

1

SEQUENCE LISTING

RECEIVED

OCT 2 7 2003

```
<110> EVANS, RONALD M.
      BLUMBERG, BRUCE
<120> NOVEL STEROID-ACTIVATED NUCLEAR RECEPTORS AND
      USES THEREFOR
<130> 088802-5203
<140> 09/458,366
<141> 1999-12-09
<150> 09/227,718
<151> 1999-01-08
<150> 09/005,286
<151> 1998-01-09
<160> 44
<170> PatentIn Ver. 2.1
<210> 1
<211> 2068
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (583)..(1887)
ggcacgagga gatctaggtt caaattaatg ttgcccctag tggtaaagga cagagaccct 60
cagactgatg aaatgegete agaattaett agacaaageg gatatttgee actetettee 120
ccttttcctg tgtttttgta gtgaagagac ctgaaagaaa aaagtaggga gaacataatg 180
agaacaaata cggtaatctc ttcatttgct agttcaagtg ctggacttgg gacttaggag 240
gggcaatgga gccgcttagt gcctacatct gacttggact gaaatatagg tgagagacaa 300
gattgtctca tatccgggga aatcataacc tatgactagg acgggaagag gaagcactgc 360
ctttacttca gtgggaatct cggcctcagc ctgcaagcca agtgttcaca gtgagaaaag 420
caagagaata agctaatact cctgtcctga acaaggcagc ggctccttgg taaagctact 480
cettgatega teetttgeac eggattgtte aaagtggaec eeaggggaga agteggagea 540
aagaacttac caccaagcag tccaagaggc ccagaagcaa ac ctg gag gtg aga
                                                                   594
                                               Met Glu Val Arg
ccc aaa gaa agc tgg aac cat gct gac ttt gta cac tgt gag gac aca
Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His Cys Glu Asp Thr
```

15

20

10

gag Glu	tct Ser	gtt Val	cct Pro	gga Gly 25	aag Lys	ccc Pro	agt Ser	gtc Val	aac Asn 30	gca Ala	gat Asp	gag Glu	gaa Glu	gtc Val 35	gga Gly	690
ggt Gly	ccc Pro	caa Gln	atc Ile 40	tgc Cys	cgt Arg	gta Val	tgt Cys	999 Gly 45	gac Asp	aag Lys	gcc Ala	act Thr	ggc Gly 50	tat Tyr	cac His	738
			atg Met													786
			aac Asn													834
			cgg Arg													882
aag Lys	tgc Cys	ctg Leu	gag Glu	agc Ser 105	ggc Gly	atg Met	aag Lys	aag Lys	gag Glu 110	atg Met	atc Ile	atg Met	tcc Ser	gac Asp 115	gag Glu	930
gcc Ala	gtg Val	gag Glu	gag Glu 120	agg Arg	cgg Arg	gcc Ala	ttg Leu	atc Ile 125	aag Lys	cgg Arg	aag Lys	aaa Lys	agt Ser 130	gaa Glu	cgg Arg	978
aca Thr	Gly 999	act Thr 135	cag Gln	cca Pro	ctg Leu	gga Gly	gtg Val 140	cag Gln	GJÀ 333	ctg Leu	aca Thr	gag Glu 145	gag Glu	cag Gln	cgg Arg	1026
			agg Arg													1074
			cat His													1122
		Glu	ttg Leu	Pro	Glu	Ser	Leu	Gln	Āla	${\tt Pro}$	Ser	Arg	Glu	Glu	Āla	1170
			agc Ser 200													1218
			cgg Arg													1266
gcc Ala	gac Asp 230	agt Ser	ggc Gly	gly ggg	aaa Lys	gag Glu 235	atc Ile	ttc Phe	tcc Ser	ctg Leu	ctg Leu 240	ccc Pro	cac His	atg Met	gct Ala	1314

