Inverted Pendulum System

2013-12345 J.K. Yu

ABSTRACT - 이 보고서는 Inverted Pendulum 시스템의 안정성 대해서 다루고 있다. 이 시스템에서는 Pendulum의 막대가 서있는 것을 stable하다고 간주하고 있다. 그러나 현재 시스템은 불안정하기 때문에 Cart에 가해지는 힘을 입력으로 하여 이 시스템을 제어하게 된다. 우선, 주어진 Inverted pendulum system에 대해 비선형 미분방정식을 구하였다. 이 비선형 시스템에 대해 각도 변수를 2차 진동 시스템으로 만드는 제어, P제어, PD제어 세 가지 제어 방식을 적용하였다. 그리고 gain값에 따른 각 제어 방식의 결과를 비교 및 분석해보았다. 또한 선형 시스템에 대해서 feedback 컨트롤을 하여 앞서 적용해보았던 비선형 제어의 한계점을 어떻게 극복하는지 확인해보았다. 나아가서 output을 특정한 값으로 수렴시키는 tracking 컨트롤에 대해서도 다루었다.

KEY WORDS: Inverted Pendulum, theta control, cart, rod, feedback control

NOMENCLATURE

x : Distance of cart from initial position [m]

 θ : Tilt Angle of rod [rad]

M : Mass of Cart [kg]

I: Inertia of Cart [kg·m²]

L : Length of rod [m]

F : Force applied at Cart [N]

 ω_n : Natrual frequency of 2nd oscillation [rad/s]

 ζ : Damping ratio of 2nd oscillation

K: Proportional gainC: Differential gain

 \mathbf{x}_{ss} : Steady state

 u_{ss} : Input at steady state y_{ss} : Output at steady state

1. INTRODUCTION

Figure.1 은 Inverted pendulum을 보여주고 있다. Inverted Pendulum은 카트(Cart)와 막대(rod)로 이루어져있으며 카트와 바닥 간의 마찰은 없다고 가정한다. 또한 카트와 막대 모두 질량 분포가 일정하여 막대의 중력이 막대의 기하학적 중심에 작용한다고 가정한다. 이 때 카트에 힘 F가 가해지고 이 힘이 시스템을 컨트롤하는 컨트롤 input이 된다.

Figure 1. Inverted Pendulum System

주어진 시스템은 막대가 조금이라도 기울어지게 되면 중력에 의해 막대가 밑으로 떨어지게 된다. 즉, 불안정한 시스템이다. 우리의 목표는 이 시스템 변수를 시간 t→∞일 때 0이 되도록 만드는 것이다. 그러기 위해서는 우선 막대가 기울어진 각도인 θ를 0으로 수렴시켜야만 한다. 나아가서 완벽한 시스템 안정이란 카트 역시 결국 멈추도록 만드는 것이라고 볼 수 있다. 이 때 적절한 F를 잡아 이 시스템 변수들을 안정화시켜야만 한다.

2. DYNAMIC EQUATION

주어진 시스템을 Figure.2 와 같이 막대와 카드 두 부분으로 나누어 생각해보자.

Figure 2. (a) free-body diagram of rod (b) free-body diagram of cart

이 때 카트와 막대 간의 반력을 R이라 정의하면 동역학적 이론에 의해 식(1)~(4)가 얻어진다.

$$\sum F_{x} = R_{x} = m \ddot{x}_{m} \qquad \cdots \qquad (1)$$

$$\sum F_{y} = R_{y} - mg = m \ddot{y}_{m} \qquad \cdots \qquad (2)$$

$$\sum M = R_{x} \frac{L}{2} \cos \theta + R_{y} \frac{L}{2} \sin \theta = I \ddot{\theta} \qquad \cdots \qquad (3)$$

$$\sum F_{x} = F - R_{x} = M \ddot{x} \qquad \cdots \qquad (4)$$

이 때 Figure.3에서 보듯이 x 와 x_m 간에는 아래와 같은 관계가 성립한다.

$$x_m = x - \frac{L}{2}\sin\theta$$
$$y_m = \frac{L}{2}\cos\theta$$

Figure 3. Distance relation between rod and cart

이 식을 미분하여 다음과 같은 식들을 얻어낼 수 있다.

