Brownian Motion

Bo Friis Nielsen¹

¹DTU Informatics

02407 Stochastic Processes 10, November 8 2011

Brownian Motion

Today:

- Definition and first properties
- Reflection principle and maximum variable
- Derived processes

Next week

- Brownian motion with drift
- Ohrnstein-Uhlenbeck process

Two weeks from now

Queueing theory

Brownian Motion: Definition

Definition

Brownian motion with diffusion coefficient σ^2 is a stochastic process $\{B(t); t \geq 0\}$ with the properties

- (a) Every increment B(s+t) B(s) is normally distributed with mean zero and variance $\sigma^2 t$; $\sigma^2 > 0$ is a fixed parameter
- (b) For every pair of disjoint time intervals (t₁, t₂], (t₃, t₄], with 0 ≤ t₁ < t₂ ≤ t₃ < t₄, the increments B(t₄) − B(t₃) and B(t₂) − B(t₁) are independent random variables and similarly for n disjoint time intervals, where n is an arbitrary positive integer.
- (c) B(0) = 0, and B(t) is a continuous function of t

Diffusion equation

$$\frac{\partial p}{\partial t} = \frac{1}{2}\sigma^2 \frac{\partial^2 p}{\partial y^2}$$

$$p(y, t|x) = \frac{1}{\sqrt{2\pi t}\sigma} e^{-\frac{(y-x)^2}{2t\sigma^2}}$$

$$\frac{\partial p}{\partial t} = \frac{1}{\sqrt{2\pi t}\sigma} \left(-\frac{1}{2t\sqrt{t}} \right) e^{-\frac{(y-x)^2}{2t\sigma^2}} + \frac{1}{\sqrt{2\pi t}\sigma} e^{-\frac{(y-x)^2}{2t\sigma^2}} \frac{(y-x)^2}{2t^2\sigma^2}$$

$$\frac{\partial p}{\partial y} = \frac{1}{\sqrt{2\pi t}\sigma} e^{-\frac{(y-x)^2}{2t\sigma^2}} \left(\frac{-(y-x)}{t\sigma^2} \right)$$

Standard Brownian motion: $\sigma^2 = 1$.

$$\phi_t(x) = \frac{1}{\sqrt{t}}\phi\left(\frac{x}{\sqrt{t}}\right), \qquad \Phi_t(x) = \Phi\left(\frac{x}{\sqrt{t}}\right)$$

Covariance Function

$$\mathbb{C}\text{ov}[B(s), B(t)] = \mathbb{E}[B(s)B(t)]$$

$$= \mathbb{E}[B(s)(B(t) - B(s) + B(s))]$$

$$= \mathbb{E}[B(s)^{2}] + \mathbb{E}[B(s)]\mathbb{E}[B(t) - B(s)]$$

$$= s\sigma^{2}$$

Invariance Principle

Let ξ_i be i.i.d. with $\mathbb{E}(\xi_i) = 0$ and $\mathbb{V}ar(x_i) = 1$; then

$$S_n = \xi_1 + \dots + \xi_n$$
 $\lim_{n \to \infty} \mathbb{P} \left\{ \frac{S_n}{\sqrt{n}} \le x \right\} = \Phi(x), \qquad \text{CLT}$ $B_n(t) = \frac{S_{[nt]}}{\sqrt{n}}$ $B_n(t) = \frac{S_k}{\sqrt{n}} = \frac{S_k}{\sqrt{k}} \frac{\sqrt{k}}{\sqrt{n}}, \qquad \text{for } [nt] \le k < [nt] + 1$

Or

$$B_n(t) = \frac{S_k}{\sqrt{n}} = \frac{S_k}{\sqrt{k}} \frac{\sqrt{k}}{\sqrt{n}}, \quad \text{for } \frac{k}{n} \le t < \frac{k}{n} + 1$$

The normalized sum should show Brownian behaviour for n large

Gaussian Processes

A random vector (X_1,\ldots,X_n) is said to be multivariate normal iff $Y=\alpha_1X_1+\ldots\alpha_nX_n$ is univariate Gaussian for all real α_i With $\mu_i=\mathbb{E}(X_i)$ and $\Gamma_{ij}=\mathbb{C}\mathrm{ov}(X_i,X_j)$ we get

$$f(x_1,\ldots,x_n)=f(\boldsymbol{x})=rac{1}{(2\pi)^{rac{n}{2}}\sqrt{\mathsf{Det}(\Gamma)}}e^{-rac{1}{2}\boldsymbol{X}'\Gamma^{-1}\boldsymbol{X}'}$$

