Implementation and Evaluation of a Compact-Table Propagator in Gecode

Linnea Ingmar <linnea.ingmar.3244@student.uu.se>

The ASTRA Group on Combinatorial Optimisation
Uppsala University

17th May 2017

Supervisor: Mats Carlsson (SICS)
Reviewer: Pierre Flener

Outline

- **Background**
- The Compact-Table **Algorithm**
- **Evaluation**
- Conclusions

- **Background**

 - The Compact-Table algorithm
- The Compact-Table Algorithm

Outline

Background

The Compact-Table Algorithm

Evaluation

Conclusions

Background

- Constraint Programming
- Gecode
- The Compact-Table algorithm
- The Compact-Table Algorithm

Kakuro puzzle

Programming

The Compact-Table Algorithm

Evaluation

Conclusions

7	9		3	1
2	8	3	6	4
	3	2	1	
7	5	4	2	6
3	1		7	8

Assign the cells digits from 1 to 9 such that for each row and column:

- digits are distinct, and
- the sum of the digits is equal to the *clue*

Kakuro puzzle as a constraint problem (1)

Background

Constraint Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Variables One per cell. Domains {1...9} for all

variables.

Constraints For each row and column: distinct digits, and the sum of the digits is equal to the clue.

Kakuro puzzle as a constraint problem (2)

Background

Constraint Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Domains {1...9} for all variables. Constraints For each row and column: state the possible combinations of values that the

take.

variables can

Variables One per cell.

For an entry of size 2 and clue 4: $\langle 1,3 \rangle$ and $\langle 3,1 \rangle$ are the only combinations.

Constraint problems (definition)

Background Constraint

Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Definition (Constraint problem)

A constraint satisfaction problem (CSP) is a triple

 $\langle V, D, C \rangle$

where:

- $V = v_1, \dots, v_n$ is a finite sequence of variables,
- $D = D_1, ..., D_n$ is a finite sequence of domains, that are possible values for the respective variable,
- $C = \{c_1, \dots, c_m\}$ is a finite set of constraints, each on a subset of V. Express relations among the variables that have to be true.

Solving Constraint Problems

Background Constraint

Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Solution A complete variable-value assignment that satisfy all the constraints.

7	9		3	1
2	8	3	6	4
	3	2	1	
7	5	4	2	6
3	1		7	8

- Solutions are found by search
 - Propagation
 - Branching

Solving Constraint Problems

Background

Constraint Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Solution A complete variable-value assignment that satisfy all the constraints.

7	9		3	1
2	8	3	6	4
	3	2	1	
7	5	4	2	6
3	1		7	8

- Solutions are found by search
 - Propagation
 - Branching

Background

Constraint Programming

The Compact-Table **Algorithm**

Evaluation

Conclusions

Important concepts:

- Constraint store
- Propagator

Constraint Stores

Background Constraint

Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Definition (Constraint store)

A **constraint store** s is a function mapping variables to domains:

s : variables → domains

Propagators

Background

Constraint Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Definition (Propagator)

A **propagator** *p* is a function mapping stores to stores:

$$p$$
 : $store \mapsto store$

Implement constraints

Background

Constraint Programming

The Compact-Table Algorithm

Evaluation

Conclusions

x_0	∈ {1	1, 2, 3	, 4, 5,	6,7	,8,	9}
<i>X</i> ₁	∈ {1	1, 2, 3	,4,5,	6,7	,8,	9}

$$x_4 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 X_0

		1	8
v	V	2	7
<i>x</i> ₀ 7	<i>X</i> ₁	3	6
	9	4	5
9	7	5	4
		6	3
		7	2
		8	1

Background

Constraint Programming

The

Compact-Table Algorithm

Evaluation

Conclusions

$x_0 \in \langle$	{ <i>1</i> ¹ ,2,3,4,5,6,7,8,9}
$x_1 \in \langle$	<i>[1,2,3,4,5,6,7,8,9]</i>

