9

COMPLÉMENTS SUR LES NOMBRES COMPLEXES

Dans tout le chapitre, on se place dans un repère $orthonormé\ direct\ (O\ ;\ \overrightarrow{u}\ ,\overrightarrow{v}\).$

9.1 Interprétation du module et de l'argument de $\frac{c-a}{b-d}$

9.1.1 Module de $\frac{c-a}{b-d}$

Propriété 1.9.

Soient quatre points distincts A, B et C et D d'affixes respectives a, b, c et d.

$$\bullet$$
 $|c-a| = |a-c| = AC$

$$\bullet \ \left| \frac{c-a}{d-b} \right| = \frac{AC}{BD}$$

9.1.2 Argument de $\frac{c-a}{b-d}$

Propriété 2.9.

Soient quatre points $distincts\ A,\ B$ et C et D d'affixes respectives $a,\ b,\ c$ et d. On a :

$$\arg\left(\frac{c-a}{d-b}\right) = (\overrightarrow{BD}, \overrightarrow{AC}) \ [2\pi]$$

► Application 1.9.

- 1. Soient A, B et C d'affixes respectives $a=1+2\mathrm{i},\,b=2$ et $c=-1+\mathrm{i}.$
 - (a) Calculer AB et AC.
 - (b) Calculer $(\overrightarrow{AB}, \overrightarrow{AC})$.
 - (c) En déduire la nature du triangle ABC.
- 2. Dans chaque cas, déterminer l'ensemble des points M d'affixe z vérifiant la condition :

(a)
$$\left| \frac{z+4+i}{z+5} \right| = 1$$

(b)
$$\arg\left(\frac{z-3i}{z-4}\right) = \frac{\pi}{2} [\pi]$$

9.2 Racines *n*-ièmes de l'unité

Définition 1.9.

Soit $n \in \mathbb{N}^*$.

On appelle $racine \ n$ -ième de l'unité, tout nombre complexe z tel que $z^n=1$

Propriété 3.9.

Pour tout entier naturel n non nul, l'équation $z^n=1$ admet exactement n racines distinctes : ce sont les nombres complexes de la forme $\omega_k=\mathrm{e}^{\mathrm{i}\frac{2k\pi}{n}},\,k\in[0\,;\,n-1]$.

Remarques.

- Pour tout entier naturel n non nul, 1 est solution de $z^n = 1$.
- Les racines n-ièmes de l'unité sont les racines du polynôme $z^n 1$.

ightharpoonup Application 2.9. Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$(z+3)^5 = 1$$
.

2.
$$z^3 = -64$$
.

Définition 2.9.

On note \mathbb{U}_n l'ensemble des racines $n\text{-}\mathrm{i\`emes}$ de l'unité :

$$\mathbb{U}_n = \{ e^{i\frac{2k\pi}{n}}, \ k \in [0; n-1] \}$$

Exemple 1.9.

Préciser les racines 2-ièmes de l'unité.

Propriété 4.9.

- Les points images de \mathbb{U}_n , pour $n \in \mathbb{N}^*$, appartiennent au cercle trigonométrique.
- Les points images de \mathbb{U}_n , pour $n \ge 3$, sont les sommets d'un polygone régulier à n sommets.

Exemple 2.9.

n=3: les racines 3-ièmes de l'unité sont les affixes des sommets d'un triangle équilatéral.

