Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 4 du mercredi 3 mars 2021

Exercice 1.

Montrer que l'adhérence \overline{E} d'un ensemble arbitraire $E\subset\mathbb{R}^n$ est l'ensemble fermé minimal contenant E.

Solution:

Soit $x \in \mathbb{R}^n$. Par définition, $x \in \overline{E}$ si $\forall \delta \in]0, +\infty[$, $B(x, \delta) \cap E \neq \emptyset$. Il en résulte que $E \subset \overline{E}$. Dans le cours, nous avons vu que \overline{E} est fermé.

Soit $F \subset \mathbb{R}^n$, fermé, tel que $F \supset E$. Prouvons que $\overline{E} \subset F$, i.e. que $\mathbb{R}^n \setminus F \subset \mathbb{R}^n \setminus \overline{E}$. Soit $x \in \mathbb{R}^n \setminus F$. Puisque $\mathbb{R}^n \setminus F$ est ouvert, il existe $\delta \in]0, +\infty[$ tel que $B(x, \delta) \subset \mathbb{R}^n \setminus F$; puisque $E \subset F$, $B(x, \delta) \subset \mathbb{R}^n \setminus E$. D'où $B(x, \delta) \cap E = \emptyset$ et $x \in \mathbb{R}^n \setminus \overline{E}$.

Exercice 2.

Considérons les sous-ensembles de \mathbb{R}^2 suivants :

$$\Omega_1 := \{ (x_1, x_2) \in \mathbb{R}^2 : 1 < x_1^2 + x_2^2 < 16 \}, \tag{1}$$

$$\varOmega_2 \coloneqq \big\{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 - x_2^2 = 1 \big\}, \tag{2}$$

$$\Omega_3 \coloneqq \bigg\{ (x_1, x_2) \in \left] 0, 1 \right[\times \mathbb{R} : \sin \frac{1}{x_1} < x_2 < 2 \bigg\}, \tag{3}$$

$$\Omega_4 := \{(x_1, x_2) \in]0, 1[\times \mathbb{R} : x_2 \in]1, 5[\text{ si } x_1 \in \mathbb{Q}; x_2 \in]0, 5[\text{ sinon} \},$$

$$\tag{4}$$

$$\varOmega_{5} \coloneqq \big\{ (x_{1}, x_{2}) \in \mathbb{R}^{2} : x_{1}^{2} + x_{2}^{2} < 1 \big\} \cup \big\{ (x_{1}, x_{2}) \in \mathbb{R}^{2} : (1 - x_{1})^{2} + (1 - x_{2})^{2} \leqslant 1 \big\}. \tag{5}$$

Ces ensembles sont-ils ouverts? Sont-ils fermés? Sont-ils bornés? Quel est leur bord? Justifiez vos réponses.

Solution:

Remarque préliminaire : les seuls sous-ensembles de \mathbb{R}^n à la fois ouverts et fermés sont \emptyset et \mathbb{R}^n .

1) L'ensemble Ω_1 est une couronne ouverte centrée à l'origine. Pour le montrer, considérons $x:=(x_1,x_2)\in\Omega_1$ et

$$\delta \coloneqq \frac{1}{2} \min \left\{ \sqrt{x_1^2 + x_2^2} - 1, 4 - \sqrt{x_1^2 + x_2^2} \right\}. \tag{6}$$

Alors

$$B_{\|\cdot\|_2}(\boldsymbol{x},\delta)\subset \varOmega_1. \tag{7}$$

Prouvons (7) en étudiant un quelconque $\boldsymbol{y} \in B_{\|\cdot\|_2}(\boldsymbol{x}, \delta)$. Par définition de δ , on a

$$\|\boldsymbol{x} - \boldsymbol{y}\|_{2} < \frac{1}{2}(\|\boldsymbol{x}\|_{2} - 1) \text{ et } \|\boldsymbol{x} - \boldsymbol{y}\|_{2} < \frac{1}{2}(4 - \|\boldsymbol{x}\|_{2}).$$
 (8)

