

Networking Fundamentals and Security

- Aula 03 -

Mauro Cesar Bernardes

Aula 04 - Plano de Aula

Objetivo

- Revisar conceitos da aula 01, 02 e 03 (2º Semestre)
- Revisar Exercícios
- Compreender a divisão de endereçamento em IP em Sub-redes.

Conteúdo

- Endereçamento IP
 - Formato
 - Classes
 - CIDR (Classless Inter-Domain Routing)

Metodologia

 Aula expositiva e desenvolvimento de atividades práticas, com exercícios complementares sobre endereçamento e sub-redes.

Referência para Estudo: capítulo 11

Sub-Redes

Os administradores de rede às vezes precisam dividir redes locais, particularmente as grandes redes, em redes menores, chamadas de *sub-redes*, para entre outros motivos:

- a) **DESEMPENHO**: reduzir o tamanho dos domínios de *broadcast*;
- b) **SEGURANÇA:** permitir melhor gerenciamento de segurança entre segmentos de rede (sub-redes).

Reduzindo domínios de Broadcast

- Um dos motivos para se usar sub-redes é reduzir o tamanho de um domínio de broadcast (de camada 2: quando quadros são enviados para a rede local endereçados em camada 2 (Endereço MAC) para FF-FF-FF-FF-FF).
- Os broadcasts são enviados a todos os hosts em uma mesma rede ou sub-rede (ou seja, todos os hosts no mesmo endereço de rede).
- Um exemplo: em uma requisição DHCP
- Quando o tráfego de broadcast começar a ocupar demais a largura de banda disponível (capacidade do meio de transmissão), os administradores de rede poderão optar por reduzir o tamanho do domínio de broadcast de camada 2.

Domínio de Broadcast

- Um domínio de broadcast é uma área (ou segmento lógico) de uma rede de comunicação em que um host conectado à rede é capaz de se comunicar com outro sem a necessidade de utilizar um <u>dispositivo de roteamento</u> (roteador).
- Embora os switches filtrem a maioria dos quadros com base nos endereços MAC, eles não filtram quadros de *broadcast*.
- Para que outros switches na LAN recebam quadros de broadcast, os switches precisam enviar esses quadros para todas as suas interfaces de rede (portas de conexão).
- Um conjunto de switches interconectados forma um único domínio de broadcast.
- Somente um dispositivo de camada de rede, como um roteador, pode dividir um domínio de broadcast de camada 2.
- Os roteadores são usados para segmentar tanto domínios de broadcast como domínios de colisão. Com isso, roteadores NÃO encaminham para outras redes os broadcasts de camada 2 gerados em uma rede local.

Reduzindo domínios de Broadcast

Todos as interfaces de rede (portas de comunicação) que recebem broadcasts gerados em uma rede local estão no mesmo domínio de broadcast.

Figura 1: Rede local utilizando um dispositivo de camada 2 (switch) como elemento central da rede: 1 único domínio de broadcast.

Figura 2: Rede local utilizando um dispositivo de camada 3 (roteador) como elemento central da rede: 4 domínios de Broadcast.

Observação:

para cada 'domínio de *broadcast*' precisaremos de um **endereço de** rede exclusivo (endereço de rede único para o domínio).

Cenário com um único domínio de Broadcast

Um broadcast enviado por um host, por exemplo o PC6, irá alcançar todos os equipamentos no mesmo domínio de broadcast.

Cenário com vários domínios de Broadcast

Um broadcast enviado por um host, por exemplo o PC15, irá alcançar todos os equipamentos no mesmo domínio de broadcast. (apenas os equipamentos na área amarela)

Exemplo de Roteador

Visão Traseira

Atividade em Aula: Arquivo: 20Sem Aula02AtividadePKT.pkt

(arquivo .pkt disponível na área de apostilas do portal da FIAP e na área de arquivos da disciplina no Microsoft Teams)

Analise o cenário apresentado

Na aula anterior: Todos os equipamentos utilizando o mesmo endereço de rede, em um único domínio de *broadcast*.

Nesta aula: Serão configurados 4 sub-redes (4 domínios de *broadcast* separados por um roteador). Cada sub-rede precisará de um endereço de rede exclusivo (ID único)

Passo 1: Utilize o arquivo 20Sem Aula02AtividadePKT.pkt

Utilize o arquivo *2oSem Aula02AtividadePKT.pkt* ou construa sua própria topologia.

