OSNOVE UMETNE INTELIGENCE 2018/19

ocenjevanje učenja naivni Bayes

Pregled

- strojno učenje
 - ocenjevanje učenja
 - naivni Bayesov klasifikator
 - nomogrami za naivni Bayes

Ocenjevanje učenja

- kriteriji za ocenjevanje hipotez:
 - točnost (angl. accuracy)
 - kompleksnost (angl. complexity)
 - razumljivost (angl. comprehensibility) subjektivni kriterij
- ocenjevanje točnosti:
 - na učnih podatkih (angl. training set, learning set)
 - na testnih podatkih (angl. testing set, test set)
 - izločimo del učnih podatkov, s katerimi simuliramo ne-videne podatke
 - želimo si, da je testna množica reprezentativna za nove podatke
 - uporabimo lahko intervale zaupanja v oceno uspešnosti na testni množici, ki upoštevajo število testnih primerov
 - na novih (ne-videnih) podatkih (angl. new data, unseen data)
 - na njih bo naučeni sistem dejansko deloval

Ocenjevanje učenja

- nasprotujoča si cilja:
 - potrebujemo čim več podatkov za uspešno učenje
 - potrebujemo čim več podatkov za zanesljivo ocenjevanje točnosti (večje število testnih primerov nam daje ožji interval zaupanja v oceno točnosti)
- rešitev:
 - kadar je učnih podatkov dovolj, lahko izločimo testno množico (angl. holdout test set)
 - alternativa: večkratne delitve na učno in testno množico
- različni načini vzorčenja testnih primerov:
 - naključno, nenaključno (npr. prečno preverjanje)
 - poljubno ali stratificirano (zagotovimo enako porazdelitev razredov kot v učni množici)

Prečno preveranje

- poseben primer večkratnega učenja in testiranja
- k-kratno prečno preverjanje (angl. *k-fold cross-validation*):
 - celo učno množico razbij na k disjunktnih podmnožic
 - za vsako od k podmnožic:
 - uporabi množico kot testno množico
 - uporabi preostalih k-1 množic kot učno množico
 - povpreči dobljenih k ocen točnosti v končno oceno

Prečno preveranje

- v praksi najpogosteje: k=10 (10-kratno prečno preverjanje)
- vplive izbranega razbitja podatkov na podmnožice lahko zmanjšamo tako, da tudi prečno preverjanje večkrat (npr. 10x) ponovimo (torej 10×10=100 izvajanj učnega algoritma) in rezultate povprečimo
- poseben primer prečnega preverjanja je metoda izloči enega (angl. leaveone-out, LOO)
 - k je enak številu primerov (vsaka testna množica ima samo en primer)
 - najbolj stabilna ocena glede učinkov razbitja na podmnožice
 - časovno zelo zamudno, primerno za manjše množice
- iz meritev na vseh podmnožicah je možno izračunati tudi varianco/ intervale zaupanja

Pregled

- strojno učenje
 - ocenjevanje učenja
 - naivni Bayesov klasifikator
 - nomogrami za naivni Bayes

Naivni Bayesov klasifikator

- Thomas Bayes, 1702 1761
- opomnik iz teorije o verjetnosti:

$$P(AB) = P(A|B) \cdot P(B)$$

$$P(AB) = P(B|A) \cdot P(A)$$

$$P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$$

Bayesovo pravilo

Naivni Bayesov klasifikator

aplikacija v medicini:

$$P(hipoteza|opažanje) = \frac{P(opažanje|hipoteza) \cdot P(hipoteza)}{P(opažanje)}$$

- zdravniki razpolagajo z vzročno in statistično informacijo:
 - verjetnost izraženih simptomov pri neki bolezni P(opažanje|hipoteza)
 - verjetnost določene bolezni P(hipoteza)
 - verjetnost določenega simptoma P(opažanje)
- Bayesovo pravilo nam izraža diagnostično pogojno verjetnost
 P(hipoteza|opažanje) na podlagi vzročne pogojne verjetnosti
 P(opažanje|hipoteza)

Vaja

- dve vrsti vrečk s frnikulami:
 - 4 vrečke tipa A (vsaka 5 črnih, 15 belih frnikul)
 - 1 vrečka tipa B (16 črnih, 4 bele frnikule)

Kakšna je verjetnost, da naključno izberemo črno frnikulo, če izbiramo iz vrečke tipa B? $P(\check{C}|B) = ?$

- Naključno izberemo eno izmed vrečk in iz nje naključno izberemo frnikulo. Kakšna je verjetnost, da smo izbrali črno frnikulo iz vrečke tipa B? $P(B\check{C}) = P(B) \cdot P(\check{C}|B) = ?$
- Naključno izberemo eno izmed vrečk in iz nje naključno izberemo frnikulo. Kakšna je verjetnost, da smo izbrali črno frnikulo? $P(\check{C}) = P(B) \cdot P(\check{C}|B) + P(A) \cdot P(\check{C}|A)$

