Оглавление

1	Век	сторная алгебра
	1.1	Геометрические векторы на плоскости и в пространстве, операции над векторами
	1.2	Линейная зависимость и независимость геометрических векторов
	1.3	Скалярное произведение двух векторов
		1.3.1 Свойства скалярного произведения
	1.4	Векторное и смешанное произведение векторов, их свойства, координатное представление .
	1.1	1.4.1 Векторное произведение
		1.4.2 Свойства векторного произведения
	1.5	Смешанное произведение
		1.5.1 Свойства смешанного произведения
2	Пря	ямая и плоскость
	2.1	Прямая на плоскости и её уравнение
		2.1.1 По двум точкам
		2.1.2 По нормальному вектору и точке
		2.1.3 Общее уравнение прямой (По коллинеарному вектору и точке)
	2.2	Плоскость в пространстве и её уравнение
	2.2	
		, , , ,
		2.2.2 Параметрическое уравнение прямой
		2.2.3 Каноническое уравнение прямой
	2.3	Взаимное расположение прямых в пространстве и взаимное расположение прямой и плос-
		кости в пространстве
3	Kpi	ивые второго порядка
	3.1	Общее уравнение кривой второго порядка
	3.2	Эллипс
		3.2.1 как привести кривую второго порядка к каноническому виду
	3.3	Гипербола
	3.4	Директориальное свойство эллипса и гиперболы
	3.5	Парабола
	3.6	Оптические свойства эллипса, гиперболы и параболы
	3.7	Канонические формы линий второго порядка
	3.8	Доказательство основной теоремы классификации
	3.0	доказательство основной теоремы классификации
4		верхности второго порядка 14
	4.1	Общее уравнение поверхности второго порядка
	4.2	Канонические уравнения основных алгебраических поверхностей второго порядка 1
5	Ma	трицы и определители
	5.1	Операции над матрицами
		5.1.1 Сложение и вычитание матриц
		5.1.2 Умножение матрицы на число
		5.1.3 Произведение двух матриц
		5.1.4 Транспонированная матрица
	5 0	
	5.2	Определители n-ого порядка
	5.3	Обратная матрица с доказательством
	5.4	Ранг матрицы

6	Сис	стемы линейных уравнений	18			
	6.1	Основные понятия	18			
	6.2	Критерий совместимости системы линейных уравнений	18			
	6.3	Правило Крамера (с доказательством)	18			
	6.4	Свойства решений системы линейны однородных уравнений				
	6.5	Фундаментальная система решений системы линейных однородных уравнений				
	6.6	Общие свойства решений множества решений системы линейных уравнений	19			
7	Линейный пространства					
	7.1	Понятие линейного пространства, примеры	20			
	7.2	Линейная зависимость и независимость элементов линейного пространства	20			
	7.3	Размерность и базис, ЛП координаты векторов с доказательством	21			
	7.4	Линейные операции в координатной форме	21			
	7.5	Преобразование координат вектора при преобразовании базиса с доказательством	21			
8	Линейные операторы, действующие в произвольном линейном пространстве					
	8.1	Общее определение оператора	23			
	8.2	Определение линейного оператора				
	8.3	Матрица линейного оператора с доказательством				
9	Евклидовы пространства					
	9.1	Понятие о евклидовом пространстве, примеры	24			
	9.2	Ортонормированный базис конечномерного евклидового пространства. Процесс ортогона-				
		лизации базиса	24			
10	Лиі	нейные операторы, действубщие в линейном пространстве	25			
		Линейный операторы в евклидовом пространстве, движения	25			

Векторная алгебра

1.1 Геометрические векторы на плоскости и в пространстве, операции над векторами

Определения: Направленный отрезок - отрезок АВ, у которого указан порядок концов, т.е. А - начало, В - конец.

Равенство направленных отрезков - направленный отрезок \overrightarrow{AB} равен направленному отрезку \overrightarrow{CD} если они сонаправлены и имеют одинаковые длины.

Не нулевой вектор в пространстве - множество равных между собой направленных отрезков в пространстве.

Операции над векторами Сложение:

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 — коммутативность

2.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 – дистрибутивность

3.
$$\vec{a} + \vec{0} = \vec{a}, \vec{a} + (-\vec{a}) = \vec{0}$$

Умножение вектора на число:

Произведение $\vec{a}\alpha$ - это такой \vec{b} , что:

1.
$$\vec{b} \parallel \vec{a}$$

$$2. |\vec{b}| = |\alpha||\vec{a}|$$

3.
$$\vec{b} \uparrow \uparrow \vec{a}$$
 при $\alpha > 0$, $\vec{b} \uparrow \downarrow \vec{a}$ при $\alpha < 0$

Свойства:

