(recard) HWI out S/14 - due 5/21

CS3000: Algorithms & Data Drew van der Poel

Quizlout 5/14-dne 5/17 (NOON) Piazza

Lecture 4

- Finish Asymptotic Analysis
- Divide & Conquer: Merge Sort

May 13, 2021

Outline

Last class: stable matching, asymptotic analysis

Next class: divide and conquer: merge sort + {aratsuhas?

General Proof Example

• Prove that if f(n) = O(h(n)) and g(n) = O(h(n)), then f(n) + g(n) = O(h(n))

$$f(n) \leq C_{1}h(n) \quad \forall \quad N \geq N_{0}''$$

$$g(n) \leq C_{2}h(n) \quad \forall \quad N \geq N_{0}''$$

$$f(n) + g(n) \leq \left(C_{1} + C_{2}\right)h(n) \quad \forall \quad N \geq \max(N_{0}', N_{0}'')$$

$$C = C_{1} + C_{2} \qquad N_{0} = \max(N_{0}', N_{0}'')$$

$$f(n) + g(n) \leq C_{1}h(n) \quad \forall \quad N \geq N_{0}$$

A Word of Caution

• The notation f(n) = O(g(n)) is weird—do not take it too literally

$$n = O(n^{2})$$
 $n = O(n)$
 $n = O(n^{2})$

Asymptotic Analysis Rules

Constant factors can be ignored

•
$$\forall C > 0$$
 $Cn = O(n)$

$$2n = O(h)$$

• Constant factors can be ignored • $\forall C > 0$ Cn = O(n)• Lower order terms can be dropped • E.g. $n^2 + n^{3/2} + n = O(n^2)$

• E.g.
$$n^2 + n^{3/2} + n = O(n^2)$$

Smaller exponents are Big-Oh of larger exponents

•
$$\forall a > b$$
 $n^b = O(n^a)$

•
$$\forall a > b$$
 $n^b = O(n^a)$ $n^{\dagger} = O(n^{1.6000})$

Any logarithm is Big-Oh of any polynomial

•
$$\forall a, \varepsilon > 0 \quad \log_2^a \ n = O(n^{\varepsilon})$$

•
$$\forall a, \varepsilon > 0$$
 $\log_2^a n = O(n^{\varepsilon})$ | $\log_2^a n = O(n^{\varepsilon})$

• Any polynomial is Big-Oh of any exponential • $\forall a > 0, b > 1$ $n^a = O(b^n)$

•
$$\forall a > 0, b > 1 \quad n^a = O(b^n)$$

Ask the Audience!

$$X^{109}y = y^{109}x$$

$$\left(X^{y}\right)^{2} = \left(x^{2}\right)^{y}$$

$$\left(x^{y}\right)^{2} = \left(x^{2}\right)^{y}$$

- Rank the following functions in increasing order of growth (i.e. f_1, f_2, f_3, f_4 so that $f_i = O(f_{i+1})$)
 - $n \log_2 n$
 - n^2

$$=\left(\lambda\right)$$

$$\begin{array}{c}
\bullet \ 100n \\
\bullet \ 3^{\log_2 n} \rightarrow \begin{pmatrix} 109_1 \\
\downarrow \end{pmatrix} \begin{pmatrix} 109_1 \\
\downarrow \end{pmatrix} = \begin{pmatrix} 109_1 \\
\downarrow \end{pmatrix} \begin{pmatrix} 109_1 \\
\downarrow \end{pmatrix} = \begin{pmatrix} 109_1 \\
\downarrow \end{pmatrix}$$

$$100M = O(n\log_{1}n)$$
 $100M = O(n\log_{1}n)$
 $100M$

Asymptotic Order Of Growth

- "Big-Omega" Notation: $f(n) = \Omega(g(n))$ if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ s.t. $f(n) \ge c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of $f(n) \ge g(n)$
 - Roughly equivalent to $\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$
- "Big-Theta" Notation: $f(n) = \Theta(g(n))$ if there exists $c_1 \le c_2 \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $c_2 \cdot g(n) \ge f(n) \ge c_1 \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) = g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} \in (0,\infty)$
 - Equivalent to: f(n) = O(g(n)) AND f(n) = D(g(n))

