

Machine Learning 8 Decision Trees

Prof. Dr. Steffen Staab

Nadeen Fatallah

Daniel Frank

Akram Sadat Hosseini

Jiaxin Pan

Osama Mohamed

Arvindh Arunbabu

Tim Schneider

Yi Wang

https://www.ki.uni-stuttgart.de/

- based on slides by
 - Thomas Gottron, U. Koblenz-Landau

https://west.uni-koblenz.de/de/studying/courses/ws1718/machine-learning-and-data-mining-1

This lecture material for "Machine Learning and Data Mining" is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Learning Objectives

- Entropy, Cross-entropy, Kullback-Leibler divergence
- What is a decision tree?
- How to construct a decision tree from training data?
- What is information gain?
- Why to use gain ratio?
- How to prune a decision tree?
- How to split attribute values?
- What is overfitting?
- What is binning and how does it work?

Measuring Distributions

Entropy

- Entropy (Shannon 1948) is a measure of
 - information content (in information theory)
 - uncertainty
- Given random variable X, entropy H(X) is defined as

$$H(X) = -\sum_{x} P(X = x) \cdot \log_b P(X = x)$$

Alternative, equivalent formulations are

$$H(X) = E(I(X)) = E[-\log_b P(X)]$$

where I(x) denotes the information content of character x

Entropy of coin tosses

Entropy of a fair coin toss

•
$$X = \{h, t\}, P(X = h) = P(X = t) = 0.5$$

How uncertain am I about the coint toss?
 Or: how much information have I received when I have been told the outcome?

$$-(0.5\log_2 0.5 + 0.5\log_2 0.5) = -(0.5 \cdot (-1) + 0.5 \cdot (-1)) = 1$$

- 1 bit
- Entropy of an unfair coin toss

•
$$X = \{h, t\}, P(X = h) = 0, P(X = t) = 1$$

- $(0 \log_2 0 + 1 \log_2 1) = 0$

Cross Entropy

For discrete probability distributions P, Q defined on the same probability space X the **cross entropy** is defined as:

$$H(P,Q) = E_P[-\log Q] = -\sum_{x \in X} P(X = x) \log Q(X = x)$$

"How far is Q away from P?"

Drawback: H(P,P) = H(P), which usually is not 0

Indeed: H(P,Q) = H(P) + D(P||Q), see next slide

Relative Entropy (Kullback-Leibler Divergence)

For discrete probability distributions P, Q defined on the same probability space X the **relative entropy** is defined as:

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) \log \left(\frac{P(x)}{Q(x)}\right) = -\sum_{x \in X} P(x) \log \left(\frac{Q(x)}{P(x)}\right)$$

This can be generalized for continuous distributions with probability density functions p, q:

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx$$

Interpretation of relative entropy

"How far is the distribution *Q* from the distribution P?"

D(P||Q) measures the expected number of extra bits required to encode samples from P using a code optimized for Q.

D(P||Q) is not symmetric, but D(P||P) = 0

$$D_{KL}(P||Q) = -\sum_{x \in X} P(x) \log \left(\frac{Q(x)}{P(x)}\right)$$

Relating cross entropy to maximum likelihood

Given data $\{(x_i, y_i)\}_{i=1}^N$

we maximize likelihood for our model over parameter configurations β :

$$\prod_{i=1}^{N} P(y_i|x_i) = \prod_{j} q_j^{N_{y_j}}$$

Each (x_i, y_i) in the training set has the same probability, therefore

$$\frac{1}{N}\log\prod_{j} q_{j}^{N_{y_{j}}} = \sum_{j} \frac{N_{y_{j}}}{N}\log q_{j} = -H(P(Y), P(Y|X))$$

Maximizing likelihood is equivalent to minimizing cross entropy

Decision Trees

Structure of a Decision Tree

Each inner node

Classification (inference) using a Decision Tree Classification process: (x,d,...)Object "follows" cap-shape the paths in the tree until it reaches b,f,s a class label edible habitat d,g,m,p

poisonous

edible

Decision Tree: Divide and conquering the object space

Decision Trees

- Model can be interpreted by humans quite well
 - unless the tree is too deep and/or too broad

- Which tree is a good tree?
 - Loss function
 - though it was/is not called "loss function" wrt decision trees
- Efficient construction needed
 - too many trees to try and compare all of them...

