PCT

(30) Priority Data: 60/097.574

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 00/10566
A61K 31/42, C07D 261/12		(43) International Publication Date:	2 March 2000 (02.03.00)

US

(21) International Application Number: PCT/US99/19265

(22) International Filing Date: 23 August 1999 (23.08.99)

24 August 1998 (24.08.98)

(71) Applicant: BRISTOL-MYERS SQUIBB COMPANY [US/US]; P.O. Box 4000, Princeton, NJ 08543-4000 (US).

(72) Inventors: SNYDER, Lawrence, B.; 6 Pratt Road, Clinton, CT 06413 (US). ZHENG, Zhizhen; 230 Farm Meadow Lane, Cheshire, CT 06410 (US).

(74) Agent: MORSE, David, M.; Bristol-Myers Squibb Company, 5 Research Parkway, P.O. Box 5100, Wallingford, CT 06492-7660 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NOVEL ISOXAZOLINONE ANTIBACTERIAL AGENTS

(57) Abstract

This invention describes isoxazolinone derivatives which possess antibacterial activity and are useful in the treatment of bacterial diseases. More particularly, new isoxazolinones are provided having general formula (I), wherein A and R_1 are as described in the specification.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

5 NOVEL ISOXAZOLINONE ANTIBACTERIAL AGENTS

10

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed toward new isoxazolinones, methods for their use, and processes for their production. The present invention provides for a compound represented by the general formula

20

25

or a pharmaceutically acceptable salt thereof wherein:

R₁ is

- a) H,
- b) C₁₋₈ alkyl optionally substituted with one or more F, CI, OH,
 C₁₋₈ alkoxy, or C₁₋₈ acyloxy,

- c) C₃₋₆ cycloalkyl, or
- d) C_{1-8} alkoxy;

L is oxygen or sulfur;

A is

5 a)

10

15

20

b)

- c) a 5-membered heteroaromatic moiety having one to three hetero atoms selected from the group consisting of S, N, and O, wherein the 5-membered heteroaromatic moiety is bonded via a carbon atom and can additionally have a fused-on benzene or naphthyl ring, and wherein the heteroaromatic moiety is optionally substituted with one to three R₈,
 - d) a 6-membered heteroaromatic moiety having at least one nitrogen atom, wherein the heteroaromatic moiety is bonded via a carbon atom, wherein the 6-membered heteroaromatic moiety can additionally have a fused-on benzene or naphthyl ring, wherein the heteroaromatic moiety is optionally substituted with one to three R₉,
 - e) a β -carbolin-3-yl, or indolizinyl bonded via the 6-membered ring, optionally substituted with one to three R_9 ,

g)

$$R_{15} \longrightarrow \begin{pmatrix} R_{11} & R_{12} \\ R_{13} & R_{13} \end{pmatrix}$$

- 5 wherein R₂ and R₃ are each independently
 - a) H,
 - b) F,
 - c) CI,
 - d) Br,
- 10 e) C₁₋₆ alkyl,
 - f) NO₂,
 - g) I,
 - h) C₁₋₆ alkoxy,
 - i) OH
- 15 j) amino,
 - k) cyano, or
 - I) R_2 and R_3 taken together are -O(CH₂)_h-O;

wherein R_4 is

- a) H,
- 20 b) C₁₋₂ alkyl,
 - c) F, or
 - d) OH;

R₅ is

- a) H,
- 25 b) CF₃,

- c) C₁₋₃ alkyl optionally substituted with one or more halo,
- d) phenyl optionally substituted with one or more halo,
- e) R_5 and R_6 taken together are a 5-, 6-, or 7-membered ring of the formula,

5

10

f)

in which D is S, O or NR₈₆ in which R₈₆ is H or C_{1-6} alkyl, or

g) R_5 and R_6 taken together are -(CH₂)_k-, when R_7 is an electron-withdrawing group;

R₆ and R₇ at each occurrence are the same or different and are

- a) an electron-withdrawing group,
- b) H,
- c) CF₃,

15 d) C₁₋₃ alkyl optionally substituted with one halo,

- e) phenyl, provided at least one of R_6 and R_7 is an electron-withdrawing group, or
- f) R₆ and R₇ taken together are a 5-, 6-, or 7-membered ring of the formula,

20

U is

- a) CH₂,
- b) O,
- c) S or,
- 25 d) NR₁₆;

R₁₆ is

- a) Hor
- b) C₁₋₅ alkyl;

wherein R₈ is

- 5 a) carboxyl,
 - b) halo,
 - c) -CN,
 - d) mercapto,
 - e) formyl,
- 10 f) CF₃,
 - g) NO₂,
 - h) C₁₋₆ alkoxy,
 - i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
- 15 k) C₁₋₆ acyl,

20

25

I) -NR₁₇R₁₈,

NOH

- m) $-C-R_{87}$ in which R_{87} is H or C_{1-6} alkyl,
- n) C_{1-6} alkyl optionally substituted with OH, sulfamoyl, C_{1-5} alkoxy, C_{1-5} acyl, or $-NR_{17}R_{18}$,
- o) C₂₋₈ alkyl optionally substituted with one or two R₁₉,
- p) phenyl optionally substituted with one or two R₁₉,
- q) a 5- or 6-membered saturated or unsaturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with one or two R₁₉, or

 R_{17} and R_{18} at each occurrence are the same or different and are

- a) H,
- b) C₁₋₄ alkyl,
- c) C₅₋₆ cycloalkyl, or

d) R₁₇ and R₁₈ taken together with the nitrogen atom is a 5- or 6-membered saturated or unsaturated heterocyclic moiety which optionally has a further hetero atom selected from the group consisting of S, N, O, and can in turn be optionally substituted with, including on the further nitrogen atom, C₁₋₃ alkyl, formyl, a 5- or 6-membered heteroaromatic moiety containing 1-3 O, N or S, —C-NR₈₈R₈₉ in which R₈₈ and R₈₉ are each independently hydrogen or C₁₋₆ alkyl, SO₂R₉₀ in which R₉₀ is H or C₁₋₆ alkyl, or C₁₋₃ acyl optionally substituted with 1 or more F, CI or OH;

- 15 R₁₉ is
 - a) carboxyl,
 - b) halo,
 - c) -CN,
 - d) mercapto,
- e) formyl,
 - f) CF₃,
 - g) NO_2 ,
 - h) C₁₋₆ alkoxy,
 - i) C₁₋₆ alkoxycarbonyl,
- 25 j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - I) C_{1-6} alkyl optionally substituted with OH, C_{1-5} alkoxy, C_{1-5} acyl, or $-NR_{17}R_{18}$,

	m)	phenyl,
	n)	$-C(=O)NR_{20}R_{21}$,
	o)	-N R ₁₇ R ₁₈ ,
	p)	-N(R ₂₀)(-SO ₂ R ₂₂),
5	q)	-SO ₂ -NR ₂₀ R ₂₁ , or
	r)	-S(=O) _i R ₂₂ ;
	R ₂₀ and R ₂₁	at each occurrence are the same or different and are
	a)	H,
	b)	C ₁₋₆ alkyl, or
10	c)	phenyl;
	R ₂₂ is	
	a)	C ₁₋₄ alkyl, or
	b)	phenyl optionally substituted with C ₁₋₄ alkyl;
	wherein R ₉	is ·
15	a)	carboxyl,
	b)	halo,
	c)	-CN,
	d)	mercapto,
	e)	formyl,
20	f)	CF ₃ ,
	g)	NO ₂ ,
	h)	C ₁₋₆ alkoxy,
	i)	C ₁₋₆ alkoxycarbonyl,
	j)	C ₁₋₆ alkythio,
25	k)	C ₁₋₆ acyl,
	l)	-NR ₂₃ R ₂₄ ,
	m)	$\rm C_{1-6}$ alkyl optionally substituted with OH, $\rm C_{1-5}$ alkoxy, $\rm C_{1-5}$
		acyl, or -NR ₂₃ R ₂₄ ,

5

- n) C_{2-8} alkenylphenyl optionally substituted with one or two R_{25} ,
- o) phenyl optionally substituted with one or two R₂₅,
- p) a 5- or 6-membered saturated or unsaturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with one or two R₂₅, or

q)

- 10 R₂₃ and R₂₄ at each occurrence are the same or different and are
 - a) H,
 - b) formyl,
 - c) C₁₋₄ alkyl,
 - d) C₁₋₄ acyl,
- e) phenyl,
 - f) C₃₋₆ cycloalkyl, or
 - g) R₂₃ and R₂₄ taken together with the nitrogen atom is a 5- or 6-membered saturated heterocyclic moiety which optionally has a further hetero atom selected from the group consisting of S, N, O, and can in turn be optionally substituted with, including on the further nitrogen atom, phenyl, pyrimidyl, C₁₋₃ alkyl, or C₁₋₃ acyl;

R₂₅ is

20

- a) carboxyl,
- 25 b) halo,
 - c) -CN,
 - d) mercapto,
 - e) formyl,

- f) CF₃,
- g) NO_2 ,
- h) C₁₋₆ alkoxy,
- i) C₁₋₆ alkoxycarbonyl,
- 5 j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - l) phenyl,
 - m) C_{1-6} alkyl optionally substituted with OH, azido, C_{1-5} alkoxy, C_{1-5} acyl, -NR₃₂R₃₃, -SR₃₄, -O-SO₂R₃₅, or

10 R₃₆—NH-CO-O

- n) $-C(=O)NR_{26}R_{27}$,
- o) $-NR_{23}R_{24}$,
- p) $-N(R_{26})(-SO_2R_{22}),$
- q) $-SO_2-NR_{26}R_{27}$, or
- 15 r) $-S(=O)_iR_{22}$
 - s) -CH=N- R_{28} , or
 - t) -CH(OH)-SO₃R₃₁;

R₂₂ is the same as defined above;

 $\mathsf{R}_{26}\,$ and R_{27} at each occurrence are the same or different and are

- 20 a) H,
 - b) C₁₋₆ alkyl,
 - c) phenyl, or
 - d) tolyl;

R₂₈ is

- 25 a) OH,
 - b) benzyloxy,
 - c) $-NH-C(=O)-NH_2$,

- d) $-NH-C(=S)-NH_2$, or
- e) -NH-C(=NH)-NR₂₉R₃₀;

 R_{29} and R_{30} at each occurrence are the same or different and are

- a) H, or
- b) C₁₋₄ alkyl optionally substituted with phenyl or pyridyl;

R₃₁ is

- a) H, or
- b) a sodium ion;

 R_{32} and R_{33} at each occurrence are the same or different and are

- 10
- a) H,
- b) formyl,
- c) C₁₋₄ alkyl,
- d) C₁₋₄ acyl,
- e) phenyl,
- 15 f) C₃₋₆ cycloalkyl,
 - g) R₃₂ and R₃₃ taken together are a 5- or 6-membered saturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, O, optionally substituted with, including on the nitrogen atom, phenyl, pyrimidyl, C₁₋₃ alkyl, or C₁₋₃ acyl,

20

- h) $-P(O)(OR_{37})(OR_{38})$, or
- i) -SO₂-R₃₉;

R₃₄ is

$$\stackrel{N-N}{\underset{CH_3}{\bigvee}}$$
, $\stackrel{N-N}{\underset{CH_3}{\bigvee}}$, $\stackrel{N-N}{\underset{CH_3}{\bigvee}}$

25 R_{35} is C_{1-3} alkyl;

R₃₆ is

a) C₁₋₆ alkoxycarbonyl, or

b) carboxyl;

 R_{37} and R_{38} at each occurrence are the same or different and are

- a) H, or
- b) C_{1-3} alkyl;
- 5 R₃₉ is
- a) methyl,
- b) phenyl, or
- c) tolyl;

wherein K is

10

25

- a) O,
- b) S, or
- c) NR₄₀ in which R₄₀ is hydrogen, formyl, C₁₋₄ alkyl, C₁₋₄ acyl, phenyl, C₃₋₆ cycloalkyl, -P(O)(OR₃₇)(OR₃₈) or -SO₂-R₃₉ in which R₃₇, R₃₈ and R₃₉ are as defined above;
- 15 R₁₀, R₁₁, R₁₂, R₁₃, R₁₄ and R₁₅ at each occurrence are the same or different and are
 - a) H,
 - b) formyl,
 - c) carboxyl,
- 20 d) C₁₋₆ alkoxycarbonyl,
 - e) C₁₋₈ alkyl,
 - f) C_{2-8} alkenyl,

wherein the substitutents (e) and (f) can be optionally substituted with OH, halo, C_{1-6} alkoxyl, C_{1-6} acyl, C_{1-6} alkylthio or C_{1-6} alkoxycarbonyl, or phenyl optionally substituted with halo,

g) an aromatic moiety having 6 to 10 carbon atoms optionally substituted with carboxyl, halo, -CN, formyl, CF₃, NO₂, C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ acyl, C₁₋₆ alkylthio, or C₁₋₆ alkoxycarbonyl;

- h) -NR₄₂R₄₃,
- i) OR₄₄,
- j) $-S(=O)_{i}-R_{45}$,
- k) $-SO_2-N(R_{46})(R_{47})$, or
- 5 l) a radical of the following formulas:

R₁₉ is the same as defined above;

T is

10

- a) O,
- b) S, or
- c) SO_2 ;

 $R_{42} \ \text{and} \ R_{43} \ \text{ at each occurrence}$ are the same or different and are

- a) H,
- b) C₃₋₆ cycloalkyl,
 - c) phenyl,
 - d) C₁₋₆ acyl,
- e) C₁₋₈ alkyl optionally substituted with OH, C₁₋₆ alkoxy which can be substituted with OH, a 5- or 6-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, phenyl optionally

substituted with OH, CF_3 , halo, -NO₂, C_{1-4}

alkoxy,-NR₄₈R₄₉, or

f)

5 g)

V is

- a) O,
- b) CH₂, or

10

c) NR₅₆;

 $R_{48} \ \text{and} \ R_{49}$ at each occurrence are the same or different and are

- a) H, or
- b) C₁₋₄ alkyl;

R₅₄ is

15

- a) OH,
- b) C₁₋₄ alkoxy, or
- c) $-NR_{57}R_{58}$;

 R_{55} is

a) H, or

20

b) C₁₋₇ alkyl optionally substituted with indolyl, OH, mercaptyl, imidazoly, methylthio, amino, phenyl optionally substituted with OH, -C(=O)-NH₂, -CO₂H, or -C(=NH)-NH₂;

R₅₆ is

a) H,

25

- b) phenyl, or
- c) C₁₋₆ alkyl optionally substituted by OH;

 $\ensuremath{R_{57}}$ and $\ensuremath{R_{58}}$ at each occurrence are the same or different and are

- a) H,
- b) C₁₋₅ alkyl,
- c) C₁₋₃ cycloalkyl, or

5 d) phenyl;

R₄₄ is

10

a) C₁₋₈ alkyl optionally substituted with C₁₋₆ alkoxy or C₁₋₆ hydroxy, C₃₋₆ cycloalkyl, a 6-membered aromatic optionally benzo-fused heterocyclic moiety having one to three nitrogen atoms, which can in turn be substituted with one or two -NO₂, CF₃, halo, -CN, OH, C₁₋₅ alkyl, C₁₋₅ alkoxy, or C₁₋₅ acyl,

b)

15 c) phenyl, or

d) pyridyl;

R₄₅ is

- a) C_{1-16} alkyl,
- b) C_{2-16} alkenyl,
- wherein the substituents (a) and (b) can be optionally substituted with C₁₋₆ alkoxycarbonyl, or a 5-, 6-, or 7-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O,
 - c) an aromatic moiety having 6 to 10 carbon atoms, or

d) a 5-, 6-, or 7-membered aromatic heterocyclic moiety having one to three atoms selected from the group of S, N, and O, wherein the substituents (c) and (d) can be optionally substituted with carboxyl, halo, -CN, formyl, CF₃, -NO₂,

WO 00/10566 - 15 - PCT/US99/19265

 C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} acyl, C_{1-6} alkylthio, or C_{1-6} alkoxycarbonyl;

 R_{46} and R_{47} at each occurrence are the same or different and are

- a) H, ⋅
- 5 b) phenyl,
 - c) C₁₋₆ alkyl, or
 - d) benzyl;

R₅₀ and R₅₁ at each occurrence are the same or different and are

- a) H,
- 10 b) OH,
 - c) C_{1-6} alkyl optionally substituted with -NR₄₈R₄₉ in which R₄₈and R₄₉ are as defined above,
 - d) R_{50} and R_{51} taken together are =0;

R₅₂ is

20

a) an aromatic moiety having 6 to 10 carbon atoms,

- b) a 5- or 6-membered aromatic optionally benzo-fused heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, wherein the substituents (a) and (b) can in turn be optionally substituted with one or three -NO₂, CF₃, halo, -CN, OH, phenyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, or C₁₋₅ acyl,
- c) morpholinyl,
- d) OH,
- e) C₁₋₆ alkoxy,
- 25 f) -NR₄₈R₄₉ in which R₄₈and R₄₉ are as defined above,
 - g) $-C(=O)-R_{59}$, or

h)

R₅₃ is

- a) H,
- b) formyl,
- c) C₁₋₄ alkyl,
- 5 d) C₁₋₄ acyl,
 - e) phenyl,
 - f) C₃₋₆ cycloalkyl,
 - g) $-P(O)(OR_{37})(OR_{38})$, or
 - h) $-SO_2R_{39}$, in which R_{37} , R_{38} and R_{39} are as defined above;

10 R₅₉ is

- a) morpholinyl,
- b) OH, or
- c) C₁₋₆ alkoxy;

h is 1, 2, or 3;

15 i is 0, 1, or 2;

j is 0, or 1;

k is 3, 4, or 5;

r is 1, 2, 3, 4, 5 or 6;

t is 0, 1, 2, 3, 4, 5, or 6;

20 u is 1 or 2; and

Q is

- a) hydrogen,
- b) halo,
- c) NO₂,

25 d) N_3 ,

- e) C₁-C₆ alkylthio,
- f) C_1 - C_6 alkyl— $\ddot{\ddot{S}}$ —,

- h) C₁-C₆ alkyl,
- i) C_1 - C_6 alkoxy,
- j) formyl,

5 k) C_{1} - C_{6} alkyl— \ddot{C} —,

- O C₁-C₆ alkyl—O-Ö—,
- m) -sulfamoyl (H₂NSO₂-),
- n) -NHOH,
- o) C_1 - C_6 alkyl— \ddot{C} -O—

p) heteroaryl — — in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,

- q) $C_6H_5-\ddot{C}-$
- r) amino,

s) C₁-C₆ alkylamino-,

- t) di (C₁-C₆ alkyl)amino-,
- u) (C_1-C_6) alkyl- \ddot{C} -NR₆₀R₆₁ in which R₆₀ and R₆₁ are each independently hydrogen or C₁-C₆ alkyl,
- v) OH,

20 w) cyano,

- x) hydroxy (C₁-C₆ alkyl),
- y) C_1 - C_6 alkyl-S- \ddot{C} -,

- z) NC— $(CH_2)_r$ — \ddot{C} in which r is 1-6,
- O aa) C₆H₅CH₂-O---Ö-,
- O bb) C₆H₅-O-C-,
- OR₈₄ N cc) C_1 - C_6 alkyl— \ddot{C} in which R₈₄ is hydrogen or C_{1-6} alkyl,
- dd) R₈₅O-(CH₂)₁₋₆-C- in which R₈₅ is hydrogen, C₁₋₈ alkyl optionally substituted with one or more F, Cl, OH, C₁₋₈ alkoxy or C₁₋₈ acyloxy, C₃₋₆ cycloalkyl or C₁₋₈ alkoxy;
 - N-OR₈₄ ee) H- $\ddot{\text{C}}$ in which R₈₄ is hydrogen or C₁₋₆ alkyl,
 - ff) a substituted or unsubstituted C₆-C₁₀ aryl moiety,
- 10 gg) a substituted or unsubstituted monocyclic or bicyclic, saturated or unsaturated, heterocyclic moiety having 1-3 atoms selected from O, N or S, said ring being bonded via a ring carbon or nitrogen to the phenyl substituent,
- hh) a monocyclic or bicyclic substituted or unsubstituted

 heteroaromatic moiety having 1-3 hetero atoms selected
 from O, N or S, said ring being bonded via a ring carbon or
 nitrogen to the phenyl substituent and wherein the
 heteroaromatic moiety can additionally have a fused-on
 benzene or naphthalene ring;
- the substituents for such p, q, ff, gg and hh moieties being selected from 1 or 2 of the following:
 - 1) halo,
 - 2) C₁₋₆ alkyl,
 - NO_2 ,
- 25 4) N₃,

5)
$$C_1$$
- C_6 alkyl $-\ddot{S}$ -,

- 6) C₁-C₆ alkyl—S—
- 7) formyl,
- O 8) C₁-C₆ alkyl—Ü—,
- O 5 9) C₁-C₆ alkyl—O-Ö—,
 - 10) heteroaryl—Ü— in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,
 - O 11) C₆H₅−Č−,
- 10 12) -(C₁-C₆) alkyl-C-NR₆₀R₆₁ in which R₆₀ and R₆₁ are each independently hydrogen or C₁-C₆ alkyl,
 - 13) OH,
 - 14) hydroxy (C₁-C₆ alkyl),
 - O
 15) C_1 - C_6 alkyl-S- \ddot{C} -,
- 15 O NC- $(CH_2)_r$ O- \ddot{C} in which r is 1-6,
 - O 17) C₆H₅CH₂—O-Ö—,
 - 18) $-CH_2-R_{80}$ in which R_{80} is
 - a) $-OR_{32}$ in which R_{32} is as defined above,
 - b) $-SR_{32}$ in which R_{32} is as defined above,
- 20 c) $-NR_{32}R_{33}$ in which R_{32} and R_{33} are as defined above, or

- **d**) 5- or 6-membered heteroaromatic containing 1-4 O. S or N atoms,
- OR $_{84}$ N $C_{1}\text{-}C_{6} \text{ alkyl} \overset{\circ}{C} \text{ in which } R_{84} \text{ is as defined above,}$ 19)
- 20) cyano,
- 5 21) carboxyl,
 - 22) CF₃,
 - 23) C₁-C₆ alkyl—Ü-O—
 - $\begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100$ 24) substituted by halo or (C₁-C₆)alkyl,
- $NR_{60}R_{61}$ —C— in which R_{60} and R_{61} are as defined above, 25) 10
 - Q Q R_{91} -NH-C— or R_{91} -C-NH— in which R_{91} is a 5- or 6-26) membered aromatic heterocyclic group having 1-3 O, N or S,
- O C₆H₅(CH₂)₁₋₆-O-C-27) 15
 - $R_{85}O^-(CH_2)_{1-6}-O^-\ddot{C}-$ in which R_{85} is as defined above, 28)
 - O $\label{eq:SiR99} SiR_{99}R_{100}R_{101} O CH_2 \ddot{C} \text{ in which } R_{99}, \, R_{100} \text{ and } R_{101}$ 29) are each independently C₁₋₆ alkyl; or

Q and either R₁ and R₂ taken together form -O-CH₂-O.

