In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

01:00:00 2017-		uata														
0 06-01 NaN NaN NaN 0.3 NaN NaN 4.0 38.0 NaN NaN NaN NaN NaN 5.0 Nan 01:00:00 1 2017-	ıt[2]:		date	BEN	СН4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TCI
1 06-01 0.6 NaN 0.3 0.4 0.08 3.0 39.0 NaN 71.0 22.0 9.0 7.0 01:00:00 2017- 2 06-01 0.2 NaN NaN 0.1 NaN 1.0 14.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		0	06-01	NaN	NaN	0.3	NaN	NaN	4.0	38.0	NaN	NaN	NaN	NaN	5.0	Nai
2 06-01 0.2 NaN NaN 0.1 NaN 1.0 14.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		1	06-01	0.6	NaN	0.3	0.4	0.08	3.0	39.0	NaN	71.0	22.0	9.0	7.0	1.
3 06-01 NaN NaN 0.2 NaN NaN 1.0 9.0 NaN 91.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		2	06-01	0.2	NaN	NaN	0.1	NaN	1.0	14.0	NaN	NaN	NaN	NaN	NaN	Nal
4 06-01 NaN NaN NaN NaN NaN NaN 1.0 19.0 NaN 69.0 NaN NaN 2.0 NaN 01:00:00 NaN NaN 2.0 NaN 01:00:00 NaN NaN NaN NaN NaN 1.0 19.0 NaN 69.0 NaN NaN NaN 2.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		3	06-01	NaN	NaN	0.2	NaN	NaN	1.0	9.0	NaN	91.0	NaN	NaN	NaN	Nal
2017- 210115		4	06-01	NaN	NaN	NaN	NaN	NaN	1.0	19.0	NaN	69.0	NaN	NaN	2.0	Nat
210115 08-01 NaN NaN 0.2 NaN NaN 1.0 27.0 NaN 65.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na																
210116 08-01 NaN NaN 0.2 NaN NaN 1.0 14.0 NaN NaN 73.0 NaN 7.0 NaN 00:00:00 2017- 210117 08-01 NaN NaN NaN NaN NaN 1.0 4.0 NaN 83.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		210115	08-01	NaN	NaN	0.2	NaN	NaN	1.0	27.0	NaN	65.0	NaN	NaN	NaN	Nal
210117 08-01 NaN NaN NaN NaN 1.0 4.0 NaN 83.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		210116	08-01	NaN	NaN	0.2	NaN	NaN	1.0	14.0	NaN	NaN	73.0	NaN	7.0	Nai
210118 08-01 NaN NaN NaN NaN 1.0 11.0 NaN 78.0 NaN NaN NaN N 00:00:00 2017- 210119 08-01 NaN NaN NaN NaN 1.0 14.0 NaN 77.0 60.0 NaN NaN N		210117	08-01	NaN	NaN	NaN	NaN	NaN	1.0	4.0	NaN	83.0	NaN	NaN	NaN	Nal
210119 08-01 NaN NaN NaN NaN 1.0 14.0 NaN 77.0 60.0 NaN NaN N		210118	08-01	NaN	NaN	NaN	NaN	NaN	1.0	11.0	NaN	78.0	NaN	NaN	NaN	Nal
		210119	08-01	NaN	NaN	NaN	NaN	NaN	1.0	14.0	NaN	77.0	60.0	NaN	NaN	Nal

210120 rows × 16 columns

In [3]: data.head(10)

Out[3]:		date	BEN	СН4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	то
	0	2017- 06-01 01:00:00	NaN	NaN	0.3	NaN	NaN	4.0	38.0	NaN	NaN	NaN	NaN	5.0	NaN	Na
	1	2017- 06-01 01:00:00	0.6	NaN	0.3	0.4	0.08	3.0	39.0	NaN	71.0	22.0	9.0	7.0	1.40	2
	2	2017- 06-01 01:00:00	0.2	NaN	NaN	0.1	NaN	1.0	14.0	NaN	NaN	NaN	NaN	NaN	NaN	0
	3	2017- 06-01 01:00:00	NaN	NaN	0.2	NaN	NaN	1.0	9.0	NaN	91.0	NaN	NaN	NaN	NaN	Na
	4	2017- 06-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	19.0	NaN	69.0	NaN	NaN	2.0	NaN	Na
	5	2017- 06-01 01:00:00	0.1	NaN	0.3	0.2	NaN	1.0	26.0	NaN	70.0	26.0	NaN	1.0	NaN	0
	6	2017- 06-01 01:00:00	0.3	NaN	0.2	0.1	0.17	1.0	19.0	NaN	79.0	23.0	9.0	3.0	0.86	1
	7	2017- 06-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	9.0	NaN	87.0	NaN	NaN	NaN	NaN	Na
	8	2017- 06-01 01:00:00	NaN	NaN	0.3	NaN	NaN	3.0	30.0	NaN	70.0	NaN	NaN	NaN	NaN	Na
	9	2017- 06-01 01:00:00	NaN	NaN	0.1	NaN	NaN	1.0	15.0	NaN	NaN	22.0	NaN	10.0	NaN	Na

