Lecture 9: Penalty Methods and Multiplier Methods

- Quadratic Penalty Methods
- Introduction to Multiplier Methods

Two Convergence Mechanisms

Consider the equality constrained problem

minimize
$$f(x)$$
 subject to $x \in X$, $h(x) = 0$,

where $f: \mathbb{R}^n \mapsto \mathbb{R}$ and $h: \mathbb{R}^n \mapsto \mathbb{R}^m$ are continuous, and X is closed.

The quadratic penalty method:

$$oldsymbol{x}^r = rg \min_{oldsymbol{x} \in X} L_{c^r}(oldsymbol{x}, oldsymbol{\lambda}^r) \equiv f(oldsymbol{x}) + (oldsymbol{\lambda}^r)' oldsymbol{h}(oldsymbol{x}) + rac{c^r}{2} \|oldsymbol{h}(oldsymbol{x})\|^2$$

where the λ^r is a bounded sequence and c^r satisfies $0 < c^r < c^{r+1}$ for all r and $c^r \to \infty$.

- Mechanism 1 for convergence: taking λ^r close to a Lagrange multiplier vector
 - * Assume $X = \mathbb{R}^n$ and (x^*, λ^*) is a local min-Lagrange multiplier pair satisfying the 2nd order sufficiency conditions

- \star For c sufficiently large, $oldsymbol{x}^*$ is a strict local min of $L_c(\cdot,oldsymbol{\lambda}^*)$
- Mechanism 2 for convergence: Taking c^r very large
 - \star For large c and any λ , we have

$$L_c(\cdot, \lambda) pprox \left\{ egin{array}{ll} f(m{x}) & ext{if } m{x} \in X ext{ and } m{h}(m{x}) = m{0} \\ \infty & ext{otherwise} \end{array}
ight.$$

• Example:

minimize
$$f(\boldsymbol{x}) = \frac{1}{2}(x_1^2 + x_2^2)$$

subject to $x_1 = 1$

We have $\boldsymbol{x}^* = (1,0), \ \lambda^* = -1$ and

$$L_c(\mathbf{x}, \lambda) = \frac{1}{2}(x_1^2 + x_2^2) + \lambda(x_1 - 1) + \frac{c}{2}(x_1 - 1)^2$$
$$x_1(\lambda, c) = \frac{c - \lambda}{c + 1}, \quad x_2(\lambda, c) = 0$$

Global Convergence

- Suppose $c^r \to \infty$. Then every limit point of $\{x^r\}$ is a global min.
- Proof: The optimal value of the problem is

$$f^* = \inf_{\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0}, \boldsymbol{x} \in X} L_{c^r}(\boldsymbol{x}, \boldsymbol{\lambda}^r).$$

We have $L_{c^r}(\mathbf{x}^r, \boldsymbol{\lambda}^r) \leq L_{c^r}(\mathbf{x}, \boldsymbol{\lambda}^r)$, $\forall \mathbf{x} \in X$ so taking the inf of the RHS over $x \in X$, $h(\mathbf{x}) = \mathbf{0}$ yields

$$L_{c^r}(\boldsymbol{x}^r, \boldsymbol{\lambda}^r) = f(\boldsymbol{x}^r) + (\boldsymbol{\lambda}^r)' \boldsymbol{h}(\boldsymbol{x}^r) + \frac{c^r}{2} \|\boldsymbol{h}(\boldsymbol{x}^r)\|^2 \le f^*$$

Let $(\bar{x}, \bar{\lambda})$ be a limit point of $\{x^r, \lambda^r\}$. Without loss of generality, assume that $\{x^r, \lambda^r\} \to (\bar{x}, \bar{\lambda})$. Taking the limsup above

$$f(\bar{\boldsymbol{x}}) + \bar{\boldsymbol{\lambda}}' \boldsymbol{h}(\bar{\boldsymbol{x}}) + \limsup_{r \to \infty} \frac{c^r}{2} \|\boldsymbol{h}(\boldsymbol{x}^r)\|^2 \le f^*$$

By $||h(x^r)||^2 \ge 0$ and $\{c^r\} \to \infty$, we have $h(x^r) \to 0$ and $h(\bar{x}) = 0$. Hence, \bar{x} is feasible, and since the above inequality implies $f(\bar{x}) \le f^*$, so \bar{x} is optimal.

