

SYDNEY GRAMMAR SCHOOL
MATHEMATICS DEPARTMENT
TRIAL EXAMINATIONS 2005

FORM VI

MATHEMATICS

Examination date

Tuesday 2nd August 2005

Time allowed

3 hours (plus 5 minutes reading time)

Instructions

Marks may not be awarded for careless or badly arranged work All ten questions may be attempted. A list of standard integrals is provided at the end of the examination paper Approved calculators and templates may be used. All necessary working must be shown. All ten questions are of equal value.

Collection

Hand in a booklet for each question, even if it has not been attempted Hand in the ten questions in a single well-ordered pile. Write your candidate number clearly on each booklet. Keep the printed examination paper and bring it to your next Mathematics lesson. If you use a second booklet for a question, place it inside the first.

Checklist

SGS booklets: 10 per boy. Candidature: 108 boys. A total of 1250 booklets should be sufficient.

Examiner

TCW

(a) Evaluate $\frac{1}{15+5\times3}$, correct to three significant figures.

2

2

(b) Fully factorise $16x^3 - 64x$.

[2]

(c) Solve |x+3| = 8.

N

(d) Solve x(x-9) = 0.

(e) Write down the supplement of $\frac{\pi}{6}$.

(f) Differentiate $\cos x$.

Ξ

(g) Write down the coordinates of the focus of the parabola x^2

1

(h) Write down a primitive of $\frac{1}{x}$.

Marks

QUESTION TWO (12 marks) Use a separate writing booklet.

2

- By rationalising the denominator, find a and b such that $\sqrt{7}+2$
- 2

(b) Find the equation of the parabola with vertex (-5,0) and focus (0,0).

(C)

N

Find the size of the largest angle in $\triangle ABC$, correct to the nearest degree. The diagram above shows $\triangle ABC$ where AB5cm, BC $6 \, \mathrm{cm}$ and AC

(b)

In the diagram above $\triangle PQR$ has vertices P(0,10), Q(-5,0) and R(2,-2). The origin

- (i) Show that PQ has length $5\sqrt{5}$ units.
- (ii) Show that PQ has equation 2x y + 10 = 0.
- (iii) Show that the perpendicular distance from R to PQ is units.
- (iv) Find the coordinates of S such that PQRS is a parallelogram.
- (v) Find the area of parallelogram PQRS.
- (¥i) Find, correct to the nearest degree, the size of $\angle PQO$

1

1

Use a separate writing booklet. (12 marks) QUESTION THREE

Marks

Page 4

2

ঝ

7

(a) Differentiate:

(i)
$$y = \frac{2}{e^x}$$

(ii)
$$y = (x^2 - 1)^6$$

(iii)
$$y = \frac{2x+1}{3x-1}$$

(b) Evaluate
$$\int_0^t \frac{2x}{x^2+4} dx$$
.

N

<u>છ</u>

The diagram above shows the area between the curve $y=2\cos x$ and the x-axis from $\sqrt{2}$ square units. $\frac{\pi}{4}$ to $x = \pi$. Show that this area is 4 -=x

Use a separate writing booklet. (12 marks) QUESTION FOUR

Marks

থ

N

- .,955? (i) How many terms are there in the arithmetic sequence -5, 10, 25, (a)
- ۳I∞ **⊣**|4 (ii) Find the limiting sum of the geometric series $\frac{1}{2}$
- Consider the curve $y = 3x^2 x^3$. (p)
- (i) Find the x-intercepts of the curve.
- Find the coordinates of any stationary points and determine their nature. (ii)
- Find the coordinates of the point of inflexion. (iii)

2

 \vdash

ಭ

 \vdash

- Sketch the curve, clearly showing all the stationary points, the inflexion and the intercepts. (iv)
- Ö VI Hence, or otherwise, solve $3x^2$ Ð

QUESTION FIVE

(12 marks)

Use a separate writing booklet.

