Отчёт по лабораторной работе №7

Вариант 39

Александр Олегович Воробьев

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	13
Список литературы		14

List of Figures

4.1	Код программы для первого слуачая	9
4.2	Установки симуляции	9
4.3	Модель для первого случая	10
4.4	Код программы для второго случая	10
4.5	Модель для второго случая	11
4.6	Код программы для второго случая	11
4.7	Молель для третьего случая	12

List of Tables

1 Цель работы

Изучить модель эффективности рекламы, построить графики моделей для трёх случаев с разными значениями для α_1 и α_2 .

2 Задание

Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.67 + 0.000067 n(t))(N-n(t))$$

2.
$$\frac{dn}{dt} = (0.000076 + 0.76n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.76\sin(t) + 0.67\cos(t)n(t))(N-n(t))$$

При этом объем аудитории N = 1150, в начальный момент о товаре знает 12 человек. Для случая 2 определить в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha(t)>0$ - характеризует интенсивность рекламной

кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением: $\frac{dn}{dt}=(\alpha_1(t)+\alpha_2(t)n(t))(N-n(t)))$ При $\alpha_1(t)>>\alpha_2(t)$ получается модель типа модели Мальтуса. В обратном случае, при $\alpha_1(t)<<\alpha_2(t)$ получаем уравнение логистической кривой.

4 Выполнение лабораторной работы

1. Пропишем программу для построения графика первой модели.

Зададим исходные переменные и пропишем уровнение:

```
model lab07

parameter Real n0 = 12; // количество людей, знающих о товаре в начальный момент времени

parameter Real N = 1150; // максимальное количество людей, которых может заинтересовать товар

Real n(start = n0);

//первый случай
function k
input Real t;
output Real res;
algorithm
res := 0.67;
end k;

function p
input Real t;
output Real res;
algorithm
res := 0.000067;
end p;

equation
der(n) = ( k(time) + p(time)* n )*( N - n );
end lab07;
```

Figure 4.1: Код программы для первого слуачая

Запускаем модель для времени 0 < t < 30, с шагом 0,1:

Figure 4.2: Установки симуляции

Figure 4.3: Модель для первого случая

2. Изменим программу для второго случая, заменив значения переменных α_1 и α_2 .

Изменим переменные:

```
model lab07

parameter Real n0 = 12; // количество людей, знающих о товаре в начальный момент времени

parameter Real N = 1150; // максимальное количество людей, которых может заинтересовать товар Real n(start = n0);

//второй случай function k

input Real t;

output Real res;

algorithm

res := 0.000076;

end k;

function p

input Real t;

output Real t;

output Real res;

algorithm

res := 0.76;
end p;

equation

der(n) = (k(time) + p(time)* n)*(N - n);
end lab07;
```

Figure 4.4: Код программы для второго случая

Запускаем модель для второго случая с теми же установками симуляции:

Figure 4.5: Модель для второго случая

3. Изменим программу для третьего случая, заменив значения переменных α_1 и α_2 .

Изменим переменные:

```
model lab07
parameter Real n0 = 12; // количество людей, знающих о товаре в начальный момент времени

времени

рагаmeter Real N = 1150; // максимальное количество людей, которых может заинтересовать товар

Real n(start = n0);

//третий случай
function k

input Real t;
output Real res;
algorithm
res := 0.76 * sin(t);
end k;

function p
input Real t;
output Real res;
algorithm
res := 0.67 * cos(t);
end p;
equation
der(n) = ( k(time) + p(time) * n )*( N - n );
end lab07;
```

Figure 4.6: Код программы для второго случая

Запускаем модель для третьего случая с теми же установками симуляции:

Figure 4.7: Модель для третьего случая

5 Выводы

В ходе выполнения лабораторной работы я познакомился с моделями эффективности рекламы, релизовал графики для нескольких случаев с разными коэффициентами для интенсивности рекламной кампании и сарафанного радио.

Список литературы

- 1. Кулябов Д.С. Лабораторная работа №7. Эффективность рекламы [Электронный ресурс] 5 с.
- 2. Кулябов Д.С. Лабораторная работа №7. Варианты [Электронный ресурс] 26 с.