Inductive Construction of Decision Trees

General Idea: Greedy tree construction

- Tree grows from root
 - root is assigned no *intension* (i.e. no attributes)
 - root is assigned total extension (i.e. all training objects)
- Inductive principle:
 Each node grows children which are more "pure" in their prediction quality over the training data
 - Children have one more attribute restriction (i.e. larger intension)
 - Children partition the extension
- When stopping criteria is met nodes are labeled with classes

Entropy of a distribution P over events X

$$H(P) = -\sum_{x \in X} p(x) \cdot \log_2(p(x))$$

• Expected number of bits needed to encode an event using optimal compression

$$P_1$$
 26% 20% 37% 17% $H(P_1) = 1.935$ Low Entropy means skewed distribution P_2 1% 97% 1% 1% $H(P_2) = 0.242$ Skewed distributions provide more insights

- Here: we apply entropy on the observed class labels
- Aim: reduce entropy in the child nodes

- Example
 - Parent node:
 - 10 orange, 8 blue objects
 - Entropy H = 0.997
 - Child Node A:
 - 1 orange, 6 blue objects
 - Entropy H = 0.592
 - Child Node B:
 - 4 orange, 2 blue objects
 - Entropy H = 0.918
 - Child Node C:
 - 5 orange, 0 blue objects
 - Entropy H = 0

- Compute the expected entropy in the child nodes of node t
 - Probability of landing in a node
 - Entropy observed in this node

$$\sum_{n \in children(t)} p(n) \cdot H(P_n)$$

- Information gain:
 - Difference between entropy in a node and the expected entropy in its children nodes

$$IG = H(P_t) - \sum_{n \in children(t)} p(n) \cdot H(P_n)$$

- · Parent node:
 - Entropy H = 0.997
- · Child Node A:
 - 1 orange, 6 blue objects
 - Entropy H = 0.592
- · Child Node B:
 - 4 orange, 2 blue objects
 - Entropy H = 0.918
- · Child Node C:
 - 5 orange, 0 blue objects
 - Entropy H = 0

$$IG = 0.977 - \left(\frac{7}{18} \cdot 0.592 + \frac{6}{18} \cdot 0.918 + \frac{5}{18} \cdot 0\right) = 0.441$$

Decision Tree Induction

- Top down approach
 - Start from "empty" root node.
 - Apply GrowTree to root node
- GrowTree (empty node):
 - If stop criterion does match node
 - Render node into a label
 - Use most frequent class
 - Else
 - Render node into decision node
 - Chose attribute to maximize information gain
 - Introduce empty child nodes
 - Apply GrowTree to child nodes
- Stop criteria: zero entropy, too few instances or all attributes have equal values

???

- Entropy root node
 - 100 instances
 - 21 poisonous
 - 79 edible
 - Entropy: H(P)=0.741
- Attribute: Cap-shape

value	р	е	total	entropy
b	0	29	29	0
f	1	13	14	0.371
S	0	3	3	0
X	20	34	54	0.951

•

Expected Entropy: 0.565

IG = 0.176

???

Attribute: Cap-surface

value	р	е	total	entropy
f	0	14	14	0
S	8	29	37	0.753
у	13	36	49	0.835

$$IG = 0.053$$

Attribute: Cap-color

$$IG = 0.236$$

- ...
- Attribute: Habitat

$$IG = 0.279$$

???

value	р	е	total	entropy
d	0	8	8	0
g	8	28	36	0.764
m	0	28	28	0
р	0	8	8	0
u	13	7	20	0.934

Attribute: Cap-surface

value	р	е	total	entropy
f	0	14	14	0
S	8	29	37	0.753
у	13	36	49	0.835

$$IG = 0.053$$

Attribute: Cap-color

$$IG = 0.236$$

...