Cela conduit à

$$\|\boldsymbol{y}\|_{2} \le \|\boldsymbol{x} - \boldsymbol{y}\|_{2} + \|\boldsymbol{x}\|_{2} < \frac{1}{2}(4 - \|\boldsymbol{x}\|_{2}) + \|\boldsymbol{x}\|_{2} = \frac{1}{2}(4 + \|\boldsymbol{x}\|_{2}) < 4$$
 (9)

 et

$$\left\| {\boldsymbol{y}} \right\|_2 \geqslant \left\| {\boldsymbol{x}} \right\|_2 - \left\| {\boldsymbol{x}} - {\boldsymbol{y}} \right\|_2 > \left\| {\boldsymbol{x}} \right\|_2 - \frac{1}{2} (\left\| {\boldsymbol{x}} \right\|_2 - 1) = \frac{1}{2} (1 + \left\| {\boldsymbol{x}} \right\|_2) > 1. \tag{10}$$

On a donc $\mathbf{y} \in \Omega_1$, ce qui prouve (7).

D'autre part, \varOmega_1 est borné car $\forall \boldsymbol{x} \in \varOmega_1, \, \|\boldsymbol{x}\|_2 \leqslant 4.$ Son bord est

$$\partial \Omega_1 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\} \cup \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 16\}. \tag{11}$$

Pour le prouver : si $x_1^2 + x_2^2 = 1$ et si $\delta > 0$, on vérifie aisément que $B_{\|\cdot\|_2}(\boldsymbol{x},\delta) \cap \Omega_1 \neq \emptyset$ et $B_{\|\cdot\|_2}(\boldsymbol{x},\delta) \cap \Omega_1^c \neq \emptyset$; de même si $x_1^2 + x_2^2 = 16$.

2) Soit $(x_1,x_2)\in \varOmega_2.$ On a

$$1 = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2) = y_1 y_2$$
 (12)

avec

$$y_1 \coloneqq x_1 - x_2, \quad y_2 \coloneqq x_1 + x_2.$$
 (13)

Or l'équation « $y_1y_2=1$ » décrit une hyperbole dans le système d'axe Oy_1y_2 .

Il s'agit d'un ensemble fermé. Pour le prouver, prouvons que son complémentaire dans \mathbb{R}^2 , i.e. $\Omega_2^c \coloneqq \{(x_1,x_2) \in \mathbb{R}^2 : x_1^2 - x_2^2 \neq 1\}$, est ouvert. Considérons un point $\mathbf{z} \coloneqq (z_1,z_2) \in \Omega_2^c$ et montrons qu'il existe $\delta > 0$ tel que $B_{\|\cdot\|_1}(\mathbf{z},\delta) \subset \Omega_2^c$ (notez la norme utilisée). Sans restriction de généralité \mathbf{z} supposons qu'il existe $\varepsilon > 0$ tel que $z_1^2 - z_2^2 - 1 = \varepsilon$. Soient $\delta \in]0, +\infty[$, et $\mathbf{w} \coloneqq (w_1, w_2) \in \mathbf{B}_{\|\cdot\|_1}(\mathbf{z},\delta)$. Alors \mathbf{w} s'écrit

$$\begin{cases} w_1 = z_1 + \delta_1, \\ w_2 = z_2 + \delta_2, \end{cases} \quad \text{avec} \quad |\delta_1| + |\delta_2| < \delta, \tag{14}$$

et vérifie

$$w_1^2 - w_2^2 - 1 = z_1^2 - z_2^2 - 1 + 2\delta_1 z_1 - 2\delta_2 z_2 + \delta_1^2 - \delta_2^2 \tag{15}$$

$$> \varepsilon - \left(2\delta \left(|z_1| + |z_2|\right) + 2\delta^2\right). \tag{16}$$

Ainsi, en choisissant $\delta \leqslant \min\{0.125\varepsilon/(|z_1|+|z_2|), \sqrt{0.125\varepsilon}\}$, alors

$$w_1^2 - w_2^2 - 1 > \frac{\varepsilon}{2} > 0. (17)$$

On en conclut que $B_{\|\cdot\|_1}(z,\delta)\subset\Omega_2^c$ et Ω_2^c est ouvert.

