Definition (Categorical Coproduct)

Let **C** be a category and let $X, Y \in \text{Ob}_{\mathbf{C}}$ be objects. The *coproduct* of X and Y is:

Constituents

- 1. an object $Z \in Ob_{\mathbb{C}}$ ("the coproduct of X and Y")
- 2. injection morphisms $\text{in}_1: X \to Z$ and $\text{in}_2: Y \to Z$

Conditions

1. For any $T \in \mathrm{Ob}_{\mathbb{C}}$ and any morphisms $f: X \to T, g: Y \to T$, there exists a *unique* morphism $\psi_{f,g}: Z \to T$ such that $f = \mathrm{in}_1 \ \S \ \psi_{f,g}$ and $g = \mathrm{in}_2 \ \S \ \psi_{f,g}$