Asymptotic Running Times

- It is nice to write running time as a Big-Theta
 - More precise than Oh or Omega
 - Note: Sometimes it is simpler to just use Oh

$$f(n) = 3n^{2} + N$$
 $f(n) = \Theta(n^{2})$
 $f(n) = O(n^{3})$
 $f(n) = O(n^{3})$
 $f(n) = O(n^{3})$
 $f(n) = O(n^{3})$
 $f(n) = O(n^{3})$

More Examples

•
$$30 \log_2 n + 45 = \Theta(\log_2 n)$$
 Q. C: 30 $n_0 = 1$

30 $\log_2 n + 45 = \Theta(\log_2 n)$ Q. C: 30 $n_0 = 1$

30 $\log_2 n + 45 = \log_2 n$ $\log_2 n$ $\log_2 n + \log_2 n$

45 $\leq 0 \leq \log_2 n$ $\log_2 n$ $\log_2 n + \log_2 n$ $\log_2 n \leq \log_2 n$ $\log_2 n$ $\log_2 n \leq \log_2 n$ $\log_2 n$ $\log_2 n \leq \log_2 n$ $\log_$

Problems: counting students, stable matching

Alg. techniques:

Analysis: asymptotic analysis

• Proof techniques: (strong) induction, contradiction

Asymptotic Order Of Growth

- "Little-Oh" Notation: f(n) = o(g(n)) if for every c > 0 there exists $n_0 \in \mathbb{N}$ s.t. $f(n) < c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) < g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
- "Little-Omega" Notation: $f(n) = \omega(g(n))$ if for every c > 0 there exists $n_0 \in \mathbb{N}$ such that $f(n) > c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) > g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$

Motivation: Differences across orders of growth

of operations

	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1	sec < 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1	sec 18 min	2= 0
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 r	min 36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 ye	ears 10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very l	ong very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very l	ong very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very l	ong very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very l	ong very long	very long

Instance size

Running time when 1 op. takes ~1 microsecond

Observations:

- 1. Different polynomials make a BIG difference! (e.g. $\underline{n^2 \text{ vs. } n^3}$ when $n \ge 1000$)
- 2. Things go bad quickly (look down any polynomial or exponential column)! We want **scalability**!
- Large instances are when there is a difference (log still good!)

- · Split (divide) a bis prublem intu smaller instances
- & Solve the Small Publens
- · Combine (conquer) the Smaller Sulns to Soilve the crisinal large instance!

 Divide and Conquer Algorithms

What do you think of?

Divide and Conquer Algorithms

- Split your problem into smaller subproblems
- Recursively solve each subproblem
 - Combine the solutions to the subprobelms

Problems: counting students, stable matching

• Alg. techniques: divide & conquer

Analysis: asymptotic analysis

• Proof techniques: (strong) induction

Divide and Conquer Algorithms

Examples:

- Today Mergesort: sorting a list
 - Binary Search: search in a sorted list
 - Karatsuba's Algorithm: integer multiplication
 - Finding the k-th largest element in an array

Key Tools:

- Correctness: proof by induction
- Running Time Analysis: recurrences & recursion trees
- Asymptotic Analysis

Problem: Sorting a List

Input: A list of comparable elements (numbers, words, etc.)

