Additional Note for The Derivative of an Inverse Function

1) Derivative of an Inverse Function

Theorem 1

Let f be differentiable and have an inverse on an interval I. If x_0 is a point of I at which $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
, where $y_0 = f(x_0)$.

Proof: Before doing a short calculation, we note two facts:

- At a point x_0 where f is differentiable, $y_0 = f(x_0)$ and $x_0 = f^{-1}(y_0)$.
- As a differentiable function, f is continuous at x_0 (Theorem 3.1), which implies that f^{-1} is continuous at y_0 (Theorem 2.13). Therefore, as $y \to y_0$, $x \to x_0$.

Using the definition of the derivative, we have

$$(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$
 Definition of derivative of f^{-1}

$$= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} \qquad y = f(x) \text{ and } x = f^{-1}(y); \ x \to x_0 \text{ as } y \to y_0$$

$$= \lim_{x \to x_0} \frac{1}{f(x) - f(x_0)} \qquad \frac{a}{b} = \frac{1}{b/a}$$

$$= \frac{1}{f'(x_0)}.$$
 Definition of derivative of f

We have shown that $(f^{-1})'(y_0)$ exists (f^{-1}) is differentiable at y_0 and it equals the reciprocal of $f'(x_0)$.

2) Example

EXAMPLE 5 Derivative of an inverse function The function $f(x) = \sqrt{x} + x^2 + 1$ is one-to-one, for $x \ge 0$, and has an inverse on that interval. Find the slope of the curve $y = f^{-1}(x)$ at the point (3, 1).

SOLUTION The point (1,3) is on the graph of f; therefore, (3,1) is on the graph of f^{-1} . In this case, the slope of the curve $y = f^{-1}(x)$ at the point (3,1) is the reciprocal of the slope of the curve y = f(x) at (1,3) (Figure 3.66). Note that $f'(x) = \frac{1}{2\sqrt{x}} + 2x$, which means that $f'(1) = \frac{1}{2} + 2 = \frac{5}{2}$. Therefore,

$$(f^{-1})'(3) = \frac{1}{f'(1)} = \frac{1}{5/2} = \frac{2}{5}.$$

Observe that it is not necessary to find a formula for f^{-1} in order to evaluate its derivative at a point.

Related Exercises 40–50

Related Exercises 40–50

FIGURE 3.66

Additional Note for The Derivative of an Inverse Function

3) Exercises

37–42. Derivatives of inverse functions at a point *Find the derivative of the inverse of the following functions at the specified point on the graph of the inverse function. You do not need to find* f^{-1} .

37.
$$f(x) = 3x + 4$$
; (16, 4)

38.
$$f(x) = \frac{1}{2}x + 8$$
; (10, 4)

39.
$$f(x) = -5x + 4$$
; $(-1, 1)$

40.
$$f(x) = x^2 + 1$$
, for $x \ge 0$; $(5, 2)$

41.
$$f(x) = \tan x$$
; $(1, \pi/4)$

42.
$$f(x) = x^2 - 2x - 3$$
, for $x \le 1$; $(12, -3)$

43–46. Slopes of tangent lines *Given the function f, find the slope of the line tangent to the graph of* f^{-1} *at the specified point on the graph of* f^{-1} .

43.
$$f(x) = \sqrt{x}$$
; (2, 4)

44.
$$f(x) = x^3$$
; (8, 2)

45.
$$f(x) = (x + 2)^2$$
; (36, 4)

46.
$$f(x) = -x^2 + 8$$
; (7, 1)

47-50. Derivatives and inverse functions

47. Find
$$(f^{-1})'(3)$$
 if $f(x) = x^3 + x + 1$.

48. Find the slope of the curve $y = f^{-1}(x)$ at (4, 7) if the slope of the curve y = f(x) at (7, 4) is $\frac{2}{3}$.

49. Suppose the slope of the curve $y = f^{-1}(x)$ at (4,7) is $\frac{4}{5}$. Find f'(7).

50. Suppose the slope of the curve y = f(x) at (4, 7) is $\frac{1}{5}$. Find $(f^{-1})'(7)$.

4) Answers to Exercises

37
$$f(4) = 16$$
 so $(f^{-1})'(16) = \frac{1}{f'(4)} = \frac{1}{3}$.

38
$$f(4) = 10$$
 so $(f^{-1})'(10) = \frac{1}{f'(4)} = \frac{1}{1/2} = 2$.

39
$$f(1) = -1$$
 so $(f^{-1})'(-1) = \frac{1}{f'(1)} = \frac{1}{-5} = \frac{-1}{5}$.

40
$$f(2) = 5$$
 so $(f^{-1})'(5) = \frac{1}{f'(2)} = \frac{1}{4}$.

41
$$f\left(\frac{\pi}{4}\right) = 1$$
 so $(f^{-1})'(1) = \frac{1}{f'\left(\frac{\pi}{4}\right)} = \frac{1}{\sec^2\left(\frac{\pi}{4}\right)} = \frac{1}{2}$.

42
$$f(-3) = 12$$
 so $(f^{-1})'(12) = \frac{1}{f'(-3)} = \frac{1}{-8} = \frac{-1}{8}$.

43
$$f(4) = 2$$
 so $(f^{-1})'(2) = \frac{1}{f'(4)} = \frac{1}{(1/2\sqrt{4})} = 4$.

44
$$f(2) = 8$$
 and $(f^{-1})'(8) = \frac{1}{f'(2)} = \frac{1}{3 \cdot 2^2} = \frac{1}{12}$.

45
$$f(4) = 36$$
 and $(f^{-1})'(36) = \frac{1}{f'(4)} = \frac{1}{2(4+2)} = \frac{1}{12}$.

46
$$f(1) = 7$$
 and $(f^{-1})'(7) = \frac{1}{f'(1)} = \frac{1}{-2 \cdot 1} = \frac{-1}{2}$.

47 Note that
$$f(1) = 3$$
. So $(f^{-1})'(3) = \frac{1}{f'(1)} = \frac{1}{4}$.

48
$$(f^{-1})'(4) = \frac{1}{f'(7)} = \frac{1}{2/3} = \frac{3}{2}$$
.

49
$$(f^{-1})'(4) = \frac{1}{f'(7)} = \frac{4}{5}$$
, so $f'(7) = \frac{5}{4}$.

.50
$$(f^{-1})'(7) = \frac{1}{f'(4)} = \frac{1}{1/5} = 5.$$