Отчёт по лабораторной работе №4 Линейная алгебра

Статический анализ данных

Выполнила: Коняева Марина Александровна, НФИбд-01-21, 1032217044

Содержание

Цели лабораторной работы	4	
Георетическое введение		
Задачи лабораторной работы	6	
Выполнение лабораторной работы	7	
Поэлементные операции над многомерными массивами	7	
Транспонирование, след, ранг, определитель и инверсия матрицы	10	
Вычисление нормы векторов и матриц, повороты, вращения	13	
Матричное умножение, единичная матрица, скалярное произведение	16	
Факторизация. Специальные матричные структуры	18	
Общая линейная алгебра	33	
Задания для самостоятельного выполнения	35	
Произведение векторов	35	
Системы линейных уравнений	36	
Операции с матрицами	43	
Линейные модели экономики	46	
Выводы по проделанной работе	52	
Вывод	52	
Список литературы	53	

Список иллюстраций

1	Матрица 4×3, сложения её элементов	8
2	Матрица 4×3, произведение её элементов	9
3	Добавление пакета	9
4	Среднее значение массива	10
5	Добавление пакета	10
6	Массив 4х	11
7	Транспонирование, след матрицы	11
8	Извлечение диагональных элементов, ранг матрицы	12
9	Инверсия матрицы, определитель матрицы	12
10	Псевдобратная функция для прямоугольных матриц	13
11	Вектор	13
12	Нормы	14
13	Расстояние	14
14	Угол	15
15	Матрица и нормы	15
16	Примеры с поворотом и переворачиваем по строкам и столбцам	16
17	Матрицы и их произведение	17
18	Матрица	17
19	Скалярное произведение	18
20	Начальные условия	19
21	Решение	19
22	LU-факторизация	20
23	Решение	21
24	Детерминат	21
25	QR-факторизация	22
26	Q	22
27	R	22
28	Проверка ортогональности	23
29	Симметризация матрицы А	23
30	Спектральное разложение симметризованной матрицы	24
31	Собственные значения, векторы и проверка	24
32	Матрица 1000 x 1000	25
33	Симметризация	26
34	Проверка	26
35	Добавление шума и проверка	27
36	Указание на симметричность	27
37	Побарление пакета	28

38	Оценка эффективности 1	29
39	Оценка эффективности 2	30
40	Оценка эффективности 3	31
41	Матрица 1000000x10000000	32
42	Оценка эффективности	32
43	Ошибка	33
44	Матрица с рациональными элементами	34
45	Решение и LU-разложение	34
46	1.1 задание	35
47	1.2 задание	35
48	Функция для решения	36
49	Функция для решения	37
50	a)	38
51	b)	38
52	c)	39
53	d)	39
54	e)	40
55	f)	41
56	a)	41
57	b)	42
58	c)	42
59	d)	43
60	Функция для решения	43
61	a,b,c)	44
62	Функция для решения	44
63	a,b,c,d)	45
64	A	45
65	А из собственных значений	46
66	Функция для решения	46
67	(a,b)	47
68	c)	47
69	Функция для решения	48
70	(a,b)	48
71	c)	49
72	a,b)	50
73	c,d)	51

Цели лабораторной работы

Изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

Теоретическое введение

Для вычисления нормы используется LinearAlgebra.norm(x). Евклидова норма:

$$\|\vec{X}\|_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2};$$

р-норма:

$$\|\vec{A}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}.$$

Евклидово расстояние между двумя векторами \vec{X} и \vec{Y} определяется как $||\vec{X} - \vec{Y}||_2$.

Угол между двумя векторами \vec{X} и \vec{Y} определяется как $\cos^{-1}\frac{\vec{X}^T\vec{Y}}{||\vec{X}||_2||\vec{Y}||_2}.$

В математике факторизация (или разложение) объекта — его декомпозиция (например, числа, полинома или матрицы) в произведение других объектов или факторов, которые, будучи перемноженными, дают исходный объект.

Задачи лабораторной работы

- 1. Используя Jupyter Lab, повторите примеры из раздела 4.2.
- 2. Выполните задания для самостоятельной работы (раздел 4.4).

Выполнение лабораторной работы

Поэлементные операции над многомерными

массивами

- 1. Изучим информацию о поэлементных операциях над многомерными массивами.
- 2. Повторим примеры с поэлементными операциями над многомерными массивами: Для матрицы 4×3 рассмотрим поэлементные операции сложения её элементов:

```
# Массив 4x3 со случайными целыми числами (от 1 до 20):
a = rand(1:20,(4,3))
4×3 Matrix{Int64}:
17 10 17
 1
    3 11
 11 10 12
# Поэлементная сумма:
sum(a)
113
# Поэлементная сумма по столбцам:
sum(a,dims=1)
1×3 Matrix{Int64}:
37 32 44
# Поэлементная сумма по строкам:
sum(a,dims=2)
4×1 Matrix{Int64}:
44
 15
 33
 21
```

Рис. 1: Матрица 4×3, сложения её элементов

3. Повторим примеры с поэлементными операциями над многомерными массивами: Для матрицы 4×3 рассмотрим поэлементные операции произведения её элементов:

```
# Поэлементное произведение:
prod(a)

36255859200

# Поэлементное произведение по столбцам:
prod(a,dims=1)

1×3 Matrix{Int64}:
1496 2700 8976

# Поэлементное произведение по строкам:
prod(a,dims=2)

4×1 Matrix{Int64}:
2890
33
1320
288
```

Рис. 2: Матрица 4×3, произведение её элементов

4. Для работы со средними значениями можно воспользоваться возможностями пакета Statistics.

```
import Pkg
Pkg.add("Statistics")

Updating registry at `C:\Users\User\.julia\registries\General.toml`
Resolving package versions...
Updating `C:\Users\User\.julia\environments\v1.10\Project.toml`
[10745b16] + Statistics v1.10.0
No Changes to `C:\Users\User\.julia\environments\v1.10\Manifest.toml`
```

Рис. 3: Добавление пакета

5. Повторим примеры с нахождением среднего значения массива, его среднего значения по столбцам и строкам.

