Nonlinear optimization - Homework 4

Tuomas Porkamaa, 1030671

December 2021

Problem 4.1

Solutions given in HW4_skeleton.ipynb

Problem 4.2

Primal problem:

(P): min.
$$c^T x + \frac{1}{2} x^T Q x$$

s.t. $Ax = b$
 $x \ge 0$

Dual problem of (1):

(D): max.
$$b^T v - \frac{1}{2} x^T Q x$$

s.t. $A^T v + u - Q x = c$ (2)
 $u > 0$

(a)

KKT-conditions of (1):

$$Ax = b, x \ge 0$$

$$A^{T}v + u - Qx = c, u \ge 0$$

$$u^{T}x = 0$$
(3)

(b)

Barrier problem for (1):

(BP): min.
$$c^{T}x + \frac{1}{2}x^{T}Qx - \mu \sum_{i=1}^{n} ln(x_{i})$$

s.t. $Ax = b$ (4)

KKT-conditions of (BP):

$$Ax = b, x > 0$$

$$A^{T}v + u - Qx = c$$

$$XUe = \mu e$$
(5)

where U = diag(u), X = diag(x) and $e = (1, ..., 1)^T$.

(c)

Newton system based on KKT-conditions of (BP):

$$\begin{bmatrix} A & 0^T & 0 \\ -Q & A^T & I \\ \overline{U} & 0^T & \overline{X} \end{bmatrix} \begin{bmatrix} d_x \\ d_v \\ d_u \end{bmatrix} = - \begin{bmatrix} r_p \\ r_d \\ \overline{XU}e - \mu e \end{bmatrix}$$
 (6)

where r_p represent the primal residuals $r_p = A\overline{x} - b$ and r_d represent the dual residuals $r_d = A^T \overline{v} + \overline{u} - Q\overline{x} - c$.

Newton system (6) can be further represented as a system of equations, from where the update formulas for directions d_x , d_v and d_u can be derived.

$$Ad_{x} = -r_{p}$$

$$-Qd_{x} + A^{T}d_{v} + d_{u} = -r_{d}$$

$$\overline{U}d_{x} + \overline{X}d_{u} = \mu e - \overline{X}\overline{U}e$$

$$(7)$$

First, we can derive an expression for d_u using the second equation.

$$-Qd_x + A^T d_v + d_u = -r_d$$

$$d_u = -r_d + Qd_x - A^T d_v$$
(8)

Next, we can derive an expression for d_x by applying the above expression for d_u to the third equation of (7)

$$\overline{U}d_x + \overline{X}d_u = \mu e - \overline{X}\overline{U}e$$

$$\overline{U}d_x + \overline{X}(-r_d + Qd_x - A^Td_v) = \mu e - \overline{X}\overline{U}e$$

$$(\overline{U} + \overline{X}Q)d_x = \mu e - \overline{X}\overline{U}e + \overline{X}r_d + \overline{X}A^Td_v$$

$$d_x = (\overline{U} + \overline{X}Q)^{-1}(\mu e - \overline{X}\overline{U}e + \overline{X}r_d + \overline{X}A^Td_v)$$
(9)

Lastly, we can derive d_v by applying (9) to the first equation of (7).

$$Ad_{x} = -r_{p}$$

$$A(\overline{U} + \overline{X}Q)^{-1}(\mu e - \overline{X}\overline{U}e + \overline{X}r_{d} + \overline{X}A^{T}d_{v}) = -r_{p}$$

$$A(\overline{U} + \overline{X}Q)^{-1}\overline{X}A^{T}d_{v} = -r_{p} - A(\overline{U} + \overline{X}Q)^{-1}(\mu e - \overline{X}\overline{U}e + \overline{X}r_{d})$$

$$d_{v} = (A(\overline{U} + \overline{X}Q)^{-1}\overline{X}A^{T})^{-1}(-r_{p} - A(\overline{U} + \overline{X}Q)^{-1}(\mu e - \overline{X}Ue + \overline{X}r_{d}))$$

$$(10)$$

The code produced following convergence plot. Based on the visual interpretation, it looks like the IPM converged successfully to the inside-feasible-region minima, which is located at the corner of the feasible region that is closest to the outside-feasible-region minima of the quadratic function

Figure 1: Convergence trajectory of IPM

Problem 4.3

(a)

Implementation given in HW4_skeleton.ipynb. The given parameters $\mu=10$ and $\Delta_k=1$ seemed to work fine, and they provided quite fast convergence in iteration-specific subproblem and overall sense. The overall problem was solved in 5 iterations, and the average number of iterations for subproblem was 5.6.

I also experimented with other parametrizations via decreasing or increasing μ and Δ_k respectively, until I noted some deviant behaviour. By decrasing the μ all to way to $\mu=2$, the algorithm still converges with 5 iterations, but the subproblem iteration counts were smaller, on average 4.8. Alternatively, while increasing μ we can observe that the subproblem iterations also increase by some amount. By decrasing Δ_k , we can see that the algorithm requires a lot more iterations to converge after certain value (e.g. $\Delta_k < 0.2$), which is expected behaviour because the new direction vector will have very little space to change its value. When Δ_k was set to relatively small value (e.g. $[0.25 \ 1.0]$) we can see that the temporal solution x_k never leaves the feasible region. Alternatively, even very aggressive increase of Δ_k didn't seem to affect the convergence iteration count (it stays at 5), but the subproblem specific iterations steadily increased as well. Overall, in terms of iteration counts until converge, I found good parameter settings as $\mu=2$ and $\Delta_k \in [0.25, 1.0]$.

(b)

Figure 2: Feasible region and $l_1 - SQP$ iterations using $\mu = 10$ and $\Delta_k = 1$.