Session 4: Minimax and Constraint Processing

1. Perform the minimax algorithm on the tree in figure 1, first without and later with $\alpha\beta$ -pruning. Can the nodes be ordered in such a way that $\alpha\beta$ -pruning can cut off more branches?

Figure 1: Minimax problem

2. Try to come up with a reformulation of minimax algorithm that works when three players are involved. Apply your algorithm on the figure below, where each node shows the score for each of the three players.

- 3. Consider the following variant of the 4 houses problem:
 - There are 4 families A, B, C and D living in 4 different houses, numbered 1, 2, 3 and 4.
 - C lives in a house with a higher number than the house in which D lives.
 - D lives next to A, in a house with a lower number.
 - There is at least one house between the houses of D and B.
 - C does not live in the house with number 3.
 - B does not live in the house with number 1.

Which family lives in which house? Solve the problem using backtracking, backjumping and backmarking.

Now consider the following sets of assignments: $\{A=1\}$, $\{A=2,B=2\}$, $\{A=2,B=3\}$, $\{A=2,B=3,C=1\}$, $\{A=2,B=4\}$. Which of these are "no-goods"? (You can use arc-consistency based arguments to determine whether or not they are.)

Assume that an "intelligent backtracking" algorithm has the actual nogoods from the list above as well as the following available: $\{A=3, B=2\}$, $\{A=3, B=4\}$, $\{A=4, B=2\}$, $\{A=4, B=3\}$, $\{A=4, C=2\}$. Trace the OR-tree built up by the intelligent backtracking algorithm, based on standard backtracking (i.e. the fixed order of the variables is A, B, C and D; the assignments are done in the order 1, 2, 3 and 4 and no domain elements are eliminated based on arc-consistency) in which nodes that contain a no-good are not visited.