FCC RF Test Report

APPLICANT: Lemobile Information Technology (Beijing) Co., Ltd

EQUIPMENT: mobile phone

BRAND NAME :

E

MODEL NAME : Le X829

FCC ID : 2AFWMLEX829

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION: (NII) Unlicensed National Information Infrastructure

The product was received on Mar. 02, 2016 and testing was completed on Apr. 20, 2016. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Prepared by: James Huang / Manager

James Huang

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC.

No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Report Issued Date: May 03, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Testing Laboratory 2627

: 1 of 36

Report No.: FR630205F

TABLE OF CONTENTS

RE	VISION	HISTORY	3
SU	MMARY	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.2 1.3 1.4 1.5 1.6	Applicant Manufacturer Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards	5 6 7
2	TEST (CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.2 2.3 2.4 2.5 2.6	Carrier Frequency and Channel Pre-Scanned RF Power Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	9 13 14 14
3	TEST	RESULT	16
	3.2 3.3 3.4 3.5 3.6 3.7 3.8	6dB and 26dB and 99% Occupied Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Unwanted Emissions Measurement AC Conducted Emission Measurement Frequency Stability Measurement Automatically Discontinue Transmission Antenna Requirements	19 20 28 32 33
4	LIST C	OF MEASURING EQUIPMENT	35
AP AP	PENDI) PENDI) PENDI)	RTAINTY OF EVALUATION	36

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 2 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

REVISION HISTORY

Report No.: FR630205F

: 3 of 36

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR630205F	Rev. 01	Initial issue of report	May 03, 2016

SPORTON INTERNATIONAL (KUNSHAN) INC. Page Number TEL: 86-0512-5790-0158 Report Issued Date: May 03, 2016

FAX: 86-0512-5790-0958 Report Version : Rev. 01 FCC ID: 2AFWMLEX829 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 30 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 30 dBm/500kHz	Pass	-
3.4	15.407(b)	Unwanted Emissions	≤ -17, -27 dBm/MHz &15.209(a)	Pass	Under limit 6.57 dB at 87.230 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 13.50 dB at 0.450 MHz
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 4 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

1 General Description

1.1 Applicant

Lemobile Information Technology (Beijing) Co., Ltd

WENHUAYING NORTH (No.1, LINKONG 2nd St), GAOLIYING, SHUNYI DISTRICT, BEIJING

Report No.: FR630205F

1.2 Manufacturer

Lemobile Information Technology (Beijing) Co., Ltd

WENHUAYING NORTH (No.1, LINKONG 2nd St), GAOLIYING, SHUNYI DISTRICT, BEIJING

1.3 Feature of Equipment Under Test

Product I	Feature & Specification
Equipment	mobile phone
Brand Name	1
Model Name	Le X829
FCC ID	2AFWMLEX829
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/ HSPA+(16QAM uplink is not supported)/LTE/ANT+/ WLAN 2.4GHz 802.11b/g/n HT20/HT40/ WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth v3.0+EDR/Bluetooth v4.1 LE
IMEI Code	Conducted: 869941020005984/869941020005992 Radiation: 869941020004383/869941020004391 Conduction: 869941020004383/869941020004391
HW Version	X2_NA_DVT1
SW Version	FIXNAOP5517302294D
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 SPORTON INTERNATIONAL (KUNSHAN) INC.
 Page Number
 : 5 of 36

 TEL: 86-0512-5790-0158
 Report Issued Date
 : May 03, 2016

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : 2AFWMLEX829 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Product Specification of Equipment Under Test 1.4

Product Sp	ecification subject	tive to this standa	ırd					
Tx/Rx Channel Frequency Range	5745 MHz ~ 5825	MHz						
Maximum Output Power	802.11a: 15.93 dBm / 0.0392 W 802.11n HT20: 16.60 dBm / 0.0457 W 802.11n HT40: 16.00 dBm / 0.0398 W 802.11ac VHT20: 15.55 dBm / 0.0359 W 802.11ac VHT40: 14.98 dBm / 0.0315 W 802.11ac VHT80: 13.83 dBm / 0.0242 W							
Antenna Type / Gain	Chain Port 1 : Monopole Antenna with gain 3.50 dBi Chain Port 2 : Monopole Antenna with gain 0.20 dBi							
Type of Modulation	802.11a/n : OFDM 802.11ac : OFDM	`	,	56QAM)				
Antenna Function Description	802.11a 802.11n/ac SISO 802.11n/ac MIMO	Chain Port 1 V V	Chain Port 2 V V					

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number Report Issued Date: May 03, 2016 Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

: 6 of 36

Report No.: FR630205F

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.								
	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China								
Test Site Location	TEL: +86-0512-5790-0158								
	FAX: +86-0512-5790-0958								
Took Cita No		Sporton Site No.	FCC Registration No.						
Test Site No.	TH01-KS	CO01-KS	306251						

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 7 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y/Z plane) were recorded in this report.

Report No.: FR630205F

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5745 MHz ~ 5825	149	5745	157	5785
MHz	151	5755	159	5795
Band 4	153	5765	161	5805
(U-NII-3)	155	5775	165	5825

Note: The above Frequency and Channel in boldface were 802.11n HT40.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Report Issued Date : May 03, 2016
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

: 8 of 36

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test in the following tables. Final Output Power equals to Measured Output Power adds the duty factor.

Report No.: FR630205F

	WLAN 5GHz 802.11a Average Power (dBm)													
P	ower vs. Ch	annel			Power vs. Data Rate									
Channel	Frequency (MHz)	Dort	Data Rate 6Mbps	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps			
CH 149	5745	1	15.93											
CH 157	5785	1	15.83	CH 149	15.73	15.76	15.84	15.86	15.89	15.91	15.88			
CH 165	5825	1	15.64											
CH 149	5745	2	13.62											
CH 157	5785	2	13.90	CH 157	13.75	13.71	13.81	13.83	13.85	13.88	13.86			
CH 165	5825	2	13.49											

	WLAN 5GHz 802.11n-HT20 Average Power (dBm)												
Р	ower vs. Ch	annel		Power vs. Data Rate									
Channel	Frequency (MHz)	Chain Port	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
CH 149	5745	1	14.93										
CH 157	5785	1	14.78	CH 149	14.54	14.66	14.84	14.89	14.90	14.92	14.86		
CH 165	5825	1	14.59										
CH 149	5745	2	12.58										
CH 157	5785	2	<mark>12.84</mark>	CH 157	12.44	12.58	12.76	12.79	12.74	12.81	12.83		
CH 165	5825	2	12.31										
Channel	Frequency (MHz)	Chain Port	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
CH 149	5745	1+2(1)	13.48										
CH 157	5785	1+2(1)	13.55	CH 157	13.19	13.37	13.53	13.48	13.50	13.52	13.54		
CH 165	5825	1+2(1)	13.31										
CH 149	5745	1+2(2)	13.19										
CH 157	5785	1+2(2)	13.62	CH 157	13.39	13.41	13.58	13.56	13.55	13.61	13.59		
CH 165	5825	1+2(2)	13.16										
CH 149	5745	1+2	16.35										
CH 157	5785	1+2	16.60	CH 157	16.30	16.40	16.57	16.53	16.54	16.58	16.57		
CH 165	5825	1+2	16.25										

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 9 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

