

Karadeniz Teknik Üniversitesi

Bilgisayar Mühendisliği Bölümü 2015-2016 Güz Yarıyılı

Sayısal Çözümleme Ara Sınav Soruları

Tarih: 12 Kasım 2015 Perşembe **Süre:** 120 dakika

1. $f(x) = (x^2 + a)e^x$ fonksiyonunun sabit noktası <u>olmadığı</u> bilindiğine göre, *a* 'nın alabileceği en küçük değeri $x_0 = 0$ başlangıç değerini ve basit iterasyon yöntemini kullanarak 10^{-2} mutlak hatası ile hesaplayınız. (25p)

Basit iterasyon yöntemi: Bu yöntemde f(x) fonksiyonu x = g(x) biçimine dönüştürülür. $x = x_0$ başlangıç değeri ve $x_{k+1} = g(x_k)$ (k = 0,1,2,...) iterasyon formülü kullanılarak sabit nokta hesaplanır. Yakınsak bir çözüm için $|g'(x_0)| < 1$ olmalıdır.

2. Şekilde gösterilen elektrik devresine E sabit gerilimi uygulanıyor. C kondansatörü dolu iken uçlarında ölçülen potansiyel farkının $V_C = E/3$ olabilmesi için X direncinin değerini Gauss-Jordan eliminasyon yöntemi ile R cinsinden hesaplayınız. (25p)

Gauss-Jordan eliminasyon yöntemi: AX = B biçimindeki bir denklem sisteminin çözümü $M = [A \mid B]$ matrisinde

A matrisinin bulunduğu kısım birim matrise dönüştürülerek gerçekleştirilir.

3. f(x) = 1/x fonksiyonu [1,5] aralığında n. dereceden bir $p_n(x)$ polinomu ile temsil edilmek isteniyor. Bu temsil ile ortaya çıkacak hatanın 10^{-3} 'den küçük olabilmesi için n'nin alabileceği en küçük tamsayı değerini ve $p_n(x)$ polinomunu hesaplayınız. (25p)

Taylor serisi:
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Maksimum hata:
$$R_n(x) = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)} \right|$$

4. $f(x) = mx^2$ eğrisine x = -n ve x = +n noktalarından çizilen iki eğrilik çemberinin birbirlerinin merkezi noktasından geçebilmesi için m ile n arasında olması gereken ilişkiyi belirleyiniz. (25p)

Eğrilik çemberi ve yarıçapı: Bir f(x) fonksiyonunun $p[x] = \{x, f(x)\}$ noktası için

Eğrilik yarıçapı:
$$r[x] = \frac{(1 + (f'[x])^2)^{3/2}}{f''[x]}$$
 Çemberin merkezi: $\{a[x], b[x]\}$

$$a[x] = x - \frac{f'[x]}{f''[x]} - \frac{f'[x]^3}{f''[x]} \qquad b[x] = f[x] + \frac{1}{f''[x]} + \frac{f'[x]^2}{f''[x]}$$

2015-2016 Sayısal Çözümleme Arasınav Cevapları

***** Cevap 1 *****

 $f(x) = (x^2 + a)e^x$ fonksiyonunun sabit noktaya sahip olmamasını sağlayacak a'nın en küçük değeri f(x) fonksiyonunun y = x doğrusuna teğet olduğu durum göz önüne alınarak belirlenmelidr. Bu nedenle, aşağıdaki eşitlikleri kullanabiliriz.

$$f(x) = (x^2 + a)e^x = x$$
 (1)

$$f'(x) = (x^2 + 2x + a)e^x = 1$$
 (2)

(2) nolu denklemden a çekilerek (1) nolu denklemde yerine yazılırsa,

$$x(2e^x + 1) = 1$$

elde edilir. Buradan,

$$g(x) = x = 1/(2e^x + 1)$$

ifadesine ulaşılır. Bu ifadeye $x_0 = 0$ başlangıç değeri ile basit iterasyon yöntemi uygulandığında, aşağıdaki tabloda gösterilen işlem adımları yardımıyla $\,x\,$ değeri hesaplanır.