On vérifie sans difficulté que le bord de Ω_2 est Ω_2 lui-même et que Ω_2 n'est pas borné.

3) Ω_3 est un ensemble ouvert. Soit $\overline{x}:=(\overline{x}_1,\overline{x}_2)\in\Omega_3$. Cherchons $\delta_1>0$ et $\delta_2>0$ de sorte que $]\overline{x}_1-\delta_1,\overline{x}_1+\delta_1[\times]\overline{x}_2-\delta_2,\overline{x}_2+\delta_2[\subset\Omega_3$. Posons $\delta_2=(\overline{x}_2-\sin(\overline{x}_1^{-1}))/2>0$. Puisque la fonction $x\mapsto\sin(x^{-1})$ est continue en \overline{x}_1 , on a l'existence de $\delta_1>0$ tel que, pour tout $x_1>0$ vérifiant $|x_1-\overline{x}_1|<\delta_1$,

$$\left| \sin\left(\frac{1}{x_1}\right) - \sin\left(\frac{1}{\overline{x}_1}\right) \right| < \delta_2. \tag{18}$$

^{1.} La démarche est identique si on suppose $\varepsilon < 0$.

Finalement si $(x_1,x_2)\in]\overline{x}_1-\delta_1,\overline{x}_1+\delta_1[\times]\overline{x}_2-\delta_2,\overline{x}_2+\delta_2[$ alors

$$\sin\left(\frac{1}{x_1}\right) < \sin\left(\frac{1}{\overline{x}_1}\right) + \delta_2 = \frac{1}{2}\left(\sin\left(\frac{1}{\overline{x}_1}\right) + \overline{x}_2\right) = \overline{x}_2 - \delta_2 < x_2. \tag{19}$$

Il suffit maintenant de réduire δ_1 de sorte que $]\overline{x}_1 - \delta_1, \overline{x}_1 + \delta_1[\subset]0,1[$ et δ_2 de sorte que $: \overline{x}_2 + \delta_2 < 2$. Cela montre que $B_{\|\cdot\|_{\infty}}(\overline{x}, \min(\delta_1, \delta_2)) \subset \Omega_3$. Il est vivement conseillé d'agrémenter cette preuve d'un dessin.

L'ensemble Ω_3 est borné car, $\forall x \in \Omega_3$, $\|x\|_{\infty} \leqslant 3$. Le bord de Ω_3 est donné par

$$\begin{split} \partial \varOmega_3 \coloneqq \big\{ (x_1, \sin(x_1^{-1})) \in]0, 1] \times \mathbb{R} \big\} \\ & \quad \cup \big(\{0\} \times [-1, 2] \big) \cup \big([0, 1] \times \{2\} \big) \cup \big(\{1\} \times [\sin 1, 2] \big). \end{split} \tag{20}$$

Montrons seulement que $\{0\} \times [-1,1] \subset \partial \Omega_3$. En effet, $\forall (x_1,x_2) \in \{0\} \times [-1,1], \ \forall \delta \in]0, +\infty[, \ \exists \varepsilon \in]0, \delta[$ tel que $\sin(\varepsilon^{-1}) = -1$. Dans le cas $x_2 \in]-1, 1]$, on a $(\varepsilon,x_2) \in \Omega_3$ et $(\varepsilon,x_2) \in B_{\|\cdot\|_{\infty}}(\boldsymbol{x},\delta)$. Dans le cas $x_2 = -1, \ (\varepsilon,x_2+\epsilon) \in \Omega_3$ et $(\varepsilon,x_2+\epsilon) \in B_{\|\cdot\|_{\infty}}(\boldsymbol{x},\delta)$. D'autre part $B_{\|\cdot\|_{\infty}}(\boldsymbol{x},\delta) \cap \Omega_3^c \neq \emptyset$.

