Active Noise Cancellation

Using the LMS and FxLMS algorithms

November 7, 2016

Marko Stamenovic

Recurse Center Lightning Talk https://github.com/markostam

Background and Motivation

Let's start at the beginning

Background

Active Noise Cancellation (ANC)

- Technique which uses destructive interference to cancel unwanted noise signals.
- Machine learning algorithms are employed to quickly learn the characteristics of the unwanted signal in near real time.

Benefits over passive attenuation

- Lighter weight and smaller than passive noise attenuation.
- Targets specific frequencies.
- Actively adapts to offending noise spectrum.

Limitations

- Expensive.
- Not good with impulsive sounds.
- Relatively complex (requires specialized hardware and software).
- Requires constant power supply.

System Overview

Equations & block diagrams ahead

Conceptual System Overview

Conceptual System Overview

LMS for ANC Block Diagram

- Unknown plant P(z) is the transfer function b/w engine and passenger in car our outside world and ears in headphones.
- As e(n) approaches 0,
 W(z) becomes equal to
 P(z)

LMS for ANC Equations

$$e(n) = d(n) - \mathbf{w}^{T}(n)\mathbf{x}(n)$$
$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu\mathbf{x}(n)e(n)$$

Least Mean Squares (LMS)
 algorithm. Uses stochastic
 gradient descent to minimize
 e(n). Simple and powerful.

Unknown d(n) + Σ ; e(n) Acoustic Domain

Digital Filter W(z)

Acoustic

Duct

• μ = Learning rate

LMS for ANC Block Diagram and Equations

Cool story, show me dez code

Setup stuff and synthetic transfer function

```
interrupt void interrupt4(void)
    {
        short i;
        float input, refnoise, signal, signoise, wn, yn, error;
        codec_data.uint = input_sample();
        refnoise =(codec_data.channel[LEFT]); // noise sensor
        input = refnoise;

        for (i=0; i < N; i++)
        // filter refnoise to emulate transfer
        // function of firewall (3rd order lp filter)
        {
            wn = input - a[i][1]*w[i][0] - a[i][2]*w[i][1];
            yn = b[i][0]*wn + b[i][1]*w[i][0] + b[i][2]*w[i][1];
            w[i][1] = w[i][0];
            w[i][0] = wn;
            input = yn;
        }
}</pre>
```

Meat of the ANC: filter the signal & update weights

```
yn=0.0;
x[0] = refnoise;
for (i = 0; i < N; i++) // compute adaptive filter output (w'x)</pre>
     yn += (weights[i] * x[i]);
error = - yn; // compute error
for (i = N-1; i >= 0; i--) // update weights and delay line
     weights[i] = weights[i] + mu*error*x[i];
     x[i] = x[i-1];
codec_data.channel[LEFT]= ((uint16_t)(error));
codec data.channel[RIGHT] = ((uint16 t)(error));
output sample(codec data.uint);
return;
```

(also update the delay line and output the filtered signal)

FxLMS Block Diagram

$$e(n) = d(n) - \mathbf{w}^{T}(n)\mathbf{x}(n)$$
$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \mathbf{x}'(n)e(n)$$

- One thing missing from the LMS model in practical ANC applications is the path from the speakers to the ear for the correction signal.
- This is called the Secondary Path or S(z).
- The FxLMS or Filtered LMS algorithm takes care of the secondary path.

FxLMS Block Diagram

$$e(n) = d(n) - \mathbf{w}^{T}(n)\mathbf{x}(n)$$
$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \mathbf{x}'(n)e(n)$$

- By adding in a filter \$\hat{S}(z)\$ equal to \$S(z)\$, we can account for the secondary path signal.
- Ŝ(z) is learned by playing a known excitation signal through the LMS block diagram shown previously.

FxLMS Block Diagram

$$e(n) = d(n) - \mathbf{w}^{T}(n)\mathbf{x}(n)$$
$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \mathbf{x}'(n)e(n)$$

4 Experimental Results

Experimental Setup

- Unknown plant P(z) is modeled by a digital LPF.
- Input x(n) is pink noise.
- Stays in digital domain so there is no secondary path.

Learning Rate Too Small

200

Convergence Time in Cycles

Learning Rate Too Large

200

Input Coefficients

learned coefficients

140

Learning Rate Juust Right

Demo

Yes, it's really time for the:

Not Perfect Attenuation

But a lot better than a full pink noise waveform.

Thanks!

Any questions?

Find me at:

markostam@gmail.com

Find my code at:

 https://github.com/markostam/active-noisecancellation