$$\dot{x}_{m} = \dot{x} - \frac{L}{2}\dot{\theta}\cos\theta$$

$$\dot{y}_{m} = -\frac{L}{2}\dot{\theta}\sin\theta$$

$$\ddot{x}_{m} = \ddot{x} + \frac{L}{2}\dot{\theta}^{2}\sin\theta - \frac{L}{2}\ddot{\theta}\cos\theta$$

$$\ddot{y}_{m} = -\frac{L}{2}\dot{\theta}^{2}\cos\theta - \frac{L}{2}\ddot{\theta}\sin\theta$$

이 관계식들과 앞서 구했던 식 (1)~(4)를 이용하면 반력 Rx, Ry를 다음과 같이 구해낼 수 있다.

$$R_{x} = m\left(\ddot{x} + \frac{L}{2}\dot{\theta}^{2}\sin\theta - \frac{L}{2}\ddot{\theta}\cos\theta\right)$$

$$R_{y} = mg + m\left(-\frac{L}{2}\dot{\theta}^{2}\cos\theta - \frac{L}{2}\ddot{\theta}\sin\theta\right)$$

이렇게 구해낸 두 반력을 이용하면 아래와 같은 비선형 미분방정식 (5),(6)을 얻을 수 있다.

$$I\ddot{\theta} = m\ddot{x}\frac{L}{2}\cos\theta - m\left(\frac{L}{2}\right)^{2}\ddot{\theta} + mg\frac{L}{2}\sin\theta \quad \cdots (5)$$
$$\left(M + m\right)\ddot{x} + m\frac{L}{2}\left(\dot{\theta}^{2}\sin\theta - \ddot{\theta}\cos\theta\right) = F \quad \cdots (6)$$

식을 재정리하여 각 변수에 대한 비선형 미분방정식으로 정리하면 다음과 같아진다.

$$\ddot{\theta} = \frac{1}{(M+m)\left(I+m(L/2)^{2}\right)-m^{2}\left(L/2\right)^{2}\cos^{2}\left(\theta\right)} \left[-m^{2}\left(L/2\right)^{2}\sin\left(\theta\right)\cos\left(\theta\right)\dot{\theta}^{2} + (M+m)mg\frac{L}{2}\sin\left(\theta\right)+m(L/2)\cos\left(\theta\right)F\right]$$

$$\ddot{x} = \frac{1}{(M+m)\left(I+m(L/2)^{2}\right)-m^{2}\left(L/2\right)^{2}\cos^{2}\left(\theta\right)} \left[m^{2}\left(L/2\right)^{2}\sin\left(\theta\right)\cos\left(\theta\right)g - m\left(I+m(L/2)^{2}\right)(L/2)\sin\left(\theta\right)\dot{\theta}^{2} + \left(I+m(L/2)^{2}\right)F\right]$$

이 때 두 식에 들어가는 힘 F가 이 시스템의 변수들을 컨트롤하기 위한 입력변수다. 따라서 적절한 F를 선택하는 것이 중요하다.

3. NONLINEAR θ CONTROL BY FORCE CONTROL

3.1 2nd Oscillation control

상태변수 θ 가 2 차 진동 시스템의 꼴로 수렴시키고자 한다고 하자. 그렇다면 우리는 위에서 구한 θ 가 아래와 같은 미분방정식의 꼴이 되도록 만드는 F를 설정해 주어야 할 것이다.

$$\ddot{\theta} = -2\zeta\omega_n\dot{\theta} - \omega_n^2\theta$$

아래와 같이 가정하면

$$A = \frac{(M+m)}{m\frac{L}{2}\cos\theta} \left[I + m\left(\frac{L}{2}\right)^2 \right] - m\frac{L}{2}\cos\theta \text{ and } B = \frac{(M+m)}{m\frac{L}{2}\cos\theta} \frac{L}{2}\sin\theta$$

위에서 구했던 θ 에 대한 식

$$\ddot{\theta} = \frac{1}{(M+m)\left(I+m\left(L/2\right)^2\right)-m^2\left(L/2\right)^2\cos^2\left(\theta\right)} \left[-m^2\left(L/2\right)^2\sin\left(\theta\right)\cos\left(\theta\right)\dot{\theta}^2 + (M+m)mg\frac{L}{2}\sin\left(\theta\right)+m\left(L/2\right)\cos\left(\theta\right)F\right]$$

은 다음과 같이 표현할 수 있다.

$$\ddot{\theta} = -\frac{1}{A}m\frac{L}{2}\dot{\theta}^2\sin\theta + \frac{B}{A}mg + \frac{1}{A}F$$

우리가 원하는 꼴은 $\ddot{\theta}=-2\zeta\omega_{_{\!n}}\dot{\theta}-\omega_{_{\!n}}^2\theta$ 이므로 system input ${\rm F}$ 를 다음과 같이 설정한다.

$$\therefore u(t) = F = -2A \cdot \zeta \omega_n \cdot \dot{\theta} - A \cdot \omega_n^2 \cdot \theta - B \cdot mg + m \frac{L}{2} \sin \theta \cdot \dot{\theta}^2$$

3.2 P Control

P 컨트롤은 제어방식 중에 가장 단순한 제어방식이다. 현재 다루고자 하는 것은 θ control 이므로 $u(t) = F = -K\theta(t)$ 로 잡아준다.

