IThe Harmonic Oscillator

Non-Homogeneous Linear Differential Equations

Consider the non-homogeneous differential equation:

$$(y''+p(x)y'+q(x)y=f(x)),$$
 where $f(x)
eq 0.$

The general solution, y(x), is given by:

 $(y(x)=y_h(x)+y_p(x)),$

where:

- $y_h(x)$ is the general solution to the complementary homogeneous equation (y'' + p(x)y' + q(x)y = 0).
- $y_p(x)$ is any particular solution to the non-homogeneous equation.

Methods for Finding $y_p(x)$:

- 1. Undetermined Coefficients:
 - If f(x) is a polynomial, try y_p as a polynomial of the same degree.
 - For f(x) involving an exponential, try $y_p = Ae^{rx}$.
 - For f(x) with trigonometric functions like $\cos(rx)$ or $\sin(rx)$, try $y_p = A\cos(rx) + B\sin(rx)$.
- 2. Modification: If a trial term for $y_p(x)$ is already in $y_h(x)$, multiply by x to avoid redundancy.
- 3. Variation of Parameters:
 - ullet Given $y_h(x) = C_1 y_1(x) + C_2 y_2(x)$, try $y_p(x) = u(x) y_1(x) + v(x) y_2(x)$.
 - Functions u(x) and v(x) are determined by:

$$u(x)=-\intrac{y_2f(x)}{W(y_1,y_2)}dx,\quad v(x)=\intrac{y_1f(x)}{W(y_1,y_2)}dx,$$

where $W(y_1,y_2)$ is the Wronskian.

Example 17: Solution to $y'' + 4y = 24e^{2x}$

- 1. Characteristic equation for the complementary equation is $(r^2+4=0)$ with roots $r=\pm 2i$.
- 2. Solution for the complementary equation:

 $(y_h=C_1\cos(2x)+C_2\sin(2x)).$

- 3. Particular Solution guess: $y_p = Ae^{2x}$.
- 4. Substitute into the equation and solve for A, yielding A = 1/4.

General Solution:

 $(y = C_1 \cos(2x) + C_2 \sin(2x) + \frac{1}{4}e^{2x}).$

Simple Harmonic Motion

Simple harmonic motion occurs when acceleration is proportional to displacement:

 $(x''+\omega^2x=0).$

• The angular frequency ω determines the oscillation rate.

Solution:

- 1. The characteristic equation $(r^2+\omega^2=0)$ has roots $\pm i\omega$.
- 2. General solution: $(x(t) = A\cos(\omega t) + B\sin(\omega t))$.

Alternatively:

 $(x(t)=R\cos(\omega t-\phi))$, where $R=\sqrt{A^2+B^2}$ and ϕ is the phase angle.

Damped Oscillations

For a damped oscillator with resistance proportional to velocity:

$$(x''+2\gamma x'+\omega^2 x=0).$$

- Overdamped: $(\gamma^2>\omega^2)$ solution decays without oscillating.
- Critically damped: $(\gamma^2=\omega^2)$ fastest decay to zero without oscillating.
- Underdamped: $(\gamma^2 < \omega^2)$ oscillatory decay.

Example 23: Simple Harmonic Oscillator

For
$$(x'' + \omega^2 x = 0)$$
:

- 1. Characteristic equation $(r^2+\omega^2=0)$ with roots $r=\pm i\omega$.
- 2 Solution:

$$(x(t) = A\cos(\omega t) + B\sin(\omega t)) ext{ or } (x(t) = R\cos(\omega t - \phi)).$$

Driven Harmonic Oscillator with Resonance

When an external force drives the oscillator:

$$(x'' + \omega^2 x = F_0 \cos(\omega t)).$$

If the driving frequency matches the natural frequency (ω), resonance occurs, leading to:

$$x(t) = R\cos(\omega t - \phi) + rac{F_0}{2\omega}t\sin(\omega t).$$

Result: Amplitude increases over time due to resonance.