Introduction to statistics in R

Generalised linear models

on-normal data in ecology

Non-normal data often falls into two categories:

Data distributions

% 0 1 2 3 4 5
Number of leaves per plant

Poisson distribution

Differences compared to linear model

A new method to estimate parameters
 Maximum likelihood

2. A new test statistics

Likelihood ratios or deviance (difference between log-likelihoods)

3. A variance function which specifies how the variance changes with the fitted values

4. A link function which transforms the response variable

Data transformation or glm?

• In some situations a response variable can be transformed to improve linearity and homogeneity of variance so that a linear model can be applied.

- Drawbacks
 - response variable changes
 - transformation must simulateneously improve linearity and homogeneity of variance

Generalised linear model GLM

Data are may come from different type of distributions

$$Y_{i} = f(a + b \cdot X_{i}) + \varepsilon_{i}$$
 $\varepsilon_{i} \sim Poisson(\lambda)$ $\varepsilon_{i} \sim Binom(\pi)$ $\varepsilon_{i} \sim Gamma(a, b)$

In R these distributions are called families

gaussian

For normal distribution

binomial quasibinomial

For binomial distribution

poisson quasipoisson

For Poisson distribution

Gamma

For gamma distribution

Poisson distribution

How real data may look like:

Follows a Poisson distribution

Binomial distribution

How real data may look like:

Proportions Successes-failures

germination success, survival

Follows a binomial distribution

Gamma distribution

The Gamma distribution is a very general and flexible discriptions of many events, but the parameters *a* and *b* are difficult to interpret biologically

•The searching time to find species in an area

OThe waiting time for an event $e^{bant}_{\text{Number of species}} = \frac{f(x;a,b)}{\Gamma(a)} =$

Time

a = 1, b = 2 a = 2, b = 0.5

a = 3, b = 1

a = 9, b = 2

Difference with normal distribution

The probability distributions are often asymmetric, in contrast to a Normal distribution

The probability decreases differently from the peak (= mode)

The link function

The link function specifies how the parameters are related to the response variable. For most applications, use the standard link function.

The standard link functions are:

$$y = a + b \cdot x$$

$$y = \log(a + b \cdot x)$$

$$\log\left(\frac{p}{1-p}\right) = a + b \cdot x$$

$$y = \frac{1}{a + b \cdot x}$$

Generalised linear model GLM in R

- The family argument specifies the error distribution and link function.
 See ?family for more information
 - binomial(link = "logit")
 - gaussian(link = "identity")
 - poisson(link = "log")

Maximum likelihood

- given the data,
- and given our choice of model,
- what values of the parameters of that model make the observed data most likely?
- □ probability
- Relaxing the assumption of normally distributed residuals
- Allowing other frequency distributions (Poisson, binomial, etc.)

Model assumptions

- Independence of observations
- No overdispersion (Poisson, binomial): happens when there is more variation in the data than expected based on the given distribution
- (No pattern when plotting studentized residuals)

> summary(lm(Plant_biomass~LUI,data=dat))

10 Median

lm(formula = Plant_biomass ~ LUI, data = dat)

Max

59.28 7.011 1.46e-10 ***

34.23 4.314 3.30e-05 ***

call:

Residuals: Min

Differences in the model summary

```
-487.38 -173.59 -30.62 158.95 816.71
                                                  Coefficients:
                                                             Estimate Std. Error t value Pr(>|t|)
                                                  (Intercept) 415.62
                                                               147.64
                                                  LUI
                                                  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(glm(Plant_biomass~LUI,data=dat))
                                                  Residual standard error: 265.1 on 121 degrees of freedom
call:
                                                  Multiple R-squared: 0.1333, Adjusted R-squared: 0.1261
qlm(formula = Plant_biomass ~ LUI, data = dat)
                                                  F-statistic: 18.61 on 1 and 121 DF, p-value: 3.296e-05
Deviance Residuals:
             10 Median
   Min
                               30
                                       Max
-487.38 -173.59 -30.62 158.95
                                                       Contribution
                                    816.71
                                                       of each point
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                                       to likelihood
                         59.28 7.011 1.46e-10 ***
(Intercept) 415.62
                         34.23 4.314 3.30e-05 ***
LUI
             147.64
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 70282.01)
   Null deviance: 9812009 on 122 degrees of freedom
Residual deviance: 8504123 on 121 degrees of freedom
AIC: 1725.8
Number of Fisher Scoring iterations: 2
```