In [4]: data.tail(20)

Out[4]:		date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тс
	210100	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	39.0	NaN	55.0	NaN	NaN	1.0	Nε
	210101	2017- 08-01 00:00:00	0.3	NaN	0.2	0.2	NaN	1.0	23.0	NaN	61.0	33.0	NaN	1.0	Nε
	210102	2017- 08-01 00:00:00	0.1	NaN	0.1	0.1	0.08	1.0	10.0	NaN	77.0	28.0	10.0	3.0	1.1
	210103	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	23.0	NaN	69.0	NaN	NaN	NaN	Nε
	210104	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	5.0	39.0	NaN	37.0	NaN	NaN	9.0	Na
	210105	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	2.0	25.0	NaN	NaN	27.0	NaN	5.0	Nε
	210106	2017- 08-01 00:00:00	0.3	NaN	NaN	0.4	NaN	3.0	20.0	NaN	NaN	25.0	10.0	2.0	Nε
	210107	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	2.0	15.0	NaN	69.0	NaN	NaN	NaN	Nε
	210108	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	2.0	27.0	NaN	NaN	34.0	NaN	8.0	Nε
	210109	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	24.0	NaN	NaN	24.0	15.0	NaN	Nε
	210110	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	2.0	19.0	NaN	NaN	23.0	11.0	NaN	Nε
	210111	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	15.0	NaN	57.0	NaN	NaN	NaN	Nε
	210112	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	15.0	29.0	NaN	NaN	23.0	10.0	NaN	Nε
	210113	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	2.0	24.0	NaN	71.0	NaN	NaN	NaN	Nε
	210114	2017- 08-01 00:00:00	0.3	NaN	NaN	0.4	0.09	1.0	18.0	NaN	NaN	23.0	NaN	NaN	1.;
	210115	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	27.0	NaN	65.0	NaN	NaN	NaN	Nε
	210116	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	14.0	NaN	NaN	73.0	NaN	7.0	Nε

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TC
210117	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	4.0	NaN	83.0	NaN	NaN	NaN	Nε
210118	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	11.0	NaN	78.0	NaN	NaN	NaN	Nε
210119	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	14.0	NaN	77.0	60.0	NaN	NaN	Nε

In [5]: data.describe()

_				
()	111	- 1	- 5	
v	u	u		

	BEN	CH4	СО	EBE	NMHC	NO	
count	50201.000000	6410.000000	87001.000000	49973.000000	25472.000000	209065.000000	209
mean	0.595534	1.321218	0.363866	0.394819	0.127865	23.409189	
std	0.774482	0.203652	0.262726	0.674253	0.094632	50.362967	
min	0.100000	1.000000	0.100000	0.100000	0.000000	1.000000	
25%	0.200000	1.190000	0.200000	0.100000	0.080000	2.000000	
50%	0.400000	1.280000	0.300000	0.200000	0.110000	6.000000	
75%	0.700000	1.390000	0.400000	0.500000	0.160000	20.000000	
max	19.600000	3.630000	4.900000	38.299999	4.400000	973.000000	4

In [6]: np.shape(data)

Out[6]: (210120, 16)

In [7]: np.size(data)

Out[7]: 3361920

In [8]: data.isna()

Out[8]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	
0	False	True	True	False	True	True	False	False	True	True	True	True	False	
1	False	False	True	False	False	False	False	False	True	False	False	False	False	F
2	False	False	True	True	False	True	False	False	True	True	True	True	True	
3	False	True	True	False	True	True	False	False	True	False	True	True	True	
4	False	True	True	True	True	True	False	False	True	False	True	True	False	
210115	False	True	True	False	True	True	False	False	True	False	True	True	True	
210116	False	True	True	False	True	True	False	False	True	True	False	True	False	
210117	False	True	True	True	True	True	False	False	True	False	True	True	True	
210118	False	True	True	True	True	True	False	False	True	False	True	True	True	
210119	False	True	True	True	True	True	False	False	True	False	False	True	True	

