GUJARAT TECHNOLOGICAL UNIVERSITY

Competency-focused Outcome-based Green Curriculum-2022 (COGC-2022) Semester-III

Course Title: Digital Circuits (Course Code: 4332001)

Diploma Programme in which this course is offered	Semester in which offered	
Mechatronics Engineering	Third	

1. RATIONALE

In the area of Mechatronics, a digital electronic circuit is an inseparable part. Hence every mechatronic diploma engineer needs to have the basic skills of maintaining the digital circuits which are part of the mechatronic equipment. Therefore, this course contains contents related to number system, logic gates, Boolean implementation, basic combinational logic and sequential circuits. Hence, by studying this course the student will be able to maintain digital circuits in mechatronic equipment.

2. COMPETENCY (Programme Outcome according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies:

- To implement various logic gates in mechatronic systems.
- To learn about different types of combinational circuits to control the mechatronic systems.

3. COURSE OUTCOMES

- Gain knowledge between different types of number systems, and their conversions.
- Design various logic gates and simplify Boolean equations.
- Illustrate reduction of logical expressions using Boolean algebra, K-map and implement the functions using logic gates.
- Gain Knowledge about various combinational & sequential circuits.

4. TEACHING AND EXAMINATION SCHEME

	Examination Scheme			Total	hama	ahina Ca	Too	
Total Marks	al Marks	Practica	Theory Marks		Credits(L+T +P)		ching Sc (In Ho	rea
	CA	ESE	CA	ESE	С	P	Т	L
150	30	20	30	70	6	2	0	4

Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; Semester Examination; PA-Continuous Assessment.

C - Credit; **ESE** – End

5. COURSE DETAILS

	Major Learning	Topics and Sub-topics
Unit	Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	
Unit- I	<u> </u>	1.1 Definition:- Digital circuits & its
Introduction to Digital Circuits	 1a. What is Digital Circuits 1b. Difference between analog signals & digital signals 1c. Positive and negative Logic system 	Applications 1.2 Difference between analog signals & digital signals 1.3 Positive logic and negative logic levels
Unit-II Number System and Binary Codes	2a.Convert number systems and its complements 2b. Solve problems number systems and binary codes	 2.1 Numbers system: Base Conversion of Decimal ,Binary, Octal, Hexa decimal 2.2 Complement Methods: 1's and 2's complement 2.3 Binary Codes: BCDcode,Excess-3code,Graycode, Parity code 2.4 Binary Addition , Subtraction,
Unit-III Logic Gates	3a.Describefunctionsof Binary Logic 3b.Differentiate the functions of Basic Logic Gates and Universal Logic Gates 3c.ExplaintheTruthtableof variouslogicgates	Multiplication 3.1 Basic Logic Gates: AND ,OR,NOT gate 3.2 Derived Logic Gates :EX-OR,EX-NOR 3.3 Implementation using Basic Gates 3.4 Universal Logic Gates: NAND,NOR gate 3.5 Implementation using NAND and NOR gate
Unit – IV Boolean Function Implementation	4a.Simplify the Boolean function using Boolean theorems and Boolean Algebra 4b.Differentiate between SOP and POS 4c.Simplify Boolean function using K-map	 4.1 Boolean Function: Laws of Boolean Algebra, De Morgan's Theorems, Sum of Product (SOP) Form, Product of Sum(POS)Form, Min terms and Max terms 4.2 Simplification of Boolean Function using Boolean Algebra 4.3 Simplification of Boolean Function using 4.4 K-map: Up to three Variable
Unit – V Combinational Circuits	5a.Modify Half adder ,Full adder, Half Subtractor and full Subtractor 5b.List Application of multiplexers & Demultiplexer 5c.Differentiate between octal to binary encoders. 5d.Explain the working of a BCD to7segment Decoders.	5.1 Adder: Half Adder, Full Adder 5.2 Subtractor: Half and Full Subtractor 5.3 2-bitMagnitudeComparator 5.4 Multiplexer and De multiplexer: Multiplexer(4:1), De multiplexer(1:4) 5.5 Encoder and Decoder: Octal to Binary Encoder(8:3), Decoder(3:8), BCD to 7- segment Decoder

