STAT 330 - MATHEMATICAL STATISTICS

FANTASTIC THEOREMS AND HOW TO PROVE THEM

Jose Luis Avilez
Faculty of Mathematics
University of Waterloo

Chapter 1

Random Variables

Definition 1.1. A sample space S is the set of all possible outcomes in an experiment. In an experiment one, and only one, outcome can occur (that is, they are mutually disjoint). An event A is a subset of the sample space $A \subseteq S$.

Definition 1.2. Let S be a sample space with power set $\mathcal{P}(S)$. The collection of sets $\mathcal{B} \subseteq \mathcal{P}(S)$ is called a σ -field (or σ -algebra) on S if:

- 1. $\emptyset \in \mathcal{B}$ and $S \in \mathcal{B}$
- 2. \mathcal{B} is closed under complementation
- 3. \mathcal{B} is closed under countable unions

The pair (S, \mathcal{B}) is called a **measurable space**.

Definition 1.3. Let S be a sample space with a sigma field $\mathcal{B} = \{A_1, A_2, \ldots\}$. A **probability set function** or **probability measure** is a function $P : \mathcal{B} \to [0, 1]$ that satisfies:

- 1. $P(A) \geq 0, \forall A \in \mathcal{B}$
- 2. P(S) = 1
- 3. If $A_1, A_2, \ldots \in \mathcal{B}$ are disjoint events, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

We call the triple (S, \mathcal{B}, P) a **probability space**.

Definition 1.4. Consider the probability space (S, \mathcal{B}, P) . The function $X : S \to \mathbb{R}$ is called a **random variable** if

$$P(X \leq x) = P(\{\omega \in S : X(\omega) \leq x\})$$

is defined for all $x \in \mathbb{R}$.

Definition 1.5. The cumulative distribution function of a random variable X is defined as

$$F(x) = P(X \le x)$$

for all $x \in \mathbb{R}$.

Definition 1.6. X is said to be a **discrete random variable** if its domain of values form a countable set $D(X) = \{x_1, x_2, \ldots\}$ and its probability function is defined as:

$$f(x) := P(X = x) = F(x) - \lim_{\epsilon \to 0^+} F(x - \epsilon)$$

The set $A = \{x : f(x) > 0\}$ is called the **support** of X and

$$\sum_{x \in A} f(x) = \sum_{i=1}^{\infty} f(x_i) = 1$$

Definition 1.7. A random variable X is said to be **continuous** if its cumulative distribution function is a continuous function on \mathbb{R} and is differentiable everywhere except possibly at countably many points. The set $\{x: f(x) > 0\}$ is called the **support** of X and

$$\int_{x \in A} f(x)dx = 1$$

If X is continuous then the probability density function is defined to be

$$f(x) = \frac{d}{dx}F(x)$$

Definition 1.8. The gamma function is defined as

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$$

Theorem 1.9. If X and Y = h(X) are both discrete random variables, then the probability distribution of Y is given by

$$P(Y = y) = \sum_{\{x:h(x)=y\}} P(X = x)$$

Theorem 1.10. If X is continuous and Y is discrete with $A = \{x : h(x) = y\}$, then

$$P(Y = y) = \int_{x \in A} f(x)dx$$

Theorem 1.11. If X and Y = h(X) are both continuous, then

$$F_Y(y) = P(Y \le y) = P(h(X) \le y)$$

Theorem 1.12. Suppose h is a monotone differentiable function on the support of X, with continuous random variables X and Y = h(X). Then,

$$f_Y(y) = f_x \left(h^{-1}(y) \right) \left| \frac{d}{dy} h^{-1}(y) \right|$$

Definition 1.13. If X is a discrete random variable with p.m.f. f(x) and support A, then the **expectation** or **expected value** of X is defined by:

$$E(X) = \sum_{x \in A} x f(x)$$

provided that the sum converges absolutely; that is, $E(|X|) < \infty$. Otherwise, we say that E(X) does not exist.

Definition 1.14. If X is a continuous random variable with p.d.f. f(x) and support A, then the **expectation** or **expected value** of X is defined by:

$$E(X) = \int_{x \in A} x f(x)$$

provided that the integral converges absolutely; that is, $E(|X|) < \infty$.

Theorem 1.15. Probability Integral Transformation. Suppose X is continuous random variable with c.d.f. F. Then $Y = F(X) \sim \text{Unif}(0,1)$.

