SAPIENZA, UNIVERSITY OF ROME COURSE OF APPLIED COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ACSAI) 3RD YEAR, 2ND SEMESTER

Analisi e Calcolo Numerico

NOTES BY LEONARDO BIASON COURSE TAUGHT BY PROF. DOMENICO VITULANO

About these notes

Those notes were made during my three years of university at Sapienza, and **do not** replace any professor, they can be an help though when having to remember some particular details. If you are considering of using *only* these notes to study, then **don't do it**. Buy a book, borrow one from a library, whatever you prefer: these notes won't be enough.

License

The decision of licensing this work was taken since these notes come from **university classes**, which are protected, in turn, by the **Italian Copyright Law** and the **University's Policy** (thus Sapienza Policy). By licensing these works I'm **not claiming as mine** the materials that are used, but rather the creative input and the work of assembling everything into one file.

All the materials used will be listed here below, as well as the names of the professors (and their contact emails) that held the courses.

The notes are freely readable and can be shared, but **can't be modified**. If you find an error, then feel free to contact me via the socials listed in my website. If you want to share them, remember to **credit me** and remember to **not** obscure the **footer** of these notes.

Bibliography & References

[1] S. C. Chapra, R. P. Canale. (2015) Numerical Methods for engineers (Seventh edition), McGraw Hill

The "Analisi e Calcolo Numerico" course was taught in the Spring semester in 2025 by prof. Domenico Vitulano (domenico.vitulano@uniroma1.it)

I hope that this introductory chapter was helpful. Please reach out to me if you ever feel like. You can find my contacts on my website. Good luck!

Leonardo Biason

→ leonardo@biason.org

INDICE

CHAPTER 1	► INTRODUZIONE AL CALCOLO NUMERICO	PAGE 1_
1.1	Errori di approssimazione	2
1.2	Rappresentazione IEEE 754	4

CAPITOLO

Introduzione al calcolo numerico

Grazie al costante sviluppo dei computers negli scorsi decenni, la comunità scientifica ha avuto modo di usufruire di strumenti di calcolo sempre più precisi e complessi, necessari per risolvere alcuni problemi di vario tipo. Questo sviluppo ha visto anche un cospicuo interesse verso i metodi di calcolo numerico, che permettono di risolvere in modo non-analitico problemi specifici che non sarebbero, altrimenti, risolvibili. Infatti, seppur non esista sempre una soluzione analitica, **esiste sempre una soluzione numerica** per un modello matematico **ben posto** e **condizionato**, che assuma tuttavia certe assunzioni del corrispondente modello fisico.

La realtà infatti non è sempre modellabile attraverso semplici formule fisiche: a volte ci sono parecchie variabili da tenere in conto quando si cerca di risolvere un problema, e non è sempre plausibile considerare tutte queste variabili assieme, soprattutto se il problema va risolto senza l'assistenza di un calcolatore. Consideriamo il seguente esempio: un giocatore di golf colpisce una pallina con una certa velocità U, e noi vogliamo sapere per quale angolo α la distanza che verrebbe percorsa dalla pallina da golf sarebbe massima prima che quest'ultima tocchi terra.

Grazie alla seconda legge di Newton, possiamo calcolare la distanza percorsa dalla pallina, e se trascurassimo la resistenza dell'aria sarebbe abbastanza semplice trovare la soluzione analitica. Tuttavia, considerando questa resistenza, le equazioni del moto si complicano notevolmente, e determinare la soluzione analitica diventa ora impossibile. Tuttavia, la soluzione numerica rimane calcolabile attraverso l'impiego di metodi numerici adatti.

È comunque importante considerare anche il tipo di modello utilizzato: in base al modello matematico di partenza e al metodo utilizzato, si possono ottenere risultati diversi. L'importante è saper scegliere il metodo giusto e l'approssimazione migliore del modello.

