THE LAMBDA CALCULUS AND THE JAVASCRIPT

WHY LAMBDA CALCULUS?

ALONZO CHURCH

Created lambda calculus, the basis for functional programming.

http://en.wikipedia.org/wiki/Alonzo_Church

We spend all our time

ALAN TURING

Invented the turing machine, an imperative computing model

http://en.wikipedia.org/wiki/Alan_Turing

THE PREMISE

Functional programming is good

Using functional techniques will make your code better

Understanding lambda calculus will improve your functional

BOUND VARIABLE

This is the argument of the function

 $\lambda x.x$

BODY

A lambda expression that uses the bound variable and represents the function value

 $\lambda x.x$

```
function(x) {
   return x
}
```

λy.x

FREE VARIABLE

This variable isn't bound, so this expression is meaningless

PARENTHESIS

Not needed, but used for clarity here

 $\lambda x.(\lambda.y.x)$

BOUND OR FREE?

x is bound in the outer expression and free in inner expression.

```
λχ.λ.у.χ
```

```
function(x) {
    return function(y) {
        return x
    }
}
```

UNICORNS DON'T EXIST

There are no assignments or external references.

We'll use upper-case words to stand for some valid lambda expression, but it must mean something.

λx.x UNICORN

APPLICATION BY SUBSTITUTION

Apply UNICORN to the expression, substituting UNICORN for every occurrence of the bound value

THE I (IDENTITY) COMBINATOR

Combinatory logic predates lambda calculus, but the models are quite similar. Many lambda expressions are referred to by their equivalent combinator names.

λx.x UNICORN
→ UNICORN

```
function(x) {
    return x
}(UNICORN);
```

→ UNICORN

THE K (CONSTANT) COMBINATOR

This function takes an input argument and returns a function that returns that same value

 $\lambda x. \lambda y. x$ UNICORN $\rightarrow \lambda y. UNICORN$

λy.UNICORN MITT
→ UNICORN

ALWAYS A UNICORN

No matter what argument is passed in, the result is always the same.

SELF-APPLICATION

This function takes a function and applies it to itself.

 $\lambda s.(s s)$

```
function(f) {
   return f(f);
}
```


Substitute $\lambda x.x$ for x_1 .

```
function(f) {
    return f(f);
}(function (x) {
    return x;
    });
```

INFINITE APPLICATION

 $\lambda s.(s s) \lambda s.(s s)$

$$\rightarrow \lambda s.(s s) \lambda s.(s s)$$

$$\rightarrow \lambda s.(s s) \lambda s.(s s)$$

→ ...

THE HALTING PROBLEM

Just as you'd expect, there's no algorithm to determine whether or not a given lambda expression will terminate

TURING COMPLETE

 $I: \lambda x.x$

Κ: λχ.λγ.χ

S: $\lambda x. \lambda y. \lambda z. x z (y z)$

ACTUALLY, JUST TWO LAMBDAS

- S K K UNICORN
- $\rightarrow \lambda x.\lambda y.\lambda z.(x z (y z)) K K UNICORN$
- $\rightarrow \lambda y.\lambda z.(K z (y z)) K UNICORN$
- $\rightarrow \lambda z.(Kz(Kz))$ UNICORN
- → K UNICORN (K UNICORN)
- $\rightarrow \lambda x.\lambda y.x$ UNICORN (K UNICORN)
- $\rightarrow \lambda y.UNICORN (K UNICORN)$
- → UNICORN

Thus, S K K is computationally equivalent to identity

OTHER TURING COMPLETE THINGS

MAGIC: THE GATHERING

http://www.toothycat.net/ ~hologram/Turing/

C++ TEMPLATES

http://citeseerx.ist.psu.edu/ viewdoc/summary? doi=10.1.1.14.3670

THE NUMBER 110

http://mathworld.wolfram.com/ Rule110.html

TURING TARPIT

Beware of the Turing tar-pit in which everything is possible but nothing of interest is easy.

Alan Perlis

CURRYING

A FUNCTION THAT RETURNS A FUNCTION

.. that returns a function that returns a function. You can think of this as a function of three arguments.

λx.λy.λz.UNICORN X Y Z

```
function(x) {
  return function(y) {
    return function (z) {
       return UNICORN;
}(X)(Y)(Z);
function(x,y,z) {
   return UNICORN;
}(X,Y,Z);
```

CURRYING

SOMETIMES ABBREVIATED

Sometimes, you'll see lambda expressions written like this for clarity. The arguments are still curried.

