18 Continuous Functions

Exercise 18.1. Show that the $\varepsilon - \delta$ definition of continuity in \mathbb{R} implies the open set definition

Solution. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy the $\varepsilon - \delta$ definition of continuity, and let $V \subseteq \mathbb{R}$ be open. Fix $x \in f^{-1}(V)$, and choose ε such that the interval $(f(x) - \varepsilon, f(x) + \varepsilon)$ is contained in V. Then there is some $\delta > 0$ such that

$$f((x - \delta, x + \delta)) \subseteq (f(x) - \varepsilon, f(x) + \varepsilon) \subseteq V$$

which implies that $(x - \delta, x + \delta) \subseteq f^{-1}(V)$. Since x was arbitrary, $f^{-1}(V)$ is open.

Exercise 18.2. Suppose that $f: X \to Y$ is continuous and $A \subseteq X$. If x is a limit point of A, is f(x) a limit point of f(A)?

Solution. No, f could be constant for example.

Exercise 18.3. Let X and X' denote the same set in the topologies \mathcal{T} and \mathcal{T}' respectively. Let $i: X' \to X$ be the identity function.

- (a) Show that i is continuous $\iff \mathcal{T}'$ is finer than \mathcal{T} .
- (b) Show that i is a homeomorphism $\iff \mathcal{T}' = \mathcal{T}$.

Solution. (a) If i is continuous and U is open in \mathcal{T} , then $i^{-1}(U) = U$ is open in \mathcal{T}' . Conversely, if \mathcal{T}' is finer than \mathcal{T} and U is open in \mathcal{T} , then $i^{-1}(U) = U$ is open in \mathcal{T}' .

(b) i and i^{-1} are both identity functions.

Exercise 18.4. Given $y_0 \in Y$, show that the map $f: X \to X \times Y$ defined by $f(x) = x \times y_0$ is an embedding.

Solution. f is clearly continuous, as it's the product of the identity function with a constant function. Also, it's clear that f is injective with range $X \times \{y_0\}$.

If U is open in X, then $f(U) = U \times \{y_0\}$ is open in $X \times \{y_0\}$, thus f^{-1} is continuous. Therefore, f is an imbedding.

Exercise 18.5. Show that the subspace (a, b) of \mathbb{R} is homeomorphic with (0, 1), and the subspace [a, b] is homeomorphic with [0, 1].

Solution. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \frac{x-a}{b-a}$, which is continuous and has a continuous inverse. Then f restricted to the domains (a,b) or [a,b] are both continuous and invertible, so we have the result.

Exercise 18.6. Find a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous at precisely one point.

Solution. Define f such that

$$f(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}. \end{cases}$$

f is only continuous at x = 0.

Exercise 18.7. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous from the right, that is,

$$\lim_{x \to a^+} f(x) = f(a)$$

for each $a \in \mathbb{R}$. Show that f is continuous when considered as a function from $\mathbb{R} \to \mathbb{R}_{\ell}$.

Solution. Let [a,b) be an open basis set of \mathbb{R}_{ℓ} , and let $x_0 \in f^{-1}([a,b))$. Choose some $\varepsilon > 0$ such that $[f(x_0), f(x_0) + \varepsilon) \subseteq [a,b)$. Then there is some $\delta > 0$ such that

$$f((x - \delta, x + \delta)) \subseteq [f(x_0), f(x_0) + \epsilon) \subseteq [a, b).$$

Then $(x - \delta, x + \delta) \in f^{-1}([a, b))$, therefore $f^{-1}([a, b))$ is open and $f : \mathbb{R} \to \mathbb{R}_{\ell}$ is continuous.

Exercise 18.8. Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous.

- (a) Show that $\{x \mid f(x) \leq g(x)\}$ is closed in X.
- (b) Show that $h(x) = \min(f(x), g(x))$ is continuous.

Solution. (a) Suppose that x is chosen so that f(x) > g(x). We must find a neighborhood of x who's points also satisfy this inequality. Since order topologies are Hausdorff, we can choose two disjoint intervals such that $f(x) \in (a,b)$ and $g(x) \in (c,d)$. Then $f^{-1}(a,b) \cap g^{-1}(c,d)$ is open, contains x, and all points z in this set satisfy f(z) > g(z). Therefore, the complement set $\{x \mid f(x) \leq g(x)\}$ is closed.

(b) We have

$$h(x) = \begin{cases} f(x) & f(x) \le g(x) \\ g(x) & g(x) \le f(x) \end{cases}$$

Since the domains in both cases are closed by (a), h is continuous by the pasting lemma.

Exercise 18.9. Let $\{A_{\alpha}\}$ be a collection of subsets of X; let $X = \bigcup A_{\alpha}$. Let $f: X \to Y$; suppose $f|_{A_{\alpha}}$ is continuous for each α .

