Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of

Laplace transform of

Laplace transform of periodic functions

Laplace transform of the unit step

The convolution theorem and its

Evercise

Mathematical Methods (MA-203) Lectures 5:Jan-13, 2021

by
Prof. Santwana Mukhopadhyay
Department of Mathematical Sciences
IIT (BHU), Varanasi

Contents

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Evercis

- 1 Laplace transform of derivatives
- 2 Laplace transform of integrals
- 3 Laplace transform of periodic functions
- 4 Laplace transform of the unit step function
- 5 The convolution theorem and its applications
- 6 Exercise

Laplace transform of derivatives

Mathematical Methods (MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and it applications

Evereie

Laplace transform of F'(t):

Let F(t) be continuous function fol all $t \geq 0$ and limit $(e^{-st}F(t)) \to 0$ as $t \to \infty$, then Laplace transform of the derivative F'(t) exists and

$$L\left\{ F'\left(t\right)\right\} = sL\left\{ F\left(t\right)\right\} - F\left(0\right)$$

Proof:continue

Contd

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step

The convolution theorem and its applications

Evereie

Proof:

$$L\{F'(t)\} = \int_0^\infty e^{-st} F'(t) dt$$

$$=e^{-st}F(t)|_{t=0}^{t=\infty}+s\int_{0}^{\infty}e^{-st}F(t)\,dt=-F(0)+sf(s)$$

Laplace transform of derivatives contd...

Mathematical Methods (MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and it applications

Laplace transform of F''(t):

Let F(t) and F'(t) be continuous functions fol all $t \geq 0$ and Limit $e^{-st}F(t) \rightarrow 0$, $e^{-st}F''(t) \rightarrow 0$ as $t \rightarrow \infty$, then Laplace transform of F''(t) exists and is defined by

$$L\{F''(t)\} = s^2 L\{F(t)\} - sF(0) - F'(0)$$

Proof: Exercise

Laplace transform of derivatives contd...

Mathematical Methods (MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Exercise

Laplace transform of $F^{(n)}(t)$:

Let F(t) and $F'(t), F''(t),, F^{(n-1)}(t)$ be continuous functions fol all $t \geq 0$ and be of exponential order s as $t \to \infty$, i.e., Limit

 $e^{-st}F^{(i)}(t) \to 0$, as $t \to \infty$, for i=0,1,2,...n-1 then Laplace transform of $F^{(n)}(t)$ exists and is defined by

$$L\left\{F^{(n)}(t)\right\} = s^{n}L\left\{F(t)\right\} - s^{n-1}F(0) - s^{n-2}F'(0) - s^{n-3}F''(0) - s^{n-2}F''(0) - s^{n-2}F''(0$$

...
$$-F^{(n-1)}(0)$$

Proof: Exercise

Laplace transform of integrals

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform o periodic

Laplace transform o the unit ste

The convolution theorem and its applications

Evereice

Theorem:

If
$$L\{F(t)\}=f(s)$$
, then $L\{\int_0^t F(x) dx\}=\frac{f(s)}{s}$.

This implies:
$$L^{-1}\left\{\frac{f(s)}{s}\right\} = \int_0^t F(x) dx$$

Proof contd.

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform of

Laplace transform of the unit step function

The convolutio theorem and it applications

- .

Proof: Let
$$G(t) = \int_0^t F(x) dx$$
, then

$$G'(t) = F(t), \quad G(0) = 0$$
 (2.1)

Now,

$$L\left\{G'(t)\right\} = sL\left\{G(t)\right\} - G(0) = sL\left\{G(t)\right\}$$

$$\Rightarrow L\left\{F(t)\right\} = sL\left\{G(t)\right\}, \text{ using } (3.1)$$

$$\Rightarrow L\left\{G(t)\right\} = \frac{L\left\{F(t)\right\}}{s} = \frac{f(s)}{s}$$

$$\Rightarrow L\left\{\int_{0}^{t} F(x) dx\right\} = \frac{f(s)}{s}$$

Laplace transform of integrals contd...

Mathematical Methods (MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform o the unit ste

The convolution theorem and its applications

_ .