k	x_k	x_{k+1}	$\varepsilon = x_{k+1} - x_k $
0	0.0	0.333	0.333
1	0.333	0.263	0.070
2	0.263	0.277	0.014
3	0.277	0.274	0.003
4	0.274	0.275	0.001

Bu değer (1) nolu eşitlikten türetilen

$$a = x(e^{-x} - x)$$

ifadesinde kullanılırsa,

$$a = 0.275(e^{-0.275} - 0.275)$$

$$a = 0.133$$

bulunur. Dolayısıyla a > 0.133 olmalıdır.

***** Cevap 2 *****

Kondansatör dolduğunda üzerinden akım geçirmeyeceğine göre verilen devredeki çevreler aşağıdaki gibi oluşturulabilir

Bu çevreler yardımıyla gerilim denklemleri yazılırsa,

$$3Ri_{1} + 2Ri_{2} = E$$

$$2Ri_{1} + 4Ri_{2} - Ri_{3} = 0$$

$$-Ri_{2} + (X + 2R)i_{3} = E$$

$$= > \begin{bmatrix} 3R & 2R & 0 \\ 2R & 4R & -R \\ 0 & -R & X + 2R \end{bmatrix} * \begin{bmatrix} i_{1} \\ i_{2} \\ i_{3} \end{bmatrix} = \begin{bmatrix} E \\ 0 \\ E \end{bmatrix}$$

denklem sistem elde edilir. Gauss-Jordan eliminasyon yöntemi ile

$$M = \begin{bmatrix} A \mid B \end{bmatrix} = \begin{bmatrix} 3R & 2R & 0 & E \\ 2R & 4R & -R & 0 \\ 0 & -R & X + 2R & E \end{bmatrix} = \dots = \begin{bmatrix} 1 & 0 & 1/4 & E/2R \\ 0 & 1 & -3/8 & -E/4R \\ 0 & 0 & X + 13R/8 & 3E/4 \end{bmatrix}$$

$$(X+13R/8)i_2 = 3E/4$$

eşitliği yazılır. Devre üzerinden kondansatör gerilimini veren

$$V_C = E - X i_3 = E/3 \Rightarrow i_3 = 2E/3X$$

ifadesi kullanılırsa,

$$(X+13R/8)*2E/3X = 3E/4$$

X = 13R bulunur.

***** Cevap 3 *****

f(x) = 1/x fonksiyonunun $x = x_0 = (1+5)/2 = 3$ noktasında Taylor serisine açılımında

$$R_n(t) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

olacaktır. Bu ifadede

$$f^{(n+1)}(x) = (-1)^{n+1} \frac{(n+1)!}{x^{n+2}}$$

eşitliği kullanıldığında

$$R_n(x) = \left| \frac{(-1)^{n+1} (x - x_0)^{(n+1)}}{c^{n+2}} \right|$$

elde edilir. $f^{(n+1)}(x)$ ifadesi en büyük değerini x=0 noktasında alacağından hata hesabında c=5 değeri kullanılmalıdır. Buradan,

$$R_n(x) = \left| \frac{(-1)^{n+1} (5-3)^{(n+1)}}{5^{n+2}} \right| < \varepsilon$$

n+1 > 5.78 eşitsizliği ile n=5 bulunur.

$$p_5(x) = \frac{1}{3} - \frac{(x-3)}{3^2} + \frac{(x-3)^2}{3^3} - \frac{(x-3)^3}{3^4} + \frac{(x-3)^4}{3^5} - \frac{(x-3)^5}{3^6}$$

