

Creation and configuration of Kafka cluster

- 1.Create an kafka cluster with the help of ec2 instance.(Referred with PDF attached in the modules).Make the required configuration needed to run kafka instance.
- 2.Create a cdh instance using ec2 instance. .(Referred with PDF attached in the modules).

 Make the required configuration needed to run CDH instance

Steps to be done in before to create kafka Topics:

- 1.From ec2-user, navigate to [ec2-user@ip-172-31-27-4 kafka_2.12-2.3.0] by using **cd** command
- 2. Start the zookeeper by using the following command:

bin/zookeeper-server-start.sh config/zookeeper.properties

3. Start the kafka Server using the below command:

bin/kafka-server-start.sh config/server.properties

STATEMENT TO CREATE TOPICS

To create topic in kafka server ,the command used is

bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 -partitions 1 --topic PatientInformation

STATEMENT TO LIST TOPICS

To list the topics in kafka server, the command used is:

bin/kafka-topics.sh --list --bootstrap-server localhost:9092

STATEMENTS TO RUN PRODUCER AND CONSUMER PYTHON PROGRAMS

To run the Producer program, use the below command,

python prodcerapp.py

Note: For producer application, Kindly refer the kafka_Produce_patient_vitals.py

To run the consumer program ,use the below command ,

Patient_Consumer.py

export SPARK_KAFKA_VERSION=0.10

spark2-submit --jars spark-sql-kafka-0-10_2.11-2.3.0.jar Patient_Consumer.py

STATEMENTS TO CREATE EXTERNAL HIVE TABLE TO VIEW THRESHOLD DATA

1.Create a database using below command:
Create database if not exists Patient_db;
2.Use the database
Use patient_db;
3.Create a external hive table to create a threshold table.
Syntax:
create external table if not exists ThresholdValueTable(
Key int,
Attribute varchar(20),
Low_Age_Limit int,
High_Age_Limit int,
Low_range_value int,
High_range_value int,
Alert_Flag string,
Alert_Message string)
row format delimited fields terminated by " "
lines terminated by "\n" stored as textfile;
4.Create a text file in hdfs in order to load the data,use the below command to create a text file
in hdfs.
Vi threshold.txt
Enter the below data

- 1|heartbeat|0|40|0|69|1|Lowerheartratethannormal
- 2|heartbeat|0|40|70|78|0|Normal
- 3|heartbeat|0|40|79|9999|1|Higherheartratethannormal
- 4|bp|0|40|0|160|1|Lowerbpthannormal
- 5|bp|0|40|161|220|0|Normal
- 6|bp|0|40|221|9999|1|Higherbpthannormal
- 7|heartBeat|41|100|0|65|1|LowHeartRatethanNormal
- 8|heartBeat|41|100|66|73|0|Normal
- 9|heartBeat|41|100|74|9999|1|HigherHeartRatethanNormal
- 10|bp|41|100|0|150|1|LowBPthanNormal
- 11|bp|41|100|151|180|0|Normal
- 12|bp|41|100|181|9999|1|HigherBPthanNormal

5. Save the file by clicking **escape** key and save the file using **:wq!** 5. Load the data from text file into the created external table

```
> Attribute varchar(20),
   > lines terminated by "\n" stored as textfile;
Time taken: 0.088 seconds
hive> load data local inpath 'threshold.txt' into table ThresholdValueTable;
Loading data to table patient_db.thresholdvaluetable
Table patient_db.thresholdvaluetable stats: [numFiles=1, totalSize=486]
Time taken: 1.153 seconds hive> select* from thresholdvaluetable;
       heartbeat
                               40
                                                               Lowerheartratethannormal
       heartbeat
                               40
                                                               Normal
       heartbeat
                                                               Higherheartratethannorma
                                                       Lowerbpthannormal
       bp
                                                       Normal
       bp
                                                       Higherbpthannormal
       heartBeat
                                                               Normal
        heartBeat
                                                               HigherHeartRatethanNorma
                                                       LowBPthanNormal
        bp
                                                       Normal
                                                       HigherBPthanNormal
```

