MP* KERICHEN 2021-2022

DS nº3

Sujet 3 X, ÉNS

Notations:

Dans tout le problème, le corps des scalaires est \mathbb{R} et les espaces vectoriels sont de dimension finie. Si X et Y sont deux espaces vectoriels normés, on note $\mathcal{L}(X,Y)$ l'espace des applications linéaires de X dans Y et on note |||f||| la norme subordonnée (ou norme opérateur ou norme triple) usuelle de toute application $continue\ f \in \mathcal{L}(X,Y)$ voir prliminaire. On note $E^* = \mathcal{L}(E,\mathbb{R})$ muni de la norme duale, c'est-à-dire de la norme subordonnée comme précédemment, où \mathbb{R} est muni de la valeur absolue.

Si X et Y sont deux espaces vectoriels, GL(X,Y) désigne comme d'habitude l'ensemble des isomorphismes de X sur Y.

On rappelle qu'une isométrie entre des espaces vectoriels normés $(X, \|\cdot\|_X)$ et $(Y, \|\cdot\|_Y)$ est une application linéaire f de X dans Y qui conserve la norme : pour tout $x \in X$, $\|f(x)\|_Y = \|x\|_X$. On dit que deux espaces vectoriels normés de dimension finie sont isométriques s'il existe une isométrie de l'un sur l'autre.

Soit β une base d'un espace vectoriel E de dimension $n \ge 1$; on notera $\det_{\beta}(x_1, \ldots, x_n)$ le déterminant dans la base β de $x_1, \ldots, x_n \in E$.

Préliminaires

Soient des espaces vectoriels normés $(X, \|\cdot\|_X)$ et $(Y, \|\cdot\|_Y)$. On note B la boule fermée unité de X et S_1 la sphère unité de X.

Soit f un élément de $\mathcal{L}(X,Y)$ continue.

- 1) Montrer l'existence de $\sup\{\|f(x)\|_{Y}, x \in B_1\}$. On notera cette quantité $\||f|\|$.
- 2) Montrer que $|||f||| = \sup\{||f(x)||_Y, x \in \overset{\circ}{B_1}\} = \sup\{||f(x)||_Y, x \in S_1\}.$
- 3) Montrer qu'en désignant par $\mathcal{L}_{c}(X,Y)$ l'espace vectoriel des éléments de $\mathcal{L}(X,Y)$ continus,

$$\mathcal{L}_{c}(X,Y) \to \mathbb{R}_{+}; f \mapsto |||f|||.$$

est une norme.

Partie I. Espaces l_N^p et leur dual.

Dans cette partie, p et q sont deux réels strictement supérieurs à 1 vérifiant $\frac{1}{p} + \frac{1}{q} = 1$. Soit N un entier naturel supérieur ou égal à 1.

- 1) Soient x et y deux réels positifs. Montrer que $xy \le \frac{1}{p} x^p + \frac{1}{q} y^q$.
- 2) Soient $a_1,\,\ldots,\,a_N,\,b_1,\,\ldots,\,b_N$ des réels. Montrer que :

$$\left| \sum_{n=1}^{N} a_n b_n \right| \le \left(\sum_{n=1}^{N} |a_n|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{n=1}^{N} |b_n|^q \right)^{\frac{1}{q}}.$$

On pourra d'abord envisager le cas où $\sum_{n=1}^{N} |a_n|^p = \sum_{n=1}^{N} |b_n|^q = 1$.

3) En déduire que pour tous réels a_1, \ldots, a_N , on a

$$\left(\sum_{n=1}^{N} |a_n|^p\right)^{\frac{1}{p}} = \sup\left\{ \left|\sum_{n=1}^{N} a_n b_n\right|; \sum_{n=1}^{N} |b_n|^q = 1 \right\}.$$

4) Soient $a_1, \ldots, a_N, b_1, \ldots, b_N$ des réels. Montrer que pour tout $p \ge 1$, on a :

$$\left(\sum_{n=1}^{N} |a_n + b_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=1}^{N} |a_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{N} |b_n|^p\right)^{\frac{1}{p}}.$$

Indication : $|a_n + b_n|^p \le |a_n| \cdot |a_n + b_n|^{p-1} + |b_n| \cdot |a_n + b_n|^{p-1}$ et appliquer 2). On pose $\|(a_1, \ldots, a_N)\|_{\infty} = \max_{1 \le n \le N} |a_n|$ et on désigne par l_N^{∞} l'espace \mathbb{R}^N muni de la norme $\|\cdot\|_{\infty}$. Pour $p \ge 1$, on définit l_N^p comme l'espace \mathbb{R}^N muni de la norme $\|(a_1, \ldots, a_N)\|_p = \left(\sum_{n=1}^N |a_n|^p\right)^{\frac{1}{p}}$.