Examples:

Evaluate (i)
$$L\left\{\int_0^t \frac{\sin x}{x} dx\right\}$$
. Ans: $\frac{\cot^{-1}s}{s}$

(ii)
$$L\left\{\int_0^t \frac{e^t \sin t}{t} dt\right\}$$
:

Solution

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Exercis

Sol: (i) We have $F(t) = \sin t$, therefore

$$L\{F(t)\} = L\{\sin t\} = \frac{1}{s^2 + 1} = f(s)$$
 (2.2)

Now,

$$L\left\{\frac{\sin t}{t}\right\} = \int_{s}^{\infty} f(s) ds = \int_{s}^{\infty} \frac{1}{s^{2} + 1} ds, using (3.2)$$
$$= \left[tan^{-1}s\right]_{s}^{\infty} = cot^{-1}s$$

By definition of integral transform,

$$L\left\{\int_0^t \frac{\sin x}{x} dx\right\} = \frac{\cot^{-1} s}{s}$$

(ii) Ans:
$$\frac{\cot^{-1}(s-1)}{s}$$

Inverse Laplace transform of $s^n f(s)$

Mathematical Methods (MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and it applications

Evercis

Theorem:

If
$$F(0) = F'(0) = F''(0) = ...F^{(n-1)}(0) = 0$$
, then

$$L^{-1}\left\{ s^{n}f\left(s\right) \right\} =F^{(n)}\left(t\right)$$

where
$$F^{(n)}(t) = \frac{d^n}{dt^n} F(t)$$
 and $F^{(n-1)}(0) = \left[\frac{d^{n-1}}{dt^{n-1}} F(t)\right]_{t=0}$.

Proof: Exercise

Inverse Laplace transform of $\frac{f(s)}{s^n}$

Mathematical Methods (MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and it applications

Evereie

Theorem:

If $L^{-1}\{f(s)\} = F(t)$, then

$$L^{-1}\left\{\frac{f(s)}{s^n}\right\} = \int_0^t \int_0^t \int_0^t \dots \int_0^t F(t) dt^n$$

Proof: Exercise

Questions

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolutio theorem and it applications

Exercise

Example 1:

Evaluate $L^{-1}\left\{\frac{s^2}{(s^2+4)^2}\right\}$.

Sol: Let
$$f(s) = \frac{1}{(s^2+4)}$$
. Then $L^{-1}\{f(s)\} = F(t) = \frac{\sin 2t}{2}$ and $\frac{d}{ds}f(s) = (-2)\frac{s}{(s^2+4)^2}$. Therefore,

$$L^{-1}\left\{\frac{d}{ds}f(s)\right\} = -2L^{-1}\left\{\frac{s}{(s^2+4)^2}\right\}$$
$$\Rightarrow (-1)tF(t) = 2L^{-1}\left\{\frac{s}{(s^2+4)^2}\right\}$$
$$\Rightarrow L^{-1}\left\{\frac{s}{(s^2+4)^2}\right\} = \frac{1}{4}t\sin 2t$$

Contd

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit ster

The convolutio theorem and its applications

Evercise

Now Let $g(s) = \frac{s}{(s^2+4)^2}$ and $G(t) = \frac{t}{4} \sin 2t$. Here G(0) = 0, therefore we have

$$L^{-1}\left\{sg\left(s\right)\right\} = G'\left(t\right)$$

$$\Rightarrow L^{-1}\left\{s \cdot \frac{s}{\left(s^2 + 4\right)^2}\right\} = \frac{d}{dt}\left(\frac{t}{4}\sin 2t\right)$$

$$\Rightarrow L^{-1}\left\{\frac{s^2}{\left(s^2 + 4\right)^2}\right\} = \frac{1}{4}\left(\sin 2t + 2t\cos 2t\right)$$

Question

Mathematical Methods(MA-

Laplace transform of

integrals

Example 2:

Evaluate
$$L^{-1}\left\{\frac{1}{s^4(s^2+1)}\right\}$$
.