- λx y z.UNICORN X Y Z
- $\rightarrow \lambda y$ z.UNICORN Y Z
- $\rightarrow \lambda z.UNICORN Z$
- → UNICORN

HASKELL CURRY

Curry studied combinatory logic, a variant of lambda calculus.

http://www.haskell.org/haskellwiki/Haskell_Brooks_Curry

CHURCH PAIR ENCODING

PAIR takes two arguments, x and y and returns a function that takes another function and applies x and y to it.

PAIR: $\lambda x. \lambda y. \lambda f. (f x y)$

BUILDING UP STATE

PAIR takes two arguments, x and y and returns a function that takes another function and applies x and y to it.

PAIR: $\lambda x. \lambda y. \lambda f. (f x y)$

FIRST: $\lambda x.\lambda y.x$

SECOND: λx.λy.y

ACCESSOR FUNCTIONS

FIRST and SECOND are functions that can be passed to pair. They take two arguments and return the first and second, respectively.

PAIR: $\lambda x. \lambda y. \lambda f. (f x y)$

DOGCAT: PAIR DOG CAT

 $\rightarrow \lambda x.\lambda y.\lambda f.(f x y) DOG CAT$

 $\rightarrow \lambda y.\lambda f.(f DOG y) CAT$

 $\rightarrow \lambda f. (f DOG CAT)$

DOGCAT: $\lambda f.(f)$ DOG CAT)

FIRST: $\lambda x. \lambda y. x$

SECOND: λx.λy.y

DOGCAT FIRST

- $\rightarrow \lambda f. (f DOG CAT) \lambda x. \lambda y. x$
- $\rightarrow \lambda x.\lambda y.x$ DOG CAT
- $\rightarrow \lambda y.DOG CAT$
- → DOG

DOGCAT: λf . (f DOG CAT)

FIRST: $\lambda x. \lambda y. x$

SECOND: $\lambda x.\lambda y.y$

DOGCAT SECOND

- $\rightarrow \lambda f. (f DOG CAT) \lambda x. \lambda y. x$
- $\rightarrow \lambda x.\lambda y.x$ DOG CAT
- $\rightarrow \lambda y.y CAT$
- → CAT

RGB: $\lambda r. \lambda g. \lambda b. \lambda f. (f. r. g. b)$

RED: $\lambda r. \lambda g. \lambda b. r$

GREEN: λr.λg.λb.g

BLUE: $\lambda r. \lambda g. \lambda b. b$

BLACK_COLOR: RGB 255 255 255

WHITE_COLOR: RGB 0 0 0

NUMBERS?

We haven't seen how to construct numbers yet, but for the moment imagine that we did.

AVG: $\lambda x.\lambda y.$??

AVERAGE?

If we did have numbers, we could probably do math like simple averaging

```
MIX_RGB: \lambda c_1.\lambda c_2.\lambda f. (f (AVG (c<sub>1</sub> RED) (c<sub>2</sub> RED)) (AVG (c<sub>1</sub> GREEN)(c<sub>2</sub> GREEN)) (AVG (c<sub>1</sub> BLUE) (c<sub>2</sub> BLUE)))
```

00 LAMBDA?

MIX_RGB takes two colors and returns a new color that is the mix of the two

CONDITIONALS

COND: $\lambda e_1 . \lambda e_2 . \lambda c . (c e_1 e_2)$

TRUE: $\lambda x. \lambda y. x$

FALSE: $\lambda x.\lambda y.y$

LOOK FAMILIAR?

Think of a boolean condition as a PAIR of values. TRUE selects the first one and FALSE selects the second one.

CONDITIONALS

COND DEAD ALIVE QUBIT

- $\rightarrow \lambda e_1.\lambda e_2.\lambda c.(c e_1 e_2)$ DEAD ALIVE QUBIT
- → QUBIT DEAD ALIVE

- → TRUE DEAD ALIVE
- $\rightarrow \lambda x.\lambda y.x$ DEAD ALIVE
- → DEAD

- → FALSE DEAD ALIVE
- $\rightarrow \lambda x.\lambda y.y$ DEAD ALIVE
- → ALIVE

BOOLEAN LOGIC

NOT: λx . (COND FALSE TRUE x)

AND: $\lambda x. \lambda y.$ (COND y FALSE x)

OR: $\lambda x. \lambda y.$ (COND TRUE y x)

ZERO: $\lambda x.x$

SUCC: $\lambda n.\lambda s.(s false n)$

ONE: SUCC ZERO

 $\rightarrow \lambda s.(s false ZER0)$

TWO: SUCC ONE

 $\rightarrow \lambda s.(s false ONE)$

 $\rightarrow \lambda s.(s false \lambda s.(s false ZERO))$

PEANO NUMBERS

PEANO numbers are based on a zero function and a successor function

ZERO: $\lambda x.x$

ISZERO: $\lambda n.(n FIRST)$

ISZERO ZERO

 $\rightarrow \lambda n. (n FIRST) \lambda x. x$

 $\rightarrow \lambda x.x FIRST$

→ FIRST

→ TRUE

ISZERO: λ n.(n FIRST)

