=> fil req

FILE 'REGISTRY' ENTERED AT 08:54:37 ON 05 AUG 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 4 AUG 2008 HIGHEST RN 1038507-75-3 DICTIONARY FILE UPDATES: 4 AUG 2008 HIGHEST RN 1038507-75-3

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 9, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

=> d sta que 130

L22

VAR G1=25/32/37 VAR G2=7/11/15/19 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 34

STEREO ATTRIBUTES: NONE L23 SCR 2043

L25 930 SEA FILE-REGISTRY SSS FUL L22 AND L23 L26 STR

$$\begin{array}{c} {}^{43} \\ {}^{9} \\ {}^{1} \\ {}^$$

NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 10

STEREO ATTRIBUTES: NONE L27 STR

NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 12

STEREO ATTRIBUTES: NONE

VAR G1=5/47 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 17

STEREO ATTRIBUTES: NONE
L30 864 SEA FILE=REGISTRY SUB=L25 SSS FUL (L26 OR L27 OR L28)

100.0% PROCESSED 914 ITERATIONS 864 ANSWERS SEARCH TIME: 00.00.07

```
=> d ide can tot 166
L66 ANSWER 1 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN
    1013932-77-8 REGISTRY
ED
    Entered STN: 13 Apr 2008
CN
    2-Oxepanone, homopolymer, ester with 2,2'-[oxybis(methylene)]bis[2-
    (hydroxymethyl)-1,3-propanediol] (6:1), hexakis[N-[3-
     (triethoxysily1)propy1]carbamate] (CA INDEX NAME)
    C10 H23 N O5 Si . 1/6 C10 H22 O7 . (C6 H10 O2)x
PCT Polyester, Polyester formed
    CA
    STN Files: CA, CAPLUS
**RELATED POLYMERS AVAILABLE WITH POLYLINK**
    CM 1
    CRN 140236-86-8
    CMF C10 H23 N O5 Si
     OEt
 Eto-Si- (CH2)3-NH-CO2H
     bEt
    CM 2
    CRN 126-58-9
    CMF C10 H22 O7
         си2-он
                      сн2-он
 но- си2- с- си2- о- си2- с- си2- он
         сн2-он
                      сн2-он
    CM 3
    CRN 24980-41-4
    CMF (C6 H10 O2)x
     CCI PMS
         CM 4
         CRN 502-44-3
         CMF C6 H10 O2
```


1 REFERENCES IN FILE CA (1907 TO DATE) 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 148:380362

L66 ANSWER 2 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 945755-96-4 REGISTRY

ED Entered STN: 29 Aug 2007

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α -hydro- ω -[[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with

2,2'-[oxybis(methylene)]bis(2-ethyl-1,3-propanediol] (4:1), polymer with triethoxymethylsilane (CA INDEX NAME)

MF (C7 H18 O3 Si . (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n

C52 H110 N4 O21 S14)x

CI PMS

PCT Polyester, Polyother

SR CA

LC STN Files: CA, CAPLUS

CM 1

CRN 816457-20-2

CMF (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C52 H110 N4 O21 S14

CCI PMS

PAGE 1-A

ELO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n CH2

ELO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n CH2

ELO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n CH2

ELO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n CH2

ELO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n CH2

ELO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n CH2

PAGE 1-B

5

$$- \text{CH}_2 - \begin{bmatrix} \text{O} & \text{O} & \text{CH}_2 \\ \text{O} & \text{C} & \text{CH}_2 \end{bmatrix} 5 - \begin{bmatrix} \text{O} & \text{O} & \text{C} \\ \text{O} & \text{NH} & \text{CH}_2 \end{bmatrix} 3 - \begin{cases} \text{OEt} \\ \text{Si} - \text{OEt} \\ \text{OEt} \end{cases}$$

CM 2

CRN 2031-67-6 CMF C7 H18 O3 Si

Eto-Si-Me

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 147:258557

L66 ANSWER 3 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 870100-44-0 REGISTRY

ED Entered STN: 16 Dec 2005

CN 2-Oxepanone, homopolymer, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1),tetrakis[[3-(triethoxysilyl)propyl]carbamate] (9CI) (CA INDEX NAME)

C12 H26 O5 . 4 C10 H23 N O5 Si . 4 (C6 H10 O2)x

PCT Polyester, Polyester formed

SR CA

LC STN Files: CA, CAPLUS

RELATED POLYMERS AVAILABLE WITH POLYLINK

CM 1

CRN 140236-86-8 CMF C10 H23 N O5 Si

OEt EtO-Si- (CH2)3-NH-CO2H OEt

CM 2

```
10 / 530815
```

```
CRN 23235-61-2
    CMF C12 H26 O5
HO-CH2
                  сн2-он
Et- C- CH2- O- CH2- C-Et
но-снэ
    CM 3
    CRN 24980-41-4
    CMF (C6 H10 O2)x
    CCI PMS
         CM 4
         CRN 502-44-3
         CMF C6 H10 O2
              1 REFERENCES IN FILE CA (1907 TO DATE)
              1 REFERENCES IN FILE CAPLUS (1907 TO DATE)
REFERENCE 1: 144:7444
L66 ANSWER 4 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN
RN
    853904-58-2 REGISTRY
   Entered STN: 06 Jul 2005
ED
    2-Oxepanone, homopolymer, ester with 2,2-bis(hydroxymethyl)-1,3-
CN
    propanediol (4:1), tetrakis[[3-(triethoxysily1)propyl]carbamate] (9CI)
    (CA INDEX NAME)
MF
    C10 H23 N O5 Si . (C6 H10 O2)x . 1/4 C5 H12 O4
PCT Polyester, Polyester formed
SR
    CA
LC
    STN Files: CA, CAPLUS
**RELATED POLYMERS AVAILABLE WITH POLYLINK**
    CM 1
    CRN 140236-86-8
    CMF C10 H23 N O5 Si
```

```
OEt
Eto-Si- (CH2)3-NH-CO2H
     bEt
    CM 2
    CRN 115-77-5
    CMF C5 H12 O4
        CH2-OH
но-сн2-с-сн2-он
        рнэ- он
    CM 3
    CRN 24980-41-4
    CMF (C6 H10 O2)x
    CCI PMS
         CM
         CRN 502-44-3
         CMF C6 H10 O2
              1 REFERENCES IN FILE CA (1907 TO DATE)
              1 REFERENCES IN FILE CAPLUS (1907 TO DATE)
REFERENCE 1: 143:60335
L66 ANSWER 5 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN
    853904-54-8 REGISTRY
RN
ED
    Entered STN: 06 Jul 2005
CN
     2-Oxepanone, homopolymer, ester with 2-ethyl-2-(hydroxymethyl)-1,3-
     propanediol (3:1), tris[[3-(triethoxysilyl)propyl]carbamate] (9CI) (CA
    INDEX NAME)
    C10 H23 N O5 Si , 1/3 C6 H14 O3 , (C6 H19 O2)x
MF
PCT Polyester, Polyester formed
SR
   CA
LC
    STN Files: CA, CAPLUS
```

CM 1

RELATED POLYMERS AVAILABLE WITH POLYLINK

CRN 140236-86-8 CMF C10 H23 N O5 Si

OEt Eto-Si- (CH2)3-NH-CO2H bet

CM 2

CRN 77-99-6 CMF C6 H14 O3

ÇН2-ОН HO-CH2-C-Et CH2-OH

> CM 3

CRN 24980-41-4 CMF (C6 H10 O2)x CCI PMS

> CM 4

CRN 502-44-3 CMF C6 H10 O2

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 143:60335

L66 ANSWER 6 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 853879-44-4 REGISTRY ED

Entered STN: 05 Jul 2005

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α -hydro- ω -[[[[3-(triethoxysily1)propyl]amino]carbonyl]oxy]-, ester with

