Homework 5

- (1) For each of the following prime p find a generator of Zp.
 - (Q) p = 17
 - (p) b= 38
 - (C) P = 31
- (2) It you pick any integer from Zpt randomly: what's, the probability that it is a generator of Zp*?
 - (a) p = 12
 - (b) p = 29
 - (C) p=3)

(3) Let 9 EG be a group element. prove that ordagi) = ordagi ged(i, ord(g))

- **2.17.** Use Shanks's babystep-giantstep method to solve the following discrete logarithm problems. (For (b) and (c), you may want to write a computer program implementing Shanks's algorithm.)
- (a) $11^x = 21$ in \mathbb{F}_{71} .
- (b) $156^x = 116$ in \mathbb{F}_{593} .
- (c) $650^x = 2213$ in \mathbb{F}_{3571} .

2.27. Write out your own proof that the Pohlig-Hellman algorithm works in the particular case that $p-1=q_1\cdot q_2$ is a product of two distinct primes. This provides a good opportunity for you to understand how the proof works and to get a feel for how it was discovered.

- **3.14.** We stated that the number 561 is a Carmichael number, but we never checked that $a^{561} \equiv a \pmod{561}$ for every value of a.
- (a) The number 561 factors as $3 \cdot 11 \cdot 17$. First use Fermat's little theorem to prove that

$$a^{561} \equiv a \pmod{3}$$
, $a^{561} \equiv a \pmod{11}$, and $a^{561} \equiv a \pmod{17}$

for every value of a. Then explain why these three congruences imply that $a^{561} \equiv a \pmod{561}$ for every value of a.