UNCLASSIFIED

AD NUMBER
AD093027
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Foreign Government Information; JAN 1956. Other requests shall be referred to British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008.
AUTHORITY
DSTL, AVIA 28/3451, 17 Jun 2009

UNCLASSIFIED

AD NUMBER
AD093027
CLASSIFICATION CHANGES
ТО
unclassified
FROM
confidential
AUTHORITY
ngte notice, 1 Jan 1960

THIS PAGE IS UNCLASSIFIED

CONFIDENTIAL DISTRIBUTION OF THE PROPERTY OF T

rmed Services Technical Information Agency

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

CONFIDENTIAL

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

N.G.T.E: M.257

U.K. RESTRICTED N.G.T.E: M.257

NATIONAL GAS TURBINE ESTABLISHMENT
PYESTOCK, HANTS.

MEMORANDUM No. M.257

A LABORATORY THERMAL SHOCK TEST BASED ON THE USE OF A FLUIDISED BED

bу

J. NORTHWOOD and S.W.K.SHAW

- 1. THIS INFORMATION IS DISCLOSED ONLY FOR OFFICAL USE BY THE RECIPIENT GOVERNMENT AND SUCH OF ITS CONTRACTORS, UNDER SEAL OF SECRECY, AS MAY BE ENLAGED ON A DEFENCL PROLECT, DISCLOSURE TO ANY OTHER GOVERNMENT OR RELEASE TO THE PRESS OR IN ANY OTHER WAY WOULD BE A BREACH OF THOSE CONDITIONS.
- 2. THE INFORMATION SHOULD BE SAFEGUARBED UNBER RULES DESIGNED TO GIVE THE SAME STANDARD OF SECURITY AS THAT MAINTAINED BY HER MAJESTY'S GOVERNMENT IN THE UNITED KINGDOM.
- 8. THE RECIPIENT IS WARNED THAT INFORMATION CONTAINED IN THIS DOCUMENT MAY BE SUBJECT TO PRIVATELY OWNED RIGHTS.

JANUARY, 1956

JSRP Control
No.

560004

T.B. CONFIDENTIAL - Mod Gled Handling Authorized

RESTRICTED RESTRICTED APR 1956

MAY 1 7 1956 56 AA 20105

RESTRICTED

U.D.C. No. 536.49 : 620.179

Memorandum No. M.257

1

NATIONAL GAS TURBINE ESTABLISHMENT

A laboratory thermal shock test based on the use of a fluidised bed

- by -

J. E. Northwood and S. W. K. Shaw

SUMMARY

A laboratory test for studying the thermal shock behaviour and assessing the thermal shock resistance of gas turbine blade materials has been developed using a fluidised bed as the cooling medium, transfer characteristics of fluidised solids have been measured, using different bed materials. The most important factors governing the heat transfer to a fluidised bed appear to be the gas flow rate, the particle size and the thermal properties of the fluidising gas. Heat transfer coefficients of a similar order to those calculated for current gas turbine blading are obtainable. Preliminary thermal shock tests from 900°C to 1000°C have been made on a number of ceramic and cermet compositions and a creep resistant alloy using a symmetrically tapered disc test-piece.

M.X.A. 29.12.55.

CONTENTS

		Page
1.0	Introduction	4
2.0	Methods of studying thermal shock behaviour	4
	2.1 Theoretical methods 2.2 Experimental methods	4 5
3.0	The heat transfer characteristics of experimental fluidised beds	7
4.0	The design of thermal shock test	7
	4.1 Apparatus 4.2 Test-piece design	7 8
5.0	Experimental procedure	8
	5.1 Test conditions 5.2 Criterion of failure	8 9
6.0	Preliminary thermal shock test results	9
7.0	Appraisal of thermal shock test	11
8.0	Conclusions	11
Refere	ences	12
Circul	lation	13
Detach	nable Summary Cards	
	TABLES	
No.	<u>Title</u>	
I	Nominal compositions and suppliers of materials tested	14
II	Thermal shock test results	15
III	Thermal shock indices for ceramics and cermets	17
IA	Physical properties of experimental bed materials	18
V	Heat transfer data on experimental bed materials	19
VI	Physical properties of gases	21
	APPENDICES	
No.	<u>Title</u>	
I	List of symbols	22
II	Heat transfer characteristics of fluidised solids	23

TILLUSTRATIONS

Fig. No.	Title	Sk. No. Rep. No.
1	Modes of heat transfer on rapid cooling	21132
2	Cooling rates obtained by water quenching	21132
3	Laboratory thermal shock test apparatus	21137
4	Thermal shock test-piece ,	21093
5	Test-piece carrier	21093
6	Thermal shock failures of a ceramic, cermet and creep resistant alloy	Rep. 111.55
7	Generalised curves for non-dimensional gas flow (G/G _O) against heat transfer coefficient (h)	21134

1.0 Introduction

In uncooled gas turbine designs for aircraft, the current trend is towards the use of higher blade temperatures in order to obtain greater engine thrusts. Blade materials that have adequate resistance to steady and fluctuating stresses at higher operating temperatures than is possible with existing metallic materials, are being considered. However, with increase in blade temperature, the transient stresses arising from temperature gradients generated by rapid heating (e.g. during starting and acceleration), and by rapid cooling (e.g. during shut-down or in the event of an accidental fuel cut) become more severe. The subjection of the material to these transient thermal stresses is termed thermal shock. The effect on the blade material will depend on the magnitude and number of repetitions of the transient thermal stresses and the temperature at which these are developed. If the value of the maximum thermal stress exceeds the maximum breaking stress of the material, then failure will occur. In ductile materials, e.g. metals, the capacity for relieving the stress by plastic deformation is all important, and therefore repeated cycles of heating and cooling are usually necessary to cause failure by cracking or to make replacement of the blades necessary due to an unacceptable degree of distortion.

The use of ceramics has been suggested for turbine blading because of their attractive high strength properties at temperatures for which current blading alloys are inapplicable. However the major deterrent to the application of most ceramics is their relatively poor thermal shock resistance. In order to provide some degree of ductility and therefore to improve thermal shock resistance, the introduction of a metal phase to the ceramic giving a ceramic/metal mixture or cermet has been considered.