Attribute: Habitat

$$IG = 0.279$$

value	р	е	total	entropy
d	0	8	8	0
g	8	28	36	0.764
m	0	28	28	0
р	0	8	8	0
u	13	7	20	0.934

value	р	е	total	entropy
d	0	8	8	0
g	8	28	36	0.764
m	0	28	28	0
р	0	8	8	0
u	13	7	20	0.934

- Next node
 - 36 instances
 - 8 poisonous
 - 28 edible
 - Entropy: H(P)=0.764
- Attribute: Cap-shape

value	р	е	total	entropy
b	0	8	8	0
f	1	6	7	0.592
S	0	0	0	0
Х	7	14	21	0.918

Expected Entropy: 0.651IG = 0.113

- Attribute: Cap-surface IG = 0.113
- **...**
- Attribute: Gill-size IG = 0.32

value	р	е	total	entropy
b	0	20	20	0
n	8	8	16	1

- Attribute: Cap-surface IG = 0.113
- ...
- Attribute: Gill-size IG = 0.32

value	р	е	total	entropy
b	0	20	20	0
n	8	8	16	1

- Attribute: Cap-surface IG = 0.113
- **...**
- Attribute: Gill-size IG = 0.32

value	р	е	total	entropy
b	0	20	20	0
n	8	8	16	1

- Next node
 - 20 instances
 - 13 poisonous
 - 7 edible
 - Entropy: H(P)=0.934
- **-**

Impact of a Perfect Predictor Attribute

Assume an attribute which is perfectly indicative for

value	р	е	total	entropy
а	0	31	31	0
I	0	35	35	0
n	0	13	13	0
р	21	0	21	0

$$IG = 0.741$$

Avoiding overfitting

Attributes with many values

- The introduced approach for constructing decision trees favours attributes which have many values
 - Extreme example:
 - Object ID as attribute one value per object
 - Clearly identifies training objects and, thereby, their labels
- Normalize w.r.t. the distribution of attribute values, i.e. its entropy

$$H(x_i) = -\sum_{v} p(x_i = v) \cdot \log_2(p(x_i = v))$$

→ Gain ratio (or Normalized Impurity Decrease)

$$IGR = IG(x_i)/H(x_i)$$

Use gain ratio instead of information gain for deciding on which attribute to use.

Normalized Impurity Decrease (alternative notation)

- Use Normalized Impurity Decrease (Gain ratio) instead of Impurity Decrease (Information Gain). The Normalized Impurity Decrease at a node t is then:
 - $\widehat{\Delta}I(t) = \frac{\Delta I(t)}{E_d(t)}$, where $E_d(t)$ is the *entropy of distribution* (Intrinsic Information).
 - $E_d(t) = -\sum_j P(t_j|t) \log_2 P(t_j|t)$,
 - $P(t_j|t) = \frac{N_{t_j}}{N_t}$.

Example

???

- Root note
- Attribute: Cap-shape

value	р	е	total	entropy
b	0	29	29	0
f	1	13	14	0.371
S	0	3	3	0
X	20	34	54	0.951

- Expected Entropy: 0.565 IG = 0.176
- Entropy of value distribution: 1.547IGR = 0.114
- IGR Habitat: 0.134

Example

Attribute: Gill-size

value	р	е	total	entropy
b	0	64	64	0
n	21	15	36	1

- Entropy of value distribution: 0.943
- IGR gill-size: 0.412

Example

Attribute: Gill-size

value	р	е	total	entropy
b	0	64	64	0
n	21	15	36	1

 Entropy of value distribution: 0.943

• IGR gill-size: 0.412

Next node ...

