

RTL8720CM-VA2-CG RTL8720CM-VT2-CG RTL8720CF-VA2-CG RTL8720CF-VT2-CG

# Ameba ZII IEEE 802.11b/g/n Compatible 1T1R WLAN + Bluetooth SoC

### **DATASHEET**

(CONFIDENTIAL: Development Partners Only)

Rev. 1.2 25 May 2021 Track ID: JATR-8275-15



Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com



#### **COPYRIGHT**

©2021 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

#### **DISCLAIMER**

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

#### **TRADEMARKS**

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

#### **USING THIS DOCUMENT**

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

#### **ELECTROSTATIC DISCHARGE (ESD) WARNING**

This product can be damaged by Electrostatic Discharge (ESD). When handling, care must be taken. Damage due to inappropriate handling is not covered by warranty.

Do not open the protective conductive packaging until you have read the following, and are at an approved anti-static workstation.

- Use an approved anti-static mat to cover your work surface
- Use a conductive wrist strap attached to a good earth ground
- Always discharge yourself by touching a grounded bare metal surface or approved anti-static mat before picking up an ESD-sensitive electronic component
- If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe
- Always disconnect the microcontroller from the prototyping board when it is being worked on



### **REVISION HISTORY**

| Revision | Release Date | Summary                                                                         |  |  |
|----------|--------------|---------------------------------------------------------------------------------|--|--|
| 1.0      | 2020/08/31   | First release.                                                                  |  |  |
| 1.1      | 2021/03/03   | Added WPA3 support and flash size info.                                         |  |  |
|          |              | Modified Pin8 (VA11_SYN) to NC.                                                 |  |  |
|          |              | Added section 9.5 ESD Characteristics, page 34.                                 |  |  |
| 1.2      | 2021/05/25   | Revised section 3.1 Power Architecture, page 4 (added LDO 3.3V output from 5V). |  |  |
|          |              | Revised Figure 2 Ameba ZII Regulator Architecture, page 4.                      |  |  |
|          |              | Revised Figure 8 Pin Assignments, page 10.                                      |  |  |
|          |              | Revised Table 4 Power On Trap Pins, page 11 (GPIOA_0).                          |  |  |
|          |              | Revised Table 6 Power Pins, page 12 (VDD_IN, VD33_OUT).                         |  |  |
|          |              | Added note to Table 10 GPIO Pin Function, page 14.                              |  |  |
|          |              | Revised section 7.4 UART Interface, page 21.                                    |  |  |
|          |              | Added 5V Input/5V UART features.                                                |  |  |
|          |              | Revised Table 19 Bluetooth Receiver Performance Table-BLE, page 32.             |  |  |
|          |              | Revised Table 22 Power Supply DC Characteristics, page 33.                      |  |  |
|          |              | Revised Table 23 Typical Digital IO DC Parameters, page 34.                     |  |  |
|          |              | Revised 9.6.1 Power On or Resuming from Deep Sleep Sequence, page 35.           |  |  |
|          |              | Revised Figure 22 Timing Sequence Resume from Standby, page 36.                 |  |  |
|          |              | Revised Figure 23 Timing Sequence of Shutdown, page 37.                         |  |  |
|          |              | Revised section 11 Ordering Information, page 40.                               |  |  |
|          |              | Corrected minor typing errors.                                                  |  |  |



# **Table of Contents**

| 1. (        | GENERAL DESCRIPTION                                         | 1        |
|-------------|-------------------------------------------------------------|----------|
| 2. 1        | FEATURES                                                    | 2        |
| 3. 1        | BLOCK DIAGRAM                                               | 3        |
| 3<br>3<br>3 | POWER ARCHITECTURE  3.1.1. Ameba ZII Regulator Architecture |          |
| <b>4.</b> 1 | PIN ASSIGNMENTS                                             | 10       |
| 4.1         | PACKAGE IDENTIFICATION                                      | 10       |
| 5. 1        | PIN DESCRIPTIONS                                            | 11       |
|             | P. RF PIN                                                   |          |
|             |                                                             |          |
| 6.1         | MEMORY ARCHITECTURE                                         |          |
|             | 6.1.2. Internal SRAM                                        |          |
| 6.2         |                                                             |          |
|             | 6.2.1. Programming Space                                    |          |
|             | 6.2.2. IO Space                                             |          |
| 6.3         | * 1                                                         |          |
|             | PERIPHERAL INTERFACE DESCRIPTIONS                           |          |
| 7.1.        |                                                             |          |
| 7.1         |                                                             |          |
| 7.3         | ,                                                           |          |
| 7.4         | UART Interface                                              | 21       |
|             | 7.4.1. UART Specification                                   |          |
| 7.5         |                                                             |          |
|             | 7.5.1. Bus Timing Specification                             |          |
| 7.6         |                                                             |          |
| 7.7         | 7.6.1. SPI Protocol                                         |          |
| 7.7.        |                                                             |          |
| 7.0         |                                                             | 27<br>28 |



| 8. RF  | CHARACTERISTICS                                    | 29 |
|--------|----------------------------------------------------|----|
| 8.1.   | RF BLOCK DIAGRAM                                   | 29 |
| 8.2.   | WI-FI RADIO CHARACTERISTICS                        | 30 |
| 8.2.1  |                                                    |    |
| 8.2.2  | 2. Wi-Fi 2.4GHz Band RF Transmitter Specifications |    |
| 8.3.   | BLUETOOTH RADIO CHARACTERISTIC                     |    |
| 8.3.1  | 1. BT RF Transmitter Specifications                | 32 |
| 8.3.2  | 2. BT RF Receiver Specifications                   | 32 |
| 9. ELF | ECTRICAL CHARACTERISTICS                           | 33 |
| 9.1.   | TEMPERATURE LIMIT RATINGS                          | 33 |
| 9.2.   | TEMPERATURE CHARACTERISTICS                        |    |
| 9.3.   | POWER SUPPLY DC CHARACTERISTICS                    | 33 |
| 9.4.   | DIGITAL IO PIN DC CHARACTERISTICS                  | 34 |
| 9.5.   | ESD CHARACTERISTICS                                | 34 |
| 9.6.   | POWER STATE AND POWER SEQUENCE                     | 35 |
| 9.6.1  | l. Power On or Resuming from Deep Sleep Sequence   |    |
| 9.6.2  | 2. Resume from Standby Mode Sequence               |    |
| 9.6.3  |                                                    |    |
| 10. N  | MECHANICAL DIMENSIONS                              | 38 |
| 10.1.  | PACKAGE SPECIFICATION                              | 38 |
| 10.2.  | MECHANICAL DIMENSIONS NOTES                        |    |
| 11.    | ORDERING INFORMATION                               | 40 |
|        |                                                    |    |



