Tutorial 5, 2015 Solutions

1. Recall Tutorial 3, problem #2 The answer is 0.

2. Particle in a 3D box

$$l_x = a$$
; $l_y = a$; $l_z = 2a$

$$\psi_{total} = \frac{2\sqrt{2}}{\sqrt{l_x l_y l_z}} \sin(\frac{n\pi}{l_x} x) \sin(\frac{n\pi}{l_y} y) \sin(\frac{n\pi}{l_z} z) = \frac{2}{a\sqrt{a}} \sin(\frac{n\pi}{a} x) \sin(\frac{n\pi}{a} y) \sin(\frac{n\pi}{2a} z)$$

$$E_{total} = \frac{h^2}{8m l_x^2} n_x^2 + \frac{h^2}{8m l_y^2} n_y^2 + \frac{h^2}{8m l_z^2} n_z^2 = \frac{h^2}{8m a^2} n_x^2 + \frac{h^2}{8m a^2} n_y^2 + \frac{h^2}{32m a^2} n_z^2$$

$$= \frac{h^2}{8m a^2} (n_x^2 + n_y^2 + \frac{n_z^2}{4})$$

For energy range, $E < \frac{10h^2}{8ma^2} \implies n_x^2 + n_y^2 + \frac{n_z^2}{4} < 10$

n_x	n_y	n_z	$n_x^2 + n_y^2 + \frac{n_z^2}{4}$
1	1	1	2.25
1	1	2	3
1	2	1	5.25
2	1	1	5.25
1	1	3	4.25
1	1	4	6
1	2	2	6
2	1	2	6
2	2	1	8.25
2	2	2	9
1	2	3	7.25
2	1	3	7.25
1	1	5	8.25
1	2	4	9
2	1	4	9

Energy level	Degeneracy
9	3
8.25	2
7.25	2
6	3
5.25	2
4.25	1
3	1
2.25	1
Total energy level: 8	Total states: 15

3. The 6 electrons will completely fill the first three energy levels. The associated ground state energy is:

$$E_{g.s.} = 2 \times E_{1,1,1} + 2 \times E_{1,1,2} + 2 \times E_{1,1,3} = 19 \frac{h^2}{8ma^2}$$