שם: איל שטיין

March 20, 2024

לוגיקה | תרגול 8

שם: איל שטיין

March 20, 2024

נושא השיעור: גדירות ואי גדירות בתחשיב הפסוקים

נושא ראשון - גדירות.

:1 שאלה

 $z\left(p_i
ight)
eq z\left(p_j
ight)$ כך ש ל כך $i,j \leq n$ עבור השמה z נקראת נקראת השמה ב נקראת ימימים ולכל תונת נחמן:

 $K_n = \{z \in Ass \mid z \text{ is an } n - special \text{ assignment}\}\$

. גדירה K_n , $n\in\mathbb{N}^+$ גדירה

1. פיתרון:

- . ההשמות, בדיוק לקבוצת בדיוק לקחת בחוקים כלשהי בדיוק לקבוצת ההשמות. פסוקים להראות בדיוק לקבוצת ההשמות.
 - מצד שני, ראינו שלא כל קבוצת השמות גדירה (משיקולי עוצמות).
- מכיוון שפסוק חייב להיות סופי, נקבל שלפעמים יש קבוצות אל גדירות כי נרצה שפסוקים יהיו אינסופיים בשביל שקבוצת ההשמות יהיו גדירות.
- השאלות במבחן יבחנו מתי אפשר להוסיף איבר לקבוצה בשביל שהיא תהיה גדירה ומתי צריך שהאיבר עצמו יהיה אינסופי ואז הקבוצה לא גדירה.

- . אחר. ערך אמת להם ערך האטומים שההשמה נותנת להם ערך אמת אחר. n- ההגדרה בשאלה היא: ב-n- האטומים הראשונים של לפחות שני אטומים
 - . "הוכח/הפרך". הערה: במבחן לא יגידו לנו להוכיח אלא יהיה
 - $n\in\mathbb{N}^+$ יהי \bullet
 - $K_{n}=M\left(\Sigma\right)$ על ונוכיח מפורשת מפוראת קבוצת מציאת על ידי גדירה על גדירה הידי מציאת ידי מציאת ידי נראה ש
- אנחנו רוצים שבn- האטומים הראשונים יתקבל "1" לפחות פעם אחת ושיתקבל "0" לפחות פעם אחת. ולכן ניקח את הקבוצה:

$$\Sigma_n = \left\{ \overbrace{(p_1 \vee p_2 \vee \ldots \vee p_n)}^{"1" \ at \ least \ once} \wedge \overbrace{(\neg p_1 \vee \neg p_2 \vee \neg \ldots \vee \neg p_n)} \right\}$$

$$lpha_n = \overbrace{(p_1 ee p_2 ee \ldots ee p_n)}^{"1"} \wedge \overbrace{(\neg p_1 ee \neg p_2 ee \neg \ldots ee \neg p_n)}^{"0"}$$
 נטמן •

- $:M\left(\Sigma_{n}
 ight) =K_{n}$ נראה ש-
 - .z תהא השמה
 - : אזי –
- $z\left(p_{i}
 ight)
 eq z\left(p_{j}
 ight)$ כך ש $i,j \leq n$ אמ"מ קיימים $z \in K_{n}$
- $z\left(p_{j}\right)0$ כך ש $j\leq n$ נגם קיים גו $z\left(p_{i}\right)=1$ כך ש $i\leq n$ כך אמ"מ אמ"מ \star
- $\overline{z}\left(\neg p_1 \lor \neg p_2 \lor \neg \ldots \lor \neg p_n
 ight)=1$ וגם ו $\overline{z}\left(p_1 \lor p_2 \lor \ldots \lor p_n
 ight)=1$ א וזה קורה אמ"מ \star
 - $\overline{z}(\alpha_n) = 1$ אם ורק אם *
 - $z \models \Sigma$ אם ורק אם *
 - $.z\models M\left(\Sigma
 ight)$ אם ורק אם נוזה קורה אם *

:2 שאלה

 $X,Y\subseteq WFF$ תהיינה

 $M\left(X\cup Y
ight) =M\left(X
ight) \cap M\left(Y
ight)$ הוכיחו כי

2. פיתרון.

