Wykład 11.

Grafy

Podstawowe pojęcia, reprezentacje, problemy

Uwagi wstępne:

- 1. Na slajdach przedstawiono jedynie hasła będą one rozwijane podczas wykładu.
- Szczegółową wiedzę należy czerpać np. z 5. pozycji literatury podstawowej, zalecanej dla kursu (Cormen T.H. i inni, Wprowadzenie do algorytmów, WNT, Warszawa, 2007, wyd. 8)

Grafy – podstawowe pojęcia

Graf G (zwany też grafem nieskierowanym) to uporządkowana para:

$$G = (V, E)$$

gdzie: V - niepusty zbiór wierzchołków,

E - zbiór krawędzi, z których każda łączy określoną parę wierzchołków (inaczej: rodzina dwuelementowych podzbiorów zbioru V). Wierzchołki należące do krawędzi nazywane są końcami.

Zazwyczaj V i E są określane jako zbiory skończone. W praktyce rozważa się też czasami grafy o nieskończonej liczbie wierzchołków (wtedy liczba krawędzi może być skończona lub nieskończona).

Grafy – podstawowe pojęcia

Graf skierowany (digraf) to uporządkowana para:

$$G = (V, A)$$

gdzie: V - zbiór wierzchołków,

A - zbiór uporządkowanych par różnych wierzchołków ze zbioru V,

zwanych krawędziami skierowanymi lub łukami.

Krawędź e=(x,y) jest skierowana z x do y, czyli wychodzi z x, a wchodzi do y.

Zazwyczaj V i E są określane jako zbiory skończone. W praktyce rozważa się też czasami grafy o nieskończonej liczbie wierzchołków (wtedy liczba krawędzi może być skończona lub nieskończona).

Grafy – podstawowe pojęcia

Graf mieszany to uporządkowana trójka:

$$G = (V, E, A)$$

gdzie: zbiory V, E, A są zdefiniowane jak wyżej,

Graf mieszany może zawierać jednocześnie krawędzie skierowane i nieskierowane.

Wiele problemów można zamodelować za pomocą grafu.

Grafy – podstawowe pojęcia

- Droga

Wyznaczona przez krawędzie *trasa* polegająca na podróżowaniu od wierzchołka do wierzchołka po łączących je krawędziach. Droga może być jednoznacznie zapisana jako ciąg krawędzi.

- Droga prosta

Droga nie zawierająca dwóch tych samych krawędzi

- Długość drogi/ścieżki

to liczba krawędzi/wierzchołków tworzących daną drogę/ścieżkę

- Ścieżka

Intuicyjnie bardzo podobna do *drogi*, z tym, że jest wyznaczona przez *wierzchołki* (czyli można ją opisać poprzez ciąg wierzchołków).

- Ścieżka prosta

Ścieżka wyznaczona tak, by żaden wierzchołek na trasie nie powtarzał się

- Ścieżka zamknięta

Ścieżka kończąca się w początkowym wierzchołku

- Usunięcie wierzchołka

Usunięcie wierzchołka z grafu wraz ze wszystkimi krawędziami z nim powiązanymi

- Cykl

Zamknięta droga prosta, czyli taka, że ostatnia krawędź drogi kończy się w wierzchołku należącym do początkowej krawędzi drogi

Grafy – podstawowe pojęcia

- Droga acykliczna

Droga nie zawierająca cyklu

- Pętla

Krawędź zaczynająca i kończąca się w tym samym wierzchołku

- Gęstość grafu

Stosunek liczby krawędzi do największej możliwej liczby krawędzi.

Używa się również określeń: *graf gęsty*, jeżeli ma on *dużo* krawędzi w stosunku do liczby wierzchołków i podobnie *graf rzadki*, jeżeli ma on *mało* krawędzi w stosunku do liczby wierzchołków. Przy czym znaczenie słów mało i dużo może zależeć od kontekstu.

Podgraf grafu H

Graf *G* uzyskany poprzez usunięcie części wierzchołków z *H*, wraz z kończącymi się w nich krawędziami.

- Nadgraf grafu H

Taki graf, że *H* jest jego podgrafem.

- Klika

Podzbiór wierzchołków danego grafu, z których każdy jest sąsiadem każdego innego (czyli podgraf pełny).

- Kolorowanie grafu

Nadanie każdemu wierzchołkowi *koloru*, tak, by żadne sąsiadujące ze sobą wierzchołki nie były *pokolorowane* tym samym kolorem.

