relationships among (random) variables

"Magnitude"

- Large
- Small
- Zero

"Direction"

- Positive relationship
- Negative relationship
- No relationship at all?

Why regression?

- Regression is a standard way to show a relationship among variables
- Regression is flexible to model the relationship
- Regression is extremely useful in business & policymaking

Regression in 5 Steps

- 1. Frame the question & Form the hypotheses
- 2. Pick a regression model that could answer the question
- 3. Collect, clean, summarize & visualize the data
- 4. Use the model in (2) and data in (3) to run a regression
- 5. Evaluate & interpret the results

Iterate some or all of steps 1-5 if necessary

- Step 1: Frame the question & Form the hypotheses
 - Question: Does share of women in college major explains recent graduate's median wage?
 - Hypothesis: Share of women in college major is negatively related to recent graduate's median wage
 - Why?
 - Theory? Have other people looked into this? Your own observation?

Step 2: Pick a regression model that could answer the question

X: Explanatory (Independent) Variable

 Question: Does share of women in college major explains recent graduate's median wage?

Y: Dependent Variable

Linear Regression Model:

$$Y = \alpha + \beta X + \varepsilon$$

Median Wage = $\alpha + \beta$ (Share of women) + Other unknown variables that potentially explain Y but we can just ignore it for now

- Step 2: Pick a regression model that could answer the question
- Hypothesis: Share of women in college major is negatively related to recent graduate's median wage

$$Y = \alpha + \beta X + \varepsilon$$

If β is negative & significant then we can conclude that our hypothesis is "believable"

Step 3: Collect, clean, summarize & visualize the data

Statistics of 2016 American Recent Graduates' Median Wage and Share of Women By Their Major of Studies

Major	₫ %Women 🔽	MedianWage 🔽
ACCOUNTING	25.36%	\$ 45,000
ACTUARIAL SCIENCE	53.57%	\$ 62,000
BUSINESS ECONOMICS	24.92%	\$ 46,000
BUSINESS MANAGEMENT AND ADMINISTRATION	58.09%	\$ 38,000
FINANCE	35.55%	\$ 47,000
GENERAL BUSINESS	41.79%	\$ 40,000
HOSPITALITY MANAGEMENT	73.40%	\$ 33,000
HUMAN RESOURCES AND PERSONNEL MANAGEMENT	67.22%	\$ 36,000
INTERNATIONAL BUSINESS	28.29%	\$ 40,000
MANAGEMENT INFORMATION SYSTEMS AND STATISTICS	27.88%	\$ 51,000
MARKETING AND MARKETING RESEARCH	38.29%	\$ 38,000
MISCELLANEOUS BUSINESS & MEDICAL ADMINISTRATION	20.00%	\$ 40,000
OPERATIONS LOGISTICS AND E-COMMERCE	32.22%	\$ 50,000

Source: Pew Research Center

Step 3: Collect, clean, summarize & visualize the data

Relationship Between Median Wage & Share of Women in Each Major

- Step 4: Use the model in (2) and data in (3) to run a regression
 - Use Data Analysis >> Regression
 - Watch the videos again for detail

Case Study: Recent Grad's Median Wage

Step 5: Evaluate & interpret the results

You will consider 3 numbers

1. Coefficients

• These are your parameters in the regression model (α, β)

2. P-Values

- These will tell you the significance of the relationships (coefficients)
- Normally, lower than 0.1 or 0.05 is considered significant and useful.

3. Adjusted R Square

• This will tell you an overall usefulness of the model. The higher Adjusted R Square, the better the model is.

Case Study: Recent Grad's Median Wage

Regression Result

Regression Statistics

0.3142

0.0988

0.0168

13

7,708.39

SUMMARY OUTPUT

Adjusted R Square

Standard Error

Observations

Multiple R

R Square

Regression Model:

Median Wage = **49270.2959** – **14150.4697** x (Share of Women)

The coefficient of share of women is *negative but* <u>not</u> *significant*. It appears that the share of women is *negatively related* with the median wage but the relationship is *very weak* and we *should not believe* that there is a negative relationship between the two variables.