Рис. 4: Среднее значение массива

Транспонирование, след, ранг, определитель и инверсия матрицы

6. Для выполнения таких операций над матрицами, как транспонирование, диагонализация, определение следа, ранга, определителя матрицы и т.п. можно воспользоваться библиотекой (пакетом) LinearAlgebra.

```
# Подключение пакета LinearAlgebra:
import Pkg
Pkg.add("LinearAlgebra")
using LinearAlgebra

Resolving package versions...
Updating `C:\Users\User\.julia\environments\v1.10\Project.toml`
[37e2e46d] + LinearAlgebra
No Changes to `C:\Users\User\.julia\environments\v1.10\Manifest.toml`
```

Рис. 5: Добавление пакета

7. Повторим пример создание массива 4x4 со случайными целыми числами (от 1 до 20).

```
# Массив 4x4 со случайными целыми числами (от 1 до 20):
b = rand(1:20,(4,4))

4x4 Matrix{Int64}:
7 13 19 6
16 15 14 12
1 12 11 14
19 4 2 12
```

Рис. 6: Массив 4х

8. Повторим примеры с массивом: транспонирование, след матрицы.

```
# Транспонирование:
transpose(b)

4×4 transpose(::Matrix{Int64}) with eltype Int64:
7 16 1 19
13 15 12 4
19 14 11 2
6 12 14 12

# След матрицы (сумма диагональных элементов):
tr(b)
```

Рис. 7: Транспонирование, след матрицы

9. Повторим примеры с массивом: извлечение диагональных элементов как массив, ранг матрицы.

```
# Извлечение диагональных элементов как массив:
diag(b)

4-element Vector{Int64}:
    7
    15
    11
    12

# Ранг матрицы:
rank(b)

4
```

Рис. 8: Извлечение диагональных элементов, ранг матрицы

10. Повторим примеры с массивом: инверсия матрицы (определение обратной матрицы), определитель матрицы.

```
# Инверсия матрицы (определение обратной матрицы):
inv(b)

4×4 Matrix{Float64}:
    0.00578035    0.0289017    -0.0520231    0.0289017
    -0.179716    0.283237    -0.0189175    -0.171308
    0.166185    -0.169075    0.00433526    0.0809249
    0.0230557    -0.111994    0.0879532    0.0811876

# Определитель матрицы:
det(b)

15224.000000000000002
```

Рис. 9: Инверсия матрицы, определитель матрицы

11. Повторим примеры с массивом: псевдобратная функция для прямоугольных матриц

```
# Псевдобратная функция для прямоугольных матриц:
pinv(a)

3×4 Matrix{Float64}:
    0.108197   -0.114931   -0.0327538   -0.0455152
    -0.117346    0.0514163    0.0703955    0.14614
    0.0156561    0.0804726    0.00337855   -0.0479738
```

Рис. 10: Псевдобратная функция для прямоугольных матриц

Вычисление нормы векторов и матриц, повороты,

вращения

Для вычисления нормы используется LinearAlgebra.norm(x). Евклидова норма:

 $\|\vec{X}\|_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2};$

р-норма:

$$\|\vec{A}\|_p = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}.$$

12. Повторим пример с вычилением нормы, а именно создаем вектор, высчитываем евклидовую норму и р-норму.

3-element Vector{Int64}:

2

4

-5

Рис. 11: Вектор

```
# Вычисление евклидовой нормы:
norm(X)
```

6.708203932499369

```
# Вычисление p-нормы:
p = 1
norm(X,p)
```

11.0

Рис. 12: Нормы

Евклидово расстояние между двумя векторами \vec{X} и \vec{Y} определяется как $||\vec{X} - \vec{Y}||_2$.

13. Повторим примеры с вычислением евклидово расстояния между двумя векторами.

```
# Расстояние между двумя векторами X и Y:

X = [2, 4, -5]

Y = [1,-1,3]

norm(X-Y)
```

9.486832980505138

```
# Проверка по базовому определению: sqrt(sum((X-Y).^2))
```

9.486832980505138

Рис. 13: Расстояние

Угол между двумя векторами \vec{X} и \vec{Y} определяется как $\cos^{-1}\frac{\vec{X}^T\vec{Y}}{||\vec{X}||_2||\vec{Y}||_2}$.

14. Повторим примеры с вычислением угла между двумя веткорами.

```
# Угол между двумя векторами:
acos((transpose(X)*Y)/(norm(X)*norm(Y)))
```

2.4404307889469252

Рис. 14: Угол

15. Повторим пример с вычилением нормы для двумерной мтарицы, а именно создаем матрицу, высчитываем евклидовую норму и р-норму.

```
# Создание матрицы:
d = [5 -4 2; -1 2 3; -2 1 0]
3×3 Matrix{Int64}:
  5 -4
        2
 -1
      2 3
 -2
     1 0
# Вычисление Евклидовой нормы:
opnorm(d)
7.147682841795258
# Вычисление р-нормы:
p=1
opnorm(d,p)
8.0
```

Рис. 15: Матрица и нормы

16. Выполним примеры с поворотом и переворачиваем по строкам и столбцам.

```
# Ποδοροπ на 180 εραδусοβ:
rot180(d)

3×3 Matrix{Int64}:
0 1 -2
3 2 -1
2 -4 5

# Περεδοραναβαμαε επροκ:
reverse(d,dims=1)

3×3 Matrix{Int64}:
-2 1 0
-1 2 3
5 -4 2

# Περεδοραναβαμαε εποσδαρβ
reverse(d,dims=2)

3×3 Matrix{Int64}:
2 -4 5
3 2 -1
0 1 -2
```