	WLAN 5GHz 802.11n-HT40 Average Power (dBm)												
P	ower vs. Ch	annel			Power vs. Data Rate								
Channel	Frequency (MHz)	Chain Port	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
CH 151	5755	1	14.35	CH 151	14.26	14.21	14.28	14.22	14.23	14.20	14.18		
CH 159	5795	1	14.25	011 101	14.20	17.21	14.20	17.22	14.20	14.20	14.10		
CH 151	5755	2	12.07	CH 159	12.15	12.08	12.06	12.09	12.00	12.10	12.02		
CH 159	5795	2	12.21	CITIO	12.13	12.00	12.00	12.00	12.00	12.10	12.02		
Channel	Frequency (MHz)	Chain Port	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
CH 151	5755	1+2(1)	12.91	CH 159	12.83	12.80	12.84	12.86	12.78	12.79	12.77		
CH 159	5795	1+2(1)	12.98	CITIOS	12.03	12.00	12.04	12.00	12.70	12.79	12.77		
CH 151	5755	1+2(2)	12.76	CH 159	12.90	12.94	12.89	12.86	12.91	12.90	12.78		
CH 159	5795	1+2(2)	12.99	C11 159	12.90	12.94	12.09	12.00	12.91	12.90	12.70		
CH 151	5755	1+2	15.85	CH 159	15.88	15.88	15.88	8 15.87	15.86	15.85	15.78		
CH 159	5795	1+2	<mark>16.00</mark>	011 109	15.00	15.00	15.00	15.07	15.00	10.00	10.70		

	WLAN 5GHz 802.11ac VHT20 Average Power (dBm)												
Р	ower vs. Ch	annel		Power vs. Data Rate									
Channel	Frequency (MHz)	Chain Port	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	
CH 149	5745	1	13.96										
CH 157	5785	1	13.71	CH 149	13.51	13.62	13.89	13.91	13.86	13.94	13.92	13.88	
CH 165	5825	1	13.58										
CH 149	5745	2	11.62			11.62	11.80	11.82	11.84	11.86	11.85		
CH 157	5785	2	11.89	CH 157	11.59							11.83	
CH 165	5825	2	11.46										
CH 149	5745	1+2(1)	12.69								12.60		
CH 157	5785	1+2(1)	12.50	CH 149	12.26	12.26 12.38	12.38 12.63	.63 12.67	12.68	12.62		12.64	
CH 165	5825	1+2(1)	12.36										
CH 149	5745	1+2(2)	12.39										
CH 157	5785	1+2(2)	12.34	CH 149	11.97	12.18	12.31	12.35	12.32	12.37	12.33	12.36	
CH 165	5825	1+2(2)	12.12										
CH 149	5745	1+2	<mark>15.55</mark>										
CH 157	5785	1+2	15.43	CH 149	15.13	15.29	15.48	15.52	15.51	15.51	15.48	15.51	
CH 165	5825	1+2	15.25										

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 10 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

	WLAN 5GHz 802.11ac VHT40 Average Power (dBm)													
Р	ower vs. Ch	annel		Power vs. Data Rate										
Channel	Frequency (MHz)	Chain Port	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	
CH 151	5755	1	13.16	CH 151	13.04	13.02	12.96	13.00	13.05	13.03	12 15	12 12	12.07	
CH 159	5795	1	13.07	CHIST	13.04	13.04 13.02	12.90	13.00	13.05	13.03	13.15	13.13	13.07	
CH 151	5755	2	10.99	CH 159	11.21	11.21 11.23	11.06	11.22	11.15	11.17	11 11	11 11	11.13	
CH 159	5795	2	11.29	CH 159			11.00	11.22	11.15	11.17	11.14	11.11	11.13	
CH 151	5755	1+2(1)	11.92	CH 159	11.85	11 70	11.83	11.92	11.81	11.84	11 77	11 00	11.73	
CH 159	5795	1+2(1)	11.98	CH 159	11.00	1.85 11.72	11.03	11.92			11.77	11.60	11.73	
CH 151	5755	1+2(2)	11.77	CH 159	11.95	11.89	11.94	11 00	11.01	11 07	11 05	11 02	11 02	
CH 159	5795	1+2(2)	11.97	CH 159	11.95	11.09	11.94	11.88	11.91	11.87	11.85	11.93	11.83	
CH 151	5755	1+2	14.85	CH 159	44.04	1/1 01	14.90	44.04	01 14 07	14.07	14.00	14.00	14.79	
CH 159	5795	1+2	14.98	CH 159	14.91	1 14.81	14.90	14.91	14.87	14.87	14.82	14.88	14.79	

	WLAN 5GHz 802.11n-HT80 Average Power (dBm)												
Power vs. Channel							Pow	er vs. Da	ta Rate				
Channel	Frequency (MHz)	Chain Port	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
CH 155	5775	1	<mark>11.94</mark>	CH 155	11.83	11.80	11.86	11.85	11.89	11.91	11.90	11.92	11.88
CH 155	5775	2	<mark>9.91</mark>	CH 155	9.79	9.72	9.89	9.83	9.86	9.88	9.87	9.85	9.82
CH 155	5775	1+2(1)	10.92	CH 155	10.69	10.63	10.88	10.87	10.79	10.90	10.91	10.89	10.85
CH 155	5775	1+2(2)	10.73	CH 155	10.62	10.49	10.71	10.64	10.65	10.58	10.67	10.68	10.72
CH 155	5775	1+2	13.83	CH 155	13.67	13.57	13.81	13.77	13.73	13.76	13.80	13.80	13.80

Note: Chain Port 1+2 is a calculated result from sum of the power Chain Port 1+2(1) and Chain Port 1+2(2).

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Report Issued Date: May 03, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

: 11 of 36

Report No.: FR630205F

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Report No.: FR630205F

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

AC Conducted	Mode 1 : GSM850 Idle + Bluetooth Link + WLAN (5GHz) Link + USB Cable (Charging from
Emission	Adapter 1)

Remark:

1. For Radiated TCs, the tests were performed with adapter 1 and USB cable.

	Ch. #	Band IV:5745-5825 MHz								
CII.#		802.11a	802.11n HT20	802.11n HT40						
L	Low	149	149	151						
M	Middle	157	157	-						
Н	High	165	165	159						

	Ch. #	Band IV:5745-5825 MHz								
CII.#		802.11ac VHT20	802.11ac VHT40	802.11ac VHT80						
L	Low	149	151	-						
M	Middle	157	-	155						
Н	High	165	159	-						

 ${\it SPORTON\ INTERNATIONAL\ (KUNSHAN)\ INC.}$

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 12 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN5GHz 802.11a Tx Mode>

< WLAN5GHz 802.11n HT20/HT40/WLAN5GHz 802.11ac VHT20/VHT40/VHT80 Tx Mode>

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 13 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Report No.: FR630205F

<AC Conducted Emission Mode>

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
2.	WLAN AP	D-link	DIR-855	KA2DIR855A2	N/A	Unshielded, 1.8 m
3.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Nokia	BH-106	QTLBH-106	N/A	N/A
5.	DC Power Supply	GW INSTEK	GPD-2303S	N/A	N/A	Unshielded, 1.8 m

2.6 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the Notebook under large package sizes transmission.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 14 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Report No.: FR630205F

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR630205F

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 7.0 dB.

Offset (dB) = RF cable loss(dB).

= 7.0 (dB)

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 15 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.
 Section C) Emission bandwidth for the band 5.725-5.85GHz
- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 16 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

3.1.5 Test Result of 6dB and 26dB and 99% Occupied Bandwidth

Please refer to Appendix A.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 17 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 18 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Report No.: FR630205F

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, 10 log(1/x), where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 19 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR630205F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- 1. The testing follows Method SA-2 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.
 - Measure the duty cycle.
 - Set span to encompass the entire emission bandwidth (EBW) of the signal.
 - Set RBW = 300 kHz.
 - Set VBW ≥ 1 MHz.
 - Number of points in sweep ≥ 2 Span / RBW.
 - Sweep time = auto.
 - Detector = RMS
 - Trace average at least 100 traces in power averaging mode.
 - Add 10 log(500kHz/RBW) to the test result.
 - Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 20 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

Report No.: FR630205F

4. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 log(NANT) dB, where NANT is the number of outputs.

