4.5

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

) | 1,000 | 1,

(43) International Publication Date 17 June 2004 (17.06.2004)

PCT

(10) International Publication Number WO 2004/050905 A1

(51) International Patent Classification7: C12Q 1/66, 1/68

(21) International Application Number:

PCT/GB2003/005272

(22) International Filing Date: 2 December 2003 (02.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0228139.2

3 December 2002 (03.12.2002) GB

(71) Applicant and

(72) Inventor: KOZLOVA-ZWINDERMAN, Olga [RU/GB]; Flat 5, 239 Gilmerton Road, Edinburgh EH16 5TH (GB).

(74) Agent: Kennedys Patent Agency Limited; Floor 5 Queens House, 29 St Vincent Place, Glasgow G1 2DT (GB).

(81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK (utility model), SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- (5

(54) Title: EUKARYOTIC BIOSENSOR MAKING USE OF A CALCIUM REGULATED LIGHT EMITTING ENZYME

(57) Abstract: The present invention provides a method of using eukaryotic cells being transformed with a light emitting Ca2+ regulated photoprotein gene for determining the presence or absence of at least one toxic substance in a sample and for assisting in the identification of the toxicant(s). More specifically there is provided a toxicity assay for various uses including determining the presence of toxins and in particular heavy metals and organophenols, general cytotoxicity testing of pure chemicals and chemical mixtures in particular for drug development testing, testing of food and drink products, cosmetics testing and identification of organisms in particular of fungal strains.

4/050905 A1

1

"Eukaryotic Biosensor"

14/17/2013

10/537435 PCT/GB2003/005272

JC17 Rec'd PCT/PTO 03 JUN 2005

1

EUKARYOTIC BIOSENSOR MAKING USE OF A CALCIUM REGULATED LIGHT EMITTING ENZYME

2	
3	The present invention provides a method of using
4	transformed eukaryotic cells or organisms for
5	determining the presence or absence of at least one
6	toxic substance in a sample and for assisting in the
7	identification of the toxicant(s). More
8	specifically there is provided a toxicity assay for
9	various uses including determining the presence of
10	toxins, general cytotoxicity testing of pure
11	chemicals and chemical mixtures in particular for
12	drug development testing, testing of food and drink
13	products, cosmetics testing and identification of
14	organisms in particular of fungal strains
15	
16	The release of contaminating substances into an
17	environment such as a waterway or an area of
18	agricultural land can have serious effects on the
19	ecosystems found in that environment. It is
20	important to be able to analyse these effects both
21	prior to the release of such contaminants so as to

PCT/GB2003/005272

2

manage their treatment or release, and after release 1 2 so as to determine and counteract their effects. 3 Current methods used to monitor water quality and 4 screen effluent generally involve chemical toxicity 5 6 However, these tests require a general idea of the type of contaminant being tested for and can 7 8 be very expensive. 9 Similarly the presence of contaminating substances 10 or toxins can be problematic in other areas such as 11 12 food and drink manufacture and cosmetics manufacture. There are also instances, such as in 13 14 drug development and cosmetic industry, where the substance of interest i.e. the potential new drug 15 may itself be a contaminating substance or toxin and 16 17 this needs to be checked. 18 Biosensors are used for toxicity testing and are 19 well known in the field. Toxicity depends on a 20 variety of factors including pH, temperature, 21 salinity and contaminant concentration, but depends 22 especially on the test organism used in the sensor. 23 24 One of the most commonly used organisms is the 25 26 bioluminescent bacterium, Vibrio fischeri. 27 bioluminescence involved is mediated by the 28 luciferin-luciferase enzyme system wherein light 29 emission is dependent on the electron transfer 30 chain. Any disruption to the electron transfer 31 chain, for example on exposure to a toxicant, 32 affects light emission. Light emission at the time a

'n,

WO 2004/050905

31 32 PCT/GB2003/005272

1	substance is added is therefore indicative of the
2	presence of a toxic substance.
3	
4	This system, however, only provides a simple
5	indication of whether a contaminant is toxic or not.
6	No detailed information is obtained on how toxic the
7	contaminant is, nor is the contaminant identified.
8	
9	The terms toxicant and toxin as herein described
10	relate to compounds, chemicals and mixtures of
11	chemicals which have an effect on eukaryotic cells
12	or organisms and in particular which are toxic to
13	eukaryotic organisms such as fungus or which have
14	anti-fungal activity.
15	
16	The term eukaryote as herein described relates to
17	eukaryotic cells or organisms.
18	
19	According to a first aspect of the present invention
20	there is provided a method of determining the
21	presence of a toxicant in a test sample, comprising
22	the steps of;
23	 exposing a eukaryote that has been
24	transformed with a light emitting Ca ²⁺
25	regulated photoprotein gene to a test sample
26	 measuring the light produced by the
27	transformed cell/organism
28	 determining whether the amount of light is
29	above or below a defined threshold at the
30	time of exposure.
31	
22	

PCT/GB2003/005272

•	optionally the eukaryote is a fungi.
2	(throughout this document fungi should be considered
3	under its typical classification as covering both
4	multicellular organisms and unicellular organisms
5	such as the yeast Saccharomyces cerviseae
6	Preferably the fungi is a filamentous fungi.
7	
8	More preferably the fungi is of the Aspergillus
9	species.
10	
11	
12	Alternatively the eukaryote is a mammalian cell.
13	
14	A further alternative is that the eukaryote is a
15	plant cell.
16	
17	Preferably the test sample comprises a toxicant.
18	r.
19	Preferably the light emitting Ca ²⁺ regulated
20	photoprotein gene is a recombinant gene.
21	
22	Preferably the light emitting Ca ²⁺ regulated
23	photoprotein gene is selected from the group
24	comprising;
25	- aequorin gene
26	 halistaurin (mitrocomin) gene
27	 phialidin (clytin) gene
28	- obelin gene
29	- mnemiopsin gene
30	- berovin gene
31	

PCT/GB2003/005272

1	Ontionally the light amittie of 2t
2	Optionally, the light emitting Ca ²⁺ regulated
	photoprotein gene may be a functional homologue of a
3	gene selected from the group comprising;
4.	- aequorin gene
5	- halistaurin (mitrocomin) gene
6	- phialidin (clytin) gene
7	- obelin gene
8	- mnemiopsin gene
9	- berovin gene
10	
11	Most preferably the light emitting Ca ²⁺ regulated
12	photoprotein gene is an aequorin gene.
13	
14	More preferably the light emitting Ca ²⁺ regulated
15	photoprotein gene is a recombinant aequorin gene.
16	
17	Preferably the light that is measured is in the form
18	of luminescence.
19	
20	Optionally the test sample is added in advance of
21	the application of a stimulus to the test sample.
22	
23	Preferably the stimulus is at least one or more from
24	the group comprising; mechanical perturbation, hypo-
25	osmotic shock, and change in external calcium
26	chloride concentration, temperature shock, pH shock.
27	
28	Preferably the test sample is added 1 minute to 1
29	hour prior to the application of the stimulus.
30	
31	More preferably the test sample is added 5 minutes
32	prior to the application of the stimulus.

PCT/GB2003/005272

1	
2	More preferably the test sample is added 30 minutes
3	prior to the application of the stimulus.
4	
5	According to a second aspect of the present
6	invention there is provided a method of determining
7	the presence of a toxicant in a test sample,
8	comprising the steps of;
9	 exposing a eukaryote that has been
10	transformed with a light emitting Ca ²⁺
11	regulated photoprotein gene to a test sample
12	 measuring the light produced by the
13	transformed cell/organism
14	 determining whether the amount of light is
15	above a defined threshold at a specified
16	time after the time of exposure.
17	
· 18	Optionally the method comprises the step of
19	determining whether the amount of light is below a
20	defined threshold.
21	
22	Optionally the specified time after the time of
23	exposure is 11 minutes.
24	
25	Optionally the eukaryote is a fungi.
26	
27	Preferably the fungi is a filamentous fungi.
28	
29	More preferably the fungi is of the Aspergillus
30	species.
31	
32	

PCT/GB2003/005272

7

Alternatively the eukaryote is a mammalian cell. . 1 2 A further alternative is that the eukaryote is a 3 4 plant cell. 5 Preferably the test sample comprises a toxicant. 6 7 Preferably the light emitting Ca^{2+} regulated 8 photoprotein gene is a recombinant gene. 9 10 Preferably the light emitting Ca2+ regulated 11 photoprotein gene is selected from the group 12 13 comprising; 14 - aequorin gene 15 - halistaurin (mitrocomin) gene 16 phialidin (clytin) gene 17 obelin gene 18 mnemiopsin gene 19 - berovin gene 20 Optionally, the light emitting Ca2+ regulated 21 photoprotein gene may be a functional homologue of a 22 gene selected from the group comprising; 23 24 - aequorin gene - halistaurin (mitrocomin) gene 25 26 - phialidin (clytin) gene 27 obelin gene 28 mnemiopsin gene 29 - berovin gene 30

di

WO 2004/050905

PCT/GB2003/005272

1	Most preferably the light emitting Ca ²⁺ regulated
2	photoprotein gene is an aequorin gene.
3	
4	More preferably the light emitting Ca ²⁺ regulated
5	photoprotein gene is a recombinant aequorin gene.
6	
7	Preferably the light that is measured is in the form
8	of luminescence.
9	
10	Optionally the test sample is added in advance of
11	the application of a stimulus to the test sample.
12	
13	Preferably the stimulus is at least one or more from
14	the group comprising; mechanical perturbation, hypo-
15	osmotic shock, change in external calcium chloride
16	concentration, temperature shock, pH shock.
17	
_# 18	Preferably the test sample is added 1 minute to 1
19	hour prior to the application of the stimulus.
20	
21	More preferably the test sample is added 5 minutes
22	prior to the application of the stimulus.
23	
24	More preferably the test sample is added 30 minutes
25	prior to the application of the stimulus.
26	
27	According to a third aspect of the present invention
28	there is provided a method of determining the
29	presence of a toxicant in a test sample, comprising
30	the steps of;

