STAT 401A - Statistical Methods for Research Workers Multiple regression models

Jarad Niemi (Dr. J)

Iowa State University

last updated: November 4, 2014

Multiple regression

Recall the simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

The multiple regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}, \sigma^2)$$

where

- Y_i is the response for observation i and
- $X_{i,p}$ is the p^{th} explanatory variable for observation i.

We may also write

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$
 or $Y_i = \mu_i + e_i, e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

where

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}.$$

Explanatory variables

There is a lot of flexibility in the mean

$$\mu_i = E[Y_i | X_{i,1}, \dots, X_{i,p}] = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}$$

as there are many possibilities for the explanatory variables $X_{i,1},\ldots,X_{i,p}$:

- Higher order terms (X^2)
- Additional explanatory variables $(X_1 \text{ and } X_2)$
- ullet Dummy/indicator variables for categorical variables $(X_1={
 m I}())$
- Interactions (X₁X₂)
 - Continuous-continuous
 - Continuous-categorical
 - Categorical-categorical

Interpretation

Model:

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}, \sigma^2)$$

The interpretation is

- β_0 is the expected value of the response Y_i when all explanatory variables are zero.
- β_p , $p \neq 0$ is the expected increase in the response for a one-unit increase in the p^{th} explanatory variable when all other explanatory variables are held constant.
- ullet R^2 is the proportion of the variance in the response explained by the model

Higher order terms (X^2)

Let

- Y_i be the distance for the i^{th} run of the experiment and
- H_i be the height for the i^{th} run of the experiment.

Simple linear regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i)$$
 , σ^2

The quadratic multiple regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i + \beta_2 H_i^2 , \sigma^2)$$

The cubic multiple regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i + \beta_2 H_i^2 + \beta_3 H_i^3, \sigma^2)$$

Case1001

SAS code and output

DATA case1001:

```
INFILE 'case1001.csv' DSD FIRSTOBS=2;
INFUT distance height;
height2 = height*height2;
height3 = height*height2;

# PROC REG allows multiple MODEL statements
PROC REG DATA=case1001;
MODEL distance = height;
MODEL distance = height height2;
MODEL distance = height height2 height3;
RUN;
```

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	269.71246	24.31239	11.09	0.0001
height	1	0.33334	0.04203	7.93	0.0005
Intercept	1	199.91282	16.75945	11.93	0.0003
height	1	0.70832	0.07482	9.47	0.0007
height2	1	-0.00034369	0.00006678	-5.15	0.0068
Intercept	1	155.77551	8.32579	18.71	0.0003
height	1	1.11530	0.06567	16.98	0.0004
height2	1	-0.00124	0.00013842	-8.99	0.0029
height3	1	5.477104E-7	8.327329E-8	6.58	0.0072

SAS code and output

```
DATA case1001:
 INFILE 'case1001.csv' DSD FIRSTOBS=2;
 INPUT distance height;
 height2 = height ** 2:
 height3 = height ** 3:
PROC GLM DATA=case1001:
 MODEL distance = height height2 height3;
/* PROC GLM allows the variable construction within the MODEL statement
   and provides nicer output (not shown here) */
DATA case1001:
  INFILE 'case1001.csv' DSD FIRSTOBS=2;
 INPUT distance height;
/* This shorthand puts in H, H^2, and H^3 */
PROC GLM DATA=case1001:
 MODEL distance = height|height|height:
/* This only puts H^3 */
PROC GLM DATA=case1001;
 MODEL distance = height*height*height:
```

R code and output

```
# Construct the variables by hand
case1001$Height2 = case1001$Height^2
case1001$Height3 = case1001$Height^3
m1 = lm(Distance~Height,
                                         case1001)
m2 = lm(Distance~Height+Height2,
                                       case1001)
m3 = lm(Distance~Height+Height2+Height3, case1001)
coefficients(m1)
(Intercept)
                 Height
   269.7125
                 0.3333
coefficients(m2)
(Intercept)
                 Height
                          Height2
  1 999e+02
             7 083e-01 -3 437e-04
coefficients(m3)
(Intercept)
                 Height
                           Height2
                                        Height3
  1.558e+02
             1.115e+00 -1.245e-03
                                      5.477e-07
```

