Practical - 4

Practical: Hands-on training of convolutional neural networks.

Tasks: Preparing datasets for training CNNs. Implementing a CNN architecture using TensorFlow or Keras. Training the CNN model on a dataset for image classification or object detection task. Fine-tuning pre-trained CNN models for specific tasks.

Code:

#Import Necessary Libraries:

```
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
```

#Load and Normalize the Dataset:

```
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0
```

#Define Class Names:

#Visualize the Dataset:

```
plt.figure(figsize=(8,8))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i])
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()
```

The CIFAR labels happen to be arrays, which is why we need the extra index

#Define the CNN Model:

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10))

model.summary()

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 15, 15, 32)	0
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 6, 6, 64)	0
conv2d_2 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 64)	65600
dense_1 (Dense)	(None, 10)	650
Total params: 122570 (478.79 KB) Trainable params: 122570 (478.79 KB) Non-trainable params: 0 (0.00 Byte)		

#Compile the Model:

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])

#Train the Model:

history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))

#Plot Training History:

```
plt.plot(history.history['accuracy'],label='accuracy')
plt.plot(history.history['val_accuracy'],label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()
```


#Evaluate the Model:

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

```
313/313 - 4s - loss: 0.8678 - accuracy: 0.7145 - 4s/epoch - 13ms/step
```

#Data Augmentation: Apply techniques like rotation, shifting, and flipping to artificially increase the size and variability of your training dataset.

from tensorflow.keras.preprocessing.image import ImageDataGenerator

```
datagen = ImageDataGenerator(
  rotation_range=20,
  width_shift_range=0.2,
  height_shift_range=0.2,
  horizontal_flip=True,
)
datagen.fit(train_images)
```

```
history = model.fit(datagen.flow(train_images, train_labels, batch_size=32),
epochs=10,
validation_data=(test_images, test_labels))
```

#Fine-Tuning Pre-Trained Models: Use pre-trained models like VGG16, ResNet, or MobileNet for transfer learning to leverage the power of models trained on large datasets.