Матан

Сергей Григорян

4 октября 2024 г.

Содержание

1	Лекция 9		
	1.1	§4: Непрерывные ф-ции	Ę
		1.1.1 Предел ф-ции в точке	5
2	Лек	кция 10	10
	2.1	Критерий Коши для предела ф-ции	10
	2.2	Односторонние пределы	11

1 Лекция 9

Определение 1.1. Семейство $\{G_{\lambda}\}$ наз-ся покрытием мн-ва E, если $E \subset \bigcup_{\lambda \in \Lambda} G_{\lambda}$. Покрытие наз-ся открытым, если все G_{λ} открыты.

<u>Пример</u>. $\left\{\left(\frac{1}{n},1\right)\right\}_{n\in\mathbb{N}}$ - открытое покр-е (0,1)

$$\bigcup_{n=1}^{\infty} \left(\frac{1}{n}, 1\right)$$

Теорема 1.1 (Лемма Гейне-Бореля). Если $\{G_{\lambda}\}_{{\lambda} \in \Lambda}$ образует открытое покр-е отрезка [a,b], то:

$$\exists \lambda_1, \dots, \lambda_n \in \Lambda : ([a, b] \subset G_{\lambda_1} \cup \dots \cup G_{\lambda_n})$$

Доказательство. Предположим, что из открытого покр-я $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ отрезка [a,b] нельзя выбрать конечное подпокрытие.

Разделим [a,b] пополам и обозначим за $[a_1,b_1]$ ту его половину, кот. не покрыв-ся конечным набором G_{λ} .

Разделим $[a_1,b_1]$ пополам и обозначим за $[a_2,b_2]$ ту его половину, кот. не покр-ся конечным набором G_λ

. . .

По индукции будет построена стягивающаяся п-ть отрезков, каждый из кот. не покрыв-ся конечным набором G_{λ}

По т. Кантора о вложенных отрезках, найдётся т. $c \in \bigcap_{i=1}^n [a_i, b_i]$. Т. к.

$$c \in [a,b] \subset \bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \exists \lambda_0 \in \Lambda(c \in G_{\lambda} \text{ - открытое})$$

 $\Rightarrow \exists B_{\varepsilon}(c) \subset G_{\lambda_0}$

Выберем k так, что $b_k - a_k = \frac{b-a}{2^k} < \varepsilon$

Сл-но, $c-a_k<\varepsilon$ и $b_k-c<\varepsilon$. Откуда:

$$[a_k,b_k]\subset B_{\varepsilon}(c)\subset G_{\lambda_0}!!!(c$$
 построением п-ти $\{[a_n,b_n]\}$)

Следствие. Если F - замкнутое огр. мн-во в \mathbb{R} и $\{G_{\lambda}\}_{\lambda \in \Lambda}$ - откр. покр-е F, то:

$$\exists \lambda_1, \dots, \lambda_n \in \Lambda \colon (F \subset G_{\lambda_1} \cup \dots \cup G_{\lambda_n})$$

Доказательство. Т. к. F - огр., то $\exists [a,b]\colon F\subset [a,b]$. Сем-во $\{G_\lambda\}_{\lambda\in\Lambda}\cup\{\mathbb{R}\backslash F\}$ отк-е покр-е [a,b], т. к. $\bigcup_{\lambda\in\Lambda}G_\lambda\cup(\mathbb{R}\backslash F)=\mathbb{R}$

По т. Гейне-Бореля $\exists \lambda_1, \dots, \lambda_n \in \Lambda$:

$$[a,b] \subset G_{\lambda_1} \cup G_{\lambda_2} \cup \ldots \cup G_{\lambda_n} \cup (\mathbb{R} \backslash F)$$
$$\Rightarrow F \subset G_{\lambda_1} \cup \ldots \cup G_{\lambda_n}$$

Введм следующее обозначение:

Обозначение.

$$B_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty) \cup \{+\infty\} - \varepsilon\text{-окр-ть} +\infty$$

$$\mathring{B}_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}, +\infty) - \text{проколотая } \varepsilon\text{-окр-ть} +\infty$$

$$B_{\varepsilon}(-\infty) = (-\infty, -\frac{1}{\varepsilon}) \cup \{-\infty\}$$

$$\mathring{B}_{\varepsilon}(-\infty) = (-\infty, -\frac{1}{\varepsilon})$$

Поскольку все определения этого параграфа давались на языке окртей, то всё это верно и для $\overline{\mathbb{R}}$

 $E\subset\overline{\mathbb{R}}$. В част-ти $+\infty(-\infty)$ - предел. точка мн-ва $E\subset\overline{\mathbb{R}}\iff E\setminus\{+\infty\}$ неогр. сверху $(E\setminus\{-\infty\}$ - неогр. снизу).

