

วันนีเราเรียน<u>อะไร...</u>

?

พัฒนาการของ time series forecasting

ขันตอนการทำ time series forecasting

ข้อมูล time series คืออะไร

Time series data = ข้อมูลทีเปลี่ยนแปลงไปตามเวลา

ตัวอย่าง time series data

กราฟราคาหุ้น หรือ ดัชนี

กราฟแนวโน้มแสดงอัตราการว่างงาน

กราฟจำนวนผู้ติดเชื้อ COVID-19

กราฟแนวโน้มรายได้ หรือค่าใช้จ่าย

ตัวอย่างการใช้ time series forecasting

Time series or trend forecasting to predict number of deaths from Covid-19

Reported deaths are the number of deaths officially reported as COVID-19. Excess deaths are the number of deaths estimated as attributed to COVID-19, including unreported deaths.

Source | https://covid19.healthdata.org/thailand?view=cumulative-deaths&tab=trend

ตัวอย่างการใช้ time series forecasting

Error

Moving Average

Confidence Interval

PredictedActuals

Anomaly

Anomaly detection with time series forecasting

ไม่ใช่เพียงแค่การทำนายยอด ขาย หรือราคาหุ้น time series forecasting ยังสามารถนำมา ประยุกต์เพื่อหารายการผิดปกติ (anomaly detection)

ตัวอย่างการใช้ time series forecasting

ML trend forecasting for sale or revenue

ตัวอย่างข้อมูลยอดขายรายเดือน

	date	sales
0	2013-01-01	454904
1	2013-02-01	459417
2	2013-03-01	617382
3	2013-04-01	682274
4	2013-05-01	763242

Total Monthly Sales

กราฟที่ predict เทียบกับข้อมูลจริง

ความแตกต่างระหว่าง time series และ non-time series

Non-time series

- จำนวนผู้พักอาศัยในคอนโด A เทียบกับจำนวนผู้พักอาศัยใน คอนโด B
- จำนวนนักเรียนทีเข้าเรียนคณะ Data Science มหาวิทยาลัย Botnoi
- ราคาทองคำแท่ง น้ำหนัก 10 กิโลกรัม
- จำนวนผู้ป่วย COVID ทั่วโลก ณ เดือน ธันวาคม 2020

Time Series

- จำนวนผู้พักอาศัยในคอนโด A ระหว่างปี 2017 2020
- จำนวนนักเรียนที่จบการศึกษาในแต่ละปี **ตั้งแต่ปี 2010 ถึงปี** 2020
- ราคาทองคำ**ย้อนหลัง 6 เดือน**
- จำนวนผู้ติดเชือ COVID หัวโลกในแต่ละวัน ตั้งแต่เดือน มกราคม ถึงเดือน ธันวาคม

องค์ประกอบของข้อมูล time series

Reference: https://blog.datath.com/time-series-forecasting/

ตัวอย่างการวิเคราะห์องค์ประกอบของ time series

Traditional vs current time series forecasting

ความแตกต่างของการทำนายยอดขายระหว่าง แบบดั้งเดิม และปัจจุบัน

เดือน	ยอดขายจริง	ทำนายจาก ยอดขาย ย้อนหลังเฉลี่ย 3 วัน	ยอดทำนายด้วย linear regression
1	1000		
2	1100		
3	1050		
4	1250		
5	1280		
6	1190		
7	1230		
8	1200		
9	1240		
10	1150		
11		1197	1267
12		1196	1284
13		1181	1302

วิธีทำนายยอดขายแบบดังเดิม

เช่น การทำนายยอดขายด้วยการใช้ราคา ย้อนหลังเฉลีย 3 วัน

ราคาวันที 11 = (1200+1240+1150)/3 = 1197

2 วิธีทำนายยอดขายแบบปัจจุบัน เช่น การทำนายยอดขายด้วยการใช้ linear regression

ราคาวันที่ 11 = 17.758 (11) + 1071.3

เนื่องจากวิธีการคำนวนต่างกัน ผลลัพธ์จึงต่างกัน

พัฒนาการ

พัฒนาการของ traditional time series forecasting

วิธีการทำนาย

Naive approach

Simple average

Weight moving average

Single exponential smoothing

Holt's linear trend method

Holt's Winter seasonal method

ARIMA*

ทำนายราคาวันพุ่งนีโดยใช้

ราคาเมือวาน

ค่าเฉลียของช่วงเวลาในอดีต

ค่าเฉลียของช่วงเวลาในอดีต ถ่วงน้ำหนักด้วยเวลา (ยิงใกล้ยิงให้น้ำหนักเยอะ)

