Functions of GI Organs

Dr. Denny C.W. Ma

Gastroinestinal Tract

Gastroinestinal Tract (alimentary canal)

Gastroinestinal Tract (alimentary canal)

- 1. Ingestion
- 2. Propulsion
- 3. Mechanical digestion
- 4. Chemical digestion
- 5. Absorption
- 6. Defecation

- 1. Ingestion
- 2. Propulsion
- 3. Mechanical digestion
- 4. Chemical digestion
- 5. Absorption
- 6. Defecation

Taking in food through mouth into GI tract

- 1. Ingestion
- 2. Propulsion
- 3. Mechanical digestion
- 4. Chemical digestion
- 5. Absorption
- 6. Defecation

Movement of food along GI tract

- 1. Ingestion
- 2. Propulsion
- 3. Mechanical digestion
- 4. Chemical digestion
- 5. Absorption
- 6. Defecation

Physical breakdown of food by force

- 1. Ingestion
- 2. Propulsion
- 3. Mechanical digestion
- 4. Chemical digestion
- 5. Absorption
- 6. Defecation

Catabolic breakdown of food molecules by digestive enzymes

- 1. Ingestion
- 2. Propulsion
- 3. Mechanical digestion
- 4. Chemical digestion
- 5. Absorption
- 6. Defecation

Movement of nutrients from GI tract to blood or lymph

- 1. Ingestion
- 2. Propulsion
- 3. Mechanical digestion
- 4. Chemical digestion
- 5. Absorption
- 6. Defecation

Elimination of indigestible wastes from GI tract

Neural Control of GI Tract

- Food substrates / Digestion products / pH
- Osmolality
 - Stretch

Mouth

- **Teeth** (mechanical digestion)
- Saliva (chemical digestion)

Response: Change in contractile or secretory activity

Saliva

3 pairs of extrinsic glands

~99.5% water

Major functions

- · Cleanses the mouth
- Moistens & dissolves food
- Aids formation of bolus (food in a ready-to-be-swallowed state)
- Contains lysozyme to provides anti-bacterial protection
- Contains amylase for chemical digestion of <u>starch</u>
- Contains lingual lipase (from von Ebner's gland of the tongue) for chemical digestion of <u>lipid</u>

Regulation of Salivation

Salivation is mediated by neural reflexes upon:

- Presence of food (in mouth)
- Thought of food

- PNS stimulates a <u>large</u> volume of <u>watery</u> saliva rich in enzymes
- SNS stimulates a <u>small</u> volume of <u>thick</u> saliva rich in mucus (Mouth becomes dry when we are under stress)

Pharynx & Esophagus

- Swallowing
- Peristalsis

Response: Change in contractile or secretory activity

Swallowing (Deglutition)

Complex neuromuscular activities

Bolus is forced posteriorly from buccal cavity into oropharynx

Soft palate is elevated to close nasopharynx

Epiglottis moves down to close larynx (preventing food from moving into trachea)

Pharyngeal constrictor muscles contract to move food towards esophagus

Upper esophageal sphincter relaxes to let food pass into esophagus

Esophageal peristalsis moves food from pharynx to esophagus

Peristalsis

Series of wave-like muscle contraction & relaxation (to push food mass forward)

↓ Diameter

Contraction of circular muscles behind food mass

STEP 1:

STEP 2:

↓ Length

Contraction of Iongitudinal muscles ahead of food mass

Contraction of circular muscle layer forces food mass

forward

STEP 3:

Peristalsis

Abdominal Organs

Response: Change in contractile or secretory activity

Stomach

Gastric Secretions

Gastric Secretions

Chief (peptic) cells

- Pepsinogen (inactive)
- Gastric lipase

Parietal (oxyntic) cells

- Hydrochloric acid (HCI) (activates pepsinogen to pepsin)
- **Intrinsic factor** (is required for vitamin B₁₂ absorption)

G cells

Gastrin (hormone that stimulates parietal & chief cells)

Mucous cells

• Mucus (protects stomach wall by forming a barrier against pepsin & acid)

Gastric mucosa contains secretory cells

Protein digestion is initiated in the stomach

Regulation of Gastric Activities

Cephalic Phase (minutes)

Function: Prepare stomach for arrival of food

Gastric Phase (~3 hours)

 Functions: Homogenize & acidify chyme + Initiate protein digestion by pepsin

Intestinal Phase (hours)

Function: Control rate of chyme entry into duodenum

Pancreas

Pancreas

Exocrine function:

- Secretes pancreatic juice

Endocrine function:

- Release insulin & glucagon

Pancreatic Juice

Ductal cells

Bicarbonate (HCO₃-)

- Neutralizes gastric acid
- Provides optimal pH for pancreatic enzymes to work in small intestine

Acinar cells

Enzymes

- Amylase / Lipases / Nucleases (active)
- Trypsinogen / Chymotrypsinogen (inactive)

Regulation of Pancreatic Secretion

Chyme stimulates duodenum to release the hormones secretin & cholecystokinin into blood

