Hierarchy of Probability Distributions

A simplified categorization of common probability distributions can be summarized as follows (note that these categories are not always mutually exclusive, but give a sense of how distributions relate to each other):

• Discrete distributions

- Bernoulli family: Bernoulli, Binomial, Negative binomial, Geometric
- Poisson
- Discrete uniform
- Hypergeometric family: Hypergeometric, Multivariate hypergeometric
- Categorical family: Bernoulli (as K = 2), Categorical, Multinomial
- Others: Beta-binomial, etc.

• Continuous distributions

- *Uniform* (continuous)
- Exponential family: Exponential, Gamma, Chi-squared, Beta, Dirichlet, Wishart
- Normal family: Normal (Gaussian), Log-normal, Chi-squared (sum of normals²), t, F, etc.
- Power-law family: Pareto
- Extreme value distributions: Gumbel, Fréchet, Weibull
- Others: Rayleigh, Rice (Rician), Beta prime, Logistic, etc.

• Multivariate or matrix-variate distributions

- Multinomial, Multivariate hypergeometric
- Multivariate normal, Wishart, Dirichlet
- Others, e.g. Inverse-Wishart, Matrix-variate t-distributions, etc.

• Conjugate priors in Bayesian inference:

- Beta (conjugate to Bernoulli/Binomial)
- Gamma (conjugate to Poisson/exponential rate)
- Dirichlet (conjugate to Categorical/Multinomial)
- Wishart (conjugate to inverse covariance of multivariate normal)

Reference Table of Distributions

Below is a reference table covering many of these distributions, with their probability mass function (PMF) or probability density function (PDF), support, mean, variance, and a few extra notes. Some new distributions (e.g. Weibull, Gumbel, Beta prime, Logistic) have been added as illustrative examples.

Table 1: Distributions, their PMF/PDF, support, mean, variance, and further notes.

