(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 March 2001 (15.03.2001)

PCT

(10) International Publication Number WO 01/18045 A1

(51) International Patent Classification⁷: C07K 14/00, G01N 33/573

(21) International Application Number: PCT/US00/24700

(22) International Filing Date:

8 September 2000 (08.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/152,753

8 September 1999 (08.09.1999) US

(71) Applicants (for all designated States except US): SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH [US/US]; 1275 York Avenue, New York, NY 10021 (US). THE TRUSTEES OF COLUMBIA UNI-VERSITY IN THE CITY OF NEW YORK [US/US]; West 116th Street and Broadway, New York, NY 10027 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PAVLETICH, Nikola [YU/US]; Apartment 38A, 330 East 75th Street, New York, NY 10021 (US). FINNIN, Michael [US/US]; 504 East 63rd Street, Apt. 19S, New York, NY 10021 (US). DONIGIAN, Jill [US/US]; 13 Union Place, North Arlington, NJ 07031 (US). RICHON, Victoria [US/US]; 504 East 63rd Street, Apt. 28M, New York, NY 10021 (US). RIFKIND, Richard, A. [US/US]; Apt. #48A, 425 East 58th Street, New York, NY 10022 (US). MARKS, Paul, A. [US/US]; 7 Rossiter Road, Washington, CT 06793 (US). BRESLOW, Ronald [US/US]; 275 Broad Avenue, Englewood, NJ 07631 (US).

(74) Agent: WHITE, John, P.; Cooper & Dunham LLP, 1185 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States (national): CA, JP, US.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CRYSTAL STRUCTURE OF A DEACETYLASE AND INHIBITORS THEREOF

(57) Abstract: The present invention provides three-dimensional structural information from the hyperthermophilic bacterium Aquifex aeolicus which is a histone deacetylase-like protein (HDLP). HDLP shares 35.2% amino acid sequence identity with human histone deacetylase (HDAC1). The present invention further provides three-dimensional structural information of HDLP bound by inhibitor molecules. The three-dimensional structural information of the present invention is useful to design, isolate and screen deacetylase inhibitor compounds capable of inhibiting HDLP, HDAC family members and HDLP-related molecules. The invention also relates to nucleic acids encoding a mutant HDLP which facilitates the determination of the three-dimensional structure of HDLP in the presence of a zinc atom.

CRYSTAL STRUCTURE OF A DEACETYLASE AND INHIBITORS THEREOF

5

This application claims priority of U.S. Provisional Application No. 60/152,753, filed September 8, 1999, the contents of which are hereby incorporated by reference.

10

This invention has been made with government support under National Institutes of Health Grant No. RO1 CA-65698. Accordingly, the U.S. Government may have certain rights in the invention.

15

20

25

Throughout this application, various publications are referenced by author, date and citation. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.

Introduction

The present invention relates to a histone deacetylase homologue from the hyperthermophilic bacterium Aquifex aeolicus, HDLP (histone deacetylase like protein; also known as AcuCl), which shares 35.2 % sequence identity with human histone deacetylase (HDACl), that can be co-crystallized with an inhibitory ligand, and more particularly, to the detailed crystallographic data obtained from said co-crystallization which is disclosed herein. The invention also relates to methods of using the crystal structure and x-ray crystallographic coordinates of the apo-HDLP and

- 2 -

inhibitor-bound HDLP to design, isolate and screen compounds which bind to and inhibit the active site of HDLP and HDLP-related proteins, such as those proteins belonging to the HDAC family, including HDAC1.

5

10

15

Background of the Invention

The reversible modification of histones by acetylation is associated with changes in nucleosome conformation and chromatin structure, and plays an important role in the regulation of gene expression (reviewed in Davie and Chadee, 1998, J. Cell Biochem. Suppl. 30-31:203-213). The histone acetylase and deacetylase enzymes that carry out these modifications are involved in many cellular processes such as cell cycle progression and differentiation, and their deregulation is associated with several types of human cancer (reviewed in Kouzarides, 1999, Curr. Opin. Genet. Dev. 9:40-48; Hassig et al., 1997, Chem. Biol. 4:783-789; Fenrick and Heibert, 1998, J. Cell. Biochem. Suppl. 30-31:194-202).

20

25

30

Recently, several experimental antitumor compounds, such as trichostatin A (TSA), trapoxin, suberoylanilide hydroxamic acid (SAHA), and phenylbutyrate have been shown to act, at least in part, by inhibiting histone deacetylases. Richon et al., 1998, Proc. Natl. Acad. Sci., USA 95:3003-3007; Yoshida et al., 1990, J. Biol. Chem. 265:17174-17179; Kijima et al., 1993, J. Biol. Chem. 268:22429-22435. Additionally, diallyl sulfide and related molecules (Lea et al., 1999, Int. J. Oncol. 2:347-352), oxamflatin (Kim et al., 1999, Oncogene 15:2461-2470), MS-27-275, a synthetic benzamide derivative (Saito et al., 1999, Proc. Natl. Acad. Sci. 96:4592-4597),

butarate derivatives (Lea and Tulsyan, 1995, Anticancer Res. 15:879-883), FR901228 (Nokajima et al., 1998, Exp. Cell Res. 241:126-133), depudecin (Kwon et al., 1998, Proc. Natl. Acad. Sci. USA 95:3356-3361) and m-carboxysinnamic acid bishydroxamide (CBHA; Richon et al., Proc. Natl. Acad. Sci. USA 95:3003-3007) have been shown to inhibit histone deacetylases. In vitro, these compounds can inhibit the growth of fibroblast cells by causing cell cycle arrest in the G1 and G2 phases (Richon et al., 1996, Proc. Natl. Acad. USA <u>93</u>:5705-5708; Kim et al., 1999, 18:2461-2470; Yoshida et al., 1995, Bioessays 17:423-430; Yoshida & Beppu, 1988, Exp. Cell. Res. 177:122-131), and can the terminal differentiation and lead to transforming potential of a variety of transformed cell Richon et al., 1996, Proc. Natl. Acad. Sci. USA 93:5705-5708; Kim et al., 1999, Oncogene 18:2461-2470; Yoshida et al., 1987, Cancer Res. 47:3688-3691. phenylbutyrate is effective in the treatment of acute promyelocytic leukemia in conjunction with retinoic acid. Warrell et al., 1998, J. Natl. Cancer Inst. 90:1621-1625. SAHA is effective in preventing the formation of mammary tumors in rats, and lung tumors in mice. Desai et al., 1999, Proc. AACR 40: abstract #2396; Cohen et al., Cancer Res., submitted.

25

30

5

10

15

20

Histone deacetylases catalyze the removal of acetyl groups from the e-amino groups of lysine residues clustered near the N-terminus of nucleosomal histones, and this process is associated with transcriptional repression (reviewed in Struhl, 1998, Genes Dev. 12:599-606). Deletion of the yeast histone deacetylase gene, rpd3, or its pharmacological

- 4 -

inactivation with trichostatin A reduces the transcriptional repression in a subset of promoters, such as those of Ume6-regulated genes. Kadosh & Struhl, 1998, Mol. Cell. Biol. 18:5121-5127. This is accompanied by the increased acetylation of H4 histones in the repressed promoter and its vicinity, but has no effect on histones at promoter distal regions. Kadosh & Struhl, 1998, Mol. Cell. Biol. 18:5121-5127; Rundlett et al., 1998, Nature 392:831-835.

5

25

30

Histone deacetylases are recruited to specific promoters by associating with DNA-binding transcriptional repressors, either directly or through co-repressors that bridge the deacetylase to the transcriptional repressors. For example, the Mad and Ume6 repressors bind to the co-repressor Sin3A (Laherty et al., 1997, Cell 89:349-356; Hassig et al., 1997, Cell 89:341-347; Kadosh & Struhl, 1997, Cell 89:365-371), and the nuclear receptors bind N-CoR and the related SMRT co-repressors. Nagy et al., 1997, Cell 89:373-380; Alland et al, 1997, Nature 387:49-55; Heinzel et al, 1997, Nature 387:43-48.

The deregulation of histone deacetylase recruitment appears to be one of the mechanisms through which these enzymes contribute to tumorigenesis. In acute promyelocytic leukemia (APL), chromosomal translocations fuse the retinoic acid receptor- α (RAR α) to either PLZF or to PML. These fusion oncoproteins have aberrant transcriptional repression activity resulting, in part, through the recruitment of a co-repressor and, in turn, HDACs. Grignani et al, 1998, Nature 391:815-818; Lin et al., 1998, Nature 391:811-814. Treatment of PLZF-RAR α APL cells with TSA enhances their

- 5 -

responsiveness to retinoic acid-induced differentiation. Grignani et al, 1998, Nature 391:815-818; Lin et al., 1998, Nature 391:811-814.

The histone deacetylases comprise a large family of 5 proteins, conserved from yeast to man, and are divided into two related classes. Class I is characterized by human HDAC1, 2, 3 (Taunton et al., 1996, Science 272:408-411; Yang et al., 1996, Proc. Natl. Acad. Sci. USA 93:12845-12850; Emiliani et al., 1998, Proc. Natl. Acad. Sci. USA 95:2795-10 2800), and yeast RPD3 (Videl & Gaber, 1991, Mol. Cell. Biol. 11:6317-6327), and class II by the human HDAC4, 5, 6 (Grozinger et al., 1999, Proc. Natl. Acad. Sci. USA 96:4868-4873; Fischle, et al., 1999, J. Biol. Chem. 274:11713-11720), and yeast HDA1 (Rundlett et al., 1996, Proc. Natl. 15 Acad. Sci. USA <u>93</u>:14503-14508). The two classes share a ~390 amino acid region of sequence similarity, comprising the deacetylase core, but are divergent outside this region. The histone deacetylase genes belong to an even larger superfamily (Leipe & Landsman, 1997, Nucleic Acids Res. 20 the prokaryotic that contains 25:3693-3697) utilization proteins (AcuC; 28.1% sequence identity to HDAC1), and the prokaryotic acetylpolyamine amidohydrolases (APAH; 15.0 % sequence identity to HDAC1). The enzymatic activity of AcuC is not clear, but its disruption reduces 25 the ability of B. subtilis to breakdown acetoin and utilize it as a carbon source. Grundy et al., 1993, Mol. Microbiol. 10:259-271. APAHs catalyze the deacetylation of polyamines by cleaving a non-peptide amide bond (reviewed in Leipe & Landsman, 1997, Nucleic Acids Res. 25:3693-3697). 30

- 6 -

It is useful to address the questions of how HDACs and HDACrelated proteins catalyze the deacetylation of histones and how the above-referenced compounds, particularly those compounds with antitumor activity, inhibit this activity in order to better understand the mechanism of inhibition of HDACs and to facilitate discovery of additional useful compounds which may inhibit this activity. To this end, the present invention has determined the three dimensional structure of a HDAC1-like protein from the thermophilic bacterium Aquifex aeolicus, herein after HDLP. The determination of the nucleic acid coding sequence of HDLP was described by Deckert et al., 1998, Nature 392:353-358. The encoded 375 residue protein, whose sequence was determined from the nucleic acid encoding sequence, shares 35.2% amino acid sequence identity with HDAC1, deacetylates histones in vitro, and is inhibited by TSA, SAHA and several The determination of the threeother HDAC inhibitors. dimensional structure of HDLP is useful in the design, identification and screening of new HDAC family inhibitory compounds which are useful for the inhibition of cell growth both in vivo and in vitro.

Summary of the Invention

5

10

15

20

25

30

In general, it is the object of the present invention to provide detailed three-dimensional structural information for a family of proteins known as histone deacetylases (HDAC), and particularly a homologue from the hyperthermophilic bacterium Aquifex aeolicus HDLP (histone deacetylase-like protein) which shares 35.2 % sequence identity with human histone deacetylase (HDAC1). It is also an object of the present invention to provide three-

- 7 -

dimensional structural information of an HDLP bound to an inhibitory compound.

In one embodiment of the invention, three-dimensional structure information is obtained from a crystal of wildtype HDLP (SEQ ID NO:1) (the nucleic acid encoding wild-type HDLP is SEQ ID NO:2). In a further embodiment of the invention, three-dimensional information is obtained from a mutant HDLP comprising two mutations (1) cysteine 75 to a serine and (2) cysteine 77 to a serine (Cys75Ser/Cys77Ser double mutant; SEQ ID NO:3) (the nucleic acid encoding HDLP Cys75Ser/Cys77Ser double mutant is SEQ ID NO:4). invention facilitates mutant of the present determination of three-dimensional structural information of HDLP bound to a zinc atom at its zinc atom-binding site.

In a preferred embodiment of the invention, the threedimensional structural information is obtained from a cocrystal of a protein-inhibitor compound complex that comprises HDLP or HDLP Cys75Ser/Cys77Ser double mutant and trichostatin A (TSA). In another preferred embodiment of the invention the three-dimensional structural information is obtained from a co-crystal of a protein-inhibitor HDLP comprises HDLP orcomplex that compound and suberoylanilide Cys75Ser/Cys77Ser double mutant hydroxamic acid (SAHA). Any HDLP or HDLP-related protein (e.g. HDAC) inhibitor compound that may be co-crystallized with HDLP may be used to form a co-crystal of the present invention.

30

5

10

15

20

25

The protein crystals and protein-inhibitory complex cocrystals of the present invention diffract to a high

- 8 -

resolution limit of at least equal to or greater than 4 angstrom (Å). In a preferred embodiment, the protein crystals and protein-inhibitory complex co-crystals of the present invention diffract to a high resolution limit of greater than 2.5 Å.

5 、

10

15

20

A crystal of the present invention may take a variety of forms, all of which are contemplated by the present invention. In a preferred embodiment, the crystal has a space group of C2 with one molecule in the asymmetric unit and with unit dimensions of a = 51.4 Å, b = 93.8 Å, 78.7 Å and $\beta = 96.9^{\circ}$ (see, e.g., Example 2, below). another preferred embodiment, the crystal has a space group of $P2_12_12_1$ with two molecules in the asymmetric unit and with unit dimensions of a = 53.4 Å, b = 94.4 Å, c = 156.3 Å (see, e.g., Example 2, below). The HDLP structure comprises a parallel β sheet with α helices packing against both faces. At one end of the β sheet, the HDLP has a narrow, tube-like pocket formed by several well-ordered loops. The walls of the pocket are lined with hydrophobic residues and there is a zinc binding site and several polar side chains at the The inhibitory compounds of the bottom of the pocket. present invention bind in the pocket.

The three-dimensional structural information obtained from crystals of HDLP, HDLP Cys75Ser/Cys77Ser double mutant, HDLP Cys75Ser/Cys77Ser double mutant comprising a zinc atom, HDLP comprising an inhibitory compound such as TSA or SAHA, and HDLP Cys75Ser/Cys77Ser double mutant comprising an inhibitor compound such as TSA or SAHA may be employed to solve the structure of any HDLP-related protein (e.g. HDAC) crystal,

- 9 -

or any mutant HDLP-related protein and particularly any wild type or mutant of HDLP-related protein complexed with a ligand, including a substrate or inhibitor compound. If the crystals are in a different space group than the known structure, molecular replacement may be employed to solve the structure, or if the crystals are in the same space group, refinement and difference fourier methods may be employed. The structure of HDLP-related proteins (e.g. HDAC1) comprise no greater than a 2.0 Å root mean square deviation (rmsd) in the positions of the C α atoms for at least 50% or more of the amino acids of the full-length HDLP structure.

5

10

15

20

25

30

The present invention also provides a nucleic acid molecule encoding an HDLP Cys75Ser/Cys77Ser double mutant having the amino acid sequence of SEQ ID NO:3 and the nucleic acid sequence of SEQ ID NO:4. It is also contemplated by the invention that mutations be made in HDLP-related proteins at cysteine residues, as with the Cys75Ser/Cys77Ser double mutant, in order to facilitate the determination of the structure of said proteins bound to a zinc atom. Additionally, the present invention provides expression vectors which comprise the nucleic acid molecule encoding an HDLP Cys75Ser/Cys77Ser double mutant encoded by the sequence represented by SEQ ID NO:4 operatively linked to expression control sequences.

It is another object of the present invention to provide methods for the design, identification and screening of potential inhibitor compounds of the HDLP/HDAC family. In a preferred embodiment the method for the rational design,

- 10 -

identification and screening of potential inhibitor compounds for HDLP and HDLP-related proteins (e.g. HDACs) comprising deacetylase activity comprises the steps of: (a) using a three-dimensional structure of an HDLP as defined by the atomic coordinates of the present invention; employing said three-dimensional structure to design or select said potential inhibitor compound; (c) synthesizing and/or selecting said potential inhibitor; (d) contacting said potential inhibitor compound with said enzyme in the presence of acetylated substrate; and (e) determining the percent inhibition of deacetylase activity to determine the inhibitory activity of said potential inhibitor compound. In a further preferred embodiment, the binding properties of said rationally designed inhibitory compound determined by a method comprising the steps of: (a) forming a complex comprising said inhibitory compound and HDLP or a HDLP-related protein, (b) co-crystallizing said inhibitory determining said compound-HDLP complex; (c) dimensional structure of said co-crystal through molecular replacement or refinement and difference fourier with the molecular coordinates of HDLP as defined by the present invention; and (d) analyzing the three-dimensional structure to determine the binding characteristics of said potential inhibitor compound.

25

5

10

15

20

It is a further object of the present invention to identify a defined class of HDLP/HDAC family inhibitor compounds. The HDLP/HDAC family inhibitor compounds of the present invention are represented by formula (I):

- 11 -

(I)

5

wherein X comprises a cap group which binds to at least one amino acid selected from the group consisting of proline and leucine; Y comprises an aliphatic chain group which binds to at least one amino acid selected from the group consisting of leucine, phenylalanine and glycine; and Z comprises and active site binding group which binds to at least one amino acid selected from the group consisting of aspartic acid, tyrosine and histidine and may further bind to a zinc atom.

15

10

20

25

30

- 12 -

Brief Description of the Drawings

Figure 1 is a table listing the statistics from the X-ray crystallographic analysis of a HDLP crystal, a HDLP-TSA cocrystal, and a HDLP-SAHA co-crystal.

5

Figure 2 shows an alignment of various HDAC homologues with percent sequence identity depicted.

Figure 3 shows a graph indicating the histone deacetylase activity of HDLP and HDAC1 and the inhibition of HDLP and HDAC1 by the inhibitors TSA and HC-toxin.

Figure 4 shows (A & B) a schematic representation of the $HDLP-Zn^{2+}-TSA$ complex in two approximately orthogonal views, (C) a topology diagram of HDLP indicating the regions of homology with HDAC1, and (D) a close-up schematic representation of the $HDLP-Zn^{2+}-SAHA$ complex.

Figure 5 shows (A) a schematic representation of a slice through a surface representation of HDLP with the pocket internal cavities and position of the β sheet indicated, (B) a schematic representation of a close-up view of the active site looking down into the pocket in an orientation similar to Figure 4B.

25

30

15

Figure 6 shows (A) a space-filling representation of TSA in the active site pocket, (B) a closeup stereo view of the structure of the $HDLP-ZN^{2+}-TSA$ complex in a similar orientation to Figure 4B, and (C) a schematic representation of the HDLP-TSA interactions.

WO 01/18045

- 13 -

PCT/US00/24700

Figure 7 shows (A) a schematic representation of the regions of homology shared between HDLP and HDAC1 in an orientation similar to that of Figure 4A, and (B) a detailed schematic representation of the homology shared in the pocket and internal cavity between HDLP and HDAC1 in an orientation similar to that of Figure 4B.

Figure 8 shows a schematic representation of the proposed catalytic mechanism for the deacetylation of acetylated lysine.

Figure 9 shows a schematic representation of a space filling diagram showing the conserved amino acids in the active site and nearby grooves.

15

30

10

5

Figure 10 is the nucleic acid sequence of HDLP from Aquifex aeolicus (SEQ ID NO. 2).

Figure 11 is the amino acid sequence of full length HDLP from Aquifex aeolicus (SEQ ID NO. 1).

Figure 12 is the nucleic acid sequence of the HDLP active site mutant Tyr297Phe (SEQ ID NO. 6).

25 Figure 13 is the amino acid sequence of the HDLP active site mutant Tyr297Phe (SEQ ID NO. 5).

Figure 14 is the nucleic acid sequence of a double mutant of HDLP from Aquifex aeolicus comprising a Cys75Ser and Cys77Ser mutation (SEQ ID NO. 4).

- 14 -

Figure 15 is the amino acid sequence of a double mutant of HDLP from Aquifex aeolicus comprising a Cys75Ser and Cys77Ser mutation (SEQ ID NO. 3).

Figure 16-1 to 16-49 lists the atomic structure coordinates for HDLP as derived by X-ray diffraction from a crystal of HDLP.

Figure 17-1 to 17-49 lists the atomic structure coordinates

for HDLP Cys75Ser/Cys77Ser double mutant comprising a zinc

atom in the active site as derived by X-ray diffraction from

a crystal of the HDLP Cys75Ser/Cys77Ser double mutant.

Figure 18-1 to 18-99 lists the atomic structure coordinates for HDLP Cys75Ser/Cys77Ser double mutant as derived by X-ray diffraction from a co-crystal of HDLP complexed with TSA.

Figure 19-1 to 19-48 lists the atomic structure coordinates for HDLP Cys75Ser/Cys77Ser double mutant as derived by X-ray diffraction from a co-crystal of HDLP complexed with SAHA.

25

20

15

- 15 -

Detailed Description of the Invention

The present invention provides crystals of a histone deacetylase (HDAC) homologue grown in the presence and absence of a compound capable of inhibiting the histone deacetylase activity of said HDAC homologue. As referred to herein, a HDAC homologue (as well as a HDLP-related protein) is any protein molecule having (a) greater than 15% sequence identity to over the 375 amino acid residues of HDLP; (b) having no more than twenty insertions or deletions for a total of no more than 100 amino acids; and (c) deacetylase activity. Sequence identity is calculated by the program DNAstar[™] using the identity matrix weighing scheme clustal method (DNAstar program, Madison, WI).

A HDLP/HDAC inhibitor compound, as used herein, refers to any compound represented by Formula (I):

(I)

20

25

30

5

10

15

wherein X comprises a cap group which binds to at least one amino acid selected from the group consisting of tyrosine, proline and leucine; Y comprises an aliphatic chain group from about 5 to about 10 Å, preferably 7Å, which binds to at least one amino acid selected from the group consisting of phenylalanine and glycine; and Z comprises a active site binding group which binds to at least one amino acid selected from the group consisting of aspartic acid, tyrosine and histidine and which may further bind to a zinc atom. The HDAC inhibitory compounds of the present

- 16 -

invention can inhibit greater than 50% of the histone deacetylase activity of a HDAC homologue or a HDLP-related protein.

To grow the crystals of the present invention, the HDAC and HDAC-inhibitory compound complex are purified to greater than 80% total protein and more preferably purified to greater than 90% total protein. For expression and purification purposes, the full-length HDLP (Genbank accession number AE000719) may be subcloned from Aquifex aeolicus chromosomal DNA preparation by the polymerase chain reaction (PCR) and inserted into an expression vector.

15

20

25

30

A large number of vector-host systems known in the art may be used. Possible vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used. Examples of vectors include E. coli bacteriophages such as lambda derivatives, or plasmids such as pBR322 derivatives or pUC plasmid e.g., pGEX vectors derivatives, (Amersham-Pharmacia, Piscataway, New Jersey), pET vectors (Novagen, Madison, WI), pmal-c vectors (Amersham-Pharmacia, Piscataway, New Jersey), pFLAG vectors (Chiang and Roeder, 1993, Pept. Res. 6:62-64), baculovirus vectors (Invitrogen, Carlsbad, CA; Pharmingen, The insertion into a cloning vector San Diego, CA), etc. can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini, by blunt end ligation if no complementary cohesive termini are available or by through nucleotide linkers using techniques standard in the art. Ausubel et al. (eds.), Current Protocols in Molecular

- 17 -

Biology, (1992). Recombinant vectors comprising the nucleic acid of interest may then be introduced into a host cell compatible with the vector (e.g. E. coli, insect cells, mammalian cells, etc.) via transformation, transfection, infection, electroporation, etc. The nucleic acid may also be placed in a shuttle vector which may be cloned and propagated to large quantities in bacteria and then introduced into a eukaryotic cell host for expression. The vector systems of the present invention may provide expression control sequences and may allow for the expression of proteins in vitro.

In a preferred embodiment, the full length HDLP (SEQ ID NO:2) is subcloned from Aquifex aeolicus chromosomal DNA preparation into pGEX4T3 (Amersham-Pharmacia, Piscataway, New Jersey). In order to construct a double mutant comprising a Cys75Ser and Cys77Ser mutation (SEQ ID NO:4), and to construct the HDLP active site mutant Tyr297Phe (SEQ ID NO:5 and SEQ ID NO:6), PCR site directed mutagenesis may be employed with verification by DNA sequencing by methods known to those skilled in the art (see, e.g., Example 1 below). The mutants of the present invention may be subcloned into a suitable expression vector and introduced into a host cell for protein production, as described above.

25

30

5

10

15

20

The HDLP nucleic acids of the present invention may be subcloned into an expression vector to create an expression construct such that the resultant HDLP molecule which is produced comprises a fusion protein wherein said fusion protein comprises a tag for ease of purification. As referred to herein, a "tag" is any additional amino acids

- 18 -

which are provided in a protein either c-terminally, nterminally or internally for the ease of purification, for the improvement of production or for any other purpose which may facilitate the goals of the present invention (e.g. to achieve higher levels of production and/or purification). Such tags include tags known to those skilled in the art to be useful in purification such as, but not limited to, his tag, glutathione-s-transferase tag, flag tag, mbp (maltose binding protein) tag, etc. In a preferred embodiment, the wild-type and mutant HDLPs of the present invention are tagged with glutathione-s-transferase (see Example 1 below). In another preferred embodiment, HDAC1 is flag tagged (see Example 1 below). Such tagged proteins may also be engineered to comprise a cleavage site, such as a thrombin, enterokinase or factor X cleavage site, for ease of removal of the tag before, during or after purification. systems which provide a tag and a cleavage site for removal of the tag are particularly useful to make the expression constructs of the present invention.

20

25

30

5

10

15

The tagged HDLPs and HDACs of the present invention may be purified by immuno-affinity or conventional chromatography, including but not limited to, chromatography employing the glutathione-sepharose™ (Amersham-Pharmacia, following: Piscataway, New Jersey) or an equivalent resin, nickel or cobalt-purification resins, anion exchange chromatography, cation exchange chromatography, hydrophobic resins, gel antiflag epitope resin, reverse filtration, chromatography, etc. After purification, the HDLP and HDLPinhibitor compound complex may be concentrated to greater than 1 mg/ml for crystallization purposes. In a preferred HDLP-inhibitor complexes HDLP and are embodiment

- 19 -

concentrated to greater than 10 mg/ml for crystallization and in a particularly preferred embodiment, HDLP and HDLP-inhibitor complexes are concentrated to greater than 20 mg/ml.

5

10

15

20

25

30

In order to determine whether the purified HDLPs of the present invention demonstrate histone deacetylase activity, the purified HDLPs and also any HDLP-related protein may be assayed by any method known to those skilled in the art for the determination of said activity. In a preferred embodiment, the purified HDLPs of the present invention are incubated in the presence of [3H] acetyl-labeled histone substrate (Carmen et al., 1996, J. Biol. Chem. 271:15837-15844) in a buffer suitable for detection of histone deacetylase activity (see Example 3 below); stopping the reaction; extracting the released acetate and measuring said released acetate, as described by Henzel et al. (J. Biol. Chem. 266:21936-21942 (1991); Example 3 below). preferred embodiment, the HDLPs of the present invention are inclubated in the presence of ZnCl2 in order to obtain histone deacetylase activity therefrom (Example 3 below).

In another embodiment, the crystals of the present invention comprise purified wild-type HDLP (SEQ ID NO:1) and are grown at room temperature by the hanging-drop vapor-diffusion method from a crystallization solution comprising one or more precipitants selected from the group consisting of isopropanol, polyethylene glycol, and tert butanol (see Example 2 below). The crystallization solution may further comprise one or more salts including salts selected from the group consisting of NaCl and KCl, and one or more buffers

including buffers selected from the group consisting of Tris (tris(hydroxymethyl)aminomethane and bis-tris propane-Cl (1,3-bis[tris(hydroxymethyl)methyl-amino] propane) (see Example 2 below). The pH of the crystallization solution is preferably between pH 5 to 9, although other pH values are also contemplated by the present invention (see Example 2 below).

Any crystallization technique known to those skilled in the art may be employed to obtain the crystals of the present invention, including, but not limited to, batch crystallization, vapor diffusion (either by sitting drop or hanging drop) and micro dialysis. Seeding of the crystals in some instances may be required to obtain X-ray quality crystals. Standard micro and/or macro seeding of crystals may therefore be used.

The crystals of the present invention may form in the space group C2 with one molecule in the asymmetric unit and with unit dimensions of a=51.4 Å, b=93.8 Å, c=78.7 Å and $\beta=96.9^{\circ}$ (see Example 2 below). The crystals of the present invention may also form in the space group $P2_12_12_1$ with two molecules in the asymmetric unit and with unit dimensions of a=53.4 Å, b=94.4 Å, c=156.3 Å (see Example 2 below). However, the present invention contemplates crystals which form in any space group including, but not limited to, C2, $P2_1$, $P2_12_12_1$, $P3_121$, $P4_32_12_1$, and $C222_1$. The crystals diffract to a resolution greater than 4 Å, preferably greater than 2.5 Å.

30

25

5

10

15

20

To collect diffraction data from the crystals of the present

5

10

15

20

25

30

- 21 -

invention, the crystals may be flash-frozen in the crystallization buffer employed for the growth of said crystals, however with preferably higher precipitant concentration (see, e.g., Example 2 below). For example, but not by way of limitation, if the precipitant used was 28% PEG 1500, the crystals may be flash frozen in the same crystallization solution employed for said crystal growth wherein the concentration of the precipitant is increased to 35% (see Example 2 below). If the precipitant is not a sufficient cryoprotectant (i.e. a glass is not formed upon cryoprotectants (e.g. glycerol, low flash-freezing), molecular weight PEGs, alcohols, etc) may be added to the solution in order to achieve glass formation upon flashfreezing, providing the cryoprotectant is compatible with preserving the integrity of the crystals. The flash-frozen crystals are maintained at a temperature of less than -110°C and preferably less than -150°C during the collection of the crystallographic data by X-ray diffraction. diffraction data may be processed with DENZO and SCALEPACK (Otwinowski & Minor, 1997, Method Ensemble. 276:307-326) but any method known to those skilled in the art may be used to process the X-ray diffraction data.

In order to determine the atomic structure of HDLP according to the present invention, multiple isomorphous replacement (MIR) analysis, model building and refinement may be performed. For MIR analysis, the crystals may be soaked in heavy-atoms to produce heavy atom derivatives necessary for MIR analysis. As used herein, heavy atom derivative or derivitization refers to the method of producing a chemically modified form of a protein or protein complex

5

10

15

20

25

crystal wherein said protein is specifically bound to a heavy atom within the crystal. In practice a crystal is soaked in a solution containing heavy metal atoms or salts, or organometallic compounds, e.g., lead chloride, gold cyanide, thimerosal, lead acetate, uranyl acetate, mercury chloride, gold chloride, etc, which can diffuse through the crystal and bind specifically to the protein. The location(s) of the bound heavy metal atom(s) or salts can be determined by X-ray diffraction analysis of the soaked This information is used to generate MIR phase crystal. information which is used to construct the three-dimensional structure of the crystallized HDLPs and HDLP-related proteins of the present invention. In a preferred embodiment, the heavy atoms comprise thimerosal, KAu(CN)2 and Pb(Me)₃OAc (see Example 2 below). The MIR phases may be calculated by any program known to those skilled in the art and preferably with the program MLPHARE (The CCP4 suite: Programs for computational crystallography, 1994, Crystallogr. D. 50:760-763) and may also use the anomalous diffraction signal from the thimerosal derivative. preferred embodiment, the MIR phases were calculated at 2.5 Å and have a mean figure of merit of 0.55 (see Figure 19 and The phases may be improved where Example 2 below). necessary by solvent flattening by methods known to those skilled in the art including, but not limited to, through the use of the program DM (The CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D <u>50</u>:760-763).

Thereafter, an initial model of the three-dimensional structure may be built using the program O (Jones et al.,

- 23 -

1991, Acta Crystallogr. A $\underline{47}$:110-119). The interpretation and building of the structure may be further facilitated by use of the program CNS (Brunger et al., 1998, Acta Crystallogr. D $\underline{54}$:905-921).

5

10

15

.20

25

30

For the determination of the HDLP-inhibitor compound complex structure, if the space group of the HDLP-inhibitor compound complex crystal is different, molecular replacement may be employed using a known structure of apo-HDLP (as referred to herein, apo-HDLP or apo-HDAC is the enzyme which is not complexed with an inhibitor compound) or any known HDLP/inhibitor complex structure whose structure may be determined as described above and below in Example 2. the space group of the HDLP-inhibitor compound crystals is the same, then rigid body refinement and difference fourier may be employed to solve the structure using a known structure of apo-HDLP (as referred to herein, apo-HDLP or apo-HDAC is the enzyme which is not complexed with an inhibitor compound) or any known HDLP/inhibitor complex structure.

The term "molecular replacement" refers to a method that involves generating a preliminary model of the three-dimensional structure of the HDLP crystals of the present invention whose structure coordinates are unknown prior to the employment of molecular replacement. Molecular replacement is achieved by orienting and positioning a molecule whose structure coordinates are known (in this case the previously determined apo-HDLP) within the unit cell as defined by the X-ray diffraction pattern obtained from an

HDLP or HDLP-related protein crystal whose structure is

- 24 -

unknown so as to best account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This in turn can be subject to any of several forms of refinement to provide a final, accurate structure.

5

10

15

20

25

30

Any method known to the skilled artisan may be employed to determine the structure by molecular replacement. example, the program AMORE (The CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D. 50:760-763) may be employed to determine the structure of an unknown histone deacetylase +/- an inhibitor by molecular replacement using the apo-HDLP coordinates (Figure 16). For the structure determination of the inhibitory compound TSA, the structure of TSA was obtained from the Cambridge (Refcode TRCHST, Structural Database http://www.ccdc.cam.ac.uk >>) may be employed to define the stereochemical restraints used in the refinement with the program CNS (Brunger et al., 1998, Acta Crystallogr. D <u>54</u>:905-921).

The three-dimensional structural information and the atomic coordinates associated with said structural information of HDLP are useful for solving the structure of crystallized proteins which belong to the HDAC family by molecular replacement. Similarly, any structure of a crystallized protein which is thought to be similar in structure based on function or sequence similarity or identity to HDLP may be solved by molecular replacement with the HDLP structural

5

10

15

20

25

30

- 25 -

information of the present invention. The structure of HDLP-related proteins as determined by molecular replacement as described above and in Example 2 below, comprise a root mean square deviation (rmsd) of no greater than 2.0 Å in the positions of $C\alpha$ atoms for at least 50% or more of the amino acids of the structure over the 375 residues of full-length HDLP. Such a rmsd may be expected based on the amino acid sequence identity. Chothia & Lesk, 1986, Embo J. $\underline{5}$:823-826.

The refined three-dimensional HDLP structures of the present invention, specifically apo-HDLP, Cys75Ser/Cys77Ser double mutant HDLP comprising a zinc atom in the active site, HDLP/TSA complex comprising a zinc atom in the active site, and HDLP/SAHA complex comprising a zinc atom in the active site, are represented by the atomic coordinates set forth in Figures 16 to 19 respectively. The refined model for apo-HDLP comprising amino acids 1-375 consists of wild-type HDLP residues 2 to 373 with residues 1, 374 and 375 not modeled and presumed disordered and was determined to a resolution Å. Similarly, the refined model 1.8 Cys75Ser/Cys77Ser double mutant HDLP comprising a zinc atom in the active site also consists of residues 2 to 373 with residues 1, 374 and 375 not modeled and presumed disordered and was determined to a resolution of 2.0 Å. The refined model for the HDLP/TSA complex comprising a zinc atom in the active site consists of the Cys75Ser/Cys77Ser double mutant HDLP residues 2 to 373 with residues 1, 374 and 375 not modeled and presumed disordered, has TSA in the binding pocket and was determined to a resolution of 2.1 Å. HDLP/SAHA complex is similar to the HDLP/TSA complex but has SAHA in the binding pocket and was determined to a resolution of 2.5 Å.

5

10

15

20

25

30

- 26 -

For the purposes of further describing the structure of HDLP and HDLP-related proteins, including, but not limited to, HDACs, from the data obtained from the HDLP crystals of the present invention, the definition of the following terms is provided:

The term " β sheet" refers to two or more polypeptide chains (or β strands) that run alongside each other and are linked in a regular manner by hydrogen bonds between the main chain C=O and N-H groups. Therefore all hydrogen bonds in a beta-sheet are between different segments of polypeptide. Most β -sheets in proteins are all-parallel (protein interiors) or all-antiparallel (one side facing solvent, the other facing the hydrophobic core). Hydrogen bonds in antiparallel sheets are perpendicular to the chain direction and spaced evenly as pairs between strands. Hydrogen bonds in parallel sheets are slanted with respect to the chain direction and spaced evenly between strands.

The term " α helix" refers to the most abundant helical conformation found in globular proteins. The average length of an α helix is 10 residues. In an α helix, all amide protons point toward the N-terminus and all carbonyl oxygens point toward the C-terminus. The repeating nature of the phi, psi pairs ensure this orientation. Hydrogen bonds within an α helix also display a repeating pattern in which the backbone C=O of residue X (wherein X refers to any amino acid) hydrogen bonds to the backbone HN of residue X+4. The α helix is a coiled structure characterized by 3.6 residues per turn, and translating along its axis 1.5 Å per amino acid. Thus the pitch is 3.6x1.5 or 5.4 Å. The screw sense of alpha helices is always right-handed.

The term "loop" refers to any other conformation of amino acids (i.e. not a helix, strand or sheet). Additionally, a loop may contain bond interactions between amino acid side chains, but not in a repetitive, regular fashion.

5

10

15

20

25

30

Amino acid residues in peptides shall herein after be abbreviated as follows: Phenylalanine is Phe or F; Leucine is Leu or L; Isoleucine is Ile or I; Methionine is Met or M; Valine is Val or V; Serine is Ser or S; Proline is Pro or P; Threonine is Thr or T; Alanine is Ala or A; Tyrosine is Tyr or Y; Histidine is His or H; Glutamine is Gln or Q; Asparagine is Asn or N; Lysine is Lys or K; Aspartic Acid is Asp or D; Glutamic Acid is Glu or E; Cysteine is Cys or C; Tryptophan is Trp or W; Arginine is Arg or R; and Glycine is Gly or G. For further description of amino acids, please refer to Proteins: Structure and Molecular Properties by Creighton, T.E., W.H. Freeman & Co., New York 1983.

The term "positively charged amino acid" refers to any amino acid having a positively charged side chain under normal physiological conditions. Examples of positively charged amino acids are Arg, Lys and His. The term "negatively charged amino acid" refers to any amino acid having a negatively charged side chain under normal physiological conditions. Examples of negatively charged amino acids are Asp and Glu. The term "hydrophobic amino acid" refers to any amino acid having an uncharged, nonpolar side chain that is relatively insoluble in water. Examples of hydrophobic amino acids are Ala, Leu, Ile, Gly, Val, Pro, Phe, Trp and Met. The term "hydrophilic amino acid" refers to any amino acid having an uncharged, polar side chain that is

relatively soluble in water. Examples of hydrophilic amino acids are Ser, Thr, Tyr, Asp, Gln, and Cys. The term "aromatic amino acid" refers to any amino acid comprising a ring structure. Examples of aromatic amino acids are His, Phe, Trp and Tyr.

The term "charge relay system" refers to a His-Asp arrangement as described by Fersht & Sperling, 1973, J. Mol. Biol. 74:137-149; Blow et al., 1969, Nature 221:337-340.

10

5

information obtained from the three-dimensional The structures of the present invention reveal that HDLP has a single-domain structure that belongs to the open α/β class of folds (see, e.g., Branden, 1980, Q. Rev. Biophys. 13:317-38). Two orthogonal views of the overall three-15 dimensional structure of HDLP are depicted in Figure 4A and The HDLP structure has a central eight-stranded parallel β sheet (strands arranged as $\beta 2 - \beta 1 - \beta 3 - \beta 8 - \beta 7 - \beta 4 - \beta 5$ and sixteen α helices (labeled α 1 through α 16 respectively). See Figure 4C. Four of the helices pack on 20 either face of the β sheet (α 7, α 8, α 9, α 10 and α 11, α 12, α 13, α 14) forming the core α/β structure characteristic of this class of folds. Most of the remaining eight helices are positioned near one side of the β sheet, near stands β 2β1-β3-β8. Large, well defined loops (Loops L1-L7; Figure 25 4C) originate from the C-terminal ends of the β -strands. The extra helices and the large L1-L7 loops are associated with a significant extension of the structure beyond the core α/β motif. This extension of the structure gives rise to two prominent architectural features: a deep, narrow 30 pocket and an internal cavity adjacent to the pocket. These

- 29 -

two architectural features comprise the active site (see Figure 5A). The structure of HDLP-related proteins (e.g. HDACs) may also comprise the conserved α/β structure characteristic.

5

10

15

The term "active site" comprises any or all of the following sites in HDLP, the substrate binding site, the site where the cleavage of an acetyl group from a substrate occurs or the site where an inhibitor of the HDAC family or, more particularly, HDLP binds. The active site, as referred to herein, comprises Aspl66, Asp258, His170, Tyr297, His131, His132, Aspl68, Asp173, Phe141, Phe198, Leu265, Pro22 and Gly140, and also a metal bound at the bottom of the pocket by Asp173, Aspl68 and His defined by the coordinates listed in Figures 16 to 19 with an rmsd of 2.0 Å. The metal which binds at the bottom of the pocket will be a divalent cation selected from the group consisting of zinc, cobalt or manganese.

The deep narrow pocket has a tube-like shape with a depth of ~ 11 Å. The pocket opening constricts half way down to ~ 4.5 by 5.5 Å, and becomes wider at the bottom (see Figure 5A). The pocket and its immediate surroundings are made up of loops L1 through L7.

25

30

The walls of the pocket are covered with side chains of hydrophobic and aromatic residues (Pro22, Tyr91 near the entrance; and Gly140, Phe141, Phe 198, Leu265 and Tyr297 further down; Figure 5B). For numbering of amino acids please refer to SEQ ID NO:1. Of particular interest are Phe141 and Phe198, whose phenyl groups face each other in

parallel at a distance of 7.5 Å, marking the most slender portion of the pocket (see Figure 5B). Of particular interest is that only one pocket residue differs in HDAC1 when the sequences are aligned (alignment may be accomplished using DNAstar™ MegAlign™ program, Madison, WI), this residue is Glu98 of HDAC1 which is Tyr91 in HDLP. The structure reveals that this residue in HDLP is mostly solvent exposed.

5

25

30

Near the bottom of the pocket of the active site at its narrowest point, is located a zinc ion (see Figure 6A). In order to obtain the zinc in the structure, the crystals may be soaked in zinc (e.g. ZnCl₂) or co-crystalized in the presence of zinc. The zinc ion is coordinated by Asp168 (Oδ1, 2.1 Å), His170 (Nδ1, 2.1 Å), Asp258 (Oδ1, 1.9 Å) and a water molecule (2.5 Å). See Figure 5B and 6B. The amino acid residues that coordinate zinc are arranged in a tetrahedral geometry, but the position of the water molecule, which is also hydrogen bonded to His131, deviates from this geometry by ~25°.

In addition to the zinc ligands, the bottom of the pocket contains two histidine (His131 and His132), two aspartic acids (Asp166 and Asp173) and a tyrosine (Tyr297). See Figure 5B and 10B. Each of the histidines makes a hydrogen bond through its Nol to an aspartic acid carboxylate oxygen, with the oxygen located in the plane of the imidizole ring (Figure 5B). This His-Asp arrangement is characteristic of the charge relay system present in the active sites of serine proteases, where it serves to polarize the imidizole Ne and increase its basicity. Fersht & Sperling, 1973, J.

- 31 -

Mol. Biol. <u>74</u>:137-149; Blow et al., 1969, Nature <u>221</u>:337-340.

The Asp166-His131 charge pair relay (hereafter referred to as "buried charged relay") is positioned even deeper in the pocket and more buried compared to the Asp173-His132 charge relay (hereafter referred to as "exposed charge relay") which is partially solvent exposed. The buried charge relay makes a hydrogen bond (2.6 Å) to the zinc-bound water molecule referred to above, and this hydrogen bond could contribute to the deviation of the water-zinc coordination from ideal geometry (Figure 5B). The exposed charge relay is directed to a point ~ 2.5 Å away from the water molecule and closer to the surface.

15

20

25

10

5

Tyr 297 is positioned next to the zinc, opposite from where the two charge relay systems are located. The Tyr hydroxyl group lies 4.4 Å away from the zinc atom and has no interactions with the rest of the protein (Figure 5B). Next to Tyr297, there is an opening in the pocket wall, which leads to the adjacent internal cavity.

The floor of the internal cavity is made up of portions of the L3 and L7 loops as they emerge from the β strands, and the roof is made up by the $\alpha 1\text{-L} 1\text{-}\alpha 2$ segment. The L1 loop appears more flexible than other loops in the structure. This may allow the transient exchange of the cavity contents with the bulk solvent.

The cavity is lined primarily with hydrophobic residues and is particularly rich in glycine residues (Ala127, Gly128, Gly129, Met130, and Phe141 of L3; Gly293, Gly294, Gly295 and

5

10

15

20

25

30

- 32 -

Gly296 of L7; and Tyr17, Pro22 and Leu23 of L1). There are only two charged residues in the cavity (Arg27 and His 21) and these are contributed by the L1 loop.

The cavity may provide space for the diffusion of the acetate product away from the catalytic center, which may otherwise be crowded and shielded during deacetylation from the solvent when the substrate is bound. Such a role for the cavity is supported by the observation that the cavity contains three water and two isopropanol molecules (from the crystallization buffer) in the 1.8 Å apo-protein structure. The cavity may also bind another cofactor, in addition to zinc, for the facilitation of the enzymatic activity of the HDLP. A proposed catalytic mechanism for deacetylation is provided in Figure 8.

The structure of HDLP as defined by the present invention, in conjunction with the HDAC1 sequence homology, shows that the 375-amino acid HDLP protein corresponds to the histone deacetylase catalytic core which is conserved across the HDAC family (see Figure 2). The 35.2% HDLP-HDAC1 sequence identity predicts structural similarity with a rmsd in $C\alpha$ positions of ~ 1.5 Å. Chothia and Lesk describe the relation between the divergence of sequence and structure of proteins in Embo J. 5:823-826 (1986). The 40residue C-terminus of HDLP is likely to have a divergent structure since this region has lower homology to HDAC1, although the α 16 helix in this region is part of the conserved open α/β core fold and HDAC1 is likely to comprise a similar helix. However divergent this C-terminal region may be, this region is outside the active site and is likely to not effect the structure of the active site. Beyond the

5

10

15

20

25

30

- 33 -

C-terminus of the histone deacetylase catalytic core, HDAC family members are divergent in length and sequence. In the HDAC family, this region (amino acid residues ~390-482) is highly polar, populated with acidic residues, and is likely to be flexible or loosely folded.

The HDLP-HDAC homology maps primarily to the hydrophobic core and to the L1-L7 loops, with portions of the loops that make up the pocket and adjacent cavity having the highest level of amino acid residue sequence conservation (Figure 9A and 9B). Specifically, all of the polar residues in the active site (the zinc ligands, the two charge relay systems, and Tyr297) and the hydrophobic residues that make up the walls of the pocket (Gly140, Phe141, Phe198 and Leu265) are identical. Among the residues that make up the internal cavity, the ones closest to the active site are either identical or conservatively substituted (for example, Leu23 \rightarrow Met and Met130 \rightarrow Leu). Surface residues around the pocket are conserved to a lesser extent, but are still above 35% average sequence identity.

The information obtained from the inhibitor-bound HDLP complex crystal structures of the present invention reveal detailed information which is useful in the design, isolation, screening and determination of potential inhibitor compounds which may inhibit HDLP/HDAC family members. As described above, the HDLP structure consists of a parallel β sheet with α helices packing against both faces (Figure 4A, 4B, and 4C). At one end of the β sheet, 7 loops (L1-L7) form a narrow, tube-like pocket which are lined with hydrophobic residues and which comprise a zinc binding site, several polar side chains, including two Asp-His charge

- 34 -

relay systems. Mutation of the zinc ligands and other polar residues at the pocket bottom reduces or eliminates the catalytic activity.

The present inventors found that mutation at the Tyr297Phe site reduced activity. See also, Hassig et al., 1998, Proc. Natl. Acad. Sci. USA 95:3519-3524; Kadosh & Struhl, 1998, Genes Dev. 12:797-805. The elimination of activity by mutation of these residues indicates that this region is the enzyme active site. Adjacent to the active site, there is an internal cavity that may provide space for the diffusion of the acetate reaction product. Homology at the active site between HDLP and HDAC1, as described above, indicates that they share structural and functional homology.

15

20

25

30

10

5

The inhibitor compound, trichostatin A (TSA) (Tsuji et al., 1976, J. Antibiotics 29:1-6) binds HDLP by inserting its long aliphatic chain, which has a hydroxamic acid group at one end, into the pocket (Figure 6A, 6B and 6C). aliphatic chain makes multiple contacts in the well-like, hydrophobic portion of the pocket. The hydroxamic acid reaches the polar bottom of the pocket, where it coordinates the zinc in a bidentate fashion and also forms hydrogen bonds with the polar residues in the active site, including the two charge relay system histidines. The aromatic dimethylamino-phenyl group at the other end of the TSA chain makes contacts at the pocket entrance and serves to cap it. The amino acid residues of HDLP which contact TSA are conserved in HDAC, indicating that TSA binds and inhibits HDAC in a similar fashion to HDLP.

In the complex, the hydroxamic acid, most of the aliphatic chain and part of the dimethylamino-phenyl group of TSA are buried (60% of TSA's surface area; Figure 6A). The hydroxamic acid group binds the zinc in a bidentite fashion forming bonds through its carbonyl (2.4 Å) and hydroxyl groups (2.2 Å) resulting in a penta-coordinated Zn²+ (Figure 6B and 6C). The hydroxamic acid hydroxyl group replaces the water molecule that binds to the zinc in the apo-HDLP structure described above. The hydroxamic acid also hydrogen bonds with both charge relay system histidines (hydroxyl oxygen to His131 Ne2, 2.8 Å; and nitrogen to His132 Ne2, 2.8 Å), and the Tyr297 hydroxyl group (2.4 Å; Figure 6B and 6C).

5

10

15

20

25

30

The 5-carbon long branched alkene chain of TSA fits snugly in the narrow portion of the pocket making multiple van der Waals contacts with all of the hydrophobic groups lining the pocket (Figure 6B and 6C). Near its center, the chain contains a methyl substituted carbon-carbon double bond which is sandwiched between the phenyl groups of the Phel41 and Phe98 at the tightest point of the pocket (Figure 6A and 6B). The length of the alkene chain appears optimal for spanning the length of the pocket, and allowing contacts both at the bottom and at the entrance of the pocket, although, the cap group of Formula (I) may provide length to span the pocket allowing for a shorter alkene chain (aliphatic chain).

At the entrance of the pocket, one face of the planar structure formed by the dimethylamino-phenyl and adjacent carbonyl groups of TSA makes contacts at the rim of the pocket (Pro22, Tyr91, Phel41; Figure 6B and 6C). This

packing is facilitated by the roughly 110° angle in the overall structure of TSA at the junction of the aliphatic chain and the dimethylamino-phenyl group (occurring at the sp³ hybridized C8 carbon). Upon TSA binding, the side chain of Tyr91, which is mostly solvent exposed, changes conformation to make space for the dimethylamino-phenyl group. This is the only change near the active site observed upon TSA binding.

5

10 The hydroxamic acid group is a common motif in zinc metalloprotease inhibitors. See U.S. Patent No. 5,919,940 and 5,917,090; See also, Grams et al., 1995, Biochemistry 34:14012-14020; Lovejoy et al., 1999, Nat. Struct. Biol. 6:217-221; and Holmes & Matthews, 1981, Biochemistry 15 20:6912-6920. Like TSA, these inhibitors also coordinate the active site zinc in a bidentate fashion using their hydroxamate hyroxyl and carbonyl oxygens, replace the nucleophilic water molecule with their hydroxamate hydroxyl groups and form hydrogen bonds to the general base (Grams et 20 al., 1995, Biochemistry 34:14012-14020; Lovejoy et al., 1999, Nat. Struct. Biol. 6:217-221; and Holmes & Matthews, 1981, Biochemistry 20:6912-6920).

SAHA, which has a ~30-fold weaker inhibitory activity than

TSA (Richon et al., 1998, Proc. Natl. Acad. Sci. USA

95:3003-3007), binds HDLP similarly to TSA (see, e.g.,

Figure 4D). The SAHA hydroxamic acid group makes the same

contacts to the zinc and active site residues, and the

importance of these interactions is underscored by the loss

of activity of SAHA derivatives lacking the hydroxamic group

(Richon et al., 1998, Proc. Natl. Acad. Sci. USA 95:3003-

3007). The six-carbon long aliphatic chain of SAHA packs in the tube-like hydrophobic portion of the pocket. Compared to TSA however, SAHA's aliphatic chain packs less snugly and makes fewer van der waals contacts, in part, because SAHA lacks TSA's C15 methyl group branch. SAHA also lacks TSA's double bonds in this region, and this may lead to increased flexibility of the aliphatic chain. The cap group of SAHA consists of a phenyl-amino ketone group. In the crystal structure, the phenyl group has weak electron density, suggesting that it does not pack as well as the cap group of TSA. This may be due to the larger separation between the hydroxamic and cap groups of SAHA compared to TSA (compare TSA, Formula (II) and SAHA, Formula (III), below).

15 (II)

5

10

25 (III)

- 38 -

The determination of the structure of HDLP and HDLP bound to an inhibitory compound has enabled, for the first time, the identification of the active site of HDLP and of related HDLP proteins, such as proteins belonging to the HDAC family.

The three-dimensional structural information and the atomic coordinates associated with said structural information of HDLP bound to an inhibitory compound is useful in rational drug design providing for a method of identifying inhibitory compounds which bind to and inhibit the enzymatic activity of HDLP, HDAC family proteins and other histone deacetylaselike proteins related to HDLP. Said method for identifying said potential inhibitor for an enzyme comprising deacetylase activity comprises the steps of (a) using a three-dimensional structure of HDLP as defined by its atomic coordinates listed in Figure 16 to 19; (b) employing said three-dimensional structure to design or select said (c) synthesizing said potential potential inhibitor; inhibitor; (d) contacting said potential inhibitor with said enzyme in the presence of an acetylated substrate; and (e) determining the ability of said inhibitor to inhibit said deacetylase activity.

The potential HDLP and HDLP-related (e.g. HDAC) inhibitors identified by the method of the present invention are represented by formula (I)

5

10

15

- 39 -

(I)

5

10

15

20

25

30

wherein X comprises a cap group which binds to at least one amino acid selected from the group consisting of proline and leucine; Y comprises an aliphatic chain group which binds to at least one amino acid selected from the group consisting of leucine, phenylalanine and glycine; and Z comprises an active site binding group which binds to at least one amino acid selected from the group consisting of aspartic acid, tyrosine and histidine and wherein Z may further bind to a zinc atom and with the provision that the compound of Formula (I) is not TSA, trapoxin, SAHA, SAHA derivatives described in U.S. Patent Nos. 5,608,108; 5,700,811; 5,773,474; 5840,960 and 5,668,179.

The present invention permits the use of molecular design techniques to design, identify and synthesize chemical entities and compounds, including inhibitory compounds, capable of binding to the active site of HDLP and HDLP-related proteins. The atomic coordinates of apo-HDLP and inhibitor-bound HDLP may be used in conjunction with computer modeling using a docking program such as GRAM, DOCK, HOOK or AUTODOCK (Dunbrack et al., 1997, Folding & Design 2:27-42) to identify potential inhibitors of HDLP and HDLP-related proteins (e.g. HDAC1). This procedure can include computer fitting of potential inhibitors to the active site of HDLP to ascertain how well the shape and the

5

10

15

structure of the potential inhibitor complement the active site or to compare the potential inhibitors with the binding of TSA or SAHA in the active See Bugg et al, 1998, Scientific American December: 92-98; West et al., 1995, TIPS 16:67-74. potential inhibitors designed by modeling with a docking program conform to the general formula (I) as described Computer programs may also be employed to estimate above. the attraction, repulsion and stearic hindrance of the HDLP and potential inhibitor compound. Generally, the tighter the fit, the lower the stearic hindrances, the greater the attractive forces, and the greater the specificity which are important features for a specific inhibitory compound which is more likely to interact with HDLP and HDLP-related proteins rather than other classes of proteins. features are desired particularly where the inhibitory compound is a potential antitumor drug.

20 by visually inspecting the three-dimensional structure to determine more effective deacetylase inhibitors. This type of modeling may be referred to as "manual" drug design.

Manual drug design may employ visual inspection and analysis using a graphics visualization program such as "O" (Jones, T.A., Zhou, J.Y., Cowan, S.W., and Kjeldgaard, M., Improved method for building protein models in electron density maps and the location of errors in these models, Acta Crystallog., A47, 110-119.

Initially potential inhibitor compounds can be selected for their structural similarity to the X, Y and Z constituents

5

10

15

20

25

30

- 41 -

of formula (I) by manual drug design. The structural analog thus designed can then be modified by computer modeling programs to better define the most likely effective candidates. Reduction of the number of potential candidates is useful as it may not be possible to synthesize and screen a countless number of variations compounds that may have some similarity to known inhibitory molecules. analysis has been shown effective in the development of HIV protease inhibitors (Lam et al., 1994, Science 263:380-384; Wlodawer et al., 1993, Ann. Rev. Biochem. 62:543-585; Appelt, 1993 Perspectives in Drug Discovery and Design 1:23-48; Erickson, 1993, Perspectives in Drug Discovery and Design 1:109-128. Alternatively, random screening of an small molecule library could lead to potential inhibitors whose inhibitory activity may then be analyzed by computer modeling as described above to better determine their effectiveness as inhibitors.

The compounds designed using the information of the present invention may be competitive or noncompetitive inhibitors. These designed inhibitors may bind to all or a portion of the active site of HDLP and may be more potent, more specific, less toxic and more effective than known inhibitors for HDLP and HDLP-related proteins, and particularly HDACs. The designed inhibitors may also be less potent but have a longer half life in vivo and/or in vitro and therefore be more effective at inhibiting histone deacetylase activity in vivo and/or in vivo for prolonged periods of time. Said designed inhibitors are useful to inhibit the histone deacetylase activity of HDLP and HDLP-related proteins (e.g. HDAC1), to inhibit cell growth in

- 42 -

vitro and in vivo and may be particularly useful as antitumor agents.

The present invention also permits the use of molecular design techniques to computationally screen small molecule data bases for chemical entities or compounds that can bind to HDLP in a manner analogous to the TSA and SAHA as defined by the structure of the present invention. computational screening may identify various groups which may be defined as "X", "Y" or "Z" of formula (I) above and may be employed to synthesize the potential inhibitors of the present invention comprising formula (I). potential inhibitors may be assayed for histone deacetylase inhibitory activity in a histone deacetylase activity assay (see Example 3 below), may be co-crystallized with HDLP to the binding characteristics through X-ray determine crystallography techniques defined above (e.g. said cocrystal structure may be determined by molecular replacement to assess the binding characteristics of said potential inhibitor), or may be assessed based on binding activity by incubating said potential inhibitor with said HDLP, performing gel filtration to separate any free potential inhibitor to HDLP-bound inhibitor, and determining the amount of histone deacetylase activity of the inhibitorbound HDLP. To measure binding constants (e.g., Kd), methods known to those in the art may be employed such as Biacore™ analysis, isothermal titration calorimetry, Elisa with a known drug on the plate to show competitive binding, or by a deacetylase activity assay.

10

15

20

5

10

15

20

25

30

The design of potential inhibitors of the present invention is further facilitated by reference to Figure 9, which is a surface representation figure that depicts the surface grooves. Analysis of such grooves gives insight into the constituents of the cap group of formula (I). The surface grooves are labeled groove A, groove A', groove B and groove C, into which additional cap groups may bind. The structure of HDLP bound to either TSA or SAHA shows that the cap groups of TSA and SAHA bind in groove A. By analysis of the amino acid sequence identity of HDLP and HDACs, Groove A is well conserved in HDACs, has a significant hydrophobic component, appears deep enough to allow for significant interactions and is also the largest of the four grooves. In addition to the dimethylamino phenyl group of the TSA, the A groove can fit approximately 200 daltons worth of groups (e.g. groove A could accommodate a naphthalene-like group after an appropriate spacer, etc.). Groove A, as referred to herein, is characterized by the following conserved residues of HDLP: His 21, Pro22, Lys24, Phe141, Leu265 and Phe335. The periphery of groove A comprises unconserved residues. Additionally, Groove A', as referred to herein, comprises primarily unconserved residues.

Groove B is immediately adjacent to the pocket. Of significance is that the bottom of groove B comprises the Nepsilon nitrogen of His170, which coordinates the zinc through its N-delta nitrogen. Significant binding energy may be achieved by contacting the Ne proton of His170 with a carboxylic acid or sulfate group. In addition, groove B may be large enough to fit a phenyl group, the face of which may comprise a partial negative charge which may pack over the N-epsilon proton of His170. The conserved residues of

- 44 -

groove B, as referred to herein are: His170, Tyr196 and Leu265.

Groove C is not as well conserved as the other two grooves and the amino acid residues which comprise groove C are mostly polar and solvent exposed. Groove C, as referred to herein comprises the following conserved residues: Asn87, Gly140 and Phe198.

The compounds of the present invention are represented by formula (I):

(I)

5

15 (x)

Examples for suitable X constituents wherein X comprises a cap group may be described in three categories, depending upon which surface of groove A, A', B and/or C they are targeted to. The cap group may comprise all three categories on the same compound. Of particular benefit may be replacing the cap group of TSA or SAHA with a large, rigid structure. Nonlimiting examples for suitable cap groups (X) of formula (I) which may bind in groove A are: (1) attaching a 1-3 methyl linker followed by a phenyl or naphthalene group from the para or meta position of SAHA's phenyl group represented by formula (IV):

20

- 45 -

(IV)

5

10

(2) attaching a 2-3 methyl linker followed by a phenyl or naphthalene group from the meta position of TSA's phenyl cap group, or from TSA's dimethyl amino group represented by formula (V):

(V)

phenyl or napthalene

phenyl or napthalene

n(H₂C)

15

20

and which may bind in groove B is a 1-3 methyl group spacer followed by a carboxylate, sulfate or phenyl group as represented by formula (VI):

(VI)

25

30

With respect to the aliphatic (Y) group, the diameter of the pocket suggests that one more methyl "side chain" could fit, in addition to the C15 methyl group on the C10 carbon. Nonlimiting suitable examples for Y constituents wherein Y comprises an aliphatic chain group are as follows: (1) add

- 46 -

a methyl group to TSA on the C12 carbon (with or without a methyl group on the C10 carbon and with or without double bonds and with or without substituting the X and/or Z constituents of formula (I)as represented by formula (VII):

(VII)

10 (2) add a methyl group to TSA on the C9 carbon (with or without a methyl group on the C10 carbon; with or without both or either of the double bonds, and with or without substituting the X and/or Z constituents of formula (I) as represented by formula (VIII):

15

5

(VIII)

20

(3) replace the two alkalene double bonds of TSA with only one between C10 and C11, which may free the C11 and C12 torsion to allow for a better fit, the X and/or Z groups may also be substituted as represented by formula (IX):

25 (IX)

(4) cyclize C15 and C12 carbons of TSA through a sulphur atom (or nitrogen atom), the X and/or Z groups may also be substituted as represented by formula (X):

(X)

5

(5) extend from the C9 carbon of TSA such that the extension approaches and/or enters groove B (see Figure 9); making C9 sp3 so that it can have some freedom; attach to C9 a 1-3 methyl group spacer which may include a double bond and they attaching thereto a sulfate, carboxylate, sulfate, hyroxyl, or phenyl group which may make an interaction with the N-epsilon proton of His170 which may coordinate the zinc atom as represented by formula (XI):

(XI)

20

$$X \longrightarrow \begin{pmatrix} (1s) & ($$

25 (6) extend off the C8 carbon (replacing C14) of TSA such that the extension approaches or enters groove B; attach a 1-3 methyl group spacer (which may include a double bond) and then link thereto a carboxylate, sulfate, hydroxyl or phenyl group such that an interaction is made with the N-epsilon proton of His170 that coordinates the zinc atom; the X and/or Z constituents may also be substituted as represented by formula (XII):

- 48 -

(XII)

$$\begin{array}{c|c}
R_1 \\
(CH_2)n & (16) \\
\downarrow & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

(7) substitute the C8 carbon at the end of the aliphatic chain such that the substitution may contact groove A, A', B and or C, in such an example, a cap group (X) may or may not be required and the X and Z constituents may be substituted as well, as represented by formula (XIII):

(XIII)

15

30

10

5

(8) formulas VII through XIII above wherein the aliphatic chain further comprises a methyl group between the active site binding group (Z) and the C8 carbon, and preferably just before the C8 carbon, increasing the distance between X and Z, (9) make the connection between the aliphatic chain and the cap group more rigid (e.g., by closing a 6-membered ring which may or may not comprise oxygen, the X and Z group may also be substituted as represented by formula (XIV):

(XIV)

- 49 -

and (10) combining two or more of the changes depicted by formulas (VII-XIV).

Additionally, nonlimiting examples for suitable Z groups wherein Z comprises an active site binding group are as follows: (1) hydroxamic acid, (2) carboxylic acid, (3) sulfonamide, (4) acetamide, (5) epoxyketone, (6) an ester with a methyl linker and a hydroxyl of acetate ester group to lead into the cavity and interact with a conserved arginine (Arg27) as represented by formula (XV): (XV)

$$R_1 = \begin{cases} CH_2 \text{ in } \\ C \\ C \\ C \\ C \end{cases}$$

$$R_1 = \begin{cases} -OH \\ -C \\ O - CH_3 \end{cases}$$

and (7) an alphaketone as represented by formula (XVI):

$$R_{1} = \begin{cases} --- (CH_{2})n - OH \\ --- (CH_{2})n - CH_{2} \end{cases}$$

5

10

15

25

30

Additionally, other suitable X, Y and Z constituents may be envisioned by the skilled artisan given the three-dimensional structural information of the present invention.

After having determined potential suitable X, Y and Z constituents, the constituents are combined to form a compound of formula (I) using combinatorial chemistry techniques. This may be achieved according to U.S. Patent Nos. 5,608,108; 5,700,811; 5,773,474; 5,840,960 and 5,668,179, incorporated herein by reference. Any methods

- 50 -

known to one of skill in the art may be employed to synthesize compounds of formula (I) comprising X, Y and Z constituents as determined by the methods described above.

As mentioned above, the compounds of formula (I) are useful to inhibit the histone deacetylase activity of HDLP and HDAC-related proteins. Such inhibition may allow for a reduction or cessation of cell growth in vitro and in vivo.

For in vitro use, such reduction or cessation of cell growth is useful to study the role of histone deacetylation and differentiation during the cell cycle and also to study other mechanisms associated with cell cycle arrest and particularly how the repression of transcription is involved in cell cycle progression which may be studies in a yeast model system such as that described by Kadosh & Struhl, 1998, Mol. Cell. Biol. 18:5121-5127. In vitro model systems which may be employed to study the effects of potential inhibitors on cell cycle progression and also tumor growth include those described by: Richon et al, 1998, Proc. Natl. Acad. Sci. USA 95:3003-3007; Yoshida et al., 1995, Bioessays 17:423-430; Kim et al., 1999, Oncogene 18:2461-2470; Richon et al., 1996, Proc. Natl. Acad. Sci. USA 93:5705-5708; and Yoshida et al., 1987, Cancer Res. 47:3688-3691.

25

30

10

15

20

For in vivo use, such a reduction or cessation of cell growth is useful to study the effect of said inhibitor compounds in non-human animal model systems of cancer and is also useful for the treatment of cancer in a recipient in need of such treatment. Non-limiting examples of animals which may serve as non-human animal model systems include

mice, rats, rabbits, chickens, sheep, goats, cows, pigs, and non-human primates. See, e.g., Desai et al., 1999, Proc. AACR 40: abstract #2396; Cohen et al., 1999, Cancer Res., submitted. The compounds of the present invention may be administered to a transgenic non-human animal wherein said animal has developed cancer such as those animal models in which the animal has a propensity for developing cancer (e.g. animal model systems described in U.S. Patents 5,777,193, 5,811,634, 5,709,844, 5,698,764, and 5,550,316). Such animal model systems may allow for the determination of toxicity and tumor reduction effectiveness of the compounds of the present invention.

A preferred compound of the present invention may comprise high specific activity for HDLP and HDAC-related proteins, good bioavailability when administered orally, activity in reducing or ceasing cell growth in tumor cell lines, and activity in reducing or ceasing tumor growth in animal models of various cancers.

20

25

30

5

10

15

Accordingly, another aspect of this invention is a method of eradicating or managing cancer in a recipient, which may be an animal and is preferably a human. Said method comprises administering to said recipient a tumor reducing amount of a compound as defined by formula (I) above, or a physiological acceptable salt thereof.

In a further aspect of the invention, there is provided a composition comprising the compound of formula (I) and an excipient or carrier. Administration of the foregoing agents may be local or systemic. Such carriers include any

WO 01/18045

suitable physiological solutions or dispersant or the like. The physiologic solutions include any acceptable solution or dispersion media, such as saline, or buffered saline. carrier may also include antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. Except insofar as any conventional media, carrier or agent is incompatible with the active ingredient, its use in the compositions is contemplated.

- 52 -

- 10 Routes of administration for the compositions containing the delivery vehicle constructs of the present invention include any conventional and physiologically acceptable routes, such as, for example, oral, pulmonary, parenteral (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), inhalation (via a fine powder formulation or a 15 fine mist), transdermal, nasal, vaginal, rectal, or sublingual routes of administration and can be formulated in dosage forms appropriate for each route of administration.
- 20 The following examples are provided to more clearly illustrate the aspects of the invention and are not intended to limit the scope of the invention.

EXAMPLES

30

5

Example 1: Protein Production and Purification: 25

Full-length wild-type HDLP (Genbank accession number AE000719) was subcloned from an Aquifex aeolicus chromosomal DNA preparation (provided by Robert Huber of Universitaet of Regensburg, Germany) into the pGEX4T3 (Amersham-Pharmacia, Piscataway, NJ) vector using the polymerase chain reaction The cysteine-to-serine and active site mutants were constructed by PCR site directed mutagenesis and were

sequenced. The HDLP-glutathione S-transferase (GST) fusion protein was produced in Escherichia coli, purified by chromatography using a column affinity glutathione-sepharose resin (Amersham-Pharmacia, Piscataway, NJ), and by anion-exchange chromatography (Q-sepharose™; Amersham-Pharmacia, Piscataway, NJ). HDLP was cleaved from the fusion protein with thrombin at 4°C, was purified by (Q-sepharose™; Amersham-Pharmacia, anion-exchange Piscataway, NJ) and qel filtration chromatography (Superdex™200; Amersham-Pharmacia, Piscataway, NJ), and was concentrated to typically 25 mg/ml in a buffer of 25 mM bis-tris propane (BTP), 500 mM NaCl, 5 mM dithiothrietiol (DTT), 2% isopropanol, pH 7.0.

5

10

15 Although, it is not known what metal cofactor HDLP contains in vivo, it is presumed to be zinc because of arrangement of the ligands and the similarities in the active site to the zinc proteases. The lack of metal in the purified HDLP is presumed due, in part, to the use of DTT during purification. \mbox{HDLP} was reconstituted with \mbox{Zn}^{2+} by 20 mixing the Cys75Ser/Cys77Ser double mutant at 10 mg/ml with a 5-fold molar excess of ZnCl2 in a buffer of 25 mM bis-tris propane, 200 mM NaCl, 1% isopropanol, pH 7.0. Unbound ZnCl² was removed by fractionating HDLP through a G25 desalting 25 column (Amersham-Pharmacia, Piscataway, NJ). The HDLP-Zn²⁺-TSA complex was prepared by incubating the Zn²⁺ reconstituted HDLP mutant with 1 mM TSA for 45 minutes, followed by gel filtration chromatography (Superdex™200; Amersham-Pharmacia, Piscataway, NJ) to remove excess TSA, and concentration to typically 25 mg/ml in a buffer of 25 mM 30 bis-tris propane, 500 mM NaCl, 1% isopropanol, pH 7.0.

- 54 -

FLAG epitope tagged human HDAC1 was overexpressed using a baculovirus expression system in Hi5 (Invitrogen, Carlsbad, CA) insect cells grown in suspension in serum-free media (Sf900, Gibco, Grand Island, NY). The fusion protein was purified by anion exchange and affinity chromatography using Anti-FLAG M2 affinity resin (Sigma, St. Louis, MO) and FLAG Peptide (Sigma, St. Louis, MO).

Example 2: Crystallization and data collection:

5

20

25

30

10 Crystals of apo-HDLP were grown at room temperature by the hanging-drop vapor-diffusion method, from 7.5% isopropanol, 28% PEG 1500, 425 mM NaCl, 100 mM Tris-Cl, pH 7.0. They form in space group C2 with a = 51.4 Å, b = 93.8 Å, c = 78.7 Å, β = 96.9 Å, and contain one HDLP molecule in the asymmetric unit. Diffraction data were collected with crystals flash-frozen in a buffer of 7.5% isopropanol, 35% PEG 1500, 75 mM NaCl, 100 mM Tris-Cl, pH 8.0, at -170° C.

The structure of the HDLP- $\rm Zn^{2+}$ complex was determined from HDLP Cys75Ser/Cys77Ser double mutant crystals grown from 23% tert-butanol, 27% PEG 1500, 400 mM KCl, 100 mM bis-tris propane-Cl, pH 6.8. Space group and cell dimensions were identical to the apocrystals. The HDLP- $\rm Zn^{2+}$ crystals were harvested and frozen in 27% tert-butanol, 22% PEG 1500, 50 mM KCl, 20 mM NaCl, 0.2 mM ZnCl₂, 100 mM bis-tris propane, pH 6.8, at -170° C.

Crystals of the HDLP-Zn²⁺-TSA complex comprised HDLP Cys75Ser/Cys77Ser double mutant and were grown from 23% tert-butanol, 27% PEG 1500, 600 mM KCl, 100 mM bis-tris propane-Cl, pH 6.8, by microseeding. The crystals were grown in the presence of zinc. They form in space group

- 55 -

 $P2_12_12_1$ with a = 53.4 Å, b = 94.4 Å, c = 156.3 Å and contain two HDLP- Zn^{2+} -TSA complexes in the asymmetric unit. The HDLP- Zn^{2+} -TSA crystals were harvested and frozen in the same cryobuffer as the HDLP- Zn^{2+} crystals except that 0.5mM TSA was added. Data were processed with DENZO and SCALEPACK (Otwinowski & Minor, 1997, Method. Ensemble. 276:307-326). MIR analysis, model building and refinement.

5

10

The HDLP-Zn²⁺-SAHA complex crystals were grown and evaluated the same as the HDLP-Zn²⁺-TSA crystals. However, the restraints for the SAHA structure were constructed based on stereochemical parameters from TSA. Like the apo-HDLP crystals, the SAHA/HDLP co-crystals grew in space group C2.

Heavy-atom soaks were performed with the apo-HDLP crystals 15 in a buffer of 7.5% isopropanol, 30% PEG 1500, 75 mM NaCl, 100 mM Tris-Cl, pH 8.0, supplemented with 1.0 mM thimerosal for 2h, 5 mM KAu(CN)₂ for 1h, and 1 mM Pb(Me)₃OAc for 2h. MIR phases were calculated with the program MLPHARE (The 20 CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D 50:760-763) at 2.5 Å using the anomalous diffraction signal from the thimerosal derivative, and had a mean figure of merit of 0.55. The phases were improved by solvent flattening with the program DM (The CCP4 25 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D 50:760-763) , and were used to build the initial model with the program O (Jones et al., 1991, Acta Crystallogr. A 47:110-109). Successive rounds of rebuilding and simulated annealing refinement with the 30 program CNS (Brunger et al., 1998, Acta Crystallogr. D 54:905-921) allowed interpretation of HDLP from residues 2

- 56 -

to 373. Residues 1, 374, and 375 were not modeled and are presumed to be disordered.

The structure of the HDLP-Zn2+-TSA and HDLP-Zn2+-SAHA complex were determined by molecular replacement with the program AMORE (The CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D 50:760-763) using the apo-HDLP structure as a search model. The initial electron density maps had strong and continuous difference density for the entire TSA molecule. However the SAHA molecule was not as well ordered in the cap group region. The structure of TSA was obtained from the Cambridge Structural Database (Refcode TRCHST) and was used to define stereochemical restraints used in the refinement with the program CNS. The restraints of SAHA were constructed based on stereochemical parameters from TSA and surrounding amino acid residues. The dimer interface in the HDLP-Zn2+-TSA and HDLP-Zn²⁺-SAHA crystals primarily involves Phe200 on the protein surface. The Phe200 side chain contacts Tyr91, whose side chain conformation changes on TSA binding, and part of the dimethyl amino phenyl group of TSA from the second protomer. The HDAC family does not contain a phenylalanine residue at the equivalent position.

25 Example 3: Histone deacetylase assays:

5

10

15

20

30

Purified proteins were assayed by incubating 10 μg of [3H] acetyl-labeled murine erythroleukemia histone substrate and HDAC assay buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 10% glycerol) for 30-60 minutes at 37° C in a total volume of 30 μ l. The final concentrations of HDLP and HDAC1-FLAG were 3.6 μ M and 0.24 μ M, respectively. Assays were performed in duplicate. The reactions were stopped and the

- 57 -

released acetate was extracted and assayed as described (Hendzel et al., 1991, J. Biol. Chem. 266:21936-21942). [3H] acetyl-labeled murine erythroleukemia histones were prepared essentially as described (Carmen et al., 1996, J. Biol. Chem. 271:15837-15844). Inhibitors were added in the absence of substrate and incubated on ice for 20 minutes, substrate was added, and the assay performed as described above. HDLP was inclubated with 20 μ M ZnCl₂ and 20 μ M MnCl₂(H2O)₄ in HDAC buffer and tested for activity.

10

5

Only HDLP dialyzed against ${\rm ZnCl_2}$ had activity. HDAC1-FLAG was dialyzed against 20 μM ${\rm ZnCl_2}$ in HDAC buffer which had no effect on activity. Therefore, HDAC1-FLAG contains a metal as purified.

15

20

The in vivo substrate of HDLP is not known. HDLP may have a role in acetoin utilization like the B. subtilis AcuC gene product, and it has been annotated as such in the genome sequence, but the reaction catalyzed by AcuC is also not known. Furthermore, the A. aeolicus genome appears to lack the acuA and acuB genes that are part of the acuABC operon of B. subtilis (Deckert et al., 1998 Nature 392:353-358), and HDLP is as similar to human HDAC1 (35.2 % identity) as it is to B. subtilis AcuC (34.7 % identity).

- 58 -

What is claimed is:

5

10

15

20

25

30

- 1. A crystal of an enzyme comprising deacetylase activity wherein said crystal effectively diffracts X-rays for the determination of the atomic coordinates of said enzyme to a resolution of greater than 4 Å and wherein the structure of said enzyme comprises a conserved core α/β structure characteristic fold wherein said conserved α/β fold comprises an eight-stranded parallel β sheet and eight α helices and wherein four of the helices pack on either face of said parallel β sheet and wherein said structure of said enzyme comprises an rmsd of less than or equal to 1.5 Å in the positions of α atoms for at least 2/3 or more of the amino acids of HDLP as defined by the atomic coordinates of HDLP.
- 2. The crystal of claim 1, wherein said protein structure further comprises:
 - (a) eight α helices positioned near one side of the β sheet; and
 - (b) at least seven large, well defined loops originating from the C-terminal ends of the β -strands of said eight-stranded parallel β sheet wherein the eight extra helices and the seven large loops are associated with a significant extension of the structure beyond the core α/β motif and wherein said extension of the structure gives rise to a deep, narrow pocket and an internal cavity adjacent to the pocket.

3. The crystal of claim 1, wherein said enzyme comprising deacetylase activity is selected from the group

- 59 -

consisting of HDLP, HDLP-related proteins, HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC-related proteins, APAH, AcuC, and functional derivatives thereof.

5

20

- 4. The crystal of claim 2 further comprising a specifically bound zinc atom in the active site of said enzyme.
- 10 5. The crystal of claim 2 further comprising a specifically bound deacetylase inhibitor compound in the active site of said enzyme.
- 6. The crystal of claim 2 define by the atomic coordinates according to Figure 16.
 - 7. A method for identifying a potential deacetylase inhibitor compound for an enzyme which comprises deacetylase activity, said method comprising the steps of:
 - using a three-dimensional structure of HDLP as defined by atomic coordinates according to Figure 16;
 - employing said three-dimensional structure to design or select said potential inhibitor;
 - c. synthesizing said potential inhibitor;
 - d. contacting said potential inhibitor with said enzyme in the presence of an acetylated substrate; and
- e. determining the deacetylase inhibitory activity of said potential inhibitor.

- 60 -

8. The method of claim 7, wherein the three-dimensional structure is designed or selected using computer modeling.

- 5 9. The method of claim 7, wherein the potential deacetylase inhibitor is designed de novo.
 - 10. The method of claim 7, wherein the potential deacetylase inhibitor is designed based on a known inhibitor.

10

20

25

- The method of claim 7, wherein said enzyme comprising deacetylase activity is selected from the group consisting of HDLP, HDLP-related proteins, HDAC1,
 HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC-related proteins, APAH, and AcuC.
 - 12. A method of evaluating the binding properties of the potential deacetylase inhibitor compound comprising the steps of:
 - a. co-crystallizing said compound with HDLP;
 - b. determining the three-dimensional structure of said HDLP-potential inhibitor complex co-crystal by molecular replacement using the threedimensional structure of HDLP as defined by atomic coordinates according to Figure 16; and
 - c. analyzing said three-dimensional structure of said HDLP bound to said potential inhibitor compound to evaluate the binding characteristics of said potential inhibitor compound.
 - 13. A method for solving the structure of an HDAC family

member crystal comprising the steps of:

5

10

20

- a. collecting X-ray diffraction data of said crystal wherein said data diffracts to a high resolution limit of greater than 4 Å;
- b. using the atomic coordinates of HDLP accoding to Figure 16 to perform molecular replacement or refinement and difference fourier with said X-ray diffraction data of said HDAC family member crystal to determine the structure of said HDAC family member; and
- c. refining said structure of said HDAC family member.
- 14. The method of claim 13, wherein said HDAC family member is HDAC1.
 - 15. A Cys75Ser/Cys77Ser double mutant of HDLP wherein said mutant is encoded by the nucleic acid sequence of SEQ ID NO:4.
 - 16. A Cys75Ser/Cys77Ser double mutant of HDLP wherein said mutant has the amino acid sequence of SEQ ID NO:3.
 - 17. A nucleotide sequence according to SEQ ID NO:4
 - 18. An expression vector comprising the nucleotide sequence of claim 17.
- 19. A method of using the crystal of claim 1 for screening for a novel drug comprising:
 - a. selecting a potential ligand by performing

- 62 -

rational drug design with the three-dimensional structure determined for the crystal;

- b. contacting the potential ligand with the ligand binding domain of the crystal; and
- c. detecting the binding potential of the potential ligand for the ligand binding domain, wherein the novel drug is selected based on its having a greater affinity for the ligand binding domain than that of a known drug.

TABLE 1. Statistics from the crystallographic analysis

	Nati	Native thi	thimerosal	g Q	Aucn	Zu	LSA	
Space Group Resolution (A)	C C 5		C2 2 8	C 22	C 8	C 5	P2,2,2,	
ons	134.9		79.023	11.454	27.722	125.769	180.427	
flections	32,1		15,958	4.040	8.753	23.643	50.796	
rage (%)	92.		95.7	86.4	94.3	90.6	93.8	
R _{sym} (%)	2.5		8.4	9.6	8.9	7.2	7.1	
MIR analysis (20.0-2.5 Å)	<i>:</i>							
power			1.47	1.24	1.10	•	•	
	•		0.72	0.78	0.85	•		
Rcullis (ano)			0.92	•				
Refinement statistics:							RMSD	
Resolution	Reflections	Total	Water			ponds	andles	B-factor
(Å)		atoms	••			(Å)	(C)	(A^2)
4.8		3214		19.8	24.0	0.010	1.63	3.55
HDLP-Zn 2.0	23,582	3424	434	22.0		0.00	1.48	1.04
HDLP-Zn-TSA 2.1	44.122	6475	456	22.4		8000	1 78	3 83

merit = IF(hkl)best[/F(hkl). R-free = R-factor calculated using 5% of the reflection data chosen randomly and omitted from the start of refinement. RMSD: root mean square deviations from ideal geometry and root $\mathsf{F}_{\mathsf{calc}}$ $|\Sigma|_{\mathsf{obs}}$, where $\mathsf{F}_{\mathsf{obs}}$ and $\mathsf{F}_{\mathsf{calc}}$ are the observed and calculated structure factors, respectively. Figure of Asym = $\Sigma_h\Sigma_i$ (h,i-<h/>t/sh\inline | h,i for the intensity (I) of i observations of reflection h. Phasing power = <F_{\(\mu \> \)}/E, where <F₁1>is the root-mean-square heavy atom structure factor and E is the residual lack of closure error. Rcullis is the mean residual lack of closure error divided by the dispersive difference. R-factor $= \Sigma l F_{obs}$ mean square variation in the B-factor of bonded atoms.

Figure 1

2/263

Figure 3

4/263

Figure 4

igure 40

PCT/US00/24700

Figure 5

7/263

8/263

Figure 6

PCT/US00/24700

10/263

Figure 7

b)

Figure 9

10	20	30	40
سلسلس	ستلسب	سيلس	لسبل
ATGAAGAAGGITA	AACTTATCGGA	ACTITAGACTI	ACGGAA 40
AGTACAGATATCC	CAAAAACCATC	CICTTAAAAT	ACCAAG 80
AGTITCCCTACTC			
ATAGATGAGAAGG	AATTAATCAAG	AGCAGACCCG	CAACTA 160
AAGAAGAACTCCT			
210	220	230	240
سلسسس			
CACTITAATGGAA	CCGGAAAGGIG	TCAGIGCGIT	CCGAAG 240
GGAGCTAGGGAAA			
CCGTATCTTACCC	GATGITTACAG	GCICITCICI	CGCAAC 320
GGGTTCAACAGTC			
AATGTAGCTTICA	LATCCCGCGGGA	GGTATGCACC	ACCCTT 400
410	420	430	44 0
سيليبين	سيلسين	سيلينيا	
TTAAAAGCAGGG	CAAACGGCTTTT	GCTACATAAA	CGACCC 440
CCTCTCCCAAT	GAGTACTIGAG	;AAAAAAAAGGC	TTTAAG 480
AGAATACICTAC	TAGACCITGAT	GCCCACCACT	GCGACG 520
GIGITCAGGAAG			
CCIGICCCITCAC			
610	620	630	640
<u></u>	سيليييل	<u> </u>	11111
GAGAAGGGCTTC	TIGGAGGAGATA	AGGAGAAGGAA	AAGGAA 640
AGGGCTACAACC	IGAACATTCCCC	TIGCCAAAGGC	CTIGAA 680
CGACAACGAGTT	CICITIGCCCI	'AGAAAAATC'I	CIGGAA 720
ATAGICAAAGAA	FIATITGAGCCC	GAGGITTACC	TICITC 760
AACTCGGAACTG	ACCCACICCITO	AAGATTACCI	TICCAA 800
810	820	830	840
بيلينيانين	سيلسيان	سيلبين	لبييل
GITCAACCICIC	AAACGTTGCCTT	TTTAAAAGC:	MTCAAC 840
ATCGITCGIGAG	GTTTTCGGGGA	GGAGTATAC	CTCGGAG 880
GAGGCGGATACC			
CCTAATCTCGTG			
AAGCTAAACAAT			
1010	1020	1030	1040
<u></u>			
ACTITGAAGAGI			
ACTITICAACAST CCTCGAAACCCT			
ACGAAAGAAGTA			
CATCTIA 1127	- TINITALING I	- Characacaca	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

WO 01/18045 PCT/US00/24700

14/263

	10	20	30	40	
بيليين	لتستليد	سسلس	ستلسب	لسبيل	
MKKVKLI	GTLDYGKY	RYPKNHPLK	IPRVSLLLRE	LDAMNL	40
IDEKELI	KSRPATKE	ELLLFHTED	YINTIMEAET	RCQCVPK	80
GAREKYN	IIGGYENPV	SYAMFIGSS	LATGSTVQA	CEEFLKG	150
NVAFNPA	GGMHHAFK	SRANGFCYI	NDPAVGIEYI	LRKKGFK	160
RILYIDL	DAHHCDGV	QEAFYDIDQ	VFVLSLHQSI	PEYAFPF	200
	210	220	230	240) .
سلست	لينتثلث	سيلس	Ludu	لسبيل	
EKGFLEE	IGEGKGKG	YNLNIPLPK	GLNDNEFLFA	ALEKSLE	240
די זוצויה זוניים					
TAVEALE	PEVYLLQL	GIDPLLEDY	LSKFNLSNV	YFLKAFN	280
	_		LSKFNLSNV7 AWI'LIWCELS		
IVREVFG	EGVYLGGG	GYHPYALAR		GREVPE	

	10	20	30	40
سلسد	سلسبان	بيلينينين	سلسسلت	سلت
ATGAAGA	AGGTTAAACT	TATOGGAACT	TTAGACTACG	GAA 40
AGTACAG!	TATCCCAAA	AACCATCCTC	TTAAAATACC	AAG 80
AGITTCCC	TACTCCITA	GGTTTTTAGA	TGCCATGAAC	CTT 120
ATAGATGA	AGAAGGAATT.	AATCAAGAGC	'AGACCCGCAAI	CTA 160
AAGAAGAZ	ACTCCTTTTA'	TTCCACACGG	AAGACTACAT	AAA 200
	210	220	230	240
سلسب			سلسيليد	
			GIGOGITOCG	
			GGATACGAAA	
			CITCICICGC	-
GGGTTCAF	CAGTGCAGG	CGATAGAGGA	SAATTITTA	3GA 360
AATGTAG	TTTCAATCC	CGCGGGAGGT	'ATGCACCACG	CIT 400
	410	420	430	440
سلسب	ىىلىسىلى <u>.</u>	<u></u>	ببليبيليد	ــــــــــــــــــــــــــــــــــــــ
TTAAAAGC	AGGGCAAAC	ECTITICET	'ACATAAACGA(CCC 440
			AAAAGGCTTT	
AGAATACI	CTACATAGA	CTTGATGCC	CACCACTGCG	ACG 520
GIGITCAC	GAAGCCTTT.	PACGATACAG	ACCAGGIGIIN	CGT 560
CCTGTCCC	TTCACCAGI	CCCCGAGTA	CCCTTTCCC	TTT 600
	610	620	630	640
سلسد	بيلينيان	ببليبيان	سلسسلت	ا ألب
GAGAAGGG	CITCCIGGAC	GAGATAGGA	GAAGGAAAAG	GAA 640
AGGGCTAC	AACCIGAACA	ATTCCCCTGC	CAAAGGGCTT	3AA 680
CGACAACG	AGITCCICIT	PTGCCCTAGA	AAAATCTCTG	GAA 720
ATAGICAA	AGAAGTATT	TGAGCCCGAG	GITTACCITC:	MC 760
AACTCGGA	ACTGACCCAC	CICCIIGAAG	ATTACCTTTC	008 AA
ç	310	820	830	840
_	-			
GITCAACT	יייראאארניזיי	<u>مربینینینی</u>	AAAGCTTTCA	AC 840
			TATACCTCGG	
			AAGGGCATGG	
	_		GAAGTGCCGG	
•		•	TAAAGAGTAT	
		U2U .		.1
			CCCTCGTAC	ATT 1040
			GGAGGAGAGG	
			AGGCGAAAGC	
CATCITA 1				- -
~ ~ ~ T	ا مهد			

	10	20	30	40	
سلسب	لبسلير	سيبليين	<u> </u>	ليتيل	
MKKVKLI	GTLDYGK	RYPKNHPLK	IPRVSLLLR	FLDAMNL	40
			YINTLMEAE		
			LATGSTVQA		
			NDPAVGIEY		160
			VFVLSLHQS		200
	210	220	230	240)
بيليين	سبيلي	سيطينيا	سلسند	لسبيل	
EKGFLEE	TGEGKGK	GYNLNIPLPK	GLNDNEFLF	ALEKSLE	240
IVKEVFE	PEVYLLQI	GTDPLLEDY	LSKFNLSNV	AFLKAFN	280
			RAWILIWCEL		320
KLNNKA					360
					•••

17/263 Figure 14

	10	20	30	40
بيليين	uluul	uduul	سلسسلس	لبب
ATGAAGA	AGGITAAACI	TATOGGAAC	TTTAGACTAC	GAA 40
AGTACAG	ATATCCCAA	AACCATCCI	CTTAAAATAC	CAAG 80
AGTTTCC	CTACTCCTTA	GTTTTAG	ATGCCATGAAC	CTT 120
ATAGATG	AGAAGGAATT	TAATCAAGAG	CAGACCCGCAZ	CTA 160
AAGAAGA	ACTOCTTTT	YTTCCACACG	GAAGACTACAT	AAA 200
	210	220	230	240
سلست	ببليستليد	بلبيتليد	بالسيالية	لب
CACTTTA	ATGGAAGCGG	AAAGGAGIC	AGAGCGTTCCC	AAG 240
GGAGCTA	GGGAAAAGTA	CAACATAGG	COGATACGAAA	ACC 280
CCGTATC	TTACGCGATG	TTTACAGGC	Terrereres	'AAC 320
GGGTTCA	ACAGTGCAGG	CGATAGAGG	AATTTTTAA	XXXX 360
AATGTAG	CTTTCAATCC	CGCGGGAGG	TATGCACCACC	CTT 400
	410	420	430	44 0
ببليب	سليسلب	بلينييان	بالتسليب	لبب
CAAAATT	CAGGGCAAAC	GCTTTTGC	TACATAAACGA	CCC 440
CCCICIC	GAATTGAGT.	ACTIGAGAA	AAAAAGGCTTT	'AAG 480
AGAATAC:	ICTACATAGA	CCTTGATGC	CACCACTGCG	ACG 520
GIGIICA	GAAGCCTTT	TACGATACA	GACCAGGIGII	CGT 560
CCIGICC	CITCACCAGI	CGCCCGAGT	ACGCCTTTCCC	TTT 600
	610	620	630	640
سيلس	سلسسلت	بلنبيلي	سلسبلب	41
GAGAAGG	CTTCCTGGA(GAGATAGG:	AGAAGGAAAAG	GAA 640
AGGGCTAC	CAACCTGAAC	ATTOCCCTG	CAAAGGGCTT	GAA 680
CGACAACC	SAGITCCICT	ITGCCCTAGA	AAAAATCTCTG	GAA 720
ATAGICA	AGAAGTATT.	IGAGCCCGA(GITTACCTTC	TTC 760
AACTOGGA	ACTGACCCA(CICCIIGAAC	CATTACCTTTC	CAA 800
	810	820	830	840
ببيليين	<u></u>			
			PAAAAGCTTTC	
			AGTATACCTCO	
			CAAGGGCATG	
			GGAAGIGCCG	
			TTAAAGAGTA	
•	1010	1020	1030	1040
			<u> </u>	
			ACCGCTCGTA	
			accoctecta Accaccacac	
			AAGGCGAAAG	
AICITA				

Figure 15

	10	20	30	40	1
سلسس	ليبيلين	سيلس	ساسيد		
MKKVKLI	GILDYGKY	RYPKNHPLK	IPRVSLLLRI	LIDAMNIL	40
IDEKELI	KSRPATKE	ELLLFHIED	YINTLMEAET	RSOSVPK	80
GAREKYN	IGGYENPV	SYAMFIGSS	LATGSTVQAI	EEFLKG	120
NVAFNPA	GCMHHAFK	SRANGFCYI	NDPAVGIEYI	RKKGFK	160
			VFVLSLHQSE		
	210	220	230	240)
سلسب	سنتبلب	سيلس	سيلسب		,
			GLNDNEFLFA		240
IVKEVFE	PEVYLLQLO	TOPLLEDY	SKFNLSNVA	FLKAFN	280
IVREVFG	EGNATGGG	YHPYALARA	WILIWCELS	GREVPE	320
			SYMLETLKOP		
	EKAKASS				

WO 01/18045 PCT/US00/24700

19/263

					riguic ro				
				Residue		Y	2	OCC. B	Segment ID
ATOM	1	CB	ALA	2	45.336	35.880	TE.042	1.10 59.90	ÄÄÄÄ
ATOM	2	С	غند	2	46.410	38.631	73.629	1.00 52.57	AAAA
ATOM	3	Ö	ALA	2	45.780	39.595	74.052	1.00 62.46	AAAA
	4	31	ALA	2	47.540	37.826	75.673	1.00 58.52	AAAA
ATOM		Cà.	ALA	2	46.568	37.432	74.527	1.00 57.32	AAAA
ATOM	5				46.330	38.570	-2.389	1.00 39:61	AAAA
ATOM	6	N	_7S	3				1.35 19.58	
ATOM	7	CA	.1YS	3	46.527	39.669		1.00 19.58	AAAA
ATOM	8	C3	LYS	3	47.855	39.763	73.459	1.00 36.03	, shhh
ATCM	9	CG	LYS	. 3	49.217	40.007	71.102	1.00 55.16	AAAA.
ATOM	10	CD	178	3	50.315	40.000	70.039	1.00 66.28	AAAA
ATOM	11	CΞ	LYS	3 .	51.700	40.163	70.655	1.00 73.41	àààà
	12	NZ	LYS	3	52.791	40.047	69.642	1.00 69.64	AAAA
ATOM			- 110	3	45.407	39.422	70.642	1.50 23.29	AAAA
ATOM	13	C	LYS			38.262	-3.487	1.00 27.41	AAAA'
ATOM	14	C	LYS	3	44.984			1.30 15.18	
ATOM	15	N	::AL	4	44.314	40.498	70.138	1.50 12.15	AAAA
ATOM	16	CA	7AL	4	43.535	40.418	69.349	1.00 22.20	AAAA
ATOM	17	CB	∵aL	4	42.501	41.365	≨9.887	1.00 31.46	شككة
ATOM	18	CGl	\therefore AL	4	41.214	41.202	69.066	1.00 26.55	شششة
ATOM	19	CG2	VAL	4	42.244	41.080	~1.348	1.00 34.98	AAAA.
ATOM	20	c	VAL	4	43.983	40.851	67.961	1.00 15.33	AAAA
ATOM	21	Ö	7AL	4	44.557	41.927	67.778	1.00 31.19	AAAA
			LYS	5	43.654	40.023	46.978	1.00 21.82	AAAA
ATOM	22	N		5	44.052	40.291	65.607	1.00 10.10	AAAA
ATOM	23	CA.	LYS	3	44.722	40.252	25.507	1.20 23.35	
ATOM	24	CB	LYS	5	45.047	.39.214	65.177	1.30 20.10 1.30 23.35 1.30 23.75	AAAA
ATOM	25	CG	LYS	5	46.301	39.092	55.049	1.10 13.75	AAAA
ATOM	26	CD	LYS	5	47.183	40.334	65.919	1.00 03.70	AAAA
ATOM	27	CE	LYS	5	48.510	40.151	55.669	1.30 04.34	AAAA
ATOM	28	:12	LïS	5	49.351	41.387	66.585	1.10 11.04	AAAA
ATOM	29	C	LYS	5	42.914	40.294	64.596	1.30 00.27	ääää
ATOM	30	Ö	LYS	5	41.949	39.535	54.728		AAAA
ATOM	31	N	LEU	6	43.071	41.111	53.564	1.00 19.28	AAAA
		CA	LEU	6	42.097	41.156	52.483	1.00 20.68	AAAA
atom	32		LEU	6	41.571	42.574	62.291	1.00 23.51	ÀAAÀ
ATOM	33	CB			40.373	42.712	51.342	1.00 30.59	AAAA
atom	34	CS	LEU	6					AAAA
ATOM	35		LEU	6	40.079	44.192	51.153		
ATOM	36	552	LEU	5	40.557	42.085	59.995	23.53	aaaa
atom	37	Ξ	LEU	6	42.954	40.701	51.237	1.00 19.17	AAAA
ATOM	38	0	LEU	ő	43.911	41.249	60.919	1.00 22.31	AAAA
ATOM	39	::	ILE	7	42.359	39.689	50.538	1.30 19.15	ሕሕሕ ሕ
ATOM	40	CA	ILE	7	43.045	39.139	59.338	1.00 13.38	ääää
ATOM	41	23	ILE	7	42.922	37.674	59.191	1.00 19.05	AAAA
ATOM	÷2	132	ILE.	~	43.930	37.162	53.144	1.10 16.45	AAAA
	÷3	231	ELE	-	43.253	37.007	50.521	1.00 12.81	inhin
ATOM			ILE	-	43.296	35.543	50.450	1.00 34.99	AAAA
ATOM	14	===		. -	42.396	39.850	58.125	1.00 17.95	ÁÁÁÁ
ATOM	45	-						1.30 17.95	AAAA
STOM	46	=	TLE	7	41.138	39.729	57.928	1.00 17.70	
ATOM	47	::	GLY	3	43.193	40.552	57.330		AAAA.
ATOM	48	·CA	jĽY	5	42.523	41.193	56.148	1.30 18.11	AAAA
ATOM	19	2	3LY	3	43.640	41.957	55.243	1.00 10.91	AAAA.
ATOM	50	9	GLY	3	44.849	41.840	55.504	1.00 22.27	AAAA.
ATOM	51	21	THR	9	43.134	42.428	54.155	1.00 13.99	ሕ ልሕሕ
ATOM	52	CA	THR	9	43.950	43.141	53.183	1.00 25.95	تهممن
	53	C3	THR	9	44.739	42.195	52.263	1.30 15.80	AAAA
atom				ۇ د	45.321	42.962	31.199	1.30 25.56	AAAA
ATOM	E 4	331	THR	2	43.823	41.144	51.657	1.30 25.56	AAAA
ATOM	55	237	THR	9				1.00 29.04	AAA.
atom	56	C32	THR	è	43.025	43.957	52.294	1.00 23.05	
ATOM	57	::	THR	9	41.972	43.582	52.082	1.00 23.05	AAAJ
ATCM	56	::	LEU	10	43.517	45.079	≣1.781	1.30 29.19	AAA
ATCM	59	CA	LEU	10	42.690	45.396	50.895	1.30 32.55	iaaa
ATCM	50	23	LEU	10	43.256	47.319	50.761	1.00 28.09	AAAi
ATOM	5i	33	LEU	15	43.142	48.256	51.958	1.30 33.00	AAA
	62	==:	LEU	10	41.580	48.403	52.347	1.00 26.65	AAA
ATOM		====	LEU	10	43.938	47.744	53.126	1.00 41.33	AAA
atom	63			10	42.556	45.261	49.512	1.00 32.68	AAA
atom	64	_	LEU			45.684	48.702	1.30 26.97	AAA.
ATCM	55	Ξ	LEU	10	41.736			1,30 25.75	in his
ATOM	56	::	ASP	11	43.377	44.234	49.256	_,	C-1747
							-		

ATOM	67	CA	ASP	11	43.367	43.541	47.970	1.00 35.74	AAAA
	68	CB	ASP	11	44.477	42.485	47.922	1.00 37.61	AAAA
ATOM			ASP	11	45.858	43.093	48.079	1.00 46.75	AAAA
MOTA	69	CG						1.00 46.34	AAAA
ATOM	70		ASP	11	46.110	44.136	47.444		
ATOM	71	OD2	ASP	11	46.690	42.528	48.821	1.00 58.94	AAAA
MOTA	72	С	ASP	11	42.034	42.898	47.607	1.00 34.26	AAAA
ATOM	73	0	ASP	11	41.748	42.696	46.420	1.00 31.12	AAAA
	74	N	TYR	12	41.220	42.558	48.609	1.00 26.19	AAAA
MOTA				12	39.923	41.963	48.314	1.00 28.45	AAAA
MOTA	. 75	CA	TYR					1.00 29.35	AAAA
MOTA	76	CB	TYR	12	39.119	41.720	49.601		
MOTA	77	CG	TYR	12	39.648	40.595	50.470	1.00 28.47	AAAA
ATOM	78	CD1	TYR	. 12	40.137	40.846	51.755	1.00 32.17	AAAA
MOTA	79	CE1	TYR	12	40.592	39.808	52.572	1.00 30.35	AAAA
	80		TYR	12	39.629	39.276	50.017	1.00 22.97	AAAA
ATOM			TYR	12	40.077	38.228	50.822	1.00 19.60	AAAA
MOTA	81			12	40.554	38.499	52.096	1.00 21.42	AAAA
MOTA	82	CZ	TYR				52.907	1.00 23.49	AAAA
MOTA	83	ОН	TYR	12	40.964	37.456			AAAA
ATOM	84	С	TYR	12	39.144	42.907	47.390	1.00 26.67	
MOTA	85	0	TYR	12	38.307	42.466	46.593	1.00 30.51	AAAA
ATOM	86	N	GLY	13	39.441	44.201	47.492	1.00 30.22	AAAA
ATOM	87	CA	GLY	13	38.767	45.203	46.675	1.00 25.13	AAAA
	88	C	GLY	13	38.911	45.009	45.177	1.00 27.31	AAAA
MOTA			GLY	13	38.096	45.522	44.415	1.00 29.38	AAAA
MOTA	89	0			39.937	44.269	44.755	1.00 33.56	AAAA
ATOM	90	N	LYS	14				1.00 39.81	AAAA
MOTA	91	CA	LYS	14	40.176	44.005	43.337	_	
MOTA	92	CB	LYS	14	41.680	44.026	43.031	1.00 51.10	AAAA
MOTA	93	CG	LYS	14	42.292	45.424	42.907	1.00 64.99	AAAA
MOTA	94	CD	LYS	14	41.757	46.218	41.692	1.00 72.74	AAAA
ATOM	95	CE	LYS	14	42.183	45.639	40.336	1.00 67.25	AAAA
	96	NZ	LYS	14	41.637	44.280	40.045	1.00 70.06	AAAA
MOTA			LYS	14	39.589	42.688	42.834	1.00 39.98	AAAA
MOTA	97	C			39.746	42.350	41.658	1.00 46.99	AAAA
MOTA	98	0	LYS	14				1.00 32.64	AAAA
ATOM	99	N	TYR	15	38.927	41.944	43.717		
ATOM	100	CA	TYR	15	38.318	40.655	43.355	1.00 41.01	AAAA
MOTA	101	CB	TYR	15	38.996	39.512	44.126	1.00 26.48	AAAA
ATOM	102	CG	TYR	15	40.496	39.571	44.033	1.00 34.97	AAAA
ATOM	103		TYR	15	41.289	39.401	45.167	1.00 43.28	AAAA
	104	CE1	TYR	15	42.677	39.548	45.106	1.00 36.05	AAAA
MOTA	105	CD2	TYR	15	41.127	39.879	42.827	1.00 40.78	AAAA
ATOM				15	42.508	40.027	42.756	1.00 37.13	AAAA
MOTA	106	CE2	TYR			39.865	43.899	1.00 36.87	AAAA
MOTA	107	CZ	TYR	15	43.275				AAAA
ATOM	108	OH	TYR	15	44.644	40.044	43.844	1.00 35.40	
MOTA	109	С	TYR	15	36.838	40.705	43.714	1.00 38.62	AAAA
ATOM	110	0	TYR	15	36.344	39.868	44.468	1.00 37.82	AAAA
ATOM	111	N	ARG	16	36.141	41.703	43.177	1.00 44.85	AAAA
	112	CA	ARG	16	34.716	41.890	43.431	1.00 45.75	AAAA
ATOM			ARG	16	34.320	43.348	43.187	1.00 54.17	AAAA
ATOM	113	CB CG	ARG	16	35.170	44.399	43.875	1.00 66.77	AAAA
ATOM	114					44.506	45.369	1.00 72.39	AAAA
MOTA	115	CD	ARG	16	34.920		45.923	1.00 72.39	AAAA
ATOM	116	NE	ARG	16	35.649	45.646			
ATOM	117	CZ	ARG	16	35.489	46.906	45.518	1.00 81.94	AAAA
ATOM	118	NH1	ARG	15	34.624	47.197	44.554	1.00 80.19	AAAA
MOTA	119		ARG	16	36.205	47.878	46.069	1.00 85.46	AAAA
	120	C	ARG	16	33.915	41.029	42.460	1.00 43.50	AAAA
ATOM					34.400	40.667	41.385	1.00 38.62	AAAA
MOTA	121	0	ARG	16			42.833	1.00 32.68	AAAA
MOTA	122	N	TYR	17	32.689	40.692		1.00 32.68	AAAA
ATOM	123	CA	TYR	17	31.850	39.923	41.930		
ATOM	124	CB	TYR	17	30.662	39.306	42.672	1.00 41.05	AAAA
ATOM	125	CG	TYR	17	31.040	38.104	43.519	1.00 37.51	AAAA
	126		TYR	17	32.039	38.194	44.493	1.00 32.59	AAAA
ATOM	127		TYR	17	32.383	37.095	45.277	1.00 29.32	AAAA
ATOM				17	30.393	36.875	43.346	1.00 31.46	AAAA
ATOM	128		TYR				44.122	1.00 28.64	AAAA
ATOM	129		TYR	17	30.726	35.772		1.00 28.04	AAAA
ATOM	130	CZ	TYR	17	31.721	35.887	45.088	1.00 27.14	AAAA
ATOM	131	ОН	TYR	17	32.044	34.807	45.881	1.00 21.73	
ATOM	132	C	TYR	17	31.380	40.871	40.836	1.00 40.97	AAAA
							-		•

	122	0	TYR	17	31.435	42.097	40.984	1.00 29.58	AAAA
ATCM	133				30.904	40.321	39.722	1.00 41.02	AAAA
ATCM	134	N	PPO	18	-			1.00 48.67	AAAA
ATOM	135	CD	PRO	18	30.760	38.910	39.318		
			PRO	18	30.459	41.197	38.649	1.00 49.35	AAAA
MOTA	136	CA			30.321	40.228	37.481	1.00 59.04	AAAA
ATOM	137	CB	PRO	18					AAAA
ATOM	138	CG	PRO	18	29.756	39:017	38.179	1.00 54.15	
				18	29.178	41.982	38.864	1.00 54.97	AAAA
ATOM	139	С	PRO				39.850	1.00 46.85	AAAA
ATOM	140	0	PRO	18	28.457	41.823			
		N	LYS	19	28.961	42.868	37.904	1.00 60.87	AAAA
MOTA	141				27.777	43.696	37.749	1.00 67.78	AAAA
MOTA	142	CA	LYS	19				1.00 73.26	AAAA
ATOM	143	CB	LYS	19 -	27.155	43.278	36.425		
			LYS	19	26.971	41.752	36.414	1.00 77.87	AAAA
MOTA	144	CG				41.166	35.209	1.00 81.01	AAAA
ATOM	145	CD	LYS	19	26.276			1.00 82.45	AAAA
ATOM	146	CE	LYS	19	26.039	39.680	35.471		
-			LYS	19	25.417	38.959	34.331	1.00 83.11	AAAA
ATOM	147	NZ				43.594	38.814-	1.00 64.15	AAAA
MOTA	148	С	LYS	19	26.688			1.00 65.73	AAAA
	149	0	LYS	19	26.810	44.047	39.949		
MOTA			ASN	20	25.604	42.986	38.345	1.00 59.78	AAAA
ATOM	150	N				42.703	39.025	1.00 59.91	AAAA
ATOM	151	CA	ASN	20	24.353				AAAA
	152	CB	ASN	20	23.516	41.844	38.077	1.00 68.08	
ATOM			ASN	20	22.108	42.355	37.907	1.00 78.73	AAAA
ATOM	153	CG				43.498	37.496	1.00 78.67	AAAA
MOTA	154	OD1	ASN	20	21.894			1.00 70.07	AAAA
	155	MD2	ASN	20	21.132	41.505	38.211	1.00 83.22	
ATOM				20	24.474	41.977	40.361	1.00 53.35	AAAA
ATOM	156	С	ASN				41.234	1.00 59.92	AAAA
MOTA	157	0	ASN	20	23.611	42.112			
	158	N	HIS	21	25.543	41.206	40.511	1.00 44.23	AAAA
ATOM					25.768	40.397	41.707	1.00 28.15	AAAA
ATOM	159	CA	HIS	21			41.570	1.00 31.84	AAAA
ATOM	160	CB	HIS	21	27.088	39.639			
	161	CG	HIS	21	27.155	38.411	42.418	1.00 34.79	AAAA
MCTA				21	27.344	38.259	43.752	1.00 25.03	AAAA
ATOM '	162		HIS				41.917	1.00 34.81	AAAA
ATOM	163	ND1	HIS	21	26.929	37.148			AAAA
	164		HIS	21	26.979	36.269	42.900	1.00 17.01	
MOTA				21	27.228	36.917	44.026	1.00 32.31	AAAA
MOTA	165	NE2	HIS		_		43.051	1.00 29.37	AAAA
ATOM	166	С	HIS	21	25.763	41.135			AAAA
	167	0	HIS	.21	26.346	42.210	43.186	1.00 28.54	
ATOM			PRO	22	25.093	40.565	44.066	1.00 29.14	AAAA
ATOM	168	N				39.322	44.061	1.00 31.20	AAAA
ATOM	169	CD	PRO	22	24.301			1.00 32.84	AAAA
ATOM	170	CA	PRO	22	25.034	41.185	45.395		
				22	24.174	40.192	46.187	1.00 34.98	AAAA
ATOM	171	CB	PRO		23.257	39.634	45.109	1.00 30.11	AAAA
ATOM	172	CG	PRO	22				1.00 34.37	AAAA
ATOM	173	С	PRO	22	26.411	41.415	46.044	1.00 34.37	
			PRO	22	26.554	42.272	46.916	1.00 29.17	AAAA
ATOM	174	0			27.415	40.644	45.629	1.00 29.22	AAAA
ATOM	175	N	LEU	23	_			1.00 26.49	AAAA
ATOM	176	CA	LEU	23	28.765	40.781	46.181		
		CB	LEU	23	29.414	39.397	46.332	1.00 22.30	AAAA
atom	177				28.703	38.527	47.380	1.00 21.04	AAAA
ATOM	178	CG	LEU	23			47.410	1.00 19.35	AAAA
ATOM	179	CD1	LEU	23	29.307	37.113		1.00 19.55	AAAA
		CD3	LEU	23	28.850	39.197	48.746	1.00 26.51	
ATOM	180				29.561	41.718	45.361	1.00 25.81	AAAA
ATOM	181	С	LEU	23				1.00 28.45	AAAA
ATOM	182	С	LEU	23	30.893	41.693	45.477		
		N	LYS	24	29.018	42.539	44.532	1.00 24.86	AAAA
ATOM	183				29.696	43.552		1.00 27.35	AAAA
ATOM	184	ÇA	LYS	24	29.030			1.00 28.57	AAAA
ATOM	185	CB	LYS	24	28.662	44.244		1.00 28.37	AAAA
			LYS	24	29.118	45.532	42.171	1.00 52.95	
atom	186	CG			28.025	46.603		1.00 63.74	AAAA
ATOM	187	CD	LYS	24				1.00 66.09	AAAA
ATOM	188	CE	LYS	24	26.688	46.138			
			LYS	24	25.595	47.137	41.896	1.00 66.00	AAAA
ATOM	189	ΝZ			30.332	44.592			AAAA
ATOM	190	Ç	LYS	4 4					AAAA
ATOM	191	0	LYS	24	31.412	45.123			
			ILE	25	29.652	44.879	45.779	1.00 26.90	AAAA
ATOM	192	N			30.151	45.865			AAAA
ATOM	193	CA	ILE	25					AAAA
ATOM	194	СВ	ILE	25	29.105	46.177		4	
				25	27.961	46.951	47.237	1.00 23.84	AAAA
ATOM	195		2 ILE		-	44.869			AAAA
ATOM	196	CG:	I ILE	25	28.661				` AAA A
ATOM	197	CD1	ILE	25	27.718	45.051			
			ILE		31.424	45.463	47.483	1.00 32.19	AAAA
-TCM	198	_	ت ب				•		•
,			•						

ATOM	199	0	ILE	25	31.736	44.271	47.623	1.00 26.54	AAAA
ATOM	200	N	PRO	26	32.191	46.463	47.956	1.00 30.14	AAAA
ATOM	201	CD	PRO	26	31.979	47.907	47.770	1.00 36.38	AAAA
ATOM	202	CA	PRO	26	33.431	46.241	48.707	1.00 30.63	AAAA
ATOM	203	CB	PRO	26	34.014	47.652	48.814	1.00 34.29	AAAA
ATOM -	204	CG	PRO	26	33.397	48.373	47.617	1.00 43.39	AAAA
ATOM	205	c	PRO	26	32.943	45.727	50.061	1.00 25.99	AAAA
ATOM	206	Ö	PRO	26	31.854	46.110	50.484	1.00 25.51	ÁAAA
ATOM	207	N	ARG	27	33.719	44.880	50.743	1.00 21.98	AAAA
ATOM	208	CA	ARG	2.7 2.7	33.267	44.347	52.035	1.00 26.17	AAAA
ATOM	209	CB	ARG	27	32.641	42.969	51.834	1.00 22.70	AAAA
ATOM	210	CG	ARG	27	31.442	43.039	50.890	1.00 26.75	AAAA
ATOM	211	CD	ARG	27 ·	30.832	41.672	50.581-		AAAA
ATOM	212	NE	ARG	27	30.121	41.098	51.716	1.00 28.66	AAAA
ATOM	213	CZ	ARG	27	30.582	40.129	52.503	1.00 31.79	AAAA
ATOM	214		ARG	27	31.778	39.598	52.290	1.00 34.08	AAAA -
ATOM	215		ARG	27	29.833	39.688	53.505	1.00 26.16	AAAA
ATOM	216	С	ARG	27	34.358	44:297	53.090	1.00 24.10	AAAA
ATOM	217	ŏ	ARG	27	34.326	45.074	54.038	1.00 23.50	AAAA
MOTA	218	N	VAL	28	35.314	43.390	52.960	1.00 21.45	AAAA
ATOM	219	CA	VAL	28	36.385	43.385	53.953	1.00 21.75	AAAA
ATOM	220	CB	VAL	28	37.221	42.101	53.866	1.00 26.55	AAAA
MOTA	221		VAL	28	38.407	42.177	54.830	1.00 23.84	AAAA
ATOM	222		VAL	28	36.337	40.906	54.214	1.00 19.20	AAAA
ATOM	223	c	VAL	28	37.277	44.611	53.736	1.00 20.86	AAAA
ATOM	224	Ō	VAL	28	37.770	45.223	54.702	1.00 25.15	AAAA
ATOM	225	N	SER	29	37.480	44.996	52.475	1.00 19.22	AAAA
ATOM	226	CA	SER	29 .	38.320	46.169	52.209	1.00 19.63	AAAA
ATOM	227	CB	SER	29	38.591	46.352	50.702	1.00 24.45	AAAA
ATOM	228	OG	SER	29	37.411	46.697	49.984	1.00 28.74	AAAA
ATOM	229	С	SER	29	37.579	47.381	52.756	1.00 21.50	AAAA
ATOM	230	0	SER	29	38.184	48.320	53.271	1.00 18.95	AAAA
ATOM	231	N	LEU	30	36.256	47.353	52.673	1.00 19.56	AAAA
MOTA	232	CA	LEU	30	35.499	48.481	53.177	1.00 25.97	AAAA
ATOM	233	CB	LEU	30	34.032	48.396	52.744	1.00 22.90	AAAA
MOTA	234	CG	LEU	30	33.085	49.541	53.157	1.00 26.62	AAAA
MOTA	235		LEU	30	32.885	49.539	54.648	1.00 38.27	AAAA
MOTA	236	CD2	LEU	30	33.653	50.885	52.698	1.00 25.71	AAAA
ATOM	237	С	LEU	30	35.604	48.509	54.696	1.00 18.44	AAAA
ATOM .	238	0	LEU	30	35.704	49.580	55.273	1.00 25.05	AAAA
MOTA	239	N	LEU	31	35.578	47.336	55.336	1.00 19.65	AAAA AAAA
MOTA	240	CA	LEU	31	35.672	47.270	56.797	1.00 20.47 1.00 20.60	AAAA
ATOM	241	CB	LEU	31	35.613	45.821	57.300	1.00 20.80	AAAA
MOTA	242	CG	LEU	31	34.988	45.456	58.665	1.00 33.80	AAAA
MOTA	243		LEU	31	35.712	44.219	59.257 59.637	1.00 23.33	AAAA
MOTA	244		LEU	31	35.085	46.591	57.229	1.00 23.85	AAAA
MOTA	245	C	LEU	31	37.009	47.870 48.673	58.154	1.00 21.24	AAAA
ATOM	346	0	LEU	31	37.070	47.462	56.562	1.00 23.91	AAAA
ATOM	247	N	LEU	32	38.079 39.400	47.965	56.899	1.00 24.82	AAAA
ATOM	248	CA	LEU	32	40.479	47.320	56.018	1.00 24.81	AAAA
MOTA	249	CB	LEU	32	40.849	45.854	56.276	1.00 27.00	AAAA
ATOM	250	CG	LEU	32 32	41.995	45.435	55.354	1.00 27.13	AAAA
MOTA	251			32	41.285	45.687	57.720	1.00 34.49	AAAA
	. 252		LEU	32	39.466	49.475	56.763	1.00 19.56	AAAA
ATOM	253	C	LEU LEU	32	39.958	50.143	57.662	1.00 20.71	AAAA
ATOM	254	0		33	38.974	50.006	55.645	1.00 23.25	AAAA
ATOM	255	N	ARG	33	39.007	51.449	55.441	1.00 24.33	AAAA
ATOM		· CA	ARG	33	38.575	51.806	54.013	1.00 23.46	AAAA
ATOM	257	CB	ARG	33	39.571	51.327	52.945	1.00 26.94	AAAA
ATOM	258	CG	ARG	33	39.337	51.976	51.585	1.00 42.13	AAAA
ATOM	259 260	CD NE	ARG ARG	33	38.023	51.661	51.037	1.00 59.06	AAAA
ATOM		CZ	ARG	33	37.583	52.088	49.857	1.00 60.87	AAAA
ATOM	261 262		ARG	33	38.353	52.850	49.095	1.00 65.33	AAAA
ATOM	263		ARG	33	36.373	51.743	49.433	1.00 56.24	AAAA
ATOM	264	C	ARG	33	38.124	52.156	56.455	1.00 30.33	AAAA
MOTA	04	٠.	D/A	J J			•		•

			_	•	38.441	5	3.252	56.905	1.00 2	5.45	AAAA
ATOM	265 0	AI		33	37.022	5 5		56.828	1.00 2	4.98	AAAA
MOTA	266 N		ΞE	34	36.099			57.789	1.00 2	7.09	AAAA
MOTA	267 C.		HE	34	34.798		1.276	57.807	1.00 2	4.88	AAAA
MOTA	268 C		HE	34	33.719		1.898	58.631	1.00 2	0.46	AAAA
ATOM	269 C		HE.	34	33.043		3.018	58.171	1.00 1	18.74	AAAA
MOTA		D1 PI		34	33.39		1.383	59.889	1.00 2	20.19	AAAA
ATOM	- · -	D2 PI		34			3.627	58.956	1.00 2	23.04	AAAA
MOTA		El P		34	32.043 32.40		1.974	60.681	1.00 2	25.08	AAAA
ATOM			HE ·	34	31.72		3.104	60.209	1.00	23.31	AAAA
ATOM	274 C		HE	34	36.70	-	2.115	59.194	1.00 2	23.93	AAAA
ATOM	275 C		HE	34	36.66		3.138	59.883	1.00	21.71	AAAA
MOTA	276 0		HE	34	37.29		1.013	59.645	1.00	21.33	AAAA
ATOM	277 N		YS	35	37.86		1.084	60.978	1.00	22.54	AAAA
MOTA			YS	35	38.27		19.716	61.476	1.00	29.70	AAAA
ATOM	279 C		YS	35	37.08	_	18.890	61.924	1.00	29.48	AAAA
ATOM		-	YS	35		_	17.535	62.398	1.00	42.17	AAAA
MOTA	281		YS	35	37.51		46.762	61.275	1.00	34.89	AAAA
ATOM	282 C		YS	35	38.15		47.412	60.719	1.00	67.18	AAAA
ATOM	283 N		YS.	35	39.37		52.055	61.040	1.00	24.68	AAAA
MOTA	284	-	YS.	35	39.02		52.640	62.085	1.00	22.33	AAAA
ATOM	285		.YS	35	39.28	_	52.231	59.926	1.00	25.67	AAAA
ATOM	286 1	ائر 1	SP	36	39.72		53.163	59.898	1.00	25.57	AAAA
ATOM	287		SP	36	40.84		52.984	58.621	1.00	32.26	AAAA
MOTA	288 (SP	36	41,66		53.914	58.572	1.00	33.92	AAAA
ATOM			SP	36	42.88 43.64	_	53.969	59.563	1.00	40.22	AAAA
ATOM		DD1 A		36		_	54.575	57.538	1.00	40.06	AAAA
ATOM	291	DD2 A		36	43.07	_	54.578	59.973	1.00	28.04	AAAA
ATOM	292		ASP	36	40.28		55.397	60.765	1.00	29.52	AAAA
MOTA	293		ASP	36	40.76 39.27	-	54.864	59.159	1.00	23.32	AAAA
ATOM	294		ALA	37			56.192	59.163	1.00	28.22	AAAA
MOTA	295		ALA	37	38.65		56.251	58.119	1.00	25.93	AAAA
ATOM	296		ALA	37	37.50		56.549	60.565	1.00	28.41	AAAA
ATOM	297	-	ALA	37	38.12		57.708	60.972	1.00	29.27	AAAA
ATOM	298		ALA	37	38.18		55.547	61.300	1.00	24.76	AAAA
ATOM	299		MET	38	37.63 37.10		55.727	62.669	1.00	25.45	AAAA
ATOM	300		MET	38			54.625	62.982	1.00	25.19	AAAA
ATOM			MET	38	36.0		54.660	62.148		22.32	AAAA
MOTA	302		MET	38	34.83 33.73		55.983	62.702	1.00	29.90	AAAA
ATOM	303		MET	38	33.4		55.417	64.376	1.00	26.51	AAAA
ATOM			MET	38	38.2		55.667	63.744	1.00	26.42	AAAA
MOTA	305	-	MET	38	37.9		55.818	64.947	1.00	23.77	AAAA
MOTA	306		MET	38	39.4		55.434	63.300	1.00	26.21	AAAA
MOTA	307		ASN	39	40.6		55.308	64.170	1.00	28.53	AAAA
MOTA	308		ASN	39	40.9		56.643	64.855	1.00	33.95	AAAA
ATOM	309		ASN	39	41.1		57.751	63.858	1.00	29.46	AAAA
ATOM	310	~~	ASN	39	41.1		57.596	62.925	1.00	36.28	AAAA
MOTA	311	OD1		39	40.4		58.880		1.00	40.03	AAAA
MOTA	312	ND2		39	40.3		54.223		1.00	30.07	AAAA
ATOM	313		ASN	39	40.6		54.390		1.00	25.47	AAAA
MOTA	314		ASN	39	39.8		53.105		1.00	28.19	AAAA
ATOM	315		LEU	40	39.5		51.984		1.00	25.50	AAAA
ATOM	316	CA	LEU	40	38.0		51.562		1.00	32.14	AAAA
ATOM	317	CB	LEU	40	37.0		52,585		1.00	30.47	AAAA
ATOM	318	CG	LEU	40	37.6 35.6		52.027		1.00	29.07	AAAA.
ATOM	319	CD1	LEU	40	37.3		52.889		1.00	23.80	AAAA
MOTA	320	CD2		40			50.771		1.00	26.99	AAAA
ATOM	321	C	LEU	40	40.4		49.683		1.00	25.41	AAAA
ATOM	322	0	LEU	40	40.1		50.970		1.00	0 28.33	AAAA
ATOM	323	N	ILE	41	41.5		49.882	·	1.00	0 25.08	AANA
ATOM	324	CA	ILE	41	42.4		49.02		3 1.0	0 25.01	AAAA
ATCM	325	CB	ILE	41	42.0		49.02		1.0	0 22.74	AAAA
ATOM	326	CG2	ILE	41	42.0		47.80		3 1.0	0 31.01	AAAA
ATOM	327	CG1	ILE	41	42.5		46.95			0 42.18	AAAA
ATCM	328		ILE	41	42.				7 1.0	0 24.09	AAAA
ATOM	329	С	ILE	41	43.		50.37 51.40			0 28.92	AAAA
ATOM	330	0	ILE	41	44.	140	J1.40				•

			riguic 10-0				
	331 N A	SP 42	44.866	49.634		1.00 28.95	AAAA
ATOM		SP 42	46.279	49.988		1.00 32.52	AAAA
ATOM		SP 42	46.951	50.094		1.00 34.24	AAAA
ATOM	• • -	SP 42	46.267	51.097	66.911	1.00 51.23	AAAA
MOTA			46.079	52.250	66.467	1.00 50.19	AAAA
ATOM	335 OD1 A		45.924	50.736	68.062	1.00 53.00	AAAA
ATOM	336 OD2 A		46.985	48.919	63.808	1.00 31.13	AAAA
MOTA		SP 42		47.758	63.838	1.00 26.71	AAAA
ATOM		SP 42	46.594		63.092	1.00 29.99	AAAA
ATOM	339 N G	LU 43	48.036	49.312	62.240	1.00 31.34	AAAA
ATOM		LU 43	48.793	48.392		1.00 36.12	AAAA
ATOM	341 CB G	LU 43	50.078	49.045	61.724	1.00 52.72	AAAA
ATOM		LU 43	49.886	50.118	60.676		AAAA
		LU 43	51.214	50.556	60.083	1.00 60.39	AAAA
ATOM	344 OE1 G		51.928	49.688	59.536	1.00 70.32	AAAA
MOTA	345 OE2 G	-	51.550	51.755	60.163	1.00 60.38	
MOTA		LU 43	49.196	47.070	62.859	1.00 38.04	AAAA
ATOM .		LU 43	49.125	46.024	62.209	1.00 36.83	AAAA
ATOM	• • •		49.636	47.103	64.105	1.00 28.26	AAAA
ATOM			50.084	45.879	64.740	1.00 32.71	AAAA
MOTA		YS 44	50.974	46.245	65.927	1.00 44.28	AAAA
ATOM	•	xs 44	52.211	47.007	65.418	1.00 59.37	AAAA
MOTA		YS 44		47.449	66.491	1.00 68.87	AAAA
ATOM		YS 44	53.187	48.167	65.849	1.00 67.21	AAA£.
MOTA	353 CE L	YS 44	54.373		66.850	1.00 74.00	AAAA
ATOM	354 NZ I	LYS 44	55.361	48.648		1.00 26.75	AAAA
ATOM		LYS 44	48.982	44.889	65.115	1.00 27.37	AAAA
MOTA		LYS 44	49.265	43.792	65.586	1.00 27.37	AAAA
ATOM		GLU 45	47.731	45.278	64.881	1.00 23.20	AAAA
		GLU 45	46.580	44.414	65.165	1.00 21.58	AAAA
MOTA		GLU 45	45.387	45.243	65.676	1.00 18.24	
MOTA		GLU 45	45.551	45.828	67.077	1.00 26.57	AAAA
MOTA		GLU 45	44.418	46.772	67.453	1.00 23.12	AAAA
MOTA			44.224	47.783	66.746	1.00 21.64	AAAA
ATOM	•		43.725	46.509	68.454	1.00 26.48	AAAA
ATOM	363 OE2 0			43.710	63.870	1.00 26.31	AAAA
MOTA	• • • •		45.400	42.739	63.889	1.00 22.32	AAAA
MOTA	•	GLU 45		44.204	62.748	1.00 20.15	AAAA
ATOM		LEU 46	46.317	43.642	61.448	1.00 25.80	AAAA
ATOM		LEU 46		44.774	60.433	1.00 27.25	AAAA
ATOM		LEU 46	46.137	44.397	58.997	1.00 37.72	AAAA
MOTA		LEU 46	45.763		58.984	1.00 39.46	AAAA
ATOM	370 CD1		44.356	43.810	58.101	1.00 35.43	AAAA
ATOM	371 CD2	LEU 46	45.822	45.632	60.896	1.00 28.88	AAAA
MOTA	372 C	LEU 46	47.305	42.623		1.00 31.98	AAAA
MOTA		LEU 46	48.513	42.860	60.862	1.00 16.92	AAAA
ATOM		ILE 47	46.791	41.469	60.482	1.00 20.98	AAAA
MOTA		ILE 47	47.638	40.448	59.872	1.00 20.50	AAAA
ATOM		ILE 47	47.412	39.046		1.00 21.31	AAAA
	377 CG2		48.115	37.958	53.696	1.00 20.32	AAAA
ATOM	378 CG1		47.947	39.040	€ .950	1.00 20.71	AAAA
MOTA	379 CD1		49.450	39.207		1.00 38.87	
ATOM		ILE 47	47.227	40.417		1.00 24.50	AAAA
ATOM	• • -				58.101	1.00 20.74	AAAA
ATOM	_			40.550	57.500	1.00 18.73	AAAA
atom				40.543	56.072	1.00 15.55	AAAA
ATOM		LYS 48				1.00 16.52	AAAA
MOTA		LYS 48				1.00 23.25	AAAA
MOTA		LYS 48				1.00 32.69	AAAA
MOTA		LYS 48					AAAA
ATOM	387 CE	LYS 48					AAAA
ATOM	388 NZ	LYS 48					AAAA
ATOM	389 C	LYS 48	47.473	39.140			AAAA
	390 0	LYS 48	48.177		55.887	1.00 16.63	AAAA
MOTA	391 N	SER 49					AAAA
ATCM	392 CA	SER 49	45.838	37.780			AAAA ·
ATOM		SER 45			53.694		
ATOM	393 CB					1.00 16.86	AAAA
atom	394 OG				53.459	1.00 24.11	AAAA
ATOM	395 C				-		AAAA
MOTA	396 0	SER 49	,		- .		•
	•						

WO 01/18045 PCT/US00/24700

25/263

					1.50.0.0				
ATOM	397	N	ARG	50	46.890	35.805	53.519	1.00 16.83	AAAA
	398	CA	ARG	50	47.724	35.037	52.610	1.00 23.88	AAAA
ATOM			_	50	48.805	34.247	53.366	1.00 27.48	AAAA
ATOM	399	CB	ARG				54.177	1.00 22.99	AAAA
ATOM	400	CG	ARG	50	48.284	33.036		1.00 25.20	AAAA
ATOM	401	CD	ARG	50	49.453	32.263	54.759		
ATOM	402	NE	ARG	50	49.073	31.197	55.684	1.00 15.88	AAAA
ATOM	403	CZ	ARG	50	48.411	30.093	55.368	1.00 14.34	AAAA
	404	NH1		50	48.023	29.863	54.117	1.00 15.78	AAAA
ATOM			ARG	. 50	48.150	29.197	56.312	1.00 16.78	AAAA
MOTA	405				46.821	34.023	51.905	1.00 20.20	AAAA
ATOM	406	C	ARG	50	. 45.763	33.650	52.414	1.00 18.63	AAAA
atom	407	0	ARG	50	_		50.699	1.00 15.63	AAAA
ATOM	408	N	PRO	51	47.203	33.596		1.00 13.63	AAAA
ATOM	409	CD	PRO	51	48.322	34.028	49.850		
ATOM	410	CA	PRO	51	46.387	32.606	49.994	1.00 14.35	AAAA
ATOM	411	CB	PRO	51	47.076	32.514	48.629	1.00 17.73	AAAA
ATOM	412	CG	PRO	51	47.707	33.890	48.47-5	1.00 17.62	AAAA
	413	C	PRO	51	46.452	31.256	50.708	1.00 15.73	AAAA
ATOM		Ö	PRO	51	47.460	30.942	51.350	1.00 18.67	AAAA
ATOM	414			52	45.377	30.470	50.618	1.00 11.47	AAAA
ATOM	415	N	ALA		45.375	29.117	51.161	1.00 9.78	AAAA
MOTA	416	CA	ALA	52			51.112	1.00 12.19	AAAA
ATOM	417	CB	ALA	52	43.967	28.529		1.00 17.19	AAAA
ATOM	418	С	ALA	52	46.301	28.342	50.209		
MOTA	419	0	ALA	52	46.307	28.609	49.006	1.00 16.46	AAAA
ATOM	420	N	THR	53	47.081	27.392	50.723	1.00 16.40	AAAA
ATOM	421	CA	THR	53	47.952	26.615	49.843	1.00 16.32	AAAA
	422	CB	THR	53	49.109	25.959	50.612	1.00 15.82	AAAA
ATOM		OG1	THR		48.582	25.016	51.559	1.00 16.25	AAAA
MOTA				53	49.923	27.030	51.336	1.00 14.34	AAAA
ATOM	424	CG2	THR		47.104	25.520	49.215	1.00 14.06	AAAA
MOTA	425	C	THR	53	46.012	25.241	49.690	1.00 17.87	AAAA
MOTA	426	0	THR	53			48.145	1.00 16.10	AAAA
ATOM	427	N	LYS.	54	47.599	24.903			AAAA
MOTA	428	$C\lambda$	LYS	54	46.848	23.832	47.492	1.00 19.00	
ATOM	429	CB	LYS	54	47.671	23.245	46.339	1.00 22.92	AAAA
ATOM	430	CG	LYS	54	46.955	22.172	45.539	1.00 32.99	AAAA
ATOM	431	CD	LYS	54	45.787	22.733	44.757	1.00 51.34	AAAA
MOTA	432	CE	LYS	54	46.244	23.565	43.561	1.00 64.17	AAAA
	433	NZ	LYS	54	46.898	22.733	42.505	1.00 63.45	AAAA
atom			LYS	54	46.554	22.738	48.520	1.00 22.48	AAAA
ATOM	434	C		54	45.463	22.158	48.555	1.00 19.97	AAAA
Mota	435	0	LYS		47.536	22.465	49.364	1.00 25.65	AAAA
ATOM	436	N	GLU	55	47.389	21.432	50.383	1.00 25.08	AAAA
ATOM	437	CA	GLU	55	10 710		51.116	1.00 25.40	AAAA
ATOM	438	CB	GLU	_	. 48.718	21.241		1.00 48.95	AAAA
ATOM	439	CG	GLU	55	48.703	20.185	52.199	-	AAAA
ATOM	440	CD	GLU	55	50.106	19.821	52.673	1.00 64.21	
MOTA	441	OE1	GLU	55	50.220	19.033	53.640	1.00 62.38	AAAA
ATOM	42	OE2	GLU	55	51.093	20.311	52.073	1.00 58.22	AAAA
ATOM	.43	С	GLU	55	46.273	21.773	51.362	1.00 18.91	AAAA
	-44	ŏ	GLU	55	45.489	20.908	51.723	1.00 17.43	AAAA
ATOM	445	N	GLU	56	46.196	23.029	51.786	1.00 16.80	AAAA
ATOM				56	45.137	23.432	52.698	1.00 17.24	AAAA
MOTA	446	CA	GLU		45.399	24.855	53.204		AAAA
MOTA	447	CB	GLU	56			54.009	1.00 14.41	AAAA
ATOM	448	CG	GLU	56	46.709	24.941	54.009	1.00 20.17	AAAA
MOTA	449	CD	GLU	56	47.087	26.354	54.358		AAAA
MOTA	450	OE1	GLU	56	46.713	27.252		1.00 17.12	
ATOM	451		GLU	56	47.773	26.564	55.394	1.00 18.23	AAAA
ATOM	452	C	GLU	56	43.781	23.313	52.000	1.00 15.95	AAAA
	453	ō	GLU	56	42.799	22.869	52.599	1.00 17.82	AAAA
ATOM			LEU	57	43.722	23.691	50.725	1.00 17.53	AAAA
ATOM	454	N		57	42.466	23.579	49.989	1.00 16.34	AAAA
ATOM	455	CA	LEU		42.591	24.177		1.00 13.86	AAAA
ATOM	456	CB	LEU	57				1.00 15.24	AAAA
ATOM	457	CG	LEU	57	42.773	25.707	40.002	1.00 19.30	AAAA
ATOM	458	CD1	LEU	57	42.923	26.182	47.101		AAAA
ATOM	459	CD2	LEU	57	41.546	26.380		1.00 15.14	AAAA
ATOM	460	C	LEU	57	42.016			1.00 18.46	
ATOM	461	ō	LEU		40.824	21.823			AAAA
	462	N	LEU		42.975	21.234	49.636	1.00 16.43	AAAA
ATOM	402						•		•

					115410100				
ATOM	463	CA	LEU	58	42.662	19.822	49.475	1.00 15.18	AAAA
ATOM	464	CB	LEU	58	43.788	19.113	48.727	1.00 16.09	AAAA
ATOM	465	CG	LEU	58	44.029	19.682	47.321	1.00 21.72	AAAA
ATOM	466	CD1	LEU	58	45.221	18.982	46.680	1.00 31.92	AAAA
ATOM	467		LEU	58	42.786	19.549	46.469	1.00 34.38	AAAA
ATOM	468	C	LEU	58	42.339	19.116	50.787	1.00 21.19	AAAA
ATOM	469	ō	LEU	58	42.067	17.914	50.795	1.00 20.40	AAAA
ATOM	470	N	LEU	59	42.377	19.849	51.896	1.00 13.50	AAAA
ATOM	471	CA	LEU	59	41.958	19.261	53.173	1.00 15.58	AAAA
ATOM	472		LEU	59	42.182	20.236	54.339	1.00 18.98	AAAA
ATOM	473	CG	LEU	59	43.619		54.774	1.00 22.57	AAAA
ATOM	474		LEU	59	43.640	21.654	55.808	1.00 19.88	AAAA
ATOM	475		LEU		44.255	19.253	55.339	1.00 26.71	AAAA
ATOM	476	c	LEU	59	40.446	18.979	53.043	1.00 17.55	AAAA
ATOM	477	Ö	LEU	59	39.897	18.112	53.724	1.00 18.02	AAAA
MOTA	478	N	PHE	60	39.766	19.737	52.179	1.00 14.64	- AAAA
ATOM	479	CA	PHE	60	38.338	19.536	51.970	1.00 18.17	AAAA
ATOM	480	CB	PHE	60	. 37.519	20.694	52.557	1.00 18.80	AAAA
ATOM	481	CG	PHE	60	36.028	20.564	52.316	1.00 15.94	AAAA
ATOM	482		PHE	60	35.320	19.476	52.817	1.00 19.98	AAAA
ATOM	483		PHE	60	35.339	21.524	51.576	1.00 18.09	AAAA
ATOM	484		PHE	60	33.947	19.338	52.587	1.00 18.72	· AAAA
ATOM	485		PHE	60	33.964	21.399	51.338	1.00 19.19	AAAA
ATOM	486	CZ	PHE	60	33.268	20.295	51.850	1.00 18.43	AAAA
ATOM	487	C	PHE	60	37.916	19.337	50.510	1.00 16.45	AAAA
ATOM	488	ō	PHE	60	37.227	18.371	50.179	1.00 19.18	AAAA
ATOM	489	N	HIS	61	38.308	20.257	49.638	1.00 18.26	AAAA
ATOM	490	CA	HIS		37.913	20.163	48.235	1.00 14.47	AAAA
ATOM	491	CB	HIS	61	38.004	21.545	47.582	1.00 17.15	AAAA
ATOM	492	ÇĞ	HIS	61	36.968	22.494	48.084	1.00 14.20	AAAA
ATOM	493		HIS	61	35.645	22.580	47.816	1.00 11.05	AAAA
ATOM	494		HIS	61	37.237	23.477	49.012	1.00 23.25	AAAA
ATOM	495		HIS	61	36.121	24.131	49.291	1.00 13.35	AAA:A
ATOM	496		HIS	61	35.143	23.606	48.579	1.00 21.07	AAAA
ATOM	497	С	HIS	61	38.695	19.157	47.417	1.00 18.29	AAAA
ATOM	498	0	HIS	61	39.828	18.819	47.761	1.00 17.50	AAAA
ATOM	499	N	THR	62	38.071	18.658	46.346	1.00 15.39	AAAA
ATOM	500	CA	THR	62	38.741	17.686	45.473	1.00 19.02	AAAA
MOTA	501	CB	THR	62	37.734	16.767	44.756	1.00 19.61	AAAA
ATOM	502	OG1	THR	62	36.795	17.548	44.006	1.00 22.05	AAAA
ATOM	503	CG2	THR	62	36.995	15.925	45.767	1.00 28.99	AAAA
MOTA	504	С	THR	62	39.595	18.398	44.440	1.00 23.22	AAAA
ATOM	505	0	THR	62	39.311	19.532	44.044	1.00 17.47	AAAA
ATOM	506	IJ	GLU	63	40.657	17.732	44.009	1.00 18.94	AAAA
ATOM	507	CA	GLU	63	41.571	18.324	43.046	1.00 22.44	AAAA
ATOM	508	CB	GLU	63	42.736			1.00 28.31	AAAA
ATOM	509	CG	GLU	63	43.885	17.476	43.708	1.00 60.37	AAAA
ATOM	510	CD	GLU	63	45.154	16.893	43.115	1.00 65.08	AAAA
ATOM	511		GLU	63	45.603	17.407	42.065	1.00 66.44	AAAA
ATOM	512	OE2	GLU	63	45.697	15.927	43.694	1.00 71.72	AAAA
ATOM	513	С	GLU	63	40.983	18.764	41.730	1.00 18.63	AAAA
ATOM	514	0	GLU	63	41.340	19.827	41.228	1.00 18.37	AAAA
ATOM	515	N	ASP	64	40.108	17.943	41.153	1.00 19.77	AAAA
ATOM	515	CA	ASP	64	39.508	18.277	39.864	1.00 17.88	AAAA
MOTA	517	CB	ASP	64	38.584	17.159	39.372	1.00 20.43	AAAA
ATOM	518	CG	ASP	64	37.429	16.884	40.330	1.00 42.71	AAAA
ATOM	519		ASP	64	36.415	16.291	39.899	1.00 45.01	AAAA
ATOM	520		asp	64	37.537	17.243	41.521	1.00 51.77	AAAA
ATOM	521	С	ASP	64	38.701	19.582	39.964	1.00 21.90	АААА
ATOM	522	O	ASP	64	38.726	20.410	39.042	1.00 17.35	AAAA
ATOM	523	N	TYR	65	37.980	19.750	41.072	1.00 16.17	AAAA
ATOM	524	CA	TYR	65	37.178	20.957	41.292	1.00 15.62	AAAA
ATOM	525	CB	TYR	65	36.258	20.796	42.529	1.00 12.04	AAAA
ATOM	526	CG	TYR	65	35.501	22.065	42.886	1.00 12.23	AAAA
ATOM	527		TYR	65	34.699	22.718	41.940	1.00 14.73	AAAA
ATOM	528	CE1	TYR	65	34.028	23.910	42.253	1.00 18.23	AAAA

ATOM	529	CD2	TYR	65	35.609	22.631	44.163	1.00 13.67	AAAA
	-				34.943	23.824	44.486	1.00 18.16	AAAA
ATOM	530	CE2	TYR	65					
MOTA	531	CZ	TYR	65	34.162	24.461	43.533	1.00 16.88	AAAA
					33.555	25.665	43.837	1.00 14.59	AAAA
ATOM	532	OH	TYR	65					
MOTA	533	С	TYR	65	38.090	22.177	41.459	1.00 15.27	AAAA
					37.882	23.189	40.798	1.00 15.96	AAAA
ATOM	534	0	TYR	65					
ATOM	535	N	ILE	66	39.098	22.073	42.321	1.00 14.29	AAAA
					40.022	23.179	42.540	1.00 18.86	AAAA
MOTA	536	CA	ILE	66					
ATOM	537	CB	ILE	66	41.090	22.836	43.617	1.00 15.56	AAAA
					42.152	23.943	43.698	1.00 20.45	AAAA
ATOM	538	CG2		66					
ATOM	539	CG1	TIE	66	40.405	22.659	44.967	1.00 19.68	AAAA
					39.717	23.948	45.454	1.00 29.11	AAAA
MOTA	540	CD1	1112	66					
MOTA	541	С	ILE	66	40.716	23.519	41.236	1.00 25.20	AAAA
					40.809	24.692	40.895	1.00 14.60	AAAA
ATOM	542	0	ILE	66	40.603				
ATOM	543	N	ASN	67	41.190	22.508	40.498	1.00 18.21	AAAA
					41.879	22.789	39.236	1.00 20.03	AAAA
MOTA	544	CA	ASN	67					
ATOM	545	CB	ASN	67	42.448	21.523	38.580	1.00 21.73	AAAA
	-				43.645	20.954	39.333	1.00 21.69	AAAA
ATOM	546	CG	ASN	67					
ATOM	547	OD1	2SN	67	44.293	21.645	40.110	1.00 23.97	AAAA
				67	43.947	19.692	39.086	1.00 23.23	AAAA
ATOM	548	ND2							
ATOM	549	С	ASN	67	40.970	23.500	38.250	1.00 15.87	AAAA
				67	41.431	24.347	37.473	1.00 18.64	AAAA
ATOM	550	0	ASN						
ATOM	551	N	THR	68	39.681	23.180	38.295	1.00 16.55	AAAA
				68	38.729	23.814	37.400	1.00 20.34	AAAA
ATOM	552	CA	THR						
ATOM	553	CB	THR	68	37.360	23.114	37.441	1.00 22.99	AAAA
				68	37.511	21.760	36.978	1.00 21.75	AAAA
ATOM	554	OG1							
ATOM	555	CG2	THR	68	36.378	23.827	36.536	1.00 17.37	AAAA
					38.561	25.291	37.755	1.00 16.66	AAAA
ATOM	556	С	THR	68					AAAA
ATOM	557	0	THR	68	38.472	26.139	36.871	1.00 18.79	
			LEU	69	38.534	25.604	39.045	1.00 14.82	AAAA
ATOM	558	N							AAAA
ATOM	559	CA	LEU	69	38.405	27.000	39.447	1.00 15.20	
	560	CB	LEU	69	38.295	27.126	40.973	1.00 16.87	AAAA ·
MOTA								1.00 14.76	AAAA
MOTA	561	CG	LEU	69	37.057	26.551	41.666		
	562	CDI	LEU	69	37.212	26.643	43.179	1.00 16.81	AAAA
MOTA								1.00 17.26	AAAA
ATOM	563	CD2	LEU	69	35.832	27.312	41.217		
	564	С	LEU	69	39.623	27.796	38.969	1.00 15.11	AAAA
MOTA						28.934	38.504	1.00 13.30	AAAA
ATOM	565	0	LEU	69	39.500				
MOTA	566	N	MET	70	40.803	27.204	39.090	1.00 13.40	AAAA
					42.019	27.894	38.659	1.00 16.97	AAAA
ATOM	567	CA	MET	70					
ATOM	. 568	CB	MET	70	43.254	27.114	39.075	1.00 14.87	AAAA
					43.335	26.886	40.582	1.00 15.18	AAAA
ATOM	569	CG	MET	70					
MOTA	570	SD	ET	70	44.828	25.954	41.060	1.00 28.71	AAAA
				70	46.051	27.228	40.893	1.00 21.19	AAAA
ATOM	571	CE	MET						
ATOM	572	С	MET	70	42.064	28.119	37.155	1.00 19.11	AAAA
				70	42.498	29.170	36.700	1.00 17.10	AAAA
MOTA	573	0	MET						AAAA
MOTA	. 574	N	GL!	71	41.648	27.118	36.389	1.00 15.06	
			GLU	71	41.651	27.226	34.934	1.00 16.12	AAAA
ATOM	575	CA						1 00 16 12	AAAA
ATOM	576	CB	GLi	71	41.397	25.856	34.305	1.00 16.12	
	577	CG	GLU	71	41.387	25.882	32.800	1.00 20.26	AAAA
ATOM								1.00 32.31	AAAA
ATOM	578	CD	GLU	71	42.782	25.920	32.193		
	579	OFI	GLU	71	42.893	25.741	30.958	1.00 27.07	AAAA
ATOM							32.941	1.00 24.85	AAAA
ATOM	580	OE2	3LU	71	43.762	26.117			
ATOM	581	С	GLU	71	40.580	28.208	34.466	1.00 16.48	AAAA
						29.066	33.611	1.00 17.20	AAAA
ATOM	- 582	0	GLU	71	40.831				
ATOM	583	N	ALA	72	39.380	28.097	35.027	1.00 15.68	AAAA
							34.644	1.00 16.07	AAAA
ATOM	584	CA	ALA	72	38.300	28.998			
	585	CB	ALA	72	37.035	28.669	35.425	1.00 17.21	AAAA
ATOM						30.453	34.897	1.00 19.07	AAAA
MOTA	586	C	ALA	72	38.678				
	587	0	ALA	72	38.448	31.326	34.054	1.00 15.92	AAAA
ATOM							36.062	1.00 15.86	AAAA
ATOM	588	N	GLU	73	39.260	30.726			
			GLU	73	39.616	32.097	36.372	1.00 15.50	AAAA
MOTA	589	CA						1.00 14.12	AAAA
ATOM	590	CB	GLU	73	40.046	32.210	37.828		
				73	40.430	33.615	38.214	1.00 14.24	AAAA
atom	591	CG	GLU					1.00 17.23	AAAA
ATOM	592	CD	GLU	73	40.961	33.699	39.629	1.00 17.23	
				73	40.147	33.696	40.573	1.00 18.51	AAAA
ATOM	593		GLU					1.00 20.88	AAAA
ATOM	594	OE2	GLU	73	42.201	33.753	39.793	1.00 20.00	Anna
21.012							-		•

								•	
	595	С	GLU	73	40.706	32.709	35.495	1.00 20.36	AAAA
MOTA	596	Ö	GLU	73	40.527	33.806	34.948	1.00 17.74	AAAA
ATOM			ARG	74	41.832	32.020	35.344	1.00 21.57	AAAA
MOTA	597	N	ARG	74	42.911	32.623	34.574	1.00 19.48	AAAA
MOTA	598	CA	ARG	74	44.256	31.912	34.834	1.00 18.48	AAAA
MOTA	599	CB		74	44.365	30.489	34.351	1.00 14.96	AAAA
MOTA	600	CG	ARG	74	45.723	29.892	34.745	1.00 15.05	AAAA
MOTA	601	CD	ARG	74	45.918	28.696	33.950	1.00 18.16	AAAA
MOTA	602	NE	ARG	. 74	46.439	28.682	32.727	1.00 16.31	AAAA
ATOM	603	CZ	ARG		46.843	29.811	32.145	1.00 19.74	AAAA
ATOM	604		ARG	74	46.466	27.536	32.047	1.00 14.73	AAAA
ATOM	605		ARG	74	42.643	32.718	33.084	1.00 16.86	AAAA
MOTA	606	C	ARG	74	43.148	33.621	32.426	1.00 15.41	AAAA
MOTA	607	0	ARG	74 · 75	41.859	31.794	32.547	1.00 17.56	AAAA
ATOM	608	N	CYS	75 75	41.544	31.833	31.115	1.00 18.24	AAAA
MOTA	609	CA	CYS	75 75	41.474	30.414	30.545	1.00 20.94	AAAA
MOTA	610	CB	CYS	75 75	43.047	29.514	30.572	1.00 19.30	AAAA
MOTA	611	SG	CÝS	75 75	40.216	32.561	30.898	1.00 15.81	AAAA
MOTA	612	С	CYS	75 75	39.762	32.748	29.762	1.00 17.79	AAAA
MOTA	613	0	CYS	75 76	39.601	32.959	32.007	1.00 15.63·	AAAA -
MOTA	614	N	GLN		38.339	33.686	32.010	1.00 23.22	AAAA
ATOM	615	CA	GLN	76 76	38.595	35.122	31.530	1.00 22.99	AAAA
A·I·OM	616	CB	GLN	76 76	37.564	36.107	32.027	1.00 44.69	AAAA
ATOM	617	CG	GLN	76 76	37.588	36.229	33.535	1.00 47.78	AAAA
MOTA	618	CD	GLN	76 76	37.563	35.228	34.243	1.00 62.95	AAAA
ATOM	619		GLN	76 76	37.619	37.452	34.033	1.00 45.96	AAAA
MOTA	620	NE2		76 76	37.304	32.975	31.135	1.00 23.43	AAAA
MOTA	621	С	GLN	76 76	36.826	33.512	30.135	1.00 19.93	AAAA
MOTA	622	0	GLN	76 77	36.951	31.754	31.521	1.00 15.97	AAAA
ATOM	623	N	CYS	77 77	36.004	30.979	30.741	1.00 18.91	AAAA
MOTA	624	CA	CYS	77	36.738	30.225	29.623	1.00 24.64	AAAA
MOTA	625	CB	CYS	77	37.848	28.887	30.269	1.00 25.26	AAAA
ATOM	626	SG	CYS	77	35.302	29.951	31.594	1.00 19.68	AAAA
MOTA	627	C	CYS	77	35.685	29.702	32.732	1.00 20.02	AAAA
MOTA	628	0	CYS	78	34.254	29.366	31.022	1.00 16.00	AAAA
MOTA	629	N	VAL VAL	78	33.531	28.288	31.671	1.00 18.73	AAAA
MOTA	630	CA	VAL	78 78	32.016	28.455	31.557	1.00 15.57	AAAA
ATOM	631 632	CB CC1	VAL	78	31.312	27.304	32.262	1.00 21.27	AAAA
ATOM	633		VAL	78	31.603	29.792	32.151	1.00 19.47	AAAA
ATOM	634	C	VAL	78	33.950	27.077	30.859	1.00 24.02	AAAA
ATOM	635	Ö	VAL	78	33.499	26.894	29.718	1.00 24.08	AAAA
ATOM	636	N	PRO	79	34.848	26.249	31.420	1.00 18.91	AAAA AAAA
MOTA MOTA	637	CD	PRO	79	35.470	26.341	32.756	1.00 17.70	AAAA
ATOM	638	CA	PRO	79	35.320	25.056	30.720	1.00 23.37	AAAA
	639	СВ	PRO	79	36.295	24.432	31.732	1.00 21.92	AAA.
MOTA ATOM	640	CG	PRO	79	36.802	25.677		1.00 20.90	AAA.
MOTA	641	c	PRO	79	34.152	24.144		1.00 27.44	AAA
MOTA	642	0	PRO	79	33.177			1.00 22.20 1.00 23.35	AAAA
MOTA	643	N	LYS	80	34.245				AAAA
ATOM	644	CA	LYS	80	33.212			1.00 20.70	AAAA
MOTA	645	CB	LYS	80	33.708			1.00 52.33	AAAA
ATOM	646	CG	LYS	80	35.098			1.00 68.70	AAAA
MOTA	647	CD	LYS	80	35.669			1.00 70.04	AAAA
MOTA	648	CE	LYS	80	37.131			1.00 73.72	AAAA
ATOM	649	NZ	LYS	80	37.688				AAAA
ATOM	650	С	LYS	80	32.875	21.571			AAAA
MOTA	651	၁	LYS	80	33.770			 1	AAAA
ATOM	652	N	GLY	81	31.582				AAAA
MOTA	653			81	31.126	20.509			AAAA
ATOM	654		GLY	81	31.151	21.039			AAAA
ATOM	655		GLY	81	30.604				AAAA
ATOM	656		ALA	82	31.754				AAAA
ATOM	657			82	31.858	22.738			AAAA
ATOM	658			82	33.065				AAAA
ATCM	659		ALA	82	30.610				AAAA
ATCM	660		ALA	82	30.425	23.529	מוני ק	. 1.00 20.00	•

				•					
ATOM	661	N	ARG	83	29.758	23.926	33.897	1.00 17.68	AAAA
		CA	AEG	83	28.549	24.596	34.360	1.00 15.04	AAAA
ATCM	662						33.176	1.00 21.02	AAAA
ATCM	663	CB	ARG	83	27.777	25.188			
ATCM	664	CG	ARG	83	26.938	26.395	33.528	1.00 36.77	AAAA
ATCM	665	CD	ARG	83	26.061	26.167	34.729	1.00 41.28	AAAA
ATCM	666	NE	ARG	83	25.366	27.393	35.105	1.00 40.05	AAAA
			ARG	83	24.530	27.492	36.134	1.00 51.15	AAAA
ATCM	667						36.893	1.00 55.10	AAAA
MOTA	668		ARG	83	24.286	26.432			
ATCM	669	NH2	ARG	83	23.931	28.646	36.399	1.00 54.26	AAAA
ATCM	670	С	ARG	83	27.701	23.530	35.030	1.00 21.33	AAAA
ATCM	671	0	ARG	83 -	27.193	23.708	36.130	1.00 24.88	AAAA
	672	N	GLU	84	27.565	22.406	34.352	1.00 18.76	AAAA
ATOM				84	26.768	21.299	34.859	1.00 24.12	AAAA
MOTA	673	CA	GLU				33.744	1.00 32.64	AAAA
ATCM	674	CB	GLU	84	26.527	20.290			
MOTA	675	CG	GLU	84	2 7 .769	19.994	32.925	1.00 37.91	AAAA
ATOM	676	CD	GLU'	84	27.832	20.784	31.612	1.00 51.24	AAAA
ATOM	677		GLU	84	27.585	20.152	30.545	1.00 24.82	AAAA
	678		GLU	84	28.114	22.018	31.650	1.00 22.57	AAAA
ATCM					27.394	20.570	36.043	1.00 25.36	AAAA
MOTA	679	С	GLU	84				1.00 26.17	AAAA
MOTA	680	0	GLU	84	26.739	20.321	37.057		
ATCM	681	N	LYS	85	28.665	20.232	35.897	1.00 18.78	AAAA
ATOM	682	CA	LYS	85	29.399	19.497	36.915	1.00 20.03	AAAA
ATCM	683	CB	LYS	85	30.658	18.900	36.280	1.00 18.59	AAAA
	684	CG	LYS	85	31.603	18.223	37.268	1.00 35.69	AAAA
ATCM					31.151	16.832	37.644	1.00 51.51	AAAA
MOTA	685	CD	LYS	85				1.00 59.18	AAAA
ATOM	686	CE	LYS	85	31.451	15.864	36.520		AAAA
MOTA	687	NZ	LYS	85	32.914	15.858	36.240	1.00 56.63	
ATOM	688	С	LYS	85	29.811	20.263	38.181	1.00 18.31	AAAA
MOTA	689	0	LYS	85	29.696	19.738	39.290	1.00 21.65	AAAA ,
ATOM	690	N	TYR	86	30.274	21.495	38.012	1.00 19.45	AAAA
	691	CA	TYR		30.776	22.272	39.145	1.00 14.26	AAAA
ATOM				86	32.207	22.692	38.840	1.00 14.95	AAAA
MOTA	692	CB	TYR				38.585	1.00 19.76	AAAA
ATCM	693	CG	TYR	86	33.107	21.508			AAAA
MOTA	694	CD1	TYR	86 .	33.384	20.591	39.601	1.00 18.83	
ATOM	695	CE1	TYR	86	34.247	19.519	39.388	1.00 20.29	AAAA
ATCM	696	CD2	TYR	86	33.711	21.322	37.337	1.00 18.14	AAAA
ATOM	697		TYR	86	34.567	20.261	37.112	1.00 22.66	AAAA
			TYR	86	34.832	19.364	38.145	1.00 22.51	AAAA
MOTA	698	CZ				18.317	37.921	1.00 23.68	AAAA
MOTA	699	ОН	TYR	86	35.680			1.00 19.03	AAAA
ATOM	700	С	TYR	86	29.967	23.493	39.526		
ATOM	701	0	TYR	86	30.353	24.226	40.450	1.00 19.18	AAAA
ATOM	702	N	ASN	87	28.873	23.721	38.803	1.00 17.59	AAAA
ATOM	703	CA	ASN	67	27.953	24.843	39.071	1.00 18.07	አአ አ ፉ
ATCM	704	CB	ASN	87	27.413	24.730	40.514	1.00 23.87	AAAA
	705	CG	ASN	87	26.020	25.349	40.688	1.00 30.67	AAAA
ATOM					25.531	25.520	41.819	1.00 31.55	AAAA
ATOM	706		ASN	87				1.00 20.18	AAAA
ATOM	707		ASN	87	25.370	25.661	39.580		AAAA
ATOM	708	C	ASN	87	28.641	26.197	38.875	1.00 24.24	
ATOM	709	0	ASN	87	28.283	27.190	39.519	1.00 18.57	AAAA
ATCM	710	N	ILE	88	29.617	26.237	37,970	1.00 18.80	AAAA
	711	CA	ILE	88	30.353	27.471	37.680	1.00 18.55	AAAA
ATCM					31.865	27.166	37.508	1.00 26.44	AAAA
ATOM	712	CB	ILE	88				1.00 43.71	AAAA
ATOM	713	CG2	ILE	88	32.613	28.406	37.044		
MOTA	714	CG1	ILE	88	32.439	26.703		1.00 36.30	AAAA
ATOM	715	CD1		88	32.295	27.735	39.888	1.00 24.08	AAAA
	716	c	ILE	88	29.887	28.142	36.392	1.00 14.36	AAAA
ATOM				38	29.584	27.459	35.426	1.00 21.93	AAAA
ATOM	717	0	ILE				36.380	1.00 18.71	AAAA
ATCM	718	N	GLY	89	29.843	29.473			AAAA
MOTA	719	CA	GLY	89	29.479	30.162	35.154	1.00 20.23	
ATCM	720	С	GLY	89	28.147	30.873	35.106	1.00 20.85	AAAA
ATOM	721	ō	GLY	89	28.006	31.817	34.330	1.00 25.47	AAAA
	722	N	GLY	90	27.172	30.414	35.889	1.00 21.17	AAAA
ATOM				90	25.863	31.060	35.898	1.00 24.44	AAAA
ATOM	723	CA	GLY				36.668	1.00 30.60	AAAA
ATCM	724	С	GLY	90	25.862	32.371		1 00 20 13	AAAA
ATCM	725	0	GLY	90	26.900	32.788	37.168	1.00 28.13	
ATCM	726	N	TYR	91	24.708	33.036	36.755	1.00 23.38	AAAA
							-		

				_					
		<i>~</i>	TYR	91	24.598	34.299	37.490	1.00 28.48	AAAA
MOTA	727				23.144	34.753	37.545	1.00 29.88	· AAAA
MOTA	728	CB	TYR	91				1.00 33.88	AAAA
MOTA	729	CG ·	TYR	91	22.923	35.899	38.518		
	730		TYR	91	23.329	37.197	38.207	1.00 39.69	AAAA
MOTA					23.130	38.250	39.104	1.00 31.76	AAAA
MOTA	731		TYR	91	25.150		39.759	1.00 40.63	AAAA
ATOM-	732	CD2	TYR	91	22.317	35.678		1.00 40.03	AAAA
	733		TYR	91	22.115	36.720	40.664	1.00 37.07	
atom				91	22.521	38.002	40.327	1.00 36.22	AAAA
MOTA	734		TYR		_		41.210	1.00 44.71	AAAA
ATOM	735	OH	TYR	91	22.306	39.035			AAAA
	736	C .	TYR	91	25.075	34.157	38.937	1.00 23.59	
ATOM		_		91	25.713	35.041	39.502	1.00 22.64	AAAA
MOTA	737		TYR				39.531	1.00 23.09	AAAA
ATOM	738	N	GLU	92	24.724	33.032		1.00 25.05	AAAA
	739		GLU	92 .	25.048	32.747	40.917	1.00 26.61	
MOTA				92	24.289	31.476	41.306	1.00 32.57	AAAA
ATOM	740		GLU			30.892	42.657	1.00 41.38	AAAA
ATOM	741	CG	GLU	92	24.595		-		- AAAA
	742		GLU	92	23.604	29.800	43.023	1.00 49.02	
MOTA				92	24.008	28.829	43.715	1.00 45.51	AAAA
ATOM	743	OE1					42.628	1.00 38.16	AAAA
ATOM	744	OE2	GLU	92	22.418	29.931		1.00 25.78	AAAA
	745	C	GLU	92	26.541	32.636	41.251		
MOTA				92	27.045	33.358	42.125	1.00 24.95	AAAA
MOTA	746	0	GLU		-	31.742	40.556	1.00 21.41	AAAA
ATOM	747	N	ASN	93	27.243			1.00 21.14	AAAA
MOTA	748	CA	ASN	93	28.674	31.519	40.777	1.00 21.14	
			ASN	93	28.876	30.075	41.226	1.00 17.27	AAAA
MOTA	749	CB			27.905	29.682	42.320	1.00 15.34	AAAA
MOTA	750	CG	ASN	93			43.399	1.00 20.33	AAAA
ATOM	751	OD1	ASN	93	27.882	30.290			AAAA .
	752	ND2		93	27.078	28.674	42.047	1.00 20.49	
MOTA					29.378	31.778	39.445	1.00 22.25	AAAA
ATOM	753	C	asn	93			38.806	1.00 20.29	AAAA
MOTA	754	0	ASN	93	29.901	30.865		1.00 25.45	AAAA
	755	N·	PRO	94	29.451	33.057	39.045		
ATOM			PRO	94	29.027	34.221	39.839	1.00 23.03	AAAA
MOTA	756	CD			30.055	33.523	37.794	1.00 23.05	AAAA
MOTA	757	CA	PRO	94	-		_	1.00 28.71	AAAA
ATOM	758	CB	PRO	94	29.669	35.004	37.759		AAAA
	759	CG	PRO	94	28.528	35.112	38.755	1.00 40.02	
MOTA				_	31.554	33.384	37.697	1.00 26.51	AAAA
ATOM	760	С	PRO	94		33.185	38.688	1.00 17.36	AAAA
MOTA	761	0	PRO	94	32.232			1.00 21.12	AAAA
	762	N	VAL	95	32.068	33.498	36.478		
MOTA			VAL	95	33.506	33.493	36.281	1.00 17.00	AAAA
ATOM	763	CA			33.851	33.242	34.796	1.00 25.15	AAAA
MOTA	764	CB	VAL	95			34.533	1.00 27.19	AAAA
MOTA	765	CG1	VAL	95	35.326	33.537			AAAA
	766		VAL	95	33.551	31.791	34.443	1.00 17.37	
MOTA				95	33.989	34.899	36.686	1.00 17.42	AAAA
ATOM	767	С	VAL			35.894	36.237	1.00 23.43	AAAA
MOTA	768	. O	VAL	95	33.426		37.563	1.00 18.84	AAAA
ATOM	769	N	SER	96	34.986	34.982			AAAA
		CA	SER	96	35.564	36.270	37.982	1.00 21.77	
MOTA	770				34.608	37.070	38.867	1.00 23.11	AAAA
MOTA	771	CB	SER	96			40.223	1.00 24.43	AAAA
MOTA	772	OG	SER	96	34.723	36.679			AAAA
	773	С	SER	96	36.835	35.987	38.789	1.00 29.09	
ATOM				96	37.117	34.828	39.115	1.00 27.12	AAAA
ATCM	774	0	SER			37.020	39.124	1.00 17.51	AAAA
ATOM	775	N	TYR	97	37.610			1.00 20.69	AAAA
ATOM	776	CA	TYR	97	38.803	36.751	39.911	1.00 20.03	AAAA
			TYR	97	39.865	37.835	39.712	1.00 21.82	
MOTA	777	CB			40.492	37.748		1.00 22.72	AAAA
ATOM	778	CG	TYR	97					AAAA
MOTA	779	CD1	TYR	97	39.936	38.414			AAAA
	780		TYR	97	40.473	38.265	35.949	1.00 24.45	
ATOM					41.599			1.00 19.74	AAAA
MOTA	781		TYR	97					AAAA
ATOM	782	CE2	TYR	97	42.144				AAAA
	783		TYR	97	41.578	37.439			
MOTA				97	42.122			1.00 28.54	AAAA
ATOM	784		TYR			_			AAAA
MOTA	785	С	TYR	97	38.510				AAAA
	786		TYR	97	39.413	36.285		1.00 19.70	
ATOM				98	37.243		41.764	1.00 18.56	AAAA
ATOM	787		ALA						AAAA
ATOM	788	CA	$\lambda L \lambda$	98	36.899				AAAA
ATOM	789		ALA	98	35.561	36.888			AAAA
			ALA	98	36.776	34.743	43.224		
ATOM	790				36.931		44.289	1.00 20.14	AAAA
ATOM	791	. 0	ALA	98		24 004			AAAA
	702	NT I	MET	99	36.538	34.094	, TE.VO	1.00 -0.3-	

					25.225	20 642	42 317	1.00 17.60	AAAA
ATOM	793	CA	MET	99	36.295	32.643	42.117	1.00 17.05	AAAA
MOTA	794	CB	MĘT	99	35.864	32.137	40.736		AAAA
ATOM	795		MET	99	36.999	31.824	39.793	1.00 11.16	
ATOM	796	-	MET	99	36.314	31.698	38.113	1.00 16.54	AAAA
	797	CE	MET	99	35.165	30.295	38.312	1.00 17.83	AAAA
ATOM			MET	99	37.432	31.800	42.650	1.00 18.98	AAAA
ATOM	798	C		99	37.197	30.753	43.251	1.00 18.21	AAAA
MOTA	799	0	MET		38.670	32.216	42.420	1.00 12.87	AAAA
MOTA	800	N	PHE	100		31.439	42.987	1.00 17.13	AAAA
MOTA	801	CA	PHE	100	39.774		41.917	1.00 15.23	AAAA
ATOM	802	CB	PHE	100	40.559	30.681		1.00 15.20	AAAA
ATOM	803	CG	PHE	100	41.647	29.834	42.492		AAAA
ATOM	804	CD1	PHE	100	41.342	28.638	43.140	1.00 22.96	
ATOM	805	CD2		100	42.972	30.282	42.488	1.00 17.12	AAAA
	806	CE1		100	42.341	27.901	43.782	1.00 19.23	AAAA
ATOM	807	CE2	PHE	100	43.974	29.552	43.129	1.00 16.99	AAAA
MOTA			PHE	100	43.658		43.779	1.00 17.78	AAAA
ATOM	808	CZ		100	40.755		43.774	1.00 20.54	AAAA
ATOM	809	С	PHE		41.088		44.912	1.00 21.45	AAAA
ATOM	810	0	PHE	100	41.219		43.187	1.00 18.02	AAAA
MOTA	811	N	THR	101			43.902	1.00 15.25	AAAA
ATOM	812	CA	THR	101	42.177		42.976	1.00 16.33	AAAA
ATOM	813	CB	THR	101	42.715			1.00 16.01	AAAA
MOTA	814	OG1	THR	101	43.386		41.870		AAAA
ATOM	815	CG2	THR	101	43.706		43.697	1.00 16.31	AAAA
MOTA	816	С	THR	101	41.567		45.160	1.00 14.12	
	817	ō	THR	101	42.110	34.707	46.244	1.00 16.86	AAAA
MOTA	818	N	GLY	102	40.435	35.541	45.008	1.00 13.77	AAAA
MOTA		CA	GLY	102	39.770	36.145	46.156	1.00 16.29	AAAA
MOTA	819		GLY	102	39.330		47.133	1.00 16.75	AAAA
MOTA	820	С		102	39.502		48.338	1.00 14.48	AÁAA
ATOM	821	0	GLY	102	38.752		46.615	1.00 16.24	AAAA
MOTA	822	N	SER		38.315		47.488	1.00 16.72	AAAA
MOTA	823	CA	SER	103			46.684	1.00 15.97	AAAA
ATOM	824	CB	SER	103	37.567		46.197	1.00 26.86	AAAA
ATOM	825	OG	SER	103	36.339			1.00 17.88	AAAA
ATOM	826	С	SER	103	39.494		48.218	1.00 17.33	AAAA
ATOM	827	0	SER	103	39.405		49.419		AAAA
ATOM	828	N	SER	104	40.604		47.515	1.00 11.40	AAAA
MOTA	829	CA	SER	104	41.780		48.181	1.00 17.61	AAAA
ATOM	830	CB	SER	104	42.888		47.160	1.00 15.89	
	831	OG	SER	104	42.52	30.102	46.362	1.00 27.82	AAAA
ATOM	832	C	SER	104	42.332	2 32.404	49.271	1.00 17.02	AAAA
ATOM		Ö	SER	104	42.86		50.286	1.00 15.37	AAAA
ATOM	833		LEU	105	42.20		49.052	1.00 17.10	AAAA
ATOM	834	N		105	42.70		50.016	1.00 16.95	AAAA
MOTA	835	CA	LEU	105	42.72		49.365	1.00 18.44	AAAA
ATOM	836	CB	LEU		43.61	_		1.00 29.88	AAAA
MOTA	837	CG	LEU	105			49.959	1.00 20.25	AAAA
ATOM	838	CD1	LEU	105	45.08			1.00 29.39	AAAA
ATOM	839	CD2	LEU	105	43.43			1.00 14.81	AAAA
ATOM	840	С	LEU	105	41.83			1.00 17.74	AAAA
MOTA	841	0	LEU	105	42.33			1.00 17.74	AAAA
ATOM	842	N	ALA	106	40.53				AAAA
ATOM	843	CA	ALA	106	39.60	1 34.493		1.00 12.39	AAAA
ATOM	844	CB	ALA	106	38.14			1.00 11.58	
	845	c	ALA	106	39.80	7 33.210	53.023	1.00 14.79	AAAA
MOTA	846	ō	ALA	106	39.70		54.250	1.00 13.58	AAAA
MOTA			THR	107	40.11			1.00 13.67	AAAA
MOTA	847	N		107	40.31				AAAA
ATOM	848	CA	THR		40.18		_		AAAA
MOTA	849	CB	THR	107	38.86				AAAA
MOTA	850	OG		107	30.00				AAAA
ATOM	851	CG2		107	40.42				AAAA
ATCM	852	С	THR	107	41.64				AAAA
ATCM	853	0	THR	107	41.73				AAAA
ATOM	854		GLY	108	42.69				AAAA
ATOM	855		GLY	108	43.96				AAAA
ATOM	856		GLY	108	43.80	1 32.119			
	857		GLY	108	44.41			1.00 17 53	AAAA
ATOM	858		SER	109	42.96			1.00 15.26	AAAA
ATCM	350	••					-		•

