A Brief Summary of Endogenous Growth Model

Problem of Each Sector	Variety Expansion Model	Quality Ladder Model
① Household Sector ⇒ Get EE which shows consumption growth rate	$\max \int_0^\infty e^{-\rho t} u(c_t) dt$ Complicated BC or a reduced form $a_t = r_t a_t + w_t - c_t$ $g(c_t) = \frac{r_t - \rho}{\sigma(c_t)}$	
② Final Goods Sector (Perfect Competition) Profit maximization given factor prices	Production function: $Y_t = (1 - \beta)^{-1} (\int_0^{N_t} x_{jt}^{1-\beta} dj) L_t^{\beta}$ $\max \ Y_t - \int_0^{N_t} p_{jt} x_{jt} dj - w_t L_t$ Foc Optimal demand for intermediates and labor input	$Y_t = (1 - \beta)^{-1} \left(\int_0^1 q_{jt} \cdot x_{jt}^{1-\beta} dj \right) L_t^{\beta}$ $\max Y_t - \int_0^1 p_{jt} x_{jt} dj - w_t L_t$ $\stackrel{FOC}{\Longrightarrow} \text{ Demand for intermediates and labor}$
\Rightarrow Find the optimal demand for x_{jt} and L_t ! Notice that final goods price is normalized to 1	$[x_{jt}]: x_{jt}^{-\beta} L_t^{\beta} = p_{jt}$ $[L_t]: \frac{\beta}{1-\beta} \left(\int_0^{N_t} x_{jt}^{1-\beta} dj \right) L_t^{\beta-1} = w_t$	$[x_{jt}]: x_{jt} = (q_{jt}/p_{jt})^{1/\beta} L_t$ $[L_t]: \beta Y_t/L_t = w_t$
③ Intermediates Sector (Monopolistic Competition)	1 units of x_{jt} is produced by φ units of final goods	The marginal cost is φq_{jt} units of final goods
Profit maximization by choosing price	$ \max \pi_{jt} \Leftrightarrow \max p_{jt} x_{jt} - \varphi x_{jt} \Leftrightarrow \max (p_{jt} - \varphi) L_t p_{jt}^{-1/\beta} $	$\max \ \pi_{jt} \Leftrightarrow \max \ p_{jt}x_{jt} - \varphi q_{jt}x_{jt}$
\Rightarrow Find the optimal price p_{jt} that maximizes profit	$\stackrel{FOC}{\Longrightarrow} \text{ Optimal price } p_{jt} = \frac{\varphi}{1-\beta} \text{ for } \forall t, \ \forall j$	$\stackrel{FOC}{\Longrightarrow} \text{ Optimal price } p_{jt} = \frac{\varphi q_{jt}}{1-\beta}$
What's the demand function? What's the cost?	Hence, $x_{jt} = L_t(\frac{\varphi}{1-\beta})^{-1/\beta}$ and $\pi_{jt} = L_t(\frac{\varphi}{1-\beta})^{-1/\beta} \frac{\beta \varphi}{1-\beta}$	So, $x_{jt} = L_t (\frac{\varphi}{1-\beta})^{-1/\beta}$, $\pi_{jt} = L_t (\frac{\varphi}{1-\beta})^{-1/\beta} \frac{\beta \varphi q_{jt}}{1-\beta}$
④ R&D Sector	$\dot{N}_t = \eta Z_t$ For simplicity,	$n_{jt}\Delta t = (\eta/q_{jt})Z_{jt}\Delta t$
We only think about equilibrium In equilibrium, Free Entry Condition holds	Cost of creating a new variety = $1/\eta$ set $\varphi = 1 - \beta$	Innovation takes quality from q_{jt} to λq_{jt} Suppose current quality is q_{jt}/λ
\Rightarrow Get the present value of profit V_j and r	Benefit of creating a new variety is $V_j = \int_s^\infty e^{-r(t-s)} \pi_{jt} dj$	Free Entry: $1=(\lambda \eta /q_{jt})V(j,t q_{jt})$
For simplicity, only focus on BGP, so r is constant	Free Entry: $\frac{1}{\eta} = V_j$, hence $\frac{1}{\eta} = \frac{\beta L}{r}$, therefore $r = \beta L \eta$	What's the value of $V(j,t q_{jt})$? Asset pricing!

Econ 720 Recitation #11 11/15/2019