2,2-bis(hydroxymethyl)-1,3-propanediol (4:1) (9CI) (CA INDEX NAME) (C6 H10 C2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C45 H96 N4 O20 MF

CI PMS

PCT Polvester

SR CA

STN Files: CA, CAPLUS

RELATED POLYMERS AVAILABLE WITH POLYLINK

PAGE 1-B

1 REFERENCES IN FILE CA (1907 TO DATE) 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 143:60335

L66 ANSWER 7 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 853879-43-3 REGISTRY

Entered STN: 05 Jul 2005 ED

Poly[oxy(1-oxo-1,6-hexanediyl)], α -hydro- ω -[[[[3-CN (triethoxysilyl)propyl]amino]carbonyl]oxy]-, ester with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) (9CI) (CA INDEX NAME)

MF (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C36 H77 N3 O15 S13

CI PMS

PCT Polvester

SR CA

LC STN Files: CA, CAPLUS

RELATED POLYMERS AVAILABLE WITH POLYLINK

PAGE 1-B

1 REFERENCES IN FILE CA (1907 TO DATE) 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 143:60335

L66 ANSWER 8 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 851852-18-1 REGISTRY

ED Entered STN: 08 Jun 2005

CN Poly[oxy(methyl-1,2-ethanediyl)], α -hydro- ω -[[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ether with

2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) (9CI) (CA INDEX NAME)

(C3 R6 O)n (C3 H6 O)n (C3 H6 O)n C36 R77 N3 O15 S13 MF

IDS, PMS

CI PCT Polvether

SR CA

LC

STN Files: CA, CAPLUS

11

PAGE 1-B

$$\begin{array}{c|c} - (C3H6) & \hline & 0 & OEt \\ \hline & n & O-C-NH-(CH2) & Si-OEt \\ \hline & OEt \\ \hline & (C3H6) & \hline & n & O-C-NH-(CH2) & Si-OEt \\ \hline & OEt \\ \hline & DET & OET \\ \hline & OET &$$

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:490130

L66 ANSWER 9 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 848841-96-3 REGISTRY

ED Entered STN: 20 Apr 2005

CN Poly(oxy-1,2-ethanediyl), α -hydro- ω -[[[[3-

(triethoxysily1)propyl]amino]carbonyl]oxy]-, ether with
2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) (9CI) (CA INDEX NAME)

MF (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n C36 H77 N3 O15 S13

CI PMS

PCT Polyether

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

PAGE 1-B

- 1 REFERENCES IN FILE CA (1907 TO DATE)
- 1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
- 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:356293

L66 ANSWER 10 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 846014-06-0 REGISTRY

ED Entered STN: 21 Mar 2005

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α-hydro-ω-[3-[3-(dimethoxymethylsi1y1)propoxy]-2-hydroxypropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanedio1] (6:1) (9CI) (CA INDEX NAME)

MF (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 G2)n (C6 H10 O2)n (C6

810 02)n C64 H142 031 S16

CI PMS

PCT Polyester

SR CA

LC STN Files: CA, CAPLUS

PAGE 1-A

$$\begin{array}{c} \text{MM} = \begin{array}{c} \text{OMe} \\ \text{Me} \\ \text{Si} = (\text{CH}_2) \\ \text{3} - \text{O} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{O} \\ \text{CH} = (\text{CH}_2) \\ \text{Me} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{Si} = (\text{CH}_2) \\ \text{Si} = (\text{CH}_2) \\ \text{Me} \end{array} \right. \\ \text{OMe} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\ \text{Me} = \begin{array}{c} \text{CH}_2 \\ \text{OMe} \\ \text{OMe} \end{array} \right. \\$$

PAGE 1-C

13

1 REFERENCES IN FILE CA (1907 TO DATE) 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:262689

L66 ANSWER 11 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 846014-04-8 REGISTRY

ED Entered STN: 21 Mar 2005

CN Poly[oxy(1-oxo-1,6-hexanediyl)], α-hydro-φ-[3-[3-(dimethoxymethylsilyl)propoxy]-2-hydroxypropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1) (9CI) (CA INDEX NAME)

(C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C48 H106 O21

S14

MF

CI PMS

PCT Polyester SR CA

LC STN Files: CA, CAPLUS

14

PAGE 1-B

PAGE 1-C

1 REFERENCES IN FILE CA (1907 TO DATE) 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:262689

L66 ANSWER 12 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

846014-02-6 REGISTRY RN

ED Entered STN: 21 Mar 2005

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α -hydro- ω -[3-[3-(diethoxymethylsilyl)propoxy]-2-hydroxypropoxy]-, ester with

2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (9CI)

(CA INDEX NAME)

(C6 H10 O2)n (C6 H10 02)n C76 H166 031 Si6

CI SMS

MF

PCT Polyester

SR CA

LC STN Files: CA, CAPLUS

$$\begin{array}{c} \text{OEt} \\ \text{Me-} \\ \text{Si-} \\ \text{OEt} \end{array} (\text{CH}_2) \\ \text{3-} \\ \text{O-} \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{O-} \\ \text{CH}_2 \\ \text{O-} \\ \text{O-} \\ \text{CH}_2 \\ \text{O-} \\ \text{O-}$$

PAGE 1-C

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:262689

L66 ANSWER 13 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 846014-00-4 REGISTRY

ED Entered STN: 21 Mar 2005

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α-hydro-φ-[3-[3-(diethoxymethylsily1)propoxy]-2-hydroxypropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanedio1] (4:1) (9CI) (CA INDEX NAME)

MF (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C56 H122 O21

814

CI PMS

PCT Polyester

SR CA LC STN Files: CA, CAPLUS

PAGE 1-B

PAGE 1-C

17

1 REFERENCES IN FILE CA (1907 TO DATE) 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:262689

L66 ANSWER 14 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 846013-98-7 REGISTRY

ED Entered STN: 21 Mar 2005

CN Poly[oxy(1-oxo-1,6-hexanediyl)], α -hydro- ω -[3-[3-

(ethoxydimethylsilyl)propoxy]-2-methylpropoxy]-, ester with
2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (9CI)
(GA INDEX NAME)

MF (C6 H10 O2)n (C6

810 O2)n C76 H166 O19 S16

CI PMS

PCT Polyester

SR CA

LC STN Files: CA, CAPLUS

PAGE 1-C

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:262689

L66 ANSWER 15 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 846013-96-5 REGISTRY

ED Entered STN: 21 Mar 2005

CN Poly[oxy(1-oxo-1,6-hexanediy1)], \alpha-hydro-\alpha-[3-[3-(ethoxydimethylsily1)propoxy]-2-methylpropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanedio1] (4:1) (9CI) (CA INDEX NAME)

MF (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C56 H122 O13

CI PMS

PCT Polyester

SR C.

