CS 336 Recitation Relational Algebra & SQL Query I

Fei Deng

Mon 10AM – 11AM, Hill 202

fei.deng@rutgers.edu

Relational Algebra

- operations on relations
- results are new relations

- relation ≠ relationship each row is a tuple
- relation = table = collection of tuples
- collection can be
 - set: no duplicates
 - bag: allow duplicates, more efficient

X	Y
1	'a'
2	'b'
1	'c'
4	'b'
5	'e'

X	Y
1	'a'
2	ʻb'
1	'a'
2	'b'
5	'e'

set

bag

Relational Algebra

- Remove parts of a relation
 - projection π_L , selection σ_C
- Combine two relations
 - product \times , theta-join $\bowtie_{\mathcal{C}}$, natural join \bowtie
- Set operations
 - union ∪ , intersection ∩ , difference -
- Renaming ρ

Projection

remove some columns

R

X	Υ
1	'a'
2	'b'
1	'c'
4	'b'
5	'e'

projection can
produce duplicates

SELECT Y FROM R;

 $\pi_Y(R)$

SELECT DISTINCT Y
FROM R;

Selection

• remove some rows

R

X	Υ
1	'a'
2	'b'
1	'c'
4	'b'
5	'e'

 $\sigma_{X>1}(R)$

X	Y
2	'b'
4	'b'
5	'e'

SELECT *
FROM R
WHERE X > 1;

Selection + Projection

R

X	Υ
1	'a'
2	'b'
1	'c'
4	'b'
5	'e'

 $\sigma_{X>1}(R)$

Х	Υ
2	'b'
4	'b'
5	'e'

SELECT *
FROM R
WHERE X > 1;

 $\pi_Y(\sigma_{X>1}(R))$


```
SELECT DISTINCT Y
FROM R
WHERE X > 1;
```

Selection + Projection

• Don't use DISTINCT too often! It's expensive!

R

Х	Υ
1	'a'
2	'b'
1	'c'
4	'b'
5	'e'

 $\sigma_{X>1}(R)$

X	Y
2	'b'
4	'b'
5	'e'

```
SELECT *
FROM R
WHERE X > 1;
```

 $\pi_Y(\sigma_{X>1}(R))$


```
SELECT Y
FROM R
WHERE X > 1;
```

Product

pair tuples from two relations

,	

X	Υ
1	'a'
2	'b'

S

Y	Z
2018	3.36
2019	3.36

need to resolve name conflict

 $R \times S$

X	R.Y	S.Y	Z
1	'a'	2018	3.36
1	'a'	2019	3.36
2	'b'	2018	3.36
2	'b'	2019	3.36

SELECT *
FROM R, S;

shorthand: R JOIN S;

Theta-Join: Product + Selection

pair tuples from two relations based on some condition

1	· ·
X	Υ
1	'a'
2	'b'

Υ	Z
2018	3.36
2019	3.36

$$R \bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R \times S)$$

R	$\bowtie_{R.Y='a'} AND Z=3.36$	2)
---	--------------------------------	---	---

X	R.Y	S.Y	Z
1	'a'	2018	3.36
1	'a'	2019	3.36

```
SELECT *
FROM R, S
WHERE R.Y = 'a' AND Z = 3.36;
```

shorthand: R JOIN S ON
$$R.Y = 'a'$$
 AND $Z = 3.36$;

Natural Join: Special Theta-Join + Projection

- special condition: common attributes take same values
- projection: remove redundant columns for common attributes

1)	
l	١		
	Т	1	

X	Y	Z
1	2	3
4	5	6
7	5	6

S

Y	Z	W
2	3	4
2	3	5
5	6	7

 $R\bowtie S$

X	Y	Z	W
1	2	3	4
1	2	3	5
4	5	6	7
7	5	6	7

 $R\bowtie S=\pi_{X,R,Y,R,Z,W}(R\bowtie_{R,Y=S,Y\;AND\;R,Z=S,Z}S)$ only one copy for each common attribute

R NATURAL JOIN S;

Set Operations

- must have same number of attributes and same data types
- usually apply projection before set operations
- eliminate duplicates by default

