initialAnalysis.R

ketankokane 2019-04-07

```
# Introduction to Big Data
# Phase 3
# Data used:
      The data is from a census bureau database.
# This script file reads the data,
# visualizes the data by plotting histograms of each feature
# Finds and states outlier of every attribute
# Analyzing the dataset
# Read the data into a data frame
dataset = read.table("adult.data", header= TRUE, sep = ",")
# Print the feature names
colnames(dataset)
## [1] "age"
                         "workclass"
                                         "fnlwgt"
                                                           "education"
## [5] "education.num" "marital.status" "occupation"
                                                          "relationship"
                        "sex"
## [9] "race"
                                         "capital.gain"
                                                          "capital.loss"
## [13] "hours.per.week" "native.country" "prediction"
# Dimensions of the raw data
dim(dataset)
## [1] 32561
                15
# Attach the database to the R search path
attach(dataset)
# Printing details of the dataset
# Print the summary of the dataset
summary(dataset)
##
         age
                               workclass
                                                 fnlwgt
## Min.
         :17.00
                    Private
                                   :22696
                                             Min. : 12285
## 1st Qu.:28.00
                    Self-emp-not-inc: 2541
                                             1st Qu.: 117827
## Median :37.00
                    Local-gov
                                   : 2093
                                             Median: 178356
## Mean :38.58
                                             Mean : 189778
                                    : 1836
## 3rd Qu.:48.00
                    State-gov
                                   : 1298
                                             3rd Qu.: 237051
## Max. :90.00
                    {\tt Self-emp-inc}
                                    : 1116
                                             Max. :1484705
##
                    (Other)
                                    : 981
##
                         education.num
                                                        marital.status
            education
##
             :10501 Min. : 1.00
                                          Divorced
                                                               : 4443
    HS-grad
```

```
##
    Some-college: 7291
                         1st Qu.: 9.00
                                          Married-AF-spouse
##
    Bachelors : 5355
                         Median :10.00
                                          Married-civ-spouse
                                                               :14976
                         Mean :10.08
##
    Masters
                : 1723
                                          Married-spouse-absent: 418
                         3rd Qu.:12.00
                                          Never-married
##
                : 1382
                                                               :10683
    Assoc-voc
##
    11th
                : 1175
                         Max. :16.00
                                          Separated
                                                               : 1025
##
    (Other)
                : 5134
                                          Widowed
                                                               : 993
##
              occupation
                                    relationship
##
    Prof-specialty:4140
                            Husband
                                          :13193
##
    Craft-repair
                   :4099
                            Not-in-family: 8305
##
    Exec-managerial:4066
                            Other-relative: 981
##
    Adm-clerical
                   :3770
                            Own-child
                                         : 5068
##
    Sales
                   :3650
                            Unmarried
                                          : 3446
##
    Other-service :3295
                            Wife
                                          : 1568
##
    (Other)
                   :9541
##
                    race
                                    sex
