Decision Trees

Presentation by Berk Sudan

What Kind of Pet Should You Get? I guess? I can handle it! No fur!!! Realist. Dreamer Unicorn. I go to coffee shors you've never heard of. HoveMTV.

Ferret.

Goldfish.

No pet for you.

you should love your pet no

matter what SAT Score

it gets.

Lizard. Crocodile.

Turtle.

No.

Yes

Decision to Grant a Loan

Ref: https://mlcourse.ai/articles/topic3-dt-knn/

Partitioning Scenarios

Ref: Doç. Dr. Songül Varlı, Introduction to Data Mining Lecture Slides, 2018

Partitioning Example

Partitioning Example

Information Gain with Example

Entropy (Expected Information)

Expected information (entropy) needed to classify a tuple in D: m

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information gained by branching on attribute A $Gain(A) = Info(D) - Info_A(D)$

Information Gain

```
Information gain = entropy (parent) - [weightes average] * entropy (children)
```

1	Grade	Bumpiness	Speed Limit	Speed
2	steep	bumpiness	yes	slow
3	steep	smooth	yes	slow
4	flat	bumpiness	no	fast
5	steep	smooth	no	fast

- Grade, Bumpiness and Speed Limit are the features and **Speed** is label.
- Total 4 observation.

1	Grade	Bumpiness	Speed Limit	Speed
2	steep	bumpiness	yes	slow
3	steep	smooth	yes	slow
-	flat	bumpiness	no	fast
5	steep	smooth	no	fast

Entropy_{parent} =
$$-\sum_{slow} P_{slow} log_2(P_{slow}) + P_{fast} log_2(P_{fast})$$

1	Grade	Bumpiness	Speed Limit	Speed
2	steep	bumpiness	yes	slow
3	steep	smooth	yes	slow
-	flat	bumpiness	no	fast
5	steep	smooth	no	fast

QUESTION: Gain(T, Grade)=?

 $\log_{2}\{1/3\} = -1.6$

Note: T = set of training instances.

 $log_2{2/3} = -0.6$

QUESTION: Gain(T, Grade)=?

Note: T = set of training instances.

Gini Impurity

Gini Impurity - Formula

- Gini uncertainty (Gini impurity): $G = 1 \sum_k (p_k)^2$. Maximizing this criterion can be interpreted as the maximization of the number of pairs of objects of the same class that are in the same subtree (not to be confused with the Gini index).
- Misclassification error: $E = 1 \max_{k} p_k$

Criteria for Split

End of Presentation

Presented by Berk Sudan