# **List of Tables**

| TABLE 1. DEEP SLEEP MODEWAKEUP SOURCE                                | 6  |
|----------------------------------------------------------------------|----|
| TABLE 2. STANDBY MODEWAKEUP SOURCE                                   | 7  |
| TABLE 3. SLEEP MODEWAKEUP SOURCE                                     | 8  |
| TABLE 4. POWER ON TRAP PINS                                          | 11 |
| TABLE 5. RF PIN                                                      | 11 |
| Table 6. Power Pins                                                  | 12 |
| TABLE 7. CLOCK ANDOTHER PINS                                         | 12 |
| TABLE 8. CHIPENABLE PIN                                              | 12 |
| TABLE 9. GPIO PINS                                                   | 13 |
| TABLE 10. GPIO PIN FUNCTION                                          |    |
| TABLE 11. PROGRAMMING SPACE DESIGN FOR SOFTWARE INSTRUCTION STORAGE  | 16 |
| TABLE 12. ADDRESS MAP OF EACH PERIPHERAL HARDWARE                    | 16 |
| TABLE 13. ADDRESS MAP OF EXTENSION MEMORY HARDWARE                   | 17 |
| TABLE 14. UART BAUD RATE SPECIFICATIONS                              |    |
| TABLE 15. SDIO INTERFACETIMING PARAMETERS                            |    |
| TABLE 16. WI-FI 2.4GHZ BAND RF RECEIVER SPECIFICATIONS               |    |
| TABLE 17. WI-FI 2.4GHZ BAND RF TRANSMITTER SPECIFICATIONS            |    |
| TABLE 18. BLUETOOTH TRANSMITTER PERFORMANCE TABLE-BLE                | 32 |
| TABLE 19. BLUETOOTH RECEIVER PERFORMANCE TABLE-BLE                   | 32 |
| Table 20. Temperature Limit Ratings.                                 | 33 |
| TABLE 21. THERMAL PROPERTIES.                                        | 33 |
| TABLE 22. POWER SUPPLY DC CHARACTERISTICS.                           | 33 |
| TABLE 23. TYPICAL DIGITAL IO DC PARAMETERS.                          |    |
| Table 24. ESD Characteristics                                        |    |
| TABLE 25. TIMING SPECIFICATION FOR POWER ON SEQUENCE.                |    |
| TABLE 26. TIMING SPECIFICATION FOR RESUME FROM STANDBY MODE SEQUENCE |    |
| TABLE 27. TIMING SPECIFICATION FOR SHUTDOWN SEQUENCE                 |    |
| TABLE 28. MECHANICAL DIMENSIONS NOTES                                | 39 |
| TABLE 29, ORDERING INFORMATION                                       | 40 |
|                                                                      |    |



# **List of Figures**

| FIGURE 1. BLOCK DIAGRAM OF AMEBA ZII                   | 3  |
|--------------------------------------------------------|----|
| FIGURE 2. AMEBA ZII REGULATOR ARCHITECTURE             | 4  |
| FIGURE 3. POWER DIAGRAM OF SHUTDOWN MODE               | 5  |
| FIGURE 4. DIAGRAM OF DEEP SLEEP MODE                   | 6  |
| FIGURE 5. POWER DIAGRAM OF STANDBY MODE                |    |
| FIGURE 6. POWER DIAGRAM OF SLEEP MODE.                 | 8  |
| FIGURE 7. POWER DIAGRAM OF SNOOZE MODE                 |    |
| FIGURE 8. PIN ASSIGNMENTS                              | 10 |
| FIGURE 9. RTL8710C RTK-DMAC BLOCK DIAGRAM              |    |
| FIGURE 10. GTIMER FUNCTIONAL DIAGRAM                   | 19 |
| FIGURE 11. IO PAD ARCHITECTURE.                        | 20 |
| FIGURE 12. UART FUNCTIONAL DIAGRAM                     | 21 |
| FIGURE 13. SDIO INTERFACETIMING SEQUENCE.              |    |
| FIGURE 14. SPI PROTOCOL: MODE 0 (SCPOL=0/SCPH=0)       |    |
| FIGURE 15. SPI MODE PROTOCOL: MODE 1 (SCPOL=0/SCPH=1)  |    |
| FIGURE 16. SPI MODE PROTOCOL: MODE 2 (SCPOL=1/SCPH=0). |    |
| FIGURE 17. SPI MODE PROTOCOL: MODE 3 (SCPOL=1/SCPH=1)  | 25 |
| FIGURE 18. I2C FUNCTIONAL DIAGRAM                      | 26 |
| FIGURE 19. PWM FUNCTIONAL DIAGRAM                      | 27 |
| FIGURE 20. RF BLOCK DIAGRAM                            | 29 |
| FIGURE 21. POWER-ON SEQUENCE OR RESUME FROM DEEP SLEEP |    |
| FIGURE 22. TIMING SEQUENCE RESUME FROM STANDBY         | 36 |
| FIGURE 23. TIMING SEQUENCE OF SHUTDOWN                 |    |
|                                                        |    |



### 1. General Description

The Realtek Ameba ZII series are highly integrated single-chips with a low-power IEEE 802.11n Wireless LAN (WLAN) compatible network controller. They combine a Real-M300 (KM4) CPU that is based on ARMv8-M architecture, and integrates a WLAN MAC, an 1T1R capable WLAN baseband, an RF circuit, and Bluetooth Low Energy (BLE) in a single chip. They also provide configurable GPIOs that are configured as digital peripherals for various applications and control usage.

The Ameba ZII series integrates internal memory for full Wi-Fi protocol functions. The embedded memory configuration also enables simple application development.



### 2. Features

#### **MCU Features**

- Real-M300 (KM4) clock frequency up to 100MHz
- I-Cache 32KB/D-Cache 16KB
- Supports DMA
- eXecute In Place (XIP) on flash

#### **Internal Memory**

- Supports 384KB ROM
- Supports 256KB RAM
- Supports external flash interface
- Supports MCM embedded 4MB pSRAM (Option, RTL8720CM-Vx2-CG)
- Supports MCM embedded 2MB Flash (Option, RTL8720CF-Vx2-CG)

#### Wi-Fi Features

- 802.11 b/g/n compatible 1x1, 2.4GHz
- 802.11e QoS Enhancement (WMM)
- Wi-Fi WEP, WPA, WPA2, WPA3, WPS. Open, shared key, and pair-wise key authentication services
- Supports low power Tx/Rx for short-range application
- Supports Antenna diversity
- Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)
- Low latency immediate High-Throughput Block Acknowledgement (HT-BA)
- Long NAV for media reservation with CF-End for NAV release
- Integrated balun, PA/LNA

#### **Bluetooth Low Energy**

- Bluetooth Low Energy (BLE) 4.2
- Supports LE secure connections
- Supports LE scatternet
- Supports 1 Master/1 Slave

#### Secure

- Supports secure boot
- Crypto engine: MD5, SHA-1, SHA2-224, SHA2-256, HMAC, AES

#### **Peripheral Interfaces**

- 3 x UART interface, baud rate up to 4MHz and all of them can be configurable as log UART
- 1 x I2C, Max clock 400Kbps
- 1 x SDIO 2.0 Device, up to 50MHz
- 1 x SPI, Master clock up to 25Mbps/Slave clock up to 5Mbps
- 8 x PWM with configurable duration and duty cycle from 0 ~ 100%
- 16 x programmable GPIOs (RTL8720CF-Vx2-CG supports 20pins)
- 1 GDMA with 2 channels

#### **Clock Source**

■ 40MHz crystal oscillator

#### Package Type

- 5mm x 5mm x 0.85mm
- QFN40 pins



# 3. Block Diagram

The Ameba ZII diagram shown below provides a general application scenario. External devices can be connected with various peripheral interfaces. The PMU and related blocks for low power application are also shown.



Figure 1. Block Diagram of Ameba ZII



### 3.1. Power Architecture

Figure 2 shows the Ameba ZII Power Management control Unit architecture.

The PMU provides the following functions:

- SWR 1.1V output from 3.3V (optional for LDO mode)
- LDO 3.3V output from 5V
- LDO 2.5V output for writing E-fuse from 3.3V
- Wakeup system detector to resume from low power state

### 3.1.1. Ameba ZII Regulator Architecture



Figure 2. Ameba ZII Regulator Architecture



### 3.1.2. Shutdown Mode

CHIP\_EN de-asserts to shut down the whole chip, without external power cut components required. CHIP\_EN pulled high triggers the system into active mode.



Figure 3. Power Diagram of Shutdown Mode



### 3.1.3. Deep Sleep Mode

CHIP EN remains high. Users can invoke the Deep Sleep API to enter deep sleep mode.

Specified interrupts can wake up the system.

- 1. Wake up ISR is high
- 2. PMC
- 3. Enable CPU
- 4. Reboot flow



Figure 4. Diagram of Deep Sleep Mode

Table 1. Deep Sleep Mode Wakeup Source

| Wakeup Source       | Note                                                                                                                                                                                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Precision Timer | -                                                                                                                                                                                                                                                                                                                            |
| Wake pin            | GPIOA_0, GPIOA_1, GPIOA_2, GPIOA_3, GPIOA_4, GPIOA_7 (depends on package), GPIOA_8 (depends on package), GPIOA_9 (depends on package), GPIOA_10 (depends on package), GPIOA_11 (depends on package), GPIOA_12 (depends on package), GPIOA_13, GPIOA_14, GPIOA_15, GPIOA_16, GPIOA_17, GPIOA_18, GPIOA_19, GPIOA_20, GPIOA_23 |



### 3.1.4. Standby Mode

CHIP EN remains high. Users can invoke the Standby API to enter standby mode.