1.
$$(\alpha \pm \beta)\vec{a} = \alpha \vec{a} \pm \beta \vec{a}$$

2.
$$\alpha(\vec{a} \pm \vec{b}) = \alpha \vec{a} \pm \alpha \vec{b}$$

3.
$$\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a} = \beta(\alpha \vec{a})$$

$$4. \ \vec{a} \cdot 1 = \vec{a}$$

$$5. \ \vec{a} \cdot 0 = \vec{0}$$

Все операции проводятся над координатами векторов

1.2 Линейная зависимость и независимость геометрических векторов

Система векторов является линейно зависимой тогда и только тогда, когда в ней найдется вектор, который линейно выражается через остальные векторы этой системы.

$$\sum \lambda_i \vec{a_i} = 0$$
 не все коэффициенты одновременно равны 0

1.3 Скалярное произведение двух векторов

Пусть заданы два вектора $\vec{a}\{x_1,y_1,z_1\}$ и $\vec{b}\{x_2,y_2,z_2\}$. Тогда скалярное произведение определено как

$$(\vec{a}, \vec{b}) \equiv \vec{a}\vec{b} \equiv \vec{a} \cdot \vec{b} = |a||b|cos(\phi) = x_1x_2 + y_1y_2 + z_1z_2$$

Отсюда достаточно легко выражается косинус угла между векторами

$$cos(\phi) = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{|\vec{a}||\vec{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

Скалярное произведение - произведение длины проекции первого вектора на второй, умноженное на длину второго вектора: Тогда длина проекции \vec{a} на \vec{b} -

Рис. 1.1: $|a\cos\theta|$ - длина проекции на вектор b

$$\frac{\vec{a}\vec{b}}{|a|\cos\theta} = \frac{x_1x_2 + y_1y_2}{|a|\cos\theta}$$

1.3.1 Свойства скалярного произведения

- 1. $(\vec{a} \cdot \vec{a}) = |\vec{a}|^2$
- 2. Коммутативность: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- 3. Дистрибутивное свойство: $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$
- 4. Ассоциативность: $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$
- 5. Если скалярное произведение двух векторов равно нулю, то они перпендикулярны: $\vec{a}\cdot\vec{b}=0\Leftrightarrow\vec{a}\perp\vec{b}$

1.4 Векторное и смешанное произведение векторов, их свойства, координатное представление

1.4.1 Векторное произведение

$$\vec{c} = [\vec{a}\vec{b}] = [\vec{a}, \vec{b}] = \vec{a} \times \vec{b} = \vec{a} \wedge \vec{b}.$$

Векторное произведение возвращает вектор, который образует правую тройку векторов с двумя данными и по длине равный площади параллелограмма $(|\vec{a}||\vec{b}|\sin(\alpha))$, построенного на данных векторах.

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \vec{i} \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} - \vec{j} \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} + \vec{k} \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$

Вектор \vec{c} образует правую тройку векторов с двумя данными, если с конца \vec{c} поворот от первого вектора до второго по наименьшему углу против часов стрелки. Если по часовой - левая тройка. Определители соответствующих матриц - координаты.

1.4.2 Свойства векторного произведения

- 1. Если векторное произведение равно нулю, то данные векторы коллинеарны
- 2. Антикоммутативность: $[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}]$
- 3. Дистрибутивность по сложению: $[\vec{a} + \vec{b}, \vec{c}] = [\vec{a}, \vec{c}] + [\vec{b}, \vec{c}]$
- 4. $[\vec{a}, \vec{a}] = 0$

1.5 Смешанное произведение

Смешанное произведение трех векторов возвращает объем параллелепипеда, построенного на данных векторах. Обозначается обычно так: $(a,b,c)=a\cdot(b\times c)$.

$$(a, b, c) = a \cdot (b \times c)$$

Пусть

$$\begin{split} \vec{a} &= a_x \vec{i} + a_y \vec{j} + a_z \vec{k}, \\ \vec{b} &= b_x \vec{i} + b_y \vec{j} + b_z \vec{k}, \end{split}$$

$$\vec{c} = c_x \vec{i} + c_y \vec{j} + c_z \vec{k}$$

 $\vec{i}, \vec{j}, \vec{k}$ - ортонормированный правый базис.

Тогда смешанное произведение -

$$\langle \vec{a}, \vec{b}, \vec{c} \rangle = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

1.5.1 Свойства смешанного произведения

1. Кососимметричность.

$$(a,b,c) = (b,c,a) = (c,a,b) = -(b,a,c) = -(c,b,a) = -(a,c,b);$$

- 2. Три вектора компланарны (лежат в одной плоскости), если смешанное произведение равно 0.
- 3. Если оно больше 0 правая тройка векторов. Меньше левая тройка векторов.

Прямая и плоскость

2.1 Прямая на плоскости и её уравнение

Прямую можно задать:

- 1. по двум точкам
- 2. по нормальному вектору и точке
- 3. Общее уравнение прямой (по коллинеарному вектору и точке)

2.1.1 По двум точкам

Если вам даны две точки $A(x_1, y_1)$ и $B(x_2, y_2)$, то уравнение прямой, проходящей через эти точки, будет выглядеть так:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

2.1.2 По нормальному вектору и точке

Пусть дан нормальный вектор $\overrightarrow{n}\{A,B\}$ и точка $M(x_0,y_0)$, тогда уравнение прямой будет записано так:

$$A(x - x_0) + B(y - y_0) = 0$$

2.1.3 Общее уравнение прямой (По коллинеарному вектору и точке)

Пусть дан направляющий вектор $\overrightarrow{p}\{a,b\}$ и точка $M(x_0,y_0)$, тогда уравнение прямой будет записано так:

$$\begin{cases} x = x_0 + at, \\ y = y_0 + bt \end{cases}$$

Из параметрического уравнения прямой следует каноническое, поэтому если одна из координат направляющего вектора равна нулю, это не значит, что прямой не существует.