Lagrange Multiplier Estimates

• Assume that $X = \mathbb{R}^n$, and f and h are continuously differentiable. Let $\{\boldsymbol{\lambda}^r\}$ be bounded, and $\{c^r\} \to \infty$. Assume \boldsymbol{x}^r satisfies $\nabla_{\boldsymbol{x}} L_{c^r}(\boldsymbol{x}^r, \boldsymbol{\lambda}^r) = 0$ for all r, and that $\boldsymbol{x}^r \to \boldsymbol{x}^*$, where \boldsymbol{x}^* is such that $\operatorname{rank}(\nabla h(\boldsymbol{x}^*)) = m$. Then $h(\boldsymbol{x}^*) = 0$ and $\tilde{\boldsymbol{\lambda}}^r \to \boldsymbol{\lambda}^*$, where

$$\tilde{\boldsymbol{\lambda}}^r = \boldsymbol{\lambda}^r + c^r \boldsymbol{h}(\boldsymbol{x}^r), \quad \nabla_{\boldsymbol{x}} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \boldsymbol{0}.$$

• Proof: We have

$$\mathbf{0} = \nabla_{\mathbf{x}} L_{c^r}(\mathbf{x}^r, \boldsymbol{\lambda}^r) = \nabla f(\mathbf{x}^r) + \nabla h(\mathbf{x}^r) \left(\boldsymbol{\lambda}^r + c^r h(\mathbf{x}^r)\right) = \nabla f(\mathbf{x}^r) + \nabla h(\mathbf{x}^r) \tilde{\boldsymbol{\lambda}}^r.$$

Multiply with

$$\left(
abla oldsymbol{h}(oldsymbol{x}^r)'
abla oldsymbol{h}(oldsymbol{x}^r)
ight)^{-1}
abla oldsymbol{h}(oldsymbol{x}^r)'$$

and take lim to obtain $\tilde{\lambda}^r \to \lambda^*$ with

$$oldsymbol{\lambda}^* = -\left(
abla oldsymbol{h}(oldsymbol{x}^*)'
abla oldsymbol{h}(oldsymbol{x}^*)\right)^{-1}
abla oldsymbol{h}(oldsymbol{x}^*)'
abla f(oldsymbol{x}^*).$$

We also have $\nabla_{\boldsymbol{x}}L(\boldsymbol{x}^*,\boldsymbol{\lambda}^*)=\mathbf{0}$ and $\boldsymbol{h}(\boldsymbol{x}^*)=\mathbf{0}$ (since $\tilde{\boldsymbol{\lambda}}^r$ converges).

Practical Behaviors

Three possibilities:

- * The method breaks down because an x^r with $\nabla_x L_{c^r}(x^r, \lambda^r) \approx 0$ cannot be found.
- \star A sequence $\{x^r\}$ with $\nabla_x L_{c^r}(x^r, \lambda^r) \approx 0$ is obtained, but it either has no limit points, or for each of its limit points x^* the matrix $\nabla h(x^*)$ has rank < m.
- * A sequence $\{x^r\}$ with with $\nabla_{x}L_{c^r}(x^r, \lambda^r) \approx 0$ is found and it has a limit point x^* such that $\nabla h(x^*)$ has rank m. Then, x^* together with λ^* [the corresponding limit point of $\{\lambda^r + c^r h(x^r)\}$] satisfies the first-order necessary conditions.
- III-conditioning: The condition number of the Hessian $\nabla^2_{xx}L_{c^r}(x^r, \lambda^r)$ tends to increase with c^r .
- To overcome ill-conditioning:

* Use Newton-like method (and double precision).

- ★ Use good starting points.
- * Increase $\{c^r\}$ at a moderate rate (if $\{c^r\}$ is increased at a fast rate, $\{x^r\}$ converges faster, but the likelihood of ill-conditioning is greater).

Inequality Constraints

 Convert them to equality constraints by using squared slack variables that are eliminated later.

- Convert inequality constraint $g_j(x) \leq 0$ to equality constraint $g_j(x) + z_j^2 = 0$.
- The penalty method solves problems of the form

$$\min_{\boldsymbol{x},\boldsymbol{z}} \bar{L}_c(\boldsymbol{x},\boldsymbol{z},\boldsymbol{\lambda},\boldsymbol{\mu}) = L_c(\boldsymbol{x},\boldsymbol{\lambda}) + \sum_{j=1}^r \left[\mu_j \left(g_j(\boldsymbol{x}) + z_j^2 \right) + \frac{c}{2} |g_j(\boldsymbol{x}) + z_j^2|^2 \right],$$

for various values of λ , μ and c.

• First minimize $ar{L}_c(m{x},m{z},m{\lambda},m{\mu})$ with respect to $m{z}$ to compute $L_c(m{x},m{\lambda},m{\mu})$ by

$$\min_{\boldsymbol{z}} \bar{L}_c(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = L_c(\boldsymbol{x}, \boldsymbol{\lambda}) + \sum_{j=1}^r \min_{z_j} \left[\mu_j \left(g_j(\boldsymbol{x}) + z_j^2 \right) + \frac{c}{2} |g_j(\boldsymbol{x}) + z_j^2|^2 \right]$$

and then minimize $L_c(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ with respect to \boldsymbol{x} .