Specified interrupts can wake up the system.

- 1. Wake up ISR is high
- 2. PMC
- 3. Enable CPU
- 4. Fast reboot flow



Figure 5. Power Diagram of Standby Mode

**Table 2. Standby Mode Wakeup Source** 

| Wakeup Source       | Note                                                                                                                                                                                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Precision Timer | -                                                                                                                                                                                                                                                                                                                            |
| Wake pin            | GPIOA_0, GPIOA_1, GPIOA_2, GPIOA_3, GPIOA_4, GPIOA_7 (depends on package), GPIOA_8 (depends on package), GPIOA_9 (depends on package), GPIOA_10 (depends on package), GPIOA_11 (depends on package), GPIOA_12 (depends on package), GPIOA_13, GPIOA_14, GPIOA_15, GPIOA_16, GPIOA_17, GPIOA_18, GPIOA_19, GPIOA_20, GPIOA_23 |
| UART0               | N/A                                                                                                                                                                                                                                                                                                                          |
| WLAN                | N/A                                                                                                                                                                                                                                                                                                                          |
| PWM                 | N/A                                                                                                                                                                                                                                                                                                                          |
| HS Timer            | N/A                                                                                                                                                                                                                                                                                                                          |



### 3.1.5. Sleep Mode

CHIP\_EN remains high. Users can invoke Sleep API to enter sleep mode.

Specified interrupts can wake up the system.

- 1. Wake up ISR is high
- 2. PMC
- 3. Enable CPU
- 4. Execution of instructions continues



Figure 6. Power Diagram of Sleep Mode

**Table 3. Sleep Mode Wakeup Source** 

| Wakeup Source       | Note                                                                                                                                                                                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Precision Timer | -                                                                                                                                                                                                                                                                                                                            |
| Wake pin            | GPIOA_0, GPIOA_1, GPIOA_2, GPIOA_3, GPIOA_4, GPIOA_7 (depends on package), GPIOA_8 (depends on package), GPIOA_9 (depends on package), GPIOA_10 (depends on package), GPIOA_11 (depends on package), GPIOA_12 (depends on package), GPIOA_13, GPIOA_14, GPIOA_15, GPIOA_16, GPIOA_17, GPIOA_18, GPIOA_19, GPIOA_20, GPIOA_23 |
| UART0               | N/A                                                                                                                                                                                                                                                                                                                          |
| WLAN                | N/A                                                                                                                                                                                                                                                                                                                          |
| PWM                 | N/A                                                                                                                                                                                                                                                                                                                          |
| HS Timer            | N/A                                                                                                                                                                                                                                                                                                                          |
| SDIO Device         | N/A                                                                                                                                                                                                                                                                                                                          |



### 3.1.6. Snooze Mode

CHIP EN remains high. Specified interrupts can wake up the system.

- 1. WLAN power on request
- 2. Receive particular beacon
- 3. Wake up ISR is high
- 4. PMC
- 5. Enable CPU
- 6. Execution of instructions continues or fast reboot occurs



Figure 7. Power Diagram of Snooze Mode

# 4. Pin Assignments



Figure 8. Pin Assignments

# 4.1. Package Identification

Green package is indicated by the 'G' in GXXXXX in Figure 8.



# 5. Pin Descriptions

The signal type codes below are used in the following tables:

I: Input O: Output

PI: Power Input PO: Power Output

# 5.1. Power On Trap Pins

#### Table 4. Power On Trap Pins

| 14410 11 1 24101 2411 1410 |      |         |                                                              |  |
|----------------------------|------|---------|--------------------------------------------------------------|--|
| Symbol                     | Type | Pin No. | Description                                                  |  |
| CDIOA                      |      |         | 1: Enter into test/debug mode                                |  |
| GPIOA_0                    | I    | 15      | 0: Normal operation mode                                     |  |
| (TEST_MODE_SEL)            |      |         | (GPIOA_0, GPIOA_13) = (1, 1): Enter into download image mode |  |
| GPIOA_1                    | т    | 16      | 1: eFUSE settings are not loaded                             |  |
| (Autoload_Fail)            | 1    | 16      | 0: eFUSE settings are loaded                                 |  |
| GPIOA_23                   | т    | 2       | 1: LDO                                                       |  |
| (SPS_LDO_SEL)              | 1    | 3       | 0: SWR                                                       |  |

### 5.2. RFPin

#### Table 5. RF Pin

| Symbol | Type | Pin No. | Description   |  |  |
|--------|------|---------|---------------|--|--|
| RF IO  | IO   | 11      | WL RF signal. |  |  |



# 5.3. Power Pins

#### Table 6. Power Pins

| Symbol     | Type | Pin No. | Description                                             |
|------------|------|---------|---------------------------------------------------------|
| VD33_SDIO  | PI   | 2       | 3.3V power for SDIO.                                    |
| VA33_XTAL  | PI   | 4       | 3.3V power for XTAL.                                    |
| VA33_SYN   | PI   | 7       | 3.3V power for Synthesizer.                             |
| VA33_RF    | PI   | 9       | 3.3V power for RF.                                      |
| VA33_PA    | PI   | 10      | 3.3V power for RF PA.                                   |
| VA11_RF    | PI   | 12      | 1.15V power for RF.                                     |
| VA33_TR    | PI   | 13      | 3.3V power for RF.                                      |
| VD11_CORE  | PI   | 17      | 1.15V power for digital core.                           |
| VD33_FLASH | PI   | 27      | 3.3V power for IO.                                      |
|            |      |         | 1.8V power for PSRAM if part number embedded MCM PSRAM. |
| VD1833_LPC | PI   | 28      | 3.3V power for Flash if part number embedded MCM Flash. |
|            |      |         | 3.3V power for IO if part number without PSRAM/Flash.   |
| VD11_CORE  | PI   | 29      | 1.15V power for digital core.                           |
| VDD_IN     | PI   | 30      | 5V/3.3V power input.                                    |
| VD33 OUT   | PO   | 31      | 3.3V output from LDO (when PIN30 VDD_IN is 5V input).   |
| VD33_001   | PI   | 31      | 3.3V power (when PIN30 VDD_IN is 3.3V input).           |
| SW_LX      | PO   | 32      | 1.15V output power from SWR/LDO.                        |
| VD11_CORE  | PI   | 35      | 1.15V power for digital core.                           |

### 5.4. Clock Pins

#### **Table 7. Clock and Other Pins**

| Symbol | Type | Pin No. | Description                              |
|--------|------|---------|------------------------------------------|
| XI     | I    | 6       | Input of 40MHz Crystal Clock Reference.  |
| XO     | О    | 5       | Output of 40MHz Crystal Clock Reference. |

# 5.5. Chip EnablePin

Table 8. Chip Enable Pin

| Symbol  | Type | Pin No. | Description                     |
|---------|------|---------|---------------------------------|
| CHIP_EN | I    | 14      | 1: Enable chip 0: Shutdown chip |



# 5.6. Digital IO Pins

Ameba ZII supports a maximum of 20 GPIO pins and all of them are configurable. Refer to Table 9 for detailed information and pin mux rules.

