

משי נבחן

שם הקורס: מבוא להסתברות

<u>קוד הקורס: 90911</u>

הוראות לנבחן:

-חומר עזר שימושי לבחינה:

מותר שימוש בשלושה דפי נוסחאות,

ודף טבלת התפלגות נורמלית.

אין לכתוב בעפרון / עט מחיק-

אין להשתמש בטלפון סלולארי-

אין להשתמש במחשב אישי או נייד-

אין להשתמש בדיסק און קי ו/או-

מכשיר מדיה אחר

אין להפריד את דפי שאלון הבחינה-

בחינת סמסטר: 2018ב

<u>השנה: תשע"ח</u>

מועד:

תאריך הבחינה: 8/ 17 32

שעת הבחינה:

משך הבחינה: 3 שעות

מרצים: ד"ר חנה קלבנר, ד"ר מאיר אזור, ד"ר לובה טטראשווילי, ד"ר אלכס סגל

*** שאלון הבחינה לא ייבדק ע"י המרצה, לא ייסרק ולא יישמר ***
*** לא יינתן ציון על תשובות אשר תיכתבנה בשאלון זה

מבנה הבחינה והנחיות לפתרון:

יש לענות על כל השאלות, משקל כל שאלה רשום ליד השאלה.
יש לנמק היטב את הפתרון. תשובה לא מנומקת לא תזכה במלוא
הניקוד.

<u>כל שאלה להתחיל בעמוד חדש: יש לציין את מספר השאלה, ויש לציין</u> את מספר הסעיף אותו פותרים.

שאלה 1 (21 נקודות)

בקופסא יש 10 כדורים, חלקם לבנים. מוציאים מהקופסא 4 כדורים עם החזרה. ההסתברות להוציא כדור אחד לבן שווה להסתברות להוציא שני כדורים לבנים.

- א. כמה כדורים לבנים יש בקופסא!
- ב. מוציאים מהקופסא 4 כדורים ללא החזרה. מה ההסתברות להוציא 2 כדורים לבנים?
- ג. מהקופסא מוציאם כדורים עם החזרה, עד שנוציא 4 כדורים לבנים. מה ההסתברות שהוצאנו 10 כדורים?

שאלה 2 (32 נקודות)

: Y, Xהטבלה הבאה מתארת התפלגות משותפת של

x Y	1	2	3
1	0.03	?	0.27
2	0.02	0.22	0.16

- א. מהי ההסתברות החסרה בטבלה! האם Y,X בלתי תלויים!
 - X=2ב. מהי התוחלת של Y אם נתון
 - X מהי השונות של
 - P(X+Y ≤ 3): חשבו את ההסתברות: (3 ≥ <math>Y

שאלה 3 (47 נקודות: סעיף א' 7 נק', כל סעיף אחר 8 נק')

באזור מסוים הטמפרטורה היומית בימות החורף מתפלגת נורמלית עם תוחלת 13°, וסטיית תקן 4°.

בודקים ממוצע טמפרטורה על פני 36 ימים. אם ממוצע הטמפרטורה יורד מתחת ל- 12°, החורף נחשב קר במיוחד. נניח שימים שונים הם בלתי תלויים מבחינת הטמפרטורה הנמדדת בהם.

- א. מה ההסתברות שחורף שנבדק, היה קר במיוחד!
- ב. מה ההסתברות שבמשך חמישה ימים ברצף, הטמפרטורה היומית תהייה מעל 14º!
- ג. מתוך 60 ימים, מה ההסתברות שיהיו לכל היותר 25 ימים בהם הטמפרטורה היומית נמוכה מ- 114º

מפעל מעסיק 60 עובדים. בחורף קר במיוחד ממוצע ימי מחלה לעובד הוא 8 עם סטיית תקן 3, ובחורף רגיל ממוצע ימי מחלה לעובד הוא 4 עם סטיית תקן 2.

- ד. מהי תוחלת מספר ימי מחלה לעובד!
- ה. מהי שונות מספר ימי מחלה לעובד!
- ו. מה ההסתברות שסך ימי המחלה של העובדים במפעל בחורף לא יעלה על 300!

בהצלחה!

