MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2017

Calculator-assumed

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2017

Page **1** © MAWA 2017

Question 8 (a)

Solution

$$\omega = \frac{1}{2} (\sqrt{3} - i) \Rightarrow |\omega| = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = 1$$

 $arg(\omega) = -tan^{-1} \frac{1}{\sqrt{3}} = -\frac{\pi}{6}$

$$|\overline{\omega}| = |\omega| = 1$$
 and $\arg(\overline{\omega}) = -\arg(\omega) = +\frac{\pi}{6}$

In addition,

Specific behaviours

- \checkmark \checkmark calculates the modulus and argument of ${\it \omega}$ correctly
- \checkmark relates the modulus and argument of $\overline{\omega}$ to those of ω

Question 8 (b)

Solution

Now

$$\omega^{2017} = \left[\exp\left(-\frac{i\pi}{6}\right) \right]^{2017} = \exp\left(-\frac{2017i\pi}{6}\right) = \exp\left(-336i\pi - \frac{i\pi}{6}\right)$$

As $\exp(-336i\pi) = 1$ this means that

$$\omega^{2017} = \exp\left(-\frac{i\tau}{6}\right) = \omega = \frac{1}{2}(\sqrt{3} - i)$$

- ✓ uses De Moivre's theorem to express answer as an exponential
- √ simplifies answer to form of an exponential of small argument
- ✓ obtains correct answer in Cartesian form

Question 9 (a)

Solution

Let X gm denote the average weight of a randomly chosen coffee bean

$$Pr(X > 0.14) = Pr\left(Z > \frac{0.14 - \mu}{\sigma}\right) = 0.10 \text{ and so } \frac{0.14 - \mu}{\sigma} = 1.282.....(A)$$

Then

and

Pr(X < 0.11) = Pr
$$\left(Z < \frac{0.11 - \mu}{\sigma}\right)$$
 = 0.05 so that $\frac{0.11 - \mu}{\sigma}$ = -1.645.....(B)

Solving equations (A) and (B) gives $\mu \approx 0.127$ and $\sigma \approx 0.01025$

Specific behaviours

- √ obtains equation (A)
- ✓ obtains equation (B)
- \checkmark solves for μ and σ correctly

Question 9 (b)

Solution

If the 10 beans in the random sample weigh more than 1.2 gm, then \bar{X} < 0.12 where \bar{X} is the average weight of beans in the sample.

$$\Pr(\bar{X} < 0.12) = \Pr\left(Z < \frac{0.12 - \mu}{\sigma / \sqrt{n}}\right) = \Pr\left(Z < \frac{0.12 - 0.127}{0.01025 / \sqrt{10}}\right)$$

Now

i.e.
$$Pr(\overline{X} < 0.12) = Pr(Z < -2.16) \approx 0.015$$

Specific behaviours

- \checkmark uses mean and correct standard deviation for \overline{X}
- √ obtains correct answer

Question 9 (c)

Solution

$$\Pr\left(\left|\overline{X} - \mu\right| < 0.001\right) = \Pr\left(\left|Z\right| < \frac{0.001}{\sigma / \sqrt{n}}\right)$$

NOM

But
$$\frac{0.001}{(0.01025/\sqrt{100})} = 0.976$$
 and $\Pr(|Z| < 0.976) \approx 0.670$

Hence the required probability is 0.67.

- \checkmark obtains correct bounds for the probability in terms of Z
- ✓ evaluates limits correctly
- ✓ derives correct answer

Question 10 (a)

Solution

$$\frac{3x^2 + 2x + 4}{(x^2 + 2)(x + 2)} = \frac{Ax + B}{x^2 + 2} + \frac{C}{x + 2} = \frac{(Ax + B)(x + 2) + C(x^2 + 2)}{(x^2 + 2)(x + 2)}$$
$$= \frac{(A + C)x^2 + (2A + B)x + (2B + 2C)}{(x^2 + 2)(x + 2)}$$

Then we have A+C=3, 2A+B=2, 2B+2C=4

Hence we deduce that $A=1, \ B=0, \ C=2$ Specific behaviours

- ✓ Combines the two given fractions correctly
- ✓ Expands the parts of the numerator
- ✓ Writes the three correct equations for the constants
- ✓ Solves for the constants