Distribution	PMF / PDF	Support	Mean	Variance
Normal (Gaussian)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$x \in (-\infty, \infty)$	μ	σ^2
Exponential	$f(x) = \lambda e^{-\lambda x}, \ x \ge 0$	$x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Log-normal	$f(x) = \frac{1}{x \sigma \sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right), \ x > 0$	x > 0	$e^{\mu + \frac{1}{2} \sigma^2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$
Pareto	$f(x) = \alpha x_m^{\alpha} x^{-(\alpha+1)}, \ x \ge x_m$	$x \ge x_m > 0$	$\frac{\alpha x_m}{\alpha - 1}, \ \alpha > 1$	$\frac{\alpha x_m^2}{(\alpha - 1)^2 (\alpha - 2)}, \ \alpha > 2$
Weibull	$f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-\left(\frac{x}{\lambda}\right)^k}, \ x \ge 0$	$x \ge 0$	$\lambda \Gamma \! \left(1 + rac{1}{k} ight)$	$\lambda^2 \left[\Gamma \left(1 + \frac{2}{k} \right) - \Gamma \left(1 + \frac{2}{k} \right) \right]$
Gumbel	$f(x) = \frac{1}{\beta} \exp \left[-\left(\frac{x-\mu}{\beta}\right) - \exp\left(-\frac{x-\mu}{\beta}\right) \right]$	$x \in \mathbb{R}$	$\mu + \gamma \beta (\gamma \approx 0.5772)$	$\left(\frac{1}{k}\right)^2$ $\frac{\pi^2}{6}\beta^2$
Beta prime (Inverted Beta)	$f(x) = \frac{x^{\alpha - 1} (1 + x)^{-\alpha - \beta}}{B(\alpha, \beta)}, \ x > 0$	x > 0	$\frac{\alpha}{\beta-1}$, for $\beta > 1$	$\frac{\alpha(\alpha+\beta-1)}{(\beta-1)^2(\beta-2)}$, for $\beta > 2$
Logistic	$f(x) = \frac{\exp(-\frac{x-\mu}{s})}{s(1 + \exp(-\frac{x-\mu}{s}))^2}, \ x \in \mathbb{R}$	$x \in \mathbb{R}$	μ	$\frac{\pi^2}{3} s^2$
Discrete uniform	$P(X=k) = \frac{1}{n}, k = 1, \dots, n$	$\{1,\ldots,n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
Continuous uniform	$f(x) = \frac{1}{b-a}, \ a \le x \le b$	[a,b]	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Bernoulli	P(X = 1) = p, P(X = 0) = 1 - p	$\{0, 1\}$	p	p(1-p)
Binomial	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$	$\{0,\ldots,n\}$	np	n p(1-p)
Negative binomial	$P(X = k) = {k+r-1 \choose k} p^r (1 - k)^{-r}$	$\{0,1,2,\dots\}$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
Geometric	$p)^k$, $k = 0, 1,$ $P(X = k) = (1 - p)^k p$, $k = 0, 1, 2,$	$\{0,1,2,\dots\}$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Hypergeometric	$P(X = k) = \frac{\binom{K}{k} \binom{N - K}{n - k}}{\binom{N}{n}}$	$\{0,\ldots,n\}$	$nrac{K}{N}$	$n\frac{K}{N}\left(1-\frac{K}{N}\right)\frac{N-n}{N-1}$
Beta-binomial	$P(X = k) = {n \choose k} \frac{B(\alpha + k, \beta + n - k)}{B(\alpha, \beta) B(\alpha + \beta, n)}$	$\{0,\ldots,n\}$	$nrac{lpha}{lpha+eta}$	$n p (1 - p) \frac{n + \alpha + \beta}{\alpha + \beta + 1}, p = 0$
				$\frac{\alpha}{\alpha+\beta}$
Categorical	$P(X=i) = p_i, \ \sum p_i = 1$	$\{1,\ldots,K\}$	_	_
Multinomial	$\frac{n!}{k_1!\cdots k_K!}\prod p_i^{k_i},\ \sum k_i=n$	$\{(k_1,\ldots,k_K)\}$	$\mathbb{E}[X_i] = n p_i$	$Var(X_i) = n p_i (1 - p_i)$
Multivariate hypergeometric	$P(\mathbf{X} = \mathbf{k}) = \frac{\prod_{i=1}^{K} {K_i \choose k_i}}{{N \choose n}}, \sum k_i = n$	$\{(k_1,\ldots,k_K)\}$	$nrac{K_i}{N}$	$Cov(X_i, X_j) = -n \frac{K_i}{N} \frac{K_j}{N} \frac{N-n}{N-1}$
Poisson	$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$	$\{0,1,2,\dots\}$	λ	λ
Gamma	$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \ x > 0$	x > 0	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Rayleigh	$f(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right), \ r \ge 0$	$r \ge 0$	$\sigma\sqrt{rac{\pi}{2}}$	$\frac{4-\pi}{2} \sigma^2$
Rice (Rician)	$f(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2 + \nu^2}{2\sigma^2}\right) I_0\left(\frac{r\nu}{\sigma^2}\right)$	$r \ge 0$	No simple closed form	No simple closed form
Chi-squared	$f(x) = \frac{1}{2^{k/2}\Gamma(\frac{k}{2})} x^{\frac{20}{2}-1} e^{-x/2}, \ x > 0$	x > 0	k	2k
Student's t	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	R	0, for $\nu > 1$	$\frac{\nu}{\nu-2}$, for $\nu>2$

