On the Time Complexity of Distributed Topological Self-Stabilization

Andrea Richa

Joint work with Dominik Gall, Riko Jacob, Christian Scheideler, Stefan Schmid, and Hanjo Täubig

Arizona State University

LATIN 2010

Reminder: Purpose of a Model

A model should reflect reality

- accurately enough
- simply enough

to say something interesting.

The execution time of a parallel/distributed algorithm heavily depends on how parallelism is modeled:

- too loose: too many operations (some possibly conflicting) executed in one round
- too rigid: may "force" a sequential execution of the operations when parallelism could still be exploited

We present an execution framework for local topological algorithms, which sheds new light on the achievable paralellism

Reminder: Purpose of a Model

A model should reflect reality

- accurately enough
- simply enough

to say something interesting.

The execution time of a parallel/distributed algorithm heavily depends on how parallelism is modeled:

- too loose: too many operations (some possibly conflicting) executed in one round
- too rigid: may "force" a sequential execution of the operations when parallelism could still be exploited

We present an execution framework for local topological algorithms, which sheds new light on the achievable paralellism

System State

Graph G on n nodes

Local actions

between neighbors

Gna

System State

Graph G on n nodes

Local actions

change edges between neighbors

Gna

System State

Graph G on n nodes

Local actions

change edges between neighbors

Gna

System State

Graph G on n nodes

Local actions

change edges between neighbors

Goal

System State

Graph G on n nodes

Local actions

change edges between neighbors

Goal

Outline

- Setup
- 2 Linearization
- Framework
- Table of Results

Problem

Initial State Arbitrary connected graph on $\{1, ..., n\}$

Goal Edges of the form $\{i, i+1\}$

Problem

Initial State Arbitrary connected graph on $\{1, ..., n\}$

Goal Edges of the form $\{i, i+1\}$

Problem

Problem

Problem

$$t = 1$$

Problem

$$t = 2$$

Problem

$$t = 3$$

Known result

Theorem

[Onus, Richa, Scheideler '06]

The presented linearization algorithm takes $\Theta(n)$ rounds

Lower bound

Upper bound

For every missing edge $\{k, k+1\}$:

Consider the length of the shortest interval [i,j] s.t. k and k+1 are connected in the subgraph induced by $\{i,\ldots,k,\ldots,j\}$. This length is reduced in every step by at least one.

Known result

Theorem

[Onus, Richa, Scheideler '06]

The presented linearization algorithm takes $\Theta(n)$ rounds

Upper bound

For every missing edge $\{k, k+1\}$:

Consider the length of the shortest interval [i,j] s.t. k and k+1 are connected in the subgraph induced by $\{i,\ldots,k,\ldots,j\}$. This length is reduced in every step by at least one.

Known result

Theorem

[Onus, Richa, Scheideler '06]

The presented linearization algorithm takes $\Theta(n)$ rounds

Lower bound

Upper bound

For every missing edge $\{k, k+1\}$:

Consider the length of the shortest interval [i,j] s.t. k and k+1 are connected in the subgraph induced by $\{i,\ldots,k,\ldots,j\}$.

This length is reduced in every step by at least one.

High degree nodes

Executing the rule should take time proportional to the degree.

Concurrent access

Nodes should not participate "passively" in more than one execution of the rule.

High degree nodes

Executing the rule should take time proportional to the degree.

Concurrent access

Nodes should not participate "passively" in more than one execution of the rule.

Atomic Rule

The previous algorithm: Example with 3 triples

ldea: Scheduler

In every round, a scheduler decides on the executed triples. For example, an independent set of rules (matching)

Atomic Rule

Idea: Scheduler

In every round, a scheduler decides on the executed triples For example, an independent set of rules (matching)

Atomic Rule

Idea: Scheduler

In every round, a scheduler decides on the executed triples. For example, an independent set of rules (matching)

Variants of the Algorithm

Framework for different models of execution

Rounds

Execution progresses in synchronous rounds; these are counted

Scheduler

In every round, the set of active rules is determined, and a scheduler decides which rules are executed in this round

Matching

The rules define hyperedges on 3 nodes. A matching is a set of hyperedges that do not share nodes.

Framework for different models of execution

Rounds

Execution progresses in synchronous rounds; these are counted

Scheduler

In every round, the set of active rules is determined, and a scheduler decides which rules are executed in this round

Matching

The rules define hyperedges on 3 nodes. A matching is a set of hyperedges that do not share nodes.

