플레이 데이터 프로젝트

주차 수요 구차 수요

차 차 차 : 권 성 재 김 민 정 김 성 현 나 혜 원 이 승 한

목차

Ⅰ 대한민국의 주차 문제

현 상황 - 수도권 중심의 주차 문제

ii 데이터 소개

Ⅲ 데이터 분석 및 머신러닝

i 데이터 전처리

ii 모델별 비교

iii 적합한 모델 선정

iv 예측 및 결과

Ⅲ 결론

i 결론

ii 출처

한 상황 - 수도권 중심의 주차 문제

II 데이터 분석 및 머신러닝

Ⅲ 데이터 소개

배경

아파트 단지 내 필요한 주차대수

1 법정주차대수 2 장래주차수요

②장래주차수요:

인력조사로 인한 오차발생,

현장조사 시점과 실제 건축시점과의 시간차 등의 문제

➡ 과대 또는 과소 산정의 가능성 존재

목적

유형별 임대주택 설계 시

주차 수요를 예측

데이터 출처

한국토지주택공사

III 결론

데이터 전처리 - 데이터 분포

III 결론

🚺 데이터 전처리 - 상관관계 분석

종속변수

등록차량수

독립변수

종속변수와 상관관계 높은 n개의 독립변수

- ➡ 독립변수들 간의 다중공선성 등의 문제가 발생
- ➡ 독립변수 전체 사용
- * 다중공선성
- : 독립변수들 간에 강한 상관관계가 나타나는 문제

① 데이터 전처리 - train 데이터 지역별 단지내 주차면수 평균과 등록차량 평균 비교

i 데이터 전처리 - 원핫인코딩 대상 판단

<pre><class 'pandas.core.frame.dataframe'=""> Int64Index: 2264 entries, 8 to 2951 Data columns (total 14 columns):</class></pre>
Column Non-Null Count Dtype
0 총세대수 2264 non-null int64 1 임대건물구분 2264 non-null object 2 지역 2264 non-null object 3 공급유형 2264 non-null object 4 전용면적 2264 non-null float64 5 전용면적별세대수 2264 non-null int64 6 공가수 2264 non-null float64 7 자격유형 2264 non-null float64 9 임대로 2264 non-null float64 10 지하철 2264 non-null float64 11 버스 2264 non-null float64 12 단지내주차면수 2264 non-null float64 13 등록차량수 2264 non-null float64 dtypes: float64(8), int64(2), object(4)

	지역	공급유형	자격유형
0	경상남도	국민임대	А
1	대전광역시	공공임대(50년)	В
2	경기도	영구임대	С
3	전라북도	공공임대(10년)	Е
4	강원도	공공임대(분납)	F
5	광주광역시	장기전세	G
6	충청남도	행복주택	Н
7	부산광역시	공공임대(5년)	1
8	제주특별자치도		J
9	울산광역시		K
10	충청북도		L
11	전라남도		M
12	경상북도		N
13	대구광역시		0
14	서울특별시		
15	세종특별자치시		

원핫 인코딩

범주형 데이터를 수치형 데이터로 변환

범주형 데이터

지역 : 총 15개

공급유형 : 총 7개 자격유형 : 총 13개

➡ 그룹화로 해결

데이터 전처리 - 그룹화) 지역 분류

에이터 전처리 - 그룹화) 공급유형 분류

국민임대 ➡ 국민임대

공공임대 (50년) ➡ 장기공공임대

공공임대(분납, 5년, 분납) ➡ 단기공공임대

영구임대, 장기전세, 행복주택 → 기타

🚺 데이터 전처리 - 그룹화) 자격유형 분류

주차가능자리

단지내주차면수 - 등록차량수

자격유형 분류 결과

1:A

2:B,L

3:C,F

4 : E, H, I, J

5: G, K, M, N, O

III 결론

<u>i</u> 데이터 전처리 - 원핫인코딩 결과

		총 세 대 수	전용 면적	전용 면적 별세 대수	공 가 수	임대보증 금	임대료	지 하 철	버 스	단지 내주 차면 수	n 지 역 _0	 공급 유형 그 국 민임 대	공급 유형 그룹_ 단기 공공 임대	공급 유형 그룹_ 장기 공공 임대	공급 유형 그룹 -기 타	자격 유형 그룹 _q1	자격 유형 그룹 _q2	자격 유형 그룹 _q3	자격 유형 그룹 _q4	자격 유형 그룹 _q5	등록 차량 수
C)	545	33.48	276	17.0	9216000.0	82940.0	0.0	3.0	624.0	0	 1	0	0	0	0	0	0	0	1	205.0
1		545	39.60	60	17.0	12672000.0	107130.0	0.0	3.0	624.0	0	 1	0	0	0	0	0	0	0	1	205.0
2	2	545	39.60	20	17.0	12672000.0	107130.0	0.0	3.0	624.0	0	 1	0	0	0	0	0	0	0	1	205.0
3	;	545	46.90	38	17.0	18433000.0	149760.0	0.0	3.0	624.0	0	 1	0	0	0	0	0	0	0	1	205.0
4	ı	545	46.90	19	17.0	18433000.0	149760.0	0.0	3.0	624.0	0	 1	0	0	0	0	0	0	0	1	205.0