R code and output

```
# Let R construct the variables for you
m = lm(Distance polv(Height, 3, raw=TRUE), case1001)
summarv(m)
Call:
lm(formula = Distance ~ poly(Height, 3, raw = TRUE), data = case1001)
Residuals:
-2 4036 3 5809 1 8917 -4 4688 -0 0804 2 3216 -0 8414
Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                            1.56e+02 8.33e+00 18.71 0.00033 ***
poly(Height, 3, raw = TRUE)1 1.12e+00 6.57e-02 16.98 0.00044 ***
poly(Height, 3, raw = TRUE)2 -1.24e-03 1.38e-04 -8.99 0.00290 **
poly(Height, 3, raw = TRUE)3 5.48e-07 8.33e-08 6.58 0.00715 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.01 on 3 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.6e+03 on 3 and 3 DF, p-value: 2.66e-05
```

Longnose Dace Abundance

From http://udel.edu/~mcdonald/statmultreg.html:

I extracted some data from the Maryland Biological Stream Survey. ... The dependent variable is the number of Longnose Dace (Rhinichthys cataractae) per 75-meter section of [a] stream. The independent variables are the area (in acres) drained by the stream; the dissolved oxygen (in mg/liter); the maximum depth (in cm) of the 75-meter segment of stream; nitrate concentration (mg/liter); sulfate concentration (mg/liter); and the water temperature on the sampling date (in degrees C).

Consider the model

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2}, \sigma^2)$$

where

- Y_i: count of Longnose Dace in stream i
- $X_{i,1}$: maximum depth (in cm) of stream i
- $X_{i,2}$: nitrate concentration (mg/liter) of stream i

Exploratory


```
DATA dace;
```

INFILE 'Longnose Dace.csv' DSD FIRSTOBS=2;

INPUT stream \$ count acreage do2 maxdepth no3 so4 temp;

PROC REG DATA=dace;

MODEL count = maxdepth no3;
RUN;

The REG Procedure
Model: MODEL1
Dependent Variable: count

Number of Observations Read 67 Number of Observations Used 67

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	28930	14465	7.68	0.0010
Error	64	120503	1882.85220		
Corrected Total	66	149432			
Root MS	BE.	43.39184	R-Square	0.1936	
Depende	ent Mean	39.10448	Adj R-Sq	0.1684	
Coeff V	/ar	110.96388			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-17.55503	15.95865	-1.10	0.2754
maxdepth	1	0.48106	0.18111	2.66	0.0100
no3	1	8.28473	2.95659	2.80	0.0067

R code and output

```
d = read.csv("longnosedace.csv")
m = lm(count~no3+maxdepth,d)
summary (m)
Call:
lm(formula = count ~ no3 + maxdepth, data = d)
Residuals:
  Min
        10 Median 30 Max
-55.06 -27.70 -8.68 11.79 165.31
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.555 15.959 -1.10 0.2754
no3
            8.285
                      2.957 2.80 0.0067 **
maxdepth 0.481 0.181 2.66 0.0100 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.4 on 64 degrees of freedom
Multiple R-squared: 0.194, Adjusted R-squared: 0.168
F-statistic: 7.68 on 2 and 64 DF, p-value: 0.00102
```

Interpretation

- Intercept (β_0): The expected count of Longnose Dace when maximum depth and nitrate concentration are both zero is -18.
- Coefficient for maxdepth (β_1) : Holding nitrate concentration constant, each cm increase in maximum depth is associated with an additional 0.48 Longnose Dace counted on average.
- Coefficient for no3 (β_2): Holding maximum depth constant, each mg/liter increase in nitrate concentration is associated with an addition 8.3 Longnose Dace counted on average.
- Coefficient of determination (R^2): The model explains 19% of the variability in the count of Longnose Dace.

Using a categorical variable as an explanatory variable.