VO 2004/050905

PCT/GB2003/005272

1	 exposing a eukaryote that has been
2	transformed with a light emitting Ca ²⁺
3	regulated photoprotein gene to a test sample
4	 measuring the light produced by the
5	transformed cell/organism
6	- and comparing at least one parameter of the
7	light measurement data with a bank of known
8	toxicity reference data.
9	
10	Optionally the method comprises the step of
11	determining whether the amount of light is below a
12	defined threshold.
13	
14	Optionally the specified time after the time of
15	exposure is 11 minutes.
16	
17	Optionally the eukaryote is a fungi.
18	# w
19	Preferably the fungi is a filamentous fungi.
20	·
21	More preferably the fungi is of the Aspergillus
22	species.
23	Do we need next two sentences
24	Most preferably the fungi is Aspergillus awamori.
25	W
26	Most preferably the strain of Aspergillus awamori is
27	strain 66A.
28	
29	Alternatively the eukaryote is a mammalian cell.
30	
31	A further alternative is that the eukaryote is a
32	plant cell.

,**r**)

WO 2004/050905

1	
2	Preferably the test sample comprises a toxicant.
3	i i i i i i i i i i i i i i i i i i i
4	Preferably the light emitting Ca ²⁺ regulated
5	photoprotein gene is a recombinant gene.
6	
7	Preferably the light emitting Ca ²⁺ regulated
8	photoprotein gene is selected from the group
9	comprising;
10	- aequorin gene
11	 halistaurin (mitrocomin) gene
12	- phialidin (clytin) gene
13	- obelin gene
14	- mnemiopsin gene
15	- berovin gene
16	
17	Optionally, the light emitting Ca^{2+} regulated
18	photoprotein gene may be a functional homologue of a
19	gene selected from the group comprising;
20	- aequorin gene
21	 halistaurin (mitrocomin) gene
22	- phialidin (clytin) gene
23	- obelin gene
24	- mnemiopsin gene
24 25	- mnemiopsin gene - berovin gene
25	- berovin gene
25 26	
25 26 27	- berovin gene Most preferably the light emitting Ca ²⁺ regulated
25 26 27 28	- berovin gene Most preferably the light emitting Ca ²⁺ regulated

PCT/GB2003/005272

11

1 2 Preferably the light that is measured is in the form 3 of luminescence. 5 Optionally the test sample is added in advance of 6 the application of a stimulus to the test sample. 7 8 Preferably the stimulus is at least one or more from 9 the group comprising; mechanical perturbation, hypo-10 osmotic shock, change in external calcium chloride 11 concentration, temperture shock, pH shock. 12 13 Preferably the test sample is added 1 minute to 1 hour prior to the application of the stimulus. 14 15 16 More preferably the test sample is added 5 minutes 17 prior to the application of the stimulus. 18 19 More preferably the test sample is added 30 minutes 20 prior to the application of the stimulus. 21 22 Preferably, the method is used to determine the 23 amount of toxicant in the sample. 24 25 Optionally, the method is used to identify the 26 toxicant in the sample. 27 28 According to a fourth aspect of the present 29 invention there is provided a method of determining 30 the presence of a toxicant in a test sample, 31 comprising the steps of;

PCT/GB2003/005272

1	 exposing a eukaryote that has been
2	transformed with a light emitting Ca ²⁺
3	regulated photoprotein gene to a test sample
4	 measuring the light produced by the
5	transformed cell/organism
6	 converting the light data into a cytosolic
7	free calcium ion concentration trace,
8	- and comparing at least one parameter of the
9	cytosolic free calcium ion concentration
10	trace with a bank of known toxicity
11	reference data.
12	
13	Optionally the method comprises the step of
14	determining whether the amount of light is below a
15	defined threshold.
16	
17	Optionally the specified time after the time of
18	exposure is 11 minutes.
19	
20	Optionally the eukaryote is a fungi.
21	
22	Preferably the fungi is a filamentous fungi.
23	
24	More preferably the fungi is of the Aspergillus
25	species.
26	
27	
28	Alternatively the eukaryote is a mammalian cell.
29	
30	A further alternative is that the eukaryote is a
31	plant cell.
32	

PCT/GB2003/005272

1	Preferably the test sample comprises a toxicant.
2	
3	Preferably the light emitting Ca ²⁺ regulated
4	photoprotein gene is a recombinant gene.
5	
6	Preferably the light emitting Ca ²⁺ regulated
7	photoprotein gene is selected from the group
8	comprising;
9	- aequorin gene
10	- halistaurin (mitrocomin) gene
11	- phialidin (clytin) gene
12	- obelin gene
13	- mnemiopsin gene
14	- berovin gene
15	
16	Optionally, the light emitting Ca ²⁺ regulated
17	photoprotein gene may be a functional homologue of a
18	gene selected from the group comprising;2
19	- aequorin gene
20	 halistaurin (mitrocomin) gene
21	 phialidin (clytin) gene
22	- obelin gene
23	- mnemiopsin gene
24	- berovin gene
25	
26	Most preferably the light emitting Ca^{2+} regulated
27	photoprotein gene is an aequorin gene.
28	
29	More preferably the light emitting Ca^{2+} regulated
30	photoprotein gene is a recombinant aequorin gene.
31	

1	Preferably the light that is measured is in the form
2	of luminescence.
3	
4	Optionally the test sample is added in advance of
5	the application of a stimulus to the test sample.
6	
7	Preferably the stimulus is at least one or more from
8	the group comprising; mechanical perturbation, hypo-
9	osmotic shock, change in external calcium chloride
10	concentration, temperature shock, pH shock.
11	
12	Preferably the test sample is added 1 minute to 1
13	hour prior to the application of the stimulus.
14	
15	More preferably the test sample is added 5 minutes
16	prior to the application of the stimulus.
17	
18	More preferably the test sample is added 30 minutes
19	prior to the application of the stimulus.
20	Preferably light is measured for between 1 minute
21	and 5 hours following the application of the
22	stimulus.
23	
24	More preferably light is measured for 5 minutes
25	following the application of the stimulus.
26	
27	Preferably, the cytosolic free calcium ion trace is
28	a plot of the cytosolic free calcium ion
29	concentration against time.
30	
31	Preferably the parameter is at least one or more
32	selected from the group comprising;

PCT/GB2003/005272

1	- lag time
2	- rise time
3	- absolute amplitude
4	- relative amplitude
5	- Length of transient
6	 number of cytosolic free calcium ion
7	concentration increases
8	 percentage increase in final cytosolic free
9	calcium ion concentration resting level
10	 percentage increase in recovery time
11	 percentage increase in pre-stimulating
12	cytosolic free calcium ion concentration
13	resting level
14	- Total concentration of Ca ²⁺ released.
15	
16	Preferably, the method is used to determine the
17	amount of toxicant in the sample.
18	e .
19	Optionally, the method is used to identify the
20	toxicant in the sample.
21	
22	According to a fifth aspect of the present invention
23	there is provided an assay for use in determining
24	the presence of a known toxicant in a test sample,
25	the assay comprising the steps of;
26	 exposing a fungi transformed with a
27	recombinant aequorin gene to a test sample of
28	a substance,
29	
30	 measuring the luminescence produced by the
31	fungi,

PCT/GB2003/005272

1	
2	- converting the luminescence data into a
3	cytosolic free calcium ion concentration
4	trace,
5	
6	- and comparing at least one parameter of the
7	cytosolic free calcium ion concentration
8	trace with a bank of known toxicity reference
9	data.
10	
11	Preferably the cytosolic free calcium ion trace is a
12	plot of the cytosolic free calcium ion concentration
13	against time.
14	
15	Preferably the fungi transformed with a recombinant
16	aequorin gene is a filamentous fungi.
17	
18	More preferably the fungi is of the Aspergillus
19	species.
20	
21	
22	Preferably the substance is a contaminant.
23	
24	Preferably the substance is a contaminated sample.
25	
26	Preferably the parameter is at least one or more
27	selected from the group comprising; lag time, rise
28	time, absolute amplitude, relative amplitude, length
29	of transient at 20%, 50% and 80% of maximum
30	amplitude , number of cytosolic free calcium ion
31	concentration increases, percentage increase in
32	final cytosolic free calcium ion concentration

PCT/GB2003/005272

1	resting level, percentage increase in recovery time
2	and percentage increase in the total amount of Ca2+
3	released.
4	
5	Optionally, the test sample is added in advance of
6	the application of a stimulus to the test sample.
7	
8	Preferably the stimulus is at least one or more from
9	the group comprising; mechanical perturbation, hypo-
10	osmotic shock, change in external calcium chloride
11	concentration, temperature shock and pH shock.
12	
13	Preferably the test sample is added 1 minute to 1
14	hour prior to the application of the stimulus.
15	
16	More preferably the test sample is added 5 minutes
17	prior to the application of the stimulus.
18	er g
19	More preferably the test sample is added 30 minutes
20	prior to the application of the stimulus.
21	
22	In such instances, the parameters may include at
23	least one or more selected from the group
24	comprising; lag time, rise time, absolute amplitude,
25	relative amplitude Length of transient at 20%, 50%
26	and 80% of maximum amplitude, number of cytosolic
27	free calcium ion concentration increases, percentage
28	increase in final cytosolic free calcium ion
29	concentration resting level, percentage increase in
30	recovery time, percentage increase in pre-
31	stimulating cytosolic free calcium ion concentration

PCT/GB2003/005272

1	resting level and percentage increase in the total
2	amount of Ca ²⁺ released.
3	
4	Preferably luminescence is measured for between 1
5	minute and 5 hours following the application of the
6	stimulus.
7	
8	More preferably luminescence is measured for 5
9	minutes following the application of the stimulus.
10	
11	Preferably, the method is used to determine the
12	amount of toxicant in the sample.
13	
14	Optionally, the method is used to identify the
15	toxicant in the sample.
16	
17	In order to further explain the present invention
18	details of a number of experiments are provided.
19	
20	A first experiment comprises testing the effect of
21	pre-incubation of Aspergillus awamori with toxicants
22	on cytosolic free calcium ion concentration response
23	to an increase in external calcium chloride.
24	
25	A further set of experiments described herein shows
26	attempts to obtain characteristic data for a range
27	of different toxicants at a number of different
28	concentrations. The results demonstrate that each
29	toxicant at each concentration produces a
30	distinctive cytosolic free calcium ion concentration
31	trace whose traits could be used to identify and
32	characterise a toxicant present in a test sample.