Differences in the model summary

```
34.23 4.314 3.30e-05 ***
                                                               147.64
                                                   LUI
                                                  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(glm(Plant_biomass~LUI,data=dat))
                                                  Residual standard error: 265.1 on 121 degrees of freedom
call:
                                                  Multiple R-squared: 0.1333, Adjusted R-squared: 0.1261
glm(formula = Plant_biomass ~ LUI, data = dat)
                                                  F-statistic: 18.61 on 1 and 121 DF, p-value: 3.296e-05
Deviance Residuals:
             10 Median
    Min
                               30
                                       Max
-487.38 -173.59 -30.62 158.95
                                    816.71
coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         59.28 7.011 1.46e-10 ***
(Intercept) 415.62
                         34.23 4.314 3.30e-05 ***
LUI
             147.64
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for gaussian family taken to be 70282.01)

Null deviance: 9812009 on 122 degrees of freedom

Residual deviance: 8504123 on 121 degrees of freedom

Number of Fisher Scoring iterations: 2

AIC: 1725.8

call:

Residuals: Min

Coefficients:

(Intercept) 415.62

The dispersion parameter for the gaussian family corresponds to the residual variance.

Max

59.28 7.011 1.46e-10 ***

Estimate Std. Error t value Pr(>|t|)

> summary(lm(Plant_biomass~LUI,data=dat))

10 Median

-487.38 -173.59 -30.62 158.95 816.71

lm(formula = Plant_biomass ~ LUI, data = dat)

> summary(lm(Plant_biomass~LUI,data=dat))

10 Median

-487.38 -173.59 -30.62 158.95 816.71

147.64

lm(formula = Plant_biomass ~ LUI, data = dat)

Max

59.28 7.011 1.46e-10 ***

34.23 4.314 3.30e-05 ***

Estimate Std. Error t value Pr(>|t|)

call:

Residuals:

Min

Coefficients:

Differences in the model summary

Number of Fisher Scoring iterations: 2

No R-squared but Null and Residual deviance.

```
(Intercept) 415.62
                                                  LUI
                                                  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(glm(Plant_biomass~LUI,data=dat))
                                                  Residual standard error: 265.1 on 121 degrees of freedom
call:
                                                  Multiple R-squared: 0.1333, Adjusted R-squared: 0.1261
glm(formula = Plant_biomass ~ LUI, data = dat)
                                                  F-statistic: 18.61 on 1 and 121 DF, p-value: 3.296e-05
Deviance Residuals:
             10 Median
   Min
                               30
                                       Max
-487.38 -173.59 -30.62 158.95
                                    816.71
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         59.28 7.011 1.46e-10 ***
(Intercept) 415.62
                         34.23 4.314 3.30e-05 ***
LUI
             147.64
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 70282.01)
   Null deviance: 9812009 on 122 degrees of freedom
Residual deviance: 8504123 on 121 degrees of freedom
AIC: 1725.8
```


Differences in the model summary

No R-squared but Null and Residual deviance.

> summary(glm(Plant_biomass~LUI,data=dat))

call:

AIC: 1725.8

```
glm(formula = Plant_biomass ~ LUI, data = dat)
Deviance Residuals:
             10 Median
   Min
                               30
                                       Max
-487.38 -173.59 -30.62 158.95
                                    816.71
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         59.28 7.011 1.46e-10 ***
(Intercept) 415.62
                         34.23 4.314 3.30e-05 ***
LUI
             147.64
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 70282.01)
```

Null deviance: 9812009 on 122 degrees of freedom Residual deviance: 8504123 on 121 degrees of freedom

