for biologists, part l

RNA-seq data analysis workshop

from raw data to read counts

Reference

Database of all the DNA of the organism

new transcripts gene isoforms

Transcriptome

Database of all known transcripts for the organism

more accurate quantification

- I. Genome or transcriptome?
- 2. Where can I find the reference?

- 1. Quality control
- Alignment or mapping
- B. Count reads
- 4. Differential expression

B. Haas, M. Zody. Advancing RNA-Seq analysis. Nature biotechnology. 28:5. 2010.

- 1. Quality control
- 2. Alignment or mapping
- 3. Count reads
- 4. Differential expression

Gene	Sample1	Sample2	Sample3				
ENSDART00000151582 ENSDART00000146024 ENSDART00000052082 ENSDART00000183148 ENSDART00000077539	462 31 353 6 1246	4 5408 42 702 42	454 41 4 56 12				
				ENSDART00000178294	8	116	600
				ENSDART00000190290	185	468	691
				ENSDART00000129730	374	733	348
				ENSDART00000030215	825	25	520

- Quality control
- 2. Alignment or mapping
- 3. Reads counting
- 4. Differential expression

Will be covered in second part of the workshops

- I. Quality control
- 2. Alignment or mapping
- 3. Count reads
- 4. Differential expression

Tools:

What statistics we are interested in?

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

- **Quality visualization**
- Reads filtering / trimming

Why we filter or trimm our precious data:

- adapters
- low read quality
- rRNA
- mtDNA

- 1. Quality visualization
- 2. Reads filtering / trimming

http://www.ecseq.com/support/ngs/trimming-adapter-sequences-is-it-necessary

Quality trimming

- 1. Quality visualization
- 2. Reads filtering / trimming

Adapter trimming

Quality trimming

- 1. Quality visualization
- 2. Reads filtering / trimming

Adapter trimming

Alignments or mapping

- 1. How does it work?
- 2. What are the options?

In RNA-seq we are interested in quantification

Alignments or mapping

Alignment methods

- STAR
- HiSat2
- BWA
- BBMap
- Subjunc

Mapping methods

- Salmon
- Kalisto

- 1. How does it work?
- 2. What are the options?

Reference

- 1. Genome or transcriptome?
- 2. Where can I find the reference?