Distribution	PMF / PDF	Support	Mean	Variance
F-distribution	$f(x) = \frac{\sqrt{\frac{(d_1x)^{d_1} d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{x B(\frac{d_1}{2}, \frac{d_2}{2})}$	x > 0	$\frac{d_2}{d_2-2}$, for $d_2 > 2$	$\frac{2 d_2^2 (d_1 + d_2 - 2)}{d_1 (d_2 - 2)^2 (d_2 - 4)},$ for $d_2 > 4$
Beta		$0 \le x \le 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Dirichlet	$f(r_1, r_2) =$	Probability simplex	$\mathbb{E}[X_i] = \frac{\alpha_i}{\sum_i \alpha_i}$	Covariance more in-
	$\frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^{M} x_i^{\alpha_i - 1}, \ \sum_{i=1}^{M} x_i \ge 0$		— <i>J</i>	volved
Wishart	$f(\mathbf{W})$ \propto	Sym. pos. definite ma-	$\mathbb{E}[\mathbf{W}] = \nu \Sigma$	Matrix-variate
	$\det(\mathbf{W})^{\frac{\nu-p-1}{2}}\exp(-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}\mathbf{W}))$	trices		

Notes / Reminders

- Support: Domain where the random variable (or vector) takes values.
- Some distributions require certain parameter constraints (e.g. $\alpha > 1$ for Pareto's mean to exist) to ensure mean or variance is finite.
- For Categorical-like distributions (Categorical, Multinomial, etc.), the "mean" is better thought of as a probability vector in one-hot space (multidimensional).
- Processes vs. Distributions: Some items (e.g. Poisson process, linear growth, etc.) are *processes* rather than single distributions. For example, a Poisson process has *increments* that are Poisson-distributed, and *interarrival times* that are exponential or gamma-distributed.
- Absolute values of normal vectors: yield Rayleigh or Rice (Rician) distributions.
- Sum/ratios of squared normals: yield chi-squared, t, and F distributions, etc.
- Bayesian conjugate priors: Beta, Gamma, Dirichlet, and Wishart appear frequently in Bayesian updating for binomial/Poisson/multinomial/multivariate-normal models.
- Extreme value distributions: Gumbel, Fréchet, and Weibull are common for modeling maxima or minima.

1 Normal (Gaussian) Distribution

The Normal (Gaussian) distribution with mean μ and standard deviation σ has

$$f(x) \ = \ \frac{1}{\sqrt{2\pi}\,\sigma} \exp\Bigl(-\frac{(x-\mu)^2}{2\sigma^2}\Bigr), \quad x \in (-\infty,\infty).$$

Normal(mu=0, sigma=1)

Figure 1: 3D surface plot of the $\operatorname{Normal}(\mu,\sigma^2)$ PDF.

2 **Exponential Distribution**

The Exponential distribution with rate λ has

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

Exponential(lambda=1.0)

Figure 2: 3D surface plot of Exponential(λ) PDF.

Log-normal Distribution 3

If $Y \sim \text{Normal}(\mu, \sigma^2)$, then $X = e^Y$ is said to be Log-normal. Its PDF is

$$f(x) \; = \; \frac{1}{x \, \sigma \, \sqrt{2\pi}} \exp \Bigl(-\frac{(\ln x - \mu)^2}{2\sigma^2} \Bigr), \quad x > 0. \label{eq:force}$$

Lognormal(mu=0, sigma=1)

Figure 3: 3D surface plot of the Log-normal (μ, σ^2) PDF.

4 Pareto Distribution

The Pareto distribution with shape α and scale x_m has

$$f(x) = \alpha x_m^{\alpha} x^{-(\alpha+1)}, \quad x \ge x_m.$$

Pareto(alpha=2.0, $x_m=1.0$)

Figure 4: 3D surface plot of $Pareto(\alpha, x_m)$ PDF.

5 Weibull Distribution

The Weibull distribution with parameters k and λ has

$$f(x) \; = \; \frac{k}{\lambda} \Big(\frac{x}{\lambda}\Big)^{k-1} \exp\!\Big(\!-\!\Big(\frac{x}{\lambda}\Big)^k\Big), \quad x \geq 0.$$

Weibull(k=1.5, λ =1.0)

Figure 5: 3D surface plot of Weibull (k, λ) PDF.