Grafy – podstawowe pojęcia

Liczba chromatyczna

Najmniejsza liczba kolorów potrzebna do prawidłowego pokolorowania grafu.

- Krawędzie sąsiednie

Krawędzie kończące się w jednym wierzchołku. W przypadku grafów skierowanych zazwyczaj wymagana jest "zgodność kierunków" krawędzi, tj. dwie krawędzie są sąsiednie, jeżeli odpowiednio kończą się i zaczynają w tym samym wierzchołku.

Stopień wierzchołka v

Liczba kończących się w nim krawędzi: deg(v). W przypadku grafów skierowanych mówi się o stopniach wejściowym i wyjściowym – degIn(v), degOut(v)

- Graf r-regularny

Graf, w którym każdy wierzchołek grafu jest stopnia r.

- Sąsiad (sąsiedztwo)

Dwa wierzchołki są sąsiadami, jeśli istnieje krawędź pomiędzy nimi.

- Waga krawędzi

Często od grafu reprezentującego np. sieć połączeń komunikacyjnych oczekuje się nie tylko informacji o istniejącym połączeniu (krawędzi lub ścieżki), ale też o np. długości połączenia. Wprowadza się wtedy *wagi* - wartość przypisaną każdej krawędzi. Graf taki można wykorzystać np. do wyznaczenie optymalnej, w sensie przejechanych kilometrów trasy, lub, ogólniej rozwiązanie problemu komiwojażera, wyznaczenia optymalnego rozłożenia kabli w sieci, koordynowania wysyłania plików metodą peer to peer, itp.

Zbigniew Szpunar

Grafy – podstawowe pojęcia

- Wierzchołek izolowany

Wierzchołek o stopniu 0, czyli nie będący końcem żadnej krawędzi.

- Wierzchołek pokrywający krawędź

Wierzchołek *v pokrywa* krawędź *e*, jeżeli *e* kończy się w *v*. W analogiczny sposób definiuje się krawędź pokrywającą dany wierzchołek – krawędź e kryje wierzchołek v, gdy się w nim kończy.

- Acentryczność wierzchołka grafu

Maksymalna odległości wierzchołka do innych wierzchołków grafu, lub inaczej długość najdłuższej ścieżki prostej zaczynającej się w danym wierzchołku.

- Minimalny pokrywający podzbiór krawędzi/wierzchołków

Możliwie najmniejszy podzbiór krawędzi/wierzchołków grafu, taki, że pokrywają one wszystkie wierzchołki/krawędzie danego grafu.

Liczność minimalnego zbioru pokrywającego krawędzi/wierzchołków nazywa się indeksem pokrycia wierzchołkowego/krawędziowego. Wszystkie podzbiory o tej liczności i własności nazywa się pokryciem minimalnym.

- Wierzchołek rozspajający

Wierzchołek, po usunięciu którego zwiększa się liczba spójnych składowych grafu.

-Most

"Krawędziowy odpowiednik" wierzchołka rozspajającego – krawędź, po usunięciu której wzrasta liczba spójnych składowych grafu.

Grafy – podstawowe pojęcia

- Izomorfizm grafów

Graficzna reprezentacja grafów (w postaci kropek i łączących je krzywych) jest tylko sposobem przedstawienia relacji zachodzących między wierzchołkami. Dla każdego grafu istnieje nieskończenie wiele przedstawiających go jednoznacznie wykresów (*rysunków*). Właściwości grafów są niezależne od sposobu numerowania wierzchołków, kolejności ich rysowania itp. Grafy różniące się tylko sposobem ich przedstawienia, lub indeksami nadanymi wierzchołkom, nazywamy *izomorficznymi*.

- Homeomorfizm grafów

Dwa grafy są *homeomorficzne*, jeśli z jednego grafu można otrzymać drugi zastępując wybrane krawędzie *łańcuchami prostymi* lub łańcuchy proste pojedynczymi krawędziami ("*dorysowywanie*" na krawędziach dowolnej liczby wierzchołków bądź *wymazywanie* ich).

Grafy – podstawowe pojęcia

Wybrane klasy grafów (wydzielone ze względu na różne właściwości):

- Graf prosty (właściwy)

Graf nie zawierający pętli ani krawędzi wielokrotnych. Z reguły zdanie *G jest grafem* oznacza w domyśle, że *G* jest grafem prostym

- Graf pełny

Graf, którego każdy wierzchołek jest połączony bezpośrednio krawędzią z każdym innym wierzchołkiem.