20

These derivatives are useful as antimicrobial agents which are effective against a number of human and veterinary pathogens, including gram positive bacteria such as multiply-resistant staphylococci,

streptococci, and enterococci, such as methicillin-resistant
Staphylococcus aureus or vancomycin-resistant Enterococcus faecium.

PCT/US99/19265

2. Description of the Prior Art

5

10

The literature contains a limited number of isoxazolinones used as pre-emergence herbicides. For example in U.S. Patent 4,065,463, 2-methyl-4-(trifluoromethyl-*m*-tolyl)-3-isoxazolin-5-one and 2-methyl-4-(chloro-*m*-tolyl)-3-isoxazolin-5-one are disclosed as being useful in preventing the growth of weeds which have a deleterious effect on crop production.

U.S. Patent 4,000,155 discloses the related compound 1,2-dimethyl-4-(trifluoromethyl-*m*-tolyl)-3-pyrazolin-5-one for the same utility.

15

The applicant is not aware of any literature which discloses the use of these compounds as broad spectrum anti-bacterial agents. A different ring system is disclosed in WO 98/07708, which discusses the use of isoxazoline derivatives as anti-bacterial agents,

20

where W is a substituted aryl or heteroaryl system and V is H, or C₁-C₄ alkyl optionally substituted with F, Cl, OH, C₁-C₄ alkoxy, or acyloxy.

heteroaryl substituted oxazolidinones).

Oxazolidinones II shown below are a well known class of orally active antibacterial agents. The prior art contains numerous references to these compounds where Y and Z can include a wide variety of substituents. Specific substituted oxazolidinones are discussed in U.S.

Patent Nos. 4,705,799 and 5,523,403 (substituted phenyl 2-oxazolidinones), U.S. Patent Nos. 4,948,801; 5,254,577; and 5,130,316 (arylbenzene oxazolidinyl compounds), and European Patent Applications 0,697,412; 0,694,544; 0694,543; and 0,693,491 (5 to 9-membered

- 22 -

10

Additionally, certain compounds containing a substituted furanone ring have been reported to possess antibiotic activity. WO 97/14690 discloses

where T is hydroxy or NHC(O)C₁-C₄ alkyl, M and L are each independently hydrogen or fluoro, G and H are are each independently hydrogen or methyl, K-J is of the formula C=CH, CHCH2 or C(OH)CH2, I is O, SO, SO2 or a substituted nitrogen, and Q-R is CH₂-CH₂ or CH=CH₂. Other substituted furanones are discussed in U.S. Patent 5,708,169, WO 97/43280 and WO 97/10235.

SUMMARY OF THE INVENTION

It has now been found that certain substituted isoxazolinones are effective as antibacterial agents. Specifically, the invention covers

5 compounds of the formula 1:

or a pharmaceutically acceptable salt thereof wherein:

R₁ is

10

- a) H,
- b) C₁₋₈ alkyl optionally substituted with one or more F, CI, OH,
 C₁₋₈ alkoxy, or C₁₋₈ acyloxy,
- c) C₃₋₆ cycloalkyl, or
- d) C₁₋₈ alkoxy;
- 15 L is oxygen or sulfur;

A is

a)

$$\mathbf{Q} = \begin{bmatrix} \mathbf{R_2} \\ - \\ - \\ \mathbf{R_3} \end{bmatrix}$$

b)

20

c) a 5-membered heteroaromatic moiety having one to three hetero atoms selected from the group consisting of S, N,

PCT/US99/19265 - 24 -

> and O, wherein the 5-membered heteroaromatic moiety is bonded via a carbon atom and can additionally have a fused-on benzene or naphthyl ring, and wherein the heteroaromatic moiety is optionally substituted with one to three R₈,

5

10

d) a 6-membered heteroaromatic moiety having at least one nitrogen atom, wherein the heteroaromatic moiety is bonded via a carbon atom, wherein the 6-membered heteroaromatic moiety can additionally have a fused-on benzene or naphthyl ring, wherein the heteroaromatic moiety is optionally substituted with one to three R₉,

e) a β-carbolin-3-yl, or indolizinyl bonded via the 6-membered ring, optionally substituted with one to three Rg,

f)

15

g)

$$R_{15} \longrightarrow \begin{bmatrix} R_{11} & R_{12} \\ & & \\$$

wherein R₂ and R₃ are each independently

- Η, a)
- F, 20 b)
 - c) CI,
 - d) Br,
 - C₁₋₆ alkyl, e)
 - NO₂, f)
- 25 ١, g)

- h) C₁₋₆ alkoxy,
- i) OH
- j) amino,
- k) cyano, or
- 5 l) R_2 and R_3 taken together are $-O(CH_2)_h-O$;

wherein R4 is

- a) H,
- b) C₁₋₂ alkyl,
- c) F, or

10 d) OH;

R₅ is

- a) H,
- b) CF₃,
- c) C₁₋₃ alkyl optionally substituted with one or more halo,
- d) phenyl optionally substituted with one or more halo,
 - e) R_5 and R_6 taken together are a 5-, 6-, or 7-membered ring of the formula,

f)

 \subset

20 — in which D is S, O or NR₈₆ in which R₈₆ is H or

C₁₋₆ alkyl, or

g) R_5 and R_6 taken together are -(CH₂)_k-, when R_7 is an electron-withdrawing group;

 $R_{\rm 6}$ and $R_{\rm 7}$ at each occurrence are the same or different and are

- a) an electron-withdrawing group,
 - b) H,
 - c) CF₃,

- d) C₁₋₃ alkyl optionally substituted with one halo,
- e) phenyl, provided at least one of R_6 and R_7 is an electron-withdrawing group, or
- f) R₆ and R₇ taken together are a 5-, 6-, or 7-membered ring of the formula,

U is

5

- a) CH₂,
- b) O,
- 10 c) S or,
 - d) NR₁₆;

R₁₆ is

- a) H or
- b) C₁₋₅ alkyl;
- 15 wherein R₈ is
 - a) carboxyl,
 - b) halo,
 - c) -CN,
 - d) mercapto,
- e) formyl,
 - f) CF₃,
 - g) NO₂,
 - h) C₁₋₆ alkoxy,
 - i) C₁₋₆ alkoxycarbonyl,
- j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - l) -NR₁₇R₁₈,

- NOH $\overset{\text{II}}{-}\text{C-R}_{87}$ in which R_{87} is H or $\text{C}_{1\text{-}6}$ alkyl, m)
- C_{1-6} alkyl optionally substituted with OH, sulfamoyl, C_{1-5} n) alkoxy, C₁₋₅ acyl, or -NR₁₇R₁₈,
- C_{2-8} alkyl optionally substituted with one or two R_{19} , 0)

phenyl optionally substituted with one or two R₁₉, 5 p)

> a 5- or 6-membered saturated or unsaturated heterocyclic q) moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with one or two R₁₉, or

10

20

 R_{17} and R_{18} at each occurrence are the same or different and are

- a) Η,
- C₁₋₄ alkyl, b)
- C₅₋₆ cycloalkyl, or c)

15 d) R₁₇ and R₁₈ taken together with the nitrogen atom is a 5- or

> 6-membered saturated or unsaturated heterocyclic moiety which optionally has a further hetero atom selected from the

group consisting of S, N, O, and can in turn be optionally

substituted with, including on the further nitrogen atom, C_{1-3}

alkyl, formyl, a 5- or 6-membered heteroaromatic moiety

containing 1-3 O, N or S, —C-NR₈₈R₈₉ in which R₈₈ and

R₈₉ are each independently hydrogen or C₁₋₆ alkyl, SO₂R₉₀

in which R₉₀ is H or C₁₋₆ alkyl, or C₁₋₃ acyl optionally

substituted with 1 or more F, CI or OH;

_		• -
K₄	0	IS

- a) carboxyl,
- b) halo,
- c) -CN,
- 5 d) mercapto,
 - e) formyl,
 - f) CF₃,
 - g) NO_2 ,
 - h) C₁₋₆ alkoxy,
- i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - C₁₋₆ alkyl optionally substituted with OH, C₁₋₅ alkoxy, C₁₋₅ acyl, or –NR₁₇R₁₈,
- 15 m) phenyl,
 - n) $-C(=O)NR_{20}R_{21}$,
 - o) -N R₁₇R₁₈,
 - p) $-N(R_{20})(-SO_2R_{22}),$
 - q) $-SO_2-NR_{20}R_{21}$, or
- 20 r) $-S(=O)_iR_{22}$;

 $\ensuremath{R_{20}}$ and $\ensuremath{R_{21}}$ at each occurrence are the same or different and are

- a) H,
- b) C₁₋₆ alkyl, or
- c) phenyl;
- 25 R₂₂ is
- a) C₁₋₄ alkyl, or
- b) phenyl optionally substituted with C₁₋₄ alkyl;

wherein R₉ is

- a) carboxyl,
- b) halo,
- c) -CN,
- 5 d) mercapto,
 - e) formyl,
 - f) CF_3 ,
 - g) NO_2 ,
 - h) C₁₋₆ alkoxy,
- i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - I) $-NR_{23}R_{24}$,
 - m) C_{1-6} alkyl optionally substituted with OH, C_{1-5} alkoxy, C_{1-5} acyl, or -NR₂₃R₂₄,
 - n) C_{2-8} alkenylphenyl optionally substituted with one or two R_{25} ,
 - o) phenyl optionally substituted with one or two R₂₅,
- p) a 5- or 6-membered saturated or unsaturated heterocyclic
 moiety having one to three atoms selected from the group
 consisting of S, N, and O, optionally substituted with one or
 two R₂₅, or

q)

15

- 25 R₂₃ and R₂₄ at each occurrence are the same or different and are
 - a) H,
 - b) formyl,

- c) C₁₋₄ alkyl,
- d) C_{1-4} acyl,
- e) phenyl,
- f) C₃₋₆ cycloalkyl, or
- g) R₂₃ and R₂₄ taken together with the nitrogen atom is a 5- or 6-membered saturated heterocyclic moiety which optionally has a further hetero atom selected from the group consisting of S, N, O, and can in turn be optionally substituted with, including on the further nitrogen atom, phenyl, pyrimidyl, C₁₋₃ alkyl, or C₁₋₃ acyl;

R₂₅ is

25

- a) carboxyl,
- b) halo,
- c) -CN,
- d) mercapto,
 - e) formyl,
 - f) CF₃,
 - g) NO₂,
 - h) C₁₋₆ alkoxy,
- 20 i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - l) phenyl,
 - m) C₁₋₆ alkyl optionally substituted with OH, azido, C₁₋₅ alkoxy, C₁₋₅ acyl, -NR₃₂R_{33,} -SR₃₄, -O-SO₂R₃₅, or

- n) $-C(=O)NR_{26}R_{27}$,
- o) $-NR_{23}R_{24}$,

- p) $-N(R_{26})(-SO_2R_{22})$,
- q) $-SO_2-NR_{26}R_{27}$, or
- r) $-S(=O)_iR_{22}$,
- s) -CH=N-R₂₈, or
- 5 t) $-CH(OH)-SO_3R_{31}$;

R₂₂ is the same as defined above;

 R_{26} and R_{27} at each occurrence are the same or different and are

- a) H,
- b) C₁₋₆ alkyl,
- 10 c) phenyl, or
 - d) tolyl;

R₂₈ is

- a) OH,
- b) benzyloxy,
- 15 c) -NH-C(=O)-NH₂,
 - d) $-NH-C(=S)-NH_2$, or
 - e) -NH-C(=NH)-NR₂₉R₃₀;

 $\ensuremath{\mathsf{R}}_{29}$ and $\ensuremath{\mathsf{R}}_{30}$ at each occurrence are the same or different and are

- a) H, or
- b) C₁₋₄ alkyl optionally substituted with phenyl or pyridyl;

R₃₁ is

- a) H, or
- b) a sodium ion;

 $\ensuremath{\text{R}}_{32}$ and $\ensuremath{\text{R}}_{33}$ at each occurrence are the same or different and are

- 25
- a) H,
- b) formyl,
- c) C₁₋₄ alkyl,
- d) C₁₋₄ acyl,
- e) phenyl,

- f) C₃₋₆ cycloalkyl,
- g) R₃₂ and R₃₃ taken together are a 5- or 6-membered saturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, O, optionally substituted with, including on the nitrogen atom, phenyl, pyrimidyl, C₁₋₃ alkyl, or C₁₋₃ acyl,
- h) $-P(O)(OR_{37})(OR_{38})$, or
- i) -SO₂-R₃₉;

R₃₄ is

5

10

$$N-N$$
 N'
 N'
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

R₃₅ is C₁₋₃ alkyl;

R₃₆ is

- a) C₁₋₆ alkoxycarbonyl, or
- b) carboxyl;
- R_{37} and R_{38} at each occurrence are the same or different and are
 - a) H, or
 - b) C₁₋₃ alkyl;

R₃₉ is

- a) methyl,
- b) phenyl, or
 - c) tolyl;

wherein K is

- a) O,
- b) S, or
- c) NR₄₀ in which R₄₀ is hydrogen, formyl, C₁₋₄ alkyl, C₁₋₄ acyl, phenyl, C₃₋₆ cycloalkyl, -P(O)(OR₃₇)(OR₃₈) or -SO₂-R₃₉ in which R₃₇, R₃₈ and R₃₉ are as defined above;

 $R_{10},\,R_{11},\,R_{12},\,R_{13},\,R_{14}$ and R_{15} at each occurrence are the same or different and are

- a) H,
- b) formyl,
- 5 c) carboxyl,
 - d) C₁₋₆ alkoxycarbonyl,
 - e) C₁₋₈ alkyl,
 - f) C₂₋₈ alkenyl,

wherein the substitutents (e) and (f) can be optionally substituted with

OH, halo, C₁₋₆ alkoxyl, C₁₋₆ acyl, C₁₋₆ alkylthio or C₁₋₆ alkoxycarbonyl, or
phenyl optionally substituted with halo,

- g) an aromatic moiety having 6 to 10 carbon atoms optionally substituted with carboxyl, halo, -CN, formyl, CF₃, NO₂, C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ acyl, C₁₋₆ alkylthio, or C₁₋₆ alkoxycarbonyl;
- h) -NR₄₂R₄₃,

15

- i) OR₄₄,
- j) $-S(=O)_{i}-R_{45}$,
- k) $-SO_2-N(R_{46})(R_{47})$, or
- 20 l) a radical of the following formulas:

R₁₉ is the same as defined above;

T is

- a) O,
- b) S, or
- c) SO_2 ;
- S_{42} and R_{43} at each occurrence are the same or different and are
 - a) H,
 - b) C₃₋₆ cycloalkyl,
 - c) phenyl,
 - d) C₁₋₆ acyl,
- e) C₁₋₈ alkyl optionally substituted with OH, C₁₋₆ alkoxy which can be substituted with OH, a 5- or 6-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, phenyl optionally substituted with OH, CF₃, halo, -NO₂, C₁₋₄

15 alkoxy,-NR₄₈R₄₉, or

f)

O

R₅₅-CH—
OI

g) v N-(cH₂)t-

20 V is

- a) O,
- b) CH₂, or
- c) NR₅₆;

 $R_{48} \, \text{and} \, R_{49} \, \text{at each occurrence}$ are the same or different and are

25 a) H, or

b) C₁₋₄ alkyl;

R₅₄ is

- a) OH,
- b) C₁₋₄ alkoxy, or
- c) -NR₅₇R₅₈;
- 5 R₅₅ is
- a) ' H, or
- b) C₁₋₇ alkyl optionally substituted with indolyl, OH, mercaptyl, imidazoly, methylthio, amino, phenyl optionally substituted with OH, -C(=O)-NH₂, -CO₂H, or -C(=NH)-NH₂;
- 10 R₅₆ is
 - a) H,
 - b) phenyl, or
 - c) C₁₋₆ alkyl optionally substituted by OH;

 $R_{57} \ \text{and} \ R_{58} \ \text{at each occurrence}$ are the same or different and are

15

- a) H,
- b) C_{1-5} alkyl,
- c) C₁₋₃ cycloalkyl, or
- d) phenyl;

R₄₄ is

20

25

a) C₁₋₈ alkyl optionally substituted with C₁₋₆ alkoxy or C₁₋₆ hydroxy, C₃₋₆ cycloalkyl, a 6-membered aromatic optionally benzo-fused heterocyclic moiety having one to three nitrogen atoms, which can in turn be substituted with one or two -NO₂, CF₃, halo, -CN, OH, C₁₋₅ alkyl, C₁₋₅ alkoxy, or C₁₋₅ acyl,

b)

c) phenyl, or

d) pyridyl;

R₄₅ is

- a) C₁₋₁₆ alkyl,
- b) C₂₋₁₆ alkenyl,
- wherein the substituents (a) and (b) can be optionally substituted with C₁₋₆ alkoxycarbonyl, or a 5-, 6-, or 7-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O,
 - c) an aromatic moiety having 6 to 10 carbon atoms, or
- d) a 5-, 6-, or 7-membered aromatic heterocyclic moiety having one to three atoms selected from the group of S, N, and O, wherein the substituents (c) and (d) can be optionally substituted with carboxyl, halo, -CN, formyl, CF₃, -NO₂, C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ acyl, C₁₋₆ alkylthio, or C₁₋₆ alkoxycarbonyl;

 R_{46} and R_{47} at each occurrence are the same or different and are

- a) H,
- b) phenyl,
- c) C₁₋₆ alkyl, or
- 20 d) benzyl;

 R_{50} and $R_{51}\,$ at each occurrence are the same or different and are

- a) H,
- b) OH,
- c) C_{1-6} alkyl optionally substituted with -NR₄₈R₄₉ in which R₄₈ and R₄₉ are as defined above,
 - d) R_{50} and R_{51} taken together are =0;

R₅₂ is

25

a) an aromatic moiety having 6 to 10 carbon atoms,

- b) a 5- or 6-membered aromatic optionally benzo-fused heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, wherein the substituents (a) and (b) can in turn be optionally substituted with one or three -NO₂, CF₃, halo, -CN, OH, phenyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, or C₁₋₅ acyl,
- c) morpholinyl,
- d) OH,
- e) C₁₋₆ alkoxy,
- 10 f) $-NR_{48}R_{49}$ in which R_{48} and R_{49} are as defined above,
 - g) $-C(=O)-R_{59}$, or

h)

R₅₃ is

5

15 a) H,

- b) formyl,
- c) C_{1-4} alkyl,
- d) C_{1-4} acyl,
- e) phenyl,
- 20 f) C₃₋₆ cycloalkyl,
 - g) $-P(O)(OR_{37})(OR_{38})$, or
 - h) -SO₂R₃₉, in which R₃₇, R₃₈ and R₃₉ are as defined above;

R₅₉ is

- a) morpholinyl,
- 25 b) OH, or
 - c) C₁₋₆ alkoxy;

h is 1, 2, or 3;

i is 0, 1, or 2;

j is 0, or 1;

k is 3, 4, or 5;

r is 1, 2, 3, 4, 5 or 6;

t is 0, 1, 2, 3, 4, 5, or 6;

u is 1 or 2; and 5

Q is

- a) hydrogen,
- b) halo,
- c) NO₂,

10

- d) N₃,
- C₁-C₆ alkylthio, e)
- f) C_1 - C_6 alkyl— $\ddot{\mathbb{S}}$ —, O C_1 - C_6 alkyl— $\ddot{\mathbb{S}}$ —, $\ddot{\mathbb{S}}$
- C₁-C₆ alkyl, h)

15

- C₁-C₆ alkoxy, i)
- j) formyl,
- O C₁-C₆ alkyl—Ё— , k)
- I)
- m) -sulfamoyl (H2NSO2-),

- -NHOH, n)
- C₁-C₆ alkyl—C-O o)
- heteroaryl — in which heteroaryl is a 5- or 6-membered p) aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,

- q) $C_6H_5-\ddot{C}-$,
- r) amino,
- s) C₁-C₆ alkylamino-,
- t) di (C₁-C₆ alkyl)amino-,
- 5 u) (C₁-C₆) alkyl-C-NR₆₀R₆₁ in which R₆₀ and R₆₁ are each independently hydrogen or C₁-C₆ alkyl,
 - v) OH,
 - w) cyano,
 - x) hydroxy (C₁-C₆ alkyl),
- 10 y) C_1 - C_6 alkyl-S-C-,
 - z) NC--(CH₂)_r-- $\overset{\text{O}}{\text{C}}$ in which r is 1-6,
 - aa) $C_6H_5CH_2-O-\ddot{C}-$,
 - bb) C_6H_5 -O- \ddot{C} -,
 - CC) C_1 - C_6 alkyl—C— in which R_{84} is hydrogen or C_{1-6} alkyl,
- dd) R₈₅O-(CH₂)₁₋₆-C- in which R₈₅ is hydrogen, C₁₋₈ alkyl optionally substituted with one or more F, Cl, OH, C₁₋₈ alkoxy or C₁₋₈ acyloxy, C₃₋₆ cycloalkyl or C₁₋₈ alkoxy;
 - N-OR₈₄
 ee) H- \ddot{C} in which R₈₄ is hydrogen or C₁₋₆ alkyl,
 - ff) a substituted or unsubstituted C₆-C₁₀ aryl moiety,
- gg) a substituted or unsubstituted monocyclic or bicyclic, saturated or unsaturated, heterocyclic moiety having 1-3

atoms selected from O, N or S, said ring being bonded via a ring carbon or nitrogen to the phenyl substituent,

hh) a monocyclic or bicyclic substituted or unsubstituted heteroaromatic moiety having 1-3 hetero atoms selected from O, N or S, said ring being bonded via a ring carbon or nitrogen to the phenyl substituent and wherein the heteroaromatic moiety can additionally have a fused-on benzene or naphthalene ring;

the substituents for such p, q, ff, gg and hh moieties being selected from 10 1 or 2 of the following:

- 1) halo,
- 2) C₁₋₆ alkyl,
- 3) NO₂,
- 4) N₃,

- 6) C₁-C₆ alkyl———,
- 7) formyl,
- O 8) C₁-C₆ alkyl—Ü—,
- 9) C₁-C₆ alkyl—O-Ö—,
- 20 10) heteroaryl—Č— in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,
 - O 11) C₆H₅-Č--,
- O 12) -(C₁-C₆) alkyl-C-NR₆₀R₆₁ in which R₆₀ and R₆₁ are each independently hydrogen or C₁-C₆ alkyl,

- 13) OH,
- 14) hydroxy (C₁-C₆ alkyl),
- 15) C_1 - C_6 alkyl-S-C-,
- O 16) NC- $(CH_2)_r$ -O- \ddot{C} - in which r is 1-6,
- O 5 17) C₆H₅CH₂—O-Ü—,
 - 18) $-CH_2-R_{80}$ in which R_{80} is
 - a) -OR₃₂ in which R₃₂ is as defined above,
 - b) -SR₃₂ in which R₃₂ is as defined above,
 - c) $-NR_{32}R_{33}$ in which R_{32} and R_{33} are as defined above, or
 - 5- or 6-membered heteroaromatic containing 1-4 O,
 S or N atoms,
 - OR₈₄ N in which R₈₄ is as defined above,
 - 20) cyano,
- 15 21) carboxyl,
 - 22) CF₃,
 - O 23) C₁-C₆ alkyl—Ċ-O—,
 - Q 24) C₆H₅-O-C in which the phenyl moiety may be optionally substituted by halo or (C₁-C₆)alkyl,
- 20 25) $NR_{60}R_{61}$ — \ddot{C} in which R_{60} and R_{61} are as defined above,

- O 28) $R_{85}O-(CH_2)_{1-6}-O-\ddot{C}-$ in which R_{85} is as defined above,
- 29) SiR₉₉R₁₀₀R₁₀₁-O-CH₂- $\ddot{\mathbb{C}}$ in which R₉₉, R₁₀₀ and R₁₀₁ are each independently C₁₋₆ alkyl; or
- 5 Q and either R₁ and R₂ taken together form -O-CH₂-O.

