Algoritmo del simplesso - fase I e fase II

Ricerca Operativa [035IN]

Lorenzo Castelli 18 Ottobre 2021

Algoritmo del simplesso

- 1. Inizializzazione. Determinare una soluzione di base ammissibile
- 2. **Verifica dell'ottimalità**. Se $y_{0j} \ge 0 \,\forall j \in R$, la soluzione corrente è ottima e l'algoritmo termina, altrimenti andare al passo 3.
- 3. Scelta della variabile entrante in base. Scegliere una variabile fuori base x_k tale che $y_{0k} < 0$ ed andare al passo 4.
- 4. Scelta della variabile uscente dalla base. Scegliere una variabile x_{Br} tale che $y_{i0}/y_{ir} = \min\{y_{i0}/y_{ik}: j \in R, y_{ik} > 0\}$. Se $y_{ik} < 0 \ \forall i$, la soluzione del problema è illimitata, e l'algoritmo termina. Altrimenti si va al passo 5.
- 5. **Pivoting.** Risolvere i vincoli di uguaglianza esprimendo le nuove variabili in base x_k e $x_{Bi} \forall i \neq k$, in funzione delle nuove variabili fuori base x_{Bi} e x_j $\forall j \in R \{k\}$. La nuova BFS si ottiene ponendo le nuove variabili fuori base a zero. Andare al passo 2.

Algoritmo del simplesso

- Nell'algoritmo del simplesso si distingue una fase I, che consiste nel passo di inizializzazione in cui viene individuata una prima BFS, e una fase II, che consiste nel determinare la BFS ottima a partire dalla prima BFS.
- · La fase II è stata già illustrata, la fase I viene illustrata in seguito.
- La verifica se il problema è illimitato può anche venire fatta durante la fase II controllando tutte le colonne associate a costi ridotti positivi (e quindi coefficienti nel tableau negativi), se le colonne sono numerose questa verifica può essere onerosa.

Fase I - Individuazione della prima BFS

In alcuni casi una prima base ammissibile è immediata. Si supponga infatti che il problema sia formulato come

$$\max z = \mathbf{c}\mathbf{x}$$
$$\mathbf{H}\mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}$$

con $\mathbf{b} \geq \mathbf{0}$, allora la sua trasformazione in forma standard introduce delle variabili di slack \mathbf{s} le cui corrispondenti colonne formano la prima base ammissibile

$$\max z = \mathbf{c}\mathbf{x}$$
$$\mathbf{H}\mathbf{x} + \mathbf{I}\mathbf{s} = \mathbf{b}$$
$$\mathbf{x} > \mathbf{0}, \mathbf{s} > \mathbf{0}$$

Riordinando le colonne si ottiene

$$A = [I|H], B = I e N = H,$$

dove chiaramente

$$\operatorname{rango}\{\mathbf{A}\} = m \quad \text{e} \quad \mathbf{B}^{-1}\mathbf{b} \geq \mathbf{0}.$$

Forma canonica

Definizione

Qualora un problema di PL in forma standard ha le matrice ${\bf A}$ che si può esprimere come

$$\mathbf{A} = [\mathbf{I}|\mathbf{H}], \quad \mathbf{B} = \mathbf{I} \quad \mathbf{e} \quad \mathbf{N} = \mathbf{H},$$

allora il problema è detto essere espresso in forma canonica

Non è immediato esprimere un problema di PL in forma canonica in presenza di disuguaglianze di verso opposto, infatti le variabili di surplus hanno coefficienti negativi, o in presenza di vincoli di uguaglianza.

Esempio

Formulazione iniziale

$$\min z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Formulazione standard

$$\max z = -4x_1 - x_2$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 - x_3 = 6$$

$$x_1 + 2x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Questa formulazione standard NON è una forma canonica

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 4 & 3 & -1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$

Se il problema è nella forma standard, ottenuto solo da vincoli di tipo = e \geq , si introducono m variabili artificiali $\mathbf u$ e si formula il problema di fase I

$$\max z = \mathbf{c}\mathbf{x}$$
 $\min w = \mathbf{1}\mathbf{u}$ $\mathbf{A}\mathbf{x} = \mathbf{b}$ \Rightarrow fase \mid $\mathbf{A}\mathbf{x} + \mathbf{I}\mathbf{u} = \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}, \mathbf{u} \ge \mathbf{0}$

Per il problema di fase I è immediato determinare una base iniziale ammissibile.

