

HLK-LD2450 运动目标探测跟踪模组 串口通信协议

版本: V1.02 修改日期: 2023-9-7 版权所有@深圳市海凌科电子有限公司

目 录

1	通信接口简介	4
	1.1 引脚定义	4
	1.2 使用和配置	4
	1.2.1 典型应用电路	4
	1.2.2 可视化上位机工具说明	5
2	通信协议	6
	2.1 协议格式	6
	2.1.1 协议数据格式	6
	2.1.2 命令协议帧格式	6
	2.2 发送命令与ACK	7
	2.2.1 使能配置命令	7
	2.2.2 结束配置命令	7
	2.2.3 单目标追踪	7
	2.2.4 多目标追踪	8
	2.2.5 读取固件版本命令	8
	2.2.6 设置串口波特率	8
	2.2.7 恢复出厂设置	g
	2.2.8 重启模块	10
	2.2.9 蓝牙设置	10
	2.2.10 获取mac地址	10
	2.2.11 查询当前的区域过滤配置	11
	2.2.12 设置区域过滤配置	11
	2.3 雷达数据输出协议	12
	2.4 雷达命令配置方式	13
3	修订记录	14
4	技术支持和联络方式	14

图表索引

表	1	51脚定义表	4
		发送命令协议帧格式	
		发送帧内数据格式	
		ACK命令协议帧格式	
表	5	ACK帧内数据格式	(
表	6	串口波特率选择	9
表	7	出厂默认配置值	9
		区域过滤配置值格式	
		上报数据帧格式	
表	10	帧内数据格式	. 12
		模块引脚定义图	
冬	2	雷达命令配置流程	. 13

1 通信接口简介

1.1 引脚定义

图 1 模块引脚定义图

引脚名称	功能			
5V	供电电源输入 5V			
GND	电源地			
Тх	串口Tx引脚			
Rx	串口Rx引脚			

表 1 引脚定义表

1.2 使用和配置

1.2.1 典型应用电路

LD2450模组直接通过串口按照规定的协议进行检测结果数据的输出,串口输出数据中包含有最多三个目标的位置和速度等信息,用户可根据具体应用场景灵活使用。

模块供电电压5V,输入电源的供电能力要求大于200mA。

模块IO输出电平为3.3V。串口默认波特率256000, 1停止位,无奇偶校验位。

1.2.2 可视化上位机工具说明

我司提供了LD2450的可视化上位机演示软件,方便用户直观体验雷达模块对目标的定位跟踪效果。

上位机工具使用方法:

- 1.用USB转串口工具正确连接模组串口,模块引脚说明请查看表 1 引脚定义表;
- 2.打开ICLM_MTT.exe上位机工具软件,点击检测设备按钮,上位机软件自动通过串口搜索LD2410模块; 检测到模块后,上位机软件会有如下图的提示

4. 然后点击开始按钮,上位机软件将会接收LD2450模块上报的检测数据,并实时显示在软件面上。

显示内容包括:在扇形图上的最多三个目标的实时位置,每个目标的距离、角度和速度信息。

2 通信协议

本通信协议主要供需脱离可视化工具进行二次开发的用户使用。LD2450通过串口(TTL电平)与外界通信。雷达的数据输出与参数配置命令均在本协议下进行。雷达串口默认波特率为256000,1停止位,无奇偶校验位。

2.1 协议格式

2.1.1 协议数据格式

LD2450的串口数据通信使用小端格式,以下表格中所有数据均为十六进制。

2.1.2 命令协议帧格式

协议定义的雷达配置命令和ACK命令格式如表1至表4所示。

表 2 发送命令协议帧格式

帧头	帧内数据长度	帧内数据	帧尾
FD FC FB FA	2字节	见表 3	04 03 02 01

表 3 发送帧内数据格式

命令字 (2字节)	命令值 (N字节)
-----------	-----------

表 4 ACK命令协议帧格式

帧头 帧内数据长度		帧内数据	帧尾
FD FC FB FA	2字节	见表 5	04 03 02 01

表 5 ACK帧内数据格式

发送命令字 0x0100 (2字节)	返回值 (N字节)
----------------------	-----------

2.2 发送命令与ACK

2.2.1 使能配置命令

对雷达下发的任何其他命令必须在此命令下发后方可执行,否则无效。

命令字: 0x00FF

命令值: 0x0001

返回值: 2字节ACK状态 (0成功, 1失败) + 2字节协议版本 (0x0001) + 2字节缓冲区大小 (0x0040)