כל הזכויות שמורות ©. מבלי לפגוע באמור לעיל, אין להעתיק, לצלם, להקליט, לשדר, לאחסן מאגר מידע, בכל דרך שהיא, בין מכאנית ובין אלקטרונית או בכל דרך אחרת כל חלק שהוא מטופס הבחינה

נוסחאות עזר – מבוא להסתברות

$$;A\cup(B\cap C)=(A\cup B)\cap(A\cup C)\quad ;A\cap(B\cup C)=(A\cap B)\cup(A\cap C)$$

$$(\bigcap\overline{A_i})=\overline{(\bigcup A_i)}\qquad (\bigcup\overline{A_i})=\overline{(\bigcap A_i)}$$

 $A \cap B = \phi$ מאורעות זרים אם B,A

סדרת מאורעות תקרא זרים בזוגות אם כל זוג מאורעות מתוכה הם זרים.

$$P\{A\cup B\}=P\{A\}+P\{B\}-P\{A\cap B\}$$
 ; $P\{\overline{A}\}=1-P\{A\}$: חוקי ההסתברות
$$P\{\bigcup_{i=1}^n Ai\}=\sum_{i=1}^n P\{Ai\}:$$
 אם : $\{A_i\}_{i=1}^n$ סדרת מאורעות זרים בזוגות אז : $\{A_i\}_{i=1}^n$

נוסחת ההכלה וההוצאה (inclusion exclusion):

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D) -$$

$$-P(A \cap B) - P(A \cap C) - P(A \cap D) - P(B \cap C) - P(B \cap D) - P(C \cap D) +$$

$$+ P(A \cap B \cap C) + P(A \cap B \cap D) + P\{A \cap C \cap D\} + P(B \cap C \cap D) - P(A \cap B \cap C \cap D)$$

כללים קומבינטוריים:

כלל המכפלה: אם ניסוי ניתן להצגה כמתבצע ב $\,$ ח שלבים, ובשלב $\,$ ובשלב $\,$ תוצאות אפשריות וסימטריות, אז ואם מרחב המדגם מוגדר כוקטורים באורך ח כאשר הרכיב ה $\,$ שלו הוא תוצאת השלב ה $\,$, אז במרחב המדגם יש $\,$ $\,$ $\,$ $\,$ $\,$ תוצאות אפשריות סימטריות.

מספר האפשרויות לדגימה של k מתוך ח איברים:

ללא התחשבות בסדר	התחשבות בסדר הדגימה	
(מרחב מדגם לא סימטרי)	n^k	עם החזרה
$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$	$\frac{n!}{(n-k)!}$	ללא החזרה

$$P\{A\cap B\} = P\{A\}P\{B/A\} \;\; : וסחת הכפל: \;\; P\{A/B\} = \frac{P\{A\cap B\}}{P\{B\}}$$

נוסחת ההסתברות השלמה:

$$P\{A\} = \sum_{i=1}^n P\{A \, | \, Bi\} P\{Bi\}$$
 אם : $\left\{ {
m B}_{
m i} \right\}_{i=1}^n$ חלוקה של מרחב המדגם, אז : $\left\{ {
m B}_{
m i} \right\}_{i=1}^n$

$$P(A) = \sum_{i=1}^n P\{A/B_i\} P\{B_i\} \quad \text{chur} \quad P\{B_k/A\} = \frac{P\{A/B_k\} P\{B_k\}}{P\{A\}} \quad :$$
נוסחת בייס

 $P\{A \cap B\} = P(A)P(B)$ או $P\{A/B\} = P(A):$ אי תלות: $P\{A \cap B\} = P(A)P(B)$ או $P\{A \cap B\} = P(A)P($

סדרת ניסויי ברנולי: סדרת ניסויים זהים ובלתי תלויים, כשבכל ניסוי שתי תוצאות אפשריות: הצלחה וכשלון, וכאשר ההסתברות להצלחה בניסוי בודד היא p.