6 **Gumbel Distribution**

The Gumbel (Type-I extreme value) distribution with location μ and scale β has

$$f(x) \; = \; \frac{1}{\beta} \; \exp \Bigl[- \left(\frac{x - \mu}{\beta} \right) \; - \; \exp \bigl(- \frac{x - \mu}{\beta} \bigr) \Bigr].$$

Gumbel(mu=0.0, beta=1.0)

Figure 6: 3D surface plot of $Gumbel(\mu, \beta)$ PDF.

Beta Prime (Inverted Beta) Distribution

Sometimes called the inverted Beta distribution, with parameters α, β :

$$f(x) = \frac{x^{\alpha-1} (1+x)^{-\alpha-\beta}}{B(\alpha, \beta)}, \quad x > 0.$$

Beta prime(α =2.0, β =3.0)

Figure 7: 3D surface plot of Beta prime(α, β) PDF.

Logistic Distribution 8

The Logistic distribution with parameters μ (location) and s (scale):

$$f(x) = \frac{\exp(-\frac{x-\mu}{s})}{s(1+\exp(-\frac{x-\mu}{s}))^2}, \quad x \in \mathbb{R}.$$

Logistic(mu=0.0, s=1.0)

Figure 8: 3D surface plot of Logistic(μ , s) PDF.

9 Discrete Uniform Distribution

A discrete uniform distribution over $\{1,\ldots,n\}$ has

$$P(X=k) = \frac{1}{n}, \quad k = 1, \dots, n.$$

Discrete uniform(1..6)

Figure 9: 3D bar chart of Discrete Uniform $\{1, \ldots, n\}$.

10 Continuous Uniform Distribution

A continuous uniform distribution on [a, b]:

$$f(x) \ = \ \frac{1}{b-a}, \quad a \le x \le b.$$

Continuous Uniform(a=0.0, b=1.0)

Figure 10: 3D surface plot of Uniform(a, b) PDF.

11 Bernoulli Distribution

A Bernoulli distribution with parameter p has

$$P(X = 1) = p, P(X = 0) = 1 - p.$$

Bernoulli(p=0.3)

Figure 11: 3D bar chart of Bernoulli(p) PMF.

12 Binomial Distribution

A Binomial(n, p) distribution has

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, \dots, n.$$

Binomial(n=10, p=0.4)

Figure 12: 3D bar chart of Binomial(n, p) PMF.

Negative Binomial Distribution 13

A Negative binomial with parameters (r, p):

$$P(X = k) = {k+r-1 \choose k} p^r (1-p)^k, \quad k = 0, 1, \dots$$

Negative Binomial(r=5, p=0.4)

Figure 13: 3D bar chart of Negative Binomial(r, p) PMF.

14 Geometric Distribution

A special case of Negative binomial with r = 1:

$$P(X = k) = (1 - p)^k p, \quad k = 0, 1, 2, \dots$$

Geometric(p=0.3)

Figure 14: 3D bar chart of Geometric(p) PMF.

Hypergeometric Distribution **15**

A Hypergeometric (N, K, n) distribution:

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}.$$

Hypergeometric(N=20, K=8, n=5)

Figure 15: 3D bar chart of Hypergeometric (N, K, n) PMF.

16 **Beta-binomial Distribution**

A conjugate extension of Binomial with parameters (n, α, β) :

$$P(X=k) \; = \; \binom{n}{k} \, \frac{B(\alpha+k,\; \beta+n-k)}{B(\alpha,\beta) \, B(\alpha+\beta,n)}.$$

Beta-Binomial(n=10, alpha=2, beta=3)

Figure 16: 3D bar chart of Beta-binomial (n, α, β) PMF.

17 Categorical Distribution

For K categories with probabilities p_i ,

$$P(X = i) = p_i, \quad \sum_{i=1}^{K} p_i = 1.$$

Categorical p=[0.2, 0.5, 0.3]

Figure 17: 3D bar chart of a Categorical distribution.

