Mémoire de Stage de M2

Phase Géométrique de Signal Multivarié et puis c'est déjà pas mal

Grégoire Doat

Encadré par Nicolas Le Bihan, Pierre-Olivier Amblard, Julien Flamant & Michel Berthier

Master Mix – Université de La Rochelle 2024-2025

TABLES DES MATRIÈRES

	$egin{array}{cccccccccccccccccccccccccccccccccccc$				
	Partie I — Introduction de la Phase Géométrique	3			
I	— Introduction de la phase géométrique	3			
	1.1 Cas univarié : signaux AM-FM	3			
	1.2 Phase et fréquence instantanée de signal multivarié	4			
	1.3 Apparition de la phase géométrique	7			
II	— Première étude : cas des signaux AM-FM-PM	8			
	2.1 Définitions et calcul des phases	8			
		10			
	2.3 * Généralisation en plus haute dimension	12			
A	nnexes	L4			
		14			
	A.1. * Formalisme derrière la transformée en SA ou le problème de signaux réels et comment				
		14			
		$\frac{15}{18}$			
	· ·	10 19			
		19			
	· · · · · · · · · · · · · · · · · · ·	20			
	C.3. Transformation de phases	21			
	Partie II — Aspects Géométriques d'une Phase Éponyme 2	- 3			
Ι	— Cadre d'étude	23			
	1.1 — $P\mathbb{C}^n$ vue comme variété différentielle	23			
	1.1.1 * Rappels de géométrie différentielle et notations	23			
	$1.1.2 \ * \ \mathbf{P}\mathbb{C}^{n}$ comme variété différentielle				
	$1.2 - S^{2n+1}$ comme fibré principal				
		26 20			
		28			
		29 29			
		29 31			
II		32			
		32			
		$\frac{33}{34}$			
		34 35			
	$2.2.3$ * La phase géométrique sur \mathbb{PC}^n				

Annexe		36
Annexe	A — * Variété différentielle complexe	36
Annexe	B — * Dérivée extérieure de la connexion	37
Annexe	C — Géodésique de P \mathbb{C}^n	3
C.1.	Métrique relevée dans les espaces horizontaux	37
C.2.	Ecriture des géodésiques	38

- * : PARTIELLEMENT TERMINÉE
- * : AU STADE DE NOTE

Tout les textes en rouges sont des notes

Introduction

La phase géométrique fait partie de ces concepts qui apparaissent régulièrement en physique, mais qui nécessite beaucoup de contexte pour être mis en évidence. Pour l'introduire rapidement, la phase géométrique à l'instant t d'un signal multivarié complexe (i.e. à valeurs dans \mathbb{C}^n) \boldsymbol{x} est donné par :

$$\Phi_{\text{geo}}(\boldsymbol{x}, t_0, t) = \arg \left\langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \right\rangle - \Im m \int_{t_0}^t \frac{\left\langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \right\rangle}{\|\boldsymbol{x}(s)\|^2} ds$$

Ce qui rend cette phase si intéressante c'est qu'elle est invariante par transformation de jauge, c'est-à-dire invariante par toute transformation du type :

$$\boldsymbol{x}(t) \rightsquigarrow \psi'(t) = e^{i\alpha(t)}\boldsymbol{x}(t)$$

Elle est également invariante par reparamétrisation et pour ces raisons, c'est une mesure qui est intrinsèquement liée à la trajectoire du signal dans l'espace, à sa géométrie.

La phase géométrique est un phénomène qui apparaît dans de nombreuses circonstances, en fonction desquelles elle peut changer de nom et de forme : phase Pancharatnam, de Berry, d'Aharonov-Anandan, d'Aharonov-Bohm, angle de Hannay, etc.

L'article [5] de Cohen et al. en présente quelques unes et le livre "Geometric Phases in Classical and Quantum Mechanics" [4] de Chruściński & Jamiołkowski en fait une description plus qu'extensive.

Du point de vue du traitement du signal en revanche, rien n'a été fait et ce n'est que récemment que Le Bihan, Flamant & Amblard s'y sont intéressés [12, 13]. L'objectif de ce mémoire est donc de décrire la phase géométrique dans le cadre du traitement du signal et de discuter de ses applications :

- Dans un premier temps (partie I), cette phase sera mise en évidence à travers des concepts d'analyse temps-fréquence, notamment la notion de fréquence instantanée qui sera présente tout au long de l'écrit. Suite à quoi elle sera explicitement calculée dans une cas particulier de signaux, déjà étudié par Le Bihan et al. [13]: les signaux AM-FM-PM. Cela permettra de mieux comprendre son comportement et permettra de motiver une description des signaux multivariés complexes dans l'esprit de l'analyse temps-fréquence.
- Cela mènera à travailler dans une variété dite fibrée principale, $S^{2n-1}(U(1), \mathbb{PC}^{n-1})$, et la seconde partie de ce mémoire sera dédiée à son formalisme. Contrairement à l'état de l'art, les résultats seront présenté d'un point de vue de mathématicien plus que de physicien et, entre autre, l'accent sera mis sur l'intuition géométrique derrière les concepts abordés. Des résultats, connus par ailleurs, sur la phase géométrique seront redémontrés avec ce formalisme et avec, les notions de fréquences instantanées et de phase géométrique seront reformulée et réinterprétée.
- Enfin, dans une troisième partie, sera présenté un moyen de calculer la phase géométrique en pratique via l'invariant de Bargmann, tiré de [20] et déjà repris par Le Bihan et al. [13]. Seront ensuite discutées diverses applications et là ça dépend d'à quel point j'ai le temps.

* Préambule

Généralités :

- Les références sont en fin de mémoire est en .bib sur le GitHub
- Idem pour les codes et un mot sur pygeomphase
- On va parler de géo diff et pour éviter de réécrire un livre, on va admettre beaucoup de résultats, on renvoi vers [11, 7] pour les bases et [18, 19, 1] pour toute ce qui est variété fibrée principales et variétés complexes.

Notations math:

- Convention sur le produit hermitien (congué à droite)
- les vecteurs seront le plus souvent en gras, leur dérivée en temps notée par un point (ex. : $\dot{\boldsymbol{x}}(t)$) et celle des scalaires seront noté par un prime (ex. : a'(t))

Introduction de la Phase Géométrique

En traitement du signal, la phase d'un signal est intrinsèquement liée à la notion de fréquence instantanée, qui joue un rôle important en analyse temps-fréquence. C'est donc de ce point que commencera notre discussion pour introduire la phase géométrique. Pour cela, seront rapidement introduites quelques notions et résultats d'analyse temps-fréquence dans le cas univarié (sec. 1.1). Suite à quoi, une notion de phase instantanée sera proposée dans le cas multivarié (sec. 1.2), ce qui permettre, enfin, de mettre en évidence la phase géométrique (sec. 1.3).

Dans une seconde partie, seront introduits les signaux bivariés dits AM-FM-PM, dont la phase géométrique sera calculée explicitement (sec. 2.1), ce qui permettra de mettre en évidence certaines de ses propriétés (sec. 2.2). Dans une dernière section, seront proposées des généralisations des signaux AM-FM-PM au delà du cas bivarié (sec. 2.3), ce qui mènera au formalisme de la partie II suivante.

I — Introduction de la phase géométrique

1.1 Cas univarié : signaux AM-FM

En traitement du signal, l'analyse fréquentielle par la transformée de Fourier est un incontournable. Seulement, cette transformation fait perdre toute notion temporelle : si l'étude du spectre du signal permet de dire quelles fréquences apparaissent dans le signal, elle ne permet pas de dire à quel(s) moment(s). C'est en réponse à cela, entre autre, que fut développée l'analyse temps-fréquence et, à cette fin, sont définis les paramètres instantanées d'un signal :

DÉFINITION 1 (PARAMÈTRES INSTANTANÉS) — Soit x, est un signal complexe écrit sous forme exponentielle :

$$x: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ x: & & \text{où} & a(t) \in \mathbb{R}^+ & \text{et} & \phi(t) \in \mathbb{R} \end{array}$$
 (1.1)

a est appelé amplitude instantanée du signal, $1/2\pi\phi'$ sa fréquence instantanée et sa phase instantanée est définie — modulo un choix de phase initiale — par :

$$\Phi_{\text{inst}}(x, t_0, t) = \phi(t) - \phi(t_0) \tag{1.2}$$

Pour les signaux réels, ces notions sont moins évidentes à définir puisqu'elles demandent d'écrire les signaux sous la forme :

$$x(t) = a(t)\cos\phi(t)$$

Auquel cas, le choix de la pair (a, ϕ) n'est pas unique. Il existe tout de même un "bon" choix dans le cas des

signaux AM-FM:

DÉFINITION 2 (SIGNAL AM-FM) — Un signal réel de la forme :

$$x: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & a(t)\cos\phi(t) \end{array}$$
 où $a(t) \in \mathbb{R}^+$ (1.3)

est dit AM-FM (amplitude and frequency modulated) si a et $\cos \phi$ admettent des transformée de Fourier et si, de plus, la première a un spectre concentré sur les bases fréquences, la seconde concentré sur les hautes fréquences et que les deux ne se chevauche pas. Formellement, ces conditions demande qu'il existe $\lambda \in \mathbb{R}^+$ telle que :

$$\operatorname{supp} \mathcal{F}[a] \subset [-\lambda, \lambda], \quad \operatorname{supp} \mathcal{F}[\cos \phi] \subset \mathbb{R} \setminus [-\lambda, \lambda]$$
(1.4)

Dans ce cas, a et ϕ donne lieu au même vocabulaire que pour le cas complexe (définition 1).

Ces conditions sont liées au théorème de Bedrosian, et plus de détails se trouvent dans l'annexe A. Pour le dire rapidement, exiger que toutes les hautes fréquences de x se trouvent dans la phase traduit l'idée que l'amplitude doit moduler la phase, et non l'inverse. Une autre façon de le dire est que cela évite que toutes les fréquences puissent se trouver dans l'amplitude a, auquel cas, x n'aurait "pas de fréquence" au sens où ϕ pourrait être choisie constante, voir nulle.

Sous ces conditions, x peut être vu comme le signal complexe $\mathcal{A}[x]$ telle que :

$$\forall t \in \mathbb{R}, \qquad \mathcal{A}[x](t) = a(t)e^{i\phi(t)} = a(t)\cos\phi(t) + ia(t)\sin\phi(t) \tag{1.5}$$

Ce signal $\mathcal{A}[x]$ est appelé transformée en signal analytique de x et a, par construction, les mêmes paramètres instantanée que x. Là encore, le lecteur est renvoyé vers l'annexe A pour plus de détails ou bien dans le livre de Cohen [6].

L'intérêt d'introduire toutes ces notions est que les signaux multivariés — même complexe — souffrent du même problème que les signaux réels. En effet, en écrivant un signal x sous la forme :

$$orall t \in \mathbb{R}, \qquad oldsymbol{x}(t) = egin{pmatrix} A_1(t)e^{i\phi_1(t)} \\ A_2(t)e^{i\phi_2(t)} \\ \vdots \\ A_n(t)e^{i\phi_n(t)} \end{pmatrix}$$

le fait que x soit à valeur dans \mathbb{C}^n impose un choix naturel d'amplitude instantanée : sa norme. Pour ce qui est de la phase instantanée, en revanche, n'importe qu'elle choix de ϕ convient a priori. En écrivant :

$$\forall t \in \mathbb{R}, \qquad \boldsymbol{x}(t) = \begin{pmatrix} A_{1}(t)e^{i\phi_{1}(t)} \\ A_{2}(t)e^{i\phi_{2}(t)} \\ \vdots \\ A_{n}(t)e^{i\phi_{n}(t)} \end{pmatrix} = a(t)e^{i\phi(t)} \begin{pmatrix} a_{1}(t)e^{i\psi_{1}(t)} \\ a_{2}(t)e^{i\psi_{2}(t)} \\ \vdots \\ a_{n}(t)e^{i\psi_{n}(t)} \end{pmatrix} \quad \text{avec} \quad \begin{cases} a(t) = \|\boldsymbol{x}(t)\|_{2} \\ \|(a_{i})_{1 \leqslant i \leqslant n}\|_{2} = 1 \\ \phi_{i} = \phi + \psi_{i} \end{cases}$$

il suffit que les ψ_i soient ajustés pour assurer que $\phi_i = \phi + \psi_i$.

Si a et ϕ correspondent respectivement à une amplitude et une phase, le vecteur restant $(a_i e^{\phi_i})_{1 \leq i \leq n}$ correspond à un état de polarisation, sur lequel nous reviendrons dans la section II suivante.

1.2 Phase et fréquence instantanée de signal multivarié

On se propose ici de définir la phase instantanée comme suit :

DÉFINITION 3 (PHASE DYNAMIQUE/INSTANTANÉE) — La phase instantanée ou dynamique (à l'instant t partant de t_0) d'un signal multivarié $\boldsymbol{x} = a \left(a_i e^{i\phi_i} \right)_{1 \leqslant i \leqslant n} \in \mathscr{C}^1(\mathbb{R}, \mathbb{C}^n)$, est donnée par la formule :

$$\forall t_0, t \in \mathbb{R}, \quad \Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) := \int_{t_0}^t \frac{\Im m \langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds = \sum_{i=1}^n \int_{t_0}^t a_i(s)^2 \phi_i'(s) ds$$
 (1.6)

L'on s'autorisera à omettre les paramètres de $\Phi_{\rm dyn}$ lorsque cela ne prête pas à confusion.

Cette définition est motivée par deux arguments :

Argument variationnel

Le premier, fortement inspiré par les travaux de Lilly & Olhede [16], consiste à généraliser la condition (1.4) de séparation haute/basse fréquences sur les signaux AM-FM. Pour cela, l'on commence par faire apparaître une phase ϕ — pour l'instant inconnue — en écrivant \boldsymbol{x} sous la forme :

$$\forall t \in \mathbb{R}, \qquad \boldsymbol{x}(t) = e^{i\phi(t)}e^{-i\phi(t)}\boldsymbol{x}(t) := e^{i\phi(t)}\boldsymbol{y}(t)$$

Si ϕ est bien choisie, alors \boldsymbol{y} ne devrait contenir que les informations associées à l'amplitude et à la polarisation de \boldsymbol{x} . Or, conformément à la condition (1.4), la phase doit contenir les hautes fréquences du signal et, inversement, les basses fréquences doivent se trouver dans le reste.

La fréquence donnant, pour le dire vite, la vitesse d'ondulation, la contrainte sur x va être de limite les variations de y. Concrètement, ϕ doit être choisie de sorte à minimiser la dérivée \dot{y} :

$$\forall t \in \mathbb{R}, \qquad \phi(t) = \underset{\theta(t)}{\operatorname{argmin}} \left\| \dot{\boldsymbol{y}}(t) \right\|_2^{-2} = \underset{\theta(t)}{\operatorname{argmin}} \left\| e^{-i\theta(t)} \left(\dot{\boldsymbol{x}}(t) - i\theta'(t) \boldsymbol{x}(t) \right) \right\|_2^{-2} = \underset{\theta(t)}{\operatorname{argmin}} \left\| \dot{\boldsymbol{x}}(t) - i\theta'(t) \boldsymbol{x}(t) \right\|_2^{-2}$$

La contrainte ne dépendant que de la dérivée θ' , on se ramène à :

$$\min_{\theta(t)} \|\dot{\boldsymbol{y}}(t)\|_2^2 = \min_{\theta'(t)} \|\dot{\boldsymbol{x}}(t) - \theta'(t)\boldsymbol{x}(t)\|_2^2$$

En rappelant que $\frac{d}{dx} \|f(x)\|_2^2 = 2\Re e \langle f(x), f'(x) \rangle$, il vient que ce minimum¹ est atteint par $\phi'(t)$ à condition que :

$$\begin{split} \frac{d}{d\phi'} \left\| \dot{\boldsymbol{x}} - i\phi' \boldsymbol{x} \right\|_2^2 &= 0 \quad \Longleftrightarrow \quad 0 = 2\Re e \left\langle \dot{\boldsymbol{x}} - i\phi' \boldsymbol{x}, \frac{d}{d\phi'} \left(\dot{\boldsymbol{x}} - i\phi' \boldsymbol{x} \right) \right\rangle \\ &= 2\Re e \left\langle \dot{\boldsymbol{x}} - i\phi' \boldsymbol{x}, -i\boldsymbol{x} \right\rangle \\ &= 2\Re e \left(i\langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle \right) + 2\phi' \Re e \langle \boldsymbol{x}, \boldsymbol{x} \rangle \\ &= -2\Im \left\langle \dot{\boldsymbol{x}}, \boldsymbol{x} \right\rangle + 2\phi' \|\boldsymbol{x}\|_2^2 \end{split}$$

Ainsi $\phi' = \frac{\Im m \langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle}{\|\boldsymbol{x}\|_2^2}$ et:

$$\phi(t) = \Im m \int_{t_0}^{t} \frac{\langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds = \Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t)$$
(1.7)

Arguments des moyennes

Le second argument, cette fois inspiré de [3], se base sur la notion de fréquence moyenne. D'abord dans le cas d'un signal complexe univarié, sont définies les fonctions de densités d'énergie (resp. d'énergie spectrale) comme :

$$\rho : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ t & \longmapsto |x(t)|^2 \end{array} \qquad \text{resp.} \qquad \varrho : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ \nu & \longmapsto |\hat{x}(\nu)|^2 \end{array} \qquad (1.8)$$

¹ L'extremum obtenu est l'unique minimum globale puisque $t \longmapsto ||at+b||^2$ est strictement convexe pour $a \neq 0$.

À partir de ces dernières est définie la fréquence moyenne de x comme comme l'espérance $\mathbb{E}_{\varrho}[\nu]$ de ϱ . Cette fréquence moyenne est liée à la fréquence instantanée par la formule²:

$$\mathbb{E}_{\varrho}\left[\nu\right] = \frac{1}{2\pi} \int_{\mathbb{R}} \phi'(t)\rho(t)dt = \frac{1}{2\pi} \mathbb{E}_{\rho}\left[\phi'\right] \tag{1.9}$$

Dans le cas d'un signal $\mathbf{x} = (x_i)_{1 \leq i \leq n}$ multivarié, les densités d'énergies se définissent comme :

$$\rho_{i} : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^{+} & & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\ t & \longmapsto & \left| x_{i}(t) \right|^{2} = a(t)^{2} a_{i}(t)^{2} & & \varrho_{i} : \\ & \mathbb{R} & \longrightarrow & \left| \hat{x}_{i}(\nu) \right|^{2} & & \\ \mathbb{R} & \longrightarrow & \mathbb{R}^{+} & & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\ \rho : & t & \longmapsto & \left\| \boldsymbol{x}(t) \right\|^{2} = \sum_{i=1}^{n} \rho_{i}(t) & & \varrho : \\ & \nu & \longmapsto & \left\| \hat{\boldsymbol{x}}(\nu) \right\|^{2} = \sum_{i=1}^{n} \varrho_{i}(t) \end{array}$$

Le second argument consiste alors à dire que l'égalité des moyennes (1.9) doit rester valable dans le cas multivarié. Cela assure, a minima, que la fréquence instantanée de x, $1/2\pi\phi'$, à pour moyenne $\mathbb{E}_{\varrho}[\nu]$.