It was therefore essential to develop a method of studying the thermal shock behaviour i.e. the factors involved and the effects produced by thermal shock, and of assessing the thermal shock performance of such materials, and also of both existing and potentially useful metallic materials. This Memorandum is concerned with the development of a laboratory thermal shock test and of the results of preliminary tests on ceramic and cermet compositions.

2.0 Methods of studying thermal shock behaviour

Both theoretical and experimental approaches have been made to the study of the thermal shock behaviour of materials.

2.1 Theoretical methods

The magnitude of the thermal stresses produced by thermal shock in elastic materials is dependent on the transient thermal strains developed and the Young's Modulus of the material. The transient thermal strains are dependent on the temperature differences produced in the material, and the thermal coefficient of expansion. The temperature difference is governed by the geometry of the shape (e.g. thin sections will cool more rapidly than massive sections), the rate of heating or cooling, and the thermal conductivity of the material. A thermal shock resistance index:-

$$\frac{k_s \cdot \sigma}{E \cdot \alpha}$$
 [See Appendix I for List of Symbols]

has been suggested by several investigators 1,2,3 as a means of assessing the approximate relative thermal shock resistance of elastic materials of similar shape and size, and heated or cooled rapidly under the same conditions. However, thermal conductivity (k_B) of the material is of less importance at high values of the non-dimensional parameter $\frac{a \cdot h}{k_B}$ (i.e. for large sized specimens of half thickness a, and high heat transfer coefficient, h) and therefore the index:-

is often also used. Indices of the above types are applicable only to brittle i.e. non-ductile materials.

Theoretical investigations are being made to determine the temperature and stress distributions in turbine blade shapes during rapid heating and cooling and, if possible, to derive formulae for the correlation of thermal shock behaviour with material properties, dimensional factors and heat transfer rates. For such complex shapes it was considered that mathematical solutions were more likely to be obtained in successive stages, commencing with a simple shape such as a circular cylinder. The theoretical investigations have been initially confined to brittle materials where failure occurs in one cycle. Preliminary experiments have established the validity of the theory for the calculation of these transient thermal stresses developed in rapidly cooled alumina cylinders. The theoretical approach has limitations to its usefulness for ductile materials owing to the complex nature of the problem and the number of variables involved.

2.2 Experimental methods

For the experimental study of thermal shock phenomena it is necessary to heat and cool specimens under controlled conditions of heat transfer, preferably similar to those at the blades of a gas turbine. Manson has pointed out the importance of heat transfer rate by showing that with air cooling (i.e. low rate of heat transfer), beryllia had superior thermal shock resistance to alumina, but on water quenching (i.e. high rate of heat transfer) the order of merit was reversed, the thermal shock resistances being expressed as the minimum temperature differential to cause failure. Although the local heat transfer coefficient (h) may vary over the surface of an aircraft gas turbine blade by a factor approaching 8, the mean values of heat transfer coefficient at a turbine blade for applications representing the extremes of engine size and operating conditions may lie between 0.02 and 0.10 c.h.u./ft² s °C5. A useful laboratory thermal shock test should therefore be capable of attaining mean heat transfer coefficients within this range, preferably by forced convection, in order to simulate engine conditions.

It is generally accepted that for most brittle materials, the thermal shock arising from rapid cooling is more detrimental than that arising from rapid heating, mainly because, in the former case, the surface stresses are tensile. The tensile strengths of ceramic and cermet materials are generally considerably lower than the compressive strengths. It was therefore desirable to concentrate on methods of rapidly cooling specimens, with a view to selecting the preferred method for a laboratory thermal shock test.

In the choice of a suitable test, consideration must be given to the mode of heat transfer. Liquid metal baths are unsuitable, since, while they may give heat transfer coefficients of the right order, the mode of heat transfer is initially by conduction, due to the high conductivity of the liquid metals relative to air. As shown in the diagrams in Figure 1, this results in a different temperature gradient and consequently a different stress pattern in the material from that produced by forced convective cooling. Where repeated heating and cooling cycles are to be carried out, liquid metal adhering to the test-piece would be difficult to remove and possibly involve corrosion problems on reheating the test-piece after the quenching cycle. Quenching into oil or water has the disadvantage that at a certain specimen temperature, dependent on the temperature and degree of agitation of the liquid during quenching, the heat transfer is appreciably increased due to the breakdown of the vapour phase around the specimen and subsequent direct cooling by the liquid. Figure 2 shows typical cooling curves for water at room temperature and near boiling point with both stationary and rotating test-pieces. The change in slope of the curves is readily apparent in the tests on a stationary specimen in cold water while for the corresponding test-piece rotated in a circle at a peripheral speed of 1 ft/s, a very high heat transfer is obtained soon after the test-piece has started to cool. Water spray cooling has the disadvantage that the testpiece is alternately cooled by water and air as each water droplet hits the surface and is evaporated, causing a succession of local thermal shocks. Such non-uniform heat transfer rates were considered undesirable.

Thermal shock tests can be carried out by heating local areas of the test-piece such that the unheated portion restrains the thermal expansion of the heated zone, followed by rapid cooling (e.g. by an air blast). Alternatively, continuous cooling of the unheated portion of the test-piece can be effected while a zone or edge of the test-piece is intermittently heated.

Rapid heating in high velocity, high temperatures gases, followed by rapid cooling in high velocity air at controlled rates and pressure could be used, as for rig tests on a cascade of blade shapes. Such rigs involve the use of large quantities of air and fuel, are costly to install and operate and are therefore undesirable for a laboratory test. Heat transfer conditions similar to those occurring in an engine would be possible by rotating a test-piece in hot or cold gases preferably at high pressure (e.g. 10 to 20 atmospheres), so that relatively low rotational speeds (i.e. 3,000 rev/min) could be used. The design of such apparatus presents practical difficulties, particularly for repeated tests using both heating and cooling shock cycles.