The compounds of this invention are novel and represent a new class of antibacterial agents. They are distinct from both the previously reported oxazolidinone and isoxazoline antibiotics since they incorporate the isoxazolinone ring system. They differ from the prior art isoxazolinone herbicides since the ring nitrogen must be substituted with an amide moiety as defined above.

The compounds of formula I are antibacterial agents useful in the treatment of infections in humans and other animals caused by a variety of bacteria, particularly methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium.

Also included in the invention are processes for preparing the compounds of formula I and pharmaceutical compositions containing said compounds in combination with pharmaceutically acceptable carriers or diluents.

DEFINITIONS

The term "pharmaceutically acceptable salt" as used herein is intended to include the non-toxic acid addition salts with inorganic or organic acids, e.g. salts with acids such as hydrochloric, phosphoric, sulfuric, maleic, acetic, citric, succinic, benzoic, fumaric, mandelic, ptoluene-sulfonic, methanesulfonic, ascorbic, lactic, gluconic, trifluoroacetic, hydroiodic, hydrobromic, and the like. These salts may be in hydrated form.

10

15

20

5

The terms "halo" or "halogen" includes chloro, bromo, fluoro and iodo, and is preferably chloro or fluoro.

The aliphatic "alkyl" groups as used herein means straight or branched chains having the specified number of carbon atoms, e.g. in the case of C₁-C₆ alkyl, the alkyl group may have from 1 to 6 carbon atoms.

Similarly, terms such as "C₂-C₈ alkenyl" refer to at least one double bond alkenyl group having the specified number of carbon atoms, "C₂-C₈ alkenyl" refers to at least one triple bond alkynyl group having the specified number of carbons, etc.

The term "acyloxy" unless otherwise defined refers to a group of O
the type CH₃C-O— where the alkyl group can have the specified number of carbon atoms, e.g. C₁-C₆ alkoxy would have 1-6 carbons. Where not specified the carbon length is from 1-6 carbons.

Unless otherwise indicated the term "aryl" refers to aromatic carbocyclic rings, i.e. phenyl and naphthyl.

"Heteroaromatic" as used herein refers to an aromatic heterocyclic moiety having one or more atoms selected from O, N, S, e.g. pyridine, thiophene, furan, pyrimidine, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 3-pyrazinyl, 2-quinolyn, 3-quinolyn, 1-isoquinolyl, 3-isoquinolyl, 2-imadazolyl, 4-imadazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-indolyl, 3-indolyl, 3-indazolyl, 2-benzoxazolyl, 2-benzothiazolyl, 2-furanyl, 3-furanyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,3-triazol-1-yl, 1,2,4-triazol-1-yl, 1-tetrazolyl, 1-indolyl, 1-indazolyl, 2-isoindolyl, 1-purinyl, 3-isothiazolyl, 4-isothiazolyl, and 5-isothiazolyl.

15

10

5

A saturated or unsaturated heterocyclic group can have 1-3 atoms selected from O, N and S, e.g. dioxolane, imidazolidine, dithiolane, oxathiolane, oxazolidine, piperidinyl, piperazinyl, morpholino or thiomorpholino, or the corresponding unsaturated heterocyclic groups.

20

Where possible nitrogen and/or sulfur atoms in such heterocyclic moieties may be oxidized and such oxidized compounds are intened to be encompassed within the formula I compounds.

25

DETAILED DESCRIPTION

Preferred embodiments of the present invention are the compounds of formula I wherein A is

$$Q = \begin{bmatrix} R_2 \\ - \\ R_3 \end{bmatrix}$$

in which Q_1 , R_2 , and R_3 are as defined above.

A still more preferred embodiment of the present invention comprises a compound of the formula

or a pharmaceutically acceptable salt thereof, in which

10

 R_1 is H, C_{1-8} alkyl optionally substituted with one or more F, CI, OH, C_{1-8} alkoxy, or C_{1-8} acyloxy, C_{3-6} cycloalkyl or C_{1-8} alkoxy;

 R_2 and R_3 are each independently

- a) H,
- 15 b) F,
 - c) CI,
 - d) Br,
 - e) C₁₋₆ alkyl,
 - f) NO_2 ,

- g) i,
- h) C₁₋₆ alkoxy,
- i) OH
- j) amino, or
- k) cyano; and

Q is

- a) hydrogen,
- b) halo,
- c) NO₂,
- 5 d) N_3 ,
 - e) C₁-C₆ alkylthio,
 - f) C_1 - C_6 alkyl $-\ddot{S}$ -,
 - g) C₁-C₆ alkyl———,
 - h) C₁-C₆ alkyl,
- i) C_1 - C_6 alkoxy,
 - j) formyl,
 - k) C_1 - C_6 alkyl— \ddot{C} —,
 - O I) C₁-C₆ alkyl—O-Ö—,
 - m) C_1 - C_6 alkyl $-\ddot{C}$ -O-,
- n) heteroaryl—Ü— in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,
 - O O O O O O O
 - p) amino,
- 20 q) C₁-C₆ alkylamino-,
 - r) di(C₁-C₆ alkyl)amino-,
 - s) (C_1-C_6) alkyl $-C-NR_{60}R_{61}$,in which R_{60} and R_{61} are each independently hydrogen or C_1-C_6 alkyl,

- 47 -

- t) OH,
- u) cyano,
- v) hydroxy (C₁-C₆ alkyl),
- w) C_1 - C_6 alkyl—S- \ddot{c} —,

5 NC-(CH₂)_r-O- \ddot{C} in which r is 1-6,

- y) $C_6H_5CH_2-O-\ddot{C}-$,
- z) C₆H₅-O-Ö-,
- aa) C_{1} - C_{6} alkyl— \ddot{C} wherein R_{84} is hydrogen or C_{1-6} alkyl,
- bb) $R_{85}O$ -(CH_2)₁₋₆—C— in which R_{85} is hydrogen, C_{1-8} alkyloptionally substituted with one or more F, Cl, OH, C_{1-8} alkoxy or C_{1-8} acyloxy, C_{3-6} cycloalkyl or C_{1-8} alkoxy,

cc) H-C— in which R₈₄ is as defined above,

dd)

15 ee)

10

ff) Y W - X

gg)

hh)

5 ii)

jj)

kk)

10

mm)

15 nn)

$$\qquad \qquad \bigvee_{N = 1}^{N} \bigvee_{X}^{X}$$

00)

$$\begin{array}{c} \stackrel{\text{N-N}}{\underset{R_{92}}{\nearrow}} \text{in which } R_{92} \text{ is H or } C_{1\text{-}6} \text{ alkyl,} \\ \end{array}$$

pp)

5 qq)

rr)

ss)

tt)

10

uu)

15 vv)

$$-N$$
 $N \ge N$ Y

ww)

XX)

5 yy)

zz)

aaa) a diazinyl group optionally substituted with X and Y,

bbb) a triazinyl group optionally substituted with X and Y,

ccc) a quinolinyl group optionally substituted with X and Y,

ddd) a quinoxalinyl group optionally substituted with X and Y,

eee) a naphthyridinyl group optionally substituted with X and Y,

fff)

$$A_1 \xrightarrow{A_2} (CH_2)_w (O)_y$$

15

hhh)

$$Z_3$$
—(O)_y, or

iii)

5 B is an unsaturated 4-atom linker having one nitrogen and three carbons;

- 51 -

M is

- a) H,
- b) C₁₋₈ alkyl,
- c) C₃₋₈ cycloalkyl,

10

- d) $-(CH_2)_mOR_{66}$, or
- e) $-(CH_2)_nNR_{67}R_{68}$;

Z is

- a) O,
- b) S or

15

c) NM;

W is

- a) CH,
- b) Nor
- c) S or O when Z is NM;
- 20 X and Y are each independently
 - a) hydrogen,
 - b) halo,
 - c) NO₂,
 - d) N₃,

25

e) C₁₋₆ alkythio,

f)
$$C_1$$
- C_6 alkyl $-\ddot{S}$ -,

- g) C₁-C₆ alkyl————,
- h) C₁-C₆ alkyl,
- i) C₁-C₆ alkoxy,
- 5 j) formyl,

- k) C_1 - C_6 alkyl $-\ddot{C}$ -
- I) C_1 - C_6 alkyl-O- \ddot{C} -
- m) heteroaryl—C— in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,
 - n) $C_6H_5-\ddot{C}-$
 - o) amino,
 - p) C₁-C₆ alkylamino-,
 - q) di(C₁-C₆ alkyl)amino-,
- 15 r) -(C₁-C₆) alkyl-C-NR₆₀R₆₁ in which R₆₀ and R₆₁ are each independently hydrogen or C₁-C₆ alkyl,
 - s) OH,
 - t) hydroxy (C₁-C₆ alkyl),
 - u) C_1 - C_6 alkyl-S-C-,
- 20 v) NC- $(CH_2)_r$ -O- \ddot{C} in which r is 1-6,
 - w) $C_6H_5CH_2-O-\ddot{C}-$

- OR₈
- y) C_1 - C_6 alkyl-C in which R_{84} is as defined above,
- z) cyano,
- aa) carboxyl,
- 5 bb) CF₃,
 - cc) mercapto,
 - dd) C_1 - C_6 alkyl $-\ddot{C}$ -O-
 - ee) C_6H_5 -O- \ddot{C} in which the phenyl moiety may be optionally substituted by halo or C_1 - C_6 alkyl,
- 10 ff) $C_6H_5(CH_2)_{1-6}-O-\ddot{C}-$,
 - gg) $R_{85}O^-(CH_2)_{1-6}$ — \ddot{C} in which R_{85} is as defined above, or
 - hh) $\begin{array}{c} \text{O} \\ \text{SiR}_{99} \text{R}_{100} \text{R}_{101} \text{O-CH}_2 \overset{\circ}{\text{C}} \text{ in which R}_{99}, \ \text{R}_{100} \ \text{and R}_{101} \\ \text{are each independently C}_{1\text{-}6} \ \text{alkyl; or} \end{array}$

Q and either R₁ and R₃ taken together form -O-CH₂-O;

- 15 R₆₂ is
- a) H,
- b) C₁₋₈ alkyl optionally substituted with one or more halos, or
- C₁₋₈ alkyl optionally substituted with one or more OH, or
 C₁₋₈ alkoxy;
- 20 E is
- a) NR₆₉,
- b) $-S(=0)_i$ in which i is 0, 1 or 2, or
- c) O;

R₆₃ is

- a) H,
- b) C₁₋₆ alkyl,
- c) -(CH₂)_q-aryl, or

5 d) halo;

R₆₆ is H or C₁₋₄ alkyl;

 R_{67} and R_{68} are each independently H or $C_{1\text{--}4}$ alkyl, or $NR_{67}R_{68}$ taken together are –(CH₂)_m-;

R₆₉ is

10 a) H,

- b) C₁₋₆ alkyl,
- c) $-(CH_2)_q$ -aryl,
- d) -CO₂R₈₁,
- e) COR₈₂,

15 f) $-C(=O)-(CH_2)_q-C(=O)R_{81}$,

- g) $-S(=O)_z-C_{1-6}$ alkyl,
- h) $-S(=O)_z$ - $(CH_2)_q$ -aryl, or
- i) -(C=O) $_j$ -Het in which j is 0 or 1;

Z₁ is

20 a) -CH₂-, or

b) -CH(R₇₀)-CH₂-;

Z₂ is

- a) $-O_2S_{-}$,
- b) -O-,

25 c) -S-,

- d) -SO-, or
- e) -N(R₇₁)-;

Z₃ is

- a) S,
- b) SO,
- c) SO₂, or

5

d) O;

A₁ is H or CH₃;

A₂ is

- a) H,
- b) OH-,

10

- c) CH₃CO₂-,
- d) CH₃-,
- e) CH₃O-,
- f) $R_{72}O-CH_2-C(O)-NH-$,
- g) R₇₃O-C(O)-NH-,

15

- h) R₇₃-C(O)-NH-,
- i) (C_1-C_2) alkyl-O-C(O)-, or
- j) HO-CH₂; or

A₁ and A₂ taken together are

a)

20

b) O = ;

 R_{64} is H or CH_{3} -;

m is 4 or 5;

n is 0, 1, 2, 3, 4 or 5;

25 y is 0 or 1;

p is 0, 1, 2, 3, 4 or 5;

w is 1, 2 or 3;

q is 1, 2, 3 or 4;

z is 0 or 1;

R₆₅ is

- a) $R_{74}OC(R_{75})(R_{76})-C(O)-$,
- b) R₇₇OC(O)-,

5 c) R₇₈(O)-,

- d) R_{79} -SO₂-, or
- e) R₈₀-NH-C(O)-;

R₇₀ is H or (C₁-C₃)alkyl;

 R_{71} is

10 a) $R_{74}OC(R_{75})(R_{76})-C(O)$ -,

- b) R₇₇O-C(O)-,
- c) R₇₈-C(O)-,

d)

15 e)

- f) $H_3C-C(O)-(CH_2)_2-C(O)-$,
- g) R_{79} - SO_{2} -,

h)

20

i) R₈₀-NH-C(O)-,

R₇₂ is

- a) H,
- b) CH₃,

- c) phenyl -CH₂-, or
- d) $CH_3C(O)$ -;

R₇₃ is (C₁-C₃)alkyl or phenyl;

 R_{74} is H, CH₃, phenyl-CH₂- or CH₃-C(O)-;

5 R_{75} and R_{76} are each independently H or CH₃, or R_{75} and R_{76} taken together are $-CH_2CH_2$ -;

 R_{77} is (C_1-C_3) alkyl or phenyl;

 R_{78} is H, (C_1-C_4) alkyl, aryl- $(CH_2)_{n1}$, CIH_2C , CI_2HC , FH_2C -, F_2HC - or (C_3-C_6) cycloalkyl;

10 R₇₉ is CH₃; -CH₂CI, -CH₂CH=CH₂, aryl or -CH₂CN;

 R_{80} is $-(CH_2)_{n_1}$ -aryl where n_1 is 0 or 1;

R₈₁ is

15

20

- a) H,
- b) C₁₋₆ alkyl optionally substituted with one or more OH, halo or CN,
- c) -(CH₂)_q-aryl in which q is as defined above, or
- d) -(CH₂)_q-OR₈₃ in which q is as defined above;

R₈₂ is

- a) C₁₋₆ alkyl optionally substituted with one or more OH, halo or CN,
 - b) -(CH₂)_q-aryl in which q is as defined above, or
 - c) -(CH₂)_q-OR₈₃ in which q is as defined above;

R₈₃ is

- a) H,
- 25 b) C₁₋₆ alkyl,
 - c) -(CH₂)_q-aryl in which q is as defined above; or
 - d) -C(=O) C₁₋₆ alkyl; and

aryl is phenyl, pyridyl or naphthyl, said phenyl, pyridyl or naphthyl moieties being optionally substituted by one or more halo, -CN, OH, SH, C₁₋₆ alkoxy or C₁₋₆ alkylthio.

Another preferred embodiment of the present invention comprises a compound of the formula

$$Q \xrightarrow{R_2} O \xrightarrow{N} N \xrightarrow{R_1} N \xrightarrow{R_2} O$$

or a pharmaceutically acceptable salt thereof, in which

10 R₁ is H, C₁₋₈ alkyl optionally substituted with one or more F, CI, OH, C₁₋₈ alkoxy or C₁₋₈ acyloxy, C₃₋₆ cycloalkyl or C₁₋₈ alkoxy;

 \mbox{R}_2 and \mbox{R}_3 are each independently H or F; or \mbox{R}_2 and \mbox{R}_3 taken together represent

15 Q is

- a) hydrogen,
- b) halo,
- c) N₃,
- d) NO_2 ,

20 e) C₁-C₆ alkylthio,

- h) C₁-C₆ alkyl,
- i) C_1 - C_6 alkoxy,

- j) formyl,
- k) C_1 - C_6 alkyl— \ddot{C} —,
- C_1 - C_6 alkyl-O- \ddot{C} -
- m) C_1 - C_6 alky \vdash \ddot{C} -O-,
- 5 n) $(C_1-C_6 \text{ alkoxy})_2N_{-}$
 - 5- or 6-membered heterocyclic containing 1-3 O, N or S and linked to the phenyl substituent via a carbon or nitrogen, said heterocycle moiety being optionally substituted by R₉₆,
 - p) C₁-C₆ alkyl—Ü
- 10 q) phenyl optionally substituted by R₉₆, or
 - r) 5- or 6-membered saturated or unsaturated heterocyclic containing 1-3 O, N or S and linked to the phenyl substituent via a carbon or nitrogen, said heterocycle moiety being optionally substituted by R₉₆, and
- 15 R₉₆ is
- a) C₁-C₆ alkyl-OH,
- b) C_1 - C_6 alkyl-0- C_- ,
- c) $CH_3-C-C_1-C_6$ alkyl $-\ddot{C}-$,
- d) cyano,
- e) formyl,
 - л . Оп f) H-Ё—
 - Q g) C₁-C₆ alkyl−O-Ċ−-,

- h) SiR₉₉R₁₀₀R₁₀₁-O-CH₂- $\ddot{\text{C}}$ in which R₉₉, R₁₀₀ and R₁₀₁ are each independently C₁₋₆ alkyl,
- i) $CH_3-\ddot{\ddot{S}}-C_1-C_6$ alkyl $-\ddot{\ddot{S}}-$, $\ddot{\ddot{S}}$
- O II j) HC=CCH₂OC—∕,
- 5 k) C_6H_5 -O-C— where the phenyl may be optionally substituted by halo,
 - O I) HO-CH₂-C-,
 - m) $(C_1-C_6 \text{ alkyl})_2N-$,
 - n) C₁-C₆ alkyl-NH-,
- 10 o) amino,
 - p) C_1 - C_6 alkyl- \ddot{S} -
 - q) $C_6H_5CH_2O\ddot{C}$ or
- r) R₉₈-C- in which R₉₈ is phenyl, 5- or 6-membered heteroaryl containing 1-3 O, N or S and linked to the phenyl substituent via a ring carbon atom or 5- or 6-membered saturated or unsaturated heterocyclic containing 1-4 O, N or S and linked to the phenyl substituent via a ring carbon atom.
- Some specific preferred embodiments of the present invention are listed in the table below.

- 63 -

The compounds of the present invention can be made by the methods summarized below.

It will be apparent to those skilled in the art that the procedures

described herein are representative in nature and that alternative procedures are feasible.

Isoxazolinones 5 of the present invention are preferably prepared via the sequence outlined in Scheme 1. Aryl acetic acids 1 are either commercially available or prepared by one of many well known methods in the chemical literature including but not limited to the sequence shown in Scheme 2 or 3. Isoxazolinone 3 is prepared by methods described by Marchesini [J. Org. Chem. 1984, 49, p. 4287-4290]. Reaction of 1 with sodium hydride and ethyl formate provides 2 which is in turn reacted with hydroxylamine yielding 3. Treatment of 3 with mild base, preferably potassium carbonate, in an appropriate solvent, preferably dichloromethane or *N*, *N*-dimethylformamide followed by addition of 4 (prepared by methods described by Barnes et al in US Patent 5, 284, 863) provides isoxazolinone 5.