Solution

Mathematical Methods(MA-

Laplace transform of integrals

Let $f(s) = \frac{1}{(s^2+1)}$. We know that $L^{-1}\left\{\frac{1}{(s^2+1)}\right\} = \sin t = F(t)$. Therefore.

$$L^{-1}\left\{\frac{1}{s(s^2+1)}\right\} = \int_0^t F(t) dt = \int_0^t \sin t \, dt = 1 - \cos t$$

$$\Rightarrow L^{-1}\left\{\frac{1}{s^2(s^2+1)}\right\} = \int_0^t (1 - \cos t) \, dt = t - \sin t$$

$$\Rightarrow L^{-1}\left\{\frac{1}{s^3(s^2+1)}\right\} = \int_0^t (t - \sin t) \, dt = \frac{t^2}{2} + \cos t - 1$$

$$\Rightarrow L^{-1}\left\{\frac{1}{s^4(s^2+1)}\right\} = \int_0^t \left(\frac{t^2}{2} + \cos t - 1\right) dt$$

$$= \frac{t^3}{s} + \sin t - t$$

Exercise

Mathematical Methods(MA-

Laplace transform of integrals

Exercises:

- 1. Find $L^{-1}[\log \frac{s+2}{s+3}]$ 2. Find $L^{-1}[\frac{1}{(s^2+a^2)^2}]$

Solution of Exercise

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform o the unit ste

The convolution theorem and in

. .

1. Find
$$L^{-1}[log\frac{s+2}{s+3}]$$

Hints:If $L[F(t)] = f(s)$, then $tF(t) = -L^{-1}[\frac{d}{ds}(f(s))]$
Now, $\frac{d}{ds}(log\frac{s+2}{s+3}) = \frac{d}{ds}(log(s+2) - log(s+3)) = \frac{1}{s+2} - \frac{1}{s+3}$
Hence, $tF(t) = -L^{-1}(\frac{1}{s+2}) + L^{-1}(\frac{1}{s+3}) = e^{-3t} - e^{-2t}$

Solution of Exercise

Mathematical Methods(MA-203)

Laplace transform of integrals

2. Find $L^{-1}\left[\frac{1}{(s^2+a^2)^2}\right]$ Hints: $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right] = \frac{1}{2a}tsin(at) = F(t)$, say Hence.

$$L^{-1}\left[\frac{1}{(s^2+a^2)^2}\right] = L^{-1}\left[\frac{1}{s}\left(\frac{s}{(s^2+a^2)^2}\right)\right]$$

$$= L^{-1}\left[\frac{f(s)}{s}\right] = \int_0^t F(t) dt = \int_0^t \frac{1}{2a}t\sin(at) dt$$

$$= \frac{1}{2a^3}(\sin(at) - at\cos(at),$$

Laplace transform of periodic functions

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Theorem:

If F(t) be a periodic function with period T. Then $L\{F(t)\} = \frac{1}{1-e^{-sT}} \int_0^T e^{-st} F(t) dt$.

Proof: By definition of Laplace transform, we have

$$L\{F(t)\} = \int_{0}^{\infty} e^{-st} F(t) dt = \int_{0}^{T} e^{-st} F(t) dt + \int_{T}^{\infty} e^{-st} F(t) dt$$

$$= \int_{0}^{T} e^{-st} F(t) dt + \int_{0}^{\infty} e^{-s(z+T)} F(z+T) dz, (put t) dt$$

$$= \int_{0}^{T} e^{-st} F(t) dt + e^{-sT} \int_{0}^{\infty} e^{-st} F(t) dt$$

$$= \int_{0}^{T} e^{-st} F(t) dt + e^{-sT} L\{F(t)\}$$

Laplace transform of periodic functions

Mathematical Methods(MA-

Laplace transform of periodic functions

Hence we get

$$\Rightarrow \left(1 - e^{-sT}\right) L\left\{F\left(t\right)\right\} = \int_{0}^{T} e^{-st} F\left(t\right) dt$$

$$\Rightarrow L\left\{F\left(t\right)\right\} = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} F\left(t\right) dt$$

Laplace transform of periodic functions contd...

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

E....i.

Example:

If
$$F(t) = t^2, 0 < t < 2$$
 and $F(t+2) = F(t)$, find $L\{F(t)\}$.

Sol: $F(t+2) = F(t) \Rightarrow F(t)$ is periodic function with period T=2. Therefore,

$$L\{F(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} F(t) dt = \frac{1}{1 - e^{-2s}} \int_0^2 e^{-st} t^2 dt$$
(3.

