EDA Case Study

Bank Loan Application Data

Analysis of Application data file

- Load Application data file and check the shape of the file
- Check the column length
- Print the data of the file and understand the used and unused data.

Data Cleaning

- Remove all the column which are null more than 50%.
- Also remove all the unused column which are not required in analysis.
- Treat the null values with column 'mode' value
- Calculate the null % of each columns
- Change the Data type of the column which are wrong datatype.
- Rename the column name and correct the data from negative to positive.
- Create categorical data of continuous columns to analysis in batter ways.
- Calculate the defaulters and non-defaulter %.
- Create two data frame based on 'TARGET' column.

Default(Target=1) analysis and Visualize Univariate and bivariate

Non Default(Target=0) analysis & Visualize Univariate and bivariate

Merge Application and Previous Application

- Merge Both file, create df3 dataframe from both
- Drop Column who have more than 40 % missing value
- Calculate mean of messing Value
- Droup more column that look like not useful for this analysis

Data Cleaning:

- CODE_GENDER fillNa value with 'F' because its having percentage
- FLAG_OWN_REALTY fillNa value with 'Y' because its having percentage
- AMT_ANNUITY_x and AMT_ANNUITY_y updated with mean value (Both mean and median have almost same value(minor diff))
- CNT_FAM_MEMBERS 'Na' updated with median (Because mean and median almost same.

 NAME_CONTRACT_STATUS filter NaN value because very less row having NaN

Univariant

- Converted DAYS BIRTH into Years
- Perform Univaraint on NAME CONTRACT STATUS
- Perform on NAME_CONTRACT_TYPE_x
- Perform on Code Gender
- Perform on CODE_GENDER
- Perform on NAME_INCOME_TYPE
- Perform on NAME_EDUCATION_TYPE
- Created Age group for DAYS_BIRTH

NAME_CONTRACT_STATUS

CODE_GENDER

NAME_INCOME_TYPE

NAME_EDUCATION_TYPE

NAME_FAMILY_STATUS

YEARS_BIRTH

Bivariante(With NAME_CONTRACT_STATUS)

Perform Bivariate analysis bellow Attributes

- YEARS_BIRTH
- Age_group
- NAME_CONTRACT_TYPE_x
- CODE GENDER
- AMT_INCOME_TOTAL
- AMT_ANNUITY_y
- NAME INCOME TYPE
- NAME_FAMILY_STATUS
- CNT_PAYMENT
- AMT_APPLICATION

YEARS_BIRTH

age_group

NAME_CONTRACT_TYPE_x

CODE_GENDER

AMT_INCOME_TOTAL

AMT_ANNUITY_y

NAME_INCOME_TYPE

CNT_PAYMENT

NAME_FAMILY_STATUS

AMT_APPLICATION

Conclusion Of Analysis

- We try to show many reason of rejection or approval of loan
- Try to find Outliers form Univariant and bivariate
- Perform Comparison for Target with many Column in application to see the reason for any action(Rejection or Approval)
- Merge the both application and perform Univariate to see who applied the loan (Category)
- Perform bivariante on merge dataframe from 'NAME_CONTRACT_STATUS' with many column to see the reason of approval ,Canceled, Refused