LC STN Files: CA, CAPLUS

PAGE 1-B

PAGE 1-C

1 REFERENCES IN FILE CA (1907 TO DATE) 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 142:262689

- L66 ANSWER 16 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN
- RN 816457-23-5 REGISTRY
- ED Entered STN: 19 Jan 2005
- - Poly[oxy(1-oxo-1,6-hexanediyl)], α -hydro- ω -[[[[3-(triethoxysilyl)propyl]amino]carbonyl]oxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (CA INDEX NAME)
- (C6 H10 O2)n (C6 MF

20

H10 02)n C70 H148 N6 031 S16

CI PMS

PCT Polyester

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

RELATED POLYMERS AVAILABLE WITH POLYLINK

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1: 148:380362

4 REFERENCES IN FILE CA (1907 TO DATE)
4 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 2: 142:491335
REFERENCE 3: 142:262689
REFERENCE 4: 142:105484

REFERENCE

L66 ANSWER 17 OF 17 REGISTRY COPYRIGHT 2008 ACS on STN

RN 816457-20-2 REGISTRY

ED Entered STN: 19 Jan 2005

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α -hydro- ω -[[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1) (9CI) (CA

INDEX NAME)

MF (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C52 H110 N4 O21

Si4 CI PMS, COM

PCT Polyester

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

RELATED POLYMERS AVAILABLE WITH POLYLINK

PAGE 1-A

EtO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n-CH2

EtO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n-CH2

EtO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n-CH2

EtO-\$i-(CH2)3-NH-C-O-(CH2)5-C-O-n-CH2

PAGE 1-B

$$-CH_{2} - CH_{2} -$$

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

3 REFERENCES IN FILE CA (1907 TO DATE)
3 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 144:7444

REFERENCE 2: 142:262689

REFERENCE 3: 142:105484

=> fil hcaplus

FILE 'HCAPLUS' ENTERED AT 08:54:54 ON 05 AUG 2008

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 5 Aug 2008 VOL 149 ISS 6 FILE LAST UPDATED: 4 Aug 2008 (20080804/ED)

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2008.

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 171 bib abs hitstr retable tot

- L71 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2008 ACS on STN
- 2007:487246 HCAPLUS Full-text AN
- DN 148:380362
- TT Synchrotron X-ray reflectivity studies of nanoporous organosilicate thin films with low dielectric constants
- AII Ob, Weontae; Hwang, Yongtaek; Shin, Tae Joo; Lee, Byeongdu; Kim, Jong Seong; Yoon, Jinhwan; Brennan, Sean; Mehta, Apurva; Ree, Moonhor
- CS Department of NanoTechnology, Dong-eui University, Pusan, 614-714, S.
- SO Journal of Applied Crystallography (2007), 40(S1), s626-s630 CODEN: JACGAR; ISSN: 0021-8898
- PB Blackwell Publishing Ltd.
- DT Journal
- LA English
- AB Quant., non-destructive X-ray reflectivity anal. using synchrotron radiation sources was successfully performed on nanoporous dielec. thin films prepared by thermal processing of blend films of a thermally curable polymethylsilsesquioxane dielec, precursor and a thermally labile triethoxysilyl-terminated six-arm poly(.vepsiln.-caprolactone) porogen in various compns. In addition, thermogravimetric anal. and transmission electron microscopy anal. were carried out. These measurements provided important structural information about the nanoporous films. The thermal process used in this study was found to cause the porogen mols. to undergo efficiently sacrificial thermal degradation, generating closed, spherical nanopores in the dielec. film. The resultant nanoporous films exhibited a homogeneous, well defined structure with a thin skin layer and low surface roughness. In particular, no skin layer was formed in the porous film imprinted using a porogen loading of 30 wt%. The film porosities ranged from 0 to 33.8% over the porogen loading range of 0-30 wt%.
- TТ 816457-23-5 1013932-77-8
 - RL: PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PRP (Properties); PROC (Process); USES (Uses) (synchrotron X-ray reflectivity studies of nanoporous organosilicate
- thin films with low dielec. consts.) 816457-23-5 HCAPLUS
- RN

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α-hydro-Θ-[[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (CA TNDEX NAME)

PAGE 1-B

RN 1013932-77-8 HCAPLUS

CN 2-Oxepanone, homopolymer, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1), hexakis[N-[3-(triethoxysilyl)propyl]carbamate] (CA INDEX NAME)

CM

CRN 140236-86-8

CMF C10 H23 N O5 Si

CM 2

CRN 126-58-9

CMF C10 H22 O7

$$\begin{array}{c} \text{CH}_2-\text{OH} \\ \text{HO-CH}_2-\text{CH}_2-\text{OH} \\ \text{CH}_2-\text{OH} \end{array} \\ \begin{array}{c} \text{CH}_2-\text{OH} \\ \text{CH}_2-\text{OH} \\ \end{array}$$

CM 3

CRN 24980-41-4 CMF (C6 H10 O2)x CCI PMS

CCI PM

CM 4

CRN 502-44-3 CMF C6 H10 O2

RE	TA	BI	Æ.

Referenced Author	Year VOL	PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)	(RWK)	File
			+	+
Bolze, J	2001 17	16683	Langmuir	HCAPLUS
Bolze, J	2002 10	12	Macromol Res	HCAPLUS
Clark, D	1978	1	Polymer Surfaces	1
Fleer, G	1993	1	Polymers at Interfac	:1
Gibaud, A	1993 A49	1642	Acta Cryst	HCAPLUS
Harmer, M	1996 118	17708	J Am Chem Soc	HCAPLUS
Huang, E	2002 81	12232	Appl Phys Lett	HCAPLUS
Hwang, Y	2006 510	159	Thin Solid Films	HCAPLUS
Kiessig, H	1931 10	1769	Ann Phys	HCAPLUS
Lee, B	2005 17	1696	Adv Mater	HCAPLUS
Lee, B		4174	Macromolecules	HCAPLUS
Lee, B	2005 38		Macromolecules	HCAPLUS
Lee, B	2005 38	18991	Macromolecules	HCAPLUS
Lee, B	2005 4	1147	Nat Mater	HCAPLUS
Lee, H	2002 14	1845	Chem Mater	HCAPLUS
Lev, O	1995 67	122	Anal Chem	1
Morais, T	1999 11	107	Adv Mater	1
Nevot, L	1980 15	761	Rev Phys Appl	HCAPLUS
Oh, W	2003 44	2519	Polymer	HCAPLUS
Parratt, L	1954 95	1359	Phys Rev	1
Ree, M	2006 16	1685	J Mater Chem	HCAPLUS
Ree, M	2005 14	12	Phys High Tech (Kore	·
Rottman, C	1999 121	18533	J Am Chem Soc	HCAPLUS
Shin, Y	2001 9	100	Korea Polym J	HCAPLUS
Smaihi, M	1996 116	211	J Membr Sci	HCAPLUS

L71 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2008 ACS on STN

- AN 2006:1027233 HCAPLUS Full-text
- DN 147:258557
- TI X-ray scattering study of thermal nanopore templating in hybrid films of organosilicate precursor and reactive four-armed porogen
- AU Yoon, Jinhwan; Heo, Kyuyoung; Oh, Weontae; Jin, Kyeong Sik; Jin, Sangwoo; Kim, Jehan; Kim, Kwang-Woo; Chang, Taihyun; Ree, Moonbor
- CS Department of Chemistry, National Research Lab for Polymer Synthesis and Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science and Technology (Postech), Pohang, 790-784, S. Korea
- SO Nanotechnology (2006), 17(14), 3490-3498
 - CODEN: NNOTER; ISSN: 0957-4484
- PB Institute of Physics Publishing
- DT Journal LA English
- Englism

 The miscibility and the mechanism for thermal nanopore templating in films prepared from spin-coating and subsequent drying of homogeneous solns, of curable polymethylsilsesquioxane dielec. precursor and thermally labile, reactive triethoxysilyl-terminated four-armed poly(&-caprolactone) porogen were investigated in detail by in situ two-dimensional grazing incidence small-angle x-ray scattering anal. The dielec, precursor and porogen components in the film were fully miscible. On heating, limited aggregations of the porogen, however, took place in only a small temperature range of 100-140°C as a result of phase separation induced by the competition of the curing and hybridization reactions of the dielec. precursor and porogen; higher porogen loading resulted in relatively large porogen aggregates and a greater size distribution. The developed porogen aggregates underwent thermal firing above 300°C without further growth and movement, and ultimately left their
- IT 945755-96-4

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

individual footprints in the film as spherical nanopores.

