Course: Computer Networks for Communication Tourse Code: CSAD735 Faculty: Dr. Rajaram Dr. Amand Name: Monammad Aleyas Regn no: 192521220 2) Project 1: Emergy-Efficient Communication Smart Grids. Submitted By: Name: Mohammad Aluyas Reg no: 192521220 Department: B-Tech Information Technology Semuster: Ist Semester College: SIMATS Engineering Submitted To: Name: Dr. Rajaram

Name: Dr. Rajaram
Dr. Amond
Department of IT
SIMATS Engineering

SSi Mark

Ment

Sint

Sin

Project: Emergy-Efficient Communication in Smart Grids 03

● Scemavio:

In Smart grids, devices like Smart mieters and Sensors frequently transmit data Such as energy usage, voltage levels, and System health. To reduce energy consumption, efficient Communication method must be used.

- a) Identify Power-Efficient Transmission Media:

 Best Power-Efficient Transmission Media:
- 1. Fiber Optie Cash
 - · Power usage: Very low during signal teansmission.
 - · Adwantages: High bandwidth, low Signal loss, immune to electromagnetic interference.
- 2. wirless (Low-power) ZigBer/LORaWAN
 - · ZigBer: ideal for short-range, low-data-rate Communication stetween Smart metus.
 - · LORAWAN: Suitable for longer vanges and Still energy Efficient.
- 3. Power line Communication (PLC):

Gaves cost and Energy of installing new media.

- b) Suggests Error Detection Method for Analog Data.
 - Analog Data Error Detection Techniques:
- 1. Signal Redundancy and Sampling
 - (Analog to Digital converter)
 - · Then apply CRC (cyclic Redundancy check) or parity Bit on digital signals.
- 2. Noise Filtering (prevention at Analog Level):
 - · use low-pars filters to reduce noise one distortion.
- 3. Data Averaging Technique:
 - · Sample multiple times and average the value to detect anomalies.

Note:

Direct error detection in analog Signals is difficult, so conversation to digital is Common practice before apply checks.

Compare ZigB	ee and Cellulas	for Emergy
Usage.		AND I DOWN
Feature	ZigBu	Cellular (39,49,59
power consumption	(-1 mw)	High (-800-2000 mu
Range	Short (~10-100 meters)	Long (Several Kilometus)
Cost	Low / Jo Jak	High L sim + Dad + modules.
Date Rate	low (-250kbps)	High Lup to Several MbPs)
ise Case fit	ideal for home/ Industrial IOT	Better 301 remote local
Conclusion:	Central Pally	Star Topologie

ids

Tigber is more Energy-Efficient for Smart meter network due to lower power and Cost.

enication but trains more power.

- · Example: Tata Power in Mumbai usus smart meters to monitor and control electricity usage in real-time.
- · There meters communicate using ZigBee on! RF mesh topology, allowing data to be Collected efficiently and wirelessly.
- · The System helps reduce peak load, detect faults faster, and give useds control over their energy use-Contributing to a more Subtainable grid.

Conclusion:

Energy-Efficient Communication is at the heart of Smart grid Systems. By selecting low-power technologies like ZigBee, applying accurate error detection methods, and using Seasle topologies Such as mesh methods, we can built a Sustainable ont reliable energy Infrastructure.