Caso opte por construir sua própria topologia, o roteador escolhido para esta atividade é o **PT-Empty** (como demonstrado na ilustração).

Passo 2: Acrescentar Interfaces Gigabit Ethernet no Roteador

Passo 3: Ligue o roteador

Passo 4: Compare o Resultado com a figura abaixo

Passo 5: Ligue o Switch LAB1 ao Switch LAB2

Passo 6: Ligue o Switch LAB1 ao Roteador

Passo 7: Ligue os demais equipamentos ao Roteador como na figura

Passo 8: Análise

- Cada interface do roteador define uma rede exclusiva (uma rede diferente das demais)
- 2. A interface Gig0/0 está conectada à WAN (internet) e será configurada pelo ISP (provedor Internet).
- 3. As demais interfaces (Gig0/1, Gig0/2, Gig0/3 e Gig0/4) estão conectadas a 4 LANs diferentes (4 sub-redes)
- Cada sub-rede precisará de um endereço de rede EXCLUSIVO (ÚNICO!) para a configuração dos equipamentos
- Qual o problema em alocar um endereço de rede Classe C para cada uma das LANS? (DESPERDÍCIO de endereço IP)

Passo 9: Análise:

- Cada interface do roteador define uma rede exclusiva (uma rede diferente das demais)
- A interface Gig0/0 está conectada à WAN (internet) e será configurada pelo ISP (provedor Internet).
- As demais interfaces (Gig0/1, Gig0/2, Gig0/3 e Gig0/4) estão conectadas a 4 LANs diferentes
- Cada LAN precisará de um endereço de rede EXCLUSIVO (ÚNICO!) para a configuração dos equipamentos
- Qual o problema em alocar um endereço de rede Classe C para cada uma das LANS? (DESPERDÍCIO de endereço IP)

Retornando à aula 03

Para resolver o problema de DESPERDÍCIO de endereço IP, introduziu-se o esquema CIDR (*Classless Inter-Domain Routing*), onde a divisão do endereço IP em endereço de rede e endereço de host DEIXA DE SER determinada pela classe do endereço, <u>mas pela máscara de sub-rede</u>, que indica quantos bits compõem o endereço de rede.

CIDR (RFC 1518 e 1519)

- Introduzido em 1993, como um refinamento para a forma como o tráfego era conduzido pelas redes <u>IP</u>;
- Apesar das possibilidades que a criação das classes de endereços proporcionou, a estrutura ainda era pouco flexível, causando o desperdício de endereços IP:
 - Exemplo:
 - a empresa anterior com 11 computadores utilizaria toda uma classe C de endereços (254 hosts) para endereçar seus equipamentos;
 - caso seja feita a organização em 4 redes locais, seriam necessários 4 classes C (o que consumiria inicialmente 1016 endereços IP).
- Ainda pior: uma empresa com 300 computadores precisaria utilizar uma classe B que comporta até 65.534 hosts, desperdiçando mais de 65.000 endereços IPv4.

- CIDR permite a criação de sub-redes, o que apresenta os seguintes benefícios:
 - Maior flexibilidade ao esquema de endereçamento TCP/IP, com melhor aproveitamento dos endereços;
 - Aumento da performance da rede, uma vez que o tráfego local das subredes e as mensagens broadcast não são propagados para toda a rede;
 - Simplificação da tabela de roteamento dos roteadores.

- O CIDR trouxe maior liberdade na utilização de endereços IP, por meio da subdivisão de redes maiores em sub-redes menores, utilizando-se do recurso da "Máscara de sub-rede".
- Uma organização pode utilizar um endereço de rede Classe A, B ou C para a sua rede corporativa e dividir essa rede em sub-redes menores.

- Exemplo: pode ser conveniente dividir uma rede corporativa que utilize uma rede de Classe B 143.110.0.0 em sub-redes menores (uma para cada filial de cada região).
- Isto evita que as mensagens broadcast de um país sejam difundidas para todas as filiais do mundo, gerando tráfego excessivo na rede.
- A rede dessa empresa é definida pelos bytes 143.110, portanto todos os hosts cujo endereço começar por 143.110 pertencerão à rede.

Para entender a Máscara de Sub-rede, é necessário entender a operação Binária AND.