Рис. 16: Примеры с поворотом и переворачиваем по строкам и столбцам

Матричное умножение, единичная матрица, скалярное произведение

17. Повторим примеры: создадим дву матрицы и заполним случайными значения и вычислим произвидение этих матриц.

```
# Матрица 2x3 со случайными целыми значениями от 1 до 10:

A = rand(1:10,(2,3))

# Матрица 3x4 со случайными целыми значениями от 1 до 10:

B = rand(1:10,(3,4))

print(A)
print(B)

[4 6 8; 7 4 4][4 9 10 7; 5 5 8 4; 5 10 10 8]

# Произведение матриц А и В:

A*B

2×4 Matrix{Int64}:
86 146 168 116
68 123 142 97
```

Рис. 17: Матрицы и их произведение

18. Повторим пример создания единичной матрицы.

```
# Единичная матрица 3x3:
Matrix{Int}(I, 3, 3)

3×3 Matrix{Int64}:
1 0 0
0 1 0
0 0 1
```

Рис. 18: Матрица

19. Повторим примеры: вычислим скалярное произведение двух векторов разными способами.

```
# Скалярное произведение векторов X и Y:
X = [2, 4, -5]
Y = [1,-1,3]
dot(X,Y)
-17
# тоже скалярное произведение:
X'Y
```

Рис. 19: Скалярное произведение

Факторизация. Специальные матричные структуры

В математике факторизация (или разложение) объекта — его декомпозиция (например, числа, полинома или матрицы) в произведение других объектов или факторов, которые, будучи перемноженными, дают исходный объект. Матрица может быть факторизована на произведение матриц специального вида для приложений, в которых эта форма удобна. К специальным видам матриц относят ортогональные, унитарные и треугольные матрицы.

20. Повторим пример решение систем линейный алгебраических уравнений □□ = □: зададим все начальные условия и найдем решение.

```
# Задаём квадратную матрицу 3х3 со случайными значениями:
A = rand(3, 3)
3×3 Matrix{Float64}:
0.323776 0.766627 0.346568
0.82158 0.154756 0.212603
0.089916 0.231533 0.572396
# Задаём единичный вектор:
x = fill(1.0, 3)
3-element Vector{Float64}:
1.0
1.0
1.0
# Задаём вектор b:
3-element Vector{Float64}:
1.4369700554357259
1.1889391623864485
0.8938450054376931
```

Рис. 20: Начальные условия

```
# Решение исходного уравнения получаем с помощью функции \
# (убеждаемся, что х - единичный вектор):
A\b

3-element Vector{Float64}:
1.0
1.0
1.0
```

Рис. 21: Решение

21. Вычислим факторизацию: Julia позволяет вычислять LU-факторизацию и определяет составной тип факторизации для его хранения:

```
# LU-φακπορυ3αμμя:
Alu = lu(A)

LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
3×3 Matrix{Float64}:
1.0 0.0 0.0
0.394089 1.0 0.0
0.109443 0.304115 1.0

U factor:
3×3 Matrix{Float64}:
0.82158 0.154756 0.212603
0.0 0.705639 0.262783
0.0 0.0 0.469212
```

Рис. 22: LU-факторизация

Различные части факторизации могут быть извлечены путём доступа к их специальным свойствам: Матрица перестановок: Alu.P Вектор перестановок: Alu.p Матрица L: Alu.L Матрица U: Alu.U

22. Повторим пример: исходная система уравнений □□ = □ может быть решена или с использованием исходной матрицы, или с использованием объекта факторизации:

```
# Решение СЛАУ через матрицу А:

3-element Vector{Float64}:

1.0

1.0

1.0

# Решение СЛАУ через объект факторизации:
Alu\b

3-element Vector{Float64}:

1.0

1.0

1.0

1.0
```

Рис. 23: Решение

23. Повторим пример и найдем детерминат матрицы.

```
# Детерминант матрицы A:
det(A)

-0.2720205154988499

# Детерминант матрицы A через объект факторизации:
det(Alu)

-0.2720205154988499
```

Рис. 24: Детерминат

24. Выполним пример: Julia позволяет вычислять QR-факторизацию и определяет составной тип факторизации для его хранения.

Рис. 25: QR-факторизация

25. По аналогии с LU-факторизацией различные части QR-факторизации могут быть извлечены путём доступа к их специальным свойствам.

```
# Mampuua Q:
Aqr.Q

3×3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}}:
-0.274365 0.843755 -0.461304
-0.677435 -0.510059 -0.530021
-0.6825 0.167084 0.711532
```

Рис. 26: Q

```
# Mampuua R:
Aqr.R

3×3 Matrix{Float64}:
-0.884374 -0.455329 -0.264604
0.0 -0.792468 -0.521473
0.0 0.0 0.462976
```

Рис. 27: R

```
# Проверка, что матрица Q - ортогональная:
Aqr.Q'*Aqr.Q

3×3 Matrix{Float64}:
1.0 -2.77556e-17 -1.38778e-17
-5.55112e-17 1.0 0.0
0.0 0.0 1.0
```

Рис. 28: Проверка ортогональности

26. Выполним примеры собственной декомпозиции матрицы A, а именно симметризация матрицы A, спектральное разложение симметризованной матрицы, посик собственных значений и векторов.

```
# Симметризация матрицы A:

Asym = A + A'

3×3 Matrix{Float64}:

1.74614 0.464061 0.211887

0.464061 1.7004 0.570514

0.211887 0.570514 0.929872
```

Рис. 29: Симметризация матрицы А

```
# Спектральное разложение симметризованной матрицы:
AsymEig = eigen(Asym)

Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}} values:
3-element Vector{Float64}:
0.6257132275305365
1.3504140615067672
2.4002822908619654
vectors:
3×3 Matrix{Float64}:
0.0328487 0.788192 -0.614552
-0.479667 -0.52701 -0.701555
0.876835 -0.317825 -0.360758
```

Рис. 30: Спектральное разложение симметризованной матрицы

```
# Собственные значения:
AsymEig.values
3-element Vector{Float64}:
0.6257132275305365
1.3504140615067672
2.4002822908619654
#Собственные векторы:
AsymEig.vectors
3×3 Matrix{Float64}:
 0.0328487 0.788192 -0.614552
 -0.479667 -0.52701 -0.701555
 0.876835 -0.317825 -0.360758
# Проверяем, что получится единичная матрица:
inv(AsymEig)*Asym
3×3 Matrix{Float64}:
 1.0 -4.51028e-17 4.09395e-16
 -6.93889e-17 1.0 -1.11022e-16
 9.99201e-16 1.11022e-16 1.0
```