Table 9. GPIO Pins

| Tuble 5. Of 10 Find |      |         |             |  |  |  |  |  |
|---------------------|------|---------|-------------|--|--|--|--|--|
| Symbol              | Type | Pin No. | Description |  |  |  |  |  |
| GPIOA_20            | IO   | 1       |             |  |  |  |  |  |
| GPIOA_23            | IO   | 3       |             |  |  |  |  |  |
| GPIOA_0             | IO   | 15      |             |  |  |  |  |  |
| GPIOA_1             | IO   | 16      |             |  |  |  |  |  |
| GPIOA_2             | IO   | 18      |             |  |  |  |  |  |
| GPIOA_3             | IO   | 19      |             |  |  |  |  |  |
| GPIOA_4             | IO   | 20      |             |  |  |  |  |  |
| GPIOA_7             | IO   | 21      |             |  |  |  |  |  |
| GPIOA_8             | IO   | 22      |             |  |  |  |  |  |
| GPIOA_9             | IO   | 23      | CDIO ping   |  |  |  |  |  |
| GPIOA_10            | IO   | 24      | GPIO pins   |  |  |  |  |  |
| GPIOA_11            | IO   | 25      |             |  |  |  |  |  |
| GPIOA_12            | IO   | 26      |             |  |  |  |  |  |
| GPIOA_13            | IO   | 33      |             |  |  |  |  |  |
| GPIOA_14            | IO   | 34      |             |  |  |  |  |  |
| GPIOA_15            | IO   | 36      |             |  |  |  |  |  |
| GPIOA_16            | IO   | 37      |             |  |  |  |  |  |
| GPIOA_17            | IO   | 38      |             |  |  |  |  |  |
| GPIOA_18            | IO   | 39      |             |  |  |  |  |  |
| GPIOA_19            | IO   | 40      |             |  |  |  |  |  |

Note: Default states of all pins are High-impedance; Unused pins should be kept floating.



### 5.6.1. GPIO Pin Function

**Table 10. GPIO Pin Function** 

| Pin Name | SPIC-Flash/SDIO | JTAG      | UART      | SPI/WL_LED | I2C     | PWM    |
|----------|-----------------|-----------|-----------|------------|---------|--------|
| GPIOA_0  | -               | JTAG_CLK  | UART1_IN  | -          | -       | PWM[0] |
| GPIOA_1  | -               | JTAG_TMS  | UART1_OUT | BT_LED     | -       | PWM[1] |
| GPIOA_2  | -               | JTAG_TDO  | UART1_IN  | SPI_CSn    | I2C_SCL | PWM[2] |
| GPIOA_3  | -               | JTAG_TDI  | UART1_OUT | SPI_SCL    | I2C_SDA | PWM[3] |
| GPIOA_4  | -               | JTAG_TRST | UART1_CTS | SPI_MOSI   | -       | PWM[4] |
| GPIOA_7  | SPI_M_CS        | -         | -         | SPI_CSn    | -       | -      |
| GPIOA_8  | SPI_M_CLK       | -         | -         | SPI_SCL    | -       | -      |
| GPIOA_9  | SPI_M_DATA[2]   | -         | UART0_RTS | SPI_MOSI   | -       | -      |
| GPIOA_10 | SPI_M_DATA[1]   | -         | UART0_CTS | SPI_MISO   | -       | -      |
| GPIOA_11 | SPI_M_DATA[0]   | -         | UART0_OUT | -          | I2C_SCL | PWM[0] |
| GPIOA_12 | SPI_M_DATA[3]   | -         | UART0_IN  | -          | I2C_SDA | PWM[1] |
| GPIOA_13 | -               | -         | UART0_IN  | -          | -       | PWM[7] |
| GPIOA_14 | SDIO_INT        | -         | UART0_OUT | -          | -       | PWM[2] |
| GPIOA_15 | SD_D[2]         | -         | UART2_IN  | SPI_CSn    | I2C_SCL | PWM[3] |
| GPIOA_16 | SD_D[3]         | -         | UART2_OUT | SPI_SCL    | I2C_SDA | PWM[4] |
| GPIOA_17 | SD_CMD          | -         | -         | -          | -       | PWM[5] |
| GPIOA_18 | SD_CLK          | -         | -         | -          | -       | PWM[6] |
| GPIOA_19 | SD_D[0]         | -         | UART2_CTS | SPI_MOSI   | I2C_SCL | PWM[7] |
| GPIOA_20 | SD_D[1]         | -         | UART2_RTS | SPI_MISO   | I2C_SDA | PWM[0] |
| GPIOA_23 | -               | -         | -         | LED_0      | -       | PWM[7] |

Note: GPIOA\_13/GPIOA\_14 can operate in 3.3V or 5V in case selected as UART function when VDD\_IN is 5V input; other UART pins operate in 3.3V only.



# 6. Memory Organization

### 6.1. Memory Architecture

Ameba ZII integrates ROM, internal SRAM, and extended NOR flash to provide applications with a variety of memory requirements.

#### **6.1.1.** Internal ROM

The internal integration of 384KB ROM provides high access speed and low memory leak. The ROM memory clock speed is up to 100MHz.

The ROM lib provides the following functions:

- Boot Code and MCU initialization
- Peripheral Drivers & API
- Non-flash booting functions and drivers
- Security function libs

#### 6.1.2. Internal SRAM

The maximum internal integration of 256KB SRAM provides instruction, data, and buffer usage. The maximum clock speed is up to 100MHz.



# 6.2. Memory Mapping

The Memory map includes all available memory and register offsets in Ameba ZII.

### **6.2.1.** Programming Space

**Table 11. Programming Space Design for Software Instruction Storage** 

|               |       | <u> </u>     | <u> </u>      |                        |
|---------------|-------|--------------|---------------|------------------------|
| Start Address | Size  | Secure       | Cache Support | IP Function            |
| 0x0000_0000   | 384KB | Configurable | -             | ITCM ROM               |
| 0x1000_0000   | 256KB | Configurable | -             | TCM SRAM               |
| 0x2000_0000   | 32KB  | Non-Secure   | V             | Additional SRAM for BT |

### **6.2.2. IO Space**

The address map of each peripheral hardware is shown below.

Table 12. Address Map of Each Peripheral Hardware

| Start Address | Size  | Secure     | Cache Support | IP Function            |
|---------------|-------|------------|---------------|------------------------|
| 0x2000_0000   | 32KB  | Non-secure | V             | Additional SRAM for BT |
| 0x4000_0000   | 2KB   | Non-secure | -             | SYS Control (SYSON)    |
| 0x4000_1000   | 2KB   | Non-secure | -             | GPIO                   |
| 0x4000_1C00   | 1KB   | Non-secure | -             | PWM                    |
| 0x4000_2000   | 4KB   | Non-secure | -             | HS Timer               |
| 0x4000_3000   | 1KB   | Non-secure | -             | UART0                  |
| 0x4000_3800   | 2KB   | Non-secure | -             | LP Timer               |
| 0x4002_0000   | 4KB   | Non-secure | -             | SPI Flash Controller   |
| 0x4004_0000   | 1KB   | Non-secure | -             | UART1                  |
| 0x4004_0400   | 1KB   | Non-secure | -             | UART2                  |
| 0x4004_2000   | 1KB   | Non-secure | -             | SPI                    |
| 0x4004_4000   | 1KB   | Non-secure | -             | I2C                    |
| 0x4005_0000   | 16KB  | Non-secure | -             | SDIO Device            |
| 0x4006_0000   | 2KB   | Non-secure | -             | GDMA                   |
| 0x4007_0000   | 16KB  | Non-secure | -             | Crypto Engine          |
| 0x4008_0000   | 256KB | Non-secure | -             | WLAN                   |
| 0x4060_0000   | 4KB   | Non-secure | -             | pSRAM Controller       |
| 0x5000_0800   | 2KB   | Secure     | -             | SYS Control (SYSON)    |
| 0x5000_2000   | 4KB   | Secure     | -             | HS Timer               |
| 0x5006_0000   | 2KB   | Secure     | -             | GDMA                   |
| 0x5007_0000   | 16KB  | Secure     | -             | Crypto Engine          |



### **6.2.3.** Extension Memory Space

The external flash memory address base is from 0x9800 0000 to 0x9BFF FFFF.