Marks

(a)

Line t is the tangent to the curve at The diagram above shows the curve $y = x^3$. P, which intersects the curve again at Q. The point P(-1,-1) lies on the curve.

- \odot Show that the tangent to the curve at P has equation y = 3x + 2.
- (ii) Show that Q has coordinates (2,8).
- (iii) Find the area of the region enclosed by the curve and the tangent from P

2

N

2

(iv) Use inequalities to describe the region in part (iii). You may assume the boundaries are included.

The diagram above shows the trapezium ABCD. AB is parallel to CD. AC and BD intersect at P. AB = 12 cm and CD = 18 cm.

- (i) Prove $\triangle ABP \parallel \triangle CDP$.
- (ii) Given that AC = 15 cm find the length of AP.

ယ

2

Exam continues overleaf.

across its 15 metre width PQ. The sketch below shows the measurements and the cross-section. a river at equal intervals surveyor measures the depth of (a) A

(i) Use the trapezoidal rule to find an approximation for the cross-sectional area of the river at PQ.

(ii) Given that the river flows at an average speed of 2 metres/second find the approximate volume of water passing PQ every hour in cubic metres.

2

3

ಚ

(b)

3

The diagram above shows the region to the right of the y-axis bounded by the curve when 3. Find the volume of the solid formed $y = x^2 - 9$, the y-axis and the line y =this region is rotated about the y-axis.

PageV

(c)

The diagram above shows $\triangle ABC$ where AP = PQ = QC and PQRS is a rhombus.

- (i) Prove that $\angle SPQ = 2\angle SAP$.
- (ii) Prove that $\angle ABC = 90^{\circ}$

3 2

QUESTION SEVEN (12 marks)Use a separate writing booklet.

Marks

(a) Solve
$$2\log_e x = \log_e (2x + 3)$$
.

(b)

(i) Solve e^{x-2}

1 = 0.

ఝ

(ii) Sketch y =asymptote 1, clearly showing the x and y-intercepts and the horizontal 2

(c)

Find the perimeter of major sector AOB. In the diagram above, major sector AOB has a radius of 16 cm and an area of $624 \, \mathrm{cm}^2$

- (b) Consider the quadratic equation $x^2 + (k+1)x + \frac{k+1}{2}$ =0.
- (i) Write down an expression for the discriminant of the quadratic
- (ii) For what values of k does the equation have no real roots?

Exam continues overleaf...

(a)

1

The diagram above shows the graph of a body's displacement function x Sketch a possible graph of the body's velocity function.

- A particle moves in a straight line such that after t seconds its acceleration function is $\ddot{x} = (6t 2) \,\mathrm{ms}^{-2}$. Initially the velocity of the particle is $-1 \,\mathrm{ms}^{-1}$. **(**p)
- (i) Find the particle's velocity after 2 seconds.
- (ii) Find the time at which the particle is stationary.
- (iii) Find the distance travelled by the particle in the third second of motion.

2

- A 2 kilogram block of ice is removed from the freezer. The block of ice begins to melt . After 45 so that its mass I grams after t minutes is given by the equation $I = I_0 e^$ minutes half of the block remains. <u></u>
- (i) Find the value of I_o .
- (ii) Show that the value of k is $\frac{1}{45} \ln 2$.
- N (iii) For how long has the block been out of the freezer when only 10% of the block remains? Give your answer to the nearest minute.
- At what rate is the block melting when only 10% remains? (iv)

N

H

QUESTION NINE (12 marks) Use a separate writing booklet

Marks

1

- (a) (i) Use the derivative to show that $y = \tan x$ is increasing for all x in its domain.
- Ξ Graph $y = \tan x$, $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$. Clearly show all intercepts and asymptotes on your diagram 2
- (iii) Show $\frac{1}{y} \left(\frac{d^2y}{dx^2} \right)$ $\left(\begin{array}{l} \div rac{dy}{dx} = 2 \ \mathrm{when} \ y = \tan x \end{array} \right)$

