LVC 2 - Glossary of Notations

 W_i = Residual belonging to the i^{th} record σ_{i}^{2} = Variance of W_{i} (the residual belonging to i^{th} record) $X_{i} = A$ vector for i^{th} record θ = Approximated weight vector θ^* = Actual weight vector \approx = Approximately equal to X_{t} = Sample time series $Y_t =$ The forecasted t^{th} term X_{i-1} = Time series with lag equal to 1 $U_{_{t}}$ = Error term in the forecasting model $X_{aug} = A$ set of possible vectors in X and its linear combination θ^T = Transpose of the vector/matrix θ $\phi(X) = A$ transformed version of the feature vector X R^2 = R-squared, i.e., fraction of variation in target variable that has been explained by the features α = Regularization hyperparameter $|\theta|$ = Absolute value of θ E = Expected value E_i = Error for i^{th} fold in cross validation P = Probability distributiong(x) = A function of the inputs i.e. x to estimate the weights θ $X_i = i^{th}$ vector from the input feature vectors $\overline{X}^m_{\ \ :} = i^{th}$ random record of the m^{th} sample taken from the original data set $\widehat{\Theta}^{i}$ = Actual value of the estimate $\widehat{\Theta}$ from the i^{th} sample in the bootstrap $\widehat{\Theta}_{ave}$ = Average value of the estimate

 $var(\widehat{\Theta})$ = Variance of the estimate in the bootstrapping

 $se(\widehat{\Theta})$ = Standard error of the estimate