WIMA MKS 2

Metallisierte Polyester (PET)-Kondensatoren im Rastermaß 5 mm

Spezielle Eigenschaften

- Hohe Volumenkapazität
- Ausheilfähig
- Konform RoHS 2011/65/EU

Anwendungsgebiete

Für allgemeine Gleichspannungsanwendungen wie z.B.

- Bypass
- Abblocken
- Koppeln und Entkoppeln
- Timing

Aufbau

Dielektrikum:

Polyethylenterephthalat (PET) Folie

Beläge:

Aufmetallisiert

Innerer Aufbau:

Umhüllung:

Lösungsmittelresistentes, flammhemmendes Kunststoffgehäuse mit Epoxidharzverguß, UL 94 V–0

Anschlüsse:

Verzinnter Draht.

Kennzeichnung:

Farbe: Rot. Aufdruck: Silber/Weiß. Epoxidharzverguß: Rot

Elektrische Daten

Kapazitätsspektrum:

0,01 μ F bis 10 μ F (E12-Werte auf Anfrage)

Nennspannungen:

50 V-, 63 V-, 100 V-, 250 V-, 400 V-, 630 V-

Kapazitätstoleranzen:

±20%, ±10%, ±5%

Betriebstemperaturbereich:

 $U_N = 50 \text{ V-: } -55^{\circ} \text{ C bis } +100^{\circ} \text{ C}$ $U_N \ge 63 \text{ V-: } -55^{\circ} \text{ C bis } +125^{\circ} \text{ C}$

Klimaprüfklasse:

55/100/21 nach IEC

Isolationswerte bei +20° C:

Prüfungen: Nach IEC 60384-2 **Prüfspannung:** 1,6 U_N, 2s **Spannungsderating:**

Die zulässige Spannung vermindert sich gegenüber der Nennspannung bei Gleichspannungsbetrieb ab +85° C, bei Wechselspannungsbetrieb ab +75° C um 1,25% je 1K

Zuverlässigkeit:

Betriebszeit > 300 000 h (+125° C sind zulässig für max. 1000 h verteilt über die Betriebszeit)

Ausfallrate < 2 fit (0,5 \cdot U $_{N}$ und 40 $^{\circ}$ C)

U _N	U _{meß}	C ≤ 0,33 µF	0,33 µF < C ≤ 10 µF
50 V-	10V	\geqslant 5 · 10 ³ M Ω (Mittelwert: 3 · 10 ⁴ M Ω)	\geqslant 1000 s (M $\Omega \cdot \mu$ F) (Mittelwert: 3000 s)
63 V-	50 V	\geqslant 1 · 10 ⁴ M Ω (Mittelwert: 5 · 10 ⁴ M Ω)	\geqslant 1250 s (M $\Omega \cdot \mu$ F) (Mittelwert: 3000 s)
≥100 V-	100 V	\geq 1,5 · 10 ⁴ M Ω (Mittelwert: 1 · 10 ⁵ M Ω)	≥3000 s (MΩ · µF) (Mittelwert: 6000 s)

Meßzeit: 1 min.

Verlustfaktoren bei + 20° C: tan δ

Gemessen bei	C ≤ 0,1 µF	0,1 µF < C ≤ 1,0 µF	C > 1,0 µF
1 kHz	≤ 8 ⋅ 10-3	≤ 8 ⋅ 10-3	≤ 10 · 10 ⁻³
10 kHz	≤ 15 · 10 ⁻³	≤ 15 · 10 ⁻³	-
100 kHz	≤ 30 · 10 ⁻³	_	-

Impulsbelastung: bei vollem Spannungshub

C-Wert		Flankensteilheit V/ µ s max. Betrieb/Prüfung										
μF	50 V-	63 V-	100 V-	250 V-	400 V-	630 V-						
0,01 0,022	-	35/350	35/350	50/500	80/800	110/1100						
0,033 0,068	_	20/200	25/250	50/500	80/800	90/900						
0,1 0,47	10/100	15/150	20/200	50/500	80/800	_						
0,68 1,0	8/80	12/120	15/150	25/250	-	_						
1,5 3,3	8/80	7,5/75	10/100	_	-	_						
4,7	5/50	5/50	_	_	-	_						
6,8	3/30	3/30	_	_	_	_						
10	2,5/25	-	_	_	_	_						

Mechanische Prüfungen

Zugtest Anschlußdrähte:

10 N in Drahtrichtung nach IEC 60068-2-21

Schwingen:

6 h bei 10 ... 2000 Hz und 0,75 mm Auslenkung bzw. 10 g nach IEC 60068-2-6.