- 5) a) Soit p > 1, justifier que l_N^p est bien un espace vectoriel normé dont le dual $(l_N^p)^*$ est isométrique à l_N^q .

 Indication : on pourra considérer l'application θ de l_N^q dans $(l_N^p)^*$ définie par $\theta(b)(a) = \sum_{n=1}^N a_n b_n$.
 - b) Déterminer le dual de l_N^1 et celui de l_N^{∞} .

Partie II. Hahn-Banach fini-dimensionnel.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé de dimension finie. Soient F un sous-espace vectoriel de E, distinct de E, et f une forme linéaire sur F.

- 1) Soit x_0 un vecteur de E n'appartenant pas à F. On note $\tilde{F} = F \oplus \mathbb{R}x_0$.
 - a) Montrer que

$$\sup_{v \in F} (f(v) - |||f||| \cdot ||v - x_0||) \le \inf_{v \in F} (|||f||| \cdot ||v + x_0|| - f(v)).$$

b) En déduire qu'il existe un réel α tel que pour tout $v \in F$, on ait :

$$f(v) + \alpha \le |||f||| \cdot ||v + x_0||$$
 et $f(v) - \alpha \le |||f||| \cdot ||v - x_0||$.

On pose pour $x = v + tx_0 \in \tilde{F}$, où $v \in F$ et $t \in \mathbb{R} : \tilde{f}(x) = f(v) + \alpha t$.

- c) Montrer que \tilde{f} est une forme linéaire continue sur \tilde{F} dont la restriction à F est f et que $|||f||| = |||\tilde{f}|||$.
- 2) Montrer qu'il existe une forme linéaire continue g sur E, dont la restriction à F est f, telle que |||f||| = |||g|||.
- 3) Soit $x \in E$. Montrer que $||x|| = \sup\{|f(x)|; f \in E^* \text{ avec } |||f||| = 1\}$.

Partie III. Distance de Banach-Mazur. Généralités.

Soient E et F deux espaces vectoriels normés de même dimension finie. ON définit

$$d(E, F) = \inf \{ \ln (|||u||| \cdot |||u^{-1}|||); u \in GL(E, F) \}.$$

- 1) a) Montrer que $0 \le d(E, F)$.
 - b) Montrer que d(E, F) = d(F, E).
- 2) a) Montrer que la borne inférieur est atteinte.
 - b) En déduire que E et F sont isométriques si et seulement si d(E,F)=0.
- 3) Soient E, F et G trois espaces vectoriels normés de même dimension finie. Montrer que

$$d(E,G) \le d(E,F) + f(F,G).$$

- 4) a) Soit $u \in \mathcal{L}(E, F)$. On définit $u^*(\zeta) = \zeta \circ u$, pour $\zeta \in F^*$. Montrer que $u^* \in \mathcal{L}(\mathcal{F}^*, \mathcal{E}^*)$ et que $|||u||| = |||u^*|||$.
 - b) En déduire que $d(E, F) = d(E^*, F^*)$.

Partie IV. Distance de Banach-Mazur entre espaces l_n^p .

On note $E = l_n^p$ (qui est \mathbb{R}^n muni de la norme $\|\cdot\|_p$), où $p \ge 1$ et $F = l_n^2$. On note ω_n l'ensemble des applications de $\{1, \ldots, n\}$ dans $\{-1, 1\}$.

1) Soit m un entier supérieur ou égal à 1. Montrer que pour tous $x_1, \ldots, x_m \in F$, on a :

$$2^{-m} \sum_{\varphi \in \omega_n} \left\| \sum_{i=1}^m \varphi(i) x_i \right\|_2^2 = \sum_{i=1}^m \|x_i\|_2^2.$$

Soit $u: l_n^p \to l_n^2$ un isomorphisme. On note (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n et

$$A(u) = \sum_{\varphi \in \omega_n} \left\| \sum_{i=1}^n \varphi(i) u(e_i) \right\|_2^2$$

- 2) a) Montrer que $A(u) \le n2^n |||u|||^2$.
 - b) Montrer que $A(u) \ge 2^n n^{2/p} \left| \left| \left| u^{-1} \right| \right| \right|^{-2}$.
- 3) Montrer que $d(l_n^p, l_n^2) \ge \left| \frac{1}{2} \frac{1}{p} \right| \ln(n)$.
- 4) a) Montrer que pour tout $p' \ge p \ge 1$ et tout $x \in \mathbb{R}^n$, on a : $||x||_{p'} \le ||x||_p$.
 - b) Montrer que $d(l_n^p, l_n^2) = \left| \frac{1}{2} \frac{1}{p} \right| \ln(n)$. Indication : on pourra considérer l'identité sur \mathbb{R}^n .

c) Que se passe-t-il pour $p = \infty$?

