Exercices: Analyse II

Exercice 1

Soit n un entier naturel non nul.

- 1. Montrer que la fonction $f:x\to E\left(\frac{1}{x}\right)$ est en escalier sur [1/n,1].
- 2. Calculer $\int_{1/n}^{1} f(x) dx$.

Exercice 2

Montrer qu'une fonction $f:[a,b]\to\mathbb{R}$ est intégrable au sens de Riemann sur [a,b] si et seulement si :

$$\forall \varepsilon>0, \exists \varphi, \mu \in E([a,b];\mathbb{R}) \text{ telles que } |f(x)-\varphi(x)| \leq \mu(x) \text{ et } \int_a^b \mu(x) \, dx \leq \varepsilon.$$

Exercice 3

Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée.

1. Montrer que f est Riemann-intégrable sur [a,b] si et seulement si :

$$\forall n \in \mathbb{N}^*, \exists \psi_n, \varphi_n \in E([a,b]; \mathbb{R}) \text{ telles que } \varphi_n \leq f \leq \psi_n \text{ et } \int_a^b (\psi_n - \varphi_n)(x) \, dx < \frac{1}{n}.$$

2. Montrer que :

$$\int_a^b f(x) \, dx = \lim_{n \to +\infty} \int_a^b \psi_n(x) \, dx = \lim_{n \to +\infty} \int_a^b \varphi_n(x) \, dx.$$

Exercice 4

Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée. On suppose qu'il existe deux suites (ψ_n) et (φ_n) de fonctions Riemann-intégrables sur [a,b] telles que, pour tout $x\in[a,b]$:

$$\varphi_n \le f \le \psi_n$$
 et $\lim_{n \to +\infty} \int_a^b (\psi_n - \varphi_n)(x) \, dx = 0.$

Montrer que f est Riemann-intégrable sur $\left[a,b\right]$ et que :

$$\int_a^b f(x) \, dx = \lim_{n \to +\infty} \int_a^b \psi_n(x) \, dx = \lim_{n \to +\infty} \int_a^b \varphi_n(x) \, dx.$$

Exercice 5

- 1. Soit $f:[0,1] \to \mathbb{R}$ une fonction intégrable et soit $g:E \to \mathbb{R}$ (où $f([0,1]) \subset E \subset \mathbb{R}$) une fonction k-lipschitzienne. Montrer que la fonction composée $g \circ f$ est intégrable sur [0,1].
- 2. Montrer que si $f:[a,b]\to\mathbb{R}_+$ est intégrable sur [a,b], alors \sqrt{f} est intégrable sur [a,b].

Exercice 6

1. Soient f et g deux fonctions intégrables sur [0,1], avec $fg \ge 1$. Montrer que :

$$\left(\int_0^1 f(x) \, dx\right) \left(\int_0^1 g(x) \, dx\right) \ge 1.$$

2. Étant donné a et b tels que 0 < a < b, montrer que :

$$\int_{a}^{b} \frac{dx}{x} \le (b - a)\sqrt{ab}.$$

3. Soient $n \in \mathbb{N}^*$, $(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n) \in \mathbb{R}^{2n}$, et f, g deux fonctions intégrables sur [a, b]. Montrer que :

$$\left(\sum_{i=1}^{n} \alpha_{i} \beta_{i} + \int_{a}^{b} f(x)g(x) dx\right)^{2} \leq \left(\sum_{i=1}^{n} \alpha_{i}^{2} + \int_{a}^{b} f(x)^{2} dx\right) \left(\sum_{i=1}^{n} \beta_{i}^{2} + \int_{a}^{b} g(x)^{2} dx\right).$$

Exercice 7

Soit f une fonction continue au voisinage de 0. Montrer que :

$$\lim_{x \to 0^+} \frac{1}{x^2} \int_0^x t f(t) \, dt = \frac{f(0)}{2},$$

et que:

$$\lim_{x \to 0^+} \int_x^{2x} \frac{f(t)}{t} dt = f(0) \ln(2).$$

Exercice 8

1. Montrer que pour toute fonction en escalier $f:[a,b]\to\mathbb{R}$, on a :

$$\lim_{n \to +\infty} \int_a^b f(x) \cos(nx) \, dx = 0 \quad \text{et} \quad \lim_{n \to +\infty} \int_a^b f(x) \sin(nx) \, dx = 0.$$