32/263 Figure 16-14

ATOM	859	CA	SER	109	42,727	34.020	56.153	1.00 14.54	AAAA
				109	41.906	35.248	55.737	1.00 15.58	AAAA
ATOM	860	CB	SER			-	54.809	1.00 16.97	AAAA
MOTA	861	OG	SER	109	42.627	36.045			
ATOM	862	С	SER	109	42.037	33.264	57.297	1.00 15.56	AAAA
ATOM	863	0	SER	109	42.189	33.600	58.487	1.00 17.00	AAAA
				110	41.261	32.247	56.944	1.00 14.37	AAAA
MOTA	864	N	THR				57.957	1.00 12.89	AAAA
ATOM	865	CA	THR	110	40.608	31.435			
ATOM	866	CB	THR	110	39.452	30.628	57.360	1.00 14.54	AAAA
	867	OG1	THR	110	38.346	31.519	57.163	1.00 18.11	AAAA
MOTA				110	39.061	29.452	58.278	1.00 12.91	AAAA
MOTA	868	CG2	THR				58.601	1.00 18.44	AAAA
MOTA	869	С	THR	110	41.633	30.524			
ATOM	870	0	THR	110	41.574	30.302	59.806	1.00 16.30	AAAA
ATOM	871	N	VAL	111	42.584	30.013	57.816	1.00 15.20	AAAA
		CA	VAL	111	43.614	29.180	58.403	1.00 20.45	AAAA
MOTA	872				44.517	28.514	57.323	1.00 20.02	AAAA
MOTA	873	CB	VAL	111					
ATOM	874	CG1	VAL	111	45.652	27.765	58.005	1.00 21.79	AAAA
ATOM	875	CG2	VAL	111	43.697	27.537	56.482	1.00 19.07	AAAA
		C	VAL	111	44.456	30.075	59.327	1.00 18.21	AAAA
MOTA	876				44.838	29.672	60.431	1,00 18.65	AAAA
ATOM	877	0	VAL	111					AAAA
MOTA	878	N	GLN	112	44.731	31.302	58.890	1.00 16.82	
ATOM	879	CA	GLN	112	45.493	32.232	59.719	1.00 20.13	AAAA
	880	CB	GLN	112	45.751	33.540	58.970	1.00 22.39	AAAA
MOTA					46.593	33.360	57.723	1.00 21.17	AAAA
MOTA	881	CG	GLN	112				1.00 24.82	AAAA
MOTA	882	CD	GLN	112	46.797	34.651	56.982		
MOTA	883	OE1	GLN	112	47.772	35.381	57.219	1.00 25.62	AAAA
ATOM	884	NE2		112	45.866	. 34.963	56.091	1.00 13.16	አጸጸአ
			GLN	112	44.743	32.516	61.012	1.00 23.99	AAAA
MOTA	885	C				32.593	62.079	1.00 17.94	AAAA
MOTA	886	0	GLN	112	45.340				AAAA
MOTA	887	N	ALA	113	43.431	32.700	60.924	1.00 15.60	
ATOM	-888	CA	ALA	113	42.653	32.941	62.138	1.00 15.04	AAAA
	889	СВ	ALA	113	41.191	33.138	61.802	1.00 18.65	AAAA
MOTA					42.807	31.751	63.083	1.00 14.84	AAAA
MOTA	890	С	ALA	113				1.00 21.05	AAAA
ATOM	891	Ο.	ALA	113	42.941	31.909	64.296		
ATOM	892	N	ILE	114	42.767	30.550	62.534	1.00 16.45	AAAA
MOTA	893	CA	ILE	114	42.919	29.383	63.389	1.00 15.38	AAAA
			ILE	114	42.600	28.100	62.637	1.00 15.22	AAAA
ATOM	894	CB				26.893	63.537	1.00 15.72	AAAA
ATOM	895		ILE	114	42.888				AAAA
ATOM	896	CG1	ILE	114	41.110	28.112	62.244	1.00 19.28	
ATOM	897	CD1	ILE	114	40.744	27.038	61.191	1.00 13.43	AAAA
	898	c	ILE	114	44.329	29.318	63.968	1.00 18.02	AAAA
ATOM	•			114	44.508	28.998	65.156	1.00 20.38	AAAA
MOTA	899	0	ILE				63.144	1.00 15.27	AAAA
MOTA	900	N	GLU	115	45.328	29.629			
MOTA	901	CA	GLU	115	46.726	29.626	63.614	1.00 21.48	AAAA
ATOM	902	CB	GLU	115	47.690	30.080	62.506	1.00 21.76	AAAA
	903	CG	GLU	115	47.884	29.080	61.386	1.00 15.78	AAAA
MOTA	-					29.648	60.211	1.00 20.04	AAAA
MO £	904	CD	GLU	115	48.670				AAAA
A COM	905	0E1	GLU	115	49.051	30.843	60.239	1.00 21.48	
A.OM	906	OE2	GLU	115	48.901	28.902	59.241	1.00 26.59	AAAA
	907	C	GLU	115	46.877	30.559	64.814	1.00 23.55	AAAA
MOTA					47.509	30.212	65.815	1.00 23.03	AAAA
ATOM	908	0	GLU	115				1.00 22.73	AAAA
ATOM	909	N	GLU	116	46.295	31.748	64.703		
MOTA	910	CA	GLU	116	46.367	32.735	65.774	1.00 20.54	AAAA
ATOM	911	CB	GLU	116	45.744	34.044	65.320	1.00 18.40	AAAA
		ĊĠ	GLU	116	46.562	34.765	64.279	1.00 19.76	AAAA
MOTA	. 912					34.998	64.756	1.00 27.24	AAAA
MOTA	913	CD	GLU	116	47.985				AAAA
MOTA	914		GLU	116	48.164	35.630	65.815	1.00 18.44	
MOTA	915	CE2	GLU	116	48.919		64.078	1.00 23.17	AAAA
	916	c	GLU	116	45.682	32.253	67.034	1.00 25.39	AAAA
MOTA						32.427	68.137	1.00 22.87	AAAA
MOTA	917	0	GLU	116	46.207				AAAA
ATOM	918	И	PHE	117	44.510	31.647	66.872	1.00 18.78	
ATOM	919	CA	PHE	117	43.778	31.139	68.019	1.00 22.11	AAAA
	920	CB	PHE	117	42.451	30.530	67.581	1.00 23.14	AAAA
MOTA						30.054	68.728	1.00 24.06	AAAA
ATOM	921	CG	PHE	117	41.603			1.00 19.67	AAAA
ATOM	922	CD1	PHE	117	40.880	30.961	69.493		
. ATOM	923	CD2	PHE	117	41.559	28.701	69.066	1.00 24.08	AAAA
	924		PHE	117	40.115	30.531	70.586	1.00 23.68	AAAA
ATOM	764		E. LIE						

		_			40.799	28.262	70.156	1.00 24.04	AAAA
MOTA		CE2		117		29.179	70.915	1.00 19.62	AAAA
MOTA	926	CZ	PHE	117	40.078		68.747	1.00 23.87	AAAA
ATOM	927	С	PHE	117	44.587	30.068		1.00 24.40	AAAA
MOTA		0	PHE	117	44.613	30.031	69.979	1.00 21.09	AAAA
ATOM		N	LEU.	118	45.238	29.194	67.981		AAAA
			LEU	118	46.025	28:113	68.549	1.00 20.73	
ATOM	•		LEU	118	46.358	27.075	67.480	1.00 17.90	AAAA
MOTA			LEU	118	45.148	26.264	66.984	1.00 26.20	AAAA
MOTA		CG CD1		118	45.591	25.288	65.924	1.00 34.23	AAAA
MOTA				118	44.520	25.499	68.139	1.00 27.16	AAAA
MOTA		CD2			47.290	28.601	69.238	1.00 26.49	AAAA
MOTA			LEU	118	47.908	27.856	69.996	1.00 26.34	AAAA
ATOM	936		LEU	118	47.672	29.848	68.975	1.00 28.92	AAAA
MOTA	937		LYS	119		30.459	69.624	1.00 28.53	AAAA
ATOM	938		LYS	119	48.835		68.805	1.00 30.15	AAAA
ATOM	939	CB	LYS	119	49.392	31.616	67.437-	1.00 35.14	AAAA
ATOM	940	CG	LYS	119	49.915	31.267	66.716	1.00 28.98	AAAA
ATOM	941	CD	LYS	119	50.291	32.549		1.00 31.07	AAAA
ATOM	942	CE	LYS	119	50.905	32.262	65.380	1.00 31.07	AAAA
ATOM	943	NZ	LYS	119	51.195	33.551	64.745		AAAA
	944	C	LYS	119	48.335	31.053	70.932	1.00 35.74	AAAA
MOTA	945	0	LYS	119	49.117	31.541	71.750	1.00 27.10	AAAA
MOTA		N	GLY	120	47.018	31.050	71.103	1.00 25.20	
MOTA	946		GLY	120	46.445	31.605	72.309	1.00 30.18	AAAA
MOTA	947	CA		120	45.913	33.007	72.122	1.00 31.91	AAAA
MOTA	948	C	GLY	120	45.540	33.665	73.094	1.00 34.76	AAAA
MOTA	949	0	GLY	121	45.889	33.495	70.887	1.00 20.56	AAAA
MOTA	950	N	ASN		45.353	34.825	70.681	1.00 25.58	AAAA
MOTA	951	CA	ASN	121	46.278	35.634	69.785	1.00 29.99	AAAA
MOTA	952	CB	ASN	121		35.827	70.427	1.00 24.43	AAAA
MOTA	953	CG	ASN	121	47.641	34.874	70.588	1.00 54.63	AAAA
MOTA	954		ASN	121	48.396	37.045	70.817	1.00 41.69	AAAA
ATOM	955	ND2	ASN	121	47.944		70.135	1.00 18.85	AAAA
ATOM	956	С	ASN	121	43.941	34.759	69.899	1.00 24.77	AAAA
MOTA	957	0	ASN	121	43.421		69.991	1.00 19.55	AAAA
ATOM	958	N.	VAL	122	43.310			1.00 22.90	AAAA
ATOM	959	CA	VAL	122	41.936		69.499	1.00 22.30	AAAA
ATOM	960	CB	VAL	122	41.053		70.449		AAAA
	961		VAL	122	39.649		69.851	1.00 31.52	AAAA
MOTA	962		VAL	122	40.986	36.154	71.810	1.00 32.50	AAAA
ATOM .	963	C	VAL	122	41.953	36.632	68.130	1.00 16.87	AAAA
ATOM	964	0	VAL	122	42.518	37.710	67.938	1.00 24.08	AAAA
MOTA	965	N	ALA	123	41.321	35.983	67.159	1.00 18.67	AAAA
MOTA			ALA	123	41.360	36.532	65.821	1.00 10.18	
MOTA	966	CA	ALA	123	42.346		64.990	1.00 19.04	AAAA
MOTA	967	CB		123	40.000		65.131	1.00 13.72	AAAA
MOTA	968	C	ALA	123	39.108			1.00 20.78	AAAA
ATOM	969	0	ALA	123	39.871			1.00 12.92	AAAA
ATOM	970	N	PHE	_	38.649			1.00 14.67	AAAA
ATOM	971	CA	PHE	124	37.904	38.878		1.00 14.67	AAAA
ATCM	972	CB	PHE	124	36.660	39.209			AAAA
MOTA	973	CG	PHE	124					AAAA
ATOM	974		PHE	124	35.81				AAAA
ATOM	975		PHE	124	36.286				AAAA
ATOM	976	CEI	PHE	124	34.609				AAAA
MOTA	977	CE2	PHE	124	35.072				AAAA
ATOM	978	CZ	PHE	124	34.24				AAAA
	979	Ċ	PHE	124	39.01				AAAA
ATOM	980	ō	PHE	124	39.82	38.558	61.535		AAAA
MOTA			ASN	125	38.44		61.126	1.00 19.39	AAAA
ATOM	981	И	ASN	125	38.65		59.691		
ATOM	982	CA		125	39.12		7 59.150		AAAA
MOTA	983	CB	ASN	125	39.06			1.00 12.84	AAAA
ATCM	984	CG	ASN		39.21			1.00 14.91	AAAA
MOTA	985		1 ASN	125	38.85			1.00 16.21	AAAA
ATOM	986	ND:	2 ASN	125	37.31				AAAA
ATCM	987	С	ASN	125					AAAA
ATOM	988	0	ASN	125	36.50				AAAA
ATOM	989	N	PRO	126	37.07				AAAA
ATCM	990		PRO	126	37.90	8 39.68	29.00		•

	991	CA PI	RO	126		35.811	38.910	58.156	1.00 17.33	AAAA
ATOM			RO	126		35.912	40.434	58.177	1.00 16.32	AAAA
MOTA	992			126		37.416	40.655	58.008	1.00 20.95	AAAA
MOTA	993		RO			35.549	38.359	56.752	1.00 13.78	AAAA
MOTA	994	C P	RO	126				56.322	1.00 17.03	AAAA
ATOM	995	0 P	RO	126		34.404	38.291			AAAA
ATOM -	996	N A	LA	127		36.607	37.972	56.042	1.00 14.57	
	997		LA	127	•	36.463	37.443	54.691	1.00 17.37	AAAA
MOTA				127		37.816	37.540	53.930	1.00 14.48	AAAA
MOTA	998		LA			35.982	35.998	54.702	1.00 19.77	AAAA
ATOM	999	_	LA	127				53.688	1.00 15.62	AAAA
ATOM	1000	O A	LA	127		35.490	35.500		1.00 13.54	AAAA
	1001		LY	128		36.111	35.339	55.849		
MOTA			LY	128		35.725	33.939	55.971	1.00 13.53	AAAA
MOTA	1002			128	•	34.234	33.679	56.101	1.00 14.49	AAAA
MOTA	1003	-	LY			33.414	34.585	56.017	1.00 15.65	AAAA
MOTA	1004		LY	128				56.314	1.00 13.35	AAAA
ATOM	1005	N G	LY	129		33.883	32.420		1.00 16.28	-AAAA
ATOM	1006	CA G	LY	129		32.487	32.058	56.446		AAAA
	1007		LY	129		31.754	31.831	55.130	1.00 15.69	
MOTA		_	LY	129		30.543	32.021	55.072	1.00 16.10	AAAA
ATOM	1008					32.479	31.448	54.079	1.00 15.00	AAAA
MOTA	1009	-	ŒΤ	130				52.757	1.00 13.35	AAAA
MOTA	1010	CA M	1ET	130		31.879	31.163		1.00 12.20	AAAA
ATOM	1011	CB M	1ET	130		32.969	31.215	51.689		AAAA
	1012		1ET	130		33.680	32.573	51.731	1.00 17.03	
ATOM			1ET	130		34.863	32.877	50.425	1.00 15.41	AAAA
MOTA	1013			130		33.752	32.973	49.073	1.00 46.82	AAAA
ATOM	1014		1ET				29.756	52.885	1.00 12.49	AAAA
MOTA	1015	C M	1ET	130		31.296		52.297	1.00 19.54	AAAA
ATOM	1016	o M	1ET	130		31.785	28.789		1.00 16.24	AAAA
ATOM	1017		HIS	131		30.188	29.695	53.617		
	1018	-	HIS	131		29.556	28.448	54.014	1.00 13.80	AAAA
MOTA			HIS	131		28.772	28.694	55.316	1.00 15.91	AAAA
MOTA	1019					27.606	29.625	55.175	1.00 13.08	AAAA
ATOM	1020		HIS	131				56.096	1.00 12.46	AAAA
ATOM	1021	CD2 I	HIS	131		26.712	30.063		1.00 22.48	AAAA
ATOM	1022	ND1 F	HIS	131		27.225	30.190	53.976		AAAA
	1023	CE1 F		131		26.148	30.936	54.166	1.00 16.56	
ATOM		NE2		131		25.817	30.875	55.442	1.00 23.56	AAAA
MOTA	1024			131		28.673	27.663	53.066	1.00 13.69	AAAA
MOTA	1025		HIS			28.125	26.658	53.470	1.00 17.21	AAAA
MOTA	1026		HIS	131			28.115	51.830	1.00 14.51	AAAA
MOTA	1027	N I	HIS	132		28.523			1.00 20.19	AAAA
ATOM	1028	CA I	HIS	132		27.669	27.400	50.887	1.00 17.26	AAAA
ATOM	1029		HIS	132		26.863	28.416	50.054	1.00 17.26	
	1030		HIS	132		25.748	29.070	50.810	1.00 16.85	AAAA
MOTA				132		24.787	28.542	51.604	1.00 13.74	AAAA
MOTA	1031	CD2	H12			25.497	30.424	50.756	1.00 24.80	AAAA
MOTA	1032	ND1		132			30.700	51.486	1.00 12.68	AAAA
MOTA	1033	CE1	HIS	132		24.429		52.010	1.00 28.65	AAAA
ATOM	1034	NE2	HIS	132		23.980	29.576		1.00 16.89	AAAA
ATOM	1035		HIS	132		28.372	26.412	49.946		AAAA
			HIS	132		27.731	25.487		1.00 14.58	
ATOM	1036		ALA	133		29.669	26.580	49.689	1.00 16.79	AAAA
MOTA	1037					30.338	25.680	48.740	1.00 13.76	AAAA
ATOM	1038		ALA	133			26.194		1.00 14.95	AAAA
ATOM	1039	CB	ALA	133		31.738			1.00 18.80	AAAA
ATOM	1040	С	ALA	133		30.418	24.219			AAAA
ATOM	1041		ALA	133		30.557	23.939			AAAA
			PHE	134		30.306	23.306	48.209	1.00 13.76	
MOTA	1042					30.378	21.868	48.451	1.00 19.77	AAAA
MOTA	1043		PHE	134		29.311	21.132		1.00 15.59	AAAA
MOTA	1044		PHE	134			21.525			AAAA
MOTA	1045	CG	PHE	134		27.917				AAAA
MOTA	1046	CD1	PHE	134		27.135	22.259			AAAA
	1047	CD2		134		27.392	21.187	49.222	1.00 21.68	
MOTA				134		25.836	22.653		1.00 23.07	AAAA
MOTA	1048	CE1				26.099	21.578		1.00 17.64	AAAA
MOTA	1049	CE2		134						AAAA
ATOM	1050	CZ	PHE	134		25.323	22.308			AAAA
ATOM	1051	C	PHE	134		31.763	21.354			AAAA
	1052	5	PHE	134		32.547	22.049			AAAA
MOTA			LYS	135		32.060	20.124			
MOTA	1053	74		135		33.369	19.551		1.00 16.24	AAAA
ATOM	1054	ΞÀ	LYS			33.360			1.00 21.29	AAAA
MOTA	1055		LYS	135						AAAA
MOTA	1056		LYS	135		34.640	17.300	, 10.400		•

					1.6-0				
					24 507	15.867	48.977	1.00 30.26	AAAA
ATOM	1057		LYS	135	34.597	15.805	50.486	1.00 35.01	AAAA '
MOTA	1058		LYS	135	34.862		50.895	1.00 20.61	AAAA
ATOM	1059		LYS	135	36.304		46.836	1.00 16.60	AAAA
MOTA	1060		LYS	135	33.854 35.020		46.584	1.00 17.24	AAAA
ATOM	1061	0	LYS	135			45.893	1.00 18.01	AAAA
ATOM	1062	N	SER	136	32.944		44.490	1.00 15.26	AAAA
MOTA	1063	CA	SER	136	33.301	18.094	43.940	1.00 18.07	AAAA
ATOM	1064	CB	SER	136	33.339	17.261	44.762	1.00 22.22	AAAA
ATOM	1065	OG	SER	136	34.135 32.345	20.355	43.658	1.00 15.40	AAAA
MOTA	1066	С	SER	136	32.162	20.071	42.475	1.00 18.77	AAAA
MOTA	1067	0	SER	136	31.754	21.401	44.237	1.00 19.71	· AAAA
MOTA	1068	И	ARG	137	30.805	22.216	43.482	1.00 17.29	AAAA .
MOTA	1069	CA	ARG	137	29.481	21.448	43.366	1.00 24.19	AAAA
MOTA	1070	CB	ARG	137		22.273	42.937	1.00 32.56	AAAA
MOTA	1071	CG	ARG		28.290	21.424	42.980	1.00 47.98	AAAA
ATOM	1072	CD	ARG	137	26.951	20.493	41.862	1.00 50.95	AAAA
MOTA	1073	NE	ARG	137	26.392	20.781	40.691	1.00 50.38	AAAA
MOTA	1074	CZ	ARG	137	25.854	21.976	40.485	1.00 45.26	AAAA
MOTA	1075		ARG	137	26.375	19.876	39.722	1.00 55.31	AAAA
MOTA	1076		ARG	137	30.537	23.595	44.095	1.00 16.14	AAAA
MOTA	1077	C	ARG	137	30.439	23.711	45.308	1.00 16.88	AAAA
MOTA	1078	0	ARG	137	30.395	24.621	43.252	1.00 18.07	AAAA
MOTA	1079	N	ALA	138	30.117	25.976	43.735	1.00 21.48	AAAA
MOTA	1080	CA	ALA	138	30.460	27.024	42.631	1.00 16.55	AAAA
MOTA	1081	CB	ALA	138	28.642	26.090	44.135	1.00 21.04	AAAA
ATOM	1082	C	ALA	138	27.798	25.339	43.641	1.00 18.97	AAAA
MOTA	1083	0	ALA	138	28.321	27.019	45.029	1.00 13.83	AAAA
MOTA	1084	N	ASN	139	26.952	27.158	45.468	1.00 12.92	AAAA
MOTA	1085	CA	ASN	139 139	26.566	25.899	46.274	1.00 13.14	AAAA
ATOM	1086	CB	ASN		25.162	25.961	46.832	1.00 20.34	AAAA
MOTA	1087	CG	ASN	139	24.186	26.068	46.086	1.00 19.76	AAAA
MOTA	1088		ASN	139 139	25.048	25.881		1.00 16.36	AAAA
MOTA	1089		ASN	139	26.756	28.409	46.315	1.00 20.92	AAAA
MOTA	1090	C	ASN	139	27.603	28.738	47.148	1.00 16.81	AAAA
ATOM	1091	0	ASN	140	25.644	29.105	46.086	1.00 19.30	AAAA
MOTA	1092	N	GLY	140	25.330	30.295	46.864	1.00 21.34	AAAA
MOTA	1093	CA	GLY GLY	140	26.393		46.888	1.00 20.19	AAAA
MOTA	1094	C	GLY	140	26.653	31.968	47.943	1.00 18.77	AAAA AAAA
MOTA	1095	0	PHE	141	26.996	31.649	45.733	1.00 15.52	AAAA
MOTA	1096	N	PHE	141	28.034		45.600	1.00 20.71	AAAA
MOTA	1097	CA	PHE	141	27.711		46.388	1.00 20.03	AAAA
ATOM	1098	CB CG	PHE	141	26.355		46.127	1.00 28.32	AAAA
MOTA	1099		1 PHE	141	25.855	35.526	46.997		AAAA
MOTA	1100 1101		2 PHE	141	05 500	34.170	45.029		AAAA
MOTA	1101	CE.	1 PHE	141	24.628	36.116	46.775	1.00 25.94	AAAA
ATOM	1102		2 PHE	141	24.346	34.766	44.801		AAAA
MOTA	1103			141	23.870				AAAA
MOTA	1105		PHE	141	29.357				AAAA
MOTA	1105		PHE	141	30.336	32.914			AAAA
MOTA	1107		CYS	142	29.389				AAAA
MOTA MOTA	1108			142	30.629	30.466			AAAA
	1109			142	30.347	29.845			AAAA
MOTA MOTA	1110			142	29.606				AAAA
	1111		CYS	142	31.313			44 60	AAAA
MOTA	1112		CYS	142	30.64	7 28.527			AAAA
MOTA	1113		TYR	143	32.639	29.539			AAAA
MOTA MOTA				143	33.42				AAAA
	_		_	143	34.33				AAAA
MOTA				143	33.61		43.61		AAAA
MOTA			1 TYR	143	33.39			00	AAAA
ATOM		. כב קרד	1 TYR	143	32.74				AAAA
MOTA			2 TYR		33.15	7 29.999			AAAA
ATOM					32.50	1 30.93			AAAA
ATOM					32.30	1 32.22			AAAA
ATOM		-			31.69	8 33.17	7 41.20	0 1.00 10.07	•
ATOM		_							

	1123	С	TYR	143	3	4.310	27.723	46.358	1.00 17.35		AAAA
ATOM	1124	_	TYR	143	3	4.581	26.574	46.013	1.00 16.67		AAAA
MOTA	1125		ILE	144		4.763	28.262	47.489	1.00 14.93		AAAA
ATOM	1125		ILE	144	3	5.599	27.500	48.408	1.00 14.17		AAAA
MOTA	1127		ILE	144	3	7.018	28.069	48.440	1.00 14.87		AAAA
MOTA	1128	CG2		144	3	7.864	27.332	49.474	1.00 13.55		AAAA
ATOM	1129	CG1		144	3	7.611	28.027	47.021	1.00 16.98		AAAA
ATOM	1130	CD1	TLE	144	3	9.052	28.537	46.901	1.00 17.42		AAAA
MOTA	1131	C	ILE	144	3	4.959	27.615	49.788	1.00 17.22		AAAA
MOTA	1132	0	ILE	144	3	4.606	28.716	50.220	1.00 14.72		AAAA
ATOM		N	ASN	145	3	4.798	26.486	50.474	1.00 13.46		AAAA
ATOM	1133 1134	CA	ASN	145	3	4.170	26.493	51.797	1.00 16.09		AAAA
ATOM	1135	CB	ASN	145		3.401	25.178	51.988	1.00 14.50		AAAA
MOTA	1135	CG	ASN	145	3	2.428	25.239	53.148	1.00 15.64		AAAA
ATOM	1137	OD1		145	. 3	32.800	25.587	54.263	1.00 14.97		AAAA
MOTA	1138	ND2		145	3	31.170	24.916	52.882	1.00 16.74		AAAA
ATOM	1139	C	ASN	145	3	35.266	26.639	52.873	1.00 15.04		AAAA AAAA
MOTA	1140	Ö	ASN	145		35.812	25.637	53.338	1.00 15.72		
ATOM	1141	N '	ASN	146	3	35.599	27.865	53.282	1.00 12.34		AAAA
MOTA	1142	CA	ASN	146	- 1	36.685	28.006	54.262	1.00 15.31		AAAA AAAA
ATOM ATOM	1143	CB	ASN	146	:	37.161	29.464	54.354	1.00 15.81		AAAA
MOTA	1144	CG	ASN	146	:	36.101	30.396	54.865	1.00 15.25		AAAA
ATOM	1145		ASN	146	:	36.113	30.757	56.034	1.00 13.57		AAAA
ATOM	1146		ASN	146		35.156	30.775	53.996	1.00 10.85		AAAA
ATOM	1147	C	ASN	146		36.306	27.400	55.613	1.00 13.04		AAAA
ATOM	1148	ō	ASN	146		37.160	26.865	56.314	1.00 14.76		AAAA
ATOM	1149	N	PRO	147		35.025	27.489	56.016	1.00 14.28		AAAA
ATOM	1150	CD	PRO	147		33.817	28.175	55.515	1.00 7.62 1.00 13.51		AAAA
MOTA	1151	CA	PRO	147		34.750	26.843	57.307	1.00 13.31		AAAA
ATOM	1152	CB	PRO	147		33.251	27.058	57.482	1.00 14.44		AAAA
MOTA	1153	CG	PRO	147		33.056	28.436	56.827	1.00 12.32		AAAA
MOTA	1154	C	PRO	147		35.118	25.330	57.278	1.00 16.24		AAAA
ATOM	1155	0	PRO	147		35.678	24.796	58.251	1.00 15.24		AAAA
ATOM	1156	N	ALA	148		34.818	24.642	56.171	1.00 15.58		AAAA
ATOM	1157	CA	ALA	148		35.122	23.200	56.080 54.882	1.00 13.33		AAAA
ATOM	1158	CB	ALA	148		34.402	22.561	55.984	1.00 14.94		AAAA
MOTA	1159	С	ALA	148		36.624	22.956	56.560	1.00 14.69		AAAA
MOTA	1160	0	ALA	148		37.138	21.999 23.817	55.263	1.00 12.49		AAAA
MOTA	1161	N	VAL	149		37.328		55.163	1.00 15.31		AAAA
MOTA	1162	CA	VAL	149		38.778		54.243	1.00 14.77		AAAA
ATOM	1163	CB	VAL	149		39.364		54.369	1.00 14.68		AAAA
ATOM	1164	CG1		149		40.899		52.808	1.00 12.50		AAAA
ATOM	1165	CG2		149		38.981 39.323		56.572	1.00 20.14		AAAA
ATOM	1166	С	VAL	149		40.172		57.028	1.00 17.32		AAAA
ATOM	1167	0	VAL	149			- 4				AAAA
ATOM	1168	N	GLY	150		38.815 39.284					AAAA
ATOM	1169	CA	GLY	-50 -50		39.030					AAAA
ATOM	1170	C.	GLY	_30		39.888					AAAA
MOTA	1171	0	GLY	150		37.842			1.00 16.67		AAAA
ATOM	1172	Ŋ	ILE	151		37.490			1.00 19.56		AAAA
MOTA	1173	CA	ILE	151		35.992			1.00 16.46		AAAA
ATOM	1174	CB	ILE	151		35.667			1.00 17.93		AAAA
ATOM	1175	CG2		151		35.180			1.00 12.31		AAAA
ATOM	1176	CG1		151		33.686			1.00 18.71		AAAA
MOTA	1177	CD:		151		38.352			1.00 22.66		AAAA
MOTA	1178	Ç	ILE	151		38.796			1.00 20.08		aaaa
atom	1179	0	ILE	151		38.599			1.00 19.71		AAAA
ATOM	1180		GLU	152 152		39.434		58.533	1.00 13.85		AAAA
ATOM	1181		GLU	152		39.362			1.00 20.21		AAAA
ATOM	1182		GLU	152 153		38.033			1.00 22.16		AAAA
ATOM	1183		GLU	152 152		37.83			1.00 26.94		AAAA
ATCM	1184			152 152		36.720			1.00 25.03		AAAA
atom	1185		1 GLU			38.80			3 1.00 24.95		AAAA
atom	1186		2 GLU	152 152		40.86		•	2 1.00 16.85	•	AAAA
ATOM	1187		GLU	152		41.62					AAAA
ATOM	1188	0	GLU	134			_ .	•			•

						-				
						41.228	21.290	58.931	1.00 14.74	AAAA
MOTA	1189	N	TYR	153			21.672	59.350	1.00 17.71	AAAA
ATOM	1190	CA	ΤΫ́R	153		42.574			1.00 13.26	AAAA
ATOM	1191	CB	TYR	153		42.757	23.193		1.00 15.20	AAAA
	1192	ÇG	TYR	153		44.059	23.727			
ATOM				153		45.234	23.726		1.00 18.41	AAAA
ATOM	1193					46.438	24.219	59.511	1.00 21.03	AAAA
ATOM	1194			153		44.115	24.220	61.028	1.00 21.16	AAAA
ATOM	1195		TYR	153	,		24.705	61.570	1.00 19.76	AAAA
MOTA	1196	CE2	TYR	153		45.288		60.824	1.00 25.97	AAAA
ATOM	1197	CZ	TYR	153		46.440	24.711		1.00 23.15	AAAA
	1198	OH	TYR	153		47.571	25.235	61.410	1.00 23.13	AAAA
ATOM		C	TYR	153		42.712	21.274	60.828	1.00 20.00	
MOTA	1199			153		43.722	20.698	61.247	1.00 19.61	AAAA
MOTA	1200	0	TYR			41.683	21.569	61.616	1.00 17.78	AAAA
ATOM	1201	N	LEU	154		41.698	21.239	63.042	1.00 17.26	AAAA
MOTA	1202	CA	LEU	154			21.913	63.744	1.00 20.44	AAAA
MOTA	1203	CB	LEU	154		40.511		63.942	1.00 19.57	AAAA
ATOM	1204	CG	LEU	154		40.636	23.434		1.00 22.48	AAAA
	1205		LEU	154		39.277	24.046	64.309	1.00 22.40	AAAA
ATOM	1206		LEU	154		41.692	23.709	65.044	1.00 20.84	AAAA
MOTA		C	LEU	154		41.669	19.715	63.262	1.00 19.69	
MOTA	1207			154		42.357	19.191	64.149	1.00 22.91	AAAA
ATOM	1208	0	LEU			40.878	18.996	62.469	1.00 20.88	
ATOM	1209	N	ARG	155		40.840	17.539	62.622	1.00 22.64	AAAA
MOTA	1210	CA	ARG	155				61.652	1.00 25.69	AAAA
MOTA	1211	CB	ARG	155		39.829	16.905	61.893	1.00 27.64	AAAA
ATOM	1212	CG	ARG	155		38.384	17.394		1.00 27.67	AAAA
	1213	CD	ARG	155		37.382	16.834	60.892	1.00 25.67	AAAA
ATOM		NE	ARG	155		36.931	15.497	61.246	1.00 30.88	AAAA
MOTA	1214			155		36.135	14.753	60.488	1.00 36.28	
MOTA	1215	CZ	ARG			35.705	15.218	59.318	1.00 26.96	AAAA
MOTA	1216		ARG	155	•	35.737	13.562	60.923	1.00 27.33	AAAA
ATOM	1217	NH2	ARG	155			16.966	62.390	1.00 28.00	AAAA
ATOM	1218	С	ARG	155		42.235		63.119	1.00 28.05	AAAA
ATOM	1219	0	ARG -	155		42.674	16.070	61.395	1.00 23.53	AAAA
ATOM	1220	N	LYS	156		42.949	17.486		1.00 26.79	AAAA
	1221	CA	LYS	156		44.290	16.977	61.128	1.00 20.79	AAAA
MOTA			LYS	156		44.854	17.558	59.824	1.00 26.01	AAAA
MOTA	1222	CB		156		46.213	16.955	59.444	1.00 29.70	
MOTA	1223	CG	LYS	156		46.632	17.308	58.035	1.00 28.77	AAAA
MOTA	1224	CD	LYS			45.685	16.692	57.005	1.00 39.79	AAAA
ATOM	1225	CE	LYS	156		45.671	15.192	57.058	1.00 36.33	AAAA
ATOM	1226	NZ	LYS	156			17.260	62.299	1.00 26.40	AAAA
ATCM	1227	С	LYS	156		45.233		62.529	1.00 26.19	AAAA
MOTA	1228	0	LYS	156		46.188			1.00 22.50	AAAA
	1229	N	LYS	157		44.960			1.00 21.12	AAAA
ATOM		CA	LYS	157		45.757	18.709		1.00 21.12	AAAA
ATOM	1230			157		45.535	20.181	64.591	1.00 28.95	
MOTA	1231	CB		157		46.160		63.652	1.00 25.94	AAAA
ATCM	1232					47.669			1.00 35.16	AAAA
ATOM	1233	CD		157					1.00 39.24	AAAA
ATOM	1234	CE	LYS	157		48.281			1.00 40.01	4AAA
ATCM	1235	NZ	LYS	157		49.742				AAAA
ATOM	1236		LYS	157		45.421				AAAA
	1237		LYS	157		46.085				AAAA
ATCM			GLY	158		44.392	16.995	65.284		AAAA
ATCM	1238			158		44.023		66.376	1.00 24.82	
ATOM:	1239					42.771			1.00 33.13	AAAA
ATCM	1240) C	GLY	158		42.421				AAAA
MOTA	1241	. 0	GLY	158		42.421				AAAA
ATCM	1242	N	PHE	159		42.085				AAAA
ATOM	1243	CA	PHE	159		40.866				AAAA
	1244			159		40.410		67.186		AAAA
MOTA	1245			159		41.264	20.343	3 67.827		AAAA
ATOM				159		42.439	20.78	5 67.220		
ATOM			1 PHE			40.920		2 69.076	1.00 21.10	AAAA
ATOM			2 PHE	159		43.26			1.00 26.24	AAAA
ATCM	1248	B CE	E1 PHE	159						AAAA
ATCM			2 PHE	159		41.73				AAAA
ATCM				159		42.90				AAAA
			PHE	159		39.79				AAAA
ATOM			PHE	159		39.63	9 16.53			AAAA
ATCM				160		39.05				AAAA
· ATCM						38.01			1.00 24.26	AAAA
ATOM	125	4 C	A LYS	160		۵۰۰۰۰ بار		-		•
	•		•							•

A COM	1255	СВ	LYS	160	38	.360	14.098	68.668	1.00	22.86	AAAA
MOTA	1256		LYS	160	39	.625	13.424	68.157		43.16	AAAA
MOTA	1257		LYS	160		.222	12.417	69.141		54.05	AAAA
MOTA			LYS	160	-	.236	11.343	69.577		62,87	AAAA
MOTA	1258		LYS	160		.154	11.890	70.446	1.00	68.11	AAAA
ATOM	1259			160		.599	15.822	68.225	1.00	21.12	AAAA
ATOM-	1260		LYS	160		.632	15.072	68.051	1.00	22.43	AAAA
ATOM	1261		LYS			.476	17.042	68.733	1.00	19.68	AAAA
ATOM	1262		ARG	161			17.594	69.073		20.84	AAAA
ATOM	1263		ARG	.161		.164	17.467	70.572		26.02	AAAA
MOTA	1264	CB	ARG	161		.865	16.031	71.080		28.47	AAAA
MOTA	1265	CG	ARG	161		.715		72.523		30.38	AAAA
ATOM	1266	CD	ARG	161		.213	16.025	73.445		32.99	AAAA
MOTA	1267	NE	ARG	161		.098	16.734	73.883		40.49	AAAA
ATOM	1268	CZ	ARG	161		.272	16.278			31.49	AAAA
MOTA	1269	NH1		161		.724	15.094	73.489		38.54	- AAAA
ATOM	1270	NH2	ARG	161		.003	17.014	74.712		18.98	AAAA
ATOM	1271	С	ARG	161 .		.171	19.060	68.680		23.57	AAAA
ATOM	1272	0	ARG	161		.552	19.932	69.460			AAAA
ATOM	1273	N	ILE	162		.743	19.332	67.458		19.82	AAAA
ATOM	1274	CA	ILE	162		.744	20.700	66.947		17.81	AAAA
ATOM	1275	CB	ILE	162		.522	20.717	65.626		18.33	
ATOM	1276		ILE	162	35	.542	22.110	65.042		13.65	AAAA
ATOM	1277		ILE	162	36	.937	20,200	65.895		18.15	AAAA
	1278		ILE	162	37	.722	19.852	64.670		22.52	AAAA
MOTA	1279	C	ILE	162	33	.316	21.184	66.724		14.71	AAAA
MOTA	1280	Ö	ILE	162	32	.520	20.492	66.126		17.99	AAAA
MOTA	1281	Ŋ	LEU	163		.996	22.374	67.217		16.93	AAAA
MOTA	1281	CA	LEU	163		.653	22.902	67.061		20.73	AAAA
MOTA	_	CB	LEU	163		115	23.376	68.421		18.45	AAAA
ATOM	1283	CG	LEU	163		.846	24.236	68.463	. 1.00	19.99	AAAA
ATOM	1284		LEU	163		3.657	23.408	67.975	1.00	15.66	AAAA
MOTA	1285		LEU	163		.609	24.751	69.870		18.74	AAAA
ATOM	1286		LEU	163		.705	24.071	66.106		18.40	AAAA
ATOM	1287	С		163		2.607	24.889	66.188		18.65	AAAA
MOTA	1288	0	LEU	164		752	24.128	65.186	1.00	16.97	AAAA
ATOM	1289	N	TYR	164		0.656	25.246	64.252	1.00	11.76	AAAA
MOTA	1290	CA	TYR	164		7.782	24.754	62.816	1.00	14.07	AAAA
MOTA	1291	CB	TYR	164		5.593	25.851	61.797	1.00	14.51	AAAA
ATOM	1292	CG	TYR	164		1.573	26.822	61.562		27.08	AAAA
MOTA	1293		TYR	164		1.353	27.832	60.598	1.00	26.21	AAAA
MOTA	1294	CE1		164		9.415	25.916	61.070	1.00	0 21.45	AAAA
MOTA	1295	CD2				9.193	26.891	60.137		0 21.89	AAAA
MOTA	1296	CE2		164		0.148	27.839	59.896		0 16.35	AAAA
MOTA	1297	cz	TYR	164		9.857	28.764	58.913		0 27.44	AAAA
ATOM	1298	OH	TYR	164	2:	9.279	25.873	64.463		0 15.67	AAAA
ATOM	1299	С	TYR	164			25.177	64.455	1.0	0 16.07	AAAA
MOTA	1300	0	TYR	164		8. ⁶⁰	27.187	64.674	1.0	0 14.52	AAAA
MOTA	1301	Ŋ	ILE	165			27.887		1.0	0 18.37	AAAA
ATOM	1302	CA	ILE	165		7.:78	28.596		1.0	0 13.31	AAAA
MOTA	1303	CB	ILE	165		7.959	29.359			0 13.06	AAAA
MOTA	1304		ILE	165		6.654	27.573	67.376		0 17.28	AAAA
ATOM	1305		ILE	165		8.172				0 15.02	AAAA
MOTA	1306	CD1	ILE	165		8.493	28.209		1 0	0 20.75	AAAA
MOTA	1307	С	ILE	165		7.853	28.926		1.0	0 16.67	AAAA
MOTA	1308	0	ILE	165		8.759				0 15.37	AAAA
MOTA	1309	N	ASP	166		6.725				0 15.63	AAAA
MOTA	1310	CA	ASP	166		6.503				0 12.31	AAAA
ATOM	1311	CB	ASP	166		6.276	28.885			0 12.31	AAAA
ATOM	1312	CG	ASP	166		6.279		59.393		0 16.37	AAAA
ATOM	1313		ASP	166	2	5.378	30.508			0 13.41	AAAA
ATOM	1314		ASP	166		7.187				0 16.06	AAAA
	1315	3	ASP	166	2	5.334	30.740			0 15.54	
ATOM	1316		ASP	166	2	4.160	30.355			0 12.60	AAAA
MOTA	1317		LEU	167		5.647				0 14.02	AAAA
MOTA	1317		LEU	167		4.598	32.993			0 12.05	AAAA
ATOM	1319					5.051		63.767		0 14.61	AAAA
ATOM	1319		LEU			5.345			1.0	0 17.20	AAAA
ATCM	1320				_			•			•

		CD1	T E:1	167	25.635	34.271		1.00 28.82	AAAA
MOTA	1321 1322	CD2		167	24.148	32.372		1.00 18.59	AAAA
MOTA			LEU	167	24.122	33.776		1.00 12.62	AAAA AAAA
ATOM ATOM	1324		LEU	167	23.288	34.678		1.00 15.00 1.00 14.35	AAAA
ATOM	1325		ASP	168	24.667	33.431		1.00 14.33	AAAA
ATOM	1326		ASP	168	24.277	34.056		1.00 25.15	AAAA
MOTA			ASP	168	25.060	33.409	57.880 56.573	1.00 48.45	AAAA
ATOM	1328	CG	ASP	168	24.908	34.145		1.00 54.45	AAAA
ATOM	1329	OD1		168	25.477	35.247 33.633	55.668	1.00 44.71	AAAA
ATOM	1330	OD2		168	24.215 22.787	33.751	58.834	1.00 16.30	AAAA
MOTA	1331	С	ASP	168	22.787	32.696	59.252	1.00 17.72	AAAA
MOTA	1332	0	ASP	168 169	22.059	34.657	58.175	1.00 14.11	AAAA
MOTA	1333	N	ALA ALA	169	20.618	34.503	57.934	1.00 19.61	AAAA
MOTA	1334	CA CB	ALA	169	20.006	35.856	57.470	1.00 13.56	AAAA
MOTA	1335 1336	C	ALA	169	20.277	33.400	56.926	1.00 18.23	AAAA AAAA
MOTA MOTA	1337	Ö	ALA	169	19.105	33.159	56.641	1.00 17.20	AAAA
ATOM	1338	N	HIS	170	21.301		56.373	1.00 16.53 1.00 17.51	AAAA
ATOM	1339	CA	HIS	170	21.075		55.436	1.00 17.31	AAAA
ATOM	1340	CB	HIS	170	21.616		54.033 53.377	1.00 25.38	AAAA
ATOM	1341	CG	HIS	170	20.954		52.487	1.00 19.33	AAAA
ATOM	1342		HIS	170	19.934 21.308		53.638	1.00 18.17	AAAA
ATOM	1343		HIS	170	20.535		52.935	1.00 30.34	AAAA
ATOM	1344		HIS	170 170	19.692		52.229	1.00 17.51	AAAA
MOTA	1345		HIS	170	21.781	· · · · · · · · · · · · · · · · · · ·	55.967	1.00 16.72	AAAA
MOTA	1346	C	HIS HIS	170	22.827		56.610	1.00 15.92	AAAA
ATOM	1347	и О	HIS	171	21.209		55.682	1.00 15.28	AAAA AAAA
MOTA	1348 1349	CA	HIS	171	21.75		56.123	1.00 12.53	AAAA
MOTA MOTA	1350	CB	HIS	171	20.702	26.878	55.814	1.00 14.09 1.00 17.27	AAAA
MOTA	1351	ĊĞ	HIS	171	21.180		55.980 55.090	1.00 17.27	AAAA
MOTA	1352		HIS	171	21.249		57.181	1.00 26.73	AAAA
ATOM	1353		HIS	171	21.622		57.021	1.00 15.98	AAAA
ATOM	1354		HIS	171 .	21.945 21.725	-	55.761	1.00 20.03	AAAA
MOTA	1355		HIS	171	23.10			1.00 15.55	AAAA
ATOM	1356	C	HIS	171 171	23.31			1.00 17.03	AAAA
MOTA	1357	0	HIS CYS	172	24.02		56.323	1.00 14.33	AAAA AAAA
ATOM	1358 1359	N CA	CYS	172	25.35		55.866	1.00 13.65	AAAA
ATOM	1360	CB	CYS	172	26.33	0 26.631		1.00 12.99 1.00 17.17	AAAA
MOTA MOTA	1361	SG	CYS	172	25.68			1.00 17.17	AAAA
ATOM	1362	С	CYS	172	25.21			1.00 14.95	AAAA
ATOM	1363	0	CYS	172	25.75			1.00 15.42	AAAA
ATOM	1364	N	ASP	173	24.51 24.30			1.00 14.75	AAAA:
MOTA	1365	CA	ASP	173	23.33			1.00 17.73	AAAA
MOTA	1366	CB	ASP	173 173	23.76	5 24.966		1.00 22.84	AAAA
MOTA	1367	CG	ASP 1 ASP	173	23.10		3 50.216		AAAA
MOTA	1368		2 ASP	173	24.73	0 25.728	3 51.504		AAAA AAAA
ATOM	1369 1370	C C	ASP	173	25.59	0 23.145			AAAA
ATOM ATOM	1371	Ö	ASP	173	25.68				AAAA
MOTA	1372		GLY	174	26.58				AAAA
ATOM	1373			174	27.86				AAAA
MOTA	1374		GLY	174	28.50	8 22.72		4- 40	AAAA
ATOM	1375	0	GLY	174	28.97				AAAA
ATOM	1376	N	VAL	175	28.55 29.13		·	1.00 16.54	AAAA
ATOM				175 175	29.13			1.00 15.88	AAAA
MOTA	1378	CB		175 175	29.9		7 58.307	1.00 15.35	AAAA
ATOM			1 VAL	175 175	29.9		8 56.476		AAAA
ATOM			2 VAL VAL	175	28.3	18 21.72	0 56.467		AAAA AAAA
MOTA			VAL	175	28.8	76 20. 7 3			AAAA
ATOM		_	GLN	176	26.9	96 21.79		1.00 17.74 2 1.00 15.66	AAAA
MOTA MOTA				176	26.1	64 20.68			AAAA
ATOM ATOM				176	24.6				AAAA
ATOM				176	23.7	89 19.78	5 30.33	2 1,00 1	•
7100									

	1307	CD G	LN	176	22.325	20.106		1.00 21.52	AAAA
MOTA	1387	OE1		176	21.850	21.016	57.567	1.00 21.72	AAAA
ATOM	1388		SLN	176	21.581	19.348	56.064	1.00 20.30	AAAA
MOTA	1389		SLN	176	26.527	19.387	56.121	1.00 16.33	AAAA
MOTA	1390		SLN	176	26.751	18.354	56.748	1.00 17.46	AAAA
MOTA	1391	_	GLU	177	26.581	19.443	54.799	1.00 22.24	AAAA .
MOTA	1392		GLU	177	26.909	18.251	54.021	1.00 19.67	AAAA
ATOM	1393		3LU 3LU	177	26.857	18.587	52.533	1.00 15.55	AAAA
MOTA	1394		GLU	177	27.131	17.388	51.623	1.00 20.24	AAAA
MOTA	1395		GLU	177	26.960	17.740	50.159	1.00 27.00	AAAA
ATOM	1396	OE1		177	27.974	17.935	49.450	1.00 30.23	AAAA
MOTA	1397		GLU	177	25.796	17.853	49.725	1.00 26.89	AAAA
MOTA	1398		GLU	177	28.284	17.713	54.376	1.00 20.42	AAAA
MOTA	1399		GLU	177	28.486	16.503	54.527	1.00 17.05	AAAA
ATOM	1400	_	ALA	178	29.233	18.626	54.527	1.00 19.67	AAAA
MOTA	1401		ALA	178	30.611	18.259	54.839	1.00 18.18	AAAA
ATOM	1402		ALA	178	31.464	19.519	54.918	1.00 12.76	AAAA
MOTA	1403	-	ALA	178	30.806	17.418	56.106	1.00 17.56	AAAA
MOTA	1404	_	ALA	178	31.690	16.555	56.167	1.00 17.72	AAAA
MOTA	1405		PHE	179	29.981	17.656	57.116	1.00 18.82	AAAA
ATOM	1406		PHE	179	30.124	16.945	58.379	1.00 20.26	AAAA
MOTA	1407		PHE	179	30.554	17.948	59.439	1.00 13.17	AAAA
MOTA	1408		PHE	179	31.779	18.693	59.048	1.00 16.28	AAAA
MOTA	1409			179	31.705	20.017	58.610	1.00 13.77	AAAA
MOTA	1410	CD1	PHE	179	33.002	18.031	58.995	1.00 15.57	AAAA
MOTA	1411		PHE	179	32.845		58.114	1.00 20.03	AAAA
MOTA	1412		PHE	179	34.145		58.500	1.00 20.30	AAAA
MOTA	1413		PHE	179	34.060	20.002	58.058	1.00 19.51	AAAA
MOTA	1414		PHE	179	28.882		58.833	1.00 18.52	AAAA
ATOM	1415	0	PHE	179	28.773	15.828	60.000	1.00 20.21	AAAA
MOTA	1416	N	TYR	180	27.969	16.016	57.895	1.00 18.33	AAAA
ATOM	1417	CA	TYR	180	26.698	15.379	58.176	1.00 19.93	AAAA
MOTA	1418 1419	CB	TYR	180	25.874		56.894	1.00 20.97	AAAA
MOTA	1419	CG	TYR	180	24.402	15.341	57.159	1.00 19.80	AAAA
MOTA	1421		TYR	180	23.565	14.337	56.686	1.00 23.87	AAAA
ATOM	1421		TYR	180	22.203		56.898	1.00 21.32	AAAA AAAA
ATOM	1423	CD2	TYR	180	23.831	16.416	57.865	1.00 19.02	AAAA
MOTA	1424	CE2	TYR	180	22.470		58.084	1.00 26.84	AAAA
ATOM	1425	CZ	TYR	180	21.659		57.594	1.00 30.54	AAAA
MOTA	1426	он	TYR	180	20.310	15.514	57.794	1.00 22.81	AAAA
ATOM	1427	c.	TYR	180	26.85		58.737	1.00 22.61	AAAA
MOTA MOTA	1428	ŏ	TYR	180	26.06		59.579	1.00 23.44	AAAA
ATOM	1429	N	ASP	181	27.89		58.253	1.00 22.27	AAAA
MOTA	1430	CA	ASP	181	28.24		58.590	1.00 33.84 1.00 41.74	AAAA
MOTA	1431	CB	ASP	181	28.91		57.339	1.00 41.74	AAAA
ATOM	1432	CG	ASP	181	30.03	5 10.363		1.00 57.71	AAAA
MOTA	1433		ASP	181	30.99	10.780		1.00 65.77	AAAA
ATOM	1434	OD2	ASP	181	29.96			1.00 33.77	AAAA
ATOM	1435	C	ASP	181	29.10			1.00 30.21	AAAA
ATOM	1436	О	ASP	181	29.30		60.227		AAAA
ATOM	1437	N	THR	182	29.61	5 12.696		1.00 21.19	AAAA
MOTA	1438	CA	THR	182	30.47	2 12.466			AAAA
ATOM	1439	СВ	THR	182	31.91	8 12.977			AAAA
ATOM	1440		THR	182	32.72				AAAA
MOTA	1441	CG2		182	31.92				AAAA
MOTA	1442	C	THR	182	30.01				AAAA
ATOM	1443	0	THR	182	29.30				AAAA
ATOM	1444	N	ASP	183	30.43				AAAA
ATOM	1445	CA	ASP	183	30.08	6 12.894			AAAA
ATOM	1446		ASP	183	29.73				AAAA
ATOM	1447		ASP	183	30.92				AAAA
MOTA	1448		ASP	183	31.66	7 10.502			AAAA
MOTA	1449		ASP	183	31.09	5 10.32			AAAA
ATOM	1450		ASP	183	31.25	7 13.68			AAAA
ATOM	1451		ASP	183	31.23	6 14.09			AAAA
ATOM			GLN	184	32.28	13.90	9 65.131	1.00 21.00	•
ALOM				•					

					٠					
		CN C1	LN	184		33.437			1.00 17.65	AAAA
MOTA			LN	184					1.00 21.36	AAAA AAAA
ATOM	1454 1455		LN	184					1.00 27.38 1.00 31.96	AAAA
MOTA MOTA	1456		LN	184		• • • • •			1.00 31.90	AAAA
ATOM	1457	OE1 G		184		-	12.760		1.00 23.30	AAAA
ATOM	1458	NE2 G		184		37.239	11.878		1.00 18.54	AAAA
ATOM	1459	C G	LN	184	٠.	33.207	16.165 17.009	65.972	1.00 18.11	AAAA
ATOM	1460		LN.	184		33.881	16.481	64.519	1.00 19.18	AAAA
MOTA	1461		AL	185		32.258 31.934	17.872	64.267	1.00 21.57	AAAA
MOTA	1462		AL	185		32.261	18.264	62.807	1.00 22.64	AAAA
MOTA	1463		AL	185 185	•	31.994	19.768	62.591	1.00 16.26	AAAA
MOTA	1464	CG1 V		185		33.722	17.924	62.500	1.00 16.77	AAAA
MOTA	1465	CG2 V	AL	185		30.449	18.035	64.523	1.00 16.91	AAAA AAAA
MOTA	1466	_	AL	185		29.658	17.156	64.179	1.00 20.79	AAAA
MOTA	1467 1468	-	HE.	186		30.081	19.146	65.153	1.00 18.73 1.00 16.22	AAAA
ATOM ATOM	1469		HE	186		28.687	19.446	65.435	1.00 16.22	AAAA
ATOM	1470		HE	186		28.432	19.559	66.952 67.299	1.00 17.96	AAAA
ATOM	1471	CG E	PHE	186		26.976	19.682	67.968	1.00 23.24	AAAA
ATOM	1472	CD1 F		186		26.319	18.656 20.797	66.904	1.00 15.41	AAAA
MOTA	1473	CD2 F		186		26.240 24.953	18.738	68.235	1.00 18.99	AAAA
MOTA	1474	CE1 I		186		24.955	20.887	67.168	1.00 24.05	AAAA
ATOM	1475		PHE	186		24.234	19.846	67.838	1.00 22.93	AAAA
MOTA	1476		PHE	186 186		28.437	20.789	64.778	1.00 17.16	AAAA
MOTA	1477 .		PHE PHE	186		29.192	21.725	64.993	1.00 19.37	аааа аааа
ATOM	1478	-	VAL	187		27.391	20.874	63.961	1.00 19.67	AAAA
MOTA	1479 ·1480		VAL	187		27.075	22.116	63.277	1.00 17.74 1.00 18.65	AAAA
ATOM	1481		VAL	187		27.010	21.914	61.720	1.00 18.03	AAAA
ATOM ATOM	1482	CG1		187		26.578	23.211	61.024 61.194	1.00 16.65	AAAA
MOTA	1483	CG2		187		28.359	21.453 22.637	63.746	1.00 18.46	AAAA
ATOM	1484	-	VAL	187		25.732 24.752	21.903	63.764	1.00 20.64	AAAA
ATOM	1485	_	VAL	187		25.708	23.899	64.150	1.00 14.42	AAAA
MOTA	1486		LEU	188 188		24.482	24.563	64.567	1.00 16.68	AAAA
MOTA	1487		LEU	188		24.568	25.070	66.009	1.00 13.98	ААҚА АААА
MOTA	1488		LEU LEU	188		23.522	26.119	66.450	1.00 13.66	AAAA
MOTA	1489 1490	CD1		188		22.103	25.556	66.401	1.00 15.55 1.00 16.40	AAAA
MOTA MOTA	1491	CD2		188		23.844	26.585	67.861	1.00 20.01	AAAA
ATOM	1492	c	LEU	188		24.272	25.756	63.667 63.506	1.00 18.86	AAAA
ATOM	1493	0	LEU	188		25.164	26.595 25.845	63.057	1.00 14.46	AAAA
ATOM	1494	N	SER	189		23.106	27.011	62.230	1.00 14.56	AAAA
ATOM	1495	CA	SER	189		22.841 22.896	26.668		1.00 15.55	AAAA
ATOM	1496	CB	SER	189 189		22.619	27.851		1.00 14.09	AAAA
MOTA	1497	oG	SER	189		21.487	27.606	62.508		AAAA AAAA
MOTA	1498	C	SER SER	189		20.509	26.885	62.578		
MOTA	1499 1500	0 N	LEU	190		21.423	28.921		1.00 14.92	
ATOM	1500	CA	LEU	190		20.128	29.572			
ATOM ATOM	1502		LEU	190		20.084	30.663			
ATOM	1503		LEU	190		20.594				AAAA
MOTA	1504	CD1	LEU	190		19.736				AAAA
ATOM	1505	CD2	LEU	190		20.547				AAAA
ATOM	1506	С	LEU	190		20.035 21.031			1.00 15.43	AAAA
MOTA	1507		LEU	190		18.855			5 1.00 16.88	AAAA
MOTA	1508		HIS	191		18.732			5 1.00 14.34	AAAA
ATOM			HIS	191 191		19.506		5 58.539		AAAA 1 AAAA 7
ATOM			HIS HIS	191		19.229	28.54	58.69		
ATOM			HIS	191		19.94	27.578	g 59.319		=""
ATOM			HIS	191		18.07	3 27.94			
ATOM			HIS	191		18.08				•
ATOM ATOM		NE2	HIS	191		19.21				•
ATOM			HIS	191		17.27				3 AAAA
ATOM			HIS	191		16.38 17.04	1 30.48 4 31.79	_		AAAA 8
ATCM		в и	GLN	192		17.04	- 31./3			•

						31.968	57.516	1.00 16.33	AAAA
MOTA	1519	CA (GLN	192	15.683		56.283	1.00 17.07	AAAA
ATOM		CB (GLN	192	15.669	32.871	56.498	.00 18.15	AAAA
ATOM			GLN	192	16.174	34.270	55.177	1.00 14.74	AAAA
MOTA		CD	GLN	192	16.408	34.965		1.00 20.46	AAAA
ATOM			GLN	192	15.490	35.566	54.665	1.00 13.44	AAAA
			GLN	192	17.630	34.839		1.00 15.06	AAAA
ATOM -	1525		GLN	192	15.262	30.584	•	1.00 19.23	AAAA
ATOM	1526	-	GLN	192	16.071	29.843		1.00 15.63	AAAA
MOTA	1527		SER	193	14.007	30.223		1.00 13.84	AAAA
MOTA		CA	SER	193	13.561	28.907		1.00 13.84	AAAA
ATCM	1528 1529	CB	SER	193	12.097	28.677		1.00 17.28	AAAA
ATOM	1530	OG	SER	193	11.639	27.439	56.750	1.00 17.30	AAAA
ATOM		C	SER	193	13.687	28.704	55.350 -	1.00 11.80 1.00 18.44	AAAA
MOTA	1531	0	SER	193	13.400	29.601		1.00 10.44	AAAA
MOTA	1532	N	PRO	194	14.103	27.505		1.00 14.59	AAAA
ATOM	1533	CD	PRO	194	14.335	26.325		1.00 19.22	AAAA
ATOM	1534	CA	PRO	194	14.268	27.143		1.00 15.30	AAAA
MOTA	1535		PRO	194	14.892	25.737	53.573	1.00 18.33	AAAA
ATOM	1536	CB CG	PRO	194	15.359	25.587	55.007	1.00 22.34	AAAA
MOTA	1537		PRO	194	12.880	27.104	52.866	1.00 16.40	AAAA
ATOM	1538	C	PRO	194	12.757	27.003	51.640	1.00 19.43	AAAA
MOTA	1539	0	GLU	195	11.828	27.151	53.681	1.00 20.57	AAAA
MOTA	1540	N	GLU	195	10.483	27.161	53.099	1.00 30.15	AAAA
MOTA	1541	CA	GLU	195	9.386	27.037	54.173	1.00 31.91	AAAA
MOTA	1542	CB		195	8.987	28.325	54.879	1.00 45.60	AAAA AAAA
MOTA	1543	CG	GLU GLU	195	7.880	29.119	54.174	1.00 34.45	AAAA
MOTA	1544	CD		195	7.635	30.259	54.612	1.00 43.98	AAAA
ATOM	1545	OE1	GLU	195	7,241	28.627	53.210	1.00 38.39	AAAA
MOTA	1546		GLU	195	10.333	28.474	52.318	1.00 26.92	AAAA
ATOM	1547	C	GLU	195	9.522	28.557	51.395	1.00 24.59	AAAA
ATOM	1548	0	TYR	196	11.116	29.501	52.669	1.00 18.16	AAAA
MOTA	1549	N	TYR	196	11.024	30.753	51.922	1.00 15.81	AAAA
MOTA	1550	CA	TYR	196	10.208	31.801	52.690	1.00 20.01	AAAA
MOTA	1551	CB	TYR	196	10.868	32.353	53.932	1.00 19.77	AAAA
ATOM	1552	CG CD1		196	11.779	33.408	53.853	1.00 18.24	AAAA
MOTA	1553	CEI		196	12.407	33.898		1.00 18.50	AAAA
MOTA	1554	CD2		196	10.598	31.801		1.00 18.12	AAAA
MOTA	1555	CE2		196	11.223	32.283		1.00 21.09	AAAA
MOTA	1556	CZ	TYR	196	12.125	33.326	56.235	1.00 20.39	AAAA
MOTA	1557	OH	TYR	196	12.759	33.784		1.00 16.20	AAAA
MOTA	1558	C	TYR	196	12.342	31.372		1.00 16.89	AAAA
ATOM	1559		TYR	196	12.336	32.347		1.00 23.08	AAAA
MOTA	1560	C	ALA	197	13.466	30.817		1.00 17.52	AAAA
MOTA	1561	N CA	ALA	197	14.754	31.400		1.00 20.26 1.00 20.74	AAAA
ATOM	.1562	CB	ALA	197	15.315	32.261		1.00 20.74	AAAA
ATOM	1563		ALA	197	15.814	30.392		1.00 13.51	AAAA
ATOM	1564		ALA	197	15.787	7 29.229	51.457	1 30 19.35	AAAA
ATOM	1565		PHE	198	16.75	7 30.869		1 70 18.01 1.00 17.97	AAAA
ATOM	1566	CA		198	17.86			1.00 17.37	AAAA
ATOM	1567			198	18.929	30.93		1.00 20.38	AAAA
MOTA	1568 1569			198	20.09	4 30.16			AAAA
MOTA			1 PHE	198	20.03	9 29.66		1.00 29.71	AAAA
ATOM			2 PHE	198	21.22	9 29.89			AAAA
ATOM			1 PHE	198	21.09				AAAA
ATOM				198	22.29	0 29.14	5 48.807		AAAA
ATOM				198	22.21	8 28.64	6 47.493		AAAA
ATOM.			PHE	198	18.45	3 29.41	9 51.032		AAAA
ATOM		5 0		198	18.55	2 30.07		1.00 20.95	AAAA
ATOM			PHE PRO	199	18.94	1 28.17	6 50.937		AAAA
ATOM				199	19.60	0 27.50	8 52.074		AAAA
ATOM				199	18.99	0 27.31	8 49.744		AAAA
atom				199	20.10		4 50.095		AAAA
ATOM			_	199	19.81	3 26.08	51.534		AAAA
MOTA			PRO PRO		17.71		5 49.312		AAAA
ATCN			PRO		17.73	3 25.85			AAAA
ATO			PHE		16.62		50.054	1.00 20.32	
ATOI	1 158	4 N					-		

					6	5					
	1505	C)	PHE	200	•	15.319	26.166	49.752	1.00	20.27	AAAA
MOTA	1585 1586		PHE	200			26.533	48.346	1.00	19.77	AAAA
MOTA MOTA	1587		PHE	200		14.752	27.999	48.082	1.00	18.06	AAAA
ATOM	1588	CD1		200			28.644	47.346	1.00	18.97	AAAA AAAA
MOTA	1589	CD2		200		13.00	28.736	48.519		19.06 21.67	AAAA
ATOM	1590	CE1		200			30.003	47.042 48.221		22.60	AAAA
ATOM	1591	CE2		200			30.101 30.736	47.482		18.93	AAAA
MOTA	1592	CZ	PHE	200			24.637	49.845		18.44	AAAA
MOTA	1593	C	PHE	200		15.294 14.302	24.037	50.272		20.74	AAAA
MOTA	1594	0	PHE	200 201		16.384	24.004	49.418	1.00	20.77	AAAA
MOTA	1595	N.	GLU GLU	201		16.522	22.542	49.399		27.34	AAAA
MOTA	1596 1597	CA CB	GLU	201		17.498	22.146	48.284		28.99	AAAA
MOTA	1598	CG	GLU	201		17.024	22.458	46.881		34.82	AAAA
ATOM ATOM	1599	CD	GLU	201		18.123	22.265	45.848	1.00	32.40	AAAA AAAA
ATOM	1600		GLU	201		18.701	21.155	45.769	1.00	38.28 40.08	AAAA
MOTA	1601		GLU	201		18.405	23.230	45.111	1.00	23.51	AAAA
ATOM	1602	С	GLU	201		17.007	21.891	50.695 50.886	1.00	23.17	AAAA
ATOM	1603	0	GLU	201		16.845 17.619	20.689 22.681	51.571	1.00	20.03	AAAA
MOTA	1604	N	LYS	202		18.178	22.177	52.829	1.00	17.01	AAAA
MOTA	1605	CA	LYS	202 202		19.666	21.862	52.634	1.00	19.24	AAAA
MOTA	1606	CB	LYS	202		19.903	20.769	51.611		36.04	AAAA
MOTA	1607	CG CD	LYS LYS	202		20.997	21.162	50.648	1.00	45.11	AAAA
MOTA	1608 1609	CE	LYS	202		21.060	20.209	49.463	1.00	55.83	AAAA
MOTA MOTA	1610	NZ	LYS	202		22.024	20.662	48.422	1.00	28.09	AAAA AAAA
ATOM	1611	С	LYS	202	•		23.240	53.899		17.02 20.20	AAAA
ATOM	1612	0	LYS	202		17.705	24.381	53.585	1.00	22.94	AAAA
ATOM	1613	N	GLY	203		18.232	22.875	55.160 56.223	1 00	19.38	AAAA
MOTA	1614	CA	GLY	203		18.064 16.874	23.850 23.564	57.128	1.00	20.48	AAAA
MOTA	1615	C	GLY	203		16.607	24.312	58.070	1.00	18.55	AAAA
MOTA	1616	0	GLY	203 204		16.150	22.484	56.852	1.00	15.42	AAAA
MOTA	1617	N CA	PHE PHE	204		14.983	22.143	57.670	1.00	20.73	AAAA
MOTA	1618 1619	CB	PHE	204		14.018	21.212	56.903	1.00	0 19.97	AAAA AAAA
MOTA MOTA	1620	CG	PHE	204		13.441	21.838	55.667	1.00	0 19.63	AAAA
ATOM	1621		PHE	204		14.137	21.801	54.459		0 24.96 0 18.92	AAAA
ATOM	1622	CD2	PHE	204		12.230	22.523	55.725 53.327	1 0	0 20.66	AAAA
ATOM	1623		PHE	204		13.636 11.720	22.438 23.169		1.0	0 24.86	AAAA
MOTA	1624	CE2		204		12.422	23.127		1.0	0 23.66	AAAA
MOTA	1625	CZ	PHE	204 204		15.376	21.513		1.0	0 18.73	AAAA
MOTA	1626	С 0	PHE PHE	204		16.415	20.851	59.131	1.0	0 20.18	AAAA
MOTA	1627 1628	N	LEU	205		14.518	21.726	59.994	1.0	0 19.46	AAAA AAAA
ATOM ATOM	1629	CA		205		14.727	21.244	61.356	1.0	0 21.09 0 23.44	
ATOM	1630	CB	LEU	205		13.547	21.674		1.0	0 23.44	AAAA
MOTA	1631	CG	LEU	205		13.506	21.222			0 24.06	AAAA
MOTA	1632		LEU	205		14.717	21.736 21.743		_	0 30.63	AAAA
ATOM	1633		2 LEU	205		12.224	19.748		1.0	0 23.53	AAAA
MOTA	1634		LEU	205 205		15.659	19.315		1.0	0 21.28	AAAA
ATOM	1635		LEU	205		14.356	18.959		1.0	0 21.59	AAAA
ATOM	1636 1637		GLU GLU	206		14.487	17.502		_	0 27.89	AAAA
MOTA MOTA	1638		GLU	206		13.345	16.816			0 28.90	AAAA AAAA
MOTA	1639			206		12.060	17.615			00 48.55	AAAA
MOTA	1640			206		12.169	18.832		_	0 21.58	AAAA
MOTA	1641	OE	1 GLU	206		11.360			_	0 63.58	AAAA
MOTA	1642		2 GLU	206		13.076			_	00 22.86	AAAA
MOTA	1643		GLU	206		15.819		-		00 21.21	AAAA
MOTA	1644		GLU	206		16.071 16.666			1.0	00 25.04	AAAA
ATOM	1645		GLU	207		17.976			2 1.0	00 19.61	AAAA
ATOM	1646			207 207		18.483			1.0	00 20.75	AAAA
ATOM				207		17.682	18.22	2 56.753	3 1.0	00 18.44	AAAA AAAA
MOTA				207		17.687	19.51	4 55.983		00 24.75	AAAA AAAA
MOTA MOTA			1 GLU	207		18.738		2 55.948	3 1.	00 22.17	,
ATOM				•				=			

					•						
		022	GLU	207	16.6	346	19.854	55.396	1.00		AAAA
MOTA	1651		GFO	207	18.9		17.379	60.350	1.00 2		AAAA
ATOM	1652 1653	0	GLU	207	19.5		18.416	60.687	1.00		AAAA
ATOM	1654	N	ILE	208	19.0		16.218	60.988	1.00		AAAA AAAA
ATOM ATOM	1655	CA	ILE	208	19.9		16.138	62.168	1.00		AAAA
ATOM	1656	СВ	ILE	208	19.1		15.652	63.403	1.00		AAAA
ATOM	1657	CG2	ILE	208	19.9		15.693	64.653	1.00	11 61	AAAA
ATOM	1658	CG1		208	17.9		16.561	63.625 64.786	1.00		AAAA
ATOM	1659	CD1	ILE	.208	17.0		16.160 15.260	61.981	1.00		AAAA
MOTA	1660	C	ILE	208	21.		14.850	62.943	1.00		AAAA
ATOM	1661	0	ILE	208	21. 21.		14.850	60.738	1.00		AAAA
MOTA	1662	N	GLY	209	22.		14.153	60.535	1.00	20.43	AAAA
MOTA	1663	CA	GLY	209 209	22.		12.769	60.037	1.00	25.56	AAAA
MOTA	1664	C	GLY GLY	209	21.		12.447	59.850	1.00	25.22	AAAA
MOTA	1665	N	GLU	210	23.		11.944	59.888	1.00	26.07	AAAA
MOTA	1666 1667	CA	GLU	210	23.		10.601	59.348	1.00	25.78	AAAA AAAA
MOTA	1668	CB	GLU	210	23.	404	10.731	57.835	1.00	28.27	AAAA
MOTA MOTA	1669	CG	GLU	210	23.		9.569	56.965	1.00	56.41 65.37	AAAA
ATOM	1670	CD	GLÜ	210	23.		9.952	55.495 55.075	1.00	62.00	AAAA
	- 1671	OE1	GLU	210	24.		10.327	54.768	1.00	73.24	AAAA
ATOM	1672	OE2	GLU	210	22.		9.89 4 9.709	59.936	1.00	31.85	AAAA
ATOM	1673	С	GLU	210	24. 25.		10.170	60.217	1.00	28.85	AAAA
MOTA	1674	0	GLU	210		012	8.431	60.121	1.00	27.84	AAAA
ATOM	1675	N	GLY	211 211		991	7.502	60.657	1.00	26.25	AAAA
ATOM	1676	CA	GLY GLY	211		545	7.942	61.995	1.00	27.79	AAAA
ATOM	1677 1678	С 0	GLY	211		788	8.324	62.874	1.00	28.66	AAAA
ATOM	1679	Ŋ	LYS	212	26.	865	7.880	62.150	1.00	34.62	aaaa aaaa
MOTA MOTA	1680	CA	LYS	212		512	8.287	63.393	1.00	34.39 40.40	AAAA
ATOM	1681	CB	LYS	212		029	8.132	63.273	1.00	53.97	AAAA
ATOM	1682	CG	LYS	212		505	6.712	62.996	1.00	61.93	AAAA
ATOM	1683	CD	LYS	212		139	5.770	64.131 63.863	1.00	62.74	AAAA
ATOM	1684	CE	LYS	212		612	4.347 4.258	63.711	1.00	70.11	AAAA
ATOM	1685	NZ	LYS	212		091 181	9.741	63.725	1.00	36.04	AAAA
ATOM	1686	C	LYS	212		109	10.126	64.897	1.00	28.34	AAAA
MOTA	1687	0	LYS	212 213	_	959	10.543	62.688	1.00	31.47	AAAA
MOTA	1688	N CA	GLY GLY	213		648	11.948	62.898	1.00	31.68	AAAA
MOTA	1689 1690	CA	GLY	213		.189	12.291	63.142	1.00	28.78	аааа аааа
MOTA	1691	0	GLY	213	24	.840	13.460	63.259	1.00	22.56	AAAA
MOTA MOTA	1692	N	LYS	214		.317	11.292	63.222	1.00	28.54 31.11	AAAA
ATOM	1693	CA	LYS	214		.905	11.585	63.463 63.325	1 00	31.03	AAAA
ATOM	1694	CB	LYS	214		.080	10.295 10.461	63.224	1 00	38.15	AAAA
ATOM	1695	CG		214		.583	9.115	62.844	1.00	40.49	AAAA
MOTA	1696	CD	_	214		.968 .490	9.220		1.00	48.02	AAAA
ATOM	1697	CE		214		.927	7.924		1.00	44.99	AAAA
ATOM	1698	NZ		214 214		.834	12.160		1.00	26.90	AAAA
ATOM	1699	C	LYS LYS	214	23	.260	11.524	65.831		33.33	AAAA
MOTA	1700	O N	GLY	215		.310	13.376			24.38	AAAA AAAA
MOTA	1701 1702	CA		215	22	.230	14.034			26.03	AAAA
MOTA	1702	C	GLY	215	23	.298	15.115			27.03	AAAA
MOTA MOTA	1703		GLY	215	23	.352	15.820			23.34	AAAA
ATOM	1705		TYR	216		.152	15.260			25.51	AAAA
ATOM	1706			216		.217				20.54	AAAA
ATOM	1707		TYR	216	26	.592	15.576			26.47	AAAA
ATOM	1708	CG		216	26	.900	14.671 13.464			28.96	AAAA
ATOM	1709		1 TYR	216		.221			1.00	33.08	AAAA
ATOM	1710			216		.455 .832			1.0	24.21	AAAA
ATOM	1711			216	21	.074	14.254		1.0	34.45	AAAA
ATOM				216		.378			1.0	0 40.53	AAAA
ATOM				216 216		.580			1.0	0 45.67	AAAA
ATOM						.104	17.39	64.493		0 22.57	AAAA
ATOM			TYR			.097		4 64.12	5 1.0	0 19.70	AAAA
ATOM		, .						-			•
•											

					U				
			ASN	217	23.889	17.635		1.00 22.88	AAAA
MOTA	1717 1718		asn Asn	217	23.621	18.729		1.00 22.60	AAAA AAAA
MOTA	1719		ASN	217	23.453	18.240		1.00 16.61	AAAA
MOTA MOTA	1720		ASN	217	23.233	19.387	— - · · ·	1.00 17.16 1.00 20.23	AAAA
ATOM	1721	OD1	ASN	217	22.098	19.704	60.307 60.309	1.00 20.23	AAAA
MOTA	1722	ND2		217	24.320	20:032	63.630	1.00 17.65	AAAA
MOTA	1723.	С	asn	217	22.311	19.296 18.550	63.894	1.00 17.63	AAAA
ATOM	1724	_	ASN	217	21.381 22.236	20.610	63.793	1.00 21.68	AAAA
MOTA	1725		LEU	218	21.014	21.197	64.320	1.00 21.20	AAAA
MOTA	1726		LEU	218 218	21.186	21.547	65.808	1.00 17.73	AAAA
MOTA	1727		LEU LEU	218	19.906	21.702	66.647	1.00 32.30	AAAA
MOTA	1728 1729	CG CD1		218	20.228	22.427	67.944	1.00 24.51	AAAA AAAA
ATOM ATOM	1730	CD2		218	18.862	22.464	65.903	1.00 40.08 1.00 19.46	AAAA
MOTA	1731	c	LEU	218	20.700	22.459	63.554 63.615-	1.00 19.40	AAAA
ATOM	1732	Ō	LEU	218	21.467	23.425	62.824	1.00 15.43	AAAA
ATOM	1733	N	ASN	219	19.590	22.441 23.609	62.072	1.00 14.05	AAAA
MOTA	1734	CA	ASN	219	19.143 18.634	23.232	60.665	1.00 15.92	AAAA
MOTA	1735	CB	ASN	219	19.732	22.738	59.750	1.00 22.73	AAAA
MOTA	1736	CG OD1	ASN	219 219	20.861	23.232	59.802	1.00 17.90	AAAA
ATOM	1737	ND2		219	19.398	21.789	58.868	1.00 16.62	AAAA
MOTA	1738 1739	C	ASN	219	17.990	24.256	62.821	1.00 21.98	AAAA AAAA
MOTA	1740	Õ	ASN	219	17.075	23.569	63.262	1.00 18.65 1.00 16.82	AAAA
MOTA MOTA	1741	N	ILE	220	18.025	25.580	62.952 63.640	1.00 13.32	AAAA
ATOM	1742	CA	ILE	220	16.951	26.298 27.115	64.823	1.00 15.70	AAAA
ATOM	1743	CB	ILE	220	17.522	27.113	65.479	1.00 15.18	AAAA
MOTA	1744	CG2	ILE	220	16.411 18.246	26.193	65.823	1.00 19.11	AAAA
ATOM	1745		ILE ILE	220 220	17.350	25.259	66.632	1.00 22.75	AAAA
MOTA	1746	CDI	ILE	220	16.363	27.246	62.573	1.00 18.80	AAAA
MOTA	1747 1748	0	ILE	220	16.810	28.386	62.419	1.00 15.52	AAAA AAAA
MOTA MOTA	1749	N	PRO	221	15.341	26.790	61.826	1.00 16.72 1.00 18.83	AAAA
ATOM	1750	CD	PRO		14.612	25.518	61.906 60.785	1.00 10.03	AAAA
MOTA	1751	CA	PRO	221	14.739	27.628 26.615	59.948	1.00 20.76	AAAA
ATOM	1752	CB	PRO	221	13.930 14.409	25.241	60.462	1.00 28.73	AAAA
MOTA	1753	CG	PRO	221	13.849	28.664	61.444	1.00 21.26	AAAA
MOTA	1754	C	PRO	221 221	13.061	28.318	62.314	1.00 22.46	AAAA
ATOM	1755	O N	PRO LEU	222	13.977	29.926	61.028	1.00 19.70	AAAA AAAA
MOTA	1756 1757	CA	LEU	222	13.209	31.018		1.00 21.62 1.00 16.46	AAAA
MOTA MOTA	1758	CB	LEU	222	14.163	31.972		1.00 18.65	AAAA
MOTA	1759	CG	LEU	222	14.868				AAAA
ATOM	1760		LEU	222	16.026 13.857			1.00 19.98	AAAA
MOTA	1761		LEU	222	12.350		60 500	1.00 19.68	AAAA
MOTA	1762		LEU	222 222	12.687	31.830		1.00 18.07	AAAA
ATOM	1763		LEU PRO	223	11.220	32.329	61.042		AAAA AAAA
ATOM	1764 1765		PRO	223	10.723	32.249			AAAA
MOTA MOTA	1766		PRO	223	10.264				AAAA
ATOM	1767		PRO	223	9.006				AAAA
MOTA	1768		PRO	223	9.608				AAAA
ATOM	1769		PRO	223	10.606				AAAA
MOTA	1770		PRO	223	11.525 9.830			1.00 16.41	AAAA
ATOM			LYS	224 224	9.975			1.00 16.11	AAAA
ATOM				224	9.002		57.039		AAAA
MOTA				224	9.163	35.44			AAAA AAAA
ATOM				224	8.109	35.68			AAAA
MOTA MOTA		•		224	8.209	34.62			AAAA
ATOM				224		7 34.84			AAAA
ATOM			LYS	224	9.631 8.81			6 1.00 21.07	AAAA
ATOM	177	9 0	LYS	224	10.23		9 59.17	1 1:00 20.77	AAAA
ATOM	178		GLY		9.97		7 60.12	9 1.00 20.30	AAAA
ATOM			GLY GLY		10.55				AAAA
MOTA	178	د <i>د</i>					-		

. =01/	1702	^	GLY	225	10	128	39.912		1.00 20.	66 AAAA	
ATOM	1783	-	LEU	226	11	1.540	38.395	61.606	1.00 20.	37 AAAA	
MOTA	1784		LEU	226	12	2.154	38.063	62.893	1.00 18.		
ATOM	1785		LEU	226	1.	3.354	37.145	62.670	1.00 13.	63 AAAA	
ATOM	1786 1787		LEU	226	13	3.836	36.443	63.939	1.00 18.		
MOTA	_	CD1		226	12	2.834	35.329	64.243	1.00 18.		
ATOM -	1788	CD2		226		5.232	35.844	63.741	1.00 17.		
ATOM	1789		LEU	226		2.649	39.309	63.642	1.00 19.		
MOTA	1790		LEU	226		3.320	40.151	63.052	1.00 18.		
MOTA	1791	-	ASN	227		2.336	39.421	64.932	1.00 23.		
ATOM	1792	N	ASN	227		2.815	40.571	65.692	1.00 20.		
MOTA	1793		ASN	.227		1.682	41.261	66.485	1.00 21.	73 AAAA	
MOTA	1794	CB	ASN	227		1.061	40.368	67.546	1.00 20.		
MOTA	1795	CG OD1		227		1.762	39.736	68.341	1.00 23.		
MOTA	1796	ND2		227	_	9.729	40.340	67.581	1.00 21.		
MOTA	1797		ASN	227		3.950	40.152	66.612	1.00 25.	24 -AAAA	
MOTA	1798	C	asn	227		4.282	38.965	66.702	1.00 18.	54 AAAA	
MOTA	1799	0	ASP	228	_	4.547	41.124	67.296	1.00 19.	41 AAAA	
MOTA	1800	N	ASP	228		5.682	40.844	68.169	1.00 22.		
MOTA	1801	CA	ASP	228	_	6.208	42.141	68.802	1.00 16.		
MOTA	1802	CB CG	ASP	228		6.852	43.060	67.796	1.00 30.	68 AAAA	
ATOM	1803	OD1		228		7.182	42.576	66.690	1.00 23	.87 AAAA	
ATOM	1804		ASP	228	1	7.053	44.256	68.123	1.00 25		
ATOM	1805	C	ASP	228	1	5.440	39.835	69.265	1.00 18		
MOTA	1806	0	ASP	228	1	6.298	39.002	69.536	1.00 16		
MOTA	1807 1808	N	ASN	229	1	4.291	39.930	69.928	1.00 20		
MOTA	1809	CA	ASN	229	1	3.975	39.015	71.007	1.00 21	.75 AAAA .46 AAAA	
ATOM	1810	CB	ASN	229	1	2.706	39.483	71.712	1.00 19		
ATOM	1811	CG	ASN	229		2.943	40.738	72.516	1.00 27	· - -	
MOTA	1812		ASN	229	1	3.588	40.691	73.556	1.00 33		
ATOM	1813		ASN	229	· 1	2.464	41.874	72.019	1.00 21		
MOTA	1814	C	ASN	229		13.833	37.596	70.503	1.00 18		
MOTA	1815	Ö	ASN	229	1	L4.284	36.644	71.151	1.00 22	• - :	
ATOM	1816	Ŋ	GLU	230		13.252	37.454	69.319	1.00 17	• -	
MOTA	1817	CA	GLU	230	1	13.081	36.125	68.748	1.00 21		
ATOM	1818	CB	GLU	230	-	12.152	36.193	67.536	1.00 20		
MOTA	1819	CG	GLU	230	:	10.765	36.714	67.890	1.00 28		
MOTA	1820	CD	GLU	230		9.870	36.816	66.677	1.00 24		
MOTA MOTA	1821		GLU	230	:	10.360			1.00 22 1.00 24		
ATOM	1822		GLU	230		8.683	36.443		1.00 24		
ATOM	1823	c	GLU	230		14.422			1.00 10	· · · · · · · · · · · · · · · · · · ·	
MOTA	1824	ō	GLU	230.		14.663	34.326		1.00 15	,	
MOTA	1825	N	PHE	231		15.305			1.00 15		
ATOM	1826	CA	PHE	231		16.616			1.00 13		
ATOM	1827	CB	PHE	231		17.420					
ATOM	1828	CG	PHE	231		18.719	36.361	66.069			
ATOM	1829		PHE	231		18.723	35.445	65.016			
ATOM	1830		PHE	231		19.936					
ATOM	1831		PHE	231		19.918					
ATOM	1832		PHE	231		21.144					
MOTA	1833	CZ	PHE	231		21.130	35.431				
ATOM	1834	С	PHE	231		17.385					
MOTA	1835	0	PHE	231		17.869				,,,,,	
MOTA	1836	N	LEU	232		17.495					
MOTA	1837	CA	LEU	232		18.239	35.850				
ATOM	1838		LEU	232		18.41				-,	
ATOM	1839		LEU	232		19.214					
ATOM	1840		1 LEU	232		19.13					
ATOM	1841		2 LEU	232		20.65				• • • •	
ATOM	1842		LEU	232		17.60					
ATOM	1843		LEU	232		18.30					
ATOM	1844		PHE	233		16.28					
MOTA	1845			233		15.58	7 33.53				
ATOM	1846					14.07		3 72.095			
ATOM						13.28				*	
ATOM			1 PHE			12.86	3 32.30	2 73.84	1 1.00 2		
MOTA			· · · ·	٠.	•						

						22 477	71.596	1.00 19.92	AAAA
ATOM	1849	CD2	PHE	233	12.942	31.473		1.00 29.35	AAAA
	1850	CE1	PHE	233	12.088	31.206		1.00 25.33	AAAA
MOTA	1851		PHE	233	12.168	30.363		1.00 25.37	AAAA
MOTA			PHE	233	11.737	30.231		1.00 30.28	
ATOM	1852	CZ		233	16.041	32.234	71.660	1.00 23.12	AAAA
ATOM	1853	С	PHE		16.433	31.273	72.332	1.00 18.35	AAAA
ATOM	1854	0	PHE	233		32.208	70.332	1.00 17.26	AAAA
ATOM	1855	N	ALA	234	15.961		69.562	1.00 17.67	AAAA
ATOM	1856	CA	ALA	234	16.332		68.046	1.00 19.08	AAAA
	1857	CB	ALA	234	16.085		68.040	1.00 15.00	AAAA
ATOM	1858	C	ALA	234	17.786		69.800	1.00 16.31	AAAA
ATCM		0	ALA	234	18.127	29.461	69.926	1.00 16.75	
MOTA	1859			235	18.646	31.643	69.846	1.00 16.73	AAAA
ATOM	1860	N	LEU	235	20.074	31.411	70.051	1.00 19.14	AAAA
MOTA	1861	CA	LEU		20.823		69.956	1.00 21.72	AAAA
ATOM	1862	CB	LEU	235			69.345	1.00 36.73	AAAA
ATOM	1863	CG	LEU	235	22.226		70.105	1.00 20.69	AAAA
MOTA	1864	CD1	LEU	235	23.026		69.393	1.00 22.96	AAAA
ATOM	1865	CD2	LEU	235	22.917			1.00 18.71	AAAA
	1866	C	LEU	235	20.354		71.421	1.00 18.72	AAAA
ATOM	1867	Ö	LEU	235	21.028		71.522	1.00 10.33	AAAA
MOTA			GLU	236	19.83	31.390	72.479	1.00 25.43	
MOTA	1868	N		236	20.04		73.839	1.00 19.75	AAAA
MOTA	1869	CA	GLU		19.33		74.860	1.00 23.18	AAAA
ATOM	1870	CB	GLU	236			74.777	1.00 38.53	AAAA
ATOM	1871	CG	GLU	236	19.72		75.648	1.00 42.42	AAAA
MOTA	1872	CD	GLU	236	18:85		75.428	1.00 45.43	AAAA
ATOM	1873	OE1	GLU	236	17.61			1.00 48.76	AAAA
	1874		GLU	236	19.42		76.548	1.00 25.85	AAAA
MOTA		C	GLU	236	19.54	1 29.452	74.011	1.00 25.65	AAAA
ATOM	1875		GLU	236	20.22		74.597	1.00 21.36	AAAA
MOTA	1876	0		237	18.34	3 29.193	73.501	1.00 23.16	
ATOM	1877	N	LYS		17.75		73.610	1.00 17.06	AAAA
MOTA	1878	CA	LYS	237	16.28		73.193	1.00 26.98	AAAA
ATOM	1879	CB	LYS	237	15.48			1.00 52.00	AAAA
MOTA	1880	CG	LYS	237	_			1.00 56.40	AAAA
ATOM	1881	CD	LYS	237	14.07	-		1.00 52.03	AAAA
ATOM	1882	CE	LYS	237	14.13			1.00 55.53	AAAA
	1883	NZ	LYS	237	12.78			1.00 18.46	AAAA
MOTA	1884	C	LYS	237	18.50			1.00 10.40	AAAA
MOTA			LYS	237	18.69	1 25.692	73.231	1.00 21.20	AAAA
MOTA	1885	0		238	18.93		71.578	1.00 21.28	
MOTA	1886	N	SER		19.64		70.776	1.00 16.47	AAAA
ATOM	1887	CA	SER	238	19.74			1.00 19.75	AAAA
ATOM	1888	CB	SER	238	20.47	-		1.00 22.52	АААА
ATOM	1889	OG	SER	238				1.00 18.79	AAAA
MOTA	1890	С	SER	238	21.03			1.00 20.60	AAAA
ATOM	1891	0	SER	238	21.52			1.00 22.95	AAAA
MOTA	1892	N	LEU	239	21.69	0 26.937		1.00 20.98	AAAA
	1893	CA	LEU	239	23.00	26.701		1.00 18.39	AAAA
MOTA		CB		239	23.6	28.008		1.00 10.33	AAAA
MOTA	1894			239	23.9	35 29.072	2 71.933	1.00 20.02	AAAA
MOTA	1895	CG	- 1 FII	239	24.5	38 30.31	1 72.636		
ATOM	1896		1 LEU		25.0		6 70.933	1.00 20.31	AAAA
ATOM	1897	CD	2 LEU	239	22.8			1.00 25.16	AAAA
MOTA	1898	С	LEU	239					AAAA
ATOM	1899	0	LEU	239	23.7				AAAA
ATOM			GLU	240	21.7		·		AAAA
			GLU	240	21.5				AAAA
ATOM				240	20.3	31 25.35			AAAA
ATOM				240	20.0	42 24.53			AAAA
MOTA				240	19.0	53 25.21	2 78.515		
MOTA	1904				17.9		0 78.067		AAAA
MOTA	1905		E1 GLU	240	10 4			1.00 66.68	AAAA
ATOM					19.4			1.00 23.44	AAAA
ATOM		7 C	GLU	240	21.4				AAAA
ATOM			GLU	240	21.9				AAAA
				241	20.7				AAAA
ATOM					20.5				AAAA
ATOM		-			19.7	05 22.03	9 72.05		AAAA
ATOM	191				19.7		8 71.32		
ATOM			32 ILE		18.2			1.00 28.60	AAAA
ATOM	1 191		G1 ILE		17.3			7 1.00 27.04	AAAA
ATOM		4 C	D1 ILE	241	£ / • =		•	•	•
				•	•				

					21.957	21.404	72.941	1.00 25.48	AAAA
MOTA	1915	C	ILE	241	22.244	20.234	73.195	1.00 19.43	AAAA
MOTA	1916	0	ILE	241	22.799	22.235	72.334	1.00 20.41	AAAA
ATOM	1917		VAL	242		21.782	71.928	1.00 23.17	AAAA
MOTA	1918		VAL	242	24.116 24.853	22.856	71.107	1.00 26.48	AAAA
ATOM	1919		VAL	242			70.807	1.00 18.67	AAAA
ATOM	1920	CG1		242	26.273	22.394	69.802	1.00 26.97	AAAA
ATOM	1921	CG2	VAL	242	24.093	23.135		1.00 24.81	AAAA
ATOM	1922	С	VAL	242	24.962	21.456	73.154	1.00 22.49	AAAA
ATOM	1923	0	VAL	242	25.566	20.384	73.235	1.00 25.06	AAAA
ATOM	1924	N	LYS	243	24.989	22.387	74.102	1.00 25.00	AAAA
ATOM	1925	CA	LYS	243	25.775	22.202	75.311		AAAA
ATOM	1926	CB	LYS	243	25.599	23.379	76.272	1.00 28.53	AAAA
ATOM	1927	CG	LYS	243	26.386	23.183	77.568	1.00 43.21	AAAA
ATOM	1928	CD	LYS	243	26.022	24.191	78.653	1.00 53.10	AAAA
MOTA	1929	CE	LYS	243	26.407	25.607	78.287	1.00 50.30	AAAA
MOTA	1930	NZ	LYS	243	26.045	26.548	79.389	1.00 59.15	
ATOM	1931	C	LYS	243	25.433	20.917	76.046	1.00 30.38	AAAA
ATOM	1932	Õ	LYS	243	26.321	20.255	76.578	1.00 35.44	AAAA
	1933	N	GLU	244	24.161	20.542	76.076	1.00 28.12	AAAA
MOTA	1934	CA	GLU	244	23.798	19.320	76.798	1.00 37.54	AAAA
ATOM	1935	CB	GLU	244	22.288	19.260	77.048	1.00 35.34	AAAA
MOTA	1936	CG	GLU	244	21.735	20.459	77.816	1.00 55.88	AAAA
ATOM	1937	CD	GLU	244	20.281	20.275	78.230	1.00 57.89	AAAA
MOTA	1938	-	GLU	244	19.673	21.246	78.738	1.00 60.60	AAAA
ATOM	1939		GLU	244	19.753	19.152	78.062	1.00 57.73	AAAA
ATOM		C	GLU	244	24.231	18.034	76.102	1.00 38.17	AAAA
MOTA	1940		GLU	244	24.294	16.978	76.727	1.00 38.46	AAAA
ATOM	1941	N O	VAL	245	. 24.541	18.124	74.817	1.00 30.29	AAAA
ATOM	1942		VAL	245	24.933	16.958	74.042	1.00 29.17	AAAA
ATOM	1943	CA	VAL	245	23.984	16.778	72.833	1.00 46.68	AAAA
MOTA	1944	CB	VAL	245	24.462	15.641	71.942	1.00 53.09	AAAA
ATOM	1945		VAL	245	22.581	16.488	73.327	1.00 54.19	AAAA
MOTA	1946		VAL	245	26.364	16.982	73.508	1.00 34.90	AAAA
ATOM	1947	C	VAL	245	26.915	15.939	73.164	1.00 34.73	AAAA
MOTA	1948	0	PHE	246	26.980	18.156	73.465	1.00 29.22	AAAA
MOTA	1949	N		246	28.324	18.256	72.897	1.00 29.17	AAAA
MOTA	1950	CA	PHE PHE	246	28.178	18.800	71.464	1:00 30.42	AAAA
MOTA	1951	CB	PHE	246	29.384	18.588	70.585	1.00 25.62	AAAA
MOTA	1952	CG	PHE	246	29.695	17.326	70.097	1.00 28.89	AAAA
ATOM	1953		PHE	246	30.167	19.668	70.196	1.00 25.17	AAAA
ATOM	1954			246	30.771	17.138	69.222	1.00 23.43	AAAA
ATOM	1955		PHE	246	31.248	19.495	69.322	1.00 22.40	AAAA
ATOM	1956	CE2		246	31.549	18.236	68.835	1.00 19.88	AAAA
MOTA	1957	CZ	PHE	246	29.233	19.176	73.712	1.00 23.38	AAAA
ATOM	1958	C	PHE	246	28.867	20.312	74.002	1.00 29.15	AAAA
ATOM	1959	0	PHE	247	30.410	18.682	74.094	1.00 29.73	AAAA
ATOM	1960	N	GLU	247	31.395	19.481	74.841	1.00 28.10	AAAA
ATOM	1961	CA	GLU	247	31.912	18.726	76.074	1.00 35.75	AAAA
ATOM	1962	CB	GLU		30.972	18.707	77.286	1.00 60.78	AAAA
ATOM	1963	CG	GLU	247	29.700		77.077	1.00 70.07.	AAAA
MOTA	1964	CD	GLU	247	28.913	18.220		1.00 79.95	AAAA
MOTA	1965		GLU	247	29.481	16.920		1.00 76.80	AAAA
ATOM	1966		GLU	247	32.554	19.741		1.00 28.90	AAAA
MOTA	1967	С	GLU	247		18.946		1.00 23.67	AAAA
ATOM	1968	0	GLU	247	33.490 32.531	20.891		1.00 25.02	AAAA
MOTA	1969	N	PRO	248		22.003			AAAA
MOTA	1970	CD	PRO	248	31.574	21.249			AAAA
ATOM	1971	CA	PRO	248	33.566				AAAA
ATOM	1972	CB	PRO	248	33.050				AAAA
ATOM	1973	CG	PRO		31.551				AAAA
ATOM	1974	С	PRO		34.968				AAAA
ATOM	1975	0	PRO		35.132				AAAA
ATOM	1976	N	GLU	249	35.965				AAAA
ATOM	1977	CA	GLU		37.366				AAAA
ATOM	1978		GLU		38.275	20.166		40	AAAA
MOTA	1979		GLU		38.046				AAAA
ATOM	1980		GLU		39.005		71.445	1.00 29.15	, was

ATOM

		053	CT II	249	30	.071	17.770	70:199	1.00 27.62	AÁAA
ATOM	1981	OE1		249		.694	17.004	72.161	1.00 26.19	AAAA
MOTA	1982	OE2		249		.692	22.561	71.786	1.00 26.04	AAAA
MOTA	1983	-	GLU	249	-	.582	23.271	72.262	1.00 26.39	AAAA
MOTA	1984		GLU	250	-	.953	22.921	70.744	1.00 23.83	AAAA
MOTA	1985		VAL	250		.151	24197	70.086	1.00 19.67	AAAA
MOTA	1986		VAL	250	_	.438	24.178	69.210	1.00 20.88	AAAA
MOŢA	1987		VAL	250		.348	23.117	68.128	1.00 18.18	AAAA
MOTA	1988	CG1				.647	25.530	68.591	1.00 16.71	AAAA
MOTA	1989	CG2		.250		.946	24.483	69.207	1.00 20.78	AAAA
MOTA	1990	-	VAL	250		.299	23.556	68.746	1.00 19.60	AAAA
ATOM	1991	-	VAL	250		.633	25.757	69.000	1.00 18.75	AAAA
MOTA	1992	N	TYR	251		.497	26.109	68.153	1.00 22.44	AAAA
MOTA	1993	CA	TYR	251		.261	26.437	69.022	1.00 16.57	AAAA
MOTA	1994	CB	TYR	251		.207	27.856	69.575	1.00 22.36	AAAA
ATOM	1995	CG	TYR	251		2.654	28.896	68.823	1.00 18.12	AAAA
MOTA	1996	CD1		251		.612	30.185	69.308	1.00 20.40	AAAA
ATOM	1997	CEl		251		3.715	28.160	70.842	1.00 20.04	AAAA
MOTA	1998		TYR	251		3.676	29.475	71.349	1.00 16.60	AAAA
ATOM	1999	CE2	TYR	251		3.128	30.473	70.573	1.00 14.68	AAAA
MOTA	2000	CZ	TYR	251		3.100	31.780	71.011	1.00 21.79	AAAA
MOTA	2001	OH	TYR	251		1.811	27.294	67.236	1.00 20.28	AAAA
MOTA	2002	C	TYR	251		5.695	28.107	67.525	1.00 19.91	AAAA
MOTA	2003	0	TYR	251	_	1.097	27.360	66.109	1.00 17.90	AAAA
MOTA	2004	N	LEU	252		1.216	28.466	65.161	1.00 18.58	AAAA
MOTA	2005	CA	LEU	252		4.679	28.001	63.767	1.00 17.55	AAAA
MOTA	2006	CB	LEU	252		6.028	27.290	63.718	1.00 23.36	AAAA
MOTA	2007	CG	LEU	252		5.819	25.820	64.017	1.00 27.78	AAAA
MOTA	2008		LEU	252		6.631	27.440	62.331	1.00 27.29	AAAA
ATOM	2009		LEU	252		2.816	29.049	65.052	1.00 15.49	AAAA
MOTA	2010	C	LEU	252 252		1.819	28.320	65.120	1.00 18.82	AAAA
MOTA	2011	0	LEU			2.756	30.360	64.891	1.00 16.80	AAAA
MOTA	2012	N	LEU	253		1.498	31.105	64.817	1.00 17.50	AAAA
MOTA	2013	CA	LEU	253 253	_	1.379	31.987	66.073	1.00 15.49	AAAA
ATOM	2014	CB	LEU	253		0.326	33.085	66.165	1.00 17.75	AAAA
ATOM	2015	CG	LEU	253	_	8.946	32.438	66.172	1.00 20.85	AAAA
ATOM	2016		LEU	253		0.536	33.897	67.464	1.00 19.05	AAAA
MOTA	2017		LEU	253		1.516	31.985	63.580	1.00 20.22	AAAA
MOTA	2018	С	LEU	253		2.474	32.727	63.371	1.00 18.14	AAAA
MOTA	2019	0	LEU	254		0.466	31.913	62.765	1.00 16.50	AAAA
MOTA	2020	N	GLN	254		0.411	32.730	61.556	1.00 16.48	AAAA
ATOM	2021	CA	GLN	254	7	0.085	31.863	60.312	1.00 25.58	AAAA
MOTA	2022	CB	GLN	254		8.647	31.798	59.871	1.00 36.40	AAAA
MOTA	2023	CG	GLN	254		8.337	32.728	58.701	1.00 33.18	AAAA
ATOM	2024	CD	GLN	254		8.744	32.487		1.00 21.05	AAAA
MOTA	2025		GLN	254	5	7.613	33.799		1.00 22.85	AAAA
MOTA	. 2026		GLN	254		9.384	33.816		1.00 16.12	AAAA
MOTA	2027	C	GLN	254		8.282	33.577		1.00 13.97	AAAA
MOTA	2028		GLN	255		9.768			1.00 14.42	AAAA
ATOM	2029	N	LEU	255		8.988			1.00 17.99	AAAA
MOTA	2030	CA	LEU	255		9.834			1.00 20.68	AAAA
MOTA	2031	CB	LEU	255		0.240				AAAA
MOTA	2032	CG	LEU	255		1.446			1.00 29.36	AAAA
ATOM	2033		LEU	255		9.042		. 64.900	1.00 14.80	AAAA
MOTA	2034		LEU	255		28.541			1.00 19.32	AAAA
MOTA	2035	C	LEU			28.838			1.00 21.23	AAAA
MOTA	2036	0	LEU	255		27.827			1.00 17.21	AAAA
MOTA	2037	N	GLY	256		27.347				AAAA
MOTA	2038		GLY	256 256		26.413			1.00 17.31	AAAA
MOTA	2039		GLY	256		25.717			1.00 15.62	AAAA
MOTA	2040		GLY	256		25.717 26.389			1.00 19.72	AAAA
ATOM	2041		THR	257		25.536			1.00 19.88	AAAA
ATOM	2042			257		25.330 26.242			1.00 14.02	AAAA
ATOM	2043					26.538			1.00 17.58	AAAA
MOTA	2044		1 THR			26.536 27.543			1.00 19.67	AAAA
MOTA	2045		2 THR			27.343 24.199				AAAA
ATCM	2046	C	THR	257		44.173	, 40.031			•
	•		•	•						

	-047	^	mu:	257	2.	3 403	41.545	58.266	1.00 14.59	AAAA
MOTA	2047	0	THR			3.927	39.639	57.213	1.00 16.56	AAAA
ATOM	2048	N	ASP	258			39.646	56.525	1.00 16.39	AAAA
MOTA	2049	CA	ASP	258		2.651			1.00 18.38	AAAA
MOTA	2050	CB	ASP	258		2.604	38.611	55.388		AAAA
ATOM	2051	CG	ASP	258		3.037	37.229	55.811	1.00 25.85	
ATOM -	2052	OD1	ASP	258	2	3.222	36.995	57.022	1.00 22.32	AAAA
		OD2		258		3.187	36.370	54.909	1.00 18.12	AAAA
MOTA	2053			258		1.396	39.563	57.397	1.00 21.25	AAAA
ATOM	2054	C	ASP		-	0.300	39.781	56.897	1.00 22.52	AAAA
MOŢA	2055	0	ASP	258			39.172	58.680	1.00 18.17	AAAA
ATOM	2056	N	PRO	259		1.510			1.00 25.88	AAAA
MOTA	2057	CD	PRO	259		2.614	38.528	59.422	1.00 21.24	AAAA
ATOM	2058	CA	PRO	259	_	0.281	39.139	59.482		AAAA
ATOM	2059	СВ	PRO	259		0.710	38.363	60.735 -	1.00 21.18	
	2060	CG	PRO	259	2	2.174	38.707	60.846	1.00 36.11	AAAA
ATOM			PRO	259		9.705	40.534	59.820	1.00 20.88	AAAA
ATOM	2061	C		259		8.572	40.647	60.280	1.00 19.25	-AAAA
ATOM	2062	0	PRO			0.473	41.591	59.571	1.00 18.75	AAAA
MOTA	2063	N	LEU	260			42.949	59.875	1.00 22.16	AAAA
MOTA	2064	CA	LEU	260		0.023		59.778	1.00 20.35	AAAA
ATOM	2065	CB	LEU	260		1.202	43.935		1.00 21.82	AAAA
ATOM	2066	CG	LEU	260		2.403	43.640	60.682		AAAA
	2067		LEU	260	2	3.604	44.486	60.253	1.00 18.57	
MOTA	2068		LEU	260	2	2.032	43.873	62.123	1.00 19.18	AAAA
ATOM				260		8.876	43.469	59.014	1.00 24.16	AAAA
MOTA	2069	C	LEU			8.742	43.144	57.826	1.00 21.69	AAAA
MOTA	2070	0	LEU	260		8.049	44.300	59.634	1.00 19.54	AAAA
MOTA	2071	N	LEU	261			44.913	58.965	1.00 17.34	AAAA
ATOM	2072	CA	LEU	261		6.903		59.892	1.00 19.96	AAAA
ATOM	2073	CB	LEU	261		6.285	45.967		1.00 29.99	AAAA
ATOM	2074	CG	LEU	261		.5.204	46.879	59.300		AAAA
ATOM	2075		LEU	261	1	4.080	46.040	58.732	1.00 33.66	
	2076		LEU	261	3	4.682	47.819	60.376	1.00 44.71	AAAA
MOTA	_		LEU	261	1	7.262	45.550	57.620	1.00 18.11	AAAA
MOTA	2077	C		261		6.539	45.386	56.634	1.00 19.02	AAAA
MOTA	2078	0	LEU			18.391	46.249	57.566	1.00 22.68	AAAA
MOTA	2079	N	GLU	262		18.802	46.921	56.338	1.00 18.46	AAAA
ATOM	2080	CA	GLU	262			47.965	56.641	1.00 22.01	AAAA
ATOM	2081	CB	GLU	262		19.875		57.443	1.00 22.94	AAAA
ATOM	2082	CG	GLU	262		19.365	49.136		1.00 23.11	AAAA
ATOM	2083	CD	GLU	262		19.434	48.902	58.927	1.00 23.11	AAAA
MOTA	2084		GLU	262	:	19.668	47.748	59.357	1.00 24.58	
	2085		GLU	262		19.238	49.883	59.667	1.00 27.06	AAAA
ATOM		C	GLU	262		19.281	46.034	55.197	1.00 25.65	AAAA
ATOM	2086			262		19.446	46.510	54.070	1.00 25.49	AAAA
MOTA	2087	0	GLU			19.501		55.467	1.00 22.45	AAAA
MOTA	2088	N	ASP	263		19.959	43.851	54.418	1.00 15.93	AAAA
MOTA	2089	CA	ASP	263			42.859	54.988	1.00 18.99	AAAA
MOTA	2090	CB	ASP	263		20.981	42.081	53.907	1.00 22.21	AAAA
MOTA	2091	CG	ASP	263		21.706				
ATOM	2092	OD1	ASP	263		22.876	41.730		1.00 25.02	
MOTA	2093		ASP	263		21.112	41.809			
	2094	C	ASP	263		18.733	43.165			
MOTA	2095	ō	ASP	263		18.012	42.419	54.519		
ATOM			TYR	264		18.500			1.00 25.21	AAAA
ATOM	2096	N				17.339			1.00 29.92	AAAA
MOTA	2097	CA	TYR	264		17.077				AAAA
MOTA	2098	CB	TYR	264						AAAA
MOTA	2099	CG	TYR	264		17.910				AAAA
ATOM	2100	CD	TYR	264		17.677				
ATOM	2101		LTYR	264		18.420	41.930			
ATOM	2102		TYR	264		18.915	44.286			
	2103	CE		264		19.670	43.975	47.788	1.00 74.50	
ATOM				264		19.415			1.00 72.57	AAAA
MOTA	2104	CZ	TYR			20.154			1.00 71.96	AAAA
atom	2105	OH	TYR	264		17.445				AAAA
MOTA	2106	C	TYR	264						AAAA
ATOM	2107	0	TYR	264		16.448				-
ATOM	2108		LEU	265		1.8.639				
MOTA	2109			265		18.753				
	2110			265		20.186				-
ATOM	2111			265		20.509				
ATOM						21.847			1.00 44.38	AAAA
MOTA	2112		1 LEU	233				•	•	•

					•				
	0113	CD3	1 511	265	19.422	38.990	48.603	1.00 46.72	AAAA
MOTA	2113 2114	CD2 C	LEU	265	18.209	38.585	52.447	1.00 22.33	AAAA
ATOM		0	LEU	265	18.279	37.364	52.348	1.00 23.48	AAAA
ATOM	2115 2116	N	SER	266	17.677	39.194	53.508	1.00 17.50	AAAA
ATOM	2117	CA	SER	266	17.055	38.398	54.569	1.00 19.69	AAAA
MOTA	2117	CB	SER	266	17.912	38.314	55.845	1.00 20.73	AAAA
MOTA	2119	OG.	SER	266	17.696	39.442	56.684	1.00 22.81	AAAA
MOTA MOTA	2120	C .	SER	266	15.739	39.048	54.950	1.00 19.75	AAAA
ATOM	2121	Ö	SER	266	15.572	40.265	54.840	1.00 23.66	AAAA
ATOM	2122	N	LYS	267	14.799	38.229	55.402	1.00 18.40	AAAA AAAA
MOTA	2123	CA	LYS	267	13.527	38.759	55.851	1.00 20.64 1.00 20.96	AAAA
MOTA	2124	CB	LYS	267	12.397	37.787	55.513 54.025	1.00 25.60	AAAA
ATOM	2125	CG	LYS	267	12.269	37.536	53.259	1.00 23.00	AAAA
ATOM	2126	CD	LYS	267	12.095	38.823 38.540	51.772	1.00 38.49	AAAA
ATOM	2127	CE	LYS	267	11.985	39.793	50.991	1.00 33.11	AAAA
MOTA	2128	NZ	LYS	267	11.954 13.601	38.987	57.365	1.00 20.63	AAAA
MOTA	2129	C	LYS	267	12.584	39.192	58.017	1.00 25.38	AAAA
MOTA	2130	0	LYS	267 268	14.814	38.937	57.915	1.00 18.98	AAAA
MOTA	2131	N	PHE	268	15.034	39.182	59.345	1.00 18.50	AAAA
MOTA	2132	CA CB	PHE PHE	268	16.328	38.510	59.833	1.00 20.91	AAAA
MOTA	2133 2134	CG	PHE	268	16.252	37.006	59.967	1.00 16.96	AAAA
MOTA	2134		PHE	268	17.374	36.290	60.415	1.00 16.61	AAAA
MOTA	2135		PHE	268	15.081	36.303	59.682	1.00 18.13	AAAA
ATOM ATOM	2137		PHE	268	17.331		60.581	1.00 14.81	AAAA AAAA
MOTA	2138		PHE	268	15.027		59.849	1.00 17.45	AAAA
ATOM	2139	CZ	PHE	268	16.144		60.296	1.00 16.01 1.00 18.33	AAAA
MOTA	2140	С	PHE	268	15.179		59.510	1.00 18.33	AAAA
ATOM	2141	0	PHE	268	15.733	41.371	58.644 60.613	1.00 21.04	AAAA
ATOM	2142	N	ASN	269	14.679		60.859	1.00 22.89	AAAA
ATOM	2143	CA	ASN	269	14.763		60.940	1.00 20.55	AAAA
ATOM	2144	CB	ASN	269	13.365 12.551			1.00 26.13	AAAA
MOTA	2145	CG	ASN	269	13.060		58.571	1.00 29.17	AAAA
MOTA	2146		ASN	269 269	11.268		59.860	1.00 28.26	AAAA
MOTA	2147		ASN ASN	269	15.493		62.159	1.00 19.00	AAAA
ATOM	2148 2149	С 0	ASN	269	14.984		63.019	1.00.21.85	AAAA
ATOM	2150	N	LEU	270	16.695	42.435	62.298	1.00 17.71	AAAA
ATOM ATOM	2151	CA	LEU	270	17.441		63.521	1.00 18.57	AAAA AAAA
MOTA	2152	СВ	LEU	270	18.441		63.712	1.00 18.95	AAAA
MOTA	2153	CG	LEU	270	17.945		63.631	1.00 20.54 1.00 14.19	AAAA
ATOM	2154	CD1	LEU	270	19.070		64.152	1.00 19.05	AAAA
ATOM	2155	CD2	LEU	270	16.679		64.465 63.583	1.00 22.83	AAAA
ATOM	2156	С	LEU	270	18.203		62.560	1.00 18.25	AAAA
MOTA	2157	0	LEU	270	18.409		64.799	1.00 20.95	AAAA
MOTA	2158	N.		271	18.621 19.414			1.00 18.28	AAAA
MOTA	2159	CA	SER	271	18.985			1.00 18.73	AAAA
MOTA	2160	CB	SER	271 271	19.34	_		1.00 22.28	AAAA
MOTA	2161	OG	SER	271	20.87			1.00 19.98	AAAA
MOTA	2162	C O	SER	271	21.12		65.537°	1.00 18.82	AAAA
MOTA	2163 2164	N	ASN	272	21.82			1.00 16.17	AAAA
MOTA	2165	CA	ASN	272	23.27	0 45.695		1.00 20 70	AAAA AAAA
MOTA MOTA	2166	CB	ASN	272	24.17	6 46.903			AAAA
MOTA	2167	CG		272	24.16		63.483		AAAA
MOTA	2168		1 ASN	272 -	24.70				AAAA
ATOM	2169		2 ASN	272	23.57				AAAA
ATOM	2170		ASN	272	23.58				AAAA
MOTA	2171	_	ASN	272	24.54				AAAA
MOTA	2172		VAL	273	22.83				AAAA
MOTA	2173	CA		273	23.05				AAAA
ATOM	2174			273	22.34 22.44				AAAA
ATOM	2175		1 VAL		22.44			1.00 34.73	AAAA
ATOM	2176		2 VAL		23.03			1.00 22.06	AAAA
ATOM	2177		VAL		23.24				AAAA
3 TOM	7178	0	VAL	213	~~		•		•

				274	21.601	43.747	68.713	1.00 21.79	AAAA
MOTA	2179	И	ALA	274	21.207	42.383	69.035	1.00 21.31	AAAA
MOTA	2180	CA	ALA ALA	274	19.806	42.092	68.475	1.00 18.95	AAAA
ATOM	2181	CB	ALA	274	22.259	41.451	68.400	1.00 17.83	AAAA
MOTA	2182	C 0	ALA	274	22.569	40.389	68.947	1.00 20.38	AAAA
ATOM	2183	И	PHE	275	22.798	41.859	67.245	1.00 16.01	AAAA
MOTA	2184 2185	CA	PHE	275	23.828	41.089	66.536	1.00 16.46	AAAA
MOTA	2186	CB	PHE	275	24.220	41.835	65.253	1.00 24.56	AAAA
ATOM	2187	CG	PHE	275	25.363	41.222	64.492	1.00 23.01	AAAA
MOTA MOTA	2188	CD1		275	25.209	40.035	63.788	1.00 23.88	AAAA
ATOM	2189		PHE	275	26.590	41.877	64.443	1.00 22.40	AAAA AAAA
ATOM	2190		PHE	275	26.266	39.510	63.038	1.00 28.74	AAAA
MOTA	2191		PHE	275	27.654	41.365	63.700	1.00 35.03 1.00 24.63	AAAA
ATOM	2192	CZ	PHE	275	27.489	40.181	62.996 67.469	1.00 25.06	AAAA
ATOM	2193	C	PHE	275	25.030	40.964	67.632	1.00 19.71	AAAA
MOTA	2194	0	PHE	275	25.619	39.888 42.080	68.101	1.00 17.49	AAAA
MOTA	2195	N	LEU	276	25.366 26.482	42.000	69.030	1.00 24.23	AAAA
MOTA	2196	CA	LEU	276	26.736	43.606	69.416	1.00 20.44	AAAA
MOTA	2197	СВ	LEU	276	28.001	43.967	70.211	1.00 39.65	AAAA
MOTA	2198	CG	LEU	276 276	27.948	45.447	70.589	1.00 29.65	AAAA
ATOM	2199		LEU LEU	276	28.102	43.143	71.460	1.00 32.41	AAAA
MOTA	2200		LEU	276	26.180	41.278	70.262	1.00 18.86	AAAA
MOTA	2201	C 0	LEU	276	27.045	40.529	70.727	1.00 17.99	AAAA
MOTA	2202 2203	И	LYS	277	24.968	41.374	70.805	1.00 19.67	AAAA
MOTA MOTA	2204	CA	LYS	277	24.644	40.552	71.964	1.00 21.33	AAAA
ATOM	2205	CB.	LYS	277	23.265	40.888	72.532	1.00 23.84	AAAA
ATOM	2206	CG	LYS	277	23.247	42.126	73.366	1.00 40.87	AAAA AAAA
ATOM	2207	CD	LYS	277	22.069	42.086	74.325	1.00 54.73 1.00 58.85	AAAA
ATOM	2208	CE	LYS	277	22.172	40.884	75.254	1.00 55.34	AAAA
ATOM	2209	NZ	LYS	277	21.051	40.844	76.228 71.660	1.00 33.34	AAAA
ATOM	2210	С	LYS	277	24.695	39.068 38.264	72.513	1.00 22.12	AAAA
ATOM	2211	0	LYS	277	25.074	38.700	70.441	1.00 20.23	AAAA
ATOM	2212	N	ALA	278	24.311 24.325	37.291	70.039	1.00 17.06	AAAA
ATOM	2213	CA	ALA	278 278	23.798	37.154	68.589	1.00 19.27	AAAA
MOTA	2214	CB	ALA	278 278	25.760	36.767	70.127	1.00 16.94	AAAA
MOTA	2215	C	ALA	278	26.035	35.676	70.648	1.00 14.93	AAAA
MOTA	2216	O N	ALA PHE	279	26.679	37.564	69.606	1.00 18.88	AAAA
MOTA	2217 2218	N CA	PHE	279	28.099	37.231	69.626	1.00 21.01	AAAA
ATOM	2219	CB	PHE	279	28.880	38.392	68.998	1.00 16.79	AAAA
ATOM ATOM	2220	CG	?HE	279	30.370	38.264	69.120	1.00 20.23	AAAA
MOTA	2221		PHE	279	31.062	37.272	68.423	1.00 21.61	AAAA AAAA
MOTA	2222		PHE	279	31.088	39.159	69.905	1.00 23.24 1.00 30.98	AAAA
ATOM	2223		PHE	279	32.461	37.185	68.509	1.00 30.98	AAAA
ATOM	2224	CE2	PHE	279	32.480	39.081	69.995	1.00 24.02	AAAA
ATOM	2225	CZ	PHE	279	33.169	38.095	69.295 71.067	1.00 35.27	AAAA
ATOM	2226	С	PHE	279	28.576	36.995 36.016	71.362	1.00 16.30	AAAA
MOTA	2227	0	PHE	279	29.275	37.898	71.962	1.00 22.30	AAAA
MOTA	2228	N	ASN	280	28.194 28.599	37.777	73.352		AAAA
MOTA	2229	CA	ASN	280	28.391	39.109	74.080	1.00 27.17	AAAA
MOTA	2230	CB	ASN	280 280	29.344	40.183		1.00 20.88	AAAA
MOTA	2231	CG	NSA NSA J	280	30.503	39.897		1.00 22.95	AAAA
ATOM	2232		ASN	280	28.875	41.421		1.00 27.85	AAAA
ATOM	2233	C	ASN	280	27.928	36.636	74.095	1.00 23.01	AAAA
ATOM	2234 2235	0	ASN	280	28.510	36.062		1.00 21.91	AAAA
MOTA	2236	N	ILE	281	26.711	36.300		1.00 18.74	AAAA
MOTA	2237	CA	ILE	281	26.005	35.179		1.00 18.37	AAAA LAKK
MOTA MOTA	2238	CB	ILE	281	24.566	35.067			AAAA AAAA
ATOM	2239		2 ILE	281	23.977	33.725			AAAA
MOTA	2240		1 ILE	281	23.710	36.206			AAAA
ATOM	2241	CD:	1 ILE	281	22.279	36.193			AAAA
ATOM	2242		ILE	281	26.743	33.876			AAAA
ATOM	2243	0	ILE	281	26.830	32.973			AAAA
ATOM	2244	N	VAL	282	27.258	33.765	12.144	2.00 27.72	•
			•	•	•				

					27.976	32.553	72.352	1.00 14.89	AAAA
ATOM	2245	CA	VAL	282			70.852	1.00 18.50	AAAA
ATOM	2246	CB	VAL	282	28.359	32.565	70.552	1.00 20.73	AAAA
MOTA	2247	CG1	VAL	282	29.342	31.440	70.307	1.00 17.49	AAAA
ATOM	2248	CG2	VAL	282	27.105	32.363	69.994	1.00 17.49	AAAA
ATOM	2249	C	VAL	282	29.241	32.433	73.198		
	2250	ō	VAL	282	29.568	31.360	73.715	1.00 25.80	AAAA
ATOM		N	ARG	283	29.935	33.549	73.361	1.00 19.14	AAAA
MOTA	2251		ARG	283	31.161	33.548	74.150	1.00 23.51	AAAA
MOTA	2252	CA		283	31.851	34.898	74.023	1.00 20.64	AAAA
MOTA	2253	CB	ARG		32.338	35.200	72.607	1.00 19.65	AAAA
ATOM	2254	CG	ARG	283	32.754	36.645	72.474	1.00 25.70	AAAA
ATOM	2255	CD	ARG	283		36.944	73.215	1.00 36.05	AAAA
MOTA	2256	NE	ARG	283	33.970	38.147	73.681	1.00 34.61	AAAA
MOTA	2257	CZ	ARG	283	34.277		73.488	1.00 35.23	AAAA
MOTA	2258	NHl	ARG	283	33.448	39.169	74.326	1.00 29.30	AAAA
ATOM	2259	NH2	ARG	283	35.419	38.332		1.00 25.44	AAAA
MOTA	2260	С	ARG	283	30.911	33.219	75.622	1.00 23.44	AAAA
	2261	ō	ARG	283	31.754	32.600	76.272		AAAA
MOTA	2262	N	GLU	284	29.765	33.632	76.151	1.00 26.79	
MOTA	2263	CA	GLU	284	29.462	33.338	77.553	1.00 31.77	AAAA
MOTA		CB	GLU	284	28.243	34.115	78.033	1.00 30.96	AAAA.
MOTA	2264		GLU	284	28.399	35.605	77.957	1.00 50.56	AAAA
MOTA	2265	CG		284	27.137	36.320	78.365	1.00 63.75	AAAA
MOTA	2266	CD	GLU		26.085	36.067	77.738	1.00 68.93	AAAA
MOTA	2267	-	. GLU	284	27.198	37.133	79.309	1.00 72.01	AAAA
MOTA	2268	OE2		284		31.862	77.733	1.00 31.57	AAAA
MOTA	2269	С	GLU	284	29.181	31.310	78.803	1.00 33.08	AAAA
MOTA	2270	0	GLU	284	29.410		76.686	1.00 23.37	AAAA
MOTA	2271	N	VAL	285	28.673	31.221	76.774	1.00 23.25	AAAA
ATOM	2272	CA	VAL	285	28.354	29.807		1.00 23.23	AAAA
ATOM	2273	CB	VAL	285	27.221	29.407	75.789	1.00 26.98	AAAA
ATOM	2274	CG1	VAL	285	26.952	27.913	75.881	1.00 20.90	AAAA
ATOM	2275		VAL	285	25.940	30.181	76.107	1.00 24.98	AAAA
	2276	Ċ.		285	29.567	28.942	76.479	1.00 31.41	
MOTA		ò	VAL	285	29.833	27.983	77.195	1.00 25.34	AAAA
MOTA	2277		PHE	286	30.316	29.276	. 75.431	1.00 27.27	AAAA
MOTA	2278	N		286	31.463	28.457	75.086	1.00 22.47	AAAA
MOTA	2279	CA	PHE	286	31.289	27.904	73.667	1.00 22.26	AAAA
MOTA	2280	CB	PHE		30.168	26.918	73.536	1.00 25.71	AAAA
MOTA	2281	CG	PHE	286	28.971	27.274	72.917	1.00 22.88	AAAA
MOTA	2282		1 PHE	286	30.294	25.631	74.069	1.00 24.49	AAAA
MOTA	2283		2 PHE	286		26.365	72.829	1.00 19.85	AAAA
ATOM	. 2284		1 PHE	286	27.919	24.714	73.987	1.00 27.48	AAAA
ATOM	2285	CE:	2 PHE	286	29.246			1.00 24.59	AAAA
ATOM	2286	CZ	PHE	286	28.056	25.081		1.00 21.53	AAAA
ATOM	2287	С	PHE	286	32.854	29.059		1.00 27.12	AAAA
ATOM	2288	0	PHE	286	33.849	28.417	74.873	1.00 27.12	AAAA
MOTA	2289	N	GLY	287	32.937		75.754	1.00 23.70	AAAA
	2290	CA		287	34.237		75 901	1.00 24.17	AAAA
ATOM	2291	C	GLY	287	34.705	31.419	74.562	1.00 27.05	•
ATOM	2292	ō	GLY	287	33.888	31.670	• 73.667	1.00 18.06	AAAA
MOTA			GLU	288	36.017	31.576	74.414	1.00 23.21	AAAA
MOTA	2293	N		288	36.583		73.170	1.00 24.87	AAAA
MOTA	2294	CA		288	37.968			1.00 29.25	AAAA
MOTA	2295	CB			37.984			1.00 42.63	AAAA
MOTA	2296	CG		288	37.114			1.00 43.77	AAAA
ATOM	2297	CD		288	37.235				AAAA
ATOM	2298		1 GLU	288					AAAA
MOTA	2299	OE	2 GLU	288	36.317				AAAA
ATOM	2300	С	GLU	288	36.693				AAAA
ATOM	2301		GLU	288	36.995				AAAA
MOTA	2302		GLY	289	36.447				AAAA
ATOM	2303			289	36.517				AAAA
	2304		GLY	289	37.126	31.318			AAAA
ATOM	2305		GLY	289	37.669	32.404		1.00 16.59	AAAA
ATOM			VAL	290	37.032		4 67.322		
MOTA	2306			290	37.572			1.00 19.70	AAAA
MOTA					38.150			1 1.00 19.04	AAAA
MOTA		CE		290	38.66			1.00 15.54	AAAA
MOTA	2309		1 VAL	290	30.00				AAAA
MOTA) CG	2 VAL	290	39.29	, 69,40.			

		_	*** *	290	36.408	32.040	65.427	1.00 20.90	AAAA
MOTA	2311	_	VAL		35.351	31.439	65.193	1.00 19.33	AAAA
MOTA	2312		VAL	290	36.598	33.325	65.125	1.00 15.37	AAAA
ATOM	2313	N	TYR	291	_	34.140	64.524	1.00 16.79	AAAA
MOTA	2314	CA	TYR	291	35.543	35.438	65.317	1.00 16.42	AAAA
MOTA	2315	CB	TYR	291	35.412	35.181	66.808	1.00 18.60	AAAA
ATOM	2316	CG	TYR	291	35.375		67.659	1.00 21.77	AAAA
ATOM	2317	CD1	TYR	291	36.366	35.688		1.00 22.55	AAAA
MOTA	2318	CE1	TYR	291	36.368	35.385	69.030	1.00 22.33	AAAA
ATOM	2319	CD2	TYR	. 291	34.388	34.374	67.361	1.00 20.24	AAAA
ATOM	2320	CE2	TYR	291	34.381	34.066	68.718	1.00 25.85	AAAA
ATOM	2321	CZ	TYR	291 -	35.367	34.568	69.545	1.00 25.57	AAAA
ATOM	2322	OH	TYR	291	35.338	34.246	70.885	1.00 23.37	AAAA
ATOM	2323	С	TYR	291	35.720	34.446	63.031		AAAA
ATOM	2324	0	TYR	291	36.773	34.921	62.586	1.00 15.21	AAAA
ATOM	2325	N	LEU	292	34.660	34.189	62.273	1.00 14.06	AAAA
MOTA	2326	CA	LEU	292	34.674	34.392	60.824	1.00 15.03	AAAA
ATOM	2327	CB	LEU	292	34.461	33.046	60.108	1.00 13.66	AAAA
ATOM	2328	CG	LEU	292	35.342	31.856	60.496	1.00 19.04	AAAA
MOTA	2329		LEU	292	34.909	30.615	59.665	1.00 15.17	
ATOM	2330		LEU	292	36.792	32.190	60.252	1.00 19.18	AAAA
ATOM	2331	C	LEU	292	33.564	35.327	60.396	1.00 16.62	AAAA
	2332	ō	LEU	292	32.575	35.488	61.107	1.00 14.76	AAAA
ATOM	2332	N	GLY	293	33.724	35.932	59.216	1.00 18.62	AAAA
MOTA	2334	CA	GLY	293	32.696	36.816	58.699	1.00 17.10	AAAA
MOTA	2335	C	GLY	293	31.611	35.954	58.068	1.00 23.44	AAAA
MOTA		0	GLY	293	31.407	34.798	58.459	1.00 23.60	AAAA
MOTA	2336 2337	N	GLY	294	30.915	36.501	57.085	1.00 24.96	AAAA
ATOM		CA	GLY	294	29.871	35.738	56.434	1.00 27.07	AAAA
MOTA	2338	C	GLY	294	29.132	36.632	55.474	1.00 28.41	AAAA
MOTA	2339	0	GLY	294	29.605	37.722	55.167	1.00 25.66	AAAA
ATOM	2340		GLY	295	27.972	36.168	55.011	1.00 20.33	AAAA
ATOM	2341	N	GLY	295	27.164	36.936	54.085	1.00 20.14	AAAA
MOTA	2342	CA C	GLY	295	26.742	38.244	54.730	1.00 25.34	AAAA
MOTA	2343		GLY	295	26.550	38.317	55.942	1.00 28.89	AAAA
MOTA	2344	.0	GLY	296	26.614	39.274	53.909	1.00 28.52	AAAA
MOTA	2345	N	GLY	296	26.230	40.598	54.367	1.00 23.21	AAAA
MOTA	.2346	CA	GLY	296	26.314	41.342	53.059	1.00 26.34	AAAA
MOTA	2347	C	GLY	296	27.359	41.324	52.414	1.00 26.05	AAAA
ATOM	2348	0	TYR	297	25.235	42.008	52.662	1.00 22.61	AAAA
ATOM	2349	N	TYR	297	25.228	42.644	51.360	1.00 22.58	AAAA
MOTA	2350	CA	TYR	297	24.265	41.861	50.457	1.00 23.68	AAAA
ATOM	2351	CB	TYR	297	24.502	40.352	50.521	1.00 25.14	AAAA
ATOM	2352	CG CD1		297	23.981	39.571	51.568	1.00 28.31	AAAA
MOTA	2353	CE1		297	24.269	38.196	51.662	1.00 24.18	AAAA
ATOM	2354			297	25.307	39.725	49.577	1.00 29.74	AAAA
MOTA	2355	CD2		297	25.598	38.362	49.664	1.00 27.09	AAAA
ATOM	2: 36			297	25.085	37.606	50.696	1.00 28.68	AAAA
ATOM	257	CZ	TYR TYR	297	25.407	36.261	50.739	1.00 28.17	AAAA
MOTA	2538	ОН	TYR	297	24.916	44.138	51.320	1.00 24.98	AAAA
ATOM	2359	C		297	24.841	44.714	50.237	1.00 26.51	AAAA
ATOM	2360	0	TYR	298	24.740	44.752	52.491	1.00 23.80	AAAA
ATOM	2361	N	HIS	298	24.480	46.188	52.591	1.00 23.44	AAAA
ATOM	2362	CY	HIS	298.	23.325			1.00 23.37	AAAA
MOTA	2363	CB	HIS	298. 298	22.956			1.00 32.94	AAAA
ATOM	2364	CG	HIS		23.491			1.00 24.31	AAAA
MOTA	2365		HIS	298	22.011			1.00 38.29	AAAA
MOTA	2366		HIS	298	21.978			1.00 25.60	AAAA
MOTA	2367		HIS	298	22.867		53.788	1.00 36.57	AAAA
ATOM	2368		2 HIS	298	25.757			1.00 23.11	AAAA
MOTA	2369	C	HIS	298	26.135	46.439		1.00 22.64	AAAA
ATOM	2370	0	HIS	298	26.430		_	1.00 21.07	АААА
ATOM	2371	N	PRO	399	26.078			1.00 27.42	AAAA
ATOM	2372	CD		299	27.676				AAAA
ATOM	2373			299	28.041			1.00 28.95	AAAA
ATOM	2374			299	26.678			1.00 35.16	AAAA
ATOM	2375			299					AAAA
ATOM	2376	С	PRO	299	27.049				•
••				•					

55/263 Figure 16-37

					28.565	48.845	55.068	1.00 24.36	AAAA
MOTA	2377		PRO	299	26.602	49.769		1.00 24.48	AAAA
ATOM	2378	_	ryr	300		50.478		1.00 22.94	AAAA
ATOM	2379	-	TYR	300	26.495	51.442		1.00 25.24	AAAA
ATOM	2380		TYR	300	25.317	52.599		1.00 30.44	AAAA
ATOM	2381		TYR	300	25.411	52.634	53.746	1.00 26.01	AAAA
ATOM	2382	CD1 '	TYR	300	26.366	53.676		1.00 29.66	AAAA
ATOM	2383	CE1 '	TYR	300	26.389	53.640	54.827	1.00 31.37	AAAA
MOTA	2384	CD2	TYR	300	24.490		53.916	1.00 35.88	AAAA
MOTA	2385	CE2	TYR	300	24.501	54.677	52.913	1.00 38.44	AAAA
ATOM	2386	CZ -	TYR	300	25.448	54.689	51.990	1.00 33.41	AAAA
ATOM	2387	OH	TYR	300	25.417	55.700	56.921	1.00 22.80	AAAA
MOTA	2388	·C	TYR .	300	26.280	49.515	57.983	1.00 19.14	AAAA
ATOM	2389	0	TYR	300 .	26.895	49.643	56.705	1.00 23.08	AAAA
MOTA	2390	N	ALA	301	25.374	48.568	57.719	1.00 21.68	AAAA
ATOM	2391	CA	ALA	301	25.009	47.589	57.198	1.00 19.52	AAAA
ATOM	2392	CB	ALA	301	23.893	46.687	58.098	1.00 23.49	AAAA
ATOM	2393	С	ALA	301	26.216	46.762	59.274	1.00 21.21	AAAA
ATOM	2394		ALA	301	26.507	46.570	57.072	1.00 23.19	AAAA
ATOM	2395		LEU	302	26.904	46.275		1.00 20.66	AAAA
ATOM	2396	CA	LEU	302	28.090	45.463	57.234	1.00 23.31	AAAA
	2397	CB	LEU	302	28.602	45.057	55.844	1.00 36.66	AAAA
MOTA	2398	ĊĞ	LEU '	302	29.932	44.335	55.611	1.00 38.41	AAAA
MOTA	2399	CD1		302	29.979	43.849	54.170		AAAA
ATOM	_		LEU	302	31.104	45.255	55.879	1.00 28.52	AAAA
MOTA	2400		LEU	302	29.165	46.204	58.012	1.00 22.08	AAAA
MOTA	2401	С	LEU	302	29.653	45.713	59.020	1.00 20.43	
MOTA	2402	0	ALA	303	29.517	47.401	57.549	1.00 19.58	AAAA
MOTA	2403	N	ALA	303	30.567	48.173	58.197	1.00 19.77	AAAA
MOTA	2404	CA		303	30.816	49.460	57.432	1.00 21.69	AAAA
MOTA	2405	· CB	ALA	303	30.324	48.485	59.657	1.00 19.19	AAAA
MOTA	2406	C	ALA	303	31.216	48.310	60.489	1.00 22.51	AAAA
MOTA	2407	0	ALA	304	29.128	48.954	59.993	1.00 20.12	AAAA
MOTA	2408	N	ARG	304	28.872		61.377	1.00 18.04	AAAA
MOTA .	2409	CA	ARG	304 ·	27.566		61.511	1.00 21.09	AAAA
ATOM	2410	CB	ARG	304	27.532		60.792	1.00 24.34	AAAA
MOTA	2411	CG	ARG		26.259		61.206	1.00 27.09	AAAA
MOTA	2412	CD	ARG	304	25.090		61.116	1.00 45.73	AAAA
MOTA	2413	NE	ARG	304	23.965		61.808	1.00 39.82	AAAA
ATOM	2414	CZ	ARG	304	23.813		62.677	1.00 28.40	AAAA
MOTA	2415	NH1		304	22.991		61.647	1.00 41.77	AAAA
MOTA	2416		ARG	304	28.794			1.00 21.00	AAAA
MOTA	2417	С	ARG	304	29.313			1.00 19.45	AAAA
MOTA	2418	0	ARG	304	29.313			1.00 19.93	AAAA
MOTA	2419	N	ALA	305	28.159 28.002			1.00 18.70	AAAA
ATOM	2420	CA	λ LA	305				1.00 18.26	AAAA
ATOM	2421	CB	ALA	305	26.998			1.00 16.46	AAAA
ATOM	2422	С	ALA	3 05	29.311			1.00 .9.49	AAAA
MOTA	2423	0	ALA	305	29.564				AAAA
MOTA	2424	N	TRP	306	30.15				AAAA
MOTA	2425	CA	TRP	306	31.42	_			AAAA
MOTA	2426		TRP	306	32.15	1 43.865			AAAA
ATOM	2427		TRP	306	31.63				AAAA
ATOM	2428		2 TRP	306	31.85				AAAA
ATOM	2429		2 TRP	306	31.24				AAAA
ATOM	2430		3 TRP	306	32.50		57.878		AAAA
ATOM			1 TRP	306	30.91		60.995		AAAA
				306	30.68				AAAA
MOTA				306	31.27	0 40.00			AAAA
MOTA			_	306	32.53				AAAA
ATOM		-		306	31.91	7 40.51			AAAA
ATOM			TRP	306	32.28	9 45.18	8 63.018		AAAA
ATOM				306	33.15		6 63.752		
ATOM			TRP	307	.32.06		1 62.913		AAAA
ATOM			THR	307	32.84		2 63.72		AAAA
ATOM	2439			307	32.57		5 63.31		AAAA
ATOM		_			33.21			1 1.00 21.58	AAAA
ATOM	1 044		1 THR	307	33.12				AAAA
ATOM		2 CG	2 THR	307	٠. ٠. ١		•		•
	•		•						

					_				
				207	32.493	47.146	65.187	1.00 17.47	AAAA
MOTA	2443	C	THR	307 307	33.377	47.142	66.039	1.00 18.94	AAAA
ATOM	2444	0	THR	307	31.216	46.901	65.487	1.00 19.97	AAAA
MOTA	2445		LEU	308	30.834	46.587	66.866	1.00 22.54	AAAA
MOTA	2446		LEU	308	29.318	46.365	66.989	1.00 21.13	AAAA
MOTA	2447		LEU LEU	308	28.415	47.579	66.751	1.00 22.82	AAAA
ATOM	2448	CG CD1		308	26.937	47.219	67.023	1.00 25.01	AAAA
MOTA	2449	CD2		308	28.870	48.710	67.685	1.00 29.09	AAAA
MOTA	2450 2451	CDZ	LEU	308	31.578	45.331	67.336	1.00 22.98	AAAA
MOTA	2452	0	LEU	308	32.056	45.250	68.479	1.00 22.27	AAAA
ATOM ATOM	2453	N	ILE	309	31.677	44.342	66.454	1.00 22.54	AAAA AAAA
ATOM	2454	CA	ILE	309	32.377	43.114	66.801	1.00 17.09	AAAA
ATOM	2455	CB	ILE	309	32.318	42.073	65.664	1.00 18.12 1.00 24.16	AAAA
ATOM	2456	CG2		309	33.170	40.870	66.033	1.00 24.16	AAAA
ATOM	2457	CG1		309	30.871	41.655	65.399	1.00 18.23	AAAA
MOTA	2458	CD1		309	30.205	40.989	66.586 67.067	1.00 20.84	AAAA
ATOM	2459	С	ILE	309	33.849	43.410	68.031	1.00 25.20	AAAA
MOTA	2460	0	ILE	309	34.426	42.905	66.214	1.00 16.86	AAAA
ATOM	2461	N	TRP	310	34.466	44.223 44.517	66.411	1.00 17.86	AAAA
MOTA	2462	CA	TRP	310	35.888 36.439	45.319	65.235	1.00 14.83	AAAA
MOTA	2463	СВ	TRP	310	37.879	45.648	65.397	1.00 16.63	AAAA
MOTA	2464	CG	TRP	310	38.967	44.718	65.560	1.00 18.62	AAAA
MOTA	2465	CD2	TRP	310	40.131	45.478	65.799	1.00 25.60	AAAA
MOTA	2466	CE2	TRP	310 310	39.069	43.319	65.529	1.00 24.06	AAAA
MOTA	2467	CE3	TRP TRP	310	38.418	46.895	65.533	1.00 19.82	AAAA
MOTA	2468 2469		TRP	310	39.768	46.801	65.777	1.00 25.84	AAAA
MOTA	2470	CZ2		310	41.383	44.887	66.006	1.00 26.14	AAAA
MOTA MOTA	2471	CZ3	TRP	310	40.308	42.730	65.735	1.00 24.89	AAAA AAAA
ATOM	2472		TRP	310	41.452	43.515	65.971	1.00 24.96 1.00 20.86	AAAA
ATOM	2473	C	TRP	310	36.112	45.263	67.733	1.00 20.88	AAAA
ATOM	2474	0	TRP	310	37.050	44.957	68.478	1.00 24.22	AAAA
ATOM	2475	N	CYS	311	35.242	46.226	68.030 69.280	1.00 27.66	AAAA
ATOM	2476	CA	CYS	311	35.349	46.971	69.343	1.00 25.37	AAAA
ATOM	2477	CB	CYS	311	34.297	48.097 49.528	68.253	1.00 27.22	AAAA
MOTA	2478	SG	CYS	311	34.618 35.224	46.042	70.490	1.00 22.95	AAAA
MOTA	2479	C	CYS	311	35.986	46.180	71.441	1.00 25.47	AAAA
MOTA	2480	0	CYS	311 312	34.284	45.089	70.457	1.00 17.03	AAAA
ATOM	2481	N	GLU	312	34.120	44.129	71.569	1.00 22.44	AAAA
MOTA	2482	CA	GLU GLU	312	33.011	43.110	71.280	1.00 20.81	AAAA
MOTA	2483 2484	CB CG	GLU	312	31.856	43.048	72.258	1.00 43.65	AAAA
ATOM	2485	CD	GLU	312	32.265	42.971	73.717	1.00 29.63	AAAA AAAA
ATOM ATOM	2486		GLU	312	33.022		74.119	1.00 38.85 1.00 53.22	AAAA
ATOM	2487	OE2		312	31.804		74.473	1.00 53.22	AAAA
ATOM	2488	c	GLI	312	35.395	43.309	71.778	1.00 27.47	AAAA
ATOM	2489	Ō	GLì.	312	35.899			1.00 23.82	AAAA
ATOM	2490	N	LEL	313	35.899			1.00 20.72	AAAA
MOTA	2491	CA	LEU	313	37.101	41.889		1.00 27.82	AAAA
ATOM	2492	CB	LEU	313	37.380			1.00 33.55	AAAA
MOTA	2493	CG	LEU	313	36.403			1.00 24.03	AAAA
MOTA	2494		LEU	313	36.839 36.379				AAAA
ATOM	2495		LEU	313	38.343		*		AAAA
MOTA	2496		LEU	313	39.119			1.00 21.48	AAAA
ATOM	2497		LEU	313	38.492			1.00 19.41	AAAA
MOTA	2498		SER	314	39.627			1.00 28.26	AAAA
MOTA	2499		SER	314 314	39.625			1.00 22.55	AAAA
ATOM	2500		SER	314	40.732		69.759	1.00 61.92	AAAA
ATOM	2501			314	39.619			1.00 30.18	AAAA
MOTA	2502		SER SER	314	40.63		72.590		AAAA
ATOM	2503		GLY	315	38.47		72.806		AAAA AAAA
MOTA	2504 2505			315	38.39	3 46.009			AAAA
MOTA	2506		GLY		38.32	4 47.518		1.00 36.93	AAAA
ATOM	2507		GLY		38.81	1 48.178			AAAA.
ATOM		i N	ARG		37.73	9 48.090	73.065	1.00 31.33	, And the second

57/263

Figure 16-39

								73 043	1.00 39.10	AAAA
_		2509	CA	ARG	316	37.631	49.536			
	TOM				316	38.347	50.108	71.830	1.00 45.15	AAAA
A	TOM	2510	CB	ARG				70.501	1.00 46.02	AAAA
	TOM	2511	CG	ARG	316	37.722			1.00 44.83	AAAA
		2512	CD	ARG	316	38.620	50.45 9	69.449		
A	MOT				316	39.898	49.767	69.357	1.00 37.91	AAAA
A	MOT.	2513	NE	ARG			_	68.674	1.00 27.39	AAAA
	TOM	2514	CZ	ARG	316	40.945				AAAA
			NHl		316	40.854	51.371	68.034	1.00 50.24	
A	TOM	2515						68.572	1.00 34.51	AAAA
2	MOT	2516	NH2	ARG	316	42.054			1.00 35.43	AAAA
		2517	С	ARG	316	36.179	49.984	73.058	1.00 33.43	
	MOT				316	35.292	49.271	72.596	1.00 30.71	AAAA
7	MOT	2518	0	ARG				73.612	1.00 34.06	AAAA
	MOTA	2519	N	GLU	317	35.93			1.00 37.96	AAAA
		_	CA	GLU	317	34.569	51.663	73.671		
7	MOTA	2520				34.48		74.552	1.00 43.60	AAAA
7	MOTA	2521	CB	GLU	317			75.960	1.00 60.36	AAAA
	MOTA	2522	CG	GLU	317	33.96			1.00 00.30	AAAA
		-		GLU	317	34.76	8 51.575	76.701	1.00 70.70	
- 2	MOTA	2523	CD			34.37		77.832	1.00 76.71	AAAA
	MOTA	2524	OE1	GLU	317				1.00 78.36	AAAA
		2525	OE2	GLU	317	35.79		76.162		AAAA
	MOTA	2323		GLU	317	34.06	8 51.958	72.280	1.00 35.65	
- 1	MOTA	2526	С					71.390	1.00 32.91	AAAA
:	MOTA	2527	0	GLU	317	34.84			1.00 30.52	AAAA
		2528	N	VAL	318	32.76	7 51.772	72.094		AAAA
	MOTA				318	32.13		70.808	1.00 37.04	
	MOTA	2529	ÇA	VAL				70.638	1.00 36.48	AAAA
	MOTA	2530	CB	VAL	318	30.87			1.00 40.43	AAAA
				VAL	318	30.27	8 51.366	69.268		
	MOTA	2531				31.22		70.846	1.00 33.75	AAAA
	MOTA	2532	CG2	VAL	318			70.737	1.00 28.96	AAAA
	MOTA	2533	С	VAL	318	31.71	9 53.465		1.00 33.56	AAAA
			ō	VAL	318	30.93	0 53.915	71.556	1.00 33.50	
	MOTA	2534				32.25		69.773	1.00 29.20	AAAA
	MOTA	2535	N	PRO	319			68.726	1.00 31.62	AAAA
	ATOM	2536	CD	PRO	319	33.24			1.00 28.99	AAAA
			CA	PRO	319	31.85	8 55.637			
	MOTA	2537				32.70		68.528	1.00 32.17	AAAA
	ATOM	2538	CB	PRO	319	52.70			1.00 41.36	AAAA
	ATOM	2539	CG	PRO	319	32.85	0 54.926		1.00 36.95	AAAA
				PRO	319	30.36	5 55.680	69.377		
	MOTA	2540	С			29.84		68.695	1.00 32.86	AAAA
	ATOM	2541	0	PRO	319				1.00 34.61	AAAA
	ATOM	2542	· N	GLU	320	29.64	6 56.683		1 00 35 13	AAAA
				GLU	320	28.23	0 56.657	69.544	1.00 35.13	
	MOTA	2543	CA			27.41	9 57.416	70.595	1.00 52.97	AAAA
	ATOM	2544	CB	GLU	320		., .,	70.738	1.00 56.06	AAAA
		2545	CG	GLU	320	27.75	58.875	70.730		AAAA
	MOTA			GLU	320	26.82	22 59.558	71.721	1.00 65.58	
	MOTA	2546	CD			25.60			1.00 64.27	AAAA
	MOTA	2547	OE:	L GLU	320	25.00			1.00 72.99	AAAA
		2548	OES	2 GLU	320	27.30			1.00 72.33	AAAA
	MOTA				320	27.94	13 57.192	68.153	1.00 35.13	
	MOTA	2549	С	GLU		26.9		67.565	1.00 37.43	AAAA
	MOTA	2550	0	GLU	320		- :		1.00 28.22	AAAA
		2551	N	LYS	321	28.8	30 57.953		1.00 20.22	AAAA
	ATOM				321	28.7	00 58.55	66.289	1.00 36.58	
	ATOM	2552	CA			28.6			1.00 44.87	AAAA
	ATOM	2553	CB	LYS	321	28.0			1.00 55.73	. ` AAA
		2554	CG	LYS	321	29.9	87 60.60		1.00 55.75	AAA
	ATOM				321	30.3		68.410	1.00 57.27	
	ATOM	2555	CD	LYS				0 68.840	1.00 54.59	AAA
	MOTA	2556	CE	LYS	321	31.7				AAAA
		2557	NZ	LYS	321	32.0	24 61.77			AAAA
	MOTA	2337	112			29.8		1 65.315		
	ATOM	2558	С	LYS	321				1.00 33.83	AAAA
	ATOM	2559	0	LYS	321	30.9				AAAA
		2560		LEU	322	29.5	49 58.35			AAAA
	MOTA					30.5		5 62.998	1.00 29.45	
	MOTA	2561	CA		322					AAAA
	ATOM	2562	СВ	LEU	322	29.9				AAAA
					322	29.2	40 56.33	8 61.651		
	ATOM	2563				29.0	08 55.97	7 60.186	1.00 38.44	aaaj
	MOTA	2564	CD	1 LEU	322					LAAA
		2565		2 LEU	322	30.0	72 55.26			AAA
	ATOM				322	31.2	28 59.50	3 62.783	1.00 33.28	
	MOTA	2566		LEU		30.5			1.00 31.45	AAA
	ATOM	2567	0	LEU	322	30.2				AAAi
		2568		ASN	323	32.5	33 59.53			AAA
	ATOM					33.2		4 62.294		
	ATOM	2569	CA			22.2				AAA
	ATOM	2570	CE	3 ASN	323	34.7				AAA.
						35.4	84 60.08			AAA
	ATCM	2571				35.2	15 58.94	2 61.109	1.00 51.23	
	ATOM	2572	O	1 ASN	323		EE 60 00			AAA
	ATOM		NT	2 ASN	323	36.4	55 60.80	•		AAA
	AIUM					33.0	27 61.17	60.82	4 1.00 34.03	
						- - ·				