Regression with a categorical variable

- ullet Choose one of the levels as the reference level, e.g. N/N85
- Construct dummy variables using indicator functions for the other levels, e.g.

$$X_{i,1} = I(\text{diet for observation } i \text{ is NP})$$

 $X_{i,2} = I(\text{diet for observation } i \text{ is N/R50 lopro})$
 $X_{i,3} = I(\text{diet for observation } i \text{ is N/R50})$
 $X_{i,4} = I(\text{diet for observation } i \text{ is R/R50})$
 $X_{i,5} = I(\text{diet for observation } i \text{ is N/R40})$

Run a multiple linear regression using these dummy variables.

An indicator function is

$$I(A) = \begin{cases} 1 & A \text{ is TRUE} \\ 0 & A \text{ is FALSE} \end{cases}$$

```
DATA case0501;

INFILE 'case0501.csv' DSD FIRSTOBS=2;
INPUT lifetime diet $;

IF diet ='NP' THEN x1=1; ELSE x1=0;

IF diet ='lopro' THEN x2=1; ELSE x2=0;

IF diet ='N/R50' THEN x3=1; ELSE x3=0;

IF diet ='R/R50' THEN x4=1; ELSE x4=0;

IF diet ='N/R40' THEN x5=1; ELSE x5=0;

RUN;

PROC GLM DATA=case0501;

MODEL lifetime = x1 x2 x3 x4 x5;

RUN;

ods listing close;
```

The GLM Procedure

Dependent Variable: lifetime

Source Model Error Corrected Total	DF 5 343 348	Sum of Squares 12733.94181 15297.41532 28031.35713	Mean Square 2546.78836 44.59888	57.10	Pr > F <.0001
R-Squa	re Coeff	Var Roo	t MSE lifetim	e Mean	
0.4542	75 17.2	1323 6.6	78239 38	.79713	
		Sta	ndard		
Parameter	Estima	te	Error t Value	Pr > t	
Intercept	32.691228	07 0.884	55439 36.96	<.0001	
x1	-5.289187	25 1.301	00640 -4.07	<.0001	
x2	6.994486	22 1.256	52099 5.57	<.0001	
x3	9.6059550	03 1.187	68248 8.09	<.0001	
x4	10.194486	22 1.256	52099 8.11	<.0001	
x5	12.4254386	60 1.235	21298 10.06	<.0001	

SAS code and output

```
DATA case0501;
  INFILE 'case0501.csv' DSD FIRSTOBS=2;
 INPUT lifetime diet $:
PROC GLM DATA=case0501;
 CLASS diet(REF='N/N85'); /* by default, SAS uses the alphabetically last group as the reference level */
 MODEL lifetime=diet / SOLUTION:
 RUN;
                                        The GLM Procedure
Dependent Variable: lifetime
                                               Sum of
       Source
                                              Squares
                                                          Mean Square
                                                                          F Value
                                                                                    Pr > F
                                          12733.94181
                                                            2546.78836
                                                                            57.10
                                                                                     < .0001
       Model
                                  343
                                          15297.41532
                                                             44.59888
       Error
       Corrected Total
                                  348
                                          28031.35713
                      R-Square
                                   Coeff Var
                                                  Root MSE
                                                              lifetime Mean
                      0.454275
                                    17.21323
                                                  6.678239
                                                                    38.79713
                                                      Standard
           Parameter
                                    Estimate
                                                                  t Value
                                                                              Pr > |t|
                                                          Error
           Intercept
                                 32.69122807 B
                                                    0.88455439
                                                                     36.96
                                                                                <.0001
                                 12.42543860 B
                                                    1.23521298
                                                                    10.06
                                                                                < .0001
           diet
                     N/R40
                     N/R50
                                                                                < .0001
           diet
                                  9.60595503 B
                                                    1.18768248
                                                                     8.09
           diet.
                     NP
                                 -5.28918725 B
                                                    1.30100640
                                                                    -4.07
                                                                                < .0001
           diet
                     R/R50
                                 10.19448622 B
                                                    1.25652099
                                                                     8.11
                                                                                < .0001
                                                    1.25652099
                                                                      5.57
                                                                                < .0001
           diet
                     lopro
                                  6.99448622 B
                     N/N85
                                  0.00000000 B
           diet
```