STATEMENTS TO CREATE HBASE TABLE ON HIVE

- From ec2-user, use the below command to go to hbase shell
 Hbase shell
- 1. 2. Create hbase table using below command:

create 'ThresholdTable', 'Attribute', 'Limit', 'Alert'

2.Describe the table column field using below command

describe 'ThresholdTable'

3.Insert the threshold data using put command for 12 records.

```
put 'ThresholdTable','row1','Limit:Low_age_limit','value=0'
put 'ThresholdTable','row1','Limit:High_age_limit','value=40'
put 'ThresholdTable','row1','Limit:Low_value','value=0'
put 'ThresholdTable','row1','Limit:High_value','value=69'
```

put 'ThresholdTable','row2','Limit:Low_age_limit','value=0'
put 'ThresholdTable','row2','Limit:High_age_limit','value=40'
put 'ThresholdTable','row2','Limit:Low_value','value=70'
put 'ThresholdTable','row2','Limit:High_value','value=78'

put 'ThresholdTable','row3','Limit:Low_age_limit','value=0'
put 'ThresholdTable','row3','Limit:High_age_limit','value=40'
put 'ThresholdTable','row3','Limit:Low_value','value=79'
put 'ThresholdTable','row3','Limit:High_value','value=9999'

put 'ThresholdTable','row4','Limit:Low_age_limit','value=0'
put 'ThresholdTable','row4','Limit:High_age_limit','value=40'
put 'ThresholdTable','row4','Limit:Low_value','value=0'
put 'ThresholdTable','row4','Limit:High_value','value=160'


```
put 'ThresholdTable','row5','Limit:Low_age_limit','value=0'
put 'ThresholdTable','row5','Limit:High_age_limit','value=40'
put 'ThresholdTable','row5','Limit:Low_value','value=161'
put 'ThresholdTable','row5','Limit:High_value','value=220'
```

put 'ThresholdTable','row6','Limit:Low_age_limit','value=0'
put 'ThresholdTable','row6','Limit:High_age_limit','value=40'
put 'ThresholdTable','row6','Limit:Low_value','value=221'
put 'ThresholdTable','row6','Limit:High_value','value=9999'

put 'ThresholdTable','row7','Limit:Low_age_limit','value=41'
put 'ThresholdTable','row7','Limit:High_age_limit','value=100'
put 'ThresholdTable','row7','Limit:Low_value','value=0'
put 'ThresholdTable','row7','Limit:High_value','value=65'

put 'ThresholdTable', 'row8', 'Limit:Low_age_limit', 'value=41'

put 'ThresholdTable', 'row8', 'Limit:High_age_limit', 'value=100'

put 'ThresholdTable', 'row8', 'Limit:Low_value', 'value=66'

put 'ThresholdTable', 'row8', 'Limit:High_value', 'value=73'

put 'ThresholdTable','row9','Limit:Low_age_limit','value=41'
put 'ThresholdTable','row9','Limit:High_age_limit','value=100'
put 'ThresholdTable','row9','Limit:Low_value','value=74'
put 'ThresholdTable','row9','Limit:High_value','value=9999'


```
put 'ThresholdTable','row10','Limit:Low_age_limit','value=41'
put 'ThresholdTable','row10','Limit:High_age_limit','value=100'
put 'ThresholdTable','row10','Limit:Low_value','value=0'
put 'ThresholdTable','row10','Limit:High_value','value=150'
```

put 'ThresholdTable','row11','Limit:Low_age_limit','value=41'
put 'ThresholdTable','row11','Limit:High_age_limit','value=100'
put 'ThresholdTable','row11','Limit:Low_value','value=151'
put 'ThresholdTable','row11','Limit:High_value','value=180'

put 'ThresholdTable','row12','Limit:Low_age_limit','value=41'
put 'ThresholdTable','row12','Limit:High_age_limit','value=100'
put 'ThresholdTable','row12','Limit:Low_value','value=181'
put 'ThresholdTable','row12','Limit:High_value','value=9999'

