2020 Digital IC Design Homework 1: 4-bit binary adder-subtractor

NAME	1	Nguyen Vu Le Minh					
Student ID	+	P76087099					
Simulation Result							
Functional	Pass	Gate-level	Pass		Gate-level	10852 (ns)	
simulation	1 455	simulation			simulation time		
(your pre-sim result)					(your pos	t-sim result)	
# 502 data is correct							
# 503 data is correct				# 503 data is correct # 504 data is correct			
# 504 data is correct # 505 data is correct					# 505 data is correct		
# 506 data is correct					# 506 data is correct		
# 507 data is correct					# 507 data is correct # 508 data is correct		
# 508 data is correct # 509 data is correct					# 509 data is correct		
# 510 data is correct					# 510 data is correct		
# 511 data is correct # 512 data is correct					<pre># 511 data is correct # 512 data is correct</pre>		
#PASS					#PASS		
# All data have been generated successfully! # All data have been generated successfully!							
Synthesis Result							
Total logic elements				10 / 68,416 (< 1 %)			
Total memory bit				0 / 1,152,000 (0 %)			
Embedded multiplier 9-bit element				0 / 300 (0 %)			
(your flow summary)							
Flow Summany							
Flow Summary Flow Status					Successful - Sat Apr 11 23:10:22 2020		
···· Quartus II Version				10.0 Build 262 08/18/2010 SP 1 SJ Full Version AS			
Revision Name A Top-level Entity Name A							
Family Cyclone II							
Device EP Timing Models Fir					2C70F896C8 al		
Met timing requirements Ye							
Total logic elements Total combinational functions Dedicated logic registers Total registers Total pins Total virtual pins Total memory bits Embedded Multiplier 9-bit elements				10 / 68,416 (< 1 %) 10 / 68,416 (< 1 %) 0 / 68,416 (0 %)			
							14/622(2%)
				0 0 / 1,152,000 (0 %)			
				ts 0/300(0%)			
				Total PLLs 0 / 4 (0 %)			
Description of your design							

The binary adder-subtractor is a device that is capable of adding or subtracting elements. A circuit which is used to add or subtract, depending on the control signal. In my homework, I used dataflow description to design 4-bit binary adder-subtractor.

```
module AS(sel, A, B, S, 0);
   input [3:0] A, B;
    input sel;
    output [3:0] S;
    output 0;
```

First, my input includes A, B, sel. The input A and B which are 4-bit binary, push from file A.txt and B.txt. The input "sel" that are 1-bit binary, decide to design one of adder-subtractor. Besides, there are 2 output value that are S and C in my design.

According to block overview, I separated input A and B into each of bit in order to process. Besides, I have a carry bit that is "cin" - 1 bit binary to memo overflow bit of each stage. Initial of "cin" by "sel". In processing each bit, I used XOR to calculate "sum" output and (AND, OR) to calculate "cin". The processing will loop 4 times because input is 4-bit binary. Depending on the "sel", if sel is 1, the design will be subtractor and other case, it will be adder. Finally, in order to calculate overflow bit, I used XOR between "cin3" and "cin4".

I also edited the Clock Cycle is 2.1 in Test_bench file to decrease gate-level simulation time in post-sim.

```
`timescale 10ns / lps
`define CYCLE 2.1
`define A_dat "./A.txt"
`define B_dat "./B.txt"
`define O_dat "./O.txt"
`define SUM_dat "./SUM.txt"
module AS_tb;
```

Scoring = (Total logic elements + total memory bit + 9*embedded multiplier 9-bit element) × (gate-level simulation time in ns)