ATOM 2575 0 ASN 324 33.51 62.21 760.395 0.075 1.00 34.06 AAAA ATOM 2576 R ASN 324 33.551 62.270 58.995 1.00 31.06 AAAA ATOM 2578 C ASN 324 33.385 62.720 58.995 1.00 31.06 AAAA ATOM 2578 C ASN 324 33.385 62.720 58.995 1.00 31.06 AAAA ATOM 2578 C ASN 324 33.285 62.720 58.995 1.00 31.06 AAAA ATOM 2578 C ASN 324 32.974 65.163 59.450 1.00 35.07 AAAA ATOM 2580 OI ASN 324 33.555 66.008 60.291 1.00 39.55 AAAA ATOM 2580 ND ASN 324 33.555 66.008 60.291 1.00 39.12 AAAA ATOM 2581 ND2 ASN 324 33.555 66.008 60.291 1.00 39.12 AAAA ATOM 2582 C ASN 324 33.451 61.483 56.941 1.00 31.91 AAAA ATOM 2583 ND2 ASN 324 33.451 61.483 56.941 1.00 31.91 AAAA ATOM 2585 C ASN 324 33.451 61.483 56.941 1.00 31.91 AAAA ATOM 2585 C ASN 324 33.451 61.483 56.941 1.00 31.91 AAAA ATOM 2585 C LYS 325 35.991 60.538 57.333 1.00 29.55 AAAAA ATOM 2586 C LYS 325 38.250 59.386 59.7004 1.00 44.83 AAAA ATOM 2586 C LYS 325 38.250 59.386 57.004 1.00 44.83 AAAA ATOM 2589 C LYS 325 38.250 59.386 59.7004 1.00 44.83 AAAA ATOM 2589 C LYS 325 35.615 59.991 60.873 57.561 1.00 54.02 AAAA ATOM 2589 C LYS 325 35.616 58.85 59.998 00.00 37.43 AAAA ATOM 2589 C LYS 325 35.616 59.279 57.008 1.00 54.02 AAAA ATOM 2589 C LYS 325 35.616 59.279 57.008 1.00 54.02 AAAA ATOM 2593 C ALA AAA 3AA ATOM 2595 C AAAA 3AA ATOM 2596 C AAAA 326 33.600 58.700 39.700 30.00 31.00 30.30 AAAA ATOM 2597 C AAAA 326 33.600 58.700 39.700 30.3						•				AAAA
APPEN 2576 N ASN 324 33.551 62.317 08.985 1.00 31.06 AAAA AAAA AAAOM 2577 CA ASN 324 33.868 64.155 58.764 1.00 31.06 AAAA AAAA AAOM 2578 CB ASN 324 33.868 64.155 58.764 1.00 35.75 AAAA AAAA AAAA ACOM 2579 CG ASN 324 31.765 65.189 59.266 1.00 35.55 AAAAA ACOM 2580 OX ASN 324 31.555 66.008 60.261 1.00 39.15 AAAAA ACOM 2580 OX ASN 324 31.555 66.008 60.261 1.00 39.12 AAAAA ACOM 2580 OX ASN 324 31.555 66.008 60.261 1.00 39.12 AAAAA ACOM 2580 OX ASN 324 31.555 66.008 60.261 1.00 39.12 AAAAA ACOM 2580 OX ASN 324 31.555 66.008 60.261 1.00 39.12 AAAAA ACOM 2585 OX LYS 325 33.595 66.008 60.261 1.00 39.12 AAAAA ACOM 2586 CA LYS 325 33.595 66.008 60.261 1.00 31.91 AAAAA ACOM 2586 CA LYS 325 33.595 66.008 67.704 1.00 21.773 AAAAA ACOM 2586 CB LYS 325 33.595 66.008 57.004 1.00 41.84 AAAAA ACOM 2586 CB LYS 325 33.694 69.305 57.004 1.00 41.84 AAAAA ACOM 2589 CE LYS 325 33.694 69.305 57.004 1.00 41.84 AAAAA ACOM 2589 CE LYS 325 33.694 69.305 57.561 1.00 50.89 AAAAA ACOM 2590 CX LYS 325 33.606 58.72 58.142 1.00 27.99 AAAAA ACOM 2590 CX LYS 325 33.606 58.72 58.142 1.00 27.99 AAAAA ACOM 2592 CX LYS 325 33.4602 59.279 57.078 1.00 27.99 AAAAA ACOM 2595 CX LYS 325 33.4602 59.279 57.078 1.00 27.97 AAAAA ACOM 2595 CX LYS 325 33.4602 59.279 57.078 1.00 27.97 AAAAA ACOM 2595 CX LYS 327 30.502 59.279 57.078 1.00 27.77 AAAAA ACOM 2595 CX LYS 327 30.502 59.279 57.078 1.00 27.77 AAAAA ACOM 2595 CX LYS 327 30.502 59.279 59.428 1.00 31.80 AAAAA ACOM 2595 CX LYS 327 30.502 59.279 59.428 1.00 31.80	3 mov	2575	0	ASN	323	32.429				
ADDITION 2577 CA ASN 324 33.865 62.720 89.994 1.00 36.07 AAAA ADDITION 2579 CG ASN 324 32.974 65.169 39.450 1.00 45.77 AAAA ADDITION 2579 CG ASN 324 32.974 65.169 39.450 1.00 39.55 AAAA ADDITION 2591 NDZ ASN 324 33.555 66.008 60.291 1.00 39.55 AAAA ADDITION 2592 C ASN 324 33.451 61.483 36.941 1.00 39.15 AAAA ADDITION 2593 O ASN 324 33.451 61.483 36.941 1.00 39.15 AAAA ADDITION 2593 O ASN 324 33.451 61.483 36.941 1.00 39.15 AAAA ADDITION 2593 O ASN 324 33.451 61.483 36.941 1.00 31.91 AAAA ADDITION 2595 C LVS 325 35.991 60.588 77.371 1.00 24.87 AAAA ADDITION 2595 C LVS 325 35.991 60.588 77.393 1.00 37.43 AAAA ADDITION 2596 C LVS 325 38.250 59.386 57.004 1.00 34.84 AAAA ATOM 2599 C LVS 325 39.684 59.455 57.502 1.00 50.89 AAAA ATOM 2599 C LVS 325 40.191 60.893 57.595 1.00 65.70 AAAA ATOM 2599 C LVS 325 35.616 59.299 57.595 1.00 65.70 AAAA ATOM 2599 C LVS 325 35.616 59.299 57.595 1.00 65.70 AAAA ATOM 2594 C AAA 326 33.410 58.8721 58.142 1.00 31.80 AAAA ATOM 2595 C AAA 326 33.410 58.7121 58.810 1.00 27.34 AAAA ATOM 2595 C AAA 326 33.410 58.7121 58.810 1.00 27.34 AAAA ATOM 2595 C AAA 326 33.410 58.7121 58.810 1.00 27.34 AAAA ATOM 2595 C AAA 326 33.410 58.8721 58.810 1.00 27.34 AAAA ATOM 2595 C AAA 326 33.410 58.8721 58.810 1.00 27.34 AAAA ATOM 2595 C AAA 326 33.410 58.8721 58.810 1.00 27.35 AAAA ATOM 2595 C AAA 326 33.410 58.8721 58.8720 59.912 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59.8721 59						33.551				
APON 2578 CB ASN 324 33.868 64.155 98.68 1.00 25.77 AAAA AAAAA						33.385		58.995	1.00 31.00	
ADOM 2579 CC ASN 324 32.974 65.189 39.405 1.00 49.55 AAAA ATOM 2580 ODI ASN 324 33.555 66.008 60.291 1.00 39.12 AAAA ATOM 2581 ND2 ASN 324 33.455 61.810 37.771 1.00 39.12 AAAA ATOM 2582 C ASN 324 33.451 61.810 37.771 1.00 39.12 AAAA ATOM 2583 O ASN 324 33.451 61.810 37.771 1.00 39.12 AAAA ATOM 2585 N LYS 325 35.991 60.588 57.391 1.00 27.73 AAAA ATOM 2585 C A LYS 325 35.991 60.588 57.392 1.00 27.73 AAAA ATOM 2585 C B LYS 325 36.991 60.182 37.329 1.00 27.73 AAAA ATOM 2589 C LYS 325 38.250 59.386 57.021 1.00 50.89 AAAA ATOM 2589 C LYS 325 38.250 59.386 57.021 1.00 50.89 AAAA ATOM 2589 C LYS 325 36.810 1.00 27.99 AAAA ATOM 2589 C LYS 325 35.991 60.870 7.989 1.00 65.70 AAAA ATOM 2589 C LYS 325 35.916 60.980 37.989 1.00 65.70 AAAA ATOM 2590 NZ LYS 325 41.621 60.980 37.989 1.00 62.799 AAAA ATOM 2590 NZ LYS 325 35.016 89.298 57.981 1.00 27.99 AAAA ATOM 2590 C LYS 325 35.016 89.298 57.981 1.00 27.99 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 1.00 65.70 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 1.00 65.70 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.221 1.00 24.38 AAAA ATOM 2595 C RA AAA 326 33.780 57.590 57.221 1.00 27.34 AAAA ATOM 2595 C RA AAA 326 33.780 57.590 57.221 1.00 27.34 AAAA ATOM 2595 C RA AAA 326 33.780 57.590 57.231 1.00 27.34 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 27.37 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 28.57 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 28.57 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.496 1.00 27.37 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.496 1.00 27.37 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 28.57 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 28.56 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.496 1.00 27.37 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 28.50 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 25.780 AAAA ATOM 2590 C RA AAA 326 33.780 57.590 57.231 1.00 25.780 AAAA ATOM 2500 C RA AAA 326 33.780 57.590 57.490 57.231 AAAA ATOM 2500 C RA AAA 326 33.780 57.590 57.231 AAAA ATOM 2500 C RA AAA 326 3							64.155			
ATOM 2580 ODD ASN 324 31.765 65.189 59.405 1.00 39.12 AAAA ATOM 2581 ND2 ASN 324 34.047 61.810 57.971 1.00 24.87 AAAA ATOM 2582 C ASN 324 34.047 61.810 57.971 1.00 24.87 AAAA ATOM 2583 O ASN 324 34.047 61.810 57.971 1.00 24.87 AAAA ATOM 2584 N LYS 325 35.276 61.405 58.250 1.00 27.73 AAAA ATOM 2586 CR LYS 325 35.276 61.405 58.250 1.00 27.73 AAAA ATOM 2586 CR LYS 325 37.351 60.182 57.929 1.00 37.43 AAAA ATOM 2586 CR LYS 325 38.250 59.366 57.041 1.00 44.84 AAAA ATOM 2588 C LYS 325 39.684 59.435 57.502 1.00 50.89 AAAA ATOM 2588 C LYS 325 39.684 59.435 57.502 1.00 50.89 AAAA ATOM 2589 CE LYS 325 39.684 59.435 57.502 1.00 50.89 AAAA ATOM 2595 C LYS 325 35.161 59.279 57.078 1.00 27.93 AAAA ATOM 2593 C LYS 325 35.161 59.279 57.078 1.00 27.93 AAAA ATOM 2593 C LYS 325 35.165 58.836 55.938 1.00 34.80 AAAA ATOM 2595 C B ALA 326 33.781 57.506 58.030 1.00 27.93 AAAA ATOM 2595 C B ALA 326 33.781 57.506 59.82 59.481 21.00 27.93 AAAA ATOM 2595 C B ALA 326 33.740 56.992 59.728 1.00 27.31 AAAA ATOM 2599 C ALA 326 32.418 50.899 57.498 1.00 27.31 AAAA ATOM 2599 C B LYS 327 31.749 58.790 57.231 1.00 27.31 AAAA ATOM 2599 C B LYS 327 30.502 59.00 57.88 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2599 C B LYS 327 30.502 59.00 57.88 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2599 C ALA 326 32.418 50.890 57.498 1.00 27.31 AAAA ATOM 2509 C ALYS 327 30.502 59.00 251 57.89 1.00 27.31 AAAA ATOM 2509 C ALYS 327 30.502 59.00 251 57.89 1.00 27.31 AAAA ATOM 2509 C ALYS 327 30.502 59.00 251 57.89 1.00 27.31 AAAA ATOM 2509 C ALYS 327 30.502 59.00 251 57.89 1.00 28.57 AAAA ATOM 2509 C ALYS 327 30.502 59.00 251 57.89 1.00 28.57 AAAA ATOM 2509 C ALYS 327 30.502 59.00 251 57.89 1.00 28.57 AAAA ATOM 2509 C ALYS 327 30.502 59.0										
APPEN						31.765				
ATOM 2582 C ASN 324 34.047 61.810 57.971 1.00 31.91 AAAA ATOM 2583 O ASN 324 33.451 61.483 58.941 1.00 37.73 AAAA ATOM 2584 N LYS 325 35.576 61.405 58.250 1.00 27.73 AAAA ATOM 2585 CA LYS 325 35.991 60.518 57.303 1.00 29.55 AAAA ATOM 2586 CE LYS 325 35.991 60.518 57.004 1.00 44.34 AAAA ATOM 2587 CG LYS 325 38.250 59.396 67.004 1.00 44.34 AAAA ATOM 2589 CE LYS 325 39.684 59.435 57.502 1.00 50.89 AAAA ATOM 2589 CE LYS 325 39.684 59.435 57.501 1.00 25.79 AAAA ATOM 2591 C LYS 325 35.016 58.836 55.918 1.00 27.79 AAAA ATOM 2591 C LYS 325 35.016 58.836 55.918 1.00 27.79 AAAA ATOM 2592 O LYS 325 35.016 58.836 55.918 1.00 27.79 AAAA ATOM 2593 N ALA 326 33.781 57.505 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 33.781 57.505 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 33.470 56.982 97.48 1.00 26.07 AAAA ATOM 2595 CB ALA 326 33.478 57.709 57.231 1.00 25.78 AAAA ATOM 2596 C ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2596 C ALA 326 32.478 57.709 57.231 1.00 27.37 AAAA ATOM 2599 N LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2599 N LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2596 C ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2599 C LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2599 C LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2590 C LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2600 CB LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2600 CB LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2600 CB LYS 327 30.502 59.020 56.798 1.00 27.34 AAAA ATOM 2600 CB LYS 327 30.502 59.020 56.798 1.00 29.15 AAAA ATOM 2600 CB LYS 327 30.502 59.020 56.798 1.00 27.31 AAAA ATOM 2600 CB LYS 327 30.502 59.020 56.798 1.00 29.15 AAAA ATOM 2601 CG LYS 327 30.502 59.020 56.798 1.00 29.15 AAAA ATOM 2602 CD LYS 327 30.502 59.020 56.798 1.00 29.15 AAAA ATOM 2606 C LYS 327 30.502 59.020 56.798 1.00 29.15 AAAA ATOM 2607 N GLU 328 33.167 60.299 65.59.50 1.00 40.24 AAAA ATOM 2608 CA GLU 328 33.167 60.299 65.59.50 1.00 40.24 AAAA ATOM 2610 CG GLU 328 33.167 60.299 65.50 1.00 30.00 4.00 4.00 4.00 4.00 4.00 4.00										
ADDITION 1988 C						34.047				
ATOM 2586 CR LYS 325 35.96 60.538 7.97 333 1.00 29.55 AAAA ATOM 2585 CR LYS 325 35.991 60.538 7.904 1.00 37.43 AAAA ATOM 2586 CR LYS 325 37.351 60.182 57.929 1.00 37.43 AAAA ATOM 2586 CR LYS 325 38.250 59.396 57.502 1.00 54.82 AAAA ATOM 2588 CD LYS 325 38.250 59.396 57.502 1.00 54.82 AAAA ATOM 2588 CD LYS 325 40.191 60.873 57.501 1.00 27.93 AAAA ATOM 2589 CR LYS 325 40.191 60.873 57.501 1.00 27.93 AAAA ATOM 2590 NZ LYS 325 51.61 59.279 57.078 1.00 27.93 AAAA ATOM 2591 CL LYS 325 35.161 59.279 57.078 1.00 27.93 AAAA ATOM 2591 CL LYS 325 35.161 59.279 57.078 1.00 27.93 AAAA ATOM 2592 CL LYS 325 35.161 58.836 55.938 1.00 27.34 AAAA ATOM 2592 CR LAS 326 31.781 57.506 58.030 1.00 24.38 AAAA ATOM 2593 CR ALA 326 31.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 CR ALA 326 31.470 56.982 59.428 1.00 27.34 AAAA ATOM 2595 CR ALA 326 31.479 56.982 59.428 1.00 27.34 AAAA ATOM 2595 CR ALA 326 31.479 58.790 57.231 1.00 27.31 AAAA ATOM 2595 CR ALA 326 31.479 58.790 57.231 1.00 27.31 AAAA ATOM 2599 CR LYS 327 30.502 59.027 56.558 1.00 27.37 AAAA ATOM 2599 CR LYS 327 30.502 59.027 56.558 1.00 27.37 AAAA ATOM 2599 CR LYS 327 29.919 60.251 57.313 1.00 28.56 AAAA ATOM 2509 CR LYS 327 29.919 60.251 57.313 1.00 28.56 AAAA ATOM 2600 CR LYS 327 29.919 60.251 57.313 1.00 28.57 AAAA ATOM 2600 CR LYS 327 28.645 61.594 60.769 1.00 36.72 AAAA ATOM 2600 CR LYS 327 28.645 61.594 60.769 1.00 36.71 AAAA ATOM 2600 CR LYS 327 28.645 61.594 60.769 1.00 36.71 AAAA ATOM 2600 CR LYS 327 28.645 61.594 60.769 1.00 36.71 AAAA ATOM 2600 CR LYS 327 28.645 61.594 60.769 1.00 36.71 AAAA ATOM 2600 CR LYS 327 30.502 59.247 55.6758 1.00 36.72 AAAA ATOM 2600 CR LYS 327 30.592 59.244 50.00 36.72 AAAA ATOM 2601 CR LYS 327 30.592 59.244 50.00 36.72 AAAA ATOM 2601 CR LYS 327 30.592 59.244 50.00 36.72 AAAA ATOM 2601 CR LYS 327 30.592 59.244 50.00 36.72 AAAA ATOM 2601 CR LYS 327 30.592 59.244 50.00 36.72 AAAA ATOM 2601 CR LYS 327 30.592 59.245 50.675 1.00 36.72 AAAA ATOM 2601 CR LYS 327 30.592 59.245 50.675 1.00 36.72 AAAA ATOM 2601 CR LYS 327 30.592 59.245 50.675 1.00						33.451				
ATOM 2585 CA LYS 325 35.991 60.182 7.929 1.00 37.43 AAAA ATOM 2586 CB LYS 325 37.351 60.182 7.929 1.00 37.43 AAAA ATOM 2588 CD LYS 325 38.250 59.396 57.004 1.00 44.84 AAAA ATOM 2588 CD LYS 325 39.684 59.435 7.502 1.00 50.89 AAAA ATOM 2589 CE LYS 325 40.191 60.873 57.502 1.00 65.70 65.70 AAAA ATOM 2590 CE LYS 325 41.621 60.980 57.505 1.00 65.70 65.70 AAAA ATOM 2591 C LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2591 C LYS 325 35.161 59.279 57.078 1.00 31.80 AAAA ATOM 2592 O LYS 325 35.016 58.836 55.938 1.00 24.38 AAAA ATOM 2593 N AAA 326 33.781 57.506 58.836 55.938 1.00 24.38 AAAA ATOM 2595 CB ALA 326 33.470 56.982 59.428 1.00 27.34 AAAAA ATOM 2595 CB ALA 326 33.470 56.982 59.428 1.00 27.34 AAAAA ATOM 2595 CB ALA 326 33.470 56.982 59.428 1.00 27.34 AAAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2599 C ALA 326 32.478 57.709 57.496 1.00 27.31 AAAA ATOM 2599 CB LYS 327 30.502 59.027 56.758 1.00 27.37 AAAA ATOM 2599 CB LYS 327 30.502 59.027 56.758 1.00 27.31 AAAA ATOM 2599 CB LYS 327 30.502 59.027 56.758 1.00 27.31 AAAA ATOM 2600 CB LYS 327 28.645 61.407 59.255 1.00 40.34 AAAA ATOM 2600 CB LYS 327 28.645 61.407 59.255 1.00 40.34 AAAA ATOM 2600 CB LYS 327 28.645 61.407 59.255 1.00 40.34 AAAA ATOM 2601 CG LYS 327 28.645 61.407 59.255 1.00 40.34 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 38.91 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 30.702 29.91 60.209 58.812 1.00 36.72						35.276			1.00 27.73	
ATOM 2586 CB LYS 325 37.351 60.182 57.004 1.00 44.84 AAAA ATOM 2588 CD LYS 325 38.250 59.396 57.004 1.00 44.84 AAAA ATOM 2588 CD LYS 325 38.250 69.396 57.004 1.00 44.84 AAAA ATOM 2588 CD LYS 325 40.191 60.873 57.561 1.00 54.82 AAAA ATOM 2580 NZ LYS 325 40.191 60.873 57.561 1.00 65.70 AAAAA ATOM 2591 CLYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2592 CD LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2592 CD LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2591 CLYS 325 35.161 59.279 57.078 1.00 27.94 AAAA ATOM 2594 CA ALA 326 31.81 57.506 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 31.81 57.506 58.030 1.00 27.34 AAAA ATOM 2595 CB ALA 326 31.470 56.982 59.428 1.00 27.34 AAAA ATOM 2595 CB ALA 326 31.479 56.982 59.428 1.00 27.34 AAAA ATOM 2595 CB ALA 326 31.479 58.790 57.231 1.00 25.78 AAAA ATOM 2595 CB ALA 326 31.479 58.790 57.231 1.00 27.34 AAAA ATOM 2595 C ALA 326 32.131 56.890 56.369 1.00 27.37 AAAA ATOM 2596 C ALA 326 32.131 56.890 56.369 1.00 27.37 AAAA ATOM 2596 C ALYS 327 30.502 59.027 56.558 1.00 27.31 AAAA ATOM 2596 C ALYS 327 29.991 60.251 57.313 1.00 28.56 AAAA ATOM 2590 C LYS 327 29.991 60.291 57.313 1.00 28.56 AAAA ATOM 2600 CB LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2602 CD LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2605 C LYS 327 30.592 59.244 55.269 1.00 36.75 AAAAA ATOM 2606 CB LYS 327 30.975 59.244 55.269 1.00 36.75 AAAAA ATOM 2606 CB LYS 327 30.992 59.245 55.269 1.00 36.75 AAAAA ATOM 2607 N GLU 328 32.157 60.255 53.581 1.00 38.91 AAAAA ATOM 2606 CB CJU 328 32.157 60.255 53.581 1.00 29.15 AAAAA ATOM 2607 N GLU 328 32.167 60.265 53.581 1.00 29.15 AAAAA ATOM 2607 CB GLU 328 32.167 60.265 53.581 1.00 29.15 AAAAA ATOM 2607 CB GLU 328 32.267 58.650 53.581 1.00 29.15 AAAAA ATOM 2607 CB GLU 328 32.267 58.650 53.581 1.00 29.15 AAAAA ATOM 2607 CB GLU 328 32.267 58.650 53.581 1.00 29.15 AAAAA ATOM 2610 CG GLU 328 32.267 58.650 53.581 1.00 29.15 AAAAA ATOM 2610 CG GLU 328 32.267 58.595 58.595 53.581 1.00 31.59 AAAAA ATOM 261						35.991				
ATOM 2588 CG LYS 325 38.250 59.396 57.502 1.00 50.89 AAAA ATOM 2589 CE LYS 325 41.621 60.980 57.959 1.00 57.00 AAAA ATOM 2590 NZ LYS 325 41.621 60.980 57.959 1.00 57.00 AAAA ATOM 2591 C LYS 325 35.161 58.836 55.938 1.00 51.80 AAAA ATOM 2591 C LYS 325 35.161 58.836 55.938 1.00 51.80 AAAA ATOM 2593 N ALA 326 34.602 58.721 58.142 1.00 26.07 AAAA ATOM 2593 N ALA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 33.781 57.506 58.030 1.00 27.34 AAAA ATOM 2595 CB ALA 326 33.470 56.982 59.428 1.00 27.34 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2597 C ALA 326 32.131 56.890 57.396 1.00 27.37 AAAA ATOM 2599 CA ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2599 C ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2599 CA ALA 326 32.478 57.709 57.496 1.00 27.31 AAAA ATOM 2599 CA ALA 326 32.478 57.709 57.496 1.00 27.31 AAAA ATOM 2599 CA ALA 326 32.478 57.709 57.496 1.00 27.31 AAAA ATOM 2599 CA ALA 326 32.478 57.709 57.496 1.00 27.31 AAAA ATOM 2599 CA ALA 326 32.478 57.709 50.251 57.313 1.00 28.67 AAAA ATOM 2599 CA LYS 327 29.491 60.209 58.812 1.00 36.72 AAAAA ATOM 2600 CB LYS 327 29.491 60.209 58.812 1.00 36.72 AAAAA ATOM 2600 CB LYS 327 28.643 61.594 60.769 1.00 29.15 AAAAA ATOM 2606 CD LYS 327 28.643 61.594 60.769 1.00 29.15 AAAAA ATOM 2606 CD LYS 327 30.997 58.819 61.552 69 1.00 29.15 AAAAA ATOM 2606 CD LYS 327 30.997 58.819 61.552 69 1.00 29.15 AAAAA ATOM 2606 CD LYS 327 30.997 58.819 61.552 69 1.00 29.15 AAAAA ATOM 2606 CD LYS 327 30.997 58.819 61.552 69 1.00 29.15 AAAAA ATOM 2606 CD LYS 327 30.997 58.819 61.552 69 1.00 29.15 AAAAA ATOM 2606 CD LYS 327 30.997 58.519 61.552 69 1.00 29.15 AAAAA ATOM 2601 CG GLU 328 31.829 60.015 54.997 1.00 31.59 AAAA ATOM 2601 CG GLU 328 32.832 57 56.855 55.955 1.00 40.29.15 AAAAA ATOM 2608 CC GLU 328 32.832 59 59.55 52.991 1.00 29.15 AAAAA ATOM 2610 CG GLU 328 32.375 60.255 56.955 51.00 40.29.15 AAAAA ATOM 2610 CG GLU 328 32.375 60.255 56.955 51.00 40.29.15 AAAAA ATOM 2610 CG GLU 328 32.745 60.255 56.955 51.00 20.29.15 AAAAA ATOM 2610 CG GLU 328						37.351			1.00 37.43	
ATOM 2588 CD LYS 325 39.684 9.435 57.561 1.00 54.82 AAAA ATOM 2599 NZ LYS 325 40.191 60.873 57.561 1.00 54.82 AAAA ATOM 2591 CL LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2592 C LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2592 C LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2592 C LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2593 C AAAA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 C AAAA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 C AAAA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2595 C AAAA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2595 C AAAA 326 32.478 57.09 57.09 57.231 1.00 25.78 AAAA ATOM 2595 C AAAA 326 32.478 57.09 57.231 1.00 25.78 AAAA ATOM 2595 C ALYS 327 30.502 59.027 56.758 1.00 27.31 AAAA ATOM 2590 CA LYS 327 30.502 59.027 56.758 1.00 27.31 AAAA ATOM 2590 CA LYS 327 29.759 60.251 57.333 1.00 28.67 AAAA ATOM 2500 CE LYS 327 29.759 60.251 57.333 1.00 28.67 AAAA ATOM 2600 CE LYS 327 29.991 60.209 58.812 1.00 36.72 AAAA ATOM 2600 CE LYS 327 28.643 61.807 59.255 1.00 40.34 AAAA ATOM 2600 CE LYS 327 30.092 59.244 55.269 1.00 27.76 AAAA ATOM 2600 CE LYS 327 30.092 59.244 55.269 1.00 27.76 AAAA ATOM 2600 CE LYS 327 30.092 59.244 55.269 1.00 27.76 AAAA ATOM 2600 CE LYS 327 30.092 59.244 55.269 1.00 27.76 AAAA ATOM 2600 CE LYS 327 30.092 59.244 55.269 1.00 27.76 AAAA ATOM 2600 CE LYS 327 30.992 59.244 55.269 1.00 27.76 AAAA ATOM 2601 CC GLU 328 33.294 64.00 25.555 51.561 1.00 47.67 AAAA ATOM 2601 CC GLU 328 33.294 64.00 25.555 51.561 1.00 27.76 AAAA ATOM 2601 CC GLU 328 33.295 64.007 55.550 71.00 47.50 AAAA ATOM 2601 CC GLU 328 33.295 64.007 52.951 1.00 30.23 30 AAAA ATOM 2601 CC GLU 328 33.295 64.007 52.951 1.00 32.30 AAAA ATOM 2601 CC GLU 328 33.295 64.007 52.951 1.00 32.30 AAAA ATOM 2601 CC GLU 328 33.295 64.007 52.951 1.00 32.30 AAAA ATOM 2602 CD LEU 328 33.796 60.055 51.561 1.00 27.76 AAAA ATOM 2602 CD LEU 328 33.796 60.055 51.561 1.00 22.570 AAAA ATOM 2602 CD LEU 328 33.796 50.055 51.651 1.00 32.30 AAAA										
ATOM 2599 NZ LYS 325 40.91 60.980 57.969 1.00 65.70 AAAA ATOM 2591 C LYS 325 35.161 98.7936 57.969 1.00 65.70 AAAA ATOM 2592 NA LA 326 34.602 88.721 58.142 1.00 26.07 AAAA ATOM 2593 N ALA 326 34.602 88.721 58.142 1.00 26.07 AAAA ATOM 2595 CB ALA 326 33.470 56.982 59.428 1.00 27.34 AAAA ATOM 2595 CB ALA 326 33.470 56.982 59.428 1.00 27.34 AAAA ATOM 2596 C ALA 326 32.478 75.700 57.231 1.00 25.78 AAAA ATOM 2597 C ALA 326 32.478 75.700 57.231 1.00 25.78 AAAA ATOM 2598 N LYS 327 31.749 38.790 57.496 1.00 27.37 AAAAA ATOM 2599 CA LA 326 32.131 56.890 57.496 1.00 27.31 AAAA ATOM 2599 CA 25.70 AAAA ATOM 2598 N LYS 327 30.502 99.027 56.758 1.00 28.56 AAAA ATOM 2599 CA LYS 327 30.502 99.027 56.758 1.00 28.56 AAAA ATOM 2590 CB LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2500 CB LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CG LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2601 CC LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2601 CC LYS 327 28.645 61.594 60.769 1.00 37.91 AAAA ATOM 2606 C LYS 327 30.997 89.794 65.269 1.00 27.75 AAAA ATOM 2606 C LYS 327 30.997 89.794 65.269 1.00 27.75 AAAA ATOM 2606 C LYS 327 30.997 89.794 65.269 1.00 27.75 AAAA ATOM 2606 C LYS 327 30.997 89.794 65.269 1.00 27.75 AAAA ATOM 2606 C LYS 327 30.997 89.794 65.269 1.00 27.75 AAAA ATOM 2606 C LYS 327 30.997 89.794 65.269 1.00 29.15 AAAA ATOM 2607 N GLU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2607 N GLU 328 33.257 61.332 53.515 1.00 40.27.76 AAAA ATOM 2607 N GLU 328 33.257 61.332 53.515 1.00 32.776 AAAA ATOM 2607 N GLU 328 33.257 61.332 53.515 1.00 32.776 AAAA ATOM 2607 N GLU 328 33.257 61.332 53.515 1.00 32.776 AAAA ATOM 2607 N GLU 328 33.257 61.332 53.515 1.00 32.776 AAAA ATOM 2607 N GLU 328 33.257 61.332 53.515 1.00 32.776 AAAA ATOM 2607 N GLU 328 33.764 60.775 54.032 1.00 27.75 AAAA ATOM 2607 N GLU 328 33.798 60.015 54.972 1.00 31.59 AAAA ATOM 2607 N GLU 328 33.798 60.015 54.972 1.00 31.59 AAAA ATOM 2607 N GLU 328 33.798 60.005 55.4972 1.00 31.59 AAAA ATOM 2618 O GLU 328 33.798 60.005 55.991 1.00 27.75 AAAA ATOM 261					325				1.00 50.09	
ATOM 2590 NZ LYS 325 41.621 59.279 57.078 1.00 27.99 AAAA ATOM 2591 C LYS 325 35.161 59.279 57.078 1.00 27.99 AAAA ATOM 2593 N ALA 326 34.602 58.721 58.142 1.00 28.07 AAAA ATOM 2594 CA ALA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 C B ALA 326 32.478 67.709 57.231 1.00 25.78 AAAA ATOM 2596 C ALA 326 32.478 67.709 57.231 1.00 25.78 AAAA ATOM 2596 C ALA 326 32.478 67.709 57.231 1.00 25.78 AAAA ATOM 2599 N LYS 327 31.749 58.790 57.496 1.00 27.37 AAAA ATOM 2599 CA LYS 327 30.502 59.027 56.758 1.00 27.37 AAAA ATOM 2590 CA LYS 327 29.759 60.251 57.313 1.00 28.67 AAAA ATOM 2590 CA LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2590 CE LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2503 CE LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2503 CE LYS 327 28.645 60.299 61.556 1.00 27.76 AAAA ATOM 2506 N LYS 327 30.502 59.027 56.758 1.00 20.77.6 AAAA ATOM 2506 C LYS 327 28.645 60.299 61.556 1.00 47.67 AAAA ATOM 2506 N LYS 327 30.097 58.919 54.999 1.00 38.91 AAAAA ATOM 2506 N LYS 327 30.097 58.919 54.999 1.00 38.91 AAAAA ATOM 2506 C LYS 327 30.097 58.719 54.399 1.00 27.76 AAAA ATOM 2606 N LYS 327 30.097 58.719 54.399 1.00 27.76 AAAA ATOM 2607 N GLU 328 31.829 60.015 53.581 1.00 247.67 AAAA ATOM 2607 N GLU 328 31.829 60.015 53.581 1.00 247.67 AAAA ATOM 2607 N GLU 328 31.829 60.015 53.581 1.00 28.91 AAAAA ATOM 2607 C G GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2607 C G GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2607 C G GLU 328 33.257 55.5087 1.00 27.76 AAAAA ATOM 2608 C G GLU 328 33.257 55.5087 1.00 27.76 AAAAA ATOM 2608 C G GLU 328 33.257 55.5087 1.00 27.75 AAAAA ATOM 2608 C G GLU 328 33.257 61.332 53.515 1.00 32.30 AAAAA ATOM 2610 C G GLU 328 33.257 55.5087 1.00 27.75 AAAAA ATOM 2610 C G GLU 328 33.257 55.5087 1.00 27.75 AAAAA ATOM 2610 C G GLU 328 33.258 64.037 55.255 1.00 40.00 42.24 AAAA ATOM 2610 C G GLU 328 33.259 64.037 55.255 1.00 40.00 42.24 AAAA ATOM 2610 C G GLU 328 33.259 64.037 55.5087 1.00 32.30 AAAAA ATOM 2620 C D LEU 329 30.30 30.30 55.5087 50.00 54.050 1.00 25.70 AAAAA ATOM 26					325					
ATOM 2591 C LYS 325 35.161 58.836 55.938 1.00 31.80 AAAA ATOM 2592 O LYS 325 35.016 58.836 55.938 1.00 31.80 AAAA ATOM 2593 N ALA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2596 C ALA 326 32.478 57.709 57.231 1.00 27.37 AAAA ATOM 2598 N LYS 327 30.502 59.027 56.758 1.00 27.37 AAAA ATOM 2599 CA LYS 327 29.759 60.251 57.313 1.00 28.56 AAAA ATOM 2590 CB LYS 327 29.759 60.251 57.313 1.00 28.67 AAAA ATOM 2500 CB LYS 327 29.491 60.209 58.812 1.00 36.72 AAAAA ATOM 2600 CB LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2600 CB LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2600 C LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2600 C LYS 327 30.992 59.244 55.269 1.00 29.15 AAAA ATOM 2600 C LYS 327 30.992 59.244 55.269 1.00 29.15 AAAA ATOM 2606 C LYS 327 30.992 58.719 54.393 1.00 27.75 AAAA ATOM 2606 C LYS 327 30.992 59.244 55.269 1.00 29.15 AAAA ATOM 2606 C LYS 327 30.992 59.244 55.269 1.00 29.15 AAAA ATOM 2606 C LYS 327 30.992 59.244 55.269 1.00 29.15 AAAA ATOM 2607 N GLIU 328 31.829 60.015 54.972 1.00 31.99 AAAA ATOM 2607 C GLU 328 33.576 61.332 53.581 1.00 28.93 AAAA ATOM 2607 C GLU 328 33.745 62.652 54.067 1.00 47.50 AAAA ATOM 2607 C GLU 328 33.745 62.652 54.067 1.00 47.50 AAAA ATOM 2610 C G GLU 328 33.745 62.652 58.753 51.704 1.00 28.93 AAAA ATOM 2611 CD GLU 328 33.257 61.332 53.581 1.00 28.93 AAAA ATOM 2616 C GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2616 C GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2616 C GLU 328 32.935 55.659 54.185 31.00 23.00 AAAA ATOM 2616 C GLU 329 33.791 56.828 59.75 51.00 40.00 25.26 AAAA ATOM 2618 C GLU 329 32.310 55.669 52.811 1.00 25.60 AAAA ATOM 2620 C DL LEU 330 30.936 44.804 1.00 25.26 AAAA ATOM 2621 CD2 LEU 330 30.936 54.922 55.145 53.242 1.00 23.05 AAAA ATOM 2621 CD2 LEU					325					
ATOM 2591 O LYS 325 35.016 38.836 35.938 1.00 26.07 AAAA ATOM 2593 N ALA 126 34.602 58.721 58.142 1.00 26.07 AAAA ATOM 2594 CA ALA 326 33.781 57.506 58.030 1.00 24.38 AAAA ATOM 2595 CB ALA 326 33.781 57.506 58.030 1.00 27.34 AAAA ATOM 2595 C ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2597 O ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2598 N LYS 327 31.749 58.790 57.496 1.00 27.37 AAAA ATOM 2599 CA LYS 327 30.502 59.027 56.758 1.00 28.56 AAAA ATOM 2599 CA LYS 327 30.502 59.027 56.758 1.00 28.56 AAAA ATOM 2590 CB LYS 327 29.491 60.293 58.812 1.00 36.72 AAAA ATOM 2600 CB LYS 327 28.643 61.594 60.769 1.00 38.91 AAAA ATOM 2601 CC LYS 327 28.643 61.594 60.769 1.00 38.91 AAAA ATOM 2602 CD LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2605 C LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2606 CD LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2606 CD LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2607 N GUU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2608 CB GUU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2610 CB GUU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2610 CB GUU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2610 CB GUU 328 33.764 63.772 54.032 1.00 44.667 AAAA ATOM 2611 CD GUU 328 33.764 63.772 54.032 1.00 44.667 AAAA ATOM 2610 CB GUU 328 33.764 63.772 54.032 1.00 44.667 AAAA ATOM 2611 CD GUU 328 33.764 63.772 54.032 1.00 44.67.50 AAAA ATOM 2612 CD LEU 329 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2613 CD LEU 329 33.765 66.035 55.875 1.00 30.46 AAAA ATOM 2614 C GUU 328 33.765 66.035 55.868 1.00 27.76 AAAA ATOM 2615 C G LEU 329 33.765 66.035 55.868 1.00 27.76 AAAA ATOM 2610 C G GUU 328 33.765 66.035 57.91 1.00 30.46 AAAA ATOM 2610 C G GUU 328 33.765 66.505 53.588 1.00 22.30 AAAA ATOM 2610 C G GUU 328 33.765 66.505 53.588 1.00 22.30 AAAA ATOM 2610 C G GUU 328 33.765 66.035 57.91 1.00 30.46 AAAA ATOM 2610 C G GUU 328 33.765 66.035 57.91 1.00 30.46 AAAA ATOM 2610 C G LEU 329 33.765 66.000 57.91 1.00 30.46 AAAA ATOM 2620 C D LEU 329 32.74 55.86 55.86 55.86 50.87 1.00 27.76 AAAA ATOM					325		59.279		1.00 27.95	
ATOM 2594 CA ALA 326 ATOM 2594 CA ALA 326 ATOM 2595 CB ALA 326 ATOM 2595 CB ALA 326 ATOM 2595 CB ALA 326 ATOM 2597 O ALA 326 ATOM 2597 O ALA 326 ATOM 2598 N LYS 327 ATOM 2599 CA LYS 327 ATOM 2590 CB LYS 327 ATOM 2601 CG LYS 327 ATOM 2602 CD LYS 327 ATOM 2602 CD LYS 327 ATOM 2603 CE LYS 327 ATOM 2604 NZ LYS 327 ATOM 2605 C LYS 327 ATOM 2605 C LYS 327 ATOM 2606 C LYS 327 ATOM 2606 C LYS 327 ATOM 2607 N GLU 328 ATOM 2607 N GLU 328 ATOM 2608 CA GLU 328 ATOM 2608 CA GLU 328 ATOM 2609 CB GLU 328 ATOM 2610 CG GLU 328 ATOM 2611 CD GLU 328 ATOM 2612 CDI GLU 328 ATOM 2612 CDI GLU 328 ATOM 2613 CDZ GLU 328 ATOM 2614 C GLU 328 ATOM 2615 CDI GLU 328 ATOM 2616 CDI GLU 328 ATOM 2617 CA LEU 329 ATOM 2618 CB LEU 329 ATOM 2619 CG LEU 329 ATOM 2620 CDI LEU 330 ATOM 2621 CDI LEU 330 ATOM 2621 CDI LEU 330 ATOM 2621 CDI LEU 330 ATOM 2622 CL EU 330 ATOM 2623 C LEU 330 ATOM 2623 C LEU 330 ATOM 2624 N LEU 330 ATOM 2635 CG LEU 330 ATOM 2636 C RE SEL 330 ATOM 2637 CE LEU 330 ATOM 2638 C RE SEL 330 ATOM				LYS ·	325				1 00 26 07	
ATOM 2595 CB ALA 326 33.481 57.306 59.428 1.00 27.34 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2595 CB ALA 326 32.478 57.709 57.231 1.00 25.78 AAAA ATOM 2597 O ALA 326 32.478 57.709 57.231 1.00 27.37 AAAA ATOM 2598 N LYS 327 30.502 59.027 56.758 1.00 27.37 AAAA ATOM 2598 CA LYS 327 30.502 59.027 56.758 1.00 28.56 AAAA ATOM 2590 CA LYS 327 29.759 60.251 57.333 1.00 28.67 AAAA ATOM 2500 CB LYS 327 29.759 60.251 57.333 1.00 28.67 AAAA ATOM 2601 CG LYS 327 28.643 61.594 60.769 1.00 38.91 AAAA ATOM 2602 CD LYS 327 28.643 61.594 60.769 1.00 38.91 AAAA ATOM 2603 CE LYS 327 28.643 61.594 60.769 1.00 38.91 AAAA ATOM 2605 C LYS 327 30.992 59.244 55.269 1.00 27.75 AAAA ATOM 2606 CB LYS 327 30.992 59.244 55.269 1.00 27.75 AAAA ATOM 2606 CD LYS 327 30.992 59.244 55.269 1.00 27.75 AAAA ATOM 2606 CD LYS 327 30.992 59.244 55.269 1.00 27.75 AAAA ATOM 2606 CD LYS 327 30.997 58.719 54.393 1.00 27.75 AAAA ATOM 2606 CD LYS 327 30.997 58.719 54.393 1.00 27.75 AAAA ATOM 2606 CD LYS 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2607 N GLU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2608 CB GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2609 CB GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 44.667 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 44.667 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 44.667 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 44.67 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 29.480 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 29.23 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 29.23 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 24.66 AAAA ATOM 2621 CD LEU 329 33.765 65.758.975 52.871 1.00 34.66 AAAA ATOM 2621 CD LEU 329 33.765 65.758.975 52.871 1.00 34.66 AAAA ATOM 2621 CD LEU 329 33.765 65.058 55.868 1.00 22.576 AAAA ATOM 2621 CD LEU 329 35.569 54.413 52.430 1.00 25.76 AAAA ATOM 2622 CD LEU 330 30.589 55.569 54.433 54.000 23.02 AAAA ATOM 2622 CD LEU 330 30.589 55.560 51.453 1.00 25.60 AAAA ATOM			N	ALA	326				1 00 24 38	
ATOM 2595 CB ALA 326 33.478 57.709 57.231 1.00 25.78 AAAA ATOM 2596 C ALA 326 32.131 56.890 56.369 1.00 27.37 AAAA ATOM 2597 O ALA 326 32.131 56.890 56.369 1.00 27.37 AAAA ATOM 2599 CA LYS 327 30.502 59.027 56.758 1.00 28.56 AAAA ATOM 2599 CA LYS 327 29.759 60.251 57.313 1.00 28.87 AAAA ATOM 2590 CE LYS 327 29.759 60.251 57.313 1.00 28.87 AAAA ATOM 2601 CE LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2602 CD LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2603 CE LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2603 CE LYS 327 28.643 61.407 59.255 1.00 47.67 AAAA ATOM 2603 CE LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2605 C LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 O LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 O LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2609 CB GLU 328 33.276 61.332 53.515 1.00 47.50 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2610 CG GLU 328 32.256 58.753 51.704 1.00 47.50 AAAA ATOM 2613 022 GLU 328 32.256 58.753 51.704 1.00 42.24 AAAA ATOM 2613 022 GLU 328 32.256 58.753 51.704 1.00 24.99 AAAA ATOM 2613 022 GLU 328 32.256 58.753 51.704 1.00 24.99 AAAA ATOM 2616 C LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2619 CG LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 32.256 58.753 51.704 1.00 24.99 AAAA ATOM 2619 CG LEU 329 32.300 30.939 55.569 52.603 1.00 23.50 AAAA ATOM 2619 CG LEU 330 30.939 55.569 52.603 1.00 23.50 AAAA ATOM 2620 CD1 LEU 329 34.478 56.005 55.168 1.00 24.73 AAAA ATOM 2621 CD2 LEU 330 30.039 54.252 55.168 1.00 22.71 AAAA ATOM 2621 CD2 LEU 330 30.039 54.252 55.168 1.00 22.71 AAAA ATOM 2622 C LEU 330 30.939 55.569 52.600 1.00 23.55 AAAA ATOM 2623			CA	ALA	326				1 00 27 34	
ATOM 2596 C ALA 326 32.478 37.709 26.3636 1.00 27.37 AAAA ATOM 2598 N LYS 327 31.749 58.790 57.496 1.00 27.31 AAAA ATOM 2598 N LYS 327 30.502 59.027 56.758 1.00 28.56 AAAA ATOM 2590 CA LYS 327 29.491 60.251 57.313 1.00 28.67 AAAA ATOM 2602 CD LYS 327 29.491 60.29 58.812 1.00 36.72 AAAA ATOM 2603 CE LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2603 CE LYS 327 28.643 61.407 59.255 1.00 47.67 AAAA ATOM 2603 CE LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 CA LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 CA LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 CA LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 CA LYS 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2606 CA GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2608 CA GLU 328 32.745 62.655 53.581 1.00 47.67 AAAA ATOM 2609 CB GLU 328 32.745 62.655 53.581 1.00 47.50 AAAA ATOM 2609 CB GLU 328 33.576 61.332 53.515 1.00 32.30 AAAA ATOM 2610 CG GLU 328 33.576 61.302 53.515 1.00 32.30 AAAA ATOM 2610 CG GLU 328 33.576 62.652 54.067 1.00 47.50 AAAA ATOM 2612 OEI GLU 328 33.576 62.652 54.067 1.00 47.50 AAAA ATOM 2612 OEI GLU 328 33.576 62.652 54.067 1.00 47.50 AAAA ATOM 2612 OEI GLU 328 33.576 62.652 54.067 1.00 47.50 AAAA ATOM 2612 OEI GLU 328 33.576 62.652 54.067 1.00 47.50 AAAA ATOM 2612 OEI GLU 328 33.576 62.652 54.067 1.00 47.50 AAAA ATOM 2612 OEI GLU 328 33.576 62.652 54.067 1.00 47.50 AAAA ATOM 2612 OEI GLU 328 33.576 63.572 54.067 1.00 24.89 AAAA ATOM 2612 OEI GLU 328 33.576 63.572 54.067 1.00 24.89 AAAA ATOM 2612 OEI GLU 328 33.576 63.572 54.067 1.00 24.89 AAAA ATOM 2612 OEI GLU 328 33.701 56.828 53.017 1.00 24.89 AAAA ATOM 2616 N LEU 329 34.478 56.005 59.507 1.00 24.93 AAAA ATOM 2617 CA LEU 329 34.478 56.005 59.507 1.00 24.93 AAAA ATOM 2620 CD LEU 329 34.478 56.005 59.507 1.00 24.93 AAAA ATOM 2621 CD LEU 329 52.507 55.660 51.00 25.70 AAAA ATOM 2621 CD LEU 329 52.507 55.660 51.00 25.70 AAAA ATOM 2621 CD LEU 330 30.538 55.700 54.484 1.00 25.50 AAAA ATOM 2622 CD LEU 330 30.538 55.700 55.168 1.00 22.74 AAAA ATOM 2622 CD LEU 330 3			CB		326				1 00 25 78	
ATOM 2598 N LYS 327 30.502 59.027 56.758 1.00 27.31 AAAA ATOM 2599 CA LYS 327 30.502 59.027 56.758 1.00 28.56 AAAA ATOM 2599 CA LYS 327 29.491 60.209 58.812 1.00 36.72 AAAA ATOM 2600 CB LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2602 CD LYS 327 28.645 61.594 60.769 1.00 38.91 AAAA ATOM 2603 CE LYS 327 28.645 61.594 60.769 1.00 38.91 AAAA ATOM 2604 NZ LYS 327 28.645 61.594 60.769 1.00 38.91 AAAA ATOM 2605 C LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 C LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 C LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 C LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 C LYS 328 31.29 60.015 54.972 1.00 31.59 AAAA ATOM 2608 CA GLU 328 31.29 60.015 54.972 1.00 31.59 AAAA ATOM 2608 CA GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 47.50 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 47.50 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 47.50 AAAA ATOM 2610 CG GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2613 OE2 GLU 328 33.257 64.037 52.951 1.00 56.88 AAAA ATOM 2613 OE2 GLU 328 33.264 64.402 55.087 1.00 42.24 AAAA ATOM 2613 OE2 GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2613 OE2 GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2615 O GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2616 CG GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2619 CG LEU 329 34.478 56.059 52.603 1.00 22.57 AAAA ATOM 2619 CG LEU 329 34.478 56.059 52.603 1.00 22.57 AAAA ATOM 2620 CDI LEU 329 34.478 56.059 52.603 1.00 23.50 AAAA ATOM 2621 CD LEU 330 30.289 55.168 1.00 24.73 AAAA ATOM 2620 CDI LEU 330 30.289 55.145 53.240 1.00 25.66 AAAA ATOM 2620 CDI LEU 330 30.39 54.252 51.10 0.0 26.65 AAAA ATOM 2621 CD LEU 330 30.39 54.252 51.600 1.00 23.50 AAAA ATOM 2622 CD LEU 330 30.93 54.252 55.660 51.252 1.00 26.65 AAAA ATOM 2623 CD LEU 330 30.93 59.556 55.168 1.00 22.77 AAAA ATOM 2623 CD LEU 330 30.			С	ALA	326				1.00 23.70	
ATOM 2598 N LYS 327 31.749 58.795 56.758 1.00 28.56 AAAA AAAA ATOM 2599 CA LYS 327 29.759 60.251 57.313 1.00 28.67 AAAAA ATOM 2600 CB LYS 327 29.491 60.209 58.812 1.00 36.72 AAAAA ATOM 2601 CG LYS 327 28.643 61.407 59.255 1.00 40.34 AAAAA ATOM 2604 NZ LYS 327 28.645 61.594 60.769 1.00 38.91 AAAAA ATOM 2604 NZ LYS 327 28.645 61.594 60.769 1.00 38.91 AAAAA ATOM 2605 C LYS 327 30.792 59.244 55.269 1.00 27.76 AAAAA ATOM 2605 C LYS 327 30.992 59.244 55.269 1.00 27.76 AAAAA ATOM 2606 O LYS 327 30.992 59.244 55.269 1.00 27.76 AAAAA ATOM 2607 N GLU 328 31.829 60.015 54.972 1.00 31.59 AAAAA ATOM 2608 CB GLU 328 33.257 61.332 53.515 1.00 28.93 AAAA ATOM 2609 CB GLU 328 33.257 61.332 53.515 1.00 28.93 AAAA ATOM 2610 CG GLU 328 33.267 61.332 53.515 1.00 32.30 AAAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 42.24 AAAAA ATOM 2613 OE2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAAA ATOM 2613 OE2 GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2614 C GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2615 O GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2616 N LEU 329 33.792 58.112 53.584 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.791 56.828 53.017 1.00 24.93 AAAA ATOM 2618 CB LEU 329 33.791 56.828 53.017 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.792 58.112 53.584 1.00 24.93 AAAA ATOM 2618 CB LEU 329 34.730 54.522 53.703 1.00 19.71 AAAAA ATOM 2620 CDL LEU 329 35.569 54.413 52.430 1.00 25.70 AAAAA ATOM 2621 CD LEU 329 32.715 56.095 51.453 1.00 25.70 AAAAA ATOM 2622 C LEU 329 34.730 56.095 51.452 1.00 25.26 AAAAA ATOM 2622 C LEU 329 34.730 56.095 51.452 1.00 25.26 AAAAA ATOM 2622 C LEU 330 30.289 55.145 53.249 1.00 23.95 AAAAA ATOM 2623 C LEU 330 30.399 54.252 55.145 50.00 25.25 AAAAA ATOM 2628 CDL LEU 330 30.399 54.252 55.145 50.00 25.25 AAAAA ATOM 2629 CD2 LEU 330 30.399 54.252 55.145 50.00 25.25 AAAAA ATOM 2629 CD2 LEU 330 30.399 54.252 55.145 50.00 25.25 AAAAA ATOM 2629 CD2 LEU 330 30.599 55.145 50.00 51.252 1.00 26.65 AAAAA ATOM 2636 C LYS 331 29.404 57.7097 52.11			0	ALA	326				1 00 27 31	
ATOM 2599 CA LYS 327 30.502 59.21 50.31 1.00 28.87 AAAA ATOM 2601 CG LYS 327 29.491 60.209 58.812 1.00 36.72 AAAAA ATOM 2602 CD LYS 327 28.645 61.594 60.769 1.00 38.91 AAAAA ATOM 2603 CE LYS 327 28.645 61.594 60.769 1.00 38.91 AAAAA ATOM 2604 NZ LYS 327 28.163 60.429 61.556 1.00 47.67 AAAAA ATOM 2605 C LYS 327 30.997 59.244 55.269 1.00 29.15 AAAAA ATOM 2606 O LYS 327 30.997 58.719 54.393 1.00 27.76 AAAAA ATOM 2606 O LYS 327 30.997 58.719 54.393 1.00 27.76 AAAAA ATOM 2607 N GLU 328 32.167 60.265 53.581 1.00 31.59 AAAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 32.30 AAAAA ATOM 2609 CB GLU 328 32.745 62.655 54.067 1.00 47.50 AAAAA ATOM 2601 CG GLU 328 32.745 64.037 52.951 1.00 32.30 AAAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAAA ATOM 2611 CD GLU 328 33.984 64.402 55.087 1.00 42.24 AAAAA ATOM 2613 OE2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAAA ATOM 2613 OE2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAAA ATOM 2613 OE2 GLU 328 32.226 58.753 51.00 30.46 AAAAA ATOM 2613 OE2 GLU 328 33.292 58.112 53.584 1.00 24.93 AAAAA ATOM 2616 N LEU 329 33.292 58.112 53.584 1.00 24.93 AAAAA ATOM 2617 CA LEU 329 33.292 58.112 53.584 1.00 24.93 AAAAA ATOM 2618 CB LEU 329 34.730 54.522 53.703 1.00 25.26 AAAAA ATOM 2618 CB LEU 329 34.730 54.522 53.703 1.00 25.26 AAAAA ATOM 2618 CB LEU 329 34.730 54.522 53.703 1.00 25.26 AAAAA ATOM 2620 CD1 LEU 329 32.310 55.569 51.453 1.00 23.50 AAAAA ATOM 2621 CD2 LEU 329 32.310 55.569 51.453 1.00 23.50 AAAAA ATOM 2622 C LEU 330 30.30 30.538 52.905 55.168 1.00 23.92 AAAAA ATOM 2627 CG LEU 330 30.538 52.905 55.168 1.00 23.92 AAAAA ATOM 2627 CG LEU 330 30.538 55.095 55.095 1.00 23.50 AAAAA ATOM 2628 CD1 LEU 330 30.538 55.095 55.095 1.00 23.50 AAAAA ATOM 2627 CG LEU 330 30.538 55.095 55.095 55.095 1.00 23.55 AAAAA ATOM 2627 CG LEU 330 30.538 55.095 55.095 55.095 1.00 23.55 AAAAA ATOM 2628 CD1 LEU 330 30.538 55.095 55.095 55.095 1.00 23.95 AAAAA ATOM 2627 CG LEU 330 29.404 57.975 55.095 55.095 1.00 23.95 AAAAA ATOM 2627 CG LEU 330 29.404 57.997 52.111 1.00 30.82 AAAAA ATOM 2636 CD1			N	LYS				·	1.00 28.56	
ATOM 2601 CG LYS 327 29.69 60.205 58.812 1.00 36.72 AAAA ATOM 2602 CD LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2602 CD LYS 327 28.643 61.594 60.769 1.00 38.91 AAAA ATOM 2602 CD LYS 327 28.645 61.594 60.6769 1.00 38.91 AAAA ATOM 2602 CD LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2606 CD LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2606 CD LYS 327 30.997 58.719 54.393 1.00 27.76 AAAA ATOM 2607 N GLU 328 32.167 60.265 53.581 1.00 28.91 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 28.91 AAAA ATOM 2609 CB GLU 328 32.745 62.652 54.067 1.00 32.30 AAAA ATOM 2609 CB GLU 328 32.745 62.652 54.067 1.00 46.67 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2611 CD GLU 328 33.984 64.402 55.087 1.00 46.67 AAAA ATOM 2612 OE1 GLU 328 33.984 64.402 55.087 1.00 46.67 AAAA ATOM 2613 OE2 GLU 328 33.984 64.402 55.087 1.00 30.46 AAAA ATOM 2614 C GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2615 O GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 34.478 56.003 54.053 1.00 25.50 AAAA ATOM 2620 CD1 LEU 329 34.478 56.003 54.053 1.00 25.50 AAAA ATOM 2621 CD2 LEU 329 34.730 54.452 53.703 1.00 19.71 AAAA ATOM 2621 CD2 LEU 329 32.413 55.684 1.00 24.93 AAAA ATOM 2620 CD1 LEU 329 32.413 55.685 1.00 24.73 AAAA ATOM 2620 CD1 LEU 329 32.413 56.059 52.603 1.00 23.50 AAAA ATOM 2620 CD1 LEU 329 32.310 55.650 51.453 1.00 25.50 AAAA ATOM 2620 CD1 LEU 329 32.310 55.650 51.453 1.00 25.50 AAAA ATOM 2620 CD1 LEU 330 30.289 55.145 53.359 1.00 23.50 AAAA ATOM 2623 C LEU 330 30.289 55.145 53.359 1.00 23.50 AAAA ATOM 2623 C LEU 330 30.399 55.145 53.599 1.00 23.50 AAAA ATOM 2623 C LEU 330 30.399 55.145 53.599 1.00 23.50 AAAA ATOM 2623 C LEU 330 30.399 55.145 53.599 1.00 23.50 AAAA ATOM 2628 CD1 LEU 330 30.399 55.145 53.599 1.00 23.50 AAAA ATOM 2628 CD1 LEU 330 30.399 55.145 53.599 1.00 23.50 AAAA ATOM 2628 CD1 LEU 330 30.399 55.145 50.2990 1.00 27.75 AAAA ATOM 2631 C LEU 330 30.			ÇA	LYS					1 00 28 87	AAAA
ATOM 2601 CG LYS 327 28.643 61.407 59.255 1.00 40.34 AAAA ATOM 2603 CE LYS 327 28.645 61.594 60.769 1.00 38.91 AAAA ATOM 2604 NZ LYS 327 30.792 59.244 55.269 1.00 29.15 AAAA ATOM 2605 C LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2606 O LYS 327 30.997 58.719 54.393 1.00 27.76 AAAA ATOM 2606 O LYS 327 30.997 58.719 54.393 1.00 27.76 AAAA ATOM 2607 N GLU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2609 CB GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2609 CB GLU 328 32.745 62.652 54.067 1.00 47.50 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2611 CD GLU 328 33.946 64.037 52.951 1.00 56.88 AAAA ATOM 2612 OE1 GLU 328 33.984 64.002 55.087 1.00 42.24 AAAA ATOM 2615 O GLU 328 32.226 58.753 51.704 1.00 24.93 AAAA ATOM 2616 CB LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2616 CB LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2616 CB LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2618 CB LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2620 CD LEU 329 32.755 56.828 53.017 1.00 24.80 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.803 1.00 19.71 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.803 1.00 25.70 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.803 1.00 25.70 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.803 1.00 25.70 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.8975 55.803 1.00 25.70 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.8975 55.803 1.00 25.70 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.8975 55.8975 52.871 1.00 30.46 AAAA ATOM 2620 CD LEU 329 32.755 55.8975 55.8975 55.8975 50.703 AAAA ATOM 2630 C LEU 330 30.289 55.569 51.480 31.00 25.60 AAAA ATOM 2630 C LEU 330 30.289 55.569 51.480 31.00 25.60 AAAA ATOM 2630 C LEU 330 30.289 55.569 51.480 31.00 23.50 AAAA ATOM 2631 O LEU 330 30.289 55.569 51.480 31.00 23.50 AAAA ATOM 2631 C LEU 330 30.289 55.569 51.480 31.00 29.560 AAAA ATOM 2631 C LEU 330 30.289 55.569 51.480 31.00 29.53 AAAA ATOM 2631 C LEU 330 30.289 55.660 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 29.491 55.660			CB	LYS					1 00 36.72	AAAA
ATOM 2602 CD LYS 327 28.645 61.594 60.769 1.00 38.91 AAAA ATOM 2603 CE LYS 327 28.163 60.429 61.556 1.00 47.67 AAAA ATOM 2606 C LYS 327 30.792 59.244 55.269 1.00 29.15 AAAA ATOM 2606 CD LYS 327 30.792 59.244 55.269 1.00 29.15 AAAA ATOM 2607 N GLU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2607 N GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2609 CB GLU 328 32.167 60.265 53.581 1.00 32.30 AAAA ATOM 2609 CB GLU 328 32.745 62.652 54.067 1.00 47.50 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2613 OE2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2613 OE2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2617 CA LEU 329 34.478 56.003 54.053 1.00 24.80 AAAA ATOM 2619 CG LEU 329 34.478 56.003 54.053 1.00 24.80 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2620 CDI LEU 329 32.443 56.003 54.053 1.00 24.73 AAAA ATOM 2620 CDI LEU 329 32.435 55.881 53.531 1.00 24.73 AAAA ATOM 2620 CDI LEU 329 32.310 55.660 54.533 1.00 23.50 AAAA ATOM 2620 CDI LEU 329 32.310 55.660 54.533 1.00 23.50 AAAA ATOM 2620 CDI LEU 329 32.310 55.660 55.487 1.00 23.50 AAAAA ATOM 2620 CDI LEU 329 32.310 55.660 55.487 1.00 23.50 AAAAA ATOM 2620 CDI LEU 330 30.289 55.145 53.539 1.00 23.52 AAAA ATOM 2620 CDI LEU 330 30.598 55.145 33.539 1.00 23.50 AAAAA ATOM 2620 CDI LEU 330 30.598 55.145 53.539 1.00 23.50 AAAAA ATOM 2620 CDI LEU 330 30.598 55.165 1.453 1.00 26.94 AAAA ATOM 2620 CDI LEU 330 30.598 55.165 1.453 1.00 25.29 AAAA ATOM 2621 CD LEU 330 30.598 54.053 1.00 23.50 AAAA ATOM 2621 CD LEU 330 30.598 55.165 51.453 1.00 25.60 AAAAA ATOM 2623 C A LEU 330 30.598 55.165 51.453 1.00 25.60 AAAAA ATOM 2623 C C LEU 330 30.598 55.165 51.453 1.00 25.60 AAAAA ATOM 2631 C LEU 330 30.598 65.759 55.145 53.599 1.00 23.02 AAAA ATOM 2633 C LEU 330 30.598 65.759 55.145 50.00 20.696 AAAAA ATOM 2631 C LEU 330 30.598 66.757.759 51.100 20.60.65 AAAA		2601	CG	LYS					1.00 40.34	AAAA
ATOM 2604 NZ LYS 327 30.792 59.244 55.269 1.00 47.67 AAAA ATOM 2606 C LYS 327 30.792 59.244 55.269 1.00 29.15 AAAA ATOM 2606 C LYS 327 30.792 59.244 55.269 1.00 27.76 AAAA ATOM 2606 C LYS 327 30.997 58.719 54.393 1.00 27.76 AAAA ATOM 2607 N GLU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2609 CB GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2610 CG GLU 328 33.2745 62.652 54.067 1.00 47.50 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2613 022 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2613 022 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2613 022 GLU 328 33.257 58.975 52.871 1.00 30.46 AAAA ATOM 2616 N LEU 329 33.292 58.112 53.584 1.00 24.93 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 44.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2620 CD1 LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2622 C LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2622 C LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2622 C LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2622 C LEU 329 .5.569 55.441 55.309 1.00 23.02 AAAA ATOM 2622 C LEU 329 .5.569 55.441 55.309 1.00 23.02 AAAA ATOM 2622 C LEU 330 30.289 55.442 53.833 54.863 1.00 25.26 AAAA ATOM 2622 C LEU 330 30.289 55.442 53.833 54.863 1.00 25.26 AAAA ATOM 2622 C LEU 330 30.289 55.445 53.591 1.00 23.02 AAAA ATOM 2622 C LEU 330 30.039 54.252 55.642 1.00 23.02 AAAA ATOM 2623 C LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2630 C LEU 330 30.039 54.252 55.168 1.00 29.529 AAAA ATOM 2630 C LEU 330 30.039 54.252 55.642 1.00 25.29 53 AAAA ATOM 2630 C LEU 330 30.588 52.905 55.168 1.00 29.53 AAAA ATOM 2637 CE LEU 330 30.588 6667 57.795 51.066 1.00 29.53 AAAA ATOM 2630 C LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2637 CE LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2630		2602	CD						1.00 38.91	AAAA
ATOM 2604 NZ LYS 327 30.792 59.244 55.269 1.00 29.15 AAAA ATOM 2605 C LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2606 O LYS 327 30.097 58.719 54.4393 1.00 27.76 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 31.59 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 32.30 AAAA ATOM 2609 CB GLU 328 32.745 62.652 54.067 1.00 47.50 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2611 CD GLU 328 33.764 64.037 52.951 1.00 56.88 AAAA ATOM 2613 0E2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2613 0E2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.266 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.701 56.828 33.017 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 33.017 1.00 24.80 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2620 CD1 LEU 329 32.443 56.059 52.603 1.00 24.73 AAAA ATOM 2621 CD2 LEU 329 32.310 55.669 54.413 52.400 19.71 AAAA ATOM 2621 CD2 LEU 329 32.310 55.669 51.453 1.00 24.73 AAAA ATOM 2622 C LEU 329 32.310 55.669 51.453 1.00 25.60 AAAA ATOM 2627 CG LEU 330 30.289 55.145 53.242 1.00 24.73 AAAA ATOM 2627 CG LEU 330 30.289 55.145 53.242 1.00 22.44 AAAA ATOM 2628 CD1 LEU 330 30.289 55.145 53.242 1.00 22.44 AAAA ATOM 2627 CG LEU 330 30.289 55.145 53.242 1.00 22.44 AAAA ATOM 2628 CD1 LEU 330 30.289 55.145 53.242 1.00 23.02 AAAAA ATOM 2628 CD1 LEU 330 29.441 55.030 54.484 1.00 21.74 AAAA ATOM 2628 CD1 LEU 330 29.441 55.030 54.484 1.00 22.44 AAAA ATOM 2628 CD1 LEU 330 29.441 55.030 54.053 1.00 25.60 AAAAA ATOM 2628 CD1 LEU 330 29.441 55.050 55.669 51.455 1.00 23.02 AAAAA ATOM 2630 C LEU 330 28.944 55.060 51.252 55.642 1.00 23.85 AAAA ATOM 2630 C LEU 330 28.944 55.060 51.252 55.642 1.00 23.85 AAAA ATOM 2631 C LEU 330 28.944 55.060 51.252 55.642 1.00 23.85 AAAA ATOM 2631 C LEU 330 28.944 55.060 51.252 52.111 1.00 30.82 AAAA ATOM 2631 C LEU 330 28.944 55.060 51.252 52.111 1.00 30.82 AAAA ATOM 2631 C LEU 330 28.946 65.77.795 55.111 1.00 30.82 AAAA ATOM 2631 C LEU 330 28.		2603	CE						1.00 47.67	AAAA
ATOM 2605 C LYS 327 30.097 58.719 54.393 1.00 27.76 AAAA ATOM 2607 N GLU 328 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 32.30 AAAA ATOM 2609 CB GLU 328 32.167 60.265 53.581 1.00 32.30 AAAA ATOM 2610 CG GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2610 CD GLU 328 33.745 62.652 54.067 1.00 47.50 AAAA ATOM 2611 CD GLU 328 33.746 63.772 54.032 1.00 46.67 AAAA ATOM 2612 OE1 GLU 328 33.984 64.037 52.951 1.00 56.88 AAAA ATOM 2613 OE2 GLU 328 33.984 64.037 52.951 1.00 30.46 AAAA ATOM 2613 OE2 GLU 328 32.257 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.265 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.292 58.112 53.584 1.00 24.93 AAAA ATOM 2617 CA LEU 329 34.478 56.003 54.053 1.00 25.76 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.76 AAAA ATOM 2619 CG LEU 329 34.478 56.003 54.053 1.00 25.76 AAAA ATOM 2621 CD2 LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2620 CD1 LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2621 CD2 LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2621 CD2 LEU 329 .5.569 54.413 52.430 1.00 23.50 AAAA ATOM 2627 CG LEU 330 30.289 55.445 53.251 1.00 23.85 AAAA ATOM 2627 CG LEU 330 30.289 55.145 53.252 1.00 25.60 AAAA ATOM 2621 CD2 LEU 330 30.289 55.145 53.252 1.00 23.85 AAAA ATOM 2622 C LEU 330 30.289 55.145 53.252 1.00 23.85 AAAA ATOM 2622 C LEU 330 30.289 55.145 53.252 1.00 23.85 AAAA ATOM 2622 C D2 LEU 330 30.289 55.145 53.252 1.00 25.60 AAAA ATOM 2622 C LEU 330 30.289 55.168 1.00 22.44 AAAA ATOM 2622 C LEU 330 30.289 55.168 1.00 22.44 AAAA ATOM 2623 C LEU 330 30.289 55.160 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 30.599 55.168 1.00 22.44 AAAA ATOM 2631 C LEU 330 30.599 55.160 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 30.599 55.168 1.00 22.44 AAAA ATOM 2631 C LEU 330 30.599 55.160 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 30.599 55.160 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 30.599 55.160 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 30.599 65.760 52.111 1.00 30.59 AAAA ATOM 2631 C LEU 330 30.599 65.760 52.111 1.00 30.5		2604	NZ			28.10.			1.00 29.15	AAAA
ATOM 2606 O LYS 327 31.829 60.015 54.972 1.00 31.59 AAAA ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2609 CB GLU 328 32.745 62.652 54.067 1.00 47.50 AAAA ATOM 2610 CG GLU 328 32.745 62.652 54.067 1.00 47.50 AAAA ATOM 2610 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2613 OE2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2613 OE2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2620 CD1 LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2621 CD2 LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2620 CD1 LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2620 CD1 LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2620 CD1 LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2620 CD LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2620 CD LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2620 CD LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2620 CD LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2620 CD LEU 330 30.289 55.145 53.242 1.00 23.85 AAAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAAA ATOM 2627 CG LEU 330 30.399 55.769 52.113 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 30.399 55.769 52.113 1.00 25.99 AAAA ATOM 2628 CD1 LEU 330 30.538 52.905 55.168 1.00 22.444 AAAA ATOM 2631 N LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 2636 CD LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 2636 CD LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 2637 CE LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 2638 CD LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 2638 CD LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 2638 CD LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 2638 CD LYS 331 28.867 57.795 51.066 1.00 29.67 AAAA ATOM 263	MOTA	2605	С			30.797			1.00 27.76	
ATOM 2608 CA GLU 328 32.167 60.265 53.581 1.00 28.93 AAAA ATOM 2609 CB GLU 328 32.745 62.652 54.067 1.00 32.30 AAAA ATOM 2610 CG GLU 328 32.745 62.652 54.067 1.00 47.50 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2612 OE1 GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2613 OE2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2613 OE2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.256 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.76 AAAA ATOM 2619 CG LEU 329 34.478 56.003 54.053 1.00 25.76 AAAA ATOM 2620 CDI LEU 329 34.478 56.003 54.053 1.00 25.26 AAAA ATOM 2620 CDI LEU 329 32.2443 56.059 52.603 1.00 23.50 AAAA ATOM 2620 CDI LEU 329 32.2443 56.059 52.603 1.00 23.50 AAAA ATOM 2620 CDI LEU 329 32.310 55.650 51.453 1.00 23.50 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.02 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.02 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.02 AAAA ATOM 2626 CB LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2626 CB LEU 330 30.039 54.252 55.642 1.00 23.02 AAAA ATOM 2627 CG LEU 330 30.039 54.252 55.145 50.241 1.00 30.55 AAAA ATOM 2630 C LEU 330 30.039 55.560 55.145 1.00 20.21.74 AAAA ATOM 2631 C LEU 330 30.039 55.560 55.145 1.00 20.25.29 AAAA ATOM 2632 C LEU 330 29.491 55.769 52.111 1.00 30.82 AAAA ATOM 2636 CD LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA ATOM 2636 CD LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA ATOM 2637 CE LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA ATOM 2636 CD LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA ATOM 2638 CD LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA ATOM 2638 CD LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA									1.00 31.59	
ATOM 2608 CA GLU 328 33.257 61.332 53.515 1.00 32.30 AAAA ATOM 2610 CG GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2611 CD GLU 328 34.325 64.037 52.951 1.00 56.88 AAAA ATOM 2613 OE2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2613 OE2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2613 OE2 GLU 328 32.226 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.292 58.112 53.584 1.00 24.93 AAAA ATOM 2617 CA LEU 329 34.730 56.828 53.017 1.00 24.80 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAAA ATOM 2620 CD1 LEU 329 5.569 54.413 52.430 1.00 25.25 AAAA ATOM 2621 CD2 LEU 329 .2.443 56.059 52.803 1.00 23.50 AAAA ATOM 2622 C LEU 329 .2.443 56.059 52.803 1.00 23.50 AAAA ATOM 2625 CA LEU 330 31.516 55.881 53.539 1.00 23.50 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2629 CD2 LEU 330 30.399 55.165 1.00 22.29 AAAA ATOM 2629 CD2 LEU 330 30.399 55.165 1.00 22.29 AAAA ATOM 2629 CD2 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2629 CD2 LEU 330 28.984 54.053 56.724 1.00 22.29 AAAA ATOM 2629 CD2 LEU 330 28.984 54.053 56.724 1.00 22.529 AAAA ATOM 2629 CD2 LEU 330 28.984 54.053 56.724 1.00 22.59 AAAA ATOM 2629 CD2 LEU 330 28.984 54.053 56.724 1.00 22.59 AAAA ATOM 2629 CD2 LEU 330 28.984 54.053 56.724 1.00 29.53 AAAA ATOM 2630 C LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 28.986 55.060 51.252 1.00 26.95 AAAA ATOM 2631 C LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 28.986 55.060 51.252 1.00 26.95 AAAA ATOM 2631 C LEU 330 28.986 55.060 51.252 1.00 26.95 AAAA ATOM 2631 C LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 C LEU 330 28.986 55.060 51.252 1.00 26.95 AAAA ATOM 2631 C LEU 330 28.986	ATOM	_				31.02			1.00 28.93	
ATOM 2610 CG GLU 328 32.745 62.652 54.067 1.00 47.50 AAAA ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2612 OE1 GLU 328 33.984 64.037 52.951 1.00 56.88 AAAA ATOM 2613 OE2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.575 58.975 52.871 1.00 24.24 AAAA ATOM 2616 N LEU 329 33.292 58.112 53.584 1.00 24.93 AAAA ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2618 CB LEU 329 34.730 54.522 53.703 1.00 25.70 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 25.70 AAAAA ATOM 2620 CD1 LEU 329 5.569 54.413 52.430 1.00 25.25 AAAAA ATOM 2621 CD2 LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2620 CD1 LEU 329 32.310 55.650 51.453 1.00 25.60 AAAAA ATOM 2620 CD2 LEU 329 2.2443 56.059 52.603 1.00 23.50 AAAAA ATOM 2620 CD2 LEU 329 32.310 55.650 51.453 1.00 25.60 AAAAA ATOM 2625 CA LEU 330 31.516 55.881 53.539 1.00 23.02 AAAAA ATOM 2625 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.02 AAAAA ATOM 2626 CB LEU 330 30.399 54.252 55.662 1.00 26.65 AAAAA ATOM 2627 CG LEU 330 29.414 55.030 54.884 1.00 21.74 AAAA ATOM 2628 CD1 LEU 330 30.399 54.252 55.662 1.00 26.694 AAAAA ATOM 2629 CD2 LEU 330 29.491 55.769 52.113 1.00 22.44 AAAA ATOM 2629 CD2 LEU 330 29.491 55.769 52.113 1.00 29.53 AAAAA ATOM 2631 O LEU 330 29.494 57.097 52.111 1.00 30.82 AAAAA ATOM 2632 N LYS 331 28.667 57.795 51.066 1.00 29.53 AAAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAAA ATOM 2636 CD LYS 331 28.667 57.795 51.066 1.00 29.53 AAAAA ATOM 2636 CD LYS 331 28.667 57.795 51.066 1.00 29.53 AAAAA ATOM 2637 CE LYS 331 26.684 61.055 52.990 1.00 42.75 AAAAA ATOM 2637 CE LYS 331 26.684 61.055 52.990 1.00 53.98 AAAAA ATOM 2637 CE LYS 331 26.684 61.055 52.990 1.00 53.98 AAAAA ATOM 2637 CE LYS 331 26.684 61.055 52.234 1.00 67.57 AAAAA ATOM 2637 CE LYS 331 26.684 61.737 51.939 1.00 30.077 AAAAA ATOM 2639 C LYS 331 26.684 67.759 48.672 1.0	MOTA								1.00 32.30	
ATOM 2611 CD GLU 328 33.764 63.772 54.032 1.00 46.67 AAAA ATOM 2612 OE1 GLU 328 33.984 64.037 52.951 1.00 30.46 AAAA ATOM 2613 OE2 GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.226 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2617 CA LEU 329 34.478 56.003 54.053 1.00 25.70 AAAAA ATOM 2619 CG LEU 329 54.473 56.828 53.017 1.00 25.70 AAAAA ATOM 2619 CG LEU 329 55.569 54.413 52.430 1.00 25.26 AAAA ATOM 2620 CD1 LEU 329 32.310 55.650 51.453 1.00 24.73 AAAA ATOM 2622 C LEU 329 32.310 55.650 51.453 1.00 23.50 AAAAA ATOM 2624 N LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2626 CB LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 25.29 AAAA ATOM 2627 CG LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2628 CD1 LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2629 CD2 LEU 330 30.039 54.252 55.662 1.00 23.85 AAAA ATOM 2629 CD2 LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2628 CD1 LEU 330 29.414 55.030 54.484 1.00 20.74 AAAA ATOM 2628 CD1 LEU 330 29.414 55.030 54.484 1.00 20.74 AAAA ATOM 2629 CD2 LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2632 C LEU 330 29.491 55.769 52.111 1.00 30.82 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.995 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.995 51.006 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.006 1.00 42.75 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.006 1.00 42.75 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.006 1.00 42.75 AAAA ATOM 2637 C LYS 331 26.638 61.737 51.939 1.00 53.98 AAAA ATOM 2637 C LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 C	MOTA								1.00 47.50	
ATOM 2611 CD 328 34.325 64.037 52.951 1.00 56.88 AAAA ATOM 2613 0E2 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2616 C GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2616 N LEU 329 33.292 58.112 53.584 1.00 24.93 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2616 CB LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2618 CB LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2610 CD LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2610 CD LEU 329 34.730 54.522 53.703 1.00 25.26 AAAA ATOM 2620 CD1 LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2620 CD2 LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2622 C LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2623 O LEU 329 32.310 55.650 51.453 1.00 25.60 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.02 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.02 AAAA ATOM 2625 CB LEU 330 30.289 55.145 33.242 1.00 25.29 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2627 CG LEU 330 30.289 55.145 33.242 1.00 25.29 AAAA ATOM 2627 CG LEU 330 30.589 55.165 1.453 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 30.589 55.165 1.453 1.00 25.29 AAAA ATOM 2627 CG LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2628 CD1 LEU 330 30.589 55.145 35.242 1.00 23.85 AAAA ATOM 2628 CD1 LEU 330 30.589 55.166 1.00 29.529 AAAA ATOM 2628 CD1 LEU 330 30.588 52.905 55.168 1.00 22.44 AAAA ATOM 2628 CD1 LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 29.491 55.769 52.113 1.00 26.95 AAAA ATOM 2632 N LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 30.07 AAAA ATOM 2633 CA LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2633 CA LYS 331 26.634	MOTA								1.00 46.67	
ATOM 2612 OE1 GLU 328 33.984 64.402 55.087 1.00 42.24 AAAA ATOM 2614 C GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.226 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2617 CA LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAAA ATOM 2620 CD1 LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2621 CD2 LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2622 C LEU 329 32.310 55.650 51.453 1.00 23.50 AAAA ATOM 2623 O LEU 329 32.310 55.650 51.453 1.00 23.50 AAAA ATOM 2624 N LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 25.29 AAAA ATOM 2626 CB LEU 330 30.39 54.252 55.644 1.00 25.29 AAAA ATOM 2626 CB LEU 330 30.39 54.252 55.642 1.00 25.29 AAAA ATOM 2626 CB LEU 330 30.39 54.252 55.642 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2630 C LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2638 CC LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2638 CC LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2638 CC LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2638 CC LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2638 CC LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2638 CC LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2638 CC LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2638 CC LYS 331 28.667 57.795 48.672 1.00 36.20 AAAA	ATOM								1.00 56.88	
ATOM 2614 C GLU 328 32.575 58.975 52.871 1.00 30.46 AAAA ATOM 2615 O GLU 328 32.226 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.93 AAAA ATOM 2617 CA LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2619 CG LEU 329 55.69 54.413 52.430 1.00 25.26 AAAA ATOM 2620 CD1 LEU 329 5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2620 CD2 LEU 329 32.310 55.650 51.453 1.00 23.50 AAAA ATOM 2620 CD2 LEU 329 32.310 55.650 51.453 1.00 23.50 AAAA ATOM 2620 CD2 LEU 329 32.310 55.650 51.453 1.00 23.02 AAAA ATOM 2620 CD LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2620 CD LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2620 CD LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2620 CD LEU 330 30.039 54.252 55.642 1.00 23.85 AAAA ATOM 2620 CD LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2620 CD LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2620 CD LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2620 CD LEU 330 29.414 55.030 54.684 1.00 22.44 AAAA ATOM 2620 CD LEU 330 29.414 55.030 54.252 55.642 1.00 25.29 AAAA ATOM 2620 CD LEU 330 29.414 55.030 54.252 1.00 26.65 AAAA ATOM 2620 CD LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2637 CE LYS 331 27.886 61.055 52.990 1.00 42.75 AAAA ATOM 2638 NZ LYS 331 28.667 57.795 51.066 1.00 29.57 AAAA ATOM 2639 C LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2639 C LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2639 C LYS 331 26.828 61.737 759 48.672 1.00 30.077 AAAA ATOM 2639 C LYS 331 28.637 77.759 48.672 1.00 30.077 AAAA						33.98		2 55.087	1.00 42.24	
ATOM 2614 C GLU 328 32.226 58.753 51.704 1.00 26.29 AAAA ATOM 2616 N LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2617 CA LEU 329 34.730 56.828 53.017 1.00 24.80 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2619 CG LEU 329 55.569 54.413 52.430 1.00 25.26 AAAA ATOM 2620 CD1 LEU 329 5.569 54.413 52.430 1.00 25.26 AAAAA ATOM 2621 CD2 LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2620 C LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2621 CD2 LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2623 O LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2624 N LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2628 CD1 LEU 330 30.39 54.252 55.642 1.00 23.59 AAAA ATOM 2628 CD1 LEU 330 30.39 54.252 55.642 1.00 22.44 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 20.244 AAAA ATOM 2629 CD2 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 29.491 55.769 52.113 1.00 26.65 AAAA ATOM 2631 O LEU 330 29.491 55.769 52.113 1.00 26.95 AAAA ATOM 2633 CA LYS 331 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2637 CE LYS 331 28.667 57.795 51.066 1.00 29.57 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.00 AAAA ATOM 2638 NZ LYS 331 26.828 61.737 759 48.672 1.00 30.07 AAAA ATOM 2639 C LYS 331 28.637 75.759 48.672 1.00 30.07 AAAA ATOM 2639 C LY		_							1.00 30.46	
ATOM 2616 N LEU 329 33.701 56.828 53.584 1.00 24.93 AAAA ATOM 2617 CA LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 19.71 AAAA ATOM 2619 CD LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2620 CD1 LEU 329 .5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2621 CD2 LEU 329 .2.443 56.059 52.6603 1.00 23.50 AAAA ATOM 2622 C LEU 329 .2.443 56.059 52.6603 1.00 23.50 AAAA ATOM 2623 O LEU 329 32.310 55.650 51.453 1.00 25.60 AAAA ATOM 2624 N LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2626 CB LEU 330 30.039 54.252 55.664 1.00 25.29 AAAA ATOM 2627 CG LEU 330 30.039 54.252 55.664 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 25.29 AAAA ATOM 2630 C LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.986 55.060 51.252 1.00 26.65 AAAA ATOM 2632 N LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2637 CE LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2637 CE LYS 331 26.634 63.185 52.290 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.291 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.291 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.291 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.294 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 57.759 48.672 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 57.759 48.672 1.00 36.20 AAAA ATOM 2638 NZ LYS 331 26.634 57.759 48.672 1.00 36.20 AAAA								3 51.704	1.00 26.29	
ATOM 2617 CA LEU 329 33.701 56.828 53.017 1.00 24.80 AAAA ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.70 AAAA ATOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2620 CD1 LEU 329 5.569 54.413 52.430 1.00 25.26 AAAA ATOM 2621 CD2 LEU 329 5.412 53.833 54.863 1.00 24.73 AAAA ATOM 2621 CD2 LEU 329 32.310 55.650 51.453 1.00 25.50 AAAA ATOM 2623 O LEU 329 32.310 55.650 51.453 1.00 23.50 AAAA ATOM 2624 N LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2627 CG LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.55 AAAA ATOM 2629 CD2 LEU 330 30.538 52.905 55.168 1.00 22.44 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.967 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 30.82 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2638 NZ LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.6634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 29.315 57.628 49.692 1.00 30.07							2 58.11		1.00 24.93	
ATOM 2618 CB LEU 329 34.478 56.003 54.053 1.00 25.76 AAAA TOM 2619 CG LEU 329 34.730 54.522 53.703 1.00 19.71 AAAA ATOM 2620 CD1 LEU 329 5.569 54.413 52.430 1.00 24.73 AAAA ATOM 2621 CD2 LEU 329 .5.412 53.833 54.863 1.00 24.73 AAAA ATOM 2622 C LEU 329 .2.443 56.059 52.603 1.00 23.50 AAAA ATOM 2623 O LEU 329 32.310 55.650 51.453 1.00 25.60 AAAA ATOM 2623 O LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2627 CG LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.58 AAAA ATOM 2629 CD2 LEU 330 30.538 52.905 55.168 1.00 22.44 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 28.667 57.097 52.111 1.00 30.82 AAAA ATOM 2634 CB LYS 331 28.667 57.995 51.066 1.00 29.53 AAAA ATOM 2635 CG LYS 331 28.667 57.995 51.407 1.00 29.67 AAAA ATOM 2636 CD LYS 331 28.667 57.995 51.407 1.00 29.67 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2638 NZ LYS 331 26.6828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.6828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.6828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.6634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.6634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.6634 67.757 59.48.672 1.00 30.007 AAAA ATOM 2639 C LYS 331 26.6634 57.759 48.672 1.00 30.007 AAAA ATOM 2639 C LYS 331 26.6634 57.759 48.672 1.00 36.20		_								
ATOM 2619 CG LEU 329						34.47	8 56.00			
ATOM 2620 CD1 LEU 329 5.569 54.413 52.430 1.00 24.73 AAAA ATOM 2621 CD2 LEU 329 5.412 53.833 54.863 1.00 24.73 AAAA ATOM 2622 C LEU 329 32.310 55.650 51.453 1.00 25.60 AAAA ATOM 2623 O LEU 329 32.310 55.650 51.453 1.00 23.02 AAAA ATOM 2624 N LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2626 CB LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2627 CG LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2629 CD2 LEU 330 30.538 52.905 55.168 1.00 22.44 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 28.985 55.060 51.252 1.00 26.65 AAAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAAA ATOM 2631 CA LYS 331 29.404 57.097 52.111 1.00 30.82 AAAA ATOM 2631 CB LYS 331 29.404 57.097 52.111 1.00 30.82 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.537 59.292 51.407 1.00 29.67 AAAA ATOM 2635 CG LYS 331 28.537 59.292 51.407 1.00 29.67 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 30.07 AAAA ATOM 2639 C LYS 331 26.634 63.185 52.234 1.00 30.07 AAAA ATOM 2639 C LYS 331 26.634 63.185 52.234 1.00 30.07 AAAA ATOM 2639 C LYS 331 26.634 63.185 52.234 1.00 30.07						34.73	0 54.52		1.00 19.71	
ATOM 2621 CD2 LEU 329				1 T.EU		· 5.56	9 54.41			
ATOM 2622 C LEU 329 32.310 55.650 51.453 1.00 25.60 AAAA ATOM 2624 N LEU 330 31.516 55.881 53.539 1.00 23.02 AAAA ATOM 2625 CA LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2627 CG LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2629 CD2 LEU 330 30.538 52.905 55.168 1.00 22.44 AAAA ATOM 2629 CD2 LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 28.984 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2633 CA LYS 331 29.404 57.097 52.111 1.00 30.82 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2635 CG LYS 331 28.537 59.292 51.407 1.00 29.67 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2637 CE LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2637 CE LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 28.634 57.759 48.672 1.00 36.20			CD	2 LEU		5.41ر				
ATOM 2623 O LEU 329 32.310 55.650 51.453 1.00 23.00 AAAA ATOM 2624 N LEU 330 30.289 55.145 53.539 1.00 23.02 AAAA ATOM 2625 CA LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2626 CB LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2627 CG LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2629 CD2 LEU 330 30.538 52.905 55.168 1.00 22.44 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2631 O LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2632 N LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA ATOM 2635 CG LYS 331 28.537 59.292 51.407 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2637 CE LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2638 NZ LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2638 NZ LYS 331 26.624 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.624 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.624 61.737 51.939 1.00 53.98 AAAA ATOM 2639 C LYS 331 26.634 67.759 48.672 1.00 36.20 AAAA						2.44 د	3 56.05			
ATOM 2624 N LEU 330 30.289 55.145 53.242 1.00 23.85 AAAA ATOM 2626 CB LEU 330 29.414 55.030 54.484 1.00 21.74 AAAA ATOM 2627 CG LEU 330 30.039 54.252 55.642 1.00 25.29 AAAA ATOM 2628 CD1 LEU 330 28.984 54.053 56.724 1.00 30.59 AAAA ATOM 2629 CD2 LEU 330 30.538 52.905 55.168 1.00 22.44 AAAA ATOM 2630 C LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 O LEU 330 28.984 57.097 52.111 1.00 30.82 AAAA ATOM 2632 N LYS 331 29.404 57.097 52.111 1.00 30.82 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2635 CG LYS 331 28.537 59.292 51.407 1.00 29.67 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.C7 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.C7 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.C7 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.C7 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.C7 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 36.20					329	32.31			1.00 23.00	
ATOM 2625 CA LEU 330					330				1.00 23.02	
ATOM 2626 CB LEU 330										
ATOM 2627 CG LEU 330					330					
ATOM 2628 CD1 LEU 330 28.984 54.053 55.168 1.00 22.44 AAAA ATOM 2629 CD2 LEU 330 29.491 55.769 52.113 1.00 26.94 AAAA ATOM 2631 0 LEU 330 28.968 55.060 51.252 1.00 26.65 AAAA ATOM 2631 N LYS 331 29.404 57.097 52.111 1.00 30.82 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.667 57.795 51.066 1.00 29.67 AAAA ATOM 2635 CG LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.814 59.567 52.914 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.C7 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.C7 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 36.20					330	30.03				
ATOM 2629 CD2 LEU 330					330			55 56.744		
ATOM 2630 C LEU 330 29.491 55.765 52.990 1.00 26.65 AAAA AAAA ATOM 2631 C LYS 331 27.688 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 36.20 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 36.20					330	30.53				AAAA
ATOM 2631 O LEU 330 ATOM 2632 N LYS 331 ATOM 2633 CA LYS 331 ATOM 2634 CB LYS 331 ATOM 2635 CG LYS 331 ATOM 2636 CD LYS 331 ATOM 2637 CE LYS 331 ATOM 2638 NZ LYS 331 ATOM 2638 NZ LYS 331 ATOM 2639 C LYS 331					330	29.49				
ATOM 2632 N LYS 331 29.404 57.097 52.111 1.00 29.53 AAAA ATOM 2633 CA LYS 331 28.667 57.795 51.066 1.00 29.53 AAAA ATOM 2634 CB LYS 331 28.537 59.292 51.407 1.00 29.67 AAAA ATOM 2635 CG LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA					330	28.96				
ATOM 2633 CA LYS 331 28.667 57.793 51.407 1.00 29.67 AAAA ATOM 2634 CB LYS 331 28.537 59.292 51.407 1.00 36.06 AAAA ATOM 2635 CG LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA						29.40				
ATOM 2634 CB LYS 331 28.537 59.292 31.00 36.06 AAAA ATOM 2635 CG LYS 331 27.814 59.567 52.714 1.00 36.06 AAAA ATOM 2636 CD LYS 331 27.688 61.055 52.990 1.00 42.75 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 36.20 AAAA						28.6				
ATOM 2635 CG LYS 331 27.814 59.567 52.990 1.00 42.75 AAAA ATOM 2636 CD LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 67.57 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 28.634 57.759 48.672 1.00 36.20 AAAA		· ·			331	28.5		54 SI.WU		AAAA
ATOM 2636 CD LYS 331 27.688 61.055 32.950 1.00 53.98 AAAA ATOM 2637 CE LYS 331 26.828 61.737 51.939 1.00 53.98 AAAA ATOM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 67.57 AAAA ATOM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 28.634 57.759 48.672 1.00 36.20 AAAA						27.8				
ATCM 2637 CE LYS 331 26.624 63.185 52.234 1.00 67.57 AAAA ATCM 2638 NZ LYS 331 26.634 63.185 52.234 1.00 30.07 AAAA ATCM 2639 C LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATCM 2639 C LYS 331 29.315 57.759 48.672 1.00 36.20 AAAA										
ATOM 2638 NZ LYS 331 29.315 57.628 49.692 1.00 30.07 AAAA ATOM 2639 C LYS 331 29.315 57.759 48.672 1.00 36.20 AAAA						26.8				
ATOM 2639 C LYS 331 28.634 57.759 48.672 1.00 36.20 AAAA				LYS		26.6				
				LYS						AAAA
			0	LYS	331	28.5	ا ۱۰۱ و و	25 30:31		•

					205	49.657	1.00 30.08	AAAA
	2641	1 SER	332		57.305		1.00 30.00	AAAA
MOTA			- 332	31.322	57.153	48.385	1.00 33.35	
ATOM	2642	CA SER		• • • • • •	57.312	48.590	1.00 40.36	aaaa
ATOM	2643	CB SER	332				1.00 34.04	AAAA
		OG SER	332		56.169			
MOTA				31.061	55.821		1.00 37.72	AAAA
ATOM	2645	C SER	332			46.507	1.00 30.78	AAAA
	2646	SER	332		55.661		1 00 30 61	AAAA
MOTA		·	333	30.521	54.865		1.00 30.61	
ATOM	2647	N ILE			53.547	47.899	1.00 37.59	AAAA
ATOM	2648	CA ILE	333				1.00 33.59	AAAA
			. 333	29.901	52.551			
MOTA					51.146	48.442	1.00 37.05	AAAA
ATCM	2650	CG2_ ILE	333			50.065	1.00 38.95	AAAA
		CG1 ILE	333		52.564	50.005		AAAA
MOTA	_	COI ILE	333	30.706	51.727	51.282	1.00 46.83	
ATOM	2652	CD1 ILE		• • •	53.620	46.998	1.00 43.41	aaaa
ATOM	2653	C ILE	333 `				1.00 46.24	AAAA
			333	27.889	53.876	47.479	1.00 40.24	
MOTA				29.158	53.423	45.696	1.00 47.97	AAAA
ATOM	2655	n asp	334			44.847	1.00 53.47	- AAAA
		CA ASP	334	27.976	53.447			AAAA
MOTA			334	28.333	53.535	43.358.	1.00 61.52	
ATOM	2657	CB ASP			52.406	42.897	1.00 64.75	AAAA
ATOM	2658	CG ASP	334	29.223			1.00 66.93	AAAA
		OD1 ASP	334	29.379	52.248	41.566	1.00 00.55	AAAA
MOTA				29.779	51.691	43.758	1.00 65.93	
ATOM	2660	OD2 ASP	334		52.144	45.161	1.00 51.83	AAAA
ATOM	2661	C ASP	334	27.248			1.00 46.80	AAAA
			334	27.626	51.067	44.699	1.00 40.00	
MOTA	2662	O ASP		26.215	52.249	45.986	1.00 54.96	AAAA
MOTA	2663	N PHE	335	20.213			1.00 50.60	AAAA
	2664	CA PHE	335	25.455	51.080		1.00 30.00	AAAA
MOTA			335	25.413	51.003	47.920	1.00 39.55	
MOTA	2665	CB PHE			50.054	48.440	1.00 37.98	aaaa
MOTA	2666	CG PHE	335	24.380			1.00 46.72	AAAA
		CD1 PHE	335	24.389	48.715	48.054	1.00 40.72	
MOTA	2667			23.362	50.506	49.262	1.00 34.23	AAAA
MOTA	2668	CD2 PHE	335			48.478	1.00 49.80	AAAA
	2669	CE1 PHE	335	23.389	47.842		1.00 48.51	AAAA
ATOM			335	22.361	49.644	49.689	1.00 40.5	
ATOM	2670	CE2 PHE		22.373	48.309	49.296	1.00 40.44	AAAA
MOTA	2671	CZ PHE	335			45.839	1.00 54.52	AAAA
	2672	C PHE	335	24.033	51.000		1.00 51.52	AAAA
MOTA				23.603	49.939	45.379	1.00 59.24	
ATOM	2673	O PHE	335	23.003	52.108		1.00 50.94	AAAA
ATOM	2674	N GLU	336	23.302			1.00 57.05	AAAA
			336	21.923	52.119	45.406	1.00 37.03	AAAA
MOTA	2675			21.853	51.751	43.924	1.00 60.27	
ATOM	2676	CB GLU	336				1.00 68.55	AAAA
	2677	CG GLU	336	20.430	51.627			AAAA
MOTA				20.352	51.126	42.001	1.00 80.03	
MOTA	2678	CD GLU		20.060	50.013		1.00 84.64	AAAA
ATOM	2679	OE1 GLU	336	20.860			1.00 80.68	AAAA
		OE2 GLU		19.777	51.841		1.00 00.00	AAAA
MÒTA	2680			21.065	51.135	46.201	1.00 55.73	
MOTA	2681	C GLU			49.917		1.00 51.33	ለ አአአ
ATOM	2682	O GLU	336	21.219			1.00 49.54	AAAA
				20.151	51.679	46.992		AAAA
MOTA	2683			19.267	50.880	47.821	1.00 48.19	
ATOM	2684	CA GLU					1.00 47.73	AAAA
	2685	CB GLU	337	18.510	51.822	·	1.00 55.69	AAAA
MOTA	2005			18.084	51.205	50.077		•
MOTA	2686			19.269	50.720	50.904	1.00 50.17	AAAA
MOTA	2687	CD GLU					1.00 36.03	AAAA
	2688	OE1 GLU	337	20.111	51.548		1.00 51.25	AAAA
ATOM		200 011		19.358	49.494	51.105	1.00 51.25	
MOTA	2689	OE2 GLU		10 304	50.083		1.00 49.13	AAAA
ATOM	2690	C GLU		18.294				AAAA
		O GLU		17.816	50.588			AAAA
ATOM	2691			18.015	48.837	7 47.313	1.00 48.15	
MOTA	2692	N PHE			48.000			AAA A
	2693	CA PHE	338	17.092				AAAA
MOTA				16.870	46.658			
MOTA	2694	CB PHE					1.00 57.22	LAAA
ATOM	2695	CG PHI	338	15.883				LAA A
		CD1 PH		16.115	45.36			AAA
Mota	2696			14.699		8 47.171		
MOTA	2697	CD2 PHI	≘ 338					LAAA
		CE1 PH	E 338	15.185				LAA A
MOTA				13.758	44.62	4 46.497		AAAi
MOTA	2699	CE2 PH		14.002			1.00 57.18	
ATOM		CZ PH						aaai
		C PH	E 338	15.755	48.71			AAA
ATOM				15.274		0 45.263		
ATOM		O PH					l 1.00 40.38	AAA
		N AS	p 339	15.154			0 07	AAA
MOTA				13.890	49.82			AAA
ATOM	2704			13.270	49.82	1 48.886	1.00 53.23	
ATOM		CB AS		13.470			3 1.00 57.40	AAA
ATOM ATOM		CG AS	p 339	12.000	50.65		 -	•
אוו דיני ב								

3 most	2207	001	ASP	339	12.039	51.858	48.616	1.00 53.79	AAAA
MOTA	2707							_	
MOTA	2708	OD2	ASP	339	10.963	50.118	49.401	1.00 51.15	AAAA
	2709	С	ASP	339	14.215	51.248	47.076	1.00 55.06	AAAA
MOTA								1.00 56.47	AAAA
MOTA	2710	0	ASP	339	14.994	51.922	47.748		
ATOM	2711	N	ASP	340	13.623	51.708	45.978	1.00 58.46	AAAA
							45.484	1.00 67.72	AAAA
ATOM	2712	CA	ASP	340	13.874	53.059			
* mon	2713	CB	ASP	340	12.683	53.559	44.664	1.00 71.52	AAAA
MOTA								1.00 79.72	AAAA
MOTA	2714	CG	ASP	340	12.611	52.913	43.295		
	2715	OD1	a CD	340	12.528	51.667	43.224	1.00 86.74	AAAA
MOTA								1.00 83.40	AAAA
ATOM	2716	OD2	ASP	340	12.640	53.655	42.288		
	2717	С	ASP	340	14.209	54.072	46.572	1.00 69.65	AAAA
MOTA							46.463	1.00 70.13	AAAA
MOTA	2718	0	ASP	340	15.204	54.794		•	
MOTA	2719	N	GLU	341	13.392	54.130	47.620	1.00 67.11	AAAA
						55.077	48.689	1.00 67.87	AAAA
ATOM	2720	CA	GLU	341					
MOTA	2721	CB	GLU	341	13.195	56.478	48.278	1.00 74.87	AAAA
					13.502	57.576	49.298	1.00 82.72	AAAA
MOTA	2722	CG	GLU	341					
MOTA	2723	CD	GLU	341	13.162	58.974	48.790	1.00 90.80	AAAA
			GLU	341	11.988	59.215	48.431	1.00 90.38	AAAA
ATOM	2724								
MOTA	2725	OE2	GLU	341	14.072	59.835	48.752	1.00 93.36	AAAA
	2726	С	GLU	341	13.101	54.719	50.058	1.00 60.22	AAAA
MOTA								1.00 58.81	AAAA
MOTA	2727	0	GLU	341	11.929	54.955	50.347		
	2728	N	VAL	342	13.956	54.144	50.897	1.00 57.28	AAAA
ATOM							52.262	1.00 52.09	AAAA
ATOM	2729	CA	VAL	342	13.594	53.781			
	2730	CB	VAL	342	14.195	52.419	52.669	1.00 53.17	AAAA
MOTA							54.070	1.00 46.16	AAAA
MOTA	2731	CG1	VAL	342	13.730	52.042			
ATOM	2732	CG2	VAL	342	13.815	51.356	51.663	1.00 59.09	AAAA
					14.263	54.843	53.124	1.00 53.31	AAAA
ATOM	2733	С	VAL	342					
MOTA	2734	0	VAL	342	13.763	55.230	54.185	1.00 57.79	AAAA
	2735		ASP	343	15.398	55.306	52.610	1.00 46.24	AAAA
MOTA		N							AAAA
MOTA	2736	CA	ASP	343	16.268	56.289	53.243	1.00 42.60	-
	2737	CB	ASP	343	15.521	57.510	53.781	1.00 43.88	AAAA
ATOM								1.00 46.82	AAAA
ATOM	2738	CG	ASP	343	16.480	58.581	54.290		
MOTA	2739	OD1	ASP	343	16.028	59.581	54.887	1.00 46.16	AAAA
						58.414	54.075	1.00 33.01	AAAA
MOTA	2740	OD2	ASP	343 ·	17.700				
ATOM	2741	C	ASP	343	17.012	55 <i>.</i> 636	54.395	1.00 35.45	AAAA
					16.487	55.480	55.502	1.00 29.39	AAAA
MOTA	2742	0	ASP	343					
ATOM	2743	N	ARG	344	18.247	55.249	54.124	1.00 30.51	AAAA
			ARG	344	19.059	54.613	55.140	1.00 29.43	AAAA
MOTA	2744	CA							AAAA
ATOM	2745	CB	ARG	344	19.736	53.377	54.561	1.00 30.10	
	2746	CG	ARG	344	18.803	52.258	54.180	1.00 33.95	AAAA
MOTA						51.770	55.365	1.00 20.92	AAAA
MOTA	2747	CD	ARG	344	17.981				
MOTA	2748	NE	ARG	344	17.120	50.673	54.936	1.00 29.72	AAAA
				344	16.110	50.176	55.639	1.00 29.13	AAAA
ATOM	2749	CZ	ARG						AAAA
ATOM	2750	NHl	ARG	344	15.805	50.668	56.835	1.00 29.63	
	2751		ARG	344	15.379	49.198	55.120	1.00 27.19	AAAA:
ATOM								1.00 34.31	AAAA
ATOM	2752	C	ARG	344	20.116	55.~69	55.660		
ATOM	2753	0	ARG	344	21.005	5557	56.391	1.00 29.09	AAAA
					20.011	56. 45	55.294	1.00 28.34	AAAA
ATOM	2754	N	SER	345					
MOTA	2755	CA	SER	345	20.999	57.839	55.715.	1.00 30.95	AAAA
				345	20.669	59.199	55.109	1.00 29.56	AAAA
MOTA	2756	CB	SER						
ATOM	2757	OG	SER	345	19.429	59.648	55.610	1.00 29.38	AAAA
			SER	345 .	21.137	57.988	57.230	1.00 30.92	AAA
ATOM	2758	.C							LAAA
ATOM	2759	0	SER	345	22.155	58.488	57.718	1.00 31.15	
	2760	N	TYR	346	20.116	57.576	57.975	1.00 25.64	LAAA
MOTA				-				1.00 26.81	LAAA
ATOM	2761	CA	TYR	346	20.158	57.659	59.433		
ATOM	2762	CB	TYR	346	18.823	57.189	60.006	1.00 34.41	LAAA
-						55.723	59.716	1.00 27.35	LAAA
ATOM	2763	CG	TYR	346	18.529				
ATOM	2764		TYR	346	19.003	54.708	60.556	1.00 24.87	AAAi
					18.744	53.352	60.278	1.00 28.05	AAA:
ATOM	2765	CEL	TYR	346					
ATOM	2766	CD2	TYR	346	17.795	55.358	58.588	1.00 27.70	AAA
					17.533	54.008	- 58.297	1.00 26.59	AAA.
ATOM	2767	CE2	TYR	346					AAA
ATOM	2768	CZ	TYR	346	.18.008	53.015	59.145	1.00 33.75	
			TYR	346	17.737	51.691	58.855	1.00 26.06	AAA
MOTA	2769	ОН						1.00 25.57	AAA
ATCM	2770	С	TYR	346	21.277	56.766	59.977	1.00 23.37	
	2771	ō	TYR	346	21.769	56.970	61.085	1.00 28.07	AAA
ATOM						55.761	59.198	1.00 29.08	AAA
ATCM	2772	N	MET	347	21.666	22.101	J3.130	1.00 25.00	
					•		-		•
•									

3 TOM	2773	CA	MET	347	22.720	54.837	59.622	1.00 24.19	AAAA
MOTA	2774	CB	MET	347	22.844	53.678	58.628	1.00 24.87	AAAA
MOTA MOTA	2775	CG	MET	347	21.609	52.806	58.543	1.00 23.66	AAAA
ATOM	2776	SD	MET	347	21.780	51.503	57.267	1.00 27.02	AAAA
ATOM	2777	CE.	MET	347	22.115	52.375	55.896	1.00 37.69	AAAA
	2778	C	MET	347	24.054	55.540	59.737	1.00 29.45	AAAA
MOTA	2779	0	MET	347	24.937	55.092	60.479	1.00 28.08	AAAA
ATOM	2779	N	LEU	348	24.188	56.650	59.007	1.00 23.71	AAAA
MOTA			LEU	348	25.418	57.446	58.998	1.00 34.11	AAAA
MOTA	2781	CA CB	LEU	348	25.463	58.351	57.757	1.00 25.37	AAAA
MOTA	2782	CG	LEU	348	25.320	57.785	56.344	1.00 30.38	AAAA
MOTA	2783		LEU	348	25.307	58.944	55.340	1.00 27.44	AAAA
ATOM	2784		LEU	348	26.459	56.814	56.041	1.00 36.44	AAAA
ATOM	2785		LEU	348	25.507	58.332	60.237	1.00 36.09	AAAA
ATOM	2786	C		348	26.561	58.894	60.539	1.00 33.30	AAAA
MOTA	2787	0	LEU	349	24.394	58.445	60.953	1.00 30.51	AAAA
MOTA	2788	N	GLU GLU	349	24.313	59.292	62.136	1.00 35.53	AAAA
ATOM	2789	CA	GLU	349	22.908	59.896	62.217	1.00 31.35	AAAA
ATOM	2790	CB	GLU	349	22.518	60.717	61.006	1.00 29.09	AAAA
MOTA	2791	CG CD	GLU	349	23.481	61.859	60.746	1.00 31.78	AAAA
MOTA	2792		GLU	349	23.937	62.476	61.730	1.00 30.98	AAAA
MOTA	2793			349	23.766	62.155	59.569	1.00 30.67	AAAA
MOTA	2794		GLU	349	24.663	58.633	63.471	1.00 38.48	AAAA
ATOM	2795	0	GLU	349	24.727	59.303	64.502	1.00 40.12	AAAA
MOTA	2796	.0	GLU	350	24.878	57.326	63.461	1.00 33.58	AAAA
ATOM	2797	N	THR	350	25.221	56.612	64.681	1.00 29.74	AAAA
MOTA	2798	CA	THR	350	23.992	56.363	65.559	1.00 35.91	AAAA
MOTA	2799	CB	THR	350	23.421	57.615	65.952	1.00 45.03	AAAA
ATOM	2800	OG1		350	24.382	55.586		1.00 49.48	AAAA
MOTA	2801	CG2		350	25.821	55.267	64.330	1.00 30.63	AAAA
MOTA	2802	C	THR	350	25.535	54.709	63.274	1.00 26.62	AAAA
MOTA	2803	0	THR	350	26.644	54.740	65.225	1.00 29.07	AAAA
MOTA	2804	N	LEU		27.271	53.461		1.00 24.59	AAAA
MOTA	2805	CA	LEU	351 351	28.584	53.367	65.757	1.00 29.91	AAAA
MOTA	2806	CB	LEU	351	29.591	52.327	65.267	1.00 39.62	AAAA
ATOM	2807	CG	LEU	351	30.887	52.467	66.039	1.00 37.09	AAAA
ATOM	2808		LEU LEU	351	29.024	50.935	65.415	1.00 54.03	AAAA
MOTA	2809		LEU	351	26.314	52.336	65.377	1.00 29.71	AAAA
ATOM	2810	C	LEU	351	26.130	51.364	64.641	1.00 30.53	AAAA
MOTA	2811	0	LYS	352	25.697	52.481	66.543	1.00 28.64	AAAA
MOTA	2812	N	LYS	352	24.763	51.479	67.061	1.00 32.72	AAAA
MOTA	2813	CA	LYS	352	24.913	51.381	68.581	1.00 27.37	AAAA
ATOM	2814	CB CG	LYS	352	26.230	50.787	69.034	1.00 43.48	AAAA
ATOM	2815	CD	LYS	352	26.536	51.068	70.504	1.00 46.77	AAAA
ATOM	2816 2817	CE	LYS	352	25.484	50.538	71.451	1.00 51.52	AAAA
MOTA		NZ	LYS	352	25.850	50.859	72.866	1.00 62.08	АААА
MO A	2818 2819	C	LYS	352	23.330	51.856	66.731	1.00 32.49	AAAA
MO'. K	2820	0	LYS	352	22.953	53.010	66.882	1.00 31.90	AAAA
A 1 OM	2821	N	ASP	353	22.525	50.916	66.244	1.00 31.44	AAAA
ATOM	2822	CA	ASP	353	21.136	51.286	66.012	1.00 26.50	AAAA
ATOM	2823	CB	ASP	353	20.543	50.635	64.746	1.00 50.09	AAAA
ATOM	2824	CG	ASP	353	20.880	49.176	64.604	1.00 52.79	AAAA
MOTA	2825		ASP	353	21.980	48.861	64.109	1.00 58.55	АААА
MOTA			ASP	353	20.040	48.339	64.984	1.00 73.19	AAAA
ATOM	2826			353	20.328	50.930	67.257	1.00 26.41	AAAA
MOTA	2827 2828	CO	ASP ASP	353	20.806	50.214	68.136	1.00 25.73	AAAA
ATOM	2829		PRO	354	19.118	51.481	67.385	1.00 30.12	AAAA
MOTA		Й			18.428	52.429	66.495	1.00 35.38	AAAA
MOTA	2830	CD	PRO	354 354	18.276	51.190	68.547	1.00 34.02	AAAA
MOTA	2831	CA	PRO	354 354	17.091	52.129	68.340	1.00 32.25	AAAA
ATOM	2832	CB	PRO	354 354	16.974	52.139	66.833	1.00 44.48	AAAA
ATOM	2833	CG	PRO		17.838	49.736		1.00 34.00	AAAA
ATOM	2834	C	PRO	354	17.829	49.111		1.00 28.28	AAA
ATOM	2835	0	PRO	354	17.484	49.190			TAAA
ATCM	2836	И	TRP	355	17.010	47.818			AAA
ATOM	2837	CA	TRP	355	16.653	47.363			AAAI
ATOM	2838	CB	TRP	355	10.000	- ; . 5 0 5		=	

ATOM	2839	CG	TRP	355	17.844	46.946	71.832	1.00 49.97	AAAA
MOTA	2840	CDZ	TRP	355	18.364	45.622	71.905	1.00 46.60	AAAA
ATOM	2841	_	TRP	355	19.567	45.682	72.639	1.00 54.73	AAAA
ATOM	2842		TEP	355	17.931	44.386	71.419	1.00 46.90	AAAA
MOTA	2843	CDI		355	18.723	47.746	72.507	1.00 56.10	AAAA
	2844	NE1		355	19.765	46.991	72.997	1.00 56.07	AAAA
ATOM	2845	CZ2		355	20.340	44.552	72.897	1.00 55.25	AAAA
MOTA		CZ3		355	18.696	43.267	71.674	1.00 50.74	AAAA
MOTA	2846	CH2	TRP	355	19.887	43.356	72.405	1.00 50.68	AAAA
MOTA	2847	Cus	TRP	355	15.789	47.712	68.776	1.00 33.12	AAAA
ATOM	2848	0	TRP	355 -	15.096	48.705	68.550	1.00 29.41	AAAA
ATOM	2849 2850	N	ARG	356	15.547	46.508	68.263	1.00 23.90	AAAA
ATOM	2851	CA	ARG	356	14.413	46.237	67.387	1.00 23.96	AAAA
MOTA	2852	CB	ARG	356	14.892	46.096	65.935	1.00 22.66	AAAA
MOTA	2853	CG	ARG	356	15.505	47.385	65.393	1.00 29.06	AAAA
MOTA	2854	CD	ARG	356	16.291	47.212	64.108	1.00 28.92	AAAA
MOTA	2855	NE	ARG	356	16.833	48.503	63.686	1.00 24.73	AAAA
MOTA MOTA	2856	cz	ARG	356	17.733	48.668	62.724	1.00 23.57	AAAA
ATOM	2857	NH1	ARG	356	18.209	47.616	62.066	1.00 22.15	AAAA
ATOM	2858		ARG	356	18.153	49.891	62.418	1.00 22.69	AAAA
ATOM	2859	C	ARG	356	13.781	44.944	67.878	1.00 24.89	AAAA
ATOM	2860	Õ	ARG	356	13.785	43.925	67.189	1.00 22.25	AAAA
ATOM	2861	Ŋ	GLY	357	13.231	44:993	69.065	1.00 23.91	AAAA
ATOM	2862	CA	GLY	357	12.631	43.805	69.657	1.00 26.72	AAAA
ATOM	2863	C	GLY	357	11.138	43.671	69.465	1.00 26.90	AAAA
ATOM	2864	Ö	GLY	357	10.536	44.330	68.619	1.00 29.87	AAAA
ATOM	2865	N	GLY	358	10.544	42.797	70.265	1.00 28.22	AAAA
ATOM	2866	CA	GLY	358	9.118	42.561	70.188	1.00 30.96	AAAA
MOTA	2867	С	GLY	358	8.800	41.274	70.920	1.00 30.03	AAAA
ATOM	2868	0	GLY	358	9.626	40.757	71.663	1.00 24.03	AAAA
ATOM	2869	N	GLU	359	7.601	40.747	70.715	1.00 28.34	AAAA
ATOM	2870	CA	GLU	359	7.218	39.509	71.366	1.00 24.37	AAAA
MOTA	2871	CB	GLU	359	5.699	39.372	71.375	1.00 32.52	AAAA
MOTA	2872	,CG	GLU	359	4.981	40:327	72.299	1.00 45.44	AAAA
ATOM	2873	CD	GLU	359	3.472	40.250	72.132	1.00 50.43	AAAA
ATOM	2874		GLU	359	2.924	39.125	72.151	1.00 42.92	AAAA
MOTA	2875		GLU	359	2.839	41.316	71.987	1.00 40.72	AAAA AAAA
MOTA	2876	С	GLU	359	7.804	38.323	70.628	1.00 27.35 1.00 22.94	AAAA
MOTA	2877	0	GLU	359	8.138	38.415	69.449	1.00 22.94	AAAA
ATOM	2878	N	VAL	360	7.944	37.208	71.325 70.672	1.00 13.08	AAAA
MOTA	2879	CA	VAL	360	8.441	36.017 35.188	71.621	1.00 26.71	AAAA
ATOM	2880	СВ	VAL	360	9.300 9.783	33.100	70.912	1.00 20.71	AAAA
MOTA	2881		AAL	360		36.038	72.113	1.00 25.79	AAAA
ATOM	2882		VAL	360	10.486 7.228	35.202	70.197	1.00 25.51	AAAA
MOTA	2883	C	VAL	360	6.442	34.700	71.01	1.00 19.75	AAAA
ATOM	2884	0	VAL	360	7.065	35.094	68.873	1.00 18.48	AAAA
ATOM	2885	N	ARG	361	5.947	34.337	68.3C`	1.00 22.01	AAAA
ATOM	2886	CA	ARG	361	5.988	34.389	66.772	1.00 19.31	AAAA
ATOM	2887	CB	ARG	361 361	5.446	35.671	66.204	1.00 30.86	AAAA
MOTA	2888	CG	ARG	361	5.735	35.730	64.723	1.00 37.95	AAAA
MOTA	2889	CD	ARG	361	7.111	36.148	64.460	1.00 30.73	AAAA
MOTA	2890	NE	ARG ARG	361	7.616	36.275	63.242	1.00 22.89	AAAA
MOTA	2891	CZ	ARG	361	6.851	36.006		1.00 19.02	AAAA
MOTA	2892		ARG	361	8.861	36.704	63.081	1.00 23.47	AAAA
ATOM	2893			361	5.897	32.879	68.714	1.00 26.11	AAAA
ATOM	2894	0	ARG	361	6.926	32.255	68.968	1.00 21.79	AAAA
ATOM	2895	0	ARG LYS	362	4.681	32.338	68.763	1.00 24.89	AAAA
ATOM	2896	11 11	LYS	362	4.479	30.938	69.125	1.00 28.63	AAAA
ATOM	2897	CR		362	2.981	30.570	69.070	1.00 22.91	AAAA
ATOM	2898	CB CG	LYS LYS	362	2.145	31.200	70.168	1.00 50.86	AAAA
ATOM	2399	CD	LYS	362	2.290	32.715	70:157	1.00 57.51	AAAA
ATOM	2900	CE	LYS	362	1.923	33.278	68.799	1.00 50.87	AAAA
ATOM	2901 2902	NZ	LYS	362	2.307	34.683	68.711	1.00 22.99	AAAA
ATCM		C	LYS	362	5.269	30.014	68.202	1.00 16.77	AAAA
ATCM	2903 2904	0	LYS	362	5.808	29.007	68.647	1.00 22.90	AAAA
ATOM	ムブリゼ	~				·	_		

ATOM	2905	N	GLU	363	5.311	30.355	66.913	1.00 25.24	AAAA
ATOM	2906	CA	GLU	363	6.055	29.577	65.910	1.00 26.29	AAAA
ATOM	2907	CB	GLU	363	6.207	30.342	64.608	1.00 33.50	AAAA
ATOM	2908	ĊĠ	GLU	363	4.999	30.639	63.824	1.00 48.73	ሕ ል ሕሕ
ATOM	2909	CD	GLU	363	5.368	31.494	62.638	1.00 42.01	AAAA
ATOM -	2910	OE1	GLU	363	6.299	31.087	61.895	1.00 28.50	AAAA
ATOM .		CE2	GLU	363	4.738	32.558	62.461	1.00 44.91	AAAA
ATOM	2912	c	GLU	363	7.481	29.326	66.349	1.00 19.00	ÁAAÁ
ATOM	2913	ō	GLU	363	8.011	28.218	66.226	1.00 18.66	AAAA
ATOM	2914	23	VAL	364	8.121	30.399	66.790	1.00 20.69	AAAA
ATOM	2915	CA	VAL	364	9.501	30.303	67.219	1.00 23.13	AAAA
ATOM	2916	C3	VAL	364	10.096	31.681	67.510	1.00 16.98	AAAA
ATOM	2917		VAL	364	11.515	31.513	68.010-		AAAA
ATOM	2918		VAL	364	10.082	32.548	66.242	1.00 23.99	AAAA
ATOM	2919	c	VAL	364	9.625	29.415	68.448	1.00 19.28	AAAA
MOTA	2920	ō	VAL	364	10.507	28.548	68.510	1.00 20.17	AAAA -
ATOM	2921	N	LYS	365	8.735	29.600	69.417	1.00 21.11	AAAA
ATOM	2922	CA	LYS	365	8.780	28.768	70.612	1.00 18.15	AAAA
ATOM	2923	CB	LYS	365	7.711	29.210	71.626	1.00 25.22	AAAA
ATOM	2924	CG	LYS	365	7.921	30.611	72.167	1.00 32.99	AAAA
ATOM	2925	CD	LYS	365	6.901	30.949	73.253	1.00 36.09	āAāā
ATOM	2926	CE	LYS	365	7.121	32.357	73.790	1.00 28.99	AAAA
ATOM	2927	NZ	LYS	365	6.178	32.736	74.882	1.00 38.98	AAAA
ATOM	2928	C	LYS	365	8.574	27.305	70.236	1.00 19.49	AAAA
ATOM	2929	0	LYS	365	9.255	26.417	70.758	1.00 22.04	AAAA
ATOM	2930	N	ASP	366	7.635	27.048	69.327	1.00 22.45	AAAA
ATOM	2931	CA	ASP	366	7.386	25.669	68.915	1.00 22.62	AAAA
ATOM	2932	CB	ASP	366	6.173	25.574	67.967	1.00 21.69	AAAA
ATOM	2933	CG	ASP	366	4.870	25.987	68.634	1.00 27.75	AAAA
MOTA	2934	0D1	ASP	366	4.763	25.890	69.881	1.00 31.01	AAAA
MOTA	2935	CD2	ASP	366	3.938	26.382	67.907	1.00 33.20	AAAA
ATOM	2936	C	ASP	366	8.606	25.034	68.237	1.00 24.53	AAAA
ATOM	2937	0	ASP	366	8.924	23.871	68.480	1.00 21.13	AAAA
ATOM	2938	31	THR	367	9.281	25.787	67.380	1.00 26.19	AAAA
MOTA	2939	CA	THR	367	10.462	25.252	66.694	1.00 21.68	AAAA
MOTA	2940	CB	THR	367	11.035	26.301	65.742	1.00 14.56	AAAA
MOTA	2941	0G1	THR	367	10.085	26.545	64.697	1.00 21.76	AAAA
MOTA	2942	CG2	THR	367	12.340	25.825	65.138	1.00 19.83	AAAA
MOTA	2943	Ç	THR	367	11.523	24.822	67.710	1.00 19.02 1.00 21.79	AAAA AAAA
MOTA	. 2944	0	THR	367	12.071	23.717	67.625	1.00 21.79	AAAA
MOTA	2945	H	LEU	368	11.802	25.684	68.683 69.700	1.00 18.42	AAAA
MOTA	2946	CA	LEU	368	12.797	25.348	70.560	1.00 21.02	AAAA
MOTA	2947	CB	LEU	368	13.148	26.569 27.518	69.959	1.00 17.34	AAAA
MOTA	2948	CG.	LEU	368	14.206	26.758	69.817	1.00 17.43	AAAA
ATOM	2949		LEU	368	15.525 13.756	28.041	68.593	1.00 19.49	AAAA
ATOM	2950	D2		368 368	12.361	24.189	70.589	1.00 23.17	AAAA
MOTA	2951	÷	LEU	368	13.203	23.420	71.052	1.00 24.81	AAAA
ATOM	2952	er M	LEU	369	11.059	24.055	70.839	1.00 23.97	AAAA
MOTA	2953 2954	И СА	GLU	369	10.597	22.929	71.653	1.00 19.36	AAAA
ATOM	2955	CE	GLU	369	9.127	23.113	72.063	1.00 21.81	AAAA
ATOM	2956	CG	GLU	369	8.913	24.225	73.100	1.00 40.15	AAAA
ATOM ATOM	2957	CD	GLU	369	7.450	24.416	73.487	1.00 49.38	AAAA
ATOM	2958	DE1		369	6.806	23.429	73.905	1.00 43.26	AAAA
ATOM	2959		GLU	369	6.948	25.558	73.382	1.00 57.31	AAAA
	2960	C .	GLU	369	10.778	21.623	70.859	1.00 24.29	AAAA
ATOM	2961		GLU	369	11.172	20.605	71.420	1.00 25.96	AAAA
ATOM	2962	N.	LYS	370	10.488	21.643	69.560	1.00 22.98	AAAA
ATOM	2963	CA.	LYS	370	10.665	20.437	68.746	1.00 23.19	AAAA
ATOM	2964	CB	LYS	370	10.051	20.596	67.347	1.00 26.83	AAAA
atom atom	2965	CG	LYS	370	8.537	20.461	67.287	1.00 36.68	AAAA
ATOM	2966	CD	LYS	370	8.056	20.431	65.832	1.00 39.85	AAAA
ATOM	2967	CE	LYS	370	6.567	20.105	65.740	1.00 56.23	aaaa
ATOM	2968	:IZ	LYS	370	6.082	19.996	64.326	1.00 56.10	AAAA
ATOM	2969	c	LYS	370	12.148	20.123	68.602	1.00 31.63	AAAA
ATOM	2970	5	LYS	370	12.549	18.958	68.587	1.00 36.88	AAAÁ
	· -	-					-		

ATOM	2971	N	ALA	371	12.961	21.170	68.491	1.00 26.25	AAAA
ATOM	2972	CA	ALA	371	14.407	21.009	68.360	1.00 27.33	AAAA
ATOM	2973	СВ	ALA	371	15.079	22.370	68.188	1.00 23.70	AAAA
ATOM	2974	c	ALA	371	14.989	20.308	69.581	1.00 26.74	AAAA
ATOM	2975	Ö	ALA'	371	15.892	19.482	69.452	1.00 29.52	AAAA
ATOM	2976	Ŋ	ALA	372	14.484	20.652	70.764	1.00 24.83	AAAA
ATOM	2977	CA	ALA	372	14.959	20.055	72.012	1.00 34.24	AAAA
ATOM	2978	CB	ALA	372	14.305	20.750	73.214	1.00 37.17	AAAA
ATOM	2979	С	ALA	.372	14.663	18.564	72.061	1.00 45.62	AAAA
ATOM	2980	0	ALA	372	15.563	17.741	72.280	1.00 35.52	AAAA AAAA
MOTA	2981	N	ALA	373	13.394	18.216	71.869	1.00 44:50	•
MOTA	2982	CA	ALA	373	13.004	16.813	71.892	1.00 49.88	AAAA AAAA
MOTA	2983	CB	ALA	373	11.506	16.681	71.628	1.00 49.32 1.00 44.64	AAAA
ATOM	2984	С	ALA	373	13.807	16.072	70.825	1.00 58.19	AAAA
MOTA	2985	0	ALA	373	14.669	15.250	71.201 69.626	1.00 41.63	AAAA
MOTA	2986		ALA	373	13.591	16.337	49.242	1.00 13.03	SOLV
HETATM	2987	OH2		1	36.368 23.107	43.907 30.584	59.802	1.00 11.42	SOLV
HETATM	2988		TAW	2	20.594	33.744	61.457	1.00 14.73	SOLV
HETATM			WAT	3 4	31.359	16.551	51.590	1.00 19.84	SOLV
HETATM	2990	OH2		5	30.389	18.140	45.769	1.00 19.94	SOLV
HETATM	2991		TAW	6	16.925	41.748	56.551	1.00 13.33	SOLV
HETATM	2992	OH2		7	28.448	16.084	62.316	1.00 14.08	SOLV
HETATM HETATM	2004		WAT	· 8	40.375	38.476	55.678	1.00 19.10	SOLV
HETATM			WAT	9	18.455	29.667	54.797	1.00 18.81	SOLV
HETATM	2995		WAT	10	26.305	18.390	59.507	1.00 16.65	SOLV
HETATM	2997		WAT	11	50.145	32.063	58.142	1.00 16.53	SOLV
HETATM	2998		TAW	12	45.935	30.996	40.672	1.00 25.08	SOLV
HETATM	2999		WAT	13	26.358	43.110	74.179	1.00 22.91	SOLV
HETATM			WAT	14	48.727	24.720	56.917	1.00 25.49	SOLV
HETATM			WAT	15	30.244	18.663	50.165	1.00 25.78	SOLV
HETATM		OH2	TAW	16	10.615	28.799	63.631	1.00 22.40	SOLV
HETATM		OH2	WAT	17	18.401	20.018	62.704	1.00 21.46	SOLV
HETATM	3004	OH2	WAT	18	22.195	47.791	60.896	1.00 26.19 1.00 20.38	SOLV
HETATM	3005		TAW	19	3.278	32.141	65.350	1.00 20.38	SOLV
HETATM			TAW	20	23.643	22.897	59.512 48.818	1.00 21.27	SOLV.
HETATM			TAW	. 21	50.287 44.725	23.101 34.256	46.541	1.00 18.74	SOLV
HETATM			WAT	22	8.346	30.527	49.922	1.00 22.33	SOLV
HETATM			TAW	23	39.855	33.795	67.390	1.00 20.43	SOLV
HETATM			TAW	24 25	7.827	32.763	57.779	1.00 19.24	SOLV
HETATM			WAT	26	45.388	34.567	36.246	1.00 20.86	SOLV
HETATM HETATM	3012		WAT	27	47.636	32.244	33.388	1.00 20.41	SOLV
HETATM	3013		WAT	28	32.514	35.684	41.278	1.00 24.76	SOLV
HETATM	3015		WAT		26.188	15.341	61.913	1.00 19.63	SOLV
HETATM	3016		TAW	30	14.957	43.169	56.333	1.00 23.80	SOLV
HETATM	3017		WAT	31	24.483	43.556	55.704	1.00 27.25	SOLV
HETATM	3018		TAW	32	41.141	16.376	48.456	1.00 25.99	SOLV
HETATM			WAT	33	23.104	17.625	54.086	1.00 26.37	SOLV
HETATM	3020		WAT	34	51.301	28.602	57.694	1.00 32.78	SOLV
HETATM	3021	OH2	WAT	35	51.376	29.469	53.156	1.00 24.27	SOLV SOLV
HETATM	3022	OH2	WAT	36	12.518	22.131	49.816	1.00 23.60	SOLV
HETATM	3023	OH2	WAT	37	6.521	27.442	50.861	1.00 25.87 1.00 19.87	SOLV
HETATM	3024	OH2	WAT	38	30.390	33.757	34.190	1.00 19.87	SOLV
HETATM	3025		WAT	39	8.328	29.586	62.062 30.724	1.00 32.61	SOLV
HETATM	3026		TAW	40	30.180	24.235		1.00 27.52	SOLV
HETATM	3027		TAW	41	44.521	30.663	38.395 41.186	1.00 27.32	SOLV
HETATM	3028		TAW	42	30.981	18.043	73.830	1.00 29.36	SOLV
HETATM	3029		TAW	43	14.632	37.127	72.230	1.00 21.87	
HETATM	3030		TAW	44	39.332	25.953 37.592	51.896	1.00 39.62	SOLV
HETATM	3031		TAW	45	7.597 15.027	18.079	54.827	1.00 26.65	SOLV
HETATM	3032		WAT	46	11.076	45.493	66.435	1.00 38.18	SOLV
HETATM	3033		WAT	47	42.124	18.055	37.233	1.00 28.62	SOLV
HETATM	3034		TAW	48 49	48.736	25.764	64.149	1.00 31.88	SOLV
HETATM			WAT		50.383	27.254	54.972	1.00 24.36	SOLV
HETATM	2030	UMZ	WAT	J (20.00		-		

					40 (50	36 035	68.226	1.00 33.89	SOLV
HETATM		CH2		51	48.659	36.025			
HETATM	3038	OH2	TAW	52	36.998	27.228	71.440	1.00 21.03	SOLV
HETATM		OH2	WAT	53	41.303	16.309	55.307	1.00 32.23	SOLV
HETATM		OH2		54	33.242	39.524	49.454	1.00 29.77	SOLV
					45.004	25.973	35.031	1.00 21.59	SOLV
HETATM		OH2		55					-
HETATM	3042	OH2	WAT	56	19.039	25.829	45.793	1.00 33.48	SOLV
HETATM		OH2	ጥልመ	57	17.922	35.542	50.154	1.00 37.51	SOLV
		CH2		58	10.409	26.864	73.166	1.00 26.54	SOLV
HETATM							59.408	1.00 20.83	SOLV
HETATM	3045	OH2	WAT	59	11.835	22.805			
HETATM	3046	OH2	TAW	60	18.254	48.699	53.224	1.00 28.41	SOLV
HETATM		OH2	UAT	61	10.426	26.647	60.447	1.00 32.72	SOLV
		OH2		62	21.304	55.086	63.510	1.00 28.84	SOLV
HETATM						51.211	45.469	1.00 32.48	SOLV
HETATM		OH2		63	32.532				SOLV
HETATM	3050	OH2	TAW	64	22.658	61.079	57.420	1.00 27.32	
HETATM		OH2	TAW	65	16.734	24.334	74.721	1.00 27.44	SOLV
		OH2		66	32.758	37.824	54.391	1.00 25.07	SOLV
HETATM					11.142	25.859	49.706	1.00 29.66	SOLV
HETATM		OH2	WAT	67					SOLV
HETATM	3054	OH2	WAT	68	24.192	15.261	53.236	1.00 30.21	
HETATM		OH2	TAV	69	19.816	17.916	66.357	1.00 30.50	SOLV
HETATM		OH2		70	50.347	23.975	53.197	1.00 28.08	SOLV
					50.258	30.918	51:113	1.00 20.19	SOLV
HETATM		OH2		71					SOLV
HETATM	3058	OH2	WAT	72	21.047	17.624	68.693	1.00 41.23	
HETATM		OH2	VAT	73	26.782	33.756	49.995	1.00 25.80	SOLV
		OH2		74	12.570	43.844	64.441	1.00 31.03	SOLV
HETATM					35.555	41.287	50.852	1.00 24.03	SOLV
HETATM		OH2		75	_				SOLV
HETATM	3062	OH2	WAT	76	27.764	18.231	61.827	1.00 18.28	
HETATM		OH2	WAT	77	26.715	29.236	38.391	1.00 23.18	SOLV
HETATM		OH2		78	21.461	23.245	48.872	1.00 23.80	SOLV
					49.246	28.263	65.477	1.00 21,52	SOLV
HETATM		OH2		79					SOLV
HETATM	3066	OH2	WAT	80	31.785	13.301	69.606	1.00 31.11	
HETATM		OH2	WAT	81	49.811	34.740	59.229	1.00 31,76	SOLV
HETATM			WAT	82	45.670	33.188	42.470	1.00 23.13	SOLV
HETATM	3000				9.408	39.751	55.872	1.00 31.53	SOLV
HETATM		OH2		83				1.00 37.32	SOLV
HETATM	3070	OH2	WAT	84 .	35.166	35.878	29.899		
HETATM		OH2	WAT	85	41.927	22.970	73.694	1.00 44.07	SOLV
HETATM			WAT	86	22.125	34.577	49.199	1.00 44.65	SOLV
				87	43.984	33.541	37.965	1.00 24.88	SOLV
HETATM			WAT				56.312	1.00 34.85	SOLV
HETATM	3074	OH2	WAT	88	11.997	17.962			
HETATM	3075	OH2	WAT	89	42.194	14.737	59.766	1.00 25.91	SOLV
HETATM			TAW	90	49.313	24.200	41.684	1.00 29.29	SOLV
			WAT	91	48.504	33.595	61.519	1.00 30.32	SOLV
HETATM					24.773	18.356	33.365	1.00 53.13	SOLV
HETATM			MAT	92					SOLV
HETATM	3079	OH2	TAW	93	35.160	35.656	47.470	1.00 41.41	
HETATM		OH2	WAT	94	44.682	36.658	39.962	1.00 29.24	SOLV
			WAT	95	9.576	41.033	52.549	1.00 51.83	·SOLV
HETATM					47.199	20.112	42.102	1.00 40.39	SOLV
HETATM			$\mathbf{T}\mathbf{A}W$	`6				1.00 37.03	SOLV
HETATM	3083	OH2	TAW	7ر ٠	49.254	26.331	59.641	1.00 37.03	300
HETATM	3084		WAT	•					20111
		OH2		- 0	26.808	37.600	38.172	1.00 28.74	SOLV
HETAIM				_8			38.172	1.00 28.74	SOLV SOLV
	3085	OH2	TAW	99	40.749	14.572	38.172 64.635	1.00 28.74 1.00 33.42	SOLV
HETATM	3085 3086	OH2 OH2	WAT WAT	99 100	40.749 24.850	14.572 44.161	38.172 64.635 47.775	1.00 28.74 1.00 33.42 1.00 27.89	SOLV SOLV
HETATM	3085 3086	OH2 OH2 OH2	TAW TAW TAW	99	40.749 24.850 34.326	14.572 44.161 42.063	38.172 64.635 47.775 46.714	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22	SOLV SOLV SOLV
HETATM HETATM	3085 3086 3087	OH2 OH2 OH2	TAW TAW TAW	99 100 101	40.749 24.850	14.572 44.161	38.172 64.635 47.775	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 30.77	SOLV SOLV SOLV
HETATM HETATM HETATM	3085 3086 3087 3088	OH2 OH2 OH2 OH2	TAW TAW TAW TAW	99 100 101 102	40.749 24.850 34.326 30.226	14.572 44.161 42.063 34.544	38.172 64.635 47.775 46.714 52.026	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 30.77	SOLV SOLV SOLV
HETATM HETATM HETATM HETATM	3085 3086 3087 3088 3089	OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW	99 100 101 102 103	40.749 24.850 34.326 30.226 47.824	14.572 44.161 42.063 34.544 39.054	38.172 64.635 47.775 46.714 52.026 78.097	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 30.77 1.00 52.16	SOLV SOLV SOLV SOLV
HETATM HETATM HETATM HETATM HETATM	3085 3086 3087 3088 3089 3090	OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW	99 100 101 102 103 104	40.749 24.850 34.326 30.226 47.824 19.665	14.572 44.161 42.063 34.544 39.054 18.953	38.172 64.635 47.775 46.714 52.026 78.097 47.438	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 30.77 1.00 52.16 1.00 51.70	SOLV SOLV SOLV SOLV SOLV
HETATM HETATM HETATM HETATM HETATM	3085 3086 3087 3088 3089 3090	OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW	99 100 101 102 103	40.749 24.850 34.326 30.226 47.824 19.665 46.857	14.572 44.161 42.063 34.544 39.054 18.953 36.525	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 30.77 1.00 52.16 1.00 51.70 1.00 23.65	SOLV SOLV SOLV SOLV SOLV SOLV
HETATM HETATM HETATM HETATM HETATM HETATM	3085 3086 3087 3088 3089 3090 3091	OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104	40.749 24.850 34.326 30.226 47.824 19.665	14.572 44.161 42.063 34.544 39.054 18.953	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 30.77 1.00 52.16 1.00 51.70 1.00 23.65 1.00 37.56	SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3085 3086 3087 3088 3089 3090 3091 3092	OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 30.77 1.00 52.16 1.00 51.70 1.00 23.65	SOLV SOLV SOLV SOLV SOLV SOLV
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3085 3086 3087 3088 3089 3090 3091 3092 3093	OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3090 3091 3092 3093 3094	OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 39.55	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3090 3091 3092 3093 3094	OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 42.61	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095	OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 37.56 1.00 46.95 1.00 42.61 1.00 31.59	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096	OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.624	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.591	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 42.61	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097	OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH2	TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.624 51.398	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.591 26.073	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 42.61 1.00 31.59 1.00 49.09	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3091 3092 3093 3095 3096 3097 3098	OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110 111	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.624 51.398 26.174	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.591 26.073 33.692	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043 33.551	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 37.56 1.00 46.95 1.00 39.55 1.00 39.55 1.00 42.61 1.00 31.59 1.00 49.09 1.00 36.61	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3091 3092 3093 3095 3096 3097 3098	OH2	TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.624 51.398 26.174 23.545	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.591 26.073 33.692 20.203	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043 33.551 53.001	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 37.56 1.00 39.55 1.00 46.95 1.00 31.59 1.00 49.09 1.00 36.61 1.00 24.34	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099	OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110 111	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.624 51.398 26.174	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.591 26.073 33.692	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043 33.551 53.001 57.697	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 46.95 1.00 37.56 1.00 39.55 1.00 49.09 1.00 36.61 1.00 24.34 1.00 33.65	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3091 3092 3093 3095 3096 3097 3098 3099 3100	OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.624 51.398 26.174 23.545 9.083	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.591 26.073 33.692 20.203 42.965	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043 33.551 53.001 57.697	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 46.95 1.00 39.55 1.00 31.59 1.00 36.61 1.00 24.34 1.00 33.65 1.00 33.65	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3091 3092 3093 3095 3095 3099 3100 3101	OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.398 26.174 23.545 9.083 8.442	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.073 33.692 20.203 42.965 39.898	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043 33.551 53.001 57.697 64.594	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 46.95 1.00 39.55 1.00 31.59 1.00 36.61 1.00 24.34 1.00 33.65 1.00 33.65	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3091 3092 3093 3095 3095 3099 3100 3101	OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.624 51.398 26.174 23.545 9.083	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.591 26.073 33.692 20.203 42.965	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043 33.551 53.001 57.697	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 46.95 1.00 37.56 1.00 39.55 1.00 49.09 1.00 36.61 1.00 24.34 1.00 33.65	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV
HETATM	3085 3086 3087 3088 3089 3091 3092 3093 3095 3095 3099 3100 3101	OH2	TAW TAW TAW TAW TAW TAW TAW TAW TAW TAW	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	40.749 24.850 34.326 30.226 47.824 19.665 46.857 48.069 15.553 44.026 8.139 50.398 26.174 23.545 9.083 8.442	14.572 44.161 42.063 34.544 39.054 18.953 36.525 19.460 56.850 19.119 42.064 36.073 33.692 20.203 42.965 39.898	38.172 64.635 47.775 46.714 52.026 78.097 47.438 46.232 67.360 61.838 70.671 65.674 65.779 61.043 33.551 53.001 57.697 64.594	1.00 28.74 1.00 33.42 1.00 27.89 1.00 42.22 1.00 52.16 1.00 51.70 1.00 23.65 1.00 46.95 1.00 46.95 1.00 39.55 1.00 31.59 1.00 36.61 1.00 24.34 1.00 33.65 1.00 33.65	SOLV SOLV SOLV SOLV SOLV SOLV SOLV SOLV

HETATM	2103	042	WAT	117	15.41	17 38.438	50.473	1.00 34.46	SOLV
HETATM	3104	OH2	WAT	118	40.75		29.206	1.00 29.12	SOLV
HETATM	3105	OH2	WAT	119	27.71	17 18.542	46.553	1.00 28.17	SOLV
							56.845	1.00 38.56	SOLV
HETATM	3106	OH2	WAT	120	18.61				
HETATM	3107	OH2	WAT	121	43.19	8 31.377	72.139	1.00 26.31	SOLV
					44.18		33.802	1.00 29.81	SOLV
HETATM			TAW	122					
HETATM	3109	OH2	WAT	123	50.73	6 40.909	58.456	1.00 32.40	SOLV
					31.30		31.742	1.00 30.84	SOLV
HETATM		OHZ	WAT	124					
HETATM	3111	OH2	WAT	125	36.89	5 21.264	34.198	1.00 34.67	SOLV
				126	47.47		67.427	1.00 34.35	SOLV
HETATM			TAW						
HETATM	3113	OH2	WAT	127	. 7.17	78 25.936	64.063	1.00 31.77	SOLV
HETATM	2114	OU 2	WAT	128	36.36	66.647	54.021	1.00 36.88	SOLV
							30.348	1.00 26.61	SOLV
HETATM	3115	OH2	WAT	129	42.48				
HETATM	3116	OH2	TAW	130	8.43	34.383	50.442	1.00 37.45	SOLV
					37.64		48.946	1.00 37.33	SOLV
HETATM			TAW	131					
HETATM	3118	OH2	WAT	132	50.27	73 41.645	63.380	1.00 37.33	SOLV
HETATM			WAT	133	7.53	18 26.633	61.571	1.00 45.42	SOLV
									SOLV
METATM	3120	OH2	$\mathbf{T}\mathbf{A}\mathbf{W}$	134	31.48		72.538	1.00 28.02	
HETATM	3121	OH2	TAW	135	41.50	16.604	58.054	1.00 32.78	SOLV
TID TATE	2122			136	45.89		55.185	1.00 43.47	SOLV
HETATM			TAW						
HETATM	3123	OH2	WAT	137	16.30	0 33.614	49.519	1.00 30.37	SOLV
HETATM			WAT		51.14	18 36.946	55.148	1.00 46.34	SOLV
									SOLV
HETATM	3125		WAT	139			50.892	1.00 38.27	
HETATM	3126	OH2	TAW	140	21.60	3 54.580	68.690	1.00 33.10	SOLV
					10.19		60.325	1.00 30.24	SOLV
MTATAH			TAW	141					
HETATM	3128	OH2	WAT	142	16.95	18.120	66.901	1.00 40.85	SCLV
HETATM	2120		WAT	143	4.94	3 24.912	51.199	1.00 49.13	SOLV
								1.00 30.72	SOLV
HETATM	3130	OH2	TAW	144	10.73		58.177		
HETATM		OH2	TAW	145	30.81	L5 43.398	36.040	1.00 42.23	SOLV
					21.76		46.695	1.00 28.31	SOLV
HETATM			WAT	146					
HETATM	3133	OH2	WAT	147	51.78	38 33.122	50.887	1.00 26.15	SOLV
HETATM			WAT	148	24.53	31 44.741	72,420	1.00 27.99	SOLV
							60.422	1.00 38.20	· SOLV
HETATM	3135	OH2	WAT	149	50.93				
HETATM	3136	OH2	WAT	150	24.86	50 47.932	61.067	1.00 18.89	SOLV
neinii	2127			151	27.33		35.642	1.00 33.58	SOLV
HETATM	313/		TAV!						
HETATM	3138	OH2	TAW	152	38.68	30 35.535	35.974	1.00 26.89	SOLV
HETATM	2120	OH2	WAT	153	24.44	11 16.097	33.317	1.00 48.33	SOLV
					20.34		73.416	1.00 36.28	SOLV
HETATM		OHZ	TAW	154					
HETATM	3141	OH2	WAT	155	49.76	55 37.948	74.801	1.00 48.41	SOLV
TIPE MA	33.40		TAW	156	34.32	29 31.169	47.547	1.00 25.33	SOLV
HETATM	2142						_		SOLV
HETATM	3143	OH2	TAW	157	43.02	28 24.554	72.536	1.00 41.54	
HETATM	3144	OH2	WAT	158	39.88	38 15.082	42.035	1.00 28.76	SOLV
					41.88		73.179	1.00 51.03	SOLV
HETATM			WAT	159					
HETATM	3146	OH2	TAW	160	22.96	52 49.969	58.518	1.00 35.04	SOLV
HETATM			TAW	161	14.69	96 15.261	68.016	1.00 55.47	SOLV
							64.866	1.00 42.00	SOLV
HETATM		QHZ	TAW	162	14.9				
HETATM	3149	OH2	WAT	163	30.60	08 49.029	52.612	1.00 47.32	. SOLV
*********	2150		TAW	164	52.50		57.612	1.00 36.71	SOLV
HETATM									SOLV
HETATM	3 151	OH2	WAT	165	23.69		77.729	1.00 32.22	
HETATM		OH2	TAW	166	36.97	71 59.046	63.272	1.00 43.05	SOLV
							52.876	1.00 33.66	SOLV
HETATM	3153	OHZ	TAW	167	46.05				
HETATM	3154	OH2	WAT	168	42.78	30 49.151	58.106	.1.00 44.63	SOLV
			TAW	169	15.10	00 44.506	72.183	1.00 45.43	SOLV
HETATM									SOLV
HETATM	3156	OH2	WAT	170	31.67			1.00 34.51	
HETATM	3157		WAT	171	25.33	36 45.674	45.578	1.00 55.85	SOLV
RETAIN	3131						49.018	1.00 32.73	SOLV
HETATM			WAT	172	17.48				
HETATM		OH2	WAT	173	26.13	12 18.147	31.404	1.00 49.94	SOLV
					45.8		70.985	1.00 32.89	SOLV
HETATM	3700		TAW	174					SOLV
HETATM	3161	CH2	WAT	175	34.5		33.278	1.00 42.20	
			WAT	176	16.33		50.466	1.00 40.74	SOLV
HETATM							74.689	1.00 38.56	SOLV
HETATM	3163		TAV:	177	31.40				
HETATM		OH2	TAW	178	50.9	71 27.079	67.130	1.00 44.49	SOLV
				179	7.9:		54.691	1.00 42.84	SOLV
HETATM	2102		TAW					1.00 35.99	SOLV
HETATM	3166	OH2	TAW	180	33.49		73.612		
НЕТАТМ	3167		WAT	181	26.0	16 19.583	44.954	1.00 51.31	SOLV
			WAT	182	40.1		74.920	1.00 43.64	SOLV
	3168	mu)	TAL A TT	1 24 /	44 U . 1	37 17.020	12.240	T	

WO 01/18045 PCT/US00/24700

	3160	053	WAT	183	10.441	42.659	62.744	1.00 34.51	SOLV
HETATM			TAW	184	2.095	34.482	65.810	1.00 36.49	SOLV
HETATM		OH2	_	185	45.749	18.286	51.615	1.00 28.19	SOLV
HETATM			WAT	186	25.771	38.332	76.707	1.00 45.53	SOLV
HETATM	31/2			187	7.228	40.382	57.542	1.00 48.91	SOLV
HETATM			TAW		42.972	52.824	67.739	1.00 39.99	SOLV
HETATM			TAW	188	20.137	13.189	73.277	1.00 44.91	SOLV
HETATM			TAW	189	_	19.193	47.581	1.00 52.88	SOLV
HETATM			TAW	190	48.945	34.547	47.665	1.00 49.15	SOLV
НЕТАТМ	3177		TAW	191	14.549	20.567	26.536	1.00 42.23	SOLV
HETATM			TAW	192	31.765		74.222	1.00 32.10	SOLV
METATM			WAT	193	9.784	39.303	52.375	1.00 50.98	SOLV
HETATM			WAT	194	28.865	12.481	70.409-	1.00 52.43	SOLV
HETATM			TAW	195	24.030	12.804	50.698	1.00 43.03	SOLV
HETATM	3182		WAT	196	47.209	39.536	27.306	1.00 41.11	SOLV
HETATM	3183		WAT	197	35.618	18.114	43.853	1.00 48.20	SOLV
HETATM			TAW	198	23.625	48.145	54.185	1.00 34.99	SOLV
HETATM			WAT	199	37.090	59.044	59.080	1.00 34.55	SOLV
HETATM	3186		TAW	200	34.478	12.208	76.228	1.00 33.95	SOLV
HETATM			WAT	201	22.142	29.583	53.973	1.00 33.93	SOLV
HETATM			TAW	202	13.608	42.619		1.00 40.44	SOLV
HETATM			TAW	203	42.647	18.701	72.526	1.00 33.84	SOLV
HETATM			WAT	204	37.005	35.993	77.480	1.00 34.82	SOLV
HETATM			TAW	205	34.154	20.512	33.327	1.00 49.58	SOLV
HETATM	3192		WAT	206	37.264	57.546	47.642	1.00 49.38	SOLV
HETATM			WAT	207	17.924	35.195	79.003	1.00 35.37	SOLV
HETATM			WAT	208	51.172	31.581	62.378	1.00 39.95	SOLV
HETATM			TAU	209	50.503	36.726	79.224	1.00 52.08	SOLV
HETATM	3196		TAW	210	18.382	13.162	63.852	1.00 32.08	SOLV
HETATM	3197		WAT	211	27.245	8.351	55.199 59.540	1.00 39.12	SOLV
HETATM	3198		TAW	212	18.354	13.545	63.388	1.00 36.69	SOLV
HETATM	3199		WAT	213	49.088	51.744	50.871	1.00 30.03	SOLV
HETATM			WAT	214	23.251	33.160	50.651	1.00 38.63	SOLV
HETATM	3201		WAT.	215	12.989	35.073	43.239	1.00 37.93	SOLV
HETATM			TAN	216	24.414	44.460	73.117	1.00 34.17	SOLV
HETATM	3203		TAW	217	24.690	47.590	81.360		SOLV
HETATM	3204		WAT	218	19.844	17.949	74.247	1.00 37.83	SOLV
HETATM	3205		WAT	219	40.169	27.215	73.171	1.00 49.20	SOLV
HETATM	3206		WAT	220	38.737	39.516		1.00 45.57	SOLV
HETATM			TAW	221	50.628	21.408	46.879 75.660	1.00 43.37	SOLV
HETATM			TAW	222	35.436	43.288	55.285	1.00 37.33	SOLV
HETATM			TAW	223	34.390	16.963	34.475	1.00 35.10	SOLV
HETATM	3210		TAW	224	21.800	35.454	46.787	1.00 40.29	SOLV
HETATM	3211		TAW	225	15.751	40.989	66.295	1.00 32.73	SOLV
HETATM	3212		WAT	226	23.844	48.662	55.117	1.00 49.99	SOLV
HETATM	3213		TAW:		47.225	20.562	50.565	1.00 49.99	SOLV
HETATM	3214	OH2	TAW	228	23.426	19.272	30.363	1.00 30.07	5524

					1.	iguic 17-1	l .					
					Residue	# X	Y	Z	occ.	В	Segme	nt ID
ATOM	1	СВ	ALA	A	2	43.739	36.862	75.052	1.00	64.01	6	
ATOM	2	c	ALA		2	44.405	38.106	72.971	1.00	60.02	6	
ATOM	3	ō	ALA		2	43.251	38.536	72.908	1.00	57.94	8	
	4	N	ALA		2	46.142	37.179	74.497		62.88	7	
ATOM		CA	ALA		2	44.776	36.966	73.923		63.02	6	•
ATOM	5				3	45.398	38.588	72.233		55.40	7	
ATOM	6	N	LYS				39.671	71.287		53.02	6	
ATOM	7	CA	LYS		3	45.196		70.421		53.02	6	
ATOM	8	CB	LYS		3	46.443	39.830			57.36	6	
ATOM	9	CG	LYS			47.703	40.093	71.217		60.94	6	
MOTA	10	CD	LYS		3	48.941	39.976	70.349		63.48	6	
ATOM	11	CE	LYS		3	48.909	40.957	69.196			7	
ATOM	12	NZ	LYS		3	50.075	40.765	68.294		66.87		
MOTA	13	С	LYS		3	43.986	39.401	70.399		50.49	6	
MOTA	14	0	LYS		3	43.691	38.255	70.063		52.50	8	
MOTA	15	N	VAL		4	43.281	40.464	70.034		45.96	7	
MOTA	16	CA	VAL	Α	4	42.122	40.352	69.167		41.16	6	
ATOM	17	CB	VAL		4	40.983	41.272	69.638		41.53	6	
ATOM	18	CG1	VAL	Α	4	39.734	41.028	68.797		40.07	6	
MOTA	19	CG2	VAL	A.	. 4	40.705	41.033	71.115		38.31	6	
MOTA	20	С	VAL	Ä	4	42.519	40.796	67.796		39.96	6	
MOTA	21	0	VAL	Α	4	43.123	41.914	67.645		39.15	8	
MOTA	22	N	LYS	A	5	42.486	39.916	66.807		36.24	7	
MOTA	23	CA	LYS	A	5	42.956	40.186	65.449		35.66	6	
ATOM	24	CB	LYS	Α	5	43.930	39.088	65.024		37.33	6	
ATOM	25	ĊG	LYS		5	45.197	38.978	65.860	1.00	38.24	6	•
ATOM	26	CD	LYS		['] 5	46.113	40.179	65.659	1.00	35.41	6	
ATOM	27	CE	LYS		5	47.436	39.957	66.369	1.00	37.46	6	
ATOM	28	NZ	LYS		5	48.345	41.121	66.245	1.00	35.63	7	
ATOM	29	C	LYS		5	41.840	40.254	64.415	1.00	34.40	6	
ATOM	30	ŏ	LYS		5	40.788	39.641	64.588	1.00	33.92	8	
ATOM	31	N	LEU		6	42.082	40.983	63.329	1.00	32.52	7	
ATOM	32	CA	LEU		6	41.097	41.094	62.253	1.00	33.64	6	
ATOM	33	СВ	LEU		6	40.589	42.532	62.114	1.00	31.83	6	
ATOM	34	CG	LEU		6	39.346	42.823	61.248	1.00	32.93	6	
ATOM	35		LEU		6	39.356	44.295	60.899	1.00	28.95	6	
ATOM	36		LEU		6	39.336	42.031	59.964		32.87	6	
	37	C	LEU		6	41.802	40.721	60.955		35.09	6	
MOTA	38	Ö	LEU		6	42.631	41.491	60.468		36.93	8	
MOTA	39	N	ILE		7	41.494	39.561	60.382		35.52	7	
ATOM	40	CA	ILE			42.145	39.199	59.129		35.14	6	
ATOM	41	CB	ILE		7	42.062	37.711	58.850		33.68	6	
ATOM	42		ILE		7	42.731	37.409	57.517	1.00	32.87	6	
ATOM	43		ILE		7	42.746	36.941	59.975		33.32	6	
ATOM	44		ILE		7 .	42.744	35.451	59.755		35.09	6	
MOTA	45		ILE			41.487				37.13	6	
MOTA			ILE		7	40.258	39.933	57.855		35.21	8	
MOTA	46 47	N	GLY		8	42.304	40.563	57.124		37.25	7	
MOTA		CA	GLY		8	41.771	41.305	55.994		38.69	6	
ATOM 1	48					42.809	41.939	55.079		39.73	6	
ATOM	49	C	GLY		8	44.015	41.827	55.321		39.21	8	
ATOM	50	0	GLY		8			54.033		39.41	7	
MOTA	51	N	THR		9	42.335	42.622 43.268	53.057		38.69	6	
ATOM	52	CA	THR		9	43.212		52.390		37.27	6	
MOTA	53	CB	THR		9	44.132	42.210	51.230		36.82	8	
ATOM	54	0G1			9	44.754	42.771			38.59		
ATOM	55		THR		9	43.332	40.972	52.001			_	
ATOM	56	С	THR		9	42.447	44.045	51.970		38.60		
ATCM	57	0	THR		9	41.434	43.569	51.452		37.30		
MOTA	58	N	LEU		10	42.939	45.238	51.628		38.14		
MOTA	59	CA	LEU	Α	10	42.304	46.077	50.609		39.39		
ATOM	60	CB	LEU	A	10	43.026	47.418	50.456		38.98		
ATOM	€1	CG	LEU		10	42.836	48.506	51.510		39.68		
ATOM	62		LEU		10	41.343	48.830	51.594		40.22		
ATOM	63		LEU		10	43.382	48.057	52.857		40.11		
ATOM	64	c	LEU		10	42.238	45.432	49.239		41.66		
'ATOM	65	Ö	LEU		10	41.462	45.863	48.381		42.08		
ATOM	55	N	ASP		11	43.052	44.408	49.025	1.00	43.51	7	•
A+ C11		• •				–		_				

	67 CA ASP A 11	43.071	43.731 4		1.00 47.27	6
ATOM	0, 011 1155	44.250			1.00 51.03	6
ATOM	68 CB ASP A 11 69 CG ASP A 11	45.579			1.00 54.10	6 8
ATOM	70 OD1 ASP A 11	45.944			1.00 55.93	8
ATOM	71 OD2 ASP A 11	46.255			1.00 57.79 1.00 46.36	5
ATOM	72 C ASP A 11	41.756			1.00 43.49	8
ATOM	73 O ASP A 11	41.472			1.00 46.80	7
ATOM ATOM	74 N TYR A 12	40.954			1.00 45.92	6
ATOM	75 CA TYR A 12	39.654			1.00 43.32	6
ATOM	76 CB TYR A 12	38.953		49.030 50.390	1.00 38.82	6
ATOM	77 CG TYR A 12	39.358		51.775	1.00 37.95	6
ATOM	78 CD1 TYR A 12	39.531	40.720 39.560	52.476	1.00 36.18	6
ATOM	79 CE1 TYR A 12	39.869	39.300	49.721	1.00 37.69	6
ATOM	80 CD2 TYR A 12	39.533	38.316	50.415	1.00 35.83	6
ATOM	81 CE2 TYR A 12	39.868 40.032	38.365	51.787-	1.00 34.10	6
MOTA	82 CZ TYR A 12	40.339	37.216	52.470	1.00 36.31	8
ATOM	83 OH TYR A 12 84 C TYR A 12	38.786	42.966	47.378	1.00 46.56	6
MOTA		37.821	42.476	46.791	1.00 47.38	8
ATOM	13	39.138	44.247	47.278	1.00 47.28	7
ATOM	86 N GLY A 13 87 CA GLY A 13	38.385	45.164	46.442	1.00 46.53	6
ATOM	88 C GLY A 13	38.650	44.934	44.968	1.00 45.60 1.00 43.68	8
ATOM	89 O GLY A 13	37.895	45.401	44.117	1.00 46.52	7
MOTA MOTA	90 N LYS A 14	39.725	44.210	44.672 43.296	1.00 47.28	6
MOTA	91 CA LYS A 14	40.112	43.908	43.290	1.00 50.22	6
ATOM	92 CB LYS A 14	41.629	43.748 45.044	43.307	1.00 57.12	6
ATOM	93 CG LYS A 14	42.396 42.038	46.004	42.161	1.00 63.60	6
MOTA	94 CD LYS A 14	42.349	45.422	40.768	1.00 66.65	6
MOTA	95 CE LYS A 14	41.529	44.220	40.387	1.00 67.70	7
ATOM -	JU 110	39.460	42.643	42.769	1.00 44.18	6
MOTA	97 C LYS A 14 98 O LYS A 14	39.564	42.325	41.585	1.00 40.33	8 7
MOTA	99 N TYR A 15	38.790	41.926	43.661	1.00 43.25 1.00 43.18	6
MOTA MOTA	100 CA TYR A 15	38.145	40.665	43.317 44.142	1.00 36.88	6
MOTA	101 CB TYR A 15	38.789	39.547	44.142	1.00 32.96	6
MOTA	102 CG TYR A 15	40.302	39.560 39.107	45.108	1.00 30.90	6
ATOM	103 CD1 TYR A 15	41.084	39.107	45.035	1.00 30.94	6
ATOM	104 CE1 TYR A 15	42.476 40.952	40.049	42.912	1.00 33.01	6
MOTA	105 CD2 TYR A 15	42.341	40.092	42.826	1.00 29.68	6
MOTA	106 CE2 TYR A 15	43.098		43.890	1.00 30.99	6
atom	10, 00 110	44.471	39.673	43.809	1.00 28.02	8
ATOM	108 OH TYR A 15 109 C TYR A 15	36.661		43.621	1.00 45.56	6 8
MOTA	110. O TYR A 15	36.149	40.153	44.552	1.00 45.22 1.00 48.81	7
ATOM ATOM	111 N ARG A 16	35.981		42.830 42.999	1.00 53.22	6
ATOM	112 CA ARG A 16	34.553	41.819	42.554	1 0 57.11	6
ATOM	113 CB ARG A 16	34.193		43.490		6
ATOM	114 CG ARG A 16	34.852 34.280		44.886	1.00 67.04	6
MOTA	115 CD ARG A 16	34.798		45.569	1.00 73.59	7
ATOM	116 NE ARG A 16	34.612		45.141	1.00 75.03	6
ATOM		33.91		44.033		7 7
ATOM	120	35.142	47.856	45.808		6
ATOM	119 NH2 ARG A 16 120 C ARG A 16	33.75	7 40.903			8
ATOM	121 O ARG A 16	34.19			1.00 50.89	. 7
MOTA	122 N TYR A 17	32.59	5 40.463	42.552		6
MOTA.	123 CA TYR A 17	31.73	7 39.634	41.733		6
atom atom	124 CB TYR A 17	30.53	4 39.119			6
ATOM	125 CG TYR A 17	30.80	3 37.894 9 37.932			6
ATOM	126 CD1 TYR A 17	31.58			1.00 43.36	6
ATOM	127 CE1 TYR A 17	31.96 30.18			1.00 39.89	6
ATOM	128 CD2 TYR A 17	30.44			1.00 40.56	6
ATCM	129 CE2 TYR A 17	31.33			9 1.00 41.98	6
ATOM	130 CZ TYR A 17	31.60	0 34.438	3 45.59		
ATOM		31.24		7 40.62	2 1.00 51.88	, 0
ATOM.	132 C TYR A 1/	•		•		
-						

Figure 17-3

. =0.1	133 0	TYR A	17	31.332	41.772		1.00 47.86	8 7
ATOM	134 N	PRO A	18	30.730	39.964		1.00 54.38 1.00 54.21	6
ATOM ATOM	135 CD	PRO A	18	30.548	38.545	39.190	1.00 54.21	6
ATOM	136 CA	PRO A	18	30.243	40.809	38.449 37.496	1.00 56.84	6
ATOM	137 CB		18	29.601	39.792	38.426	1.00 56.46	6
ATOM -	138 CG	PRO A	18	29.260	38.613	38.932	1.00 58.74	6
ATOM	139 C	PRO A	18	29.273	41.891 41.861	40.066	1.00 55.72	8
ATOM	140 0	PRO A	18	28.791	41.861	38.052	1.00 62.10	7
AŢOM	141 N	LYS A	19	29.017 28.127	42.631	38.314	1.00 64.85	6
ATOM	142 CA		19	27.972	44.781	37.022	1.00 69.74	6
MOTA	143 CB		19 19	28.008	43.925	35.740	1.00 74.99	6
MOTA	144 CG		19 .	26.895	42.881	35.668-	1.00 78.18	6
MOTA	145 CE	_	19	26.981	42.010	34.420	1.00 80.24	6
MOTA	146 CE		19	25.867	41.010	34.361	1.00 81.13	7
MOTA	148 C	LYS A	19	26.750	43.619	38.869	1.00 64.77 1.00 66.50	6 - 8
ATOM ATOM	149 0	LYS A	19	26.414	43.961	40.001 38.062	1.00 63.75	7
ATOM	150 N	ASN A	20	25.957	42.933	38.439	1.00 62.96	6
MOTA	151 CA		20	24.612	42.556 42.031	37.208	1.00 67.42	6
ATOM	152 CI		20	23.870 22.392	42.031	37.459	1.00 72.29	6
MOTA	153 CC		20	22.392	42.785	37.772	1.00 75.25	8
MOTA		O1 ASN A	20	21.000	40.594	37.322	1.00 74.38	7
ATOM		D2 ASN A	20 20	24.602	41.512	39.547	1.00 61.30	6
MOTA	156 C	ASN A ASN A	20	23.629	40.773	39.698	1.00 61.49	8
ATOM	157 O 158 N		21	25.681	41.444	40.321	1.00 57.30	7 6
MOTA	159 C		21	25.755	40.480	41.418	1.00 54.68 1.00 52.63	6
MOTA MOTA	160 C		21	27.071	39.700	41.373	1.00 49.39	6
MOTA	161 C		.21	27.058	38.449	42.195 43.503	1.00 49.39	6
MOTA		D2 HIS A	21	27.336	38.236 37.229	41.686	1.00 48.27	7
ATOM		D1 HIS A	21	26.664 26.704	36.320	42.643	1.00 48.16	6
MOTA		E1 HIS A	21	27.108	36.905.	43.757	1.00 47.33	7
MOTA		E2 HIS A	21 21	25.664	41.215	42.760	1.00 52.89	6
ATOM	166 C		21	26.295	42.256	42.947	1.00 52.52	8 7
MOTA	167 O		22	24.880	40.679	43.713	1.00 50.81	6
MOTA MOTA		D PRO A	22	24.076	39.444	43.661	1.00 48.50 1.00 48.02	6
ATOM		A PRO A	22	24.734	41.310	45.029 45.783	1.00 47.45	6
ATOM		B PRO A	22	23.860	40.308 39.754	44.667	1.00 47.76	6
ATOM	172 C	G PRO A	22	22.990 26.074		45.727	1.00 46.48	6
ATOM	173 C		22	26.164		46.615	1.00 45.69	8
ATOM	174 0		22 23	27,107			1.00 44.97	7
ATOM	175 N			28.441	40.949		1.00 41.31	6
ATOM		A LEU A B LEU A		29.076	39.569		1.00 39.22	6 6
ATOM ATOM		G LEU A		28.264			1.00 37.71 1.00 35.07	6
ATOM	179	Di LEU A	23	29.075				6
ATOM	180	DL LEU A	. 23	27.896	39.165			6
ATOM	181 (LEU A		29.334				8
ATOM		LEU A		30.556 28.706			1.00 39.67	7
ATOM		N LYS A		29.430		43.398	1.00 42.88	6
ATOM		CA LYS A		28.480			1.00 40.24	6
MOTA		CB LYS A		28.94		41.610		6
MOTA		CG LYS A		28.24		42.166		6 6
MOTA		CE LYS ?		26.73	2 46.492			7
ATOM		NZ LYS ?		25.98	9 47.71	7 42.362		
MOTA ATOM		C LYS A		30.03	1 44.72			
ATOM		O LYS F	24	31.02				
ATOM		N ILE ?	A 25	29.43		-		6
ATOM	193	CA ILE A		29.87			1.00 37.72	. 6
atom		CB ILE		28.76 27.53			1.00 39.67	6
ATOM	195	CG2 ILE		28.41		8 48.14	5 1.00 35.25	
ATOM		CG1 ILE	_	27.30	1 45.36	8 49.15		
ATOM		CD1 ILE 2	·-	31.07		5 47.11	2 1.00 40.23	6
ATCM	198	C ILE				-		

71/263 Figure 17-4

								44 444	47.198	1.00 38.90	8
MOTA	199	0	ILE	À	25	31	.419	44.441	-		7
			PRO		26	31	.762	46.616	47.709	1.00 40.18	
MOTA	200	N					.523	48.051	47.533	1.00 40.58	6
ATOM	201	ÇD	PRO	À	26					1.00 38.31	6
	202	CA	PRO	A	26	32	.939	46.437	48.558		
atom					26		.478	47.860	48.688	1.00 37.14	6
ATOM	203	CB	PRO					48.537	47.458	1.00 38.77	6
ATOM	204	CG	PRO	A	26		.940		47.450	1 00 37 33	6
-	205	c	PRO	Δ	26	32	. 433	45.903	49.891	1.00 37.32	
MOTA						2.1	.416	46.372	50.412	1.00 32.70	8
MOTA	206	0	PRO	Ä	26				50.452	1.00 36.54	7
	207	N	ARG	A	27	33	.134	44.930	50.452		6
ATOM			ARG		27	32	.685	44.359	51.711	1.00 37.39	
ATCM	208	CA					.116	42.952	51.455	1.00 35.29	6
MOTA	209	CB	ARG	A	27				50.355	1.00 32.69	6
ATOM	210	CG	ARG	À	27	31	.047	42.956	50.333	1.00 32.03	6
			ARG		27	30	.507	41.573	49.956	1.00 33.87	
MOTA	211	CD					.757	40.909	51.021	1.00 36.16	7
ATOM	212	NE	ARG	A	27			40.202	51.959	1.00 37.11	6
ATOM	213	CZ	ARG	À	27		.293	40.132	31.333		7
			ARG		27	31	.604	39.903	51.976	1.00 34.42	
ATOM	214						.516	39.597	52.896	1.00 33.67	7
ATOM	215	NH2	ARG		27			44.329	52.732	1.00 36.35	6
ATOM	216	С	ARG	Ä	27	_	.813			1.00 35.77	8
	217	ō	ARG		27	33	.881	45.188	53.610		
ATOM							.703	43.351	52.607	1.00 34.93	7
MOTA	218	N	VAL		28			43.230	53.537	1.00 34.00	6
ATOM	219	CA	VAL	Α	28		.810		55.557		6
	220	СВ	VAL	2	28	36	.633	41.954	53.252		
MOTA						37	.574	41.652	54.424	1.00 33.59	6
ATOM	221		VAL		28			40.790	52.992	1.00 37.05	6
ATOM	222	CG2	VAL	A	28		. 696			1.00 31.91	6
	223	C	VAL		28	36	.712	44.454	53.423		
ATOM					28	37	.216	44.959	54.427	1.00 31.45	8
ATOM	224	0	VAL					44.936		1.00 33.12	7
MOTA	225	N	SER	Α	29		.908		-	1.00 32.03	6
	226	CA	SER	A	29	37	7.751	46.111			
MOTA					29	3.5	3.205	46.181	50.499	1.00 31.77	6
MOTA	227	CB	SER				7.113	46.223	49.600	1.00 30.80	8
ATOM	228	OG .	SER	A	29	_					6
	229	С	SER	A	29	37	7.003	47.380			8
MOTA					29	3.	7.604	48.404	52.650		
MOTA	230	0	SER				5.682	47.310	52.352	1.00 32.43	7
MOTA	231	N	LEU	Α	30					- -	6
MOTA	232	CA	LEU	Α	30	34	4.900	48:465			6
			LEU		30	3:	3.463	48.358	52.221		
MOTA	233	CB					2.508	49.513	52.560	1.00 36.79	6
MOTA	234	CG	LEU		30			49.446			6
ATOM	235	CD1	LEU	À	30		2.070				6
	236	CD2			30	3.	3.202	50.840	52.256		
MOTA							4.902	48.527	54.262	1.00 34.89	6
ATOM	237	С	LEU		30			49.601		1.00 37.58	8
MOTA	238	0	LEU	A	30		5.033				7
	239	N	LEU	4 1	31	3	4.761	47.366	5 54.897		
ATOM					31	٦	4.743	47.276	56.350	1.00 34.85	6
ATOM	240	CA	LEU					45.808		1.00 36.37	6
ATCM	241	CB	LEU	J A	31		4.768				6
	242	CG	LEU	I A	31	3	4.459	45.47			6
MOTA			LEU		31	3	4.841	44.02	7 58.532		
ATOM	243	ردی	LLEU	_ ^			5.228	46.35		1.00 35.86	. 6
ATOM	244	CD2	LEU	J A	31						. 6
MOTA	245	С	LEU	JÀ	31	3	5.976	47.99			8
	246	ō	LEU		31	3	5.855	49.03			
atom						2	7.157	47.42	6 56.63	5 1.00 37.76	7
ATOM	247	N	LEU		32						6
ATCM	248	CA	LEU	JA	32		8.420				6
	249	CB	LEU		32	3	9.611	47.31			
atom							0.030		8 56. <i>774</i>	4 1.00 39.11	6
ATOM	250	CG	LE		32						6
ATOM	251	CD:	i LEU	JΑ	32		1.117				6
	252		2 LEC			4	0.538	45.83			
ATOM							8.500		3 56.78	0 1.00 34.84	6
ATOM	253	С		Αţ							. 8
ATOM	254	0	LE	JA	32		8.846				
		N		3 A		3	8.184				
ATOM	255						8.247		0 55.15		6
ATOM	256	CA		3 A							6
ATOM	257	CB	AR	G A	. 33		7.927				
				G A	_	7	8.481	52.65			
atom	258	CG					8.107			1 1.00 43.44	6
ATCM	259	CD		G A							7
ATCM	260		AR	G À	33		8.521				
				GΑ		- 1	38.348	3 51.46	9 49.49		
atom	261						37.771		9 48.82	3 1.00 51.75	
ATCM	262		1 AR						9 48.85		3 7
ATCM	263	NH	2 AR	G A	33		38.739				
				G A		:	37.274	52.10	02 _55.98	5 4.00 Jan.J.	•
atom	264	_	- AN						-		

					•					
	265	^	ARG A	33		37.471	53.299	56.196	1.00 29.23	8
MOTA	265	~		34		36.231	51.445	56.484	1.00 32.58	7
MOTA	266	N	PHE A	34		35.216	52.096	57.304	1.00 32.69	6
ATOM	267	CA	PHE A			33.952	51.232	57.359	1.00 31.22	6
MOTA	268	CB	PHE A	34		32.838	51.825	58.183	1.00 28.74	6
ATOM	269	CG	PHE A	34			52.888	57.700	1.00 22.76	6
ATOM	270	CD1	PHE A	34		32.085		59.456	1.00 28.09	6
ATOM	271	CD2	PHE A	34		32.551	51.322	59.450	1.00 23.70	6
ATOM	272	CE1	PHE A	34		31.061	53.441	58.472	1.00 23.70	6
	273	CE2	PHE A	34		31.524	51.873	60.235	1.00 24.59	
ATOM	274	CZ	PHE A	34		30.781	52.929	59.741	1.00 21.39	6
ATOM	275	C	PHE A			35.734	52.319	58.719	1.00 33.45	6
MOTA			PHE A			35.635	53.425	59.258	1.00 35.49	8
MOTA	276	0	LYS A	_		36.276	51.264	59.323	1.00 34.52	7
MOTA	277	N				36.805	51.360	60.678	1.00 36.51	6
MOTA	278	CA	LYS A			37.118	49.977	61.235	1.00 36.47	6
MOTA	279	CB	LYS A			35.912	49.074	61.343	1.00 40.81	6
MOTA	280	CG	LYS A			36.246	47.801	62.090	1.00 44.10	6
ATOM	281	CD	LYS A			37.347	47.029	61.402	1.00 47.46	6
ATOM	282	CE	LYS A				47.823	61.276	1.00 53.53	7
MOTA	283	NZ	LYS A			38.601	52.222	60.735	1.00 36.61	6
MOTA	284	С	LYS A			38.054	52.824	61.766	1.00 36.78	8
MOTA	285	0	LYS A	. 35		38.352	52.624	59.635	1.00 36.27	7
ATOM	286	N	ASP A	36		38.794	52.267		1.00 39.71	6
MOTA	287	CA	ASP A	36		39.980	53.090	59.592	1.00 44.78	6
ATOM	288	CB	ASP A	36		40.679	52.937	58.239		6
ATOM	289	CG	ASP A	36		41.863	53.892	58.075		8
MOTA	290		ASP A	36		42.803	53.352	58.906	1.00 44.02	8
ATOM	291		ASP A			41.843	54.682	57.106	1.00 48.43	6
-	292	c	ASP A			39.508	54.530	59.789	1.00 39.99	
ATOM -	293	ō	ASP A			40.023	55.258	60.536	1.00 40.76	8
ATOM	294	N	ALA A	_		38.506	54.919	59.00 7	1.00 38.59	7
MOTA		CA	ALA A			37.939	56.258	59.066	1.00 37.14	6
ATOM	295		ALA A			36.857	56.402	58.000	1.00 35.85	6
MOTA	296	CB				37.354	56.549	60.446	1.00 38.34	6
MOTA	297	C	ALA A	- : -		37.391	57.687	60.928	1.00 37.32	8
MOTA	298	0	ALA A	-		36.809	55.518	61.079	1.00 36.19	7
MOTA	299	N	MET A			36.213	55.674	62.397	1.00 36.80	6
MOTA	300	CA	MET A	_		35.141	54.598	62.606	1.00 37.38	6
ATOM	301	CB	MET A			33.938	54.717	61.673	1.00 37.60	6
ATOM	302	CG	MET A			32.887	56.165	61.999	1.00 33.61	16
MOTA	303	SD	MET			32.398	55.824	63.680	1.00 35.60	6
ATOM .	304	CE	MET A			37.262	55.582	63.502	1.00 35.84	6
MOTA	305	C	MET .				55.688	64.692	1.00 34.89	8
ATOM	306	0	MET .			36.937	55.400	63.100	1.00 33.83	7
MOTA	307	N	ASN .			38.518	55.264	64.044	1.00 34.94	6
ATOM	308	CA	ASN .			39.626		64.775	1.00 32.48	6
MOTA	309	CB	ASN .			39.897	56.582	63.825	1.00 32.34	6
ATOM	310	CG	ASN .	A 39		40.213	57.717	63.009	1.00 31.85	8
ATOM	311	OD:	ASN	A 39		41.128	57.621		1.00 30.92	7
ATCM	312	ND2	ASN .	A 39		39.455	58.800	63.924	1.00 36.87	6
MOTA	313	С	ASN	A 39		39.253	54.183	65.045		8
ATOM	314	0	ASN	A 39		39.403		66.260		7
MOTA	315	N	LEU			38.752		64.518	1.00 37.48	6
	316	CA	LEU			38.341	51.933	65.336		6
ATOM	317	CB	LEU	_		36.863	51.622	65.086		
ATOM		CG	LEU			35.858	52.712	65.476		6
ATOM	.318		1 LEU			34.448		65.111		6
ATOM	319					35.951		66.966		6
MOTA	320		2 LEU			39.184			1.00 39.79	6
MOTA	321	C	LEU			38.804			1.00 36.88	8
MOTA	322	0	LEU			40.337			1.00 40.50	?
ATOM	323	N	ILE							6
ATOM	324	CA				41.237				6
ATOM	325					40.780				6
MOTA	326	CG				41.01				6
MOTA	327		1 ILE	A 41		41.513				
ATOM	328		1 ILE			41.08				. 6
	329		ILE			42.68				8
ATOM	330		ILE			42.92	7 51,328	63.27	1.00 40.01	•

					4.7		49.582	64.497	1.00 45	.19	7
ATOM	331 N			42		.646 .049	49.982	64.372	1.00 45	. 62	6
ATOM	332 C	A A	-	42			50.090	65.742	1.00 45	5.17	6
MOTA	333 CI	B A	SP A	42	45	.716	51.005	66.682	1.00 44		6
ATOM	334 C		SP A	42		.966		66.322		.84	8
MOTA	335 0	D1 A	SP A	42		.731	52.177	67.787	1.00 48		8
ATOM	336 0	D2 A	SP A	42		.612	50.546	63.551	1.00 48		6
MOTA	337 C		SP A	42		.750	48.915			9.85	8
	338 0		SP A	42		.316	47.757	63.547	1.00 49		7
MOTA	339 N		LU A .	43		.830	49.288	62.864		0.79	6
MOTA			LU A	43	47	7.553	48.325	62.028		9.90	6
MOTA		-	LU A	43 .	48	3.820	48.956	61.431			6
MOTA			LUA	43	4.8	3.544	50.029	60.378	1.00 5	7.20 9.56	6
MOTA	•	-	LU A	43	49	808.	50.537	59.690			8
ATOM			LU A	43	50).517	49.721	59.061	1.00 6		8
MOTA	345 0	F2 G	LU A	43	50	0.095	51.750	59.772		7.82	6
MOTA	346 C		LU A	43	4	7.918	47.020	62.733	1.00 4		8
ATOM	347 0		LU A	43	4	7.813	45.943	62.149	1.00 4		7
ATOM	348 N	_	YS A	44	4	B.324	47.118	63.992			6
MOTA			YS A	44	4	8.730	45.949	64.762	1.00 4		6
MOTA			YS A	44	4	9.317	46.418	66.093	1.00 5 1.00 5	2.46	6
MOTA			YS A	44	5	0.448	47.421	65.899	1.00 5	0.74	6
MOTA			LYS A	44		1.167	47.749	67.201		8.48	6
ATOM			LYS A	44	5	2.327	48.704	66.949		8.95	7
ATOM			LYS A	44	5	3.122	48.968	68.176	1.00 5		6
MOTA			LYS A	44	4	7.638	44.897	64.994		15.13	8
MOTA	_		LYS A	44		7.932	43.738	65.290	1.00 4		7
MOTA MOTA			GLU A	45		6.379	45.298	64.854 65.046	1.00 4	13.23.	6
ATOM		CA (GLU A	45		5.268	44.374	65.514		11.19	6
ATOM		CB (GLU A	45	4	4.024	45,143	66.844		36.83	6
ATOM-		CG (GLU A	45	4	4.192	45.859 46.741	67.204		38.92	6
MOTA	361		GLU A	45	4	3.003	47.701		1.00		8
ATOM	362		GLU A	45		2.707	46.479			36.33	8
ATOM	363		GLU A	45		4.969	43.660		1.00	43.04	6
MOTA		_	GLU A	45		4.480	42.523			45.03	8
MOTA	•		GLU A	4.5		5.282	44.341			40.29	7
ATOM	• • •		LEU A	46		5.042	43.823	61.299	_	37.16	6
MOTA			LEU A	46 46		4.910		44		37.86	6
MOTA			LEU A	46		4.822		58.845		39.22	6
MOTA	369		LEU A	46		13.655		58.563		40.68	6
ATOM	370	CDI	LEU A	46		44.673		58.080		41.62	6 6
ATOM	371 372		LEU A	46		46.090	42.860			36.54	8
MOTA	373	0	LEU A	46	٠,	47.275	43.192	60.698		39.86 33.49	7
MOTA	374	N	ILE A	47		45.646				30.51	6
MOTA MOTA	375	CA	ILE A	47		46.540				34.31	6
MOTA	376	CB	ILE A	47		46.333				32.16	6
ATOM	377	CG2	ILE A			47.346				32.65	6
ATOM	378	CG1	ILE A	47		46.504	39.32			38.97	6
MOTA	379	CD1	ILE A	47		47.858				28.36	6
MOTA	380	С	ILE A	47		46.196				26.11	8
ATOM	381	0	ILE A			45.03				27.77	7
ATOM	382	N	LYS A			47.194		·		25.80	6
ATOM	383	CA	LYS A			46.985				23.91	6
ATOM	384	CB	LYS A			48.25	·		1.00	24.90	6
MOTA	385	CG	LYS A			48.05		-	1.00	26.39	6
ATOM	386	CD	LYS A			49.23			9 1.00	27.71	6
ATOM	3,87	CE	LYS A			48.77			6 1.00	32.59	
MOTA	388	ΝZ	LYS A			46.59			4 1.00	26.32	6
MOTA	389	C	LYS A			47.07			5 1.00	27.85	. 8
ATCM	390	0	LYS A			45.73		3 54.65	3 1.00	24.73	7
ATOM	391	N	SER A			45.29			5 1.00	27.36	6
ATOM	392	CA	SER A			43.95		19 [™] 53.47		25.04	6
MOTA	393	CB	SER A	·		42.91		9 54.37	-	26.94	8
ATOM	394	OG C	SER A	·		46.32	2 37.23	1 53.29		28.97	
ATOM	395 396	0	SER A			47.09	5 37.88	52.61	2 1.00	31.89	,
MOTA	396	•						-			
_											

		46 315 35 879 53.296 1.00 29.71 7
	397 N ARG A 50	40.313 33.0.2
ATOM		41.41
ATOM	390 CM 110- 11	48.249 34.351 53.318 1.00 26.20 6
MOTA	333 65 556	47 607 33 204 54.172 1.00 22.71 6
MOTA	400 CG ARG A 50	40 010 32 468 54.890 1.00 22.95 6
ATOM	401 CD ARG A 50	40.010 32.400
ATOM_	402 NE ARG A 50	48.359 31.385 33.762 1.00 16 05 6
	403 CZ ARG A 50	47.708 30.306 33.343
ATOM	404 NH1 ARG A 50	47.430 30.151 34.033 1.05
-TOM		A7 114 29.303 30.223 2
ATOM	403 11112 11112	46 370 34 051 51.723 1.00 23.30 6
MOTA	400 0 3444	45 319 33 635 52.206 1.00 16.92 8
ATOM	407 O ARG A 50	1 00 21 06 7
ATOM	408 N PRO A 51	40.023 33.020 1 00 00 50
ATOM	409 CD PRO A 51	48.021 34.036 45.765 1.00 32 69 6
	410 CA PRO A 51	46.086 32.633 49.701 1.00 21 57 6
ATOM	910 0	40.002 32.332
ATOM	dir on the	47.503 33.984 46.352 1.35
ATOM		45 353 31 300 50.498 1.00 26./1 b
MOTA	413 0 1110 1	47 071 31 066 51.293 1.00 31.32 8
MOTA	414 O PRO A 51	4E 176 30 435 50 250 1.00 40.04 /
MOTA	415 N ALA A 52	73,1,7
MOTA	416 CA ALA A 52	45.151 25.122 00.01 42 6
ATOM	417 CB ALA A 52	43.720 20.303 = 200 1 00 26 31 6
	418 C ALA A 52	46.013 28.227 30.000 1.00 30 31 8
ATOM	419 O ALA A 52	45.878 28.239 40.700 1.00 36.00 7
ATOM	3.0	46,909 27.464 50.000 4.00 4.00
ATOM	420 11	47.759 26.578 49.831 1.00 27.52 6
ATOM	300	48 845 25.975 50.717 1.00 26.27 6
ATOM	422 02 000	49 255 25 053 51.641 1.00 29.51 8
MOTA	423 OG1 THR A 53	40.522 27.076 51.502 1.00 24.66 6
ATOM	424 CG2 THR A 53	49.522 27.070 55.00 60 60 6
ATOM	425 C THR A 53	40.900 23.900 10.00 21 98 8
MOTA	426 O THR A 53	45.778 25.226 45.052 1.00.29.62 7
	427 N LYS A 54	47.455 24.782 48.205 1.00 32 62 6
MOTA	428 CA LYS A 54	46./39 23./13 4/.30
ATOM	420 0	47.601 23.151 46.370 1.00 31.99
ATOM	425 00 000 0	46 985 21.967 45.629 1.00 36.62 6
MOTA	430 CG DIG	45 733 22 352 44.866 1.00 40.69
ATOM	431 CD LYS A 54	46 059 23 173 43 625 1.00 46 44 6
ATOM	432 CE LYS A 54	46 044 22 393 42 614 1.00 50.68
ATOM	433 NZ LYS A 54	40.044
MOTA	434 C LYS A 54	46.348 22.333 10.330 1.00 34 77 8
ATOM	435 O LYS A 54	45.27/ 21.991 40.330 2100 37 91 7
	436 N GLU A 55	47.216 22.336 49.443 1.00 36 96 6
MOTA	437 CA GLU A 55	46 979 21.290 JU.433 2.00
ATOM	438 CB GLU A 55	40.240 24.400 4 00 47 05 6
MOTA	450 02 020	48.216 19.887 32.133 1.00
MOTA	777	49 552 19.654 52.891 1.00 51.01 6
MOTA		49 659 18.688 53.679 1.00 52.65
ATOM	441 000 000	50 407 20 437 52 646 1.00 51.27 8
MOTA	442 OE2 GLU A 55	45 771 21 609 51.322 1.00 34.10 6
ATOM	443 C GLU A 55	43.772 20 769 51 496 1.00 33.08 8
ATOM	444 O GLUA 55	44.002 20.100 1 00 77 70 7
ATOM	445 N GLU A 56	45.723 22.627 51.000 1.00 30 13 6
	446 CA GLU A 56	44.621 23.256 52.755 1.00.25.28 6
ATOM	447 CB GLU A 56	44.824 24.714 33.11
MOTA	74, 05 05-	46.204 24.334 33.730
ATOM		46 421 26.450 54.181 1.00 30.74
MOTA	442 05 05	46 072 27 369 53.398 1.00 29.77 8
MOTA	450 OE1 GLU A 56	46 060 26 674 55.288 1.00 25.98 8
ATOM	451 OE2 GLU A 56	48.363 20.014 52 024 1.00 29.63 6
ATOM	452 C GLUA 56	43.264 23.114 52.021 1.00 29.90 8
	453 O GLU A 56	42.299 22.384 32.380 1 00 36 76 7
ATOM	454 N LEU A 57	43.188 23.581 50.780 1.00 25 29 6
ATOM	404 11 220	41.944 23.490 50.020 1.00 23.29 6
ATOM	433 01. 220	42.132 24.103 48.629 1.00 22.68
ATOM	350 02	42,402 25.612 48.572 1.00 22.39 5
atom	457 CG LEU A 57	12 554 26 045 47.123 1.00 20.77 6
MOTA	458 CD1 LEU A 57	22.031 26 366 49.156 1.00 17.66 6
ATOM	459 CD2 LEU A 57	41.470 22.037 49.896 1.00 26.02
ATOM	460 C LEU A 57	21.479 22.031 50 014 1.00 23.41 8
ATOM	461 O LEUA 57	40.204 21.732 1 00 24 02 7
A TOM	462 N LEU A 58	42.444 21.143 49.675 1.00 24.82

ATOM

75/263 Figure 17-8

										49.526	i.00 2	2 44	6
MOTA	463	CA	LEU	Α	58			194	19.718		1.00 2		6
	464		LEU	A	58		43.	434	19.027	48.965	1.00 2	1.02	
MOTA			LEU.		58			838	19.471	47.558	1.00 2		6
MOTA	465				58			212	18.908	47.176	1.00 2	0.35	6
MOTA	466		LEU					755	19.033	46.587	1.00 2	3.28	6
ATOM	467		LEU		58					50.835	1.00 2		6
ATOM	468	С	LEU	A	58	•		797	19.054		1.00 2		8
ATOM	469	0	LEU	Α	58	•	41.	456	17.867	50.854			7
	470		LEU		59		41.	858	19.794	51.938	1.00 2	5.44	
ATOM		-	LEU		59		41	446	19.212	53.211	1.00 2	5.24	6
MOTA	471	CA			59			559	20.229	54.350	1.00 2	4.68	6
ATOM	472	CB	LEU					956	20.490	54.912	1.00 2	7.05	6
MOTA	473	CG	LEU		59					56.001	1.00 2	4.76	6
ATOM	474		LEU		59			.912	21.565		1.00 2		6
ATOM	475	CD2	LEU	Α	59			. 492	19.184	55.474			6
	476	C	LEU	Α	59 ·		39	.991	18.807	53.045	1.00 2		
ATOM	477	ō	LEU		59		39	. 548	17.794	53.581	1.00 2		8
MOTA			PHE		60			.270	19.615	52.270	1.00 2		7
MOTA	478	N					_	. 859	19.403	52.011	1.00 2	5.00	6
ATOM	479	CA	PHE		60			.054	20.560	52.605	1.00 2	6.34	6
ATOM	480	CB	PHE		60				20.555	52.223	1.00 2		6
ATOM	481	CG	PHE	Α	60			.600				7.57	6
MOTA	482	CD1	PHE	Α	60			.811	19.422	52.427	1.00 2		6
	483		PHE		60		35	.015	21.692	51.661			
MOTA	484		PHE		60		33	.466	19.419	52.077	1.00 2		6
MOTA			PHE		60		-	.670	21.699	51.306	1.00 2	28.08	6
MOTA	485							.893	20.559	51.513	1.00 2	29.48	6
MOTA	486	CZ	PHE		60			.506	19.214	50.538	1.00 2	27.78	6
MOTA	487	С	PHE	A	60		_			50.158	1.00	31.57	8
ATOM	488	0	PHE		60			.022	18.143	49.696		26.76	7
ATOM	489	N	HIS	Α	61			.734	20.220			28.84	6
MOTA	490	CA	HIS		61		37	.376	20.056	48.287			
	491	CB	HIS		61		37	.365	21.405	47.561		27.76	6
MOTA	492	CG	HIS		61		36	.385	22.396	48.117		30.54	6
MOTA			HIS		61			.056	22.549	47.907		33.74	6
MOTA	493							.750	23.401	48.987	1.00	34.02	7
MOTA	494		HIS		61		_		24.135	49.286	1.00	32.07	6
MOTA	495		HIS		61			.691		48.644	1.00		.7
ATOM	496	NE2	HIS	Α	61			.649	23.638	40.044	1.00		6
ATOM	497	С	HIS	Α	61			.278	19.056	47.539			8
	498	0	HIS	A	61		39	.287	18.604	48.072	1.00	25.61	7
ATOM	499	N	THR		62		37	.895	18.705	46.310	1.00		
MOTA			THR		62		3.8	.658	17.749	45.488		34.68	6
MOTA	500	CA			62			.715	16.739	44.778		34.36	6
MOTA	501	CB	THR				-	.942	17.415	43.778	1.00	34.81	8
ATOM	502	OG1			62				16.112	45.778		34.33	6
MOTA	503	CG2			62			.759		44.408		35.60	6
MOTA	504	С	THR	A	62			.485	18.454	43.790		30.85	8
ATOM	505	0	THR	. A	62			0.017	19.418			37.38	7
MOTA	506	N	GLU	Α	63		4 (700	17.958	44.166	1.00	37.30	6
	507	CA	GLU		63		4.1	1.587	18.555	43.165		40.68	
MOTA	508	CB	GLU		63		42	2.759	17.626	42.840	1.00	43.75	6
MOTA			CLU		63		4	3.719	17.389	43.987	1.00	50.68	6
MOTA	509	CG	GLU					5.026	16.760	43.529	1.00	55.36	6
ATOM	510	CD	GLU		63			5.789	17.441	42.808	1.00	53.03	8
ATOM	511		GLU		63					43.883		59.56	8
ATOM	512	OE2	GLU	I A	63			5.285	15.585		1.00	39.26	6
ATOM	513	С	GLU		63		4 (0.894	18.939	41.860			
	514	ō	GLU		63		4(0.771	20.116	41.535		42.33	8
ATOM		N	ASI		64			0.453	17.948	41.102	1.00	37.07	. 7
MOTA	515							9.782	18.224	39.845		36.98	6
ATOM	516	CA	ASI		64			8.957	17.000	39.426	1.00	42.19	6
MOTA	517	CB	ASI	A	64		٠ د	8.33/		40.533		47.66	6
ATOM	518	CG	ASI	• A	64		3	8.037	16.501			47.95	8
	519	OD:	l ASE	A 9	64		3	7.039	17.193	40.851			8
MOTA	520		2 ASI					8.325	15.413			50.07	
MOTA			ASI					8.908	19.480	39.906		33.40	6
MOTA	521	C						8.927				33.64	8
atcm	522	0		? A				8.156				30.57	7
ATOM	523	N		R A						41.157		29 ⁻ .65	6
ATOM	524	CA	TY	R A				7.286				30.16	
ATOM	525		TY	R A	65			6.300				28.49	
	526			R A				5.557					
ATOM	527		1 TY				3	4.791				30.25	_
ATOM								4.126		42.399	1.00	28.36	6
ATOM	528	عب	1 TY	K A			_		_	-			