***** Cevap 4 *****

 $f(x) = mx^2$, f'(x) = 2mx ve f''(x) = 2m eşitlikleri yardımıyla,

$$r[x] = \frac{(1 + (f'[x])^2)^{3/2}}{f''[x]} = \frac{(1 + 4m^2x^2)^{3/2}}{2m}$$

$$a[x] = x - \frac{f'[x]}{f''[x]} - \frac{f'[x]^3}{f''[x]} = -4m^2x^3$$

$$b[x] = f[x] + \frac{1}{f''[x]} + \frac{f'[x]^2}{f''[x]} = 3mx^2 + 1/2m$$

elde edilir. x = -n ve x = +n için

$$r[-n] = r[+n] = \frac{(1+4m^2n^2)^{3/2}}{2m}$$

$$a[-n] = 4m^2n^3$$

$$a[+n] = -4m^2n^3$$

olacaktır. Eğrilik çemberleri birbirinin merkezi noktalarından geçtiklerine göre,

$$r[+n] = a[-n] - a[+n]$$

eşitliği yazılabilir. Buradan,

$$\frac{(1+4m^2n^2)^{3/2}}{2m} = 8m^2n^3$$

$$16m^3n^3 = (1+4m^2n^2)^{3/2}$$

$$256m^6n^6 = (1+4m^2n^2)^3$$

$$\sqrt[3]{256}m^2n^2 = 1+4m^2n^2$$

$$(\sqrt[3]{256}-4)m^2n^2 = 1$$

mn = 0.652 hesaplanır.

Karadeniz Teknik Üniversitesi

Bilgisayar Mühendisliği Bölümü 2015-2016 Güz Yarıyılı

Sayısal Cözümleme Final Sınavı

Tarih: 3 Ocak 2016 Pazar

Süre: 120 dakika

1. Aşağıda verilen noktalar için en küçük kareler yöntemi ile $g(x) = ax^2 + bsin(x)$ biçiminde bir fonksiyon hesaplayınız. (25p)

	I	. (- F /		
х	0	0.4	2.22	4.03	4.44
f(x)	0	1.81	2.22	2.62	4.44

En küçük kareler yöntemi: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ gibi n noktadan geçen bir $g(x) = c_0 + c_1 x$ fonksiyonu aşağıdaki denklem sistemi ile hesaplanır.

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix} * \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix}$$

2. Aşağıdaki tabloda 5 noktası verilen f(x) fonksiyonuna göre, $\lim_{x\to\pi/2} (f(x), \tan(x))$ değerini merkezi farklar formülü yardımıyla hesaplayınız. (25p)

4	,			,		<u>-</u>
	х	$\pi/6$	$\pi/3$	$\pi/2$	$2\pi/3$	$5\pi/6$
	f(x)	-5	-2	0	3	8

Merkezi farklar formülü (central difference formula):

$$f'(x_0) = \frac{f[x_0 - 2h] - 8f[x_0 - h] + 8f[x_0 + h] - f[x_0 + 2h]}{12h}$$
$$f''(x_0) = \frac{-f[x_0 - 2h] + 16f[x_0 - h] - 30f[x_0] + 16f[x_0 + h] - f[x_0 + 2h]}{12h^2}$$

3. $\int_{0}^{1} \int_{0}^{1} \frac{dydx}{1 - x^{2}y^{2}}$ integralini h = 0.25 alarak aşağıda verilen kurallardan en uygun olanı ile hesaplayınız. (25p)

Sol ve sağ yönlü Riemann kuralları: $I=\sum_{k=0}^{n-1}hf\left(x_{k}\right),\ \ I=\sum_{k=1}^{n}hf\left(x_{k}\right),\ x_{k}=a+kh$

Yamuk kuralı:
$$I = \frac{h}{2}(f[a] + 2f[a+h] + 2f[a+2h] + ... + 2f[b-h] + f[b])$$

Simpson kuralı:

$$I = \frac{h}{3}(f[a] + f[b] + 2(f[a+2h] + f[a+4h] + \dots) + 4(f[a+h] + f[a+3h] + \dots))$$

- **4.** Şekilde gösterilen E sabit geriliminin uygulandığı elektrik devresinde, devre öğelerini göz önüne alarak,
 - a) Kaynak akımına (I) bağlı diferansiyel denklemi çıkarınız. (10p)
 - **b)** I(0) = E/R ve $I'(0) = -E/(R^2C)$ başlangıç değerlerini kullanarak, I(t) akımını t = h için 2-adımlı Runge-Kutta yöntemiyle hesaplayınız.(15p)