2

- 色 Heidi's father deposits \$100 into an account on each of her birthdays from her first to Lucky Heidi receives the full account on her eighteenth birthday. her eighteenth. The money earns 6 % per annum with interest compounded annually.
- (i) Show that Heidi's account will grow to \$3090.57 after the last payment on her eighteenth birthday. 2
- Ξ Henry's mother makes a similar arrangement for her son by investing \$100 on investment is worth \$105.90 after 12 months. per annum with interest compounded monthly. each of his birthdays from his first to his eighteenth. The money earns $5.75\,\%$ Show that Henry's first \$100 1
- Ξ Who holds the larger balance in their account on their eighteenth birthday and by how much? 4

QUESTION TEN (12 marks) Use a separate writing booklet.

Marks

Ŋ

- (a) Differentiate $y = x \log_e x$ and hence find $\int \log_e x \, dx$.
- The line y = mx is a tangent to the curve $y = e^{4x}$. Find mClearly show your working. ಭ

(b)

<u>C</u> An object is dropped from a point P which is $20 \ln 2$ metres above the horizontal ground below. The object's motion as it falls is governed by the differential equation

$$\frac{dx}{dv} = \frac{40v}{400 - v^2}$$

where v m/s is the velocity of the object after it has fallen x metres from

- (i) Integrate both sides of the differential equation with respect to v to show that the displacement is given by $x = 20 \ln \frac{1}{400 - v^2}$. 2
- (ii) Hence show that $v^2 = 400 \left(1 e^{-\frac{1}{20}x}\right)$.

Ŋ

 \vdash

- (iii) Hence find the speed at which the object strikes the ground.
- (iv) The object approaches its limiting velocity as the distance travelled gets larger percentage. reached when it strikes the ground? and has no restriction. What percentage of its limiting velocity has the object Give your answer correct to the nearest

MATHEMATICS	
1	
EXAMINATION	
TRIAL	
568	

TOTAL = 120 marks	QUESTION 2	x (7-2 = 3	(手) (年-2 年-4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:. a+ Jb = -2+ Jz	11	1	(b) $(y-k)^2 = \mu \alpha (\chi - h)$	-0)2 =	y2 = 20((c) $\cos 1\beta = 5^{2} + 6^{2} - 7^{2}$	2×5×6	$\frac{1}{2} = \frac{1}{2}$	(B = 78 (nearest digne)	(a) (i) $pa^2 = 10^2 + 5^2$	pa = 1	PR = 515	di) $m_{PQ} = \frac{10}{5} = 2$	d = mx + b $h = 2x + 10$	7	1 2 2 + 1 2 - 1	-	$\sqrt{5}$ (iv) $S = (0.17 + (0.1) = (78) \sqrt{2}$	A = bh	= 515 x 16	- 80	(vi) hat 1800 = 8 17	= 63° (nearest dagree)
12 marks / question	QUESTION 1	(0)	$15 + 5 \times 3$ 60 V = 0.0333	(3 sig figs)		(b) $16x^3 - 64x = (6x(x^2 - 4))$	$= \frac{16 \times (x-x)(x+x)}{x}$	(c) x+3 = 8	, X +	X = 5 or x = -11 V	$(\alpha) \chi \left(x - q \right) = 0$	1 b=x x=0 x	- 4#			(f) $\frac{d}{dy}(\cos x) = -\sin x$		(g) focus = (o, -1) V	(b) (1 dx = 10g x + c) X								

