Instituto Politécnico Nacional

Escuela Superior de Cómputo

Matematicas Avanzadas para la Ingenieria

Ejercicios Propuestos 21 de Marzo

Integrantes:

Vazquez Blancas Cesar Said

1.- Realice las operaciones indicadas

$$a)\frac{1}{i}$$

1.- Calculamos

$$0 - 1i$$

2.-Solucion Calculada

-i

$$b)\frac{1-i}{1+i}$$

1.- Calculamos

$$\frac{1-i}{1+i}$$

2.-Multiplicar Numerador y denominador Conjugar

$$\overline{1+i} = 1-i$$

3.-con

$$(1-i) (1+i) = 2$$

$$\frac{\left(1-i\right)^2}{2}$$

4.-Expandiendo los paréntesis

$$\frac{-2i}{2}$$

5.-Solucion Calculada

_i

$$c)\frac{2}{1-3\,i}$$

1.- Calculamos

$$\frac{2}{1-3i}$$

2.-Multiplicar Numerador y denominador Conjugar

$$\overline{1-3\,i}=1+3\,i$$

3.-Expandiendo parentesis

$$2(-4+2i)+12-16i$$

con

$$(1 - 3i) (1 + 3i) = 10$$

$$\frac{1 + 3i}{5}$$

4.-Solucion Calculada

$$d)\left(1-\sqrt{3}\,i\right)^3$$

 $\frac{1}{5} + \frac{3i}{5}$

1.- Calculamos

$$\left(1-\sqrt{3}\,i\right)^3$$

2.-Elevar a una potencia

$$\left(1 - \sqrt{3}i\right)^2 \left(1 - \sqrt{3}i\right)$$

$$\left(-2 - 2\sqrt{3}i\right) \left(1 - \sqrt{3}i\right)$$

3.-Solucion Calculada

-8

2.- Encuentre la parte Real e imaginaria

$$(1+e)^{-1} = \frac{1}{1+e}$$

$$= \frac{1}{1+e^{i\theta}}$$

$$= \frac{1}{1+\cos(\theta)+i\sin(\theta)}$$

$$= \frac{1}{1+\cos(\theta)+i\sin(\theta)} \cdot \frac{1+\cos(\theta)-i\sin(\theta)}{1+\cos(\theta)-i\sin(\theta)}$$

$$= \frac{1+\cos(\theta)-i\sin(\theta)}{(1+\cos(\theta))^2-\sin^2(\theta)}$$

3.- Obtengase

$$a)(1+i)^{16}$$

$$(1+i)^{16} = \left(\sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)\right)^{16}$$
$$= \left(\sqrt{2}\right)^{16} \left(\cos\left(16 \cdot \frac{\pi}{4}\right) + i\sin\left(16 \cdot \frac{\pi}{4}\right)\right)$$
$$= 2^8 \left(\cos(4\pi) + i\sin(4\pi)\right)$$
$$= 256 \left(\cos(0) + i\sin(0)\right)$$
$$= 256$$

$$b)\sum_{n=0}^{100}i^n$$

$$\sum_{n=0}^{100} i^n = \underbrace{(1+i+(-1)+(-i))+(1+i+(-1)+(-i))+\dots}_{25 \text{ ciclos completos}} + i^{100}$$

$$= 0+1$$

$$= 1$$

$$c) \left(2 + 2\sqrt{3}i\right)^{9}$$

$$\left(2 + 2\sqrt{3}i\right)^{9} = \left(4\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)\right)^{9}$$

$$= 4^{9} \left(\cos\left(9 \cdot \frac{\pi}{3}\right) + i\sin\left(9 \cdot \frac{\pi}{3}\right)\right)$$

$$= 262144 \left(\cos(3\pi) + i\sin(3\pi)\right)$$

$$= 262144 \left(-1 + i \cdot 0\right)$$

$$= -262144$$

4.- Obtenga el módulo y el Argumento de cada uno de los siguientes complejos:

a)3i

1. Cálculo del módulo (r):

El módulo (r) se calcula como la magnitud del número complejo, que es la distancia del origen al punto que r Para 3i, el módulo (r) es simplemente el coeficiente del término i, que es 3.

2. Cálculo del argumento (θ) :

El argumento (θ) se calcula como el ángulo que el vector del número complejo forma con el eje positivo de las Para 3i, el argumento (θ) es el ángulo cuya función trigonométrica del seno es 1 y del coseno es 0, que es $\frac{\pi}{2}$.

Por lo tanto, el módulo (r) es 3 y el argumento (θ) es $\frac{\pi}{2}$.

$$b) - 2$$

1. Cálculo del módulo (r):

El módulo (r) se calcula como la magnitud del número complejo, que es la distancia del origen al punto que r Para -2, el módulo (r) es simplemente el valor absoluto del número real, que es 2.

2. Cálculo del argumento (θ) :

El argumento (θ) se calcula como el ángulo que el vector del número complejo forma con el eje positivo de las Para -2, el argumento (θ) es el ángulo cuyo coseno es -1 y el seno es 0, que es π .

