## Analysis

| 1        | Real Numbers         | <b>2</b> |
|----------|----------------------|----------|
|          | 1.1 Fields           | 2        |
|          | 1.2 Ordered Fields   | 5        |
|          | 1.3 The Real Field   | 6        |
| <b>2</b> | Basic Topology       | 7        |
|          | 2.1 Metric Spaces    | 7        |
|          |                      | 8        |
| 3        | Sequences and Series | 9        |
| 4        | Continuity           | 11       |
| 5        | Differentiation      | 12       |
| 6        | Integration          | 13       |

#### Real Numbers

#### 1.1 Fields

**Definition 1.1.** A nonempty set F and two operations + and  $\cdot$  form a **field** if the following axioms  $(A \ 1) - (A \ 5)$ ,  $(M \ 1) - (M \ 5)$  and (D) are satisfied.

- (A 1)  $x + y \in F$  for any  $x, y \in F$ .
- (A 2) x + y = y + x for any  $x, y \in F$ .
- (A 3) (x + y) + z = x + (y + z) for any  $x, y, z \in F$ .
- (A 4) There is an element  $0 \in F$  such that x + 0 = x for any  $x \in F$ .
- (A 5) For each  $x \in F$  there is an element -x in F such that x + (-x) = 0.
- (M 1)  $x \cdot y \in F$  for any  $x, y \in F$ .
- (M 1)  $x \cdot y = y \cdot x$  for any  $x, y \in F$ .
- (M 2)  $(x \cdot y) \cdot z = x \cdot (y \cdot z)$  for any  $x, y, z \in F$ .
- (M 3) There is an element  $1 \in F \setminus \{0\}$  such that  $x \cdot 1 = x$  for any  $x \in F$ .
- (M 4) For each  $x \in F \setminus \{0\}$  there is an element  $x^{-1}$  in F such that  $x \cdot x^{-1} = 0$ .
  - (D)  $x \cdot (y+z) = x \cdot y + x \cdot z$  for any  $x, y, z \in F$ .

**Theorem 1.2.** Let F be a field. Then the following statements are true for any  $x, y, z \in F$ .

- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then y = 0.
- (c) If x + y = 0, then y = -x.
- (d) -(-x) = x.

*Proof.* Note that these statements are consequence of axioms (A 1) - (A 5).

(a) We have

$$y = 0 + y$$

$$= (-x + x) + y$$

$$= -x + (x + y)$$

$$= -x + (x + z)$$

$$= (-x + x) + z$$

$$= 0 + z$$

$$= z.$$

- (b) Since x + y = x = x + 0, we have y = 0 by (a).
- (c) Since x + y = 0 = x + (-x), we have y = -x by (a).
- (d) Since -x + x = 0, we have -(-x) = x by (c).

**Theorem 1.3.** Let F be a field. Then the following statements are true for any  $x \in F \setminus \{0\}$  and  $y, z \in F$ .

- (a) If  $x \cdot y = x \cdot z$ , then x = y.
- (b) If  $x \cdot y = x$ , then y = 1.
- (c) If  $x \cdot y = 1$ , then  $y = x^{-1}$ .
- (d)  $(x^{-1})^{-1} = x$ .

*Proof.* Note that these statements are consequence of axioms (M 1) - (M 5).

(a) We have

$$y = 1 \cdot y$$

$$= (x^{-1} \cdot x) \cdot y$$

$$= x^{-1} \cdot (x \cdot y)$$

$$= x^{-1} \cdot (x \cdot z)$$

$$= (x^{-1} \cdot x) \cdot z$$

$$= 1 \cdot z$$

$$= z.$$

- (b) Since  $x \cdot y = x = x \cdot 1$ , we have y = 1 by (a).
- (c) Since  $x \cdot y = 1 = x \cdot x^{-1}$ , we have  $y = x^{-1}$  by (a).
- (d) Since  $x^{-1} + x = 1$ , we have  $(x^{-1})^{-1} = x$  by (c).

**Theorem 1.4.** Let F be a field. Then the following statements are true for any  $x, y \in F$ .

- (a)  $0 \cdot x = 0$ .
- (b)  $(-x) \cdot y = -(x \cdot y) = x \cdot (-y)$ .

(c)  $(-x) \cdot (-y) = x \cdot y$ .

Proof.

(a) We have

$$0 \cdot x + 0 \cdot x = (0+0) \cdot x = 0 \cdot x,$$

implying  $0 \cdot x = 0$ .