Unterdruck:

1kPa = 10 mbar nach IEC 60068-2-13 **Stoßtest:** 4000 Stöße mit 390 m/s² nach IEC 60068-2-29

Verpackung

Gegurtet lieferbar.

Detaillierte Gurtungsangaben und Maßzeichnungen am Ende des Hauptkataloges.

Weitere Angaben siehe Technische Information.

WIMA MKS 2

Fortsetzung

Wertespektrum

V '1 "-1				50 V-/3	30 V~*				63 V-/4	40 V~*
Kapazität	В	Н	L	RM**	Bestellnummer	В	Н	L	RM**	Bestellnummer
0,01 µF 0,015 " 0,022 " 0,033 " 0,047 " 0,068 "						2,5 2,5 2,5 2,5 2,5 2,5	6,5 6,5 6,5 6,5 6,5 6,5	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	MKS2C021001A00 MKS2C021501A00 MKS2C022201A00 MKS2C023301A00 MKS2C024701A00 MKS2C026801A00
0,1 μF 0,15 " 0,22 " 0,33 " 0,47 " 0,68 "	2,5 3 3,5	6,5 7,5 8,5	7,2 7,2 7,2	5 5 5	MKS2B033301A00 MKS2B034701B00 MKS2B036801C00	2,5 2,5 3 3,5 3,5 4,5	6,5 6,5 7,5 8,5 8,5 9,5	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	MKS2C031001A00 MKS2C031501A00 MKS2C032201B00 MKS2C033301C00 MKS2C034701C00 MKS2C036801E00
1,0 µF 1,5 " 2,2 " 3,3 " 4,7 "	3,5 4,5 5 5,5 7,2 8,5	8,5 9,5 10 11,5 13	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	MKS2B041001C00 MKS2B041501E00 MKS2B042201F00 MKS2B043301H00 MKS2B044701K00 MKS2B046801M00	5 5,5 7,2 7,2 8,5 11	10 11,5 13 13 14 16	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	MKS2C041001F00 MKS2C041501H00 MKS2C042201K00 MKS2C043301K00 MKS2C044701M00 MKS2C046801N00
10 µ F	11	16	7,2	5	MKS2B051001N00					

I/ ''''				100 V-/	63 V~*			2	250 V-/	160 V~*
Kapazität	В	Н	L	RM**	Bestellnummer	В	Н	L	RM**	Bestellnummer
0,01 µF 0,015 " 0,022 " 0,033 " 0,047 " 0,068 "	2,5 2,5 2,5 2,5 2,5 2,5	6,5 6,5 6,5 6,5 6,5	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	MKS2D021001A00 MKS2D021501A00 MKS2D022201A00 MKS2D023301A00 MKS2D024701A00 MKS2D026801A00	2,5 2,5 2,5 3,5 3,5 3,5	6,5 6,5 6,5 8,5 8,5 8,5	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	MKS2F021001A00 MKS2F021501A00 MKS2F022201A00 MKS2F023301C00 MKS2F024701C00 MKS2F026801C00
0,1 µF 0,15 " 0,22 " 0,33 " 0,47 " 0,68 "	2,5 3,5 3,5 4,5 4,5 5	6,5 8,5 8,5 9,5 9,5	7,2 7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5 5	MKS2D031001A00 MKS2D031501C00 MKS2D032201C00 MKS2D033301E00 MKS2D034701E00 MKS2D036801F00	4,5 5 5,5 7,2 8,5	9,5 10 11,5 13 14 16	7,2 7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5 5	MKS2F031001E00 MKS2F031501F00 MKS2F032201H00 MKS2F033301K00 MKS2F034701M00 MKS2F036801N00
1,0 μF 1,5 " 2,2 "	7,2 8,5 11	13 14 16	7,2 7,2 7,2	5 5 5	MKS2D041001K00 MKS2D041501M00 MKS2D042201N00					

^{*} Nennspannungen: f \leq 50 Hz; 1,4 \cdot U _{eff} \sim + U- \leq U _N

** RM = Rastermaß.

Alle Maße in $\operatorname{mm}.$

Bestellnummer-Ergänzung:

Toleranz: 20 % = M10 % = K

5% = J

Verpackung: lose = S Drahtlänge: 6-2 = SD

Gurtungsangaben Seite 140

Abweichungen und Konstruktionsänderungen vorbehalten.