20

10

15

Scheme 1

An alternative way to prepare aryl acetic esters 1 of the present invention is shown in Scheme 2. Treatment of triflate 6 (prepared from methyl 4-hydroxyphenyl acetate by methods known by those skilled in the art) with an *N*, *N*- dialkylamine in the manner described by Buchwald [Tet. Lett., 1997, 38, p. 6363-6366] produces esters exemplified by 7. Aryl-bromides, -iodides, and -chlorides are also suitable as replacements for triflate 6 in Scheme 2. The *N*, *N*- dialkylamines used in Scheme 2 are either commercially available or are synthesized by literature procedures. Literature preparations of many cyclic *N*, *N*- dialkylamines have been detailed by Gadwood (WO 97/10223) and others are well known to those skilled in the art.

15

20

25

10

5

TfO
$$CO_2Me$$
 Pd^0 R_2NH CO_2Me CO_2Me

Another alternative to prepare aryl acetic esters 1 of the present invention is shown in Scheme 3. Treatment of 8 with a mild base, preferably potassium carbonate, and a primary or secondary amine or thiolate, in a suitable solvent, preferably acetonitrile or *N*, *N*-dimethylformamide, at a temperature between 25°C and 100°C provides 9. Compound 8 is commercially available. Compound 9 is converted to 11 or 12 by methods described by Gravestock (World Patent 97/14690). This sequence is also known to those skilled in the art as the Willgerodt reaction. Conversion of 11 to 12 can also be accomplished by various methods known in the chemical literature including but not limited to treatment with acid in hot alcohol.

Scheme 3

Base

CH₃CN or DMF

RR'NH or RSNa

9

Sulfur

morpholine

$$X_1$$
 X_2
 X_1
 X_2
 X_1

Sulfoxides and sulfones 14 and 16 are prepared by treating sulfides 13 and 15, respectively with an oxidizing agent such as m-chloroperoxybenzoic acid or osmium tetroxide by methods known by those skilled in the art and exemplified by Barbachyn [J. Med. Chem., 1996, 39, 680-685].

Scheme 4

$$X_1 = H \text{ or } F$$

 $X_2 = H \text{ or } F$

5

An alternative method of preparing compound 18 of the present invention is shown in Scheme 5. Treatment of 17 with an appropriate organostannane provides 18. This method is known by those skilled in the art as the Stille cross-coupling reaction.

10

Scheme 5

15

Preparation of 21, 22, 23, and 24 of the present invention is described in Scheme 6. Treatment of 19 with trifluoroacetic acid provides 20. Compound 20 is treated with an acid chloride, chloroformate, sulfonyl halide, or isocyanate in the presence of triethylamine by methods well known in the chemical literature to provide 21, 22, 23, and 24, respectively.

Scheme 6

The triazole-substituted compounds 27 and 28 are prepared by cyclization of the azide 25 with acetylenes 26 (Scheme 7). This is a

standard 3+2 cycloaddition which is well documented in the chemical literature. The acetylenes **26** are either commercially available or prepared by literature procedures. For example, cyanoacetylene is prepared according to Murahashi [J.Chem. Soc. Jap., 1956, **77**, 1689]. The cyclization reaction was usually carried out in a suitable solvent such

5

10

15

20

as DMF, at a temperature between 25°C and 80°C. Other suitable solvents include but are not limited to DMSO, NMP, and DMA. The two cyclization adducts 27 and 28 were separated using preparative HPLC or by triturating with a suitable solvent such as ethyl acetate. Other suitable solvents for trituration include but are not limited to methanol, ethanol, diethyl ether, and acetone.

Scheme 7: 1,2,3-Triazoles

The azidophenylisoxazolinone **25** is reduced to aminophenylisoxazolinone **29** via one of the many well known methods in the chemical literature including but not limited to the treatment with stannous chloride in a suitable solvent such as a 2:1 combination of ethyl acetate and methanol . Treatment of aminophenylisoxazolinones **29** with **2,5-dimethoxytetrahydrofurans 30** in acetic acid provide pyrrolesubstituted isoxazolinones **31** (Scheme 8). Subsequent conversions of

the pyrrole (R = CHO) are also possible, for instance the corresponding oxime can be prepared by refluxing with 50 % aqueous hydroxylamine in methanol.

5

Scheme 8: Pyrroles

N-thioacetates **33** may be prepared from the corresponding Nacetates **32** using a variety of well known literature methods, for instance by refluxing in benzene with Lawesson's reagent. Other solvents such as toluene and xylene are also suitable.

Scheme 9: Thioacetates

15

It will be understood that where the substituent groups used in the above reactions contain certain reaction-sensitive functional groups which

might result in undesirable side-reactions, such groups may be protected by conventional protecting groups known to those skilled in the art.

Suitable protecting groups and methods for their removal are illustrated, for example, in Protective Groups in Organic Synthesis, Theodora W.

Greene (John Wiley & Sons, 1991). It is intended that such "protected" intermediates and end-products are included within the scope of the present disclosure and claims.

Some of the desired end-products of formula I contain an amine.

In these cases, the final product may be recovered in the form of a pharmaceutically acceptable acid addition salt, e.g. by addition of the appropriate acid such as HCI, HI or methane-sulfonic acid to the amine.

15

It will be appreciated that certain products within the scope of formula I may have substituent groups which can result in formation of optical isomers. It is intended that the present invention include within its scope all such optical isomers as well as epimeric mixtures thereof, i.e. Ror S- or racemic forms.

The compounds of the invention are useful because they possess pharmacological activities in animals, including particularly mammals and most particularly, humans. The novel isoxazolinone derivatives of general formula I, or pharmaceutically acceptable salts or prodrugs thereof, are potent antibiotics active against gram-positive bacteria.

While they may be used, for example, as animal feed additives for promotion of growth, as preservatives for food, as bactericides in industrial applications, for example in waterbased paint and in the white water of paper mills to inhibit the growth of harmful bacteria, and as disinfectants for destroying or inhibiting the growth of harmful bacteria on medical and dental equipment, they are especially useful in the treatment

of bacterial infections in humans and other animals caused by the grampositive bacteria sensitive to the new derivatives.

5

10

15

20

25

30

The pharmaceutically active compounds of this invention may be used alone or formulated as pharmaceutical compositions comprising, in addition to the active isoxazolinone ingredient, a pharmaceutically acceptable carrier or diluent. The compounds may be administered by a variety of means, for example, orally, topically or parenterally (intravenous or intramuscular injection). The pharmaceutical compositions may be in solid form such as capsules, tablets, powders, etc. or in liquid form such as solutions, suspensions or emulsions. Compositions for injection may be prepared in unit dose form in ampules or in multidose containers and may contain additives such as suspending, stabilizing and dispersing agents. The compositions may be in ready-to-use form or in powder form for reconstitution at the time of delivery with a suitable vehicle such as sterile water.

Thus, according to another aspect of the invention, there is provided a method of treating a bacterial infection which comprises administering a therapeutically effective amount of the compound to a host, particularly a mammalian host and most particularly a human patient. The use of the compounds of the present invention as pharmaceuticals and the use of the compounds of the invention in the manufacture of a medicament for the treatment of bacterial infections are also provided.

The dosage to be administered depends, to a large extent, on the particular compound being used, the particular composition formulated, the route of administration, the nature and condition of the host and the particular situs and organism being treated. Selection of the particular preferred dosage and route of application, then, is left to the discretion of

the physician or veterinarian. In general, however, the compounds may be administered parenterally or orally to mammalian hosts in an amount of from about 25 mg/day to about 2 g/day.

The preparations of pyrazoles substituted compounds are outlined in Scheme 10. Compound 29 was diazotized and then reduced to form hydrazine hydrochloride salt 34 via one of the many well known methods in the chemical literature including but not limited to the treatment with sodium nitrite and stannous chloride. Treatment of 34 with

10 ethoxycarbonylmalondiadehyde, cyanomalondiadehyde [prepared according to Bertz, S.H., Dabbagh, G. and Cotte, P. in J. Org. Chem, 1982, 47, p. 2216,] or malondiadehyde [prepared according to Martinez,A.M., Cushmac, G.E., Rocek, J. in J. Amer. Chem. Soc, 1975, 97, p. 6502] in the presence of sodium bicarbonate at room temperature provides compound 35.

Scheme 10: Pyrazoles

In Vitro Activity

Samples of the compounds prepared below in Examples 1 - 97 after solution in water and dilution with Nutrient Broth were found to exhibit the following ranges of Minimum Inhibitory Concentrations (MIC) versus the indicated microorganisms as determined by tube dilution. The MICs were determined using a broth micro dilution assay in accordance with that recommended by the National Committee for Clinical Laboratory Standards (NCCLS). Mueller-Hinton medium was used except for Streptococci which was tested in Todd Hewitt broth. The final bacterial inoculate contained approximately 5 x 10⁵ cfu/ml and the plates were incubated at 35°C for 18 hours in ambient air (Streptococci in 5% CO₂). The MIC was defined as the lowest drug concentration that prevented visible growth.

15

10

5

Microorganism	MIC value in ug/ml
S. pneumoniae A9585	≤ 8
E. faecalis A20688	≤ 16
S. aureus A15090, penicillinase positive	≤ 16

ILLUSTRATIVE EXAMPLES

20

The following examples illustrate the invention, but are not intended as a limitation thereof. The abbreviations used in the examples are conventional abbreviations well-known to those skilled in the art. Some of the abbreviations used are as follows:

PCT/US99/19265

h = hour(s) mol = mole(s) mmol = mmole(s) g = gram(s) 5 min = minute(s) rt = room temperature THF = tetrahydrofuran L = liter(s) mL = milliliter(s) 10 Et₂O = diethyl ether **EtOAc** ethyl acetate = MeOH methanol DMF = dimethylformamide

15

In the following examples, all temperatures are given in degrees Centigrade. Melting points were determined on an electrothermal apparatus and are not corrected. Proton and carbon-13 nuclear magnetic resonance (¹H and ¹³C NMR) spectra were recorded on a Bruker AM-300 or a Varian Gemini 300 spectrometer. All spectra were determined in CDCl₃, DMSO-d₆, CD₃OD, or D₂O unless otherwise indicated. Chemical 20 shifts are reported in δ units relative to tetramethylsilane (TMS) or a reference solvent peak and interproton coupling constants are reported in Hertz (Hz). Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad peak; dd, doublet of 25 doublets; dt, doublet of triplets; and app d, apparent doublet, etc. Infrared spectra were determined on a Perkin-Elmer 1800 FT-IR spectrometer from 4000 cm⁻¹ to 400 cm⁻¹, calibrated to 1601 cm⁻¹ absorption of a polystyrene film, and are reported in reciprocal centimeters (cm⁻¹). Mass spectra were recorded on a Kratos MS-50 or a Finnegan 4500 instrument 30 utilizing direct chemical ionization (DCI, isobutene), fast atom

bombardment (FAB), or electron ion spray (ESI). Ultraviolet spectra were determined on a Hewlett Packard 8452 diode array spectrophotometer in the solvent indicated.

Analytical thin-layer chromatography (TLC) was carried out on precoated silica gel plates (60F-254) and visualized using UV light, iodine vapors, and/or staining by heating with methanolic phosphomolybdic acid. Column chromatography, also referred to as flash chromatography, was performed in a glass column using finely divided silica gel at pressures somewhat above atmospheric pressure with the indicated solvents. Reversed-phase analytical thin-layer chromatography was carried out on precoated reverse phase plates and visualized using UV light or iodine vapors.

15

10

5

EXAMPLE 1

N-[[4-(4-methylthiophenyl)-5-oxo-2-isoxazolinyl]methyl]acetamide

20

25

A. Ethyl 4-methylthiophenylacetate

To a solution of 4-methylthiophenylacetic acid (1.0 g, 5.48 mmol) in 55 mL of ethanol was slowly added a catalytic amount of concentrated sulfuric acid. The mixture was stirred at room temperature overnight and then concentrated at reduced pressure. The residue was partitioned between methylene chloride and sodium bicarbonate. The organic layer was washed with brine, dried with magnesium sulfate, filtered, and concentrated to yield 1.1 g of a colorless oil (96%). 1H NMR (300MHz,

CDCl₃) δ 7.22 (s, 4 H), 4.15 (q, J=6 Hz, 2 H), 3.57 (s, 2 H), 2.47 (s, 3 H), 1.25 (t, J=6 Hz, 3 H).

B. Ethyl 4-methylthio- α -formyl-phenylacetate

5

10

20

A suspension of NaH (0.84 g, 20.8 mmol) was added at room temperature to a solution of ethyl 4-methylthiophenylacetate (1.1 g, 5.2 mmol) in ethyl formate (20 mL). The mixture was stirred at room temperature for 1 hour and then cold 0.5 N HCl (20 mL) was added slowly. The crude reaction was then extracted with ether, and the organic layer was washed with sodium bicarbonate, brine, dried over magnesium sulfate, filtered, and concentrated to yield 1.2 g of ethyl 4-methylthio- α -formyl-phenylacetate as a colorless oil, which was used in the next step without purification.

15 C. 4-(4-methylthio)-phenylisoxazolin-5-one

To a solution of ethyl 4-methylthio- α -formyl-phenylacetate in 20 mL of methanol and 1 mL of water was added hydroxylamine hydrochloride (0.54 g, 7.8 mmol). The mixture was heated to reflux for 1 hour. The solvent was evaporated and the residue was triturated with water to afford a precipitate, which was then further triturated with ether to yield 0.48 g (two steps, 44%) of a pale yellow solid. ¹H NMR (300MHz, MeOH-d₄) δ 8.74 (s, 1 H), 7.66 (d, J=8 Hz, 2 H), 7.25 (d, J=8 Hz, 2 H), 2.46 (s, 3 H).

D. N-[[4-(4-methylthiophenyl)-5-oxo-2-isoxazolinyl]methyl]acetamide

To a solution of 4-(4-methylthio)-phenylisoxazolin-5-one (0.2 g, 0.97 mmol) in 10 mL of methylene chloride was added potassium carbonate (0.67 g, 4.85 mmol) and N-(hydroxymethyl) acetamide acetate (0.64 g, 4.85 mmol). The mixture was stirred at room temperature for 18 hours. It was then poured into 10 mL of 1N HCl and extracted three times with chloroform. The organic layer was then washed with sodium

5

15

bicarbonate, brine, dried over magnesium sulfate, filtered, concentrated to vield a tan solid, which was then recrystallized with hexane/chloroform. The resulting solid was further purified by triturating with ether to yield 0.186 g (69%) of a tan solid. ^{1}H NMR (300MHz, DMSO-d₆) δ 8.93 (s, 1 H), 7.72 (d, J=9 Hz, 2 H), 7.28 (d, J=9 Hz, 2 H), 5.02 (d, J=6 Hz, 2 H), 2.48 (s, 3 H), 1.84 (s, 3 H).

EXAMPLE 2

10 N-{[4-(3-fluoro-4-oxido-4-morpholin-4-ylphenyl)-5-oxo-2hydroisoxazol-2-yl]methyl}acetamide

To N-{[4-(3-fluoro-4-morpholin-4-ylphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (200 mg, 0.60 mmol) in 50 mL methanol was added magnesium monoperoxyphthalate (300 mg, 0.60 mmol). After 2 hours at ambient temperature the white precipitate was filtered and the filtrate was concentrated. The remaining residue was pushed through a 20 plug of basic alumina with dichloromethane. The eluant was concentrated and recrystallized from dichloromethane / hexanes to afford 162 mg (44%) of the title compound as a brown solid. ¹H NMR (DMSO d_{6} ; 300 MHz) δ 9.19 (s, 1H), 9.02 (t, J = 6.1 Hz, 1H), 8.62-8.55 (m, 2H). 7.82-7.75 (m, 2H), 5.09 (d, J = 6.0 Hz, 2H), 4.44 (app t, J = 11.1 Hz, 2H), 25 4.08 (app t, J = 9.6 Hz, 2H), 3.78 (app d, J = 11.1 Hz, 2H), 2.89 (app d, J= 10.5 Hz, 2H), 1.86 (s, 3H); ESI (M+H)+=352.

EXAMPLE 3

N-({4-[4-(methylsulfinyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

5

10

15

To N-{[4-(4-methylthiophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (1.0 g, 3.6mmol) in 50 mL chloroform at 0°C was added m-CPBA (1.12 g, 3.6 mmol) in 30 mL chloroform via syringe pump over 2 hours. Saturated sodium bicarbonate was added and the reaction mixture was stirred vigorously for 10 minutes at which time it was poured into saturated sodium bicarbonate and 4:1 chloroform:methanol. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated. The residue was triturated with ether providing 800 mg (79%) of the title compound as a colorless solid. 1 H NMR (DMSO-d₆; 300 MHz) δ 9.11 (s, 1H), 8.96 (t, J = 6.1 Hz, 1H), 7.96 (d, J = 6.6 Hz, 2H), 7.67 (d, J = 6.6 Hz, 2H), 5.03 (d, J = 6.1 Hz, 2H), 2.73 (s, 3H), 1.84 (s, 3H); ESI (M+H)+=295.

20

EXAMPLE 4

N-({4-[4-(methylsulfonyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

To N-{[4-(4-methylthiophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (200 mg, 0.72 mmol) in 20 mL chloroform at 0°C was added m-CPBA (450 mg, 1.44 mmol) in 5 mL chloroform. After 30 minutes saturated sodium bicarbonate was added and the reaction mixture was extracted with chloroform. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated. The residue was precipitated from acetone / 1:1 hexanes: ether providing 112 mg (50%) of the title compound as a colorless solid. 1 H NMR (DMSO-d₆; 300 MHz) δ 9.24 (s, 1H), 9.01 (t, J = 6.1 Hz, 1H), 8.02 (d, J = 8.6 Hz, 2H), 7.91 (d, J = 8.6 Hz, 2H), 5.11 (d, J = 6.2 Hz, 2H), 3.20 (s, 3H), 1.86 (s, 3H); ESI (M+H) +=311.

15

20

10

5

EXAMPLE 5

N-({4-[4-(1,1-dioxo(1,4-thiazaperhydroin-4-yl))-3-fluorophenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

- 90 -

To N-{[4-(3-fluoro-4-(1,4-thiazaperhydroin-4-yl)phenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (100 mg, 0.29 mmol) in 2 mL water and 8 mL acetone was added N-methylmorpholine N-oxide (98 mg, 0.85 mmol) followed by osmium tetroxide (2.5 wt% in isopropanol; 7 μ l; 0.07 mmol). After 18 hours at ambient temperature saturated sodium bisulfite was added and the reaction mixture was extracted with 4:1 chloroform:methanol. The organic layer was concentrated providing 85 mg (77%) of the title compound as a colorless solid. ¹H NMR (DMSO-d₆; 300 MHz) δ 8.95 (s, 1H), 8.92 (t, J = 6.2 Hz, 1H), 7.62-7.51 (m, 2H), 7.17 (app t, J = 9.2 Hz, 1H), 4.99 (d, J = 6.2 Hz, 2H), 3.52-3.48 (m, 4H), 3.27-3.23 (m, 4H), 1.82 (s, 3H); ESI (M+H) +=384.

EXAMPLE 6

4-(3-Fluoro-4-morpholin-4-ylphenyl)-2-{[(thioxoethyl)amino]methyl}-2-hydroisoxazol-5-one

20

25

5

10

A mixture of N-{[4-3-fluoro-4-morpholinylphenyl-5-oxo-2-isoxazolinyl]methyl}acetamide (0.25 g, 0.75 mmol) and Lawesson's reagent (0.4 g, 1.0 mmol) in 10 mL of benzene was heated at reflux for 3 hours. The mixture was then concentrated under reduced pressure. The residue was purified using silica gel chromatography eluting with methylene chloride and ethyl acetate to give a colorless solid (80 mg, 30%): 1 H NMR (300 MHz, CDCl₃) δ 8.61 (br s, 1 H), 8.49 (s, 1 H), 7.50

(dd, J = 1.5 and 13.8 Hz, 1 H), 7.40 (dd, J = 1.5 and 10.2 Hz, 1 H), 7.12 (t, J = 10.2 Hz, 1 H), 5.56 (d, J = 6.3 Hz, 2 H), 3.94 (m, 4 H), 3.17 (m, 4 H), 2.57 (s, 3 H).

5

EXAMPLE 7

N-{[4-(4-acetylphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide

10

15

20

25

To N-{[4-phenyl-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (3.0 g, 12.9 mmol) and aluminum (III) chloride (13.8 g, 103.4 mmol) in 150 mL 1, 2-dichloroethane was added acetyl chloride (7.3 mL, 103.4 mmol) dropwise over 10 minutes. The resultant red mixture was heated to 80°C for 3.5 hours, cooled to ambient temperature, and poured over 10 minutes into a rapidly stirring mixture of 20% methanol/chloroform and 1N hydrochloric acid which was immersed in an ice bath. The mixture was poured into a separatory funnel, and the layers were separated. The aqueous layer was extracted twice with 20% methanol/chloroform, and the combined organics were then washed successively with 1N sodium hydroxide, saturated sodium bicarbonate, and brine. The organic layer was then dried over magnesium sulfate, filtered, and concentrated to an amorphous yellow solid which was dissolved in 20% methanol/chloroform. Ether was added and the mixture was stored at 0°C for 18 hours. The resultant precipitate was filtered to provide 2.48 g (70%) of the title compound as a pale pink solid. ¹H NMR (DMSO-d₆; 300MHz) δ 9.18 (s,

1H), 9.00 (t, J = 6.1 Hz, 1H), 7.96 (d, J = 6.7 Hz, 2H), 7.91 (d, J = 6.6 Hz, 2H), 5.10 (d, J = 6.2 Hz, 2H), 2.56 (s, 3H), 1.86 (s, 3H); ESI (M+H)+=275.

