Learning to Google

Rodrigo Nogueira and Kyunghyun Cho New York University

Motivation

Query: "deepmind go paper"

[PDF] Mastering the game of Go with deep neural networks ... - Go Game G...

https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf ▼

by D Silver - Cited by 756 - Related articles

networks play **Go** at the level of state-of-the-art Monte-Carlo tree search Ostrovski for reviewing the **paper**; and the rest of the **DeepMind** team for their support ...

You visited this page on 3/20/17.

Publications | DeepMind

https://deepmind.com/publications.html >

Nature 2016. Hybrid computing using a neural network with dynamic external memory. Authors: A Graves, G Wayne, M Reynolds, T Harley, I Danihelka, ...

AlphaGo | DeepMind

https://deepmind.com/research/alphago/ •

Jan 28, 2016 - Featuring expert analysis by Gu Li 9p and Zhou Ruiyang 9p, these games will prove an enlightening read for Go players of all levels.

Mastering the game of Go with deep neural networks and tree search ...

www.nature.com/nature/journal/v529/n7587/full/nature16961.html

by D Silver - 2016 - Cited by 756 - Related articles

Jan 28, 2016 - The game of **Go** has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space ...

Motivation

Query: "google artificial intelligence paper asian board game"

Master of Go Board Game Is Walloped by Google Computer Program ...

https://www.nytimes.com/2016/03/10/world/asia/google-alphago-lee-se-dol.html

Mar 9, 2016 - Lee Se-dol, the world's top player of the boardgame Go, lost the first of five matches to a computer ... Kim Sung-ryong, a South Korean Go master who provided commentary during ... wondered Rodney Brooks, a pioneering artificial intelligence researcher. ... Order Reprints| Today's Paper|Subscribe.

Google Al beats legendary player in Chinese board game - The Hindu

www.thehindu.com > Sci-Tech > Science *

Mar 9, 2016 - South Korea's professional Go player Lee Sedol, right, playing the game with against Google's artificial intelligence program, AlphaGo. ... In a new feat, Google-run artificial intelligence (AI) programme "AlphaGo" has defeated legendary player Lee Se-dol in Go - a complex ...

Google Al algorithm masters ancient game of Go: Nature News ...

www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234 v Jan 27, 2016 - Google Al algorithm masters ancient game of Go ... A computer has beaten a human professional for the first time at Go - an ancient board game that ... in Asia, has frustrated the efforts of artificial-intelligence researchers for ...

Game over? Computer beats human champ in ancient Chinese game

https://phys.org > Technology > Computer Sciences ▼ Jan 27, 2016 - In a milestone for artificial intelligence, a computer has beaten a ... human player at the

3,000-year-old Chinese board game known as Go, was ... of Google DeepMind, a British artificial intelligence (AI) company. ... added his colleague David Silver, who co-authored the paper in the science journal Nature.

Motivation

The Vocabulary Mismatch Problem

The Idea

Query: "google artificial intelligence paper asian board game"

Master of Go Board Game Is Walloped by Google Computer Program ...

https://www.nytimes.com/2016/03/10/world/asia/google-alphago-lee-se-dol.html

Mar 9, 2016 - Lee Se-dol, the world's top player of the **boardgame** Go, lost the first of five matches to a computer ... Kim Sung-ryong, a South **Korean** Go master who provided commentary during ... wondered Rodney Brooks, a pioneering **artificial intelligence** researcher. ... Order Reprints| Today's **Paper**|Subscribe.

Google Al beats legendary player in Chinese board game - The Hindu

www.thehindu.com → Sci-Tech → Science ▼

Mar 9, 2016 - South Korea's professional Go player Lee Sedol, right, playing the game with against Google's artificial intelligence program, AlphaGo. ... In a new feat, Google-run artificial intelligence (AI) programme "AlphaGo" has defeated legendary player Lee Se-dol in Go — a complex ...