R code and output

```
# by default, R uses the alphabetically first group as the reference level
case0501$Diet = relevel(case0501$Diet, ref='N/N85')
m = lm(Lifetime~Diet, case0501)
summary(m)
Call:
lm(formula = Lifetime ~ Diet, data = case0501)
Residuals:
          10 Median 30
   Min
                                Max
-25.517 -3.386 0.814 5.183 10.014
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.691 0.885
                             36.96 < 2e-16 ***
DietN/R40 12.425 1.235 10.06 < 2e-16 ***
DietN/R50 9.606 1.188 8.09 1.1e-14 ***
      -5.289 1.301 -4.07 5.9e-05 ***
DietNP
DietR/R50 10.194 1.257 8.11 8.9e-15 ***
Dietlopro 6.994
                      1.257 5.57 5.2e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 6.68 on 343 degrees of freedom
Multiple R-squared: 0.454, Adjusted R-squared: 0.446
F-statistic: 57.1 on 5 and 343 DF, p-value: <2e-16
```

Interpretation

• $\beta_0 = E[Y_i | \text{reference level}]$, i.e. expected response for the reference level

Note: the only way $X_{i,1} = \cdots = X_{i,p} = 0$ is if all indicators are zero, i.e. at the reference level.

• $\beta_p, p>0$: expected change in the response moving from the reference level to the level associated with the p^{th} dummy variable Note: the only way for $X_{i,p}$ to increase by one and all other indicators to stay constant is if initially $X_{i,1}=\cdots=X_{i,p}=0$ and now $X_{i,p}=1$

For example,

- The expected lifetime for mice on the N/N85 diet is 37 weeks.
- The expected increase in lifetime for mice on the N/R40 diet compared to the N/N85 diet is 12.4 weeks.
- The model explains 45% of the variability in mice lifetimes.

Why an interaction?

Two explanatory variables are said to interact if the effect that one of them has on the mean response depends on the value of the other.

For example,

- Longnose dace: The effect of no3 on longnose dace count depends on the maxdepth. (Continuous-continuous)
- Case1002: The effect of mass on energy depends on the species type. (Continuous-categorical)
- Yield: the effect of fertilizer depends on the block (Categorical-categorical)

Continuous-continuous interaction

For observation i, let

- \bullet Y_i be the response
- $X_{i,1}$ be the first explanatory variable and
- $X_{i,2}$ be the second explanatory variable.

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2}.$$

The mean with the interaction is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,1} X_{i,2}.$$

Intepretation

- β_0 : expected response when explanatory variables are zero
- β_1 : expected change in the response for each change in $X_{i,1}$ when $X_{i,2}$ is zero
- β_2 : expected change in the response for each change in $X_{i,2}$ when $X_{i,1}$ is zero
- $\beta_3 X_{i,2}$: expected change in the effect of $X_{i,1}$ on the response when $X_{i,2}$ is not zero
- $\beta_3 X_{i,1}$: expected change in the effect of $X_{i,2}$ on the response when $X_{i,1}$ is not zero

For example,

$$E[Y_i|X_{i,1} = x_1 + 1, X_{i,2} = x_2] = \beta_0 + \beta_1(x_1 + 1) + \beta_2 x_2 + \beta_3(x_1 + 1)x_2$$

$$E[Y_i|X_{i,1} = x_1, X_{i,2} = x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

$$= \beta_1 + \beta_3 x_2$$

R code and output

```
d = read.csv("longnosedace.csv")
m = lm(count ~ maxdepth + no3 + maxdepth:no3, d)
summary(m)
Call:
lm(formula = count ~ maxdepth + no3 + maxdepth:no3, data = d)
Residuals:
  Min 1Q Median 3Q Max
-65.11 -21.40 -9.56 5.95 151.07
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.32104 23.45571 0.57
                                        0.572
maxdepth -0.00934 0.32918 -0.03 0.977
no3
      -4.64627 7.85693 -0.59 0.556
maxdepth:no3 0.20122 0.11358
                              1.77 0.081 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 42.7 on 63 degrees of freedom
Multiple R-squared: 0.232, Adjusted R-squared: 0.195
F-statistic: 6.34 on 3 and 63 DF, p-value: 0.000797
```

Continuous-categorical interaction

Let category A be the reference level. Then observation i, let

- Y_i be the response
- $X_{i,1}$ be the continuous explanatory variable,
- \bullet B_i be a dummy variable for category B, and
- C_i be a dummy variable for category C.