EXAMPLE 8

5

N-({4-[4-((hydroxyimino)ethyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

10

15

20

A mixture of N-{[4-(4-acetylphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (2.0 g, 7.3 mmol) and 50% aqueous hydroxylamine (1.0 mL, 14.6 mmol) was heated to reflux for 1.5 hours, concentrated to near dryness and redissolved in 20% methanol/chloroform. Hexanes were added until the solution became cloudy and the mixture was stored at 0°C for 3 hours. The precipitate was filtered providing 1.42 g (67%) of the title compound as a pale yellow solid. 1 H NMR (DMSO-d₆; 300MHz) 3 11.21 (s, 1H), 9.01 (s, 1H), 8.96 (t, 3 = 6.2 Hz, 1H), 7.78 (d, 3 = 8.6 Hz, 2H), 7.66 (d, 3 = 8.6 Hz, 2H), 5.04 (d, 3 = 6.2 Hz, 2H), 2.19 (s, 3H), 1.84 (s, 3H); ESI (M+H)+=290.

EXAMPLE 9

N-{[4-(4-(2-furyl)phenyl)-5-oxo-2-hydroisoxazol-2-

25 yl]methyl}acetamide

5

10

15

Nitrogen was bubbled through a mixture of N-{[4-(4-iodophenyl)-5oxo-2-hydroisoxazol-2-yl]methyl]acetamide (300 mg, 0.84 mmol), 2tributylstannylfuran (0.26 mL, 0.84 mmol), tris(dibenzylideneacetone)dipalladium(0) (77 mg, 0.08 mmol), triphenylarsine (51 mg, 0.17 mmol), and lithium chloride (106 mg, 2.51 mmol) in 5 mL DMF. The reaction mixture was capped and allowed to stir at ambient temperature for 8 hours, at which time it was diluted with 20% methanol/chloroform, filtered thru celite and concentrated. The residue was suspended in chloroform, loaded onto a Biotage flash 40i chromatography module (12M) thru a frit, and eluted with 50% hexane/ethyl acetate providing a solid which was triturated with chloroform/ether to provide 132 mg (53%) of the title compound as a colorless solid. ¹H NMR (DMSO-d₆; 300MHz) δ 9.00 (s, 1H), 8.94 (t, J = 6.0 Hz, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.74-7.70 (m, 2H), 6.95 (d, J = 3.2Hz, 1H), 6.60-6.59 (m, 1H), 5.04 (d, J = 6.1 Hz, 2H), 1.85 (s, 3H); ESI $(M+H)^{+}=299.$

20

EXAMPLE 10

N-{[5-oxo-4-(4-(2-thienyl)phenyl)-2-hydroisoxazol-2-yl]methyl}acetamide

Nitrogen was bubbled through a mixture of N-[[4-(4-iodophenyl)-5oxo-2-hydroisoxazol-2-yl]methyl}acetamide (300 mg, 0.84 mmol), 2-5 tributylstannylthiophene (0.27 mL, 0.84 mmol), tris(dibenzylideneacetone)dipalladium(0) (77 mg, 0.08 mmol), triphenylarsine (51 mg, 0.17 mmol), and lithium chloride (106 mg, 2.51 mmol) in 5 mL DMF. The reaction mixture was capped and allowed to stir at ambient temperature for 8 hours, at which time it was diluted with 20% 10 methanol/chloroform, filtered thru celite and concentrated. The residue was suspended in chloroform, loaded onto a Biotage flash 40i chromatography module (12M) thru a frit, and eluted with 15% acetone/chloroform providing a solid which was triturated with chloroform/ether to provide 165 mg (63%) of the title compound as a 15 colorless solid. ¹H NMR (DMSO-d₆; 300MHz) δ 9.00 (s, 1H), 8.95 (t, J = 6.0 Hz, 1H), 7.81 (d, J = 7.3 Hz, 2H), 7.68 (d, J = 7.4 Hz, 2H), 7.54-7.52 (m, 2H), 7.15-7.11 (m, 1H), 5.04 (d, J = 6.1 Hz, 2H), 1.85 (s, 3H); ESI $(M+H)^{+}=315.$

20

EXAMPLE 11

N-{[4-(4-(2H,3H-1,4-dioxin-5-yl)phenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide

Nitrogen was bubbled through a mixture of N-{[4-(4-iodophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (300 mg, 0.84 mmol), 2-(tributylstannyl)-5,6-dihydro-{1,4}-dioxin (346 mg, 0.92 mmol), tris(dibenzylideneacetone)dipalladium(0) (77 mg, 0.08 mmol), triphenylarsine (51 mg, 0.17 mmol), and lithium chloride (106 mg, 2.51 mmol) in 5 mL DMF. The reaction mixture was capped and allowed to stir at ambient temperature for 16 hours, at which time it was diluted with 20% methanol/chloroform, 10% aqueous potassium fluoride was added and the mixture was allowed to rapidly stir for 1 hours. The reaction mixture was filtered thru celite and concentrated. The resultant black oil was dissolved in 20% methanol/chloroform, adsorbed onto silica gel and loaded into a Biotage flash 40i chromatography module SIM.

Chromatography was performed using a 12M silica gel cartridge eluting with 20% acetone/chloroform providing an amber oil which was triturated with ether, yielding 115 mg (44%) of the title compound as a tan solid. ¹H NMR (DMSO-d₆; 300MHz) δ 8.93-8.88 (m, 2H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 6.96 (s, 1H), 5.01 (d, *J* = 6.2 Hz, 2H), 4.22-4.19
 (m, 2H), 4.10-4.07 (m, 2H), 1.85 (s, 3H); ESI (M+H)+=317.

EXAMPLE 12

N-{[5-oxo-4-(4-pyrazin-2-ylphenyl)-2-hydroisoxazol-2-

25 yl]methyl}acetamide

5

10

Nitrogen was bubbled through a mixture of N-{[4-(4-iodophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (300 mg, 0.84 mmol), 2-(tributylstannyl)pyrazine (340 mg, 0.92 mmol), tris(dibenzylideneacetone)dipalladium(0) (77 mg, 0.08 mmol), triphenylarsine (51 mg, 0.17 mmol), and lithium chloride (106 mg, 2.51 mmol) in 5 mL DMF. The reaction mixture was capped and allowed to stir at ambient temperature for 16 hours, at which time it was diluted with 20% methanol/chloroform, 10% aqueous potassium fluoride was added and the mixture was allowed to rapidly stir for 1 hour. The reaction

mixture was filtered thru celite and concentrated. The resultant black oil

was dissolved in 20% methanol/chloroform, adsorbed onto silica gel and

- loaded into a Biotage flash 40i chromatography module SIM.

 15 Chromatography was performed using a 12M silica gel cartridge eluting with 25% acetone/chloroform providing an amber oil which was triturated with ether, yielding 52 mg (44%) of the title compound as a colorless solid. ¹H NMR (DMSO-d₆; 300MHz) δ 9.28 (d, *J* = 1.4 Hz, 1H), 9.11 (s, 1H), 8.97 (t, *J* = 6.1 Hz, 2H), 8.71 (app t, *J* = 1.9 Hz, 1H), 8.59 (d, *J* = 2.5
- 20 Hz, 1H), 8.17 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 5.07 (d, J = 6.2 Hz, 2H), 1.86 (s, 3H); ESI (M+H)+=311.

5

EXAMPLE 13

N-{[5-oxo-4-(4-{4-[2-(1,1,2,2-tetramethyl-1-silapropoxy)acetyl]piperazinyl}phenyl)-2-hydroisoxazol-2-yl]methyl}acetamide

To N-{[5-oxo-4-(piperazinylphenyl)-2-hydroisoxazol-2-yl]methyl} 10 acetamide trifluoroacetate salt (0.43 g, 1.0 mmol) in 2 mL of dimethylformamide and 10 mL dichloromethane was added triethylamine (0.7 mL, 0.5 mmol) followed by (t-butyldimethylsilyloxy)acetyl chloride (1.0 g, 4.8 mmol). The resultant mixture was allowed to stir at ambient temperature for 1.5 hours before being partitioned between 15 dichloromethane and water. The organic layer was washed with saturated sodium bicarbonate, brine, dried over magnesium sulfate, filtered and concentrated. The residue was triturated with ether to provide 0.24 g (49%) of the title compound. 1H NMR (methanol-d₄; 300 MHz) δ 8.49 (s, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 5.07 (s, 2H), 4.42 (s, 2H), 3.73 (t, J = 4.9 Hz, 4H), 3.24 (t, J = 4.9 Hz, 4H), 1.94 (s, 20 3H), 0.95 (s, 9H); ESI (M+H)+ = 489.

EXAMPLE 14

25 <u>N-[(4-{4-[4-(2-hydroxyacetyl)piperazinyl]phenyl}-5-oxo-2-hydroisoxazol-2-yl)methyl]acetamide</u>

To N-{[5-oxo-4-(4-{4-{2-(1,1,2,2-tetramethyl-1-silapropoxy)acetyl]piperazinyl}phenyl)-2-hydroisoxazol-2-yl]methyl}acetamide (0.3 g, 0.6 mmol) in 4mL dichloromethane was added 4 mL trifluoroacetic acid. After 1 hour, the reaction was concentrated, the residue was partitioned between dichloromethane and saturated sodium bicarbonate solution. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated. The residue was triturated with ether to provide 92 mg (40%) of the title compound. ¹H NMR (DMSO-d₆; 300 MHz) δ 8.87 (t, *J* = 6.2 Hz, 1H), 8.74 (s, 1H), 7.63 (d, *J* = 8.7 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 4.95 (d, *J* = 6.2 Hz, 2H), 4.64 (t, *J* = 5.6 Hz, 1H), 4.13 (d, *J* = 5.6 Hz, 2H), 3.60 (br s, 2H), 3.48 (br s, 2H), 3.17 (br s, 4H), 1.83 (s, 3H); ESI (M+H)+=375.

15

EXAMPLE 15

N-{[4-(4-azidophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide)

20

Prepared from ethyl 4-azidophenylacetate according to the general route outlined in Scheme 1. The starting material was prepared as follows:

Ethyl 4-Azidophenylacetate

Following the general procedure of Marchesini (J. Org. Chem. 49, p. 4287-4290, 1984), sodium nitrite (38 g, 0.56 mol) was slowly added to a stirred and cooled (0°C) mixture of ethyl 4-aminophenylacetate (25 g, 0.14 mol) in 700 mL of TFA. After the addition was complete, the reaction was stirred at 0°C for another 0.5 hour and then sodium azide (27 g, 0.42 mol) was slowly added over a period of 0.5 hours. The mixture was stirred for another 2 hours at 0°C and then quenched with ice water and the product was extracted with EtOAc. The organic phase was washed with water, dried over magnesium sulfate, filtered, concentrated to yield 26.5 g (90%) of the title compound as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 7.31 (d, *J* = 8 Hz, 2 H), 7.07 (d, *J* = 7 Hz, 2 H), 4.07 (q, *J* = 7 Hz, 2 H), 3.66 (s, 2 H), 1.17 (t, *J* = 7 Hz, 3 H).

EXAMPLE 16

N-[(4-[4-[4-(hydroxymethyl)(1,2,3-triazolyl)]phenyl}-5-oxo-2-hydroisoxazol-2-yl)methyl]acetamide

A mixture of N-{[4-(4-azidophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (80 mg, 0.29 mmol) and propargyl alcohol (0.1 mL,

1.71 mmol) in 3 mL of DMF was heated at 100°C for 10 hours. The reaction mixture was then concentrated in vacuo and purified by flash chromatography (silica gel; eluting with EtOAc followed by 10% MeOH/EtOAc) to yield 62 mg of a yellow solid. The ¹H NMR spectra indicated that the crude product was a mixture of two triazole isomers. These isomers were separated by preparative HPLC ($H_2O/MeOH$) to yield 10 mg (10%) of the title compound as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 9.11 (s, 1 H), 8.96, (t, J = 6 Hz, 1 H), 8.69, (s, 1 H), 7.96 (m, 4 H), 5.07 (d, J = 6 Hz, 2 H), 4.61 (s, 2 H), 1.86 (s, 3 H).

10

5

EXAMPLE 17

Methyl 1-(4-{2-[(acetylamino)methyl]-5-oxo-2-hydroisoxazol-4-yl}phenyl)-1,2,3-triazole-4-carboxylate

15

20

25

A mixture of N-{[4-(4-azidophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (80 mg, 0.29 mmol) and methyl propionate (0.05 mL, 0.58 mmol) in 3 mL DMF was heated at 50°C for 24 hours. The reaction mixture was then concentrated in vacuo and triturated with EtOAc to yield 25 mg (24%) of the title compound as a yellow solid. (An alternate procedure which is more reliable involves conducting the reaction at room temperature for 10 days and then isolating as above.) ¹H NMR (300 MHz, DMSO-d₆) δ 9.52 (s, 1 H), 9.15, (s, 1 H), 8.96, (t, J = 6 Hz, 1 H), 8.02 (s, 4 H). 5.08 (d, J = 6 Hz, 2 H), 3.90 (s, 3 H), 1.87 (s, 3 H).

EXAMPLE 18

N-{{4-[4-(4-acetyl(1,2,3-triazolyl))phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

5

A mixture of N-{[4-(4-azidophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (100 mg, 0.36 mmol) and of 3-butyn-2-one (0.035 mL, 0.72 mmol) in 3 mL DMF was heated at 50°C for 24 hours. The reaction mixture was concentrated in vacuo and then triturated with EtOAc to yield 60 mg (49%) of the title compound as a yellow solid. 1 H NMR (300 MHz, DMSO-d₆) δ 9.47 (s, 1 H), 9.35, (s, 1 H), 8.98, (t, J = 6 Hz, 1 H), 8.02 (s, 4 H), 5.08 (d, J = 6 Hz, 2 H), 3.32 (s, 3 H), 1.85 (s, 3 H).

EXAMPLE 19

N-({4-[4-(4-cyano(1,2,3-triazolyl))phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

A mixture of N-{[4-(4-azidophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (500 mg, 1.83 mmol) and 0.8 mL of cyanoacetylene

[prepared according to Murahashi, S.; Takizawa, T.; Kurioka, S.; Maekawa, S.; in <u>J. Chem. Soc. Jap.</u>, **77**, p, 1689, 1956] in 5 mL of DMF was heated at 50°C for 48 hours. Upon cooling, the precipitated solid was collected by filtration and washed with DMF to yield 375 mg (63%) of the title compound as a white solid. ¹H NMR (300 MHz, DMSO-d₆) δ 9.75 (s, 1 H), 9.17, (s, 1 H), 9.00, (t, J = 6 Hz, 1 H), 8.05 (d, J = 9 Hz, 2 H), 7.95 (d, J = 9 Hz, 2 H), 5.10 (d, J = 6 Hz, 2 H), 1.85 (s, 3 H).

EXAMPLE 20

10

5

N-{[4-(4-aminophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide

$$H_2N$$

15

20

25

To a mixture of N-{[4-(4-azidophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (3 g, 10.98 mmol) in 40 mL EtOAc and 20 mL MeOH was added SnCl₂•2H₂O (12.5 g, 54.9 mmol). After all of the solid was dissolved, the reaction mixture was concentrated in vacuo and neutralized with saturated aqueous sodium bicarbonate. The mixture was concentrated in vacuo again and the residue was dissolved in a mixture of 4:1 CHCl₃/MeOH. The resulting solution was filtered throuth celite, and the insoluble material was discarded. The filtrate was then concentrated in vacuo to yield 3 g (100%) of the title compound as a yellow solid. ¹H NMR (300 MHz, DMSO-d₆) δ 8.83, (t, J = 6 Hz, 1 H), 8.55, (s, 1 H), 7.43 (d, J = 9 Hz, 2 H), 6.56 (d, J = 9 Hz, 2 H), 5.21, (broad s, 2 H), 4.91 (d, J = 6 Hz, 2 H), 1.82 (s, 3 H).

EXAMPLE 21

N-({4-[4-(3-formylpyrrolyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

5

10

15

To a solution of N-{[4-(4-aminophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (200 mg, 0.81 mmol) in 3 mL of acetic acid was added 2,5-dimethoxy-3-tetrahydrofurancarboaldehyde (184 mg, 1.27 mmol). This mixture was refluxed for 0.5 hours, and then concentrated in vacuo to give the crude product. Purification by silica gel chromatography (eluting with EtOAc, then 8% MeOH in EtOAc) gave 240 mg (91%) of the title compound as a yellow solid. 1 H NMR (300 MHz, DMSO-d₆) δ 9.79 (s, 1 H), 9.08, (s, 1 H), 9.00, (t, J = 6 Hz, 1 H), 8.29, (m, 1 H), 7.93 (d, J = 9 Hz, 2 H), 7.74 (d, J = 9 Hz, 2 H), 7.58, (m, 1 H), 6.71 (m, 1 H), 5.06 (d, J = 6 Hz, 2 H), 1.86 (s, 3 H).

EXAMPLE 22

20

N-{[5-oxo-4-(4-pyrrolylphenyl)-2-hydroisoxazol-2-yl]methyl}acetamide

This compound was prepared from N-{[4-(4-aminophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide as described above for N-({4-[4-(3-formylpyrrolyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide except that 2,5-dimethoxy-3-tetrahydrofuran was used in place of 2,5-dimethoxy-3-tetrahydrofurancarboaldehyde. 1 H NMR (300 MHz, DMSO-d₆) δ 8.92, (s, 1 H), 8.94, (t, J = 6 Hz, 1 H), 7.85 (d, J = 9 Hz, 2 H), 7.62 (d, J = 9 Hz, 2 H), 7.40, (t, J = 2 Hz, 2 H), 6.27 (t, J = 2 Hz, 2 H), 5.04 (d, J = 6 Hz, 2 H), 1.86 (s, 3 H).

10

5

EXAMPLE 23

N-[(4-{4-[3-((hydroxyimino)methyl)pyrrolyl]phenyl}-5-oxo-2-hydroisoxazol-2-yl)methyl]acetamide

15

20

25

A mixture of N-({4-[4-(3-formylpyrrolyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide (100 mg, 0.30 mmol) and 50% aqueous NH₂OH (40 mg, 0.60 mmol) in 3 mL of MeOH was heated at reflux for 2 hours. The reaction mixture was then concentrated in vacuo and the residue was triturated with ether to yield 96 mg (94%) of the title compound as a yellow solid. 1 H NMR (300 MHz, DMSO-d₆) δ 10.6 (s, 1 H), 9.02, (s, 1 H), 8.95, (t, J = 6 Hz, 1 H), 8.00, (s, 1 H), 7.87 (d, J = 9 Hz, 2 H), 7.66, (s, 1 H), 7.63 (d, J = 9 Hz, 2 H), 7.45, (m, 1 H), 6.50 (m, 1 H), 5.04 (d, J = 6 Hz, 2 H), 1.85 (s, 3 H).

EXAMPLE 24

t-Butyl 4-(4-{2-[(acetylamino)methyl]-5-oxo-2-hydroisoxazol-4-yl}phenyl)piperazine carboxylate

5

To t-butyl 4-[4-(5-oxo-2-hydroisoxazol-4-

yl)phenyl]piperazinecarboxylate (1.5 g, 4.3 mmol) in 35 mL

dimethylformamide was added N-(hydroxymethyl)acetamide acetate (2.9 g, 22.0 mmol) followed by potassium carbonate (3.0 g, 22.0 mmol). After 5 hours the reaction mixture was poured into ice water. After 18 hours the precipitate was filtered and dried in vacuo to provide 1.4 g (77%) of the title compound. ¹H NMR (methanol-d₄; 300 MHz) δ 8.48 (s, 1H), 7.66 (d, *J* = 8.8 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 5.07 (s, 2H), 3.58 (t, *J* = 4.8 Hz, 4H), 3.17 (t, *J* = 5.2 Hz, 4H), 1.94 (s, 3H), 1.50 (s, 9H); ESI (M+H)⁺ =

The starting materials were prepared as follows:

20

417.

Methyl 2-(4-{4-[(t-butyl)oxycarbonyl]piperazinyl}phenyl) acetate

5

10

20

25

A flask charged with cesium carbonate (4.6 g, 14.0 mmol), palladium (II) acetate (0.07 g, 0.3 mmol), and (S)-BINAP (0.28 g, 4.5 mmol) was evacuated and flushed with dry nitrogen. Methyl 2-{4-[(trifluoromethyl)sulfonyloxy]phenyl} acetate (3.0 g, 10.0 mmol) and t-butyl-1-piperazinecarboxylate (2.3 g, 12.0 mmol) in 20 mL toluene was added via syringe and the resultant mixture was stirred at ambient temperature for 30 minutes and at 80°C for 16 hours. The reaction mixture was removed from the heating bath, concentrated, and chromatographed on silica gel (0 to 30% ethyl acetate / hexane) providing 1.7 g (50%) of the title compound. 1 H NMR (300 MHz, CDCl₃) δ 7.20 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 3.70 (s, 3H), 3.59 (t, J = 5.0 Hz, 4H), 3.57 (s, 2H), 3.12 (t, J = 5.2 Hz, 4H), 1.50 (s, 9H); ESI (M+H)+ = 335.

15 Ethyl 2-(4-{4-[(t-butyl)oxycarbonyl]piperazinyl})phenyl)-3-oxopropanoate

To methyl 2-(4-{4-[(t-butyl)oxycarbonyl]piperazinyl}phenyl) acetate (0.67 g, 2.0 mmol) in 8 mL ethyl formate was added sodium hydride (60% dispersion in mineral oil) (0.32 g, 8.0 mmol) portionwise. After 1.5 hours, the reaction mixture was poured into saturated sodium bicarbonate, and extracted three times with ether. The combined organic layers were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude product was used directly in the next step without further purification.

t-Butyl 4-[4-(5-oxo-2-hydroisoxazol-4-yl)phenyl]piperazinecarboxylate

To ethyl 2-(4-{4-[(t-butyl)oxycarbonyl]piperazinyl})phenyl)-3-oxopropanoate (7.8 g, 20.7 mmol) in 140 mL methanol and 40 mL water was added hydroxylamine (50% in water, 3.0 mL, 49.0 mmol). The reaction mixture was heated to reflux for 3 hours, cooled and concentrated. The residue was triturated with water and the precipitate was filtered, dried and washed with ether to provide 4.3 g of the title compound. The aqueous solution was lyophilized providing an additional 1.5 g of the title compound. 1 H NMR (methanol-d₄; 300 MHz) δ 8.35 (s, 1H), 7.58 (br d, J = , 2H), 6.96 (d, J = 8.2 Hz, 2H), 3.58 (t, J = 4.6 Hz, 4H), 3.10 (br s, 4H), 1.50 (s, 9H); ESI (M+H)⁺ = 345.