PCT/GB2003/005272

19

1 A final experiment attempts to determine whether it 2 is possible to identify and characterise individual 3 toxicants from testing samples of mixtures of 5 toxicants in different proportions. produced are distinct for each mixture. 7 8 These results show that it is possible to characterise and identify a specific toxicant from a 9 test sample by using the characteristic data 10 11 obtained from a cytosolic free calcium ion 12 concentration trace. 13 14 It is also possible to characterise and identify a specific toxicant from a test sample by using the 15 characteristic data obtained from light readings. 16 The main difference between doing light emission and 17 18 cytosolic free calcium ion concentrations is the 19 removing the step of converting the luminescence data into a cytosolic free calcium ion concentration 20 21 trace". 22 23 So the method is: 24 25 An assay for use in determining the presence of a 26 known toxicant in a test sample, the assay 27 comprising the steps of; 28 - exposing a fungi transformed with a 29 recombinant aequorin gene to a test sample of 30 a substance, 31 measuring the luminescence produced by the 32 fungi in relative light units (RLU),

28 29

30

31 32

PCT/GB2003/005272

20

1 - and calculating the following parameters: lag 2 rise time, length of transient 3 $(\mathrm{LT}_{20},\mathrm{LT}_{50},\ \mathrm{LT}_{80})\,,$ absolute amplitude, relative 4 amplitude, recover time, final 5 luminescence, initial level of luminescence, 6 total luminescence. 7 Since RLU are not normalised with regard to the 8 biomass, the parameters measured in relative light 9 units (RLU) are different from the cytosolic free 10 calcium ion concentration [Ca^{2+}]. Figs 24 and 25 show 11 that the decrease in amplitude caused by 260 mg/l 12 Cr^{6+} is 75% in RLU, and only 65% in Ca^{2+} 13 concentration. Other parameters would differ in a 14 15 similar way. 16 Most of the toxicity testing for environmental 17 pollutants is usually carried out using RLU and $^{\circ}$ 18 therefore the light-emitting essay would be 19 particularly helpful if used alongside other 20 21 existing biosensors. 22 23 The parameters referred to herein relate to the 24 following; 25 26 Lag Time, the time from addition of the test sample to the time when the cytosolic free calcium ion 27 concentration, [Ca2+]c, began to rise; Rise Time, the time from addition of the test sample to the time at which maximum $[Ca^{2+}]_c$ was reached;

PCT/GB2003/005272

1	
2	
3	Number of [Ca ²⁺] _c Rises, the number of peaks in
4	[Ca ²⁺] _c ;
5	
6	Percentage Increase in Final [Ca ²⁺]c Resting Level,
7	the percentage increase in resting [Ca ²⁺] _c at the end
8	of the experiment, where the control value is taken
9	to be 100%;
10	
11	Percentage Increase in Recovery Time, percentage
12	increase in recovery time where recovery time
13	represents the total amount of $[Ca^{2+}]_c$ released
14	during the period of time from the point when the
15	maximum amplitude following calcium chloride
16	treatment was achieved to the point when the $[Ca^{2+}]_c$
17	reached its final resting level. Recovery time was
18	initially calculated for control cultures. In the
19	control this period of time was calculated as 250
20	seconds. For the cultures subjected to the
21	treatment with toxicant(s) the total amount of
22	$[{\rm Ca}^{2+}]_c$ was calculated for the same period of 250
23	seconds starting from the maximum amplitude. The
24	recovery time of the control cultures was therefore:
25	
26	total amount of $[Ca^{2+}]_c$ (μ M) for the toxicant-treated
27	samples over 250 seconds x 100
28	total amount of $[Ca^{2+}]_c$ (µM) for the control sample
29	over 250 seconds
30	
31	Percentage Increase in pre-Stimulating [Ca ²⁺]c
32	Resting Level, the percentage increase in [Ca2+]c

PCT/GB2003/005272

22

1 prior to the stimulus, where the control value is 2 taken to be 100%. 3 4 Percentage change in total amount calcium of 5 released during the transient at stage 1 calculated by integration of the all luminescence 6 7 obtained after addition of the compounds of interest 8 before subsequent stimulation with physico-chemical 9 stimuli. 10 11 Percentage change in total amount of calcium 12 released during the transient at stage 2 13 calculated by integration of the all luminescence 14 obtained after the fungus is stimulated with one of 15 the physico-chemical stimuli. 16 17 Percentage change in total amount of calcium 18 released during the whole transient - calculated by. 19 integration of the all luminescence obtained during 20 the period of experiment. 21 22 Length of transient (LT) - this parameter describes 23 the length of the transient when the amplitude of 24 the response is equal a certain percentage from the 25 maximum amplitude. 26 LT_{20} (Length of transient at Amplitude=20% of maximum 27 Amplitude) 28 LT₅₀ (Length of transient at Amplitude=50% of maximum 29 Amplitude) 30 $LT_{\theta\theta}$ (Length of transient at Amplitude=80% of maximum 31 Amplitude)

30

31

32

period.

PCT/GB2003/005272

23

1 All secondary increases have to be analysed by the 2 same parameters as primary increases during stages 1 3 and 2. 4 E.g. Amplitude, length, rise time, lag time, 5 6 Percentage change in amplitude should be assessed as 7 the absolute value from point 0 (A_a) and as the 8 relative value from the initial resting level (A_r) . 9 The relative changes assess the ability of of the 10 eukaryote to respond to the physiological stimuli. 11 This parameter is important to assess the 12 physiological state of the eukaryote. 13 There is also the possibility of combining one or 14 more of these parameters to obtain further values which can be used for identification of the 15 16 toxicants in the mixture. For example, the 17 summation of amplitude and recovery time will give the value of total cytosolic free calcium ions 18 emitted from the time when [Ca2+]c reaches its peak. 19 Also summation of lag time and rise time will give 20 21 the total time required for [Ca²⁺]_c to reach its The division of final [Ca²⁺]_c resting level 22 onto the pre-stimulation $[Ca^{2+}]_c$ resting level will 23 24 show how many times the [Ca2+]c resting level has changed after stimulation. Similarly, a division of 25 the final $[Ca^{2+}]_c$ resting level onto the initial 26 27 [Ca²⁺]_c resting level prior to the addition of 28 toxicant(s) gives further identifying data. 29 Additionally, the summation of all the data points

of the trace gives the total amount of cytosolic

free calcium ions released during the monitoring

1	As mammalian cells are more complex than other
2	eukaryotes such as fungi or plants typically more
3	parameters will be considered.
4	
5	The present invention will now be described with
6	reference to the following non-limiting examples and
7	with reference to the figures, wherein:
8	
9	Figure 1 shows the characteristic $[Ca^{2+}]_c$ trace
10	produced on addition of 5mM external CaCl2,
11	following a 5 minute pre-incubation with
12	different concentrations of 3,5-DCP.
13	
14	Figure 2 shows the characteristic $[Ca^{2+}]_c$ trace
15	produced on addition of 5mM external CaCl2,
16	following a 5 minute pre-incubation with
17	different concentrations of Cr6+.
18	
19	Figure 3 shows the characteristic $[Ca^{2+}]_c$ trace
20	produced on addition of $5mM$ external $CaCl_2$,
21	following a 5 minute pre-incubation with
22	different concentrations of Zn ²⁺ .
23	
24	Figure 4 shows the characteristic $[Ca^{2+}]_c$ trace
25	produced on addition of 5mM external CaCl2,
26	following a 30 minute pre-incubation with
27	different concentrations of 3,5-DCP.
28	
29	Figure 5 shows the characteristic $[Ca^{2+}]_c$ trace
30	produced on addition of 5mM external CaCl2,