3.1 PD Control

P control 의 단점을 보완하기 위해 미분 term 도 추가한 PD control 로 제어를 한다. 변수와 desired value 간의 에러(이 때 desired value 는 0)의 변화율만큼 제어를 해주는 것이 D 제어기이다. 이 때 $u(t)=F=-K\theta(t)-C\dot{\theta}$ 로 잡아준다.

4. LINEAR SYSTEM CONTROL

이제까지는 비선형 시스템에 대해서 다루어보았다. 또한 θ 제어에 대해서만 이야기했다. 그러나 상태 변수는 θ 뿐 아니라 x 도 존재한다. 따라서 여기서는 이제까지 다루었던 비선형 방정식을 선형화시켜 feedback 컨트롤을 통해 모든 상태변수의 제어에 대해서 알아본다.

3.1 Linear Feedback Control

2 장에서 마지막으로 구해낸 두 식에 다음과 같은 small angle assumption 을 적용하면

$$\sin(\theta) \approx \theta, \cos(\theta) \approx \theta, \dot{\theta}^2 \approx 0$$

아래와 같이 선형방정식을 얻어낼 수 있다. 이 때 상태변수는 $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4]^T = \left[\theta \ \dot{\theta} \ x \ \dot{x}\right]^T$

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{mg(L/2)}{I + m(L/2)^2} - \frac{m^2(L/2)^2}{M + m} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{(I + m(L/2)^2)g}{I + m(L/2)^2} & 0 & 0 & 0 \\ \frac{(I + m(L/2)^2)g}{M + m} & 0 & 0 \\ \frac{(I + m(L/2)^2) - \frac{m^2(L/2)^2}{M + m}}{I + m(L/2)^2 - \frac{m^2(L/2)^2}{M + m}} \end{bmatrix} F(t)$$

3.2 Linear Feedback Control

위에서 얻어낸 선형시스템의 꼴을 $\dot{\mathbf{x}} = A\mathbf{x} + Bu$ 라 하면 우리의 목표는 $\mathbf{x}(\infty) = 0$ 로 만들어주는 것이다. 현재 시스템은 불안정하므로, 즉 현재 시스템 행렬인 A의 모든 pole(eigenvalue)들 중 적어도 하나가 복소 평면의 우변에 놓여있다는 것이다. system input 인 $\mathbf{F}(=\mathbf{u})$ 를 $u = -K\mathbf{x}$ 라 하면(\mathbf{K} 는 상수 행렬)

$$\dot{\mathbf{x}} = A\mathbf{x} - Bu = (A - BK)\mathbf{x}$$

 $(\mathbf{x}: n \times 1 \text{ matrix}, A: n \times n \text{ matrix}, B: n \times 1 \text{ matrix}, K: 1 \times n \text{ matrix})$

결과적으로 새로운 시스템 행렬인 A-BK 가 설정된다. 그럼 이때 적절한 $K = \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix}$ 를 설정하여 새로운 시스템 행렬 A-BK 의 모든 pole 들을 좌변으로 옮길 수 있다. 이것이 선형 피드백 제어이다.

3.3 Reference Tracking

5. SIMULATION

At first, nonlinear inverted pendulum system and three control methods to make the nonlinear system discussed. Figure.4 shows the simulation results about three control methods, which are 2^{nd} oscillation control, P control, PD control. As shown in this result, 2^{nd} oscillation and PD control make the state θ goes to zero. However P control failed to make θ to be stable.

Figure 4. Simulation results of nonlinear system

Above three control methods could not control another state x. Figure.4 shows that state x do not go to zero. Not like these control, linear feedback control makes all the system states, not only θ but also x, to be stable. This is shown in Figure. 5

Figure 5. Simulation Results of Linear Feedback Control

Linear feedback control shows us perfect control. State x goes to zero well at $t\rightarrow\infty$.

CONCLUSION

In this paper,

REFERENCE

Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson, 2010.