En appliquant la formule (1.9) au ϱ_i , et en notant toujours $\boldsymbol{x} = a \left(a_i e^{i\phi_i} \right)_{1 \leqslant i \leqslant n}$, on obtient :

$$\mathbb{E}_{\varrho} \left[\nu \right] = \int_{\mathbb{R}} \nu \varrho(\nu) d\nu = \int_{\mathbb{R}} \nu \sum_{i=1}^{n} \varrho_{i}(\nu) d\nu$$

$$= \sum_{i=1}^{n} \mathbb{E}_{\varrho_{i}} \left[\nu \right]$$

$$= \sum_{i=1}^{n} \frac{1}{2\pi} \int_{\mathbb{R}} \phi'_{i}(t) \rho_{i}(t) dt$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} a(t)^{2} \sum_{i=1}^{n} \phi'_{i}(t) a_{i}(t)^{2} dt$$

$$= \frac{1}{2\pi} \mathbb{E}_{\varrho} \left[\sum_{i=1}^{n} \phi'_{i} a_{i}^{2} \right]$$

Ce qui mène à poser $\sum_{i=1}^{n} \phi_i'(t) a_i^2(t)$ pour la fréquence instantanée, avec la phase associée :

$$\phi = \int_{t_0}^t \sum_{i=1}^n \phi_i'(s) a_i(s)^2 ds = \sum_{i=1}^n \int_{t_0}^t \phi_i'(s) a_i(s)^2 ds$$
 (1.10)

Formule qui concorde bien avec celle de la phase dynamique une fois explicitée :

$$\Im m \frac{\langle \dot{\boldsymbol{x}}(t), \boldsymbol{x}(t) \rangle}{\|\boldsymbol{x}(t)\|^{2}} = \Im m \left(\frac{1}{a(t)^{2}} \sum_{i=1}^{n} \left(\left(aa_{i} \right)'(t) + a(t)a_{i}(t)i\phi_{i}'(t) \right) e^{i\phi_{i}(t)} \overline{a(t)a_{i}(t)e^{i\phi_{i}(t)}} \right)$$

$$= \frac{1}{a(t)^{2}} \Im m \left(\sum_{i=1}^{n} a(t)a_{i}(t) \left(aa_{i} \right)'(t) + ia(t)^{2}a_{i}(t)^{2}\phi_{i}'(t) \right)$$

$$= \frac{1}{a(t)^{2}} \sum_{i=1}^{n} a(t)^{2}a_{i}(t)^{2}\phi_{i}'(t)$$

$$= \sum_{i=1}^{n} a_{i}(t)^{2}\phi_{i}'(t)$$

² Cette formule de généralise à tout les moments de ϱ et existe également pour les moments de ρ , voir [6, sec. 1.4] pour une démonstration "à la physicienne"

D'où

$$\Im m \int_{t_0}^t \frac{\langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds = \int_{t_0}^t \sum_{i=1}^n a_i(s)^2 \phi_i'(s) = \sum_{i=1}^n \int_{t_0}^t a_i(s)^2 \phi_i'(s) ds$$

1.3 Apparition de la phase géométrique

Cela étant dit, il existe une autre façon, plus simple, d'obtenir la phase d'un signal. D'abord, dans le cas univarié, la phase instantanée de $x=ae^{i\phi}$ peut être réécrite comme :

$$\phi(t) - \phi(t_0) = \arg\left(x(t)\overline{x(t_0)}\right)$$

Formule qui se généralise en cas multivarié par ce qui sera appelé la phase totale du signal :

$$\Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) := \arg \langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle \tag{1.11}$$

D'un point de vu géométrique, il est bien connue que le produit scalaire entre deux vecteurs réels $u, v \in \mathbb{R}^n$ est lié à l'angle $\angle(u, v)$ entre ces derniers par la formule :

$$\langle u, v \rangle_{\mathbb{R}} = ||u||^2 ||v||^2 \cos \angle (v, u)$$

Pour le produit hermitien, cet angle ce retrouve dans l'argument, de sorte que si u et v sont complexes :

$$\langle u, v \rangle_{\mathbb{C}} = ||u||^2 ||v||^2 e^{i \angle (v, u)}$$

En ce sens, la phase totale calcule explicitement l'angle entre $x(t_0)$ et x(t) et il est montré, dans le cas en univarié, qu'elle est égale à la phase dynamique. En effet, pour $x = ae^{i\phi}$:

$$\Phi_{\text{dyn}}(\boldsymbol{x}) = \Im m \int_{t_0}^t \frac{\langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \rangle}{\|\boldsymbol{x}(s)\|^2} ds = \Im m \int_{t_0}^t \frac{(a'(s) + ia(s)\phi'(s))e^{i\phi(s)}\overline{a(s)e^{i\phi(s)}}}{a^2(s)} ds$$
$$= \int_{t_0}^t \frac{a^2(s)\phi'(s)}{a^2(s)} ds$$
$$= \phi(t) - \phi(t_0) = \Phi_{\text{tot}}(\boldsymbol{x})$$

Dans le cas multivarié, en revanche, c'est une autre histoire. En notant cette fois le signal $x = ae^{i\Phi_{\rm dyn}}(a_ie^{\psi_i})_{1\leqslant i\leqslant n}$, la phase totale se réécrit :

$$\Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) = \arg \left(a(t) a(t_0) e^{i \left(\Phi_{\text{dyn}}(t) - \Phi_{\text{dyn}}(t_0) \right)} \sum_{i=1}^{n} a_i(t) a_i(t_0) e^{i \left(\psi_i(t) - \psi_i(t_0) \right)} \right) \\
= \Phi_{\text{dyn}}(t) + \arg \left(\sum_{i=1}^{n} a_i(t) a_i(t_0) e^{i \left(\psi_i(t) - \psi_i(t_0) \right)} \right) \qquad \text{car } \Phi_{\text{dyn}}(t_0, t_0) = 0$$
(1.12)

Apparaît alors un terme de déviation de la phase dynamique par rapport à la phase totale, appelé (surprise) phase géomatique et noté :

$$\Phi_{\text{geo}}(\boldsymbol{x}, t_0, t) := \Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) - \Phi_{\text{dvn}}(\boldsymbol{x}, t_0, t)$$
(1.13)

Cette déviation s'observe expérimentalement, comme le montre la figure 1.1 ci-dessous.

Comme mentionné en introduction, un résultat bien connu en physique [2, 17, 4] est que cette troisième phase est invariante par transformation de jauge et par reparamétrisation. Dans notre contexte, cela signifie d'une part que si \boldsymbol{x} et $\tilde{\boldsymbol{x}}$ sont deux signaux multivariés complexes tels que $\tilde{\boldsymbol{x}} = e^{i\alpha}\boldsymbol{x}$, avec α une fonction dérivable du temps, alors :

$$\Phi_{\mathrm{geo}}(\tilde{\boldsymbol{x}}) = \Phi_{\mathrm{tot}}(\tilde{\boldsymbol{x}}) - \Phi_{\mathrm{dyn}}(\tilde{\boldsymbol{x}}) = \Phi_{\mathrm{tot}}(\boldsymbol{x}) - \Phi_{\mathrm{dyn}}(\boldsymbol{x}) = \Phi_{\mathrm{geo}}(\boldsymbol{x})$$

fig. 1.1 — Sur le graphe de gauche, le signal x est à valeurs dans \mathbb{R}^2 et dans celui de droite le calcul des phases dynamique et totale ainsi que de leur différence.

Et d'autre part que, pour tout difféomorphisme γ de \mathbb{R} telle que :

$$\boldsymbol{x} \circ \gamma(s_0) = t_0$$
 $\boldsymbol{x} \circ \gamma(s) = t$

alors on a:

$$\Phi_{\text{geo}}(\boldsymbol{x} \circ \gamma, s_0, s) = \Phi_{\text{geo}}(\boldsymbol{x}, t_0, t)$$

D'un point de vue signal, cette invariance par transformation de jauge indique que Φ_{geo} serait lié à une notion de polarisation du signal, chose que nous allons à présent mettre en évidence.

II — Première étude : cas des signaux AM-FM-PM

Pour une première étude de la phase géométrique du signal, Le Bihan et al. se sont penchés sur un cas particulier de signal bivarié [9, 12, 13]. Ces signaux, AM-FM-PM, sont présentés dans une première partie avec le calcul explicite de leur phases — totale, dynamique et géométrique. Puis, sera introduite la sphère de Poincaré, sur laquelle, $\Phi_{\rm geo}$ pourra être interprétée. Cela mènera à proposer un modèle pour décrire les signaux multivariés complexes (modèle très largement inspiré par ce qui à déjà été fait dans l'étude de la phase géométrique).

2.1 Définitions et calcul des phases

Ces signaux AM-FM-PM viennent généraliser les signaux AM-FM univarié en tenant compte de l'état de polarisation permis par l'accès à une seconde dimension. En quelques mots, dans le cas le plus simple, un signal bivarié à valeurs réelles s va décrire une ellipse en cours du temps. On parle de polarisation elliptique et s va s'écrire :

$$s(t) = a \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \chi \cos \varphi(t) \\ \sin \chi \sin \varphi(t) \end{pmatrix} \qquad \text{où} \quad a \in \mathbb{R}^+, \ \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right], \ \chi \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

Les paramètres a et χ caractérisent respectivement la taille et l'excentricité de l'ellipse, θ son orientation dans le plan et $\varphi(t)$ précise où se trouve s à l'instant t sur cette ellipse. Le tout est représenté sur la figure 1.2 ci-dessous :

fig. 1.2 — Ellipse de polarisation du signal s sur laquelle sont représenter ses paramètres a, φ, θ, χ .

En autorisant les paramètres de polarisation à varier au cours du temps et après une transformation en signal analytique, mentionnée dans la section 1.1, on obtient la définition suivante :

DÉFINITION 4 (SIGNAL AM-FM-PM) — Un signal bivarié complexe \boldsymbol{x} AM-FM-PM (amplitude, frequency and polarization modulated) est caractérisé par quatre paramètres a, φ, θ et χ , respectivement à valeurs dans \mathbb{R}^+ , \mathbb{R} , $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, vérifiant :

$$\left|\varphi'(t)\right| \gg \left|\theta'(t)\right|, \left|\chi'(t)\right|, \left|\frac{a'(t)}{a(t)}\right| \qquad \left|\frac{\varphi'(t)}{\varphi(t)}\right| \gg 1$$
 (1.14)

Auquel cas, \boldsymbol{x} prend la forme, $\forall t \in \mathbb{R}$:

$$\boldsymbol{x}(t) = a(t)e^{i\varphi(t)}R_{\theta(t)}\begin{pmatrix} \cos\chi(t) \\ -i\sin\chi(t) \end{pmatrix} = a(t)e^{i\varphi(t)}\begin{pmatrix} \cos\theta(t)\cos\chi(t) + i\sin\theta(t)\sin\chi(t) \\ \sin\theta(t)\cos\chi(t) - i\cos\theta(t)\sin\chi(t) \end{pmatrix}$$
(1.15)

où $R_{\theta(t)}$ est la matrice de rotation d'angle $\theta(t)$. Voir [8, ann. 4.B] pour une construction détaillé.

La transformation en signal à valeurs complexes est nécessaire³ pour étudier la phase géométrique car c'est uniquement dans le cadre complexe qu'elle a été étudiée jusqu'à présent. Et, comme pour les signaux AM-FM, les hypothèses sur a, φ, θ, χ assure que les paramètres soient interprétables suivant la figure 1.2 précédente.

Les trois phases de tels signaux sont données par la proposition 1 suivante :

PROPOSITION 1 (PHASES DE SIGNAL AM-FM-PM) — Les trois phases d'un signal bivarié AM-FM-PM \boldsymbol{x} de paramètres $(a, \varphi, \theta, \chi)$ sont données par les formules :

$$\Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) = \varphi(t) - \varphi(t_0) + \arg\left(\cos \Delta\theta \cos \Delta\chi + i \sin \Delta\theta \sin\left(\chi(t_0) + \chi(t)\right)\right)$$
(1.16)

$$\Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t) = \varphi(t) - \varphi(t_0) + \int_{t_0}^t \theta'(s) \sin 2\chi(s) ds$$
(1.17)

³Nous reviendrons sur ce point dans la dernière partie du mémoire (.. si je trouve le temps et des choses à en dire)

$$\Phi_{\text{geo}}(\boldsymbol{x}, t_0, t) = \Phi_{\text{tot}}(\boldsymbol{x}, t_0, t) - \Phi_{\text{dyn}}(\boldsymbol{x}, t_0, t)
= \arg\left(\cos \Delta\theta \cos \Delta\chi + i \sin \Delta\theta \sin\left(\chi(t_0) + \chi(t)\right)\right) - \int_{t_0}^{t} \theta'(s) \sin 2\chi(s) ds$$
(1.18)

où $\Delta y = y(t) - y(t_0)$ pour $y = \chi, \theta$. La démonstration se trouve en annexe B.

fig. 1.3 — Evolution de la phase géométrique d'un signal AM-FM-PM généré. En gris la phase géométrique du signal calculé via l'invariant de Bargmann. Les deux autres sont calculées avec la formule eq. (1.18), en bleu en utilisant de l'argument pour la phase totale et en orange en utilisant atan2.

Deux remarques sur ces formules. La première est que la phase géométrique ne dépend que des paramètres de polarisations θ et χ , ce qui reflète son invariance par transformation de jauge. La seconde, nettement plus troublante, est que φ ne s'interprète ni comme phase totale ni comme phase dynamique. Pour que ce soit le cas, il faut qu'à l'instant t, x retrouve la même polarisation instantanée qu'à l'instant t_0 , auquel cas :

$$(\chi(t), \theta(t)) = (\chi(t_0), \theta(t_0)) \implies \Phi_{\text{tot}}(\boldsymbol{x}) = \varphi(t) - \varphi(t)$$

$$\implies \Phi_{\text{geo}}(\boldsymbol{x}) = -\int_{t_0}^t \theta'(s) \sin 2\chi(s) ds$$
(1.19)

Même dans ce cas, il est utile de d'avoir une représentation de x qui soit indépendante de sa phase pour interpréter cette formule (1.19).

2.2 Interprétation sur la sphère de Poincaré

Dans l'étude de la phase géométrique, il est standard de s'intéresser à la matrice de covariance 4:

$$\forall t \in \mathbb{R}, \quad \rho_{\boldsymbol{x}}(t) = \frac{1}{\|\boldsymbol{x}(t)\|^2} \overline{\boldsymbol{x}(t)} \,^t \boldsymbol{x}(t)$$
(1.20)

Outre son utilité en traitement du signal, elle présente l'avantage d'être invariante par transformation de de jauge (i.e. $\rho_{e^{i\alpha}x} = \rho_x$). Dans le cas des AM-FM-PM, Le Bihan et al. ont montré qu'elle se décompose dans la base de Pauli comme :

$$\rho_{x} = \frac{1}{2} \left(id + \sin(2\theta)\cos(2\chi)\sigma_{1} + \sin(2\chi)\sigma_{2} + \cos(2\theta)\cos(2\chi)\sigma_{3} \right)$$
(1.21)

 $^{^4}$ La conjugaison ici est à gauche pour simplifier l'interprétation de ρ dans la figure 1.4

où les σ_i s'écrivent :

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Dans cette décomposition, la composante en id est indépendante de \boldsymbol{x} et peut donc être ignorée (idem pour le facteur $^{1}/_{2}$). Cela ne laisse qu'un vecteur (normé) de dimension 3 dont 2θ et 2χ correspondent aux coordonnées polaire conformément à la figure 1.4 cicontre.

La sphère alors obtenue, plus connue sous le nom de sphère de Poincaré, représente l'ensemble des états de polarisation possibles pour un signal :

À l'équateur, la polarisation est linéaire et θ pilote son orientation et plus ρ_x se rapproche des pôles, plus cette polarisation devient elliptique, jusqu'à devenir complètement circulaire, auquel cas θ devient insignifiant. Aussi, suivant le schéma ??, l'hémisphère nord (resp. sud) correspond à des polarisations elliptiques anti-horaire (resp. horaire).

Le fait que ce soit deux fois les angles qui sont représentés tient naturellement compte des potentielles redondances dans les (θ, χ) . Par exemple si \boldsymbol{x} à pour paramètre de polarisation instantanée (θ_0, χ_0) , alors par symétrie de l'ellipse, $(\theta_0 + \pi, \chi_0)$

fig. 1.4 — Sphère de Poincaré, REVOIR LES AXES ET ANGLES

est aussi une représentation valide. Autre exemple, si $\chi_0 = \pi/4$, alors la polarisation est circulaire et indépendant de θ_0 .

Dans les deux cas, la représentation dans la sphère de Poincaré évite ces problèmes puisque, dans le premier cas $(2\theta_0, 2\chi_0)$ et $(2\theta_0 + 2\pi, 2\chi_0)$ représente le même point, et dans le second, le point associé à $2\chi_0 = \pi/2$ (pôle nord) est indépendant du choix de θ_0 .

fig. 1.5 — Représentation des paramètres de polarisation instantanée associés à chaque point de la sphère de Poincaré.

