21.06.2024

Homologische Algebra Blatt 12

1 | Stehgreiffragen: Abelsche Kategorien

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Welche der folgenden Kategorien sind abelsch: \mathbf{Mod}_R , \mathbf{Mod}_R^{op} , [n] für $n \in \mathbb{N}_{\geq 1}$, \mathbf{Set} , \mathbf{Grp} , \mathbf{Ab} , \mathbf{Ring} , \mathbf{Field} , \mathbf{Top} , \mathbf{Top}_* , endlich erzeugte abelsche Gruppen, endliche abelsche Gruppen, freie abelsche Gruppen?
- (b) Wahr oder faslch: Für eine abelsche Kategorie \mathcal{A} ist auch \mathcal{A}^{op} abelsch.
- (c) Wahr oder falsch: Die Funktorkategorie $\operatorname{Fun}(\mathcal{C},\mathcal{A})$ für eine abelsche Kategorie \mathcal{A} , ist abelsch.
- (d) Wie kann die additive Struktur auf den Hom-Mengen aus den anderen Axiomen für additive Kategorien konstruiert werden?

2 | Mono-Epi Faktorisierung in abelschen Kategorien

Sei \mathcal{A} eine additive Kategorie mit den nötigen (Ko-)Kernen und $f: X \to Y$ ein Morphismus in \mathcal{A} .

- (a) Zeigen Sie, dass f faktorisiert als $X \xrightarrow{e} \operatorname{coim}(f) \xrightarrow{f'} \operatorname{im}(f) \xrightarrow{m} Y$.
- (b) Zeigen Sie, dass $e \colon X \to \text{coim}(f)$ ein Epimorphismus ist.
- (c) Zeigen Sie, dass $m: \operatorname{im}(f) \to Y$ ein Monomorphismus ist.
- (d) Sei \mathcal{A} eine abelsche Kategorie. Zeigen Sie, dass f': $\operatorname{coim}(f) \to \operatorname{im}(f)$ ein Isomorphismus ist.

3 | Links-/Rechtsexaktheit

Sei $F: \mathcal{A} \to \mathcal{B}$ ein additiver Funktor zwischen abelschen Kategorien.

- (a) Zeigen Sie die Äquivalenz der folgenden Aussagen (für Linksexaktheit von F):
 - (i) Für $0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z$ exakt, ist $0 \longrightarrow X \xrightarrow{F(f)} Y \xrightarrow{F(g)} Z$ exakt. (Hinweis: Die linke Sequenz ist genau dann exakt, wenn f ein Kern von g ist. (Warum?))
 - (ii) Für $0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ exakt, ist $0 \longrightarrow X \stackrel{F(f)}{\longrightarrow} Y \stackrel{F(g)}{\longrightarrow} Z$ exakt.
 - (iii) F erhält Kerne.
- (b) Formulieren Sie die analogen Aussagen für Rechtsexaktheit.
- (c) Folgern Sie, dass Exaktheit äquivalent zu Links- und Rechtsexaktheit ist.

4 | Homotopiekategorie

Betrachte die Kategorie von Kettenkomplexen $\text{Kom}(\mathcal{A})$ für eine abelsche Kategorie \mathcal{A} . Wir haben gesehen, dass die Homologiefunktoren H_n kettenhomotopieinvariant sind. Ziel ist es zu zeigen, dass diese Funktoren durch eine geeignetet Kategorie \mathcal{K} faktorisieren.

- (a) Zeigen Sie, dass Kettenhomotopie \sim eine Äquivalenzrelation auf $\operatorname{Hom}_{\operatorname{Kom}(\mathcal{A})}(C,D)$ definiert.
- (b) Seien $u: B \to C$, $f, g: C \to D$, $v: D \to E$ Morphismen. Zeigen Sie, dass $f \sim g \Rightarrow vfu \sim vgu$. (Folgern Sie, dass es eine Kategorie \mathcal{K} gibt, deren Objekte Kettenkomplexe sind und die Morphismen Homotopieklassen von Morphismen.)
- (c) Seien $f_0, f_1, g_0, g_1 : C \to D$ Morphismen. Zeigen Sie $f_0 \sim g_0, f_1 \sim g_1 \Rightarrow f_0 + f_1 \sim g_0 + g_1$. (Folgern Sie, dass \mathcal{K} eine additive Kategorie ist und $\text{Kom}(\mathcal{A}) \to \mathcal{K}$ ein additiver Funktor ist.)
- (d) Zeigen Sie, dass K im Allgemeinen keine abelsche Kategorie ist.