			= log 2	= log & - log H) Jo X2+4 L Jo	(b) (2 2x dx = [log (x2+4)]2	(3×-1) ²	= - 5	$\frac{3}{(3x-1)^2}$		y' = 2(3x-1) - 3(2x+1)	$(III) \qquad y = \frac{\lambda x + 1}{\lambda x + 1}$		$= 12\pi \left(\chi^{2} - 1 \right)^{5} V$	4,=	= (x2	11 1 2 ex	がニースe-x y	4 - 8C V	4) = 7 o = %	$(\alpha) (i) \qquad m = \frac{2}{6\pi}$	QUESTION 3
		5		$= 2 - 12 + 2$ $= 4 - \sqrt{2} \text{om} ts^2$	+ A2		= 2	= -2 (0-1)	= x (818 11 - 318 2)	-7 /5: 7	= -2 Sinn 7	$A_{\lambda} = -\int_{\mathcal{L}} \mathcal{L} \cos x dx$	# 2	= 2-12	= 2- 2 x 1/2			= 2 (4x = - 4x =)	T X NIS T	, + -	(c) $A_i = \int_{\mathbb{T}}^{\frac{1}{2}} 2 \cos \kappa d\kappa$	T

.

	x -1 0 1 2 3	4, -90 30-9	x \		so (0,0) is a minimum turning	point and (2,4) is a	my furgine both		(iii) When 4"=0	$0 = \chi g - g$	/ / / = x	4=2	D .	χ 0 / χ	1 9-09 "h	₹	$\chi = 1/2$	of of Axtlexion	0	(i/)	والمراجعة والمستعدد والمستعد والمستعدد والمستع	h 4		2 + 6			-1 1 2 3 4		(tromps cont	(how	$(v) \qquad 3\kappa^2 - \kappa^3 \leqslant o$	X=0 00 X X 3 V	13.4		
QUESTION 4		(a) (i) -5, (0, 25, 955	d=-5 d=15	$T_n = \alpha + (n-1) d$	455 = -	= 1-u		n = 65 V	So there are 65 terms in the	Sequence.	-T+T-T	91 8 4 7	M: a= 1, r=-1		Sa = 12			7 + 1	AX TE		100		(b) (i) when 4=0	1	$\chi^{2}(3-\pi) = 0$	x=003 V		(1) when y'=0	$6\pi - 3\pi^2 = 0$	34(2-4)=	11	ວ	So the stationary points	are (0,0) and (2,4).	

٠.