PCT/GB2003/005272

1	for towing a 30 minute pre-incubation with
2	different concentrations of Cr6+.
3	
4	Figure 6 shows the characteristic [Ca2+]c trace
5	produced on addition of 5mM external CaCl2,
6	following a 30 minute pre-incubation with
7	different concentrations of Zn^{2+} .
8	
9	Figure 7 shows the characteristic cytosolic free
10	calcium ion concentration, [Ca ²⁺]c, trace
11	produced on addition of 5mM CaCl ₂ following a 5
12	minute pre-incubation with different
13	concentrations of 3,5-dichlorophenol, 3,5-DCP.
14	
15	Figure 8 shows the characteristic [Ca2+] c trace
16	produced on addition of $5mM$ CaCl ₂ , following a
17	30 minute pre-incubation with different
18	concentrations of 3,5-DCP.
19	
20	Figure 9 shows the characteristic [Ca ²⁺] _c trace
21	produced on addition of $5mM\ CaCl_2$, following a 5
22	minute pre-incubation with different
23	concentrations of chromium ions, Cr^{6+} .
24	
25	Figure 10 shows the characteristic $[Ca^{2+}]_c$ trace
26	produced on addition of 5mM CaCl2, following a
27	30 minute pre-incubation with different
28	concentrations of chromium ions, Cr^{6+} .
29	
30	Figure 11 shows the characteristic $[Ca^{2+}]_c$ trace
31	produced on addition of $5mM\ CaCl_2$, following a 5

PCT/GB2003/005272

1	minute pre-incubation with different
2	concentrations of zinc ions, Zn2+.
3	
4	Figure 12 shows the characteristic $[Ca^{2+}]_c$ trace
5	produced on addition of $5mM$ CaCl ₂ , following a
6	30 minute pre-incubation with different
7	concentrations of zinc ions, $2n^{2+}$.
8	
9	Figure 13 shows the values of $[Ca^{2+}]_c$ trace
10	parameters characteristic for different
11	concentrations of pentochlorophenol, PCP; sodium
12	dodecyl sulphate, SDS; and Toluene. Parameters
13	assessed are Lag Time, LT; Rise Time, RT;
14	Amplitude, A; Length of transient, LT50;
15	Percentage Increase in pre-Stimulating [Ca ²⁺]c
16	Resting Level, %IpreSRL; Percentage Increase in
17	Final [Ca ²⁺] _c Resting Level, %IFRL; Percentage
18	Increase in Recovery Time, %IRT; and Number of
19	[Ca ²⁺] _c Increases.
20	
21	Figure 14 shows the values of $[Ca^{2+}]_c$ trace
22	parameters characteristic for 3,5-DCP, PCP, Zn^{2+}
23	${ m Cr}^{6+}$, Toluene, and SDS. Parameters assessed are
24	Lag Time, LT; Rise Time, RT; Amplitude, A;
25	Length of transient, LT50; Percentage Increase
26	in pre-Stimulating $[Ca^{2+}]_c$ Resting Level,
27	%IpreSRL; Percentage Increase in Final [Ca ²⁺]c
28	Resting Level, %IFRL; Percentage Increase in
29	Recovery Time, %IRT; and Number of [Ca2+]c
30	Increases.
31	

PCT/GB2003/005272

27

1 Figure 15 shows the values of [Ca²⁺]_c trace 2 parameters characteristic for different mixtures 3 of toxicants. Parameters assessed are Lag Time, 4 LT; Rise Time, RT; Amplitude, A; Length of transient, LT50; Percentage Increase in pre-5 Stimulating [Ca²⁺]_c Resting Level, %IpreSRL; 6 7 Percentage Increase in Final [Ca2+]c Resting Level, %IFRL; Percentage Increase in Recovery 8 9 Time, %IRT; and Number of [Ca2+]c Increases. 10 11 Effect of pre-incubation of Aspergillus awamori with toxicants on [Ca2+] c response to external calcium 12 13 chloride 14 15 12 ml of sterile VS medium was inoculated with 1 \times 10^5 spores per ml A. awamori strain 66A. 100 μl of 16 the inoculated medium was added to each well of a 17 96-well plate and cultured in a humidity chamber in 18 19 the presence of free water at 30 $^{\circ}\text{C}$ for 24 hours. 20 21 The following toxicants were tested: 3,5-22 dichlorophenol, zinc sulphate, and potassium 23 dichromate. Each toxicant was added in a total 24 volume of 25 μ l VS medium or water 5 or 30 minutes 25 before addition of 5 mM calcium chloride. 26 27 Luminescence was monitored for 5 minutes following 28 addition of CaCl2. Aequorin was completely 29 discharged by adding 3M calcium chloride in 20% 30 The total concentration is thus 1.5 \mbox{M} 31 calcium chloride in 10% ethanol.

PCT/GB2003/005272

28

Luminometry was performed using an EG & G Berthold 1 (Bad Wildbad, Germany) LB96P Microlumat luminometer. 2 Luminescence data was converted from real light 3 units to $[Ca^{2+}]_c$ values using the following equation: 4 5 6 PCa = 0.332588 (-log k) + 5.5593,7 where k = luminescence counts per second/total 8 9 luminescence counts. Total luminescence is measured 10 as an integral of all luminescence up to complete 11 aequorin discharge. 12 13 The Equation is first described in Fricker, M.D., Plieth, C., Knight, H., Blancaflor, E., Knight, 14 M.R., White, N.S., and Gilroy, S. 1999. Fluorescence 15 and Luminescence Techniques to Probe Ion Activities 16 in Living Plant Cells. In Mason, W.T., editor, 17 18 Fluorescent and Luminescent Probes. Academic Press. 19 London. pp. 569-596. 20 The following parameters were assessed: 21 Rise Time, Amplitude, Length of transient, LT50 and 22 Final [Ca²⁺]_c Resting Level. 23 24 Effects of different concentrations of toxicants on 25 [Ca²⁺]_c traces 26 27 Aspergillus awamori were transformed with an 28 expression vector (pAEQ1-15) comprising a gene for 29 synthetic apoaequorin (aeqS) under the control of 30 the constitutive glucose-6-phosphate dehydrogenase 31 promoter (gpdA). 32

PCT/GB2003/005272

29

These transformants were cultured in 100 μl of 1 2 Vogel's medium with 1% sucrose (VS medium) in microwell plates for 24 hours before addition of a 3 4 toxicant or a control of distilled water. Toxicants 5 were dissolved in water to give the concentrations 6 shown below. 25 μl of the each of the following 7 concentrations were added to each culture:

8

TOXICANT	CONCENTRATIONS (mg/1)
3,5-dichlorophenol (3,5-	0.112, 11.2, 112
DCP)	
Chromium ions (Cr ⁶⁺)	15, 120, 260
Zinc ions (Zn ²⁺)	180, 350, 700, 1300

9

10 The cultures were incubated for 5 or 30 minutes 11 before addition of 100 μ l 5mM CaCl₂. Luminescence 12 was measured for 5 minutes using a plate luminometer. Luminescence data was manually 13 14 converted from relative light units to cytosolic 15 free calcium ion concentration, $[Ca^{2+}]_c$. This was 16 then plotted against time and parameters of this 17 trace were analysed. Parameters assessed were as 18 follows:

19

27

the transient;

20 Rise Time, the time from addition of CaCl₂ to the moment when maximum [Ca2+]c was achieved; 21 Amplitude, the maximum $[Ca^{2+}]_c$ reached during the 22 23 experiment; 24 Length of transient, at 50% of maximum amplitude the 25 width of the transient at the point where the 26 amplitude equals half of the maximum amplitude of

PCT/GB2003/005272

and Final Resting [Ca²⁺]_c Level, the resting [Ca²⁺]_c
at the end of the experiment.

Effects of further toxicants on [Ca2+]c traces

. 9

Cultures of Aspergillus awamori as described above were used to test the effects of further toxicants. The concentrations of toxicants tested were made up as follows in water, where the concentrations tested were based on Dutch target and intervention values for toxicants and Kelly Guidelines for the classification of contaminated soils:

TOXICANT	CONCENTRATION (mg/l)
Pentochlorophenol, PCP	0.01, 0.1, 1, 5, 10
Sodium dodecyl sulphate,	1, 10, 50, 100, 500
SDS	
Toluene	1, 25
3,5-DCP	10
Zn ²⁺	700
Cr ⁶⁺	15

In the first set-up (S1), 100 μ l of each toxicant concentration or of the control (VS medium) were added to the cultures through built-in injectors and luminescence monitored for 5 minutes. In a second set of experiments (S2), cultures were pre-incubated with the toxicant or control for 5 minutes before addition of 5mM CaCl₂ in a total volume of 25 μ l distilled water (pre-incubation can be anywhere between 1 minute and 96 hours). Luminescence was