Il problema di fase I ammette una soluzione ottima \boldsymbol{w}^* non negativa per costruzione,

- se $w^* > 0$ allora il problema fase I non ha soluzioni ammissibili \mathbf{x}, \mathbf{u} t.c. $\mathbf{u} = \mathbf{0}$ e quindi non esiste \mathbf{x} t.c. $\mathbf{A}\mathbf{x} + \mathbf{I}\mathbf{0} = \mathbf{b} \Rightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$, da cui il sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ non è compatibile e il problema di PL non ha soluzioni ammissibili
- se $w^*=0$ allora la componente della soluzione ottima $\mathbf{x}^*, \mathbf{u}^*$ è t.c. $\mathbf{u}=\mathbf{0}$ e quindi \mathbf{x}^* è t.c. $\mathbf{A}\mathbf{x}^*+\mathbf{I}\mathbf{0}=\mathbf{b}\Rightarrow \mathbf{A}\mathbf{x}^*=\mathbf{b}$. Poiché \mathbf{x}^* ha al più m componenti non nulle essa può essere presa come prima BFS del problema originale.

Esempio - Fase I

$$\min w = u_1 + u_2 \qquad \Rightarrow \max w = -u_1 - u_2$$

$$3x_1 + x_2 \qquad + u_1 = 3$$

$$4x_1 + 3x_2 - x_3 \qquad + u_2 = 6$$

$$x_1 + 2x_2 \qquad + x_4 \qquad = 4$$

$$x_1, x_2, x_3, x_4, u_1, u_2 \ge 0$$

Data la presenza di una varabile di slack, bastano solo due variabili artificiali (u_1, u_2) .

 u_1, u_2, x_4 è la base iniziale

Esempio - Fase I

si devono annullare questi coefficienti*

	x_1	x_2	x_3	x_4	u_1	и,	
Z	0	0	0	0	1	1	0
u_1	3	1	0	0	1	0	3
u_2	4	3	- 1	0	0	1	6
x_4	1	2	0	1	0	0	4
					†		
			base				

* ATTENZIONE: questo tableau non è espresso rispetto alla base scelta e quindi non può ancora essere eseguito il test di ottimalità.

la BFS corrente non è ottima

			/					
		X	X.	x_3	x_4	u_1	u_2	
	z (- 7	- 4) 1	0	0	0	- 9
Ī	u_1	3	1	0	0		0	3
	u 2	4	3	- 1	0	0	1	6
L	X 4	1	2	0	1	0	0	4

Esempio - Fase I

tableau finale

	x_1	x_2			u_1	u_2	
	0		0		1	1	0
x_1	1	0	1/5	0	3/5 - 4/5 1	- 1/5	3/5
$ x_2 $	0	1	- 3/5	0	- 4/5	3/5	6/5
x_4	0	0	1	_1	1	- 1	1
	*		K				•

con questi valori può essere inizializzato il tableau del problema originale

Esempio - Tableau iniziale problema originario (Fase II)

si devono annullare questi coefficienti

And the metable of the problems of the best of the control of the

	x_1	\mathcal{X}_{2}	x_3	x_4	
Z	0	0	- 1/5	0	- 18 /5
x_1	1	0	1/5	0	3/5
X 2	0	1	- 3/5	0	6/5
x_4	0	0	1	1	1

Esempio - Radioterapia

$$\min z = 0.4x_1 + 0.5x_2$$

$$0.3x_1 + 0.1x_2 \le 2.7$$

$$0.5x_1 + 0.5x_2 = 6$$

$$0.6x_1 + 0.4x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

Esempio - Radioterapia

Esempio - Radioterapia

Non esiste soluzione ottima

$$\max z = x_1 + x_2$$

$$-x_1 + x_2 \le 1$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Non esiste soluzione ottima

	x_1	x_2	x_3	x_4	
z	-1	-1	0	0	0
x_3	-1	1	1	0	1
x_4	0	1	0	1	2

Possono entrare in base sia x_1 che x_2 . Scegliendo x_1 si vede che nessuna variabile può uscire dalla base:

$$x_3 = 1 + x_1 - x_2; x_4 = 2 - x_2$$

Quindi la funzione obiettivo può crescere al'infinto: soluzione illimitata.

Si verifichi che si ottiene lo stesso risultato facendo entrare in base x_2

Infinite soluzioni ottime

$$\max z = 2x_1 + 3x_2$$

$$2x_1 + 3x_2 \le 6$$

$$x_1 + x_2 \le 2.5$$

$$-x_1 + x_2 \le 1$$

$$x_1, x_2 \ge 0$$

Infinite soluzioni ottime

Tableau finale quando all'inizio entra in base x_2

	x_1	x_2	x_3	x_4	x_5	
z	0	0	1	0	0	6
x_1	1	0	1/5	0	-3/5	3/5
x_2	0	0	-2/5	1	1/5	3/10
x_4	0	1	1/5	0	2/5	8/5

Si osserva che $z = 6 - x_3 + 0 * x_5$

Facendo entrare in base x_5 esce x_4 (quindi ci sposta su un vertice adiacente) ma il valore della funzione obiettivo non cambia.

Si determini il tableau che si ottiene facendo entrare in base x_1 . Si troverà che anche in questo caso un coefficiente della funzione obiettivo associato ad una variabile fuori base è nullo.