put 'ThresholdTable', 'row1', 'Alert:Alert_Message', 'value=Low Heart Rate than Normal'
put 'ThresholdTable', 'row2', 'Alert:Alert_Message', 'value=Normal'
put 'ThresholdTable', 'row3', 'Alert:Alert_Message', 'value=Higher Heart Rate than Normal'
put 'ThresholdTable', 'row4', 'Alert:Alert_Message', 'value=Low BP than Normal'
put 'ThresholdTable', 'row5', 'Alert:Alert_Message', 'value=Normal'
put 'ThresholdTable', 'row6', 'Alert:Alert_Message', 'value=Higher BP than Normal'
put 'ThresholdTable', 'row7', 'Alert:Alert_Message', 'value=Low Heart Rate than Normal'
put 'ThresholdTable', 'row8', 'Alert:Alert_Message', 'value=Normal'
put 'ThresholdTable', 'row9', 'Alert:Alert_Message', 'value=Higher Heart Rate than Normal'
put 'ThresholdTable', 'row9', 'Alert:Alert_Message', 'value=Higher Heart Rate than Normal'

put 'ThresholdTable', 'row11', 'Alert:Alert_Message', 'value=Normal'
put 'ThresholdTable', 'row12', 'Alert:Alert Message', 'value=Higher BP than Normal'

put 'ThresholdTable','row1','Attribute:Attribute','value=Heartbeat' put 'ThresholdTable','row2','Attribute:Attribute','value=Heartbeat' put 'ThresholdTable','row3','Attribute:Attribute','value=Heartbeat' put 'ThresholdTable','row4','Attribute:Attribute','value=BP' put 'ThresholdTable','row5','Attribute:Attribute','value=BP' put 'ThresholdTable','row6','Attribute:Attribute','value=BP' put 'ThresholdTable','row7','Attribute:Attribute','value=Heartbeat' put 'ThresholdTable','row8','Attribute:Attribute','value=Heartbeat' put 'ThresholdTable','row9','Attribute:Attribute','value=Heartbeat' put 'ThresholdTable','row10','Attribute:Attribute','value=BP' put 'ThresholdTable','row11','Attribute:Attribute','value=BP' put 'ThresholdTable','row11','Attribute:Attribute','value=BP' put 'ThresholdTable','row12','Attribute:Attribute','value=BP'

put 'ThresholdTable','row1','Alert:Alert_Flag','value=1'
put 'ThresholdTable','row2','Alert:Alert_Flag','value=0'
put 'ThresholdTable','row3','Alert:Alert_Flag','value=1'

put 'ThresholdTable', 'row4', 'Alert:Alert_Flag', 'value=1'
put 'ThresholdTable', 'row5', 'Alert:Alert_Flag', 'value=0'
put 'ThresholdTable', 'row6', 'Alert:Alert_Flag', 'value=1'
put 'ThresholdTable', 'row7', 'Alert:Alert_Flag', 'value=1'
put 'ThresholdTable', 'row8', 'Alert:Alert_Flag', 'value=0'
put 'ThresholdTable', 'row9', 'Alert:Alert_Flag', 'value=1'
put 'ThresholdTable', 'row10', 'Alert:Alert_Flag', 'value=1'
put 'ThresholdTable', 'row11', 'Alert:Alert_Flag', 'value=0'
put 'ThresholdTable', 'row12', 'Alert:Alert_Flag', 'value=1'

4.To view the table, use the below command

Scan 'ThresholdTable'