发送数据:

FD FC FB FA	04 00	FF 00	01 00	04 03 02 01

雷达ACK(成功):

FD FC FB FA	08 00	FF 01	00 00	01 00	40 00	04 03 02 01
-------------	-------	-------	-------	-------	-------	-------------

2.2.2 结束配置命令

结束配置命令,执行后雷达恢复工作模式。如需再次下发其他命令,需要先发送使能配置命令。

命令字: 0x00FE

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00		0	FE 00	04 03 02 01
雷达ACK(成功):				
FD FC FB FA	04 00	FE 01	00 00	04 03 02 01

2.2.3 单目标追踪

设置为单目标追踪,模块启动时默认为多目标追踪。

命令字: 0x0080

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	02 00	80 00	04 03 02 01
-------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00 80 01 00 00 04 03 02 01	
---	--

2.2.4 多目标追踪

设置为多目标追踪,模块启动时默认为多目标追踪。

命令字: 0x0090

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00	90 00	04 03 02 01
-------------------	-------	-------------

雷达ACK(成功):

04 00 90 01 00 00 04 03 02 01		04 00	FD FC FB FA
-------------------------------------	--	-------	-------------

2.2.5 读取固件版本命令

此命令读取雷达固件版本信息。

命令字: 0x00A0

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) +2字节固件类型 (0x0000) +2字节主版本号 +4字节次

版本号

发送数据:

FD FC FB FA 02 00 A0 00 04 03 02 01

雷达ACK(成功):

对应的版本号为V1.02.22062416

2.2.6 设置串口波特率

此命令用来设置模块串口的波特率,配置值掉电不丢失,配置值在重启模块后生效。

命令字: 0x00A1

命令值: 2字节波特率选择索引

返回值: 2字节ACK状态 (0成功, 1失败)

表 6 串口波特率选择

波特率选择索引值	波特率
0x0001	9600
0x0002	19200
0x0003	38400
0x0004	57600
0x0005	115200
0x0006	230400
0x0007	256000
0x0008	460800

出厂默认值为0x0007, 即256000

发送数据:

FD FC FB FA	04 00	A1 00	07 00	04 03 02 01
-------------	-------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00 A1 01 00 00 04 03 0	01
---------------------------------------	----

2.2.7 恢复出厂设置

此命令用来将所有配置值恢复未出厂值,配置值在重启模块后生效。

命令字: 0x00A2

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	02 00	A2 00	04 03 02 01
-------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00	A2 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

出厂默认配置值如下:

表 7 出厂默认配置值

配置项	默认值
串口波特率	256000
蓝牙开关	开

2.2.8 重启模块

模块收到此命令,将会在应答发送完成后自动重启。

命令字: 0x00A3

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	02 00	A3 00	04 03 02 01	
雷达ACK(成功):				
FD FC FB FA	04 00	A3 01	00 00	04 03 02 01

2.2.9 蓝牙设置

此命令用于控制蓝牙的开启或关闭,模块的蓝牙功能默认为开启。配置值掉电不丢失,配置值在重启模块后生效。

命令字: 0x00A4

命令值: 0x0100 打开蓝牙 0x0000关闭蓝牙

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	04 00	A4 00	01 00	04 03 02 01
表示打开蓝牙				
雷达ACK(成功):				
FD FC FB FA	04 00	A4 01	00 00	04 03 02 01

2.2.10获取mac地址

此命令用于查询MAC地址

命令字: 0x00A5 命令值: 0x0001

返回值: 2字节ACK状态(0成功,1失败)+1字节固定类型(0x00)+3字节 MAC地址(大端序)

发送数据:

FD FC FB FA	04 00	A5 00	01 00	04 03 02 01
雷达ACK(成功):				

