# Taming VAEs

Bayesian Methods in Machine Learning 2018

Anna Kuzina

Denis Prokopenko

Valentina Shumovskaia

# eta-VAE

Simple VAE if  $\beta = 1$ .

ELBO optimization with penalization

$$\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Helps models to obtain with a high degree of disentanglement in image datasets.

## GECO algorithm

ELBO with new constraints.

$$\mathcal{L}_{\lambda} = \mathbb{E}_{\rho(\mathbf{x})} \left[ \text{KL} \left[ q(\mathbf{z}|\mathbf{x}); \pi(\mathbf{z}) \right] \right] + \lambda^{T} \mathbb{E}_{\rho(\mathbf{x})q(\mathbf{z}|\mathbf{x})} \left[ \mathcal{C}(\mathbf{x}, g(\mathbf{z})) \right]$$

We use reconstruction error as a reconstruction constraint  $||x-g(x)||^2 - \kappa^2$ 

We train  $\lambda$  while in  $\beta$  — VAE it is a hyperparameter

## GECO algorithm

end

```
Result: Learned parameters \theta, \eta and Lagrange multipliers \lambda
Initialize t = 0;
Initialize \lambda = 1:
while is training do
      Read current data batch x;
      Sample from variational posterior \mathbf{z} \sim q(\mathbf{z}|\mathbf{x});
      Compute the batch average of the constraint \hat{C}^t \leftarrow \mathcal{C}(\mathbf{x}^t, g(\mathbf{z}^t));
      if t == 0 then
            Initialize the constraint moving average C_{ma}^0 \leftarrow \hat{C}^0;
      else
       C_{ma}^{t} \leftarrow \alpha C_{ma}^{t-1} + (1-\alpha)\hat{C}^{t};
     C^t \leftarrow \hat{C}^t + \text{StopGradient}(C^t_{ma} - \hat{C}^t);
     Compute gradients G_{\theta} \leftarrow \frac{\partial \mathcal{L}_{\lambda}}{\partial \theta} and G_{\eta} \leftarrow \frac{\partial \mathcal{L}_{\lambda}}{\partial \eta};
      Update parameters as \Delta_{\theta,\eta} \propto -G_{\theta,\eta} and Lagrange multiplier(s) \Delta_{\log(\lambda)} \propto C^t;
      t \leftarrow t + 1;
```



# Importance Weighted AE

#### **Original VAE:**

$$\log p(\mathbf{x}) = \log \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[ \frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] \ge \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[ \log \frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] = \mathcal{L}(\mathbf{x}).$$

#### IWAE improvement:

$$\mathcal{L}_k(\mathbf{x}) = \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[ \log \frac{1}{k} \sum_{i=1}^k \frac{p(\mathbf{x}, \mathbf{h}_i)}{q(\mathbf{h}_i|\mathbf{x})} \right].$$

#### Dependency on:

$$\log p(\mathbf{x}) \ge \mathcal{L}_{k+1} \ge \mathcal{L}_k.$$

VAE is a particular case of IWAE with k=1

# Importance Weighted AE

#### **IWAE** improvement:

$$\mathcal{L}_{k}(\mathbf{x}) = \mathbb{E}_{\mathbf{h}_{1},...,\mathbf{h}_{k} \sim q(\mathbf{h}|\mathbf{x})} \left[ \log \frac{1}{k} \sum_{i=1}^{k} \frac{p(\mathbf{x}, \mathbf{h}_{i})}{q(\mathbf{h}_{i}|\mathbf{x})} \right].$$

$$\nabla_{\theta} \mathcal{L}_{k}(\mathbf{x}) = \nabla_{\theta} \mathbb{E}_{\mathbf{h}_{1},...,\mathbf{h}_{k}} \left[ \log \frac{1}{k} \sum_{i=1}^{k} w_{i} \right] = \nabla_{\theta} \mathbb{E}_{\epsilon_{1},...,\epsilon_{k}} \left[ \log \frac{1}{k} \sum_{i=1}^{k} w(\mathbf{x}, \mathbf{h}(\mathbf{x}, \epsilon_{i}, \theta), \theta) \right]$$

$$= \mathbb{E}_{\epsilon_{1},...,\epsilon_{k}} \left[ \nabla_{\theta} \log \frac{1}{k} \sum_{i=1}^{k} w(\mathbf{x}, \mathbf{h}(\mathbf{x}, \epsilon_{i}, \theta), \theta) \right]$$

$$= \mathbb{E}_{\epsilon_{1},...,\epsilon_{k}} \left[ \sum_{i=1}^{k} \widetilde{w_{i}} \nabla_{\theta} \log w(\mathbf{x}, \mathbf{h}(\mathbf{x}, \epsilon_{i}, \theta), \theta) \right],$$

### IWAE & GECO

Loss function for GECO:

$$\mathcal{L} = \lambda \mathbb{E}_z \log p(x|z) + KL(q(z|x)||p(z))$$

$$\mathcal{L}_{IWAE} = \mathbb{E}_z \log \frac{p(x, z)}{q_{IW}(z|x)}$$
  $q_{IW}(z|x) = \frac{p(x, z)}{\sum_{i=1}^{K} \frac{p(x, z_i)}{q(z_i, x)}}$ 

$$\mathcal{L}_{GECO} = \lambda \log p(x|z) + KL(q_{IW}(z|x)||p(z)) = (\lambda - 1) \log p(x|z) + \mathcal{L}_{IWAE}$$

### Reconstruction comparison

**MNIST** 



### Generation comparison

**MNIST** 



# Numerical comparison

| Model        | Marginal KL | Reconstruction loss |
|--------------|-------------|---------------------|
| VAE          | 1.5813      | 55.8484             |
| $\beta$ -VAE | 10.5938     | 15.1434             |
| GECO         | 10.4975     | 14.6269             |
| GECO + IWAE  | 1.3640      | 12.9214             |

### Reconstruction comparison

CIFAR 10



### Numerical comparison

CIFAR 10

| Model        | Marginal KL | Reconstruction loss |
|--------------|-------------|---------------------|
| VAE          | 31.9662     | 77.6570             |
| $\beta$ -VAE | 59.4998     | 57.9653             |
| GECO         | 383.0849    | 11.4413             |

### Conclusions

- GECO is a good algorithm for VAEs training, showed itself better than simple VAE and  $\beta$ -VAE:
  - Good reconstructions,
  - Good generations
- GECO + IWAE algorithm:
  - Better reconstructions,
  - Worse generations;