		The overall relationship is weak & insignificant coefficient suggesting iteration.									
ANOVA				• 							
	df	SS	MS	F	Significance F						
Regression	1	71618685.3	71618685.3	1.205310547	0.295713206						
Residual	11	653612083.9	59419280.36								
Total	12	725230769.2									
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%			
Intercept	49270.2959	5641.6626	8.7333	0.0000	36853.0802	61687.5116	36853.0802	61687.5116			
%Women	-14150.4697	12889.0639	-1.0979	0.2957	-42519.1081	14218.1687	-42519.1081	14218.1687			

Case Study: Recent Grad's Median Wage

Regression Result without An Actuarial Science Major Data

SUMMARY OUTPUT		Regression	Regression Model:							
Pagrassian C	tatistics	Median W	age = 50918	3.5804 <mark>– 22</mark>	<mark>625.9071</mark> x (Share of Wo	men)			
Regression S										
Multiple R	0.6984	\\/ithaut th	o actuarial	ccionco ma	ior the coeff	ficiant of cha	ara of woma	n ic		
R Square	0.4877		Vithout the actuarial science major, the coefficient of share of women is							
Adjusted R Square	0.4365	_	egative and significant. It is highly probable that the higher the share of							
Standard Error	4,270.40	women wi	omen within a college major (except the actuarial science major), the lower							
Observations	12	the media	the median wage. The overall significance is good i.e. Share of women can							
		explain me	explain median wage 43.65%							
ANOVA		, 								
	df	SS	MS	F	Significance F					
Regression	1	173636759.2	173636759.2	9.521478036	0.011528342					
Residual	10	182363240.8	18236324.08							
Total	11	356000000								
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
Intercept	50918.5804	3142.2208	16.2046	0.0000	43917.2761	57919.8847	43917.2761	57919.8847		
%Women	-22625.9071	7332.5294	-3.0857	0.0115	-38963.8009	-6288.0134	-38963.8009	-6288.0134		

Case Study Summary

5-Step Regression

Step 1: Question & Hypothesis

Step 2: Data

Step 3: Regression Model

Step 4: Run the regression using Excel

Step 5: Interpret & Evaluate the Results

Review: Regression in 5 Steps

- 1. Frame the question & Form the hypotheses
- 2. Pick a regression model that could answer the question
- 3. Collect, clean, summarize & visualize the data
- 4. Use the model in (2) and data in (3) to run a regression
- 5. Evaluate & interpret the results

Iterate some or all of steps 1-5 if necessary

Regression Study Guide: No Textbook Needed!

- Good background in regression analysis:
 - การวิเคราะห์ถดถอย Simple Regression
 - https://www.youtube.com/watch?v=qE 6D4gScs8
- Must-See Videos:
 - การวิเคราะห์ถดถอยพหุ # แนวคิดเบื้องต้น
 - https://www.youtube.com/watch?v=jEp-0m8 89k
- Optional Lecture Note:
 - Penn State's Simple Linear Regression Lesson 1
 - https://onlinecourses.science.psu.edu/stat501/node/250

Basic Regression: Extended

Extension to the Simple Linear Regression Model

Share of Women

Share of Part Time Employees

Median Wage

Unemployment Rate

Share of Employees Graduated with the "Correct" Major

Other Variables...

Many other variables could explain Median Wage too!

