

First Labs on Real-Time Scheduling

Report of TP1 AKKAR KHADIJA L2

Exercice 1:

1. Simulate the following task configuration on one core using **deadline monotonic**.

	First Release	WCET	D	P
T_1	0	2	5	5
T_2	0	2	4	10

Tab. 1: Task Configuration - Exercice 1

- (a) => Yes, the configuration is schedulable because there are no deadline missed if we computed the scheduling on the feasibility interval.
 - (b) => The worst-case response time for T_1 is 4 time units, and for T_2 is 2 time units.

Fig. 1: Simulation of the task configuration with the deadline monotonic

2. Yes, the task set is schedulable if the scheduling is computed within the feasibility interval, given that T_1 has the highest priority (2):

Fig. 2: Simulation of the task configuration with the a fixed priority

Exercice 2:

1. Simulate the following task configuration on one core using.

	First Release	WCET	D	P
T_1	0	2	6	6
T_2	0	4	10	10
T_3	0	2	20	20

Tab. 2: Task Configuration - Exercice 2

=> Yes, the configuration is schedulable using a fixed priority, as the results show:

Fig. 3: Simulation of the task configuration with a fixed priority

2. Same question with the following task configuration.

	First Release	WCET	D	P
T_1	0	2	6	6
T_2	0	4	10	10
T_3	0	2	9	20

Tab. 3: Task Configuration - Exercice 2

=> No, the configuration is not schedulable using a fixed priority, as the results show:

Fig. 4: Simulation of the task configuration with a fixed priority

=> But, it is schedulable using the Earliest Deadline First, as the results show:

Fig. 5: Simulation of the task configuration with the Earliest Deadline First

3. Same question with the following task configuration.

	First Release	WCET	D	P
T_1	0	2	6	6
T_2	0	4	8	10
T_3	0	2	9	20

Tab. 4: Task Configuration - Exercice 2

=> No, the configuration is not schedulable using a fixed priority, as the results show:

Fig. 6: Simulation of the task configuration with a fixed priority

=> But, it is schedulable using the Earliest Deadline First, as the results show:

Fig. 7: Simulation of the task configuration with the Earliest Deadline First

Exercice 3:

Simulate the following task configuration on one core using.

	First Release	WCET	D	P
T_1	0	3	8	8
T_2	0	4	9	9

Tab. 5: Task Configuration - Exercice 3

(a) The result of scheduling simulation with the Earliest Deadline First:

Fig. 8: Simulation of the task configuration with the Earliest Deadline First

(b) The result of scheduling simulation with the Least Laxity First:

Fig. 9: Simulation of the task configuration with the Least Laxity First

=> Based on the results from the two scheduling simulations, the Earliest Deadline First algorithm has fewer context switches and preemptions for this task configuration. This means it uses fewer resources and performs better.

Exercice 4:

1. Simulate the following task configuration on one core using.

	First Release	WCET	D	P
T_1	0	1	3	3
T_2	0	3	9	9

Tab. 6: Task Configuration - Exercice 4

(a) The result of scheduling simulation with the Preemptive Rate Monotonic:

Fig. 10: Simulation of the task configuration with the Preemptive Rate Monotonic

(b) The result of scheduling simulation with the Non Preemptive Rate Monotonic:

Fig. 11: Simulation of the task configuration with the Non Preemptive Rate Monotonic

- => In preemptive scheduling, whenever a task needs to be interrupted, the CPU performs a context switch, leading to more frequent switches. In contrast, in non-preemptive scheduling, the CPU doesn't allow interruptions, resulting in fewer context switches.
 - 2. Same question with the following task configuration.
 - (a) The result of scheduling simulation with the Preemptive Rate Monotonic:

	First Release	WCET	D	P
T_1	0	2	3	3
T_2	0	3	9	9

Tab. 7: Task Configuration - Exercice 4

Fig. 12: Simulation of the task configuration with the Preemptive Rate Monotonic

(b) The result of scheduling simulation with the Non Preemptive Rate Monotonic:

Fig. 13: Simulation of the task configuration with the Non Preemptive Rate Monotonic

=> In this task configuration, the task set is schedulable only in preemptive mode. In non-preemptive mode, the task missed its deadline (absolute deadline = 6, completion time = 7).

Exercice 5:

Let's simulate the following task configuration.

	First Release	WCET	D	P
T_1	0	1	10	10
T_2	2	1	8	10
T_3	0	2	10	10
T_4	0	1	10	10
T_5	0	1	10	10
T_6	0	8	15	20

Tab. 8: Task Configuration - Exercice 5

We have the following precedence constraints:

- T_1 and T_2 must complete execution before T_3 starts.
- T_3 must complete execution before T_4 and T_5 .
- 1. The result of scheduling simulation with the Rate Monotonic approach:

Fig. 14: Simulation of the task configuration with the Rate Monotonic

- => It is not schedulable using the rate monotonic approach discussed in the lectures, because the task's period must be equal to its deadline.
 - 2. The result of scheduling simulation with the Earliest Deadline First approach:

Fig. 15: Simulation of the task configuration with the Earliest Deadline First

=> It is schedulable using the Earliest Deadline First (EDF) approach discussed in the lectures.