▼ Task-D: Collinear features and their effect on linear models

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC

from sklearn.model_selection import GridSearchCV
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv('/content/task_d.csv')
```

	X	у	z	x*x	2*y	2*z+3*x*x	W	target	d
0	-0.581066	0.841837	-1.012978	-0.604025	0.841837	-0.665927	-0.536277	0	
1	-0.894309	-0.207835	-1.012978	-0.883052	-0.207835	-0.917054	-0.522364	0	
2	-1.207552	0.212034	-1.082312	-1.150918	0.212034	-1.166507	0.205738	0	
3	-1.364174	0.002099	-0.943643	-1.280666	0.002099	-1.266540	-0.665720	0	
4	-0.737687	1.051772	-1.012978	-0.744934	1.051772	-0.792746	-0.735054	0	

X = data.drop(['target'], axis=1).values

Y = data['target'].values

data.corr() # here we are trying to findout corrlation between the feature

	x	у	Z	x*x	2*y	2*z+3*x*x	W	target	10-
X	1.000000	-0.205926	0.812458	0.997947	-0.205926	0.996252	0.583277	0.728290	
у	-0.205926	1.000000	-0.602663	-0.209289	1.000000	-0.261123	-0.401790	-0.690684	
z	0.812458	-0.602663	1.000000	0.807137	-0.602663	0.847163	0.674486	0.969990	
x*x	0.997947	-0.209289	0.807137	1.000000	-0.209289	0.997457	0.583803	0.719570	
2 *y	-0.205926	1.000000	-0.602663	-0.209289	1.000000	-0.261123	-0.401790	-0.690684	
2*z+3*x*x	0.996252	-0.261123	0.847163	0.997457	-0.261123	1.000000	0.606860	0.764729	
w	0.583277	-0.401790	0.674486	0.583803	-0.401790	0.606860	1.000000	0.641750	
target	0.728290	-0.690684	0.969990	0.719570	-0.690684	0.764729	0.641750	1.000000	

dataplot = sns.heatmap(data.corr(), cmap="BrBG", annot=True) # here we have drawn the heatmap to variability in feature

Doing perturbation test to check the presence of collinearity

Task: 1 Logistic Regression

1. Finding the Correlation between the features

- a. check the correlation between the features
- b. plot heat map of correlation matrix using seaborn heatmap

2. Finding the best model for the given data

- a. Train Logistic regression on data(X,Y) that we have created in the above cell
- b. Find the best hyper prameter alpha with hyper parameter tuning using k-fold cross validation (grid search CV or random search CV make sure you choose the alpha in log space)
- c. Creat a new Logistic regression with the best alpha (search for how to get the best hyper parameter value), name the best model as 'best model'

3. Getting the weights with the original data

- a. train the 'best model' with X, Y
- b. Check the accuracy of the model 'best model accuracy'
- c. Get the weights W using best_model.coef_

4. Modifying original data

- a. Add a noise(order of 10^{-2}) to each element of X and get the new data set X' (X' = X + e)
- b. Train the same 'best_model' with data (X', Y)
- c. Check the accuracy of the model 'best_model_accuracy_edited'
- d. Get the weights W' using best_model.coef_

5. Checking deviations in metric and weights

- a. find the difference between 'best_model_accuracy_edited' and 'best_model_accuracy'
- b. find the absolute change between each value of W and W' ==> |(W-W')|
- c. print the top 4 features which have higher % change in weights compare to the other feature

Task: 2 Linear SVM

```
1. Do the same steps (2, 3, 4, 5) we have done in the above task 1.
```

Do write the observations based on the results you get from the deviations of weights in both Logistic Regression and linear SVM

2. Finding the best model for the given data

→ Task: 1 Logistic Regression

```
alpha = np.logspace(-5, 8, 10)  # here i m finding the best hyperparameter with best alpha value
print(alpha)
param_grid={'C':alpha}
logreg = LogisticRegression() # using logestic regression

[1.00000000e-05 2.78255940e-04 7.74263683e-03 2.15443469e-01
    5.99484250e+00 1.66810054e+02 4.64158883e+03 1.29154967e+05
    3.59381366e+06 1.000000000e+08]

logreg = GridSearchCV(logreg, param_grid, cv=5)  # here i have used grid search cv for this problem
```

3. Getting the weights with the original data

```
# This is formatted as code

best_model=LogisticRegression(C=1e-05) # HERE AS PER ABOVE INSTRUCTION WE HAVE USE LOGISTIC REGRESSION FOR BEST MODEL

best_model.fit(X,Y) # HERE WILL FIT THE DATA

LogisticRegression(C=1e-05)

predictions = best_model.predict(X) # PREDICTING THE BEST MODEL
```

```
accu=accuracy_score(Y, predictions)
# HERE PREDICTING THE ACCURACY WITH SKLEARN ACCURACY LIBRABRY
print(accuracy_score(Y, predictions))
```

1.0

4. Modifying original data

```
array([[ 0.00036369, -0.000345 , 0.00048449, 0.00035933, -0.000345 , 0.00038189, 0.00032048]])
```

5. Checking deviations in metric and weights