Question 10 (b)

$$\int_{0}^{4} \frac{3x^{2} + 2x + 4}{(x^{2} + 2)(x + 2)} dx = \int_{0}^{4} \frac{x}{x^{2} + 2} dx + 2 \int_{0}^{4} \frac{dx}{x + 2}$$

$$= \frac{1}{2} \left[\ln(x^{2} + 2) \right]_{0}^{4} + 2 \left[\ln(x + 2) \right]_{0}^{4}$$

$$= \frac{1}{2} \left[\ln 18 - \ln 2 \right] + 2 \left[\ln 6 - \ln 2 \right]$$

$$= \frac{1}{2} \ln 9 + 2 \ln 3 = \ln 3 + \ln 9 = \ln 27 \Rightarrow N = 27$$

- ✓ ✓ integrates the two partial fractions correctly
- simplifies the solution to the required form

Question 11(a)

Solution

Substituting t=0 into the two vector equations $\vec{r}_A = 18i + 20k$ and $\vec{r}_B = 5i + 2j + 50k$

Specific behaviours

 \checkmark correct answer for ${}^{\boldsymbol{r}_{\!\scriptscriptstyle{A}}}$ and ${}^{\boldsymbol{r}_{\!\scriptscriptstyle{B}}}$

Question 11(b)

Solution

Differentiating with respect to t gives

$$\Rightarrow$$
 $\mathbf{v}_A = -4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

$$\mathbf{v}_{R} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$

Specific behaviours

✓ differentiates each position vector correctly

Question 11(c)

Solution

Since the velocity vector of each plane is independent of t , the velocity of each plane is constant, indicating motion in a straight line.

The speed of plane A is $\sqrt{16+4+9} = \sqrt{29} \approx 5.4$ km/min while the speed of plane B is 3 km/min.

The flight path of plane A is trending upwards while the flight path of plane B is trending downwards.

- √ remarks that the velocity of each plane is constant/linear flight path
- ✓ calculates the speeds of the two planes
- ✓ states the vertical direction of each plane.

Question 11(d)

Page **6** © MAWA 2017

Question 12 (a)

_				
So		t۱	n	n
JU	ч	u	v	411

The function P(1-P) is a quadratic with a maximum at P=0.5

This corresponds to half the population.

Specific behaviours

✓ recognizes the quadratic nature of the derivative function

Question 12 (b)

Solution

Separating the variables in the differential equation gives $\int \frac{\overline{dP}}{P(1-P)} = \int 0.1 dt$

and so $\int \frac{dP}{P} + \int \frac{dP}{1 - P} = \int 0.1 dt$

Therefore $\ln(P) - \ln(1 - P) = 0.1t + c$ for some constant c.

Specific behaviours

- √ separates the variables correctly
- √ integrates each side correctly

Question 12 (c)

Solution

Substituting into the expression in (b) gives $\ln 0.01 - \ln 0.99 = c$ and so $c = -\ln 99$

$$\ln P - \ln(1 - P) + \ln 99 = 0.1t \Rightarrow \ln \left(\frac{99P}{1 - P} \right) = 0.1t$$

Hence

Specific behaviours

- \checkmark obtains correct value for C
- ✓ derives the correct equation

Question 12 (d)

 $\ln\left(\frac{99P}{(1-P)}\right) = 0.1t \quad \frac{99P}{(1-P)} = e^{0.1t} \quad \text{and} \quad 99P = (1-P)e^{0.1t}$ $P(99 + e^{0.1t}) = e^{0.1t} \Rightarrow P = \frac{e^{0.1t}}{99 + e^{0.1t}} = \frac{1}{1 + 99e^{-0.1t}}$

Then

Specific behaviours

- √ takes exponentials correctly
- \checkmark derives correct formula for P

Question 12 (e)

Solution
When P = 0.95 then $1 + 99e^{-0.1t} = 1/0.95 \Rightarrow e^{-0.1t} \approx 0.0005316 \Rightarrow t \approx 75.4$

So it takes about 75.4 days for 95% of the population to be infected.