18 Multinomial Distribution

Generalizing Binomial to K categories:

$$P(X_1 = k_1, \dots, X_K = k_K) = \frac{n!}{k_1! \cdots k_K!} \prod_{i=1}^K p_i^{k_i}, \quad \sum k_i = n.$$

Multinomial(n=5, p=[0.3, 0.2, 0.5])

Figure 18: 3D bar chart of Multinomial (n, p_1, \dots, p_K) PMF for K = 3.

19 Multivariate Hypergeometric Distribution

A generalization of Hypergeometric to multiple categories. With K_i items in category i,

$$P(\mathbf{X} = \mathbf{k}) = \frac{\prod_{i=1}^{K} {K_i \choose k_i}}{{N \choose n}}, \quad \sum_{i=1}^{K} k_i = n.$$

Multivariate Hypergeometric(K=[4, 5, 6], n=5)

Figure 19: 3D bar chart for the Multivariate Hypergeometric distribution with K=3.

20 Poisson Distribution

A Poisson(λ) distribution:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

Poisson(lambda=3.0)

Figure 20: 3D bar chart of $Poisson(\lambda)$ PMF.

21Gamma Distribution

With shape α and rate β :

$$f(x) \; = \; \frac{\beta^{\alpha}}{\Gamma(\alpha)} \, x^{\alpha-1} e^{-\beta x}, \quad x > 0.$$

Gamma(alpha=2.0, beta=1.0)

Figure 21: 3D surface plot of $Gamma(\alpha, \beta)$ PDF.

22 Rayleigh Distribution

Rayleigh(σ):

$$f(r) \; = \; \frac{r}{\sigma^2} \; \exp\Bigl(-\frac{r^2}{2\sigma^2}\Bigr), \quad r \geq 0.$$

Rayleigh(sigma=1.0)

Figure 22: 3D surface plot of Rayleigh(σ) PDF.

23 Rice (Rician) Distribution

 $\mathrm{Rice}(\nu,\sigma)$:

$$f(r) \; = \; \frac{r}{\sigma^2} \exp \! \left(- \frac{r^2 + \nu^2}{2\sigma^2} \right) I_0 \! \left(\frac{r \, \nu}{\sigma^2} \right), \quad r \geq 0.$$

Rice(sigma=1.0, nu=1.0)

Figure 23: 3D surface plot of $\mathrm{Rice}(\nu, \sigma)$ PDF.

24 Chi-squared Distribution

Chi-squared with k degrees of freedom:

$$f(x) \; = \; \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} \, x^{\frac{k}{2} - 1} \, e^{-x/2}, \quad x > 0.$$

Chi-squared(k=3)

Figure 24: 3D surface plot of Chi-squared(k) PDF.

25 Student's t Distribution

With ν degrees of freedom:

$$f(x) \; = \; \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \Big(1+\frac{x^2}{\nu}\Big)^{-\frac{\nu+1}{2}}, \quad x\in\mathbb{R}.$$

Student's t(nu=3)

Figure 25: 3D surface plot of Student's $t(\nu)$ PDF.

26 F-distribution

With degrees of freedom d_1, d_2 :

$$f(x) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x B(\frac{d_1}{2}, \frac{d_2}{2})}, \quad x > 0.$$

F-distribution(d1=5, d2=8)

Figure 26: 3D surface plot of $F(d_1, d_2)$ PDF.

27 Beta Distribution

With parameters α, β on [0, 1]:

$$f(x) \ = \ \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad 0 \le x \le 1.$$

Beta(alpha=2, beta=3)

Figure 27: 3D surface plot of Beta (α, β) PDF.

