你的标题

 ρ 爱上 θ

所属院系简称

2025年8月23日

帧标题

副标题

基本理论的要点 1、2、3...

研究方法

研究和研究方法简介

主要论点和论据

根据计算机模拟和试验

总结

通过大量研究表明

定理类模块

定义 1

有一个角是直角的三角形是直角三角形。

定理 1

直角三角形斜边的平方等于另外两个边平方之和。

证明1

画一条通过点 A 和点 B 的线段 a。… 这就证明了…

示例1

$$x^3 + 2x^2 + x + 1 = 0$$

三种色调的文本模块

这三类文本标题可以有作者自行设置,并以不同的背景颜色来区别其文本的性质。其中标题这个参数是必须要有的,具体可见 P449 页。

基本性质

 $\frac{a}{b} = \frac{am}{bm}$

举例模块

 $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

注意!

在分式中, 分母不能为零。

彩色盒子

如果正整数 x, y, z 能够满足下列不定方程:

$$x^2 + y^2 = z^2$$

则它们叫做勾股数。

圆周率 $\pi = 3.14$ 是圆周与直径之比。

圆角盒子

在 1673 年, 法国数学家费马提出:

费马猜想

当 n 是一个大于 2 的整数时,则 $x^n + y^n = z^n$ 这个不定方程没有正整数解。

1995 年英国数学家怀尔斯用反证法证明飞马猜想完全可以成立。在这个例子中,分别定义了 myupcol 和 mylowcol 两个 beamer 颜色。

列表的应用举例

开普勒定律

● 行星绕太阳运动的轨迹是以太阳为焦点的椭圆。

列表的应用举例

开普勒定律

- 行星绕太阳运动的轨迹是以太阳为焦点的椭圆。
- ② 行星与太阳的连线在相等的时间扫过相同的面积

列表的应用举例

开普勒定律

- 行星绕太阳运动的轨迹是以太阳为焦点的椭圆。
- ② 行星与太阳的连线在相等的时间扫过相同的面积
- 不同行星在其轨道上公转周期的平方与轨道半长径的立方成正比。

利用 pause 命令可以暂停命令,会产生三张幻灯片

表: 各种移动通信的比较

	2G	2.5G	3G
信号类型	模拟	数字	数字

表: 各种移动通信的比较

	2G	2.5G	3G
信号类型	模拟	数字	数字
交换方式	分组交换	电路交换	分组交换

表: 各种移动通信的比较

信号类型 模拟 数字 数字 交换方式 分组交换 电路交换 分组交换 提供服务 短信 网络 多媒体		2G	2.5G	3G
	信号类型	模拟	数字	数字
提供服务 短信 网络 多媒体	交换方式	分组交换	电路交换	分组交换
	提供服务	短信	网络	多媒体

表: 各种移动通信的比较

	2G	2.5G	3G
信号类型	模拟	数字	数字
交换方式	分组交换	电路交换	分组交换
提供服务	短信	网络	多媒体
传输速率	14	144	2000

加入 onslide<> 命令可以将表格改变为逐行显示。

将一帧分为两栏

columns 环境可以将一帧分成多栏,通常为两栏,这样便于在插图旁边放置说明文字。

.,。 左图是蒙特卡洛算法的 模拟情况,其中:

- 绿色为圆柱体上下 底面的曲线
- 蓝色为圆柱体内的 随机点
- 红色为函数曲面的 随机点

参考文献