

# 37345 Quantitative Management Practice

Autumn Semester 2024 Assessment 3: Report

Student Name: Zheng Wang

Student ID: 14403000

Teacher Team
Lecturer Dr. Hanyu Gu
Tutor Dr. Julia Memar

#### Introduction

This report aims to provide a project management plan for Ewing Natural Gas from the perspective of Cliff Erland, the Manager for Project Development. Cliff will use quantitative management methods to balance capital expenditures, expected revenues, and risk control, ensuring that capital expenditures stay within the fixed budget while maximizing expected revenues and keeping risks manageable.

The report includes all 12 projects from three functional areas. Each project outlines capital expenditures, NPF, and budget expenditures for the next three years. The budget constraints specify that annual expenditures must not exceed \$4 billion, and the total three-year budget must not exceed \$10 billion. Although not all projects will be approved, no functional area should have all its projects rejected.

## **Solution approach**

#### 1. Deterministic case.

When disregarding any uncertainties, this problem can be treated as a linear optimization problem.

First, parameters are set based on the given data. Assume there are N projects, each  $project_i$  corresponding to  $Capex_{iy}$ , and  $NPV_i$ . There are a total of three functional areas, with budgets for three years being  $B_y$ , and a total budget of  $B_t$ . Set x as  $x_i = \begin{cases} 1, & \text{if the project}_i \text{ is in the plan} \\ 0, & \text{if the project}_i \text{ is not in the plan} \end{cases}$ 

$$x_i = \begin{cases} 1, & \text{if the project}_i \text{ is in the plan} \\ 0, & \text{if the project}_i \text{ is not in the plan} \end{cases}$$

Therefore, the objective function can be derived as follows:

$$Max \sum_{i=1}^{N} NPV_i \times x_i$$

The constrain is

$$\sum_{i=1}^{N} Capex_{iy} \times \leq B_{y}$$

$$\sum_{y=1}^{3} \sum_{i=1}^{N} Capex_{iy} \times \leq B_{t}$$

Thus, based on the objective function and constraints, set up Excel and use the Simplex LP method in Solver to solve it. Here, x\_i is the changing variable and is in binary form (1,0).

The results obtained are as follows: the total NPV is 1769, with annual expenditures and the total three-year expenditure being  $B_1 = 3583$ ,  $B_2 = 3301$ , and  $B_3 = 3085$ , respectively. The total budget  $B_t = 9969$ , and a total of 9 projects are included in the plan.

| Decisions     |                    |
|---------------|--------------------|
| Project index | Undertake project? |
| 1             | 1                  |
| 2             | 1                  |
| 3             | 0                  |
| 4             | 1                  |
| 5             | 1                  |
| 6             | 0                  |
| 7             | 1                  |
| 8             | 1                  |
| 9             | 1                  |
| 10            | 1                  |
| 11            | 1                  |
| 12            | 0                  |
| Totals        | 9                  |



In this solution, disregarding any uncertainties, all capital expenditures do not exceed the approved limits.

| Limits for comp | any capital expendi | tures  |       |       |
|-----------------|---------------------|--------|-------|-------|
|                 | Year1               | Year 2 | Year3 | Total |
| Limit           | 4000                | 4000   | 4000  | 10000 |
|                 | >=                  | >=     | >=    | >=    |
| Total CAPEX     | 3583                | 3301   | 3085  | 9969  |

#### 2. Risk evaluation

When all expenditures are adjusted to follow a beta-PERT distribution, the original data represents the most likely value. The maximum value is 30% higher than the most likely value, and the minimum value is 15% lower than the most likely value. Correspondingly, the NPV will also be adjusted. In this case, the original data represents the most likely value, the maximum value is 15% higher than the most likely value, and the minimum value is 20% lower than the most likely value.

First, First, set the Capex and NPV in the original data to the most likely values.  $Capex_{iy} = mode_{Ciy}$ , and  $NPV_j = mode_{Nj}$ .

Second, set the maximum and minimum values, and use these values to calculate the mean.

$$Max_{Ciy} = 1.3 \times mode_{Cij}, \qquad Min_{Ciy} = 0.85 \times mode_{Ciy}, \\ Max_i = 1.15 \times mode_j, Min_i = 0.8 \times mode_i$$

The formula for calculating the mean is:

$$mean = \frac{\text{Minimum Value} + 4 \times \text{Most Likely Value} + \text{Maximum Value}}{6}$$

Then, based on the formula, calculate Alpha 1 and Alpha 2, and finally, in Excel, calculate the sample.