На языке окр-ти можно дать общее определение предела:

Определение 1.2. Точка в $b \in \overline{\mathbb{R}}$ наз-ся пределом числовой п-ти $\{a_n\}$, если:

$$\forall \varepsilon > 0, \exists N \colon \forall n \ge N(a_n \in B_{\varepsilon}(b))$$

1.1 §4: Непрерывные ф-ции

1.1.1 Предел ф-ции в точке

Пусть $\exists \in \mathbb{R}$, задана ф-ция $f: E \to \mathbb{R}$. Пусть $a, b \in \overline{\mathbb{R}}$

Определение 1.3 (по Коши). Точка b наз-ся пределом ф-ции f в т. a, если a - предельная точка мн-ва E и:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(x \in \overset{\circ}{B_{\delta}}(a) \to f(x) \in B_{\varepsilon}(b))$$

Пишут $b = \lim_{x \to a} f(x)$ или $f(x) \to b$ при $x \to a$

$$(f(\overset{\circ}{B_{\delta}}(a)\cap E)\subset B_{\varepsilon}(b))$$

Замечание. Если для ф-ции $f:\mathbb{N}\to\mathbb{R}$ - положить $a=+\infty$: дост-но положить $N=\left\lfloor \frac{1}{\delta}\right\rfloor +1$

Определение 1.4. Число b наз-ся пределом ф-ции f в точке $a \in \mathbb{R}$, если a - предельная точка мн-ва E и:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(0 < |x - a| < \varepsilon \Rightarrow |f(x) - b| < \varepsilon)$$

Определение 1.5 (по Гейне). Точка b наз-ся пределом ф-ции f в точке a, если a - предельная точка мн-ва E и:

$$\forall \{x_n\}, x_n \in E \setminus \{a\} (x_n \to a \Rightarrow f(x_n) \to b)$$

Замечание. Поскольку a - предельная точка мн-ва E, то

$$\forall \delta > 0 \colon \overset{\circ}{B_{\delta}}(a) \cap E \neq \emptyset$$

 $u\ cyщ-em\ \{\,x_n\,\}\subset E\backslash\,\{\,a\,\}\,,x_n\to a$

Пример.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

 $a \in \mathbb{R}$ - предельная точка \mathbb{R}

Покажем, что:

$$\lim_{x \to a} x^2 = a^2$$

Зафикс. $\varepsilon > 0$ и пусть $\delta \leq 1$:

$$0 < |x - a| < \delta \le 1$$

$$|x + a| = |x - a + 2a| < |x - a| + 2|a| \le 1 + 2|a|$$

Возъмем $\delta = \min\{1, \frac{\varepsilon}{2|a|+1}\}$:

$$0<\left|x-a\right|<\delta\iff 0<\left|x-a\right|<\frac{\varepsilon}{2\left|a\right|+1}\iff \left|x^{2}-a^{2}\right|<\left|x-a\right|\left(2\left|a\right|+1\right)<\varepsilon$$

Рассм. по Гейне:

$$x_n \neq a, x_n \rightarrow a \Rightarrow x_n^2 \rightarrow a^2 \iff f(x_n) \rightarrow f(a)$$

Теорема 1.2. Определения по Коши и по Гейне равносильны.

Доказательство. Пусть $f: E \to \mathbb{R}$ и a - предельная точка мн-ва E.

Опр. $1 \Rightarrow$ **Опр.** 2) Пусть $b = \lim_{x \to a} f(x)$ по Коши

Рассм. произвольную п-ть $\{x_n\}$, $x_n \in E \setminus \{a\}$ и $x_n \to a$. Заф. $\varepsilon > 0$. По опр-ю предела ф-ции $\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E \colon (f(x) \in B_{\varepsilon}(b))$

Т. к. $x_n \to a$, то $\exists N, \forall n \geq N (x_n \in B_{\delta}(a))$. Имеем $x_n \in B_{\delta}(a) \cap E$ при всех $n \geq N$, а значит, $f(x_n) \in B_{\varepsilon}(b)$ при всех $n \geq N$. Сл-но, $f(x_n) \to b$. Опр. 2 выполн-ся.