gac atg tca acc tac atg ttc aaa ggc atc atc agc ttt gcc aaa gtc Asp Met Ser Thr Tyr Met Phe Lys Gly Ile Ile Ser Phe Ala Lys Val 255 260	2
atc tcc tac ttc agg gac ttg ccc atc gag gac cag atc tcc ctg ctg 1410 Ile Ser Tyr Phe Arg Asp Leu Pro Ile Glu Asp Gln Ile Ser Leu Leu 265 270 275)
aag ggg gcc gct ttc gag ctg tgt caa ctg aga ttc aac aca gtg ttc 1458 Lys Gly Ala Ala Phe Glu Leu Cys Gln Leu Arg Phe Asn Thr Val Phe 280 285 290	3
aac gcg gag act gga acc tgg gag tgt ggc cgg ctg tcc tac tgc ttg 1506 Asn Ala Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu Ser Tyr Cys Leu 295 300 305	5
gaa gac act gca ggt ggc ttc cag caa ctt cta ctg gag ccc atg ctg 1554 Glu Asp Thr Ala Gly Gly Phe Gln Gln Leu Leu Glu Pro Met Leu 310 315 320	1
aaa ttc cac tac atg ctg aag aag ctg cag ctg cat gag gag gag tat Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His Glu Glu Glu Tyr 325 330 335 340	2
gtg ctg atg cag gcc atc tcc ctc ttc tcc cca gac cgc cca ggt gtg Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp Arg Pro Gly Val 345 350 355)
ctg cag cac cgc gtg gtg gac cag ctg cag gag caa ttc gcc att act 1698 Leu Gln His Arg Val Val Asp Gln Leu Gln Glu Gln Phe Ala Ile Thr 360 365 370	3
ctg aag tcc tac att gaa tgc aat cgg ccc cag cct gct cat agg ttc Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro Ala His Arg Phe 375 380 385	5
ttg ttc ctg aag atc atg gct atg ctc acc gag ctc cgc agc atc aat Leu Phe Leu Lys Ile Met Ala Met Leu Thr Glu Leu Arg Ser Ile Asn 390 395 400	Ŧ
gct cag cac acc cag cgg ctg ctg cgc atc cag gac ata cac ccc ttt Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp Ile His Pro Phe 405 410 415 420	2
gct acg ccc ctc atg cag gag ttg ttc ggt atc aca ggt agc tga 1887 Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr Gly Ser 425 430	7
gtggetgtee ttgggtgaea eeteegagag gtagttagae eeagageeet etgagtegee 1947	7
actcccgggc caagacagat ggacactgcc aagagccgac aatgccctgc tggcctgtct 2007	7
ccctagggaa ttcctgctat gacagctggc tagcattcct caggaaggac atggggtgcc 2067	7
c 2068	3

<210> 2

<211> 434

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Val Arg Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His 1 5 10 15

Cys Glu Asp Thr Glu Ser Val Pro Gly Lys Pro Ser Val Asn Ala Asp 20 25 30

Glu Glu Val Gly Gly Pro Gln Ile Cys Arg Val Cys Gly Asp Lys Ala 35 40 45

Thr Gly Tyr His Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe 50 55 60

Phe Arg Arg Ala Met Lys Arg Asn Ala Arg Leu Arg Cys Pro Phe Arg 65 70 75 80

Lys Gly Ala Cys Glu Ile Thr Arg Lys Thr Arg Arg Gln Cys Gln Ala 85 90 95

Cys Arg Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile 100 105 110

Met Ser Asp Glu Ala Val Glu Glu Arg Arg Ala Leu Ile Lys Arg Lys 115 120 125

Lys Ser Glu Arg Thr Gly Thr Gln Pro Leu Gly Val Gln Gly Leu Thr 130 135 140

Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys 145 150 155 160

Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly 165 170 175

Val Leu Ser Ser Gly Cys Glu Leu Pro Glu Ser Leu Gln Ala Pro Ser 180 185 190

Arg Glu Glu Ala Ala Lys Trp Ser Gln Val Arg Lys Asp Leu Cys Ser 195 200 205

Leu Lys Val Ser Leu Gln Leu Arg Gly Glu Asp Gly Ser Val Trp Asn 210 215 220

Tyr Lys Pro Pro Ala Asp Ser Gly Gly Lys Glu Ile Phe Ser Leu Leu 225 230 235 240

Pro His Met Ala Asp Met Ser Thr Tyr Met Phe Lys Gly Ile Ile Ser 245 250 255

Phe Ala Lys Val Ile Ser Tyr Phe Arg Asp Leu Pro Ile Glu Asp Gln 260 265 270

Ile Ser Leu Leu Lys Gly Ala Ala Phe Glu Leu Cys Gln Leu Arg Phe 275 280 285

Asn Thr Val Phe Asn Ala Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu 290 295 300

