

Introdução a redes

Filipe Alvelos falvelos@dps.uminho.pt

Março 2014 Fevereiro 2016

Introdução

- Redes são representações de sistemas reais ou idealizados
- Redes permitem
 - a visualização de sistemas de forma intuitiva
 - a modelação de sistemas (e em particular das ligações entre os seus componentes) com conceitos rigorosos que formam um corpo teórico coerente
 - a utilização de ferramentas (e.g. algoritmos) independentes da aplicação para obter medidas ou dimensionar parâmetros relevantes do sistema
- Os sistemas em rede permitem a comunicação (em sentido lato) entre os seus utilizadores de forma eficiente
- Duas perspectivas sobre redes: análise e optimização

Definições

- Um grafo é um conjunto de vértices (nós ou nodos) e um conjunto de arestas (arcos ou ligações), cada um ligando dois vértices
- Formalmente, G=(N,A) em que N é o conjunto de vértices e A é o conjunto de arestas
- Exemplo: *N*={1,2,3,4,5,6,7} e A={{1,2},{1,3},{2,4},{3,2},{3,4},{4,5},{5,2},{5,6},{6,4},{6,7},{7,3}}

FA, Introdução a redes

Definições

- As arestas que têm o vértice *i* como extremo são designadas por arestas incidentes em *i*
- O grau do vértice i é o número de arestas incidentes em i
- Dois vértices unidos por uma aresta são designados por adjacentes
- A ordem de um grafo é o seu número de vértices
 - No exemplo, as arestas incidentes em 4 são as $\{2,4\}$, $\{3,4\}$, $\{4,5\}$ e $\{6,4\}$; o vértice 6 tem grau 3; os vértices 3 e 7 são adjacentes; o grafo tem grau 7

Definições

- Um caminho (elementar ou simples) é uma sequência de vértices distintos e das arestas que os unem
- Um circuito (ou ciclo) (elementar ou simples) é uma sequência de vértices distintos (com excepção do primeiro e do último) e das arestas que os unem em que a última aresta liga o último vértice ao primeiro
- É usual omitirem-se os vértices ou as arestas na representação de caminhos e circuitos
- No exemplo, {1,2}-{2,4}-{4,5} é um caminho entre 1 e 5; 3-4-5-3 é um circuito

Definições

- Num grafo não orientado, $\{i,j\}=(i,j)=(j,i)$. Num grafo orientado, (i,j) não é o mesmo que (j,i)
- Num grafo orientado, define-se grau de entrada e grau de saída de um vértice
- No exemplo, $N = \{1,2,3,4,5,6,7\}$ e $A = \{(1,2),(1,3),(2,4),(3,2),(3,4),(4,5),(5,2),(5,6),(6,4),(6,7),(7,3)\}$

 Num grafo orientado, um caminho/ciclo orientado é um caminho/ciclo em que nenhum arco é percorrido em sentido contrário à sua orientação (usualmente, dado que se pode interferir pelo contexto, usa-se caminho / ciclo com o significado de caminho / ciclo orientado)

Definições

- Uma rede é um grafo com valores/parâmetros associados aos vértices e/ou arestas
- Exemplos de parâmetros
 - Capacidade de um arco (por exemplo, largura de banda de um cabo)
 - Custo de uma unidade atravessar um arco (por exemplo, o atraso de uma mensagem ao ser transmitida por uma linha que une dois computadores)
 - Quantidade de material existente num nodo (por exemplo, número de unidades de um produto existentes num armazém)
- Quando uma rede tem apenas um valor associado a cada arco também se designa por grafo com pesos

FA, Introdução a redes

Escalonamento de projectos

- Empresa de construção civil que vai iniciar a construção de um edifício. É conhecida informação relativa às actividades, duração e relações de precedência.
- Qual a duração mínima do projecto?
- Quais as actividades críticas (se se atrasarem, atrasam o projeto)?

Actividade	Descrição	Duração	Actividades imediatamente precedentes	
1	Fundações	15	-	
2	Medições	5	-	
3	Placas	4	1,2	
4	Estrutura	3	3	
5	Telhado	7	4	
6	Electricidade	10	4	
7	Aquecimento e ar condicionado	13	2,4	
8	Pintura	18	4,6,7	
9	Acabamentos	20	5,8	

Escalonamento de tarefas

- Considere o problema de determinar a ordem pela qual um conjunto de seis tarefas (A, B, C, D, E e F) deve ser executado numa máquina repetidamente. O tempo de execução de cada tarefa na máquina é independente da ordem pela qual as tarefas são realizadas. No entanto, o tempo de preparação da máquina para a realização de cada tarefa depende da tarefa que foi realizada imediatamente antes.
- São conhecidos os tempos de execução e os tempos de preparação (em minutos) de cada tarefa. Por exemplo, a tarefa A demora 3 minutos a ser preparada se a tarefa anterior foi a B, a tarefa A demora 2 minutos a ser preparada se a tarefa anterior foi a C, e assim sucessivamente. Ainda por exemplo, a tarefa A demora 14 minutos a ser executada.