2-adımlı Runge-Kutta yöntemi: y'=f(x,y,z) ve z'=g(x,y,z) diferansiyel denklemleri, $y_0=y(x_0)$ ve $z_0=z(x_0)$ başlangıç değerlerini kullanarak, $x_{k+1}=x_k+h$ noktaları için aşağıdaki gibi çözülür.

$$y_{k+1} = y_k + \frac{1}{2}(k_1 + k_2)$$
 ve $z_{k+1} = z_k + \frac{1}{2}(l_1 + l_2)$

$$k_{1} = h f(x_{k}, y_{k}, z_{k})$$

$$l_{1} = h g(x_{k}, y_{k}, z_{k})$$

$$k_{2} = h f(x_{k} + h, y_{k} + k_{1}, z_{k} + l_{1})$$

$$l_{2} = h g(x_{k} + h, y_{k} + k_{1}, z_{k} + l_{1})$$

2015-2016 Sayısal Çözümleme Final Cevapları

***** Cevap 1 *****

 $g(x) = ax^2 + b\sin(x)$ fonksiyonu $G(x) = \frac{g(x)}{\sin(x)} = a\frac{x^2}{\sin(x)} + b = aX + b$ biçimine

dönüştürülmelidir. X ve Y değerlerinin hesabında ortaya çıkan 0/0 belirsizliği için L'Hospital kuralı

uygulanır

x	y = f(x)	$X = \frac{x^2}{\sin(x)}$	$Y = \frac{y}{\sin(x)}$	X^2	X * Y
0	0	0	0	0	0
0.40	1.81	0.41	4.64	0.16	1.90
2.22	2.22	6.18	2.78	38.19	17.18
4.03	2.62	- 20.92	- 3.37	437.64	70.50
4.44	4.44	- 20.46	- 4.61	418.61	94.32
		-34.79	- 0.56	894.60	183.90

Tablodaki verileri kullanarak,

$$\begin{bmatrix} n & \sum_{i=1}^{n} X_{i} \\ \sum_{i=1}^{n} X_{i} & \sum_{i=1}^{n} X_{i}^{2} \end{bmatrix} * \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} Y_{i} \\ \sum_{i=1}^{n} X_{i} Y_{i} \end{bmatrix}$$
$$\begin{bmatrix} 5 & -34.79 \\ -34.79 & 894.60 \end{bmatrix} * \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} -0.56 \\ 183.90 \end{bmatrix}$$

Buradan $g(x) = 0.27x^2 + 1.8sin(x)$ olacaktır.

***** Cevap 2 *****

$$f'(x_0) = \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h}$$

$$f'(\pi/2) = \frac{f(\pi/6) - 8f(\pi/3) + 8f(2\pi/3) - f(5\pi/6)}{12\pi/6} = \frac{-5 - 8(-2) + 8(3) - 8}{12\pi/6} = \frac{27}{2\pi}$$

$$\lim_{x \to \pi/2} (f(x). \tan n(x)) = \lim_{x \to \pi/2} \left(\frac{f(x)}{1/\tan n(x)} \right) = \lim_{x \to \pi/2} \left(\frac{f'(x)}{-1/\sin^2(x)} \right) = \lim_{x \to \pi/2} (-f'(x)\sin^2(x))$$
$$= -f'(\pi/2)\sin^2\left(\frac{\pi}{2}\right) = -\frac{27}{2\pi} * 1^2 = -\frac{27}{2\pi} = -4.29$$

