PTC 3313 - Sistemas de Controle Lista sobre Modelagem

Profs. Fuad e Diego

26 de Setembro de 2020

Exercício 1

Para o sistema mecânico translacional apresentado na Figura 1:

- 1. Encontre o modelo matemático do sistema;
- 2. Encontre a função de transferência $G(s) = X_1(s)/F(s)$;
- 3. Considerando $b = m_1 = 1$, determine a faixa de valores de k_1 para o sistema ser oscilatório.

Exercício 2

Seja o sistema mecânico translacional apresentado na Figura 2. Determine:

- 1. O modelo matemático do sistema $(x_1 \text{ \'e a posição do bloco 1, e } x_2 \text{ do bloco 2});$
- 2. Considerando $k_1 = k_2 = m_1 = m_2 = 1 = b_2$, encontre a faixa de valores de b_1 para o sistema ser oscilatório;
- 3. Considerando os mesmos parâmetros do item anterior e ainda $b_1 = 3$, encontre ax respostax $x_1(t)$ e $x_2(t)$ do sistema a um degrau unitário em F(t).

Exercício 3

O chamado modelo de 1/4 de carro, conforme apresentado na Figura 3, é utilizado para projeto de sistemas de suspensão ativa em veículos automotores. Neste sistema, modelam-se a massa da roda M_r , da carroceria M_c , o amortecedor B_a , a mola K_a e a elasticidade do pneu K_p . F_a representa uma força aplicada pelo próprio atuador do sistema de suspensão ativa. Considere que o peso é completamente equilibrado em $x_r = x_c = d = 0$.

Figura 1: Sistema Mecânico do Ex. 1

Figura 2: Sistema Mecânico do Ex. 2

Figura 3: Sistema Mecânico do Ex. 3

- 1. Encontre o modelo matemático deste sistema, considerando que as entradas são d (deslocamento da roda, que deve acompanhar rigidamente o solo) e $F_a(t)$, e as saídas são a posição da carroceria x_c e a posição da roda x_r .
- 2. Considerando $M_c=250kg,\ M_r=28,58kg,\ K_a=10000N/m,\ K_p=155900N/m,\ B_a=850Ns/m,$ o sistema é oscilatório ?

Exercício 4

Dado o sistema mecânico rotacional apresentado na Figura 4, determine:

- 1. O modelo matemático do sistema, onde T_1 é um torque motriz (entrada);
- 2. Determine a função de transferência $\Omega_1(s)/T_1(s)$;

Tem-se que N_1, N_2, N_3 são os números de dentes das engrenagens.

Exercício 5

Seja o sistema elétrico apresentado na figura 5. Determine:

Figura 4: Sistema Mecânico do Ex. 4

Figura 5: Sistema Elétrico do Ex. 5

- 1. O modelo matemático do sistema, considerando a entrada como sendo a fonte E_1
- 2. A função de transferência $V_c(s)/E_1(s)$

Exercício 6

Dado o circuito elétrico apresentado na figura 6:

- 1. Determine o modelo matemático considerando que I_1 e E_1 são as entradas e V_c é a saída;
- 2. Determine a matriz de funções de transferência do sistema, ou seja, as funções de transferência de I_1 para V_c (considerando E_1 nula) e de E_1 para V_c (considerando I_1 nula);
- 3. Considerando que $L_1 = 2$, determine a faixa de valores de C_1 para os quais o circuito é oscilatório
- 4. Considerando $E_1 = H(t)$ (degrau unitário) e $I_1 \equiv 0$, determine a resposta total do sistema para tensão inicial no capacitor igual a V (e demais condições iniciais nulas).

Exercício 7

Dado o circuito com amplificador operacional apresentado na figura 7. Determine:

1. Determine a função de transferência $V_c(s)/E_1(s)$ considerando que $Z_1=R_1$ e $Z_2=R_2$ são resistores e Z_3 e Z_4 são capacitores C_2 e C_1 ;

Figura 6: Sistema Elétrico do Ex. 6

Figura 7: Sistema Elétrico do Ex. 7

2. O que ocorre se os resistores forem trocados pelos capacitores (e vice-versa)?

Exercício 8

Seja o sistema eletromecânico com realimentação de posição apresentado na figura 8. É acionada uma carga linear de massa m através de um par engrenagem-cremalheira. Ao movimento da carga linear opõe-se um força de carga (função do tempo) considerada como sendo uma perturbação.

Figura 8: Representação da Máquina CNC

Considerando o sistema em malha aberta (desligando o ampop do motor):

- 1. Encontre o modelo da parte mecânica deste sistema
- 2. Encontre o modelo da parte elétrica (considere que a resistência total de cada potenciômetro é igual a R).

3. Encontre a função de transferência entre a tensão na entrada do motor (saída do segundo amplificador operacional) e a posição θ_2 ;

Considerando o sistema em malha fechada:

- 4. Desenhe o diagrama de blocos do sistema completo (em malha fechada)
- 5. Encontre a função de transferência em malha fechada do sistema, da tensão proporcional à posição desejada V_e à tensão proporcional à posição real V_s