Per il calcolo numerico, la risoluzione di un problema avviene attraverso i seguenti steps:

- formulare un **modello matematico** in base al problema dato, che diventi uno schema per definire il metodo numerico e l'algoritmo di soluzione;
- scegliere un **metodo numerico** che aiuti nella risoluzione del problema;
- definire un **algoritmo** che porti alla soluzione desiderata;
- analizzare la **soluzione numerica** e interpretarla, capendo se quest'ultima sia una valida soluzione o meno. Si dice che una soluzione numerica sia **accettabile** se e solo se sia possibile **stimare gli errori** che accompagnano la soluzione stessa.

1.1 Errori di approssimazione

Quando si calcola una soluzione numerica, ci sono varie, possibili fonti di errori che possono condizionare il risultato finale. È possibile avere errori di **misura** (dati dalla precisione dello strumento), **inerenti** (creati da un'eccessiva semplificazione del modello reale), di **troncamento** (generati da una discretizzazione del risultato, generalmente presenti quando si usano metodi numerici che richiedono convergenza), e di **arrotondamento** (creati dalla macchina che performa i calcoli, in quando la precisione è sempre limitata).

Ogni computer dispone di un sistema numerico piuttosto primitivo: questo infatti dispone di un sistema **finito** di numeri, la cui lunghezza è anch'essa **finita**. Se normalmente, in campi analitici, siamo abituati a pensare con un insieme di numeri infinito (come quello dei numeri reali, \mathbb{R}), con i computer, quando si performano calcoli di analisi numerica, si considera un insieme ristretto, detto dei **numeri macchina** \mathbb{F} . Consideriamo ad esempio alcune delle costanti più famose nel mondo matematico: π , e e $\sqrt{2}$. Noi sappiamo che questi numeri sono irrazionali, e che si espandono all'infinito. Proviamo a chiedere a una macchina di dirci quali sono questi numeri. Eseguendo il seguente script di Python, otterremo il seguente risultato:

Noi sappiamo che in realtà questi numeri si estendono molto più in profondità di quello che ci ha ritornato Python. Infatti:

- $\pi = 3,1415926535897932384626433...$;
- e = 2,71828182845904523536...;
- $\sqrt{2} = 1,4142135623730950488...$

Qua notiamo già uno dei primi errori che si incontra quando si usa un calcolatore: i numeri sono **arrotondati** ad una certa cifra. L'arrotondamento genera spesso qualche tipo di errore, ma è necessario che i numeri subiscano una procedura di arrotondamento prima di poter essere usati da un calcolatore, poiché altrimenti non entrerebbero nella memoria di quest'ultimo, che ricordiamo essere limitata.

Errore di arrotondamento

Definitiamo l'errore di arrotondamento come la differenza tra il numero reale $x \in \mathbb{R}$ e il numero macchina $m \in \mathbb{F}$ corrispondente:

$$e_{arr} = x - m$$

Se un calcolatore approssima tutti i numeri alla *D*esima cifra decimale, allora diciamo che l'errore di arrotondamento è compreso nell'**intervallo** $[-0,5\cdot 10^{-D}, +0,5\cdot 10^{-D}]$.

Riguardo lo scopo di queste note: MATLAB verrà usato durante il corso per implementare certi metodi numerici. Tale linguaggio di programmazione lavora con 15 cifre decimali significative. Fino a quando non verrà introdotto MATLAB tuttavia, verrà usato Python, che ne usa fino a 17 (anche se negli esempi precedenti π e e hanno usato solo 15 cifre, probabilmente a causa del pacchetto numpy).

Consideriamo un esempio per comprendere l'importanza degli errori di arrotondamento:

• 1.1.0

Si considerino le due funzioni seguenti, che sono algebricamente equivalenti:

$$q_1(x) = (x-1)^7$$
 $q_2(x) = x^7 - 7x^6 + 21x^5 - 35x^4 + 35x^3 - 21x^2 + 7x - 1$