210120 rows × 16 columns

In [9]: data.dropna()

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TC
87457	2017- 10-01 01:00:00	0.6	1.22	0.3	0.4	0.09	4.0	54.0	60.0	43.0	12.0	9.0	13.0	1.3
87462	2017- 10-01 01:00:00	0.2	1.18	0.2	0.1	0.09	1.0	26.0	28.0	42.0	14.0	6.0	3.0	1.2
87481	2017- 10-01 02:00:00	0.4	1.22	0.2	0.2	0.06	2.0	32.0	36.0	53.0	14.0	10.0	13.0	1.2
87486	2017- 10-01 02:00:00	0.2	1.19	0.2	0.1	0.07	1.0	15.0	17.0	51.0	18.0	8.0	3.0	1.2
87505	2017- 10-01 03:00:00	0.3	1.23	0.2	0.2	0.06	2.0	27.0	29.0	57.0	15.0	10.0	13.0	1.2
158238	2017- 12-31 22:00:00	0.3	1.11	0.2	0.1	0.03	1.0	8.0	9.0	73.0	3.0	1.0	3.0	1.
158257	2017- 12-31 23:00:00	0.6	1.38	0.3	0.1	0.03	6.0	42.0	51.0	47.0	7.0	4.0	3.0	1.4
158262	2017- 12-31 23:00:00	0.3	1.11	0.2	0.1	0.03	1.0	6.0	8.0	72.0	6.0	3.0	3.0	1.
158281	2018- 01-01 00:00:00	0.5	1.38	0.2	0.1	0.02	2.0	20.0	23.0	69.0	4.0	2.0	3.0	1.3
158286	2018- 01-01 00:00:00	0.3	1.11	0.2	0.1	0.03	1.0	1.0	3.0	83.0	8.0	5.0	3.0	1.

```
In [10]: data.columns
```

```
In [11]: sd=data[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]
```

In [12]: dd=sd.head(20) dd

Out[12]:

	BEN	со	EBE	NMHC	NO_2
0	NaN	0.3	NaN	NaN	38.0
1	0.6	0.3	0.4	0.08	39.0
2	0.2	NaN	0.1	NaN	14.0
3	NaN	0.2	NaN	NaN	9.0
4	NaN	NaN	NaN	NaN	19.0
5	0.1	0.3	0.2	NaN	26.0
6	0.3	0.2	0.1	0.17	19.0
7	NaN	NaN	NaN	NaN	9.0
8	NaN	0.3	NaN	NaN	30.0
9	NaN	0.1	NaN	NaN	15.0
10	0.7	NaN	1.0	NaN	25.0
11	NaN	0.2	NaN	NaN	21.0
12	NaN	NaN	NaN	NaN	17.0
13	NaN	NaN	NaN	NaN	22.0
14	NaN	NaN	NaN	NaN	30.0
15	NaN	NaN	NaN	NaN	12.0
16	NaN	NaN	NaN	NaN	15.0
17	NaN	NaN	NaN	NaN	12.0
18	0.2	NaN	0.6	80.0	12.0
19	NaN	0.1	NaN	NaN	47.0

In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>


```
In [14]: dd.plot.bar(color='r')
```

Out[14]: <AxesSubplot:>


```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO_2'>


```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO_2'>

In [17]: dd.plot.box()

Out[17]: <AxesSubplot:>


```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: | dd.plot.line()

Out[19]: <AxesSubplot:>


```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>

In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>

In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x268351f2880>

In [23]: sns.distplot(dd['NO_2'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>


```
In [24]: ds=data.fillna(20)
```

In [25]: ssd=ds.head(20)

```
In [26]: sd1=ssd[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]
```

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>


```
In [28]: | x= ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         y=ssd['station']
In [29]: from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]:
         print(lr.intercept_)
         28079017.74650614
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [32]:
         coeff
Out[32]:
                 Co-efficient
                 -71.896181
            BEN
             CO
                   0.328882
            EBE
                  73.049409
          NMHC
                  -0.500365
           NO_2
                   0.105457
         prediction = lr.predict(x_test)
In [33]:
         plt.scatter(y_test,prediction)
Out[33]: <matplotlib.collections.PathCollection at 0x26839df90a0>
              +2.8079e7
          40
          35
          30
```



```
In [34]: |print(lr.score(x_test,y_test))
         0.42030487490222956
In [35]: lr.score(x_test,y_test)
Out[35]: 0.42030487490222956
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.3858736284761375
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: | dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: |dr.score(x_test,y_test)
Out[39]: 0.37447813710370226
In [40]: |dr.score(x_train,y_train)
Out[40]: 0.2024649914896749
In [41]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: la.score(x_test,y_test)
Out[42]: 0.23638307519831647
In [43]: la.score(x_train,y_train)
Out[43]: 0.18157828705094115
         ElasticNet
```

```
In [44]:
        from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
```