Screenshots:


```
COLUMN: CELL

CELL

COLUMN: CELL

CELL

COLUMN: CELL

CELL

COLUMN: CELL

CELL
```

```
column-Attribute, Attribute, timestamp=10300740415, value-value-100 BF than Normal column-ciast: Halp, age limit, timestamp=10300740515, value-value-50 column-ciast: Halp, age limit, timestamp=1030074205, value-value-999 column-ciast: Hop, age limit, timestamp=1030074205, value-value-999 column-ciast: Hop, age limit, timestamp=1030074205, value-value-999 column-ciast: Hop age limit, timestamp=1030074205, value-value-999 column-ciast: Hop age limit, timestamp=1030074205, value-value-999 column-ciast: Hop age limit, timestamp=1030074205, value-value-100 BF than Normal column-Attribute-Martiples, timestamp=10300743154, value-value-100 BF than Normal column-Attribute-Martiples, timestamp=103007431545, value-value-100 BF than Normal column-Attribute-Martiples, timestamp=1030074770, value-value-100 column-ciast: Hop value, timestamp=1030074770, value-value-100 column-ciast: Hop value-Martiples, timestamp=1030074770, value-value-100 column-ciast: Hop value-Martiples, timestamp=1030074700, value-value-100 column-ciast: Hop value-Martiples, timestamp=1030074700, value-value-100 column-ciast: Hop value-Martiples, timestamp=1030074200, value-value-100 column-ciast: Hop value-Martiples, timestamp=1030074200, value-value-100 column-ciast: Hop value-Martiples, page limit, timestamp=1030074300, value-value-100 column-ciast: Hop value-Martiples, page limit, timestamp=1030074300, value-value-100 column-ciast: Hop value-Martiples, page limit, times
```


STATEMENTS TO CREATE EXTERNAL HIVE TABLE FOR PATIENTS VITAL INFORMATION

1. Creating externaltal table for patient vital information

hive> CREATE EXTERNAL TABLE PatientInfoTable (

- > BP String,
- > CustomerId String,
- > Heartbeat String,
- > timestamp String)
- > STORED AS PARQUET;

2.Loading Data from parquet files into hive table.

load data inpath 'PatientInformation' into table PatientInfoTable;


```
Logging initialized using configuration in jar:file:/opt/clouders/parcels/CDM-5.15.1-1.CDM-5.15.1.p0.4/jars/hive-common-1.1.0-cDM-5.15.1.jar!/hive-log6).properties
MRANTRO: RIVE CLT is deprecated and migration to beeline is recommended.

| New CLT is deprecated and migration to beeline is recommended.
| New CLT is deprecated and migration to beeline is recommended.
| New CLT is deprecated and interior interior interior interior interior interior interior interior into the latestance into the latestanc
```

3.To view the data in PatientInfoTable. Execute the below command

hive> select * from PatientInfoTable;

Data Retrieved Screenshot:

STATEMENTS TO RETRIEVE THE PATIENT'S CONTACT DETAILS USING SQOOP

1.Extract patient contact details by executing the below sqoop command

sqoop import \
--connect jdbc:mysql://upgraddetest.cyaielc9bmnf.us-east-1.rds.amazonaws.com/testdatabase \
--username student \
--password STUDENT123 \
--table patients_information \
--direct \
-m 1 \

- --hive-import \
- --create-hive-table \
- --hive-table PatientContactInfo \
- --fields-terminated-by ';'

SNAPSHOT OF DATA COLLECTED

2. Extarcted data in hive table After executing sqoop command

STATEMENTS TO READ DATA FROM HDFS AND COMPARE WITH Hbase TABLE

Run the spark streaming application named as kafka_spark_generate_alerts.py,use the below command to execute the program

Python kafka_spark_generate_alerts.py

STATEMENTS TO EXECUTE THE CONSUMER APPLICATION FOR SENDING ALERTS

- 1.From ec2-user, navigate to [ec2-user@ip-172-31-27-4 kafka_2.12-2.3.0] by using **cd** command
- 2. Start the zookeeper by using the following command:

bin/zookeeper-server-start.sh config/zookeeper.properties

3. Start the kafka Server using the below command:

bin/kafka-server-start.sh config/server.properties

STATEMENT TO CREATE TOPICS

To create topic in kafka server ,the command used is

bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 -partitions 1 --topic PatientHealthNotification

To list the topics in kafka server ,the command used is :

bin/kafka-topics.sh --list --bootstrap-server localhost:9092

Run the below command to start the producer .

bin/kafka-console-producer.sh --broker-list localhost:9092 -topic

PatientHealthNotification

Open the another terminal in putty , run the consumer program named

kafka consume alerts.py using below command

Python kafka_consume_alerts.py

3. Confirm the subscription in the email sent to the mentioned email id.