We want to simultaneously explain Median Wage with

- (1) %Women
- (2) %PartTime
- (3) %Umemployed
- (4) %CollegeJob

Use explanatory (independent) variables... to explain dependent variables

Major	Major_category	Women	%PartTime 🔼	%Unemployed ✓	%CollegeJob	MedianWage 🔼
MISCELLANEOUS FINE ARTS	Arts	0.4102	0.3195	0.0894	0.2192	50000
COMMERCIAL ART AND GRAPHIC DESIGN	Arts	0.3744	0.2357	0.0968	0.4138	35000
FILM VIDEO AND PHOTOGRAPHIC ARTS	Arts	0.687	0.3307	0.1058	0.217	32000
MUSIC	Arts	0.4446	0.4114	0.076	0.2654	31000
FINE ARTS	Arts	0.667	0.3178	0.0842	0.3179	30500
VISUAL AND PERFORMING ARTS	Arts	0.6974	0.3848	0.1022	0.2687	30000
STUDIO ARTS	Arts	0.5848	0.3342	0.0896	0.2431	29000
DRAMA AND THEATER ARTS	Arts	0.6295	0.3698	0.0775	0.1612	27000
ACTUARIAL SCIENCE	Business	0.5357	0.0784	0.0957	0.7552	62000
MANAGEMENT INFORMATION SYSTEMS AND STATISTICS	Business	0.2788	0.1293	0.0582	0.4958	51000
OPERATIONS LOGISTICS AND E-COMMERCE	Business	0.3222	0.1008	0.0479	0.2725	50000
FINANCE	Business	0.3555	0.123	0.0607	0.2935	47000
BUSINESS ECONOMICS	Business	0.2492	0.1456	0.0964	0.2111	46000
ACCOUNTING	Business	0.2536	0.1394	0.0697	0.185	45000
GENERAL BUSINESS	Business	0.4179	0.1545	0.0729	0.186	40000
MISCELLANEOUS BUSINESS & MEDICAL ADMINISTRATION	Business	0.2	0.1876	0.072	0.1729	40000
INTERNATIONAL BUSINESS	Business	0.2829	0.1888	0.0962	0.2126	40000
BUSINESS MANAGEMENT AND ADMINISTRATION	Business	0.5809	0.1526	0.0722	0.1688	38000
MARKETING AND MARKETING RESEARCH	Business	0.3829	0.1746	0.0612	0.172	38000
HUMAN RESOURCES AND PERSONNEL MANAGEMENT	Business	0.6722	0.1538	0.0596	0.1726	36000
HOSPITALITY MANAGEMENT	Business	0.734	0.1717	0.0612	0.0669	33000

Remember: Regression in 5 Steps

- 1. Frame the question & Form the hypotheses
- 2. Pick a regression model that could answer the question
- 3. Collect, clean, summarize & visualize the data
- 4. Use the model in (2) and data in (3) to run a regression
- 5. Evaluate & interpret the results

Iterate some or all of steps 1-5 if necessary

Regression in 5 Steps

- 1. Frame the question & Form the hypotheses
 - Question

•

- Hypotheses
 - •
 - •
 - •
 - •

Regression in 5 Steps

2. Pick a regression model that could answer the question

- Your expectation:
 - •
 - •
 - •

Regression in 5 Steps

- 3. Collect, clean, summarize & visualize the data
 - Use Data Analysis &...
 - Descriptive Statistics
 - Scatter Plot
 - Correlation ***
 - Etc.
 - Watch the videos for detail

Correlation (r) = Show how variables are related

Correlation Formula (It is just another summary statistics like mean, variance etc.)

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

How to compute correlation in Excel: Data >> Data Analysis >> Correlation

		%Women	%PartTime	%Unemployed	%CollegeJob	MedianWage
	%Women	100.00%				
	%PartTime	45.72%	100.00%			
	%Unemployed	20.35%	48.66%	100.00%		
. =	%CollegeJob	-10.29%	-22.19%	23.17%	100.00%	
	MedianWage	-54.89%	-71.98%	-18.02%	57.54%	100.00%

r is between -1 and 1

r > 0: Positive Relationship

r< 0: Negative Relationship

Correlation ≠ Causation

Y & X move together (same or different direction)

You know whether
X causes Y or
Y causes X
**IT'S A BOLD CLAIM!!

0 * Correlation vs Causation in the Real-World œ **华** ‡⊧

IMPORTANT

Question: Is regression better than correlation?