Fortsetzung Seite 39

WIMA MKS 2

Fortsetzung

Wertespektrum

Kapazität	-				200 V~*					220 V~*
	B H L R		RM**	Bestellnummer	В	BHI		RM**	Bestellnummer	
0,01 µF	2,5	6,5	7,2	5	MKS2G021001A00	5,5	11,5	7,2	5	MKS2J021001H00
0,015 "	2,5	6,5	7,2	5	MKS2G021501A00	7,2	13	7,2	5	MKS2J021501K00
0,022 "	3,5	8,5	7,2	5	MKS2G022201C00	7,2	13	7,2	5	MKS2J022201K00
0,033 "	4,5	9,5	7,2	5	MKS2G023301E00	7,2	13	7,2	5	MKS2J023301K00
0,047 "	4,5	9,5	7,2	5	MKS2G024701E00	8,5	14	7,2	5	MKS2J024701M00
0,068 "	5,5	11,5	7,2	5	MKS2G026801H00			·		
0,1 µF	7,2	13	7,2	5	MKS2G031001K00					
0,15 "	8,5	14	7,2	5	MKS2G031501M00					
0,22 "	11	16	7,2	5	MKS2G032201N00					

^{*} Nennspannungen: f \leq 50 Hz; 1,4 \cdot U eff \sim + U- \leq UN

Alle Maße in mm.

Die Werte der Reihe WIMA MKM 2 gemäß Hauptkatalog 2009 sind weiterhin auf Anfrage lieferbar. Bestellnummer-Ergänzung:

Toleranz: 20 % = M
10 % = K
5 % = J

Verpackung: lose = S
Drahtlänge: 6-2 = SD

Gurtungsangaben Seite 140

Scheinwiderstand in Abhängigkeit von der Frequenz (Richtwerte).

Abweichungen und Konstruktionsänderungen vorbehalten.

Zulässige Wechselspannung in Abhängigkeit von der Frequenz bei 10° C Eigenerwärmung (Richtwerte):

^{**} RM = Rastermaß.

Verarbeitungs- und Applikations- —— empfehlungen für bedrahtete Bauteile

Lötprozess

Auf die Innentemperatur der Kondensatoren muss wie folgt geachtet werden:

Polyester: Vorheizphase: $T_{max.} \le 125^{\circ}$ C Lötphase: $T_{max.} \le 135^{\circ}$ C

Polypropylen: Vorheizphase: $T_{max.} \le 100^{\circ} \text{ C}$ Lötphase: $T_{max.} \le 110^{\circ} \text{ C}$

Wellenlöten

Lotbadtemperatur: T < 260 ° C Einwirkdauer: t < 5 s

Doppelwellenlöten

Lotbadtemperatur: T < 260 ° C Einwirkdauer: $\Sigma t < 5$ s

Aufgrund der vielfältigen Verfahren versteht sich das dargestellte Diagramm lediglich

als Empfehlung zur Ausarbeitung eines geeigneten praxisorientierten Lötprofils.

WIMA Qualitäts- und Umweltphilosophie

ISO 9001:2008 Anerkennung

ISO 9001:2008 ist eine internationale Grundnorm zur Zertifizierung von Qualitätssicherungssystemen für alle Industriebereiche. Allen WIMA-Fertigungsstätten wurde durch das VDE-Prüf- und Zertifizierungsinstitut die Herstelleranerkennung gemäß ISO 9001:2008 erteilt. Damit wird bestätigt, dass Organisation, Einrichtungen und Qualitätssicherungsmaßnahmen international anerkannten Standards entsprechen.