3.3.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 21 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 22 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

Report No.: FR630205F

: 23 of 36

3.4.1 **Limit of Unwanted Emissions**

- (1) For transmitters operating in the 5725-5850 MHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz (78.3dBµV/m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBµV/m).
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBμV/m)				
-17	78.3				
- 27	68.3				

(3) KDB 789033 D02 General UNII Test Procedures New Rules v01r02 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

SPORTON INTERNATIONAL (KUNSHAN) INC. Page Number TEL: 86-0512-5790-0158

Report Issued Date: May 03, 2016 FAX: 86-0512-5790-0958 : Rev. 01 Report Version

FCC ID: 2AFWMLEX829 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 24 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Report No.: FR630205F

2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR630205F

- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 25 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 26 of 36
Report Issued Date : May 03, 2016

Report No.: FR630205F

Report Version : Rev. 01

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix B.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 27 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBμV)					
Frequency of emission (MH2)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 28 of 36
Report Issued Date : May 03, 2016

Report No.: FR630205F

Report Version : Rev. 01

3.5.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 29 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

3.5.5 Test Result of AC Conducted Emission

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 30 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

Test Mode :	Mode 1			Temp	Temperature :			20~22°C			
Test Engineer :	Amos Zhang				_	ive Hun		36~38%			
Test Voltage :	120Vac / 60Hz				Phase	e :		Neutra	al		
Francisco Trans.	GSM8	50 Idle	+ Blue	tooth L	ink + W	/LAN (5	5GHz) L	ink + U	SB Ca	ble (Chargi	ng from
Function Type :	Adapte	Adapter 1)									
80 Level	(dBuV)										7
70.0											
60.0										FCC PART 15	
_									F.C.	C DADT 4EF/AVC	
50.0									FC	C PART 15E(AVG	<u>)</u>
40.0	, I	4	<u> </u>								
10.0		.alm	\≸\ liiM_a	1. ////////////////////////////////////	LOMANA.	ىيان . ا		s. unicome.Mili	Line Maria	1.	
30.0	- "	₩ <u>₩₩</u>	6 44 1		1 1911	ANTINA ANTONIO	Made Anti-Auto	NAMA JAMA TAN	אייי יייין	A CONTRACTOR OF THE PROPERTY O	
20.0	γ	1 1	8		10	12				Profession	1
20.0											
10.0											
⁰ .15 .	.2		5	1		2 ency (MHz)	5		10	20	30
Site		: CO01-K									
Condition			RT 15E LIS	N-N-2015	1024 NEU	TRAL					
mode		: Mode 1 : 869941	.02000438	3/869941	.02000439	91 #15					
	Enag	Lovel		Limit	Read	LISN		Remark			
	Freq	Level		Line		Factor		velliark			
	MHz	dBuV	dB	dBuV	dBuV	dB	dB				
1	0.35		-24.58	58.96				-			
2			-23.98				10.16	_			
3 *	0.46		-18.87		27.40		10.17 (-			
4	0.46		-19.17					_			
5 6	0.53 0.53		-21.02 -20.12				10.16 (رب Average			
7	0.66		-26.31								
8	0.66		-24.91								
9			-26.18					_			
10	1.59		-25.38					Äverage			
11	3.03		-25.37								
12	3.03	19.43	-26.57	46.00	8.91	0.37	10.15	Average			

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 31 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

3.6 Frequency Stability Measurement

Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Report No.: FR630205F

3.6.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- 3. The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

Test Result of Frequency Stability 3.6.5

Please refer to Appendix A.

Report Version Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Page Number

: 32 of 36

: Rev. 01

Report Issued Date: May 03, 2016

3.7 Automatically Discontinue Transmission

Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR630205F

3.7.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829

Page Number Report Issued Date: May 03, 2016 : Rev. 01 Report Version

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

: 33 of 36

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR630205F

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

The EUT supports CDD mode.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band IV	3.50	0.20	3.50	5.02	0.00	0.00

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

 SPORTON INTERNATIONAL (KUNSHAN) INC.
 Page Number
 : 34 of 36

 TEL: 86-0512-5790-0158
 Report Issued Date
 : May 03, 2016

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : 2AFWMLEX829 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

4 List of Measuring Equipment

					0 111 11			
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV30	101338	9kHz~30GHz	May 04, 2015	Mar. 04, 2016~ Mar. 15, 2016	May 03, 2016	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	30MHz~40GHz	Jan. 20, 2016	Mar. 04, 2016~ Mar. 15, 2016	Jan. 19, 2017	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 20, 2016	Mar. 04, 2016~ Mar. 15, 2016	Jan. 19, 2017	Conducted (TH01-KS)
Thermal Chamber	Ten Billion	TTC-B3S	TBN-960502	-40~+150°C	Oct. 24, 2015	Mar. 04, 2016~ Mar. 15, 2016	Oct. 23, 2016	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz; Max 30dBm	Sep. 10, 2015	Mar. 04, 2016~ Apr. 02, 2016	Sep. 09, 2016	Radiation (03CH03-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150244	10Hz-44GHz	Jun. 05, 2015	Mar. 04, 2016~ Apr. 02, 2016	Jun. 04, 2016	Radiation (03CH03-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 07, 2015	Mar. 04, 2016~ Apr. 02, 2016	Nov. 06, 2016	Radiation (03CH03-KS)
Bilog Antenna	TeseQ	CBL6112D	23182	25MHz-2GHz	Jan. 16, 2016	Mar. 04, 2016~ Apr. 02, 2016	Jan. 15, 2017	Radiation (03CH03-KS)
Horn Antenna	Schwarzbeck	BBHA9120 D	9120D-1356	1GHz~18GHz	Jun. 25, 2015	Mar. 04, 2016~ Apr. 02, 2016	Jun. 24, 2016	Radiation (03CH03-KS)
SHF-EHF Horn	com-power	AH-840	101070	18Ghz-40Ghz	Oct. 10, 2015	Mar. 04, 2016~ Apr. 02, 2016	Oct. 09, 2016	Radiation (03CH03-KS)
Amplifier	Burgeon	BPA-530	102212	0.01MHz-3000M Hz	Aug. 10, 2015	Mar. 04, 2016~ Apr. 02, 2016	Aug. 09, 2016	Radiation (03CH03-KS)
Amplifier	Agilent	8449B	3008A02370	1GHz~26.5GHz	Oct. 24, 2015	Mar. 04, 2016~ Apr. 02, 2016	Oct. 23, 2016	Radiation (03CH03-KS)
Amplifier	MITEQ	TTA1840- 35-HG	1887435	18GHz~40GHz	Aug. 27, 2015	Mar. 04, 2016~ Apr. 02, 2016	Aug. 26, 2016	Radiation (03CH03-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Mar. 04, 2016~ Apr. 02, 2016	NCR	Radiation (03CH03-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Mar. 04, 2016~ Apr. 02, 2016	NCR	Radiation (03CH03-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Mar. 04, 2016~ Apr. 02, 2016	NCR	Radiation (03CH03-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz	May 04, 2015	Apr. 20, 2016	May 03, 2016	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 24, 2015	Apr. 20, 2016	Oct. 23, 2016	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 24, 2015	Apr. 20, 2016	Oct. 23, 2016	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP000000811	AC 0V~300V, 45Hz~1000Hz	Oct. 24, 2015	Apr. 20, 2016	Oct. 23, 2016	Conduction (CO01-KS)

NCR: No Calibration Required

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : 35 of 36
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.5 UB

Report No.: FR630205F

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5 dB
of 95% (U = 2Uc(y))	

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Report Issued Date: May 03, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

: 36 of 36

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : A1 of A1
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Report No.: FR630205F