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = t$$

2.2 Плоскость в пространстве и её уравнение

Прямую можно задать:

- 1. двум плоскостям
- 2. по коллинеарному вектору и точке

2.2.1 Общее уравнение прямой

Пусть заданы две плоскости

$$\rho_1: A_1 \cdot x + B_1 \cdot y + C_1 \cdot z + D_1 = 0$$
$$[2pt]\rho_2: A_2 \cdot x + B_2 \cdot y + C_2 \cdot z + D_2 = 0$$

в которых коэффициенты при неизвестных непропорциональны. Тогда линия пересечения плоскостей описывается системой уравнений

$$\begin{cases} A_1 \cdot x + D_1 \cdot y + C_1 \cdot z + D_1 = 0, \\ A_2 \cdot x + D_2 \cdot y + C_2 \cdot z + D_2 = 0. \end{cases}$$

И эта прямая будет сонаправлена с векторным произведением их нормалей $\vec{n}_1 = A_1 \vec{i} + B_1 \vec{j} + C_1 \vec{k}$ и $\vec{n}_2 = A_2 \vec{i} + B_2 \vec{j} + C_2 \vec{k}$.

2.2.2 Параметрическое уравнение прямой

Пусть заданы точка $M_0(x_0,y_0,z_0)$ и ненулевой вектор $\vec{p}=a\vec{i}+b\vec{j}+c\vec{k}$ Тогда прямую можно записать в виде системы:

$$\begin{cases} x = x_0 + a \cdot t, \\ y = y_0 + b \cdot t, \quad t \in \mathbb{R} \\ z = z_0 + c \cdot t, \end{cases}$$

2.2.3 Каноническое уравнение прямой

Выразим параметр t из каждого уравнения системы параметрического уравнения прямой:

$$t = \frac{x - x_0}{a}, t = \frac{y - y_0}{b}, t = \frac{z - z_0}{c}$$

А затем исключим этот параметр:

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}, \quad a^2+b^2+c^2 \neq 0$$

Коэффициенты a, b, c не равны нулю одновременно, так как это координаты направляющего вектора прямой.

2.3 Взаимное расположение прямых в пространстве и взаимное расположение прямой и плоскости в пространстве

Пусть заданы две прямые

$$l_1: \frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}, \quad l_2: \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$$

где

- $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2)$ точки, принадлежащие прямым l_1 и l_2 соответственно
- $\vec{p_1} = a_1 \vec{i} + b_1 \vec{j} + c_1 \vec{k}, \vec{p_2} = a_2 \vec{i} + b_2 \vec{j} + c_2 \vec{k}$ направляющие векторы

Обозначим через $\vec{m} = \overrightarrow{M_1 M_2} = (x_2 - x_1)\vec{i} + (y_2 - y_1)\vec{j} + (z_2 - z_1)\vec{k}$ вектор, соединяющий заданные точки. Прямые в пространстве могут:

- 1. Скрещиваться, т.е. не лежат в одной плоскости \Leftrightarrow векторы $\vec{m}, \vec{p_1}, \vec{p_2}$ не компланарны;
- 2. Пересекаться, т.е. лежат в одной плоскости и имеют одну общую точку \Leftrightarrow векторы \vec{m} , $\vec{p_1}$, $\vec{p_2}$ компланарны, а векторы $\vec{p_1}$, $\vec{p_2}$ не коллинеарны;
- 3. Быть параллельными, т.е. лежат в одной плоскости и не пересекаются \Leftrightarrow векторы $\vec{p_1}, \vec{p_2}$ коллинеарны, а векторы $\vec{m}, \vec{p_2}$ не коллинеарны;

4. Совпадать \Leftrightarrow векторы $\vec{m},\,\vec{p_1},\,\vec{p_2}$ коллинеарны.

$$\langle \vec{m}, \vec{p_1}, \vec{p_2} \rangle = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

Равенство 0 этого определителя - условие комланарности векторов. Поэтому:

- 1. Прямые l_1 и l_2 скрещивающиеся \Leftrightarrow определитель отличен от нуля;
- 2. Прямые l_1 и l_2 пересекаются \Leftrightarrow определитель равен нулю, а вторая и третья его строки не пропоршиональны, т.е.

$$\operatorname{rang}\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 2;$$

3. Прямые l_1 и l_2 параллельные \Leftrightarrow вторая и третья строки определителя пропорциональны, т.е.

$$\operatorname{rang}egin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}=1\,,$$
 а первые две строки не пропорциональны, т.е.

