

Stat GR 5025 Lecture 9

Jingchen Liu

Department of Statistics Columbia University

Value-added plot

Display 11.4 p. 308

Response variable, design variables, and several covariates for 34 rats in the

blood-brain barrier disruption experiment

	Response Variable Brain tumor Count (per gm)	Sacrifice Time (hours) Treatment		Covariates Days Post Inoculation Tumor Weight (10 ⁻⁴ grams) Weight Loss (grams) Initial Weight (grams)				
Case	Liver Count (per gm)	+	+	A -	Sex	¥		. ♦
1	41081 / 1456164	0.5	BD	10	F	239	5.9 M	221
	44286 / 1602171	0.5	BD	10	F	225	4.0	246
3	102926 / 1601936	0.5	BD	10	Ê	224	-4.9	61
4	25927 / 1776411	0.5	BD	10	F	184	9.8	168
5	42643 / 1351184	0.5	BD	10	F	250	6.0	164
6	31342 / 1790863	0.5	NS	10	F	196	7.7	260
6	22815 / 1633386	0.5	NS	10	F	200	0.5	27
8	16629 / 1618757	0.5	NS	10	F	273	4.0	308
9	22315 / 1567602	0.5	NS	10	F	216	2.8	93
10	77961 / 1060057	3	BD	10	F	267	2.6	73
11	73178 / 715581	3	BD	10	F	263	1.1	25
12	76167 / 620145	3 3 3 3	BD	10	F	228	0.0	133
13	123730 / 1068423	3	BD	9	F	261	3.4	203
14	25569 / 721436	3	NS	9	F	253	5.9	159
15	33803 / 1019352	3 3 3	NS	10	F	234	0.1	264
16	24512 / 667785	3	NS	10	F	238	0.8	34
17	50545 / 961097	3	NS	9	F	230	7.0	146
18	50690 / 1220677	3	NS	10	F	207	1.5	212
19	84616 / 48815	24	BD	10	F	254	3.9	155
20	55153 / 16885	24	BD	10	M	256	-4.7	190
21	48829 / 22395	24	BD	10	M	247	-2.8	101
22	89454 / 83504	24	BD	11	F	198	4.2	214
23	37928 / 20323	24	NS	10	F	237	2.5	224
24	12816 / 15985	24	NS	10	M	293	3.1	151
25	23734 / 25895	24	NS	10	M	288	9.7	285
26	31097 / 33224	24	NS	11	F	236	5.9	380
27	35395 / 4142	72	BD	11	F	251	4.1	39
28	18270 / 2364	72	BD	10	F	223	4.0	153
29	5625 / 1979	72	BD	10	M	298	12.8	164
30	7497 / 1659	72	BD	10	M	260	7.3	364
31	6250 / 928	72	NS	10	M	272	11.0	484
32	11519 / 2423	72	NS	11	F	226	2.2	168
33	3184 / 1608	72	NS	10	M	249	-4.4	191
34	1334 / 3242	72	NS	10	F	240	6.7	159

Display 11.5 p. 309

Log-log scatterplot of ratio of antibody concentration in brain tumor to antibody concentration in liver versus sacrifice time, for 17 rats given the barrier disruption infusion and 17 rats given a saline (control) infusion

Display 11.6

p. 312

Scatterplot of residuals versus fitted values from the fit of the logged response on a rich model for explanatory variables; brain barrier data

Deleted residual

$$d_{i} = y_{i} - \hat{y}_{i(i)} = \frac{y_{i} - \hat{y}_{i}}{1 - h_{i}} \quad Var(d_{i}) = \frac{\sigma^{2}}{1 - h_{i}}$$

Studentized residual

Studentized residual

$$StudRes_i = \frac{d_i}{SE(d_i)}$$

Another representation

$$StudRes_i = rac{y_i - \hat{y}_i}{SE(y_i - \hat{y}_i)} = rac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h}}$$

