Analog and Digital Signals

Todays Topics

- What's the difference between analog and digital signals
- Review Electricity Equations
- General Purpose Input / Output (GPIO)
- Pulse Width Modulation (PWM)
- Analog to Digital Converters (ADC)
- Microcontrollers and Computer

Electronic Signals

Analog and Digital

- Digital devices can only store digital signals
 - Using 1 or several bits / sample
- We store an array of numbers
- Parameters
 - Bits per sample
 - Sampling rate
- Example: Audio...

ANALOG SOUND WAVE ORIGINAL SOUND WAVE DIGITAL SOUND WAVE

This Photo by Unknown Author is licensed under CC BY-SA

Bits per sample

- Using just 1 bit
 - Just 2 possible values/states: LOW (0) and HIGH (1)
 - digital
- Using >1 bit (n bits where n>1)
 - 2ⁿ possible values/states
- Example: using 3 bits:
 - 2³ = 8 possible values/states
- Called Quantisation
- More bits -> higher resolution -> higher accuracy

Sampling

- Sensor signals are analog
 - Temp -> voltage -> value

- Sampling Rate
 - Higher sampling rate(frequency) will give higher the accuracy

Higher Sampling rate

Higher Resolution

Analog and Digital Convertsion

- Measure voltage
- Parameters
 - Bits per sample
 - Sampling rate
- For 1 bit we have ...
 - GPIO Input
- For n bits we have ...
 - $0 2^{n} 1$

Electricity Equations

$$I = \frac{V}{R}$$

$$\sum_{k} i_{k} = 0$$

$$\sum_{k} E_{k} = \sum_{k} R_{k} I_{k}$$

Ohm's Law

Kirchhoff Law I

Kirchhoff's Law II

$$V_1 + V_2 = V_{in}$$

$$V_1 = I R_1$$

$$V_2 = V_{out} = I R_2$$

If current in output wire is 0, then:

$$Vout = \frac{R2}{R1 + R2} Vin$$

$$R_1 = 0$$
 $V_{out} = ?$

$$Vout = \frac{R2}{R1 + R2} Vin$$

$$R_1 = X$$
 $V_{out} = ?$

$$Vout = \frac{R2}{R1 + R2} Vin$$

$$R_2 = 0$$
 $V_{out} = ?$

$$Vout = \frac{R2}{R1 + R2} Vin$$

$$R_2$$
 = \neq
 V_{out} = ?

$$Vout = \frac{R2}{R1 + R2} Vin$$

$$Vout = \frac{R2}{R1 + R2} Vin$$

$$R_1 = 0$$
 $R_2 = 0$
 $V_{out} = ?$
SHORT CIRCUIT!
$$R_1$$

$$R_2 = R_1$$

$$R_2$$

Development Boards

Microcontrollers (e.g. Arduino)

- Simple, low cost
- Runs one software program
- Connect sensors/hardware via GPIO
- Constrained Resources
 - Low speed
 - small memory
 - (usually) no disk
 - No general audio/video/networking (added as needed)
- PWM
- Can have built in Analog to Digital Conversion.

Single Board Computers (e.g. Rpi)

- CPU
- Memory and Storage
- General interfaces for audio/video
- Operating System
- General Purpose Input and Output
- Usually no built in ADC.

Output and Input on RPi

- Digital Pins
 - Value LOW (0) or HIGH (1)
- Write programs to set pins to Low(0) or High(1)
 - 0V or 3.3V
- Write programs to read pin values
 - High(1)
 - Low(0)

Output

- 3.3V(HIGH) or 0V(LOW)
 - Default 8 mA max per pin.
- Switching a pin High is like connecting a 3.3V battery to device.
- Switching a pin Low is like disconnecting the battery

This Photo by Unknown Author is licensed under CC BY-SA

Input

- Can be Voltage Divider Circuit
- Can measure Vout...
 - via analogue input on Arduino
 - Required Analog to Digital converter on RPi. (unless you want it to act like a switch)

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

Pulse With Modulation

Arduino's PWM frequency at about 500Hz, the green lines would measure 2 milliseconds each.

Pulse Width

- We set the % of "high" cycle
 - 0 0%
 - 255 100%
 - Typical for Arduino. Depends on the library
- Implementation
 - Hardware
 - Software
- Usage
 - LED dimming
 - Servo Motors

Microcontrollers and Computers

Microcontrollers and computers

Firmware

Software