#### **Table 13. Address Map of Extension Memory Hardware**

| Name  | Physical Address | Size | IP Function           |  |
|-------|------------------|------|-----------------------|--|
| Elach | 0x9800_0000      | 64MD | F-41 Q-1              |  |
| Flash | 0x9BFF_FFFF      | 64MB | External flash memory |  |

### 6.3. SPI NOR Flash

Ameba ZII supports NOR flash via SPI interface.

SPI NOR Flash Features:

- SPI baud rate supports 50/33/25/20MHz
- Supports eXecute In Place (XIP)
- Supports memory-mapped I/O interface for read operation
- Supports 32K/16K I/D read cache, 4-way associative
- Supports decryption on the fly
- Supports SPI mode (SPI/Dual SPI/DIO SPI/Quad SPI/QIO SPI)
- Supported flash size: Up to 64 MB



# 7. Peripheral Interface Descriptions

### 7.1. General Purpose DMA Controller

The Realtek Direct Memory Access Controller (RTK-DMAC) is a DMA controller with AXI interface. Usually, the CPU sends sequential read/write commands controlling data transfer. However, the CPU cannot execute instructions when it is handling the transfer. To release CPU resources, the DMAC can manage the data transfer completely. The CPU configures DMAC registers to setup a transfer and then enables the channel to start the transfer. The CPU does not have to handle the transfer until there is a DMAC trigger interrupt. The DMAC interrupt is generated when the transfer is done, or the transfer encounters errors.

#### **GDMA Features**

- Advanced eXtensible Interface 4 (AXI4) master interface and Advanced Peripheral Bus 3(APB3) slave interface
- 32 bits data bus width
- Two channels. Each channel can be configured with an independent source address and destination address to initiate a transfer. The channel has a proprietary FIFO to push or pop data
- The maximum transfer length per transfer is up to 4095 data items. Each data item can be configured to 1 byte, 2 bytes, or 4 bytes width
- DMA hardware request interface
  - Handshake interface with peripherals to control data flow
- Transfer abort feature
  - The transfer can be stopped safely. The DMAC reports the correct data length already received or transmitted after the termination
- Secure mode access
  - Secure access control for master interface. Non-authorized access cannot access data



Figure 9. RTL8710C RTK-DMAC Block Diagram



### 7.2. General Purpose Timer (GTimer)

For various system timing or flow control usage, the general purpose timer provides a counter and timer mode that can be used for any type of time related event generation or timing measurement.

#### **GTIMER Features**

- 8 GTimers supported at HS domain; the source clock is from 40MHz
- 1 GTimer supported at LP domain; the source clock is from 32kHz
- Supports counter mode and timer mode
- Each GTimer supports 4 match events



Figure 10. GTimer Functional Diagram



### 7.3. GPIO Functions

Each of the General Purpose Input/Output (GPIO) pins are software configurable as an output or as an input. In embedded system design, integration and control between different devices and the SoC chip are significant when planning a new architecture system. For the SoC chip, the most essential approach for interfacing external devices of the SOC chip is via the GPIO interfaces. This can provide simple digital input/output IO control. A simple IO pad architecture is shown in Figure 11.

#### **GPIO Features**

- GPO and GPI functions
- Supports interrupt detection with configurable polarity per GPIO
- Internal weak pull up and pull low per GPIO
- Multiplexed with other specific digital functions



Figure 11. IO Pad Architecture



### 7.4. UART Interface

UART is a popular serial interface for system information, debug logs and device information exchange. UART supports hardware acceleration such as transmit/receive data FIFO, DMA transfer etc., which makes UART easier to use.

The UART signal level is 3.3V or 5V<sup>1</sup>. The host provides the power source with the targeted power level to the UART interface via the IO power.

#### **UART Features**

- Supports 3xUART (max baud rate 4MHz and DMA mode)
- UART (RS232 Standard) Serial DataFormat
- Programmable Asynchronous Clock Support
- 16 bytes Transmit Data FIFO and 32 bytes Receive Data FIFO
- Programmable Receive Data FIFO Trigger Level
- Auto Flow Control
- DMA data moving support to reduce CPU loading



Figure 12. UART Functional Diagram

*Note: Only the specified pins can operate in 5V. See section 5.6.1 for details.* 



# 7.4.1. UART Specification

The UART interface is a standard 4-wire interface with RX, TX, CTS, and RTS. The default baud rate is 115.2k bit/s. Table 14 shows baud-rate error calculations.

**Table 14. UART Baud Rate Specifications** 

| rabio i ii ozari zada rato opodinoationo |                  |             |                   |                  |             |  |  |
|------------------------------------------|------------------|-------------|-------------------|------------------|-------------|--|--|
| Desired Baud Rate                        | Actual Baud Rate | Error (%)   | Desired Baud Rate | Actual Baud Rate | Error (%)   |  |  |
| 110                                      | 110.0533759      | 0.048523534 | 380400            | 380952.381       | 0.145210555 |  |  |
| 300                                      | 300.120048       | 0.040016006 | 460800            | 460732.9843      | 0.014543339 |  |  |
| 600                                      | 600.240096       | 0.040016006 | 500000            | 500000           | 0           |  |  |
| 1200                                     | 1200.480192      | 0.040016006 | 921600            | 922431.8658      | 0.090263219 |  |  |
| 2400                                     | 2400.960384      | 0.040016006 | 1000000           | 1000000          | 0           |  |  |
| 4800                                     | 4801.920768      | 0.040016006 | 1382400           | 1383647.799      | 0.090263219 |  |  |
| 9600                                     | 9603.841537      | 0.040016006 | 1444400           | 1452145.215      | 0.536223658 |  |  |
| 14400                                    | 14414.41441      | 0.1001001   | 1500000           | 1506849.315      | 0.456621005 |  |  |
| 19200                                    | 19230.76923      | 0.16025641  | 1843200           | 1856540.084      | 0.723745898 |  |  |
| 28800                                    | 28860.02886      | 0.208433542 | 2000000           | 2000000          | 0           |  |  |
| 38400                                    | 38461.53846      | 0.16025641  | 2100000           | 2105263.158      | 0.250626566 |  |  |
| 57600                                    | 57720.05772      | 0.208433542 | 2764800           | 2784810.127      | 0.723745898 |  |  |
| 76800                                    | 76923.07692      | 0.16025641  | 3000000           | 3013698.63       | 0.456621005 |  |  |
| 115200                                   | 115243.583       | 0.037832489 | 3250000           | 3283582.09       | 1.033295063 |  |  |
| 128000                                   | 128205.1282      | 0.16025641  | 3692300           | 3728813.559      | 0.988910959 |  |  |
| 153600                                   | 153846.1538      | 0.16025641  | 3750000           | 3793103.448      | 1.149425287 |  |  |
| 230400                                   | 231092.437       | 0.300536881 | 4000000           | 4000000          | 0           |  |  |



### 7.5. SDIO Device Mode Interface

The SDIO (Secure Digital Input Output) is an extension of the SD specification to cover I/O functions.

#### **SDIO Features**

- Supports SDIO 2.0 High Speed mode
- CIS can be configured with internal non-volatile memory for fast card detection
- Realtek SPI provides high efficiency SPI interface with interrupt and full duplex mode
- Supports high performance Ethernet to Wi-Fi transformation
- Supports non-flash booting when using an Ethernet to Wi-Fi transformation card

### 7.5.1. Bus Timing Specification



Figure 13. SDIO Interface Timing Sequence

Table 15. SDIO Interface Timing Parameters

| Name             | Parameter         | Mode    | Min | Max | Unit |
|------------------|-------------------|---------|-----|-----|------|
| r                | Clock Fragueray   | Default | 0   | 25  | MHz  |
| $f_{PP}$         | Clock Frequency   | HS      | 0   | 50  | MHz  |
| $T_{ m WL}$      | Clock Low Time    | Default | 10  | -   | ns   |
| 1 WL             | Clock Low Time    | HS      | 7   | -   | ns   |
| $T_{ m WH}$      | Clock High Time   | Default | 10  | -   | ns   |
| 1 WH             | Clock High Time   | HS      | 7   | -   | ns   |
| T <sub>ISU</sub> | Input Setup Time  | Default | 5   | -   | ns   |
| 1 ISU            | input Setup Time  | HS      | 6   | -   | ns   |
| $T_{ m IH}$      | Input Hold Time   | Default | 5   | -   | ns   |
| 1 IH             | input froid finie | HS      | 2   | -   | ns   |
| Todly            | Output Delay Time | Default | ı   | 14  | ns   |
| 1 ODLY           | Output Delay Time | HS      | -   | 14  | ns   |

23



# 7.6. SPI Interface

The Serial Peripheral Interface (SPI) enables data communication between microcontrollers and other peripherals. High throughput and full-duplex capability with a simple hardware interface makes the SPI very efficient for various applications. The SPI is widely adopted to communicate with a variety of peripherals including sensors, control devices, memory, LCD, SD cards etc.

