Méthodes d'Estimation Série n°3 : Estimation ponctuelle

Exercice 1 Considérons une population constituée de trois types d'individus ayant des probabilités d'apparition θ^2 , $2\theta(1-\theta)$ et $(1-\theta)^2$, où $0 < \theta < 1$.

- 1. Montrer que $T_3 = \frac{N_1}{n} + \frac{N_2}{2n}$ est un estimateur obtenu par la méthode des moments de θ .
- 2. En utilisant l'estimateur obtenu en (1), donner un estimateur obtenu par la méthode des moments de $\lambda = \theta/(1-\theta)$. Quelle est sa loi asymptotique ?
- 3. Donner l'estimateur du maximum de vraisemblance de θ .

A.N.:
$$n = 3$$
; $x_1 = 1$; $x_2 = 2$ et $x_3 = 1$

Exercice 2 Considérons n objets ayant des durées de vie $X_1, ..., X_n$, supposées iid, de loi $\mathcal{E}(\lambda)$:

- 1. Trouver deux estimateurs de λ par la méthode des moments.
- 2. Trouver un estimateur de $P(X_1 \ge 1)$ par la méthode des moments.
- 3. Supposons que la durée de vie de ces n objets suit une loi $\Gamma(\theta, \lambda)$, θ et λ inconnus. Montrer que les estimateurs par la méthode des moments sont :

$$T_1 = \frac{\bar{X}^2}{S_n^2}$$
 et $T_2 = \frac{\bar{X}}{S_n^2}$

où S_n^2 est la variance empirique.

Exercice 3 Soit $\underline{X} = (X_1, \dots, X_n)$ un n-échantillon de loi de Poisson de paramètre $\theta > 0$ inconnu.

1. Montrer que l'estimateur par la méthode des moments déterminé à partir de $E(X^2)$ est

$$\widehat{\theta} = \frac{-1 + \sqrt{1 + (4/n) \sum_{i=1}^{n} X_i^2}}{2}$$

2. Déterminer la distribution asymptotique de $\widehat{\theta}$.

Indication: Rappelons que si X suit une loi de Poisson de paramètre θ , alors $Var(X^2) = 4\theta^3 + 6\theta^2 + \theta$.

Exercice 4 Soit $X_1,...,X_n$ un n-échantillon ayant les densités suivantes, trouver l'estimateur du maximum de vraisemblance de θ :

- 1. $f(x,\theta) = \theta e^{-\theta x}, x \ge 0, \theta > 0$.
- 2. $f(x,\theta) = \theta c^{\theta} x^{-(\theta+1)}, x \ge c, c \text{ constante strictement positive, } \theta > 0.$
- 3. $f(x,\theta) = c\theta^c x^{-(c+1)}, x \ge \theta$, c constante strictement supérieure à 1, $\theta > 0$.
- 4. $f(x,\theta) = \sqrt{\theta}x^{\sqrt{\theta}-1}, 0 \le x \le 1, \theta > 1.$
- 5. $f(x,\theta) = (x/\theta^2) \exp(-x^2/2\theta^2), x > 0, \theta > 0.$
- 6. $f(x,\theta) = \theta c x^{c-1} \exp(-\theta x^c), x \ge 0$, c constante strictement supérieure à 1 et $\theta > 0$.

Exercice 5 On observe un n-échantillon $(X_1,...,X_n)$ d'une variable aléatoire X de densité

$$f(x,\theta) = \exp(\theta - x) \mathbb{1}_{\{x \ge \theta\}}, \quad \theta > 0$$

Déterminer l'estimateur du maximum de vraisemblance T de θ et montrer que T est une statistique exhaustive pour θ .

Exercice 6 Supposons que $X_1, ..., X_n$ soit un n-échantillon de loi $\mathcal{N}(\mu, \sigma^2)$, μ et σ inconnus mais strictement positifs. Trouver l'estimateur du maximum de vraisemblance de (μ, σ^2) .

Exercice 7 Soit $\underline{X} = (X_1, \dots, X_n)$ un n-échantillon issu d'une loi de probabilité de fonction densité

$$f(x,\theta) = \theta (1-x)_{[0,1]}^{\theta-1} \mathbb{1}(x)$$

- 1. Calculer $E_{\theta}(X)$ et Var(X).
- 2. Proposer un estimateur $\hat{\theta}_1$ de θ par la méthode des moments.
- 3. Donner la loi asymptotique de $\widehat{\theta}_1$.
- 4. La densité $f(x,\theta)$ appartient-elle à la famille exponentielle ?
- 5. Proposer une statistique exhaustive pour le modèle et calculer son espérance.
- 6. Déterminer $\hat{\theta}_2$ l'estimateur du maximum de vraisemblance de θ .

Exercice 8 Soit(X,Y) un couple de variables aléatoires dont la loi jointe est définie par

$$P(X = s, Y = t) = p_{st}, (s, t) \in \{1, 2\}^2$$

Soit $\underline{X} = ((X_1, Y_1), \dots, (X_n, Y_n))$ un n-échantillon de même loi que (X, Y), on pose

$$N_{st} = \sum_{i=1}^{n} \mathbb{1}_{\{X_i = s\}} \mathbb{1}_{\{Y_i = t\}}$$

- 1. Quelles sont les lois marginales de X et de Y?
- 2. On suppose que l'ensemble des paramètres est défini par

$$\Theta = \{ \theta = (p_{11}, p_{12}, p_{21}) \in [0, 1]^3, et \ p_{22} = 1 - p_{11} - p_{12} - p_{21} \in [0, 1] \}$$

Le modèle $(P_{\theta}, \theta \in \Theta)$, où P_{θ} est la loi de (X, Y), est-il identifiable ?

- 3. Si $(x_1, y_1), \ldots, (x_n, y_n)$ sont des observations du n-échantillon \underline{X} , calculer la fonction vraisemblance de θ .
- 4. Donner une statistique exhaustive, autre que le n-échantillon \underline{X} , pour le paramètre θ .
- 5. Donner un estimateur de θ par la méthode des moments.
- 6. Donner la distribution asymptotique de l'estimateur calculé dans la question 5.