Sri Chaitanya IIT Academy

16-08-15_Sr.IPLCO_JEE-ADV_(2012_P1)_RPTA-3_Key&Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 16-08-15

 Time: 3 Hours
 2012-P1-Model
 Max Marks: 210

PAPER-I KEY & SOLUTIONS

PHYSICS

1	D	2	В	3	A	4	В	5	D	6	С
7	С	8	A	9	В	10	D	11	ABCD	12	AB
13	BD	14	ACD	15	AB	16	1	17	1	18	6
19	7	20	4								

CHEMISTRY

21	В	22	A	23	С	24	A	25	A	26	С
27	D	28	C	29	D	30	С	31	BD	32	ABCD
33	BD	34	BCD	35	BCD	36	6	37	5	38	4
39	4	40	2								

MATHS

41	D	42	В	43	D	44	В	45	C	46	В
47	В	48	C	49	C	50	D	51	A,B,C,D	52	A,C
53	В,С	54	A,B,C	55	A,B,C,D	56	8	57	0	58	1
59	4	60	2								

PHYSICS

1. $\frac{1}{2} mV^2 = mg\ell(\cos\theta - \cos\theta_o)$

$$\therefore a_r = \frac{V^2}{\ell} = 2g(\cos\theta - \cos\theta_o) \& a_t = g\sin\theta.$$

$$a_{min} \Rightarrow \frac{da}{d\theta} = 0 \Rightarrow \theta = 37^{\circ}$$

- 2. As the rope is pulled down, positive work is done on the rope by the external agent. Hence gravitational potential energy must continuously increase.
- 3. $T = ma_A$

Point 'P' on the string has an acceleration of $a_A(\downarrow)$

∴ w.r.t P,

$$\therefore a_{\rm B} = zero$$

- 5. $W_{net} = -\Delta U$, independent of path
- 6.

When the block B looses contact with the ground,

$$Kx = T\cos\theta \& T\sin\theta = mg \Rightarrow x = \frac{mg}{k\tan\theta} = \frac{60}{k}$$

Now, using work energy theorem, $Fx = \frac{1}{2}Kx^2$

$$F = 30N$$
.

7.
$$P = -mg \mu_{y} = -mg (u \sin \theta - gt)$$

8.
$$Mgh = \frac{1}{2}k\left[\left(x_0 + 2h\right)^2 - x_0^2\right]$$

- 9. loss in $KE : \frac{1}{2}m(4)^2$ is corresponding to loss in KE in the first 4m with initial speed 5m/s. i.e. $\frac{1}{2}m(5^2-3^2)$.
- 10. Before the brakes are applied, acceleration of the bicycle is μg towards the centre of the circular track. When the tyres are stopped rotating, the bicycles skids tangentially on the track due to inertia of motion. Then the acceleration will be μg oppositive to velocity (tangential)
- 11. Let dx be the change in length of spring in 'dt' interval. Then in the same interval

$$dS_A = \frac{2}{3} dx (\leftarrow) \Rightarrow W_{M,S} = + \int (kx) \left(\frac{2}{3} dx\right)$$

$$dS_B = \frac{1}{3} dx (\rightarrow) \Rightarrow W_{W,S} = + \int (kx) \left(\frac{1}{3} dx\right)$$

$$dS_{trolley} = \frac{1}{3} dx (\leftarrow) \Rightarrow W_{M,T} = -\int (kx) \left(\frac{1}{3} dx\right)$$

$$W_{\text{spring}} = \frac{1}{2} k \left(x_i^2 - x_f^2 \right)$$

12. At ever instant, the components of net force along the horizontal is the same for both the balls (opposite direction).

$$2 \times \frac{1}{2} \,\mathrm{mV}^2 = \mathrm{mg}\ell$$

w.r.t 'A' (initial at this instant), $V_{BA} = 2V$

$$a_{\rm B} = a_{\rm B,A} = \frac{\left(2V\right)^2}{\ell} = 4g \uparrow \uparrow$$

13. Until the upper ball leaves contact with wall, its horizontal acceleration is zero. The contact forces in the system vary gradually. At the instant, the upper ball leaves contact, $N_{wall} = 0$. Hence $T_{rod} = 0$ [: $a_{Horizontal} = 0$]

$$\therefore a_{lower\,ball} = 0, \ \therefore a_{upper\,ball} = g \ \downarrow$$

14.
$$N = m(g\cos\theta + a_0\sin\theta)$$

$$W_N = N \sin \theta \times S(t = 0 \text{ to } 1s)$$

$$W_f / total = -\mu N \times S_{rel}$$

$$\Delta E = W_f / total$$

$$16. \qquad F_x = \frac{-\partial U}{\partial x}, Fy = \frac{-\partial U}{\partial y}, a_n = \left|\vec{a}.\hat{r}\right| \& \ a_t = \sqrt{a^2 - a_n^2}$$

- 17. [W=0 as point of application of f on the board is not moving].
- 18. Extension is independent of frame of reference. Solve it with respect to free and of the spring, which is inertial use conservation of mechanical energy.
- 19. use conservation of energy.
- 20. centrefugal force is independent of motion of particle and location of observer.