WIMA WPCS

Das WIMA Process Control System IWPCSI ist ein von WIMA entwickeltes Qualitätsüberwachungs- und Qualitätssicherungssystem, das als Hauptbestandteil der qualitätsorientierten WIMA-Fertigung zu sehen ist. Die Einsatzstellen innerhalb des Fertigungsprozesses sind

- Wareneingangskontrolle
- Metallisierung
- Folienkontrolle
- Schoopen
- Ausheilen
- Kontaktieren
- Gießharzaufbereitung/Vergießen
- 100%ige Endkontrolle
- Kundenspezifische Prüfungen

WIMA Umweltpolitik

Alle WIMA Kondensatoren, bedrahtet wie SMD, werden aus umweltverträglichen Materialien gefertigt. Weder in der Fertigung, noch in den Produkten selbst werden toxische Stoffe verwendet, wie z. B.

- Blei PBB / PBDE
- PCB Arsen
- FCKW Cadmium
- CKW Quecksilber
- Chrom 6+ etc.

Bei der Verpackung unserer Bauteile werden ausschließlich sortenreine, recyclebare Materialien verwendet, wie z.B.

- Graukarton
- Wellpappe
- Papierklebeband
- Polystyrol

Zur Minimierung des Verpackungsaufwandes können Kunststoffteile zur Wiederverwertung zurückgenommen werden, z.B.

- WIMA EPS-Paletten
- WIMA Kunststoffhaspeln

Auf folgende Verpackungsmaterialien wird weitgehend verzichtet:

- Styropor[®]
- Kunststoffklebebänder
- Metallklammern

RoHS Schadstoffverordnung

Gemäß der EU Schadstoffverordnung, die sich in der RoHS-Richtlinie (2011/65/EU) widerspiegelt, dürfen ab 01.07.2006 bestimmte Schadstoffe wie Blei, Cadmium, Quecksilber usw. nicht mehr in elektronischen Geräten verarbeitet werden. Der Umwelt zuliebe verzichtet WIMA bereits seit Jahrzehnten auf den Einsatz dieser Substanzen.

Kennzeichnungsband für bleifreie WIMA Kondensatoren.

DIN EN ISO 14001:2004

WIMA hat sein Umweltmanagementsystem gemäß den Richtlinien der DIN EN ISO 14001:2004 ausgelegt um Energie und Ressourcen im Produktionsprozess so umweltschonend wie möglich einzusetzen.

Typische Maßangaben für die Radial Gurtung

Skizze 2: RM 10/15 mm

Skizze 3: RM 22,5 und 27,5*mm
*RM 27,5-Gurtung auch mit 2 Führungsloch-Abständen

				Maßang	aben zur Radial	-Gurtung		
Bezeichnung	Symbol	RM 2,5-Gurtung	RM 5-Gurtung	RM 7,5-Gurtung	RM 10-Gurtung*	RM 15-Gurtung*	RM 22,5-Gurtung	RM 27,5-Gurtung
Trägerbandbreite	W	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5
Klebebandbreite	W ₀	6,0 für Heißsiegel- klebeband	6,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband
Lage der Führungslöcher	Wı	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5
Lage Klebeband	W ₂	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,
Führungsloch-Durchmesser	D ₀	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2
Abstand der Bauelemente	Р	12,7 ±1,0	12,7 ±1,0	12,7 ±1,0	25,4 ±1,0	25,4 ±1,0	38,1 ±1,5	38,1 ±1,5 bzw, 50,8 ±1,
Abstand der Führungslöcher	P ₀	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,
Abstand Führungsloch zu Drahtanschluß	P ₁	5,1 ±0,5	3,85 ±0,7	2,6 ±0,7	7,7 ±0,7	5,2 ±0,7	7,8 ±0,7	5,3 ±0,7
Abstand Führungsloch zu Bauelementmitte	P ₂	6,35 ±1,3	6,35 ±1,3	6,35 ±1,3	12,7 ±1,3	12,7 ±1,3	19,05 ±1,3	19,05 ±1,3
Abstand Führungsloch	Н▲	16,5 ±0,3	16,5 ±0,3	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5
zur Bauelementunterkante	''-	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5
Abstand Führungsloch zur Bauelementoberkante	H ₁	H+H _{Bauelement} < H ₁ 32,25 max,	$H+H_{Bauelement} < H_1$ 32,25 max,	H+H _{Bauelement} < H ₁ 24,5 bis 31,5	H+H _{Bauelement} < H ₁ 25,0 bis 31,5	H+H _{Bauelement} < H ₁ 26,0 bis 37,0	H+H _{Bauelement} < H ₁ 30,0 bis 43,0	H+H _{Bauelement} < H ₁ 35,0 bis 45,0
Rastermaß Oberkante Trägerband	F	2,5 ±0,5	5,0 ^{+0,8} _{-0,2}	7,5 ±0,8	10,0 ±0,8	15 ±0,8	22,5 ±0,8	27,5 ±0,8
Draht-Durchmesser	d	0,4 ±0,05	0,5 ±0,05	*0,5 ±0,05 o, 0,6 +0.06 -0,05	*0,5 ±0,05 o, 0,6 +0,06	0,8 +0,08 -0,05	0,8 +0,08	0,8 +0.08 -0,05
Parallelität	Δh	\pm 2,0 max,	\pm 2,0 max,	± 3,0 max,	± 3,0 max,	\pm 3,0 max,	± 3,0 max,	± 3,0 max,
Gesamtdicke des Bandes	t	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2
		ROLL//	AMMO			AMMO		
Verpackung (siehe dazu auch Seite 141)	•	REEL Ø 360 max. Ø 30 ±1	B 52 ±2 abhängig von Bauform		REEL \$\tilde{g}\$ 360 max. B 52 \pm 2 \\ \$\tilde{g}\$ 30 \pm 1 B 58 \pm 2 \\ 66 \pm 2	oder REEL Ø 500 max. B 60 68		
Einheit				si	ehe Angaben auf Seite 1	42.		