About the hat matrix

Studentized residual

Studentized residual

$$StudRes_i = \frac{d_i}{SE(d_i)}$$

Another representation

$$StudRes_i = \frac{y_i - \hat{y}_i}{SE(y_i - \hat{y}_i)} = \frac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

About the hat matrix

Studentized residual

Studentized residual

$$StudRes_i = \frac{d_i}{SE(d_i)}$$

Another representation

$$StudRes_i = \frac{y_i - \hat{y}_i}{SE(y_i - \hat{y}_i)} = \frac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

About the hat matrix

► About leverage

► Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- $\qquad \qquad \mathsf{Multiple \ regression:} \ \mathsf{diag}(X(X^\top X)^{-1}X^\top) \\$
- ► Total leverage

- ► About leverage
- Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- ▶ Multiple regression: diag($X(X^TX)^{-1}X^T$)
- ► Total leverage

- ► About leverage
- Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- ▶ Multiple regression: $diag(X(X^TX)^{-1}X^T)$
- ► Total leverage

- About leverage
- Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- ▶ Multiple regression: $diag(X(X^{T}X)^{-1}X^{T})$
- ▶ Total leverage

Leave-one-out measure

► Cook's distance

$$D_i = \frac{\sum_j (\hat{y}_j - \hat{y}_{j(i)})^2}{p\sigma^2}$$

Another representation

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p\sigma^2} \frac{h_i}{(1 - h_i)^2} = \frac{StudRes_i^2}{p} \frac{h_i}{1 - h_i}$$

- ▶ What is model/variable selection
- ► Motivation
- Including redundant explanatory variables reduces prediction power
- ► Large p small n problem

- What is model/variable selection
- Motivation
- Including redundant explanatory variables reduces prediction power
- ► Large p small n problem

- What is model/variable selection
- Motivation
- Including redundant explanatory variables reduces prediction power
- ► Large p small n problem

- What is model/variable selection
- Motivation
- Including redundant explanatory variables reduces prediction power
- ► Large p small n problem

▶ Bioinformatics

- ► Wavelet
- ► Time series analysis
- ▶ Neural network, regression trees,...
- ► Any time you have an alternative model

- ▶ Bioinformatics
- Wavelet
- ► Time series analysis
- ▶ Neural network, regression trees,...
- ► Any time you have an alternative model

- Bioinformatics
- Wavelet
- ► Time series analysis
- ▶ Neural network, regression trees,...
- ► Any time you have an alternative model

- Bioinformatics
- Wavelet
- ► Time series analysis
- ▶ Neural network, regression trees,...
- Any time you have an alternative model

- Bioinformatics
- Wavelet
- ► Time series analysis
- ▶ Neural network, regression trees,...
- Any time you have an alternative model

- ▶ What makes a good model?
 - Small prediction error
 - ▶ Large R^2
- Criteria for comparing different models

- ▶ What makes a good model?
 - Small prediction error
 - ▶ Large R^2
- Criteria for comparing different models

- ▶ What makes a good model?
 - Small prediction error
 - ► Large R²
- Criteria for comparing different models

- ▶ What makes a good model?
 - Small prediction error
 - ► Large R²
- ► Criteria for comparing different models

Some examples

$$H_0: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

$$H_1: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Some examples

$$H_0: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

$$H_1: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_4 x_4 + \varepsilon$$

Some examples

$$H_0: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_5 x_5 + \varepsilon$$

$$H_1: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Some principles

- What makes a good model?
 - Smaller estimated errors
 - Simpler model/fewer predictors
 - Prediction of future observations
- ▶ The least squares estimate only considers small fitted errors?

Candidates

- Coefficient of determination, R²
- ▶ Estimated error level, $\hat{\sigma}^2$
- ► Adjusted R²

$$\frac{Var(y) - \hat{\sigma}^2}{Var(y)}$$

Algorithmic approach

- Forward selection
- Backward deletion
- Stepwise regression

Forward selection

- ► Consider variables that are not in the current model, compute the extra-sum-of-squares by adding each variable.
- ▶ If the largest extra-sum-of-squares is greater than some value (e.g., 4), then add that variable in; otherwise stop.