The formulas for Alpha 1 and Alpha 2 are as follows:

Alpha 1 = 
$$\frac{6 \times (mean - min : ::)}{max - min}$$
Alpha 1 = 
$$\frac{6 \times (mean - min : ::)}{max - min}$$

Sample = Min + BETAINV(RAND(), alpha 1, alpha 2) \* (max — min)

Then, all the original data (Capex and NPV) were replaced with beta-PERT distributions using the above methods and formulas.

| Inputs        | All values in \$ r   | millions     |          | beta-PERT distribution |            |            |         |         |        |  |
|---------------|----------------------|--------------|----------|------------------------|------------|------------|---------|---------|--------|--|
| Project index | Functional Area (FA) | Capex Year 1 | min      | max                    | nost likel | mean μ     | Alpha 1 | Alpha 2 | Sampl  |  |
| 1             | FA1                  | 250.00       | 212.500  | 325.000                | 250.000    | 256.250    | 2.333   | 3.667   | 296.3  |  |
| 2             | FA1                  | 165.00       | 140.250  | 214.500                | 165.000    | 169.125    | 2.333   | 3.667   | 190.43 |  |
| 3             | FA1                  | 50.00        | 42.500   | 65.000                 | 50.000     | 51.250     | 2.333   | 3.667   | 57.1   |  |
| 4             | FA1                  | 750.00       | 637.500  | 975.000                | 750.000    | 768.750    | 2.333   | 3.667   | 754.8  |  |
| 5             | FA1                  | 150.00       | 127.500  | 195.000                | 150.000    | 153.750    | 2.333   | 3.667   | 162.6  |  |
| 6             | FA2                  | 500.00       | 425.000  | 650.000                | 500.000    | 512.500    | 2.333   | 3.667   | 456.23 |  |
| 7             | FA2                  | 750.00       | 637.500  | 975.000                | 750.000    | 768.750    | 2.333   | 3.667   | 714.75 |  |
| 8             | FA2                  | 800.00       | 680.000  | 1040.000               | 800.000    | 820.000    | 2.333   | 3.667   | 790.5  |  |
| 9             | FA2                  | 268.00       | 227.800  | 348.400                | 268.000    | 274.700    | 2.333   | 3.667   | 249.2  |  |
| 10            | FA3                  | 100.00       | 85.000   | 130.000                | 100.000    | 102.500    | 2.333   | 3.667   | 92.8   |  |
| 11            | FA3                  | 350.00       | 297.500  | 455.000                | 350.000    | 358.750    | 2.333   | 3.667   | 399.6  |  |
| 12            | FA3                  | 1500.00      | 1275.000 | 1950.000               | 1500.000   | 1537.500   | 2.333   | 3.667   | 1588.0 |  |
|               |                      |              |          |                        |            |            |         |         |        |  |
| Inputs        |                      |              |          |                        | heta-F     | ERT distri | hution  |         |        |  |
| •             | Functional Area (FA) | Capex Year 2 | min      | max                    | nost like  |            | Alpha 1 | Alpha 2 | Sampl  |  |
| 1             | FA1                  | 100.00       | 85,000   | 130,000                | 100.000    | 102.500    | 2.333   | 3.667   | 92.4   |  |
| 2             | FA1                  | 99.00        | 84.150   | 128.700                | 99.000     | 101.475    | 2.333   | 3.667   | 116.5  |  |
| 3             | FA1                  | 100.00       | 85.000   | 130.000                | 100.000    | 102.500    | 2.333   | 3.667   | 115.2  |  |
| 4             | FA1                  | 500.00       | 425.000  | 650.000                | 500.000    | 512.500    | 2.333   | 3.667   | 503.93 |  |
| 5             | FA1                  | 300.00       | 255.000  | 390.000                | 300.000    | 307.500    | 2.333   | 3.667   | 291.0  |  |
| 6             | FA2                  | 150.00       | 127.500  | 195.000                | 150.000    | 153.750    | 2.333   | 3.667   | 158.2  |  |
| 7             | FA2                  | 750.00       | 637.500  | 975.000                | 750.000    | 768.750    | 2.333   | 3.667   | 734.5  |  |
| 8             | FA2                  | 700.00       | 595.000  | 910.000                | 700.000    | 717.500    | 2.333   | 3.667   | 703.9  |  |
| 9             | FA2                  | 402.00       | 341.700  | 522.600                | 402.000    | 412.050    | 2.333   | 3.667   | 440.9  |  |
| 10            | FA3                  | 200.00       | 170.000  | 260.000                | 200.000    | 205.000    | 2.333   | 3.667   | 199.3  |  |
| 11            | FA3                  | 250.00       | 212.500  | 325.000                | 250.000    | 256.250    | 2.333   | 3.667   | 259.83 |  |
| 12            | FA3                  | 400.00       | 340.000  | 520.000                | 400.000    | 410,000    | 2.333   | 3.667   | 365.4  |  |