Vaja

- Ena vrečka ima poškodovan ovoj tako, da se skozi njega vidi črna frnikula.
 Kakšna je verjetnost, da je to vrečka tipa B?
 P(B|Č) =?
- B = hipoteza, Č = evidenca, opažanje
- verjetnost P(B|Č) lahko določimo iz drugih bolj očitnih verjetnosti z Bayesovo formulo:

$$P(B|\check{C}) = \frac{P(B) \cdot P(\check{C}|B)}{P(\check{C})}$$

•
$$P(B) = \frac{1}{5} = 0.2$$

 $P(\check{C}|B) = \frac{16}{20} = 0.8$
 $P(\check{C}) = \frac{4.5 + 1.16}{5.20} = 0.444$

•
$$P(B|\check{C}) = \frac{0.2 \cdot 0.8}{0.444} = 0.360$$

dve vrsti vrečk s frnikulami:

- 4 vrečke tipa A (vsaka 5 črnih, 15 belih frnikul)
- 1 vrečka tipa B (16 črnih, 4 bele frnikule)

- evidenca → atributi
 hipoteza → razred
- zanima nas, kakšna je verjetnost razreda C pri podanih vrednostih atributov $A_1 = X_1, A_2 = X_2, ..., A_n = X_n$:

$$P(C|X_1X_2...X_n) = \frac{P(C) \cdot P(X_1X_2...X_n|C)}{P(X_1X_2...X_n)}$$

$$P(C|X_1X_2...X_n) = \frac{P(C) \cdot P(X_1X_2...X_n|C)}{P(X_1X_2...X_n)}$$

- $P(X_1X_2 ... X_n | C) = P(X_1 | C) \cdot P(X_2 ... X_n | X_1C) =$ = $P(X_1 | C) \cdot P(X_2 | X_1C) \cdot P(X_3 ... X_n | X_1X_2C) =$ = $P(X_1 | C) \cdot P(X_2 | X_1C) \cdot P(X_3 | X_1X_2C) \cdot ... \cdot P(X_n | X_1X_2 ... X_{n-1}C)$
- $P(X_1X_2...X_n) = P(X_1|X_2...X_n) \cdot P(X_2|X_3...X_n) \cdot ... \cdot P(X_{n-1}|X_n) \cdot P(X_n)$
- potrebujemo veliko število pogojnih verjetnosti, katerih poznavanje je v praksi težavno
- število kombinacij pogojnih verjetnosti je glede na zaloge vrednosti atributov $X_1X_2 \dots X_n$ eksponentno
- praktična rešitev: naivni Bayesov klasifikator

 predpostavimo, da so atributi med seboj verjetnostno neodvisni in poenostavimo:

$$P(X_1X_2 ... X_n | C) = P(X_1 | C) \cdot P(X_2 | X_1 C) \cdot ... \cdot P(X_n | X_1 X_2 ... X_{n-1} C)$$

$$P(X_1X_2 ... X_n) = P(X_1 | X_2 ... X_n) \cdot P(X_2 | X_3 ... X_n) \cdot ... \cdot P(X_{n-1} | X_n) \cdot P(X_n)$$

$$P(X_1X_2 ... X_n | C) \approx P(X_1 | C) \cdot P(X_2 | C) \cdot ... \cdot P(X_n | C)$$

 $P(X_1X_2 ... X_n) \approx P(X_1) \cdot P(X_2) \cdot ... \cdot P(X_{n-1}) \cdot P(X_n)$

- približki so dobri, če so atributi med seboj dovolj neodvisni
- velja torej:

$$P(C|X_1X_2...X_n) = \frac{P(C) \cdot P(X_1X_2...X_n|C)}{P(X_1X_2...X_n)} = \frac{P(C) \cdot \prod_i P(X_i|C)}{\prod_i P(X_i)}$$

konstanten člen, ki je neodvisen od ciljne spremenljivke (če opazujemo samo relativne velikosti napovedi različnih razredov, ga lahko izpustimo)

Bayesov klasifikator: primer klasificiramo v razred, ki je najbolj verjeten:

$$h(X_1X_2...X_n) = \operatorname{argmax}_k P(C_k) \cdot \prod_{i=1}^n P(X_i|C_k)$$

- **učenje**: ocenimo verjetnosti $P(C_k)$ in $P(X_i|C_k)$ za vse razrede C_k in vrednosti atributov X_i
- napovedovanje: uporabimo zgornjo enačbo za napovedovanje razreda novim primerom
- opomba: s poenostavitvijo formule in izpustitvijo imenovalca izgubimo verjetnostno interpretacijo (verjetnosti razredov se ne seštejejo več v 1). Problem rešujemo npr. z normalizacijo rezultatov.

