

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP

PSI 3214 - LABORATÓRIO DE INSTRUMENTAÇÃO ELÉTRICA (2018)

Um exemplo de como efetuar a análise de Fourier de um sinal por meio do LabVIEW

Pedro Ligabue, Elisabete Galeazzo

O programa *FFT_exemplo.VI* (disponibilizado anexo) foi elaborado para auxiliá-los no desenvolvimento do VI para o projeto extraclasse. Este programa gera até 3 sinais senoidais, mostra a soma das senoides no domínio do tempo e realiza, em paralelo, a FFT (Fast Fourier Transform) do sinal resultante. O diagrama de blocos e o painel frontal deste VI estão apresentados a seguir:

Efetuaremos uma descrição dos principais blocos do diagrama do VI nas seções a seguir.

1.1 Gerador das ondas senoidais (Waveform Generation Palete → Sine Waveform)

A função deste bloco é criar uma onda senoidal com os parâmetros definidos segundo a imagem:

Explicação do bloco (Ctrl + H)

No VI exemplo, o usuário deve fornecer apenas a **frequência**, a **amplitude** e **parâmetros da amostragem** (frequência de amostragem e o número de amostras). Os outros dados (*offset*, *reset*, fase, *error in*) são tomados como nulos/zero/falso. A saída do bloco é do tipo **Waveform**.

1.1.1 "Sampling Info"

Se entrarmos na descrição mais detalhada do bloco *Sine Waveform.vi*, clicando em *Detailed help* (imagem anterior), é possível verificar a seguinte informação com relação à amostragem:

Isso significa que o parâmetro associado ao *Sampling Info* é composto da frequência de amostragem **Fs** e do número de amostras **#s**. Para introduzir esse parâmetro (diferente da

condição default), usa-se o bloco **Bundle** (Botão direito > Programming > Cluster... > Bundle), como mostra na figura a seguir:

No nosso exemplo, a frequência de amostragem será de 2000 Hz e os sinais serão compostos por 2000 amostras. Se você desejar mudar algum desses valores, deverá alterálos no programa.

1.2 Soma das ondas no domínio do tempo

1.2.1 Método mais simples

Antes de mostrar como a soma de ondas foi feita no VI, convém explicar um modo mais simples e intuitivo de fazer a soma de ondas, presente na imagem a seguir:

Ou seja, para somar os 3 sinais senoidais, inicialmente somam-se os dois primeiros e, na sequência, soma-se o resultado obtido com o último sinal. Para implementar tal operação matemática em um VI utiliza-se o bloco de soma (que é polimórfico) para somar as ondas de duas em duas (não é possível somar mais de duas ondas por vez). Note que, para que não haja erro neste processo, é importante que os parâmetros de amostragem dos sinais sejam os mesmos em todas as ondas.

1.2.2 Método mais didático

No VI do exemplo fornecido foi utilizado um método mais didático para a soma das ondas, e mostrar algumas utilidades do **Bundle** e **Unbundle**. Primeiramente, a forma de onda gerada (fio vermelho) passa pelo bloco denominado **Get Waveform Components**, que separa as componentes x,y da onda para serem utilizadas em separado:

Como pode ser visto na imagem, a entrada deste bloco é uma **Waveform** e a saída é um vetor **Y** e um *double* **dt**.

Em seguida, são somados os vetores Y de cada onda utilizando o bloco de soma, que realiza a soma os vetores ponto a ponto (e.i. no índice n do vetor de saída está a soma dos valores do índice n de cada vetor de entrada):

Em seguida, o vetor pode ser usado para formar de novo uma **Waveform**, usando o **Build Waveform** (como no VI):

1.3 Análise da frequência (FFT)

Para a análise da frequência do sinal gerado foi utilizado um SubVI já implementado na forma de um bloco (selecionado através da paleta de funções) denominado **Spectral Measurements**. Esse bloco tem como entrada uma *Waveform* e como saída dois clusters (um para magnitude e outro para fase) que podem ser lidos, por exemplo, pelo **Waveform Graph**.

Como o **Spectral Measurements** é um SubVI, é possível alterar diversas características da análise, clicando com o botão direito no bloco e indo em **Properties**. É possível alterar qual tipo de amplitude (pico a pico ou RMS, linear ou dB, etc.), o tipo de janelamento, tipo de fase, etc. O menu deste subVI aparece como na imagem a seguir:

Nota:

Vale lembrar que a análise do sinal em frequência trabalha com uma resolução de escala (em Hz) igual ao inverso do período total amostrado (ou seja, $1/(\#s/Fs) \rightarrow (Fs/\#s)$). Assim, se apenas 1 segundo do sinal for amostrado, a análise espectral será apresentada calculandose os coeficientes múltiplos de 1 Hz; se forem amostrados 10 segundos, a análise espectral será feita usando múltiplos de 0,1 Hz, e assim por diante...