Since, $\int_0^2 e^{-st} t^2 dt = \left\{2 - \left(4s^2 + 4s + 2\right)e^{-2s}\right\}/s^3$, therefore from (4.1)

$$L\{F(t)\} = \frac{2 - (4s^2 + 4s + 2)e^{-2s}}{s^3(1 - e^{-2s})}$$

Laplace transform of the unit step function

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform o

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Exercis

Definition:

The unit step function is denoted and defined by

$$u_a(t) = H(t-a) = \begin{cases} 0, & t < a \\ 1, & t \ge a \end{cases}$$
 (4.1)

$$L\{H(t-a)\} = \int_0^\infty e^{-st} H(t-a) dt$$

$$= \int_0^a e^{-st} H(t-a) dt$$

$$+ \int_a^\infty e^{-st} H(t-a) dt$$

$$= \int_0^a e^{-st} (0) dt + \int_a^\infty e^{-st} (1) dt,$$

$$\Rightarrow L\{H(t-a)\} = \frac{e^{-as}}{a}$$

Laplace transform of the unit step function contd...

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and it applications

E....i.

Example:

If $L\{F(t)\}=f(s)$ and a>0, then

$$L\{F(t-a)H(t-a)\}=e^{-as}f(s), \text{ where } H(t-a)=egin{cases} 0, & t< a \ 1, & t\geq a \end{cases}.$$

Sol: By definition

$$L\left\{F\left(t-a\right)H\left(t-a\right)\right\} = \int_{0}^{\infty} e^{-st}F\left(t-a\right)H\left(t-a\right)dt$$
$$= \int_{0}^{a} e^{-st}F\left(t-a\right)H\left(t-a\right)dt + \int_{a}^{\infty} e^{-st}F\left(t-a\right)H\left(t-a\right)dt$$

Laplace transform of the unit step function contd...

Mathematical Methods(MA-203)

Laplace transform of the unit step function

$$= \int_{0}^{a} e^{-st} F(t-a)(0) dt + \int_{a}^{\infty} e^{-st} F(t-a)(1) dt$$

$$t = \int_{a}^{\infty} e^{-st} F(t-a) dt$$

$$= e^{-as} \int_{0}^{\infty} e^{-su} F(u) du,$$

$$(byputing t - a = u)$$

$$= e^{-as} L \{ F(t) \}$$

$$= e^{-as} f(s)$$

The convolution theorem and its applications

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Evereie

The convolution theorem:

If
$$L^{-1}\{f(s)\} = F(t)$$
 and $L^{-1}\{g(s)\} = G(t)$, then

$$L^{-1}\left\{f\left(s\right)g\left(s\right)\right\} = \int_{0}^{t} F\left(u\right)G\left(t-u\right)du = F*G$$

$$OR$$

The convolution theorem can be re-written as

$$L\left\{ \int_{0}^{t} F(u) G(t-u) du \right\} = L\left\{ F(t) * G(t) \right\} = L\left\{ F(t) \right\} . L\left\{ G(t) \right\}$$

The convolution theorem and its applications contd...

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform of periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Proof:

Let
$$H(t) = \int_{u=0}^{t} F(u) G(t-u) du = F(t) * G(t)$$
. Now,

$$L\{H(t)\} = \int_{t=0}^{\infty} e^{-st} H(t) dt = \int_{t=0}^{\infty} e^{-st} \left\{ \int_{u=0}^{t} F(u) G(t-u) du \right\} dt$$

$$= \int_{u=0}^{\infty} F(u) \left\{ \int_{t=u}^{\infty} e^{-st} G(t-u) dt \right\} du$$

$$= \int_{u=0}^{\infty} e^{-su} F(u) \left\{ \int_{t=u}^{\infty} e^{-s(t-u)} G(t-u) dt \right\} du$$

Proof of convolution theorem contd...

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

i.e.,LH(t) = $\int_{u=0}^{\infty} e^{-su} F(u) \left\{ \int_{v=0}^{\infty} e^{-sv} G(v) dv \right\} du,$ (byputting t - u = v) $=\int_{-\infty}^{\infty}e^{-su}F\left(u\right) \left\{ g\left(s\right) \right\} du$ $=g(s)\int_{u=0}^{\infty}e^{-su}F(u)\,du=g(s)\,f(s)$ $\Rightarrow L^{-1} \{f(s)\} g(s) = H(t)$ $= \int_{0}^{\tau} F(u) G(t-u) du = F * G$

Applications of The convolution theorem ..

