

PREPARED BY:	DATE	SPEC No. LD-17716B
APPROVED BY:	DATE	FILE No.
		ISSUE: Mar., 28, 2006
		PAGE : 23 pages
		APPLICABLE GROUP AVC LIQUID CRYSTAL DISPLAY GROUP

SHARP
AVC LIQUID CRYSTAL DISPLAY GROUP
SHARP CORPORATION
SPECIFICATION

DEVICE SPECIFICATION FOR
TFT - LCD module

MODEL No. LQ370D3LZ14

CUSTOMER'S APPROVAL

DATE

BY

PRESENTED

BY

S. UEHIRA

Department General manager

Development Engineering Dept. 4

DEVELOPMENT CENTER

AVC LIQUID CRYSTAL DISPLAY GROUP

SHARP CORPORATION

RECORDS OF REVISION

MODEL No. : LQ370D 3LZ14

SPEC No. : LD-17716B

1. Application

This specification applies to the color 37.0" TFT-LCD module LQ370D3LZ14.

(Sharp management number of Short cut process panel model is "LQ370D3LZ14B") B

* These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

* In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

* Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

* SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.

* Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1920 × RGB × 1080 dots panel with 16,777,216 colors by using LVDS (Low Voltage Differential Signaling) to interface, +12V of DC supply voltages.

This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	94.0 (Diagonal)	cm
	37.0 (Diagonal)	inch
Active area	819.4(H) x 460.9 (V)	mm
Pixel Format	1920(H) x 1080(V) (1pixel = R + G + B dot)	pixel
Pixel pitch	0.42675(H) x 0.42675 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Unit Outline Dimensions (*1)	877.0(W) x 516.0(H) x 56.0(D)	mm
Mass	8.0 ± 0.3	Kg
Surface treatment	Anti glare, low reflection coating Hard coating: 2H Haze: 23 +/- 5%	

(*1) Outline dimensions are shown in Fig.1

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals and +12V DC power supply) (Shown in Fig.1)

Using connector : (LQ370D3LZ14)SM30B-LDYGLS (J.S.T. Mfg Co.,Ltd.)

(LQ370D3LZ14B)FI-X30SSL-HF(Japan Aviation Electronics Ind. , Ltd.)

Mating connector :FI-X30H(L), FI-X30C2(L) or FI-X30M(A1) (Japan Aviation Electronics Ind. , Ltd.)

Mating LVDS transmitter :THC63LVDM83R or equivalent device

Pin No.	Symbol	Function	Remark
1	VCC	+12V Power Supply	
2	VCC	+12V Power Supply	
3	VCC	+12V Power Supply	
4	VCC	+12V Power Supply	
5	GND	GND	
6	GND	GND	
7	GND	GND	
8	GND	GND	
9	GND	GND	
10	AIN0-	Aport (-)LVDS CH0 differential data input	LVDS
11	AIN0+	Aport (+)LVDS CH0 differential data input	LVDS
12	AIN1-	Aport (-)LVDS CH1 differential data input	LVDS
13	AIN1+	Aport (+)LVDS CH1 differential data input	LVDS
14	AIN2-	Aport (-)LVDS CH2 differential data input	LVDS
15	AIN2+	Aport (+)LVDS CH2 differential data input	LVDS
16	ACK-	Aport LVDS Clock signal(-)	LVDS
17	ACK+	Aport LVDS Clock signal(+)	LVDS
18	AIN3-	Aport (-)LVDS CH3 differential data input	LVDS
19	AIN3+	Aport (+)LVDS CH3 differential data input	LVDS
20	BIN0-	Bport (-)LVDS CH0 differential data input	LVDS
21	BIN0+	Bport (+)LVDS CH0 differential data input	LVDS
22	BIN1-	Bport (-)LVDS CH1 differential data input	LVDS
23	BIN1+	Bport (+)LVDS CH1 differential data input	LVDS
24	BIN2-	Bport (-)LVDS CH2 differential data input	LVDS
25	BIN2+	Bport (+)LVDS CH2 differential data input	LVDS
26	BCK-	Bport LVDS Clock signal(-)	LVDS
27	BCK+	Bport LVDS Clock signal(+)	LVDS
28	BIN3-	Bport (-)LVDS CH3 differential data input	LVDS
29	BIN3+	Bport (+)LVDS CH3 differential data input	LVDS
30	GND	GND	

[note]GND of a liquid crystal panel drive part has connected with a module chassis.

