CPEN 400Q Lecture 18 Noise and error channels

Monday 17 March 2025

Announcements

- Quiz 8 today
- MT checkpoints this week
- Sign up for final oral interview (Canvas calendar)
- A3 due Tuesday 25 March 23:59
- New slide format feedback welcome

Last time

We expressed density matrices (for pure or mixed states) as

Since ρ is positive semidefinite,

Last time

The set $(\langle X \rangle, \langle Y \rangle, \langle Z \rangle)$ form the Bloch vector, $\langle P \rangle = \text{Tr}(P\rho)$.

2025-03-17 CPEN400Q 2024W2 L18 4 / 24

Unitary operations preserve length of Bloch vector

To take pure states to mixed states, apply a quantum channel:

Quantum channels are CPTP linear maps.

- **■** Trace-Preserving:
- Positive:
- Completely Positive:

Last time

Quantum channels are characterized by **Kraus operators** $\{K_i\}$,

Example: unitary channel, \mathcal{U} , $\{K_i\} = \{U\}$.

Example: a projective measurement \mathcal{M} , $\{K_i\} = \{\Pi_i\}$

2025-03-17 CPEN400Q 2024W2 L18

Learning outcomes

- Express noise in quantum systems using quantum channels
- 2 Compare density matrices with fidelity and trace distance
- 3 Apply noise to quantum circuits in PennyLane

The bit flip channel

Suppose a "bit flip" (Pauli X) error occurs with probability p.

How do we write this as a channel? What are the Kraus operators?

The bit flip channel

We can visualize the effects of the channel by observing how it deforms the Bloch sphere.

Consider:

- Which states are not affected by a bit flip channel?
- Which states are most affected, and where do they go? Then look at the density matrices of these states.

2025-03-17 CPEN400Q 2024W2 L18 9 / 24

The bit flip channel

The phase flip channel

Suppose a "phase flip" (Pauli Z) error occurs with probability p.

How do we write this as a channel? What are the Kraus operators?

The phase flip channel

Same questions:

- Which states are not affected by a phase flip channel?
- Which states are *most* affected, and where do they go?

Then look at the density matrices of these states.

The phase flip channel

The depolarizing channel

Suppose each Pauli error occurs with probability p/3.

How do we write this as a channel? What are the Kraus operators?

Q: What will happen to the Bloch sphere?

The depolarizing channel

The depolarizing channel

$$\Phi(\rho) = (1 - p)\rho + \frac{p}{3}X\rho X + \frac{p}{3}Y\rho Y + \frac{p}{3}Z\rho Z$$

can also be written as

2025-03-17 CPEN400Q 2024W2 L18 15 / 24

Amplitude damping channel

Suppose $|1\rangle$ relaxes to $|0\rangle$ with probability p.

How do you think this affects the Bloch sphere?

The inner product tells us how close two pure states are:

How close are two mixed states ρ and σ ?

One common metric is the **trace distance**:

Bounded by $0 \le T(\rho, \sigma) \le 1$; *lower* trace distance is better.

Can also compare using **fidelity**,

Bounded by $0 \le F(\rho, \sigma) \le 1$. Higher fidelity is better.

Example: Determine $F(\rho, \sigma)$ if both ρ, σ are pure.

2025-03-17 CPEN400Q 2024W2 L18 18 / 24

Exercise: Determine $F(\rho, \sigma)$ if ρ is pure but σ is mixed.

Exercise: What is the fidelity of any pure ρ with the maximally mixed state, $\sigma = \frac{1}{2}I$?

Exercise: Determine $F(\rho, \sigma)$ if ρ is pure and and $\sigma = \Phi(\rho)$, where Φ is the *bit flip channel* with parameter ρ .

Simulating noisy systems

Exercise: Suppose we prepare a system in the state

$$|\psi
angle=rac{1}{2}|0
angle+rac{\sqrt{3}}{2}|1
angle$$

If a depolarizing channel with p=0.02 is applied, what's the probability of observing $|0\rangle$?

Solution 1: solve by hand. Tedious, but can evaluate

Simulating noisy systems

Solution 2: use PennyLane's ''default.mixed'' device!

Resources:

- https://docs.pennylane.ai/en/stable/introduction/ operations.html#noisy-channels
- https:
 //docs.pennylane.ai/en/stable/code/qml_noise.html

2025-03-17 CPEN400Q 2024W2 L18 23 / 24

Next class:

■ Intro to quantum error correction

Action items:

- MT checkpoint meetings
- A3 (due 25 March 23:59)
- Work on project

Recommended reading:

- From this class: Codebook NT, DM; N&C 8.2-8.3, 9.1-9.2
- For next class: Codebook EC; N&C 10.1-10.2