- Graf regularny stopnia k

Graf, którego każdy wierzchołek jest stopnia *k*

- Graf acykliczny

Graf nie zawierający żadnej drogi zamkniętej

- Graf spójny

Graf, w którym dla każdego wierzchołka istnieje *droga* do każdego innego wierzchołka

- Graf k-spójny

Graf posiadający k spójnych składowych

- Drzewo

Spójny graf acykliczny

- Las

Graf, którego wszystkie spójne składowe są drzewami

Grafy – podstawowe pojęcia

Wybrane klasy grafów (c.d.):

- Graf dwudzielny

Graf, którego wierzchołki mogą być podzielone na dwa zbiory, tak by w obrębie jednego zbioru żaden wierzchołek nie był połączony z innym

- Graf dwudzielny pełny

Graf dwudzielny taki, że każdy wierzchołek z jednego zbioru jest połączony krawędzią z każdym wierzchołkiem ze zbioru drugiego.

- Graf k-dzielny

To naturalne rozszerzenie klasy grafów dwudzielnych – jest to graf, którego zbiór wierzchołków można podzielić na *k* parami rozłącznych podzbiorów takich, że żadne dwa węzły należące do tego samego zbioru nie są połączone krawędzią

- Pełny graf k-dzielny

Jeżeli zbiór wierzchołków dzieli się na k nie połączonych między sobą podzbiorów wierzchołków, to jeżeli dla każdego wierzchołka z j-tego przedziału jest połączony z każdym wierzchołkiem z każdego z przedziałów poza j, to jest to pełny graf k-dzielny

- Graf eulerowski

Graf posiadający drogę prostą przechodzą przez każdą krawędź.

- Graf hamiltonowski

Graf posiadający ścieżkę prostą przechodzą przez każdy wierzchołek.

Grafy – podstawowe pojęcia

Wybrane klasy grafów (c.d.):

- Graf planarny
 - Graf, dla którego istnieje *graf izomorficzny*, który można przedstawić na płaszczyźnie tak, by żadne krawędzie się nie przecinały.
- Graf płaski

To izomorficzne przedstawienie grafu takie, że żadne dwie krawędzie się nie przecinają.

- Graf platoński
 - Graf, którego przedstawienie tworzy siatkę wielościanu foremnego.
- Graf komórkowy
 - Graf płaski, którego wszystkie ściany są utworzone przez drogi zamknięte tej samej długości.
- Graf symetryczny

Graf skierowany taki, że jeżeli istnieje krawędź (u,v) to istnieje też krawędź (v,u).

- Graf asymetryczny
 - Graf asymetryczny to taki, że jeżeli istnieje krawędź (u,v) to nie istnieje krawędź (v,u).
- Graf podstawowy grafu skierowanego

To (niemal) ten sam graf, ale nieskierowany, czyli bez zwrotów na krawędziach

Grafy – podstawowe reprezentacje

- Macierz sąsiedztwa

Grafy – podstawowe reprezentacje

- Lista sąsiedztwa

Grafy – podstawowe reprezentacje

- Macierz incydencji

Krawędzie
1 2 3 4 5 6

1 -1 -1 -1 0 0 0
2 1 0 0 -1 0 0
3 0 1 0 0 -1 0
4 0 0 1 1 0 -1
5 0 0 0 0 1 1

W każdej z przedstawionych reprezentacji można przedstawić **wagę krawędzi** określoną przez **funkcję wagową E -> R**

Przykładowe problemy i algorytmy grafowe

- 1. Przeszukiwanie grafu
- a) Przeszukiwanie wszerz (algorytm BFS Breadth First Search)
- b) Przeszukiwanie w głąb (algorytm **DFS D**eep **F**irst **S**earch)
- 2. Wyznaczanie najkrótszej drogi w grafie

Długość drogi jest rozumiana jako suma wag krawędzi w drodze.

- 3. Wyznaczanie najkrótszej drogi pomiędzy dwoma wierzchołkami
- 4. Wyznaczanie minimalnego drzewa rozpinającego **MST** (Minimal Spanning Tree).
 - -> Algorytm Kruskala.
 - -> Algorytm Prima