CN2 (Shown in Fig.1)

- Using connector :DF14A-20P-1.25H(59) (HIROSE ELECTRIC Co.,Ltd.)
 Mating connector :DF14-20S-1.25(connector) (HIROSE ELECTRIC Co.,Ltd.)
 :DF14-2628SCFA(Terminal) (HIROSE ELECTRIC Co.,Ltd.)

Pin No.	Symbol	Function	Remark
1	FRAME1	Frame frequency setting 1:60Hz 0:50Hz	Pull down: 43k (GND)
2	O/S SET	O/S operation setting 1:OS ON 0:OS OFF	Pull up: 4.7k (3.3V)
3	RESERVE	Reserved for Feature	Pull down: 43k (GND)
4	TEMP3	Data3 of panel surface temperature	Pull up: 4.7k (3.3V)
5	TEMP2	Data2 of panel surface temperature	Pull up: 4.7k (3.3V)
6	TEMP1	Data1 of panel surface temperature	Pull up: 4.7k (3.3V)
7	RESERVE	Not Available	[Note 3]
8	RESERVE	Not Available	[Note 3]
9	RESERVE	Not Available	[Note 3]
10	GND	GND	
11	R/L	Horizontal shift direction [Note 1]	Pull down: 43k (GND)
12	U/D	Vertical shift direction [Note 1]	Pull down: 43k (GND)
13	SELLVDS	Select LVDS data order	Pull up: 8.6k (3.3V) [Note 2]
14	RESERVE	Not Available	[Note 3]
15	RESERVE	Not Available	[Note 3]
16	RESERVE	Not Available	[Note 3]
17	RESERVE	Not Available	[Note 3]
18	RESERVE	Not Available	[Note 3]
19	RESERVE	Not Available	[Note 3]
20	RESERVE	Not Available	[Note 3]

*0: Low level voltage (GND) 1: High level voltage(3.3V)

[Note]In case of O/S set setting "1"(O/S_ON), it should be set the Temp1~3 to "1".

According as the surface temperature of the panel, enter the optimum 3 bit signal into pin No.4,5,6.

Measuring the correlation between detected temperature by the sensor on PWB in users side and actual surface temperature of panel at center, convert the temperature detected by the sensor to the surface temperature of panel to enter the 3 bit temperature data.

Pin no.	Surface temperature of panel							
	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35 and above
4	0	0	0	0	1	1	1	1
5	0	0	1	1	0	0	1	1
6	0	1	0	1	0	1	0	1

*0: Low level voltage (GND) 1: High level voltage(3.3V)

*For overlapping temperatures (such as 5 ,10 ,15 ,20 ,25 , 30 ,35) select the optimum parameter, judging from the actual picture image.

[Note 1]Display reversal function

Normal (Default)

R/L : L (GND) U/D: L (GND)

Vertical reverse image

R/L : L (GND) U/D: H (3.3V)

Horizontal reverse image

R/L : H (3.3V) U/D: L (GND)

Horizontal and vertical reverse image

R/L : H(3.3V) U/D: H (3.3V)

[Note 2] SELLVDS

Transmitter		SELLVDS	
Pin No	Data	=L(GND)	=H(3.3V) or Open
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	B3
20	TC0	B2	B4
22	TC1	B3	B5
23	TC2	B4	B6
24	TC3	B5	B7(MSB)
27	TC4	NA	NA
28	TC5	NA	NA
30	TC6	DE(*)	DE(*)
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	B6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	NA	NA

(*) Since the display position is prescribed by the rise of DE (Display Enable) signal,
please do not fix DE signal during operation at "High."

[Note 3] Please do not input anything to this pin.

- Interface block diagram

Corresponding Transmitter: THC63LVDM83R (THine) or equivalent device

- Block Diagram (LCD Module)

SELLVDS= High (3.3V) or Open**SELLVDS= Low(GND)**

DE: Display Enable

NA: Not Available (Fixed Low)

4-2. Backlight driving

CN3 (Inverter control)

Using connector: B6B-PH-K-S(LF)(JST)

Mating connector: PHR-6 (JST)

Pin No.	Symbol	Function	Remark
1	V _{ON}	Inverter ON / OFF	[Note 1]
2	Reserved	Not Available	
3	Reserved	Not Available	
4	V _{BRT}	Brightness Control	[Note 2]
5	Reserved	Not Available	
6	GND	GND	

*GND of an inverter board is not connected to GND of a module chassis and a liquid crystal panel drive part.

