TRANSMISSION MEDIA, PROTOCOLS, CLASSIFICATION AND NETWORK TOPOLOGIES

Transmission media

- Transmission media are the physical or wireless channels that allow data transfer over a network.
- They are essential to establish communication between network devices.
 - o Guided (wired) types:
 - Twisted pair: two copper wires twisted to reduce interference.

■ Coaxial cable: a single central conductor surrounded by an insulator and a metal mesh.

■ **Fiber optics:** glass or plastic filaments that use light to transmit data.

- Unguided (wireless) types:
 - Radiofrequency: communication through radio waves.
 - **Microwaves:** communication using high-frequency electromagnetic waves (used by satellite television).
 - Infrared: used in short-range devices such as remote controls.
- Characteristics or factors affecting the performance of transmission media:
 - Bandwidth: maximum data transfer capacity.
 - Transmission speed: how fast data is transferred.
 - Interference and noise: can affect signal quality.

Communication protocols

- Communication protocols are a set of rules that govern how data is transmitted over a network.
- They allow devices to communicate in an orderly and secure manner.
 - Common protocols:
 - TCP/IP: main internet protocol, guarantees reliable data transmission.
 - HTTP/HTTPS: used for web browsing.
 - FTP: file transfer protocol (deprecated because it is insecure, SSH is now used).
 - SMTP/POP3/IMAP: email protocols.

Network classification

- Classification according to geographical scope:
 - PAN: personal network, nearby devices (infrared, bluetooth, controls, sensors, portable devices, printers).
 - LAN: local network in a limited area (office, home). It is controlled by a router or a switch.
 - o **CAN:** campus area network (government, university, business).
 - MAN: network that spans a city or region.
 - WAN: network that connects large geographical distances (cities between cities, countries).

NOTE: the Internet is the largest type of network.

NOTE: router and modem may be combined into a single unit called a "gateway" or "hub".

NOTE: ISP = Internet Service Provider.

NOTE: layer 2 in the OSI model works with a MAC address.

- Classification according to administration:
 - o **Private networks**: access controlled by an organization.
 - Public networks: open to general access, such as the internet.
- Classification according to topology (physical or logical structure):
 - Star: a central node connects all devices.
 - Bus: all devices share a single channel.
 - Ring: devices are connected in a closed chain (serves as backups).
 - Mesh: all devices are connected to each other (they are very expensive but robust).

Network topologies

- Network topology defines how devices are organized and connected on a network.
- It can be physical (how they physically connect) or logical (how data flows).

Star topology:

- A central node (e.g. switch) connects all devices.
- <u>Advantages:</u> easy to manage, failures in individual devices do not affect the network.
- <u>Disadvantages:</u> If the central node fails, the entire network becomes inoperative.

NOTE: cascading of star switches (up to 4 stars max.)

Bus topology:

- All devices share a single communication channel.
- Advantages: simplicity and low cost.
- Disadvantages: problems with data collisions and lower scalability.

Ring topology:

- The devices are connected forming a closed loop.
- Advantages: unidirectional data flow that minimizes collisions.
- <u>Disadvantages:</u> a failure in one device can disrupt the entire network.

NOTE: applies the FIFO method; 2 network cards required; They are physically secure, not wirelessly; redundant system.