Unit – VI Sequential Circuits	6a.Difference Between Combinational Circuit & Sequential Circuit 6b.Design Flip Flops using S-R Latch 6c.Explain the working of series shift and parallel right register	 6.1.Sequential Circuits & its Applications 6.2. Difference Between Combinational and Sequential Circuits. 6.3. Definition:- Flip-flops , J-K Flip flop , R-S Flip flop, D Flip flop, 6.4.Definition:- Shift register; Series & Parallel Shift
-------------------------------------	--	--

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

			Distribution of Theory Marks				
Unit	Unit Title	Teaching Hours	R Level	U Level	A Level	Total Marks	
ı	Introduction to Digital Circuits	04	4	2	2	08	
11	Number System and Binary Codes	10	5	5	2	12	
III	Logic Gates	08	4	6	2	12	
IV	Boolean Function Implementation	12	4	6	4	14	
V	Combinational Circuits	12	2	4	6	12	
VI	Sequential Circuits	10	4	4	4	12	
	Total	56	23	27	20	70	

Notes:-

- a) This Specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.
- **b)** It is Preferable to conduct unit tests and mid semester examination. In Mid sem examination Units I, II, III should be considered.
- c) Ask the questions from each topic as per marks weight age.
- **d)** This subject is to be taught by Mechatronics Engineering Faculty.

6. SUGGESTED LIST OF EXERCISES / PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in** *affective domain* as given in ac common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA terminology)	Approx Hrs. Required
1	II	Convert decimal number system to binary, octal and hex. Convert binary, octal and hex to decimal.	02
2	II	Convert octal to hex and hex to octal number.	01
3	II	Convert binary to BCD, Excess-3 and gray code Convert BCD, Excess-3 and gray code to binary	01
4	II	Test the functionality of the AND gate, OR gate and NOT gate.	02
5	III	Test the functionality of the EX-OR and EX-NOR gate.	01
6	Ш	Implement Boolean expression using basic logic gates	01
7	III	Test the functionality of the NAND gate and NOR gate	02
8	III	Test the functionality of NAND gate as a universal building block.	02
9	III	Test the functionality of NOR gate as a universal building block.	02
10	V	Design and implement Half Adder and full adder circuit using IC	02
11	V	Design and implement Half Subtractor and full Subtractor circuit	02
12	V	Design and implement BCD Seven Segment display using basic Logic gates	02
13	VI	Design various types of Flip flops used in Digital Circuits.	01

Notes:-

- a. Term work report must not include any photocopy/i.e , printed manual/pages, litho ,etc. It must be hand written / hand drawn by student only.
- b. Term work report content of each experience should include following:
 - i. Experience description / data and objectives.
 - ii. Drawing of experience / setup with proper circuit diagrams in digital circuits.
- c. Presentation topic has to be assigned to the student in the beginning of the term by the batch leader. This may be assigned individually or in the group of maximum 2 students.
- d. For 40 marks ESE, students are to be assessed for competencies achieved. Students should be given following tasks (any two)
 - i. Conversions of Binary, Decimal ,Octal , Hexadecimal
 - ii. Draw all the logic gates, derived gates and universal gates with their logic diagram and truth table.'
 - iii. Draw the circuit diagram as per their Boolean equation.
 - iv. Explain the role of combinational and sequential circuits in various digital electronics system.

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Course/Topic based seminars,
- ii. Internet based assignments,
- iii. Teacher guided self-learning activities,
- iv. Course/library/internet/lab based mini-projects etc. These could be individual or group-based.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Learning Digital Circuits in the classroom takes place through activities like Seminar, group's discussion, Assignments and project.
- ii. Preparing notes for laboratory work, design circuit and truth tables in the classroom before the practical work in the laboratory.

