The Golden Ratio and the Ratio of Fibonacci Numbers

(a) Define x_n to be the *n*th rational approximation to x obtained from its continued fraction, where, for example, $x_0 = [a_0;]$, $x_1 = [a_0; a_1]$, and $x_2 = [a_0; a_1, a_2]$. Using $\Phi = [1; \overline{1}]$, verify that Φ_0 , Φ_1 , Φ_2 , and Φ_3 are just the ratios of consecutive Fibonacci numbers.

(b) Prove by induction that $\Phi_n = F_{n+2}/F_{n+1}$

Solution

(a)

We have

$$\begin{split} &\Phi_0 = [1;\;] = 1 = \frac{1}{1} = \frac{F_2}{F_1},\\ &\Phi_1 = [1;1] = 1 + \frac{1}{1} = 2 = \frac{2}{1} = \frac{F_3}{F_2},\\ &\Phi_2 = [1;1,1] = 1 + \frac{1}{1 + \frac{1}{1}} = \frac{3}{2} = \frac{F_4}{F_3},\\ &\Phi_3 = [1;1,1,1] = 1 + \frac{1}{1 + \frac{1}{1}} = \frac{5}{3} = \frac{F_5}{F_4}. \end{split}$$

(b)

Base Case: (a) shows the equality is true for n = 0, 1, 2, and 3.

Induction Step: Suppose that the equality is true for positive integers n = k. then

$$\frac{F_{k+3}}{F_{k+2}} = \frac{F_{k+1} + F_{k+2}}{F_{k+2}}$$

$$= 1 + \frac{F_{k+1}}{F_{k+2}}$$

$$= 1 + \frac{1}{\Phi_k}$$

$$= \Phi_{k+1}$$

So $\Phi_n = F_{n+2}/F_{n+1}$ is true for n = k+1 and, by induction, is true for all positive integers.