PCT/GB2003/005272

1	monitored for 5 minutes following addition of CaCl ₂ .
2	(monitoring can be anywhere between 1 minute and 96
3	hours). Luminescence data was converted from
4	relative light units to [Ca2+] c values as described
5	above. The following parameters were assessed in
6	S1:
7	Lag Time, the time from addition of CaCl ₂ to the
8	time when $[Ca^{2+}]_c$ began to rise;
9	Rise Time;
10	Absolute amplitude;
11	Relative amplitude
12	Length of transient (LT20, LT50, LT80);
13	Percentage Increase in Final [Ca2+]c Resting Level,
14	where the control value was taken to be 100%;
15	Percentage Increase in Recovery Time, where the
16	control value was taken to be 100%;
17	and Number of $[Ca^{2+}]_c$ Increases, the number of $[Ca^{2+}]_c$
18	transients.
19	Total Ca ²⁺ concentration
20	
21	In S2, the Percentage Increase in pre-Stimulating
22	[Ca ²⁺] _c Resting Level, where the control value was
23	taken to be 100%, was assessed in addition to all of
24	the parameters tested in S1.
25	
26	Effects of mixtures containing different proportions
27	of toxicants on [Ca2+] c traces
28	
29	The experiments described when examining the effects
30	of further toxicants were repeated for different
31	mixtures of toxicants. The following mixtures were
32	made up in water for testing:


```
1
 2
      6 mg/l 3,5-DCP + 12 mg/l Cr^{6+}
 3
      30 mg/l Cr^{6+} + 350 mg/l Zn^{2+}
 4
      10 mg/l 3,5-DCP + 350 mg/l Zn^{2+}
      6 mg/l 3,5-DCP + 12 mg/l Cr^{6+} + 350 mg/l Zn^{2+}
 5
 6
      Mixture 1:
                      20 mg/l Cadmium
 7
                      100 mg/l Copper
 8
                      50 mg/l Chromium
 9
                      250 mg/l Zinc
10
                      500 \text{ mg/l SDS}
11
      Mixture 2:
                      20 mg/l Cadmium
12
                      100 mg/l Copper
13
                      50 mg/l Chromium
14
                      250 mg/l Zinc
15
      These experiments demonstrate a novel finding that
16
      each toxicant results in a different and
17
18
      characteristic [Ca2+]c transient. Additionally each
19
      concentration of toxicant produces a unique [Ca2+] c
20
      transient. From these characteristic fingerprint
21
      responses a profile of data can be built up and used
22
      to create a bank of data for each toxicant. Results
23
      from testing samples can be compared with this data
24
      bank and the presence of a particular toxicant can
25
      thus be determined. Furthermore, details such as
26
      the mode of action of the toxicant, and the amount
27
      of toxicant present can be deduced from a comparison
28
      with the bank of pre-gathered data.
29
30
      Examples of types of testing that can be carried out
31
      according to the present invention
32
```

PCT/GB2003/005272

33

1 Specific examples of types of test that can be 2 carried out according to the present invention are 3 given below. Although the tests below describe the 4 use of aequorin expressed fungi according to the 5 present invention, it can be seen that any 6 appropriate eukaryotic cell or organism could be 7 used (i.e. mammalian cells in place of the fungi) 8 which has been transformed with any appropriate gene 9 according to the present invention (i.e. halistaurin 10 in place of aequorin) 11 12 The examples refer to the following figures in 13 which; 14 Figure 16 shows a graph indicating the effect of 6 15 16 environmental samples on [Ca2+]c; 17 18 Figure 17 shows a graph indicating the effect of 19 ibuprofen analogue on [Ca2+]c; 20 21 Figure 18 shows a graph indicating the effect of 22 verpamil on [Ca²⁺]_c; 23 24 Figure 19 is a table summarising the profiles of the ibuprofen TM ((S)-(-)- o-Acetulmandelic acid) and 25 verapamil™ (Verapamil hydrochloride) analogues; 26 27 28 Figure 20 is a table summarising profiles of 29 cyclopiazonic acid (CPA) and KP4 (mycotoxin produced 30 by Ustilago spp); 31

PCT/GB2003/005272

1	Figure 21 is a graph showing the dose-dependent
2	effect of KP4 on the $[Ca^{2+}]_c$ response to 5 mM
3	external CaCl2 (results represent mean ± SE);
4	
5	Figure 22a is a graph showing the effect of known
6	antifungal drugs on [Ca ²⁺] _c in Aspergillus nidulans;
7	
8	Figure 22b is a graph showing the effect of known
9	antifungal drugs on [Ca ²⁺] _c in Aspergillus niger;
10	
11	Figure 22c is a graph showing the effect of known
12	antifungal drugs on [Ca2+]c in Aspergillus awamori;
13	and
14	
15	Figure 23 is a graph showing the effect of
16	amphotericin B on $[Ca^{2+}]_c$ (results represent mean \pm
17	SE).
18	•
19	Figure 24 shows a graph showing the ffect of Cr^{6+} (5
20	min preincubation) on aequorin light emission in
21	response to the addition of external $CaCl_2$ (5 mM).
22	Results represent mean ± SE.
23	
24	Figure 25 shows a graph showing the effect of Cr^{6+} (5
25	min preincubation) on $[Ca^{2+}]_c$ in response to the
26	addition of external CaCl ₂ (5 mM). Results represent
27	mean ± SE.
28	
29	General cytotoxicity
30	- pure chemicals and chemical mixtures can be tested
31	for their toricity using a supplying a second of
	for their toxicity using aequorin-expressed fungi.

PCT/GB2003/005272

1	 Add compound(s) of interest to fungus
2	ii. Monitor [Ca ²⁺] _c for 5 min
3	iii. Then stimulate fungus with mechanical
4	perturbation, hypo-osmotic, hyper-
5	osmotic shock
6	iv. Monitor $[Ca^{2+}]_c$ for further 5 min
7	
8	The parameter to be assessed is $[Ca^{2+}]_c$ final resting
9	level. If $[Ca^{2+}]_c$ resting level is still elevated
10	more then 50% after the 11 min measurements the
11	compound(s) are toxic. The level of toxicity can be
12	assessed by subsequent monitoring of $[Ca^{2+}]_c$ for
13	several hours. The longer the $[Ca^{2+}]_c$ concentration
14	is out of normal the more toxic the compound(s) are.
15	This way there is no need for complicated software
16	and this type of approach is ideally suitable for
17	binary answer, based on 1 parameter.
18	
19	Figure 16 shows a graph indicating the effect of 6
20	environmental samples on $[Ca^{2+}]_c$. The graph
21	indicates that sample 006 is toxic as the $[Ca^{2+}]_c$
22	final resting level is increased by more than 150%
23	compared with the control.
24	
25	Another parameter for the analysis of general
26	toxicity is the total amount of $[Ca^{2+}]_c$ emitted.
27	Based on this parameter it is very easy to build
28	dose response curves (see Fig. 21).
29	
30	High information multiparameters analysis
31	- In cases when the binary answer is not sufficient
32	aequorin-based biosensor can produce much more

PCT/GB2003/005272

36

1 detailed data characterising not only the general 2 cytotoxicity but also penetrability (by analysing the time between administration of the compound to 3 4 the point when [Ca²⁺]_c starts to increase) and modes-5 of-action of the compounds (by comparing the profile of [Ca²⁺]_c changes of the compound(s) of interest to 6 7 the library of profiles). If the mode-of-action of 8 the compound(s) of interest is unique and unknown 9 than the present invention can suggest whether the 10 compound(s) causes the permeabilization of 11 membrane, opening of ion channels or the alteration in behaviour of Ca²⁺ carriers. This approach is 12 ideally suitable for analysis of combinations of 13 14 compounds.

15

2526

27

28 29

30

31

32

16 This approach can be used for both pollutants monitoring as previously described but also for the 17 drug toxicity. 18 analysis of e.g. ibuprofen 19 Figures 17 and 18 show the effect of verapamil. ibuprofen and verapamil analogues on the [Ca²⁺]_c and 20 21 the table shown in Figure 19 further summarises the 22 profiles of the ibuprofen and verapamil analogues.

23 Profiling compounds of interest and creating the

24 libraries of fingerprints of compounds

- The present invention is ideally suitable for creating the library of profiles for substances. These profiles are unique to a compound with the particular mode-of-action. Also they are unique to the strain of fungus used, which allows creating very details and reproducible fingerprint of particular compound using the present invention. The profiles can be created with

PCT/GB2003/005272

1	different physico-chemical stimuli (e.g. mechanical
2	perturbation, hypo-osmotic, hyper-osmotic shock,
3	cold shock, heat shock, pH shock). These
4	fingerprints can be programmed into the software and
5	any compounds or mixtures of interest can be
6	screened to match the desired fingerprint.
7	·
8	Procedure to create the fingerprint:
9	• Monitor initial $[Ca^{2+}]_c$ resting level for 1
10	min
11	 Add compound(s) of interest to fungus
12	 Monitor [Ca²⁺]_c for 5 min
13	 Then stimulate fungus with mechanical
14	perturbation, hypo-osmotic, hyper-osmotic
15	shock
16	 Monitor [Ca²⁺]_c for further 5 min
17	 Based on the data obtained the following
18~	parameters can be quantified for each
19	$[Ca^{2+}]_c$ increase occurring during the
20	experiment.
21	Lag time
22	Rise time
23	Amplitude absolute
24	Amplitude relative
25	Length of transient (LT $_{20}$, LT $_{50}$,
26	LT_{80})
27	Initial [Ca ²⁺] _c level
28	Final [Ca ²⁺] _c resting level
29	Recovery time
30	Total concentration of $[Ca^{2+}]_c$