Por lo tanto, el módulo (r) es 2 y el argumento (θ) es π .

$$c)1 + i$$

- Cálculo del módulo (r):

El módulo (r) se calcula como la magnitud del número complejo, que es la distancia del origen al punto que r Para 1+i, el módulo (r) se puede calcular utilizando el teorema de Pitágoras en el triángulo rectángulo form el eje imaginario y la hipotenusa, que es la distancia desde el origen hasta el punto 1+i en el plano complejo Entonces, tenemos:

$$r = |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

- Cálculo del argumento (θ) :

El argumento (θ) se calcula como el ángulo que el vector del número complejo forma con el eje positivo de las Para 1+i, podemos usar las funciones trigonométricas para calcular el argumento. Dado que 1+i está en el el argumento (θ) es simplemente el ángulo cuya tangente es 1, que es $\frac{\pi}{4}$.

$$d) - 1 - i$$

- Cálculo del módulo (r):

El módulo (r) se calcula como la distancia del número complejo al origen en el plano complejo. Utilizamos la fórmula del módulo:

$$r = |z| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

- Cálculo del argumento (θ) :

El argumento (θ) se calcula como el ángulo que el número complejo forma con el eje positivo de las x en sent. Usando trigonometría, podemos calcular el ángulo cuya tangente es -1. Esto nos da un ángulo de $-\frac{3\pi}{4}$, pero como estamos en el tercer cuadrante, sumamos 2π para obtener el valor final del argumento:

$$\theta = -\frac{3\pi}{4} + 2\pi = \frac{5\pi}{4}$$

$$e)2 + 5i$$

- Cálculo del módulo (r):

El módulo (r) se calcula como la distancia del número complejo al origen en el plano complejo. Utilizamos la fórmula del módulo:

$$r = |z| = \sqrt{2^2 + 5^2} = \sqrt{29}$$

- Cálculo del argumento (θ):

El argumento (θ) se calcula como el ángulo que el número complejo forma con el eje positivo de las x en sent. Usando trigonometría, podemos calcular el ángulo cuya tangente es $\frac{5}{2}$. Esto nos da un ángulo de aproximada

$$f)2 - 5i$$

- Cálculo del módulo (r):

Utilizamos la fórmula del módulo:

$$r = |z| = \sqrt{2^2 + (-5)^2} = \sqrt{29}$$

- Cálculo del argumento (θ) :

Usamos la fórmula de la tangente inversa para calcular el ángulo cuya tangente es $-\frac{5}{2}$.

Dado que el número complejo está en el cuarto cuadrante, sumamos 2π para obtener el ángulo final:

$$\theta = \arctan\left(\frac{-5}{2}\right) + 2\pi$$

$$g) - 2 + 5i$$

- Cálculo del módulo (r):

Utilizamos la fórmula del módulo:

$$r = |z| = \sqrt{(-2)^2 + 5^2} = \sqrt{29}$$

- Cálculo del argumento (θ):

Usamos la fórmula de la tangente inversa para calcular el ángulo cuya tangente es $\frac{5}{-2}$.

Dado que el número complejo está en el segundo cuadrante, sumamos π para obtener el ángulo final:

$$\theta = \arctan\left(\frac{5}{-2}\right) + \pi$$

$$h) - 2 - 5i$$

- Cálculo del módulo (r):

Utilizamos la fórmula del módulo:

$$r = |z| = \sqrt{(-2)^2 + (-5)^2} = \sqrt{29}$$

- Cálculo del argumento (θ):

Usamos la fórmula de la tangente inversa para calcular el ángulo cuya tangente es $\frac{-5}{-2}$.

Dado que el número complejo está en el tercer cuadrante, sumamos π para obtener el ángulo final:

$$\theta = \arctan\left(\frac{-5}{-2}\right) + \pi$$

i)bi, bdiferente de 0

- Cálculo del módulo (r):

El módulo (r) de un número complejo en el eje imaginario es simplemente el valor absoluto de la parte imagin es decir, r = |bi| = |b| = b.

- Cálculo del argumento (θ):

Dado que el número complejo bi se encuentra en el eje imaginario, su argumento (θ) es $\frac{\pi}{2}$ si b>0 y $-\frac{\pi}{2}$ si b<0.

$$j)a + bi, a differente de 0$$

1. Cálculo del módulo (r):

El módulo r de un número complejo z = a + bi se calcula como:

$$r = |z| = \sqrt{a^2 + b^2}$$

2. Cálculo del argumento (θ) :

El argumento θ de un número complejo z=a+bi se calcula como:

$$\theta = \operatorname{atan2}(b, a)$$

6.- Encuéntrense fórmulas para sumar las expresiones siguientes:

$$a)1 + \cos + \cos 2 + \cos 3 + + \cos n$$

1. Aplicación de la fórmula de la suma de una serie finita de cosenos:

La fórmula de la suma de una serie finita de cosenos es:

$$\sum_{k=0}^{n} \cos(k\theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \cdot \cos\left(\frac{n\theta}{2}\right)$$