#### **SPI Features**

- Supports 1 SPI port
- Supports Master/Slave mode
- Multiple Serial Interface Operations supported:
  - ◆ Motorola SPI
  - ◆ Texas Instruments SSI
  - National Semiconductor Microwire
- Supports DMA to offload CPU bandwidth
- Maximum speed support for each SPI interface:
  - Supports baud rate up to 25MHz (Master mode)
  - Supports baud rate up to 6.25MHz (Slave mode Rx only)
  - Supports baud rate up to 5MHz (Slave mode TRx)
- Programmable clock bit-rate
- Programmable clock polarity (SCPOL) and phase (SCPH) for SPI protocol
- Supports 8 bit and 16 bit data frame size
- Supports bit swapping and byte swapping features
- The transmit FIFO and receive FIFO depth is 1024 bit (up to 64 data frames)

#### 7.6.1. SPI Protocol

The SPI protocol mode can control via 2 parameters, SCPOL and SCPH. Both SCPOL and SCPH can be configured as 0 or 1 (SCPOL = 0/1, SCPH = 0/1) with a total of 4 modes as shown below.

- SCPOL defines inactive state of serial clock status:
  - 0: Low
  - ◆ 1: High
- SCPH defines serial clock toggle timing of the first data bit:
  - 0: Middle of the first data
  - 1: Start of the first data

#### SCPOL=0/SCPH=0:



Figure 14. SPI Protocol: Mode 0 (SCPOL=0/SCPH=0)

#### SCPOL=0/SCPH=1:



Figure 15. SPI Mode Protocol: Mode 1 (SCPOL=0/SCPH=1)

#### SCPOL=1/SCPH=0:



Figure 16. SPI Mode Protocol: Mode 2 (SCPOL=1/SCPH=0)

#### SCPOL=1/SCPH=1:



Figure 17. SPI Mode Protocol: Mode 3 (SCPOL=1/SCPH=1)



### 7.7. I2C Interface

For external device connection, I2C is another popular serial interface since all I2C devices can be connected together, and only two wires (data and clock pin) are required for the I2C protocol. In a pin-limited system, I2C would be the ideal interface to integrate different external elements.

#### **I2C Features**

- Supports maximum 1 x I2C ports
- Supports 3 different speeds:
  - Standard mode (0 to 100 Kb/s)
  - Fast mode (<400 Kb/s)
  - High-speed mode (<3.4 Mb/s) (with appropriate bus loading)
- Master or slave I2C operations
- 7-bit/10-bit addressing
- Supports Interrupt or polled mode operation
- Supports TX and RX DMA
- Transmit and receive buffers



Figure 18. I2C Functional Diagram

26



### 7.8. PWM Interface

Pulse-Width Modulation (PWM) controllers generate pulse signals. The duty cycle, high time, and low time of pulse signals are programmable. In some particular applications, especially for LED and motor unit control, PWM is one of the most used interfaces. PWM interfaces can operate with GTimer, therefore PWM can work without involving the CPU.

#### **PWM Features**

- Supports maximum 8 PWM functions
- $0 \sim 100\%$  duty can be configured
- Use selected HS GTimer interrupt as counter source
- Minimum resolution is 50ns
- The period could be configured up to 8 seconds



Figure 19. PWM Functional Diagram



### 7.9. Security Engine

In order to enhance security levels in embedded systems, the security engine offers various authentication and encryption/decryption functions to meet different states of security usage. A crypto engine provides low SW computing and high performance cryptographic operation (such as authentication, encryption, and decryption).

#### **Security Engine Features**

- Provides low SW computing and high performance encryption
- Supported authentication algorithms:
  - General cryptographic hash function
    - o MD5
    - o SAH1
    - o SHA2-224
    - o SHA2-256
    - Sequential hash
  - HMAC (Hash-based message authentication code)
    - o HMAC MD5
    - o HMAC SHA1
    - o HMAC SHA2-224
    - o HMAC SHA2-256
  - Cipher (Encryption/Decryption) algorithms
    - o AES-128/192/256
      - ECB (Electronic Codebook) mode
      - CBC (Cipher Block Chaining) mode
      - CTR (Counter) mode
      - CFB (Cipher Feedback) mode
      - OFB (Output Feedback) mode
      - GCTR (Galois CTR) mode
      - GMAC (Galois MAC) mode
      - GHASH (Galois HASH) mode
      - GCM (Galois/Counter Mode) mode
  - CRC



### 8. RF Characteristics

Ameba ZII includes integrated WLAN RF transceiver architecture, and operates in 2.4 GHz WLAN and Bluetooth systems.

### 8.1. RF Block Diagram

This section describes the Ameba ZII RF block diagram. Ameba ZII includes a Wi-Fi/BT subsystem that integrates a Wi-Fi/BT modem sharing a front-end RF (ADC, TRSW, LPF, PA, LNA, etc.), and this chip is compatible with IEEE 802.11b/g/n protocol.



Figure 20. RF Block Diagram



### 8.2. Wi-Fi Radio Characteristics

Values in Table 16 are typical values, and the reference point is the antenna port including front-end loss. These values may change slightly depending on different RF front-end designs or PCB designs.

### 8.2.1. Wi-Fi 2.4GHz Band RF Receiver Specifications

#### Table 16. Wi-Fi 2.4GHz Band RF Receiver Specifications

Note: The above Rx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB.

| Parameter                | Description   | Min  | Тур.  | Max  | Units |
|--------------------------|---------------|------|-------|------|-------|
| Frequency Range          | -             | 2400 | -     | 2500 | MHz   |
| 802.11b                  | 1 Mbps DSSS   | -    | -99.0 | -    | dBm   |
|                          | 2 Mbps DSSS   | -    | -95.5 | -    | dBm   |
| RX Sensitivity (8% PER)  | 5.5 Mbps DSSS | -    | -93.5 | -    | dBm   |
| 141 5411014 (0741 221)   | 11 Mbps DSSS  | -    | -90.0 | -    | dBm   |
|                          | 6 Mbps OFDM   | -    | -94.0 | -    | dBm   |
|                          | 9 Mbps OFDM   | -    | -93.0 | -    | dBm   |
|                          | 12 Mbps OFDM  | -    | -91.5 | -    | dBm   |
| 802.11g                  | 18 Mbps OFDM  | -    | -89.0 | -    | dBm   |
| RX Sensitivity (10% PER) | 24 Mbps OFDM  | -    | -86.0 | -    | dBm   |
|                          | 36 Mbps OFDM  | -    | -82.5 | -    | dBm   |
|                          | 48 Mbps OFDM  | -    | -78.0 | -    | dBm   |
|                          | 54 Mbps OFDM  | -    | -76.5 | -    | dBm   |
|                          | HT20 MCS0     | -    | -93.5 | -    | dBm   |
|                          | HT20 MCS1     | -    | -91.0 | -    | dBm   |
|                          | HT20 MCS2     | -    | -88.5 | -    | dBm   |
| 802.11n                  | HT20 MCS3     | -    | -85.5 | -    | dBm   |
| RX Sensitivity (10% PER) | HT20 MCS4     | -    | -82.5 | -    | dBm   |
|                          | HT20 MCS5     | -    | -77.0 | -    | dBm   |
|                          | HT20 MCS6     | -    | -75.5 | -    | dBm   |
|                          | HT20 MCS7     | -    | -74.0 | -    | dBm   |
| Maximum Receive Level    | 1 Mbps DSSS   | -    | -     | 0    | dBm   |
| waxiinum keceive Level   | 6M bps OFDM   | -    | -     | 0    | dBm   |