Primer

Zajeli smo podatke za 1000 sadežev, ki so lahko bodisi: banana, pomaranča
ali drugi sadež (= vrednosti razreda). Za vsakega izmed sadežov smo izmerili,
ali je podolgovat, sladek in rumen (= atributi). Meritve smo zapisali v tabelo:

sadež	podolgovat		sladek		rumen		skupaj
	da	ne	da	ne	da	ne	
banana	400	100	350	150	450	50	500
pomaranča	0	300	150	150	300	0	300
drugo	100	100	150	50	50	150	200
	500	500	650	350	800	200	1000

• iz tabele lahko razberemo različne verjetnosti, npr.:

• verjetnosti razredov:
$$P(banana) = \frac{500}{1000} = 0.5$$
, $P(pomaranča) = 0.3$, $P(drugo) = 0.2$

• pogojne verjetnosti:
$$P(dolg|banana) = \frac{4}{5} = 0.8$$

$$P(sladek|banana) = 0,7$$

$$P(rumen|banana) = 0.9$$

Primer

sadež	podolgovat		sladek		rumen		skupaj
	da	ne	da	ne	da	ne	
banana	400	100	350	150	450	50	500
pomaranča	0	300	150	150	300	0	300
drugo	100	100	150	50	50	150	200
	500	500	650	350	800	200	1000

• Imamo sadež, ki ni podolgovat, ni sladek, je pa rumen. Kateri sadež je to?

$$= P(banana) \cdot P(neP|banana) \cdot P(neS|banana) \cdot P(daR|banana) =$$

$$= \frac{500}{1000} \cdot \frac{100}{500} \cdot \frac{150}{500} \cdot \frac{450}{500} = 0,5 \cdot 0,2 \cdot 0,3 \cdot 0,9 = 0,027$$

$$P(pomaranča|neP, neS, daR) = 0.3 \cdot 1 \cdot 0.5 \cdot 1 = 0.15$$

ta sadež je najverjetneje pomaranča

$$P(drugo|neP, neS, daR) = 0.2 \cdot 0.5 \cdot 0.25 \cdot 0.25 = 0.00625$$

Nomogrami

- pristop za vizualizacijo naivnega Bayesovega modela
- prikazuje:
 - pomembnost posameznih vrednosti vsakega atributa na ciljni razred
 - pomembnost posameznih atributov na ciljni razred
 - vizualno razlago napovedanih verjetnosti (brez kalkulatorja)
- "nomogram":
 - je grafična upodobitev numeričnih odnosov med spremenljivkami
 - omogoča uporabniku grafično pridobiti rezultat brez računanja
- uporaba:
 - matematika (iskanje vrednosti funkcij)
 - zdravniki v medicini (napovedovanje bolezni – npr. infarkta ali raka na podlagi vhodnih atributov)

Primer - ideja

- vsaka vrednost atributa doprinaša določeno število točk k ciljnemu razredu
- točke vseh vrednosti atributov seštejemo v skupno vsoto točk, ki je povezana z verjetnostjo ciljnega razreda
- razpon posameznih točk vsakega atributa govori o pomembnosti atributa za napovedovanje ciljnega razreda (zgoraj urejeni od najbolj do najmanj pomembnega)

Izračun nomograma

verjetje razreda pri naivnem Bayesu:

$$h(C|X_1X_2...X_n) = P(C) \cdot \prod_{i=1}^n P(X_i|C)$$

 na zgornjem pravilu uporabimo logistično funkcijo (verjetnosti z intervala [0,1] preslikamo na interval [-∞, ∞], uporabimo logaritme)

$$logit P = log \frac{P}{1-P}$$

•
$$\log t h(C|X_1X_2...X_n) = \log \frac{P(C) \cdot \prod_{i=1}^n P(X_i|C)}{1 - P(C) \cdot \prod_{i=1}^n P(X_i|C)} = \log \frac{P(C) \cdot \prod_{i=1}^n P(X_i|C)}{P(\bar{C}) \cdot \prod_{i=1}^n P(X_i|\bar{C})} = \log \frac{P(C)}{P(\bar{C})} + \log \frac{\prod_{i=1}^n P(X_i|C)}{\prod_{i=1}^n P(X_i|\bar{C})}$$

$$= logit P(C) + \sum_{i} log \frac{P(X_{i}|C)}{P(X_{i}|\bar{C})}$$

razmerje verjetja (odds ratio)

Izračun nomograma

•
$$\operatorname{logit} P(C) + \sum_{i} \operatorname{log} \frac{P(X_{i}|C)}{P(X_{i}|\overline{C})} = \operatorname{logit} P(C) + \sum_{i} \operatorname{log} OR(X_{i})$$

razmerje verjetja (odds ratio)