(X-ray scattering study of thermal nanopore templating in hybrid films of organosilicate precursor and reactive four-armed porogen)

- RN 945755-96-4 HCAPLUS
- CN Poly[oxy(1-oxo-1,6-hexanediy1)], α -hydro- ω -[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanedio1] (4:1), polymer with triethoxymethylsilane (CA INDEX NAME)
 - CM 1
 - CRN 816457-20-2
 - CMF (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n (C6 H10 O2)n C52 H110 N4 O21 S14
 - CCI PMS

PAGE 1-B

CM 2

CRN 2031-67-6 CMF C7 H18 O3 Si

EtO_Si_Me

RETABLE

Referenced Author (RAU)	(RPY) (RVL) (PG Referenced Work RPG) (RWK)	Referenced File		
Bolze, J		683 Langmuir	HCAPLUS		
Bolze, J	2002 10 2	Macromol Res	HCAPLUS		
Czornyj, G	1992 42 6	82 Proc Electron Compu	t		
Hedrick, J	1998 10 1	049 Adv Mater	HCAPLUS		
Huang, E	[2002 81 2	232 Appl Phys Lett	HCAPLUS		
Kim, H	2003 15 6	09 Chem Mater	HCAPLUS		
Kinning, D	1984 17 1	712 Macromolecules	HCAPLUS		
Lee, B	2005 17 6	96 Adv Mater	HCAPLUS		
Lee, B	2004 37 4	174 Macromolecules	HCAPLUS		
Lee, B	12005 38 3	395 Macromolecules	HCAPLUS		
Lee, B	2005 38 4	311 Macromolecules	HCAPLUS		

Lee, B	2005 38	8991	Macromolecules	HCAPLUS
Lee, B	2005 4	147	Nat Mater	HCAPLUS
Lee, H	2002 14	1845	Chem Mater	HCAPLUS
Miller, R	1999 28	6 421	Science	HCAPLUS
Nguyen, C	1999 11	3080	Chem Mater	HCAPLUS
Nguyen, C	2000 33	4281	Macromolecules	HCAPLUS
Oh, W	2004 20	16932	Langmuir	HCAPLUS
Oh, W	2002 20	3 791	Macromol Chem Phys	1
Oh, W	2001 37	1 397	Mol Cryst Liq Cryst	HCAPLUS
Oh, W	12003 44	2519	Polymer	HCAPLUS
Ree, M	2006 16	1685	J Mater Chem	HCAPLUS
Ree, M	1995 35	215	Polym Bull	HCAPLUS
Semiconductor Industry	[2004]	1	International Techno	1
Shin, Y	2001 9	100	Korea Polym J	HCAPLUS
Young, R	1991	1	Introduction to Poly	7

- L71 ANSWER 3 OF 6 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2005:1059075 HCAPLUS Full-text
- DN 144:7444
- TI Scattering Studies of Nanoporous Organosilicate Thin Films Imprinted with Reactive Star Porogens
- AU Lee, B.; Oh, W.; Yoon, J.; Hwang, Y.; Kim,
- J.; Landes, B. G.; Quintana, J. P.; Ree, M.
- CS National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Pohang, 790-784, S. Korea
- SO Macromolecules (2005), 38(22), 8991-8995 CODEN: MAMOBX: ISSN: 0024-9297
- PB American Chemical Society
- DT Journal
- LA English
- AB In order to minimize aggregation of the star-shaped poly(&- caprolactone) porogen with four arms in a polyimide (PI)/polymethylsilsesquioxane (PMSSQ) dielec. matrix, it was modified with 3-(trimethoxysily1)propylamine endcapping. To test the efficacy of the modification, the nanostructures and properties of porous dielecs. prepared using different amts. of modified porogen were quant. characterized.
- IT 816457-20-2P 870100-44-0P
 - RL: NUU (Other use, unclassified); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
 - (reactive porogen; effect of reactive modification of star polycaprolactone porogen on nanostructure and properties of imprinted polyimide-silsesquioxane dielec. thin films)
- RN 816457-20-2 HCAPLUS
- CN Poly[oxy(1-oxo-1,6-hexanediy1)], α-hydro-ω-[[[[3(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with
 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1) (9CI) (CA
 INDEX NAME)

PAGE 1-B

$$-CH_{2} - CH_{2} -$$

870100-44-0 HCAPLUS RN

CN 2-Oxepanone, homopolymer, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1),tetrakis[[3-(triethoxysily1)propy1]carbamate] (9CI) (CA INDEX NAME)

CM 1

CRN 140236-86-8 CMF C10 H23 N O5 Si

CM 2

CRN 23235-61-2

CMF C12 H26 O5

CM 3

CRN 24980-41-4 CMF (C6 H10 O2)x

CCI PMS

CM 4

CRN 502-44-3 CMF C6 H10 O2

RETABLE

KETABLE				
Referenced Author	Year VOL		eferenced Work	Referenced
(RAU)	(RPY) (RVL)		(RWK)	File
Anon	2001		ternational Techno	
Bolze, J			ngmuir	HCAPLUS
Bolze, J			cromol Res	HCAPLUS
Hedrick, J			v Mater	HCAPLUS
Huang, E			pl Phys Lett	HCAPLUS
Kim, H			em Mater	HCAPLUS
Kim, J	2005 46	7394 Po.	lymer	HCAPLUS
Kinning, D	1984 17	1712 Mac	cromolecules	HCAPLUS
Lee, B	2005 39	3395 Mai	cromolecules	1
Lee, B	2005 39	4311 Mac	cromolecules	1
Lee, B	2005 4	147 Nat	t Mater	HCAPLUS
Lee, H	2002 14	1845 Che	em Mater	HCAPLUS
Londono, J	2000 33	704 JJ	Appl Crystallogr	HCAPLUS
Maex, K	2003 93	8793 JJ i	Appl Phys	HCAPLUS
Maier, G	2001 26	3 Pre	og Polym Sci	HCAPLUS
Miller, R	1999 286	421 Sc:	ience	HCAPLUS
Morgen, M	2000 30	645 Anı	nu Rev Mater Sci	HCAPLUS
Nguyen, C	1999 11	3080 Ch	em Mater	HCAPLUS
Nguyen, C	2000 33	4281 Mad	cromolecules	HCAPLUS
Oh, W	2004 20	6932 Lai	ngmuir	HCAPLUS
Oh, W	2002 203	791 Mad	cromol Chem Phys	1
Oh, W	[2003 [44]	2519 Po.	lymer	HCAPLUS
Pedersen, J	1994 27	595 JJ 2	Appl Crystallogr	1
Shin, Y	[2001 9		rea Polym J	HCAPLUS
Yang, S	2001 13	2762 Che	em Mater	HCAPLUS

L71 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2008 ACS on STN

DN 142:491335

AN 2005:284667 HCAPLUS Full-text

- TI Imprinting well-controlled nanopores in organosilicate dielectric films: triethoxysilyl-modified six-armed poly(s-caprolactone) and its chemical hybridization with an organosilicate precursor
- AU Lee, Eyeongdu; Oh, Weontae; Hwang, Yongtaek; Park, Young-Hee; Yoon, Jinhwan; Jin, Kyeong Sik; Heo, Kyuyoung; Kim, Jehan; Kim, Kwang-Woo; Ree, Moonhor.
- CS Department of Chemistry, Pohang Accelerator Laboratory Center for Integrated Molecular Systems and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, S. Korea
- SO Advanced Materials (Weinheim, Germany) (2005), 17(6), 696-701
- CODEN: ADVMEW; ISSN: 0935-9648
 PB Wiley-VCH Verlag GmbH & Co. KGaA
- DT Journal
- LA English