                                                capital.gain
    Amer-Indian-Eskimo: 311
##
                                Female: 10771
                                               Min. :
##
    Asian-Pac-Islander: 1039
                                Male :21790
                                               1st Qu.:
##
    Black
                   : 3124
                                               Median :
##
    Other
                      : 271
                                               Mean : 1078
##
    White
                      :27816
                                               3rd Qu.:
##
                                               Max.
                                                      :99999
##
##
                                           native.country
    capital.loss
                    hours.per.week
                                                           prediction
                    Min. : 1.00
                                     United-States:29170
                                                            <=50K:24720
##
   Min. :
              0.0
                    1st Qu.:40.00
                                     Mexico
                                                  : 643
                                                           >50K : 7841
  1st Qu.:
              0.0
  Median :
              0.0
                    Median :40.00
                                                  : 583
## Mean
         : 87.3
                    Mean :40.44
                                     Philippines : 198
   3rd Qu.:
                    3rd Qu.:45.00
                                                  : 137
              0.0
                                     Germany
                    Max. :99.00
                                                  : 121
## Max. :4356.0
                                     Canada
                                    (Other)
##
                                                  : 1709
# Display internal structure of dataset, which tells what are the different values of every attribute a
#levels
str(dataset)
                   32561 obs. of 15 variables:
## 'data.frame':
                   : int 39 50 38 53 28 37 49 52 31 42 ...
## $ workclass
                   : Factor w/ 9 levels " ?"," Federal-gov",..: 8 7 5 5 5 5 5 7 5 5 ...
                   : int 77516 83311 215646 234721 338409 284582 160187 209642 45781 159449 ...
## $ fnlwgt
                   : Factor w/ 16 levels " 10th", " 11th", ...: 10 10 12 2 10 13 7 12 13 10 ...
## $ education
## $ education.num : int 13 13 9 7 13 14 5 9 14 13 ...
## $ marital.status: Factor w/ 7 levels " Divorced", " Married-AF-spouse",..: 5 3 1 3 3 3 4 3 5 3 ...
                 : Factor w/ 15 levels " ?"," Adm-clerical",..: 2 5 7 7 11 5 9 5 11 5 ...
   $ occupation
## $ relationship : Factor w/ 6 levels " Husband", "Not-in-family",..: 2 1 2 1 6 6 2 1 2 1 ...
## $ race
                   : Factor w/ 5 levels " Amer-Indian-Eskimo",..: 5 5 5 3 3 5 5 5 5 ...
                   : Factor w/ 2 levels " Female", " Male": 2 2 2 2 1 1 1 2 1 2 ...
## $ sex
   $ capital.gain : int 2174 0 0 0 0 0 0 14084 5178 ...
## $ capital.loss : int 00000000000...
  $ hours.per.week: int 40 13 40 40 40 40 16 45 50 40 ...
   $ native.country: Factor w/ 42 levels " ?"," Cambodia",..: 40 40 40 40 6 40 24 40 40 40 ...
                   : Factor w/ 2 levels " <=50K"," >50K": 1 1 1 1 1 1 2 2 2 ...
   $ prediction
#
# Visualization
```

```
# Our dataset includes people ranging from 17-90 years of age which seems appropriate in census dataset
summary(age)
      Min. 1st Qu. Median
                              Mean 3rd Qu.
##
             28.00
                     37.00
                             38.58
                                              90.00
##
     17.00
                                      48.00
# Display histogram of feature "age" . Our dataset is concentrated
# in the 28-38 (first quartile~second quartile) year range which is expected as that would
# categorize the working age group
## Frequency table
counts <- table(age)</pre>
## The most frequent and least frequent values.
# Most frequently occurring value is of the 36year olds.
# Least frequent values for age 86 and 87.
counts[which.max(counts)]
## 36
## 898
counts[which.min(counts)]
## 86
## 1
hist(age, main="Histogram for Age", xlab="Age", xlim=c(17,90), las=1,
     breaks=20)
```