WO 2004/050905

32

PCT/GB2003/005272

38

1	 Above 6 steps can be performed on
2	different strains
3	 Compound can be tested at different
4	concentrations
5	
6	Considering the nature of the experiment the minimum
7	number of parameters produced by one compound at a
8	particular concentration on one fungal strain is
9	equal 22.
10	
11	Analysis of food and drink products for the presence
12	of mycotoxins
13	- Fungi transformed with aequorin gene can be also
14	used for the analysis of food and drink products for
15	the presence of mycotoxins since these toxins affect
16	[Ca ²⁺] _c . Examples of such effects are shown in Figure
17	20 where the effects of cyclopiazonic acid (CPA) and $\frac{1}{\sqrt{3}}$
18 .	KP4 (mycotoxins produced by <i>Ustilago spp</i>) are
19	summarised.
20	
21	Cosmetics safety testing
22	- Since EU regulations forbid the use of animal
23	testing for cosmetics industry the manufacturers are
24	looking at the alternative methods to assess the
25	effect of new products. As the present invention is
26	ideally suited for analysis of not only pure
27	compounds but also their mixtures, it could be used
28	for analysis of the safety of novel cosmetic
29	products. The present invention is also ideal for a
30	long term monitoring of the effects of compounds (up
31	to 96 h), which therefore allows analysis of the

longer-term toxicity than bacterial biosensors. The

PCT/GB2003/005272

39

1 present invention is also suitable for use 2 different substrates such as solid and liquid 3 supports. 4 5 Identification of different fungal strains - It has been found that each particular compound 6 7 produces a different fingerprint when added 8 different fungal species. This can be used to 9 diagnose the unknown fungus. 10 11 Procedure: 12 • The fungus can be either transformed with 13 the recombinant aequorin gene or can be 14 . injected with the active aequorin. 15 • Then this fungus can be subjected to a 16 range of the antifungal drugs, profiles of 17 which have already been created. 18 • Obtained profiles can be compared with the 19 library of the fingerprints and this way 20 the fungal species can be identified. 21 Figures 22a, b and c show that 5 known antifungal 22 drugs (ketoconazole, clotrimazole, amphotericin B, 23 nystatin and filipin) caused a different [Ca2+]. 24 response in 3 different species of Aspergillus (A. 25 nidulans, A. niger, A. awamori). 26 27 Optimisation of the current antifungal treatments 28 - In order to administer drugs in the best possible 29 it is important to determine no 30 concentration and dose response curves, and 31 frequency for administration of drugs. Also, 32 view of the developing resistance of fungus and

PCT/GB2003/005272

40 1 other eukaryotes to currently available drugs, 2 clinicians are looking into using combination of 3 drugs. The present invention is ideally suitable for 4 such studies. 5 6 Identification of compounds which would prevent 7 fungal growth on plastics, metals and other 8 materials 9 - Since the present invention is suitable for long 10 term measurements it is possible to monitor the 11 development and growth of fungi on different 12 materials and plastics treated with different 13 agents. It is possible to monitor the state of 14 fungal physiology by subjecting the organism to 15 different physico chemical treatments and analysis 16 of the profiles obtained. 18 Although the invention has been particularly shown it will be understood by those skilled in the art

17

19 and described with reference to particular examples, 20 21 that various changes in the form and details may be 22 made therein without departing from the scope of the 23 present invention.

PCT/GB2003/005272

1	Claims
2	
3	1. A method of determining the presence of a
4	toxicant in a test sample, comprising the steps
5	of;
6	 exposing a eukaryote that has been
7	transformed with a light emitting Ca ²⁺
8	regulated photoprotein gene to a test sample
9	 measuring the light produced by the
10	transformed cell/organism
11	 determining whether the amount of light is
12	above or below a defined threshold at the
13	time of exposure.
14	
15	2. A method as in Claim 1 wherein the eukaryote is a
16	fungi.
17	
18	3. A method as in Claim 2 wherein the fungi is a
19	filamentous fungi.
20	
21	4. A method as in Claims 2 or 3 wherein the fungi is
22	of the Aspergillus species.
23	
24	5. A method as in Claim 1 wherein the eukaryote is a
25	mammalian cell.
26	
27	6. A method as in Claim 1 wherein the eukaryote is a
28	plant cell.
29	
30	7. A method as in any of the previous Claims wherein
31	the test sample comprises a toxicant.
32	

PCT/GB2003/005272

1	8. A method as in any of the previous Claims wherein
2	the light emitting Ca^{2+} regulated photoprotein
3	gene is a recombinant gene.
4	
5	9. A method as in any of the previous Claims wherein
6	the light emitting Ca ²⁺ regulated photoprotein
7	gene is selected from the group comprising;
8	• aequorin gene
9	 halistaurin (mitrocomin) gene
10	phialidin (clytin) gene
11	• obelin gene
12	mnemiopsin gene
13	• berovin gene
14	
15	10. A method as in any of the previous Claims
16	wherein the light emitting Ca^{2+} regulated
17	photoprotein gene may be a functional homologue
18	of a gene selected from the group comprising;
19	• aequorin gene
20	halistaurin (mitrocomin) gene
21	• phialidin (clytin) gene
22	• obelin gene
23	• mnemiopsin gene
24	• berovin gene
25	
26	11. A method as in any of the previous Claims
27	wherein the light emitting Ca ²⁺ regulated
28	photoprotein gene is an aequorin gene.
29	

PCT/GB2003/005272

	43
1	12. A method as in any of the previous Claims
2	wherein the light emitting Ca ²⁺ regulated
3	photoprotein gene is a recombinant aequorin gene.
4	
5	13. A method as in any of the previous Claims
6	wherein the light that is measured is in the form
7	of luminescence.
8	
9	14. A method as in any of the previous Claims
10	wherein the test sample is added in advance of
11	the application of a stimulus to the test sample.
12	
13	15. A method as in Claim 14 wherein the stimulus is
14	at least one or more from the group comprising;
15	mechanical perturbation, hypo-osmotic shock,
16	change in external calcium chloride
17	concentration, temperature shock and pH shock.
18	
19	16. A method as in Claims 14 and 15 wherein the
20	test sample is added 1 minute to 1 hour prior to
21	the application of the stimulus.
22	
23	17. A method as in Claims 14 to 16 wherein the test
24	sample is added 5 minutes prior to the
25	application of the stimulus.
26	
27	18. A method as in Claims 14 to 16 wherein the test

sample is added 30 minutes prior to the

application of the stimulus.

29 30

PCT/GB2003/005272

	44
1	19. A method of determining the presence of a
Ź	toxicant in a test sample, comprising the steps
3	of;
4	 exposing a eukaryote that has been
5	transformed with a light emitting Ca ²⁺
6	regulated photoprotein gene to a test sample
7	 measuring the light produced by the
8	transformed cell/organism
9	 determining whether the amount of light is
10	above a defined threshold at a specified
11	time after the time of exposure.
12	·
13	20. A method as in Claim 19 which comprises the
14	step of determining whether the amount of light
15	is below a defined threshold.
16	
17	21. A method as in Claims 19 and 20 wherein the
18	specified time after the time of exposure is 11
19	minutes.
20	
21	22. A method as in Claims 19 to 21 wherein the
22 23	eukaryote is a fungi.
24	23 A mathad as to all the
25	23. A method as in Claim 22 wherein the fungi is a filamentous fungi.
26	rramentous rungr.
27	24. A method as in Claims 22 to 22 whomain the
28	24. A method as in Claims 22 to 23 wherein the fungi is of the Aspergillus species.
29	range is of the Aspergillus species.
30	25. A method as in Claims 19 to 21 wherein the
31	eukaryote is a mammalian cell.
32	Tanalia Cell.

PCT/GB2003/005272

45 A method as in Claims 19 to 21 wherein the 1 2 eukaryote is a plant cell. 3 A method as in Claims 19 to 26 wherein the test 4 5 sample comprises a toxicant. 6 A method as in Claims 19 to 27 wherein the 7 8 light emitting Ca²⁺ regulated photoprotein gene is 9 a recombinant gene. 10 A method as in Claims 19 to 28 wherein the 11 light emitting Ca²⁺ regulated photoprotein gene is 12 13 selected from the group comprising; 14 • aequorin gene 15 • halistaurin (mitrocomin) gene 16 • phialidin (clytin) gene 17 • obelin gene 18 • mnemiopsin gene 19 • berovin gene 20 21 A method as in Claims 19 to 29 wherein the light emitting Ca2+ regulated photoprotein gene 22 23 may be a functional homologue of a gene selected 24 from the group comprising; 25 • aequorin gene 26 • halistaurin (mitrocomin) gene 27 • phialidin (clytin) gene 28 obelin gene 29 mnemiopsin gene 30 • berovin gene

15

٠,

WO 2004/050905

PCT/GB2003/005272

	46
1	31. A method as in Claims 19 to 30 wherein the
2	light emitting Ca2+ regulated photoprotein gene is
3	an aequorin gene.
4	
5	32. A method as in Claims 31 wherein the light
6	emitting Ca^{2+} regulated photoprotein gene is a
7	recombinant aequorin gene.
8	
9	33. A method as in Claims 19 to 32 wherein the
10	light that is measured is in the form of
11	luminescence.
12	
13	34. A method as in Claims 19 to 33 wherein the test
14	sample is added in advance of the application of
15	a stimulus to the test sample.
16	
17	35. A method as in Claim 34 wherein the stimulus is
18	at least one or more from the group comprising;
19	mechanical perturbation, hypo-osmotic shock,
20	change in external calcium chloride
21	concentration, temperature shock and pH shock.
22	
23	36. A method as in Claims 34 to 35 wherein the test
24	sample is added 1 minute to 1 hour prior to the
25	application of the stimulus.
26	
27	37. A method as in Claims 34 to 36 wherein the test
28	sample is added 5 minutes prior to the
29	application of the stimulus.

PCT/GB2003/005272

	47
1	38. A method as in Claims 34 to 36 wherein the test
2	sample is added 30 minutes prior to the
3	application of the stimulus.
4	
5	39. A method of determining the presence of a
6	toxicant in a test sample, comprising the steps
7	of;
8	 exposing a eukaryote that has been
9	transformed with a light emitting Ca^{2+}
10	regulated photoprotein gene to a test sample
11	 measuring the light produced by the
12	transformed cell/organism
13	 and comparing the light measurement data
14	with a bank of known toxicity reference
15	data.
16	
17	40. A method as in Claim 39 wherein the method
18	comprises the step of determining whether the
19	amount of light is below a defined threshold.
20	
21	41. A method as in Claims 39 to 40 wherein the
22	specified time after the time of exposure is 11
23	minutes.
24	
25	42. A method as in Claims 39 to 40 wherein the
26	eukaryote is a fungi.
27	
28	43. A method as in Claim 42 wherein the fungi is a
29	filamentous fungi.
30	
21	

31 44. A method as in Claims 42 to 43 wherein the 32 fungi is of the Aspergillus species.

