Course: Deep Learning

Optimization Algorithms

Martin Molina 2025

Department of Artificial Intelligence Universidad Politécnica de Madrid

Training a neural network as an optimization problem

Optimization problem:

$$\underset{W}{\operatorname{arg min}} J(W)$$

Find the values of W that minimize J(W)

Graphical views of the cost function J(W)

Graphical view of the optimization process

 W_1

Graphical views of the optimization process

Image source: https://hvidberrrg.github.io

Image source: commons.wikimedia.org

Optimization algorithms

Image credit: Alec Radford

Algorithms

- Gradient descent
- Momentum
- RMSprop
- Adam

Algorithms

- Gradient descent
- Momentum
- RMSprop
- Adam

Gradient descent is an iterative process that updates parameters step by step

On iteration *k*:

$$W \leftarrow W - \alpha \cdot \partial W$$

 α : Learning rate ($\alpha = 0.05$)

 ∂W : Gradient vector $\nabla_w J(W)$

Inputs

 W_1

Simplified notation: Parameter $oldsymbol{ heta}$

On iteration *k*:

$$\theta \leftarrow \theta - \alpha \cdot \partial \theta$$

 θ : Parameters (weights W)

 α : Learning rate ($\alpha = 0.05$)

 $\partial\theta$: Gradient vector $\nabla_{\theta}J(\theta)$

How to choose the value for the learning rate α ?

There are two extreme values for learning rates:

Impact of learning rate on the training process

How is the learning rate value programmed in TensorFlow/Keras?

Example

Learning rate decay

Instead of using a constant learning rate, the learning rate decreases as the training progresses

k: *iterations*

On iteration k:

$$\alpha = \alpha_0 r \left\lfloor \frac{k}{n} \right\rfloor$$

 α_0 : initial learning rate

r: decay rate

n: decay steps

[x]: floor function (e.g., [3.6] = 3)

Example:

$$\alpha_0 = 0.1$$

$$r = 0.7$$

$$n = 100$$

How is the learning rate decay programmed in TensorFlow/Keras?

```
lpha_0 = 0.1 \ (initial \ learning \ rate)
r = 0.96 \ (decay \ rate)
n = 10,000 \ (decay \ steps)
Decay every 10,000 steps with a rate of 0.96
```

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay

Algorithms

- Gradient descent
- Momentum
- RMSprop
- Adam

Momentum optimization

Creates an accelerating motion that can improve convergence

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. *USSR Computational Mathematics and Mathematical Physics*, *4*(5), 1-17.

Steps are constant when the slope is constant (in regular gradient descent algorithm)

Steps are increasing with the momentum optimization

This could be useful to avoid local minimum values

Figure from: http://www.experientiadocet.com/2012_02_01_archive.html

Regular gradient descent

On iteration *k*:

1.
$$m \leftarrow \alpha \partial \theta$$

$$2. \quad \theta \quad \leftarrow \quad \theta - m$$

On iteration k:

$$\theta_{(k)} = \theta_{(k-1)} - \alpha \cdot \partial \theta_{(k)}$$

Earlier gradients are ignored

$$\partial \theta_{(k-1)}, \partial \theta_{(k-2)}, \partial \theta_{(k-3)}, \dots$$

Momentum optimization

On iteration *k*:

1.
$$m \leftarrow \beta m + \alpha \partial \theta$$

2.
$$\theta \leftarrow \theta - m$$

On iteration *k*:

$$\theta_{(k)} = \theta_{(k-1)} - \alpha \cdot \partial \theta_{(k)} - \frac{1}{\alpha \cdot \beta \cdot \partial \theta_{(k-1)}} - \frac{1}{\alpha \cdot \beta^2 \cdot \partial \theta_{(k-2)}} - \frac{1}{\alpha \cdot \beta^3 \cdot \partial \theta_{(k-3)}} - \dots$$

Past gradients are accumulated in m

Momentum optimization

On iteration *k*:

1.
$$m \leftarrow \beta m + \alpha \partial \theta$$

2.
$$\theta \leftarrow \theta - m$$

Momentum: $\beta = 0.9$

Alternative formulation:

On iteration *k*:

1.
$$m \leftarrow \beta m + (1 - \beta) \cdot \partial \theta$$

2.
$$\theta \leftarrow \theta - \alpha m$$

Better separation of the effect of lpha and eta

 \leftarrow Exponential weighted average of $\partial \theta$

Example: A sequence of quantitative values

Exponential weighted average

$$y_k = (1 - \beta) [x_k + \beta x_{k-1} + \beta^2 x_{k-2} + \beta^3 x_{k-3} + \dots + \beta^{k-1} x_1] =$$

How is the Momentum Optimizer programmed in TensorFlow/Keras?

