

What is claimed is:

1 1. In an integrated circuit wireless communication device, a method for
2 Viterbi decoding comprising:
3 receiving a transmitted signal over a channel substantially characterized by a
4 scalar gain value and a noise value;
5 processing the gain value and noise value to determine a branch metric by
6 determining a log of the scalar gain value and subtracting therefrom a log of the noise
7 value and subtracting therefrom the log of a first constant to form a first sum, and
8 determining an antilog of the first sum and subtracting therefrom a second constant to
9 form a second sum, the second sum corresponding to the branch metric; and
10 providing the branch metric to a Viterbi decoder.

1 2. The method of claim 1, wherein the processing of the gain value and noise
2 value to determine a branch metric scaling further comprises adding a log of a location
3 information scaling factor to the first sum.

1 3. The method of claim 1, wherein the processing of the gain value and noise
2 value to determine a branch metric further comprises rounding out any fractional bits in
3 the second sum.

1 4. The method of claim 1, wherein the processing of the gain value and noise
2 value to determine a branch metric further comprises saturating the second sum.

1 5. The method of claim 1, wherein the processing of the gain value and noise
2 value to determine a branch metric further comprises using a processor to calculate a

3 branch metric (M) using the equation $M = \left\lceil \frac{1}{C_1} \frac{|H|^2 k_{loc}^2}{\sigma^2} - C_2 \right\rceil.$

1 6. The method of claim 1, wherein the log of the scalar gain value is
2 determined by:
3 determining a lower integer boundary L for the scalar gain value which is a bit

4 position of a most significant “1” in a binary representation of the scalar gain value;
5 interpolating an interpolated value between L and L+1 using a lookup table
6 indexed by P next most significant bits of the scalar gain value; and
7 concatenating the lower integer boundary L and the interpolated value to form the
8 log of the scalar gain value.

1 7. The method of claim 6, wherein the determination of a lower integer
2 boundary L comprises left shifting the scalar gain value a required number of shifts until
3 an N-1 bit position contains a one value, and then subtracting the required number of
4 shifts from the N-1 value.

1 8. The method of claim 1, wherein the log of the noise value is determined
2 by:

3 determining a first value which is a bit position of the most significant “1” in an
4 N-bit binary representation of the noise value;
5 determining a second value by interpolating between the first value and the first
6 value plus one using a lookup table; and
7 concatenating the first value and the second value as a most significant bits
8 portion and least significant bits portion, respectively, to form the log of the noise value.

1 9. The method of claim 1, wherein the antilog of the first sum is determined
2 by:

3 right shifting the first sum by R bits to generate a left shift control signal; and
4 using the R least significant bits of the first sum as an index into a lookup table to
5 generate an intermediate value which is left shifted under control of the left shift control
6 signal to generate the antilog of the first sum.

1 10. The method of claim 1, wherein the processing of the gain value and noise
2 value are performed by a PHY module in a wireless interface device.

1 11. An article of manufacture having at least one recordable medium having
2 stored thereon executable instructions and data which, when executed by at least one

3 processing device, cause the at least one processing device to compute a branch metric
4 for a Viterbi decoder, comprising implementing a multiplication operation of a first term
5 and a second term in the branch metric computation by:
6 adding a log of the first term to a log of the second term to form a first sum; and
7 determining the antilog of the first sum.

1 12. The article of manufacture of claim 11, wherein the processing device
2 computes a branch metric for a Viterbi decoder by
3 computing a $\log_2|H|^2$ value, where H represents a scalar gain value for a
4 transmission channel;
5 subtracting a $\log_2\sigma^2$ value from the $\log_2|H|^2$ value to form a first sum, where σ^2
6 represents the a noise variance value for the transmission channel;
7 subtracting a $\log_2 C_1$ value from the first sum to form a second sum, where the C_1
8 value has been pre-computed and stored in memory;
9 computing an antilog of the second sum; and
10 subtracting a C_2 value which has been stored in memory from the antilog of the
11 second sum to form a branch metric.

1 13. The article of manufacture of claim 12, wherein processing device rounds
2 out any fractional bits in the branch metric and saturates the branch metric to a
3 predetermined range.

1 14. An apparatus for decoding a signal, the apparatus comprising:
2 means for receiving a sampled signal;
3 means for demapping the received sampled signal into a branch metric
4 comprising means for performing multiplication operations in a log domain using an
5 adder circuit and means for performing division operations in a log domain using an
6 subtractor circuit; and
7 means for providing the branch metric a Viterbi decoder.

1 15. The apparatus of claim 14, where the means for demapping comprises a
2 means for calculating a log function.

1 16. The apparatus of claim 14, where the means for demapping comprises a
2 means for calculating an antilog function.

1 17. The apparatus of claim 14, where the means for demapping comprises a
2 means for calculating a branch metric (M) using the equation $M = \left[\frac{1}{C_1} \frac{|H|^2 k_{loc}^2}{\sigma^2} - C_2 \right]$.

1 18. The apparatus of claim 14, where the means for demapping comprises a
2 means for calculating a branch metric (M) using the equation $M = \left[\frac{1}{C_1} \frac{|H|^2}{\sigma^2} - C_2 \right]$.

1 19. The apparatus of claim 14, where the means for demapping comprises
2 an input for accepting a first value representing the scalar gain for a transmission
3 channel;

4 a log unit that accepts the first value from the input and determines a log of the
5 first value;

6 a first subtractor for subtracting a log of a second value from the log of the first
7 value to form a first difference, said second value representing a measure of additive
8 white Gaussian noise for a channel over which the sampled signal was transmitted;

9 a second subtractor for subtracting a log of a first constant from the first
10 difference to form a second difference;

11 a first adder for adding a log of a location information scaling factor (k_{loc}) to the
12 second difference to form a first sum;

13 an antilog unit that accepts the first sum and determines an antilog of the first
14 sum;

15 a second adder for adding the antilog of the first sum to a second constant to a
16 preliminary branch metric, where the second constant comprises an offset that is a
17 function of a transmit constellation for the transmit channel; and
18 a saturation unit for saturating the preliminary branch metric to generate the
19 branch metric.

1 20. The apparatus of claim 19, wherein the first subtractor and second
2 subtractor are implemented as a single circuit.