• edino razmerje verjetja je odvisno od vrednosti atributov X_i , torej ga lahko uporabimo za "točkovanje" doprinosa atributa:

$$to\check{c}ke(C|X_i) = \log OR(X_i) = \log \frac{P(X_i|C)}{P(X_i|\bar{C})}$$

skupno število točk za verjetnost celotnega primera:

$$to\check{c}ke(C|X_1X_2...X_n) = \sum_{i} \log OR(X_i) = \sum_{i} \log \frac{P(X_i|C)}{P(X_i|\bar{C})}$$

• Kako izračunati $OR(X_i)$? Po Bayesovem pravilu (znova) velja:

$$\frac{P(X_i|C)}{P(X_i|\bar{C})} = \frac{\frac{P(C|X_i) \cdot P(X_i)}{P(C)}}{\frac{P(\bar{C}|X_i) \cdot P(X_i)}{P(\bar{C})}} = \frac{\frac{P(C|X_i)}{P(C)}}{\frac{P(\bar{C}|X_i)}{P(\bar{C})}} = \frac{\frac{P(C|X_i)}{P(\bar{C}|X_i)}}{\frac{P(C)}{P(\bar{C})}}$$

Primer

 učna množica titanic, 2201 učnih primerov (711 preživelih – razred YES, 1490 umrlih – razred NO)

atribut	vrednost	razred = YES	razred = NO	
status	first	203	122	
	second	118	167	
	third	178	528	
	crew	212	673	
age	adult	654	1438	
	child	57	52	
sex	male	367	1364	
	female	344	126	
razred		711	1490	

- Kako konstruiramo nomogram?
- Kako lahko vizualiziramo odločitev za odraslega moškega, ki je potoval v drugem razredu?

Konstrukcija nomograma

$$to\check{c}ke(yes|status = first) = \log \frac{\frac{P(first|yes)}{P(first|no)}}{\frac{P(yes)}{P(no)}} = \log \frac{\frac{203}{122}}{\frac{711}{1490}} = \log \frac{1,66}{0,48} = 1,25$$

$$to\check{c}ke(yes|status = second) = \log \frac{\frac{P(second|yes)}{P(second|no)}}{\frac{P(yes)}{P(no)}} = \log \frac{\frac{118}{167}}{\frac{711}{1490}} = \log \frac{0,71}{0,48} = 0,39$$

$$to\check{c}ke(yes|status = third) = \log \frac{\frac{P(third|yes)}{P(third|no)}}{\frac{P(yes)}{P(no)}} = \log \frac{\frac{178}{528}}{\frac{711}{1490}} = \log \frac{0,34}{0,48} = -0,35$$

$$to\check{c}ke(yes|status=crew) = \log \frac{\frac{P(crew|yes)}{P(crew|no)}}{\frac{P(yes)}{P(no)}} = \log \frac{\frac{212}{673}}{\frac{711}{1490}} = \log \frac{0,32}{0,48} = -0,42$$

Konstrukcija nomograma

- osi ostalih atributov poravnamo glede na ničelno vrednost prispevka atributa
- prikažemo lahko tudi skupno skalo za celotno napoved (vsoto točk)
- točke posameznih vrednosti atributov (log OR) lahko skaliramo v skalo točk, kjer s 100 točkami predstavimo prispevek največje vrednosti atributa
- skupne točke lahko preslikamo nazaj v verjetnosti*

Primer

 Kako lahko pojasnimo odločitev, da je odrasli moški, ki je potoval v drugem razredu, preživel?

•
$$to\check{c}ke(yes|age=adult) = log\frac{\frac{P(adult|yes)}{P(adult|no)}}{\frac{P(yes)}{P(no)}} = log\frac{\frac{654}{1438}}{\frac{711}{1490}} = log\frac{0,45}{0,48} = -0,05$$

$$to\check{c}ke(yes|sex=male) = log\frac{\frac{P(male|yes)}{P(male|no)}}{\frac{P(yes)}{P(no)}} = log\frac{\frac{367}{1364}}{\frac{711}{1490}} = log\frac{0,27}{0,48} = -0,57$$

$$to\check{c}ke(yes|status=second) = log\frac{\frac{P(second|yes)}{P(second|no)}}{\frac{P(second|no)}{P(no)}} = log\frac{\frac{118}{167}}{\frac{711}{1490}} = log\frac{0,71}{0,48} = 0,39$$

Primer

- Kako lahko pojasnimo odločitev, da je odrasli moški, ki je potoval v drugem razredu, preživel?
- $to\check{c}ke(yes|adult, male, second) = -0.05 0.57 + 0.39 = -0.23$