15

10

5

EXAMPLE 25

N-{[5-oxo-4-(piperazinylphenyl)-2-hydroisoxazol-2-yl]methyl} acetamide trifluoroacetate salt

20

25

To t-butyl 4-(4-{2-[(acetylamino)methyl]-5-oxo-2-hydroisoxazol-4-yl}phenyl)piperazine carboxylate (0.3 g, 0.7 mmol) in 5 mL dichloromethane was added 2 mL trifluoroacetic acid. After 30 minutes, the reaction mixture was concentrated and triturated with ether to provide

0.3 g (97%) of the title compound. ¹H NMR (methanol-d₄; 300 MHz) δ 9.00 (t, J = 6.0 Hz, 1H), 8.23 (s, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 5.08 (d, J = 6.2 Hz, 2H), 3.45-3.38 (m, 8H), 1.95 (s, 3H); ESI (M+H)⁺ = 317.

5

EXAMPLE 26

tert-Butyl 4-(4-{2-[(acetylamino)methyl]-5-oxo(2-hydroisoxazol-4-yl)}-2-fluorophenyl)piperazinecarboxylate

10

Prepared according to the general procedures outlined in Schemes 1, 3, and 6. The starting materials were prepared as follows:

15

2-(4-{4-[(t-butyl)oxycarbonyl]piperazinyl}-3-fluorophenyl)acetic acid

20

To t-butyl 4-[2-fluoro-4-(2-morpholin-4-yl-2-thioxoethyl)phenyl]piperazinecarboxylate (4.2 g, 10 mmol) was added 22 mL of concentrated hydrochloric acid at 0°C. The resulting mixture was heated to reflux for 1.5 hours, cooled to 0°C, and 23 mL of 10N sodium hydroxide was added to bring the pH to 14. Then 50 mL water was

added followed by di-t-butyl dicarbonate (5.6 g, 26.0 mmol) in 5 mL tetrahydrofuran. The resulting mixture was allowed to stir at 0°C for 30 minutes and then for 1 hour at ambient temperature at which time it was diluted with 200 mL water. Then 5 mL sodium hydroxide was added to adjust the pH to 14, and the reaction mixture was extracted with ether . The aqueous layer was acidified to pH 3 by the careful addition of 6N hydrochloric acid and then extracted with three portions of ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated. The resultant residue was dissolved in dichloromethane and hexanes were added to produce a precipitate which was collected by filtration providing 3.0 g (89%) of the title product. 1 H NMR (CDCl₃; 300 MHz) δ 7.04-6.98 (m, 2H), 6.90 (t, J = 8.3 Hz, 1H), 3.60 (m, 6H), 3.02 (t, J = 5.0 Hz, 4H), 1.50 (s, 3H); ESI (M+H)+=339.

5

10

15 Methyl 2-(4-{4-[(t-butyl)oxycarbonyl]piperazinyl}-3-fluorophenyl)acetate

To 2-(4-{4-[(t-butyl)oxycarbonyl]piperazinyl}-3-fluorophenyl)acetic
20 acid (0.3 g, 1.0 mmol) in 2 mL methanol and 7 mL benzene was added
trimethylsilyldiazomethane (0.65 mL, 1.30 mmol). After stirring at ambient
temperature for 1 hour, the reaction mixture was concentrated to provide
0.36 g (99%) of the title compound. ¹H NMR (CDCl₃; 300 MHz) δ 7.00 (m,
2H), 6.90 (t, *J* = 8.3 Hz, 1H), 3.71 (s, 3H), 3.61 (t, *J* = 4.9 Hz, 4H), 3.57 (s,
25 2H), 3.02 (t, *J* = 5.0 Hz, 4H), 1.50 (s, 9H); ESI (M+H)⁺ = 353.

EXAMPLE 27

N-{[4-(4-morpholinylphenyl)-5-oxo-2-isoxazolinyl]methyl}acetamide

5

Prepared according to the general procedure outlined in Schemes 1 and 2. The starting materials were prepared as follows:

10 Methyl-4-(trifluoromethylsulfonyloxy)phenyl acetate

To methyl-4-hydroxyphenyl acetate (20 g, 120 mmol) and pyridine (20 mL, 240 mmol) in 100 mL dichloromethane at 0°C was added trifluoromethanesulfonic anhydride (23 mL, 132 mmol) dropwise over 30 minutes. After an additional 30 minutes at 0°C followed by 30 minutes at ambient temperature, 1N hydrochloric acid was added and the reaction mixture was extracted into dichloromethane. The organic layer was washed with 1N hydrochloric acid, saturated sodium bicarbonate, brine, dried over magnesium sulfate, filtered, and concentrated providing 32 g (90%) of the title compound as a yellow solid. 1 H NMR (CDCl₃; 300 MHz) 8 7.38 (d, 9 = 8.4 Hz, 2H), 7.24 (d, 9 = 8.5 Hz, 2H), 3.72 (s, 3H), 3.66 (s, 2H).

25

15

20

Nitrogen was bubbled through a mixture of methyl-4-

(trifluoromethylsulfonyloxy)phenyl acetate (1.0 g, 3.35 mmol), cesium carbonate (1.6 g, 4.69 mmol), palladium (II) acetate (22 mg, 0.10 mmol), (S)-BINAP (93 mg, 0.15 mmol), and morpholine (0.35 mL, 4.02 mmol) in 8 mL toluene and the reaction mixture was heated to 80°C for 6 hours. The reaction was then cooled, celite was added, and the mixture was
concentrated. Chromatography was performed on a Biotage flash 40i chromatography module by loading the dried celite into a SIM and eluting with 20% ethyl acetate / hexanes (40S cartridge) providing 250 mg (37%) of the title compound as a yellow oil. ¹H NMR (CDCl₃; 300 MHz) δ 7.19 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.3 Hz, 2H), 3.89-3.85 (m, 4H), 3.69 (s, 3H), 3.56 (s, 2H), 3.17-3.13 (m, 4H).

EXAMPLE 28

N-{[4-(4-(1,4-thiazaperhydroin-4-yl)phenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide

Prepared according to the general procedures outlined in Schemes 25 1 and 3. The starting materials were prepared as follows:

4-Thiomorpholinoacetophenone

To 4-fluoroacetophenone (20 g, 145 mmol) in 100 mL dimethylformamide was added potassium carbonate (39 g, 580 mmol) followed by thiomorpholine (87 mL, 870 mmol). The reaction mixture was heated to reflux and after 24 hours, it was cooled to ambient temperature and partitioned between water and dichloromethane. The organic layer was dried over magnesium sulfate, filtered, and concentrated. The residue was dissolved in ether and precipitated with hexanes providing 31 g (96%) of the title compound as a yellow solid. ¹H NMR (CDCl₃; 300 MHz) δ 7.87 (d, *J* = 9.0 Hz, 2H), 6.82 (d, *J* = 9.0 Hz, 2H), 3.81-3.78 (m, 4H), 2.73-2.69 (m, 4H), 2.53 (s, 3H).

4-Thiomorpholinophenylthioacetomorpholide

15

20

25

A mixture of 4-thiomorpholinoacetophenone (30 g, 136 mmol), morpholine (16 mL, 180 mmol) and sulfur (6 g, 180 mmol) was heated to reflux for 6 hours, cooled to 50°C, and 100 mL 1:1 hexanes:ethyl acetate was added. The reaction mixture was again brought to reflux for 30 minutes, cooled, and the resultant orange precipitate was collected via filtration. The precipitate was washed with additional 1:1 ether / hexanes

providing 31 g (73%) of the title compound as a yellow-orange solid. 1 H NMR (CDCl₃; 300 MHz) δ 7.21 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.1 Hz, 2H), 4.35 (t, J = 4.8 Hz, 2H), 4.27 (s, 2H), 3.74 (t, J = 4.8 Hz, 2H), 3.65 (t, J = 4.2 Hz, 2H), 3.52 (t, J = 5.1 Hz, 4H), 3.41 (t, J = 5.4 Hz, 2H), 2.77-2.71 (m, 2H).

Ethyl-4-thiomorpholinophenyl acetate

10

15

20

5

A solution of 4-thiomorpholinophenylthioacetomorpholide (30 g, 93.2 mmol) in 70 mL 1:1 ethanol:sulfuric acid was heated to reflux for 18 hours, cooled to room temperature and solid sodium bicarbonate was slowly added to the reaction until it reached pH 7. The reaction mixture was extracted with chloroform, and the organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated to a yellow residue. The residue was then dissolved in chloroform, loaded onto a Biotage flash 40i chromatography module (40M cartridge) and chromatographed with 10% ethyl acetate / hexanes providing 12 g (51%) of the title compound as a yellow oil. 1 H NMR (CDCl₃; 300 MHz) δ 7.18 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.14 (q, J = 7.2 Hz, 2H), 3.54-3.50 (m, 6H), 2.76-2.73 (m, 4H), 1.25 (t, J = 7.2 Hz, 3H).

EXAMPLE 29

25

N-{[4-(3-fluoro-4-methylthiophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide

114 -

Prepared according to the general procedures outlined in Schemes 1 and 3. The starting materials were prepared as follows:

5

3-Fluoro-4-methylthioacetophenone

To 3, 4-difluoroacetophenone (30 g, 192 mmol) in 200 mL dimethylsulfoxide was added sodium thiomethoxide (15 g, 211 mmol). The reaction mixture was heated to 150°C for 2 hours and then partitioned between ethyl acetate and sodium bicarbonate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated. The residue was dissolved in ethyl acetate and precipitated with hexanes. The precipitate was collected by filtration providing 25 g (70%) of the title compound as a yellow solid.

3-Fluoro-4-methylthiophenylthioacetomorpholide

20

A mixture of 3-fluoro-4-methylthioacetophenone (9.0 g, 48.9 mmol), morpholine (5.7 mL, 65.0 mmol), and sulfur (2.1 g, 65.0 mmol) were heated to reflux for 4 hours, cooled to 50° C, and 1:1 hexanes : ethyl acetate was added. The reaction mixture was again heated to reflux for 30 minutes, cooled to ambient temperature, and the resultant orange precipitate was collected by filtration. The precipitate was washed with 1:1 hexanes : ether providing 10.1 g (73%) of the title compound as a yellow-orange solid. ¹H NMR (DMSO-d₆; 300 MHz) δ 7.36-7.29 (m, 1H), 7.20-7.15 (m, 2H), 4.27 (s, 2H), 4.22 (t, J = 4.8 Hz, 2H), 3.73 (t, J = 4.5 Hz, 2H), 3.65 (t, J = 4.8 Hz, 2H), 3.47 (t, J = 5.1 Hz, 2H), 2.47 (s, 3H).

3-Fluoro-4-methylthiophenylacetic acid

15

20

25

10

To 3-fluoro-4-methylthiophenylthioacetomorpholide (2.6 g, 90.9 mmol) was added 500 mL 10% potassium hydroxide. The reaction mixture was heated to reflux for 3 hours, cooled to ambient temperature, and adjusted to pH 4 by the careful addition of 2N hydrochloric acid. The aqueous solution was extracted with dichloromethane and the organic layer was then extracted with 200 mL 10% potassium hydroxide. The aqueous layer was then brought to pH 4 by the careful addition of 2N hydrochloric acid and extracted with dichloromethane. The organic layer was dried over magnesium sulfate, filtered, and concentrated providing 10.0 g (55%) of the title compound as a brown oil. ¹H NMR (CDCl₃; 300 MHz) δ 7.24-7.21 (m, 1H), 7.04-6.99 (m, 2H), 3.63 (s, 2H), 2.46 (s, 3H).

EXAMPLE 30

N-{[4-(3-fluoro-4-methoxyphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide

5

Prepared according to the general procedure outlined in Schemes

1. The starting material was prepared as follows:

10

Ethyl-(3-Fluoro-4-methoxy)phenyl acetate

$$K_2CO_3$$
 CH_3I F

15

20

To ethyl-(3-fluoro-4-hydroxy)phenyl acetate (2.5 g, 8.9 mmol) in 20mL acetone was added potassium carbonate (3.4 g, 24.2 mmol) and iodomethane (1.5 mL, 24.2 mmol). The reaction mixture was heated to reflux for 2 hours, cooled, and partitioned between saturated sodium bicarbonate and ether. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated providing 2.3 g (88%) of the title compound as a yellow oil. 1 H NMR (CDCl₃; 300 MHz) δ 7.06-6.88 (m, 3H), 4.15 (q, J = 7.2 Hz, 2H), 3.88 (s, 3H), 3.54 (s, 2H), 1.26 (t, J = 7.2 Hz, 3H).

EXAMPLE 31

N-({4-[4-(3-cyanopyrrolyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

5

10

15

To a mixture of N-[(4-{4-[3-((hydroxyimino)methyl)pyrrolyl]phenyl}-5-oxo-2-hydroisoxazol-2-yl)methyl]acetamide (100 mg, 0.29 mmol) in 3 ml of CH₃CN and 1 ml of CCl₄ was added polymer-bound triphenylphosphine (400 mg, 1.2 mmol) and the mixture was heated at reflux for 8 hours. It was then dissolved in ethyl acetate, filtered, and concentrated to yield a yellow solid. This solid was then triturated with ether to obtain 30 mg (32 %) of the title compound as a yellow solid. ¹H NMR (300 MHz, DMSO-d₆) δ 9.08 (s, 1 H), 8.97 (t, J = 6 Hz, 1 H), 8.28, (s, 1 H), 7.92 (d, J = 9 Hz, 2 H), 7.70 (d, J = 9 Hz, 2 H), 7.59 (m, 1 H), 6.74 (m, 1 H), 5.06 (d, J = 6 Hz, 2 H), 1.86 (s, 3 H).

EXAMPLE 32

20

N-[(4-{4-[3-((1E)-2-aza-2-methoxyvinyl)pyrrolyl]phenyl}-5-oxo-2-hydroisoxazol-2-yl)methyl]acetamide

A mixture of N-({4-[4-(3-formylpyrrolyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide (100 mg, 0.3 mmol), HCl•NH₂OCH₃

(31 mg, 0.37 mmol) and sodium carbonate (20 mg, 0.19 mmol) was dissolved in 3 mL of MeOH and 2 mL of water. To this mixture was added acetic acid to adjust the pH to 5. The reaction was heated at reflux for 1 hour. The reaction was cooled to room temperature, and the yellow precipitate was collected by filtration to give 40 mg (36 %) of the title compound as a yellow solid. (M+H+)= 355.

EXAMPLE 33

N-{[4-(4-{3-[(1E)-2-(acetylamino)-2-azavinyl]pyrrolyl}phenyl)-5-oxo-2hydroisoxazol-2-yl]methyl}acetamide

A mixture of N-({4-[4-(3-formylpyrrolyl)phenyl]-5-oxo-2-

20 hydroisoxazol-2-yl]methyl)acetamide (100 mg, 0.30 mmol) and acetic hydrazide (28 mg, 0.38 mmol) in 3 mL of EtOH was heated at reflux for 1 hour. The reaction was cooled to room temperature, and the yellow

WO 00/10566 - 119 - PCT/US99/19265

precipitate was collected by filtration to give 80mg (36 %) of the title compound. (M+H+)=382.

EXAMPLE 34

5 Ethyl 1-(4-{2-[(acetylamino)methyl]-5-oxo-2-hydroisoxazol-4-yl}phenyl)pyrazole- 4-carboxylate

To a mixture of N-{[4-(4-hydrazinylphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide hydrochloride (150 mg, 0.5 mmol) in 3 mL of methanol was added sodium bicarbonate (50 mg, 0.6 mmol) and ethoxycarbonylmalondialdehyde (75 mg, 0.52 mmol). The mixture was stirred at room temperature overnight. The solid was collected by filtration and then washed with water, and dried to yield 140 mg of a purple solid. The crude product was subjected to silica gel chromatography (eluting with ethyl acetate followed by 5% methanol/ethyl acetate) to yield 123 mg (66%) of the title compound as a yellow solid. ¹H NMR (300 MHz, DMSO-d₆) δ 9.11 (s, 1 H), 9.08 (s, 1 H), 8.96 (t, *J* = 6 Hz, 1 H), 8.15 (s, 1 H), 7.95
(m, 4 H), 5.06 (d, *J* = 6 Hz, 2 H), 4.28, (q, *J* = 7 Hz, 2 H), 1.86 (s, 3 H), 1.31 (t, *J* = 7 Hz, 3 H).

The starting material, N-{[4-(4-hydrazinylphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide hydrochloride, was prepared as

follows. Sodium nitrite (112 mg, 1.6 mmol) in 2 mL of water was added to a solution of N-{[4-(4-aminophenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide (400 mg, 1.6 mmol) in concentrated hydrochloric acid

at 0°C over 5 minutes. The reaction was stirred for an additional 10 minutes at 0°C, and then $SnCl_{2} \cdot 2H_2O$ (720 mg, 3.2 mmol) in 2 mL of concentrated hydrochloric acid was added. This mixture was stirred at room temperature for 3 hours. The reaction mixture was then filtered to collect a yellow solid which was washed with 3 mL of water and dried to yield 260 mg (55%) of the title compound. ¹H NMR (300 MHz, DMSO-d₆) δ 10.2 (s, 2 H), 8.94 (t, J = 6 Hz, 1 H), 8.82, (s, 1 H), 8.35 (s, 1 H), 7.70 (d, J = 9, 2 H), 6.99 (d, J = 9, 2 H), 4.99 (d, J = 6 Hz, 2 H), 1.84 (s, 3 H).

10

5

EXAMPLE 35

N-({4-[4-(4-cyanopyrazolyl)phenyl]-5-oxo-2-hydroisoxazol-2-yl}methyl)acetamide

15

20

25

To a mixture of N-{[4-(4-hydrazinylphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide hydrochloride (50 mg, 0.17 mmol) in 2 mL of methanol was added 20 mg (0.24 mmol) of sodium bicarbonate and cyanomalondialdehyde (30 mg, 0.3 mmol). The mixture was stirred at room temperature overnight. It was then concentrated to give a solid which was washed with water then methanol to give 42 mg (76%) of the title compound as a yellow solid. 1 H NMR (300 MHz, DMSO-d₆) δ 9.35 (s, 1 H), 9.10 (s, 1 H), 8.98 (t, J = 6 Hz, 1 H), 8.37 (s, 1 H), 7.93 (m, 4 H), 5.07 (d, J = 6 Hz, 2 H), 1.86 (s, 3 H).

Preparation of cyanomalondialdehyde. To a dried flask was added sodium hydride (0.82 g. 50% suspended in mineral oil, 17 mmol). The sodium hydride was washed three times with 15 mL of ether, and then 15 mL of ether was added to the flask. After cooling the slurry to 0°C, ethyl formate (10.4 g, 140 mmol) was added. To this mixture was added 3.3diethoxypropionitrile (2 g, 14 mmol) in 10 ml of ether over 2 hours (syringe pump). The mixture was stirred at room temperature for 20 hours, and then poured into 100 mL of ice water. This solution was extracted three times with ether, and then the ether extracts were discarded. The aqueous phase was acidified to pH 3 with concentrated HCI and extracted with dichloromethane. The organic phase was dried over MgSO₄, filtered, and concentrated to yield 0.3 g of cyanomalondialdehyde as a yellow solid. Additional product was recovered from the pH 3 aqueous phase: the aqueous phase was concentrated to dryness, and then dissolved in 5 mL of methanol. The inorganic salt was removed by filtration, and the filtrate was concentrated to yield 1 g of cyanomalondialdehyde as a yellow solid. ¹H NMR (300 MHz, DMSO-d₆) δ 8.94 (s, 2 H), 4.95 (br s, 1 H).

20

5

10

15

EXAMPLE 36

N-{[5-oxo-4-(4-pyrazolylphenyl)-2-hydroisoxazol-2-yl]methyl}acetamide

To a mixture of N-{[4-(4-hydrazinylphenyl)-5-oxo-2-hydroisoxazol-2-yl]methyl}acetamide hydrochloride (100 mg, 0.33 mmol) in 3 mL of methanol was added sodium bicarbonate (28 mg, 0.33mmol) and malondialdehyde (50 mg, 0.35 mmol). The mixture was stirred at room temperature overnight. It was then concentrated to yield 120 mg of a yellow oil, which was then purified by silica gel chromatography (eluting with ethyl acetate) to obtain 30 mg (30%) of the title compound as a yellow solid. 1 H NMR (300 MHz, DMSO-d₆) δ 9.03 (s, 1 H), 8.95 (t, J = 6 Hz, 1 H), 8.52 (s, 1 H), 7.88 (m, 4 H), 7.75 (s, 1 H), 6.56 (s, 1 H), 5.05 (d, J = 6 Hz, 2 H), 1.86 (s, 3 H).

5

10

15

The table below shows the chemical structures, characterizing properties (MS data) and preparative method for several representative compounds of the present invention, including those of Examples 1-36 described above.

