Learning I: Learning to Adjust, Learning to Predict

Purpose/benefits of Learning

• More believable (less predictable) characters

• Less work to program decisions for all the possible situations

Purpose/benefits of Learning

• More believable (less predictable) charac-

Challenges using learning in games?

Lack of control over

• Less work to program decisions

Overfitting

- Offline
 - -between levels of games
 - -at the game development studio before the game is released

Most common approach

Allows to test the learnt behaviors

- Online
 - -during the game itself

- Adaptation of the behavior parameters (intra-behavior learning)
 - learning to target precisely
 - learning the best patrol routes on the current level
 - learning good set of cover points for the given room

- ...

- Predicting the behavior of the enemy
 - predicting the next move in a fight based on the last few moves
 - predicting the attack based on the assembly of enemy troops

- ...

- Reacting to the behavior of the enemy (inter-behavior learning)
 - making the most effective counter-move in a fight
 - making the most effective reallocation of the troops
 - making the best move in a board game based on all the pieces

- ...

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement try changing Ψ by small Δ in all directions and pick the best: $\Psi = \Psi + argmax_{\Lambda} f(\Psi + \Delta)$

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement

try changing Ψ by small Δ in all directions and pick the best:

$$\Psi = \Psi + argmax_{\Lambda} f(\Psi + \Delta)$$

from "Artificial Intelligence for Games" by

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement

try changing Ψ by small Δ in all directions and pick the best:

$$\Psi = \Psi + argmax_{\Lambda} f(\Psi + \Delta)$$

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement try changing Ψ by small Δ in all directions and pick the best: $\Psi = \Psi + argmax_{\Lambda} f(\Psi + \Delta)$

Example:

finding the best shooting distance $\Psi = distance$ (scalar variable) $\Delta = +/-distance increment$ $f(\Psi) = distance between enemy ship and where cannonball lands$

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement try changing Ψ by small Δ in all directions and pick the best: $\Psi = \Psi + argmax_{\Lambda} f(\Psi + \Delta)$

Equivalent formulation for differentiable functions (Steepest ascent): Start with the best guess for the parameter vector X Until no further improvement $X = X + \varepsilon f'(X)$

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector \mathbb{Y} Until no further improvement

try changing Ψ by small Δ in all directions and pick the best:

$$\Psi = \Psi + argmax$$

$$X = X + argmax \Delta f(X+\Delta)$$
 for small $|\Delta|$,
 $X \approx X + argmax \Delta \{f(X) + f'(X)\Delta\}$
 $X = X + \varepsilon f'(X)$ for small $\varepsilon > 0$

Equivalent formulation for different for

Start with the best guess for the parameter vector X Until no further improvement

$$X = X + \varepsilon f'(X)$$

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement try changing Ψ by small Δ in all directions and pick the best: $\Psi = \Psi + \operatorname{argmax}_{\Lambda} f(\Psi + \Delta)$

Equivalent formulation for differentiable functions (Steepest ascent): Start with the best guess for the parameter vector X Until no further improvement

$$X = X + \varepsilon \, \nabla f(X)$$

For multi-dimensional vector X, $f'(X) \equiv \nabla f(X)$

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement try changing Ψ by small Δ in all directions and pick the best: $\Psi = \Psi + \operatorname{argmax}_{\Lambda} f(\Psi + \Delta)$

Equivalent formulation for differentiable functions (Steepest ascent):

Start with the best guess for the parameter vector X Until no further improvement

$$X = X + \varepsilon \, \nabla f(X)$$

• Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector Ψ Until no further improvement try changing Ψ by small Δ in all directions and pick the best: $\Psi = \Psi + \operatorname{argmax}_{\Delta} f(\Psi + \Delta)$

Equivalent formulation for differentiable functions (Steepest ascent):

Start with the best guess for the parameter vector X Until no further improvement

$$X = X + \varepsilon \, \nabla f(X)$$

Hill Climbing

The goal is to find the parameter vector that results in the most optimal value of the function: $\Psi^* = argmax_{\Psi} f(\Psi)$

Start with the best guess for the parameter vector \(\Psi \)
Until no further improvement

Typical problems?

try changing Ψ by small Δ in all directions and pick the best:

from "Artificial Intelligence for Games" by

I. Millington & J. y

- Extensions to Hill Climbing to overcome local minima problem
 - Momentum: persist in going in the same direction (when picking the next Δ , the previous direction Δ gets an additional term proportional to the previous improvement)

Disadvantages?

ge

I. Millington & J. y

from "Artificial Intelligence for Games" by

- Extensions to Hill Climbing to overcome local minima problem
 - Multiple trials: try random initial locations

Disadvantages, in particular in the context of games?

from "Artificial Intelligence for Games" by

- Extensions to Hill Climbing to overcome local minima problem
 - Simulated Annealing: the selection of Δ *is done at random*

```
Start with the best guess for the parameter vector \Psi

Until no further improvement

pick a random direction \Delta

With probability P, set \Psi = \Psi + \Delta, where P is a function of

the improvement (f(\Psi + \Delta) - f(\Psi)) and temperature T
```

- Extensions to Hill Climbing to overcome local minima problem
 - Simulated Annealing: the selection of Δ *is done at random*

Start with the best guess for the parameter vector \mathbb{Y}
Until no further improvement

pick a random direction Δ

With probability P, set $\Psi = \Psi + \Delta$, where P is a function of the improvement $(f(\Psi + \Delta) - f(\Psi))$ and temperature T

P is increasing as $f(\Psi + \Delta)$ - $f(\Psi)$ increases *P* is decreasing as *T* decreases

Temperature T is being decreased over time

Disadvantages?