***** Cevap 3 *****

$$f(x,y) = \frac{1}{1 - x^2 y^2}$$

Left Riemann dışındaki kurallar f(1,1) değerine ihtiyaç duyarlar; $f(1,1) = \infty$ $g(x) = \int_0^1 \frac{dy}{1-x^2y^2}$ olarak seçilirse,

$$I = \int_{0}^{1} \int_{0}^{1} \frac{dydx}{1 - x^{2}y^{2}} = \int_{0}^{1} g(x)dx = \sum_{k=0}^{3} hg(x_{k}) = h(g(0) + g(0.25) + g(0.5) + g(0.75))$$

$$g(x) = \int_{0}^{1} \frac{dy}{1 - x^{2}y^{2}} = \sum_{k=0}^{3} hf(x, y_{k}) = h(f(x, 0) + f(x, 0.25 + gf(x, 0.5) + f(x, 0.75))$$

$$g(0) = h(f(0,0) + f(0,0.25) + gf(0,0.5) + f(0,0.75))$$

= 0.25(1.00+1.00+1.00)
= 1.00

$$g(0.25) = h(f(0.25,0) + f(0.25,0.25) + gf(0.25,0.5) + f(0.25,0.75))$$

= 0.25(1.00+1.00+1.01+1.03)
= 1.01

$$g(0.5) = h(f(0.5,0) + f(0.5,0.25) + gf(0.5,0.5) + f(0.5,0.75))$$

= 0.25(1.00+1.01+1.06+1.16)
= 1.05

$$g(0.75) = h(f(0.75,0) + f(0.75,0.25) + gf(0.75,0.5) + f(0.75,0.75))$$

= 0.25(1.00+1.03+1.16+1.46)
= 1.16

$$I = h(g(0) + g(0.25) + g(0.5) + g(0.75))$$

$$I = 0.25(1.00 + 1.01 + 1.05 + 1.16)$$

$$I = 1.055$$

Analitik çözüm:

$$\int_{0}^{1} \int_{0}^{1} \frac{dydx}{1 - x^{2}y^{2}} = \frac{\pi^{2}}{8} = 1.23$$

***** Cevap 4 *****

a) E gerilim kaynağını içeren çevre üzerinden

$$V_1 = E - RI$$

denklemi yazılır ve türev alınırak diğer çevre yardımıyla,

$$I_2 = I - CV_1' = I + RCI' \quad (1)$$

bulunur. Ayrıca, I_2 için

$$I_2 = CV_2' = C(E - R(I + I_2))' = -RC(I' + I_2')$$
 (2)

yazılabilir. (1) ve (2) denklemleri yardımıyla,

$$I + RCI' = -RC(I' + (I + RCI')')$$

$$I + RCI' = -RC(2I' + RCI'')$$

$$R^2C^2I^{\prime\prime} + 3RCI^{\prime} + I = 0$$

elde edilir.

$$\Gamma = Q$$

$$Q' = -\frac{1}{R^2 C^2} (3RCQ + I)$$

ve sonra I(0) = E/R ve $Q(0) = I'(0) = -E/(R^2C)$ değerleri ile 2-adımlı Runge-Kutta yöntemini kullanalım.

$$I_{k+1} = I_k + \frac{1}{2}(k_1 + k_2)$$

$$Q_{k+1} = Q_k + \frac{1}{2}(l_1 + l_2)$$

$$k_1 = h f(x_0, I_0, Q_0) = hQ_0 = -\frac{hE}{R^2C}$$

$$l_1 = h g(x_0, I_0, Q_0) = -\frac{h}{R^2 C^2} (3RC(-\frac{E}{R^2 C}) + \frac{E}{R}) = \frac{2hE}{R^3 C^2}$$

$$k_2 = h f(x_0 + h, I_0 + k_1, Q_0 + l_1) = h(Q_0 + l_1) = h(-\frac{E}{R^2C} + \frac{2hE}{R^3C^2}) = \frac{hE}{R^2C}(\frac{2h}{RC} - 1)$$

$$I(h) = I(0) + \frac{1}{2}(k_1 + k_2) = \frac{E}{R} + \frac{1}{2}(-\frac{hE}{R^2C} + \frac{hE}{R^2C}(\frac{2h}{RC} - 1)) = \frac{E}{R} + \frac{hE}{R^2C}(\frac{h}{RC} - 1)$$