Backward deletion

- ► Consider variables that are in the current model, compute the extra-sum-of-squares by removing each variable.
- ▶ If the smallest extra-sum-of-squares is less than some value (e.g., 4), then remove that variable; otherwise stop.

Stepwise regression

▶ Do one step forward selection and backward deletion alternatively

Pros and cons

- Easy to implement
- ► Less computation
- ► In consistency

Likelihood-based criteria

▶ Akaike information criterion (AIC)

$$n\log(\hat{\sigma}^2)+2p.$$

Derive AIC.

Bayesian information criterion

$$n\log(\hat{\sigma}^2) + p\log(n)$$

General form

$$x_1,...,x_n \sim f(x|\theta)$$

Akaike information criterion (AIC)

$$-2\log(L(\hat{\theta})) + 2p$$

Bayesian information criterion

$$-2\log(L(\hat{\theta})) + p\log(n)$$

General form

Likelihood

$$L(\theta; x_1, ..., x_n)$$

- Maximum likelihood estimator
- Derivation of AIC

Delimma

- ► Too few variables (missing the true predictor) bias.
- ► Too many variables variance.

Delimma

- ► Too few variables (missing the true predictor) bias.
- ► Too many variables variance.

$$\blacktriangleright \text{ Let } \mu_i = E(y|x_i).$$

► Mean squared error

$$E[(\hat{y}_i - \mu_i)^2 | x_i] = E^2(\hat{y}_i - \mu_i | x_i) + Var(\hat{y}_i - \mu_i | x_i)$$

► Total mean squared error

$$\sum_{i=1}^{n} E[(\hat{y}_i - \mu_i)^2 | x_i] = \sum_{i=1}^{n} E^2(\hat{y}_i - \mu_i | x_i) + \sum_{i=1}^{n} Var(\hat{y}_i - \mu_i | x_i)$$

- $\blacktriangleright \text{ Let } \mu_i = E(y|x_i).$
- Mean squared error

$$E[(\hat{y}_i - \mu_i)^2 | x_i] = E^2(\hat{y}_i - \mu_i | x_i) + Var(\hat{y}_i - \mu_i | x_i)$$

► Total mean squared error

$$\sum_{i=1}^{n} E[(\hat{y}_i - \mu_i)^2 | x_i] = \sum_{i=1}^{n} E^2(\hat{y}_i - \mu_i | x_i) + \sum_{i=1}^{n} Var(\hat{y}_i - \mu_i | x_i)$$

- $\blacktriangleright \text{ Let } \mu_i = E(y|x_i).$
- Mean squared error

$$E[(\hat{y}_i - \mu_i)^2 | x_i] = E^2(\hat{y}_i - \mu_i | x_i) + Var(\hat{y}_i - \mu_i | x_i)$$

► Total mean squared error

$$\sum_{i=1}^{n} E[(\hat{y}_i - \mu_i)^2 | x_i] = \sum_{i=1}^{n} E^2(\hat{y}_i - \mu_i | x_i) + \sum_{i=1}^{n} Var(\hat{y}_i - \mu_i | x_i)$$

$$C_p = \frac{SSE}{\hat{\sigma}_{\varepsilon}^2} - (n - 2p) = p + (n - p)\frac{\hat{\sigma}^2 - \hat{\sigma}_f^2}{\hat{\sigma}_{\varepsilon}^2}$$

- Response variable: log-survival time
- Covariates: blood clotting score, prognostic index, enzyme function test score, living function test score, age, gender, alcohol use (none, moderate, heavy)
- AIC.

