Number Theory CP Questions (ACM Style)

Instructions

Sample input/output formats are standard ACM: each test case on a new line, output as specified. You may add multiple test cases as needed.

1. Division

Problem: Given two integers A and B, find the quotient and remainder when A is divided by B.

Input: Two integers A and B $(-10^9 \le A, B \le 10^9, B \ne 0)$.

Output: Print the quotient and remainder separated by a space.

Sample Input: 17 5 Sample Output: 3 2

2. The Division Algorithm

Problem: Given an integer N and a positive integer d, find unique integers q and r such that N = dq + r, where $0 \le r < d$.

Input: Two integers N and $d (-10^9 \le N \le 10^9, 1 \le d \le 10^9)$.

Output: Print q and r separated by a space.

Sample Input: -7 3 Sample Output: -3 2

3. Modular Arithmetic

Problem: Given a number A and a modulus M, compute A mod M. **Input:** Two integers A and M $(-10^{18} \le A \le 10^{18}, 1 \le M \le 10^9)$.

Output: Print $A \mod M$.

Sample Input: 123456789012345678 1000000007

Sample Output: 643499475

4. Modular Arithmetic (Greatest Common Divisor)

Problem: Given two integers A and B, find their greatest common divisor (GCD) using the Euclidean algorithm.

Input: Two integers A and B $(1 \le A, B \le 10^{12})$.

Output: Print their GCD. Sample Input: 48 18 Sample Output: 6

5. Modular Arithmetic (Least Common Multiple)

Problem: Given two integers A and B, find their least common multiple (LCM).

Input: Two integers A and B $(1 \le A, B \le 10^{12})$.

Output: Print their LCM. Sample Input: 12 15 Sample Output: 60

6. Modular Arithmetic (GCD Linear Combination)

Problem: Given two integers A and B, find integers x and y such that $Ax + By = \gcd(A, B)$.

Input: Two integers A and B $(1 \le A, B \le 10^6)$. **Output:** Print x and y separated by a space.

Sample Input: 30 12 Sample Output: 1 -2

7. Solving Linear Congruence

Problem: Given integers a, b, and m, solve the linear congruence $ax \equiv b \pmod{m}$ for integer x, or print -1 if there is no solution.

Input: Three integers a, b, and m $(1 \le a, b, m \le 10^6)$.

Output: Print the smallest non-negative solution x $(0 \le x < m)$, or -1 if no solution exists.

Sample Input: 4 8 12 Sample Output: 2

8. Fermat's Little Theorem

Problem: Given integers a and prime p, compute $a^{p-1} \mod p$ and verify Fermat's Little Theorem.

Input: Two integers a and p $(1 \le a .$

Output: Print $a^{p-1} \mod p$.

Sample Input: 3 7 Sample Output: 1

9. Euler's Theorem

Problem: Given integers a and n $(1 \le a < n \le 10^6)$, where gcd(a, n) = 1, compute $a^{\phi(n)} \mod n$ using Euler's Theorem $(\phi(n))$ is Euler's totient function).

Input: Two integers a and n. Output: Print $a^{\phi(n)} \mod n$. Sample Input: 3 10 Sample Output: 1

10. Check Divisibility

Problem: Given two integers A and B, determine whether A is divisible by B.

Input: Two integers A and B $(-10^9 \le A, B \le 10^9, B \ne 0)$. Output: Print YES if A is divisible by B, otherwise print NO.

Sample Input: 10 5 Sample Output: YES

11. Find Modular Multiplicative Inverse

Problem: Given two integers a and m, find an integer x such that $ax \equiv 1 \pmod{m}$. If no such x exists, output -1.

Input: Two integers a and m $(1 \le a, m \le 10^6)$.

Output: Print the modular inverse x $(0 \le x < m)$, or -1 if it does not exist.

Sample Input: 3 11 Sample Output: 4

12. Count Numbers Coprime to n

Problem: Given an integer n, count the number of integers between 1 and n (inclusive) that are coprime with n.

Input: One integer n $(1 \le n \le 10^6)$.

Output: Print the count of integers coprime to n.

Sample Input: 6 Sample Output: 2

13. Find All Divisors

Problem: Given an integer n, print all its positive divisors in ascending order.

Input: One integer n $(1 \le n \le 10^9)$.

Output: Print all divisors of n separated by spaces in ascending order.

Sample Input: 12

Sample Output: 1 2 3 4 6 12

14. Solve System of Two Linear Congruences

Problem: Given two congruences: $x \equiv a_1 \pmod{m_1}$ and $x \equiv a_2 \pmod{m_2}$, where m_1 and m_2 are coprime, find the smallest non-negative integer x satisfying both congruences.

Input: Four integers a_1, m_1, a_2, m_2 $(1 \le a_1, a_2 < m_1, m_2 \le 10^6, \gcd(m_1, m_2) = 1)$.

Output: Print the smallest non-negative solution x ($0 \le x < m_1 m_2$).

Sample Input: 2 3 3 5 Sample Output: 8

15. Large Modular Exponentiation

Problem: Given integers a, b, and m, compute $a^b \mod m$ efficiently.

Input: Three integers $a, b, m \ (1 \le a, m \le 10^9, 0 \le b \le 10^9)$.

Output: Print the value of $a^b \mod m$.

Sample Input: 2 10 1000

Sample Output: 24

16. Prime Factorization

Problem: Given an integer n, print all of its prime factors in ascending order.

Input: One integer $n \ (2 \le n \le 10^9)$.

Output: Print the prime factors separated by spaces in ascending order.

Sample Input: 60

Sample Output: 2 2 3 5

17. Test for Primality

Problem: Given an integer n, determine whether it is prime.

Input: One integer n $(2 \le n \le 10^9)$.

Output: Print YES if n is prime, otherwise print NO.

Sample Input: 17 Sample Output: YES

18. Sum of GCDs

Problem: Given an integer n, compute the sum $\sum_{k=1}^{n} \gcd(n,k)$.

Input: One integer n $(1 \le n \le 10^6)$. Output: Print the sum of GCDs.

Sample Input: 6
Sample Output: 14