For these problems, you should justify your answers. You do not need to provide a rigorous mathematical proof, but rather an informal argument.

Problem 1. Let $A = \mathbb{Z} \times \mathbb{R}$, let $B = \mathbb{R} \times \mathbb{Z}$, and let $C = \{(x, y) : x^2 + 4y^2 \le 16\}$. For each of the following sets, describe the set in set-builder notation and give a detailed sketch the set in \mathbb{R}^2 .

- (i) $C \cap (A \cup B)$
- (ii) $C \cap A \cap B$
- (iii) $C (A \cup B)$
- (iv) $C (A \cap B)$

Solution.

(i)

$$\{(x,y) \in \mathbb{R}^2 : x^2 + 4y^2 \le 16\}$$

(ii)

$$\{(x,y) \in \mathbb{Z}^2 : x^2 + 4y^2 \le 16\}$$

(iii)

media/1.3.png

Problem 2. Let $\mathcal{F} = \{A \subseteq \mathbb{N} : |A| \text{ is finite}\}$. Determine whether each of the following is true or false; justify your answer.

- (i) $\mathbb{N} \in \mathcal{F}$.
- (ii) If $A \in \mathcal{F}$, then $\overline{A} \in \mathcal{F}$.
- (iii) $|\mathcal{F}|$ is finite.
- (iv) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$. (v) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Solution.

Problem 3. For each $\alpha \in \mathbb{R}$, define $A_{\alpha} = \{(x, \alpha \cos x) \in \mathbb{R}^2 : -2\pi \le x \le 2\pi\}$. Describe the following sets in set-builder notation and draw them in the plane \mathbb{R}^2 .

- (i) $A_{\frac{1}{2}}$

Solution.