| Inputs        |                      |              |                        |         | beta-F     | PERT distri | bution  |         |         |
|---------------|----------------------|--------------|------------------------|---------|------------|-------------|---------|---------|---------|
| Project index | Functional Area (FA) | Capex Year 3 | min                    | max     | nost likel | mean μ      | Alpha 1 | Alpha 2 | Sample  |
| 1             | FA1                  | 100.00       | 85.000                 | 130.000 | 100.000    | 102.500     | 2.333   | 3.667   | 92.817  |
| 2             | FA1                  | 99.00        | 84.150                 | 128.700 | 99.000     | 101.475     | 2.333   | 3.667   | 91.130  |
| 3             | FA1                  | 200.00       | 170.000                | 260.000 | 200.000    | 205.000     | 2.333   | 3.667   | 199.510 |
| 4             | FA1                  | 300.00       | 255.000                | 390.000 | 300.000    | 307.500     | 2.333   | 3.667   | 259.771 |
| 5             | FA1                  | 600.00       | 510.000                | 780.000 | 600.000    | 615.000     | 2.333   | 3.667   | 642.881 |
| 6             | FA2                  | 150.00       | 127.500                | 195.000 | 150.000    | 153.750     | 2.333   | 3.667   | 166.487 |
| 7             | FA2                  | 300.00       | 255.000                | 390.000 | 300.000    | 307.500     | 2.333   | 3.667   | 289.065 |
| 8             | FA2                  | 600.00       | 510.000                | 780.000 | 600.000    | 615.000     | 2.333   | 3.667   | 663.038 |
| 9             | FA2                  | 536.00       | 455.600                | 696.800 | 536.000    | 549.400     | 2.333   | 3.667   | 580.882 |
| 10            | FA3                  | 400.00       | 340.000                | 520.000 | 400.000    | 410.000     | 2.333   | 3.667   | 389.477 |
| 11            | FA3                  | 150.00       | 127.500                | 195.000 | 150.000    | 153.750     | 2.333   | 3.667   | 178.257 |
| 12            | FA3                  | 400.00       | 340.000                | 520.000 | 400.000    | 410.000     | 2.333   | 3.667   | 370.626 |
|               | Functional Area (FA) |              | beta-PERT distribution |         |            |             |         |         |         |
| Project Index | runctional Area (FA) | NP√          | min                    | max     | nost likel | mean μ      | Alpha 1 | Alpha 2 | Sample  |
| 1             | FA1                  | 60.00        | 48.000                 | 69.000  | 60.000     | 59.500      | 3.286   | 2.714   | 67.7995 |
| 2             | FA1                  | 59.40        | 47.520                 | 68.310  | 59.400     | 58.905      | 3.286   | 2.714   | 67.2114 |
| 3             | FA1                  | 40.00        | 32.000                 | 46.000  | 40.000     | 39.667      | 3.286   | 2.714   | 36.342  |
| 4             | FA1                  | 310.00       | 248.000                | 356.500 | 310.000    | 307.417     | 3.286   | 2.714   | 308.183 |
| 5             | FA1                  | 165.00       | 132.000                | 189.750 | 165.000    | 163.625     | 3.286   | 2.714   | 174.64  |
| 6             | FA2                  | 90.00        | 72.000                 | 103.500 | 90.000     | 89.250      | 3.286   | 2.714   | 80.7522 |
| 7             | FA2                  | 410.00       | 328.000                | 471.500 | 410.000    | 406.583     | 3.286   | 2.714   | 447.434 |
| 8             | FA2                  | 280.00       | 224.000                | 322.000 | 280.000    | 277.667     | 3.286   | 2.714   | 273.977 |
| 9             | FA2                  | 254.60       | 203.680                | 292.790 | 254.600    | 252.478     | 3.286   | 2.714   | 284.468 |
| 10            | FA3                  | 100.00       | 80.000                 | 115.000 | 100.000    | 99.167      | 3.286   | 2.714   | 90.2014 |
| 11            | FA3                  | 130.00       | 104.000                | 149.500 | 130.000    | 128.917     | 3.286   | 2.714   | 130.282 |
| 12            | FA3                  | 340.00       | 272.000                | 391.000 | 340,000    | 337.167     | 3.286   | 2.714   | 335.049 |