Pour interpréter la formule (1.19) de la phase géométrique prenons un exemple. Si χ et θ sont telle que :

$$\theta(t_0) = 0$$

$$\theta(t) = 2\pi$$

$$\chi(s) = \chi_0$$

Alors ρ_x décrit un chemin horizontal sur la sphère, $\rho_x(t_0) = \rho_x(t)$ et sa phase géométrique s'écrit⁵:

$$\Phi_{\text{geo}}(\boldsymbol{x}, t_0, t) = -\int_{t_0}^{t} \theta'(s) \sin 2\chi(s) ds = -\sin 2\chi_0 \int_{t_0}^{t} \theta'(s) ds$$
$$= -\sin 2\chi_0 \left(\theta(t) - \theta(t_0)\right)$$
$$= -2\pi \sin 2\chi_0$$

Formule qui est égale, à 2π près, à d'aire de la calotte entourée par ρ_x , à savoir :

$$Aire(\chi_0) = 2\pi - 2\pi \sin(2\chi_0)$$

Pour être précis, pour tenir compte du fait que x ait fait une rotation complète, il est plus naturel de prendre comme phase totale :

$$\Phi_{\text{tot}}(\boldsymbol{x}) = \varphi(t) - \varphi(t_0) + 2\pi$$

Auquel cas, la phase géométrique donne exactement l'aire de la calotte. Dans la même logique, si l'état de polarisation subit une rotation de n tours, alors θ va de 0 à $2n\pi$ et :

$$\Phi_{\text{geo}}(\boldsymbol{x}) = 2n\pi - 2n\pi\sin(2\chi_0) = n\mathcal{A}ire(\chi_0)$$

Ainsi, même si $\Phi_{\rm geo}$ est définie modulo 2π , le choix du représentant reste important pour mieux tenir compte de l'évolution de ρ_x au court du temps.

En revanche, l'aire totale de la sphère est de 4π , donc l'aire de toute surface de S^2 peut être vue comme étant définie modulo 4π , ce qui n'est pas cohérent avec la phase géométrique, qui elle l'est à 2π près. Pour résoudre ce problème apparent, il suffit de noter que, tant dit que l'ellipse de polarisation de \boldsymbol{x} à fait un tour complet, $\rho_{\boldsymbol{x}}$ en a effectué deux sur la sphère $(2\theta(t)=4\pi)$. Pour qu'il n'en fasse qu'un, il faut faire varier θ de 0 à π , auquel cas le terme de la phase géométrique hérité de la Φ_{tot} vaut π et :

$$\Phi_{\text{geo}}(\boldsymbol{x}, t_0, t) = \pi - \pi \sin 2\chi_0 = \frac{1}{2} \mathcal{A}ire(\chi_0)$$
(1.22)

Dans ce cas, la phase géométrique s'interprète comme la demi-aire de la surface entourée par ρ_x . Cela n'est, pour l'instant, valable que pour le cas particulier où χ est constant mais il sera montré dans la partie II que cela se généralise très bien.

Cela étant dit, le fait que ρ_x doive faire deux tours pour que (θ, χ) retourne à son état initiale, met en évidence un problème quand à la paramétrisations de l'ellipse de polarisation.

Toujours à χ fixé, si θ se voit ajouter π , alors l'état de polarisation est le même, comme expliqué plutôt : $\rho(\theta + \pi, \chi) = \rho(\theta, \chi)$. En revanche, si l'on s'intéresse à un point particulier de l'ellipse, après une rotation de π , ce même point se retrouvera à l'opposé de là où il était auparavant. En d'autre termes, il a subi une rotation de π mais qui apparaît non plus dans l'état de polarisation $\rho_{\boldsymbol{x}}$ mais dans la phase totale (eq. (1.22)). Sachant que S^2 est une représentation de rotation SO(3) de \mathbb{R}^3 , ce lien entre l'évolution de \boldsymbol{x} est le nombre de rotations de $\rho_{\boldsymbol{x}}$ sur S^2 , n'est pas sans rappeler le fait que SU(2) soit connu pour être un double recouvrement de ce dernier.

2.3 * Généralisation en plus haute dimension

- Différentes écritures du bivarié pour différentes généralisation :
- Les quaterions on passe vites parce que ca se généralise très mal, Lefevre a a parlée, ca mène aux algèbres Clifford : trop de contrainte sur les dimensions des signaux

 $^{^{5}}L$ 'on retrouve dans cette formule le fait que $\Phi_{\rm geo}$ est indépendant de la paramétrisation : le résultat est indépendant des l'évolution de θ sur $]t_0,t[$.

- En terme d'expo de matrice ? Lefevre [14, sec. I.3] l'a fait en trivarié mais au delà, y'a plus vraiment de choix remarquable de base pour $\mathfrak{u}(n)$
- En augmentant la taille de la matrice de rotation ? Lilly [15] l'a fait en trivarié et mais là encore, en terme de généralisation c'est pas si dingue parce que la matrice de rotation est pas calculable.
- Dans tout ça, on ratte le plus important : La phase géo est invariante par transfo de jauge, donc il faut faut faire apparaître $P\mathbb{C}^{n-1}$ dans la décomposition.
- \bullet et en fait, c'est le cas en bivarié car ${\rm P}\mathbb{C}^1 \cong \mathbb{S}^2$!
- $P\mathbb{C}^{n-1}$ oui mais il faut pas non plus regarder que la projection parce qu'on perd toute les phases dans ce cas.
- Le bon compromis c'est les variétés fibrées : on est dans $P\mathbb{C}^{n-1}$ mais on garde les phases dans les fibres.
- D'autant plus que ça à déjà était fait en physique et c'est vraiment concluant... (transition vers la grande partie suivante.)

Au niveau des ensembles, décomposer un signal multivarié complexe en paramètre d'amplitude, phase et polarization instantanée, revient à décomposer \mathbb{C}^n en un produit de trois ensembles. Pour cela, un vecteur de \mathbb{C}^n est vu comme la donné d'une direction, *i.e.* un élément de la sphère unité $S^{2n-1} \subset \mathbb{C}^n$, et d'une norme, de sorte que :

$$\mathbb{C}^n \cong \mathbb{R}^{+_*} \times S^{2n-1}$$

Les éléments de \mathbb{R}^{+*} s'interprète naturellement comme l'amplitude instantanée du signal et pour faire apparaître sa phase, S^{2n-1} est lui-même décomposé de sorte à faire apparaître U(1), donnant :

$$\mathbb{C}^n \cong \mathbb{R}^{+_*} \times \mathrm{U}(1) \times S^{2n-1}/\mathrm{U}(1)$$

Le quotient restant n'est autre que l'espace projectif complexe de dimension (complexe) n-1, noté \mathbb{PC}^{n-1} . Sa construction sera détaillée dans la partie II suivante.

Pour motiver d'autant plus cette décomposition, la projection $\rho: \boldsymbol{x} \longrightarrow \overline{\boldsymbol{x}}^t \boldsymbol{x}/\|\boldsymbol{x}\|^2$, qui s'est avérée fort instructive, peut être vue comme une projection sur l'espace complexe en cela qu'elles sont toutes deux invariantes par transformation de jauge⁶. En particulier, si n=2, $\mathbb{PC}^1 \cong S^2$, soit exactement l'espace de représentation des $\rho_{\boldsymbol{x}}$ dans la section précédente.

⁶ Pour être précis, c'est le premier théorème d'isomorphisme assure $\rho(\mathbb{C}^n) \cong \mathbb{P}\mathbb{C}^{n-1}$ sont en bijection et de même structure.

ANNEXES

Annexe A — Compléments sur l'analyse temps-fréquence

Cette annexe est une adaptation

A.1. * Formalisme derrière la transformée en SA ou le problème de signaux réels et comment le résoudre

D'abord, du point de vue de l'analyse temps-fréquence, les signaux réels sont problématiques car leur spectre sont à symétrie hermitienne et leur densité spectrale symétrique :

$$\begin{array}{lll} \forall t \in \mathbb{R}, \ x(t) \in \mathbb{R} & \Longrightarrow & \forall \nu \in \mathbb{R}, \ \hat{x}(-\nu) = \overline{\hat{x}(\nu)} \\ & \Longrightarrow & \forall \nu \in \mathbb{R}, \ \varrho(-\nu) = \varrho(\nu) \end{array}$$

Comme mentionné plus haut, cela implique que la fréquence moyenne de tout signal réel est nulle (intégrale d'une fonction impaire). Ce qui, en plus de ne pas être très instructif, n'est pas cohérent avec l'interprétation physique qu'on voudrait faire cette moyenne. Par exemple, si ϱ prend la forme ci-dessous (fig. 1.6), alors il serait plus naturelle de demander à ce que la fréquence moyenne se trouve autour de 1,4. De même, la largeur de bande spectrale ne correspond plus à l'étalement de chaque gaussienne, mais plutôt à leur espacement.

fig. 1.6 — Exemple de densité spectrale d'un signal réel ESP A 1,4

Même problème avec la covariance : sachant l'égalité des deux notions de fréquences moyenne (eq. (1.9), ??), on peut définir la covariance temps-fréquence d'un signal x par :

$$Cov(x) := Cov(t, \phi'(t)) = \mathbb{E}_{\rho} [t\phi'(t)] - \mathbb{E}_{\rho} [t] \mathbb{E}_{\rho} [\phi'(t)]$$
$$= \mathbb{E}_{\rho} [t\phi'(t)] - \mathbb{E}_{\rho} [t] \mathbb{E}_{\rho} [\nu]$$

Ce coefficient est sensé mesurer une corrélation entre l'évolution d'un signal au cours du temps avec ses fréquences. S'il est réel, alors Cov(x) sera toujours nulle ; de là à en conclure que la fréquence instantanée de n'importe quel signal (réel) est toujours décorrélée du temps serait, pour le moins, insatisfaisant.

Pour résoudre le problème, une méthode consiste à construire un nouveau signal $\mathcal{A}[x]$ en supprimant les fréquences négatives de x:

$$\mathcal{F}[\mathcal{A}[x]] = 2\mathbb{1}_{\mathbb{R}^+}\hat{x}$$

où $\mathbb{1}_E$ est la fonction indicatrice sur l'ensemble E et où le facteur 2 assure la conservation de l'énergie du signal. Cela mène à la définition :

DÉFINITION 5 (TRANSFORMÉE DE HILBERT ET EN SA) — On appelle transformé de Hilbert de x, l'application :

$$\mathcal{H}[x]: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto \frac{1}{\pi} \int_{\mathbb{R}} \frac{x(s)}{t-s} ds \end{array}$$
 (1.23)

où l'intégrale barré représente la valeur principale de Cauchy (voir ?? pour plus de détail) :

$$\int_{\mathbb{R}} \frac{x(s)}{t-s} ds := \lim_{\varepsilon \to 0^+} \int_{-\infty}^{-\varepsilon} \frac{\varphi(t)}{t} dt + \int_{+\varepsilon}^{+\infty} \frac{\varphi(t)}{t} dt$$

Avec, on définit la transformée en signal analytique (SA) de tout signal x comme l'unique application $\mathcal{A}\left[x\right]$ telle que $\mathcal{F}\left[\mathcal{A}\left[x\right]\right]=2\mathbbm{1}_{\mathbb{R}^{+}}\hat{x}.$ Elle est donnée par la formule :

$$A[x]: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & x(t) + i\mathcal{H}[x](t) \end{array}$$
 (1.24)

Plus généralement, tout signal dont le spectre est à support dans \mathbb{R}^+ sera dit analytique.

Pour mieux comprendre ce que fait la transformation en signal analytique, revenons sur la notion de fréquence instantanée pour les signaux réels.

Interprétabilité de la transformée en SA ou le lien avec le théorème de A.2. Bedrosian

Pour définir l'amplitude et la phase instantanée d'un signaux réel, on par a nouveau du cas le plus simple. Si x est un signal pur, il va s'écrire :

$$x(t) = a\cos(2\pi\nu t + \varphi), \qquad a, \nu, \varphi \in \mathbb{R}$$

Pour généraliser cette écriture, il suffit donc de poser les amplitude et phase instantanée a et ϕ telles que :

$$x(t) = a(t)\cos\left(\phi(t)\right)$$

Contrairement au cas complexe, ici la pair (a, ϕ) n'est pas unique et pour contraindre ce choix, on s'appuie sur la transformée $\mathcal{A}[x]$. Sachant que, dans le cas $x(t) \in \mathbb{R}$, la transformée de Hilbert est à valeur dans \mathbb{R} (intégrale d'une fonction réelle), on a :

$$\mathcal{A}[x](t) = a(t)e^{i\phi(t)} \implies \begin{cases} x(t) = \Re e\mathcal{A}[x] = a(t)\cos\phi(t) \\ \mathcal{H}[x](t) = \Im m\mathcal{A}[x] = a(t)\sin\phi(t) \end{cases}$$

D'où la définition :

Définition 6 (Amplitude et phase instantanée) — L'amplitude instantanée a_x et la phase instantanée ϕ_x de tout signal x réel sont définies comme étant respectivement l'amplitude et la phase

$$a_x = |\mathcal{A}[x]|$$
 $\phi_x = \arg(\mathcal{A}[x])$ (1.25)

 $a_x = \left| \mathcal{A} \left[x \right] \right| \qquad \qquad \phi_x = \arg \left(\mathcal{A} \left[x \right] \right)$ De même, les *impulsion* et *fréquence instantanée* sont données par ϕ_x' et $^1/2\pi\phi_x'$.

Si un signal est présenté sous la forme $x = a \cos \phi$, rien n'implique que a et ϕ correspondent bel et bien à l'amplitude et la phase instantanée. Si ce n'est pas le cas, c'est que cette décomposition n'est "pas la bonne", en cela qu'elles ne s'interprètent pas comme l'on aimerait.

Aussi, quand bien même x peut toujours être écrit comme partie réel de sa transformé en SA, cette écriture

fig. 1.7 — Représentation graphique du signal x (rouge) avec $\nu_1 = 3$ et $\nu_2 = 0.1$. Sur l'image de gauche, avec signaux de fréquences pures (bleu et vert). Sur l'image de droite, avec son amplitude (bleu) et sa phase instantanée (vert). Les discontinuités de la phase sont dû à l'arrondi à 2π près de l'argument de $\mathcal{A}[x_1]$ et à la façon dont il est calculé lorsque le signal s'annule (mise à 0). Voir ici pour un graphique dynamique.

n'est nécessairement toujours satisfaisante. Pour le comprendre, détaillons le cas où x s'écrit comme produit de deux signaux pures (fig. 1.7) :

$$x_1(t) = \cos(2\pi\nu_1 t)\cos(2\pi\nu_2 t)$$

On montre sans mal que si $\nu_1 \geqslant \nu_2$, alors la transformée en SA de x_1 s'écrit :

$$\mathcal{A}\left[x_1\right] = \cos\left(2\pi\nu_2 t\right) e^{2i\pi\nu_1 t}$$

Le signal $\mathcal{A}[x_1]$ n'est ici pas sous forme exponentielle à proprement parler puisque le cosinus peut être négatif (pour s'y ramener, il suffit de passer le cos en valeur absolue et d'ajouter π à l'argument lorsque nécessaire) mais l'avantage de cette forme est qu'elle fait clairement apparaître les fréquences $\nu_{1,2}$. En particulier, la fréquence instantanée du signal est la plus grandes des deux fréquences ν_1 et ν_2 . La plus petite, elle, se retrouve dans l'amplitude.

Ce résultat est rassurant en cela qu'il est plus naturel de voir le cosinus de basse fréquence comme modulant celui de haute fréquence que l'inverse comme on le voit sur la première image de la figure 1.7.

Aussi, en mettant les hautes fréquences du signal dans la fréquence instantanée, on s'assure de limiter les variations de l'amplitude. Cela apporte bien plus de contrainte en terme de décomposition (a_{x_1}, ϕ_{x_1}) , en cela qui si l'inverse étant vrai, alors toute les fréquences pourrait être envoyé dans l'amplitude, ce qui laisserait la phase invariante.

Cela étant dit, lorsque l'on fait varier ν_1 et ν_2 , le résultat n'est pas toujours si intuitif. C'est notamment le cas lorsque les deux deviennent de plus en plus proche :

fig. 1.8 — Idem que pour la figure 1.7 précédente, avec cette fois $\nu_1 = 1.5$ et $\nu_2 = 1.3$.

Pour comprendre pour quoi l'amplitude ne fait pas ce qu'on attendrait d'elle, est introduit le théorème de Bedrosian :

Théorème de Bedrosian (1) — Dans sa formulation la plus générale, le théorème de Bedrosian énonce que si deux fonctions $f, g \in L^2(\mathbb{R})$ sont telles l'une des trois assertions suivantes est vraie :

•
$$\exists \lambda \in \mathbb{R}^+ \mid \operatorname{supp} \hat{f} \subset [-\lambda, +\infty[, \operatorname{supp} \hat{g} \subset [\lambda, +\infty[$$

 $^{^7\}hat{x}_1$ est donné par 4 Diracs, en ne gardant que ce non nul sur \mathbb{R}^+ on obtient le spectre de $\mathcal{A}[x_1]$ et il reste plus qu'à inverser la transformée de Fourier.

- $\exists \lambda \in \mathbb{R}^+ \mid \operatorname{supp} \hat{f} \subset]-\infty, \lambda], \operatorname{supp} \hat{g} \subset]-\infty, -\lambda]$
- $\exists (\lambda_1, \lambda_2) \in \mathbb{R}^+ \times \mathbb{R}^+ \setminus \{(0, 0)\} \mid \operatorname{supp} \hat{f} \subset [-\lambda_1, \lambda_2], \operatorname{supp} \hat{g} \subset \mathbb{R} \setminus [-\lambda_2, \lambda_1]$

alors la transformée de Hilbert de leur produit s'écrit (voir [21] pour une démonstration) :

$$\mathcal{H}\left[fg\right] = f\mathcal{H}\left[g\right] \tag{1.26}$$

Dans le cas d'un signal réel, suivant la définition 6 on peut écrire $x = a_x \cos \phi_x$. Comme a_x et $\cos \phi_x$ sont réelles, seule la troisième condition du théorème de Bedrosian peut être satisfaite pour peu que $\lambda_1 = \lambda_2$. Ainsi :

COROLLAIRE 1.1 — Toujours avec les même notations, si $a_x \in L^2(\mathbb{R})$, $\cos \phi_x \in L^2(\mathbb{R})$ et qu'il existe $\lambda \in \mathbb{R}^{+*}$ tel que :

$$\operatorname{supp} \mathcal{F}[a_x] \subset [-\lambda, \lambda], \quad \operatorname{supp} \mathcal{F}[\cos \phi_x] \subset \mathbb{R} \setminus [-\lambda, \lambda]$$
(1.27)

Alors on a:

$$\mathcal{H}[x] = a_x \mathcal{H}[\cos \phi_x]$$
 et si $a_x(t) \neq 0$, $\mathcal{H}[\cos \phi_x](t) = \sin \phi_x(t)$ (1.28)

Pour interpréter ce corollaire, prenons un autre exemple : $x_2(t) = a(t)\cos(2\pi\nu_0 t)$. Sa transformé de Fourier est donnée par :

$$\hat{x}_2(\nu) = \hat{a}(\nu) * \frac{1}{2} \Big(\delta(\nu - \nu_0) + \delta(\nu + \nu_0) \Big)$$
$$= \frac{1}{2} \Big(\hat{a}(\nu + \nu_0) + \hat{a}(\nu - \nu_0) \Big)$$

Graphiquement, la transformé de Fourier de x_2 duplique le graphe de \hat{a} en $\pm \nu_0$ et somme les deux. La condition (1.27) du corollaire 1.1 demande alors que ν_0 soit choisie de telle sorte que :

$$\operatorname{supp} \mathcal{F}[a] \subset [-\nu_0, \nu_0]$$

C'est-à-dire qu'il n'y ait pas de chevauchement entre les deux courbes $\Gamma_{\pm}: \nu \longmapsto \hat{a}(\nu \mp \nu_0)$ (voir fig. 1.9 ci-dessous). Moralement, cela assure qu'en ne prenant que la partie positive du spectre de x_2 , l'on ne ramène pas avec une partie de $\hat{a}(\nu + \nu_0)$. Quant bien même cette explication est simpliste puisqu'ici ϕ est linaire, on peut voir que le phénomène est finalement très proche de celui d'aliasing.

fig. 1.9 — Sur les deux graphiques sont représentés en vert \hat{a} et en violet \hat{x}_2 . Dans le premier cas l'hypothèse de Bedrosian et respectée mais pas dans le second.

