

Trajectory Planning using Bi-RRT Algorithm

Humanoid Robocup Advanced Lab

B.Sc. Ahmed Mzid - B.Sc. Helmi Abidi - B.Sc. Oussema Dhaouadi

Supervisor : M.Sc. Quentin Leboutet

Chair for Cognitve Systems

Prof. Dr. Gordon Cheng

Munich, 23. July 2019

Motivation: Problem Statement

- Motion Planning: core functionality

- Old implementation based on aggregation of displacement vectors
- Poor performance in obstacle avoidance
- easily predictable deterministic behavior

- This motivates the necessity of a more robust approach

Motivation: Solution Proposal

- RRT: Rapidly Random exploring Tree

- Collision-free trajectory: more efficient environment exploration

- Randomness: Behavior harder to predict

First iteration

Iteration begin

Find closest

node

random point

sampled direction

and update parent

Reiterate the previous process until goal reached

Reiterate the previous process until goal reached

Compute the final optimal path

Bi-RRT* Algorithm:

Perform the previous algorithm (RRT*) in two opposite directions:

- Build an exploring tree starting from the robot position
- Build a second exploring tree starting from the target position

Merge both trees once two nodes are close enough

Implementation based on:

- Adaptive step size
- Adaptive neighborhood radius for parent assignment
- Adaptive sampling area

Prof. Gordon Cheng (TUM)

Prof. Gordon Cheng (TUM)

Static obstacles: video OAV vs Bi-RRT

Static obstacles: video OAV vs Bi-RRT

Simulated Scenarios

Final path taken by the robot by the old implementation (OAV)

Final path taken by the robot by the new implementation (RRT)

	Obstacle Avoidance Vector	Bi-RRT*
Time from starting position to target	142.335 s	113.716 s
Number of steps from starting position to target	2604 steps	2448 steps

Dynamic obstacles: attack mode OAV vs Bi-RRT

Dynamic obstacles: defense mode OAV vs Bi-RRT

Experiment Setup:

Computational Cost:

Average processing time per cycle is equal to <u>1.924 ms</u>

Computational Cost:

In average, a new decision is made every 13.153 ms

Video

Conclusion & Future Work

Conclusion:

- Bi-RRT: better obstacle avoidance than old algorithm
- Real-time constraints preserved

Future Work:

- Further parameter tuning
- Fusion of Bi-RRT with B-Splines for more smoothness
- Obstacle Detection
- Odoemtry
- Strategy and Player roles