- .z תהא ullet
- $\varphi\in Y$ וגם לכל $\varphi\in X$ לכל אם ורק אם ב $z\models \varphi$ אם ורק אם ב $z\in M\left(X\cup Y\right)$ וגם לפי
 - $z \models Y$ וגם ורק אם $z \models X$ מהגדרת סיפוק קבוצה, זה מתקיים אם ורק אם
 - $z\in M\left(Y
 ight)$ וגם $z\in M\left(X
 ight)$ מהגדרת קבוצת מודלים זה קורה אם ורק אם
 - $z\in M\left(X\right) \cap M\left(Y\right)$ מהגדרת חיתוך זה קורה אם ורק אם •

נושא שני - הוכחת אי גדירות.

תזכורת - משפט הקומפקטיות.

- $: \Sigma$ לכל קבוצת פסוקים •
- . ספיקה של Σ ספיקה סופית קבוצה כל תת ספיקה ספיקה ספיקה ספיקה ספיקה ספיקה בסוקים Σ
 - הערה: הכיוון המעניין הוא הכיוון משמאל לימין.

איך להוכיח אי גדירות:

- .1 מניחים בשלילה שקבוצה X
- (החלק הכי קשה ויצירת) את בוחרים את Y
 - . מראים ש $X \cup Y$ א ספיקה.
 - ספיקה $X \cup Y$ ספיקה .4
 - 5. מקבלים סתירה.

שאלה 3:

:הוכיחו כי

 $K = \{z \in Ass \mid \text{ there exists a single } i \in \mathbb{N} \text{ such that } z(p_i) = 0\}$

אינה גדירה.

3. פיתרון:

 $\cdot K$ נבחן את ההשמות בקבוצה •

01111111...11...

10111111...11...

1101111...11...

- . נניח בשלילה ש-K גדירה.
- :אותה, כלומר פסוקים המגדירה אותה, כלומר אזי תהא X

K = M(X)

Kבומות לאלו ב- $M\left(Y
ight)$ יהיו דומות לאלו ב-2.

$$Y = \{ p_i \mid i \in \mathbb{N} \}$$

- $M\left(Y
 ight) =z_{1}$ מתקיים –
- . נשים לב כי $z_1 \notin K$ אבל בערך של אטום השמות ב-K (כל השמות ב- $z_1 \notin K$ אבל בערך אבל *
 - : נראה ש- $Y \cup Y$ לא ספיקה.
- $M(X\cup Y)=\emptyset$ נשתמש בטענה מתרגיל 2, כדי להראות $M(X\cup Y)=\emptyset$ ואז לא תהיה אף השמה שמספקת את -

$$M\left(X \cup Y\right) = M\left(X\right) \cap M\left(Y\right)$$

$$= \overbrace{M(X)}^{=\{z_1\}} \cap \overbrace{M(Y)}^{=\{z_1\}}$$

 $=\emptyset$

- : ספיקה ש- $Y \cup Y$ ספיקה בעזרת משפט הקומפקטיות 4
 - . סופית סופית $D\subseteq X\cup Y$ סופית –
 - $D_Y = D \cap Y$ ר ו- $D_X = D \cap X$ *
 - $:\!D$ נמצא השמה שמספקת את –
- . נסמן: מופית של אטומים. נסמן: D_{Y} היא סופית ולכן היא קבוצה \star

$$D_Y = \{p_{i_1}, p_{i_2}, \dots, p_{i_k}\}$$

- .(m=0 אז קיים בה אטום עם אינדקס מקסימלי. נסמן את האינדקס אז קיים בה אטום עם אינדקס אז פריוון ש- D_Y אם מכיוון ש-
 - D_X וגם את שתספק את שתספק z אנדיר השמה *
 - z תיתן ברים ב- D_Y : לכל האטומים p_0,p_1,\ldots,p_m ההשמה לכל ולכל ברים ב- D_Y
 - - : קיבלנו השמה

$$z(p_i) = \begin{cases} 1 & i \neq m+1 \\ 0 & i = m+1 \end{cases}$$

- $z \models D_Y$ מתקיים מהגדרת •
- $.z\models X$ ולכן $z\in M\left(X\right) \ \Leftarrow \ z\in K$ ולכן מתקיים י מהגדרת י
 - $.z \models D_X$ כלומר \cdot

: סופיות אז מתקיים D_X,D_Y וגם וגם $D_X\cup D_Y=D$ וגם ב $z\models D_X$ וגם וגם $z\models D_Y$ סופיות אז מתקיים $z\models D$

.5 מ-3,4 קיבלנו סתירה ולכן K לא גדירה.