Pour revenir sur l'exemple x_1 précédent, dans la seconde figure 1.8, l'amplitude ne colle plus à l'interprétation que l'on voudrait justement parce que la condition de Bedrosian n'est plus respecter (à savoir $\nu_1 \ge 2\nu_2$).

Annexe B — Calcul des phases

Démonstration de la formule (1.16), proposition 1

Pour la phase totale, on note cette fois $\mathcal{V} = \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix}$ et on a :

$$\langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \rangle = \left\langle a(t)e^{i\varphi(t)}R_{\theta(t)}\mathcal{V}(t), a(t_0)e^{i\varphi(t_0)}R_{\theta(t_0)}\mathcal{V}(t_0) \right\rangle$$
$$= a(t)e^{i\varphi(t)}a(t_0)e^{-i\varphi(t_0)} \left\langle R_{\theta(t)}\mathcal{V}(t), R_{\theta(t_0)}\mathcal{V}(t_0) \right\rangle$$
$$= a(t_0)a(t)e^{i(\varphi(t)-\varphi(t_0))} \left\langle R_{\theta(t)-\theta(t_0)}\mathcal{V}(t), \mathcal{V}(t_0) \right\rangle$$

Pour alléger les notations, on note $\Delta y = y(t) - y(t_0)$, $y_1 = y(t_0)$ et $y_2 = (t)$ pour $y = \varphi, \theta, \chi$. Le produit hermitien à droite s'écrit alors :

$$\left\langle R_{\Delta\theta} \mathcal{V}(t), \mathcal{V}(t_0) \right\rangle = \left(\cos \Delta\theta \cos \chi_2 + i \sin \Delta\theta \sin \chi_2 \right) \sin \Delta\theta \cos \chi_2 - i \cos \Delta\theta \sin \chi_2 \right) \left(\begin{matrix} \cos \chi_1 \\ i \sin \chi_1 \end{matrix} \right)$$

$$= \cos \chi_1 \left(\cos \Delta\theta \cos \chi_2 + i \sin \Delta\theta \sin \chi_2 \right) + i \sin \chi_1 \left(\sin \Delta\theta \cos \chi_2 - i \cos \Delta\theta \sin \chi_2 \right)$$

$$= \cos \Delta\theta \left(\cos \chi_1 \cos \chi_2 + \sin \chi_1 \sin \chi_2 \right) + i \sin \Delta\theta \left(\cos \chi_1 \sin \chi_2 + \sin \chi_1 \cos \chi_2 \right)$$

$$= \cos \Delta\theta \cos \Delta\chi + i \sin \Delta\theta \sin(\chi_1 + \chi_2)$$

D'où la phase totale :

$$\Phi_{\text{tot}}(\boldsymbol{x}) = \arg \left\langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \right\rangle = \arg \left(a(t_0)a(t)e^{i(\varphi(t)-\varphi(t_0))} \left(\cos \Delta \theta \cos \Delta \chi + i \sin \Delta \theta \sin(\chi_1 + \chi_2) \right) \right)$$
$$= \varphi(t) - \varphi(t_0) + \arg \left(\cos \Delta \theta \cos \Delta \chi + i \sin \Delta \theta \sin(\chi_1 + \chi_2) \right)$$

et l'argument restant s'écrit comme une arctangente, donnant :

$$\Phi_{\text{tot}}(\boldsymbol{x}) = \varphi(t) - \varphi(t_0) + \arctan \frac{\sin \Delta \theta \sin(\chi_1 + \chi_2)}{\cos \Delta \theta \cos \Delta \chi}$$
$$= \varphi(t) - \varphi(t_0) + \arctan \left(\tan \Delta \theta \frac{\sin(\chi_1 + \chi_2)}{\cos \Delta \chi}\right)$$
$$= \cdots$$

Démonstration de la formule (1.17), proposition 1

Par souci de lisibilité, on note $\mathcal{U} = R_{\theta} \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix} = \begin{pmatrix} \cos \theta(t) \cos \chi(t) + i \sin \theta(t) \sin \chi(t) \\ \sin \theta(t) \cos \chi(t) - i \cos \theta(t) \sin \chi(t) \end{pmatrix}$, de sorte que la dérivée de $\mathbf{x} = ae^{i\varphi}\mathcal{U}$ s'écrive :

$$\dot{\boldsymbol{x}} = a'e^{i\varphi}\mathcal{U} + ia\varphi'e^{i\varphi}\mathcal{U} + ae^{i\varphi}\theta'\begin{pmatrix} -\sin\theta\cos\chi + i\cos\theta\sin\chi \\ \cos\theta\cos\chi + i\sin\theta\sin\chi \end{pmatrix} + ae^{i\varphi}\chi'\begin{pmatrix} -\cos\theta\sin\chi + i\sin\theta\cos\chi \\ -\sin\theta\sin\chi - i\cos\theta\cos\chi \end{pmatrix}$$

Les vecteurs des deux derniers membres s'expriment en fonction des composantes $U_{1,2}$ de U:

$$\begin{pmatrix} -\sin\theta\cos\chi + i\cos\theta\sin\chi \\ \cos\theta\cos\chi + i\sin\theta\sin\chi \end{pmatrix} = \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix} \qquad \begin{pmatrix} -\cos\theta\sin\chi + i\sin\theta\cos\chi \\ -\sin\theta\sin\chi - i\cos\theta\cos\chi \end{pmatrix} = i\begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}$$

18

Le produit hermitien $\langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle$ s'écrit alors :

$$\begin{split} \langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle &= \left\langle a' e^{i\varphi} \mathcal{U} + ia\varphi' e^{i\varphi} \mathcal{U} + ae^{i\varphi} \theta' \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix} + iae^{i\varphi} \chi' \begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}, ae^{i\varphi} \mathcal{U} \right\rangle \\ &= \left\langle a' \mathcal{U} + ia\varphi' \mathcal{U} + a\theta' \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix} + ia\chi' \begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}, a\mathcal{U} \right\rangle \\ &= aa' \langle \mathcal{U}, \mathcal{U} \rangle + ia^2 \varphi' \langle \mathcal{U}, \mathcal{U} \rangle + a^2 \theta' \left\langle \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix}, \mathcal{U} \right\rangle + ia^2 \chi' \left\langle \begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}, \mathcal{U} \right\rangle \end{split}$$

où les deux derniers produits hermitiens donnent :

$$\left\langle \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix}, \mathcal{U} \right\rangle = -\mathcal{U}_2 \overline{\mathcal{U}}_1 + \mathcal{U}_1 \overline{\mathcal{U}}_2$$

$$= 2i \Im m \left(\mathcal{U}_1 \overline{\mathcal{U}}_2 \right)$$

$$= 2i \Im m \left(\left(\cos \theta \cos \chi + i \sin \theta \sin \chi \right) \left(\sin \theta \cos \chi + i \cos \theta \sin \chi \right) \right)$$

$$= 2i \left(\cos^2 \theta \cos \chi \sin \chi + \sin^2 \theta \sin \chi \cos \chi \right)$$

$$= 2i \cos \chi \sin \chi$$

$$= i \sin 2\chi$$

$$\left\langle \begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}, \mathcal{U} \right\rangle = \overline{\mathcal{U}}_2 \mathcal{U}_1 - \overline{\mathcal{U}}_1 \mathcal{U}_2 = 0$$

D'où, sachant que $\|\boldsymbol{x}\|^2 = a^2$ et $\|\mathcal{U}\| = 1$, la formule :

$$\frac{\Im m \langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle}{\|\boldsymbol{x}\|^2} = \frac{1}{a^2} \Im m \left(aa' \langle \mathcal{U}, \mathcal{U} \rangle + ia^2 \varphi' \langle \mathcal{U}, \mathcal{U} \rangle + ia^2 \theta' \sin 2\chi \right)
= \frac{1}{a^2} \left(a^2 \varphi' \|\mathcal{U}\|^2 + a^2 \theta' \sin 2\chi \right)
= \varphi' + \theta' \sin 2\chi$$

Annexe C — Lien entre Poincaré et Bloch (EN VRAC)

C.1. Lien entre les deux types de signaux

Soit le signal:

$$\boldsymbol{x}_B(\varphi,\theta,\chi) = e^{i\varphi} \begin{pmatrix} \cos\chi/2 \\ e^{i\theta}\sin\chi/2 \end{pmatrix}$$

Pour le réécrire en terme de vecteur AM-FM-PM, il faut faire apparaître une matrice de rotation, matrice qui est diagonalisable dans $\mathbb{C}^{n\times n}$ via la relation :

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} = 2 \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

Cela permet d'écrire :

$$\begin{split} \boldsymbol{x}_{B}(\varphi,\theta,\chi) &= e^{i\varphi} e^{i\theta/2} \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix} \begin{pmatrix} \cos\chi/2 \\ \sin\chi/2 \end{pmatrix} \\ &= \frac{1}{2} e^{i\varphi} e^{i\theta/2} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} \begin{pmatrix} \cos\theta/2 & -\sin\theta/2 \\ \sin\theta/2 & \cos\theta/2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} \cos\chi/2 \\ \sin\chi/2 \end{pmatrix} \\ &= \frac{\sqrt{2}}{2} e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \cos\chi/2 - \sin\chi/2 \\ i(\cos\chi/2 + \sin\chi/2) \end{pmatrix} & \text{où} \quad U = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} \in \mathrm{U}(2) \end{split}$$

Ensuite, pour réduire les sommes dans le vecteur de droite, on a rappel les formules :

$$\cos\left(\frac{\pi}{2} \pm \alpha\right) = \frac{\sqrt{2}}{2} \left(\cos\alpha \mp \sin\alpha\right) \qquad \qquad \sin\left(\frac{\pi}{2} \pm \alpha\right) = \frac{\sqrt{2}}{2} \left(\cos\alpha \pm \sin\alpha\right)$$

On a donc deux choix pour chaque composante du vecteur mais celle avec un signe moins son préférable sachant que :

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$$
 $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$

On choisi donc la seconde formule pour la première composante et la premier pour la seconde composante, donnant :

$$\begin{aligned} \boldsymbol{x}_{B}(\varphi,\theta,\chi) &= \frac{\sqrt{2}}{2} e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \cos\chi/2 - \sin\chi/2 \\ i \left(\cos\chi/2 + \sin\chi/2\right) \end{pmatrix} \\ &= e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \sin\left(\frac{\pi}{2} - \chi/2\right) \\ i\cos\left(\frac{\pi}{2} - \chi/2\right) \end{pmatrix} \\ &= e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \cos\chi/2 \\ i\sin\chi/2 \end{pmatrix} \end{aligned}$$

Ne reste alors plus qu'à ajuster les signes pour obtenir une écriture de signal x_P AM-FM-PM :

$$\begin{aligned} \boldsymbol{x}_{B}(\varphi,\theta,\chi) &= e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \cos\chi/2\\ i\sin\chi/2 \end{pmatrix} \\ &= U e^{i(\varphi+\theta/2)} R_{\theta/2} \begin{pmatrix} \cos(-\chi/2)\\ -i\sin(-\chi/2) \end{pmatrix} \end{aligned}$$

En somme:

$$\boldsymbol{x}_{B}(\psi,\alpha,\beta) = U\boldsymbol{x}_{P}(\psi + \alpha/2,\alpha/2,-\beta/2) \qquad \boldsymbol{x}_{P}(\varphi,\theta,\chi) = U^{\dagger}\boldsymbol{x}_{B}(\varphi - \theta,2\theta,-2\chi)$$
(1.29)

C.2. Lien entre les projections

Avec la formule (1.29) ci-dessus, on a:

$$\rho_B(\alpha, \beta) = U \rho_P(\alpha/2, -\beta/2) U^{\dagger} \qquad \qquad \rho_P(\theta, \chi) = U^{\dagger} \rho_B(2\theta, -2\chi) U \tag{1.30}$$

Mais on a aussi, dans la base Pauli:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

les expressions:

$$\rho_P(\theta, \chi) = \frac{1}{2} \Big(id + \sin(2\theta)\cos(2\chi)\sigma_1 - \sin(2\chi)\sigma_2 + \cos(2\theta)\cos(2\chi)\sigma_3 \Big)$$
$$\rho_B(\alpha, \beta) = \frac{1}{2} \Big(id + \cos(\alpha)\sin(\beta)\sigma_1 + \sin(\alpha)\sin(\beta)\sigma_2 + \cos(\beta)\sigma_3 \Big)$$

Pour les lier, on pose $2\theta = \pi/2 - \alpha$ et $2\chi = \pi/2 - \beta$, donnant :

$$\rho_P(\theta, \chi) - id = \sin(\pi/2 - \alpha)\cos(\pi/2 - \beta)\sigma_1 - \sin(\pi/2 - \beta)\sigma_2 + \cos(\pi/2 - \alpha)\cos(\pi/2 - \beta)\sigma_3$$
$$= \cos(\alpha)\sin(\beta)\sigma_1 - \cos(\beta)\sigma_2 + \sin(\alpha)\sin(\beta)\sigma_3$$

Ce qui sous forme matricielle se réécrit :

$$\begin{pmatrix} \sin(2\theta)\cos(2\chi) \\ -\sin(2\chi) \\ \cos(2\theta)\cos(2\chi) \end{pmatrix} = \begin{pmatrix} \cos(\alpha)\sin(\beta) \\ -\cos(\beta) \\ \sin(\alpha)\sin(\beta) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\alpha)\sin(\beta) \\ \sin(\alpha)\sin(\beta) \\ \cos(\beta) \end{pmatrix}$$

Donc la passage de ρ_B à ρ_S se fait via un changement et d'angle et une rotation de $\pi/2$ autour de σ_1 .

Même calcul, cette fois, en partant de (1.29) :

$$2\rho_P(\theta,\chi) = 2U^{\dagger}\rho_B(2\theta, -2\chi)U$$

$$= U^{\dagger} \Big(id + \cos(2\theta)\sin(-2\chi)\sigma_1 + \sin(2\theta)\sin(-2\chi)\sigma_2 + \cos(-2\chi)\sigma_3 \Big) U$$

$$= id - \cos(2\theta)\sin(2\chi)U^{\dagger}\sigma_1 U - \sin(2\theta)\sin(2\chi)U^{\dagger}\sigma_2 U + \cos(2\chi)U^{\dagger}\sigma_3 U$$

avec:

$$\begin{split} U^{\dagger} \sigma_1 U &= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} = -\sigma_3 \\ U^{\dagger} \sigma_2 U &= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} = -\sigma_1 \\ U^{\dagger} \sigma_3 U &= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -2i \\ 2i & 0 \end{pmatrix} = \sigma_2 \end{split}$$

Qui donne:

$$\begin{aligned} 2\rho_P(\theta,\chi) &= id - \cos(2\theta)\sin(2\chi)U^{\dagger}\sigma_1 U - \sin(2\theta)\sin(2\chi)U^{\dagger}\sigma_2 U + \cos(2\chi)U^{\dagger}\sigma_3 U \\ &= id + \cos(2\theta)\sin(-2\chi)\sigma_3 + \sin(2\theta)\sin(-2\chi)\sigma_1 + \cos(-2\chi)\sigma_2 \\ &= id + \sin(2\theta)\sin(2\chi)\sigma_1 + \cos(2\chi)\sigma_2 + \cos(2\theta)\sin(2\chi)\sigma_3 \end{aligned}$$

Le tout reste cohérent et avec les notations :

$$w_P(\theta, \chi) = \begin{pmatrix} \sin(\theta)\cos(\chi) \\ -\sin(\chi) \\ \cos(\theta)\cos(\chi) \end{pmatrix} \qquad w_B(\alpha, \beta) = \begin{pmatrix} \cos(\alpha)\sin(\beta) \\ \sin(\alpha)\sin(\beta) \\ \cos(\beta) \end{pmatrix}$$

Cela devient :

$$w_P(2\theta, 2\chi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} w_B((\pi/2 - \theta), (\pi/2 - \chi))$$

C.3. Transformation de phases

Première chose, le produit hermitien est invariant par $U \in U(2)$ (si si). Ainsi :

$$\langle U\boldsymbol{x}(t_0), U\boldsymbol{x}(t)\rangle = \langle \boldsymbol{x}(t_0), \boldsymbol{x}(t)\rangle$$

$$\langle (U\boldsymbol{x})', U\boldsymbol{x} \rangle = \langle U\boldsymbol{x}', U\boldsymbol{x} \rangle = \langle \boldsymbol{x}', \boldsymbol{x} \rangle$$

Ainsi, en utilisant les formules (1.16) et (1.29), on a :

$$\Phi_{\text{tot}}(\boldsymbol{x}_B(\psi,\alpha,\beta)) = \Phi_{\text{tot}}(\boldsymbol{x}_P(\psi+\alpha/2,\alpha/2,-\beta/2))
= (\psi+\alpha/2)(t) - (\psi+\alpha/2)(t_0) - \arctan\left(\tan\frac{\Delta\theta}{2}\frac{\tan 2\beta(t_0) + \tan 2\chi(t)}{1 + \tan 2\beta(t_0)\tan 2\beta(t)}\right)$$