(b) Since

$$(-x) \cdot y + x \cdot y = (-x + x) \cdot y = 0 \cdot y = 0,$$

we have  $(-x) \cdot y = -(x \cdot y)$ . One can prove  $x \cdot (-y) = -(x \cdot y)$  similarly.

(c) We have

$$(-x) \cdot (-y) = -(x \cdot (-y)) = -(-(x \cdot y)) = x \cdot y$$

by applying (b) twice.

#### 1.2 Ordered Fields

**Definition 1.5.** An **ordered field** is a field on which relation < is defined such that the following axioms (O 1) – (O 4) hold for any  $x, y, z \in F$ .

- (O 1) One and only one of the statements x = y, x < y, y < x is true.
- (O 2) If x < y and y < z, then x < z.
- (O 3) If x < y, then x + z < y + z.
- (O 4) If 0 < x and 0 < y, then  $0 < x \cdot y$ .

**Definition 1.6.** Let F be an ordered field. The relations >,  $\leq$  and  $\geq$  are defined as follows for any  $x, y \in F$ .

$$x > y \Leftrightarrow y < x$$
  
 $x \le y \Leftrightarrow x < y \text{ or } x = y$   
 $x \ge y \Leftrightarrow x > y \text{ or } x = y$ .

**Definition 1.7.** Let F be an ordered field and let  $S \subseteq F$ .

- An **upper bound** of S is an element x in F such that  $x \ge y$  for any  $y \in S$ . We say that S is **bounded above** if S has an upper bound.
- A **lower bound** of S is an element x in F such that  $x \leq y$  for any  $y \in S$ . We say that S is **bounded below** if S has a lower bound.

**Definition 1.8.** Let F be an ordered field and let  $S \subseteq F$ .

- An element of S is called the **maximum** of S, denoted by  $\max(S)$ , if it is an upper bound of S.
- An element of S is called the **minimum** of S, denoted by  $\min(S)$ , if it is a lower bound of S.
- The minimum of the set of upper bounds of S is called the **supremum** of S, denoted by  $\sup(S)$ .
- The maximum of the set of lower bounds of S is called the **infimum** of S, denoted by  $\inf(S)$ .

#### 1.3 The Real Field

**Definition 1.9.**  $\mathbb{R}$  is an ordered field such that every nonempty subset S of  $\mathbb{R}$  that is bounded above has a supremum. The elements of  $\mathbb{R}$  are called the **real numbers**.

Theorem 1.10 (Archimedean Property). For any  $x, y \in \mathbb{R}$  with x > 0, there is a positive integer n such that

$$n \cdot x > y$$
.

*Proof.* Let

 $S = \{nx : n \text{ is a positive integer}\}.$ 

Suppose that y is an upper bound of S. It follows that S has a supremum z. Note that z-x is not an upper bound of S since z-x < z. Thus, z-x < mx for some positive integer m, implying z < (m+1)x, contradiction to the fact that z is an upper bound of S. Hence, y is not an upper bound of S, completing the proof.

## **Basic Topology**

#### 2.1 Metric Spaces

**Definition 2.1.** A set X with a function  $d: X \times X \to \mathbb{R}$  is a **metric space** if the following statements hold for any  $x, y, z \in X$ .

- (a)  $d(x, y) \ge 0$ .
- (b) d(x,y) = 0 if and only if x = y.
- (c) d(x, y) = d(y, x).
- (d)  $d(x,y) \le d(x,z) + d(z,y)$ .

**Definition 2.2.** Let (X, d) be a metric space. Let r > 0 be a real number and let  $x_0 \in X$ . The **open ball** of radius r centered at  $x_0$ , denoted by  $B_r(x_0)$ , is defined by

$$B_r(x_0) = \{ x \in X : d(x, x_0) < r \}.$$

**Definition 2.3.** Let (X, d) be a metric space and let  $S \subseteq X$ .

- S is open if for any  $x \in S$ , there is a real number r > 0 such that  $B_r(x) \subseteq S$ .
- S is **closed** if  $X \setminus S$  is open.

**Theorem 2.4.** Let (X, d) be a metric space.

- (a) X and  $\varnothing$  are open.
- (b) If  $S_1, S_2$  are open subsets of X, then  $S_1 \cap S_2$  is open.
- (c) If  $\{S_i : i \in I\}$  is a collection of open subsets of X, then

$$\bigcup_{i \in I} S_i$$

is open.