Google Al algorithm masters ancient game of Go: Nature News ...

www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234 ▼
Jan 27, 2016 - Google Al algorithm masters ancient game of Go ... A computer has beaten a human professional for the first time at Go — an ancient board game that ... in Asia, has frustrated the efforts of artificial-intelligence researchers for ...

Game over? Computer beats human champ in ancient Chinese game

https://phys.org > Technology > Computer Sciences ▼

Jan 27, 2016 - In a milestone for artificial intelligence, a computer has beaten a ... human player at the 3,000-year-old Chinese board game known as Go, was ... of Google DeepMind, a British artificial intelligence (AI) company. ... added his colleague David Silver, who co-authored the paper in the science journal Nature.

[PDF] Mastering the game of Go with deep neural networks ... - Go Game G...

https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf ▼

by D Silver - Cited by 756 - Related articles

networks play **Go** at the level of state-of-the-art Monte-Carlo tree search Ostrovski for reviewing the **paper**; and the rest of the **DeepMind** team for their support ...

You visited this page on 3/20/17.

Publications | DeepMind

https://deepmind.com/publications.html •

Nature 2016. Hybrid computing using a neural network with dynamic external memory. Authors: A Graves, G Wayne, M Reynolds, T Harley, I Danihelka, ...

AlphaGo | DeepMind

https://deepmind.com/research/alphago/ *

Jan 28, 2016 - Featuring expert analysis by Gu Li 9p and Zhou Ruiyang 9p, these games will prove an enlightening read for **Go** players of all levels.

The Idea

Reformulator

Vanilla REINFORCE

Supervised Method

Step 1: Label each term as positive or negative based on its incremental reward.

Ex:

Query	Recall	Diff	Label
Google asian board game paper	0.40	-	-
Google asian board game paper Deepmind	0.45	0.05	Pos
Google asian board game paper go	0.43	0.03	Pos
Google asian board game paper beats	0.32	-0.08	Neg
Google asian board game paper legendary	0.35	-0.05	Neg

Step 2: Train a supervised classifier to predict if a term is positive or not.

Oracle: A classifier that perfectly selects relevant terms.

Oracle - RL

A conservative upper-bound performance of a RL model in a particular environment:

- 1- Split the **validation or test** data into smaller subsets (~2000 samples)
- 2- Overfit the RL model on each subset
- 3- Oracle performance = Average reward over all subsets

Datasets

- TREC-Complex Answer Retrieval
- Jeopardy
- Microsoft Academic

TREC-Complex Answer Retrieval Dataset

Input: Wikipedia Title + Section

"Sea Turtle Diet"

Output: Wikipedia Paragraphs under the Section

Sea turtle

Diet [edit]

The loggerhead, Kemp's ridley, olive ridley, hawksbill, flatback, and leatherback sea turtles are omnivorous for their entire life. Omnivorous turtles may eat a wide variety of plant and animal life including, decapods, seagrasses, seaweed, sponges, mollusks, cnidarians, echinoderms, worms and fish. [36][37][38][39] However some species specialize on certain prey.

The diet of green turtles changes with age. [40] Juveniles are omnivorous, but as they mature they become exclusively herbivorous. [37][40] This diet shift has an effect on the green turtle's morphology. [41][42] Green sea turtles have a serrated jaw that is used to eat sea grass and algae. [43]

Leatherback turtles feed almost exclusively on jellyfish and help control jellyfish populations. [44][45]

Hawksbills principally eat sponges, which constitute 70–95% of their diets in the Caribbean. [46]

Corpus: Paragraphs of all Wikipedia Articles

Jeopardy Dataset

Input: Jeopardy question

called Gresham's law.[8]

Contents [hide]

"For the last 8 years of his life, Galileo was under house arrest for espousing this man's theory."

Output: Wikipedia article whose title is the Answer.

