EL9343 Homework 01

Spring 2022

Name: Sagar Patel NETID: sp5894

Question 01

Prove the *Transpose Symmetry* property, i.e., f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.

Solution

To prove that f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Let us consider the Left hand Side -

If f(n) = O(g(n)), then for that condition to satisfy, based on the definition of big-Oh notation, There exists a constant c, and $\Rightarrow f(n) \le c$. g(n)

And for c to be positive $(c > 0) \Rightarrow g(n) \ge \frac{1}{c}$. f(n)

Upon inspecting the equation $[g(n) \ge \frac{1}{c}$. f(n)], we can notice that it closely aligns with the definition of Omega notation (Ω) ,

Which implies that $g(n) = \Omega(f(n))$

Therefore, upon evaluation, it is proved that f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Question 02

Problem 3-1 in CLRS textbook.

Asymptotic behavior of polynomials

where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties.

2.a

If $k \ge d$, then $p(n) = O(n^k)$.

Solution

Let $c_1 = \frac{a_d}{2}$, $c_2 = \frac{3.a_d}{2}$, $0 \le c_1$. $n^d \le p(n) \le c_2$. n^d for all $n \ge n_0$ (1) For a given function g(n), denote O(g(n)) as the set of functions given by $-O(g(n)) = \{f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c$. g(n) for all $n \ge n_0$

From the given statement, f(n) = p(n) and $g(n) = n^k$, where k is a constant. Given $k \ge d \Rightarrow n^d \le n^k \Rightarrow c_2$. $n^d \le c_2$. $n^k = \ldots$ (2) From equations (1) and (2), $0 \le p(n) \le c_2$. $n^d \le c_2$. n^k for all $n \ge n_0$ Hence, $p(n) = O(n^k)$

2.b

If $k \leq d$, then $p(n) = \Omega(n^k)$.

Solution

For a given function g(n), denote $\Omega(g(n))$ as the set of functions given by $-\Omega(g(n))=\{f(n): \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq c. \ g(n) \leq f(n) \text{ for all } n \geq n_0 \}$

From the given statement, f(n) = p(n) and $g(n) = n^k$, where k is a constant. Given $k \le d \Rightarrow n^k \le n^d \Rightarrow c_1 \cdot n^k \le c_1 \cdot n^d \quad \dots (3)$

From equations (1) and (3), $0 \le c_1$. $n^k \le c_1$. $n^d \le p(n)$ for all $n \ge n_0$ Hence, $p(n) = \Omega(n^k)$

2.c

If k = d, then $p(n) = \Theta(n^k)$.

Solution

For a given function g(n), denote $\Theta(g(n))$ as the set of functions given by $-\Theta(g(n))=\{f(n):$ there exists positive constants c_1,c_2 and n_0 such that $0\leq c_1.$ $g(n)\leq f(n)\leq c_2.$ g(n) for all $n\geq n_0\}$ From the given statement, f(n)=p(n) and $g(n)=n^k$, where k is a constant. From equation (1), $0\leq c_1.$ $n^d\leq p(n)\leq c_2.$ n^d for all $n\geq n_0$ Hence, $p(n)=\Theta(n^k)$

2.d

If k > d, then $p(n) = o(n^k)$.

Solution

For a given function g(n), denote o(g(n)) as the set of functions given by $-o(g(n))=\{f(n): \text{ for any positive constants }c>0$, there exist a constant $n_0>0$ such that $0\leq f(n)< c$. g(n) for all $n\geq n_0\}$ From the given statement, f(n)=p(n) and $g(n)=n^k$, where k is a constant. Given $k>d\Rightarrow n^d< n^k\Rightarrow c_2. n^d< c_2. n^k \qquad \ldots (4)$ From equations (1) and (4), $0\leq p(n)\leq c_2. n^d< c_2. n^k$ for all $n\geq n_0$ Hence, $p(n)=o(n^k)$

If k < d, then $p(n) = \omega(n^k)$.

Solution

For a given function g(n), denote $\omega(g(n))$ as the set of functions given by $-\omega(g(n))=\{f(n): \text{ for any positive constants }c>0, \text{ there exist a constant }n_0>0 \text{ such that }0\leq c, g(n)< f(n) \text{ for all }n\geq n_0\}$ From the given statement, f(n)=p(n) and $g(n)=n^k$, where k is a constant. Given $k< d\Rightarrow n^k < n^d\Rightarrow c_1.n^k < c_1.n^d \qquad \ldots (5)$ From equations (1) and (5), $0\leq c_1.n^k < c_1.n^d\leq p(n)$ for all $n\geq n_0$ Hence, $p(n)=\omega(n^k)$

Question 03

Problem 3-2 in CLRS textbook.

Relative asymptotic growths

Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \geq 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

Solution

\boldsymbol{A}	В	0	0	Ω	ω	Θ
$lg^k n$	n^{ϵ}	Yes	Yes	No	No	No
n^k	c^n	Yes	Yes	No	No	No
\sqrt{n}	n ^{sinn}	No	No	No	No	No
2^n	$2^{n/2}$	No	No	Yes	Yes	Yes
n^{lgc}	c^{lgn}	Yes	No	Yes	No	Yes
lg(n!)	$lg(n^n)$	Yes	No	Yes	No	Yes

Question 04

For each algorithm write down all the possible formulas that could be associated with it.

Solution

For the sake of understanding, I will tabulate them

Formula	A 1	A2	А3	A 4	A 5
а	No	Yes	Yes	Yes	Yes
b	No	No	Yes	Yes	No

Formula	A1	A2	А3	A 4	A 5
С	Yes	No	Yes	Yes	Yes
d	Yes	No	No	Yes	Yes
е	No	No	Yes	No	No
f	No	No	Yes	Yes	No
g	No	No	Yes	Yes	No

Question 05

For the following algorithm: Show what is printed by the following algorithm when called with MAXIMUM(A, 1, 5) where A = [10, 8, 6, 4, 2]? Where the function PRINT simple prints its arguments in some appropriate manner.

Solution

The final output will be -

- 8 10
- 6 10
- 2 4
- 4 10
- 10