- (a) If $\{A_{\alpha}\}$ is finite and each A_{α} is closed, then f is continuous.
- (b) Find an example where the collection $\{A_{\alpha}\}$ is countable and each A_{α} is closed, but f is not continuous.

(c) $\{A_{\alpha}\}$ is said to be locally finite if each $x \in X$ has a neighborhood that intersects only finitely many A_{α} . Show that if $\{A_{\alpha}\}$ is locally finite and each A_{α} is closed, then f is continuous.

Solution. (a) This is true by induction and the pasting lemma.

(b) Define $A_0 = \{0\}$ and $A_n = [1/(n+1), 1/n]$ for each $n \in \mathbb{N}$. The union is [0,1]. Define $f:[0,1] \to \mathbb{R}$ so that f(x) is 1 if x=0, and 0 otherwise. Then f is not continuous, but it is continuous when restricted to each A_n .

The key here was to choose the A_n so that some of the closed sets have a nonclosed union, and then have another set include the limit point.

(c) We will show that the arbitrary union of a locally finite collection of closed sets $\{A_{\alpha}\}$ is closed. Suppose that $x \notin \bigcup A_{\alpha}$. By local finiteness, there is some neighborhood U containing x which intersects only finitely many A_{α} ; call these intersections A_1, \ldots, A_n . The union of these finitely many closed sets is closed, so there is a neighborhood V of x which intersects none of them. Now $U \cap V$ is a neighborhood of x disjoint from $\bigcup A_{\alpha}$, thus the union is closed.

Following the proof of the pasting lemma, for each closed set C we have

$$f^{-1}(C) = \bigcup (f|_{A_{\alpha}})^{-1}(C),$$

which is the union of locally finite closed sets, and thus closed.

Exercise 18.10. Let $f:A\to B$ and $g:C\to D$ be continuous functions. Let us define a map $f\times g:A\times C\to B\times D$ by the equation

$$(f \times g)(a \times c) = (f(a) \times g(c)).$$

Show that $f \times g$ is continuous.

Solution. Let $U \times V \subseteq B \times D$ be open. Then we have

$$(f \times g)^{-1}(U \times V) = \{a \times c \mid f(a) \in U \text{ and } g(c) \in V\}$$

= $f^{-1}(U) \times g^{-1}(V)$,

which is open because f and g are continuous.

Exercise 18.11. Let $F: X \times Y \to Z$. We say that F is continuous in each variable separately if, for each $y_0 \in Y$, the map $h: X \to Z$ defined by $h(x) = F(x, y_0)$ is continuous, and similarly with the other variable. Show that if F is continuous, then it's continuous in each variable separately.

Solution. Fix $y_0 \in Y$, and define $h(x) = F(x, y_0)$. Let U be an open set in Z. Then

$$h^{-1}(U) = \{ x \in X \mid F(x, y_0) \in U \}$$

Let $x \in h^{-1}(U)$, so that $F(x, y_0) \in U$. Then we have $(x, y_0) \in F^{-1}(U)$. Since F is continuous, let $A \times B$ be a neighborhood of (x, y_0) contained in $F^{-1}(U)$. Then

$$h(A) = F(A, y_0) \subseteq F(A \times B) \subseteq U$$

 $A \subseteq h^{-1}(U),$

Exercise 18.12. Let $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by the equation

$$F(x,y) = \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is continuous in each variable, but not continuous.

Solution. Fix $y_0 \in \mathbb{R}$. We have F(x,0) = 0 for all x, so let's assume $y_0 \neq 0$. Then

$$h(x) = F(x, y_0) = \frac{xy_0}{x^2 + y_0^2},$$

which is continuous by real analysis.

Now consider the function h(x) = F(x,x). We have h(0) = 0, but h(x) = 1/2 for any nonzero x, so h is not continuous at x = 0. Since $\delta : x \mapsto (x,x)$ is continuous and $h = F \circ \delta$, F cannot be continuous.

Exercise 18.13. Let $A \subseteq X$; let $f: A \to Y$ be continuous; let Y be Hausdorff. Show that if f may be extended to a continuous function $g: \overline{A} \to Y$, then g is uniquely determined by f.

Solution. Suppose there existed two continuous extensions $g_1, g_2 : \overline{A} \to Y$, and let x be any point in $\overline{A} - A$. Assume for a contradiction that $g_1(x) \neq g_2(x)$. Then because Y is Hausdorff, we can choose disjoint open sets $U, V \subseteq Y$ such that $g_1(x) \in U$ and $g_2(x) \in V$. We have

$$x \in g_1^{-1}(U) \cap g_2^{-1}(V),$$

so this intersection is open and nonempty, thus it intersects A. Choosing a so that

$$a \in A \cap g_1^{-1}(U) \cap g_2^{-1}(V),$$

we have $g_1(a) = g_2(a) = f(a) \in U \cap V$, contradicting that U and V are disjoint. Therefore, $g_1 = g_2$.