Test Engineer:	Issac Song	Temperature:	24~25	ç
Test Date:	2016/3/4~2016/3/15	Relative Humidity:	49~51	%

TEST RESULTS DATA 6dB and 26dB EBW and 99% OBW

							Band	IV					
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99 Band (MI	width		dB width Hz)	Band	dB width Hz)	Band Min.	dB width Limit Hz)	Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	149	5745	16.73		20.63		15.33		0.5	0.5	Pass
11a	6Mbps	1	157	5785	16.73		20.48		15.50		0.5	0.5	Pass
11a	6Mbps	1	165	5825	16.73		20.33		15.35		0.5	0.5	Pass
HT20	MCS0	1	149	5745	17.73		21.58		15.15		0.5	0.5	Pass
HT20	MCS0	1	157	5785	17.68		21.63		15.15		0.5	0.5	Pass
HT20	MCS0	1	165	5825	17.73		21.38		15.45		0.5	0.5	Pass
HT40	MCS0	1	151	5755	35.86		41.63		35.09		0.5	0.5	Pass
HT40	MCS0	1	159	5795	36.06		41.81		35.09		0.5	0.5	Pass
VHT20	MCS0	1	149	5745	17.68		21.53		15.15		0.5	0.5	Pass
VHT20	MCS0	1	157	5785	17.68		21.53		15.15		0.5	0.5	Pass
VHT20	MCS0	1	165	5825	17.68		21.48		15.13		0.5	0.5	Pass
VHT40	MCS0	1	151	5755	35.86		41.63		35.09		0.5	0.5	Pass
VHT40	MCS0	1	159	5795	35.96		41.63		35.09		0.5	0.5	Pass
VHT80	MCS0	1	155	5775	74.93		82.64		75.13		0.5	0.5	Pass
HT20	MCS0	2	149	5745	17.73	17.73	21.48	21.48	15.15	15.15	0.	.5	Pass
HT20	MCS0	2	157	5785	17.68	17.83	21.58	21.38	15.13	15.13	0.	.5	Pass
HT20	MCS0	2	165	5825	17.73	17.73	21.58	21.38	15.13	15.13	0.	.5	Pass
HT40	MCS0	2	151	5755	36.06	36.06	41.54	41.81	35.13	35.05	0.	.5	Pass
HT40	MCS0	2	159	5795	36.06	36.06	41.45	41.45	35.09	35.05	0.	.5	Pass
VHT20	MCS0	2	149	5745	17.73	17.78	21.58	21.33	15.13	15.15	0.	.5	Pass
VHT20	MCS0	2	157	5785	17.68	17.83	21.68	21.43	15.13	15.15	0.	.5	Pass
VHT20	MCS0	2	165	5825	17.73	17.73	21.48	21.13	15.13	15.15	0.	.5	Pass
VHT40	MCS0	2	151	5755	35.86	35.96	41.36	41.63	35.09	35.05	0.	.5	Pass
VHT40	MCS0	2	159	5795	35.96	35.96	41.54	41.36	35.09	35.05	0.	.5	Pass
VHT80	MCS0	2	155	5775	74.81	74.93	83.44	82.64	75.13	75.05	0.	.5	Pass

TEST RESULTS DATA Average Power Table

								Band	IV					
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Fad (d	B)	C	Average Conducte Power (dBm)	ed	Cond Powe (dE	r Limit 3m)	(dl		Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	149	5745	0.21	0.21	15.93	13.62		30.00	30.00	3.50	0.20	Pass
11a	6Mbps		157	5785	0.21	0.21	15.83	13.90		30.00	30.00	3.50	0.20	Pass
11a	6Mbps	1	165	5825	0.21	0.21	15.64	13.49		30.00	30.00	3.50	0.20	Pass
HT20	MCS0	1	149	5745	0.25	0.23	14.93	12.58		30.00	30.00	3.50	0.20	Pass
HT20	MCS0	1	157	5785	0.25	0.23	14.78	12.84		30.00	30.00	3.50	0.20	Pass
HT20	MCS0	1	165	5825	0.25	0.23	14.59	12.31		30.00	30.00	3.50	0.20	Pass
HT40	MCS0	1	151	5755	0.48	0.46	14.35	12.07		30.00	30.00	3.50	0.20	Pass
HT40	MCS0	1	159	5795	0.48	0.46	14.25	12.21		30.00	30.00	3.50	0.20	Pass
VHT20	MCS0	1	149	5745	0.22	0.24	13.96	11.62		30.00	30.00	3.50	0.20	Pass
VHT20	MCS0	1	157	5785	0.22	0.24	13.71	11.89		30.00	30.00	3.50	0.20	Pass
VHT20	MCS0	1	165	5825	0.22	0.24	13.58	11.46		30.00	30.00	3.50	0.20	Pass
VHT40	MCS0	1	151	5755	0.45	0.42	13.16	10.99		30.00	30.00	3.50	0.20	Pass
VHT40	MCS0	1	159	5795	0.45	0.42	13.07	11.29		30.00	30.00	3.50	0.20	Pass
VHT80	MCS0	1	155	5775	0.83	0.83	11.94	9.91		30.00	30.00	3.50	0.20	Pass
HT20	MCS0	2	149	5745	0.23	0.24	13.48	13.19	16.35	30.	.00	3.	50	Pass
HT20	MCS0	2	157	5785	0.23	0.24	13.55	13.62	16.60	30.	.00	3.	50	Pass
HT20	MCS0	2	165	5825	0.23	0.24	13.31	13.16	16.25	30.	.00	3.	50	Pass
HT40	MCS0	2	151	5755	0.44	0.48	12.91	12.76	15.85	30.	.00	3.5	50	Pass
HT40	MCS0	2	159	5795	0.44	0.48	12.98	12.99	16.00	30.	.00	3.	50	Pass
VHT20	MCS0	2	149	5745	0.24	0.23	12.69	12.39	15.55	30.	.00	3.	50	Pass
VHT20	MCS0	2	157	5785	0.24	0.23	12.50	12.34	15.43	30.	.00	3.5	50	Pass
VHT20	MCS0	2	165	5825	0.24	0.23	12.36	12.12	15.25	30.	.00	3.	50	Pass
VHT40	MCS0	2	151	5755	0.39	0.46	11.92	11.77	14.85	30.	.00	3.	50	Pass
VHT40	MCS0	2	159	5795	0.39	0.46	11.98	11.97	14.98	30.	.00	3.9	50	Pass
VHT80	MCS0	2	155	5775	0.80	0.80	10.92	10.73	13.83	30.	.00	3.	50	Pass