Escalonamento de tarefas Tarefa seguinte Α В C E F Α В C _ Tarefa actual D E F Tempo de execução FA, Introdução a redes

Produção

 Uma fábrica pretende efectuar o seu planeamento de produção para as próximas seis semanas, tendo em conta uma estimativa, para cada semana, da procura, do custo de produção (por unidade) e do custo de armazenamento (por unidade e semana).

Semana	1	2	3	4	5	6
Procura	20	80	60	26	40	32
Custo de produção (U.M./unidade)	3	6	5	4	3	2
Custo de armazenamento (U.M./(unidade.semana))	9	1	4	2	2	-

Doação renal cruzada

 Mau funcionamento dos rins causam falência renal que conduz a má qualidade de vida e a maior risco de morte

• Solução é diálise ou transplante renal

Transplantes

• de cadáveres

• de dadores altruístas

 Dador
 Receptor

 A ou O
 A

 B ou O
 B

 A, B, AB ou O
 AB

 O
 O

- de dadores específicos (e.g. familiares)
- Doar um rim implica que receptor seja compatível
 - Elevado número de antigénios em comum (HLA human leukocyte antigens)
 - Crossmatch negativo (simulação em laboratório da reacção de certas células e proteínas)
 - Tipos de sangue compatíveis

FA, Introdução a redes

31

Doação renal cruzada

• Um dador D1 quer doar um rim a um receptor R1 mas não são compatíveis

D1 --- R1

• Outro par dador-receptor, D2-R2, também não é compatível

 Mas se D1 for compatível com R2 e D2 com R1, então R1 e R2 podem receber rins!

32

Doação renal cruzada

- Conceito de transplante cruzado pode ser generalizado para transplante cíclico
- Um ciclo corresponde a um conjunto de transplantes
- Tipicamente o comprimento do ciclo é limitado por razões logísticas e para reduzir o impacto de desistências ou incompatibilidade revelada em testes de última hora

Doação renal cruzada

Dador	Recep	tores	compa	tíveis
D1	R2	R4		
D2	R1	R3	R5	
D3	R2	R6		
D4	R7			
D5	R1	R4	R6	R7
D6	R3	R9		
D7	R5	R8		
D8	R5	R6	R9	
D9	R7			

34

33

Doação renal cruzada

- Representação numa rede
 - um vértice corresponde a um par dador-receptor
 - um arco corresponde ao dador da par do vértice origem ser compatível com o receptor do par do vértice destino

• Qual é o máximo número de transplantes (cruzados e/ou cíclicos) que é possível efectuar?

FA. Introdução a redes

35

Doação renal cruzada

• Soluções óptimas alternativas

FA, Introdução a redes

36

FA, Introdução a redes

3 7 11 16 22 26 7 9 13 18 22 27 9 11 15 20 24 28 13 14 18 22 26 31 16 17 22 26 30 34

Propagação de fogo

- E se se puder tratar atrasar a propagação do fogo por instalação de alguns recursos de combate?
- Onde colocar os recursos?

FA, Introdução a redes

38

37

Redes de telecomunicações

- Problemas de optimização estratégicos, tácticos e operacionais
- Problema genérico
 - Com base em estimativas de volumes de tráfego entre pares de nodos terminais
 - Obter
 - · Localização de nodos
 - Ligações a estabelecer e as suas capacidades
 - Encaminhamento do tráfego
 - Para minimizar custo total
 - Tendo em conta restrições
 - Capacidades (nodos e ligações)
 - Atraso
 - · Protecção de tráfego

Redes sociais

- Análise
 - Grupos
 - Actores influentes
- Exemplo de uma medida de influência: centralidade intermédia (betweenness centrality) de um vértice =

número de caminhos mais curtos que incluem o vértice / número total de caminhos caminhos mais curtos

[os caminhos considerados são entre todos os pares de vértices excepto o vértice para o qual se está a calcular a centralidade intermédia]

FA, Introdução a redes

Outras redes

- Tecnológicas
 - Internet, ...
- Físicas
 - Água, electricidade, aéreas, ...
- Biológicas
 - Neuronal (neurónios e sinapses), ecológicas, ...
- Organizacionais
 - Empresas, países, ...
- Informação
 - WWW, citações, ...
- •

Bibliografia

- Ahuja, Ravindra K., Thomas L. Magnanti, and James B. Orlin. Network flows. Prentice Hall, 1993.
- Gouveia, Luís, Pedro Moura, Pedro Patrício, Amaro de Sousa. Problemas de Otimização em Redes de Telecomunicações, Faculdade de Ciências da Universidade de Lisboa, 2011.
- Newman, Mark. Networks: an introduction. OUP Oxford, 2010.
- Van Steen, Maarten. Graph theory and complex networks: an introduction, 2010. [Disponível online].