Fitting the Weibull model

SURVIVAL ANALYSIS IN PYTHON

Shae Wang
Senior Data Scientist

Probability distributions

A probability distribution

A mathematical function that describes the probability of different event outcomes.

Probability distributions

A probability distribution

A mathematical function that describes the probability of different event outcomes.

Introducing the Weibull distribution

The Weibull distribution

A continuous probability distribution that models time-to-event data very well (but originally applied to model particle size distribution).

The Weibull probability density function

$$f(x;\lambda,k) = rac{k}{\lambda}igg(rac{x}{\lambda}igg)^{k-1}e^{-(x/\lambda)^k}$$

$$x \ge 0, k > 0, \lambda > 0$$

Introducing the Weibull distribution

k

Determines the shape

 λ

Determines the scale

Fitting the Weibull distribution to data

A company maintains a fleet of machines that are prone to failure...

Fitting the Weibull distribution to data

A company maintains a fleet of machines that are prone to failure...

From Weibull distribution to survival function

$$f(x;\lambda,k) = rac{k}{\lambda} igg(rac{x}{\lambda}igg)^{k-1} e^{-(x/\lambda)^k} \quad o \quad S(t) = e^{-(t/\lambda)^
ho}$$

The knobs: k and lambda

k and λ

- $k \text{ (or } \rho)$: determines the shape
- λ : determines the scale (indicates when 63.2% of the population has experienced the event)

$$f(x;\lambda,k) = rac{k}{\lambda}igg(rac{x}{\lambda}igg)^{k-1}e^{-(x/\lambda)^k} \quad o \quad f(x;\lambda,k=3) = rac{3}{\lambda}igg(rac{x}{\lambda}igg)^2e^{-(x/\lambda)^3}$$

Weibull distribution: the failure/event rate is proportional to a power of time.

Interpreting k (or ρ)

• When k < 1, the failure/event rate decreases over time.

Interpreting k (or ρ)

• When k=1, the failure/event rate is constant over time.

Interpreting k (or ρ)

• When k>1, the failure/event rate increases over time.

Survival analysis with Weibull distribution

1. Import the WeibullFitter class

```
from lifelines import WeibullFitter
```

2. Instantiate a WeibullFitter class

```
wb = WeibullFitter()
```

3. Call .fit() to fit the estimator to the data

```
wb.fit(durations, event_observed)
```

4. Access .survival_function_, .lambda_, .rho_, .summary, .predict()

Example Weibull model

DataFrame name: mortgage_df

id	duration	paid_off		
1	25	0		
2	17	1		
3	5	0		
•••	•••	•••		
1000	30	1		

```
from lifelines import WeibullFitter
wb = WeibullFitter()
```

```
wb.fit(durations=mortgage_df["duration"],
         event_observed=mortgage_df["paid_off"])
```

Example Weibull model

```
wb.survival_function_.plot()
plt.show()
```



```
print(wb.lambda_, wb.rho_)
```

6.11 0.94

print(wb.predict(20))

0.05

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

Weibull model with covariates

SURVIVAL ANALYSIS IN PYTHON

Shae Wang
Senior Data Scientist

Comparing survival functions

Compare groups using the Kaplan-Meier estimator:

Compare groups using the log-rank test:

Q: How do we assess if/how one or multiple continuous variables affect the survival function?

Survival regression

- A method that models survival functions with covariates
- Quantifies how each covariate affects the survival function

$$Y_i = f(X_i, eta)$$

 Y_i : durations, X_i : covariates

Example covariates: age, weight, country

The Accelerated Failure Time (AFT) model

Population A : $S_A(t)$

Population B : $S_B(t)$

$$S_A(t) = S_B(t * \lambda)$$

- $S_B(t)$ is speeding up (accelerating) or slowing down (decelerating) along $S_A(t)$ by a factor of λ .
- AFT models this acceleration/deceleration relationship based on model covariates.
- When a covariate changes from a to b, time-to-event speeds up or slows down by the accelerated failure rate λ .
- Example: $S_{dog}(t) = S_{human}(t*7)$