CN

- AB A triethoxysilyl-terminated, six-armed poly(E-caprolactone) porogen is synthesized and the terminal groups are found to significantly reduce the aggregation of the porogen mols. in an polymethylsilsesquioxane precursor via their hybridization reaction with the precursor. The porogen mols. successfully imprint nanopores in the organosilicate dielec. thin film through their sacrificial thermal decomposition Pore size and dielec. constant of the imprinted films are determined
- T 816457-23-5
 - RL: NUU (Other use, unclassified); USES (Uses)
 (porogen; imprinting well-controlled nanopores in organosilicate
 dielec. films using triethoxysilyl-modified six-armed
 polv(s-caprolactone) and its chemical hybridization with an
- organosilicate precursor)
- RN 816457-23-5 HCAPLUS
 - $$\label{eq:condition} \begin{split} & \text{Poly}[\text{oxy}(1-\text{oxo-1},6-\text{hexanediy1})], \ \alpha-\text{hydro-}\omega-[[[[3-\text{trich}(\text{oxysily})]\text{propy}]]\text{amino}[\text{carbony}]]\text{oxy}]-, \ \text{ester} \ \text{with} \\ & 2,2^*-[\text{oxy}\text{bis}(\text{methylene})]\text{bis}[2-(\text{hydroxymethyl})-1,3-\text{propanediol}] \ (6:1) \end{aligned} \ \ (\text{CA INDEX NAME}) \end{split}$$

RETABLE

Referenced Author	Year VOI	PG	Referenced Work	Referenced
(RAU)	(RPY) (RVI			File
		=+====		
Anon	2001	1	International Techno	o l
Bolze, J	2001 17		Langmuir	HCAPLUS
Bolze, J	2002 10	12	Macromol Res	HCAPLUS
Debye, P	1957 28	1679	J Appl Phys	HCAPLUS
Hedrick, J	1998 10	1049	Adv Mater	HCAPLUS
Holy, V	1999	1	High-Resolution X-Ra	a
Huang, E	2002 81	12232	Appl Phys Lett	HCAPLUS
Lee, B	2003	1	Ph D Thesis, Pohang	1
Lee, H	2002 14	1845	Chem Mater	HCAPLUS
Maier, G	2001 26	13	Prog Polym Sci	HCAPLUS
Morgen, M	2000 30	1645	Annu Rev Mater Sci	HCAPLUS
Nguyen, C	1999 11	13080	Chem Mater	HCAPLUS
Oh, W	2004 20	16932	Langmuir	HCAPLUS
Oh, W	2002 203	791	Macromol Chem Phys	1
Oh, W	12002 1203	791	Macromol Chem Phys	1
Omote, K	12003 182	1544	Appl Phys Lett	HCAPLUS
Parratt, L	1954 95	1359	Phys Rev	1
Pedersen, J	1994 27	1595	J Appl Crystallogr	1
Rauscher, M	1995 52	16855	Phys Rev B	HCAPLUS
Shin, Y	2001 9	100	Korea Polym J	HCAPLUS
Yang, S	2001 13	12762	Chem Mater	HCAPLUS

- L71 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2005:182733 HCAPLUS Full-text
- DN 142:262689
- TI Low-dielectric nanoporous organosilicate polymer composite prepared from precursor of organic/inorganic hybrid polymer
- IN Pee, Moonhor; Oh, Weontae; Hwang, Yong-Taek; Lee, Byeongdu
- PA Postech Foundation, S. Korea
- PCT Int. Appl., 36 pp.
- CODEN: PIXXD2
- DT Patent
- LA English
- FAN.CNT 1

	PATENT NO.			KIND DATE		APPLICATION NO.					DATE							
PI	WO	2005	0193	03		A1		2005	0303		wo 2	004-	KR21	04		21	0040	820 <
		W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KΕ,	KG,	KΡ,	ΚZ,	LC,	LK,
			LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NI,	NO,

```
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,
            TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
        RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
            AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
            EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,
            SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
            SN, TD, TG
    DE 112004000058
                         T5
                            20050901 DE 2004-112004000058 20040820 <--
    JP 2006515644
                         T
                              20060601
                                          JP 2005-518200
                                                                 20040820 <--
    JP 4065291
                         B2
                             20080319
    US 20060014845
                         A1
                              20060119
                                          US 2005-530815
                                                                 20050408 <--
                               20030821 <--
PRAI KR 2003-57992
                         A
    WO 2004-KR2104
                         W
                               20040820 <--
```

The organosilicate polymer composite is prepared by heating an organic/inorg. hybrid polymer in which an organosilicate polymer is chemical bonded to a radial pore-forming polymer ended with a hydrolyzable alkoxysilyl group and used as a core mol. The organosilicate polymer composite film has a very low dielec. constant, and is useful as a dielec. film of the semiconductor device.

816457-20-2P 816457-23-5P 846013-96-5P

846013-98-7P 846014-00-4P 846014-02-6P 846014-04-8P 846014-06-0P

RL: IMF (Industrial manufacture); TEM (Technical or engineered material

use); PREP (Preparation); USES (Uses)
(low-dielec. nanoporous organosilicate polymer composite prepared from precursor of organic/inorg. hybrid polymer)

RN 816457-20-2 HCAPLUS

AR

ΙT

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α-hydro-ω-[[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with

2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1) (9CI) (CA INDEX NAME)

816457-23-5 HCAPLUS RN

CN Poly[oxy(1-oxo-1,6-hexanedivl)], α -hydro- ω -[[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (CA INDEX NAME)

RN 846013-96-5 HCAPLUS

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α -hydro- ω -[3-[3-(ethoxydimethylsilyl)propoxy]-2-methylpropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1) (9CI) INDEX NAME)

PAGE 1-B

PAGE 1-C

RN 846013-98-7 HCAPLUS

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α-hydro-ω-[3-[3-(ethoxydimethylsily1)propoxy]-2-methylpropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-C

RN 846014-00-4 HCAPLUS

CN Poly[oxy(1-oxo-1,6-hexanediyl)], α -hydro- ω -[3-[3- (diethoxymethyls1yl)propoxy]-2-hydroxypropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1) (9CI) (CA INDEX NAME)

PAGE 1-B

$$\begin{array}{c} -\text{CH}_2 - \text{O} - \text{CH}_2 \\ \text{Et} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{O} - \text{D} \end{array} \\ \text{O} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{O} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{O} - \text{CH}_2$$

PAGE 1-C

RN 846014-02-6 HCAPLUS

CN Poly[oxy(1-oxo-1,6-hexanediyl)], α-hydro-ω-[3-[3 (diethoxymethylsilyl)propoxy]-2-hydroxypropoxy]-, ester with
2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (9CI)
 (CA INDEX NAME)

$$\begin{array}{c} \text{OEt} & \text{OH} \\ \text{Me-Si-} & \text{(CH_2)_3-O-CH_2-CH-CH_2-O----} & \text{(CH_2)_5-C-O-n-CH_2-CH-CH_2-O----} \\ \text{Me-Si-} & \text{(CH_2)_3-O-CH_2-CH-CH_2-O-----} & \text{(CH_2)_5-C-O----} \\ \text{OEt} & \text{OH} \\ \end{array}$$

$$\begin{array}{c} \text{OEt} \\ \text{Me-} \\ \text{Si-} \\ \text{OEt} \\ \end{array} \\ \text{O-} \\ \text{CH}_2) \\ \text{3-} \\ \text{O-} \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{O-} \\ \text{CH}_2 \\ \text{O-} \\ \text{O-}$$

PAGE 1-B OH OH CH2-O-CH2 — C— (CH2) 5 — n O— CH2— CH— CH2— O— OH

PAGE 1-C

PAGE 1-A

- 846014-04-8 HCAPLUS RN
- CN Poly[oxy(1-oxo-1,6-hexanediyl)], α -hydro- ω -[3-[3-(dimethoxymethylsilyl)propoxy]-2-hydroxypropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-ethyl-1,3-propanediol] (4:1) (9CI) (CA

