ICS Protocols Anomaly Behavior Analysis: ENIP

Outline

- Overview of Industrial Control Systems
- ICS Protocols
- EtherNet/IP Protocol
- Anomaly Behavior Analysis of ENIP

Overview of Industrial Control Systems

- Industrial Control Systems are integrated systems used to control and manage industrial processes, machinery, and critical infrastructure
- ICS primarily performs control, monitoring, and automation tasks to enhance efficiency, reliability, and safety
- Consists of hardware (sensors, PLCs, RTUs) and software (SCADA, HMI) elements

Overview of Industrial Control Systems

- The Purdue Model is a hierarchical network architecture for ICS, originally developed by Purdue University
- It provides a structured approach to secure and manage ICS networks by segmenting them into zones based on their function and security requirements

ICS Protocols

 ICS protocols are communication standards used in industrial automation and control systems

 Designed to be reliable, efficient, and secure in harsh industrial environments

• ICS protocols must be able to operate in real time with minimal latency, and be resistant to noise and interference

Common Industrial Protocols

Modbus

- Widely used, open-source protocol for communication between PLCs and other devices
- Master-slave protocol, where a single master device polls multiple slave devices for data
- Modbus RTU (Serial), Modbus TCP/IP (Ethernet-based)
- EtherNet/IP (IP: Industrial Protocol)
 - Uses Ethernet to communicate between PLCs and other devices
 - It is based on the Common Industrial Protocol (CIP)

Common Industrial Protocols

PROFINET

- Open Industrial Ethernet standard developed by PROFIBUS International
- Based on Ethernet
- DNP3 (Distributed Network Protocol 3)
 - Its main use is in utilities such as electric and water companies
 - Developed for communications between various types of data acquisition and control equipment

EtherNet/IP (ENIP)

EtherNet/IP

- ENIP adapts the Common Industrial Protocol (CIP) for standard Ethernet (IEEE 802.3) combined with the TCP/IP suite
- Improves connectivity, efficiency, productivity, and flexibility in industrial applications
- ENIP follows the Open Systems Interconnection (OSI) model
- Implements CIP from the session layer to the application layer

EtherNet/IP

- ENIP defines two forms of messaging:
 - Unconnected: Used for infrequent, low-priority messages, often in the session establishment process
 - Connected: Utilized for frequent explicit messages or real-time I/O data transfers
- Within connected messages, there are two types of connections:
 - Explicit
 - Implicit (I/O Data

EtherNet/IP State Machine

- ENIP is composed of three primary states
 - Unregistered and Unidentified: The device has not been identified and has not initiated a session
 - Unregistered and Identified: The device has been identified
 - Registered and Identified: The device is identified and has successfully created a session, enabling the exchange of more messages

Class 1:

• Echo (0x0001): Verify healthy connection

Class 2:

- List Services (0x0004): List of available services
- List Identity (0x0063): PLC information
- List Interfaces (0x0064): List of network interfaces

Class 3:

- Register Session (0x0065): Register/Unregister PCCC session
- Send RR Data (0x006f): Unconnected data message (e.g. Forward Open/Close CIP commands)

Class 4:

 Send Unit Data (0x0070): Connected data message (e.g. Read/Write CIP commands)

ENIP Frame Structure

- CIP-related data is enclosed within the encapsulation header and encapsulation data
- The following are the most relevant commands
 - List Identity
 - Register/Unregister Session
 - Send RR Data
 - Send Unit Data

ENIP Frame Structure

- The Common Packet Format allows for encapsulating multiple items within a single frame
- This efficiency simplifies the transmission of various pieces of information
- The Data Item frame contains essential information, including:
 - CIP Service
 - Command-Specific Data
 - Specification Values

Anomaly Behavior Analysis of the ENIP Protocol

ENIP IDS Architecture

ENIP IDS Modules

- Continuous monitoring
 - The IDS will continuously inspect the traffic on the ICS network
 - This module also selects the specific data that will be used in the next modules

ENIP IDS Modules

Data preprocessing

 The data is split into observation flows, from which the n-grams are obtained, then feature extraction is performed

4-Gram Patterns (0x01, 0x04, 0x04, 0x64) (0x04, 0x04, 0x64, 0x64)

(0x04, 0x64, 0x64, 0x65)

Features obtained for the ML algorithms

ENIP IDS Modules

Behavior analysis and classification

- The features obtained are passed to the behavior detection model, if the result is an anomaly, then it's passed to the second model to determine the type of attack
- The results go to the management engine for analysis

Autonomic response

 Provides insight into the results of the behavior module, alerts of anomalies, recommends mitigation strategies and provides a risk and impact analysis

Experimental Setup

- Types of attacks
 - Denial of service
 - Data injection
 - I/O Force
 - Program download

Experimental Results

N-grams for normal behavior