(a) (i) $y=x^3$ Tought of $P:$ $y=x^3$ At $P(\gamma_{i-1})$ $y=x^3$ At	A = $\int_{1}^{2} 3\kappa + 2 - \kappa^{3} d\kappa$ $= \left[\frac{3\kappa^{2} + 2\kappa - \kappa^{4}}{2}\right]^{2}$ $= \left[\frac{3\kappa^{2} + 2\kappa - \kappa^{4}}{2}\right]^{$	
(a) i) $y = x^{3}$ $y = 3x^{2}$ $y = 3x^{$	A = $\int_{-1}^{2} \frac{3x^2 + 2x - x^3}{3x^2 + 2x - x^4} \frac{dx}{dx}$ $= \frac{3x^2 + 2x - x^4}{4} \frac{x^2}{-1}$ $= \frac{3x^2 + 2x - x^4}{4} \frac{x^2}{-1}$ $= \frac{6+4-4}{4} - (\frac{3}{2}-2-\frac{1}{4})$ $= \frac{6+4}{4} \text{numb} x$ $= \frac{3}{4} \frac{3x+2}{4} \text{and} x^3 = x^4$ $= \frac{3}{4} \frac{3x+2}{4} \text{and} x^3 = x^4$ $= \frac{3}{4} \frac{3x^2 + 2x - x^4}{4} \frac{7}{4}$ $= \frac{3}{4} \frac{3x^2 + x^2 - x^4}{4} \frac{3x^2 + x^2 - x^4}{4}$ $= \frac{3}{4} \frac{3x^2 + x^2 + x^2 - x^4}{4} 3x^2 + x$	
(a) (i) $y = x^3$	$A = \int_{-1}^{2} \frac{3x+2-x^3}{3x^2+2x-x^4} \frac{dx}{dx}$ $= \left(\frac{3x^2+2x-x^4}{2}\right)^{\frac{1}{2}}$ $= \left(\frac{6+4-4}{2}\right) - \left(\frac{3}{2}-2-\frac{1}{4}\right)$ $= \left(\frac{3}{4}\right) \frac{3x+2}{4} \text{and} \frac{3}{4} - \frac{1}{4}$ $= \left(\frac{3}{4}\right) \frac{3x+2}{4} \text{and} \frac{3x+2}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + 1$	
(a) (i) $\frac{4}{4} = \frac{x^3}{3x^2}$ Tougud at ρ : $\frac{1}{4} = \frac{3x^2}{3x^2}$ $\frac{1}{4} = \frac{3(x+1)}{3(x+1)}$ At $P(-1,-1)$ $\frac{1}{4} = \frac{3(x+1)}{3(x+2)}$ At P	$A = \int_{-1}^{2} 3x+2-x^{3} dx$ $= \left[\frac{3x^{2}+2x-x^{4}}{2}\right]^{2}$ $= \left(6+4-4\right)-\left(\frac{3}{2}-2-\frac{1}{4}\right)$ $= \left(6+\frac{1}{4}-4\right)-\left(\frac{3}{2}-2-\frac{1}{4}\right)$ $= \left(6+\frac{1}{4}-4\right)$ $= \left(6+\frac{1}{4}-4\right)-\left(\frac{3}{2}-2-\frac{1}{4}\right)$ $= \left(6+\frac{1}{4}-4\right)$ $= \left(6+\frac{1}{4}-4\right)-\left(\frac{3}{2}-2-\frac{1}{4}\right)$ $= \left(6+\frac{1}{4}-4\right)$ $= \left(6+\frac$	
(a) (i) $y = x^3$	$A = \int_{-1}^{2} \frac{3x+2-x^3}{3x+2-x^3} \frac{dx}{dx}$ $= \left[\frac{3x^2+2x-x^4}{4} \right]_{-1}^{2}$ $= \left(\frac{6+4-4}{4} \right) - \left(\frac{3}{2}-2-\frac{1}{4} \right)$ $= \frac{6}{4} \text{numb}^{2}$ $= \frac{3}{4} $	
(a) (i) $y = x^3$ fougust at P : $y = x^3$ fougust at P : $y = x^3$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1;-1)$ $y = 3x+2$ At $P(-1$	$A = \int_{-\frac{\pi}{2}}^{2} \frac{3x+2-x^3}{3x^2+2x-x^4} \frac{dx}{4}$ $= \left[\frac{3x^2+2x-x^4}{4}\right]^2$ $= \left(\frac{6+4-4}{4}\right) - \left(\frac{3}{2}-2-\frac{1}{4}\right)$ $= \frac{6\frac{3}{4}}{4} \text{numb}^2$ $= \frac{6\frac{3}{4}}{4} \text{numb}^2$ $= \frac{3x^2+2x-x^4}{4} - \frac{1}{4}$ $= \frac{3}{4} - \frac{1}{$	
(a) (i) $y = x^3$ fougus at P : $y = x^3$ fougus at P : $y = x^3$ fougus at P : $y = x^3$ At $P(-1;-1)$ $y = 3x^2$ $y + (=3(x+1))$ At $P(-1;-1)$ $y = 3(2;1)$ into both equation: $y = x^3$ At $P(-1;-1)$ $y = 3(2;1)$ into both equation: $y = x^3$ At $P(-1;-1)$ $y = 3(2;1)$ into both equation: $y = x^3$ At $P(-1;-1)$ $y = 3(2;1)$ into both equation: $y = x^3$ At $P(-1;-1)$ $y = 3(2;1)$ into both equation: $y = x^3$ At $P(-1;-1)$ $y = 3(2;1)$ into both equation: $y = x^3$ At $P(-1;-1)$ $y = 3(2;1)$ into both equation: $y = x^3$ At $y = 3(2;1)$ into both equation: $y = x^3$ At $y = 3(2;1)$	$= \int_{-1}^{2} \frac{3x+2-x^{3}}{3x^{2}+2x-x^{4}} \frac{dx}{dx}$ $= \left(\frac{3x^{2}+2x-x^{4}}{4}\right)^{2}$ $= \left(\frac{3}{4} + \frac{3}{4} + $	(iii)
(a) (i) $y = x^3$ fougust at P : $y' = 3x^2$ $y' = 3(x+1)$ At $P(-1,-1)$ $y' = 3(-1)^2$ $y' = 3x+2$ (ii) Authituting $R(2,t)$ into both equation: $y = 3x+2$ At $x = x^3$ $RHS = x^3$	$= \int_{-1}^{2} \frac{3x^{2} + 2x - x^{3}}{3x^{2} + 2x - x^{4}} \int_{-1}^{2}$ $= \left(6 + 4 - 4\right) - \left(\frac{3}{2} - 2 - \frac{3}{2}\right)$ $= \left(6 + \frac{3}{4}\right) = \frac{3}{4}$	(iii)
(ii) $y = x^3$ At $P(-1,-1)$ $y = 3x^2$ At $P(-1,-1)$ $y = 3x^2$ (iii) Audithting $(2,1)$ into both equation: $y = 3x + 2$ $y = 3x + 2$ At $y = 3x + 2$	$= \int_{-1}^{2} \frac{3x+2-x^3}{3x^2+2x-x^4} \frac{dx}{4}$ $= \left(\frac{3x^2+2x-x^4}{4}\right)^{-1}$ $= \left(\frac{6+4-4}{4}\right) - \left(\frac{3}{2}-2-\frac{1}{2}\right)^{-1}$	(iii)
