Optimization and Computational Linear Algebra for Data Science Homework 4: Norm and inner product

Due on October 1st, 2019

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- You can work in groups but each student must write his/her own solution based on his/her own understanding of the problem. Please list on your submission the students you work with for the homework (his will note affect your grade).
- Problems with a (\star) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to contact me (lm4271@nyu.edu) or to stop at the office hours.

Problem 4.1 (2 points). Let $\|\cdot\|$ be the usual Euclidean norm on \mathbb{R}^n . For $x \in \mathbb{R}^n$ compute (and justify your result):

$$\max \left\{ v^{\mathsf{T}} x \,\middle|\, v \in \mathbb{R}^n, \|v\| = 1 \right\}.$$

Problem 4.2 (2 points). Show that for all $x \in \mathbb{R}^n$,

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1.$$

Problem 4.3 (2 points). Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{R}^n , and let $\| \cdot \|$ be the induced norm by $\langle \cdot, \cdot \rangle$.

(a) Show that for all $x, y \in \mathbb{R}^n$ we have

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

(b) Deduce from the previous question that the ℓ_1 norm $\|\cdot\|_1$ and the infinity norm $\|\cdot\|_{\infty}$ are **not** induced by an inner product.

Problem 4.4 (4 points). Let S be a subspace of \mathbb{R}^n . We define the orthogonal complement of S by

$$S^\perp \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R}^n \, \big| \, x \perp S\} = \{x \in \mathbb{R}^n \, \big| \, \forall y \in S, \, \langle x,y \rangle = 0\}.$$

- (a) Show that S^{\perp} is a subspace of \mathbb{R}^n .
- (b) Show that $\dim(S^{\perp}) = n \dim(S)$. Hint: use the rank-nullity theorem.

Let $v = (1, 1, 1) \in \mathbb{R}^3$ and define

$$H = \{ x \in \mathbb{R}^3 \mid x \perp v \} = \operatorname{Span}(v)^{\perp}.$$

- (c) Find an orthonormal basis of H and an orthonormal basis of H^{\perp} .
- (d) Write the matrix of P_H , the orthogonal projection on H.

Problem 4.5 (\star) . Let P be an $n \times n$ matrix such that

$$\begin{cases} P^2 = P \\ P^\mathsf{T} = P. \end{cases}$$

Show that P is the matrix of the orthogonal projection on some subspace V of \mathbb{R}^n .

