## MathStatClub PROBLEM OF THE MONTH November 2012

A parabolic segment is the region bounded by a parabola and a line as shown.



Find the ratio of the maximum area of a triangle inscribed in this segment to the area of the segment.

- ♣ Please **Submit** your solution to
  - o <u>Dr. Tirtha Timsina</u>, <u>ttimsina@gsu.edu</u> or
  - o Dr. Christian Avart, cavart@gsu.edu

before the deadline: Friday, November 30th, 7:00PM.

♣ The WINNER will be awarded with a \$25 gift certificate and will be announced in the NEXT issue.

**Problem of the last month:** Given two sets A and B, the symmetric difference  $A\Delta B$  is defined by the union of  $A\backslash B$  and  $B\backslash A$ . For any  $n\geq 2$ , let  $A_1,A_2...A_n$  be n finite subsets of the integers. Show that  $A_1\Delta A$   $2...\Delta A_n$  is the set consisting of the integers contained in exactly an odd number of the sets  $A_i$ ,  $1\leq i\leq n$ .

**Solution:** We prove it by induction. It is clearly true for n=2. Now if  $N = A_1 \Delta A_2 \Delta A_n \Delta a_{n+1}$  we can write  $N = P \Delta A_{n+1}$ . We then see that an element x belongs to N is it either belongs to P and not  $A_{n+1}$  or it belongs to  $A_{n+1}$  and not P. In either case, by the induction hypothesis we see that x belongs to N if and only if it belongs to an odd number of the  $A_i$ 's.

Winner: Joseph Moravitz