2. Sustitución en la serie dada:

La serie dada es $1 + \cos(\theta) + \cos(2\theta) + \cos(3\theta) + \ldots + \cos(n\theta)$

Por lo tanto, aplicamos la fórmula de la suma de cosenos a partir de k=0 hasta k=n :

$$1 + \sum_{k=1}^{n} \cos(k\theta) = 1 + \frac{\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \cdot \cos\left(\frac{n\theta}{2}\right)$$

3. Expresión final:

La expresión final de la suma de la serie es:

$$\frac{\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \cdot \cos\left(\frac{n\theta}{2}\right)$$

$$b)sen + sen2 + sen3 + + senn$$

1. Aplicación de la fórmula de la suma de una serie finita de senos:

La fórmula de la suma de una serie finita de senos es:

$$\sum_{k=0}^{n} \sin(k\theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \cdot \sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

2. Sustitución en la serie dada:

La serie dada es $\sin(\theta) + \sin(2\theta) + \sin(3\theta) + \dots + \sin(n\theta)$

Por lo tanto, aplicamos la fórmula de la suma de senos a partir de k=0 hasta k=n:

$$\sin(\theta) + \sum_{k=1}^{n} \sin(k\theta) = \sin(\theta) + \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \cdot \sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

3. Expresión final:

La expresión final de la suma de la serie es:

$$\frac{\sin\left(\frac{(n+1)\theta}{2}\right)\cdot\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

$$c)cos + cos3 + + cos2(n+1)$$

1. Aplicación de la fórmula de la suma de una serie finita de cosenos:

La fórmula de la suma de una serie finita de cosenos es:

$$\cos(\theta) + \cos(3\theta) + \ldots + \cos(2(n+1)\theta) = \frac{\sin((2n+2)\theta/2) \cdot \cos(\theta/2)}{\sin(\theta/2)}$$

2. Sustitución en la serie dada:

La serie dada es $\cos(\theta) + \cos(3\theta) + \ldots + \cos(2(n+1)\theta)$

Por lo tanto, aplicamos la fórmula de la suma de cosenos:

$$\cos(\theta) + \cos(3\theta) + \ldots + \cos(2(n+1)\theta) = \frac{\sin(2\theta) + (\sin(4\theta) - \sin(2\theta)) + (\sin(6\theta) - \sin(4\theta))}{2\sin\theta}$$

3. Expresión final:

La expresión final de la suma de la serie es:

$$\frac{\sin(2n\theta)}{2\sin\theta}$$

D2. Pruébense que: a) la ecuación A $(z+z)+iB\ (z\ z)+C\ (zz\ 1)+D\ (zz+1)=0$ representa: una recta en el plano, caso de que C + D = 0; una circunferencia, de centro y radio a determinar, en el caso de que C + D = 0. (Circunrecta de parámetros reales A, B, C, D, de ahora en adelante.) b) toda circunrecta en el plano responde a una ecuación de la forma dada arriba, para convenientes números reales A, B, C, D. Parte a)

Consideremos la ecuación:

$$A(z+\overline{z}) + iB(z-\overline{z}) + C(zz-1) + D(zz+1) = 0$$

Donde z = x + iy y $\overline{z} = x - iy$. Reorganizando, obtenemos:

$$(A+C)x + i(B-A)y + (D-C)x^{2} + (D+C)y^{2} - C - D = 0$$

Si C + D = 0, la ecuación representa una recta en el plano.

Si $C + D \neq 0$, la ecuación representa una circunferencia de la forma:

$$(D-C)u^{2} + (A+C)u + (D+C)v^{2} + i(B-A)v = C+D$$

Parte b)

Toda circunrecta en el plano complejo puede representarse mediante una ecuación de la forma:

$$(D-C)u^{2} + (A+C)u + (D+C)v^{2} + i(B-A)v = C+D$$

para convenientes números reales A, B, C, D.

$$b)sen + sen2 + sen3 + + senn$$

Demostración de la Fórmula del Argumento Principal

Dado un número complejo z = x+iy, donde x e y son las partes real e imaginaria respectivamente, queremos probar la fórmula para el argumento principal $\arg(z)$.

Caso 1: x > 0

Si x > 0, entonces $\arg(z) = \arctan\left(\frac{y}{x}\right)$.

Caso 2: x < 0 **y** $y \ge 0$

Si x < 0 y $y \ge 0$, entonces $\arg(z) = \arctan\left(\frac{y}{x}\right) + \pi$.

Caso 3: x < 0 **y** y < 0

Si x < 0 y y < 0, entonces $\arg(z) = \arctan\left(\frac{y}{x}\right) - \pi$.

Caso 4: x = 0 **y** y > 0

Si x = 0 y y > 0, entonces $\arg(z) = \frac{\pi}{2}$.

Caso 5: x = 0 **y** y < 0

Si x = 0 y y < 0, entonces $\arg(z) = -\frac{\pi}{2}$.

Conclusiones

Hemos demostrado la fórmula para el argumento principal de un número complejo en diferentes casos, cubriendo todos los posibles valores de x e y.