- 4) Ω_4 n'est ni ouvert, ni fermé. Soit $\delta \in]0, +\infty[$; considérons deux cas.
 - a) Soit $\boldsymbol{x} := (x_1, x_2) \in (]0, 1[\setminus \mathbb{Q}) \times]0, 1[: \boldsymbol{x} \in \Omega_4 \text{ et } B(\boldsymbol{x}, \delta) \cap \Omega_4^c \neq \emptyset.$ Ainsi $\boldsymbol{x} \in \partial \Omega_4$, ce qui montre que Ω_4 n'est pas ouvert.
 - b) Soit $\boldsymbol{x} := (x_1, x_2) \in (]0, 1[\cap \mathbb{Q}) \times]0, 1[: alors \boldsymbol{x} \notin \Omega_4 \text{ et } B(\boldsymbol{x}, \delta) \cap \Omega_4 \neq \emptyset$. Cela prouve que Ω_4^c n'est pas ouvert, donc Ω_4 n'est pas fermé.

 \varOmega_{4} est borné car, $\forall \boldsymbol{x}\in\varOmega_{4},\,\left\Vert \boldsymbol{x}\right\Vert _{\infty}\leqslant5.$ Enfin,

$$\partial \Omega_4 = (\{0,1\} \times [1,5]) \cup ([0,1] \times ([0,1] \cup \{5\})) \tag{21}$$

La seule contribution non triviale est prouver que $[0,1] \times [0,1] \subset \partial \Omega_4$. Soient $\boldsymbol{x} \in [0,1] \times [0,1]$ et $\delta > 0$: le disque $B(\boldsymbol{x},\delta)$ contient des points de Ω_4 et des points de Ω_4^c , ce qui conclut l'inclusion.

- 5) $\Omega_5 = C_1 \cup C_2$ avec
 - C_1 le disque ouvert centré en (0,0), de rayon 1, et
 - C_2 le disque fermé centré en (1,1) de rayon 1.

Il n'est ni ouvert ni fermé :

$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \in \partial \Omega_5 \setminus \Omega_5 \tag{22}$$

et

$$\left(1+\frac{1}{\sqrt{2}},1+\frac{1}{\sqrt{2}}\right)\notin \overset{\circ}{\varOmega}_{5}. \tag{23}$$

 \varOmega_5 est borné, car $\varOmega_5\subset B_{\|\cdot\|_2}\bigl((0,0),1+\sqrt{2}\bigr).$ Enfin,

$$\begin{split} \partial \varOmega_5 &= \left\{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1, x_1 x_2 \leqslant 0 \right\} \\ &\quad \cup \left\{ (x_1, x_2) \in [1, +\infty[\times \mathbb{R} : (1 - x_1)^2 + (1 - x_2)^2 = 1 \right\} \\ &\quad \cup \left\{ (x_1, x_2) \in \mathbb{R} \times [1, +\infty[: (1 - x_1)^2 + (1 - x_2)^2 = 1 \right\} \\ &\quad \cup \left\{ (x_1, x_2) \in] -\infty, 0 \right]^2 : x_1^2 + x_2^2 = 1 \right\}. \end{split}$$

Exercice 3.

Notons $E = \{(x, \sin 1/x) : x \in]0, +\infty[\}.$

- 1) Montrer que E est connexe par arcs.
- 2) Donner une description explicite de \overline{E} .
- 3) Montrer que \overline{E} n'est pas connexe par arcs.

Solution:

1) Montrons que E est connexe par arcs. Soient $\boldsymbol{a}=(a_1,a_2)\in E$ et $\boldsymbol{b}=(b_1,b_2)\in E$. l'application $\gamma:[0,1]\to E$ définie par

$$\gamma(t) = \left(a_1 + t(b_1 - a_1), \sin\frac{1}{a_1 + t(b_1 - a_1)}\right) \tag{25}$$

est un chemin de E d'origine \boldsymbol{a} et d'extrémité \boldsymbol{b} .