משתנים מקריים:

 $F(k)=P(X\leq k)$: פונקצית ההסתברות: P(X=k) פונקצית ההתפלגות המצטברת: P(X=k) פונקצית ההסתברות: P(X=k) פונקציה של פונקציה של P(X=k) התוחלת של P(X=k) השנות של P(X=k) בו P(X=k) השנות של P(X=k) ביותר, החציון הוא הערך בו P(X=k) השכיח הוא הערך בעל ההסתברות הגבוהה ביותר, החציון הוא הערך בו P(X=k)

משתנים (בדידים) מיוחדים:

אחיד (בדיד): X~U(N), מתאר משתנה המקבל את הערכים: 1,2,...,N בהסתברויות שוות.

$$P\{X=k\}=rac{1}{N}$$
 $k=1,2,...,N$; $E[X]=rac{N+1}{2}$; $V[X]=rac{N^2-1}{12}$: ישבור משתנה זה:

בינומי: $B(n,p): X \sim B(n,p)$ מתאר את מספר ההצלחות ב- ח ניסויי ברנולי.

$$P\{X=k\}=inom{n}{k}p^kq^{n-k}$$
 $k=0,1,...,n$; $E[X]=np$; $V[X]=npq$: הור משתנה זה:

גיאומטרי בסדרת (כולל) בסדרת מספר הניסויים עד להצלחה (כולל) בסדרת ניסויי ברנולי ברנולי אומטרי את מספר הניסויים עד להצלחה (כולל) בסדרת ניסויי ברנולי עבור משתנה זה:

$$P(X=k) = pq^{k-1}$$
 $k = 1,2,...$; $P(X \le k) = 1-q^k$ $k = 1,2,...$; $E[X] = \frac{1}{p}$; $V[X] = \frac{q}{p^2}$

היפרגיאומטרי: $X \sim H(N,R,n)$ מתאר את מספר האיברים המיוחדים שיתקבלו בבחירת איברים ללא $X \sim H(N,R,n)$ החזרה מאוכלוסיה בגודל R שבה R איברים מיוחדים.

עבור משתנה זה:

$$P\{X = k\} = \frac{\binom{R}{k}\binom{N-R}{n-k}}{\binom{N}{n}} \qquad k = 0,1,2,...n \; ; \qquad E(X) = n\frac{R}{N} \; ; \qquad V(X) = n\frac{R}{N}\frac{(N-R)}{N}\frac{(N-n)}{(N-1)}$$

. משמש בדרך כלל לתיאור מספר אירועים בתחום מוגדר, משמש בדרך כלל לתיאור מספר אירועים בתחום מוגדר $X\sim Pois(\lambda)$

$$P(X=k)=e^{-\lambda} \frac{\lambda^k}{k!}$$
 $k=0,1,2,...$; $E(X)=V(X)=\lambda$: ועבור משתנה זה:

משתנה מקרי רציף: פונקצית הצפיפות: f(x), פונקצית ההתפלגות המצטברת:

$$F(t) = P\{X \le t\} = \int_{x=-\infty}^{t} f(x)dx$$

 $E[g(X)] = \int g(x)f(x)dx$: איא: g(X) התוחלת של פונקציה של g(X), א התוחלת של פונקציה של g(X) התוחלת של g(X) : $E[X] = \int xf(x)dx$: $E[X] = \int xf(x)d$

משתנים (רציפים) מיוחדים:

אחיד (רציף) אחיד מתאר משתנה המקבל ערכים בין a ל- a כך שההסתברות לערך בקטע פרופורציונית אחיד (רציף). אחיד לאורך הקטע.

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{elsewhere} \end{cases}; \quad F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}; \quad E(X) = \frac{a+b}{2}; \quad V(X) = \frac{(b-a)^2}{12} : \text{ in the proof of the$$

מעריכי (אקספוננציאלי): X ~ ezp(l), משמש בדרך כלל לתיאור אורך חיי רכיבים ומערכות אלקטרוניות.