	Structure	MS data	Prepared via Scheme(s)
1	H ₀ CS ()	(M+H)+ = 279 ESI	1
2		(M+H)+ = 352 DCI	3, 1
3		(M+H)+ = 295 ESI	1, 4
4		(M+H)+ = 311 ESI	1, 4
5		(M+H)+ = 384 ESI	3, 1, 4
6		(M+H)+ = 352 ESI	3, 1, 9
7		(M+H)+ = 275 ESI	1
8	NoH OH	(M+H)+ = 290 ESI	1

	Structure	MS data	Prepared via Scheme(s)
9		(M+H)+ = 299 ESI	1, 5
10		(M+H)+ = 315 ESI	1, 5
11		(M+H)+ = 317 ESI	1, 5
12		(M+H)+ = 311 ESI	1, 5
13	1-Buddez-Sio	(M+H)+ = 489 ESI	2, 1, 6
14	HO NO CH,	(M+H)+ = 375 ESI	2, 1, 6
15	N ₃	(M+H)+ = 274 DCI	1
16		(M+H)+ = 330 ESI	1, 7

	Structure	MS data	Prepared via Scheme(s)
17	H80	(M+H)+ = 358 ESI	1, 7
18	H ₂ C T T T T T T T T T T T T T T T T T T T	(M+H)+ = 342 DCI	1, 7
19		(M+H)+ = 325 DCI	1, 7
20	H ₂ N ← H ₂ N	(M+H)+ = 248 DCI	1, 8
21		(M+H)+ = 326 DCI	1, 8
22		(M+H)+ = 298 ESI	1, 8
23	HON CONTRACTOR	(M+H)+ = 341 ESI	1, 8
24	x3000in	(M+H)+ = 417 ESI	2, 1, 6

	Structure	MS data	Prepared via Scheme(s)
25		(M+H)+ = 317 ESI	2, 1, 6
26	H ₃ C O N N CH ₃	(M+H)+ = 435 ESI	3, 1, 6
27		(M+H)+ = 318 ESI	2, 1
28		(M+H)+ = 334 ESI	3, 1
29	S N N	(M+H)+ = 297 DCI	3, 1
30		(M+H)+ = 281 ESI	3, 1
31		(M+H)+ = 295 ESI	3, 1
32		(M+H)+ = 323 ESI	1, 8

	Structure	MS data	Prepared via Scheme(s)
33	NC THE STATE OF TH	(M+H)+ = 324 DCI	1,8
34	H ₂ CS	(M+H)+ = 265 DCI	1
35	HOS COLON	(M+H)+ = 313 · DCI	1
36	H28 () H = F	(M+H)+ = 297 DCI	1
37		(M+H)+ = 281 ESI	1
38	H-CS - C - C - C - C - C - C - C - C - C	(M+H)+ = 293 ESI	1
39		(M+H)+ = 309 ESI	1
40		(M+H)+ = 295 ESI	1

	Structure	MS data	Prepared via Scheme(s)
41	F N N	(M+H)+ = 369 DCI	1
42		(M+H)+ = 276 ESI	1
43		(M+H)+ = 299 ESI	1
44		(M+H)+ = 233 ESI	1
45		(M+H)+ = 309 ESI	1
46		(M+H)+ = 275 ESI	1
47		(M+H)+ = 359 ESI	1
48		(M+H)+ = 277 ESI	1

	Structure	MS data	Prepared via Scheme(s)
49	To Line Hy	(M+H)+ = 309 ESI	1
50	Br N H	(M+H)+ = 312 ESI	1
51	ci	(M+H)+ = 268 ESI	1
52	CI	(M+H)+ = 268 ESI	1
53	F N N	(M+H)+ = 251 ESI	1
54	H ₃ C N N	(M+H)+ = 247 ESI	1
55		(M+H)+ = 277 ESI	1 '
56		(M+H)+ = 371 DCI	1,8

	Structure	MS data	Prepared via Scheme(s)
57	H,C,S, N, N, CH,	(M+H)+ = 395 ESI	2, 1, 6
58	H ₂ C N CH ₃	(M+H)+ = 359 ESI	2, 1, 6
59	HC N N OH,	(M+H)+ = 399 ESI	2, 1, 6
60	F-CO-ON-CO-S	(M+H)+ = 455 ESI	2, 1, 6
61		(M+H)+ = 445 ESI	2, 1, 6
62		(M+H)+ = 437 ESI	2, 1, 6
63	H _C -0 N N N CH	(M+H)+ = 375 ESI	2, 1, 6
64		(M+H)+ = 322 ESI	3, 1

	Structure	MS data	Prepared via Scheme(s)
65		(M+H)+ = 370 ESI	3, 1
66	O N N N F	(M+H)+ = 354 ESI	3, 1
67		(M+H)+ = 350 ESI	3, 1
68		(M+H)+ = 390 ESI	- 3, 1
69		(M+H)+ = 354 ESI	3, 1
70		(M+H)+ = 370 ESI	3, 1
71		(M+H)+ = 302 ESI	3, 1
72		(M+H)+ = 316 ESI	3, 1

	Structure	MS data	Prepared via Scheme(s)
73		(M+H)+ = 304 ESI	3, 1
74		(M+H)+ = 336 ESI	3, 1
75		(M+H)+ = 352 ESI	3, 1
76		(M+H)+ = 368 ESI	3, 1, 4
77		(M+H)+ = 313 ESI	3, 1, 4
78		(M+H)+ = 329 ESI	3, 1, 4
79		(M+H)+ = 350 ESI	3, 1, 4
80		(M+H)+ = 366 ESI	3, 1, 4

	Structure	MS data	Prepared via Scheme(s)
81	HN HN H	(M+H)+ = 334 ESI	3, 1, 6
82	H ₂ C N N CH ₃	(M+H)+ = 377 ESI	3, 1, 6
83	H,C-S=-N-N-CH,	(M+H)+ = 413 ESI	3, 1, 6
84	H _C C	(M+H)+ = 463 ESI	3, 1, 6
85	HC P CH,	(M+H)+ = 417 ESI	3, 1, 6
86	H ₃ C CH ₃ O N N O N O N O N O N O N O N O N O N O	(M+H)+ = 449 ESI	3, 1, 6
87		(M+H)+ = 469 ESI	3, 1, 6
88	HSC ON NON NON NON NON NON NON NON NON NON	(M+H)+ = 407 ESI	3, 1, 6

	Structure	MS data	Prepared via Scheme(s)
89	H,C-ON NON OH,	(M+H)+ = 393 ESI	3, 1, 6
90	HO N N N CH ₃	(M+H)+ = 393 ESI	3, 1, 6
91		(M+H)+ = 429 ESI	3, 1, 6
92	NC N CH3	(M+H)+ = 323 ESI	1, 8
93	H-SC-O-N-CH-S	(M+H)+ = 355 ESI	1, 8
94	H ₂ C N N N CH ₂	(M+H)+ = 382 ESI	1, 8
95	Eto N CH3	(M+H)+ = 371 DCI	1, 9
96	NC N CH3	(M+H)+ = 324 DCI	1, 9

	Structure	MS data	Prepared via Scheme(s)
97	N CH3	(M+H)+ = 299 ESI	1, 9

CLAIMS

We claim:

5 1. A compound of the formula

or a pharmaceutically acceptable salt thereof wherein:

10 R₁ is

- a) H,
- b) C₁₋₈ alkyl optionally substituted with one or more F, Cl, OH,
 C₁₋₈ alkoxy, or C₁₋₈ acyloxy,
- c) C₃₋₆ cycloalkyl, or
- 15 d) C₁₋₈ alkoxy;

L is oxygen or sulfur;

A is

a)

$$\mathbf{Q} = \begin{bmatrix} \mathbf{R}_2 \\ \vdots \\ \mathbf{R}_3 \end{bmatrix}$$

20 b)

5

10

15

- c) a 5-membered heteroaromatic moiety having one to three hetero atoms selected from the group consisting of S, N, and O, wherein the 5-membered heteroaromatic moiety is bonded via a carbon atom and can additionally have a fused-on benzene or naphthyl ring, and wherein the heteroaromatic moiety is optionally substituted with one to three R₈,
 - d) a 6-membered heteroaromatic moiety having at least one nitrogen atom, wherein the heteroaromatic moiety is bonded via a carbon atom, wherein the 6-membered heteroaromatic moiety can additionally have a fused-on benzene or naphthyl ring, wherein the heteroaromatic moiety is optionally substituted with one to three R₉,
 - e) a β-carbolin-3-yl, or indolizinyl bonded via the 6-membered ring, optionally substituted with one to three R₉,

f)

g)

$$R_{15} \xrightarrow{\begin{array}{c} R_{11} \\ Y \\ \end{array}} \xrightarrow{\begin{array}{c} R_{12} \\ Y \\ \end{array}} R_{13}$$

- wherein R₂ and R₃ are each independently
 - a) H,
 - b) F,
 - c) CI,
 - d) Br,
- 25 e) C₁₋₆ alkyl,
 - f) NO₂,

- g) I,
- h) C₁₋₆ alkoxy,
- i) OH
- j) amino,
- 5 k) cyano, or
 - I) R_2 and R_3 taken together are -O(CH₂)_h-O;

wherein R₄ is

- a) H,
- b) C₁₋₂ alkyl,
- 10 c) F, or
 - d) OH;

R₅ is

- a) H,
- b) CF₃,
- 15 c) C₁₋₃ alkyl optionally substituted with one or more halo,
 - d) phenyl optionally substituted with one or more halo,
 - e) R₅ and R₆ taken together are a 5-, 6-, or 7-membered ring of the formula,

20 f)

in which D is S, O or NR₈₆ in which R₈₆ is H or C_{1-6} alkyl, or

- g) R_5 and R_6 taken together are -(CH₂)_k-, when R_7 is an electron-withdrawing group;
- R_6 and R_7 at each occurrence are the same or different and are
 - a) an electron-withdrawing group,
 - b) H,

- c) CF₃,
- d) C₁₋₃ alkyl optionally substituted with one halo,
- e) phenyl, provided at least one of R_6 and R_7 is an electron-withdrawing group, or

f) R_6 and R_7 taken together are a 5-, 6-, or 7-membered ring of the formula,

U is

a) CH₂,

10

- b) O,
- c) S or,
- d) NR₁₆;

R₁₆ is

- a) H or
- 15 b) C₁₋₅ alkyl;

wherein R₈ is

- a) carboxyl,
- b) halo,
- c) -CN,
- d) mercapto,
 - e) formyl,
 - f) CF₃,
 - g) NO_2 ,
 - h) C₁₋₆ alkoxy,

25 i) C₁₋₆ alkoxycarbonyl,

- j) C₁₋₆ alkythio,
- k) C₁₋₆ acyl,

10

I) -NR₁₇R₁₈,

- NOH \ddot{C} - R_{87} in which R_{87} is H or C_{1-6} alkyl, m)
- C_{1-6} alkyl optionally substituted with OH, sulfamoyl, C_{1-5} n) alkoxy, C₁₋₅ acyl, or -NR₁₇R₁₈,
- 5 C₂₋₈ alkyl optionally substituted with one or two R₁₉, 0)
 - phenyl optionally substituted with one or two R₁₉, p)
 - a 5- or 6-membered saturated or unsaturated heterocyclic q) moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with one or two R₁₉, or

 $\ensuremath{R_{17}}$ and $\ensuremath{R_{18}}$ at each occurrence are the same or different and are

- H, a)
- b) C₁₋₄ alkyl,
- 15 C₅₋₆ cycloalkyl, or c)
- R_{17} and R_{18} taken together with the nitrogen atom is a 5- or d) 6-membered saturated or unsaturated heterocyclic moiety which optionally has a further hetero atom selected from the group consisting of S, N, O, and can in turn be optionally 20 substituted with, including on the further nitrogen atom, C₁₋₃ alkyl, formyl, a 5- or 6-membered heteroaromatic moiety containing 1-3 O, N or S, — \ddot{C} -NR₈₈R₈₉ in which R₈₈ and R_{89} are each independently hydrogen or C_{1-6} alkyl, SO_2R_{90} in which R_{90} is H or C_{1-6} alkyl, or C_{1-3} acyl optionally 25 substituted with 1 or more F, Cl or OH;

R ₁	a	is
• • 1	27	•••

- a) carboxyl,
- b) halo,
- c) -CN,
- 5 d) mercapto,
 - e) formyl,
 - f) CF₃,
 - g) NO₂,
 - h) C₁₋₆ alkoxy,
- i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - I) C_{1-6} alkyl optionally substituted with OH, C_{1-5} alkoxy, C_{1-5} acyl, or $-NR_{17}R_{18}$,
- m) phenyl,
 - n) $-C(=O)NR_{20}R_{21}$,
 - o) -N R₁₇R₁₈,
 - p) $-N(R_{20})(-SO_2R_{22})$,
 - q) $-SO_2-NR_{20}R_{21}$, or
- 20 r) $-S(=O)_iR_{22}$;

 $\ensuremath{\mathsf{R}}_{20}\,\ensuremath{\mathsf{and}}\,\,\ensuremath{\mathsf{R}}_{21}$ at each occurrence are the same or different and are

- a) H,
- b) C₁₋₆ alkyl, or
- c) phenyl;
- 25 R₂₂ is
- a) C₁₋₄ alkyl, or
- b) phenyl optionally substituted with C₁₋₄ alkyl;

15

wherein R₉ is

- a) carboxyl,
- b) halo,
- c) -CN,
- 5 d) mercapto,
 - e) formyl,
 - f) CF_3 ,
 - g) NO₂,
 - h) C₁₋₆ alkoxy,
- 10 i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
 - k) C₁₋₆ acyl,
 - I) $-NR_{23}R_{24}$,
 - m) C_{1-6} alkyl optionally substituted with OH, C_{1-5} alkoxy, C_{1-5} acyl, or -NR₂₃R₂₄,
 - n) C_{2-8} alkenylphenyl optionally substituted with one or two R_{25} ,
 - o) phenyl optionally substituted with one or two R₂₅,
- p) a 5- or 6-membered saturated or unsaturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with one or two R₂₅, or

q)

- R_{23} and R_{24} at each occurrence are the same or different and are
 - a) H,
 - b) formyl,

- c) C₁₋₄ alkyl,
- d) C₁₋₄ acyl,
- phenyl, e)
- f) C₃₋₆ cycloalkyl, or
- 5 $R_{23} \ \text{and} \ R_{24} \ \text{taken together with the nitrogen atom is a 5- or}$ g) 6-membered saturated heterocyclic moiety which optionally has a further hetero atom selected from the group consisting of S, N, O, and can in turn be optionally substituted with, including on the further nitrogen atom,

10 phenyl, pyrimidyl, C₁₋₃ alkyl, or C₁₋₃ acyl;

R₂₅ is

25

- a) carboxyl.
- b) halo,
- -CN, C)
- 15 d) mercapto,
 - e) formyl,
 - CF₃, f)
 - g) NO₂,
 - h) C₁₋₆ alkoxy,
- 20 C₁₋₆ alkoxycarbonyl, i)
 - C₁₋₆ alkythio, j)
 - C₁₋₆ acyl, k)
 - 1) phenyl,
 - C_{1-6} alkyl optionally substituted with OH, azido, C_{1-5} alkoxy, m) C_{1-5} acyl, -NR $_{32}$ R $_{33}$, -SR $_{34}$, -O-SO $_2$ R $_{35}$, or

- n)
- -NR₂₃R₂₄, 0)

	p)	-N(R ₂₆)(-SO ₂ R ₂₂),			
	q)	-SO ₂ -NR ₂₆ R ₂₇ , or			
	r)	-S(=O) _i R ₂₂ ,			
	s)	-CH=N-R ₂₈ , or			
5	t)	-CH(OH)-SO ₃ R ₃₁ ;			
	R ₂₂ is the same as defined above;				
	R ₂₆ and R ₂₇ at each occurrence are the same or different and are				
	a)	H,			
	b)	C ₁₋₆ alkyl,			
10	c)	phenyl, or			
	d)	tolyl;			
	R ₂₈ is				
	a)	OH,			
	b)	benzyloxy,			
15	c)	-NH-C(=O)-NH ₂ ,			
	d)	-NH-C(=S)-NH ₂ , or			
	e)	-NH-C(=NH)-NR ₂₉ R ₃₀ ;			
	R ₂₉ and R ₃₀	at each occurrence are the same or different and are			
	-a)	H, or			
20	b)	C ₁₋₄ alkyl optionally substituted with phenyl or pyridyl			
	R ₃₁ is				
	a)	H, or			
	b)	a sodium ion;			
	R ₃₂ and R ₃₃	3 at each occurrence are the same or different and are			
25	a)	H,			
	b)	formyl,			
		C ₁₋₄ alkyl,			
	d)	C ₁₋₄ acyl,			
	e)	phenyl,			

- f) C₃₋₆ cycloalkyi,
- g) R₃₂ and R₃₃ taken together are a 5- or 6-membered saturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, O, optionally substituted with, including on the nitrogen atom, phenyl, pyrimidyl, C₁₋₃ alkyl, or C₁₋₃ acyl,
 - h) $-P(O)(OR_{37})(OR_{38})$, or
 - i) -SO₂-R₃₉;

R₃₄ is

R₃₅ is C₁₋₃ alkyl;

R₃₆ is

- a) C₁₋₆ alkoxycarbonyl, or
- b) carboxyl;
- 15 R₃₇ and R₃₈ at each occurrence are the same or different and are
 - a) H, or
 - b) C₁₋₃ alkyl;

R₃₉ is

- a) methyl,
- b) phenyl, or
 - c) tolyl;

wherein K is

- a) O,
- b) S, or
- c) NR₄₀ in which R₄₀ is hydrogen, formyl, C_{1-4} alkyl, C_{1-4} acyl, phenyl, C_{3-6} cycloalkyl, -P(O)(OR₃₇)(OR₃₈) or -SO₂-R₃₉ in which R₃₇, R₃₈ and R₃₉ are as defined above;

 $R_{10},\,R_{11},\,R_{12},\,R_{13},\,R_{14}$ and R_{15} at each occurrence are the same or different and are

- a) H,
- b) formyl,
- 5 c) carboxyl,
 - d) C₁₋₆ alkoxycarbonyl,
 - e) C₁₋₈ alkyl,
 - f) C₂₋₈ alkenyl,

wherein the substitutents (e) and (f) can be optionally substituted with

OH, halo, C₁₋₆ alkoxyl, C₁₋₆ acyl, C₁₋₆ alkylthio or C₁₋₆ alkoxycarbonyl, or
phenyl optionally substituted with halo,

- g) an aromatic moiety having 6 to 10 carbon atoms optionally substituted with carboxyl, halo, -CN, formyl, CF₃, NO₂, C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ acyl, C₁₋₆ alkylthio, or C₁₋₆ alkoxycarbonyl;
- 15 alkoxycarbon
 - h) $-NR_{42}R_{43}$,
 - i) OR₄₄,
 - j) $-S(=O)_i-R_{45}$,
 - k) $-SO_2-N(R_{46})(R_{47})$, or
- 20 l) a radical of the following formulas:

HN N-
$$R_{52}$$
—(CH₂)t-N N- or R_{53} N- R_{53} N- R_{53}

R₁₉ is the same as defined above;

T is

- a) O,
- b) S, or
- c) SO_2 ;
- 5 R₄₂ and R₄₃ at each occurrence are the same or different and are
 - a) H,
 - b) C₃₋₆ cycloalkyl,
 - c) phenyl,
 - d) C₁₋₆ acyl,
- e) C₁₋₈ alkyl optionally substituted with OH, C₁₋₆ alkoxy which can be substituted with OH, a 5- or 6-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, phenyl optionally substituted with OH, CF₃, halo, -NO₂, C₁₋₄

15 alkoxy,-NR₄₈R₄₉, or

f) O R₅₄

N-(CH₂)t-

20 V is

a) O,

g)

- b) CH₂, or
- c) NR₅₆;

 R_{48} and $R_{49}\, at$ each occurrence are the same or different and are

25 a) H, or

b) C₁₋₄ alkyl;

R₅₄ is

- a) OH,
- b) C₁₋₄ alkoxy, or
- c) $-NR_{57}R_{58}$;
- 5 R₅₅ is
- a) H, or
- b) C₁₋₇ alkyl optionally substituted with indolyl, OH, mercaptyl, imidazoly, methylthio, amino, phenyl optionally substituted with OH, -C(=O)-NH₂, -CO₂H, or -C(=NH)-NH₂;
- 10 R₅₆ is
 - a) H,
 - b) phenyl, or
 - c) C₁₋₆ alkyl optionally substituted by OH;

 R_{57} and $R_{58}\, \text{at each occurrence}$ are the same or different and are

15

- a) H,
- b) C₁₋₅ alkyl,
- c) C₁₋₃ cycloalkyl, or
- d) phenyi;

R₄₄ is

.20

a) C₁₋₈ alkyl optionally substituted with C₁₋₆ alkoxy or C₁₋₆ hydroxy, C₃₋₆ cycloalkyl, a 6-membered aromatic optionally benzo-fused heterocyclic moiety having one to three nitrogen atoms, which can in turn be substituted with one or two -NO₂, CF₃, halo, -CN, OH, C₁₋₅ alkyl, C₁₋₅ alkoxy, or C₁₋₅ acyl,

25

c) phenyl, or

b)

d) pyridyl;

R₄₅ is

- a) C₁₋₁₆ alkyl,
- b) C₂₋₁₆ alkenyl,
- wherein the substituents (a) and (b) can be optionally substituted with C₁₋₆ alkoxycarbonyl, or a 5-, 6-, or 7-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O,
 - c) an aromatic moiety having 6 to 10 carbon atoms, or

d) a 5-, 6-, or 7-membered aromatic heterocyclic moiety having one to three atoms selected from the group of S, N, and O, wherein the substituents (c) and (d) can be optionally substituted with carboxyl, halo, -CN, formyl, CF₃, -NO₂, C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ acyl, C₁₋₆ alkylthio, or C₁₋₆ alkoxycarbonyl;

 R_{46} and $R_{47}\,$ at each occurrence are the same or different and are

- a) H,
- b) phenyl,
- c) C₁₋₆ alkyl, or
- 20 d) benzyl;

 R_{50} and $R_{51}\,$ at each occurrence are the same or different and are

- a) H,
- b) OH,
- c) C_{1-6} alkyl optionally substituted with -NR₄₈R₄₉ in which R₄₈ and R₄₉ are as defined above,
- d) R_{50} and R_{51} taken together are =0;

R₅₂ is

25

a) an aromatic moiety having 6 to 10 carbon atoms,

- b) a 5- or 6-membered aromatic optionally benzo-fused heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, wherein the substituents (a) and (b) can in turn be optionally substituted with one or three -NO₂, CF₃, halo, -CN, OH, phenyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, or C₁₋₅ acyl,
 - c) morpholinyl,
 - d) OH,
 - e) C₁₋₆ alkoxy,
- 10 f) $-NR_{48}R_{49}$ in which R_{48} and R_{49} are as defined above,
 - g) $-C(=O)-R_{59}$, or

h)