Mais avec un calcul immédiat, on a aussi :

aoerina grqobne

Avec la formule de la phase dynamique dans Poincaré (1.17), on a :

$$\Phi_{\text{dyn}}(\boldsymbol{x}_{B}(\psi,\alpha,\beta)) = \Im m \int_{t_{0}}^{t} \left\langle \frac{d}{ds} \boldsymbol{x}_{B}(\psi,\alpha,\beta), \boldsymbol{x}_{B}(\psi,\alpha,\beta) \right\rangle ds$$

$$= \Im m \int_{t_{0}}^{t} \left\langle \frac{d}{ds} \boldsymbol{x}_{P}(\psi + \alpha/2, \alpha/2, -\beta/2), \boldsymbol{x}_{P}(\psi + \alpha/2, \alpha/2, -\beta/2) \right\rangle ds$$

$$= \Phi_{\text{dyn}}(\boldsymbol{x}_{P}(\psi + \alpha/2, \alpha/2, -\beta/2))$$

$$= \psi(t) + \alpha(t)/2 - (\psi(t_{0}) + \alpha(t_{0})/2) - \int_{t_{0}}^{t} \frac{\alpha'(s)}{2} \sin(-2\beta(s)/2) ds$$

$$= \psi(t) - \psi(t_{0}) + \frac{\alpha(t) - \alpha(t_{0})}{2} + \frac{1}{2} \int_{t_{0}}^{t} \alpha'(s) \sin\beta(s) ds$$

Mais dans le même temps, si on calcul la phase dynamique de \boldsymbol{x}_B , on tombe cette fois sur :

$$\Phi_{\text{dyn}}(\boldsymbol{x}_B(\psi,\alpha,\beta)) = \psi(t) - \psi(t_0) + \int_{t_0}^t \alpha'(s) \frac{1 - \cos\beta(s)}{2} ds$$
$$= \psi(t) - \psi(t_0) + \frac{\alpha(t) - \alpha(t_0)}{2} - \frac{1}{2} \int_{t_0}^t \alpha'(s) \cos\beta(s) ds$$

Auquel cas:

$$\begin{split} \Phi_{\text{dyn}}\big(\boldsymbol{x}_{S}(\varphi,\theta,\chi)\big) &= \Phi_{\text{dyn}}\big(\boldsymbol{x}_{B}(\varphi-\theta,2\theta,-2\chi)\big) \\ &= \varphi(t) - \theta(t) - \big(\varphi(t_{0}) - \theta(t_{0})\big) + \frac{1}{2} \int_{t_{0}}^{t} 2\theta'(1-\cos2\chi)ds \\ &= \varphi(t) - \varphi(t_{0}) - \big(\theta(t) - \theta(t_{0})\big) + \int_{t_{0}}^{t} \theta'(1-\cos2\chi)ds \\ &= \varphi(t) - \varphi(t_{0}) - \big(\theta(t) - \theta(t_{0})\big) + \big(\theta(t) - \theta(t_{0})\big) - \int_{t_{0}}^{t} \theta'\cos2\chi ds \\ &= \varphi(t) - \varphi(t_{0}) - \int_{t_{0}}^{t} \theta'\cos2\chi ds \end{split}$$

Ce qui voudrait dire que :

$$\Phi_{\rm dyn}\big(\boldsymbol{x}_S(\varphi,\theta,\chi)\big) = \varphi(t) - \varphi(t_0) + \int_{t_0}^t \theta' \sin 2\chi ds = \varphi(t) - \varphi(t_0) - \int_{t_0}^t \theta' \cos 2\chi ds$$

... bizarre

ASPECTS GÉOMÉTRIQUES D'UNE PHASE ÉPONYME

note pour intro:

- S^{2n-1} est semblable au produit $U(1) \times \mathbb{PC}^{n-1}$ mais que de façon local. C'est un exemple de variété fibré et de ce formalisme donc on aura besoin
- ullet Aussi, par souci de comodité, on se placera dans \mathbb{C}^{n+1} et l'on notera la sphère unité de ce dernier :

$$\mathbb{S}^n := S^{2n+1}$$

• Tout le formalisme nécessaire sera exposé dans la section I, avec plus de détail technique en annexe et dans la section II seront décrites les différentes phases d'un point de vue géométrique.

I — Cadre d'étude

Pour proprement poser le cadre, il nous faudra trois choses :

- 1. D'abord faire quelque rappel de géométrie différentielle, ne serait-ce que pour fixer les notations (s-sec. 1.1.1), avec comme exemple le cas $P\mathbb{C}^n$ (s-sec. 1.1.2), qui sera utile plus loin.
- 2. Ensuite, seront définies les variétés fibrés principales, avec les outils de bases qui leurs sont associés (s-sec. 1.2.1), puis $\mathrm{U}(1)\times\mathrm{P}\mathbb{C}^n$ sera écrit comme telle (s-sec. 1.2.2).
- 3. Enfin, il nous faudra définir une connexion sur ces fibrés, connexion qui seront, d'abord, définie de façon générale (s-sec. 1.3.1), puis explicitée et interprétée dans le cas qui nous intéresse (s-sec. 1.3.2).

1.1 \mathbb{PC}^n vue comme variété différentielle

1.1.1 * Rappels de géométrie différentielle et notations

À compléter en fonction du la suite

Une variété différentielle se définie comme suit :

DÉFINITION 7 (VARIÉTÉ DIFFÉRENTIELLE) — une variété différentielle de classe C^k de dimension n est un espace topologique $\mathcal M$ munie d'un $atlas\left\{(\phi_i,U_i)\right\}_{i\in I}$, c'est-à-dire un ensemble finie de pair d'ouvert $U_i\subset \mathcal M$ et d'application $\phi_i:U_i\longrightarrow \mathbb R^n$ telle que :

- les U_i forme un recouvrement de la variété : $\bigcup_{i \in I} U_i = \mathcal{M}$
- les ϕ_i sont des homéomorphismes sur leur image $\phi_i(U_i) \subset \mathbb{R}^n$.
- si l'intersection $U_i \cap U_j$ est non vide, alors $\phi_j \circ {\phi_i}^{-1}|_{\phi_i(U_i \cap U_j)}$ est un C^k difféomorphisme sur son image.

A travers ϕ_i , à tout point $x \in U_i$ sont associées des coordonnées locales $(x^{\mu})_{1 \leqslant \mu \leqslant n}$, c'est-à-dire les coefficient de $\phi_i(x)$ dans une base $(e_{\mu})_{1 \leqslant \mu \leqslant n}$ de \mathbb{R}^n . Ces coordonnées sont dites locales car dépendantes du choix de la pair (U_i, ϕ_i) et la composée $\phi_j \circ {\phi_i}^{-1}|_{\phi_i(U_i \cap U_j)}$ est vue comme un changement de coordonnées. Dans toutes la suite, toutes les objets propre au cartes seront indexes via l'alphabet classique (i, j, k) et le indices associées au coordonnées locales par des lettres grecs (μ, ν, α) .

fig. 2.1 — La première figure de tout bon livre de géométrie différentielle : représentation de deux cartes avec l'application de changement de coordonnées

Ensuite, les espaces tangents de \mathcal{M} et son fibré tangent seront respectivement notés :

$$\forall x \in \mathcal{M}, T_x \mathcal{M} \qquad T\mathcal{M} = \bigsqcup_{x \in \mathcal{M}} T_x \mathcal{M} \qquad (2.1)$$

Pour le dire rapidement, les vecteurs tangents agissent comme une dérivation en cela que, pour une chemin $\gamma: \mathbb{R} \longrightarrow \mathcal{M}$, sa différentielle au point $x = \gamma(0)$ est définie par l'application :

$$\dot{\gamma}_{x} : f \longmapsto \frac{d}{dt} f \circ \gamma(t) \Big|_{t=0} := \frac{d(f \circ \gamma)}{dt}(0)$$
(2.2)

Aussi, le système de coordonnées locales en $x \in \mathcal{M}$ induit une base sur $T_x \mathcal{M}$, qui sera noté $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$. notation qui est justifié en cela que, moralement, ∂_{μ} dérive toute fonction test $f \in \mathcal{C}^k(\mathcal{M}, \mathbb{R})$ dans le long de la μ^{eme} coordonnée (locale) de x.

Plus généralement, si \mathcal{M} et \mathcal{N} sont deux variétés différentielles et $f: \mathcal{M} \longrightarrow \mathcal{N}$ une application différentiable avec $\{\tilde{\partial}_{\nu}\}_{\nu}$ une base de $T\mathcal{N}$, sa différentielle (ou application tangent ou push forward) au point x est l'application linéaire qui, en coordonnée local s'écrit :

$$f_*(\boldsymbol{v}) = f_*(v^{\mu} \boldsymbol{\partial}_{\mu}) = \boldsymbol{\partial}_{\mu} (f^{\nu}) v^{\mu} \tilde{\boldsymbol{\partial}}_{\nu}$$
 ou encore $(f_*)_{\mu}^{\nu} = \boldsymbol{\partial}_{\mu} (f^{\nu})$

A partir de f_* est définie l'image réciproque ou pull back de f, qui correspond moralement à la transposée de f_* . Formellement elle est définie par dualité :

$$f^*: \begin{array}{c} T^*\mathcal{N} & \longrightarrow & T^*\mathcal{M} \\ g & \longmapsto & g \circ f^* \end{array}$$

- fibré tangent dual
- image réciproque ("transposé" de la différentielle)
- métrique riemannienne

fig. 2.2 — Diagramme commutatif du passage de f à sa différentielle et/ou à son image réciproque

1.1.2 * $P\mathbb{C}^n$ comme variété différentielle

Si l'espace projectif complexe à été présenté comme le quotient $\mathbb{S}^n/\mathbb{U}(1)$, il peut aussi être vu comme :

$$P\mathbb{C}^n \cong \mathbb{C}^{n+1^*}/\mathbb{C}^*$$

C'est-à-dire l'ensemble des classes de $\mathbb{C}^{n+1*} = \mathbb{C}^{n+1} \setminus \{0_{\mathbb{C}^{n+1}}\}$ par la relation d'équivalence :

$$x \sim y \iff \exists \lambda \in \mathbb{C}^* \mid x = \lambda y$$

Moralement, en isolant la norme des vecteurs, \mathbb{C}^{n+1} peut être vu comme le produit $\mathbb{R}^{+*} \times \mathbb{S}^n$, et de même pour \mathbb{C}^* avec le module :

$$\mathbb{C}^{n+1^*} \cong \mathbb{R}^{+_*} \times \mathbb{S}^n \qquad \qquad \mathbb{C}^* \cong \mathbb{R}^{+_*} \times \mathrm{U}(1)$$

Ainsi, le quotient par \mathbb{C}^* revient à regarder les vecteurs de \mathbb{C}^{n+1} modulo leur norme, puis modulo l'action de U(1). Or, ignorer la norme des vecteurs est équivalent à ne regarder que les vecteurs normées, donc les vecteurs de \mathbb{S}^n . De façon informelle, on pourrait alors écrire⁸:

$$\mathbb{C}^{n+1^*}/\mathbb{C}^* \cong \mathbb{C}^{n+1^*}/(\mathbb{R}^* \times \mathrm{U}(1))$$
$$\cong (\mathbb{C}^{n+1^*}/\mathbb{R}^*)/\mathrm{U}(1)$$
$$\cong \mathbb{S}^n/\mathrm{U}(1) = \mathbb{P}\mathbb{C}^n$$

L'intérêt de cette écriture et que \mathbb{C}^{n+1} est un espace vectoriel, ce qui permet de décrire $P\mathbb{C}^n$ en terme de carte, ce qui se fait comme suit. La classe de $P\mathbb{C}^n$ de représentant $z=(z^i)_{0\leqslant i\leqslant n}\in\mathbb{C}^{n+1^*}$ est noté [z] et on pose, $\forall i\in [0,n]$:

$$U_{i} = \left\{ [z] \in \mathbb{PC}^{n} \mid z \in \mathbb{C}^{n+1}, \ z^{i} \neq 0 \right\} \qquad \phi_{i} : \begin{cases} U_{i} \longrightarrow \mathbb{C}^{i} \times \{1\} \times \mathbb{C}^{n-i} \cong \mathbb{C}^{n} \\ [z] \longmapsto \frac{1}{z^{i}} z = \left(z^{0}/z^{i}, \cdots, 1, \cdots, z^{n}/z^{i}\right) \end{cases}$$
(2.3)

Si l'ensemble d'arrivé $\phi_i(U_i)$ est équivalent à un ouvert de \mathbb{C}^n (l'une des composantes est constante), il est plus commode de travailler dans \mathbb{C}^{n+1} puisque cela évite de devoir enlever et rajouter des coefficient dans les formules de changement de carte :

$$\forall z \in \mathbb{C}^{n+1} \mid z^{i,j} \neq 0 \quad (i.e. \ [z] \in U_i \cap U_j), \qquad \phi_i \circ \phi_j^{-1}(z) = \frac{z^j}{z^i} z$$

Les (U_i, ϕ_i) forment un atlas sur l'espace projectif complexe, faisant de ce dernier une variété de dimension dim = 2n. Les $\phi_i \circ \phi_j^{-1}$ étant holomorphe, \mathbb{PC}^n est plus précisément une variété complexe de dimension complexe n et il est utile d'écrire ses coordonnées locales sous la forme $(w^{\mu}, \overline{w}^{\mu})_{1 \leq \mu \leq n}$, où :

$$\forall w \in U_i, \ \forall \mu \neq i, \quad w^{\mu} = \frac{z^{\mu}}{z^i}, \quad \text{où} \quad [z] = w$$

$$\mathbb{C}^{n+1^*}/\mathbb{C}^* \cong (\mathbb{C}^{n+1^*}/\mathbb{R}^{+_*})/(\mathbb{C}^*/\mathbb{R}^{+_*}) \cong \mathbb{S}^n/\mathrm{U}(1) = \mathrm{P}\mathbb{C}^n$$

 $^{^8}$ Ce qui s'écrit plus justement avec le troisième théorème d'isomorphisme :

En annexe A se trouve plus de détail sur les variétés différentielles complexes, mais pour aller à l'essentiel, mais si la notation prête à confusion, il faut considérer les coordonnées w^{μ} et \overline{w}^{μ} comme complètement décorréler. Par exemple, :

$$\partial_{\mu}(w^{\mu}) = \frac{\partial}{\partial w^{\mu}} w^{\mu} = 1$$

$$\partial_{\overline{\mu}}(w^{\mu}) = \frac{\partial}{\partial \overline{w}^{\mu}} w^{\mu} = 0$$

$$\partial_{\overline{\mu}}(\overline{w}^{\mu}) = \frac{\partial}{\partial \overline{w}^{\mu}} \overline{w}^{\mu} = 0$$

$$\partial_{\overline{\mu}}(\overline{w}^{\mu}) = \frac{\partial}{\partial \overline{w}^{\mu}} \overline{w}^{\mu} = 1$$

Ce qui fait $(w^{\mu}, \overline{w}^{\mu})_{1 \leq \mu \leq n}$ est bien une base de dimension réelle $\dim_{\mathbb{R}} P\mathbb{C}^n = 2n$. Ces "notations" (encore une fois cf. annexe A) permettent, par exemple, de décrire le fait qu'une soit fonction holomorphe $f : P\mathbb{C}^n \longrightarrow \mathbb{C}$ par la contrainte :

 $\forall w \in \mathbb{PC}^n, \ \forall \mu, \qquad \frac{\partial}{\partial \overline{w}^{\mu}} f(w) = 0$

Pour ce qui est des espaces tangents, $(\partial_{\mu}, \partial_{\overline{\mu}})_{\mu}$ forme une base de $TP\mathbb{C}^n$ et $(dw^{\mu}, d\overline{w}^{\mu})_{\mu}$ une base de $T^*P\mathbb{C}^n$. $P\mathbb{C}^n$, en particulier, admet un produit hermitien plus connue sous le nom de métrique de Fubini-Study, donné par :

$$\forall w \in P\mathbb{C}^{n}, \forall \boldsymbol{u}, \boldsymbol{v} \in T_{w}P\mathbb{C}^{n}, \qquad g_{w}(\boldsymbol{u}, \boldsymbol{v}) = g_{\mu\overline{\nu}}u^{\mu}\overline{v^{\nu}} = \frac{(1 + w^{\alpha}\overline{w}_{\alpha})\delta_{\mu\nu} - w_{\mu}\overline{w}_{\nu}}{(1 + w^{\alpha}\overline{w}_{\alpha})^{2}}u^{\mu}\overline{v}^{\nu}$$

$$= \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}}u^{\mu}\overline{v}_{\mu} - \frac{w_{\mu}\overline{w}_{\nu}}{(1 + w^{\alpha}\overline{w}_{\alpha})^{2}}u^{\mu}\overline{v}^{\nu}$$

$$(2.4)$$

À noter que seul les coefficients $g_{\mu\overline{\nu}}$ apparaissent. Cela est du au fait que g est produit hermitien, ce qui impose $g_{\mu\nu}=0$ et $g_{\overline{\mu}\nu}=g_{\mu\overline{\nu}}$.

1.2 S^{2n+1} comme fibré principal

1.2.1 Définition générale

Pour le dire simplement, les variétés fibrés sont des variétés qui ressemblent localement à des espaces produits. Le ruban de Modiüs en est un exemple typique : il ne peut pas s'écrire comme le produit d'un cercle avec un segment $S^1 \times [0,1]$ à cause de la façon dont il est construit. Mais localement, une tranche du ruban est tout à fait comparable (i.e. difféomorphe) à un tel produit (cf. fig. 2.3).

fig. 2.3 — Représentation du ruban de Modius en tant que fibré. Les notations sont reprises de la définition 8.

Il existe toutes sortes de variétés fibrées dès lors qu'elles sont munies de structure remarquable. Celles qui vont nous intéresser sont dites principales⁹ :

⁹Bien que ce ne sera pas précisé, il sera toujours sous-entendu que les différentes variétés et cartes doivent avoir les mêmes niveaux de régularités pour que le tout reste cohérent.

