## DoSA-3D User Manual

#### **Voice Coil Motor Example**

(Speaker, Auto-Focus, Linear Vibrator)



2022-05-07 zgitae@gmail.com

## **DoSA Structure**

### **PC** Requirement

> CPU: 4 Core and above

> RAM: 16GB and above



### **Program Structure**



#### **Toolbar**

#### 1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape



#### 2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications



#### 3. Virtual Test

✓ Force : Magnetic force estimation



# Analysis Model

### **Analysis Model**

#### 1. Shape Model





#### 2. Product Specifications

#### A. Coil

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

#### B. Magnet

• Material : NdFeB 40

• Magnetization Direction: 90 (UP)

#### C. Power

• Voltage: 2.5V

(Example Files: DoSA-3D Install Directory > Samples > VCM)



#### New design

1. Toolbar > Click New button

2. Design Name: "VCM"

3. Shape File (STEP): Select VCM.step (provided with this tutorial document)



#### [ Cautions for the Shape Model ]

DoSA-3D still has the following functional limitations.

#### A. Limitation of Coil Shape

- Coil center axis should be Y axis direction.
- The current is applied like a cylindrical coil. (Square coils can cause some differences)
- B. Moving Part
  - The moving part still supports only one component.
- C. Drawing Guide
  - https://solenoid.or.kr/data/Drawing Guide ENG.pdf





### New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.





### New design

8. Check the design creation.



## Parts Design

#### Add a coil

- 1. Toolbar > Click Coil button
- 2. Select "Coil" in the list box.
- 3. Click the OK button.







### Coil design

Select the magnetic force calculation part

4 Common Fields

1. Input the coil instrumental specifications

✓ Moving Parts : MOVING

✓ Coil Wire Grade : Bonded\_IEC\_Grade\_1B

✓ Inner Diameter: 3

✓ Outer Diameter: 3.73

✓ Coil Height: 1.18

✓ Copper Diameter: 0.045

✓ Horizontal Coefficient: 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

2. Calculate the coil specification

✓ Click the "Coil Design" button

3. Check the coil specification

| 4 | Common Fields               |                     |        |
|---|-----------------------------|---------------------|--------|
|   | Node Name                   | Coil                |        |
| 4 | <b>Specification Fields</b> |                     |        |
|   | Part Material               | Copper              |        |
|   | Curent Direction            | IN                  |        |
|   | Moving Parts                | MOVING              |        |
| Δ | Calculated Fields           |                     |        |
|   | Coil Turns                  | 126                 | l      |
|   | Coil Resistance [Ω]         | 15,74769            |        |
|   | Coil Layers                 | 6                   | l '    |
|   | Turns of One Layer          | 21                  |        |
| _ | Design Fields (optio        | nal)                | ,<br>1 |
|   | Coil Wire Grade             | Bonded_IEC_Grade_1B |        |
|   | Inner Diameter [mm]         | 3                   |        |
|   | Outer Diameter [mm]         | 3,73                |        |
|   | Coil Height [mm]            | 1,18                |        |
|   | Copper Diameter [mm]        | 0,045               |        |
|   | Wire Diameter [mm]          | 0,04953             |        |
|   | Coil Temperature [°€]       | 20                  |        |
|   | Horizontal Coefficient      | 0,95                |        |
|   | Vertical Coefficient        | 1,13                |        |
|   | Resistance Coefficient      | 1.1                 |        |
|   |                             |                     |        |





### Add a magnet

- 1. Toolbar > Click Magnet button
- 2. Select "Magnet" in the list box.
- 3. Click the OK button.







### Magnet setting

- 1. Magnet Settings
  - ✓ Use default values

1

| Δ | Common Fields        |            |  |
|---|----------------------|------------|--|
|   | Node Name            | Magnet     |  |
| Δ | Specification Fields |            |  |
|   | Part Material        | NdFeB_40   |  |
|   | Hc                   | 969969     |  |
|   | Br                   | 1,26497    |  |
|   | Moving Parts         | FIXED      |  |
| Δ | Magnetization Fields |            |  |
|   | Magnet Plane         | XY_Plane_Z |  |
|   | Magnet Angle         | 90         |  |
| _ |                      |            |  |
|   |                      |            |  |



### [Ref.] Magnetization Setting of Magnet

✓ Magnet Plane : XY\_Plane\_Z

✓ Magnet Angle: 90



✓ Magnet Plane : ZX\_Plane\_Y

✓ Magnet Angle : 45° (135°, -45°, -135°)





### Add a plate

- 1. Toolbar > Click Steel button
- 2. Select "Plate" in the list box.
- 3. Click the OK button.







#### **Plate setting**

1. Plate settings

✓ Part Material : SUS\_430

#### [ BH Curve ]



1



#### Add a case

- 1. Toolbar > Click Steel button
- 2. Select "Case" in the list box.
- 3. Click the OK button.







### Case setting

1. Case Setting

✓ Part Material : SUS\_430

#### [ BH Curve ]



1



## Virtual Test

### Test of the magnetic force

1. Toolbar > Click Force Button

2. Force Test Name: "Force"

3. Click OK button

4. Setting of magnetic force test

✓ Voltage : 2.5

5. Setting of analysis condition

✓ Mesh Size Percent : 5

✓ Actuator Type : VCM

6. Click "Force Test" Button











#### **Run the virtual Test**

- 7. Click the Run button after checking the shape.
- 8. If you want to see the analysis progress, click the status bar of the Gmsh.







#### **Run the virtual Test**

- 9. Check the analysis results after solving. (The solving time is depend on you system specification)
- 10. Quit the Gmsh. (When finished, Gmsh is automatically restarted)
- 11. Click the run button again. ( VCM type actuators require twice analysis for accuracy )





#### **Results of the virtual Test**

- 12. Quit the Gmsh after checking the analysis results.
- 13. Check the magnetic force of the VCM.





# Tips

### Open Design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.









## Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org