Influence of solar wind parameters on unsupervised solar wind classification

S. Teichmann ¹, V. Heidrich-Meisner ², R. Wimmer-Schweingruber ²

ML Helio 23.03.2022

Solar wind and solar wind classification

Figure: Left: Instruments on SOHO (Solar and Heliospheric Observatory): LASCO (Large Angle and Spectrometric Coronagraph) and EIT (Extreme ultraviolet Imaging Telescope), Right: Schematic display of the Sun, solar wind and Earth by ESA [2]. Visualisation of the 3 motivation for solar wind classification: understanding the origin, transport effects and space weather.

Solar wind classification - transport effects

Figure: Visualisation of Stream interaction regions by Jian [3]

Parameters

density (n_{sw}) mean density of protons in the solar wind velocity (v_{sw}) mean velocity of protons in the solar wind temperature (T_{sw}) mean temperature of protons in the solar wind magnetic field (B) absolute value of the magnetic field collisional age (a_{col}) number of collisions in the plasma oxygen ions $(n_{O^{7+}}/n_{O^{6+}})$ ratio between the densities O^{7+} and O^{6+} Iron ions (q_{Fe}) mean charge state of iron instruments on ACE:

- Solar Wind Electron Proton and Alpha Monitor (SWEPAM)
- Solar Wind Ion Composition Spectrometer (SWICS)
- Magnetometer (MAG)

timeframe: 2001-2011

number of points in dataframe: 258574 (with ICME: 282231)

Figure: Logo of the Ace Mission [4]

Existing classifications

⇒ transport effect vs. origin based classifications

How it's done: k-means clustering

Figure: Visualisation of k-means clustering by Heidrich-Meisner. Implementation: sklearn version 0.23.2 in python version 3.9.2

How to choose k or on the number of solar wind types

Figure: Left: Elbow plot by Heidrich-Meisner on the same dataset. Right: Elbow plot based on the experimental settings

- resulting cluster are not convex
- k=3 and k=7

- Cross validation error: inner cluster distance
- Calinski Harabasz score: sum of between-clusters dispersion and of within-cluster dispersion
- **Davies Bouldin** score: average similarity between clusters

The experiment: variation of input parameters

How to evaluate the results

Figure: Schematic demonstration how the results for each parameter combination is evaluated on the example of T_{sw} .

- ► Fowlkes Mallows score: ranges from 0 to 1 based on statistical errors (true positive ...)
- * Adjusted rand score:
 ranges from -1 to 1
 counting pairs that are the
 same and differently
 labelled
 - Mutal information score: adjusted and normalized, ranges from 0 to 1, shared information of two clusterings & if adjusted for chance effects

Comparison of all parameter combinations to experiment with all parameters

parameter combination

Comparison of all parameter combinations to experiment with all parameters

parameter combination

How to choose k or on the number of solar wind types

Figure: Left: Elbow plot by Heidrich-Meisner on the same dataset. Right: Elbow plot based on the experimental settings

 \Rightarrow resulting cluster are not convex \Rightarrow k=3 and k=7

- Cross validation error: inner cluster distance
- Calinski
 Harabasz
 score: sum of
 between-clusters
 dispersion and
 of within-cluster
 dispersion
- Davies Bouldin score: average similarity
 between clusters

 $n_{su}, T_{su}, B, n_{O^{7+}}/n_{O^{6+}}, v_{su}, a_{col}$

Comparison of all parameter combinations to experiment with all parameters

 $n_{sw}, T_{sw}, B, v_{sw}, a_{col}, q_{Fe}$

Comparison of all parameter combinations to experiment with all parameters

 $n_{sm}, B, n_{O^{7+}}/n_{O^{6+}}, v_{sm}, a_{col}, q_{Fe}$

Summary of the results

General results from k-means

- more than 3 different types are needed to differentiate between origin based and transport effects
- for 3 Clusters slow solar wind, fast solar wind and compression regions are identified

Conclusion

- *n_{sw}* is the most important parameter for classification
- charge states (especially q_{Fe}) are needed for detailed classification
- transport effects should be considered for detailed clustering!

Thank you for your attention & please ask questions!

General results from k-means

- more than 3 different types are needed to differentiate between origin based and transport effects
- for 3 Clusters slow solar wind, fast solar wind and compression regions are identified

Conclusion

- *n_{sw}* is the most important parameter for classification
- charge states (especially q_{Fe}) are needed for detailed classification
- transport effects should be considered for detailed clustering!

References I

ESA.

Der sonnenwind erzeugt direkte und indirekte effekte auf der erde, 2002.

L. Jian, C. Russell, J. Luhmann, and R. Skoug. Properties of stream interactions at one au during 1995–2004. *Solar Physics*, 239(1):337–392, 2006.

space.
Ace logo, 2022.

References II

F. Xu and J. E. Borovsky.

A new four-plasma categorization scheme for the solar wind. *Journal of Geophysical Research: Space Physics*, 120(1):70–100, 2015.

L. Zhao, T. Zurbuchen, and L. Fisk.

Global distribution of the solar wind during solar cycle 23: Ace observations.

Geophysical Research Letters, 36(14), 2009.

3 Cluster - First results

7 Cluster

6 Cluster

10 Cluster