DÉFINITION 8 (VARIÉTÉ FIBRÉE PRINCIPALE) — Une variété fibrée principale (VFP), ou fibré principal est constituée de deux variétés différentielles P et B telles que :

 \bullet Il existe un groupe de Lie G opérant à droite (ou à gauche) sur P via l'application différentiable :

$$R: \begin{array}{ccc} P \times G & \longrightarrow & P \\ (p,g) & \longmapsto & R_q(p) := p \cdot g = pg \end{array} \tag{2.5}$$

• Il existe une surjection différentiable $\pi: P \longrightarrow B$ telle que :

$$\forall p \in P, \quad \pi^{-1}(\pi(p)) = pG \tag{2.6}$$

• P est munie d'un ensemble de paires (U_i, h_i) tel que les U_i forment un recouvrement de B et tel que les $h_i: G \times U_i \longrightarrow \pi^{-1}(U_i) \subset P$ soient des difféomorphismes vérifiant :

$$\forall a, b \in G, \ \forall x \in B, \qquad h_i(ab, x) = h_i(a, x) \cdot b \qquad \text{et} \qquad \pi \circ h_i(a, x) = x$$

La variété B est appelée la base de la VFP, G son groupe structural et pG la fibre de P passant par p et au dessus de $\pi(p) \in B$. Le tout est notée $P(R, G, \pi, B)$ ou plus simplement P(G, B).

Les fibres pG sont toutes difféomorphes à G et B est difféomorphe à P/G. Le diagramme commutatif ci-contre résume la situation (pr_i est la projection canonique sur la i-ème composante).

L'ensemble $\{(U_i \times G, {h_i}^{-1})\}_i$ est l'équivalent d'un atlas pour les variétés différentielles classiques mais adapter pour tenir compte de la structure fibré de P et de l'action de G. Expliciter les changements de cartes dans P, ce fait comme suit.

D'abord, P étant localement difféomorphe à un produit $G \times U_i$, on peut y tracer des graphes appelés sections locales, comme sur les figures 2.4 et 2.5 ci-dessous. Formellement, une section locale au dessus de $U_i \subset B$ est une application $\sigma: U_i \longrightarrow P$ vérifiant :

$$\pi \circ \sigma = id_{|_{U}}$$

fig. 2.4 — Représentation d'une section local σ au dessus de $U_i \subset B$ de dimension 2. Comme P n'est pas un produit à proprement parler, σ est représenté dans $G \times U_i$ à travers h_i .

fig. 2.5 — Représentation de la section canonique définie par rapport à G avec une seconde section $\sigma(x) = \sigma_i(x) \cdot g(x)$. Cette fois B est une variété de dimension 1.

Ensuite, les hypothèses sur P(G,B) sont telles que G agit transitivement et librement (ou sans point fixe) sur P. C'est-à-dire que, sur une même fibre, tout point peut être atteint par n'importe quel autre via l'action de G (transitivité) :

$$\forall x \in B, \quad \forall p, q \in P_x, \ \exists t(p,q) \in G \mid p = q \cdot t(p,q)$$

et que la seule façon de laisser les points invariants par cette même action est de passer par l'élément neutre e (libre) :

$$\forall (p,g) \in P \times G, \quad p = p \cdot g \implies g = e$$

De la transitivité de G, découle le fait que toutes les sections locales σ au dessus de U_i peuvent s'écrire à partir d'une même section σ_i via la formule :

$$\forall x \in B, \qquad \sigma(x) = \sigma_i(x) \cdot t(\sigma_i(x), \sigma(x))$$

Son caractère libre, lui assure l'unicité d'un choix canonique de section σ_i sur U_i . Elle est donnée par :

$$h_i(x,e) = \sigma_i(x)$$

Cela mène à la définition :

DÉFINITION 9 (FONCTIONS DE TRANSITIONS) — L'intersection de deux cartes est noté $U_{ij} = U_i \cap U_j$ et le passage d'une section locale canonique est donné par :

$$\forall x \in U_{ij}, \qquad \sigma_j(x) = \sigma_i(x) \cdot t(\sigma_i(x), \sigma_j(x))$$

L'élément de G, $t(\sigma_i, \sigma_j)$, est alors appelé fonction de transition et sera noté φ_{ij} . Elle fait effectivement la transition entre deux cartes dans le sens où :

$$\forall (g, x) \in G \times U_{ij}, \qquad {h_i}^{-1} \circ h_j(g, x) = (\varphi_{ij}(x)g, x)$$

1.2.2 Le fibré $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$

Dans notre cas c'est \mathbb{S}^n qui fait office d'espace totale avec pour base \mathbb{PC}^n et de groupe structural U(1). Pour obtenir la projection de \mathbb{S}^n sur \mathbb{PC}^n , il suffit de prendre la restriction de π à \mathbb{S}^n . En tenant compte de la normalisation, les coordonnées locales sur \mathbb{PC}^n se réécrivent, $\forall w \in U_i$:

$$w^{\mu} = \frac{z^{\mu}}{z^{i}} = \frac{z^{\mu}}{|z^{i}|e^{i\arg(z^{i})}} = \frac{z^{\mu}}{\sqrt{1 - \sum_{\nu \neq i} |z^{\nu}|^{2}}} e^{-i\arg(z^{i})} \qquad \text{car} \qquad \sum |z^{\nu}|^{2} = ||z||^{2} = 1$$

On constate bien que w^{μ} n'est défini par rapport à z^{μ} qu'à un choix de phase $e^{-i \arg z^i} \in \mathrm{U}(1)$ près. À l'inverse, un représentant z_i dans \mathbb{S}^n de $w \in U_i$ aura pour coefficient :

$$\forall \mu \neq i, \quad z_i^{\mu} = \frac{w^{\mu}}{\|w\|} e^{i\theta}$$

$$z_i^{i} = \frac{1}{\|w\|} e^{i\theta}$$

La norme de w étant à comprendre au sens des coordonnées locales sur U_i^{10} :

$$||w||^{2} = ||(w^{\mu})_{1 \leqslant \mu \leqslant n}||^{2} = \frac{1}{|z_{i}^{i}|^{2}} \sum_{\nu \neq i} |z_{i}^{\nu}|^{2} = \frac{1 - |z_{i}^{i}|^{2}}{|z_{i}^{i}|^{2}} \iff |z_{i}^{i}|^{2} ||w||^{2} = 1 - |z_{i}^{i}|^{2}$$

$$\iff |z_{i}^{i}|^{2} = \frac{1}{1 + ||w||^{2}}$$

$$\iff |z_{i}^{i}| = \frac{1}{\sqrt{1 + w^{\nu}\overline{w}_{\nu}}}$$

D'où l'expression des coefficients de $z_i \in \mathbb{S}^n$:

$$\forall \mu \neq i, \quad z_i^{\ \mu} = \frac{w^{\mu}}{\sqrt{1 + w^{\nu} \overline{w}_{\nu}}} e^{i\theta} \qquad \qquad z_i^{\ i} = \frac{1}{\sqrt{1 + w^{\nu} \overline{w}_{\nu}}} e^{i\theta}$$

Tout cela permet d'écrire \mathbb{S}^n comme une variété fibrée principale :

 $^{^{10}}$ C'est un abus de notation, w n'a pas de norme en ce sens là puisqu'elle dépend du choix de carte U_i . Mais ici tout le raisonnement est purement local, donc ce n'est pas un problème.

PROPOSITION 2 — La (2n+1)—sphère \mathbb{S}^n , vue comme variété plongée dans \mathbb{C}^n est une VFP de base \mathbb{PC}^n et de fibre type U(1). L'action de U(1) sur \mathbb{S}^n est induite par la multiplication par un scalaire complexe et où :

• La fibration π est la projection canonique de \mathbb{S}^n sur \mathbb{PC}^n :

$$\pi : \begin{array}{c} \mathbb{S}^n & \longrightarrow & \mathbb{PC}^n \\ z & \longmapsto & [z] \end{array}$$
 (2.7)

• Les cartes locales h_i s'écrivent :

$$\forall w \in U_i, \ \forall e^{i\theta} \in U(1), \ h_i(w, e^{i\theta}) = \frac{(w^0, \dots, 1, \dots, w^n)}{\sqrt{1 + w^\nu \overline{w}_\nu}} e^{i\theta} \in \mathbb{S}^n$$
 (2.8)

• Les sections canoniques σ_i au dessus des U_i , elles, sont définies par :

$$\forall w \in U_i, \ \sigma_i(w) = h_i(w, 1) = \frac{1}{\sqrt{1 + w^{\nu} \overline{w}_{\nu}}} (w^0, \dots, 1, \dots, w^n)$$
(2.9)

• Les fonctions de transitions entre deux cartes U_i et U_j s'écrivent :

$$\varphi_{ij}(w) = e^{-i\arg(z_i^i)} e^{i\arg(z_j^j)} \qquad \qquad \text{où} \qquad z_{i,j} = \phi_{i,j}(w)$$
 (2.10)

1.3 Espaces horizontaux et connexion

Le cadre étant posé, pour retrouver la notion de fréquence instantanée, il est nécessaire de munir $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$ d'une connexion. Cette dernière est introduite comme suit.

1.3.1 Définition général

Comme P ressemble localement à un produit $G \times U_i$, il est utile de séparer ses espaces tangents T_pP comme une somme directe d'espaces tangents respectivement aux fibres et à la base. Conformément aux représentations précédentes (fig. 2.3 à 2.5), les premiers sont appelées espaces tangents verticaux, les seconds horizontaux et l'on note :

$$\forall p \in P, \qquad T_p P = V_p P \oplus H_p P$$

Les tangents verticaux V_pP se définissent canoniquement via π , en tant que noyau de sa différentielle :

$$V_p P := \text{Ker}(T_p \pi) = \{ v \in T_p P \mid T_p \pi(v) = 0 \}$$

Ce n'est en revanche pas le cas des espaces horizontaux. Il faut donc faire un choix pour les H_pP et c'est ce choix qui est appelé connexion (elle connecte les espaces tangents entre eux). Comme pour les verticaux, ces sous-espaces peuvent être caractérisés par une 1-forme différentiable ω sur P à valeur dans VP, auquel cas :

$$\forall p \in P, \quad H_p P = \operatorname{Ker}(\omega_p)$$

Dans le cas des VFP, une connexion doit en plus avoir de bonnes propriétés au regard de l'action de G sur P, aboutissant à la définition :

DÉFINITION 10 (CONNEXION SUR VFP) — Une connexion sur une VFP P(G,B) est la donnée d'un sous-espace tangent, $H_pP \subset T_pP$, en tout point de $p \in P$ tel que :

• HP dépend différentiellement de p ("dépendre différentiellement" à un sens précis pour les sousespaces mais qui ne sera pas utile pour la suite). • H_pP est supplémentaire à V_pP dans T_pP :

$$T_p P = V_p P \oplus H_p P \tag{2.11}$$

 \bullet l'assignation des H_pP est invariante par l'action de G au sens où :

$$\forall (p,g) \in P \times G, \quad H_{R_g(p)}P = R_{g*}(H_pP) = \{ R_{g*}(v) \mid v \in H_pP \}$$
 (2.12)

Que l'on notera plus simplement (cf. annexe ??):

$$\forall (p,g) \in P \times G, \quad H_{p \cdot g}P = H_p P \cdot g = \left\{ \boldsymbol{v} \cdot g \mid \boldsymbol{v} \in H_p P \right\}$$
 (2.13)

Au delà d'assurer une compatibilité entre H et G, l'équation (2.12) permet de n'avoir à définir la connexion qu'en un seul point de chaque fibre, les autres se déduisant par cette formule. Concrètement, pour tout point de la base $x \in U_i$, il suffit de la définir en $\sigma_i(x) = h_i(e, x)$, de sorte que l'espace horizontal en tout autre point $p = h_i(g, x) = \sigma_i(x) \cdot g$ au dessus de x sera donné par :

$$H_p P = H_{\sigma_i(x)} P \cdot g$$

Aussi, le fait que G soit un groupe de Lie permet de lier son algèbre $\mathfrak{g} \cong T_eG$ aux tangents verticaux via l'application $\#: {}^{11}$

$$\forall (p,A) \in P \times \mathfrak{g}, \ \forall f \in \mathscr{C}(P,\mathbb{R}), \quad A^{\#}(p) = \frac{d}{dt} p \cdot \exp(tA) \Big|_{t=0} \in V_p P$$

Sachant cela, toujours dans le cas des VFP, la 1-forme de connexion est à valeur dans $\mathfrak g$:

DÉFINITION 11 (1-FORME DE CONNEXION) — La 1-forme de connexion ω d'une VFP P(G,B) est définie comme la 1-forme différentiable sur P à valeur dans \mathfrak{g} (i.e. en tout point $p \in P$, ω_p est à valeur de T_pP dans \mathfrak{g}), telle que $\forall p \in P$:

$$\forall A \in \mathfrak{g}, \ \omega_p(A^{\#}(p)) = A \qquad H_p P = \operatorname{Ker}(\omega_p) \tag{2.14}$$

$$\forall \mathbf{v} \in T_p P, \quad \omega_{p \cdot q}(\mathbf{v} \cdot g) := \omega_{p \cdot q}(R_{q *}(\mathbf{v})) = g^{-1} \omega_p(\mathbf{v}) g \tag{2.15}$$

Tout comme les H[p]P, la troisième égalité assure que ω n'a besoin d'être définie que sur un point de chaque fibre. Cela permet de définir ω localement non pas sur $U_i \times G$, mais seulement sur $U_i \cong U_i \times \{e\}$. Ainsi, ω induit une 1-forme sur les cartes U_i par l'image réciproque des sections canoniques σ_i . Elles sont notées $\mathcal{A}_i := \sigma_i^* \omega$ et sur le chevauchement $U_i \cap U_j$, elles vérifient :

$$A_j = \varphi_{ij}^{-1} A_i \varphi_{ij} + \varphi_{ij}^{-1} d\varphi_{ij}$$
(2.16)

Munir P(G,B) d'une connexion permet, entre autre de définir la notion de relèvement horizontal :

DÉFINITION 12 (RELÈVEMENT HORIZONTAL) — Étant donné une trajectoire $\rho: \mathbb{R} \longrightarrow B$ sur la base et un point $\gamma_0 \in \rho(0)G$ au dessus de $\rho(0)$, il existe un unique relèvement γ de ρ dont les vecteurs tangents sont tous horizontaux. *i.e.* tel que $\forall t \in \mathbb{R}$:

$$\pi \circ \gamma(t) = \rho(t) \qquad \qquad \dot{\gamma}(t) \in H_{\gamma(t)}P \qquad \qquad \gamma(0) = \gamma_0 \qquad (2.17)$$

On parle de relèvement horizontal (horizontal lift, ou transport parallèle de γ_0 le long de ρ) puisque γ

$$A^{\#}(p): f \longmapsto \frac{d}{dt} f(p \cdot \exp(tA))\Big|_{t=0}$$

¹¹Les vecteurs tangents étant des formes linéaire, A[#](p) est plus précisément définie par l'application :

n'a pas de déplacement vertical au sens de la connexion. Du point de vue de la 1-forme ω , si γ s'écrit localement $\gamma_i = \sigma_i(\rho)g_i$, alors g_i vérifie l'équation (d'où vient l'unicité du relèvement) :

$$\frac{d}{dt}g_i(t) = -\mathcal{A}_i\rho(t) \cdot g_i(t) \tag{2.18}$$

Si maintenant γ est une trajectoire de P, on dira, par abus de langage, que $\tilde{\gamma}$ est le relèvement horizontal de γ si c'est le relèvement horizontal de sa projection $\pi \circ \gamma$ avec la condition initiale $\tilde{\gamma}(0) = \gamma(0)$.

Pour la suite, il sera utile d'avoir l'expression d'une trajectoire $\gamma: \mathbb{R} \longrightarrow P$ par rapport à son relèvement horizontale $\tilde{\gamma}$. Pour l'obtenir, on note $\gamma = \tilde{\gamma} \cdot g$, de sorte que sa dérivée s'écrive :

$$\dot{\gamma} = \dot{\tilde{\gamma}} \cdot g + \tilde{\gamma} \cdot dg = \dot{\tilde{\gamma}} \cdot g + \gamma \cdot g^{-1} dg$$

Ce à quoi on applique ω , donnant :

$$\omega_{\gamma}(\dot{\gamma}) = \omega_{\gamma}(\dot{\bar{\gamma}} \cdot g) + \omega_{\gamma}(\gamma \cdot g^{-1}dg)$$

$$= g^{-1}\omega_{\bar{\gamma}}(\dot{\bar{\gamma}})g + \omega_{\gamma}(\gamma \cdot g^{-1}dg) \qquad \text{d'après (2.15)}$$

$$= \omega_{\gamma}(\gamma \cdot g^{-1}dg) \qquad \text{car } \tilde{\gamma} \text{ est horizontale}$$

Le terme $g^{-1}dg$ restant étant un vecteur de $g^{-1}T_gG \cong T_eG \cong \mathfrak{g}$ et :

$$\omega_{\gamma}(\dot{\gamma}) = \omega_{\gamma}(\gamma \cdot g^{-1}dg) = \omega_{\gamma}((g^{-1}dg)^{\#}(p)) = g^{-1}dg$$

D'où $\gamma = \tilde{\gamma} \cdot g$ avec g est solution de :

$$\frac{d}{dt}g(t) = g(t)\omega_{\gamma(t)}(\dot{\gamma}(t))$$
(2.19)

1.3.2 Choix de connexion sur $\mathbb{S}^n(U(1), \mathbb{PC}^n)$

Dans le cas de $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$, la métrique sur \mathbb{S}^n induit naturellement un choix de connexion car la projection π est une submersion dite riemannienne [10]. Formellement, c'est dire que la projection de \mathbb{S}^n sur $\mathrm{P}\mathbb{C}^n$ est telle que :

$$\forall p \in \pi^{-1}(w), \ \forall \boldsymbol{u}, \boldsymbol{v} \in T_{p} \mathbb{S}^{n}, \quad g_{\pi(p)}(\pi_{*}\boldsymbol{u}, \pi_{*}\boldsymbol{v}) = \langle \boldsymbol{u}_{H}, \boldsymbol{v}_{H} \rangle$$
(2.20)

où g est la partie réelle 12 hermitienne de la métrique de Fubini-Study. Plus concrètement, les espaces tangents de \mathbb{S}^n s'écrivent :

$$T_p \mathbb{S}^n = \operatorname{Vec}\{p\}^{\perp} := \{ \boldsymbol{v} \in \mathbb{C}^{n+1} \mid \Re e\langle \boldsymbol{v}, p \rangle = 0 \}$$

et sachant que $ip \in \text{Vec}\{p\}^{\perp}$, ils se séparent en deux composantes orthogonales :

$$T_p \mathbb{S}^n = \operatorname{Vec}\{p\}^{\perp} = \operatorname{Vec}\{ip\} \oplus \operatorname{Vec}\{ip\}^{\perp}$$

Ainsi, la nature de π (2.20) est telle que le premier membre est l'espace tangent vertical à p et le second invariant par l'action de U(1) :

$$\forall e^{i\theta} \in \mathrm{U}(1), \quad \mathrm{Vec} \big\{ i(e^{i\theta}p) \big\}^{\perp} = \mathrm{Vec} \{ip\}^{\perp}$$

Ce qui permet de poser $H_p\mathbb{S}^n := \operatorname{Vec}\{ip\}^{\perp}$ et donne directement la 1-forme associée :

$$\begin{split} H_p \mathbb{S}^n &= \left\{ \boldsymbol{v} \in T_p \mathbb{S}^n \mid \Re e \langle \boldsymbol{v}, ip \rangle = 0 \right\} \\ &= \left\{ \boldsymbol{v} \in T_p \mathbb{S}^n \mid \Im m \langle \boldsymbol{v}, p \rangle = 0 \right\} \end{split} \iff \omega_p(\boldsymbol{v}) = \Im m \langle \boldsymbol{v}, p \rangle \end{split}$$

 $^{^{12}}$ Cette métrique induite ne peut pas être hermitienne car \mathbb{S}^n n'est pas une variété complexe.