 $^{{\}color{black} \blacktriangle}$ Bei Bestellung bitte Maß H und gewünschte Verpackungsart angeben.

Draht-Durchmesser gem. Werteübersichten.

Alle Maße in mm. Anwenderspezifische Abweichungen sind mit dem Hersteller zu klären.

RM 10 und RM 15 kann auf RM 7,5 gekröpft werden. Es gelten die Gurtungsangaben der entsprechenden Rastermaße, Bauteilposition jedoch wie bei RM 7,5 (Skizze 11. $P_0 = 12,7$ oder 15,0 ist möglich.

Gurt-Verpackungsarten für Kondensatoren mit radialen Anschlüssen

■ Rollenverpackung ROLL

Lagenverpackung AMMO

■ Trommelverpackung REEL

BAR CODE Kennzeichnung

Etikettierung der Verpackungseinheiten klartextlich und mit alphanumerischem Strichcode.

Scanner-Decodierung von

- WIMA-Liefernummer
- Kunden-Bestellnummer
- Kunden-Sachnummer
- WIMA-Bestätigungsnummer
- WIMA Bestellnummer
- Losnummer
- Datums-Code
- Stückzahl

Zusätzlich im Klartext Artikelbeschreibung

- Artikel
- Kapazitätswert
- Nennspannung
- Abmessungen
- Kapazitätstoleranz
- Verpackung

sowie Gewicht und Kundenname.

BARCODE "Code 39"

Verpackungseinheiten für Kondensatoren mit radialen Anschlüssen in den Rastermaßen 2,5 mm bis 22,5 mm