PCT/GB2003/005272

1	
2	45. A method as in Claims 39 to 41 wherein the
3	eukaryote is a mammalian cell.
4	
5	46. A method as in Claims 39 to 41 wherein the
6	eukaryote is a plant cell.
7	
8	47. A method as in Claims 39 to 46 wherein the test
9	sample comprises a toxicant.
10	
11	48. A method as in Claims 39 to 47 wherein the
12	light emitting Ca ²⁺ regulated photoprotein gene is
13	a recombinant gene.
14	
15	49. A method as in Claims 39 to 48 wherein the
16	light emitting Ca ²⁺ regulated photoprotein gene is
17	selected from the group comprising;
18	• aequorin gene
19	 halistaurin (mitrocomin) gene
20	 phialidin (clytin) gene
21	• obelin gene
22	• mnemiopsin gene
23	• berovin gene
24	
25	50. A method as in Claims 39 to 49 wherein, the
26	light emitting Ca ²⁺ regulated photoprotein gene
27	may be a functional homologue of a gene selected
28	from the group comprising;
29	• aequorin gene
30	 halistaurin (mitrocomin) gene
31	 phialidin (clytin) gene

29 30 PCT/GB2003/005272

1	• obelin gene
2	• mnemiopsin gene
3	• berovin gene
4	
5	51. A method as in Claims 39 to 50 wherein the
6	light emitting Ca2+ regulated photoprotein gene is
7	an aequorin gene.
8	
9	52. A method as in Claims 39 to 51 wherein the
10	light emitting Ca ²⁺ regulated photoprotein gene is
11	a recombinant aequorin gene.
12	
13	53. A method as in Claims 39 to 52 wherein the
14	light that is measured is in the form of
15	luminescence.
16	
17	54. A method as in Claims 39 to 53 wherein the test
18	sample is added in advance of the application of
19	a stimulus to the test sample.
20	
21	55. A method as in Claim 54 wherein the stimulus is
22	at least one or more from the group comprising;
23	mechanical perturbation, hypo-osmotic shock,
24	change in external calcium chloride
25	concentration, temperature shock and pH shock.
26	
27	56. A method as in Claims 54 to 55 wherein the test
28	sample is added 1 minute to 1 hour prior to the
29	application of the stimulus

30 31

PCT/GB2003/005272

	50
1	57. A method as in Claims 54 to 56 wherein the test
2	sample is added 5 minutes prior to the
3	application of the stimulus.
4	
5	58. A method as in Claims 54 to 55 wherein the test
6	sample is added 30 minutes prior to the
7	application of the stimulus.
8	
9	59. A method as in Claims 39 to 58 wherein the
10	method is used to determine the amount of
11	toxicant in the sample.
12	
13	60. A method as in Claims 39 to 59 wherein the
14	method is used to identify the toxicant in the
15	sample.
16	
17	61. A method of determining the presence of a
18	toxicant in a test sample, comprising the steps
19	of;
20	 exposing a eukaryote that has been
21	transformed with a light emitting Ca^{2+}
22	regulated photoprotein gene to a test sample
23	 measuring the light produced by the
24	transformed cell/organism
25	 converting the light data into a cytosolic
26	free calcium ion concentration trace,
27	 and comparing at least one parameter of the
28	cytosolic free calcium ion concentration
29	trace with a bank of known toxicity
30	reference data.
21	

29 30

31

32

PCT/GB2003/005272

	51
1	62. A method as in Claim 61 wherein the method
2	comprises the step of determining whether the
3	amount of light is below a defined threshold.
4	
5	63. A method as in Claims 61 to 62 wherein the
6	eukaryote is a fungi.
7	
8	64. A method as in Claim 63 wherein the fungi is a
9	filamentous fungi.
10	
11	65. A method as in Claims 63 to 64 wherein the
12 ·	fungi is of the Aspergillus species.
13	
14	66. A method as in Claims 61 to 62 wherein the
15	eukaryote is a mammalian cell.
16	
17	67. A method as in Claims 61 to 62 wherein the
18	eukaryote is a plant cell.
19	
20	68. A method as in Claims 61 to 67 wherein the test
21	sample comprises a toxicant.
22	
23	69. A method as in Claims 61 to 68 wherein the
24	light emitting Ca^{2+} regulated photoprotein gene is
25	a recombinant gene.
26	
27	70. A method as in Claims 61 to 69 wherein the
28	light emitting Ca2+ regulated photoprotein gene is
29	selected from the group comprising;
30	• aequorin gene
31	 halistaurin (mitrocomin) gene
32	 phialidin (clytin) gene

PCT/GB2003/005272

52

1	• obelin gene
2	• mnemiopsin gene
3	• berovin gene
4	
5	71. A method as in Claims 61 to 70 wherein the
6	light emitting Ca ²⁺ regulated photoprotein gene
7	may be a functional homologue of a gene selected
8	from the group comprising;
9	• aequorin gene
10	 halistaurin (mitrocomin) gene
11	phialidin (clytin) gene
12	• obelin gene
13	• mnemiopsin gene
14	• berovin gene
15	
16	72. A method as in Claims 61 to 71 wherein the
17	light emitting Ca_i^{2+} regulated photoprotein gene is
18	an aequorin gene.
19	
20	73. A method as in Claims 61 to 72 wherein the
21	light emitting Ca^{2+} regulated photoprotein gene is
22	a recombinant aequorin gene.
23 24	74
25	74. A method as in Claims 61 to 73 wherein the
26	light that is measured is in the form of luminescence.
27	ruminescence.
28	75. A method as in Claims 61 to 74 whorein the task
29	75. A method as in Claims 61 to 74 wherein the test sample is added in advance of the application of
30	a stimulus to the test sample.
	and the cost sample.

PCT/GB2003/005272

53 1 A method as in Claim 75 wherein the stimulus is 2 at least one or more from the group comprising; 3 mechanical perturbation, hypo-osmotic shock, 4 change in external calcium chloride 5 concentration, temperature shock and pH shock. 6 7 77. A method as in Claims 75 to 76 wherein the test 8 sample is added 1 minute to 1 hour prior to the 9 application of the stimulus. 10 11 A method as in Claims 75 to 77 wherein the test 12 sample is added 5 minutes prior to the 13 application of the stimulus. 14 15 A method as in Claims 75 to 77 wherein the test 16 sample is added 30 minutes prior to the 17 application of the stimulus. 18 19 A method as in Claims 61 to 79 wherein light is 20 measured for between 1 minute and 5 hours 21 following the application of the stimulus. 22 A method as in Claims 61 to 79 wherein light is 23 24 measured for between 1 minute and 96 hours 25 following the application of the stimulus. 26 27 A method as in Claims 61 to 79 wherein light is 28 measured for 5 minutes following the application of the stimulus. 29

30

31 A method as in Claims 61 to 82 wherein the 32 cytosolic free calcium ion trace is a plot of the

PCT/GB2003/005272

54

1	cytosolic free calcium ion concentration against
2	time.
3	
4	84. A method as in Claims 61 to 83 wherein the
5	parameter is at least one or more selected from
6	the group comprising;
7	• lag time
8	• rise time
9	 absolute amplitude
10	 relative amplitude
11	 Length of transient at 20%, 50% and 80% of
12	maximum amplitude
13	 number of cytosolic free calcium ion
14	concentration increases
15	 percentage increase in final cytosolic free
16	calcium ion concentration resting level
17	 percentage increase in recovery time
18	 percentage increase in pre-stimulating
19	cytosolic free calcium ion concentration
20	resting level
21	 total concentration of calcium
22	
23	85. A method as in Claims 61 to 84 wherein the
24	method is used to determine the amount of
25	toxicant in the sample.
26	
27	86. A method as in Claims 61 to 85 wherein the
28	method is used to identify the toxicant in the
29	sample.
30	

PCT/GB2003/005272

10/537435

PCT/GB2003/005272

10/537435

10/537435 PCT/GB2003/005272

0/537435 PCT/GB2003/005272

10/537435 PCT/GB2003/005272

WO 2004/050905

7/14

Number	ncreases	82	~	~	~	~	√	-	_	_	_	n.a.	_
Ž	incr	ડ	_	_	_	_	<u></u>	_	_	_	_	_	n.a
%IRT	2	S2	102±3	99±3	109±6	218±7	308±4	109∓9	154±10	287±10	286±12	n,a.	115±2 n.a.
%		S1	111±4	122±9	195±8	274±4	373±22	114±6	120±13 243±14	328±6	367±11	565±12	n.a.
%IFRI	ļ	S2	104±6	104±11	107±11	205±9	253±7	106±7	120±13	222±16	256±14	n.a.	113±3
		S1	115±6	118±5	204±13	209±7	305±17	116±5	162±7	237±9	405±15	561±12	n.a.
%loreSRL	-	S2	6∓/6	104±9	109±5	120±3	131±9	125±34	136±13	323±19	359±24	n.a.	129±9
LTso	}	S 2	•	1	ı	←	←	ı	←	←	←	n.a	•
		S	←	←	←	←	←	ı	←	←	←	_ ←	n. 'a.
⋖		S2	100∓2	91±5	80±10	89±14	175±27	102±8	118±4	115±12	116±3	n.a.	74±13 n.a.
		S1	75±23	74±22	72±14	199±26	12.6 12.6 417±73	111±48	246±19	295±33	293±19	998±35	n.a.
⊢		S 2	_	_		~	12.6	~		- ·	-	n.a.	-
R		ည	_	_	-	12.6	12.6	_	12.6	12.6	12.6	n.a. 12.6 n.	n.a.
 		S2	0	0	0	0	0	0	0	0	0		n.a. 0
		ည	0	0	0	0	0	0	0	0	0	0	л.а.
Values of interest	(mg/l)		0.01	0.1	_	2	10	_	9	20	100	200	_
Chemical					PC		· · · · · · · · · · · · · · · · · · ·			SDS			Toluene