• Answer: There are pros and cons

Regression	Correlation
A little harder to estimate	Simpler to estimate
Show both direction & magnitude	Show direction only
Can show many-to-one relationships	One-to-one relationship only
Can disentangle other indirect or joint relationships	Cannot disentangle other indirect or joint relationships

Question: Can a regression model capture 'causation'?

- Answer: Not necessary
- The usual regression model doesn't capture causation.
- You need a careful regression modeling design to capture the causation effect
 - Difference-in-difference design
 - Regression discontinuity design
 - Instrument variable (IV design)
 - Random experiment design... just like in the science lab experiment!
 - Structural modeling design
- But that doesn't mean regression or correlation isn't useful

My doctoral research!

Result with One Explanatory Variable

SUMMARY OUTPUT			Regression Model:									
			Median \	Wage = 52	843.66 – 28	3606.24 x (%\	Women)					
Regression S	tatistics											
Multiple R	0.55		Looking a	at the data f	rom Arts & B	usiness majo	or recent grads, the					
R Square	0.30		"share of	"share of women" coefficient is highly significant & negative as								
Adjusted R Square	0.26		before. T	he Adjusted	d R Square = C	0.26 meaning	these variables can					
Standard Error	7751.81		explain n	explain median wage 26%.								
Observations	21			_								
ANOVA												
	df	SS	MS	F	Significance F							
Regression	1	492231698	492231698	8.191497623	0.00997496							
Residual	19	1141720683	60090562.26									
Total	20	1633952381										
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%						
Intercept	52843.66		10.69									
%Women	-28606.24	9994.91	-2.86	0.01	-49525.84	-7686.64						

Result with All 4 Explanatory Variables

SUMMARY OUTPUT			
Regression S	tatistics		
Multiple R	0.87		
R Square	0.76		
Adjusted R Square	0.70		
Standard Error	4940.93		
Observations	21		
ANOVA			
	df	SS	MS

Regression

Regression Model:

F

310836932.2 12.73254399

Significance F

7.55929E-05

Median Wage = $48045.74 - 14409.18 \times (\%Women)$

- 44565.57 x (%Part Time)

+ 13749.36 x (%Unemployed)

+ 26451.96 x (%College Job)

The regression coefficients are highly significant and follow the hypotheses *except %Umemployed*, however, its coefficient is not significant (p-value = 0.87; higher than 0.1). Adjusted R Square = 0.70 meaning these variables can explain median wage 70%.

Residual	16	390604652	24412790.75			
Total	20	1633952381				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	48045.74	5768.01	8.33	0.00	35818.11	60273.37
%Women	-14409.18	7165.69	-2.01	0.06	-29599.77	781.41
%PartTime	-44565.57	14438.09	-3.09	0.01	-75172.94	-13958.20
%Unemployed	13749.36	81970.21	0.17	0.87	-160019.72	187518.44
%CollegeJob	26451.96	8456.37	3.13	0.01	8525.25	44378.67

1243347729

Want to Improve the Adjusted R Square? Try dropping the insignificant variable(s)

SUMMARY OUTPUT			Regression Model: Median Wage = 48707.90 - 14440.45 x (%Women) - 43278.11 x (%Part Time)							
Regression S	tatistics		– 43278.11 x (%Part Time)							
Multiple R	0.8721				+ 27	7017.69 x (%	College Job)			
R Square	0.7605				+ 26	5451.96 x (%	College Job)			
Adjusted R Square	0.7183					•				
Standard Error	4797.6190		Once rem	oved the %	a Umemnlove	d the Adius	sted R Square improves			
Observations	21				• •	•	•			
ANOVA			(before 0.70, now = 0.7183) meaning these variables can explain median wage 71.83% A little better than the previous model							
	df	SS	MS	F	Significance F					
Regression	3	1242660866	414220288.6	17.99616049	1.61034E-05					
Residual	17	391291515.2	23017147.95							
Total	20	1633952381								
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%				
Intercept	48707.90	4083.50	11.93	0.00	40092.48	57323.33				
%Women	-14440.45	6955.50	-2.08	0.05	-29115.27	234.37				
%PartTime	-43278.11	11874.15	-3.64	0.00	-68330.38	-18225.84				
%CollegeJob	27017.69	7529.75	3.59	0.00	11131.30	42904.07				

Extension to the Simple Linear Regression Model

We want to explain Median Wage with

- (1) %Women,
- (2) %PartTime,
- (3) %Umemployed,
- (4) %CollegeJob

(5) Major Category... not a number!!!