Ser Tyr Cys Leu Glu Asp Thr Ala Gly Gly Phe Gln Gln Leu Leu 305 310 315 320

Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His
325 330 335

Glu Glu Glu Tyr Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp 340 345 350

Arg Pro Gly Val Leu Gln His Arg Val Val Asp Gln Leu Gln Glu Gln 355 360 365

Phe Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro 370 375 380

Ala His Arg Phe Leu Phe Leu Lys Ile Met Ala Met Leu Thr Glu Leu 385 390 395 400

Arg Ser Ile Asn Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp 405 410 415

Ile His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr 420 425 430

Gly Ser

<210> 3

<211> 25 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Putative SXR
 response element from the steroid hydoxylase,
 rCYP3A1

<400> 3

tagacagttc atgaagttca tctac

25

<210> 4

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Putative SXR
 response element from the steroid hydoxylase,
 rCYP3A2

<400> taagca	4 agttc ataaagttca tctac	25
<210><211><211><212>	25 DNA	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Putative SXR response element from the steroid hydoxylase, rUGT1A6	
<400>	5	
actgta	agttc ataaagttca catgg	25
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Putative SXR response element from the steroid hydoxylase, rbCYP2C1	
<400>	6	
caatc	agttc aacagggttc accaat	26
.210.		
<210><211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Putative SXR response element from the steroid hydoxylase, rP450R	
<400>	7	
cacag	gtgag ctgaggccag cagcaggtcg aaa	33
<210>	8	
<211>	27	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Putative SXR response element from the steroid hydoxylase, rCYP2A1	
<400>		27
gugcag	ggttc aactggaggt caacatg	41

<210><211><212><213>	27	
<220> <223>	Description of Artificial Sequence: Putative SXR response element from the steroid hydoxylase, rCYP2A2	
<400> gtgct	9 ggttc aactggaggt cagtatg	27
<210><211><212><212><213>	27	
<220> <223>	Description of Artificial Sequence: Putative SXR response element from the steroid hydoxylase, rCYP2C6	
<400> agtcta	10 agttc agtgggggtt cagtctt	27
<210><211><212><213>	27	
<220> <223>	Description of Artificial Sequence: Putative SXR response element from the steroid hydoxylase, hCYP2E1	
<400> gagato	11 ggttc aaggaagggt cattaac	27
<210><211><212><212><213>	26	
<220> <223>	Description of Artificial Sequence: Direct repeat with spacer of 0 nucleotides	
<400> catagt	12 cagg tcaaggtcag atcaac	26

```
<210> 13
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Direct repeat
      with spacer of 1 nucleotides
<400> 13
catagtcagg tcataggtca gatcaac
                                                                    27
<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Direct repeat
      with spacer of 2 nucleotides
                                                                    28
catagtcagg tcaataggtc agatcaac
<210> 15
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Direct repeat
      with spacer of 3 nucleotides
<400> 15
                                                                    29
catagtcagg tcatataggt cagatcaac
<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Direct repeat
      with spacer of 4 nucleotides
<400> 16
catagtcagg tcatataagg tcagatcaac
                                                                    30
<210> 17
<211> 31
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial Sequence: with spacer of 5 nucleotides	Direct	repeat	
<400> catagt	17 cagg tcatatatag gtcagatcaa c			31
<210><211><211><212><213>	33			
<220> <223>	Description of Artificial Sequence: with spacer of 6 nucleotides	Direct	repeat	
<400> catagt	18 cagg tcatatataa ggtcaagatc aac			33
<210><211><212><212><213>	33			
<220> <223>	Description of Artificial Sequence: with spacer of 7 nucleotides	Direct	repeat	
<400> catagt	19 cagg tcatatatat aggtcagatc aac			33
<210><211><211><212><213>	36			
<220> <223>	Description of Artificial Sequence: with spacer of 10 nucleotides	Direct	repeat	
<400> catagt	20 cagg tcatatatat ataaggtcag atcaac			36
<210><211><211><212><213>	41			
<220> <223>	Description of Artificial Sequence: with spacer of 15 nucleotides	Direct	repeat	
<400> catagt	21 cagg tcatagtagt agtagtagag gtcagatc	aa c		41

.