A=changes in A (%) RT=rise time Note: LT=lag time

%IpreSRL=% increase in pre-stimulation resting level %IFRL=% increase in final resting level %IRT=% increase in recovery time S1=Stage 1 S2=Stage2

8/14

ā	8	23	_	_				_
Number of	increases	S1 S2		_	·	_	_	_
	<u>ء</u> .	(0)	.		~	<u>~</u>		-7
<u> </u>		82	207±2	308±4	225±12	120±28	115±2	86±1′
%IRT		S1	153±13	253±7 373±22 308±4			n.a.	565±12 2
%IFRL		S2	134±10 172±21 153±13 207±23 1		263±14 258±5	110±11 103±2	113±3	998±35 116±3 ↑ ↑ 359±24 561±12 256±14 565±12 286±12 1
H%		S1	134±10	305±17	142±18 225±8	104±5	n.a.	561±12
LT ₅₀ %lpreSRL		ZS	102±3	131±9	142±18	102±12 104±5	73±13 n.a. ↑. 121±6	359±24
20		S 2		←	←	1.	<u>.</u>	←
		S1 S2	←	←	←	1	n.a.	←
		S2	79±25	175±27	74±1	84±23	73±13	116±3
∢		S	40±2	12.6 417±73 175±27	42 ± 5	41±5	n:a.	998±35
<u>. </u>		S2	₹;	12.6	_	-	_	-
			0 0 12.6	0 12.6 1	0 12.6	·	n.a.	0 0 12.6
—		S1 S2 S1	0	0	0	0	0	0
L L		ည	0	0	0	0	o ·	0
Values of interest	(mg/l)		9	9	200	15	25 (1) 0. 0 n.a.	500
Chemical			3,5 DCP 10	PCP	Zn ²⁺	ф О	Toluene	SDS

%lpreSRL=% increase in pre-stimulation resting level %IFRL=% increase in final resting level %IRT=% increase in recovery time S1=Stage 1 S2=Stage2

LT=lag time RT=rise time A=changes in A (%)

Note:

010/537435

PCT/GB2003/005272

9/14

		"	_										
Nimber	of [increases	22	~	_	•	· •	~	7	7	7	7	~
Ž	<u> </u>	<u>in</u>	S			~	_	_	~	7	-	7	_
	%IRT		S 2	207±23	120±28	225±12	286±12	119±10	154±6	208±11	195±8	477±28	120±7
	! %		S	153±13	103±2	258±5	565±12	120±14 128±5	158±26		160±5		170±28
	%IFRL		82	172±21	110±11	263±14	256±14 565±12	120±14	143±18 150±12 158±26	294±18 153±16 311±14	150±9	501±38 446±17	148±16 177±44 132±27 170±28 120±7
	#%		ડ્ડ	 134±10	104±5	225±8	561±12	117±4	143±18	294±18	164±4	402±17	177±44
	LT ₅₀ % preSRL		85	102±3	102±12	142±18	359±24	96±26	100±5	103±9	102±8	262±13	148±16
	LT50		S1 S2	↓ ↓		←	↓	- ←	- 1	-	- 1	←	
		- 1		79±25 ↑ ↑	84±23	74±1	116±3	88±13	76±4	86±2	79∓5	128±6	69 ± 14
	∢		ઝ	40±2	41±5	42±5	998±35	33±4	23±6	65±5	25±2	12.6 466±13	116±8
	L	8	22	-	-	_	_	_	_		_	2.6	~
	R.		<u>رج</u>	0 0 12.6	_	0 12.6	0 12.6	0 12.6	-	0 12.6	0 12.6	0 12.6 1	-
	<u> </u>	8	21 27	0	0	0	0	0	0	0	0	0	0
	<u> </u>	1	<u>ر</u>	0	0	0	0	0	0	0	0	0	0_
Values	of interest	(mgm)		10	15	700	200	6+12	30+350	10+350	6+12+350	See M&M	See M&M
	Chemical			3,5 DCP	Ç.	Zn ²⁺	SOS	3,5-DCP + Cr6+	Cr6+Zn2+	3,5DCP +Zn ²⁺	3,5-DCP+ Cr6+ Zn2+	Mixture 1	Mixture 2

Italics represents data obtained with very high concentrations of toxicants: Zn2+=700 mg/l; Cr6+=120 mg/l; 3,5 DCP=49 mg/l

10/537435

WO 2004/050905

PCT/GB2003/005272

SUBSTITUTE SHEET (RULE 26)

11/14

Chemical	Concentration (mg/l)	RT	Α	LT ₅₀	%IFRL	%IRT
Ibuprofen	10	\downarrow	-	↓	-	-
	25	-	$\uparrow \uparrow$	↑	-	1
Verapamil	333	-	1	-	-	-

Fre 19

Chemical	Concentration (μΜ)	RT	Α	LT ₅₀	%IPreRL	%IFRL	%IRT
CPA	10	-	-	-	-	-	-
	20	-	↑	1	1	1	1
	50	-	↑ ↑	1	3*↑	4*↑	4*↑
KP4	5.4	-	\downarrow	1		-	-

Fre.20

10/537435

PCT/GB2003/005272

12/14

Fre 21

PCT/GB2003/005272

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

11/1/4

PCT/GB2003/005272

PCT/um 03/05272

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12Q1/66 C12Q1/68

Pac'd PSTATO 03 JUN 2005

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\,\,7\,\,\,\,\,$ C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00/02045 A (DETHEUX MICHEL; DUPRIEZ VINCENT (BE); EUROSCREEN S A (BE); PARMENTIER) 13 January 2000 (2000-01-13) page 10; example 1 page 13; example 5 figures 2,6	1-60
X	WO 02/075273 A (DUPRIEZ VINCENT; EUROSCREEN S A (BE); PARMENTIER MARC (BE)) 26 September 2002 (2002-09-26) abstract page 30; example 1 page 35; examples 2,3 page 29, lines 5-10 claims 1-3; figures 2,11 -/	1-60

Further documents are listed in the continuation of box C.	Patent ramily members are listed in annex.
Special categories of cited documents :	T later document published after the international filing date
A document defining the general state of the art which is not considered to be of particular relevance	 or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E earlier document but published on or after the international filling date	"X" document of particular relevance; the claimed invention cannol be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another	involve an inventive step when the document is taken alone
citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the
O document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled
P document published prior to the international filing date but	in the art.
tater than the priority date claimed	"&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
16 March 2004	07/04/2004
Name and malling address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	
Tel. (+31-70) 340~2040, Tx. 31 651 epo nl,	Leber, T
Fax: (+31-70) 340-3016	Lebel , 1

INTERNATIONAL SEARCH REPORT

Internal Npplication No

		PCT/up 33/05272
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	MITHOFER A A ET AL: "Induction of H202 synthesis by beta-glucan elicitors in soybean is independent of cytosolic calcium transients" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 508, no. 2, 16 November 2001 (2001-11-16), pages 191-195, XP004323228 ISSN: 0014-5793 abstract page 191, right-hand column figure 1	61-86
Υ	WO 01/51923 A (MITOKOR; MURPHY ANNE N (US); STOUT AMY K (US)) 19 July 2001 (2001-07-19) claim 19; figure 4	14-18, 34-38, 75-86
Υ	CELL CALCIUM. NOV 1999, vol. 26, no. 5, November 1999 (1999-11), pages 193-199, XP0009026739 ISSN: 0143-4160 abstract page 194, left-hand column; figures 1,4	14-18, 34-38, 75-86
P,A	SCIENCE. 11 JUL 2003, vol. 301, no. 5630, 11 July 2003 (2003-07-11), pages 213-215, XP0001179643 ISSN: 1095-9203 the whole document	
A	HERBAUD M-L ET AL: "Calcium signalling in Bacillus subtilis" BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 1448, no. 2, 10 December 1998 (1998-12-10), pages 212-226, XP004277892 ISSN: 0167-4889 the whole document	
A	US 5 714 666 A (SHEU YEONG-AN ET AL) 3 February 1998 (1998-02-03) the whole document	

INTERNATIONAL SEARCH REPORT

Internal	Application No
PCT/up	03/05272

					,	03/ 032/2
Patent docume cited in search re		Publication date		Patent family member(s)	-	Publication date
WO 0002045	A	13-01-2000	AT	232298	T	15-02-2003
			WO	0002045	A2	13-01-2000
			CA	2336929	A1	13-01-2000
			DE	69905291	D1	13-03-2003
			DE	69905291	T2	06-11-2003
			DK	1145002	T3	05-05-2003
			EP	1145002	A2	17-10-2001
			ES	2192060	T3	16-09-2003
			JP	3495987	B2	09-02-2004
			JP	2002519699	T	02-07-2002
WO 0207527	3 A	26-09-2002	MO	02075273	A2	26-09-2002
WO 0151923	Α	19-07-2001	AU	4142001	 A	24-07-2001
			EP	1247093		09-10-2002
			WO	0151923		19-07-2001
			US	2001046664	A1	29-11-2001
US 5714666	A	03-02-1998	NONE			