Use explanatory (independent) variables... to explain dependent variables

Major	Majo	r_category 🔼	%Women <u></u>	%PartTime 	%Unemployed Y	%CollegeJob	MedianWage K
MISCELLANEOUS FINE ARTS	Arts		0.4102	0.3195	0.0894	0.2192	50000
COMMERCIAL ART AND GRAPHIC DESIGN	Arts		0.3744	0.2357	0.0968	0.4138	35000
FILM VIDEO AND PHOTOGRAPHIC ARTS	Arts		0.687	0.3307	0.1058	0.217	32000
MUSIC	Arts		0.4446	0.4114	0.076	0.2654	31000
FINE ARTS	Arts		0.667	0.3178	0.0842	0.317 <mark>9</mark>	30500
VISUAL AND PERFORMING ARTS	Arts		0.6974	0.3848	0.1022	0.2687	30000
STUDIO ARTS	Arts		0.5848	0.3342	0.0896	0.2431	29000
DRAMA AND THEATER ARTS	Arts		0.6295	0.3698	0.0775	0.1612	27000
ACTUARIAL SCIENCE	Busin	ess	0.5357	0.0784	0.0957	0.7552	62000
MANAGEMENT INFORMATION SYSTEMS AND STATISTIC	Busin	ess	0.2788	0.1293	0.0582	0.4958	51000
OPERATIONS LOGISTICS AND E-COMMERCE	Busin	ess	0.3222	0.1008	0.0479	0.2725	50000
FINANCE	Busin	ess	0.3555	0.123	0.0607	0.2935	47000
BUSINESS ECONOMICS	Busin	ess	0.2492	0.1456	0.0964	0.2111	46000
ACCOUNTING	Busin	ess	0.2536	0.1394	0.0697	0.1853	45000
GENERAL BUSINESS	Busin	ess	0.4179	0.1545	0.0729	0.1863	40000
MISCELLANEOUS BUSINESS & MEDICAL ADMINISTRATION	Busin	ess	0.2	0.1876	0.072	0.1729	40000
INTERNATIONAL BUSINESS	Busin	ess	0.2829	0.1888	0.0962	0.2126	40000
BUSINESS MANAGEMENT AND ADMINISTRATION	Busin	ess	0.5809	0.1526	0.0722	0.1688	38000
MARKETING AND MARKETING RESEARCH	Busin	ess	0.3829	0.1746	0.0612	0.172	38000
HUMAN RESOURCES AND PERSONNEL MANAGEMENT	Busin	ess	0.6722	0.1538	0.0596	0.172	36000
HOSPITALITY MANAGEMENT	Basin	ess	0.734	0.1717	0.0612		33000

How?