Multiplier Methods

• Recall that if (x^*, λ^*) is a local min-Lagrange multiplier pair satisfying the 2nd order sufficiency conditions, then for c sufficiently large, x^* is a strict local min of $L_c(\cdot, \lambda^*)$.

- This suggests that for $\lambda^r \approx \lambda^*$, $x^r \approx x^*$.
- Hence it is a good idea to use $\lambda^r \approx \lambda^*$, such as

$$\lambda^{r+1} = \tilde{\lambda}^r = \lambda^r + c^r h(x^r)$$

This is the (1st order) method of multipliers.

- Key advantages to be shown:
 - * Less ill-conditioning: It is not necessary that $c^r \to \infty$ (only that c^r exceeds some threshold).

* Faster convergence when λ^r is updated than when λ^r is kept constant (whether $c^r \to \infty$ or not).

Consider the equality constrained problem

minimize
$$f(x)$$
 subject to $h(x) = 0$,

where $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ are continuously differentiable.

The (1st order) multiplier method finds

$$oldsymbol{x}^r = rg \min_{oldsymbol{x} \in \mathbb{R}^n} L_{c^r}(oldsymbol{x}, oldsymbol{\lambda}^r) \equiv f(oldsymbol{x}) + (oldsymbol{\lambda}^r)' oldsymbol{h}(oldsymbol{x}) + rac{c^r}{2} \|oldsymbol{h}(oldsymbol{x})\|^2$$

and updates λ^r using

$$\boldsymbol{\lambda}^{r+1} = \boldsymbol{\lambda}^r + c^r \boldsymbol{h}(\boldsymbol{x}^r)$$

Convex Example

- Problem: $\min_{x_1=1} = \frac{1}{2}(x_1^2 + x_2^2)$ with optimal solution $\boldsymbol{x}^* = (1,0)$ and Lagrangian multiplier $\lambda^* = -1$.
- We have

$$\boldsymbol{x}^{r} = \underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{arg\,min}} L_{c^{r}}(\boldsymbol{x}, \lambda^{r}) = \left(\frac{c^{r} - \lambda^{r}}{c^{r} + 1}, 0\right)$$
$$\lambda^{r+1} = \lambda^{r} + c^{r} \left(\frac{c^{r} - \lambda^{r}}{c^{r} + 1} - 1\right)$$
$$\lambda^{r+1} - \lambda^{*} = \frac{\lambda^{r} - \lambda^{*}}{c^{r} + 1}$$

- We see that:
 - * $\lambda^r \to \lambda^* = -1$ and $x^r \to x^* = (1,0)$ for every nondecreasing sequence $\{c^r\}$. It is NOT necessary to increase c^r to ∞ .
 - * The convergence rate becomes faster as c^r becomes larger; in fact $\{|\lambda^r \lambda^*|\}$ converges superlinearly if $c^r \to \infty$.

Nonconvex Example

- Problem: $\min_{x_1=1}=\frac{1}{2}(-x_1^2+x_2^2)$ with optimal solution $\boldsymbol{x}^*=(1,0)$ and Lagrangian multiplier $\lambda^*=1$.
- We have

$$m{x}^r = rg \min_{m{x} \in \mathbb{R}^n} L_{c^r}(m{x}, \lambda^r) = \left(rac{c^r - \lambda^r}{c^r - 1}, 0
ight)$$

provided $c^r > 1$ (otherwise the min does not exist)

$$\lambda^{r+1} = \lambda^r + c^r \left(\frac{c^r - \lambda^r}{c^r - 1} - 1 \right)$$
$$\lambda^{r+1} - \lambda^* = -\frac{\lambda^r - \lambda^*}{c^r - 1}$$

- We see that:
 - \star No need to increase c^r to ∞ for convergence; doing so results in faster convergence rate.
 - \star To obtain convergence, c^r must eventually exceed the threshold 2.

Primal Functional

• Let (x^*, λ^*) be a regular local min-Lagrangian pair satisfying the 2nd order sufficient conditions are satisfied.