Рис. 31: Собственные значения, векторы и проверка

27. Далее рассмотрим примеры работы с матрицами большой размерности и специальной структуры: матрица 1000 x 1000.

```
# Матрица 1000 х 1000:
n = 1000
A = randn(n,n)
1000×1000 Matrix{Float64}:
                                        0.288745 ... -0.0576756 -1.29635 -1.55455
   0.945564 -0.4136
                                                         0.00406874 -0.146778 -0.543025
2.10461 2.27 0.493712
-0.281696 0.113201 0.402691
  -0.733987 -0.0813476 -1.8088
  0.416595 0.215597 1.72953
-1.17069 -1.28196 0.172427
  -1.17069
                                         0.172427
  -0.534953 -0.454402 -0.0904224
                                                                0.552524 ... -0.205875 1.10018 -0.537194
                                                          -1.486 -0.628359 -0.915956
0.217834 1.1874 -0.744079
                                                                                     -0.628359 -0.915956
   0.562794 -1.07607 -0.526134

    0.582794
    -1.07607
    -0.526134
    0.217834
    1.1874
    -0.744079

    0.585691
    0.901834
    0.0827245
    1.53281
    0.17808
    -0.185429

    -0.546395
    0.0415964
    -0.736421
    0.566128
    -0.838803
    0.172493

    0.413408
    0.344019
    -0.731707
    ...
    -0.139578
    1.23046
    -0.406932

                                                             2.37222 1.8644
  -0.559737 -0.124365 -0.153766
                                                                                                        0.234218
   2.64962
                  -0.339176
                                       1.10631
                                                                 1.39374
                                                                                      0.525698 -0.482248
                                     -1.46166
   1.15559
                     0.672569
1.43359
  -1.14017
   0.23013
 -0.456641 -0.34784 -1.69538

0.557833 1.06935 0.690091

-0.0322185 -0.415773 0.477601
                                                              -0.104601 -0.676934 2.56679
-1.52515 0.624246 -0.660277
                                                               1.3033
  -0.810073 0.906215 0.130511
                                                                                     -0.350364 -0.445778

    -0.810073
    0.906215
    0.130511
    1.3053
    0.33554
    0.57905

    -1.39737
    -0.0498869
    -1.29807
    ...
    -0.125225
    -1.98868
    -0.57905

    -0.489871
    -1.03055
    -0.382777
    -0.408173
    0.166898
    2.47756

    2.38396
    0.108788
    0.98079
    -1.67812
    -1.18574
    2.19278

    0.407764
    0.613379
    0.673965
    -0.99283
    -0.817734
    -0.661687

    -1.19675
    -0.097588
    0.516592
    0.694347
    1.05551
    0.146226

                                                                                     -0.817734 -0.661687
                                                                                                      0.146226
```

Рис. 32: Матрица 1000 х 1000

28. Выполним для данной матрицы симметризацию, и проверку на симметрию.

```
# Симметризация матрицы:
Asym = A + A'
1000×1000 Matrix{Float64}:
  1.89113 -1.14759 0.705339 ... 2.32628 -0.888584 -2.7513
                    -0.162695 -1.59321 0.112857 0.466601 -0.640613
-1.59321 3.45905 3.0854 2.94397 1.0103
-1.60121 -0.690125 -0.234089 1.40913 0.396142
  -1.14759
 0.705339 -1.59321 3.45905 3.0854
-1.95993 -1.60121 -0.690125 -0.234089
-1.10852 1.63509 -0.371592 1.63391
                                                                                              1.63206 1.65072
  -0.598721 0.935986 0.537715 ... -0.363744 1.30787 0.429677
  1.16067 -0.255707 0.216914 -2.40255 -2.46799 -1.46619
-0.434411 -0.607108 0.816192 1.19282 1.27309 -0.270205
                      0.722902 0.424145 2.62941 -0.288722 -0.113701
   0.412727
  -0.434874 -0.659047 -1.59224
                                                                       0.0749583 0.163534 0.777786

    1.96235
    0.363711
    -1.27095
    ...
    -0.482602
    0.352057
    -0.0786477

    -0.814709
    -0.445876
    -1.83821
    1.94458
    2.5976
    1.03824

    2.16479
    -2.58858
    2.87103
    0.668372
    -0.158715
    0.53989

  0.0138219 -1.43221 0.141513 1.13619 -2.71519 -0.368563 -1.18133 -0.0518368 1.23705 0.923544 -0.336829 0.0998745
   0.789905 3.15444 1.84744 ... 3.2034 4.25491 -1.54858

    0.0580671
    0.419394
    -2.65152
    -0.614025
    -0.492288
    -0.157775

    1.01359
    -0.496089
    1.09417
    -0.0253229
    0.173054
    2.17623

    2.10788
    -0.433621
    0.264345
    -0.018247
    0.350143
    0.316145

    0.757072
    -1.23472
    0.593982
    1.89946
    1.68289
    -1.29059

    0.917399
    -0.740756
    -2.87718
    ...
    -1.5719
    -1.71603
    -1.20678

    0.10315
    -0.956864
    -0.613048
    0.528737
    0.177616
    3.96403

    2.32628
    0.112857
    3.0854
    -3.35623
    -2.17857
    2.88713

    -0.888584
    0.466601
    2.94397
    -2.17857
    -1.63547
    0.393826

  -2.7513 -0.640613 1.0103
                                                                      2.88713 0.393826 0.292451
```

Рис. 33: Симметризация

```
# Проверка, является ли матрица симметричной:
issymmetric(Asym)
```

true

Рис. 34: Проверка

29. Выполним пример добавления шума в симметричную матрицу (матрица уже не будет симметричной).

```
# Добавление шума:
Asym_noisy = copy(Asym)
Asym_noisy[1,2] += 5eps()

-1.147586931664726

# Проверка, является ли матрица симметричной:
issymmetric(Asym_noisy)
```