ONE: λ s.(s FALSE ZERO)

ISZERO ONE

- $\rightarrow \lambda n. (n FIRST) \lambda s. (s FALSE ZERO)$
- $\rightarrow \lambda s.(s FALSE ZERO) FIRST$
- → (FIRST FALSE ZERO)
- → FALSE

PRED: $\lambda n. (n SECOND)$

PRED (SUCC NUM)

- $\rightarrow \lambda n.(n SECOND) \lambda s.(s FALSE NUM)$
- $\rightarrow \lambda s.(s FALSE ZERO) SECOND$
- → SECOND FALSE NUM
- → NUM

BUT...

ZERO isn't SUCC of a number

PRED: λn.(ISZERO n) ZERO (n SECOND)

WHAT IS PRED OF ZERO?

We can at least test for zero and return another number.

```
ADD: λx.λy.(ISZERO Y)

x
(ADD (SUCC X)
(PRED Y))
```

NOT VALID

Recursive definitions aren't possible.

Remember, names are just syntactics sugar. All definitions must be finite. How do we do this?

```
function add(x,y) {
   if (y==0) {
     return x
   } else {
     return add(x+1,y-1)
   }
}
```

RECURSION DIVERSION

IF WE COULD PASS THE FUNCTION IN

Now we'll make a function of three arguments, the first being the function to recurse on

ADD¹:
$$\lambda f.\lambda x.\lambda y.(ISZERO Y)$$

x

(f f (SUCC X) (PRED Y))

THEN WE COULD CALL IT RECURSIVELY

Just remember that the function takes three arguments, so we should pass the function to itself.

RECURSION DIVERSION

```
ADD^1: \lambda f. \lambda x. \lambda y. (ISZERO Y)
            (f f (SUCC X) (PRED Y))
ADD: ADD<sup>1</sup> ADD<sup>1</sup>
\rightarrow \lambda x.\lambda y.(ISZERO Y)
       (ADD¹ ADD¹ (SUCC X) (PRED Y))
```

FINITE DEFINITION

This definition of ADD is a bit repetitive, but it doesn't recurse infinitely. If only we could clean this up a bit...

BEHOLD, THE Y COMBINATOR

```
Y: \lambda f.(\lambda s.(f(s s))(\lambda s.(f(s s)))
```

```
ADD<sup>1</sup>: \lambda f.\lambda x.\lambda y.(ISZERO Y) X
(F (SUCC X) (PRED Y))
```

ADD: Y ADD¹

- $\rightarrow \lambda s.(ADD^1 (s s)) (\lambda s.(ADD^1 (s s))$
- \rightarrow ADD¹ (λ s.(ADD¹ (s s)) λ s.(ADD¹ (s s))
- \rightarrow ADD¹ (Y ADD¹)
- \rightarrow ADD¹ ADD

Y SELF REPLICATES

This is similar to the hand prior call, except that the replication state is in the passed function.

CHURCH NUMBERS

ZERO: $\lambda f. \lambda x. x$

ONE: $\lambda f. \lambda x. f. x$

TWO: $\lambda f. \lambda x. f(f x)$

THREE: $\lambda f. \lambda x. f$ (f (f x))

FOUR: $\lambda f. \lambda x. f(f(f(x)))$

REPEATED FUNCTION APPLICATION

Church numbers take a function and an argument and apply the function to the argument n times.

So N is defined by doing something N times.

CHURCH NUMBERS

ZERO: $\lambda n.(n \lambda x.FALSE TRUE)$

SUCC: $\lambda n. \lambda f. \lambda x. f$ (n f x)

ADD: $\lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)$

MUL: $\lambda m. \lambda n. \lambda f. m$ (n f)

POW: $\lambda m. \lambda n. m. n$

PRED: $\lambda n. \lambda f. \lambda x. n$ ($\lambda g. \lambda h. h$ (g f))

λu.x λu.u

NO RECURSION FOR SIMPLE MOTH

Church numbers have some very simple operations, Operations like subtraction are more complex than Peano numbers.

AND THE REST IS FUNCTIONAL

http://www.amazon.com/dp/0486478831

An introduction to Functional Programming Through Lambda Calculus

Greg Michaelson

LEISURE

https://github.com/zot/Leisure

- Lambda Calculus engine written in Javascript
- Intended for programming
- •REPL environment with node.js
- Runs in the browser

http://tinyconcepts.com/invaders.html

(A) THANK YOU