CLAIMS

What is claimed is:

1	1.	A method of forming a package, comprising:	
2		placing a film against a flip-chip assembly, wherein the flip-chip assembly	
3	includes a die, an electrical connection, and a mounting substrate;		
4		underfilling the die with underfill material;	
5		curing the underfill material; and	
6		after beginning curing the underfill material, removing the film.	
1	2.	The method according to claim 1, wherein the film includes a tacky film.	
1	3.	The method according to claim 1, wherein the film includes a tacky film, and	
2	wherein curin	g the underfill material is carried out under heat that causes the tacky film to	
3	release from the flip-chip assembly.		
1	4.	The method according to claim 1, wherein after beginning curing the	
2	underfill material and removing the film, curing includes:		
3		curing the underfill material that is in contact with the film;	
4		removing the film; and thereafter	
5		curing the underfill material that is between the die and the mounting	
6	substra	ate.	

1	5. The method according to claim 1, wherein after beginning curing the		
2	underfill material and removing the film, curing includes:		
3	curing the underfill material that is in contact with the film by conductive		
4	heat transfer from a mold press;		
5	removing the film; and thereafter		
6	curing the underfill material that is between the die and the mounting		
7	substrate by placing the package into a curing oven.		
1	6. The method according to claim 1, wherein after beginning curing the		
2	underfill material and removing the film, curing includes:		
3	heating the package in a curing oven under conditions to cause the tacky film		
4	to release from the flip-chip assembly.		
1	7. The method according to claim 1, wherein after beginning curing the		
2	underfill material and removing the film, curing includes:		
3	heating the package in a curing oven under conditions to cause the tacky film		
4	to release from the flip-chip assembly, wherein heating includes a first temperature		
5	ramp to a temperature range from about 100° C to about 180° C, a temperature hold		
6	at a temperature in this range, a second temperature ramp to a temperature range		
7	from about 140° C to about 260° C, and cooling.		

1 8. The method according to claim 1, wherein after beginning curing the underfill material and removing the film, curing includes:

3	heating the package in a curing oven under conditions to cause the tacky film		
4	to release from the flip-chip assembly, wherein heating includes a single step		
5	temperature ramp to a temperature in a range from about 140° C to about 240° C; and		
6	cooling.		
1	9. The method according to claim 1, wherein the underfill material has a		
2	viscosity that causes it to draw between the die and the mounting substrate without the		
3	assistance of a pressure differential.		
1	10. The method according to claim 1, wherein the underfill material has a		
2	viscosity that causes it to draw between the die and the mounting substrate, further		
3	including:		
4	flowing the underfill material from a first edge of the die to an opposite, second edge		
5	of the die by a pressure differential.		
1	11. A method of forming a package, comprising:		
2	stretching a flexible film over die that is mounted on a mounting substrate to		
3	seal the flexible film thereupon;		
4	flowing underfill material between the die and the mounting substrate with a		
5	source and a vent;		
6	heating the underfill material to a first curing temperature; and		

7

after reaching the first curing temperature, removing the flexible film.

- 1 12. The method according to claim 11, wherein the film is selected from a non-2 tacky film and a tacky film.
- 1 13. The method according to claim 11, wherein the film includes a tacky film,
- 2 and wherein heating the underfill material to a first curing temperature is carried out to cause
- 3 the underfill material to cure, and wherein the first curing temperature is reached to a
- 4 temperature range from about 100° C to about 180° C; and
- 5 wherein the second curing temperature causes the tacky film to release from the die
- 6 and mounting substrate, and wherein the second curing temperature is reached to a
- 7 temperature range from 140° C to about 260° C.
- 1 14. The method according to claim 11, wherein the film is a non-tacky film and
- 2 wherein after heating the underfill material to a first curing temperature and removing the
- 3 film, curing includes:
- 4 gelling the underfill material that is in contact with the film;
- 5 removing the film; and the process further including:
- 6 curing the underfill material that is between the die and the mounting
- 7 substrate.
- 1 15. The method according to claim 11, wherein heating the underfill material to a 2 first curing temperature includes:
- 3 heating along a first temperature ramp to a first temperature range from about
- 4 100° C to about 180° C; and further including:

5	holding the first temperature;
6	heating along a second ramp to a temperature range from about 140° C to
7	about 260° C; and
8	cooling.
1	16. The method according to claim 11, wherein the underfill material has a
2	viscosity that causes it to draw between the die and the mounting substrate, further
3	including:
4	flowing the underfill material from a first edge of the die to an opposite, second edge
5	of the die by a pressure differential.
1	17. A chip package comprising:
2	a die;
3	a mounting substrate;
4	an electrical connection disposed between the mounting substrate and the die;
5	a cured underfill material including a fillet portion, and an interstitial portion
6	disposed between the die and the mounting substrate, wherein the fillet portion
7	includes a surface roughness and pattern that is characteristic of an interstitial film
8	surface roughness and pattern.
1	18. The chip package according to claim 17, wherein the interstitial film surface
2	roughness and pattern is derived from a film selected from a tacky film and a non-tacky
3	film.

- 1 19. The chip package according to claim 17, wherein the fillet portion exhibits a 2 single-stage solidification profile in cross section. 20. 1 The chip package according to claim 17, wherein the fillet portion exhibits a 2 symmetrical rectilinear or other controllable footprint on the mounting substrate. 1 21. The chip package according to claim 17, wherein the fillet portion exhibits a 2 concave curvilinear cross-sectional profile. 1 22. The chip package according to claim 17, wherein the electrical connection disposed between the mounting substrate and the die is selected from a ball grid array, a 2 collapsed ball grid array, and a pin grid array. 3 1 23. A chip-packaging process system comprising: 2 a die; 3 a mounting substrate; 4 an electrical connection disposed between the mounting substrate and the die; 5 a tacky film that is disposed over the die and stretched onto the mounting
- a mold press that gives a shape to the film;
- 8 an underfill material disposed between the die and the mounting substrate;
- 9 and

6

an underfill inlet and outlet system that communicates through the film.

substrate;

- 1 24. The chip-packaging process system according to claim 23, wherein the 2 underfill inlet and outlet system includes an underfill conduit and a vent.
- The chip-packaging process system according to claim 23, wherein the underfill material includes a fillet shape disposed between the die and the mounting substrate, and wherein the a mold press that gives shape to the film includes a heater element disposed at the fillet.
- The chip-packaging process system according to claim 23, further including:

 a first heating source for ramping the temperature of the underfill material to

 a first cure state; and

 a second heating source for causing the tacky film to release from the die, the

fillet, and the mounting substrate.

5