Enfin, comme l'algèbre de Lie de U(1) est $\mathfrak{u}(1) \cong i\mathbb{R}$, il convient de poser :

$$\forall p \in \mathbb{S}^n, \ \forall \mathbf{v} \in T_p \mathbb{S}^n, \quad \omega_p(\mathbf{v}) := i \Im(\mathbf{v}, p)$$
 (2.21)

Un tel choix de connexion n'est pas anodin d'un point de vue signal puisque ω donne la fréquence instantanée telle que définie dans la partie I précédente et c'est la première chose qui sera justifié dans la partie suivante.

II — * Interprétation des trois phases dans ce cadre

Résumons la situation. Pour étudier le comportement fréquentiel d'un signal multivarié complexe, il est utile de voir l'espace de tel signaux, \mathbb{C}^{n+1} , comme le produit :

$$\mathbb{C}^{n+1} \cong \mathbb{R}^{+_*} \times \mathbb{S}^n \big(\mathrm{U}(1), \mathrm{P}\mathbb{C}^n \big)$$

Dans ce cadre, la variété $\mathbb{S}^n(U(1), \mathbb{P}\mathbb{C}^n)$ est naturellement – par la projection π – munie d'une connexion qui, par ailleurs, n'est pas sans rappeler à la formule de la fréquence instantanée (1.7) vue en première partie.

2.1 Fréquence instantanée et phase dynamique sur $\mathbb{S}^n(\mathrm{U}(1),\mathbb{PC}^n)$

Pour comprendre pourquoi le choix de connexion (2.21) est justifié du point de vue signal, on se propose de prendre le problème par l'autre bout : comment définir la notion de fréquence instantanée d'un signal dans la variété $\mathbb{S}^n(\mathrm{U}(1),\mathbb{P}\mathbb{C}^n)$?

Comme, à chaque instant t, un signal γ sur \mathbb{S}^n est représenté par une paire $(e^{i\alpha(t)}, \rho(t)) \in \mathrm{U}(1) \times \mathrm{P}\mathbb{C}^n$ à travers les h_i , l'un serait tenté de voir $\alpha(t)$ comme la fréquence du signal et $\rho(t)$ comme l'état de polarisation. Le problème de cette représentation est qu'elle dépend du choix de carte U_i , ainsi sur l'intersection U_{ij} , γ aurait (au moins) deux notions de fréquence instantanée.

C'est là qu'intervient la connexion. D'une part, la 1-forme ω associée est définie globalement sur le fibré, autrement dit, elle est indépendante des représentations locales de γ .

D'autre part, le relèvement horizontal $\tilde{\gamma}$ d'une courbe $\rho \subset \mathbb{PC}^n$, par définition, n'a pas de variation verticale. Dans notre cas, cela signifie que $\tilde{\gamma}$ n'a pas de variation dans la direction de U(1), donc son état de polarisation (composante sur \mathbb{PC}^n) varie mais pas ses "fréquences".

Ainsi, le relèvement horizontale $\tilde{\gamma}$ d'un signal γ s'interprète comme une version de ce dernier γ dénuée de toute fréquence instantanée. L'action α permettant de passé de $\tilde{\gamma}(t)$ à $\gamma(t)$ (i.e. $(t) = e^{i\alpha(t)}\tilde{\gamma}(t)$) peut alors être comprise comme la fréquence instantanée du signal (voir section 2.1 ci-dessous)

Un signal qui n'aurait pas de fréquence instantanée mais une polarisation instantanée n'a pas vraiment de sens. Cela renvoi à notre discussion de première partie : la fréquence instantanée d'un signal univarié devait contenir les hautes fréquences et son amplitude les basses. Ici le problème est le même, mais avec l'état de polarisation en lieu de l'amplitude. Pour s'en convaincre, il est utile de retourner sur le cas bivarié.

La projection sur \mathbb{PC}^2 de γ représente l'ellipse de polarisation instantanée. Mais si γ n'as pas de fréquence instantanée, alors $\gamma(t)$ n'est plus représenté que par le sommet de l'ellipse paramétrée par ρ_{γ} . L'on pourrait alors argumenter que tout signal peut être décrit par la seule variation de son état de polarisation, ce qui est parfaitement inintéressant.

Cette vision du relèvement horizontal est donc purement formelle et, si elle à bien un sens géométrique, elle ne correspond du point de vue du signal.

fig. 2.6 — Fréquence instantanée d'un signal x vu comme variation vertical de x par rapport à son relèvement horizontale \tilde{x} associé. À noter que \tilde{x} ne dépend pas des cartes mais dépend de la trajectoir ρ_x de x sur \mathbb{PC}^n .

fig. 2.7 — Exemple du relèvement horizontale d'une signal bivarié

En admettant l'interprétation de la 1-forme de connexion comme fréquence instantanée, les discussions de première partie (sec. 1.2) suggèrent de choisir :

$$\forall x \in \mathbb{S}^n, \ \forall \mathbf{v} \in T_x \mathbb{S}^n, \quad \omega_p(\mathbf{v}) = i \Im(\mathbf{v}, x)$$
 (2.22)

La phase dynamique, s'interprète alors comme la déviation du signal par rapport à son relèvement horizontal. Ainsi, $g = e^{i\Phi_{\text{dyn}}(\gamma)}$ est solution de (2.19), qui se réécrit alors :

$$\forall t \in \mathbb{R}, \quad \begin{cases} g'(t) = g(t) \, i \Im m \langle \dot{\gamma}(t), \gamma(t) \rangle \\ g(t_0) = 1 \end{cases} \iff g(t) = e^{\int_{t_0}^t i \Im m \langle \dot{\gamma}(s), \gamma(s) \rangle ds}$$

Ce qui redonne la formule :

$$\Phi_{\text{dyn}}(\gamma, t_0, t) = \int_{t_0}^t \Im m \langle \dot{\gamma}(s), \gamma(s) \rangle ds$$
 (2.23)

Chose importante tout de même : si cette définition de la phase dynamique est bien indépendante du choix de carte, elle dépend en revanche du relèvement horizontale de γ . Elle dépendant donc, a fortiori, de la trajectoire de la projection $\pi(\gamma)$ de γ sur \mathbb{PC}^n et c'est de là que va émerger la phase géométrique.

"Ok, je m'arrête ici.

A quelques détails près je pense que c'est très bien. Tu as fait la "connexion" entre description via les fibrés et notion de phase instantanée. Il faudra le dire explicitement (au debut de la partie ou dans l'intro ?)" : COMMENT ?

2.2 Phase géométrique

- Cas projectivement cyclique (PC, cyclique dans PCⁿ). C'est un cas qui avait été étudier par Aharonov & Anandan dans le cadre d'un système quantique qui s'adapte très bien au cadre plus général des signaux. Les propos ici seront principalement tiré du livre de Bohm [2].
- Cas qui sera généraliser grâce à l'étude des géodésiques de \mathbb{PC}^n .
- Cela permettre de montrer un autre résultat bien connu dans la cas quantique [4], déjà été mentionné en dans le cas bivarié, à savoir que la phase géométrique calcul l'air entouré par la projection du signal sur \mathbb{PC}^n .
- Enfin, il sera montrer comment ces résultats s'étendent lorsque la contrainte PC est lévée, ce qui nécessitera d'étudier les géodésiques de $P\mathbb{C}^n$.

2.2.1 Cas des signaux projectivement cycliques

Comme dans la première partie de ce mémoire, pour mieux comprendre le comportement de la phase géométrique, on se

- DEF: projectivement cyclique
- Dans ce cas, la projection C_{γ} de γ sur \mathbb{PC}^n est (proprement) cyclique
- Comme, entre autre, Bohm l'explique dans [2], en fonction du choix de relèvement on peut isoler les différentes phases de γ .
- En particulier, C_{γ} est cyclique, $\gamma(1)$ est dans la même fibre que $\gamma(0)$ et les trois se décrivent dans une même fibre $\gamma(0)U(1) = \gamma(1)U(1)$:
- Étant donné le choix de connexion, le relèvement horizontale $\tilde{\gamma}$ de C_{γ} (à partir du point initiale $\gamma(0)$) n'a pas de phase dynamique. Φ_{dyn} est donc donnée par différence de phase entre $\gamma(1)$ et $\tilde{\gamma}(1)$
- Pour obtenir la phase géométrique, on considère une troisième relèvement, η , de C_{γ} qui cette fois est proprement cyclique. Comme il n'a, par construction, par de phase totale, sa phase géométrique est égale à sa phase dynamique au signe près.
- Or, la phase $\Phi_{\rm dyn}(\eta)$ est, comme pour γ donné par la différence de jauge entre $\tilde{\gamma}(1)$ et $\eta(1)$.
- Tout cela est résumé par la figure 2.8 ci-dessous :

fig. 2.8 — Représentation des trois phases de γ dans le cas pseudo-cyclique.

- Remarque importante : le choix de relèvement cyclique η n'est pas unique mais n'est pas important pour autant, puisque c'est la seule propriété $\eta(0) = \eta(1)$ qui permet d'avoir l'interprétation exposé juste avant. Cela traduit, par ailleurs, l'aspect invariant par transformation de jauge de Φ_{geo} .
- Ce que cette représentation montre c'est que $\Phi_{\rm geo}$ est donné par l'holonomie du trajet γ .
- DEF : holonomie
- Dans notre cas, la variété est connexe ce qui assure que Hol est un sous-groupe de Lie connexe du groupe structural, à savoir U(1). Ainsi, Hol = U(1), ce qui montre que la phase géométrique peut prendre n'importe qu'elle valeur.
- Cette formulation est très jolie mais finalement que très peu instructive.
- Rq : On pourrait alors se demander si Φ_{geo} ne pourrait pas, comme Φ_{dyn} , s'écrire comme l'intégrale d'une 1-forme sur \mathbb{PC}^n .
 - A cela, Mukunda & Simon explique dans [17] que non. Moralement, l'écriture $\Phi_{\rm geo} = \Phi_{\rm tot} \Phi_{\rm dyn}$ suggère que ça ne peut pas être le cas puisque la phase totale ne peut pas s'écrire comme l'intégrale d'une 1-forme.

Cela vient du fait que Φ_{tot} est indépendant de la trajectoire de γ sur]0,1[. Au mieux, elle peut être vu comme la longueur de la géodésique γ_g sur \mathbb{S}^n entre les points $\gamma(0)$ et $\gamma(1)$. C'est-à-dire comme l'intégrale de la norme sur \mathbb{S}^n de $\dot{\gamma}_g$ le long de γ_g . Mais rien par rapport à γ

2.2.2 * Généralisation à tout signal

- \bullet Cela étant dit, dans le cas cyclique $\Phi_{\rm geo}$ et $\Phi_{\rm dyn}$ se confonde et cette propriété peut être exploitée.
- En effet, modulo l'exponentielle, la phase dynamique est l'intégrale de la connexion sur la courbe. Ainsi, d'après le théorme de Stokes, on a relation :

$$\oint_{\rho} \mathcal{A}_i(d\rho) = \iint_{\Sigma} d\mathcal{A}_i(dx, dy) dx \, dy$$

- En effet, la commutativité de U(1) fait que Hol est indépendant du relèvement $\eta(0)$ de $C_{\gamma}(0)$
- Ajouter à cela le fait que la connexion s'exprime exclusivement dans les cartes U_i , on se ramène à calcul un calcul de la phase géométrique exclusivement dans \mathbb{PC}^n .
- Dans ce cas, la phase géométrique est l'intégrale sur un lacet d'une 1-forme et le théorème de Stokes peut s'appliquer :
- THEO de Stokes
- ullet Dans notre cas : on obtient l'intégrale d'une forme symplectique sur l'aire entouré par le lacet C_{γ}
- En somme, cela se ramène à un calcul d'aire sur \mathbb{PC}^n
- Un mot sur le lien avec Fisher

2.2.3 * La phase géométrique sur \mathbb{PC}^n

- Si maintenant γ est qu'elle conque, pour retrouver les interprétation précédente, le plus simple est encore de se ramener au cas pseudo-cyclique.
- Cela demande de refermer γ de sorte à ne pas engendré plus de phase géométrique. En somme, on veut savoir qu'elles sont les trajectoire de \mathbb{S}^n qui n'engendre pas de phase géométrique.
- pour cela on étudie les géodésiques!
- Sachant le représentaiton par Stokes c'est plutôt simple :

ANNEXE

Annexe A - * Variété différentielle complexe

Pour plus de détails, voir [18, 1].

 \mathcal{M} sera une variété différentielle complexe si elle satisfait les propriétés ci-dessus où \mathbb{R}^n est remplacé par \mathbb{C}^n et où la condition de difféomorphisme est remplacé par la condition d'holomorphisme.

Une application $f:\mathbb{C}^n\longrightarrow\mathbb{C}^n$ étant holomorphe si chacune de ses composantes vérifie l'équation de Cauchy-Riemann :

 $\forall x, y \in \mathbb{R}^n, \ \forall \mu, \qquad \frac{\partial f}{\partial y^{\mu}}(x+iy) = i \frac{\partial f}{\partial x^{\mu}}(x+iy)$

Les fonctions holomorphes étant automatiquement C^{∞} , les variétés différentielles complexes sont toujours lisse, c'est-à-dire C^{∞} . Aussi, \mathcal{M} est dite de dimension complexe n et dimension (réel) 2n, notés :

$$\dim_{\mathbb{C}}(\mathcal{M}) := n \qquad \qquad \dim_{\mathbb{R}}(\mathcal{M}) := \dim(\mathcal{M}) = 2n \qquad (2.24)$$

Ensuite, pour le dire rapidement, la structure complexe de \mathcal{M} permet de séparer les espaces tangents en deux sous espaces. Pour ce faire, on commence par noter qu'en tout point $p \in \mathcal{M}$ de coordonnée $z^{\nu} = x^{\nu} + iy^{\nu}$, l'espace tangent $T_p \mathcal{M}$, vu comme variété réelle, admet une base :

$$T_p \mathcal{M} = \operatorname{Vec} \left\{ \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial y^n} \right\}$$
 (2.25)

Plus tôt que de se basé sur les x^{μ} et y^{μ} pour séparer les $T_p \mathcal{M}$, on définit sur ces derniers un tenseur J_p de type (1,1) tel que :

$$J_{p}\frac{\partial}{\partial x^{\mu}} = \frac{\partial}{\partial y^{\mu}} \qquad J_{p}\frac{\partial}{\partial y^{\mu}} = -\frac{\partial}{\partial x^{\mu}} \qquad (2.26)$$

Ce tenseur est l'équivalent de la multiplication par $\pm i$ et le fait que \mathcal{M} soit complexe assure qu'il soit défini globalement, *i.e.* sur $T\mathcal{M}$. Il est diagonaliseable dans la base :

$$\partial_{\mu} = \frac{\partial}{\partial z^{\mu}} := \frac{1}{2} \left(\frac{\partial}{\partial x^{\mu}} - i \frac{\partial}{\partial y^{\mu}} \right) \qquad \qquad \partial_{\bar{\mu}} = \frac{\partial}{\partial \bar{z}^{\mu}} := \frac{1}{2} \left(\frac{\partial}{\partial x^{\mu}} + i \frac{\partial}{\partial y^{\mu}} \right)$$
 (2.27)

Ainsi en fonction de la base ((2.24) ou (2.27)), J_p va s'écrire :

$$J_p = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \qquad J_p = \begin{pmatrix} iI_n & 0 \\ 0 & -iI_n \end{pmatrix}$$
 (2.28)

Finalement, $T\mathcal{M}$ peut être séparé en deux sous-espaces engendré respectivement par les ∂_{μ} et $\partial_{\bar{\nu}}$. On parle de vecteur holomorphe et anti-holomorphe et on note :

$$T_{p}\mathcal{M}^{+} = \operatorname{Vec}\left\{\partial_{\mu} \mid 1 \leqslant \mu \leqslant n\right\} \qquad T_{p}\mathcal{M}^{-} = \operatorname{Vec}\left\{\partial_{\bar{\mu}} \mid 1 \leqslant \mu \leqslant n\right\}$$
 (2.29)

forme kahlerienne:

$$\Omega = g_{\mu \overline{\alpha}} J^{\overline{\alpha}}_{\overline{\nu}} dw^{\mu} \wedge d\overline{w}^{\nu} \tag{2.30}$$

sur $\mathbb{P}\mathbb{C}^n$:

$$\Omega(w) = i \frac{(1 + w^{\alpha} \overline{w}_{\alpha}) \delta_{\mu\nu} - w_{\mu} \overline{w}_{\nu}}{(1 + w^{\alpha} \overline{w}_{\alpha})^{2}} dw^{\mu} \wedge d\overline{w}^{\nu}$$

