The Generational Divide: Who Gained and Who Lost from the 2021–23 Inflation Surge?

Results

Satyam Goel University of Liverpool

19 November 2024

High inflation surge post pandemic

Introduction

•000

Additional Slides

Introduction

0000

Why does it matter?

- ► High inflation and monetary policy tightening can have significant redistributive effects across age groups.
- ► Two Examples:
 - ▶ Inflation benefits the young: reduces real debt burdens.
 - Contractionary policy benefits the old: provides higher returns on savings.

What do I study?

- ▶ I study the intergenerational redistributive effects of:
 - Surprise inflation
 - Monetary tightening

Major Questions:

- Who gained and who lost from high inflation?
- How do redistributive effects differ across the age distribution and life cycle?
- What is the impact of stricter anti-inflationary policy on redistribution?

Model outline

- Builds on Bielecki et al. (2022, JEEA), O-HANK model.
- The model economy includes:
 - ► Households: 80 overlapping cohorts (ages 20–99).
 - Firms (4 types)
 - Final good producers: Create a homogeneous final good using intermediate inputs.
 - Intermediate goods producers: Produce differentiated goods using capital and labor.
 - Capital producers: Combine existing capital and investment goods to create new capital.
 - Investment funds: Intermediate nominal assets and rent physical capital.
 - ► Government: Fiscal authority and central bank
- ▶ The model parameters are calibrated to the Euro Area, and the model is solved non-linearly using perfect foresight simulation.

Key changes: inflation dynamics

Introduce cost-push shock to firms' price markups to model high inflation.

Results

- Model a stronger anti-inflation stance via increased policy rule responsiveness.
- Compare model responses with Euro Area data from the 2021–23 inflation surge.

Model in a nutshell: households

A representative j-aged household maximizes her expected remaining lifetime utility:

$$U_{j,t} = \mathbb{E}_{t} \sum_{s=0}^{J-j} \beta^{s} \frac{N_{j+s,t+s}}{N_{j,t}} \begin{bmatrix} \log (c_{j+s,t+s} - \varrho \bar{c}_{j+s,t+s-1}) \\ +\psi_{j+s} \log \chi_{j+s+1,t+s+1} \\ -\psi_{j+s} \frac{h_{j+s,t+s}^{1+\varphi}}{1+\varphi} \end{bmatrix}$$

Results

Subject to the budget constraint:

$$\begin{split} c_{j,t} + \rho_{\chi,t} [\chi_{j+1,t+1} - (1 - \delta_{\chi}) \, \chi_{j,t}] + a_{j+1,t+1} \\ = & (1 - \tau_t) \, w_t(\iota) z_j h_{j,t}(\iota) + \frac{R_{j,t}^a}{\pi_t} a_{j,t} + beq_{j,t} + beq_{j,t}^{\chi} + \Xi_{j,t}(\iota) \end{split}$$

Final goods aggregated from differentiated intermediate products:

$$y_t = \left[\frac{1}{N_t} \int_0^{N_t} y_t(i)^{\frac{1}{\mu t}} di\right]^{\mu t}$$

Markups (μ_t) are subject to an AR(1) stochastic cost-push shock:

$$\mu_t = \exp\left(\varepsilon_t^\mu\right)\mu, \quad \varepsilon_t^\mu = \rho_\mu \varepsilon_{t-1}^\mu + \varepsilon_t^\mu, \quad \varepsilon_t^\mu \sim \mathcal{N}(\mathbf{0}, \sigma_\mu^2)$$

Cost-push shock captures inflationary pressures by raising markups and marginal costs.

Central bank

▶ The nominal interest rate are set according to a Taylor rule:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\frac{\gamma_{\pi}}{R}} \left(\frac{y_t}{y_{t-1}}\right)^{\gamma_y} \right]^{1-\gamma_R} \exp\left(\varepsilon_t^R\right)$$

Results

- Policy Scenarios:
 - **B** Baseline: $\gamma_{\pi} = 1.97$, standard response to inflation.
 - Alternative: $\gamma_{\pi} = 21$, stricter anti-inflation stance.

Aggregate effects of a cost-push shock

Results

•0000000000

6

Periods (Years)

Results 0•000000000

-10

-12

2

10 12

On-impact redistribution (baseline scenario)

On-impact redistribution (alternative scenario)

On impact vs life-time effects

What matters for redistribution is where you are on the path of asset accumulation (Auclert, 2019).

Results

Example: Lower house prices are good for a 40 year old HH despite a fall in house prices, because they are in the process of accumulating housing.

Lifecycle redistribution (baseline scenario)

Lifecycle redistribution (alternative scenario)

Inflation shock: model predictions & observed data

Results

00000000000

Note: IRFs to sequential cost-push shocks (12.8% in period 1, 6% in period 2) with γ_{π} adjusted (1.97 to 1.2). Compared with Euro Area annual data (2006-2023).

Conclusion

- ▶ High inflation redistributes welfare unevenly across age cohorts.
- Immediate (on-impact) redistribution differs significantly from lifetime effects.
- ► Households in their late working years and early retirement phase (ages 50–70) benefit over the life cycle, while younger (ages 20–40) and older post-retirement cohorts (ages 80+) face welfare losses.
- ➤ A stricter anti-inflation stance amplifies immediate losses but improves welfare for individuals aged 50 and above over the life cycle.

Future work

- ▶ The complementarity of fiscal and monetary policy interactions.
- Assessing the properties of optimal monetary policies emphasizing welfare functions and the trade-offs faced by monetary authorities.

Welfare decomposition: key components

- Framework: Lifetime utility is decomposed into contributions from key economic variables.
- Utility Decomposition:

$$d\mathcal{W}_{j,0} = \Gamma_j^{\chi} + \Gamma_j^b + \Gamma_j^f + \Gamma_j^I + \Gamma_j^t + \Gamma_j^h$$

- Key Components:
 - $ightharpoonup \Gamma_i^{\chi}$: House price changes
 - $ightharpoonup \Gamma_i^b, \Gamma_i^f$: Returns on nominal and real assets
 - $ightharpoonup \Gamma_i^l$: Labor income and taxes
 - $ightharpoonup \Gamma_i^t$: Transfers and bequests
 - $ightharpoonup \Gamma_i^h$: External habits
- Key Insight: Welfare impacts vary by cohort due to life-cycle positions and exposure to these variables.

Welfare decomposition

▶ Welfare effects decompose into contributions from key variables:

$$d\mathcal{W}_{j,0} = \sum_{s=0}^{J-j} \left[\frac{\partial \mathcal{W}_{j,0}}{\partial \rho_{\chi,s}} d\rho_{\chi,s} + \frac{\partial \mathcal{W}_{j,0}}{\partial r_s} dr_s + \cdots \right]$$

Example: House prices (Γ^χ_j)

$$\Gamma_j^{\chi} = -\mathbb{E}_0 u_j^c \sum_{s=0}^{J-j} (1+r)^{-s} \left[(1-\delta_{\chi}) \chi_{j+s} - \chi_{j+s+1} \right] d\rho_{\chi,s}$$

Example: Labor income (Γ_j^l)

$$\Gamma_j^l = \mathbb{E}_0 u_j^c \sum_{s=0}^{J-j} (1+r)^{-s} z_{j+s} \left[(1-\tau) h_{j+s} \mathrm{d} w_s + \frac{\mu_w - 1}{\mu_w} \mathrm{d} h_{j+s} \right]$$

 Key Takeaway: Each term quantifies how specific variables—such as house prices or labor income—contribute to welfare changes across cohorts.