Using the parameters min, mode, max, and the formula

$$mode + BETAINV(RAND(), \alpha_1, \alpha_2) \times (max - min :::),$$

create 1000 iteration samples for each year and NPV in the form of beta-PERT distributions.

Using the project plans identified in Q1, apply the iteration samples to calculate the annual Capex for three years, generating 1000 simulated data points for each year. Sum these to obtain the total Capex for the three years. Similarly, calculate the simulated NPV data in the same manner.

According to the annual budget expenditure cap of \$4 billion and the three-year total expenditure cap of \$10 billion, determine whether each simulation data point exceeds the budget, exceeds the expenditure cap, or exceeds the expenditure cap by more than 5%. Similarly, using the project plans identified in Q1, calculate the simulated NPV iteration data.

| Simulation of Total CAPEX Year 1              |           | Simulation of To |              |                   |      |            |          | otal CAPE  |                   |           | Simulation o    |            |                    |      | Simulation of |           |
|-----------------------------------------------|-----------|------------------|--------------|-------------------|------|------------|----------|------------|-------------------|-----------|-----------------|------------|--------------------|------|---------------|-----------|
| iorfotal Capexiver the Budge% over the budget | Iteration | Total Capex Iv   | er the Budge | % over the budget | lter | atiorfotal | Capexive | r the Budg | % over the budget | lteration | orfotal Capexiv | er the Bud | ge% over the budge | et . | Iteration     | Total NP  |
| 3573.05953 0 0                                | 1         | 3488.664073      | 0            | 0                 |      |            | 4.4195   | 0          | 0                 | - 1       | 10136.1431      | 1          | 0                  |      | 1             | 1883.0242 |
| 3570.74253 0 0                                | 2         | 3329.281796      | 0            | 0                 |      | 2 3273     | 3.54616  | 0          | 0                 | 2         | 10173.5705      | 1          | 0                  |      | 2             | 1698.5062 |
| 3667.05406 0 0                                | 3         | 3360.057323      | 0            | 0                 |      |            | 0.99702  | 0          | 0                 | 3         | 10108.1084      | 1          | 0                  |      | 3             | 1888.7109 |
| 3586.70843 0 0                                | 4         | 3106.158094      | 0            | 0                 |      |            | 0.94012  | 0          | 0                 | 4         | 9773.80664      | 0          | 0                  |      | 4             | 1736.421  |
| 3723.99432 0 0                                | 5         | 3447.742145      | 0            | 0                 |      |            | 1.92478  | 0          | 0                 | 5         | 10393.6612      | 1          | 0                  |      | 5             | 1701.368  |
| 3681.49779 0 0                                | 6         | 3348.47971       | 0            | 0                 |      |            | 2.18935  | 0          | 0                 | 6         | 10212.1668      | 1          | 0                  |      | 6             | 1657.375  |
| 3699.3607 0 0                                 | 7         | 3482.375069      | 0            | 0                 |      |            | 3.5102   | 0          | 0                 | 7         | 10465.246       | 1          | 0                  |      | 7             | 1831.1239 |
| 3621.86963 0 0                                | 8         | 3504.031805      | 0            | 0                 |      |            | 5.94363  | 0          | 0                 | 8         | 10441.8451      | 1          | 0                  |      | 8             | 1777.9116 |
| 3606.30624 0 0                                | 9         | 3355.352071      | 0            | 0                 |      |            | 5.30158  | 0          | 0                 | 9         | 10266.9599      | 1          | 0                  |      | 9             | 1692.616  |
| 3607.54253 0 0                                | 10        | 3413.537456      | 0            | 0                 |      |            | .04945   | 0          | 0                 | 10        | 10146.1294      | 1          | 0                  |      | 10            | 1797.514  |
| 3478.41255 0 0                                | 11        | 3469.868494      | 0            | 0                 |      |            | 3.62072  | 0          | 0                 | 11        | 10031.9018      | 1          | 0                  |      | 11            | 1889.5    |
| 3873.57652 0 0                                | 12        | 3465.991559      | 0            | 0                 |      |            | 3.74722  | 0          | 0                 | 12        | 10483.3153      | 1          | 0                  |      | 12            | 1769.700  |
