CSE523

Machine learning

Fuzzy Logic for Vehicle Motion Direction Detection

Group: The learner's squad

AU2140023 - Rohit Rathi

AU2140064 - Dhruvin Prajapati

AU2140122 - Kushalkumar Suthar

AU2140141 - Krutarth Trivedi

What is fuzzy logic?

- Approximate
- Fuzzy sets
- Membership function

Data Set Explanation

There are seven entities:

- 1. Frm
- 2. Track
- 3. Xc
- 4. Yc
- 5. W
- 6. H
- 7. Velocity

Frm	Track	xc	yc	W	h	Velocity(kmph)
1	1	2373	1324	95	128	0
2	1	2376	1331	94	128	22.12735165
3	1	2378	1338	96	127	21.32106834
4	1	2381	1347	96	129	26.45146189
5	1	2384	1356	97	129	28.12338374
6	1	2387	1363	96	128	25.49540046
7	1	2390	1371	95	130	25.49809004
8	1	2393	1379	94	130	25.47731044
9	1	2395	1387	94	128	25.08667118
10	1	2398	1395	94	128	25.14730526
11	1	2402	1403	94	130	25.58595195
12	1	2405	1412	96	130	26.39773612
13	1	2408	1420	97	130	26.16989314
14	1	2411	1428	94	130	25.98810281
15	1	2413	1437	94	130	26.35463835
16	1	2416	1445	94	130	26.15008535
17	1	2419	1453	94	130	25.97926713
18	1	2422	1462	95	129	26.44989327
19	1	2425	1469	95	130	25.66228096
20	1	2427	1477	95	130	25.37886817

Table 1: Given dataset

METHODOLOGY

- Data Analysis and Loading
- Calculate Motion Vectors (Centroid Difference)
- **Angle Calculation**
- Applying Fuzzy Logic
- Direction Categorization
- Visualization

Ahmedabad India, B. E. (2024). Cheatsheet: Directions: IBPS PO prelims and Mains - documents, videos and tests - bank exams PDF Download. Retrieved from https://edurev.in/t/255895/Cheatsheet-Directions

Different Methods:

Lecture 18 - different types of membership functions 1. (n.d.). Retrieved from

Ahmedabad https://www.scribd.com/document/493637688/Lecture-18-Different-Types-of-Membership-Functions

Triangular Approach:

Gaussian Approach:

Representation:

Results

Frm		Track	xc	ус	w	h	Velocity(ki	dx	dy
	1	13	1826	1383	36	94	0		
	2	13	1826	1381	37	92	5.810927	0	-2
	3	13	1827	1377	36	92	11.97759	1	-4
	4	13	1827	1373	36	92	12.74722	0	-4
	5	13	1828	1367	37	91	17.10052	1	-6
	6	13	1828	1362	37	91	16.99813	0	-5
	7	13	1828	1359	37	93	13.78322	0	-3
	8	13	1828	1356	37	93	11.87738	0	-3
	9	13	1829	1352	37	93	12.04038	1	-4
	10	13	1830	1349	38	95	11.08181	1	-3

Results

Gaussian

Frm	Track	XC	yo	3	w	h		Velocity(kr dx	dy		angle	N	NE	E	SE	S	SW	W	NW	direction
	1 13	3	1826	1383		36	94	0												
	2 13	3	1826	1381		37	92	5.810927	0	-2	-1.5708	0.999994	0.606531	0.135338	0.01111	0.000335	3.73E-06	1.52E-08	0.606531	N
	3 13	3	1827	1377		36	92	11.97759	1	-4	-1.32582	0.952513	0.789202	0.240556	0.026975	0.001113	1.69E-05	9.43E-08	0.422926	N
	4 13	3	1827	1373		36	92	12.74722	0	-4	-1.5708	0.999994	0.606531	0.135338	0.01111	0.000335	3.73E-06	1.52E-08	0.606531	N
	5 13	3	1828	1367		37	91	17.10052	1	-6	-1.40565	0.978135	0.732103	0.201582	0.020419	0.000761	1.04E-05	5.26E-08	0.480763	N
	6 13	3	1828	1362		37	91	16.99813	0	-5	-1.5708	0.999994	0.606531	0.135338	0.01111	0.000335	3.73E-06	1.52E-08	0.606531	N
	7 13	3	1828	1359		37	93	13.78322	0	-3	-1.5708	0.999994	0.606531	0.135338	0.01111	0.000335	3.73E-06	1.52E-08	0.606531	N
	8 13	3	1828	1356		37	93	11.87738	0	-3	-1.5708	0.999994	0.606531	0.135338	0.01111	0.000335	3.73E-06	1.52E-08	0.606531	N
	9 13	3	1829	1352		37	93	12.04038	1	-4	-1.32582	0.952513	0.789202	0.240556	0.026975	0.001113	1.69E-05	9.43E-08	0.422926	N
1	0 13	3	1830	1349		38	95	11.08181	1	-3	-1.24905	0.919509	0.840088	0.282359	0.034913	0.001588	2.66E-05	1.64E-07	0.37025	N

