1. (a) Construct a Huffman tree (variable-length encoding) for the following [10 points]:

- (b) Encode ABACABAD using the tree you generated for (a). [5 points] 0 $100\ 0\ 111\ 0\ 100\ 0\ 101$
- (c) Decode 100010111001010 using the tree you generated for (a). [5 points] BADEADA
- (d) What compression gain (percentage of improvement) do we get by using Huffman encoding (variable-length encoding) instead of a fixed-length encoding scheme? Draw the tree for the fixed-length encoding. [5+10=15 points]

With fixed-length codes, 3 bits for each character=300,000 bits

Variable-length codes need (40*1+60*3)*1000 = 240,000 bits,20% savings

2. Use Dijkstra's algorithm to find the shortest path between vertices A and F. (Start at A, end at F). Show all the steps of your work. [15 points]

А	В	С	D	Е	F	G
0	ω	ω	ω	ω	ω	ω
	1	3			10	
		2	8	6	10	3
			8	5	10	3
			8	<mark>5</mark>	10	
			7		<mark>7</mark>	
			<mark>7</mark>			

The shortest path between A and F is: A-B-C-E-F