ATOM	529	CD2	TYR A	. 6	55			638		. 181	44.15		1.00 2	8.28 6.96	6 6
ATOM	530	CE2	TYR A		55			980			44.61		1.00 2		6
ATOM		CZ	TYR A		55	•		. 227 . 568		.082 .201	44.20		1.00 2	8.53	8
MOTA	532	OH	TYR A		55 55			. 118		.061	41.41		1.00 2	9.15	6
MOTA	533	C	TYR A	-	65			.860		.128	40.85	57		0.45	8
ATOM	534	0 N	ILE A		66			122		.926	42.27		1.00 2		7
MOTA	535	CA	ILE A	_	66			.986	23	.041	42.59		1.00 2		6
ATOM	536 537	CB	ILE A	-	66		40	.998	22	. 652	43.68		1.00 2		6
MOTA MOTA	538	CG2	ILE A		66			.009		.753	43.86		1.00 2 1.00 2	1.20	6 6
MOTA	539	CG1	ILE A	4	66			.264		.341	44.99	92	1.00 2		6
ATOM	540	CD1	ILE A	_	66			.478	23	.517	45.5		1.00 2		6
ATOM	541	С	ILE A		66			.761		.504 .696	41.2		1.00 3	1.26	8
ATOM	542	0	ILE F		66			.039 .125		.559	40.5		1.00 2		7
MOTA	543	N	ASN A		67 67		41	.902	22	.898	39.3	37	1.00 3	0.15	6
MOTA	544	CA	ASN A		67			.563	21	.656	38.7			4.20	6
ATOM	545 546	CB CG	ASN A		67			.712	21	.118	39.5		1.00 3		6
ATOM	547		ASN A		67		44	.674		.841	39.8		1.00 4	13.34 37.14	8 7
ATOM ATOM	548	ND2			67			.626		.845	39.9 38.3		1.00 3		6
ATOM	549	С	ASN A		67			.020		.554	37.4		1.00 2		8
ATOM	550	0	ASN A		67			.494		3.354	38.3		1.00		7
MOTA	551	N	THR		68			.733 .787		7.791	37.4		1.00 2	21.75	6
MOTA	552	CA	THR		68 68			.438		.111	37.5	00		16.99	6
MOTA	553	CB OC1	THR .		68		_	.620	21	1.695	37.3		1.00		8
MOTA	554 555	CG2			68			.549	23	3.591	36.3			17.59	6
ATOM ATOM	556	c	THR		68			.633		5.263	37.7		1.00	22.13 21.97	6 8
ATOM	557	ō	THR	Α	68			.529		5.088	36.8 39.0			22.32	7
MOTA	558	N	LEU	A	69			3.645		5.582 6.956	39.4		1.00	23.97	6
MOTA	559	CA	LEU		69			3.535 3.376		6.982	41.0			24.99	6
MOTA	560	CB	LEU		69 69		37	7.023		6.527	41.5	548		29.08	6
MOTA	561	CG	LEU LEU		69			7.087		6.416	43.0	066		30.99	6
MOTA	562 563		LEU		69		35	5.942		7.528	41.3			28.69	6 6
ATOM ATOM	564	c	LEU		69			772		7.757	39.0 38.0		1.00	24.90 25.04	8
ATOM	565	0	LEU		69			9.683		8.921	39.		1.00	24.67	7
MOTA	566	N	MET		70			0.932 2.183		7.128 7.794	38.			23.62	6
MOTA	567	CA	MET		70 70			3.358		6.953	39.		1.00	26.92	6
MOTA	568	CB CG	MET MET		70			3.418		6.751	40.		1.00	26.69	6
MOTA	569 570	SD		A	70		4	4.970		5.929	41.		1.00	30.71	16 6
MOTA MOTA	571	CE		A	70			6.137		7.077	40.			23.20 21.62	6
MOTA	572	C	MET	Α	70			2.324		8.040	37.	982		18.99	8
ATOM	573	0	MET		70			2.903		9.041	36.	632		23.93	7
ATOM	574	N	GLU		71			1.769 1.859	_	7.204	3:	189	1.00	24.41	6
MOTA	575	CA			71 71			1.681		5.814	34	582	1.00	26.22	6
ATOM.	576	CB			71			2.224		5.695	33.	167	1.00	31.75	6
MOTA	577 578	CG CD			71			3.737	_	5.905		099		33.00	6
MOTA	579		1 GLU		71			4.288	2	5.855		983		35.84	8 8
MOTA MOTA	580	OE	2 GLU	A	71			4.377		6.116		154		30.13 21.86	6
ATOM	581	C.	GLU		71			0.845		8.160		592 626		21.54	8
ATOM	582	0	GLU	Α	71			1.144		28.851		169		19.22	7
MOTA	583	N	ALA		72			9.649		28.197 29.067		684		19.39	6
ATOM	584	CA			72			8.589 7.298		28.743		397	1.00	19.23	6
MOTA	585				72 72			8.931		30.536	34.	. 899	1.00	26.72	6
ATOM	586		ALA ALA		72			8.71		31.383	34.	.016		26.12	8 7
ATOM	587 588		GLU		73		3	9.470) :	30.83		.079		28.44	6
ATOM	589				73			9.820		32.202		.436		29.44 25.84	6
ATOM ATOM	590	_			73			0.15		32.282		.931		27.51	6
MOTA	591	, cc	GLU	Α	73			0.64		33.65		.349 .841		29.38	6
ATOM	592	CI			73			10.84	1	33.800 33.770		.582		32.49	8
ATOM	593	_	El GLU		73 73			39.842 41.99		33.77 33.96		.277		31.77	8
ATOM	594	O	E2 GLU	A	73		-	2 L . J J	-		•				
			•					*							

ATOM	595 596		GLU A GLU A	73 73		0.946 0.859	3	4.024	35.615 35.259	1.00 3 1.00 3	3.52	6 8
MOTA	597	N	ARG A	74	4	1.992	3	2.071	35.309	1.00 3		.7
MOTA	598	CA	ARG A	74		3.128	. 3	2.611	34.557	1.00 3		6
MOTA		CB	ARG A	74	4	4.405		1.826	34.874	1.00 3		6
MOTA	599	CG	ARG A	74		4.514	3	6.467	34.205	1.00 3		6
MOTA	600		ARG A	74		5.702		9.714	34.754	1.00 3		6
MOTA	601	CD .		74		6.041		8.561	33.933	1.00 3		7
MOTA	602	NE	ARG A	74		6.646		8.634	32.748	1.00 3	35.55	6
MOTA	603	CZ	ARG A	74		6.989	_	9.818	32.232	1.00 2	29.64	7
MOTA	604		ARG A			6.906		7.514	32.079	1.00	34.07	7
MOTA	605		ARG A	74		2.894		32.623	33.051	1.00 2	28.61	6
MOTA	606	C	ARG A	74		3.431	•	33.465	32.338	1.00 2	24.38	8
MOTA	607	0	ARG A	74		2.107		31.673	32.566	1.00 2		7
ATOM	608	N	CYS A	75 75		12.107		31.619	31.148	1.00		6
MOTA	609	CA	CYS A	75 75		11.790		30.167	30.682	1.00		6
MOTA	610	CB	CYS. A	75		3.281		29.296	30.777		37.09	16
MOTA	611	SG	CYS A	75		10.489		32.382	30.956	1.00		6
ATOM	612	С	CYS A	75		10.029		32.598	29.834	1.00		8
MOTA	613	0	CYS A	75		10.023		32.787	32.088	1.00		7
ATOM	614	N	GLN A	76		39.914		33.575	32.144	1.00		6
ATOM	61,5	CA	GLN A	76		38.691		34.962	31.578	1.00		6
MOTA	616	CB	GLN A	76		38.986	-	36.064	32.094	1.00		6
MOTA	617	CG	GLN A	76		38.089	<i>.</i>	36.541	33.480		41.47	6
ATOM	618	CD	GLN A	76		38.479		35.755	34.426		45.02	8
MOTA	619	OE1	GLN A			38.574		37.846	33.606		42.22	7
ATOM	620	NE2				38.703	_		31.358	1 00	33.20	6
ATOM	621	C	GLN A			37.56		32.920 33.598	30.760		34.19	8
MOTA	622	0	GLN A			36.73			31.370		31.81	7
ATOM	623	N	CYS A			37.522		31.598	30.627		31.47	6
ATOM	624	CA	CYS A			36.51		30.862	29.454		30.25	6
ATOM	625	CB	CYS A			37.18		30.181 29.071	30.044	1.00	33.94	16
ATOM	626	SG	CYS A			38.47			31.498		31.97	6
ATOM	627	C	CAR Y			35.85		29.795	32.590		35.15	8
ATOM	628	Ö	CYS A			36.33		29.503	31.018		30.78	7
MOTA	629	N	VAL A			34.75		29.216	31.747		30.55	6
MOTA	630	CA	VAL A			34.06		28.139	31.720		30.06	6
ATOM	631	CB	VAL A			32.53		28.287	32.293		28.23	6
ATOM	632	CG1	. VAL A			31.88		27.030	32.526		30.67	6
ATOM	633	CG2				32.12		29.503 26.794	31.110		29.80	6
MOTA	634	С	VAL A			34.42		26.422	30.077		29.65	8
MOTA	635	0	VAL A			33.85		26.422	31.739		28.55	7
MOTA	636	IJ	PRO A			35.33		26.335	33.025		24.39	6
MOTA	637	CD	PRO A			35.98		24.724	31.261		28.89	6
ATOM	638	CA	PRO A			35.79			32.434	1 00	24.49	6
MOTA	639	CB	PRO A			36.62		24.218	32.922	1 00	25.68	6
ATOM	6 ' 0	CG	PRO A			37.23		25.500	30.881	1 00	30.13	6
ATOM	6.∡1	С	PRO 2			34.66		23.776	31.615	1 00	30.87	8
MOTA	6-2	0	PRO A			33.69		23.624	29.727	1 00	33.44	7
ATOM	643	N	LYS ?			34.79		23.136	29.303		38.52	_
MOTA	644	CA	LYS ?			33.75		22.216	28.076		45.18	6
MOTA	645	CB	LYS ?	80 A		34.20		21.421	28.078	1 00	55.18	6
ATOM	646	CG	LYS A			35.45		20.589			60.80	6
MOTA	647	CD	LYS ?	A 80		35.78		19.827	27.000		64.25	6
ATOM	. 648	CE	LYS A	. 80		37.03		18.976	27.168		68.95	7
ATOM	649	NZ	LYS A	. 80		37.36		18.252	25.911		36.56	6
ATOM	650	С	LYS 2			33.41		21.267	30.443		31.61	8
MOTA	651	ō	LYS			34.29		20.775	31.164		32.57	7
ATOM	652	N	GLY 3			32.13		21.035	30.602		29.81	6
ATOM	653	CA				31.63		20.155	31.648		28.30	
	654	c	GLY .			31.47		20.884	32.965			_
ATOM	655	ō	GLY			30.54		20.612	33.723		25.49	
ATOM	656	Ŋ	ALA			32.38		21.830	33.218		25.99	_
MOTA	657	CA				32.3	84	22.602	34.458		26.72	_
MOTA	658	CB				33.4		23.674		·	22.64	
ATOM	659		ALA .			31.0		23.245	34.886		27.84	_
ATOM	660		ALA			30.7		23.224	36.068	3 1.00	30.00	, 0
ATOM	000	J	-	J					•			

												1.00 3	1 15	7
- mow	661	N	ARG A	4	83 '		30.	.310	23.811	33.9	51	1.00 :	7.13	6
ATOM	662	CA	ARG A		83		29	.071	24.462	34.3	45	1.00 3		
ATOM					83			. 285	24.941	33.1	.27	1.00 3		6
ATOM	663	CB	ARG A					. 439	26.189	33.4		1.00 4	2.23	6
ATOM	664	CG	ARG A		83				26.020	34.5		1.00 4		6
ATOM	665	CD	ARG A		83			.480		34.9		1.00 5		7
ATOM-	666	NE	ARG A	Ą	83			.904	27.303			1.00 5	6 91	6
	667	CZ	ARG A		83		25	.046	27.460	36.0		1.00	0.04	7 .
MCTA			ARG A	-	83		24	.649	26.413	36.7	24	1.00 5	3.05	
ATOM	668				83			.588	28.672	36.3	04	1.00	8.03	7
≳TOM	669		ARG					.208	23.531	35.1		1.00 3	1.50	6
ATOM	670	С	ARG A		83				23.749	36.3		1.00 2	9.62	8
ATOM	671	0	ARG A	A	83			.056	23.743	34.3			3.06	7
ATOM	672	N	GLU A	Α	84			.648	22.491			1.00		6
	673	CA	GLU .	A	84	•		.819	21.568	35.3				6
MOTA	674	CB	GLU .		84		26	.112	20.562	34.4	117	1.00	7.35	
ATOM		CG	GLU .		84		26	.989	19.684	33.4	196	1.00	10.01	6
ATOM	675				84		27	.551	20.418	32.2	267	1.00 .	44.49	6 -
MOTA	676	CD	GLU .					.925	19.723	31.3	292	1.00	41.12	8
ATOM	677	OEl			84			.636	21.671	32.		1.00	41.01	8
MOTA	678	OE2	GLU		84				20.823	36.		1.00	35.42	6
ATOM	679	С	GLU	A	84			.617		37.		1.00		8
ATOM	680	0	GLU	Α	84			.246	20.816			1.00	35 21	7
	681	N	LYS	À	85			.727	20.226	36.		1.00	37.22	6
ATOM	682	CA	LYS		85	,	29	.604	19.450	36.		1.00	31.93	
ATOM			LYS		85		3.0	.841	19.030	36.	076	1.30	40.61	6
ATOM	683	CB			85			.739	17.977	36.	706	1.00	∔2.63	6
ATOM	684	CG	LYS					.038	16.640		872	1.00	45.48	6
ATOM	685	CD	LYS		85				15.523			1.00	45.60	6
ATOM	686	CE	LYS		85			.054	15.833	_	154		46.16	7
MOTA	687	NZ	LYS	À	85			.032			175		37.56	6
ATOM	688	С	LYS	A	85			0.032	20.159	30.	1/3		38.40	8
	689	ō	LYS	A	85		30	161 (19.516		222			7
MOTA	690	Ň	TYR		86		3 (254	21.472		116		35.60	
MOTA			TYR		86	•	3 (0.671	22.216	39.	307		32.67	6
ATOM	691	CA			86			2.151	22.610		200		32.09	6
ATOM	692	CB	TYR					3.065	21.424		995		33.63	6
ATOM	693	CG	TYR		86			3.120	20.393	_	932	1.00	32.12	6
ATOM	694	CD1			86				19.266		723		33.59	6
ATOM	695	CE1	TYR	Α	86			3.918			841	1 00	33.82	6
ATOM	696	CD2	TYR	A	86			3.839	21.306		623		34.55	6
ATOM	697	CE2	TYR	Α	86		_	4.645	20.178	•		1.00	32.38	6
	698	CZ	TYR		86		3	4.675	19.163		.566	1.00	32.30	8
ATOM	699	OH	TYR		86		3	5.431	18.034		.336	1.00	29.17	
ATOM			TYR		86		2	9.831	23.45	5 39	. 597		30.21	6
MOTA	700	C	TYR		86			0.192	24.26	5 40	.445		29.12	8
MOTA	701	0	_		87			8.712	23.59	4 38	. 893		29.44	7
ATOM	702	N	ASN					7.797	24.71	_	.086	1.00	28.58	6
ATOM	703	CA	ASN		87				24.61		.470	1.00	25.63	6
ATOM	704	CB	ASN		87			7.154			.596		28.05	6
ATOM	705	CG	ASN	A	87			5.871		· .	.672		11.32	8
ATOM	706	OD:	l ASN	A	87			5.275			.072			7
	707		2 ASN		87			5.434		5 39	.506	1.00	.8.35 [3.35	6
ATOM	708	C	ASN		87		2	8.580	26.01		.963			
MOTA			ASN		87			8.319		1 39	. 677		32.07	8
MOTA	709	0			88			9.545			.051	1.00	32.05	7
ATOM	710	N	ILE					0.407			.809	1.00	33.77	6
ATOM	711	CA			88					_	.776		36.13	6
ATOM	712	CE	ILE	Α	88			1.894			.201		37.80	6
ATOM	713	CG	2 ILE	A	38			2.759					38.92	6
	714	CG			88			2.357			.178		41.44	6
MOTA	715		1 ILE		88		3	2.350			.176		. 37.39 . 37.39	6
ATOM			ILE		88			0.085		7 36	.482		32.28	
ATOM	716				88			9.708			.520		32.72	
ATCM	717		ILE					30.237			.438	3 1.00	31.56	
MOTA	718		GLY		89						. 207		30.84	6
ATOM	719	CA			89			29.994			.09		32.17	
ATOM	720		GLY		89			28.69					30.42	
	721		GL		89			38.628			1.349		31.51	
ATOM	722		GL		90		:	27.67	30.29		.82			-
ATOM				Ä				26.38	7 30.93		5.75		32.92	
ATOM	723							26.31		16 36	5.524		34.32	_
ATOM	. 724			ζÀ				27.30			7.12		33.97	
' ATOM	725			γA	90			25.33.		_	5.50		0 33.88	3 7
: COM	726	S N	TY	RA	91			25.14	· 26.0	`				

									27 206	1.00 35.76	6
	moM	.727	CA	TYR A	91	24	.924	34.146	37.206		
		. –	CB	TYR A	91	23	.465	34.589	37.058	1.00 38.10	6
ř	MOT	728					.089	35.733	37.990	1.00 42.40	6
Ž	MOTA	729	CG	TYR A	91			37.057	37.688	1.00 43.57	6
2	MOTA	730	CD1	TYR A	91	23	.417			1.00 42.44	6
		731	CE1	TYR A	91	23	.105	38.106	38.577		
	MOTA			TYR A	91	2.2	.444	35.484	39.205	1.00 44.07	6
i	MOTA	732	CD2				.132	36.526	40.097	1.00 42.67	6
7	MOTA	733	CE2	TYR A	91				39.775	1.00 42.41	б
	MOTA	734	CZ	TYR A	91		.462	37.825	39.773		8
		735	OH	TYR A	91	22	2.130	38.835	40.646	1.00 43.69	
	MOTA				91		.242	34.082	38.701	1.00 34.15	6
1	MOTA	736	С	TYR A				35.014	39.266	1.00 29.52	8
	MOTA	737	0	TYR A	91		.821		39.333	1.00 34.78	7
	ATOM	738	N	GLU A	92	24	1.837	32.986			6
		739	CA	GLU A	92	25	5.024	32.797	40.767	1.00 38.46	
	MOTA					24	1.233	31.564	41.211	1.00 43.99	6
	MOTA	740	CB	GLU A			3.932	31.489	42.700	1.00 52.10	6
	MOTA	741	CG	GLU A					43.097	1.00 58.00	6
	ATOM	742	CD	GLU A	92		3.294	30.161		1.00 60.63	8
		743		GLU A		2	4.001	29.126	43.058		
	MOTA					2	2.087	30.149	43.434	1.00 59.58	8
	ATOM	744	OE2	GLU A			6.492	32.669	41.208	1.00 36.42	6
	ATOM	745	С	GLU A					42.193	1.00 32.92	8
	ATOM	746	0	GLU A	. 92		6.902	33.287		1.00 34.12	7
		747	N	ASN A	93	2	7.280	31.883	40.473	1.00 34.12	
	MOTA			ASN A		2	8.693	31.671	40.808	1.00 33.24	6
	ATOM	748	CA		_		8.871	30.259	41.364	1.00 28.52	6
	ATOM	749	CB	ASN A				29.859	42.299	1.00 27.45	6
	ATOM	750	CG	ASN A	93	_	7.734	29.639		1.00 21.76	8
		751	OD1	ASN A	93		7.547	30.457	43.355		7
	MOTA			ASN A		2	6.956	28.853	41.895	1.00 21.79	
	MOTA	752 .					9.529	31.843	39.535	1.00 35.04	6
	MOTA	753	С	ASN A					39.059	1.00 33.81	8
	MOTA	754	0	ASN A	93		0.160		39.010	1.00 36.19	7
	ATOM	755	N	PRO A	94	2	9.583				6
			CD	PRO A		2	8.970	34.231	39.690	1.00 34.62	
	MOTA	756					0.274		37.808	1.00 34.80	6
	ATOM	757	CA	PRO A					37.791	1.00 33.94	6
	ATOM	758	CB	PRO A	94		9.924			1.00 36.13	6
		759	CG	PRO A	94		8.619		38.516		6
	ATOM	760	Ċ	PRO P		. 3	1.775	33.379	·37.733	1.00 34.63	
	MOTA						2.443		38.730	1.00 34.72	8
	ATOM	761	0	PRO A					36.526	1.00 33.57	7
	MOTA	762	N	VAL A			2.299		36.307	1.00 30.31	6
	MOTA	763	CA	VAL A	3 95		3.735	33.499		1.00 29.88	6
		764	CB	VAL A		3	4.085	33.171	34.841		
	ATOM			_		3	5.561		34.574	1.00 29.53	6
	MOTA	765	CG				3.795	_	34.563	1.00 28.05	6
	MOTA	766	CG2	2 VAL 2						1.00 29.86	6
	ATOM	767	С	VAL A	a 95		4.195			1.00 29.07	8
		768	0	VAL 3	a 95	3	3.524	35.879			7
	MOTA			SER A		-	35.318	35.019	37.317	1.00 30.89	
	MOTA	769	N				5.889			1.00 32.27	6
	MOTA	770	CA	SER A						1.00 30.16	6
	MOTA	771	CB	SER 2	A 96		34.885	·			8
		772	OG	SER	a 96		34.600	36.545			6
	ATOM		c	SER .			37.113	1 35.993	38.537	1.00 32.96	_
	MOTA	773					37.60			1.00 33.77	8
	ATOM	774	0	SER .							7
	ATOM	775	N	TYR A	a 97		37.609				6
		776	CA	TYR .	A 97		38.75	3 36.712			6
	ATOM		CB				39.83	g 37.766	39.923		0
	ATOM	777					40.41		38.525	1.00 30.39	6
	ATOM	778	CG								6
	MOTA	779	CD	1 TYR	A 97		39.82				6
		780	CE				40.32	7 38.358	36.178		6
	MOTA						41.53	6 36.945	38.236	1.00 28.43	
	MOTA	781	CD				42.04		36.942	1.00 24.73	. 6
	MOTA	782	ÇE								6
	MOTA	783	CZ	TYR	a 97		41.43				8
		784	ОН				41.91				
	ATOM						38.35		8 41.596	1.00 31.10	
	ATOM	785	С	TYR							8
	ATOM	786	0	TYR			39.17	-			
		787		ALA			37.05				
	MOTA						36.51	0 36.24	1 43.160		
	ATOM	738					35.14		0 43.250	1.00 27.71	
	ATOM	-89					36.35			7 1.00 31.24	
	ATCM	-90	C	ALA							
		791		ALA			36.33				_
	ATCM			MET			36.24	9 34.03	0 42.23	0 1.00 29.50	, ,
	ATOM	792	N	LIE I	. ,,				-		

		V	ET A	99	36.048	32.589	42.207	1.00 29.89	6
MOTA	793				35.774	32.123	40.778	1.00 30.48	6
ATOM	794		ET A			32.265	39.822	1.00 29.63	6
ATOM	795	CG R	ET A		36.942			1.00 29.78	16
ATOM	796	SD M	ET A	. 99	36.426	31.939	38.126		6
ATOM	797	CE M	ET A	. 99	35.629	30.273	38.347	1.00 25.05	
	798		ET A		37.199	31.800	42.783	1.00 30.81	6
ATOM			ET A		36.993	30.757	43.406	1.00 30.59	8
ATOM	799				38.417	32.274	42.569	1.00 32.09	7
ATOM	800			100		31.557	43.114	1.00 33.87	6
ATOM	801			100	39.554		42.029	1.00 33.95	6
ATCM	802	C3 !	HE A	100	40.322	30.817			6
ATOM	803	CG I	HE A	100		29.979	42.578	1.00 41.14	
	804			100	41.152	28.862	43.364	1.00 41.84	6
MOTA				100	42.768	30.339	42.372	1.00 42.18	6.
ATOM	805			100	42.185	28.115	43.941	1.00 41.63	6
MOTA	806				43.808	29.600	42.944	1.00 40.50	6
MOTA	807			100	43.517	28.487	43.729	1.00 39.89	6
MOTA	808			100			43.895	1.00 33.98	6
ATOM	809			100	40.519	32.438		1.00 38.21	8
ATOM	810			100	40.706	32.231	45.088	1.00 28.09	7
MOTA	811	N 1	THR A	101	41.137	33.415	43.245		
	812			101	42.063	34.261	43.969	1.00 22.19	6
ATOM	813			101	42.623	35.378	43.072	1.00 22.48	6
ATOM				A 101	43.441	34.795	42.052	1.00 21.99	, 8
MOTA	814				43.468	36.335	43.876	1.00 15.00	6
MOTA	815			A 101		34.860	45.205	1.00 21.71	6
MOTA	816			A 101	41.408		46.282	1.00 23.82	8
MOTA	817			A 101	41.988	34.845	45.068	1.00 21.79	7
ATOM	818	.N	GLY A	A 102	40.197	35.377		1.00 21.73	6
ATOM	819	CA	GLY A	A 102	39.533	35.947	46.231		
ATOM	820	С	GLY	A 102	39.072	34.833	47.153	1.00 23.03	6
	821	ō	GLY	A 102	39.209	34.909	48.378	1.00 20.41	8
ATOM				A 103	38.512	33.792	46.544	1.00 22.59	7
MOTA	822			A 103	38.028	32.640	47.276	1.00 26.51	6
ATOM	823	CA	SEK .	A 103	37.454	31.598	46.314	1.00 28.10	6
ATOM	824	CB	SER .	A 103		32.099		1.00 32.01	8
MOTA	825			A 103	36.314		48.032	1.00 27.73	6
MOTA	826			A 103	39.188	32.040		1.00 30.61	8
ATOM	827	O	SER .	A 103	39.019	31.544	49.144	1.00 30.01	7
ATOM	828	23	SER .	A 104	40.364	32.080	47.410		
	829	CA	SER	A 104	41.590	31.552	48.008	1.00 28.55	6
MOTA	830	CB		A 104	42.769	31.683	47.039	1.00 28.74	6
MOTA		OG		A 104	42.501	31.044	45.804	1.00 35.04	8
ATOM	831			A 104	41.870	32.401	49.226	1.00 25.67	6
MOTA	832	C			42.026	31.897	50.338	1.00 25.17	8
ATOM	833	C	SER	A 104		.33.705	48.986	1.00 23.91	7
ATOM	834	N	LEU	A 105	41.909		50.008	1.00 23.01	6
ATOM	835	CA		A 105	42.163	34.698	49.382	1.00 23.57	6
ATOM	836	CВ		A 105	42.049	36.082		1.00 26.30	6
ATOM	837	CG	LEU	A 105	43.158	37.091	49.672		6
ATOM	838			A 105	44.502	36.551	49.178	1.00 22.38	
	839	CD2	LEII	A 105	42.823	38.413	48.984	1.00 27.36	6
ATOM			1 211	A 105	41.187	34.559	51.182	1.00 23.48	
ATCM	840	C			41.604	34.448	52.331	1.00 21.60	8
ATOM	841	0	LEU	A 105	39.887	34.556	50.897		7
ATOM	842	N	ALA	A 106		34.423	51.957		6
ATOM	843	CA		A 106	38.884	34.423	51.358	1.00 24.28	
ATOM	844	CЗ		A 106	37.471	34.423			
ATOM	845	С	ALA	A 106	39.088	33.158	52.790		
ATOM	846	0		A 106	38.953	33.186	54.015		
	847	N	THR	A 107	39.410	32.057	52.111		
MOTA			מעת	A 107	39.620	30.760	52.754	1.00 25.54	
MOTA	848	CA			39.706	29.637		1.00 21.92	
ATOM	849	C3		A 107		29.688) 8
ATOM	850	OG1		A 107	38.559				
ATOM	851	CG2		A 107	39.742	28.295			
ATCM	852	C	THR	A 107	40.901	30.720			
	853	Ö	THR	A 107	40.906	30.254			
ATOM	854	N	GLY.	A 108	41.994	31.191	52.996		_
ATOM		CA	CTV	A 108	43.247		53.718		
ATCM	855		CIV	A 108	43.027		55.019	1.00 30.26	
ATCM	856	C	GLX	A 100	43.502				3 8
ATCM	857	0	GLY	A 108					
ATOM	858	N	SER	A 109	42.283	٥٥.٥٢٥		· · · · ·	

Figure 17-14

ATOM 850 CA SER 2 109 42.002 33.810 56.119 1.00 24.86 6 ATOM 860 CB SER 2 109 41.222 35.898 54.872 1.00 21.07 8 ATOM 861 OG SER 3 109 41.222 35.898 54.872 1.00 21.07 8 ATOM 862 C SER 3 109 41.224 33.214 58.377 1.00 30.92 8 ATOM 863 O SER 4 109 41.224 33.214 58.377 1.00 30.92 8 ATOM 866 CB THR 2 110 49.895 57.721 1.00 24.80 6 ATOM 866 CB THR 3 110 39.676 31.259 57.721 1.00 24.80 6 ATOM 866 CB THR 3 110 39.676 31.259 57.721 1.00 24.80 6 ATOM 866 CB THR 3 110 37.469 31.016 56.669 1.00 30.45 8 ATOM 867 OGI THR 3 110 37.469 31.016 56.669 1.00 30.45 8 ATOM 868 CGZ THR 3 110 37.469 31.016 56.669 1.00 30.45 8 ATOM 869 C THR 3 110 40.712 30.449 58.478 1.00 24.34 6 ATOM 870 OTHR 3 110 40.712 30.449 58.478 1.00 24.34 6 ATOM 871 N VAL 3 111 42.759 29.773 58.416 1.00 22.01 7 ATOM 873 CB VAL 3 111 43.595 28.495 57.391 1.00 25.77 6 ATOM 874 CG1 VAL 3 111 43.595 28.495 57.391 1.00 22.57 6 ATOM 875 CG2 VAL 3 111 43.576 30.071 59.391 1.00 22.57 6 ATOM 876 C VAL 3 111 43.576 30.071 59.391 1.00 22.57 6 ATOM 878 N GLP A 112 44.895 32.100 59.554 1.00 22.67 6 ATOM 878 C GA A 112 44.895 32.100 59.554 1.00 22.67 6 ATOM 878 C GA A 112 44.895 32.100 59.554 1.00 22.67 6 ATOM 880 CB GHA 3 112 44.895 32.100 59.554 1.00 22.67 6 ATOM 880 CB GHA 3 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 880 CB GHA 3 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.94 7 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.94 7 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.94 7 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.94 7 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.94 7 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.94 7 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.62 8 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.62 8 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 24.62 8 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 31.22 8 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 31.22 8 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 31.22 8 ATOM 880 CB GHA 3 112 44.807 32.366 6.837 1.00 31.20 8 AT			_				
ATOM 850 CB SER A 109 41.222 35.066 55.727 1.00 24.74 6 8 ATOM 861 OG SER A 109 41.992 35.898 54.872 1.00 21.07 8 ATOM 862 C SER A 109 41.992 35.898 54.872 1.00 21.07 8 6 ATOM 863 O SER A 109 41.240 32.996 57.173 1.00 27.99 6 ATOM 863 O SER A 109 41.240 32.996 57.173 1.00 27.89 6 ATOM 864 N THIR A 110 40.389 32.064 56.744 1.00 23.97 7 ATOM 865 CA THIR A 110 38.641 30.290 57.074 1.00 24.80 6 ATOM 865 CA THIR A 110 38.641 30.290 57.074 1.00 24.80 6 ATOM 866 CB THIR A 110 38.641 30.290 57.074 1.00 24.80 6 ATOM 866 CB THIR A 110 38.228 29.205 58.067 1.00 24.74 8 ATOM 867 OGI THIR A 110 40.615 30.282 59.699 1.00 24.74 8 ATOM 867 OGI THIR A 110 40.615 30.282 59.699 1.00 24.74 8 ATOM 867 OGI THIR A 111 42.759 29.173 58.461 1.00 24.13 6 ATOM 867 CGI VAL A 111 42.759 29.173 58.461 1.00 22.577 6 ATOM 872 CG VAL A 111 42.888 27.773 58.121 1.00 22.577 6 ATOM 873 CGI VAL A 111 42.888 27.750 55.341 1.00 22.61 6 ATOM 875 CGI VAL A 111 43.750 30.071 59.329 1.00 24.14 8 ATOM 875 CGI VAL A 111 43.750 30.071 59.329 1.00 24.14 8 ATOM 875 CGI VAL A 111 43.750 30.071 59.329 1.00 24.14 6 ATOM 875 CGI VAL A 111 43.750 30.071 59.329 1.00 24.14 6 ATOM 875 CGI VAL A 111 44.895 27.773 58.121 1.00 22.51 6 ATOM 875 CGI VAL A 111 44.895 27.773 58.121 1.00 22.51 6 ATOM 875 CGI VAL A 111 43.750 30.071 59.329 1.00 23.14 6 ATOM 876 CGI VAL A 111 44.895 27.773 58.121 1.00 22.51 6 ATOM 878 N GIN A 112 44.895 32.00 59.554 1.00 22.61 6 ATOM 878 N GIN A 112 44.895 32.00 59.554 1.00 22.61 6 ATOM 878 N GIN A 112 44.895 32.00 59.554 1.00 22.61 6 ATOM 880 CB GIN A 112 44.895 32.00 59.554 1.00 24.11 8 ATOM 880 CB GIN A 112 44.895 32.00 59.554 1.00 24.91 7 ATOM 880 CB GIN A 112 44.895 32.00 59.554 1.00 24.91 7 ATOM 880 CB GIN A 112 44.895 32.00 59.554 1.00 24.91 7 ATOM 880 CB GIN A 112 44.895 32.00 59.554 1.00 24.91 7 ATOM 880 CB GIN A 112 44.895 32.00 59.554 1.00 24.91 8 ATOM 890 C ALA A 113 41.91 41.91 42.91 31.91 64.91 41.9		177 7 770 7 109	42 002	33.810			
ATOM 860 CB SBRA 109 41,240 32,936 51,733 1.00 27,89 6 ATOM 862 C SER A 109 41,240 32,936 57,733 1.00 27,89 6 ATOM 863 O SER A 109 41,240 33,214 58,377 1.00 30,92 8 ATOM 864 N THR A 110 40,389 32,064 56,744 1.00 23,91 7 ATOM 865 CA THR A 110 38,641 30,290 57,7074 1.00 22,95 6 ATOM 866 CB THR A 110 38,641 30,290 57,7074 1.00 22,95 6 ATOM 866 CB THR A 110 38,641 30,290 57,7074 1.00 29,05 6 ATOM 866 CG THR A 110 38,242 29,205 58,067 1.00 29,00 6 ATOM 868 CG2 THR A 110 38,228 29,205 58,067 1.00 29,00 6 ATOM 869 C THR A 110 40,712 30,449 58,478 1.00 24,34 6 ATOM 870 O THR A 110 40,712 30,49 58,478 1.00 24,34 6 ATOM 871 N VAL A 111 42,759 29,754 57,764 1.00 24,34 6 ATOM 872 CA VAL A 111 42,759 29,173 58,416 1.00 24,13 6 ATOM 873 CB VAL A 111 42,759 29,173 58,416 1.00 24,13 6 ATOM 873 CB VAL A 111 42,759 29,173 58,416 1.00 24,13 6 ATOM 876 C VAL A 111 42,888 27,703 58,416 1.00 22,51 6 ATOM 876 C VAL A 111 43,576 30,071 59,329 1.00 22,57 6 ATOM 878 N GLIN A 112 44,101 11,155 29,954 57,391 1.00 22,67 6 ATOM 878 N GLIN A 112 44,101 13,156 58,772 1.00 23,14 6 ATOM 878 N GLIN A 112 44,101 13,156 58,772 1.00 23,14 6 ATOM 878 N GLIN A 112 44,895 32,100 59,554 1.00 23,14 6 ATOM 878 N GLIN A 112 44,895 32,100 59,554 1.00 23,14 6 ATOM 880 CB GLIN A 112 44,895 32,100 59,554 1.00 25,12 6 ATOM 880 CB GLIN A 112 44,895 31,413 51,00 24,14 7 ATOM 881 NG CB GLIN A 112 44,895 31,413 51,00 24,14 7 ATOM 884 NG2 GLIN A 112 44,895 31,413 51,00 29,13 7 ATOM 885 CG URA 111 41,41 41,90 22,51 6,54 1,00 25,12 6 ATOM 886 CG GLIN A 112 44,677 31,4890 55,694 1.00 25,14 6 ATOM 886 CB GLIN A 112 44,677 31,4890 50,56 84,779 1.00 24,14 7 ATOM 887 N ALA A 113 41,91 41,91 32,904 61,751 1.00 25,14 6 ATOM 880 CB GLIN A 112 44,677 31,890 50,694 1.00 25,14 6 ATOM 880 CB GLIN A 112 44,677 31,890 50,694 1.00 25,14 6 ATOM 880 CB GLIN A 112 44,677 31,890 50,694 1.00 25,14 6 ATOM 880 CB GLIN A 112 44,677 31,890 50,904 1.00 25,15 6 ATOM 880 CB GLIN A 112 44,677 31,890 50,904 1.00 25,15 6 ATOM 880 CB GLIN A 112 44,677 31,890 50,904 1.00 25,15 6 ATOM 880 CB GLIN A	ATOM .						6
ATOM 861 OG SEKA A 109 ATOM 862 C SER A 109 ATOM 863 O SER A 109 ATOM 863 O SER A 109 ATOM 864 N THA 110 ATOM 865 CA THR A 110 ATOM 865 CA THR A 110 ATOM 865 CA THR A 110 ATOM 866 CB THR A 110 ATOM 867 OGI THR A 110 ATOM 867 OGI THR A 110 ATOM 869 C THR A 110 ATOM 871 N VAL A 111 ATOM 873 CB VAL A 111 ATOM 873 CB VAL A 111 ATOM 873 CB VAL A 111 ATOM 875 CG2 VAL A 111 ATOM 876 C VAL A 111 ATOM 877 O VAL A 111 ATOM 877 O VAL A 111 ATOM 878 N GLA A 111 ATOM 879 CA GLA A 112 ATOM 879 CA GLA A 113 ATOM 879 CA GLA	ATOM					1.00 21.07	8
ATOM 862 C SER À 109 ATOM 863 O SER À 109 ATOM 864 N THR À 110 A10886 CB THR À 110 A10886 CG THR À 110 A10887 N VALÀ À 111 ATOM B70 O THR À 120 ATOM B71 N VALÀ À 111 ATOM B72 CA VALÀ À 111 ATOM B73 CB VALÀ À 111 ATOM B73 CB VALÀ À 111 ATOM B74 CGI VALÀ À 111 ATOM B75 CGZ VALÀ À 111 ATOM B76 CC VALÀ À 111 ATOM B77 CGZ VALÀ À 111 ATOM B78 N GINÀ À 112 ATOM B78 CB CLÀ À 111 A10887 CGZ VALÀ À 111 A10887 CGZ VALÀ À 111 A10888 CG GINÀ À 112 ATOM B78 N GINÀ À 112 ATOM B80 CB GINÀ À 112 ATOM B80 CB GINÀ À 112 ATOM B81 CG GINÀ À 112 ATOM B82 CD GINÀ À 112 ATOM B82 CD GINÀ À 112 ATOM B83 CG GINÀ À 112 ATOM B84 NEZ GINÀ À 112 ATOM B85 CG GINÀ À 112 ATOM B86 CG GINÀ À 112 ATOM B87 N LÀA À 113 ATOM B88 CC GINÀ À 112 ATOM B89 CC ALÀA À 113 ATOM B89 CC ALÀA À 115 ATOM B89 CC GINÀ À 112 ATOM B89 CC GI	ATOM						6
ATOM 863 O SER À 109 ATOM 864 N THR À 110 ATOM 865 CÀ THR À 110 ATOM 865 CÀ THR À 110 ATOM 865 CÀ THR À 110 ATOM 866 CB THR À 110 ATOM 867 OGI THR À 110 ATOM 867 OGI THR À 110 ATOM 869 C THR À 110 ATOM 871 N VAL À 111 ATOM 872 CA VAL À 111 ATOM 873 CB VAL À 111 ATOM 873 CB VAL À 111 ATOM 875 CG2 VAL À 111 ATOM 876 C VAL À 111 ATOM 876 C VAL À 111 ATOM 877 O VAL À 111 ATOM 876 C VAL À 111 ATOM 877 O VAL À 111 ATOM 878 N GLN À 111 ATOM 878 N GLN À 111 ATOM 879 CA GLN À 112 ATOM 881 CG GLN À 112 ATOM 882 CD GLN À 112 ATOM 883 OEI GLN À 112 ATOM 883 CD GLN À 112 ATOM 880 CB GLN À 112 ATOM 881 CG GLN À 112 ATOM 880 CB GLN À 112 ATOM 881 CG GLN À 112 ATOM 880 CB GLN À 112 ATOM 887 N GLN À 113 ATOM 880 CB GLN À 112 ATOM 880 CB G		862 C SER A 109					8
ATOM 864 N THR A 110 40.389 34.062 37.721 1.00 24.80 6 ATOM 865 CA THR A 110 38.641 30.290 57.721 1.00 24.80 6 ATOM 866 CB THR A 110 38.641 30.290 57.721 1.00 28.55 6 ATOM 867 OG1 THR A 110 38.228 29.205 58.677 1.00 29.00 6 ATOM 868 CCZ THR A 110 38.228 29.205 58.677 1.00 29.00 6 ATOM 869 C THR A 110 40.615 30.422 59.699 1.00 24.34 6 ATOM 870 O THR A 110 40.615 30.422 59.699 1.00 24.34 6 ATOM 871 N VAL A 111 41.715 29.954 57.764 1.00 23.01 7 ATOM 872 CA VAL A 111 42.759 29.173 58.416 1.00 23.01 7 ATOM 873 CB VAL A 111 43.695 28.495 57.764 1.00 23.01 7 ATOM 874 CG1 VAL A 111 43.695 28.495 57.764 1.00 25.77 6 ATOM 875 CG2 VAL A 111 43.576 30.071 59.329 1.00 25.77 6 ATOM 876 C VAL A 111 43.576 30.071 59.329 1.00 25.77 6 ATOM 877 O VAL A 112 44.101 31.156 58.772 1.00 24.14 8 ATOM 878 N CLA A 112 44.895 32.100 59.554 1.00 24.13 6 ATOM 880 CB GLN A 112 44.895 32.100 59.554 1.00 24.13 6 ATOM 881 CG GLN A 112 44.895 33.413 58.779 1.00 25.14 6 ATOM 882 CD GLN A 124 48.895 33.240 59.554 1.00 22.14 6 ATOM 882 CD GLN A 112 45.545 33.224 57.330 1.00 25.14 6 ATOM 883 CE GLN A 112 44.897 34.890 55.684 1.00 29.13 6 ATOM 884 NE2 GLN A 112 44.877 34.890 55.684 1.00 29.31 7 ATOM 885 CD GLN A 112 44.877 34.890 55.687 1.00 24.12 8 ATOM 886 CD GLN A 112 44.877 34.890 55.684 1.00 29.31 7 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 24.33 6 ATOM 886 CD ALA A 113 41.914 32.904 61.751 1.00 24.43 7 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 24.43 7 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 24.43 7 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 24.43 7 ATOM 888 CD ALA A 113 41.914 32.904 61.751 1.00 24.43 7 ATOM 889 C BALA A 113 41.914 32.904 61.751 1.00 24.43 7 ATOM 889 C BALA A 113 41.914 32.904 61.751 1.00 24.43 8 ATOM 889 C BALA A 113 41.914 32.904 61.751 1.00 22.53 8 ATOM 889 C GLU A 115 44.67 93.56 60.644 1.00 21.39 6 ATOM 997 C GLU A 115 46.639 29.992 62.508 1.00 22.51 6 ATOM 997 C GLU A 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 990 N GLU A 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 990 N GLU A 115 46.639 29.992 62.508		863 O SER A 109					
ATOM 865 CA THR A 110 39.676 31.297 57.074 1.00 29.65 6 A ATOM 866 CB THR A 110 37.469 31.016 56.669 1.00 30.45 8 ATOM 868 CG THR A 110 37.469 31.016 56.669 1.00 30.45 8 ATOM 869 C THR A 110 40.615 30.282 59.699 1.00 24.74 8 ATOM 870 O TRA A 110 40.615 30.282 59.699 1.00 24.74 8 ATOM 871 N VAL A 111 41.715 29.954 57.764 1.00 23.01 7 ATOM 872 CA VAL A 111 42.759 29.173 58.416 1.00 24.13 6 ATOM 873 CB VAL A 111 43.695 28.495 57.391 1.00 22.57 6 ATOM 873 CB VAL A 111 44.845 27.773 58.121 1.00 22.57 6 ATOM 875 CG2 VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 876 C VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 876 C VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 877 O VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 878 C GIN A 112 44.101 31.156 58.772 1.00 24.94 7 ATOM 878 C GIN A 112 44.101 31.156 58.772 1.00 24.94 7 ATOM 878 C GIN A 112 44.101 31.576 58.772 1.00 25.12 6 ATOM 880 CB GIN A 112 45.585 33.245 57.330 1.00 25.12 6 ATOM 880 CB GIN A 112 45.585 33.413 58.779 1.00 25.14 6 ATOM 880 CB GIN A 112 45.585 33.413 58.779 1.00 25.14 6 ATOM 880 CB GIN A 112 45.585 33.424 57.330 1.00 25.12 6 ATOM 882 CD GIN A 112 44.877 34.890 55.694 1.00 25.12 6 ATOM 885 C GIN A 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 886 C GIN A 112 44.877 34.890 55.694 1.00 29.13 7 ATOM 888 CA GIN A 112 44.877 31.890 55.694 1.00 29.13 7 ATOM 888 CA ALA A 113 41.341 31.904 61.751 1.00 29.13 7 ATOM 888 CA ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 31.904 61.751 1.00 22.51 6 ATOM 890 C ALA A 113 41.341 41.							
ATOM 866 CB THR A 110 38.641 30.290 57.074 1.00 30.45 8 ATOM 867 OG1 THR A 110 37.469 31.016 56.669 1.00 30.45 8 ATOM 868 CG2 THR A 110 40.712 30.449 58.478 1.00 24.34 6 ATOM 870 O THR A 110 40.712 30.449 58.478 1.00 24.74 8 ATOM 871 N VAL A 111 41.715 29.954 57.764 1.00 29.00 7 ATOM 872 CA VAL A 111 42.759 29.173 58.416 1.00 24.13 6 ATOM 873 CB VAL A 111 42.759 29.173 58.416 1.00 24.13 6 ATOM 873 CG VAL A 111 43.576 30.082 57.391 1.00 25.77 6 ATOM 873 CG VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 876 C VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 877 O VAL A 111 43.720 29.793 60.518 1.00 24.94 7 ATOM 878 N GLN A 112 44.895 27.005 59.554 1.00 22.51 6 ATOM 879 CA GLN A 112 44.895 32.100 59.5554 1.00 25.14 6 ATOM 889 CG GLN A 112 45.789 34.534 56.594 1.00 25.14 6 ATOM 880 CB GLN A 112 44.895 32.100 59.5554 1.00 25.14 6 ATOM 881 CG GLN A 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 883 OE1 GLN A 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 885 C GLN A 112 44.807 34.895 36.207 1.00 24.41 7 ATOM 886 OB GLN A 112 44.807 34.895 36.207 1.00 24.41 7 ATOM 889 CB ALA A 113 41.91 31.91 31.93 61.224 1.00 29.33 6 ATOM 889 CB ALA A 113 41.91 31.93 61.939 1.00 21.10 8 ATOM 889 CB ALA A 113 41.91 31.91 31.93 62.727 1.00 24.40 7 ATOM 889 CB ALA A 113 41.91 31.91 31.93 62.727 1.00 24.40 7 ATOM 889 CB ALA A 113 41.91 31.93 61.224 1.00 19.80 6 ATOM 889 CB ALA A 113 41.91 31.93 62.727 1.00 24.40 6 ATOM 889 CB ALA A 113 41.91 31.93 62.727 1.00 24.41 6 ATOM 889 CB ALA A 113 41.91 31.93 62.727 1.00 24.40 6 ATOM 889 CB ALA A 113 41.91 31.93 62.727 1.00 24.40 6 ATOM 889 CB ALA A 113 41.91 31.93 62.727 1.00 24.40 6 ATOM 889 CB ALA A 113 41.91 31.93 62.727 1.00 24.40 6 ATOM 889 CB ALA A 113 41.91 31.93 63.946 1.00 27.52 8 ATOM 889 CB ALA A 113 41.91 31.93 63.946 1.00 27.52 8 ATOM 889 CB ALA A 113 41.91 31.93 62.727 1.00 24.40 6 ATOM 890 C GLU A 116 44.676 33.959 62.211 1.00 24.39 7 ATOM 900 N GLU A 115 46.638 29.586 63.06 64.615 1.00 24.49 6 ATOM 900 N GLU A 115 46.638 29.586 65.831 1.00 22.51 8 ATOM 900 N GLU A 115 46.638 29.586 65.							
ATOM 867 OGI THR A 110 37, 469 31, 016 58, 68 C 110 29, 00 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	_		38.641				
## ATOM ## 868 CG2 THR A 110			37.469	31.016			
ATOM 869 C THER A 110 40.712 30.282 59.699 1.00 24.74 8 ATOM 870 O THER A 110 40.613 30.282 59.699 1.00 24.74 8 ATOM 871 N VAL A 111 41.715 29.954 57.764 1.00 23.01 7 ATOM 873 CB VAL A 111 41.715 29.954 57.764 1.00 23.01 7 ATOM 873 CB VAL A 111 42.759 29.173 58.416 1.00 24.13 6 ATOM 874 CGI VAL A 111 43.695 28.495 57.391 1.00 22.57 6 ATOM 876 C VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 877 O VAL A 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 878 N GLN A 112 44.815 27.773 58.121 1.00 22.61 6 ATOM 878 N GLN A 112 44.805 27.773 58.121 1.00 22.51 6 ATOM 879 CA GLN A 112 44.805 32.100 59.554 1.00 22.11 6 ATOM 878 N GLN A 112 44.807 32.100 59.554 1.00 22.12 6 ATOM 880 CB GLN A 112 45.585 33.244 57.330 1.00 28.51 6 ATOM 881 CG GLN A 112 45.789 34.534 56.594 1.00 29.13 6 ATOM 882 CD GLN A 112 46.779 35.219 56.837 1.00 21.10 8 ATOM 883 OPI GLN A 112 44.877 32.316 60.827 1.00 24.62 6 ATOM 886 C GLN A 113 44.877 32.316 60.827 1.00 24.62 6 ATOM 886 C GLN A 113 44.677 32.362 60.827 1.00 24.61 7 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 888 CA ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA A 113 41.915 31.733 62.729 1.00 24.41 7 ATOM 880 CB GLN A 112 44.647 32.362 60.827 1.00 24.62 6 ATOM 880 CB GLN A 112 44.647 32.362 60.827 1.00 24.62 6 ATOM 880 CB GLN A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 880 CB ALA A 113 41.915 31.733 62.729 1.00 24.62 6 ATOM 880 CB ALA A 113 41.916 31.733 62.729 1.00 24.41 7 ATOM 880 CB GLU A 115 44.867 32.816 63.106 1.00 24.49 6 ATOM 889 CB ALA A 113 41.916 31.83 61.224 1.00 19.80 6 ATOM 889 CB ALA A 113 41.916 31.733 62.729 1.00 22.53 8 ATOM 889 CB ALA A 113 41.916 31.733 62.729 1.00 22.53 8 ATOM 889 CB ALA A 113 41.916 31.733 62.729 1.00 22.53 8 ATOM 889 CB GLU A 115 44.867 39.556 63.106 1.00 24.49 6 ATOM 889 CB GLU A 115 44.867 39.556 63.106 1.00 24.99 6 ATOM 899 CD GLU A 115 44.867 39.556 63.106 1.00 24.99 6 ATOM 900 N GLU A 115 44.867 39.556 63.106 1.00 24.99 6 ATOM 901 CC GLU A 115 44.667 39.599 69.790 1.00 22.53 8 ATOM 902 CB GLU A 115 44.667 39.599 69.			38.228	29.205	58.067		
ATOM 870 O THIR A 110 40.615 30.282 59.699 1.00 24.74 74 ATOM 871 N VAL A 111 41.715 29.954 57.764 1.00 23.01 8 7 ATOM 872 CA VAL A 111 42.759 29.173 58.416 1.00 24.13 6 7 ATOM 873 CB VAL A 111 43.695 77.773 58.121 1.00 22.51 6 ATOM 876 C VAL A 111 44.895 27.773 58.121 1.00 22.51 6 ATOM 876 C VAL A 111 43.695 28.495 57.391 1.00 23.14 6 ATOM 876 C VAL A 111 43.756 30.071 59.329 1.00 23.14 6 ATOM 876 C VAL A 111 43.760 30.071 59.329 1.00 23.14 6 ATOM 877 O VAL A 111 43.720 29.793 60.518 1.00 24.11 8 ATOM 878 N GLN A 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 879 CA GLN A 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 880 CB GLN A 112 45.545 33.224 57.330 1.00 28.51 6 ATOM 881 CG GLN A 112 45.545 33.224 57.330 1.00 28.51 6 ATOM 882 OLG GLN A 112 45.789 34.534 56.594 1.00 29.13 6 ATOM 883 OLG GLN A 112 44.877 14.890 55.694 1.00 29.31 7 ATOM 883 OLG GLN A 112 44.877 14.890 55.694 1.00 29.31 7 ATOM 886 N GL GLN A 112 44.677 31.890 55.694 1.00 29.31 7 ATOM 888 CG GLN A 112 44.677 32.362 60.827 1.00 24.62 6 ATOM 882 CLN A 113 41.914 32.904 61.751 1.00 23.43 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.43 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.43 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.46 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 24.49 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 24.39 7 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.414 7 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.51 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.534 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.534 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.534 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.534 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.534 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.534 6 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.53 8 ATOM 889 CB ALA A 113 41.914 31.733 62.729 1.00 22.53 8 ATOM 889 CB ALA A 113 41.925 31.930 60.930 60.930 1.00 22.55 8 ATOM 900 CB GLU		110		30.449	58.478	1.00 24.34	
ATOM 871 N VAL A 111 41.715 29.954 57.764 1.00 23.01 7 ATOM 872 CA VAL A 111 42.755 29.1573 58.161 1.00 22.51 6 ATOM 873 CB VAL A 111 43.695 28.495 57.391 1.00 25.77 6 ATOM 875 CG2 VAL A 111 43.695 28.495 57.391 1.00 22.51 6 ATOM 876 C VAL A 111 43.720 29.773 58.121 1.00 22.51 6 ATOM 877 O VAL A 111 43.720 29.793 60.518 1.00 24.11 8 ATOM 878 N GLN A 112 44.895 32.100 59.554 1.00 24.494 7 ATOM 878 N GLN A 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 879 CA GLN A 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 880 CB GLN A 112 45.585 33.224 57.330 1.00 28.51 6 ATOM 881 CG GLN A 112 45.789 34.534 55.554 1.00 31.22 8 ATOM 882 CD GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 883 OEI GLN A 112 44.677 32.325 60.827 1.00 24.62 6 ATOM 885 C GLN A 112 44.677 32.326 60.827 1.00 24.62 6 ATOM 886 C GLN A 112 44.677 32.326 60.827 1.00 24.41 8 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 888 CA ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 C B ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 C B ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 C B ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 C B ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 C B ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 C B ALA A 113 41.915 31.733 62.729 1.00 25.344 6 ATOM 890 C ALA A 113 41.915 31.733 62.729 1.00 25.34 6 ATOM 890 C ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C B GLU A 115 41.669 61.751 1.00 23.33 6 ATOM 890 C B ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C B ALA A 113 41.915 31.733 62.729 1.00 25.34 6 ATOM 890 C B GLU A 115 41.669 61.699 1.00 27.55 8 ATOM 900 N GLU A 115 41.669 61.00 29.90 62.211 1.00 22.53 6 ATOM 900 N GLU A 115 46.699 61.00 29.90 62.211 1.00 22.51 6 ATOM 900 N GLU A 115 46.699 61.00 61.00 1.00 22.51 6 ATOM 901 C C GLU A 115 46.699 61.00 61.00 1.00 22.51 6 ATOM 901 C C GLU A 115 46.699 61.00 61.00 1.00 22.59 8 ATOM 901 C C GLU A 116 45.54 29.264 61.192 1.00 22.59 8 ATOM 901 C C GLU A 116 45.499 61.00	ATOM	11A		30.282	59.699		
ATOM 871 N NA	ATOM				57.764		
ATOM 873 CB VAL A 111 43.695 28.495 57.391 1.00 25.77 6 ATOM 874 CGI VAL A 111 44.845 27.773 58.121 1.00 22.51 6 ATOM 875 CG2 VAL A 111 42.888 27.502 56.534 1.00 22.67 6 ATOM 876 C VAL A 111 43.720 29.793 60.518 1.00 24.11 8 ATOM 877 O VAL A 111 43.720 29.793 60.518 1.00 24.11 8 ATOM 878 N GLN A 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 879 CA GLN A 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 880 CB GLN A 112 45.585 33.224 57.330 1.00 28.51 6 ATOM 881 CG GLN A 112 45.789 34.534 56.594 1.00 25.12 6 ATOM 882 CD GLN A 112 45.789 34.534 56.594 1.00 29.13 6 ATOM 883 OEI GLN A 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 884 NEZ CD GLN A 112 A4.877 32.362 60.827 1.00 24.62 6 ATOM 885 C GLN A 112 A4.877 34.890 55.694 1.00 29.13 6 ATOM 886 O GLN A 112 A4.877 34.890 55.694 1.00 29.31 7 ATOM 887 N ALA A 113 A1.91 32.622 60.684 1.00 24.45 6 ATOM 888 CA ALA A 113 A1.91 32.622 60.684 1.00 23.33 6 ATOM 889 CB ALA A 113 A1.91 32.622 60.684 1.00 24.41 7 ATOM 889 CB ALA A 113 A1.91 32.622 60.684 1.00 23.33 6 ATOM 890 C ALA A 113 A1.91 32.622 60.684 1.00 23.33 6 ATOM 891 O ALA A 113 A1.91 31.733 62.729 1.00 23.33 6 ATOM 892 N ILE A 114 A1.867 29.356 63.106 1.00 24.49 6 ATOM 893 CA ILE A 114 A1.867 29.356 63.106 1.00 24.49 6 ATOM 894 CB ILE A 114 A1.902 26.855 63.207 1.00 24.49 6 ATOM 896 CG ILE A 114 A1.902 26.855 63.207 1.00 24.49 6 ATOM 897 CDI ILE A 114 A1.902 26.855 63.207 1.00 24.49 6 ATOM 898 C GLI A 115 A1.867 29.956 63.106 1.00 22.51 6 ATOM 900 N GLU A 115 A6.639 29.992 62.508 1.00 22.51 6 ATOM 901 CA GLU A 115 A6.639 29.992 62.508 1.00 22.51 6 ATOM 902 CB GLU A 115 A6.639 29.992 62.508 1.00 22.51 6 ATOM 903 CG GLU A 115 A6.639 29.992 62.508 1.00 22.53 8 ATOM 904 CD GLU A 115 A6.639 29.992 62.508 1.00 22.53 8 ATOM 907 C GLU A 115 A6.639 29.992 62.508 1.00 22.53 8 ATOM 908 O GLU A 115 A6.639 29.992 62.508 1.00 22.53 8 ATOM 909 N GLU A 116 A6.872 34.982 66.861 1.00 37.26 8 ATOM 910 CA GLU A 116 A6.872 34.982 66.474 1.00 27.56 6 ATOM 910 CA GLU A 116 A6.872 34.982 66.471 1.00 22.53 8 ATOM 910 CA GLU A 116 A6.872 34.982 66.474	MOTA		42 759	29 173		1.00 24.13	6
ATOM 874 CGI VAL A 111 ATOM 875 CG2 VAL A 111 ATOM 876 C VAL A 111 ATOM 877 O VAL A 111 ATOM 877 O VAL A 111 ATOM 877 O VAL A 111 ATOM 878 N CLN A 112 ATOM 879 CA CLN A 112 ATOM 870 CB GLN A 113 ATO	MOTA					1.00 25.77	6
ATOM 875 CG2 VAL À 111 42.888 27.502 56.534 1.00 22.67 6 ATOM 876 C VAL À 111 43.760 30.071 59.329 1.00 23.14 6 ATOM 877 0 VAL À 111 43.760 30.071 59.329 1.00 23.14 6 ATOM 878 N GLN À 112 44.895 32.100 59.554 1.00 24.94 7 ATOM 878 N GLN À 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 879 CA GLN À 112 45.585 33.224 57.330 1.00 28.51 6 ATOM 881 CG GLN À 112 45.789 34.534 56.594 1.00 29.13 6 ATOM 882 CD GLN À 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 883 CD GLN À 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 885 C GLN À 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 885 CD GLN À 112 44.877 32.362 60.827 1.00 24.62 6 ATOM 886 O GLN À 112 44.647 32.311 61.939 1.00 21.10 8 ATOM 887 N ALA À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C ALA À 113 41.915 31.733 62.729 1.00 25.34 6 ATOM 891 O ALA À 113 41.925 31.930 63.946 1.00 27.52 8 ATOM 893 CB ALA À 113 41.925 31.930 63.946 1.00 27.52 8 ATOM 893 CB ALA À 113 41.925 31.930 63.946 1.00 27.39 7 ATOM 894 CB ILE À 114 41.867 29.356 63.106 1.00 24.49 6 ATOM 894 CB ILE À 114 41.902 26.855 63.207 1.00 24.49 6 ATOM 896 CG ILE À 114 41.902 26.855 63.207 1.00 24.49 6 ATOM 896 CG ILE À 114 41.902 26.855 63.207 1.00 24.49 6 ATOM 897 CDI ILE À 114 41.902 26.855 63.207 1.00 24.49 6 ATOM 896 CG ILE À 114 41.902 26.855 63.207 1.00 24.49 6 ATOM 896 CG ILE À 114 41.902 26.855 63.207 1.00 24.39 7 ATOM 896 CG ILE À 114 41.902 26.855 63.207 1.00 24.39 6 ATOM 900 N GLU À 115 46.639 29.992 62.508 1.00 22.51 6 ATOM 900 CA GLU À 115 46.639 29.995 62.211 1.00 22.51 6 ATOM 900 CA GLU À 115 46.639 29.995 63.307 1.00 22.51 6 ATOM 900 CA GLU À 115 46.639 29.995 63.307 1.00 22.51 6 ATOM 900 CA GLU À 115 46.639 29.995 63.307 1.00 22.51 6 ATOM 900 CA GLU À 115 46.639 29.995 63.307 1.00 22.53 8 ATOM 900 CA GLU À 115 46.639 29.995 63.307 1.00 22.53 8 ATOM 900 CA GLU À 115 46.639 29.995 63.307 1.00 22.53 8 ATOM 900 CA GLU À 115 46.639 29.995 63.307 1.00 22.53 8 ATOM 900 CA GLU À 115 46.639 29.995 63	ATOM			20.422	-	1.00 22.51	6
ATOM 876 C VAL À 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 877 O VAL À 111 43.576 30.071 59.329 1.00 23.14 6 ATOM 878 N GLN A 112 44.101 31.156 58.772 1.00 24.94 7 ATOM 878 N GLN A 112 44.895 32.100 59.554 1.00 25.12 6 ATOM 880 CB GLN A 112 45.545 33.224 57.330 1.00 28.51 6 ATOM 881 CG GLN A 112 45.545 33.224 57.330 1.00 28.51 6 ATOM 883 OEI GLN A 112 45.789 34.514 56.594 1.00 29.13 6 ATOM 883 OEI GLN A 112 45.789 34.514 56.594 1.00 29.13 6 ATOM 884 NE2 GLN A 112 45.789 34.890 55.694 1.00 29.13 6 ATOM 885 C GLN A 112 44.877 34.890 55.694 1.00 29.13 6 ATOM 886 O GLN A 112 44.877 32.362 60.827 1.00 24.62 6 ATOM 887 N ALA A 113 44.647 32.311 61.939 1.00 24.62 6 ATOM 888 CA ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 888 CA ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 27.52 8 ATOM 890 C ALA A 113 41.914 32.904 61.751 1.00 27.52 8 ATOM 891 O ALA A 113 41.915 31.83 61.224 1.00 19.80 6 ATOM 892 N ILE A 114 41.859 30.509 62.211 1.00 24.49 6 ATOM 893 CA ILE A 114 41.857 29.356 63.207 1.00 24.49 6 ATOM 894 CB ILE A 114 41.857 29.356 63.207 1.00 23.346 6 ATOM 895 CGI ILE A 114 41.892 26.855 63.227 1.00 23.46 6 ATOM 896 CGI ILE A 114 41.892 26.855 63.227 1.00 23.46 6 ATOM 897 CDI ILE A 114 41.892 26.855 63.227 1.00 23.46 6 ATOM 898 C GLU A 115 46.639 29.992 62.501 1.00 24.39 6 ATOM 900 N GLU A 115 46.639 29.992 62.508 1.00 22.516 6 ATOM 901 CA GLU A 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 902 CB GLU A 115 46.654 29.560 60.991 1.00 22.39 6 ATOM 903 CG GLU A 115 46.659 29.992 62.508 1.00 22.53 8 ATOM 904 CD GLU A 115 46.654 29.560 60.404 1.00 21.37 6 ATOM 908 O GLU A 115 46.654 29.560 60.404 1.00 21.39 6 ATOM 901 CA GLU A 115 46.654 29.560 60.404 1.00 21.99 6 ATOM 901 CA GLU A 115 46.654 29.560 60.404 1.00 21.99 6 ATOM 903 CG GLU A 115 46.654 29.560 60.404 1.00 21.99 6 ATOM 904 CD GLU A 115 46.654 29.560 60.404 1.00 20.39 6 ATOM 907 C GLU A 115 46.659 29.506 60.404 1.00 20.39 6 ATOM 908 O GLU A 116 47.766 82.660 60.406 60.406 1.00 34.40 6 ATOM 911 CB GLU A 116 47.766 82		874 CG1 VAL A 111				1.00 22.67	6
ATOM 876 C VAL A 111 43.720 29.793 60.518 1.00 24.19 8 ATOM 878 N GLN A 112 44.101 31.156 58.772 1.00 24.94 7 ATOM 878 N GLN A 112 44.101 31.156 58.772 1.00 24.94 7 ATOM 879 CA GLN A 112 45.082 33.413 58.779 1.00 25.12 6 ATOM 881 CG GLN A 112 45.082 33.413 58.779 1.00 25.14 6 ATOM 882 CD GLN A 112 45.789 34.534 56.594 1.00 29.13 6 ATOM 883 OE1 GLN A 112 46.779 35.219 56.837 1.00 31.22 8 ATOM 884 NEZ GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 O GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 O GLN A 112 44.877 32.321 60.827 1.00 24.62 6 ATOM 886 O GLN A 113 44.877 34.890 55.694 1.00 22.10 8 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C ALA A 113 41.925 31.930 63.946 1.00 27.52 8 ATOM 890 C ALA A 113 41.925 31.930 63.946 1.00 27.52 8 ATOM 891 O ALA A 113 41.925 31.930 63.946 1.00 27.52 8 ATOM 892 C ILE A 114 41.867 29.356 63.271 1.00 24.49 6 ATOM 894 CB ILE A 114 41.867 29.356 63.271 1.00 24.49 6 ATOM 895 CG ILE A 114 41.902 26.855 63.227 1.00 18.97 6 ATOM 896 CG ILE A 114 41.902 26.855 63.227 1.00 18.97 6 ATOM 897 CDI ILE A 114 43.230 29.227 63.757 1.00 22.516 6 ATOM 898 C GGUU A 115 46.639 29.227 63.757 1.00 22.53 6 ATOM 901 CA GLU A 115 46.639 29.227 63.757 1.00 22.53 6 ATOM 903 CG GLU A 115 46.639 29.926 60.016 1.00 22.53 8 ATOM 904 CD GLU A 115 46.639 29.926 60.016 1.00 22.53 8 ATOM 909 N GLU A 115 46.639 29.926 60.016 1.00 22.53 8 ATOM 909 N GLU A 115 46.639 29.926 60.016 1.00 22.53 8 ATOM 901 CA GLU A 115 46.639 29.926 60.016 1.00 22.53 8 ATOM 903 CG GLU A 115 46.639 29.926 60.016 1.00 22.53 6 ATOM 904 CD GLU A 115 46.594 29.264 61.192 1.00 22.55 8 ATOM 909 N GLU A 115 46.594 29.266 60.016 1.00 31.19 7 ATOM 908 O GLU A 115 46.594 29.266 60.016 1.00 31.19 7 ATOM 909 O GLU A 116 44.676 33.959 65.237 1.00 31.90 6 ATOM 911 CB GLU A 116 44.676 33.959 65.237 1.00 31.90 6 ATOM 913 CD GLU A 116 44.676 33.959 60.00		875 CG2 VAL A 111				1.00 23.14	. 6
ATOM 877 O VAL A 111							8
ATOM 878 N GLN A 112 44.101 55.15.6 6 ATOM 880 CB GLN A 112 45.082 33.413 58.779 1.00 25.12 6 ATOM 881 CG GLN A 112 45.082 33.413 58.779 1.00 28.51 6 ATOM 882 CD GLN A 112 45.789 34.534 56.594 1.00 29.13 6 ATOM 883 OE1 GLN A 112 46.779 35.219 56.837 1.00 31.22 8 ATOM 884 NEZ GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 65.594 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 65.694 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 65.594 1.00 29.31 7 ATOM 886 OE GLN A 112 44.877 34.890 65.694 1.00 29.31 7 ATOM 887 N ALA A 113 42.813 32.622 60.644 1.00 24.491 7 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C ALA A 113 41.915 31.733 62.279 1.00 25.34 6 ATOM 891 O ALA A 113 41.895 30.509 62.211 1.00 24.49 6 ATOM 893 CA ILE A 114 41.867 29.356 63.106 1.00 24.49 6 ATOM 894 CB ILE A 114 41.524 28.042 62.371 1.00 24.39 7 ATOM 895 CGI ILE A 114 41.922 68.955 63.227 1.00 18.97 6 ATOM 896 CGI ILE A 114 41.922 68.955 63.227 1.00 18.97 6 ATOM 897 O LILE A 114 43.230 29.227 63.757 1.00 22.516 6 ATOM 901 CA GLU A 115 46.639 29.227 63.757 1.00 24.74 8 ATOM 898 C TLE A 114 43.230 29.227 63.757 1.00 24.74 8 ATOM 903 CG GLU A 115 46.639 29.926 64.071 1.00 22.53 6 ATOM 904 CD GLU A 115 46.639 29.926 64.071 1.00 22.53 8 ATOM 905 OEI GLU A 115 46.639 29.926 66.047 1.00 22.53 8 ATOM 906 OEZ GLU A 115 46.639 29.926 66.001 1.00 12.60 8 ATOM 907 C GLU A 115 46.54 29.670 60.044 1.00 22.55 6 ATOM 908 O GLU A 115 46.572 30.006 65.837 1.00 22.53 8 ATOM 909 N GLU A 115 46.572 30.006 65.837 1.00 22.53 8 ATOM 909 N GLU A 115 46.673 30.006 65.837 1.00 22.53 8 ATOM 910 CC GLU A 115 46.673 29.926 64.009 1.00 41.76 8 ATOM 911 CB GLU A 116 44.676 33.959 65.237 1.00 31.99 6 ATOM 910 CC GLU A 116 44.676 33.959 65.237 1.00 31.90 61.00 31.90 61.00 31.90 61.00 31.90 61.00 31.90 61.						1 00 24 94	
ATOM 879 CA GLN À 112 44.895 32.100 39.304 1.00 25.14 6 ATOM 880 CB GLN À 112 45.545 33.244 57.330 1.00 28.51 6 GLN À 112 45.545 33.245 57.330 1.00 28.51 6 GLN À 112 45.545 33.224 57.330 1.00 29.13 6 ATOM 881 CB GLN À 112 45.545 33.224 57.330 1.00 29.13 6 ATOM 882 CD GLN À 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 884 NE2 GLN À 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 885 C GLN À 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 C GLN À 112 44.877 32.362 60.827 1.00 24.62 6 ATOM 887 N ALA À 113 42.813 32.622 60.644 1.00 24.41 7 ATOM 887 N ALA À 113 42.813 32.622 60.644 1.00 24.41 7 ATOM 889 CB ALA À 113 40.516 33.183 61.224 1.00 24.39 6 ATOM 890 C ALA À 113 41.991 31.733 62.729 1.00 25.34 6 ATOM 891 C ALA À 113 41.991 31.733 62.729 1.00 25.34 6 ATOM 891 C ALA À 113 41.991 31.733 62.729 1.00 25.34 6 ATOM 893 CA ILE À 114 41.867 29.356 63.106 1.00 24.49 ATOM 893 CA ILE À 114 41.867 29.356 63.227 1.00 24.39 7 ATOM 893 CA ILE À 114 41.867 29.356 63.227 1.00 24.39 7 ATOM 895 CG2 ILE À 114 41.867 29.356 63.227 1.00 24.39 7 ATOM 895 CG2 ILE À 114 41.867 29.356 63.227 1.00 23.46 6 ATOM 895 CG2 ILE À 114 41.867 29.356 63.227 1.00 23.46 6 ATOM 895 CG2 ILE À 114 41.867 29.356 63.227 1.00 24.39 7 ATOM 896 CG1 ILE À 114 41.867 29.356 63.227 1.00 24.39 7 ATOM 896 CG1 ILE À 114 41.867 29.356 63.227 1.00 24.39 7 ATOM 896 CG1 ILE À 114 43.230 29.27 63.757 1.00 24.74 8 ATOM 896 CG1 ILE À 114 43.230 29.27 63.757 1.00 24.74 8 ATOM 900 N GLU À 115 45.638 29.586 63.017 1.00 24.74 8 ATOM 900 N GLU À 115 45.638 29.586 63.551 1.00 24.99 6 ATOM 900 N GLU À 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 900 CG GLU À 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 900 CG GLU À 115 46.639 29.992 62.508 1.00 22.598 8 ATOM 900 N GLU À 115 46.639 29.992 62.508 1.00 22.598 8 ATOM 900 N GLU À 115 46.639 29.992 62.508 1.00 22.598 8 ATOM 900 N GLU À 115 46.639 29.992 62.508 1.00 22.598 8 ATOM 900 N GLU À 116 44.668 33.999 67.415 1.00 33.40 63.		878 N GLN A 112					
ATOM 880 CB GLN À 112 45.082 33.413 38.7/9 1.00 28.51 6 ATOM 881 CG GLN À 112 45.545 33.224 57.330 1.00 28.51 6 ATOM 882 CD GLN À 112 45.789 34.534 56.594 1.00 29.13 6 ATOM 883 OEI GLN À 112 44.779 35.219 56.837 1.00 21.22 8 ATOM 884 NE2 GLN À 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 O GLN À 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 O GLN À 112 44.647 32.362 60.827 1.00 24.62 6 ATOM 887 N ÀLÀ À 113 41.914 32.904 61.751 1.00 21.10 8 ATOM 888 CA ÀLÀ À 113 41.914 32.904 61.751 1.00 21.10 8 ATOM 889 CB ÀLÀ À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C ALÀ À 113 41.901 31.733 62.729 1.00 25.34 6 ATOM 891 O ALÀ À 113 41.915 31.733 62.729 1.00 25.34 6 ATOM 892 N ILE À 114 41.857 30.509 62.211 1.00 24.39 7 ATOM 893 CA ILE À 114 41.857 29.356 63.106 1.00 27.52 8 ATOM 894 CB ILE À 114 41.922 56.855 63.227 1.00 18.97 6 ATOM 895 CG2 ILE À 114 41.922 56.855 63.227 1.00 24.49 6 ATOM 895 CG2 ILE À 114 41.922 56.855 63.227 1.00 24.49 6 ATOM 897 CD1 ILE À 114 41.922 26.855 63.727 1.00 18.97 6 ATOM 899 C ILE À 114 41.922 26.855 63.727 1.00 224.32 6 ATOM 899 C ILE À 114 41.922 26.855 63.727 1.00 224.42 6 ATOM 897 CD1 ILE À 114 41.922 26.855 63.727 1.00 224.32 6 ATOM 899 C ILE À 114 41.922 26.855 63.727 1.00 24.49 6 ATOM 899 C ILE À 114 41.922 26.855 63.727 1.00 224.92 6 ATOM 899 C ILE À 114 41.922 26.855 63.727 1.00 224.92 6 ATOM 900 N GLU À 115 46.638 29.992 62.508 1.00 22.51 6 ATOM 901 CA GLU À 115 46.638 29.999 63.091 1.00 22.53 8 ATOM 902 CB GLU À 115 46.638 29.999 62.508 1.00 22.53 8 ATOM 903 CG GLU À 115 46.639 29.990 63.091 1.00 25.98 8 ATOM 904 CD GLU À 115 46.639 29.990 63.091 1.00 25.98 8 ATOM 907 C GLU À 115 46.639 29.990 63.091 1.00 25.98 8 ATOM 907 C GLU À 115 46.639 29.990 63.091 1.00 25.98 8 ATOM 908 C GLU À 115 46.639 29.990 63.091 1.00 25.98 8 ATOM 909 N GLU À 115 46.639 29.990 63.990 1.00 25.93 8 ATOM 900 C GLU À 116 46.872 34.982 64.991 1.00 25.98 8 ATOM 901 CA GLU À 116 46.872 34.982 64.991 1.00 25.98 8 ATOM 902 CB GLU À 116 46.872 34.983 66.901 1.00 34.30 9 ATOM 903 CG GLU À 116 47.802 34.993						1.00 25.12	
ATOM 881 CG GLN à 112 45.545 33.245 57.302 1.00 29.13 6 ATOM 882 CD GLN à 112 45.769 34.534 56.594 1.00 29.31 7 ATOM 883 OEI GLN à 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 NES CG GLN à 112 44.877 32.362 60.827 1.00 24.62 6 ATOM 886 O GLN à 112 44.877 32.362 60.827 1.00 24.62 6 ATOM 886 O GLN à 112 44.877 32.362 60.827 1.00 24.41 7 ATOM 887 N ALA À 113 42.813 32.622 60.644 1.00 24.41 7 ATOM 889 CB ALA À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALA À 113 41.901 31.733 62.729 1.00 25.34 6 ATOM 891 O ALA À 113 41.925 31.930 63.946 1.00 27.52 8 ATOM 892 N ILE À 114 41.859 30.509 62.211 1.00 24.39 7 ATOM 893 CA ILE À 114 41.859 30.509 62.211 1.00 24.39 7 ATOM 893 CA ILE À 114 41.524 28.042 62.371 1.00 23.466 6 ATOM 895 CG2 ILE À 114 41.902 66.855 63.227 1.00 18.97 6 ATOM 895 CG2 ILE À 114 41.902 66.855 63.227 1.00 18.97 6 ATOM 896 CG1 ILE À 114 41.902 66.855 63.227 1.00 22.51 6 ATOM 898 C ILE À 114 41.902 66.855 63.227 1.00 22.51 6 ATOM 899 C ILE À 114 43.322 29.227 63.757 1.00 22.51 6 ATOM 899 C ILE À 114 43.322 29.227 63.757 1.00 24.32 6 ATOM 900 N GLU À 115 44.6639 29.950 63.019 1.00 22.51 6 ATOM 900 C G GLU À 115 46.639 29.926 61.292 1.00 22.53 8 ATOM 901 CA GLU À 115 46.639 29.926 62.508 1.00 22.658 7 ATOM 903 CG GLU À 115 46.639 29.926 62.508 1.00 22.658 7 ATOM 903 CG GLU À 115 46.639 29.926 62.508 1.00 22.653 6 ATOM 904 CD GLU À 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 905 OEI GLU À 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 907 C GLU À 115 47.848 30.887 69.792 21.00 22.53 8 ATOM 907 C GLU À 115 47.848 30.887 69.792 21.00 22.53 8 ATOM 908 O GLU À 115 47.848 30.887 69.792 21.00 22.53 8 ATOM 909 N GLU À 116 45.543 43.3605 65.267 1.00 35.95 6 ATOM 907 C GLU À 115 47.848 30.887 69.792 21.00 22.53 8 ATOM 907 C GLU À 115 47.848 30.887 69.792 21.00 22.53 8 ATOM 907 C GLU À 116 45.543 43.3605 65.267 1.00 35.11 6 6.370 1.00 37.26 8 ATOM 907 C GLU À 116 46.872 33.3999 65.237 1.00 37.26 8 ATOM			45.082			1.00 23.14	
ATOM 882 CD GLN À 112 45.789 34.534 38.394 1.00 31.22 8 ATOM 884 NE2 GLN À 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 885 C GLN À 112 44.877 34.890 55.694 1.00 29.31 7 ATOM 886 O GLN À 112 44.877 32.311 61.939 1.00 21.10 8 ATOM 887 N ÀLÀ À 113 42.813 32.622 60.644 1.00 24.41 7 ATOM 888 CA ALÀ À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 CB ALÀ À 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C ALÀ À 113 41.914 32.904 61.751 1.00 25.34 6 ATOM 891 O ÀLÀ À 113 41.991 31.733 62.729 1.00 25.34 6 ATOM 892 N ILE À 114 41.857 30.509 62.211 1.00 24.49 6 ATOM 893 CA ILE À 114 41.857 93.56 63.106 1.00 24.49 6 ATOM 894 CB ILE À 114 41.867 29.356 63.227 1.00 23.466 6 ATOM 895 CGI ILE À 114 41.902 26.855 63.227 1.00 23.46 6 ATOM 895 CGI ILE À 114 41.902 26.855 63.227 1.00 23.46 6 ATOM 896 CGI ILE À 114 41.902 26.855 63.227 1.00 24.39 7 ATOM 897 CDI ILE À 114 41.902 26.855 63.227 1.00 23.46 6 ATOM 898 C GLU À 115 41.232 28.015 62.034 1.00 21.17 6 ATOM 899 O ILE À 114 41.3230 29.227 63.757 1.00 24.32 6 ATOM 900 N GLU À 115 44.280 29.580 63.019 1.00 22.51 6 ATOM 901 CA GLU À 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 902 CB GLU À 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 903 CG GLU À 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 904 CD GLU À 115 47.848 30.887 60.016 1.100 20.39 6 ATOM 907 C GLU À 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 908 O GLU À 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 909 N GLU À 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 900 C GLU À 115 46.639 29.992 62.508 1.00 22.53 8 ATOM 901 CA GLU À 115 46.639 29.995 66.501 1.00 24.74 8 ATOM 903 CG GLU À 115 46.639 29.995 66.501 1.00 24.74 8 ATOM 904 CD GLU À 115 46.639 29.995 66.508 1.00 25.998 8 ATOM 907 C GLU À 115 46.639 29.995 66.508 1.00 22.63 6 ATOM 908 O GLU À 115 46.639 29.995 66.901 1.00 25.98 8 ATOM 909 N GLU À 116 46.554 29.660 64.615 1.00 31.19 9 ATOM 908 O GLU À 116 46.675 33.995 65.237 1.00 36.91 6 ATOM 910 CA GLU À 116 46.675 33.995 65.237 1.00 36.91 6 ATOM 910 CA GLU À 116 44.574 33.1598 66.761 1.00 34.30 7 ATOM 910 CB GLU À 116 47.802 34.996 67						1.00 20.31	
ATOM 884 NE2 GLN A 112 44.877 35.219 56.837 1.00 29.31 7 ATOM 884 NE2 GLN A 112 44.877 32.362 60.827 1.00 24.62 6 ATOM 885 C GLN A 112 44.647 32.362 60.827 1.00 24.62 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			45.789			1.00 29.13	
ATOM 884 NE2 GLN A 112 44.877 32.862 60.827 1.00 24.62 6 ATOM 885 C GLN A 112 44.107 32.362 60.827 1.00 24.62 6 ATOM 886 O GLN A 112 44.107 32.361 61.939 1.00 21.10 8 ATOM 887 N ALA A 113 42.813 32.622 60.644 1.00 23.33 6 ATOM 889 C ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 889 C ALA A 113 41.914 32.904 61.751 1.00 23.33 6 ATOM 890 C ALA A 113 41.915 31.733 62.729 1.00 25.34 6 ATOM 891 O ALA A 113 41.925 31.930 63.946 1.00 27.52 8 ATOM 892 N ILE A 114 41.855 31.930 63.946 1.00 27.52 8 ATOM 893 CA ILE A 114 41.867 29.356 63.106 1.00 24.49 6 ATOM 895 CG2 ILE A 114 41.524 28.042 62.371 1.00 23.46 6 ATOM 895 CG2 ILE A 114 41.902 26.855 63.207 1.00 18.97 6 ATOM 896 CG ILE A 114 40.030 28.015 62.034 1.00 21.17 6 ATOM 897 CD ILE A 114 43.232 29.227 63.757 1.00 24.32 6 ATOM 898 C ILE A 114 43.328 28.817 64.907 1.00 24.74 8 ATOM 899 O N GLU A 115 45.638 29.992 62.508 1.00 22.65 8 ATOM 900 N GLU A 115 45.638 29.992 62.508 1.00 22.65 8 ATOM 901 CA GLU A 115 46.659 29.992 62.508 1.00 22.65 8 ATOM 903 CG GLU A 115 46.659 29.992 62.508 1.00 22.65 8 ATOM 906 OE2 GLU A 115 46.659 29.992 62.508 1.00 22.65 8 ATOM 907 C GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 908 O GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 909 N GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 900 N GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 901 CA GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 903 CG GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 904 CD GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 905 OEI GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 907 C GLU A 115 46.639 29.992 62.508 1.00 22.65 8 ATOM 908 O GLU A 115 46.639 29.999 62.211 1.00 24.74 8 ATOM 908 O GLU A 115 46.639 29.999 62.508 1.00 22.65 8 ATOM 909 N GLU A 115 46.639 29.999 62.508 1.00 22.65 8 ATOM 901 CA GLU A 116 46.637 30.066 64.615 1.00 31.19 7 ATOM 908 O GLU A 115 46.639 29.999 62.508 1.00 22.53 8 ATOM 910 CA GLU A 116 47.002 31.806 66.406 91.00 41.76 8 ATOM 911 CB GLU A 116 47.002 31.806 66.61 1.00 31.19 7 ATOM 918 N PHE A 117 42.577 31.096 67.893 1			46.779		_	1.00 31.22	
ATOM 885 C GLN A 112 44.107 32.362 60.827 1.00 21.10 8 ATOM 886 O GLN A 112 44.647 32.311 61.939 1.00 21.10 8 ATOM 887 N ALA A 113 41.914 32.904 61.751 1.00 23.33 61 ATOM 889 CB ALA A 113 41.914 32.904 61.751 1.00 25.34 61 ATOM 889 CB ALA A 113 41.901 31.733 62.729 1.00 25.34 61 ATOM 889 CB ALA A 113 41.901 31.733 62.729 1.00 25.34 61 ATOM 891 O ALA A 113 41.901 31.733 62.729 1.00 25.34 61 ATOM 892 N 1LE A 114 41.859 30.509 62.211 1.00 24.39 7 ATOM 893 CA ILE A 114 41.867 29.356 63.106 1.00 24.49 61 ATOM 894 CB ILE A 114 41.524 28.042 62.371 1.00 23.46 61 ATOM 895 CG2 ILE A 114 41.902 26.855 63.227 1.00 18.97 61 ATOM 896 CG1 ILE A 114 41.902 26.855 63.227 1.00 18.97 61 ATOM 897 CD1 ILE A 114 43.230 29.227 63.757 1.00 24.32 61 ATOM 898 C ILE A 114 43.230 29.580 63.019 1.00 22.51 61 ATOM 899 O ILE A 114 43.230 29.580 63.019 1.00 22.51 61 ATOM 900 N GLU A 115 44.280 29.580 63.019 1.00 24.32 61 ATOM 901 CA GLU A 115 46.639 29.950 63.019 1.00 25.89 61 ATOM 902 CB GLU A 115 46.639 29.950 63.019 1.00 25.89 61 ATOM 903 CG GLU A 115 46.639 29.950 63.019 1.00 22.63 61 ATOM 904 CD GLU A 115 46.639 29.950 63.019 1.00 22.53 61 ATOM 905 OEI GLU A 115 45.638 29.518 63.551 1.00 22.63 61 ATOM 907 C GLU A 115 46.639 29.992 62.508 1.00 22.63 61 ATOM 908 O GLU A 115 46.639 29.992 62.508 1.00 22.63 61 ATOM 909 N GLU A 115 46.639 29.992 64 61.192 1.00 20.39 61 ATOM 909 N GLU A 115 45.724 30.422 64.774 1.00 27.56 61 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 25.98 81 ATOM 908 O GLU A 115 45.724 30.422 64.774 1.00 25.98 61 ATOM 909 N GLU A 116 45.282 32.631 65.705 1.00 35.80 61 ATOM 910 CA GLU A 116 45.434 34.605 64.669 1.00 43.09 61 ATOM 910 CA GLU A 116 45.282 32.631 66.046 1.00 43.09 61 ATOM 911 CB GLU A 116 45.282 32.631 66.061 1.00 34.30 7 ATOM 912 CG GLU A 116 45.282 32.631 66.31 66.04 1.00 43.09 61 ATOM 910 CA GLU A 116 45.434 34.605 64.669 1.00 43.09 61 ATOM 910 CA GLU A 116 45.543 32.238 68.61 1.00 37.26 86 ATOM 911 CB GLU A 116 45.543 32.238 68.61 1.00 37.26 86 ATOM 912 CG GLU A 116 45.543 32.238 66.791 1.00 35.45 60 ATO				34.890			
ATOM 886 O GLN A 112 ATOM 887 N ALA A 113 ATOM 888 CA ALA A 113 ATOM 889 CB ALA A 113 ATOM 889 CB ALA A 113 ATOM 890 C ALA A 113 ATOM 890 C ALA A 113 ATOM 891 O ALA A 113 ATOM 891 O ALA A 113 ATOM 892 N ILE A 114 ATOM 893 CA ILE A 114 ATOM 895 CG2 ILE A 114 ATOM 896 CG1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 898 CG2 ILE A 114 ATOM 899 C ALA 113 ATOM 896 CG1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 898 C ILE A 114 ATOM 899 C ALE A 114 ATOM 897 CD1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 899 C ILE A 114 ATOM 900 N GLU A 115 ATOM 901 CA GLU A 115 ATOM 902 CB GLU A 115 ATOM 903 CG GLU A 115 ATOM 904 CD GLU A 115 ATOM 905 OEI GLU A 115 ATOM 905 OEI GLU A 115 ATOM 906 OE2 GLU A 115 ATOM 907 C GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 909 N GLU A 115 ATOM 901 CA GLU A 115 ATOM 901 CA GLU A 115 ATOM 902 CB GLU A 115 ATOM 903 CG GLU A 115 ATOM 904 CD GLU A 115 ATOM 905 OEI GLU A 116 ATOM 907 C GLU A 116 ATOM 908 O GLU A 116 ATOM 909 N GLU A 116 ATOM 910 CA GLU A 116 ATOM 911 CB GLU A 116 ATOM 911 CB GLU A 116 ATOM 912 CG GLU A 116 ATOM 913 CD GLU A 116 ATOM 914 OEI GLU A 116 ATOM 915 OE2 GLU A 116 ATOM 917 C GLU A 116 ATOM 918 N PHE A 117 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CD PHE A 117 ATOM 922 CB PHE A 117 ATOM 922 CD PHE A 117 ATOM 923 CD2 CCE PHE A 117 ATOM 924 CD2 CCE PHE A 117 ATOM 924 CD				32.362	60.827	1.00 24.62	
ATOM 887 N ALA A 113				32.311	61.939		
ATOM 888 CA ALA A 113					60.644		
ATOM 889 CB ALA A 113	MOTA				61.751	1.00 23.33	
ATOM 899 CB ALA A 113	ATOM						
ATOM 890 C ALA A 113 ATOM 891 O ALA A 113 ATOM 892 N ILE A 114 ATOM 893 CA ILE A 114 ATOM 894 CB ILE A 114 ATOM 895 CG2 ILE A 114 ATOM 895 CG2 ILE A 114 ATOM 896 CG2 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 898 C ILE A 114 ATOM 898 C ILE A 114 ATOM 899 O ILE A 114 ATOM 900 N GLU A 115 ATOM 901 CA GLU A 115 ATOM 902 CB GLU A 115 ATOM 903 CG GLU A 115 ATOM 904 CG GLU A 115 ATOM 905 OE1 GLU A 115 ATOM 905 OE2 GLU A 115 ATOM 906 OE2 GLU A 115 ATOM 907 C GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 909 N GLU A 115 ATOM 901 CA GLU A 115 ATOM 905 OE1 GLU A 115 ATOM 905 OE1 GLU A 115 ATOM 907 C GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 901 CA GLU A 115 ATOM 901 CA GLU A 115 ATOM 902 CB GLU A 115 ATOM 905 OE1 GLU A 115 ATOM 906 OE2 GLU A 115 ATOM 907 C GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 909 N GLU A 116 ATOM 910 CA GLU A 116 ATOM 911 CB GLU A 116 ATOM 912 CG GLU A 116 ATOM 913 CD GLU A 116 ATOM 914 CB GLU A 116 ATOM 915 CE2 GLU A 116 ATOM 916 CB GLU A 116 ATOM 917 CB GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 919 CA PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 922 CD2 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 ATOM 925 CD2 PHE A 117 ATOM 926 CE2 PHE A 117 ATOM 927 CD2 PHE A 117 ATOM 928 CC1 PHE A 117 ATOM 928 CC1 PHE A 117 ATOM 929 CD2 PHE A 117 ATOM 920 CD3 PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 ATOM 925 CD2 PHE A 117 ATOM 926 CC1 PHE A 117 ATOM 927 CC2 PHE A 117 ATOM 928 CC1 PHE	ATOM	889 CB ALA A 113				1.00 25.34	6
ATOM 891 O ALA A 113 ATOM 892 N ILE A 114 ATOM 893 CA ILE A 114 ATOM 894 CB ILE A 114 ATOM 895 CG2 ILE A 114 ATOM 896 CG1 ILE A 114 ATOM 896 CG1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 898 C ILE A 114 ATOM 898 C ILE A 114 ATOM 899 O ILE A 114 ATOM 900 N GLU A 115 ATOM 901 CA GLU A 115 ATOM 902 CB GLU A 115 ATOM 904 CD GLU A 115 ATOM 905 OE1 GLU A 115 ATOM 906 OE2 GLU A 115 ATOM 907 C GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 909 N GLU A 115 ATOM 909 N GLU A 115 ATOM 901 CC GLU A 115 ATOM 901 CC GLU A 115 ATOM 902 CB GLU A 115 ATOM 903 CG GLU A 115 ATOM 904 CD GLU A 115 ATOM 905 OE1 GLU A 115 ATOM 907 C GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 909 N GLU A 115 ATOM 909 N GLU A 116 ATOM 910 CA GLU A 116 ATOM 911 CB GLU A 116 ATOM 912 CG GLU A 116 ATOM 913 CD GLU A 116 ATOM 914 OE1 GLU A 116 ATOM 915 OE2 GLU A 116 ATOM 916 C GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CD PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CD2 PHE A 117 ATOM 925 CD2 PHE A 117 ATOM 926 CD2 PHE A 117 ATOM 927 CD2 PHE A 117 ATOM 928 CD2 PHE A 117 ATOM 929 CD2 PHE A 117 ATOM 920 CD3 PHE A 117 ATOM 921 CD2 PHE A 117 ATOM 921 CD2 PHE A 117 ATOM 922 CD2 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 ANDREAS ANDRE PROPER A 117 ATOM 925 CD2 PHE A 117 ATOM 926 CD2 PHE A 117 ATOM 927 CD2 PHE A 117 ATOM 928 CD2 PHE A 117 ATOM 929 CD2 PHE A 117 ATOM 929 CD2 PHE A 117 ATOM 920 CD3 PHE A 117 ATOM 921 CD2 PHE A 117 ATOM 922 CD2 PHE A 117 ATOM 923 CD2 PHE A 117 ANDREAS ANDRE PASS PASS PASS PASS PASS PASS PASS PAS	ATOM	890 C ALA A 113				1.00 27.52	8
ATOM 893 CA ILE A 114 ATOM 894 CB ILE A 114 ATOM 895 CG2 ILE A 114 ATOM 896 CG1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 897 CD1 ILE A 114 ATOM 898 C ILE A 114 ATOM 899 O ILE A 115 ATOM 901 CA GLU A 115 ATOM 902 CB GLU A 115 ATOM 903 CG GLU A 115 ATOM 904 CD GLU A 115 ATOM 905 OE1 GLU A 115 ATOM 906 OE2 GLU A 115 ATOM 907 C GLU A 115 ATOM 908 O GLU A 115 ATOM 909 N GLU A 115 ATOM 901 CA GLU A 115 ATOM 901 CA GLU A 115 ATOM 901 CB GLU A 116 ATOM 911 CB GLU A 116 ATOM 912 CB GLU A 116 ATOM 913 CD GLU A 116 ATOM 914 OE1 GLU A 116 ATOM 915 OE2 GLU A 116 ATOM 916 CB GLU A 116 ATOM 917 O GLU A 116 ATOM 918 OE2 GLU A 116 ATOM 919 CCB GLU A 116 ATOM 910 CCB GLU A 116 ATOM 911 CB GLU A 116 ATOM 912 CB GLU A 116 ATOM 913 CD GLU A 116 ATOM 914 OE1 GLU A 116 ATOM 915 OE2 GLU A 116 ATOM 916 CB GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CCB PHE A 117 ATOM 919 CCB PHE A 117 ATOM 910 CB PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CB PHE A 117 ATOM 921 CB PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 ATOM 925 CD2 PHE A 117 ATOM 926 CEI PHE A 117 ATOM 927 CCB PHE A 117 ATOM 928 CD2 PHE A 117 ATOM 929 CCB PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CB PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 ATOM 925 CD2 PHE A 117 ATOM 926 CCEI PHE A 117 ATOM 927 ATOM 928 CCEI PHE A 117 ATOM 9294 CCEI PHE A 117 ANDOM 9294 CCEI	MOTA	891 O ALA A 113				1.00 24.39	7
ATOM 893 CA ILE A 114 41.524 28.042 62.371 1.00 23.46 6 ATOM 895 CG2 ILE A 114 41.902 26.855 63.227 1.00 18.97 6 ATOM 896 CG1 ILE A 114 40.030 28.015 62.034 1.00 21.17 6 ATOM 897 CD1 ILE A 114 40.030 28.015 62.034 1.00 21.17 6 ATOM 898 C ILE A 114 43.230 29.227 63.757 1.00 24.32 6 ATOM 899 O ILE A 114 43.230 29.227 63.757 1.00 24.32 6 ATOM 900 N GLU A 115 45.638 29.518 63.551 1.00 25.89 6 ATOM 901 CA GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 902 CB GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 904 CD GLU A 115 46.554 29.264 61.192 1.00 20.39 6 ATOM 905 OE1 GLU A 115 47.668 29.670 60.244 1.00 21.39 6 ATOM 906 OE2 GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 907 C GLU A 115 46.73 30.006 65.837 1.00 22.53 8 ATOM 908 O GLU A 115 46.73 30.006 65.837 1.00 22.53 8 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 910 CA GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 911 CB GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 912 CG GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 913 CD GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 914 OE1 GLU A 116 45.434 34.605 64.069 1.00 41.74 8 ATOM 915 CE2 GLU A 116 45.434 34.605 64.069 1.00 41.14 6 ATOM 916 C GLU A 116 45.434 34.605 64.069 1.00 41.76 8 ATOM 916 C GLU A 116 45.434 34.605 64.069 1.00 41.76 8 ATOM 917 O GLU A 116 45.543 32.228 68.061 1.00 37.26 8 ATOM 918 N PHE A 117 42.577 31.096 67.893 1.00 35.80 6 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 35.80 6 ATOM 910 CA PHE A 117 42.577 31.096 67.893 1.00 35.80 6 ATOM 920 CB PHE A 117 42.577 31.096 67.893 1.00 35.80 6 ATOM 921 CG PHE A 117 42.577 31.096 67.893 1.00 35.80 6 ATOM 922 CD1 PHE A 117 40.383 29.979 68.833 1.00 37.14 6 ATOM 922 CD2 PHE A 117 40.385 30.549 70.323 1.00 35.80 6		892 N ILE A 114				1.00 24.49	6
ATOM 894 CB ILE A 114 41.524 28.025 63.227 1.00 18.97 6 ATOM 895 CG2 ILE A 114 41.902 26.855 63.227 1.00 18.97 6 ATOM 896 CG1 ILE A 114 40.030 28.015 62.034 1.00 21.17 6 ATOM 897 CD1 ILE A 114 43.230 29.227 63.757 1.00 24.32 6 ATOM 898 C ILE A 114 43.230 29.227 63.757 1.00 24.32 6 ATOM 899 O ILE A 114 43.328 28.817 64.907 1.00 24.74 8 ATOM 900 N GLU A 115 44.280 29.580 63.019 1.00 26.58 7 ATOM 901 CA GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 902 CB GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 903 CG GLU A 115 46.554 29.264 61.192 1.00 20.39 6 ATOM 905 OE1 GLU A 115 17.668 29.670 60.244 1.00 21.39 6 ATOM 905 OE1 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 906 OE2 GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 907 C GLU A 115 46.173 30.006 65.837 1.00 25.98 8 ATOM 908 O GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 910 CA GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 912 CG GLU A 116 45.434 34.605 64.069 1.00 41.14 6 ATOM 913 CD GLU A 116 45.872 34.982 64.420 1.00 43.09 6 ATOM 914 OE1 GLU A 116 45.872 34.982 64.420 1.00 43.09 6 ATOM 915 CE2 GLU A 116 45.872 34.982 66.761 1.00 37.26 8 ATOM 916 C GLU A 116 45.434 34.605 64.069 1.00 41.14 6 ATOM 917 O GLU A 116 45.872 34.982 66.761 1.00 35.11 6 ATOM 918 N PHE A 117 42.577 31.096 67.893 1.00 35.45 6 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 67.800 920 CB PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 921 CG PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6		893 CA ILE A 114				1 00 23.46	
ATOM 895 CG2 ILE A 114							6
ATOM 896 CG1 ILE A 114 39.598 26.791 61.239 1.00 22.51 6 ATOM 897 CD1 ILE A 114 43.230 29.227 63.757 1.00 24.32 6 ATOM 900 N GLU A 115 45.638 29.518 63.551 1.00 25.89 6 ATOM 902 CB GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 904 CD GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 905 OE1 GLU A 115 47.668 29.670 60.244 1.00 21.39 6 ATOM 906 OE2 GLU A 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 908 O GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 909 N GLU A 115 46.173 30.006 65.837 1.00 25.98 8 ATOM 909 N GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 910 CA GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 912 CG GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 913 CD GLU A 116 45.884 34.605 64.420 1.00 41.14 6 ATOM 913 CD GLU A 116 45.884 34.982 64.420 1.00 41.14 6 ATOM 913 CD GLU A 116 45.884 34.982 64.420 1.00 43.09 6 ATOM 915 OE2 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 917 O GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 917 O GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 917 O GLU A 116 47.802 34.369 63.849 1.00 37.26 8 ATOM 917 O GLU A 116 45.543 32.131 66.947 1.00 35.11 6 ATOM 918 N PHE A 117 42.577 31.096 67.893 1.00 37.14 6 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 37.14 6 ATOM 920 CB PHE A 117 42.577 31.096 67.893 1.00 37.14 6 ATOM 921 CG PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.920 1.00 35.80 6 ATOM 922 CD2 PHE A 117 39.705 30.930 69.920 1.00 35.80 6 ATOM 923 CD2 PHE A 117 39.705 30.930 69.920 1.00 35.80 6 ATOM 923 CD2 PHE A 117 39.705 30.930 69.920 1.00 35.80 6 ATOM 923 CD2 PHE A 117 39.705 30.930 69.920 1.00 35.80 6 ATOM 923 CD2 PHE A 117 39.705 30.930 69.920 1.00 35.80 6 ATOM 923 CD2 PHE A 117 39.705 30.930 69.920 1.00 35.80 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6		895 CG2 ILE A 114					
ATOM 898 C ILE A 114 43.230 29.227 63.757 1.00 24.32 6 ATOM 899 O ILE A 114 43.230 29.227 63.757 1.00 24.32 6 ATOM 899 O ILE A 114 43.328 28.817 64.907 1.00 24.74 8 ATOM 900 N GLU A 115 44.280 29.580 63.019 1.00 25.89 6 ATOM 901 CA GLU A 115 45.638 29.518 63.551 1.00 25.89 6 ATOM 902 CB GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 903 CG GLU A 115 46.554 29.264 61.192 1.00 20.39 6 ATOM 904 CD GLU A 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 905 OE1 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 906 OE2 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 909 N GLU A 116 45.267 31.660 65.837 1.00 25.98 8 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 910 CA GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 45.434 34.605 64.069 1.00 41.14 67.072 35.886 65.267 1.00 43.42 8 ATOM 913 CD GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 915 OE2 GLU A 116 47.072 35.886 65.267 1.00 43.42 8 ATOM 916 C GLU A 116 47.072 35.886 65.267 1.00 37.26 8 ATOM 917 O GLU A 116 44.543 32.131 66.947 1.00 37.26 8 ATOM 918 N PHE A 117 43.343 31.598 66.761 1.00 37.26 8 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 6 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 37.14 6 ATOM 920 CB PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 921 CG PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6					-		
ATOM 898 C ILE A 114 43.328 29.227 64.907 1.00 24.74 8 ATOM 899 O ILE A 114 43.328 28.817 64.907 1.00 24.74 8 ATOM 900 N GLU A 115 44.280 29.580 63.019 1.00 25.89 6 ATOM 901 CA GLU A 115 45.638 29.518 63.551 1.00 22.63 6 ATOM 902 CB GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 903 CG GLU A 115 46.554 29.264 61.192 1.00 20.39 6 ATOM 904 CD GLU A 115 17.668 29.670 60.244 1.00 21.39 6 ATOM 905 OE1 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 906 OE2 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 908 O GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 909 N GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 910 CA GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 44.676 33.959 65.237 1.00 36.91 6 ATOM 912 CG GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 914 OE1 GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 915 OE2 GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 916 C GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 917 O GLU A 116 46.872 34.982 64.420 1.00 35.11 6 ATOM 918 N PHE A 117 42.577 31.096 67.893 1.00 34.30 7 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 65 ATOM 920 CB PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 921 CG PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 39.705 30.930 69.290 1.00 35.80 6							
ATOM 899 O ILE A 114		114				1.00 24.32	
ATOM 900 N GLU A 115 45.638 29.518 63.551 1.00 25.89 6 ATOM 901 CA GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 903 CG GLU A 115 46.639 29.992 62.508 1.00 22.63 6 ATOM 903 CG GLU A 115 46.639 29.992 62.508 1.00 20.39 6 ATOM 904 CD GLU A 115 47.668 29.670 60.244 1.00 21.39 6 ATOM 905 OE1 GLU A 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 906 OE2 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 908 O GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 910 CA GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 911 CB GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 912 CG GLU A 116 44.676 33.959 65.237 1.00 36.91 6 ATOM 913 CD GLU A 116 44.676 33.959 65.237 1.00 36.91 6 ATOM 914 OE1 GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 915 OE2 GLU A 116 47.072 35.886 65.267 1.00 43.42 8 ATOM 916 C GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 917 O GLU A 116 44.543 32.131 66.947 1.00 35.11 6 ATOM 918 N PHE A 117 43.343 31.598 66.761 1.00 37.26 8 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 5 ATOM 919 CA PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 920 CB PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 40.196 28.630 68.832 1.00 41.05 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6							
ATOM 901 CA GLU A 115			44.280				
ATOM 902 CB GLU A 115 46.639 29.926 61.192 1.00 20.39 6 ATOM 903 CG GLU A 115 47.668 29.670 60.244 1.00 21.39 6 ATOM 905 OE1 GLU A 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 906 OE2 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 908 O GLU A 115 46.173 30.006 65.837 1.00 25.98 8 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 910 CA GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 44.676 33.959 65.237 1.00 36.91 6 ATOM 912 CG GLU A 116 46.872 34.982 64.420 1.00 43.42 8 ATOM 913 CD GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 914 OE1 GLU A 116 47.072 35.886 65.267 1.00 43.42 8 ATOM 915 OE2 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 916 C GLU A 116 45.054 32.228 68.061 1.00 37.26 8 ATOM 917 O GLU A 116 45.054 32.228 68.061 1.00 37.26 8 ATOM 918 N PHE A 117 42.577 31.096 67.893 1.00 35.41 6 ATOM 919 CA PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 920 CB PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6			45.638				
ATOM 903 CG GLU A 115 46.554 29.670 60.244 1.00 21.39 6 ATOM 904 CD GLU A 115 47.668 29.670 60.244 1.00 21.39 6 ATOM 905 OE1 GLU A 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 906 OE2 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 908 O GLU A 115 46.173 30.006 65.837 1.00 25.98 8 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 910 CA GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 45.434 34.605 64.069 1.00 41.14 6 ATOM 912 CG GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 913 CD GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 914 OE1 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 915 OE2 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 916 C GLU A 116 45.054 32.228 68.061 1.00 37.26 8 ATOM 917 O GLU A 116 45.054 32.228 68.061 1.00 37.26 8 ATOM 918 N PHE A 117 42.577 31.096 67.893 1.00 35.45 6 ATOM 920 CB PHE A 117 42.577 31.096 67.893 1.00 37.14 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 40.196 28.630 68.832 1.00 41.05 6 ATOM 923 CD2 PHE A 117 40.196 28.630 68.832 1.00 41.05 6			46.639			1.00 22.03	
ATOM 904 CD GLU A 115 47.668 29.670 60.244 1.00 21.39 8 ATOM 905 OE1 GLU A 115 47.848 30.887 60.016 1.00 19.60 8 ATOM 906 OE2 GLU A 115 18.362 28.769 59.722 1.00 22.53 ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 908 O GLU A 115 45.724 30.422 64.774 1.00 27.56 6 ATOM 909 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 910 CA GLU A 116 45.267 31.660 64.615 1.00 31.19 7 ATOM 911 CB GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 46.676 33.959 65.237 1.00 36.91 6 ATOM 912 CG GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 913 CD GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 914 OE1 GLU A 116 47.072 35.886 65.267 1.00 43.42 8 ATOM 915 CE2 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 916 C GLU A 116 45.434 32.131 66.947 1.00 35.11 6 ATOM 917 O GLU A 116 45.054 32.228 68.061 1.00 37.26 8 ATOM 918 N PHE A 117 42.577 31.096 67.893 1.00 34.44 5 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 5 ATOM 920 CB PHE A 117 40.383 39.979 68.533 1.00 37.14 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 40.196 28.630 68.832 1.00 41.05 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6			46.554	29.264			
ATOM 905 OE1 GLU A 115			47 660	29.670	00.24.		-
ATOM 905 OE2 GLU A 115 18.362 28.769 59.722 1.00 22.53 8 4 4 5 7 7 8 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8					60.016	1.00 19.60	
ATOM 907 C GLU A 115 45.724 30.422 64.774 1.00 27.56 6 8 8 8 8 8 9 9 9 9 8 0 GLU A 115 46.173 30.006 65.837 1.00 25.98 8 8 8 9 9 9 9 N GLU A 116 45.267 31.660 64.615 1.00 31.19 7 9 9 9 N GLU A 116 45.282 32.631 65.705 1.00 35.80 6 8 9 11 CB GLU A 116 44.676 33.959 65.237 1.00 36.91 6 8 9 11 CB GLU A 116 45.434 34.605 64.069 1.00 41.14 6 9 12 CG GLU A 116 46.872 34.982 64.420 1.00 43.09 6 9 13 CD GLU A 116 46.872 34.982 64.420 1.00 43.09 6 9 14 OE1 GLU A 116 47.072 35.886 65.267 1.00 43.42 8 9 14 OE1 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 9 15 CE2 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 9 15 CE2 GLU A 116 45.054 32.131 66.947 1.00 35.11 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		905 OEI GLO A 115				1.00 22.53	
ATOM 908 O GLU A 115	atom				64.774	1.00 27.56	6
ATOM 909 N GLU A 116	MOTA					1.00 25.98	8
ATOM 910 CA GLU A 116 45.282 32.631 65.705 1.00 35.80 6 ATOM 911 CB GLU A 116 44.676 33.959 65.237 1.00 36.91 6 ATOM 912 CG GLU A 116 45.434 34.605 64.069 1.00 41.14 6 ATOM 913 CD GLU A 116 46.872 34.982 64.420 1.00 43.09 6 ATOM 914 OE1 GLU A 116 47.072 35.886 65.267 1.00 43.42 8 ATOM 915 OE2 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 916 C GLU A 116 44.543 32.131 66.947 1.00 35.11 6 ATOM 917 O GLU A 116 45.054 32.228 68.061 1.00 37.26 8 ATOM 918 N PHE A 117 43.343 31.598 66.761 1.00 34.30 7 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 5 ATOM 920 CB PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 40.196 28.630 68.832 1.00 41.05 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6	MOTA					1.00 31.19	
ATOM 910 CA GLU A 116 ATOM 911 CB GLU A 116 ATOM 912 CG GLU A 116 ATOM 913 CD GLU A 116 ATOM 914 OE1 GLU A 116 ATOM 915 OE2 GLU A 116 ATOM 916 C GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117	MOTA	909 N GLU A 116				1.00 35.80	6
ATOM 911 CB GLU A 116 ATOM 912 CG GLU A 116 ATOM 913 CD GLU A 116 ATOM 914 OE1 GLU A 116 ATOM 915 CE2 GLU A 116 ATOM 916 C GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117					·	1.00 36.91	6
ATOM 912 CG GLU A 116 45.434 34.982 64.420 1.00 43.09 6 ATOM 913 CD GLU A 116 47.072 35.886 65.267 1.00 43.42 8 ATOM 914 OE1 GLU A 116 47.802 34.369 63.849 1.00 41.76 8 ATOM 915 CE2 GLU A 116 47.802 34.369 63.849 1.00 35.11 6 ATOM 916 C GLU A 116 44.543 32.131 66.947 1.00 35.11 6 ATOM 917 O GLU A 116 45.054 32.228 68.061 1.00 37.26 8 ATOM 918 N PHE A 117 43.343 31.598 66.761 1.00 34.30 7 ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 5 ATOM 920 CB PHE A 117 41.300 30.399 67.415 1.00 35.45 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 40.196 28.630 68.832 1.00 41.05 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6		911 CB GLU A 116					
ATOM 913 CD GLU A 116 ATOM 914 OE1 GLU A 116 ATOM 915 OE2 GLU A 116 ATOM 916 C GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117		912 CG GLU A 116					6
ATOM 914 OE1 GLU A 116 ATOM 915 CE2 GLU A 116 ATOM 916 C GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117		913 CD GLU A 116					
ATOM 915 CE2 GLU A 116 ATOM 916 C GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117		914 OE1 GLU A 116					8
ATOM 916 C GLU A 116 ATOM 917 O GLU A 116 ATOM 918 N PHE A 117 ATOM 919 CA PHE A 117 ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117			47.802				
ATOM 917 O GLU A 116 45.054 32.228 68.061 1.00 37.26 8 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 8 8 8			44.543			/	٥
ATOM 918 N PHE A 117 43.343 31.598 66.761 1.00 34.30 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				32.22	·		-
ATOM 919 CA PHE A 117 42.577 31.096 67.893 1.00 34.44 5 ATOM 920 CB PHE A 117 41.300 30.399 67.415 1.00 35.45 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 40.196 28.630 68.832 1.00 41.05 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6		4 4 7			g 66.761		,
ATOM 920 CB PHE A 117 41.300 30.399 67.415 1.00 35.45 6 ATOM 921 CG PHE A 117 40.383 29.979 68.533 1.00 37.14 6 ATOM 922 CD1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 ATOM 923 CD2 PHE A 117 40.196 28.630 68.832 1.00 41.05 6 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6						1.00 34.44	5
ATOM 920 CB PHE A 117 ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6	atom					1.00 35.45	
ATOM 921 CG PHE A 117 ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 39.705 30.930 69.290 1.00 35.80 6 40.196 28.630 68.832 1.00 41.05 6 38.853 30.549 70.323 1.00 38.08 6	ATOM					1.00 37.14	
ATOM 922 CD1 PHE A 117 ATOM 923 CD2 PHE A 117 ATOM 924 CE1 PHE A 117 38.853 30.549 70.323 1.00 38.08 6	ATOM	921 CG PHE A 11/				1.00 35.80	
ATOM 923 CD2 PHE A 117 40.150 20.549 70.323 1.00 38.08 6						1.00 41.05	_
38.833 30.343		117					6
		924 CE1 PHE A 117	. 50.65	, ,,,,, ,	•		

		•	•					_
		nur : 117		39.338	28.234	69.874	1.00 40.44	6
ATOM	925 C	E2 PHE A 117			29.198	70.617	1.00 38.64	6
ATOM	926 C	Z PHE A 117		38.668				6
				43.424	30.094	68.669	1.00 34.24	
ATOM	927				30.136	69.898	1.00 33.54	8
MCTA	928	PHE A 117		43.490				7
		110		44.069	29.194	67.933	1.00 33.14	
MCTA	929 N			44.898	28.158	68.523	1.00 32.62	6
ATOM-	930	CA LEU A 118					1.00 30.59	6
		CB LEU A 118		45.155	27.056	67.488	1.00 30.33	
MOTA				43.900	26.297	67.038	1.00 27.87	6
ATOM '	932 (CG LEU A 118				65.996	1.00 20.81	6
ATOM	933 (CD1 LEU A 118		44.244	25.232			6
		CD2 LEU A 118		43.259	25.662	68.257	1.00 28.37	
ATOM	-	D2 110 R 110		46.216	28.696	69.084	1.00 34.37	6
ATOM	935 (C LEU A 118				69.708	1.00 36.15	8
ATOM	936 (O LEU A 118		46.983	27.964		1.00 34.75	7
				46.481	29.974	68.843-		
MOTA				47.679	30.609	69.365	1.00 34.34	6
ATOM	938 (CA LYS A 119			31.739	68.448	1.00 33.52	6
ATOM	939 (CB LYS A 119		48.143			1.00 37.98	6 -
		CG LYS A 119 ·		48.614	31.270	67.100		
ATOM	•	**** 3 110		49.111	32.430	66.263	1.00 43.40	6
ATOM	941	CD LYS A 119			31.928	64.949	1.00 46.52	6
ATOM	942	CE LYS A 119		49.691			1.00 51.48	7
	-	NZ LYS A 119		50.167	33.050	64.092	1.00 31.40	6
MOTA				47.273	31.191	70.705	1.00 34.85	
ATOM	-	C LYS A 119		48.112	31.465	71.562	1.00 38.12	8
MOTA	945	O LYS A 119				70.869	1.00 34.15	7
	946	N GLY A 120		45.967	31.372			6
MOTA	-			45.431	31.927	72.094	1.00 36.25	
ATOM				44.860	33.310	71.851	1.00 39.02	6
ATOM	948	C GLY A 120				72.796	1.00 46.23	8
ATOM	949	O GLY A 120		44.640	34.072		1.00 30.40	7
		N ASN A 121		44.619	33.644	70.586	1.00 38.48	
MOTA		N ASN A ILI		44.079	34.956	70.247	1.00 37.47	6
MCTA	951	CA ASN A 121		_	35.530	69.170	1.00 39.57	6
ATOM	952	CB ASN A 121		44.928	35.624		1.00 41.81	6
	953	CG ASN'A 121		46.340	35.871	69.622		
ATOM	955	co ASN A 101		47.078	34.938	69.926	1.00 47.67 .	8
MOTA	954	OD1 ASN A 121			37.134	69.675	1.00 43.63	7
ATOM	955	ND2 ASN A 121		46.727			1.00 36.59	6
	956	C ASN A 121		42.637	34.893	69.772	1.00 30.33	
MOTA				42.037	33.818	69.704	1.00 34.08	8
MOTA	957	O ASN A 121		42.092	36.061	69.446	1.00 33.53	7
ATOM	958	N VAL A 122				68.976	1.00 34.77	6
	959	CA VAL A 122		40.720	36.166		1.00 32.70	6
ATOM		400		39.861	37.064	69.898	1.00 38.20	
ATOM	960	CB VAL A 122		38.418	37.096	69.388	1.00 37.55	6
ATOM	961	CG1 VAL A 122				71.342	1.00 37.77	6.
ATOM	962	CG2 VAL A 122		39.918	36.553		1.00 31.08	6
	963	C VAL A 122		40.731	36.781	67.596	1.00 31.00	
ATOM				40.991	37.967	67.441	1.00 34.19	8
ATOM	964	0 VAL A 122		40.451	35.975	66.588	1.00 31.14	7
ATOM	965	N ALA A 123				65.231	1.00 30.26	6
ATOM	966	CA ALA A 123		40.451	36.476	54.227	1.00 32.14	6
		CB ALA A 123		41.307	35.588	64.327	1.00 32.14	
ATOM	967	CD 7444 11 122		39.038	36.533	64.716	1.00 28.26	6
MCTA	968	C ALA A 123			35.924	65.281	1.00 29.28	, 8
ATOM	969	O ALA A 123		38.132		62.621	1.00 28.70	7
	970	N PHE A 124		38.875	37.276	63.631	1.00 20.70	6
ATOM				37.601	37.475	62.976	1.00 28.38	
ATOM	971	CA PHE A 124		36.920		63.563	1.00 29.16	6
MCTA	972	CB PHE A 124				62.874	1.00 31.20	6
	973	CG PHE A 124		35.645				6
ATOM		CD1 PHE A 124		34.679	38.139	62.564		
ATOM	974	CDI PRE A 124		35.378		62.579	1.00 29.53	6
ATOM	975	CD2 PHE A 124						6
ATOM	976	CE1 PHE A 124		33.463				6
		CE2 PHE A 124		34.165	40.813			
ATOM	977			33.207		61.686	1.00 28.72	6
ATOM	. 978	CZ PHE A 124						6
ATOM	979	C PHE A 124		37.880				8
ATOM	980	O PHE A 124		38.427				7
ATOM		3 3 3 1 3 5		37.545		60.696		
ATOM	981	N ASN A 125		37.731			1.00 30.10	6
ATCM	982	CA ASN A 125						6
	983	CB ASN A 125		38.247				6
ATOM		00 301 3 125		38.281		57.195	1.00 33.79	0
ATOM	984	CG ASN A 125					1.00 31.85	8
ATOM	985	OD1 ASN A 125		38.754				7
	986	ND2 ASN A 125		37.790	34.268			6
ATOM				36.403	37.083			
ATOM	987	C ASN A 125		35.62			1.00 27.24	. 8
ATOM	988	O ASN A 125						7
ATOM	989	N PRO A 126		36.13				6
CN	990	CD PRO A 126		36.99	7 39.51	58.83	, ,	
/~ NI								

ATOM	991 C	A PRO	A 126			909	38.891		7.844	1.00 2		6 6
		B PRO	A 126		-	139	40.407		7.856	1.00 2		6
ATOM ATOM			A 126			649	40.520		7.775	1.00 2	7 54	6
ATOM	994 C		A 126			651	38.339		5.448	1.00 2	9 66	8
ATOM	995		A 126			532	38.402		5.949	1.00 2		7
ATOM	996 N		A 127			687	37.795		5.820	1.00 2		6
ATOM			A 127			548	37.244		4.477 3.684	1.00 2	22.43	5
ATOM			A 127		-	822	37.505		4.480	1.00		6
ATOM	999 0		A-127			225	35.744 35.140		3.423	1.00	29.04	ě.
ATOM	1000) ALA	A 127		35.	038	35.140	5	5.663	1.00	26.97	7
ATOM	1001	1 GLY	A 128			166	33.724		5.737	1.00	25.65	6
MOTA		A GLY	A 128			874 389	33.486		5.880	1.00	26.17	6
MOTA		GLY	A 128			600	34.428		5.804	1.00	27.39	8
MOTA			A 128 A 129			998	32.234		6.083	1.00	23.87	7
MOTA		4 GLY CA GLY	A 129			588	31.936	5	6.236	1.00	25.17	5
ATOM		GLY	A 129		30.	847	31.674	. 5	4.937	1.00		6
MOTA		GLY	A 129			643	31.908		4.848		25.07	8 7
MOTA		N MET	A 130			. 566	31.198		3.927	1.00	25.69 26.48	6
ATOM ATOM	-		A 130			.981	30.872	5	2.622	1.00 1.00		6
ATOM		CB MET	A 130			.103	30.907		1.567	1.00	26.54	6
MOTA		CG MET	A 130			.795	32.288		0.613		26.29	16
ATOM			A 130			.413	32.366 31.512		9.062	1 00	25.85	6
ATOM	1014		A 130			.080	29.463	-	2.768		24.47	5
MOTA			A 130			.355 .761	28.502		2.113	1.00	17.67	8
MOTA		O MET	A 130			.347	29.389		3.636	1.00	23.28	7
MOTA		N HIS	A 131 A 131			.647	28.16		4.019	1.00	26.33	6
MOTA		CA HIS	A 131			.685	28.485		55.180		26.98	6
MOTA			A 131			.663	29.540	-	54.862		28.50	6
ATOM		CD2 HIS	A 131		26	.225	30.03	-	53.677		28.65	6 7
MOTA MOTA		ND1 HIS	A 131		25	.906	30.16		55.831		33.04 27.75	6
ATOM	1023	CE1 HIS	S A 131			.051	30.99		55.259		26.97	7
ATOM	1024	NE2 HIS	5 A 131			.224	30.93		53.952 53.017		28.44	6
MOTA	1025		5 A 131			.917	27.28 26.21		53.390		31.15	.3
ATOM	1026	O HIS	5 A 131			.434	27.69		51.756	1.00	30.64	7
MOTA	1027	N HIS	A 132			.861	26.93	-	50.746	1.00	28.71	6
ATOM	1028	CA HIS	5 A 132			.321	27.94		49.890	1.00	27.21	6
MOTA	1029	CB HIS	S A 132 S A 132			.408	28.81		50.693		28.83	6
ATOM	1030 1031	CG HIS	S A 132			.111	30.13	7	50.578	1.00	28.92	6
MOTA	1031	ND1 HTS	S A 132			.686	28.36	-	51.773		31.80	7 6
MOTA	1032	CE1 HI	S A 132			.981	29.35		52.285	1.00		7
ATOM ATOM	1034	NE2 HI	S A 132			1.222	30.44		51.579 49.851	1.00		6
ATOM	1035	C HI	S A 132		27	7.889	25.97	0	49.831		23.44	8
ATOM	1036	O HI	s a 132		27	7.399	24.37	20	49.455		27.94	7
ATOM	1037	N AL	A A 133			0.093	26.37 25.38		48.579		26.99	6
ATOM	1038		A A 133			9.958 1.295			48.392	1.00	21.87	6
MOTA	1039		A A 133			0.199			49.078	1.00	26.69	6
MOTA	1040	C AL	•• ••	•		0.703			50.182		28.25	8
MOTA	1041	O AL	A A 133 E A 134			9.850			48.255	1.00	26.73	7
MOTA	1042		E A 134			0.046			48.615		25.04	6
MOTA	1043 1044		E A 134			9.070	20.85	55	47.875		19.20	6 6
MOTA			E A 134			7.629	21.19	99	48.100		15.75	6
ATOM	1045 1046	CD1 PH	E A 134		2	6.929	21.9		47.169		14.83 14.03	6
MOTA MOTA	1047	CD2 PH	E A 134			6.985			49.273		14.84	
MOTA	1048	CE1 PH	E A 134			5.614			47.404		12.07	
ATOM	1049	CE2 PH	IE A 134		2	5.670	21.1		48.58		14.59	6
ATOM	1050	CZ PH	IE A 134			4.985			48.31		29.48	6
ATOM	1051	C PH	IE A 134			1.460	_	56 	47.82		33.19	8
ATOM	1052		IE A 134			2.291 1.713			48.62	0 1.00	31.52	7
ATOM	1053	N LY	(S A 135			3.012		27	48.42	7 1.00	29.15	, 6
ATOM	1054		(S A 135			2.92			48.88	5 1.00	0 29.45	
ATCM	1055		(S A 135 (S A 135		3	4.15		31	48.63		0 32.46	, 6
NOM:	1056	CG L'	CCT M CI		ر		- -		-			

		CD	LYS A	135	33	965	15.734	49.221	1.00 29.67	6
MOTA	1057				_	.234	15.703	50.716	1.00 30.09	6
ATOM	1058		LYS A			679	15.973	51.001	1.00 26.25	7
MOTA	1059		LYS A				19.516	46.993	1.00 30.22	6
MOTA	1060		LYS A			.513	19.672	46.763	1.00 30.00	8
ATOM	1061		LYS A			.714		46.028	1.00 31.69	7
ATOM	1062	N	SER A			.600	19.434		1.00 32.88	6
ATOM	1063	CA	SER A	136	32	.995	19.489	44.619	1.00 32.88	6
ATOM	1064	CB	SER A	136	33	.038	18.077	44.040	1.00 31.41	8
ATOM	1065	OG	SER A		33	.882	17.241	44.810	1.00 35.41	
ATOM	1066	C	SER A		32	. 097	20.347	43.727	1.00 33.55	6
	1067	Õ	SER A			.921	20.031	42.553	1.00 36.11	8
ATOM	1068	N	ARG A		31	.536	21.425	44.262	1.00 30.61	7
MOTA	1069	CA	ARG A			. 664	22.272	43.459	1.00 32.28	.6
ATOM	1070	CB	ARG A		29	.324	21.554	43.202	1.00 35.91	6
ATOM		CG	ARG A	137		.224	22.458	42.627	1.00 43.90	6
MOTA	1071	CD	ARG A		26	.819	21.836	42.751	1.00 48.28	6
MOTA	1072	NE	ARG A	137		.571	20.767	41.787	1.00 53.38	7
MOTA	1073		ARG A			.150	20.960	40.538	1.00 55.30	6
ATOM	1074	CZ	ARG A	137		.921	22.185	40.090	1.00 54.06	7
MOTA	1075	NHI	ARG A	137		.969	19.922	39.728	1.00 58.96	7
ATOM	1076		ARG A	137		.405	23.631	44.113	1.00 30.24	6
MOTA	1077	C	ARG A	127		.380	23.748	45.338	1.00 23.11	8
MOTA	1078	0	ARG A			.219	24.653	43.279	1.00 27.33	7
ATOM	1079	N	ALA A			.944	26.000	43.757	1.00 27.36	6
ATOM	1080	CA	ALA A	7 138		.149	26.997	42.645	1.00 27.57	6
MOTA	1081	CB	ALA A			.496	26.003	44.213	1.00 26.45	6
MOTA	1082	С	ALA A				25.083	43.865	1.00 27.30	8
MOTA	1083	0	ALA A			.747	27.021	44.975	1.00 22.47	7
ATOM	1084	Ŋ	ASN A			.090		45.471	1.00 23.85	6
ATOM	1085.	CA	ASN A	1 139		.711	27.063	46.218	1.00 16.82	6
ATOM	1086	CB		A 139		.406	25.738	46.900	1.00 14.45	6
ATOM	1087	CG		A 139		.040	25.718	46.319	1.00 13.39	8
ATOM	1088	OD1	ASN A	A 139		.019	26.084	48.139	1.00 20.08	7
ATOM	1089	ND2	ASN A	A 139		.018	25.249	46.139	1.00 26.09	6
ATOM	1090	С	ASN A	A 139 ·		.444	28.277	47.260	1.00 27.50	8
ATOM	1091	0	ASN	A 139		1.239	28.600		1.00 24.83	7
ATOM	1092	N	GLY A	A 140		.326	28.954	46.114	1.00 22.24	6
ATOM	1093	CA		A 140		1.965	30.106	46.916	1.00 22.35	6
ATOM	1094	С	GLY .	A 140		.991	31.211	46.890	1.00 23.50	8
ATOM	1095	0	GLY .	A 140		5.256	31.843	47.910	1.00 25.60	7
MOTA	1096	N		A 141		5.570	31.437	45.717	1.00 25.00	6
ATOM	1097	CA		A 141		7.582	32.476	45.518	1.00 28.05	6
ATOM	1098	CB		A 141		7.204	33.765	46.258		6
ATOM	1099	CG	PHE	A 141		5.925	34.391	45.792		6
ATOM	1100	CD1	PHE	A 141		5.352	35.428			6
ATOM	1101	CD2	PHE		2 :	5.312	33.975			6
MO A	1102	CE1	PHE	A 141	2	4.193	36.044			6
A. COM	1103	CE2	PHE	A 141	2	4.150	34.583			6
ATCM	1104	CZ		A 141		3.589	35.621		1.00 32.59	
ATOM	1105	Ċ	PHE	A 141	2	8.954	32.038			6 8
	1106	ō		A 141		9.938	32.727			7
ATOM	1107	Ŋ		A 142	2	9.025	30.897			
MOTA	1108	CA		A 142	3	0.296	30.399			6
MOTA		C3		A 142		0.062	29.787	48.567		6
MOTA	1109	SG		A 142		8.943	30.748		1.00 22.93	16
ATOM	1110		CYS	A 142		1.017	29.366		1.00 22.13	. 6
MOTA	1111	c	CIS	A 142		0.408	28.389		1.00 22.97	. 8
ATOM	1112	0	TVD	A 143		2.317	29.573		1.00 23.09	7
ATOM	1113	<i>N</i>	TIK	A 143		3.129	28.632		1.00 23.05	6
MOTA	1114	CA			3	4.063			1.00 21.60	
MOTA	1115	CB	TYK	A 143		3.377			1.00 24.09	
ATOM	1116	CG	YK	A 143		2.969			1.00 23.29	6
ATOM	1117			A 143		2.365			1.00 23.26	, 6
ATOM	1118	CE:	TYR	A 143		3.154				. 6
ATOM	1119	ČD:		A 143	د .	2.544			7 1.00 24.82	6
ATOM	1120	CE:		A 143	5	2.153				, 6
ATOM	1121	CZ	TYR	A 143						
ATOM	1122	OH	TYR	A 143	3	1.553	33.24.			
				•						

			22.000	27.766	46.290	1.00 24.22	6
MOTA	1123	C TYR A 143	33.960		45.998	1.00 24.58	8
ATOM	1124	O TYR A 143	34.266	26.606		1.00 23.83	7
ATOM.	1125	N ILE A 144	34.327	28.329	47.437		
	1126	CA ILE A 144	35.086	27.566	48.425	1.00 20.24	6
ATOM			36.547	27.982	48.453	1.00 17.27	6
MOTA	1127		37.231	27.354	49.662	1.00 11.03	6
MOTA	1128	CG2 ILE A 144		27.603	47.110	1.00 14.93	6
ATCM	1129	CG1_ILE A 144	37.185		46.946	1.00 19.68	6
ATOM	1130	CD1 ILE A 144	38.601	28.028		1.00 21.77	6
MOTA	1131	C ILE A 144	34.495	27.703	49.815		8
	1132	O ILE A 144	34.288	28.811	50.318	1.00 21.19	
ATOM	1133	N ASN A 145	. 34,212	26.555	50.424	1.00 23.00	7
MOTA			33.616	26.508	51.750	1.00 20.92	6
ATOM	1134		32.902	25.170	51.935	1.00 17.08	6
MOTA	1135	CB ASN A 145	32.079	25.125	53.203	1.00 21.04	6
MOTA	1136	CG ASN A 145			54.276	1.00 20.97	8
ATOM	1137	OD1 ASN A 145	32.549	25.508	53.093	1.00 20.93	7
ATOM	1138	ND2 ASN A 145	30.844	24.640		1.00 19.68	6
ATOM	1139	C ASN A 145	34.706	26.669	52.806		8
ATOM	1140	O ASN A 145	35.201	25.679	53.351	1.00 20.64	
	1141	N ASN A 146	35.079	27.911	53.100	1.00 16.28	7
MOTA		CA ASN A 146	36.123	28.143	54.088	1.00 19.34	6
MOTA	1142		36.428	29.651	54.207	1.00 20.27	6
MOTA	1143		35.292	30.444	54.795	1.00 18.05	6
MOTA	1144	CG ASN A 146		30.421	55.999	1.00 25.83	8
MOTA	1145	OD1 ASN A 146	35.079	31.149	53.948	1.00 16.04	7
ATOM	1146	ND2 ASN A 146	34.552			1.00 20.48	6
ATOM	1147	C ASN A 146	35.775	27.504	55.443	1.00 19.88	8
MOTA	1148	C ASN A 146	36.663	27.027	56.151		7
	1149	N PRO A 147	34.482	27.485	55.819	1.00 19.38	
ATOM	1150	CD PRO A 147	33.312	28.068	55.135	1.00 17.48	6
MOTA		CA PRO A 147	34.058	26.877	57.087	1.00 22.25	6
ATOM	1151		32.539	27.065	57.057	1.00 20.15	6
MOTA	1152		32.407	28.378	56.305	1.00 20.81	6
MOTA	1153	CG PRO A 147	34.443	25.383	57.188	1.00 26.89	6
ATOM	1154	C PRO A 147				1.00 29.10	8
ATOM	1155	O PRO A 147	35.066	24.954.	56.176	1.00 25.88	7
ATOM	1156	N ALA A 148	34.070	24.596		1.00 25.47	6
MOTA	1157	CA ALA A 148	34.372	23.164	56.174	1.00 23.47	6
ATOM	1158	CB ALA A 148	33.670	22.468	55.009	1.00 21.84	
	1159	C ALA A 148	35.870	22.916	56.100	1.00 25.94	6
MOTA	1160	O ALA A 148	36.382	21.971	56.701	1.00 27.19	8
MOTA			36.574	23.756	55.349	1.00 26.11	7
MOTA	1161		38.017	23.609	55.233	1.00 24.04	6
MOTA	1162		38.622	24.663	54.267	1.00 26.16	6
ATOM	1163	CB VAL A 149	40.135	24.476	54.158	1.00 25.36	6
MOTA	1164	CG1 VAL A 149		24.544	52.886	1.00 26.81	6
ATOM	1165	CG2 VAL A 149	37.970		56.640	1.00 23.57	6
ATOM	1166	C VAL A 149	38.516	23.870		1.00 19.75	8
ATOM	1167	O VAL A 149	39.453	23.228	57.122		7
MOTA	1168	N GLY A 150	37.850	24.815	57.299	1.00 22.20	
	1169	CA GLY A 150	38.210	25.175	58.654	1.00 25.43	6
MOTA	1170	C GLY A 150	38.130	23.975	59.568	1.00 27.19	6
ATOM			39.112	23.620	60.221	1.00 27.05	8
MOTA	1171	O GLY A 150	36.959	23.348	59.618		7
ATOM	1172	N ILE A 151	36.775	22.176	60.457		6
ATOM	1173	CA ILE A 151		21.654	60.389		6
ATCM	1174	CB ILE A 151	35.317		60.869		6
ATOM	1175	CG2 ILE A 151	35.251	20.215			6
ATOM	1176	CG1 ILE A 151	34.394	22.540	61.240		6 6
ATOM	1177		34.255	23.967	60.759		9
	1178		37.723	21.039	60.075	1.00 29.32	6
ATOM			38.340	20.420	60.947		8
MOTA	1179		37.843			1.00 29.91	7
atom	1180		38.704			1.00 32.58	6
ATOM	1181		30.704				6
ATCM	1182		38.575				6
ATOM	1183	CG GLU A 152	37.269	18.848			6
ATOM	1184	CD GLU A 152	37.120				8
ATOM	1185		36.089				8
	1186		38.030				
ATOM	1187		40.145				6
ATOM			40.879			1.00 30.15	8
ATOM	1188	9 O GLU A 152			-		

_			ms.m 3	163		40.541	21.170	58.765	1.00 33.90	7
ATOM	1189	N	TYR A			41.875	21.563	59.193	1.00 32.04	6
ATOM	1190	CA	TYR A					59.058	1.00 34.88	6
ATOM	1191	CB	TYR A			42.019	23.074			
ATOM	1192	CG	TYR A			43.280	23.667	59.639	1.00 38.03	6
MCTA	1193	CD1	TYR A	153		44.498	23.611	58.948	1.00 42.34	6
ATOM	1194	CE1	TYR A	153		45.658	24.207	59.475	1.00 43.38	6
ATOM	1195	CD2	TYR A			43.250	24.321	60.869	1.00 37.19	6
ATOM '	1196	CE2	TYR A			44.387	24.913	61.401	1.00 41.09	6
	1197	CZ	TYR A			45.587	24.860	60.704	1.00 43.34	6
MOTA			TYR A			46.696	25.480	61.241	1.00 44.86	8
ATOM	1198					41.919	21.168	60.667	1.00 32.59	6
ATOM	1199	C	TYR A				20.518	61.120	1.00 32.24	8
ATOM	1200	0	TYR A			42.867		_	1.00 32.24	7
MCTA	1201	N	LEU A		-	40.869	21.556	61.397		6
MOTA	1202	CA	LEU A			40.730	21.261	62.823	1.00 29.38	
ATOM	1203	CB	LEU A	154		39.443	21.889	63.378	1.00 28.60	6
ATOM	1204	CG	LEU A			39.399	23.407	63.618	1.00 31.20	6 -
ATOM	1205	CD1	LEU A	154		37.991	23.833	64.041	1.00 28.53	6
ATOM	1206		LEU A			40.418	23 <i>.</i> 787	64.691	1.00 24.95	6
ATOM	1207	C	LEU A			40.732	19.772	63.146	1.00 29.56	6
	1208	ō	LEU A			41.223	19.363	64.196	1.00 28.36	8
ATOM		Ŋ	ARG A			40.174	18.958	62.256	1.00 31.95	7
ATOM	1209		ARG A			40.134	17.522	62.499	1.00 33.00	6
ATOM	1210	CA					16.847	61.561	1.00 33.13	6
ATOM	1211	CB	ARG A			39.127		61.769	1.00 32.84	6
ATOM	1212	CG	ARG A			37.708	17.368		1.00 32.92	6
MOTA	1213	CD	ARG A			36.678	16.719	60.863		7
MOTA	1214	ΝE	ARG A			36.152	15.451	61.363	1.00 33.98	
ATOM	1215	CZ	ARG A	155		35.195	14.760	60.741	1.00 37.93	6
ATOM	1216	NH1	ARG A	155		34.671	15.216	59.605	1.00 38.39	7
ATOM	1217	NH2	ARG A	155		34.732	13.631	61.259	1.00 38.67	7
ATOM	1218	С	ARG A	155		41.521	16.929	62.331	1.00 33.97	6
ATOM	1219	ō	ARG A		•	41.869	15.941	62.985	1.00 32.95	8
	1220	N	LYS A			42.318	17.548	61.467	1.00 34.20	7
ATOM		CA	LYS A			43.679	17.081	61.243	1.00 36.32	6
MCTA	1221		LYS A			44.249	17.662	59.942	1.00 37.57	6
ATCM	1222	CB				45.673	17.187	59.638	1.00 40.32	6
ATOM	1223	CG	LYS A				17.532	58.220	1.00 40.33	6
ATOM	1224	CD	LYS A			46.116		57.184	1.00 41.27	6
ATOM	1225	CE	LYS A			45.180	16.909		1.00 37.92	7
ATOM	1226	NZ	LYS A			45.015	15.435	57.364		6
ATOM	1227	С	LYS A	156		44.539	17.501	62.428	1.00 36.17	
ATOM	1228	0	LYS A	156		45.582	16.905	62.699	1.00 34.53	8
ATOM	1229	N	LYS A	157		44.093	18.537	63.132	1.00 36.71	7
ATOM	1230	CA	LYS A	157		44.820	19.026	64.294	1.00 37.09	6
ATOM	1231	CB	LYS A			44.495	20.501	64.566	1.00 37.02	6
ATOM	1232	CG	LYS A			44.982	21.435	63.477	1.00 36.22	6
	1233	CD	LYS A			46.468	21.231	63.239	1.00 37.91	6
ATOM	1234	Œ	LYS A			46.993	22.100	62.107	1.00 39.35	6
ATOM			LYS A			48.434	21.815	61.842	1.00 38.78	7
ATOM	1235	-1Z				44.498	18.178	65.515	1.00 35.61	6
ATOM	1236	- ,	LYS A				18.232	66.518	1.00 36.38	8
ATOM	1237	0	LYS A			45.204			1.00 34.37	7
ATOM	1238	N	GLY A			43.433	17.392	65.431	1.00 38.08	6
ATOM	1239	CA	GLY A			43.097	16.537	66.552		
ATOM	1240	·C	GLY A	158		41.782	16.781	67.267	1.00 38.78	6
ATOM	1241	0	GLY A	158		41.460	16.053	68.208	1.00 41.07	8
ATOM	1242	N	PHE A	159		41.023	17.791	66.855	1.00 36.75	7
MCTA	1243	CA	PHE A			39.743	18.046	67.505	1.00 33.83	6
	1244	CB	PHE A			39.246	19.459	67.213	1.00 32.65	6
ATOM	1245	CG	PHE A			40.115	20.521	67.78 7	1.00 29.97	6
ATOM						41.404	20.724	67.297	1.00 30.20	6
ATOM	1246		PHE A			39.672	21.289	68.853	1.00 29.28	6
MOTA	1247	CD2	PHE A				21.680	67.862	1.00 28.96	6
ATOM	1248	CE1	PHE A			42.241		69.428	1.00 29.67	5
ATOM	1249	CE2	PHE A			40.498	22.246		1.00 29.67	- 6
ATOM	1250	CZ	PHE A			41.785	22.442	68.931		6
ATCM	1251	С	PHE A			38.732	17.026	67.025	1.00 33.41	
ATOM	1252	0	PHE A			38.664	16.716	65.838	1.00 31.61	8
ATOM	1253	N	LYS A			37.951	16.506	67.966	1.00 35.13	7
	1254	CA	LYS A			36.947	15.493	67.677	1.00 35.39	6
ATOM	7774		212		_			-	•	

		6 5	LYS A 1	60	37.	342	14.198	68.389	1.00 36.43	6
MOTA	1255	CB	LYS A 1	60	-	535	13.502	67.708	1.00 40.67	6
ATOM	1256		LYS A 1	60	30.	312	12.538	68.615	1.00 44.68	6
MOTA	1257		LYS A 1		38	425	11.536	69.345	1.00 49.23	6
MOTA	1258	CE	LYS A I	60		593	12.182	70.411	1.00 50.63	7
MOTA	1259	NZ	LYS A 1	60		524	15.927	68.027	1.00 35.94	6
MOTA	1260	C	LYS A 1	60		561	15.241	67.691	1.00 35.72	8
ATOM	1261		LYS A 1	60		.399	17.058	68.718	1.00 34.35	7
MOTA	1262	N	ARG A 1	91		. 091	17.618	69.044	1.00 34.95	6
ATOM	1263	CA	ARG A 1	61		.771	17.525	70.535	1.00 33.94	6
ATOM	1264	CB	ARG A 1	61			16.132	70.992	1.00 38.25	6
ATOM	1265	CG	ARG A 1	6.1		. 427	16.131	72.386	1.00 41.17	6 .
MOTA	1266	CD	ARG A 1			. 823	16.722	73.378	1.00 47.64	7
MOTA	1267	ME	ARG A 1	61		.719 .912	16.233	73.705	1.00 47.92	6
MOTA	1268	CZ	ARG A 1			.372	15.131	73.121	1.00 47.56	7
ATOM	1269	NH1	ARG A 1	61			16.858	74.616	1.00 46.95	7
ATOM	1270		ARG A 1	61		. 648	19.076	68.598	1.00 34.58	6
MOTA	1271	С	ARG A 1			.113	19.980	69.357	1.00 33.77	8
ATOM	1272	0	ARG A 1	.61		.468	19.280	67.341	1.00 31.74	7
MOTA	1273	14	ILE A 1			.741	20.594	66.735	1.00 29.83	6
ATOM	1274	CA	ILE A 1			.735	20.542	65.362	1.00 29.96	6
ATOM	1275	CB	ILE A 1	.62		.429	21.942	64.784	1.00 30.57	6
MOTA	1276	CG2	ILE A 1	.62		.580		65.522	1.00 28.81	6
ATOM	1277	CG1	ILE A 1			.801	19.891	64.224	1.00 33.05	6
ATOM	1278	CD1	ILE A 1	.62		.537	19.685	66.560	1.00 29.66	6
ATOM	1279	С	ILE A 1			.300	21.050	66.266	1.00 25.24	8
ATOM	1280	0	ILE A 1	.62		.416	20.241		1.00 30.00	7.
ATOM	1281	21	LEU A 1	163	32	.081	22.351	66.745	1.00 30.48	6
ATOM	1282	CA	LEU A	63		.754	22.945	66.617	1.00 30.48	6
ATOM	1283	CВ	LEU A	63		.236	23.406	67.992	1.00 32.23	6
ATOM	1284	ĊG	LEU A 1	163		.934	24.229	68.044		6
ATOM	1285		LEU A			.804	23.494	67.326	1.00 31.58	6
	1286	CD2		163	28	.569	24.502	69.493	1.00 25.00	6
MOTA	1287	C	LEU A		30	.717	24.122	65.659	1.00 29.23	
MOTA	1288	õ	LEU A		31	.596	24.980	65.654	1.00 29.72	8 7
MOTA	1289	N	TYR A		29	.675	24.157	64.846	1.00 29.68	
MOTA	1290	CA	TYR A		29	.500	25.244	63.899	1.00 29.89	6
MOTA	1291	CB	TYR A	164	29	.512	24.688	62.470	1.00 27.81	6
MOTA	1292	CG	TYR A	164	29	.377	25.742	61.399	1.00 27.79	6
ATOM	1292	CD1				.390	26.670	61.168	1.00 24.82	6
ATOM	1294	CEI			30	.247	27.655	60.198	1.00 24.51	6
MOTA	1295	CD2			28	3.216	25.827	60.631	1.00 27.61	6
MOTA	1296	CE2				3.065	26.808	59.662	1.00 25.67	6
ATOM	1297	ÇZ	TYR A		29	0.078	27.718	59.451	1.00 25.63	6
ATOM	1298	ЭН	TYR A		28	3.898	28.704	58.506	1.00 27.10	8
MOTA	1299	c.	TYR A	164		3.149	25.907	64.218	1.00 28.38	6
MOTA	1300	5	TYR A	164	2°	7.119	25.225	64.277	1.00 29.43	8
ATOM	1300	71	ILE A	165	28	3.166	27.217	64.464	1.00 24.30	7
ATOM		CA	ILE A	165		6.941	27.969	64.754	1.00 22.93	6
ATOM	1302	СВ	ILE A	165		6.985	28.649	66.143	1.00 22.00	6
MOTA	1303	CG				5.765		66.312	1.00 16.15	6
MOTA	1304	CG:		165		7.033			1.00 20.78	6
ATOM	1305			165		7.185			1.00 15.49	6
MOTA	1306	CD:	ILE A	165		6.784			1.00 24.45	6
ATOM	1307	2	155 4	165		7.605			1.00 23.17	8
MOTA	1308	<u>ي</u>	ILE A	166		5.709			1.00 24.20	7
MOTA	1309	N	ASP A	166		5.478			1.00 20.78	6
ATOM	1310	CA	ASP A	166		5.314	_		1.00 17.64	6
ATOM	1311	23	ASP A	100		5.410				6
MOTA	1312	CG	ASP A	100		4.536			1.00 20.20	8
ATOM	1313	CD	1 ASP A	100						. 8
MOTA	1314		2 ASP A	100		6.366				6
ATOM	1315		ASP A	166		4.290				8
ATOM	1316	2	ASP A	166		3.134				7
ATOM	1317		LEU A	167		4.583				
ATOM	1318		LEU A	167		3.536				
MOTA	1319		LEU A	167		3.963				
MOTA	1320			167	2	4.364	33.463	64.674	1.00 20.7.	•
MIUN										

								_
-		3 167	24	.741	34.647	65.552	1.00 26.24	6
MOTA	1321	CD1 LEU A 167				65.302	1.00 23.45	6
MOTA	1322	CD2 LEU A 167	23	. 225			1.00 26.37	6
		C LEU A 167	23	.162	33.660	60.951	1.00 26.37	
MOTA				.386	34.613	60.971	1.00 25.95	8
ATOM	1324	O LEU A 167				59.828	1.00 29.66	7
ATOM	1325	N ASP A 168	23	.726	33.208		1.00 28.35	6
			23	.410	33.787	58.520	1.00 28.33	
ATOM-	1326			.057	32.987	57.390	1.00 33.29	6
MOTA	1327	CB ASP A 168				56.037	1.00 35.38	6
ATOM	1328	CG ASP A 168	23	.937	33.676			8
		OD1 ASP A -168	. 24	.892	34.388	55.659	1.00 39.48	
MOTA	1329	ODI ASP A 100		.893	33.531	55.364	1.00 33.40	8
ATOM	1330	OD2 -ASP A 168				58.408	1.00 28.74	6
ATOM	1331	C ASP A 168	21	.906	33.614	55.400	1 00 26 21	8
		160	21	.354	32.648	58.948	1.00 26.21	
ATOM	1332	O ASP A 168		.239	34.524	57.711	1.00 26.16	7
ATOM	1333	N ALA A 169			34.415	57.579	1.00 24.39	6
ATOM	1334	CA ALA A 169		.793			1.00 22.75	6
	1335	CB ALA A 169	19	.233	35.640	56.879	1.00 22.73	
ATOM			19	.420	33.157	56.813	1.00 24.37	•
ATOM	1336	C ALA A 169		.266	32.752	56.824	1.00 22.34	8
MOTA	1337	O ALA A 169				56.156	1.00 25.78	7
ATOM	1338	N HIS A 170	20	.405	32.542	30.130	1.00 25.20	6
		CA HIS A 170	20	180	31.327	55.375		
MOTA	1339	CA 115 A 170		.667	31.501	53.936	1.00 25.76	6
MOTA	1340	CB HIS A 170			32.711	53.245	1.00 29.08	6
ATOM	1341	CG HIS A 170).122			1.00 30.59	6
	1342	CD2 HIS A 170	19	3.338	32.834	52.147		7
ATOM		ND1 HIS A 170	2.0	384	33.995	53.675	1.00 30.77	
ATOM	1343	NOT HIS A 170		784	34.858	52.873	1.00 29.07	6
MOTA	1344	CE1 HIS A 170				51.939	1.00 32.19	7
ATOM	1345	NE2 HIS A 170		9.143	34.180		1.00 26.00	6
	1346	C HIS A 170	20	0.895	30.113	55,958	1.00 20.00	
ATOM				1.913	30.234	56.637	1.00 25.76	8
ATOM	1347	O HIS A 170			28.939	55.658	1.00 27.29	7
MOTA	1348	N HIS A 171		0.349		56.090	1.00 25.01	6
MOTA	1349	CA HIS A 171		0.893	27.655		1.00 24.93	6
	1350	CB HIS A 171	19	9.934	26.532	55.663	1.00 24.93	
ATOM			. 20	0.468	25.148	55.889	1.00 26.56	6
ATOM	1351	CG HIS A 1/1		0.674	24.123	55.028	1.00 22.34	6
MOTA	1352	CD2 HIS A 171				57.137	1.00 25.35	7
ATOM	1353	ND1 HIS A 171		0.823	24.678		1.00 22.68	6
	1354	CE1 HIS A 171	. 2:	1.222	23.424	57.036		7
MOTA		NE2 HIS A 171		1.140	23.062	55.767	1.00 24.13	
MOTA	1355	NEZ 113 A 171		2.267	27.413	55.471	1.00 24.74	6
ATOM	1356	C HIS A 171	2.	2.20,	27.863	54.356	1.00 28.22	8
ATOM	1357	O HIS A 171		2.540			1.00 23.03	7
	13'58	N CYS A 172		3.131	26.705	56.190	1.00 23.41	6
ATOM	1359	CA CYS A 172	2	4.467	26.389	55.683		
ATOM		4 4 7 4		5.497	26.474	56.812	1.00 19.31	6
ATOM	1360	CB CYS A 1/2		5.005	25.631	58.318	1.00 16.78	16
ATOM	1361	SG CYS A 172				55.048	1.00 25.45	6
ATOM	1362	C CYS A 172		4.484	24.997		1.00 24.47	8
	1363	O CYS A 172	2	5.203	24.098	55.483	1.00 24.47	7
MOTA			2	3.664	24.839	54.015	1.00 26.67	
MOTA	1364	N ASP A 1/3		3.542	23.593	53.269	1.00 26.47	6
ATOM	1365	CA ASP A 173			23.857	51.993	1.00 26.33	6
ATOM	1366	CB ASP A 173		2.735		51.555	1.00 27.06	6
	1367	CG ASP A 1 3	2	3.281	25.030	51.179	1.00 27.00	
MOTA		OD1 ASP A 173	2	2.539	25.558	50.330	1.00 23.43	8
MOTA	1368	ODI MSF A 173		4.454	25.417	51.372	1.00 29.38	8
ATOM	1369	OD2 ASP A 173				52.922	1.00 26.65	6
MOTA	1370	C ASP A 173		4.872	22.932	50.704		8
	1371	O ASP A 173	2	4.940	21.708	52.784	1.00 20.30	7
MOTA			2	5.926	23.737	52.793	1.00 25.24	
ATOM	1372	N GLY A 174		7.227		52.447	1.00 23.11	6
MOTA	1373	CA GLY A 174						6
ATOM	1374	C GLY A 174	2	27.896	22.505			8
		O GLY A 174	2	28.443	21.408	53.462		7
MOTA	1375	3 331 3 17E		7.848			1.00 24.29	,
ATCM	1376	N VAL A 175						6
MOTA	1377	CA VAL A 175	4	28.459				6
	1378	CB VAL A 175	7	28.536	23.672			6
ATOM		CG1 VAL A 175		29.449		58.218		2
MOTA	1379			29.015		56.530	1.00 18.74	6
MOTA	1380	CG2 VAL A 175					1.00 22.85	6
ATCM	1381	C VAL A 175		27.647				8
	1382			28.173				7
ATOM			:	26.356	21.404	56.203		6
ATOM	1383			25.518		56.629	1.00 27.18	
ATOM	1384							. 6
ATOM	1385	CB GLN A 176		24.045	20.01			
2TOM	1386			23.084	19.483	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	

> mow	1387	CD GLN A 176	21.620			1.00 38.36	6
MOTA MOTA		OE1 GLN A 176	21.113			1.00 38.59 1.00 38.81	8 7
ATOM		NE2 GLN A 176	20.934			1.00 38.81	6
ATOM		C GLN A 176	25.956		55.841 56.416	1.00 26.89	8
ATOM	1391	O GLN A 176	26.326	18.066	54.519	1.00 27.96	7
ATOM	1392	N GLU A 177	25.951	19.194 18.062	53.698	1.00 31.16	6
MOTA	1393	CA GLU A 177	26.343	18.460	52.220	1.00 30.37	6
MOTA	1394	CB GLU A 177	26.395 26.353	17.256	51.287	1.00 36.20	6
MOTA	1395	CG GLU A 177	26.273	17.626	49.818	1.00 40.70	6
ATOM	1396	CD GLU A 177	27.322	17.967	49.234	1.00 46.78	8
MOTA	1397	OE1 GLU A 177 OE2 GLU A 177	25.155	17.590	49.250	1.00 39.39	8
ATOM	1398		27.702	17.516	54.137	1.00 31.66	6
ATOM	1399	O GLU A 177	27.868	16.317	54.356	1.00 32.81	8
ATOM	1400 1401	N ALA A 178		18.419	54.287	1.00 33.39	7
MOTA	1401	CA ALA A 178	30.026	18.072	54.673	1.00 31.63	6
MOTA MOTA	1403	CB ALA A 178	30.830	19.338	54.856	1.00 30.96	6 6
ATOM	1404	C ALA A 178	30.204	17.185	55.897	1.00 30.63 1.00 27.95	8
ATOM	1405	O ALA A 178	31.032	16.276	55.876	1.00 27.93	7
ATOM	1406	N PHE A 179	29.444	17.444	56.961 58.184	1.00 31.34	6
ATOM	1407	CA PHE A 179	29.590	16.656	59.310	1.00 30.13	6
ATOM	1408	CB PHE A 179	30.147	17.532 18.505	58.858	1.00 27.78	6
ATOM	1409	CG PHE A 179	31.189 30.827	19.790	58.466	1.00 28.24	6
MOTA	1410	CD1 PHE A 179	32.522	18.124	58.766	1.00 28.33	6
MOTA	1411	CD2 PHE A 179 CE1 PHE A 179	31.778	20.688	57.988	1.00 26.68	6
MOTA	1412	CE1 PHE A 179 CE2 PHE A 179	33.487	19.013	58.285	1.00 28.79	6
MOTA	1413	CZ PHE A 179	33.111	20.300	57.895	1.00 28.67	6
MOTA	1414 1415	C PHE A 179	28.300	16.003	58.664	1.00 32.06	6
MOTA MOTA	1416	O PHE A 179	28.218	15.542	59.803	1.00 30.58	8 7
ATOM	1417	N TYR A 180	27.305	15.960	57.787	1.00 34.25 1.00 38.60	6
MOTA	1418	CA TYR A 180	26.001	15.377	58.099	1.00 38.99	6
MOTA	1419	CB TYR A 180	25.062	15.605	56.911 57.220	1.00 37.91	6
ATOM	1420	CG TYR A 180 ·	23.593	15:453	57.064	1.00 35.83	6
MOTA	1421	CD1 TYR A 180	22.938	14.232 14.103	57.373	1.00 39.20	6
ATOM	1422	CEL TYR A 180	21.589 22.861	16 543	57.694	1.00 37.56	6
MOTA	1423	CD2 TYR A 180	21.518	16.430	58.007	1.00 40.28	6
MOTA	1424	CE2 TYR A 180 CZ TYR A 180	20.882	15.211	57.848	1.00 41.92	6
ATOM	1425 1426	CZ TYR A 180 OH TYR A 180	19.549	15.110	58.188	1.00 43.41	8
ATOM	1427	C TYR A 180	26.133	13.884	58.382	1.00 40.28	6
ATOM ATOM	1428	O TYR A 180	25.158	13.192	58.680	1.00 39.27	8 7
ATOM	1429	N ASP A 181	27.363	13.402	58.319	1.00 43.51 1.00 45.89	6
ATOM	1430	CA ASP A 181	27.638	11.994	58.519	1.00 43.09	6
ATOM	1431	CB ASP A 181	28.414	11.487	57.303 57.436	1.00 56.84	6
ATOM	1432	CG ASP A 181	28.830	10.050	58.345	1.00 59.47	8
ATOM	1433	OD1 ASP A 181	29.637	9.750 9.221	56.629	1.00 60.73	8
ATOM	1434	OD2 ASP A 181	28.348 28.398	11.665	59.804	1.00 44.75	6
ATOM	1435	C ASP A 181	28.257	10.568	60.350	1.00 44.69	8
ATOM	1436	O ASP A 181 N THR A 182	29.194	12.606	60.298	1.00 41.26	7
ATOM	1437	OA THR A 182	29.975	12.337	61.495	1.00 39.51	6
ATOM	1438 1439	CB THR A 182	31.408	12.881	61.355		6
ATOM	1440	OG1 THR A 182	32.171	12.508	62.505		8 6
MOTA MOTA	1441	CG2 THR A 182	31.395		61.232	1.00 40.12 1.00 38.58	6
MOTA	1442	C THR A 182	29.370				8
ATOM	1443	O THR A 182	28.609				7
ATOM	1444	N ASP A 183	29.712			- 44 34 44	6
ATOM	1445	CA ASP A 183	29.211				6
ATOM	1446	CB ASP A 183	28.824	11.588 10.723			6
ATOM	1447	CG ASP A 183	30.010				8
ATOM	1448	OD1 ASP A 183	30.725 30.221			1.00 42.46	8
MOTA	1449	OD2 ASP A 183	30.286			1.00 40.34	6
ATOM	1450	C ASP A 183 O ASP A 183	30.109			1.00 42.07	8
ATOM	1451 1452		31.400			1.00 39.29	7
TO TO M	1434	14 0000 20 20 2			-	•	

		CA GLN A	104	32.506	14.635	65.671	1.00 37.08	6
ATOM	1453			33.830	14.252	64.994	1.00 33.77	6
ATOM	1454	CB GLN A			12.804	65.166	1.00 33.63	6
MOTA	1455	CG GLN A		34.229		64.593	1.00 32.74	6
MOTA	1456	CD GLN A		35.599	12.499		1.00 31.17	8
MOTA	1457	OE1 GLN A		35.853	12.704	63.413		7
MOTA	1458	NE2 GLN A	184	36.490	11.999	65.436	1.00 36.58	
ATOM	1459	C GLN A		32.222	16.110	65.403	1.00 36.42	6
	1460	O GLN A		32.803	16.994	66.034	1.00 37.41	8
MOTA		N VAL A		31.329	16.372	64.456	1.00 33.14	7
MOTA	1461			30.984	17.740	64.119	1.00 32.40	6
ATOM	1462			31.308	18.052	62.641	1.00 33.03	6
ATOM	1463			31.009	19.520	62.331	1.00 29.27	6
MOTA.	1464	CG1 VAL A		32.773	17.738	62.357	1.00 34.58	6
ATOM	1465	CG2 VAL A			17.730	64.360	1.00 31.51	6
ATOM	1466	C VAL A		29.508	17.124	64.038	1.00 31.71	8
MOTA	1467	O VAL A		28.680		64.946	1.00 30.98	7
ATOM	1468	N PHE A	186	29.185	19.119		1.00 31.44	6
ATOM	1469	CA PHE A	186	27.798.		65.207	1.00 30.96	6
ATOM	1470	CB PHE A	186	27.524	19.532	66.716		6
ATOM	1471	CG PHE A	186	26.059	19.617	67.066	1.00 31.59	
	1472	CD1 PHE A		25.552	18.901	68.153	1.00 30.54	6
MOTA	1473	CD2 PHE A	186	25.179	20.395	66.308	1.00 31.50	6
MOTA		CE1 PHE A	186	24.191	18.951	68.478	1.00 33.28	б
MOTA	1474	CE2 PHE A		23.815	20.457	66.622	1.00 33.04	6
MOTA	1475		106	23.318	19.733	67.708	1.00 32.35	6
MOTA	1476			27.490	20.798	64.551	1.00 30.37	6
MOTA	1477	C PHE A	186	28.189	21.789	64.751	1.00 31.32	8
ATOM	1478	O PHE A	186	26.435	20.809	63.752	1.00 31.14	7
ATOM	1479	N VAL A				63.063	1.00 32.05	6
ATOM	1480	CA VAL A		26.024	22.015	61.525	1.00 33.54	6
ATOM	1481	CB VAL A		26.018	21.805	60.813	1.00 32.07	6
ATOM	1482	CG1 VAL A	187	25.574	23.081		1.00 35.44	6
ATOM	1483	CG2 VAL A	187	27.420	21.389	61.056	1.00 33.44	6
ATOM	1484	C VAL A	187	24.638	22.439	63.524	1.00 31.47	8
ATOM	1485	O VAL A	187	23.666	21.686.	63.410	1.00 29.06	
	1486	N LEU A		24.579	23.638	64.090	1.00 29.44	7
MOTA	1487	CA LEU A		23.336	24.228	64.551	1.00 29.39	6
MOTA	1488	CB LEU A		23.433	24.665	66.009	1.00 29.62	6
MOTA	1489	CG LEU A		22.293	25.589	66.458	1.00 27.92	6
MOTA		CD1 LEU A		20.970	24.844	66.414	1.00 25.87	6
MOTA	1490	CD2 LEU A	188	22.574	26,107	67.861	1.00 27.69	6
MOTA	1491		100	23.161	25.454	63.675	1.00 31.89	6
ATOM	1492			24.130	26.175	63.388	1.00 31.50	8
MOTA	1493	O LEU A	100	21.929	25.700	63.250	1.00 29.93	7
MOTA	1494	N SER A	109	21.682	26.831	62.390	1.00 24.65	6
MOTA	1495	CA SER A			26.411	60.942	1.00 22.40	6
MOTA	1496	CB SER A	189	21.873	27.485	60.083	1.00 19.12	8
ATOM	1497	OG SER A		21.585				6
ATOM	1498	C SER A		2016	27.462	62.577	1.00 26.72	8
ATOM	1499	O SER A	. 189	1996	26.774		1.00 27.41	7
ATOM	1500	N LEU A		20.121	28.783	62.669	1.00 27.41	6
ATOM	1501	CA LEU A	190	19.096	29.554	62.735	1.00 29.00	6
ATOM	1502	CB LEU A	190	19.185	30.682	63.771	1.00 29.84	
	1503	CG LEU A		19.108	30.366	65.264	1.00 26.79	6
ATOM	1504	CD1 LEU A		19.020	31.662	66.045	1.00 23.44	6
ATOM		CD2 LEU A	190	17.881	29.549	65.546	1.00 27.63	6
MOTA	1505			19.046	30.141	61.329	1.00 29.58	6
MOTA	1506	_		20.084	30.525	60.790	1.00 32.40	8
MOTA	1507			17.864		60.727	1.00 29.61	7
ATOM	1508	N HIS A		17.004		59.368	1.00 29.72	6
MOTA	1509	CA HIS A	7 191	17.766		58.432		6
MOTA	1510	CB HIS A	191	18.595	29.839	58.504		6
ATOM	1511	CG HIS A		18.225				6
ATOM	1512	CD2 HIS A	191	18.918		58.940		7
	1513	ND1 HIS A	191	16.989		58.118		6
ATOM	1514	CE1 HIS A	191	16.938				7
ATOM	1515	NE2 HIS A	191	18.095	26.220	58.810		é
ATOM		C HIS A	191	16.329	30.812	58.856		6
ATOM	1516		191	15.385	30.411		1.00 27.81	8
ATOM	1517		192	16.183				7
LTCM	1518	N GLN 3	3 226			•	•	

				_				22 404	57.008	1.00 2	8.21	6
ATOM	1519	CA (GLN A	192	,			31.494	55.796	1.00 2		6
ATOM	1520	CB (GLN A	192				32.416		1.00 2		6
MOTA	1521	CG ·	GLN A	192		15.		33.773	56.124	1.00 2	2.00	6
	1522		GLN A			15.	.701	34.690	54.921	1.00 2	2.22	
ATOM		OE1	GLN A	192			. 684	35.173	54.428	1.00 2		8
MOTA	1523		GLN A				.914	34.925	54.434	1.00 2		7
ATOM		NE2	GLIN A	100			. 435	30.104	56.570	1.00 3	2.71	6
ATOM	1525	C.	GLN A	192				29.403	55.853	1.00 3	3.85	8
MOTA	1526	0	GLN A	192			.157	29.403	57.011	1.00 3		7
ATOM	1527	N	SER A	193			.249	29.694	56.650	1.00 3		6
MOTA	1528	CA	SER A	193			.751	28.376		1.00 3		6
ATOM	1529	CB	SER A	193			.264	28.249	56.961			8
	1530	OG	SER A				.786	26.987	56.540	1.00 3	1.32	6
MOTA	1531	c	SER A	193		12	.974	28.150	55.171		34.79	
ATOM		Ö	SER A	193		12	.775	29.051	54.356	1.00 3		8
MOTA	.1532		PRO A	194			.404	26.938	54.803	1.00 3		7
MOTA	1533	И	PRO A				.689	25.775	55.658	1.00	38.89	6
MOTA	1534	CD	PRO A				.654	26.600	53.403	1.00	37.81	6
ATOM	1535	CA	PRO A	104			.248	25.194	53.498	1.00	39.30	6
ATOM	1536	CB	PRO A	194			.840	25.163	54.916	1.00	39.09	6
ATOM	1537	CG	PRO A					26.617	52.638	1.00		6
MOTA	1538	С	PRO A				.340		51.425	1.00		8
ATOM	1539	0	PRO A				.317	26.443	53.364		39.25	7
MOTA	1540	N	GLÚ A	195			.246	26.835			41.54	6
ATOM	1541	CA	GLU A	195			.928	26.866	52.750	1.00		6
	1542	CB	GLU A	195			.843	26.600	53.812			6
MOTA	1543	CG	GLU A	195		8	.360	27.811	54.608	1.00		
MOTA		CD	GLU A	195		7	.160	28.502	53.960	1.00	55.91	6
ATOM ·		OE1	GLU A	195		6	.735	29.571	54.461	1.00		8
MOTA	1545	OEI	GLU A	195			.631	27.966	52.956	1.00		8
MOTA	1546		GLU A	105			.700	28.208	52.047		39.50	6
MOTA	1547	C	GLU A				3.651	28.431	51.452		40.21	8
MOTA	1548	0					0.689	29.096	52.098		37.13	7
MOTA	1549	N	TYR A	100			0.549	30.379	51.434	1.00	35.50	6
ATOM	1550	CA	TYR A	196			602	31.274	52.245	1.00	36.36	6
ATOM	1551	CB	TYR A	196				31.816	53.538	1.00	37.28	6
ATOM	1552	CG	TYR A	196			175	32.848	53.527		35.42	6
ATOM	1553	CD1					1.120		54.706		33.10	6
MOTA	1554	CEl	TYR A	196			1.637	33.366	54.776		36.75	6
ATOM	1555	CD2	TYR A	196			9.764	31.311	55.968	1.00	35.26	6
ATOM	1556	CE2	TYR A	196			0.279	31.825			35.84	6
MOTA	1557	CZ	TYR A	196			1.213	32.856	55.922	1.00	37.09	8
ATOM	1558	ОН	TYR A	196		1:	1.704	33.401	57.087	1.00	34.89	6
MOTA	1559	C	TYR A	196			1.878	31.097	51.188			8
	1560	ō	TYR A	196		10	1.896	32.256	50.764	1.00	31.61	7
ATOM	1561	N	ALA A	197			2.991	30.416	51.437	1.00	34.39	
MOTA		CA	ALA A	197		14	4.297	31.041	51.242		34.82	6
MOTA	1562		אבא ז	197			4.684	31.826	52.489	1.00	32.48	6
ATOM	1563	CB	ALA A	107			5.418	30.075	50.887	1.00	36.59	6
ATOM	1564	C	ALA A	1 137			5.407	28.903	51.291		37.46	8
MOTA	1565	0	ALA	197			6.388	30.584		1.00	36.22	7
MOTA	.1566	N	PHE	A 198			7.548	29.802		1.00	37.68	6
ATOM	1567	ÇA		A 198				30.729			40.89	6
ATOM	1568	CB	PHE A	A 198			8.597	30.723			43.59	6
MOTA	1569	CG	PHE A	A 198			9.810	30.013			44.74	6
ATOM	1570	CD1	PHE A	A 198			9.783	29.404			41.86	6
MOTA	1571	CD2	PHE	A 198			0.970	29.929			41.42	6
	1572	CE1	PHE	A 198			0.894	28.729			43.30	6
ATOM	1573	CEZ	PHE	A 198		2	2.079	29.251			43.30	6
ATOM	1574	CZ	PHE	A 198			2.040	28.652			41.86	
MOTA		c	DUE	A 198		1	8.139	29.140			37.00	6
MOTA	1575		DUE.	A 198			8,166		52.036		36.43	8
ATOM	1576	0	PRO	3 100			8.641		50.848		37.63	7
MOTA	1577	N	PRO	A 199			9.298			7 1.00	35.29	6
MOTA	1578	CD	PRO	A 199			8.727			1.00	36.52	6
ATOM	1579		PRO	A 199							34.96	6
ATOM	1580		PRO	A 199			9.702				34.57	6
ATOM	1581		PRO	A 199			9.281				35.72	
ATOM	1582		PRO	A 199			17.409				37.36	
ATOM	1583		PRO	A 199			L7.386		· .		33.78	
			PHE	A 200		1	16.331	26.63	49.96	2 1.00		
ATOM		-		٠.								

