

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Sciences and Humanities

Course Name:	Elements of Electrical and Electronics Engineering Laboratory	Semester:	1/11
Date of Performance:		Batch No:	C-5(3)
Student Name:	Sai Shivani Maddala	Roll No:	60
Faculty Sign & Date:		Grade/Marks:	/ 20

Experiment No: 3

Title: Thevenin's Theorem & Norton's Theorem

Aim and Objective of the Experiment:

- To Verify for Thevenin's Theorem for the circuit
- To Verify Norton Theorem for the Circuit.

COs to be achieved:

CO1: Analyze resistive networks excited by DC sources using various network theorems.

Circuit Diagram:

Task 1: Circuit Diagram to measure R_{TH}/R_N:

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Task 2: Circuit Diagram to measure VTH:

Task 3: Circuit Diagram to measure Isc:

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Thevenin's Theorem:

1. Connect the circuit as shown in the circuit diagram.

2. Set 10V and measure open circuit voltage V_{Th} across load terminals A and B.

3. Replace all voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.

4. Draw Thevenin's equivalent circuit and determine the value of load current from it.

5. Verify the results theoretically.

Norton's Theorem:

1. Connect the circuit as shown in the circuit diagram.

 Set the voltages 10V
 Remove the load resistance and measure the short circuit current I_{SC} through A and B terminals.
 Remove the load resistance and measure the short circuit current I_{SC} through A and B as p 4. Replace all the voltage sources by Short circuit and measure R_{Th} across terminals A and B as per the circuit diagram shown in the figure.

5. Draw Norton's equivalent circuit and determine the value of load current.

6. Verify the results theoretically

Calculations:

alculations:

1)
$$R_{7H}$$
 $470113302 = 193.872$
 $R_{7H} = 193.87 + 38.782$
 $R_{7H} = 193.87 + 38.782$

2) $V_{7H} = 0.01254$
 $C_{1} = \frac{10}{470+370}$
 $C_{2} = -220[2+330]$
 $C_{3} = -220[0.0374]$
 $C_{4} = -220[0.0374]$
 $C_{5} = -4.18$
 $C_{6} = -4.18$
 $C_{7} = -4.18$
 $C_{1} = C_{100}$
 $C_{1} = C_{100}$
 $C_{2} = -4.18$
 $C_{3} = -4.18$
 $C_{1} = C_{100}$
 $C_{2} = -4.18$
 $C_{3} = -4.18$
 $C_{3} = -4.18$
 $C_{4} = -4.18$
 $C_{5} = -4.18$
 $C_{5} = -4.18$
 $C_{5} = -4.18$
 $C_{5} = -4.18$
 $C_{6} = -4.18$
 $C_{7} = -4$

Observation Table:

KUL at loop I
-471, -470(1, -13) = 0
-517
$$L_1$$
 + 470 L_3 = 0 \longrightarrow 1)
KUL at loop 2
-550 L_2 + 330 L_3 = 0 \longrightarrow 2)
KUL at loop 3
-10-330(L_3 - L_3) -470(L_3 - L_1) = 0
470 L_1 + 330 L_2 - 800 L_3 = 10 \longrightarrow 3)
Polving 1, 2 9 3
 L_1 = -0.05 26 A
 L_2 = -0.05 72 A.
 L_3 = -0.0184 A.
= -17.4 mA

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

	V _{TH} (V)	R_{TH} / R_N (Ω)	I _N (mA)	I _L (mA)
Theoretical value	-4.18	232.59	-17.4	-12.6
Practical value	-4.109	2324.52	-18.1	-12.26

The following enperiment helps us to understand the steps to verify the vinin and Nortan theorem. The enpalse helped us to enamine registive network encited by source using various network theorems.