FD FC FB FA 0A 00 A5 01 00 00 8F 27 2E B8 0F 65 04 03 02 01

查询到的mac地址是: 8F 27 2E B8 0F 65

2.2.11查询当前的区域过滤配置

此命令用于查询模块当前的区域过滤配置

命令字: 0x00C1

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) + 2字节区域过滤类型+24字节区域坐标配置

区域过滤类型	区域一坐标设置	区域二坐标设置	区域三坐标设置
signed int16类型 0 关闭区域过滤功能 1 仅检测设置的区域 2 不检测设置的区域	设置矩形区域的对角两个顶点的坐标值; 每个顶点分别用x和y坐标表示,坐标值格 式为signed int16类型,单位mm; 所有坐标值为0代表此区域未使用;	设置值的格式同区域一设置格式	设置值的格式同区域一 设置格式

表 8 区域过滤配置值格式

发送数据:

FD FC FB FA	02 00	C1 00	04 03 02 01

雷达ACK(成功):

代表当前的配置内容为: 仅检测两个两个对角顶点坐标(1000,1000)和(-1000,5000)划定的矩形区域中的目标

2.2.12 设置区域过滤配置

此命令用于设置模块的区域过滤配置,配置值掉电不丢失,设置后立即生效

命令字: 0x00C2

命令值: 26个字节的区域过滤配置值, 值格式见表 8 区域过滤配置值格式表

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	1C 00	C2 00	02 00	E803 E803 18FC 8813	0000 0000 0000 0000	0000 0000 0000 0000	04 03 02 01
-------------	-------	-------	-------	---------------------	---------------------	---------------------	-------------

代表设置为:不检测两个两个对角顶点坐标(1000,1000)和(-1000,5000)划定的矩形区域中的目标

雷达ACK(成功):

FD FC FB FA 04 00	C2 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

2.3 雷达数据输出协议

LD2450模组通过串口与外界通信,输出检测到的目标信息,包括在区域中的x坐标,y坐标,以及目标的速度值。

雷达串口默认波特率为 256000, 1停止位, 无奇偶校验位。

雷达上报的数据格式如下表所示,每秒上报10帧。

帧头部	帧内数据			帧尾部
AA FF 03 00	目标1信息	目标2信息	目标3信息	55 CC

表 9 上报数据帧格式

其中单个目标具体包含的信息如下表所示

目标X坐标	目标y坐标	目标速度	距离分辨率
signed int16类型,最高 位1对应正坐标,0对应 负坐标,单位mm	signed int16类型,最高 位1对应正坐标,0对应 负坐标,单位mm	signed int16类型,最高位1对 应正向速度,0对应负向速度, 另外15位对应速度,单位 cm/s	uint16 类型,单个距 离门大小,单位 mm

表 10 帧内数据格式

数据示例:

该组数据表示雷达当前跟踪到了一个目标即目标1(示例中蓝色字段),目标2和目标3(分别对应示例中的红色和黑色字段)不存在,故其相应数据段为 0x00。将目标1的数据转换为相关信息的过程展示如下:

目标1 x坐标: 0x0E + 0x03 * 256 = 782

0 - 782 = -782 mm

目标1 y坐标: 0xB1 + 0x86 * 256 = 34481

34481 - 2^15 = 1713 mm

目标1速度: 0x10 + 0x00 * 256 = 16

0 - 16 = -16 cm/s

目标1距离分辨率: 0x40 +0x01* 256 = 320 mm

2.4 雷达命令配置方式

LD2450雷达执行一条配置命令的过程包含上位机"发送命令"与雷达"回复命令ACK"两个环节。若雷达无ACK回复或回复ACK失败,则说明雷达执行配置命令失败。

如前所述,向雷达发送任何其他命令前,开发者需先发送"使能配置"命令,然后在规定时间内发送配置命令。命令配置完成之后,发送"结束配置"命令告知雷达配置已经结束。

例如,若要读取雷达配置参数,首先上位机发送"使能配置"命令;待收到雷达ACK成功后,再发送"读取参数"命令;待收到雷达ACK成功后,最后发送"结束配置"命令;待雷达ACK成功后,表明完整的读取参数动作结束。

雷达命令配置流程如下图所示。

图 2 雷达命令配置流程

3 修订记录

日期	版本	修改内容
2023-8-2	1.01	初始版本
2023-9-7	1.02	增加区域过滤功能相关配置命令

4 技术支持和联络方式

深圳市海凌科电子有限公司

地址: 深圳市龙华区民治街道民乐社区星河WORLD E栋大厦17层1705

电话: 0755-23152658/83575155

网址: www.hlktech.com