```
lm(formula = Plant_biomass ~ LUI, data = dat)
Residuals:
   Min
            10 Median
                                  Max
-487.38 -173.59 -30.62 158.95 816.71
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 415.62
                         59.28 7.011 1.46e-10 ***
             147.64
                         34.23
                                4.314 3.30e-05 ***
LUI
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 265.1 on 121 degrees of freedom
Multiple R-squared: 0.1333, Adjusted R-squared: 0.1261
F-statistic: 18.61 on 1 and 121 DF, p-value: 3.296e-05
```

> summary(lm(Plant_biomass~LUI,data=dat))

call:

The residual deviance is like the residual sum of squares in a linear regression.

The smaller the better.

Number of Fisher Scoring iterations: 2

Differences in the model summary

> summary(glm(Plant_biomass~LUI,data=dat))

Number of Fisher Scoring iterations: 2

glm(formula = Plant_biomass ~ LUI, data = dat)

call:

```
call:
lm(formula = Plant_biomass ~ LUI, data = dat)
Residuals:
   Min
            10 Median
                                  Max
-487.38 -173.59 -30.62 158.95 816.71
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 415.62
                        59.28 7.011 1.46e-10 ***
                        34.23 4.314 3.30e-05 ***
             147.64
LUI
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 265.1 on 121 degrees of freedom
Multiple R-squared: 0.1333, Adjusted R-squared: 0.1261
F-statistic: 18.61 on 1 and 121 DF, p-value: 3.296e-05
```

see model selection

Akaike's Information Criterion (AIC)

> summary(lm(Plant_biomass~LUI,data=dat))

```
Deviance Residuals:
             10 Median
   Min
                               30
                                      Max
-487.38 -173.59 -30.62 158.95
                                   816.71
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         59.28 7.011 1.46e-10 ***
(Intercept) 415.62
                         34.23 4.314 3.30e-05 ***
LUI
             147.64
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 70282.01)
   Null deviance: 9812009 on 122 degrees of freedom
Residual deviance: 8504123 on 121 degrees of freedom
AIC: 1725.8
```

The Poisson distribution

- A discrete probability distribution expressing the probability of a number of events (x) occurring in a fixed time/space interval.
- Characteristics of a Poisson distribution:
 - The variance equals the mean (1 parameter= λ),
 - As the mean increases,
 the distribution gets closer
 to a normal distribution.

Poisson GLM

 For Poisson GLMs, we transform the linear predictor using the log link function, to predict the number of y events (e.g. species, pollinator visits...).

some function of
$$y=\alpha+\beta x_i$$

$$\ln(y_i)=\alpha+\beta x_i$$

$$y_i=e^{\alpha+\beta x_i}$$
 where y_i follows a Poisson distribution.

• Because y is modelled as an exponential, it is always positive (which is useful, as we can't have negative counts!).

Poisson GLM - example

Number of Fisher Scoring iterations: 4