2) Montrons que $\overline{E} = E \cup A$ où $A := \{0\} \times [-1, 1]$. Pour cela, notons $F := E \cup A$ et montrons les deux inclusions.

 $F \subset \overline{E}$. Puisque $E \subset \overline{E}$ il suffit de montrer $A \subset \overline{E}$. Soit $(0,b) \in A$. La suite $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ définie par

$$\boldsymbol{x}_k = \left(\frac{1}{\arcsin b + 2(k+1)\pi}, \ b\right) \tag{26}$$

est une suite d'éléments de E qui converge vers (0,b). Pour le prouver, notons $\forall k \in \mathbb{N}$, $z_k := \arcsin b + 2(k+1)\pi$. La fonction arcsin étant définie de [-1,1] dans $[-\frac{\pi}{2},\frac{\pi}{2}]$, $z_k \geqslant \pi > 0$. De plus, $\sin z_k = b$ et $\lim_{k \to +\infty} z_k^{-1} = 0$. On en conclut que $(0,b) \in \overline{E}$ et donc que $F \subset \overline{E}$.

 $\overline{E} \subset F$. Soit $(c,d) \in \overline{E}$. Il existe une suite $(c_k,\sin(c_k^{-1}))_{k \in \mathbb{N}} \subset E$ qui converge vers (c,d), i.e.

$$\lim_{k \to +\infty} c_k = c \geqslant 0, \qquad \lim_{k \to +\infty} \sin \frac{1}{c_k} = d. \tag{27}$$

Par conséquent, ou bien c>0 et $d=\sin(c^{-1})$, ou bien c=0 et $d\in[-1,1]$; donc $(c,d)\in F$. Ceci prouve que $\overline{E}\subset F$.

Remarque. « $\lim_{k\to +\infty}\sin(c_k^{-1})=d$ » ne contredit pas le fait que $x\mapsto \sin(x^{-1})$ n'a pas de limite en 0.

3) Raisonnons par contradiction : supposons que \overline{E} est connexe par arcs. Il existe donc un chemin continu $\gamma:=(\gamma_1,\gamma_2):[0,1]\to\overline{E}$ d'origine $\gamma(0)=(0,1)$ et d'extrémité $\gamma(1)=(1,\sin 1)$. On remarque que pour tout $t\in[0,1]$ tel que $\gamma_1(t)>0$, on a nécessairement $\gamma_2(t)=\sin(\gamma_1(t)^{-1})$ car il y a un seul point dans \overline{E} d'abscisse $\gamma_1(t)$ si $\gamma_1(t)\in[0,1]$. Puisque $\gamma_1(1)=1>0$ et γ_1 continue, il existe $s\in[0,1]$ tel que, $\forall t\in[s,1], \gamma_1(t)>0$. On peut alors définir $\alpha:=\inf\{r\in[0,1]:\forall t\in[r,1],\gamma_1(t)>0\}$; bien sûr, $\alpha\geqslant 0$. Ainsi, sur l'intervalle $]\alpha,1]$ le chemin reste sur E et on a

$$\lim_{t \to \alpha^+} \gamma_1(t) = \gamma_1(\alpha) = 0, \tag{28}$$

ce qui amène

$$\lim_{t \to \alpha^+} \gamma_2(t) = \lim_{t \to \alpha^+} \sin \frac{1}{\gamma_1(t)}.$$
 (29)

Le membre de droite de (29) n'existe pas, or la continuité de γ_2 en α implique $\lim_{t\to\alpha^+}\gamma_2(t)=\gamma_2(\alpha)$. Ceci contredit l'hypothèse de départ : il n'existe pas de chemin continu d'origine (0,1) et d'extrémité $(1,\sin 1)$.