Proof. Since X is continuous, then F is a monotonically increasing continuous function, and is thus injective. It is thus surjective onto its range, and thus bijective and an inverse F^{-1} exists. Thus, we have,

$$P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = F(F^{-1}(y)) = y$$

Now, we may obtain the pmf by taking the derivative

$$\frac{d}{du}(y) = 1$$

Since this holds over $0 \le y \le 1$ it follows that Y follows a uniform distribution on the desired range.

Theorem 1.16. Suppose X is a nonnegative continuous random variable with c.d.f. F(x) and finite expectation. Then

$$E(X) = \int_0^\infty [1 - F(x)] dx$$

If X is a discrete random variable with finite expectation, where $R(X) = \{1, 2, 3, \ldots\}$, then

$$E(X) = \sum_{i=1}^{\infty} P(X \ge x)$$

Theorem 1.17. Suppose that h(X) is a real-valued function.

1. If X is a discrete random variable with p.m.f. f(x) and support A, then

$$E(h(X)) = \sum_{x \in A} h(x)f(x)$$

provided that the sum converges absolutely.

2. If X is a continuous random variable with p.d.f. f(x), then

$$E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx$$

provided that the integral converges absolutely.

Proof. This is the law of the unconscious statistician. It is left as an exercise for all statisticians who used it without proof.

Theorem 1.18. Expectation is linear.

Proof. Follows trivially from the fact that summation and integration are linear.

Example 1.19. Although expectation is linear, it usually does not commute as an operator with transformations. That is, in general $E(g(X)) \neq g(E(X))$

Definition 1.20. The following are special cases of the expectation of transformations of X:

- 1. The **variance** of X is $\operatorname{Var}(X) = \operatorname{E}\left[(X \mu)^{2}\right] = \operatorname{E}\left(X^{2}\right) \operatorname{E}(X)^{2}$.
- 2. The k-th moment of X is $E(X^k)$.
- 3. The k-th moment about the mean is $E[(X \mu)^k]$.
- 4. The k-th factorial moment about the mean is $E[X(X-1)...(X-k+1)] = E(X^{(k)}) = E\left[\frac{X!}{(X-k)!}\right]$.

Theorem 1.21. Suppose X is a random variable, then $Var(aX + b) = a^2Var(X)$.

Proof. Follows from the definition of variance.

Example 1.22. If $X \sim Po(\theta)$ then $E(X^{(k)}) = \theta^k$. The calculation is as follows:

$$E\left[X^{(k)}\right] = \sum_{k=0}^{\infty} \frac{x!}{(x-k)!} \frac{e^{-\infty} \theta^x}{x!}$$
$$= \theta^k \sum_{k=0}^{\infty} \frac{x!}{(x-k)!} \frac{e^{-\infty} \theta^{(x-k)}}{x!}$$
$$= \theta^k$$

Theorem 1.23. If X is a random variable and u(X) is a nonnegative real-values function such that E[u(X)] exists, then for any positive constant c > 0,

$$P[u(X) \ge c] \le \frac{\mathrm{E}[u(X)]}{c}$$

Proof. We argue as follows:

$$\begin{split} & \operatorname{E}\left[u(X)\right] = \int_{x \in A} u(x) f(x) dx + \int_{x \notin A} u(x) f(x) \\ & \geq \int_{x \in A} u(x) f(x) dx \\ & \geq \int_{x \in A} c f(x) dx \\ & = c \int_{x \in A} f(x) dx \\ & = c P(X \in A) \\ & = c P(u(X) \geq c) \end{split}$$

Which completes the proof.

Theorem 1.24. Markov's Inequality. Suppose that X is a random variable and k > 0 is a constant. Then

$$P(|X| \ge c) \le \frac{\mathrm{E}\left[|X|^k\right]}{c^k}$$

Proof. Follows from Theorem 1.23.

Theorem 1.25. Chebyshev's Inequality. Suppose X is a random variable with a finite mean μ and finite variance σ^2 . Then for any k > 0,

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

or, equivalently,

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$

Proof. Follows from Markov's Inequality.

Definition 1.26. If X is a random variable then the moment generating function of X is given by

$$M_X(t) = \mathrm{E}\left[e^{tX}\right]$$

provided that this expectation exists for all $t \in (-h, h)$ for some h > 0.