Data for survival regression

DataFrame example: mortgage_df

id	property_type	principal	interest	property_tax	credit_score	duration	paid_off
1	house	1275	0.035	0.019	780	25	0
2	apartment	756	0.028	0.020	695	17	1
3	apartment	968	0.029	0.017	810	5	0
•••	•••	•••	•••	•••	•••	•••	•••
1000	house	1505	0.041	0.023	750	30	1

Combining Weibull with AFT: the Weibull AFT model

- DataFrame: mortgage_df
- Covariates:
 - property_type is replaced with a dummy variable:
 - house : 1 if "house", 0 if "apartment"
 - o principal
 - o interest
 - property_tax
 - o credit_score

1. Import and instantiate the WeibullAFTFitter class

```
from lifelines import WeibullAFTFitter
aft = WeibullAFTFitter()
```

2. Call .fit() to fit the estimator to the data

```
aft.fit(df=mortgage_df,
    duration_col="duration",
    event_col="paid_off")
```

Interpreting model output

print(aft.summary)

```
<lifelines.WeibullAFTFitter: fitted with 1808 observations, 340 censored>
                         exp(coef)
                                   se(coef)
                    coef
                                                        p
lambda_ house
                    0.04
                              1.04
                                       0.01 0.99
                                                     0.32
       principal
                  -0.03
                              0.97
                                       0.22 - 1.04
                                                     0.30
                                       0.15 1.96
       interest
                    0.11
                              1.11
                                                     0.05
                              1.36
                                       0.27 1.15
                                                     0.25
                    0.31
       property_tax
                                       0.14 - 2.33
       credit_score -0.16
                              0.85
                                                     0.02
                             54.06
                                       0.41 9.52 < 0.0005
       Intercept
                    3.99
                    0.34
                                       0.08 3.80 < 0.0005
       Intercept
                              1.40
rho_
```

WeibullAFTFitter with custom formula

Using formula to handle custom model covariates:

Analogous to the linear model with interaction term:

 β_1 principal $+\beta_2$ interest $+\beta_3$ house $+\beta_4$ interest \cdot house

Interpreting model output

print(aft.summary)

```
lifelines.WeibullAFTFitter: fitted with 1808 observations, 340 censored>
                           exp(coef)
                                     se(coef)
                     coef
lambda_ principal
                    -0.03
                                0.97
                                         0.22 - 1.04
                                                       0.30
       interest
                     0.11
                               1.11
                                         0.15
                                               1.96
                                                       0.05
                                               0.99
                               1.04
                                         0.01
                                                       0.32
                     0.04
       house
       interest:house 0.06
                               1.06
                                         0.14
                                               0.42
                                                       0.64
       Intercept
                     3.99
                               54.06
                                         0.41 9.52 < 0.0005
       Intercept
                                         0.08
                                               3.80 < 0.0005
                     0.34
                               1.40
rho_
```

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

Visualization and prediction with Weibull model

SURVIVAL ANALYSIS IN PYTHON

Shae WangSenior Data Scientist

.plot()

Returns a plot of the coefficients and their ranges from the 95% confidence intervals.

```
aft.plot()
plt.show()
```

Sample plot:

.plot_partial_effects_on_outcome()

Returns a plot comparing the baseline survival curve versus what happens when covariates are varied over values.

```
aft.plot_partial_effects_on_outcome(covariates, values)
plt.show()
```


How to plot partial effects?

```
.plot_partial_effects_on_outcome()
```

- covariates (string or list): covariate(s) in the original dataset that we wish to vary.
- values (1d or 2d iterable): values we wish the covariate to take on.
- Baseline survival curve: predicted survival curve at all average values in the original dataset.

```
aft.plot_partial_effects_on_outcome(
  covariates='var',
  values=[0, 3, 6, 9, 12, 15]
)
plt.show()
```


How to plot partial effects?

