

Geospatial Data Science: An Experiential Journey

Manil Maskey, PhD
IEEE GRSS Earth Science Informatics Technical Committee Co-chair
NASA Science Mission Directorate
NASA IMPACT/MSFC

Brian Freitag NASA

Iksha Gurung UAH

Muthukumaran Ramasubramanian UAH

Sean Harkins Development Seed

Team

Johannes Jakubik IBM Research

Linsong Chu IBM Research

Paolo Fraccaro IBM Research

Blair Edwards IBM Research

Manil Maskey NASA

Goals

Continue the summer school series: building capacity around data science

Provide full scope of data science: From Data Generation to Processing, Analysis, and Applications

Explore research and applications of Geospatial Foundation Models

Provide hands on experience:

- Use cloud native tools for interactive analysis
- Fine-tune geospatial foundational models for practical applications
- Use fine-tuned models for inferences and visualizations

Provide forum to exchange Ideas

Foster collaboration

Data Science Overview

Definition(s)

Narrow: extracting knowledge and insights from data

"Today, the term 'data scientist' typically describes a knowledge worker who uses the complex and massive data resources characteristic of this new era. However, data science is a broader concept involving principles for data collection, storage, integration, analysis, inference, communication, and ethics appropriate for this new data-driven era."

National Academies of Sciences, Engineering, and Medicine 2018. Data Science for Undergraduates: Opportunities and Options. Washington, DC: The National Academies Press. https://doi.org/10.17226/25104.

Complex Data and Research Life Cycle

Data science is about (data intensive) process, and the process can be complex depending on the specific science domain

Data Science: Unique Skillset

Skills Required

Data Science: Geospatial Domain

NASA EARTH FLEET

AQUA (JAXA, AEB)

GPM (JAXA)

OCO-2

SMAP

CALIPSO (CNES)

AURA (NSO, FMI, UKSA)

LANDSAT 7 (USGS)

LANDSAT 8 (USGS)

SUOMI NPP (NOAA) (JAXA)

OPERATING & FUTURE THROUGH 2023

LANDSAT-9 (USGS) SENTINEL-6 Michael Freilich/B (ESA) TROPICS (6) **GEOCARB** NISAR (ISRO) MAIA TSIS-2 **TEMPO** PREFIRE (2) PACE (NSO) **ICESAT-2** GLIMR GRACE-FO (2) (DLR) CYGNSS (8) NISTAR, EPIC (DSCOVR/NOAA) ISS INSTRUMENTS CLOUDSAT (CSA) **EMIT** TERRA (JAXA, CSA) CLARREO-PF GEDI SAGE III OCO-3 TSIS-1 **ECOSTRESS** LIS JPSS-2, 3 & 4 INSTRUMENTS **OMPS-Limb** LIBERA

SWOT (CNES)

03.24.20

INVEST/CUBESATS

RainCube CSIM-FD CubeRRT TEMPEST-D **CIRIS** HARP CTIM HyTI SNoOPI NACHOS

(PRE) FORMULATION

IMPLEMENTATION (

PRIMARY OPS

EXTENDED OPS

By the number

Archive growth in PB Future

Now

Science of "Data Science"

What we hope to do today

- Chapter 1: Data Production/processing
 - Large Scale Data Harmonization
- Chapter 2: Data Analysis
 - Tools NASA FIRMS (HLS applications and dynamic tiling capabilities)
 - Interactive HLS notebook for analysis and visualization
- Chapter 3: Theory & Application of Geospatial Foundation Model
 - Fine-tune HLS foundation model for specific use-cases: Flood and Burn Scars
- Chapter 4: Interactive Exploration of Fine-tuned Model

Data systems and applications

Building Blocks: Future State

Data + Tools/Infrastructure

+

Al Foundational Models

>>>

Accelerate Research and Applications

Takeaway: Expanding Proficiency in Geospatial Data Science

- 1. Data science extends beyond applying ML/Al algorithms; it encompasses a scientific field with its own processes.
- 2. The data science process can be intricate, varying based on the particular scientific domain.
- 3. Gain comprehension of the geospatial data science lifecycle.
- 4. Acquire knowledge in handling large scale data production.
- 5. Establish a data science environment and conduct interactive analysis.
- 6. Develop a strong understanding in geospatial foundation models.
- 7. Apply a finely-tuned geospatial foundation model effectively.

Thank you

manil.maskey@nasa.gov

- IEEE GRSS
- Earth Science Informatics TC
- HDCRS WG
- University of Iceland
- IBM Research
- Development Seed
- All the participants