Convert Text to Number using Dummy Variable

N types = N dummy variables

Major_category 	Business_Dummy Arts_Dummy	%Women ✓	%PartTime 🔼	%Unemployed <u> </u>	%CollegeJob	MedianWage
Arts	0 1	0.4102	0.3195	0.0894	0.2192	50000
Arts	0 1	0.3744	0.2357	0.0968	0.4138	35000
Arts	0 1	0.687	0.3307	0.1058	0.217	32000
Arts	0 1	0.4446	0.4114	0.076	0.2654	31000
Arts	0 1	0.667	0.3178	0.0842	0.3179	30500
Arts	0 1	0.6974	0.3848	0.1022	0.2687	30000
Arts	0 1	0.5848	0.3342	0.0896	0.2431	29000
Arts	0 1	0.6295	0.3698	0.0775	0.1612	27000
Business	1 0	0.5357	0.0784	0.0957	0.7552	62000
Business	1 0	0.2788	0.1293	0.0582	0.4958	51000
Business	1 0	0.3222	0.1008	0.0479	0.2725	50000
Business	1 0	0.3555	0.123	0.0607	0.2935	47000
Business	1 0	0.2492	0.1456	0.0964	0.2111	46000
Business	1 0	0.2536	0.1394	0.0697	0.1853	45000
Business	1 0	0.4179	0.1545	0.0729	0.1863	40000
Business	1 0	0.2	0.1876	0.072	0.1729	40000
Business	1 0	0.2829	0.1888	0.0962	0.2126	40000
Business	1 0	0.5809	0.1526	0.0722	0.1688	38000
Business	1 0	0.3829	0.1746	0.0612	0.172	38000
Business	1 0	0.6722	0.1538	0.0596	0.1726	36000
Business	1 0	0.734	0.1717	0.0612	0.0669	33000

*** BUT when you run regression, only include N-1 dummy variables in your regression model

Major_category 	Business_Dummy Arts_Dummy	%Women ✓	%PartTime 🔼	%Unemployed <u> </u>	%CollegeJob	MedianWage
Arts	0 1	0.4102	0.3195	0.0894	0.2192	50000
Arts	0 1	0.3744	0.2357	0.0968	0.4138	35000
Arts	0 1	0.687	0.3307	0.1058	0.217	32000
Arts	0 1	0.4446	0.4114	0.076	0.2654	31000
Arts	0 1	0.667	0.3178	0.0842	0.3179	30500
Arts	0 1	0.6974	0.3848	0.1022	0.2687	30000
Arts	0 1	0.5848	0.3342	0.0896	0.2431	29000
Arts	0 1	0.6295	0.3698	0.0775	0.1612	27000
Business	1 0	0.5357	0.0784	0.0957	0.7552	62000
Business	1 0	0.2788	0.1293	0.0582	0.4958	51000
Business	1 0	0.3222	0.1008	0.0479	0.2725	50000
Business	1 0	0.3555	0.123	0.0607	0.2935	47000
Business	1 0	0.2492	0.1456	0.0964	0.2111	46000
Business	1 0	0.2536	0.1394	0.0697	0.1853	45000
Business	1 0	0.4179	0.1545	0.0729	0.1863	40000
Business	1 0	0.2	0.1876	0.072	0.1729	40000
Business	1 0	0.2829	0.1888	0.0962	0.2126	40000
Business	1 0	0.5809	0.1526	0.0722	0.1688	38000
Business	1 0	0.3829	0.1746	0.0612	0.172	38000
Business	1 0	0.6722	0.1538	0.0596	0.1726	36000
Business	1 0	0.734	0.1717	0.0612	0.0669	33000

Regression Model & Hypotheses

Pick a regression model that could answer the question

$$MedianWage = \alpha + \beta_1\%Women + \beta_2\%Parttime + \beta_3\%Unemployed + \beta_4\%CollegeJob + \beta_5BusinessDummy + \varepsilon$$

- Your expectation:
 - $\beta_1 < 0$
 - $\beta_2 < 0$
 - $\beta_3 < 0$
 - $\beta_4 > 0$
 - $\beta_5 > 0$ (business major grads earn more than the art major grads)