As T gets closer to 0 (T "cools off"), the algorithm becomes greedy descent

• Predict future action of the player based on past actions and anything else relevant

Any ideas how to do it?

- N-gram predictor
 - **Very** popular in all the combat (martial arts, boxing, swords, ...) games (e.g., predicting next move)
 - Often requires reduction in the power of AI to make it beatable
 - Extends to other predictions such as what weapons will be used or how the attacks will occur

- N-gram predictor
 - Maintain the probabilities of future actions based on N-1 preceding observations
 - For prediction, always return the most likely action based on last N-1 observations

- N-gram predictor
 - Maintain the probabilities of future actions based on N-1 preceding observations
 - For prediction, always return the most likely action based on last N-1 observations

Example of applying 3-gram predictor:

training data (observed sequence of moves): LRRLRLLLRRLRR learnt prediction table:

..R ..L $LL \quad \frac{1}{2} \quad \frac{1}{2}$ $LR \quad \frac{3}{5} \quad \frac{2}{5}$ $RL \quad \frac{3}{4} \quad \frac{1}{4}$ $RR \quad \frac{0}{2} \quad \frac{2}{2}$ There were 5 LRs
3 resulted in R
2 resulted in L

- N-gram predictor
 - Maintain the probabilities of future actions based on N-1 preceding observations
 - For prediction, always return the most likely action based on last N-1 observations

Example of applying 3-gram predictor:

training data (observed sequence of moves): LRRLRLLLRRLRRR

learnt prediction table:

	R	L
LL	$\frac{1}{2}$	$\frac{1}{2}$
LR	3 5	<u>2</u> 5
RL	$\frac{3}{4}$	$\frac{1}{4}$
RR	$\frac{0}{2}$	$\frac{2}{2}$

Mathematically, what are you learning?

- N-gram predictor
 - Maintain the probabilities of future actions based on N-1 preceding observations
 - For prediction, always return the most likely action based on last N-1 observations

Example of applying 3-gram predictor:

training data (observed sequence of moves): LRRLRLLLRRLRRR

learnt prediction table:

• N-gram predictor

- Maintain the probabilities of future actions based on N-1 preceding observations

- For prediction, always return the most likely action based on last N-1 observations

• N-gram predictor

- Maintain the probabilities of future actions based on N-1 preceding observations

- For prediction, always return the most likely action based on

last N-1 observations

Game Performance in initial stages: what to do before the N-gram predictor is learnt?

- Hierarchical N-gram predictor
 - Learn 2-gram, 3-gram, ... predictors simultaneously
 - For prediction, pick N-gram predictor with largest N and sufficient number of training samples for the given input

Game Performance in initial stages: what to do before the N-gram predictor is learnt?

- Hierarchical N-gram predictor
 - Learn 1-gram, 2-gram, 3-gram, ... predictors simultaneously
 - For prediction, pick N-gram predictor with largest N and sufficient number of training samples for the given input
 - If none have sufficient samples, then output random prediction

- Hierarchical N-gram predictor
 - Learn 1-gram, 2-gram, 3-gram, ... predictors simultaneously
 - For prediction, pick N-gram predictor with largest N and sufficient number of training samples for the given input
 - If none have sufficient samples, then output random prediction

Example:

training data (observed sequence of moves): LRRLRLLLRRLRRR

1-gram:

2-*gram*:

3-gram:

O					O				O	
L	R	# of samples	Obs.	L	R	# of samples	Obs.	L	R	# of samples
7/15	8/15	15	L	2/7	5/7	7	LL	1/2	1/2	2
			R	4/7	3/7	7	LR	2/5	3/5	5
							RL	1/4	3/4	4
							RR	1	0	2

- Hierarchical N-gram predictor
 - Learn 1-gram, 2-gram, 3-gram, ... predictors simultaneously
 - For prediction, pick N-gram sufficient number of training sq

- If none have sufficient sampl

Suppose we want to have at least 4 samples for prediction, what is the predicted next action for input=RRR?

Example:

training data (observed sequence of moves): LRRLRLLLRRLRRR

1-gram:

2-gram:

3-gram:

and

L	R	# of samples	Obs.	L	R	# of samples	Obs.	L	R	# of samples
7/15	8/15	15	L	2/7	5/7	7	LL	1/2	1/2	2
			R	4/7	3/7	7	LR	2/5	3/5	5
							RL	1/4	3/4	4
							RR	1	0	2

- Hierarchical N-gram predictor
 - Learn 1-gram, 2-gram, 3-gram, ... predictors simultaneously
 - For prediction, pick N-gram sufficient number of training sc

- If none have sufficient sampl

Suppose we want to have at least 9 samples for prediction, what is the predicted next action for input=RRR?

