Assignment: 2 Asymptotic Notation

1)
$$f(n) = n-10$$

 $g(n) = n+10$
 $f(n) = O(g(n))$? Theta?
 $n+0 = O(n+10)$?

11)
$$f(u) > = G(u)$$
 $C_1 > 0$
 $n - 10 > = G(n + 10)$ Consider large value of u .

True, we can write n-10 = O(n+10). Valid Theta.

2)
$$f(n) = n$$

 $g(m) = n$
 $f(n) = \theta(g(n))$? Theta?
1) $n = O(n) - ?$
 $n \le C_2 n$
 $output$ $output$

So, we can write

$$f(n) = \theta g(n)$$

$$n = \theta(n)$$
True.
Valid Tuta

n" 3 c n⁵

c should be constant.

Not a valid Bigo.

4.)
$$\frac{4^n}{2^n} = O(2^n)$$
 Check for Valid Bigo. $\frac{4^n}{2^n} \le C 2^n$ $\frac{2^n \cdot 2^n}{2^n} \le C 2^n$ $2^n \le C 2^n$ possible. Valid Bigo.

5)
$$128 \log_2 n \cdot n^2 = O(n^9)$$
 $\left[\log_2 p = p \log_3 b \right]$
 $n \log_2 128 \cdot n^2 \leq C n^9$
 $n^7 \cdot n^2 \leq C n^9$
 $n^9 \leq C n^9$
 $possible c castant value · Valid Bigo · Valid · Va$

Chaking for Omega Validy. $n^9 \ge C n^9$ Valid First also.

So, Walid Theta.

Tree.