								Stücl			
Rastermaß		Bau	form		lose	ROLL		Ø 360	EL Ø 500	AM 340 × 340	MO 490 × 370
Rasiemab					iose	H16,5 H1	8,5		H16,5 H18,5	H16,5 H18,5	H16,5 H18,5
	В	Н	L	Codes	S	N ()	FI	H J	A C	B D
	2,5	7	4,6	OB	5000	2200		2500	-	2800	-
2,5 mm	3 3,8	7,5 8,5	4,6 4,6	0C 0D	5000 5000	2000 1500		2300 1800	_	2300 1800	_
2,5 11111	4,6	9	4,6	0E	5000	1200		1500	_	1500	_
	5,5	10	4,6	0F	5000	900		1200	-	1200	_
	2,5	6,5	7,2	1A	5000	2200		2500	_	2800	-
	3	7,5	7,2	1B	5000	2000		2300	-	2300	-
	3,5 4,5	8,5 6	7,2 7,2	1C 1D	5000 6000	1600 1300		2000 1500	_	2000 1500	-
	4,5	9,5	7,2	1E	4000	1300		1500	_ _	1500	_
	5	10	7,2	1F	3500	1100		1400	_	1400	_
5 mm	5,5	7	7,2	1G	4000	1000		1200	-	1200	-
5	5,5	11,5	7,2	1H	2500	1000		1200	-	1200	_
	6,5 7,2	8 8,5	7,2 7,2	11 1J	2500 2500	800 700		1000 1000	_	1000 1000	_
	7,2	13	7,2	1K	2000	700		950	_	1000	_
	8,5	10	7,2	1L	2000	600		800	_	800	_
	8,5	14	7,2	1M	1500	600		800	-	800	-
	11	16	7,2	1N	1000	500		600	_	400	_
	2,5	7	10	2A	5000	-		2500	4400	2500	-
	3 4	8,5 9	10 10	2B 2C	5000 4000	_		2200 1 <i>7</i> 00	4300 3200	2300 1700	4150 3100
7,5 mm	4,5	9,5	10,3	2D	3500	_		1500	2900	1400	2800
7,5	5	10,5	10,3	2E	3000	_		1300	2500	1300	-
	5,7	12,5	10,3	2F	2000	_		1000	2200	1100	_
	7,2	12,5	10,3	2G	1500	-		900	1800	1000	-
	3	9	13	3A	3000	-		1100	2200	-	1900
	4	8,5 9	13,5 13	FA 3C	3000 3000	-		900 900	1600 1600	-	1450 1450
	4	9,5	13	3D	3000	_		900	1600	_	1400
10 mm	5	10	13,5	FB	2000	-		700	1300	-	1200
	5	11	13	3F	3000	-		700	1300	-	1200
	6	12	13	3G	2400	-		550	1100	-	1000
	6 8	12,5 12	13 13	3H 3I	2400 2000	_		550 400	1100 800	_ _	1000 <i>7</i> 40
	5	11	18	4B	2400	_		600	1200	_	1150
	5	13	19	FC	1000	_		600	1200	_	1200
	6	12,5	18	4C	2000	-		500	1000	-	1000
	6	14	19	FD	1000	-		500	1000	-	1000
	7	14	18	4D	1600	-		450	900	-	850
15 mm	7 8	15 15	19 18	FE 4F	1000 1200	-		450 400	900 800	-	850 740
15 11111	8	17	19	FF	500	_		400	800	_	740
	9	14	18	4H	1200	-		350	700	-	650
	9	16	18	4J	900	-		350	700	-	650
	10	18	19	FG	500	-		300	650	-	590 540
	11 5	14 14	18 26,5	4M	1000	-		300	600	-	540
	6	15	26,5	5A 5B	1200 1000	_		_	800 <i>7</i> 00	_	770 640
	7	16,5	26,5	5D	760	_		_	600	_	550
	8	20	28	FH	500	-		-	500	-	480
22,5 mm	8,5	18,5	26,5	5F	500	-		-	480	-	450
	10	22	28	FI	540*	-		-	420	_	380
	10,5 10,5	19 20,5	26,5	5G 5H	680* 680*	-		-	400 400	-	360 360
	10,5	20,5	26,5 26,5	5H	680*	-		_	380	_	350
	12	24	28	FJ	450*	_		-	350	-	310
					.00						

^{*} EPS (Einstapel-Paletten-System). Bei Laschenversionen abweichende VPE. Muster und Vorserienbedarf auf Anfrage.

Änderungen vorbehalten.

Formverguß.

