- Steiner tree introduction
- Approximation algorithm

- Given: connected graph G = (V, E), set of vertices N: terminals
- Problem: find a subtree T of G covering N with minimal total length
 - Steiner tree spanning N
 - *N*: required vertices
 - V N: Steiner vertices

- Given: connected graph G = (V, E), set of vertices N: terminals
- Problem: find a subtree T of G covering N with minimal total length
 - Steiner tree spanning N
 - *N*: required vertices
 - V N: Steiner vertices
- Trivial cases
 - N = V: minimal spanner tree
 - |N| = 2: shortest path problem

- Given: connected graph G = (V, E), set of vertices N: terminals
- Problem: find a subtree T of G covering N with minimal total length
 - Steiner tree spanning N
 - N: required vertices
 - V N: Steiner vertices
- Trivial cases
 - N = V: minimal spanner tree
 - |N| = 2: shortest path problem
- Applications
 - Wire routing of VLSI
 - Customer's bill for renting communication networks
 - Facility location

Minimal Steiner tree Problem is NP-hard

- Prove the following decision version is NP-complete
- Instance:
 - an undirected graph G = (V, E)
 - a subset of the vertices $N \subseteq V$, called terminal nodes
 - a natural number k
- Question: is there a tree T with $\leq k$ edges covering N?

Minimal Steiner tree Problem is NP-hard

- Prove the following decision version is NP-complete
- · Instance:
 - an undirected graph G = (V, E)
 - a subset of the vertices $N \subseteq V$, called terminal nodes
 - a natural number k
- Question: is there a tree T with $\leq k$ edges covering N?
- How to show a problem P is NP-complete
 - show P is in NP
 - select a known NP-complete problem P'
 - construct a transformation f from P' to P
 - prove f is a polynomial transformation.

Minimal Steiner tree Problem is NP-hard

- Steiner Tree is in NP: easy
- Select a known NP-complete problem P'
- Exact Cover by 3-Sets (X3C)
- Instance:
 - a finite set X with |X| = 3q
 - a collection C of 3-element subsets of X, $C = \{C_1, \dots, C_n\}$, $C_i \subseteq X$, $|C_i| = 3$
- Question: does C contain an exact cover for X, i.e., a subset $C' \subseteq C$ s.t. every element of X occurs in exactly one member of C'?
 - members of the solution C' form a partition of the set X
 - |C'| = q

Transform X3C to ST

- Given an instance of X3C, build the Steiner Tree instance
 - create a new node v, a node for each member of C and each element of X: $V = \{v\} \cup \{c_1, \cdots, c_m\} \cup \{x_1, \cdots, x_{3q}\}$

•
$$E = \{vc_1, \dots, vc_n\} \cup \left(\bigcup_{x_i \in C_j} \{x_ic_j\}\right)$$

- $\bullet \ \ N = \{v, x_1, \cdots, x_{3q}\}$
- k = 4q

Transform X3C to ST

- If there is an exact 3-cover C'
- Suppose $C' = \{C_1, \cdots, C_q\}$
- the following tree is a solution of the Steiner tree problem
 - vc_1, \cdots, vc_q
 - $c_i x_j$, if $x_j \in C_i$, $1 \le i \le q$

- Replace the cost of uv by the cost of a shortest path between them
- Resulting graph: metric closure
- metric closure is a complete graph

Lemma

In metric closure, edge costs satisfy triangle inequalities

Lemma

The cost of a minimum Steiner tree in a graph is at least the cost of a minimum Steiner tree in its metric closure

Proof

For each edge, its cost in metric closure is at most its cost in G, so T in metric closure is no more expensive

Lemma

The cost of a minimum Steiner tree in a graph is at most the cost of a minimum Steiner tree in its metric closure

Proof

Let T' be a MST in metric closure. Consider the union U of the shortest paths in G. U has cost at most the cost of T'. U connects all the required vertices. So, U contains a ST with most the cost of T'.

Theorem

The cost of a minimum Steiner tree in a graph equals to the cost of a minimum Steiner tree in its metric closure

Metric Steiner Tree Problem

- Given a complete graph with edge costs satisfying triangle inequalities
- Find a minimum Steiner tree

Solve Metric Steiner Tree Problem

- A Steiner tree connects all the required vertices
- Can we just find a minimum spanning tree connecting all the required vertices?
 - In other words, forget about all Steiner vertices!
 - How bad can it be?

Solve Metric Steiner Tree Problem: idea

$$MST \le \underline{a+b} + \underline{b+c} + \underline{c+d} + \underline{d+e}$$

\$\le 2a + 2b + 2c + 2d + 2e = 2(a+b+c+d+e)\$

Cost of a minimum Steiner tree

How to formalize the idea?

Let the cost of minimal Steiner tree be OPT

How to formalize the idea?

Double all the edges and find a deep first search traversal: cost=2OPT

How to formalize the idea?

Shortcut the traversal

- By triangle inequalites, the shortcut is not longer than the traversal
- The cost of MST ≤ the cost of traversal ≤ 2OPT
 - More precisely (2-1/|T|) OPT

Algorithm

- Compute metric closure G^* of G
- Find a minimum spanning tree T^* of G^*
- Construct the union U of shortest paths in G corresponding to edges in T^{\ast}
- ullet Output the Steiner tree T contained in U

Algorithm

- Compute metric closure G^* of G
- Find a minimum spanning tree T^* of G^*
- Construct the union U of shortest paths in G corresponding to edges in T^{\ast}
- Output the Steiner tree T contained in U
- T is contained in U: $cost(T) \le cost(U)$
- G^* is metric closure of G: $cost(U) \leq cost(T^*)$
- Short-cutting: $cost(T^*) \le 2OPT$
- Putting together: $cost(T) \le 2OPT$

A worst-case scenario