| 3721.8175 0 0                                 | 13        | 3400.380227      | 0            | 0                 |      |            | 1.48449  | 0          | 0                 | 13        | 10223.6822      | 1          | 0                  |      | 13            | 1758.65   |
| 3598.57748 0 0                                | 14        | 3451.286242      | 0            | 0                 |      |            | 04.463   | 0          | 0                 | 14        | 10154.3267      | 1          | 0                  |      | 14            | 2031.300  |
| 5 3716.13339 0 0                              | 985       | 3419.846771      | 0            | 0                 | 9    |            | 3.27746  | 0          | 0                 | 985       | 10189.2576      | 1          | 0                  |      | 985           | 1795.403  |
| 3601.58118 0 0                                | 986       | 3374.122478      | 0            | 0                 | 9    | 86 3230    | 0.60715  | 0          | 0                 | 986       | 10206.3108      | 1          | 0                  |      | 986           | 1714.411  |
| 7 3590.79923 0 0                              | 987       | 3381.261313      | 0            | 0                 | 9    | 87 3050    | 0.57815  | 0          | 0                 | 987       | 10022.6387      | 1          | 0                  |      | 987           | 1734.815  |
| 3 3781.04404 0 0                              | 988       | 3446.674588      | 0            | 0                 | 9    | 68 3257    | 7.83999  | 0          | 0                 | 988       | 10485.5586      | 1          | 0                  |      | 988           | 1739.457  |
| 3 3524.19416 0 0                              | 989       | 3516.093589      | 0            | 0                 | 9    | 69 328     | 31.3817  | 0          | 0                 | 989       | 10321.6694      | 1          | 0                  |      | 989           | 1837.592  |
| 0 3873.38635 0 0                              | 990       | 3213.630133      | 0            | 0                 | 9    | 90 2999    | 3.62223  | 0          | 0                 | 990       | 10086.6387      | 1          | 0                  |      | 990           | 1946.225  |
| 1 3662.64477 0 0                              | 991       | 3400.267016      | 0            | 0                 | 9    | 91 3303    | 3.54499  | 0          | 0                 | 991       | 10366.4568      | 1          | 0                  |      | 991           | 1811.052  |
| 2 3581.40635 0 0                              | 992       | 3451.766172      | 0            | 0                 | 9    | 92 3220    | 0.67036  | 0          | 0                 | 992       | 10253.8429      | 1          | 0                  |      | 992           | 1793.869  |
| 3 3794.48963 0 0                              | 993       | 3463.32303       | 0            | 0                 | 9    | 93 3031    | 1.16848  | 0          | 0                 | 993       | 10288.9811      | 1          | 0                  |      | 993           | 1752.030  |
| 4 3491.87359 0 0                              | 994       | 3348.938147      | 0            | 0                 | 9    |            | 7.25902  | 0          | 0                 | 994       | 10018.0708      | 1          | 0                  |      | 994           | 1862.286  |
| 5 3627.68098 0 0                              | 995       | 3340.475254      | 0            | 0                 | 9    | 95 3194    | 1.97212  | 0          | 0                 | 995       | 10163.1284      | 1          | 0                  |      | 995           | 1693.50   |
| 3615.14383 0 0                                | 396       | 3344.273275      | 0            | 0                 | 9    | 96 307     | 1.9586   | 0          | 0                 | 996       | 10031.3757      | 1          | 0                  |      | 996           | 1765.549  |
| 7 3710.39142 0 0                              | 397       | 3413.625755      | 0            | 0                 | 9    | 97 3098    | 3.22857  | 0          | 0                 | 997       | 10222.2457      | 1          | 0                  |      | 997           | 1764.626  |
| 8 3692.81003 0 0                              | 338       | 3421.046762      | 0            | 0                 | 9    | 98 3135.   | 339677   | 0          | 0                 | 998       | 10249.2536      | 1          | 0                  |      | 998           | 1835.975  |
| 9 3539.14227 0 0                              | 333       | 3328.580065      | 0            | 0                 | 9    | 99 316     | 8.822    | 0          | 0                 | 999       | 10036.5443      | 1          | 0                  |      | 999           | 1864.783  |
| 0 3698.83299 0 0                              | 1000      | 3392,139136      | 0            | 0                 | 10   | 000 3226   | 6.7098   | 0          | 0                 | 1000      | 10317.6819      | 1          | 0                  |      | 1000          | 1647.902  |