									Stüc	kzahl					
		Bau	r			RC	DLL		RE	EL			AM	МО	
Rastermaß		pan.	rorm		lose				360	Ø.	500	340	× 340	490	× 370
						H16,5	H18,5								
	В	Н	L	Codes	S	N	0	F	ı	Н	J	Α	С	В	D
	9	19	31,5	6A	640*	-	_	_	-	460/	340*		_	4	120
	11	21	31,5	6B	544*	-	_	-	_		280*		_	3	350
	13	24	31,5	6D	448*	-	_	-	_	3	00		_	2	290
	13	25	33	FK	336*	-	-	-	-	-	-		_		_
27,5 mm	15	26	31,5	6F	384*	-	-	-	-	2	70		_	2	250
27,3 111111	15	26	33	FL	288*	-	-	-	-	-	-		_		-
	17	29	31,5	6G	1 <i>7</i> 6*	-	-	-	-	-	-		_		_
	17	34,5	31,5	61	176*	-	-	-	-	-	-		_		_
	20	32	33	FM	216*		-	-	-		-		_		_
	20	39,5	31,5	6J	144*	-		-		-	_		_	-	
	9	19	41,5	7A	480*	-	-	-	-	-	-		-	-	-
	11	22	41,5	7B	408*	-	-	-	-	-	-		_	-	_
	13	24	41,5	7C	252*	-	-	-	-	-	-		-	-	_
	15	26 29	41,5	7D	144*	-	_	-	-	-	-		_		_
07.5	17 19	32	41,5 41,5	7E 7F	132* 108*		-	-	_	-	_		_		_
37,5 mm	20	39,5	41,5	7G	108*		_		_				_		_
	24	45,5	41,5	7H	84*		_	_	_	_	_		_		_
	27	15	41,5	7M	100*										
	31	46	41,5	71	72*	-	-	-	-	-	-		_		_
	35	50	41,5	7J	35*	-	-	-	_	-	_		_		_
	40	55	41,5	7K	28*	-	-	-	_	-	_		_		_
	19	31	56	8D	50*	-	_	-	_	-	_		_		_
	23	34	56	8E	72*	-	-	-	-	-	-		_		_
48,5 mm	27	37,5	56	8H	60*	-	-	-	-	-	-		_	-	-
-	33	48	56	8J	48*	-	-	-	-	-	-		_	-	_
	37	54	56	8L	25*	-	_	-		-	-		-		_
	35	50	57	9F	25*	-	-	-	-	-	-		-		_
52,5 mm	45	55	57	9H	20*	-	-	-	-	-	-		-		-
_	45	65	57	9J	20*	-	_	-	-	-	-		_		-

^{*} bei 2-Zoll Transportschritt.

Formverguß.

Änderungen vorbehalten.

EPS (Einstapel-Paletten-System). Bei Laschenversionen abweichende VPE. Muster und Vorserienbedarf auf Anfrage.

WIMA Bestellnummer-Systematik

Eine WIMA Bestellnummer bestehend aus 18 Zeichen stellt sich wie folgt zusammen:

- Feld 1 4: Typenbezeichnung
- Feld 5 6: Nennspannung
- Feld 7 10: Kapazität
- Feld 11 12: Bauform und Rastermaß
- Feld 13 14: Versions-Code (z. B. Snubber Versionen)
- Feld 15: Kapazitätstoleranz
- Feld 16: Verpackung
- Feld 17 18: Drahtlänge (ungegurtet)

