

NASA's Moon to Mars (M2M) Transit Habitat (TH) Refinement Point of Departure (PoD)

Pesign⁰²³

NASA Marshall Space Flight Center (MSFC)

Andrew Choate (Jacobs Space Exploration Group)

Paul Kessler

Tiffany Nickens

NASA Langley Research Center (LaRC)

Matthew Simon

Objective

What is the TH?

GR&A/Functional Allocations

CONOPS & Considerations

Moon to Mars (M2M) Integration

M2M Exploration Element Concepts

M2M Integration & CONOPS Phases

Key Mission & Functional Challenges

- No spares resupply chain during transit
- Impact on propulsion element size
- Waste and trash management in transit/loiter orbits
- Logistics storage capacity for mission
- Human health and performance for long duration missions
- Long duration shakedown
- Radiation & MMOD protection
- Communication delays/blackouts
- Ability to recover from major habitation failures

Government Reference Transit Habitat Concept Overview

Ground Rules & Assumptions

Significant GRs:

- 4 crew for up to 1,200-day Mars Transit mission duration
- 26.4 mt target dry mass (including MGA and margin)
- Autonomous operation when uncrewed
- Max uncrewed dormancy of up to 3 years
- Minimum of 2 axial and 1 radial docking ports
- Performs a series of up to ~180d Mars Analog missions while docked at Gateway
- Self-sufficient habitat once fully deployed at orbits up to 1.0 AU, capable of receiving power from Mars propulsion system beyond 1.6 AU
- 14.7 psia 21% O2 atmosphere nominal, capable of 10.2 psia 26.5% O2 during Gateway docked open-hatch ops
- Safe Haven and Solar Proton Event (SPE) Shelter
- 15-year life with multiple missions of increasing duration
- TH Sparing and Maintenance Manifested to achieve 99% system availability

Significant Assumptions:

- Near-Rectilinear Halo Orbit (NRHO) via Commercial Launch Vehicle(s)(CLV). Options for SLS cargo delivery are possible but should feed cost assessments.
- Early 2030's launch with Mars mission in late 2030's
- Replenishable Reaction Control System (RCS) through docking or Gateway interface between mission phases (analogs, Mars Propulsion System (MPS) shakedown, Mars transit)
- Contingency EVA airlock
- Trash/waste removal (11.6 kg/day avg)

Accommodate 1000 kg of science and utilization payloads

TH Concept OML Features

TH Concept Interior Features

Level 1 - Galley, Command & Control, Medical, Hand Washing Station, UWMS (1 of 2), Logistics Management, Trash Management

Level 2 – Crew Quarters, Sub-Systems, Maintenance Stations

Storage - CTBs lining the outer wall, additional storage below Level 1 Level 3 – Exercise, Utilization, UWMS (2 of 2), Hygiene Station

TH Concept: Mass Summary

SBS ID	Functional Category	Qty	Basic Mass kg	MGA / Reserves %	Predicted Mass kg
1.0	BODY STRUCTURES	6	4,057	20%	4,860
2.0	CONNECTION & SEPARATION SYSTEMS	3	1,163	4%	1,210
3.0	LAUNCH/TAKEOFF & LANDING SUPPORT SYSTEMS	1	260	25%	325
4.0	NATURAL & INDUCED ENVIRON PROTECT SYSTEMS	2	1,869	18%	2,206
5.0	PROPULSION SYSTEMS	0	0	0.00	0
6.0	POWER SYSTEMS	33	1,710	23%	2,100
7.0	COMMAND & DATA HANDLING (C&DH) SYSTEMS	51	829	11%	920
8.0	GUIDANCE, NAVIGATION & CONTROL (GN&C) SYSTEMS	1,013	691	14%	789
9.0	COMMUNICATIONS & TRACKING (C&T) SYSTEMS	143	492	7%	526
10.0	CREW DISPLAYS & CONTROLS	48	160	8%	173
11.0	THERMAL CONTROL SYSTEMS (TCS)	1,060	1,554	17%	1,821
12.0	ENVIRONMENTAL CONTROL SYSTEMS (ECS)	96	1,781	8%	1,919
13.0	CREW/HABITATION SUPPORT SYSTEMS	254	4,902	19%	5,831
14.0	EXTRAVEHICULARACTIVITY (EVA) SUPPORT SYSTEMS	78	824	13%	932
15.0	IN-SITU RESOURCE & CONSUMABLES PRODUCTION SYSTEMS	0	0	0.00	0
16.0	IN-SPACE MANUFACTURING & A SSEMBLY SYSTEMS	0	0	0.00	0
17.0	MANIPULATION & MAINTENANCE SYSTEMS	22	709	25%	889
18.0	PAYLOAD PROVISIONS	0	0	0.00	0
	MANUFACTURER'S EMPTY MASS	2,810	21,002	16.65%	24,498.71
	CREWITEMS/CONSUMABLES & PORTABLE EQUIP	72	10,994	1%	11,100
	EQUIPMENT SPARES & MAINTENANCE ITEMS	3	7,397	0%	7,397
	ATMOSPHERE & SYSTEM CONSUMABLES/RESIDUALS	9	334	0%	334
	OPERATIONAL EMPTYMASS	2,894	<i>39,726</i>	<i>9</i> %	43,330
19.0	PAYLOADS & RESEARCH	5	1,328	0	1,328
	PROPULSION & REACTION CONTROL EXPENDABLES	0	1,562	0	1,562
	GROSS MASS	2,899	42,616	8%	46,220

Note: Mass margin & PMR approach defined in HEO-MD-1010, but not included within this publication.

Key mass drivers:

- Mission duration
- Spares philosophy
- Planned maintenance
- Crew size (currently 4)
- Technology selection (Power storage, Regen ECLSS, etc.)
- Reliability and maintainability criteria
- Risk posture
- MGA and margin requirements (only MGA shown)

Control mass target: 26,400 kg

Departure mass currently ~50 tons!

Future Work

Continued concept refinement alongside M2M architecture

- Further CONOPS definition within each operational phase
 - Phase 1: TH in cis-lunar NRHO with Gateway and MPS integration
 - Phase 2: Crewed Transit Time and Mars Surface Mission support
 - Phase 3: Refurbishment activities for subsequent crewed Mars missions
- Interior outfitting optimization activities
 - Stowed and frozen food management
 - Crew health and performance optimization (exercise/countermeasure systems)
- Mass refinement and logistics loading plans

Continued focus on technology development and maturation activities

 Deep dive provided in 2023 IEEE Paper "An Analysis of Exploration Capability Gaps for Future Habitation Systems to Inform Risk Assessment and Development Priorities" (T. Prater et al.)

Continued public/industry engagement and cross-agency integration

Authors & Contributors

NASA Marshall Space Flight Center - Habitation Systems

Development Office

Andrew Choate
Transit Habitat Technical
Lead

Tiffany Nickens
Habitation
Concepts/PreFormulation Deputy
Lead

Paul Kessler Surface Habitat Technical Lead

Danny Harris
Habitation
Concepts/PreFormulation Lead

NASA Langley Research Center

Matthew Simon
Deputy Lead,
Capability
Integration Group

Special Thanks!

James Meehan, James Owens, Quincy Bean, Greg Schunk, Brian Evans, David Howard, Robert Howard, Callie Burke, Zachary Bryant, Allison Quesenbery, and Tracie Prater.