Multilayer Perceptrons

COMP4211

Back to XOR

x_1	x ₂	У3	$y = XOR(x_1, x_2)$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Recall that a perceptron with 1 hidden unit can solve the XOR problem

Multi-layer Feedforward Networks

- Generalization of simple perceptrons
- Multi-layer perceptrons (MLP)

ANN for Classification

Multiple classes

- one output for each class
- assign object to class $\underset{i=1}{\operatorname{arg max}} y_i$

two classes

- treat like multiple classes, or
- only one output unit y:
 assign object into yes class if y > 0; no class if y ≤ 0

Hidden Unit Transfer (Activation) Function

if hidden units were linear elements, then a single-layer neural network with appropriately chosen weights could exactly duplicate those calculations performed by any multi-layer network

 the capabilities of MLP stem from the nonlinearities used within the hidden units

use the perceptron as the hidden unit?

• transfer function: step function

non-differentiable \rightarrow unsuitable for gradient descent

Sigmoid Unit

• a unit very much like a perceptron, but based on a smoothed, differentiable threshold function: $\sigma(x) = \frac{1}{1+e^{-x}}$

• the tanh is also sometimes used in place of the sigmoid function

COMP4211

Sigmoid Unit...

- all weights to the sigmoid unit are very small
 - ightarrow approximates a linear unit
- all weights are very large
 - ightarrow approximates a step function unit
- nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 \sigma(x))$

Radial Basis Functions (RBF) Network

- e.g. Gaussian: $\exp\left(-\frac{(\mathbf{x}-\mathbf{w}_j)^T(\mathbf{x}-\mathbf{w}_j)}{2\sigma_j^2}\right)$
 - radially symmetric ⇒ radial basis function
- each hidden unit produces a localized response to the input
 - significant nonzero response only when input falls within a small localized region of the input
- cf sigmoid: nonzero over an infinitely large region of the input space

RBF Network...

• some problems can be solved more efficiently with sigmoidal hidden units, other are more amenable to RBF units

Rectified Linear Unit (ReLU)

 $f(x) = \max(0, x)$

- the most popular activation function for deep networks
- more efficient computation
- simple gradient
- sparse activation (hidden units with non-zero outputs)
 - if > 0, gradient = 1
 - if ≤ 0 , gradient = 0

gradient can be 0!

A Variant: Leaky ReLU

- as computationally efficient as standard ReLU
- but will not "die"