- Para determinar qual é o endereço de rede de um endereço IP, deve-se fazer uma operação AND entre o endereço IP e a Máscara de Subrede.
- O resultado será o endereço de rede.
- Todos os hosts cujo resultado dessa operação for igual pertencem à mesma rede.
- Cada host de uma rede, além de receber um endereço IP único, deve também ser configurado com sua Máscara de Sub-rede (igual para todos os hosts da sub-rede).

Máscara de sub-redes

- A Máscara de Sub-rede é uma sequência de 4 bytes (assim como o endereço IP e a Máscara padrão), onde:
 - os bits 1 indicam bits do endereço IP que se referem ao endereço de rede,
 - os bits 0 referem-se aos bits do endereço de host.
- A Máscara de Sub-rede define quantos bits do endereço IP referem-se ao endereço de rede.

Máscaras Padrão

As Máscaras de rede padrão para endereços das Classes A, B e C são:

Classe	Endereços
Α	255.0.0.0
В	255.255.0.0
С	255.255.25.0

Máscaras Padrão

Convertendo as máscaras padrão de sua representação em decimal para sua representação em binário, obteremos:

Classe	Máscara de Sul		
Α	255.0.0.0	11111111.00000000.00000000.00000000	/8
В	255.255.0.0	111111111111111111000000000000000000000	/16
С	255.255.255. 0	111111111111111111111111111000000000	/24

- O que significa que nos endereços de:
 - Classe A: todos os bits do primeiro byte indicam a rede,
 - Classe B: os dois primeiros bytes indicam a rede
 - Classe C: os três primeiros bytes indicam a rede.

Notação baseada no tamanho do prefixo de rede

- Existe uma notação que define a Máscara de rede simplesmente pelo número de 1's que ela contém
 - (Notação baseada no tamanho do prefixo de rede).
- Por exemplo, uma rede Classe A poderia ser definida por:
 - 119.0.0.0 /8 (o que significa que sua Máscara de rede contém 8 bits em 1

Classe	Endereços
A	255.0.0.0 ou /8
В	255.255.0.0 ou /16
С	255.255.255.0 ou /24

Sub-redes

Pode-se dividir uma rede em sub-redes menores utilizando máscaras de sub-rede diferentes do padrão definido pelas classes de endereços.

Um exemplo:

- Uma empresa solicitou e recebeu o endereço de rede classe C 200.16.23.0;
- Você quer subdividir a rede local (LAN) dessa empresa em 4 sub-redes que serão interconectadas por roteadores;
- Você precisará usar uma máscara de sub-rede personalizada (CIDR), a partir da classe C original, e terá um roteador entre as sub-redes para rotear um pacote de uma sub-rede para outra.
- Determine o número de bits que você precisará "tomar emprestados" da parte do *host* do endereço recebido e depois o número de bits que restaram para os endereços de *host*.

A ilustração abaixo representa a topologia desejada.

o endereço de rede classe C 200.16.23.0 terá que ser dividido em 4 sub-redes

Um exemplo:

Classe C

```
Rede= 200. 16. 23.0

Máscara Padrão= 255.255.255.0

rede.rede.rede.host
```

```
Máscara Padrão= 111111111.11111111.1111111.00000000
```

```
Endereço de Rede= 11001000.00010000.000101111.00000000
Endereço de Broadcast= 11001000.00010000.000101111.11111111
```


2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	1	0	0	1	0	0	0

> Percebe-se que utilizar apenas um bit da parte host irá gerar a máscara 255.255.255.128 e possibilitar apenas 2 endereços de rede:

 Como serão necessárias 4 sub-redes, precisa-se utilizar pelo menos 2 bits do endereço de host (os dois primeiros bits) para gerar a máscara 255.255.255.192 e 4 endereços de rede diferentes;

Apenas duas sub-redes não resolvem o problema!!

Representação

Máscaras válidas

Decimal	Binário
0	0000000
128	10000000
192	11000000
224	11100000
240	11110000
248	11111000
252	11111100
254	11111110
255	11111111

128	64	32	16	8	4	2	1	
1	0	0	0	0	0	0	0	= 128
1	1	0	0	0	0	0	0	= 192
1	1	1	0	0	0	0	0	= 224
1	1	1	1	0	0	0	0	= 240
1	1	1	1	1	0	0	0	= 248
1	1	1	1	1	1	0	0	= 252
1_	1	1	1	1	1	1	0	= 254
1	1	1	1	1	1	1	1	= 255