.... משמש לצרכים רבים , $X \sim N(\mu, \sigma^2)$: נורמלי

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}} - \infty \le x \le \infty \quad ; \quad E(X) = \mu; \quad V(X) = \sigma^2$$
 אבור משתנה זה:

חישוב הסתברויות עבור משתנה זה בעזרת טבלת ההתפלגות המצטברת של המשתנה הסטנדרטי

,
$$P\{X \leq t\} = P\{Z \leq \frac{t-\mu}{\sigma}\} = \Phi(\frac{t-\mu}{\sigma})$$
 : והחישוב מתבצע על ידי: , $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$ את הערך $\Phi(-a) = 1 - \Phi(a)$: את הערך $\Phi(t)$ קוראים בטבלה, הוא מקיים:

 $P(X=x_i,Y=y_j)=P_{X,Y}(x_i,y_j):$ משתנה דו ממדי בדיד: פונקצית ההסתברות המשותפת $P_{X}(k)=P\{X=k\}=\sum_j P\{X=k,Y=j\}$: X פונקצית ההסתברות השולית של

 $P_{X/Y}(k/j) = P\{X = k/Y = j\} = \frac{P\{X = k, Y = j\}}{P\{Y = j\}}$: Y=j בהינתן X בהינתן X בהינתן אונים: j - i יקראו בלתי תלויים אם $P_{X,Y}(x_i, y_j) = P_X(x_i) P_Y(y_j)$ לכל הערכים האפשריים i - i שני משתנים: Y , Y יקראו בלתי תלויים אם $P_{X,Y}(x_i, y_j) = P_X(x_i) P_Y(y_j)$

 $f_{X,Y}(x,y)$: משתנה דו ממדי רציף: פונקצית הצפיפות המשותפת

$$f_X(x) = \int f_{X,Y}(x,y) dy$$
 : X פונקצית הצפיפות השולית של

 $f_{X/Y}(x/y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$:Y=y בהינתן אל X בהינתן של Y=2 בהינתן

x,y שני משתנים : Y , X יקראו בלתי תלויים אם $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ אם אפשריים האפשריים איני משתנים : Y

E[aX+b]=aE[X]+b ; $V[aX+b]=a^2V[X]$: מכונות התוחלת והשונות:

$$E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}] \quad ; \quad V[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} V[X_{i}] + \sum_{i \neq j}^{n^{2} - n^{n}} Cov(X_{i}, X_{j})$$

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y) ; \qquad \rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$$

Cov(aX + b, Y) = aCov(X, Y); Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

 $S_N = \sum_{i=1}^N X_i$; $\mathrm{E[S}_N] = E[N]E[X]$; $V[S_N] = E[N]V[X] + V[N]E^2[X]$: סכום מקרי של משתנים מקריים

$$E[X] = \sum_{j} E(X/Y = j)P\{Y = j\} = \sum_{j} E(X/B_{j})P\{B_{j}\}$$
 : וסחת התוחלת השלמה:

מדגם מקרי פשוט הוא אוסף של מ"מ בלתי תלויים, לכולם אותה התפלגות.

$$E[\overline{X_n}] = E[X]$$
 ; $V[\overline{X_n}] = \frac{V[X]}{n}$: והוא מקיים המדגם הוא $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$: ממוצע המדגם הוא

אי שויונים וחוקי גבול:

 $P\{X \geq t\} \leq \frac{E[X]}{t}$ אז קיים: E[X] אז שויון מרקוב: אם X משתנה מקרי אי שלילי ולו תוחלת X אז קיים: X משתנה שלו תוחלת X אי שויון X שויון X משתנה שלו תוחלת X משתנה שלו תוחלת X שויון X שויון X משתנה שלו תוחלת X משתנה שלו תוחלת המשתנה שואף לאינסוף, ממוצע המדגם שואף לתוחלת המשתנה.

 $C(n \ge 30)$ משפט הגבול המרכזי: עבור מדגם מקרי פשוט קיים, עבור C(X) = 0 מספיק גדול (C(X) = 0 אזי: C(X) = 0 אזי:

$$\frac{\overline{X}_n}{n} \sim N(\mu, \frac{\sigma^2}{n})$$

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

קרוב נורמלי למשתנה בינומי: עבור X משתנה בינומי: (R(n, p) משתנה בינומי: X ~ B(n, p)

 $X \sim N(np, npq)$: מתקיים: nq > 5 וגם: np > 5 אור מספיק גדול, כך ש: np > 5 וגם: np > 5

$$P\{X \leq k\} = \Phi\left(\frac{k+0.5-np}{\sqrt{npq}}\right) \quad ; \qquad P\{X < k\} = \Phi\left(\frac{k-0.5-np}{\sqrt{npq}}\right) \quad :$$