Example 1.27. Let $X \sim \Gamma(\alpha, \beta)$. Then, after some algebraic mumbo-jumbo, we can find that $M_X(t) = (1 - t\beta)^{-\alpha}$ for $t < \beta^{-1}$.

Theorem 1.28. Some properties of the moment generating function of X:

- 1. $M_X(0) = 1$
- 2. If the m.g.f. exists, then the k-th moment is given by $E[X^k] = M_X^{(k)}(0)$

Proof strategy. The first property is trivial. The second property can be proven by taking a Taylor expansion of e^{tX} , taking the k-th derivative of $\mathrm{E}\left[e^{tX}\right]$, using the Lebesgue Dominated Convergence Theorem to commute the differentiation and summation operators, and observe that when evaluating the expression at t=0, we obtain the expectation of the k-th moment. I might post a complete proof at a later date. Might.

Theorem 1.29. Suppose the random variable X has m.g.f. $M_X(t)$ defined for $t \in (-h,h)$. Let Y = aX + b where $a, b \in \mathbb{R}$. Then,

$$M_Y(t) = e^{bt} M_X(at)$$
 $|t| < \frac{h}{|a|}$

Proof. Follows from the definition of moment generating functions.

Theorem 1.30. Uniqueness theorem. Suppose that X and Y have the same moment generating function over the same domain. Then X and Y have the same distribution, modulo a set of Lebesgue measure zero.

Proof. Stay tuned for PMATH 352!

Example 1.31. Suppose $X \sim Unif(0,1)$ and let $Y = -2\log X$. Then using the uniqueness theorem, we can prove that $Y \sim \chi_2^2$.

Chapter 2

Joint Distributions

Definition 2.1. Suppose X and Y are random variables defined on a sample space S. Then (X,Y) is a **random vector** whose **joint cdf** is

$$F(x,y) = P(X \le x, Y \le y) = P[X \le x \cap Y \le y] \qquad (x,y) \in \mathbb{R}^2$$

Theorem 2.2. The following are cool facts of life related to joint cdfs:

- 1. For fixed x, F is non-decreasing in y.
- 2. For fixed y, F is non-decreasing in x.
- 3. $\lim_{x\to-\infty} F(x,y) = 0$ and $\lim_{y\to-\infty} F(x,y) = 0$
- 4. $\lim_{(x,y)\to(-\infty,-\infty)} F(x,y) = 0$ and $\lim_{(x,y)\to(\infty,\infty)} F(x,y) = 1$

Proof. Each of these follows using properties of cdfs.

Definition 2.3. The marginal cdf of X given a joint cdf F(x,y) is

$$F_X(x) = P(X \le x) = \lim_{y \to \infty} F(x, y) \qquad x \in \mathbb{R}$$

Definition 2.4. Two random variables X and Y are said to be **jointly continuous** if there exists a function f(x, y) such that the joint c.d.f. of X and Y can be written as

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t_1, t_2) dt_2 dt_1 \qquad \forall (x,y) \in \mathbb{R}^2$$

We define the **joint p.d.f.** as

$$\frac{\partial^2}{\partial x \partial y} F(x, y)$$

Definition 2.5. Suppose X and Y are both continuous random variables with joint p.d.f. f(x,y). The **marginal** p.d.f. of X is given by

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

and the marginal p.d.f. of Y is

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Definition 2.6. Two random variables X and Y with joint c.d.f. F(x,y) are **independent** if and only if

$$F(x,y) = F_X(x)F_Y(y)$$

Equivalently, two continuous random variables X and Y with p.d.f. $f_X(x)$ and $f_Y(y)$ are independent if and only if

$$f(x,y) = f_X(x)f_Y(y) \quad \forall (x,y) \in Supp(x,y)$$

Remark. A necessary, but not sufficient, condition for independence is that the support set be a rectangle.

Theorem 2.7. Factorisation theorem for independence. Suppose X and Y are random variables with joint p.m.f./p.d.f. f(x,y) and marginal distributions $f_X(x)$ and $f_Y(y)$, respectively. Suppose also that $A = \{(x,y) : f(x,y) > 0\}$ is the support of (X,Y), $A_X = \{x : f_X(x) > 0\}$ is the support of X, and $A_Y = \{x : f_Y(y) > 0\}$ is the support of Y.