Example:

training data (observed sequence of moves): LRRLRLLLRRLRRR

1-gram:

2-gram:

3-gram:

and

L	R	# of samples	Obs.	L	R	# of samples	Obs.	L	R	# of samples
7/15	8/15	15	L	2/7	5/7	7	LL	1/2	1/2	2
			R	4/7	3/7	7	LR	2/5	3/5	5
							RL	1/4	3/4	4
							RR	1	0	2

- Hierarchical N-gram predictor
 - Learn 1-gram, 2-gram, 3-gram, ... predictors simultaneously
 - For prediction, pick N-gram predictor with largest N and sufficient number of training samples of N-gram based prediction is
 - If none have sufficient samples, th

N-gram based prediction is still hard to scale with large # of possibly relevant observations

Example:

training data (observed sequence of moves): LRRLRLLLRRLRRR

1-gram:

2-gram:

3-gram:

\mathbf{c}					\mathbf{C}					
L	R	# of samples	Obs.	L	R	# of samples	Obs.	L	R	# of samples
7/15	8/15	15	L	2/7	5/7	7	LL	1/2	1/2	2
			R	4/7	3/7	7	LR	2/5	3/5	5
							RL	1/4	3/4	4
							RR	1	0	2

- Naïve Bayes Classifiers
 - Scale much better to large # of input variables
 - Very popular (and powerful) for machine learning problems

- Naïve Bayes Classifiers
 - predicts action $A^{predict} = argmax_a P(A=a) \prod_i P(X_i = u_i / A=a)$

Naïve Bayes Classifiers

- predicts action
$$A^{predict} = argmax_a P(A=a) \prod_i P(X_i = u_i / A=a)$$

Derivations of the above formula:

$$A^{predict} = argmax_a P(A=a \mid X_1=u_1 \dots X_k=u_k)$$

$$A^{predict} = argmax_a P(A=a \mid X_1=u_1 \mid ... \mid X_k=u_k) / P(X_1=u_1 \mid ... \mid X_k=u_k)$$

$$A^{predict} = argmax_a P(X_1 = u_1 \dots X_k = u_k / A = a)P(A = a) / P(X_1 = u_1 \dots X_k = u_k)$$

$$A^{predict} = argmax_a P(X_1 = u_1 \dots X_k = u_k / A = a)P(A = a)$$

Assuming conditional independence of input variables given predicted output: $A^{predict} = argmax_a P(A=a) \prod_i P(X_i = u_i / A=a)$

- Naïve Bayes Classifiers
 - predicts action $A^{predict} = argmax_a P(A=a) \prod_i P(X_i = u_i / A=a)$

Example: Predicts whether the player will slow down (break) based on the distance to obstacle corner and the speed of the car

training data (previously collected): Suppose our current input is:

brake?	distance	speed	Distance = far, Speed = slow
Y	near	slow	
Y	near	fast	Will character break?
N	far	fast	
Y	far	fast	
N	near	slow	
Y	far	slow	
Y	near	fast	

Naïve Bayes Classifiers

- predicts action
$$A^{predict} = argmax_a P(A=a) \prod_i P(X_i = u_i / A=a)$$

Example: Predicts whether the player will slow down (break) based on the distance to obstacle corner and the speed of the car

training data (previously collected): Suppose our current input is:

brake?	distance	speed	Distance = far, Speed = slow
Y	near	slow	
Y	near	fast	Will character break? P(break) = 5/7;
N	far	fast	P(Dist=far/break)=2/5; P(Speed=slow/break)=2/5;
Y	far	fast	$P(A=a) \prod_{i} P(X_{i}=u_{i}/A=a) = 5/7*2/5*2/5=4/35;$
N	near	slow	P(not break) = 2/7; P(Dist=far/not break)=1/2; P(Speed=slow/not break) = 1/2;
Y	far	slow	$P(A=a) \prod_{i} P(X_{i}=u_{i}/A=a) = 2/7*1/2*1/2=1/14;$
Y	near	fast	

- Naïve Bayes Classifiers
 - predicts action $A^{predict} = argmax_a P(A=a) \prod_i P(X_i = u_i / A=a)$

Example: Predicts whether the player will slow down (break) based on the distance to obstacle corner

The character is more likely to break (4/35 > 1/14)

training data (previously collected): Suppose our current input is:

brake?	distance	speed	Distance = far, Speed = slow
Y	near	slow	
Y	near	fast	Will character break? P(break) = 5/7;
N	far	fast	P(Dist=far/break)=2/5; P(Speed=slow/break)=2/5;
Y	far	fast	$P(A=a) \prod_{i} P(X_{i}=u_{i}/A=a) = 5/7*2/5*2/5=4/35;$
N	near	slow	P(not break) = 2/7; P(Dist=far/not break)=1/2; P(Speed=slow/not break) = 1/2;
Y	far	slow	$P(A=a) \prod_{i} P(X_{i}=u_{i}/A=a) = 2/7*1/2*1/2=1/14;$
Y	near	fast	