Negation of Quantifiers:

$$\sim [\forall x P(n)] \equiv \exists x \sim P(x)$$

$$\sim [\exists x \ P(x)] \equiv \forall x \sim P(x)$$

dogs

Example: Let P(x): x is Intelligent, $x = \{all \ students\}$

YX P(X): All students are Intelligents

 $\sim [\forall x \ P(x)] = [Not all]$ students are intelligents

= Some students are intelligents

= Some students are not intelligents = $\exists x \sim P(x)$

Some cats are dogs

'S FALSE
= FALSE
V = FALSE

Q. Consider the predicate p(x) indicates "x is happy" where universe of discourse is set of $\frac{1}{2}$ all students in a class $\frac{1}{2}$

a)
$$\exists x \ p(x)$$

b)
$$\forall \sim p(x)$$

c)
$$\exists x \sim p(x)$$

$$\mathbf{d}) \sim [\forall \mathbf{x} \sim \mathbf{p}(\mathbf{x})]$$

C)
$$\exists x \sim p(x)$$

C) $\Rightarrow x \sim p(x)$

Some exists some x , such that $p(x)$ is $\forall x \sim p(x)$

C) $\Rightarrow x \sim p(x)$

(b) +x ~ P(x): All students are not happy

= Each Student is not happy

= No student is happy

Hx P(x): All students are happy

=) Some Students are harry

Q. Consider the following predicates

G(x): x is gold ornament \checkmark

S(x): x is silver ornament

P(x): x is precious

- Q. Express the following into appropriate predicate logic "Gold and Silver
 - ornaments are precious".

a)
$$\forall x [P(x) \rightarrow (G(x) \land S(x))]$$

b)
$$\forall x[(G(x) \land S(x)) \rightarrow P(x)]$$

$$c) \not \forall x [(G(x) \lor S(x)) \to P(x)]$$

d)
$$\exists x [(G(x) \lor S(x)) \rightarrow P(x)]$$

- @ +x {(P(x)) -> [acx) 1 scx)]} For every x, if x is precious then x is will be gold and silver

- ⊕ ∀x[[e(x) ∧ s(x)] → ρ(x) } For every x, if x is gold and also x is silver then x will be precious
- [(acx) v scx)] -> P(x)}

 For every x, if Either x is gold (or) x is silver then x will be precious
- @ Fx [[a(x) V S(x)] -> P(x) } For some x, if Either x is gold (or) x is silver then x will be precious

Parents and Friends are very important (2)

Mother and wife are valuable pasons
(1)

Cold (or) silver are precious

Q. What is the logical translation of the following statement?

"None of my friends are perfect" None of my friends are perfect

a)
$$\exists x [F(x) \land \sim P(x)]$$

b)
$$\exists x [\sim F(x) \land \sim P(x)]$$

c)
$$\exists x [\sim F(x) \land P(x)]$$

$$d$$
 $\sim \exists x [F(x) \land P(x)]$

$$= \forall \chi \left[F(\chi) \longrightarrow \sim P(\chi) \right]$$

$$= \forall x \left[r(x) - r(x) \right]$$

$$= \forall x \left[r(x) - r(x) \right]$$

$$= \forall x \left[r(x) - r(x) \right]$$

$$= \sqrt{3}x \left[r(x) \wedge r(x) \right]$$

$$= \sim \exists x \left[F(x) \land P(x) \right]$$

a→b = ~avb

Q. Which of the following is NOT logically equivalent to

$$\sim \exists x [\forall y(\alpha) \land \forall z(\beta)]?$$
(a)
$$\forall x [\exists z (\sim \beta) \rightarrow \forall y (\alpha)]$$
(b)
$$\forall x [\forall z (\beta) \rightarrow \exists y (\sim \alpha)]$$
(c)
$$\forall x [\forall y (\alpha) \rightarrow \exists z (\sim \beta)]$$
(d)
$$\forall x [\exists y (\sim \alpha) \rightarrow \exists z (\sim \beta)]$$

$$a \rightarrow b$$

$$a \rightarrow b \equiv \sim b \rightarrow \sim a$$

$$= \forall x \left[\forall y \propto \wedge \forall_{z} \beta \right]$$

$$= \forall x \left[\neg (\forall y \alpha) \vee \neg (\forall z \beta) \right]$$

$$\equiv \forall x \left[\forall y \, \alpha \longrightarrow \exists_{Z} \sim \beta \right] \equiv (C)$$

ACE

Multiple Quantifiers:

A different ordering of the quantifiers may yield a different statement.

* The statement $\exists x \ \forall y \ p(x, y)$ and $\forall y \ \exists x \ p(x, y)$ are not logically equivalent.

There are 8 ways to apply the two quantifiers.

Example:

$$p(x, y): x liker y$$

 $x = 2 Boyr 3$ $y = 2 curls 3$

P(x,y): x likes y

- 1 +x +y P(x,y): Every boy likes Every giorl.
- Every boy likes Some girls
- 3) Ix ty P(x,y): Some boys likes all girls
- (4) Ix By P(x,y): Some boys likes some girls
- (5) \forall y \forall x \rho(x,y): Every gionl is liked by Every boy
- 6) ty Ix P(x,y): Every girl is liked by some boys
- 7) By tx P(x,y) Some girls are liked by all boys.
- By Bx P(x,y): Some girls are liked by some boys.

1) the ty p(x,y): Every boy likes Every gionly Deepika

Charan

Anushka.

Tarun

Varun

Priyanka.

(ii) the priyanka.

Yarun

2

4x4 = 16 mappings

conclusion: $A \longrightarrow B$ can be true

ACE

(i) $\forall x \forall y \ P(x,y) \longrightarrow \forall y \forall x \ P(x,y)$ $b \longrightarrow a$ (ii) $\forall y \forall x \ P(x,y) \longrightarrow \forall x \forall y \ P(x,y)$ (iii) $\forall x \forall y \ P(x,y) \longleftrightarrow \forall y \forall x \ P(x,y)$

From the above mapping, we can conclude that "Every girl is liked by Every boy" $= \forall y \forall z P(x,y)$

(4) In By P(Ny): Some boys likes some gions

DIS-II

conclusion:

Exay p(n,y) => =y =x p(n,y)

Discussion - III

(ii)

conclusion:

i) the By P(x,y) —/ By the P(x,y) NOT logically implied

- = if \tau = y P(x,y) is TruE Then = y \tau P(x,y) may be TruE or may not be TruE (No gurantee)
- (ii) $\exists y \forall x \ P(x,y) \longrightarrow \forall x \exists y \ P(x,y)$ $= \text{ if } \exists y \ \forall x \ P(x,y) \text{ is Then } \forall x \ \exists y \ P(x,y) \text{ will be TRUE (always)}$

Logical Relationship diagram

Ya Yb
Ja Yb
Yb Ja
X