Vogliamo calcolare il valore numerico di $q_1(x)$ e $q_2(x)$ con due valori di x, ovverosia 1 e 1,0001, e confrontare il loro valore esatto con l'errore di arrotondamento. Vogliamo inoltre usare una macchina che lavori con 15 cifre significative. Usando il seguente script in Python, possiamo ottenere i nostri risultati:

```
ApproxExample.py
from math import pow
def q1(x) \rightarrow float:
    return (x - 1) ** 7
def q2(x) \rightarrow float:
    return pow(x, 7) - 7 * pow(x, 6) + 21 * pow(x, 5) \
        -35 * pow(x, 4) + 35 * pow(x, 3) - 21 * pow(x, 2) + 7 * x - 1
def rounding error(real, machine) -> float:
    return float(real) - float(machine)
# La lista contiene tuple del tipo (x, valore reale)
for i, expect in [(1, 0), (1.0001, 10**(-28))]:
    # Approssimazione del numero alla 10a cifra decimale
    res1, res2 = \{0:.10g\}".format(q1(i)), \{0:.10g\}".format(q2(i))
    err1, err2 = rounding error(expect, res1), rounding error(expect,
    print(f"With x = {i}, expect {expect} \nQ1 = {res1} \mid E1 = {err1} \
   nQ2 = {res2} \mid E2 = {err2} \setminus n''
   Out[1]: With x = 1, expect 0
           Q1 = 0 \mid E1 = 0.0
           Q2 = 0 | E2 = 0.0
           With x = 1.0001, expect 1e-28
           Q1 = 1e-28 \mid E1 = 0.0
           Q2 = 1.776356839e-15 \mid E2 = -1.7763568389999e-15
```

Come possiamo notare dall'output dello script, con x=1 non c'è alcuna differenza tra $q_1(x)$ e $q_2(x)$, ma con x=1,0001 iniziano ad esserci le prime differenze. Infatti, nel secondo caso abbiamo un errore di arrotondamento di circa $-1,78 \cdot 10^{-15}$. Questo semplice esempio dimostra come due quantità che sono algebricamente uguali possono in realtà portare a due risultati numerici completamente diversi.

Questo comportamento può essere inoltre osservato attraverso il seguente grafico:

Notiamo infatti che, mentre $q_1(x)$ ha un comportamento più lineare, $q_2(x)$ è molto più scabro, e questo accade proprio a causa degli errori di approssimazione.

1.2 Rappresentazione IEEE 754

Ogni numero reale x può essere espresso come una sequenza di infinite cifre, e tale sequenza dipende dalla **base di rappresentazione** β . Di norma, la base con cui noi esseri umani facciamo calcoli è $\beta = 10$.

Qualsiasi cifra può essere espressa in qualsiasi base. Per farlo, faremo un esempio con π . Il numero infatti può essere scritto come segue:

$$\pi = 3,14159... = \frac{3}{10^0} + \frac{1}{10^{-1}} + \frac{4}{10^{-2}} + \frac{1}{10^{-3}} + \frac{5}{10^{-4}} + \frac{9}{10^{-5}} + ...$$

L'idea è che per esprimere un qualsiasi numero x in una base β , possiamo scrivere il numero come

$$x = x_m \cdot \beta^m + x_{m-1} \cdot \beta^{m-1} + \dots + x_1 \cdot \beta^1 + x_0 \cdot \beta^0 + x_{-1} \cdot \beta^{-1} + \dots + x_{-m} \cdot \beta^{-m}$$

dove
$$0 \le x_i \le \beta - 1$$
, $\forall i \in [m, -m]$.

Sappiamo che i computer funzionano in codice binario, quindi non possono interpretare i numeri in base decimale come facciamo noi umani. Per poter far sì che un computer riconosca un numero, questo va prima convertito in base 2. Ci sono vari modi per rappresentare un numero in binario: che sia con o senza segno, a virgola mobile o meno...

C'è tuttavia uno standard che i computer adottano, che è stato sviluppato dall'IEEE, che viene usato per rappresentare tutti i numeri in binario, che abbiano un segno o che siano a virgola mobile: l'**IEEE 754**.

