Micro-Syllabus of CSIT Physics

Text Book (A): Garcia Narciso, Damask Arthur, *Physics for Computer Science Students*, Springer-Verlag Reference Books:

(B): Heliday David, Resnick Robert and Walker Gearl, *Fundamentals of Physics*, 9th ed., John-Wiley and Sons, Inc.

(C): Francis W. Sears, Hugh D. Young, Roger Freedman, Mark Zemansky, *University Physics*, Volume 1 & 2, 14th ed., Pearson Publication

(D): Knight Randall D., *Physics for Scientists and Engineers: A Strategic Approach*, 3rd ed., Pearson Publication

Unit	Content	Teaching Methodology Teaching				
		Modes	Text Book (A)	Reference Books	Hours	
UNIT 1: Rotational Dynamics and Oscillatory Motion (5 hrs)						
1	Moment of inertia and torque	Multimedia	p98-p99	Ref. B, D	1 hour	
1	Rotational kinetic energy	Multimedia	p101-p104	Ref. B, D	1 hour	
1	Conservation of angular momentum	Board & Marker	p106-p109	Ref. B, D	1 hour	
1	Oscillation of spring: frequency, period, amplitude, phase angle and energy	Board & Marker	p132-p141	Ref. B, D	2 hours	
1	Numerical (12)	Board & Marker (a few problem can be discussed)	Text Book (A): Example: 8.1, 8.2, 8.4, 10.2, 10.3 Problems: 8.1, 8.2, 8.7, 8.18, 10.5, 10.13, 10.18 Note: Reference C is preferred for additional numerical.		(Tutorial: 2 hours)	
UNIT	2: Electric and Magnetic Field	l (5 hrs)				
2	Electric field and potential	Multimedia	p188-p195	Ref. B, D	2 hours	
2	Magnetic field & Force on current carrying wire (should be extended up to torque)	Board & Marker	p228-p232	Ref. B, D	1 hour	
2	Magnetic dipole moment, Force on a moving charge	Board & Marker	p232-p234	Ref. B, D	1 hour	
2	Hall effect, Electromagnetic waves	Multimedia	p235-p239	Ref. B, D	1 hour	
2	Numerical (12)	Board & Marker (a few problem can be discussed)	Text Book (A): Example: 14.1, 14.2, 14.3, 16.1, 16.2 Problems: 14.6, 14.8, 14.21, 16.1, 16.2, 16.12, 16.13 Note: Reference B. C is preferred for additional numerical.		(Tutorial: 2 hours)	
UNIT 3: Fundamentals of Atomic Theory (8 hrs)						
3	Blackbody radiation	Board & Marker	p244-p247	Ref. C, D	1 hour	
3	Bohr atom, Spectrum of Hydrogen	Board & Marker	p269-p274	Ref. C, D	2 hours	
3	Franck-Hertz experiment	Multimedia	p274-p277	Ref. B, D	1 hour	
3	de Broglie's hypothesis and its experimental verification	Multimedia	p280-p282	Ref. B, D	1 hour	