 $x_4 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

		710	7.4	
		4	8	
	.,	2	7	
<i>x</i> ₀	<i>X</i> ₁	3	6	
7	9	4	5	
9	7	5	4	
		۵	2	

Xη

 X_{Λ}

Background

Constraint Programming

The Compact-Table

Algorithm **Evaluation**

Conclusions

 $x_0 \in \{\mathcal{X}, \mathcal{Z}, \mathcal{Z}, \mathcal{A}, \mathcal{B}, \mathcal{B}, \mathbf{7}, \mathcal{B}, \mathcal{B}\}$ $x_1 \in \{\mathcal{X}, \mathcal{Z}, \mathcal{Z}, \mathcal{A}, \mathcal{B}, \mathcal{B}, \mathbf{7}, \mathcal{B}, 9\}$

 $x_4 \in \{x, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\}$

			x_0	X_4	
			1	8	
v	v		2	7	
<i>x</i> ₀ 7	<i>x</i> ₁	-	3	6	
•	9 7		4	5	
9	1		5	4	
			6	2	

Background

Constraint Programming

The Compact-Table

Algorithm **Evaluation**

Conclusions

 $x_0 \in \{\mathcal{X}, \mathcal{Z}, \mathcal{Z}, \mathcal{A}, \mathcal{B}, \mathcal{B}, \mathbf{7}, \mathcal{B}, \mathcal{B}\}\$ $x_1 \in \{\mathcal{X}, \mathcal{Z}, \mathcal{Z}, \mathcal{A}, \mathcal{B}, \mathcal{B}, \mathcal{T}, \mathcal{B}, \mathbf{9}\}\$

 $x_4 \in \{1,2,3,4,5,6,7,8,9\}$

			x_0	X_4	
			1	8	-
			2	7	
<i>x</i> ₀	<i>X</i> ₁		3	6	
7	9	-	4	5	
9	7		5	4	

TABLE constraints

Background Constraint

Programming

The Compact-Table Algorithm

Evaluation

Conclusions

Definition (TABLE constraint)

A TABLE constraint lists the possible combinations of values that the variables can take as a sequence of *n*-tuples.

TABLE(
$$\{x_0, x_1\}, [\langle 7, 9 \rangle, \langle 9, 7 \rangle]$$
)

Gecode

Background

Gecode

The Compact-Table Algorithm

Evaluation

Conclusions

Gecode (Generic Constraint Development Environment) is...

- ...a constraint solver (a software that solves constraint problems).
- ...written in C++, modular, extensible, and has state-of-the-art performance.
- ...supports the programming of new propagators.

Two existing propagators for the TABLE constraint

- 14 -

Compact Table

Background

Programm

The Compact-Table algorithm

The Compact-Table Algorithm

Evaluation

Compact-Table

Background

The Compact-Table algorithm

The Compact-Table Algorithm

Evaluation

- A new propagation algorithm for the TABLE constraint.
- Published in a 2016 paper
- No attempt to implement it in Gecode (until now).

Outline

Background

The Compact-Table Algorithm

Evaluation

- **Background**

 - The Compact-Table algorithm
- **The Compact-Table Algorithm**

The Compact-Table Algorithm

Background

The Compact-Table **Algorithm**

- Initialisation
- Variable modifications
- Filtering
- Putting it all together

Background

The Compact-Table **Algorithm**

$$dom(x_0) = dom(x_1) = dom(x_2) = \{1, 2, 3, 4\}$$

<i>X</i> ₀	1	2	1	2	6	7	4	1	7	8	2	0	2	5	4
<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂	5	1	3	4	5	7	2	1	8	9	2	0	3	8	3
<i>X</i> ₂	8	4	2	2	9	8	1	1	9	6	3	0	1	5	1

Background

The Compact-Table **Algorithm**

$$dom(x_0) = dom(x_1) = dom(x_2) = \{1, 2, 3, 4\}$$

<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂	1	2	1	2	6	7	4	1	7	8	2	0	2	5	4
<i>x</i> ₁	5	1	3	4	5	7	2	1	8	9	2	0	3	8	3
<i>x</i> ₂	8	4	2	2	9	8	1	1	9	6	3	0	1	5	1

Background

The Compact-Table **Algorithm**

$$dom(x_0) = dom(x_1) = dom(x_2) = \{1, 2, 3, 4\}$$

Background

The Compact-Table **Algorithm**

Evaluation

$$dom(x_0) = dom(x_1) = dom(x_2) = \{1, 2, 3, 4\}$$

1	1	1	1	1	1	1	1	$\}$ validTuples

<i>x</i> ₀	2	1	2	4	1	2	2	4
<i>X</i> ₁	1	3	4	2	1	2	3	3
<i>x</i> ₀ <i>x</i> ₁ <i>x</i> ₂	4	2	2	1	1	3	1	1
						5		