Опр. 2 \Rightarrow **Опр. 1**) Пусть $b = \lim_{x \to a} f(x)$ по Гейне. Предположим, что Опр. 1 не выполняется:

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x \in E(x \in \overset{\circ}{B_{\delta}}(a) \land f(x) \notin B_{\varepsilon}(b))$$

Положим $\delta = \frac{1}{n}, n \in \mathbb{N}$ и соотв. знач-е x обозначим через x_n . По индукции будет построена посл-ть $\{x_n\}$, т. ч. $x_n \in \mathring{B}_{\frac{1}{n}}(a) \cap E$.

Имеем $\{x_n\}\subset E\backslash\{a\}$ и по т. о зажатой п-ти $x_n\to a$, а значит $f(x_n)\to b$

По опр-ю предела посл-ти $\exists N, \forall n \geq N(f(x_n) \in B_{\varepsilon}(b))!!!$

Сл-но опр. 2 не выполняется !!!

<u>Замечание</u>. Опр-е предела по Гейне можно ослабить, считая, что $\{x_n\}$ монотонна. (Задача !)

Св-ва предела ф-ции:

Пусть $f, g, h : E \to \mathbb{R}$ и a - предел. точка E:

C1: (Единственность предела) Если $\lim_{x\to a} f(x) = b$ и $\lim_{x\to a} f(x) = c$, то b=c

Доказательство. Рассм. произвольую п-ть $\{x_n\}, x_n \in E \setminus \{a\}$ и $x_n \to a$

По опр-ю Гейне $f(x_n) \to b$ и $f(x_n) \to c$. Т. к. предел посл-ти единственнен, то b=c

С2: (Предел по подмн-ву) Если a - предел. точка мн-ва $D \subset E$ и

$$\lim_{x \to a} f(x) = b$$

Тогда $\lim_{x\to a} (f|_D) = b$

Доказательство. Рассм. произв. $\{x_n\}, x_n \in D \setminus \{a\}, x_n \to a$. Тогда:

$$(f|_D)(x_n) = f(x_n) \to b$$

По опр-ю Гейне $b = \lim_{x \to a} (f|_D)(x)$

С3: (Предел зажатой ф-ции) Если:

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E \colon (f(x) \le h(x) \le g(x))$$

и $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = b$, то сущ-ет $\lim_{x\to a} h(x) = b$

Доказательство. Рассм. произв. $\{x_n\}, x_n \in E \setminus \{a\}, x_n \to a$. Тогда $\exists N, \forall n \geq N (x_n \in \overset{\circ}{B_{\delta}}(a) \cap E)$, а значит:

$$f(x_n) \le h(x_n) \le g(x_n), \forall n \ge N$$

По т. о зажатой п-ти:

$$\begin{cases} f(x_n) \to b \\ g(x_n) \to b \end{cases} \Rightarrow h(x_n) \to b$$

По опр-ю Гейне $b = \lim_{x \to a} h(x)$

- С4: (Свойство локализации) Если f и g совпадают на $\overset{\circ}{B_{\delta}}(a) \cap E$ и $\lim_{x\to a} f(x) = b$, то сущ-ет $\lim_{x\to a} g(x) = b$
- С5: **(Арифм. операции с пределами)** Пусть $\lim_{x\to a} f(x) = b, \lim_{x\to a} g(x) = c.$ Тогда:

1)
$$\lim_{x \to a} (f(x) \pm g(x)) = b \pm c$$

$$\lim_{x \to a} (f(x)g(x)) = bc$$

3) Если $c \neq 0$ и $g(x) \neq 0$ на E, то:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$$

Следствие. Если сущ-ет величина справа, то сущ-ет величина справа и рав-во выполняется

Доказательство. Рассм. произвольную п-ть:

$$\{x_n\}, x_n \in E \setminus \{a\}, x_n \to a$$

Тогда $f(x_n) \to b$ и $g(x_n) \to c$. По св-вам предела п-ти:

$$f(x_n) \pm g(x_n) \to b \pm c$$

 $f(x_n)g(x_n) \to bc$
 $\frac{f(x_n)}{g(x_n)} \to \frac{b}{c}$

⇒ По опр. предела ф-цию по Гейне:

$$(f \pm g)(x) \to b \pm c$$

$$(fg)(x) \to bc$$

 $\left(\frac{f}{g}\right)(x) \to \frac{b}{c}$

При $x \to a$.

C6: (Лок. огр-ть) Если сущ. конечный $\lim_{x\to a} f(x)$, то

$$\exists \delta > 0, \exists C > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(|f(x)| \le C)$$

Доказательство. Пусть $\lim_{x\to a} f(x) = b$. Тода

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(b-1 < f(x) < b+1)(\varepsilon = 1)$$

Положим тогда C = |b| + 1.