ומספר נוסחאות מתמטיות לסיום:

יטור חשבוני (אריתמטי):

$$a_n = a_1 + (n-1) \cdot d$$
 ; $\sum_{i=1}^n a_i = \frac{(a_1 + a_n) \cdot n}{2}$

$$\sum_{i=1}^{n} i = \frac{(1+n)\cdot n}{2}$$
 ולדוגמא סכום המספרים הטבעיים הוא:

י טור הנדסי (גיאומטרי):

$$a_n = a \cdot q^{n-1}$$
 ; $\sum_{i=1}^n a_i = a \frac{(1-q^n)}{1-q}$

ובפרט כאשר 1>p≥0

Table of Normal Commulative Distribion Function

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998

$\phi(Z)$	0.75	0.8	0.85	0.9	0.95	0.975	0.98	0.99	0.995	0.999
Z		0.842	1.036	1.282	1.645	1.960	2.054	2.326	2.576	3.090

699911 MORE Q 10901

מבוא להסתברות

פתרוןבחינה

שאלה 1 (21 נקודות)

בקופסא יש 10 כדורים, חלקם לבנים. מוציאים מהקופסא 4 כדורים עם החזרה. ההסתברות להוציא כדור אחד לבן שווה להסתברות להוציא שני כדורים לבנים.

- א. כמה כדורים לבנים יש בקופסא!
- ב. מוציאים מהקופסא 4 כדורים ללא החזרה. מה ההסתברות להוציא 2 כדורים לבנים!
- ג. מהקופסא מוציאם כדורים עם החזרה, עד שנוציא 4 כדורים לבנים. מה ההסתברות שהוצאנו 10 כדורים!

פתרון

.N

 $X \sim B(4,\;p)\;$ מספר הכדורים הלבנים שנוציא, =X

$$P(X=1) = P(X=2)$$
 \Rightarrow $\binom{4}{1}p(1-p)^3 = \binom{4}{2}p^2(1-p)^2$

$$4(1-p) = 6p \implies 10p = 4 \implies p = 0.4 \implies \frac{w}{10} = 0.4 \implies w = 4$$

בכד יש 4 כדורים לבנים.

4

,מספר הכדורים הלבנים שנוציא =Y

$$Y \sim H(10, 4, 4) \implies P(Y = 2) = \frac{\binom{4}{2}\binom{6}{2}}{\binom{10}{4}} = \frac{6 \times 15}{210} = 0.4286$$

. 3

$$\binom{9}{3} \times 0.4^3 \times 0.6^6 \times 0.4$$

שאלה 2 (32 נקודות)

הטבלה הבאה מתארת התפלגות משותפת של Y,X

X	1	2	3
1	0.03	?	0.27
2	0.02	0.22	0.16

- א. מהי ההסתברות החסרה בטבלה! האם Y,X בלתי תלויים!
 - X=2ב. מהי התוחלת של Y אם נתון
 - X מהי השונות של
 - P(X+Y ≤ 3): חשבו את ההסתברות: (3) . ד.

פתרון

.N

Y				
X	1	2	3	$P_{X}(x)$
1	0.03	0.3	0.27	0.6
2	0.02	0.22	0.16	0.4
$P_{Y}(y)$	0.05	0.52	0.43	1

$$P(X = 1, Y = 2) = 0.3 \neq 0.312$$

 $P(X = 1)P(Y = 2) = 0.6 \times 0.52 = 0.312$

.תלויים אין

2

$$E(Y \mid X = 2) = 1 \times \frac{0.02}{0.4} + 2 \times \frac{0.22}{0.4} + 3 \times \frac{0.16}{0.4} = 2.35$$

٤.

$$V(X) = 1^2 \times 0.6 + 2^2 \times 0.4 - (1 \times 0.6 + 2 \times 0.4)^2 = 0.24$$

.7

$$P(X+Y \le 3) = P(X=1, Y=1) + P(X=1, Y=2) + P(X=2, Y=1) = 0.35$$

שאלה 3 (47 נקודות: סעיף א' 7 נק', כל סעיף אחר 8 נק')

באזור מסוים הטמפרטורה היומית בימות החורף מתפלגת נורמלית עם תוחלת 13°, וסטיית תקן 4°. בודקים ממוצע טמפרטורה על פני 36 ימים. אם ממוצע הטמפרטורה יורד מתחת ל- 12°, החורף נחשב קר במיוחד. נניח שימים שונים הם בלתי תלויים מבחינת הטמפרטורה הנמדדת בהם.