$$\operatorname{rang} \begin{pmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \end{pmatrix} = 2 \, ;$$

4. Прямые l_1 и l_2 совпадают \Leftrightarrow все строки определителя пропорциональны, т.е.

$$\operatorname{rang}\begin{pmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 1$$

Взаимное расположение прямой и плоскости:

Для нормального вектора плоскости \vec{n} и направляющего вектора прямой \vec{p} прямая может:

- 1. быть параллельна плоскости $\Leftrightarrow (\vec{n}, \vec{p}) = 0$ и точка прямой не принадлежит плоскости;
- 2. принадлежать плоскости $\Leftrightarrow (\vec{n}, \vec{p}) = 0$ и точка прямой принадлежит плоскости;
- 3. пересекать плоскость $\Leftrightarrow (\vec{n}, \vec{p}) \neq 0$;

Кривые второго порядка

3.1 Общее уравнение кривой второго порядка

Общее уравнение кривой второго порядка: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ разделяют на: эллипс, мнимый эллипс, гиперболу, точку(вырожденный эллипс) и пару пересекающихся прямых.

3.2 Эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Это геометрическое место точек, сумма расстояний от которых до двух фокусов - 2а. Элементы эллипса:

- 1. $A_1A_2 = 2a$ большая ось
- $2. \ B_1B_2 = 2b$ малая ось
- 3. $c^2 = a^2 b^2$
- 4. $F_1(c;0), F_2(-c;0)$ фокусы => $F_1F_2=2c$
- 5. $\varepsilon = \frac{c}{a} < 1$ мера его вытянутости
- 6. $d_1: x = \frac{a}{\varepsilon}, d_2: x = \frac{a}{\varepsilon}$ директрисы

Рис. 3.1: $|a\cos\theta|$ - длина проекции на вектор b

3.2.1 как привести кривую второго порядка к каноническому виду

Пусть дано уравнение такого вида $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, тогда нужно получить вид

$$\frac{(a_x x + g_x)^2}{h_x} + \frac{(a_y y + g_y)^2}{h_y} = 1$$

где a_x, g_x, h_x (и для у) - такие числа, чтобы при раскрытии скобок получилось изначальное уравнение. Дальше нужно вынести a_x, a_y за скобку, чтобы получился вид

$$\frac{(x+k_x)^2}{l_x} + \frac{(y+k_y)^2}{l_y} = 1$$

 $(k_x, k_y, l_x, l_y$ - такие числа, чтобы при раскрытии скобок получалось начальное равенство) после чего нужно сделать замену

$$\begin{cases} x' = x + k_x \\ y' = y + k_y \end{cases}$$

и получить каноническое уравнение эллипса в новой системе координат. Это работает для всех кривых второго порядка, просто вместо канонического уравнения эллипса нужно подгонять под нужную кривую.

3.3 Гипербола

Рис. 3.2: Так выглядит гипербола

каноническое уравнение
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Это геометрическое место точек, для которых модуль разности расстояний до фокусов равен 2а Элементы гиперболы:

- 1. $A_1A_2 = 2a$ действительная ось
- $2. \ B_1B_2 = 2b$ мнимая ось
- 3. A_1, A_2 вершины гиперболы
- 4. $c^2 = a^2 + b^2$
- 5. $F_1(c;0), F_2(-c;0)$ фокусы

- 6. $y = \pm \frac{b}{a} x$ асимптоты
- 7. $\varepsilon = \frac{c}{a} > 1$ величина раствора угла между асимптотами

$$d_1: x = \frac{a}{\varepsilon}, d_2: x = -\frac{a}{\varepsilon}$$

3.4 Директориальное свойство эллипса и гиперболы

Эллипс является множеством точек, отношение расстояний от которых до фокуса и до соответствующей директрисы постоянно и равно е. Гипербола - это геометрическое место точек, для которых модуль разности расстояний до фокусов равен 2а.

3.5 Парабола

Рис. 3.3: Так выглядит парабола

Каноническое уравнение:

$$x^2 = 2py; y^2 = 2px$$

Это геометрическое место точек, каждая из которых равноудалена от фокуса и директрисы Элементы параболы

- 1. $F(\frac{p}{2};0)$ фокус
- 2. $\varepsilon=1$ по идее не нужен, но пусть будет
- 3. $d: x = -\frac{p}{2}$ директриса

3.6 Оптические свойства эллипса, гиперболы и параболы

Эллипс - Лучи света, выходящий из одного фокуса эллипса, после отражения от эллипса проходят через другой его фокус

Гипербола - Лучи света, выходящие из одного фокуса гиперболы, после отражения от гиперболы кажутся выходящими из другого её фокуса.

Парабола - Лучи, вышедшие из фокуса параболы, отразившись от неё, пойдут параллельно оси симметрии; лучи, пришедшие параллельно оси симметрии параболы, отразившись от неё, придут в фокус.