[Note 1] Inverter ON/OFF

Input voltage	Function
5V	Inverter: ON
0V	Inverter: OFF

[Note 2] Brightness Control

PWM Brightness Control is regulated by analog input voltage (0V to 5V) .

Input voltage	Function
5V	Brightness Control : (Dark)
0V	Brightness Control : (Bright)

CN4, CN5 (Inverter Power input Pin layout)

Using connector: B10B-PH-K-S(LF)(JST)

Mating connector: PHR-10(JST)

Pin No.	Symbol	Function
1	V _{INV}	24V
2	V _{INV}	24V
3	V _{INV}	24V
4	V _{INV}	24V
5	V _{INV}	24V
6	GND	GND
7	GND	GND
8	GND	GND
9	GND	GND
10	GND	GND

*GND of an inverter board is not connected to GND of a module chassis and a liquid crystal panel drive part.

4-3. The back light system characteristics

The back light system is direct type with 18 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Life time	T _L	60000	-	-	Hour	[Note]

[Note] • Lamp life time is defined as the time when brightness becomes 50% of the original value

in the continuous operation under the condition of Ta=25 °C and brightness control(V_{BRT}=0V).

- Above value is applicable when the long side of LCD module is placed horizontally (Landscape position).

(Lamp lifetime may vary if LCD module is in portrait position due to the change of mercury density inside the lamp.)

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	V _I	T _a =25	-0.3 ~ 3.6	V	[Note 1]
12V supply voltage (for Control)	V _C C	T _a =25	0 ~ +14	V	
Input voltage (for Inverter)	V _B R _T V _O N	T _a =25	0 ~ +6	V	
24V supply voltage (for Inverter)	V _{IN} V	T _a =25	0 ~ +29	V	
Storage temperature	T _{stg}	-	-25 ~ +60		[Note 2]
Operation temperature (Ambient)	T _{op} a	-	0 ~ +50		

[Note 1]SELLVDS, R/L, U/D,TEST, Frame1,O/S set, Temp1, Temp2, Temp3

[Note 2]Humidity 95%RH Max.(T_a 40)

Maximum wet-bulb temperature at 39 or less.(T_a>40)

No condensation.

6. Electrical Characteristics

6-1. Control circuit driving

Ta=25

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
+12V supply voltage	Supply voltage	V _{CC}	11.4	12	V	[Note 1]
	Regular current	I _{CC}	-	0.7	A	[Note 2]
	Rush current		-	6.5	A	[Note 7]
Permissible input ripple voltage	V _{RP}	-	-	100	mV _{P-P}	V _{CC} = +12.0V
Differential input threshold voltage	V _{TH}	-	-	100	mV	V _{CM} = +1.2V [Note 6]
High	V _{TL}	-100	-	-	mV	
Input Low voltage	V _{LIL}	-	-	0.8	V	[Note 3]
Input High voltage	V _{VIH}	2.0	-	3.3	V	
Input leak current (Low)	I _{IL}	-	-	400	μA	V _I = 0V [Note 4]
Input leak current (High)	I _{IH}	-	-	400	μA	V _I = 3.3V [Note 5]
Terminal resistor	R _T	-	100	-		Differential input

[Note] V_{CM}: Common mode voltage of LVDS driver.

[Note 1]

Input voltage sequences

0 < t1	20ms
0 < t2	50ms
0 < t3	1s
0 < t4	1s
t5	200ms
t6	0
t7	300ms

Dip conditions for supply voltage

a) 6.5V V_{CC} < 10.8V

td 10ms

b) V_{CC} < 6.5V

Dip conditions for supply voltage is based on input voltage sequence.

Data1: ACK ± ,AIN0 ± ,AIN1 ± ,AIN2 ± ,AIN3 ± ,BCK ± ,BIN0 ± ,BIN1 ± ,BIN2 ± ,BIN3 ±

V_{CM} voltage follows the sequence mentioned above .

Data2: R/L,U/D,SELLVDS,Frame1,O/Sset,Temp1,2,3

Please keep the following order

[On] First, input panel signal, and then turn on the back light

[Off] First, turn off the back light, and then switch off the panel input signal.

Unless you keep the above order, there is a case that all white or unusual screen is displayed instantaneously. However, this phenomenon is caused by variation of the input signal and would not damage LCD module itself.

[Note 2] Maximum current situation: white (RGB GS255)

Typical current situation: 256 gray-bar pattern (Vcc = +12.0V)

The explanation of RGB gray scale is seen in section 8.