28 Dirichlet Distribution

A distribution over the probability simplex $x_1 + x_2 + \cdots + x_K = 1, x_i \ge 0$:

$$f(x_1, \dots, x_K) = \frac{1}{B(\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}, \quad \sum_{i=1}^K x_i = 1.$$

Dirichlet(alpha=[2, 3, 4]), 2-simplex

Figure 28: 3D surface plot of Dirichlet($\alpha_1, \alpha_2, \alpha_3$) along 2-simplex.

29 Wishart Distribution (Placeholder Slice)

The Wishart distribution is matrix-valued. For a $p \times p$ positive-definite matrix \mathbf{W} :

$$f(\mathbf{W}) \, \propto \, \det(\mathbf{W})^{\frac{\nu-p-1}{2}} \exp \! \! \left(-\tfrac{1}{2} \mathrm{tr}(\boldsymbol{\Sigma}^{-1} \mathbf{W}) \right) \! .$$

Here, we show a *slice* for a 2×2 Wishart (diagonal only), as a demonstration:

Wishart(2x2, I, nu=3) [diagonal slice]

Figure 29: A 3D "slice" of Wishart $(\nu, \Sigma = I)$ in 2D, restricting **W** to diagonal.

30 Normal (Gaussian) Distribution

The Normal (Gaussian) distribution with mean μ and standard deviation σ has

$$f(x) \ = \ \frac{1}{\sqrt{2\pi}\,\sigma} \exp\Bigl(-\frac{(x-\mu)^2}{2\sigma^2}\Bigr), \quad x \in (-\infty,\infty).$$

Normal(mu=0, sigma=1)

Figure 30: 3D surface plot of the Normal ($\mu,\sigma^2)$ PDF.

31 **Exponential Distribution**

The Exponential distribution with rate λ has

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

Exponential(lambda=1.0)

Figure 31: 3D surface plot of Exponential(λ) PDF.

32 Log-normal Distribution

If $Y \sim \text{Normal}(\mu, \sigma^2)$, then $X = e^Y$ is said to be Log-normal. Its PDF is

$$f(x) \; = \; \frac{1}{x \, \sigma \, \sqrt{2\pi}} \exp \Bigl(-\frac{(\ln x - \mu)^2}{2\sigma^2} \Bigr), \quad x > 0. \label{eq:force}$$

Lognormal(mu=0, sigma=1)

Figure 32: 3D surface plot of the Log-normal (μ, σ^2) PDF.

33 Pareto Distribution

The Pareto distribution with shape α and scale x_m has

$$f(x) = \alpha x_m^{\alpha} x^{-(\alpha+1)}, \quad x \ge x_m.$$

Pareto(alpha= $2.0, x_m=1.0$)

Figure 33: 3D surface plot of Pareto(α, x_m) PDF.

34 Weibull Distribution

The Weibull distribution with parameters k and λ has

$$f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp\left(-\left(\frac{x}{\lambda}\right)^k\right), \quad x \ge 0.$$

Weibull(k=1.5, λ =1.0)

Figure 34: 3D surface plot of Weibull (k, λ) PDF.

35 Gumbel Distribution

The Gumbel (Type-I extreme value) distribution with location μ and scale β has

$$f(x) \; = \; \frac{1}{\beta} \; \exp \Bigl[- \left(\frac{x - \mu}{\beta} \right) \; - \; \exp \bigl(- \frac{x - \mu}{\beta} \bigr) \Bigr].$$

Gumbel(mu=0.0, beta=1.0)

Figure 35: 3D surface plot of $Gumbel(\mu, \beta)$ PDF.

36 Beta Prime (Inverted Beta) Distribution

Sometimes called the inverted Beta distribution, with parameters α, β :

$$f(x) = \frac{x^{\alpha - 1} (1 + x)^{-\alpha - \beta}}{B(\alpha, \beta)}, \quad x > 0.$$

Beta prime(α =2.0, β =3.0)

Figure 36: 3D surface plot of Beta prime(α, β) PDF.

