Numerical Calculus - Recap

- 1. Give the first two iterations of bisection, secant and Newton's methods to solve the equation $x^3 + x 1 = 0$. How many steps are required to obtain an accuracy of 10^{-3} for the bisection method?
- 2. Approximate $\sqrt{3}$ using the first two iterations of Newton's method.
- 3. Find a fixed point iteration for the equation $3x^2 e^x = 0$ on the interval [0, 1] that satisfies the Banach Theorem conditions. Write the first two iterations and estimate the number of iterations needed for an accuracy of 10^{-5} for the fixed point iteration.
- 4. Knowing that $\lg 2 = 0.301$, $\lg 3 = 0.477$, $\lg 5 = 0.699$, approximate $\lg 76$ using a suitable interpolation polynomial. Estimate the error of approximation.
- 5. Approximate $f\left(\frac{1}{2}\right)$ knowing that f(0) = 1, f'(0) = 2, f'(1) = -1.
- 6. Complete the following forward difference table:

x_i	f_i	$\Delta_1 f_i$	$\Delta_2 f_i$	$\Delta_3 f_i$
2	6			
4		3		
6	10	5		
8				

7. Write the polynomial that interpolates the data

$$\begin{array}{c|cccc} x_i & f_i & f'_i \\ \hline 0 & 1 & 1 \\ 1 & 3 & 4 \\ \end{array}$$

- 8. (a) Write the constant least squares approximant for N points $P_i(x_i, y_i)$, $i = \overline{1, N}$.
 - (b) Using the result from (a), write the approximant in the case $P_1(1,0)$, $P_2(2,1)$, $P_3(0,3)$.
- 9. Determine n such that the approximation error for the integral $I = \int_0^{\pi} \sin x \, dx$ is less that $2 \cdot 10^{-3}$ for the composite Simpson's rule. With the n obtained, approximate the integral.
- 10. Find a quadrature formula of the form

$$\int_{-1}^{1} f(x) \ dx = A_1 f(x_1) + A_2 f(x_2)$$

that has the degree of precision d = 3 using the relations for the remainder and then using orthogonal polynomials.

11. Solve the following system using Gauss elimination with partial pivoting:

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ x_1 + x_2 + 4x_3 = 2 \\ 2x_1 - x_2 + 2x_3 = 3 \end{cases}$$

1

12. Solve the previous linear system using LUP decomposition.