INDEX NAME)

$$\begin{array}{c} \text{OMe} \\ \text{OMe} \\ \text{Me} = \underbrace{\text{Si-} (\text{CH2}) \, 3 - \text{O-} \text{CH2-} \text{CH-} \text{CH2-} \text{O}}_{\text{CH}} - \underbrace{\text{CH2}) \, 5 - \text{CO}}_{\text{In}} - \underbrace{\text{CH2}}_{\text{CH2}} -$$

PAGE 1-B

PAGE 1-C

RN 846014-06-0 HCAPLUS

CN Poly[oxy(1-oxo-1,6-hexanediy1)], α-hydro-Φ-[3-[3-(dimethoxymethylsily1)propoxy]-2-hydroxypropoxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (9CI) (CA INDEX NAME)

39

PAGE 1-A

RETABLE			
Referenced Author	Year VOL PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)	(RWK)	File

```
Du Pont
                      |1995 |
                                 1
                                       IUS 5378790 A
                                                            | HCAPLUS
Honeywell Int Inc
                      12002 I
                                 - 1
                                       IUS 6495479 B1
                                                            IHCAPLUS
                      12000 I
                                       IUS 6107357 A
                                                            IHCAPLUS
                                 - 1
Lq Chem Investment Ltd |2001 |
                                 - 1
                                        US 20010055891 A1 | HCAPLUS
                      11987 I
                                        IUS 4652467 A
Us Energy
                                 - 1
                                                            IHCAPLUS
```

L71 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2004:1154745 HCAPLUS Full-text

DN 142:105484

TI Star-shaped polymer and production of nano-porous low dielectric polymer composite film using the same

IN Ree, Moonhor; Oh, Weontae; Hwang, Yongtaek;

Lee, Byeongdu

PA Postech Foundation, 3. Korea

SO PCT Int. Appl., 28 pp.

CODEN: PIXXD2 DT Patent

LA English

FAN.CNT 1

	PATENT NO.			KIN	KIND DATE		APPLICATION NO.				DATE							
PI	WO	2004	1134	3407 3407		A1 20041229 A9 20060330		WO 2004-KR316			20040217 <							
	,,,	W:						AU,		BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KΡ,	KΖ,	LC,	LK,
			LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	ΜX,	ΜZ,	NA,	NI,	NO,
			ΝZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	TJ,
								UA,										
		RW:	BW,	GH,	GM,	KΕ,	LS,	MW,	ΜZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,
			BY,	KG,	KΖ,	MD,	RU,	TJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,
								HU,										
			TR,	BF,	ΒJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD, TG
	KR	2005	0008	31		A		2005	0106		KR 2	003-	4138	4		21	0030	625 <
	DE	1120	0400	1135		T5		2006	0524		DE 2	004-	1120	0400	1135	21	0040	217 <
	JP	2007	5205	75		T		2007	0726		JP 2	006-	5153	37		21	0040	217 <
	US	2006	0142	504		A1		2006	0629	1	US 2	005-	5619	74		21	0051	222 <
PRAI	KR	2003	-413	84		A		2003			-							
	WO	2004	-KR3	16		W		2004	0217	<-	-							

AB A star-shaped polymer having an alkoxy silane end group and containing an ether group at the center thereof is useful as a pore introducer to obtain a low dielec. silicate polymer film having nano-pores distributed regularly and evenly. The star-shaped polymer is prepared by comprising conducting a ring open polymerization of a cyclic monomer and a polyhydric alc., and reacting the resulting polymer with an alkoxy silane compound

IT 816457-20-2P 816457-23-5P

RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(star-shaped polymer and production of nano-porous low dielec. polymer composite film using the same)

RN 816457-20-2 HCAPLUS

PAGE 1-B

$$-CH_{2} - \begin{bmatrix} O & O & O \\ -CH_{2} & O \end{bmatrix} = \begin{bmatrix} O & O \\ -CH_{2} & O \end{bmatrix} = \begin{bmatrix} O & O \\ -CH_{2} & O \end{bmatrix} = \begin{bmatrix} O & O \\ -CH_{2} & O \end{bmatrix}$$

RN 816457-23-5 HCAPLUS

CN

Poly[oxy(1-oxo-1,6-hexanediyl)], α-hydro-ω-[[[[3-(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with 2,2'-[oxybis(methylene)]bis[2-(hydroxymethyl)-1,3-propanediol] (6:1) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	(RPY)	(RVL)	(RPG)	İ	eferenced Work (RWK)	Referenced File
Jsr Ltd	12002		1		2002167438 A	HCAPLUS
Nippon Zeon Co	11994	1	1	JJP	06-271772 A	HCAPLUS
Shin-Etsu Chemical Indu	1 2002	1	I	JJP	2002268227 A	HCAPLUS
Showa Denko Co Ltd	11996	1	1	JJP	08-143818 A	HCAPLUS
Teijin Ltd	11992	1	1	IJP	04-339833 A	IHCAPLUS

=> d 172 bib abs hitstr retable tot

L72 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2005:428634 HCAPLUS Full-text

142:490130 DN

Coating compositions with good hot water and heat moisture resistance for optical fibers

IN Oshio, Atsushi; Saito, Osamu

PA Dainippon Ink and Chemicals, Inc., Japan

SO Jpn. Kokai Tokkyo Koho, 26 pp. CODEN: JKXXAF

DT Patent LA Japanese

FAN.CNT 1

KIND DATE APPLICATION NO. PATENT NO. DATE PI JP 2005128304 PRAI JP 2003-364640 A 20050519 JP 2003-364640 20031024 20031024 GT

$$(\text{Rlo})_{\,n}\,(\text{R}^2)_{\,3?n}\text{Si}\,(\text{CH}_2)_{\,0}\,\overset{\circ}{\underset{N}{\text{N}}}\underset{\text{N}}{\overset{\circ}{\underset{N}{\text{CH}_2}}}\underset{p\text{Si}\,(\text{OR}^1)_{\,n}\,(\text{R}^2)_{\,3?n}}{\overset{\circ}{\underset{(\text{CH}_2)_{\,q}\text{Si}\,(\text{OR}^1)_{\,n}\,(\text{R}^2)_{\,3?n}}}$$

The compnis. comprise (A) radically polymerizable compds., (B) photopolymn. catalysts, (C) alkoxysilyl compds. containing (cl) I (R1, R2 = C1-5 alkyl; n = 2, 3; o, p, q = 1-10), (c2) alkoxysilyl compds. having ≥2 alkoxysilyl groups and no radically polymerizable unsatd. double bonds prepared by reaction of

43

(d1) compds. (mol. weight 50-1200) having 2-10 groups chosen from OH, amino, and mercapto groups and (d2) O:C:N(CH2)mSi(OR1)nR23- n (R1, R2 = C1-5 alkyl; m = 1-10; n = 2, 3), and (c3) alkoxysilyl compds. having ≥ 2 alkoxysilyl groups and no radically polymerizable unsatd. double bonds prepared by reaction of d1, (d3) polyisocyanates, and (d4) X(CH2)mSi(OR1)nR23-n (R1, R2 = C1-5 alkyl; X = mercapto, amino; m = 1-10; n = 2, 3). The compns. show improved adhesion to glass plates, and are useful as primary coatings for optical fibers with high mech, strength.