ATOM	1585	CA PHE A 200		15.004		49.662	1.00 32.15	6
ATOM	1586	CB PHE A 200		14.562	26.381	48.222	1.00 28.39	6 6
ATOM	1587	CG PHE A 200		14.600	27.827	47.835	1.00 26.29 1.00 24.82	6
ATOM	1588	CD1 PHE A 200		15.749	28.385	47.296	1.00 24.82	6
ATOM	1589	CD2 PHE A 200		13.466	28.623	47.966	1.00 25.68	6
ATOM	1590	CE1 PHE A 200		15.767	29.712	46.882 47.557	1.00 27.03	6
ATOM	1591	CE2 PHE A 200		13.475	29.955	47.013	1.00 24.90	6 .
ATOM	1592	CZ PHE A 200		14.626	30.498	49.842	1.00 32.66	6
MOTA	1593	C PHE A 200		14.947	24.574 24.033	50.264	1.00 31.22	8
ATOM	1594	O PHE A 200		13.925	23.896	49.499	1.00 33.60	7
MOTA	1595	N GLU A 201		16.043 16.128	22.438	49.585	1.00 30.86	6
ATOM	1596	CA GLU A 201 CB GLU A 201		17.213	21.931	48.637-	1.00 32.98	6
MOTA	1597			16.879	22.182	47.175	1.00 33.52	6
MOTA	1598	CG GLU A 201 CD GLU A 201		18.012	21.864	46.232	1.00 34.56	6
MOTA	1599 1600	OE1 GLU A 201		18.396	20.678	46.117	1.00 36.35	8 -
MOTA	1601	OE2 GLU A 201		18.523	22.814	45.605	1.00 36.52	8
MOTA MOTA	1602	C GLU A 201		16.369	21.911	50.981	1.00 28.52	6
MOTA	1603	O GLU A 201		15.537	21.199	51.520	1.00 28.91	8 7
ATOM	1604	N LYS A 202		17.511	22.239	51.566	1.00 31.64 1.00 32.34	6
ATOM	1605	CA LYS A 202		17.795	21.780	52.917	1.00 32.34	6
MOTA	1606	CB LYS A 202		19.276	21.432	53.092 52.307	1.00 43.74	6
ATOM	1607	CG LYS A 202		19.789	20.226	50.891	1.00 49.31	6
ATOM	1608	CD LYS A 202		20.212	20.590 19.428	50.831	1.00 49.34	6
MOTA	1609	CE LYS A 202		20.952 21.504	19.428	48.895	1.00 49.89	7
MOTA	1610	NZ LYS A 202		17.421	22.849	53.937	1.00 30.55	6
MOTA	1611	C LYS A 202 O LYS A 202		16.877	23.890	53.586	1.00 26.55	8
MOTA	1612		•	17.710	22.571	55.203	1.00 30.59	7
MOTA	1613 1614	N GLY A 203 CA GLY A 203		17.422	23.519	56.259	1.00 30.24	6
ATOM	1615	C GLY A 203		16.216	23.210	57.125	1.00 29.23	6
ATOM ATOM	1616	O GLY A 203		15.915	23.975	58.041	1.00 32.90	8
ATOM	1617	N PHE A 204		15.526	22.104	56.866	1.00 26.32	7 6
MOTA	1618	CA PHE A 204		14.344	21.779	57.657	1.00 23.25 1.00 21.25	6
ATOM	1619	CB PHE A 204		13.366	20.917	56.863	1.00 18.60	6
ATOM	1620	CG PHE A 204		12.855	21.573	55.635 54.461	1.00 16.43	6
ATOM	1621	CD1 PHE A 204		13.605	21.560 22.273	55.664	1.00 14.82	6
ATOM	1622	CD2 PHE A 204		11.654 13.168	22.245	53.333	1.00 16.91	6
ATOM	1623	CE1 PHE A 204		11.206	22.962	54.544	1.00 15.28	6
ATOM	1624	CE2 PHE A 204 CZ PHE A 204		11.965	22.952	53.375	1.00 18.34	6
MOTA	1625	CZ PHE A 204		14.626	21.094	58.979	1.00 23.72	6
ATOM	1626 1627	O PHE A 204		15.578	20.318	59.118	1.00 22.68	8
ATOM	1628	N LEU A 205		13.760	21.376	59.942	1.00 20.94	7
MOTA MOTA	1629	CA LEU A 205		13.877	20.818	61.272	1.00 24.83	6 6
MOTA	1630	CB LEU A 205		12.678	21.259	52.110	1.00 21.29 1.00 22.67	6
ATOM	1631	CG LEU A 205		12.672	20.811	33.568	1.00 22.07	6
MOTA	1632	CD1 LEU A 205		14.011	21.182	14.245 64.275	1.00 20.62	6
ATOM	1633	CD2 LEU A 205		11.478	21.456 19.293	61.303	1.00 28.79	
MOTA	1634	C LEU A 205		14.002	18.730	62.310	1.00 28.59	8
MOTA	1635	0 LEU A 205		14.443 13.625	18.628	60.211	1.00 33.52	7
ATOM	1636	N GLU A 200		13.693	17.166	60.142	1.00 39.79	6
MOTA	1637	CA GLU A 200 CB GLU A 200		12.736	16.616	59.070	1.00 44.37	6
MOTA	1638	CB GLU A 200		11.284	17.060	59.204	1.00 50.75	6
ATOM	1639 1640	CD GLU A 20		11.014	18.390	58.512	1.00 55.31	6
ATOM	1641	OE1 GLU A 20		9.972	19.027	58.797	1.00 55.36	8
MOTA	1642	OE2 GLU A 20		11.839	18.786	57.661	1.00 56.48	8
MOTA MOTA	1643	C GLU A 20	5	15.114	16.674	59.847		6 8
ATOM	1644	0 GLU A 20		15.483	15.541	60.180		7
ATOM	1645	N GLU A 20	7	15.903		59.217		6
MOTA	1646	CA GLU A 20	7	17.286		58.873		6
MOTA	1647	CB GLU A 20	7	17.776		57.854 56.556		6
ATOM	1648	CG GLU A 20	7	16.983				6
ATOM	1649	CD GLU A 20	7	16.978	19.452			8
MOTA	1650	OE1 GLU A 20	′	18.071	20.016	-		
			•					

								8
	1 (5)	023	GLU A 207	15.870	19.891	55.389	1.00 34.62	
ATOM	1651			18.139	17.239	60.134	1.00 36.18	6
MOTA	1652		GLU A 207			60.590	1.00 34.81	8
ATOM	1653	0	GLU A 207	18.560	18.303			7
			ILE A 208	18.381	16.059	60.701	1.00 34.45	
ATOM	1654	N	1LE A 200	19.164	15.965	61.932	1.00 38.53	6
ATOM	1655	CA	ILE A 208				1.00 41.12	6
	1656	CB	ILE A 208	18.260	15.511	63.117		
ATOM			ILE A 208	19.097	15.273	64.375	1.00 41.36	6
ATOM	1657	CG2	1LE A 200		16.581	63.383	1.00 42.21	6
MOTA	1658	CG1	ILE A 208	17.193			1.00 44.81	6
	1659	CD1	ILE A .208	16.291	16.286	64.560		
ATOM				20.407	15.074	61.876	1.00 36.66	6
MOTA	1660	Ç	ILE A 208			62.775	1.00 34.03	8
MOTA	1661	0	ILE A 208	21.243	15.110		1.00 36.80	7
		N	GLY A 209	20.540	14.284	60.822		
ATOM	1662		GE1 1. 200	21.703	13.428	60.728	1.00 38.99	6
ATOM	1663	CA	GLY A 209			59.805	1.00 40.93	6
MOTA	1664	C	GLY A 209	21.509	12.246		1.00 40.26	8
	1665	ō	GLY A 209	20.477	12.124	59.145		
MOTA				22.508	11.370	59.775	1.00 42.16	7
ATOM	1666	N	GLU A 210			58.930	1.00 43.30	6
MOTA	1667	CA	GLU A 210	22.492	10.185	50.350	1.00 47.08	6
	1668	CB	GLU A 210	22.810	10.586	57.488	1.00 47.08	
MOTA			GLU A 210	22.826	9.453	56.478	1.00 53.90	6
MOTA	1669	CG	GLU A 210		9.915	55.089	1.00 56.27	6
ATOM	1670	CD	GLU A 210	23.256			1.00 56.19	8
	1671	OE1		24.412	10.371	54.941		
MOTA	_			22.437	9.826	54.145	1.00 60.28	8
ATOM	1672	OE2			9.276	59.473	1.00 41.47	6
MOTA	1673	С	GLU A 210	23.583			1.00 43.97	8
	1674	Ō	GLU A 210	24.750	9.457	59.152		
MOTA			GLY A 211	23.203	8.307	60.299	1.00 39.97	7
ATOM	1675	N			7.405	60.885	1.00 37.34	6
MOTA	1676	CA	GLY A 211	24.181			1.00 37.84	6
	1677	Ċ	GLY A 211	24.642	7.952	62.224	1.00 37.04	
MOTA			GLY A 211	23.820	8.408	63.019	1.00 37.30	8
MOTA	1678	0		25.948		62.485	1.00 38.52	7
ATOM	1679	N	LYS A 212				1.00 38.29	6
	1680	CA	LYS A 212	26.490	8.440	63.733		
MOTA	-		LYS A 212	28.020	8.359	63.731	1.00 40.54	6
MOTA	1681	CB	LIS A 212	28.570		63:675	1.00 46.39	6
MOTA	1682	CG	LYS A 212				1.00 51.59	6
	1683	CD	LYS A 212	28.149	6.147	64.910	1.00 51.33	
MOTA			LYS A 212	28.556	4.676	64.809	1.00 52.77	6
ATOM	1684	CE	DIS A 212	30.030	4.478	64.662	1.00 55.48	7
ATOM	1685	ΝZ	LYS A 212			63.866	1.00 37.68	6
ATOM	1686	С	LYS A 212	26.061			1.00 37.00	
		ō	LYS A 212	25.814	10.389	64.962	1.00 34.75	
MOTA	1687			25.956		62.728	1.00 38.89	7
ATOM	1688	N	GLY A 213			62.724	1.00 43.58	6
MOTA	1689	CA	GLY A 213	25.577			1.00 43.99	6
_	1690	С	GLY A 213	24.126	12.295	63.020		
MOTA			GLY A 213	23.737		63.024	1.00 44.67	8
ATOM	1691	С	GLY M 213	22.727		63.265	1.00 46.02	7
ATOM	1692	N	LYS A 214	23.321			1.00 45.61	6
	1693	CA	LYS A 214	21.907	11.467	63.562		6
ATOM			LYS A 214	21.168	10.130	63.469	1.00 47.77	
ATOM	1694	CB	LIS A 214	19.675			1.00 49.25	6
MOTA	1695	CG	LYS A 214				1.00 51.64	6
	1696	CD	LYS A 214	19.078			1.00 52.00	6
MOTA	1607	CE	LYS A 214	17.637	9.038	62.440	1.00 54.30	
MOTA	1697		110 h 214	17.030			1.00 56.09	7
MOTA	1698	NZ	LYS A 214				1.00 44.22	6
ATOM	1699	С	LYS A 214	21.809			1.00 45.04	8
			LYS A 214	22.210) 11.410	65.942		
MOTA	1700		010 11 21 5	21.292		65.074	1.00 42.89	7
MOTA	1701	N	GLY A 215				1.00 40.20	6
MOTA	1702	CA	GLY A 215	21.193				6
		C	GLY A 215	22.295	14.931	66.600		
MOTA	1703		ON A 015	22.356			1.00 40.12	8
ATOM	1704	0	GLY A 215				10	7
ATOM	1705	N	TYR A 216	23.175				6
	1706			24.263	16.086	65.726		
ATOM	-			25.632			1.00 36.47	6
ATOM	1707	CB						6
ATOM	1708	CG	TYR A 216	25.93				6
			1 TYR A 216	25.29	5 13.220	66.810		
MOTA	1709			25.56			1.00 41.58	6
ATOM	1710							6
ATOM	1711	CD	2 TYR A 216	26.85				6
				27.12	4 13.919	68.786		
ATOM	1712			26.47			1.00 41.86	6
ATOM	1713						1.00 43.04	8
ATOM	1714	OH	TYR A 216	26.74				· 6
			TYR A 216	24.18	2 17.21			8
atom	1715			25.19			1.00 33.37	0
ATOM	1716	, 0	TYR A 216	23.23		•		

			2 217		22	976	17.471	64.212	1.00 33.83	7
MOTA		N	ASN A 217		22.	726	18.558	63.267	1.00 30.20	6
MOTA		CA	ASN A 217			. 699	18.057	61.823	1.00 27.74	6
ATOM			ASN A 217			457	19.177	60.826	1.00 25.61	6
MOTA		CG	ASN A 217			. 354	19.705	60.719	1.00 25.00	8
MOTA		OD1	ASN A 217				19.558	60.103	1.00 30.43	7
MOTA	1722	ND2	ASN A 217			. 501	19.116	63.645	1.00 29.09	6
ATOM	1723	С	ASN A 217			. 369	18.351	63.885	1.00 26.93	8
ATOM	1724		ASN A 217			. 433	20.440	63.710	1.00 27.19	7
ATOM	1725		LEU A 218			. 263	21.071	64.089	1.00 25.33	6
ATOM	1726	CA	LEU A 218			.010	21.071	65.590	1.00 23.23	6
ATOM	1727	CB	LEU A 218			.026	21.704	66.346	1.00 21.00	6
MOTA	1728	CG	LEU A 218			.729	22.313	67.695	1.00 18.62	6
MOTA	1729	CD1	LEU A 218	•		.100	22.313	65.583	1.00 18.48	6
ATOM	1730	CD2	LEU A 218			.872	22.368	63.325	1.00 25.04	6
MOTA	1731	С	LEU A 218			.785	23.287	63.415	1.00 25.23	8
ATOM	1732	0	LEU A 218			.596	22.436	62.584	1.00 28.44	7
ATOM	1733	N	ASN A 219		18	.681	23.636	61.829	1.00 28.76	6
ATOM	1734	CA	ASN A 219			.310	23.298	60.417	1.00 25.69	6
ATOM	1735	CB	ASN A 219		_	.809	22.408	59.646	1.00 26.10	6
ATOM	1736	CG	ASN A 219			.748	22.708	59.505	1.00 28.53	8
MOTA	1737	OD1	ASN A 219			.927	21.311	59.114	1.00 26.97	7
MOTA	1738		ASN A 219			.220	24.248	62.582	1.00 31.96	6
MOTA	1739	С	ASN A 219			.129	23.539	63.246	1.00 34.84	8
ATOM	1740	Ο.	ASN A 219			.952	25.556	62.472	1.00 32.96	7
MOTA	1741	N	ILE A 220			.826	26.196	63.129	1.00 32.50	6
ATOM	1742	CA	ILE A 220			.259	27.037	64.350	1.00 32.32	6
MOTA	1743	CB	ILE A 220			.029	27.644	65.014	1.00 29.46	6.
MOTA	1744	CG2	ILE A 220			.978	26.160	65.374	1.00 29.65	6
MOTA	1745	CG1	ILE A 220			.080	25.138	66.027	1.00 28.65	6
MOTA	1746	CD1	ILE A 220 ILE A 220			.140	27.106	62.123	1.00 35.36	6
MOTA	1747	C	ILE A 220			.469	28.290	62.009	1.00 35.52	8
MOTA	1748	0	PRO A 221			1.185	26.553	61.359	1.00 36.87	7
MOTA	1749	N	PRO A 221			3.718	25.158	61.359	1.00 35.12	6
ATOM	1750	CD	PRO A 221			3.445	27.318	60.356	1.00 35.41	6
MOTA	1751	CA	PRO A 221			2.509	26.262	59.767	1.00 35.68	6
ATOM	1752	CB CG	PRO A 221			3.319	24.992	59.911	1.00 33.86	6
MOTA	1753	C	PRO A 221			2.696	28.437	61.053	1.00 34.37	6
MOTA	1754 1755	o	PRO A 221			2.014	28.199	62.043	1.00 38.79	8 7
ATOM	1756	N	LEU A 222		13	2.815	29.655	60.547	1.00 34.76	6
ATOM	1757	CA	LEU A 222		13	2.138	30.796	61.166	1.00 33.87	6
ATOM	1758	CB	LEU A 222		1	3.173	31.735	61.798	1.00 35.13	6
MOTA	1759	CG	LEU A 222		1	4.104	31.163		1.00 33.07	6
ATOM ATOM	1760	CD1	LEU A 222		1	5.234	32.150		1.00 34.04	6
ATOM	.1761	CD2	LEU A 222		1	3.312	30.856			6
ATOM	1762	С	LEU A 222			1.287	31.567			8
ATOM	1763	0	LEU A 222			1.669	31.740			7
ATOM	1764	N	PRO A 223			0.127	32.060			6
MOTA	1765	CD	PRO A 223			9.606	31.913			6
ATOM	1766	CA	PRO A 223			9.173	32.818			6
MOTA	1767	CB	PRO A 223			7.957				6
ATOM	1768	ÇG	PRO A 223			8.626				6
ATOM	1769	С	PRO A 223			9.645				8
MOTA	1770	0	PRO A 223		1	0.694				7
ATOM	1771	N	LYS A 224			8.841				
ATOM	1772	CA	LYS A 224			9.115	36.172	2 58.026 3 56.766		6
ATOM	1773	CB	LYS A 224			8.285				6
ATOM	1774	CG	LYS A 224			8.563				
MOTA	1775	CD	LYS A 224			7.737				
ATOM	1776	CE	LYS A 224			8.065	34.769			
ATOM	1777	NZ	LYS A 224			7.198				
ATOM	1778	C	LYS A 224			8.702		59.113		
ATOM	1779		LYS A 224			7.999				
ATOM	1780		GLY A 225			9.124				
ATOM	4-04					8.777				
AIOM	1782		GLY A 225			9.396	39.18	8 61.28	0 1.00 32,30	

		O GLY A 225		9.068	39.861	62.271	1.00 31.20	8
MOTA				10.299	38.216	61.338	1.00 32.86	7
MOTA		226		10.975	37.877	62.575	1.00 34.55	6
MOTA				12.149	36.958	62.255	1.00 34.46	6
ATOM				12.982	36.413	63.407	1.00 34.48	6
ATOM		CG LEU A 226 CD1 LEU A 226		12.146	35.425	64.212	1.00 33.18	6
ATOM	1788	CDI LEU A 220		14.207	35.724	62.847	1.00 31.39	6
MOTA	_	CD2 LEU A 226 C LEU A 226		11.481	39.160	63.255	1.00 36.29	6
MOTA				12.156	39.970	62.613	1.00 33.87	8
MOTA	1791	O LEU A 226		11.131	39.358	64.531	1.00 37.31	7
MOTA	1792	N ASN A 227		11.592	40.536	65.279	1.00 37.26	6
ATOM	1793	CA ASN A 227 CB ASN A 227		10.444	41.212	66.053	1.00 35.57	6
MOTA	1794			9.920	40.368	67.208	1.00 36.07	6
MOTA	1795	OD1 ASN A 227		10.678	39.940	68.089	1.00 35.08	8
MOTA	1796	ND2 ASN A 227		8.611	40.143	67.218	1.00 32.33	7
MOTA	1797			12.688	40.096	66.259	1.00 37.95	6
ATOM	1798		•	12.869	38.890	66.473	1.00 37.08	8
MOTA	1799			13.403	41.063	66.832	1.00 36.07	7
MOTA	1800	N ASP A 228 CA ASP A 228		14.505	40.754	67.751	1.00 37.63	6
ATOM	1801	000		14.996	42.007	68.486	1.00 36.48	6
MOTA	1802	CB ASP A 228		15.480	43.088	67.545	1.00 37.52	6
ATOM	1803 1804	OD1 ASP A 228		15.936	42.752	66.427	1.00 35.28	8
MOTA		OD2 ASP A 228		15.426	44.274	67.937	1.00 39.01	8
MOTA	1805	C ASP A 228		14.204	39.678	68.783	1.00 37.56	6
MOTA	1806 1807	O ASP A 228		14.921	38.678	68.869	1.00 39.53	8
MOTA	1808	N ASN A 229		13.155	39.889	69.572	1.00 38.37	7
MOTA	1809	CA ASN A 229		12.766	38.935	70.605	1.00 37.49	6
MOTA	1810	CB ASN A 229		11.422	39.352	71.200	1.00 37.38	6
ATOM	1811	CG ASN A 229		11.490	40.709	71.877	1.00 40.47	6
ATOM ATOM	1812	OD1 ASN A 229		12.041	40.840	72.973	1.00 41.76	8
MOTA	1813	ND2 ASN A 229		10.960	41.735	71.212	1.00 36.50	7 6
MOTA	1814	C ASN A 229		12.680	37.530	70.017	1.00 37.64 1.00 35.76	8
ATOM	1815	O ASN A 229		13.446	36.634	70.395		7
ATOM	1816	N GLU A 230		11.758	37.351	69.076	1.00 36.01 1.00 34.74	6
MOTA	1817	CA GLU A 230		11.574	36.062	68.425	1.00 34.74	6
ATOM	1818	CB GLU A 230		10.753	36.242	67.153	1.00 36.95	6
ATOM	1819	CG GLU A 230		9.382	36.820	67.407 66.144	1.00 35.30	6
ATOM	1820	CD GLU A 230		8.580	36.960	65.229	1.00 36.98	8
ATOM	1821	OE1 GLU A 230		9.042	37.670	66.065	1.00 36.71	8
MOTA	1822	OE2 GLU A 230		7.490	36.361	68.082	1.00 33.92	6
ATOM	1823	C GLU A 230		12.916	35.421 34.238	68.346	1.00 32.74	8
ATOM	1824	O GLU A 230		13.143	36.207	67.487	1.00 32.03	7
ATOM	1825	N PHE A 231		13.804	35.712	67.123	1.00 30.55	6
ATOM	1826	CA PHE A 231		15.116	36.821	66.460	1.00 33.86	6
MOTA	1827	СВ РНЕ А 231		15.932		66.012	1.00 36.97	6
MOTA	1828	CG 'HE A 231		17.295 17.438		65.102		6
MOTA	1829	CD1 HE A 231		18.436	37.021	66.480	1.00 36.58	6
MOTA	1830	CD2 .HE A 231		18.709	34.932	64.661	1.00 43.00	6
MOTA	1831	CE1 PHE A 231		19.711	36.632	66.049	1.00 39.07	6
MOTA	1832	CE2 PHE A 231		19.849	35.586	65.137	1.00 40.52	6
MOTA	1833	CZ PHE A 231		15.835		68.376	1.00 30.63	6
ATOM	1834	C PHE A 231		16.177		68.497	1.00 29.66	8
MOTA	1835	O PHE A 231		16.049			1.00 24.94	7
MOTA	1836	N LEU A 232		16.742		70.556	1.00 22.82	6
MOTA	1837	CA LEU A 232		16.724		71.468		6
MOTA	1838	CB LEU A 232		17.507	_	70.890	1.00 29.34	6
ATOM	1839	CG LEU A 232		17.316		71.746	1.00 24.38	6
MOTA	1840	CD1 LEU A 232		18.991		70.787	1.00 27.39	6
ATOM	1841	CD2 LEU A 232		16.150			1.00 22.44	6
ATOM	1842	C LEU A 232		16.882				8
MOTA	1843	O LEU A 232		14.825			1.00 24.81	7
MOTA	1844	N PHE A 233		14.131			1.00 25.81	6
MOTA	1845	CA PHE A 233		12.623	_	71.641	1.00 24.37	6
MOTA	1846	CB PHE A 233		11.81			1.00 24.18	6
MOTA	1847	CG PHE A 233		11.491			1.00 25.59	6
MOTA	1848	CD1 PHE A 233		11.47		•	•	

	•		_					
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1850 1851 1852 1853 1854 1855	CA GLU A 240 CB GLU A 240 CG GLU A 240		11.339 10.698 10.548 10.548 14.661 15.094 14.624 15.080 14.797 16.563 18.789 19.548 21.039 21.625 21.803 18.974 19.648 18.347 17.843 16.610 15.686 16.988 17.363 18.767 18.3767 18.3767 16.138 18.7767 16.138 14.791 12.712 12.315 17.455 18.479 17.455 18.479 17.455 17.455 18.479 19.664 20.367 21.663 22.620 22.620 23.663 22.620 23.663 22.6293 22	27.914 29.087 30.189 28.681 25.666 24.764 25.835 24.965 25.369	73.974 71.747 73.093 71.747 73.093 71.275 71.971 69.209 67.720 69.438 69.769 69.703 69.316 69.703 69.317 71.312 72.192 73.561 74.452 74.635 74.843 75.184 75.183 76.083 77.085 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099 77.099	1.00 24.31 1.00 24.63 1.00 23.11 1.00 31.99 1.00 32.57 1.00 33.86 1.00 38.61 1.00 43.21 1.00 53.52	666668766687666668766668868766666768766888766876666
MOTA	1897	CD2 LEU A 239		23.663 21.463	28.681 25.666	73.275	1.00 31.99	6
MOTA	1899	O LEU A 239		22.279	24.764		1.00 33.86	7
	1900	CA GLU A 240		20.094	24.965	75.136		
ATOM	1902				24.468	77.045	1.00 53.52	
atom atom	1903	CD GLU A 240		19.677	24.383			8
ATOM	1905	OE1 GLU A 240		19.969 20.318	25.399 3 23.304		1.00 55.12	8
MOTA	1906			20.033		74.722	1.00 39.28	6
MOTA	1907 1908			20.532	2 22.63	75.437		8 7
ATOM ATOM	1908	N ILE A 241		19.423	3 23.25			6
ATOM	1910) CA ILE A 241		19.310			1.00 33.57	6
ATOM	1911	CB ILE A 241		18.465 18.53			6 1.00 31.39	. 6
ATCM				17.01	2 22.22	6 72.05	6 1.00 31.06	· 6
ATOM				16.14		8 70.84	3 1.00 27.53	0
MOTA	ニフエマ					-		

				•						_
	1015	_	ILE A 241	1	20.7	13	21.372	72.747	1.00 39.56	6
atom	1915	C	TLE A 241	<u>.</u>	20.9		20.189	72.936	1.00 40.82	8
ATOM	1916	0	ILE A 241	L			22.254	72.299	1.00 41.93	7
MOTA	1917	N	VAL A 242	2	21.6				1.00 45.09	6
	1918	CA	VAL A 242	2	22.9		21.842	72.015		
ATOM			VAL A 242		23.8	08	22.959	71.329	1.00 45.76	6
MOTA	1919	CB	VAL A 244	-	25.2		22.479	71.116	1.00 43.09	6
ATOM	1920	CG1	VAL A 242	2				69.991	1.00 46.41	6
ATOM	1921	CG2	VAL A 242	2	23.1		23.334			6
	1922	С	VAL A 242	2	23.6	98	21.453	73.300	1.00 45.69	
ATOM			VAL A 24	2	24.1	91	20.331	73.423	1.00 46.30	8
ATOM	1923	0	VAD A 244	2	23.7		22.373	74.259	1.00 44.60	7
ATOM	1924	N	LYS A 24	.			22.088	75.513	1.00 46.96	6
MOTA	1925	ÇA	LYS A 24	3	24.4				1.00 49.49	6
ATOM	1926	CB	LYS A 24	3	24.2	14	23.217	76.527		6
	1927	CG	LYS A 24	3	25.0	61	23.023	77.795	1.00 54.90	
ATOM			LYS A 24	- 3	24.6	52	23.934	78.939	1.00 58.95	6
ATOM	1928	CD	DIS A 24	- -	24.7		25.399	78.577	1.00 64.13	6
MOTA	1929	CE	LYS A 24				26.283	79.676	1.00 66.93	7
ATOM	1930	NZ	LYS A 24	3	24.2				1.00 47.06	6
	1931	С	LYS A 24	3	23.9	65	20.767	76.135	1.00 47.00	8
MOTA	1932	ō	LYS A 24	3	24.7	735	20.113	76.845	1.00 46.39	
MOTA			GLU A 24	<u> </u>	22.7	716	20.380	75.878	1.00 47.51	7
MOTA	1933	N	GLU A 24	7	22.1		19.136	76.429	1.00 51.33	6
MOTA	1934	CA	GLU A 24	4			19.061	76.259	1.00 54.49	6
MOTA	1935	CB	GLU A 24		20.6				1.00 62.61	6
ATOM	1936	CG	GLU A 24	4	19.8	343	20.199	76.842	1.00 02.01	
	1937	CD	GLU A 24		18.3	360	20.089	76.489	1.00 65.15	6
ATOM					17.5	572	20.980	76.888	1.00 66.49	
MOTA	1938	OE1			17.9		19.108	75.807	1.00 64.82	8
ATOM	1939	OE2					17.936	75.698	1.00 50.17	6
MOTA	1940	С	GLU A 24		22.				1.00 51.54	
ATOM	1941	0	GLU A 24	4	22.1	866	16.846	76.259		
	1942	N	VAL A 24		23.	104	18.148	74.441	1.00 47.70	
MOTA			VAL A 24		23.	587	17.063	73.611	1.00 45.43	
MOTA	1943	CA			22.		16.980	72.336	1.00 48.47	6
ATOM	1944	CB	VAL A 24				15.765	71.499	1.00 51.87	6
MOTA	1945	CG1	VAL A 24		23.			72.731	1.00 45.65	6
MOTA	1946	CG2	VAL A 24	15	21.	226	16.934		1.00 43.01	
	1947	С	VAL A 24	15	25.	056	17.070	73.185		
MOTA			VAL A 24		25.	620	16.005	72.946	1.00 39.28	8
ATOM	1948	0	AVD V 54	16	25.		18.245	73.109	1.00 40.53	7
ATOM	1949	N	PHE A 24				18.321	72.633	1.00 38.56	5 6
ATOM	1950	CA	PHE A 24		27.			71.154	1.00 36.85	6
ATOM	1951	CB	PHE A 24	16	27.		18.700			_
	1952	CG	PHE A 24	16	28.		18.487	70.415		
ATOM		CD1	PHE A 24		28.	749	17.201	70.098	1.00 32.95	_
MOTA	1953			16		064	19.582	69.967	1.00 35.53	6
ATOM	1954	CD2				903	17.004	69.337	1.00 33.80) 6
ATOM	1955	CE:					19.397	69.206	1.00 34.46	66
MOTA	1956	CE	2 PHE A 24	46		222			1.00 35.5	
ATOM	1957	CZ	PHE A 2	46	30.	640	18.103	68.889	1.00 40.8	3 6
	1958	Ċ	PHE A 2	46	27.	970	19.311	73.371		
ATOM			PHE A 2	46	27.	613	20.478	73.549	1.00 40.3	2 8
ATOM	1959					141	18.839		1.00 42.5	4 7
MOTA	1960	N	GLU A 2		23.	130	19.695		1.00 43.9	36
MOTA	1961	CA	GLU A 2	47		128				
ATOM	1962	CB	GLU A 2	47		655	19.075			3 6
	1963	CG	GLU A 2	47	29.	763	19.243			
ATOM				47	28.	478	18.424	76.962		2 6
ATOM	1964	CD				645	18.644		1.00 62.1	2 8
ATOM	1965		1 GLU A 2	4 /			17.557			3 8
ATOM	1966	OE.	2 GLU A 2	47		.296				
	1967		GLU A 2	47	31.	. 268	19.839			
ATOM			GLU A 2	47	32.	.077	18.931	73.294	1.00 44.2	
MOTA	1968					.342	20.988	72.780	1.00 43.6	5 7
ATOM	1969	N	PRO A 2	40			22.143			3 6
ATOM	1970	CD				.439				
	1971		PRO A 2	48		.371	21.260			
ATOM				48	31	.802	22.480		1.00 43.0	
ATOM	1972			48		.317	22.474		1.00 43.0	2 6
ATOM	1973					.759	21.552		L 1.00 43.3	7 6
ATOM	1974	C	PRO A 2	48					4- 4	
ATOM	1975		PRO A 2	48		.896	22.286			
	1976		GLU A 2	49	34	.788	20.982			
ATOM				49		.151	21.26	3 72.136		
ATOM	1977		010 A 2	140		.148	20.27		1.00 42.0	
ATOM	1978		GLU A 2	4.7						28 6
ATOM	1979) CG	GLU A 2	49	36	.935	18.81	-		
			GLU A 2	249	38	.015	17.90	D /1.49	, <u></u> .	-
ATOM	1701							-	•	
.* "				•						

							0
		OE1 GLU A 249	38.208	17.938	70.054	1.00 42.47	8
ATOM	1981	OET GEO H 243		17.168	72.072 -	1.00 39.73	8
MOTA	1982	OE2 GLU A 249	38.666				6
		C GLU A 249	36.443	22.654	71.583	1.00 40.99	
MOTA	1983		37.150	23.450	72.204	1.00 42.83	8
ATOM	1984	O GLU A 249				1.00 37.65	7
	1985	N VAL A 250	35.879	22.936	70.407		
MOTA		N VIII 1 250	36.059	24.221	69.728	1.00 34.87	6
ATOM	1986	CA VAL A 250	-			1.00 34.53	6
	1987	CB VAL A 250	37.294	24.203	68.789		
ATOM		CB VALUE 11 000	37.129	23.113	67.728	1.00 32.76	5
MOTA	1988	CG1 VAL A 250			-	1.00 29.62	6
	1989	CG2 VAL A 250	37.487	25.581	68.144		
MOTA			34.830	24.527	68.891	1.00 32.67	6
ATOM	1990				68.421	1.00 33.96	8
ATOM	1991	O VAL A 250	34.162	23.610			
		0.51	34.539	25.810	68.690	1.00 29.71	7
MOTA	1992	N TYR A 251		26.183	67.916	1.00 27.07	6
ATOM	1993	CA TYR A 251	33.368				6
	1994	CB TYR A 251	32.185	26.451	68.860	1.00 29.11	
MOTA			32.080	27.872	69.406	1.00 31.46	6
MOTA	1995	CG TYR A 251	52.000		68.622	1.00 31.14	6
MOTA	1996	CD1 TYR A 251	31.553	28.903			
			31.439	30.196	69.106	1.00 31.66	6
MOTA	1997			28.181	70.696	1.00 30.20	6
MOTA	1998	CD2 TYR A 251	32.494				6
		CE2 TYR A 251	32.384	29.477	71.193	1.00 33.89	
ATOM	1999		31.854	30.482	70.391	1.00 34.75	6
MOTA	2000	CZ TYR A 251			70.867	1.00 33.52	8
ATOM	2001	OH TYR A 251	31.743	31.773			6
			33.570	27.384	66.992	1.00 27.48	
MOTA	2002	C TYR A 251		28.402	67.366	1.00 24.78	3
ATOM	2003	O TYR A 251	34.167			1.00 24.80	7
	2004	N LEU A 252	33.063	27.254	65.773		
MOTA			33.150	28.332	64.815	1.00 23.40	6
ATOM	2005	CA LEU A 252			63.451	1.00 21.32	6
ATOM	2006	CB LEU A 252	33.631	27.810			6
		CG LEU A 252	35.126	27.456	63.385	1.00 21.84	
ATOM	2007		35.457	26.373	64.395	1.00 22.51	6
ATOM	2008	CD1 LEU A 252				1.00 22.07	5
	2009	CD2 LEU A 252	35.499	26.999	61.986		
MOTA			31.762	28.959	64.729	1.00 22.56	6
MOTA	2010	C LEU A 252		28.266	64.856	1.00 21.99	8
MOTA	2011	O LEU A 252	30.750			1.00 21.01	7
	2012	N LEU A 253	31.734	30.277	64.554		6
MOTA			30.498	31.047	64.461	1.00 18.89	
MOTA	2013	0 - 0		31.944	65.695	1.00 20.05	6
ATOM	2014	CB LEU A 253	30.352			1.00 21.61	6
	2015	CG LEU A 253	29.198	32.942	65.842		
ATOM		CD1 LEU A 253	27.849	32.220	65.860	1.00 22.23	6
ATOM	2016	CDI LEO A 255	29.395	33.716	67.145	1.00 22.90	6
MOTA	2017	CD2 LEU A 253			63.198	1.00 20.05	6
MOTA	2018	C LEU A 253	30.539	31.901			8
		O LEU A 253	31.466	32.691	62.987	1.00 18.17	
MOTA	2019	U EEO A 255	29.544	31.720	62.340	1.00 19.40	7
ATOM	2020	N GLN A 254			61.115	1.00 18.17	6
MOTA	2021	CA GLN A 254	29.488	32.490	01.113		5
	2022	CB GLN A 254	29.017	31.592	59.969		
MOTA	_		27.584	31.713	59.601	1.00 18.43	6
MOTA	2023	CG GLN A 254			58.549	1.00 19.97	6
MOTA	2024	CD GLN A 254	27.368	32.766		1.00 22.54	8
	2025	OE1 GLN A 254	27.917	32.677	57.450	1.00 22.34	
MOTA			26.564	33.769	58.869	1.00 22.89	7
MOTA	2026	NE2 GLN A 254			61.444	1.00 19.75	6
MOTA	2027	C GLN A 254	28.520	33.634	01.444	1 00 19 77	8
			27.470	33.415	62.060	1.00 18.77	
MOTA	2028	O GLN A 254		34.854	61.067	1.00 23.02	7
MOTA	2029	N LEU A 255	28.905			1.00 23.77	6
	2030	CA LEU A 255	28.132	36.052	61.369		
MOTA		CA DEC 11 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28.963	36.993	62.242	1.00 26.84	6
ATOM	2031	CB LEU A 255			63.684	1.00 29.34	6
ATOM	2032	CG LEU A 255	29.226	36.556		1 00 30 65	6
		CD1 LEU A 255	30.196	37.520	64.331	1.00 30.65	9
MOTA	2033		27.902	36.506	64.456	1.00 28.42	6
ATOM	2034	CD2 LEU A 255			60.197	1.00 24.84	6
	2035	C LEU A 255	27.605	36.842		1 00 24 04	8
MOTA		255	27.774	38.066	60.149	1.00 24.94	-
MOTA	2036	O LEU A 255		36.158	59.254	1.00 25.07	7
ATOM	2037	N GLY A 256	26.969				6
	2038	CA GLY A 256	26.408		58.117		6
ATOM			25.506	37.956	58.644	1.00 27.11	
ATOM	2039	C GLY A 256			59.584	1.00 25.67	8
ATOM	2040	O GLY A 256	24.742				7
	1041		25.599				5
ATOM			24.757		58.536	1.00 29.28	
MOTA	2042						ć
ATOM	2043	CB THR A 257	25.517	41.007			8
	2044		26.002				6
atom			26.686			1.00 26.45	
ATOM	2045						6
3 TOM	10046	C THR A 257	23.477	40.394		. = :	

	2047	_	THR A	257	22.747	41	.370	57.879	1.00 29.49	8
MOTA	2047	0 '	ASP A	258	23.192		.414	56.867	1.00 29.13	7
MOTA	2048	N .	AGP A	250	21.977		.471	56.065	1.00 30.49	6
MOTA	2049		ASP A		22.004		3.432	54.933	1.00 28.22	6
MOTA	2050		ASP A		_		7.033	55.416	1.00 29.39	6
MOTA	2051		ASP A		22.337		5.653	56.520	1.00 30.16	8
MOTA	2052	OD1	ASP A	258	21.893			54.667	1.00 29.97	8
ATOM	2053	OD2	ASP A	258	23.019		5.292		1.00 30.50	6
ATOM	2054		ASP A		20.646		3.355	56.826	1.00 30.30	8
ATOM	2055	0	ASP A	258	19.601		622	56.248	1.00 32.87	7
ATOM	2056	N	PRO A	259	20.650		3.912	58.101		6
ATOM	2057	CD	PRO A	259 -	21.713		3.338	58.952	1.00 33.56	6
MOTA	2058	CA	PRO A	259	19.366		3.821	58.806	1.00 31.73	6
ATOM	2059		PRO A		19.705		7.912	59.987	1.00 31.87	
ATOM	2060	CG	PRO A	259	21.067		3.373	60.333	1.00 31.73	6
ATOM	2061	C	PRO A	259	18.817		0.184	59.260	1.00 30.86	6
MOTA	2062		PRO A		17.736		0.270	59.845	1.00 29.78	8 .
ATOM	2063		LEU A		19.56		1.245	58.980	1.00 29.58	7
MOTA	2064		LEU A		19.16		2.592	59.375	1.00 29.15	6
ATOM	2065		LEU A		20.36		3.542	59.275	1.00 27.14	6
ATOM	2066		LEU A		21.54		3.286	60.234	1.00 22.17	6
ATOM	2067		LEU A		22.79		3.919	59.684	1.00 15.79	6
ATOM	2068	CD2	LEU A	260	21.21	1 4	3.793	61.633	1.00 16.25	6
ATOM	2069	C	LEU A	260	17.99	24	3.165	58.576	1.00 28.09	6
ATOM	2070	Ö	LEU A		17.78	74	2.834	57.410	1.00 29.61	8
ATOM	2071	N	LEU A	261	17.23	7 4	4.044	59.223	1.00 29.29	7
ATOM	2072	CA	LEU A		16.09	74	4.693	58.596	1.00 29.71	6
ATOM	2073	CB	LEU A	261	15.54	0 4	5.788	59.513	1.00 29.62	6
MOTA	2074	CG	LEU A	261	14.40	6 4	6.664	58.950	1.00 28.14	6
ATOM	2075		LEU A	261	13.14	4 4	5.819	58.803	1.00 24.82	6
ATOM	2076		LEU A		14.13	94	7.859	59.882	1.00 25.45	6
ATOM	2077	C	LEU A		16.46		5.322	57.259	1.00 29.50	6
ATOM	2078	Õ	LEU A		15.71		5.198	56.295	1.00 31.67	8
ATOM	2079	N	GLU A		17.60	3 4	5.998	57.201	1.00 31.54	7
ATOM	2080	CA	GLU A	262 .	18.01		6.664	55.973	1.00 31.93	6
ATOM	2081	CB	GLU A		19:04		7.758	56.279	1.00 29.34	6 6
ATOM	2082	CG	GLU A	262	18.49		8.931	57.086	1.00 28.52 1.00 29.76	6
ATOM	2083	CD	GLU A		18.44	-	8.687	58.589		8
ATOM	2084	OE1	GLU A	262	18.17		7.548	59.029	1.00 30.12	8
ATOM	2085	OE2	GLU A	262	18.66		9.661	59.338	1.00 27.05	6
MOTA	2086	С	GLU A	262	18.52	_	5.754	54.857 53.722	1.00 35.20	
MOTA	2087	0	GLU A	262	18.69		6.199	55.158	1.00 36.55	
ATOM	2088	Ħ	ASP A		18.77	8 4	4.486	54.117	1.00 39.50	
ATOM	2089	CA	ASP A		19.24		3.582	54.641	1.00 38.42	
ATOM	2090	CB	ASP A	263	20.35	-	12.672	53.538	1.00 39.33	
MOTA	2091	CG	ASP A	263	20.98		1.263	53.762	1.00 38.86	
ATOM	2092	OD1	ASP A	263	22·.06 20.38		1.779	52.443	1.00 39.50	8
MOTA	2093		ASP A	203	18.04		2.775	53.634	1.00 42.83	6
ATOM	2094	C	ASP A		17.47		11.966	54.381	1.00 44.22	
MOTA	2095	0	ASP A		17.67		13.002	52.377	1.00 44.14	
MOTA	2096	N	TYR A		16.50	-	12.357	51.796	1.00 46.67	6
MOTA	2097	CA	TYR A		16.03		13.149	50.568	1.00 54.61	. 6
MOTA	2098	CB	TYR A	264	16.82		12.939	49.294	1.00 63.02	
MOTA	2099	CG	TYR A		16.51		11.897		1.00 65.73	
MOTA	2100	CD1			17.23		11.709	47.226	1.00 68.35	
MOTA	2101	CEI			17.88		43.786	48.962	1.00 66.23	
MOTA	2102	CD2	TYR A		18.61		43.606	47.780	1.00 68.63	
MOTA	2103	CE2					42.570	46.918	1.00 69.08	3 6
ATOM	2104	CZ	TYR A		18.27		42.411	45.746	1.00 69.01	
MOTA	2105	OH	TYR A		18.98		40.888	51.451	1.00 43.89	6
MOTA	2106	Ç	TYR A		16.66		40.885 40.185		1.00 44.80	8 (
ATOM	2107	0	TYR A		15.66		40.400		1.00 40.3	7
ATOM	2108	N	LEU A		17.89		38.984			5 6
ATOM	2109	CA	LEU A		18.05 19.4		38.646			3 6
ATCM	2110	CB	LEU A		19.4		39.211		1.00 32.43	36
ATCM	2111	CG	LEU A		21.1		38.535			
ATOM	2112	CD1	LEU A	405	٠		J . J J J		_	

		CD2 -	LEU A	265	18	.828	38.954	48.141	1.00 34.4	
ATOM			LEO A	203			38.131	52.219	1.00 37.4	16.
MOTA	2114	C	LEU A	265		.665				
		0	LEU A	265	18	.125	37.000	52.370	1.00 37.9	
MOTA	2115					.804	38.694	53.066	1.00 36.2	1 7
ATOM	2116		SER A						1.00 36.4	
	2117	CA	SER A	266	16	. 294	38.013	54.253		_
MOTA					17	.263	38.136	55.427	1.00 37.2	2 6
ATOM -	2118		SER A						1.00 37.4	
	2119	OG	SER A	266	17	.190	39.440	55.991	1.00 37.4	
ATOM	_				1 4	.997	38.705	54.653	1.00 35.5	5 6
ATOM	2120		SER A					54.568	1.00 37.0	9 8
ATOM	2121	0	SER A	266		.889	39.927			-
-			LYS A		1 Δ	.018	37.928	55.093	1.00 34.3	-
MOTA	2122					750	38.493	55.532	1.00 36.1	3 6
MOTA	2123	CA	LYS A	267	12	.750				
			LYS A		11	.596	37.548	55.183	1.00 36.1	
MOTA	2124					.503	37.222	53.705-	1.00 36.7	79 6
ATOM	2125		LYS A					52.869	1.00 38.5	
	2126	CD	LYS A	267	11	.453	38.487			
MOTA		CE	LYS A	267	11	369	38.170	51.389	1.00 41.6	60 6
ATOM	2127	CE	PI2 W	207			39.413	50.569	1.00 42.0)7 7 -
ATOM	2128	NZ	LYS A	267		503				
		С	LYS A	267	12	.791	38.738	57.043	1.00 34.9	
MOTA	2129		DID 7.	207	11	.758	38.867	57.694	1.00 37.3	18 8
ATOM	2130	0	LYS A	26/					1.00 32.8	
	2131	N	PHE A	268		.998	38.775	57.595	1.00 32.0	
MOTA			PHE A	268	1.4	.192	39.021	59.016	1.00 31.	
ATOM	2132	CA	PRE A	200		.477	38.337	59.495	1.00 34.	05 6
ATOM	2133	CB	PHE A						1.00 34.	54 6
	2134	CG	PHE A	268	15	3.379	36.839	59.604		
ATOM					1.6	5.506	36.087	59.940	1.00 35.	04 6
MOTA	2135	CD1						59.429	1.00 34.	
ATOM	2136	CD2	PHE A	. 268 ·	14	1.161	36.178			
		CEl	PHE A	268	16	5.423	34.691	60.108	1.00 35.	
MOTA	2137					1.066	34.784	59.594	1.00 36.	00 6
ATOM	2138	CE2	PHE A						1.00 34.	
	2139	CZ	PHE A	258	1:	5.201	34.040	59.936		
MOTA			PHE A		14	4.319	40.530	59.190	1.00 30.	
MOTA	2140	С	PRE A	200			41.192	58.394	1.00 30.	27 8
MOTA	2141	0	PHE A	268		4.983				-
	2142	N	ASN A	269	13	3.693	41.081	60.222		
ATOM					· 1	3.760	42.527	60.448	1.00 35.	83 6
ATOM	2143	CA	ASN A	209				60.570	1.00 37.	23 6
MOTA	2144	CB	ASN A	269		2.344	43.115		1 00 40	
		CG	ASN A	269	1:	1.478	42.809	59.360	1.00 40.	
MOTA	2145		3.531	260	3 .	1.830	43.148	58.227	1.00 43.	
ATOM	2146	OD1	ASN A	1 209				59.594	1.00 39.	61 7
MOTA	2147	ND2	ASN A	A 269		0.335	42.165		1.00 35.	
	2148	С	ASN A	269	1	4.553	42.854	61.710	1.00 33.	
ATOM			ASN A	360	1	4.095	43.621	62.560	1.00 41.	47 8
ATOM	2149	0	ASN A	4 209			42.285	61.827	1.00 33.	27 7
MOTA	2150	N	LEU A	¥ 270		5.747			1.00 30.	
	2151	CA	LEU A	A 270		6.571	42.510	63.004		
MOTA			LEU A	270	1	7.638	41.431	63.114	1.00 27.	
MOTA	2152	CB	LEU A	270		7.140		62.988	1.00 23.	.76 6
ATOM	2153	CG	LEU A	A 270					1.00 27.	
ATOM	2154	CD1	LEU A	A 270	1	8.222				
				270	1	5.855	39.801	63.772	1.00 28.	
ATOM	2155	CD2	LEU A	270		7.258		63.Q33	1.00 32	.30 6
MOTA	2156	С	LEU A	A 270					1.00 36	.27 8
	2157	0	LEU	A 270	1	7.347	44.554		1.00 30	
MOTA			CEB	A 271	1	7.749	44.207	64.216	1.00 30	
MOTA	2158	N	3EK 1			8.465		64.424	1.00 30	.79 6
ATOM	2159	CA	SER A	A 271					1.00 29	.53 6
ATOM	2160	CB	SER A	A 271	1	7.816				. 43
			CEP	A 271	. 1	7.712	45.471	66.739	1.00 30	.43 8
ATOM	2161	OG	SER A	- 051					1.00 33	.09 6
MOTA	2162	С	SER A	A 271		9.911				
	2163	0	SER	a 271	2	0.194	43.972			
MOTA			3 CM	A 272	2	0.821	46.069	64.586	1.00 32	.36 7
ATOM	2164	N	ASN .	A 2/2						.65 6
MOTA	2165	CA	ASN .	A 272		2.234				
	2166	CB	2 SN	A 272	2	23.036	47.141			
ATOM					7	3.101	47.658	63.361	1.00 37	.76 6
ATOM	2167	CG	ASN	A 272				·		.12 8
ATOM	2168	OD1	ASN	A 272		23.719				
	2169	2 מונו	NZA	A 272	2	22.460	46.952			
ATOM				272		22.369		66.321	1.00 32	
ATOM	2170	С		A 272						.95 8
ATOM	2171	0	ASN	A 272		22.970				
		N	VAT.	A 273	2	21.803	46.09			
MOTA	2172		****	272		21.839		1 68.668	1.00 35	.52 6
ATOM	2173	CA	VAL	A 273						.80 6
ATCM	2174	CB	VAL	A 273		20.92				
		CG1	L VAL	a 273	- :	20.98	7 46.27			.00
ATCM	2175	~~		3 273		21.35	6 48.11	2 69.275	1.00 38	
ATOM	2176		2 VAL	M 213						.26 6
ATCM	2177	С	VAL	A 273		21.41				
			TAL	A 273		22.06	0 43.58	0 69.679	1.00 33	,.,,
2.TCM	2178	9	۷			_		-		

				_			42 000	68.262	1.00 32	2 3 6	7
3.0004	2179	N	ALA A 274	- 2	20.	.328	43.889				
ATCM			ALA A 274		19	. 834	42.521	68.385	1.00 3		6
ATCM	2180	CA				.574	42.356	67.578	1.00 2	8.88	6
ATCM	2181	CB	ALA A 274					67.861	1.00 3		6
ATCM	2182	С	ALA A 274			.923	41.588				8
		ō	ALA A 274		21	.323	40.634	68.533	1.00 3		
MOTA	2183		275			.401	41.879	66.655	1.00 3	0.05	7
ATCM	2184	N	PHE A 275				41.102	66.036	1.00 3	1.30	6
ATCM	2185	CA	PHE A 275			.467			1.00 3		6
	2186	CB	PHE A 275		22	.932	41.810	64.751			
ATCM			PHE A 275		23	.938	41.029	63.941	1.00 3	1.76	6
ATCM	2187	CG	PRE A 275			.597	39.809	63.365	1.00 3	2.40	6
ATCM	2188	CD1	PHE A 275					63.729	1.00 3	4.04	6
ATCM	2189	CD2	PHE A 275			.219	41.529		1.00 3	2.02	6
	2190	CEI	PHE A 275		24	.513	39.100	62.586	1.00 3		
MCTA			PHE A 275			.149	40.828	62.950	1.00 3		6
MOTA	2191	CE2				.793	39.613	62.378	1.00 3	4.50	6
MCTA	2192	cz	PHE A 275					67.040	1.00 2	9 98	6
MOTA	2193	С	PHE A 275			.632	40.999		1.00 2		8
	2194	Ö	PHE A 275		24	.252	39.950	67.200	1.00 2	9.41	
ATCM			LEU A 276		23	.908	42.099	67.726	1.00 3	1.22	7
MOTA	2195	N	LEU A 270			.988	42.144	68.698	1.00 3	2.29	6
ATCM	2196	CA	LEU A 276					69.141	1.00 3	3.44	6
ATCM	2197	CB	LEU A 276			.221	43.594		1.00 3	6 01	6
	2198	CG	LEU A 276		26	.415	43.908	70.050	1.00 3	0.01	
ATOM					26	.683	45.391	70.025	1.00 3		6
ATCM	2199	CD1	LEU A 270			.147	43.433	71.467	1.00 3	39.09	6
MOTA	2200	CD2	LEU. A 276					69.894	1.00 3	32.79	6
ATCM	2201	С	LEU A 276			.682	41.244	09.094	1.00 3	0 74	8
	2202	ŏ	LEU A 276		25	.560	40.530	70.371			
ATOM			LYS A 277		23	.445	41.273	70.384	1.00 3	33.95	7
ATCM	2203	N	DIS A 277		22	.086	40.413	71.505	1.00	36.56	6
ATCM	2204	CA	LYS A 277		23	.000		71.902	1.00		6
ATOM	2205	CB	LYS A 277		21	623	40.588		1.00		6
	2206	CG	LYS A 277		21	L.343	41.842	72.687	1.00	45.31	
ATCM			LYS A 277		20	.743	41.508	74.049	1.00	45.72	6
MOTA	2207	CD	LIS A 277			1.665	40.601	74.865	1.00	47.87	6
ATOM	2208	CĒ	LYS A 277				40.378	76.244	1.00	44.36	7
ATCM	2209	NZ	LYS A 277			L.140			1.00		6
	2210	C	LYS A 277		23	3.302	38.974	71.092	1.00	37.30	
MCTA			LYS A 277			3.875	38.179	71.845	1.00	37.54	8
MOTA	2211	0				2.832	38.654	69.886	1.00	37.17	7
ATOM	2212	N	ALA A 278				37.311	69.323	1.00	34.51	6
ATOM	2213	CA	ALA A 278			2.952			1.00	35 38	6
	2214	CB	ALA A 278			2.638	37.341	67.820	1.00	33.30	6
MCTA			ALA A 278		24	4.368	36.831	69.550	1.00	30.63	
ATOM	2215	C	ALA A 270			4.605	35.790	70.167	1.00	27.62	8
ATOM	2216	0	ALA A 278				37.624	69.049	1.00	29.24	7
ATOM	2217	N	PHE A 279			5.303		69.167	1 00	31.48	6
	2218	CA	PHE A 279			6.722	37.347				6
ATCM		CB	PHE A 279		2	7.490	38.558	68.645		33.25	
ATOM	2219		PHE A 279			8.974	38.396	68.663	1.00	39.28	6
ATOM	2220	CG	PHE A 2/3			9.578	37.337	68.000	1.00	41.15	6
ATOM	2221	CD:	1 PHE A 279							40.66	6
ATOM	2222	CD:	2 PHE A 279		2	9.776	39.328			44.22	6
	2223	CE	1 PHE A 279		3	0.960	37.209	67.987		44.22	
ATOM		CD.	2 DUE 3 279		٦	1.153	39.213	69.378	1.00	41.38	6
ATOM	2224		2 PHE A 279			1.750	38.152			44.52	6
ATOM	2225	CZ	PHE A 279							31.81	6
ATCM	2226	С	PHE A 279		_	7.116	37.043			27.51	8
A.C.M	2227	Ō	PHE A 279		2	7.627	35.953	70.935		27.31	
ATOM			ASN A 280			6.860		71.503	1.00	29.32	7
ATOM	2228	N	ASN A 260			7.192				29.26	6
ATOM	2229	CA								30.39	6
	2230	CB	ASN A 280		2	6.927	39.153			30.50	6
ATOM					2	7.907	40.245	73.278	1.00	30.68	0
ATOM	2231		ASN A 200			9.117			1.00	33.34	8
ATOM	2232	OD	1 ASN A 280				_			27.00	7
ATOM	2233	ND	2 ASN A 280			7.395				30.01	6
	2234		ASN A 280			6.524				20 50	8
ATCM			ASN A 280			7.167		74.419		29.58	
ATOM	2235		A3N A 200			5.252			1.00	30.46	7
ATOM	2236	N	ILE A 281							33.71	6
ATOM	2237	CA	ILE A 281			4.594				36.14	
					2	23.107	35.16			26 10	
ATOM	2238					22.541		74.032		36.18	
ATOM	2239		2 1LE M 201			22.298		74.17	7 1.00	33.52	6
ATCM	2240) CG	1 ILE A 281		:	20.035	26.30			37.16	6
			1 ILE A 281			20.835		_		34.06	
ATCM			ILE A 281		- 2	25.330	34.00			21 04	
ATOM	2242		ILE A 281		•	25.385	33.07			31.94	
ATOM	2243					25.896			7 1.00	35.31	. 7
	2244	ı N	VAL A 282			٠,٠٠٧					

								1 00 36 45	6
ATOM	2245	CA	VAL A 282		26.654	32.785		1.00 36.45 1.00 35.62	6
ATOM	2246	CB	VAL A 282		27.084	32.871	70.524		6
ATOM	2247	CG1	VAL A 282		27.829	31.604	70.126		6
ATOM	2248	CG2	VAL A 282		25.880	33.080	69.646	1.00 34.51	6
MOTA	2249	C	VAL A 282		27.919	32.723	72.857	1.00 37.80	8
	2250	ō	VAL A 282.		28.182	31.722	73.532	1.00 36.12	7
MOTA		N	ARG A 283		28.693	33.808	72.821	1.00 38.45	
MOTA	2251	CA	ARG A 283		29.929	33.884	73.587	1.00 40.06	6
MOTA	2252		ARG A 283		30.551	35.272	73.449	1.00 39.38	6
MOTA	2253	CB	ARG A 283		30.974	35.625	72.027	1.00 41.90	6
MOTA	2254	CG	ARG A 283	•	31.492	37.048	71.968	1.00 41.36	6
MOTA	2255	CD	ARG A 283		32.647	37.206	72.840	1.00 43.35	7
MOTA	2256	NE	ARG A 283		33.162	38.373	73.215	1.00 42.55	6
ATOM	2257	CZ	ARG A 283		32.628	39.516	72.797	1.00 39.95	7
ATOM	2258	NH1	ARG A 283		34.220	38.392	74.014	1.00 41.72	7
ATOM	2259	NH2	ARG A 283		29.614	33.587	75.044	1.00 40.01	6
MOTA	2260	C	ARG A 283		30.350	32.862	75.716	1.00 39.01	8
ATOM	2261	0	GLU A 284		28.506	34.141	75.520	1.00 40.30	7
MOTA	2262	N	GLU A 284		28.084	33.923	76.894	1.00 43.19	6
MOTA	2263	CA	GLU A 284		26.753	34.647	77.165	1.00 47.53	6
MOTA	2264	CB			26.875	36.176	77.090	1.00 56.10	6
MOTA	2265	CG	GLU A 284		25.542	36.923	77.179	1.00 60.77	6
MOTA	2266	CD	GLU A 284		24.659	36.682	76.329	1.00 61.41	8
ATOM	2267	OE1	GLU A 284		25.383	37.763	78.096	1.00 62.21	8
MOTA	2268	OE2			27.953	32.429	77.179	1.00 40.72	6
ATOM	2269	С	GLU A 284		28.565	31.922	78.120	1.00 45.29	8
MOTA	2270	0	GLU A 284		27.186	31.721	76.354	1.00 34.82	7
MOTA	2271	N	VAL A 285		26.975	30.288	76.551	1.00 30.84	6
MOTA	2272	CA	VAL A 285	•	25.842	29.752	75.647	1.00 27.74	6
ATOM	2273	CB	VAL A 285		25.698	28.253	75.831	1.00 22.95	6
MOTA	2274	CG1	VAL A 285		24.545	30.433	75.982	1.00 26.26	6
ATOM	2275		VAL A 285			29.366	76.341	1.00 31.93	6
MOTA	2276	С	VAL A 285		28.181	28.556	77.214	1.00 33.46	8
MOTA	2277	0	VAL A 285		28.492	29.336	75.191	1.00 29.43	7
MOTA	2278	N	PHE A 286		28.845	28.586	74.907	1.00 24.26	6
MOTA	2279	CA	PHE A 286		29.973	27.957	73.519	1.00 22.57	6
ATOM	2280	CB	PHE A 286		29.830	27.095	73.345	1.00 23.46	6
ATOM	2281	CG	PHE A 286		28.607	27.639	72.885	1.00 23.90	6
MOTA	2282	CD1	PHE A 286		27.409	25.718	73.608	1.00 21.95	6
ATOM	2283	CD2			28.664	26.814	72.681	1.00 24.90	6
MOTA	2284	CE1	PHE A 286		26.281	24.892	73.411	1.00 18.06	6
ATOM	2285	CE2	2 PHE A 286		27.547	25.437	72.945	1.00 20.23	6
ATOM	2286	CZ	PHE A 286		26.357	29.200	74.991	1.00 25.14	6
MOTA	2287	С	PHE A 286		31.368	28.566	74.560	1.00 23.16	8
MOTA	2288	0	PHE A 286		32.338	30.416	75.525	1.00 25.51	7
MOTA	2289	N	GLY A 287		31.480		75.614	1.00 26.86	6
MOTA	229	CA	GLY A 287		32.783	31.511	74.270	1.00 26.28	6
ATOM	2291	С	GLY A 287		33.353	31.549	73.271	1.00 26.29	8
MOTA	2294	0	GLY A 287		32.644		74.238	1.00 27.17	7
ATOM	2293	N	GLU A 288		34.637	31.849	72.996	1.00 33.20	6
MOTA	2294	CA	GLU A 288		35.274	32.291	73.269	1.00 35.09	6
ATOM	2295	CB	GLU A 288		36.680		74.083	1.00 41.67	6
ATOM	2296	CG			36.726		73.421	1.00 43.13	6
ATOM	2297	CD	GLU A 288		35.970				8
ATOM	2298	OE	1 GLU A 288		36.221	35.493			8
MOTA	2299				35.130				6
ATOM	2300) C	GLU A 288		35.386				8
MOTA	2301	_	GLU A 288		35.596				7
ATOM	2302		GLY A 289		35.268	31.619			6
MOTA	2303		GLY A 289		35.373				6
ATOM	2304		GLY A 289		35.948				8
ATOM	2305		GLY A 289		36.556				7
ATOM	2306		VAL A 290		35.764				6
ATOM	2307		VAL A 290		36.277				6
ATOM	2308	CB	VAL A 290		37.014				6
· ATOM	2309	CG	1 VAL A 290		37.616				6
ATOM		_	2 VAL A 290		38.100	29.632	, 05.832		

									_
•			AL A 290		35.137	31.975	65.105	1.00 25.97	6
ATOM	2311						64.672	1.00 22.32	8
ATOM	2312	O 7.	AL A 290		34.218			1.00 22.32	7
	2313		YR A 291		35.217	33.293	64.914	1.00 27.33	
MOTA		1/1	17 7 201		34.188	34.052	64.203	1.00 26.69	6
ATOM	2314	CA T	YR A 291				64.939	1.00 25.51	6
ATOM	2315	CB T	YR A 291		33.925	35.356	54.333		
			YR A 291		33.935	35.178	66.435	1.00 28.73	6
MOTA	2316	CGT	IK A 221			35.596	67.191	1.00 29.72	6
MOTA	2317	CD1 T	YR A 291		35.025			1.00 29.53	6
	2318	CE1 T	YR A 291		35.059	35.414	68.563	1.00 25.33	
MOTA			YR A 291		32.874	34.565	67.094	1.00 27.39	6
ATOM	2319	CD2 T	1K A .291		32.898	34.377	68.466	1.00 31.03	6
MOTA	2320		YR A 291			34.377		1.00 31.85	6
	2321	CZ T	YR A 291	-	33.997	34.808	69.194	1.00 31.03	
MOTA			YR A 291		34.030	34.647	70.562	1.00 38.03	8 .
ATOM	2322				34.527	34.345	62.745	1.00 27.99	6
ATOM	2323		YR A 291				62.415	1.00 24.83	8
ATOM	2324	O T	YR A 291		35.608	34.843		1.00 24.03	7
		_	EU A 292		33.567	34.042	61.880	1.00 30.17	
MOTA	2325				33.726	34.220	60.441	1.00 28.26	6
MOTA	2326	CA L	EU A 292				59.741	1.00 27.70	6
ATOM	2327	CB L	EU A 292		33.561	32.861		1.00 24.64	6
	2328	CG L	LEU A 292		34.191	31.643	60.435		
MOTA			x 202		33.867	30.380	59.661	1.00 24.66	6
ATOM	2329	CD1 L	EU A 292				60.553	1.00 23.19	6
ATOM	2330	CD2 L	LEU A 292		35.686	31.825		1.00 25.59	6
	2331	C I	LEU A 292		32.649	35.175	59.944		
MOTA		-	LEU A 292		31.640	35.394	60.611	1.00 18.11	8
ATOM	2332	0 I	JEU A 232			35.749	58.770	1.00 28.55	7
MOTA	2333	N C	GLY A 293		32.869			1.00 31.26	6
	2334	CA C	GLY A 293		31.878	36.653	58.223		
MOTA		~ ~	JLY A 293		30.722	35.815	57.714	1.00 34.84	6
MOTA	2335	C C	3LI A 200		30.463	34.724	58.234	1.00 34.11	8
MOTA	2336	0 0	GLY A 293				56.689	1.00 35.34	7
ATOM	2337	N C	GLY A 294		30.036	36.312			6
		CA C	GLY A 294		28.918	35.581	56.124	1.00 34.84	
MOTA	2338				28.142	36.445	55.155	1.00 34.79	6
ATOM	2339	C .(GLY A 294			37.473	54.699	1.00 37.05	8
MOTA	2340	0 (GLY A 294		28.644		-	1.00 31.87	7
	2341	И	GLY A 295		26.917	36.035	54.842		
MOTA			GLY A 295		26.102	36.806	53.925	1.00 27.78	6
MOTA	2342	CA (GLI A 200		25.969	38.245	54.378	1.00 27.09	6
ATOM	2343	C (GLY A 295				55.546	1.00 27.03	8
ATOM	2344	0 (GLY A 295		26.192	38.558		1.00 27.03	7
		N (GLY A 296		25.596	39.119	53.450	1.00 24.67	
MOTA	2345	IN V	GD1 V 200		25.440	40.527	53.7 57	1.00 25.28	6
ATOM	2346	CA (GLY A 296			41.262	52.446	1.00 27.64	6
ATOM	2347	C	GLY A 296		25.562			1.00 26.65	8
	2348	0	GLY A 296		26.591	41.163	51.771	1.00 20.03	7
MOTA		NI I	TYR A 297		24.526	42.009	52.078	1.00 30.21	
ATOM	2349	N	_IN N 207		24.543	42.704	50.801	1.00 30.62	6
ATOM	2350	CA	TYR A 297		_	42.011	49.859	1.00 29.50	6
ATOM	2351	CB	TYR A 297		23.560		40.053	1.00 30.33	6
	2352	CG	TYR A 297		23.717	40.516	49.953	1.00 30.33	
MOTA		CD1	TYR A 297		23.174	39.810	51.031	1.00 30.86	6
ATOM	2353	CD1	A 207		23.450	38.449	51.226	1.00 30.74	6
ATOM	2354	CE1	TYR A 297				49.062	1.00 31.20	6
ATOM	2355	CD2	TYR A 297		24.538	39.824		1.00 32 08	6
	2356		TYR A 297		24.821	38.460	49.247	1.00 32 00	
MOTA			TYR A 297		24.275	37.781	50.332	1.00 30 92	6
MOTA	2357	CZ	11K A 237			36.440	50.509	1.00 29 60	8
MOTA	2358	OH	TYR A 297		24.539			1.00 32.07	6
ATOM	2359	С	TYR A 297		24.267	44.195	50.875		8
		~	TYR A 297		24.134	44.849	49.840	1.00 33.83	-
MOTA	2360	0	11K H 201		24.180	44.725	52.094	1.00 31.41	7
MOTA	2361	N	HIS A 298				52.289		6
ATOM	2362	CA	HIS A 298		23.961	46.153			6
	2363	CB	HIS A 298		22.761	46.430	53.194		~
ATOM			HIS A 298		22.379	47.880	53.256	1.00 35.16	6
MOTA	2364	CG	315 A 230			48.809			6
MOTA	2365	CD2	HIS A 298		22.558				7
	2366	ND3	HIS A 298		21.779	48.538	52.205		6
MOTA		CE1	HIS A 298		21.605		52.522	1.00 31.84	
MOTA	2367	CEL	HT2 W 730		22.069			1.00 35.46	7
ATOM	2368	NE2	HIS A 298						6
ATOM	2369	С	HIS A 298		25.213	46.697			8
		õ	HIS A 298		25.471	46.405	54.133		
ATOM	2370				25.992			1.00 36.69	7
ATOM	2371	N	PRO A.299						6
ATOM	2372	CD	PRO A 299		25.680				6
	2373	CA	PRO A 299		27.238	48.142			6
ATOM			PRO A 299		27.586	49.073	51.525		
MOTA	2374	CB	200 M 233		26.216	49.399	50.954	1.00 37.76	6
ATOM	2375	CG	PRO A 299						6
MCTA	2376	С	PRO A 299		27.045	48.886	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
A+									

ATOM 2319 N TYR A 3000 26.051 49.763 54.026 1.00 32.89 / ATOM 2319 CA TYR A 3000 24.496 51.377 55.009 1.00 35.56 6 6 ATOM 2381 CC TYR A 3000 24.496 51.377 55.009 1.00 35.596 6 ATOM 2381 CC TYR A 3000 25.370 52.367 52.842 1.00 39.76 6 ATOM 2381 CC TYR A 3000 25.370 52.367 52.842 1.00 39.76 6 ATOM 2383 CEI TYR A 3000 24.098 53.405 53.405 51.007 1.00 39.92 6 ATOM 2383 CEI TYR A 3000 24.098 54.615 33.405 51.007 1.00 39.92 6 ATOM 2386 CE TYR A 3000 24.098 54.615 33.405 51.007 1.00 39.92 6 ATOM 2386 CE TYR A 3000 24.098 54.612 52.161 1.00 38.09 6 ATOM 2386 CE TYR A 3000 24.987 55.634 51.251 1.00 37.68 8 ATOM 2388 C TYR A 3000 25.497 49.546 56.369 1.00 31.10 6 ATOM 2389 C TYR A 3000 25.497 49.546 56.369 1.00 31.10 6 ATOM 2389 C TYR A 3000 24.698 57.644 51.251 1.00 32.55 7 ATOM 2388 C TYR A 3001 24.661 48.541 56.125 1.00 32.55 7 ATOM 2389 C TYR A 3001 24.661 48.541 56.125 1.00 32.55 7 ATOM 2389 C TYR A 3001 24.661 48.541 56.125 1.00 32.55 7 ATOM 2391 CA ALA A 301 23.216 46.602 56.624 1.00 24.69 6 ATOM 2391 CA ALA A 301 23.216 46.502 56.524 1.00 24.69 6 ATOM 2393 C B ALA A 301 25.539 46.727 57.552 1.00 30.06 6 ATOM 2393 C B ALA A 301 25.539 46.727 57.552 1.00 30.06 6 ATOM 2393 C B ALA A 301 25.539 46.727 57.552 1.00 30.06 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 23.216 56.624 1.00 24.69 6 ATOM 2395 C B ALA A 301 24.69 ATOM 2395 C B ATOM 2395 C B ATOM 2	ATOM	2377		A 299	27.781	48.670 49.763	54.963 54.026	1.00 33.67 1.00 32.69	8 7
ATOM 2380 CB TYR A 3000 24, 496 51, 377 55, 009 1, 00 35, 56 6 ATOM 2381 CG TYR A 300 24, 648 52, 524 54, 028 1, 00 35, 56 6 ATOM 2383 CEI TYR A 300 25, 370 52, 367 52, 842 1, 00 39, 92 6 ATOM 2385 CEZ TYR A 300 24, 165 53, 405 51, 907 1, 00 39, 92 6 ATOM 2385 CEZ TYR A 300 24, 165 53, 405 51, 907 1, 00 36, 78 6 ATOM 2385 CEZ TYR A 300 24, 165 53, 405 51, 907 1, 00 36, 78 6 ATOM 2385 CEZ TYR A 300 24, 165 53, 405 51, 907 1, 00 36, 78 6 ATOM 2386 CZ TYR A 300 24, 165 53, 405 51, 100 1, 00 36, 78 6 ATOM 2386 CZ TYR A 300 24, 823 54, 612 52, 161 1, 00 37, 68 8 ATOM 2389 C TYR A 300 24, 823 54, 612 52, 161 1, 00 37, 68 8 ATOM 2389 C TYR A 300 25, 497 49, 546 56, 359 1, 00 37, 68 8 ATOM 2399 N A AA A 301 24, 323 47, 541 57, 145 1, 00 31, 64 6 ATOM 2391 CB ALA A 301 24, 323 47, 541 57, 145 1, 00 31, 64 6 ATOM 2392 CB ALA A 301 22, 164 6, 602 56, 624 1, 00 24, 69 6- ATOM 2393 C ALA A 301 25, 539 46, 727 75, 7552 1, 00 30, 06 6- ATOM 2393 C ALA A 301 25, 539 46, 727 75, 7552 1, 00 30, 06 6- ATOM 2395 N LEU A 302 26, 223 46, 192 56, 557 1, 00 30, 05 6 ATOM 2395 CB LEU A 302 27, 404 45, 303 56, 795 1, 00 30, 05 6 ATOM 2399 CD LEU A 302 28, 012 45, 002 55, 541 1, 00 31, 64 6 ATOM 2399 CD LEU A 302 28, 014 45, 303 56, 795 1, 00 30, 01 6 ATOM 2399 CD LEU A 302 28, 418 46, 136 57, 663 1, 00 31, 83 6 ATOM 2400 CD LEU A 302 29, 417 43, 781 53, 888 1, 00 32, 23 6 ATOM 2401 C LEU A 302 29, 417 43, 781 53, 888 1, 00 32, 23 6 ATOM 2402 C LEU A 302 28, 496 47, 297 557, 497 1, 00 31, 83 6 ATOM 2405 C B ALA A 301 30, 304 64, 577 75, 577, 577 1, 00 31, 63 6 ATOM 2406 C ALA A 303 30, 40 47, 541 57, 577, 577 1, 00 31, 63 6 ATOM 2407 C ALA A 303 30, 40 47, 541 57, 577 1, 57								1.00 32.97	
ATOM 2381 CG TYR A 300 24.648 52.524 54.02 3.00 38.37 6 6 7 7 7 7 7 7 1.00 38.97 6 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1			CB TYR	A 300	24.496			1.00 35.56	
ATOM 2382 CDI TYR A 300			CG TYR	A 300					
ATOM 2384 CD2 TYR À 300 24.086 53.752 54.259 1.00 35.78 6 ATOM 2385 CEZ TYR À 300 24.098 54.793 53.334 1.00 36.78 6 ATOM 2386 CZ TYR À 300 24.098 54.793 53.334 1.00 37.68 8 ATOM 2387 OH TYR À 300 24.927 55.634 51.251 1.00 37.68 8 ATOM 2389 C TR À 300 24.927 55.634 51.251 1.00 37.68 8 ATOM 2389 O TYR À 300 25.497 49.546 56.359 1.00 37.68 8 ATOM 2399 N ALA À 301 24.661 48.541 56.125 1.00 32.55 7 ATOM 2391 CA ALA À 301 24.461 48.541 56.125 1.00 32.55 7 ATOM 2392 CB ALA À 301 24.46.602 56.624 1.00 31.64 6 ATOM 2393 C BLA À 301 25.539 46.727 57.552 1.00 31.64 6 ATOM 2393 C BLA À 301 25.539 46.727 57.552 1.00 31.64 6 ATOM 2395 N LEU À 302 26.223 46.192 56.557 1.00 31.91 8 ATOM 2395 C BLEU À 302 27.404 45.383 56.795 1.00 31.91 8 ATOM 2397 CB LEU À 302 28.012 45.002 55.441 1.00 31.83 6 ATOM 2399 CD1 LEU À 302 29.315 44.223 55.323 1.00 30.01 6 ATOM 2399 CD1 LEU À 302 29.315 45.507 57.652 1.00 30.05 6 ATOM 2399 CD1 LEU À 302 29.315 47.253 53.324 1.00 30.06 6 ATOM 2400 CD2 LEU À 302 29.315 47.253 53.324 1.00 30.01 6 ATOM 2401 C LEU À 302 29.315 47.254 1.00 30.05 6 ATOM 2402 O LEU À 302 29.315 47.254 1.00 30.05 6 ATOM 2403 N ALA À 301 30.288 482 47.299 57.179 1.00 22.99 6 ATOM 2404 CA ALA À 303 30.288 482 47.299 57.179 1.00 27.68 8 ATOM 2406 C ALA À 303 30.288 482 47.299 57.179 1.00 27.08 8 ATOM 2408 N ARG À 304 28.828 49.054 59.472 1.00 27.68 8 ATOM 2408 N ARG À 304 28.828 49.054 59.472 1.00 22.09 6 ATOM 2408 N ARG À 304 28.838 49.054 59.472 1.00 22.09 6 ATOM 2410 C BARG À 304 28.838 49.054 59.472 1.00 22.09 6 ATOM 2410 C BARG À 304 28.838 49.054 59.472 1.00 22.09 6 ATOM 2420 C ALA À 303 30.486 49.052 69.91 1.00 22.09 6 ATOM 2421 C BARG À 304 28.838 49.054 59.472 1.00 22.09 6 ATOM 2421 C BARG À 304 28.838 49.054 59.472 1.00 22.09 6 ATOM 2421 C BARG À 304 28.838 49.054 59.472 1.00 22.09 6 ATOM 2421 C BARG À 304 28.838 49.054 59.472 1.00 22.09 6 ATOM 2421 C BARG À 304 28.838 49.054 59.472 1.00 22.00 6 ATOM 2422 C C ALA À 305 28.838 49.054 59.797 1.00 22.00 6 ATOM 2422 C C ALA À 306 30.448 49.506 50.558 59.992 1.00 22.07 6 A									
ATOM 2385 CEZ TYR A 300							54.259	1.00 35.92	
ATOM 2386 CZ TYR A 300 24.823 \$4.612 \$21.611 1.00 37.88 8 ATOM 2387 OH TYR A 300 24.927 \$5.634 \$1.251 1.00 37.88 8 ATOM 2388 C TYR A 300 25.497 49.546 \$6.369 1.00 31.10 6 ATOM 2389 N ALA A 301 24.661 48.541 \$5.125 1.00 37.55 7 ATOM 2390 N ALA A 301 24.661 48.541 \$5.125 1.00 37.55 7 ATOM 2392 CB ALA A 301 24.661 48.541 \$5.125 1.00 37.55 7 ATOM 2393 C B ALA A 301 24.661 48.541 \$5.125 1.00 37.55 7 ATOM 2393 C B ALA A 301 24.621 48.541 \$5.125 1.00 31.64 6 ATOM 2393 C B ALA A 301 25.539 46.727 75.552 1.00 30.06 6 ATOM 2393 C B ALA A 301 25.539 46.727 75.552 1.00 30.06 6 ATOM 2395 C B ALE A 302 27.404 \$45.383 \$5.795 1.00 30.96 6 ATOM 2395 C B LEU A 302 27.404 \$45.383 \$5.795 1.00 30.55 6 ATOM 2396 C B LEU A 302 29.315 \$44.223 \$5.323 1.00 30.01 6 ATOM 2398 C B LEU A 302 29.315 \$44.223 \$5.323 1.00 30.01 6 ATOM 2399 CDI LEU A 302 29.315 \$44.223 \$5.323 1.00 30.01 6 ATOM 2399 CDI LEU A 302 29.491 \$43.781 \$5.888 1.00 32.09 6 ATOM 2400 CDZ LEU A 302 28.418 \$40.376 1.00 27.68 ATOM 2402 C LEU A 302 28.718 \$45.077 \$5.762 1.00 32.23 6 CATOM 2401 C LEU A 302 28.418 \$40.136 57.663 1.00 27.68 ATOM 2402 C LEU A 302 28.418 \$40.136 57.663 1.00 27.68 ATOM 2402 C LEU A 302 28.796 \$45.675 \$8.746 1.00 27.68 ATOM 2405 CB ALA A 303 29.818 \$48.119 \$7.877 1.00 25.00 6 ATOM 2407 C ALA A 303 29.818 \$48.119 \$7.877 1.00 25.00 6 ATOM 2407 C ALA A 303 29.818 \$48.119 \$7.877 1.00 25.00 6 ATOM 2407 C ALA A 303 30.026 \$49.424 \$7.137 1.00 23.62 6 ATOM 2407 C ALA A 303 30.026 \$49.424 \$7.137 1.00 23.62 6 ATOM 2407 C ALA A 303 30.088 \$48.015 \$5.9472 1.00 24.06 7 ATOM 2401 C ALA A 303 30.886 \$49.054 \$5.9472 1.00 24.06 7 ATOM 2402 C ALA A 303 30.886 \$49.054 \$5.9472 1.00 24.06 7 ATOM 2401 C B ARG A 304 22.893 \$1.253 \$60.801 1.00 24.379 6 ATOM 2401 C B ARG A 304 22.893 \$1.253 \$60.801 1.00 24.379 6 ATOM 2402 C ALA A 303 304 26.202 \$60.758 1.00 23.996 6 ATOM 2402 C ALA A 303 304 26.203 \$60.801 1.00 24.33 6 ATOM 2411 C B ARG A 304 22.894 \$9.054 \$4.961 1.00 24.96 6 ATOM 2412 C B ALA A 303 304 26.203 \$9.505 \$1.257 \$1.00 24.00 \$7.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.						54.793		1.00 36.78	
ATOM 2388 C TYR À 300			CZ .TYR	A 300				1.00 38.09	
ATOM 2388 C TYR A 300		2387		A 300	24.927				6
ATOM 2390 N ALA A 301 24.361 56.125 1.00 32.95 6 ATOM 2391 CA ALA A 301 24.323 47.541 57.145 1.00 31.64 6 ATOM 2392 CB ALA A 301 23.216 46.502 56.624 1.00 24.69 6 ATOM 2393 C ALA A 301 25.539 46.727 57.552 1.00 30.06 6 ATOM 2394 O ALA A 301 25.848 46.579 58.734 1.00 31.91 8 ATOM 2395 N LEU A 302 27.404 45.383 56.795 1.00 28.94 7 ATOM 2396 CA LEU A 302 27.404 45.383 56.795 1.00 30.55 6 ATOM 2397 CB LEU A 302 29.491 43.083 56.795 1.00 30.01 6 ATOM 2398 CG LEU A 302 29.491 43.781 53.888 1.00 32.09 6 ATOM 2399 CD1 LEU A 302 29.491 43.781 53.888 1.00 32.09 6 ATOM 2400 CD2 LEU A 302 29.491 43.781 53.888 1.00 32.09 6 ATOM 2401 C LEU A 302 28.418 46.136 57.663 1.00 29.79 6 ATOM 2402 O LEU A 302 28.916 56.76 58.746 1.00 27.68 8 ATOM 2402 O LEU A 302 28.842 47.299 57.179 1.00 27.68 8 ATOM 2403 N ALA A 303 28.842 47.299 57.179 1.00 27.68 8 ATOM 2404 CA ALA A 303 29.397 48.397 59.305 1.00 25.00 6 ATOM 2405 CB ALA A 303 30.026 49.424 57.137 1.00 23.62 6 ATOM 2406 C ALA A 303 30.026 49.424 57.137 1.00 23.62 6 ATOM 2407 O ALA A 303 30.088 48.015 50.248 1.00 24.06 7 ATOM 2408 N ARG A 304 27.994 49.382 60.810 1.00 24.37 6 ATOM 2409 CA ARG A 304 27.994 49.382 60.810 1.00 24.37 6 ATOM 2401 CB ARG A 304 27.994 49.382 60.781 1.00 23.62 60 ATOM 2401 CB ARG A 304 27.994 49.382 60.810 1.00 24.37 6 ATOM 2402 CB ARG A 304 27.994 49.382 60.810 1.00 24.37 6 ATOM 2401 CB ARG A 304 27.974 49.382 60.810 1.00 24.37 6 ATOM 2411 CC ARG A 304 27.777 48.142 61.691 1.00 24.37 6 ATOM 2412 CD ARG A 304 27.777 48.142 61.691 1.00 24.37 6 ATOM 2412 CB ARG A 304 27.777 48.142 61.691 1.00 24.37 6 ATOM 2413 N R ARG A 304 27.777 48.192 60.810 1.00 22.34 8 ATOM 2410 CB ARG A 304 27.777 48.192 60.810 1.00 22.34 8 ATOM 2411 CC ARG A 304 22.893 51.573 61.110 1.00 34.36 6 ATOM 2412 CD ARG A 304 22.893 51.573 61.110 1.00 24.37 6 ATOM 2412 CD ARG A 304 22.893 51.573 61.110 1.00 24.30 6 ATOM 2412 CD ARG A 304 22.893 51.573 61.110 1.00 24.36 6 ATOM 2421 CD ARG A 304 22.893 51.573 61.110 1.00 24.20 6 ATOM 2422 CD ALA A 305 26.994 47.132 61.20 1.00 22.34 8 ATOM 2423					26.062		57.440	1.00 30.62	
ATOM 2391 CA ALA A 301 23.216 46.602 55.624 1.00 24.69 6. ATOM 2392 CB ALA A 301 25.539 46.727 57.552 1.00 30.06 6 ATOM 2393 C ALA A 301 25.539 46.727 57.552 1.00 30.06 6 ATOM 2395 N LEU A 302 27.404 45.383 56.797 5.8734 1.00 31.91 8 ATOM 2395 N LEU A 302 27.404 45.383 56.797 5.00 30.055 6 ATOM 2396 CA LEU A 302 28.012 45.002 55.441 1.00 31.83 6 ATOM 2397 CB LEU A 302 29.315 44.223 55.332 1.00 30.01 6 ATOM 2399 CD LEU A 302 29.315 44.223 55.323 1.00 30.01 6 ATOM 2399 CD LEU A 302 29.315 46.075 5.762 1.00 32.09 6 ATOM 2400 CD2 LEU A 302 29.315 46.075 5.762 1.00 32.09 6 ATOM 2400 CD2 LEU A 302 29.315 46.075 5.762 1.00 32.09 6 ATOM 2400 CD2 LEU A 302 29.315 46.075 5.762 1.00 32.23 6 ATOM 2402 O LEU A 302 28.796 45.676 58.746 1.00 27.68 8 ATOM 2402 O LEU A 302 28.796 45.676 58.746 1.00 27.68 8 ATOM 2402 O LEU A 303 30.88 82 47.299 57.179 1.00 27.92 7 ATOM 2401 CA ALA A 303 29.818 48.119 57.877 1.00 25.00 6 ATOM 2402 O LEU A 303 29.818 48.119 57.877 1.00 25.00 6 ATOM 2404 CA ALA A 303 30.088 48.015 60.248 1.00 22.09 6 ATOM 2405 CB ALA A 303 30.088 48.015 60.248 1.00 25.06 6 ATOM 2405 CB ALA A 303 30.088 48.015 60.248 1.00 22.09 6 ATOM 2405 CB ALA A 303 30.088 48.015 60.248 1.00 22.09 6 ATOM 2401 CB ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2401 CB ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2401 CB ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2410 CB ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2411 CG ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2412 CD ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2412 CD ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2412 CD ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2412 CD ARG A 304 28.333 48.099 60.156 1.00 29.96 6 ATOM 2412 CD ARG A 304 22.893 51.253 60.359 60.156 1.00 29.96 6 ATOM 2412 CB ARG A 304 22.893 51.253 60.359 60.156 1.00 22.379 6 ATOM 2412 CB ARG A 304 22.893 51.253 60.369 60.248 1.00 26.208 7 ATOM 2412 CB ALA A 305 26.804 47.295 60.810 1.00 24.24 6 ATOM 2418 NHL ARG A 304 22.893 51.253 60.359 60.22 1.00 22.344 6 ATOM 2420 CB ALA			N ALA	A 301	24.661			1.00 32.55	
ATOM 2393 C ALA A 301		2391		A 301	24.323				
ATOM 2394					25.539		57.552	1.00 30.06	
ATOM 2395 N LEU A 302 26.223 46.192 56.397 1.00 20.55 6 ATOM 2396 CA LEU A 302 28.012 45.002 55.441 1.00 31.83 6 ATOM 2397 CB LEU A 302 29.315 44.223 55.323 1.00 30.01 6 ATOM 2399 CDI LEU A 302 29.491 43.781 53.888 1.00 32.09 6 ATOM 2400 CD2 LEU A 302 28.796 45.676 55.7663 1.00 22.23 6 ATOM 2401 C LEU A 302 28.796 45.676 58.746 1.00 27.68 8 ATOM 2402 O LEU A 302 28.796 45.676 58.746 1.00 27.92 7 ATOM 2403 N ALA A 303 28.842 47.299 57.179 1.00 27.92 7 ATOM 2404 CA ALA A 303 29.818 48.119 57.877 1.00 25.06 6 ATOM 2405 CB ALA A 303 30.026 49.424 57.137 1.00 23.62 6 ATOM 2406 C ALA A 303 30.088 48.015 60.248 1.00 23.99 6 ATOM 2407 O ALA A 303 30.088 48.015 60.248 1.00 23.99 6 ATOM 2409 CA ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2409 CA ARG A 304 27.794 49.382 60.810 1.00 24.37 6 ATOM 2410 CB ARG A 304 26.328 51.257 59.815 1.00 23.99 6 ATOM 2411 CG ARG A 304 26.328 51.257 59.815 1.00 23.99 6 ATOM 2411 CA ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2411 CA ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2411 CA ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2411 CA ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2411 CA ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2411 CA ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2416 NAZ ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2417 C ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2418 O ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2419 N ALA A 305 26.994 47.132 61.221 1.00 24.23 48 ATOM 2421 CD ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2418 O ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2417 C ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2418 O ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2421 CD ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2421 CD ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2422 CD ALA 305 26.994 47.132 61.221 1.00 24.24 6 ATOM 2423 O ALA A 305 26.994 47.132 61.221 1.00 24.24 6 ATOM 2424 CD TAPA 306 30.464 42.503 59.995 1.00 24.36 6 ATOM 2425 CD TAPA 306 30.464 42.503 59.995 1.00 24.35 6 ATOM 2			O ALA	A 301	25.848				
ATOM 2396 CA LEU A 302 28.012 43.022 55.441 1.00 31.83 6 ATOM 2398 CG LEU A 302 29.315 44.223 55.323 1.00 30.01 6 ATOM 2399 CD1 LEU A 302 30.475 45.077 55.762 1.00 32.23 6 ATOM 2400 CD2 LEU A 302 28.418 46.136 57.663 1.00 29.79 6 ATOM 2401 C LEU A 302 28.418 46.136 57.663 1.00 29.79 6 ATOM 2402 O LEU A 302 28.796 45.676 58.746 1.00 27.58 8 ATOM 2403 N ALA A 303 28.842 47.299 57.179 1.00 27.92 7 ATOM 2404 C A ALA A 303 29.818 48.119 57.877 1.00 25.00 6 ATOM 2405 CB ALA A 303 30.026 49.424 57.137 1.00 25.00 6 ATOM 2406 C ALA A 303 30.026 49.424 57.137 1.00 25.00 6 ATOM 2407 O ALA A 303 30.088 48.015 60.248 1.00 24.06 7 ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2409 CA ARG A 304 26.420 50.052 60.758 1.00 28.797 6 ATOM 2411 CG ARG A 304 26.420 50.052 60.758 1.00 28.797 6 ATOM 2412 CD ARG A 304 25.106 52.089 60.156 1.00 28.77 6 ATOM 2413 NE ARG A 304 25.106 52.089 60.156 1.00 28.77 6 ATOM 2414 CZ ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2417 C ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2418 NAIL ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2418 NAIL ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2416 NAIL ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2417 C ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2418 NAIL ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2416 NAIL ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2417 NAIL ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2418 NAIL ARG A 304 22.893 51.573 61.110 1.00 36.37 7 ATOM 2420 CA ALA A 305 26.894 47.132 61.221 1.00 24.36 6 ATOM 2421 C BARG A 304 27.727 48.142 61.691 1.00 24.36 6 ATOM 2422 C BALA 305 26.891 47.132 61.221 1.00 24.36 6 ATOM 2423 O ALA 3.305 26.891 47.132 61.221 1.00 24.36 6 ATOM 2424 N TRP 3.306 30.484 44.961 61.411 1.00 22.79 6 ATOM 2425 C BTRP A 306 30.484 44.961 61.411 1.00 22.79 6 ATOM 2426 C BTRP A 306 30.486 42.503 59.992 1.00 26.38 6 ATOM 2427 CG TRP A 306 30.444 44.72 66.1691 1.00 24.20 6 ATOM 2428 CD TRP A 306 30.446 44.270 61.764 1.00 24.20 6 ATOM 2433 CZ TRP A 306 31.484 48.796 63.100			N LEU	A 302					
ATOM 2398 CG LEU A 302	MOTA							1.00 31.83	6
ATOM 2400 CD2 LEU A 302 29.491 43.781 55.888 1.00 32.23 6 ATOM 2401 C LEU A 302 30.475 45.077 55.762 1.00 32.23 6 ATOM 2401 C LEU A 302 28.796 45.676 58.746 1.00 27.68 8 ATOM 2402 O LEU A 302 28.796 45.676 58.746 1.00 27.68 8 ATOM 2403 N ALA A 303 29.818 48.119 57.877 1.00 25.00 6 ATOM 2404 CA ALA A 303 30.026 49.424 57.137 1.00 25.00 6 ATOM 2406 C ALA A 303 30.026 49.424 57.137 1.00 25.06 6 ATOM 2406 C ALA A 303 30.088 48.119 57.877 1.00 25.06 6 ATOM 2406 C ALA A 303 30.088 48.015 60.248 1.00 26.90 8 ATOM 2407 O ALA A 303 30.088 48.015 60.248 1.00 25.06 6 ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2408 N ARG A 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2410 CB ARG A 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2411 CG ARG A 304 25.106 52.089 60.156 1.00 29.95 6 ATOM 2412 CD ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2412 CD ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2414 CZ ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2416 NH2 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2416 NH2 ARG A 304 22.893 51.573 61.713 1.00 36.37 7 ATOM 2416 NH2 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2417 C ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2416 NH2 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2417 C ARG A 304 22.893 51.573 61.713 1.00 24.24 6 ATOM 2418 NH ARG A 304 22.893 51.573 61.713 1.00 24.24 6 ATOM 2421 CB ALA A 305 26.801 45.883 61.959 1.00 22.79 7 ATOM 2421 CB ALA A 305 26.801 45.883 61.959 1.00 22.79 7 ATOM 2421 CB ALA A 305 26.801 45.886 47.905 61.175 1.00 18.13 6 ATOM 2422 C ALA A 305 28.287 44.960 61.175 1.00 18.13 6 ATOM 2424 CB ALA A 305 28.287 44.960 61.175 1.00 18.13 6 ATOM 2424 CB ALA A 305 28.287 44.960 61.795 1.00 22.79 7 ATOM 2424 CB ALA A 305 28.287 44.950 61.291 1.00 24.96 6 ATOM 2424 CB ALA A 305 28.287 44.950 61.795 1.00 22.79 7 ATOM 2424 CB ALA A 305 28.287 44.960 61.795 1.00 22.79 7 ATOM 2424 CB ALA A 305 28.287 44.960 61.795 1.00 24.96 6 ATOM 2424 CB ALA A 305 36.464 42.961 61.979 1.00 24.96 6 ATOM 2424 CB ALA A 305 36.464 42.965 61.968 8.79 1.0							55.323		
ATOM 2401 C LEU À 302 30. 475 45.077 35.763 1.00 29.79 6 ATOM 2402 O LEU À 302 28.796 45.676 58.746 1.00 29.79 7 7 ATOM 2403 N ALA À 303 28.842 47.299 57.179 1.00 25.00 6 ATOM 2404 C A ALA À 303 30.026 49.424 57.137 1.00 25.00 6 ATOM 2406 C ALA À 303 30.026 49.424 57.137 1.00 25.06 6 ATOM 2406 C ALA À 303 30.026 49.424 57.137 1.00 25.06 6 ATOM 2407 O ALA À 303 30.088 48.015 60.248 1.00 26.90 8 ATOM 2408 N ARG À 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2408 N ARG À 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2410 CB ARG À 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2411 CG ARG À 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2412 CD ARG À 304 26.328 51.257 59.815 1.00 28.77 6 ATOM 2412 CD ARG À 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2413 NE ARG À 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2414 CZ ARG À 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2415 NH1 ARG À 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2418 O ARG À 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2419 N ALA À 305 26.801 45.883 61.959 1.00 22.348 8 ATOM 2419 N ALA À 305 26.801 45.883 61.959 1.00 22.370 6 ATOM 2421 CB ALA À 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2421 CB ALA À 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2424 N TRP À 306 30.444 49.50 61.751 1.00 23.33 6 ATOM 2424 N TRP À 306 30.244 44.950 61.751 1.00 23.33 6 ATOM 2424 N TRP À 306 30.244 44.950 61.751 1.00 23.33 6 ATOM 2424 N TRP À 306 30.244 44.950 61.751 1.00 23.33 6 ATOM 2424 N TRP À 306 30.244 44.950 61.751 1.00 23.33 6 ATOM 2424 N TRP À 306 30.244 44.950 61.751 1.00 23.33 6 ATOM 2424 N TRP À 306 30.861 42.013 58.629 1.00 22.79 6 ATOM 2424 N TRP À 306 30.244 44.950 61.751 1.00 23.33 6 ATOM 2423 CA TRP À 306 30.861 42.013 58.629 1.00 22.79 6 ATOM 2424 N TRP À 306 30.464 42.503 59.952 1.00 27.96 6 ATOM 2424 N TRP À 306 30.464 42.503 59.952 1.00 27.96 6 ATOM 2424 CA TRP À 306 30.464 42.503 59.952 1.00 27.96 6 ATOM 2433 CB TRP À 306 31.029 43.848 60.500 1.00 25.07 8 ATOM 2433 CB TRP À 306 31.042 40.465 56.315 1.00 23.50 6 ATOM 2433 CB TRP À 306 31.042 40.465 56.315 1.00 22.50 7 ATOM 2433			CD1 LEU	A 302					
ATOM 2401 C LEU A 302 28.796 45.676 58.746 1.00 27.68 8 7 ATOM 2403 N ALA A 303 28.842 47.299 57.179 1.00 27.92 7 6 ATOM 2405 CB ALA A 303 29.818 48.119 57.877 1.00 23.62 6 ATOM 2406 C ALA A 303 30.026 49.424 57.137 1.00 23.62 6 ATOM 2406 C ALA A 303 30.086 49.424 57.137 1.00 23.62 6 ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2410 CB ARG A 304 27.794 49.382 60.810 1.00 24.07 6 ATOM 2411 CG ARG A 304 26.328 51.257 59.815 1.00 23.99 6 ATOM 2411 CG ARG A 304 22.854 51.257 59.815 1.00 28.77 6 ATOM 2412 CD ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2415 NH1 ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2416 NH2 ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2416 NH2 ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2417 C ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2418 O ARG A 304 22.854 49.054 61.00 24.24 6 ATOM 2419 N ALA A 305 26.994 47.122 61.221 1.00 24.51 6 ATOM 2419 N ALA A 305 26.801 48.809 62.762 1.00 22.34 8 ATOM 2420 CA ALA A 305 26.801 45.883 61.959 1.00 24.51 7 ATOM 2421 CB ALA A 305 26.801 45.883 61.959 1.00 24.51 7 ATOM 2421 CB ALA A 305 26.801 45.883 61.959 1.00 24.51 7 ATOM 2422 CA ALA A 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2424 CR ALA A 305 28.089 45.142 62.351 1.00 24.51 7 ATOM 2423 O ALA A 305 28.089 45.142 62.351 1.00 24.51 7 ATOM 2426 CB ALA A 305 28.089 45.142 60.524 1.00 24.51 7 ATOM 2426 CB TRP A 306 30.244 44.270 61.764 1.00 24.96 6 ATOM 2427 CG TRP A 306 30.244 44.270 61.764 1.00 24.96 6 ATOM 2428 CC2 TRP A 306 30.861 42.013 58.629 1.00 27.96 6 ATOM 2429 CC2 TRP A 306 30.366 40.688 58.570 1.00 27.96 6 ATOM 2430 CC2 TRP A 306 30.464 42.203 59.952 1.00 27.96 6 ATOM 2430 CC2 TRP A 306 30.465 42.503 59.952 1.00 27.96 6 ATOM 2430 CC2 TRP A 306 30.464 42.203 59.952 1.00 27.96 6 ATOM 2430 CC2 TRP A 306 30.465 42.665 57.740 1.00 24.96 6 ATOM 2430 CC2 TRP A 306 30.465 42.563 57.400 1.00 24.96 6 ATOM 2430 CC2 TRP A 306 30.465 42.563 57.400 1.00 24.96 6 ATOM 2430 CC2 TRP A 306 30.465 42.563 57.400 1.00 24.96 6 ATOM 2431 CC2 TRP A 306 30.465 42.563 57.400 1.00 2				A 302					
ATOM 2403 N ALA A 303 28.842 47.299 57.179 1.00 22.92 6 ATOM 2405 CB ALA A 303 29.818 48.119 57.877 1.00 25.00 6 ATOM 2405 CB ALA A 303 30.026 49.424 57.137 1.00 25.06 6 ATOM 2406 N ARG A 303 30.088 48.015 60.248 1.00 25.06 ATOM 2407 O ALA A 303 30.088 48.015 60.248 1.00 24.06 ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.06 ATOM 2409 CA ARG A 304 27.794 49.382 60.810 1.00 24.37 6 ATOM 2410 CB ARG A 304 25.106 52.089 60.156 1.00 28.77 6 ATOM 2411 CG ARG A 304 25.106 52.089 60.156 1.00 29.96 6 ATOM 2412 CD ARG A 304 25.106 52.089 60.156 1.00 29.96 ATOM 2413 NE ARG A 304 22.854 52.757 61.713 1.00 36.43 7 ATOM 2414 CZ ARG A 304 22.854 52.757 61.713 1.00 36.43 7 ATOM 2415 NH1 ARG A 304 22.854 52.757 61.713 1.00 36.43 7 ATOM 2416 NH2 ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2417 C ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2419 N ALA A 305 26.994 47.132 61.221 1.00 24.51 ATOM 2420 CA ALA A 305 26.801 45.883 61.959 1.00 22.34 8 ATOM 2421 CB ALA A 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2422 C ALA A 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 24.51 ATOM 2423 O ALA A 305 28.089 45.142 62.351 1.00 22.79 7 ATOM 2424 N TRP A 306 30.244 44.961 61.411 1.00 22.79 7 ATOM 2426 CB ALA A 305 28.089 45.142 60.524 1.00 24.51 6 ATOM 2427 CG TRP A 306 30.244 44.961 61.411 1.00 22.79 7 ATOM 2428 CC2 TRP A 306 30.244 44.270 61.764 1.00 24.96 6 ATOM 2429 CC2 TRP A 306 30.861 42.013 58.629 1.00 27.966 6 ATOM 2430 CC2 TRP A 306 30.3661 42.013 58.629 1.00 23.00 6 ATOM 2431 NFT RP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 31.042 40.465 56.315 1.00 24.50 6 ATOM 2433 CC2 TRP A 306 31.042 40.465 56.315 1.00 24.50 6 ATOM 2433 CC2 TRP A 306 31.042 40.465 56.315 1.00 24.50 6 ATOM 2433 CC2 TRP A 306 31.042 40.465 56.315 1.00 24.50 6 ATOM 2433 CC2 TRP A 306 31.042 40.465 56.315 1.00 24.50 6 ATOM 2433 CC2 TRP A 306 31.042 40.465 56.315 1.00 24.50 6 ATOM 2433 CC2 TRP A 306 31.042 40.465 56.315 1.00 24.50 6 ATO							-	1.00 27.68	8
ATOM 2405 CB ALA A 303 29.818 48.119 57.877 1.00 23.62 6 ATOM 2406 C ALA A 303 30.026 49.424 57.137 1.00 23.62 6 ATOM 2406 C ALA A 303 30.026 49.424 57.137 1.00 23.62 6 ATOM 2408 N ARG A 304 29.397 48.397 59.305 1.00 25.06 6 ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2409 CA ARG A 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2410 CB ARG A 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2411 CD ARG A 304 25.106 52.089 60.758 1.00 28.77 6 ATOM 2412 CD ARG A 304 25.106 52.089 60.369 1.00 36.43 7 ATOM 2413 NE ARG A 304 22.854 51.257 59.815 1.00 29.96 6 ATOM 2414 CZ ARG A 304 22.854 52.757 61.713 1.00 37.01 6 ATOM 2415 NH1 ARG A 304 22.854 52.757 61.713 1.00 37.01 6 ATOM 2416 NH2 ARG A 304 21.896 50.719 61.269 1.00 34.36 7 ATOM 2418 O ARG A 304 21.896 50.719 61.269 1.00 34.36 7 ATOM 2418 O ARG A 304 28.343 48.099 62.762 1.00 22.34 8 ATOM 2421 CB ALA A 305 26.994 47.132 61.221 1.00 24.51 ATOM 2421 CB ALA A 305 26.801 45.883 61.959 1.00 24.51 7 ATOM 2421 CB ALA A 305 25.880 44.960 61.175 1.00 18.13 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2423 O ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2424 N TRP 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2423 CB TRP A 306 30.664 42.503 59.952 1.00 27.96 6 ATOM 2423 CB TRP A 306 30.664 42.503 59.952 1.00 27.96 6 ATOM 2423 CB TRP A 306 30.465 40.688 58.570 1.00 24.95 6 ATOM 2433 CB TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CB TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2439 CB TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2439 CB TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2439 CB TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2439 CB TRP A 306 30.450 39.904 57.414 1.00 25.37 6 ATOM 2439 CB TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2439 CB TRP A 306 30.450 39.904 57.414 1.00 25.37 6 ATOM					28.842	-	-	1.00 27.92	
ATOM 2406 CB ALA A 303 30.028 48.397 59.305 1.00 25.06 6 8 ATOM 2407 O ALA A 303 30.088 48.015 60.248 1.00 26.90 8 ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2409 CA ARG A 304 26.420 50.052 60.758 1.00 23.97 6 ATOM 2411 CG ARG A 304 26.420 50.052 60.758 1.00 28.77 6 ATOM 2411 CG ARG A 304 26.328 51.257 59.815 1.00 28.77 6 ATOM 2412 CD ARG A 304 25.106 52.089 60.156 1.00 29.96 6 ATOM 2413 NE ARG A 304 22.893 51.257 59.815 1.00 28.77 6 ATOM 2415 NH1 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2416 NH2 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2417 C ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2418 O ARG A 304 22.883 48.099 62.757 61.713 1.00 36.37 7 ATOM 2418 O ARG A 304 27.727 48.142 61.691 1.00 24.24 6 ATOM 2419 N ALA A 305 26.891 47.132 61.221 1.00 22.34 8 ATOM 2420 CA ALA A 305 26.891 47.132 61.221 1.00 22.34 8 ATOM 2421 CB ALA A 305 26.891 47.132 61.221 1.00 22.34 8 ATOM 2422 CA ALA A 305 26.891 47.132 61.221 1.00 22.34 8 ATOM 2422 CA ALA A 305 26.891 47.132 61.221 1.00 22.34 8 ATOM 2422 CA ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 CA ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 CA ALA 305 28.089 44.960 61.175 1.00 18.13 6 ATOM 2422 CA ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 CA ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 CA ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 CA TRP A 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2422 CA TRP A 306 30.444 25.03 59.952 1.00 27.96 6 ATOM 2431 CD1 TRP A 306 30.450 42.503 59.952 1.00 27.96 6 ATOM 2433 CD2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2435 CH2 TRP A 306 31.042 40.465 56.315 1.00 23.00 6 ATOM 2438 N TRP A 306 31.042 40.465 56.315 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.042 40.465 56.315 1.00 27.91 6 ATOM 2438 N TRP A 306 31.994 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.998 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.998 44.570 63.464 1.00 25.07 8 ATOM 2438 N TRP A 306 31.998 44.570 63.464			CA ALA	A 303					
ATOM 2407 O ALA A 303 30.088 48.015 60.248 1.00 24.90 8 ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.06 7 ATOM 2409 CA ARG A 304 26.420 50.052 60.810 1.00 24.37 6 ATOM 2410 CB ARG A 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2411 CG ARG A 304 26.328 51.257 59.815 1.00 28.77 6 ATOM 2411 NE ARG A 304 25.106 52.089 60.156 1.00 29.96 6 ATOM 2413 NE ARG A 304 22.893 51.573 61.110 0.0 37.01 6 ATOM 2414 CZ ARG A 304 22.893 51.573 61.110 0.0 37.01 6 ATOM 2415 NH1 ARG A 304 22.884 52.757 61.713 1.00 36.37 7 ATOM 2416 NH2 ARG A 304 21.896 50.719 61.269 1.00 34.36 7 ATOM 2417 C ARG A 304 27.727 48.142 61.691 1.00 24.24 6 ATOM 2419 N ALA A 305 26.994 47.132 61.221 1.00 24.51 7 ATOM 2420 CA ALA A 305 26.801 45.883 61.959 1.00 22.34 8 ATOM 2421 CB ALA A 305 25.880 44.960 61.175 1.00 18.13 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 22.33 6 ATOM 2424 N TRP A 306 30.244 44.961 61.411 1.00 22.79 7 ATOM 2428 CD TRP A 306 30.244 44.970 61.764 1.00 24.33 6 ATOM 2427 CG TRP A 306 30.861 42.003 58.629 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2429 CEZ TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2429 CEZ TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.460 42.503 59.952 1.00 27.96 6 ATOM 2431 CD1 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2432 CT TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.30 6 ATOM 2435 CH2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2436 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2436 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 24.51 6 ATOM 2435 CH2 TRP A 306 31.462 42.563 57.490 1.00 24.51 6 ATOM 2435 CH2 TRP A 306 31.464 42.503 59.952 1.00 27.96 6 ATOM 2436 CC2 TRP A 306 31.464 42.503 59.952 1.00 26.38 6 ATOM 2437 CC2 TRP A 306 31.484 48.796 63.						49.424		1.00 25.06	6
ATOM 2408 N ARG A 304 28.258 49.054 59.472 1.00 24.08 / ATOM 2409 CA ARG A 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2410 CB ARG A 304 26.420 50.052 60.758 1.00 23.99 6 ATOM 2411 CG ARG A 304 25.106 52.089 60.156 1.00 29.96 6 ATOM 2412 CD ARG A 304 25.106 52.089 60.156 1.00 29.96 6 ATOM 2413 NE ARG A 304 23.943 51.233 60.369 1.00 36.43 7 ATOM 2414 CZ ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2415 NH1 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2416 NH2 ARG A 304 22.894 52.757 61.713 1.00 34.36 7 ATOM 2418 O ARG A 304 22.894 55.757 61.713 1.00 34.36 7 ATOM 2418 O ARG A 304 28.343 48.099 62.762 1.00 22.34 8 ATOM 2419 N ALA A 305 26.891 47.132 61.221 1.00 22.34 6 ATOM 2421 CB ALA A 305 26.891 45.883 61.959 1.00 22.70 6 ATOM 2421 CB ALA A 305 25.880 44.960 61.175 1.00 18.13 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C TRP A 306 30.244 44.270 61.411 1.00 22.79 7 ATOM 2429 CC2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2429 CC2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2429 CC2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2430 CE3 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2431 CD1 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2430 CE3 TRP A 306 30.861 42.013 58.629 1.00 26.38 6 ATOM 2431 CD1 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 24.20 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57			•			48.015	60.248		
ATOM 2409 CA ARG A 304 27.794 49.132 60.758 1.00 23.99 6 ATOM 2411 CG ARG A 304 26.328 51.257 59.815 1.00 23.99 6 ATOM 2412 CD ARG A 304 25.106 52.089 60.156 1.00 29.96 6 ATOM 2412 CD ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2415 NH1 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2415 NH1 ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2415 NH2 ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2416 NH2 ARG A 304 27.727 48.142 61.691 1.00 24.24 6 ATOM 2417 C ARG A 304 27.727 48.142 61.691 1.00 24.24 6 ATOM 2419 N ALA A 305 26.801 45.883 61.959 1.00 22.34 8 ATOM 2420 CA ALA 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2421 CB ALA 305 25.880 44.960 61.175 1.00 18.13 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA 305 28.237 44.725 63.506 1.00 21.51 8 ATOM 2425 CA TRP A 306 30.244 44.270 61.764 1.00 24.96 ATOM 2425 CA TRP A 306 30.604 42.503 59.952 1.00 22.79 6 ATOM 2422 CB TRP A 306 30.604 42.503 59.952 1.00 22.79 6 ATOM 2422 CB TRP A 306 30.604 42.503 59.952 1.00 22.79 6 ATOM 2422 CB TRP A 306 30.604 42.503 59.952 1.00 22.79 6 ATOM 2422 CB TRP A 306 30.861 42.013 58.629 1.00 24.96 6 ATOM 2427 CG TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2427 CG TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2427 CG TRP A 306 30.861 42.013 58.629 1.00 24.96 6 ATOM 2431 CD1 TRP A 306 30.464 40.688 58.570 1.00 24.96 6 ATOM 2433 CC2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 25.57 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 25.57 6 ATOM 2434 CC3 TRP A 306 31.462 42.563 57.490 1.00 25.57 6 ATOM 2434 CC3 TRP A 306 31.464 42.76 62.575 1.00 28.8	-		N ARG	A 304					
ATOM 2410 CB ARG A 304 26.328 51.257 59.815 1.00 28.77 6 ATOM 2412 CD ARG A 304 25.106 52.089 60.156 1.00 29.96 ATOM 2413 NE ARG A 304 22.893 51.233 60.369 1.00 36.43 7 ATOM 2414 CZ ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2415 NH1 ARG A 304 22.894 52.757 61.713 1.00 36.37 7 ATOM 2415 NH1 ARG A 304 22.894 52.757 61.713 1.00 36.37 7 ATOM 2416 NH2 ARG A 304 22.894 52.757 61.713 1.00 34.36 7 ATOM 2417 C ARG A 304 28.343 48.099 62.762 1.00 24.24 6 ATOM 2419 N ALA A 305 26.994 47.132 61.291 1.00 24.51 7 ATOM 2419 N ALA A 305 26.994 47.132 61.21 1.00 24.51 ATOM 2420 CA ALA A 305 25.880 44.960 61.175 1.00 18.13 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 22.79 7 ATOM 2424 N TRP 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2425 CA TRP A 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2426 CB TRP A 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2427 CG TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2429 CE2 TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2429 CE2 TRP A 306 30.366 40.688 58.570 1.00 24.96 6 ATOM 2430 CE3 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CZ2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CZ2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CZ2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 24.51 6 ATOM 2433 CZ2 TRP A 306 31.462 42.563 57.490 1.00 25.52 7 ATOM 2433 CZ2 TRP A 306 31.462 42.565 57.57 51.00 28.08 7 ATOM 2434 CZ3 TRP A 306 31.462 42.565 57.57 51.		2409		A 304					
ATOM 2411 CD ARG A 304			CB ARG	; A 304 ·			59.815	1.00 28.77	
ATOM 2413 NE ARG A 304 22.893 51.233 60.359 1.00 38.43 6 ATOM 2415 NH1 ARG A 304 22.893 51.573 61.110 1.00 37.01 6 ATOM 2416 NH2 ARG A 304 21.896 50.719 61.269 1.00 34.36 7 ATOM 2417 C ARG A 304 27.727 48.142 61.691 1.00 24.24 6 ATOM 2419 N ALA A 305 26.994 47.132 61.221 1.00 24.51 7 ATOM 2421 CB ALA A 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2423 O ALA A 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2424 N TRP A 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2425 CA TRP A 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2427 CG TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2429 CE2 TRP A 306 30.861 42.013 58.629 1.00 26.93 6 ATOM 2429 CE2 TRP A 306 30.861 42.013 58.629 1.00 26.93 6 ATOM 2429 CE2 TRP A 306 30.861 42.013 58.629 1.00 26.93 6 ATOM 2429 CE2 TRP A 306 30.861 42.013 58.629 1.00 26.93 6 ATOM 2430 CE3 TRP A 306 30.861 42.013 58.629 1.00 26.93 6 ATOM 2430 CE3 TRP A 306 30.861 42.013 58.629 1.00 26.93 6 ATOM 2431 CD1 TRP A 306 30.450 39.904 57.441 1.00 24.51 6 ATOM 2432 NEI TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CE2 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CE2 TRP A 306 31.462 42.563 57.490 1.00 25.62 7 ATOM 2434 CC3 TRP A 306 31.462 42.563 57.490 1.00 25.37 6 ATOM 2433 CE2 TRP A 306 31.462 42.563 57.490 1.00 25.37 6 ATOM 2433 CE2 TRP A 306 31.462 42.563 57.490 1.00 25.37 6 ATOM 2433 CC2 TRP A 306 31.462 40.465 56.315 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 31.548 41.784 56.343 1.00 25.37 6 ATOM 2435 CC2 TRP A 306 31.548 41.784 56.343 1.00 25.07 8 ATOM 2435 CC2 TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2436 C TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2437 C TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 24410 CB TRP A 307 31.994 49.119 61				A 304	25.106			1.00 29.96	
ATOM 2415 NH1 ARG A 304 22.854 52.757 61.713 1.00 36.37 7 ATOM 2415 NH1 ARG A 304 21.896 50.719 61.269 1.00 34.36 7 ATOM 2417 C ARG A 304 27.727 48.142 61.691 1.00 24.24 6 ATOM 2419 N ALA A 305 26.894 47.132 61.221 1.00 24.51 7 ATOM 2419 N ALA A 305 26.801 45.883 61.959 1.00 22.70 6 ATOM 2421 CB ALA A 305 25.880 44.960 61.175 1.00 18.13 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2423 O ALA 305 28.237 44.725 63.506 1.00 21.51 8 ATOM 2424 N TRP 306 29.016 44.961 61.411 1.00 22.79 7 ATOM 2424 N TRP A 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2425 CA TRP A 306 30.244 44.270 ATOM 2427 CG TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.861 42.013 58.629 1.00 24.93 6 ATOM 2429 CE2 TRP A 306 30.366 40.688 ATOM 2429 CE2 TRP A 306 30.366 40.688 55.8570 1.00 24.96 6 ATOM 2431 CD1 TRP A 306 30.366 40.688 57.490 1.00 24.96 6 ATOM 2431 CD1 TRP A 306 30.440 42.503 59.952 1.00 27.96 6 ATOM 2431 CD1 TRP A 306 30.464 42.503 59.952 1.00 27.96 6 ATOM 2431 CD1 TRP A 306 30.366 40.688 57.490 1.00 24.96 6 ATOM 2431 CD1 TRP A 306 30.366 40.688 57.490 1.00 24.96 6 ATOM 2432 NEI TRP A 306 30.450 39.9904 57.414 1.00 24.51 6 ATOM 2433 CC2 TRP A 306 31.462 42.563 57.490 1.00 25.37 6 ATOM 2434 CC3 TRP A 306 31.462 40.465 56.315 1.00 25.37 6 ATOM 2435 CH2 TRP A 306 31.548 41.784 56.343 1.00 25.37 6 ATOM 2435 CH2 TRP A 306 31.903 46.427 62.575 1.00 25.07 8 ATOM 2438 N THR A 307 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.908 44.570 63.464 1.00 27.91 6 ATOM 2441 CB1 THR A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 2441 CB1 THR A 307 31.99		2413	NE ARG	A 304				1.00 37.01	
ATOM 2416 NH2 ARG A 304			CZ ARC	A 304				1.00 36.37	
ATOM 2417 C ARG A 304 27.727 48.142 61.691 1.00 22.34 8 ATOM 2418 O ARG A 304 28.343 48.099 62.762 1.00 22.34 8 ATOM 2419 N ALA A 305 26.994 47.132 61.221 1.00 24.51 7 ATOM 2420 CA ALA A 305 26.891 45.883 61.959 1.00 22.70 6 ATOM 2421 CB ALA A 305 25.880 44.960 61.175 1.00 18.13 6 ATOM 2422 C ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2423 O ALA 305 28.089 45.142 62.351 1.00 23.33 6 ATOM 2424 N TRP 306 29.016 44.961 61.411 1.00 22.79 7 ATOM 2425 CA TRP A 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2426 CB TRP A 306 31.029 43.842 60.524 1.00 26.93 6 ATOM 2427 CG TRP A 306 30.861 42.013 58.629 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.861 42.013 58.629 1.00 26.38 6 ATOM 2429 CE2 TRP A 306 30.366 40.688 58.570 1.00 24.96 6 ATOM 2431 CD1 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2432 NE1 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2433 CZ2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2434 CZ3 TRP A 306 31.548 41.784 56.343 1.00 25.37 6 ATOM 2435 CH2 TRP A 306 31.548 41.784 56.343 1.00 25.37 6 ATOM 2436 C TRP A 306 31.548 41.784 56.343 1.00 25.37 6 ATOM 2437 C TRP A 306 31.548 41.784 56.343 1.00 25.37 6 ATOM 2438 N THR A 307 31.994 49.119 61.799 1.00 20.7.91 6 ATOM 2439 CA THR A 307 31.998 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.998 44.570 63.464 1.00 27.91 6 ATOM 2439 CA THR A 307 31.998 44.570 63.461 1.00 27.96 6 ATOM 2439 CA THR A 307 31.998 44.570 63.461 1.00 27.96 6 ATOM 2439 CA THR A 307 31.998 44.570 63.160 1.00 27.96 6 ATOM 2439 CA THR A 307 31.998 44.570 63.160 1.00 27.96 6 ATOM 2439 CA THR A 307 31.998 44.570 63.160 1.00 27.96 6 ATOM 2440 CB THR A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 2441 CG THR A 307 31.994 49.119 61.799 1.00 30.17 8		_	NH1 ARC	A 304		50.719		1.00 34.36	
ATOM 2419 N ALA A 305			C ARC	3 A 304					
ATOM 2429 CA ALA A 305				3 A 304				1.00 24.51	7
ATOM 2421 CB ALA A 305									
ATOM 2422 C ALA 305 28.089 45.142 62.331 1.00 22.79 7 ATOM 2423 O ALA 305 29.016 44.961 61.411 1.00 22.79 7 ATOM 2424 N TRP 306 30.244 44.270 61.764 1.00 24.33 6 ATOM 2425 CA TRP A 306 31.029 43.842 60.524 1.00 26.93 6 ATOM 2427 CG TRP A 306 30.604 42.503 59.952 1.00 27.96 6 ATOM 2428 CD2 TRP A 306 30.861 42.013 58.629 1.00 26.38 6 ATOM 2428 CD2 TRP A 306 30.366 40.688 58.570 1.00 24.96 ATOM 2429 CE2 TRP A 306 30.366 40.688 58.570 1.00 24.96 6 ATOM 2430 CE3 TRP A 306 31.462 42.563 57.490 1.00 23.00 6 ATOM 2431 CD1 TRP A 306 29.983 41.484 60.620 1.00 28.53 6 ATOM 2432 NE1 TRP A 306 29.887 40.392 59.797 1.00 25.62 7 ATOM 2433 CZ2 TRP A 306 30.450 39.904 57.414 1.00 24.51 6 ATOM 2434 CZ3 TRP A 306 31.548 41.784 56.343 1.00 25.37 6 ATOM 2436 CH2 TRP A 306 31.042 40.465 56.315 1.00 24.20 6 ATOM 2436 C TRP A 306 31.042 40.465 56.315 1.00 24.20 6 ATOM 2438 N THR A 307 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRP A 306 31.908 44.570 63.464 1.00 25.07 8 ATOM 2439 CA TRR A 307 31.785 47.323 63.415 1.00 27.91 6 ATOM 2439 CA TRR A 307 31.484 48.796 63.100 1.00 27.86 6 ATOM 2441 CB THR A 307 31.484 48.796 63.100 1.00 27.86 6 ATOM 2441 CG1 THR A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 2441 CG1 THR A 307 31.994 49.704 64.137 1.00 24.72 6			CB AL	A A 305					
ATOM 2424 N TRP 306 ATOM 2424 N TRP A 306 ATOM 2425 CA TRP A 306 ATOM 2426 CB TRP A 306 ATOM 2427 CG TRP A 306 ATOM 2427 CG TRP A 306 ATOM 2428 CD2 TRP A 306 ATOM 2429 CE2 TRP A 306 ATOM 2429 CE2 TRP A 306 ATOM 2430 CE3 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 CD2 TRP A 306 ATOM 2438 N THR A 307 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2430 CB THR A 307 ATOM 2431 CB THR A 307 ATOM 2432 CB THR A 307 ATOM 2433 CB THR A 307 ATOM 2434 CB THR A 307 ATOM 2436 CB THR A 307 ATOM 2437 CB THR A 307 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2430 CB THR A 307 ATOM 2431 CB THR A 307 ATOM 2432 CB THR A 307 ATOM 2433 CB THR A 307 ATOM 2434 CB THR A 307 ATOM 2437 CB THR A 307 ATOM 2438 N THR A 307 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2430 CB THR A 307 ATOM 2431 CB THR A 307 ATOM 2441 CG1 THR A 307			C AL	A 305		_			
ATOM 2425 CA TRP A 306 ATOM 2426 CB TRP A 306 ATOM 2427 CG TRP A 306 ATOM 2428 CD2 TRP A 306 ATOM 2428 CD2 TRP A 306 ATOM 2429 CE2 TRP A 306 ATOM 2430 CE3 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 CZ2 TRP A 306 ATOM 2437 CZ2 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 CZ2 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2437 CZ2 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2439 CA THR A 307 ATOM 2430 CA THR A 307 ATOM 2431 CCB THR A 307 ATOM 2441 CCB THR A			O AL	A . 305 B 306			61.411	1.00 22.79	
ATOM 2426 CB TRP A 306 ATOM 2427 CG TRP A 306 ATOM 2428 CD2 TRP A 306 ATOM 2429 CE2 TRP A 306 ATOM 2430 CE3 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 CD1 TRP A 306 ATOM 2438 CZ2 TRP A 306 ATOM 2439 CZ2 TRP A 306 ATOM 2430 CZ3 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 CD1 TRP A 306 ATOM 2438 N THR A 307 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2430 CB THR A 307 ATOM 2441 CG1 THR A		-		P A 306	30.244	44.270		1.00 24.33	
ATOM 2427 CG TRP A 306 ATOM 2428 CD2 TRP A 306 ATOM 2429 CE2 TRP A 306 ATOM 2430 CE3 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 CD2 TRP A 306 ATOM 2438 CC2 TRP A 306 ATOM 2438 CC3 TRP A 306 ATOM 2439 CA TRP A 306 ATOM 2439 CA TRP A 307 ATOM 2430 CB TRP A 307 ATOM 2431 CD2 TRP A 307 ATOM 2432 CA TRP A 307 ATOM 2433 CA TRP A 307 ATOM 2434 CC3 TRP A 307 ATOM 2438 CA TRP A 307 ATOM 2439 CA TRP A 307 ATOM 2439 CA TRP A 307 ATOM 2439 CA TRP A 307 ATOM 2440 CB TRP A 307 ATOM 2441 CG1 TRP A 307			CB TR	P A 306			60.524		
ATOM 2429 CE2 TRP A 306 ATOM 2430 CE3 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 O TRP A 306 ATOM 2438 N THR A 307 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2440 CB THR A 307 ATOM 2441 CG1 THR								1.00 26.38	6
ATOM 2430 CE3 TRP A 306 ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 O TRP A 306 ATOM 2437 O TRP A 306 ATOM 2438 N THR A 307 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2440 CB THR A 307 ATOM 2441 CG1 THR A 307 ATO						40.688	58.570	1.00 24.96	
ATOM 2431 CD1 TRP A 306 ATOM 2432 NE1 TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 O TRP A 306 ATOM 2438 N THR A 307 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2440 CB THR A 307 ATOM 2441 CG1 THR A 307			CE3 TR	P A 306	31.462	42.563			6
ATOM 2432 NEI TRP A 306 ATOM 2433 CZ2 TRP A 306 ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 O TRP A 306 ATOM 2437 O TRP A 306 ATOM 2438 N THR A 307 ATOM 2438 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2440 CB THR A 307 ATOM 2441 OGI THR A 307			CD1 TR						7
ATOM 2434 CZ3 TRP A 306 ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 O TRP A 306 ATOM 2437 O TRP A 306 ATOM 2438 N THR A 307 ATOM 2438 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2439 CA THR A 307 ATOM 2440 CB THR A 307 ATOM 2441 CG1 THR	MOTA							1.00 24.51	6
ATOM 2435 CH2 TRP A 306 ATOM 2436 C TRP A 306 ATOM 2437 O TRP A 306 ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 ATOM 2440 CB THR A 307 ATOM 2441 CG1 THR A 307							56.343	1.00 25.37	6
ATOM 2436 C TRP A 306 31.129 49.100 63.464 1.00 25.07 8 ATOM 2438 N THR A 307 31.003 46.427 62.575 1.00 28.08 7 ATOM 2439 CA THR A 307 31.785 47.323 63.415 1.00 27.91 6 ATOM 2440 CB THR A 307 31.484 48.796 63.100 1.00 27.86 6 ATOM 2441 CG1 THR A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 2441 CG1 THR A 307 32.120 49.704 64.137 1.00 24.72 6			CH2 TR	P A 306					6
ATOM 2437 O TRP A 306 31.508 44.327 62.575 1.00 28.08 7 ATOM 2438 N THR A 307 31.003 46.427 62.575 1.00 27.91 6 ATOM 2439 CA THR A 307 31.785 47.323 63.415 1.00 27.91 6 ATOM 2440 CB THR A 307 31.484 48.796 63.100 1.00 27.86 6 ATOM 2441 OG1 THR A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 2441 OG1 THR A 307 32.120 49.704 64.137 1.00 24.72 6		2436	C TR	P A 306				1.00 25.07	8
ATOM 2438 N THR A 307 ATOM 2439 CA THR A 307 31.785 47.323 63.415 1.00 27.91 6 ATOM 2440 CB THR A 307 31.484 48.796 63.100 1.00 27.86 6 ATOM 2441 OGI THR A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 2441 OGI THR A 307 32.120 49.704 64.137 1.00 24.72 6	ATCM		O TR	P A 306		· · · ·		1.00 28.08	7
ATOM 2440 CB THR A 307 31.484 48.796 63.100 1.00 30.17 8 ATOM 2441 OGI THR A 307 31.994 49.119 61.799 1.00 30.17 8 ATOM 2441 OGI THR A 307 32.120 49.704 64.137 1.00 24.72 6			CA TH	R A 307	31.78	5 47.323	63.415		6
ATOM 2441 OG1 THR A 307 31.994 49.119 61.735 1.00 24.72 6			CB TH	R A 307				- 44 34 47	
	ATOM	2441	OG1 TH	R A 307					
	ATOM	2442	CG2 TH	K A 30/			•		

105/263

ATON 2444 C THR A 307 31. 441 47.041 64.863 1.00 29.35 6 ATON 2444 N LEW A 308 30.159 46.895 65.725 1.00 32.56 8 ATON 2446 CA LEU A 308 29.740 46.555 66.490 1.00 33.69 6 ATON 2447 CB LEU A 308 29.740 46.555 66.595 1.00 34.48 6 ATON 2448 CG LEU A 308 29.756 46.215 66.525 1.00 34.48 6 ATON 2448 CG LEU A 308 27.338 47.337 66.608 1.00 31.98 6 ATON 2448 CG LEU A 308 27.599 46.887 66.153 1.00 31.98 6 ATON 2448 CG LEU A 308 27.599 46.887 66.153 1.00 31.98 6 ATON 2445 CD LEU A 308 27.599 46.887 66.153 1.00 31.98 6 ATON 2451 C LEU A 308 27.599 46.887 66.153 1.00 31.98 6 ATON 2451 C LEU A 308 27.599 46.887 66.153 1.00 31.98 6 ATON 2451 C LEU A 308 31.230 44.262 66.208 1.00 35.78 7 ATON 2453 N LEA 309 31.230 44.262 66.208 1.00 35.78 7 ATON 2455 CB LEU A 308 31.230 44.262 66.208 1.00 35.78 7 ATON 2455 CB LEU A 308 31.230 44.262 66.208 1.00 35.78 7 ATON 2457 CG LILE A 309 31.733 40.695 65.799 1.00 31.21 6 ATON 2458 CG LILE A 309 31.733 40.695 65.799 1.00 31.21 6 ATON 2458 CG LILE A 309 32.589 43.238 66.772 1.00 34.25 6 ATON 2458 CG LILE A 309 32.589 43.238 66.772 1.00 34.25 6 ATON 2459 C LILE A 309 33.183 42.617 67.657 1.00 35.81 6 ATON 2460 C TRP A 310 33.183 42.617 67.657 1.00 35.81 6 ATON 2460 C TRP A 310 33.183 42.617 67.657 1.00 35.81 6 ATON 2460 C TRP A 310 33.183 42.617 67.657 1.00 35.26 6 ATON 2460 C TRP A 310 33.183 42.617 67.657 1.00 35.26 6 ATON 2461 N TRP A 310 33.183 42.617 67.657 1.00 35.26 6 ATON 2465 CG TRP A 310 35.150 45.311 65.075 1.00 32.51 6 ATON 2465 CG TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATON 2465 CG TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATON 2465 CG TRP A 310 37.076 44.620 65.274 1.00 32.91 6 ATON 2467 CG TRP A 310 37.076 44.620 65.274 1.00 32.91 6 ATON 2467 CG TRP A 310 37.679 44.620 65.274 1.00 32.92 93 6 ATON 2470 C TRP A 310 37.679 44.620 65.274 1.00 32.92 93 6 ATON 2470 C TRP A 310 37.679 44.620 65.274 1.00 32.92 93 6 ATON 2467 C C TRP A 310 37.679 44.620 65.274 1.00 32.92 93 6 ATON 2467 C C TRP A 310 37.076 44.620 65.274 1.00 37.576 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00												\0.3E	c
AFTON 2444 O	ATOM	2443	С	THR A	307								
ATOM 2445 N LEU A 308 30.199 46.555 66.490 1.00 33.69 6		_		THR A	.307								
ATOM 2446 CA LEU A 308 29, 740 40.333 66.252 1.00 34.78 6 6 6 6 6 6 6 6 6			N	LEU A	308								
ATOM 2447 CB LEU A 308 ATOM 2448 CG LEU A 308 ATOM 2449 CD LEU A 308 ATOM 2449 CD LEU A 308 ATOM 2449 CD LEU A 308 ATOM 2450 CD2 LEU A 308 ATOM 2451 C LEU A 308 ATOM 2451 C LEU A 308 ATOM 2451 C LEU A 308 ATOM 2452 O LEU A 308 ATOM 2452 O LEU A 308 ATOM 2453 N ILE A 309 ATOM 2453 N ILE A 309 ATOM 2455 CB LLE A 309 ATOM 2455 CB LLE A 309 ATOM 2455 CB LLE A 309 ATOM 2455 CC2 LLE A 308 ATOM 2456 CC2 LLE A 308 ATOM 2457 CG1 LLE A 309 ATOM 2457 CG1 LLE A 309 ATOM 2458 CD1 LLE A 309 ATOM 2458 CD1 LLE A 309 ATOM 2459 C LLE A 309 ATOM 2450 CD1 LTE A 309 ATOM 2451 CD1 ATOM 2450 CD2			CA	LEU A	308	-				66.490			
ATOM 2448 CG LEU A 308 27,388 47,337 68.153 1.00 31.98 6			CB	LEU A	308								
ATOM 2449 CPI LEU A 308			CG	LEU A	308								
ATOM 2450 CD2 LEU A 308		2449	CD1	LEU A	308			-		66 924			
ATOM 2451 C LEU À 308 31.230 45.417 67.975 1.00 33.75 8 ATOM 2452 O LEU À 308 30.423 44.262 66.208 1.00 35.87 6 ATOM 2454 CÀ LE À 309 30.423 44.262 66.208 1.00 35.87 6 ATOM 2455 CB LE À 309 31.108 43.017 66.540 1.00 35.87 6 ATOM 2455 CG LE À 309 31.733 40.695 65.799 1.00 31.21 6 ATOM 2456 CG2 LLE À 309 31.733 40.695 65.799 1.00 31.21 6 ATOM 2457 CG1 LLE À 309 28.726 41.014 66.407. 1.00 25.04 6 ATOM 2459 C LLE À 309 32.589 43.238 66.772 1.00 35.81 6 ATOM 2450 C LLE À 309 33.183 42.617 67.657 1.00 38.19 8 ATOM 2450 C LLE À 309 33.183 42.617 67.657 1.00 38.19 8 ATOM 2451 N TRP À 310 33.197 44.111 65.977 1.00 36.10 7 ATOM 2461 N TRP À 310 35.150 45.311 65.075 1.00 32.26 6 ATOM 2462 CÀ TRP À 310 35.150 45.311 65.075 1.00 32.26 6 ATOM 2464 CG TRP À 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CEZ TRP À 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CEZ TRP À 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2468 CD1 TRP À 310 37.7206 46.65 86.520 1.00 30.79 6 ATOM 2468 CD1 TRP À 310 37.7206 46.65 96.536 1.00 29.37 7 ATOM 2468 CD1 TRP À 310 37.7206 46.65 96.536 1.00 29.37 7 ATOM 2470 CZZ TRP À 310 38.892 45.330 65.474 1.00 28.42 6 ATOM 2471 CZ3 TRP À 310 38.892 45.330 65.474 1.00 28.06 6 ATOM 2471 CZ3 TRP À 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2472 CH2 TRP À 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2473 C TRP À 310 31.349 49.401 67.796 1.00 32.82 6 ATOM 2474 O TRP À 310 31.349 49.401 67.796 1.00 32.82 6 ATOM 2475 N CYS À 311 33.139 44.91 47.97 1.00 33.86 6 ATOM 2476 CA CYS À 311 33.439 49.401 67.796 1.00 32.82 6 ATOM 2477 CB CYS À 311 33.439 49.401 67.796 1.00 32.82 6 ATOM 2489 C C CYS À 311 33.439 49.401 67.796 1.00 32.82 6 ATOM 2480 O CYS À 311 33.439 49.401 67.796 1.00 32.82 6 ATOM 2481 N GLU À 312 31.557 43.222 7.08 07 1.00 32.82 6 ATOM 2489 C C CYS À 311 33.499 4.01 67.796 1.00 32.82 6 ATOM 2489 C C CEU À 313 33.515 44.796 7.048 1.00 32.82 6 ATOM 2480 C C SER À 314 33.349 49.401 67.796 1.00 32.82 6 ATOM 2480 C C SER À 314 33.349 49.401 67.796 1.00 32.81 6 ATOM 2495 C C SER À 314 33.349 49.401 67.796 1.00 32.			CD2	LEU A	308					66 965			6
ATOM 2455 N LLE A 309 30.1.08 43.017 66.540.1.00 35.78 7 6 ATOM 2454 CA LLE A 309 30.939 41.949 65.431 1.00 34.95 6 6 ATOM 2455 CB LLE A 309 30.939 41.949 65.431 1.00 34.95 6 ATOM 2456 CG2 LLE A 309 30.939 41.949 65.431 1.00 34.95 6 ATOM 2457 CG1 LLE A 309 29.445 41.631 65.212 1.00 34.25 6 ATOM 2458 CD1 LLE A 309 29.445 41.631 65.212 1.00 34.25 6 ATOM 2459 C LLE A 309 32.589 43.238 66.772 1.00 35.81 6 ATOM 2459 C LLE A 309 33.183 42.617 67.657 1.00 35.81 6 ATOM 2461 N TRP A 310 33.197 44.111 65.977 1.00 35.26 6 ATOM 2462 CA TRP A 310 33.197 44.111 65.977 1.00 36.10 7 ATOM 2461 CD TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2465 CD TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.706 46.804 65.380 1.00 30.62 ATOM 2467 CE3 TRP A 310 37.706 46.804 65.380 1.00 30.62 ATOM 2467 CE3 TRP A 310 37.206 46.804 65.380 1.00 30.62 ATOM 2467 CE3 TRP A 310 37.206 46.804 65.380 1.00 30.62 ATOM 2467 CE3 TRP A 310 37.206 46.804 65.380 1.00 29.93 6 ATOM 2467 CE3 TRP A 310 38.852 66.527 41.00 29.93 6 ATOM 2467 CE3 TRP A 310 38.852 66.529 65.336 1.00 29.37 7 ATOM 2467 CE3 TRP A 310 38.852 66.529 65.336 1.00 29.37 7 ATOM 2470 CE2 TRP A 310 38.852 66.529 65.336 1.00 29.37 7 ATOM 2471 CE3 TRP A 310 38.852 66.529 65.336 1.00 29.37 7 ATOM 2471 CE3 TRP A 310 38.852 66.895 1.00 30.62 6 ATOM 2472 CH2 TRP A 310 38.852 66.895 1.00 30.62 7 ATOM 2473 C TRP A 310 38.852 66.895 1.00 30.62 7 ATOM 2471 CE3 TRP A 310 310 38.555 46.659 65.336 1.00 29.37 7 ATOM 2471 CE3 TRP A 310 310 38.555 46.659 65.336 1.00 29.37 7 ATOM 2471 CE3 TRP A 310 310 38.555 46.659 7 1.00 30.62 6 ATOM 2472 CH2 TRP A 310 310 38.555 46.659 7 1.00 30.62 6 ATOM 2473 C TRP A 310 310 38.555 46.659 7 1.00 30.62 6 ATOM 2470 CE2 TRP A 310 310 38.555 46.659 7 1.00 30.62 6 ATOM 2470 CE2 TRP A 310 310 30.62 6 ATOM 2470 CE2 TRP A 310 310 30.62 6 ATOM 2470 CE2 TRP A 310 310 30.62 6 ATOM 2470 CE2 TRP A 310 30.03	MOTA			LEU A	308					67.975	1.00	33.75	8
ATOM 2455 CB ILE A 309 31. 108 43. 017 66.540 1.00 35.87 6 ATOM 2455 CG ILE A 309 30.939 41.949 65. 431 1.00 34.95 6 ATOM 2456 CG2 ILE A 309 32.945 41.614 65.212 1.00 34.25 6 ATOM 2457 CG1 ILE A 309 28.726 41.014 66.407. 1.00 25.04 6 ATOM 2458 CD1 ILE A 309 32.589 43.238 66.772 1.00 38.19 8 ATOM 2459 C ILE A 309 32.589 43.238 66.772 1.00 35.81 6 ATOM 2460 O ILE A 309 33.183 42.617 67.657 1.00 38.19 8 ATOM 2461 N TRP A 310 33.197 44.111 65.977 1.00 35.26 6 ATOM 2462 CA TRP A 310 35.150 45.311 65.075 1.00 32.61 6 ATOM 2463 CB TRP A 310 35.150 45.311 65.075 1.00 32.61 6 ATOM 2464 CG TRP A 310 36.619 45.588 65.220 1.00 30.79 6 ATOM 2466 CEZ TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CEZ TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2468 CD1 TRP A 310 37.679 46.65 65.80 1.00 30.62 6 ATOM 2468 CD1 TRP A 310 37.264 66.894 65.880 1.00 30.62 7 ATOM 2469 NEI TRP A 310 37.679 44.620 65.801 1.00 30.62 6 ATOM 2470 CZZ TRP A 310 37.314 32.24 65.174 1.00 29.93 6 ATOM 2471 CZZ TRP A 310 37.679 44.620 65.801 1.00 30.62 6 ATOM 2472 CHZ TRP A 310 38.555 46.659 65.536 1.00 29.37 7 ATOM 2473 C TRP A 310 38.555 66.599 65.579 1.00 26.00 6 ATOM 2473 C TRP A 310 38.978 42.585 65.279 1.00 26.00 6 ATOM 2474 CPZ CKYS A 311 34.183 46.213 67.715 1.00 34.57 7 ATOM 2478 C CYS A 311 34.183 46.213 67.715 1.00 34.57 7 ATOM 2478 C CYS A 311 33.169 48.085 68.985 1.00 32.82 6 ATOM 2479 C CYS A 311 33.169 48.085 77.844 1.00 32.82 6 ATOM 2488 C C CLU A 312 33.03 34.940 70.053 1.00 32.52 6 ATOM 2489 O CYS A 311 33.499 4.001 67.796 1.00 32.306 6 ATOM 2489 C CYS A 311 33.499 4.001 67.796 1.00 32.306 6 ATOM 2489 C C CYS A 311 33.499 4.001 67.796 1.00 32.306 6 ATOM 2489 C C CYS A 311 33.499 4.001 67.796 1.00 32.306 6 ATOM 2489 C C CYS A 311 33.499 4.001 67.796 1.00 32.306 6 ATOM 2489 C C CYS A 311 33.499 4.001 67.796 1.00 32.306 6 ATOM 2489 C C CYS A 311 33.497 4.009 70.053 1.00 32.701 6 ATOM 2489 C C CYS A 311 33.497 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000 70.000	MOTA			LEU A	308					66.208	1.00	35.78	
ATOM 2455 CB ILE A 309 30.939 41.949 65.431 1.00 34.95 6 ATOM 2456 CG2 ILE A 309 31.733 40.695 65.799 1.00 31.21 6 ATOM 2457 CG1 ILE A 309 29.445 41.631 65.212 1.00 34.25 6 ATOM 2458 CD1 ILE A 309 29.445 41.631 65.212 1.00 34.25 6 ATOM 2459 C ILE A 309 32.589 43.238 66.772 1.00 35.81 6 ATOM 2469 C ILE A 309 32.589 43.238 66.772 1.00 35.81 6 ATOM 2461 N TRP A 310 33.197 44.111 65.977 1.00 36.10 7 ATOM 2461 N TRP A 310 33.197 44.111 65.977 1.00 35.26 6 ATOM 2462 CA TRP A 310 35.150 45.311 65.075 1.00 32.61 6 ATOM 2463 CB TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.31 43.224 65.174 1.00 31.95 6 ATOM 2466 CE2 TRP A 310 37.31 43.224 65.174 1.00 31.96 6 ATOM 2466 CE2 TRP A 310 37.31 43.224 65.174 1.00 30.62 6 ATOM 2468 CD1 TRP A 310 37.206 46.804 55.380 1.00 30.62 6 ATOM 2468 CD1 TRP A 310 37.206 46.804 55.380 1.00 30.62 6 ATOM 2469 NEI TRP A 310 37.206 46.804 55.380 1.00 30.62 6 ATOM 2467 CE3 TRP A 310 37.31 43.224 65.174 1.00 21.96 6 ATOM 2470 C22 TRP A 310 37.31 43.224 65.174 1.00 21.96 6 ATOM 2471 CZ3 TRP A 310 37.316 44.676 65.99 65.536 1.00 29.37 7 ATOM 2473 C TRP A 310 31.34.34 46.23 67.715 1.00 36.00 6 ATOM 2473 C TRP A 310 35.565 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.565 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2478 S C CYS A 311 33.193 49.401 67.796 1.00 32.01 6 ATOM 2486 C C LEU A 312 33.163 4.474 4.159 71.171 1.00 33.60 6 ATOM 2486 C C LEU A 312 33.163 4.474 4.159 71.171 1.00 33.60 6 ATOM 2487 C CZ CRS A 311 33.912 46.013 71.280 71.00 32.01 6 ATOM 2486 C C LEU A 313 35.913 39.95 67.793 71.00 32.97 8 ATOM 2489 C C LEU A 313 35.565 67.793 71.00 32.00 33.45 7 7 ATOM 2488 C C LEU A 313 35.56	MOTA			ILE A	309 -						1.00	35.87	
ATOM 2455 CGZ IILE A 309 ATOM 2457 CGI IILE A 309 ATOM 2458 CDI IILE A 309 ATOM 2458 CDI IILE A 309 ATOM 2458 CDI IILE A 309 ATOM 2459 CDI IILE A 309 ATOM 2460 O IILE A 309 ATOM 2461 N TRP A 310 ATOM 2461 N TRP A 310 ATOM 2462 CA TRP A 310 ATOM 2463 CB TRP A 310 ATOM 2465 CDZ TRP A 310 ATOM 2466 CEZ TRP A 310 ATOM 2467 CEZ TRP A 310 ATOM 2468 CDI TRP A 310 ATOM 2468 CDI TRP A 310 ATOM 2469 NEI TRP A 310 ATOM 2471 CZZ TRP A 310 ATOM 2471 CZZ TRP A 310 ATOM 2472 CHZ TRP A 310 ATOM 2473 C TRP A 310 ATOM 2474 O TRP A 310 ATOM 2475 N CYS A 311 ATOM 2476 CA CYS A 311 ATOM 2478 SG CYS A 311 ATOM 2479 C CYS A 311 ATOM 2481 N GLU A 312 ATOM 2482 CA GLU A 312 ATOM 2483 C G GLU A 312 ATOM 2485 C GLU A 312 ATOM 2486 C CLU A 312 ATOM 2487 C C GLU A 312 ATOM 2488 C GLU A 312 ATOM 2489 C GLU A 313 ATOM 2489 C GLU A 312 ATOM 2489 C GLU A 313 ATOM 2489 C GLU A 312 ATOM 2489 C GLU A 313 ATOM 2489 C GLU A 312 ATOM 2489 C GLU A 313 ATOM 2499 C C GLU A 312 ATOM 2499 C C GLU A 313 ATOM 2490 C C GLU A 312 ATOM 2490 C C GLU A 312 ATOM 2490 N LEU A 313 ATOM 2490 N LEU A 313 ATOM 2491 C A GLU A 312 ATOM 2490 N LEU A 313 ATOM 2490 N G				ILE A	309					65.431	1.00	34.95	
ATOM 2459 CGI ILE A 3099 28,745 41,631 65,212 1.00 34.25 6 ATOM 2459 C ILE A 3099 32,589 43,238 66,772 1.00 35.81 6 ATOM 2460 O ILE A 3099 33,183 42,617 67,657 1.00 35.81 6 ATOM 2461 N TRP A 310 33,197 44.111 65,977 1.00 36.10 7 ATOM 2462 CA TRP A 310 33,197 44.111 65,977 1.00 36.10 7 ATOM 2463 CB TRP A 310 35.150 45.311 65,075 1.00 32.61 6 ATOM 2463 CB TRP A 310 35.150 45.311 65,075 1.00 32.61 6 ATOM 2464 CG TRP A 310 37,679 44.620 65.274 1.00 29.93 6 ATOM 2466 CEZ TRP A 310 37,679 44.620 65.274 1.00 29.93 6 ATOM 2466 CEZ TRP A 310 37,206 46.804 65,380 1.00 30.79 6 ATOM 2466 CEZ TRP A 310 37.206 46.804 65,380 1.00 30.62 7 ATOM 2467 CEZ TRP A 310 38.882 45.330 65.474 1.00 28.42 6 ATOM 2467 CEZ TRP A 310 38.862 65.578 1.00 29.93 6 ATOM 2468 CDI TRP A 310 38.565 46.659 65.536 1.00 29.37 7 ATOM 2467 CEZ TRP A 310 38.882 45.330 65.474 1.00 28.42 6 ATOM 2467 CEZ TRP A 310 38.565 46.699 65.578 1.00 30.62 6 ATOM 2470 CEZ TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2471 CEZ TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2472 CHZ TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2472 CHZ TRP A 310 35.365 46.499 67.715 1.00 36.00 6 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2473 C TRP A 310 35.365 46.476 68.400 1.00 30.62 6 ATOM 2473 C CTRP A 310 34.744 45.000 67.545 1.00 36.00 6 ATOM 2477 CB CYS A 311 34.134 46.213 67.715 1.00 34.57 7 ATOM 2479 C CYS A 311 34.134 46.213 67.715 1.00 34.57 7 ATOM 2479 C CYS A 311 34.134 46.213 7 ATOM 2479 C CYS A 311 34.134 46.213 7 ATOM 2479 C CYS A 311 33.192 46.061 70.206 1.00 32.01 6 ATOM 2479 C CYS A 311 33.192 46.061 70.206 1.00 32.02 6 ATOM 2479 C CYS A 311 33.493 49.401 67.796 1.00 32.35 16 ATOM 2479 C CYS A 311 33.493 49.401 67.796 1.00 32.35 16 ATOM 2480 O CYS A 311 33.157 43.252 70.807 1.00 34.19 6 ATOM 2480 O CYS A 311 33.157 43.252 70.807 1.00 34.19 6 ATOM 2480 O CYS A 311 33.1557 43.252 70.807 1.00 33.455 7 ATOM 2480 O CYS A 311 33.912 46.061 70.206 1.00 32.01 6 ATOM 2480 O CYS A 311 33.912 46.061 70.206 1.00 32.01 6 ATOM 2480 O CYS A 311 33.912 46.06				TLE A	309						1.00	31.21	
ATOM 2458 CD1 ILE A 309				ILE A	309	29	.445				1.00	34.25	
ATOM 2459 C ILE A 309 33.183 42.617 67.557 1.00 38.19 8 ATOM 2461 N TRP A 310 33.197 44.111 65.977 1.00 36.10 7 ATOM 2462 CA TRP A 310 35.150 45.311 65.977 1.00 35.26 6 ATOM 2463 CB TRP A 310 35.150 45.311 65.075 1.00 32.61 6 ATOM 2464 CG TRP A 310 35.150 45.311 65.075 1.00 32.61 6 ATOM 2465 CD2 TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.731 43.224 65.174 1.00 31.59 6 ATOM 2468 CD1 TRP A 310 37.731 43.224 65.174 1.00 31.59 6 ATOM 2469 NEI TRP A 310 38.882 45.330 65.344 1.00 29.37 7 ATOM 2469 NEI TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2470 C22 TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2471 C23 TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2472 CHZ TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2474 O TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2475 N CYS A 311 34.134 46.213 67.715 1.00 36.00 6 ATOM 2476 CC CYS A 311 33.169 48.085 68.996 1.00 35.62 6 ATOM 2477 CB CYS A 311 33.199 49.401 67.796 1.00 32.01 6 ATOM 2479 C CYS A 311 33.191 46.061 70.206 1.00 32.01 6 ATOM 2479 C CYS A 311 33.192 46.061 70.206 1.00 32.01 6 ATOM 2480 O CYS A 311 33.193 49.401 67.796 1.00 32.26 16 ATOM 2480 O CYS A 311 33.193 49.401 67.796 1.00 32.277 7 ATOM 2480 CB GLU A 312 33.024 46.031 70.206 1.00 32.07 7 ATOM 2481 N GLU A 312 33.062 45.049 70.053 1.00 32.57 7 ATOM 2482 CA GLU A 312 33.093 42.821 73.239 1.00 43.80 6 ATOM 2487 CE2 GLU A 313 33.13 44.155 70.473 1.00 44.81 8 ATOM 2489 O CUS A 311 33.23 42.604 70.099 1.00 33.49 7 ATOM 2480 CB GLU A 312 30.546 43.527 70.807 1.00 34.19 6 ATOM 2487 CE2 GLU A 313 35.584 42.597 70.093 1.00 32.07 6 ATOM 2488 C GLU A 312 30.642 43.259 70.473 1.00 32.97 6 ATOM 2489 C CB LEU A 313 35.584 42.795 77.1171 1.00 33.65 6 ATOM 2490 C CB SER A 314 38.906 44.064 70.099 1.00 33.49 7 ATOM 2490 C CB SER A 314 38.223 42.957 72.603 1.00 32.97 6 ATOM 2490 C CB SER A 314 38.253 42.957 72.603 1.00 33.49 7 ATOM 2490 C CB SER A 314 38.004 43.253 70.4				ILE A	309								
ATOM 2460 O ILE A 309 ATOM 2461 N TRP A 310 ATOM 2461 N TRP A 310 ATOM 2462 CA TRP A 310 ATOM 2462 CA TRP A 310 ATOM 2463 CB TRP A 310 ATOM 2464 CG TRP A 310 ATOM 2464 CG TRP A 310 ATOM 2465 CD2 TRP A 310 ATOM 2465 CD2 TRP A 310 ATOM 2466 CE2 TRP A 310 ATOM 2466 CE2 TRP A 310 ATOM 2467 CE3 TRP A 310 ATOM 2467 CE3 TRP A 310 ATOM 2468 CD1 TRP A 310 ATOM 2469 NEL TRP A 310 ATOM 2470 CZZ TRP A 310 ATOM 2471 CZZ TRP A 310 ATOM 2472 CHZ TRP A 310 ATOM 2473 C TRP A 310 ATOM 2474 O TRP A 310 ATOM 2475 N CYS A 311 ATOM 2476 CA CYS A 311 ATOM 2476 CA CYS A 311 ATOM 2477 CB CYS A 311 ATOM 2478 SG CYS A 311 ATOM 2479 C C CYS A 311 ATOM 2480 O CYS A 311 ATOM 2480 C C CYS A 311 ATOM 2480 C C CYS A 311 ATOM 2480 C C C C C C C C C C C C C C C C C C C				ILE A	309								
ATOM 2462 CA ATOM 2462 CA TRP A 310 34.612 44.84 66.169 1.00 35.26 6 ATOM 2463 CB TRP A 310 35.150 45.311 65.075 1.00 30.79 6 ATOM 2465 CD2 TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2465 CE2 TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.679 44.620 65.274 1.00 30.79 6 ATOM 2466 CE2 TRP A 310 37.206 46.804 65.300 65.474 1.00 31.59 6 ATOM 2468 CD1 TRP A 310 37.206 46.804 65.308 1.00 31.59 6 ATOM 2469 NEI TRP A 310 37.206 46.804 65.538 1.00 29.37 7 ATOM 2469 NEI TRP A 310 37.206 46.804 65.538 1.00 29.37 7 ATOM 2479 CZ2 TRP A 310 38.865 46.659 65.536 1.00 29.37 7 ATOM 2471 CZ3 TRP A 310 38.878 42.585 65.279 1.00 28.06 6 ATOM 2471 CZ3 TRP A 310 34.744 45.040 67.545 1.00 36.00 6 ATOM 2473 C TRP A 310 34.744 45.040 67.545 1.00 36.00 6 ATOM 2473 C TRP A 310 34.344 46.213 67.715 1.00 36.00 6 ATOM 2477 CB CYS A 311 34.134 46.213 67.715 1.00 34.57 7 ATOM 2476 CA CYS A 311 34.134 46.213 67.715 1.00 32.82 6 ATOM 2477 C CYS A 311 34.134 46.213 67.715 1.00 32.82 6 ATOM 2477 C CYS A 311 33.169 48.085 68.985 1.00 32.82 6 ATOM 2479 C CYS A 311 33.169 48.085 68.985 1.00 32.82 6 ATOM 2479 C CYS A 311 33.169 48.085 68.985 1.00 32.82 6 ATOM 2480 C CYS A 311 33.494 49.01 67.796 1.00 32.36 16 ATOM 2482 CA GLU A 312 33.062 45.049 70.053 1.00 32.82 6 ATOM 2482 CA GLU A 312 33.062 45.049 70.053 1.00 32.37 6 ATOM 2480 CB GLU A 312 33.062 45.049 70.053 1.00 32.37 6 ATOM 2488 C G GLU A 312 33.932 46.061 70.206 1.00 32.01 6 ATOM 2489 C C GLU A 312 33.933 44.252 70.807 71.171 1.00 33.86 6 ATOM 2489 C C GLU A 312 33.953 43.298 71.456 1.00 33.77 6 ATOM 2489 C C GLU A 312 33.953 43.298 71.456 1.00 33.77 6 ATOM 2489 C C GLU A 313 35.584 42.257 70.807 70.00 33.45 7 ATOM 2489 C C GLU A 313 35.584 42.257 70.807 70.00 33.45 7 ATOM 2489 C C GLU A 313 35.584 42.257 70.807 70.00 33.47 6 ATOM 2499 C C SER A 314 33.35.587 39.956 67.269 1.00 33.77 6 ATOM 2499 C C SER A 314 33.35.587 39.956 67.269 1.00 33.77 6 ATOM 2499 C C SER A 314 38.064 46.064 70.099 1.00 33.79 7 ATOM 2499 C C SER A 314 38.107 46.239 70.00 31.00 32.14 6 AT			0	ILE A	309								
ATOM 2463 CB TRP A 310		2461	N	TRP A	310								6
ATOM 2464 CG TRP A 310 37.679 44.620 65.274 1.00 30.79 6 ATOM 2465 CD2 TRP A 310 37.679 44.620 65.274 1.00 29.93 6 ATOM 2466 CE2 TRP A 310 37.679 44.620 65.274 1.00 28.42 6 ATOM 2467 CE3 TRP A 310 37.731 43.224 65.174 1.00 31.59 6 ATOM 2468 CD1 TRP A 310 37.731 43.224 65.174 1.00 31.59 6 ATOM 2469 NEI TRP A 310 38.565 46.659 65.536 1.00 29.37 7 ATOM 2469 NEI TRP A 310 38.565 46.659 65.536 1.00 27.91 6 ATOM 2470 CZ2 TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2471 CZ3 TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2471 CZ3 TRP A 310 35.365 44.476 68.440 1.00 36.00 6 ATOM 2472 CH2 TRP A 310 35.365 44.476 68.440 1.00 36.00 6 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2474 O TRP A 310 34.183 46.937 68.985 1.00 32.32 6 ATOM 2475 N CYS A 311 34.183 46.937 68.985 1.00 32.32 6 ATOM 2476 CA CYS A 311 33.169 48.085 68.995 1.00 32.36 16 ATOM 2477 CB CYS A 311 33.39 49.401 67.796 1.00 32.36 16 ATOM 2478 CG CYS A 311 33.49 49.401 67.796 1.00 32.36 16 ATOM 2478 C CYS A 311 33.49 49.401 67.796 1.00 32.36 16 ATOM 2480 C CYS A 311 33.492 49.401 67.796 1.00 32.35 16 ATOM 2480 C CYS A 311 33.912 46.061 70.206 1.00 32.01 6 ATOM 2480 C CYS A 311 33.052 45.049 70.053 1.00 32.37 7 ATOM 2481 N GLU A 312 33.052 45.049 70.053 1.00 32.37 7 ATOM 2482 CA GLU A 312 31.557 43.252 70.807 1.00 34.57 7 ATOM 2488 C G GLU A 312 31.557 43.252 70.807 1.00 34.57 7 ATOM 2488 C G GLU A 312 31.557 43.252 70.807 1.00 34.19 6 ATOM 2489 C D GLU A 312 31.685 41.831 73.383 1.00 44.8 8 ATOM 2489 C D GLU A 313 35.584 2.251 73.299 1.00 43.80 6 ATOM 2490 N LEU A 313 35.584 2.251 73.299 1.00 43.80 6 ATOM 2491 CA LEU A 313 35.584 42.252 70.807 1.00 33.45 7 ATOM 2492 CB LEU A 313 35.584 42.253 70.473 1.00 32.97 8 ATOM 2493 C G LEU A 313 35.584 42.253 70.473 1.00 32.14 6 ATOM 2495 C C LEU A 313 35.595 40.093 1.00 32.07 8 ATOM 2496 C LEU A 313 35.595 40.493 70.903 1.00 31.40 6 ATOM 2497 O LEU A 313 35.596 43.295 70.473 1.00 37.82 6 ATOM 2498 N SER A 314 39.414 47.120 69.353 1.00 37.42 8 ATOM 2499 C SER A 314 39.414 47.120 69.353 1.00 34.45 8		_		TRP A	310						1.00	32.61	
ATOM 2465 CD2 TRP A 310	ATOM			TRP A	310						1.00	30.79	
ATOM 2466 CE2 TRP A 310 ATOM 2466 CE2 TRP A 310 ATOM 2467 CE3 TRP A 310 ATOM 2468 CD1 TRP A 310 ATOM 2468 CD1 TRP A 310 ATOM 2469 NE1 TRP A 310 ATOM 2470 CZ2 TRP A 310 ATOM 2470 CZ2 TRP A 310 ATOM 2471 CZ3 TRP A 310 ATOM 2471 CZ3 TRP A 310 ATOM 2471 CZ3 TRP A 310 ATOM 2472 CH2 TRP A 310 ATOM 2473 C TRP A 310 ATOM 2474 O TRP A 310 ATOM 2475 N CYS A 311 ATOM 2476 CA CYS A 311 ATOM 2476 CA CYS A 311 ATOM 2477 CB CYS A 311 ATOM 2477 CB CYS A 311 ATOM 2477 CB CYS A 311 ATOM 2478 CG CYS A 311 ATOM 2479 C CYS A 311 ATOM 2479 C CYS A 311 ATOM 2480 O CYS A 311 ATOM 2481 N GUU A 312 ATOM 2482 CA GLU A 312 ATOM 2482 CA GLU A 312 ATOM 2485 CD GLU A 312 ATOM 2486 CB GLU A 312 ATOM 2487 CG GLU A 312 ATOM 2488 C GLU A 312 ATOM 2488 C GLU A 312 ATOM 2488 C GLU A 312 ATOM 2489 O GLU A 312 ATOM 2489 CA GLU A 313 ATOM 2489 CA GLU A 31				TRP A	310						1.00	29.93	
ATOM 2467 CE3 TRP A 310				מ מסת	310						1.00	28.42	
ATOM 2468 CD1 TRP A 310									43.224				
ATOM 2469 NE1 TRP A 310 38.565 46.659 65.578 1.00 27.91 6 ATOM 2471 CZ3 TRP A 310 38.978 42.585 65.279 1.00 28.06 6 ATOM 2471 CZ3 TRP A 310 40.126 44.691 65.578 1.00 36.00 6 ATOM 2472 CH2 TRP A 310 40.150 43.322 65.479 1.00 36.00 6 ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.00 6 ATOM 2474 O TRP A 310 35.365 44.476 68.440 1.00 36.24 ATOM 2475 N CYS A 311 34.183 46.233 67.715 1.00 34.57 7 ATOM 2476 CA CYS A 311 33.4183 46.233 68.985 1.00 32.82 6 ATOM 2477 CB CYS A 311 33.4183 46.937 68.985 1.00 32.82 6 ATOM 2478 SG CYS A 311 33.4193 49.401 67.796 1.00 32.36 16 ATOM 2479 C CYS A 311 33.912 46.061 70.206 1.00 32.01 ATOM 2479 C CYS A 311 33.912 46.061 70.206 1.00 32.01 ATOM 2480 O CYS A 311 33.062 45.049 70.053 1.00 32.57 7 ATOM 2481 N GLU A 312 33.062 45.049 70.053 1.00 32.57 7 ATOM 2482 CA GLU A 312 32.731 44.159 71.171 1.00 33.86 6 ATOM 2483 CB GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2485 CD GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2488 C GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2488 C GLU A 312 30.516 43.522 74.195 1.00 34.80 6 ATOM 2488 C GLU A 312 30.516 43.522 74.195 1.00 32.07 8 ATOM 2490 N LEU A 313 35.687 42.995 77.2603 1.00 32.07 8 ATOM 2490 N LEU A 313 35.587 39.956 67.269 1.00 33.45 7 ATOM 2490 N LEU A 313 35.584 42.135 70.473 1.00 32.89 6 ATOM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 7 ATOM 2499 CA SER A 314 38.107 40.493 68.626 1.00 27.737 6 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.787 6 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2499 CA SER A 314 38.046 45.661 71.730 1.00 33.65 7 ATOM 2499 CA SER A 314 38.046 45.661 71.730 1.00 33.65 7						3	7.206				1.00	30.64	
ATOM 2470 CZ2 TRP A 310					310								
ATOM 2471 C23 TRP A 310				TRP A	A 310								
ATOM 2473 C TRP A 310		2471	CZ3	TRP A	4 310								
ATOM 2473 C TRP A 310 35.365 44.476 68.440 1.00 36.24 8 ATOM 2475 N CYS A 311 34.134 46.213 67.715 1.00 34.57 7 ATOM 2476 CA CYS A 311 34.183 46.937 68.996 1.00 32.82 6 ATOM 2477 CB CYS A 311 33.199 48.085 68.996 1.00 32.82 6 ATOM 2478 SG CYS A 311 33.199 49.401 67.796 1.00 32.36 16 ATOM 2479 C CYS A 311 33.419 49.401 67.796 1.00 32.01 6 ATOM 2480 O CYS A 311 33.912 46.061 70.206 1.00 32.01 6 ATOM 2481 N GLU A 312 33.062 45.049 70.053 1.00 32.57 7 ATOM 2482 CA GLU A 312 32.731 44.159 71.171 1.00 33.86 6 ATOM 2483 CB GLU A 312 31.557 43.252 70.807 1.00 34.19 6 ATOM 2485 CD GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2486 OE1 GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2488 C GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2488 C GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2488 C GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2488 C GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2488 C GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2489 O GLU A 312 30.933 42.821 73.239 1.00 43.80 6 ATOM 2489 O GLU A 312 30.516 43.522 74.195 1.00 31.77 6 ATOM 2489 O GLU A 313 33.647 42.945 70.382 1.00 32.07 8 ATOM 2490 N LEU A 313 36.647 42.945 70.382 1.00 32.07 8 ATOM 2491 CA LEU A 313 35.584 42.135 70.473 1.00 32.89 6 ATOM 2492 CB LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2493 CG LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2496 C LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2497 O LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2498 N SER A 314 33.067 44.064 70.099 1.00 31.74 8 ATOM 2499 CA SER A 314 38.074 40.647 70.388 1.00 44.55 8 ATOM 2499 CA SER A 314 38.074 40.656 70.388 1.00 37.32 6 ATOM 2490 N GLY A 315 36.976 43.031 70.993 1.00 37.32 6 ATOM 2490 N GLY A 315 36.906 46.243 73.498 1.00 44.55 8 ATOM 2500 CB SER A 314 39.015 46.043 72.395 1.00 37.32 6 ATOM 2501 OG SER A 314 39.015 46.043 72.395 1.00 37.32 6 ATOM 2502 C SER A 314 39.015 46.043 72.395 1.00 37.32 6 ATOM 2506 C GLY A 315 36.596 47.744 73.568 1.00 46.80 6		2472	CH2	TRP A	A 310								6
ATOM 2476 CA CYS A 311 34.134 46.213 67.715 1.00 34.57 7 ATOM 2476 CA CYS A 311 34.183 46.937 68.985 1.00 32.82 6 ATOM 2477 CB CYS A 311 33.169 48.085 68.985 1.00 32.82 6 ATOM 2478 SG CYS A 311 33.169 48.085 68.996 1.00 32.36 16 ATOM 2479 C CYS A 311 33.194 46.061 70.206 1.00 32.01 6 ATOM 2479 C CYS A 311 33.912 46.061 70.206 1.00 32.01 6 ATOM 2480 O CYS A 311 33.912 46.061 70.206 1.00 32.01 6 ATOM 2481 N GLU A 312 33.062 45.049 70.053 1.00 32.57 7 ATOM 2481 N GLU A 312 32.731 44.159 71.171 1.00 33.86 6 ATOM 2482 CA GLU A 312 31.557 43.252 70.807 1.00 34.19 6 ATOM 2483 CB GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2485 CD GLU A 312 30.923 42.821 73.239 1.00 44.81 8 ATOM 2486 OEI GLU A 312 30.923 42.821 73.338 1.00 44.81 8 ATOM 2488 C GLU A 312 30.516 43.522 74.195 1.00 41.54 8 ATOM 2489 O GLU A 312 30.516 43.522 74.195 1.00 41.54 8 ATOM 2489 O GLU A 312 33.953 43.298 71.456 1.00 33.77 6 ATOM 2491 CA LEU A 313 36.172 41.513 69.15 1.00 32.07 6 ATOM 2492 CB LEU A 313 36.172 41.513 69.15 1.00 32.14 6 ATOM 2492 CB LEU A 313 35.154 40.493 68.626 1.00 37.73 6 ATOM 2492 CB LEU A 313 35.154 40.493 68.626 1.00 37.73 6 ATOM 2499 CD LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2499 CD LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2499 CD LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2499 CD LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2499 CD LEU A 313 35.053 39.367 69.648 1.00 27.73 6 ATOM 2499 CD LEU A 313 35.053 39.367 69.648 1.00 27.73 6 ATOM 2499 CD LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATOM 2499 CD SER A 314 38.204 45.661 71.730 1.00 32.14 6 ATOM 2499 CD SER A 314 38.107 46.6154 69.256 1.00 37.32 8 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.32 8 A	MOTA			TRP A	A 310					_	1.00		
ATOM 2476 CA CYS A 311 33.169 48.085 68.985 1.00 32.36 6 6 1				TRP	A 310								
ATOM 2478 GC CYS A 311				CYS	A 311						1.00	32.82	
ATOM 2478 SG CYS À 311 33.439 49.401 67.796 1.00 32.01 6 ATOM 2479 C CYS À 311 33.912 46.061 70.206 1.00 32.01 6 ATOM 2480 O CYS À 311 34.452 46.313 71.280 1.00 29.82 8 ATOM 2481 N GLU À 312 33.062 45.049 70.053 1.00 32.57 7 ATOM 2482 CÀ GLU À 312 32.731 44.159 71.171 1.00 33.86 6 ATOM 2483 CB GLU À 312 30.442 43.185 71.844 1.00 40.27 6 ATOM 2485 CD GLU À 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2486 OEI GLU À 312 30.923 42.821 73.383 1.00 44.81 8 ATOM 2486 OEI GLU À 312 30.516 43.522 74.195 1.00 31.77 6 ATOM 2488 C GLU À 312 33.953 43.298 71.456 1.00 33.77 6 ATOM 2489 O GLU À 312 34.253 42.957 72.603 1.00 32.07 8 ATOM 2490 N LEU À 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2491 CÀ LEU À 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2492 CB LEU À 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2493 CG LEU À 313 35.587 39.367 69.648 1.00 27.73 6 ATOM 2494 CD1 LEU À 313 35.587 39.566 67.269 1.00 30.39 6 ATOM 2496 C LEU À 313 35.053 39.367 69.648 1.00 27.73 6 ATOM 2497 O LEU À 313 35.053 39.367 69.648 1.00 27.73 6 ATOM 2498 N SER À 314 38.232 45.067 70.328 1.00 31.64 6 ATOM 2497 O LEU À 313 36.976 43.031 70.903 1.00 31.64 6 ATOM 2498 N SER À 314 38.232 45.067 70.328 1.00 33.49 7 ATOM 2498 N SER À 314 38.232 45.067 70.328 1.00 33.49 7 ATOM 2498 N SER À 314 38.232 45.067 70.328 1.00 37.82 6 ATOM 2499 CA SER À 314 38.232 45.067 70.328 1.00 37.82 6 ATOM 2499 CA SER À 314 38.232 45.067 70.328 1.00 37.82 6 ATOM 2500 CB SER À 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER À 314 39.114 47.120 69.353 1.00 44.55 8 ATOM 2500 CB SER À 314 39.114 47.120 69.353 1.00 37.32 6 ATOM 2500 CB SER À 314 39.015 46.043 72.395 1.00 37.32 6 ATOM 2500 CB SER À 314 39.015 46.043 72.395 1.00 37.32 6 ATOM 2500 CB SER À 314 39.015 46.043 73.568 1.00 46.80 6 ATOM 2500 CB SER À 314 39.015 46.043 73.3568 1.00 46.80 6 ATOM 2500 CB SER À 314 39.015 46.043 73.3568 1.00 46.80 6 ATOM 2500 CB SER À 314 39.015 46.043 73.3568 1.00 46.80 6 ATOM 2500 CB SER À 314 39.015 46.043 73.3568 1.00 46.80 6 ATOM 2500 CB SER À 314 39.015 46.043 73.568 1.00 46.80 6		_							48.085		1.00	35.62	
ATOM 2480 O CYS A 311						3	3.439				1.00	32.30	
ATOM 2480 O CYS A 311		_		CYS	A 311			-			1.00	29 82	
ATOM 2481 N GLU A 312 33.062 45.049 70.033.86 6 ATOM 2482 CA GLU A 312 32.731 44.159 71.171 1.00 33.86 6 ATOM 2483 CB GLU A 312 30.442 43.185 71.844 1.00 40.27 6 ATOM 2485 CD GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2486 OE1 GLU A 312 30.923 42.821 73.383 1.00 44.81 8 ATOM 2487 CE2 GLU A 312 30.516 43.522 74.195 1.00 41.54 8 ATOM 2488 C GLU A 312 33.953 43.298 71.456 1.00 33.77 6 ATOM 2489 O GLU A 312 34.253 42.957 72.603 1.00 32.07 8 ATOM 2490 N LEU A 313 34.647 42.945 70.328 1.00 33.45 7 ATOM 2491 CA LEU A 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2492 CB LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATOM 2494 CD1 LEU A 313 35.557 39.956 67.269 1.00 30.39 6 ATOM 2495 CD2 LEU A 313 35.557 39.956 67.269 1.00 30.39 6 ATOM 2496 C LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2497 N SER A 314 38.232 45.067 70.328 1.00 31.64 6 ATOM 2497 O LEU A 313 37.005 42.793 71.925 1.00 31.74 8 ATOM 2498 N SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2499 CA SER A 314 38.207 46.154 69.256 1.00 35.59 6 ATOM 2497 CO LEU A 313 37.006 44.064 70.099 1.00 33.49 7 ATOM 2498 N SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2499 CA SER A 314 38.206 45.661 71.730 1.00 37.32 8 ATOM 2500 CB SER A 314 38.206 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 6 ATOM 2500 N GLY A 315 36.590 47.744 73.568 1.00 47.85 8				CYS	A 311			-					
ATOM 2483 CB GLU A 312 31.557 43.252 70.807 1.00 34.19 6 ATOM 2484 CG GLU A 312 30.442 43.185 71.844 1.00 40.27 6 ATOM 2485 CD GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2486 OE1 GLU A 312 30.516 43.522 74.195 1.00 41.54 8 ATOM 2487 CE2 GLU A 312 30.516 43.522 74.195 1.00 41.54 8 ATOM 2488 C GLU A 312 30.516 43.522 74.195 1.00 33.77 6 ATOM 2489 O GLU A 312 34.253 42.957 72.603 1.00 32.07 8 ATOM 2490 N LEU A 313 35.848 42.135 70.382 1.00 33.45 7 ATOM 2491 CA LEU A 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2492 CB LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATOM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2495 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2496 C LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2497 O LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 33.49 7 ATOM 2500 CB SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 37.82 6 ATOM 2500 CB SER A 314 38.066 45.661 71.730 1.00 37.82 6 ATOM 2500 C SER A 314 38.066 45.661 71.730 1.00 37.82 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 38.05 7 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 44.55 8 ATOM 2500 C SER A 314 38.046 45.661 71.730 1.00 44.55 8 ATOM 2500		2481	N	GLU .	A 312			_	-		1.00	33.86	
ATOM 2484 CG GLU A 312 30.442 43.185 71.844 1.00 40.27 6 ATOM 2485 CD GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATOM 2486 OE1 GLU A 312 30.923 42.821 73.383 1.00 44.81 8 ATOM 2487 OE2 GLU A 312 30.516 43.522 74.195 1.00 41.54 8 ATOM 2488 C GLU A 312 33.953 43.298 71.456 1.00 33.77 6 ATOM 2489 O GLU A 312 34.253 42.957 72.603 1.00 32.07 8 ATOM 2489 O GLU A 313 34.647 42.945 70.382 1.00 33.45 7 ATOM 2490 N LEU A 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2492 CB LEU A 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2493 CG LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATOM 2494 CD1 LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATOM 2495 CD2 LEU A 313 35.5587 39.956 67.269 1.00 30.39 6 ATOM 2495 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2496 C LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATOM 2499 CA SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2499 CA SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 37.82 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37				GLU	A 312						1.00	34.19	
ATCM 2485 CD GLU A 312 30.923 42.821 73.239 1.00 43.80 6 ATCM 2486 OE1 GLU A 312 31.685 41.831 73.383 1.00 44.81 8 ATOM 2487 CE2 GLU A 312 30.516 43.522 74.195 1.00 41.54 8 ATOM 2488 C GLU A 312 33.953 43.298 71.456 1.00 33.77 6 ATCM 2489 O GLU A 312 34.253 42.957 72.603 1.00 32.07 8 ATCM 2490 N LEU A 313 34.647 42.945 70.382 1.00 33.45 7 ATCM 2491 CA LEU A 313 35.848 42.135 70.473 1.00 32.89 6 ATCM 2492 CB LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATCM 2493 CG LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATCM 2494 CD1 LEU A 313 35.154 40.493 68.626 1.00 27.87 6 ATCM 2496 C LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATCM 2496 C LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATCM 2497 O LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATCM 2498 N SER A 314 37.605 42.793 71.925 1.00 31.74 8 ATCM 2499 CA SER A 314 38.232 45.067 70.328 1.00 33.49 7 ATCM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATCM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATCM 2500 C SER A 314 38.107 46.154 69.256 1.00 37.82 6 ATCM 2500 C SER A 314 38.107 46.154 69.256 1.00 37.82 6 ATCM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATCM 2500 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATCM 2500 C GLY A 315 36.506 46.243 73.498 1.00 44.55 8 ATCM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATCM 2500 C GLY A 315 36.5924 48.438 72.458 1.00 48.90 7	ATOM			GLU	A 314								
ATOM 2486 OE1 GLU A 312				CIII	A 312					73.239	1.00	43.80	
ATOM 2487 CE2 GLU A 312 30.516 43.522 74.195 1.00 41.54 6				1 GLU	A 312						1.00	44.81	
ATOM 2488 C GLU A 312 33.953 43.298 71.436 1.00 32.07 8 ATOM 2489 O GLU A 312 34.257 72.603 1.00 32.07 8 ATOM 2490 N LEU A 313 34.647 42.945 70.382 1.00 33.45 7 ATOM 2491 CA LEU A 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2492 CB LEU A 313 36.172 41.513 69.115 1.00 32.14 6 ATOM 2493 CG LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATOM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2495 CD2 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2495 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2496 C LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATOM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATOM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATCM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 37.32 8 ATOM 2500 CB SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2500 C SER A 314 39.015 46.043 72.395 1.00 37.82 6 ATOM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2500 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2500 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7				2 GLU	A 312		30.516	6	43.522		1.00	41.54	
ATOM 2489 O GLU A 312 34.253 42.957 72.803 1.00 33.45 7 ATOM 2490 N LEU A 313 35.848 42.135 70.473 1.00 32.89 6 ATOM 2491 CA LEU A 313 35.848 42.135 70.473 1.00 32.14 6 ATOM 2492 CB LEU A 313 36.172 41.513 69.115 1.00 32.14 6 ATOM 2493 CG LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2495 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2496 C LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATOM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATOM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2500 CB SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2504 N GLY A 315 36.506 46.243 73.498 1.00 44.55 8 ATOM 2504 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2507 O GLY A 315 36.5923 48.276 74.618 1.00 47.85 8 ATOM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7							33.953	3		71.456		33.//	
ATOM 2490 N LEU A 313				GLU	A 312							32.07	
ATCM 2491 CA LEU A 313 35.848 41.513 69.115 1.00 32.14 6 ATCM 2492 CB LEU A 313 36.172 41.513 69.115 1.00 32.14 6 ATCM 2493 CG LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATCM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATCM 2495 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATCM 2496 C LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATCM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATCM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATCM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATCM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATCM 2500 CB SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATCM 2501 OG SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATCM 2502 C SER A 314 39.141 47.120 69.353 1.00 37.82 6 ATCM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATCM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATCM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2507 O GLY A 315 36.596 47.744 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 36.295 47.744 73.568 1.00 47.85 8 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7			N	LEU	A 313		34.64	7				32.89	
ATOM 2492 CB LEU A 313 35.154 40.493 68.626 1.00 27.73 6 ATOM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATOM 2495 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2496 C LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATOM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATOM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2500 CB SER A 314 39.141 47.120 69.353 1.00 44.55 ATOM 2502 C SER A 314 39.141 47.120 69.353 1.00 37.82 6 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2505 CA GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATOM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2507 O GLY A 315 36.595 47.744 73.568 1.00 46.80 6 ATOM 2507 O GLY A 315 36.595 47.744 73.568 1.00 47.85 8 ATOM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7		2491	CA	LEU	A 313							32.14	
ATCM 2494 CD1 LEU A 313 35.587 39.956 67.269 1.00 30.39 6 ATCM 2495 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATCM 2496 C LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATCM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATCM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATCM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATCM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATCM 2500 CB SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATCM 2502 C SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATCM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATCM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATCM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATCM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2507 O GLY A 315 36.595 47.744 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 36.295 47.744 73.568 1.00 47.85 8 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7							35 15	2 A			. 1.00	27.73	6
ATOM 2494 CD2 LEU A 313 35.053 39.367 69.648 1.00 27.87 6 ATOM 2496 C LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATOM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATOM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2501 OG SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATOM 2502 C SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATOM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2507 O GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATOM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7	ATCM			LEU	A 313					67.269	.1.00	30.39	6
ATOM 2495 CD LEU A 313 36.976 43.031 70.903 1.00 31.64 6 ATOM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATOM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.49 7 ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2501 OG SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATOM 2502 C SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2503 O SER A 315 36.794 45.725 72.175 1.00 38.05 7 ATOM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2507 O GLY A 315 36.595 47.744 73.568 1.00 46.80 6 ATOM 2507 O GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATOM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7					Y 212					69.648	1.00	27.87	6
ATOM 2497 O LEU A 313 37.605 42.793 71.925 1.00 31.74 8 ATOM 2498 N SER A 314 37.206 44.064 70.099 1.00 33.499 7 ATCM 2498 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2501 OG SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATCM 2502 C SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATCM 2503 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2503 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATCM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATCM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2506 C GLY A 315 36.506 46.243 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 35.923 48.276 74.618 1.00 48.90 7 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90				121	A 313					70.903	1.00	31.64	6
ATCM 2498 N SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATCM 2499 CA SER A 314 38.232 45.067 70.328 1.00 35.59 6 ATCM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATCM 2501 OG SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATCM 2502 C SER A 314 39.141 47.120 69.353 1.00 37.82 6 ATCM 2503 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATCM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATCM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2506 C GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2507 O GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7				LEU	A 313							31.74	7
ATOM 2499 CA SER A 314 38.232 45.067 70.328 1.00 36.47 6 ATOM 2500 CB SER A 314 38.107 46.154 69.256 1.00 36.47 6 ATOM 2501 OG SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATOM 2502 C SER A 314 38.046 45.661 71.730 1.00 37.82 6 ATOM 2503 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATOM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.506 46.243 73.568 1.00 46.80 6 ATOM 2507 O GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATOM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATOM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7				SER	A 314) 33.49	6
ATOM 2500 CB SER A 314 39.141 47.120 69.353 1.00 44.55 8 ATOM 2501 OG SER A 314 39.141 47.120 69.353 1.00 37.82 6 ATOM 2502 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATOM 2503 C SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATOM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATOM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATOM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATOM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7					A 314		38.23	2				36 17	
ATCM 2501 OG SER A 314 39.141 47.120 69.333 1.00 37.82 6 ATCM 2502 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATCM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATCM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATCM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2506 C GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7					A 314							1 44 55	8
ATCM 2502 C SER A 314 38.046 45.661 71.730 1.00 37.32 8 ATCM 2503 O SER A 314 39.015 46.043 72.395 1.00 37.32 8 ATCM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATCM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2506 C GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7				SER	A 314							37.82	6
ATOM 2503 0 SER A 314 39.015 46.045 72.175 1.00 38.05 7 ATOM 2504 N GLY A 315 36.794 45.725 72.175 1.00 38.05 7 ATOM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATOM 2506 C GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATOM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATOM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7				SER	A 314							37.32	8
ATCM 2504 N GLY A 315 36.794 45.723 73.498 1.00 42.42 6 ATCM 2505 CA GLY A 315 36.506 46.243 73.498 1.00 42.42 6 ATCM 2506 C GLY A 315 36.295 47.744 73.568 1.00 46.80 6 ATCM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7				SER	A 314							38.05	7
ATCM 2505 CA GLY A 315 36.306 48.243 73.568 1.00 46.80 6 ATCM 2506 C GLY A 315 36.295 47.744 73.568 1.00 47.85 8 ATCM 2507 O GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7		2504	1 N	GLY	A 315						3 1.0	0 42.42	6
ATCM 2506 C GLY A 315 35.923 48.276 74.618 1.00 47.85 8 ATCM 2507 O GLY A 315 35.923 48.276 74.618 1.00 48.90 7 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90 7		2505		GLY	A 315						1.0	0 46.80	6
ATCM 2507 O GLY A 313 35.518 48.438 72.458 1.00 48.90 7 ATCM 2508 N ARG A 316 36.518 48.438 72.458 1.00 48.90		2500		GLY	Y 312						1.0	0 47.85	. 8
ATCM 2508 N ARG A 525	ATCM	250		GLY	A 316						_	0 48.90	7
	ATCM	250	R N		7.			_		-			