Wynikiem jest zbiór MST (Minimal Spanning Tree) zawierający krawędzie tworzące drzewo rozpinające o minimalnej sumie wag krawędzi.


```
funkcja BFS (s, Cel)
wyczyść(Kolejka)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
wstaw_do_kolejki(Kolejka, s)
dopóki nie_pusta(Kolejka)
w = pobierz_z_kolejki(Kolejka)
jeżeli w = Cel
zwróć w /* i zakończ funkcję */
dla każdego wierzchołka u ∈ LS[w]
jeżeli nie_odwiedzony(u)
zapamiętaj_że_odwiedzony(u)
wstaw_do_kolejki(Kolejka, u)
```



```
funkcja BFS (s, Cel)
  wyczyść(Kolejka)
  dla każdego wierzchołka x innego niż s
          oznacz x jako nie odwiedzony
  wstaw_do_kolejki(Kolejka, s)
  dopóki nie_pusta(Kolejka)
     w = pobierz_z_kolejki(Kolejka)
     jeżeli w = Cel
           zwróć w /* i zakończ funkcję */
     dla każdego wierzchołka u ∈ LS[w]
         jeżeli nie_odwiedzony(u)
             zapamiętaj że odwiedzony(u)
             wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { }


```
funkcja BFS (s, Cel)
wyczyść(Kolejka)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
wstaw_do_kolejki(Kolejka, s)
dopóki nie_pusta(Kolejka)
w = pobierz_z_kolejki(Kolejka)
jeżeli w = Cel
zwróć w /* i zakończ funkcję */
dla każdego wierzchołka u ∈ LS[w]
jeżeli nie_odwiedzony(u)
zapamiętaj_że_odwiedzony(u)
wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { s }


```
funkcja BFS (s, Cel)
  wyczyść(Kolejka)
  dla każdego wierzchołka x innego niż s
          oznacz x jako nie odwiedzony
  wstaw_do_kolejki(Kolejka, s)
  dopóki nie_pusta(Kolejka)
     w = pobierz_z_kolejki(Kolejka)
     jeżeli w = Cel
           zwróć w /* i zakończ funkcję */
     dla każdego wierzchołka u ∈ LS[w]
         jeżeli nie_odwiedzony(u)
             zapamiętaj że odwiedzony(u)
             wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { }

Przeszukiwanie wszerz (algorytm BFS - Breadth First Search)


```
funkcja BFS (s, Cel)

wyczyść(Kolejka)

dla każdego wierzchołka x innego niż s

oznacz x jako nie odwiedzony

wstaw_do_kolejki(Kolejka, s)

dopóki nie_pusta(Kolejka)

w = pobierz_z_kolejki(Kolejka)

jeżeli w = Cel

zwróć w /* i zakończ funkcję */

dla każdego wierzchołka u ∈ LS[w]

jeżeli nie_odwiedzony(u)

zapamiętaj_że_odwiedzony(u)

wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { p, u }


```
funkcja BFS (s, Cel)

wyczyść(Kolejka)

dla każdego wierzchołka x innego niż s

oznacz x jako nie odwiedzony

wstaw_do_kolejki(Kolejka, s)

dopóki nie_pusta(Kolejka)

w = pobierz_z_kolejki(Kolejka)

jeżeli w = Cel

zwróć w /* i zakończ funkcję */

dla każdego wierzchołka u ∈ LS[w]

jeżeli nie_odwiedzony(u)

zapamiętaj_że_odwiedzony(u)

wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { u }


```
funkcja BFS (s, Cel)
wyczyść(Kolejka)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
wstaw_do_kolejki(Kolejka, s)
dopóki nie_pusta(Kolejka)
w = pobierz_z_kolejki(Kolejka)
jeżeli w = Cel
zwróć w /* i zakończ funkcję */
dla każdego wierzchołka u ∈ LS[w]
jeżeli nie_odwiedzony(u)
zapamiętaj_że_odwiedzony(u)
wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { u, r, q }


```
funkcja BFS (s, Cel)

wyczyść(Kolejka)

dla każdego wierzchołka x innego niż s

oznacz x jako nie odwiedzony

wstaw_do_kolejki(Kolejka, s)

dopóki nie_pusta(Kolejka)

w = pobierz_z_kolejki(Kolejka)

jeżeli w = Cel

zwróć w /* i zakończ funkcję */

dla każdego wierzchołka u ∈ LS[w]

jeżeli nie_odwiedzony(u)

zapamiętaj_że_odwiedzony(u)

wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { r, q }