IT 851852-18-1

RL: MOA (Modifier or additive use); TEM (Technical or engineered material use); USES (Uses)

(coating compns. with good hot water and heat moisture resistance for covering optical fibers)
851852-18-1 HCAPUDS

RN 85

CN Poly[oxy(methyl-1,2-ethanediyl)], α-hydro-ω-[[[[3-(triethoxysilyl)propyl]amino]carbonyl]oxy]-, ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) (9CI) (CA INDEX NAME)

PAGE 1-B

$$\begin{array}{c|c} - (C_3H_6) & \hline & 0 & \\ \hline & n & \\ \hline & - (C_3H_6) & \hline & n \\ \hline & - (C_3H_6) & \hline & 0 \\ \hline &$$

- L72 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2005:363784 HCAPLUS Full-text
- DN 143:60335
- TI Telechelic and star-shaped poly(ε-caprolactone) functionalized
- with triethoxysilyl groups new biodegradable coatings and adhesives
- AU Kricheldorf, Hans R.; Hachmann-Thiessen, Heiko
- CS Institut fuer Technische und Makromolekulare Chemie, Hamburg, D-20146, Germany
- SO Macromolecular Chemistry and Physics (2005), 206(7), 758-766 CODEN: MCHPES; ISSN: 1022-1352
- PB Wiley-VCH Verlag GmbH & Co. KGaA
- DT Journal
- LA English

AB Monofunctional poly(ECL) having one CH2OH and one CO2CH3 endgroup was prepared by SnOct2+MeOH-initiated polymms. of ECL at 80 °C. The CH2OH endgroups were reacted with 3-isocynantopropyl triethoxysilane (IPTES). In this way, poly(ECL) having one CO2CH3 and one TES endgroup was obtained. Poly(ECL) having two CH2OH endgroups were prepared by SnOct2 and Tetra EC or 1.4-butanediol as coinitiators. The mol. weight distribution significantly broadened when the polymerization temperature increased from 80 to 120 °C. The OH endgroups were quant. functionalized by addition of IPTES. Star-shaped poly(ECL)s having three or four OH endgroups were prepared with 1.1.1-tris(hydroxymethyl)propane or pentaerythritol as coinitiators. All endgroups were modified with IPTES. The lengths of the poly(ECL) segments were varied via the monomer/coinitiator ratio. All functionalized oligomers were characterized by 1H NMR spectroscopy and NALDI-TOF mass spectrometry. Preliminary studies of film formation and addesive properties were performed.

IT 853879-43-3P 853879-44-4P 853904-54-8P 853904-58-2P

RL: SPN (Synthetic preparation); PREP (Preparation)

(telechelic and star-shaped poly(x-caprolactone) functionalized with triethoxysilyl groups with potential use as biodegradable coatings and adhesives)

RN 853879-43-3 HCAPLUS

CN Poly[oxy(1-oxo-1,6-hexanediyl)], α -hydro- ω -[[[[3-

(triethoxysily1)propy1]amino]carbony1]oxy]-, ester with

2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) (9CI) (CA INDEX NAME)

PAGE 1-B

- RN 853879-44-4 HCAPLUS
- CN Poly[oxy(1-oxo-1,6-hexanediyl)], α-hydro-Θ-[[[[3-(triethoxysilyl)propyl]amino]carbonyl]oxyl, estet with 2,2-bis(hydroxymethyl)-1,3-propanediol (4:1) (9CI) (CA INDEX NAME)

PAGE 1-B

RN 853904-54-8 HCAPLUS

CN 2-Oxepanone, homopolymer, ester with 2-ethyl-2-(hydroxymethyl)-1,3propanediol (3:1), tris[[3-(triethoxysilyl)propyl]carbamate] (9CI) (CA INDEX NAME)

CM 1

CRN 140236-86-8

CMF C10 H23 N O5 Si

CM 2

CRN 77-99-6 CMF C6 H14 O3

CMF C6 H14 O

CM 3

```
CRN 24980-41-4

CMF (C6 H10 02)×

CCI PMS

CM 4

CRN 502-44-3

CMF C6 H10 02
```


RN 853904-58-2 HCAPLUS
CN 2-Oxepanone, homopolymer, ester with 2,2-bis(hydroxymethyl)-1,3propanediol (4:1), tetrakis[[3-(triethoxysilyl)propyl]carbamate] (9CI)
 (CA INDEX NAME)
CM 1

CRN 140236-86-8 CMF C10 H23 N O5 Si

CM 2

CRN 115-77-5 CMF C5 H12 O4

CM 3

CRN 24980-41-4 CMF (C6 H10 O2)x CCI PMS

CM 4

CRN 502-44-3

CMF C6 H10 O2

RETABLE

RETABLE					
Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
	=+====+	+	-====	+=========	+=======
Amann, H	1972	- 1		DE 056729 R	l
Aoi, K	[2002]	203	1018	Macromol Chem Phys	HCAPLUS
Arcana, M	12002	51 I	854	Polym Int	
Bero, M	1999	200	911	Macromol Chem Phys	HCAPLUS
Critehfield, F	1970	- 1		FR 2026274	HCAPLUS
Kowalski, A	1998	19 I	567	Macromol Rapid Commu	HCAPLUS
Kowalski, A	[2000]	33	7359	Macromolecules	HCAPLUS
Kricheldorf, H	[2001]	2 1	1110	Biomacromolecules	HCAPLUS
Kricheldorf, H	12002	3 i	691	Biomacromolecules	HCAPLUS
Kricheldorf, H	[1999].	A36 i	793	J Macromol Sci, Pure	i
Kricheldorf, H	[1998]	36 i	1373	J Polym Sci, Part A:	HCAPLUS
Kricheldorf, H	12002 1	40 i	1947	J Polym Sci, Part A:	
Kricheldorf, H	2001		364		HCAPLUS
Kricheldorf, H	1998		273		HCAPLUS
Kricheldorf, H	1998		283		HCAPLUS
Kricheldorf, H	11999				HCAPLUS
Kricheldorf, H	11999		1183		HCAPLUS
Kricheldorf, H	2001				HCAPLUS
Kricheldorf, H	2001		2962		l
Kricheldorf, H	12002				HCAPLUS
Kricheldorf, H	11999			Macromol Rapid Commu	
Kricheldorf, H	11984				HCAPLUS
Kricheldorf, H	11988				HCAPLUS
Kricheldorf, H	11991				HCAPLUS
Kricheldorf, H	11991				HCAPLUS
Kricheldorf, H	11996		8689		HCAPLUS
Kricheldorf, H	11998				HCAPLUS
Kricheldorf, H	11998				
					HCAPLUS
Kricheldorf, H	2000				HCAPLUS
Kricheldorf, H	2001				HCAPLUS
Kricheldorf, H	1990			Makromol Chem, Macro	
Kricheldorf, H	12000		3957		HCAPLUS
Majerska, K	12000			Macromol Rapid Commu	
Matsuda, T	12000				HCAPLUS
Messori, M	12003				HCAPLUS
Mizutani, M	12002				HCAPLUS
Moller, M	2001			J Polym Sci, Part A:	
Penczek, S	1999			Polym Mater Sci Eng	
Rafler, G	1992				HCAPLUS
Sandner, H	2001				
Storey, R	[2002]			J Polym Sci, Part A:	
Storey, R	[2002]		1504		HCAPLUS
Storey, R	1996	37 I	626	Polym Prepr (Am Chem	HCAPLUS
Tian, O	1996				l
Turunen, M	[2002]	51 I			HCAPLUS
Ydius, J	[2003]	204	171	Macromol Chem Phys	I
Young, S	[2002]	43 I	6101	Polymer	HCAPLUS

L72 ANSWER 3 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN

KIND

- AN 2005:281679 HCAPLUS Full-text
- DN 142:356293
- TI Environmentally responsive polymeric system for biomedical applications
- IN Cohn, Daniel; Sosnik, Alejandro
 PA Yissum Research Development Company of the Hebrew University of Jerusalem,
 Israel
- SO U.S. Pat. Appl. Publ., 19 pp.
- CODEN: USXXCO
- DT Patent
- LA English
- FAN.CNT 1 PATENT NO.

