Estimation of relatedness from genotyping by sequencing data

Pre-workshop set-up:

Download zip from: https://github.com/AgResearch/KGD

Prepare directories

Unzip files

Create a new directory (e.g. Rerun) to re-run the example

KGD-master directory:

R code files:

GBS-Chip-Gmatrix.R

GBSPedAssign.R

GBSRun.R Copy to Rerun

Documentation: GBScode.pdf

Copy input files from Example to Rerun

HapMap.hmc.txt.gz

Ped-GBS.csv

Ped-Groups.csv

Prepare GBSRun.R

```
Open R (R Console used here)
```

Set working directory to Rerun

```
File > Change dir ... or setwd("your-path/Rerun")
```

Open GBSRun.R in editor

File > Open script ... or ...

Modify directory for sourcing code

• •

genofile <- "HapMap.hmc.txt.gz"</pre>

source("../GBS-Chip-Gmatrix.R")

Run first 2 lines of code

sink("R output file") if you want (sink() to redirect to console)

Preliminary output

Read 102 items

Read 14709 records

Analysing 96 individuals and 14709 SNPs

Proportion of missing genotypes: 0.3640826

Mean sample depth: 9.281431

1st line: 102 items (# samples + 6)

14709 data rows (# SNPs)

96 individuals (or genotypings)

...

Can be other messages:

Monomorphic SNPs dropped Individuals with very low call rate or depth dropped

Preliminary output – Sample Depth

Preliminary output – Sample Depth

Preliminary output – Sample stats

Histogram of sample call rates

seqID	callrate	sampdepth
Ref	0.647631	9.208444
Seq68	0.494255	5.839486
Seq59	0.729621	11.44497
Seq55	0.479434	5.191311
	1	1
Blank	0.005303	0.026582

SampleStats.csv

Preliminary output – Allele frequency

Preliminary output – SNP Depth

Preliminary output – Hardy-Weinberg

Preliminary output – Hardy-Weinberg

Fin plot – example from paper

Low depth SNPs, appear homozygous

Medium depth SNPs, appear in HWE

High depth SNPs, appear in heterozygous Possibly duplication regions Many have high MAF

Hwdis =
$$p_{AA} - p_A^2$$

Calculate relatedness

Run next line of code

Gfull <- calcG()

Calculating G matrix, analysis code:

SNPs: 14709

individuals: 96

Proportion of missing genotypes: 0.3640826

Mean sample depth: 9.281431

Mean self-relatedness (G5 diagonal): 1.215244

Comparison of methods (see paper)

Gcompare.png

Comparison of diagonals (self-relatedness)

Heatmap

Heatmap-G5.png

calcG arguments

snpsubset indices of SNPs to use

sfx suffix for output file names

puse allele frequencies to use in the calculations

indsubset indices of individuals to include

depth.min minimum depth for a genotype

depth.max maximum depth for a genotype

npc number of principal components to display

Calculate relatedness with SNP filter

Use Hardy-Weinberg disequilibrium cut-off of -0.05

GHWdgm.05 <- calcG(which(HWdis > -0.05),"HWdgm.05", npc=4)

Calculating G matrix, analysis code: HWdgm.05

SNPs: 11500

individuals: 96

Proportion of missing genotypes: 0.445558

Mean sample depth: 4.348901

Mean self-relatedness (G5 diagonal): 1.577778

minimum eigenvalue: 4.320261e-38

Previous

14709

96

0.364

9.28

1.22

Calculate relatedness with SNP filter

str(GHWdgm.05)

```
List of 4
$ G1 : num [1:96, 1:96] 0.927 0.01208 0.01568 0.00432 -0.0069 ...
$ G4d: num [1:96] 1.69 1.68 1.52 1.66 1.66 ...
$ G5 : num [1:96, 1:96] 1.7133 0.0468 0.0366 0.0175 -0.0257 ...
$ PC :List of 4
...$ d: num [1:96] 10.2 9.24 7.85 5.48 3.55 ...
...$ u: num [1:96, 1:4] -0.043 -0.11 -0.138 -0.195 -0.129 ...
...$ v: num [1:96, 1:96] -0.0503 -0.1164 -0.1449 -0.2032 -0.1359 ...
...$ x: num [1:96, 1:4] -0.438 -1.117 -1.409 -1.991 -1.318 ...
```

Comparison of MAFs

Comparison of diagonals (self-relatedness)

Unfiltered Filtered

PCA

PC1v2G5HWdgm.05.png

Also see: PCG5HWdgm.05.pdf

Check recorded pedigree

pedfile <- "Ped-GBS.csv"</pre>

Req	uired	Ignored		Optional			
IndivID	seqID	Family	Relationsh ip				Mother Group
1	Seq1	1	Dam	5	3		
2	Seq2	1	Grand Dam				
:	Jeyz	;	Daili				
6	Seq6	1	Offspring	23	1		В
7	Seq7	1	Offspring	23	1		В
i	į	i i					