This way, the risk of exceeding the budget and the risk of exceeding the budget by more than 5% can be calculated based on the results obtained from the simulated iterative sample data.

|                         | year1 | year 2 | year3 | Total  |
|-------------------------|-------|--------|-------|--------|
| Over the budget risk    | 0.40% | 0.00%  | 0.00% | 88.70% |
| 5% over the budget risk | 0.00% | 0.00%  | 0.00% | 7.20%  |

From the results, it can be seen that while the risk of exceeding the budget is very low for individual years, with only 0.4% in the first year, the risk of total expenditure over the three years exceeding the budget is very high. There is an 88.7% chance that the total expenditure over three years will exceed the budget and a 7.2% risk of exceeding the budget by 5%. This result is significantly inconsistent with the findings obtained in Q1.

| CAPEX       | Y1        | Total CAPI  | X Y2      | Total CAP   | EX Y3     | Total CAPE  | X Total   |
|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| Bin         | Frequency | Bin         | Frequency | Bin         | Frequency | Bin         | Frequency |
| 3357.768364 | 0         | 3095.456392 | 0         | 2910.302616 | 2         | 9580.181043 | C         |
| 3380.188931 | 3         | 3117.589118 | 4         | 2930.514519 | 2         | 9618.676937 | C         |
| 3402.609497 | 3         | 3139.721845 | 4         | 2950.726422 | 3         | 9657.172832 | C         |
| 3425.030064 | 8         | 3161.854571 | 4         | 2970.938325 | 6         | 9695.668727 | C         |
| 3447.450631 | 12        | 3183.987297 | 18        | 2991.150228 | 14        | 9734.164621 | 4         |
| 3469.871197 | 12        | 3206.120023 | 21        | 3011.362131 | 26        | 9772.660516 | 2         |
| 3492.291764 | 27        | 3228.252749 | 28        | 3031.574034 | 36        | 9811.15641  | 9         |
| 3514.712331 | 37        | 3250.385476 | 36        | 3051.785937 | 61        | 9849.652305 | Ę         |
| 3537.132897 | 36        | 3272.518202 | 41        | 3071.99784  | 47        | 9888.1482   | 28        |
| 3559.553464 | 49        | 3294.650928 | 47        | 3092.209743 | 51        | 9926.644094 | 22        |
| 3581.974031 | 52        | 3316.783654 | 68        | 3112.421646 | 74        | 9965.139989 | 29        |
| 3604.394597 | 61        | 3338.91638  | 81        | 3132.633549 | 83        | 10003.63588 | 31        |
| 3626.815164 | 72        | 3361.049107 | 69        | 3152.845452 | 76        | 10042.13178 | 51        |
| 3649.235731 | 55        | 3383.181833 | 84        | 3173.057355 | 60        | 10080.62767 | 57        |
| 3671.656297 | 75        | 3405.314559 | 91        | 3193.269258 | 84        | 10119.12357 | 78        |
| 3694.076864 | 64        | 3427.447285 | 66        | 3213.481161 | 72        | 10157.61946 | 74        |
| 3716.497431 | 78        | 3449.580011 | 64        | 3233.693065 | 70        | 10196.11536 | 69        |
| 3738.917997 | 67        | 3471.712738 | 77        | 3253.904968 | 59        | 10234.61125 | 78        |
| 3761.338564 | 70        | 3493.845464 | 38        | 3274.116871 | 49        | 10273.10715 | 86        |
| 3783.759131 | 57        | 3515.97819  | 38        | 3294.328774 | 33        | 10311.60304 | 77        |
| 3806.179697 | 34        | 3538.110916 | 46        | 3314.540677 | 26        | 10350.09893 | 57        |
| 3828.600264 | 36        | 3560.243642 | 25        | 3334.75258  | 23        | 10388.59483 | 65        |
| 3851.02083  | 17        | 3582.376369 | 13        | 3354.964483 | 18        | 10427.09072 | 58        |
| 3873.441397 | 20        | 3604.509095 | 16        | 3375.176386 | 13        | 10465.58662 | 38        |
| 3895.861964 | 13        | 3626.641821 | 8         | 3395.388289 | 1         | 10504.08251 | 26        |
| 3918.28253  | 9         | 3648.774547 | 4         | 3415.600192 | 3         | 10542.57841 | 23        |
| 3940.703097 | 13        | 3670.907274 | 5         | 3435.812095 | 3         | 10581.0743  | 15        |
| 3963.123664 | 7         | 3693.04     | 2         | 3456.023998 | 2         | 10619.5702  | 8         |
| 3985.54423  | 5         | 3715.172726 | 0         | 3476.235901 | 2         | 10658.06609 | 10        |
| 4007.964797 | 2         | 3737.305452 | 1         | 3496.447804 | 1         | 10696.56199 | 4         |
| 4030.385364 | 2         | 3759.438178 | 0         | 3516.659707 | 0         | 10735.05788 | :         |
| More        | 4         | More        | 1         | More        | 0         | More        | 3         |