- ✓ derives an equation for the required time
- ✓ obtains correct answer

Question 13 (a)(i) (11 marks)

Solution

$$y = \frac{x-2}{x+2} \Rightarrow xy + 2y = x-2 \Rightarrow x(y-1) = -2(y+1) \Rightarrow x = \frac{2(y+1)}{1-y}.$$

Thus
$$f^{-1}(x) = \frac{2(x+1)}{1-x}$$

Specific behaviours

- \checkmark Rearranges to obtain $^{\chi}$ in terms of y
- \checkmark Interchanges $^\chi$ and y in formula
- \checkmark Deduces the form of the inverse function $f^{-1}(x)$

Question 13 (a)(ii)

Solution

Domain is $x \neq 1$; Range is $y \neq -2$

Specific behaviours

✓ States domain and range correctly

Question 13 (b)

Solution

Now
$$(g \circ h)(x) = g(h(x)) = g(\sqrt{x-3}) = (\sqrt{x-3})^2 + 3 = x - 3 + 3 = x$$

The composite is only defined where g(x) is defined so that $x \ge 3$.

- ✓ Determines the correct composite function
- ✓ Identifies the correct domain of definition.

Question 13 (c)

Solution

Recall that
$$\left|Z\right|=Z$$
 if $Z\geq 0$ and that $\left|Z\right|=-Z$ for $Z<0$.

Then

Case 1: $x \le -2/3$

$$|3x + 2| - |x - 3| = (-2 - 3x) - (3 - x) = -5 - 2x = 1 \Rightarrow x = -3$$

Case 2: $-2/3 < x \le 3$

$$|3x + 2| - |x - 3| = 3x + 2 - (3 - x) = 4x - 1 = 1 \Rightarrow x = \frac{1}{2}$$

Case 3: x > 3

$$|3x + 2| - |x - 3| = 3x + 2 - (x - 3) = 2x + 5 = 1 \Rightarrow x = -2$$

But this is a contradiction as it has been assumed that x > 3

Hence the solutions of the equation are $x = -3, \frac{1}{2}$.

- ✓ Draws correct conclusion from case 1
- ✓ Solves equation in case 2
- ✓ Solves equation in case 3
- ✓ Recognises that the apparent solution in case 3 contradicts the assumed range
- \checkmark Synthesises results from the three cases to deduce the correct solution of the problem

Question 14(a)

Specific behaviours

- ✓ uses the dot product and expands $(b c) \bullet (b c)$ correctly
- ✓ uses $b \bullet c = 0$ and states why it is zero
- ✓ deduces the correct result

Question 14(b)

- ✓ determines $\left|DB\right|^2$ in terms of \mathbf{a}, \mathbf{b} and \mathbf{c} using part (a)
- ✓ determines $\left| DF \right|^2$ and $\left| HB \right|^2$ in terms of **a**,**b** and **c**
- ✓ sums to find the result = $2(|\mathbf{b}|^2 + |\mathbf{c}|^2) + 2|\mathbf{a}|^2$
- \checkmark show this equals $2|DB|^2 + 2|BF|^2$

CACULATOR-ASSUMED MARKING KEY

Question 14(c)

Solution

The sum of the squares of the diagonals of a rectangle are equal to twice the sum of the squares of any two adjacent sides of the rectangle.

Specific behaviours

✓ states a correct interpretation of the result

Page **11** © MAWA 2017

Question 15 (a)

Solution

$$E = z \frac{\sigma}{\sqrt{n}} < 1000 \qquad \sqrt{n} > 1.96 \times \frac{\sigma}{1000} = 1.96 \times 3.5 = 6.86$$
 We want

Therefore $n > (6.86)^2 \approx 47.06$ and so we need to test at least 48 tyres.

Specific behaviours

- √ obtains correct inequality
- \checkmark solves for n correctly

Question 15 (b)

Solution

The confidence interval is \overline{X} - $E \le \mu \le \overline{X}$ + E where

$$E \equiv z \frac{\sigma}{\sqrt{n}} = 1.96 \times \frac{3500}{\sqrt{50}} \approx 970.15$$

Hence the confidence interval is $39103 - 970 < \mu < 39103 + 970$

i.e. $38133 < \mu < 40073$

Specific behaviours

- ✓ uses correct form for the confidence interval
- \checkmark obtains correct value for E the margin of error
- ✓ obtains correct limits for the confidence interval

Question 15 (c)

Solution

The sample does provide some evidence to dispute the manfacturer's claim because the sample mean is less than 40000.

However, the confidence interval $^{38133} < \mu < 40073$ contains some numbers greater than 40000, and so the evidence for rejecting the claim is not compelling.