Hard-code values:

```
aft.plot_partial_effects_on_outcome(
  covariates='a',
  values=[0, 3, 6]
)
```

• Use a range function:

```
aft.plot_partial_effects_on_outcome(
   covariates='a',
   values=np.arange(10)
)
```

Multiple covariates:

```
aft.plot_partial_effects_on_outcome(
  covariates=['a','b'],
  values=[[1,2],[1,3],[2,3]]
)
```

- Custom formula:
 - Necessary transformations (interactions, one-hot encoding, etc.) will be made internally and automatically.

Mortgage example

DataFrame example: mortgage_df

id	house	principal	interest	property_tax	credit score	duration	paid_off
1	1	1275	0.035	0.019	780	25	0
2	0	756	0.028	0.020	695	17	1
3	0	968	0.029	0.017	810	5	0
•••	•••	•••	•••	•••	•••	•••	•••
1000	1	1505	0.041	0.023	750	30	1

Mortgage example

```
aft.plot_partial_effects_on_outcome(
    covariates='credit score',
    values=np.arange(700, 860, 30)
)
plt.show()
```


Predict survival functions

• Survival curves vary based on their covariates' values.

Predict survival functions

Predict survival functions of individuals based on covariate values.

```
.predict_survival_function()
```

Arguments:

• X (np array or DataFrame): covariates. If a DataFrame, columns can be in any order.

Predict median survival durations of individuals based on covariate values.

```
.predict_median()
```

Arguments:

• df (np array or DataFrame): covariates. If a DataFrame, columns can be in any order.

Conditional after current durations

Predict survival function or median survival duration conditional after current duration.

- .predict_survival_function(X, conditional_after)
- .predict_median(df, conditional_after)

Example:

```
aft.predict_median(new_subject)
```

4.0

```
aft.predict_median(new_subject, conditional_after=[2])
```

2.0

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

Other distributions and model selection

SURVIVAL ANALYSIS IN PYTHON

Shae WangSenior Data Scientist

Which model fits the data the best?

Choosing parametric models

- Non-parametric modeling (i.e. the Kaplan-Meier model)
 - Describes the data accurately because it's distribution-free
 - Is not smooth/continuous/differentiable
- Parametric modeling (i.e. the Weibull model)
 - Parametric statistics will usually give us more information
 - When the wrong model is used, they lead to significantly biased conclusions

Common parametric survival models

The Weibull model

```
from lifelines import WeibullFitter
```

The Exponential model

```
from lifelines import ExponentialFitter
```

The Log Normal model

```
from lifelines import LogNormalFitter
```

The Log Logistic model

```
from lifelines import LogLogisticFitter
```

The Gamma model

```
from lifelines import GeneralizedGammaFitter
```

The Akaike Information Criterion (AIC)

- AIC: An estimator of **prediction error** and **relative quality of statistical models** for a given set of data.
- Estimates the relative amount of information lost by a given model and penalizes large number of estimated parameters.
 - The less information a model loses, the higher the quality of that model.
 - The fewer parameters (less complex) a model is, the higher the quality of that model.
- Given a set of candidate models for the data, the one with the minimum AIC value is the preferred model.

Using the AIC for model selection

Step 1) Fit parametric models in lifelines

Step 2) Print and compare each model's AIC_ property

Step 3) The lowest AIC value is preferred

```
wb = WeibullFitter().fit(D, E)
exp = ExponentialFitter().fit(D, E)
log = LogNormalFitter().fit(D, E)
```

```
print(wb.AIC_, exp.AIC_, log.AIC_)
```

215.9091 216.1183 202.3498

find_best_parametric_model()

- find_best_parametric_model(): a built-in lifelines function to automate AIC comparisons between parametric models.
- Iterates through each parametric model available in lifelines.

How to use it?

• T: durations, E: censorship

```
<lifelines.WeibullFitter:"Weibull_estimate",
fitted with 686 total observations, 387 right-censored observations>
```


The QQ plot

- QQ plot: Compares two probability distributions by plotting their quantiles against each other.
- If the two distributions being compared are similar, the points in the QQ plot will approximately lie on the line y = x.

Using QQ plots for model selection

Step 1) Fit parametric models in lifelines.

Step 2) Plot the QQ plot of each model.

Step 3) The QQ plot closest to y = x is preferred.

Using QQ plots for model selection

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