TEST RESULTS DATA Power Spectral Density

								Band	IV							
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		ity ctor B)	(500 /RE	log IkHz BW) r (dB)		Average Power Density m/500kl		PS Lir	rage SD mit 00kHz)	_	G Bi)	Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps		149	5745	0.21	0.21	2.22	2.22	2.95			30.00	30.00	3.50	0.20	Pass
11a	6Mbps	1	157	5785	0.21	0.21	2.22	2.22	2.60			30.00	30.00	3.50	0.20	Pass
11a	6Mbps	1	165	5825	0.21	0.21	2.22	2.22	2.41			30.00	30.00	3.50	0.20	Pass
HT20	MCS0	1	149	5745	0.25	0.23	2.22	2.22	1.42			30.00	30.00	3.50	0.20	Pass
HT20	MCS0	1	157	5785	0.25	0.23	2.22	2.22	1.39			30.00	30.00	3.50	0.20	Pass
HT20	MCS0	1	165	5825	0.25	0.23	2.22	2.22	1.10			30.00	30.00	3.50	0.20	Pass
HT40	MCS0	1	151	5755	0.48	0.46	2.22	2.22	-1.89			30.00	30.00	3.50	0.20	Pass
HT40	MCS0	1	159	5795	0.48	0.46	2.22	2.22	-2.33			30.00	30.00	3.50	0.20	Pass
VHT20		1	149	5745	0.22	0.24	2.22	2.22	0.61			30.00	30.00	3.50	0.20	Pass
VHT20	MCS0	1	157	5785	0.22	0.24	2.22	2.22	0.91			30.00	30.00	3.50	0.20	Pass
VHT20	MCS0	1	165	5825	0.22	0.24	2.22	2.22	0.38			30.00	30.00	3.50	0.20	Pass
VHT40	MCS0	1	151	5755	0.45	0.42	2.22	2.22	-3.00			30.00	30.00	3.50	0.20	Pass
VHT40	MCS0	1	159	5795	0.45	0.42	2.22	2.22	-3.13			30.00	30.00	3.50	0.20	Pass
VHT80	MCS0	1	155	5775	0.83	0.83	2.22	2.22	-7.52			30.00	30.00	3.50	0.20	Pass
HT20	MCS0	2	149	5745	0.23	0.24	2.	22			3.33	30.	.00	5.0)2	Pass
HT20	MCS0	2	157	5785	0.23	0.24	2.	22			3.52	30.	.00	5.0)2	Pass
HT20	MCS0	2	165	5825	0.23	0.24	2.	22			3.21	30.	.00	5.0)2	Pass
HT40	MCS0	2	151	5755	0.44	0.48	2.	22			1.12	30.	.00	5.0)2	Pass
HT40	MCS0	2	159	5795	0.44	0.48		22			1.10	30.	.00	5.0		Pass
VHT20	MCS0	2	149	5745	0.24	0.23	2.	22			2.40	30.	.00	5.0)2	Pass
VHT20	MCS0	2	157	5785	0.24	0.23	2.	22			2.49	30.	.00	5.0)2	Pass
VHT20		2	165	5825	0.24	0.23	2.	22			2.30	30.	.00	5.0)2	Pass
VHT40	MCS0	2	151	5755	0.39	0.46	2.	22			-1.37	30.	.00	5.0)2	Pass
VHT40	MCS0	2	159	5795	0.39	0.46	2.	22			-1.33	30.	.00	5.0)2	Pass
VHT80	MCS0	2	155	5775	0.80	0.80	2.	22			-5.59	30.	.00	5.0)2	Pass

TEST RESULTS DATA Frequency Stability

						Band	IV			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Center Frequency (MHz)	Frequency Deviation (MHz)	Frequency Stablility (ppm)	Temperature (°C)	Voltage (V)	Note
11a	6Mbps	1	149	5745	5745.000	0.000	0.00	20	3.6	
11a	6Mbps	1	149	5745	5745.000	0.000	0.00	20	4.4	
11a	6Mbps	1	149	5745	5745.000	0.000	0.00	20	3.8	
11a	6Mbps	1	149	5745	5745.075	0.075	13.05	-30	3.8	
11a	6Mbps	1	149	5745	5744.975	-0.025	-4.35	50	3.8	

Appendix B. Radiated Test Results

15E Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5711.56	52.73	-15.57	68.3	48.42	32.03	8.55	36.27	100	68	Р	Н
		5723.4	59.77	-18.53	78.3	55.44	32.04	8.57	36.28	100	68	Р	Н
000 44-	*	5742	105.81	-	-	101.47	32.05	8.58	36.29	100	68	Р	Н
802.11a CH 149	*	5744	98.53	-	-	94.19	32.05	8.58	36.29	100	68	Α	Н
5745MHz		5712.28	49.92	-18.38	68.3	45.61	32.03	8.55	36.27	377	110	Р	V
07 40111112		5725	56.98	-21.32	78.3	52.65	32.04	8.57	36.28	377	110	Р	V
	*	5744	101.16	-	-	96.82	32.05	8.58	36.29	377	110	Р	V
	*	5742	94	1	-	89.66	32.05	8.58	36.29	377	110	Α	V
222.44	*	5782	103.94	1	1	99.59	32.06	8.6	36.31	100	296	Р	Н
802.11a	*	5784	96.32	-	-	91.97	32.06	8.6	36.31	100	296	Α	Н
CH 157 5785MHz	*	5786	97.04	-	-	92.67	32.07	8.62	36.32	100	245	Р	V
37 03WII 12	*	5788	89.62	1	1	85.25	32.07	8.62	36.32	100	245	Α	V
	*	5828	103.61	1	-	99.24	32.08	8.64	36.35	100	298	Р	Н
	*	5822	96.33	ı	1	91.96	32.08	8.64	36.35	100	298	Α	Н
000 44 -		5852.08	49.47	-28.83	78.3	45.09	32.09	8.65	36.36	100	298	Р	Н
802.11a CH 165		5861.6	49.79	-18.51	68.3	45.4	32.1	8.66	36.37	100	298	Р	Н
5825MHz	*	5824	99.17	1	1	94.8	32.08	8.64	36.35	100	252	Р	V
JUZUIII IZ	*	5828	92.15	-	-	87.78	32.08	8.64	36.35	100	252	Α	V
		5857.44	46.68	-31.62	78.3	42.29	32.1	8.66	36.37	100	252	Р	V
		5874.24	47.41	-20.89	68.3	43.02	32.1	8.67	36.38	100	252	Р	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	e.						

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B1 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a		11487	46.01	-27.99	74	53.76	38.59	14.2	60.54	100	0	Р	Н
CH 149		44.400	40.47	0.4.50		50.00	00.50	440	00.54	400		,	.,
5745MHz		11490	42.47	-31.53	74	50.22	38.59	14.2	60.54	100	0	Р	V
802.11a		11571	44.24	-29.76	74	51.74	38.75	14.25	60.5	100	0	Р	Н
CH 157		44574	40.45	00.55	7.4	50.05	00.75	44.05	00.5	400		_	.,
5785MHz		11571	43.45	-30.55	74	50.95	38.75	14.25	60.5	100	0	Р	V
802.11a		11649	45.68	-28.32	74	52.96	38.9	14.29	60.47	100	0	Р	Н
CH 165		11010	40.40	00.50		50.70	00.0	11.00	00.47	400			,,
5825MHz		11649	43.48	-30.52	74	50.76	38.9	14.29	60.47	100	0	Р	V
Remark	1. No	o other spurio	us found.						•			•	