Annexe B - * Dérivée extérieure de la connexion

Par définition, sur l'ouvert U_i , la 1-forme de connexion local est définie par :

$$\mathcal{A}_i = \sigma_i^* \omega = \omega \circ \sigma_{i*}$$

Soit, $\forall w \in U_i, \ \forall X \in T_w \mathbb{P}\mathbb{C}^n$:

$$\mathcal{A}_i(w)X = i\Im m \langle \sigma_{i*}(X), \sigma_i(w) \rangle$$

où les σ_{i*} s'écrivent, $\forall \mu$:

$$\mu \neq i: \qquad \sigma_i(w)^{\mu} = \frac{w^{\mu}}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} \quad \Longrightarrow \quad \sigma_{i*}(w)^{\mu} = \frac{dw^{\mu}}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} - \frac{w^{\mu}}{2(1 + w^{\alpha}\overline{w}_{\alpha})^{3/2}} 2\Re e(w^{\alpha}d\overline{w}_{\alpha})$$
$$= \frac{1}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} \left(dw^{\mu} - w^{\mu} \frac{\Re e(w^{\alpha}d\overline{w}_{\alpha})}{1 + w^{\alpha}\overline{w}_{\alpha}} \right)$$

$$\mu = i:$$
 $\sigma_i(w)^{\mu} = \frac{1}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} \implies \sigma_{i*}(w)^{\mu} = -\frac{\Re e(w^{\alpha}d\overline{w}_{\alpha})}{(1 + w^{\alpha}\overline{w}_{\alpha})^{3/2}}$

Ce qui donne 13 :

$$\mathcal{A}_{i}(w) = i\Im m \left\langle \sigma_{i*}(w), \sigma_{i}(w) \right\rangle$$

$$= i\Im m \left\langle \frac{1}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} \left((dw^{0}, \cdots, 0, \cdots, dw^{n}) - (w^{0}, \cdots, 1, \cdots, w^{n}) \frac{\Re e(w^{\alpha}d\overline{w}_{\alpha})}{1 + w^{\alpha}\overline{w}_{\alpha}} \right), \frac{(w^{0}, \cdots, 1, \cdots, w^{n})}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} \right\rangle$$

$$= \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} i\Im m \left(\left\langle (dw^{0}, \cdots, 0, \cdots, dw^{n}), (w^{0}, \cdots, 1, \cdots, w^{n}) \right\rangle$$

$$- \frac{\Re e(w^{\alpha}d\overline{w}_{\alpha})}{1 + w^{\alpha}\overline{w}_{\alpha}} \left\langle (w^{0}, \cdots, 1, \cdots, w^{n}), (w^{0}, \cdots, 1, \cdots, w^{n}) \right\rangle \right)$$

$$= \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} i\Im m \left(dw^{\mu}\overline{w}_{\mu} - \frac{\Re e(w^{\alpha}d\overline{w}_{\alpha})}{1 + w^{\alpha}\overline{w}_{\alpha}} (w^{\nu}\overline{w}_{\nu} + 1) \right)$$

Enfin, sachant que le second membre dans la partie imaginaire est réel, il vient :

$$\begin{split} \mathcal{A}_i(w) &= \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} i \Im m \left(dw^{\mu}\overline{w}_{\mu} - \frac{\Re e(w^{\alpha}d\overline{w}_{\alpha})}{1 + w^{\alpha}\overline{w}_{\alpha}} \left(w^{\nu}\overline{w}_{\nu} + 1 \right) \right) = \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} i \Im m \left(dw^{\mu}\overline{w}_{\mu} \right) \\ &= \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} \frac{dw^{\mu}\overline{w}_{\mu} - d\overline{w}^{\nu}w_{\nu}}{2} \end{split}$$

Point de subtilité : les coefficients associées au dw^{μ} et $d\overline{w}^{\nu}$ doivent être traité séparément

Annexe C — Géodésique de \mathbb{PC}^n

C.1. Métrique relevée dans les espaces horizontaux

D'abord les vecteurs tangent de \mathbb{S}^n sont séparés en composantes verticale et horizontales :

$$\forall \boldsymbol{v} \in T_p \mathbb{S}^n, \quad \boldsymbol{v} = \boldsymbol{v}_H + \omega_p(\boldsymbol{v})^\# = \boldsymbol{v}_H + \frac{d}{dt} p \cdot \exp\left(it \Im m \langle \boldsymbol{v}, p \rangle\right)\Big|_{t=0}$$
(2.31)

$$= \boldsymbol{v}_H + i\Im m\langle \boldsymbol{v}, p\rangle p \tag{2.32}$$

Ainsi, $\forall \boldsymbol{u}, \boldsymbol{v} \in T_p \mathbb{S}^n$:

$$g_{\pi(p)}(\pi_* \boldsymbol{u}, \pi_* \boldsymbol{v}) = \langle \boldsymbol{u}_H, \boldsymbol{v}_H \rangle = \langle \boldsymbol{u} - \omega_p(\boldsymbol{u})^\#, \boldsymbol{v} - \omega_p(\boldsymbol{v})^\# \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, \omega_p(\boldsymbol{v})^\# \rangle - \langle \omega_p(\boldsymbol{u})^\#, \boldsymbol{v} \rangle + \langle \omega_p(\boldsymbol{u})^\#, \omega_p(\boldsymbol{v})^\# \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, i \Im m \langle \boldsymbol{v}, p \rangle p \rangle - \langle i \Im m \langle \boldsymbol{u}, p \rangle p, \boldsymbol{v} \rangle + \langle i \Im m \langle \boldsymbol{u}, p \rangle p, i \Im m \langle \boldsymbol{v}, p \rangle p \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle + i \Im m \langle \boldsymbol{v}, p \rangle \langle \boldsymbol{u}, p \rangle - i \Im m \langle \boldsymbol{u}, p \rangle \langle p, \boldsymbol{v} \rangle - i \Im m \langle \boldsymbol{u}, p \rangle i \Im m \langle \boldsymbol{v}, p \rangle \langle p, p \rangle$$

¹³Dans le formule ci-dessous, les 0 et 1 sont placés à la i^{eme} coordonnées.

Sachant que ||p|| = 1 et $\Re e\langle \boldsymbol{v}, p \rangle = 0$, il vient :

$$g_{\pi(p)}(\pi_* \boldsymbol{u}, \pi_* \boldsymbol{v}) = \langle \boldsymbol{u}, \boldsymbol{v} \rangle + i \Im m \langle \boldsymbol{v}, p \rangle \langle \boldsymbol{u}, p \rangle - i \Im m \langle \boldsymbol{u}, p \rangle \langle p, \boldsymbol{v} \rangle - i \Im m \langle \boldsymbol{u}, p \rangle i \Im m \langle \boldsymbol{v}, p \rangle \langle p, p \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \Im m \langle \boldsymbol{v}, p \rangle \Im m \langle \boldsymbol{u}, p \rangle + \Im m \langle \boldsymbol{u}, p \rangle \Im m \langle p, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, p \rangle \langle \boldsymbol{v}, p \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, p \rangle \langle \boldsymbol{v}, p \rangle$$

Ce qui donne en coordonnées locales sur \mathbb{S}^n :

$$g = \delta_{\mu\nu} dz^{\mu} d\overline{z}^{\nu} - \delta_{\mu\beta} z^{\mu} d\overline{z}^{\beta} \delta_{\alpha\nu} dz^{\alpha} \overline{z}^{\nu} = (\delta_{\mu\nu} - z_{\nu} \overline{z}_{\mu}) dz^{\mu} d\overline{z}^{\nu}$$

C.2. Ecriture des géodésiques

Les calculs de cette section reprenne en partie les calculs de Mukunda & Simon [17, sec. 4, p. 219].

Etant donnée, sur une variété \mathcal{M} , une métrique g de symbole de Christoffel associé Γ , une géodésique γ de \mathcal{M} vérifie [7] :

$$\forall \sigma, \quad \ddot{\gamma}^{\sigma} + \Gamma^{\sigma}_{\mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu} = 0 \tag{2.33}$$

Pour une variété complexe, les contraintes apportés par les composantes holomorphe et anti-holomorphe sont les mêmes. Le système reste donc le même à la différence près que cette fois les symboles de Christoffel vont s'écrire¹⁴:

$$\Gamma^{\sigma}_{\mu\alpha} = g^{\sigma\overline{\beta}} \partial_{\mu} (g_{\alpha\overline{\beta}}) \qquad \qquad \Gamma^{\overline{\sigma}}_{\nu\beta} = g^{\alpha\overline{\sigma}} \partial_{\overline{\nu}} (g_{\alpha\overline{\beta}}) \qquad (2.34)$$

Le système d'EDP (2.33) s'écrit alors :

$$\begin{split} \ddot{\gamma}^{\sigma} + \Gamma^{\sigma}_{\mu\alpha} \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} &= 0 &\iff \quad \ddot{\gamma}^{\sigma} + g^{\sigma\overline{\beta}} \partial_{\mu} (g_{\alpha\overline{\beta}}) \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} = 0 \\ &\iff \quad g_{\sigma\overline{\beta}} \, \ddot{\gamma}^{\sigma} + g_{\sigma\overline{\beta}} \, g^{\sigma\overline{\beta}} \partial_{\mu} (g_{\alpha\overline{\beta}}) \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} = 0 \\ &\iff \quad g_{\sigma\overline{\beta}} \, \ddot{\gamma}^{\sigma} + \partial_{\mu} (g_{\alpha\overline{\beta}}) \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} = 0 \end{split}$$

Dans le cas de $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$, les $\partial g_{\alpha\overline{\beta}}$ s'écrivent :

$$\partial_{\mu}(g_{\alpha\overline{\beta}}) = \partial_{\mu}(\delta_{\alpha\beta} - \overline{z}_{\alpha}z_{\beta}) = -\delta_{\mu\beta}\overline{z}_{\alpha} \qquad \qquad \partial_{\overline{\nu}}(g_{\alpha\overline{\beta}}) = \partial_{\overline{\nu}}(\delta_{\alpha\beta} - \overline{z}_{\alpha}z_{\beta}) = -\delta_{\nu\alpha}z_{\beta}$$

Donnant les équations :

$$0 = g_{\sigma\overline{\beta}} \ddot{\gamma}^{\sigma} + \partial_{\mu} (g_{\alpha\overline{\beta}}) \dot{\gamma}^{\mu} \dot{\gamma}^{\alpha}$$

$$\forall \beta, \qquad = (\delta_{\sigma\beta} - \overline{\gamma}_{\sigma} \gamma_{\beta}) \ddot{\gamma}^{\sigma} - \delta_{\mu\beta} \overline{\gamma}_{\alpha} \dot{\gamma}^{\mu} \dot{\gamma}^{\alpha} \qquad \Longleftrightarrow \qquad 0 = \ddot{\gamma} - \langle \ddot{\gamma}, \gamma \rangle \gamma - \langle \dot{\gamma}, \gamma \rangle \dot{\gamma}$$

$$= \ddot{\gamma}_{\beta} - \gamma_{\beta} \langle \ddot{\gamma}, \gamma \rangle - \dot{\gamma}_{\beta} \langle \dot{\gamma}, \gamma \rangle$$

Où l'équivalence est justifiée par le fait que les composantes anti-holomorphes des $\gamma, \dot{\gamma}, \ddot{\gamma}$ suivent les mêmes contraintes (à conjugaison près) celles holomorphes.

Pour résoudre ce système, le produit hermitien de ce dernier avec γ est calculé :

$$\ddot{\gamma} = \langle \ddot{\gamma}, \gamma \rangle \gamma + \langle \dot{\gamma}, \gamma \rangle \dot{\gamma} \quad \Longrightarrow \quad \langle \ddot{\gamma}, \gamma \rangle = \langle \ddot{\gamma}, \gamma \rangle \langle \gamma, \gamma \rangle + \langle \dot{\gamma}, \gamma \rangle^2$$

$$\Longrightarrow \quad 0 = \langle \dot{\gamma}, \gamma \rangle$$

On retrouve alors le fait que $\dot{\gamma}$ est horizontale et $\ddot{\gamma} = \gamma \langle \ddot{\gamma}, \gamma \rangle$.

En appliquant à nouveau le produit hermitien mais de l'autre côté, cette fois :

$$\ddot{\gamma} = \gamma \langle \ddot{\gamma}, \gamma \rangle \quad \Longrightarrow \quad \langle \gamma, \ddot{\gamma} \rangle = \langle \gamma, \gamma \rangle \langle \ddot{\gamma}, \gamma \rangle = \langle \ddot{\gamma}, \gamma \rangle$$

¹⁴Les symétries imposées à g par la forme symplectique J annule la majorité des composantes de g et a fortiori, de Γ . Voir [18, sec. 8.4.3]

Sachant que $\gamma \in \mathbb{S}^n$, on a alors :

$$\begin{split} \|\gamma\| &= 1 \implies \langle \gamma, \dot{\gamma} \rangle + \langle \dot{\gamma}, \gamma \rangle = 0 \\ &\implies \langle \gamma, \ddot{\gamma} \rangle + 2 \langle \dot{\gamma}, \dot{\gamma} \rangle + \langle \ddot{\gamma}, \gamma \rangle = 0 \\ &\implies \langle \gamma, \ddot{\gamma} \rangle = -\langle \dot{\gamma}, \dot{\gamma} \rangle \end{split}$$

Finalement l'EDP devient :

$$\ddot{\gamma} = -\langle \dot{\gamma}, \dot{\gamma} \rangle \gamma$$

Or, il existe une paramétrisation de γ telle que $\|\gamma\|=1.$ D'où les solutions :

$$\gamma(t) = \gamma(t_0)\cos(t - t_0) + \dot{\gamma}(t_0)\sin(t - t_0)$$

TABLE DES FIGURES

1.1	Déviation de la phase dynamique par rapport à la phase totale	8
1.2	Ellipse de polarisation d'un signal bivarié réel	9
1.3	Evolution de la phase géométrique d'un signal AM-FM-PM	10
1.4	Sphère de Poincaré, REVOIR LES AXES ET ANGLES	11
1.5	Représentation des paramètres de polarisation instantanée associés à chaque point de la sphère	
	de Poincaré	11
1.6	Exemple de densité spectrale d'un signal réel ESP A 1,4	14
1.7	Représentation graphique du signal x (rouge) avec $\nu_1 = 3$ et $\nu_2 = 0.1$. Sur l'image de gauche, avec signaux de fréquences pures (bleu et vert). Sur l'image de droite, avec son amplitude (bleu) et sa phase instantanée (vert). Les discontinuités de la phase sont dû à l'arrondi à 2π près de l'argument de $\mathcal{A}[x_1]$ et à la façon dont il est calculé lorsque le signal s'annule (mise à 0). Voir ici pour un graphique dynamique	16
1.8		16
1. <i>0</i> 1. <i>9</i>	Sur les deux graphiques sont représentés en vert \hat{a} et en violet \hat{x}_2 . Dans le premier cas	1(
1.5	l'hypothèse de Bedrosian et respectée mais pas dans le second	17
2.1	La première figure de tout bon livre de géométrie différentielle	24
2.2	Diagramme commutatif du passage de f à sa différentielle et/ou à son image réciproque	25
2.3	Ruban de Mobius comme variété fibrée	26
2.4	Représentation d'une section local	27
2.5	Représentation de la section canonique	27
2.6	Interprétation géométrique de la fréquence instantanée	33
2.7	Exemple relèvement horizontale	33
2.8	Représentation des trois phases de γ dans le cas pseudo-cyclique $\ldots \ldots \ldots \ldots$	34

TABLE DES CODES

RÉFÉRENCES

- [1] W. Ballmann, Lectures on Kähler Manifolds, vol. 2 of ESI Lectures in Mathematics and Physics, EMS Press, 1 ed., July 2006.
- [2] A. BOHM, A. MOSTAFAZADEH, H. KOIZUMI, Q. NIU, AND J. ZWANZIGER, *The Geometric Phase in Quantum Systems*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
- [3] C. Cano, Mathematical tools and signal processing algorithms for the study of gravitational waves polarization, phdthesis, Université Grenoble Alpes [2020-....], Oct. 2022.
- [4] D. Chruściński and A. Jamiołkowski, Geometric Phases in Classical and Quantum Mechanics, Birkhäuser Boston, Boston, MA, 2004.
- [5] E. COHEN, H. LAROCQUE, F. BOUCHARD, F. NEJADSATTARI, Y. GEFEN, AND E. KARIMI, Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond, Nature Reviews Physics, 1 (2019), pp. 437–449.
- [6] L. Cohen, *Time frequency analysis*, Prentice Hall signal processing series, Prentice Hall, Englewood Cliffs, NJ, 1995.
- [7] M. DO CARMO, Riemannian Geometry, Mathematics (Boston, Mass.), Birkhäuser, 1992.
- [8] J. Flamant, Une approche générique pour l'analyse et le filtrage des signaux bivariés, these de doctorat, Ecole centrale de Lille, Sept. 2018.
- [9] J. FLAMANT, N. LE BIHAN, AND P. CHAINAIS, *Time-frequency analysis of bivariate signals*, Applied and Computational Harmonic Analysis, 46 (2019), pp. 351–383.
- [10] N. Kayban, Riemannian Immersions and Submersions.
- [11] J. LAFONTAINE, An Introduction to Differential Manifolds, Springer International Publishing, Cham, 2015.
- [12] N. LE BIHAN, J. FLAMANT, AND P.-O. AMBLARD, Modèles physiques à deux états pour les signaux bivariés: modulation de polarisation et phase géométrique, in GRETSI 2023 XXIXème Colloque Francophone de Traitement du Signal et des Images, Grenoble, France, Aug. 2023, GRETSI Groupe de Recherche en Traitement du Signal et des Images.
- [13] ——, The Geometric Phase of Bivariate Signals, in 2024 32nd European Signal Processing Conference (EUSIPCO), Lyon, France, Aug. 2024, IEEE, pp. 2562–2566.
- [14] J. Lefevre, *Polarization analysis and optimization geometry*, phdthesis, Université Grenoble Alpes [2020-....]; University of Melbourne, Dec. 2021.
- [15] J. M. LILLY, Modulated Oscillations in Three Dimensions, IEEE Transactions on Signal Processing, 59 (2011), pp. 5930-5943.
- [16] J. M. LILLY AND S. C. OLHEDE, Analysis of Modulated Multivariate Oscillations, IEEE Transactions on Signal Processing, 60 (2012), pp. 600–612.
- [17] N. MUKUNDA AND R. SIMON, Quantum Kinematic Approach to the Geometric Phase. I. General Formalism, Annals of Physics, 228 (1993), pp. 205–268.
- [18] M. NAKAHARA, Geometry, Topology and Physics, Second Edition, Taylor & Drancis, June 2003.
- [19] Pham Mâu Quân, Introduction à la géométrie des variétés différentiables, Monographies universitaires de mathématiques, Dunod, Paris, 1969.
- [20] E. M. Rabei, Arvind, N. Mukunda, and R. Simon, Bargmann invariants and geometric phases: A generalized connection, Physical Review A, 60 (1999), pp. 3397–3409.
- [21] S. Wang, Simple proofs of the Bedrosian equality for the Hilbert transform, Science in China Series A: Mathematics, 52 (2009), pp. 507–510.