Problem: Sort the list so that it is ordered

Output: The list of elements in ascending (or descending)

order

• Problems: counting students, stable matching, sorting

• Alg. techniques: divide & conquer

Analysis: asymptotic analysis

• Proof techniques: (strong) induction, contradiction

Sorting

Given a list of n numbers, put them in ascending order

output;

A Simple Algorithm: Selection Sort

A Simple Algorithm: Selection Sort

Find the minimum

Swap it with end, repeat on first n-1

2 3 8 11 15 17 28 42

Counting Operations

Examples of what counts as an operation:

- Creating (and assigning a value to) a variable
- Assigning a value to an existing variable
- Looking up a value
- Arithmetic (+, -, *, /, %)
- Comparisons $(<, >, =, \le, \ge)$
- Function calls

•

Ł

A Simple Algorithm: Selection Sort

Divide and Conquer: Mergesort

Divide and Conquer: Mergesort

- **Key Idea:** If L, R are sorted lists of length n/2, then we can merge them into a sorted list A of length n in time $\Theta($
 - Merging two sorted lists is faster than sorting from scratch

Merging Pseudocode

```
Merge(L,R):
  Let n \leftarrow len(L) + len(R)
  Let A be an array of length n
  j \leftarrow 1, k \leftarrow 1,
  For i = 1, ..., n:
    If (j > len(L)):
                                        // L is empty
      A[i] \leftarrow R[k], k \leftarrow k+1
    ElseIf (k > len(R)):
                                        // R is empty
      A[i] \leftarrow L[j], j \leftarrow j+1
    ElseIf (L[j] \le R[k]):
                                        // L is smallest
      A[i] \leftarrow L[j], j \leftarrow j+1
    Else:
                                        // R is smallest
      A[i] \leftarrow R[k], k \leftarrow k+1
  Return A
```


MergeSort

```
MergeSort(A):
  If (len(A) = 1): Return A // Base Case
                                       // Split
  Let m \leftarrow [\operatorname{len}(A)/2]
  Let L \leftarrow A[1:m], R \leftarrow A[m+1:n]
                                       // Recurse
  Let L ← MergeSort(L)
  Let R \leftarrow MergeSort(R)
                                       // Merge
  Let A \leftarrow Merge(L,R)
  Return A
```


Mergesort Demo

11 3 42 28

Correctness of Mergesort

• Claim: The algorithm Mergesort is correct

• H(n):

• Base Case:

Correctness of Mergesort

Inductive step:

```
MergeSort(A):
  If (n = 1): Return A
  Let m \leftarrow \lceil n/2 \rceil
  Let L \leftarrow A[1:m]
         R \leftarrow A[m+1:n]
  Let L ← MergeSort(L)
  Let R ← MergeSort(R)
  Let A \leftarrow Merge(L,R)
  Return A
```


Running Time of Mergesort

```
T(1) =
```

$$T(n) =$$

```
MergeSort(A):
  If (n = 1): Return A
  Let m \leftarrow \lceil n/2 \rceil
  Let L \leftarrow A[1:m]
         R \leftarrow A[m+1:n]
  Let L ← MergeSort(L)
  Let R ← MergeSort(R)
  Let A \leftarrow Merge(L,R)
  Return A
```


Recursion Trees

$$T(n) = 2 \cdot T(n/2) + Cn$$

$$T(1) = C$$

Running Time of Mergesort

Total work: $\sum_{i=0}^{last\ level} work\ at\ level\ i$

• Problems: counting students, stable matching, sorting

Alg. techniques: divide & conquer

Analysis: asymptotic analysis, recursion trees

• Proof techniques: (strong) induction, contradiction

Recursion Trees

 $\log_2 n$

$$T(n) = 2 \cdot T(n/2) + Cn$$
$$T(1) = C$$

Work at this Level

Cn

$$2 \cdot \left(\frac{Cn}{2}\right) = Cn$$

$$4 \cdot \left(\frac{Cn}{4}\right) = Cn$$

$$2^i \cdot \left(\frac{Cn}{2^i}\right) = Cn$$

$$2^{\log_2 n} \cdot C = Cn$$

Mergesort Summary

- Sort a list of n numbers in $\Theta(n \log n)$ time
 - Can actually sort anything that allows comparisons
 - No comparison based algorithm can be (much) faster
- Divide-and-conquer
 - Break the list into two halves, sort each one and merge
 - Key Fact: Merging is easier than sorting
- Proof of correctness
 - Proof by induction
- Analysis of running time
 - Recurrences & recursion trees