The summary of the simulated data distribution for annual Capex, total Capex over three years, and NPV can be obtained.

| Summary measures for simulation below | Total Capex year 1 | Total Capex year 2 | Total Capex year 3 | Total Capex 3 years | NPV       |
|---------------------------------------|--------------------|--------------------|--------------------|---------------------|-----------|
| Mean of total Capex                   | 3673.5208          | 3384.7995          | 3164,5351          | 10222.8553          | 1783.5639 |
| Standard Deviation                    | 116.8583           | 108.8325           | 99.4599            | 186.0736            | 91.8876   |
| Min of                                | 3350.7543          | 3076.0136          | 2847.7456          | 9696.4736           | 1480.5006 |
| Max of                                | 4140.3057          | 3841.4006          | 3477.8560          | 10810.7337          | 2031.3008 |

Using the formula to calculate the 95% confidence interval: 
$$CI = mean \pm 1.96 \times \frac{Standard\ Deviation}{\sqrt{1000}}$$
, 1000 is the sample size (n)

| 95% confidence interval<br>for expected | Total Capex year 1 | Total Capex year 2 | Total Capex year 3 | Total Capex 3 years | NPV         |
|-----------------------------------------|--------------------|--------------------|--------------------|---------------------|-------------|
| Upper Limit                             | 3680,763713        | 3391.544964        | 3170.699692        | 10234.38829         | 1789.259198 |
| Lower Limit                             | 3666.277809        | 3378.053952        | 3158.37052         | 10211.32236         | 1777,868691 |

The "Exact expectation of total NPV" is obtained by multiplying the planned project implementation schemes from Q1 with the mean values from the NPV beta-PERT distribution and summing them up. And the value is: 1754.258333

Compare the sample average of the total NPV and its confidence interval with the exact expectation of the total NPV. The exact expectation of the total NPV is below the limit.

|                                | NPV         |
|--------------------------------|-------------|
| Mean of                        | 1783.5639   |
| 95% confidence interval Upper  |             |
| Limit                          | 1789.259198 |
| 95% confidence interval Lower  |             |
| Limit                          | 1777.868691 |
| Exact expectation of total NPV | 1754.258333 |



