Sentiment Booms Go Wrong

Marco Brianti

Vito Cormun

March 2019

Dissertation Workshop, Boston College

Two long Traditions in Macroeconomics

Two main ideas in macroeconomics have been widely explored by the literature,

- Changes in expectation uncorrelated with current fundamentals as an important driver of economic fluctuations
 - Incentives to anticipate future economic conditions
 - $\Rightarrow\,$ Pigou, 1927; Keynes, 1936; Beaudry and Portier, 2006
- 2 Excessive optimism eventually leads to a recession
 - Unrealized expectations on future fundamentals
 - ⇒ Pigou, 1927; Beaudry and Portier, 2004
 - Over-accumulation during booms
 - ⇒ von Mises, 1940; Beaudry, Galizia, and Portier, 2018
 - Euphoria leads to excessive credit and higher financial fragility
 - ⇒ Minsky, 1977; Bordalo, Gennaioli, Shleifer, 2018

This paper

- We empirically estimate sentiment shocks and evaluate their effects on aggregate U.S. variables
 - We define sentiments as unpredictable changes in expectations uncorrelated with fundamentals
 - Sentiments shocks trigger boom-and-bust dynamics on most macroeconomic variables
 - Sentiments explain more than 40% of output

- We write a general equilibrium model that rationalizes our empirical findings
 - •
 - •

Contributions

- Novel identification strategy using Instrumental Variable Local Projection (IV-LP)
 - Previous literature estimates DSGE models or employ SVAR
 - ⇒ Milani, 2011; Leduc and Sill, 2013; Levchenko and Pandalai-Nayar, 2018; Feve and Guay, 2018
- Uncover new dynamics in response to sentiment shocks
 - **Informative** for the literature on sentiments
 - ⇒ Angeletos and La'O, 2013
 - Consistent with models with endogenous cyclical dynamics
 - \Rightarrow Benhabib and Wang, 2013; Beaudry, Galizia, and Portier, 2019
- 3 Cycles are also a high frequency phenomenon
 - We provide evidence of higher-frequency economic fluctuations
 - ⇒ Angeletos, Collard, and Dellas, 2018
- Theory that display conditional boom-and-bust dynamics
 - Cyclical dynamics are generally designed to be unconditional
 - ⇒ Beaudry and Portier, 2004

Roadmap

- 1. Empirical Strategy
- 2. Results
- 3. Test
- 4. Model
- 5. Conclusions

Overview of the Econometric Procedure

Following a recent literature which employs instruments to identify macroeconomic shocks, we develop a **2-step procedure**,

- Build an **instrument** Z_t correlated with changes in expectations and orthogonal to fundamentals
 - ⇒ Mertens and Ravn, 2013; Gertler and Karadi, 2015

- Estimate dynamic responses of macroeconomic variables using IV-LP
 - ⇒ Jordà, 2005; Kilian and Kim, 2011; Stock and Watson, 2018

Data Treatment on Expectations

We use quarterly **Survey of Professional Forecasters (SPF)** from 1982 to 2018 on endogenous macroeconomic variables X_t^s

Define,

- $E_t^i(X_{t+k}^s)$ as the expectation on X_{t+k}^s given the information set at time t released by professional forecaster i
- $E_t(X_{t+k}^s)$ as the mean (median) across i of $E_t^i(X_{t+k}^s)$
- $E_t(\hat{x}_{t+k}^s) = E_t(X_{t+k}^s)/E_t(X_t^s) 1$ as the expectation of the growth rate of X^s from t to t+k given information set t
- $R_{t,k}^s = E_t(\hat{x}_{t+k}^s) E_{t-1}(\hat{x}_{t+k}^s)$ as the revision on expectations from t-1 to t of the growth rate of X^s from t to t+k
- R_t^k is the first principal component $R_{t,k}^s$

Instrument Z_t

 R_t is correlated with past and current fundamentals

We estimate instrument Z_t as the unpredictable component of R_t orthogonal to fundamentals,

$$R_{t}^{k} = c + \sum_{j=0}^{J} \beta_{j} \Delta TFP_{t-j} + \sum_{q=1}^{Q} \gamma^{q} S_{t}^{q} + \sum_{l=1}^{L} \sum_{g=1}^{G} \mu_{g}^{l} PC_{t-g}^{l} + Z_{t}^{k}$$

where,

- \bullet ΔTFP is the first difference of utilization-adjusted TFP
- ullet S^q is a structural shock provided by the literature
- PC¹ is the Ith principal component from a dataset with more than a hundred U.S. aggregates
- J = 8, ..., 20, Q = 4, L = 2, ..., 4, and G = 2, ..., 6

IV-LP Estimator

Dynamic response of endogenous variable Y_{t+h} to R_t is

$$Y_{t+h} = \Theta_h^Y R_t^k + u_{h,t+h}^Y \tag{1}$$

Because R_t is endogenous OLS estimation of 1 is not valid. Eq. 1 can be estimated by IV if Z_t satisfies the following conditions

- $E(\varepsilon_{2:N,t}Z_t^k) = 0$ (contemporaneous exogeneity)
- $E(\varepsilon_{1:N,t+j}Z_t^k)=0$ for $j\neq 0$ (lead-lag exogeneity)

Given the validity of previous conditions, an unbiased estimator for Θ_h^Y is defined as

$$\Theta_h^Y = \frac{E(Y_{t+h}Z_t^k)}{E(R_t^k Z_t^k)} \tag{2}$$

Miscellaneous Technical Details

- Forecast horizon k from SPF data is either 2 or 3
- Forecasted variables X^s are real GDP, nominal GDP, real consumption, real investment, and industrial production
- We estimate $Y_{t+h} = \Theta_h^Y R_t^k + \gamma W_t + u_{h,t+h}^Y$
 - where R_t is instrumented with Z_t
 - W_{t-1} is a series of controls at t-1
- If Y_t is non-stationary,
 - Detrend Y_t with low-frequency filters
 - Take the first difference of Y_t and $\Gamma_h^Y = \sum_{i=0}^h \Theta_h^Y$ is the response of Y_{t+h}
- Bootstrap method is from Kilian and Kim (2011)

Bootstrap Technique

Results

Model

Conclusions

Bootstrapping Technique

- ② Create $\Lambda_{h,t,1}^Y$ of the same length of T of $\Lambda_{h,t}^Y$ where $\Lambda_{h,t,1}^Y$ is formed by randomly extracted blocks of length I from $\Lambda_{h,t}^Y$
- **3** Estimate $\Theta_{h,1}^Y$ from $\Lambda_{h,t,1}^Y$ using IV-LP estimator
- \bullet Redo first 3 steps B=2000 times and get $\Theta_{h,b}^{Y}$ where $b=1,\ldots,B$
- **Select** confidence bands of $\Theta_{h,b}^{Y}$ across b for all h