Background

The Compact-Table **Algorithm**

Evaluation

Conclusions

$dom(x_0) = 0$	dom((x_1)	= do	om(x ₂) =	= {1	,2,3	4 }	
	1	1	1	1	1	1	1	1	$\Big\}$ validTuples
$\langle x_0, 1 \rangle \ \langle x_0, 2 \rangle \ \langle x_0, 3 \rangle$	0 1 0	1 0	0 1 0	0 0 0	1 0	0 1 0	0 1 0	0 0 0	supports
$\langle x_2, 4 \rangle$	1	0	0	0	0	0	0	0	J

5

6

4

3

7

 x_0

1 2 3

0

Background

The Compact-Table **Algorithm**

dom
$$(x_0) = \{1, 2, 3, 4\}$$

dom $(x_1) = dom(x_2) = \{1, 2, 3, 4\}$

	1	1	1	1	1	1	1	1	$\}$ validTuples
$\langle x_0, 1 \rangle$ $\langle x_0, 2 \rangle$ $\langle x_0, 3 \rangle$	0 1 0	1 0 0	0 1 0	0 0 0	1 0 0	0 1 0	0 1 0	0 0	\ \supports
$\langle x_2, 4 \rangle$									

<i>x</i> ₀	2	1	2	4	1	2	2	4
<i>X</i> ₁	1	3	4	2	1	2	3	3
<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂	4	2	2	1	1	3	1	1
						-		

The Compact-Table Algorithm

Background

The Compact-Table **Algorithm**

Evaluation Conclusions

- Initialisation
- Variable modifications
- Filtering
- Putting it all together

- 20 -

Background

The Compact-Table **Algorithm**

Evaluation

$$dom(x_0) = \{1, 2, 4\}$$

$$dom(x_1) = \{1, 2, 3, 4\}$$

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

The Compact-Table **Algorithm**

words mask

1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0

$$\begin{aligned} &\text{dom}(x_0) = \{1,2,4\} \\ &\text{dom}(x_1) = \big\{\mathcal{X},\mathcal{Z},3,4\big\} \\ &\text{dom}(x_2) = \{1,2,3,4\} \end{aligned}$$

Background

The Compact-Table **Algorithm**

Evaluation Conclusions words mask

1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0

supports[
$$x_1$$
, 3] supports[x_1 , 4]

$$dom(x_0) = \{1, 2, 4\}$$

$$dom(x_1) = \{1, 2, 3, 4\}$$

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

The Compact-Table **Algorithm**

Evaluation

words
${\tt mask}$

1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0

supports[
$$x_1,3$$
] supports[$x_1,4$]

$$mask = supports[x_1, 3] \mid supports[x_1, 4]$$

$$dom(x_0) = \{1, 2, 4\}$$

$$dom(x_1) = \{\mathcal{X}, \mathcal{Z}, 3, 4\}$$

$$dom(x_2) = \{1, 2, 3, 4\}$$

The Compact-Table Algorithm

When a variable is modified

Background

The Compact-Table **Algorithm**

Evaluation Conclusions words mask

0 1 1 0 0 0 1 1	1	1	1	1	1	1	1	1
	0	1	1	0	0	0	1	1

supports[
$$x_1,3$$
] supports[$x_1,4$]

$$dom(x_0) = \{1, 2, 4\}$$

$$dom(x_1) = \{1, 2, 3, 4\}$$

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

The Compact-Table **Algorithm**

Evaluation

Conclusions

1	1	1	1	1	1	
0	1	1	0	0	0	

supports $[x_1,3]$ $supports[x_1, 4]$

words

mask

0	1	0	0	0	0	1	1
0	0	1	0	0	0	0	0

words = words & mask

$$dom(x_0) = \{1, 2, 4\}$$

$$dom(x_1) = \{1, 2, 3, 4\}$$

$$dom(x_2) = \{1, 2, 3, 4\}$$

The Compact-Table Algorithm

When a variable is modified

Background

The Compact-Table **Algorithm**

Evaluation Conclusions words mask

supports $[x_1,3]$

 $supports[x_1, 4]$

0	1	1	0	0	0	1	1
0	1	1	0	0	0	1	1

0

$$dom(x_0) = \{1, 2, 4\}$$

$$dom(x_1) = \{1, 2, 3, 4\}$$

$$dom(x_2) = \{1, 2, 3, 4\}$$

When a variable is modified

Background

The Compact-Table Algorithm

Evaluation Conclusions

words	
${\tt mask}$	

supports[
$$x_1,3$$
] supports[$x_1,4$]