Per questo standard, ogni numero può essere espresso nella seguente rappresentazione:

$$x = \underbrace{\pm}_{\text{Segno}} \underbrace{(1 + a_{-1} \cdot 2^{-1} + a_{-2} \cdot 2^{-2} + a_{-3} \cdot 2^{-3} + \dots + a_{-m} \cdot 2^{-m})}_{\text{Mantissa normalizzata}} \cdot \underbrace{2^{e}}_{\text{Esponente}}$$

dove il segno viene rappresentato con 1 bit, la mantissa con m bits e l'esponente con n bits. Generalmente i numeri in IEEE 754 si possono esprimere con 16 (precisione dimezzata), 32 (singola precisione) o 64 bits (precisione doppia). Segue una tabella che segna quanti bits vengono assegnati ad ogni formato:

Formato	Segno	Esponente	Mantissa	Bias	Numero totale di bits
Precisione mezza	1	5	10	15	16
Singola precisione	1	8	23	127	32
Doppia precisione	1	11	52	1023	64

Dato che i computer hanno una precisione finita, limitata a p cifre, è chiaramente impossibile per questi rappresentare numeri che abbiano più di p cifre. Per poter rappresentare numeri con più cifre, è necessario **arrotondare** il numero. L'arrotondamento può avvenire in due modi: o tramite **troncamento** o tramite **arrotondamento simmetrico**.

Troncamento e Arrotondamento simmetrico

Per **troncamento** si definisce quell'operazione per cui un numero a n cifre viene rappresentato come un numero a p cifre, dove le ultime n-p cifre sono uguali a 0:

$$x^* = \operatorname{tronc}(x) \implies x_{-k} = 0, \forall k \ge p$$

Per **arrotondamento simmetrico** si definisce un'operazione di troncamento su un numero x a cui può essere aggiunta un'unità alla cifra x_{-p+1} se la cifra x_{-p} è maggiore o uguale di $\frac{\beta}{2}$:

$$x^* = \operatorname{tronc}(x+0, 5 \cdot \beta^{-p+1} \cdot \beta^e) \implies \begin{cases} x_{-p+1} = x_{-p+1} & \text{se } x_{-p} < \frac{\beta}{2} \\ x_{-p+1} = x_{-p+1} + 1 & \text{se } x_{-p} \ge \frac{\beta}{2} \end{cases}$$

Arrotondare comporta sempre la presenza di un errore, e tali errori **non possono essere trascurati**, in quanto possono potenzialmente alterare il risultato finale in modi disastrosi. Un esempio è il caso del processore Intel Pentium (1994), che portava a risultati imperfetti a causa dell'arrotondamento dei numeri alla quinta cifra decimale.

Un altro esempio di errore dato dall'arrotondamento è la **cancellazione numerica**. Per spiegare meglio questo fenomeno, consideriamo il seguente esempio:

• 1.2.1

Considerando un'equazione di secondo grado del tipo $ax^2 + bx + c = 0$, vogliamo calcolare le radici dell'equazione dati i valori di a, b e c. Vogliamo calcolare x_1 e

 x_2 sia attraverso la formula classica delle radici (quindi $x=\frac{-b\pm\sqrt{\Delta}}{2a}$), sia attraverso una forma più compatta:

$$x_1 = \frac{2c}{-b + \sqrt{\Delta}} \qquad x_2 = \frac{c}{ax_1}$$

Per farlo, consideriamo il seguente script di Python, che con la funzione solve_f() calcola le due radici con la formula classica e che con la funzione solve_f_alt() calcola invece le due radici con le formule alternative sopra menzionate:

```
Numerical Absorption.py
1 def solve f(a, b, c) -> tuple[float, float]:
     delta = pow(b, 2) - 4 * a * c
     x1, x2 = (-b - sqrt(delta)) / (2 * a), (-b + sqrt(delta)) / (2 * a)
     return (x1, x2)
6 def solve f alt(a, b, c) -> tuple[float, float]:
     delta = pow(b, 2) - 4 * a * c
     x1 = (2 * c) / (-b + sqrt(delta))
     x2 = c / (a * x1)
9
     return (x1, x2)
10
12 def f(a, b, c, x) -> float:
    return a * pow(x, 2) + b * x + c
16 inputs = [[1, 4, 3], [1, -206.5, 0.01021]]
17 for a, b, c in inputs:
     x1, x2 = solve f(a, b, c)
     print(f''With a = {a}, b = {b}, c = {c}\n x1 = {x1}\n x2 = {x2}\n
       f({x1}) = {f(a, b, c, x1)} \ f({x2}) = {f(a, b, c, x2)} \")
     x1, x2 = solve f alt(a, b, c)
     b, c, x1)\n f({x2}) = {f(a, b, c, x2)}\n'')
```