Specific behaviours

- ✓ notes that there is some evidence for disputing the claim
- ✓ recognises that the evidence for rejecting is not overwhelming.

Page 12 © MAWA 2017

Question 16 (a)

The graph suggests zeroes at x = -2 and x = 1.5.

To check this we calculate

$$p(-2) = 2(-2)^4 + 3(-2)^3 + 7(-2)^2 - 36 = 32 - 24 + 28 - 36 = 0$$

and

$$p(1.5) = 2(1.5)^{4} + 3(1.5)^{3} + 7(1.5)^{2} - 36$$
$$= 10.125 + 10.125 + 15.75 - 36$$
$$= 0$$

Specific behaviours

- \checkmark estimates zeroes at -2 and 1.5 from a graph
- ✓ checks these are correct by direct substitution

Question 16 (b)

Solution

Since roots of p(z) = 0 are -2 and 1.5 this suggests that $(z+2)(2z-3) = 2z^2 + z - 6$ is a factor of p(z).

By long division we observe that

$$\frac{2z^4 + 3z^3 + 7z^2 - 36}{2z^2 + z - 6} = z^2 + z + 6$$

If
$$z^2 + z + 6 = 0 \Rightarrow z = \frac{-1 + \sqrt{-23}}{2} = \frac{1}{2} \pm i \frac{\sqrt{23}}{2}$$

Hence the solutions of p(z) = 0 are z = -2, 1.5 and $\frac{1}{2} \pm i \frac{\sqrt{23}}{2}$ Specific behaviours

V identifies the two linear factors that follows

- ✓ ✓ conducts the long division correctly
- writes down the solution of the quadratic and hence finds correct complex zeros

Question 17 (a)

Solution

If $y(t) = Ce^{-t} \sin 2t$ then

$$\frac{dy}{dt} = Ce^{-t}(2\cos 2t - \sin 2t)$$

and

$$\frac{d^2y}{dt^2} = Ce^{-t}(-2\cos 2t + \sin 2t - 4\sin 2t - 2\cos 2t)$$
$$= Ce^{-t}(-3\sin 2t - 4\cos 2t)$$

Hence

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = Ce^{-t}(-3\sin 2t - 4\cos 2t + 4\cos 2t - 2\sin 2t + 5\sin 2t)$$
=0

as required

Specific behaviours

 $\frac{dy}{dt}$

 \checkmark obtains correct expression for dt

$$d^2y$$

- \checkmark obtains correct expression for $\overline{dt^2}$
- √ completes proof

Question 17 (b)

Solution

$$V(t) = \frac{dy}{dt} = Ce^{-t}(2\cos 2t - \sin 2t)$$
Since
$$V(0) = 2C = 14 \implies C = 7$$

Specific behaviours

- ✓ obtains correct expression for the velocity
- √ deduces the correct value for the constant

Question 17 (c)

Solution

The spring is stationary when V(t) = 0 i.e. when $2\cos 2t - \sin 2t = 0$ i.e. when $\tan(2t) = 2$

The least positive solution of this equation is $2t = \arctan(2) \approx 1.1071$

So the spring is first stationary at time 0.5536 seconds approximately

Specific behaviours

- ✓ obtains equation for stationary times
- √ calculates the correct answer

Question 17 (d)

Solution

From part (c) the spring is stationary when $\tan(2t) = 2$

$$t = \frac{1}{2} \arctan(2) + \frac{n\pi}{2}$$

 $t = \frac{1}{2}\arctan(2) + \frac{n\pi}{2}$ where n is any non-negative integer. The solutions are then

These form an arithmetic sequence with common difference is

Specific behaviours

- ✓ obtains general solution for the stationary times
- ✓ states the correct common difference between these times

Question 17 (e)

Solution

At a local maximum of y(t) we have V(t) = 0

$$t = \theta + \frac{n\pi}{2}$$

This occurs when $t = \theta + \frac{n\pi}{2}$ where $2\theta = \arctan(2)$

$$y\left(\theta + \frac{n\pi}{2}\right) = 7e^{-\theta - \frac{1}{2}n\pi}\sin\left(2\theta + n\pi\right)$$

We know that $\sin(2\theta + n\pi)$ will be positive if n is even and negative if n is odd

Hence the local maxima of y(t) correspond to n even.