From the work of previous investigators $^{6-11}$ it was evident that fluidised beds had heat transfer properties of the same order as that required for a laboratory thermal shock test. Fluidisation of a bed of powdered solids is achieved by supporting the material on a porous plate through which gas is blown. At a critical mass flow rate (G_0) of the fluidising gas, the particles disperse and are supported by the gas, such that the bed of powder has a similar appearance to a liquid. The mechanism of heat transfer in a fluidised bed is not fully understood. The most convincing explanation is that heat is transferred from the surface of a relatively hot object placed in the fluidised bed, through the surface gas film and the particle gas film, to the particle surface; the heat is then mainly carried away by the particles and transferred to the walls of the container. The fluidising gas should therefore have a high thermal conductivity, high specific heat and low viscosity in order to promote high rates of heat transfer to the particles. Bed materials of high specific heat,

high density and small particle size would be expected to give high heat transfer coefficients, on account of their high thermal capacity and high surface area per unit volume. Materials of high bulk density should give high heat transfer rates by virtue of the greater gas flow required to fluidise them.

Using a small air mass flow relative to a rig test a fluidised bed can be readily used as a medium for rapidly cooling heated specimens. Flexibility of operation and control of the heat transfer coefficient (h) is possible, and the design of thermal shock test-piece is subject to few limitations. A study of the separate and combined effects of cycles of rapid heating and cooling is important. For the heating cycle a hot fluidised bed is being developed.

3.0 The heat transfer characteristics of experimental fluidised beds

While it was undesirable for the development of the laboratory thermal shock test to make a complete investigation of the factors governing heat transfer rates in fluidised beds, it was evident that there was only sufficient agreement amongst previous investigators to give qualitative guidance on the relative importance of those factors which would promote the maximum heat transfer rates and also uniform fluidisation. A range of metal and refractory powders viz. chromium, wolfram, stainless steel, silica and silicon carbide were chosen as bed materials for this work, several closely sized fractions of powder being used for the last three of these materials. Values of the heat transfer coefficient (h) were obtained for each closely sized fraction of bed material at air flow rates ranging from that required to just fluidise the bed (G_0) to the point where part of the bed material was entrained in the air stream. In a few experiments, a 90 per cent nitrogen 10 per cent hydrogen gas mixture was used as the fluidising gas. Further details of this work are given in Appendix II.

The work on heat transfer in fluidised beds agrees with most previous workers that small sized bed materials give higher heat transfer coefficients than large sized material, although there appears to be a lower limit to the particle size that will give the maximum (h) value. The effects of individual physical properties of the powder on the heat transfer to a fluidised bed have not been established, although such effects appear to be small. Heat transfer to the bed is influenced predominantly by the mass flow of air passing through the bed material.

The results indicate that reproducible heat transfer coefficients within the range 0.02 to 0.04 c.h.u./ft² s °C can be obtained by using a number of different bed materials, some of which viz. 150 to 170 and 170 to 200 mesh silicon carbide, 240 to 300 mesh stainless steel and 150 to 170 mesh Chelford silica sand will give (h) values over the whole range by suitable control of the air mass flow (G) through the bed.

4.0 The design of thermal shock test

4.1 Apparatus

The experimental work confirmed that heat transfer coefficients of the same order as those occurring under engine conditions could be obtained using a fluidised bed for the rapid cooling of heated specimens. The construction of a thermal shock test apparatus based on a fluidised bed was therefore completed, the apparatus being shown schematically in Figure 3. This consists of a fluidised bed A surmounted by a vertical electric resistance tube furnace B with a "Kanthal A.1" element, capable of reaching

temperatures up to 1,300°C. The bed, 6 in. diameter, and 6 in. deep rests on a sintered bronze filter (grade C Porosint) having a mean pore size of 12.5 μ . This part of the container is water-cooled, the flow rate of water being maintained constant. Another water jacket surrounds the top of the container which is surmounted by the furnace. Between the filter and the air inlet, a diffusion chamber is interposed so that the air reaching the filter is at a uniform flow rate and pressure over the cross-section of the container. The main air stream from the fluidised bed passes through an exit duct, G. A door, H, is provided in the container to permit attachment and removal of test pieces. These are held in a carrier, C, mounted on the end of a rod, which, at its upper end, is attached to a ram, D. This is held vertically in a steel framework which also supports the furnace and fluidised bed. The rod passes through an aperture at the top of the furnace, the annulus being kept as small as possible to reduce any upward flew of air from the fluidised bed through the furnace. A water jacket, E, surrounds this opening, with a sighting window, F, at one side of the jacket. The ram is pneumatically operated to ensure that the time taken to transfer a test-piece from the furnace to the bed is kept to a minimum i.e. less than 1 second. Electro-magnetically operated air valves, I, are used to operate the ram, in conjunction with a suitable timer, J. This is adjusted to keep the ram in the "up" position during the heating period, and in the "down" position during the cooling period. A counter K is fixed to the framework and records the movement of the ram and hence the number of thermal shock cycles.

Ancillary equipment for the thermal shock test comprises a rotameter for measuring the air flow rate through the fluidised bed, air valves and pressure gauges, an air drier and an air filter. Air is supplied at a pressure of 80 lb/in² from a stabilised compressor.

4.2 Test-piece design

The test-piece normally used is a symmetrically tapered disc the shape and dimensions being as shown in Figure 4. This shape was preferred to that of a plain cylinder or disc, because it was considered that the thickness should vary, as in an aerofoil section. The maximum stress is developed at the periphery of the disc and will vary with the edge radius. The edge radius is similar to that of the trailing edge radius of current turbine rotor blading i.e. 0.010 to 0.020 in. Being of small size, the ceramic and cermet specimens were easily manufactured in the form of plain discs, and subsequent machining, using either carbide or diamond grinding, presented no difficulty.

5.0 Experimental procedure

All test-pieces were checked for surface defects before thermal shock testing. Three test-pieces were fixed in the carrier shown in Figure 5. They were mounted on a horizontal rod passing through the central hole of each test-piece and held loosely between wires inserted through holes in the rod. Inspection of test-pieces was carried out initially after every cycle, but for tests of long duration, this was reduced to an examination after every ten cycles.

5.1 Test conditions

The test-pieces were slowly heated in the furnace for eight minutes (mean heat transfer co-efficient of 0.005 c.h.u./ft² s °C) and then immersed in the fluidised bed for two minutes. For a given bed material the required heat transfer coefficient was obtained by control of the air mass flow through

the bed. The bed material used for these tests was 150 to 170 mesh silicon carbide. The amount of air required to obtain heat transfer coefficients between 0.02 to 0.04 c.h.u./ft² s °C ranged from 6 to 320 lb/hr ft².