Then X and Y are independent if and only if $A = A_X \times A_Y$ and there exist non-negative functions g(x) and h(y) such that f(x,y) = g(x)h(y) for all $(x,y) \in A_X \times A_Y$.

Proof. The result follows from a standard result in calculus where the integral of the product is the product of the integral in a hyperrectangle, as a consequence of Fubini's theorem allowing us to switch the order of integration¹.

Definition 2.8. The conditional distribution of X given Y = y is

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Theorem 2.9. If X and Y are independent, then $f(x|y) = f_X(x)$.

Proof. Duh.

Theorem 2.10. Suppose X and Y are two random variables with joint p.m.f./p.d.f. f(x,y) and $a_i, b_i, i = 1, ..., n$ are constants, and $g_i(x,y)$ are real valued functions. Then,

$$E\left[\sum_{i=1}^{n} (a_i g_i(X, Y) + b_i)\right] = \sum_{i=1}^{n} (a_i E[g(X, Y))]) + \sum_{i=1}^{n} b_i$$

provided each $E[g_i(X,Y)]$ exist.

Proof. We prove the existence of the linear combination of the expectation using the triangle inequality. The remainder follows from linearity of summation and integration.

Theorem 2.11. If X and Y are independent random variables and g(x) and h(y) are real valued functions, then

$$\mathrm{E}\left[g(X)h(Y)\right] = \mathrm{E}\left[g(X)\right]\mathrm{E}\left[h(Y)\right]$$

Proof. It follows by a simple manipulation of the integral:

$$E[g(X)h(Y)] = \int \int_{S} g(x)h(y)f(x,y)dxdy$$
$$= \int \int_{S} g(x)h(y)f_{X}(x)f_{Y}(y)dxdy$$
$$= \int h(y)f_{Y}(y) \int g(x)f_{X}(x)dxdy$$
$$= E[g(X)] E[h(Y)]$$

Definition 2.12. In general, for X_1, \ldots, X_n we say they are mutually independent if

$$f(x_1,\ldots,x_n)=f(x_1)\ldots f(x_n)$$

Remark. Mutual independence implies pairwise independence, but the converse is not true. See Hogg p.122 for a counterexample.

¹See Wade's Introduction to Analysis, Chapter 12.3, Problem 6a, page 418.

Theorem 2.13. If X_1, \ldots, X_n are independent random variables and h_1, \ldots, h_n are real valued functions, then

$$E\left[\prod_{i=1}^{n} h_i(X_i)\right] = \prod_{i=1}^{n} E\left[h_i(X_i)\right]$$

Definition 2.14. The **covariance** of random variables X and Y is given by

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

where $\mu_X = E[X]$ and $\mu_Y = E[Y]$. If Cov(X, Y) = 0 we say X and Y are **uncorrelated**. Note that Cov(X, X) = Var(X).

Theorem 2.15. If X and Y are independent random variables, then Cov(X,Y) = 0. The converse is not true.

Proof. $\operatorname{Cov}(X,Y) = \operatorname{E}[XY] - \operatorname{E}[Y]\operatorname{E}[Y] = \operatorname{E}[Y]\operatorname{E}[Y] - \operatorname{E}[Y]\operatorname{E}[Y] = 0$. For a counterexample to the converse, $Y = X^2$ over a symmetric support probably works.

Theorem 2.16. Suppose X and Y are random variables and a, b, c are real constants. Then:

$$Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

Proof. It follows from the definition of variance.

Theorem 2.17. Suppose X_1, \ldots, X_n are random variables with $\text{Var}(X_i) = \sigma_i^2$, and $a_1, a_2, \ldots a_n$ are real constants. Then

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) = \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2} + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

Proof. Follows from the Binomial Theorem.

Definition 2.18. The correlation coefficient of random variables X and Y is given by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

where $\sigma_X = \sqrt{\operatorname{Var}(X)}$ and $\sigma_Y = \sqrt{\operatorname{Var}(Y)}$.

Theorem 2.19. The following are properties of the correlation coefficient:

- 1. $-1 \le \rho(X, Y) \le 1$.
- 2. $\rho(X,Y) = 1 \iff Y = aX + b \text{ for some } a > 0.$
- 3. $\rho(X,Y) = 1 \iff Y = aX + b \text{ for some } a < 0.$

Proof. Exercise.