(a) (i) $y = x^3$ Tangent at P : $y = 3x^2$ Tangent at P : $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1,-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1,-1)$ $y = 3x^2$ $y = 3x+2$ At $P(-1,-1)$ $y = 3x^2$ $y = 3x+2$ At $P(-1,-1)$ $y = 3x^2$ At $P(-1,-1)$ $y = 3x^2$ At $P(-1,-1)$ $y = 3x+2$ At $P(-1,-1)$ y	$= \int_{-1}^{2} \frac{3x+2-x^3}{3x^2+2x-x^4} dx$	(iii)
RUESTION 5 (a) (i) $y = x^3$ $y = 3x^2$ $y + 1 = 3(x + 1)$ At $P(-1,-1)$ $y' = 3(-1)^2$ $y' = 3(-1)^2$ At $P(-1,-1)$ $y' = 3(-1)$ At $P(-1,-$	$= \int_{-1}^{2} 3x^{2} + 2 - x^{3} dx$	(iii)
RUESTION 5 (a) (i) $y = x^3$ At P(-1,-1) $y' = 3x^2$ $y' = 3x^2$ At P(-1,-1) $y' = 3x^2$ $y' = 3x^2$ At P(-1,-1)	$= \int_{-2}^{2} 3x + 2 - x^{3}$	ſii)
(a) i) $y = x^3$ Tangent at P : $y = 3x^2$ $y + 1 = 3(x+1)$ At $P(-1,-1)$ $y = 3(-1)^3$ $y + 1 = 3(x+1)$ At $P(-1,-1)$ $y = 3(-1)^3$ $y + 1 = 3(x+1)$ At $P(-1,-1)$ $y = 3(-1)^3$ $y + 1 = 3(x+1)$ At $P(-1,-1)$ $y = 3x^2$ $y + 1 = 3(x+1)$ $y = 3x + 3$ $y = 3x + 2$ $y = 3x +$	1	
QUESTION 5 (a) (i) $y = x^3$	= 2	
(a) (i) $y = x^3$ Tougud at p : $y = x^3$ Tougud at p : $y = x^3$ $y = 3x^2$ $y = 3x^2$ $y = 3x^2$ $y = 3x^2$ $y = 3x + 3$ At $y = 3x + 3$ $y = 3x + 2$ $y = x^3$ RHS = 2 3 RHS = 3 3 RHS = 3(2)+2 = B = LHS = LHS Solving simultaneously when $x = x$ $y = x^3$ $x^3 = 3x + 2$ So $0 = (2,8)$	= 0	
QUESTION 5 (a) (i) $y = x^3$ Tougand at p : $y = 3x^2$ $y = 3(x+1)$ At $p(-1,-1)$ $y' = 3(-1)^2$ $y' = 3(x+1)$ At $p(-1,-1)$ $y' = 3(-1)^2$ $y' = 3(-1)^2$ $y' = 3(-1)^2$ At $p(-1,-1)$ $p' = 3(-1)^2$ $p' = 3(-1)^2$ $p' = 3(-1)^2$ RHS = $p(-1,-1)$ $p' = 3(-1)^2$ $p' = 3(-1)^2$ RHS = $p(-1,-1)$ $p' = 3(-1)^2$ $p' = 3(-1)^2$ RHS = $p(-1,-1)$ $p' = 3(-1)^2$ $p' = 3(-1)^2$ RHS = $p(-1,-1)$ $p' = 3(-1)^2$	3-3x-2 = 0 So Q = /2	
RUESTION 5 (a) (i) $y = x^3$ Tangent at p : $y = 3(x+1)$ At $P(-1,-1)$ $y' = 3(-1)^3$ $y' = 3(-1)^3$ At $P(-1,-1)$ $y' = 3(-1)^3$ $y' = 3(2,t)$ into both equation: $y = 3x+2$ $y = x^3$	x 3 = 3x + 2	
(a) (i) $y = x^3$ Tongend at P : $y' = 3x^2$ $y' = 3(x+1)$ $y' = 3(x+1)$ At $P(-1,-1)$ $y' = 3(-1)^2$ $y' = 3x+3$ (ii) Authifuting $8(2,8)$ into both equation: $y = 3x+2$ $y = x^3$ $x = 8$ $x $	simultaneously when x = 2	OR
(a) (i) $y = x^3$ Tougust at $p:$ $y = x^3$ At $p(-1,-1)$ $y' = 3(-1)^2$ $y' = 3(-1)^2$ $y' = 3(-1)^2$ $y' = 3(-1)^2$ $y' = 3(2,t)$ who both equations: $y = x^3$ $y = x^3$ $y = x^3$ $y = 3x + 2$ $y =$	Q(2,8) is common to the curve and the	
(a) (i) $y = x^3$ Tougust at p : $y = 3x^2$ $y + 1 = 3(x + 1)$ At $p(-1,-1)$ $y' = 3(-1)^2$ $y' = 3x + 3$ (ii) Authituting $8(2,8)$ into both equations: $y = x^3$ $RHS = 2^3$ $RHS = 3$ $RHS = 3(2,8)$ into both $x = 3(2) + 2$ $x = 6 + 2$ $x = 4$ $x = 8$ $x = 6 + 2$ $x = 8$	THS N =	
(a) (i) $y = x^3$ Tongent at p : $y = 3x^2$ $y = 3(x+1)$ $y = 3(x+1)$ $y = 3(x+1)$ $y = 3(x+1)$ $y = 3x+3$ (ii) Authithing $x = 3(2, x)$ into both equations: $y = x^3$ $y = x^3$ $y = 3x+2$ $y = x^3$ $y = x^3$ $y = 3x+2$ $y = x^3$ $y = x^3$ $y = x^3$	<i>y</i> / = 8	
(a) (i) $y = x^3$ Tongend at $p:$ $y = 3x^2$ $y + 1 = 3(x + 1)$ At $P(-1,-1)$ $y' = 3(-1)^2$ $y + 1 = 3x + 3$ (ii) Anathithing $8(2,8)$ into both equation: $y = 3x + 2$ $y = x^3$ $RHS = 2^3$ $RHS = 3(2) + 2$	li &	
(a) (i) $y = x^3$ Tangent at p : $y = 3(x+1)$ $y' = 3(-1)^2$ $y' = 3(x+1)$ $y' = 3($	0 = 23	
(a) (i) $y = x^3$ Tangent at p : $y = 3x^2$ $y = 3(x+1)$ $y = 3(x+1)$ $y = 3x + 3$ (ii) Anastituting $8(2,8)$ into both equations:	<i>γ</i> ν	
(a) (i) $y = x^3$ Tought at p : y' = 3(x+1) $y' = 3(x+1)$ $y' = 3(x+1)$ $y' = 3x + 3$ $y' = 3x + 3$	& (2,8) into both equations	
(a) (i) $y = x^3$ Tougett at p : y' = 3(x+1) $y' = 3(x+1)$ $y' = 3(x+1)$ $y' = 3x + 3$		
(a) (i) $y = x^3$ Tought at p : $y' = 3x^2$ $y' = 3(x+1)$ $y' = 3(x+1)$		
QUESTION 5 (a) (i) $y = x^3$ Tought at p : $y' = 3(x+1)$	$u' = 3(-1)^2$ $u \neq 1 = 3$	A+ P(-
QUESTION 5 (a) (i) $y = x^3$ Tongent at p :	3 2 2 4 + 1 = 3 /	
RUESTION 5	= x 3 Tangent at P	(a)
C	- 11	
	<u> </u>	81
	.7.	1445