Partie V. Distance de Banach-Mazur à l_N^1 .

Soit n un entier supérieur ou égal à 1 et $(E, \|\cdot\|)$ un espace vectoriel normé de dimension n. On note S_E la sphère unité de E.

1) Montrer qu'il existe n vecteurs b_1, \ldots, b_n de E de norme 1 et n formes linéaires $\varphi_1, \ldots, \varphi_n$ de norme (opérateur) égale à 1 telles que pour tous $1 \le i, j \le n$, on ait $\varphi_i(b_j) = 0$ si i = j et 0 sinon.

Indication : on pourra considérer l'application : $\Lambda: S_E \times \ldots \times S_E$ à valeurs dans \mathbb{R} qui à un *n*-uplet de vecteurs $(x_1, ;, x_n)$ associe leur déterminant dans une base β ; ainsi que l'application, à i fixé et quand $\Lambda(x_1, \ldots, x_n)$ est non nul, qui à $x \in E$ associe

$$\frac{\det_{\beta}(x_1,\ldots,x_{i-1},x,x_{i+1},\ldots,x_n)}{\det_{\beta}(x_1,\ldots,x_n)}.$$

- 2) On pose pour tout $x \in E : \nu(x) = \sum_{i=1}^{n} |\varphi_i(x)|$. Montrer que ν est une norme sur E et qu'en notant E_1 l'espace E muni de cette norme, E_1 et l_n^1 sont isométriques.
- 3) Montrer que $d(E, l_n^1) \le \ln(n)$.

Partie VI. Compact de Minkowski.

Soit n un entier supérieur ou égal à 1, on note M_n l'ensemble des normes sur \mathbb{R}^n . On considère l'ensemble \mathcal{E}_n des espaces vectoriels normés $(\mathbb{R}^n, \|\cdot\|)$, où $\|\cdot\| \in M_n$.

Pour X et Y dans \mathcal{E}_n , on définit la relation $X\mathcal{R}Y$ si X et Y sont isométriques.

1) Montrer que \mathcal{R} est une relation d'équivalence sur \mathcal{E}_n . Justifier la notation $\hat{d}(\hat{X}, \hat{Y}) = d(X, Y)$ (où \hat{X} , resp. \hat{Y} , est la classe de X, resp. de Y) est cohérente.

On note $\hat{\mathcal{E}}_n$ l'ensemble des classes d'équivalence pour cette relation d'équivalence. On note B_1 la boule unité (fermée) de l'espace l_n^1 et $C(B_1)$ est l'espace des fonctions continues sur B_1 , à valeurs réelles, muni de la norme $N_{\infty}(f) = \sup\{|f(x)|; x \in B_1\}$. On note Φ_n l'ensemble des fonctions continues sur B_1 qui sont la restriction à B_1 d'une norme $\|\cdot\|$ sur \mathbb{R}^n vérifiant pour tout $x \in \mathbb{R}^n$, $\|x\| \le \|x\|_1$ et $\|x\|_1 \le n \|x\|$.

- 2) a) Montrer que Φ_n est une partie fermée bornée de $C(B_1)$.
 - b) Montrer que pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que pour tout $x, y \in B_1$:

$$||x - y||_1 \le \delta \Rightarrow \sup \{|f(x) - f(y)|; f \in \Phi_n\} \le \varepsilon.$$

On admet dans la suite que ces deux résultats impliquent que Φ_n est une partie compacte de $C(B_1)$ (Th. d'Ascoli).

- 3) On considère l'application τ de Φ_n dans $\hat{\mathcal{E}}_n$ qui à f associe la classe de $(\mathbb{R}^n, \|\cdot\|)$, où $\|\cdot\|$ est la norme associée à f par définition de Φ_n .
 - a) Montrer que τ est bien définie et surjectie.
 - b) Montrer que si $(f_j)_{j\in\mathbb{N}}$ converge vers f dans Φ_n alors $\lim_{j\to\infty} \hat{d}(\tau(f_j),\tau(f)) = 0$.
- 4) En déduire que $(\hat{\mathcal{E}}_n, \hat{d})$ est un espace métrique compact.