

Uso de equipos del laboratorio e instrumentos de medida.

Objetivo

Conocer y hacer uso adecuado de los elementos de medición, estableciendo diferencias entre el empleo de las distintas escalas de los equipos y los tipos de medición de tensión (Valor eficaz, promedio (DC), máximos).

Preguntas

- 1. ¿Que tanto varia el valor de resistencia medido experimentalmente con respecto al mencionado por el fabricante? ¿Se encuentra dentro de la tolerancia?
- 2. ¿Que diferencia existe entre los valores de tensión y corriente medidos con un osciloscopio, un multímetro y la teoría?
- 3. ¿Que limitaciones tienen los equipos en cuanto a formas de onda y frecuencia en la práctica? ¿Concuerda con el fabricante?
- 4. ¿Que valor arroja el multímetro cuando mide una señal AC+DC?
- 5. ¿Que valor arroja el multímetro cuando mide una señal triangular?
- 6. Teniendo en cuenta las tolerancias de los elementos ¿Cual puede ser el error esperado en las mediciones?
- 7. ¿Que diferencia existe al medir con uno canal y con los dos canales del osciloscopio al mismo tiempo?
- 8. Usando el dato de exactitud del multímetro, ¿Cual es la incertidumbre de cada una de las medidas tomadas?

Actividades ha desarrollar en el laboratorio.

En esta práctica se deben realizar mediciones con el multímetro y con el osciloscopio mostrando las diferencias de medir con uno u otro elemento, empleando términos como: Precisión, Exactitud, Valor pico, Valor eficaz, Periodo y Frecuencia.

- 1. Mida 4 resistencias electrónicas diferentes (entre 10hm y 20Mohm) con el multímetro en varias escalas. Compare los resultados entre las escalas y explique las diferencias teniendo en cuenta el valor de tolerancia de cada resistencia.
- 2. Diseñe un circuito con mínimo 5 resistencias en serie y paralelo el cual se alimentará por una fuente DC. Asigne un valor de tensión a la fuente y seleccione las resistencias de tal forma que se cumplan las restricciones de potencia de los elementos. Realice los cálculos para encontrar las tensiones y corrientes de cada elemento. Posteriormente mida la tensión y la corriente de cada elemento con el multímetro y con el osciloscopio y concluya sobre las diferencias entre las mediciones y los cálculos.
- 3. Realice el mismo procedimiento anterior cambiando la fuente DC por:
 - Un generador de señales con onda seno (con baja y alta frecuencia).
 - Un generador de señales con onda seno + componente CD.
 - Un generador de señales con onda triangular.
- 4. Diseñe los circuitos que hagan falta para solucionar la totalidad de las preguntas. Concluya que sucede con las mediciones en cada caso.

Tenga en cuenta los siguientes comentarios.

- Realizar el preinforme e informe según se explicó la primera clase.
- Consultar los términos que no comprenda.
- Mencionar en cada caso el acople del osciloscopio.
- Calcular los errores relativos y absolutos de las mediciones para el informe.

Mucha Suerte.