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B2 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		,,		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5710.84	49.63	-18.67	68.3	45.32	32.03	8.55	36.27	388	56	Р	Н
		5724.76	52.29	-26.01	78.3	47.96	32.04	8.57	36.28	388	56	Р	Н
000 44 -	*	5746	98.55	-	-	94.21	32.05	8.58	36.29	388	56	Р	Н
802.11a CH 149	*	5744	90.99	-	-	86.65	32.05	8.58	36.29	388	56	Α	Н
5745MHz		5713	50.36	-17.94	68.3	46.05	32.03	8.55	36.27	123	333	Р	V
07 40111112		5724.44	53.77	-24.53	78.3	49.44	32.04	8.57	36.28	123	333	Р	V
	*	5740	101.53	-	-	97.19	32.05	8.58	36.29	123	333	Р	V
	*	5744	94.38	-	-	90.04	32.05	8.58	36.29	123	333	Α	V
	*	5786	98.54	1	-	94.17	32.07	8.62	36.32	386	52	Р	Н
802.11a	*	5786	91.33	-	-	86.96	32.07	8.62	36.32	386	52	Α	Н
CH 157 5785MHz	*	5782	102.5	-	-	98.15	32.06	8.6	36.31	148	352	Р	V
37 03 WIFIZ	*	5784	95.63	-	-	91.28	32.06	8.6	36.31	148	352	Α	V
	*	5822	97.14	-	-	92.77	32.08	8.64	36.35	397	54	Р	Н
	*	5824	90.07	-	-	85.7	32.08	8.64	36.35	397	54	Α	Н
		5850.96	48.18	-30.12	78.3	43.8	32.09	8.65	36.36	397	54	Р	Н
802.11a		5874.64	46.48	-21.82	68.3	42.09	32.1	8.67	36.38	397	54	Р	Н
CH 165 5825MHz	*	5822	102.55	-	-	98.18	32.08	8.64	36.35	151	352	Р	V
JOZJIVITIZ	*	5828	95.16	ı	=	90.79	32.08	8.64	36.35	151	352	Α	V
		5852.08	50.84	-27.46	78.3	46.46	32.09	8.65	36.36	151	352	Р	V
		5873.2	48.94	-19.36	68.3	44.55	32.1	8.67	36.38	151	352	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B3 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a		11490	46.08	-27.92	74	53.83	38.59	14.2	60.54	100	0	Р	Н
CH 149													
5745MHz		11490	43.35	-30.65	74	51.1	38.59	14.2	60.54	100	0	Р	V
802.11a		11571	46.5	-27.5	74	54	38.75	14.25	60.5	100	0	Р	Н
CH 157		44574	40.0	00.7	7.4	50.0	00.75	44.05	00.5	400		,	
5785MHz		11571	43.3	-30.7	74	50.8	38.75	14.25	60.5	100	0	Р	V
802.11a		11652	47.53	-26.47	74	54.75	38.94	14.3	60.46	100	0	Р	Н
CH 165								4 4 9 9				_	
5825MHz		11649	44.83	-29.17	74	52.11	38.9	14.29	60.47	100	0	Р	V
Demark	1. No	o other spurio	us found.						•			•	

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B4 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

^{2.} All results are PASS against Peak and Average limit line.

15E Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

12 54 52 55 4 10 4 96 96 5 92 55 2 10 2 96 6 10	3μV/m) 4.01 5.87 03.75 6.62 54.1	Limit (dB) -14.29 -22.43 - - -14.2 -23.26 - -	Line (dBµV/m) 68.3 78.3 - 68.3 78.3	Level (dBμV) 49.7 51.54 99.41 92.28 49.79 50.71 100.19	Factor (dB/m) 32.02 32.04 32.05 32.05 32.03 32.04 32.05	Loss (dB) 8.54 8.57 8.58 8.58 8.55 8.57	Factor (dB) 36.25 36.28 36.29 36.29 36.27 36.28	Pos (cm) 100 100 100 100 100 100 100	4 4 4 4 339	Avg. (P/A) P P A P	(H/V H H H
12 54 52 55 4 10 4 96 96 5 92 55 2 10 2 96 6 10	4.01 5.87 03.75 6.62 54.1 5.04 04.53 6.94	-14.29 -22.43 - - -14.2 -23.26 -	68.3 78.3 - - 68.3 78.3	49.7 51.54 99.41 92.28 49.79 50.71 100.19	32.02 32.04 32.05 32.05 32.03 32.04	8.54 8.57 8.58 8.58 8.55 8.55	36.25 36.28 36.29 36.29 36.27 36.28	100 100 100 100	4 4 4 4 339	P P P	H H H
52 55 4 10 4 96 96 5 92 55 2 10 2 96 6 10	5.87 03.75 6.62 54.1 5.04 04.53	-22.43 - -14.2 -23.26 -	78.3 - - 68.3 78.3	51.54 99.41 92.28 49.79 50.71 100.19	32.04 32.05 32.05 32.03 32.04	8.57 8.58 8.58 8.55 8.55	36.28 36.29 36.29 36.27 36.28	100 100 100 100	4 4 4 339	P P A	H H
4 10 4 96 96 5 92 55 2 10 2 96 6 10	03.75 6.62 54.1 5.04 04.53 6.94	- -14.2 -23.26 -	- 68.3 78.3	99.41 92.28 49.79 50.71 100.19	32.05 32.05 32.03 32.04	8.58 8.58 8.55 8.57	36.29 36.29 36.27 36.28	100 100 100	4 4 339	P A	Н
4 96 96 5 92 55 2 10 2 96 6 10	6.62 54.1 5.04 04.53 6.94	- -14.2 -23.26 -	68.3 78.3	92.28 49.79 50.71 100.19	32.05 32.03 32.04	8.58 8.55 8.57	36.29 36.27 36.28	100	4 339	Α	Н
96 5 92 55 2 10 2 96 6 10	54.1 5.04 04.53 6.94	-14.2 -23.26 -	68.3 78.3	49.79 50.71 100.19	32.03 32.04	8.55 8.57	36.27 36.28	100	339		
92 55 2 10 2 96 6 10	5.04 04.53 6.94	-23.26 - -	78.3	50.71	32.04	8.57	36.28			Р	٧
2 10 2 96 6 10	04.53	-	-	100.19				100	222		1
2 96 6 10	6.94	-			32.05	8 58			339	Р	٧
6 10			-			0.50	36.29	100	339	Р	٧
+	02.38	_		92.6	32.05	8.58	36.29	100	339	Α	٧
			-	98.01	32.07	8.62	36.32	179	6	Р	Н
4 95	5.91	-	-	91.56	32.06	8.6	36.31	179	6	Α	Н
2 10	03.82	-	-	99.47	32.06	8.6	36.31	100	335	Р	V
2 96	6.35	-	-	92	32.06	8.6	36.31	100	335	Α	٧
6 10	03.02	-	-	98.65	32.08	8.64	36.35	100	6	Р	Н
6 95	5.82	-	-	91.45	32.08	8.64	36.35	100	6	Α	Н
.6 54	4.01	-24.29	78.3	49.63	32.09	8.65	36.36	100	6	Р	Н
.12 54	4.25	-14.05	68.3	49.86	32.1	8.67	36.38	100	6	Р	Н
0 10	03.64	-	-	99.27	32.08	8.64	36.35	100	360	Р	٧
2 96	6.19	-	-	91.82	32.08	8.64	36.35	100	360	Α	٧
48 53	3.78	-24.52	78.3	49.4	32.09	8.65	36.36	100	360	Р	٧
	3.98	-14.32	68.3	49.59	32.1	8.67	36.38	100	360	Р	V
2(20 10 22 9 .48 5 0.8 5	20 103.64 22 96.19 .48 53.78 0.8 53.98	20 103.64 - 22 96.19 - .48 53.78 -24.52 0.8 53.98 -14.32	20 103.64	20 103.64 - - 99.27 22 96.19 - - 91.82 .48 53.78 -24.52 78.3 49.4 0.8 53.98 -14.32 68.3 49.59	20 103.64 - - 99.27 32.08 22 96.19 - - 91.82 32.08 32.08 - - 91.82 32.08 32.08 - - 91.82 32.09 32.09 - - 91.82 32.1 32.09 - - 91.82 32.1	20 103.64 - - 99.27 32.08 8.64 22 96.19 - - 91.82 32.08 8.64 32.48 53.78 -24.52 78.3 49.4 32.09 8.65 32.8 53.98 -14.32 68.3 49.59 32.1 8.67	20 103.64 - - 99.27 32.08 8.64 36.35 22 96.19 - - 91.82 32.08 8.64 36.35 32 32.08 8.64 36.35 34 53.78 -24.52 78.3 49.4 32.09 8.65 36.36 36 36 36.38 36.38 36.38	20 103.64 - - 99.27 32.08 8.64 36.35 100 22 96.19 - - 91.82 32.08 8.64 36.35 100 32 48 53.78 -24.52 78.3 49.4 32.09 8.65 36.36 100 32 53.98 -14.32 68.3 49.59 32.1 8.67 36.38 100	20 103.64 - - 99.27 32.08 8.64 36.35 100 360 22 96.19 - - 91.82 32.08 8.64 36.35 100 360 .48 53.78 -24.52 78.3 49.4 32.09 8.65 36.36 100 360	20 103.64 99.27 32.08 8.64 36.35 100 360 P 22 96.19 91.82 32.08 8.64 36.35 100 360 A 36.48 53.78 -24.52 78.3 49.4 32.09 8.65 36.36 100 360 P 36.8 53.98 -14.32 68.3 49.59 32.1 8.67 36.38 100 360 P