Nicolaus Copernicus "Copernicus" redirects here. For other uses, see Copernicus (disambiguation). Nicolaus Copernicus (/koʊˈpɜːrnɪkəs, kə-/ːll/2||3|) Polish: Mikolaj Kopernik [miˈkɔwaj kɔˈpɛrnik] (🍎 listen); German: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance mathematician and astronomer who formulated a model of the universe that placed the Sun rather than the Earth at the center of the universe, likely independently of Aristarchus of Samos, who had formulated such a model some eighteen centuries earlier. [a] The publication of Copernicus' model in his book De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), just before his death in 1543, was a major event in the history of science, triggering the Copernicus was born and died in Royal Prussia, a region that had been part of the Kingdom of Poland since 1466. A polyglot and polymath, he obtained a doctorate in canon law and was also a mathematician, astronomer, physician, classics scholar, translator, governor, diplomat, and economist. In 1517 he derived a quantity theory of money – a key concept in economics – and in 1519 he formulated an economics principle that later came to be

(Nogueira and Cho, NIPS 2016)

1580 portrait (artist unknown) in the Old Town

City Hall, Toruń

Microsoft Academic Dataset

Input: Title/Abstract of a Paper

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto

Ilva Sutskever University of Toronto

Geoffrey E. Hinton University of Toronto kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Output: References in that paper

References

- [1] R.M. Bell and Y. Koren. Lessons from the netflix prize challenge. ACM SIGKDD Explorations Newsletter, 9(2):75-79, 2007.
- [2] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge 2010. www.imagenet.org/challenges. 2010.
- [3] L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
- [4] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. Arxiv preprint arXiv:1202.2745, 2012.
- [5] D.C. Cireşan, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber. High-performance neural networks for visual object classification. Arxiv preprint arXiv:1102.0183, 2011.
- [6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
- [7] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. ILSVRC-2012, 2012. URL http://www.image-net.org/challenges/LSVRC/2012/.
- [8] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70, 2007.
- [9] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology, 2007. URL http://authors.library.caltech.edu/7694.
- [10] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
- [11] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In International Conference on Computer Vision, pages 2146–2153. IEEE, 2009.
- [12] A. Krizhevsky. Learning multiple layers of features from tiny images. Master's thesis, Department of Computer Science, University of Toronto, 2009.

(An in-house crawl of 500k papers)

Datasets - Summary

	TREC-CAR	Jeopardy	MS Academic
Corpus	Wikipedia Paragraphs	Wikipedia Articles	Academic Papers
Corpus Size	5.9M	3.5M	500k
Train / Valid / Test	580k / 195k / 195k	120k / 10k / 10k	270k / 20k / 20k

Results

Recall@40 on Test Set

	TREC-CAR	Jeopardy	MS Academic
Original Query	43.6	23.4	12.8
Pseudo Relevance Feedback - TFIDF	44.3	29.9	13.1
Pseudo Relevance Feedback - Word2Vec	44.5	27.5	11.9
Google	-	30.1	-
Supervised	44.1	31.1	14.0
REINFORCE	47.3	33.4	14.9
Oracle, Supervised	50.8	38.8	17.3
Oracle, RL	55.9	42.4	24.6

Examples

Original: It can be a herdsman's little house in the Swiss Alps, or a ski lodge built in that style

Reformulated: house Swiss Alps ski lodge that style castle board chalet

Original: Homelessness in Canada, Public Policy

Reformulated: homelessness in canada public policy human service programs social policy california treatment of the homeless numerous

Experiment Details

Choice	Why?	
Search Engine: Lucene	Free and Fast!	
Feedback docs: Top-5 Wikipedia Articles		
Feedback terms: 300 first words of a Wikipedia doc	Maximum fit on a GPU	
CNN for Docs: 1st layer: 9-word window, 250 filters 2nd layer: 3-word window, 500 filters CNN for Query: 2 layers, 3-word window, 250 filters	Painful Manual Trial-and-Error	
Reward: Recall@40	Query Reformulation: Recall Ranking Functions: Precision	

Discussion

- Oracle shows lots of room for improvements.
- Applicability: Commercial search engines have click-through datasets.
- Querying the search engine is 90% of training time.

Future Work: Automated Researcher

Query: "What are the most promising directions to cure cancer and why?"

Thank you!