С7: (Предел композиции) Пусть заданы ф-ции:

$$f: E \to \mathbb{R}, f(E) \subset D, g: D \to \mathbb{R}$$
:

$$\lim_{x \to a} f(x) = b, \lim_{y \to b} g(y) = c$$

Пусть вып-но хотя бы одно из условий:

- 1) $f(x) \neq b$ в некот. проколотой окр-ти a
- $2) \quad g(b) = c$

Тогда $\lim_{x\to a} g(f(c)) = c = \lim_{y\to b} g(y)$

Доказательство. Зафикс. $\varepsilon > 0$. По опр-ю предела ф-ции:

$$\exists \sigma > 0, \forall y \in \overset{\circ}{B_{\sigma}}(b) \cap D(g(y) \in B_{\varepsilon}(c))$$

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(f(x) \in B_{\sigma}(b))$$

1) Уменьшая $\delta>0$, если необ-мо, можно считать, что $f(x)\neq b$ для всех $x\in \overset{\circ}{B_{\delta}}(a)\cap E.$

Тогда
$$f(x) \in \overset{\circ}{B_{\sigma}}(b), a$$
 - ...,

$$g(f(x)) \in B_{\varepsilon}(c)$$

Сл-но,
$$c = \lim_{x \to a} (g \circ f)(x)$$

2) Если
$$f(x) = b$$
, для некот. т. $x \in \overset{\circ}{B_{\delta}}(a) \cap E$, то

$$g(f(x)) = g(b) = c \in B_{\varepsilon}(c)$$

Сл-но,
$$g(f(x))\in B_{\varepsilon}(c)$$
, для всех $x\in \overset{\circ}{B_{\delta}}(a)$. Так что $c=\lim_{x\to a}(g\circ f)(x)$

<u>Замечание</u>. Выполнение хотя бы одного из условий **существенно** для \exists предела.

Пример.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 1, x = 0 \\ 0, x \neq 0 \end{cases}$$

$$g = f$$

$$\lim_{x \to 0} f(x) = 0, \lim_{y \to 0} g(y) = 0, g(f(x)) = \begin{cases} 1, x \neq 0 \\ 0, x = 0 \end{cases}$$

$$\lim_{x \to 0} g(f(x)) = 1 \pm \lim_{y \to 0} g(y)$$

2 Лекция 10

2.1 Критерий Коши для предела ф-ции

Теорема 2.1 (Критерий Коши сущ-е предела ф-ции). Пусть:

$$f: E \to \mathbb{R}$$

а предельная точка мн-ва Е

$$\exists \lim_{x \to a} f(x) \in \mathbb{R} \iff \forall \varepsilon > 0, \exists \delta > 0 \colon \forall x, x' \in \overset{\circ}{B_{\delta}}(a) \cap E(|f(x) - f(x')| < \varepsilon)$$
(1)

Доказательство.

 \Rightarrow) Заф. $\varepsilon > 0$. Пусть предел ф-ции = b. По опр. предела ф-ции:

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(|f(x) - b| < \frac{\varepsilon}{2})$$

Тогда для любых $x, x' \in \overset{\circ}{B_{\delta}}(a) \cap E$:

$$|f(x) - f(x')| \le |f(x) - b| + |f(x') - b| < \frac{\varepsilon}{2} \cdot 2 = \varepsilon$$

 \Leftarrow) Пусть для f выполнено (1). Покажем, что f удов-ет опр-ю предела по Гейне. Заф. $\varepsilon>0$ и выберем соотв. $\delta>0$ из (1).рассм. произ. п-ть:

$$\{x_n\}, x_n \in E \setminus \{a\}, x_n \to a$$

Тогда $\exists N, \forall n \geq N(x_n \in \overset{\circ}{B_{\delta}}(a) \cap E)$, а значит:

$$|f(x_n) - f(x_m)| < \varepsilon, \forall n, m \ge N$$

Так что п-ть $\{f(x_n)\}$ - фундаментальна \Rightarrow по критерию Коши для п-тей $f(x_n) \to b \in \mathbb{R}$.

Рассм. ещё п-ть $\{y_n\}, y_n \in E \backslash \{a\}, y_n \to a$. Тогда:

$$\varepsilon > 0, \exists n_0, \forall n \ge n_0(x_n, y_n \in \overset{\circ}{B_\delta}(a) \cap E)$$

Значит:

$$|f(x_n) - f(y_n)| < \varepsilon$$

Сл-но, $f(x_n) - f(y_n) \to 0$, откуда $f(y_n) \to b$. По Гейне,

$$b = \lim_{x \to a} f(x)$$

2.2 Односторонние пределы

Определение 2.1. Пусть $f: E \to \mathbb{R}, a \in \mathbb{R}$.