Рис. 35: Добавление шума и проверка

30. В Julia можно объявить структуру матрица явно, например, используя Diagonal, Triangular, Symmetric, Hermitian, Tridiagonal и SymTridiagonal.

```
# Явно указываем, что матрица является симметричной:
Asym_explicit = Symmetric(Asym_noisy)
1000×1000 Symmetric{Float64, Matrix{Float64}}:

    1.89113
    -1.14759
    0.705339
    ...
    2.32628
    -0.888584
    -2.7513

    -1.14759
    -0.162695
    -1.59321
    0.112857
    0.466601
    -0.640613

    0.705339
    -1.59321
    3.45905
    3.0854
    2.94397
    1.0103

 -1.95993 -1.60121 -0.690125 -0.234089 1.40913 0.396142
                 1.63509 -0.371592 1.63391 1.63206 1.65072
0.935986 0.537715 ... -0.363744 1.30787 0.429677
 -1.10852
 -0.598721
                   1.16067

    1.96235
    0.363711
    -1.27095
    ...
    -0.482602
    0.352057
    -0.0786477

    -0.814709
    -0.445876
    -1.83821
    1.94458
    2.5976
    1.03824

    2.16479
    -2.58858
    2.87103
    0.668372
    -0.158715
    0.53989

 0.0138219 -1.43221 0.141513 1.13619 -2.71519 -0.368563
-1.18133 -0.0518368 1.23705 0.923544 -0.336829 0.0998745

    0.789905
    3.15444
    1.84744
    ...
    3.2034
    4.25491
    -1.54858

    0.0580671
    0.419394
    -2.65152
    -0.614025
    -0.492288
    -0.157775

    1.01359
    -0.496089
    1.09417
    -0.0253229
    0.173054
    2.17623

  2.10788 -0.433621 0.264345 -0.018247 0.350143 0.316145

      0.757072
      -1.23472
      0.593982
      1.89946
      1.68289
      -1.29059

      0.917399
      -0.740756
      -2.87718
      ...
      -1.5719
      -1.71603
      -1.20678

  0.10315 -0.956864 -0.613048 0.528737 0.177616 3.96403
  2.32628
                    0.112857 3.0854 -3.35623 -2.17857 2.88713
                                    2.94397
1.0103
                                                          -2.17857 -1.63547 0.393826
2.88713 0.393826 0.292451
 -0.888584
                  0.466601
 -2.7513
                    -0.640613
```

Рис. 36: Указание на симметричность

31. Далее для оценки эффективности выполнения операций над матрицами большой

размерности и специальной структуры воспользуемся пакетом BenchmarkTools, добавим его.

```
import Pkg
Pkg.add("BenchmarkTools")
using BenchmarkTools
   Resolving package versions...
   Installed BenchmarkTools - v1.5.0
    Updating `C:\Users\User\.julia\environments\v1.10\Project.toml`
  [6e4b80f9] + BenchmarkTools v1.5.0
    Updating `C:\Users\User\.julia\environments\v1.10\Manifest.toml`
  [6e4b80f9] \uparrow BenchmarkTools v1.4.0 \Rightarrow v1.5.0
Precompiling project...

√ BenchmarkTools

  ✓ MathOptInterface
  √ Optim
  √ DiffEqNoiseProcess
  \checkmark StochasticDiffEq

√ DifferentialEquations

 6 dependencies successfully precompiled in 144 seconds. 322 already preco
```

Рис. 37: Добавление пакета

32. Выполним оценку эффективности выполнения операции по нахождению собственных значений для различных матриц.

```
# Оценка эффективности выполнения операции по нахождению
# собственных значений симметризованной матрицы:
@btime eigvals(Asym)
  140.190 ms (11 allocations: 7.99 MiB)
1000-element Vector{Float64}:
 -89.90745697267798
 -89.28462914513722
 -87.7618794507008
 -86.82276458104195
 -86.17545419337942
 -85.50230407876174
 -85.06852580328531
 -84.70714389011076
 -84.5030609471845
 -84.18620811687069
 -83.58445180670451
 -83.05188255007515
 -82.88233698029482
  82.50731589150371
  83.0077687026647
  83.13600831985721
  83.28420721839369
  84.08896605208413
  84.6386358303351
  85.29488028420883
  85.65940396658235
  86.54358105900604
  87.12252883775672
  87.33499654466465
  87.5091798420538
```

Рис. 38: Оценка эффективности 1

```
# Оценка эффективности выполнения операции по нахождению
# собственных значений зашумлённой матрицы:
@btime eigvals(Asym_noisy)
  736.767 ms (14 allocations: 7.93 MiB)
1000-element Vector{Float64}:
 -89.90745697267911
 -89.28462914513783
 -87.76187945070113
 -86.8227645810423
 -86.17545419337884
 -85.50230407876121
 -85.06852580328572
 -84.70714389011033
 -84.50306094718434
 -84.18620811687012
 -83.58445180670492
 -83.05188255007515
 -82.8823369802946
  82.50731589150357
  83.00776870266446
  83.1360083198572
  83.28420721839342
  84.08896605208409
  84.63863583033428
  85.29488028420847
  85.65940396658272
  86.54358105900539
  87.12252883775666
  87.33499654466515
  87.50917984205434
```

Рис. 39: Оценка эффективности 2

```
# Оценка эффективности выполнения операции по нахождению
# собственных значений зашумлённой матрицы,
# для которой явно указано, что она симметричная:
@btime eigvals(Asym_explicit)
  153.165 ms (11 allocations: 7.99 MiB)
1000-element Vector{Float64}:
 -89.90745697267839
 -89.28462914513725
-87.76187945070029
-86.82276458104262
 -86.1754541933794
 -85.50230407876178
 -85.06852580328525
-84.70714389011067
 -84.50306094718444
 -84.18620811687055
 -83.5844518067044
 -83.05188255007535
 -82.88233698029536
 82.5073158915038
 83.00776870266455
  83.13600831985687
  83.2842072183936
  84.08896605208412
  84.6386358303352
 85.29488028420896
 85.65940396658252
 86.54358105900596
 87.12252883775663
 87.33499654466463
  87.50917984205351
```

Рис. 40: Оценка эффективности 3

33. Далее рассмотрим примеры работы с разряженными матрицами большой размерности. Использование типов Tridiagonal и SymTridiagonal для хранения трёхдиагональных матриц позволяет работать с потенциально очень большими трёхдиагональными матрицами. Выполним оценку эффективности.