3	Uncertainty principle and its origin	Board & Marker	p285-p289	Ref. B, C	1 hour	
3	matter waves and the uncertainty principle	Board & Marker	p289-p290	Ref. B, C	1 hour	
3	group velocity	Multimedia	p292-p293	Ref. B, C	1 hour	
3	Numerical (11)	Board & Marker (a few problem can be discussed)	Text Book (A): Example: 18.2, 19.1 Problems: 18.1, 18.2, 18.3, 18.19, 19.2, 19.7, 19.11, 19.16, 19.19 Note: Reference C is preferred for additional numerical.		(Tutorial: 2 hours)	
UNIT 4: Methods of Quantum Mechanics (5 hrs)						
4	Schrodinger theory of quantum mechanics and its application	Board & Marker	p298-p303	Ref. C, D	1 hour	
4	Outline of the solution of Schrodinger equation for H- atom	Board & Marker	p323-p326	Ref. C, D	2 hours	
4	space quantization and spin	Multimedia	p326-p332	Ref. C, D	1 hour	
4	Atomic wave functions	Multimedia	p333-p336	Ref. C, D	1 hour	
4	Numerical (8)	Board & Marker (a few problem can be discussed)	Text Book (A): Example: 20.2, 21.2 Problems: 20.1, 20.2, 20.3, 20.12, 21.3, 21.6 Note: Reference C is preferred for additional numerical.		(Tutorial: 2 hours)	
UNIT 5: Fundamentals of Solid State Physics (6 hrs)						
5	Crystal structure, Crystal bonding	Board & Marker	p348-p358	Ref. C & D	1 hour	
5	Classical and quantum mechanical free electron model	Board & Marker	p362-p367 p370-p375	Ref. C & D	2 hour	
5	mechanical free electron	Board & Marker Board & Marker		Ref. C & D Ref. C & D	2 hour 2 hour	
	mechanical free electron model Bloch theorem, Kronig- Penny model, Tight-binding approximation conductors, insulators and semiconductors		p370-p375			
5	mechanical free electron model Bloch theorem, Kronig- Penny model, Tight-binding approximation conductors, insulators and semiconductors effective mass and holes	Board & Marker Multimedia Multimedia	p370-p375 p396-p415 p415-p417 p417-p420 p422-p423	Ref. C & D	2 hour 30 minutes 30 minutes	
5	mechanical free electron model Bloch theorem, Kronig- Penny model, Tight-binding approximation conductors, insulators and semiconductors	Board & Marker Multimedia	p370-p375 p396-p415 p415-p417 p417-p420 p422-p423 Text Book (A): Example: 23.1,	Ref. C & D Ref. C & D Ref. C & D 23.2 22.3, 22.4, 22,5, 22.9, C is preferred for	2 hour 30 minutes	
5 5 5	mechanical free electron model Bloch theorem, Kronig- Penny model, Tight-binding approximation conductors, insulators and semiconductors effective mass and holes	Board & Marker Multimedia Multimedia Board & Marker (a few problem can be discussed)	p370-p375 p396-p415 p415-p417 p417-p420 p422-p423 Text Book (A): Example: 23.1, Problems: 22.1, 24.6, 24.8 Note: Reference Cadditional numeri	Ref. C & D Ref. C & D Ref. C & D 23.2 22.3, 22.4, 22,5, 22.9, C is preferred for	2 hour 30 minutes 30 minutes (Tutorial:	
5 5 5	mechanical free electron model Bloch theorem, Kronig-Penny model, Tight-binding approximation conductors, insulators and semiconductors effective mass and holes Numerical (9)	Board & Marker Multimedia Multimedia Board & Marker (a few problem can be discussed)	p370-p375 p396-p415 p415-p417 p417-p420 p422-p423 Text Book (A): Example: 23.1, Problems: 22.1, 24.6, 24.8 Note: Reference Cadditional numeri	Ref. C & D Ref. C & D Ref. C & D 23.2 22.3, 22.4, 22,5, 22.9, C is preferred for	2 hour 30 minutes 30 minutes (Tutorial:	
5 5 5 UNIT	mechanical free electron model Bloch theorem, Kronig- Penny model, Tight-binding approximation conductors, insulators and semiconductors effective mass and holes Numerical (9) 6: Semiconductor and Semiconductors and Semiconductors and Semiconductors	Board & Marker Multimedia Multimedia Board & Marker (a few problem can be discussed)	p370-p375 p396-p415 p415-p417 p417-p420 p422-p423 Text Book (A): Example: 23.1, Problems: 22.1, 24.6, 24.8 Note: Reference Cadditional numeri 3 hrs)	Ref. C & D Ref. C & D Ref. C & D 23.2 22.3, 22.4, 22,5, 22.9, is preferred for cal.	2 hour 30 minutes 30 minutes (Tutorial: 2 hours)	

6	Metal-metal junction: The contact potential, The semiconductor diode (2)	Board & Marker	p454-p465	Ref. C	2 hours
6	Bipolar junction transistor (BJT), Field effect transistor (FET) (2)	Board & Marker	p465-p477	Ref. C	2 hours
6	Numerical (11)	Board & Marker (a few problem can be discussed)			(Tutorial: 2 hours)
UNIT	7: Universal Gates and Physic	s of Integrated Ci	rcuits (8 hrs)		
7	Universal gates		p488-p494	Ref. C	1 hour
7	RTL and TTL gates		p494-p496	Ref. C	1 hour
7	Memory circuits, Clock circuits		p497-p500	Ref. C & D	2 hours
7	Semiconductor purification: Zone refining, Single crystal growth		p504-p508	Ref. D	2 hours
7	Processes of IC production		p508-p511	Ref. D	1 hour
7	Electronic component fabrication on a chip		p511-p515	Ref. C & D	1 hour
7	Numerical (4)	Board & Marker (a few problem can be discussed)	Text Book (A): Problems: 27.1, Note: Reference Cadditional numeri		(Tutorial: 1 hour)
Total Lecture and Tutorial Hours					45 lectures (+13 Tutorial Hours)

CSIT FIRST SEMESTER PHYSICS EXPERIMENTS

Students should perform at least 5 experiments (at least one from each groups) in a group of 2 students. They should submit report of the experiment individually. Students should write their lab report of each experiment in this format:

Name of the Experiment: Apparatus Required: Theory/Working Formula Observation Calculation Result Error Analysis Discussion

The list the experiments are as follows:

(1) Determine the moment of inertia and angular acceleration of a flywheel.

OR

Study Bar Pendulum and find moment of inertia and angular acceleration about various fix points.

Study Torsional pendulum and find moment of inertia and angular acceleration.

(2) Determine the capacitance of a capacitor by ac bridge (de-Sauty's method).

OR

Study the characteristics of Zener diode its use as voltage regulation

ЭR

Design and study the parallel LCR circuits for finding the quality factor of the elements.

(3) Study the temperature dependence of resistance of a given semiconductor.