37 Logistic Distribution

The Logistic distribution with parameters μ (location) and s (scale):

$$f(x) = \frac{\exp(-\frac{x-\mu}{s})}{s(1+\exp(-\frac{x-\mu}{s}))^2}, \quad x \in \mathbb{R}.$$

Logistic(mu=0.0, s=1.0)

Figure 37: 3D surface plot of Logistic(μ , s) PDF.

38 Discrete Uniform Distribution

A discrete uniform distribution over $\{1,\ldots,n\}$ has

$$P(X = k) = \frac{1}{n}, \quad k = 1, \dots, n.$$

Discrete uniform(1..6)

Figure 38: 3D bar chart of Discrete Uniform $\{1, \ldots, n\}$.

39 Continuous Uniform Distribution

A continuous uniform distribution on [a, b]:

$$f(x) \ = \ \frac{1}{b-a}, \quad a \le x \le b.$$

Continuous Uniform(a=0.0, b=1.0)

Figure 39: 3D surface plot of Uniform(a, b) PDF.

40 Bernoulli Distribution

A Bernoulli distribution with parameter p has

$$P(X = 1) = p, P(X = 0) = 1 - p.$$

Bernoulli(p=0.3)

Figure 40: 3D bar chart of Bernoulli(p) PMF.

Binomial Distribution 41

A Binomial(n, p) distribution has

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, \dots, n.$$

Binomial(n=10, p=0.4)

Figure 41: 3D bar chart of Binomial(n, p) PMF.

42 Negative Binomial Distribution

A Negative binomial with parameters (r, p):

$$P(X = k) = {k+r-1 \choose k} p^r (1-p)^k, \quad k = 0, 1, \dots$$

Negative Binomial(r=5, p=0.4)

Figure 42: 3D bar chart of Negative Binomial(r, p) PMF.

43 Geometric Distribution

A special case of Negative binomial with r = 1:

$$P(X = k) = (1 - p)^k p, \quad k = 0, 1, 2, \dots$$

Geometric(p=0.3)

Figure 43: 3D bar chart of Geometric(p) PMF.

Hypergeometric Distribution **44**

A Hypergeometric (N, K, n) distribution:

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}.$$

Hypergeometric(N=20, K=8, n=5)

Figure 44: 3D bar chart of Hypergeometric (N, K, n) PMF.

Beta-binomial Distribution 45

A conjugate extension of Binomial with parameters (n, α, β) :

$$P(X=k) \; = \; \binom{n}{k} \, \frac{B(\alpha+k,\; \beta+n-k)}{B(\alpha,\beta) \, B(\alpha+\beta,n)}.$$

Beta-Binomial(n=10, alpha=2, beta=3)

Figure 45: 3D bar chart of Beta-binomial (n, α, β) PMF.

46 Categorical Distribution

For K categories with probabilities p_i ,

$$P(X = i) = p_i, \quad \sum_{i=1}^{K} p_i = 1.$$

Categorical p=[0.2, 0.5, 0.3]

Figure 46: 3D bar chart of a Categorical distribution.

47 Multinomial Distribution

Generalizing Binomial to K categories:

$$P(X_1 = k_1, \dots, X_K = k_K) = \frac{n!}{k_1! \cdots k_K!} \prod_{i=1}^K p_i^{k_i}, \quad \sum k_i = n.$$

Multinomial(n=5, p=[0.3, 0.2, 0.5])

Figure 47: 3D bar chart of Multinomial (n, p_1, \dots, p_K) PMF for K = 3.

48 Multivariate Hypergeometric Distribution

A generalization of Hypergeometric to multiple categories. With K_i items in category i,

$$P(\mathbf{X} = \mathbf{k}) = \frac{\prod_{i=1}^{K} {K_i \choose k_i}}{{N \choose n}}, \quad \sum_{i=1}^{K} k_i = n.$$

Multivariate Hypergeometric(K=[4, 5, 6], n=5)

Figure 48: 3D bar chart for the Multivariate Hypergeometric distribution with K=3.

