Name of the Student Roll No.		
MAULANA AZAD NATIONAL INSTITUTE OF TECHNOLOGY End Term Exam, Dec '2024		
Course: B. Tech Semester - I Branch: SECTION- F, G Subject Name : Basic Electrical and Electronics Engineering Subject Code: Time : 2 Hours Max Ma		EE-108
NOTE: All questions are compulsory. Assume the necessary data suitably if any missing.		
Q.No.	Question	Marks
1	a) Calculate the voltage 'V' in the circuit shown in fig. 1 by Mesh method such that the current through 5V source is zero.	5
	Fig.1 b) In the given network as shown in Fig. 2, find the current through the 6 Ω resistor using Superposition theorem. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
2	Fig. 2 (a) Derive the relation between the voltage and current for an R-L-C circuit <u>using</u> <u>phasor diagram</u> . Also derive the average power consumed by the circuit. Define	5
	 and explain the condition of Series resonance. (b) A voltage of 200V is applied to a series circuit consisting of a resistor, an inductor and a capacitor. The respective voltages across these components are 170V, 150V and 100V and the circuit current is 4 A. Find the power factor of the inductor and of the circuit. 	5
3	(a) Explain the principle of operation of a transformer at (i) no load and (ii) full load lagging power factor. Draw the phasor diagram to show all operational events from no load to full load.	5
	(b) A 50 kVA single-phase transformer has a full-load primary current of 250 A and total resistance referred to primary is 0.006 ohm. If the iron loss amounts to 200 W, find the efficiency on full-load and half-load at (i) unity power factor and (ii) 0.8 power factor.	5
4	(a) Explain the working of FW rectifier with the help of neat connection diagram and	5
	waveforms. Derive the expression for rectifier efficiency & ripple factor. (b) (i) What is the working principle of a DC motor? Explain the concept of back EMF.	2
	(ii) A six-pole lap wound DC generator has 720 conductors, and a flux of 40 mWb per pole is driven at 400 rpm. Find the generated EMF.	3