### 8.2.2. Wi-Fi 2.4GHz Band RF Transmitter Specifications

Table 17. Wi-Fi 2.4GHz Band RF Transmitter Specifications

| Parameter              | Description  | Min  | Typ. | Max  | Units   |
|------------------------|--------------|------|------|------|---------|
| Frequency Range        | -            | 2400 | -    | 2500 | MHz     |
| 1 2 0                  | 1 Mbps DSSS  | -    | 21   | -    | dBm     |
|                        | 11 Mbps DSSS | -    | 21   | -    | dBm     |
| TV novem               | 6 Mbps OFDM  | -    | 19   | -    | dBm     |
| TX power               | 54 Mbps OFDM | -    | 17   | -    | dBm     |
|                        | HT20 MCS0    | -    | 19   | -    | dBm     |
|                        | HT20 MCS7    | -    | 16   | -    | dBm     |
|                        | 1 Mbps DSSS  | -    | 8    | -    | %       |
|                        | 11 Mbps DSSS | -    | 8    | -    | %       |
| TX EVM                 | 6 Mbps OFDM  | -    | -5   | -    | dB      |
|                        | 54 Mbps OFDM | -    | -25  | -    | dB      |
|                        | HT20 MCS0    | -    | -5   | -    | dB      |
|                        | HT20 MCS7    | -    | -28  | -    | dB      |
| Carrier suppression    | -            | -    | -    | -30  | dBc     |
| Harmania Outnut Davier | 2nd Harmonic | -    | -    | -45  | dBm/MHz |
| Harmonic Output Power  | 3rd Harmonic | -    | -    | -45  | dBm/MHz |

Note 1: The above Tx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB. Note 2: Target TX power is configurable based on different applications or certification requirements. Werecommend to back off 3dB for mass production pass rate, and include a corner case margin.



### 8.3. Bluetooth Radio Characteristic

Values in Table 18 and Table 19 are typical values, and the reference point is the antenna port including front-end loss. These values may change slightly depending on different RF front-end designs or PCB designs. Both the transmitter specifications and the receiver specifications follow Bluetooth SIG specifications.

### 8.3.1. BT RF Transmitter Specifications

Table 18. Bluetooth Transmitter Performance Table-BLE

|                           | abic for Bidotooth Transmittor |      |      |      |          |
|---------------------------|--------------------------------|------|------|------|----------|
| Parameter                 | Description                    | Min  | Тур. | Max  | Units    |
| Frequency Range           | -                              | 2402 | -    | 2480 | MHz      |
| Tx Output Power           | -                              | 2.5  | 4.5  | 6.5  | dBm      |
|                           | $F = F0 \pm 1 \text{ MHz}$     | -    | -15  | -    | dB       |
| Adjacent channel transmit | $F = F0 \pm 2 \text{ MHz}$     | -    | -53  | -    | dB       |
| power                     | $F = F0 \pm 3 \text{ MHz}$     | -    | -56  | -    | dB       |
|                           | $F = F0 \pm > 3 \text{ MHz}$   | -    | -57  | -    | dB       |
| Δ flavg                   | -                              | -    | 246  | -    | kHz      |
| Δ f2max                   | -                              | -    | 220  | -    | kHz      |
| Δ f2avg/Δ f1avg           | -                              | -    | 0.92 | -    | -        |
| ICFT                      | -                              | -    | -15  | -    | KHz      |
| Drift rate                | -                              | -    | 2    | -    | kHz/50μs |
| Initial drift rate        | -                              | -    | -2   | -    | kHz      |

Note: The above Tx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB.

# 8.3.2. BT RF Receiver Specifications

Table 19. Bluetooth Receiver Performance Table-BLE

| Parameter                                       | Description          | Min     | Тур.    | Max     | Units |
|-------------------------------------------------|----------------------|---------|---------|---------|-------|
| Parameter                                       | Description          | Minimum | Typical | Maximum | Units |
| Frequency Range                                 | -                    | 2402    | -       | 2480    | MHz   |
| Rx Sensitivity @30.8% PER                       | Without spur channel | -       | -100    | -       | dBm   |
| Maximum received signal @30.8% PER              | -                    | 0       | -       | -       | dBm   |
|                                                 | -                    | -       | 8       | -       | dB    |
|                                                 | F = F0 + 1  MHz      | -       | -5      | -       | dB    |
| Combany 1 C/I                                   | F = F0 - 1  MHz      | -       | -4      | -       | dB    |
| Co-channel C/I Adjacent channel selectivity C/I | F = F0 + 2 MHz       | -       | -40     | -       | dB    |
| Adjacent channel selectivity C/I                | F = F0 - 2  MHz      | -       | -25     | -       | dB    |
|                                                 | F = F0 + 3  MHz      | -       | -45     | -       | dB    |
|                                                 | F = F0 - 3  MHz      | -       | -20     | -       | dB    |
|                                                 | 30 MHz ~ 2000 MHz    | -30     | -       | -       | dBm   |
| Out-of-band blocking performance                | 2000 MHz ~ 2400 MHz  | -35     | -       | -       | dBm   |
|                                                 | 2500 MHz ~ 3000 MHz  | -35     | -       | -       | dBm   |
| Intermodulation                                 | 3000 MHz ~ 12.5 GHz  | -30     | -       | -       | dBm   |

Note: The above Rx performance values are based on 25 degree, 3.3V, 50ohm @LAB environment & Realtek EVB.



### 9. Electrical Characteristics

# 9.1. Temperature Limit Ratings

**Table 20. Temperature Limit Ratings** 

|                                       |     | <b>J</b> - |       |
|---------------------------------------|-----|------------|-------|
| Parameter                             | Min | Max        | Units |
| Storage Temperature                   | -55 | +150       | °C    |
| Ambient Operating Temperature         | -20 | +85        | °C    |
| Ambient Operating Temperature (Wide)1 | -40 | +105       | °C    |
| Junction Temperature                  | 0   | +125       | °C    |

Note 1: Only the RTL8720Cx-VT2-CG supports the wider temperature range.

# 9.2. Temperature Characteristics

**Table 21. Thermal Properties** 

| PCB (layer) | Tambient(°C) | θ <sub>JA</sub> (°C/W) | Ψ <sub>JT</sub> (°C/W) | Ψ <sub>JB</sub> (°C/W) |
|-------------|--------------|------------------------|------------------------|------------------------|
| 2           | 70           | 62.09                  | 0.93                   | 11.81                  |

Note: The above values are based on the Realtek EVB.

### 9.3. Power Supply DC Characteristics

**Table 22. Power Supply DC Characteristics** 

| Parameter                                 | Symbol     | Min  | Тур.  | Max  | Units |
|-------------------------------------------|------------|------|-------|------|-------|
| DC Supply Voltage for VDD_IN (3.3V)       | VDD_IN     | 2.97 | 3.3   | 3.63 | V     |
| DC Supply Voltage for VDD_IN (5V)         | VDD_IN     | 4.5  | 5     | 5.5  | V     |
|                                           | VD33_SDIO  |      |       |      |       |
|                                           | VA33_XTAL  |      |       | 3.63 |       |
|                                           | VA33_SYN   | 2.97 | 3.3   |      |       |
| DC Supply Voltage for 3.3V Power Rail     | VA33_RF    |      |       |      | V     |
|                                           | VA33_PA    |      |       |      |       |
|                                           | VA33_TR    |      |       |      |       |
|                                           | VD33_FLASH |      |       |      |       |
|                                           | VD33_OUT   |      |       |      |       |
| DC Supply Voltage for 1.1V Power Rail     | VD11_CORE  | 1.09 | 1.146 | 1.20 | V     |
| DC Supply Voltage for GPIO/Embedded Flash | VD1833_LPC | 2.97 | 3.3   | 3.63 | V     |
| DC Supply Voltage for Embedded PSRAM1     | VD1833_LPC | 1.7  | 1.8   | 1.95 | V     |

Note: Only the RTL8720CM-VA2-CG/RTL8720CM-VT2-CG have an embedded PSRAM, VD1833\_LPC needed to provide 1.8V for PSRAM power supply.