Raccogliamo gli output della prima parte del codice nella seguente tabella, in cui mostriamo i risultati ottenuti con la funzione solve f():

a, b, c	\mathbf{x}_1	X 2	f (x ₁)	$f(x_2)$
1, 3, 4	-3	-1	0	0
$ \begin{array}{c c} 1, -206, 5, \\ 0, 01021 \end{array} $	$4,944\cdot 10^{-5}$	206,499	$5,454\cdot 10^{-13}$	$-3,702\cdot 10^{-13}$

In questa seconda tabella invece, raccogliamo i risultati ottenuti grazie alla funzione solve_f_alt():

a, b, c	\mathbf{x}_1	x ₂	$f(x_1)$	$\mathbf{f}(\mathbf{x_2})$
1, 3, 4	-3	-1	0	0
$ \begin{array}{c} 1, -206, 5, \\ 0, 01021 \end{array} $	$4,944\cdot 10^{-5}$	206,499	$1,734\cdot 10^{-18} \simeq 0_m$	$-3,702\cdot 10^{-13}$

Sebbene per il primo set di inputs (quindi con a=1, b=3 e c=4) i risultati siano gli stessi, con il secondo set i risultati iniziano ad essere diversi da quel che ci aspetteremmo. Infatti, il risultato di $f(x_1)$ e $f(x_2)$ dovrebbe essere uguale a 0, eppure è sempre un numero abbastanza vicino allo zero (nella seconda tabella, il risultato di $f(x_1)$ per il secondo set di inputs è infatti segnato come simile allo zero macchina, 0_m).

Ancora più interessante è il risultato di x_1 , quando viene usato il secondo set di inputs: il valore infatti è dato da $-b-\sqrt{\Delta}$, che, dati i nostri inputs, corrisponde al calcolo della differenza tra b e $\sqrt{\Delta}$. Questi due numeri però sono molto vicini fra di loro, e la loro differenza è un esempio di cancellazione numerica.

Realmente, la loro differenza dovrebbe risultare in un numero infinitesimamente piccolo, ma il computer lo approssima a 0 per impossibilità di immagazzinare numeri infinitesimamente piccoli.

Un errore non è mai fine a sé stesso: è possibile (talvolta certo) che si propaghi e che influenzi i risultati delle operazioni future. Definiamo qui i vari tipi di errori che si creano in base all'operazione che viene performata:

Errori di propagazione

Si consideri come fl(n) la rappresentazione in virgola mobile arrotondata del numero n, e si denoti con e_n l'errore corrispondente, cosicché:

$$e_n = \frac{fl(n) - n}{n} \implies fl(n) = n \cdot e_n + n = x \cdot (1 + e_n)$$

Si considerino due numeri x e y, e le loro rispettive rappresentazioni in virgola mobile. Definiamo i seguenti errori:

• errore del prodotto e_{xy} :

$$fl(x)\cdot fl(y) = (x\cdot (1+e_x))\cdot (y\cdot (1+e_y)) = xy\cdot (1+\underbrace{e_x+e_y}_{e_{xy}} + e_x\cdot e_y) \simeq xy\cdot (1+\underbrace{e_x+e_y}_{e_{xy}})$$

• errore della divisione $e_{\frac{x}{y}}$:

$$\frac{fl(x)}{fl(y)} = \frac{x \cdot (1 + e_x)}{y \cdot (1 + e_y)} = \frac{x}{y} \cdot (1 + e_x) \cdot (1 - e_y + e_y^2 + \dots) \simeq \frac{x}{y} \cdot (1 + \underbrace{e_x - e_y}_{e_{\frac{x}{y}}})$$