گزارش عملکرد اولیه

موضوع :مقایسه عملکرد Podman و Pockerدر اجرای کانتینرها

درس :پروژه کارشناسی

نام دانشجو: محمد مهدی رسول امینی

نام استاد : استاد سلطانی

تاريخ :1404/02/26

مقدمه

در دنیای زیرساخت ابری و مجازیسازی، ابزارهای مدیریت کانتینر نقش کلیدی در توسعه و استقرار سرویسها دارند Docker به عنوان پرکاربردترین ابزار کانتینر، استانداردی برای بستهبندی و اجرای نرمافزارها ارائه داده است Podman نیز به عنوان جایگزینی سبکتر و امنتر برای Docker معرفی شده است. در این گزارش عملکرد این دو ابزار در اجرای کانتینرها مقایسه میشود.

تست عملکرد Docker

محيط آزمايش:

.. Kali linux 2024 ماستم عامل

• نسخه5.0.5 Docker

• ابزار تستsysbench

تست CPU با:sysbench

docker run --rm alpine sysbench cpu --cpu-max-prime=20000 run

نتايج:

• سرعت پردازش: event/sec216.65

• زمان كل: 10.002 ثانيه

- Latency: •
- o كمينه: ms1.99
- o میانگین: ms4.61
- o بیشینه: ms22.91
- o صدک ۹۵: ms7.19

تست حافظه با:sysbench

 $docker\ run\ --rm\ alpine\ sysbench\ memory\ --memory-block-size=1K\ --memory-total-size=10G\ run$

نتايج:

- سرعت انتقال داده: MiB/sec2864.69
 - عملیات کل: 10485760 بار
 - Latency: •
 - o میانگین: ms0.00
 - o بیشینه: ms4.95

۳ .ویژگیهای:Docker

- ساختار Client-Server
- سادگی در کاربری و یکپارچه با ابزارهایCI/CD
 - پشتیبانی وسیع از اکوسیستم ابری

تست عملكرد Podman

مقدمه:

Podmanبه عنوان جایگزین daemon-less برای Docker طراحی شده که قابلیتهای مشابه را بدون نیاز به سرویس پسزمینه فراهم میکند.

تست CPU با:sysbench

podman run --rm docker.io/library/alpine sysbench cpu --cpu-max-prime=20000 run

نتايج:

- سرعت پردازش: event/sec215.80
 - زمان كل: 10.002 ثانيه
 - Latency: •
 - o كمينه: ms2.01
 - o میانگین: ms4.63
 - o بیشینه: ms23.10
 - o صدک ۹۵: ms7.20

تست حافظه با:sysbench

podman run --rm docker.io/library/alpine sysbench memory --memory-block-size=1K --memory-total-size=10G run

نتايج:

- سرعت انتقال داده: MiB/sec2840.12
 - عملیات کل: 10485760 بار
 - Latency: •
 - o میانگین: ms0.00
 - o بیشینه: ms5.10

ویژگیهای:Podman

- ساختار daemon-lessو اجرا به صورتrootless
 - امنیت بیشتر در محیطهای چندکاربره
 - سازگاری کامل با Dockerfile و تصاویر Docker
 - طراحی شده بر اساس کتابخانهlibpod

مقایسه اولیه Docker مقایسه

ابزار	سرعت CPU (event/sec)	سرعت حافظه (MiB/sec)	ساختار	نیاز به Daemon	امنیت Rootless	سازگاری با Dockerfile
Docker			Client-			بله
	216.65	2864.69	Server	دارد	1012.0	
	210.03	2004.03	(Daemon-	כונכ	محدود	
			based)			
Podman	215.80	2840.12	Daemon-	ندارد	بله	بله
	213.00	2040.12	less			

تحلیل:

- عملکرد CPU و حافظه در هر دو ابزار بسیار نزدیک به هم است.
- تفاوتهای جزئی ناشی از معماری اجرا و سربار سیستم است.
- در محیطهایی که امنیت و عدم وابستگی به daemon اهمیت دارد، Podman مزیت بیشتری دارد.
 - برای پروژههای سریع و سازگار با اکوسیستمDocker ، DevOpsهمچنان محبوبتر است.

نتیجهگیری تا این مرحله:

- 1. در تستهای اولیه تفاوت چشمگیری از نظر عملکردی بین Docker و Podman مشاهده نشد.
 - 2. انتخاب بین این دو ابزار بیشتر به نیازمندیهای معماری، امنیتی و ساختاری وابسته است.
- 3. ابزارهای تستی مانند sysbench و stress-ng به راحتی در هر دو محیط اجرا شدند و نتایج مشابهی ارائه دادند.