.

		**
· · · · · · · · · · · · · · · · · · ·		
	2016	(2) T = T 0-kt
(0)		in when the
	1 × x	= 2000
		: I. 2. 2000
	$V = \frac{dx}{dt}$	I = 2000 e-kt
(b) (i)	x = 64-2	when t= 45 I = 1000
	dv dv	(000 = 1000 € -45K
er tamon	7 7 7 7	n
	+ 17-	: 7/5
	when t=0, v=-1:	17
	-1=0-0+0	
	/-= 2	k= #5 10ge2
	V= 3t2.2t-1	
And To America	when t= 2,	(iii) 0.1 I. = I.e -16.
	$V = 3(\mu) - 2(\nu) - 1$	-kt = 109, 0.1
	= 7 m/s V	£ = 10ge o.1
	Carre Can wenterday and	1 10g 2
):	7	2,1
	34-24-1 = 0	L : 144 months
	0 ::	
	4=1 m-1	(iv) of $I = -kI$
	an	
	par	= - 1 loge 2 x 200
	stationary after I second.	
		= - 3.08 g/min
9	(iii) 3	
	utawa =	
	12 (13 11 17 3	
	- (x - x - x)	
Application and the section accept the later of the section of the		
THE SERVICE AND A SERVICE SERVICE AND	= 27-9-3-8+4+2	
· ·	= 13 metres	
and the second control of the second control		
madden en manning grunner myndy men styddio ddiddiddion - e e e		
en e	enter a series de la companya de la	
	;	