So the local maxima of y(t) are given by $7e^{-\theta - m\tau} \sin 2\theta$ where m is any nonnegative integer.

These form a geometric sequence in which the common ratio is $e^{-\pi}$

- \checkmark evaluates y(t) at the stationary point
- ✓ shows that every second stationary point is a local maximum
- \checkmark realises the maxima correspond to even values of n
- ✓ observes the maxima values constitute a GP and states the common ratio

Question 18 (a)

Solution

For the region $0 \le x \le 2$ the parabola is above the x-axis so the required area is

$$A = \int_{0}^{2} x(2 - x) dx = \int_{0}^{2} (2x - x^{2}) dx$$
$$= \left[x^{2} - \frac{1}{3}x^{3} \right]_{0}^{2}$$
$$= 4 - \frac{8}{3} = \frac{4}{3}$$

- √ states correct limits of integration
- ✓ writes a correct expression for the area
- √ integrates all the terms correctly
- \checkmark substitutes in values to determine the area

Question 18 (b)

Solution

If rotating about X-axis have that

$$V_{1} = \pi \int_{0}^{2} y^{2} dx = \pi \int_{0}^{2} x^{2} (2 - x)^{2} dx = \pi \int_{0}^{2} (4x^{2} - 4x^{3} + x^{4}) dx$$
$$= \pi \left[\frac{4}{3} x^{3} - x^{4} + \frac{1}{5} x^{5} \right]_{0}^{2}$$
$$= \pi \left[\frac{32}{3} - 16 + \frac{32}{5} \right] = 32\pi \left[\frac{8}{15} - \frac{1}{2} \right] = \frac{16}{15} \pi$$

To compute volume around y-axis need to evaluate ${}^{\mathcal{T}}\int x^2\,dy$

The second volume is determined by calculating the volume V_R generated by rotating the right-hand branch of the parabola about the axis and subtracting the volume V_L formed using the left-hand branch of the parabola.

The parabola is
$$(x-1)^2 = 1 - y \Rightarrow x = 1 \pm \sqrt{1 - y}$$
. Hence $x^2 = 2 - y \pm 2\sqrt{1 - y}$

Right hand branch is with +sign and is defined by $0 \le y \le 1$. Then

$$V_{R} = \pi \int_{0}^{1} \left[2 - y + 2\sqrt{1 - y} \right] dy = \pi \left[2y - \frac{1}{2}y^{2} - \frac{4}{3}(1 - y)^{3/2} \right]_{0}^{1} = \pi \left[2 - \frac{1}{2} + \frac{4}{3} \right] = \frac{17}{6}\pi$$

Left hand branch is with – sign and is also defined by $0 \le y \le 1$. Then

$$V_{L} = \pi \int_{0}^{1} \left[2 - y - 2\sqrt{1 - y} \right] dy = \pi \left[2y - \frac{1}{2}y^{2} + \frac{4}{3}(1 - y)^{3/2} \right]_{0}^{1} = \pi \left[2 - \frac{1}{2} - \frac{4}{3} \right] = \frac{1}{6}\pi$$

$$V_2 = V_R - V_L = \frac{8}{3}\pi$$

Thus volume generated by rotating about the $\ensuremath{\mathcal{Y}}$ axis is

$$V_1 = \frac{16}{15} \times \frac{3}{8} V_2 = \frac{2}{5} V_2$$

Hence we see that

Specific behaviours

- ✓ writes down correct form of integral for first volume
- $\checkmark\checkmark$ integrates correctly and hence evaluates to determine the volume V_1 (candidates are expected to use calculator for the manipulation)
- \checkmark realises that for rotation is about y-axis the required integral is of form $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dy$
- \checkmark gives clear statement of strategy adopted to determine the volume V_2
- ✓ determines the appropriate formulae for the two branches of the parabola

Page **17**

CALCULATOR-ASSUMED MARKING KEY

- $\checkmark\checkmark$ for volume $^{V_{R}}$ forms correct integral with limits. Evaluates correctly (calc allowed)
- $\checkmark\checkmark~$ for volume $^{\ensuremath{V_{\scriptscriptstyle L}}}~$ forms correct integral with limits. Evaluates correctly
- $\checkmark \quad$ deduces the correct relationship between $\overset{V_1}{}$ and $\overset{V_2}{}$

Page **18** © MAWA 2017