			- 50 3 31	6	36	346	49.885	72.448	1.00 52.27	6
MOTA	2509	CA	ARG A 31			144	50.479	71.283	1.00 53.60	6
MOTA	2510	CB	ARG A 31	.0		730	50.007	69.900	1.00 52.11	6
ATOM	2511	CG	ARG A 31	.6			50.514	68.870	1.00 53.76	6
ATOM	2512	CD	ARG A 31	.6		734		69.019	1.00 53.67	7
MOTA	2513	NE	ARG A 31	.6		028	49.854	68.383	1.00 55.34	6
ATOM .	2514	CZ	ARG A 31	.6		135	50.221	67.552	1.00 55.44	7
ATOM	2515	NH1	ARG A 31	.6		110	51.253		1.00 55.80	7 .
ATOM	2516	NH2	ARG A 31	L 6		266	49.546	68.569	1.00 52.06	6
ATOM	2517	С	ARG A 31	16	34.	882	50.343	72.391		8
ATOM	2518	ō	ARG A 31	16	34.	075	49.781	. —	1.00 54.96	7
ATOM	2519.	N	GLU A 31	L7	34.	547	51.361	73.182	1.00 51.87	
	2520	CA	GLU A.31	L7		185	51.900	73.222	1.00 52.67	6
MOTA	2521	CB	GLU A 31	17	33.	111	53.139	74.123	1.00 54.70	6
MOTA	2522	CG	GLU A 31	17	32.	. 549	52.901	75.527	1.00 60.94	6
MOTA	2523	CD	GLU A 3			. 353	51.912	76.361	1.00 64.62	6
MOTA	2524	OE1	GLU A 3		33.	. 025	51.741	77.556	1.00 64.59	8 -
ATOM	2525	OE2	<u> </u>		34.	. 305	51.302	75.832	1.00 68.64	8
ATOM	2526	C	GLU A 3		32	.642	52.256	71.843	1.00 51.27	6
MOTA		Ö	GLU A 3			.270	52.983	71.077	1.00 49.34	8
MOTA	2527	И	VAL A 3		31	.457	51.733	71.548	1.00 51.30	7
ATOM	2528	CA	VAL A 3	18		.780	51.962	70.280	1.00 48.80	6
MOTA	2529		VAL A 3			.522	51.071	70.169	1.00 47.11	6
MOTA	2530	CB	VAL A 3	18		.875	51.237	68.808	1.00 45.53	6
ATOM	2531	CGI	VAL A 3	18		.895	49.631	70.424	1.00 47.05	6
MOTA	2532		VAL A 3	10		.349	53.411	70.178	1.00 47.64	6
MOTA	2533	C	VAL A 3			.511	53.867	70.953	1.00 47.61	8
ATOM	2534	0	PRO A 3			.925	54.165	69.234	1.00 48.14	7
ATOM	2535	N	PRO A 3			.960	53.836	68.247	1.00 48.87	б
MOTA	2536	CD	PRO A 3			.538	55.569	69.093	1.00 52.54	6
MOTA	2537	CA	PRO A 3	10		.438	56.051	67.954	1.00 49.96	6
MOTA	2538	CB	PRO A 3	10		.612	54.802	67.141	1.00 50.17	6
MOTA	2539	CG	PRO A 3			.052	55.679	68.764	1.00 55.84	6
MOTA	2540	C	PRO A 3			.531	54.913	67.953	1.00 56.06	8
MOTA	2541	0	GLU A 3	20		.369	56.624	69.402	1.00 59.20	7
MOTA	2542	N	GLU A 3	20		.942	56.804	69.167	1.00 62.61	6
MOTA	2543	CA	GLU A 3	20		.302	57.588	70.313	1.00 65.59	6
ATOM	2544	CB	GLU A 3	20		.727	59.042	70.365	1.00 73.01	6
MOTA	2545	CG CD	GLU A 3	20		.007	59.823	71.451	1.00 76.93	6
ATOM	2546	OE:				.755	59.832	71.446	1.00 77.37	8
MOTA	2547 2548	OE.	GLU A 3	20		.697	60.431	72.303	1.00 79.46	8
ATOM	2549	C C	GLU A 3	320	26	.698	57.551	67.863	1.00 61.40	6
ATOM	2550	0	GLU A 3	320	25	.663	58.197	67.699	1.00 62.33	8
MOTA	2551	Ŋ	LYS A 3	321	27	.650	57.463	66.939	1.00 59.47	7
ATOM	2552	CA	LYS A	321	27	7.519	58.150		1.00 59.54	6
ATOM	2553	CB	LYS A 3	321	27	7.340	59.648		1.00 61.36	6 6
ATOM	2554	CG			27	3.620	60.323	66.366	1.00 65.23	6
MOTA MOTA	2555	ÇD	LYS A 3	321	: 3	.169	59.691	67.643	1.00 66.59	6
MOTA	2556	CE	LYS A	321		.564	60.215		1.00 67.34	7
MOTA	2557	NZ	LYS A 3	321	30).591	61.699		1.00 68.58	6
ATOM	2558	C	LYS A	321		3.766			1.00 59.24	8
MOTA	2559	ō	LYS A	321		845				
ATOM	2560	N	LEU A	322		3.608			1.00 57.55	6
ATOM	2561	CA			29	9.702	58.002		1.00 54.72	
	2562	CB			29	9.171				6
ATOM	2563	CG			21	B.141	56.316			
MOTA	2564	CD	1 LEU A	322		7.708				
ATOM	2565	מה	2 LEU A	322		8.716				
MOTA	2566		LEU A	322	3	0.250	59.406	62.313		
ATOM	2567		LEU A	322	2	9.512				8
MOTA	2568		ASN A	323		1.530				
ATOM	2569			323	3	2.089				
ATOM	2570			323	3	3.591	L 60.90			
ATOM		_		323	3	4.428	3 59.964	4 61.189		
MOTA	2571 2572		1 ASN A	323		4.386	5 58.744			
ATCM	2573		2 ASN A	323		5.195	60.53			•
ATCM	2574 2574		ASN A	323		1.843		9 60.243	1.00 48.63	, ,
ATOM	20/4							-		

				Figure 1/-40				
ATOM	2575	0	ASN A 323	31.135	60.479	59.538	1.00 47.52	8
ATOM	2576	N	ASN A 324	32.426	62.304	59.792	1.00 47.66	7
ATOM	2577	CA	ASN A 324	32.242	62.769	58.419	1.00 49.25	6
ATOM	2578	CB	ASN A 324	32.758	64.200	58.292	1.00 50.73	6
ATOM	2579	CG	ASN A 324	32.025	65.154	59.205	1.00 53.83	6
ATOM	2580		ASN A 324	30.812	65.314	59.096	1.00 56.90	8
ATOM	2581		ASN A 324	32.755	65.789	60.119	1.00 54.93	7
ATOM	2582	C	ASN A 324	32.906	61.891	57.367	1.00 49.34	6
ATOM	2583	ō	ASN A 324	32.275	61.502	56.379	1.00 47.22	8
ATOM	2584	N	LYS A 325	34.182	61.590	57.586	1.00 48.27	7
ATOM	2585	CA	LYS A 325	34.957	60.759	56.676	1.00 46.57	6
ATOM	2586	CB	LYS A 325	36.314	60.453	57.305	1.00 49.94	6
ATOM	2587	CG	LYS A 325	37.299	59.737	56.399	1.00 54.75	6
ATOM	2588	CD	LYS A 325	38.562	59.329	57.173	1.00 58.22	6
ATOM	2589	CE	LYS A 325	39.236	60.521	57.844	1.00 58.35	6
ATOM	2590	NZ	LYS A 325	40.473	60.128	58.566	1.00 59.81	7
ATOM	2591	С	LYS A 325	34.202	59.458	56.410	1.00 44.85	6
ATOM	2592	0	LYS A 325	34.065	59.027	55.263	1.00 43.59	8
ATOM	2593	N	ALA A 326	33.712	58.843	57.483	1.00 42.27	7
ATOM	2594	CA	ALA A 326	32.964	57.597	57.387	1.00 40.91	6
MOTA	2595	CB	ALA A 326	32.663	57.067	58.773	1.00 36.86	6
MOTA	2596	С	ALA A 326	31.666	57.803	56.612	1.00 43.30	6
MOTA	2597	0	ALA A 326	31.342	57.028	55.705	1.00 42.83	8
MOTA	2598	N	LYS A 327	30.918	58.843	56.977	1.00 45.56	7
MOTA	2599	CA	LYS A 327	29.657	59.146	56.306	1.00 47.23	6 6
ATOM	2600	CB	LYS A 327	29.023	60.407	56.892	1.00 49.59 1.00 54.63	6
MOTA	2601	CG	LYS A 327	28.547	60.263 61.591	58.329	1.00 55.89	5
ATOM	2602	CD	LYS A 327	28.024		58.862 60.299	1.00 58.28	6
MOTA	2603	CE	LYS A 327	27.529 26.304	61.483 60.644	60.426	1.00 59.91	7
ATOM	2604	NZ	LYS A 327	29.888	59.347	54.816	1.00 46.97	6
ATOM	2605	C	LYS A 327 LYS A 327	29.090	58.913	53.990	1.00 48.10	8
ATOM	2606	0	GLU A 328	30.986	60.012	54.480	1.00 44.99	7
ATOM	2607	N	GLU A 328	31.325	60.264	53.091	1.00 43.18	6
MOTA	2608 2609	CA CB	GLU A 328	32.417	61.326	53.027	1.00 47.93	6
MOTA	2610	CG	GLU A 328	31.993	62.621	53.710	1.00 53.65	6
MOTA MOTA	2611	CD	GLU A 328	33.112	63.630	53.831	1.00 55.79	6
ATOM	2612	OE1	GLU A 328	33.642	64.060	52.783	1.00 58.73	8
ATOM	2613	OE2	GLU A 328	33.459	63.991	54.979	1.00 58.13	8
ATOM	2614	C	GLU A 328	31.789	58.971	52.437	1.00 41.56	6
ATOM	2615	ō	GLU A 328	31.537	58.743	51.255	1.00 39.41	8
ATOM	2616	N	LEU A 329	32.465	58.123	53.211	1.00 40.64	7
MOTA	2617	CA	LEU A 329	32.940	56.844	52.695	1.00 36.45	6
ATOM	2618	CB	LEU A 329	33.623	56.032	53.801	1.00 34.70	6
ATOM	2619	CG	LEU A 329	34.100	54.610	53.433	1.00 35.69	6
MOTA	2620	CD1	LEU A 329	35.195	54.642	52.359	1.00 30.11	6
ATOM	2621	CD2	LEU A 329	34.619	53.926	54.683	1.00 34.63	6
ATOM	2622	С	LEU A 329	31.746	56.064	52.157	1.00 35.77	6
ATOM	2623	0	LEU A 329	31.692	55.746	50.975	1.00 34.94	8
ATOM	2624	N	LEU A 330	30.784	55.770	53.029	1.00 34.78	7 6
ATOM	2625	CA	LEU A 330	29.599	55.028	52.630	1.00 34.95 1.00 30.95	6
ATOM	2626	CB	LEU A 330	28.631	54.914	53.803	1.00 30.95	6
MOTA	2627	CG	LEU A 330	29.164	54.115	54.991 56.022	1.00 32.00	6
MOTA	2628	CD1	LEU A 330	28.051	53.904	54.509	1.00 30.73	6
MOTA	2629		LEU A 330	29.674	52.769 55.631	51.428	1.00 37.28	6
MOTA	2630	C	LEU A 330	28.877 28.395	54.901	50.557	1.00 40.56	8
ATOM	2631	0	LEU A 330	28.806	56.957	51.383	1.00 38.24	7
MOTA	2632	N	LYS A 331 LYS A 331	28.140	57.661	50.294	1.00 39.59	6
MOTA	2633	CA	LYS A 331	27.994	59.146	50.643	1.00 42.31	č
ATOM	2634	CB CG	LYS A 331	27.129	59.399	51.873	1.00 45.93	6
ATOM	2635	CD	LYS A 331	27.017	60.879	52.244	1.00 49.72	6
ATOM	2636 2637	CE	LYS A 331	26.271	61.698	51.193	1.00 53.66	6
ATOM	2638	NZ	LYS A 331	26.053	63.114	51.640	1.00 54.22	7
ATOM	2639	C	LYS A 331	28.863	57.514	48.958	1.00 41.02	6
MOTA MOTA	2640	Ö	LYS A 331	28.220	57.485	47.904	1.00 39.58	8
A I UM	J-12-U	_						

									AAE	1.00		2 69	7.
	2641	N	SER A 332		30.	. 192	57.413		.005	1.00	44	2.05	
ATOM		-		-	ì۸	. 998	57.274	47	.792	1.00	4 (6.02	6
MOTA	2642	CA	SER A 332					4.0	.124	1 00	Δ.	7.51	6
		CB	SER A 332		32.	. 494	57.243			1.00			
MOTA					2 2	.862	56.066	48	. 823	1.00) 51	0.97	8
ATOM	2644	OG	SER A 332							1 00	1 4	8.51	6
		С	SER A 332		30.	. 634	56.007		.040	1.00			
MOTA	2645	_	3EK 11 332			.706	55.959	45	.811	1.00	4'	9.45	8
ATOM	2646	0	SER A 332 -				55.555			1 00	5	1.56	7
	_	NT.	ILE A 333		30.	.241	54.982	4.	7.786	1.00	, ,	1.50	
ATOM	2647	N	THE R 333			.869	53.713	47	7.187	1.00) 5	4.86	6
ATOM	2648	CA	ILE A 333							3 00	٠ 5	5.80	6
			ILE A-333		29	. 657	52.626		3.246				
MOTA	2649	CB				.388	51.285	Δ-	7.559	1.00	5 (2.34	6
ATOM	2650	CG2	ILE A 333									6.89	6
		CG1	ILE A 333		30	. 892	52.522	4:	9.140	1.00	, ,	0.05	
ATOM	2651	(61	THE K 333			.766	51.456	50	204	1.00	ງ 6	0.31	6
MOTA	2652	CD1	ILE A 333							1 00	, E	7.07	6
			ILE A 333		28	. 579	53.813		5.396	1.00	, ,	7.07	
ATOM	2653	С				.572	54.321	4	5.897	1.00	ა 5	5.59	8
MOTA	2654	0	ILE A 333							3 0/	n 6	1.14	7
		N	ASP A 334 -		28	.623	53.320		5.160				
MOTA	2655		757 75 757		27	.456	53.300	4	4.281	1.00	ე 6	55.55	6
MOTA	2656	CA	ASP A 334							1 0	n 6	9.19	6
	2657	CB	ASP A 334		27	.888	53.259		2.811	1.0	J -	,,,,,	
MOTA					28	.784	52.073	4	2.491	1.0	07	70.21	5
ATOM	2658	CG	ASP A 334						1.298	1 0	0.7	71.47	8
	2659	001	ASP A 334		29	.097	51.875			1.0			
MOTA			334		20	.181	51.344	4	3.427	1.0	0 7	70.91	8
MOTA	2660	OD2	ASP A 334						4.627	1 0	$0 \in$	55.65	6
	2661	С	ASP A 334		26	.660	52.041			1.0			
MOTA			334		26	.797	50.996	4	3.990	1.0	0 6	53.91	8
ATOM	2662	0	ASP A 334	•						1.3	0 6	65.73	7
	2663	N	PHE A 335		25	.822	52.153	4	5.649	1.0			
ATOM			235		25	.041	51.021	4	6.104	1.0	0 6	63.44	6
MOTA	2664	CA	PHE A 335						7.632	1.0	0 5	58.05	6
	2665	CB	PHE A 335		24	.980	51.034			1.0	- :		
ATOM					24	.039	50.028	4	8.195	1.0	0 :	53.82	6
MOTA	2666	CG	PHE A 335						7.886	1.0	0.5	52.40	6
	2667	CD1	PHE A 335			1.178	48.679					C1 22	6
ATOM		222	PHE A 335		22	.978	50.429	4	8.989	1.0	·U :	51.33	
ATOM	2668	CD2	PRE A 333				47.742	4	8.356	1.0	0 9	52.73	6
ATOM	2669	CE1	PHE A 335			.265				1 0		53.20	6
		CE2			22	2.062	49.503	4	9.462	1.0	/U :	55.20	
ATOM	2670	CEZ	PRE A 333		3	2.204	48.151		9.144	1.0	10 1	51.76	6
ATOM	2671	CZ	PHE A 335							1 0	۱Ä.	65.55	6
		C	PHE A 335		23	3.629	50.893	. 4	15.535	1.0	,,,	05.55	
ATOM	2672	C	FAL A 335		2.3	3.230	49.810	۱ ۵	15.097	1.0	י סנ	67.33	8
MOTA	2673	0	PHE A 335							1 0	١٥	66.47	7
		N	GLU A 336		22	2.874	51.986	, 4	15.537	1	, ,		
MOTA	2674		GD0 7. 330		2.1	1.497	51.948		15.048	1.0)0	67.43	6
MOTA	2675	CA	GLU A 336							_	۱0	71.79	6
	2676	CB	GLU A 336		2:	1.422	51.379		13.626		,,,	72.77	
ATOM			220 11 226		3 0	9.982	51.245	5 4	13.116	1.0	סכ	78.77	6
MOTA	2677	CG	GLU A 336						11.789	_	าด	82.67	6
	2678	CD	GLU A 336		1:	9.868	50.505						8
MOTA			22.17 3 22.6		21	0.232	49.306	5 4	41.734	1.0)()	83.29	
ATOM	2679	OE1	GLU A 336				51.126		40.801	1.6	0.0	84.26	8
	2680	OE2	GLU A 336		1	9.410						C4 77	6
ATOM			GLU A 336		21	0.655	51.069	•	45.971	. 1.0	JU	64.72	
MOTA	2681	. C	GLU A 330				49.840		45.876		00	59.84	8
ATOM	2682	0	GLU A 336			0.686		-			^^	64.47	7
			GLU A 337		1	9.901	51.710)	46.858				
MOTA	2683	N	GPO Y 22,				_		47.805	1.0	٥٥	65.83	6
MOTA	2684	CA	GLU A 337			9.045		-			ΛΛ.	64.20	6
		CB	GLU A 337		1	8.398	52.003		48.759		30	04.20	
MOTA	2685		GLU A 337			7.753			49.964	1.4	00	64.26	6
MOTA	2686	CG	GLU A 337					~	50 OE			64.04	6
	_	CD	GLU A 337		1	8.774	50.6)(U	50.850			04.05	-
MOTA	2687		GEO 2: 337			9.741	51.3.		51.261	1.	00	61.66	8
MOTA	2688	OE1	GLU A 337								ሰበ	63.64	8
	2689	OF?	2 GLU A 337		1	8.608	49.48		51.132			65.00	
MOTA			337			7.950		9	47.063	3 1.	00	67.13	6
ATOM	2690	С	GLU A 337						46.20		იი	68.27	8
	2691	0	GLU A 337		1	7.269	50.80	,				68 33	7
ATOM			320 11 330			7.779			47.394	1 1.	00	67.22	
ATOM	2692	N	PHE A 338						46.74	2 1	വ	68.05	6
	2693	CA	PHE A 338		1	6.764	48.12	7				60.60	_
MOTA						6.445		9	47.62	51.	00	69.68	6
ATOM	2694	CB	PHE A 338						47.18		ሰበ	72.35	6
	2695	CG	PHE A 338		1	5.228	46.15	đ					č
MOTA						5.122		4	45.88	в 1.		72.37	6
ATOM	2696	CD:	1 PHE A 338				45 04	1	48.07		00	73.61	6'
	2697	CD.	2 PHE A 338		1	4.172				_	~~	72 20	
MOTA						3.980			45.47	81.	00	73.39	6
ATOM	2698	CE:	1 PHE A 338						47.67		00	73.26	6
		CE			1	13.024	45.25	U				77 74	ē
ATOM	2699		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			2.929		1	46.36	91.	, 00	73.34	6
ATOM	2700	CZ	PHE A 338						46.43		00	68.45	6
			PHE A 338		1	15.48	L 48.90		40.43			67 00	
ATOM	2701				-	5.286	49.36	57	45.31	0 1.	. 00	67.92	
ATOM	2702	0	PHE A 338						47.42		.00	68.98	7
			ASP A 339		1	14.60	49.02				~~	70 50	
atom			300 3 370		1	13.35			47.26	1 1.	. ບບ	70.68	
ATOM	2704	CA	ASP A 339		_		- 40 75		48.58		. 00	71.06	6
			ASP A 339		:	12.59				_	00	72 05	
ATOM						11.38		78	48.58	1 1	. UU	72.05	, 0
3 mOM	2706	CG	ASP A 339				,	-	•				

								_
	2707	OD1 ASP A 339		11.548	51.893	48.320	1.00 72.29	8
ATOM		OD2 ASP A 339		10.262	50.188	48.858	1.00 71.03	8
MOTA	2708				51.183	46.853	1.00 73.18	6
ATOM	2709	C ASP A 339		13.715			1.00 73.78	8
ATOM	2710	O ASP A 339		14.407	51.884	47.592	1.00 75.70	7
		N ASP A 340		13.247	51.600	45.677	1.00 76.36	
MOTA	2711			13.518	52.943	45.152	1.00 78.34	6
ATOM	2712	CA ASP A 340			53.385	44.189	1.00 77.55	6
ATOM	2713	CB ASP A 340		12.410	33.363		1.00 78.90	6
ATOM	2714	CG ASP A 340		12.462	52.655	42.864		
		OD1 ASP A 340		12.348	51.408	42.855	1.00 78.38	8
MOTA	2715	ODI ASI A SAO		12.620	53.336	41.830	1.00 78.74	8
MOTA	2716	OD2 ASP A 340			54.017	46.214	1.00 79.51	6
MOTA	2717	C ASP A 340	-	13.687			1.00 80.19	8
ATOM	2718	O ASP A 340		14.587	54.856	46.117		7
		N GLU A 341		12.824	54.000	47.224	1.00 79.64	
MOTA	2719			12.922	54.998	48.271	1.00 80.05	6
ATOM	2720	CA GLU A 341			56.301	47.811	1.00 83.75	6
MOTA	2721	CB GLU A 341		12.269			1.00 89.02	6
ATOM	2722	CG GLU A 341		12.411	57.442	48.806		
		CD GLU A 341		11.756	58.724	48.328	1.00 91.52	6
ATOM	2723			10.515	58.738	48.175	1.00 93.33	8
MOTA	2724	OE1 GLU A 341			59.716	48.102	1.00 92.65	8
MOTA	2725	OE2 GLU A 341		12.484			1.00 77.98	6
	2726	C GLU A 341		12.317	54.578	49.597	1.00 77.50	8
ATOM		O GLU A 341		11.102	54.610	49.777	1.00 79.82	
ATOM	2727			13.179	54.181	50.523	1.00 74.49	7.
MOTA	2728	N VAL A 342			53.793	51.859	1.00 71.55	6
ATOM	2729	CA VAL A 342		12.745			1.00 72.40	6
ATOM	2730	CB VAL A 342		13.224	52.383	52.245	1.00 72.40	6
	2731	CG1 VAL A 342		12.672	52.004	53.610	1.00 71.16	
MOTA				12.797	51.391	51.207	1.00 74.35	6
MOTA	2732			13.454	54.778	52.766	1.00 68.46	6
MOTA	2733	C VAL A 342				53.829	1.00 68.96	8
ATOM	2734	O VAL A 342		12.952	55.154		1.00 61.61	7
	2735	N ASP A 343		14.636	55.184	52.311		
MOTA				15.486	56.114	53.029	1.00 54.91	6
MOTA	2736			14.678	57.303	53.543	1.00 55.06	6
MOTA	2737	CB ASP A 343			58.390	54.114	1.00 54.44	6
MOTA	2738	CG ASP A 343		15.556			1.00 56.20	8
	2739	OD1 ASP A 343		15.002	59.3 5 1	54.694		
ATOM		OD2 ASP A 343		16.795	58.287	53.969	1.00 49.32	8
ATOM	2740			16.152	55.401	54.198	1.00 50.85	6
MOTA	2741	C ASP A 343			55.209	55.257	1.00 49.32	8
ATOM	2742	O ASP A 343		15.557		53.980	1.00 47.84	7
MOTA	2743	N ARG A 344		17.396	55.004		1.00 45.34	6
	2744	CA ARG A 344		18.195	54.321	54.981	1.00 45.34	
ATOM				18.883	53.099	54.358	1.00 45.00	6
ATOM	2745	CB ARG A 344		17.950	51.969	53.974	1.00 38.03	6
MOTA	2746	CG ARG A 344		-	51.531	55.188	1.00 35.83	6
MOTA	2747	CD ARG A 344		17.185			1.00 39.20	7
ATOM	2748	NE ARG A 344		16.278	50.439	54.885		6
-		CZ ARG A 344		15.350	49.993	55.724	1.00 39.89	
ATOM	2749	CZ ARO 1. 211		15.217	50.561	56.917	1.00 40.17	7
ATOM	2750	NH1 ARG A 344		14.566	48.976	55.375	1.00 40.75	7
ATOM	2751	NH2 ARG A 344		14.500		55.515	1.00 44.72	6
ATC I	2752	C ARG A 344		19.250	55.278			8
	2753	O ARG A 344		20.170	54.869	56.223	1.00 46.97	7
ATCM				19.113	56.552	55.157	1.00 45.81	
ATC:!	2754	N SER A 345		20.045	57.596	55.577	1.00 43.66	6
ATOM	2755	CA SER A 345			58.960	55.115	1.00 43.44	6
MOTA	2756	CB SER A 345		19.538		55.222	1.00 45.62	8
ATOM	2757	OG SER A 345		18.292	59.260	55.722	1.00 43.02	6
		C SER A 345		20.258	57.627	57.089	1.00 42.79	
ATOM	2758	C SER 7 345		21.364	57.902	57.552	1.00 42.62	8
ATOM	2759	O SER A 345					1.00 40.55	7
ATOM	2760	N TYR A 346		19.200			1.00 41.05	6
MOTA	2761	CA TYR A 346		19.280		59.308	1.00 41.00	6
				17.971	56.819		1.00 41.74	
ATOM	2762			17.668			1.00 43.47	6
ATOM	2763	CG TYR A 346					1.00 44.45	6
ATOM	2764	CD1 TYR A 346		18.331				6
	2765	CE1 TYR A 346		18.044	52.983			6
MOTA				16.710	54.988	58.682	1.00 42.08	
ATOM	2766			16.416	53.644		1.00 40.59	6
ATCM	2767	CE2 TYR A 346						5
ATCM	2768	CZ TYR A 346		17:086				8
	2769			16.806				6
ATCM		2.4.0		20.466				
ATCM	2770	C TYR A 346		21.101			1.00 42.65	8
ATCM	2771	O TYR A 346						7
ATOM	2772	N MET A 347		20.757	55.443	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

			245		21.859	۱ د	54.546	59.388	1.00 4	5.89	6
ATOM	-	CA	MET A 347					58.353	1.00 4	5.51	6
ATOM	2774	CB	MET A 347		21.950	-		58.244	1.00 4	5 01	6
ATOM		CG	MET A 347		20.727				1.00 4	7 13	16
		SD	MET A 347		21.062			57.066	1.00 4	11.22	6
ATOM		CE	MET A 347		21.545		52.237	55.676	1.00 4		
ATOM			MET A 347		23.188	3	55.286	59.404	1.00 4		6
ATOM -		C	MET A 347		24.129		54.888	60.098	1.00 4		8
MOTA	2779	0	MEI A 347		23.25		56.351	58.610	1.00 4	19.03	7
MOTA	2780	N	LEU A 348		24.45		57.178	58.499	1.00 4	18.86	6
ATOM	2781	ÇA	LEU A 348				58.082	57.269	1.00 4	45.51	6
ATOM	2782	CB	LEU A 348		24.35			55.895	1.00		6
ATOM	2783	CG	LEU A 348		24.28	U	57.424		1.00	43 62	6
ATOM	2784	CD1	LEU A 348		23.90		58.476	54.859	1.00		6
ATOM	2785	CD2	LEU A 348	•	25.61		56.757	55.565-	1.00	42.33	6
	2786	C	LEU A 348		24.64	4	58.049	59.738	1.00	49.33	
ATOM	_	0	LEU A 348		25.76	5	58.369	60.123	1.00	49.78	8
MOTA	2787		GLU A 349		23.53	7	58.428	60.358	1.00		7 -
MOTA	2788	N	GLU A 349		23.59		59.279	61.533	1.00	49.24	6
MOTA	2789	CA			22.19		59.848	61.811	1.00	48.36	6
MOTA	2790	CB	GLU A 349		21.62		60.584	60.607	1.00	45.52	6
ATOM	2791	CG	GLU A 349		22.59		61.619	60.065	1.00	42.94	6
MOTA	2792	CD	GLU A 349				62.560	60.812		40.82	8
MOTA	2793	OE1	GLU A 349		22.93			58.900		38.30	8
ATOM	2794	OE2	GLU A 349		23.02		61.483			48.32	6
ATOM	2795	С	GLU A 349		24.11		58.531	62.745		47.87	8
MOTA	2796	0	GLU A 349		25.22	6	58.783	63.219	1.00		7
	2797	N	THR A 350		23.32		57.602	63.248	1.00	48.97	6
ATOM	2798	CA	THR A 350		23.74	4	56.832	64.398		50.70	
ATOM	_	СВ	THR A 350		22.55		56.596	65.342	1.00	51.02	6
MOTA	2799	0G1			22.07		57.865	65.803		49.11	8
MOTA	2800	-			22.98		55.763	66.537	1.00	51.58	6
MOTA	2801	CG2	THR A 350		24.36		55.507	63.954		49.56	6
MOTA	2802	C	THR A 350		23.97		54.947	62.923	1.00	50.55	8
MOTA	2803	0			25.33		55.028	64.725		46.88	7
ATOM	2804	N	LEU A 351		26.01		53.781	64.417	1.00	45.35	6
ATOM	2805	CA	LEU A 351				53.726	65.185		47.05	6
MOTA	2806	CB	LEU A 351		27.34		52.502	65.072		49.54	6
ATOM	2807	CG	LEU A 351		28.25		52.777	65.766	1 00	51.50	6
ATOM	2808	CDI	L LEU A 351		29.57			65.692	1 00	48.35	6
ATOM	2809	CD2			27.60		51.302	64.772	1 00	44.79	6
MOTA	2810	C	LEU A 351		25.14		52.584			41.45	8
ATOM	2811	0	LEU A 351		25.13		51.578	64.061	1.00	45.27	7
ATOM	2812	N	LYS A 352		24.42		52.711	65.880	1.00	44.62	6
ATOM	2813	CA	LYS A 352		23.5	31	51.662	66.375			6
	2814	СВ	LYS A 352		23.7	64	51.464	67.873	1.00	42.23	6
ATOM	2815	CG	LYS A 352		25.1	97	51.075	68.187		44.94	
ATOM		CD	LYS A 352		25.5	72	51.262	69.650	1.00	46.80	6
ATOM	2816	CE	LYS A 352		24.7	65	50.389	70.581	1.00	45.79	6
MOTA	2817				25.2	36	50.586	71.975	1.00	47.31	7
ATOM	2818	NZ	LYS A 352		22.0		52.087	66.116	1.00	45.12	6
ATOM	2819	C	LIS A 352		21.8		53.236	65.756	1.00	47.07	8
ATOM	2820	0	LYS A 352		21.1		51.161	66.285	1.00	44.62	· 7
ATOM	2821	N	ASP A 353		19.7		51.474	66.060	1.00	46.43	6
ATOM	2822	CA					50.943	64.692		49.38	6
ATOM	2823	CB	ASP A 353		19.3			64.396	1.00	51.52	6
ATOM	2824	CG	ASP A 353		19.8		49.546	64.158		55.36	8
MOTA	2825	QD	1 ASP A 353		21.0		49.396			52.35	
	2826	OD	2 ASP A 353		19.0		48.596	64.398		45 90	
ATOM	2827	c	ASP A 353		18.8	41	50.968	67.165		45.90	
ATOM		ō	ASP A 353		19.1	52	50.001	67.854		45.98	
ATOM	2828		PRO A 354		17.6	87	51.629	67.348	1.00	45.86	
ATOM	2829	N			17.1		52.775	66.587		45.36	
MOTA	2830	CD	7 200 7 324		16.7		51.243		1.00	45.52	6
ATOM	2831	CA			15.5		52.245		1.00	44.77	6
ATOM	2832	CB	PRO A 354		15.6		52.513		1.00	45.06	6
ATOM	2833	CG	PRO A 354							44.13	6
ATOM	2834	C	PRO A 354		16.2	.//	49.804			42.90	
ATOM	2835	О	PRO A 354		16.3		49.271			42.77	
ATOM	2836		TRP A 355		15.8		49.174			43.35	, 6
ATOM	2837		TRP A 355		15.3		47.801			0 47.11	
	2838	_			14.9	82	47.225	70.539	, 1.0		•
ATOM	2000		٠.								

									-
	0030	~~	TRP A 355		16.168	46.752		1.00 52.43	6
atom	2839	CG	IRF A 355		16.574	45.391	71.519	1.00 53.15	6
MOTA	2840	CD2	TRP A 355				72.238	1.00 54.97	6
ATOM	2841	CE2	TRP A 355		17.789	45.416		1.00 53.39	6
	-	CE3	TRP A 355		16.031	44.153	71.155		
MOTA	2842		TAT 355		17.125	47.526	71.916	1.00 54.39	6
ATOM	2843	CD1	TRP A 355			46.731	72.468	1.00 57.31	7
ATOM ·	2844	NE1	TRP A 355		18.103			1.00 54.97	6
	2845	CZ2	TRP A 355		18.469	44.249	72.602	1.00 54.57	6
MOTA	_		TRP A 355		16.706	42.995	71.518	1.00 55.77	
MOTA	2846	CZ3	TRP A 355		17.913	43.052	72.234	1.00 54.84	6
MOTA	2847	CH2	TRP A 355				68.230	1.00 41.94	6
ATOM	2848	С	TRP A 355		14.177	47.690		1.00 41.39	8
		ō	TRP A 355		13.508	48.677	67.915	1.00 41.33	
ATOM	2849		ARG A 356		13.942	46.471	67.775	1.00 38.60	7
MOTA	2850	N	ARG A 350		12.855	46.185	66.866	1.00 36.55	6∙
MOTA	2851	·CA	ARG A 356				65.451	1.00 35.06	6
MOTA	2852	CB	ARG A 356		13.413	46.044		1.00 33.00	6
		CG	ARG A 356		14.120	47.308	64.976	1.00 32.47	
MOTA	2853		ANG A 356		14.969	47.082	63.733	1.00 29.54	6
ATOM	2854	CD	ARG A 356			48.323	63.296	1.00 28.91	7
ATOM	2855	NE	ARG A 356		15.600			1.00 30.60	6
	2856	CZ	ARG A 356		16.514	48.403	62.335	2 00 33 53	7
MOTA			256		16.916	47.305	61.702	1.00 33.52	
MOTA	2857	NH1	ANG A 350		17.020	49.582	61.996	1.00 30.10	7
MOTA	2858	NH2	ARG A 356			44.879	67.361	1.00 36.01	6
ATOM	2859	С	ARG A 356		12.270			1.00 38.38	8
	2860	0	ARG A 356		12.447	43.831	66.742		7
MOTA			GLY A 357		11.587	44.949	68.499	1.00 36.04	
ATOM	2861	N	GD1 A 357		11.001	43.758	69.085	1.00 36.08	6
ATOM	2862	CA	GLY A 357				68.851	1.00 34.51	6
ATOM	2863	С	GLY A 357		9.514	43.596		1.00 36.77	8
	2864	ō	GLY A 357		8.943	44.196	67.943	1.00 30.77	7
MOTA			GLY A 358		8.892	42.772	69.687	1.00 36.04	
MOTA	2865	N	GL1 A 330		7.466	42.506	69.593	1.00 32.26	6
MOTA	2866	CA	GLY A 358			41.263	70.385	1.00 29.85	6
ATOM	2867	С	GLY A 358		7.106			1.00 28.86	8
	2868	ŏ	GLY A 358		7.832	40.839	71.288	1.00 28.80	7
MOTA			GLU A 359		5.975	40.667	70.055	1.00 30.88	
MOTA	2869	N	GLO A 323		5.550	39.455	70.743	1.00 32.58	6
ATOM	2870	CA	GLU A 359				70.604	1.00 38.60	6
ATOM	2871	CB	GLU A 359		4.034	39.289		1.00 47.44	6
		CG	GLU A 359		3.230	40.435	71.222	1.00 47.44	
MOTA	2872		GLU A 359		1.957	40.762	70.445	1.00 50.93	6
MOTA	2873	CD			1.123	39.852	70.221	1.00 52.13	8
MOTA	2874	OE1	L GLU A 359				70.061	1.00 51.03	8
ATOM	2875	OE2	2 GLU A 359		1.798	41.942		1.00 28.29	6
	2876	С	GLU A 359		6.250	38.275	70.091	1.00 20.25	8
MOTA			GLU A 359		6.790	38.382	68.997	1.00 27.88	
MOTA	2877	0	GLO A 355		6.263	37.147	70.772	1.00 27.97	7
MOTA	2878	N	VAL A 360				70.193	1.00 25.86	6
ATOM	2879	CA	VAL A 360		6.859	35.957		1.00 22.02	6
	2880	CB	VAL A 360		7.673	35.168	71.237	1.00 22.02	6
MOTA			260		8.155	33.849	70.641	1.00 19.45	
MOTA	2881	CG	1 VAL A 300		8.850	36.009	71.698	1.00 17.88	6
ATOM	2882	CG	2 VAL A 360			_		1.00 28.04	6
ATOM	2883	С	VAL A 360		5.703	35.099		1.00 27.34	8
	2884		VAL A 360		4.842			1.00 27.34	7
MOTA		_	ARG A 361		5.663	34.898	68.358	1.00 27.70	
MOTA	2885	N	ARG A 301		4.612		67.765	1.00 32.85	6
MOTA	2886	C	ARG A 361					1.00 32.30	6
MOTA	2887		ARG A 361		4.693			1.00 38.81	6
					4.243	35.504	65.687		
MOTA	2888				4.546		64.201	1.00 40.09	6
ATOM	2889	CD	ARG A 301					1.00 38.77	7
MOTA	2890	NE	ARG A 361		5.974			1.00 39.21	6
	2891		ARG A 361		6.514				7
MOTA			1 ARG A 361		5.748	36.027	61.685	1.00 40.79	
MOTA	2892		T WUG W 201		7.822			1.00 42.94	7
MOTA	2893	NH	2 ARG A 361						6
ATOM	2894		ARG A 361		4.689				8
			ARG A 361		5.768	32.097	68.471		7
MOTA	2895		TVC 3 343		3.526		7 68.347	1.00 37.80	'
MOTA	2896		LYS A 362		3.436			1.00 39.91	6
MOTA	2897	CA	LYS A 362					12 12	6
	2898				1.982		-	45 44	6
ATOM					1.014		3 69.640		2
MOTA	2899				1.11			1.00 49.43	6
ATOM		CI	LYS A 362						6
			LYS A 362		0.813			44 00	7
MOTA					0.96				6
MOTA		_	120 3 363		4.32			1.00 39.25	
ATOM	2903		LYS A 362		4.95			1.00 35.45	8
ATOM.			LYS A 362	•	4.33	20.00			

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2960 2960 2960 2960 2960 2960 2960 2960	CAB GO CO	ASP A	36333333333333333333333333333333333333	4.145.2894518875.384.0578.6679.6679.6679.6679.6679.6679.6679.66	26.620 25.404 24.633 23.476 25.579 25.26.478 27.445 27.445 27.445 27.445 27.495 24.105 24.105 22.995 23.21 24.461 23.72 25.63 21.68 20.65 20.65 20.65 20.65 20.65 20.65 20.05	68.161 68.540 67.193 66.490 65.572 64.714 64.723 67.4725 68.298 69.288 70.179 69.588 70.179 70.217 70.649 71.770 72.617 73.783 77.702 69.588 77.702 77.703 77.703 69.588 77.703 77.703 69.588 77.703 77.703 69.588 77.703 77.703 69.588 77.703 69.588 77.703 69.588 77.703 69.588 69.58	1.00 38.62 1.00 31.85 1.00 32.87 1.00 27.73 1.00 29.05 1.00 26.53 1.00 35.16 1.00 35.16 1.00 37.56 1.00 40.23 1.00 40.23 1.00 51.93 1.00 52.84 1.00 39.65 1.00 39.65 1.00 39.65 1.00 39.65 1.00 44.49 1.00 44.49 1.00 55.40 1.00 37.89	87666688687666676
•									

					00 044	68.325	1.00 37.78	7
ATOM	2971	N ALA A 37	1	11.827	20.944		1.00 36.39	6
		CA ALA A 37	1	13.264	20.704			6
		CB ALA A 37	1	14.007	22.030	• • • - •	1.00 37.73	
MOTA				13.719	19.972		1.00 35.42	6
ATOM		C ALA A 37	<u>.</u>	14.424	18.964	69.525	1.00 32.06	8
ATOM	.	O ALA A 37	1	13.317	20.478	70.766	1.00 33.96	7
ATOM	2976	N ALA A 37	2			72.024	1.00 32.22	6
ATOM		CA ALA A 37	2	13.695	19.848	72.024	1.00 28.27	6
		CB ALA A 37	2	12.946	20.486	73.165		6
MOTA		C ALA A 37	2	13.372	18.362	71.953	1.00 31.75	
MOTA			2	14.183	17.517	72.338	1.00 31.56	8
MOTA		O ALA A 37	2	12.187	18.059	71.432	1.00 32.72	7
MOTA	2981	N ALA A 37	3 -	11.710	16.684	71.305	1.00 32.32	6
ATOM	2982	CA ALA A 37	3		16.689	71.103	1.00 30.18	6
ATOM	2983	CB ALA A 37	'3	10.206		70.172	1.00 33.13	6
ATOM	2984	C ALA A 37	'3	12.385	15.921		1.00 35.87	8
	2985	OT1: ALA A 37	'3		14.926	70.468	1.00 33.07	8
MOTA	_	OT2 ALA A 37	13	12.218	16.320	69.003	1.00 34.11	
MOTA	2986		1	22.693	34.497	53.990	1.00 36.45	6
MOTA	2987		1	35.654	44.211	49.416	1.00 9.27	8
MOTA	2988	OH2 WAT S		24.480	33.130	53.069	1.00 21.27	8
MOTA	2989	OH2 WAT S	2		30.277	59.314	1.00 14.69	8
ATOM	2990	OH2 WAT S	3	22.124		75.741	1.00 27.94	8
MOTA	2991	OH2 WAT S	4	13.839	20.611		1.00 44.54	8
	2992	OH2 WAT S	5	34.033	41.903	46.522	1.00 99.39	8
MOTA	2993	OH2 WAT S	6	15.039	42.130	55.781	1.00 23.79	
MOTA		OH2 WAT S	7	32.737	41.397	75.900	1.00 15.80	8
ATOM	2994	ONZ WAI S	8	11.367	22.606	58.814	1.00 23.37	8
MOTA	2995	OH2 WAT S		13.909	18.160	65.105	1.00 29.93	8
MOTA	2996	OH2 WAT S	9	29.655	56.108	58.029	1.00 50.54	8
ATOM	2997	O112 -	10		17.964	51.885	1.00 9.28	8
ATOM	2998	0110	11	45.405		34.515	1.00 32.78	8
ATOM	2999	OH2 WAT S	12	21.870	35.873	-	1.00 28.85	8
	3000	OH2 WAT S	13	43.504	35.670	33.779	1.00 40.53	8
ATOM	3001		14	2.054	37.997	68.430		8
MOTA	_		15	49.730	28.024	55.966	1.00 21.42	
MOTA	3002		16	47.503	32.289	34.336	1.00 26.13	8
MOTA	3003			6.101	26.102	64.434	1.00 21.69	8
MOTA	3004	O	17	10.761	46.748	45.836	1.00 15.79	8
ATOM	3005	OH2 WAT S	18		16.861	61.441	1.00 16.68	8
ATOM	3006	OH2 WAT S	19	9.146		76.599	1.00 37.53	8
MOTA	3007	OH2 WAT S	20	5.684	34.080	_	1.00 34.17	8
	3008	CH2 WAT S	21	14.896	33.163	49.117	<u>-</u>	8
MOTA	3009	OH2 WAT S	22	43.346	40.839	36.825		8
MOTA		OH2 WAT S	23	0.516	27.705	69.174	1.00 21.02	
MOTA	3010	OH2 WAT S	24	41.270	25.444	29.717	1.00 29.80	8
ATOM	3011		25	17.818	29.142	54.584	1.00 27.92	8
MOTA	3012	OH2 WAT S		21.512	60.572	56.912	1.00 16.77	8
MOTA	3013	OH2 WAT S	26	21.211		48.347	1.00 23.93	8
ATOM	3014	OH2 WAT S	27			56.619	1.00 23.73	8
ATOM	3015	OH2 WAT S	28	47.805		58.154	1.00 16.79	8
ATOM	3016	OH2 WAT S	2.5	44.624			1.00 26.61	8
ATOM	3017	OH2 WAT S	3 c	31.096		51.311		8
	3018	OH2 WAT S	31	39.837		55.145		8
ATOM		OH2 WAT S	32	11.660	43.601	63.704		
MOTA	3019	ONZ WAI S	33	49.899		53.058	1.00 26.85	8
ATOM	3020	OH2 WAT S	34	34.624			1.00 21.18	8
MOTA	3021	OH2 WAT S					1.00 27.01	8
ATOM	3022	OH2 WAT S	35	26.926				8
ATOM	3023	OH2 WAT S	36	8.893				8
MOTA	3024	OH2 WAT S	37	23.381				8
	3025	OH2 WAT S	38	48.484				8
MOTA		OH2 WAT S	39	43.382	28.410	74.379		
ATOM	3026	ONS WAT S	10	42.904		70.272	1.00 29.45	8
MOTA	3027	OH2 WAT 5		20.521	53.828	50.298	1.00 22.35	8
ATOM	3028	OH2 WAT S	41				1.00 23.32	
ATOM	3029	OH2 WAT S	42	13.310				
MOTA	3030	OH2 WAT S	43	9.78				
	3031	OH2 WAT S	44	36.08				
ATOM	3032	OH2 WAT S	45	14.83				
ATOM		OH2 WAT S	46	54.16	2 48.19	4 60.971		8
ATOM	3033		47	38.94	3 61.29	63.509		
ATOM	3034		48	29.98		2 33.130		
ATOM	3035	OH2 WAT S		31.87				8
3 TOM	3036	OH2 WAT S	49	J1.01	- 50.07	•		

114/263

ATOM 3037 OH2 WAT S 50									_
ATOM 3038 0H2 WAT S 51			C	5.0	30 863	14.629	64.307	1.00 24.19	8
ATOM 3019 012 WAT S 52	ATOM	3037						1 00 27 78	R
ATOM 3040 ORZ WAT S 52	MOT/	3038	OH2 WAT S	51	26.119				
ATOM 3040 OH2 WAT S 53 ATOM 3041 OH2 WAT S 54 ATOM 3041 OH2 WAT S 55 ATOM 3042 OH2 WAT S 55 ATOM 3042 OH2 WAT S 55 ATOM 3043 OH2 WAT S 55 ATOM 3044 OH2 WAT S 55 ATOM 3044 OH2 WAT S 55 ATOM 3045 OH2 WAT S 55 ATOM 3045 OH2 WAT S 55 ATOM 3046 OH2 WAT S 55 ATOM 3046 OH2 WAT S 58 ATOM 3046 OH2 WAT S 58 ATOM 3046 OH2 WAT S 58 ATOM 3047 OH2 WAT S 58 ATOM 3046 OH2 WAT S 61 ATOM 3048 OH2 WAT S 61 ATOM 3049 OH2 WAT S 62 ATOM 3049 OH2 WAT S 62 ATOM 3049 OH2 WAT S 62 ATOM 3050 OH2 WAT S 62 ATOM 3051 OH2 WAT S 64 ATOM 3051 OH2 WAT S 64 ATOM 3051 OH2 WAT S 65 ATOM 3051 OH2 WAT S 66 ATOM 3051 OH2 WAT S 66 ATOM 3051 OH2 WAT S 66 ATOM 3053 OH2 WAT S 66 ATOM 3053 OH2 WAT S 66 ATOM 3056 OH2 WAT S 67 ATOM 3056 OH2 WAT S 67 ATOM 3056 OH2 WAT S 68 ATOM 3051 OH2 WAT S 68 ATOM 3051 OH2 WAT S 68 ATOM 3056 OH2 WAT S 67 ATOM 3056 OH2 WAT S 68 ATOM 3051 OH2 WAT S 68 ATOM 3051 OH2 WAT S 68 ATOM 3056 OH2 WAT S 67 ATOM 3056 OH2 WAT S 68 ATOM 3056 OH2 WAT S 70 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 71 ATOM 3056 OH2 WAT S 72 ATOM 3057 OH2 WAT S 72 ATOM 3057 OH2 WAT S 72 ATOM 3057 OH2 WAT S 72 ATOM 3058 OH2 WAT S 72 ATOM 3057 OH2 WAT S 72 ATOM 3057 OH2 WAT S 72 ATOM 3058 OH2 WAT S 73 ATOM 3057 OH2 WAT S 74 ATOM 3057 OH2 WAT S 74 ATOM 3058 OH2 WAT S 74 ATOM 3057 OH2 WAT S 74 ATOM 3057 OH2 WAT S 75 ATOM 3057 OH2 WAT S 78 ATOM 3058 OH2 WAT S 78 ATOM 3057 OH2 WAT S 78 ATOM 3057 OH2 WAT S 78 ATOM 3057 OH2 WAT S 78 ATOM 3058 OH2 WAT S 78 ATOM 3057 OH2 WAT S 78 ATOM 3057 OH2 WAT S 78 ATOM 3058 OH2 WAT S 78 ATOM 3058 OH2 WAT S 78 ATOM 3057 OH2 WAT S 80 ATOM 3057 OH2 WAT S 80 ATOM 3057 OH2 WAT S 80 ATOM 3057 OH2 WAT S 86 ATOM 3057 OH2 WAT S 87 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 86 ATOM 3059 OH2 WAT S 86 ATOM 3059 OH2 WAT S 86				52	48.070	41.589	44.011		8
ATOM 3040 OR2 WAT S 54 ATOM 3041 OR2 WAT S 55 ATOM 3042 OR2 WAT S 55 ATOM 3042 OR2 WAT S 55 ATOM 3043 OR2 WAT S 55 ATOM 3044 OR2 WAT S 55 ATOM 3044 OR2 WAT S 55 ATOM 3045 OR2 WAT S 56 ATOM 3045 OR2 WAT S 57 ATOM 3046 OR2 WAT S 57 ATOM 3046 OR2 WAT S 58 ATOM 3046 OR2 WAT S 59 ATOM 3046 OR2 WAT S 59 ATOM 3047 OR2 WAT S 60 ATOM 3048 OR2 WAT S 60 ATOM 3048 OR2 WAT S 61 ATOM 3049 OR2 WAT S 62 ATOM 3050 OR2 WAT S 63 ATOM 3050 OR2 WAT S 63 ATOM 3051 OR2 WAT S 66 ATOM 3051 OR2 WAT S 66 ATOM 3051 OR2 WAT S 66 ATOM 3052 OR2 WAT S 66 ATOM 3055 OR2 WAT S 66 ATOM 3055 OR2 WAT S 66 ATOM 3056 OR2 WAT S 67 ATOM 3056 OR2 WAT S 67 ATOM 3056 OR2 WAT S 68 ATOM 3056 OR2 WAT S 67 ATOM 3056 OR2 WAT S 71 ATOM 3056 OR2 WAT S 72 ATOM 3056 OR2 WAT S 73 ATOM 3057 OR2 WAT S 73 ATOM 3058 OR2 WAT S 73 ATOM 3056 OR2 WAT S 73 ATOM 3057 OR2 WAT S 73 ATOM 3057 OR2 WAT S 73 ATOM 3058 OR2 WAT S 73 ATOM 3056 OR2 WAT S 73 ATOM 3066 OR2 WAT S 73 ATOM 3067 OR2 WAT S 73 ATOM 3067 OR2 WAT S 73 ATOM 3068 OR2 WAT S 73 ATOM 3067 OR2 WAT S 73 ATOM 3068 OR2 WAT S 73 ATOM 3067 OR2 WAT S 74 ATOM 3067 OR2 WAT S 75 ATOM 3068 OR2 WAT S 79 ATOM 3067 OR2 WAT S 88 ATOM 3068 OR2 WAT S 88 ATOM 3069 OR2 WAT S 88 ATOM 3067 OR2 WAT S 88 ATOM 3067 OR2 WAT S 88 ATOM 3067 OR2 WAT S 88 ATOM 3068 OR2 WAT S 89 ATOM 3067 OR2 WAT S 86 ATOM 3068 OR2 WAT S 86 ATOM 3069 OR2 WAT S 86 ATOM 3069 OR2 WAT S 86	ATOM	3039					52 495	1 00 31.04	8
ATOM 3042 ORL WAT S 54 49.540 35.532 71.885 1.00 20.796 8 ATOM 3042 ORL WAT S 55 6.887 23.426 64.961 1.00 51.51 8 ATOM 3044 ORL WAT S 56 25.698 39.891 37.674 1.00 51.51 8 ATOM 3044 ORL WAT S 58 44.661 34.733 46.902 1.00 46.52 8 ATOM 3046 ORL WAT S 58 44.661 34.733 46.902 1.00 46.52 8 ATOM 3046 ORL WAT S 59 21.912 21.320 79.233 1.00 26.96 8 ATOM 3048 ORL WAT S 60 27.290 21.016 77.320 1.00 26.96 8 ATOM 3048 ORL WAT S 62 30.843 18.035 41.441 1.00 42.23 8 ATOM 3050 ORL WAT S 64 47.925 33.253 61.470 1.00 34.93 8 ATOM 3051 ORL WAT S 66 27.245 56.551 44.579 1.00 35.33 8 ATOM 3053 ORL WAT S 66 27.245 56.551 44.579 1.00 35.33 8 ATOM 3053 ORL WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3055 ORL WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3055 ORL WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3055 ORL WAT S 66 41.599 51.018 49.348 1.00 27.31 8 ATOM 3055 ORL WAT S 68 41.599 51.018 49.348 1.00 27.31 8 ATOM 3055 ORL WAT S 70 17.499 12.826 63.854 1.00 31.30 8 ATOM 3056 ORL WAT S 70 17.499 12.826 63.854 1.00 31.30 8 ATOM 3059 ORL WAT S 71 27.152 1.189 53.999 1.00 18.768 8 ATOM 3060 ORL WAT S 71 27.152 1.189 53.999 1.00 18.768 8 ATOM 3060 ORL WAT S 71 27.152 1.189 53.188 1.00 37.63 8 ATOM 3060 ORL WAT S 71 27.152 1.189 1.286 64.577 1.00 31.30 8 ATOM 3060 ORL WAT S 74 23.765 60.846 66.579 1.00 18.768 8 ATOM 3060 ORL WAT S 78 35.355 0.004 78.68 1.00 37.63 8 ATOM 3060 ORL WAT S 78 35.355 0.004 37.53 38.999 1.00 37.63 8 ATOM 3060 ORL WAT S 78 35.355 0.004 37.53 38.999 1.00 37.63 8 ATOM 3060 ORL WAT S	MOTA	3040	OH2 WAT S	53					
ATOM 3042 012 WAT S 555 6.887 23.426 64.961 1.00 17.49 8 ATOM 3043 012 WAT S 556 25.698 19.891 37.674 1.00 51.51 8 ATOM 3044 012 WAT S 57 45.498 44.101 55.393 1.00 37.34 8 ATOM 3045 012 WAT S 59 44.661 34.733 46.902 1.00 44.52 8 ATOM 3046 012 WAT S 59 21.912 21.320 79.233 1.00 26.96 8 ATOM 3046 012 WAT S 61 19.809 49.810 61.716 1.00 42.23 8 ATOM 3048 012 WAT S 61 19.809 49.810 61.716 1.00 42.23 8 ATOM 3049 012 WAT S 63 19.801 38.035 41.441 1.00 42.23 8 ATOM 3050 012 WAT S 63 19.853 31.379 60.511 1.00 22.74 8 ATOM 3051 012 WAT S 64 47.925 31.253 61.470 1.00 34.93 8 ATOM 3052 012 WAT S 65 32.500 36.000 41.000 1.00 34.93 8 ATOM 3053 012 WAT S 66 27.249 55.555 44.550 10.00 44.59 8 ATOM 3055 012 WAT S 66 27.249 55.555 44.579 10.00 34.19 8 ATOM 3055 012 WAT S 66 27.245 55.551 44.579 1.00 34.19 8 ATOM 3055 012 WAT S 67 5.176 32.914 54.669 1.00 41.89 8 ATOM 3055 012 WAT S 67 5.176 32.914 54.669 1.00 27.31 8 ATOM 3055 012 WAT S 67 5.176 32.914 54.669 1.00 27.31 8 ATOM 3056 012 WAT S 70 17.499 12.826 53.854 1.00 27.31 8 ATOM 3056 012 WAT S 71 27.152 12.189 33.999 1.00 18.76 8 ATOM 3056 012 WAT S 72 25.213 54.808 67.866 1.00 24.91 8 ATOM 3056 012 WAT S 72 25.213 54.808 67.866 1.00 24.91 8 ATOM 3060 012 WAT S 73 17.671 14.515 53 18.81 1.00 37.63 8 ATOM 3061 012 WAT S 74 23.765 60.846 66.579 1.00 21.81 8 ATOM 3061 012 WAT S 75 35.535 7.040 70.698 1.00 24.94 8 ATOM 3066 012 WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3067 012 WAT S 78 10.446 61.273 48.633 1.00 24.94 8 ATOM 3067 012 WAT S 78 10.446 61.273 48.633 1.00 24.94 8 ATOM 3067 012 WAT S 78 10.446 61.273 48.633 1.00 22.28 8 ATOM 3067 012 WAT S 78 10.446 61.273 48.633 1.00 22.28 8 ATOM 3067 012 WAT S 78 10.446 61.273 48.633 1.00 22.28 8 ATOM 3067 012 WAT S 88 11.456 61 27.348 62.27 1.00 35.45 8 ATOM 3067 012 WAT S 88 41.346 41.579 1.00 31.54 8 ATOM 3067 012 WAT S 89 2.26 80 34.75 1.00 31.50 8 ATOM 3067 012 WAT S 89 2.26 80 34.55 1.00 31.00 31.55 8 ATOM 3067 012 WAT S 89 2.26 80 34.55 1.00 31.00 31.50 8 ATOM 3069 012 WAT S 89 2.26 80 34.55 1.00 31.00 31.50 8 ATOM 307				54	49.540	35.532	71.585		
ATOM 3042 ORZ WAT \$ 56	ATOM					23 426	64 961	1.00 17.49	8
TOTO 3044 OHZ WAT S 566 25.698 39.891 37.538 1.00 37.34 8 37.00 30.44 OHZ WAT S 588 44.601 34.733 46.902 1.00 44.52 8 37.00 30.45 OHZ WAT S 59 21.912 21.320 79.233 1.00 26.96 8 37.00 30.44 OHZ WAT S 59 21.912 21.320 79.233 1.00 26.96 8 37.00 30.44 OHZ WAT S 60 27.290 21.016 77.230 1.00 26.96 8 37.00 30.44 34.75 30.60 30.44 30.50 OHZ WAT S 62 30.843 18.035 41.441 1.00 42.23 8 37.00 30.51 OHZ WAT S 64 47.925 33.253 61.470 1.00 35.33 8 37.00 30.51 OHZ WAT S 64 47.925 33.253 61.470 1.00 35.33 8 37.00 30.53 OHZ WAT S 66 27.245 56.551 44.59 1.00 35.33 8 37.00 30.53 OHZ WAT S 66 27.245 56.551 44.59 1.00 34.19 8 37.00 30.55 OHZ WAT S 68 41.59 51.018 49.348 1.00 27.31 8 37.00 30.55 OHZ WAT S 68 41.59 51.018 49.348 1.00 27.31 8 37.00 30.55 OHZ WAT S 68 41.59 51.018 49.348 1.00 27.31 8 37.00 30.50 OHZ WAT S 67 47.49 12.826 63.854 1.00 24.91 8 37.00 30.50 OHZ WAT S 67 47.49 12.826 63.854 1.00 24.91 8 37.00 30.50 OHZ WAT S 70 17.499 12.826 63.854 1.00 24.91 8 37.00 30.50 OHZ WAT S 70 17.499 12.826 63.854 1.00 24.91 8 37.00 30.50 OHZ WAT S 70 17.499 12.826 63.854 1.00 24.91 8 37.00 30.50 OHZ WAT S 70 17.499 12.826 63.854 1.00 24.91 8 37.00 30.50 OHZ WAT S 70 37.50 OHZ	ATOM -	3042	OH2 WAT S	55			-		Q
ATOM 3044 OH2 WAT S 57 ATOM 3045 OH2 WAT S 59 ATOM 3046 OH2 WAT S 59 ATOM 3046 OH2 WAT S 59 ATOM 3046 OH2 WAT S 60 ATOM 3046 OH2 WAT S 61 ATOM 3048 OH2 WAT S 61 ATOM 3049 OH2 WAT S 62 ATOM 3050 OH2 WAT S 62 ATOM 3050 OH2 WAT S 63 ATOM 3051 OH2 WAT S 64 ATOM 3052 OH2 WAT S 63 ATOM 3052 OH2 WAT S 65 ATOM 3054 OH2 WAT S 66 ATOM 3055 OH2 WAT S 66 ATOM 3056 OH2 WAT S 66 ATOM 3056 OH2 WAT S 67 ATOM 3057 OH2 WAT S 67 ATOM 3058 OH2 WAT S 67 ATOM 3058 OH2 WAT S 70 ATOM 3059 OH2 WAT S 70 ATOM 3059 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3051 OH2 WAT S 70 ATOM 3052 OH2 WAT S 70 ATOM 3054 OH2 WAT S 70 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3051 OH2 WAT S 70 ATOM 3052 OH2 WAT S 70 ATOM 3053 OH2 WAT S 70 ATOM 3054 OH2 WAT S 70 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 80 ATOM 3058 OH2 WAT S 70 ATOM 3059 OH2 WAT S 80 ATOM 3050 OH2 WAT S 80				56	25.698	39.891			
ATOM 3045 CH2 WAT S 59 ATOM 3046 OH2 WAT S 59 ATOM 3047 OH2 WAT S 59 ATOM 3047 OH2 WAT S 59 ATOM 3047 OH2 WAT S 60 ATOM 3049 OH2 WAT S 61 ATOM 3049 OH2 WAT S 61 ATOM 3049 OH2 WAT S 62 ATOM 3050 OH2 WAT S 62 ATOM 3051 OH2 WAT S 63 ATOM 3051 OH2 WAT S 63 ATOM 3051 OH2 WAT S 63 ATOM 3052 OH2 WAT S 64 ATOM 3053 OH2 WAT S 65 ATOM 3053 OH2 WAT S 65 ATOM 3054 OH2 WAT S 65 ATOM 3055 OH2 WAT S 66 ATOM 3055 OH2 WAT S 66 ATOM 3056 OH2 WAT S 67 ATOM 3056 OH2 WAT S 67 ATOM 3057 OH2 WAT S 67 ATOM 3058 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3059 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3059 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3050 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3059 OH2 WAT S 70 ATOM 3059 OH2 WAT S 78 ATOM 3057 OH2 WAT S 78 ATOM 3058 OH2 WAT S 78 ATOM 3059 OH2 WAT S 78 ATOM 3059 OH2 WAT S 80 ATOM 3051 OH2 WAT S 80 ATOM 3059 OH2 WAT S 80 ATOM 3071 OH2 WAT S 80 ATOM 3071 OH2 WAT S 80 ATOM 3072 OH2 WAT S 80 ATOM 3073 OH2 WAT S 80 ATOM 3074 OH2 WAT S 80 ATOM 3075 OH2 WAT S 80 ATOM 3075 OH2 WAT S 80 ATOM 3070 OH2 WAT S 80 ATOM 3071 OH2 WAT S 80 ATOM 3071 OH2 WAT S 80 ATOM 3071 OH2 WAT S 80 ATOM 3074 OH2 WAT S 80 ATOM 3075 OH2 WAT S 80	ATOM				45 498	44.101	55.393	1.00 37.34	8
ATOM 3046 OH2 WAT S 58 ATOM 3046 OH2 WAT S 60 ATOM 3046 OH2 WAT S 60 ATOM 3048 OH2 WAT S 60 ATOM 3048 OH2 WAT S 61 ATOM 3048 OH2 WAT S 61 ATOM 3048 OH2 WAT S 61 ATOM 3049 OH2 WAT S 62 ATOM 3050 OH2 WAT S 62 ATOM 3050 OH2 WAT S 63 ATOM 3051 OH2 WAT S 63 ATOM 3051 OH2 WAT S 64 ATOM 3052 OH2 WAT S 64 ATOM 3053 OH2 WAT S 64 ATOM 3053 OH2 WAT S 65 ATOM 3055 OH2 WAT S 66 ATOM 3055 OH2 WAT S 67 ATOM 3055 OH2 WAT S 68 ATOM 3055 OH2 WAT S 68 ATOM 3055 OH2 WAT S 69 ATOM 3055 OH2 WAT S 69 ATOM 3056 OH2 WAT S 70 ATOM 3056 OH2 WAT S 72 ATOM 3056 OH2 WAT S 75 ATOM 3056 OH2 WAT S 75 ATOM 3056 OH2 WAT S 77 ATOM 3056 OH2 WAT S 77 ATOM 3056 OH2 WAT S 78 ATOM 3056 OH2 WAT S 79 ATOM 3056 OH2 WAT S 79 ATOM 3057 OH2 WAT S 81 ATOM 3056 OH2 WAT S 79 ATOM 3057 OH2 WAT S 81 ATOM 3057 OH2 WAT S 83 ATOM 3057 OH2 WAT S 83 ATOM 3058 OH2 WAT S 83 ATOM 3057 OH2 WAT S 83 ATOM 3058 OH2 WAT S 85 ATOM 3057 OH2 WAT S 80 ATOM 3058 OH2 WAT S 89 ATOM 3057 OH2 WAT S 81 ATOM 3058 OH2 WAT S 87 ATOM 3058 OH2 WAT S 89 ATOM 3058 OH2 WAT S 87 ATOM 3056 OH2 WAT S 81 ATOM 3056 OH2 WAT S 87 ATOM 3057 OH2 WAT S 83 ATOM 3058 OH2 WAT S 89 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 81 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 81 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 87 ATOM 3059 OH2 WAT S 89 ATOM 3059 OH2 WAT S 89 ATOM 3059 OH2 WAT S 89 ATOM 3050 OH2 WAT S 89	ATOM	3044	OH2 WAT S						Я
ATOM 3046 OH2 WAT S 59 21.912 21.920 79.233 1.00 27.74 8 ATOM 3047 OH2 WAT S 60 27.290 21.016 77.320 1.00 27.74 8 ATOM 3048 OH2 WAT S 61 19.809 49.810 61.716 1.00 46.14 8 ATOM 3049 OH2 WAT S 62 30.843 18.035 1.441-1.00 42.23 8 ATOM 3050 OH2 WAT S 63 19.055 33.379 60.511 1.00 22.23 8 ATOM 3051 OH2 WAT S 65 32.500 36.000 41.000 1.00 35.33 8 ATOM 3052 OH2 WAT S 65 32.500 36.000 41.000 1.00 35.33 8 ATOM 3053 OH2 WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3054 OH2 WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3055 OH2 WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3056 OH2 WAT S 67 5.176 32.914 54.669 1.00 41.89 8 ATOM 3056 OH2 WAT S 69 12.869 50.298 61.877 1.00 31.30 8 ATOM 3058 OH2 WAT S 70 17.499 12.826 63.854 1.00 27.31 8 ATOM 3059 OH2 WAT S 71 27.152 12.189 53.999 1.00 18.76 8 ATOM 3050 OH2 WAT S 71 27.152 12.189 53.999 1.00 18.76 8 ATOM 3060 OH2 WAT S 73 17.671 48.515 33.188 1.00 37.63 8 ATOM 3061 OH2 WAT S 75 35.535 27.040 70.598 1.00 34.04 8 ATOM 3063 OH2 WAT S 77 12.52 12.189 53.999 1.00 18.76 8 ATOM 3061 OH2 WAT S 77 12.646 61.273 48.615 73.188 1.00 37.63 8 ATOM 3063 OH2 WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3067 OH2 WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3067 OH2 WAT S 80 23.571 13.292 69.937 1.00 32.20 8 ATOM 3068 OH2 WAT S 78 10.446 61.273 78.607 1.00 35.31 8 ATOM 3069 OH2 WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3067 OH2 WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3067 OH2 WAT S 80 33.593 18.001 46.109 1.00 22.84 8 ATOM 3067 OH2 WAT S 87 81 10.446 61.273 78.607 1.00 35.31 8 ATOM 3068 OH2 WAT S 89 50.621 86.644 60.248 1.00 22.92 8 ATOM 3070 OH2 WAT S 89 50.621 86.644 60.248 1.00 29.89 8 ATOM 3070 OH2 WAT S 89 50.621 86.644 60.248 1.00 29.89 8 ATOM 3070 OH2 WAT S 89 50.621 86.644 60.248 1.00 29.89 8 ATOM 3070 OH2 WAT S 89 50.621 86.644 60.248 1.00 29.89 8 ATOM 3070 OH2 WAT S 89 90.62 86.85 89.97 1.00 35.19 8 ATOM 3070 OH2 WAT S 89 90.62 86.85 89.97 1.00 35.19 8 ATOM 3070 OH2 WAT S 99 25.060 83.45 99.97 1.00 35.19 8 ATOM 3080 OH2 WAT S 99 37.00 89.99 1.00 1.00 35.19 8		3045	OH2 WAT S	58	44.661	34./33			
ATOM 3047 OH2 WAT S 60 17.390 21.016 77.320 1.00 27.74 8 ATOM 3040 OH2 WAT S 61 19.809 49.810 61.716 1.00 46.14 8 ATOM 3040 OH2 WAT S 62 30.843 18.035 41.441 1.00 42.23 8 ATOM 3051 OH2 WAT S 63 19.055 33.379 60.511 1.00 28.99 8 ATOM 3051 OH2 WAT S 65 32.500 33.379 60.511 1.00 28.99 8 ATOM 3053 OH2 WAT S 66 27.245 56.551 44.579 1.00 34.93 8 ATOM 3053 OH2 WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3053 OH2 WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3055 OH2 WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3055 OH2 WAT S 69 12.869 50.298 61.877 1.00 31.30 8 ATOM 3056 OH2 WAT S 70 17.499 12.826 63 854 1.00 24.91 8 ATOM 3056 OH2 WAT S 70 17.499 12.826 63 854 1.00 24.91 8 ATOM 3058 OH2 WAT S 71 27.152 12.189 53.999 1.00 18.76 8 ATOM 3058 OH2 WAT S 72 25.213 54.809 67.866 1.00 61.35 8 ATOM 3050 OH2 WAT S 73 17.671 48.515 53.188 1.00 37.63 8 ATOM 3060 OH2 WAT S 73 27.761 48.515 53.188 1.00 37.63 8 ATOM 3060 OH2 WAT S 73 27.614 48.515 53.188 1.00 37.63 8 ATOM 3063 OH2 WAT S 74 22.755 60.846 66.579 1.00 21.81 8 ATOM 3065 OH2 WAT S 76 26.280 16.065 76.556 1.00 61.35 8 ATOM 3065 OH2 WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3066 OH2 WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3067 OH2 WAT S 88 12.989 118.071 46.109 1.00 22.84 8 ATOM 3069 OH2 WAT S 88 12.989 118.071 46.109 1.00 22.84 8 ATOM 3069 OH2 WAT S 88 12.866 24.723 75.807 1.00 35.31 8 ATOM 3069 OH2 WAT S 88 12.864 27.73 75.807 1.00 35.31 8 ATOM 3069 OH2 WAT S 88 12.864 27.73 75.807 1.00 35.31 8 ATOM 3069 OH2 WAT S 89 12.864 69.297 7.10 0.00 35.31 8 ATOM 3069 OH2 WAT S 89 12.866 69.297 7.10 0.00 35.31 8 ATOM 3069 OH2 WAT S 89 13.256 24.051 73.017 1.00 35.45 8 ATOM 3079 OH2 WAT S 89 18.256 24.051 73.017 1.00 35.45 8 ATOM 3079 OH2 WAT S 89 18.340 89 18.00 30.71 8 ATOM 3079 OH2 WAT S 89 18.340 89 18.00 30.71 8 ATOM 3079 OH2 WAT S 89 18.340 89 27.755 11.00 34.73 8 ATOM 3079 OH2 WAT S 89 18.340 89 27.755 11.00 34.73 8 ATOM 3080 OH2 WAT S 99 26.00 84.552 29.97 74.111 1.00 25.23 8 ATOM 3080 OH2 WAT S 99 25.00 8 8.340 77.358 1.00 44.60 99 8 ATOM 3090 OH2 WA			OND HAM C	50	21 912	21.320	79.233	1.00 26.96	8
ATOM 3048 OH2 WAT 5 61 ATOM 3049 OH2 WAT 5 62 ATOM 3049 OH2 WAT 5 62 ATOM 3050 OH2 WAT 5 62 ATOM 3050 OH2 WAT 5 63 ATOM 3051 OH2 WAT 5 64 ATOM 3051 OH2 WAT 5 64 ATOM 3052 OH2 WAT 5 65 ATOM 3052 OH2 WAT 5 66 ATOM 3052 OH2 WAT 5 66 ATOM 3054 OH2 WAT 5 66 ATOM 3055 OH2 WAT 5 67 ATOM 3055 OH2 WAT 5 67 ATOM 3055 OH2 WAT 5 68 ATOM 3055 OH2 WAT 5 68 ATOM 3055 OH2 WAT 5 67 ATOM 3056 OH2 WAT 5 70 ATOM 3057 OH2 WAT 5 70 ATOM 3057 OH2 WAT 5 70 ATOM 3059 OH2 WAT 5 71 ATOM 3059 OH2 WAT 5 71 ATOM 3059 OH2 WAT 5 72 ATOM 3050 OH2 WAT 5 72 ATOM 3050 OH2 WAT 5 72 ATOM 3050 OH2 WAT 5 73 ATOM 3050 OH2 WAT 5 73 ATOM 3051 OH2 WAT 5 75 ATOM 3056 OH2 WAT 5 75 ATOM 3056 OH2 WAT 5 75 ATOM 3056 OH2 WAT 5 76 ATOM 3056 OH2 WAT 5 77 ATOM 3056 OH2 WAT 5 78 ATOM 3056 OH2 WAT 5 77 ATOM 3056 OH2 WAT 5 78 ATOM 3056 OH2 WAT 5 79 ATOM 3056 OH2 WAT 5 78 ATOM 3056 OH2 WAT 5 78 ATOM 3067 OH2 WAT 5 8 10 ATOM 3068 OH2 WAT 5 8 10 ATOM 3069 OH2 WAT 5 78 ATOM 3069 OH2 WAT 5 78 ATOM 3069 OH2 WAT 5 8 10 ATOM 3060 OH2	MOTA	3046	OHZ WAT 3				77 320	1 00 27 74	8
ATOM 3048 OH2 WAT S 61 ATOM 3049 OH2 WAT S 62 ATOM 3050 OH2 WAT S 63 ATOM 3050 OH2 WAT S 63 ATOM 3050 OH2 WAT S 63 ATOM 3050 OH2 WAT S 64 ATOM 3051 OH2 WAT S 65 ATOM 3052 OH2 WAT S 65 ATOM 3052 OH2 WAT S 65 ATOM 3053 OH2 WAT S 66 ATOM 3054 OH2 WAT S 66 ATOM 3054 OH2 WAT S 66 ATOM 3055 OH2 WAT S 66 ATOM 3056 OH2 WAT S 67 ATOM 3056 OH2 WAT S 69 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 70 ATOM 3058 OH2 WAT S 70 ATOM 3059 OH2 WAT S 71 ATOM 3059 OH2 WAT S 71 ATOM 3050 OH2 WAT S 72 ATOM 3050 OH2 WAT S 72 ATOM 3050 OH2 WAT S 73 ATOM 3050 OH2 WAT S 74 ATOM 3051 OH2 WAT S 74 ATOM 3051 OH2 WAT S 75 ATOM 3061 OH2 WAT S 75 ATOM 3062 OH2 WAT S 75 ATOM 3063 OH2 WAT S 76 ATOM 3064 OH2 WAT S 77 ATOM 3065 OH2 WAT S 76 ATOM 3066 OH2 WAT S 77 ATOM 3067 OH2 WAT S 79 ATOM 3068 OH2 WAT S 79 ATOM 3069 OH2 WAT S 79 ATOM 3069 OH2 WAT S 81 ATOM 3069 OH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3069 OH2 WAT S 83 ATOM 3069 OH2 WAT S 83 ATOM 3069 OH2 WAT S 86 ATOM 3069 OH2 WAT S 86 ATOM 3069 OH2 WAT S 88 ATOM 3069 OH2 WAT S 89 ATOM 3069 OH2 WAT S 88 ATOM 3069 OH2 WAT S 89 ATOM 3070 OH2 WAT S 88 ATOM 3071 OH2 WAT S 89 ATOM 3071 OH2 WAT S 89 ATOM 3071 OH2 WAT S 89 ATOM 3072 OH2 WAT S 89 ATOM 3073 OH2 WAT S 89 ATOM 3073 OH2 WAT S 89 ATOM 3074 OH2 WAT S 89 ATOM 3075 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3079 OH2 WAT S 89 ATOM 3080 OH2 WAT S 99	MOTA	3047	OH2 WAT S	60					
ATOM 3049 OH2 WAT 5 62 30.883 18.035 41.441 1.00 42.23 8 ATOM 3050 OH2 WAT 5 63 19.055 33.379 60.511 1.00 28.99 8 ATOM 3051 OH2 WAT 5 64 47.925 33.253 61.470 1.00 34.93 8 ATOM 3051 OH2 WAT 5 65 32.500 36.000 41.000 1.00 35.33 8 ATOM 3052 OH2 WAT 5 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3053 OH2 WAT 5 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3055 OH2 WAT 5 68 41.159 51.018 49.348 1.00 27.31 8 ATOM 3055 OH2 WAT 5 68 41.159 51.018 49.348 1.00 27.31 8 ATOM 3055 OH2 WAT 5 70 17.499 12.826 63.854 1.00 24.91 8 ATOM 3057 OH2 WAT 5 70 17.499 12.826 63.854 1.00 24.91 8 ATOM 3059 OH2 WAT 5 71 27.152 12.189 50.298 61.877 1.00 31.30 8 ATOM 3059 OH2 WAT 5 72 25.13 54.809 67.866 1.00 61.35 8 ATOM 3059 OH2 WAT 5 72 25.13 54.809 67.866 1.00 61.35 8 ATOM 3060 OH2 WAT 5 72 25.13 54.809 67.866 1.00 61.35 8 ATOM 3060 OH2 WAT 5 75 35.555 27.040 70.698 1.00 34.04 8 ATOM 3061 OH2 WAT 5 75 35.555 27.040 70.698 1.00 34.04 8 ATOM 3063 CH2 WAT 5 77 18.451 25.555 45.150 1.00 28.55 8 ATOM 3063 OH2 WAT 5 77 18.451 25.555 45.150 1.00 22.20 8 ATOM 3066 OH2 WAT 5 77 18.451 25.555 45.150 1.00 28.55 8 ATOM 3066 OH2 WAT 5 78 10.466 61.273 48.633 1.00 44.74 8 ATOM 3066 OH2 WAT 5 78 10.466 61.273 48.633 1.00 44.74 8 ATOM 3067 OH2 WAT 5 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3066 OH2 WAT 5 88 12.886 42.723 75.807 1.00 35.45 8 ATOM 3067 OH2 WAT 5 88 12.886 42.723 75.807 1.00 35.45 8 ATOM 3070 OH2 WAT 5 88 13.406 44.647 71.349 1.00 35.45 8 ATOM 3070 OH2 WAT 5 88 13.406 44.647 71.349 1.00 47.24 8 ATOM 3070 OH2 WAT 5 88 13.406 44.647 71.349 1.00 47.24 8 ATOM 3070 OH2 WAT 5 88 13.406 44.647 71.349 1.00 49.99 8 ATOM 3070 OH2 WAT 5 89 50.621 36.644 60.248 1.00 29.29 8 ATOM 3070 OH2 WAT 5 89 50.621 36.644 60.248 1.00 29.29 8 ATOM 3070 OH2 WAT 5 89 50.621 36.644 60.244 1.00 19.51 8 ATOM 3070 OH2 WAT 5 89 50.621 36.644 60.244 1.00 19.51 8 ATOM 3070 OH2 WAT 5 89 50.661 38.453 1.00 44.74 8 89 50.621 36.644 60.244 1.00 37.74 8 8 340 340 340 340 340 340 340 340 340 340			OUR WAT S	61	19.809	49.810			
ATOM 3050 OHZ WAT 5 64	ATOM		UNZ WAT 5				41.441-	1.00 42.23	8
ATOM 3050 OHZ WAT S 64 47.925 33.3.39 61.470 1.00 34.93 8 ATOM 3051 OHZ WAT S 65 47.925 33.3.253 61.470 1.00 34.93 8 ATOM 3052 OHZ WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3053 OHZ WAT S 66 27.245 56.551 44.579 1.00 34.19 8 ATOM 3054 OHZ WAT S 68 41.159 51.018 49.348 1.00 27.31 8 ATOM 3055 OHZ WAT S 68 41.159 51.018 49.348 1.00 27.31 8 ATOM 3056 OHZ WAT S 69 12.869 50.298 61.877 1.00 31.30 8 ATOM 3057 OHZ WAT S 71 27.152 12.189 53.999 1.00 18.76 8 ATOM 3059 OHZ WAT S 72 25.213 54.809 67.866 1.00 61.35 8 ATOM 3060 OHZ WAT S 73 17.671 48.515 53.188 1.00 37.63 8 ATOM 3061 OHZ WAT S 75 35.535 27.040 70.698 1.00 34.04 8 ATOM 3064 OHZ WAT S 75 35.535 27.040 70.698 1.00 34.04 8 ATOM 3065 OHZ WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3066 OHZ WAT S 79 13.256 24.617 30.17 1.00 31.30 8 ATOM 3066 OHZ WAT S 79 13.256 24.617 30.07 1.00 37.63 8 ATOM 3066 OHZ WAT S 79 13.256 24.617 30.07 1.00 37.63 8 ATOM 3066 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3066 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3066 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3067 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3067 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3076 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3076 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3076 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3076 OHZ WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3076 OHZ WAT S 80 23.571 13.292 69.937 1.00 49	ATOM	3049	OH2 WAT S						Q
ATOM 3051 OH2 WAT S 64 47.925 33.233 31.233 8.470 3052 OH2 WAT S 65 32.500 36.000 41.000 1.00 35.33 8.470 3053 OH2 WAT S 66 32.500 36.000 41.000 1.00 35.33 8.470 3053 OH2 WAT S 66 52.146 56.551 44.579 1.00 34.19 8.470 3053 OH2 WAT S 67 5.176 32.914 54.669 1.00 41.89 8.470 3055 OH2 WAT S 68 41.159 51.018 49.348 1.00 27.31 8.470 3055 OH2 WAT S 68 41.159 51.018 49.348 1.00 27.33 8.470 3055 OH2 WAT S 70 17.499 12.826 63.854 1.00 24.91 8.470 3059 OH2 WAT S 71 27.152 12.189 35.999 1.00 18.76 8.470 3059 OH2 WAT S 72 25.13 54.809 67.866 1.00 61.35 8.470 3059 OH2 WAT S 73 17.671 48.515 53.188 1.00 37.63 8.470 3060 OH2 WAT S 74 23.765 60.86 66.579 1.00 21.81 8.470 3060 OH2 WAT S 75 35.535 27.040 70.698 1.00 34.04 8.470 3062 OH2 WAT S 76 26.200 16.065 76.564 1.00 32.20 8.470 3063 OH2 WAT S 77 10.446 61.273 48.633 1.00 44.74 8.470 3065 OH2 WAT S 78 10.446 61.273 48.633 1.00 44.74 8.470 3066 OH2 WAT S 79 13.566 24.051 73.017 1.00 35.31 8.470 3066 OH2 WAT S 79 13.566 24.051 73.017 1.00 35.31 8.470 3066 OH2 WAT S 79 13.566 24.051 73.017 1.00 35.34 8.470 3066 OH2 WAT S 80 23.571 13.292 69.937 1.00 49.49 8.470 3067 OH2 WAT S 81 29.891 18.071 46.109 1.00 22.84 8.470 3070 OH2 WAT S 81 29.891 18.071 46.109 1.00 22.84 8.470 3070 OH2 WAT S 83 41.346 44.647 71.349 1.00 49.67 8.470 3070 OH2 WAT S 83 41.346 44.647 71.349 1.00 49.67 8.470 3070 OH2 WAT S 84 30.444 35.217 51.882 1.00 36.15 8.470 3070 OH2 WAT S 88 41.866 5.217 40.817 40.00 49.67 8.470 3070 OH2 WAT S 88 41.866 5.217 40.817 40.00 49.67 8.470 3070 OH2 WAT S 88 41.866 5.217 40.817 40.00 49.67 8.470 3070 OH2 WAT S 89 42.105 31.30 44.94 35.217 51.00 30.72 8.470 3070 OH2 WAT S 88 41.866 5.217 40.817 40.00 49.67 8.470 3070 OH2 WAT S 89 42.105 31.30 44.40 40.20 49.67 8.470 3070 OH2 WAT S 89 42.105 31.30 40.40 40.00 49.67 8.470 3070 OH2 WAT S 88 41.866 5.217 40.817 40.00 49.67 8.470 3070 OH2 WAT S 89 42.105 31.30 40.40 40.00 49.67 8.470 3070 OH2 WAT S 99 26.60 84.529 97 7.3122 1.00 35.49 8.470 3070 OH2 WAT S 99 26.60 84.529 97 7.3122 1.00 35.49 8.470 3070 OH2 WAT S 99 26.60 84.529 9			OH2 WAT S	63		33.379			
ATOM 3052 OH2 WAT 5 65 32.500 36.000 41.000 1.00 35.33 8 - ATOM 3053 OH2 WAT 5 66 72.245 56.551 44.579 1.00 34.19 8 ATOM 3054 OH2 WAT 5 67 5.176 32.914 54.669 1.00 41.89 8 ATOM 3055 OH2 WAT 5 68 41.159 51.018 49.348 1.00 27.31 8 ATOM 3055 OH2 WAT 5 70 17.499 12.826 63.854 1.00 24.91 ATOM 3057 OH2 WAT 5 70 17.499 12.826 63.854 1.00 24.91 ATOM 3059 OH2 WAT 5 71 27.152 12.189 53.999 1.00 18.76 8 ATOM 3059 OH2 WAT 5 72 25.213 54.809 67.866 1.00 61.35 8 ATOM 3050 OH2 WAT 5 73 17.611 48.515 53.188 1.00 37.63 8 ATOM 3060 OH2 WAT 5 73 17.611 48.515 53.188 1.00 37.63 8 ATOM 3061 OH2 WAT 5 73 35.535 27.040 70.698 1.00 21.81 8 ATOM 3063 OH2 WAT 5 75 35.535 27.040 70.698 1.00 22.20 8 ATOM 3066 OH2 WAT 5 77 18.451 2.5555 45.150 1.00 28.55 8 ATOM 3066 OH2 WAT 5 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3066 OH2 WAT 5 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3066 OH2 WAT 5 80 23.571 13.292 69.937 1.00 92.845 8 ATOM 3066 OH2 WAT 5 80 23.571 13.292 69.937 1.00 94.49 8 ATOM 3066 OH2 WAT 5 80 23.571 13.292 69.937 1.00 94.49 8 ATOM 3067 OH2 WAT 5 80 23.571 13.292 69.937 1.00 94.49 8 ATOM 3060 OH2 WAT 5 80 23.571 13.292 69.937 1.00 94.49 8 ATOM 3060 OH2 WAT 5 80 23.571 13.292 69.937 1.00 94.49 8 ATOM 3070 OH2 WAT 5 86 8.891 21.535 50 1.00 22.284 8 ATOM 3070 OH2 WAT 5 88 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 88 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 88 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 15.471 45.004 1.00 97.24 8 ATOM 3070 OH2 WAT 5 89 41.348 1.39 1.00 31.50 8 ATOM 3070 OH2 WAT 5 99 25.008 34.435 2.177 51.00 35.478 8 ATOM 3070 OH2 WAT 5 99 25.008 34.435 2.177 51.00 35.478 8 ATOM 3080 OH2 WAT 5 100 37.304 42.277 31.722 1.00 35.478 8 ATOM			OHE HAM E	5 A	47 925	33.253	61.470	1.00 34.93	8
ATOM 3053 OH2 WAT S 66 ATOM 3054 OH2 WAT S 67 ATOM 3055 OH2 WAT S 67 ATOM 3055 OH2 WAT S 68 ATOM 3055 OH2 WAT S 69 ATOM 3056 OH2 WAT S 69 ATOM 3057 OH2 WAT S 70 ATOM 3057 OH2 WAT S 71 ATOM 3058 OH2 WAT S 71 ATOM 3059 OH2 WAT S 71 ATOM 3059 OH2 WAT S 72 ATOM 3059 OH2 WAT S 72 ATOM 3050 OH2 WAT S 72 ATOM 3050 OH2 WAT S 73 ATOM 3050 OH2 WAT S 73 ATOM 3050 OH2 WAT S 74 ATOM 3059 OH2 WAT S 74 ATOM 3050 OH2 WAT S 75 ATOM 3061 OH2 WAT S 75 ATOM 3061 OH2 WAT S 75 ATOM 3062 CH2 WAT S 75 ATOM 3062 CH2 WAT S 75 ATOM 3063 OH2 WAT S 76 ATOM 3064 OH2 WAT S 77 ATOM 3064 OH2 WAT S 77 ATOM 3065 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 79 ATOM 3066 OH2 WAT S 79 ATOM 3067 OH2 WAT S 80 ATOM 3068 CH2 WAT S 81 ATOM 3068 CH2 WAT S 82 ATOM 3069 OH2 WAT S 82 ATOM 3069 OH2 WAT S 82 ATOM 3060 OH2 WAT S 80 ATOM 3067 OH2 WAT S 80 ATOM 3068 CH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3069 OH2 WAT S 83 ATOM 3070 OH2 WAT S 84 ATOM 3070 OH2 WAT S 84 ATOM 3070 OH2 WAT S 85 ATOM 3070 OH2 WAT S 87 ATOM 3070 OH2 WAT S 87 ATOM 3070 OH2 WAT S 89 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 100 ATOM 3089 OH2 WAT S 100 ATOM 3089 OH2 WAT S 100 ATOM 3089 OH2 WAT S	ATOM	3051						1 00 35.33	8 -
ATOM 3054 OH2 WAT S 66 ATOM 3055 OH2 WAT S 66 ATOM 3055 OH2 WAT S 68 ATOM 3055 OH2 WAT S 69 ATOM 3055 OH2 WAT S 69 ATOM 3055 OH2 WAT S 69 ATOM 3056 OH2 WAT S 70 ATOM 3056 OH2 WAT S 70 ATOM 3057 OH2 WAT S 71 ATOM 3058 OH2 WAT S 72 ATOM 3058 OH2 WAT S 72 ATOM 3059 OH2 WAT S 72 ATOM 3060 OH2 WAT S 74 ATOM 3061 OH2 WAT S 74 ATOM 3061 OH2 WAT S 75 ATOM 3061 OH2 WAT S 76 ATOM 3063 CH2 WAT S 77 ATOM 3064 OH2 WAT S 77 ATOM 3065 OH2 WAT S 77 ATOM 3066 OH2 WAT S 77 ATOM 3066 OH2 WAT S 77 ATOM 3066 OH2 WAT S 77 ATOM 3067 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3067 OH2 WAT S 78 ATOM 3067 OH2 WAT S 80 ATOM 3068 OH2 WAT S 80 ATOM 3068 OH2 WAT S 80 ATOM 3069 OH2 WAT S 81 ATOM 3069 OH2 WAT S 81 ATOM 3067 OH2 WAT S 82 ATOM 3067 OH2 WAT S 83 ATOM 3067 OH2 WAT S 84 ATOM 3067 OH2 WAT S 84 ATOM 3067 OH2 WAT S 84 ATOM 3067 OH2 WAT S 85 ATOM 3067 OH2 WAT S 84 ATOM 3067 OH2 WAT S 85 ATOM 3067 OH2 WAT S 84 ATOM 3067 OH2 WAT S 84 ATOM 3067 OH2 WAT S 85 ATOM 3067 OH2 WAT S 84 ATOM 3067 OH2 WAT S 84 ATOM 3070 OH2 WAT S 84 ATOM 3071 OH2 WAT S 88 ATOM 3070 OH2 WAT S 89	MOTE	3052	OH2 WAT S	65	32.500				
ATOM 3054 OH2 WAT S 68 ATOM 3055 OH2 WAT S 68 ATOM 3055 OH2 WAT S 68 ATOM 3056 OH2 WAT S 69 ATOM 3057 OH2 WAT S 70 ATOM 3057 OH2 WAT S 71 ATOM 3058 OH2 WAT S 71 ATOM 3058 OH2 WAT S 71 ATOM 3059 OH2 WAT S 71 ATOM 3059 OH2 WAT S 71 ATOM 3050 OH2 WAT S 72 ATOM 3050 OH2 WAT S 73 ATOM 3050 OH2 WAT S 73 ATOM 3060 OH2 WAT S 73 ATOM 3061 OH2 WAT S 74 ATOM 3061 OH2 WAT S 75 ATOM 3062 CH2 WAT S 75 ATOM 3063 OH2 WAT S 75 ATOM 3066 OH2 WAT S 76 ATOM 3066 OH2 WAT S 77 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 80 ATOM 3067 OH2 WAT S 80 ATOM 3068 OH2 WAT S 80 ATOM 3069 OH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 83 ATOM 3070 OH2 WAT S 84 ATOM 3071 OH2 WAT S 84 ATOM 3071 OH2 WAT S 85 ATOM 3072 OH2 WAT S 85 ATOM 3074 OH2 WAT S 87 ATOM 3075 OH2 WAT S 87 ATOM 3076 OH2 WAT S 87 ATOM 3077 OH2 WAT S 87 ATOM 3076 OH2 WAT S 87 ATOM 3076 OH2 WAT S 87 ATOM 3076 OH2 WAT S 87 ATOM 3077 OH2 WAT S 87 ATOM 3076 OH2 WAT S 87 ATOM 3077 OH2 WAT S 87 ATOM 3080 OH2 WAT S 89 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 90 ATOM 3080 OH2 WAT S 100 ATOM 3				66	27.245	56.551	44.579		
ATOM 3055 OH2 WAT \$ 68	ATOM		UNZ WAT S			32 914	54.669	1.00 41.89	8
ATOM 3055 OH2 WAT \$ 68	ATOM	3054	OH2 WAT 5						a
ATOM 3056 CH2 WAT S 70 17.499 12.826 63.854 1.00 24.91 8 ATOM 3058 OH2 WAT S 71 27.152 12.189 53.999 1.00 18.76 8 ATOM 3059 OH2 WAT S 72 25.213 54.809 67.866 1.00 31.35 8 ATOM 3060 OH2 WAT S 73 17.671 48.515 53.188 1.00 37.63 8 ATOM 3061 OH2 WAT S 75 35.555 27.040 70.698 1.00 31.03 8 ATOM 3062 CH2 WAT S 75 35.555 27.040 70.698 1.00 31.03 4.04 8 ATOM 3063 CH2 WAT S 76 26.280 16.065 76.564 1.00 32.20 8 ATOM 3064 CH2 WAT S 77 18.451 25.555 45.150 1.00 28.55 8 ATOM 3066 CH2 WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3066 CH2 WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3066 CH2 WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3066 CH2 WAT S 81 29.881 18.071 46.109 1.00 22.84 8 ATOM 3069 CH2 WAT S 83 41.348 15.471 45.004 1.00 49.67 8 ATOM 3070 CH2 WAT S 83 41.348 15.471 45.004 1.00 49.67 8 ATOM 3071 CH2 WAT S 85 5.217 40.817 61.244 1.00 19.51 8 ATOM 3072 CH2 WAT S 87 8.881 21.532 56.838 1.00 30.72 8 ATOM 3073 CH2 WAT S 88 41.816 25.022 72.452 1.00 30.72 8 ATOM 3076 CH2 WAT S 89 50.621 36.644 66.93 1.00 31.50 8 ATOM 3077 CH2 WAT S 89 50.621 36.644 6.903 1.00 31.50 8 ATOM 3079 CH2 WAT S 89 50.621 36.644 6.903 1.00 31.50 8 ATOM 3079 CH2 WAT S 89 50.621 36.644 6.903 1.00 31.50 8 ATOM 3080 CH2 WAT S 89 50.621 36.644 6.903 1.00 31.50 8 ATOM 3080 CH2 WAT S 89 50.621 36.644 6.903 1.00 31.50 8 ATOM 3080 CH2 WAT S 89 50.621 36.644 6.903 1.00 31.50 8 ATOM 3080 CH2 WAT S 89 50.621 36.644 6.903 1.00 31.50 8 ATOM 3080 CH2 WAT S 91 8.131 39.168 54.093 1.00 31.50 8 ATOM 3080 CH2 WAT S 92 16.591 58.091 57.551 1.00 33.77 8 ATOM 3080 CH2 WAT S 92 16.591 58.091 57.551 1.00 33.77 8 ATOM 3080 CH2 WAT S 94 42.105 31.720 71.257 1.00 35.49 8 ATOM 3080 CH2 WAT S 92 16.591 58.091 57.551 1.00 33.77 8 ATOM 3080 CH2 WAT S 99 22.608 32.989 62.927 1.00 50.77 8 ATOM 3080 CH2 WAT S 99 22.608 34.532 49.627 1.00 46.63 8 ATOM 3080 CH2 WAT S 99 22.608 59.572 1.00 35.49 8 ATOM 3080 CH2 WAT S 100 44.77 47.426 38.893 1.00 31.60 8 ATOM 3080 CH2 WAT S 100 44.247 7 1.77 46.986 1.00 44.26 8 ATOM 3080 CH2 WAT S 100 44.247 7 1.77 46.986 1.00 44.26 8 ATOM		3055	OH2 WAT S	68	41.159	21.018			
ATOM 3057 OH2 WAT \$ 70 ATOM 3058 OH2 WAT \$ 71 ATOM 3058 OH2 WAT \$ 71 ATOM 3058 OH2 WAT \$ 72 ATOM 3059 OH2 WAT \$ 72 ATOM 3060 OH2 WAT \$ 72 ATOM 3060 OH2 WAT \$ 74 ATOM 3061 OH2 WAT \$ 74 ATOM 3062 CH2 WAT \$ 75 ATOM 3062 CH2 WAT \$ 75 ATOM 3063 CH2 WAT \$ 75 ATOM 3064 OH2 WAT \$ 76 ATOM 3064 OH2 WAT \$ 76 ATOM 3065 CH2 WAT \$ 77 ATOM 3066 CH2 WAT \$ 77 ATOM 3066 CH2 WAT \$ 77 ATOM 3066 CH2 WAT \$ 78 ATOM 3066 OH2 WAT \$ 78 ATOM 3066 CH2 WAT \$ 78 ATOM 3066 CH2 WAT \$ 79 ATOM 3066 CH2 WAT \$ 80 ATOM 3066 CH2 WAT \$ 80 ATOM 3067 OH2 WAT \$ 80 ATOM 3068 CH2 WAT \$ 81 ATOM 3069 OH2 WAT \$ 82 ATOM 3070 OH2 WAT \$ 82 ATOM 3070 OH2 WAT \$ 82 ATOM 3071 CH2 WAT \$ 85 ATOM 3071 CH2 WAT \$ 85 ATOM 3072 CH2 WAT \$ 85 ATOM 3073 OH2 WAT \$ 85 ATOM 3074 CH2 WAT \$ 88 ATOM 3075 CH2 WAT \$ 88 ATOM 3076 CH2 WAT \$ 88 ATOM 3076 CH2 WAT \$ 88 ATOM 3077 CH2 WAT \$ 88 ATOM 3070 CH2 WAT \$ 87 ATOM 3071 CH2 WAT \$ 87 ATOM 3071 CH2 WAT \$ 87 ATOM 3072 CH2 WAT \$ 87 ATOM 3073 CH2 WAT \$ 89 ATOM 3074 CH2 WAT \$ 89 ATOM 3075 CH2 WAT \$ 89 ATOM 3076 CH2 WAT \$ 89 ATOM 3076 CH2 WAT \$ 89 ATOM 3077 CH2 WAT \$ 89 ATOM 3078 CH2 WAT \$ 99 ATOM 3079 CH2 WAT \$ 99 ATOM 3070 CH2 WAT \$ 99 ATOM 3080 CH2 WAT \$ 100 ATOM 3080			OTTO WATE	69	12.869	50.298	61.877	1.00 31.30	8
ATOM 3058 OH2 WAT S 71	MOTA		OHZ WAI 5				63 R54	1.00 24.91	8
ATOM 3058 OH2 WAT S 72 ATOM 3060 OH2 WAT S 72 ATOM 3061 OH2 WAT S 73 ATOM 3061 OH2 WAT S 74 ATOM 3061 OH2 WAT S 75 ATOM 3062 CH2 WAT S 75 ATOM 3064 OH2 WAT S 75 ATOM 3065 CH2 WAT S 75 ATOM 3066 OH2 WAT S 77 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 80 ATOM 3066 OH2 WAT S 80 ATOM 3067 OH2 WAT S 80 ATOM 3069 OH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 82 ATOM 3070 OH2 WAT S 83 ATOM 3070 OH2 WAT S 84 ATOM 3071 OH2 WAT S 85 ATOM 3070 OH2 WAT S 86 ATOM 3070 OH2 WAT S 87 ATOM 3070 OH2 WAT S 88 ATOM 3070 OH2 WAT S 87 ATOM 3070 OH2 WAT S 88 ATOM 3070 OH2 WAT S 87 ATOM 3070 OH2 WAT S 87 ATOM 3070 OH2 WAT S 88 ATOM 3070 OH2 WAT S 87 ATOM 3070 OH2 WAT S 89 ATOM 3070 OH2 WAT S 90 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 100 ATOM 3080 O	MOTA	3057							
ATOM 3059 OH2 WAT S 72 ATOM 3060 OH2 WAT S 73 ATOM 3060 OH2 WAT S 74 ATOM 3061 OH2 WAT S 74 ATOM 3061 OH2 WAT S 74 ATOM 3062 CH2 WAT S 75 ATOM 3063 CH2 WAT S 76 ATOM 3064 OH2 WAT S 76 ATOM 3065 CH2 WAT S 76 ATOM 3066 OH2 WAT S 77 ATOM 3066 OH2 WAT S 77 ATOM 3066 OH2 WAT S 77 ATOM 3066 OH2 WAT S 79 ATOM 3067 OH2 WAT S 79 ATOM 3067 OH2 WAT S 80 ATOM 3067 OH2 WAT S 81 ATOM 3069 OH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3071 OH2 WAT S 84 ATOM 3071 OH2 WAT S 84 ATOM 3073 OH2 WAT S 85 ATOM 3073 OH2 WAT S 86 ATOM 3075 OH2 WAT S 86 ATOM 3075 OH2 WAT S 87 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 87 ATOM 3078 OH2 WAT S 87 ATOM 3079 OH2 WAT S 89 ATOM 3079 OH2 WAT S 89 ATOM 3079 OH2 WAT S 89 ATOM 3080 OH2 WAT S 89 ATOM 3080 OH2 WAT S 89 ATOM 3079 OH2 WAT S 89 ATOM 3079 OH2 WAT S 89 ATOM 3080 OH2 WAT S 89 ATOM 3099 OH2 WAT S 89 ATOM 3088 OH2 WAT S 99 ATOM 3089 OH2 WAT S 99 ATOM 3080 OH2 WAT S 100 ATOM 3090 OH2 WAT S 100 A			OHO WAT S	71	27.152	12.189			
ATOM 3060 OHZ WAT S 73 ATOM 3061 OHZ WAT S 74 ATOM 3061 OHZ WAT S 74 ATOM 3061 OHZ WAT S 75 ATOM 3063 CHZ WAT S 75 ATOM 3063 CHZ WAT S 75 ATOM 3064 OHZ WAT S 76 ATOM 3065 CHZ WAT S 77 ATOM 3066 OHZ WAT S 77 ATOM 3066 OHZ WAT S 78 ATOM 3067 OHZ WAT S 80 ATOM 3067 OHZ WAT S 81 ATOM 3068 CHZ WAT S 81 ATOM 3069 OHZ WAT S 82 ATOM 3070 OHZ WAT S 82 ATOM 3071 OHZ WAT S 83 ATOM 3070 OHZ WAT S 84 ATOM 3071 OHZ WAT S 85 ATOM 3071 OHZ WAT S 85 ATOM 3072 OHZ WAT S 85 ATOM 3073 OHZ WAT S 85 ATOM 3074 CHZ WAT S 87 ATOM 3075 OHZ WAT S 88 ATOM 3075 OHZ WAT S 88 ATOM 3076 OHZ WAT S 88 ATOM 3077 OHZ WAT S 88 ATOM 3077 OHZ WAT S 88 ATOM 3078 OHZ WAT S 89 ATOM 3079 OHZ WAT S 89 ATOM 3070 OHZ WAT S 89 ATOM 3070 OHZ WAT S 89 ATOM 3070 OHZ WAT S 88 ATOM 3070 OHZ WAT S 88 ATOM 3070 OHZ WAT S 87 ATOM 3075 OHZ WAT S 87 ATOM 3076 OHZ WAT S 88 ATOM 3077 OHZ WAT S 88 ATOM 3077 OHZ WAT S 88 ATOM 3078 OHZ WAT S 89 ATOM 3080 OHZ WAT S 89 ATOM 3080 OHZ WAT S 90 ATOM 3080 OHZ WAT S 90 ATOM 3080 OHZ WAT S 93 ATOM 3080 OHZ WAT S 93 ATOM 3081 OHZ WAT S 94 ATOM 3082 OHZ WAT S 94 ATOM 3083 OHZ WAT S 93 ATOM 3084 OHZ WAT S 99 ATOM 3085 OHZ WAT S 99 ATOM 3086 OHZ WAT S 99 ATOM 3087 OHZ WAT S 99 ATOM 3088 OHZ WAT S 99 ATOM 3089 OHZ WAT S 99 ATOM 3080 OHZ WAT S 101 ATOM 3080 OHZ WAT S 102 ATOM 3080 OHZ WAT S 103 ATOM 3080 OHZ WAT S 104 ATOM 3080 OHZ WAT S 106 A			0112 WATE C		25 213	54.809	67.866	1.00 61.35	8
ATOM 3060 OH2 WAT S 74 ATOM 3061 OH2 WAT S 74 ATOM 3062 CH2 WAT S 75 ATOM 3063 CH2 WAT S 76 ATOM 3063 CH2 WAT S 76 ATOM 3064 OH2 WAT S 77 ATOM 3065 CH2 WAT S 77 ATOM 3065 CH2 WAT S 77 ATOM 3066 CH2 WAT S 78 ATOM 3066 CH2 WAT S 79 ATOM 3066 CH2 WAT S 80 ATOM 3066 CH2 WAT S 81 ATOM 3066 CH2 WAT S 82 ATOM 3067 OH2 WAT S 82 ATOM 3069 CH2 WAT S 82 ATOM 3070 CH2 WAT S 84 ATOM 3070 CH2 WAT S 84 ATOM 3071 CH2 WAT S 85 ATOM 3072 CH2 WAT S 85 ATOM 3073 CH2 WAT S 85 ATOM 3074 CH2 WAT S 86 ATOM 3075 CH2 WAT S 88 ATOM 3075 CH2 WAT S 87 ATOM 3076 CH2 WAT S 89 ATOM 3077 CH2 WAT S 89 ATOM 3077 CH2 WAT S 89 ATOM 3078 CH2 WAT S 89 ATOM 3079 CH2 WAT S 89 ATOM 3079 CH2 WAT S 89 ATOM 3080 CH2 WAT S 90 ATOM 3080 CH2 WAT S 100 ATOM 3090 CH2 WAT S	ATOM	3059	OHZ WAT S					1 00 37 63	8
ATOM 3061 OH2 WAT S 75 ATOM 3062 CH2 WAT S 75 ATOM 3063 CH2 WAT S 76 ATOM 3064 OH2 WAT S 77 ATOM 3065 OH2 WAT S 77 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 80 ATOM 3066 OH2 WAT S 80 ATOM 3067 OH2 WAT S 81 ATOM 3068 OH2 WAT S 81 ATOM 3069 OH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 83 ATOM 3071 CH2 WAT S 84 ATOM 3071 CH2 WAT S 84 ATOM 3073 OH2 WAT S 85 ATOM 3073 OH2 WAT S 86 ATOM 3073 OH2 WAT S 86 ATOM 3074 CH2 WAT S 88 ATOM 3075 OH2 WAT S 88 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3078 OH2 WAT S 89 ATOM 3079 OH2 WAT S 90 ATOM 3080 OH2 WAT S 91 ATOM 3080 OH2 WAT S 91 ATOM 3080 OH2 WAT S 92 ATOM 3080 OH2 WAT S 94 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 100 ATOM 3090 OH2 WAT	ATOM	3060	OH2 WAT S	73					
ATOM 3062 CH2 WAT S 75 35.535 27.040 76.598 1.00 32.20 8 ATOM 3063 CH2 WAT S 76 26.280 16.065 76.564 1.00 32.20 8 ATOM 3064 CH2 WAT S 77 18.451 25.555 45.150 1.00 28.55 8 ATOM 3065 CH2 WAT S 78 10.446 61.273 48.633 1.00 44.74 8 ATOM 3066 CH2 WAT S 80 23.571 13.292 69.937 1.00 49.49 8 ATOM 3066 CH2 WAT S 81 29.891 18.071 46.109 1.00 22.84 8 ATOM 3068 CH2 WAT S 82 21.886 42.773 75.807 1.00 35.31 8 ATOM 3069 CH2 WAT S 83 41.3406 44.647 71.349 1.00 47.24 8 ATOM 3071 CH2 WAT S 84 13.406 44.647 71.349 1.00 47.24 8 ATOM 3073 CH2 WAT S 85 30.444 35.217 51.882 1.00 38.15 8 ATOM 3073 CH2 WAT S 85 30.444 35.217 51.882 1.00 38.15 8 ATOM 3076 CH2 WAT S 88 8.891 21.532 56.838 1.00 30.72 8 ATOM 3076 CH2 WAT S 89 50.621 36.644 60.248 1.00 22.92 8 ATOM 3076 CH2 WAT S 89 50.621 36.644 60.248 1.00 22.92 8 ATOM 3078 CH2 WAT S 90 81.31 39.168 54.903 1.00 31.50 8 ATOM 3079 CH2 WAT S 91 81.31 39.168 54.903 1.00 31.50 8 ATOM 3080 CH2 WAT S 93 34.773 54.055 69.382 1.00 36.05 8 ATOM 3080 CH2 WAT S 94 42.105 31.720 71.257 1.00 35.47 8 ATOM 3083 CH2 WAT S 99 42.105 31.720 71.257 1.00 35.49 8 ATOM 3086 CH2 WAT S 99 42.105 31.720 71.257 1.00 35.49 8 ATOM 3086 CH2 WAT S 99 42.105 31.720 71.257 1.00 35.49 8 ATOM 3080 CH2 WAT S 99 42.105 31.720 71.257 1.00 35.49 8 ATOM 3080 CH2 WAT S 99 42.105 31.720 71.257 1.00 35.49 8 ATOM 3080 CH2 WAT S 99 42.106 31.720 71.257 1.00 35.49 8 ATOM 3080 CH2 WAT S 99 42.106 31.720 71.257 1.00 35.49 8 ATOM 3080 CH2 WAT S 99 42.106 31.720 71.257 1.00 35.49 8 ATOM 3080 CH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3080 CH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3090 CH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3090 CH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3090 CH2 WAT S 100 37.304 39.027 73.722 1.00 35.49 8 ATOM 3090 CH2 WAT S 103 40.24 42.997 74.111 1.00 25.23 8 ATOM 3090 CH2 WAT S 100 40.850 36.936 31.885 1.00 40.03 8 ATOM 3090 CH2 WAT S 100 40.850 36.936 31.885 1.00 40.03 8 ATOM 3090 CH2 WAT S 100 40.95 8 ATOM 3090 CH2 WAT S 100 40.95 8 ATOM 3090 CH2 WAT S 100 40.95 8 ATOM 30			OHO WAT S	74	23.765	60.846			
ATOM 3063 CH2 WAT S 76 ATOM 3064 OH2 WAT S 77 ATOM 3065 CH2 WAT S 77 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 78 ATOM 3066 OH2 WAT S 80 ATOM 3066 OH2 WAT S 81 ATOM 3068 OH2 WAT S 82 ATOM 3070 OH2 WAT S 84 ATOM 3070 OH2 WAT S 84 ATOM 3071 OH2 WAT S 84 ATOM 3073 OH2 WAT S 85 ATOM 3073 OH2 WAT S 86 ATOM 3074 OH2 WAT S 86 ATOM 3075 OH2 WAT S 88 ATOM 3076 OH2 WAT S 88 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3076 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3078 OH2 WAT S 90 ATOM 3078 OH2 WAT S 91 ATOM 3080 OH2 WAT S 91 ATOM 3080 OH2 WAT S 91 ATOM 3080 OH2 WAT S 92 ATOM 3080 OH2 WAT S 93 ATOM 3081 OH2 WAT S 94 ATOM 3082 OH2 WAT S 95 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 96 ATOM 3086 OH2 WAT S 96 ATOM 3087 OH2 WAT S 96 ATOM 3088 OH2 WAT S 96 ATOM 3089 OH2 WAT S 97 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 96 ATOM 3086 OH2 WAT S 96 ATOM 3087 OH2 WAT S 97 ATOM 3088 OH2 WAT S 96 ATOM 3089 OH2 WAT S 97 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 100 ATOM 3090 OH2 WA	,		OND MATE C	75	35.535	27.040	70.698		8
ATOM 3064 OH2 WAT S 78 ATOM 3065 CH2 WAT S 78 ATOM 3066 CH2 WAT S 80 ATOM 3067 OH2 WAT S 80 ATOM 3068 CH2 WAT S 81 ATOM 3068 CH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 83 ATOM 3070 OH2 WAT S 83 ATOM 3071 OH2 WAT S 83 ATOM 3070 OH2 WAT S 84 ATOM 3071 OH2 WAT S 85 ATOM 3071 OH2 WAT S 85 ATOM 3072 OH2 WAT S 85 ATOM 3073 OH2 WAT S 85 ATOM 3074 CH2 WAT S 85 ATOM 3075 OH2 WAT S 88 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3076 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3078 OH2 WAT S 90 ATOM 3079 OH2 WAT S 90 ATOM 3079 OH2 WAT S 91 ATOM 3080 OH2 WAT S 92 ATOM 3080 OH2 WAT S 92 ATOM 3081 OH2 WAT S 93 ATOM 3082 OH2 WAT S 94 ATOM 3083 OH2 WAT S 95 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 96 ATOM 3085 OH2 WAT S 96 ATOM 3086 OH2 WAT S 97 ATOM 3086 OH2 WAT S 98 ATOM 3087 OH2 WAT S 96 ATOM 3088 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3081 OH2 WAT S 96 ATOM 3083 OH2 WAT S 97 ATOM 3084 OH2 WAT S 98 ATOM 3085 OH2 WAT S 96 ATOM 3086 OH2 WAT S 97 ATOM 3087 OH2 WAT S 96 ATOM 3088 OH2 WAT S 97 ATOM 3089 OH2 WAT S 100 ATOM 3089 OH2 WAT S 101 ATOM 3089 OH2 WAT S 102 ATOM 3089 OH2 WAT S 103 ATOM 3089 OH2 WAT S 104 ATOM 3089 OH2 WAT S 104 ATOM 3089 OH2 WAT S 104 ATOM 3089 OH2 WAT S 106 ATOM 3089 OH2 WAT S 106 ATOM 3089 OH2 WAT S 106 ATOM 3099 OH2 WAT S 107 ATOM 3099 OH2 WAT S 106 ATOM 3099 OH2 WAT S 107 ATOM 3099 OH2 WAT S 106 ATOM 3099 OH2 WAT S 107 ATOM 3099 OH2 WAT S 107 ATOM 3099 OH2 WAT S 107 ATOM 3099 OH2 WAT S 106 ATOM 3099 OH2 WAT S 107 ATOM 3099 OH2 WAT S 107 ATOM 3099	MOTA	3062	CM2 WAI 3					1.00 32.20	8
ATOM 3064 OH2 WAT S 78 ATOM 3065 CH2 WAT S 78 ATOM 3066 OH2 WAT S 79 ATOM 3066 OH2 WAT S 79 ATOM 3066 OH2 WAT S 79 ATOM 3066 OH2 WAT S 80 ATOM 3068 CH2 WAT S 80 ATOM 3068 OH2 WAT S 80 ATOM 3069 OH2 WAT S 80 ATOM 3070 OH2 WAT S 82 ATOM 3070 OH2 WAT S 83 ATOM 3071 OH2 WAT S 84 ATOM 3071 OH2 WAT S 84 ATOM 3072 OH2 WAT S 85 ATOM 3073 OH2 WAT S 85 ATOM 3074 OH2 WAT S 85 ATOM 3075 OH2 WAT S 86 ATOM 3076 OH2 WAT S 87 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3078 OH2 WAT S 89 ATOM 3079 OH2 WAT S 89 ATOM 3079 OH2 WAT S 89 ATOM 3070 OH2 WAT S 89 ATOM 3077 OH2 WAT S 90 ATOM 3078 OH2 WAT S 91 ATOM 3078 OH2 WAT S 91 ATOM 3080 OH2 WAT S 92 ATOM 3080 OH2 WAT S 93 ATOM 3081 OH2 WAT S 93 ATOM 3081 OH2 WAT S 95 ATOM 3083 OH2 WAT S 96 ATOM 3083 OH2 WAT S 96 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 98 ATOM 3086 OH2 WAT S 99 ATOM 3087 OH2 WAT S 99 ATOM 3088 OH2 WAT S 99 ATOM 3088 OH2 WAT S 99 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 100 ATOM 3090 OH2 WAT	ATOM	3063							
ATOM 3066 CH2 WAT S 78 ATOM 3066 CH2 WAT S 79 ATOM 3066 CH2 WAT S 80 ATOM 3067 OH2 WAT S 80 ATOM 3068 CH2 WAT S 81 ATOM 3068 CH2 WAT S 81 ATOM 3068 CH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 82 ATOM 3070 CH2 WAT S 83 ATOM 3071 CH2 WAT S 84 ATOM 3071 CH2 WAT S 84 ATOM 3072 CH2 WAT S 85 ATOM 3073 OH2 WAT S 85 ATOM 3074 CH2 WAT S 86 ATOM 3075 CH2 WAT S 87 ATOM 3076 CH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 89 ATOM 3078 CH2 WAT S 89 ATOM 3079 CH2 WAT S 89 ATOM 3070 CH2 WAT S 90 ATOM 3070 CH2 WAT S 90 ATOM 3070 CH2 WAT S 91 ATOM 3070 CH2 WAT S 91 ATOM 3080 CH2 WAT S 92 ATOM 3080 CH2 WAT S 93 ATOM 3080 CH2 WAT S 94 ATOM 3080 CH2 WAT S 95 ATOM 3080 CH2 WAT S 95 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 97 ATOM 3080 CH2 WAT S 98 ATOM 3080 CH2 WAT S 99 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 97 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 97 ATOM 3080 CH2 WAT S 98 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 97 ATOM 3080 CH2 WAT S 98 ATOM 3080 CH2 WAT S 98 ATOM 3080 CH2 WAT S 98 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 98 ATOM 3080 CH2 WAT S 96 ATOM 3080 CH2 WAT S 97 ATOM 3080 CH2 WAT S 98 ATOM 3080 CH2 WAT S 100 ATOM 3090 CH2		3064	OH2 WAT S	7 7	18.451	25.555			
ATOM 3066 OH2 WAT S 80 23.571 13.292 69.937 1.00 35.45 8 ATOM 3067 OH2 WAT S 81 29.891 18.071 46.109 1.00 22.84 8 ATOM 3069 OH2 WAT S 82 12.886 42.723 75.807 1.00 35.31 8 ATOM 3070 OH2 WAT S 83 41.348 15.471 45.004 1.00 47.24 8 ATOM 3071 OH2 WAT S 84 41.348 15.471 45.004 1.00 49.67 8 ATOM 3072 OH2 WAT S 85 30.444 35.217 51.882 1.00 38.15 8 ATOM 3073 OH2 WAT S 86 5.217 40.817 61.244 1.00 19.51 8 ATOM 3073 OH2 WAT S 86 5.217 40.817 61.244 1.00 19.51 8 ATOM 3075 OH2 WAT S 88 41.816 25.022 72.452 1.00 22.92 8 ATOM 3076 OH2 WAT S 89 50.621 36.644 60.248 1.00 29.29 8 ATOM 3076 OH2 WAT S 89 50.621 36.644 60.248 1.00 30.72 8 ATOM 3077 OH2 WAT S 89 50.621 36.644 60.248 1.00 30.72 8 ATOM 3078 OH2 WAT S 90 26.008 34.532 49.627 1.00 45.42 8 ATOM 3079 OH2 WAT S 91 8.131 39.168 54.903 1.00 31.50 8 ATOM 3080 OH2 WAT S 93 34.773 54.065 69.382 1.00 36.05 8 ATOM 3080 OH2 WAT S 94 42.105 31.720 71.257 1.00 35.47 8 ATOM 3083 OH2 WAT S 95 26.641 37.426 38.934 1.00 31.50 8 ATOM 3083 OH2 WAT S 96 26.411 37.426 38.934 1.00 31.51 8 ATOM 3083 OH2 WAT S 98 25.060 18.985 36.669 1.00 46.63 8 ATOM 3085 OH2 WAT S 99 25.000 18.985 36.669 1.00 33.366 8 ATOM 3080 OH2 WAT S 99 25.000 18.985 36.669 1.00 46.63 8 ATOM 3080 OH2 WAT S 98 25.060 18.985 36.669 1.00 46.63 8 ATOM 3080 OH2 WAT S 100 37.304 39.027 73.722 1.00 35.77 8 ATOM 3080 OH2 WAT S 100 37.304 39.027 73.722 1.00 35.79 8 ATOM 3089 OH2 WAT S 100 37.304 39.027 73.722 1.00 35.79 8 ATOM 3089 OH2 WAT S 100 37.304 39.027 73.722 1.00 35.71 8 ATOM 3089 OH2 WAT S 100 37.304 39.027 73.722 1.00 35.71 8 ATOM 3089 OH2 WAT S 100 42.477 21.773 46.986 1.00 49.05 8 ATOM 3099 OH2 WAT S 100 42.297 74.111 1.00 25.23 8 ATOM 3099 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 ATOM 3099 OH2 WAT S 104 42.477 11.773 46.986 1.00 49.05 8 ATOM 3099 OH2 WAT S 104 42.477 11.773 46.986 1.00 49.05 8 ATOM 3099 OH2 WAT S 100 42.477 11.773 46.986 1.00 49.05 8 ATOM 3099 OH2 WAT S 101 42.4791 14.674 50.081 1.00 35.71 8 ATOM 3099 OH2 WAT S 103 42.4797 14.674 50.081 1.00 35.71 8 ATOM 3099 OH2 WAT S 104 42.4797 14.674 50.081			OUR WAT S	78	10.446	61 <i>.</i> 273	48.633	1.00 44.74	
ATOM 3066 OH2 WAT S 80 ATOM 3068 CH2 WAT S 81 ATOM 3068 CH2 WAT S 81 ATOM 3068 CH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 82 ATOM 3071 OH2 WAT S 83 ATOM 3071 OH2 WAT S 84 ATOM 3071 OH2 WAT S 85 ATOM 3072 OH2 WAT S 85 ATOM 3072 OH2 WAT S 85 ATOM 3073 OH2 WAT S 85 ATOM 3074 OH2 WAT S 86 ATOM 3075 OH2 WAT S 87 ATOM 3076 OH2 WAT S 88 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 89 ATOM 3078 OH2 WAT S 90 ATOM 3079 OH2 WAT S 91 ATOM 3080 OH2 WAT S 91 ATOM 3080 OH2 WAT S 92 ATOM 3080 OH2 WAT S 94 ATOM 3081 OH2 WAT S 94 ATOM 3083 OH2 WAT S 95 ATOM 3083 OH2 WAT S 95 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 97 ATOM 3085 OH2 WAT S 98 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 94 ATOM 3080 OH2 WAT S 95 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 100 ATOM 3090 OH2	ATOM		UNZ WAT D			24 051	73.017	1.00 35.45	8
ATOM 3067 OH2 WAT S 80 ATOM 3068 CH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 82 ATOM 3070 OH2 WAT S 83 ATOM 3071 OH2 WAT S 84 ATOM 3071 OH2 WAT S 84 ATOM 3071 OH2 WAT S 85 ATOM 3072 OH2 WAT S 85 ATOM 3073 OH2 WAT S 85 ATOM 3073 OH2 WAT S 86 ATOM 3074 CH2 WAT S 86 ATOM 3075 OH2 WAT S 87 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 88 ATOM 3077 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3077 OH2 WAT S 90 ATOM 3078 OH2 WAT S 91 ATOM 3079 OH2 WAT S 91 ATOM 3079 OH2 WAT S 92 ATOM 3080 OH2 WAT S 93 ATOM 3080 OH2 WAT S 93 ATOM 3080 OH2 WAT S 93 ATOM 3081 OH2 WAT S 94 ATOM 3081 OH2 WAT S 95 ATOM 3083 OH2 WAT S 96 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 97 ATOM 3085 OH2 WAT S 98 ATOM 3086 OH2 WAT S 98 ATOM 3086 OH2 WAT S 98 ATOM 3087 OH2 WAT S 99 ATOM 3088 OH2 WAT S 99 ATOM 3088 OH2 WAT S 99 ATOM 3089 OH2 WAT S 99 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 96 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 100 ATOM 3090 OH2 WAT S 110 ATOM 3090	ATOM	3066							R
ATOM 3068 CH2 WAT S 81 ATOM 3069 OH2 WAT S 82 ATOM 3070 OH2 WAT S 82 ATOM 3071 OH2 WAT S 83 ATOM 3071 OH2 WAT S 84 ATOM 3071 OH2 WAT S 84 ATOM 3072 CH2 WAT S 85 ATOM 3072 OH2 WAT S 85 ATOM 3073 OH2 WAT S 85 ATOM 3074 CH2 WAT S 85 ATOM 3075 CH2 WAT S 87 ATOM 3075 CH2 WAT S 88 ATOM 3076 OH2 WAT S 88 ATOM 3077 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3077 OH2 WAT S 89 ATOM 3078 CH2 WAT S 90 ATOM 3078 OH2 WAT S 91 ATOM 3078 OH2 WAT S 91 ATOM 3080 OH2 WAT S 92 ATOM 3080 OH2 WAT S 92 ATOM 3081 CH2 WAT S 93 ATOM 3081 CH2 WAT S 94 ATOM 3081 CH2 WAT S 95 ATOM 3082 CH2 WAT S 95 ATOM 3083 OH2 WAT S 95 ATOM 3084 CH2 WAT S 98 ATOM 3085 CH2 WAT S 98 ATOM 3086 OH2 WAT S 98 ATOM 3087 OH2 WAT S 98 ATOM 3088 OH2 WAT S 98 ATOM 3088 OH2 WAT S 98 ATOM 3089 OH2 WAT S 98 ATOM 3089 OH2 WAT S 100 ATOM 3080 OH2 WAT S 102 ATOM 3080 OH2 WAT S 100 ATOM 3090 OH2 WAT S 110 ATOM 3090 OH2 W	MOTA	3067	OH2 WAT S	80					
ATOM 3069 OH2 WAT S 82			OH2 WAT S	81	29.891	18.071	46.109		
ATOM 3069 OH2 WAT S 83					12 886	42.723	75.807	1.00 35.31	8
ATOM 3070 GH2 WAT S 84 ATOM 3071 GH2 WAT S 85 ATOM 3072 GH2 WAT S 85 ATOM 3073 GH2 WAT S 85 ATOM 3074 GH2 WAT S 86 ATOM 3074 GH2 WAT S 87 ATOM 3075 GH2 WAT S 88 ATOM 3075 GH2 WAT S 88 ATOM 3076 GH2 WAT S 88 ATOM 3076 GH2 WAT S 89 ATOM 3077 GH2 WAT S 89 ATOM 3077 GH2 WAT S 90 ATOM 3077 GH2 WAT S 90 ATOM 3078 GH2 WAT S 91 ATOM 3079 GH2 WAT S 92 ATOM 3079 GH2 WAT S 92 ATOM 3079 GH2 WAT S 92 ATOM 3080 GH2 WAT S 93 ATOM 3081 GH2 WAT S 94 ATOM 3082 GH2 WAT S 95 ATOM 3083 GH2 WAT S 95 ATOM 3083 GH2 WAT S 96 ATOM 3086 GH2 WAT S 97 ATOM 3086 GH2 WAT S 98 ATOM 3086 GH2 WAT S 99 ATOM 3086 GH2 WAT S 97 ATOM 3086 GH2 WAT S 98 ATOM 3086 GH2 WAT S 99 ATOM 3087 GH2 WAT S 100 ATOM 3088 GH2 WAT S 101 ATOM 3089 GH2 WAT S 102 ATOM 3080 GH2 WAT S 103 ATOM 3080 GH2 WAT S 104 ATOM 3080 GH2 WAT S 105 ATOM 3080 GH2 WAT S 105 ATOM 3080 GH2 WAT S 105 ATOM 3080 GH2 WAT S 106 ATOM 3080 GH2 WAT S 107 ATOM 3080 GH2 WAT S 108 ATOM 3080 GH2 WAT S 100 ATOM 3090 GH2 WAT S 110 ATOM 3090	ATOM	3069						1 00 47 24	8
ATOM 3071 OH2 WAT S 84 133.406 44.647 71.349 1.00 49.57 8 ATOM 3072 OH2 WAT S 85 30.444 35.217 51.882 1.00 30.72 8 ATOM 3073 OH2 WAT S 86 5.217 40.817 61.244 1.00 19.51 8 ATOM 3074 CH2 WAT S 87 8.891 21.532 56.838 1.00 30.72 8 ATOM 3075 OH2 WAT S 88 8.891 21.532 56.838 1.00 29.29 8 ATOM 3076 OH2 WAT S 89 50.621 36.644 60.248 1.00 29.29 8 ATOM 3077 OH2 WAT S 90 26.008 34.532 49.627 1.00 45.42 8 ATOM 3078 OH2 WAT S 91 8.131 39.168 54.903 1.00 31.50 8 ATOM 3079 OH2 WAT S 92 16.591 58.091 57.551 1.00 34.73 8 ATOM 3080 OH2 WAT S 93 34.773 54.065 69.382 1.00 36.05 8 ATOM 3081 OH2 WAT S 94 42.105 31.720 71.257 1.00 35.49 8 ATOM 3083 OH2 WAT S 95 26.411 37.426 38.934 1.00 41.68 8 ATOM 3085 OH2 WAT S 98 21.167 6.202 63.102 1.00 33.36 8 ATOM 3085 OH2 WAT S 98 21.167 6.202 63.102 1.00 33.36 8 ATOM 3086 OH2 WAT S 99 25.060 18.985 36.669 1.00 46.63 8 ATOM 3088 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3089 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3089 OH2 WAT S 102 48.730 25.803 59.572 1.00 37.97 8 ATOM 3090 OH2 WAT S 103 42.407 21.773 46.986 1.00 49.05 8 ATOM 3091 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 ATOM 3093 OH2 WAT S 106 9.750 32.487 48.823 1.00 37.97 8 ATOM 3094 OH2 WAT S 108 7.683 31.371 58.896 1.00 40.03 8 ATOM 3095 OH2 WAT S 108 7.683 31.371 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 100 7.683 31.371 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 100 7.683 31.371 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 100 7.683 31.371 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 100 7.683 31.371 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.683 31.371 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3099 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.08 8 ATOM 3099 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.08 8 ATOM 3099 OH2 WAT S 111 24.791 14.674 50.081 1.00 27.53 8 ATOM 3099 OH2 WAT S 111 24.791 14.674 50.081 1.00 27.53 8 ATOM 3099 OH2 WAT S 111 24.791 14.674 50.081 1.00 27.53 8 ATOM 3099 OH2 WAT S 112 24.791 14.674	MOTA	3070	OH2 WAT S	83 ·					
ATOM 3072		-		84	13.406	44.647			
ATOM 3072				85	30.444	35,217	51.882		
ATOM 3073 OH2 WAT S 87 ATOM 3074 CH2 WAT S 88 ATOM 3075 OH2 WAT S 88 ATOM 3076 OH2 WAT S 89 ATOM 3076 OH2 WAT S 89 ATOM 3077 OH2 WAT S 90 ATOM 3077 OH2 WAT S 90 ATOM 3077 OH2 WAT S 91 ATOM 3079 OH2 WAT S 91 ATOM 3079 OH2 WAT S 92 ATOM 3080 OH2 WAT S 93 ATOM 3080 OH2 WAT S 94 ATOM 3081 OH2 WAT S 94 ATOM 3082 OH2 WAT S 95 ATOM 3083 OH2 WAT S 95 ATOM 3084 OH2 WAT S 97 ATOM 3085 OH2 WAT S 97 ATOM 3086 OH2 WAT S 97 ATOM 3086 OH2 WAT S 98 ATOM 3087 OH2 WAT S 99 ATOM 3088 OH2 WAT S 99 ATOM 3089 OH2 WAT S 100 ATOM 3089 OH2 WAT S 100 ATOM 3089 OH2 WAT S 101 ATOM 3089 OH2 WAT S 102 ATOM 3089 OH2 WAT S 103 ATOM 3089 OH2 WAT S 104 ATOM 3090 OH2 WAT S 105 ATOM 3091 OH2 WAT S 105 ATOM 3090 OH2 WAT S 106 ATOM 3091 OH2 WAT S 107 ATOM 3091 OH2 WAT S 107 ATOM 3091 OH2 WAT S 107 ATOM 3092 OH2 WAT S 107 ATOM 3093 OH2 WAT S 108 ATOM 3090 OH2 WAT S 107 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 105 ATOM 3090 OH2 WAT S 106 ATOM 3090 OH2 WAT S 107 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 107 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 107 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 106 ATOM 3090 OH2 WAT S 107 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 109 ATOM 3090 OH2 WAT S 110 ATOM 3090 OH2 WAT S 111 ATOM 3090 OH2 WAT S 111 ATOM 3090 OH2 WAT S 112 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 114 ATOM 3090 OH2 WAT S 116 ATOM 3090 OH2 WAT S 117 ATOM 3090 OH2 WAT S 117 ATOM 3090 OH2 WAT S 110 ATO	ATOM	3072						1.00 19.51	8
ATOM 3075 CH2 WAT S 87 ATOM 3075 CH2 WAT S 88 ATOM 3076 CH2 WAT S 89 ATOM 3076 CH2 WAT S 89 ATOM 3077 CH2 WAT S 90 ATOM 3077 CH2 WAT S 90 ATOM 3078 CH2 WAT S 91 ATOM 3079 CH2 WAT S 92 ATOM 3080 CH2 WAT S 92 ATOM 3081 CH2 WAT S 93 ATOM 3082 CH2 WAT S 94 ATOM 3082 CH2 WAT S 95 ATOM 3083 CH2 WAT S 95 ATOM 3083 CH2 WAT S 96 ATOM 3084 CH2 WAT S 97 ATOM 3085 CH2 WAT S 97 ATOM 3086 CH2 WAT S 97 ATOM 3088 CH2 WAT S 98 ATOM 3089 CH2 WAT S 100 ATOM 3089 CH2 WAT S 101 ATOM 3089 CH2 WAT S 101 ATOM 3089 CH2 WAT S 102 ATOM 3089 CH2 WAT S 102 ATOM 3089 CH2 WAT S 103 ATOM 3089 CH2 WAT S 104 ATOM 3099 CH2 WAT S 105 ATOM 3090 CH2 WAT S 106 ATOM 3093 CH2 WAT S 107 ATOM 3093 CH2 WAT S 108 ATOM 3093 CH2 WAT S 108 ATOM 3094 CH2 WAT S 108 ATOM 3095 CH2 WAT S 108 ATOM 3095 CH2 WAT S 108 ATOM 3097 CH2 WAT S 108 ATOM 3099 CH2 WAT S 110 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 110 ATOM	ATOM	3073							
ATOM 3075 OH2 WAT S 88 50.621 36.644 60.248 1.00 29.29 8 ATOM 3076 OH2 WAT S 89 50.621 36.644 60.248 1.00 29.29 8 ATOM 3077 OH2 WAT S 90 26.008 34.532 49.627 1.00 45.42 8 ATOM 3078 OH2 WAT S 91 8.131 39.168 54.903 1.00 31.50 8 ATOM 3079 OH2 WAT S 92 16.591 58.091 57.551 1.00 34.73 8 ATOM 3080 OH2 WAT S 93 34.773 54.065 69.382 1.00 36.05 8 ATOM 3081 OH2 WAT S 94 42.105 31.720 71.257 1.00 35.49 8 ATOM 3082 OH2 WAT S 95 29.684 52.077 73.172 1.00 35.17 8 ATOM 3083 OH2 WAT S 96 26.411 37.426 38.934 1.00 41.68 8 ATOM 3084 OH2 WAT S 97 41.183 52.989 62.927 1.00 50.77 8 ATOM 3085 OH2 WAT S 98 21.167 6.202 63.102 1.00 33.36 8 ATOM 3086 OH2 WAT S 99 25.060 18.985 36.669 1.00 46.63 8 ATOM 3088 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3088 OH2 WAT S 100 37.304 39.027 73.722 1.00 29.88 8 ATOM 3089 OH2 WAT S 102 48.730 25.803 59.572 1.00 37.97 8 ATOM 3090 OH2 WAT S 103 24.029 42.997 74.111 1.00 25.23 8 ATOM 3091 OH2 WAT S 105 40.850 36.936 1.00 49.05 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 1.885 1.00 44.21 8 ATOM 3094 OH2 WAT S 107 9.750 32.487 48.823 1.00 35.71 8 ATOM 3095 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3097 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 110 40.750 47.494 54.056 1.00 34.08 8 ATOM 3099 OH2 WAT S 112 44.791 14.674 50.081 1.00 51.96 8 ATOM 3099 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3099 OH2 WAT S 114 7.708 42.479 57.566 1.00 34.08 8 ATOM 3099 OH2 WAT S 114 7.708 42.479 77.566 1.00 27.53 8		3074	CH2 WAT S	87	8.891				
ATOM 3076 OH2 WAT S 89 50.621 36.644 60.248 1.00 29.29 8 ATOM 3077 OH2 WAT S 90 26.008 34.532 49.627 1.00 45.42 ATOM 3078 OH2 WAT S 91 8.131 39.168 54.903 1.00 31.50 8 ATOM 3079 OH2 WAT S 92 16.591 58.091 57.551 1.00 34.73 8 ATOM 3080 OH2 WAT S 94 42.105 31.720 71.257 1.00 35.49 8 ATOM 3081 OH2 WAT S 95 29.684 52.077 73.172 1.00 35.17 8 ATOM 3083 OH2 WAT S 96 26.411 37.426 38.934 1.00 41.68 8 ATOM 3084 OH2 WAT S 98 21.167 6.202 63.102 1.00 33.36 8 ATOM 3085 OH2 WAT S 98 25.060 18.985 36.669 1.00 46.63 8 ATOM 3088 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3088 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3089 OH2 WAT S 101 15.911 54.635 39.343 1.00 29.88 8 ATOM 3090 OH2 WAT S 103 42.4029 42.997 74.111 1.00 25.23 8 ATOM 3090 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 ATOM 3093 OH2 WAT S 105 24.029 42.997 74.111 1.00 25.23 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 49.05 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 49.05 8 ATOM 3094 OH2 WAT S 106 40.850 36.936 31.885 1.00 49.05 8 ATOM 3095 OH2 WAT S 106 40.850 36.936 31.885 1.00 40.03 8 ATOM 3095 OH2 WAT S 106 40.850 36.936 31.885 1.00 40.03 8 ATOM 3095 OH2 WAT S 106 40.850 36.936 31.885 1.00 40.03 8 ATOM 3095 OH2 WAT S 106 40.850 36.936 31.885 1.00 43.26 8 ATOM 3095 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3097 OH2 WAT S 106 40.850 36.936 31.885 1.00 35.71 8 ATOM 3098 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3099 OH2 WAT S 110 40.750 47.494 54.056 1.00 30.02 8 ATOM 3099 OH2 WAT S 111 40.750 47.494 54.056 1.00 46.98 8 ATOM 3099 OH2 WAT S 112 44.791 14.674 50.081 1.00 31.00 51.96 8 ATOM 3099 OH2 WAT S 112 44.791 14.674 50.081 1.00 31.00 51.96 8 ATOM 3099 OH2 WAT S 112 44.791 14.674 50.081 1.00 27.53 8				88	41.816	25.022	72.452		
ATOM 3076 OH2 WAT S 90 26.008 34.532 49.627 1.00 45.42 8 ATOM 3077 OH2 WAT S 91 8.131 39.168 54.903 1.00 31.50 8 ATOM 3079 OH2 WAT S 92 16.591 58.091 57.551 1.00 34.73 8 ATOM 3080 OH2 WAT S 93 34.773 54.065 69.382 1.00 36.05 8 ATOM 3081 OH2 WAT S 94 42.105 31.720 71.257 1.00 35.49 8 ATOM 3082 OH2 WAT S 95 29.684 52.077 73.172 1.00 35.17 8 ATOM 3083 OH2 WAT S 96 26.411 37.426 38.934 1.00 41.68 8 ATOM 3083 OH2 WAT S 97 41.183 52.989 62.927 1.00 50.77 8 ATOM 3085 OH2 WAT S 98 21.167 6.202 63.102 1.00 33.36 8 ATOM 3086 OH2 WAT S 99 25.060 18.985 36.669 1.00 46.63 8 ATOM 3087 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3088 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3089 OH2 WAT S 101 15.911 54.635 39.343 1.00 29.88 8 ATOM 3089 OH2 WAT S 102 48.730 25.803 59.572 1.00 37.97 8 ATOM 3090 OH2 WAT S 103 24.029 42.997 74.111 1.00 25.23 8 ATOM 3091 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 ATOM 3093 OH2 WAT S 105 29.984 22.945 31.397 1.00 44.21 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 43.26 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 43.26 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 43.26 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 43.26 8 ATOM 3095 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3097 OH2 WAT S 108 7.618 30.171 59.767 1.00 50.33 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 59.767 1.00 50.33 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 59.767 1.00 50.33 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 59.767 1.00 50.33 8 ATOM 3099 OH2 WAT S 108 7.618 30.171 59.767 1.00 50.33 8 ATOM 3099 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3099 OH2 WAT S 111 22.590 8.744 67.501 1.00 34.08 8 ATOM 3099 OH2 WAT S 111 22.590 8.744 67.501 1.00 34.08 8 ATOM 3099 OH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3099 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3099 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3099 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3091 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3091 OH2 WAT S 113 40.750 47.494	ATOM		•••••				60.248	1.00 29.29	8
ATOM 3077 OH2 WAT S 90 ATOM 3078 OH2 WAT S 91 ATOM 3079 OH2 WAT S 92 ATOM 3079 OH2 WAT S 92 ATOM 3080 OH2 WAT S 93 ATOM 3081 OH2 WAT S 94 ATOM 3082 OH2 WAT S 95 ATOM 3083 OH2 WAT S 95 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 97 ATOM 3086 OH2 WAT S 97 ATOM 3087 OH2 WAT S 97 ATOM 3088 OH2 WAT S 98 ATOM 3089 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 97 ATOM 3080 OH2 WAT S 98 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 99 ATOM 3080 OH2 WAT S 100 ATOM 3080 OH2 WAT S 100 ATOM 3080 OH2 WAT S 100 ATOM 3080 OH2 WAT S 101 ATOM 3080 OH2 WAT S 102 ATOM 3080 OH2 WAT S 102 ATOM 3080 OH2 WAT S 103 ATOM 3090 OH2 WAT S 104 ATOM 3091 OH2 WAT S 105 ATOM 3091 OH2 WAT S 106 ATOM 3092 OH2 WAT S 107 ATOM 3093 OH2 WAT S 108 ATOM 3093 OH2 WAT S 106 ATOM 3094 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3095 OH2 WAT S 108 ATOM 3095 OH2 WAT S 108 ATOM 3095 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3095 OH2 WAT S 108 ATOM 3096 OH2 WAT S 108 ATOM 3097 OH2 WAT S 108 ATOM 3099 OH2 WAT S 107 ATOM 3099 OH2 WAT S 108 ATOM 3099 OH2 WAT S 110 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 115 ATOM 3099 OH2 WAT S 116 ATOM 3099 OH2 WAT S 117 ATOM 3099 OH2 WAT S 118 ATOM 3099 OH2 WAT S 110 ATOM 3099 OH2 WAT S 110 ATOM	ATOM	3076	OH2 WAT S						8
ATOM 3078		3077	OH2 WAT S	90	25.008				
ATOM 3079 GH2 WAT S 92 ATOM 3080 GH2 WAT S 93 ATOM 3081 GH2 WAT S 94 ATOM 3081 GH2 WAT S 95 ATOM 3082 GH2 WAT S 95 ATOM 3083 GH2 WAT S 95 ATOM 3084 GH2 WAT S 96 ATOM 3085 GH2 WAT S 97 ATOM 3086 GH2 WAT S 97 ATOM 3086 GH2 WAT S 98 ATOM 3087 GH2 WAT S 99 ATOM 3088 GH2 WAT S 99 ATOM 3088 GH2 WAT S 100 ATOM 3088 GH2 WAT S 100 ATOM 3088 GH2 WAT S 101 ATOM 3089 GH2 WAT S 102 ATOM 3089 GH2 WAT S 102 ATOM 3090 GH2 WAT S 103 ATOM 3090 GH2 WAT S 104 ATOM 3091 GH2 WAT S 105 ATOM 3091 GH2 WAT S 105 ATOM 3093 GH2 WAT S 106 ATOM 3093 GH2 WAT S 107 ATOM 3094 GH2 WAT S 108 ATOM 3095 GH2 WAT S 108 ATOM 3096 GH2 WAT S 109 ATOM 3097 GH2 WAT S 108 ATOM 3098 GH2 WAT S 107 ATOM 3099 GH2 WAT S 108 ATOM 3090 GH2 WAT S 108 ATOM 3090 GH2 WAT S 107 ATOM 3090 GH2 WAT S 108 ATOM 3090 GH2 WAT S 107 ATOM 3090 GH2 WAT S 108 ATOM 3090 GH2 WAT S 108 ATOM 3090 GH2 WAT S 107 ATOM 3090 GH2 WAT S 108 ATOM 3090 GH2 WAT S 109 ATOM 3090 GH2 WAT S 110 ATOM 3090 GH2 WAT S 111 ATOM 3090 GH2 WAT S 112 ATOM 3090 GH2 WAT S 113 ATOM 3090 GH2 WAT S 114 ATOM 3090 GH2 WAT S 113 ATOM 3090 GH2 WAT S 114 ATOM 3090 GH2 WAT S 115 ATOM 3090 GH2 WAT S 111 ATOM 3090 GH2 WAT S 112 ATOM 3090 GH2 WAT S 113 ATOM 3090 GH2 WAT S 114 ATOM 3090 GH2 WAT S 113 ATOM 3090 GH2 WAT S 114 ATOM 3090 GH2 WAT S 116 ATOM 3090 GH2 WAT S 117 ATOM 3090 GH2 WAT S 118 ATOM 3090 GH2 WAT S 119 ATOM 3090 GH2 WAT S 110 ATOM 3090 GH2 WAT S 111 ATOM 3090 GH2 WAT S 112 ATOM 3090 GH2 WAT S 113 ATOM 3090 GH2 WAT S 114 ATOM 3090 GH2 WAT S 115 ATOM 3090 GH2 WAT S 116 ATOM 3090 GH2 WAT				91	8.131	39.168	54.903		
ATOM 3080 OH2 WAT S 93 ATOM 3080 OH2 WAT S 94 ATOM 3081 OH2 WAT S 94 ATOM 3081 OH2 WAT S 94 ATOM 3082 OH2 WAT S 95 ATOM 3083 OH2 WAT S 95 ATOM 3084 OH2 WAT S 96 ATOM 3085 OH2 WAT S 97 ATOM 3086 OH2 WAT S 97 ATOM 3086 OH2 WAT S 98 ATOM 3086 OH2 WAT S 99 ATOM 3086 OH2 WAT S 99 ATOM 3086 OH2 WAT S 99 ATOM 3087 OH2 WAT S 100 ATOM 3088 OH2 WAT S 101 ATOM 3089 OH2 WAT S 101 ATOM 3090 OH2 WAT S 102 ATOM 3090 OH2 WAT S 103 ATOM 3091 OH2 WAT S 104 ATOM 3092 OH2 WAT S 105 ATOM 3093 OH2 WAT S 106 ATOM 3093 OH2 WAT S 106 ATOM 3093 OH2 WAT S 106 ATOM 3094 OH2 WAT S 106 ATOM 3095 OH2 WAT S 107 ATOM 3096 OH2 WAT S 108 ATOM 3097 OH2 WAT S 108 ATOM 3098 OH2 WAT S 106 ATOM 3099 OH2 WAT S 106 ATOM 3090 OH2 WAT S 107 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 106 ATOM 3090 OH2 WAT S 106 ATOM 3090 OH2 WAT S 107 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 108 ATOM 3090 OH2 WAT S 109 ATOM 3090 OH2 WAT S 109 ATOM 3090 OH2 WAT S 110 ATOM 3090 OH2 WAT S 111 ATOM 3090 OH2 WAT S 112 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 114 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 114 ATOM 3090 OH2 WAT S 115 ATOM 3090 OH2 WAT S 116 ATOM 3090 OH2 WAT S 117 ATOM 3090 OH2 WAT S 118 ATOM 3090 OH2 WAT S 110 ATOM 3090 OH2 WAT S 111 ATOM 3090 OH2 WAT S 112 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 114 ATOM 3090 OH2 WAT S 115 ATOM 3090 OH2 WAT S 116 ATOM 3090 OH2 WAT S 117 ATOM 3090 OH2 WAT S 118 ATOM 3090 OH2 WAT S 117 ATOM 3090 OH2 WAT S 118 ATOM 3090 OH2 WAT S 110 ATOM 3090 OH2 WAT S	ATOM				16 591.	58 091	57.551	1.00 34.73	8
ATOM 3080 OH2 WAT S 93 34.773 54.083 09.202 1.00 35.49 8 ATOM 3081 OH2 WAT S 94 42.105 31.720 71.257 1.00 35.49 8 ATOM 3082 OH2 WAT S 95 29.684 52.077 73.172 1.00 35.17 8 ATOM 3083 OH2 WAT S 96 26.411 37.426 38.934 1.00 41.68 8 ATOM 3084 OH2 WAT S 97 41.183 52.989 62.927 1.00 50.77 8 ATOM 3085 OH2 WAT S 98 21.167 6.202 63.102 1.00 33.36 8 ATOM 3086 OH2 WAT S 99 25.060 18.985 36.669 1.00 46.63 8 ATOM 3087 OH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3088 OH2 WAT S 101 15.911 54.635 39.343 1.00 29.88 8 ATOM 3089 OH2 WAT S 102 48.730 25.803 59.572 1.00 37.97 8 ATOM 3090 OH2 WAT S 102 48.730 25.803 59.572 1.00 37.97 8 ATOM 3091 OH2 WAT S 103 24.029 42.997 74.111 1.00 25.23 8 ATOM 3091 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 ATOM 3092 OH2 WAT S 105 29.984 22.945 31.397 1.00 44.21 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 49.05 8 ATOM 3094 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3095 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3096 OH2 WAT S 110 22.590 8.744 67.501 1.00 35.33 8 ATOM 3098 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3098 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3098 OH2 WAT S 111 21.034 29.771 76.056 1.00 30.02 8 ATOM 3098 OH2 WAT S 111 21.034 29.771 76.056 1.00 34.08 8 ATOM 3099 OH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3099 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3100 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8	MOTA	3079						1 00 36 05	8
ATOM 3081 CH2 WAT S 94 ATOM 3082 CH2 WAT S 95 ATOM 3083 CH2 WAT S 96 ATOM 3083 CH2 WAT S 96 ATOM 3084 CH2 WAT S 97 ATOM 3085 CH2 WAT S 98 ATOM 3086 CH2 WAT S 98 ATOM 3086 CH2 WAT S 98 ATOM 3087 CH2 WAT S 99 ATOM 3087 CH2 WAT S 100 ATOM 3088 CH2 WAT S 101 ATOM 3088 CH2 WAT S 101 ATOM 3089 CH2 WAT S 102 ATOM 3089 CH2 WAT S 102 ATOM 3090 CH2 WAT S 103 ATOM 3090 CH2 WAT S 104 ATOM 3091 CH2 WAT S 104 ATOM 3092 CH2 WAT S 105 ATOM 3093 CH2 WAT S 105 ATOM 3094 CH2 WAT S 106 ATOM 3095 CH2 WAT S 107 ATOM 3096 CH2 WAT S 108 ATOM 3097 CH2 WAT S 108 ATOM 3098 CH2 WAT S 105 ATOM 3099 CH2 WAT S 106 ATOM 3090 CH2 WAT S 107 ATOM 3090 CH2 WAT S 108 ATOM 3091 CH2 WAT S 108 ATOM 3090 CH2 WAT S 108 ATOM 3090 CH2 WAT S 106 ATOM 3090 CH2 WAT S 107 ATOM 3090 CH2 WAT S 108 ATOM 3090 CH2 WAT S 109 ATOM 3090 CH2 WAT S 110 ATOM 3090 CH2 WAT S 100 ATOM 3090 CH2 CH2 CH2 CH2 CH2 CH2 ATOM		3080	OH2 WAT S	93	34.773				
ATOM 3082 CH2 WAT S 95 ATOM 3083 CH2 WAT S 96 ATOM 3084 CH2 WAT S 97 ATOM 3084 CH2 WAT S 97 ATOM 3085 CH2 WAT S 98 ATOM 3086 CH2 WAT S 98 ATOM 3086 CH2 WAT S 99 ATOM 3087 CH2 WAT S 100 ATOM 3088 CH2 WAT S 100 ATOM 3088 CH2 WAT S 101 ATOM 3089 CH2 WAT S 102 ATOM 3089 CH2 WAT S 102 ATOM 3090 CH2 WAT S 103 ATOM 3090 CH2 WAT S 104 ATOM 3091 CH2 WAT S 105 ATOM 3093 CH2 WAT S 105 ATOM 3093 CH2 WAT S 105 ATOM 3094 CH2 WAT S 106 ATOM 3095 CH2 WAT S 107 ATOM 3095 CH2 WAT S 106 ATOM 3090 CH2 WAT S 107 ATOM 3091 CH2 WAT S 106 ATOM 3093 CH2 WAT S 107 ATOM 3094 CH2 WAT S 107 ATOM 3095 CH2 WAT S 108 ATOM 3095 CH2 WAT S 108 ATOM 3096 CH2 WAT S 108 ATOM 3096 CH2 WAT S 108 ATOM 3097 CH2 WAT S 109 ATOM 3098 CH2 WAT S 109 ATOM 3098 CH2 WAT S 109 ATOM 3099 CH2 WAT S 110 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 115 ATOM 3099 CH2 WAT S 116 ATOM 3090 CH2				94	42.105	31.720			
ATOM 3082 CH2 WAT S 96 ATOM 3083 OH2 WAT S 96 ATOM 3084 OH2 WAT S 97 ATOM 3085 OH2 WAT S 98 ATOM 3085 OH2 WAT S 98 ATOM 3086 OH2 WAT S 99 ATOM 3087 OH2 WAT S 100 ATOM 3088 OH2 WAT S 101 ATOM 3089 OH2 WAT S 101 ATOM 3089 OH2 WAT S 102 ATOM 3090 OH2 WAT S 103 ATOM 3090 OH2 WAT S 104 ATOM 3091 OH2 WAT S 105 ATOM 3092 OH2 WAT S 105 ATOM 3093 OH2 WAT S 106 ATOM 3093 OH2 WAT S 106 ATOM 3094 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3095 OH2 WAT S 107 ATOM 3096 OH2 WAT S 108 ATOM 3097 OH2 WAT S 108 ATOM 3090 OH2 WAT S 106 ATOM 3090 OH2 WAT S 106 ATOM 3091 OH2 WAT S 106 ATOM 3093 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3095 OH2 WAT S 108 ATOM 3096 OH2 WAT S 108 ATOM 3096 OH2 WAT S 109 ATOM 3097 OH2 WAT S 109 ATOM 3098 OH2 WAT S 110 ATOM 3098 OH2 WAT S 111 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3100 OH2 WAT S 113 ATOM 3100 OH2 WAT S 113 ATOM 3100 OH2 WAT S 114 ATOM 3101 OH2 WAT S 114 ATOM 3101 OH2 WAT S 113 ATOM 3100 OH2 WAT S 114 ATOM 3101 OH2 WAT S 113 ATOM 3101 OH2 WAT S 114 ATOM 3101 OH					29 684	52 077	73.172	1.00 35.17	8
ATOM 3083 GH2 WAT S 96 ATOM 3084 GH2 WAT S 97 ATOM 3085 GH2 WAT S 98 ATOM 3085 GH2 WAT S 98 ATOM 3086 GH2 WAT S 99 ATOM 3087 OH2 WAT S 100 ATOM 3088 GH2 WAT S 101 ATOM 3088 GH2 WAT S 101 ATOM 3089 GH2 WAT S 101 ATOM 3090 GH2 WAT S 102 ATOM 3091 GH2 WAT S 105 ATOM 3092 GH2 WAT S 105 ATOM 3093 GH2 WAT S 106 ATOM 3093 GH2 WAT S 106 ATOM 3094 GH2 WAT S 107 ATOM 3095 GH2 WAT S 108 ATOM 3095 GH2 WAT S 108 ATOM 3096 GH2 WAT S 108 ATOM 3097 GH2 WAT S 108 ATOM 3098 GH2 WAT S 106 ATOM 3099 GH2 WAT S 107 ATOM 3094 GH2 WAT S 108 ATOM 3095 GH2 WAT S 108 ATOM 3095 GH2 WAT S 108 ATOM 3096 GH2 WAT S 108 ATOM 3097 GH2 WAT S 109 ATOM 3097 GH2 WAT S 108 ATOM 3098 GH2 WAT S 109 ATOM 3096 GH2 WAT S 109 ATOM 3097 GH2 WAT S 108 ATOM 3098 GH2 WAT S 110 ATOM 3098 GH2 WAT S 110 ATOM 3099 GH2 WAT S 111 ATOM 3099 GH2 WAT S 112 ATOM 3099 GH2 WAT S 113 ATOM 3099 GH2 WAT S 114 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 113 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 114 ATOM 3100 GH2 WAT S 115 ATOM 3100 GH2 WAT S 116 ATOM 3095 GH2 WAT S 116 ATOM 3095 GH2 WAT S 116 ATOM 3096 G	MOTA	3082							8
ATOM 3084 OH2 WAT S 97 ATOM 3085 OH2 WAT S 98 ATOM 3086 OH2 WAT S 99 ATOM 3087 OH2 WAT S 100 ATOM 3088 OH2 WAT S 101 ATOM 3088 OH2 WAT S 101 ATOM 3089 OH2 WAT S 102 ATOM 3090 OH2 WAT S 103 ATOM 3091 OH2 WAT S 104 ATOM 3092 OH2 WAT S 105 ATOM 3093 OH2 WAT S 105 ATOM 3093 OH2 WAT S 106 ATOM 3094 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3096 OH2 WAT S 109 ATOM 3097 OH2 WAT S 109 ATOM 3098 OH2 WAT S 109 ATOM 3099 OH2 WAT S 108 ATOM 3090 OH2 WAT S 106 ATOM 3091 OH2 WAT S 107 ATOM 3094 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3096 OH2 WAT S 108 ATOM 3096 OH2 WAT S 109 ATOM 3097 OH2 WAT S 109 ATOM 3098 OH2 WAT S 110 ATOM 3098 OH2 WAT S 110 ATOM 3099 OH2 WAT S 110 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 115 ATOM 3099 OH2 WAT S 116 ATOM 3099 OH2 WAT S 117 ATOM 3099 OH2 WAT S 118 ATOM 3099 OH2 WAT S 119 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 115 ATOM 3099 OH2 WAT S 116 ATOM 3099 OH2 WAT S 117 ATOM 3099 OH2 WAT S 118 ATOM 3099 OH2 WAT S 119 ATOM 3099 OH2 WAT S 110 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 114 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 113 ATOM 3090 OH2 WAT S 114 ATOM 3090 OH2 WAT S 114 ATOM 3090 OH2 WAT S 116 ATOM 3090 OH2 WAT S 117 ATOM 3090 OH2 WAT S 110 ATOM 3090 OH2 WAT S 100 ATOM 3090	MOTE	3083	OH2 WAT S	96					
ATOM 3085 CH2 WAT S 98 ATOM 3086 CH2 WAT S 99 ATOM 3087 CH2 WAT S 100 ATOM 3088 CH2 WAT S 100 ATOM 3088 CH2 WAT S 101 ATOM 3088 CH2 WAT S 101 ATOM 3089 CH2 WAT S 102 ATOM 3090 CH2 WAT S 103 ATOM 3091 CH2 WAT S 104 ATOM 3092 CH2 WAT S 105 ATOM 3093 CH2 WAT S 106 ATOM 3093 CH2 WAT S 107 ATOM 3094 CH2 WAT S 108 ATOM 3095 CH2 WAT S 108 ATOM 3096 CH2 WAT S 108 ATOM 3097 CH2 WAT S 109 ATOM 3098 CH2 WAT S 110 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 115 ATOM 3099 CH2 WAT S 116 ATOM 3099 CH2 WAT S 117 ATOM 3099 CH2 WAT S 118 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 115 ATOM 3099 CH2 WAT S 116 ATOM 3099 CH2 WAT S 117 ATOM 3099 CH2 WAT S 117 ATOM 3099 CH2 WAT S 118 ATOM 3099 CH2 WAT S 118 ATOM 3099 CH2 WAT S 119 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 113 ATOM 3090 CH2 WAT S 114 ATOM 3090 CH2 WAT S 100 ATOM 3090 CH2 WAT S 100 ATOM 3090 CH2 WAT S 100 ATOM 309			OH2 WAT S	97	41.183	52.989			
ATOM 3085 CH2 WAT S 99 ATOM 3086 CH2 WAT S 99 ATOM 3087 OH2 WAT S 100 ATOM 3087 OH2 WAT S 100 ATOM 3088 CH2 WAT S 101 ATOM 3088 CH2 WAT S 101 ATOM 3089 CH2 WAT S 101 ATOM 3090 CH2 WAT S 103 ATOM 3091 OH2 WAT S 104 ATOM 3092 CH2 WAT S 105 ATOM 3092 CH2 WAT S 105 ATOM 3093 CH2 WAT S 106 ATOM 3094 CH2 WAT S 107 ATOM 3095 CH2 WAT S 108 ATOM 3096 CH2 WAT S 108 ATOM 3096 CH2 WAT S 109 ATOM 3097 CH2 WAT S 109 ATOM 3098 CH2 WAT S 110 ATOM 3099 CH2 WAT S 110 ATOM 3099 CH2 WAT S 110 ATOM 3096 CH2 WAT S 110 ATOM 3097 CH2 WAT S 110 ATOM 3098 CH2 WAT S 110 ATOM 3099 CH2 WAT S 110 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 115 ATOM 3099 CH2 WAT S 116 ATOM 3099 CH2 WAT S 117 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 115 ATOM 3099 CH2 WAT S 116 ATOM 3099 CH2 WAT S 117 ATOM 3090 CH2 WAT S 100 ATOM 3090 CH2 WAT S 100 ATOM 309						6.202	63.102	1.00 33.36	8
ATOM 3086 SH2 WAT S 100 37.304 39.027 73.722 1.00 25.99 8 ATOM 3088 SH2 WAT S 101 15.911 54.635 39.343 1.00 29.88 8 ATOM 3089 SH2 WAT S 102 48.730 25.803 59.572 1.00 37.97 8 ATOM 3090 SH2 WAT S 103 24.029 42.997 74.111 1.00 25.23 8 ATOM 3091 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 ATOM 3092 SH2 WAT S 105 29.984 22.945 31.397 1.00 44.21 8 ATOM 3093 SH2 WAT S 106 40.850 36.936 31.885 1.00 43.26 8 ATOM 3094 SH2 WAT S 107 9.750 32.487 48.823 1.00 35.71 8 ATOM 3095 SH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3096 SH2 WAT S 109 17.603 13.771 59.767 1.00 50.33 8 ATOM 3096 SH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3098 SH2 WAT S 111 22.590 8.744 67.501 1.00 34.81 8 ATOM 3099 SH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3099 SH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3100 SH2 WAT S 113 40.750 47.494 54.056 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 SH2 WAT S 114 7.708 42.479 7.566 1.00 27.53	ATOM	3085	CHZ WAT 5						8
ATOM 3087 OH2 WAT S 100 37.304 39.027 73.722 1.00 29.88 8 ATOM 3088 OH2 WAT S 101 15.911 54.635 39.343 1.00 29.88 8 ATOM 3089 OH2 WAT S 102 48.730 25.803 59.572 1.00 37.97 8 ATOM 3090 OH2 WAT S 103 24.029 42.997 74.111 1.00 25.23 8 ATOM 3091 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 ATOM 3092 OH2 WAT S 105 29.984 22.945 31.397 1.00 44.21 8 ATOM 3093 OH2 WAT S 106 40.850 36.936 31.885 1.00 43.26 8 ATOM 3094 OH2 WAT S 107 9.750 32.487 48.823 1.00 35.71 8 ATOM 3095 OH2 WAT S 108 7.618 30.171 59.767 1.00 50.33 8 ATOM 3096 OH2 WAT S 109 17.603 13.771 59.767 1.00 50.33 8 ATOM 3097 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3098 OH2 WAT S 111 21.034 29.771 76.056 1.00 30.02 8 ATOM 3099 OH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3100 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8	MOTE	3086	OH2 WAT S	99					
ATOM 3088 CH2 WAT S 101			OF WAT S	100 .	37.304	39.027	73.722		
ATOM 3088 SH2 WAT S 101	ATOM		U112 1177 5	101	15 011	54 635	39.343	1.00 29.88	.8
ATOM 3089 CH2 WAT S 102 ATOM 3090 CH2 WAT S 103 ATOM 3091 CH2 WAT S 104 ATOM 3092 CH2 WAT S 105 ATOM 3093 CH2 WAT S 106 ATOM 3093 CH2 WAT S 106 ATOM 3094 CH2 WAT S 107 ATOM 3095 CH2 WAT S 107 ATOM 3095 CH2 WAT S 108 ATOM 3096 CH2 WAT S 108 ATOM 3096 CH2 WAT S 109 ATOM 3097 CH2 WAT S 109 ATOM 3098 CH2 WAT S 110 ATOM 3098 CH2 WAT S 111 ATOM 3098 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3099 CH2 WAT S 115 ATOM 3099 CH2 WAT S 116 ATOM 3099 CH2 WAT S 117 ATOM 3099 CH2 WAT S 118 ATOM 3099 CH2 WAT S 119 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3099 CH2 WAT S 114 ATOM 3100 CH2 WAT S 114 ATOM 3	MOTA	3088	CH2 WAT S	TUL					8
ATOM 3090 OH2 WAT S 103 ATOM 3091 OH2 WAT S 104 ATOM 3092 OH2 WAT S 105 ATOM 3093 OH2 WAT S 106 ATOM 3093 OH2 WAT S 106 ATOM 3094 OH2 WAT S 107 ATOM 3095 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3096 OH2 WAT S 109 ATOM 3097 OH2 WAT S 110 ATOM 3098 OH2 WAT S 111 ATOM 3098 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3099 OH2 WAT S 115 ATOM 3099 OH2 WAT S 116 ATOM 3099 OH2 WAT S 117 ATOM 3099 OH2 WAT S 118 ATOM 3099 OH2 WAT S 119 ATOM 3100 OH2 WAT S 113 ATOM 3100 OH2 WAT S 114		3089	CH2 WAT S	102	48.730				
ATOM 3091 OH2 WAT S 104 42.477 21.773 46.986 1.00 49.05 8 40.00 40 40.00			AND WATER	103	24.029	42.997	74.111		
ATOM 3091 OH2 WAT S 104			JRZ WAT S	104			46.986	1.00 49.05	8
ATOM 3092 OH2 WAT S 105 ATOM 3093 OH2 WAT S 106 ATOM 3094 OH2 WAT S 107 ATOM 3095 OH2 WAT S 108 ATOM 3096 OH2 WAT S 109 ATOM 3097 OH2 WAT S 109 ATOM 3097 OH2 WAT S 110 ATOM 3098 OH2 WAT S 111 ATOM 3098 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 112 ATOM 3099 OH2 WAT S 113 ATOM 3099 OH2 WAT S 114 ATOM 3100 OH2 WAT S 113 ATOM 3100 OH2 WAT S 114 ATOM 3100 OH2 WAT S 114 ATOM 3101 OH2 WAT S 114 ATOM 3175 48 136 ATOM 3175 AR 136	MOTA	3091	OH2 WAT S	104					8
ATOM 3093 CH2 WAT S 106 ATOM 3094 CH2 WAT S 107 ATOM 3095 CH2 WAT S 108 ATOM 3096 CH2 WAT S 108 ATOM 3096 CH2 WAT S 109 ATOM 3097 CH2 WAT S 110 ATOM 3098 CH2 WAT S 110 ATOM 3098 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 113 ATOM 3100 CH2 WAT S 113 ATOM 3100 CH2 WAT S 114 ATOM 3			OH2 WAT S	105					
ATOM 3094 OH2 WAT S 107 9.750 32.487 48.823 1.00 35.71 8 ATOM 3095 OH2 WAT S 108 7.618 30.171 58.896 1.00 40.03 8 ATOM 3096 OH2 WAT S 109 17.603 13.771 59.767 1.00 50.33 8 ATOM 3097 OH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3098 OH2 WAT S 111 21.034 29.771 76.056 1.00 30.02 8 ATOM 3099 OH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3100 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 77.566 1.00 27.53 8			ב תבנו כאם	106	40.850	36.936			0
ATOM 3094 CH2 WAT S 108 ATOM 3095 CH2 WAT S 108 ATOM 3096 CH2 WAT S 109 ATOM 3096 CH2 WAT S 109 ATOM 3097 CH2 WAT S 110 ATOM 3097 CH2 WAT S 110 ATOM 3098 CH2 WAT S 111 ATOM 3098 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3099 CH2 WAT S 112 ATOM 3100 CH2 WAT S 113 ATOM 3100 CH2 WAT S 113 ATOM 3100 CH2 WAT S 114 ATOM 3101 CH2 WAT S 115			OHE HAL S	107				1.00 35.71	
ATOM 3095 OH2 WAT S 108 ATOM 3096 OH2 WAT S 109 ATOM 3097 OH2 WAT S 110 ATOM 3097 OH2 WAT S 110 ATOM 3098 OH2 WAT S 111 ATOM 3099 OH2 WAT S 111 ATOM 3099 OH2 WAT S 112 ATOM 3100 OH2 WAT S 113 ATOM 3100 OH2 WAT S 113 ATOM 3101 OH2 WAT S 114	ATOM	3094	OH2 WAT S	10/					
ATOM 3096 CH2 WAT S 109 ATOM 3097 CH2 WAT S 110 ATOM 3098 CH2 WAT S 111 ATOM 3098 CH2 WAT S 111 ATOM 3099 CH2 WAT S 111 ATOM 3099 CH2 WAT S 112 ATOM 3100 CH2 WAT S 113 ATOM 3100 CH2 WAT S 114 ATOM 3101 CH2 WAT S 114 ATOM 3			CH2 WAT S	108					
ATOM 3096 CH2 WAT S 110 22.590 8.744 67.501 1.00 34.81 8 ATOM 3097 CH2 WAT S 110 22.590 8.744 67.501 1.00 30.02 8 ATOM 3098 CH2 WAT S 111 21.034 29.771 76.056 1.00 30.02 8 ATOM 3099 CH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3100 CH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3101 CH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 CH2 WAT S 114 7.708 42.479 77.566 1.00 27.53 8			ב מדעון כער	109	17.603	13.771	59.767	1.00 50.33	
ATOM 3097 SH2 WAT S 110 ATOM 3098 SH2 WAT S 111 ATOM 3099 SH2 WAT S 111 ATOM 3099 SH2 WAT S 112 ATOM 3100 SH2 WAT S 113 ATOM 3100 SH2 WAT S 113 ATOM 3101 SH2 WAT S 114 ATOM 3101 SH2 WAT S 115 ATOM 3101 SH2 WAT S 1	atom		UNZ WAI 5	110				1.00 34.81	8
ATOM 3098 CH2 WAT S 111 21.034 29.771 76.036 1.00 51.96 8 ATOM 3099 CH2 WAT S 112 24.791 14.674 50.081 1.00 51.96 8 ATOM 3100 CH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3101 CH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 7.708 3101 CH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.479 1.00 34.08 8 7.708 42.408 1.00 34.08 8 7.708 8 7.708 8 7.708 8 7.708 8 7.708 8 7.708 8 7	ATOM	3097	CH2 WAT S	110					8
ATOM 3099 OH2 WAT S 112 24.791 14.674 50.061 1.00 32.50 8 ATOM 3100 OH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 27.53 8			CH2 WAT S	111				. 00 51 05	
ATOM 300 CH2 WAT S 113 40.750 47.494 54.056 1.00 46.98 8 ATOM 3101 CH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 CH2 WAT S 114 7.708 42.479 58.027 1.00 27.53 8				112	24.791	14.674			
ATON 3100 CH2 WAT S 114 7.708 42.479 58.027 1.00 34.08 8 ATOM 3101 OH2 WAT S 114 7.708 42.479 58.027 1.00 27.53 8				113			- 4 0 - 4	1.00 46.98	
ATOM 3101 OH2 WAT 5 114 22 375 48 136 77.566 1.00 27.53 8	ATOM			2.2.4				1.00 34.08	8
20 275 /0 126 11.000 1.00 27.33		3101	OHZ WAT S	114					
				115	32.375	49.136	11.300	1.00 200	