22	59	239	49.20	19	7.0	11346000.0	116090.0	0.0	1.0	166.0	1	 1	0	0	0	0	0	0	0	1	146.0
22	60	239	51.08	34	7.0	14005000.0	142310.0	0.0	1.0	166.0	1	 1	0	0	0	0	0	0	0	1	146.0
22	61	239	51.73	34	7.0	14005000.0	142310.0	0.0	1.0	166.0	1	 1	0	0	0	0	0	0	0	1	146.0
22	62	239	51.96	114	7.0	14005000.0	142310.0	0.0	1.0	166.0	1	 1	0	0	0	0	0	0	0	1	146.0
22	63	239	54.95	19	7.0	14830000.0	151030.0	0.0	1.0	166.0	1	 1	0	0	0	0	0	0	0	1	146.0
226	4 row	/s × 2	4 colum	ns																	

모델별 비교 - 딥러닝

Layer (type) 	Output Shape 	Param #
input_2 (InputLayer)	[(None, 23)]	0
dense_3 (Dense)	(None, 128)	3072
batch_normalization_2 (Batc hNormalization)	(None, 128)	512
activation_2 (Activation)	(None, 128)	0
dropout_2 (Dropout)	(None, 128)	0
dense_4 (Dense)	(None, 256)	33024
batch_normalization_3 (Batc hNormalization)	(None, 256)	1024
activation_3 (Activation)	(None, 256)	0
dropout_3 (Dropout)	(None, 256)	0
dense_5 (Dense)	(None, 1)	257
otal params: 37,889 rainable params: 37,121 on-trainable params: 768		

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	II (Sec)
et	Extra Trees Regressor	10.0199	1198.6530	31.8151	0.9926	0.1024	0.0344	0.4710
xgboost	Extreme Gradient Boosting	28.0903	2851.9743	52.8277	0.9824	0.1521	0.0819	0.3340
rf	Random Forest Regressor	29.9223	3259.0749	56.6379	0.9799	0.1615	0.0884	0.9480
dt	Decision Tree Regressor	13.2708	3643.8881	59.0516	0.9775	0.1321	0.0378	0.0710
catboost	CatBoost Regressor	39.4561	3699.6117	60.2848	0.9773	0.1870	0.1157	2.8020
lightgbm	Light Gradient Boosting Machine	43.3005	4522.7895	66.8946	0.9719	0.1948	0.1243	0.2690
gbr	Gradient Boosting Regressor	81.0017	12697.4905	112.4160	0.9218	0.2773	0.2120	0.5540
ada	AdaBoost Regressor	137.3587	29593.4900	171.9110	0.8188	0.4409	0.4479	0.2140
ridge	Ridge Regression	134.8746	35605.8614	188.4694	0.7834	0.4404	0.3199	0.0890
lr	Linear Regression	135.0288	35608.1357	188.4761	0.7834	0.4537	0.3214	0.4240
br	Bayesian Ridge	134.4792	35668.8338	188.6333	0.7831	0.4198	0.3142	0.0800
llar	Lasso Least Angle Regression	134.7040	35848.0928	189.1271	0.7820	0.4369	0.3106	0.1470
lasso	Lasso Regression	134.7040	35848.0928	189.1271	0.7820	0.4369	0.3106	0.0740
en	Elastic Net	140.8105	39149.0852	197.6221	0.7624	0.4173	0.3287	0.0750
huber	Huber Regressor	217.2652	108193.1933	311.5834	0.3686	0.5589	0.5604	0.1450
knn	K Neighbors Regressor	244.4454	121696.0742	347.8657	0.2620	0.6630	0.8633	0.0800

pycaret

데이터 전처리

- ➡ 다양한 머신러닝 모델 학습 후 성능 비교
- ➡ 하이퍼 파라미터 최적화
- ➡ 모델들 앙상블하여 예측 성능 개선
- ➡ 최종 모델 학습 후 저장
- → 예측
- ➡ 시각화