```
<210> 22
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Example of a
      response element suitable for practice of the
      invention method
<220>
<221> modified_base
<222> (7)..(11)
<223> This region may encompass 5, 4 or 3 nucleotides,
      independently selected from a, c, t or g
<400> 22
                                                                    17
agttcannnn ntgaact
<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Example of a
      response element suitable for practice of the
      invention method
<220>
<221> modified_base
<222> (7)..(12)
<223> a, c, t or g
<400> 23
                                                                    18
tgaactnnnn nnaggtca
<210> 24
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 24
                                                                    18
tgaactcaaa ggaggtca
<210> 25
<211> 18
<212> DNA
```

<213> Artificial Sequence

<220> <223>	Description of Artificial Sequence: repeat response element with spacer nucleotides	
<400> agctta	25 aggtc atgaccta	18
<210><211>		
<212>		
<220> <223>	Description of Artificial Sequence: repeat response element with spacer nucleotides	
<400> agctta	26 aggtc agtgaccta	19
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: repeat response element with spacer nucleotides	
<400> agctta	27 aggtc acgtgaccta	20
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: repeat response element with spacer nucleotides	
<400> agctta	28 Iggtc acagtgacct a	21
<210><211><212><212>	22	

<220> <223>	Description of Artificial Sequence: repeat response element with spacer nucleotides	Inverted of 4
<400> agctta	29 aggtc acatgtgacc ta	22
<210><211><211><212>	23	
<220>	Description of Artificial Sequence: repeat response element with spacer nucleotides	Inverted of 5
<400> agctta	30 aggtc acactgtgac cta	23
	23	
	Description of Artificial Sequence: repeat response element with spacer nucleotides	
<400> agcttt	31 gaac tcaaaggagg tca	23
<210><211><211><212><213>	18	
<220> <223>	Description of Artificial Sequence:	IR-M
<400> agctta	32 acgtc atgacgta	18
<210><211><212><213>	33	
<400> tagaat	33 atga actcaaagga ggtcagtgag tgg	33

<210><211><212>	33	
(213/	nomo Bapiens	
<400>	34	
	tatga actcaaagga ggtaagcaaa ggg	33
J		
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	35	
	tatta actcaatgga ggcagtgagt gg	32
<210>	36	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
\LLJ/	oligonucleotide for PCR	
	012300100020	
<400>	36	
gagcaa	attog coattactot gaagt	25
	ϵ	
-010-		
<210><211>		
<212>		
	Artificial Sequence	
10107		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide for PCR	
<400>		25
greer	egggg tettetacet ttete	25
	,	
<210>	38	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>	Description of Butificial Company of Call 11	
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide for PCR	
<400>	38	
	ttqq atctqqacat qttqq	25

```
<210> 39
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide for PCR
<400> 39
                                                                    15
tgaacttcat gaact
<210> 40
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 40
                                                                    25
gttttcatct gagcgtccat cagct
<210> 41
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Illustrative
      peptide
<400> 41
Arg Gly Lys Thr Cys Ala
<210> 42
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 42
                                                                    15
tgttcttcat gttct
<210> 43
<211> 15
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 43
                                                                   15
acaacttcat gaact
<210> 44
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Example of a
      response element suitable for practice of the
      invention method
<220>
<221> modified_base
<222> (7)..(11)
<223> This region may encompass 5, 4 or 3 nucleotides,
      independently selected from a, c, t or g
<400> 44
```

aggtcannnn naggtca

17