Foglio Esercizi 4 (MDAG 2023)

Esercizi proposti da R. Buzano e M. Radeschi 6 dicembre 2023

Esercizio 1. Data la matrice simmetrica

$$S = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{array}\right),$$

calcolare:

- 1. La matrice $[g_S]_{\mathcal{B}}$ rispetto alla base $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
- 2. Il radicale di (\mathbb{R}^3, g_S) .
- 3. La forma quadratica q_S .

Esercizio 2. Data la matrice simmetrica

$$S = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

sia g_S il prodotto scalare corrispondente (in questo caso, definito positivo).

- 1. Usare Gram-Schmidt per ortogonalizzare la base canonica di \mathbb{R}^3 rispetto a g_S .
- 2. Calcolare la proiezione ortogonale di e_3 sul piano generato da e_1 e e_2 , rispetto a g_S .

Esercizio 3. Per ogni forma quadratica, calcolare la matrice associata.

1.
$$q(x_1, x_2) = x_1^2 + 4x_1x_2$$

2.
$$q(x_1, x_2, x_3) = x_1^2 + 4x_1x_2$$

3.
$$q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$$

4.
$$q(x_1, x_2, x_3) = \det \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$
.

Esercizio 4. Per ogni matrice, calcolare la forma quadratica corrispondente.

$$\left(\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

1

Esercizio 5. Calcolare gli angoli interni del triangolo in \mathbb{R}^3 avente vertici in e_1 , e_2 , e_3 , rispetto al prodotto scalare Euclideo.

Esercizio 6. Verificare che la trasformazione $L_A: \mathbb{R}^3 \to \mathbb{R}^3$ con

$$A = \frac{1}{3} \left(\begin{array}{ccc} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{array} \right)$$

é una isometria rispetto al prodotto scalare Euclideo.

Esercizio 7. Dati i vettori

$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad w = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \in \mathbb{R}^3$$

calcolare:

- 1. Un vettore ortogonale a Span(v, w) (rispetto al prodotto scalare Euclideo).
- 2. L'area del parallelogramma generato da v e w.

Esercizio 8. Date le seguenti coppie di spazi affini, determinare se l'intersezione è vuota oppure no. Nel primo caso, calcolare la distanza tra i sottospazi. Nel secondo caso, descrivere l'intersezione in forma parametrica o cartesiana, e calcolare l'angolo di intersezione.

1.
$$r = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}, r' = \left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix} \right\}$$

2.
$$V' = \left\{ \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \right\}, W' = \{x + 3y - z = 2\}.$$

3.
$$V' = \{x - y - 3z = 2\}, r = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

Esercizio 9. Siano $\pi_1 = \{x + 2y - z = 1\}$ e $\pi_2 = \{2x - y + z = 3\}$ due piano.

- 1. Trovare la retta $r = \pi_1 \cap \pi_2$.
- 2. Trovare il piano π_3 ortogonale a r che continene l'origine.
- 3. Trovare le rette $s_1 = \pi_1 \cap \pi_3$ e $s_2 = \pi_2 \cap \pi_3$ e verificare che queste rette sono ortogonali a r.
- 4. Calcolare l'angolo fra s_1 e s_2 , cioè l'angolo diedrale fra π_1 e π_2
- 5. Trovare due vettori ortogonali a π_1 e π_2 , rispettivamente, e calcolare l'angolo tra questi vettori. Paragonare con l'angolo trovato nel punto 4.

2