2. En déduire le résultat pour toute fonction intégrable sur [a, b].

Exercice 9

1. Montrer que les fonctions définies sur \mathbb{R} par $f(x)=x^2$ et $g(x)=e^x$ sont intégrables sur tout intervalle fermé borné de \mathbb{R} . Calculer les deux intégrales suivantes :

$$\int_0^1 f(x) dx \quad \text{et} \quad \int_0^1 g(x) dx.$$

2. Calculer les limites des suites définies par les termes généraux suivants :

$$u_n = \sum_{k=1}^n \frac{1}{n+k} \sqrt{\frac{k}{2n+k}}, \quad v_n = \left(\prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)\right)^{\frac{1}{n}}, \quad w_n = \frac{1}{n\sqrt{n}} \sum_{k=1}^n \lfloor \sqrt{k} \rfloor.$$

Exercice 10

1. En utilisant l'intégration par parties, calculer les intégrales suivantes :

$$A = \int_{1}^{e} \frac{\ln(t)}{t^2} dt, \quad B = \int_{0}^{\pi} e^t \cos(2t) dt.$$

2. En utilisant un changement de variable, déterminer les primitives suivantes :

$$E(x) = \int \frac{dx}{x(\ln^2(x) - 4)}, \quad F(x) = \int \frac{\sin(x) dx}{(\cos^2(x) + 2\cos(x) + 5)^2}, \quad G(x) = \int \frac{e^{3x} + 6e^{2x} - e^x}{(e^x - 3)^2(e^x - 1)} dx.$$

Exercice 11

Soit $I_n = \int_0^{\pi/2} \sin^n(x) \, dx$ et $J_n = \int_0^{\pi/2} \cos^n(x) \, dx$.

- 1. Montrer que $I_n = J_n$.
- 2. Établir une relation de récurrence entre I_n et I_{n+2} .
- 3. En déduire les valeurs de I_{2p} et I_{2p+1} .
- 4. Montrer que $(n+1)I_{n+1}I_n = \frac{\pi}{2}$ pour tout entier n.
- 5. Montrer que $\lim_{n\to+\infty} \frac{I_{n+1}}{I_n}=1$. En déduire qu'au voisinage de l'infini, $I_n\sim\sqrt{\frac{\pi}{2n}}$.

Exercice 12 : Fonction définie par une intégrale

On considère la fonction définie sur \mathbb{R}^\ast par :

$$f(x) = \int_{x}^{2x} \frac{1}{\sqrt{t^4 + t^2}} dt.$$

- 1. Montrer que f est bien définie et impaire.
- 2. Montrer que $0 \le f(x) \le \frac{1}{2x}$ pour tout $x \in \mathbb{R}^*$, et en déduire $\lim_{x \to +\infty} f(x)$.
- 3. Montrer que f est de classe C^1 sur \mathbb{R}_+^* , calculer sa dérivée et en déduire les variations de f sur \mathbb{R}_+^* .
- 4. Montrer que $f(x) \leq \ln(2)$ pour $x \in \mathbb{R}_+^*$ et en déduire que f admet une limite finie à droite en 0.

Exercice 14

Soit $f(x) = \int_0^x e^{-t^2} dt$.

- 1. Montrer que f est bien définie sur $\mathbb R$ et admet une dérivée donnée par $f'(x)=e^{-x^2}.$
- 2. Montrer que f est impaire.
- 3. Établir le développement asymptotique de f(x) au voisinage de $+\infty$.

Exercice 15

1. Montrer que pour p > 1, l'intégrale suivante converge :

$$\int_{1}^{+\infty} \frac{1}{x^p} \, dx,$$

et calculer sa valeur.

- 2. Soit la série $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Montrer qu'elle converge pour p>1 et établir un lien entre cette série et l'intégrale précédente.
- 3. Pour p=2, calculer la somme $\sum_{n=1}^{\infty} \frac{1}{n^2}$.