5.2 Criterion of failure

In the absence of fracture, the criterion of failure was taken as the appearance under examination with a binocular microscope at x 60 magnification of a crack in the test-piece surface. As an aid to the examination for cracks, two techniques have been used. The first consists of immersing the test-piece in a solution of coloured wax in benzene. The solution penetrates the cracks and after the test-piece has been cleaned with benzene, the cracks are made more readily visible by the presence of the coloured wax. Another method was to paint the test-piece with a red penetrant dye, wash in water and allow the dye remaining in the crack to seep out and outline the crack. This latter method has proved very successful in revealing fine "crazing" cracks on ceramic and cermet test-pieces.

6.0 Preliminary thermal shock test results

Appreximately sixty thermal shock tests have been completed using the $\frac{7}{6}$ in, diameter tapered disc test-piece shown in Figure 4 and the fluidised bed as the cooling medium. These tests were intended to assess the relative thermal shock resistances of materials which included metal/oxide mixtures, metal bonded carbides, a silicon carbide composition, molybdenum disilicide, and Nimonic 95 as a reference material. The nominal compositions and suppliers of these materials are given in Table I.

The results of the multi-cycle thermal shock tests carried out initially from 1,000°C and 900°C (and later from 1,020°C) into a fluidised bed at 20°C, are given in Table II.

The criterion of failure (i.e. examination for cracks with a binocular microscope at \times 60 magnification) has obvious limitations when examining oxidised i.e. scaled surfaces. It has been found that when a crack is visible in a ceramic or cermet specimen, the crack usually extends radially from the edge of the specimen to at least three-quarters of the way up the tapered section. Experience has shown that within the frequency of examination a crack is either not visible or is of considerable length. On the other hand, with metallic specimens, relatively small cracks, which are revealed after a greater number of cycles and propagate slowly, are usually found.

It will be recalled that a metal phase is added to a ceramic (forming a cermet) to introduce some ductility and increase the thermal shock resistance. It is thought that until sufficient metal is added to form a continuous metallic network (approximately 40 per cent chromium in the chromium-alumina compositions prepared by Plessey Co. Ltd.) little change in thermal shock resistance will be obtained. Further increase in metal content would be expected to produce corresponding increase in thermal shock resistance. Contrary to expectations, the thermal shock properties of the Plessey 70 per cent chromium-alumina composition are no better than the 20 per cent chromium-alumina material. Five 0.020 in. edge radius testpieces in the 70 per cent chromium-alumina material failed after one cycle from 1020°C ($\Delta T = 1,000°C$) with a mean (h) value of 0.04 c.h.u./ft² s °C. The Haynes-Stellite 79 per cent chromium-alumina test-piece with 0.020 in. edge radius withstood without failure 430 cycles with a temperature difference of 1,000°C and similar (h) value, while under similar testing conditions with an 0.010 in. edge radius, three test-pieces failed after

70, 130 and 730 cycles respectively. It is readily apparent that this chromium-alumina material is considerably superior in thermal shock resistance to the other chromium-alumina cermets. This difference may possibly be due to the different methods of manufacture and to differences in structure. The Haynes-Stellite composition is made by direct mixing of chromium and alumina followed by cold pressing and sintering, and has a coarse-grained structure. The Plessey materials are prepared by mixing chromic oxide, carbon and alumina, followed by reduction of the chromic oxide by the carbon prior to pressing and sintering, and have a much finer grained structure.

The two metal-bonded titanium carbide types of cermet appear to have similar thermal shock resistances, the 40 N (Hard Metal Tools Ltd.) composition being slightly superior. Both materials are somewhat inferior to the Haynes-Stellite 79 per cent chromium-alumina. Two ceramics, molybdenum disilicide and silicon carbide, have been tested. The former appears to have a slightly greater thermal shock resistance than the Plessey chromium-alumina materials. Tests on the "Niafrax" silicon carbide were carried out with a temperature difference of 1,000°C and a mean (h) value of 0.04 c.h.u./ft² s °C on test-pieces with 0.010 in. edge radius. Failure of three test-pieces occurred after 45, 120 and 180 cycles respectively. These results indicate that this material has thermal shock properties intermediate between those of the Haynes-Stellite material and the titanium carbide base cermets.

A few tests at different edge radii have been completed on the reference alloy Nimonic 95. A test-piece of edge thickness approximately 0,001 in. failed in 70 cycles, and an 0,005 in. edge radius test-piece in 140 cycles, the test conditions being a temperature difference of 1,000°C and an (h) value of 0.04 c.h.u./ft² s °C. Under similar test conditions three 0.010 in. edge radius test-pieces failed by cracking after 490, 690 and 750 cycles respectively. As expected, Nimonic 95 is generally superior in thermal shock resistance to the ceramics and cermets, but by comparison, one test-piece of the 79 per cent chromium-alumina (tested simultaneously with Nimonic 95) showed a surprisingly high endurance. In those tests on Nimonic 95 where endurances of the order of 400 cycles and above were obtained, it is probable that excessive oxidation (aggravated by spalling of the oxide during successive heating and cooling cycles) contributed to the failure of the specimens.

Typical thermal shock failures of the disc test-piece are shown in Figure 6, together with a microsection showing intercrystalline thermal shock cracks in one of the Nimonic 95 test-pieces.

Insufficient thermal shock tests have been made to indicate whether any close relationship exists between the thermal shock indices for the experimental materials (see Table III) and the test results. Also, insufficient data is available to compile an index for 20 per cent and 40 per cent chromium-alumina, "Niafrax" silicon carbide, "Carbometal" and molybdenum disilicide. From the $\frac{\sigma}{\alpha E}$ indices for the 30 per cent chromium-alumina (which has not been tested in thermal shock but should be intermediate in performance to the 20 per cent and 40 per cent chromium-alumina and 79 per cent chromium-alumina, similar performance could be expected. Comparing the $\frac{k_S\sigma}{\alpha E}$ indices, the superiority of the 79 per cent chromium-alumina is evident and is borne out by the test results. However, for cermets the thermal shock index is not a true indication of thermal shock resistance since the slight ductility introduced by the metal phase has a considerable effect on thermal shock resistance, a factor which is not included in the index.