Check recorded pedigree / Find parents

groupsfile <- "Ped-Groups.csv"</pre>

IndivID		ParGroup
í	1	В
24	4	В
48	3	В
72	2	В
	2	В

Check recorded pedigree / Find parents

rel.thresh <- 0.2 GCheck <- "GHWdgm.05\$G5" source("../GBSPedAssign.R")

```
56 matches out of 78 Father comparisons: 71.8 %
```

Mean relatedness for Father matches 0.26

Mean relatedness for Father non-matches -0.0238

51 matches out of 78 Mother comparisons: 65.4 %

Mean relatedness for Mother matches 0.298

Mean relatedness for Mother non-matches 0.0181

Mean relatedness for full-sib families (as given)

famfathers fammothers noffspring meanrel

1	23	1	17 0.2286663
2	47	24	18 0.2653806
3	71	48	18 0.2921438
4	94	72	17 0.2499820

Mean relatedness within all full-sib families 0.2596066

Mean relatedness between individuals in full-sib families with different parents -0.04724106

Check recorded pedigree

PedVerify.csv

IndivID	seqID	 FatherRel	FatherMatch	MotherRel	MotherMatch
1	Seq1	 0.01331	FALSE	0.071635	FALSE
2	Seq2	NA	NA	NA	NA
1					
6	Seq6	0.232647	TRUE	-0.01976	FALSE
7	Seq7	0.243087	TRUE	-0.06887	FALSE
1	ŧ				

Check recorded pedigree

MotherVerify.png

Find parents

MotherMatches.csv

		BestMother	MotherMatch		Motherrel	
IndivID	seqID	Match	2nd	Motherrel	2nd	mmrateMother
6	Seq6	2	. 3	0.107415	0.033553	0.031261
7	Seq7	2	. 3	0.057026	0.04448	0.035264
8	Seq8	2	. 3	0.167674	0.041685	0.029005
9	Seq9	3	2	0.081462	0.023037	0.031874
1	i					

Find parents

Best Mother Matches

BestMotherMatches.png

Find parents

GroupsParentCounts.csv

IndivID	ParGroup	FatherFreq	MotherFreq
1	В	NA	NA
2	В	NA	13
3	В	NA	4
4	Α	NA	NA
5	А	NA	NA
:			

Changing the default settings

gform genotype input format: "uneak" (default),

"Tassel" or "Chip"

sampdepth.thresh Minimum mean sample depth (0.01)

snppdepth.thresh Minimum mean SNP depth (0.01)

hirel.thresh Threshold for reporting highly related pairs (0.9)

Exercise: Try a different threshold for sample depth

Customising

fcolo "family colour" – colours to use for each

individual in plots (black)

pedinfo pedigree file (after using GBSPedAssign.R)

Exercises:

Colour points in the PCA by family

Redo the PC2 vs PC1 plot outside of calcG, with different symbols, sizes etc

Plot the G matrix ordered by family (using image)

Customising Colour points in the PCA by family

```
pedpos <- match(seqID,pedinfo$seqID)
fcolo <- c("red","blue","green","purple")[pedinfo$Family[pedpos]]
fcolo[is.na(fcolo)] <- "black"
GHWdgm.05 <- calcG(which(HWdis > -0.05),"HWdgm.05", npc=4)
```


PC1v2G5HWdgm.05.png

Customising Redo the PC2 vs PC1 plot

PC1v2G5a.png

Customising Plot the G matrix ordered by family

```
relorder <- match(pedinfo$Relationship,c("Grand Dam","Grand
Sire","Dam","Sire","Offspring","negative","reference"))

pedord <- order(pedinfo$Family,relorder)

png("GHWdgm.05.png",width = 640, height = 640, pointsize=15)

with(GHWdgm.05, image(G5[pedord ,pedord ],col=rev(heat.colors(50))))

dev.off()
```

Customising Plot the G matrix ordered by family

GHWdgm.05.png

Resources

Dodds et al. (2015) Construction of relatedness matrices using genotyping-by-sequencing data. (BMC Genomics, submitted)

Simulations

Worked example (Atlantic salmon)

Preprint

http://www.biorxiv.org/content/early/2015/08/24/025379

R code:

https://github.com/AgResearch/KGD

Acknowledgements

Genomics for Production & Security in a Biological Economy

Invermay GBS team: Shannon Clarke, John McEwan, Rudi Brauning, Rayna Anderson, Tracey van Stijn, Rachael Ashby

