

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE	
Mathématiques I		Durée de l'épreuve :	125 (105+20)
Mathematiques I		Date de l'épreuve :	9 juin 2020

Numéro du	candidat:	

Instructions

- L'élève répond à toutes les questions de la partie 1.
- L'élève répond à exactement 2 questions de la partie 2. Il indique ses choix en cochant les cases appropriées ci-dessous.

Seules les réponses correspondant aux questions choisies par l'élève seront évaluées. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix clairement renseigné sur la page de garde la partie au choix est cotée à 0 point.

Partie 1	
Question 1 : Équation du 3 $^{\mathrm{ème}}$ degré dans $\mathbb C$	12 points
Question 2 : Calculs dans ${\mathbb C}$	8 points
Partie 2	
Question 3 : Calculs dans ${\mathbb C}$	20 points
Question 4 : Calculs dans C	20 points
Question 5 : Systèmes linéaires	20 points
Question 6 : Géométrie analytique	20 points

Partie I

Question 1 [12 points]

On donne le polynôme P défini par : $P(z) = z^3 + (-1+3i)z^2 + (-6+5i)z - (14+8i)$.

Résolvez P(z)=0 dans $\mathbb C$ sachant que le polynôme P admet une seule racine imaginaire pure.

Question 2

[3+5=8 points]

1. Calculez et donnez le résultat sous forme a + bi:

$$Z = \left(\frac{4-3i}{1-\sqrt{5}i}\right)^2 : (2-\sqrt{5}\cdot i)$$

2. Résolvez dans \mathbb{C} l'équation : $(5+2i)z-(3-4i)\overline{z}=7-i$

Partie 2

Question 3

[(10+2)+8=20 points]

- 1. Soit le nombre complexe $z = \frac{-\sqrt{6} + \sqrt{2}i}{i \cdot (1-i)}$
 - (a) Ecrivez z sous forme algébrique et sous forme trigonométrique.
 - (b) Déduisez-en les valeurs exactes de $\cos \frac{7\pi}{12}$ et de $\sin \frac{7\pi}{12}$.
- 2. Soit le nombre complexe z = -64i.

Déterminez les racines cubiques complexes de z sous forme trigonométrique, puis sous forme algébrique.

Question 4

[8+12=20 points]

1. Résolvez dans \mathbb{C} , puis portez dans le plan de Gauss les points dont les affixes sont les solutions trouvées :

$$z^5 = 16\sqrt{3} - 16i$$

2. On donne le nombre Z: $Z = \frac{(\sqrt{2}i)^7 \cdot (3\sqrt{2} - \sqrt{6}i)^3}{(\sqrt{3} + 3i)^5}$

Ecrivez ${\cal Z}$ sous forme trigonométrique, puis sous forme algébrique.

Question 5 [20 points]

On donne le système :

$$\begin{cases} 2x + (m-2)y + 2z &= m+2\\ -x + (2-m)y + z &= -1\\ (m-2)x + 3y &= m-2 \end{cases}$$

Résolvez, discutez et interprétez géométriquement ce système suivant les valeurs du paramètre réel m.

Question 6

[4+4+1+3+2+3+3=20 points]

Dans un repère orthonormé de l'espace on donne les points A(-2;1,-1), B(-3;2;1) et C(-1;3;2) et la droite d définie par : $d \equiv \left\{ \begin{array}{ll} x+2y+3z&=4\\ 5x+4y+5z&=3 \end{array} \right.$

- 1. Vérifiez que les points A, B et C ne sont pas alignés, puis déterminez une équation cartésienne du plan π comprenant les points A, B et C.
- 2. Déterminez un système d'équations paramétriques de la droite d.
- 3. Vérifiez que la droite d est perpendiculaire au plan π .
- 4. Déterminez les coordonnées du point de percée D de d dans π .
- 5. Déterminez les coordonnées du point E de d dont la cote vaut -4.
- 6. Déterminez un système d'équations cartésiennes de la droite d' = (AE).
- 7. Déterminez un système d'équations paramétriques du plan π' perpendiculaire au plan π et comprenant la droite d'.