Histogram for Age

Display pie chart of feature "workclass". Majority of the dataset
are employed in the private sector
pie(table(workclass))

```
Private - Never-worked Local-gov Federal-gov ? Without-pay State-gov Self-emp-not-inc Self-emp-inc
```

```
# Display histogram of feature "fnlwgt".
hist(fnlwgt, main = "Final weight Histogram", xlab = "Final weights")
```

Final weight Histogram

Final weights

```
#Final weight attribute consists of
# continuous values. final weight doesn't seem to be
# correlated to any of the other values.
# fnlwgt doesn't seem very relevant in this datset. And so we might choose to drop
# this attribute.

# Display table of feature "education"
educationTable <-data.frame(count=sort(table(education), decreasing=TRUE))
educationTable</pre>
```

```
## 4
              Masters
                             1723
## 5
            Assoc-voc
                             1382
## 6
                 11th
                             1175
## 7
                             1067
           Assoc-acdm
## 8
                  10th
                              933
## 9
              7th-8th
                              646
## 10
          Prof-school
                              576
## 11
                  9th
                              514
## 12
                  12th
                              433
## 13
            Doctorate
                              413
## 14
              5th-6th
                              333
              1st-4th
                              168
## 15
## 16
            Preschool
                               51
#We have a hypothesis that the higher the education, the higher the income. We would emphasise this usi
under20yearsAge <- dataset[ which(age<20), ]</pre>
dim(under20yearsAge)
## [1] 1657
              15
table(under20yearsAge$education)
##
##
            10th
                           11th
                                          12th
                                                     1st-4th
                                                                    5th-6th
##
             192
                            391
                                           126
                                                           3
##
         7th-8th
                            9th
                                   Assoc-acdm
                                                   Assoc-voc
                                                                  Bachelors
                             39
##
              17
                                             1
                                                           3
                                                                Prof-school
##
       Doctorate
                        HS-grad
                                      Masters
                                                   Preschool
##
                            426
                                                                          0
               0
                                             1
                                                            1
##
    Some-college
##
             448
#demonstrates the education qualification frequency of people under the age of 20
# Display table of feature "education.num"
summary(education.num)
      Min. 1st Qu. Median
##
                               Mean 3rd Qu.
                                                Max.
              9.00
                      10.00
                              10.08
                                      12.00
                                               16.00
table(education.num)
## education.num
##
       1
             2
                    3
                          4
                                5
                                      6
                                             7
                                                   8
                                                         9
                                                               10
                                                                     11
                                                                           12
##
                                                 433 10501 7291
                                                                        1067
      51
           168
                 333
                        646
                              514
                                    933 1175
                                                                  1382
##
      13
            14
                         16
                  15
   5355
         1723
                 576
                        413
dim(educationTable)
## [1] 16 2
#the quantity education.num ranges from 1 to 16. Majority values concentrated between 9 and 12.
# Number of distinct values for education attribute is 16. There seems to be some correlation between t
# education.num seems to be certain measure of the education attribute
# Display pie chart of feature "marital.status". Majority of our dataset fall under the
# Married-civ-spouse or the never married category
```

pie(table(marital.status))

Display feature "occupation". "?" represent null values
occupationTable <-data.frame(count=sort(table(occupation), decreasing=TRUE))
occupationTable</pre>

```
##
        count.occupation count.Freq
          Prof-specialty
## 1
                                4140
## 2
            Craft-repair
                                4099
## 3
         Exec-managerial
                                4066
## 4
            Adm-clerical
                                3770
## 5
                   Sales
                                3650
## 6
           Other-service
                                3295
## 7
       Machine-op-inspct
                                2002
## 8
                                1843
## 9
        Transport-moving
                                1597
## 10 Handlers-cleaners
                                1370
         Farming-fishing
## 11
                                 994
## 12
            Tech-support
                                 928
## 13
         Protective-serv
                                 649
## 14
         Priv-house-serv
                                 149
## 15
            Armed-Forces
                                   9
```

Display pie chart of feature "relationship"
pie(table(relationship))

Display pie chart of feature "race". More than 75% of the dataset are white people. This column would pie(table(race))

Display plot of feature "sex". Almost 3/4th of the dataset are male
pie(table(sex))

husbandData <- dataset[which(sex == " Female" & relationship==" Husband"),]
dim(husbandData)</pre>

[1] 1 15

#noisy data like the above state that an entry with relationship as #usband, has sex as #emale exists. #data need to be identified

Display histogram of feature "capital.gain". Most values have value zero. Hence the column will be dro hist(capital.gain)

Histogram of capital.gain

Display histogram of feature "capital.loss". Most values have value zero. Hence the column will be dro hist(capital.loss)

Histogram of capital.loss

Display histogram of feature "hours.per.week". As the working class is expected to work 40 hours a we # appropriate

hist(hours.per.week)

Histogram of hours.per.week

Display plot of feature "native.country". The dataset consists of values from people in the
#United States. Thus this column would be dropped
plot(table(native.country))

countries<-table(native.country)
countries[which.max(countries)]</pre>