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform o derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Example 1:

Evaluate $L^{-1}\left\{\frac{1}{(s^2+1)(s+1)}\right\}$.

Sol: Let $f(s) = \frac{1}{(s^2+1)}$ and $g(s) = \frac{1}{(s+1)}$. Therefore,

$$L^{-1}\{f(s)\} = L^{-1}\left\{\frac{1}{(s^2+1)}\right\} = \sin t = F(t)$$

and
$$L^{-1}\{g(s)\} = L^{-1}\left\{\frac{1}{(s+1)}\right\} = e^{-t} = G(t).$$

Applications of The convolution theorem ...

Mathematical Methods(MA-203)

The convolution theorem and its applications

By convolution theorem, we have

$$\begin{split} L^{-1} \left\{ f \left(s \right) g \left(s \right) \right\} &= \int_0^t F \left(u \right) G \left(t - u \right) du = \int_0^t \sin u \, e^{-(t - u)} du \\ &= e^{-t} \int_0^t e^u \sin u \, du = \frac{1}{2} \left(\sin t - \cos t + e^{-t} \right) \\ &\Rightarrow L^{-1} \left\{ \frac{1}{\left(s^2 + 1 \right) \left(s + 1 \right)} \right\} = \frac{1}{2} \left(\sin t - \cos t + e^{-t} \right) \end{split}$$

Note: $\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx).$

The convolution theorem and its applications contd...

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform o the unit ste

The convolution theorem and its applications

Example 2:

Show that $\int_0^t \sin u \cos(t-u) du = \frac{1}{2}t \sin t$.

Sol: By convolution theorem, we have

$$L\left\{ \int_{0}^{t} F(u) G(t-u) du \right\} = L\left\{ F(t) \right\} . L\left\{ G(t) \right\}$$
 (5.1)

The convolution theorem and its applications contd...

Mathematical Methods(MA-203)

Prof. S. Mukhopadhya

Laplace transform of derivatives

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Take $F(t) = \sin t$ and $G(t) = \cos t$. Then (6.1) reduces to

$$L\left\{ \int_{0}^{t} \sin u \cos (t - u) \, du \right\} = L\left\{ \sin u \right\} \cdot L\left\{ \cos u \right\}$$

$$= \frac{1}{(s^{2} + 1)} \cdot \frac{s}{(s^{2} + 1)} = \frac{s}{(s^{2} + 1)^{2}}$$

$$\Rightarrow \int_{0}^{t} \sin u \cos (t - u) \, du = L^{-1} \left\{ \frac{s}{(s^{2} + 1)^{2}} \right\} = \frac{1}{2} t \sin t$$

Note: $L^{-1}\left\{\frac{s}{(s^2+1)^2}\right\} = \frac{1}{2}t\sin t$. Prove it by convolution theorem taking $f(s) = \frac{s}{s^2+1}$ and $g(s) = \frac{1}{s^2+1}$.

Laplace transform of integrals

Laplace transform o periodic functions

Laplace transform of the unit step function

The convolution theorem and its applications

Exercise

Exercise:

- 1 Evaluate $L^{-1}\left\{\frac{3s-2}{s^{5/2}}-\frac{7}{3s+2}\right\}$.
- 2 Show that $\int_0^\infty e^{-tx^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{t}}$ and hence, deduce $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.
- 3 Evaluate $L^{-1}\left\{\frac{2s^2-6s+5}{s^3-6s^2+11s-6}\right\}$.
- 4 Evaluate $L^{-1}\left\{\frac{s}{s^2+2s+5}\right\}$.
- 5 Evaluate $L^{-1}\left\{\frac{e^{(4-3s)}}{(s+4)^{5/2}}\right\}$.
- 6 If $L^{-1}\left\{\frac{e^{-1/s}}{s^{1/2}}\right\} = \frac{\cos 2\sqrt{t}}{\sqrt{\pi t}}$, then find $L^{-1}\left\{\frac{e^{-a/s}}{s^{1/2}}\right\}$, where a > 0.
- 7 Evaluate $L^{-1} \left\{ log \frac{1+s}{s} \right\}$.
- 8 Evaluate $L^{-1}\left\{\frac{1}{s}\log\frac{s+2}{s+1}\right\}$
- 9 Evaluate $L^{-1}\left\{\frac{1}{(s-2)(s^2+)}\right\}$.