PI	US	20050069573	A1	20050331	US 2004-845476	20040512
PRAI	ΙL	2003-155866	A	20030512		

AB Title environmentally responsive polymeric system comprises a siliconcontaining reactive groups which undergo a hydrolysis-condensation reaction at

a predetd. body site and thereby change rheol. and mech. properties of the polymeric system. The polymeric system is useful as a sealant, as a matrix for drug delivery, in the prevention of post-surgical adhesions, and in gene therapy. Thus, 20.2 g polycaprolactone and 1.9 g 3-

DATE APPLICATION NO. DATE

isocyanatopropyltriethoxysilane were reacted at 80° for 1 h to give a ethoxysily1-terminated polycaprolactone, which was hydrolysis-condensated to give a test piece with apparent modulus 10.7 MPa.

- IT 848841-96-3DP, hydrolyzed
 - RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(preparation of environmentally responsive polymeric systems for biomedical applications)

- RN 848841-96-3 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α -hydro- ω -[[[[3-

(triethoxysily1)propyl]amino]carbonyl]oxy]-, ether with

2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) (9CI) (CA INDEX NAME)

$$\begin{array}{c} \text{OEt} \\ \text{EtO-} \\ \text{Si-} \\ \text{(CH2)} \\ \text{3-NH-C-O-} \\ \text{CH2-CH2-O-} \\ \text{n} \end{array} \\ \text{CH2-CH2-O-} \\ \text{CH2-CH$$

PAGE 1-A

```
=> d his
     (FILE 'HOME' ENTERED AT 07:51:26 ON 05 AUG 2008)
                SET COST OFF
     FILE 'HCAPLUS' ENTERED AT 07:51:40 ON 05 AUG 2008
              1 S US20060014845/PN OR (US2005-530815# OR WO2004-KR2104 OR KR200
                E POSTECH/CO
L2
           2002 S E3-E12/CO.PA.CS
                E E7+ALL
                E REE/AU
L3
            281 S E64, E65, E68-E70
                E MOONHOR/AU
                E MOON HOR/AU
                E MOON H/AU
L4
             46 S E3, E17
                E OH/AU
                E OH W
                E OH W/AU
L5
             77 S E3-E13
                E OH WEO/AU
L6
             23 S E9, E11
                E OH NAME/AU
             11 S E4-E7
                E WEON/AU
                E WEONTAE/AU
                E HWANG/AU
L8
              3 S E3
                E HWANG Y/AU
L9
             65 S E3, E19, E20
                E HWANG YONG/AU
             16 S E3.E54.E55
L10
                E HWANG YONGTAEK/AU
L11
             16 S E3
                E HWANG NAME/AU
L12
             14 S E4,E5
                E YONG/AU
                E YONG T/AU
L13
              7 S E3
                E YONG TAEK/AU
                F YONG NAME/AU
                E YONGTAEK/AU
                E LEE/AU
L14
             41 S E3
                E LEE B/AU
L15
           1826 S E3-E44
                E LEE BYEONG/AU
L16
             12 S E2, E22
                E LEE BYEONGDU/AU
L17
             80 S E3
                E LEE NAME/AU
```

L18

L19

307 S E4-E11 E BYEONG/AU E BYEONGDU/AU

1 S L1 AND L2-L18 SEL RN

```
FILE 'REGISTRY' ENTERED AT 07:57:56 ON 05 AUG 2008
1.20
            11 S E1-E11
L21
             8 S L20 AND PMS/CI AND SI/ELS
L22
                STR
L23
                SCR 2043
L24
             50 S L22 AND L23
L25
           930 S L22 AND L23 FUL
                SAV TEMP L25 WINKLER530A/A
L26
                STR L22
L27
                STR L22
L28
                STR L27
L29
            50 S (L26 OR L27 OR L28) SAM SUB=L25
L30
            864 S (L26 OR L27 OR L28) FUL SUB=L25
                SAV TEMP L30 WINKLER530B/A
L31
              0 S L30 AND OCOCOC/ES
L32
           120 S L30 AND (OC2 OR OC3 OR OC4 OR OC5)/ES
L33
            12 S L30 AND OC6/ES
L34
             4 S L33 AND (C6H14O3 OR C5H12O4 OR C12H26O5 OR C10H22O7)
L35
             16 S L30 AND (126-58-9 OR 23235-61-2 OR 115-77-5 OR 77-99-6)/CRN
L36
            12 S L35 NOT L34
L37
             0 S L30 AND C3H6O3
L38
            21 S L30 AND (C3H5NO OR C4H7NO OR C5H9NO OR C6H11NO)
L39
            23 S L30 AND (NC3 OR NC4 OR NC5 OR NC6)/ES
            112 S L30 AND (C3H4O2 OR C4H6O2 OR C5H8O2 OR C6H1OO2)
L40
             22 S L40 AND 1/NC
L41
                SEL RN 1-5 8 9 18 20-22
1.42
             11 S L41 NOT E12-E22
L43
             15 S L21.L34.L42
L44
               STR
L45
             1 S L44 SAM SUB=L30
             59 S L44 FUL SUB=L30
L46
                SAV TEMP L46 WINKLER530C/A
L47
             44 S L46 NOT L43
L48
             1 S L47 AND C7H18O3SI NOT NC4-C6/ES
L49
             3 S L47 AND (C2H4O OR C3H6O) AND 1/NC
L50
             19 S L43, L48, L49
                SAV TEMP L50 WINKLER530D/A
     FILE 'HCAPLUS' ENTERED AT 08:44:43 ON 05 AUG 2008
L51
            11 S L50
L52
             6 S L51 AND L1-L19
L53
             1 S L51 AND PY<=2004 NOT P/DT
L54
             1 S L51 AND PY<=2003 NOT P/DT
L55
             5 S L51 AND (PD<=20040820 OR PRD<=20040820 OR AD<=20040820) AND P
L56
             4 S L51 AND (PD<=20030821 OR PRD<=20030821 OR AD<=20030821) AND P
L57
             10 S L52-L56
             1 S L51 NOT L57
L58
L59
             10 S L51-L58 NOT L1
                SEL RN
     FILE 'REGISTRY' ENTERED AT 08:47:27 ON 05 AUG 2008
L60
            104 S E23-E126
L61
             25 S L60 AND L25
1.62
             12 S L61 NOT L50
     FILE 'REGISTRY' ENTERED AT 08:48:40 ON 05 AUG 2008
    FILE 'HCAPLUS' ENTERED AT 08:49:02 ON 05 AUG 2008
```

FILE 'REGISTRY' ENTERED AT 08:51:09 ON 05 AUG 2008

	FILE	'REGISTRY' ENTERED AT 08:51:22 ON 05 AUG 2008
L63		17 S L50 NOT (246255-20-9 OR 335087-97-3)
L64		4 S L50 NOT L43
L65		3 S L64 NOT "(C3H6O)N(C3H6O)N(C3H6O)NC25H56N4O7SI"/MF
L66		17 S L63,L65
		SAV TEMP L66 WINKLER530E/A

	FILE 'HCAPL	JS' ENTERED AT 08:53:01 ON 05 AUG 2008
L67	9	S L66
L68	6	S L67 AND L1-L19
L69	0 :	S L68 AND (PY<=2004 OR PY<=2003) NOT P/DT
L70	2 :	S L68 AND (PD<=20040820 OR PRD<=20040820 OR AD<=20040820 OR PD<
L71	6	S L68,L70
L72	3 :	S L67 NOT L71

FILE 'REGISTRY' ENTERED AT 08:54:37 ON 05 AUG 2008

FILE 'HCAPLUS' ENTERED AT 08:54:54 ON 05 AUG 2008

=>