[Note 3] R/L, U/D, SELLVDS, Frame1,O/S set, Temp1, Temp2, Temp3

[Note 4] SELLVDS

[Note 5] R/L,U/D, Frame1,O/S set, Temp1, Temp2, Temp3

[Note 6] ACK \pm ,AIN0 \pm ,AIN1 \pm ,AIN2 \pm ,AIN3 \pm , BCK \pm ,BIN0 \pm ,BIN1 \pm , BIN2 \pm , BIN3 \pm

[Note 7] "Rush current" is measured on a following condition .

Using power supply :

Manufacturer KIKUSUI Electronics Corp.

Type PAN16-10A

Current capacity 10A

LCD driving timing : Typ. Value

Display pattern : White or Max. current pattern

6-2. Inverter driving for back light

The back light system is direct type with 18 CCFTs (Cold Cathode Fluorescent Tube).

Ta=25

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
+ 24V	Current dissipation	INV	-	5.0	5.5	A
	Supply voltage	V _{INV}	23.0	24.0	25.0	V
Permissible input ripple voltage	V _{RF}	-	-	200	mV _{p-p}	V _{INV} = +24V
Input voltage (Low)	V _{ONL}	0	-	1.0	V	V _{on} impedance=24k
Input voltage (High)	V _{ONH}	2.3	5.0	6.0	V	
Brightness control voltage vs Brightness level (Reference value)	-	0		5	V	
		100		15	%	

【 Note 1 】 1)V_{INV}-turn-on condition

2) V_{INV} -turn-off condition

Note : The inverter unit is driving at the following drive frequency.

Lamp driving frequency : $36 \pm 5\text{KHz}$

Burst dimmer frequency : $275 \pm 20\text{Hz}$

There is possibility that the display problem of the backlights such as flicker, blinking, etc by the interference of the above inverter driving frequency and the LCD driving frequency will occur.

In setting of a LCD driving frequency, we recommend to set for the no interference with the above frequency to occur.

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2.

60Hz-mode

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	55	74.25	80	MHz	
Data enable signal	Horizontal period	TH	984	1100	1650	clock	
			14.8	14.8	-	μs	
	Horizontal period (High)	THd	960	960	960	clock	
	Horizontal period (Low)	TH-THd	1.80	1.87	-	μs	
	Vertical period	TV	1086	1125	1350	line	
	Vertical period (High)	TVd	1080	1080	1080	line	

【Note】 When vertical period is very long, flicker may occur.

Please turn off the module after it shows the black screen.

Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.

Fig.2 Timing characteristics of input signals

7-2. Input data signal and display position on the screen

Display position of Dat (V,H)

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

Colors & Gray scale	Gray Scale	Data signal																							
		R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	B5	B6	B7
Basic Color	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Green	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	Cyan	-	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Red	-	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Magenta	-	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray Scale of Red	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	↑	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	↑	↓	↓							↓							↓								
	Brighter	GS253	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	↓	GS254	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	GS255	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray Scale of Green	↑	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
	↑	↓	↓							↓							↓								
	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	
	↓	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	↑	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
	↑	↓	↓							↓							↓								
	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	
	↓	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	

0 : Low level voltage, 1 : High level voltage.

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen.

9. Optical characteristics

Ta=25 , Vcc = 12.0V, VINV = 24.0V ,60Hz-mode

【LQ370D3LZ14】

Parameter		Symbol	Condition	Min.	Typ.	Max.	Unit	Remark
Viewing angle range	Horizontal	21 22	CR 10	70	88 A	-	Deg.	[Note1,4]
	Vertical	11 12		70	88 A	-	Deg.	
Contrast ratio	CRn		=0 deg.	1000	1200	-		[Note2,4] V _{BRT} =0V
Response time(1)	r1 d1			-	6	-	mS	[Note3-1,4,5] V _{BRT} =0V
Response time(2)	r2 d2			-	12	20	mS	[Note3-2,4,5] V _{BRT} =0V
Chromaticity of white	x			0.242	0.272	0.302	-	[Note 4] V _{BRT} =0V
	y			0.247	0.277	0.307	-	
Chromaticity of red	x			0.610	0.640	0.670	-	
	y			0.300	0.330	0.360	-	
Chromaticity of green	x			0.250	0.280	0.310	-	
	y			0.570	0.600	0.630	-	
Chromaticity of blue	x			0.120	0.150	0.180	-	
	y			0.030	0.060	0.090	-	
Luminance of white	Y _{L1}			440	550		cd/m ²	[Note 4]
Luminance uniformity	w			-	-	1.25		[Note 6]

