ANALISI	1	_	LEZIONE	O8
Note Title				07/03/2017
METODO DI	VARIAZIONI	E DELLE CO	[ITHATEC	
Metodo sistemat	ico per tr	vare una	soluzione d	i un'eg. diff.
Diveau NON	'			
uou costanti,	Y	'		
dell'ourogenea	'			
Exmpio 1 in	+34 -41	1 = e		
Sol. gen. smoge	nea:	u(t) = a	et + be -4t	
Cerco una sol.	della ho	n omodens	a del tipo	
		t , .	_ 4t	
- L	$(t) = \alpha ($	t) e + b (t	;)e	
	3	funcioni dell	a t	
Calcolo				
માં (+) − વા (+	=) et + alt) e + b (+)	e_4t - 4 blt) e	<u> </u>
		-4-	+	
Genodint	å(t)e +	b (t) e =	o 1ª equa	rione
Calcolo				, ,
i (t	$) = \dot{a}(t)$	et + a(4)et -	-46(t)e+1	6 b (+) e
(no squorato				
Sostituisco u				
		, ,		
åe+ get-	46e + 16	be		u u
+ 300 et - 12h	2-45			+ 3 û
-40et-46	e-4t = e	2t		44 = ezt

DEVE succedere che i termini con a e b (senso la derivata) se ue vauno. Ció che resta è ā(4) et - 46(t) e - at = e2t 2ª equarione Le due eq. attenute le metto rusieme e le penso come sistema lineare nelle inagnite à (t) e 6 (t) $\begin{cases} \ddot{a}(t)e^{t} + \ddot{b}(t)e^{-4t} = 0 \\ \ddot{a}(t)e^{t} - 4\ddot{b}(t)e^{-4t} = e^{2t} \end{cases}$ Pisolvo: 19-2° no 5b (t) e =-e no b (t)=-= e t Julegrando trova a(t) e b(t): $a(t) = \frac{1}{5}e^{t}$ $b(t) = -\frac{1}{30}e^{t}$ $a = a(t)e^{t} + b(t)e^{-4t}$ $= \frac{1}{5} e^{2t} - \frac{1}{30} e^{2t} = \frac{5}{30} e^{2t} = \frac{1}{6} e^{2t}$ Se l'equasione posse di ordine 3, avrei 3 costanti arbitrarie alti, b(t) e c(t), quiudi servisebbero 3 equ ottenné annullaude : termini con à, b, c nel calcolo di vi e vi. Di potrebbe dien. che il sistema finale ha sempre sol unica

$$u \stackrel{t}{e}^2 = \int \stackrel{t}{e}^3 e^{t^2} dt = \int \stackrel{t}{e}^2 \cdot \frac{t}{e} e^{t^2} dt = \frac{t^2 \cdot \frac{1}{2} e^{t^2} - \int 2t}{\frac{1}{2}} e^{t^2} dt$$

$$= \frac{1}{2} \stackrel{t}{e}^2 e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} \stackrel{t}{e}^2 e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} \stackrel{t}{e}^2 e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} \stackrel{t}{e}^2 e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} \stackrel{t}{e}^2 e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} e^{t^2} e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} e^{t^2} e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} e^{t^2} e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} e^{t^2} e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} e^{t^2} - \frac{1}{2} e^{t^2} + c$$

$$= \frac{1}{2} e^{t^2} + c$$