Generalized Ensemble Sampling Methods

Scott C. Schmidler

Stat 863: Advanced Statistical Computing
Duke University
Fall 2018

Scott C. Schmidle

Generalized Ensemble Sampling Methods

Generalized ensemble methods

Sampling a standard Boltzmann distn

$$\pi(x) = \frac{1}{Z(\beta)}e^{-\beta H(x)}$$
 $\beta = \frac{1}{T}$

can view as assigning each state x weight $w(\beta, x) = e^{-\beta H(x)}$

Consider modifying $\tilde{\pi}(x) \propto \tilde{w}(x)\pi(x)$.

If \tilde{x} smoother, may be easier to explore. (e.g. tempering)

Scott C. Schmidle

Generalized Ensemble Sampling Method

Generalized ensemble methods

One idea: try to choose w(x) s.t. U = H(x) approx uniformly distributed.

I.e. if $x \sim \pi$, the marginal

$$\pi_U(u) = \frac{1}{Z(\beta)}\Omega(u)e^{-\beta u}$$

where $\Omega(u)$ is the *density of states* (spectral density)

If we can sample

$$x \sim \tilde{\pi}(x) \propto e^{-S(H(x))}$$

where $S(u) = \log(\Omega(u))$, then

$$\tilde{\pi}_U \propto c$$

Scott C. Schmidler

Generalized Ensemble Sampling Method

Generalized ensemble methods

If we can sample

$$x \sim \tilde{\pi}(x) \propto e^{-S(H(x))}$$

where $S(u) = \log(\Omega(u))$, then

$$\tilde{\pi}_U \propto c$$

- Multi-canonical sampling
- Wang-Landau algorithm

iteratively uptdate approximation $\hat{\Omega}(u)$ to spectral density $\Omega(u)$ to achieve this.

Originally developed for finite state spaces (e.g. spin systems).

Scott C. Schmidle

Generalized Ensemble Sampling Methods

Generalized Wang-Landau (Atchade & Liu, 2009)

Partition state space $\mathcal{X} = \mathcal{X}_0 \cup \ldots \cup \mathcal{X}_k$ according to predefined energy levels $-\infty \leq e_0 < e_1 < \cdots < e_k \leq \infty$.

Goal: Sample from $\tilde{\pi}(x) = \sum_{i=1}^k \frac{\pi(x)}{\pi(\mathcal{X}_i)} \mathbf{1}_{\mathcal{X}_i}(x)$ uniform energy

Algorithm: Adaptively estimate $\hat{\pi}_n(i) \approx \pi(\mathcal{X}_i)$ by SA: $\{\gamma_n\}$ a sequence of decreasing positive numbers. Initialize $\phi_0(i) > 0$ for $i = 1, \ldots, k$, and $\hat{\pi}_0(i) = \frac{\phi_0(i)}{\sum_i \phi_0(j)}$

- (i) Sample $X_{n+1} \sim \sum_{i=1}^k \frac{\pi(x)}{\hat{\pi}_n(i)} \mathbf{1}_{\mathcal{X}_i}(x)$ by MH.
- (ii) Set $\phi_{n+1}(i) = \phi_n(i) \left(1 + \gamma_{a_n} \mathbf{1}_{\{X_{n+1} \in \mathcal{X}_i\}} \right); \ \hat{\pi}_{n+1}(i) = \frac{\phi_{n+1}(i)}{\sum_j \phi_{n+1}(j)}$
- (iii) If $\max_i \left| v_{\kappa,n+1}(i) \frac{1}{k} \right| \leq \frac{c}{k}$ where $v_{\kappa,n}(i) = \frac{1}{n-\kappa} \sum_{j=\kappa+1}^n \mathbf{1}_{\{X_j \in \mathcal{X}_i\}}$ then set $\kappa = n+1$ and $a_{n+1} = a_n + 1$, otherwise $a_{n+1} = a_n$.

Improving on (generalized) Wang-Landau

Performance of the WL algorithm depends heavily on a good choice of the energy rings E_0, \ldots, E_k : number, spacing, max.

• Adaptive-energy GWL algorithm (AE-GWL), Wang & Schmidler (2011).

Monte-Carlo integration converges very slowly for WL

• Importance-resampling solution, Wang & Schmidler (2011).