【LQ370D3LZ14B】 B

Parameter		Symbol	Condition	Min.	Typ.	Max.	Unit	Remark
Viewing angle range	Horizontal	21 22	CR 10	70	88	-	Deg.	[Note1,4]
	Vertical	11 12		70	88	-	Deg.	
Contrast ratio	CRn		=0 deg.	1000	1200	-		[Note2,4] V _{BRT} =0V
Response time(1)	r1 d1			-	6	-	mS	[Note3-1,4,5] V _{BRT} =0V
Response time(2)	r2 d2			-	12	20	mS	[Note3-2,4,5] V _{BRT} =0V
Chromaticity of white	x			0.248	0.278	0.308	-	[Note 4] V _{BRT} =0V
	y			0.255	0.285	0.315	-	
Chromaticity of red	x			0.610	0.640	0.670	-	
	y			0.300	0.330	0.360	-	
Chromaticity of green	x			0.250	0.280	0.310	-	
	y			0.570	0.600	0.630	-	
Chromaticity of blue	x			0.120	0.150	0.180	-	
	y			0.030	0.060	0.090	-	
Luminance of white	Y _{L1}			440	550		cd/m ²	[Note 4]
Luminance uniformity	w			-	-	1.25		[Note 6]

Measurement condition: Set the value of V_{BRT} to maximum luminance of white.

*The measurement shall be executed 60 minutes after lighting at rating.

【Note】The optical characteristics are measured using the following equipment.

Fig.4-1 Measurement of viewing angle range and Response time.
(Viewing angle range: EZ-CONTRAST,
Response time: Photodiode)

Fig.4-2 Measurement of Contrast, Luminance, Chromaticity and Response time.

[Note 1]Definitions of viewing angle range :

[Note 2]Definition of contrast ratio :

The contrast ratio is defined as the following.

$$\text{Contrast Ratio} = \frac{\text{Luminance (brightness) with all pixels white}}{\text{Luminance (brightness) with all pixels black}}$$

[Note 3]Definition of response time

3-1. Response time (1)

The response time (**τd1 and τr1**) is defined as the following figure and shall be measured by switching the input signal for “any level of gray (GS0, GS32, GS64, GS96, GS128, GS160, GS192, GS224 and GS255)” and “any level of gray (GS0, GS32, GS64, GS96, GS128, GS160, GS192, GS224 and GS255)”.

	GS0	GS32	GS64	GS96	GS128	GS160	GS192	GS224	GS255
GS0		tr:0-32	tr:0-64	tr:0-96	tr:0-128	tr:0-160	tr:0-192	tr:0-224	tr:0-255
GS32	td:32-0		tr:32-64	tr:32-96	tr:32-128	tr:32-160	tr:32-192	tr:32-224	tr:32-255
GS64	td:64-0	td:64-32		tr:64-96	tr:64-128	tr:64-160	tr:64-192	tr:64-224	tr:64-255
GS96	td:96-0	td:96-32	td:96-64		tr:96-128	tr:96-160	tr:96-192	tr:96-224	tr:96-225
GS128	td:128-0	td:128-32	td:128-64	td:128-96		tr:128-160	tr:128-192	tr:128-224	tr:128-255
GS160	td:160-0	td:160-32	td:160-64	td:160-96	td:160-128		tr:160-192	tr:160-224	tr:160-255
GS192	td:192-0	td:192-32	td:192-64	td:192-96	td:192-128	td:192-160		tr:192-224	tr:192-255
GS224	td:224-0	td:224-32	td:224-64	td:224-96	td:224-128	td:224-160	td:224-192		tr:224-255
GS255	td:255-0	td:255-32	td:255-64	td:255-96	td:255-128	td:255-160	td:255-192	td:255-224	

t*:x-y...response time from level of gray(x) to level of gray(y)

$$\tau r1 = \Sigma(tr:x-y)/36, \tau d1 = \Sigma(td:x-y)/36$$

3-2. Response time (2)

The response time is defined as the following figure and shall be measured by switching the input signal for “any level of gray (bright)” and “any level of gray (dark)”.

[Note 4]This shall be measured at center of the screen.

[Note 5] “Response time” is the value when O/S driving is used at typical input time value .

