Karachi AQI Prediction System

Version: 1.0

Date: 15 Aug 2025

Author: Sameer Kamani

Table of Contents

- 1. Overview
- 2. Project Structure
 - 2.1 Data Collection
 - 2.2 Feature Store
 - 2.3 Data Processing
 - 2.4 Machine Learning Models
 - 2.5 Model Registry
 - 2.6 Exploratory Data Analysis
 - 2.7 Web Application
 - 2.8 Automation
- 3. System Workflow
- 4. My Journey
- 5. Technical Components
- 6. Model Performance (Aug 19, 2025)
 - 6.1 Ensemble Model (Best Overall)
 - **6.2 Individual Model Performance**
 - 6.3 Ensemble Model Weights

This project is a complete air quality prediction system that automatically:

- Collects weather and pollution data
- Processes it into features
- Trains multiple machine learning models
- Provides predictions through a web interface

The system is designed to run continuously with **hourly automated updates** and **daily model retraining**.

Project Structure

- 1. Data Collection (Data_Collection/)
 - data_fetch.py → Main script (runs every hour)
 - Connects to **OpenMeteo API** to fetch:
 - o Air quality data (PM2.5, PM10, NO₂, SO₂, CO, O₃)
 - Weather data (temperature, humidity, precipitation)
 - Data is processed into daily averages
 - Stored in CSV (readable) and Parquet (efficient)
 - Fetches **only new data**, preserving history

2. Feature Store (feature_repo/)

- Uses Feast (Feature Store system)
- karachi_features_new.py defines dataset structure

- Creates engineered features:
 - Daily averages
 - Weather conditions
 - Derived/calculated values
- Provides easy and organized data access

3. Data Processing (Data/)

- **feature_store/** → Processed data files
- **processed**/ → Intermediate data
- raw/ → Original collected data

4. Machine Learning Models (Models/)

- train_lightgbm.py → LightGBM models (predict AQI 1–3 days ahead)
- **train_hgbr.py** → Histogram Gradient Boosting models
- train_linear.py → Linear regression models
- **train_rf.py** → Random Forest models
- **stacking_linear_lightgbm.py** → Ensemble model creation
- **predict_realtime.py** → Real-time predictions

5. Model Registry (Models/Models/registry/)

- Stores trained models, versions, metrics, predictions
- Separate files for each model type (LightGBM, HGBR, Linear, RF)
- Ensemble weights are tracked here

6. Exploratory Data Analysis (Models/EDA/)

- run_eda.py → Performance and data analysis
- Generates:
 - Visualizations & reports
 - Feature importance rankings
 - Accuracy summaries per model

7. Web Application (WebApp/)

- Backend (WebApp/Backend/app)
 - \circ main.py \rightarrow Core server
 - $\circ \quad \textbf{model_loader.py} \rightarrow \textbf{Loads trained models}$
 - o **feast_client.py** → Connects to feature store
- Frontend (WebApp/Frontend)
 - o **gradio_app.py** → Web interface (predictions, trends, graphs)

8. Automation (GitHub Workflows)

- ullet features-hourly.yml o Collects new data every hour
- **train-daily.yml** → Retrains models daily (2:15 AM)

System Workflow

- 1. Data Collection (Hourly)
 - Fetches AQI + weather data
 - Converts into daily features
 - Saves CSV + Parquet
 - o Updates Feast feature store

2. Feature Engineering

- Adds:
 - Time-based (month, season, weekday)
 - Lag features (previous AQI)
 - Rolling averages (3-day)
 - Log transformations
- Improves pattern recognition
- 3. Model Training (Daily)
 - o Trains LightGBM, HGBR, Linear, RF
 - Last 90 days reserved for testing
 - o Predicts 1, 2, 3 days ahead
 - o Metrics: RMSE, MAE, R²

4. Ensemble Creation

- Combines model predictions using optimized weights
- Improves robustness and accuracy

5. Prediction Generation

- Real-time predictions for next 3 days
- Includes confidence + model contributions

6. Web Interface

- Displays:
 - Current AQI
 - Historical trends
 - Future predictions
- Allows manual updates

My Journey

I started this project blindly, with prior experience only in **classification**, not regression. Initially:

- Extracted 4.5 years of data using OpenWeather API
- Created **150+ features** (too many, caused poor performance)
- Tried multiple models (SARIMA, LSTM, RNN, GRU, XGBoost, CatBoost) \rightarrow all gave $R^2 < 0.4$

I later discovered through **SHAP analysis** that many features were **hurting performance**. After:

• Switching fully to **OpenMeteo API** (cleaner data, includes weather)

- Reducing to 33 key features
- Building an ensemble model
- → My accuracy improved significantly.
 I'm especially proud of the ensemble, which gives robust predictions.

Technical Components

- Data Sources: OpenMeteo API, CSV/Parquet storage, Feast Feature Store
- ML Frameworks: LightGBM, Scikit-learn, Custom ensembles
- Web Tech: FastAPI (backend), Gradio (frontend), RESTful API
- Automation: GitHub Actions, Python pipelines, Feast
- Data Processing: Pandas, NumPy, custom pipelines

Model Performance (Aug 19, 2025)

1. Ensemble Model (Best Overall)

Horizon	RMSE	MAE	R²
Day 1	4.03	3.18	0.88
Day 2	9.32	7.24	0.32
Day 3	10.67	8.78	0.07

2. Individual Models

LightGBM

Day RMSE	MAE	R²
----------	-----	----

1	4.25	3.14	0.86
2	9.98	7.80	0.23
3	12.74	9.50	-0.27

Random Forest

Day	RMSE	MAE	R²
1	4.12	3.26	0.87
2	9.36	7.28	0.32
3	11.98	8.92	-0.13

Histogram Gradient Boosting (HGBR)

Day	RMSE	MAE	R²
1	4.09	3.15	0.87
2	9.90	7.48	0.24
3	10.67	8.78	0.07

Linear Regression

Day	RMSE	MAE	R²
1	4.99	4.01	0.81
2	9.85	7.78	0.25
3	12.33	9.82	-0.19

3. Ensemble Model Weights (Least Squares Optimization)

Horizon	Random Forest	HGBR	Linear	LightGBM
Day 1	39.8%	32.0%	24.3%	3.9%

Day 2	82.6%	7.7%	9.7%	0%
Day 3	0%	70.9%	4.7%	24.4%