The primal functional

$$p(u) = \min_{\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{u}} f(\boldsymbol{x}),$$

defined for u in an open sphere centered at u = 0, and we have

$$p(\mathbf{0}) = f(\mathbf{x}^*), \quad \nabla p(\mathbf{0}) = -\boldsymbol{\lambda}^*.$$

• Two examples:

$$p(u) = \min_{x_1 - 1 = u} \frac{1}{2} (x_1^2 + x_2^2) = \frac{1}{2} (1 + u)^2, \ p(0) = f(\mathbf{x}^*) = \frac{1}{2}, \ p'(0) = 1 = -\lambda^*$$

and

$$p(u) = \min_{x_1 - 1 = u} \frac{1}{2} (-x_1^2 + x_2^2) = -\frac{1}{2} (1 + u)^2, \ p'(0) = -1 = -\lambda^*$$

Augmented Lagrangian Minimization

• Break down the minimization of $L_c(\boldsymbol{x}, \boldsymbol{\lambda})$:

$$\min_{\boldsymbol{x}} L_c(\boldsymbol{x}, \boldsymbol{\lambda}) = \min_{\boldsymbol{u}} \min_{\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{u}} \left\{ f(\boldsymbol{x}) + \boldsymbol{\lambda}' \boldsymbol{h}(\boldsymbol{x}) + \frac{c}{2} \|\boldsymbol{h}(\boldsymbol{x})\|^2 \right\}$$

$$= \min_{\boldsymbol{u}} \left\{ p(\boldsymbol{u}) + \boldsymbol{\lambda}' \boldsymbol{u} + \frac{c}{2} \|\boldsymbol{u}\|^2 \right\},$$

where the minimization above is understood to be local in a neighborhood of u = 0.

- ullet Interpretation of this minimization: Penalized Primal Function $p(m{u}) + rac{c}{2} \|m{u}\|^2$
- If c is sufficiently large, $p(u) + \lambda' u + \frac{c}{2} ||u||^2$ is convex in a neighborhood of $\mathbf{0}$. Also, for $\lambda \approx \lambda^*$ and large c, the value $\min_{\mathbf{x}} L_c(\mathbf{x}, \lambda) \approx p(\mathbf{0}) = f(\mathbf{x}^*)$.

Interpretation of This Method

Geometric interpretation of the iteration

$$\boldsymbol{\lambda}^{r+1} = \boldsymbol{\lambda}^r + c^r \boldsymbol{h}(\boldsymbol{x}^r).$$

- If λ^r is sufficiently close to λ^* and/or c^r is sufficiently large, λ^{r+1} will be closer to λ^* than λ^r .
- c^r need not be increased to ∞ in order to obtain convergence; it is sufficient that c^r eventually exceeds some threshold level.
- If p(u) is linear, convergence to λ^* will be achieved in one iteration.

Computational Aspects

- Key issue is how to select $\{c^r\}$.
- \bullet c^r should eventually become larger than the "threshold" of the given problem.
- ullet conditioning at the 1st minimization.
- c^r should not be increased so fast that too much ill-conditioning is forced upon the unconstrained minimization too early.
- ullet convergence rate.
- A good practical scheme is to choose a moderate value c^0 , and use $c^{r+1} = \beta c^r$, where $\beta > 1$ is a scalar (typically $\beta \in [5, 10]$ if a Newton like method is used).
- In practice the minimization of $L_{c^r}(x, \lambda^r)$ is typically inexact (usually exact asymptotically). In some variants of the method, only one Newton step per minimization is used (with safeguards).

Duality Framework

Consider the problem

minimize
$$f(\boldsymbol{x}) + \frac{c}{2} \|\boldsymbol{h}(\boldsymbol{x})\|^2$$
 subject to $\|\boldsymbol{x} - \boldsymbol{x}^*\| < \epsilon, \ \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0},$

where ϵ is small enough for a local analysis to hold based on the implicit function theorem, and c is large enough for the minimum to exist.

Consider the dual function and its gradient

$$q_c(\lambda) = \min_{\|\boldsymbol{x} - \boldsymbol{x}^*\| < \epsilon} L_c(\boldsymbol{x}, \lambda) = L_c(\boldsymbol{x}(\lambda, c), \lambda),$$
$$\nabla q_c(\lambda) = \nabla_{\lambda} \boldsymbol{x}(\lambda, c) \nabla_{\boldsymbol{x}} L_c(\boldsymbol{x}(\lambda, c), \lambda) + \boldsymbol{h}(\boldsymbol{x}(\lambda, c)) = \boldsymbol{h}(\boldsymbol{x}(\lambda, c))$$

We have $\nabla q_c(\boldsymbol{\lambda}^*) = \boldsymbol{h}(\boldsymbol{x}^*) = \boldsymbol{0}$ and $\nabla^2 q_c(\boldsymbol{\lambda}^*) \succ 0$.

ullet The multiplier method is a steepest ascent iteration for maximizing q_{c^r}

$$\boldsymbol{\lambda}^{r+1} = \boldsymbol{\lambda}^r + c^r \nabla q_{c^r}(\boldsymbol{\lambda}^r).$$