Gaussian Process

$$\mu(t) = \mathbb{E}[X(t)], \Gamma(s, t) = \mathbb{E}[\{X(s) - \mu(s)\}\{X(t) - \mu(t)\}]$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \Gamma(t_i, t_j) \ge 0$$

The Reflection Principle

$$\tau = \min\{u \ge 0; B(u) = x\}$$

$$B^*(u) = \begin{cases} B(u) & \text{for } u \le \tau, \\ x - [B(u) - x] & \text{for } \tau \le u \end{cases}$$

$$\mathbb{P}\left\{\max_{0 \le u \le t} B(u) > x\right\} = 2\mathbb{P}(B(t) > x)$$

$$M(t) = \max_{0 \le u \le t} B(u)$$

$$\mathbb{P}(M(t) > x) = 2[1 - \Phi_t(x)]$$

Time to First Reach a Level

$$au_{x} = \min\{u \geq 0; B(u) = x\}$$
 $\mathbb{P}(au_{x} \leq t) = \mathbb{P}(M(t) > x)$
 $2[1 - \Phi_{t}(x)] = \frac{2}{\sqrt{2\pi t}} \int_{x}^{\infty} e^{-\xi^{2}/(2t)} d\xi$
 $= \sqrt{\frac{2}{\pi}} \int_{\frac{x}{\sqrt{t}}}^{\infty} e^{-\eta^{2}/(2)} d\eta$
 $f_{ au_{x}}(t) = \frac{1}{\sqrt{2\pi}} \frac{x}{t\sqrt{t}} e^{-x^{2}/(2t)}$

Reflected Brownian Motion

$$R(t) = \begin{cases} B(t) & \text{if } B(t) \ge 0 \\ -B(t) & \text{if } B(t) < 0 \end{cases}$$

$$\mathbb{E}(R(t)) = \sqrt{2t/\pi}$$

$$\mathbb{V}\text{ar}(R(t)) = \left(1 - \frac{2}{\pi}\right)t$$

$$\mathbb{P}\{R(t) \le y | R(0) = x\} = \int_{-y}^{y} \phi_t(z - x) dx$$

$$p(y, t | x) = \phi_t(y - x) + \phi_t(y + x)$$

Absorped Brownian Motion

The movement ceases once the level 0 is reached.

$$G_t(x,y) = \mathbb{P}\{A(t) > y | A(0) = x\}$$

= $\mathbb{P}\{B(t) > y, \min\{B(u) > 0; 0 \le u \le t | B(0) = x\}$

We first observe

$$\mathbb{P}\{B(t) > y | B(0) = x\} = G_t(x, y)$$

$$+ \mathbb{P}\{B(t) > y, \min\{B(u) \le 0; 0 \le u \le t\} | B(0) = x\}$$

Due to reflection the latter term is also

$$\mathbb{P}\{B(t) > y, \min\{B(u) \le 0; 0 \le u \le t\} | B(0) = x\}$$

$$= \mathbb{P}\{B(t) < -y, \min\{B(u) \le 0; 0 \le u \le t\} | B(0) = x\}$$

$$= \mathbb{P}\{B(t) < -y | B(0) = x\}$$

Absorped Brownian Motion

Summarizing we get

$$\mathbb{P}\{A(t) > y | A(0) = x\} = G_t(x, y)
= 1 - \Phi_t(y - x) - \Phi_t(-y - x)
= \Phi_t(y + x) - \Phi_t(y - x)$$

We have already seen that

$$\mathbb{P}\{A(t) = 0 | A(0) = x\} = 2[1 - \Phi_t(x)]$$

Brownian Bridge

Distribution of
$$B(t)$$
; $0 \le t \le 1$ conditioned on $\{B(0) = 0, B(1) = 0\}$.
$$\mathbb{E}\{B(t)|B(0) = 0, B(1) = 0\} = 0$$

$$\mathbb{V}\mathrm{ar}\{B(t)|B(0) = 0, B(1) = 0\} = t(1-t)$$

$$\mathbb{C}\mathrm{ov}\{B(s), B(t)|B(0) = 0, B(1) = 0\} = s(1-t)$$

The process is Gaussian

Brownian meander