Рис. 41: Матрица 1000000х1000000

```
# Оценка эффективности выполнения операции по нахождению # собственных значений:
@btime eigmax(A)

524.792 ms (17 allocations: 183.11 MiB)
6.275049715720039
```

Рис. 42: Оценка эффективности

34. При попытке задать подобную матрицу обычным способом и посчитать её собственные значения, мы получим ошибку переполнения памяти.

```
B = Matrix(A)
OutOfMemoryError()
Stacktrace:
[1] Array
  @ .\boot.jl:479 [inlined]
[2] Matrix{Float64}(M::SymTridiagonal{Float64, Vector{Float64}})
  @ LinearAlgebra C:\Users\User\AppData\Local\Programs\Julia-1.10.0\share\julia
diag.jl:127
[3] (Matrix)(M::SymTridiagonal{Float64, Vector{Float64}})
  @ LinearAlgebra C:\Users\User\AppData\Local\Programs\Julia-1.10.0\share\julia
diag.jl:138
[4] top-level scope
  @ In[108]:1
```

Рис. 43: Ошибка

Общая линейная алгебра

Обычный способ добавить поддержку числовой линейной алгебры - это обернуть подпрограммы BLAS и LAPACK. Собственно, для матриц с элементами Float32, Float64, Complex {Float32} или Complex {Float64} разработчики Julia использовали такое же решение. Однако Julia также поддерживает общую линейную алгебру, что позволяет, например, работать с матрицами и векторами рациональных чисел.

35. В следующем примере показано, как можно решить систему линейных уравнений с рациональными элементами без преобразования в типы элементов с плавающей запятой (для избежания проблемы с переполнением используем BigInt).

```
# Матрица с рациональными элементами:
Arational = Matrix{Rational{BigInt}}(rand(1:10, 3, 3))/10

3×3 Matrix{Rational{BigInt}}:
1//10 1//2 2//5
3//10 4//5 7//10
1 3//5 4//5

# Единичный вектор:
x = fill(1, 3)
# Задаём вектор b:
b = Arational*x

3-element Vector{Rational{BigInt}}:
1
9//5
12//5
```

Рис. 44: Матрица с рациональными элементами

```
# Решение исходного уравнения получаем с помощью функции \
# (убеждаемся, что х - единичный вектор):
Arational\b
3-element Vector{Rational{BigInt}}:
 1
 1
 1
# LU-разложение:
lu(Arational)
LU{Rational{BigInt}, Matrix{Rational{BigInt}}, Vector{Int64}}
L factor:
3×3 Matrix{Rational{BigInt}}:
 1 0 0
3//10 1 0
 1//10 22//31 1
U factor:
3×3 Matrix{Rational{BigInt}}:
 1 3//5 4//5
0 31//50 23//50
    0 -1//155
```

Рис. 45: Решение и LU-разложение

Задания для самостоятельного выполнения

Произведение векторов

36. Выполним 1.1 задание: задайте вектор v. Умножьте вектор v скалярно сам на себя и сохраните результат в dot_v.

```
v = rand(1:100, 3); display(v)
dot_v = v'v

3-element Vector{Int64}:
    16
    69
    25
5642
```

Рис. 46: 1.1 задание

37. Выполним 1.2 задание: умножьте v матрично на себя (внешнее произведение), присвоив результат переменной outer v.

```
outer_v = v*v'

3×3 Matrix{Int64}:

256 1104 400

1104 4761 1725

400 1725 625
```

Рис. 47: 1.2 задание

Системы линейных уравнений

38. Выполним 2 задание: Решить СЛАУ с двумя/тремя неизвестными.

```
function LinearDep(mtrx::Matrix, vec::Vector)
   # returns isSolvable::Bool, ind::Vector{Int64} -- вектор
    A = hcat(mtrx, vec)
    Ac = copy(mtrx); bc = copy(vec)
   s1 = size(A)[1]; s2 = size(A)[2]-1
   t = [false for i in 1:size(A)[1]]
poss_j = collect(2:s2)
    for i in 1:s2
       for j in i+1:s1
            mbool = true
            temp = A[j, :]./A[i, :]
            if length(unique(temp[1:s2])) == 1
                if temp[s2+1] == temp[1]
                    t[j] = true
                 else
                     return false, []
                 end
             tii = i
            if Ac[i, i] == 0
                tii = sortperm(abs.(Ac[i, :]))[s2]
                if Ac[i, tii] == 0
                     mbool = false
            end
            if mbool
                c = -Ac[j, tii] / Ac[i, tii]
if isequal(Ac[j, :].+(c*Ac[i, :]), zeros(Float64, s2))
   if bc[j] + c*bc[i] != 0
                         return false, []
                         t[j] = true
                         Ac[j, :] = Ac[j, :].+(c*Ac[i, :])
                         bc[j] += c*bc[i]
                     Ac[j, :].+= (c*Ac[i, :])
                     bc[j] += c*bc[i]
                end
            end
        end
```