7.0 Appraisal of thermal shock test

The interim results obtained with this test serve to show that the testing method based on the use of a fluidised bed for rapid cooling determines the relative thermal shock resistances of brittle and ductile materials. In its present form, the thermal shock test is not a rapid test, mainly due to the fact that the heating rates are slow and that the entire specimen (not just the region at the edge) is heated to the desired temperature prior to the cooling cycle. High frequency heating of the specimen is being considered but a method which more closely simulates engine conditions e.g. using a hot fluidised bed is considered preferable and is being investigated. If successful, a two minute or even a 90 second heating and cooling cycle respectively is possible, using the same shape and size of specimen. merits of the present test are that controlled, reproducible and uniform heat transfer rates can be readily employed and can be maintained or varied over a limited range of values, which are of the same order as those estimated for engine conditions. The test can therefore be used to study the effect of variation in the cooling conditions (i.e. varying heat transfer coefficient and temperature differential) and of specimen size, shape, composition and structure on thermal shock phenomena. Although it may not define exactly how a new material will behave in an actual engine, it makes possible comparison of the thermal shock resistances of new high temperature materials under controlled cooling conditions.

8.0 Conclusions

- 8.1 A laboratory thermal shock test based on the use of a fluidised bed for the cooling cycle has been developed.
- 8.2 Experiments on heat transfer in fluidised beds have shown that for a given bed material, the most important factor controlling the heat transfer to a fluidised bed is the rate of gas flow through the bed. Although, in general, fine particles give higher heat transfer coefficients, there appears to be a lower limit to the particle size for maximum heat transfer coefficient.
- 8.3 Controlled and reproducible heat transfer rates of a similar order to those estimated for current gas turbine blading, and capable of being varied over a small range of values (i.e. heat transfer coefficients of 0.02 to 0.04 c.h.u./ft² s °C) have been obtained.
- 8.4 Preliminary thermal shock tests indicate that the 20 and 40 per cent chromium-alumina compositions and molybdenum disilicide have poor thermal shock resistance. One oxide cermet (79 per cent chromium-alumina), silicon carbide and the carbide cermets tested have reasonably good thermal shock resistance, although none are as good as the reference alloy, Nimonic 95.

REFERENCES

No.	Author(s)	Title etc.
1	Bobrowsky A. R.	The applicability of ceramics and cermets as turbine blade materials for the newer aircraft power plants. Trans. A.S.M.E. Vol.71, August 1949, pp.621-629.
2	Bradshaw F. J.	The improvement of ceramics for use in heat engines. Selected Government Research Reports Volio. Ceramics and Glass. Report No. 8, H.M.S.O., London, 1952.
3	Manson S. S.	N.A.C.A. Technical Note No. 2933, July 1953.
4	Glenny E. Howe P. W. H.	Transient thermal stresses in brittle circular cylinders. N.G.T.E. Memorandum No. M.259, December 1955.
5	Ainley D. G.	Unpublished N.G.T.E. work.
6	Matheson G. L. Herbst W. A. Holt P. H.	Characteristics of fluid solid systems. Industrial and Engineering Chemistry Vol.41, No. 6, June 1949, pp.1099-1104.
7	Baerg A. Klassen J. Gishler P. E.	Heat transfer in fluidised beds. Canadian Journal Res. Vol.28. Section F. 1950, pp.287-307.
8	Heerden C. van, Nobel A. P. P. Krevelen D. W. van	Studies on fluidisation. Part I - The critical mass velocity. Part II - Heat transfer. Chemical Engineering Science, Vol. 1 Nos. 1 and 2. November and December 1951, pp.37-50, 51-66.
9	Leva M. Weintraub M. Grummer M.	Heat transmission through fluidised beds of fine particles. Chemical Engineering Progress, Vol. 45, No. 9. September 1949, pp.563-572.
10	Miller C. O. Logwinuk A. K.	Fluidisation studies of solid particles. Industrial and Engineering Chemistry, Vol.43, No. 5, May 1951, pp.1220-1226.

REFERENCES (Cont'd)

No.

Author(s)

Title etc.

11

Mickley H. S. Trilling C. A. Heat transfer characteristics of fluidised beds. Industrial and Engineering Chemistry, Vol.41, No. 6, June 1949, pp.1135-1147.

ADVANCE CIRCULATION BY N.G.T.E.

DC(A)

The Chief Scientist

DGTD(A) PDSR(A)

PD/Eng.RD.

D/Eng.RD.

Staff Officer (Naval) Eng.RD.

DIGT

AD/Eng.R. AD/Eng.RD.1 AD/Eng.RD.2 Pats 1(c)

D.Mat.RD(Air)

PDARD

TPA3/TIB(M) Dist.