Forward

Start: AIC=-75.7 logsurvival ~ 1

		${\tt Df}$	Sum of Sq	RSS	AIC
+	enzyme	1	5.4762	7.3316	-103.827
+	liver	1	5.3990	7.4087	-103.262
+	progind	1	2.8285	9.9792	-87.178
+	heavy	1	1.7798	11.0279	-81.782
+	score	1	0.7763	12.0315	-77.079
+	gender	1	0.6897	12.1180	-76.692
<none></none>				12.8077	-75.703
+	age	1	0.2691	12.5386	-74.849
+	alcohol	1	0.2052	12.6025	-74.575

Step: AIC=-103.83 logsurvival ~ enzyme

		Df	Sum of	Sq	RSS	AIC
+	progind	1	3.019	08 4	.3125	-130.48
+	liver	1	2.201	.87 5	.1297	-121.11
+	score	1	1.550	61 5	.7810	-114.66
+	heavy	1	1.137	756 6	.1940	-110.93
<none></none>				7	.3316	-103.83
+	gender	1	0.258	354 7	.0730	-103.77
+	age	1	0.238	377 7	.0928	-103.61
+	alcohol	1	0.064	198 7	.2666	-102.31

Step: AIC=-130.48

logsurvival ~ enzyme + progind

		Df	$\operatorname{\mathtt{Sum}}$	of	Sq	RSS	AIC
+	heavy	1	1.	. 469	961	2.8429	-150.99
+	score	1	1.	. 203	395	3.1085	-146.16
+	liver	1	0.	. 698	336	3.6141	-138.02
+	alcohol	1	0.	. 226	332	4.0862	-131.39
+	age	1	0.	. 164	161	4.1479	-130.59
<none></none>						4.3125	-130.48
+	gender	1	0.	. 082	245	4.2300	-129.53

. . .

```
Step: AIC=-163.83
logsurvival ~ enzyme + progind + heavy + score
+ gender + age
```

```
Df Sum of Sq RSS AIC

<none> 2.0052 -163.83

+ alcohol 1 0.033193 1.9720 -162.74

+ liver 1 0.002284 2.0029 -161.90
```


Backward

```
Start: ATC=-160.77
logsurvival ~ score + progind + enzyme + liver
            + age + gender + alcohol + heavy
         Df Sum of Sq RSS
                                 AIC
- liver 1
              0.00129 \ 1.9720 \ -162.74
- alcohol 1 0.03220 2.0029 -161.90
          1 0.07354 2.0443 -160.79
- age
                      1.9707 - 160.77
<none>
              0.08415 2.0549 -160.51
- gender
- score
              0.31809 2.2888 -154.69
              0.84573 \ 2.8165 \ -143.49
heavy
- progind
          1 2.09045 4.0612 -123.72
           1 2.99085 4.9616 -112.91
- enzyme
```

```
AIC=-162.74
Step:
logsurvival ~ score + progind + enzyme
           + age + gender + alcohol + heavy
         Df Sum of Sq RSS
                                  AIC
- alcohol 1
               0.0332 \ 2.0052 \ -163.834
                      1.9720 - 162.736
<none>
         1 0.0876 2.0596 -162.389
- age
- gender
               0.0971 2.0691 -162.141
- score 1
              0.6267 \ 2.5988 \ -149.833
- heavy 1
            0.8446 2.8166 -145.486
            2.6731 4.6451 -118.471
progind
- enzyme
               5.0986 7.0706 -95.784
```

```
Step: AIC=-163.83
logsurvival ~ score + progind + enzyme
              + age + gender + heavy
         Df Sum of Sq RSS
                                  AIC
                      2.0052 - 163.834
<none>
               0.0768 2.0820 -163.805
- age
               0.0977 2.1029 -163.265
- gender
               0.6282 2.6335 -151.117
- score
               0.9002 2.9055 -145.809
heavy
- progind
            2.7626 4.7678 -119.064
               5.0801 7.0853 -97.672
- enzyme
```


Figure: 1. score, 2. progind, 3. enzyme, 4. liver, 5. age, 6. gender, 7. alcohol, 8. heavy