^{2.} All results are PASS against Peak and Average limit line.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B5 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11490	44.12	-29.88	74	51.87	38.59	14.2	60.54	100	0	Р	Н
HT20													
CH 149		11490	43.86	-30.14	74	51.61	38.59	14.2	60.54	100	0	Р	V
5745MHz													
802.11n		11571	43.81	-30.19	74	51.31	38.75	14.25	60.5	100	0	Р	Н
HT20		11071	40.01	00.10	7-7	01.01	00.70	14.20	00.0	100	O	'	''
CH 157		11571	45.37	-28.63	74	52.87	38.75	14.25	60.5	100	0	Р	V
5785MHz		11071	40.07	-20.00	, -	32.07	30.73	14.20	00.5	100	O	'	•
802.11n		11649	44.47	-29.53	74	51.75	38.9	14.29	60.47	100	0	Р	Н
HT20		11049	44.47	-29.00	74	31.73	30.9	14.25	00.47	100	0	ı	''
CH 165		11646	48.18	-25.82	74	55.46	38.9	14.29	60.47	100	0	P	V
5825MHz			10.10	20.02	, .	50.15	00.0	20	55.11	.00		·	Ţ

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B6 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15E Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5712.2	58.3	-10	68.3	53.99	32.03	8.55	36.27	100	360	Р	Н
		5720.52	61.9	-16.4	78.3	57.57	32.04	8.57	36.28	100	360	Р	Н
802.11n	*	5752	100.5			96.16	32.05	8.59	36.3	100	360	Р	Н
HT40	*	5752	93.58			89.24	32.05	8.59	36.3	100	360	Α	Н
CH 151		5705.96	57.02	-11.28	68.3	52.71	32.03	8.55	36.27	100	0	Р	V
5755MHz		5720.36	61.28	-17.02	78.3	56.95	32.04	8.57	36.28	100	0	Р	V
	*	5764	99.1	-	-	94.76	32.05	8.59	36.3	100	0	Р	V
	*	5750	92.43	-	-	88.09	32.05	8.58	36.29	100	0	Α	V
	*	5784	100.54	-	-	96.19	32.06	8.6	36.31	134	0	Р	Н
	*	5792	93.72	-	-	89.35	32.07	8.62	36.32	134	0	Α	Н
802.11n		5858.64	58.06	-20.24	78.3	53.67	32.1	8.66	36.37	134	0	Р	Н
HT40		5871.44	54.87	-13.43	68.3	50.48	32.1	8.67	36.38	134	0	Р	Н
CH 159	*	5800	99.82	-	-	95.45	32.07	8.62	36.32	100	360	Р	V
5795MHz	*	5790	92.46	-	-	88.09	32.07	8.62	36.32	100	360	Α	٧
		5854.88	55.18	-23.12	78.3	50.79	32.1	8.66	36.37	100	360	Р	٧
		5867.04	54.58	-13.72	68.3	50.19	32.1	8.66	36.37	100	360	Р	V

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B7 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11511	43.5	-30.5	74	51.23	38.6	14.21	60.54	100	0	Р	Н
HT40													
CH 151		11511	44.76	-29.24	74	52.49	38.6	14.21	60.54	100	0	Р	V
5755MHz													
802.11n		11589	43.32	-30.68	74	50.76	38.79	14.26	60.49	100	0	Р	Н
HT40													
CH 159		11586	45.84	-28.16	74	53.28	38.79	14.26	60.49	100	0	Р	V
5795MHz													
	4 N.		امريم ا										

Remark 2.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B8 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15E Band 4 5725~5850MHz WIFI 802.11ac VHT20 (Band Edge @ 3m)

Report No.: FR630205F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5713.8	48.92	-19.38	68.3	44.61	32.03	8.55	36.27	100	0	Р	Н
		5724.68	52.5	-25.8	78.3	48.17	32.04	8.57	36.28	100	0	Р	Н
802.11ac	*	5742	101.76	-	-	97.42	32.05	8.58	36.29	100	0	Р	Н
VHT20	*	5744	94.68	-	-	90.34	32.05	8.58	36.29	100	0	Α	Н
CH 149		5704.84	48.39	-19.91	68.3	44.08	32.03	8.55	36.27	153	360	Р	V
5745MHz		5723.96	50.39	-27.91	78.3	46.06	32.04	8.57	36.28	153	360	Р	V
	*	5744	101.61	-	-	97.27	32.05	8.58	36.29	153	360	Р	V
	*	5742	94.66	-	-	90.32	32.05	8.58	36.29	153	360	Α	V
802.11ac	*	5788	102.67	-	-	98.3	32.07	8.62	36.32	233	0	Р	Н
VHT20	*	5786	95.57	-	-	91.2	32.07	8.62	36.32	233	0	Α	Н
CH 157	*	5784	102.9	-	-	98.55	32.06	8.6	36.31	121	0	Р	٧
5785MHz	*	5782	95.73	-	-	91.38	32.06	8.6	36.31	121	0	Α	٧
	*	5826	100.67	-	-	96.3	32.08	8.64	36.35	160	0	Р	Н
	*	5826	94.32	-	-	89.95	32.08	8.64	36.35	160	0	Α	Н
802.11ac		5854.96	48.17	-30.13	78.3	43.78	32.1	8.66	36.37	160	0	Р	Н
VHT20		5860.4	47.91	-20.39	68.3	43.52	32.1	8.66	36.37	160	0	Р	Н
CH 165	*	5824	102.41	-	-	98.04	32.08	8.64	36.35	100	0	Р	V
5825MHz	*	5822	94.88	-	-	90.51	32.08	8.64	36.35	100	0	Α	V
		5851.92	47.79	-30.51	78.3	43.41	32.09	8.65	36.36	100	0	Р	V
		5861.52	48.6	-19.7	68.3	44.21	32.1	8.66	36.37	100	0	Р	V
Demark	1. No	o other spurio	us found.										

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829

Page Number : B9 of B17 Report Issued Date: May 03, 2016 Report Version : Rev. 01

Remark | 2. All results are PASS against Peak and Average limit line.

Report No.: FR630205F

WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11490	42.16	-31.84	74	49.91	38.59	14.2	60.54	100	0	Р	Н
VHT20													
CH 149		11490	42.68	-31.32	74	50.43	38.59	14.2	60.54	100	0	Р	V
5745MHz													
802.11ac		11571	42.73	-31.27	74	50.23	38.75	14.25	60.5	100	0	Р	Н
VHT20													
CH 157		11571	43.43	-30.57	74	50.93	38.75	14.25	60.5	100	0	Р	V
5785MHz													
802.11ac		11649	43.88	-30.12	74	51.16	38.9	14.29	60.47	100	0	Р	Н
VHT20													
CH 165		11649	43.31	-30.69	74	50.59	38.9	14.29	60.47	100	360	Р	V
5825MHz													

Remark

1. No other spurious found.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B10 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

^{2.} All results are PASS against Peak and Average limit line.

