[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기 강의자료 (2020.11.17 화요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.

본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 5] Greedy Methods

Scheduling with Deadlines

Problem

- Let $J = \{1, 2, ..., n\}$ be a set of jobs to be served.
- Each job takes one unit of time to finish.
- Each job has a deadline and a profit.

- 3
- If the job starts before or at its deadline, the profit is obtained.
- Schedule the jobs so as to **maximize** the total profit (not all jobs have to be scheduled).

Example:

Job	Deadline	Profit
1	2	30
2	1	35
3	2	25
4	1	40

Schedule	Total Profit
[1, 3]	30 + 25 = 55
[2, 1]	35 + 30 = 65
[2, 3]	35 + 25 = 60
[3, 1]	25 + 30 = 55
[4, 1]	30 40 + 30 = 70 30 30 30 30 30 30 30 30
[4, 3]	40 + 25 = 65

A greedy approach

- Sort the jobs in non-increasing order by profit.
- Scan each job in the sorted list, adding it to the schedule if possible.

Example

- -S = EMPTY
- Is $S = \{1\}$ OK?
 - Yes: $S \leftarrow \{1\}$ ([1])
- Is $S = \{1, 2\}$ OK?
 - Yes: $S \leftarrow \{1, 2\}$ ([2, 1])
- Is $S = \{1, 2, 3\}$ OK?
 - No.
- Is $S = \{1, 2, 4\}$ OK?
 - Yes: *S* ← {1, 2, 4} ([2, 1, 4] or [2, 4, 1])
- Is $S = \{1, 2, 4, 5\}$ OK?
 - No.
- Is $S = \{1, 2, 4, 6\}$ OK?
 - No.
- Is $S = \{1, 2, 4, 7\}$ OK?
 - No.

<After sorting by profit>

Job	Deadline	Profit
1	3	40
2	1	35
3	1	30
4	3	25
5	1	20
6	3	15
7	2	10

1 2 3

2

1 2 3

2 4 1

1 2

Profit

Implementation Issues

A key operation in the greedy approach

- Determine if a set of jobs S is feasible.
- ✓ Fact: S is feasible if and only if the sequence obtained by ordering the
 jobs in S according to nondecreasing deadlines is feasible.
- Example
 - Is $S = \{1, 2, 4\}$ OK? \rightarrow [2(1), 1(3), 4(3)] \rightarrow Yes!
 - Is $S = \{1, 2, 4, 7\}$ OK? \rightarrow [2(1), 7(2), 1(3), 4(3)] \rightarrow No

• An $O(n^2)$ implementation

- Sort the jobs in non-increasing order by profit.
- For each job in the sorted order,
 - See if the current job can be scheduled together with the previously selected jobs, using a *linked list* data structure.
 - If yes, add it to the list of feasible sequence.
 - Otherwise, reject it.

✓ Time complexity

$$O(n\log n) + \sum_{i=2}^{n} \{ (i-1) + i \} = O(n^2)$$

- When there are i-1 jobs in the sequence,
 - at most i-1 comparisons are needed to add a new job in the sequence, and
 - at most i comparisons are needed to check if the new sequence is feasible.

• Is the time complexity always $O(n^2)$?

1 2 3

- What if $n \gg d_{max}$?
 - $O(n \log n + n d_{max})$
- What if $n >> d_{max}$ and $n >> k_{scanned}$?
 - $O(n + k_{scanned} \log n + k_{scanned} d_{max}) = O(n)$ \leftarrow Is this complexity achievable when a max heap data structure is employed?

Job	Deadline	Profit
1	1	100
2	6	80
3	3	90
4	3	120
5	5	40
6	4	105
7	1	115
8	2	85
9	4	50

Correctness of the Greedy Method

Left as an exercise.

Data Structures for Disjoint Sets

Partition

- A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets.
- Example: $X = \{1, 2, 3, 4, 5, 6\} \rightarrow \{\{1, 3, 5\}, \{2\}, \{4, 6\}\}$
- Disjoint-set data structure (union-find data structure)
 - Used to effectively manage a collection of subsets that partition a given set of elements.
- Basic operations on disjoint sets
 - Makeset(x)
 - Make a set containing only the given element x.
 - -S = Find(x)
 - Determine which set the particular element x is in.
 - Typically return an element that serves as the subset's representative.
 - May be used to determine if two elements are in the same subset.
 - Union(x, y) (or Merge(x, y))
 - Merge two subsets into a single subset.

Applications

- Tracking the connected components of an undirected graph
 - Decide if two vertices belong to the same component, or if adding an edge between them would result in a cycle.
 - Useful for implementing the Kruskal's algorithm for finding minimum spanning tree
- Scheduling with deadlines
- Computing shorelines of a terrain
- Classifying a set of atoms into molecules or fragments.
- Connected component labeling in image analysis

Example

```
- U = {a, b, c, d, e}
- For (each x in U) Makeset(x); → {a}, {b}, {c}, {d}, {e}
- Union(a, c); → {a, c}, {b}, {d}, {e}
- {a, c} = Find(a);
- Union(c, e); → {a, c, e}, {b}, {d}
```

- Implementation of disjoint sets using reversed trees
 - Makeset(x)

```
Makeset(x) {
   parent(x) := x
   rank(x) := 0
}
```

Time complexity: O(1)

Two ways of implementing the Union operation

Union by rank

- Always attach the smaller tree to the root of the larger tree.
- The rank increases by one only if two trees of the same rank are merged.
 - ✓ The rank of a one-element tree is zero.
- The Union and Find operations can be done in O(log n) in the worst case.
 - \checkmark The number of elements in a tree of rank r is at least 2^r. (Proof by induction)
 - \checkmark The maximum possible rank of a tree with n elements is O(log n).

-S = Find(x)

```
Find(x) {
  while (x != parent(x))
   x := parent(x)
  return x
}
```

Time complexity: *O*(depth of *x* in the tree)

```
Find(x) {
  if (x == parent(x))
    return x
  else
    return Find(parent(x))
}
```

- Union(x, y)

```
Union(x, y) {
    x0 := Find(x)
    y0 := Find(y)
    if (x0 == y0)
        return
    if (rank(x0) > rank(y0))
        parent(y0) := x0
    else
        parent(x0) := y0
        if (rank(x0) == rank(y0))
            rank(y0) := rank(y0)+1
}
```

Time complexity:

2 Find op's + O(1)