Если a - предельная точка мн-ва $(a; +\infty) \cap E$, то:

$$\lim_{x \to a} f|_{(a; +\infty) \cap E}(x)$$

наз-ся **пределом справа** ф-ции f в т. a.

Если a предельная точка мн-ва $(-\infty;a)\cap E,$ то:

$$\lim_{x \to a} f|_{(-\infty;a) \cap E}(x)$$

наз-ся **пределом слева** ф-ции *f*

Обозначение.

$$f(a+0)$$
 или $\lim_{x\to a+0} f(x)$

$$f(a-0)$$
 или $\lim_{x\to a-0} f(x)$

По опр-ю:

$$f(+\infty - 0) = \lim_{x \to +\infty} f(x)$$

$$f(-\infty + 0) = \lim_{x \to -\infty} f(x)$$

<u>Лемма</u> 2.2. Пусть $a \in \mathbb{R}$ и задана $f : E \to \mathbb{R}$

Пусть a - предел. точка мн-ва $(-\infty; a) \cap E$ и $(a; +\infty) \cap E$. Тогда:

$$\exists \lim_{x \to a} f(x)(e \mathbb{R}) \iff f(a+0) = f(a-o)$$

Доказательство. ⇒ Это вытекает из св-ва предела по подмножеству.

 $\Leftarrow f(a=0) = b = f(a-0)$. Заф. $\varepsilon > 0$. По опр-ю одност. пределов:

$$\exists \delta_1 > 0, \forall x \in (a - \delta_1, a) \cap E(f(x) \in B_{\varepsilon}(b))$$

$$\exists \delta_2 > 0, \forall x \in (a, a + \delta_2) \cap E(f(x \in B_{\varepsilon}(a)))$$

Положим $\delta = min(d_1, d_2)$. Тогда:

$$\forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(f(x) \in B_{\varepsilon}(b))$$

Сл-но, $\exists \lim_{x \to a} f(x) = b$

Определение 2.2. Пусть $f: E \to \mathbb{R}$ и $D \subset E$.

 Φ -ция f наз-ся нестрого возрастающей (убывающей) на D, если:

$$\forall x_1, x_2 \in D(x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)) (\text{ cootb. } (f(x_1) \ge f(x_2)))$$

Теорема 2.3 (О пределе монотонной ф-ции). Пусть $a, b \in \overline{\mathbb{R}}; a < b$. Если ф-ция f нестрого возрастает на (a,b), то:

$$\exists \lim_{x \to a+0} f(x) = \inf_{(a,b)} f(x)$$

$$\exists \lim_{x \to b-0} f(x) = \sup_{(a,b)} f(x)$$

Eсли f нестрого убыв., то $\sup u$ inf меняются местами.

Доказательство. Пусть f нестрого возрастает на (a,b). Положим $s=\sup_{(a,b)}f(x)\in\overline{\mathbb{R}}.$ По опр-ю sup:

$$\forall r < s, \exists x_r \in (a,b) \colon (f(x_r) > r)$$

Откуда в силу возрастания вып-но:

$$r < f(x) < s, \forall x \in (x_r, b)$$

Зафикс. $\varepsilon>0$. Положим $s-\varepsilon=r,$ если $s\in\mathbb{R},$ и $\frac{1}{\varepsilon}=r,$ если $s=+\infty.$ Тогда:

$$f(x) \in B_{\varepsilon}(s), \forall x \in (x_r, b)$$

Если $b \in \mathbb{R}$, то $\delta = b - x_2 \Rightarrow (b - \delta, b) \subset (x_r, b)$

Если
$$b=+\infty$$
, то $\delta=\frac{1}{|x_r|+1}\Rightarrow (\frac{1}{\delta},+\infty)\subset (x_2,b)$

Следствие. Если ф-ция f монотонна на (a,b) и $c \in (a,b)$, то сущ-ют конечные f(c-0) и f(c+0), причём

$$f(c-0) \le f(c) \le f(c+0)$$
, - если f нестрого возр-ет;

$$f(c-0) \ge f(c) \ge f(c+0)$$
 - если f нестрого убыв-ет.

Доказательство. Для опред-ти, пусть f нестрого возр-ет на (a,b). Тогда:

$$f(x) \le f(c), \forall x \in (a, c) \Rightarrow f(c - 0) = \sup_{(a, c)} f(x) \le f(c)$$

$$f(c) \le f(x), \forall x \in (c,b) \Rightarrow f(c+0) = \inf_{(b,c)} f(x) \ge f(c)$$