

Home Assignment - 01

Due: Monday, May 15th

Instructions

- Make any additional assumptions if needed and justify your assumption.
- Please submit your own work.

Problem - 1: Homogenous equation with constant coefficients

- (a) Real roots of the characteristic equation: Find the solution to the initial value problem y'' + 5y' + 6y = 0 with y(0) = 2, y'(0) = 3
- (b) Complex roots of the characteristic equation: Find the solution to the initial value problem 16y'' 8y' + 145y = 0 with y(0) = -2, y'(0) = 1
- (c) Repeated roots of the characteristic equation: Find the solution to the initial value problem y'' y' + 0.25y = 0 with y(0) = 2, y'(0) = 1/3

Problem - 2: Non-homogenous equation with constant coefficients

Using the method of undetermined coefficients, find a particular solution of

- (a) y'' 3y' 4y = 10
- (b) $y'' 3y' 4y = 2 \sin wt$, (you may consider w = 1).

Problem - 3: Mechanical Systems

Suppose that a mass weighing 4.5 kg stretches a spring 40 mm. If the mass is displaced an additional 25 mm. and is then set in motion with an initial upward velocity of 0.5 m/s, determine the position of the mass at any later time. Also, determine the period, amplitude, and phase of the motion.

Problem - 4: Electrical Circuits/Systems

A series circuit has a capacitor of 10^3 micro Farad, a resistor of 3 X 10^2 ohms, and an inductor of 0.2 micro Henry. If the initial charge on the capacitor is 1 micro coulomb and there is no initial current, find the charge Q on the capacitor at any time t.

Problem - 5: Laplace transformation

Using the Laplace transform, find solutions for the following equations

(a)
$$5y' = e^{-3t}$$
 with $y(0) = 4$, $y'(0) = 0$

(b)
$$y'' = 1 - t$$
 with $y(0) = 0, y'(0) = 0$

(c)
$$y'' + 2y' + 2y = 0$$
 with $y(0) = 1, y'(0) = -1$

(d)
$$y'' + 4y = \cos(t)$$
 with $y(0) = a, y'(0) = b$

(e)
$$y'' + 16y = 16u(t-3) - 16$$
 with $y(0) = 0, y'(0) = 0$

Table of Laplace Transforms
$$f(t) = \mathfrak{L}^{-1}\{F(s)\} \qquad F(s) = \mathfrak{L}\{f(t)\} \qquad f(t) = \mathfrak{L}^{-1}\{F(s)\} \qquad F(s) = \mathfrak{L}\{f(t)\}$$
1. 1
$$\frac{1}{s} \qquad 2. \qquad e^{st} \qquad \frac{1}{s-a}$$
3. $t^{s}, \quad n = 1, 2, 3, ...$ $\frac{n!}{s^{s+1}} \qquad 4. \quad t^{p}, p > -1$ $\frac{\Gamma(p+1)}{s^{p+1}}$
5. \sqrt{t} $\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}} \qquad 8. \quad \cos(at)$ $\frac{s}{s^{\frac{2}{3}} + a^{2}}$
7. $\sin(at)$ $\frac{a}{s^{\frac{2}{3}} + a^{2}} \qquad 8. \quad \cos(at)$ $\frac{s}{s^{\frac{2}{3}} + a^{2}}$
8. $\cos(at)$ $\frac{s^{2}}{s^{\frac{2}{3}} + a^{2}}$
9. $t\sin(at)$ $\frac{2as}{(s^{2} + a^{2})^{2}}$ 10. $t\cos(at)$ $\frac{2as^{2}}{(s^{2} + a^{2})^{2}}$
11. $\sin(at) - at\cos(at)$ $\frac{2s(s^{2} - a^{2})}{(s^{2} + a^{2})^{2}}$ 12. $\sin(at) + at\cos(at)$ $\frac{2as^{2}}{(s^{2} + a^{2})^{2}}$
13. $\cos(at) - at\sin(at)$ $\frac{s(s^{2} - a^{2})}{(s^{2} + a^{2})^{2}}$ 14. $\cos(at) + at\sin(at)$ $\frac{s(s^{2} + a^{2})^{2}}{(s^{2} + a^{2})^{2}}$
15. $\sin(at + b)$ $\frac{s\sin(b) + a\cos(b)}{s^{2} + a^{2}}$ 16. $\cos(at + b)$ $\frac{s\cos(b) - a\sin(b)}{s^{2} + a^{2}}$
17. $\sinh(at)$ $\frac{a}{s^{2} - a^{2}}$ 18. $\cosh(at)$ $\frac{s}{s^{2} - a^{2}}$ 19. $e^{at}\sin(bt)$ $\frac{b}{(s-a)^{2} + b^{2}}$ 20. $e^{at}\cos(bt)$ $\frac{s-a}{(s-a)^{2} + b^{2}}$
21. $e^{at}\sin(bt)$ $\frac{b}{(s-a)^{2} - b^{2}}$ 22. $e^{at}\cosh(bt)$ $\frac{s-a}{(s-a)^{2} - b^{2}}$
22. $t^{*}e^{at}, \quad n = 1, 2, 3, ...$ $\frac{n!}{(s-a)^{a+1}}$ 24. $f(ct)$ $\frac{1}{c}F(\frac{s}{c})$
25. $u_{c}(t) = u(t-c)$ $\frac{e^{-ca}}{s}$ 26. $\delta(t-c)$ $\frac{e^{-ca}}{(s-a)^{2} - b^{2}}$
27. $u_{c}(t) f(t-c)$ $e^{-ca}F(s)$ 28. $u_{c}(t)g(t)$ $e^{-ca}\mathcal{L}\{g(t+c)\}$
29. $e^{at}f(t)$ $F(s-c)$ 30. $t^{*}f(t), \quad n = 1, 2, 3, ...$ $(-1)^{*}F^{(s)}(s)$
31. $\frac{1}{t}f(t)$ $\int_{s}^{\infty}F(u)du$ 32. $\int_{s}^{t}f(v)dv$ $\frac{F(s)}{s}e^{-f(t)}dt$ $\frac{1-e^{-ft}}{1-e^{-ft}}$

37. $f^{(n)}(t)$

 $s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$

Table Notes

- 1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.
- 2. Recall the definition of hyperbolic functions.

$$\cosh(t) = \frac{\mathbf{e}^t + \mathbf{e}^{-t}}{2} \qquad \qquad \sinh(t) = \frac{\mathbf{e}^t - \mathbf{e}^{-t}}{2}$$

- 3. Be careful when using "normal" trig function vs. hyperbolic functions. The only difference in the formulas is the "+ a²" for the "normal" trig functions becomes a "- a²" for the hyperbolic functions!
- 4. Formula #4 uses the Gamma function which is defined as

$$\Gamma(t) = \int_0^\infty \mathbf{e}^{-x} x^{t-1} \, dx$$

If *n* is a positive integer then,

$$\Gamma(n+1) = n!$$

The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

$$\Gamma(p+1) = p\Gamma(p)$$

$$p(p+1)(p+2)\cdots(p+n-1) = \frac{\Gamma(p+n)}{\Gamma(p)}$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$