```
> m10 <- glm(Predator_SpeciesRichness~Region + LUI + Herbivore_biomass,data=dat, family="poisson")
> summary(m10)
call:
glm(formula = Predator_SpeciesRichness ~ Region + LUI + Herbivore_biomass,
    family = "poisson", data = dat)
Deviance Residuals:
                 Median
    Min
              10
                                30
                                        Max
-2.8060 -0.8338 -0.0949
                            0.5261
                                     3.3501
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  1.595e+00 1.065e-01 14.970 < 2e-16 ***
RegionSCH
                  -7.161e-02 9.720e-02 -0.737
                                                  0.4613
RegionALB
                  -2.087e-01 1.012e-01 -2.062
                                                  0.0392 *
                  -6.012e-02 5.675e-02 -1.059
LUI
                                                  0.2894
Herbivore_biomass 2.235e-05 3.068e-06 7.283 3.27e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for poisson family taken to be 1)
                                                                       30
    Null deviance: 197.37 on 122 degrees of freedom
                                                                    Frequency
Residual deviance: 149.32 on 118 degrees of freedom
                                                                       20
AIC: 577.15
```

Histogram of dat\$Predator SpeciesRichness

dat\$Predator SpeciesRichness

Poisson GLM model validation

- Because Poisson GLMs allow for larger spread of residuals for larger fitted values, it doesn't make sense to look at residuals as observed minus fitted values.
- For non-Gaussian GLMs, we use **Pearson residuals**:

$$Pearson \ residuals = \frac{Y_i - \hat{\mu}_i}{\sqrt{\hat{\mu}_i}}$$

The Pearson residuals scale observed-fitted differences by dividing by the square-root of the fitted value.

Poisson GLM model validation


```
> E2 <- resid(m10, type="pearson")
> F2 <- fitted(m10, type="response")
> plot(x=F2, y=E2, xlab="fitted values", ylab="Pearson residuals")
> abline(h=0, lty=2)
```


No patterns should be visible when we plot the Pearson residuals against the fitted values.

Poisson GLM model validation

And we might still have influential points (like in a linear regression).

Poisson GLM and overdispersion

- In a Poisson GLM, remember, the mean should equal the variance (μ = σ ²).
- Dispersion is characterized by the **dispersion parameter**, ρ . ρ should be 1 if μ = σ^2 .
- Often in ecological data, $\rho>1$, i.e. the variance exceeds the mean. This is called **overdispersion**.
- Overdispersion can be thought of as **extra variation in the response** that cannot be captured by a Poisson GLM.

Poisson GLM and overdispersion

 We can check to see if our response variable is overdispersed, using the GLM summary:

```
> m10 <- glm(Predator_SpeciesRichness~Region + LUI + Herbivore_biomass,data=dat, family="poisson")
> summary(m10)
call:
glm(formula = Predator_SpeciesRichness ~ Region + LUI + Herbivore_biomass,
   family = "poisson", data = dat)
Deviance Residuals:
   Min
             10 Median
                              3Q
                                      Max
-2.8060 -0.8338 -0.0949 0.5261
                                   3.3501
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                 1.595e+00 1.065e-01 14.970 < 2e-16 ***
                 -7.161e-02 9.720e-02 -0.737
RegionSCH
                                               0.4613
                 -2.087e-01 1.012e-01 -2.062
RegionALB
                                               0.0392 *
LUT
                 -6.012e-02 5.675e-02 -1.059 0.2894
Herbivore_biomass 2.235e-05 3.068e-06 7.283 3.27e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
                                                      The residual deviance
   Null deviance: 197.37 on 122 degrees of freedom
Residual deviance: 149.32 on 118 degrees of freedom
                                                       (unexplained variation in the
AIC: 577.15
                                                       response) should be ≈
Number of Fisher Scoring iterations: 4
                                                       residual degrees of freedom.
```

isson GLM and overdispersion

- If residual deviance > residual degrees of freedom, then $\rho > 1$, i.e. y is overdispersed. **As a rule of thumb, up to ~ 1.5 is ok**.
- Accounting for overdispersion is important, as it increases standard errors.
 Ignoring overdispersion can result in Type 1 errors (false positives).
- If the dispersion estimate is really large (>1.5), we can do 2 things:
 - Use a 'quasi-poisson' GLM family="quasipoisson"

 It calculates ρ based on our mean and variance, $variance = \rho \cdot \mu$ still applying the Poisson distribution
 - Use a negative binomial distribution, where we estimate the variance as:

$$variance = \mu + \frac{\mu^2}{k}$$
 where k is an estimated dispersion parameter glm.nb() in R

An overdispersed model