180 copies

į

TABLE I
Mominal compositions and suppliers of materials tested

Plessey Co. Litd., 80				% Nomin	ul chemic	al com	ositic	% Nominel chemical composition by weight
Pleasey Co. Ltd., 80	Material designation	Supplier	A6203	Tic	'స [*] శర	N1	ಕ	Others
hromius—alumina Plessey Co. Ltd., 60 40 Invocater, Northants 30 70 Plessey Co. Ltd., 30 70 Invocater, Northants 21 70 sion of Union Carbide & Carbon Co., U.S.A. Hard Metal Tools Ltd., - 54 6 40 - 79 Coventry. Carbometals Ltd., - 54 6 40 - 79 St. John's Wood, London solution and Ni/Or bit St. John's Wood, London Solution and Ni/Or bit Towcester, Northants	20% chromium-alumina	Plessey Ob. Ltd., Towoster, Northants	8	1	1	1	20	if Cr.Q in solid solution
hrowing elumina Flessey Co. Ltd., 30 70 Fromcester, Northants 21 79 sion of Union Carbide & Carbon Co., U.S.A. Hard Metal Tools Ltd., - 54 6 40 - Coventry. Carbometals Ltd., - 54 6 40 - Coventry. St. John's Wood, London Flic-based cermet with TiC/MbC/ St. John's Wood, London Solution and Ni/Cr bis St. John's Wood, London Flessey Co. Ltd.,	40% chromius-alumina	Plessey Co. Ltd., Towcester, Northants	8	1	1	1	9	4% Cr ₂ O, in solid solution
hrowitum-alumina Haynes-Stellite Divi- sion of Union Carbide & Carbon Co., U.S.A. Hard Metal Tools Ltd., Coventry. Carbometals Ltd., St. John's Wood, London Plessey Co. Ltd., Towcester, Northants Towcester, Northants Towcester, Northants Towcester, Northants Towcester, Carborundum Co. Ltd., Manchester. Henry Wiggin & Co. Ltd., do 95 Henry Wiggin & Co. Ltd., London Carborundum Co	706 chrostus-elusins	Plessey Co. Ltd., Towcester, Northants	30	1	1	1	R	9/10% Cr ₂ O ₃ in solid solution
Coventry. Carbometals Ltd., Garbometals Ltd., St. John's Wood, London Grana disilicade, Plessey Co. Ltd., Towcester, Northants Carborundum Co. Ltd., Manchester. Henry Wiggin & Co. Ltd., de d	79% decomina-alumina	Haynes-Stellite Divi- sion of Union Carbide & Carbon Co., U.S.A.	23	1	1	ı	۴	9/10% Cr Q in solid solution
Garbometals Ltd., St. John's Wood, London Germa disilicade, Plessey Co. Ltd., Towcester, Northants Carborundum Co. Ltd., Manchester. Hemry Wiggin & Co. Ltd., Ld., Ld., Ld., Ld., Le., Ld., Ld	ğ	Hard Metal Tools Ltd., Coventry.	1	a t	9	9	t	ı
denum disilicide, Plessey Co. Ltd., regr. silicon Carborundum Co. Ltd., Manchester. de Henry Wiggin & Co. Ltd	"Carbymetal"	Carbometals Ltd., St. John's Wood, London	5	iC-base	l cermet solution	with T	CANDO/	TaC in solid nder
#ilioon Carborundum Co. Ltd., - not known Manchester. Henry Wiggin & Co. Ltd bal. 18/21	Molybdemam disilicide, MoSi _e	Plessey Co. Ltd., Towcester, Northants	1	1	1	1	1	
Henry Wiggin & Co. Ltd bal. 18/21	"Wiafrax" silicon carbide	Carborundum Co. Ltd., Manchester.	1		not ka	U		
	Maonic 95	Henry Wiggin & Co. Ltd.	1	ı	i	bal.	18/21	15/21 00. 2.3/ 3.5 Ti, 1.4/2.5 16

TABLE II
Thermal shock test results

Material	Manufacturer	Edge redius	Heat transfer coefficient (h) c.h.u./ft²s ^{OC}	Temperature differential (AT) ^O C	No. of cycles to failure
20 per cent chromium-alumina, cold pressed and sintered	Plessey Co. Ltd.	0.020"	†o•o	086	3: 3: 3
40 per cent chromium-alumina, hot pressed	Plessey Co. Ltd.	0.020" 0.020" 0.020"	₹0°0 †8°0 †8°0	980 1000 1000	10; 20 10; 10; 2 10; 10
40 per cent chromium-elumina, cold pressed and sintered	Plessey Co. Ltd.	0.020"	₹ 0° 0	1000	1; 1; 1; 2
70 per cent chromius—alumins, cold pressed and sintered	Pleasey Co. Ltd.	0.010" 0.010" 0.020" 0.020"	ಕೆ ಏಂ ಂ ಂ ಂ	200 200 200 200 200 200 200 200 200 200	1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1
79 per cent chromium-elumine, cold pressed and sintered	Haynes—Stellite Co.	0.010" 0.020"	†∂ . °0	1000 1000	70; 130; 730 430 (U.C)

• Fractured

U.C Uncreaked

(Continued overleaf)

Material	Manufacturer	Edge	Heat transfer coefficient (h) c.h.u./ft*s°C	Temperature differential (AT) ^O C	No. of cycles to failure
54 per cent titanium carbide	Hard Metal Tools	0.010	†o•o	1000	09 \$54 \$04
40 per cent nickel (40N) cold pressed and sintered		0.010"	* 0°0	880	50; 120; 400 (U.C)
Ni/Cr bonded TiC containing	Carbometal Ltd.	0.010"	† o° 0	880	150; 330
nocyrac (in soing solution) cold pressed and sintered		0.010"	**************************************	1000	10*
Melybdenus disilicide, hot pressed	Plessey O. Ltd.	0,020	0°0, 0°03	1000 1000	1; 2;2*;2*;7* 1*; 8*; 10
"Mistrax" silicen carbide	Carborundum Co. Ltd.	0.010"	ታ 0°0	1000	45; 120; 180
Nimondo 95	R. Wiggin & Co. Ltd.	0.001"	ở ở ở ° ° ° °	0001 0001 0000	70 140 1490; 690; 750

U.C - Uncrecked

Practured

TABLE III

Thermal shock indices for ceramics and cermets

Material	Tensi	Tensile strength (σ)	60 H	Thermal conductivity (kg)	Mean of en	Mean coefficient of expansion (a)	Young	Young's modulus (E)	여명	48 3	Material
	Kg/cm	Kg/cm Temperature c.g.s. Temperature per °C Temperature Kg/cm Temperature C × 10 °C ×	c.g.s.	Temperature OC	per °C ' × 10*	Temperature OC	Kg/om² × 10*	remperature O _C		oc cei/cm	: '
Mickel-bonded titenium-chromium cerbide (40K)	2882	382	0.052	25	9.5	20/800	3.34	50	91.0	η·*80	91.0 4.80 titanium-chromium carbide (40N)
30% chromium— alumina	14.06	982	0.012	25	8.65	20/800	3.68	20	43.8	0.53	43.8 0.53 30% chromium- alumina
79% chromium- alumina	1230	382	0.12	20/265	9. 4	20/1000 3.32	3.32	. 20	48.7	5.81	48.7 5.81 79% chromium- elumina

1 ; ,

*3 to 1

eni.

