Instructions: Every question, except Question 3, has exactly one correct answer. Question 3 has two correct answers and carries 2 marks. The rest carry one 1 mark. There are *no negative marks* for wrong answers.

- 1. Let $\{p_1, p_2, p_3\}$ be a set of atomic propositions. Does the ω -word $\{p_1\}\{p_1, p_3\}\{p_1\}\{p_1, p_2\}^{\omega}$ satisfy the LTL formula $(p_1 U p_2) U p_3$?
 - (a) Yes
 - (b) No
- 2. Let $\{p_1, p_2, p_3\}$ be a set of atomic propositions. Does the ω -word $\{p_1\}\{p_2\}\{p_1\}\{p_3\}^{\omega}$ satisfy the LTL formula $(p_1 U p_2) U p_3$?
 - (a) Yes
 - (b) No
- 3. Let $\{p_1, p_2, p_3\}$ be a set of atomic propositions. Two of the following words satisfy the LTL formula $(p_1 U(\neg p_2)) U(p_1 Up_3)$. Find them.
 - (a) $\{p_1\}\{p_2\}\{p_1,p_3\}^{\omega}$
 - (b) $\{p_1, p_2\}\{p_1\}\{p_1, p_3\}^{\omega}$
 - (c) $\{\}\{p_1, p_2\}\{p_1, p_2, p_3\}^{\omega}$
 - (d) $\{p_1\}\{\}\{p_2\}\{p_1,p_3\}^{\omega}$
- 4. Let $\{p_1, p_2, p_3\}$ be a set of atomic propositions. Which of the following words satisfies $(X \neg p_1) U(X \neg p_2)$?
 - (a) $\{p_2\}\{p_1, p_2\}\{\}^{\omega}$
 - (b) $\{p_1\}\{p_2\}\{p_1\}\{p_2\}\{p_1\}^{\omega}$
 - (c) $\{p_1\}\{p_1,p_2\}\{p_1,p_2\}\{p_3\}^{\omega}$
 - (d) $\{p_2, p_3\}^{\omega}$
- 5. Let $\{p_1, p_2\}$ be a set of atomic propositions. Which of the following NBA represents the LTL formula $(\neg p_1) U(\neg p_2)$?

- 6. Is $XF p_1$ equivalent to $F p_1$?
 - (a) Yes
 - (b) No
- 7. Which of the following LTL formulas is equivalent to this NBA?

- (a) $(\neg p_2) U p_1$
- (b) $\mathbf{F}(\neg p_1) \wedge \mathbf{XG} p_1$
- (c) $p_2 U p_1$
- (d) Xp_2
- 8. Let ϕ and ψ be LTL formulas recognizing ω -languages over an alphabet Σ . The LTL formula $\neg(\phi U\psi)$ is language equivalent to one of the following formulas. Which one is it?
 - (a) $(\neg \phi) U(\neg \psi)$
 - (b) $(\neg \psi) U(\neg \phi)$
 - (c) $((\neg \psi) \mathbf{U}(\neg \phi \land \neg \psi)) \lor G(\neg \psi)$
 - (d) $((\neg \psi) U(\neg \phi \land \neg \psi)) \lor G(\neg \phi)$
- 9. Let $\{p_1, p_2, p_3\}$ be atomic propositions. Is $(p_1 U(p_2 \vee p_3))$ equivalent to $((p_1 Up_2) \vee (p_1 Up_3))$?
 - (a) Yes
 - (b) No