```
funkcja BFS (s, Cel)
  wyczyść(Kolejka)
  dla każdego wierzchołka x innego niż s
          oznacz x jako nie odwiedzony
  wstaw_do_kolejki(Kolejka, s)
  dopóki nie_pusta(Kolejka)
     w = pobierz_z_kolejki(Kolejka)
     jeżeli w = Cel
           zwróć w /* i zakończ funkcję */
     dla każdego wierzchołka u ∈ LS[w]
         jeżeli nie_odwiedzony(u)
             zapamiętaj że odwiedzony(u)
             wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { r, q, x, w }


```
funkcja BFS (s, Cel)
wyczyść(Kolejka)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
wstaw_do_kolejki(Kolejka, s)
dopóki nie_pusta(Kolejka)
w = pobierz_z_kolejki(Kolejka)
jeżeli w = Cel
zwróć w /* i zakończ funkcję */
dla każdego wierzchołka u ∈ LS[w]
jeżeli nie_odwiedzony(u)
zapamiętaj_że_odwiedzony(u)
wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { q, x, w }


```
funkcja BFS (s, Cel)
wyczyść(Kolejka)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
wstaw_do_kolejki(Kolejka, s)
dopóki nie_pusta(Kolejka)
w = pobierz_z_kolejki(Kolejka)
jeżeli w = Cel
zwróć w /* i zakończ funkcję */
dla każdego wierzchołka u ∈ LS[w]
jeżeli nie_odwiedzony(u)
zapamiętaj_że_odwiedzony(u)
wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { x, w }


```
funkcja BFS (s, Cel)

wyczyść(Kolejka)

dla każdego wierzchołka x innego niż s

oznacz x jako nie odwiedzony

wstaw_do_kolejki(Kolejka, s)

dopóki nie_pusta(Kolejka)

w = pobierz_z_kolejki(Kolejka)

jeżeli w = Cel

zwróć w /* i zakończ funkcję */

dla każdego wierzchołka u ∈ LS[w]

jeżeli nie_odwiedzony(u)

zapamiętaj_że_odwiedzony(u)

wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { x, w, t }


```
funkcja BFS (s, Cel)
wyczyść(Kolejka)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
wstaw_do_kolejki(Kolejka, s)
dopóki nie_pusta(Kolejka)
w = pobierz_z_kolejki(Kolejka)
jeżeli w = Cel
zwróć w /* i zakończ funkcję */
dla każdego wierzchołka u ∈ LS[w]
jeżeli nie_odwiedzony(u)
zapamiętaj_że_odwiedzony(u)
wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { w, t }


```
funkcja BFS (s, Cel)

wyczyść(Kolejka)

dla każdego wierzchołka x innego niż s

oznacz x jako nie odwiedzony

wstaw_do_kolejki(Kolejka, s)

dopóki nie_pusta(Kolejka)

w = pobierz_z_kolejki(Kolejka)

jeżeli w = Cel

zwróć w /* i zakończ funkcję */

dla każdego wierzchołka u ∈ LS[w]

jeżeli nie_odwiedzony(u)

zapamiętaj_że_odwiedzony(u)

wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { t }

Przeszukiwanie wszerz (algorytm BFS - Breadth First Search)


```
funkcja BFS (s, Cel)

wyczyść(Kolejka)

dla każdego wierzchołka x innego niż s

oznacz x jako nie odwiedzony

wstaw_do_kolejki(Kolejka, s)

dopóki nie_pusta(Kolejka)

w = pobierz_z_kolejki(Kolejka)

jeżeli w = Cel

zwróć w /* i zakończ funkcję */

dla każdego wierzchołka u ∈ LS[w]

jeżeli nie_odwiedzony(u)

zapamiętaj_że_odwiedzony(u)

wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { t, v }


```
funkcja BFS (s, Cel)

wyczyść(Kolejka)

dla każdego wierzchołka x innego niż s

oznacz x jako nie odwiedzony

wstaw_do_kolejki(Kolejka, s)

dopóki nie_pusta(Kolejka)

w = pobierz_z_kolejki(Kolejka)

jeżeli w = Cel

zwróć w /* i zakończ funkcję */

dla każdego wierzchołka u ∈ LS[w]

jeżeli nie_odwiedzony(u)

zapamiętaj_że_odwiedzony(u)

wstaw_do_kolejki(Kolejka, u)
```

Kolejka: { v }

Kolejka: { } -> KONIEC

Złożoność pamięciowa BFS: O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba utrzymywać listę węzłów które się już odwiedziło. Z powodu tak dużego zapotrzebowania na pamięć BFS jest niepraktyczne dla dużych danych.

Złożoność pamięciowa BFS: O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba utrzymywać listę węzłów które się już odwiedziło. Z powodu tak dużego zapotrzebowania na pamięć BFS jest niepraktyczne dla dużych danych.