## 3. Based on the selection of the optimal solution under uncertainty

According to the requirements, the objective is to maximize the average total NPV while ensuring that the probability of capital expenditures staying within each budget range is at least 0.95. Additionally, each functional area should have at least one project approved. Therefore, the following can be concluded:

Assume there are N projects, each  $project_i$  corresponding to  $Capex_{iy}$ , and  $NPV_i$ . There are a total of three functional areas, with budgets for three years being  $B_y$ , and a total budget of  $B_t$ . Set x as

$$x_i = \begin{cases} 1, & \text{if the project}_i \text{ is in the plan} \\ 0, & \text{if the project}_i \text{ is not in the plan} \end{cases}$$

$$Max \sum_{i=1}^{N} NPV_i \times x_i = Max \sum x_i \times \mu_i$$

Constrain:

$$let j = 1,2 \cdots N$$
Risk  $Over_j = \begin{cases} 1 & if \sum x_i \times Capex_{ij} > B \\ 0 & otherwise \end{cases}$  this part is nonlinear and not the decision variable.

$$\frac{Over_j}{N} \le \operatorname{Max} Risk$$

$$i \in (1,2,3,4,\dots, 12) = \operatorname{project}$$

$$\sigma_j \ j = (1,2,3)$$

$$\sigma_i \cap \sigma_j = \emptyset$$

$$\sigma_1 \cup \sigma_2 \cup \sigma_3 = \operatorname{Projects}$$

$$\sum x_i > 1$$

## Solution 1: Cash Reserve

Using a 95% budget limit as the benchmark, the expected value of total Capex should be less than the 95% budget limit. In the beta-PERT distribution table, the sum of the mean values of NPV multiplied by the corresponding  $x_i$  is taken as the maximization objective. This is calculated using the Simplex LP method in Excel. The result obtained is a **Total NPV of 1635.8533.** 

## Solution 2: Genetic Algorithm

First, convert the dynamic samples from Q2 into static samples, ensuring that the sample values are fixed and no longer subject to random changes.

Next, calculate the annual total Capex and the three-year total Capex by multiplying the static samples by the corresponding  $x_i$ . Then, evaluate whether each possible value exceeds the budget.

Using a 5% threshold to measure the estimated risk, ensure that the estimated risk is below 5% in the calculations.

Finally, use the Evolutionary method in Excel for calculations.

When using the default parameters, the expected value of total NPV is 1620.38. After adjusting the parameters, the expected value of total NPV slightly increases to 1625.34.

## Solution 3: Integer Programming

First, convert the dynamic samples from Q2 into static samples, ensuring that the sample values are fixed and no longer subject to random changes.

Next, calculate the annual total Capex and the three-year total Capex by multiplying the static samples by the corresponding x\_i. Then, evaluate whether each possible value exceeds the budget.

The difference in this approach is that it compares the values exceeding the budget with an upper bound, ensuring that the number of values exceeding the budget is less than the upper bound. This introduces two changing variables: one for which projects will be included in the final plan and another for which iterative project simulation data exceed the budget.

Finally, use the Simplex LP method in Excel for calculations.

However, it was found that regardless of using 90 sets of simulation iteration sample data or 50 sets of simulation iteration sample data for prediction, this scale of calculation exceeds the capabilities of Excel Solver. Therefore, Integer Programming is only suitable for handling smaller problems.

If maximizing the average total NPV is the deciding criterion, then Solution 1 is the best among the three solutions. **Total NPV is 1635.8533.** 

#### **Conclusion and Recommendations**

Firstly, uncertainty is a common issue encountered in daily life and work. As seen in Q1, disregarding uncertainty yields theoretical values, which are useful for reference.

Secondly, since uncertainty is a common occurrence in daily life, using mathematical methods to generalize it provides values that are closer to reality. In this case, we use the beta-PERT distribution to generalize the possible value ranges for Capex and NPV. By expressing uncertainty through maximum, minimum, and most likely

values, we simulate multiple possible scenarios and predict realistic outcomes through risk assessment.

Thirdly, combining uncertainty and simulation data provides values closer to what might actually occur. By evaluating three methods, we find that the results of the first two solutions are similar. However, the third method, Integer Programming, is not suitable for analyzing and computing more complex or large-scale problems.

Reference List:

Wayne L Winston, & S. Christian Albright (2017) Practical Management Science, South West College ISE;