[Note 6]Definition of white uniformity ;

White uniformity is defined as the following with five measurements. (A ~ E)

$$W = \frac{\text{Maximum luminance of five points (brightness)}}{\text{Minimum luminance of five points (brightness)}}$$

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts (inverter, CCFT etc), which generate the high voltage. Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for “ON” and “OFF”, as shown in Fig.4. Voltage difference generated by this switching, V_{INV} , may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Fig.4 Brightness control voltage.

*Since inverter board's GND is not connected to the frame of the LCD module, please connect it with the Customer's GND of inverter power supply.

- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- j) The module has some printed circuit boards (PCBs) on the back side, take care to keep them from any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- k) Observe all other precautionary requirements in handling components.
- l) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.
- m) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.

12. Packing form

- a) Piling number of cartons: 3 maximum
- b) Packing quantity in one carton: 5 pcs.
- c) Carton size: 980 (W) × 460 (D) × 721 (H)
- d) Total mass of one carton filled with full modules: 50 kg(Max)

13. Reliability test item

No.	Test item	Condition
1	High temperature storage test	Ta=60 240h
2	Low temperature storage test	Ta=-25 240h
3	High temperature and high humidity operation test	Ta=40 ; 95%RH 240h (No condensation)
4	High temperature operation test	Ta=50 240h
5	Low temperature operation test	Ta=0 240h
6	Vibration test (non-operation)	Frequency: 10~57Hz/Vibration width (one side): 0.075mm : 58~500Hz/Acceleration: 9.8 m/s ² Sweep time: 11 minutes Test period: 3 hours (1h for each direction of X, Y, Z)
7	Shock test (non-operation)	Maximum acceleration: 490m/s ² Pulse width: 11ms, sinusoidal half wave Direction: +/-X, +/-Y, +/-Z, once for each direction.
8	ESD	* At the following conditions, it is a thing without incorrect operation and destruction. (1)Non-operation: Contact electric discharge ± 10kV Non-contact electric discharge ± 20kV (2)Operation Contact electric discharge ± 8kV Non-contact electric discharge ± 15kV Conditions: 150pF、330ohm

【Result evaluation criteria】

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

14. Others

1) Lot No. Label ; A

The label that displays SHARP, product model (LQ370D3LZ14), a product number and "MADE IN JAPAN" is stuck on the back of the module.

【LQ370D3LZ14】

【LQ370D3LZ14B】 B

• How to express Lot No.

A production year(the last figures of the Christian Era)

Serial No.

A production month (1-9, X,Y, Z)

Management No.

2) Packing Label

【LQ370D3LZ14】

Management No.

Lot No. (Date)

Quantity

【LQ370D3LZ14B】 B

- 3) Adjusting volume have been set optimally before shipment, so do not change any adjusted value.
If adjusted value is changed, the specification may not be satisfied.
- 4) Disassembling the module can cause permanent damage and should be strictly avoided.
- 5) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 6) The chemical compound, which causes the destruction of ozone layer, is not being used.
- 7) Label of material information

The optical part material has been described to the module as shown in the figure below.

MATERIAL INFORMATION	
OPTICAL FILM	:> <u>PC</u> , <u>PEST</u> , <u>AKUR-X</u> , <u>PC</u> <
LENS FILM	:> <u>PET</u> , <u>AK-X</u> <
DIFFUSER SHEET	:> <u>PMMA-X</u> , <u>PET</u> <
DIFFUSER BOARD	:> <u>SMMA</u> , <u>PS</u> <
REFLECTOR	:> <u>PAK-QD</u> , <u>PET+PMP</u> <

- 8) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local ordinances or regulations for disposal. The below figure shows the label.

- 9) When any question or issue occurs, it shall be solved by mutual discussion.

15. Carton storage condition

Temperature	0 to 40
Humidity	95%RH or less
Reference condition	: 20 to 35 , 85%RH or less (summer) : 5 to 15 , 85%RH or less (winter) • the total storage time (40 , 95%RH) : 240H or less
Sunlight	Be sure to shelter a product from the direct sunlight.
Atmosphere	Harmful gas, such as acid and alkali which bites electronic components and/or wires must not be detected.
Notes	Be sure to put cartons on palette or base, don't put it on floor, and store them with removing from wall Please take care of ventilation in storehouse and around cartons, and control changing temperature is within limits of natural environment
Storage life	1 year

LQ370D3LZ14 Packing form

Fig.1 LQ370D3LZ14 Outline dimensions