9 \$27.97. V	= KHS
062-60	ر
R	×
+ R	•1
= 100 (1+ R + R2)	2 sinx
= 100 x R2+	$\frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx}$
lu	
۲,	OR 2 sec= x tanx
0479/6) 12	
femals account other or bur	6053×
*	ر منده و
= \$105.90	$\frac{\partial^2}{\partial x^2} = -2 \times -\sin x \times (\cos x)^{-3}$
) subcont	
munt = \$100 x 11.000	$= (\cos x)^{-1}$
will be compounded 12 times:	dx = vocxx
After 12 months the fruit \$100	
	A strate
whom no 9 164400.0 =	
12	anterior to
5-75 %	
offer the 18" and final payment	
's occount grows	
- 3040.57	
1	
$= 100 \times 1(1.06 - 1)$	
	dil u h h h
A18 = 100(1+1.06+1.06+1+1.0617)	
	27
= 100/1+	so y=tanx is increasing
A, = 100x 1.06 + 100x1.06 + 100	2/2/
Az = 100x 1-06 + 100	$-\frac{\pi}{m}$ II 3π
$A_1 = 100$	> 0
	2/2
teiolis account after n bim	(a) (j) u= taux
(b) in het &A be the amount in	e a compression section section section section and the resident section of section section section section sec
The second secon	QVESTION 9

ò