Algorithms

- Gradient descent
- Momentum
- RMSprop
- Adam

Loss landscapes may present irregular surfaces with different slopes

Source of image: https://www.cs.umd.edu/~tomg/projects/landscapes/

A learning rate value may be appropriate for some directions but inappropriate for others

Small learning rate

Bigger learning rate

Idea

Using an adaptive learning rate: if the gradient is larger in one direction, reduce proportionally the learning rate in this direction

Regular gradient descent

RMSprop

On iteration k: $(\forall \theta_i)$

$$\theta_i \leftarrow \theta_i - \alpha \partial \theta_i$$

The learning rate is constant

On iteration k: $(\forall \theta_i)$

1.
$$s_i \leftarrow \beta s_i + (1 - \beta)(\partial \theta_i)^2$$

2.
$$\theta_i \leftarrow \theta_i - \frac{\alpha}{\sqrt{s_i}} \partial \theta_i$$

The learning rate is divided by a value to be inversely proportional to the last gradients

This effect is called "adaptive learning rate"

Regular gradient descent

RMSprop

On iteration k: $(\forall \theta_i)$

$$\theta_i \leftarrow \theta_i - \alpha \partial \theta_i$$
Size of step

On iteration k: $(\forall \theta_i)$

 s_i accumulates the square of the gradients (using exponential weighted average)

1.
$$s_i \leftarrow \beta s_i + (1 - \beta)(\partial \theta_i)^2$$

2.
$$\theta_i \leftarrow \theta_i - \frac{\alpha}{\sqrt{s_i}} \partial \theta_i$$

Size of step is smaller when s_i is larger

 s_i is larger when $\partial \theta_i$ is larger

(i.e., when the cost function has steeper slope in this dimension)

RMSprop

RMSprop: Root Mean Square Propagation

On iteration *k*:

1.
$$s_i \leftarrow \beta s_i + (1 - \beta)(\partial \theta_i)^2 \quad \forall s_i$$

2.
$$\theta_i \leftarrow \theta_i - \frac{\alpha}{\sqrt{s_i + \varepsilon}} \partial \theta_i \quad \forall \theta_i$$

$$\beta = 0.9$$

$$\varepsilon = 10^{-7}$$

Alternative formulation:

On iteration *k*:

1.
$$s \leftarrow \beta s + (1 - \beta)\partial\theta \odot \partial\theta$$

2.
$$\theta \leftarrow \theta - \alpha \cdot \partial \theta \oslash \sqrt{s + \varepsilon}$$

- element-wise multiplication
- ∅ element–wise division

How is RMSprop programmed in TensorFlow/Keras?

$$eta = 0.9$$
 $\varepsilon = 10^{-7}$ Default values

Algorithms

- Gradient descent
- Momentum
- RMSprop
- Adam

Adam combines momentum and RMSprop

Adam: Adaptive Moment Estimation

On iteration *k*:

1.
$$m \leftarrow \beta_1 m + (1 - \beta_1) \partial \theta$$

2. $s \leftarrow \beta_2 s + (1 - \beta_2) \partial \theta \odot \partial \theta$

3.
$$m' \leftarrow \frac{m}{1-(\beta_1)^k}$$
 $s' \leftarrow \frac{s}{1-(\beta_2)^k}$

4.
$$\theta \leftarrow \theta - \alpha m' \oslash \sqrt{s' + \varepsilon}$$

Momentum (exponential weighted average of $\partial\theta$)

RMSProp (exponential weighted average of $\partial\theta \odot \partial\theta$)

Example: A sequence of quantitative values

Exponential weighted average

Correction to avoid values biased to zero at the beginning of the sequence

Adam combines momentum and RMSprop

Adam: Adaptive Moment Estimation

On iteration k:

1.
$$m \leftarrow \beta_1 m + (1 - \beta_1) \partial \theta$$

2.
$$s \leftarrow \beta_2 s + (1 - \beta_2) \partial \theta \odot \partial \theta \leftarrow$$

3.
$$m' \leftarrow \frac{m}{1-(\beta_1)^k}$$
 $s' \leftarrow \frac{s}{1-(\beta_2)^k}$ Bias correction of exponential weighted averages

4.
$$\theta \leftarrow \theta - \alpha m' \oslash \sqrt{s' + \varepsilon}$$

Momentum (exponential weighted average of $\partial \theta$)

RMSProp (exponential weighted average of $\partial \theta \odot \partial \theta$)

Bias correction of

Integrated expression

How is Adam programmed in TensorFlow/Keras?

tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999)

$$eta_1 = 0.9$$
 $eta_2 = 0.999$
 $\varepsilon = 10^{-7}$
Default values

Summary

- Gradient descent
 - Step is only proportional to the gradient (constant learning rate)
- Learning rate decay
 - Step decreases (learning rate decreases as the training progresses)
- Momentum
 - Step accumulates past gradients (weighted average)
- RMSprop
 - Step with adaptive learning rate (inversely proportional to past gradients)
- Adam
 - Step as a combination Momentum and RMSprop

Images credit: Alec Radford

Practical aspects

- Adam is one of the preferred algorithm by many developers
 - Adam usually converges faster than other algorithms
 - Adam usually requires less tuning of the learning rate (adaptive learning rate)
- There is not clear common agreement
 - Adam can find solutions that generalize worse than SGD on some datasets [Wilson et al., 2017]
- Other preferred algorithms:
 - SGD with momentum
 - Nadam [Dozat, 2016]

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., & Recht, B. (2017). The marginal value of adaptive gradient methods in machine learning. Advances in neural information processing systems, 30.

Lecture slides of the master course "Deep Learning". © 2025 Martin Molina

This work is licensed under Creative Commons license CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/legalcode

Suggested work citation:

Molina, M. (2025): "Training Methods for Deep Neural Networks: Optimization Algorithms". Master course (lecture slides). Department of Artificial Intelligence. Universidad Politécnica de Madrid.