IT'S ALL CONNECTED!

Graph approaches to geometric complexity in neuroscience

Brian DePasquale (BU)
Kim Stachenfeld (Deepmind/Columbia)
Sam Lewallen (Columbia)

Development

McDole et al 2018

Biochemistry

Development

McDole et al 2018

Biochemistry

Neural Dynamics

Connectomics

Development

McDole et al 2018

Biochemistry

Neural Dynamics

Connectomics

Biomechanics

Behavior keypoints

Courtesy of Brady Weissbourd (MIT)

Development

McDole et al 2018

Biochemistry

Neural Dynamics

Connectomics

Biomechanics

Behavior keypoints

Courtesy of Brady Weissbourd (MIT)

Multiagent behavior

Courtesy of Matt Lovett-Barron (UCSD) and Grant McConachie (BU)

Courtesy of James Crall (Wisc-Mad)

Something is rotten in the state of CoSyNe

"Neural networks that operate over graph structured data"

Graph Neural Network

"Neural networks that operate over graph structured data"

Graph Neural Network

Local, Equivariant, Relational

"Neural networks that operate over graph structured data"

Graph Neural Network

Local, Equivariant, Relational

Convolutional Neural Network

Local, Equivariant, Relational

GNNs v. CNNs

Graph Neural Network

Local, Equivariant, Relational

RNNs

Local, Equivariant, Relational

GNNs v. RNNs

Graph Neural Network

Local, Equivariant, Relational

Transformer

Local, Equivariant, Relational

GNNs v. transformers

Graph Neural Network

Local, Equivariant, Relational

Transformer
In sequence form

Local, Equivariant, Relational

GNNs v. transformers

Variable connectivity and size

Can apply the same model to data with variety of structures and sizes

"Local rules applied globally"

"Infinite use of finite means"

Relate structure to computation

Speakers from all walks of biology

Tiny – connectomes and chemicals

Midsize – neural activity and functional connectivity

Macro – human behavior and collective behavior

Schedule

Morning session

- 9:30 9:40: Welcome by Brian, Kim, and Sam
- 9:40 10:05: Ashok Litwin-Kumar
- 10:10 10:35: Gal Mishne
- 10:40 11:05: Quan Do
- 11:10 11:30: Coffee break
- 11:30 11:55: Wesley Qian
- 12:00 12:25: Stephan Saalfeld

Afternoon session

- 3:30 4:15: GNN Tutorial in PyTorch Geometric
- 4:15 4:40: Nina Miolane (virtual)
- 4:40 5:00: Coffee break
- 5:00 5:25: Dominique Beaini
- 5:30 5:55: Kristin Branson
- 6:00 6:30: Discussion (w/ wine!)

WEBSITE: https://sites.google.com/bu.edu/gnnworkshop-cosyne2025/home

ADD DISCUSSION TOPICS TO

THESE SLIDES: https://tinyurl.com/cosyne-gnn-2025-slides

Discussion Topics (please add!)

https://tinyurl.com/ cosyne-gnn-2025-slides

https://tinyurl.com/ cosyne-gnn-2025

- Node classification task predict the missing labels using knowledge about their neighbors!
- Using FlyWire connectome data, predict the cell labels (central, motor, vision, etc.) using the connectivity
- Get familiar with PyTorch Geometric data
- Visualize graphs with NetworkX
- Understand message passing operation
- Learn a few graph analysis techniques not specific to GNNs
- Try to go further can neurotransmitter info improve prediction?

Discussion Topics (please add!)

- What neuroscience datasets are most ripe for this analysis?
- Should we build a graph foundation model for collective behavior?
- Are transformers just fully connected Graph Attention Networks? If so, are there appropriate instances where we should not fully connect a graph?

https://tinyurl.com/cosyne-gnn-2025-slides

Discussion Topics (cont.)

- For those with graph data, why aren't you using these methods?
- Related to the question above, when would a GNN be an overkill?
- What barriers exist to getting started?
- If you are a recent convert, what got you excited about these methods?
- An answer to the question above, GNNs are said to be transferable across scales, similar to the odor map talk. Is transferability a forefront consideration for you?
- Let's talk about scaling, bay-bee.
- (re:Ashok's talk): What other symmetries might we want to look for in graphs to tell us something about computation?

Discussion Topics (cont.)

- Anyone looked at similarities/differences in connectomes at different scales (synaptic level, mesoscale, macroscale - MRI ROIs)?
- For those considering GNN for human neuroimage, what are your approaches for defining your nodes?
- A few speakers have mentioned small incomplete datasets. How can the community address this for the most pressing use applications?
- If you read a paper using GNN, what information would you like to see (e.g., how the graph is constructed, how the training is evaluated, which "architectures" are considered, etc.)?