Triangular

Frm	Track	XC		yc	w	h	Velocity	(kr dx	dy		angle	N	NE	E	SE	S		SW	W		NW	direction
	1 1	3	1826	1383		36	94	0														
	2 1	3	1826	1381		37	5.8109	27	0	-2	-1.5708	0.996997	0.001502		0	0	0		0	0	0.001502	N
	3 1	3	1827	1377		36	2 11.977	59	1	-4	-1.32582	0.688083	0.311917		0	0	0		0	0	0	N
	4 1	3	1827	1373		36	2 12.747	22	0	-4	-1.5708	0.996997	0.001502		0	0	0		0	0	0.001502	N
	5 1	3	1828	1367		37	17.100	52	1	-6	-1.40565	0.789726	0.210274		0	0	0		0	0	0	N
	6 1	3	1828	1362		37	16.998	13	0	-5	-1.5708	0.996997	0.001502		0	0	0		0	0	0.001502	N
	7 1	3	1828	1359		37	3 13.783	22	0	-3	-1.5708	0.996997	0.001502		0	0	0		0	0	0.001502	N
	8 1	3	1828	1356		37	3 11.877	38	0	-3	-1.5708	0.996997	0.001502		0	0	0		0	0	0.001502	N
	9 1	3	1829	1352		37	3 12.040	38	1	-4	-1.32582	0.688083	0.311917		0	0	0		0	0	0	N
1	0 1	3	1830	1349		38	5 11.081	31	1	-3	-1.24905	0.590334	0.409666		0	0	0		0	0	0	N

Results

angle	N	NE	E	SE	S	SW	W	NW	direction
0.321751	0	0	0.590334	0.409666	0	0	0	0	E
0.197396	0	0	0.748668	0.251332	0	0	0	0	E
0.083141	0	0	0.894141	0.105859	0	0	0	0	E
0.44752	0	0	0.4302	0.5698	0	0	0	0	SE
0.2783	0	0	0.645658	0.354342	0	0	0	0	E
0.165149	0	0	0.789726	0.210274	0	0	0	0	E
0.358771	0	0	0.543199	0.456801	0	0	0	0	E
0.197396	0	0	0.748668	0.251332	0	0	0	0	E
0.218669	0	0	0.721582	0.278418	0	0	0	0	E
0.218669	0	0	0.721582	0.278418	0	0	0	0	E
0.099669	0	0	0.873098	0.126902	0	0	0	0	E
0.463648	0	0	0.409666	0.590334	0	0	0	0	SE
0.982794	0	0	0	0.748668	0.251332	0	0	0	SE
0.218669	0	0	0.721582	0.278418	0	0	0	0	E
0.519146	0	0	0.339003	0.660997	0	0	0	0	SE
0.380506	0	0	0.515524	0.484476	0	0	0	0	E
0.558599	0	0	0.288769	0.711231	0	0	0	0	SE
0.463648	0	0	0.409666	0.590334	0	0	0	0	SE
0.463648	0	0	0.409666	0.590334	0	0	0	0	SE
0.463648	0	0	0.409666	0.590334	0	0	0	0	SE

Summary, conclusion and future work

- Fuzzy logic helps to figure out the direction of vehicle accurately.
- Applying the approach would make traffic control and self driving cars better.
- The flexibility of fuzzy logic of applying it on real time scenario makes it more efficient.
- Hence it would make transportation systems more efficient and safer.
- To increase the uses, we can apply machine learning models to the outputs.
- To visualize the predictions, we can plot that predicted direction on the image.

References

Fuzzy Logic (Stanford Encyclopedia of Philosophy/Summer 2023 Edition). (2021, November 11). https://plato.stanford.edu/entries/logic-fuzzy/

Behavior recognition of moving objects using deep neural networks. (2018, October 1). IEEE Conference Publication — IEEE Xplore. https://ieeexplore.ieee.org/document/8560021

Yagiz, N., Sakman, E., Guclu, R. (2008, February). Different control applications on a vehicle using fuzzy logic control

https://www.researchgate.net/publication/225142683 Different control applications on a vehicle using fuzzy logic control

Lecture 18 - different types of membership functions 1. (n.d.). Retrieved from https://www.scribd.com/document/493637688/Lecture-18-Different-Types-of-Membership-Functions-1

Thank you

