ЗАДАНИЕ 1 Тест Казиски:

- 1. Реализовать шифр простой перестановки на основе генерации ключа моноциклической перестановки.
- 2. Реализовать тест Казиски по вычислению длины ключа простой перестановки (программа выявления одинаковых участков криптограммы, вычисления расстояния между соседними такими участками (от первого символа до первого), и вычисления НОД этих расстояний).
- 3. Программа перебора ключей моноциклической перестановки при известной длине ключа.

ЗАДАНИЕ 2 Анализ Фридмана:

1. Вход: две последовательности букв одной и той же длины:

$$y = (y_0, y_1, ..., y_{N-1})$$

 $z = (z_0, z_1, ..., z_{N-1})$

Выход: Индекс совпадения:

$$I(y,z) = \frac{1}{N} \sum_{i=0}^{N-1} \delta(y_i, z_i)$$
, где $\delta(y_i, z_i) = \begin{cases} 1 & (y_i = z_i) \\ 0 & (y_i \neq z_i) \end{cases}$

Используя эту программу провести сравнительный анализ значений индексов совпадения для случайных последовательностей, для последовательностей английского языка, для последовательностей русского языка.

Результаты исследования внести в таблицу следующего вида:

	$I(y, z) \times 100$ случ	$I(y, z) \times 100$ англ	$I(y, z) \times 100 \text{ pyc}$
Пример 1			
Пример 2			
Пример 3			
Пример 4			

2. Вход: две последовательности букв одной и той же длины:

$$y = (y_0, y_1, ..., y_{N-1})$$

 $z = (z_0, z_1, ..., z_{N-1})$

Выход: Средний Индекс совпадения: $I_{\rm cp}(y,z) = \sum_{i=0}^{25} p_i^{\ y} \ p_i^{\ z}$ для английского языка,

где буквы алфавита обозначены индексом от 0 до 25 по алфавиту. При этом
$$p_i^y = \frac{\text{число символов } i \text{ в } y}{N}, \ p_i^z = \frac{\text{число символов } i \text{ в } z}{N}.$$

По работе программы провести сравнительный анализ значений индексов совпадения для случайных последовательностей, для последовательностей английского языка, для последовательностей русского языка.

Результаты исследования внести в таблицу следующего вида:

	$I_{cp}(y,z) \times 100$ случ	$I_{cp}(y, z) \times 100$ англ	$I(y, z) \times 100 \text{ pyc}$
Пример 1			
Пример 2			
Пример 3			
Пример 4			

3. Реализовать шифр Виженера с выбором файла алфавита и файла ключа длины k. Пусть $y = (y_0, y_1, y_2, ...)$ шифрограмма или открытый текст. Для положительного целого числа l пусть $y^{(+l)} = (y_l, y_{l+1}, y_{l+2}, \ldots).$

$$y^{(+l)} = (y_l, y_{l+1}, y_{l+2}, ...).$$

Т.е. $y^{(+l)}$ есть сообщение, полученное из у сдвигом вперёд на l символов. Используя программу из 1 и 2 провести сравнительный анализ значений инлексов совпаления:

пидексов совиадения.					
l сдвиг	$I(y, y^{(+l)}) \times 100$ для	$I(y, y^{(+l)}) \times 100$ для	$I(y, y^{(+l)}) \times 100$ для		
	открытого	шифрограммы	шифрограммы		
		при $k = 5$	при $k = 7$		
1					
2					
15					

fb.com/FacultyCSaIT/

https://drive.google.com/open?id=0B2AKc7ibPQ_WdEVSX1dNX0pGOEk