Out[44]: ElasticNet()

```
In [45]: print(en.coef )
         [ 0.
                       0.47829967  0.62436811  -0.37232379  -0.12919979]
In [46]:
         print(en.intercept_)
         28079029.41629657
In [47]: prediction=en.predict(x_test)
In [48]: |print(en.score(x_test,y_test))
         0.3704720814228958
In [49]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: | from sklearn.linear model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         target vector=ssd['station']
In [52]: | feature_matrix.shape
Out[52]: (20, 5)
In [53]: target_vector.shape
Out[53]: (20,)
In [54]: from sklearn.preprocessing import StandardScaler
In [55]: fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3]]
In [58]: | prediction=logr.predict(observation)
         print(prediction)
         [28079056]
```

```
In [59]: logr.classes
Out[59]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056], dtype=int64)
In [60]: logr.predict_proba(observation)[0][0]
Out[60]: 0.05997604883753372
In [61]: ged=data[['BEN','CO','EBE','NMHC','NO_2','O_3','PM10','SO_2','TCH','TOL','stati
In [62]: | d=ged.fillna(20)
In [63]: dg=d.head(100)
In [64]: | x=dg[['BEN','CO','EBE','NMHC','NO 2','O 3','PM10','SO 2','TCH','TOL']]
         y=dg['station']
In [65]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [66]: | from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[66]: RandomForestClassifier()
In [67]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                        'min samples leaf':[5,10,15,20,25,30,35],
                        'n_estimators':[10,20,30,40,50,60,70]}
In [68]: from sklearn.model selection import GridSearchCV
         grid_search= GridSearchCV(estimator = rfc,param_grid=paramets,cv=2,scoring="ac
         grid_search.fit(x_train,y_train)
Out[68]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5, 6, 7],
                                   'min_samples_leaf': [5, 10, 15, 20, 25, 30, 35],
                                   'n_estimators': [10, 20, 30, 40, 50, 60, 70]},
                      scoring='accuracy')
In [69]: |grid_search.best_score_
Out[69]: 0.45714285714285713
In [70]: rfc_best=grid_search.best_estimator_
```

In [71]: from sklearn.tree import plot_tree
 plt.figure(figsize=(50,40))
 plot_tree(rfc_best.estimators_[5],filled=True)

Out[71]: [Text(1550.0, 1902.600000000001, 'X[1] <= 10.15\ngini = 0.94\nsamples = 47\n value = [0, 3, 2, 5, 4, 0, 3, 3, 5, 3, 6, 3, 3, 2\n2, 7, 2, 2, 1, 4, 2, 0, 7, 1]'), Text(930.0, 1359.0, $'X[4] \le 21.5 \cdot = 0.865 \cdot = 20 \cdot = [0, 1359.0]$ Text(620.0, 815.400000000001, 'X[7] <= 15.0\ngini = 0.781\nsamples = 12\nva 0]'), Text(310.0, 271.799999999999, 'gini = 0.656\nsamples = 6\nvalue = [0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 2, 0, 0, 0]'), Text(930.0, 271.799999999999, 'gini = 0.469\nsamples = 6\nvalue = [0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 3, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'), Text(1240.0, 815.4000000000001, 'gini = 0.653\nsamples = 8\nvalue = [0, 3, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 4, 0, 0, 0]'), Text(2170.0, 1359.0, $X[9] \le 11.75 = 0.892 = 27 = 27 = 0.892$ 0, 2, 0, 4, 0, 0, 3, 0, 0, 6, 0, 3, 2 n 2, 7, 2, 2, 1, 0, 0, 0, 7, 1]'),Text(1860.0, 815.4000000000001, 'gini = 0.494\nsamples = 7\nvalue = [0, 0, 0]2, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0\n0, 0, 0, 0, 1, 0, 0, 0, 0|'), Text(2480.0, 815.400000000001, 'gini = 0.863\nsamples = 20\nvalue = [0, 0, 0, 0, 4, 0, 0, 3, 0, 0, 0, 0, 3, 2\n2, 7, 2, 2, 0, 0, 0, 0, 7, 1]')]

Conclusion: LogisticRegression() predict 0.05997604883753372 HIGH RANGE

In []:	
---------	--