ค่าเฉลียของช่วงเวลาในอดีต ถ่วงน้ำหนักด้วยเวลา (ยิงใกล้ยิงให้น้ำหนักเยอะมากๆ)

ใช้ single exponential smoothing ผสม trend

ใช้ single exponential smoothing ผสม trend และ seasonal

มองว่าราคาในแต่ละวันมีความสัมพันธ์กัน (correlation)

^{*}ARIMA = Autoregressive integrated moving average

ตัวอย่างของเส้นค่าเฉลียที่คำนวนจากราคาย้อนหลัง

สมมุติว่าเรามียอดขาย 10 เดือนย้อนหลัง และต้องการทำนายยอดขายในอีก 5 เดือนข้างหน้า

เดือน	ยอดขายจริง	ยอดทำนาย
1	1000	
2	1100	
3	1050	
4	1250	
5	1280	
6	1190	
7	1230	
8	1200	
9	1240	
10	1150	
11		1267
12		1284
13		1302
14		1320
15		1338

ขันตอนการทำ time series forecasting ด้วย ML

เราจะใช้โมเดลตัวใหนในการทำนายดี ?

ML trend forecasting for sale or revenue

ตัวอย่างข้อมูลยอดขายรายเดือน

	date	sales
0	2013-01-01	454904
1	2013-02-01	459417
2	2013-03-01	617382
3	2013-04-01	682274
4	2013-05-01	763242

Total Monthly Sales

กราฟที่ predict เทียบกับข้อมูลจริง

ผลเปรียบเทียบของโมเดล

	index	RMSE	MAE	MAE = Mean absolute error
0	Random Forest	18599.232966	15832.750000	RMSE = Root mean squared error
1 l	LinearRegression	16221.040791	12433.000000	
2	ARIMA	14959.893467	11265.335749	
3	LSTM	14638.748350	11951.083333	
4	XGBoost	13574.792632	11649.666667	ค่ายิ่งน้อยยิ่งดี 👍

ภาคผนวก

Linear regression

Type of linear regression

1. Simple Linear Regression

$$\hat{y} = b_0 + b_1 X_1$$

2. Multiple Linear Regression

$$\hat{y} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

Example of use Cases

- Predict future stock price
- Predict future sales or expense

Visualizing terms

พัฒนาการของ traditional trend forecasting

เมื่อนำค่าที่พยาการณ์ในแต่ละ model มาเทียบกันจะพบว่ามีความแตกต่างกัน

ตัวอย่างการคำนวนโดยใช้ linear regression

สมมุติว่าเรามีราคาและพื้นที่ของห้อง

Area	Actual price	Predict Price	Error term
0	24	(8.6)	32.6
1	198	182.8	15.2
2	269	374.2	(105.2)
3	600	565.6	34.4
4	780	757	23

ผลการคำนวน regression โดยใช้ excel

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.981328411			
R Square	0.963005451			
Adjusted R Square	0.950673935			
Standard Error	68.49136199			
Observations	5			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	366339.6	366339.6	78.09302788	0.003054117
Residual	3	14073.2	4691.066667		
Total	4	380412.8	3		

Coefficients	Standard Error	t Stat	P-value
-8.6	53.05318087	-0.162101496	0.88152873
191.4	21.65887039	8.837025964	0.003054117
	-8.6		-8.6 53.05318087 -0.162101496

Linear regression (supervised learning method)

Regression algorithm

วัตถุประสงค์

ลดความห่างระหว่างข้อมูล กับเส้นที่ predict ไว้โดยรวมให้ มาที่สุด (the residual sum of squares)

Programing package

Programming Language: Python (Link)

Package for Linear Regression: Scikit-Learn (Link), Stats models (Link)

ตัวอย่างการใช้โมเดล linear regression ด้วย Python

ตัวอย่าง regression models แบบอื่น ๆ

โมเดล regression ประเภทอื่น ๆ นอกจาก simple และ multiple linear regression

- Polynomial regression
- Logistic regression
- Ridge regression
- Lasso regression
- Bayesian linear regression
- Decision tree regression
- Random forest regression

Decision tree regression

Logistic regression

Random forest regression

Thank you