49 Poisson Distribution

A Poisson(λ) distribution:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

Poisson(lambda=3.0)

Figure 49: 3D bar chart of $Poisson(\lambda)$ PMF.

50 Gamma Distribution

With shape α and rate β :

$$f(x) \; = \; \frac{\beta^{\alpha}}{\Gamma(\alpha)} \, x^{\alpha-1} e^{-\beta x}, \quad x > 0.$$

Gamma(alpha=2.0, beta=1.0)

Figure 50: 3D surface plot of $Gamma(\alpha, \beta)$ PDF.

51 Rayleigh Distribution

Rayleigh(σ):

$$f(r) \; = \; \frac{r}{\sigma^2} \; \exp\Bigl(-\frac{r^2}{2\sigma^2}\Bigr), \quad r \geq 0.$$

Rayleigh(sigma=1.0)

Figure 51: 3D surface plot of Rayleigh(σ) PDF.

Rice (Rician) Distribution 52

 $\mathrm{Rice}(\nu,\sigma)$:

$$f(r) \; = \; \frac{r}{\sigma^2} \exp \! \left(- \frac{r^2 + \nu^2}{2\sigma^2} \right) I_0 \! \left(\frac{r \, \nu}{\sigma^2} \right), \quad r \geq 0.$$

Rice(sigma=1.0, nu=1.0)

Figure 52: 3D surface plot of $\mathrm{Rice}(\nu, \sigma)$ PDF.

53 Chi-squared Distribution

Chi-squared with k degrees of freedom:

$$f(x) \; = \; \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} \, x^{\frac{k}{2} - 1} \, e^{-x/2}, \quad x > 0.$$

Chi-squared(k=3)

Figure 53: 3D surface plot of Chi-squared(k) PDF.

54 Student's t Distribution

With ν degrees of freedom:

$$f(x) \; = \; \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \Big(1+\frac{x^2}{\nu}\Big)^{-\frac{\nu+1}{2}}, \quad x\in\mathbb{R}.$$

Student's t(nu=3)

Figure 54: 3D surface plot of Student's $t(\nu)$ PDF.

55 F-distribution

With degrees of freedom d_1, d_2 :

$$f(x) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x B(\frac{d_1}{2}, \frac{d_2}{2})}, \quad x > 0.$$

F-distribution(d1=5, d2=8)

Figure 55: 3D surface plot of $F(d_1, d_2)$ PDF.

56 Beta Distribution

With parameters α, β on [0, 1]:

$$f(x) \ = \ \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad 0 \le x \le 1.$$

Beta(alpha=2, beta=3)

Figure 56: 3D surface plot of Beta(α, β) PDF.

57 Dirichlet Distribution

A distribution over the probability simplex $x_1 + x_2 + \cdots + x_K = 1, x_i \ge 0$:

$$f(x_1, \dots, x_K) = \frac{1}{B(\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}, \quad \sum_{i=1}^K x_i = 1.$$

Dirichlet(alpha=[2, 3, 4]), 2-simplex

Figure 57: 3D surface plot of Dirichlet($\alpha_1, \alpha_2, \alpha_3$) along 2-simplex.

58 Wishart Distribution (Placeholder Slice)

The Wishart distribution is matrix-valued. For a $p \times p$ positive-definite matrix \mathbf{W} :

$$f(\mathbf{W}) \, \propto \, \det(\mathbf{W})^{\frac{\nu-p-1}{2}} \exp \! \! \left(-\tfrac{1}{2} \mathrm{tr}(\boldsymbol{\Sigma}^{-1} \mathbf{W}) \right) \! .$$

Here, we show a *slice* for a 2×2 Wishart (diagonal only), as a demonstration:

Wishart(2x2, I, nu=3) [diagonal slice]

Figure 58: A 3D "slice" of Wishart $(\nu, \Sigma = I)$ in 2D, restricting **W** to diagonal.