3.7 Канонические формы линий второго порядка

1.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Уравнение эллипса	2.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ Уравнение мнимого эллипса	3.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ Уравнение пары мнимых пересекающихся прямых
4.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	5.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ Уравнение пары	6.	$y^2 = 2 \cdot p \cdot x$
	Уравнение гиперболы		пересекающихся прямых		Уравнение параболы
7.	$y^2 - b^2 = 0$	8.	$y^2 + b^2 = 0 \qquad \underbrace{\qquad \qquad \qquad \qquad \qquad \qquad }_{\qquad \qquad \qquad \qquad \qquad \qquad \qquad }$	9.	$y^2 = 0$
	Уравнение пары параллельных прямых		Уравнение пары мнимых параллельных прямых		Уравнение пары совпадающих прямых

3.8 Доказательство основной теоремы классификации

Доказательство производится рассматривание всех случаев поочередного зануления параметров.

Поверхности второго порядка

4.1 Общее уравнение поверхности второго порядка

$$Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + G = 0$$

при этом $A^2 + B^2 + C^2 > 0$

4.2 Канонические уравнения основных алгебраических поверхностей второго порядка

1.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Уравнение эллипсоида	z y	2.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ Уравнение мнимого эллипсоида	3.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ Уравнение мнимого конуса
4.	$rac{x^2}{a^2} + rac{y^2}{b^2} - rac{z^2}{c^2} = 1$ Уравнение однополостног гиперболоида	o x	5.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ Уравнение двуполостного гиперболоида	6.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ Уравнение конуса
7.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ Уравнение эллиптического параболоида	x y	8.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$ Уравнение гиперболического параболоида	9.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Уравнение эллиптического цилиндра
10.	$rac{x^2}{a^2} + rac{y^2}{b^2} = -1$ Уравнение мнимого эллиптического цилиндра	x y	11.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ Уравнение пары мнимых пересекающихся плоскостей x	12.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Уравнение гиперболического х цилиндра
13.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ Уравнение пары пересекающихся плоскостей	z y	14.	$y^2 = 2px$ Уравнение параболического цилиндра	15.	$y^2 - b^2 = 0$ Уравнение пары параллельных плоскостей
16.	$y^2 + b^2 = 0$ Уравнение пары мнимых параллельных плоскостей	x y	17.	$y^2 = 0$ Уравнение пары совпадающих плоскостей		Для всех уравнений $a>0,\ b>0,\ c>0,\ p>0$ Для уравнений 1 и 2 $a\geq b\geq c$ ля уравнений $3,4,5,6,7,9,10$ $a\geq b$

Матрицы и определители

5.1 Операции над матрицами

Большинство операций будет производиться с квадратными матрицами:

$$A_{n,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}$$

5.1.1 Сложение и вычитание матриц

$$A_{n\times n} \pm B_{n\times n} = C_{n\times n}, c_{ij} = a_{ij} + b_{ij}$$

5.1.2 Умножение матрицы на число

$$\lambda \cdot A = A_{n,n} = \begin{pmatrix} \lambda a_{1,1} & \lambda a_{1,2} & \cdots & \lambda a_{1,n} \\ \lambda a_{2,1} & \lambda a_{2,2} & \cdots & \lambda a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{n,1} & \lambda a_{n,2} & \cdots & \lambda a_{n,n} \end{pmatrix}$$

5.1.3 Произведение двух матриц

Пусть даны две прямоугольные матрицы A и B размерности $l \times m$ и $m \times n$ соответственно:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{lm} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix}.$$

Тогда матрица С размерностью $l \times n$:

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{l1} & c_{l2} & \cdots & c_{ln} \end{pmatrix}$$

в которой каждый элемент является суммой попарно умноженных соответствующих элементов строки и столбца - элемент c_{ij} - сумма умноженных элементов і строки на ј столбец

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$
 $(i = 1, 2, \dots, l; j = 1, 2, \dots, n).$

5.1.4 Транспонированная матрица

В этом случае столбцы становятся строками, а строки - столбцами.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} => A^T = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

5.1.5 Свойства операций над матрицами

- 1. A + B = B + A коммутативность сложения
- 2. A + (B + C) = (A + B) + C- ассоциативность сложения
- 3. $(\alpha + \beta)A = \alpha A + \beta A$ дистрибутивность умножения на матрицу относительно сложения чисел
- 4. $\alpha(A+B) = \alpha A + \beta B$ дистрибутивность умножения на число относительно сложения матриц
- 5. A(BC) = (AB)C
- 6. $\alpha(\beta A) = (\alpha \beta)A$
- 7. $A \cdot (B + C) = AB + AC; (B + C) \cdot A = BA + CA$
- 8. $A \cdot E = E \cdot A = A$, E единичная матрица
- 9. $A \cdot O = O \cdot A = O$, O нулевая матрица
- 10. $(A^T)^T = A$
- 11. $(A+B)^T + A^T + B^T$
- 12. $(AB)^T + B^T \cdot A^T$
- 13. $\alpha A^T = (\alpha A)^T$