SUMMARY OUTPUT			ession Model: an Wage = 4	8045.74 +	483.15 x (Bu		ny)		
Regression Statistics			- 14356.20 x (%Women)						
Multiple R	0.87		- 42430.92 x (%Part Time)						
R Square	0.76		+ 14626.26 x (%Unemployed) + 26795.66 x (%College Job)						
Adjusted R Square	0.68			т.	20793.00 X (78)	college Job)			
Standard Error	5102.23	The re	agression coe	fficient for h	isinass dumm	v is nositive l	hut not		
Observations	21		 The regression coefficient for business dummy is positive but not significant (p-value = 0.9484 much higher than 0.1). It means 						
ANOVA	df		that there's no significant different between business major recent grad's & arts major recent grad's median salary.						
Regression	5	1243460389	248692077.7	9.553028584	0.000296902				
Residual	15	390491992.4	26032799.5						
Total	20	1633952381							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%			
Intercept	47095.7636	15620.8990	3.0149	0.0087	13800.6056	80390.9217			
Business_Dummy	483.1505	7344.4424	4.4424 0.0658 0.		-15171.1580	16137.4589			
%Women	-14356.1973	7443.3306	-1.9287	0.0729	-30221.2809	1508.8863			
%PartTime	-42430.9219	35710.4486	-1.1882	0.2532	-118545.9413	33684.0975			
%Unemployed	14626.2558	85689.4020	0.1707	0.8667	-168016.3811	197268.8927			
%CollegeJob	26795.6551	10176.0411	2.6332	0.0188	5105.9369	48485.3733			

Extension to the Simple Linear Regression Model

Interaction Variable

 X_1 or X_2 alone sometimes are not enough to explain Y But X_1 times X_2 can significantly explain Y

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$
Interaction Variable

Create a new variable called College_PartTime = %CollegeJob x %PartTime

Major_category Z	Business_Dummy 🔼	%Women 🔼	%Unemployed 🔼	%PartTime	%CollegeJob 🔼	College_PartTime	MedianWage 🔼
Arts	0	0.4102	0.0894	0.3195	0.2192	0.0700344	50000
Arts	0	0.3744	0.0968	0.2357	0.4138	0.09753266	35000
Arts	0	0.687	0.1058	0.3307	0.217	0.0717619	32000
Arts	0	0.4446	0.076	0.4114	0.2654	0.10918556	31000
Arts	0	0.667	0.0842	0.3178	0.3179	0.10102862	30500
Arts	0	0.6974	0.1022	0.3848	0.2687	0.10339576	30000
Arts	0	0.5848	0.0896	0.3342	0.2431	0.08124402	29000
Arts	0	0.6295	0.0775	0.3698	0.1612	0.05961176	27000
Business	1	0.5357	0.0957	0.0784	0.7552	0.05920768	62000
Business	1	0.2788	0.0582	0.1293	0.4958	0.06410694	51000
Business	1	0.3222	0.0479	0.1008	0.2725	0.027468	50000
Business	1	0.3555	0.0607	0.123	0.2935	0.0361005	47000
Business	1	0.2492	0.0964	0.1456	0.2111	0.03073616	46000
Business	1	0.2536	0.0697	0.1394	0.1853	0.02583082	45000
Business	1	0.4179	0.0729	0.1545	0.1863	0.02878335	40000
Business	1	0.2	0.072	0.1876	0.1729	0.03243604	40000
Business	1	0.2829	0.0962	0.1888	0.2126	0.04013888	40000
Business	1	0.5809	0.0722	0.1526	0.1688	0.02575888	38000
Business	1	0.3829	0.0612	0.1746	0.172	0.0300312	38000
Business	1	0.6722	0.0596	0.1538	0.1726	0.02654588	36000
Business	1	0.734	0.0612	0.1717	0.0669	0.01148673	33000

SUMMARY OUTPUT				Media	n Wage =	50366.46		X
							– 19368.97	7 X
Regression S	tatistics						+ 8263.19	х (
Multiple R	0.906						- 4039.27	Х
R Square	0.821						+ 56605.76	δx
Adjusted R Square	0.744						- 273895.5	
Standard Error	4575.215						- 273033.3	, ,
Observations	21			The area	~~~~!~~~	££: -: - :- + £		 :_
					•	pefficient for		
ANOVA				•	``	o-value = 0.0		
	df	SS		•	•	s than full-ti	•	ng
Regression	6	1340896142	223	college	e grads wo	rk in their ov	wn major.	
Residual	14	293056238.6	209	32588.47				
Total	20	1633952381						
	Coefficients	Standard Error	t	Stat	P-value	Lower 95%	Upper 95%	%
Intercept	50366.46	14089.18		3.57	0.0	<mark>0</mark> 20148.	17 80584	.74
Business_Dummy	-5315.95	7113.22		-0.75	0.4	<mark>7</mark> -20572.	28 9940	.38
%Women	-19368.97	7067.33		-2.74	0.0	-34526.	90 -4211	.05
%PartTime	8263.19	39717.77		0.21	0.8	<mark>4</mark> -76922.	94 93449	.33
%Unemployed	-4039.27	77323.89		-0.05	0.9	<mark>6</mark> -169882.	52 161803	.98
%CollegeJob	56605.76	16558.25		3.42	0.0	<mark>0</mark> 21091.	84 92119	.68
College_PartTime	-273895.57	126951.34		-2.16	0.0	5 -546179.	-1612	.02