Рис. 48: Функция для решения

```
for i in 1:s1
        if isequal(Ac[i, :], zeros(Float64, s2))
            t[i] = true
    answ = deleteat!(collect(1:s1), t)
    if length(answ) >= s2
        return true, answ
        return false, [pi]
function SLAU_solver(A::Matrix, b::Vector)
    if ndims(A) != 2 || size(A)[1] != length(b)
        println("Не совпадают размерности!")
    s1 = size(A)[1]; s2 = size(A)[2]
    if s1 == s2 && det(A) != 0
       return A\b
    elseif s1 < s2
        println("Уравнений меньше, чем переменных")
        return
    else # s1 > s2 || (s1 == s2 && det(A) == 0)
        isSolvable, indNonLinear = LinearDep(A, b)
if !isSolvable && isequal(indNonLinear, [])
             println("Нет решений")
             return
        elseif !isSolvable && isequal(indNonLinear, [pi])
println("Бесконечное количество решений")
             return
             length(indNonLinear) > s2 ? indNonLinear = indNonLinear[1:s2] :
             return A[indNonLinear, :]\b[indNonLinear]
end
A = Float64[1 2 3; 1/3 2 1; 2 3 6; 3 4 5]
b = Float64[1, 1, 4, 5]
SLAU_solver(A, b)
```

Рис. 49: Функция для решения

а) Решение существует (система линейно независима)

$$\begin{cases} x + y = 2, \\ x - y = 3. \end{cases}$$

```
A = Float64[1 1; 1 -1]
b = Float64[2, 3]
SLAU_solver(A, b)
```

2-element Vector{Float64}:
 2.5
 -0.5

Рис. 50: а)

b) Бесконечное количество решений (вся система линейно зависима и коэффициенты и ветокры ответов)

$$\begin{cases} x + y = 2, \\ 2x + 2y = 4. \end{cases}$$

```
A = Float64[1 1; 2 2]
b = Float64[2, 4]
SLAU_solver(A, b)
```

Бесконечное количество решений

Рис. 51: b)

с) Нет решений (матрица коэффициентов линейно зависима, при этом векторы нет)

$$\begin{cases} x + y = 2, \\ 2x + 2y = 5. \end{cases}$$

```
A = Float64[1 1; 2 2]
b = Float64[2, 5]
SLAU_solver(A, b)
```

Нет решений

Рис. 52: с)

d) Бесконечное количество решений (вся система линейно зависима)

$$\begin{cases} x + y = 1, \\ 2x + 2y = 2, \\ 3x + 3y = 3. \end{cases}$$

```
A = Float64[1 1; 2 2; 3 3]
b = Float64[1, 2, 3]
SLAU_solver(A, b)
```

Бесконечное количество решений

Рис. 53: d)

е) Нет решений

$$\begin{cases} x + y = 2, \\ 2x + y = 1, \\ x - y = 3. \end{cases}$$

Нет решений

Рис. 54: е)

f) Решение существует

$$\begin{cases} x + y = 2, \\ 2x + y = 1, \\ 3x + 2y = 3. \end{cases}$$

```
A = Float64[1 1; 2 1; 3 2]
b = Float64[2, 1, 3]
SLAU_solver(A, b)
```

2-element Vector{Float64}:
-1.0
3.0

Рис. 55: f)

Решить СЛАУ с тремя неизвестными:

a)

$$\begin{cases} x + y + z = 2, \\ x - y - 2z = 3. \end{cases}$$

```
A = Float64[1 1 1; 1 -1 -2]
b = Float64[2, 3]
SLAU_solver(A, b)
```

Уравнений меньше, чем переменных

Рис. 56: а)

b)

$$\begin{cases} x + y + z = 2, \\ 2x + 2y - 3z = 4, \\ 3x + y + z = 1. \end{cases}$$

```
A = Float64[1 1 1; 2 2 -3; 3 1 1]
b = Float64[2, 4, 1]
SLAU_solver(A, b)
```

3-element Vector{Float64}:

- -0.5
 - 2.5
 - 0.0

Рис. 57: b)

c)

$$\begin{cases} x + y + z = 1, \\ x + y + 2z = 0, \\ 2x + 2y + 3z = 1. \end{cases}$$

```
A = Float64[1 1 1; 1 1 2; 2 2 3]
b = Float64[1, 0, 1]
SLAU_solver(A, b)
```

Бесконечное количество решений

Рис. 58: с)

d)

$$\begin{cases} x + y + z = 1, \\ x + y + 2z = 0, \\ 2x + 2y + 3z = 0. \end{cases}$$

```
A = Float64[1 1 1; 1 1 2; 2 2 3]
b = Float64[1, 0, 0]
SLAU_solver(A, b)
```

Нет решений

to_Diagonal (generic function with 1 method)

Рис. 59: d)

Операции с матрицами

39. Приведите приведённые ниже матрицы к диагональному виду:

Рис. 60: Функция для решения

```
# a)
A = Float64[1 -2; -2 1]
to_Diagonal(A)
2×2 Matrix{Float64}:
-3.0 0.0
 0.0 -3.0
# b)
A = Float64[1 -2; -2 3]
to_Diagonal(A)
2×2 Matrix{Float64}:
 -0.333333 0.0
 0.0
           -1.0
# c)
A = Float64[1 -2 0; -2 1 2; 0 2 0]
to_Diagonal(A)
3×3 Matrix{Float64}:
 -3.0 0.0 4.0
NaN -Inf NaN
  4.0 0.0 -4.0
```

Рис. 61: а,b,с)

• Вычислите:

```
function mtrx_Function(A::Matrix, op)
    X = eigvecs(A)
    lamb = diagm(eigvals(A))
    lambfunc = [op(1) for 1 in lamb]
    answ = X^(-1)*lambfunc*X
    return answ
end
```

mtrx_Function (generic function with 1 method)

Рис. 62: Функция для решения

```
# a)
A = [1 -2; -2 1]; display(A^10)
mtrx_Function(A, x \rightarrow x^10)
2×2 Matrix{Int64}:
 29525 -29524
 -29524 29525
2×2 Matrix{Float64}:
 29525.0 -29524.0
 -29524.0 29525.0
# b)
A = [5 -2; -2 5]
mtrx_Function(A, x -> sqrt(x))
2×2 Matrix{Float64}:
 2.1889 -0.45685
 -0.45685 2.1889
# c)
A = [1 -2; -2 1]
mtrx_Function(A, x -> cbrt(x))
2×2 Matrix{Float64}:
 0.221125 -1.22112
-1.22112 0.221125
A = ComplexF64[1 2; 3 4]
mtrx_Function(A, x -> sqrt(x))
2×2 Matrix{ComplexF64}:
0.553689+0.464394im -0.889962+0.234276im
 -1.09755+0.288922im 1.76413+0.145754im
```

