Engineering Mathematics ES1032 Linear Transformation

Practice Exercise	
Q.1	Find a 2×2 that maps $(1, 2)^T$ and $(2, -3)^T$ into $(-2, 5)^T$ and $(3, 2)^T$
	respectively.
Q. 2	A) Is there exists a 2×2 singular matrix that maps $(1, 2)^T$ into $(2, -3)^T$? If so, find
	the linear map represented by the matrix.
	B) Is there exists a 2×2 singular matrix that maps $(1, 2)^T$ into $(2, 4)^T$? If so, find the
	linear map represented by the matrix.
Q. 3	Let $M_{2\times 2}$ be the vector space of all 2×2 matrices. Define $T:M_{2\times 2}\to M_{2\times 2}$ by
	$T(A) = A + A^{T}$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
	a) Show that T is a linear transformation.
	b) Let $B \in M_{2\times 2}$ be such that $B^T = B$. Find $A \in M_{2\times 2}$ such that $T(A) = B$.
Q.4	Let $B = \{v_1, v_2, v_3\}$ be the basis of \mathbb{R}^3 , where $v_1 = (-2, 1, 0)$, $v_2 = (1, 2, 1)$ and
	$v_3 = (1, 1, 1)$. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(v_1) = (2, 1, -1)$,
	$T(v_2) = (-1, 1, 1)$ and $T(v_3) = (1, 0, 0)$. Find $T(2, 4, -1)$.
Q.5	Check whether the following matrices are orthogonal or not.
	$\left \begin{array}{cccc} \overline{3} & \overline{3} & \overline{3} \end{array}\right \left \begin{array}{cccc} \overline{\sqrt{6}} & \overline{\sqrt{3}} \end{array}\right $
	a) $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ \frac{-2}{\sqrt{45}} & \frac{-4}{\sqrt{45}} & \frac{5}{\sqrt{45}} \end{bmatrix}$ b) $\begin{bmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$
	$\begin{vmatrix} a \\ \sqrt{5} \end{vmatrix} = \overline{\sqrt{5}} \begin{vmatrix} b \\ \sqrt{6} \end{vmatrix} = 0$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\lfloor \sqrt{45} \sqrt{45} \sqrt{45} \rfloor \qquad \qquad \lfloor \sqrt{6} \sqrt{2} \sqrt{3} \rfloor$
Q.6	A) Find the nullity of T
	a) $T: \mathbb{R}^4 \to \mathbb{R}^3$, $rank(T) = 2$ b) $T: \mathbb{R}^5 \to \mathbb{R}^2$, $rank(T) = 2$
	c) $T : \mathbb{R}^4 \to \mathbb{R}^4$, $rank(T) = 0$ d) $T : P_3 \to P_1$, $rank(T) = 2$
	B) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Use the given information to find the
	nullity of T a) $rank(T) = 2$ b) $rank(T) = 1$ c) $rank(T) = 0$ d) $rank(T) = 3$
Q.7	
	Given the transformation $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Find the coordinates $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ of
	$\begin{vmatrix} y_2 \\ y_1 \end{vmatrix} = \begin{vmatrix} y_2 \\ 1 & 0 & -2 \end{vmatrix} \begin{vmatrix} x_2 \\ y_1 \end{vmatrix}$. This the coordinates $\begin{vmatrix} x_2 \\ y_2 \end{vmatrix}$ of
	in X corresponding to $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ in Y.
	III A corresponding to Z III I.
0.0	\ \ /
Q.8	Let $T, S: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ -x + 3y \end{pmatrix}$ and $S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ x + y \end{pmatrix}$.
	i) Find $-3S$, $2T + S$, $T \circ S$, $S \circ T$
	ii) Find rank and nullity of each of the above transformations.
0.0	iii) Which of the above transformations are one-one, onto? Justify your answer.
Q.9	A) Find a transformation from \mathbb{R}^2 to \mathbb{R}^2 that first shears in x_1 direction by a
	factor of 3 and then reflects about $y = x$.

Engineering Mathematics ES1032 Linear Transformation

	B) Find a transformation from R^2 to R^2 that first reflects about $y = x$ and then
	shears by a factor of 3 in x_1 direction.
	C) Find the standard matrix for $T:R^3 \to R^3$, that first reflects about YZ - plane, then
	rotates the resulting vector in counterclockwise direction through an angle $\frac{\pi}{3}$, about
	Y - axis and then finally resultant vector is projected on XY - plane.
Q.10	
	of multiplication by the given matrix in terms of compression, expression, reflection
	and shear.
	$A = \begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}.$