 $\cap R$

Study and determine the band gap in metals and semiconductors using appropriate method.

(4) Study the drain and transfer characteristics of junction field effect transistor (JFET).

OR

Study RS-Flip-flop using breadboard.

(5) Design and Study the LOGIC Gates: NOT, AND, OR, NOR & NAND Using TTL. Also Study the Power Loss in NOT Gate.

OR

Study NAND/NOR gates as Universal logic gates.

Evaluation: The duration of practical examination will be 3 hours. Students should perform one experiment, took own observational data, calculate the result and interpret it using suitable error analysis. The internal and external examiner (appointed by the Dean Office) will evaluate the performance in this format:

(1) Experiment: 40%
 (2) Write-up: 30%
 (3) VIVA Examination: 30%

Format of the Final Examination Question

7. Numerical 4

8. Numerical 5

9. Numerical 6

Full Marks: 60 Pass Marks: 24
Subject: Physics Duration: 3 Hours

[5]

[5]

[5]

Subject: Physics		Duration: 3 Hours		
Attempt any TWO questions.	[10x2 = 20]	Descriptions		
1. Long Question	[10]	>> Unit 5, 6 & 7		
2. Long Question	[10]	>> Unit 1, 2		
3. Long Question	[10]	>> Unit 3,4		
Attempt any 8 questions.	[5x8 = 40]			
1. Short Question	[5]	>> Unit 1, 2, 3		
2. Short Question	[5]	>> Unit 4, 5		
3. Short Question	[5]	>> Unit 6, 7		
4. Numerical 1	[5]	>> Numerical: Unit 1		
5. Numerical 2	[5]	>> Numerical: Unit 2		
6. Numerical 3	[5]	>> Numerical: Unit 3		

>> Numerical: Unit 4

>> Numerical: Unit 5
>> Numerical: Unit 6,7

Physics for B.Sc. CSIT

Curriculum

 Course Title: Physics
 Full Marks: 60 + 20 + 20

 Course No.: PHY113
 Pass Marks: 24 + 8 + 8

Nature of the Course: Theory + Lab Credit Hour: 3

Semester: I

Course Description: This course covers the fundamentals of physics including oscillations, electromagnetic theory, and basics of quantum mechanics, band theory, semiconductors and universal logic gates and finally physics of manufacturing integrated circuits.

Course Objectives: The main objective of this course is to provide knowledge in physics and apply this knowledge for computer science and information technology.

Course Contents:

Unit 1: Rotational Dynamics and Oscillatory Motion (5 hrs)

Moment of inertia and torque, Rotational kinetic energy, Conservation of angular momentum, Oscillation of spring: frequency, period, amplitude, phase angle and energy

Unit 2: Electric and Magnetic Field (5 hrs)

Electric and magnetic field and potential, Force on current carrying wire, magnetic dipole moment, Force on a moving charge, Hall effect, Electromagnetic waves

Unit 3: Fundamentals of Atomic Theory (8 hrs)

Blackbody radiation, Bohr atom, Spectrum of Hydrogen, Franck-Hertz experiment, de Broglie's hypothesis and its experimental verification, Uncertainty principle and its origin, matter waves and the uncertainty principle, group velocity.

Unit 4: Methods of Quantum Mechanics (5 hrs)

Schrodinger theory of quantum mechanics and its application, Outline of the solution of Schrodinger equation for H-atom, space quantization and spin, Atomic wave functions

Unit 5: Fundamentals of Solid State Physics (6 hrs)

Crystal structure, Crystal bonding, Classical and quantum mechanical free electron model, Bloch theorem, Kronig-Penny model, Tight-binding approximation, conductors, insulators and semiconductors, effective mass and holes.

Unit 6: Semiconductor and Semiconductor devices (8 hrs)

Intrinsic and extrinsic semiconductors, Electrical conductivity of semiconductors, Photoconductivity, Metalmetal junction: The contact potential, The semiconductor diode, Bipolar junction transistor (BJT), Field effect transistor (FET).

Unit 7: Universal Gates and Physics of Integrated Circuits (8 hrs)

Universal gates, RTL and TTL gates, Memory circuits, Clock circuits, Semiconductor purification: Zone refining, Single crystal growth, Processes of IC production, Electronic component fabrication on a chip.

Laboratory Works:

Students should able to perform at least one experiment from units 1, 2 and 5, 6, 7. The details of the experiment will be provided in the manual.

Text Book:

1. Garcia Narciso, Damask Arthur, *Physics for Computer Science Students*, Springer-Verlag

Reference Books:

- 1. Heliday David, Resnick Robert and Walker Gearl, *Fundamentals of Physics*, 9th ed., John-Wiley and Sons, Inc.
- 2. Francis W. Sears, Hugh D. Young, Roger Freedman, Mark Zemansky, *University Physics*, Volume 1 & 2, 14th ed., Pearson Publication
- 3. Knight Randall D., *Physics for Scientists and Engineers: A Strategic Approach*, 3rd ed., Pearson Publication