						<u> </u>		
Typenbezeichr	nung:	Nennspa	ınnung:	Kapazität:	Bauform:		Toleranz:	
SMD-PET	= SMDT	50 V-	= B0	22 pF = 0022	4,8 x 3,3 x 3 Size 1812	= KA	$\pm 20\% = M$	
SMD-PEN	= SMDN	63 V-	= C0	47 pF = 0047	4,8 x 3,3 x 4 Size 1812	= KB	$\pm 10\% = K$	
SMD-PPS	= SMDI	100 V-	= D0	100 pF = 0100	5,7 x 5,1 x 3,5 Size 222	O = QA	$\pm 5\% = J$	
FKP 02	= FKPO	250 V-	= FO	150 pF = 0150	5,7 x 5,1 x 4,5 Size 222		$\pm 2.5\% = H$	
MKS 02	=MKS0	400 V-	=G0	220 pF = 0220	7,2 x 6,1 x 3 Size 2824	=TA	$\pm 1\% = E$	
FKS 2	= FKS2	450 V-	=H0	330 pF = 0330	7,2 x 6,1 x 5 Size 2824	= TB		
FKP 2	= FKP2	600 V-	= 10	470 pF = 0470	10,2x7,6x5 Size 4030	$) = \forall A \mid$		
MKS 2	=MKS2	630 V-	= J0	680 pF = 0680	12,7 x 10,2 x 6 Size 5040	=XA		
MKP 2	=MKP2	700 V-	= K0	1000 pF = 1100	15,3 x 13,7 x 7 Size 6054	I = YA	Verpackung:	
FKS 3	= FKS3	800 V-	=L0	1500 pF = 1150	2,5 x 7 x 4,6 RM 2,5	= OB	AMMO H16,5 34	$0 \times 340 = A$
FKP 3	= FKP3	850 V-	=M0	2200 pF = 1220	3×7,5×4,6 RM 2,5	= 0C	AMMO H16,5 49	$90 \times 370 = B$
MKS 4	= MKS4	900 V-	= N0	3300 pF = 1330	2,5 x 6,5 x 7,2 RM 5	= 1A	AMMO H18,5 34	$0 \times 340 = C$
MKP 4	=MKP4	1000 V-	= 01	4700 pF = 1470	3×7,5×7,2 RM5	= 1B	AMMO H18,5 49	$0 \times 370 = D$
MKP 10	=MKP1	1100 V-	= PO	6800 pF = 1680	2,5 x 7 x 10 RM 7,5	=2A	REEL H16,5 360	= F
FKP 4	= FKP4	1200 V-	= Q0	$0.01 \mu F = 2100$	3×8,5×10 RM7,5	= 2B	REEL H16,5 500	=H
FKP 1	= FKP1	1250 V-	= RO	$0.022 \mu F = 2220$	3x9x13 RM 10	=3A	REEL H18,5 360	=
MKP-X2	=MKX2	1500 V-	= S0	$0.047 \mu F = 2470$	4×9×13 RM 10	= 3C	REEL H18,5 500	= J
MKP-X2 R	=MKXR	1600 V-	= T0	$0.1 \mu F = 3100$	5 x 11 x 18 RM 15	= 4B	ROLL H16,5	=N
MKP-X1 R	=MKX1	2000 V-	= U0	$0,22 \mu F = 3220$	6 x 12,5 x 18 RM 15	= 4C	ROLL H18,5	$=$ \bigcirc
MKP-Y2	=MKY2	2500 V-	= V0	$0,47 \mu F = 3470$	5 x 14 x 26,5 RM 22,5	=5A	BLISTER W12 180	
MP 3-X2	=MPX2	3000 V-	= W0	$1 \mu F = 4100$	6 x 15 x 26,5 RM 22,5	= 5B	BLISTER W12 330	=Q
MP 3-X1	=MPX1	4000 V-	=X0	$2,2 \mu F = 4220$	9x 19x 31,5 RM 27,5	= 6A	BLISTER W16 330	=R
MP 3-Y2	=MPY2	6000 V-	= Y0	$4.7 \mu F = 4470$	11 x21 x 31,5 RM 27,5	= 6B	BLISTER W24 330	=T
MP 3R-Y2	=MPRY	250 V~	=0VV	$10 \mu F = 5100$	9x 19x41,5 RM 37,5	= 7A	Schüttware/EPS St	andard = S
Snubber MKP	= SNMP	275 V~	= 1W	$22 \mu F = 5220$	11 x 22 x 41,5 RM 37,5	= 7B		
Snubber FKP	= SNFP	300 V~	=2W	$47 \mu F = 5470$	19x31x56 RM 48,5	= 8D		
GTO MKP	= GTOM	305 V~	= AVV	$100 \mu F = 6100$	35 x 50 x 57 RM 52,5	= 9F		
DC-LINK MKP 3		400 V~	=3W	$220 \mu F = 6220$				
DC-LINK MKP 4		440 V~	=4VV	$1000 \mu F = 7100$				
DC-LINKMKP4		500 V~	=5W	$1500 \mu F = 7150$				
DC-LINK MKP 5					Versions-Code:		D 1.10	>
DC-LINK MKP 6					Standard $= 00$		Drahtlänge (ung	jegurtet)
DC-LINK HC	= DCHC				Version A1 $= 1A$		$3.5 \pm 0.5 = C9$	
DC-LINK HY	= DCHY				Version A1.1.1 = 1B		6 - 2 = SD	
					Version A2 $= 2A$		$16 \pm 1 = P1$	

Die Daten auf dieser Seite sind nicht vollständig und dienen lediglich der Systemerläuterung. Bestellnummer-Angaben befinden sich auf den Seiten der jeweiligen Reihen.