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i.$$

The mean with the interaction is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i + \beta_4 X_{i,1} B_i + \beta_5 X_{i,1} C_i$$

Interpretation for the main effect model

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i.$$

- β_1 is the change in the response when the continuous explanatory variable increases by one for any category
- when the continuous explanatory variable is zero
 - β_0 is the expected response for category A
 - $\beta_0 + \beta_2$ is the expected response for category B
 - $\beta_0 + \beta_3$ is the expected response for category C

Interpretation for the model with an interaction

The model with an interaction is

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 B_i + \beta_3 C_i + \beta_4 X_{i,1} B_i + \beta_5 X_{i,1} C_i$$

- ullet eta_0 is the expected response when the continuous explanatory variable is zero and we are in category A
- β_1 is the change in the response when the continuous explanatory variable increases by one for category A
- When the continuous explanatory variable $(X_{i,1})$ is zero,
 - β_2 is the change in the expected response when moving from category A to category B
 - β_3 is the change in the expected response when moving from category A to category C
- $\beta_1 + \beta_4$ is the change in the response when the continuous explanatory variable increases by one for category B
- $\beta_1 + \beta_5$ is the change in the response when the continuous explanatory variable increases by one for category C

Visualizing the models

Main effects only

Continuous explanatory variable

With interactions

Continuous explanatory variable

R code and output - Main effects only

```
summary(lm(log(Energy)~log(Mass)+Type, case1002))
Call:
lm(formula = log(Energy) ~ log(Mass) + Type, data = case1002)
Residuals:
   Min
            10 Median
                           30
                                 Max
-0.2322 -0.1220 -0.0364 0.1257 0.3446
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         -1.4977 0.1499 -9.99 2.8e-08 ***
log(Mass)
                         0.8150 0.0445 18.30 3.8e-12 ***
Typenon-echolocating bats -0.0787 0.2027 -0.39 0.70
Typenon-echolocating birds 0.0236
                                    0.1576 0.15 0.88
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.186 on 16 degrees of freedom
Multiple R-squared: 0.982, Adjusted R-squared: 0.978
F-statistic: 284 on 3 and 16 DF, p-value: 4.46e-14
```

R code and output - with interaction

```
summary(lm(log(Energy)~log(Mass)*Type, case1002))
Call:
lm(formula = log(Energy) ~ log(Mass) * Type, data = case1002)
Residuals:
   Min
          10 Median 30
                                 Max
-0.2515 -0.1264 -0.0095 0.0812 0.3284
Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                  -1.4705 0.2477 -5.94 3.6e-05 ***
                                   0.8047 0.0867 9.28 2.3e-07 ***
log(Mass)
                                 1.2681 1.2854 0.99
Typenon-echolocating bats
                                                               0.34
Typenon-echolocating birds
                                -0.1103 0.3847 -0.29 0.78
log(Mass):Typenon-echolocating bats -0.2149 0.2236 -0.96 0.35
log(Mass):Typenon-echolocating birds 0.0307
                                             0.1028
                                                    0.30
                                                               0.77
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.19 on 14 degrees of freedom
Multiple R-squared: 0.983, Adjusted R-squared: 0.977
F-statistic: 163 on 5 and 14 DF, p-value: 6.7e-12
```

Categorical-categorical

Let category A and type 0 be the reference level. For observation i, let

- Y_i be the response,
- 1_i be a dummy variable for type 1,
- B_i be a dummy variable for category B, and
- C_i be a dummy variable for category C.