Рис. 63: a,b,c,d)

• Найдите собственные значения матрицы \square , если:

```
A = [140 97 74 168 131; 97 106 89 131 36; 74 89 152 144 71; 168 131 144 52 142; 131 36 71 142 36]

@btime eigvals(A)

2.167 μs (10 allocations: 2.59 KiB)

5-element Vector(Float64):
-129.84037845927043
-56.008181312078634
42.75068638743729
87.15844501190598
541.9394283720058
```

Рис. 64: А

• Создайте диагональную матрицу из собственных значений матрицы

Создайте

нижнедиагональную матрицу из матрица \square . Оцените эффективность выполняемых операций.

```
@btime diagm(eigvals(A))

2.200 µs (11 allocations: 2.84 KiB)

5×5 Matrix{Float64}:
-129.84 0.0 0.0 0.0 0.0
0.0 -56.0082 0.0 0.0 0.0
0.0 0.0 42.7507 0.0 0.0
0.0 0.0 0.0 87.1584 0.0
0.0 0.0 0.0 0.0 541.939

@btime blA = Bidiagonal(A, :L)

313.248 ns (3 allocations: 224 bytes)

5×5 Bidiagonal{Int64, Vector{Int64}}:
140 . . .
97 106 . . .
89 152 . .
144 52 .
147 142 36
```

Рис. 65: А из собственных значений

Линейные модели экономики

40. Выполним задание: 1. Матрица □ называется продуктивной, если решение □ системы при любой неотрицательной правой части □ имеет только неотрицательные элементы □□. Используя это определение, проверьте, являются ли матрицы продуктивными.

```
function economicModel(M, y)
    x = (Diagonal(fill(1, 2)) - M)^(-1) * y
    return x
end

economicModel (generic function with 1 method)
```

Рис. 66: Функция для решения

```
# a)
A = [1 \ 2; \ 3 \ 4]
Y = [2; 1]
X = economicModel(A,Y); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
    println("Продуктивный")
end
2-element Vector{Float64}:
 0.666666666666666
 -1.0
Непродуктивный
# b)
A = [1 \ 2; \ 3 \ 4]*0.5
Y = [2; 1]
X = economicModel(A,Y); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
    println("Продуктивный")
end
2-element Vector{Float64}:
 0.5
 -1.75
Непродуктивный
```

Рис. 67: a,b)

```
# c)
A = [1 2; 3 4]*0.1
Y = [2; 1]
X = economicModel(A,Y); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
else
    println("Продуктивный")
end

2-element Vector{Float64}:
2.916666666666665
3.125
Продуктивный
```

Рис. 68: с)

41. Выполним задание: 2. Критерий продуктивности: матрица

является продук-

тивной тогда и только тогда, когда все элементы матрица ($\Box - \Box$)-1 являются неотрицательными числами. Используя этот критерий, проверьте, являются ли матрицы продуктивными.

```
function OnesModel(M)
    x = (Diagonal(fill(1, size(M,1))) - M)^(-1)
    return x
end
```

OnesModel (generic function with 1 method)

Рис. 69: Функция для решения

```
# a)
A = [1 \ 2; \ 3 \ 1]
X = OnesModel(A); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
    println("Продуктивный")
end
2×2 Matrix{Float64}:
-0.0 -0.333333
-0.5 0.0
Непродуктивный
# b)
A = [1 2; 3 1]*0.5
X = OnesModel(A); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
else
    println("Продуктивный")
end
2×2 Matrix{Float64}:
 -0.4 -0.8
 -1.2 -0.4
Непродуктивный
```

Рис. 70: a,b)

```
# c)
A = [1 2; 3 1]*0.1
X = OnesModel(A); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
else
    println("Продуктивный")
end

2×2 Matrix{Float64}:
1.2 0.266667
0.4 1.2
Продуктивный
```

Рис. 71: с)

42. Выполним задание: Спектральный критерий продуктивности: матрица □ является продуктивной тогда и только тогда, когда все её собственные значения по модулю меньше 1. Используя этот критерий, проверьте, являются ли матрицы продуктивными.

```
# a)
A = [1 2; 3 1]
X = eigenvalues(A); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
   println("Непродуктивный")
    println("Продуктивный")
end
2-element Vector{Float64}:
 -1.4494897427831779
  3.4494897427831783
Непродуктивный
# b)
A = [1 2; 3 1]*0.5
X = eigenvalues(A); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
else
   println("Продуктивный")
end
2-element Vector{Float64}:
-0.7247448713915892
 1.724744871391589
Непродуктивный
```

Рис. 72: a,b)

```
# c)
A = [1 \ 2; \ 3 \ 1]*0.1
X = eigenvalues(A); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
    println("Непродуктивный")
    println("Продуктивный")
end
2-element Vector{Float64}:
 -0.14494897427831785
 0.34494897427831783
Непродуктивный
# d)
A = [0.1 \ 0.2 \ 0.3; \ 0.0 \ 0.1 \ 0.2; \ 0.0 \ 0.1 \ 0.3]
X = eigenvalues(A); display(X)
if mapreduce(z -> if z < 0 1 else 0 end, +, X) > 0
   println("Непродуктивный")
    println("Продуктивный")
3-element Vector{Float64}:
 0.02679491924311228
 0.1
 0.37320508075688774
Продуктивный
```

Рис. 73: c,d)

Выводы по проделанной работе

Вывод

В результате выполнения работы мы изучили возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры. Были записаны скринкасты выполнения, создания отчета, презентации и защиты лабораторной работы.

Список литературы

- Julia: https://ru.wikipedia.org/wiki/Julia
- https://julialang.org/packages/
- https://juliahub.com/ui/Home
- https://juliaobserver.com/
- https://github.com/svaksha/Julia.jl