대한민국의 주차 문제

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	II (Sec)
et	Extra Trees Regressor	10.0199	1198.6530	31.8151	0.9926	0.1024	0.0344	0.4710
xgboost	Extreme Gradient Boosting	28.0903	2851.9743	52.8277	0.9824	0.1521	0.0819	0.3340
rf	Random Forest Regressor	29.9223	3259.0749	56.6379	0.9799	0.1615	0.0884	0.9480
dt	Decision Tree Regressor	13.2708	3643.8881	59.0516	0.9775	0.1321	0.0378	0.0710
catboost	CatBoost Regressor	39.4561	3699.6117	60.2848	0.9773	0.1870	0.1157	2.8020
lightgbm	Light Gradient Boosting Machine	43.3005	4522.7895	66.8946	0.9719	0.1948	0.1243	0.2690
gbr	Gradient Boosting Regressor	81.0017	12697.4905	112.4160	0.9218	0.2773	0.2120	0.5540
ada	AdaBoost Regressor	137.3587	29593.4900	171.9110	0.8188	0.4409	0.4479	0.2140
ridge	Ridge Regression	134.8746	35605.8614	188.4694	0.7834	0.4404	0.3199	0.0890
lr	Linear Regression	135.0288	35608.1357	188.4761	0.7834	0.4537	0.3214	0.4240
br	Bayesian Ridge	134.4792	35668.8338	188.6333	0.7831	0.4198	0.3142	0.0800
llar	Lasso Least Angle Regression	134.7040	35848.0928	189.1271	0.7820	0.4369	0.3106	0.1470
lasso	Lasso Regression	134.7040	35848.0928	189.1271	0.7820	0.4369	0.3106	0.0740
en	Elastic Net	140.8105	39149.0852	197.6221	0.7624	0.4173	0.3287	0.0750
huber	Huber Regressor	217.2652	108193.1933	311.5834	0.3686	0.5589	0.5604	0.1450
knn	K Neighbors Regressor	244.4454	121696.0742	347.8657	0.2620	0.6630	0.8633	0.0800

성능 비교 기준

● MAE : 평균 절대 오차

● MSE : 평균 제곱 오차

• RMSE : 평균 제곱근 오차

• R2 : 결정계수

● RMSLE : RMSE에 로그 적용한 값

• MAPE : 평균 절대 비율 오차

III 결론

🎹 최종 모델 선정 - ExtraTreesRegressor

III 결론

🚺 예측 및 결과

결론

과거에 비해 가구별 차량 보유가 증가하고 있지만, 주차와 관련된 법규나 규정은 바뀌는게 없음

지방도시 일자리 창출로 인구 분산 필요

본 데이터 분석의 한계점

임대 아파트의 데이터 만으로 일반화하기에는 오류가 있어, 더 많은 데이터로 분석할 필요있음

II 데이터 분석 및 머신러닝

III 결론

출처

[Train] C1786 | 강원도 | 행복주택 | 총 480세대 : 춘천거두2 행복주택

춘천거두2 행복주택 임대조건 : https://www.myhome.go.kr/hws/portal/sch/selectRsdtRcritNtcDetailView.do?pblancId=1425

[Train] C1326 | 부산광역시 | 국민임대 | 총 1934세대 : 부산정관 7단지 A-1블록

부산정관 7단지 A-1BL 국민임대 모집공고 : https://www.myhome.go.kr/hws/portal/sch/selectRsdtRcritNtcDetailView.do?pblancId=915"

[Train] C2186 | 대구광역시 | 국민임대 | 총 924세대 : 대구연경 A-2블록 국민임대주택

대구연경 A-2블록 국민임대주택 입주자모집 안내: https://m.blog.naver.com/PostView.nhn?

isHttpsRedirect=true&blogId=sugar9025404&logNo=221577519654&categoryNo=59&proxyReferer=

[Test] C2152 | 강원도 | 영구임대 | 총 120세대 : 화천신읍 공공실버주택

화천신읍 공공실버주택 예비입주자 모집 : https://www.myhome.go.kr/hws/portal/sch/selectRsdtRcritNtcDetailView.do?pblancId=9070

[Test] C1267 | 경상남도 | 행복주택 | 총 675세대 : 창원가포 A-1블록 행복주택

창원가포 A-1블록 행복주택 입주자 모집공고 : https://www.myhome.go.kr/hws/portal/sch/selectRsdtRcritNtcDetailView.do?

pblancld=6373

[Test] C1006 | 대전광역시 | 영구임대 | 총 1505세대 : 대전둔산1단지

대전둔산1 영구임대주택 그린리모델링세대 입주자 자격완화 모집:

https://www.myhome.go.kr/hws/portal/sch/selectRsdtRcritNtcDetailView.do?pblancId=8399

이대로 괜찮은가 대한민국!

같이 해결해 봐요

이승현

ihwh99@gmail.com

나혜원

n417759@gmail.com

김성현

ksung1023@gmail.com

김민정

alswjd4823@naver.com

권성재

chris123ag@naver.com