Złożoność czasowa BFS: O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba przebyć wszystkie krawędzie i odwiedzić wszystkie wierzchołki.

Złożoność pamięciowa BFS: O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba utrzymywać listę węzłów które się już odwiedziło. Z powodu tak dużego zapotrzebowania na pamięć BFS jest niepraktyczne dla dużych danych.

Złożoność czasowa BFS: O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba przebyć wszystkie krawędzie i odwiedzić wszystkie wierzchołki.

Kompletność: BFS jest kompletne, bo jeśli istnieje rozwiązanie, to niezawodnie zostanie znalezione (niezależnie od grafu).

Politechnika Wrocławska, Wydział Informatyki i Zarządzania

Przeszukiwanie wszerz (algorytm BFS - Breadth First Search)

Złożoność pamięciowa BFS: O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba utrzymywać listę węzłów które się już odwiedziło. Z powodu tak dużego zapotrzebowania na pamięć BFS jest niepraktyczne dla dużych danych.

Złożoność czasowa BFS: O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba przebyć wszystkie krawędzie i odwiedzić wszystkie wierzchołki.

Kompletność: BFS jest kompletne, bo jeśli istnieje rozwiązanie, to niezawodnie zostanie znalezione (niezależnie od grafu).

Przykładowe zastosowania:

- znajdowanie wszystkich połączonych węzłów w grafie,
- znajdowanie najkrótszej ścieżki pomiędzy dwoma węzłami,
- sprawdzanie, czy graf jest dwudzielny.

funkcja DFS (s, Cel)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
DFS_VERT(s)

Gdzie:

DFS_VERT(u)

funkcja DFS (s, Cel)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
DFS_VERT(s)

Gdzie:

DFS_VERT(u)

funkcja DFS (s, Cel) dla każdego wierzchołka x innego niż s oznacz x jako nie odwiedzony DFS_VERT(s)

Gdzie:

DFS_VERT(u)

Politechnika Wrocławska, Wydział Informatyki i Zarządzania

Przeszukiwanie w głąb (algorytm DFS - Deep First Search)

funkcja DFS (s, Cel)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
DFS_VERT(s)

Gdzie:

DFS_VERT(u)

funkcja DFS (s, Cel)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
DFS_VERT(s)

Gdzie:

DFS_VERT(u)

funkcja DFS (s, Cel)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
DFS_VERT(s)

Gdzie:

DFS_VERT(u)

funkcja DFS (s, Cel)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
DFS_VERT(s)

Gdzie:

DFS_VERT(u)

funkcja DFS (s, Cel)
dla każdego wierzchołka x innego niż s
oznacz x jako nie odwiedzony
DFS_VERT(s)

Gdzie:

DFS_VERT(u)

Zbigniew Szpunar

Przeszukiwanie w głąb (algorytm DFS - Deep First Search)

funkcja DFS (s, Cel) dla każdego wierzchołka x innego niż s oznacz x jako nie odwiedzony DFS_VERT(s)

Gdzie:

DFS_VERT(u)

Złożoność pamięciowa DFS w przypadku drzewa jest o wiele mniejsza niż dla BFS, ponieważ algorytm w każdym momencie wymaga zapamiętania tylko ścieżki od korzenia do bieżącego węzła a nie, jak BFS, zapamiętywania wszystkich węzłów w danej odległości od korzenia (co rośnie lawinowo w funkcji długości ścieżki).

Złożoność pamięciowa DFS w przypadku drzewa jest o wiele mniejsza niż dla BFS, ponieważ algorytm w każdym momencie wymaga zapamiętania tylko ścieżki od korzenia do bieżącego węzła a nie, jak BFS, zapamiętywania wszystkich węzłów w danej odległości od korzenia (co rośnie lawinowo w funkcji długości ścieżki).

Złożoność czasowa DFS: O(|V| + |E|) (jak dla BFS), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba przebyć wszystkie krawędzie i odwiedzić wszystkie wierzchołki.

Złożoność pamięciowa DFS w przypadku drzewa jest o wiele mniejsza niż dla BFS, ponieważ algorytm w każdym momencie wymaga zapamiętania tylko ścieżki od korzenia do bieżacego węzła a nie, jak BFS, zapamiętywania wszystkich węzłów w danej odległości od korzenia (co rośnie lawinowo w funkcji długości ścieżki).

Złożoność czasowa DFS: O(|V| + |E|) (jak dla BFS), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie, ponieważ trzeba przebyć wszystkie krawędzie i odwiedzić wszystkie wierzchołki.