TABLE IV

Physical properties of experimental bed materials

Material	Melting point oc	Specific gravity	Mean specific heat 0/100°C c.h.u./1b°C	Mean thermal conductivity 0/100°C c.h.u./ft s°C
Chromium	1,920	7.00	0.104	0.0111
Wolfram	3,382	18.80	0.034	0.0255
Stainless Steel (18/8 type)	1,426/ 1,399	7•90	0.12	0.0025
Silionn carbide	decom- press 2,200	3. 22	0.165	0,0029
Silica sand	1,710	2.65	0.20	***

ı

TABLE V

Heat transfer data on experimental bed materials

	Particle s	size of fraction	tion		Air flow		Maximum heat transfer co-
Bed material	a a	diameter	eter	Bulk density* 1b/ft³	required to just fluidise	(b, tor*	efficient (hmar)
	D.S. Read NO.	ft	micrens		16/3 ft		obtained c.h.u./ft*s°C
	60/85	69000°0	212	91.8	0.00530	9	0.0305
silion	100/120	9,000,0	138	91.1	0.00282	7	0.0325
	150/170	0.00032	97	9*88	0.00178	25	0.0390
	60/85	69000°0	212	251.0	0,03940	3.5	0.0310
Stainless	100/120	9,000,0	138	256.0	0.01580	7	0.0355
steel	150/170	0.00032	26	247.0	0,00860	6	0.0385
	24,0/300	0.00020	09	248.0	0.00289	35/40	0.04.30
	60/85	69000°0	212	101.0	0,01460	9	0.0295
7	150/170	0.00032	97	102.2	0.00178	15/50	0.0395
certide	170/200	0.00027	83	99.2	0.00145	05/54	00,000
***	(R.A.500) grade	0,000049	15	65.6	0.00039	approx. 50	0.0195

* The bulk density used is the density of the bed after fluidisation, i.e. with open packing of particles $^{+}G/G_{O}$ = Ratio of air flow through bed to air flow required to just fluidise the bed

TABLE V (cont'd)

	Particle	size of fraction	tion		required to	G/G, for	efficient
Bed meterial		diameter	eter	Bulk demary	Just fluidise bed (Go)	(b)	(hmex) obtained
	B.S. Mosh No.	t.	microns		1b/s ft		C.h.u./ft 80C
				0 702	0.0280	Ŋ	0.0300
1	170/200	0.00027	£	250.0			
				0 700	0.00510	5	0.0385
1	150/200	0.000295	8	2.00.7	2./20.0		
CHO							

* The bulk density used is the density of the bed after fluidisation, i.e. with open packing of particles %c/Co = Ratio of air flow through bed to air flow required to just fluidise the bed

TABLE VI

Physical properties of gases

(28°C)	Viscosity × 10 ⁵	Thermal conductivity × 10* c.h.u./ft s°C	Density × 10° 1b/ft	Specific heat at constant pressure c.h.u./lb°C
(partox kg)	in a fam	6.1.0	04.7	0,242
44	1,25	•		
Undersoon	0.59	3.01	0.52	2.50
Hydrogen:			70.4	0.250
Mitrogen	1.18	0.43	(20)	
N 300 + 000	1-17	0.55	6.55	0.270
100 Hg + 200 Hg		values estimated by interpalation	ation	

APPENDIX I

List of symbols

A	Surface area of sphere	ft²
٨	Half thickness of test-piece	ft
CB	Specific heat of solid	ic.h.u./lb°C cal/gm°C
E	Young's modulus of elasticity	Kg/cm ²
G	Mass flow rate	lb/s ft²
Go	Minimum fluidising mass flow rate	lb/s ft ²
h	Heat transfer coefficient	c.h.u./ft soc
h _{max}	Maximum heat transfer coefficient	c.h.u./ft ² s ^o C
k _s	Thermal conductivity of solid	{c.h.u./ft s ^o C {c.g.s. units
r	Radius of sphere	ft
ΔΤ	Temperature difference	o _C
dT dt	Cooling rate .	°C/s
v	Volume of sphere	ft³
W	Weight of sphere	1 b
G.	Coefficient of linear expansion	in/in/°C
ρs	Density of solid	16/ft³
σ	Tensile strength	Kg/cm²

APPENDIX II

Heat transfer characteristics of fluidised solids

Experimental work was carried out to determine the important factors governing heat transfer in fluidised solids, rarticularly to establish the conditions which gave the maximum possible heat transfer rates from heated shapes quenched into fluidised beds. Bed materials possessing high melting points (in order to avoid local fusion or sintering to shapes quenched in the beds) and high density or high specific heat were selected (see Table IV). Closely-sized fractions of each material were prepared in order to determine the effect of particle size. Throughout the tests, the bed diameter (6 in.), depth (6 in.) and bed filter (Grade C 'Porosint', mean pore size 12.5µ) were maintained constant, the container being water-cooled. Air was used as the fluidising gas, with the exception of a few tests with a 90 per cent nitrogen, 10 per cent hydrogen mixture.

The heat transfer characteristics of the experimental fluidised beds were derived from the cooling rates of 20 mm diameter 30 per cent chromiumiron spheres heated to 1200°C and quenched in the beds. The following relation, based on Newton's Law of cooling, was used:-

$$h = \frac{W_{\circ} c_{8}}{A_{\circ} \Delta T} \cdot \frac{dT}{dt} \qquad (1)$$

i.e.

$$h = \frac{V \cdot \rho_s c_s}{A \cdot \Delta T} \cdot \frac{dT}{dt} = \frac{r}{3} \cdot \frac{\rho_s \cdot c_s}{\Delta T} \cdot \frac{dT}{dt} \qquad (2)$$

The cooling rates were measured using a platinum/13 per cent rhodium-platinum thermocouple, with its junction located at the geometric centre of the sphere, and connected to a Tinsley amplifier and high speed recording galvanometer (response 0.2 sec). From the recorded millivolts (temperature)/time curve, the average heat transfer coefficient over the temperature range 1040°C to 640°C was obtained using Equation 2. The mean value of specific heat (0.157 cal/gm°C) over this range was determined experimentally. Due to sudden large changes in specific heat below 640°C (i.e. at the Curie Pt.) for 30 per cent chromium-iron, mean (h) values below this temperature were not employed.

