Universidade Tecnológica Federal do Paraná

Engenharia da Computação Lógica Reconfigurável

Relatório 3 - Display de 7 segmentos

Aluno: Eduardo Yuji Yoshida Yamada Professor orientador: Marcelo de Oliveira

Conteúdo

1	Introdução	1
2	Códigos	2
3	Foto da Placa	4
4	Pin Planner e Lista de Pinos	5
5	Diagramas RTL	7

1 Introdução

Nesta atividade, implementamos um código em VHDL que interage com dois displays de 7 segmentos (SSD - seven-segment display) e com 8 chaves (switches). Dessa forma:

- Para cada número, precisamos de 4 chaves (2⁴ > 9, ou seja, precisamos de 4 bits para contar até 9);
- Os segmentos são acesos com nível 0;
- Use o tipo std_logic_vector;
- Nomeie as portas dos SSDs de uma forma genérica (como SSD0, SSD1, etc), assim poderá aproveitar o Pin Planner nas próximas atividades;
- Você pode usar tanto o select quanto o when;
- Consulte o manual da placa para ver as pinagens.

2 Códigos

Nesse sentido, foi desenvolvido o seguinte código:

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity projeto3 is
    port (
        a, b: in std_logic_vector(3 downto 0); -- 4 bits
            para cada numero
        SSDO, SSD1: out std_logic_vector(7 downto 0) --
           7 segmentos para cada display
    );
end entity;
architecture projeto3 of projeto3 is
begin
    SSD0 <= "01000000" when a = "0000" else -- \theta
            "01111001" when a = "0001" else -- 1
            "00100100" when a = "0010" else -- 2
            "00110000" when a = "0011" else -- 3
            "00011001" when a = "0100" else -- 4
            "00010010" when a = "0101" else -- 5
            "00000010" when a = "0110" else -- 6
            "01111000" when a = "0111" else -- 7
            "00000000" when a = "1000" else -- 8
            "00010000" when a = "1001" else -- 9
            "11111111"; -- erro
    SSD1 <= "01000000" when b = "0000" else -- 0
            "01111001" when b = "0001" else -- 1
            "00100100" when b = "0010" else -- 2
            "00110000" when b = "0011" else -- 3
            "00011001" when b = "0100" else -- 4
            "00010010" when b = "0101" else -- 5
            "00000010" when b = "0110" else --
            "01111000" when b = "0111" else -- 7
            "00000000" when b = "1000" else -- 8
            "00010000" when b = "1001" else -- 9
            "11111111"; -- erro
```

end architecture;

Nesse código temos as portas a e b como portas de entrada e as portas SSD0 e SSD1 como portas de saída, dessa forma as portas de entrada ficaram alocadas em 8 switches, já as portas de saída ficaram alocadas nos dois displays, sendo o SSD0 o mais a direita, e o SSD1 a esquerda do SSD0.

3 Foto da Placa

Figura 1: Foto 1 da Placa

Figura 2: Foto 2 da Placa

4 Pin Planner e Lista de Pinos

Figura 3: Pin Planner

Node	Customi	Directio	Locatio	1/0	VREF	Fitter	1/0	Reserv	Current	Slew	Differe	Strict
Name	ze	n	n	Bank	Group	Locatio	Standar	ed	Strengt	Rate	ntial	Preserv
	Column s					n	d		h		Pair	ation
a[3]		Input	PIN_C1 2	7	B7_N0	PIN_C1	2.5 V		12mA (d efault)			
a[2]		Input	PIN_D1	7	B7_N0	PIN_D1	2.5 V		12mA (d efault)			
a[1]		Input	PIN_C1	7	B7_N0	PIN_C1	2.5 V		12mA (d efault)			
a[0]		Input	PIN_C1	7	B7_N0	PIN_C1	2.5 V		12mA (d efault)			
b[3]		Input	PIN_A1	7	B7_N0	PIN_A1	2.5 V		12mA (d efault)			
b[2]		Input	PIN_A1	7	B7_N0	PIN_A1	2.5 V		12mA (d efault)			
b[1]		Input	PIN_B1	7	B7_N0	PIN_B1	2.5 V		12mA (d efault)			
b[0]		Input	PIN_A1	7	B7_N0	PIN_A1	2.5 V		12mA (d efault)			
SSD0[7]		Output	PIN_D1 5	7	B7_N0	PIN_D1 5	2.5 V		12mA (d efault)	2 (defau lt)		
SSD0[6]		Output	PIN_C1	7	B7_N0	PIN_C1	2.5 V		12mA (d efault)	2 (defau lt)		
SSD0[5]		Output	PIN_D1	7	B7_N0	PIN_D1	2.5 V		12mA (d efault)	2 (defau lt)		
SSD0[4]		Output	PIN_E1	7	B7_N0	PIN_E1	2.5 V		12mA (d efault)	2 (defau lt)		
SSD0[3]		Output	PIN_C1	7	B7_N0	PIN_C1	2.5 V		12mA (d efault)	2 (defau lt)		
SSD0[2]		Output	PIN_C1 5	7	B7_N0	PIN_C1 5	2.5 V		12mA (d efault)	2 (defau lt)		
SSD0[1]		Output	PIN_E1 5	7	B7_N0	PIN_E1 5	2.5 V		12mA (d efault)	2 (defau lt)		
SSD0[0]		Output	PIN_C1 4	7	B7_N0	PIN_C1 4	2.5 V		12mA (d efault)	2 (defau lt)		
SSD1[7]		Output	PIN_A1 6	7	B7_N0	PIN_A1	2.5 V		12mA (d efault)	2 (defau lt)		
SSD1[6]		Output	PIN_B1 7	7	B7_N0	PIN_B1 7	2.5 V		12mA (d efault)	2 (defau lt)		
SSD1[5]		Output	PIN_A1 8	7	B7_N0	PIN_A1 8	2.5 V		12mA (d efault)	2 (defau lt)		

Figura 4: Tabela de pinagem

5 Diagramas RTL

Page 1 of 1

Revision: projeto3

Figura 5: RTL Viewer