# 9.4. Digital IO Pin DC Characteristics

Table 23. Typical Digital IO DC Parameters

| Symbol            | Parameter                                               | Conditions        | Min   | Тур.   | Max   | Units |
|-------------------|---------------------------------------------------------|-------------------|-------|--------|-------|-------|
| $V_{ m IH}$       | Input-High Voltage                                      | LVTTL             | 2.0   | -      | -     | V     |
| $V_{\rm IL}$      | Input-Low Voltage                                       | LVTTL             | -     | -      | 0.8   | V     |
| V <sub>OH</sub>   | Output-High Voltage                                     | LVTTL             | 2.4   | -      | -     | V     |
| Vol               | Output-Low Voltage                                      | LVTTL             | -     | -      | 0.4   | V     |
| $V_{T^+}$         | Schmitt-Trigger High Level                              | -                 | 1.377 | 1.683  | 1.908 | V     |
| V <sub>T</sub> -  | Schmitt-Trigger Low Level                               | -                 | 0.729 | 0.957  | 1.116 | V     |
| $I_{\rm IL}$      | Input-Leakage Current                                   | VIN = 3.3V  or  0 | -10   | ±1     | 10    | μΑ    |
| -                 | Driving for Normal Pins                                 | -                 | 4     | -      | 16    | mA    |
| $I_{\mathrm{OH}}$ | Driving for 5V UART Pins<br>(GPIOA_13/GPIOA_14)         | 3.3V/5V           | 4/4   | -      | 8/8   | mA    |
| I <sub>OL</sub>   | Driving for 5V UART Pins<br>(GPIOA_13/GPIOA_14)         | 3.3V/5V           | 4/4   | -      | 8/8   | mA    |
| -                 | Driving for SDIO Device Pins                            | -                 | 4     | -      | 16    | mA    |
| -                 | Loading for Normal Pins                                 | -                 | -     | 15     | -     | pF    |
| -                 | Loading for 5V UART Pins<br>(GPIOA_13/GPIOA_14)         |                   | -     | 15     | -     | pF    |
| -                 | Loading for SDIO Device Pins                            | -                 | -     | 15     | -     | pF    |
| -                 | Pull Resistance for Normal Pins                         | 3.3V              | -     | 75     | -     | ΚΩ    |
| -                 | Pull Resistance for 5V UART Pins<br>(GPIOA_13/GPIOA_14) | 3.3V/5V           | -     | 80/120 | -     | ΚΩ    |
| -                 | Pull Resistance for SDIO Device Pins                    | 3.3V              | -     | 50     | -     | ΚΩ    |

Note: The pull resistance values are typical values checked in the manufacturing process, and are not tested.

### 9.5. ESD Characteristics

**Table 24. ESD Characteristics** 

| Reliability Test          | Standard          | Test Condition | Result |
|---------------------------|-------------------|----------------|--------|
| Human Body Model (HBM)    | JESD22-A114F-2008 | ±2000V         | Pass   |
| Machine Model (MM)        | JESD22-A115C-2010 | ±100V          | Pass   |
| Charge Device Model (CDM) | JESD22-C101F-2013 | ±500V          | Pass   |



# 9.6. Power State and Power Sequence

### 9.6.1. Power On or Resuming from Deep Sleep Sequence

The timing sequence of Power On or Resuming from Deep Sleep is given in Figure 21.



Figure 21. Power-On Sequence or Resume from Deep Sleep

Table 25. Timing Specification for Power on Sequence

| Symbol           | Parameter                                        | Min | Тур. | Max | Units |
|------------------|--------------------------------------------------|-----|------|-----|-------|
| $T_{PRDY}$       | 3.3V Ready Time                                  | 0.6 | -    | 5   | ms    |
| $T_{PRDY}$       | 5V Ready Time                                    | 1   | -    | 5   | ms    |
| T <sub>CLK</sub> | Internal Ring Clock Stable Time after 3.3V Ready | 1   | -    | -   | ms    |
| Tcore            | Core Power Ready Time                            | 1.5 | -    | -   | ms    |



# 9.6.2. Resume from Standby Mode Sequence



Figure 22. Timing Sequence Resume from Standby

Table 26. Timing Specification for Resume from Standby Mode Sequence

| Symbol | Parameter             | Min | Тур. | Max | Units |
|--------|-----------------------|-----|------|-----|-------|
| Tcore  | Core Power Ready Time | 1.5 | -    | -   | ms    |

# 9.6.3. Shutdown Sequence



Figure 23. Timing Sequence of Shutdown

Table 27. Timing Specification for Shutdown Sequence

| Symbol           | Parameter                                                 | Min | Тур. | Max | Units |
|------------------|-----------------------------------------------------------|-----|------|-----|-------|
| $V_{RST}$        | Shutdown occurs after CHIP_EN is lower than this voltage  | -   | 0.8  | -   | V     |
| $T_{RST}$        | The require time that CHIP_EN lower than V <sub>RST</sub> | 1   | -    | -   | ms    |
| $V_{RDY}$        | Enable PMC after CHIP_EN higher than this voltage         | 2   | -    | -   | V     |
| T <sub>CLK</sub> | Internal Ring Clock Stable Time after 3.3V ready          | 1   | -    | -   | ms    |
| Tcore            | Core Power Ready Time                                     | 1.5 | -    | -   | ms    |



# 10. Mechanical Dimensions

# 10.1. Package Specification







# 10.2. Mechanical Dimensions Notes

**Table 28. Mechanical Dimensions Notes** 

| Camab al       | Dimension in mm |           |      |  |  |  |
|----------------|-----------------|-----------|------|--|--|--|
| Symbol         | Min             | Nom.      | Max  |  |  |  |
| A              | 0.80            | 0.85      | 0.90 |  |  |  |
| $A_1$          | 0.00            | 0.035     | 0.05 |  |  |  |
| A <sub>2</sub> | -               | 0.65      | 0.70 |  |  |  |
| A <sub>3</sub> |                 | 0.203 REF |      |  |  |  |
| b              | 0.15            | 0.20      | 0.25 |  |  |  |
| D/E            |                 | 5.00 BSC  |      |  |  |  |
| e              |                 | 0.40 BSC  |      |  |  |  |
| J              | 3.5             | 3.6       | 3.7  |  |  |  |
| K              | 3.5             | 3.6       | 3.7  |  |  |  |
| L              | 0.35            | 0.40      | 0.45 |  |  |  |

Note: CONTROLLING DIMENSION: MILLIMETER (mm). RFERENCE DOCUMENT: JEDEC MO-220.

39



# **Ordering Information**



**Table 29. Ordering Information** 

| Part Number      | Package                                                                           |
|------------------|-----------------------------------------------------------------------------------|
| RTL8720CF-VA2-CG | QFN40, 'Green' Package. MCM 2MB Flash                                             |
| RTL8720CM-VA2-CG | QFN40, 'Green' Package. MCM 4MB PSRAM                                             |
| RTL8720CF-VT2-CG | QFN40, 'Green' Package. MCM 2MB Flash. Wide temp. range; see section 9.1, page 33 |
| RTL8720CM-VT2-CG | QFN40, 'Green' Package. MCM 4MB PSRAM. Wide temp. range; see section 9.1, page 33 |

# **Realtek Semiconductor Corp.**

#### Headquarters

No. 2, Innovation Road II, Hsinchu Science Park,

Hsinchu 300, Taiwan, R.O.C.

Tel: 886-3-5780211 Fax: 886-3-5776047

www.realtek.com