R₅₃ is

15

- a) H,
- b) formyl,
- c) C₁₋₄ alkyl,
- d) C₁₋₄ acyl,
- e) phenyl,
- 20
- f) C₃₋₆ cycloalkyl,
- g) $-P(O)(OR_{37})(OR_{38})$, or
- h) -SO₂R₃₉, in which R₃₇, R₃₈ and R₃₉ are as defined above;

R₅₉ is

- a) morpholinyl,
- 25
- b) OH, or
- c) C₁₋₆ alkoxy;

h is 1, 2, or 3;

i is 0, 1, or 2;

k is 3, 4, or 5;

r is 1, 2, 3, 4, 5 or 6;

t is 0, 1, 2, 3, 4, 5, or 6;

5 u is 1 or 2; and

Q is

- a) hydrogen,
- b) halo,
- c) NO₂,

10

- d) N₃,
- e) C₁-C₆ alkylthio,
- f) C_1 - C_6 alkyl— \ddot{S} —,
- h) C₁-C₆ alkyl,

15

- i) C₁-C₆ alkoxy,
- j) formyl,
- k) C_1 - C_6 alkyl— \ddot{C} —,
- C_1 - C_6 alkyl-O- \ddot{C} -
- m) -sulfamoyl (H₂NSO₂-),

20

- n) -NHOH,
- o) C_1 - C_6 alkyl— \ddot{C} -O—
- p) heteroaryl — in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,

- Q q) C₆H₅-Ë-
- r) amino,
- s) C₁-C₆ alkylamino,
- t) di(C₁-C₆ alkyl)amino-,
- O (C₁-C₆) alkyl-C-NR₆₀R₆₁ in which R₆₀ and R₆₁ are each independently hydrogen or C₁-C₆ alkyl,
 - v) OH,
 - w) cyano,
 - x) hydroxy (C₁-C₆ alkyl),
- 10 y) C_1-C_6 alkyl-S- \ddot{C} -,
 - z) NC— $(CH_2)_r$ — \ddot{C} in which r is 1-6,
 - aa) $C_6H_5CH_2-O-\ddot{C}-$,
 - D bb) C₆H₅-O-Ö—,
 - cc) C₁-C₆ alkyl—C— in which R₈₄ is hydrogen or C₁₋₆ alkyl,
- O 15 dd) R₈₅O-(CH₂)₁₋₆-C- in which R₈₅ is hydrogen, C₁₋₈ alkyl optionally substituted with one or more F, Cl, OH, C₁₋₈ alkoxy or C₁₋₈ acyloxy, C₃₋₆ cycloalkyl or C₁₋₈ alkoxy;
 - N-OR₈₄ ee) H-Ü- in which R₈₄ is hydrogen or C₁₋₆ alkyl,
 - ff) a substituted or unsubstituted C₆-C₁₀ aryl moiety,
- 20 gg) a substituted or unsubstituted monocyclic or bicyclic, saturated or unsaturated, heterocyclic moiety having 1-3

atoms selected from O, N or S, said ring being bonded via a ring carbon or nitrogen to the phenyl substituent,

hh) a monocyclic or bicyclic substituted or unsubstituted heteroaromatic moiety having 1-3 hetero atoms selected from O, N or S, said ring being bonded via a ring carbon or nitrogen to the phenyl substituent and wherein the heteroaromatic moiety can additionally have a fused-on benzene or naphthalene ring;

the substituents for such p, q, ff, gg and hh moieties being selected from 1 or 2 of the following:

- 1) halo,
- 2) C₁₋₆ alkyl,
- 3) NO₂,
- 4) N₃,
- O 15 5) C₁-C₆ alkyl — — — ,

 - 7) formyl,
 - 8) C_1 - C_6 alkyl— \ddot{C} —,
 - 9) C_1 - C_6 alkyl-O- \ddot{C} -,
- 20 10) heteroaryl—Ü— in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,
 - 0 11) C₆H₅-Ö-,
- O $-(C_1-C_6)$ alkyl $-\ddot{C}-NR_{60}R_{61}$ in which R_{60} and R_{61} are each independently hydrogen or C_1-C_6 alkyl,

- 13) OH,
- 14) hydroxy (C_1 - C_6 alkyl),

- O 16) NC- $(CH_2)_r$ -O- \ddot{C} - in which r is 1-6,
- O 5 17) C₆H₅CH₂--O-Ö-,
 - 18) $-CH_2-R_{80}$ in which R_{80} is
 - a) -OR₃₂ in which R₃₂ is as defined above,
 - b) -SR₃₂ in which R₃₂ is as defined above,
 - c) $-NR_{32}R_{33}$ in which R_{32} and R_{33} are as defined above, or
 - d) 5- or 6-membered heteroaromatic containing 1-4 O,
 S or N atoms,

OR₈₄ N N 19) C_1 - C_6 alkyl— \ddot{C} — in which R_{84} is as defined above,

- 20) cyano,
- 15 21) carboxyl,
 - 22) CF₃,
 - 23) C₁-C₆ alkyl—Ü-O—
 - 24) $C_6H_5-O-\ddot{C}$ in which the phenyl moiety may be optionally substituted by halo or (C_1-C_6) alkyl,

O O O R₉₁-NH-C- or R₉₁-C-NH— in which R₉₁ is a 5- or 6-membered aromatic heterocyclic group having 1-3 O, N or S,

- O 27) C₆H₅(CH₂)₁₋₆-O-Ö-,
- 28) $R_{85}O-(CH_2)_{1-6}-O-\ddot{C}-$ in which R_{85} is as defined above,
- 29) SiR₉₉R₁₀₀R₁₀₁-O-CH₂-Ö- in which R₉₉, R₁₀₀ and R₁₀₁ are each independently C₁₋₆ alkyl; or
- 5 Q and either R₁ and R₂ taken together form –O-CH₂-O.
 - 2. A compound of claim 1 wherein A is

in which Q, R₂ and R₃ are as defined in claim 1.

3. A compound of the formula

15

20

or a pharmaceutically acceptable salt thereof, in which

R₁ is H, C₁₋₈ alkyl optionally substituted with one or more F, Cl, OH, C₁₋₈ alkoxy, or C₁₋₈ acyloxy, C₃₋₆ cycloalkyl or C₁₋₈ alkoxy;

 R_2 and R_3 are each independently

a) H,

- F, b)
- c) CI,
- d) Br,
- e) C₁₋₆ alkyl,
- 5 NO₂, f)
 - g)
 - h) C₁₋₆ alkoxy,
 - i) ОН
 - j) amino, or
- 10 k) cyano; and

Q is

- a) hydrogen,
- b) halo,
- c) NO₂,
- 15 d) Ν3,
 - C₁-C₆ alkylthio, e)
 - C₁-C₆ alkyl S—, f)
 - O C₁-C₆ alkyl———, g)
 - h) C₁-C₆ alkyl,
- 20 i) C₁-C₆ alkoxy,
 - j) formyl,
 - O C₁-C₆ alkyl—Ċ— , k)
 - I) C_1 - C_6 alkyl-O- $\ddot{\mathbb{C}}$ -, Om) C_1 - C_6 alkyl- $\ddot{\mathbb{C}}$ -O-,

- n) heteroaryl—Ü— in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,
- O O O O O O O
- 5 p) amino,
 - q) C₁-C₆ alkylamino-,
 - r) di(C₁-C₆ alkyl)amino-,
 - s) (C_1-C_6) alkyl $-C-NR_{60}R_{61}$,in which R_{60} and R_{61} are each independently hydrogen or C_1-C_6 alkyl,
- 10 t) OH,

- u) cyano,
- v) hydroxy (C₁-C₆ alkyl),
- O w) C₁-C₆ alkyl -- S-C-,
- NC- $(CH_2)_r$ -O- \ddot{C} in which r is 1-6,
- O 15 y) C₆H₅CH₂—O-Ö—,
 - z) C₆H₅-O-Ö-
 - OR₈₄ N aa) C_1 - C_6 alkyl— \ddot{C} wherein R₈₄ is hydrogen or C_{1-6} alkyl,
 - bb) $R_{85}O$ -(CH_2)₁₋₆— \ddot{C} in which R_{85} is hydrogen, C_{1-8} alkyloptionally substituted with one or more F, Cl, OH, C_{1-8} alkoxy or C_{1-8} acyloxy, C_{3-6} cycloalkyl or C_{1-8} alkoxy,
 - $N-OR_{84}$ cc) H-C- in which R_{84} is as defined above,

dd)

ee)

5 ff)

gg)

hh)

10

jj)

ii)

15 kk)

II)

$$\begin{cases} O \\ N-N \end{cases} \times$$

mm)

$$\begin{cases} N & \text{in } X \\ N & \text{in } X \end{cases}$$

5 nn)

00)

$$N-N$$
 N
 R_{92} in which R_{92} is H or C_{1-6} alkyl,

pp)

qq)

IT)

15 ss)

uu)

5 vv)

ww)

xx)

уу)

10

ZZ)

15

- aaa) a diazinyl group optionally substituted with X and Y,
- bbb) a triazinyl group optionally substituted with X and Y,
- ccc) a quinolinyl group optionally substituted with X and Y,
- ddd) a quinoxalinyl group optionally substituted with X and Y,
- eee) a naphthyridinyl group optionally substituted with X and Y,

fff)

$$A_1 \xrightarrow{A_2} (CH_2)_w$$

$$Z_1 - N$$

$$O)_y$$

ggg)

5 hhh)

iii)

B is an unsaturated 4-atom linker having one nitrogen and three carbons;

10 M is

- a) H,
- b) C₁₋₈ alkyl,
- c) C₃₋₈ cycloalkyl,
- d) $-(CH_2)_mOR_{66}$, or

15 e) $-(CH_2)_nNR_{67}R_{68}$;

Z is

- a) O,
- b) S or
- c) NM;

20 W is

- a) CH,
- b) Nor

c) S or O when Z is NM;

X and Y are each independently

- a) hydrogen,
- b) halo,
- 5 c) NO₂,
 - d) N₃,
 - e) C₁₋₆ alkythio,
 - f) C_1 - C_6 alkyl $-\ddot{S}$ -,
 - g) C₁-C₆ alkyl———,
- 10 h) C_1 - C_6 alkyl,
 - i) C₁-C₆ alkoxy,
 - j) formyl,
 - k) C₁-C₆ alkyl—Ü—,
 - O C₁-C₆ alkyl—O-Ö—
- m) heteroaryl—Ü— in which heteroaryl is a 5- or 6-membered aromatic heterocyclic group having 1-3 hetero atoms selected from O, N or S,
 - n) C₆H₅-Ü—
 - o) amino,
- 20 p) C₁-C₆ alkylamino-,
 - q) di (C₁-C₆ alkyl)amino-,

- r) $-(C_1-C_6)$ alkyl $-\ddot{C}-NR_{60}R_{61}$ in which R_{60} and R_{61} are each independently hydrogen or C_1-C_6 alkyl,
- s) OH,
- t) hydroxy (C₁-C₆ alkyl),

5 u) C_1 - C_6 alkyl -S- \ddot{C} -.

- v) NC- $(CH_2)_r$ -O- \ddot{C} in which r is 1-6,
- w) $C_6H_5CH_2-O-\ddot{C}-$,
- O x) C₆H₅-O-Ö—,
- $\begin{array}{ccc} & & & & \\ & & & \\ N & & \\ Y) & & C_{1}\text{-}C_{6} \text{ alkyl-} \ddot{C}\text{--} & \text{in which } R_{84} \text{ is as defined above,} \\ \end{array}$
- 10 z) cyano,
 - aa) carboxyl,
 - bb) · CF₃,
 - cc) mercapto,
 - dd) C_1 - C_6 alkyl— \ddot{C} -O
- ee) C_6H_5 -O-C in which the phenyl moiety may be optionally substituted by halo or C_1 - C_6 alkyl,
 - ff) $C_6H_5(CH_2)_{1-6}-O-\ddot{C}-$,
 - gg) $R_{85}O^-(CH_2)_{1-6}$ in which R_{85} is as defined above, or
- hh) $SiR_{99}R_{100}R_{101}-O-CH_2-\ddot{C}-$ in which R_{99} , R_{100} and R_{101} are each independently C_{1-6} alkyl; or

Q and either R₁ and R₃ taken together form -O-CH₂-O;

 R_{62} is

- a) H,
- b) C₁₋₈ alkyl optionally substituted with one or more halos, or
- c) C₁₋₈ alkyl optionally substituted with one or more OH, or

5 C₁₋₈ alkoxy;

E is

- a) NR_{69,}
- b) -S(=O)_i in which i is 0, 1 or 2, or
- c) O;

10 R₆₃ is

- a) H,
- b) C₁₋₆ alkyl,
- c) -(CH₂)_q-aryl, or
- d) halo;
- 15 R_{66} is H or C_{1-4} alkyl;

 R_{67} and R_{68} are each independently H or $C_{1\text{--}4}$ alkyl, or $NR_{67}R_{68}$ taken together are –(CH₂)_m-;

R₆₉ is

- a) H,
- 20 b) C₁₋₆ alkyl,
 - c) $-(CH_2)_q$ -aryl,
 - d) -CO₂R₈₁,
 - e) COR₈₂,
 - f) $-C(=O)-(CH_2)_q-C(=O)R_{81}$,

25 g) $-S(=O)_z-C_{1-6}$ alkyl,

- h) $-S(=O)_z-(CH_2)_q$ -aryl, or
- i) -(C=O)_j-Het in which j is 0 or 1;

 Z_1 is

- a) -CH₂-, or
- b) -CH(R₇₀)-CH₂-;

 Z_2 is

- 5
- a) -O₂S-,
- b) -O-,
- c) -S-,
- d) -SO-, or
- e) -N(R₇₁)-;
- 10 Z₃ is
- a) S,
- b) SO,
- c) SO₂, or
- d) O;
- 15 A₁ is H or CH₃;

A₂ is

- a) H,
- b) OH-,
- c) CH₃CO₂-,
- 20
- d) CH₃-,
- e) CH₃O-,
- f) $R_{72}O-CH_2-C(O)-NH-$,
- g) R₇₃O-C(O)-NH-,
- h) R₇₃-C(O)-NH-,
- 25
- i) (C_1-C_2) alkyl-O-C(O)-, or
- j) HO-CH₂; or

A₁ and A₂ taken together are

a)

b)
$$O =$$
;

R₆₄ is H or CH₃-;

5 m is 4 or 5;

n is 0, 1, 2, 3, 4 or 5;

y is 0 or 1;

p is 0, 1, 2, 3, 4 or 5;

w is 1, 2 or 3;

10 q is 1, 2, 3 or 4;

z is 0 or 1;

R₆₅ is

- a) $R_{74}OC(R_{75})(R_{76})-C(O)-$,
- b) R₇₇OC(O)-,

15

- c) R₇₈(O)-,
- d) R_{79} -SO₂-, or
- e) R₈₀-NH-C(O)-;

R₇₀ is H or (C₁-C₃)alkyl;

R₇₁ is

20

- a) $R_{74}OC(R_{75})(R_{76})-C(O)$ -,
- b) R₇₇O-C(O)-,
- c) R₇₈-C(O)-,
- d)

- 167 -

e)

- f) $H_3C-C(O)-(CH_2)_2-C(O)-$
- g) R_{79} -SO₂-,

5 h)

i) R₈₀-NH-C(O)-,

R₇₂ is

a) H,

10

- b) CH₃,
- c) phenyl -CH₂-, or
- d) CH₃C(O)-;

R₇₃ is (C₁-C₃)alkyl or phenyl;

R₇₄ is H, CH₃, phenyl-CH₂- or CH₃-C(O)-;

R₇₅ and R₇₆ are each independently H or CH₃, or R₇₅ and R₇₆ taken together are $-CH_2CH_2$ -;

R₇₇ is (C₁-C₃)alkyl or phenyl;

 R_{78} is H, (C₁-C₄)alkyl, aryl-(CH₂)_n1, ClH₂C, Cl₂HC, FH₂C-, F₂HC- or (C₃-C₆)cycloalkyl;

20 R₇₉ is CH₃; -CH₂CI, -CH₂CH=CH₂, aryl or -CH₂CN;

 R_{80} is $-(CH_2)_{n1}$ -aryl where n^1 is 0 or 1;

R₈₁ is

a) H,

- b) C₁₋₆ alkyl optionally substituted with one or more OH, halo or CN,
- c) -(CH₂)_q-aryl in which q is as defined above, or
- d) -(CH₂)_q-OR₈₃ in which q is as defined above;
- 5 R₈₂ is
- a) C₁₋₆ alkyl optionally substituted with one or more OH, halo or CN,
- b) -(CH₂)_q-aryl in which q is as defined above, or
- c) -(CH₂)_q-OR₈₃ in which q is as defined above;
- 10 R₈₃ is
- a) H,
- b) C₁₋₆ alkyl,
- c) -(CH₂)_q-aryl in which q is as defined above; or
- d) -C(=O) C₁₋₆ alkyl; and
- aryl is phenyl, pyridyl or naphthyl, said phenyl, pyridyl or naphthyl moieties being optionally substituted by one or more halo, -CN, OH, SH, C₁₋₆ alkoxy or C₁₋₆ alkylthio.
 - 4. A compound of the formula

or a pharmaceutically acceptable salt thereof, in which

25 R₁ is H, C₁₋₈ alkyl optionally substituted with one or more F, Cl, OH, C₁₋₈ alkoxy or C₁₋₈ acyloxy, C₃₋₆ cycloalkyl or C₁₋₈ alkoxy;

 R_2 and R_3 are each independently H or F; or R_2 and R_3 taken together represent

Q is

5 a) hydrogen,

- b) halo,
- c) N₃,
- d) NO_2 ,
- e) C₁-C₆ alkylthio,

10 f) C_1-C_6 alkyl— \ddot{S} —,

- g) C₁-C₆ alkyl—;—
- h) C₁-C₆ alkyl,
- i) C₁-C₆ alkoxy,
- j) formyl,

O 15 k) C₁-C₆ alkyl—Ü—,

- O I) C₁-C₆ alkyl—O-Ü—
- O m) C₁-C₆ alkyl—Č-O—
- n) $(C_1-C_6 \text{ alkoxy})_2N_-$
- 5- or 6-membered heterocyclic containing 1-3 O, N or S and linked to the phenyl substituent via a carbon or nitrogen, said heterocycle moiety being optionally substituted by R₉₆,

p) C₁-C₆ alkyl—C ,

- q) phenyl optionally substituted by R₉₆, or
- r) 5- or 6-membered saturated or unsaturated heterocyclic containing 1-3 O, N or S and linked to the phenyl substituent via a carbon or nitrogen, said heterocycle moiety being optionally substituted by R₉₆, and

R₉₆ is

5

15

a) C₁-C₆ alkyl-OH,

b)
$$C_1$$
- C_6 alkyl $-$ 0- C_- ,

c) $CH_{3-C-}C_{1}-C_{6}$ alkyl $-\ddot{C}-$,

10 d) cyano,

e) formyl,

n.OH f) H-Ü—

 $_{g)}$ C_{1} - C_{6} alkyi-O- \ddot{C} - $_{-}$,

O h) SiR₈₄R₈₅R₈₆-O- $\ddot{\mathbb{C}}$ — in which R₈₄, R₈₅ and R₈₆ are each independently C₁-C₆ alkyl,

j) HC≡CCH₂OC—,

k) $C_6H_5-O-\ddot{C}-$ where the phenyl may be optionally substituted by halo,

O 20 l) HO-CH₂-Ü−,

m) $(C_1-C_6 \text{ alkyl})_2N_-$

- n) C₁-C₆ alkyl-NH-,
- o) amino.
- p) C₁-C₆ alkyl——————
- q) $C_6H_5CH_2O\ddot{C}-$, or
- 7) R₉₈-C- in which R₉₈ is phenyl, 5- or 6-membered heteroaryl containing 1-3 O, N or S and linked to the phenyl substituent via a ring carbon atom or 5- or 6-membered saturated or unsaturated heterocyclic containing 1-4 O, N or S and linked to the phenyl substituent via a ring carbon atom.
 - 5. A compound selected from the group consisting of the compounds of Examples 1-97 described in the specification.
- 15 6. A pharmaceutical composition comprising a compound of Claim 1 in admixture with a pharmaceutically acceptable adjiwant, diluent or carrier.
- A method of treating a bacterial infection in a mammal which
 comprises administering a therapeutically effective amount of a compound of Claim 1 to a mammal in need thereof.

INTERNATIONAL SEARCH REPORT

International application No.

PC1			

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61K 31/42; C07D 261/12 US CL :Please See Extra Sheet.										
According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS SEARCHED										
Minimum documentation searched (classification system followers)	ed by classification symbols)									
U.S. : 548/243, 255; 546/209; 544/58.2, 60, 137, 229, 367; 514/ 63, 227.8, 236.8, 252_326, 359, 380										
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched EAST										
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE, WEST										
C. DOCUMENTS CONSIDERED TO BE RELEVANT										
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages Relevant to claim No.									
A US 5,523,403 (BARBACHYN) 04 Jun	ne 1996, see entire document. 1-7									
·	·									
Further documents are listed in the continuation of Box (C. See patent family annex.									
"A" Special categories of cited documents: 'A" document defining the general state of the art which is not considered to be of particular relevance	*T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention									
"E" earlier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone									
cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is									
P document published prior to the international filing date but later than	combined with one or more other such documents, such combination being obvious to a person skilled in the art '&' document member of the same patent family									
Date of the actual completion of the international search	the priority data claimed									
05 NOVEMBER 1999	22 DEC 1999									
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer / Louis Allies Allies Allies									
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196									

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/19265

A. CLASSIFICATION OF SUBJECT MATTER: US CL:						
548/243, 255; 546/209; 544/58.2, 60, 137, 229, 367; 514/ 63, 227.8, 236.8, 252, 326, 359, 380						
	١					
•						
·						

Form PCT/ISA/210 (extra sheet)(July 1992)*