Máscaras válidas

Comprimento do Prefixo	Máscara de sub- rede	Máscara de sub-rede em binário (n = rede, h = host)	# de sub- redes	# de hosts
/25	255.255.255.128	nnnnnnnn.nnnnnnnn.nnnnnnnn.nhhhhhh 11111111.11111111.1111111.10000000	2	126
/26	255.255.255.192	nnnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh 11111111.11111111.1111111.11000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnn.nnnnnnn.nnnhhhhh 11111111.11111111.1111111.11100000	8	30
/28	255.255.255.240	nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnhhhh 11111111.11111111.11111111.1110000	16	14
/29	255.255.255.248	nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnhhh 11111111.11111111.11111111.1111000	32	6
/30	255.255.255.252	nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnnhh 11111111.11111111.11111111.1111100	64	2

Iremos utilizar parte dos bits destinados para endereçar host para criar sub-redes

Máscaras válidas para uma Classe C

	Bits de Host	10000000	11000000	11100000	11110000	11111000	11111100	ĺ
/	Decimal	128	192	224	240	248	252	
	máscara sub-rede	255.255.255.128	255.255.255. <mark>192</mark>	255.255.255. <mark>224</mark>	255.255.255. <mark>240</mark>	255.255.255. <mark>248</mark>	255.255.255. 252	
	Nº de subredes	2	4	8	16	32	64	
	Nº IPs nas sub-redes	128	64	32	16	8	4	
1	Nº IPs válidos nas subredes	126	62	30	14	6	2	

Classe C

Máscara Padrão

255.255.255.0

11111111.11111111.11111111.000000000

Rede . Rede . Host

Exemplo

192 . 168 . 1 . 0 11000000.10101000.00000001.000000000

Bits
destinados
a
endereçar
hosts

lascara sub-rede	255.255.255.126	200.200.200.192	255.255.255.224	255.255.255.240	255.255.255.246	255.255.255.252
Nº de subredes	2	4	8	16	32	64
Ps nas sub-redes	128	64	32	16	8	4
Ps válidos nas subredes	126	62	30	14	6	2
				0 15	0 a 7	0 a 3 4 a 7
		0		0 a 15	8 a 15	8 a 11 12 a 15
		U	0 a 31		16 a 23	16 a 19
				16 a 31	24 a 31	20 a 23 24 a 27
		a				28 a 31 32 a 35
				32 a 47	32 a 39	36 a 39 40 a 43
	0		32 = 63		40 a 47	44 a 47
		63	32 . 03	48 a 63	48 a 55	48 a 51 52 a 55
				40 a 05	56 a 63	56 a 59 60 a 63
	a				64 a 71	64 a 67 68 a 71
		64		64 a 79	72 a 79	72 a 75 76 a 79
	127	0.4	64 = 95		80 a 87	80 a 83
	121			80 a 95	88 a 95	84 a 87 88 a 91
		a				92 a 95 96 a 99
				96 a 111	96 a 103	100 a 103 104 a 107
			96 a 127		104 a 111	108 a 111
Faixa de		127	30 a 127	112 a 127	112 a 119	112 a 115 116 a 119
				112 4 127	120 a 127	120 a 123 124 a 127
Endereços				100 110	128 a 135	128 a 131 132 a 135
IP		128		128 a 143	136 a 143	136 a 139 140 a 143
		120	128 159		144 a 151	144 a 147
				144 a 159	152 a 159	148 a 151 152 a 155
		a				156 a 159 160 a 163
	400			160 a 175	160 a 167	164 a 167 168 a 171
	128		160 <u>a</u> 191		168 a 175	172 a 175 176 a 179
		191	100 0 131	176 a 191	176 a 183	180 a 183
				170 4 191	184 a 191	184 a 187 188 a 191
	a			400 00=	192 a 199	192 a 195 196 a 199
		192		192 a 207	200 a 207	200 a 203 204 a 207
	255	192	192 223		208 a 215	208 a 211
	233			208 a 223		212 a 215 216 a 219
		<u>a</u>			216 a 223	220 a 223 224 a 227
	128 a 255			224 a 239	224 a 231	228 a 231 232 a 235
			224 a 255		232 a 239	232 a 233 236 a 239 240 a 243
		255	224 0 233	0.40	240 a 247	240 a 243 244 a 247

240 a 255

248 a 255

252 a 255

Exemplos de Sub-redes a partir de um Classe C: 255.255.255.0

A tabela destaca todos os cenários possíveis para a sub-rede de um prefixo classe C 255.255.255.0 (/24)