Guidelines for Progressive Assessment (PA) of Theory

The Progressive Assessment of theory may include the few activities like: Class Test, Assignment, Seminar/Symposium on application of digital circuits, Project, Collection/Records of IC datasheet, Group discussion/Debate

Guidelines for Progressive Assessment (PA) of Practical

	Distribution of Marks for different Components in Progressive Assessment(PA)							
Sr. No	Sr. No Content % of Marks							
1	Lab Record.	25%						
2	2 Performing of the practical/exercise							
3	3 Viva voice. 20%							
4	4 Planning, team working, communication etc. 15%							
5	5 Timely Submission, Punctuality and Attendance. 15%							
	Total 100%							

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1	Fundamentals of Digital Circuits	A.Anand Kumar	PHI Learning, Latest Edition ISBN:81-203-1745-9
2	Digital Logic and Computer Design	Mano M. Morris	Pearson publication, Latest EditionISBN:81-203-0417-9
3	Digital Electronics Principles	Malvino and Leech	Tata McGraw- Hill, New Delhi, Latest Edition

B) List of Major Equipment/Materials with Broad Specifications

- i. Breadboard
- ii. Function Generator
- iii. Digital Multi Meter (DMM)
- iv. Cathode Ray Oscilloscope(CRO)

- v. +
- vi. DC Power supplies
- vii. Experimental Boards

C) List of Software/Learning Websites

- i. Practical Semiconductor Data Manuals: BPB Publications; New Delhi
- ii. Magazines like Electronics for you.
- iii. Electronic Work Bench, Multi SIM
- iv. www.alldatasheet.com
- v. http://www.asic-world.com/digital/tutorial.html
- vi. www.nptel.com

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty

Members from Polytechnics

Prof. H.G. Tailor, Lecturer in Department of Mechatronics, B&B Institute of Technology

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more Cos. The duration of the micro-project should be about **14-16 (fourteen to sixteen) student engagement hours** during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

14. SOFTWARE/LEARNING WEBSITES

- A) https://www.youtube.com/watch?v=2joeDD5-v3s
- B) https://www.youtube.com/watch?v=47u7b2yh7s8
- C) https://www.youtube.com/watch?v=1zYRnZ6Pe2A&list=PLgwJf8NK-2e4sAMptCE4kYRqoWhlvk2cm&index=2
- D) https://www.youtube.com/watch?v=mzxWLjEU1xU&list=PLgwJf8NK-2e4sAMptCE4kYRqoWhlvk2cm&index=8
- E) https://www.youtube.com/watch?v=eKVD ec4U6M&list=PLgwJf8NK-2e4sAMptCE4kYRqoWhlvk2cm&index=9
- F) https://www.youtube.com/watch?v=GltLxgrzIPs&list=PLgwJf8NK-2e4zRyPzO6HI9sUOR8v-80RT&index=4

- G) https://www.youtube.com/watch?v=kt8d3CYWGH4&list=PLuYnCh-5h1XdvuSGjQRi2jgUH9 CiVR8J&index=2
- H) https://www.youtube.com/watch?v= J 2B0addyk

I) https://www.youtube.com/watch?v=Ut2SjYuVBM0

13. PO-COMPETENCY- CO MAPPING

Semester III		Digital Circuits (Course Code:) POs							
Competency & Course Outcomes	Basic &	Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentation &Testing	Engineering	Project Management	PO 7 Life-long learning		
Competency	Use the	Concepts	of Digital Circu	iits to solve broad	-based engine	ering related p	roblems.		
Course Outcomes CO-1 Gain knowledge between different types of number systems, and their conversions	3	3	-	2	-	3	1		
CO-2 Design various logic gates and simplify Boolean equations.	2	2	3	2	-	2	2		
CO-3 Illustrate reduction of logical expressions using Boolean algebra, K-map and implement the functions using logic gates.	3	2	3	1	2	2	3		

CO-4							
Gain Knowledge							
about various combinational &	3	2	2	2	2	1	3
sequential	3			۷		1	3
circuits.							

BOS RESOURCE PERSONS:-

Sr. No.	Name and Designation	Institute	Contact No.	Email
1	Dr.S.H.Sundarani	Government	9227200147	gpasiraj@gmail.com
	BOS Chairman	Polytechnic		
	HOD Mechanical Engg.	Ahmedabad		
2	Dr. Rakesh D. Patel	B & B	9825523982	rakeshgtu@gmail.com
	BOS Member	Institute of		
	HOD Mechanical Engg.	Technology		
		VV Nagar		
3	Dr.Atul.S. Shah	B.V.Patel	7567421337	Asshah97@yahoo.in
	BOS Member	Institute of		
	Principal	Technology		
		Bardoli		