5.2 Определители п-ого порядка

Определителем n-ого порядка называется алгебраическая сумма n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца. При этом произведение берётся со знаком «+», если подстановка из индексов входящих в него элементов чётная, и со знаком «-» в противном случае. То же самое в виде формулы. Для квадратной матрицы $A = (a_{ij})$ размера $n \times n$ её определитель $\det A$ вычисляется по формуле:

$$\det A = \sum_{\alpha_1, \alpha_2, \dots, \alpha_n} (-1)^{N(\alpha_1, \alpha_2, \dots, \alpha_n)} \cdot a_{1\alpha_1} a_{2\alpha_2} \dots a_{n\alpha_n}$$

где суммирование проводится по всем перестановкам $\alpha_1, \alpha_2, \dots, \alpha_n$ чисел $1, 2, \dots, n$, а $N(\alpha_1, \alpha_2, \dots, \alpha_n)$ обозначает число инверсий в перестановке $\alpha_1, \alpha_2, \dots, \alpha_n$

5.3 Обратная матрица с доказательством

Обратную матрицу можно найти как:

$$A^{-1} = \frac{\text{adj}A}{|A|}$$

где $\mathrm{adj}A$ - присоединенная матрица

$$C^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

Которая состоит из алгебраических дополнений и транспонирована

5.4 Ранг матрицы

Ранг матрицы – количество линейно независимых строк или столбцов.

Метод элементарных преобразований— нужно привести матрицу к верхнетреугольному(ступенчатому виду) - количество не нулевых строк и будет рангом матрицы.

Метод окаймляющих миноров– Пусть в матрице существует ненулевой минор i-того порядка (определитель квадратной матрицы $i \times i$ не равен нулю). Если все окаймляющие миноры (Рассмотреть все матрицы, содержащие прошлую $i \times i$) i+1 порядка равны 0, то ранг матрицы - i.

Системы линейных уравнений

6.1 Основные понятия

Уравнение называется линейным, если оно содержит неизвестные только первой степени и не содержит умножение неизвестных:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n + b = 0$$
 $a_i, b \in \mathbb{R}$

 a_i - коэффициент, b - свободный член. Если b=0, то уравнение однородное, иначе - не однородное. Пусть есть система из m уравнений с n неизвестными:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} - \text{основная матрица системы}$$

$$A|B = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} & b_m \end{pmatrix} - \text{расширенная матрица системы}$$

Система линейных алгебраических дополнений (дальше СЛАУ) называется совместной, если имеет хотя бы одно решение. Если СЛАУ не имеет решений - она несовместная. СЛАУ называется однородной, если все свободные члены равны 0.

6.2 Критерий совместимости системы линейных уравнений

Теорема Кронекера-Капелли — критерий совместности системы линейных алгебраических уравнений гласит что: Система уравнений Ax=B разрешима тогда и только тогда, когда rang $A=\operatorname{rang}(A|B)$, где (A|B) — расширенная матрица, полученная из матрицы A приписыванием столбца B

6.3 Правило Крамера (с доказательством)

Единственное решение неоднородной СЛАУ Ax=B, где $x=\begin{pmatrix}x_1\\ \dots\\ x_i\\ \dots\\ x_n\end{pmatrix}$ можно найти по формуле: $x_i=\frac{\Delta_i}{\Delta_i}$

где Δ_i - определитель матрицы A, в которой i-й столбец заменен на столбец свободных членов, а Δ - определитель A.

6.4 Свойства решений системы линейны однородных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Эта система всегда совместна, так как имеет тривиальное решение $x_1 = x_2 = \cdots = x_n = 0$ Если ранг матрицы системы равен количеству неизвестных n, то тривиальное решение единственное. Если rg(A) < n, то однородная система имеет бесконечно много решений.

6.5 Фундаментальная система решений системы линейных однородных уравнений

 $to\ be\ continued...$

6.6 Общие свойства решений множества решений системы линейных уравнений

Если вектор x является решением однородной системы Ax=0, то вектор x также является решением этой системы. Здесь — произвольное число.

Если векторы x и y являются решениями однородной системы Ax=0, то вектор x+y также является решением этой системы.

Если вектор х является решением однородной системы Ax = 0, а вектор иу— решение неоднородной системы Ax = b, то вектор x + y является решением неоднородной системы Ax = b.

Если векторы x и y являются решениями неоднородной системы Ax = b, то вектор xy является решением однородной системы Ax = 0.

Линейный пространства

7.1 Понятие линейного пространства, примеры

Линейным (векторным) пространством называется множество L произвольных элементов, называемых векторами, в котором определены операции сложения векторов и умножения вектора на число, т.е. любым двум векторам \mathbf{u} и \mathbf{v} поставлен в соответствие вектор $\mathbf{u} + \mathbf{v}$, любому вектору \mathbf{v} и любому числу $\lambda \in \mathbb{R}$ поставлен в соответствие вектор $\lambda \mathbf{v}$, так что выполняются следующие условия:

- 1. $\forall \vec{x}, \vec{y} \in L : \vec{x} + \vec{y} \in L$
- 2. Коммутативность : $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 3. $\forall \vec{x} \in L; \forall \lambda \in \mathbb{R} : \lambda \vec{x} \in L$
- 4. $\forall \lambda, \mu \in \mathbb{R}, \forall \vec{x} \in L : (\lambda \mu) \vec{x} = \lambda(\mu \vec{x})$
- 5. $\lambda(\vec{x} + \vec{y}) = \lambda \vec{x} + \mu \vec{y}$
- 6. $\exists \vec{0} \in L : \vec{x} + \vec{0} = \vec{0}$
- 7. $\exists \vec{1} \in L : \vec{x} * \vec{1} = \vec{x}$
- 8. $\vec{x}(\mu + \lambda) = \mu \vec{x} + \lambda \vec{x}$

Примеры:

- 1. $L = \{(x_1, x_2, \dots, x_n) | x_i \in \mathbb{R} \}$
- 2. $L = \{(a_{ij})_{m \times n} | a_{ij} \in \mathbb{R} \}$
- 3. $L = \{p(x) \text{многочлен } | deg(p(x)) <= n\}$
- 4. $L = \{f(x)|f(x)$ непрерывная на $[a,b]\}$

5.
$$L = \{(x_1, x_2, \dots, x_n) | \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

7.2 Линейная зависимость и независимость элементов линейного пространства

Если линейная комбинация $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0$, при этом среди чисел $\lambda_1, \dots, \lambda_n$ есть хотя бы одно отличное от нуля, то ти вектора линейно зависимы. Иначе они линейно независимы.

7.3 Размерность и базис, $\Pi\Pi$ координаты векторов с доказательством.

Система векторов линейного пространства L образует базис в L если эта система векторов упорядочена, линейно независима и любой вектор из L линейно выражается через векторы системы.

То есть линейно независимая упорядоченная система векторов e_1, \ldots, e_n образует базис в L если любой вектор x из L может быть представлен в виде:

 $x = \lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_n e_n$ Размерность пространства - максимальное количество линейно независимых векторов.

7.4 Линейные операции в координатной форме

Пусть $\vec{x} = (x_1, x_2, x_3), \ \vec{y} = (y_1, y_2, y_3),$ тогда:

$$\vec{x} \pm \vec{y} = (x_1 \pm y_1, x_2 \pm y_2, x_3 \pm y_3)$$
$$\lambda \vec{x} = (\lambda x_1, \lambda x_2, \lambda x_3)$$

7.5 Преобразование координат вектора при преобразовании базиса с доказательством

Это квадратная матрица порядка $[n \times n]$, где по столбцам записаны координаты нового базиса в старом базисе. Пусть есть базис в n-мерном пространстве $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$. Возьмем второй базис $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$, тогда каждый из векторов нового базиса h можно представить в виде линейной комбинации векторов базиса e:

$$\begin{cases} \vec{e_1'} = a_{11}\vec{e_1} + a_{21}\vec{e_2} + \dots + a_{n1}\vec{e_n} \\ \vec{e_2'} = a_{12}\vec{e_1} + a_{22}\vec{e_2} + \dots + a_{n2}\vec{e_n} \\ \vdots \\ \vec{e_n'} = a_{1n}\vec{e_1} + a_{2n}\vec{e_2} + \dots + a_{nn}\vec{e_n} \end{cases}$$

Тогда матрица перехода от первого базиса ко второму:

$$T = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

В ней i-й столбец равен координатному столбцу $e_{i}^{'}$ в базисе e.

Пусть дан вектор

$$\vec{b} = b_1 \vec{e_1} + \dots + b_n \vec{e_n}$$

 $\vec{b} = b'_1 \vec{e_1} + \dots + b'_n \vec{e_n}$

Тогда

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = T \begin{pmatrix} b_1' \\ b_2' \\ \vdots \\ b_n' \end{pmatrix}$$

Доказательство: Представим $e^{'}$ в разложении по e:

$$\vec{b} = \vec{b_1}(a_{11}\vec{e_1} + a_{21}\vec{e_2} + \dots + a_{n1}\vec{e_n}) + \dots + \vec{b_n}(a_{1n}\vec{e_1} + a_{2n}\vec{e_2} + \dots + a_{nn}\vec{e_n})$$

Сгуппируем множители перед $e_1, ..., e_n$:

$$\vec{b} = (a_{11}b_{1}^{'} + a_{12}b_{2}^{'} + \dots + a_{1n}b_{n}^{'})\vec{e_{1}} + \dots + (a_{n1}b_{1}^{'} + a_{n2}b_{2}^{'} + \dots + a_{nn}b_{n}^{'})\vec{e_{n}}$$

Так как

$$\begin{cases} \vec{b_1} = a_{11}\vec{b_1'} + a_{12}\vec{b_2'} + \dots + a_{1n}\vec{b_n'} \\ \vec{b_2} = a_{21}\vec{b_1'} + a_{22}\vec{b_2'} + \dots + a_{2n}\vec{b_n'} \\ \vdots \\ \vec{b_n} = a_{n1}\vec{b_1'} + a_{n2}\vec{b_2'} + \dots + a_{nn}\vec{b_n'} \end{cases}$$

Отсюда получается

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = T \begin{pmatrix} b_1^{'} \\ b_2^{'} \\ \vdots \\ b_n^{'} \end{pmatrix}$$

Линейные операторы, действующие в произвольном линейном пространстве

8.1 Общее определение оператора

Про оператор $A: X \to Y$ говорят, что он действует из множества X во множество Y. Оператор может быть не всюду определён на X; тогда говорят о его области определения $D_A = D(A) \subset X$. Для $x \in X$ результат применения оператора A к x обозначают A(x) или Ax.