Overfitting

- Algorithm for decision tree induction is optimizing the training error
 - Adding more nodes to the tree will reduce the training error
 - Model becomes more complex!
 - Risk of overfitting

- Wanted: idea of the error rate on new data
 - Generalization error
 - Training error is not a good estimator for the generalization error

Overfitting

Overfitting

Data split: 30% training, 70% evaluation

Estimating the Generalization Error

• Determine for each node T with children $t \in T$ the number of classification errors on training data (e(T), e(t)) and the number of objects assigned to this node (n(T), n(t))

Overall error rate:

$$\frac{1}{n(T)} \sum_{t \in T} e(t)$$

 Add a penalty for each node (pessimistic error estimate):

$$\frac{1}{n(T)} \sum_{t \in T} e(t) + \lambda$$

Example (λ =0.5): 0.25

Tree Pruning

- During construction
 - Extend stop criterion:
 - Require minimum information gain
 - Require mimimum number of instances to be covered by a node
- Post processing
 - Remove leaf nodes
 - Optimize other criteria
 (e.g. estimates for the generalization error)
 - Prune excessively deep sub-trees
- Selection
 - Construct different trees (e.g chosing second best attributes, using subsets of training data)
 - Select best and smallest tree

Attribute Splitting

Attribute Splitting

- So far:
 - One child node per value
 - Problem:
 - High fan-out of tree
 - Not applicable to all attribute types
- Alternative for nominal values:
 - Binary splits of value set
 - Advantage: binary tree
 - Disadvantage: Many possible splits
 - k values $\rightarrow 2^k 2$ possible splits

See data preproessing

See data preproessing

Ordinal values

We can use the order of values to create "meaningful" splits

- Example:
 - Ratings of shares
 - Generate splits, such that neighbour categories are merged

	Moody's	S&P	Fitch	Meaning
	Aaa	AAA	AAA	Prime
	Aa1	AA+	AA+	
	Aa2	AA	AA	High Grade
Investment	Aa3	AA-	AA-	
Grade	A1	A+	A+	
	A2	Α	Α	Upper Medium Grade
	A3	A-	A-	
	Baa1	BBB+	BBB+	
	Baa2	BBB	BBB	Lower Medium Grade
	Baa3	BBB-	BBB-	
	Ba1	BB+	BB+	
	Ba2	BB	BB	Non Investment Grade Speculative
	Ba3	BB-	BB-	
	B1	B+	B+	
	B2	В	В	Highly Speculative
Junk	B3	B-	B-	
	Caa1	CCC+	CCC+	Substantial Risks
	Caa2	CCC	CCC	Extremely Speculative
	Caa3	CCC-	CCC-	
	Ca	CC	CC+	In Default w/ Little Prospect for Recovery
		С	CC	
			CC-	In Default
	D	D	DDD	

Dealing with numerical data

- Attributes with numerical data (e.g. height and diameter of a mushroom)
 - Sort observed values
 - Use inbetween values for the split

See data preproessing

 Using the middle between two observed values, provides better separation boundaries

Alternative: Binning – turns numerical data into ordinal data

Equi-width vs. Equi-depth Bins

Fixed number of elements per bin (a.k.a. frequency binning)

Pros and Cons of Decision Trees

- Advantages
 - Interpretable.
 - Non-parametric.
 - Can handle missing data.
 - Low complexity (prediction) O(l).
 - Invariant to feature scaling.
 - Does not require data normalization.
 - Can handle heterogeneous data.
 - Attributes of different types.
- Disadvantages
 - Splits are aligned w.r.t axes.
 - It might cause overfitting because the tree becomes far more complex than needed.

Thank you!

Steffen Staab

E-Mail Steffen.staab@ki.uni-stuttgart.de Telefon +49 (0) 711 685-88100 www.ki.uni-stuttgart.de/

Universität Stuttgart Analytic Computing, KI Universitätsstraße 32, 50569 Stuttgart