MAT301H5Y

Week 4 Lecture 2: Symmetric groups continued and transposition

Thursday Jun 1st, 2023 4-5pm instructed by Marcu-Antone Orsoni

Overview

We continued exploring symmetry groups. In specific, we were introduced to transpositions and propositions related to them.

We started after some reminders as below:

Reminders

- 1. S_n called the symmetry group is the group of all bijections from $A = \{1, 2, ..., n\}$ to itself(also can be denoted by the permutation group $B_{ij}(A)$)
- 2. S_n is non abelian for $n \geq 3$
- 3. m-cycle is a tuple describing a bijection in the form $(a_1 \ a_2 \ a_3 \ \dots \ a_m)$ where $a_i \to a_{i+1}$ for $1 \le i < m$ and $a_m \to a_1$
- 4. $\sigma \in S_n \implies \sigma = C_1 C_2 \dots C_k$ where C_i is a cycle and disjoint from the others.
- 5. $\sigma \in S_n \implies |\sigma| = \operatorname{lcm}(|C_1|, |C_2| \dots |C_k|)$ where all the cycles are disjoint
- 6. Inverse of a cycle is just the cycle in reverse order. For example $(1\ 3\ 5)^{-1}=(5\ 3\ 1)$

Transpositions

Definition: transposition

A transposition is a 2-cycle. Sometimes transpositions are written as \mathcal{T} (used by instructor in class) or β (used in the course notes).

It turns out there is an interesting property of transpositions which can be summarized as in the below.

Proposition 4.12

Every permutation of S_n can be written as a product of transpositions(not necessarily disjoint).

Proof of this theorem was not given in class. However we considered the below example:

$$(1 4 5 7) = (1 4)(4 5)(5 7)$$
$$= (4 5)(5 7)(7 1)$$
$$= (1 7)(1 5)(1 4)$$

What followed in class were a series of theorems, definitions and propositions. Note that a "transposition" decomposition is just a decomposition of a permutation that consist of only transpositions.

Theorem: parity of transposition decomposition

For any permutation $\sigma \in S_n$ all the number of transpositions in the decomposition is either all odd or all even.

Remark: The above theorem just states that for some arbitrary permutation $\sigma \in S_n$, if we find an even number of transpositions in the transposition decomposition, then every other possible transposition decomposition must be even as well. Same argument extends for odd transposition decompositions.

Definition: Even/odd permutation

 $\sigma \in S_n$ is said to be an even permutation if the number of transpositions in the transposition decomposition is even. Same applies for odd permutation.

Now that we can classify a permutation as even or odd. We can then define a new group as below.

Definition: Alternating group A_n

 A_n is the set of all even permutations in S_n . In other words:

$$A_n = \{ \sigma \in S_n : \sigma \text{ is an even permutation} \}$$

This is called the alternating group.

Remark: It is a proposition that $A_n \leq S_n$. However, if we take the set of all permutations which are odd, it turns out not to be a subgroup of S_n . The reader is encouraged to think about why it isn't a subgroup.

Proposition: order of A_n

$$|A_n| = \frac{n!}{2}$$

Proof

One of the ways of measuring the order/cardinality of a set is by constructing bijections where helpful. Define O_n to be the set of all odd permutations. One can realize that A_n and O_n are disjoint and who's union is S_n . In other words: $A_n \sqcup O_n = S_n$ (disjoint union where $A_n \cap O_n = \emptyset$). From this it is safe to conclude the following:

$$|A_n| + |O_n| = |S_n|$$

One can intuitively see where to go from here. If we can argue that $|A_n| = |O_n|$, we are mostly done. To do so, construct a bijection $f: A_n \to O_n$ such that $f(\sigma) = (1\ 2)\sigma$ for any $\sigma \in A_n$ (realize that the choice of (1\ 2) as a transposition was random). We see that this is indeed a bijection. From MAT102 we realize that this concludes that $|A_n| = |O_n|$ because there exists a bijection between them. We therefore have the following steps after realizing that $S_n = n!$

$$|A_n| + |O_n| = |S_n|$$

$$\iff$$

$$|A_n| + |A_n| = 2|A_n| = |S_n| = n!$$

$$\iff |A_n| = \frac{n!}{2}$$

From here we did a couple examples in class. Consider the one below.

Exercise: transposition decomposition

Let $\alpha = (1\ 2\ 4\ 3)(3\ 4\ 5\ 6\ 1)$ and $\beta = (1\ 3\ 2)(5\ 4\ 2)$. Decompose α, β into transpositions and determine the parity of α, β .

Solution

First we decompose each of the individual cycles into transpositions pairwise and combine them for both α and β . They are done below:

```
\alpha = (1\ 2\ 4\ 3)(3\ 4\ 5\ 6\ 1)
= [(1\ 2)(2\ 4)(4\ 3)][(3\ 4)(4\ 5)(5\ 6)(6\ 1)]
= (1\ 2)(2\ 4)(4\ 3)(3\ 4)(4\ 5)(5\ 6)(6\ 1)  [Because we see that (4\ 3)^{-1} = (3\ 4)]
= (1\ 2)(2\ 4)(4\ 5)(5\ 6)(6\ 1)
\beta = (1\ 3\ 2)(5\ 4\ 2)
= [(1\ 3)(3\ 2)][(5\ 4)(4\ 2)]
= (1\ 3)(3\ 2)(5\ 4)(4\ 2)
```

From counting we see that parity of α is odd while parity of β is even. Pairwise decomposition makes it easier for us to make conclusions about the parity of cycles as the below proposition.

Proposition: m-cycles

If we have an m cycle, we have a decomposition of m-1 transpositions for our cycle pairwise. From this we can conclude that if we have a cycle of even length, then we have an odd permutation for that cycle. The same applies for cycles of odd length.

There was a final exercise in class, however due to lack of time and the professor being tired, we could not complete it. It is as below.

Exercise

Let $\alpha, \beta \in S_4$. $\beta \alpha = (1 \ 3 \ 4 \ 2) \ \alpha \beta = (1 \ 3 \ 2 \ 4)$ find α and β