Comprimento do Prefixo	Máscara de sub- rede	Endereço de rede (r = rede, h = host)	Nº de subredes	N⁰ de hosts
/24	255.255.255. 0	rrrrrr. rrrrrr. rrrrrr.hhhhhhhh 1111111.111111.1111111.0000000	1	254
/25	255.255.255. 128	rrrrrr. rrrrrr. rrrrrr.rhhhhhh 1111111.111111.1111111.10000000	2	126
/26	255.255.255. 192	rrrrrr. rrrrrr. rrrrrr.rrhhhhhh 11111111.111111.1111111.11000000	4	62
/27	255.255.255. 224	rrrrrr. rrrrrr. rrrrrr.rrhhhhh 1111111.111111.1111111.11100000	8	30
/28	255.255.255. 240	rrrrrr. rrrrrr. rrrrrr.rrhhhh 1111111.111111.1111111.1110000	16	14
/29	255.255.255. 248	rrrrrr. rrrrrr. rrrrrr.rrrhhh 1111111.111111.1111111.1111000	32	6
/30	255.255.255. 252	rrrrrr. rrrrrr. rrrrrr.rrrhh 1111111.111111.1111111.1111100	64	2

Máscaras válidas: Classe C

Considere um endereço classe C:

X.X.X.0

(rede.rede.host)

Máscara padrão = 255.255.25.0

Máscara padrão em Binário: 111111111.11111111.11111111.00000000

Nº de (sub) redes desejados	Nº de bits do host	Máscara em Binário	Decimal (parte de host)	Máscara de sub-rede	Notação simpli- ficada	Número de hosts
1	0	11111111.11111111.11111111.00000000	0	255.255.255. <mark>0</mark>	/24	254
2	1	11111111.11111111.1111111.10000000	128	255.255.255. <mark>128</mark>	/25	126
3-4	2	11111111.11111111.11111111.11000000	192	255.255.255.192	/26	62
5-8	3	11111111.11111111.11111111.1 <mark>11</mark> 00000	224	255.255.255. <mark>224</mark>	/27	30
9-16	4	11111111.11111111.11111111. <mark>1111</mark> 0000	240	255.255.255. <mark>240</mark>	/28	14
17-32	5	11111111.11111111.11111111. <mark>11111</mark> 000	248	255.255.255. <mark>248</mark>	/29	6
33-64	6	11111111.11111111.11111111.1111100	252	255.255.255. <mark>252</mark>	/30	2

Máscaras válidas: Classe B

Considere um endereço Classe B: X.X.0.0 (rede.rede.host.host)

Máscara padrão= 255.255.0.0 (111111111111111111.00000000.0000000)

Nº de sub- redes desejado	Nº de bits do host	Máscara Padrão em Binário (11111111. 11111111.0000000.0000000)	Decimal (parte de host)	Máscara de sub- rede (Padrão: 255.0.0.0)	Notação simpli- ficada	Número de hosts
2	1	11111111.11111111.10000000.00000000	128.0	255.255.128.0	/17	32.766
3-4	2	11111111.11111111.11000000.000000000	192.0	255.255.192.0	/18	16.382
5-8	3	11111111.11111111.11100000.00000000	224.0	255.255.224.0	/19	8.190
9-16	4	11111111.11111111.11110000.00000000	240.0	255.255.240.0	/20	4.094
17-32	5	11111111.11111111.11111000.00000000	248.0	255.255.248.0	/21	2046
33-64	6	11111111.11111111.11111100.00000000	252.0	255.255.252.0	/22	1022
65-128	7	11111111.11111111.11111110.00000000	254.0	255.255.254.0	/23	510
129-256	8	11111111.11111111.11111111.00000000	255.0	255.255. <mark>255.0</mark>	/24	254
257-512	9	11111111.11111111.11111111.10000000	255.128	255.255.255.128	/25	126
513-1024	10	11111111.11111111.11111111.11000000	255.192	255.255.255.192	/26	62
1025-2048	11	11111111.11111111.11111111.11100000	255.224	255.255.255.224	/27	30
2049-4096	12	11111111.11111111.11111111.11110000	255.240	255.255.255.240	/28	14
4097-8192	13	11111111.11111111.11111111.11111000	255.248	255.255.255.248	/29	6
8193-16384	14	11111111.11111111.111111111.11111110	255.252	255.255. <mark>255.252</mark>	/30	2

