

K- Nearest Neighbors

Created	@August 8, 2025
Edited	@August 8, 2025 8:07 AM
■ Archive	

- 1. It is a supervised learning model
- 2. Used for both classification and regression
- 3. Can be used for non-linear data
- 4. We have to define the K-Value

For classification:

For Regression:

K- Nearest Neighbors

Advantages:

- 1. Works well with smaller datasets with less number of features.
- 2. Can be used for both classification and regression
- 3. Easy to implement for multi class classification problems
- 4. Different distance criteria can be used (Euclidean distance, Manhattan distance etc.)

Disadvantages:

- 1. Choosing the optimum K value
- 2. Less efficient with high dimensional data
- 3. Does not perform well on imbalanced dataset
- 4. Sensitive to Outliers.

Euclidean Distance:

K- Nearest Neighbors 2

Pythagoras Theorem:

$$AC^2 = AB^2 + BC^2$$
$$AC = \sqrt{AB^2 + BC^2}$$

$$AC = \sqrt{(\delta_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

This distance "d" is called the Euclidean Distance.

Manhattan Distance:

Manhattan distance is preferred over Euclidean distance when there is high dimensionality in the data.