Secretin

→ Pancreas secretes HCO₃-rich juice

Cholecystokinin

→ Pancreas secretes enzyme-rich juice

Activation of vagus nerve

→ Pancreas secretes

Pancreatic juice enters duodenum

Liver & Gall Bladder

Bile Production & Release

- Liver produces bile
- Gallbladder stores & concentrates bile
 (by absorbing water during inter-digestive period)
- Gallbladder releases bile via cystic duct into bile duct

Bile Production & Release

Bile salts are absorbed in ileum & recycled by liver via enterohepatic circulation

Action of Bile Salts

Bile salts emulsify fat globules into droplets that mix with water more readily

Regulation of Bile Production & Release

Small Intestine

Most nutrients are absorbed in small intestine

Segmentation

Churning & fragmentation of food substances

Intestinal Secretion

Intestinal Secretion

Brush border enzymes are required to complete digestion

Trypsin & chymotrypsin cannot break down protein into amino acids

Absorption of Glucose / Sodium / Chloride / Water

- 1. Na⁺-K⁺ ATPase maintains low Na⁺ concentration using energy (primary active transport)
- 2. Concentration difference between luminal & intracellular Na⁺ allow absorption of Na⁺ (diffusion), together with absorption of glucose via Na⁺-glucose cotransporter (secondary active transport) into enterocytes
- 3. Glucose leaves enterocytes via glucose transporter (facilitated diffusion)
- 4. Na⁺ is removed from enterocytes by Na⁺-K⁺
 ATPase
- 5. Accumulation of glucose & Na⁺ in interstitial fluid (high osmolality) causes water absorption (osmosis)
- Accumulating glucose, Na⁺ & water in interstitial space enter capillaries (diffusion / osmosis)
- 7. Chloride absorption is coupled to Na⁺ absorption (by following electrochemical gradient established by Na⁺)

Absorption of Amino Acids

Absorption of Fatty Acids

- 1. Free fatty acids & monoglycerides enter enterocytes by simple diffusion
- 2. Triglycerides are re-synthesized & combined with proteins to form chylomicrons
- 3. Chylomicrons are secreted across the basolateral membrane by exocytosis
- 4. Chylomicrons enter lacteals
- 5. Chylomicrons are transported by lymph to the circulation

Vitamin Absorption

Fat-soluble vitamins (A, D, E, K) are absorbed similarly to dietary fats.

[Taken up by micelles → transported into enterocytes by diffusion → packaged into chylomicrons to enter lacteals]

- Water-soluble vitamins (B, C) are absorbed by diffusion or active transport.
- Vitamin B₁₂ requires intrinsic factor (secreted by stomach) for absorption

Vitamin	Method of Absorption
Fat soluble:	Chylomicrons
A, D, E, K	
Vitamin C	Na*-dependent brush border carriers
(ascorbic acid)	
Biotin (B ₇)	Na*-dependent brush border carriers
Nicotinic acid (B ₃)	Passive diffusion
Folic acid (B ₉)	Na*-independent brush border carriers
B ₂ (riboflavin)	Na*-dependent brush border carriers
B₁ (thiamine)	Na*-independent brush border carriers
B ₆ (pyridoxine)	Passive diffusion
B ₁₂ (cobalamin)	Translocation with intrinsic factor

Transport of Nutrients into Circulation

Nutrients absorbed into bloodstream are transported to liver via hepatic portal vein

Large Intestine

Colon

Water absorption

Response: Change in contractile or secretory activity

Water Absorption

>80% of water is absorbed in small intestine

Large Intestine

Rectum & Anus

- Feces storage
- Defecation

Response: Change in contractile or secretory activity

Gut Flora

No. of cells in human body:

No. of micro-organisms in human gut:

10¹³ (10 trillion)

10¹⁴ (100 trillion) [> 500 species]

Stomach

<10³ CFU/ml Lactobacillus Streptococcus Staphylococcus Enterobacteriaceae Yeasts

Ileum & Caecum

103-109 CFU/ml
Bifidobacterium
Bacteroides
Lactobacillus
Streptococcus
Enterobacteriaceae
Staphylococcus
Clostridium
Yeasts

Duodenum & Jejunum

10²-10⁵ CFU/ml Lactobacillus, Streptococcus Enterobacteriaceae Staphylococcus, Yeasts

Colon

10¹⁰-10¹² CFU/ml
Bacteroides, Eubacterium
Clostridium, Peptostreptococcus
Streptococcus, Bifidobacterium
Fusobacterium, Lactobacillus
Enterobacteriaceae
Staphylococcus, Yeasts

Gut Flora

Functions

- Control pathogens
- Synthesize vitamins B & K
- Synthesize enzymes & neurotransmitters
- Regulate metabolism
- Regulate immune system & inflammation

Key Points

Essential Activities of Digestive Process

Neural Control of GI Tract (Intrinsic vs. Extrinsic)

Mouth

Regulation of salivation

Pharynx & Esophagus

- Swallowing
- Peristalsis

Stomach

- Regulation of gastric activities
 - Cephalic phase
 - Gastric phase
 - · Intestinal phase

Regulation of Pancreatic Secretion

Regulation of Bile Production & Release

Action of Bile Salts

Small Intestine

- Segmentation
- Intestinal secretion & brush border enzymes
- Absorption of nutrients

Large Intestine

- Water absorption
- Defecation