- א. מה ההסתברות שחורף שנבדק, היה קר במיוחד!
- ב. מה ההסתברות שבמשך חמישה ימים ברצף, הטמפרטורה היומית תהייה מעל 14º?.
- ג. מתוך 60 ימים, מה ההסתברות שיהיו לכל היותר 25 ימים בהם הטמפרטורה היומית נמוכה מ- 14°!

מפעל מעסיק 60 עובדים. בחורף קר במיוחד ממוצע ימי מחלה לעובד הוא 8 עם סטיית תקן 3, ובחורף רגיל ממוצע ימי מחלה לעובד הוא 4 עם סטיית תקן 2.

- ד. מהי תוחלת מספר ימי מחלה לעובד!
- ה. מהי שונות מספר ימי מחלה לעובד?
- ו. מה ההסתברות שסך ימי המחלה של העובדים במפעל בחורף לא יעלה על 300!

פתרון

.N

$$\bar{T}_{36} \sim N \left(13, \frac{4^2}{36} \right)$$

$$P(\bar{T}_{36} < 12) = \Phi(\frac{12-13}{4/6}) = \Phi(-1.5) = 1 - \Phi(1.5) = 1 - 0.9332 = 0.0668$$

۵.

$$T \sim N(13, 4^2)$$
 : נגדיר יומית, נתון שפרטורה יומית, נתון = $T:T:T$:

$$P(T > 14) = 1 - \Phi\left(\frac{14 - 13}{4}\right) = 1 - \Phi(0.25) = 1 - 0.5987 = 0.4013$$

 $0.4013^5 = 0.0104$: ההסתברות שבמשך 5 ימים הטמפרטורה תהייה מעל 14° היא

٤.

 $Y \sim B$ (60, 0.5987) אירר: איר מספר הימים בהם הטמפרטורה היומית נמוכה מ- 14° מספר הימים בהם הטמפרטורה היומית נמוכה מ- 14° אורים בהם הטמפרטורה היומית בהם הטמפרטורה ה

 $Y \sim N$ (35.92, 14.42) נורמלי לבינומי: $60 \times 0.5987 > 5$, $60 \times 0.4013 > 5$

$$P(Y \le 25) = \Phi\left(\frac{25 + 0.5 - 35.92}{\sqrt{14.42}}\right) = \Phi\left(-2.74\right) = 1 - \Phi\left(2.74\right) = 0.0031$$

4

נגדיר: X = מספר ימי מחלה לעובד

$$E(X) = E(X \mid \overline{T}_{36} < 12) P(\overline{T}_{36} < 12) + E(X \mid \overline{T}_{36} \geq 12) P(\overline{T}_{36} \geq 12) = 8 \times 0.0668 + 4 \times 0.9332 = 4.27$$

.77

נגדיר: X = מספר ימי מחלה לעובד

$$V(X) = E(X^{2}) - E^{2}(X)$$

$$E(X^{2}) = E(X^{2} | \overline{T}_{36} < 12)P(\overline{T}_{36} < 12) + E(X^{2} | \overline{T}_{36} \ge 12)P(\overline{T}_{36} \ge 12) =$$

$$= (9 + 64) \times 0.0668 + (4 + 16) \times 0.9332 = 23.54$$

$$V(X) = 23.54 - 4.27^{2} = 5.31$$

1

$$\sum_{i=1}^{60} X_i \sim N(60 \times 4.27, 60 \times 5.31)$$

$$P\left(\sum_{i=1}^{60} X_i \le 300\right) = \Phi\left(\frac{300 - 256.2}{\sqrt{318.6}}\right) = \Phi(2.45) = 0.9929$$