8.2 Определение линейного оператора

Пусть L - линейное пространство. Тогда A - линейный оператор, если:

$$\forall x, y \in L, \lambda \in \mathbb{R}$$

$$1.A(x+y) = A(x) + A(y)$$

$$2.A(\lambda x) = \lambda A(x)$$

8.3 Матрица линейного оператора с доказательством

 $to\ be\ continued...$

Евклидовы пространства

9.1 Понятие о евклидовом пространстве, примеры

Определение: Евклидово пространство(L) - конечномерное пространство, на котором определена функция (скалярное произведение), что для нее выполняются 3 условия:

- **6.** Линейность: $\forall v, u, w \in L, \forall \lambda, \mu \in \mathbb{R}(\lambda v + \mu u, w) = \lambda(v, w) + \mu(u, w)$
- 2. Симметричность: $\forall v, u \in L(v, u) = (u, v)$
- 3. Положительная определённость: $(u,u) \ge 0$, причем $(u,u) = 0 \Leftrightarrow u = 0$

Пример - евклидово трехмерное пространство, где скалярное произведение определено как сумма произведений соответствующих координат

9.2 Ортонормированный базис конечномерного евклидового пространства. Процесс ортогонализации базиса

Ортонормированный базис - если для набора векторов e_1, \ldots, e_n верно, что

$$(e_i,e_j) = egin{cases} 0-\text{при } i
eq j \ \text{-} \ \text{любые два вектора перпендикулярны друг другу} \ 1-\text{при } i=j \ \text{-} \ \text{длина любого вектора(его норма) равна 1} \end{cases}$$

Процесс ортогонализации Грамма-Шмидта заключается в том, чтобы из векторов поочереди убирать из них их проекции на другие вектора. То есть например у вас есть 3 линейно независимых вектора $\vec{e_1}, \vec{e_2}, \vec{e_3}$ в трехмерном пространстве и нужно построить по ним ортогоналзированный базис $\vec{h_1}, \vec{h_2}, \vec{h_3}$. Возьмем и оставим первый вектор без изменений: $\vec{h_1} = \vec{e_1}$. Рассмотрим второй вектор $\vec{h_2} = \lambda \vec{e_1} + \vec{e_2}$. Тогда h_2 можно получить если найти λ . При этом по условию скалярное произведение $(\vec{h_1}, \vec{h_2}) = 0$. Значит

$$(\vec{h_1}, \vec{h_2}) = 0 = (\vec{e_1}, \lambda \vec{e_1} + \vec{e_2}) = (\vec{e_1}, \vec{e_2}) + \lambda (\vec{e_1}, \vec{e_1}) \Rightarrow \lambda = -\frac{(\vec{e_1}, \vec{e_2})}{(\vec{e_1}, \vec{e_1})}$$

То есть

$$\vec{h_2} = \vec{e_2} - \frac{(\vec{e_1}, \vec{e_2})}{(\vec{e_1}, \vec{e_1})} \vec{e_1} = \vec{e_2} - \frac{(\vec{h_1}, \vec{e_2})}{(\vec{h_1}, \vec{h_1})} \vec{h_1}$$

Для двух векторов \vec{a}, \vec{b} проекция \vec{a} на \vec{b} записывается как

$$proj_b a = \frac{(\vec{a}, \vec{b})}{(\vec{b}, \vec{b})} \vec{b}$$

Для третьего с аналогичными рассуждениями получится

$$\vec{h_3} = \vec{e_3} - \frac{(\vec{h_1}, \vec{e_3})}{(\vec{h_1}, \vec{h_1})} \vec{h_1} - \frac{(\vec{h_2}, \vec{e_3})}{(\vec{h_2}, \vec{h_2})} \vec{h_2}$$

То есть из каждого вектора вычитается его проекция на все предыдущие вектора. Отсюда можно написать формулу для n-ного вектора:

$$\vec{h_n} = \vec{e_n} - \frac{(\vec{h_1}, \vec{e_n})}{(\vec{h_1}, \vec{h_1})} \vec{h_1} - \dots - \frac{(\vec{h}_{n-1}, \vec{e_n})}{(\vec{h}_{n-1}, \vec{h}_{n-1})} \vec{h}_{n-1}$$

Для получения ортонормированного базиса, каждый из векторов $\vec{h}_1, \dots, \vec{h}_n$ нужно разделить на их длины.

Линейные операторы, действубщие в линейном пространстве

10.1 Линейный операторы в евклидовом пространстве, движения to be continued...