Framework for different models of execution

Rounds

Execution progresses in synchronous rounds; these are counted

Scheduler

In every round, the set of active rules is determined, and a scheduler decides which rules are executed in this round

Matching

The rules define hyperedges on 3 nodes.

A matching is a set of hyperedges that do not share nodes.

Best Case Schedule

Algorithm chooses a matching Realistic parallelism, but centrally coordinated

Randomized Scheduler

Takes random maximal matching

Worst Case Scheduler

An adversary chooses dominating set of actions

Very realistic, even if not synchronized

All rules

[Onus, Richa, Scheideler '06]

Fire all allowed actions; insertion is stronger than deletion

Unrealistic, easy to analyze.

Antichain [Critical Path, Blumofe, Leiserson '93]

Best Case Scheduler

Algorithm chooses a matching
Realistic parallelism, but centrally coordinated

Randomized Scheduler

Takes random maximal matching

Worst Case Scheduler

An adversary chooses dominating set of actions

Very realistic, even if not synchronized

All rules

Onus, Richa, Scheideler '06]

Fire all allowed actions; insertion is stronger than deletion

Unrealistic, easy to analyze.

Antichain [Critical Path, Blumofe, Leiserson '93]

Best Case Scheduler

Algorithm chooses a matching
Realistic parallelism, but centrally
coordinated

Randomized Scheduler

Takes random maximal matching

Worst Case Scheduler

An adversary chooses dominating set of actions

Very realistic, even if not synchronized

All rules

Onus, Richa, Scheideler '06]

Fire all allowed actions; insertion is stronger than deletion

Unrealistic, easy to analyze.

Antichain [Critical Path, Blumofe, Leiserson '93]

Best Case Scheduler

Algorithm chooses a matching
Realistic parallelism, but centrally coordinated

Randomized Scheduler

Takes random maximal matching

Worst Case Scheduler

An adversary chooses dominating set of actions

Very realistic, even if not synchronized

All rules [Onus, Richa, Scheideler '06]

Fire all allowed actions; insertion is stronger than deletion

Unrealistic, easy to analyze.

Antichain [Critical Path, Blumofe, Leiserson '93]

Best Case Scheduler

Algorithm chooses a matching
Realistic parallelism, but centrally
coordinated

Randomized Scheduler

Takes random maximal matching

Worst Case Scheduler

An adversary chooses dominating set of actions

Very realistic, even if not synchronized

All rules

[Onus, Richa, Scheideler '06]

Fire all allowed actions; insertion is stronger than deletion

Unrealistic, easy to analyze.

Antichain [Critical Path, Blumofe, Leiserson '93]

Algorithm LinAll with best case scheduler

Theorem

There exists a scheduler such that for any connected initial graph G_0 the algorithm LinAll converges in $O(n \log n)$ steps.

Proof

Define potential $\sum_{(i,j)\in E} |j-i|$

Scheduler: choose matching greedily according to potential ("longest and second longest edge on highest degree node").

One matching reduces potential by factor $1 - 1/\Theta(n)$.

Round *k* can happen if $n^3(1-1/cn)^k \ge n-1$; solve for *k*

Summary of Linearization Results

Summary

scheduler	time	work	
*	$\Omega(n)$	$\Omega(n)$	
all	O(n)	$O(n^2)$	
best-case	$O(n \log n)$		
worst-case	$O(n^2 \log n)$	` '	
critical-path	$\Theta(n^3)$	$\Theta(n^3)$	
worst-case	$\Theta(n^2)$	$\Theta(n^2)$	
critical-path	$O(n^2)$	$O(n^2)$	
	* all best-case worst-case critical-path worst-case	$\begin{array}{ccc} & & & \Omega(n) \\ & \text{all} & & O(n) \\ \text{best-case} & & O(n\log n) \\ \text{worst-case} & & O(n^2\log n) \\ \text{critical-path} & & \Theta(n^3) \\ \text{worst-case} & & \Theta(n^2) \end{array}$	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $

Open Questions

LinMax or LinAll with best-case or randomized scheduler $\Theta(n)$?

Experimental Results: LinAll, Randomized Scheduler

Experimental Results: LinMax, Randomized Scheduler

More future work

 Can we devise local, distributed algorithms that implement (approximations of) the proposed schedulers? Thank you! Questions?