Übungen zu Physik V: Kerne und Teilchen (9)

Abgabetermin: bis 17.12.2024, 10:00 Uhr

Aufgabe 1: Tiefinelastische Streuung

[LA: komplette Aufgabe] (6 Punkte)

- 1. Was ist der Unterschied zwischen elastischer und inelastischer Elektron-Nukleon-Streuung? Wie viele kinematischen Variablen werden jeweils benötigt, um die beiden Prozesse zu beschreiben? (1 Punkt)
- 2. Wie wird die Bjorken'sche Skalenvariable x im Parton-Modell interpretiert? (1 Punkt)
- 3. Was bedeutet Bjorken-Scaling (Skaleninvarianz)? Wie kann diese Beobachtung interpretiert werden? (2 Punkte)
- 4. Wodurch kommt es zu Skalenbrechung? Skizzieren Sie den Verlauf von $F_2(Q^2)$ für kleine und für große x. (2 Punkte)

Aufgabe 2: Partonverteilungsfunktionen

[LA: nur Teilaufgaben 1&2] (17 Punkte)

Die geladenen Partonen im Nukleon sind die Quarks. In guter Näherung kann man davon ausgehen, dass nur u-, d- und s-Quarks und ihre jeweiligen Antiteilchen vorkommen. Damit hat man 6 unbekannte Wahrscheinlichkeitsfunktionen u(x), d(x), s(x), $\bar{u}(x)$, $\bar{d}(x)$ und $\bar{s}(x)$. Für die Strukturfunktionen $F_2^{e,p}$ für das Proton und $F_2^{e,n}$ für das Neutron gilt:

$$\frac{1}{x}F_2^{e,p/n}(x) = \left(\frac{2}{3}\right)^2 \left[u^{p/n}(x) + \bar{u}^{p/n}(x)\right] + \left(\frac{1}{3}\right)^2 \left[d^{p/n}(x) + \bar{d}^{p/n}(x)\right] + \left(\frac{1}{3}\right)^2 \left[s^{p/n}(x) + \bar{s}^{p/n}(x)\right]$$

1. Schreiben Sie $F_2^{e,p/n}$ so um, dass nur noch Valenz- und Seequarkverteilungen in den Summanden vorkommen. Nehmen Sie hierzu an, dass alle Seequarkverteilungen gleich sind, d.h.

$$u_s(x) = d_s(x) = s_s(x) = \bar{u}_s(x) = \bar{d}_s(x) = \bar{s}_s(x) = S(x).$$
 (3 Punkte)

2. Wie groß sind die Werte der folgenden Integrale für das Proton?

$$\int_{0}^{1} [u(x) - \bar{u}(x)] dx, \qquad \int_{0}^{1} [d(x) - \bar{d}(x)] dx, \qquad \int_{0}^{1} [s(x) - \bar{s}(x)] dx$$

Begründen Sie Ihre Antwort.

(3 Punkte)

- 3. Benutzen Sie die Isospin-Symmetrie, um die Valenzquarkverteilungen des Neutrons durch die des Protons auszudrücken, und stellen Sie das Verhältnis $\frac{F_2^{e,n}(x)}{F_2^{e,p}(x)}$ in Abhängigkeit der Valenzund Seequarkverteilungen auf. (4 Punkte)
- 4. Berechnen Sie $\frac{F_2^{e,n}(x)}{F_2^{e,p}(x)}$ für $x \to 0$. Nehmen Sie hierzu an, dass bei kleinen x die Seequarks dominieren.
- 5. Berechnen Sie $\frac{F_2^{e,n}(x)}{F_2^{e,p}(x)}$ für $x \to 1$. Vernachlässigen Sie hierzu die Seequarks. (2 Punkte)

1

6. Vergleichen Sie Ihre Ergebnisse aus Teilaufgaben 4&5 mit der folgenden Abbildung:

Welches Verhalten der Valenzquarkverteilungen für $x \to 1$ könnte dieses Ergebnis erklären? (3 Punkte)

Aufgabe 3: Pion-Nukleon-Streuung

[LA: nur Teilaufgaben 1,2,4] (17 Punkte)

Die $\Delta(1232)$ -Resonanz lässt sich in der Pion-Nukleon-Streuung als deutliche Überhöhung im Wirkungsquerschnitt beobachten.

1. Tragen Sie die Werte für Isospin I und I_3 in die Tabelle unten ein, Sie werden die Werte für die folgenden Aufgaben benötigen.

Lesen Sie den Wirkungsquerschnitt am $\Delta(1232)$ -Resonanzpeak aus den Abbildungen ab.

Teilchen	I	I_3
p		
$\frac{n}{}$		
$\pi^+ \over \pi^0$		
π^-		
$\Delta^ \Delta^0$ Δ^+ Δ^{++}		
Δ^+		
Δ^{++}		

Kanal	elastisch/total	Wirkungsquerschnitt
$p \pi^+$	total	
$p \pi^+$	elastisch	
$p \pi^-$	total	
$p \pi^-$	elastisch	

(2 Punkte)

- 2. Schreiben Sie alle möglichen Reaktionen für die vier verschiedenen messbaren Wirkungsquerschnitte $(\pi p \to \Delta \to \pi N)$ auf. Notieren Sie jeweils die Quantenzahlen I, I_3 für Eingangs-, Zwischen- und Endzustand. (4 Punkte)
- 3. Benutzen Sie die Clebsch-Gordan-Koeffizienten (CG), um die relative Höhe der vier Wirkungsquerschnitte theoretisch zu berechnen.

Erinnerung: $\sigma \propto \text{CG}^2(\text{Anfangszustand} \to \text{Zwischenz.}) \cdot \text{CG}^2(\text{Zwischenzustand} \to \text{Endz.})$. Hinweis: CG-Tabellen finden Sie z.B. bei der Particle Data Group¹. (6 Punkte)

- 4. Warum gibt es keine Messwerte des Wirkungsquerschnitts für $\pi^0 p$ -Streuung? (2 Punkte)
- 5. Berechnen Sie eine Vorhersage für den elastischen und totalen $\pi^{\theta}p$ -Wirkungsquerschnitt an der Δ -Resonanz. (3 Punkte)

https://pdg.lbl.gov/2024/reviews/rpp2024-rev-clebsch-gordan-coefs.pdf