0	1	0	0	0	0	1	1
0	0	1	0	0	0	0	0

$$dom(x_0) = \{1, 2, 4\}$$

$$dom(x_1) = \{1, 2, 3, 4\}$$

$$dom(x_2) = \{1, 2, 3, 4\}$$

The Compact-Table Algorithm When a variable is modified

Background

The Compact-Table Algorithm

Evaluation

Conclusions

PROCEDURE UPDATETABLE(s: store, x: variable)

- 1: validTuples.clearMask()
- 2: foreach $a \in s(x)$ do
- 3: validTuples.addToMask(supports[x, a])
- 4: validTuples.intersectWithMask()

- 22 -

Background

The Compact-Table **Algorithm**

Evaluation Conclusions

- Initialisation
- Variable modifications
- Filtering
- Putting it all together

- 23 -

Background

The Compact-Table **Algorithm**

Evaluation Conclusions Intersect every support entry with validTuples

Remove value if intersection is empty

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

The Compact-Table **Algorithm**

Evaluation

Conclusions

- Intersect every support entry with validTuples
- Remove value if intersection is empty

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

Evaluation

Conclusions

The Compact-Table **Algorithm**

Compact-Table Algorithm **Filtering**

- Intersect every support entry with validTuples
 - Remove value if intersection is empty

validTuples:

words

0 0

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

The

Evaluation Conclusions

Compact-Table **Algorithm** **Filtering**

- Intersect every support entry with validTuples
- Remove value if intersection is empty

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

The Compact-Table **Algorithm**

Evaluation

Conclusions

- Intersect every support entry with validTuples
- Remove value if intersection is empty

$$dom(x_2) = \{1, 2, 3, 4\}$$

Background

The Compact-Table **Algorithm**

Evaluation

Conclusions

- Intersect every support entry with validTuples
- Remove value if intersection is empty

$$dom(x_2) = \{1, 2, 3, 4\}$$

Filtering out values

Background

The Compact-Table **Algorithm**

Fvaluation

```
PROCEDURE FILTERDOMAINS(s): store
 1: foreach x \in s such that |s(x)| > 1 do
       foreach a \in s(x) do
3:
           index \leftarrow residues[x, a] // remembered last index
          if validTuples[index] & supports[x, a][index] = 0 then
4:
              index \leftarrow validTuples.intersectIndex(supports[x, a])
5:
              if index \neq -1 then
6:
                  residues[x, a] \leftarrow index
7:
              else
8:
                  s \leftarrow s[x \mapsto s(x) \setminus \{a\}]
9:
10: return s
```


Background

The Compact-Table **Algorithm**

Evaluation Conclusions

- Initialisation
- Variable modifications
- Filtering
- Putting it all together

Putting it all together

Background

The Compact-Table **Algorithm**

Evaluation

```
PROCEDURE COMPACTTABLE(s:store): (StatusMsg, store)
 1: if the propagator is being posted then
       s \leftarrow \text{INITIALISECT}(s, T_0)
       if s = \emptyset then
3.
          return (FAIL, 0)
5: else
       foreach variable x \in s whose domain has changed since
6.
       last time do
          UPDATETABLE(s, x)
8:
          if validTuples.isEmpty() then
              return (FAIL, Ø)
       if validTuples has changed since last time then
10:
          s \leftarrow \mathsf{FILTERDomains}(s)
11:
12: if there is at most one unassigned variable left then
       return (SUBSUMED, s)
13:
14: else
15:
       return \langle FIX, s \rangle
```


Outline

Background

The Compact-Table **Algorithm**

Evaluation

- **Background**
- The Compact-Table Algorithm
- **Evaluation**
 - Setup
 - Results
 - Discussion

Outline

Background

The Compact-Table **Algorithm**

Evaluation

- **Background**

 - The Compact-Table algorithm
- The Compact-Table Algorithm
- **Conclusions**