Máscaras válidas: Classe A

Considere um endereço <u>classe A:</u> X.0.0.0 (rede.host.host.host)

Máscara padrão = 255.0.0.0 (11111111.00000000.00000000.00000000)

Nº de sub- redes desejado	Nº de bits do host	Máscara Padrão em Binário (1111111.00000000.0000000.0000000)	Decimal (parte de host)	Máscara de sub-rede (Padrão 255.0.0.0)	Notação simpli- ficada	Número de hosts
2	1	11111111.10000000.00000000.00000000	128.0.0	255.128.0.0	/9	8.388.606
3-4	2	1111111.11000000.00000000.00000000	192.0.0	255.192.0.0	/10	4.194.302
5-8	3	11111111.11100000.00000000.000000000	224.0.0	255.224.0.0	/11	2.097.150
9-16	4	11111111.11110000.00000000.00000000	240.0.0	255.240.0.0	/12	1.048.574
17-32	5	11111111.11111000.00000000.00000000	248.0.0	255.248.0.0	/13	524.286
33-64	6	11111111.11111100.00000000.00000000	252.0.0	255.252.0.0	/14	262.142
65-128	7	11111111.11111110.00000000.00000000	254.0.0	255.254.0.0	/15	131.070
129-256	8	1111111.11111111.00000000.00000000	255.0.0	255.255.0.0	/16	65.534
257-512	9	11111111.11111111.10000000.00000000	255.128.0	255.255.128.0	/17	32.766
513-1024	10	1111111.11111111.11000000.00000000	255.192.0	255.255.192.0	/18	16.382
1025-2048	11	1111111.11111111.11100000.00000000	255.224.0	255.255.224.0	/19	8.190
2049-4096	12	11111111.11111111.11110000.00000000	255.240.0	255.255.240.0	/20	4094
		()				
2097153- 4194304	22	11111111.11111111.111111111.11111110	255.255.252	255.255.255.252	/30	2

Atividade (3^a Atividade para o 1^o checkpoint)

Passo 1: Configure os Gateways no Roteador

□Тор

Passo 2: Configure TODOS os hosts com endereço IP estático

Passo 3: Realize testes de comunicação entre os equipamentos

Passo 4: Realize a configuração do serviço DHCP no Server0

Passo 5: Configure todos os hosts para receber endereço a partir do DHCP

Passo 6: Quais hosts receberam endereço IPv4 a partir do DHCP?

Faça upload do arquivo configurado na área de trabalhos

Atividades da aula 03 para composição da Nota do 1º Checkpoint

- Atividade 1. Utilize o arquivo '2oSem Aula 03 AtividadePKT.pkt' e realize a configuração dos passos descritos a partir do slide 50 dos slides disponíveis para a aula 03 (arquivo 2oSem Aula 03 2022 CIDR.pdf).
- Atividade 2. Preencha a tabela contida no arquivo '2oSem Aula 03 Atividade 2 Endereço IP CIDR.doc'.

"Entregáveis":

Ao final, faça upload dos arquivo com os resultados na área de trabalhos da FIAP:

Atividades da Aula 03 - 20 Semestre

Entregável 1: Arquivo .pkt com a configuração realizada no arquivo '2oSem Aula 03 AtividadePKT.pkt' **Entregável 2:** Arquivo .pdf com a tabela preenchida no arquivo '2oSem Aula 03 Atividade 2 - Endereço IP – CIDR.pdf'

O upload dos arquivos deverá ser realizado até o início da aula da próxima semana, quando as atividade serão corrigidas.

Lembre-se:

Além de ser uma atitude antiética, o plágio em trabalhos acadêmicos é considerada crime e poderá comprometer sua carreira acadêmica e profissional

Referência para Estudo: capítulo 11

Referências Bibliográficas complementares

Bibliografia Básica:

Kurose, James F. e Ross, Keith W. Redes de Computadores e a Internet. São Paulo,5ªed,Pearson,2013

Tanenbaum, Andrew S. Redes de Computadores. São Paulo, 4ªed., Campus,2003.

Forouzan, Behrouz A. Comunicação de Dados e Redes de Computadores. São Paulo, 3ªed.,Bookman, 2008.

Stallings, William. Redes e Sistemas de Comunicação de Dados. São Paulo, 3ªed., Campus, 2007