	2202	OH2 WAT S 116		5.596	17.009	64.551	1.00 39.15	8
ATOM	3103 3104	OH2 WAT S 117		20.194	5.0.998	70.563	1.00 19.73	8
ATOM ATOM	3105	OH2 WAT S 118		23.853	64.927	64.164	1.00 27.16	8 8
ATOM	3106	OH2 WAT S 119		9.277	43.601	46.279	1.00 32.31 1.00 55.20	8
ATOM	3107	OH2 WAT S 120		15.613	24.398	46.723	1.00 35.20	8
ATOM	3108	OH2 WAT S 121		33.110	16.122	54.229 33.852	1.00 37.49	8
ATOM	3109	OH2 WAT S 122		26.772	34.085	75.829	1.00 47.30	8
ATOM	3110	OH2 WAT S 123		28.654	37.783 22.653	59.678	1.00 37.33	8
ATOM	3111	OH2 WAT S 124		49.180	27.788	65.975	1.00 67.86	8
MOTA	3112	OH2 WAT S 125		20.561 34.251	13.344	57.366	1.00 36.18	8
MOTA	3113	OH2 WAT. 5 126		49.215	36.854	48.117	1.00 33.63	8
ATOM	3114	OH2 WAT S 127 OH2 WAT S 128		45.826	19.588	41.601	1.00 44.07	8
MOTA	3115			18.693	56.382	64.014	1.00 47.77	8 .
MOTA	3116	OH2 WAT S 129 OH2 WAT S 130		44.181	24.202	36.963	1.00 32.70	8
ATOM	3117 3118	OH2 WAT S 131		19.160	51.901	38.133	1.00 54.07	8
ATOM	3119	OH2 WAT S 132		16.904	36.558	48.679	1.00 42.21	8 8
ATOM ATOM	3120	OH2 WAT 5 133		46.851	26.029	34.353	1.00 56.33 1.00 45.99	8
ATOM	3121	OH2 WAT S 134		3.925	41.533	68.647	1.00 44.50	8
ATOM	3122	OH2 WAT S 135		44.590	38.382	78.167 71.166	1.00 28.17	8
ATOM	3123	OH2 WAT S 136		6.384 17.982	19.317 39.823	66.487	1.00 49.31	8
MOTA	3124	OH2 WAT S 137		8.317	22.286	61.863	1.00 43.42	8
MOTA	3125	OH2 WAT S 138		29.248	14.196	55.622	1.00 35.55	8
ATOM	3126	OH2 WAT S 139 OH2 WAT S 140		30.377	33.180	80.320	1.00 43.94	8
MOTA	3127			41.842	32.906	27.392	1.00 24.82	8
MOTA	3128	OH2 WAT S 141 OH2 WAT S 142		33.971	3.859	64.002	1.00 41.93	8
MOTA	3129 3130	OH2 WAT S 143		27.314	8.087	70.916	1.00 49.03	8
ATOM ATOM	3131	OH2 WAT S 144		4.310	39.006	64.550	1.00 32.70	8 8
ATOM	3132	OH2 WAT S 145		2.940	19.950	63.265	1.00 33.24 1.00 44.24	8
ATOM	3133	OH2 WAT 5 146		24.134	47.625	60.121 42.337	1.00 47.82	8
ATOM	3134	OH2 WAT S 147		25.035	53.746 38.897		1.00 21.86	8
ATOM	3135	OH2 WAT S 148		32.767	57.288	47.392	1.00 36.13	8
ATOM	3136	OH2 WAT 5 149		37.145 25.171	18.011	32.273	1.00 38.04	8
MOTA	3137	OH2 WAT S 150 OH2 WAT S 151		24.054	43.182	55.583	1.00 41.68	8
ATOM	3138	OH2 WAT S 151 OH2 WAT S 152		27.686	64.936	52.937	1.00 60.62	8
ATOM	3139 3140	OH2 WAT S 153		24.084	39.543	76.589	1.00 22.62	8
MOTA	3141	OH2 WAT S 154		42.110	10.159	68.662	1.00 46.98	8 8
MOTA MOTA	3142	OH2 WAT S 155		9.675	22.905	75.335	1.00 26.45 1.00 33.84	8
ATOM	3143	OH2 WAT 5 156		4.506	34.799	52.857 76.446	1.00 35.34	8
MOTA	3144	OH2 WAT S 157		32.583	35.051 58.311	60.390	1.00 54.69	8
ATOM	3145	OH2 WAT 5 158		40.341 29.473	58.378	71.881	1.00 28.59	8
MOTA	3146	OH2 WAT S 159		11.829	60.543	56.138	1.00 37.67	8
MOTA	3147	OH2 WAT S 160		24.247		67.935	1.00 56.62	8
ATOM	3148	OH2 WAT S 161 OH2 WAT S 162		12.853	33.929	77.503	1.00 29.88	8
MOTA	3149	OH2 WAT 5 163		9.49	26.168	59.687	1.00 15.42	8
ATOM	3150 3151	OH2 WAT S 164		27.424	16.480		1.00 36.86	8
MOTA MOTA	3152	OH2 WAT S 165		8.512			1.00 30.08 1.00 39.47	8
ATOM	3153	OH2 WAT S 166		30.721				8
MOTA	3154	OH2 WAT S 167		49.594				8
MOTA	3155	OH2 WAT S 168		41.994				8
ATOM	3156	OH2 WAT S 169		42.092				8
ATOM	3157	OH2 WAT S 170		34.547 15.377				8
ATCM	3158			31.854			1.00 42.43	8
MOTA	3159	OH2 WAT S 172		48.743			1.00 34.04	8
ATOM	3160	OH2 WAT S 173		8.723			1.00 32.87	8
MOTA	3161			14.257		53.455		8
ATOM	3162	~ .		31.917		53.943	1.00 40.43	8
ATOM	3163 3164			23.921	47.029	70.642		8 8
MOTA MOTA		170		27.974	47.778	69.949		8
MOTA MOTA		OH2 WAT S 179		7.850				8
ATOM		OH2 WAT S 180		22.080				
ATOM		101		34.780	48.220	, //.41; -	, 1.00 50.00	•
			•					

WO 01/18045 PCT/US00/24700

116/263

ATOM	3169	OH2 WAT	S 182	43.893.	35.526	52:018	1.00 47.3	14 8
ATOM	3170	OH2 WAT	S 183	29.166	21.424	28.950	1.00 45.0	8 80
ATOM	3171	OH2 WAT	S 184	51.175	51.545	62.599	1.00 33.8	38 8
ATOM	3172	OH2 WAT	S 185	18.520	46.208	42.323	1.00 50.8	35 8
MOTA	3173	OH2 WAT	S 186	44.774	30.219	38.653	1.00 45.3	36 8
ATOM	3174	OH2 WAT	S 187	30.770	9.460	69.837	1.00 32.4	14 8
MOTA	3175	OH2 WAT	S 188	. 22.157	39.535	78.736	1.00 37.0	01 8
ATOM	3176	OH2 WAT	' S 189	11.778	50.526	68.987	1.00 41.3	34 8
MOTA	3177	OH2 WAT	' S 190	31.339	60.910	49.439	1.00 21.8	8 8
ATOM	3178	OH2 WAT	' S 191	31.165	14.244	74.907	1.00 27.4	
ATOM	3179	OH2 WAT	S 192	39.705	15.398	70.464	1.00 47.0	
ATOM	3180	OH2 WAT	S 193	3.668	34.304	72.937	1.00 39.8	
ATOM	3181	OH2 WAT	S 194	25.256	9.360	67.925	1.00 33.2	
MOTA	3182	OH2 WAT	S 195	47.575	17.667	48.773	1.00 40.7	
MOTA	3183	OH2 WAT		32.017	13.045	34.633	1.00 37.0	
MOTA	3184	OH2 WAT		35.476	7.006	64.436	1.00 49.5	
ATOM	3185	OH2 WAT		12.180	16.270	56.288	1.00 47.2	
ATOM	3186	OH2 WAT		37.133	21.226	75.963	1.00 38.5	
MOTA	3187	OH2 WAT		40.268	15.712	48.199	1.00 39.2	-
MOTA	3188	OH2 WAT		25.159	17.768	46.858	1.00 49.8	
MOTA	3189	OH2 WAT		24.593	27.104	65.727	1.00 53.4	
MOTA	3190	OH2 WAT		36.741	20.267	33.858	1.00 41.9	
ATOM	3191	OH2 WAT		10.013	53.930	47.546	1.00 48.0	
MOTA	3192	OH2 WAT		22.305	16.731	54.471	1.00 27.0	
MOTA	3193	OH2 WAT		47.454	34.778	74.101	1.00 47.4	
MOTA	3194	OH2 WAT		35.189	55.767	45.193	1.00 59.4	
ATOM	3195	OH2 WAT		37.827	18.151	36.382	1.00 45.3	
MOTA	3196	OH2 WAT		6.823	37.405	51.989	1.00 58.2	
ATOM	3197	OH2 WAT		32.040 17.038	43.551	36.157	1.00 30.7	
MOTA	3198	OH2 WAT			52.360	63.283	1.00 34.0	
ATOM	3199	OH2 WAT		30.001 23.045	18.471	49.568	1.00 33.9	
MOTA	3200 3201	OH2 WAT		26.130	28.615 61.496	33.729 75.246	1.00 44.2	
MOTA MOTA	3201	OH2 WAT	-	33.881	32.473	46.604	1.00 39.3	
ATOM	3202	OH2 WAT		23.887	45.987	44.362	1.00 36.5	
MOTA	3204	OH2 WAT		6.925	42.281	65.917	1.00 34.2	
ATOM	3205	OH2 WAT		32.823	8.977	59.213	1.00 27.0	
END	2203	Onz WAI	J 210	22.023	9.511		2.00 27.0	
لالالت								

117/263

Figure	18-1
Liguio	10-1

Figure 18-1								
				Residue	# X	Y Z	B Segment	ID
ATOM	1		ALA P		46.725		1.00 56.80	
MOTA	2	С	ALA A	. 2	47.943			
ATOM	3	0	ALA A		48.857	13.292 137.884	1.00 60.99	
ATOM	4	N	ALA A		46.995	14.046 140.488	1.00 56.88	
ATOM	5	CA	ALA A		46.801	13.697 139.052	1.00 59.41	
ATOM-	6	N	LYS A		47.890	11.525 138.903	1.00 53.41	
MOTA	7	CA	LYS A		48.937	10.591 138.492	1.00 53.61	
ATOM	8	CB	LYS A		48.736	9.229 139.156		
ATOM	9	CG	LYS A		48.917	9.279 140.665	1.00 50.26	
ATOM	10	CD	TAS Y		48.950	7.891 141.285	1.00 56.64	
ATOM	11	CE	LYS A		49.160	7.964 142.796	1.00 57.18	
ATOM	12	NZ	LYS A		50.423		1.00 56.74	
ATOM	13	C	LYS A		49.063	8.663 143.165 10.430 136.986	1.00 54.86	
ATOM	14	ō	LYS A		48.088	10.430 136.986		
ATOM	15	N	VAL A		50.287	10.147 136.550	1.00 44.34	
ATOM	16	CA	VAL A		50.609	9.985 135.142	1.00 46.01	-
ATOM	17	CB	VAL A		51.901	10.755 134.809	1.00 42.48	-
ATOM	18		VAL A		52.179	10.713 134.809	1.00 43.42	
ATOM	. 19		VAL A		51.773	12.186 135.310	1.00 39.20	
MOTA	20	C	VAL A		50.787	8.510 134.806	1.00 39.34 1.00 38.41	
ATOM	21	ō	VAL A		51.659	7.839 135.351		
ATOM	22	N	LYS A	5	49.959	8.011 133.899	1.00 37.08	
ATOM	23	CA	LYS A		50.016	6.610 133.515	1.00 37.79	
ATOM	24	CB	LYS A	5	48.700	5.915 133.887	1.00 38.17 1.00 38.40	
MOTA	25	CG	LYS A	5	48.411	5.803 135.385	1.00 38.40	
MOTA	26	CD	LYS A	5	49.384	4.855 136.070	1.00 42.84	
ATOM	27	CE	LYS A	5	49.017	4.632 137.534	1.00 45.97	
ATOM	28	NZ	LYS A	5	49.045	5.894 138.322	1.00 51.78	
ATOM	29	C	LYS A	5	50.275	6.392 132.030	1.00 38.31	
ATOM	30	0	LYS A	5	49.992	7.253 131.201	1.00 38.13	
MOTA	31	N	LEU A	6	50.817	5.220 131.717	1.00 35.05	
ATOM	32	CA	LEU A	6	51.082	4.818 130.346	1.00 31.46	
ATOM	33	CB	LEU A	6	52.582	4.592 130.133	1.00 28.46	
ATOM	34	CG	LEU A	6.	53.094	4.256 128.720	1.00 30.91	
ATOM	35	CD1		6	52.618	2.884 128.295	1.00 33.05	
ATOM	36	CD2		6	52.630	5.312 127.744	1.00 21.96	
MOTA	37	C	LEU A	6	50.307	3.512 130.164	1.00 30.50	
ATOM	38	0	LEU A	6	50.453	2.581 130.955	1.00 32.82	
ATOM	39	N	ILE A	7 7	49.459	3.456 129.145	1.00 26.94	
ATOM ATOM	40 41	CA CB	ILE A	7	48.676 47.218	2.255 128.893 2.598 128.493	1.00 28.29	
ATOM	42	CG2	ILE A	7	46.499	1.343 128.041	1.00 28.94 1.00 32.57	
ATOM	43	CG1	ILE A	7	46.447	3.172 129.688	1.00 32.57	
ATOM	44		ILE A	7	46.979	4.468 130.236	1.00 46.80	
ATOM	45	C	ILE A	7	49.341	1.470 127.770	1.00 31.09	
ATOM	46	0	ILT A	7	49.600	2.009 126.695	1.00 27.65	
ATOM	47	N	GL:A	8	49.638	0.201 128.029	1.00 27.30	
MOTA	48	CA	GL'. A	8	50.27 7	-0.614 127.016	1.00 25.50	
MOTA	49	С	GLY A	8	50.578	-2.024 127.480	1.00 30.66	
ATOM	50	0	GLY A	8	50.224	-2.421 128.592	1.00 30.02	
ATOM	51	N	THR A	9	51.238	-2.777 126.611	1.00 28.94	
ATOM	52	CA	THE A	9	51.614	-4.156 126.877	1.00 33.63	
ATOM.	53	CB	THR A	9	50.393	-5.083 126.857	1.00 36.19	
MOTA	54	OG1	THR A	9	50.827	-6.441 126.992	1.00 34.87	
ATOM	55			9	49.633	-4.931 125.548	1.00 36.49	
ATOM	56 57	С	THR A	9	52.567	-4.637 125.794	1.00 34.83	
ATOM	57 50	0	THE A	9	52.545	-4.133 124.677 -5.609 126.129	1.00 36.91	
ATOM ATOM	58 59	N CA	LEU A	10 10	53.407 54.345	-5.609 126.129 -6.167 125.164	1.00 39.15	
ATOM	60	CB	LEU A	10	55.402	-7.009 125.881	1.00 40.21 1:00 42.40	
ATOM	61	CG	LEU A	10	56.482	-6.282 126.687	1.00 42.40	
ATOM	62		LEU A	10	55.870	-5.293 127.647	1.00 42.29	
ATCM	63		LEU A	10	57.319	-7.306 127.424	1.00 40.29	
ATOM	64	C	LEU A	10	53.591	-7.039 124.159	1.00 41.70	
ATOM	65	ō	LEU A	10	54.055	-7.266 123.044	1.00 37.13	
ATOM	66	N	ASP A	11	52.419	-7.519 124.557	1.00 47.28	

MOTA	67	CA	ASP A	11	51.617	-8.369		1.00 53.30
ATOM	68	CB	ASP A		50.230		124.287	1.00 52.35 1.00 53.33
MOTA	69	CG	ASP A	11	50.295		125.610	1.00 53.33
ATOM	70	OD1	ASP A	11	51.004	-10.358	125.685	1.00 52.21
ATOM	71	OD2	ASP A	. 11	49.630	-8.883	126.567	1.00 53.33
ATOM	72	С	ASP A	. 11	51.459		122.257	1.00 54.31
ATOM	73	0	ASP A	. 11	51.360		121.311	1.00 54.31
ATOM	74	N	TYR A	12	51.424		122.092	1.00 51.92
ATOM	75	CA	TYR A	. 12	51.275	-5.970	120.749	1.00 31.41
MOTA	76	CB	TYR A	. 12	51.328	-4.437	120.755	1.00 45.48
ATOM	77	CG	TYR A		50.164	-3.729	121.421	1.00 47.08
ATOM	78	CD1	TYR A		50.296	-3.157		1.00 47.53
ATOM	79	CE1	TYR A		49.252		123.263 120.749	1.00 43.77
ATOM	80	CD2	TYR A		48.952		120.749	1.00 44.16
ATOM	81	CE2	TYR A	_	47.906		122.566	1.00 48.67
ATOM	82	CZ	TYR A		48.061	-	123.116	1.00 48.65
MOTA	83	OH	TYR A		47.030 52.367		119.816	1.00 50.01
ATOM	84	С	TYR A		52.367		118.596	1.00 45.56
ATOM	85	0	TYR A		53.484			1.00 48.72
ATOM	86	N	GLY A	_	54.574			1.00 50.56
MOTA	87	CA	GLY A		54.196			1.00 53.32
ATOM	88	С	GLY A		54.931			1.00 52.64
ATOM	89	0	GLY A		53.045		_	1.00 53.37
MOTA	90	N	LYS A		52.55			1.00 54.56
MOTA	91	CA	LYS A		52.022			1.00 58.02
MOTA	92	CB	LYS A		53.086	-12.062	120.591	1.00 62.81
MOTA	93	CG	LYS A		53.934		119.918	1.00 61.61
MOTA	94 95	CD	LYS		54.74			1.00 61.77
ATOM	96	NZ	LYS		55.514	1 -13.713		1.00 58.35
ATOM	97	C	LYS		51.45	5 -10.231		1.00 52.03
MOTA	98	Ö	LYS		50.91	1 -11.145	116.942	1.00 51.71
MOTA MOTA	99	N	TYR	A 15	51.14		117.372	1.00 46.92
ATOM	100	CA	TYR		50.09		116.449	1.00 47.99
MOTA	101	CB	TYR	_	48.95			1.00 50.40 1.00 53.01
ATOM	102	ĊG	TYR	A 15	48.45	6 -8.793		1.00 52.10
ATOM	103	CD1	TYR		48.16		119.637	1.00 51.72
ATOM	104	CE:	L TYR		47.72			1.00 54.67
ATOM	105	CD	2 TYR		48.28			1.00 55.69
ATOM	106	CE:			47.83			1.00 54.18
MOTA	107	CZ	TYR		47.56 47.13		-	1.00 55.42
MOTA	108	OH	TYR		50.59			1.00 46.20
ATOM	109	C	TYR		49.93			1.00 43.72
MOTA	110	0	TYR		51.75	-		1.00 46.29
ATOM	111	N	ARG		52.34	7 -7.10	9 113.727	1.00 45.66
ATOM	112	CA			53.77		5 113.441	1.00 50.56
ATOM	113	CB			54.67	7 -7.69	B 114.636	1.00 56.90
ATOM	114	CG		_	54.99	2 -6.38	8 115.315	1.00 60.72
ATOM	115	CD NE			56.02		2 116.328	1.00 66.70
ATOM	116 117	CZ			57.21	1 -7.14	1 116.070	
ATOM	118	NH		_	57.52	0 -7.51	9 114.834	1.00 65.68
MOTA	119		2 ARG		58.09	3 -7.31	4 117.046	1.00 66.33
ATOM	120		ARG		51.57	3 -7.29	8 112.429	1.00 44.20
MOTA	121		ARG		50.87		3 112.254	1.00 43.41
MOTA	122		TYR		51.71		6 111.514	
MOTA MOTA	123			_	51.06			
	124			_	50.91			
atom atom	125				49.74	4 -4.25	5 110.084	
ATOM	126			A 17	49.59	8 -3.98	2 111.443	
atom	127				48.54		4 111.909	
ATOM	128			A 17	48.80		0 109.204	
ATOM	129			A 17	47.7		5 109.656	
ATOM	130		TYR	A 17	47.6		9 111.009	
MOTA	131				46.6		2 111.45	
ATOM	132		TYR	A 17	51.9	12 -1.35	0 109.36	

```
53.150 -7.525 109.683
                                                           1.00 35.63
                         17
                  TYR A
        133
MOTA
                                         -7.925 108.278
                                                           1.00 46.68
                                  51.440
                         18
                  PRO A
ATOM
        134
             N
                                                            1.00 47.16
                                          -7.765 107.755
                                  50.076
                  PRO A
                         18
             CD
        135
                                                            1.00 48.87
MOTA
                                          -8.812 107.392
                                  52.205
                         18
                  ·PRO A
        136
              CA
MOTA
                                          -9.091 106.262
                                                           1.00 48.14
                                  51.213
                  PRO A
                         18
        137
              CB
MOTA
                                          -7.837 106.274
                                                            1.00 55.13
                                  50.343
                         18
                  PRO A
MOTA
        138
              CG
                                                            1.00 49.67
                                          -8.303 106.885
                                  53.556
                  PRO A
                         18
              С
        139
MOTA
                                                            1.00 49.33
                                          -7.101 106.766
                                  53.788
                         18
                  PRO A
        140
              0
                                                            1.00 53.22
MOTA
                                          -9.261 106.592
                                  54.432
                  LYS A
                         19
        141
              N
                                                            1.00 57.00
ATOM
                                          -9.044 106.114
                                  55.800
              CA
                  LYS A
                         19
        142
                                                            1.00 62.34
ATOM
                                  56.223 -10.242 105.252
                         19
                  LYS A
        143
              CB
MOTA
                                                            1.00 67.94
                                  55.069 -10.929 104.537
                  LYS A
                         19
        144
              CG
ATOM
                                                            1.00 70.76
                                         -9.963 103.714
                                  54.239
                  LYS A
                         19
         145
              CD
                                                            1.00 73.70
ATOM
                                  53.004 -10.653 103.162
                          19
              CE
                  LYS A
         146
ATOM
                                  52.116 --9.701 102.442
                                                            1.00 79.01
                  LYS A
                          19
         147
              ΝZ
                                         -7.757 105.405
-7.150 105.796
MOTA
                                                            1.00 55.93
                                  56.229
                  LYS A
                          19
         148
              С
                                                            1.00 59.86
MOTA
                                  57.230
                          19
                  LYS A
         149
              0
                                                            1.00 49.62
ATOM
                                           -7.338 104.367
                                  55.515
                          20
                  ASN A
MOTA
         150
              N
                                                            1.00 50.02
                                           -6.130 103.652
                                  55.925
                  ASN A
                          20
              CA
         151
MOTA
                                                            1.00 50.62
                                           -6.359 102.143
                                  55.829
                          20
                  ASN A
         152
              CB
ATOM
                                                            1.00 51.26
                                           -7.487 101.670
                                  56.729
                  ASN A
                          20
              CG
         153
ATOM
                                           -7.437 101.843
                                                            1.00 46.88
                                  57.948
                          20
         154
              OD1 ASN A
                                                            1.00 50.85
MOTA
                                           -8.513 101.074
                                  56.130
                          20
              ND2 ASN A
         155
MOTA
                                                            1.00 45.50
                                           -4.862 104.023
                                  55.167
                          20
                   ASN A
         156
              С
MOTA
                                                            1.00 45.35
                                           -3.778 103.533
                                  55.481
                          20
                   ASN A
         157
              0
                                                            1.00 37.46
MOTA
                                           -4.997 104.899
                                  54.182
                   HIS A
                          21
         158
              N
 MOTA
                                           -3.863 105.321
                                                            1.00 32.39
                                  53.374
                          21
                  HIS A
         159
              CA
                                                            1.00 29.34
 ATCM
                                           -4.355 106.162
                                   52.198
                   HIS A
                          21
              CB
         160
                                                            1.00 30.50
 ATCM
                                           -3.339 106.348
                                   51.118
                          21
              CG
                   HIS A
         161
 ATOM
                                           -2.314 107.223
                                                            1.00 22.88
                                   50.999
              CD2 HIS A
                          21
 MOTA
         162
                                                            1.00 30.15
                                           -3.298 105.552
                                   49.993
              ND1 HIS A
                          21
         163
 MOTA
                                                            1.00 30.96
                                           -2.293 105.933
                                   49.226
              CE1 HIS A
                          21
         164
                                                            1.00 36.41
                                           -1.680 106.945
 MOTA
                                   49.814
              NE2 HIS A
                          21
         165
                                                            1.00 29.18
 MOTA
                                           -2:879 106.155
                                   54.194
                          21
                   HIS A
         166
               C
 ATOM
                                           -3.279 106.963
                                                            1.00 26.92
                                   55.030
                   HIS A
                          21
         167
               0
 MOTA
                                           -1.572 105.969
                                                            1.00 31.12
                                   53.965
                          22
                   PRO A
         168
              И
 MOTA
                                                            1.00 29.46
                                           -0.912 105.043
                                   53.027
                   PRO A
                          22
               CD
         169
                                           -0.567 106.739
 ATOM
                                                             1.00 29.27
                                   54.702
                          22
         170
               CA
                   PRO A
                                                             1.00 26.00
 ATCM
                                            0.732 106.326
                                   54.012
                          22
                   PRO A
         171
               CB
 MOTA
                                                             1.00 31.52
                                            0.434 104.875
                                   53.670
                   PRO A
                          22
         172
               CG
                                                             1.00 29.96
 ATOM
                                            -0.822 108.253
                                   54.624
                   PRO A 22
          173
               С
                                                             1.00 27.47
 ATOM
                                           -0.538 108.981
                                   55.575
                   PRO A 22
          174
               0
 ATOM
                                                             1.00 26.64
                                            -1.371 108.715
                                   53.501
                           23
                   LEU A
          175
               N
                                                             1.00 30.44
 ATOM
                                            -1.644 110.144
                                   53.309
                           23
                   LEU A
               CA
          176
                                                             1.00 24.09
 ATOM
                                            -1.428 110.515
                                   51.833
                          23
          177
               CB
                   LEU A
                                                             1.00 25.30
 ATOM
                                             0.029 110.479
                                   51.356
                          23
                   LEU A
         . 178
               CG
 ATOM
                                                             1.00 17.72
                                             0.103 110.668
                                   49.836
               CD1 LEU A
                          23
          179
 ATCM
                                                             1.00 24.15
                                             0.816 111.574
                         23
                                   52.086
               CD2 LEU A
          180
 ATCM
                                                             1.00 31.64
                         23
                                          -3.015 110.662
                                   53.775
                   LEU A
          181
               С
                                                             1.00 31.00
 MOTA
                                            -3.512 111.667
                                   53.252
                   LEU A
                           23
          182
               0
                                                             1.00 28.25
 ATCM
                                            -3.636 110.012
                                   54.753
                           24
                   LYS A
          183
               N
  MOTA
                                                             1.00 30.90
                                            -4.929 110.513
                                   55.200
                           24
                   LYS A
                                                            1.00 36.59
          184
               CA
  ATOM
                                            -5.810 109.372
                                   55.718
                           24
                   LYS A
               CB
          185
  ATOM
                                                             1.00 40.77
                                            -5.650 108.982
                                   57.178
                   LYS A
                          24
          186
               CG
  MOTA
                                            -4.259 108.535
                                                             1.00 44.51
                                    57.546
                   LYS A
                           24
          187
               CD
                                                             1.00 50.44
  ATOM
                                            -4.303 107.755
                                    58.858
                           24
          188
                    LYS A
               CE
                                                             1.00 51.30
  ATOM
                                            -4.990 108.487
                                    59.959
                           24
          189
               NZ
                    LYS A
  ATCM
                                                              1.00 32.57
                                            -4.736 111.581
                                    56.282
                           24
                    LYS A
          190
               С
                                                              1.00 29.83
  ATOM
                                            -5.683 112.245
                                    56.695
                    LYS A
                           24
  ATOM
          191
               O
                                                              1.00 27.06
                                            -3.497 111.750
                                    56.729
                           25
          192
               N
                    ILE A
                                                              1.00 30.45
  ATOM
                                            -3.200 112.739
                                    57.755
                           25
                    ILE A
          193
               CA
                                                              1.00 33.37
  ATOM
                                            -1.822 112.499
                                    58.416
                           25
                    ILE A
                                                              1.00 33.22
          194
               CB
                                            -1.757 111.120
  ATOM
                                    59.056
               CG2 ILE A
                           25
          195
                                                              1.00 30.45
  ATCM
                                            -0.722 112.662
                                    57.361
                           25
               CG1 ILE A
          196
                                                              1.00 33.12
  ATCM
                                             0.689 112.700
                                    57.930
                CD1 ILE A
                           25
          197
                                                              1.00 32.10
 · ATCM
                                            -3.129 114.141
                                    57.156
                           25
                    ILE A
               С
  ATCM
          198
```

						067	-2.851	114.310	1.00 28.15
ATOM	199	0	ILE A	25		55.967			1.00 31.64
	200	N	PBO A	26		57.979		115.168	
ATOM			PRO A	26		59.395	-3.768	115.139	1.00 31.11
MOTA	201	CD				57.507	-3.322	116.556	1.00 31.04
ATOM	202	CA	PRO A	26				117.347	1.00 32.41
ATOM	203	CB	PRO A	26		58.709			
	204	CG	PRO A	26		59.454		116.324	
ATOM			PRO A	26		57.265	-1.840	116.827	1.00 28.42
MOTA	205	Ç.				58.001	-0 994	116.315	1.00 22.23
MOTA	206	0	PRO A	26				117.614	1.00 24.16
MOTA	207	N	ARG A	27		56.251			1.00 28.53
ATOM	208	CA	ARG A	27		55.977	-0.116	117.899	-
			ARG A	27	_	54.787	0.358	117.048	1.00 29.77
MOTA	209	СВ				55.075		115.554	1.00 29.64
ATOM	210	CG	ARG A	27				114.620	1.00 26.61
MOTA	211	CD	ARG A	27		53.918			1.00 28.52
MOTA	212	NE	ARG A	27		53.622		114.517	1.00 20.32
		CZ	ARG A	27		52.649	2.591	115.173	1.00 29.70
MOTA	213			27		51.857	1.924	115.99 9	1.00 30.17
ATOM	214	NH1				52.451		114.983	1.00 23.25
MOTA	215	NH2	ARG A	27				119.387	1.00 30.71
ATOM	216	С	ARG A	27		55.746			
	217	Ō	ARG A	27		56.679	0.490	120.113	
MOTA				28		54.529	-0.117	119.863	1.00 23.51
MOTA	218	1,1	VAL A			54.282	0.093	121.282	1.00 29.33
MOTA	219	CA	VAL A	28				121.635	1.00 34.56
ATOM	220	CB	VAL A	28		52.800	-0.124	121.033	
	221	CG1		28		52.599		123.142	
ATOM				28		51.947	0.908	120.903	1.00 33.77
ATOM	222	CG2				55.158	-0.816	122.145	1.00 29.75
ATOM	223	C	VAL À	28				123.182	1.00 32.49
ATOM	224	0	VAL A	28		55.673			1.00 26.09
ATOM	225	20	SER A	29		55.341	-2.059	121.718	
		CA	SER A	29		56.162	-2.982	122.483	1.00 31.39
ATOM	226			29		56.058	-4.399	121.905	1.00 26.92
MOTA	227	CB	SER A			56.562	-4 464	120.579	1.00 33.85
ATOM	228	oG	SER A	29					1.00 34.77
ATOM	229	С	SER A	29	•	57.609	-2.482		
	230	ō	SER A	29		58.378	-2.718	123.391	
ATOM			LEU A	30		57.967	-1.778	121.380	1.00 31.20
ATOM	231	:1				59.317	-1 -234	121.240	1.00 32.03
ATOM	232	CA	LEU A	30			0 660	119.829	1.00 30.86
ATOM	233	CB	LEU A	30		59.554	-0.000	110.020	1.00 33.22
ATOM	234	CG	LEU A	30		61.008	-0.550	119.333	
		נפס		30		61.066	0.484	118.224	1.00 28.76
MOTA	235			30		61.948	-0.135	120.441	1.00 35.11
MOTA	236	CD2				59.423	_0 089	122.236	1.00 30.29
MOTA	237	С	LEU A	30			0.005	122.984	1.00 27.69
ATOM	238	Э	LEU À	30		60.397	0.019	122.904	1.00 27.38
· ·	239	M	LEU A	31		58.408		122.232	1.00 27.30
ATOM		ĈΑ	LEU A	31		58.372	1.915		1.00 24.94
MOTA	240			31		57.008	2.596	123.042	1.00 24.92
ATOM	241	CB	LEU A			56.918	4.069		1.00 30.49
MOTA	242	CG	LEU A	31					1.00 24.71
MOTA	243	CD:	1 LEU A	31		55.492	4.390		1.00 27.32
	244	CD.	2 LEU A	31		57.851	4.355	124.603	1.00 27.32
MOTA						58.610	1.429	124.564	1.00 28.18
MOTA	245	C	LEU A			59.489	1 928	125.263	1.00 33.64
ATOM	246	ာ	LEU A				0.445	125.000	1.00 30.17
MOTA	247	N	LEU A			57.831	0.44	. 122.000	1.00 30.59
	248	CA				57.965	-0.084	1 126.357	1.00 30.35
MOTA						56.944	-1.20	5 126.601	1.00 30.55
ATOM	249					55.458	-0.879	126.402	1.00 29.50
MOTA	250		LEU A			54.611	_2 10	7 126.727	
ATOM	251	CD	1 LEU A	. 32			-2.10	127 207	
ATOM	. 252		2 LEU A	32		55.058		3 127.287	
			LEU A	_		59.376	-0.59	7 126.657	1.00 33.56
MOTA	253					59.961			1.00 36.51
MOTA	254		LEU A			59.926	_		
ATOM	255	N	ARG A						
	256					61.271			
ATOM						61.630	-3.00		
ATOM	257					60.814		3 125.024	
ATOM	258						_		1.00 53.68
ATOM	259	CD	ARG A	33		61.237	_		
	260					60.515		2 124.00/	
MOTA						60.611	_7.38	4 125.014	
ATOM	261					61.402			1.00 59.32
ATOM	262		1 ARG	33		59.911			1.00 57.91
ATOM	263	3 NH	12 ARG 2	33			-0.31	5 125.978	
	264		ARG A			62.314	-0.84	5 143.5/6	, 1.00 2
ATOM									

					 6			
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	26567890123456789012322222222222222222222222222222222222	COUCON CECCON CON CECCOOCON CECCON CECCON CON CECCON CEC	ASP A A A A A A A A A A A A A A A A A A	334444444455555555566666666677777788888889999999999	883 63.10427 63.62.6173 64.8258 63.652.653.653.7416 63.652.653.653.7416 63.757.757.757.757.757.757.757.757.757.75	0.146 1.253 2.180 3.202 2.819 4.546 3.763 5.501 5.108 2.0294 2.432 3.5752 4.974 3.5752 4.974 3.827 2.387 2.387 2.387 2.387 2.387 0.127 0.187 0.1	122.783 126.305 126.852 126.802 128.042 128.374 127.395 127.790 127.688 128.548 129.183 130.043 129.190 130.242 130.126 131.157 132.360 130.765 130.174 131.201 128.958 128.768 129.244 129.714 129.545 131.502 131.502 131.657 133.039 134.050 132.188 132.170 130.812	1.00 40.42
					64.375	5.40	2 134.050	1.00 42.74
	315		LEU A				6 132.188 9 132.170	
						6.61	0 130.812	1.00 40.42
ATOM ATOM	317		LEU A		63.940	7.07	4 130.447	
ATOM ·		CD	1 LEU A	40	63.916		3 129.088 1 131.513	
MOTA	320		2 LEU A		64.470 60.967		0 132.505	1.00 38.97
ATOM	321		LEU A	_	60.076	6.40	9 132.213	1.00 32.32
ATOM ATOM	322 323		ILE A		60.720	4.46	1 133.124	1.00 38.57
ATOM	324	CA	ILE A	41	59.363	3 4.10 5 3.57		1.00 39.13
ATOM	325				58.536 .59.137	7 2.27	11 131.820	1.00 36.51
ATOM	326 327		_		57.082	2 3.36	57 132.774	1.00 38.71
atom atom	328			41	56.147	7 2.92	0 131.676	1.00 44.09 1.00 42.40
ATOM	329		ILE A	41	59.376		56 134.619 95 134.654	
ATCM	330	0	ILE A	41	60.25	2.13	, LJE.UJ4	

							2 240	135.532	1.00 4	17 83
ATOM	331	N	ASP A	42	58.4				1.00	
ATOM	332	CA	ASP A	42	58.3	01		136.620		
ATOM	333	CB	ASP A	42	58.2	43	2.880	137.984	1.00	
		CG	ASP A	42	59.4		3.688	138.284		52.63
MOTA	334			42	60.6		3.146	138.141	1.00	49.28
MOTA	335		ASP A		59.3			138.678	1.00	52.47
ATOM	336	OD2	ASP A	42				136.405	1.00	
ATOM	337	С	ASP A	42	57.0				1.00	
ATOM	338	0	ASP A	42	56.0			135.864		
	339	N	GLU A	43	57.0			136.832	1.00	21.41
ATOM		CA	GLU A	43	55.9			136.673		50.67
ATOM	340			43	56.2	34 -	-2.094	137.412	1.00	
ATOM	341	CB	GLU A		55.2			137.185	1.00	60.55
MOTA	342	CG	GLU A	43			-4.432	137.974		66.12
ATOM	343	CD	GLU A	43	55.5			137.861		70.33
MOTA	344	OE1	GLU A	43	54.7		-5.417		1.00	
ATOM	345		GLU A	43	56.5		-4.427	138.711	1.00	50.33
	346	C	GLU A	43	54.6	45 -	-0.178	137.178		50.20
MOTA		0	GLU A	43	53.5	67	-0.475	136.658		48.27
ATOM	347			44	54.7		0.683	138.186	1.00	49.04
MOTA	348	N	LYS A		53.6			138.778	1.00	47.56
ATOM	349	CA	LYS A	44	54.0		2.004	140.112		54.73
ATOM	350	CB	LYS A	44				140.542		58.07
MOTA	351	CG	LYS A	44	53.1		3.229			61.24
ATOM	352	CD	LYS A	44	53.7			139.853		
	353	CE	LYS A	44	52.8	349	5.727	140.151		61.93
MOTA		NZ	LYS A	44	51.9	501	5.644	139.519		62.80
MOTA	354		LYS A	44	52.9		2.387	137.875	1.00	44.52
MOTA	355	С			51.		2.701		1.00	45.31
MOTA	356	0	LYS A	44	53.0		2.915	136.914	1.00	41.03
ATOM	357	N	GLU A	45			3.914	135.994	1 00	41.23
ATOM	358	CA	GLU A	45	53.				1 00	38.52
ATOM	359	CB	GLU A	45	54.3		4.810			40.30
ATOM	360	CG	GLU A	45	54.5	973	5.572			
	361	CD	GLU A	45	56.3	241	6.222			38.06
ATOM				45	57.	170	5.478	135.715	1.00	36.93
MOTA	362	OE1		45	56.		7.467	136.084	1.00	32.57
ATOM	363	QE2			52.		3 : 253		1.00	40.69
MOTA	364	С	GLU A	45			3.907			39.77
ATOM	365	0	GLU A	45	51.					36.90
ATOM	366	N	LEU A	46	52.		1.953		1.00	40.46
ATOM	367	CA	LEU A	46	52.		1.207			
ATOM	368	CB	LEU A	46	53.	222	0.219			35.52
	369	CG	LEU A	46	52.	873	-0.619		1.00	43.75
MOTA				46	52.	571	0.292		1.00	42.06
MOTA	370	CDI	-	46		035	-1.544	131.500	1.00	42.90
ATOM	371	CD2				852	0.467		1.00	40.03
MOTA	372	С	LEU A	46			-0.306		1.00	39.37
ATOM	373	0	LEU A	46		741			1 00	34.03
MOTA	374	N	ILE A	47		861	0.718		1.00	
MOTA	375	CA	ILE A	47		560	0.068	- -		32.35
TOM	376		TLE A	47		413	1.087	132.937		
	377	ce'	2 ILE A	47	46.	069	0.360	132.833	1.00	30.60
MOTA				_		448	2.015	3 134.156	1.00	36.56
LOW	378	CG:				372	3.080	134.162	1.00	35.46
ATOM	379	CD:				428	-0 920	131.882	1.00	33.67
MOTA	380	C	ILE A				-0.532	130.717		27.64
ATOM	381	0	ILE A			505	-0.332		1 00	32.98
MOTA	382	N	LYS A	48		.231	-2.19			30.98
MOTA	383	CA			48.	.102	-3.224			30.30
	384	CB	LYS A	_	48.	.038	-4.609	9 131.821		39.21
MOTA			LYS A		47.	.956	-5.74°	7 130.819	1.00	46.81
MOTA	385	CG		_		. 989	-7.10		1.00	50.75
ATOM	386					.967	-8.24		1.00	54.43
ATOM	387	CE					-8.19			50.43
ATOM	388		LYS A			.151	-0.19	2 129.300 2 120 210		29.55
	389		LYS A			.869		6 130.310		29.65
ATOM	390		LYS A		45	.764	-2.84			, 23.03
ATOM			SER A			.071	-2.99			30.69
ATOM	391					.989	-2.80	2 128.033		29.32
ATOM	392				46	.551	-2.80		1.00	31.53
ATOM	393	CB	SER A				-1.83		1.00	30.74
ATOM	394	l OG	SER A			.571	-1.01	6 128.147		31.31
ATOM	395		SER A		44	.952	-3.91	0 120.14		34.44
	396		SER A		45	.295	-5.05	9 128.436	1.0	
atom	,,,,		-							

					_	•			
MOTA	397	N	ARG A	50		43.688		127.922	1.00 32.87 1.00 31.45
ATOM	398	CA	ABG A	50		42.632		127.960 129.101	1.00 31.45
ATOM	399	CB	ARG A	50		41.636	-4.325 -3.103	128.915	1.00 32.05
ATOM	400	CG	ARG A	50		40.729 39.653	-3.103	130.008	1.00 30.46
MOTA	401	CD	ARG A	50		38.821	-1.850	129.964	1.00 25.21
MOTA	402	NE	ARG A	50 50		37.930	-1.569	129.016	1.00 28.32
ATOM	403	CZ NH1	ARG A ARG A	50		37.726	-2.406	128.001	1.00 25.45
ATOM	404 405	NH2	ARG A	50		37.238	-0.439	129.087	1.00 24.92
MOTA MOTA	406	C	ARG A	50		41.894		126.638	1.00 31.12 1.00 24.62
ATOM	407	ō	ARG A	50		41.895	-3.406	126.019 126.181	1.00 24.02
ATOM	408	N	PRO A	51		41.264	-5.566 -6.921	126.751	1.00 32.40
ATOM	409	CD	PRO A	51		41.164 40.534	-5.506	124.917	1.00 30.36
MOTA	410	CA	PRO A	51 51		40.138	-6.967	124.683	1.00 33.95
ATOM	411 412	CB CG	PRO A PRO A	51		41.173	-7.750	125.499	1.00 32.85
MOTA	413	C	PRO A	51		39.309		125.134	1.00 31.61 1.00 29.84
ATOM ATOM	414	Õ	PRO A	51		38.877	-4.431	126.267	1.00 29.84 1.00 29.09
ATOM	415	N	ALA A	52		38.755	-4.093 -3.294	124.058 124.183	1.00 29.61
ATOM	416	CA	ALA A	52		37.556 37.365	-3.234 -2.447	122.956	1.00 28.67
ATOM	417	CB	ALA A	52 52		36.437	-4.321		1.00 32.39
ATOM	418	C	ALA A ALA A	52 52		36.603	-5.453	123.844	1.00 30.40
MOTA	419 420	N O	THR A	53		35.318	-3.947		1.00 32.98
MOTA	421	CA	THR A	53		34.192	-4.868		1.00 36.61 1.00 34.22
MOTA MOTA	422	CB	THR A	53		33.253	-4.514		1.00 34.22
ATOM	423	OG1		53		32:734	-3.193	123.370	1.00 36.45
ATOM	424	CG2		53		33.998 33.411	-4.700	123.702	1.00 38.94
MOTA	425	C	THR A	53 53		33.559	-3.689	123.012	1.00 32.67
ATOM	426 427	И	THR A LYS A	54		32.577	-5.679	123.372	1.00 39.19
MOTA	428	CA	LYS A			31.792	-5.595	122.152	1.00 40.71 1.00 41.68
ATOM ATOM	429	CB	LYS A			30.933	-6.853	121.994	1.00 41.00
ATOM	430	CG	LYS A			30.367	-7.034	120.508	1.00 51.82
MOTA	431	CD	LYS A			29.541 29.075	-8.588	119.087	1.00 52.94
MOTA	432	CE	LYS A			30.216	-8.879	118.182	1.00 54.26
MOTA	433 434	NZ C	LYS A			30.913	-4.34	7 122.237	1.00 39.46
MOTA MOTA	435		LYS A			30.719	-3.63		1.00 37.19 1.00 36.71
MOTA	436		GLU A	. 55		30.404	-4.07	5 123.434 3 123.665	1.00 36.18
ATOM	437					29.554	-2.91	7 125.127	1.00 42.16
MOTA	438					29.109 28.223	-1.69		1.00 46.04
ATOM	439					27.873	-1.63	9 126.953	1.00 51.15
MOTA	440 441	CD	1 GLU A			27.092	-0.74	8 127.343	1.00 56.53
ATOM ATOM	442		2 GLU A	-		28.382	-2.48	2 127.727	1.00 51.67 1.00 35.45
ATOM	443		GLU A	55		30.278		7 123.32: 9 122.66	1.00 33.43
ATCM	444		GLU A			29.721 31.518		6 123.776	
ATOM	445		GLU A			32.289		9 123.497	1.00 34.70
MOTA	146					33.635	-0.32	9 124.232	1.00 30.71
ATOM	447					33.474	-0.48	4 125.746	1.00 35.09
MOTA MOTA	449					34.787		5 126.479	1.00 32.29
MOTA	450		1 GLU			35.645		4 125.986	
MOTA	45		E2 GLU	a 56		34.951		4 127.569 4 121.988	
ATCM	45		GLU 3			32.495 32.341		0 121.444	1.00 29.59
ATOM	45		GLU A			32.827		6 121.311	1.00 35.58
ATOM	45					33.039	-1.14	17 119.871	1.00 35.70
ATCM	45:					33.475	-2.51	12 119.334	1 1.00 35.25
ATOM	45 45					34.829	-3.03	30 119.814	1.00 36.19 1.00 33.69
ATOM ATOM	45		D1 LEU	A 57		35.095		0 119.183	
ATOM	45		D2 LEU	A 57		35.925		11 119.431 17 119.15	
ATOM	46	0 C				31.772 31.828		67 118.20	5 1.00 32.72
ATOM	46					30.63		28 119.62	
ATOM	46	2 N	LEU	M 36		,,,,,,,			

ATOM	463	CA LEU A	58	29.353 28.260	-0.898 119 -1.844 119		1.00 33.21 1.00 35.17
ATOM	464	CB LEU A	58 58	28.504	-3.296 119	.077	1.00 33.71
ATOM	465	CD1 LEU A	58	27.338	-4.166 119	.524	1.00 36.80
ATOM	466	CD2 LEU A	58	28.665	-3.364 117	7.570	1.00 36.50
ATOM	467 468	C LEU A	58	28.940	0.543 119	222	1.00 30.99
MOTA	469	D LEU A	58	27.915	0.985 118	3.700	1.00 35.50
MOTK MOTA	470	H LEU A	59	29.733	1.279 119	9.993	1.00 32.55
ATOM	471	CA LEU A	59	29.443	2.687 120	0.217	1.00 30.37
ATOM	472	CB LEU A	59	30.387	3.279 12	1.268	1.00 28.01 1.00 32.19
ATOM	473	CG LEU A	59 -	30.174	2.828 12	2./16	1.00 32.19 1.00 24.85
ATOM	474	CD1 LEU A	59	31.248	3.427 123 3.263 123	3.604	1.00 25.65
ATOM	475	CD2 LEU A	59	28.785	3.263 12.	9.192	1.00 31.26
ATOM	476	C LEU A	59	29.632 29.020	4.442 11	8 652	1.00 31.80
ATOM	477	O LEU A	59	30.482	2.850 11	8.026	1.00 29.79
ATOM	478	N PHE A	60 60	30.726	3.454 11	6.716	1.00 30.24
ATOM	479	CA PHE A	60	32.131	4.055 11	6.637	1.00 29.99
MOTA	480 481	CB PHE A	60	32.443		5.299	1.00 28.88
MOTA	482	CD1 PHE A	60	31.706		4.845	1.00 25.58
MOTA MOTA	483	CD2 PHE A	60	33.448		4.479	1.00 24.00
MOTA	484	CE1 PHE A	60	31.959	6.351 11	3.592	1.00 26.12 1.00 25.98
ATOM	485	CE2 PHE A	60	33.709		3.226	1.00 25.98 1.00 24.53
ATOM	486	CZ PHE A	60	32.963		2.781 5.529	1.00 30.30
MOTA	487	C PHE A	60	30.536 29.810		4.602	1.00 32.82
MOTA	488	O PHE A	60	31.195		5.543	1.00 32.85
MOTA	489	N HIS A	61 61	31.075	0.418 11		1.00 34.59
MOTA	490	CA HIS A	61	32.296	-0.492 11	4.361	1.00 32.89
MOTA	491 492	CB HIS A	61	33.576	0.238 11	4.116	1.00 34.25
ATOM	493	CD2 HIS A	61	34.225	0.532 11		1.00 34 67
MOTA MOTA	494	ND1 HIS A	61	34.328	• • -	15.133	1.00 37.78 1.00 37.50
ATOM	495	CE1 HIS A	61	35.390		14.619	1.00 37.50 1.00 37.91
ATOM	496	ME2 HIS A	61	35.350	1.243 11	L3.307	1.00 38.44
ATOM	497	C HIS A	61	29.824 29.213	-0.449 12	15 538	1.00 35.78
ATOM	498	O HIS A	61	29.213	-1.015 1	13.327	1.00 39.73
MOTA	499	N THR A	62 62	28.278	-1.868 1	13.218	1.00 38.05
ATOM	500	CA THR A	62	27.682	-1.825 13	11.804	1.00 37.22
MOTA	501 502	OG1 THR A	62	28.631	-2.345 1	10.867	1.00 41.15
MOTA MOTA	503	CG2 THR A		27.348	-0.404 1	11.418	1.00 38.27 1.00 39.06
ATOM	504	C THR A		28.598	-3.317 1	13.551	1.00 39.32
ATOM	505		62	29.731	-3.768 1	13.392	1.00 40.92
ATOM	506			27.582	-4.034 1 -5.441 1	14.393	1.00 40.68
ATOM	507			27.696 26.303	-6.000 1	14.704	1.00 43.19
ATOM	508			26.269	-7.451 1	15.171	1.00 46.90
atom	509			26.472	-7.593 1	16.665	1.00 53.11
ATOM	510			26.601	-8.739 1	17.152	1.00 52.78
ATOM	511 512			26.487	-6.556 1	17.358	1.00 57.24
ATOM ATOM	513			28.320	-6.263 1	13.268	1.00 36.19 1.00 29.70
ATOM	514			29.272	-7.011 1	13.481	
ATOM	515	N ASP A	64	27.755	-6.119 1	10 006	
ATOM	516	CA ASP A		28.198	-6.841 1 -6.382 1	10.600	
ATOM	517			27.363	-4.872 1	09.582	1.00 53.38
ATOM	518	_		27.313 28.290		.09.089	1.00 52.15
MOTA	519			26.298		10.018	1.00 53.97
ATOM	520			29.673	-6.660	110.594	1.00 35.04
ATOM	523			30.379	-7.625	L10.303	1.00 33.60
ATOM	523			30.144	-5.423	110.671	1.00 33.88
ATOM	523 524			31.554	-5.153	110.419	
ATOM	521			31.793			
atom atom	52	6 CG TYR A	A 65	33.247		110.219	
ATOM	52	· · · · · · · · · · · · · · · · · · ·		34.009		100 024	
ATOM	52			35.352	-5.411	103.04	
0							

•								
	500	CD2	TYR A	65	33.863	-2.398	111.134	1.00 34.08 [.]
ATOM	529	CE2	TYR A	65	35.211	-2.050	111.002	1.00 29.89
ATOM	530		TYR' A	65	35.949	-2.560	109.948	1.00 35.29
ATOM	531	CZ	TYR A	65	37,286	-2.231	109.825	1.00 29.81
MOTA	532	ОН		65	32.405	-5.813	111.504	1.00 27.65
MOTA	533	C	TYR A	65	33.339	-6.557	111.209	1.00 27.65
MOTA	534	0	TYR A	66	32.070	-5.559	112.765	1.00 27.32
ATOM	535	N	ILE A		32.822	-6.153	113.858	1.00 25.82
MOTA	536	CA	ILE A	66	32.227	-5.764	115.217	1.00 32.25
MOTA	537	CB	ILE A	66	33.029	-6.403	116.338	1.00 28.85
MOTA	538		-ILE A	66	32.226	-4.242	115.364	1.00 31.48
MOTA	539		ILE A	66	33.607	-3.612	115.282	1.00 38.02
MOTA	540	CD1		66	32.836	-7.677	113.736	1.00 31.21
MOTA	541	C	ILE A	66	33.891	-8.305	113.844	1.00 30.25
MOTA	542	0	ILE A	66	31.672	-8.279	113.507	1.00 33.28
MOTA	543	И	ASN A	67	31.627	-9.731		1.00 35.87
MOTA	544	CA	ASN A	67	30.190		113.177	1.00 33.07
ATOM	545	CB	ASN A	67	29.338	-10.072		1.00 37.34
ATOM	546	CG	ASN A	67	29.330	-10.296		1.00 35.20
ATOM	547	OD1		67	28.071	-9.709		1.00 34.83
ATOM	548	ND2		67 67	32.499			1.00 31.00
MOTA	549	C	ASN A	67	33.132	-11.248		1.00 37.26
MOTA	550	0	ASN A	67 68	32.543	-9.426		1.00 30.91
MOTA	551	N	THR A	68	33.368	-9.814		1.00 31.04
MOTA	552	CA	THR A	68 68	33.133	-8.894		1.00 34.01
MOTA	553	CB	THR A	68	31.780	-9.037		1.00 33.26
MOTA	554	OG1		68	34.072	-9.256	_	1.00 30.84
ATOM	555	CG2	THR A	68	34.844	-9.794		1.00 33.31
MOTA	556	С 0	THR A	68	35.591	-10.708	110.024	1.00 32.52
ATOM	557 558	N	LEU A	69	35.267	-8.768	111.117	1.00 30.30
MOTA	559	CA	LEU A	69	36.669	-8.686	111.534	1.00 28.20
MOTA	560	CB	LEU A	69	36.938	-7.409	112.351	1.00 28.25
ATOM ATOM	561	CG	LEU A	69	36.859	-6.049		1.00 30.18
ATOM	562	CD1	_	69	37.154	-4.929		1.00 31.08
ATOM	563		LEU A	69	37.868	÷6.004		1.00 27.85
MOTA	564	C	LEU A	69	37.036	-9.902		1.00 31.65 1.00 23.95
MOTA	565	o	LEU A	69	38.084	-10.519		1.00 23.93
MOTA	566	N	MET A	70	36.169	-10.243		1.00 34.50
ATOM	567	CA	MET A	70	36.411			1.00 31.96
ATOM	568	CB	MET A	70	35.318			1.00 36.26
ATOM	569	CG	MET A	70	35.203			1.00 37.52
ATOM	570	SD	MET A	70	33.948		5 118.403	1.00 37.36
MOTA	571	CE	MET A	70	34.633 36.484		-	1.00 33.33
MOTA	572	С	MET A	70	37.392			1.00 31.47
MOTA	573	0	MET A	70	35 534	-12 88	7 112.494	1.00 35.37
ATOM	574	N	GLU A	71	35.534	-14.09	8 111.681	1.00 36.6
MOTA	575	CA	GLU A	71 71	34 245	-14.16	0 110.834	1.00 37.3
MOTA	576	CB	GLU A	71	34 206	-15.35	9 109.897	1.00 46.37
ATOM	577	CG	GLU A	71	34 257	-16.69	3 110.633	1.00 46.37
atom	578	CD		71	34.355	-17.73	3 109.952	1.00 48.94
MOTA	579		1 GLU A	71	34.190	-16.70	5 111.882	1.00 45.53
ATOM	580	OE.	2 GLU A GLU A		36.732	-14.16	9 110.769	1.00 35.96
MOTA	581	C	GLU A		37.342	-15.22	8 110.617	1.00 32.99
ATOM	.582	O N	ALA A		37.079	-13.03	9 110.159	1.00 36.50
MOTA	583	N C3			38.225	-12.98	1 109.264	1.00 33.98
MOTA	584 585				38.366	5 -11.58	0 108.675	
MOTA	585		ALA A		39.498	3 -13.36	2 109.998	1.00 34.60
ATCM	586 587		ALA A		40.337	7 -14.09	4 109.466	
ATOM	587 588		GLU A		39.647	7 -12.87	3 111.224	1.00 30.87
ATOM	589				40.847	7 -13.17	7 111.985	
ATOM	590				41.004	4 -12.22	4 113.180	
ATOM	591		_		42.234	4 -12.54	5 114.033	
ATOM	592				42 390	0 -11.63	4 115.233	
ATOM · ATOM	593	OE	1 GLU A	. 73	42.60	1 -10.41	8 115.044	
ATOM	594	OE	2 GLU A	73	42.29	8 -12.13	8 116.372	1.00 41.21
AION								

	505	_	GLU A	73	40.906	-14.615	112.485	1.00 31.73
ATOM	595	С					112.409	1.00 32.96
ATOM	596	0	GLU A	73		-15.249		
			ARG A	74	39.798	-15.145	112.992	1.00 35.85
MOTA	597	N					113.502	1.00 43.24
ATOM	598	CA	ARG A	74	39.847	-10.511		
	599	CB	ARG A	74	38.548	-16.892	114.216	1.00 43.63
ATOM						-17.349	113.294	1.00 51.20
ATOM	600	CG	ARG A	74				1.00 51.13
ATOM	601	CD	ARG A	74		-18.087	114.063	
					25 53/	-18.871	113.158	1.00 57.40
ATOM	602	NE	ARG A	74				1.00 56.36
ATOM	603	CZ	ARG A	. 74	35.99	-19.870	112.403	
				74	37.27	-20.208	112.446	1.00 51.10
MOTA	604	NH1						1.00 58.75
ATOM	605	NH2	ARG A	74		2 -20.517		
	606	С	ARG A	74	40.12	5 -17.506	112.372	1.00 43.06
ATOM						-18.429		1.00 42.52
MOTA	607	0	ARG A	74				
	608	N	SER A	75	39.48	-17.305	111.222	
MOTA				75	39.67	-18.186	110.066	1.00 44.93
MOTA	609	CA	SER A					1.00 42.05
ATOM	610	CB	SER A	75	38.48	5 -18.089	109.113	
			SER A	75	38.42	-16.799	108.532	1.00 38.43
MOTA	611	og			40.91			1.00 46.44
MOTA	612	С	SER A	75				
	613	0	SER A	75	41.33	9 -18.522	108.383	1.00 45.17
ATOM					41.46	6 -16.638	109.618	1.00 46.18
ATOM	614	N	GLN A	76				1.00 44.73
ATOM	615	CA	GLN A	76	42.64			
		CB	GLN A	76	43.86	B -16.973	109.226	1.00 37.36
ATOM	616				45.16			1.00 43.96
ATOM	617	CG	GLN A	76				
	618	CD	GLN A	76	45.41	5 -15.214	110.176	1.00 41.86
MOTA					44.49		110.655	1.00 37.78
ATOM	619	OE1	GLN A	76				1.00 45.00
MOTA	620	NE2	GLN A	76	46.66		110.591	
			GLN A	76	42.37	4 -16.120	107.429	1.00 44.17
MOTA	621	C			43.23		106.630	1.00 40.49
MOTA	622	0	GLN A	76				
	623	N	SER A	77	41.16	8 -15.713	3 107.053	
MOTA				77	40.78		7 105.649	1.00 44.66
ATOM	624	CA	SER A					1.00 44.56
ATOM	625	CB	SER A	77	40.18			
			SER A	7 7	38.97	4 - 17.240	5 105.925	1.00 42.58
MOTA	626	OG			39.74			1.00 44.80
ATOM	627	С	SER A	77				
	628	0	SER A	77	39.09	6 -14.142		
MOTA				78	39.59		7 104.207	1.00 46.06
ATOM	629	N	VAL A					1.00 47.65
ATOM	630	CA	VAL A	78	38.63			
			VAL A	78	39.10	7 -12.24	5 102.701	1.00 49.63
ATOM	631	CB			38.07		7 102.391	1.00 51.25
ATOM	632	CG1	VAL A	78	_			1.00 53.00
MOTA	633	CG2	VAL A	78	40.45	4 -11.62	7 103.017	
				78	37.27	5 -13.68	2 103.530	1.00 48.07
MOTA	634	С	VAL A					1.00 42.31
MOTA	635	0	VAL A	78	37.11			
	636	N	PRO A	79	36.28	2 - 13.49	2 104.407	
ATOM				79	36.34		2 105.696	1.00 50.81
MOTA	637	CD	PRO A					1.00 51.31
ATOM	638	CA	PRO A	79	34.92			
	639	CB	PRO A	79	34.17	0 -13.45	0 105.396	1.00 53.13
MOTA				-g	35.24	4 -13.46	9 106.469	1.00 53.50
ATOM	640	CG	PRO A	-				1.00 52.42
MOTA	641	C	PRO A	;9	34.34	3 -13.21	7 102.858	1.00 52.42
				. 9	34.67	0 -12.42	8 102.382	1.00 55.73
ATOM	642	0	PRO A		22.40	2 -14.34	3 102.273	1.00 49.63
ATOM	643	N	LYS A	80	33.40	7 -14.34	2 102.273	1.00 51.62
	644	CA	LYS A	80	32.82	4 -14.05	3 101.002	1.00 51.02
ATOM					31 67	2 -15.00	4 100.822	1.00 53.92
MOTA	645	CB	LYS A	80	22.00	2 14 00	8 99.545	1.00 56.27
MOTA	646	CG	LYS A	80	30.81	7 -14.80	0 33.343	
		CD	LYS A	80	29.58	36 -15.71	2 99.560	1.00 56.61
MOTA	647				20 7/	4 -15.57	9 98.298	1.00 56.04
MOTA	648	CE	LYS A	80	20.7	14 -13.37		
	649	NZ	LYS A	80	29.47	1 -16.03	6 97.081	
MOTA					20 Z	8 -12.60	7 100.874	1.00 51.10
ATOM	650	С	LYS A	80	. د . ع د	10 10 14	0 101.689	
ATOM	651	0	LYS A	80	31.5	39 -12.14	U TUI.007	
			GLY A		32.83	21 -11.91	.4 99.842	
ATOM	652	N			22 4	8 -10.53	7 99.592	1.00 47.07
ATOM	653	CA	GLY A		22.4.			
	654	C	GLY A		32.8			
ATOM					32.6		1 100.397	1.00 43.90
ATOM	655	0	GLY A					
ATOM	656	N	ALA A	82	33.5			
			ALA A		33.9	73 -9.02	29 102.715	1,00 44.09
ATOM	657		י אייי		34.4			1.00 44.62
ATOM	658	CB	ALA A	. 82				
ATOM	659		ALA A	82	35.0			
			ALA A		35.1	32 -6.92	25 102.662	1.00 33.32
ATOM	660	Ü	י אשה					

									1.00 43.30
ATOM	661	N	ARG A	83		35.874	-8.549	101.289	
			ARG A			36.959	-7.742	100.741	1.00 43.25
MOTA	662	CA				37.715		99.677	1.00 46.60
MOTA	663	ÇВ	ARG A						1.00 51.32
ATOM	664	CG	ARG A	83		38.988	-7.865	99.222	
			ARG A			39.636	-8.632	98.086	1.00 55.55
MOTA	665	CD				40.995	-8.164	97.810	1.00 64.08
MOTA	666	NE	ARG A					-	1.00 63.01
ATOM	667	CZ	ARG A	83		41.330	-6.905	97.540	
		NH1				40.403	-5.954	97.504	1.00 62.76
MOTA	668					42.599	-6.600	97.304	1.00 59.66
MOTA	669	NH2	ARG A					100.134	1.00 44.58
ATOM	670	С	ARG A	¥ 83		36.453	-6.435		1.00 37.50
	671	Ō	ARG A			37.002	-5.365	100.395	1.00 38.05
MOTA						35.404	-6.528	99.323	1.00 41.82
ATOM	672	N	GLU A				-5.356	98.678	1.00 41.44
MOTA	673	CA	GLU A	A 84		34.824			1.00 46.27
	674	CB	GLU A	A 84		34.145	-5.765	97.367	
MOTA		ĊG	GLU Z	-		33.621	-7.185	97.388	1.00 52.61
MOTA	675					34.749	-8.198	97.308	1.00 54.12
MOTA	676	CD	GLU A					97.764	1.00 59.66
ATOM	677	OE1	GLU A	a 84	1	34.555	-9.344		
	678	OE2				35.823	-7.850	96.769	1.00 50.30
MOTA						33.831	-4.595	99.545	1.00 37.36
MOTA	679	С	GLU				-3.379		1.00 34.30
ATOM	680	0	GLU A			33.692			1.00 36.00
ATOM	681	N	LYS	A 85	,	33.138		100.427	
		CA	LYS			32.154	-4.646	101.280	1.00 36.95
MOTA	682					31.089	-5.649	101.725	1.00 36.60
ATOM	683	CB	LYS .				-5.042		1.00 40.72
ATOM	684	CG	LYS .	A 85)	29.975			1.00 46.21
ATOM	685	CD	LYS .	A 85	;	28.939	-6.092		1.00 40.41
			LYS			27.839	-5.487	103.827	1.00 49.06
MOTA	686	CE				26.859	-6.513		1.00 52.72
ATOM	687	NZ	LYS						1.00 36.48
ATOM	688	С	LYS	A 8!	5	32.785	-4.008	102.313	
	689	ŏ	LYS		5	32.353	-2.949		1.00 32.97
ATOM						33.819	-4.649		1.00 33.69
MOTA	690	N	TYR			34.468		104.250	1.00 35.23
ATOM	691	CA	TYR						1.00 33.65
MOTA	692	CB	TYR	A 8	5	34.410	-5.281		_
		CG	TYR			32.990	-5.665	105.680	1.00 35.09
MOTA	693					32.165	-4.76		1.00 34.06
ATOM	694	CDI					-5.100		1.00 34.32
ATOM	695	CE	TYR	A 8	5	30.866			1.00 33.17
	696	CD2	TYR	A 8	6	32.470	-6.923		
ATOM		CE				31.162	-7.27	105.716	1.00 33.91
MOTA	697					30.369	-6.35		1.00 34.21
MOTA	698	CZ	TYR				-6.65		1.00 35.20
ATOM	699	OH	TYR	A 8	6	29.079			
	700	С	TYR	A 8	6	35.901	-3.673		
MOTA			TYR			36.552	-3.20	3 104.984	1.00 36.06
MOTA	701	0				36.382	-3 77	7 102.814	1.00 36.46
ATOM	702	N	ASN						1.00 32.71
ATOM	703	CA	ASN	A 8	7	37.712	-3.31		
	704	CB	ASN		7	37.768	-1.79		
ATOM			ASN		7	38.989	-1.19	9 101.926	1.00 37.25
MOTA	705	CG				39.305	-1.51		1.00 36.29
MOTA	706	OD:			7				
ATOM	707	ND	2 ASN	A 8	7	39.675	-0.32	0 102.640	1.00 34.73
	708	С	ASN		7	38.855		6 103.217	1.00 34.73
MOTA				_	7	39.868		5 103.512	1.00 33.23
ATOM	709	0	ASN			38.687	_5 22	7 103.523	1.00 32.48
MOTA	710	N	ILE		8	_		, 103.3 23	
	711	CA			8	39.676		8 104.248	
ATOM					8	39.030	-6.73	2 105.445	
MOTA √	712	СВ				40.021		0 106.081	
ATOM	713	CG			8			7 106.461	
ATOM	714	CG	1 ILE	A 8	8	38.536			
	715				8	39.641	-4.95		
ATOM						40.251			1.00 37.36
ATOM	716		ILE		8				
MOTA	717	0	ILE		8	39.555			
	718		GLY		9	41.517			
MOTA					9	42.124	-8.47	7 102.698	
MOTA	719					43.134			1.00 34.50
MOTA	720	C	GLY		39				
MOTA	721	. 0	GLY	A 8	39	43.951			
	722		GLY		90	43.071	6.71		1.00 31.33
ATOM					90	44.005		8 100.371	1.00 23.90
MOTA	723					45.340			1.00 28.78
ATOM	724	l C	GLY		90				
ATOM	725		GLY	A !	90	45.563	-6.33	. 100.103	
	726		TYR		91	46.221	-5.15	55 100.367	1.00 20.20
MOTA	120	. 14	7 + 1		_				

								010	1.00 27.34
ATOM	727	CA	TYR A	91		47.539		100.918	
			TYR A	91		48.477	-4.365	99.805	1.00 22.62
MOTA	728	CB	-			48.066	-3.039	99.194	1.00 24.28
ATOM	729	CG	TYR A	91				99.822	1.00 21.55
ATOM	730	CD1	TYR A	91		48.374	-1.829		
		CEl	TYR A	91		47.970	-0.609	99.275	1.00 24.69
MOTA	731					47.341	-2.997	98.002	1.00 24.86
ATOM	732	CD2	TYR A	91			-1.786	97.447	1.00 29.92
MOTA	73,3	CE2	TYR A	91		46.931			1.00 29.04
MOTA	734	cz	TYR A	91		47.250	-0.597	98.086	
			TYR A	91		46.861	0.593	97.516	1.00 29.51
ATOM	735	OH				47.452	-3.777	101.998	1.00 27.52
MOTA	736	С	TYR A	91				102.869	1.00 27.20
MOTA	737	0	TYR A	91	-	48.314	-3.689		1.00 26.75
	738	Ŋ	GLU A	92		46.402	-2.971	101.938	
ATOM			GLU A	92		46.232	-1.879	102.882	1.00 28.38
MOTA	739	CA				45.234	-0.881	102.310	1.00 28.57
MOTA	740	CB	GLU A	92		45.233	0.471	102.982	1.00 36.94
ATOM	741	CG	GLU A	92		45.232			1.00 37.40
ATOM	742	CD	GLU A	92		44.178	1.395	102.396	
		OE1		92		42.999	1.293	102.794	1.00 31.22
MOTA	743			92		44.527	2.209	101.516	1.00 40.54
ATOM	744		GLU A			45.770	-2.343	104.259	1.00 29.20
ATOM	745	С	GLU A	92				105.268	1.00 21.86
ATOM	746	0	GLU A	92		46.389	-2.015	103.200	
	747	N	ASN A	93		44.687	-3.117	104.286	1.00 26.51
ATOM				93		44.109	-3.613	105.527	1.00 24.02
MOTA	748	CA	ASN A			42.727	-2.988		1.00 24.51
ATOM	749	CE	ASN A	93		42.727	-1.488		1.00 28.61
ATOM	750	CG	ASN A	93		42.738			
	751	OD1		93		43.428	-0.727	106.079	
ATOM				93		41.987	-1.063	104.393	1.00 20.45
MOTA	752	ND2				43.999	-5.132		1.00 24.79
MOTA	753	С	ASN A	93			-5.680	105.291	1.00 21.89
ATOM	754	0	ASN A	93		42.905	-5.000		
	755	N	PRO A	94		45.142	-5.828	105.429	
ATOM		CD	PRO A	94		46.493	-5.246		1.00 22.93
MOTA	756					45.241	-7.285	105.312	1.00 27.23
MOTA	757	CA	PRO A	94			_7 / 200	105.093	1.00 25.46
ATOM	758	CB	PRO A	94		46.730	-7.400	105.055	1.00 26.20
ATOM	759	CG	PRO A	94		47.299		106.046	1.00 20.20
		c	PRO A	94		44.743	-8.112	106.489	1.00 31.04
ATOM	760			94		44.411	-7.589	107.558	1.00 29.10
MOTA	761	С	PRO A			44.696	-9.422		1.00 28.27
ATOM	762	N	VAL A	95					1.00 28.82
MOTA	763	CA	VAL A	95		44.299	-10.367		1.00 30.75
	764	СЗ	VAL A	95		43.938	-11.737	106.677	
MOTA				95		43.745	-12.766	107.776	1.00 33.60
MOTA	765	CG:	_			42.679	-11.611	105.849	1.00 24.87
MOTA	766	CG:		95		_	-10.549	108.204	1.00 29.98
ATOM	767	С	VAL A	95		45.503			1.00 31.36
ATOM	768	0	VAL A	95		46.637	-10.649		
	769	N	SER A	96		45.254	-10.572	2 109.510	1.00 29.38
MOTA				96		46.335	-10.766	110.485	1.00 32.56
MOTA	770	CA	SER A			47.325	-9.600	110.454	1.00 34.15
ATOM	771	CB	SER A	96					1.00 28.33
MOTA	772	CG	SER A	96		46 758	-8.448		1.00 32.10
	773	С	SER A	96		45.681	~10.804	4 111.854	1.00 32.10
ATOM	774		SER A			44 458	-10.83	9 111.950	1.00 37.9
ATOM		0				46 484	-10.79	5 112.913	1.00 32.5
ATOM	775	11	TYR A			45.014	10 80		1.00 34.9
ATOM	776	CA	TYR A		•	45.914	-10.80		
ATOM	777	CЭ	TYR A	97		46.685	-11.73		
						46.492	-13.18	7 114.817	
MOTA	778					47 319	-13.81	2 113.882	1.00 40.6
ATOM	779					47 003	-15 12	1 113 475	
ATOM	780	CE	1 TYR A			47.083	-13.12	0 115 330	
	781			97		45.421	-13.91	0 115.338	
MOTA						45.175	-15.21	9 114.936	1.00 42.8
atom	78,2					46 010	-15.81	6 114.005	1.00 42.5
MOTA	783					45 777	-17.10		
ATOM	784	CH	TYR A			40.112	-11.10		
	785		TYR A	97		45.862	-9.39		
ATOM			TYR A			45.501		5 115.998	1.00 39.0
ATCM	786					46.115	-841	8 113.948	1.00 31.9
ATCM	787		ALA A				-7 02	4 114.341	1.00 30.4
ATOM	788	3 CA	, ALA A			46.048		1 113.600	
	789			98		47.105		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
ATOM	790		ALA A			44.658	-6.53	3 113.962	
ATOM						44.099	-5.65	5 114.612	1.00 31.8
ATCM	791		ALA A			44.094		0 112.915	1.00 30.4
ATOM	792	2 N	MET A	4 99		44.034			

			42.788	-6.730 112.420	1.00 27.54
ATOM	793	CA MET A 99	42.700	-7.620 111.238	1.00 30.55
ATOM	794	CB MET A 99		-7.020 111.250	1.00 31.59
ATOM	795	CG MET A 99	42.052	-9.071 111.565	
ATOM	796	SD MET A 99	41.902 -	10.077 110.053	1.00 30.13
	797	CE MET A 99	40.770	-9.086 109.085	1.00 28.02
MOTA			41.703	-6.696 113.490	1.00 28.02
ATOM -	798	•	40.818	-5.842 113.446	1.00 24.53
ATOM	799	O MET A 99		-7.614 114.449	1.00 26.07
ATOM	800	N PHE A 100	41.752	-7.014 114.445	1.00 30.47
ATOM	801	CA PHE A 100	40.759	-7.583 115.516	1.00 30.29
	802	CB PHE A 100	39.738	-8.718 115.404	
MOTA	803	CG PHE A 100	38.693	-8.657 116.475	1.00 29.35
ATOM			37.722	-7.662 116.455	1.00 27.01
MOTA	804		38.756	-9.506 117.575	1.00 30.68
ATOM	805	CD2 PHE A 100	36.834	-7.507 117.519	1.00 31.41
ATOM	806	CE1 PHE A 100		-9.356 118.644	1.00 28.39
MOTA	807	CE2 PHE A 100		-8.355 118.618	1.00 24.06
ATOM	808	CZ PHE A 100		-8.355 116.010	1.00 29.67
ATOM	809	C PHE A 100	41.345	-7.616 116.922	1.00 29.07
MOTA	810	O PHE A 100	41.028	-6.751 117.740	1.00 29.67
	811	N THR A 101	42.181	-8.610 117.222	1.00 31.30
ATOM		CA THR A 101	42.770	-8.701 118.562	1.00 31.37
ATOM	812		43.610	-9.977 118.732	1.00 31.63
MOTA	813		42.777 -	-11.119 118.532	1.00 31.64
ATOM	814	OG1 THR A 101	44.107	10.045 120.137	1.00 27.38
ATOM	815	CG2 THR A 101	44.197	-7.493 118.884	1.00 31.66
MOTA	816	C THR A 101	43.647		1.00 30.71
ATOM	817	O THR A 101	43.502	-6.875 119.942	1.00 30.71
MOTA	818	N GLY A 102	44.562	-7.166 117.976	
	819	CA GLY A 102	45.430	-6.018 118.193	1.00 27, 19
MOTA			44.631	-4.728 118.266	1.00 27.26
MOTA	820		44.785	-3.940 119.201	1.00 27.68
MOTA	821		43.767	-4.515 117.279	1.00 30.52
ATOM	822	N SER A 103		-3.314 117.216	1.00 31.91
ATOM	823	CA SER A 103	42.941	-3.334 115.949	1.00 34.63
ATOM	824	CB SER A 103	42.085	-3.334 113.343	1.00 35.94
ATOM	825	OG SER A 103	42.896	-3.265 114.791	1.00 32.44
ATOM	826	C SER A 103	42.046	-3.163 118.441	1.00 32.44
	827	O SER A 103	41.891	-2.065 118.984	1.00 25.78
ATOM	828	N SER A 104	41.455	-4.270 118.871	1.00 30.47
ATOM		CA SER A 104	40.584	-4.251 120.038	1.00 30.22
ATOM	829		39.978	-5.633 120.265	1.00 23.88
MOTA	830	CB SER A 104	39.078	-5.595 121.358	1.00 36.91
ATOM	831	OG SER A 104	41.367	-3.841 121.282	1.00 28.13
ATOM	832	C SER A 104		-3.098 122.130	1.00 25.16
ATOM	833	O SER À 104	40.872	-4.336 121.386	1.00 29.39
ATOM	834	N LEU A 105	42.594	-4.336 121.380	1.00 29.52
ATOM	835	CA LEU A 105	43.445	-4.034 122.530	1.00 32.90
ATOM	836	CB LEU A 105	44.684	-4.922 122.471	1.00 32.30
	837	CG LEU A 105	45.461	-5.176 123.754	1.00 40.34
ATOM		CD1 LEU A 105	44.520	-5.723 124.828	1.00 35.95
MOTA	838	CD2 LEU A 105	46.582	-6.178 123.462	1.00 40.23
MOTA	839	CD2 LEU A 103	43.834	-2.552 122.511	1.00 32.09
MOTA	840	C LEU A 105	43.896	-1.894 123.554	1.00 30.38
ATOM	841	O LEU A 105			1.00 30.26
ATOM	842	N ALA A 106	44.081		1.00 28.31
ATOM	843	CA ALA A 106	44.448	-0.626 121.151	1.00 23.88
	844	CB ALA A 106	44.958	-0.386 119.738	
MOTA	845	C ALA A 106	43.243	0.268 121.434	1.00 26.04
MOTA			43.380	1.376 121.952	1.00 20.63
MOTA	846		42.058	-0.224 121.099	1.00 26.86
ATOM	847	N THR A 107	40.841	0.542 121.322	1.00 25.04
MOTA	S48	CA THR A 107		0.007 120.443	
ATOM	349	CB THR A 107	39.706		
ATOM	850	OG1 THR A 107	40.111		
ATOM	851	CG2 THR A 107	38.439	0.824 120.629	
	352	C THR A 107	40.450	0.503 122.798	
ATOM	352	O THR A 107	40.039	1.515 123.361	
ATOM			40.585	-0.662 123.422	
MOTA	854		40.256	-0.767 124.832	1.00 24.86
ATOM	855		41.181	0.155 125.603	1.00 23.86
ATOM	856		40.771	0.790 126.572	1.00 26.97
ATCM	857	O GLY A 108		0.790 125.372	1.00 23.07
ATCM	358	N SER A 109	42.434	0.236 123.130	

							1 00 00 00
5 mow	859	CA	SER A 109	43.421	1.090	125.807	1.00 20.96
ATOM				44.795	0.910	125.160	1.00 24.84
ATOM	860	CB	SER A 109		-0.393	125.402	1.00 25.84
ATOM	861	OG	SER A 109	45.294			
	862	С	SER A 109	43.008		125.759	1.00 21.13
MOTA				43.323	3.312	126.672	1.00 23.17
ATOM	863	0	SER A 109	40.000	2 949	124.698	1.00 20.83
ATOM	864	N	THR A 110	42.311		124.000	
	865	CA	THR A 110	41.841	4.327	124.583	1.00 21.84
MOTA				41.332	4.648	123.161	1.00 24.33
ATOM	866	CB	THR A 110	41.352		122.276	1.00 25.38
MOTA	867	OG1	THR A 110	42.452			
	868	CG2	THR A 110	40.543	5.954	123.144	1.00 21.18
ATOM				40.725	4.561	125.600	1.00 28.52
ATOM	869	С	THR A 110			126.197	1.00 28.27
ATOM	870	0	THR A 110	40.632	5.637		1.00 26.88
ATOM	871	N	VAL A 111	39.882	3.558	125.809	1.00 26.88
			VAL A 111	38.811	3.706	126.793	1.00 30.04
MOTA	872	CA	VAL A III	37.820	2.519	126.742	1.00 29.94
ATOM	873	CB	VAL A 111			127.802	1.00 27.07
ATOM	874	CG1	VAL A 111	36.737	2.693		1.00 27.07
	875	CC2	VAL A 111	37.193	2.431	125.355	1.00 25.26
ATOM			VAD 7. 111	39.440	3.797	128.187	1.00 28.10
ATOM	876	С	VAL A 111		4.539	129.039	1.00 26.06
MOTA	877	0	VAL A 111	38.968		_	1.00 23.92
ATOM	878	N	GLN A 112	40.521	3.056		
			GLN A 112	41.188	3.097	129.711	1.00 30.27
MOTA	879	CA				129.804	1.00 28.61
MOTA	880	CB	GLN A 112	42.268	2.020	120.004	1.00 28.90
ATOM	881	CG	GLN A 112	41.777	0.629	129.481	
		CD	GLN A 112	42.883	-0.397	129.564	1.00 28.60
ATOM	882			43.344	-0 740	130.653	1.00 29.68
ATOM	883	OE1			0.720	128.409	1.00 22.13
ATOM	884	NE2	GLN A 112	43.333			
	885	C	GLN A 112	41.834	4.461	129.931	1.00 29.99
MOTA				41.791	5.006	131.035	1.00 28.43
MOTA	886	0	GLN A 112		5.000	128.885	1.00 28.64
MOTA	887	N	ALA A 113	42.453	5.004	120.005	1.00 26.62
ATOM	888	CA	ALA A 113	43.083	6.315	129.001	
			ALA A 113	43.693	6.732	127.684	1.00 23.49
MOTA	889	CB	ALA A 113	42.005	7.307		1.00 24.63
MOTA	890	С	ALA A 113				1.00 26.38
ATOM	891	0	ALA A 113	42.232	8.183		
	892	N	ILE A 114	40.824	7.163	128.822	1.00 25.26
ATOM			ILE A 114	39.728	8.063	129.145	1.00 27.05
MOTA	893	CA			7.887		1.00 26.93
ATOM	894	CB	ILE A 114	38.554			1.00 25.86
ATOM	895	CG2	ILE A 114	37.387	8.770	128.576	
		CG1		39.008	8.259	126.739	1.00 28.38
MOTA	896			37.938	ន 105	125.669	1.00 28.64
ATOM	897	CD1			7 000	130.578	1.00 31.36
ATOM	898	С	ILE A 114	39.239			1.00 24.56
MOTA	899	0	ILE A 114	38.898		131.291	
			GLU A 115	39.210	6.563	3 131.005	1.00 31.17
ATOM	900	1.1		38.750	6 25"	7 132.358	1.00 32.12
ATOM	901	CA	GLU A 115		4.74	1 132.607	1.00 32.15
ATOM	902	CB	GLU A 115	38.729			
	903	CG	GLU A 115	37.904	3.94		1.00 32.84
ATOM			GLU A 115	37.875	2.459	9 131.912	1.00 34.12
ATOM	904	CD			1 01	132.345	1.00 30.36
ATOM	905	OE:	1 GLU A 115	38.910		132.010	1.00 31.38
ATOM	906	OE.	2 GLU A 115.	36.826	1.82		1.00 31.50
			GLU A 115	39.675	6.93	2 133.357	1.00 31.65
ATOM	907	С	GHU H 117	39.224	7.44	6 134.383	1.00 29.25
ATOM	908	0	GLU A 115		6 03	3 133.053	
ATOM	909	N	GLU A 116	40.970			1.00 32.34
	910	CA		41.942	7.56	4 133.934	1.00 32.34
ATOM			GLU A 116	43.367	7.28	5 133.457	1.00 33.29
ATOM	911	СВ			5 9/	2 133.633	1.00 32.29
ATOM	-912	CG	GLU A 116	43.805			1.00 36.87
	913	CD		43.701	5.37	8 135.079	
ATOM			1 GLU A 116	44.329	6.00	3 135.961	
ATOM	914		T GDO W 110	42.993	4.38	5 135.335	1.00 35.00
ATOM	915	OE					
ATOM	916	С	GLU A 116	41.702	9.06		1 00 34 30
	917		GLU A 116	41.863	9.67		
ATOM				41.317	9.66	1 132.881	1.00 31.19
ATOM	918	N	PHE A 117				1.00 28.43
ATOM	919	CA	PHE A 117	41.038			
	920			40.593	11.50		
ATOM				40.044		8 131.381	1.00 35.78
ATOM	921	. CG	FRE A 11/	40.882		6 131.501	1.00 33.39
ATOM	922	CD	1 PHE A 117				
ATOM	923	CD	2 PHE A 117	38.675			
	924		1 PHE A 117	40.372	15.29	9 131.466	1.00 20.02
ATOM	744	. CE					

MOTA	925	CE2 F	HE A 117		38.153	14.412	131.190	1.00 36.50
	926	CZ F	HE A 117		39.003		131.310	1.00 35.41 1.00 32.78
ATOM	927		PHE A 117		39.908		133.811 134.566	1.00 32.78
ATOM	928		PHE A 117		39.966	12.3//	134.500	1.00 28.61
ATOM	929		EU A 118		38.874	10.751	134.632	1.00 32.00
ATOM	930		EU A 118		37.720		134.263	1.00 29.19
MOTA	931		LEU A 118		36.621 36.098		132.820	1.00 34.47
ATOM	932		LEU A 118		34.962		132.622	1.00 32.69
MOTA	933	CD1 L	LEU A 118		35.612	11.240	132.522	1.00 32.24
ATOM	934	CD2 I	LEU A 118 LEU A 118		38.123	10.590	136.094	1.00 31.17
MOTA	935	C I	LEU A 118		37.576	11.260	136.964	1.00 28.32
MOTA	936 937	N I	LYS A 119		39.083	9.707	136.363	1.00 27.23
MOTA MOTA	938	CA I	LYS A 119		39.531	9.497	137.733	1.00 30.95
ATOM	939	CB I	LYS A 119		40.203	8.130	137.884	1.00 26.35
ATOM	940	CG I	LYS A 119		39.293	6.954	137.540	1.00 32.44 1.00 33.31
MOTA	941		LYS A 119		39.895	5.624	137.986 137.411	1.00 33.31
ATOM	942	CE I	LYS A 119		41.280	5.383 4 103	137.904	1.00 33.40
ATOM	943		LYS A 119		41.874 40.493	10 594	138.173	1.00 32.65
ATOM	944	C I	LYS A 119	•	40.453	10.534	139.270	1.00 28.83
MOTA	945	0	LYS A 119		40.689	11.583	137.308	1.00 33.77
MOTA	946	N (GLY A 120 GLY A 120		41.571	12.677	137.652	1.00 33.84
MOTA	947	CA (GLY A 120		43.035	12.448	137.340	1.00 34.27
ATOM	948 949	0	GLY A 120		43.880	13.227	137.776	1.00 36.80
ATOM	950	N .	ASN A 121		43.347	11.384	136.606	1.00 30.77
MOTA MOTA	951	CA	ASN A 121		44.731	11.122	136.244	1.00 31.73
MOTA	952	CB .	ASN A 121		45.089	9.646	136.437	1.00 29.34 1.00 35.83
ATOM	953	CG	ASN A 121		44.856	9.170	137.851	1.00 33.83
ATOM	954	OD1	ASN A 121		45.190	9.861	138.816 137.986	1.00 33.20
MOTA	955		ASN A 121		44.304	11 506	134.790	1.00 32.59
MOTA	956		ASN A 121		44.954 44.031	11 952	134.110	1.00 34.69
MOTA	957	0	ASN A 121		46.186	11:334	134.322	1.00 32.74
MOTA	958	N	VAL A 122 VAL A 122		46.540	11.653	132.946	1.00 33.59
ATOM	959 960	CA CB	VAL A 122		47.571	12.790	132.882	1.00 36.05
MOTA	961	CG1	VAL A 122		47.884	13.121	131.438	1.00 37.58
MOTA MOTA	962	CG2	VAL A 122		47.029	14.021	133.602	1.00 37.19 1.00 34.47
ATOM	963	С	VAL A 122		47.147	10.397	132.352	1.00 34.47
ATOM	964	0	VAL A 122		48.053	9.801	132.939	1.00 28.06
ATOM	965	N	ALA A 123		46.646	9.303	130.563	1.00 30.73
ATOM	966	CA	ALA A 123		47.142 46.133	7 666	130.727	1.00 32.69
ATOM	967	CB	ALA A 123 ALA A 123		47.466	8.969	129.088	1.00 30.55
MOTA	968	C	ALA A 123		46.909	9.830	128.406	1.00 32.89
MOTA	969 970	N 0	PHE A 124		48.380	8.130	5 128.613	1.00 27.53
ATOM	971	CA	PHE A 124		48.807	8.15	7 127.229	1.00 26.56
MOTA MOTA	972	CB	PHE A 124		50.261		127.157	1.00 25.32 1.00 27.84
ATOM	973	CG	PHE A 124		50.903	8.54	4 125.793	1.00 24.77
ATOM	974	CD1	PHE A 124		50.179	8.78	5 124.629	
ATOM	975	CD2	PHE A 124		52.266	8.25	6 125.686 3 123.385	
ATOM	976	CE1	PHE A 124		50.802	8.73		
ATOM	977		PHE A 124		52.894 52.164	8.47		
ATOM	978		PHE A 124		48.671	6.74	9 126.675	1.00 21.13
MOTA	979		PHE A 124		49.181	5.79		1.00 25.38
ATOM	980		PHE A 124 ASN A 125		47.933	6.62	4 125.580	1.00 18.87
ATOM	981		ASN A 125		47.750	5.34		1.00 25.05
ATOM	982 983		ASN A 125		46.271	4.98	2 124.756	
ATOM	984		ASN A 125		46.073	3.78	4 123.856	1.00 24.08
ATOM TOM	985		ASN A 125		46.916			
atom atom	986		ASN A 125		44.960			
ATOM	987		ASN A 125		48.380			
ATOM	988		ASN A 125		47.718			
ATOM	989		PRO A 126		49.680		0 124.519	
ATOM	990	CD (C	PRO A 126		50.589	4.73		

				100 160	1.00 22.39
ATOM	991	CA PRO A 126	50.413	5.130 122.160	
		CB PEO A 126	51.829	4.751 122.594	1.00 18.20
ATOM			51.564	3.849 123.798	1.00 25.43
ATOM		CG PRO A 126		4.224 121.058	1.00 23.18
ATOM	994	C PRO A 126	49.867	4.224 121.000	1.00 20.12
ATOM	995	O PRO A 126	50.173	4.436 119.893	
		N ALA A 127	49.058	3.232 121.423	1.00 23.27
ATOM		N ALA A 12.	48.493	2.306 120.444	1.00 23.89
ATOM	997	CA ALA A 127		0.967 121.118	1.00 24.82
MOTA	998	CB ALA A 127	48.176		1.00 24.76
ATOM		C ALA A 127	47.241	2.864 119.778	
		107	46.806	2.360 118.745	1.00 28.99
MOTA		O ALA A 12/	. 46.666	3.906 120.367	1.00 22.12
MOTA	1001	N GLY A 128		4.494 119.809	1.00 21.43
ATOM	1002	CA GLY A 128	45.461	4.494 119.005	1.00 23.55
ATOM	1003	C GLY A 128	45.732	5.521 118.725	1.00 23.35
	1004	O GLY A 128	46.875	5.695 118.291	1.00 23.25
ATOM			44.680	6.199 118.283	1.00 18.03
ATOM	1005	N GLY A 129	44.822	7.205 117.243	1.00 24.99
MOTA	1006	CA GLY A 129			1.00 25.11
MOTA	1007	C GLY A 129	44.600		1.00 24.99
ATOM	1008	O GLY A 129	44.963	7.293 114.857	1.00 24.33
			44.002	5.470 115.765	1.00 20.01
MOTA	1009	N MET A 130	43.729	4.825 114.481	1.00 23.63
MOTA	1010	CA MET A 130		3.361 114.744	1.00 22.77
ATOM	1011	CB MET A 130	43.360	3.301 114.717	1.00 26.30
ATOM	1012	CG MET A 130	44.455	2.661 115.563	1.00 20.50
	-	SD MET A 130	44.198	0.913 115.989	1.00 26.57
ATOM	1013	5D FET A 130	42.665	1.030 116.936	1.00 27.59
MOTA	1014	CE MET A 130	42.580	5.617 113.869	1.00 23.70
ATOM	1015	C MET A 130		5.199 113.901	1.00 26.28
ATOM	1016	O MET A 130	41.421	5.199 113.901	1.00 20.66
	1017	N HIS A 131	42.926	6.766 113.294	1.00 20.00
MOTA			41.933	7.687 112.775	1.00 20.99
MOTA	1018	CA HIS A 131	42.474	9.125 112.891	1.00 21.01
MOTA	1019	CB HIS A 131		9.391 112.069	1.00 28.30
MOTA	1020	CG HIS A 131	43.699	9.391 112.003	1.00 19.65
	1021	CD2 HIS A 131	44.498	8.549 111.373	1.00 19.05
ATOM		ND1 HIS A 131	44.246	10.649 111.917	1.00 27.76
MOTA	1022	NDI NIS A ISI	45.328	10.567 111.163	1.00 20.48
ATOM	1023	CE1 HIS A 131		9.302 110.820	1.00 24.18
ATOM	1024	NE2 HIS A 131 .	45.503	7.513 111.416	1.00 23.76
MOTA	1025	C HIS A 131	41.280	/.513 111.410	
	1026	O HIS A 131	40.453	8.341 111.051	1.00 21.93
MOTA			41.600	6.449 110.682	1.00 25.12
MOTA	1027	N HIS A 132	41.006	6.257 109.354	1.00 23.32
MOTA	1028	CA HIS A 132		5.715 108.388	1.00 17.87
MOTA	1029	CB HIS A 132	42.060	5.715 108.500	1.00 24.79
ATOM	1030	CG HIS A 132	43.148	6.689 108.072	1.00 24.72
	1031	CD2 HIS A 132	44.496	6.574 108.144	1.00 21.72
ATOM		ND1 HIS A 132	42.896	7.944 107.556	1.00 13.58
MOTA	1032	NDI HIS A 132	44.044	8.558 107.323	1.00 15.41
ATOM	1033	CE1 HIS A 132		7.748 107.668	1.00 15.27
MOTA	1034	NE2 HIS A 132	45.028	7.748 107.000	1.00 23.38
MOTA	1035	C HIS A 132	39.752	5.386 109.208	
			38.947	5.615 108.304	2 00 24.70
MOTA	1036	0 HIS A 132	39.587	4.388 110.070	1.00 23.34
MOTA	1037	N ALA A 133		3.471 109.953	1 00 23.77
ATOM	1038	CA ALA A 133	38.453	3.471 103.555	1.00 27.49
ATOM	1039	CB ALA A 133	38.515	2.417 111.053	
	1040	C ALA A 133	37.093	4.145 109.966	1.00 23.02
ATOM			36.878	5.117 110.691	1.00 25.98
MOTA	1041	0 ALA A 133	36.179	3.633 109.148	1.00 18.90
ATOM	1042	N PHE A 134		4.173 109.103	
MOTA	1043	CA PHE A 134	< 34.831	4.1/3 109.103	
	1044	CB PHE A 134	34.317	4.296 107.663	
MOTA			35.119	5.225 106.801	1.00 26.67
MOTA	1045		36.025	4.724 105.867	1.00 28.69
MOTA	1046	CD1 PHE A 134		6.605 106.921	
ATOM	1047	CD2 PHE A 134	34.975	0.003 100.321	
	1048	CE1 PHE A 134	36.775	5.582 105.063	
ATOM			35.724	7.479 106.119	1.00 27.86
ATOM	1049		36.623	6.967 105.188	1.00 23.93
ATOM	1050	CZ PHE A 134	30.023	3.260 109.884	
ATOM	1051	C PHE A 134	33.894		
ATOM	1052	O PHE A 134	34.270	2.172 110.319	
		N LYS A 135	32.670	3.728 110.062	
MOTA	1053	135	31.638	2.984 110.765	1.00 35.26
ATCM	1054	CA LYS A 135	30.294	3.628 110.429	1.00 35.86
ATOM	1055	CB LYS A 135		2.779 110.667	
ATOM	1056	CG LYS A 135	29.072	2.113 110.00	.
C11	_,,,,				

				-	-6				
ATOM	1057	CD L	YS A 135 YS A 135		27.834 26.610	2.645	110.211 110.169	1.00 4 1.00 5	3.65
MOTA	1058		YS A 135		26.788		109.167	1.00 5	
ATOM	1059 1060		YS A 135		31.617		110.414	1.00 3	
MOTA MOTA	1061	O L	YS A 135		31.609		111.301	1.00 3 1.00 3	
ATOM-	1062	N S	ER A 136		31.629	1.180	109.122	1.00 3	
ATOM	1063	CA S	ER A 136			-0.211	108.684	1.00 3	
ATOM	1064		ER A 136		30.172	-0.474 -0.072		1.00 4	
ATOM	1065		ER A 136		29.146 32.608	-0.616	107.660	1.00 3	7.84
ATCM	1066	C -S	ER A 136 ER A 136		32.350		106.828	1.00 3	6.33
MOTA	1067	0 S	RG A 137		33.788	-0.008	107.705	1.00 3	
ATOM ATOM	1068 1069	N A	RG A 137	•	34.797	-0.368	106.724	1.00 3	
ATOM	1070	CB A	ARG A 137		34.456	0.291	105.385	1.00 3	
MOTA	1071		ARG A 137		35.009	0.261	104.201 102.880	1.00 4	6.27
ATOM	1072		ARG A 137		34.809 35.091		101.768	1.00 4	
MOTA	1073	NE A	ARG A 137 ARG A 137		35.352	-0.261	100.526	1.00 4	18.64
MOTA	1074 1075	CZ A	ARG A 137		35.372	1.029	100.220	1.00	
ATOM	1075	NH2 A	ARG A 137		35.592	-1.169	99.589	1.00	19.01
MOTA MOTA	1077		ARG A 137		36.209	0.021	107.143	1.00	31.04
ATOM	1078	0 7	ARG A 137		36.428	1.079	107.742 106.828	1.00	30.30
ATOM	1079		ALA A 138		37.166 38.560	-0.845	100.020	1.00	
MOTA	1080		ALA A 138		39.367	-1.864	107.048	1.00	31.25
MOTA	1081	CB 2	ALA A 138 ALA A 138		39.095	0.449	106.187	1.00	29.49
ATOM	1082 1083	0 1	ALA A 138		38.612	0.551	105.063	1.00	26.11
ATOM ATOM	1084	N	ASN A 139		40.099	1.206	106.615	1.00	29.54 26 99
ATOM	1085	CA I	ASN A 139		40.673	2.241	105.767 105.662	1.00	24.10
MOTA	1086	CB .	ASN A 139		39.685	4 556	104.811	1.00	28.02
MOTA	1087	CG .	ASN A 139		40.209	4.334	103.727	1.00	26.90
MOTA	1088	ND2	ASN A 139 ASN A 139		40.050	5.789	105.293	1.00	23.55
ATOM	1089 1090	C	ASN A 139		42.027	2.713	106.285	1.00	30.17
ATOM ATOM	1091	o l	ASN A 139		42.245	2.827	107.497	1.00	27.55 31.82
ATOM	1092	N	GLY A 140		42.944	2.959	105.354 105.702		24.90
ATOM	1093		GLY A 140		44.277 45.000	2.696	106.816	1.00	27.79
ATOM	1094		GLY A 140 GLY A 140		45.560	3.339	107.705	1.00	23.85
MOTA	1095 1096		PHE A 141		45.006	1.365	106.768	1.00	24.35
MOTA MOTA	1097	CA	PHE A 141		45.679	0.538		1.00	24.53 26.40
ATOM	1098	CB	PHE A 141		47.031	1.146		1.00	30.31
ATOM	1099	CG	PHE A 141		47.997 49.145	1.366		1.00	31.60
MOTA	1100	CD1	PHE A 141		47.781	0.811	105.802	1.00	29.44
MOTA	1101	CD2	PHE A 141 PHE A 141		50.066	2.331	106.243	1.00	30.44
MOTA	1102 1103	CE1 CE2	PHE A 141		48.694	1.008	3 104.770		27.91
MOTA ATOM	1103		PHE A 141		49.840		104.991		29.38 23.53
MOTA	1105		PHE A 141		44.846	0.387	7 109.056 9 109.941		23.09
MOTA	1106		PHE A 141		45.194 43.760	1.14			22.86
MOTA	1107		CYS A 142		42.925	1.099	110.356	1.00	23.87
ATOM	1108		CYS A 142 CYS A 142		42.472	2.51	6 110.723	1.00	22.51
MOTA	1109 1110		CYS A 142		43.828	3.68	3 111.072	1.00	27.62
MOTA MOTA	1111		CYS A 142		41.694	0.20	5 110.233		24.20 24.12
ATOM	1112		CYS A 142		40.932	0.30			23.84
MOTA	1113	N	TYR A 143		41.498	-0.66	6 111.236		26.07
MOTA	1114		TYR A 143		40.335 40.728			1.00	27.89
MOTA	1115		TYR A 143 TYR A 143		41.829	-3.58	2 110.855	1.00	27.30
ATOM	1116				43.169	-3.32	9 111.137	1.00	25.76
MOTA	1117	CE1	TYR A 143		44.185	-3.87	5 110.346	1.00	25.77 25.87
atom atom	1119		TYR A 143		41.526		4 109.762		23.10
ATOM	1120		TYR A 143	1	42.531		1 108.967 9 109.262	1.00	22.93
ATOM	1123	ı cz	TYR A 143		43.854 44.849		7 108.47		20.64
ATOM	1123	2 OH	TYR A 143	•	44.043	-3.41	===	-	

				- •	9			
					39.281	_0 991	112.193	1.00 24.56
ATOM	1123	C	TYR A 143		38.085	-1 030	111.905	1.00 24.88
MCTA	1124	0	TYR A 143			-1.030	113.331	1.00 23.77
ATOM	1125	N	ILE A 144		39.734	-0.4/1	114 735	1.00 27.11
ATOM	1126	CA	ILE A 144		38.833	0.102	114.335	1.00 24.56
ATOM	1127	CB	ILE A 144		38.871	-0.729	115.643	1.00 24.50
	1128		ILE A 144		37.941	-0.120	116.690	1.00 23.47
ATOM			ILE A 144		38.430	-2.169	115.346	1.00 28.51
ATOM	1129				38.535	-3.113	116.539	1.00 28.70
ATOM	1130		ILE A 144		39.248	1 550	114.627	1.00 24.15
MOTA	1131	C	ILE A 144		40.428	1.843		1.00 24.42
MOTA	1132	0	ILE A 144				114.669	1.00 22.04
ATOM .	1133	N	ASN A 145		38.277			1.00 21.31
ATOM	1134	CA	ASN A 145		38.555	3.866		1.00 18.87
ATOM	1135	CB	ASN A 145		37.559	4.732		1.00 22.21
ATOM	1136	CG	ASN A 145		37.956	6.205		
	1137		ASN A 145		38.223	6.823	115.124	1.00 22.47
MOTA	1138	NID2	ASN A 145		37.978	6.776	112.892	1.00 23.78
ATOM			ASN A 145		38.417		116.418	1.00 22.63
ATOM	1139	C	ASN A 145		37.338	4.535	116.880	1.00 22.45
MOTA	1140	0			39.495	3.941	117.178	1.00 16.63
ATOM	1141	N	ASN A 146		39.423	4 160	118.628	1.00 23.57
MOTA	1142	CA	ASN A 146		40.708			1.00 19.80
ATOM	1143	CB	ASN A 146				118.967	1.00 27.81
ATOM	1144	CG	ASN A 146		41.924			1.00 19.55
ATOM	1145	OD1	ASN A 146		42.299	5.421	119.704	1.00 19.55
ATOM	1146	ND2	ASN A 146		42.544	4.202	117.827	
ATOM	1147	C	ASN A 146		39.079		119.023	1.00 26.32
	1148	ō	ASN A 146		38.452	5.827	120.059	1.00 28.34
ATOM		N	PRO A 147		39.512	6.605	118.231	1.00 28.46
ATOM	1149		PRO A 147		40.383	6.637	117.042	1.00 27.18
ATOM	1150	CD	PRO A 147		39.150	7.972	118.618	1.00 24.15
MOTA	1151	CA			39.859		117.558	1.00 25.13
MOTA	1152	CB	PRO A 147		41.081		117.235	1.00 30.05
ATOM	1153	CG	PRO A 147		37.618	9 136	118.578	1.00 26.71
ATOM	1154	С	PRO A 147				119.456	1.00 24.93
ATOM	1155	0	PRO A 147		37.017	7.557	117.562	1.00 21.42
MOTA	1156	N	ALA A 148		36.989	7.557	117.302	1.00 21.03
MCTA	1157	CA	ALA A 148		35.536		117.416	1.00 19.98
ATOM	1158	CB	ALA A 148		35.112	7.044	116.072	1.00 20.40
ATOM	1159	c	ALA A 148		34.838	6.891	. 118.552	1.00 20.49
	1160	Ö	ALA A 148		33.822	7.344	119.067	1.00 21.44
ATOM	1161	N	VAL A 149		35.381	5.739	118.928	1.00 19.20
ATOM		CA	VAL A 149		34.818	4.950	120.016	1.00 24.61
MOTA	1162		VAL A 149		35.570	3.608	120.181	1.00 25.96
MOTA	1163	CE			35.158	2.918	3 121.485	1.00 26.58
ATOM	1164	CG.	1 VAL A 149		35.262	2.704	118.995	1.00 25.67
ATOM	1165		2 VAL A 149		34.947	5.752	2 121.304	1.00 23.56
ATOM	1166	С	VAL A 149		33.990	5 88	7 122.064	1.00 22.52
MOTA	1167	0	VAL A 149			6 28	7 121.536	1.00 24.65
ATOM	1168	N	GLY A 150		36.143	7 07	122.731	1.00 22.82
ATOM	1169	CA			36.390	7.07	1 122.838	1.00 25.46
ATOM	1170	С	GLY A 150		35.477	8.26.	1 122.030	1.00 23.17
ATOM	1171	0	GLY A 150		34.919	8.564	4 123.904	1.00 24.38
ATOM	1172	N	ILE A 151		35.327	9.00	1 121.733	
	1173	CA			34.481	10.18	0 121.716	1.00 22.65
ATOM	1174	CB			34.610	10.92	8 120.371	1.00 24.45
ATOM					33.598	12.07	7 120.306	1.00 24.71
ATOM	1175		2 ILE A 131		36.041	11.46	2 120.222	1.00 28.02
ATOM	1176				36.354		6 118.854	1.00 27.10
ATOM	1177		1 ILE A 151		33.018		6 121.987	1.00 28.19
ATOM	1178		ILE A 151		32.337	_	2 122.763	
ATOM	1179		ILE A 151				4 121.364	
ATOM	1180	N	GLU A 152		32.532		4 121.601	
ATOM	1181		GLU A 152		31.149		1 120.672	
ATOM	1182		GLU A 152		30.758		1 120.072	
ATOM	1183		GLU A 152		30.609		3 119.194	
	1184		4 - 6		29.455		4 118.946	
ATOM	1185				29.139		7 117.773	
ATOM	1186		150		28.862			
ATOM			GLU A 152		31.009	7.87	9 123.055	1.00 28.00
ATCM	1187		GLU A 152		29.980	8.09	6 123.683	1.00 31.23
RIOM	1188	3 0	GDO A 102		= -			

				•			
3 TOM	1189	N	TYR A 153		32.054	7.253 123.583	1.00 28.72
MOTA			TYR A 153		32.066	6.805 124.971	1.00 31.35
MOTA	1190	CA			33.427	6.204 125.307	1.00 31.56
MOTA	1191	CB	TYR A 153				1.00 33.17
ATOM	1192	CG	TYR A 153		33.617		
ATOM	1193	CD1	TYR A 153		33.111	4.647 127.280	1.00 35.43
		CE1	TYR A 153		33.321	4.298 128.619	1.00 33.52
ATOM	1194				34.329	6.677 127.611	1.00 34.29
MOTA	1195	CD2	TYR A 153			• • • • •	1.00 35.34
ATOM	1196	CE2	TYR A 153		34.544		
ATOM	1197	CZ	TYR A 153		34.041	5.154 129.444	
	1198	OH	TYR A 153	•	34.260	4.835 130.767	1.00 30.10
MOTA			TYR A 153		31.828	8.022 125.857	1.00 32.71
MOTA	1199	С				7.988 126.787	1.00 29.14
ATOM	1200	0	TYR A 153		31.026		1.00 29.65
MOTA	1201	N	LEU A 154		32.538		
ATOM	1202	CA	LEU A 154		32.413	10.332 126.310	1.00 32.87
	1203	СВ	LEU A 154		33.477	11.329 125.847	1.00 31.46
MOTA			LEU A 154		34.910	11.053 126.324	1.00 29.68
MOTA	1204	CG.	LEU A 154		35.898	11.953 125.605	1.00 29.29
MOTA	1205	CD1				11.278 127.829	1.00 27.19
ATOM	1206	CD2			34.989		1.00 34.63
ATOM	1207	С	LEU A 154		31.020		
ATOM	1208	0	LEU A 154		30.475	11.379 127.250	1.00 32.58
		N	ARG A 155		30.443	10.999 125.035	1.00 36.63
MOTA	1209				29.107	11.569 124.869	1.00 38.36
ATOM	1210	CA	ARG A 155			11.502 123.405	1.00 36.32
ATOM	1211	CB	ARG A 155		28.661		1.00 43.15
ATOM	1212	CG	ARG A 155		29.581	12.253 122.460	
ATOM	1213	CD	ARG A 155		29.100	12.201 121.023	1.00 41.10
	1214	NE	ARG A 155		27.936	13.047 120.768	1.00 44.00
MOTA			ARG A 155		27.331	13.140 119.583	1.00 54.07
ATOM	1215	CZ	ARG A 155		27.772	12.441 118.540	1.00 51.61
MOTA	1216	NH1		•		13.948 119.424	1.00 51.76
MOTA	1217	NH2			26.291		1.00 36.25
ATOM	1218	C	ARG A 155		28.112	10.821 125.745	
ATOM	1219	0	ARG A 155		27.270	11.433 126.397	1.00 39.00
	1220	N	LYS A 156		28.213	9.496 125.765	1.00 36.48
MOTA			LYS A 156		27.315	8.698 126.587	1.00 39.06
MOTA	1221	CA			27.460	7.213 126.256	1.00 41.88
MOTA	1222	CB	LYS A 156		26.672	6.816 125.020	1.00 51.15
ATOM	1223	CG	LYS A 156			7.505 123.781	1.00 55.56
MOTA	1224	CD	LYS A 156		27.169		1.00 55.63
ATOM	1225	CE	LYS A 156		26.117	7.502 122.676	
ATOM	1226	NZ	LYS A 156		24.993	8.425 123.013	1.00 49.15
	1227	C	LYS A 156		27.527	8.932 128.076	1.00 39.91
ATOM			LYS A 156		26.636	8.658 128.876	1.00 37.01
MOTA	.1228	0			28.703	9.431 128.448	1.00 37.73
MOTA	1229	N	LYS A 157		28.985	9.725 129.847	1.00 36.52
MOTA	1230	CA	LYS A 157			9.700 130.122	1.00 35.64
MOTA	1231	CB	LYS A 157		30.493	9.700 130.122	1.00 35.44
MOTA	1232	CG	LYS A 157		31.094	8.308 130.174	1.00 33.44
	1233	CD	LYS A 157		30.509	7.510 131.335	1.00 31.28
MOTA		CE	LYS A 157		31.077	6.106 131.388	1.00 31.48
ATOM	1234		113 A 137		30.464	5.310 132.493	1.00 36.39
MOTA	1235	NZ	LYS A 157		28.423	11.097 130.197	
ATOM	1236	C	LYS A 157			11.547 131.336	
ATOM	1237	0	LYS A 157		28.531	TI.34/ T31.330	
ATOM	1238	N	GLY A 158		27.842	11.768 129.205	
	1239	CA	GLY A 158		27.257	13.074 129.452	1.00 34.31
MOTA			GLY A 158		27.972	14.293 128.894	1.00 36.36
ATOM	1240	C			27.438	15.399 128.963	1.00 32.96
ATOM	1241	0	GLY A 158			14.117 128.344	
ATOM	1242	N	PHE A 159		29.170	15 250 127 705	
ATOM	1243	CA	PHE A 159		29.892	15.260 127.796	
	1244	CB	PHE A 159		31.346	14.892 127.504	1.00 28.62
ATOM		CG	PHE A 159		32.137	14.555 128.730	1.00 28.80
MOTA	1245				32.043	13.300 129.310	1.00 30.41
MOTA	1246	CD:	1 PHE A 159		32.951	15.513 129.327	
ATOM	1247	ÇD:				12.996 130.472	
ATOM	1248	CE:	1 PHE A 159		32.749		
	1249	CE			33.661	15.223 130.488	
MOTA	1250		PHE A 159		33.561	13.963 131.062	1.00 32.32
ATOM			PHE A 159		29.224	15.786 126.536	1.00 28.88
ATOM	1251	C	PUD A 107		28.765		1.00 27./1
ATOM	1252	0	PHE A 159			100 400	
· ATCM	1253	N	LYS A 160		29.180		
MOTA	1254		LYS A 160		28.550	17.766 125.25	1.00 33.30

					_				
ATOM	1255	CB L	'S A 1	60	27.390		125.719	1.00 3	
MOTA	1256		is A 1	60	26.273		126.419	1.00 3	
MOTA	1257		'S A 1		25.105		126.723 127.651	1.00 5	
MOTA	1258		YS A 1		25.500		129.008	1.00 4	
MOTA	1259		YS A 1		25.924	_,	124.394	1.00	
MOTA	1260	C L	/S A 1	.60	29.484 29.093		123.327		30.98
MOTA	1261	0 17	YS A 1	.60	30.700		124.867		31.43
MOTA	1262		RG A 1		31.665		124.108	1.00 2	
ATOM	1263		RG A 1		31.781	21.048	124.673		34.45
ATOM	1264 1265		RG A 1		30.476	21.854	124.610	1.00	
MOTA MOTA	1266		RG A 1		30.705		124.966		39.01
ATOM	1267		RG A 1		31.158		126.341	1.00	
ATOM	1268	CZ A	RG A 1	61	30.389		127.414	_	43.33 · 45.95
MOTA	1269	NH1 A	RG A 1	161	29.117		127.274 128.627		43.74
MOTA	1270	NH2 A	RG A 1	61	30.893		128.027		32.71
ATOM	1271		RG A 1		33.009 33.792		125.092		28.53
MOTA	1272		RG A 1		33.752		123.149		32.50
MOTA	1273		LE A 1 LE A 1		34.485		123.049		28.52
MOTA	1274		LE A		34.146	15.821	122.820		31.42
ATOM	1275 1276		LE A		35.407	14.976	122.898		24.95
ATOM ATOM	1277		LE A		33.147		123.879		30.25
ATOM	1278		LE A		32.564	13.977			34.27
ATOM	1279	c I	LE A	162	35.353	17.816	121.886		26.46 27.88
ATOM	1280	0 [LE A	162	34.876	17.973 18.067	120.762 122.168		23.13
ATOM	1281	N _	EU A	163	36.626 37.575	18.534		1.00	25.74
MOTA	1282		EU A		38.384	19.729	121.681		26.25
MOTA	1283		A UE. A UE.		39.626	20.138	120.862	1.00	24.39
ATOM	1284 1285		EU A		39.213	20.591	119.473		26.25
MOTA MOTA	1285	CD2 L	EU A	163	40.361		121.560		27.76
MOTA	1287		EU A		38.547	17.416			27.09
ATOM	1288	0 L	EU A	163	39.053.	16.721			25.25 26.97
ATOM	1289		YR A		38.808	17.257 16.241		1 00	26.97
MOTA	1290		YR A		39.747 39.021	15.181		1.00	23.38
MOTA	1291		TYR A		39.944		117.565	1.00	21.76
ATOM	1292		TYR A		40.563	13.179	118.353	1.00	22.49
ATOM	1293 1294		YR A		41.419	12.224	117.794		22.90
MOTA MOTA	1295		YR A		40.202	14.142		1.00	18.74
ATOM	1296	CE2	TYR A	164	41.060	13.190		1.00	23.36 21.50
ATOM	1297		TYR A		41.663	12.235	116.426	1.00	18.41
ATOM	1298		TYR A		42.506 40.798	16.923			21.67
ATOM	1299	C	TYR A	164	40.73	17 511	117.112		19.75
MOTA	1300	0 7	TYR A	165	42.057	16.843	118.551	1.00	25.61
MOTA	1301 1302	N :	LLE A	165	43.149	17.462	117.804	1.00	24.43
MOTA MOTA	1302		LE A		43.963	18.396	118.717		26.41
MOTA	1304	CG2	LE A	165	45.127	19.017	117.937		19.36 23.36
ATOM	1305	CG1	ILE A	165	43.035	19.482			25.05
ATOM	1306	CD1	ILE A	165	43.685	20.402 16.36		1 00	26.91
MOTA	1307		ILE A		44.040 44.538	15.50	· · · · · · · · · · · · · · · · · · ·	1.00	21.91
MOTA	1308	0	ILE A	165	44.242	16.40		1.00	24.20
MOTA	1309	N I	ASP A	166	45.022	15.38		1.00	27.11
ATOM	1310	AC EC	ASP A	166	44.140	14.76	5 114.137	1.00	28.56
ATOM	1311 1312	CS .	ASP A	166	44.699	13.46	1 113.599		34.59
atom atom	1313	OD1	ASP A	166	45.831	13.45			30.37
ATOM	1314	OD2	ASP A	166	43.995	12.43	7 113.717		23.27 24.47
ATOM	1315	С.	ASP A	166	46.319	15.92			23.19
ATCM	1316	o.	ASP A	166	46.295	16.61			23.43
ATOM	1317		LEU A	167	47.452 48.738	15.59 16.06		1.00	24.67
ATOM	1318	CA	LEU A	10/ 167	49.682			1.00	21.90
ATOM	1319		LEU A	167	49.002	17.44			26.62
ATOM	1320	CG	LEU A	107	47.240	_ ,			

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1321 1322 1323 1324 1325 1326 1327 1329 1333 1333 1333 1333 1333 1334 1343 1344 1345 1346 1347 1348 1349 1351 1353 1355 1355 1355 1355 1355 135	CD1 LEU A 167 CD2 LEU A 167 C LEU A 167 C LEU A 167 N ASP A 168 CA ASP A 168 CB ASP A 168 CG ASP A 168 C ASP A 168 O ASP A 168 OD1 ASP A 168 OD2 ASP A 168 OD2 ASP A 168 N ALA A 169 CA ALA A 169 CA ALA A 169 C ALA A 169 C ALA A 169 C HIS A 170 C HIS A 170 C HIS A 170 C HIS A 170 CHIS A 170 CD2 HIS A 170 CD2 HIS A 170 CD2 HIS A 170 CD2 HIS A 171 CD3 HIS A 171 CB HIS A 171 CD HIS A 171 CHIS A 171	50.249 48.658 49.405 50.504 48.736 49.244 48.209 48.722 49.423 48.629 48.777 50.448 50.693 52.068 49.612 49.643 47.554 46.04 47.55 48.83 49.84 50.82 50.50 45.31 43.99 43.23 41.83 40.72 39.66 43.16 43.46	18.668 15.092 15.345 13.977 12.975 11.852 10.669 13.686 14.559 9.644 10.750 13.3127 13.927 13.498 13.498 14.204 12.746 12.445 12.867 12.867 12.849 10.950 10.420 9.982 9.634 10.329 9.828 13.661 14.719 31.661 14.779 31.669 91.648 14.779 31.669 91.648 14.779 31.669 91.648 14.779 31.669 91.648 14.779 31.669 91.648 14.779 31.669 91.648 14.779 31.669 91.648 14.779 31.669 91.648 14.779 31.669	116.092 113.755 113.262 113.488 112.555 112.410 111.608 111.209 110.865 112.227 110.364 109.140 108.601 108.601 108.601 107.468 109.255 107.311 106.570 107.385 107.385 107.385 107.131 106.570 107.591 106.746 107.634 106.766 107.634 106.766	1.00 25.88 1.00 22.40 1.00 25.82 1.00 21.89 1.00 24.59 1.00 27.12 1.00 28.11 1.00 24.17 1.00 17.18 1.00 25.40 1.00 25.40 1.00 25.40 1.00 25.40 1.00 26.57 1.00 26.57 1.00 26.57 1.00 26.57 1.00 24.79 1.00 24.12 1.00 24.13 1.00 24.13 1.00 24.13 1.00 24.33 1.00 24.33 1.00 24.33 1.00 22.88 1.00 21.89 1.00 21.14 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.55 1.00 25.35 1.00 29.61 1.00 27.62 1.00 27.62 1.00 26.52
MOTA MOTA	1358 1359	N CYS A 172 CA CYS A 172	41.61 41.46		109.987 111.456	1.00 24.82. 1.00 29.47
MOTA	1360 1361	CB CYS A 172 SG CYS A 172	40.95	9 14.065	111.717	1.00 25.69
ATOM ATOM	1362	C CYS A 172	40.23	7 11.797	109.314	1.00 28.21 1.00 26.78
ATOM	1363	O CYS A 172	39.21 40.23			1.00 22.05
ATOM	1364 1365	N ASP A 173 CA ASP A 173	38.94	9 11.217	107.350	1.00 27.39
MOTA MOTA	1366	CB ASP A 173	39.10		105.931 105.922	1.00 30.47 1.00 29.77
ATOM	1367	CG ASP A 173 OD1 ASP A 173	39.82 39.88	8.658	3 104.830	1.00 21.14
MOTA MOTA	1368 1369	OD2 ASP A 173	40.2	38 8.787	7 106.978	1.00 30.04 1.00 27.86
ATOM	1370	C ASP A 173	37.8		108.105 2 108.120	
MOTA	1371		36.7 38.3		5 108.753	1.00 25.84
ATOM	1372		37.3	44 8.513	3 109.490	1.00 28.49
MOTA MOTA	1373 1374		36.6	94 9.29	6 110.619	1.00 26.14 1.00 21.39
ATOM	1375	O GLY A 174	35.4		7 110.780 4 111.409	
ATOM	1376		37.5 36.9			1.00 25.53
MOTA	1377		38.1		9 113.401	1.00 30.54
ATOM	1378 1379		37.5	65 12.10	5 114.566	1.00 28.02
ATOM ATOM	1380	CG2 VAL A 175	38.9	73 10.12		
ATOM	1381	C VAL A 175	36.1	63 11.95 30 12.28		1.00 21.60
ATCM	1382	0 VAL A 175	35.1 36.6			1.00 25.43
ATOM	1383			54 13.73	0 110.426	1.00 26.12
ATOM	1384 1385	17/	36.5	54 14.33	6 109.205	1.00 24.71
ATCM ATOM					9 108.469	1.00 20.00

				,		
- ምርነፈ	1387	CD GLN A 176		36.385	16.002 107.30	6 1.00 29.54
atom Atom	1388	OE1 GLN A 176		37.382	16.704 107.48	6 1.00 26.93
ATOM	1389	NE2 GLN A 176		35.872	15.776 106.09	9 1.00 27.58 9 1.00 27.63
ATCM	1390	C GLN A 176		34.446	13.316 110.02	
ATOM	1391	O GLN A 176		33.481	14.021 110.31	
ATOM	1392	N GLU A 177		34.330	12.173 109.36	
MOTA	1393	CA GLU A 177		33.027	11.696 108.91 10.445 108.05	3 1.00 34.20
MOTA	1394	CB GLU A 177		33.181	10.069 107.32	
MOTA	1395	CG GLU A 177		31.905	8.819 106.49	
ATOM	1396	CD GLU A 177		32.060 32.056	7.712 107.07	
MOTA	1397	OE1 GLU A 177		32.206	8.947 105.26	
MOTA	1398	OE2 GLU A 177 C GLU A 177		32.128	11.377 110.09	99 1.00 30.54
MOTA	1399			30.945	11.697 110.09	93 1.00 25.39
MOTA	1400			32.707	10.750 111.13	14 1.00 27.03
MOTA	1401 1402	N ALA A 178 CA ALA A 178		31.971	10.365 112.30	03 1.00 30.67
ATOM	1402	CB ALA A 178		32.905	9.658 113.2	89 1.00 30.49
MOTA MOTA	1404	C ALA A 178		31.261	11.519 113.0	03 1.00 33.21
ATOM	1405	O ALA A 178		30.145	11.355 113.4	
ATOM	1406	N PHE A 179		31.888	12.688 113.0	
ATOM	1407	CA PHE A 179		31.256	13.801 113.7 14.128 115.0	
ATCM	1408	CB PHE A 179		32.071	12.909 115.7	
ATOM	1409	CG PHE A 179		32.469	12.375 115.6	
ATOM	1410	CD1 PHE A 179		33.749 31.536	12.233 116.5	
MOTA	1411	CD2 PHE A 179		34.103	11.184 116.2	93 1.00 16.56
ATOM	1412	CE1 PHE A 179 CE2 PHE A 179		31.881	11.038 117.2	04 1.00 26.38
MOTA	1413	CE2 PHE A 179 CZ PHE A 179		33.170	10.515 117.0	67 1.00 20.30
MOTA	1414 1415	C PHE A 179		31.079	15.037 112.8	
MOTA	1416	O PHE A 179		31.006	16.152 113.3	
MOTA MOTA	1417	N TYR A 180		30.980	14.828 111.5	384 1.00 31.68 346 1.00 32.76
ATOM	1418	CA TYR A 180		30.829	15.925 110.6	
ATOM	1419	CB TYR A 180		30.931	15.378 109.2 16.406 108.3	
ATOM	1420	CG TYR A 180		31.331	16.846 107.2	
MOTA	1421	CD1 TYR A 180		30.427 30.801	17.791 106.2	
ATOM	1422	CE1 TYR A 180		32.624	16.937 108.3	1.00 36.32
MOTA	1423	CD2 TYR A 180 CE2 TYR A 180		33.007	17.879 107.2	203 1.00 37.83
MOTA	1424			32.088	18.304 106.2	250 1.00 36.05
ATOM	1425 1426	OH TYR A 180		32.446	19.255 105.3	323 1.00 28.04
ATOM	1427	C TYR A 180		29.518	16.696 110.8	825 1.00 30.94
ATOM ATOM	1428	O TYR A 180		29.459	17.894 110.	560 1.00 30.42 299 1.00 31.56
ATOM	1429	N ASP A 181		28.473	16.026 111.1 16.691 111.	
ATOM	1430	CA ASP A 181		27.180	16.691 111. 15.833 110.	
ATOM	1431	CB ASP A 181		26.086	14.689 111.	
ATOM	1432	CG ASP A 181		25.645 26.505	13.963 112.	
ATOM	1433	OD1 ASP A 181		24.425	14.504 111.	871 1.00 46.56
ATOM	1434	OD2 ASP A 181		26.754	17.044 112.	866 1.00 36.81
ATOM	1435	C ASP A 181 O ASP A 181		25.571	17.286 113.	109 1.00 33.91
ATCM	1436 1437	O ASP A 181 N THR A 182		27.689	17.066 113.	810 1.00 40.86
ATOM	1437	CA THR A 182		27.327	17.412 115.	184 1.00 38.27
ATOM ATOM	1439			27.433	16.201 116.	133 1.00 37.99
ATOM	1440			27.013	16.595 117.	448 1.00 35.64 194 1.00 35.61
ATOM	1441			28.869		
ATOM	1442	C THR A 182		28.177		
ATOM	1443	O THR A 182		29.365		
ATOM	1444	N ASP A 183		27.557		
ATCM-	1445	CA ASP A 183		28.250 27.313		228 1.00 35.56
ATOM	1446		•	26.136		155 1.00 38.01
ATOM	1447	CG ASP A 183		25.614	20,357 118.	.210 1.00 34.94
MOTA	1448	OD1 ASP A 183		25.720	22,470,118	.814 1.00 38.1/
atom	1449			28.762	20 161 118	.578 1.00 35.27
ATCM	1450			29.337	21.015 119	.251 1.00 35.16
ATCM	1451 1452			28.562		.012 1.00 35.10
ATOM	1494	v GLIV A 104				

	•	
	1453 CA GLN A 184	29.030 18.505 120.333 1.00 35.16
MOTA	104	28 155 17.382 120.906 1.00 36.94
MOTA	104	26.663 17.718 120.988 1.00 38.34
MOTA		25 881 16,725 121.838 1.00 43.68
ATOM		26 027 15,512 121.696 1.00 35.48
MOTA		25 036 17 243 122 723 1.00 51.06
ATOM	101	30 479 18.035 120.253 1.00 36.32
MOTA	104	31 135 17.825 121.275 1.00 34.24
ATOM	105	30 976 17.883 119.028 1.00 34.51
ATOM	105	32 348 17.443 118.804 1.00 33.59
ATOM	105	32 393 15,990 118.259 1.00 33.11
MOTA		33 834 15.567 118.003 1.00 23.80
ATOM	1464 CG1 VAL A 185 1465 CG2 VAL A 185	31 731 15.045 119.242 1.00 26.00
MOTA		33.053 18.354 117.803 1.00 33.11
MOTA	105	32 545 18.593 116.714 1.00 27.73
MOTA		34 215 18.872 118.184 1.00 31.49
MOTA	106	34 985 19.729 117.291 1.00 30.03
MOTA	106	35 420 21.023 117.991 1.00 30.34
MOTA		36 008 22.047 117.051 1.00 30.22
MOTA	- 100	35 265 23,156 116.656 1.00 32.23
MOTA	106	37 284 21.879 116.524 1.00 29.37
MOTA	106	35 785 24.078 115.748 1.00 27.07
MOTA	106	37 813 22 794 115 615 1.00 28 54
ATOM		37 064 23.892 115.227 1.00 30.00
MOTA	106	36.232 18.952 116.879 1.00 33.38
MOTA	- non n 106	36.952 18.426 117.729 1.00 28.30
MOTA	107	36.478 18.877 115.574 1.00 32.00
MOTA	107	37.645 18.171 115.060 1.00 29.70 37.252 17.095 114.019 1.00 30.03
MOTA	1480 CA VAL A 187 1481 CB VAL A 187	37.232 17.033 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MOTA	1482 CG1 VAL A 187	
MOTA	1483 CG2 VAL A 187	30.410 10.003 100 1 00 31 03
MOTA	1484 C VAL A 187	30.004 13.135 147 1 00 31 88
ATOM ATOM	1485 O VAL A 187	38.213 13.00 24 88
MOTA	1486 N LEU A 188	39.030 13.131 14.204 1.00.26.92
MOTA	1487 CA LEU A 188	40.033 20.010 10.00 27 04
ATOM	1488 CB LEU A 188	41.400 20.555 1.00 25 15
MOTA	1489 CG LEU A 188	42.023 22.333 143 649 1 00 18 53
ATOM	1490 CD1 LEU A 188	42.000 22.333 116 060 1 00 28 81
MOTA	1491 CD2 LEU A 188	43.330 22.403 22.403 23.33
ATOM	1492 C LEU A 188	42.022 13.113 114 507 1 00 25 83
ATOM	1493 O LEU A 188	42.373 10.333 1.00 30 53
ATOM	1294 N SER A 189	42.303 13.20 007 1 00 30 13
ATOM	1495 CA SER A 189	43.423 10.33 43
ATCM	:496 CB SER A 189	12.021 16.474 110 588 1.00 32.98
MOTA	1497 OG SER A 189	43.837 10.170 111 143 1.00 27.94
ATOM	1498 C SER A 189	14 004 10 891 11 253 1.00 22.14
ATOM	1499 O SER A 189	4E 720 19 877 11 423 1.00 24.60
ATOM	1500 N LEU A 190	46 805 19 438 110.614 1.00 22.23
MOTA	1501 CA LEU A 190	47 055 20 000 111 459 1.00 23.69
ATCM	1502 CB LEU A 190	47 722 21 075 112 522 1.00 28.94
MOTA	1503 CG LEU A 190	10 070 21 780 112 740 1.00 43.01
ATOM	1504 CD1 LEU A 190	16 CO1 22 OQ3 112 OB7 1.00 28 II
MOTA	1505 CD2 LEU A 190	10 200 10 210 109 872 1.00 44.09
MOTA	1506 C LEU A 190	- 416 17 141 110 465 1.00 10.33
MOTA	1507 O LEU A 190	47 599 18.353 108.587 1.00 19.22
MOTA	1508 N HIS A 191	48 046 17.210 107.804 1.00 23.28
MOTA	1509 CA HIS A 191	16 870 16 242 107 650 1.00 13.30
ATOM	1510 CB HIS A 191	45 591 16.915 107.256 1.00 24.16
ATOM	1511 CG HIS A 191	15 034 17.124 106.038 1.00 17.71
ATOM	1512 CD2 HIS A 191	44 595 17,419 108.176 1.00 23.76
ATOM	1513 ND1 HIS A 191	43 644 17.913 107.545 1.00 19.70
ATOM	1514 CE1 HIS A 191	43 823 17 746 106.246 1.00 27.67
ATCM		49 570 17 620 106.434 1.00 23.63
ATOM	727 101	40 419 18 761 106.017 1.00 23.03
ATOM		48.419 18.761 1001017 49.209 16.681 105.746 1.00 23.49
ATOM	1518 N GLN A 192	

· moM	1519	CA	GLN A	192		49.718		104.412	1.00 20.55
atom atom	1520		GLN A			50.474		103.864	1.00 23.63
ATOM	1521	CG	GLN A			51.528	15.181	104.797	1.00 24.07
	1522	CD	GLN A			52.110		104.293	1.00 26.90
MOTA	1523		GLN A			52.986	13.860	103.421	1.00 20.21
MOTA	1524		GLN A			51.605	12.765	104.828	1.00 23.52
MOTA	1525		GLN A			48.478	17.174	103.570	1.00 21.41
MOTA	1525	0 -	GLII A			47.478	16.466	103.726	1.00 20.15
MOTA			SER A			48.528	18.167	102.692	1.00 24.36
MOTA	1527 1528	N CA	SER A			47.397	18.448	101.821	1.00 23.98
MOTA	1529	CB	SER A			47.760	19.537	100.820	1.00 24.60
ATOM	1530	OG	SER A		•	46.729	19.660	99.861	1.00 25.83
MOTA	1531	C	SER A			46.985	17.200	101.045	1.00 23.74
MOTA	1532	0	SER A			47.829	16.492	100.506	1.00 19.80
MOTA	1533	N	PRO A			45.674		100.953	1.00 24.85
MOTA	1534	CD	PRO A			44.561	17.719	101.507	1.00 25.08
MOTA MOTA	1535	CA	PRO A			45.151	15.772	100.235	1.00 29.25
ATOM	1536	CB	PRO A			43.641	15.901	100.444	1.00 30.51
ATOM	1537	CG	PRC A			43.554	16.643	101.758	1.00 30.21
ATOM	1538	c	PRO A			45.527	15.825	98.756	1.00 30.75
ATOM	1539	ō	PRO A			45.420	14.830	98.041	1.00 30.04
ATOM	1540	N	GLU A			45.967	16.991	98.298	1.00 26.28
ATOM	1541	CA	GLU A	195		46.343	17.127	96.898	1.00 31.11
ATOM	1542	CB	GLU A			46.738	18.570		1.00 29.52
MOTA	1543	CG	GLU A			45.680	19.600	96.933	1.00 38.32
ATOM	1544	CD	GLU A			45.976	20.972		1.00 44.15
MOTA	1545	OE1				47.139	21.425		1.00 44.23 1.00 45.06
ATOM	1546	OE2				45.037	21.605		1.00 45.06 1.00 30.81
ATOM	1547	С	GLU A			47.499	16.193		1.00 30.81
ATOM	1548	0	GLU A			47.582	15.705		1.00 37.17
ATOM	1549	N	TYR A			48.377	15.922		1.00 23.43
MOTA	1550	CA	TYR A			49.517	15.053		1.00 26.67
MOTA	1551	CB	TYR A			50.810	15.881		1.00 26.78
MOTA	1552	ÇG	TYR A			51.255	16.424 15.625		1.00 26.08
MOTA	1553	CD1				51.957	16.110		1.00 26.77
MOTA	1554	CE1				52.338 50.944	17.731		1.00 27.55
ATOM	1555	CD2				51.320	18.226		1.00 25.95
MOTA	1556	CE2				52.012	17.409		1.00 24.78
ATOM	1557	CZ	TYR A			52.356	17.879		1.00 25.50
ATOM	1558	OH	TYR A	106		49.670	13.906		1.00 27.05
ATOM	1559	C	TYR A			50.585	13.088		1.00 24.02
MOTA	1560	0	TYR A ALA A			48.785	13.822		1.00 22.10
ATOM	1561	N	ALA A			48.928	12.760	100.199	1.00 24.90
MOTA	1562	CA CB	ALA A	197		49.627	13.307	7 101.437	1.00 27.83
MOTA	1563 1534	C	ALA			47.644	12.069		1.00 26.20
ATOM	1: 65	ō	ALA A	197		46.553	12.617	7 100.484	1.00 22.82
ATOM	1556	N	PHE A			47.795	10.849	101.102	1.00 31.74
ATCM	1567	CA	PHE A			46.663	10.072	2 101.580	1.00 28.74
ATOM ATOM	1568	CB	PHE A			47.130	8.693	102.036	1.00 30.66
ATOM	1569	CG	PHE A			46.009	7.76		1.00 29.61
ATOM	1570		PHE A			45.496		101.463	1.00 28.76
ATOM	1571	CD2		198		45.426	7.82	2 103.657	1.00 28.43
ATOM	1572	CEI				44.415	6.05	7 101.773	1.00 35.72
ATOM	1573	CE2				44.340		4 103.970	1.00 34.62
ATOM	1574	cz		198		43.837	6.12		
MOTA	1575	c		198		46.121	10.81		
ATOM	1576	õ	PHE A	198		46.892	11.34		
ATOM	1577	N	PRO A	199		44.792	10.90		
ATOM	1578	CD		199		44.100	11.49		
ATOM	1579	CA	FRO 2	A 199		43.313	10.36	4 102.008	
ATOM	1580		PRO A	A 199		42.550		2 102.858	
ATOM	1581	ĊG	PRO 2	A 199		42.665			
ATOM	1582	C.	PRO 2	A 199		43.773			
ATOM	1583		PRO A	A 199		44.052	12.63	1 101.280	
ATOM	1584	N	PHE	A 200		43.441	11.15	6 99.734	1.00 33.04

Figure 18-25

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1588 1588 1588 1599 1599 1599 1599 1600 1600 1600 1611 1611 1611 1611 16	CA PHE A 200 CB PHE A 200 CCB PHE A 200 CCCC PHE A 200 CCC CCC PHE A 200 CCC CCC CCC CCC CCC CCC CCC CCC CCC C	43.418 43.927 45.226 46.439 46.444 47.651 47.653 42.042 41.935 41.002 39.614 39.614 39.695 39.087	14.460 13.729 13.318 12.854 12.663 12.290 15.101 14.666 16.152 16.862 18.986 18.717 20.017 19.416 18.075 20.017 19.416 18.075 21.103 20.377 20.329 19.267 17.329 21.103 20.786 22.337 24.695 25.954	102.778 102.260 100.901 99.803 99.618 98.955 98.597 97.931 103.231 104.040 103.128 103.993 103.659 104.479 105.965 104.905 102.586 101.105 102.586 101.105 100.131 99.868 100.792 98.716	1.00 39.87 1.00 39.94 1.00 36.58 1.00 40.98 1.00 36.30 1.00 39.98 1.00 51.87 1.00 50.32 1.00 56.69 1.00 33.85 1.00 26.22 1.00 31.68
ATOM ATOM	1639 1640	CG GLU A 206 CD GLU A 206	38.307	23.980 23.993	99.868 100.792	1.00 51.87 1.00 50.32
ATOM	1642	OE2 GLU A 206	38.581	23.569	103.427	1.00 33.85
		g GLU A 206	34.433	23.213	103.718	3 2.00 26.22
ATOM	1645	N GLU A 207	36.071 35.297	21.679 20.726	104.599	1.00 31.65
ATCM	1646 1647	CB GLU A 207	36.000	19.369	104.566	1.00 34.15
ATOM ATOM	1648	CG GLU A 207	36.044	18.74	1 103.179 1 103.022	2 1.00 33.85
ATOM	1649	CD GLU A 207	37.182 37.487			
ATOM	1650	OE1 GLU A 207	3/.40	. 1,02.	. =	

			-		27 760	17 600	101.916	1.00 35.48
ATOM	1651	OE2	GLU A 207		37.760	17.000	101.910	
	1652	С	GLU A 207		35.182	21.229	106.033	1.00 35.06
ATOM			GLU A 207		36.009	20.894	106.887	1.00 34.16
ATOM	1653	9				22 024	106.302	1.00 35.99
ATOM	1654	Ŋ	ILE A 208		34.150			1.00 38.96
	1655	CA	ILE A 208		33.968		107.634	
MOTA			ILE A 208		33.737	24.134	107.529	1.00 42.74
ATOM	1656	CB			33.717	24.762	108.914	1.00 48.29
MOTA	1657	CG2.	ILE A 208				106.700	1.00 40.34
ATOM	1658	CG1	ILE A 208		34.841	24.795		1.00 40.34
	1659		ILE A 208		36.207	24.758		1.00 46.23
MOTA			ILE A 208		32.821	21.998	108.452	1.00 38.32
MOTA	1660	С				22.434	109.571	1.00 40.08
ATOM	1661	0	ILE A 208	•	32.558		_	1.00 34.36
ATOM	1662	N	GLY A 209		32.142	20.997	107.901	
	1663	CA	GLY A 209		31.047	20.374	108.620	1.00 33.32
MOTA			GT:17 N : 200		29.699	20.673	107.993	1.00 37.87
MOTA	1664	С	GLY A 209		20.000	21.581	107.173	1.00 40.56
MOTA	1665	0	GLY A 209		29.579			1.00 37.38
ATOM	1666	N	GLU A 210		28.676		108.380	1.00 37.30
		CA	GLU A 210		27.337	20.118	107.831	1.00 42.34
ATOM	1667		GLU A 210		27.008	19.012	106.823	1.00 42.73
ATOM	1668	CB	GLU A 210			17.636	107.460	1.00 47.38
ATOM	1669	CG	GLU A 210		26.860			1.00 52.68
ATOM	1670	CD	GLU A 210		26.633			
	1671		GLU A 210		26.385	15.379	106.860	1.00 50.59
ATOM		051	GLU A 210		26.711	16.810	105.226	1.00 53.78
MOTA	1672		GLU A 210		26.287	20 114	108.938	1.00 42.90
ATOM	1673	С	GLU A 210			10 577	110.022	1.00 45.94
ATOM	1674	0	GLU A 210		26.516	19.5//	110.022	1.00 43.16
	1675	N	GLY A 211		25.130	20.702	108.654	
ATOM		-	GLY A 211		24.068	20.751	109.642	1.00 43.98
MOTA	1676	CA	GDI A 211		24.514	21 450	110.911	1.00 45.01
ATOM	1677	С	GLY A 211			22.470	110.858	1.00 48.15
MOTA	1678	0	GLY A 211		25.186	22.413	110.050	1.00 41.63
	1679	N	LYS A 212		24.145	20.896	112.059	
ATOM		CA	LYS A 212		24.528	21.495	113.328	1.00 45.07
MOTA	1680		515 A 212		23.913	20.715	114.490	1.00 46.59
ATOM	1681	CB	LYS A 212			20 591	114.462	1.00 55.31
ATOM	1682	CG	LYS A 212		22.386	20.331	114.481	1.00 57.42
ATOM	1683	CD	LYS A 212		21.651	21.945	114.401	1.00 57.12
	1684	CE	LYS A 212		21.749	22.696	113.151	1.00 59.71
MOTA			LYS A 212		21.051	24.017	113.178	1.00 57.43
ATOM	1685	NZ	LIS A 212		26.046	21.513		1.00 42.08
ATOM	1686	С	LYS A 212			22.324	114.207	1.00 40.03
ATOM	1687	0	LYS A 212		26.598	22.320	114.207	1.00 39.51
	1688	N	GLY A 213		26.713	20.61	112.751	
MOTA			GLY A 213		28.163	20.538	3 112.817	1.00 40.11
MOTA	1689	CA	GET A 213		28.888	21.519	111.916	1.00 38.25
ATOM	1690	С	GLY A 213			21 575	111.913	1.00 34.70
ATOM	1691	0	GLY A 213		30.122	21.37.	5 111:143	1.00 37.31
ATOM	1692	N	LYS A 214		28.131	22.29	111.143	1.00 39.58
	1693	CA	LYS A 214		28.736	23.27	4 110.250	
MOTA			LYS A 214		27.656	24.01	7 109.463	1.00 44.69
MOTA	1694	CB	LIS A 214		28.189	25 03	0 108.461	1.00 44.53
ATOM	1695	CG	LYS A 214		20.103	25.70	4 107.720	1.00 47.71
ATOM	1696	CD	LY: A 214		27.047	25.70	2 107.750	
	1697	CE	LY. A 214		27.553	26.75	9 106.754	1.00 32.34
MOTA		NZ	LYL A 214		28.453	26.18	3 105.717	1.00 57.45
MOTA	1698		7 10 N 244		29.547		9 111.085	1.00 40.16
MOTA	1699	C	LYS A 214		29.002		3 111.933	1.00 37.92
ATOM	1700	0	LYS A 214				5 110.846	
ATOM	1701		GLY A 215		30.851	_	J 110.040	
	1702		GLY A 215		31.716	25.18	3 111.593	1.00 35.03
MOTA			CT 17 3 215		32.431	24.44	8 112.709	1.00 34.57
MOTA	1703		GLY A 215				9 113.454	1.00 33.76
MOTA	1704	0	GLY A 215		33.216		3 112.837	
MOTA	1705		TYR A 216		32.168		2 112.03/	
					32.816	22.37	8 113.885	
atom	1706				31.763	21.68	3 114.753	1.00 36.19
ATOM	1707				30.928		1 115.547	1.00 36.68
ATOM	1708	CG	TYR A 216		30.340		2 114.925	
ATOM	1709		1 TYR A 216		29.961		4 11F CAT	
	1710				29.249	24.43		1.00 40.03
ATOM					31.163	22.86	9 116.910	
MOTA	1711		2 11K M 210		30.459	23.83	4 117.634	1.00 40.69
ATOM	1712		2 TYR A 216		,00 606		2 116.994	1.00 40.17
ATOM	1713		TYR A 216		29.505		6 117 700	
	1714		TYR A 216		28.816		6 117.708	1.00 34.05
MOTA			TYR A 216		33.877		4 113.40	1.00 34.03
ATOM	1715		mun 3 21c		34.263		2 114.12	7 1.00 31.87
MOTA	1716	6 O	TYR A 216		54			

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1717 1718 1719 1720 1721 1722 1723 1724 1725	N ASN A 217 CA ASN A 217 CB ASN A 217 CG ASN A 217 OD1 ASN A 217 ND2 ASN A 217 C ASN A 217 O ASN A 217 N LEU A 218 CA LEU A 218 CB LEU A 218	34.343 35.398 34.833 35.897 36.558 36.094 36.378 35.983 37.655 38.670 39.160	21.580 112.170 20.748 111.606 19.727 110.615 18.764 110.105 19.022 109.097 17.659 110.831 21.686 110.915 22.502 110.080 21.577 111.271 22.451 110.698 23.444 111.753	1.00 29.90 1.00 30.02 1.00 26.46 1.00 30.13 1.00 29.80 1.00 19.92 1.00 30.23 1.00 27.88 1.00 29.45 1.00 28.76 1.00 29.02
MOTA MOTA	1727 1728	CG LEU A 218	39.513	. 24.867 111.307	1.00 34.69 1.00 32.93
ATOM	1729	CD1 LEU A 218	40.432	25.480 112.367 24.873 109.954	1.00 32.55
MOTA	1730 1731	CD2 LEU A 218 C LEU A 218	39.870	21.657 110.207	1.00 26.65
ATOM ATOM	1732	O LEU A 218	40.527	20.981 110.999	1.00 25.25 1.00 25.21
MOTA	1733	N ASN A 219	40.151 41.287	21.752 108.909 21.069 108.294	1.00 23.21
ATOM	1734 1735	CA ASN A 219 CB ASN A 219	40.875	20.314 107.018	1.00 23.69
ATOM ATOM	1736	CG ASN A 219	39.972	19.144 107.298	1.00 27.88 1.00 29.28
ATOM	1737	OD1 ASN A 219	40.153 39.018		1.00 24.48
MOTA	1738 1739	ND2 ASN A 219 C ASN A 219	42.355	22.074 107.906	1.00 23.46
ATOM ATOM	1740	O ASN A 219	42.059		1.00 28.17 1.00 23.90
ATOM	1741	N ILE A 220	43.595 44.702		1.00 23.22
ATOM	1742 1743	CA ILE A 220 CB ILE A 220	45.468	23.131 109.212	1.00 28.73
ATOM ATOM	1744	CG2 ILE A 220	46.601	24.078 108.831	1.00 26.01 1.00 26.36
ATOM	1745	CG1 ILE A 220	44.502 43.771		1.00 26.36 1.00 25.74
MOTA	1746 1747	CD1 ILE A 220 C ILE A 220	45.669	21.929 107.018	1.00 25.29
ATOM ATOM	1748	O ILE A 220	46.631	21.315 107.477	1.00 20.44 1.00 26.34
ATOM	1749	N PRO A 221	45.396 44.234		1.00 28.34
ATOM	1750 1751	CD PRO A 221 CA PRO A 221	46.271	21.234 104.747	1.00 26.92
ATOM ATOM	1752	CB PRO A 221	45.454		1.00 27.81
MOTA	1753	CG PRO A 221	44.774 47.595		1.00 27.45
ATOM	1754 1755	C PRO A 221 O PRO A 221	47.603	3 23.199 104.457	1.00 31.21
MOTA MOTA	1756	N LEU A 222	48.704		1.00 26.01 1.00 26.41
MOTA	1757	CA LEU A 222 CB LEU A 222	50.038 50.726		1.00 26.12
atom Atom	1758 1759	CB LEU A 222 CG LEU A 222	49.960	22.322 107.150	1.00 27.67
ATOM	1760	CD1 LEU A 222	50.531		
MOTA	1761	CD2 LEU A 222	50.024 50.91		1.00 28.97
MOTA MOTA	1762 1763	C LEU A 222 O LEU A 222	50.784	4 20.128 103.117	1.00 27.95
ATOM	1764	N PRO A 223	51.82	1 22.116 102.964 9 23.518 103.358	1.00 31.52
ATOM	1765	CD PRO A 223 CA PRO A 223	52.059 52.72	7 21.753 101.865	1.00 29.93
ATOM ATOM	1766 1767	CB PRO A 223	53.26	5 23.109 101.428	1.00 29.16
ATOM	1768	CG PRO A 223	53.45		
MOTA	1769	O PRO A 223 O PRO A 223	53.863 54.17	9 20.531 103.376	1.00 26.55
ATOM ATOM	1770 1771	O PRO A 223 N LYS A 224	54.47	9 20.257 101.153	1.00 34.00
ATOM	1772	CA LYS A 224	55.59		
ATOM	1773	CB LYS A 224 CG LYS A 224	55.93 54.76		1.00 39.37
MOTA	1774 1775		55.15	0 17.998 97.658	1.00 45.23
ATOM ATOM	1776	CE LYS A 224	53.98		
ATCM	1777		54.33 56.31	7 20.054 101.798	3 1.00 29.43
ATOM	1778 1779		56.93	3 21.270 101.640	1.00 24.10
atom atom	1780	N GLY A 225	57.73	5 19.305 102.40 7 19.896 102.94	1.00 25.00 2 1.00 26.20
ATCM	1781		58.94 58.72		
MOTA	1782	C GLY A 225	50.72		

			_				
	4503	O GLY A 225		59.610	21.562		1.00 29.09
ATOM				57.560	20.679	104.777	1.00 24.26
MOTA				57.212		105.951	1.00 25.35
ATOM				55.930	20.925	106.579	1.00 23.23
ATOM		CB LEU A 226		55.172	21.757	107.611	1.00 28.28
ATOM		CG LEU A 226		54.596		106.911	1.00 28.07
MOTA	_	CD1 LEU A 226		54.036		108.226	1.00 27.49
MOTE		CD2 LEU A 226		58.333		106.998	1.00 24.79
MOTA	1790	C LEU A 226				107.299	1.00 26.15
ATOM		O LEU A 226		58.902 58.664		107.548	1.00 23.94
ATOM	1792	N ASN A 227		59.702		108.578	1.00 24.89
MOTA		CA ASN A 227		60.751		108.269	1.00 27.43
ATOM		CB ASN A 227		60.731		108.334	1.00 31.62
ATOM	1795	CG ASN A 227		59.598		109.336	1.00 31.17
ATOM	1796	OD1 ASN A 227		60.395	25.998	107.267	1.00 28.06
ATOM	_	ND2 ASN A 227		59.076	22.957	109.960	1.00 23.16
ATOM	1798	C ASN A 227 O ASN A 227		57.873		110.065	1.00 18.45
MOTA	1799			59.880	22.862	111.018	1.00 21.29
ATOM	1800			59.357	23.032	112.375	1.00 25.80
MOTA	1801			60.464	22.893	113.426	1.00 24.02
ATOM	1802	CB ASP A 228 CG ASP A 228		61.110	21.520	113.422	1.00 26.48
MOTA	1803	OD1 ASP A 228		60.410	20.530	113.135	1.00 29.55
ATOM	1804	OD2 ASP A 228		62.311	21.425	113.744	1.00 29.88
MOTA	1805	C ASP A 228		58.628	24.341	112.620	1.00 27.83
ATOM	1806 1807	O ASP A 228		57.589	24.360	113.284	1.00 25.68
ATOM	1808	N ASN A 229		59.167	25.437	112.098	1.00 25.78
ATOM	1809	CA ASN A 229		58.537	26.739	112.297	1.00 27.75
MOTA	1810	CB ASN A 229		59.453	27.850	111.770	1.00 32.77
MOTA MOTA	1811	CG ASN A 229		60.707	28.020	112.621	1.00 30.35 1.00 33.12
MOTA	1812	OD1 ASN A 229		60.635	28.433	113.782	1.00 33.12 1.00 28.11
ATOM	1813	ND2 ASN A 229		61.856	27.691	112.053	1.00 28.11
ATOM	1814	C ASN A 229		57.168	26.817	111.645 112.202	1.00 26.75
ATOM	1815	O ASN A 229		56.230	27.387	112.202	1.00 30.80
ATOM	1816	N GLU A 230		57.041	26:228	109.773	1.00 30.77
ATOM	1817	CA "GLU A 230		55.761	20.244	108.341	1.00 29.11
ATOM	1818	CB GLU A 230		55.929	25.710	107.507	1.00 35.94
ATOM	1819	CG GLU A 230		56.897 57.119	25.321	106.125	1.00 37.77
ATOM	1820	CD GLU A 230		57.465	24 748	106.039	1.00 38.98
ATOM	1821	OE1 GLU A 230		56.957		105.129	1.00 31.32
MOTA	1822	OE2 GLU A 230 C GLU A 230		54.723	25.407	110.527	1.00 30.13
MOTA	1823	010		53.563	25.799	110.631	1.00 28.35
MOTA	1824			55.141	24.262	111.060	1.00 32.49
ATOM	1825			54.223	23.386	111.790	1.00 28.54
ATOM	1826	CA PHE A 231 CB PHE A 231		54.913	22.075	112.191	1.00 31.22
ATOM	1827	CG PHE A 231		53.974	21.050	112.781	1.00 28.41
ATOM	1828	CD1 PHE A 231		53.026	20.417	111.982	1.00 29.66
ATOM	1829 1830	CD2 PHE A 231		54.036	20.723		
ATOM	1931	CE1 PHE A 231		52.153	19.469	112.518	
MOTA	1832	CE2 PHE A 231		53.166		114.681	1.00 31.40 1.00 30.51
ATOM	1833	CZ PHE A 231		52.223		113.870	
ATOM ATOM	1834	C PHE A 231		53.693		113.045	
ATOM	1835	O PHE A 231		52.483		2 113.277	
ATOM	1836	N LEU A 232		54.598		7 113.858	
ATOM	1837	CA LEU A 232		54.193		3 115.092	
ATOM	1838	CB LEU A 232		55.422		7 115.933	
ATOM	1839	CG LEU A 232		56.176			
ATOM	1840	CD1 LEU A 232		57.440		0 117.328	
ATOM	1841	CD2 LEU A 232		55.268		2 114.800	
ATOM	1842	C LEU A 232		53.37		6 115.544	
ATOM		O LEU A 232		52.449		2 113.708	1.00 24.99
ATOM		N PHE A 233		53.69		6 113.31	2 1.00 28.13
ATOM	1845			52.956 53.54		9 112.02	9 1.00 30.77
ATCM	1846			53.34	9 30.15	1 111.448	g 1.00 29.65
ATOM	1847	CG PHE A 233		52.71		1 111.96	
ATCM		CD1 PHE A 233		32.00			

ATOM	1849	CD2. PHE A 233		29.903 110.412	1.00 31.59
ATOM	1850	CE1 PHE A 233		32.468 111.452	1.00 33.90 1.00 32.47
ATOM	1851	CE2 PHE A 233		30.924 109.895	1.00 32.47
MOTA	1852	CZ PHE A 233	51.114	32.208 110.415	1.00 32.50
ATOM	1853	C PHE A 233	51.510	27.999 113.031	1.00 25.88
ATOM	1854	O PHE A 233	50.553	28.603 113.532 26.955 112.215	1.00 28.12
ATOM	1855	N ALA A 234	51.370	26.955 112.215 26.436 111.853	1.00 25.68
MOTA	1856	CA ALA A 234	50.056	25.279 110.864	1.00 20.08
ATOM	1857	CB ALA A 234	50.195 49.304	25.969 113.089	1.00 25.17
ATOM	1858	C ALA A 234	49.304	26.228 113.234	1.00 25.21
ATOM	1859	O ALA A 234	50.002	25.285 113.987	1.00 28.18
MOTA	1860	N LEU A 235 CA LEU A 235	49.367	24.781 115.195	1.00 33.70
MOTA	1861	035	50.356	23.964 116.026	1.00 32.70
MOTA	1862 1863	CB LEU A 235 CG LEU A 235	49.772	22.788 116.820	1.00 36.89
ATOM	1864	CD1 LEU A 235	50.634	22.545 118.052	1.00 31.37
ATOM	1865	CD2 LEU A 235	48.344	23.072 117.231	1.00 31.47 1.00 33.38
MOTA MOTA	1866	C LEU A 235.	48.841	25.925 116.062	1.00 28.13
MOTA	1867	O LEU A 235	47.673	25.926 116.455	1.00 28.13
ATOM	1868	N GLU A 236	49.710	26.888 116.362 28.026 117.199	1.00 37.30
MOTA	18,69	CA GLU A 236	49.336	28.026 117.133	1.00 41.51
MOTA	1870	CB GLU A 236	50.528 51.675	28.356 118.188	1.00 49.54
MOTA	1871	CG GLU A 236	52.811	29.334 118.451	1.00 55.02
MOTA	1872	CD GLU A 236 OE1 GLU A 236	53.781	28.947 119.140	1.00 56.19
ATOM	1873	OE1 GLU A 236 OE2 GLU A 236	52.735	30.486 117.968	1.00 54.84
ATOM	1874 1875	C GLU A 236	48.163	28.803 116.638	1.00 33.98
MOTA	1876	O GLU A 236	47.211	29.098 117.362	1.00 37.01
MOTA MOTA	1877	N LYS A 237	48.223	29.137 115.354	1.00 33.94 1.00 33.10
ATOM	1878	CA LYS A 237	47.140	29.888 114.726	1.00 36.08
ATOM	1879	CB LYS A 237	47.505	30.244 113.281 31.186 113.165	1.00 33.62
ATOM	1880	CG LYS A 237	48.695	31.186 113.165 32.508 113.856	1.00 37.99
ATOM	1881	CD LYS A 237	48.395	33:471 113.762	1.00 45.24
ATOM	1882	CE LYS A 237	49.569 49.285	34.737 114.500	1.00 43.49
MOTA	1883	NZ LYS A 237	45.820	29.128 114.751	1.00 31.40
MOTA	1884	C LYS A 237 O LYS A 237	44.793	29.680 115.131	1.00 31.67
ATOM	1885	0 LYS A 237 N SER A 238	45.841	27.861 114.354	1.00 28.72
MOTA	1886 1887	CA SER A 238	44.610	27.080 114.335	1.00 31.74
ATOM ATOM		CB SER A 238	44.834	25.720 113.660	1.00 28.90 1.00 25.18
ATOM	1889	OG SER A 238	45.760	24.924 114.372 26.891 115.740	
ATOM	1890	C SER A 238	44.041	26.891 115.740 26.875 115.916	
MOTA	1891	O SER A 238	42.823	26.742 116.741	
ATOM	1892	N LEU A 239	44.907 44.413	26.587 118.108	1.00 37.57
MOTA	1893	CA LEU A 239	45.554		1.00 38.58
MOTA	1894	CB LEU A 239 CG LEU A 239	46.176	24.907 119.038	1.00 39.74
ATOM	1895		47.276	24.797 120.075	1.00 35.82
atom	1896	CD2 LEU A 239	45.109	23.861 119.301	1.00 34.93
ATOM	1897 1898		43.670	27.852 118.521	1.00 39.09
MOTA MOTA	1899		42.628		1.00 35.50 1.00 39.27
ATOM	1900		44.202		
ATOM	1901	CA GLU A 240	43.561		
ATOM	. 1902	CB GLU A 240	44.366		
ATOM	1903	CG GLU A 240	45.661	047	
MOTA	1904	CD GLU A 240	46.407 45.772		
MOTA	1905		47.624		1.00 54.05
ATOM	1906		42.165	30.312 117.849	1.00 39.58
ATOM	1907		42.103	30.822 118.45	5 1.00 40.99
ATOM	1908		42.039	39.764 116.64	5 1.00 35.70
ATCM	1909		40.754	29.726 115.96	4 1.00 38.23
MOTA	1910		40.904	29.150 114.54	6 1.00 3/.55
ATOM	1911 1912		39.535	29.005 113.89	5 1.00 37.30 4 1.00 38.36
ATOM	1913		41.832	2 30.048 113./2	
· ATOM			42.106	5 29.541 112.32	0 1.00 50.1.
- L'I'I					

				0	-			
		~	ILE A 241		39.751	28.881	116.737	1.00 37.31
ATOM	1915	C	ILE A 241		38.591	29.264	116.884	1.00 37.91
ATOM	1916	0	VAL A 242		40.203	27.732	117.231	1.00 37.07
MOTA	1917	N	VAL A 242		39.336	26.832	117.981	1.00 38.35
MOTA	1918	CA	VAL A 242		40.025	25.477	118.250	1.00 37.58
MOTA	1919	CB	VAL A 242		39.120	24.581	119.078	1.00 31.91
MOTA	1920	CG1	VAL A 242		40.364		116.928	1.00 39.21
ATOM	1921		VAL A 242		38.930		119.305	1.00 40.40
MOTA	1922	C	VAL A 242		37.759	27.422	119.675	1.00 38.19
MOTA	1923	0	VAL A 242			29 008	120.014	1.00 45.47
ATOM	1924	N	LYS A 243		39.905 39.661	20.000	121.301	1.00 48.74
MOTA	1925	CA		•	40.945	20.034	121.801	1.00 51.01
ATOM	1926	CB	LYS A 243		40.943	28 426	122.614	1.00 56.09
MOTA	1927	CG	LYS A 243		41.250	28 149	123.991	1.00 57.39
MOTA	1928	CD	LYS A 243		41.054	29.436	124.783	1.00 59.53
MOTA	1929	CE	LYS A 243 LYS A 243		40.448	29.193	126.127	1.00 57.91
MOTA	1930	NZ	LYS A 243		38.559		121.260	1.00 51.67
MOTA	1931	C	LYS A 243		37.815	29.871	122.226	1.00 52.84
MOTA	1932	0	GLU A 244		38.451	30.410	120.140	1.00 53.77
MOTA	1933	N	GLU A 244		37.460	31.471	120.004	1.00 54.74
ATOM	1934	CA	GLU A 244		37.954	32.497	118.986	1.00 55.15
MOTA	1935	CB CG	GLU A 244		37.068	33.717	118.865	1.00 60.63
ATOM	1936	CD	GLU A 244		37.602	34.714	117.868	1.00 65.87
ATOM	1937 1938	CEI			38.746	35.181	118.053	1.00 70.36
ATOM	1939	OE2			36.879	35.031	116.900	1.00 67.09 1.00 52.65
ATOM	1940	C	GLU A 244		36.051	31.025	119.626	1.00 52.65
MOTA MOTA	1941	Ö	GLU A 244		35.127	31.838	119.606	1.00 55.59
ATOM	1942	N	VAL A 245		35.869	29.745	119.332	1.00 50.57
ATOM	1943	CA	VAL A 245		34.546	29.269	118.947	1.00 45.75
ATOM	1944	СВ	VAL A 245		34.475	29.081	117.409	1.00 46.91
MOTA	1945	CG1			33.085	28.634	116.986	1.00 52.62 1.00 48.34
ATOM	1946	CG2	VAL A 245		34.825	30.389	116.716	1.00 48.34
MOTA	1947	С	VAL A 245		34.130	27.969	119.642	1.00 43.61
MOTA	1948	0	VAL A 245		33.021	27.480	119.445	1.00 40.87
ATOM	1949	N	PHE A 246		35.001	27.417	120.477	1.00 37.47
ATOM	1950	CÃ	PHE A 246		34.662	26.100	120.257	1.00 37.00
MOTA	1951	СB	PHE A 246		35.106	24.551	120.604	1.00 33.22
MOTA	1952	CG	PHE A-246		34.450	23.003	120.302	1.00 33.93
ATOM	1953		1 PHE A 246		33.111 35.168	22 674	121.234	
MOTA	1954	CD:			32.493	22.260	120.621	1.00 37.75
ATOM	1955	CE:			34.561	21.459	121.561	1.00 35.92
MOTA	1956	CE	2 PHE A 246		33.217	21.252	121.251	1.00 36.30
MOTA	1957	CI	PHE A 246 PHE A 246		35.322	26.069	122.509	1.00 38.93
ATOM	1958	C	PHE A 246		36.546	26.158	3 122.630	1.00 40.66
ATOM	1959	0	GLU A 247		34.500	25.870	123.537	1.00 38.59
MOTA	1960	N CA			34.970	5.73	3 124.918	1.00 44.60
MOTA	1961	CB			34.146	5.61	5 125.865	1.00 47.07
ATOM	1962	CG			33.161	27.56	9 125.185	1.00 56.16
MOTA	1963 1964	22			31.944	26.86	5 124.577	1.00 62.03
ATOM	1965	೧೯	1 GLU A 247		32.096		8 123.607	1.00 61.85
ATOM	1966	ΩE			30.822	27.09	4 125.083	1.00 64.59
ATOM ATOM	1967	Ē	GLU A 247		34.774	24.26	9 125.285	1.00 39.40
ATOM	1968		GLU A 247		33.727		9 125.794	1.00 39.91 1.00 38.64
MOTA	1969		PRO A 248		35.792		2 125.041	
ATOM	1970		PRO A 248		37.101			
ATOM	1971		PRO A 248		35.769		6 125.316 1 124.648	
ATOM	1972	CE	PRO A 248		37.047	21.53		
ATOM	1973		PRO A 248		37.970	22.68		
ATOM	1974		PRO A 248		35.736		6 127.597	
ATOM	1975	2	PRO A 248	}	36.445		6 127.096	
ATOM	1976		GLU A 249)	34.914		5 128.459	
ATOM	1977		GLU A 249)	34.841			
MOTA	1978			,	33.521			1.00 35.98
ATOM	1979		GLU A 249)	32.284 31.026		8 128.668	
ATCM	1980) c:	GLU A 249	,	21.020	. 13.30		•

			116410105	•	
ATOM	1981	OE1 GLU A 249		18.509 127.804 19.609 129.620	1.00 40.27 1.00 38.57
ATOM	1982	OE2 GLU A 249			1.00 32.30
MOTA	1983	C GLU A 249		19.119 128.623	1.00 28.51
ATOM	1984	O GLU A 249	36.472	18.884 129.728	1.00 23.31
MOTA	1985	N VAL A 250	36.434	18.547 127.502	1.00 29.31
ATOM-	1986	CA VAL A 250	37.516	17.563 127.494	1.00 29.85
ATOM	1987	CB VAL A 250	36.988	16.174 127.926	1.00 24.36
ATOM	1988	CG1 VAL A 250	35.908	15.711 126.958 15.166 127.978	1.00 25.60
ATOM	1989	CG2 VAL A 250	38.121		1.00 29.30
ATOM	1990	C VAL A 250	38.066	17.453 126.076 17.741 125.114	1.00 24.46
ATOM	1991	O VAL A 250	37.358	17.046 125.930	1.00 27.96
ATOM	1992	N TYR A 251	39.323	16.913 124.585	1.00 30.06
MOTA	1993	CA TYR A 251	- 39.865 40.585	18.206 124.165	1.00 25.89
MOTA	1994	CB TYR A 251	41.998	18.370 124.692	1.00 29.90
MOTA	1995	CG TYR A 251	43.087	17.794 124.029	1.00 26.02
MOTA	1996	CD1 TYR A 251	44.390	17.953 124.507	1.00 29.20
ATOM	1997	CE1 TYR A 251 CD2 TYR A 251	42.249	19.107 125.849	1.00 31.96
ATOM	1998		43.551	19.271 126.338	1.00 31.54
MOTA	1999		44.614	18.694 125.664	1.00 31.46
ATOM	2000	CZ TYR A 251 OH TYR A 251	45.894	18.854 126.152	1.00 29.69
ATOM	2001 2002	C TYR A 251	40.801	15.731 124.451	1.00 27.56
MOTA	2002	O TYR A 251	41.382	15.273 125.436	1.00 28.23
MOTA	2003	N LEU A 252	40.908	15.222 123.227	1.00 23.52
MOTA MOTA	2005	CA LEU A 252	41.806	14.117 122.919	1.00 26.53
ATOM	2006	CB LEU A 252	41.057	12.930 122.293	1.00 25.74
MOTA	2007	CG LEU A 252	40.266	12.001 123.221	1.00 28.49 1.00 27.67
ATOM	2008	CD1 LEU A 252	39.122	12.753 123.868	1.00 27.87
ATOM	2009	CD2 LEU A 252	39.727	10.835 122.414	1.00 32.00
ATOM	2010	C LEU A 252	42.842	14.638 121.932 15.444 121.055	1.00 24.42
ATOM	2011	O LEU A 252	42.528	14.176 122.078	1.00 24.60
MOTA	2012	N LEU A 253	44.075 45.157	14.599 121.204	1.00 25.04
MOTA	2013	CA LEU A 253	46.176	15.400 122.017	1.00 22.48
ATOM	2014	CB LEU A 253.	47.456	15.880 121.323	1.00 21.05
MOTA	2015	CG LEU A 253 CD1 LEU A 253	47.105	16.833 120.175	1.00 23.05
ATOM	2016	CD2 LEU A 253	48.348	16.578 122.360	1.00 16.40
ATOM	2017	C LEU A 253	45.822	13.374 120.580	1.00 23.55
ATOM	2018 2019	O LEU A 253	46.329	12.516 121.303	1.00 22.11
MOTA	2020	N GLN A 254	45.811	13.287 119.248	1.00 22.33
MOTA MOTA	2021	CA GLN A 254	46.417	12.150 118.552	1.00 19.84 1.00 23.09
ATOM	2022	CB GLN A 254	45.542	11.731 117.348	1.00 25.09
ATOM	2023	CG GLN A 254	46.075	12.038 115.963	1.00 33.45
ATOM	2024	CD GLN A 254	47.073	11.017 115.453 9.937 114.961	1.00 33.69
ATOM	2025	OE1 GLN A 254	46.712		1.00 31.02
TOM	2026	NE2 GLN A 254	48.338	11.349 115.574 12.576 118.153	1.00 22.46
.TOM	2027	C GLN A 254	47.831	13.599 117.478	1.00 17.56.
r.rom	2028	O GLN A 254	48.034 48.804	11.781 118.590	1.00 17.64
ATOM	2029	N LEU A 255	50.213	12.079 118.383	1.00 17.04
MOTA	2030	CA LEU A 255	50.894	12.136 119.750	1.00 14.75
MOTA	2031	CB LEU A 255 CG LEU A 255	50.277	13.196 120.670	1.00 25.02
ATOM	2032	CG LEU A 255 CD1 LEU A 255	50.732	12.996 122.107	1.00 21.99
ATOM	2033	CD2 LEU A 255	50.636	14.578 120.149	1.00 18.30
MOTA	2034	C LEU A 255	51.023	.11.169 117.476	1.00 21.34
MOTA	2035 2036	0.55	52.089	10.705 117.875	1.00 18.73
ATOM	2037		50.543	10.928 116.259	1.00 22.75
MOTA	2037		51.291	10.093 115.330	1.00 24.09
MOTA MOTA	2039		52.660		1.00 24.27 1.00 19.15
ATOM	2040	O GLY A 256	52.805		
ATOM	2041	N THR A 257	53.680		
ATOM	2042	CA THR A 257	55.014		
MOTA	2043	CB THR A 257	56.048		
ATOM	2044	OG1 THR A 257	56.009		
ATOM	2045	CG2 THR A 257	55.728		
ATOM	2046	C THR A 257	55.403	10.321 140.430	

					- 6				
ATOM	2047	о т	THR A	257	56	.517	10.941	112.974	1.00 20.39
ATOM	2048	N A	ASP A	258	_	.493	10.177	112.379	1.00 22.20
ATOM	2049	CA A	ASP A	258		.863		110.961 110.056	1.00 25.06
MOTA	2050		ASP A			.849	9.496		
MOTA	2051		ASP A			.415		110.252	
MOTA	2052	C P	ASP A	258		.222 .756	11 661	109.254	
MOTA	2053		ASP A			2.173	11 070	110.742	
ATOM	2054		ASP A			.513	9.168	109.869	1.00 33.25
MOTA	2055	N I	ASP A PRO A	200 250		1.884	12.710	111.045	1.00 31.06
ATOM	2056 2057		PRO A			.019	12.928	3 112.220	1.00 28.59
MOTA MOTA	2058		PRO A		5	5.268	14.006		
ATOM	2059		PRO A		_	1.447	14.99		
ATOM	2060	CG I	PRO A	259		4.418	14.32		
MOTA	2061	C 1	PRO A	259		5.790	14.26	1 110.044	
MOTA	2062	0 1	PRO A	259		7.300 7.508	13.38	111.280	
ATOM	2063		LEU A			8.960	13.54		5 1.00 28.41
ATOM	2064 2065		LEU A			9.461	12.57		3 1.00 22.47
ATOM	2066		LEU A			8.970	12.79		
MOTA MOTA	2067	CD1	LEU A	260		9.352	11.59		
ATOM	2068	CD2	LEU A	260		9.592	14.07	9 114.53	
MOTA	2069		LEU A		5	9.770	13.34		
MOTA	2070		LEU A			9.407		1 110.04	
MOTA	2071		LEU A			0.874 1.742	14.01		
ATOM	2072		LEU A			3.067	14.73	7 109.13	
MOTA	2073 2074		LEU A			4.131	14.61	5 108.02	5 1.00 29.52
ATOM ATOM	2075		LEU A		6	3.642	15.32	5 106.77	0 1.00 22.68
ATOM	2076	CD2	LEU A	261		5.460	15.21	9 108.47	5 1.00 26.71 3 1.00 28.23
ATOM	2077		LEU A		6	2.063	12.57	7 108.44 8 107.28	
MOTA	2078		LEU A	261		1.880	11 78	7. 109.39	
MOTA	2079		GLU A GLU A			2.938	10.41	6 109.13	5 1.00 31.76
ATOM	2080		GLU A			3.685	9.85	5 110.35	1.00 29.72
MOTA MOTA	2081 2082	CG	GLU A		6	4.890	10.68	3 110.80	3 1.00 31.33
MOTA	2083	CD	GLU A	262		4.521	11.84	7 111.70	1.00 28.07 1.00 28.75
ATOM	2084					3.324	12.19	5 111.78 4 112.34	
MOTA	2085		GLU A			5.433	9.42		
MOTA	2086	C	GLU A			2.158	8.30		1.00 29.72
ATOM	2087 2088	о И	ASP A		è	0.582	9.82	25 108.78	
MOTA MOTA	2089	CA	ASP A	263	5	9.513	8.90	2 108.47	1.00 26.85
ATOM	2090	CB	ASP A	263		8.305	9.09	9 109.33	33 1.00 25.26 35 1.00 33.14
ATOM	2091	CG	ASP A	263		7.261	7.99	98 109.18 36 110.20	
ATOM	2092	OD1	ASP A	263		6.638	7.6.	09 108.05	
MOTA	2093		ASP A	263		57.042 59.150	9.1	16 106.9	
ATOM	2094	C	ASP A	263		5B.740	10.2	17 106.5	94 1.00 24.70
ATOM	2095	0 N	TYR A	264		59.303	8.1	11 106.13	30 1.00 27.51
ATOM	2096 2097	CA	TYR A	264	!	59.031	8.2	19 104 6	96 1.00 33.89
MOTA MOTA	2098	CB	TYR A	264	!	59.576	7.0	08 103.9	35 1.00 40.44 92 1.00 50.64
ATOM	2099	CG	TYR A	264		51.059	_	71 104.0	
ATOM	2100		TYR A	264		61.565		87 105.1 76 105.3	
MOTA	2101	CE1	TYR A	264		62.933 61.960		42 103.1	40 1.00 53.79
ATOM	2102		TYR A	264		63.329		38 103.2	82 1.00 56.61
MOTA	2103	CE2	TYR A	264		63.809	6.3	54 104.3	88 1.00 56.22
MOTA	2104 2105	CZ OH	TYR A	264		65.161	6.1	47 104.5	24 1.00 55.90
MOTA MOTA	2105		TYR A	264		57.581	8.3	94 104.2	94 1.00 31.33 78 1.00 27.15
ATOM	2107	ō	TYR F	264		57.311		25 103.1	
ATOM	2108		LEU A	265		56.641		59 105.1 09 104.7	
ATOM	2109	CA	LEU A	265		55.244 54.360		89 105.5	27 1.00 26.55
ATOM	2110		LEU A	265		54.360 54.663		24 105.1	68 1.00 29.80
MOTA	2111		LEU A	4 265 4 265		53.464			03 1.00 21.17
MOTA	2112	עט	. <u>.</u> 2	. 200					

•						
		CD2 LEU A 265	54.93	1 5.620	103.682	1.00 33.35
MOTA	2113		54.66		104.921	1.00 20.81
ATOM	2114		53.45		104.979	1.00 21.30
MOTA	2115		55.54		104.959	1.00 23.23
MOTA	2116	N SER A 266	55.08		105.008	1.00 26.30
ATOM	2117	CA SER A 266	54.85		106.444	1.00 25.16
MOTA	2118	CB SER A 266		▼	107.084	1.00 22.92
MOTA	2119	OG SER A 266	56.07			1.00 30.17
ATOM	2120	C SER A 266	56.14			1.00 31.65
ATOM	2121	O SER A 266	57.33		103.757	1.00 31.56
ATOM	2122	N LYS A 267	55.73		103.737	1.00 27.65
MOTA	2123	CA LYS A 267	56.69			1.00 30.54
ATOM	2124	CB LYS A 267	56.14	0 15.425		1.00 34.13
ATOM	2125	CG LYS A 267	55.81			1.00 29.09
MOTA	2126	CD LYS A 267	57.03			1.00 37.61
ATOM	2127	CE LYS A 267	56.74		99.324	1.00 31.91
ATOM	2128	NZ LYS A 267	57.95			1.00 30.85
MOTA	2129	C LYS A 267	57.09		- -	1.00 27.86
MOTA	2130	O LYS A 267	57.62			1.00 24.19
ATOM	2131	N PHE A 268	56.68			1.00 25.34
ATOM	2132	CA PHE A 268	57.00			1.00 24.54
ATOM,	2133	CB PHE A 268	56.0			1.00 21.68
ATOM	2134	CG PHE A 268	54.63	36 17.256	107.257	1.00 28.65
ATOM	2135	CD1 PHE A 268	53.63	31 17.221	108.216	1.00 25.14
MOTA	2136	CD2 PHE A 268	54.3		106.011	1.00 25.34
MOTA	2137	CE1 PHE A 268	52.3		107.944	1.00 23.79
ATOM	2138	CE2 PHE A 268	53.0		105.730	1.00 28.13
MOTA	2139	CZ PHE A 268	52.0		106.702	1.00 25.66
ATOM	2140	C PHE A 268	58.4		106.908	1.00 28.44
ATOM	2141	O PHE A 268	58.7		107.230	1.00 25.81
MOTA	2142	N ASN A 269	59.1		107.709	1.00 30.60
ATOM	2143	CA ASN A 269	60.5			1.00 31.97
MOTA	2144	CB ASN A 269	61.5			1.00 35.83
MOTA	2145	CG ASN A 269	61.2			1.00 33.93
ATOM	2146	OD1 ASN A 269	61.4			1.00 33.95
ATOM	2147	ND2 ASN A 269 C ASN A 269	60.7		3 109.110	1.00 31.80
ATOM	2148	0 60	61.6		5 109.348	1.00 28.13
MOTA	2149		59.8	88 17.39	7 110.043	1.00 29.70
ATOM	2150	CA LEU A 270	59.9	54 17.91	8 111.406	1.00 26.87
MOTA	2151 2152	CB LEU A 270	58.5			1.00 26.60
MOTA	2152	CG LEU A 270	57.3	92 18.42	5 111.297	1.00 29.62
ATOM	2154	CD1 LEU A 270	56.1		4 112.222	1.00 28.54 1.00 29.40
ATOM ATOM	2155	CD2 LEU A 270	57.7			1.00 26.83
ATOM	3156	C LEU A 270	60.9		2 112.301	
ATOM	2157	O LEU A 270	61.4		8 111.990	
ATOM	2158	N SER A 271	61.2		6 113.420 5 114.393	1.00 27.08
ATOM	2159	CA SER A 271	62.2		0 114.846	
ATOM	2160	CB SER A 271	63.1		3 115.626	
ATOM	2161	OG SER A 271	62.4		8 115.618	
ATOM	2162		61.4		0 115.772	
ATCM	2163		60.2		9 116.470	
MOTA	2164		62.3 61.0		13 117.739	1.00 31.03
MOTA	2165		62.			1.00 28.80
MOTA	2166		62.			1.00 36.65
MOTA	2167		63.			1.00 29.89
ATOM	2168	OD1 ASN A 272				1.00 40.80
ATOM	2169					1.00 31.83
ATOM	2170) C ASN A 272				1.00 27.50
ATOM	2171	O ASN A 272			3 118.804	1.00 31.49
atom	2172	N VAL A 273 CA VAL A 273			37 119.667	1.00 31.58
ATOM	2173				09 119.725	1.00 35.80
ATOM	2174			804 20.9		1.00 48.07
ATOM	2175 2176		64.	198 18.9	14 120.38	1.00 42.81
ATOM	2177		60.	608 19.6	65 119.23	1.00 30.13
ATCM	2178			872 20.1	74 120.07	2 1.00 31.44
ATOM		V V V	_			

3 mom	2179	N ALA A 274	60.405	19.800 117.929	1.00 24.15
MOTA MOTA	2180	CA ALA A 274	59.258	20.558 117.455	1.00 26.27
ATOM	2181	CB ALA A 274	59.341	20.780 115.965	1.00 21.85
ATOM	2182	C ALA A 274	58.005	19.759 117.789	1.00 25.68
ATOM	2183	O ALA A 274	56.961	20.324 118.132	1.00 23.76
ATOM	2184	N PHE A 275	58.122	18.438 117.680	1.00 25.20
MOTA	2185	CA PHE A 275	57.015	17.538 117.974	1.00 25.89 1.00 25.21
MOTA	2186	CB PHE A 275	57.449	16.092 117.710	1.00 25.21
ATOM	2187	CG PHE A 275	56.340	15.088 117.870 15.064 116.982	1.00 28.63
ATOM	2188	CD1 PHE A 275	55.278	15.064 116.982 14.166 118.910	1.00 28.93
MOTA	2189	CD2 PHE A 275	. 56.365	14.132 117.119	1.00 33.75
MOTA	2190	CE1 PHE A 275	54.248	13.231 119.059	1.00 30.83
MOTA	2191	CE2 PHE A 275	55.343 54.282	13.214 118.160	1.00 34.19
MOTA	2192	CZ PHE A 275 C PHE A 275	56.607	17.712 119.445	1.00 24.63
MOTA	2193	O PHE A 275	55.428	17.877 119.767	1.00 22.40
MOTA	2194 2195	N LEU A 276	57.594	17.673 120.331	1.00 25.45
ATOM	2195	CA LEU A 276	57.357	17.837 121.766	1.00 27.94
ATOM	2197	CB LEU A 276	58.667	17.692 122.534	1.00 26.11
ATOM ATOM	2198	CG LEU A 276	58.651	18.132 124.001	1.00 31.15
ATOM	2199	CD1 LEU A 276	57.609	17.351 124.761	1.00 29.37
ATOM	2200	CD2 LEU A 276	60.033	17.937 124.612	1.00 27.98 1.00 30.12
ATOM	2201	C LEU A 276	56.770	19.208 122.058	1.00 30.12
ATOM	2202	O LEU A 276	55.822	19.348 122.838	1.00 28.09
ATOM	2203	N LYS A 277	57.353	20.219 121.425 21.593 121.603	1.00 27.04
MOTA	2204	CA LYS A 277	56.913	22.516 120.704	1.00 30.38
MOTA	2205	CB LYS A 277	57.742 57.941	23.934 121.237	1.00 36.46
MOTA	2206	CG LYS A 277	57.941	24.668 121.454	1.00 42.73
MOTA	2207	CD LYS A 277 CE LYS A 277	56.870	26.059 122.049	1.00 45.70
MOTA	2208		57.528	26.004 123.390	1.00 44.64
ATOM	2209 2210	NZ LYS A 277 C LYS A 277	55.432	21.683 121.242	1.00 30.26
MOTA	2210	O LYS A 277	54.640	22.284 121.972	1.00 27.55
MOTA MOTA	2212	N ALA A 278	55.057	21.078 120.115	1.00 30.15
ATOM	2213	CA ALA A 278	53.662	21.096 119.676	1.00 30.51
MOTA	2214	CB ALA A 278	53.496	20.270 118.406	1.00 28.96 1.00 30.99
MOTA	2215	C ALA A 278	52.789	20.527 120.786	1.00 30.39
ATOM	2216	O ALA A 278	51.735	21.067 121.108 19.422 121.360	1.00 27.85
ATOM	2217	N PHE A 279	53.245	18.759 122.448	1.00 29.62
ATOM	, 2218	CA PHE A 279	52.540 53.343	17.534 122.886	1.00 26.83
MOTA	2219	CB PHE A 279	52.786	16.823 124.078	1.00 29.11
ATOM	2220	CG PHE A 279 CD1 PHE A 279	51.556	16.176 124.015	1.00 28.86
MOTA	2221	CD1 PHE A 279	53.505	16.786 125.267	1.00 33.03
MOTA	2222 2223	CE1 PHE A 279	51.054	15,500 125,121	1.00 37.90
ATOM	2224	CE2 PHE A 279	53.011	16.114 126.386	1.00 38.01
MOTA MOTA	2225	CZ PHE A-279	51.783	15.469 126.313	1.00 36.33
ATOM	2226	C PHE A 279		19.730 123.621	1.00 30.57
ATOM	2227	O PHE A 279	51.265	19.853 124.184	1.00 26.26
ATOM	2228	N ASN A 280	53.432	20.429 123.990	1.00 32.03
MOTA	2229	CA ASN A 280	53.339		1.00 36.79
MOTA	2230	CB ASN A 280	54.724		1.00 23.68
MOTA	2231	CG ASN A 280	55.508		1.00 34.47
MOTA	2232	OD1 ASN A 280	54.958 56.809		1.00 33.59
MOTA	2233		52.493		1.00 30.46
MOTA	2234		51.899	23.182 125.677	1.00 27.66
ATOM	2235		52.429	22.960 123.509	1.00 27.32
ATOM	2236		51.620	24.107 123.128	1.00 31.07
ATOM	2237		51.878	24.517 121.666	1.00 35.08
MOTA	2238 2239		50.776	25.445 121.174	1.00 34.33
ATOM	2240		53.253	25.185 121.562	1.00 33.53
ATOM	2240		53.590	25.694 120.178	1.00 34.88
ATOM ATOM	2242	C ILE A 281	50.141		1.00 31.22 1.00 30.15
ATOM	2243	0 ILE A 281	49.391		
ATOM	2244		49.723	22.606 122.923	1.00 30.91
71.					