	X	Y		$\pi_X(R) \cup \pi_X(S)$		$\pi_X(R)\cap\pi_X(S)$		$\pi_X(R) - \pi_X(S)$
R	1	'a'	X		X		X	
	2	'b'	1	(SELECT X FROM R)	2	(SELECT X FROM R)	1	(SELECT X FROM R)
			2	UNION		INTERSECT		EXCEPT
	Х	Z	3	(SELECT X		(SELECT X		(SELECT X
0				FROM S);		FROM S);		FROM S);
S	2	20.0						

Renaming

• useful when a query involves ≥2 tuples from one relation

```
Person(name, gender), ParentOf(paName, chName)
Query: find all (mother, son) pairs

SELECT Pa.name, Ch.name
FROM Person AS Pa, Person AS Ch, ParentOf
WHERE paName = Pa.name AND chName = Ch.name
AND Pa.gender = 'female' AND Ch.gender = 'male';
```

 $\pi_{Pa,name,Ch,name}(\sigma_C(\rho_{Pa}(Person) \times \rho_{Ch}(Person) \times ParentOf))$

- Supplier (<u>sid</u>, sname)
- Part (<u>pid</u>, pname, color)
- Catalog (<u>sid</u>, <u>pid</u>, cost)
- Find the pname's of parts for which there is some supplier
- Find the sid's of suppliers who supply a red part AND a green part
- Find the sid's of suppliers who DO NOT supply any red part
- Find the sid's of suppliers who supply ONLY red parts
 (Hint: Find the sid's of suppliers who do not supply non-red parts)

- Supplier (<u>sid</u>, sname)
- Part (pid, pname, color)
- Catalog (<u>sid</u>, <u>pid</u>, cost)
- Find the pname's of parts for which there is some supplier

```
\pi_{pname}(Part \bowtie Catalog)
```

```
SELECT pname FROM Part NATURAL JOIN Catalog;
```

use theta-join when primary key and foreign key do not have the same name

- Supplier (<u>sid</u>, sname)
- Part (pid, pname, color)
- Catalog (<u>sid</u>, <u>pid</u>, cost)
- Find the sid's of suppliers who supply a red part AND a green part

```
\pi_{sid}(\sigma_{color='red'}(Part \bowtie Catalog)) \cap \pi_{sid}(\sigma_{color='green'}(Part \bowtie Catalog))
```

```
(SELECT sid
FROM Part NATURAL JOIN Catalog
WHERE color = 'red')
    INTERSECT
(SELECT sid
FROM Part NATURAL JOIN Catalog
WHERE color = 'green');
```

- Supplier (<u>sid</u>, sname)
- Part (pid, pname, color)
- Catalog (<u>sid</u>, <u>pid</u>, cost)
- Find the sid's of suppliers who DO NOT supply any red parts

```
\pi_{sid}(Supplier) - \pi_{sid}(\sigma_{color='red'}(Part \bowtie Catalog))
```

- Supplier (<u>sid</u>, sname)
- Part (pid, pname, color)
- Catalog (<u>sid</u>, <u>pid</u>, cost)
- Find the sid's of suppliers who supply ONLY red parts (Hint: Find the sid's of suppliers who do not supply non-red parts)

```
\pi_{sid}(\sigma_{color='red'}(Part \bowtie Catalog)) - \pi_{sid}(\sigma_{color\neq'red'}(Part \bowtie Catalog))
```

```
(SELECT sid
FROM Part NATURAL JOIN Catalog
WHERE color = 'red')
          EXCEPT
(SELECT sid
FROM Part NATURAL JOIN Catalog
WHERE color != 'red');
```

- Supplier (<u>sid</u>, sname)
- Part (pid, pname, color)
- Catalog (<u>sid</u>, <u>pid</u>, cost)

Find the sid's of suppliers who supply EVERY part

```
\pi_{sid,pid}(Catalog)/\pi_{pid}(Part)
```

Division

- R(X,Y), S(Y)
- $Q = R/S = \{x \in \pi_X(R) | \{x\} \times S \subseteq R\}$

Y
у1
y2

y1

R

x1

x1

x2

J
Y
y1
y2

$\pi_X(R)$	
X	
x1	
x2	

X	Υ
x1	у1
x1	y2

 $\{x_1\} \times S$

$$\{x_1\} \times S \subseteq R$$

 $\{x_2\} \times S$

R/S

X

x1

$$\{x_2\} \times S \nsubseteq R$$

•
$$Q \times S \subseteq R$$
, $(\pi_X(R) - Q) \times S \nsubseteq R$