```
> mod11 <- glm(Herbivore_SpeciesRichness~Plant_biomass,data=dat, family="poisson")</pre>
> summary(mod11)
call:
glm(formula = Herbivore_SpeciesRichness ~ Plant_biomass, family = "poisson",
    data = dat)
Deviance Residuals:
    Min
             10 Median
                               3Q
                                       Max
-4.0706 -1.6421 -0.1246 1.3683
                                    3.4645
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
              3.640e+00 3.987e-02 91.286 < 2e-16 ***
Plant_biomass -3.471e-04 5.846e-05 -5.937 2.91e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 443.74 on 122 degrees of freedom
Residual deviance: 408.21 on 121 degrees of freedom
AIC: 1052
Number of Fisher Scoring iterations: 4
```


An overdispersed model

Use negative binomial model

```
> library(MASS)
> mod11bis <- qlm.nb(Herbivore_SpeciesRichness~Plant_biomass,data=dat)</pre>
> summary(mod11bis)
call:
glm.nb(formula = Herbivore_SpeciesRichness ~ Plant_biomass, data = dat,
    init.theta = 13.00294581, link = log)
Deviance Residuals:
               10 Median
     Min
                                    3O
                                            Max
-2.52676 -0.91845 -0.05423 0.72938 1.80570
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
              3.6328176 0.0744284 48.810 < 2e-16 ***
Plant_biomass -0.0003364  0.0001062  -3.166  0.00155 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(13.0029) family taken to be 1)
    Null deviance: 134.53 on 122 degrees of freedom
Residual deviance: 124.20 on 121 degrees of freedom
AIC: 916.16
Number of Fisher Scoring iterations: 1
```

Binomial GLM

- **Binomial GLMs** also involve **transformation of a linear predictor**, to obtain predicted values of y. We most often the **logit link function**.
- Probability is bounded by 0 and 1.

some function of
$$y = \alpha + \beta x$$

$$\log(odds) = \alpha + \beta x$$

$$\Leftrightarrow \log (y_i) = \log \left(\frac{p}{1-p}\right) = \alpha + \beta x$$

$$y_i = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

Probabability of species occurrence p

Binomial GLM with proportional data

- With proportional data, we need to represent the data as the number of 'successes' and the number of 'failures', using cbind().
- In a binomial GLM with proportional data, we expect the variance to equal np(1-p), where n = number of trials, and p = proportion of 'successes'.
- If the variance is bigger than np(1-p), then we have overdispersion. In that case, we can use a 'quasi-binomial' GLM, modelling a dispersion estimate ρ:

Variance =
$$\rho$$
np(1-p)

In R write: glm(cbind(success, failure) ~ x1 +x2 + ...)

Binomial GLM - example

```
> m12 <- glm(cbind(Herbivore_SpeciesRichness, Predator_SpeciesRichness)~ Region + Fstd + Gstd,
            family="binomial", data=dat)
> summary(m12)
call:
glm(formula = cbind(Herbivore_SpeciesRichness, Predator_SpeciesRichness) ~
    Region + Fstd + Gstd, family = "binomial", data = dat)
Deviance Residuals:
    Min
             1Q Median 3Q
                                       мах
-2.7220 -0.6335 0.2156 0.7826
                                    2.5456
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.75783 0.08164 21.532 <2e-16 ***
RegionSCH -0.03873 0.10559 -0.367 0.714
RegionALB 0.14280 0.10446 1.367 0.172
Fstd -0.03079 0.02945 -1.045 0.296
Gstd -0.03498 0.02818 -1.241 0.215
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 140.40 on 122 degrees of freedom
Residual deviance: 135.13 on 118 degrees of freedom
AIC: 542.73
Number of Fisher Scoring iterations: 4
```

Also check for overdispersion _ quasibinomial

What to present to other researchers

- Clear hypotheses and questions
- Sampling design
- Any change to the initial dataset
- Statistical model
- Package used
- Results
 - Estimates + std errors
 - t and pvalues
 - R-squared
 - Degrees of freedom
 - Plots with raw / modelled data