Scott C. Schmidler Generalized Ensemble Sample

Scott C. Schmidler

Generalized Ensemble Sampling Methods

Example

Figure: Example 2, modes at (-5,-5) and (5,5)

Slow mixing of generalized Wang-Landau

(b) d = 4, fixed energy levels

Theorem (SW11b): GWL slowly mixing for geometric energy-levels.

Scott C. Schmidler

Generalized Encemble Sampling Methods

Energy level adaptation scheme

Performance of the WL algorithm depends heavily on a good choice of the energy rings E_0, \ldots, E_k .

We introduce an adaptive scheme to make updating energy levels fully automatic:

1 Initialize by a geometric progression:

$$e_0 = \inf E(x) = 0, \ e_1 = 1, \ e_2 = r_e, \dots, E_{k-1} = r_e^{k-2}, E_k = infty.$$

- **②** Every $n_{\rm split}$ iterations: if any $|\log(\phi_i) \log(\phi_{i+1})| > E$, divide the i-th energy ring by adding a new $e_{i+1}^* = e_i \times \sqrt{\frac{e_{i+1}}{e_i}}$, again using geometric progression. Set $\log(\phi_{i+1}^*) = 0$.
- **3** Also update the second largest e_i ;

$$E_{k-1}^* = \frac{E_{k-1}^2}{F_k}$$

Set $\log(\phi_k^*) = 0$.

 ${\sf Scott}\ {\sf C.}\ {\sf Schmidler}$

Generalized Ensemble Sampling Method

Adaptive Energy Generalized Wang-Landau (AE-GWL)

Algorithm: Adaptively estimate $\hat{\pi}_n(i) \approx \pi(\mathcal{X}_i)$ by SA: $\{\gamma_n\}$ a sequence of decreasing positive numbers. Initialize $\phi_0(i) > 0$ for $i = 1, \ldots, k$, and $\hat{\pi}_0(i) = \frac{\phi_0(i)}{\sum_j \phi_0(j)}$

(i) Sample
$$X_{n+1} \sim \sum_{i=1}^k \frac{\pi(x)}{\hat{\pi}_n(i)} \mathbf{1}_{\mathcal{X}_i}(x)$$
 by MH.

(ii) Set
$$\phi_{n+1}(i) = \phi_n(i) \left(1 + \gamma_{a_n} \mathbf{1}_{\{X_{n+1} \in \mathcal{X}_i\}}\right)$$
 and $\hat{\pi}_{n+1}(i) = \frac{\phi_{n+1}(i)}{\sum_j \phi_{n+1}(j)}$.

(iii) If
$$\max_i \left| v_{\kappa,n+1}(i) - \frac{1}{k} \right| \leq \frac{c}{k}$$
 where $v_{\kappa,n}(i) = \frac{1}{n-\kappa} \sum_{j=\kappa+1}^n \mathbf{1}_{\{X_j \in \mathcal{X}_i\}}$ then set $\kappa = n+1$ and $a_{n+1} = a_n + 1$, otherwise $a_{n+1} = a_n$.

(iv)* For every n_{split} iterations, adaptively update $E = \{E_i\}$.

Scott C. Schmidle

Generalized Ensemble Sampling Methods

Example

(c) d=4, update internal energy levels

$\frac{1}{L}$ -ensemble method

- Tries to make entropy variable uniformly distributed.
- Estimates k(H(x)) the number states with smaller or equal energy

Scott C. Schmidle

Generalized Ensemble Sampling Method

Scott C. Schmidler

Generalized Ensemble Sampling Methods

Generalized ensemble sampling

Note that all these methods modify the target distn $\pi(\mathbf{x})$ to speed up sampling.

How to recover samples/integrals of interest?

Reweighting: importance sampling estimators.

But may be highly variable...

Can we use a similar idea to speed up sampling of π itself?

Equi-Energy Sampler [Kou et al., 2006]

Constructs I processes $X^{(i)}$ with tempered target densities $\pi^{(i)} \propto \pi^{\beta_i}$ for inverse temperatures $1 = \beta_1 > \ldots > \beta_I \geq 0$.

For each i, bin sample history $(X_{0:n}^{(i)})$ according to energy.

Process $X^{(i)}$ occasionally proposes to move to a state previously visited by $X^{(i+1)}$ lying in same energy bin.

These "equi-energy" moves can be non-local in the state space, potentially enabling transitions between distinct modes of π .

Scott C. Schmidler

Seneralized Ensemble Sampling Methods

Scott C. Schmidler

Generalized Ensemble Sampling Methods