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 1_i + \beta_2 B_i + \beta_3 C_i.$$

The mean with an interaction is

$$\mu_i = \beta_0 + \beta_1 1_i + \beta_2 B_i + \beta_3 C_i + \beta_4 1_i B_i + \beta_5 1_i C_i.$$

Interpretation for the main effects model

The mean containing only main effects is

$$\mu_i = \beta_0 + \beta_1 1_i + \beta_2 B_i + \beta_3 C_i.$$

- β_0 is the expected response for category A and type 0
- ullet eta_1 is the change in response for moving from type 0 to type 1
- ullet β_2 is the change in response for moving from category A to category B
- ullet eta_3 is the change in response for moving from category A to category C

The means are then

		Category					
	Type	A	В	С			
-	0	β_0	$\beta_0 + \beta_2$	$\beta_0 + \beta_3$			
	1	$\beta_0 + \beta_1$	$\beta_0 + \beta_1 + \beta_2$	$\beta_0 + \beta_1 + \beta_3$			

Interpretation for the model with an interaction

The mean with an interaction is

$$\mu_i = \beta_0 + \beta_1 1_i + \beta_2 B_i + \beta_3 C_i + \beta_4 1_i B_i + \beta_5 1_i C_i.$$

- β₀ is the expected response for category A and type 0
- lacktriangledawn eta_1 is the change in response for moving from type 0 to type 1 for category A
- lacktriangle eta_2 is the change in response for moving from category A to category B for type 0
- lacktriangledown eta_3 is the change in response for moving from category A to category C for type 0
- lacktriangledown eta_4 is the difference in change in response for moving from category A to category B for type 1 compared to type 0
- \bullet β_5 is the difference in change in response for moving from category A to category C for type 1 compared to type 0

The means are then

	Category					
Туре	Α		В		C	
0	β_0	β_0	$+\beta_2$	β_0	$+\beta_3$	
1	$\beta_0 + \beta_1$	$\beta_0 + 1$	$\beta_1 + \beta_2 + \beta_3$	β_4 $\beta_0 + \beta_0$	$\beta_1 + \beta_3 + \beta_5$	

This is referred to as the cell-means model.

R code and output - main effects only

```
summary(lm(Cover~Block+Treat, case1301, subset=Block %in% c("B1", "B2") & Treat %in% c("L", "Lff", "Lff")))
Call:
lm(formula = Cover ~ Block + Treat, data = case1301, subset = Block %in%
   c("B1", "B2") & Treat %in% c("L", "Lf", "LfF"))
Residuals:
  Min
        1Q Median 3Q
                            Max
-2 333 -0 667 0 000 0 792 1 833
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.667 0.768 6.07 0.0003 ***
BlockB2
          2.167 0.768 2.82 0.0225 *
TreatLf
           -1.500
                     0.941 -1.59 0.1496
TreatLfF -3.000 0.941 -3.19 0.0128 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.33 on 8 degrees of freedom
Multiple R-squared: 0.694, Adjusted R-squared: 0.579
F-statistic: 6.04 on 3 and 8 DF, p-value: 0.0188
```

R code and output - with interaction

```
summary(lm(Cover~Block*Treat, case1301, subset=Block %in% c("B1", "B2") & Treat %in% c("L", "Lff", "Lff")))
Call:
lm(formula = Cover ~ Block * Treat, data = case1301, subset = Block %in%
   c("B1", "B2") & Treat %in% c("L", "Lf", "LfF"))
Residuals:
  Min
          10 Median
                             Max
                       30
-1.500 -0.625 0.000 0.625 1.500
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
             4 00e+00 8 90e-01 4 50 0 0041 **
             3.50e+00 1.26e+00 2.78 0.0319 *
BlockB2
TreatLf -2.72e-16 1.26e+00 0.00 1.0000
TreatLfF -2.50e+00 1.26e+00 -1.99 0.0941 .
BlockB2:TreatLf -3.00e+00 1.78e+00
                                    -1.69 0.1428
BlockB2:TreatLfF -1.00e+00 1.78e+00
                                    -0.56 0.5945
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.26 on 6 degrees of freedom
Multiple R-squared: 0.795, Adjusted R-squared: 0.623
F-statistic: 4.64 on 5 and 6 DF, p-value: 0.0443
```

When to include interaction terms

From _The Statistical Sleuth (3rd ed)_ page 250:

- when a question of interest pertains to an interaction
- when good reason exists to suspect interaction or
- when interactions are proposed as a more general model for the purpose of examining the goodness of fit of a model without interaction