15E Band 4 5725~5850MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5712.76	58.27	-10.03	68.3	53.96	32.03	8.55	36.27	117	357	Р	Н
		5721.24	63.63	-14.67	78.3	59.3	32.04	8.57	36.28	117	357	Р	Н
802.11ac	*	5754	98.16	-	-	93.82	32.05	8.59	36.3	117	357	Р	Н
VHT40	*	5762	91.89	-	-	87.55	32.05	8.59	36.3	117	357	Α	Н
CH 151		5694.84	54.45	-13.85	68.3	50.14	32.02	8.54	36.25	107	336	Р	V
5755MHz		5724.44	58.9	-19.4	78.3	54.57	32.04	8.57	36.28	107	336	Р	V
	*	5764	99.51	-	-	95.17	32.05	8.59	36.3	107	336	Р	V
	*	5752	92.5	-	-	88.16	32.05	8.59	36.3	107	336	Α	V
	*	5792	99.92	-	-	95.55	32.07	8.62	36.32	105	2	Р	Н
	*	5794	92.3	-	-	87.93	32.07	8.62	36.32	105	2	Α	Н
802.11ac		5859.68	53.33	-24.97	78.3	48.94	32.1	8.66	36.37	105	2	Р	Н
VHT40		5863.36	54.84	-13.46	68.3	50.45	32.1	8.66	36.37	105	2	Р	Н
CH 159	*	5804	98.82	-	-	94.44	32.08	8.63	36.33	100	336	Р	V
5795MHz	*	5792	92.21	-	-	87.84	32.07	8.62	36.32	100	336	Α	V
		5859.84	55.77	-22.53	78.3	51.38	32.1	8.66	36.37	100	336	Р	٧
		5872.4	54.21	-14.09	68.3	49.82	32.1	8.67	36.38	100	336	Р	V

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B11 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11511	42.96	-31.04	74	50.69	38.6	14.21	60.54	100	0	Р	Н
VHT40													
CH 151		11511	42.53	-31.47	74	50.26	38.6	14.21	60.54	100	0	Р	V
5755MHz													
802.11ac		11589	43.67	-30.33	74	51.11	38.79	14.26	60.49	100	0	Р	Н
VHT40													
CH 159		11589	44.08	-29.92	74	51.52	38.79	14.26	60.49	100	0	Р	V
5795MHz													
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	e.						

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B12 of B17 Report Issued Date: May 03, 2016 Report Version : Rev. 01

Report No.: FR630205F

All results are PASS against Peak and Average limit line.

15E Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5712.84	51.84	-16.46	68.3	47.53	32.03	8.55	36.27	100	0	Р	Н
		5722.92	57.58	-20.72	78.3	53.25	32.04	8.57	36.28	100	0	Р	Н
	*	5782	93.8	-	-	89.45	32.06	8.6	36.31	100	0	Р	Н
	*	5754	86.36	-	1	82.02	32.05	8.59	36.3	100	0	Α	Н
802.11ac		5852.24	48.86	-29.44	78.3	44.48	32.09	8.65	36.36	100	0	Р	Н
VHT80		5867.76	48.5	-19.8	68.3	44.11	32.1	8.66	36.37	100	0	Р	Н
CH 155		5688.28	51.45	-16.85	68.3	47.14	32.02	8.54	36.25	100	0	Р	V
5775MHz		5724.44	56.67	-21.63	78.3	52.34	32.04	8.57	36.28	100	0	Р	٧
	*	5750	95.51	-	-	91.17	32.05	8.58	36.29	100	0	Р	٧
	*	5762	87.72	-	-	83.38	32.05	8.59	36.3	100	0	Α	٧
		5858.8	48.87	-29.43	78.3	44.48	32.1	8.66	36.37	100	0	Р	٧
		5865.6	48.89	-19.41	68.3	44.5	32.1	8.66	36.37	100	0	Р	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	e.						

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B13 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

Report No.: FR630205F

WIFI 802.11ac VHT80 (Harmonic @ 3m)

						•							
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11550	42.81	-31.19	74	50.37	38.71	14.24	60.51	100	0	Р	Н
VHT80													
CH 155		11550	43.18	-30.82	74	50.74	38.71	14.24	60.51	100	0	Р	V
5775MHz													
Remark		o other spurio I results are F		st Peak	and Averaç	je limit lin	e.						

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B14 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

15E Emission below 1GHz

5GHz WIFI 802.11n HT20 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		34.85	29.1	-10.9	40	41.39	17.9	0.71	30.9	-	-	Р	Н
		87.23	33.43	-6.57	40	51.92	10.88	1.13	30.5	100	78	Р	Н
		100.81	32.6	-10.9	43.5	48.67	13.11	1.22	30.4	-	-	Р	Н
		172.59	27.9	-15.6	43.5	44.31	12.4	1.59	30.4	-	-	Р	Н
5GHz		211.39	30.5	-13	43.5	47.91	11.28	1.73	30.42	-	-	Р	Н
802.11n		288.02	33.61	-12.39	46	47.57	14.5	2.04	30.5	-	-	Р	Н
HT20		44.55	30.05	-9.95	40	47.22	12.8	0.83	30.8	-	-	Р	V
LF		74.62	31.13	-8.87	40	51.5	9.1	1.05	30.52	166	98	Р	V
		99.84	28.55	-14.95	43.5	44.64	13.1	1.21	30.4	-	-	Р	V
		210.42	31.66	-11.84	43.5	49.12	11.23	1.73	30.42	-	-	Р	V
		370.47	25.82	-20.18	46	37.8	16.29	2.37	30.64	-	-	Р	V
		669.23	24.73	-21.27	46	31.96	19.85	3.26	30.34	-	-	Р	V

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B15 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

Report No. : FR630205F

	Fundamental Frequency which can be ignored. However, the level of any
*	unwanted emissions shall not exceed the level of the fundamental frequency per
	15.209(c).
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : B16 of B17
Report Issued Date : May 03, 2016
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

Report No.: FR630205F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level($dB\mu V/m$)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 SPORTON INTERNATIONAL (KUNSHAN) INC.
 Page Number
 : B17 of B17

 TEL: 86-0512-5790-0158
 Report Issued Date
 : May 03, 2016

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID: 2AFWMLEX829 Report Template No.: BU5-FR15EWLB4 AC MA Version 1.3

Appendix D. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
1	802.11a	95.318	2.065	0.484	1kHz
2	802.11a	95.203	2.071	0.483	1kHz
1+2	802.11n HT20	94.797	1.928	0.519	1kHz
1+2	802.11n HT40	90.430	0.945	1.058	3kHz
1+2	802.11ac VHT20	94.882	1.935	0.517	1kHz
1+2	802.11ac VHT40	91.449	0.961	1.041	3kHz
1+2	802.11ac VHT80	83.248	0.468	2.136	3kHz

802.11a Antenna 1

Date: 4.MAR.2016 22:45:48

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829 Page Number : D1 of D4
Report Issued Date : May 03, 2016
Report Version : Rev. 01

Report No.: FR630205F

Report No.: FR630205F

802.11a Antenna 2

Date: 4.MAR.2016 23:34:24

802.11n HT20 Antenna 1 + 2

Date: 5.MAR.2016 02:02:54

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829

Page Number : D2 of D4 Report Issued Date: May 03, 2016 Report Version : Rev. 01

Report No.: FR630205F

802.11n HT40 Antenna 1 + 2

Date: 5.MAR.2016 02:07:01

802.11ac VHT20 Antenna 1 + 2

Date: 5.MAR.2016 01:45:53

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829

Page Number : D3 of D4 Report Issued Date: May 03, 2016 Report Version : Rev. 01

Report No.: FR630205F

802.11ac VHT40 Antenna 1 + 2

Date: 5.MAR.2016 02:15:54

802.11ac VHT80 Antenna 1 + 2

Date: 5.MAR.2016 02:20:49

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2AFWMLEX829

Page Number : D4 of D4 Report Issued Date: May 03, 2016 Report Version : Rev. 01