Przykładowe zastosowania:

- znajdowanie najkrótszej ścieżki pomiędzy dwoma węzłami,
- sprawdzanie, czy istnieje ścieżka pomiędzy dwoma węzłami,
- jako strategia poszukiwania rozwiązań problemów.

Wyznaczanie minimalnego drzewa rozpinającego MST (Minimal Spanning Tree)

Algorytm Prima

- 1. Utwórz drzewo zawierające jeden wierzchołek, dowolnie wybrany z grafu.
- 2. Utwórz kolejkę priorytetową, zawierającą wierzchołki osiągalne z MST (w tym momencie zawiera jeden wierzchołek, więc na początku w kolejce będą sąsiedzi początkowego wierzchołka), o priorytecie najmniejszego kosztu dotarcia do danego wierzchołka z MST.
- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
 - wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy.
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka Po zakończeniu algorytmu utworzone drzewo jest minimalnym drzewem rozpinającym (MST).

Jest to algorytm zachłanny o złożoności czasowej O(|E/log(|V/)).

Graf, dla którego należy znaleźć MST

Politechnika Wrocławska, Wydział Informatyki i Zarządzania

Wyznaczanie minimalnego drzewa rozpinającego MST Algorytm Prima - przykład

1. Utwórz drzewo zawierające jeden wierzchołek, dowolnie wybrany z grafu.

1. Utwórz drzewo zawierające jeden wierzchołek, dowolnie wybrany z grafu.

2. Utwórz kolejkę priorytetową, zawierającą wierzchołki osiągalne z MST (w tym momencie zawiera jeden wierzchołek, więc na początku w kolejce będą sąsiedzi początkowego wierzchołka), o priorytecie najmniejszego kosztu dotarcia do danego wierzchołka z MST.

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

Politechnika Wrocławska, Wydział Informatyki i Zarządzania Zbigniew Szpunar

Wyznaczanie minimalnego drzewa rozpinającego MST Algorytm Prima - przykład

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

- 3. Dopóki drzewo nie obejmuje wszystkich wierzchołków grafu:
- wśród nieprzetworzonych wierzchołków (spoza obecnego MST) wybierz ten, dla którego koszt dojścia z obecnego MST jest najmniejszy,
- dodaj go do obecnego MST i zaktualizuj kolejkę priorytetową, uwzględniając nowe krawędzie wychodzące z dodanego wierzchołka

Drzewo obejmuje wszystkie wierzchołki grafu - utworzone drzewo jest minimalnym drzewem rozpinającym (MST).

Politechnika Wrocławska, Wydział Informatyki i Zarządzania

Wyznaczanie minimalnego drzewa rozpinającego MST (Minimal Spanning Tree)

Algorytm Kruskala

- 1. Utwórz las L z wierzchołków oryginalnego grafu każdy wierzchołek jest na początku osobnym drzewem.
- 2. Utwórz zbiór S zawierający wszystkie krawędzie oryginalnego grafu.
- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
 - Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.
 W przeciwnym wypadku odrzuć ją.

Po zakończeniu algorytmu L jest minimalnym drzewem rozpinającym.

Jest to algorytm zachłanny o złożoności czasowej O(|E/log(|V/)).

Politechnika Wrocławska, Wydział Informatyki i Zarządzania

Wyznaczanie minimalnego drzewa rozpinającego MST Algorytm Kruskala - przykład

Graf, dla którego należy znaleźć MST

1. Utwórz las L z wierzchołków oryginalnego grafu – każdy wierzchołek jest na początku osobnym drzewem.

1. Utwórz las L z wierzchołków oryginalnego grafu – każdy wierzchołek jest na początku osobnym drzewem.

2. Utwórz zbiór S zawierający wszystkie krawędzie oryginalnego grafu.

Zbigniew Szpunar

Wyznaczanie minimalnego drzewa rozpinającego MST Algorytm Kruskala - przykład

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

W przeciwnym wypadku odrzuć ją.

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

W przeciwnym wypadku odrzuć ją.

3. Dopóki S nie jest pusty:

- Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

W przeciwnym wypadku odrzuć ją.