The results of the heat transfer tests are given in Table V. It was found that uniform and reproducible (h) values were obtainable over the range of temperatures studied. For each bed material there is a minimum air mass flow rate (G_0) below which fluidisation will not occur. It was found that, with increasing air mass flow rate (G), the heat transfer coefficient increased to a maximum value, and thereafter remained virtually constant. The generalised curves in Figure 7 show that finely divided bed materials give higher (h) values than coarse material, and that the maximum (h) value is attained at higher G/G_0 ratios. Very fine powders, e.g. the $10/20\mu$ silicon carbide tended to agglomerate and therefore behaved essentially as a coarse powder. Thus there was an optimum size range which varied with the material. With the exception of wolfram, no pronounced differences in (h) value were obtained

RESTRICTED

- 24 -

Memorandum No. M. 257

with different materials of similar particle size e.g. 150/200 mesh. The individual importance of bulk density and material density, and specific heat could not be derived from the results, although it is probable that the effects of these properties on the (h) value are inter-related to one another and to the particle size. Using a 90 per cent nitrogen/10 per cent hydrogen mixture instead of air, a definite increase in heat transfer coefficient resulted. This is probably due to the favourable physical properties of hydrogen (see Table VI). It was estimated that the use of 100 per cent hydrogen would result in an (n) value approximately 50 per cent greater than the maximum value obtained with air as the fluidising gas. Difficulties in the use of hydrogen due to explosion risks and provisions for burning the gas are, however, a serious deterrent to its use.

FIG. I. MODES OF HEAT TRANSFER ON RAPID COOLING

LABORATORY THERMAL SHOCK TEST APPARATUS

FIG. 4. THERMAL SHOCK TEST PIECE

FIG. 5 TEST PIECE CARRIER.

MOLYBDENUM DISILICIDE (PLESSEY)

ΔT=1000°C h=0.04 c.h.u./ft²s°C

2 CYCLES.

NI/Cr BONDED TIC (CARBOMETAL)
ΔT=1000°C h=0.04 c.hu./ft 2s °C
10 CYCLES.

Ni/Cr BONDED TIC (CARBOMETAL)
ΔT=880°C h=0.04 chu/ft²s°C
330 CYCLES.

NIMONIC 95 (0.005" EDGE RADIUS)
ΔT=1000°C h=0.04 c.hu./ft²s °C
140 CYCLES.

THERMAL SHOCK FAILURES OF A CERAMIC, CERMET, AND CREEP RESISTANT ALLOY.

GENERALISED CURVES FOR NON DIMENSIONAL GAS FLOW (G/G.)
AGAINST HEAT TRANSFER COEFFICIENT (A)

inserted in N.G.T.E. Reports and Me ed to maintain an Information Index.

356.49: 620,179

RESTRICTED National Gas Turbine Est, Memo, No. M. 27

RESTRICTED

A LABONATORY THEREAL SHOCK THEY BASED ON THE USE OF A PLUIDISED BED Sertimond J. E. and them S. W. E.

developed using a fluidised bed as the cooling medium. The heat A leboratory test for studying the thermal shock behaviour and

seemeing the thermal shock resistance of gas turbine blade materials has regarder to a finidised bed appear to be the gas flow rate, the particle 0090 to 100000 have been made on a number of servats and ceruet composlifferest bed meterials. The most important factors governing the best rangier characteristics of fluidised solids have been measured, using time and the thermal properties of the fluidising gas. Heat transfer sarbine blading are obtainable. Preliminary thermal shock tests from bloom and a creep resistant allog using a symmetrically tapered disc cefficients of a similar order to those calculated for current gas

METRICAD MENTALCIED HELP HERS, No. 14.257

forthmood J. E. and Shan S. H. K.

536_419 : 620_179

A LABONATORY THERMAL SHOCK TEST BASED ON THE USE OF A PLUIDISED BED

meing the thermal shock resistance of gas turbine blade materials has menater to a flaidised bed appear to be the gas flow rate, the particle lifterest bed auterials. The most important factors governing the best 100°C to 1000°C bave been made on a number of certails and sermet ecapod smeafer characteristics of fluidised solids have been measured, using developed using a fluidised bed as the couling medium. The heat ties and the thermal properties of the fluidising gas. Beat transfer meine blading are obtainable. Proliminary thermal shook tests from itions and a greep resistant allog using a symmetrically tapered disc A laboratory test for studying the thermal shock behaviour and sefficients of a shellar order to those calculated for current gas

Wattomal Gas Turbine Est. Mess. No. M. 27 Northmood J. E. and State B. N. K.

536.49 : 620.179

Mational One Turbine Bet. Home. No. N. 257 1964.

536.49: 620.179

A LABORATORY THERMAL SHOCK TEST BASED ON THE USE OF A FLUIDISED BED

assessing the thermal shock resistance of gas turbine blade materials has transfer to a fluidised bed appear to be the gas flow rate, the particle 900% to 1000% have been made on a number of ceremic and ceruet composdifferent bed materials. The most important factors governing the heat transfer characteristics of fluidised solids have been measured, using been developed using a fluidised bed as the cooling medium. The heat size and the thermal properties of the fluidising gas. Heat transfer burbine blading are obtainable. Preliminary tharmal shock tests from tions and a creep resistant alloy using a symmetrically tapered disc poefficients of a similar order to those calculated for current gas A laboratory test for studying the thermal shock behaviour and

A LABORATORY THERMAL SHOCK TEST BASED ON THE USE OF A FLUTDISED BED Northwood J. E. and Shaw S. W. K.

A laboratory test for studying the thermal shock behaviour and

assessing the thermal shock resistance of gas turbine blads materials has transfer to a fluidised bed appear to be the gas flow rate, the particle different bed materials. The most important factors governing the heat 9009C to 10009C have been made on a number of ceremits and ceremet compositransfer characteristics of fluidised solids have been measured, using been developed using a fluidised bed as the cooling medium. The heat size and the thermal properties of the fluidising gas. Heat transfer curbine blading are obtainable. Preliminary thermal shook tests from tions and a creep resistant alloy using a symmetrically tapered disc positicients of a similar order to those calculated for current gas

Information Centre Knowledge Services [dst]] Parton Down, Salisbury Wits SP4-0JQ 22060-6218 Tel: 01980-613753 Fax 01980-613970

Defense Technical Information Center (DTIC) 8725 John J. Kingman Road, Suit 0944 Fort Belvoir, VA 22060-6218 U.S.A.

AD#: AD0093027

Date of Search: 17 Jun 2009

Record Summary: AVIA 28/3451

Title: Laboratory thermal shock test based on use of fluidised bed Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years Former reference (Department) M257 Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967. The document has been released under the 30 year rule. (The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as <u>UNLIMITED</u>.