#### 2.2 Compact Sets

**Definition 2.5.** Let (X, d) be a metric space and let  $S \subseteq X$ . An **open cover** of S is a collection  $\{R_i : i \in I\}$  of open subsets of X such that

$$S \subseteq \bigcup_{i \in I} R_i.$$

**Definition 2.6.** Let (X,d) be a metric space and let  $S \subseteq X$ . We say that S is **compact** if for any open cover  $\{R_i : i \in I\}$  of S there exist finitely many indices  $i_1, \ldots, i_n \in I$  such that

$$S \subseteq \bigcup_{k=1}^{n} R_{i_k}.$$

## Sequences and Series

**Definition 3.1.** Let (X, d) be a metric space. Let  $\{x_n\}$  be a sequence in X. We say that  $\{x_n\}$  converges to a point  $x \in X$ , denoted by

$$\lim_{n \to \infty} x_n = x,$$

if for any real number  $\epsilon > 0$  there is a positive integer N such that  $n \geq N$  implies  $d(x_n, x) < \epsilon$ .

- We say that  $\{x_n\}$  is **convergent** if it converges to some point in X.
- We say that  $\{x_n\}$  is **divergent** if it is not convergent.

**Theorem 3.2.** Let  $\{x_n\}$  be a sequence in a metric space (X, d). If  $\{x_n\}$  converges to both  $x \in X$  and  $x' \in X$ , then x = x'.

*Proof.* For any  $\epsilon > 0$ , there exists a positive integer N such that

$$d(x_n, x) < \frac{\epsilon}{2}$$
 and  $d(x_n, x') < \frac{\epsilon}{2}$ 

for each  $n \geq N$ , implying

$$d(x, x') \le d(x_n, x) + d(x_n, x') < \epsilon.$$

**Theorem 3.3.** Let  $\{a_n\}$  and  $\{b_n\}$  be complex sequences with

$$\lim_{n \to \infty} a_n = L \quad \text{and} \quad \lim_{n \to \infty} b_n = M.$$

Let c be a complex number. Then the following statements are true.

(a) We have

$$\lim_{n \to \infty} (a_n + b_n) = L + M.$$

(b) We have

$$\lim_{n \to \infty} a_n b_n = LM.$$

(c) If  $L \neq 0$  and  $a_n \neq 0$  for each positive integer n, we have

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{L}.$$

Proof.

(a) For any  $\epsilon > 0$ , there exists a positive integer N such that for any  $n \geq N$ , we have

$$|a_n - L| < \frac{\epsilon}{2}$$
 and  $|b_n - M| < \frac{\epsilon}{2}$ ,

implying

$$|(a_n + b_n) - (L + M)| \le |a_n - L| + |b_n - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

(b) Let C > 0 such that  $|L| \le C$  and  $|b_n| \le C$  for any positive integer n. For any  $\epsilon > 0$ , there exists a positive integer N such that for any  $n \ge N$ , we have

$$|a_n - L| < \frac{\epsilon}{2C}$$
 and  $|b_n - M| < \frac{\epsilon}{2C}$ ,

implying

$$|a_n b_n - LM| = |(a_n - L)b_n + (b_n - M)L|$$

$$\leq |a_n - L||b_n| + |b_n - M||L|$$

$$< \frac{\epsilon(|b_n| + L)}{2C}$$

$$\leq \epsilon.$$

(c) For any  $\epsilon > 0$ , there exists a positive integer N such that for any  $n \geq N$ , we have

$$|a_n - L| < \frac{|L|^2 \epsilon}{2}$$
 and  $|a_n - L| < \frac{|L|}{2}$ .

It follows that

$$|a_n| = |L + (a_n - L)| \ge |L| - |a_n - L| > \frac{|L|}{2},$$

implying

$$\left| \frac{1}{a_n} - \frac{1}{L} \right| = \left| \frac{a_n - L}{a_n L} \right| = \frac{|a_n - L|}{|a_n||L|} < \frac{2|a_n - L|}{|L|^2} < \epsilon.$$

## Continuity

**Definition 4.1.** Let  $(X, d_X)$  and  $(Y, d_Y)$  be a metric spaces and let  $S \subseteq X$ . Let  $f: S \to Y$  be a map. Then we say that  $b \in Y$  is the **limit** of f at  $a \in X$ , denoted by

$$\lim_{x \to a} f(x) = b,$$

if for any  $\epsilon > 0$  there exists  $\delta > 0$  such that

$$d_Y(f(x), b) < \epsilon$$

holds for any  $x \in S$  with

$$0 < d_X(x, a) < \delta$$
.

## Differentiation

# Chapter 6 Integration