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

Zbigniew Szpunar

Wyznaczanie minimalnego drzewa rozpinającego MST Algorytm Kruskala - przykład

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

Zbigniew Szpunar

Wyznaczanie minimalnego drzewa rozpinającego MST Algorytm Kruskala - przykład

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.


```
Zbiór S
<del>2 (q, t)</del>
3 (p, q)
3 (q, s)
3 (w, x)
4 (p, r)
4 (t, v)
5 (p, s) <= nie łączy drzew!
6 (r, u) <= nie łączy drzew!
7 (u, x) <= nie łączy drzew!
8 (v, w)
9 (t, u)
```

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.


```
Zbiór S
<del>2 (q, t)</del>
3 (p, q)
3 (q, s)
3 (w, x)
4 (p, r)
4 (s, u)
4 (t, v)
4 (u, w)
5 (p, s) <= nie łączy drzew!
6 (r, u) <= nie łączy drzew!
7 (u, x) <= nie łączy drzew!
8 (v, w) <= nie łączy drzew!
9 (t, u)
```

- 3. Dopóki S nie jest pusty:
 - Wybierz i usuń z S krawędź o minimalnej wadze.
- Jeśli krawędź ta łączyła dwa różne drzewa, to dodaj ją do lasu L, tak aby połączyła dwa odpowiadające drzewa w jedno.

3 (q, s)
3 (q, s)
3 (w, x)
4 (p, r)
4 (s, u)
4 (t, v)
4 (u, w)
5 (p, s) <= nie łączy drzew!
6 (r, u) <= nie łączy drzew!
7 (u, x) <= nie łączy drzew!
8 (v, w) <= nie łączy drzew!
9 (t, u) <= nie łączy drzew!

S jest pusty - L jest minimalnym drzewem rozpinającym

Politechnika Wrocławska, Wydział Informatyki i Zarządzania

Wyznaczanie najkrótszej ścieżki z pojedynczego źródła w grafie o nieujemnych wagach krawędzi

Algorytm Dijkstry

Oznaczenia: s - wierzchołek źródłowy, w(i,j) - waga krawędzi (i,j) w grafie.

- 1. Utwórz tablicę d odległości od źródła dla wszystkich wierzchołków grafu. Na początku d[s] = 0, zaś d[v] = nieskończoność dla wszystkich pozostałych wierzchołków.
- 2. Utwórz kolejkę priorytetową Q wszystkich wierzchołków grafu. Priorytetem kolejki jest aktualnie wyliczona odległość od wierzchołka źródłowego s.
- 3. Dopóki kolejka nie jest pusta:
 - Usuń z kolejki wierzchołek *u* o najniższym priorytecie (wierzchołek najbliższy źródła, który nie został jeszcze rozważony)
 - Dla każdego sąsiada v wierzchołka u dokonaj relaksacji poprzez u: jeśli d[u] + w(u,v) < d[v] (poprzez u da się dojść do v szybciej niż dotychczasową ścieżką), to a[v] := a[u] + w(u,v).

Na końcu tablica d zawiera najkrótsze odległości do wszystkich wierzchołków. Dodatkowo, możemy w tablicy *poprzednik* przechowywać dla każdego wierzchołka numer jego bezpośredniego poprzednika na najkrótszej ścieżce, co pozwoli na odtworzenie pełnej ścieżki od źródła do każdego wierzchołka – przy każdej relaksacji w ostatnim punkcie, u staje się poprzednikiem v.

Wyznaczanie najkrótszej ścieżki z pojedynczego źródła w grafie o nieujemnych wagach krawędzi

Algorytm Dijkstry

Q	D(a)	D(b)	D(c)	D(d)	D(e)
{b,c,d,e}	0	10	*	*	<u>5</u>
$\{b,c,d\}$	0	8	14	<u>7</u>	<u>5</u>
{b,c}	0	<u>8</u>	13	7	5
{c}	0	8	<u>9</u>	7	5
{}	0	8	9	7	5

Należy teraz zastosować algorytm konstrukcji drogi ze źródła s do wierzchołka v o danym "koszcie minimalnym" D(v) (z tabeli j/w) Politechnika Wrocławska, Wydział Informatyki i Zarządzania

Wyznaczanie minimalnego drzewa rozpinającego MST (Minimal Spanning Tree) (przykłady z Wikipedii)

Algorytm Prima

Dany jest spójny graf nieskierowany:

Algorytm Kruskala

Po posortowaniu krawędzi wg. wag otrzymamy:

- Krawędź ae=1
- Krawędź af=2
- Krawędź bc=2
- Krawędź be=2
- Krawędź de=3
- Krawędź ab=4

- 7. Mrawędź fd=6 8. Krawędź ef=7 9. Krawędź cd=8

Wszystkie wierzchołki należą do jednego drzewa- minimalnego drzewa rozpinającego. Suma wag krawędzi wchodzących w skład drzewa wynosi 10.