```
print(new accu-accu)
     0.0
difference=abs((wei-w new))[0]
print(difference) # SO AS PER INSTRUCTION HERE WILL CHECK THE DIFFERENCE
     [3.04544419e-11 3.04711950e-11 3.04588067e-11 3.04540617e-11
      3.04711950e-11 3.04543616e-11 3.04569679e-11]
n=len(data.columns)-1
percentage change=[]
for i in range (n):
                 # calulating the percentage change in weight
    cp=(difference[i]/wei[i])*100
    percentage change.append(cp)
columns=list(data.columns.values)
# using lambda function to print sorted most imp featurres
indices=sorted(range(len(percentage_change)), key=lambda i: percentage_change[i])[-4:]  # HERE USING THE LAMBDA
print("the top 4 features which have higher % change in weights ")
                                                                                # HERE WE ARE PRINTING THE TOP 4 FEATURE WHICH ARE H
for K in indices:
    print(columns[K])
     the top 4 features which have higher % change in weights
     2*z+3*x*x
     Х
     x*x
```

feature 2z+3x*x has higher change after adding noise

- Task: 2 Linear SVM

2. Finding the best model for the given data

```
alpha = np.logspace(-5, 8, 10)
                                                  # # here i m finding the best hyperparameter with best alpha value
print(alpha)
param grid={'C':alpha}
svm = SVC(kernel="linear")
     [1.00000000e-05 2.78255940e-04 7.74263683e-03 2.15443469e-01
      5.99484250e+00 1.66810054e+02 4.64158883e+03 1.29154967e+05
      3.59381366e+06 1.00000000e+08]
model = GridSearchCV(svm, param grid, cv=5)
                                                              # here i have used grid search cv for this problem
model.fit(X,Y)
                                          # FIT THE DATA
     GridSearchCV(cv=5, estimator=SVC(kernel='linear'),
                  param grid={'C': array([1.00000000e-05, 2.78255940e-04, 7.74263683e-03, 2.15443469e-01,
            5.99484250e+00, 1.66810054e+02, 4.64158883e+03, 1.29154967e+05,
            3.59381366e+06, 1.00000000e+08])})
model.best_params_
                                                              # HERE FINDING THE BEST HYPERPARAMETER
     {'C': 0.007742636826811269}
```

https://colab.research.google.com/drive/1rYPykWyjjlfCB9DPS-LJHXE3QGcXqqmW#scrollTo=33P6lOxWi3Re&printMode=true

3. Getting the weights with the original data

```
best model=SVC(kernel='linear',C=0.007742636826811269)
                                                                  # HERE AS PER ABOVE INSTRUCTION WE HAVE USE LINEAR SVM FOR BEST MO
best model.fit(X,Y)
                                                    # HERE WILL FIT THE DATA
     SVC(C=0.007742636826811269, kernel='linear')
predictions = best model.predict(X)
                                                                                # PREDICTING THE BEST MODEL
accu=accuracy score(Y, predictions)
print(accuracy_score(Y, predictions))
                                                                                 # HERE PREDICTING THE ACCURACY WITH SKLEARN ACCURACY
     1.0
wei=best model.coef [0]
print(best model.coef )
                                                                                # HERE PRINTINNG THE COEEF OF BEST MODEL
     [ 0.16056222 -0.20788705 0.32826166 0.14998082 -0.20788705 0.17461587
        0.13401176]]
```

4. Modifying original data

```
X_NEW=X+.01  # adding noise as per instruction

updated_NEW_model=best_model.fit(X_NEW,Y)  # HERE I HAVE UPDATED THE MODEL BECAUSE OF ADDITION OF SOME N
```

```
prediction = best_model.predict(X_NEW) #HERE WE WILL PREDICT THE NEW MODEL
```

```
new_accuracy=accuracy_score(Y, prediction) # HERE WILL FIND OUT THE ACCURACY OF NEW MODEL print(accuracy score(Y, prediction))
```

1.0

THIS IS NEW WEIGHT OF MODEL AFTER ADDING NOISE

5. Checking deviations in metric and weights

```
print("NEW ACCURACY OF MODEL AFTER ADDING THE NOISE")
print(new_accuracy-accu)
```

NEW ACCURACY OF MODEL AFTER ADDING THE NOISE 0.0

```
[6.76507103e-05 2.15922620e-04 6.12315122e-05 8.28999945e-07 2.15922620e-04 6.64650571e-06 5.85197413e-05]
```

```
n=len(data.columns)-1
```

WITH THE HELP OF LINEAR SVM WE CAN SEE THAT HERE ALSO 2Z+3X*X HAS HIGHES CHANGE IN AMONG ALL THE FEATURE THAT MEAN HIGHLY CORRELATED

- 1. some features are really correlated but not highly littile bit .
- 2. we have done purtubration test but there is not big change in feature
- 3.we can see after performing sym and logestic regression not big change in features

4.so we can see not a big improvement in correlation after partubation test so there is no COLLINEARITY based on purturbation test

Colab paid products - Cancel contracts here

Os completed at 1:36 PM