Regression Model:

(Business Dummy)

(%Women)

(%Part Time)

(%Unemployed)

(%College Job)

x (%College x %PartTime)

on variable is *negative* nn 0.1). It shows that partg the field with high % of

Extension to the Simple Linear Regression Model

Non-linear Model?

$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$$

$$log(Y) = \alpha + \beta_1 log(X) + \varepsilon$$

And many others...

Red Line or Black Line?

SUMMARY OUTPUT						
Regression S	Statistics					
Multiple R	0.404					
R Square	0.163					
Adjusted R Square	0.158	<mark>←──</mark> Th	<mark>le basic linear r</mark>	egression mod	<mark>lel gives you adj</mark>	<mark>usted r</mark>
Standard Error	10553.529	sq	uare = 15.8%. I	t seems fine so	o far	
Observations	172					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	3695081697	3695081697	33.17634889	3.85867E-08	
Residual	170	18934087372	111376984.5			
Total	171	22629169070				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	29288.117	2050.665	14.282	0.000	25240.070	33336.164
%CollegeJob	23820.373	4135.559	5.760	0.000	15656.709	31984.036

SUMMARY OUTPUT						
Regression St	tatistics					
Multiple R	0.445					
R Square	0.198					
Adjusted R Square	0.189	Hov	vever, it's actua	ally better to i	nclude the squa	<mark>ire term</mark>
Standard Error	10362.256	in t <mark>l</mark>	<mark>ne model beca</mark> i	use of the higl	<mark>ner adjusted r s</mark>	<mark>quare </mark>
Observations	172	& si	<mark>gnificant squar</mark>	ed variable		
ANOVA						
	df	SS	MS \	F	Significance F	
Regression	2	4482567672	2241283836	20.87316297	7.91964E-09	
Residual	169	18146601398	107376339.6			
Total	171	22629169070		\		
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	40061.309	4458.651	8.985	0.000	31259.484	48863.135
%CollegeJob	-30485.419	20459.979	-1.490	0.138	-70875.473	9904.634
%CollegeJob_square	56918.633	21017.805	2.708	0.007	15427.376	98409.891

Key Takeaway

Audience Value Generation

What's your audience's goal?

What insights they need to know to inform / make decisions?

How they can generate values using insights?

Data Creator

Data Acquisition What Where When Who How

How Many

Data Integration

How "dirty" is your data?

Analysis

List out exact
questions
and variables/models
needed

Potential bias and error traps?

Delivery

Key visuals
Key statistics

Key takeaways

Data Governance

Does your organization promote behaviors for good data practice?

Data Principles / Quality / Privacy / Life Cycle / Ethical Use

Audience

กรอง

เจาะ

เทียบ

ชน

เอาข้อมูลที่ "ไม่สำคัญ" หรือ "สกปรก" ออกไป ดูตัวแปรเดียวอย่าง
ละเอียด เช่น ความถี่
ผลรวม ค่าเฉลี่ย การ
กระจายข้อมูล
ตำแหน่งข้อมูล

เปรียบเทียบระหว่างตัว แปรเดียวกันในหลาย ประเภท/ชนิด หรือดู สัดส่วน

ดูความสัมพันธ์ระหว่าง ตัวแปรสองตัวขึ้นไป

Gain Deeper Insights with Regression Analysis

Question?