Trigonometric Forier series

Trigonometric Fourier Series:

The trigonometric Fourier series representation of a periodic signal x(t) with fundamental period T_0 is given by

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos k \omega_0 t + b_k \sin k \omega_0 t \right) \qquad \omega_0 = \frac{2\pi}{T_0}$$

where a_k and b_k are the Fourier coefficients given by

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos k \,\omega_0 t \,dt$$

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin k \omega_0 t \, dt$$

The coefficients a_k and b_k and the complex Fourier coefficients c_k are related by

$$\frac{a_0}{2} = c_0$$
 $a_k = c_k + c_{-k}$ $b_k = j(c_k - c_{-k})$

From Eq. we obtain

$$c_k = \frac{1}{2}(a_k - jb_k)$$
 $c_{-k} = \frac{1}{2}(a_k + jb_k)$

When x(t) is real, then a_k and b_k are real and by Eq. we have

$$a_k = 2 \operatorname{Re}[c_k]$$
 $b_k = -2 \operatorname{Im}[c_k]$

Even and Odd Signals:

If a periodic signal x(t) is even, then $b_k = 0$ and its Fourier series (5.8) contains only cosine terms:

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos k\omega_0 t \qquad \omega_0 = \frac{2\pi}{T_0}$$