		-	8
:	2245	CA VAL A 282	48.332 22.214 123.081 1.00 30.76
MOTA	2245		49 075 20 707 122.523 1.00 35.10
MOTA	2246	CB VAL A 282 CG1 VAL A 282	46 641 20 358 122.841 1.00 28.72
ATOM	2247		48 313 20 781 121.018 1.00 28.66
MOTA	2248	CG2 VAL A 282	47 952 22 236 124.558 1.00 31.39
ATCM	2249	C VAL A 282	46 884 22 715 124.917 1.00 32.70
MOTA	2250	O VAL A 282	48.837 21.720 125.406 1.00 29.86
MOTA'	2251	N ARG A 283	48.587 21.675 126.840 1.00 34.82
MOTA	2252	CA ARG A 283	49.629 20.785 127.519 1.00 31.44
MOTA	2253	CB ARG A 283	49.551 19.334 127.061 1.00 29.49
MOTA	2254	CG- ARG A 283	50.729 18.539 127.554 1.00 30.67
ATOM	2255	CD ARG A 283	50.730 18.314 128.990 1.00 30.78
MOTA	2256	NE ARG A 283	51.826 18.351 129.742 1.00 35.27
ATOM	2257	CZ ARG A 283	53.012 18.611 129.198 1.00 36.46
MOTA	2258	NH1 ARG A 283	51.742 18.100 131.035 1.00 35.90
ATOM	2259	NH2 ARG A 283	48.561 23.065 127.473 1.00 36.06
ATOM	2260	C ARG A 283	47.830 23.302 128.439 1.00 35.04
MOTA	2261	O ARG A 283	49.350 23.985 126.928 1.00 35.70
MOTA	2262	N GLU A 284	49.376 25.348 127.448 1.00 40.93
ATOM	2263	CA GLU A 284	50.499 26.166 126.799 1.00 44.17
ATOM	2264	CB GLU A 284	51.917 25.702 127.141 1.00 56.39
MOTA	2265	CG GLU A 284	52.989 26.495 126.401 1.00 60.69
MOTA	2266	CD GLU A 284	53.012 27.738 126.542 1.00 63.13
MOTA	2267	OE1 GLU A 284	53.810 25.880 125.680 1.00 62.79
MOTA	2268	OE2 GLU A 284	33.010 23.000 100 100 30 34
ATOM	2269	C GLU A 284	40.000 20.000 00 00 50
ATOM	2270	O GLU A 284	47.525 26.783 127.954 1.00 38.32 47.472 25.704 125.986 1.00 33.75
MOTA	2271	N VAL A 285	4/.4/2 23./3 100 100 25 02
ATOM	2272	CA VAL A 285	46.205 26.294 125.592 1.00 35.82 46.039 26.291 124.062 1.00 34.14
MOTA	2273	CB VAL A 285	44.654 26.811 123.693 1.00 36.43
ATOM	2274	CG1 VAL A 285	44.034 20.033 1.00 1.00 37 36
MOTA	2275	CG2 VAL A 285	47.114 27.153 123.419 1.00 37.20 44.964 25.638 126.192 1.00 38.96
ATOM	2276	C VAL A 285	44.043 26.336 126.611 1.00 41.83
ATOM	2277	O VAL A 285	44.931 24.308 126.236 1.00 37.57
MOTA	2278	N PHE A 286	43.760 23.608 126.753 1.00 35.05
MOTA	2279	CA PHE A 286	43.159 22.723 125.657 1.00 32.53
ATOM	2280	CB PHE A 286	42.544 23.490 124.529 1.00 30.15
ATOM	2281	CG PHE À 286	43 104 23 459 123,256 1.00 33.96
ATOM	2282	CD1 PHE A 286	41 308 24 245 124.736 1.00 30.30
MOTA	2283	CD2 PHE A 286	42.527 24.170 122.202 1.00 32.96
MOTA	2284	CE1 PHE A 286	40 813 24 958 123.693 1.00 31.67
MOTA	2285	CE2 PHE A 286	λ_1 301 24 919 122.419 1.00 31.66
ATOM	2286	CZ PHE A 286	42 922 22 773 128,015 1.00 35.18
MOTA	2287	C PHE A 286	42 984 22 080 128,409 1.00 36.97
MOTA	2288	O PHE A 286	45 096 22 840 128,656 1.00 30.8/
ATOM	2289	N GLY A 287	45 207 22 056 129.862 1.00 30.06
ATCM	2290	CA GLY : 287	45 525 20 590 129.527 1.00 34.44
MOTA	2291	C GLY 1. 287	45.914 20.264 128.403 1.00 32.54
ATOM	2292	O GLY 7. 287	45 200 10 710 130.500 1.00 28.42
MOTA	2293	N GLU A 288	45 464 18 273 130.310 1.00 32.23
MOTA	2294	CA GLU A 288	45 613 17 576 131 663 1.00 37.02
ATOM	2295	CB GLU A 288	46.910 17.864 132.411 1.00 45.36
ATCM	2296	CG GLU A 288	48.140 17.455 131.622 1.00 45.65
ATOM	2297		40 144 16 334 131 069 1.00 46 42
ATCM	2298	OE1 GLU A 288	40.144 10.334 507 1 00 50 78
MOTA	2299		49.106 18.245 131.571 1.00 30.78 44.309 17.623 129.546 1.00 30.98
MOTA	2300	C GLU A 288	44.303 1,00 29 67
ATOM	2301		44 641 16 694 128 657 1.00 29.66
ATOM	2302	N GLY A 289	19.041
ATCM	2303	CA GLY A 289	43.023 43.333 == 4.00 30 45
ATCM	2304	C GLY A 289	14 518 14 207 128 739 1.00 25.90
ATCM	2305	5 O GLY A 289	42 384 13 807 126 868 1.00 26.21
ATOM	2306	N VAL A 290	13.504 13.503 126.718 1.00 27.31
ATOM	2307	7 CA VAL A 290	42 200 11 626 126,412 1.00 26.53
ATOM	2308	3 CB VAL A 290	12.554 10.149 126.204 1.00 25.36
ATCM	2309) CG1 VAL A 290	42.334 10.110 107 565 1 00 24 38
2 TOM			41.308 11.822 127.565 1.00 24.38

	771	A 290	44.580	12.248	125.550	1.00 24.52
ATOM			44.307	12.743	124 461	1.00 26.84
ATOM	2312 O VAL	A 290	44.307	12.743		1.00 23.56
ATOM	2313 N TYR	A 291	45.716	11.597	125.775	1.00 23.30
		A 291	46.729	11.478	124.732	1.00 23.74
ATOM			48.092	11.817	125.342	1.00 18.40
ATOM		A 291	40.022	13.113	126 118	1.00 21.60
ATOM	2316 CG TYR	A 291	48.040	13.113	120.110	1.00 23.83
	2317 CD1 TYR	A 291	48.326	13.148	127.483	1.00 23.03
ATOM		3 291	48.200	14.331	128.214	1.00 24.57
ATOM		201	47.634	14.291	125.503	1.00 18.17
ATOM	2319 CD2 TYR	A 291		15 476	126.220	1.00 26.36
ATOM	2320 CE2 TYR	A 291	47.504			1.00 27.68
		A 291	47.786		127.575	1.00 27.00
ATOM		A 291	47.631		128.283	1.00 28.92
ATOM	•	. A 231	46.768	10 118	124.044	1.00 23.03
ATOM	2323 C TYR	A 291	46.700	0.110	124.707	1.00 20.66
	2324 O TYR	A 291	46.837		124.707	1.00 23.96
ATOM		A 292	46.755	10.142	122.711	1.00 23.90
ATOM			46.767	8.924	121.902	1.00 20.69
ATOM	2326 CA LEU	A 292		8.842	121.076	1.00 22.13
ATOM	2327 CB LEU	A 292	45.482		121.814	1.00 23.78
	2328 CG LEU	J A 292	44.162			1 00 23 09
ATOM		J A 292	43.001	8.959	120.826	1.00 23.09
ATOM		. 200	44.008	8.050	122.930	1.00 16.01
ATOM	2330 CD2 LEU	J A 292		0 095	120.947	1.00 22.90
ATOM	2331 C LEU	J A 292	47.953	0.005	120.517	1.00 22.31
	2332 O LEU	J A 292	48.527	9.923	120.617	
ATOM		A 293	48.301	7.684	120.491	1.00 18.83
ATOM		A 433	49.401	7 529	119.554	1.00 24.35
ATOM	2334 CA GL	7 A 293		7.046	118.154	1.00 24.22
	2335 C GL	Y A 293	48.908	7.840	110.134	1.00 20.46
MOTA		Y A 293	48.025	8.684	117.991	1.00 20.40
ATOM		Y A 294	49.459	7.177	117.148	1.00 24.63
ATOM		Y A 294	49.035	7 423	115.779	1.00 22.03
ATOM	2338 CA GL	Y A 294		7.423	114.769	1.00 22.90
ATOM	2339 C GL	Y A 294	50.024	6.869	114.703	1.00 24.10
		Y A 294	50.956	6.150	115.136	1.00 24.10
MOTA			49.825	7,203	113.499	1.00 19.85
ATOM		Y A 295		6 724	112.458	1.00 23.33
MOTA	2342 CA GL	Y A 295	50.721	7.723	112.740	1.00 19.01
	2343 C GL	Y A 295	52.185	7.010	112.790	
ATOM		Y A 295 .	52.541	8.094	113.196	1.00 19.39
ATOM		I A 200 .	53.035	6.026	112.472	1.00 25.85
ATOM	2345 N GL	Y A 296		6 162	112.690	1.00 22.65
ATOM	2346 CA GL	Y A 296	54.468	0.102	112.000	1.00 25.31
	2347 C' GL	Y A 296	55.098	4.898	112.146	1.00 25.52
ATOM		Y A 296	54.778	3.798	112.609	1.00 25.86
ATOM		1 A 250	56.005	5.034	111.185	1.00 22.83
ATOM	2349 N TY	R A 297		3 052	110.577	1.00 23.93
ATOM	2350 CA TY	R A 297	56.598	3.652	100.37	1.00 21.59
	2351 CB TY	R A 297	56.137	3.780	109.125	1.00 21.35
ATOM		R A 297	54.660	4.084	109.035	1.00 25.85
ATOM		K A 237	54.203	5 402	109.017	1.00 22.28
ATOM	2353 CD1 TY	R A 297	54.203		109.089	1.00 20.19
ATOM	2354 CE1 TY	R A 297	52.842			
	2355 CD2 TY	R A 297	53.713	3.062	109.116	
ATOM		R A 297	52.352	3.346	5 109.190	1.00 21.83
ATOM		K A 231	51.927		5 109.181	1.00 21.81
ATOM	2357 CZ TY	R A 297			2 109.305	
ATOM	2358 OH TY	R A 297	50.588		4 110 674	
	2359 C TY	r a 297	58.104		4 110.674	
ATOM		R A 297	58.665	2.72	4 110.154	1.00 22.07
-TOM		CR A 497	58.765			1.00 23.71
ATOM	2361 N H	IS A 298				
	2362 CA HI	IS A 298	60.204	4.53		
ATOM		IS A 298	60.913	5.85		
ATOM		TO 2 200	62.403	5.72	7 111.213	1.00 33.08
ATOM	2364 CG H	IS A 298	62.302			1.00 31.83
ATOM	2365 CD2 H	IS A 298	63.273			
		IS A 298	63.151	5.77		
ATOM		10 3 200	64.419	5.54		
∴TOM	2367 CE1 H	IS A 298	64.520			3 1.00 38.70
-TCM	2368 NE2 H	IS A 298	04. 141			
		IS A 298	60.37	4.18		
ATOM		IS A 298	60.120	5.02	0 113.865	
ATOM		10 : 200	60.82	9 2.96	3 113.29	1.00 29.37
- TOM		RO A 299	61.28		2 112.35	1.00 26.09
ATOM	i 2372 CD P	RO A 299	01.48		1 114.66	
		RO A 299	61.02		. 114 47	
ATOM		RO A 299	61.67		8 114 46	
10T £		20 7 200	62.41	1 1.30	6 113.13	7 1.00 27.34
- TCN	1 2375 CG P	RO A 299	61.84		3 115.57	0 1.00 31.88
-701	1 2376 C P	RO A 299	61.54	٠ ٠ ٠٠٠	,	

	•		6		
> mOM	2377	O PRO A 299	61.480		1.00 32.45
MOTA MOTA	2378	N TYR A 300	62.959		1.00 27.41
ATOM	2379	CA TYR A 300	63.803	4.007 775.	1.00 27.34 1.00 26.84
ATOM	2380	CB TYR A 300	65.163		
MOTA	2381	CG TYR A 300	65.912		1.00 29.09 1.00 30.93
ATOM	2382	CD1 TYR A 300	65.517		1.00 30.93
ATOM	2383	CE1 TYR A 300	66.214	1.411 114.682	1.00 30.88
ATOM	2384	CD2 TYR A 300	67.027	3.941 113.908	1.00 29.72
ATOM	2385	CE2 TYR A 300	67.730	2.829 113.466	1.00 33.89
MOTA	2386	CZ TYR A 300	67.320	1.568 113.854	1.00 34.70
ATOM	2387	OH TYR A 300	68.011	0.471 113.404	1.00 23.44
ATOM	2388	C TYR A 300	63.113	6.134 116.137 6.631 117.264	1.00 23.87
ATOM	2389	O TYR A 300	63.108	6.711 115.092	1.00 22.19
ATOM	2390	N ALA A 301	62.530	7.993 115.216	1.00 26.50
ATOM	2391	CA ALA A 301	61.839 61.266	8.416 113.864	1.00 24.16
MOTA	2392	CB ALA A 301	60.715	7.878 116.237	1.00 27.86
MOTA	2393	C ALA A 301	60.556	8.728 117.117	1.00 22.47
MOTA	2394	O ALA A 301	59.940	6.808 116.110	1.00 23.27
MOTA	2395	N LEU A 302	58.818	6.566 116.996	1.00 26.50
MOTA	2396	CA LEU A 302 CB LEU A 302	58.036	5.354 116.483	1.00 26.02
MOTA	2397		56.866	4.798 117.291	1.00 29.73
MOTA	2398	CG LEU A 302 CD1 LEU A 302	55.983	3.938 116.394	1.00 31.01
ATOM	2399	CD2 LEU A 302	57.394	4.001 118.465	1.00 32.99
MOTA	2400 2401	C LEU A 302	59.246	6.373 118.451	1.00 27.49
MOTA	2402	O LEU A 302	58.648	6.946 119.358	1.00 25.22 1.00 27.85
MOTA MOTA	2403	N ALA A 303	60.289	5.580 118.672	1.00 27.83
ATOM	2404	CA ALA A 303	60.765	5.320 120.024	1.00 27.33
ATOM	2405	CB ALA A 303	61.854	4.269 119.990 6.580 120.714	1.00 26.64
ATOM	2406	C ALA A 303	61.279	6.849 121.875	1.00 23.18
ATOM	2407	O ALA A 303	60.944	7.354 120.003	1.00 27.48
ATOM	2408	N ARG A 304	62.092	8.570 120.581	1.00 25.46
MOTA	2409	CA ARG A 304	62.648 63.773	9.136 119.704	1.00 21.31
MOTA	2410	CB ARG A 304 CG ARG A 304	65.005	8.231 119.562	1.00 25.98
MOTA	2411		66.153	9.042 118.951	1.00 27.87
MOTA	2412	- ^ ^	65.647	9.766 117.796	1.00 36.76
ATOM	2413 2414	NE ARG A 304 CZ ARG A 304	66.207	10.838 117.261	1.00 30.79
MOTA	2414	NH1 ARG A 304	67.323	11.345 117.768	1.00 30.11
MOTA	2416	NH2 ARG A 304	65.623	11.419 116.225	1.00 36.07 1.00 25.46
MOTA MOTA	2417	C ARG A 304	61.585	9.634 120.803	1.00 24.23
ATOM	2418	O ARG A 304	61.519	10.237 121.876	1.00 22.22
ATOM	2419	N ALA A 305	60.741	9.854 119.802 10.868 119.910	1.00 26.70
ATOM	2420	CA ALA A 305	59.700	10.868 119.910	1.00 28.14
ATOM	2421	CB ALA A 305	58.914	10.626 121.072	1.00 25.54
MOTA	2422		58.749 58 513	11.520 121.883	1.00 24.1/
MOTA	2423		58 1.89	9.426 121.160	1.00 25.66
MOTA	2424		57.270	9.157 122.253	1.00 28.01
MOTA	3425		56.454	7.873 122.012	1.00 18.66
MOTA	2426		55.382	8.052 120.973	1.00 21.80
MOTA	2427		54.709	7.019 120.240	1.00 24.88
MOTA	2428 2429		53.725	7.646 119.442	1.00 23.98
MOTA	2430		54.839	5.623 120.181	1.00 23.26 1.00 20.24
MOTA	2431		54.795	9.228 120.599	
MOTA MOTA	2432	36/	53.799	8.995 119.681	
MOTA	2433		52.875	6.926 118.590	
ATOM	2434	CZ3 TRP A 306	53.993	4.906 119.335 5.562 118.550	
ATOM	2435	CH2 TRP A 306	53.024		
ATOM	2436	C TRP A 306	57.969	9.113 123.605 9.319 124.637	
ATOM	2431	7 O TRP A 306	57.330	8.851 123.615	1.00 26.76
ATOM	2438	3 N THR A 307	59.273	8.850 124.881	1.00 22.81
ATOM	2439	CA THR A 307	60.000 61.457	8.319 124.730	1.00 25.54
MOTA	244			6 902 124.504	1.00 22.73
ATOM	244			- 405 000	
MOTA	- 4 4 1	2 CG2 THR A 307	04.203	J	

		> 207	60.027	10.288 125.396	1.00 26.54
MOTA	2443	C THR A 307		10.526 126.604	1.00 25.34
MOTA	2444	O THR A 307		11.247 124.478	1.00 21.65
ATOM	2445	N LEU A 308			1.00 21.41
ATOM	2446	CA LEU A 308		12.03. 20	1.00 19.20
ATOM	2447	CB LEU A 308		13.330 220	1.00 21.31
ATOM	2448	CG LEU A 308		13.386 122.938	1.00 21.31
	2449	CD1_LEU A 308	61.900	14.362 121.774	1.00 21.75
ATOM		CD2 LEU A 308	62.937	13.622 123.915	1.00 19.26
MOTA	2450		58 811	12.981 125.479	1.00 25.18
MOTA	2451		58.731	13.565 126.561	1.00 21.35
MOTA	2452	O LEU A 308	. 57.743	12.567 124.806	1.00 21.74
MOTA	2453	N ILE A 309	56.394	12.799 125.298	1.00 19.23
MOTA	2454	CA ILE A 309		12.149 124.366	1.00 19.63
MOTA	2455	CB ILE A 309		12.321 124.948	1.00 19.54
MOTA	2456	CG2 ILE A 309	53.945		1.00 20.80
MOTA	2457	CG1 ILE A 309	55.403	12.788 122.979	1.00 20.08
ATOM	2458	CD1 ILE A 309	55.118	14.274 122.988	1.00 23.97
MOTA	2459	C ILE A 309	56.228	12.222 126.701	1.00 23.37
	2460	O ILE A 309	55.731	12.894 127.602	
ATOM	2461	N TRP A 310	56.652	10.977 126.888	1.00 26.45
MOTA	2462	CA TRP A 310	56.525	10.342 128.192	1.00 28.35
MOTA			56.940	8.872 128.132	1.00 23.95
MOTA	2463		56.874	8.203 129.479	1.00 29.60
MOTA	2464	CG TRP A 310	551.697	7.967 130.263	1.00 31.40
MOTA	2465	CD2 TRP A 310	56.115	7.390 131.480	1.00 32.47
ATOM.	2466	CE2 TRP A 310		8.189 130.055	1.00 32.30
MOTA	2467	CE3 TRP A 310	54.329	7.770 130.232	1.00 33.42
ATOM	2468	CD1 TRP A 310	57.926	7.282 131.436	1.00 30.09
MOTA	2469	NE1 TRP A 310	57.480	7.030 132.492	1.00 29.93
ATOM	2470	CZ2 TRP A 310	55.213	7.030 132.432	1.00 29.72
ATOM	2471	CZ3 TRP A 310	53.432	7.831 131.062	1.00 24.53
ATOM	2472	CH2 TRP A 310	53.881	7.259 132.265	1.00 24.33
	2473	C TRP A 310	57.308	11.048 129.293	1.00 33.43
MOTA	2474	O TRP A 310	56.820	11.137 130.426	1.00 27.59
ATOM	2475	N CYS A 311	58.512	11.535 128.984	1.00 29.34
ATOM			59.305	12.247 129.994	1.00 30.06
MOTA	2476		60.722	12.538 129.479	1.00 30.08
MOTA	2477		61.804	11.084 129.327	1.00 33.17
MOTA	2478		58.612	13.560 130.397	1.00 29.25
MOTA	2479	C CYS A 311	58.612	13.940 131.570	1.00 28.80
MOTA	2480	O CYS A 311	58.021	14.247 129.425	1.00 23.13
MOTA	2481	N GLU A 312	57.308	15.496 129.696	1.00 30.31
ATOM	2482	CA GLU A 312		16.032 128.427	1.00 28.97
ATOM	2483	CB GLU A 312	56.648	17.418 127.988	1.00 41.67
ATOM	2484	CG GLU A 312	57.080	18.465 129.059	1.00 44.21
MOTA	2485	CD GLU A 312	56.905	18.534 129.658	1.00 54.15
ATOM	2486	OE1 GLU A 312	55.813	18.534 129.030	1.00 43.90
ATOM	2487	OE2 GLU A 312	57.860	19.233 129.290	1.00 28.03
ATOM	2488	C GLU A 312	56.204	15.225 130.712	1.00 30.64
	2489	10	56.120	15.869 131.751	1.00 30.04
MOTA	2490	010	55.343	14.270 130.388	1.00 31.06
MOTA			54.231	13.918 131.266	1.00 36.21
MOTA	2491		53.337	12.873 130.604	1.00 28.83
MOTA	2492		52.493	13.342 129.429	1.00 34.62
MOTA	2493		51.818	12,146 128.788	1.00 33.05
MOTA	2494		51.471	14.357 129.914	1.00 27.27
ATOM	2495			13.377 132.610	1.00 33.97
MOTA	2496		54.685	13.730 133.644	
ATOM	2497	O LEU A 313	54.131	12.508 132.577	
ATOM	2498	N SER A 314	55.688	11.880 133.776	
MOTA	2499	CA SER A 314	56.233		
	2500		57.183		
ATOM	2501		56.517	9.761 132.628	
MOTA	2502		57.002		
ATOM			57.339	12.513 135.788	1.00 27.69
ATOM	2503		57.312	14.021 134.130	1.00 35.50
ATOM	2504		58.057	14 996 134 905	1.00 36.31
atom	2505		59.518	14.634 135.099	1.00 38.47
ATOM	2500		60.138	15.049 136.078	3 1.00 41.5/
ATOM	250		60.089		1.00 39.32
ATCM	250	8 N ARG A 316	60.009	10.00	

						12 501	134.332	1.00 3	9.06
MOTA	2509	CA ·	ARG A	316	61.490			1.00 3	
ATOM	2510	CB A	ARG A	316	61.641		134.413	1.00 3	9.10
			ARG A		61.233	11.226	133.184	1.00 3	
MOTA	2511				61.426		133.429	1.00 4	1.21
MOTA	2512		ARG A				134.389	1.00 4	
ATOM	2513		ARG A		60.461	9.229	134.305	1.00	
ATOM	2514	CZ .	ARG A	316	60.524		134.926		
			ARG A		61.511	7.209	134.598	1.00 3	
AŤOM	2515				59.583	7.621	135.768	1.00 3	30.53
ATOM	2516		ARG A		_		133.230	1.00 4	
ATOM	2517	С	ARG A	316	62.369	14.083		1.00	
ATOM	2518	0 -	ARG A	316	61.910	14.325	132.111		
			GLU A		63.633	14.325	133.564	1.00 4	11.26
MOTA	2519	N	GLU A	217	64.580	14.905	132.619	1.00 4	14.42
ATOM	2520	CA	GLU A	31/			133.317	1.00 4	
ATOM	2521	CB	GLU A	317	65.901	15.249	133.317		57.66
	2522	CG	GLU A	317	65.756	15.996	134.629		
MOTA		CD	GLU A	317	65.212	15.113	135.743	1.00	
ATOM	2523				65.871	14.101	136.073	1.00	6 8 .38
MOTA	2524	OE1	GLU A	31/	64 120		136.287	1.00	
MOTA	2525	OE2	GLU A	317	64.129			1.00	
ATOM	2526	С	GLU A	317	64.873		131.462		
		ō	GLU A		64.977	12.748	131.636	1.00	38.84
MOTA	2527				65.010	14 525	130.275	1.00	37.64
ATOM	2528	N	VAL A			112 720	129.108	1.00	39.13
MOTA	2529	CA	VAL A		65.315	13.720	127.100	1.00	
ATOM	2530	CB	VAL A	318	64.858	14.417	127.810		
			VAL A		65.192	13.544	126.610	1.00	
MOTA	2531	CGI	VALA	710	63.364	14 701	127.867	1.00	42.38
ATOM	2532		VAL A	210		13.495			38.45
MOTA	2533	С	VAL A	318	66.822	13.433			36.04
ATOM	2534	0	VAL A	318	67.598	14.442	128.910		
		N		319	67.261	12.236	129.156		39.54
ATOM	2535				66.512	10 994	129.397	1.00	40.47
ATOM	2536	CD	PRO A			11 0/0	129.088	1.00	43.85
ATOM	2537	CA	PRO A	319	68.695	11.343	120.000		44.12
MOTA	2538	CB	PRO A	319 .	68.745	10.439	129.319		
	2539	CG	PRO A		67.419	9.986	128.745		46.48
MOTA			PRO A		69.228	12.353	127.718		43.55
MOTA	2540	C				12 141	126.708	1.00	43.45
ATOM	2541	0	PRO A		68.563	12.141	127.689		42.52
ATOM	2542	N	GLU A	320	70.420	12.930	127.009		45.19
	2543	CA	GLU A		71.026	13.380	126.440		
MOTA			GLU A		72.384	14.032	126.706	1.00	43.86
MOTA	2544	СВ			73.121	14 412	125.434	1.00	52.62
ATOM	2545	CG	GLU A			14 067	125.697	1 00	52.36
ATOM	2546	CD	GLU A		74.507	14.907	123.037	1 00	56.25
MOTA	2547	OEl	GLU A	320	75.219	15.271	124.720		
		OE2	GLU A	320	74.883	15.101	126.875		52.25
ATOM	. 2548		GLU A	220	71.223	12.266	125.421	1.00	43.52
MOTA	2549	С	GLU A			12 /12	124.253	1.00	41.89
MOTA	2550	0	GLU A		70.876	12.412	124.223		43.35
ATOM	2551	N	LYS A	321	71.781	11.150	125.867		
		CA	LYS A		72.059	10.041	124.969		43.53
MOTA	2552		DIS ::	221	73.561	9.808	124.879	1.00	42.78
ATOM	2553	CB	LYS A			0 340	126.180	1.00	49.38
MOTA	2554	CG	LYS A		74.238			1 00	57.82
ATOM	2555	CD	LYS A	321	74.272	10.396	, 127.307	1.00	53.81
	2556	CE	LYS A	321	72.978	10.497	128.129	1.00	33.61
MOTA			LYS A	321	72.660	9.24	128.883	1.00	54.17
ATOM	2557	NZ	LIS A	321	71.407	8 73	125.345	1.00	41.52
ATOM	2558	С	LYS A	. 321		0.73.	126.469	1 00	41.98
MOTA	2559	0	LYS A	321	70.954	8.54	120.405	1.00	38.64
ATOM	2560	N	LEU A	322	71.378	7.820	124.382	1.00	30.04
	2560	CA	LEU A	322	70.815	6.50	3 124.613	1.00	40.46
MOTA	2561				70.442	5 84	5 123.289	1.00	42.22
MOTA	2562	CB	LEU A	322		6 63	2 122.287	1.00	42.92
MOTA	2563	CG	LEU A	322	69.595	0.03.	2 122.207	1.00	41.13
	2564	כתו	LEU A	322	69.204	5.73	7 121.125	1.00	44.44
MOTA		201	LEU A	322	68.361	7.14	8 122.967	1.00	44.41
MOTA	256.5		, <u></u> u A	200	71.918	5 70	2 125.268	1.00	41.36
MOTA	2566	С	LEU A	322		5.70	5 124.884	1 00	44.16
ATOM	2567	0	LEU A	322	73.079	5.82	754.004	1.00	20 00
			ASN A	323	71.579	4.89	4 126.265		39.89
MOTA	2568		7011		72.594	4.06	7 126.895		40.96
ATOM	2569		ASN A	1 343	72.136		6 128.259	1.00	43.00
MOTA	2570	CB	ASN A	323			6 128.202		45.59
ATOM	2571		ASN A	323	70.787		0 140.404		45.71
			L ASN A		70.482	2.15	1 127.264		40.00
ATOM	2572	. עני		323	69.975	3.11	4 129.224		48.08
ATOM	2573		2 ASN A	3 3 2 3			4 125.954	1.00	44.88
MOTA	2574	C	ASN A	323	72.828	4.65			
					•				

•		a 201 2 222	72.124	2.739 124.955	1.00 46.41
ATOM	2575	O ASN A 323		2 062 126 268	1.00 45.98
MOTA	2576	N ASN A 324	73.809	2.062 126.268	
			74.122	0.938 125.404	1.00 49.82
MOTA	2577			0.244 125.904	1.00 53.88
MOTA	2578	CB ASN A 324	75.386	0.244 123.304	
		4	75.960	-0.711 124.888	1.00 60 09
ATCM	2579	CG ASN A 324	_	-1.723 124.550	1.00 66.99
MOTA	2580	OD1 ASN A 324	75.344	-1.723 124.330	
		ND2 ASN A 324	77.143	-0.386 124.378	1.00 58.06
MOTA	2581		72.979	-0.070 125.267	1.00 47.12
MOTA	2582	C ASN A 324		0.070 1251207	1.00 43.63
	2583	O ASN A 324	72.784	-0.644 124.197	
MOTA			72.220	-0.276 126.339	1.00 46.39
ATOM	2584	N LYS A 325		-1.221 126.318	1.00 46.76
MOTA	2585	CA LYS A 325	71.106	-1.221 120.310	
			70.428	-1.328 127.695	1.00 47.65
MOTA	2586			-1.837 128.858	1.00 54.21
MOTA	2587	CG LYS A 325	71.292	-1.657 120.636	1.00 56.87
	2588	CD LYS A 325	72.160	-0.750 129.526	
MOTA			73.329	-0.289 128.671	1.00 57.45
MOTA	2589			0.816 129.307	1.00 58.32
MOTA	2590	NZ LYS A 325	74.091	0.810 125.507	1.00 45.17
	,	C LYS A 325	70.062	-0.791 125.296	
MOTA	2591		69.474	-1.625 124.601	1.00 42.73
MOTA	2592	O LYS A 325		0.514 125.213	1.00 41.43
MOTA	2593	N ALA A 326	69.832	0.514 125.215	
		CA ALA A 326	68.861	1.054 124.276	1.00 41.61
MOTA	2594		68.562	2.508 124.616	1.00 42.80
ATOM	2595	CB ALA A 326		0.940 122.838	1.00 43.80
MOTA	2596	C ALA A 326	69.365	0.940 122.030	
	2597	O ALA A 326	68.595	0.625 121.926	1.00 45.17
ATOM			70.658	1.191 122.637	1.00 43.46
ATOM	2598	N LYS A 327		1.120 121.296	1.00 43.26
MOTA	25 9 9	CA LYS A 327	71.235	1.120 121.290	
	2600	CB LYS A 327	72.723	1.484 121.311	1.00 44.77
MOTA			73.037	2.892 121.800	1.00 50.87
ATOM	2601	CG LYS A 327		3.168 121.747	1.00 52.74
ATOM	2602	CD LYS A 327	74.544	3.100 121.71	1.00 51.30
	2603	CE LYS A 327	74.916	4.508 122.377	
MOTA		^ -	74.256	5.670 121.715	1.00 52.72
MOTA	2604		71.063	-0.274 120.728	1.00 41.29
ATOM	2605	C LYS A 327			1.00 38.83
ATOM	2606	O LYS A 327	70.625	-0.437 119.592	
	2607	N GLU A 328	71.403	-1.278 121.526	1.00 39.95
MOTA	_	N ODO II 320	71.276	-2.660 121.090	1.00 42.40
ATOM	2608	CA GLU A 328		-3.605 122.135	1.00 43.05
MOTA	2609	CB GLU A 328	71.875	-3.603 122.133	
	2610	CG GLU A 328	73.369	-3.432 122.295	
MOTA			74.096	-3.529 120.963	1.00 52.11
MOTA	2611			-4.574 120.291	1.00 55.44
MOTA	2612	OE1 GLU A 328	73.972	24.374 120.504	1.00 51.64
	2613	OE2 GLU A 328	74.785	-2.558 120.584	
MOTA			69.825	-3.030 120.818	1.00 39.51
ATOM	2614		69.536	-3.842 119.939	1.00 37.35
MOTA	2615	O GLU A 328		-3.042 123.502	1.00 36.37
	2616	N LEU A 329	68.911	-2.444 121.582	
ATOM			67.496	-2.717 121.380	1.00 36.03
atom	2617		66.646	-1.958 122.400	1.00 34.66
ATOM	2618	CB LEU A 329		2 110 122 213	1.00 33.88
ATOM	2619	CG LEU A 329	65.133	-2.110 122.213	1.00 35.00
		CD1 LEU A 329	64.755	-3.572 122.351	1.00 36.21
MOTA	2620	CDI DEG A 329	64.391	-1.268 123.240	1.00 34.00
ATOM	2621	CD2 LEU A 329		2 260 110 071	1.00 33.64
ATOM	2622	C LEU A 329	67.120	-2.268 119.971	1 00 33.01
			66.655	-3.061 119.162	1.00 31.29
ATOM	2623		67.333	-0.990 119.681	1.00 33.78
ATOM	2624	N LEU A 330		-0.461 118.366	1.00 36.38
ATOM	2625	CA LEU A 330	67.004	-0.401 110.300	1 00 20 74
		CB LEU A 330	67.326	1.033 118.294	1.00 30.74
MOTA	2626		66.514	1.958 119.205	1.00 31.51
MOTA	2627	CG LEU A 330		3.404 118.894	1.00 22.11
ATOM	2628	CD1 LEU A 330	66.857	3.404 110.034	1.00 29.69
		CD2 LEU A 330	65.028	1.728 118.978	1.00 25.05
ATOM	2629			-1.201 117.246	1.00 36.49
ATOM	2630	C LEU A 330		-1.493 116.210	1.00 35.61
ATOM	2631	O LEU A 330	67.142	-1.433 110.210	1.00 37.63
	2632	N LYS A 331	69.005	-1.503 117.455	1.00 37.03
ATOM				-2.205 116.446	1.00 41.32
ATCM	2633	CA LYS A 331			1.00 44.74
ATOM	2634	CB LYS A 331	71.256	-2.272 110.074	1.00 44.68
	2635	CG LYS A 331	71.954	-0.919 116.869	
ATOM				-0.964 117.498	1.00 51.42
ATOM	2636	CD LYS A 331			1.00 53./1
ATOM	2637	CE LYS A 331			
	2638	NZ LYS A 331	. 73.928		
ATOM				-3.612 116.173	
atom	2639				1.00 42.68
ATOM	2640	O LYS A 331	. 05.510		

	0641	N SER A 332	68.734	-4.270 117.200	1.00 41.56
MOTA	2641	N SER A 332	68.226	-5.629 117.039	1.00 46.88
ATOM	2642	CA SER A 332			1.00 42.19
ATOM	2643	CB SER A 332	68.045		1.00 39.55
ATOM	2644	OG SER A 332	66.959	-5.714 119.096	
	2645	C SER A 332	66.896	-5.687 116.297	1.00 48.58
MOTA			66.393	-6.774 116.017	1.00 45.78
MOTA	2646		66.325	-4.531 115.979	1.00 48.27
MOTA	2647	N ILE A 333	65.041	-4.503 115.292	1.00 51.82
ATOM	2648	CA ILE A 333		-3.119 115.402	1.00 52.16
MOTA	2649	CB ILE A 333	64.378		1.00 52.64
ATOM	2650	CG2 ILE A 333	63.038		1.00 52.70
	2651	CG1 ILE A 333	64.163	-2.765 116.871	1.00 52.70
MOTA		CD1 ILE A 333	63.550	-1.402 117.077	1.00 56.70
MOTA	2652		65.112	-4.887 113.820	1.00 53.43
MOTA	2653		66.118	-4.675 113.145	1.00 56.45
MOTA	2654	O ILE A 333	64.016	-5.461 113.344	1.00 55.53
ATOM	2655	N ASP A 334			1.00 59.58
MOTA	2656	CA ASP A 334	63.865		1.00 62.69
ATOM	2657	CB ASP A 334	62.845	-7.040 111.918	1.00 66.23
	2658	CG ASP A 334	61.546	-6.712 112.664	
ATOM	2659	OD1 ASP A 334	60.795	-5.814 112.227	1.00 63.25
ATOM.		OD2 ASP A 334	61.277	-7.354 113.704	1.00 63.45
ATOM	2660		63.385	-4.705 111.125	1.00 60.81
MOTA	2661	C ASP A 334	62.239	-4.673 110.681	1.00 59.47
MOTA	2662	O ASP A 334		-3.736 110.889	1.00 60.00
ATOM	2663	N PHE A 335	64.266	-2.545 110.147	1.00 59.37
ATOM	2664	CA PHE A 335	63.864		1.00 53.38
ATOM	2665	CB PHE A 335	64.247	-1.298 110.952	1.00 49.13
	2666	CG PHE A 335	63.895	-0.013 110.275	1.00 49.13
MOTA	2667	CD1 PHE A 335	62.618	0.189 109.770	1.00 44.32
MOTA			64.845	0.993 110.127	1.00 49.91
MOTA	2668		62.288	1.373 109.122	1.00 42.74
MOTA	2669		64.526	2.180 109.483	1.00 46.40
MOTA	2670	CE2 PHE A 335		2.370 108.978	1.00 42.77
MOTA	2671	CZ PHE A 335	63.244	-2.399 108.696	1.00 60.85
ATOM	2672	C PHE A 335	64.334		1.00 66.28
ATOM	2673	O PHE A 335	63.689		1.00 57.40
	2674	N GLU A 336		-1:671 108.493	
ATOM	2675	CA GLU A 336	66.015	-1.411 107.174	1.00 58.96
MOTA	2012	22	65.782	-2.579 106.211	1.00 62.66
MOTA	2676	CB GLU A 336		-2.377 104.846	1.00 68.51
· ATOM	2677	CG GLU A 336		-3.590 103.943	1.00 73.21
MOTA	2678	CD GLU A 336		-4.678 104.333	1.00 73.30
MOTA	2679	OE1 GLU A 336		-3.457 102.843	1.00 75.74
ATOM	2680	OE2 GLU A 336			1.00 55.70
MOTA	2681	C GLU A 336	65.460	-0.124 106.576	1.00 55.28
MOTA	2682	o GLU A 330	64.281	-0.023 106.253	
	2683	N GLU A 3,3°	66.338	0.857 106.432	
ATOM		CA GLU A 33	65.986	2.167 105.905	
MOTA	2684		67.221	3.065 105.983	
MOTA	2685			4.536 106.092	1 00 52.28
ATOM	2686			4.891 107.366	: .00 43.72
ATOM	2687	CD GLU A 33			2 00 42.21
ATOM	2688	OE1 GLU A 33	66.705	00 05/	
ATOM	2589	OE2 GLU A 33	65.072		
ATOM	2690		7 65.485		
	2691		7 66.087	1.377 103.639	
ATOM			64.385	2.745 104.151	
ATOM	2692			2.710 102.805	1.00 61.69
MOTA	2693				1.00 60.86
ATOM	2694	CB PHE A 33			
ATOM	2695	CG PHE A 33	61.845		
ATOM	2696	CD1 PHE A 33	8 61.054		
ATOM	2697		8 61.970	00 06	
	2698			2.302 99.86	
MOTA			8 61.315	4.428 99.22	
MOTA	2699			3.322 98.93	
ATOM	2700		·		3 1.00 64.33
ATOM	2701	C PHE A 33		100 (1	6 1.00 62.45
ATOM	2702				4 1.00 64.11
ATOM	2703	N ASP A 33			
ATOM	2704	ı CA ASPA 33	9 66.689		
	2705	CB ASP A 33	9 66.56	100 10	
ATOM	2700		9 67.64	6.838 100.40	Z 1.00 00.03
3 **** 150					

MOTA MOTA MOTA	2707 2708 2709	OD1 ASP A 339 OD2 ASP A 339 C ASP A 339	67.796 68.346 68.088	4.295 101.763	1.00 72.20 1.00 64.15 1.00 68.73 1.00 68.17
MOTA	2710	O ASP A 339	68.511 68.796	4.628 102.869 3.588 100.888	1.00 71.90
MOTA	2711	N ASP A 340 CA ASP A 340	70.151	3.111 101.149	1.00 73.59
MOTA	2712 2713	CA ASP A 340 CB ASP A 340	70.778	2.601 99.848	1.00 75.47
MOTA MOTA	2714	CG ASP A 340	69.953	1.511 99.195	1.00 76.03
ATOM	2715	OD1 ASP A 340	69.761	0.449 99.823	1.00 76.90 1.00 80.23
ATOM	2716	OD2 ASP A 340	69.492	1.718 98.054 4.155 101.766	1.00 30.22
MOTA	2717	C ASP A 340	. 71.069 71.618	3.946 102.845	1.00 73.08
ATOM	2718	O ASP A 340 N GLU A 341	71.242	5.275 101.074	1.00 73.15
MOTA	2719 2720	CA GLU A 341	72.112	6.341 101.557	1.00 74.56
MOTA MOTA	2721	CB GLU A 341	72.917	6.924 100.390	1.00 77.06 1.00 82.57
ATOM	2722	CG GLU A 341	73.878	8.034 100.792 7.571 101.794	1.00 85.34
MOTA	2723	CD GLU A 341	74.924 75.718	6.669 101.450	1.00 86.64
ATOM	2724	OE1 GLU A 341 OE2 GLU A 341	74.951	8.106 102.924	1.00 85.37
ATOM	2725 2726	C GLU A 341	71.327	7.453 102.245	1.00 72.47
MOTA MOTA	2727	O GLU A 341	70.822	8.364 101.589	1.00 76.75 1.00 67.86
ATOM	2728	N VAL A 342	71.228	7.381 103.566 8.393 104.323	1.60 64.84
MOTA	2729	CA VAL A 342	70.503 69.160	7.853 104.850	1.00 66.27
MOTA		CB VAL A 342 CG1 VAL A 342	68.256	7.494 103.701	1.00 67.95
MOTA	2731 2732	CG2 VAL A 342	69.400	6.637 105.722	1.00 65.37
ATOM ATOM	2733	C VAL A 342	71.305	8.871 105.520	1.00 61.75 1.00 64.14
MOTA	2734	O VAL A 342	71.375	10.066 105.795 7.925 106.225	1.00 56.79
ATOM	2735	N ASP A 343	71.912 72.692	8.229 107.417	1.00 54.53
ATOM-	2736	CA ASP A 343 CB ASP A 343	73.707	9.340 107.158	1.00 56.31
MOTA	2737 2738	CG ASP A 343	74.531	9.660 108.388	1.00 58.81
MOTA MOTA	2739	OD1 ASP A 343	75.298	10.644.108.357	1.00 65.36 1.00 54.29
MOTA	2740	OD2 ASP A 343	74.420	8.918 109.387 8.675 108.534	1.00 50.70
ATOM	2741	C ASP A 343	71.765 71.442	9.859 108.651	1.00 46.00
ATOM	2742	O ASP A 343 N ARG A 344	71.328	7.717 109.341	1.00 46.20
MOTA MOTA	2743 2744	CA ARG A 344	70.452	8.004 110.463	1.00 41.18 1.00 39.81
MOTA	2745	CB ARG A 344	69.121	7.268 110.299 7.711 109.098	1.00 35.08
ATOM	2746	CG ARG A 344	68.289 68.036	9.211 109.121	1.00 28.37
ATOM	2747	CD ARG A 344 NE ARG A 344	67.157	9.645 108.036	1.00 30.90
MOTA	2748 2749	NE ARG A 344 CZ ARG A 344	67.013	10.909 107.649	1.00 31.05
MOTA MOTA	2750	NH1 ARG A 344	67.693	11.874 108.258	1.00 30.49 1.00 31.76
ATOM	2751	NH2 ARG A 344	66.201	11.212 106.646 7.561 111.742	1.00 38.46
ATOM	2752	C ARG A 344	71.147 70.516	7.370 112.773	1.00 34.99
ATOM	2753	O ARG A 344 N SER A 345	72.464	7.418 111.662	1.00 33.97
ATOM	2754 2755	CA SER A 345	73.261	6.981 112.795	
atom Atom	2756	CB SER A 345	74.742	6.972 112.404	
ATOM	2757	OG SER A 345	75.163	8.260 111.990 7.826 114.053	
MOTA	2758		73.054 73.100	7.314 115.167	1.00 24.35
ATOM	2759 2760		72.819	9.119 113.877	1.00 33.10
MOTA MOTA	2761		72.614	10.003 115.015	1.00 34.50
MOTA	2762	CB TYR A 346	72.397	11.437 114.522	1.00 35.16
ATOM	2763	CG TYR A 346	71.168	11.615 113.659 11.814 114.227	
MOTA	2764		69.909 68.767	11.940 113.424	1.00 40.23
ATOM	2765		71.260	11.544 112.270	1.00 39.04
ATOM	2766 2767		70.131	11.667 111.463	
atom atom	2768	CZ TYR A 346	68.890	11.864 112.041	
ATOM	2769	OH TYR A 346	67.776	11.982 111.234 9.560 115.874	1.00 37.72
MOTA	2770		71.432 71.396	9.829 117.074	1.00 35.48
ATCM	2771		70.472	8.869 115.269	
ATCM	2772		•		

				* -6	,			
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788	CB M CG M SD M CE M C O M N L CA L CB L CG I CD1 I CD2 I C O I N C	ET A 347 IET A 348 IEU A 348	-	69.295 68.226 67.853 66.471 67.058 69.632 68.890 70.747 71.137 71.841 71.066 72.010 69.906 72.075 72.583 72.295	7.868 8.809 8.194 6.647 7.363 7.187 6.663 5.641 4.476 3.655 2.660 2.935 6.232 5.513 7.541	115.052	1.00 36.97 1.00 33.45 1.00 28.09 1.00 32.14 1.00 39.25 1.00 34.67 1.00 36.42 1.00 34.57 1.00 34.16 1.00 36.58 1.00 36.58 1.00 42.34 1.00 37.75 1.00 38.31 1.00 42.86
MOTA	2789	CA (GLU A 349		73.192	8.231	118.948	1.00 47.04
ATOM	2790		GLU A 349		74.150	9.136	117.867	1.00 53.27
ATOM	2791		GLU A 349		74.942	8.420	118.410	1.00 58.36
ATOM	2792	CD (GLU A 349		75.828	7.323	119.279	1.00 59.59
ATOM	2793	OE1 (GLU A 349		76.681	6 166	117.963	1.00 59.17
ATOM	2794	OE2	GLU A 349		75.669	0.100	120.752	1.00 41.72
MOTA	2795	C	GLU A 349		72.458 72.564	8 852	121.959	1.00 42.27
MOTA	2796	0 (GLU A 349		71.716	10.067	120.261	1.00 37.05
MOTA	2797	N	THR A 350 THR A 350		70.992	10.976	121.135	1.00 40.78
MOTA	2798	CA	THR A 350		71.468	12.418	120.900	1.00 41.69
MOTA	2799 2800	CB OG1	THR A 350		71.359	12.733	119.508	1.00 43.25
MOTA MOTA	2801		THR A 350		72.918	12.575	121.325	1.00 44.11
ATOM	2802		THR A 350		69.474	10.911	120.968	1.00 41.47 1.00 39.72
ATOM	2803	0	THR A 350		68.968	10.608	119.884 122.054	1.00 38.68
ATOM	2804	N	LEU A 351		68.760	11.199	122.056	1.00 35.91
MOTA	2805		LEU A 351		67.299 66.763	11.103	123.487	1.00 35.94
ATOM	2806		LEU A 351		66.752	9.890	124.251	1.00 37.67
MOTA	2807	CG	LEU A 351		66.290	10.118	125.677	1.00 40.11
MOTA	2808	CD1	LEU A 351 LEU A 351		65.813	8.920	123.544	1.00 39.29
MOTA	2809 2810	CD2	LEU A 351		66.679	12.342	121.294	1.00 37.76
ATOM	2811	0	LEU A 351		65.747	12.149	120.512	1.00 34.86
MOTA MOTA	2812	N	LYS A 352		67.192	13.544	121.525	1.00 34.79 1.00 38.73
ATOM	2813	CA	LYS A 352		66.651	14.724	120.870	1.00 36.48
ATOM	2814	CB	LYS A 352		66.676	15.911	121.835 123.179	1.00 42.08
ATOM	2815	CG	LYS A 352		66.062	15.300	124.196	1.00 43.22
ATOM	2816	CD	LYS A 352		66.202	17 901	123.845	1.00 49.81
ATOM	2817	CE	LYS A 352		65.349 65.342	18.880	124.972	1.00 52.70
MOTA	2818		LYS A 352 LYS A 352		67.425	15.063	119.610	1.00 38.//
MOTA	2819 2820	С 0	LYS A 352		68.654	15.098	119.601	1.00 36.21
MOTA	2821		ASP A 353		66.697	15.293	118.530	1.00 37.69
MOTA	2822		ASP A 353		6 7 .337	15.647	117.286	1.00 39.89
ATOM ATOM	2823		ASP A 353		66.532	15.075	116.110	1.00 43.53 1.00 47.99
ATOM	2824		ASP A 353		65.058	15.368	116.211	1.00 47.33
ATOM	2825	OD1	ASP A 353		64.253	14.62	115.593 116.898	1.00 52.94
ATOM	2826	OD2	ASP A 353		64.706	10.304	117.247	1.00 39.20
ATOM	2827	C	ASP A 353		67.457	17.10	118.092	1.00 35.66
MOTA	2828		ASP A 353		66.890 68.244	17.60	5 116.302	
MOTA	2829		PRO A 354		69.047	17.00	5 115.279	1.00 40.05
MOTA	2830		PRO A 354		68.426	19.14	5 116.179	1.00 38.41
MOTA	2831		PRO A 354 PRO A 354		69.534	19.25	0 115.140	1.00 36.24
MOTA	2832		PRO A 354		69.190	18.09	5 114.225	1.00 39.41
ATOM	2833		PRO A 354		67.144	19.78	0 115.689	1.00 37.28
MOTA	2834 2835		PRO A 354		66.299	19.10	6 115.094	1.00 31.8/
MOTA	2836		TRP A 355		66.993	21.07	4 115.934	
MOTA	2837		TRP A 355		65.804		7 115.472	
ATOM	2838		TRP A 355		65.714	23.15	7 116.080	1.00 42.03
MOTA	2000							

	2020	CG TRP	A 355	64	. 333	23.471	116.569	1.00 5	
MOTA	2839		A 355		439		116.047	1.00 5	
MOTA	2840		A 355		. 234	24.368	116.783	1.00 5	
MOTA	2841		A 355		.538	25.422	115.028	1.00 5	
MOTA	2842				. 655	22.836	117.575	1.00 5	1.80
MOTA	2843		A 355		. 393		117.708	1.00 5	1.38
MOTA	2844		A 355		.134		116.532	1.00 5	1.28
ATOM	2845		A 355		.444		114.779	1.00 5	
MOTA	2846		A 355		. 257	26.126	115.531	1.00 5	0.50
MOTA	2847		A 355		.935	21.836	113.954	1.00 3	
MOTA	2848		A 355	63	.041	21.929	113.422	1.00 3	
MOTA	2849		A 355		.809	21.764	113.259	1.00 3	
MOTA	2850	N ARG	A 356		.797	21.820	111.802	1.00 3	
MOTA	2851		A 356		. 317	20.469	111.252	1.00	33.36
MOTA	2852	CB ARG	A 356		.310	19.340	111.564	1.00	34.50
ATOM	2853		A 356	51	.729	17.927	111.468	1.00 2	
MOTA	2854	CD ARG	A 356	65	.745	16.956	111.870	1.00	24.79
MOTA	2855	_	A 356		.499	15.703	112.236	1.00	27.56
MOTA	2856	CZ ARG	A 356		.253	15.237	112.259	1.00	19.09
MOTA	2857	NH1 ARG	A 356	66	.502	14.918	112.604	1.00	21.34
MOTA	2858		A 356	63	.874	22.955	111.390	1.00	33.74
ATOM	2859		A 356		.746	22.732	110.950	1.00	34.68
MOTA	2860		A 356		.361	24.181	111.550	1.00	35.60
MOTA	2861		A 357		.556	25.345	111.220	1.00	35.43
MOTA	2862		A 357	6.3	.719	25.932	109.830		38.08
MOTA	2863		A 357		.112	25.250			37.29
MOTA	2864	O GLY	A 357 A 358		.406	27.218		1.00	39.67
ATOM	2865		A 358		3.493	27.925		1.00	36.36
MOTA	2866				2.398	28.966	108.499		39.45
MOTA	2867	C GLY		61	.763	29.131	109.539		37.58
MOTA	2868		A 350		2.163	29.662	107.391		40.89
MOTA	2869				1.121	30.682			41.37
MOTA	2870	CA GLU	A 359		1.310	31.627			44.64
MOTA	2871		J A 359		0.956	30.977	104.848	1.00	52.13
MOTA	2872	CG GLU	J A 359		0.833	31.973			59.14
MOTA	2873		J A 359		0.448	31.551			60.47
MOTA	2874		J A 359		1.119	33.173	103.923		57.77
ATOM	2875		J A 359		9.770	30.006	107.200	1.00	38.02
MOTA	2876		J A 359		9.689	28.828	106.850	1.00	35.29
ATCM	2877		A 360		8.708	30.762	107.441	1.00	36.81
ATOM	2878		L A 360		7.363	30.237	107.291		35.97
MOTA	2879 2880		L A 360		6.401	30.789	108.368		34.90
ATOM			L A 360		4.999	30.251	108.133		36.53
MOTA	2881 2882		L A 360		6.888	30.393	3 109.755		37.06
ATOM	2883		L A 360		6.886	30.690	105.928	1.00	36.74
ATOM	2884		L A 360		6.661	31.883	1 105.712	1.00	34.90
ATOM	2885		G A 361		6.753	29.74	1 105.004	1.00	35.48
MOTA	2886	CA AR	G A 361		6.301	30.04	9 103.652	1.00	38.21
ATOM	2887	CB AR	G A 361	5	6.152	28.77	6 102.815	1.00	39.76
ATOM	2888	CG AR	G A 361	5	7.416		2 102.098		39.93
ATOM	2889		G A 361		7.225	26.96	3 101.486		38.68
ATOM	2890		G A 361		7.112	25.94	0 102.525		39.72
ATCM	2891		G A 361	5	6.952	24.64	3 102.286		38.79
ATOM	2891		G A 361	5	6.881	24.20	0 101.036		32.40
MOTA	2892	NH2 AR	G A 361		6.899	23.78	5 103.297		36.58
MOTA	2893 2894		G A 361		4.996	30.80	7 103.603		38.98
ATOM	2895		G A 361		4.120	30.63	6 104.452		39.07
ATOM	2895		S A 362	5	4.880	31.63	4 102.573		39.95
ATCM	2897 2897		S A 362	5	3.709	32.45	9 102.339		42.73
ATOM			S A 362		3.931	. 33.30	1 101.078	1.00	44.92
ATOM	2898		S A 362	5	4.995	34.39			55.45
ATOM	2899		S A 362	-	6.351	33.84	2 101.671		58.28
ATCM			S A 362	5	6.907	7 32.80	9 100.697		57.34
ATOM			S A 362	9	58.224	32.28	3 101.151		58.75
ATOM			S A 362		52.434	1 31.63	4 102.200		40.51
ATOM	2903		S A 362		31.391		6 102.748	1.00	36.10
ATOM	2904								

				4	9	_			
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917	CA GLU CB GLU CG GLU CD GLU OE1 GLU OE2 GLU C GLU N VAI CA VAI CB VAI CG1 VAI	J A 363 J A 363 J A 363 J A 363 J A 363 J A 363 J A 364 L A 364 L A 364 L A 364		52.506 51.313 51.587 52.729 52.995 52.080 54.116 50.788 49.582 51.691 51.274 52.484 52.018 53.198	30.527 29.705 28.530 27.616 26.547 25.737 26.526 29.209 29.113 28.910 28.455 28.048 27.676 26.867	101.295 100.347 100.739 99.683 99.409 99.125 102.636 102.834 103.564 104.886 105.749 107.160 105.109	1.00 3 1.00 4 1.00 4 1.00 5 1.00 4 1.00 3 1.00 3 1.00 3 1.00 3	0.96 3.62 7.01 1.65 5.63 8.44 7.74 4.79 3.64 2.39 3.99
ATOM ATOM	2918 2919	C VA	L A 364		50.506	29.574	105.589	1.00 3	4.33
MOTA	2920	O VA	L A 364		49.454	29.336 30.797	106.188 105.499	1.00 2	88.12
MOTA	2921	N LY	S A 365 S A 365		51.027 50.381	31.952	106.119	1.00 3	36.77
MOTA MOTA	2922 2923	CB LY	S A 365		51.255	33.204	105.969	1.00 3	37.98
ATOM	2924	CG LY	S A 365		52.629 53.449	33.084	106.610 106.429	1.00	35.50
MOTA	2925		S A 365 S A 365		54.837	34.190	107.032	1.00 4	40.35
MOTA MOTA	2926 2927	CE LY	S A 365		55.674	35.407	106.877	1.00	43.74
ATOM	2928	C LY	S A 365		49.025	32.191	105.468 106.148	1.00	33.53
MOTA	2929		S A 365 P A 366		48.038 48.968	32.409	104.147	1.00	37.05
ATOM	2930 2931		P A 366		47.708	32.278	103.449	1.00	37.72
MOTA MOTA	2932	CB AS	P A 366		47.906	32.237	101.929	1.00	40.57 43.98
ATOM	2933	CG AS	P A 366		48.833 49.078	33.334 34.304		1.00	38.51
ATOM	2934 2935		P A 366 P A 366		49.297	33.235	100.269	1.00	
MOTA MOTA	2935	C AS	P A 366		46.670	31.238	103.862	1.00 1.00	
MOTA	2937	O AS	P A 366		45.497	31.562	104.029	1.00	
MOTA	2938		IR A 367 IR A 367		47.096 46.167	28.935	104.432	1.00	36.80
MOTA	2939 2940		IR A 367		46.868	27.560	104.527	1.00	33.84
MOTA MOTA	2941	OG1 TH	IR A 367		47.332	27.167	7 103.232 9 105.046	1.00	34.92 35.11
ATOM	2942		IR A 367		45.904 45.532	29.257		1.00	36.58
MOTA	2943	C TH	ir A 367 ir A 367		44.307	29.202	2 105.931		30.18
MOTA MOTA	2944 2945	N LI	EU A 368		46.363	29.582		1.00	35.32 35.46
ATOM	2946	CA LI	EU A 368		45.850	29.926 30.169			34.03
MOTA	2947		EU A 368 EU A 368		46.997 47.545			1.00	39.04
MOTA MOTA	2948 2949	CG LI	EU A 368		46.449	28.35	8 110.688		37.35
MOTA	2950	CD2 L	EU A 368		48.014		1 108.797 6 107.994		39.52 38.12
ATOM	2951	C LI	EU A 368		44.957 43.968		7 108.719		31.70
MOTA	2952	0 L	EU A 368 LU A 369		45.307	32.06	3 107.086	1.00	40.45
MOTA MOTA	2953 2954	N G	LU A 369		44.509	33.26	1 106.866	1.00	45.36 47.38
ATOM	2955	CB G	LU A 369		45.128			1.00	53.81
MOTA	2956	CG G	LU A 369		46.020 45.227		6 106.996	1.00	59.97
MOTA	2957	CD G	LU A 369 LU A 369		45.846		2 107.526	1.00	60.65
ATOM	2958 2959		LU A 369		43.980	36.21	1 107.016		63.69 43.23
MOTA MOTA	2960	C G	LU A 369		43.100				44.62
ATOM	2961		LU A 369		42.130 42.983			1.00	40.34
MOTA	2962 2963	_	YS A 370 YS A 370		41.666	31.63	1 104.977	1.00	43.36
MOTA MOTA	2963	CB L	YS A 370		41.738	30.77			44.79 48.93
ATOM	2965	CG L	YS A 370		42.032	31.54 31.51		1.00	51.41
ATOM	2966	CD L	YS A 370 YS A 370		43.503 43.923	30.11		1.00	51.14
ATOM	2967 2968	_	YS A 370		45.339	30.06	2 101.091	1.00	50.34
MOTA ·	2969	CI	ys A 370		40.959		18 106.069		43.09
ATOM	2970		YS A 370		39.745	30.97	77 106.248		

			I iguio				
ATOM	2971 2972	N ALA A 371 CA ALA A 371	41.7 41.1	20 29.2	38 107.8	61 1.00 43.57	7
MOTA	2972	CB ALA A 371	42.1	93 28.4	40 108.5		
MOTA	2974	C ALA A 371	40.3	65 30.1	_	37 1.00 46.10	
MOTA MOTA	2975	O ALA-A 371	39.2			10 1.00 46.07	
ATOM	2976	N LYS à 372	40.9	81 31.2	39 109.2		
ATOM	297.7	CA LYS A 372	40.3				
MOTA	2978	C LYS A 372	39.0				
ATOM	2979	O LYS A 372	38.2			-	
ATOM	2980	CB LYS A 372	41.3		_		
MOTA	2981	CG LYS A 372	42.8				
MOTA	2982	CD LYS A 372	45.2			49 1.00 20.0	
MOTA	2983	CE LYS A 372 NZ LYS A 372	46.3		_	81 1.00 20.0	
MOTA	2984	NZ LYS A 372 N ALA A 373	38.7		476 108.3		
ATOM	2985 2986	CA ALA A 373	37.4	192 32.			
MOTA MOTA	2987	CB ALA A 373	37.7		632 106.4		
ATOM	2988	C ALA A 373	36.9		773 107.5		
MOTA	2989	O ALA A 373	35.4				
MOTA	2990	OXT ALA A 373	36.	370 30.	431 56.8		7
MOTA	3014	CB ALA B 2	54.8 53.9				
MOTA	3015	C ALA B 2	54.:		720 57.		
MOTA	3016	O ALA B 2 N ALA B 2	54.		672 54.5	557 1.00 58.2	2
MOTA	3017		53.	914 -3.	584 56.0	008 1.00 58.4	7
ATOM	3018	CA ALA B 2 N LYS B 3	52.		376 56.3		9
ATOM	3019 3020	CA LYS 3	52.		022 56.		
MOTA MOTA	3021	CB LYS B 3	51.		700 55.		
ATOM	3022	CG LYS B 3	51.		785 54.		
ATOM	3023	CD LYS 3	50.		681 53. 783 52.		
ATOM	3024	CE LYS B 3	50.		783 52. 323 51.		
MOTA	3025	NZ LYS B 3			238 58.		
MOTA	3026	C LYS B 3 O LYS B 3				830- 1.00 41.6	53
MOTA	3027				385 58.	467 1.00 41.4	16
MOTA	3028 3029	N VAL B 4 CA VAL B 4	-	483 1.	.751 59.		35
MOTA MOTA	3030	CB VAL B -4	54.		.288 60.		22
ATOM	3031	CG1 VAL B 4		•	.541 61.		36
ATOM	3032	CG2 VAL B 4				652 1.00 38.5 230 1.00 38.5	
MOTA	3033	C VAL B 4				691 1.00 42.	во
MOTA	3034	O VAL B 4				157 1.00 34.	90
MOTA	3035	N LYS B 5			396 61.	558 1.00 31.	22
ATOM	3036	CA LYS B 5			.796 61.	215 1.00 33.	
ATOM	3037	CG LYS B 5		841 2	.623 59.	726 1.00 36.	60
MOTA	3038 3039			667 3	_	032 1.00 41.	48
MOTA MOTA	3040	CE LYS B 5		_	·	577 1.00 43. 781 1.00 42.	52
MOTA	3041	NZ LYS 3 5				781 1.00 42. 038 1.00 32.	
ATOM	3042	C LYS B 5				878 1.00 25.	78
MOTA	3043	O LYS B 5				343 1.00 27.	07
ATOM	3044					712 1.00 31.	09
MOTA	3045				.696 64	.896 1.00 30.	13
ATOM	3046				.340 66	.285 1.00 28.	09
ATOM	3047			.333 7	.827 66	.728 1.00 38.	87
ATOM	3048 3049	· • • • • • • • • • • • • • • • • • • •			3.338 67	.282 1.00 24.	87
ATOM	3050		48	.324 5		.924 1.00 29.	36
MOTA MOTA	3050	O LEU B 6	47			.149 1.00 33. .960 1.00 28.	02
MOTA	3052	N ILE B 7	47				83
ATOM	3053	3 CA ILE 3				.250 1.00 23. .670 1.00 25.	11
ATOM	3054	I CB ILE B 7				.127 1.00 23	. 59
ATOM	3055	G CG2 ILE B 7				477 1.00 31	. 00
ATOM	3056					.906 1.00 38	. 60
ATOM	3057	, , , , , , , , , , , , , , , , , , , ,	_		5.130 67	.363 1.00 26	. 49
ATOM	3058		46			.430 1.00 26	. 68
MOTA	3059	9 O ILE B	30	- '			

			CT V D	8		45.372	7.151	67.106	1.00 29.51
ATOM	3060	-	GLY B	8		45.151	8.170	68.117	1.00 30.28
ATOM	3061	CA	GLY B			44.217	9.273	67.667	1.00 28.79
ATOM	3062	С	GLY B	8		43.629	9.207	66.590	1.00 19.70
ATOM	3063	0	GLY B	8		44.088	10.291	68.509	1.00 26.46
ATOM	3064	N	THR B	9		43.234	11.438	68.238	1.00 29.37
ATOM-	3065	CA	THR B	9		41.748	11.064	68.311	1.00 32.64
atom	3066	CB	THR B	9		40.959	12.253	68.218	1.00 30.35
MOTA	3067	OG1	THR B	9		41.431	10.383	69.637	1.00 33.42
MOTA	3068		THR B	9		41.431	12.496	69.302	1.00 33.42
ATOM	3069	С	THR B	9			12.173	70.416	1.00 30.46
ATOM	3070	0	THR B	9		43.884	13.754	68.961	1.00 32.05
ATOM	3071	N	LEU B.	10	_	43.228 43.396	14.840	69.914	1.00 34.75
ATOM	3072	CA	LEU B	10		43.390	16.189	69.190	1.00 38.02
MOTA	3073	CB	LEU B	10		44.605	16.578	68.355	1.00 40.82
MOTA	3074	CG	LEU B	10		44.961	15.472	67.394	1.00 43.62
ATOM	3075	CD1	LEU B	10		44.314	17.869	67.605	1.00 34.99
ATOM	3076		LEU B	10		42.272	14.809	70.945	1.00 34.25
ATOM	3077	C	LEU B	10		42.415	15.348	72.042	1.00 33.13
ATOM	3078	0	LEU B	10		41.158	14.169	70.595	1.00 30.61
MOTA	3079	N	ASP B	11		40.011	14.098	71.501	1.00 33.08
MOTA	3080	CA	ASP B	11		38.928	13.167	70.945	1.00 37.57
MOTA	3081	CB	ASP B	11		38.372	13.643	69.621	1.00 43.14
ATOM	3082	CG	ASP B	11 11		38.013	14.834	69.525	1.00 42.22
MOTA	3083		ASP B	11		38.281	12.825	68.681	1.00 45.58
MOTA	3084		ASP B	11		40.358	13.654	72.919	1.00 32.19
MOTA	3085	C	ASP B	11		39.688	14.053	73.875	1.00 23.44
MOTA	3086	0	ASP B	12		41.386	12.822	73.066	1.00 28.02
MOTA	3087	N	TYR B	12		41.770	12.373	74.402	1.00 32.00
ATOM	3088	CA	TYR B	12		43.011	11.476	74.363	1.00 28.67
ATOM	3089	CB	TYR B TYR B	12		42.821	10.108	73.737	1.00 25.33
MOTA	3090	CG		12		43.338	9.823	72.475	1.00 23.74
MOTA	3091	CD1		12		43.235	8.546	71.924	1.00 22.85
ATOM	3092	CD2		12		42.183	9.077	74.436	1.00 21.93
ATOM	3093	CE2		12		42.074	7.793	73.889	1.00 21.99
MOTA	3094 3095	CZ	TYR B	12		42.605	7.538	72.640	1.00 22.99
MOTA	3095	OH	TYR B	12		42.532	6.273	72.109	1.00 18.79
ATOM	3097	C	TYR B	12		42.054	13.567	75.319	1.00 32.74
MOTA	3098	ō	TYR B	12		41.986	13.450	76.542	1.00 23.85
MOTA	3099	N	GLY B	13		42.374	14.710	74.720	1.00 26.96 1.00 34.92
MOTA MOTA	3100	CA	GLY B	13		42.658	15.900	75.501	1.00 34.92
ATOM	3101	c	GLY B	13		41.452	16.396	76.277	1.00 34.10
ATOM	3102	Ö	GLY B	13		41.580	17.228	77.176	1.00 37.23
ATOM	3103	N	LYS B	14		40.279	15.875	75.929	1.00 41.77
ATOM	3104	CA	LYS B	14		39.031	16.247	76.584 75.537	1.00 45.82
ATOM	3105	CB	LYS B	14		37.925	16.406	74.579	1.00 51.38
ATOM	3106		LYS B	14		38.110	17.585	75.241	1.00 57.78
ATOM	3107		LYS B	14		37.805	18.939		1.00 58.82
ATOM	3108		LYS B	14		38.752	19.285 20.568		1.00 55.06
ATOM	3109	NZ		14		38.387	15.226		
ATOM	3110	C	LYS B	14		38.591	15.385		1.00 35.54
MOTA	3111	. 0	LYS B			37.546	14.186		
ATOM	3112	N	TYR B			39.395			
MOTA	3113	CA				39.070			
MOTA	3114	CB				38.863			1.00 42.02
ATCM	3115	CG				37.850			1.00 41.06
ATOM	3116					38.064 37.138			1.00 42.76
ATOM	3117	CE		_					1.00 42.99
ATOM	3118	G CE				36.678 35.748			1.00 43.30
ATOM	3119			15		35.740		•	1.00 45.49
ATOM	3120					35.964		_	1.00 45.69
ATOM	3123	ı oh				40.151			1.00 43.48
ATOM	312		TYR E			40.131			1.00 41.20
ATOM	312		TYR I			40.513	14.05		1.00 43.01
ATCM	312		ARG I			41.686	14.01		40 70
3.0014		s ca	ARG I	3 16		41.000			

					8		_		
> mo>/	3126	СВ	ARG B	16	42	. 250	15.410	81.663	1.00 49.13
MOTA	3127	CG	ARG B	16		. 656	16.197	80.447	1.00 54.22
ATOM	-	CD	ARG B	16		. 858	15.624	79.751	1.00 55.13
MOTA	3128 3129	NE	ARG B	16	44	.303	16.549	78.718	1.00 62.87
MOTA	3130	CZ	ARG B	16		.628	17.818	78.951	1.00 64.92
MOTA		NH1	ARG B	16		. 556	18.308	80.182	1.00 65.86
ATOM	3131	NH2	ARG B	16		.022	18.600	77.954	1.00 67.15
ATOM	3132	C	ARG B	16		.093	13.531	82.728	1.00 42.97
ATOM	3133 3134	0	ARG B	16		.882	13.593	82.927	1.00 38.44
MOTA	3135	N	TYR B	17	41	.949	13.056	83.628	1.00 39.36
ATOM	3136	CA	TYR B	17	41	.494	12.637	84.945	1.00 37.67
MOTA	3137	СВ	TYR B	17		.500	11.679	85.584	1.00 31.69
ATOM	3138	CG	TYR B	17	42	.413	10.250	85.087	1.00 28.00
ATOM ATOM	3139	CD1		17	42	.530	9.944	83.732	1.00 22.89 1.00 21.42
ATOM	3140	CE1		17	42	.502	8.618	83.287	1.00 21.42
ATOM	3141	CD2		17		.258	9.196	85.984	1.00 24.67
ATOM	3142	CE2		17		.229	7.873	85.556	1.00 27.13
ATOM	3143	CZ	TYR B	17		.355	7.587	84.210	1.00 27.13
ATOM	3144	он	TYR B	17		.371	6.271	83.796 85.765	1.00 38.94
ATOM	3145	С	TYR B	17		.377	13.927	85.391	1.00 39.65
ATOM	3146	0	TYR B	17		.947	14.951	86.891	1.00 41.27
ATOM	3147	N	PRO B	18		.647	13.893	87.462	1.00 43.62
MOTA	3148	CD	PRO B	18		.958	12.728 15.058	87.762	1.00 45.33
MOTA	3149	CA	PRO B	18		.448	14.473	88.928	1.00 44.09
ATOM	3150	CB	PRO B	18		648 0.096	13.015	88.933	1.00 49.22
ATOM	3151	CG	PRO B	18		1.096	15.809	88.221	
MOTA	3152	С	PRO B	18		2.789	15.244	88.317	1.00 45.44
ATOM	3153	0	PRO B	18 19		1.506	17.095	88.507	1.00 48.42
MOTA	3154	N	LYS B	19		2.535	18.040	88.952	1.00 51.03
MOTA	3155	CA	LYS B	19		1.873	19.122	89.814	1.00 56.35
ATOM	3156	CB	LYS B	19		0.630	18.657	90.563	1.00 65.69
ATOM	3157	CG CD	LYS B	19		0.894	17.441	91.423	1.00 68.96
MOTA	3158 3159	CE	LYS B	19		9.602	16.882	91.999	1.00 71.85
MOTA	3160	NZ	LYS B	19	3:	9.825	15.603	92.731	1.00 72.79
MOTA MOTA	3161	C	LYS B	19	4	3.830	17.593	89.639	1.00 48.62 1.00 49.04
MOTA	3162	ō	LYS B	19		4.912	18.009	89.235	1.00 43.04
MOTA	3163	N	ASN B	20	_	3.745	16.775	90.678 91.375	1.00 43.86
MOTA	3164	CA	ASN B	20		4.957	16.356	92.890	1.00 45.92
ATOM	3165	CB	ASN B	20		4.740		93.355	1.00 49.44
ATOM	3166	CG	ASN B	20		4.418		93.138	1.00 47.72
ATOM	3167		1 ASN B	20		5.194		93.999	1.00 49.42
MOTA	3168	ND:		20		3.268 5.460			1.00 39.49
MOTA	3169	Ç	ASN B	20	_	6.496		91.494	1.00 38.24
ATCM	3170	0	ASN B	20 21		4.729		00 140	1.00 36.93
ATOM	3171	N	HIS B			5.091		8 723	1.00 33.57
MOTA	3172					3.948			1.00 28.67
ATOM	3173					4.068	10.817	88.750	
ATOM	3174					4.779	10.076	87.867	
ATOM	3175 3176		1 HIS B			3.431		89.578	
ATOM	3177		1 HIS B		4	3.743	8.686		
ATOM	3178		2 HIS B			4.560	8.755		
ATOM	3179		HIS E			6.348			
MOTA MOTA	3180		HIS B			6.536			
ATOM	3181		PRO E			7.225			
ATOM	3182			3 22		17.187			
ATOM	3183	-		3 22		18.446			
ATOM	3184					19.05			
ATCM	3185					13.658			
ATOM	3186		PRO P			48.17			
ATCM	318	7 0	PRO I		•	48.989			7 1.00 24.47
ATOM	318		LEU !			47.03		_	
ATOM	318		A LEU			46.68 45.93		_	3 1.00 22.18
ATOM	319			B 23		45.93. 46.76		-	
ATCM	319	1 0	G LEU	в 23		40.70	0.03		

PCT/US00/24700 WO 01/18045

						45 060	7.628	84.402	1.00 24.94
M	3192		LEU B	23		45.868			
M	3193	CD2	LĘU B	23		47.805	8.905	83.446	
	3194		LEU B	23		45.891	12.638	84.367	1.00 27.95
M		-		23		45.166	12.528	83.373	1.00 24.42
М	3195	-	LEU B					85.018	1.00 31.01
M	3196	7	LYS B	24		46.011	13.793		
M	3197		LYS B	24		45.261	14.946	84.530	1.00 29.40
	-			24		44.934	15.923	85.665	1.00 33.03
M	3198	-	LYS B			_	16.969	85.999	1.00 33.54
M	3199	ÇG	LYS B	24		45.979			
·Μ	3200	CD	LYS B	24		47.300	16.397	86.422	1.00 39.10
	3201		LYS B	24		48.109	17.466	87.152	1.00 45.49
M						48.224	18.737	86.380	1.00 45.95
M	3202		LYS B	24					1.00 30.02
M	3203	С	LYS B	24		46.039	15.653	83.425	
M	3204		LYS B	24		45.508	16.523	82.736	1.00 28.82
			ILE B	25		47.298	15.262	83.246	1.00 25.93
M	3205	N				48.139	15.858	82.212	1.00 29.48
M	3206	CA	ILE B	25					1.00 33.61
M	3207	CB	ILE B	25		49.541	15.528	82.409	
)M	3208	CG2	ILE B	25		50.126	16.033	83.775	1.00 32.27
		CG1	ILE B	25		49.851	14.014	82.263	1.00 28.17
M	3209					51.310	13.584	82.188	1.00 36.32
M	3210		ILE B	25				80.834	1.00 30.08
)M	3211	С	ILE B	25		47.784	15.318		
M	3212	0	ILE B	25		47.263	14.210	80.704	1.00 25.37
	3213	N	PRO B	26		48.064	16.101	79.783	1.00 29.19
M						48.650	17.448	79.770	1.00 32.47
MC	3214	CD	PRO B	26				78.413	1.00 29.52
MC	3215	CA	PRO B	26		47.782	15.673		
MC	3216	CB	PRO B	26		48.103	16.921	77.593	1.00 29.84
	3217	CG	PRO B	26		47.930	18.046	78.599	1.00 36.40
MC						48.789	14.561	78.137	1.00 27.64
MC	3218	С	PRO B	26				78.629	1.00 23.08
MC	3219	0	PRO B	26	-	49.920	14.620		
MC	3220	N	ARG B	27		48.403	13.557	77.360	1.00 23.09
		CA	ARG B	27		49.326	12.469	77.072	1.00 23.00
MC	3221					48.987	11.264	77.962	1.00 26.21
MC	3222	CB	ARG B	27					1.00 17.03
MC	3223	CG	ARG B	27		49.101	11.617	79.449	
MC	3224	CD	ARG B	27		48.663	10.507	80.416	1.00 26.83
		NE	ARG B	27		49.586	9.375	80.502	1.00 22.99
MC	3225					49.444	8.220	79.856	1.00 25.06
MC	3226	CZ	ARG B	27				79.059	1.00 17.74
MC	3227	NHl	ARG B	27		48.408	8.022	_	
DM	3228	NH2	ARG B	27		50.336	7.253	80.027	1.00 23.38
			ARG B			49.329	12.097	75.595	1.00 22.54
MC	3229 -					50.214	12.526	74.852	1.00 21.86
MC	3230	O	ARG B					75.148	1.00 20.64
MC	3231	N	VAL E	28		48.352	11.318		
OM	3232	CA	VAL B	28		48.337	10.954	73.739	1.00 26.57
	3233	СВ	VAL B			47.242	9.917	73.424	1.00 30.92
OM						47.195	9.645	71.925	1.00 27.04
MO	3234	CG1	VAL B					74.172	1.00 25.45
OM	3235	CG2	VAL B			47.535	8.616		
OM	3236	C	VAL B	28		48.150	12.189	72.866	1.00 28.02
	3037	Э	VAL B			48.780	12.311	71.808	1.00 30.88
OM	-					47.298	13.112	73.304	1.00 24.30
OM	3.38	7/	SER B					72.523	1.00 29.48
OM	3139	CA	SER B			47.082	14.326		
OM	3240	CB	SER B	29		45.939	15.169	73.110	1.00 31.72
	3241	ЭG	SER 3			46.218	15.614	74.424	1.00 34.55
MO						48.379	15.125	72.514	1.00 30.81
OM	3242	С	SER B				15.820	71.545	1.00 28.85
OM	3243	Э	SER B			48.680			1.00 29.63
'OM	3244	N	LEU B	30		49.157	15.003	73.589	1.00 29.03
	.3245	CA	LEU 9			50.427	15.721	73.679	1.00 31.59
'OM						51.046	15.593	75.079	1.00 29.49
MO'	3246	CB	LEU B				16.660	75.513	1.00 34.37
OM	3247	CG	LEU B			52.066			1.00 30.15
'OM	3248	CD1	LEU B	30		52.937	16.083	76.610	
	3249	CD2				52.951	17.098	74.357	1.00 32.90
MO'						51.371	15.085	72.672	1.00 25.90
MO'	3250	2	LEU E			52.5.2	15.777	71.913	1.00 25.10
MO'	3251	Э	LEU E			52.052			
'OM	3252	M	LEU B	31		51.404	13.756	72.675	
	3253	CA	LEU E			52.268	13.013	71.764	1.00 25.52
MO						51.966	11.514	71.842	1.00 26.41
CM	3254	CB	LEU E			52.056	10.524	71.441	1.00 28.93
CM	3255	CG	LEU E			53.066		71.042	1.00 23.69
MO.	3256	CD1	LEU E	3 3 1		52.425	9.198		
CM	3257	CD2	LEU E	3 3 1		53.873	11.049	70.300	1.00 30.41
. 641									

		_	LEU 3	31		52.010	13.489	70.335	1.00 25.38
ATOM	3258	_	LEU 3	31		52.940	13.851	69.614	1.00 21.03
MOTA	3259	-	LEU B	32		50.741	13.481	69.933	1.00 21.27
MOTA	3260			32		50.364	13.899	68.585	1.00 27.91
ATOM	3261		LEU 3	32		48.841	13.798	68.408	1.00 26.60
MOTA	3262		LEU B			48.195	12.419	68.614	1.00 27.30
MOTA	3263		LEU 3	32		46.699	12.504	68.321	1.00 31.60
MOTA	3264	CD1 -		32		48.837	11.391	67.708	1.00 26.90
ATOM	3265		LEU 3	32			15.317	68.242	1.00 26.07
MOTA	3266	-	TEO 3			50.835	15.533	67.205	1.00 22.45
MOTA	3267		LEU 3	32		51.458	16.282	69.111	1.00 28.19
MOTA	3268	N	ARG 3	33	•	50.545	17.660	68.865	1.00 31.77
ATOM	3269	CA	ARG B			50.962	18.601	69.930	1.00 34.22
MOTA	3270	CB	ARG B	33		50.395	18.740	69.904	1.00 40.33
MOTA	3271	CG	ARG 3			48.887	19.713	70.970	1.00 47.67
ATOM	3272	CD	ARG B			48.420	19.713	70.924	1.00 56.24
ATOM	3273	ΝE	ARG B			46.977	20.505	69.912	1.00 60.10
MOTA	3274	CZ	ARG 3			46.330	20.929	68.845	1.00 63.11
ATOM	3275	NH1	ARG 3			46.997	20.652	69.965	1.00 63.81
MOTA	3276	NH2	ARG B			45.011 52.476	17.791	68.852	1.00 30.12
MOTA	3277	С	ARG 3			53.028	18.580	68.097	1.00 30.20
MOTA	3278	0	ARG B			53.147	17.012	69.694	1.00 30.70
MOTA	3279	N	PHE 3			54.600	17.060	69.774	1.00 29.42
MOTA	3280	CA	PHE B				16.176	70.920	1.00 30.46
MOTA	3281	CB	PHE B			55.096	16.358	71.248	1.00 28.56
MOTA	3282	CG	PHE B			56.556	17.515	71.885	1.00 26.92
MOTA	3283	CD1	PHE B			57.001		70.932	1.00 28.88
MOTA	3284	CD2	PHE B			57.481	15.373 17.684	72.206	1.00 28.15
MOTA	3285		PHE E			58.346	15.530	71.246	1.00 31.47
MOTA	3286	CE2				58.831	16.689	71.887	1.00 28.15
MOTA	3287	CZ	PHE B			59.265	16.583	68.460	1.00 33.78
MOTA	3288	С	PHE E			55.202	17.259	67.873	1.00 33.71
MOTA	3289	0	PHE E			56.049	15.413	67.999	1.00 28.65
ATOM	3290	N	LYS			54.770	14.880	66.753	1.00 34.33
MOTA	3291	CA	LYS			55.294	13.509	66.454	1.00 32.97
MOTA	3292	CB	LYS 5	_		54.684 55.141	12.423	67.414	1.00 34.93
ATOM	3293	CG	LYS			54.580	11.066	67.047	1.00 41.43
ATOM	3294	CD	LYS			53.070	11.004	67.205	1.00 44.04
MOTA	3295	CE	LYS			52.335	11.984	66.345	1.00 60.09
ATOM	3296	NZ	LYS			55.015	15.842	65.608	1.00 35.78
ATOM	3297	C	LYS			55.869	16.061	64.752	1.00 33.39
MOTA	3298	0	LYS			53.823	16.426	65.602	1.00 32.32
MOTA	3299	N	ASP !			53.468	17.365	64.552	1.00 36.31
ATOM	3300	CA	ASP			52.015	17.800	64.698	1.00 42.56
MOTA	3301	CB	ASP :			51.617	18.822	63.661	1.00 43.03
ATOM	3302	CG	ASP :			51.812	18.544	62.461	1.00 79.17
MOTA	3303	OD1				51.111	19.897	64.043	1.00 .4.34
MOTA	3304		ASP			54.371	18.590	64.578	1.00 6.14
ATOM	3305	С	ASP			54.764	19.099	63.534	1.00 32.40
MOTA	3306	0	ASP			54.694	19.061	65.777	1.00 34.80
MOTA	3307	N	ALA			55.554	20.226	65.924	
ATOM	3308	CA	ALA			55.599	20.659	67.383	1.00 38.54
ATOM	3309	CB	ALA			56.959	19.901	65.429	1.00 37.66
MOTA	3310	С	ALA			57.675	20.776		1.00 30.56
MOTA	3311	0	ALA			57.346	18.635	65.541	1.00 37.42
ATOM	3312	N		38			18.192	65.107	1.00 36.25
MOTA	3313	CA	MET			58.670	17.059	66.013	1.00 36.44
ATOM	3314	CB		38 38		59.158	17.438	67.474	1.00 37.68
ATOM	3315	CG		38		59.341		67.784	
MOTA	3316	SD		3 38		60.841	18.391 17.228		
ATOM	3317	CE		38		62.093			
ATOM	3318	С	MET			58.639	17.690		
ATOM	3319		MET			59.659	17.262		
ATOM	3320		ASN			57.470			
ATOM	3321	CA				57.321	17.262		
ATOM	3322	CB				58.156			
ATOM	3323		ASN	B 39		57.670	19.543		

							10 001	60.212	1.00 48.78
ATOM	3324	OD1	ASN B	39		56.524	19.801		1.00 46.52
ATOM	3325	ND2	ASN B	39		58.540	20.486	60.933	1.00 39.12
ATOM	3326	С	ASN B	39		57.759	15.804	61.569	
	3327	ō	ASN B	39		58.465	15.416	60.639	1.00 35.75
ATOM			LEU B	40		57.332	14.997	62.535	1.00 34.64
MOTA	3328	N		40		57.700	13.590	62.556	1.00 35.10
MOTA	3329	ÇA	LEU B			58.347	13.248	63.898	1.00 35.97
ATOM	3330	CB	LEU B	40			14.073	64.227	1.00 36.21
ATOM	3331	CG	LEU B	40		59.595		65.573	1.00 36.57
MOTA	3332	CD1	LEU B	40		60.148	13.648		1.00 36.79
MOTA	3333	CD2	LEU B	40		60.646	13.880	63.145	
MOTA	3334	С	LEU B	40		56.549	12.626	62.264	
	3335	ō	LEU B	40		56.637	11.438	62.573	1.00 39.15
MOTA	3336	N	ILE B	41	•	55.476	13.131	61.663	1.00 36.79
MOTA		CA	ILE B	41		54.340	12.290	61.314	1.00 35.42
MOTA	3337		ILE B	41		53.445	11.991	62.536	1.00 35.21
MOTA	3338	CB		41		52.793	13.271	63.047	1.00 31.89
MOTA	3339	CG2				52.367	10.980	62.141	1.00 32.68
ATOM	3340	CG1		41		51.470	10.550	63.285	1.00 36.46
ATOM	3341	CD1		41		53.492	12.937	60.229	1.00 37.52
MOTA	3342	С	ILE B	41			14.157	60.183	1.00 40.24
MOTA	3343	0	ILE B	41		53.352		59.345	1.00 39.55
ATOM	3344	N	ASP B	42		52.943	12.114	58.273	1.00 45.30
MOTA	3345	CA	ASP B	42		52.094	12.615		1.00 45.93
ATOM	3346	CB	ASP B	42		52.569	12.119	56.901	
ATOM	3347	CG	ASP B	42		53.972	12.584	56.564	
	3348	OD1		42		54.244	13.799	56.686	1.00 46.60
MOTA	3349	OD2		42		54.797	11.736	56.162	1.00 45.16
ATOM	3350	C	ASP B	42		50.677	12.134	58.524	1.00 45.15
ATOM		Ö	ASP B	42		50.467	11.051	59.069	1.00 47.06
MOTA	3351	N	GLU B	43		49.707	12.944	58.121	1.00 48.13
MOTA	3352		GLU B	43		48.303	12.618	58.312	1.00 50.50
MOTA	3353	CA	GLU B	43	•	47.441	13.637	57.571	1.00 53.54
ATOM	3354	CB		43		45,961	13.505	57.840	1.00 59.52
MOTA	3355	CG	GLU B	43		45.155	14.518	57.065	1.00 64.03
ATOM	3356	CD	GLU B	43		43.914	14.535	57.215	1.00 68.54
MOTA	3357	OE1				45.765	15.298	56.301	1.00 66.95
MOTA	3358	OE2		43		47.972	11.205	57.836	1.00 47.81
MOTA	3359	C	GLU B	43		47.092	10.547	58.390	1.00 49.67
MOTA	3360	0	GLU B	43		48.690	10.744	56.817	1.00 46.21
ATOM	3361	N	LYS B	44		48.484	9.409	56.251	1.00 48.28
MOTA	3362	CA	LYS B	44		49.207	9.311	54.894	1.00 49.96
MOTA	3363	CB	LYS B	44		49.639	7.903	54.470	1.00 52.18
ATOM	3364	CG	LYS B	44		50.970	7.532	55.127	1.00 61.03
MOTA	3365	CD	LYS B	44			6.095	54.844	1.00 62.80
ATOM	3366	CE	LYS B	44		51.399	5.098	55.510	1.00 65.34
MOTA	3367	NZ	LYS B	44		50.511		57.161	1.00 45.92
MOTA	3368	С	LYS B	44		48.899	8.249	57.009	1.00 41.30
ATOM	3369	0	LYS B	44		48.418	7.127		1.00 42.18
ATOM	3370	N	GLL B	45		49.797	8.517	58.100	1.00 38.41
ATOM	3371	CA	GLU B	45		50.268	7.486	. 59.014	1.00 33.73
ATOM	3372	СВ	GLU B	45		51.684	7.812	59.468	1.00 37.58
ATOM	3373	CG	GLU B	45		52.694	7.887	58.351	1.00 34.34
ATOM	3374	CD	GLU B			53.998	8.504	58.813	1.00 34.34
			1 GLU B			53.997	9.699	59.176	1.00 30.04
ATOM	3376	OE				55.020	7.799	58.821	1.00 33.37
MOTA	3377	C C	GLU B			49.368	7.403	60.238	1.00 36.86
ATOM		0	GLU B			49.461	6.462	61.032	1.00 34.98
ATOM	3378					48.489	8.386	60.386	1.00 30.86
ATCM	3379	14	LEU B			47.608		61.545	1.00 30.65
MOTA	3380	CA		_		47.501		62.019	
ATOM	3381	CE				46.642		63.250	1.00 34.76
ATOM	3382					47.189			1.00 32.24
ATOM	3383		1 LEU E			-			1.00 33.94
ATCM	3384	CD				46.639			1.00 31.36
ATOM	3385		LEU E			46.212			1.00 31.78
ATOM	3386	0	LEU E			45.530			
ATOM	3387		ILE E			45.801			
ATCM	3388		ILE E	3 47		44.479			
ATOM	3389		ILE F	3 47		44.564	4.802	,	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
41011	·								

3 mov	3390	CG2	ILE B	47	43.161	4.205	62.407	1.00 28.80
ATOM	-				45.266	4.230	61.028	1.00 29.42
MOTA	3391	CG1	ILE B	47				1.00 31.12
	3392	CD1	ILE B	47	45.419	2.722	61.054	
ATOM	-	-			43.659	6.875	63.303	1.00 32.22
ATOM	3393	С	ILE B	47			64.461	1.00 31.17
ATOM	3394	0	ILE B	47	44.063	6.755		
	-			48	42.514	7.475	62.999	1.00 28.39
ATOM	3395	11	LYS B		42.511		64.340	1.00 32.37
MOTA	3396	CA	LYS B	48	41.662	8.037		
		CB	LYS B	48	40.517	8.840	63.414	1.00 36.32
ATOM	3397				39.607	9.514	64.430	1.00 43.08
MOTA	3398	CG	LYS B	48			_	1.00 44.38
ATOM	3399	CD	LYS B	48	38.535	10.361	63.747	
			LYS B	48	37.657	11.074	64.768	1.00 45.91
MOTA	3400	CE	_			11.991	65.643	1.00 42.66
ATOM	3401	ΝZ	LYS B	48	38.451			1.00 31.08
MOTA	3402	С	LYS B	48	41.095	6.943	64.937	
			LYS B	48	40.524	5.962	64.457	1.00 26.24
ATOM	3403	0			41.260	7.121	66.244	1.00 27.89
ATOM	3404	N	SER B	49				1.00 25.17
ATOM	3405	CA	SER B	49	40.770	6.168	67.232	
	-		SER B	49	41.146	6.639	68.642	1.00 24.41
ATOM	3406	CB			42.539	6.858	68.777	1.00 31.79
MOTA	3407	OG	SER B	49			67 160	1.00 29.07
	3408	С	SER B	49	39.248	6.054	67.160	1.00 25.07
MOTA			SER B		38.565	7.034	66.879	1.00 28.47
MOTA	3409	0			38.723	4.859	67.409	1.00 26.13
ATOM	3410	N	ARG B			_		1.00 24.24
	3411	CA	ARG B	50	37.278	4.658	67.430	
MOTA			ARG B		36.810	3.700	66.323	1.00 25.03
MOTA	3412	CB			37.231	2.233	66.507	1.00 26.54
ATOM	3413	CG	ARG B				65.452	1.00 26.21
ATOM	3414	CD	ARG B	50	36.570	1.340		
			ARG B		37.006	-0.058	65.504	1.00 25.13
MOTA	3415	NE			36.700	-0.924	66.468	1.00 26.09
ATOM	3416	CZ	ARG B			0.524	67.497	1.00 23.42
ATOM	3417	NH1	ARG B	50	35.941	-0.558		
		NH2			37.157	-2.168	66.402	1.00 23.91
MOTA	3418				36.937	4.037	68.775	1.00 23.83
ATOM	3419	C	ARG B				69.403	1.00 21.60
ATOM	3420	0	ARG E	50	37.782	3.392		
	3421	N	PRO E		35.700	4.223	69.243	1.00 22.99
MOTA					34.554	4.962	68.688	1.00 25.09
ATOM	3422	CD	PRO E				70.530	1.00 25.48
ATOM	3423	CA	PRO E	3 51	35.338	3.628		1.00 26.32
	3424	CB.	PRO E		33.949	4.217	70.802	1.00 26.32
MOTA					33.936	5.503	69.953	1.00 28.65
MOTA	3425	CG	PRO E			2.118	70.325	1.00 26.73
ATOM	3426	С	PRO E	3 51	35.264			1.00 18.87
	3427	0	PRO E	3 51	35.142	1.646	69.194	
ATOM			ALA I		35.355	1.359	71.408	1.00 23.64
MOTA	3428	N			35.237	-0.083	71.291	1.00 23.27
ATOM	3429	ÇÀ	ALA E	3 52			_	1.00 26.31
ATOM	3430	CB	ALA F	3 52	35.811	-0.757	72.521	
		c	ALA E		33.733	-0.324	71.223	1.00 25.25
ATOM	3431				32.950	0.515	71.677	1.00 22.78
ATOM	3432	0	ALA E				70.651	1.00 22.77
ATOM	3433	N	THR I	3 53	33.321	-1.447		
		CA	THR I		31.900	-1.760	70.596	1.00 26.90
MOTA	3434				31.567	-2.732	69.456	1.00 30.00
ATOM	3435	CB	THR			2 050	69.642	1.00 25.59
MOTA	3436	OG:	THR I	B 53	32.305	-3.950		1 00 23 33
	3437	CG:			31.917	-2.117	68.103	1.00 23.33
MOTA					31.579	-2.445	71.916	1.00 30.41
ATOM	3438	С	THR :				72.609	1.00 26.13
MOTA	3439	0	THR :	B 53	32.484	-2.917		
	3440	N	LYS 1	B 54	30.300	-2.504	72.268	
MOTA					29.909	-3.140	73.514	.1.00 30.24
MOTA	3441	CA	LYS			-3.027	73.720	1.00 32.78
MOTA	3442	CB	LYS	B 54	28.396			1.00 34.85
	3443	CG	LYS	B 54	27.947	-3.351	75.131	1.00 34.03
MOTA					26.445	-3.204	75.268	1.00 41.13
MOTA	3444	CD	LYS			-3.366	76.709	1.00 43.39
ATOM	3445	CE	LYS		26.008			
	3446	NZ	LYS	3 54	26.464	-2.257	77.582	1 00 20 20
ATOM			LYS	_	30.329	-4.603	73.442	
ATOM	3447	C			30.779		74.430	1.00 26.71
ATOM	3448	၁	LYS				72.256	
	3449	N	GLU	3 55	30.196		74.430	
ATOM					30.577	-6.577	72.032	
ATOM	3450				30.288		70.579	1.00 24.82
ATCM	3451	CB						
ATOM	3452		GLU		30.671			
	3453				30.453	-8.737	68.767	
ATOM					30.638		68.394	1.00 41.24
ATOM	3454		1 GLU	_				
2 TOM	3455	OE	2 GLU	B 55	30.101	-,.633		-

```
72.345
                                                             1.00 25.82
                                           -6.808
                                  32.066
                  GLU B
                          55
       3456
ATOM
                                                             1.00 23.83
                                           -7.765
                                                    73.033
                                  32.429
                  GLU B
                          55
       3457
              0
ATOM
                                                    71.835
                                                             1.00 25.04
                                  32.931
                                           -5.938
                          56
                  GLU B
              N
       3458
ATOM
                                                             1.00 25.30
                                                    72.093
                                           -6.079
                                   34.365
                          56
              CA
                  GLU B
       3459
ATOM
                                                             1.00 24.31
                                                    71.334
                                           -5.003
                                   35.141
                          56
              CB
                  GLU B
       3460
                                                             1.00 32.15
ATOM
                                                    69.836
                                           -5.039
                                   34.866
                          56
                  GLU B
       3461
              CG
ATOM-
                                                             1.00 31.43
                                                    69.073
                                   35.512
                                           -3.903
                          56
              CD
                  GLU B
       3462
MOTA
                                                    69.568
                                                             1.00 28.54
                                           -2.759
                                   35.486
                          56
              OE1 GLU B
       3463
ATOM
                                                             1.00 28.89
                                                    67.959
                                           -4.147
                          56
                                   36.012
              OE2 GLU B
       3464
ATOM
                                                             1.00 28.88
                                                    73.595
                                           -5.988
                                   34.653
                  GLU B
                          56
       3465
              С
MOTA
                                                    74.137
                                                             1.00 25.07
                                           -6.766
                                   35.450
                  GLU B
                          56
              0
       3466
ATOM
                                                             1.00 24.52
                                                    74.272
                                           -5.050
                                   33.996
                          57
       3467
                  LEU B
              Ν
ATOM
                                                    75.702-
                                                             1.00 27.34
                                   34.203
                                            -4.891
                          57
                  LEU B
MOTA
        3468
              CA
                                                             1.00 22.79
                                                    76.231
                                            -3.694
                                   33.416
                  LEU B
                          57
              CB
        3469
ATOM.
                                                             1.00 23.57
                                                     75.722
                                            -2.320
                                   33.859 -
                          57
        3470
              CG
                  LEU B
MOTA
                                                             1.00 22.27
                                                     76.366
                                            -1.247
                                   33.008
              CD1 LEU B
                          57
        3471
MOTA
                                                             1.00 17.24
                                                     76.061
                                            -2.089
                                   35.342
              CD2 LEU B
                          57
        3472
                                                             1.00 26.92
ATOM
                                                     76.452
                                            -6.144
                          57
                                   33.785
                   LEU B
        3473
              С
ATOM
                                                             1.00 24.06
                                                     77.396
                                            -6.568
                                   34.458
                   LEU B
                          57
        3474
              0
ATOM
                                                             1.00 23.35
                                                     76.029
                                            -6.732
                                   32.670
                   LEU B
                          58
        3475
              N
ATOM
                                                             1.00 25.60
                                            -7.931
                                                     76.674
                                   32.154
                          58
                   LEU B
        3476
              CA
MOTA
                                                             1.00 28.50
                                                     76.221
                                            -8.207
                                   30.718
                   LEU B
                           58
        3477
              CB
ATOM
                                            -7.110
                                                     76.649
                                                              1.00 30.91
                                   29.734
                   LEU B
              CG
                           58
        3478
ATOM
                                                              1.00 28.93
                                                     76.212
                                            -7.468
                                   28.323
                           58
              CD1 LEU
                       В
        3479
ATOM
                                                              1.00 33.44
                                            -6.945
                                                     78.157
                                   29.794
                           58
              CD2 LEU B
        3480
 MOTA
                                                              1.00 24.59
                                                     76.446
                                            -9.153
                                   33.027
                           58
               С
                   LEU B
        3481
                                                              1.00 19.76
 MOTA
                                                     76.991
                                           -10.216
                                   32.760
                   LEU B
                           58
        3482
                                                              1.00 23.99
 ATOM
                                                     75.630
                                            -9.006
                                   34.065
                   LEU B
                           59
        3483
               N
                                                              1.00 25.11
 ATOM
                                                     75.411
                                           -10.108
                                   34.988
                           59
                   LEU B
        3484
               CA
 ATOM
                                                              1.00 21.64
                                                     74.332
                                            -9.757
                                   36.018
                   LEU B
                           59
        3485
               CB
 ATOM
                                                              1.00 24.24
                                                     72.905
                                    35.483
                                            -9.652
                           59
               CG
                   LEU B
        3486
 MOTA
                                                              1.00 24.25
                                                     71.975
                                            -9.177
                                    36.585
                           59
               CD1 LEU B
        3487
 ATOM
                                                              1.00 19.91
                                                     72.468
                                    34.957 -11.014
                           59
               CD2 LEU B
        3488
 MOTA
                                                     76.733
                                                              1.00 23.84
                                    35.699 -10.371
                   LEU B
                           59
        3489
               С
                                                              1.00 19.39
 ATOM
                                                     76.992
                                    36.150 -11.489
                           59
                   LEU B
        3490
               0
                                                              1.00 21.80
 MOTA
                                                     77.577
                                            -9.344
                                    35.793
                           60
                   PHE B
        3491
               N
 ATOM
                                                              1.00 23.08
                                                     78.876
                                            -9.510
                                    36.462
                   PHE B
                           60
        3492
               CA
                                                              1.00 18.22
 MOTA
                                            -8.770
                                                     78.908
                                    37.809
                   PHE B
                           60
        3493
               CB
 ATOM
                                                              1.00 21.72
                                                      80.230
                                            -8.906
                                    38.544
                           60
                   PHE B
               CG
         3494
                                                              1.00 19.23
 MOTA
                                           -10.157
                                                      80.680
                                    38.975
               CD1 PHE B
                           60
         3495
                                                              1.00 17.75
 ATOM
                                            -7.791
                                                      81.048
                           60
                                    38.757
               CD2 PHE B
         3496
 MOTA
                                                      81.927
                                                              1.00 18.80
                                    39.602 -10.301
               CE1 PHE B
                           60
         3497
                                                              1.00 19.23
 MOTA
                                            -7.923
                                                      82.297
                                    39.384
                           60
               CE2 PHE B
         3498
 ATOM
                                                              1.00 16.10
                                                      82.737
                                            -9.184
                                    39.807
                    PHE B
                           60
         3499
               CZ
 ATOM
                                                              1.00 21.58
                                                      80.083
                                            -9.069
                                    35.648
                           60
                    PHE B
         3500
               C
 STOM
                                                              1.00 22.21
                                                      81.040
                                            -9.822
                                    35.508
                    PHE B
                           60
               0
         3501
 ATOM
                                                              1.00 20.65
                                                      80.055
                                             -7.847
                                    35.128
               Ν
                    HIS B
                           61
         3502
 MOTA
                                                      81.184
                                                              1.00 23.32
                                             -7.336
                                    34.362
                    HIS B
                            61
 ATOM
         3503
               CA
                                                              1.00 27.60
                                                      81.229
                                             -5.807
                                    34.422
                    HIS B
                            61
               CB
         3504
 ATOM
                                                              1.00 31.83
                                                      81.440
                                             -5.259
                                    35.800
                            61
                   HIS B
         3505
               CG
 RTOM
                                                      82.575
                                                              1.00 26.86
                                             -4.940
                                    36.466
               CD2 HIS B
                            61
         3506
                                                               1.00 34.35
  ATOM
                                                      80.401
                                             -5.003
                                    36.669
         3507
               ND1 HIS
                        В
                            61
  ATOM
                                                               1.00 34.78
                                                      80.887
                                    37.810
                                             -4.546
                            61
                CE1 HIS B
         3508
  ATOM
                                                               1.00 36.27
                                                      82.204
                                    37.713
                                             -4.499
               NE2 HIS B
                            61
                                                               1.00 28.04
         3509
  ATOM
                                                      81.198
                                             -7.775
                                    32.902
                    HIS B
                            61
         3510
                С
  ATOM
                                                               1.00 25.70
                                             -8.167
                                                      80.176
                                    32.349
                            61
                    HIS B
         3511
                0
  ATOM
                                                      82.367
                                                               1.00 25.25
                                    32.276
                                             -7.691
                            62
                    THR B
         3512
                N
  STOM
                                                               1.00 25.35
                                                      82.506
                                             -8.084
                                    30.882
                            62
                    THR B
                CA
         3513
  ATOM
                                                               1.00 25.47
                                                      83.932
                                             -8.549
                                     30.578
                            62
                    THR B
         3514
                CB
                                             -7.462 - 84.843
  ATOM
                                                               1.00 28.62
                                     30.783
                            62
                    THR B
         3515
                OG1
                                                               1.00 21.32
  ATOM
                                             -9.701
                                                      84.315
                                     31.482
                            62
                CG2
                    THR B
                                                               1.00 26.06
          3516
  ATOM
                                                      82.162
                                     29.931
                                             -6.942
                            62
          3517
                С
                    THR B
                                                               1.00 24.14
  ATOM
                                             -5.771
                                                      82.254
                                     30.287
                            62
                     THR B
                0
          3518
                                                               1.00 28.01
  ATOM
                                                      81.759
                                     28.718
                                              -7.305
                N
                    GLU B
                            63
          3519
                                                               1.00 30.77
  ATOM
                                              -6.349 81.389
                                     27.681
                    GLU B
                            63
  ATCM
          3520
                CA
                                                               1.00 33.97
                                     26.374
                                                      81.114
                                              -7.094
                            63
                CB
                     GLU B
          3521
```

ATCM

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	234567890123456789000000000000000000000000000000000000	CD 12 CD	THR B THR B LEU B LEU B LEU B LEU B	69 70 70 70	25.213 25.213 25.213 25.213 24.361 25.292 27.436 27.272 27.010 26.887 28.022 29.128 27.768 29.128 27.768 29.332 30.420 31.751 32.949 33.033 34.135 35.172 30.329 30.335 30.339 30.308 30.208	1.702 2.729 2.122 1.231 0.786 2.000 3.764 4.966 3.290 4.181 3.371	80.432 79.303 80.260 80.291 81.940 81.848 82.363 82.363 82.580 81.341 80.220 83.513 83.448 84.568 85.696 86.891 87.396 88.002 85.661 84.519 84.5519 85.661	1.00 22.90 1.00 25.91 1.00 28.47 1.00 25.13 1.00 21.32 1.00 22.33 1.00 22.57 1.00 23.20 1.00 23.02 1.00 19.62 1.00 25.87 1.00 24.80 1.00 30.37
		Ç	LEU B	69	30.036	3.764		
ATOM						3.290	82.294	1.00 19.62
				70	28.449	4.181		
	3581	CB.		_	27.660			1.00 30.37
ATOM	3582 3583				27.592	1.599	78.227	1.00 30.35
atom atom	3584		MET B	70	26.922	2.986		1.00 28.82
ATOM	3585	5 C	MET B		27.489 27.391	5.062 L 6.273	82.009	1.00 24.09
ATOM	3586		MET E		26.786			
ATOM	3587	7 N	GLU E	, , ,	201			

						,			•
АТОМ	3588	CA	GLU B	71		25.837	5.207	84.008	1.00 27.45 1.00 30.70
ATOM	3589°	CB	GLU B	71		25.014	4.268	84.889	1.00 33.70
ATOM	3590		GLU B	71		24.072	5.005	85.832	1.00 37.51
ATOM	3591		GLU B	71		23.044	5.867	85.096 85.773	1.00 35.47
MOTA	3592		GLU B	71		22.333	6.638	83.849	1.00 31.03
ATOM	3593	OE2	GLU B	71		22.934	5.769	84.887	1.00 29.15
ATOM	3594	C	GLU B	71		26.559	6.209	85.035	1.00 23.96
ATOM	3595	0	GLU B	71		26.115	7.341	85.481	1.00 27.76
ATOM	3596	N	ALA B.			27.671	5.781 6.662	86.340	1.00 27.58
MOTA	3597	CA	ALA B	72		28.454 29.663	5.920	86.909	1.00 23.24
ATOM	3598	CB	ALA B	72		28.924	7.886	85.563	1.00 28.07
MOTA	3599	C	ALA B	72 72		28.895	8.999	86.079	1.00 23.22
MOTA	3600	0	ALA B			29.356	7.684	84.322	1.00 26.40
MOTA	3601	N.	GLU B			29.846	8.801	83.529	1.00 29.06
ATOM	3602 3603	CA CB	GLU B			30.658	8.314	82.325	1.00 29.48
ATOM	3604	CG	GLU B			31.162	9.466	81.443	1.00 31.00
MOTA MOTA	3605	CD	GLU B			31.938	9.009	80.216	1.00 34.37
ATOM	3606		GLU B			33.059	8.461	80.356	1.00 28.41 1.00 30.59
ATOM	3607	OE2	GLU B	73		31.419	9.203	79.100	1.00 30.59 1.00 31.92
ATOM	3608	С	GLU B			28.744	9.734	83.045 83.104	1.00 35.69
MOTA	3609	0	GLU B			28.894	10.951	83.104	1.00 33.53
ATOM	3610	N	ARG B			27.633	9.186 10.067	82.081	1.00 38.64
MOTA	3611	CA	ARG B			26.583 25.456	9.280	81.403	1.00 39.90
ATOM	3612	CB	ARG B			24.448	8.706	82.363	1.00 46.67
MOTA	3613	CG	ARG B			23.174	8.311	81.646	1.00 47.53
MOTA	3614	CD	ARG E			22.076	8.153	82.594	1.00 55.58
ATOM	3615 3616	NE CZ	ARG E			21.609	9.136	83.362	1.00 56.04
MOTA	3617	NH1				22.142	10.351	83.297	1.00 58.93
ATOM	3618	NH2				20.601	8.910	84.192	1.00 53.62
MOTA MOTA	3619	С	ARG E			26.008	10.914	83.222	1.00 35.84 1.00 29.44
MOTA	3620	0	ARG E	3 74		25.778	12.107	83.048	1.00 23.44
ATOM	3621	Ŋ	SER E			25.794	10.302 11.014	84.386 85.539	1.00 31.99
MOTA	3622	CA	SER E			25.243	10.038	86.510	1.00 34.47
MOTA	3623	CB	SER F			24.592 25.581	9.228	87.123	1.00 34.33
MOTA	3624	QG	SER I			26.339	11.754	86.288	1.00 35.42
ATOM	3625	С 0	SER I	_		26.060	12.555	87.180	1.00 33.45
MOTA	3626 3627	N	GLN I		_	27.584	11.473	85.922	1.00 33.25
ATOM	3628	CA	GLN I	-		28.739	12.082	86.565	1.00 35.61
MOTA MOTA	3629	CE	GLN I			28.818	13.572	86.241	1.00 30.11
ATOM	3630	CG	GLN I			30.216	14.112	86.390	1.00 39.13 1.00 33.54
ATOM	3631	CD	GLN			31.124	13.681	85.248 84.761	1.00 33.34
ATOM	3632	OE	L GLN			31.052	12.546	84.827	1.00 40.93
ATOM	3633		GLN			31.995 28.624	14 583 11 892	88.079	1.00 37.88
ATOM	3634	Ç	GLN			28.901	12 308	88.858	1.00 32.74
ATOM	3635	0	GLN			28.209	10.697	88.488	1.00 34.72
ATOM	3636	Я	SER			28.047	10.382	89.901	1.00 37.07
ATOM	3637	CA	SER			26.635	10.738	90.371	
ATOM	3638	CB CG	SER			25.678	9.941	89.688	
MOTA	3639 3640		SER			28.265	8.897	90.112	
ATOM ATOM	3641		SER			28.177	8.108	89.173	
MOTA	3642		VAL			28.528	8.518	91.355	1.00 33.03 1.00 33.41
ATOM	3643		'/AL			28.753	7.124		
ATOM	3644		VAL	в 78		29.742	6.979		
ATOM	3645					29.955	5.499		
ATOM	3646	CG				31.055	7.658		4 00
ATOM	3647	C	VAL			27.461	6.431 6.703		1.00 28.25
ATOM	3648		VAL	B 78		26.897 26.971	5.521		1.00 36.73
ATOM	3649		PRO			27.532	5.114		1.00 37.44
ATOM	3650					25.738	4.779		1.00 38.33
ATOM	3651					25.668	3.826	90.301	1.00 38.68
MOTA	3652			_		26.293	4.664		1.00 37.41
ATOM	3653	, (3	PRO	,					

ATOM ATOM	3654 3655 3656	Ō		B B B	79 79 80	25.788 26.854 24.623	4.046 3.648 3.881	92.834 93.298 93.448	1.00 36.92 1.00 33.03 1.00 38.43
ATOM ATOM	3657			В	80	24.482	3.206	94.736	1.00 39.73 1.00 43.33
ATOM	3658	СВ		В	80	23.003	2.871 2.129	94.967 96.262	1.00 44.60
ATOM	3659	CG	LYS		80	22.679 21.198	1.742	96.287	1.00 48.09
MOTA	3660	CD		В	80 80	20.805	1.014	97.559	1.00 50.12
MOTA	3661 3662	CE NZ	LYS LYS		80	20.932	1.890	98.760	1.00 53.16
MOTA MOTA	3663	C	LYS		80	25.315	1.928	94.854	1.00 40.35 1.00 36.67
ATOM MOTA	3664	Ō	LYS		80	25.181	1.011	94.047 95.869	1.00 38.26
MOTA	3665	N	GLY		81	26.173 26.996	1.880 0.709	96.104	1.00 34.69
MOTA	3666	CA	GLY		81	28.066	0.407	95.071	1.00 34.63
MOTA	3667	С 0	GLY GLY		81 81	28.861	-0.513	95.255	1.00 33.92
MOTA	3668 3669	И	ALA		82	28.100	1.178	93.992-	1.00 31.26
MOTA MOTA	3670	CA	ALA		82	29.082	0.963	92.936 91.751	1.00 34.88 1.00 23.13
ATOM	3671	CB	ALA		82	28.755	1.848 1.223	93.405	1.00 36.85
MOTA	3672	C	ALA		82	30.517 31.461	0.580	92.945	1.00 32.17
MOTA	3673	0	ALA ARG		82 83	30.677	2.168	94.323	1.00 36.52
MOTA	3674 3675	N CA	ARG		83	31.994	2.522	94.830	1.00 38.75
MOTA	3676	CB	ARG		83	31.865	3.616	95.885	1.00 40.24 1.00 49.12
ATOM ATOM	3677	CG	ARG		83	33.187	4.180	96.330 97.404	1.00 49.12
ATOM	3678	CD	ARG		83	33.015 34.240	5.239 6.010	97.624	1.00 59.30
MOTA	3679	NE	ARG		83 83	35.437	5.486	97.883	1.00 61.56
MOTA	3680	CZ	ARG ARG		83	35.598	4.170	97.958	1.00 63.53
MOTA	3681 3682	NH1			83	36.479	6.285	98.073	1.00 62.02
ATOM - MOTA	3683	C	ARG		83	32.719	1.326	95.426	1.00 37.75 1.00 37.18
ATOM	3684	0	ARG	В	83	33.893	1.094	95.146 96.249	1.00 37.10
ATOM	3685	N	GLU		84	32.011 32.581	0.564 -0.609	96.898	1.00 35.29
MOTA	3686	CA	GLU		84 84 -	31.876	-0.855	98.236	1.00 40.14
MOTA	3687	CB CG	GLU GLU		84	30.443	-0.383	98.240	1.00 46.30
MOTA	3688 3689	CD	GLU		84	30.356	1.132	98.293	1.00 48.30 1.00 43.07
ATOM ATOM	3690	OE1			84	29.339	1.690	97.834	1.00 43.07
ATOM	3691	OE2	GLU		84	31.306	1.762 -1.880	98.814 96.055	1.00 32.90
ATOM	3692	C	GLU		84	32.527 33.371	-2.765	96.193	1.00 28.68
ATOM	3693	0	GLU LYS		84 85	31.533	-1.984	95.187	1.00 27.12
ATOM	3694 3695	N CA	LYS		85	31.412	-3.177	94.361	1.00 30.46
ATOM ATOM	3696	. CB	LYS		85	29.950	-3.401	93.967	1.00 30.01 1.00 28.40
ATOM	3697	CG	LYS		85	29.717	-4.643 -4.807	93.117 92.775	1.00 32.87
MOTA	3698	CD	LYS		85	28.234 28.000	-6.048	91.928	1.00 34.15
MC A	3699	CE	LYS		85 85	26.582	-6.186	91.507	1.00 35.34
A.OM	3700	NZ C	LYS		85	32.267	-3.096	93.101	1.00 28.98
MC_A MOTA	3701 3702	0	LYS		85	32.817	-4.098		1.00 24.69 1.00 27.81
MOTA	3703	N	TYF		86	32.391	-1.896		
ATOM	3704		TY			33.141 32.206	-1.692 -1.050		
ATOM	3705		TY			32.208	-1.927		1.00 31.29
MOTA	3706		TYI 1 TYI			31.178	-3.137		1.00 26.99
ATOM	3707 3708					30.095	-3.955	88.965	
MOTA MOTA	3709					29.713	-1.553		
MOTA	3710		2 TY	R B	86	28.611			4/
MOTA	3711		TY	R B		28.815			
ATOM	3712	OH		R B		27.747 34.422			1.00 24.64
ATOM	3713			R B R B		35.160	_	90.530	1.00 27.19
MOTA	3714			N E		34.674	-0.41	92.71	
ATOM	3715 3716			N E	-	35.881	0.34	1 93.03	
MOTA MOTA	3717		AS	N E	87	37.105			
ATOM		s co	: AS	N E	3 87	38.343			
ATOM		9 01)1 AS	N I	87	38.309	0.43		-

		MD2	ASN B	87	39.449	0.012	92.775	1.00 35.86
MOTA	3720						92.223	1.00 29.72
MOTA	3721	С	ASN B	87	36.070		91.876	1.00 24.01
MOTA	3722	0	ASN B	87	37.194		91.070	
	3723	N	ILE B	88	34.956	2.282	91.932	1.00 29.43
ATOM			ILE B	88	34.945	3.536	91.196	1.00 30.64
ATOM	3724	CA			33.959	3.464	90.027	1.00 37.12
ATOM-	3725	CB	ILE B	88	33.939			1.00 40.62
ATOM	3726	CG2	ILE B	88	33.821	4.829	89.379	
	-	CG1	ILE B	88	34.421	2.433	89.008	1.00 35.43
MOTA	3727			88	35.684	2.821	88.324	1.00 41.80
ATOM	3728	CD1				4.669	92.118	1.00 31.90
ATOM	3729	C	ILE B	88	34.483			1.00 28.86
ATOM	3730	0	ILE B	88	33.681	4.445	93.024	
	3731	N	GLY B.	89	34.977	5.881	91.875	1.00 30.36
ATOM			GLY B	89	34.574	7.022	92.686	1.00 29.54
ATOM	3732	CA			35.601	7.524	93.685	1.00 31.49
ATOM	3733	С	GLY B	89			94.177	1.00 37.26
MOTA	3734	0	GLY B	89	35.497	8.652		1.00 30.97
MOTA	3735	N	GLY B	90	36.583	6.687	94.005	
	3736	CA	GLY B	90	37.612	7.086	94.949	1.00 31.03
MOTA				90	38.655	7.936	94.247	1.00 34.78
MOTA	3737	С	GLY B		38.455	8.344	93.103	1.00 32.73
MOTA	3738	0	GLY B	90			94.915	1.00 29.39
ATOM	3739	N	TYR B	91	39.772	8.201		
	3740	CA	TYR B	91	40.820	9.023	94.322	1.00 28.15
MOTA			TYR B	91	41.810	9.463	95.405	1.00 27.29
MOTA	3741	CB			42.609	8.330	96.007	1.00 26.60
MOTA	3742	CG	TYR B	91		7.823	95.359	1.00 28.55
MOTA	3743	CD1	TYR B	91	43.738			1.00 28.75
ATOM	3744	CE1	TYR B	91	44.456	6.762	95.896	
	3745	CD2		91	42.219	7.741	97.208	1.00 28.35
MOTA	_			91	42.927	6.680	97.751	1.00 27.58
ATOM	3746	CE2			44.043	6.196	97.094	1.00 30.12
MOTA	3747	CZ	TYR B	91			97.637	1.00 36.59
MOTA	3748	OH	TYR B	91	44.753	5.154		1.00 29.27
MOTA	3749	C	TYR B	91	41.563	8.271	93.226	
	3750	ŏ	TYR B	91	42.109	8.874	92.308	1.00 25.22
MOTA	-			92	41.568	6.948	93.318	1.00 28.32
ATCM	3751	N	GLU B			6.124	92.350	1.00 27.06
ATOM	3752	CA	GLU B	92	42.286		92.924	1.00 23.35
ATOM	3753	CB	GLU B	92	42.474	4.726		1.00 29.80
	3754	CG	GLU B	92	43.502	3.884	92.221	1.00 25.00
MOTA	3755	CD	GLU B	92	43.585	2.500	92.826	1.00 35.34
MOTA	-			92	42.742	1.645	92.477	1.00 32.15
ATOM	3756	OE1				2.278	93.678	1.00 31.61
MOTA	3757	OE2		92	44.475		90.997	1.00 23.42
ATOM	3758	C	GLU B	92	41.594	6.024		1.00 20.47
	3759	0	GLU B	92	42.204	6.260	89.962	
MOTA	-	N	ASN B	93	40.314	5.677	91.017	1.00 18.85
MOTA	3760			93	39.534	5.509	89.795	1.00 21.96
ATOM	3761	CA			39.165	4.033	89.664	1.00 23.90
ATOM	3762	СB	ASN B	93		3.120	89.943	1.00 24.78
ATCM	3763	CG	ASN B	93	40.351	_		1.00 22.35
ATOM	3764	ao c	l asn b	93	41.362	3.160	89.239	1.00 22.35
	3765		2 ASN B	93	40.240	2.311	90.987	1.00 13.35
ATOM			ASN B	93	38.285	6.362	89.944	1.00 25.16
ATOM	3766	C			37.183	5.843	90.121	1.00 20.91
ATOM	3767	0	ASN B	93		7.693	89.887	1.00 26.37
ATCM	3768	N	PRO B	94	38.449			1.00 19.35
ATOM	3769	CD	PRO B	94	39.738	8.389	89.716	1.00 13.55
	3770	CA	PRO B	94	37.373	8.676	90.024	1.00 24.59
ATOM	_			94	38.147	9.972	90.200	1.00 25.95
MOTA	3771	CB	PRO B		39.297	9.740	89.223	1.00 22.60
MOTA	3772	ÇG	PRO B	94			88.873	1.00 28.74
ATOM	3773	C	PRO B	94	36.384	8.777		1.00 25.77
	3774	0	PRO B	94	36.562	8.176	87.808	1.00 23.77
ATOM			VAL B		35.332	9.553	89.112	1.00 27.14
MOTA	3775	N			34.317	9.812	88.103	1.00 25.94
MOTA	3776	CA			34.31/	10.393	88.742	1.00 23.75
ATOM	3777	CB	VAL B	95	33.035			1.00 26.34
	3778	CG			32.067	10.855	87.662	1.00 20.54
ATOM		CG			32.378	9.346	89.622	1.00 27.59
atom	3779				34.912	10.861	87.175	1.00 25.69
ATOM	3780		VAL B			11.793	87,641	1.00 25.25
ATOM	3781	0	VAL B		35.564		85.871	
ATOM	3782		SER B		34.708	10.699		
	3783		_		35.199	11.647	84.868	
ATOM			-		36.729	11.705	84.850	03 00
ATOM	3784				37.274	10.548	84.229	1.00 23.99
> ∞OM	3785	OG	, ber c	, ,,	J			•

	2706	_	SER B	96	34.726	11.127		1.00 26.22
ATOM	3786 3787	С 0	SER B	96	33.943	10.174		1.00 23.57
ATOM	3788	N	TYR B	97	35.195	11.744	02	1.00 22.83
MOTA MOTA	3789	CA	TYR B	97	34.818	11.279		1.00 28.59
MOTA	3790	СВ	TYR B	97	34.536	12.452		1.00 31.45 1.00 35.09
ATOM	3791	CG	TYR B	97	33.279	13.203	80.548	1.00 33.09
ATOM	3792	CD1	TYR B	97	33.316	14.239	81.480	1.00 37.73
MOTA	3793	CE1	TYR B	97	32.148	14.863	81.911 80.049	1.00 37.75
ATOM	3794	CD2	TYR B		32.036	12.812	80.475	1.00 38.61
ATOM	3795	CE2	TYR B		30.858	13.430 14.453	81.408	1.00 39.45
ATOM	3796	CZ	TYR B		30.924 29.768	15.047	81.852	1.00 35.36
MOTA	3797	OH	TYR B		35.883	10.354	80.534	1.00 28.93
MOTA	3798	C	TYR B		35.859	9.992	79.358	1.00 28.26
MOTA	3799	0	TYR E		36.822	.9.968	81.385	1.00 29.09
MOTA	3800 3801	N CA	ALA E		37.866	9.044	80.980	1.00 26.88
MOTA	3802	CB	ALA E		39.167	9.369	81.692	1.00 27.99
ATOM ATOM	3803	C	ALA E		37.395	7.657	81.382	1.00 22.53 1.00 21.98
ATOM	3804	ŏ	ALA E		37.721	6.675	80.722	1.00 21.58
ATOM	3805	N	MET E	99	36.603	7.595	82.453 82.986	1.00 26.36
MOTA	3806	CA	MET F		36.106	6.326 6.568	84.185	1.00 24.05
ATOM	3807	CB	MET I	3 99	35.179 33.822	7.188	83.875	1.00 28.37
MOTA	3808	CG	MET I		33.822	7.704	85.406	1.00 27.91
ATOM	3809	SD	MET I		33.106	6.227	86.409	1.00 22.12
MOTA	3810	CE	MET I		35.430	5.435	81.953	1.00 25.76
MOTA	3811	C	MET I	- '	35.544	4.212	82.031	1.00 26.11
ATOM	3812 3813	O N	PHE		34.724	6.027	80.992	1.00 22.17
MOTA	3814	CA	PHE		34.107	5.222	79.940	1.00 22.35
MOTA MOTA	3815	CB	PHE		32.582	5.133	80.088	1.00 22.01 1.00 24.22
MOTA	3816	CG	PHE :		31.947	4.254	79.038	1.00 24.22
ATOM	3817	CDI			32.143	2.872	79.061 77.953	1.00 21.22
ATOM	3818	CD2	PHE		31.280	4.813 2.059	78.012	1.00 26.91
ATOM	3819	CE:	PHE	В 100	31.691 30.825	4.010	76.894	1.00 24.80
MOTA	3820	CE2	PHE	B 100	31.033	2.632	76.924	1.00 24.85
MOTA	3821	CZ	PHE	B 100 B 100	34.425	5.695	78.514	1.00 24.86
MOTA	3822	C	PHE	B 100	34.922	4.920	77.694	1.00 21.40
MOTA	3823 3824	N O	THR		34.131	6.957	78.204	1.00 24.24
MOTA	3825	CA	THR		34.390	7.469	76.854	1.00 24.54 1.00 24.46
MOTA MOTA	3326	CB	THR	B 101	33.914	8.926	76.708	1.00 24.46 1.00 27.64
ATOM	3827	OG	1 THR		32.504		76.953 75.297	1.00 27.04
MOTA	3828	CG	2 THR	B 101	34.191		76.483	1.00 25.26
ATOM	3829	C	THR	B 101	35.872		75.430	1.00 25.47
MOTA	3830	0		B 101	36.231 36.725			1.00 23.74
MOTA	3831			B 102 B 102	38.153		77.096	1.00 24.53
ATOM	3832	CA	CIV	B 102	38.657		77.046	1.00 24.06
ATOM	3833		GLY	B 102	39.346		76.100	1.00 22.53
MOTA	3834 3835		SER	B 103	38.316	5.651		1.00 22.02
MOTA	3836			B 103	38.730			1.00 20.45 1.00 25.21
ATOM ATOM	3837		SER	B 103	38.193			1.00 25.21
ATOM	3838		SER	в 103	38.820			1.00 20.53
MOTA	3839		SER	B 103	38.268			1.00 16.82
ATOM	3840	_	SER	B 103	39.034	·		
ATOM	3841	. N	SER	B 104	37.014			1.00 23.32
MOTA	3842			B 104	36.462 34.980			1.00 22.93
ATOM	3843		SER	B 104	34.424			1.00 24.75
MOTA	3844		SER	B 104 B 104	37.22		3 74.116	1.00 21.97
MOTA	3845		SEK	B 104	37.45	_	73.256	
ATOM	3546		35K	B 105	37.619	9 4.549	73.997	
MOTA	384			B 105	38.35	4 5.00°		
ATOM	3848 3848		LEU	B 105	38.44			
MOTA MOTA.	_	0 0	LEU	B 105	38.70			
MOTA.	-		ol LEU	B 105	37.66	2 6.88	5 /0.312	, <u>,</u> ,,,,
ALON								

			- mrs D 105		38.529	8.802	71.819	1.00 34.30
MOTA	3852		LEU B 105		39.755		72.813	1.00 27.39
MOTA	3853	С	LEU B 105		40.262		71.765	1.00 20.15
ATOM	3854	0	LEU B 105			4.293	73.988	1.00 23.62
MOTA	3855	N	ALA B 106		40.371		74.115	1.00 22.73
ATOM	3856	CA	ALA B 106		41.704	3.692		1.00 17.46
ATOM	3857	CB	ALA B 106		42.263	3.939	75.529	1.00 22.77
MOTA	3858	С	ALA B 106		41.639	2.189	73.846	
	3859	ō	ALA B 106		42.583	1.597	73.316	1.00 24.98
MOTA	3860	N	THR B 107		40.523	1.567	74.224	1.00 23.54
ATOM	3861	CA	THR B 107		40.355	0.132	74.033	1.00 19.76
ATOM		CB	THR B 107		39.236	-0.410	74.947	1.00 22.85
MOTA	3862		THR B 107		39.572	-0.128	76.306	1.00 16.29
ATOM	3863	OG1			39.085	-1.917	74.787	1.00 17.21
MOTA	3864	CG2	THR B 107		40.036	-0.169	72.571	1.00 23.47
MOTA	3865	C	_		40.540	-1.138	72.001	1.00 19.25
MOTA	3866	0	THR B 107 GLY B 108		39.191	0.656	71.959	1.00 24.87
MOTA	3867	N	GLY B 100		38.879	0.434	70.560	1.00 21.32
MOTA	3868	CA	GLY B 108		40.161	0.594	69.757	1.00 22.01
ATOM	3869	C	GLY B 108		40.388	-0.099	68.761	1.00 20.46
ATOM	3870	0	GLY B 108		41.018	1.508	70.197	1.00 19.89
ATOM	3871	Ŋ	SER B 109		42.274	1.749	69.499	1.00 19.37
ATOM	3872	CA	SER B 109			2.956	70.107	1.00 18.28
MOTA	3873	CB	SER B 109		42.993	4.145	69.882	1.00 21.29
MOTA	3874	OG	SER B 109		42.250	0.513	69.542	1.00 20.70
ATOM	3875	С	SER B 109		43.168		68.617	1.00 20.69
MOTA	3876	0	SER B 109		43.940	0.261	70.616	1.00 20.54
ATOM	3877	N	THR B 110		43.065	-0.259	70.729	1.00 19.98
ATOM	3878	CA	THR B 110		43.858	-1.475	72.158	1.00 20.53
ATOM	3879	CB	THR B 110		43.826	-2.043	73.007	1.00 20.72
MOTA	3880	OG1	THR B 110		44.632	-1.215	_	1.00 20.05
ATOM	3881	CG2	THR B 110		44.371	-3.470	72.188	1.00 20.33
ATOM	3882	C	THR B 110		43.333	-2.507	69.738	1.00 21.01
MOTA	3883	Ō	THR B 110		44.115	-3.239	69.127	1.00 18.29
ATOM	3884	N	VAL B 111		42.012	-2.557	69.567	1.00 20.36
ATOM	3885	CA	VAL B 111		41.432	-3:486	68.608	1.00 23.94
ATOM	3886	СВ	VAL B 111		39.886	-3.494	68.677	1.00 23.34
	3887	CG	1 VAL B 111		39.324	-4.442	67.619	1.00 21.50
ATOM	3888	CG			39.426	-3.937	70.063	
MOTA	3889	c c	VAL B 111		41.872	-3.080	67.197	1.00 20.35
MOTA	3890	ō	VAL B 111		42.146	-3.936	66.362	1.00 23.29
MOTA		Ņ	GLN B 112	!	41.953	-1.775	66.937	1.00 22.07
ATOM	3892	CA	GLN B 112		42.367	-1.290	65.617	1.00 22.34
MOTA	3893	C3	GLN B 112		42.199	0.230	65.513	1.00 24.54
MOTA	3894	CG	GLN B 112	2	40.810	0.729	65.843	1.00 20.63
MOTA	3895	כם			40.700	2.236	65.742	1.00 21.19
MOTA	3896	OE			40.664	2.794	64.645	1.00 26.73
MOTA		NE	2 GLN B 112		40.667	2.905	66.886	1.00 18.33
ATOM	3897	C	GLN B 112	2	43.826	-1.635	65.363	1.00 23. 1
ATOM	3898	0	GLN B 11		44.195	-2.020	64.257	1.00 15.79
ATOM	3899	N	ALA B 11	3	44.660	-1.476	66.389	1.00 20.60
MOTA	3900			3	46.070	-1.790	66.249	1.00 18.02
ATOM	3901			ž.	46.794	-1.536	67.548	1.00 20.84
MOTA	3902		ALA B 11	á	46.170		65.863	1.00 23.78
MOTA	3903		ALA B 11		46.982	-3.642	65.023	1.00 19.33
MOTA	3904		ILE B 11		45.331			1.00 21.45
ATOM	. 3905				45.344			1.00 24.26
ATOM	3906		ILE B 11	4	44.507			1.00 20.72
MOTA	3907			4	44.476			1.00 21.92
MOTA	3908			4				1.00 24.32
ATOM	3909		1 ILE B 11	4	45.116			1.00 19.01
ATOM	3910		1 ILE B 11	4	44.364			1.00 26.75
ATOM	3911		ILE B 11	4	44.808	-6.640		1.00 20.18
ATOM	3912		ILE B 11	4	45.305			1.00 24.59
ATOM	3913		GLU B 11	5	43.792			1.00 29.26
MOTA			GLU B 11	5	43.243	-5.198		
ATOM			GLU B 11	5	42.043			
ATOM	4 /		GLU B 11	5	40.940			14
ATOM			11	.5	39.757	-3.519	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ATOM								

			•			 6									
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TOM	89190123456789012345678992223456789933933939333333333333333333333333333	C O N CAB G O C C C C C C O N CAB G D D C C C C C C O N CAB G D D C C C C C C C C C C C C C C C C C	B B B B B B B B B B B B B B B B B B B	11111111111111111111111111111111111111	334445.290.543.28445.290.543.28445.290.543.28445.290.543.28445.290.543.28445.290.543.284445.290.543.284445.290.543.284445.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.2844444.290.543.284444.290.543.284444.290.543.284444.290.543.284444.290.543.284444.290.543.28444.290.543.28444.290.543.28444.290.543.28444.290.543.28444.290.543.28444.290.543.28444.290.543.28444.290.543.290.290.290.290.290.290.290.290.290.290	0344169565721686466449920133327087491556486702982872982133327087492417356486702982855857087491498285	-8. -9. -7. -6. -5. -3. -2. -1. -6. -7. -5. -3. -2. -1. -5. -2. -2. -2. -2. -2. -2. -3. -2. -3. -3. -3. -3. -3. -3. -3. -3	406 039 227 837 44 44 45 79 21 21 21 21 21 21 22 22 29 73 74 14 44 45 77 25 21 21 21 21 22 26 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	57. 57. 58. 58. 58. 57.	884444451133535448930059344026691509978866247738842198584409958691509978866884119888410995869173350	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	391. 32266. 3326	854341122355882377533473795087259025	15312)51694133525581529754
	MOTA	3962	0	GLY	B 120					58.	600	1.0	0 2	5.4	2
				ASN	в.21	50.	695	-3	. 587	58.	919	1.0	0 2 0 3	9.4	9
	ATCM	3965	CB	ASN	B 121			-2	.307	57.	325	1.0	0 3	2.2	:5
	ATOM ATOM	3967		ASN	B 121	49	.924	-2			350 217		0 3	$\frac{5.4}{2.2}$	26
	ATOM	3968	ND2	ASN	B 121		.917 .172		.006	60.	361	1.0	0 3	0.9	2
	ATOM	3969 3970		ASN	B 121 B 121		.971	-4	.631	61.	. 059		0 2	7.0	8
	MOTA MOTA	3971		VAL	B 122		.810		.560		.796 .155		00 2	29.4	18
	ATOM	3972	CA	VAL	B 122		.309 .840		.457 .352		. 177	1.0	0 3	33.4	10
	MOTA	3973		VAL.	B 122 B 122		.334		.294	63	.611	1.0	00 3	32.2	22
	MOTA MOTA	3974 3975	-	VAL	B 122		.446		.544		.458 .748		00 2	33.! 29.(04
	ATOM	397	5 C	VAL	B 122		.713		.196 .118		.153	1.0	00 2	27.	4.7
	ATOM	397		VAL 21.2	B 122 B 123		.100) -1	326	63	.918	1.	00 3	26.° 25.	71
	ATOM ATOM	397: 397		ALA	B 123	50	.47	7 -0	177		.559		00	25. 21.	65
	ATOM	398	0 CB	ALA	в 123	48 50	.96 .87	2 -0 2 -0).281).005		.017	1 1.	00	28.	62
	ATOM	398		الملك حراج	В 123 В 123	51	. 22	7 -0	.965	66	.712	2 1.		26. 22.	
	ATOM ATOM	200	_	PHE	B 124		.80		1.239	66	.472	٤ 1.	00	~~.	0 3

		CA PHE B 124	51.122	1.577		1.00 17.31
ATOM	3984		52.419		67.876	1.00 16.88
ATOM	3985	CB PHE B 124	32.413			1.00 18.52
ATOM	3986	CG PHE B 124	52.762			1.00 17.52
	3987	CD1 PHE B 124	52.533		. •	
MOTA		CD2 PHE B 124	53.382	4.245		1.00 17.88
MOTA	3988		52.914	2.837	71.638	1.00 25.77
ATOM-	3989		53.769			1.00 21.97
MOTA	3990	CE2 PHE B 124			71.698	1.00 20.16
MOTA	3991	CZ PHE B 124	53.535			1.00 18.77
	3992	C PHE B 124	49.937	2.348	68.421	
ĄTOM		101	49.462	3.311	67.820	1.00 16.62
ATOM	3993		49.418	1.868	69.546	1.00 16.69
ATOM	3994				70.238	1.00 16.22
MOTA	3995	CA ASN B 125	48.320		70.435	1.00 12.71
ATOM	3996	CB ASN B 125	47.129			1.00 19.79
	3997	CG ASN B 125	46.095	2.209	71.346	
ATOM		OD1 ASN B 125	45.930	3.430	71.372	1.00 20.83
ATOM	3998		45.376	1.371	72.087	1.00 12.31
MOTA	3999		48.790	3.004	71.600	1.00 19.19
MOTA	4000	C ASN B 125		2.280	72.585	1.00 20.99
MOTA	4001	O ASN B 125	48.687		71.668	1.00 19.02
ATOM	4002	N PRO B 126	49.335	4.226		1.00 21.39
	4003	CD PRO B 126	49.595	5.156	70.555	
MOTA	4004	CA PRO B 126	49.833	4.805	72.917	1.00 21.60
ATOM		106	50.398	6.161	72.459	1.00 21.07
MOTA	4005	CB PRO B 126	49.530	6.487	71.269	1.00 17.70
MOTA	4006	CG PRO B 126		4.942	74.034	1.00 20.69
ATOM	4007	C PRO B 126	48.808		75.198	1.00 19.79
ATOM	4008	O PRO B 126	49.178	5.053		1.00 16.67
	4009	N ALA B 127	47.525	4.937	73.689	
ATOM		CA ALA B 127	46.476	5.065	74.698	1.00 20.44
ATOM	4010		45.198	5.609	74.066	1.00 19.56
ATOM	4011		46.169	3.747	75.401	1.00 20.80
ATOM	4012		45.555	3.742	76.472	1.00 19.47
MOTA	4013	O ALA B 127	46.587	2.634	74.800	1.00 20.52
MOTA	4014	N GLY B 128		1.333	75.399	1.00 19.43
ATOM	4015	CA GLY B 128	46.325	0.910	76.463	1.00 20.56
MOTA	4016	C GLY B 128	47.327		76.869	1.00 18.37
ATOM	4017	O GLY B 128 .	48.182	1.697		1.00 19.68
ATOM	4018	N GLY B 129	47.215	-0.333	76.929	1.00 19.93
	4019	CA GLY B 129	48.136	-0.820	77.943	1.00 15.35
ATOM	4020	C GLY B 129	47.620	-0.619	79.358	1.00 25.25
ATOM		120	48.383	-0.686	80.329	1.00 18.98
ATOM	4021		46.317	-0.374	79.474	1.00 16.04
ATOM	4022		45.677	-0.161	80.768	1.00 19.26
ATOM	4023		44.301	0.451	80.519	1.00 17.94
ATOM	4024	CB MET B 130		1.728	79.653	1.00 22.95
ATOM	4025	CG MET B 130	44.413		79.307	1.00 31.83
ATOM	4026	SD MET B 130	42.873	2.615	78.382	1.00 20.22
	4027	CE MET B 130	41.957	1.358		1.00 22.63
ATOM	4028	C MET B 130	45.598	-1.548	81.421	1.00 22.03
ATOM		O MET B 130	44.546	-2.173	81.486	1.00 16.24
ATOM	4029		46.737	-1.999	81.932	1.00 18.42
ATOM	4030	N HIS B 131	46.853	-3.343	82.472	1.00 17.07
ATOM	4031	CA HIS B 131	48.323	-3.804	82.341	1.00 17.61
ATOM	4032	CB HIS B 131	49.316	-2.979	83.106	1.00 14.01
ATOM	4033	CG HIS B 131			83.915	1.00 13.47
ATOM	4034	CD2 HIS B 131	49.138	-1.904		1.00 18.00
ATOM	4035	ND1 HIS B 131	50.680	-3.190	83.051	1.00 15.27
	4036		51.297	-2.281	83.789	1.00 13.27
ATOM	4037		50.384	-1.489	84.324	1.00 17.21
ATOM		431	46.329	-3.724	83.852	1.00 16.41
ATOM	4038		46.452	-4.883	84.236	1.00 19.37
ATOM	4039		45.721	-2.794	84.586	1.00 18.64
ATOM	4040	N HIS B 132		-3.112	85.936	1.00 20.87
ATOM	4041	CA HIS B 132	45.241			
ATOM	4042	CB HIS B 132	45.513	-1.935		
	1043	430	46.966	-1.686		
ATOM	1044		47.715	-0.563		
ATOM			47.810	-2.655	87.659	
ATOM	4045		49.014	-2.139	87.837	
ATOM	4046	. AES ATC B 135	48.984	-0.872		1.00 14.88
ATOM	404	177	43.778	-3.547		1.00 22.83
ATOM	4048	177	43.478	-4.298		
ATOM		O HIS B 132	45.470	-3,230		

						2 000	85.271	1.00 16.54
MOTA	4050	N	ALA B 133		42.878	-3.088		1.00 19.13
ATOM	4051	CA	ALA B 133	}	41.457	-3.396	85.424	1.00 23.56
ATOM	4052	CB	ALA B 133	}	40.654	-2.704	84.328	1.00 23.30
	4053	C	ALA B 13		41.127	-4.883	85.439	1.00 23.12
MOTA		ō	ALA B 13		41.718	-5.677	84.696	1.00 18.03
MOTA	4054		PHE B 13		40.181	-5.257	86.294	1.00 19.69
MOTA	4055	N			39.762	-6.649	86.365	1.00 19.35
MOTA	4056	CA	PHE B 13				87.818	1.00 21.26
ATOM	4057	CB	PHE B 13		39.583	-7.122		1.00 23.41
ATOM	4058	CG	PHE B 13	1	40.837	-7.053	88.646	1.00 23.41
ATOM	4059	CD1	PHE B 13	4	41.041	-6.009	89.544	1.00 24.25
	4060	CD2	PHE B 13	4	41.820	-8.027	88.522	1.00 22.80
ATOM	4061	CE1			42.207	-5.935	90.311	1.00 23.36
MOTA		CE2			42.997	-7.964	89.283	1.00 27.74
MOTA	4062		PHE B 13		43.190	-6.917	90.178	1.00 24.05
MOTA	4063	cz			38.444	-6.816	85.621	1.00 18.60
MOTA	4064	C	PHE B 13		37.815	-5.849	85.196	1.00 13.82
ATOM	4065	0	PHE B 13			-8:.064	85.454	1.00 19.78
ATOM	4066	N	LYS B 13		38.050		84.782	1.00 28.09
ATOM	4067	CA	LYS B 13	5	36.813	-8.421		1.00 34.06
ATOM	4068	CB	LYS B 13	5	36.501	-9.879	85.125	
ATOM	4069	CG	LYS B 13	5		-10.310	84.953	1.00 42.76
	4070	CD	LYS B 13	5	34.927	-11.745	85.437	1.00 48.44
MOTA	4071	CE	LYS B 13	5	33.462	-12.152	85.531	1.00 55.66
MOTA		NZ	LYS B 13		32.727	-11.332	86.544	1.00 51.65
ATOM	4072		LYS B 13		35.639	-7.512	85.172	1.00 28.27
MOTĄ	4073	C	TIS D 13		34.927	-6.999	84.309	1.00 24.86
MOTA	4074	0	LYS B 13		35.450	-7.292	86.470	1.00 29.89
ATOM	4075	N	SER B 13			-6.477	86.933	1.00 30.86
ATOM	4076	CA	SER B 13		34.331		87.582	1.00 31.57
MOTA	4077	CB	SER B 13		33.282	-7.388		1.00 45.10
ATOM	4078	OG	SER B 13		32.916	-8.434	86.698	1.00 31.50
ATOM	4079	С	SER B 13		34.705	-5.380	87.923	1.00 31.50
MOTA	4080	0	SER B 13	6	33.887	-4.997	88.765	1.00 24.34
ATOM	4081	N	ARG B 13		35.920	-4.854	87.835	1.00 22.63
	4082	CA	ARG B 13		36.291	-3.826	88.794	1.00 25.51
ATOM		CB	ARG B 13		36.629	-4:486	90.136	1.00 29.62
ATOM	4083		ARG B 13	7	36.391	-3.578	91.318	1.00 36.21
MOTA	4084	CG	ARG B 13	7	36.874	-4.160	92.631	1.00 40.79
MOTA	4085	CD	ARG B 13	7	36.365	-3.357	93.744	1.00 45.95
MOTA	4086	NE	ARG B 13	7	36.863	-3.369	94.973	1.00 41.97
MOTA	4087	CZ	ARG B 13		37.897	-4.144	95.263	1.00 43.42
ATOM	4088	NH.	ARG B 13	57		-2.604	95.913	1.00 46.65
ATOM	4089	NH			36.322	-2.956	88.339	1.00 24.73
ATOM	4090	С	ARG B 13		37.461		87.734	1.00 19.32
ATOM	4091	0	ARG B 13		38.420			1.00 16.77
MOTA	4092	N	ALA B 1	38	37.372		88.631	1.00 18.50
ATOM	4093	CA	ALA B 1		38.428		88.270	
ATOM	4094	СВ	ALA B 1	38	37.939		88.401	
	4095	C	ALA B 1		39.597	-0.964	89.216	1.00 22.62
ATOM	4096	ō	ALA B 1		39 411	-1.419	90.346	1.00 18.98
MOTA	4097	N	ASN B 1	39	40.301		88.759	1.00 20.82
MOTA			ASN B 1	19	41.989		89.585	1.00 25.17
ATOM	4098	CA	ASN B 1	30	42.311		89.689	1.00 20.59
ATOM	4099	CB	ASN B 1	20	43.556		90.511	1.00 27.70
MOTA	4100	CG	ASN B 1	22	43.726		91.592	1.00 22.43
ATOM	4101	αo	1 ASN B 1	39			90.010	1.00 24.43
ATOM	4102	ND			44.420		89.020	
MOTA	4103	С	ASN B 1		43.176			
ATOM	4104	0	ASN B 1		43.338		87.799	
ATOM	4105	N	GLY B 1	40	43.984		89.920	
	4106		GLY B 1	40	45.166		89.524	
MOTA	4107		GLY B 1	40	45.005			
ATOM	4107		GLY B 1		45.827	7 2.301		1.00 22.47
ATOM			PHE B 1	41	43.958		88.473	1.00 22.33
MOTA	4109		1	41	43.694	4.126	87.461	
ATOM	4110		1	41	44.996		86.997	
MOTA	4111		PRE D 1	41	45.810			1.00 23.17
ATOM	4112	CG	PHE B 1	41	47.11			1.00 22.17
MOTA	4113	CI	1 PHE B 1	41	45.28			1.00 23.40
ATOM	4114	CI	2 PHE B 1	41				
ATOM	4115	CE	1 PHE B 1	41	47.87	0,402	, 55,000	· - - ·

					•					
> moM	4116	CE2	PHE B	141		. 033	6.244	90.361		23.03
ATOM	4117		PHE B		47	. 335	6.658	90.092		25.15
ATOM ATOM	4118		PHE B			.029	3.538	86.214		23.69 18.88
ATOM	4119	0	PHE B	141		. 596	4.283	85.33		15.03
ATOM	4120	N	CYS B	142		.962	2.211	86.127		19.55
ATOM	4121	CA	CYS B	142		.380	1.578	84.93		20.38
ATOM	4122	CB	CYS B	142		.193	0.336			37.40
ATOM	4123	SG	CYS B	142		.933	0.662			22.77
MOTA	4124	С	CYS B	142	40	.923	1.171			23.04
MOTA	4125	0	CYS B	142		.561	0.514			15.24
MOTA	4126	N	TYR B	143		.094	1.194			21.97
MOTA	4127	CA	TYR B	143		.675 .795	2.372			18.06
MOTA	4128	CB	TYR B			.016	3.622		5 1.00	24.34
ATOM	4129	CG	TYR B	143		.038	4.516		4 1.00	23.20
MOTA	4130	CD1	TYR B	143		.265	5.658		1 1.00	27.42
MOTA	4131	CEI	TYR B	143		.226	3.892	85.65	2 1.00	19.15
MOTA	4132	CD2 CE2	TYR B	143		.441	5.023	86.43		21.92
ATOM	4133	CZ	TYR B		38	.458	5.900	86.09		23.94
MOTA	4134 4135	OH	TYR B		38	.655	7.015			22.37
MOTA	4136	C	TYR B		38	.431	0.008			19.91 22.50
MOTA MOTA	4137	ō	TYR B			.665	-0.902			19.20
MOTA	4138	N	ILE B	144		.083	0.026			19.68
ATOM	4139	CA	ILE B	144		.938	-1.05			20.26
ATOM	4140	CB	ILE B	144		3.282	-0.528 -1.649			
MOTA	4141	CG2	ILE B	144		3.151 5.901	0.05			20.93
ATOM	4142	CG1	ILE B	144		5.198	0.69			23.75
MOTA	4143	CD1	ILE B	144).320	-1.62		74 1.00	22.78
MOTA	4144	С	ILE B	144		1.281	-0.87	3 80.60		22.01
MOTA	4145	0	ASN B	145		.422	-2.95	6 80.73		23.18
MOTA	4146 4147	N CA	ASN B	145		1.698	-3.62	3 80.45		20.63
ATOM	4148	CB	ASN B	145		1.778	-4.93			17.81
ATOM ATOM	4149	CG	ASN B			3.188	-5.53			25.17 23.63
ATOM	4150	OD1	ASN B	145		3.804	-5.74			22.69
MOTA	4151	ND2	ASN B	145		3.693	-5.81	-		
MOTA	4152	С	ASN B			1.780	-3.91 -5.00			
ATOM	4153	0	ASN E			1.389 2.293	-2.96			0 15.23
MOTA	4154	N .	ASN E			2.253	-3.17			
MOTA	4155	CA	ASN E	146		2.773	-1.88			
MOTA	4156	CB CG	ASN E		_	4.196	-1.45	8 76.3	06 1.0	
ATOM	4157 4158		ASN E			5.109	-1.73	5 75.5		0 20.27
MOTA	4159	ממא	ASN E		4	4.395	-0.79			0 11.85 0 19.07
ATOM	4160	C	ASN I		4	3.277	-4.34			0 19.61
MOTA MOTA	4161	ō	ASN I	3 146		3.030	-4.99	6 75.3 8 77.0		0 17.78
MOTA	4162	N	PRO I	в 147		4.358	-4.59			0 18.13
MOTA	4163	CD	PRO I	B 147		4.953	-3.91 -5.73			0 19.98
ATOM	4164	CA	PRO I	В 147		5.197	-5.69			0 24.29
MOTA	4165	CB	PRO I	B 147		6.338	-4.20		_	0 26.27
ATOM	4166	CG	PRO	B 147		4.377	-7.0	·	757 1.0	0 20.91
MOTA	1167		PRO	B 147		4.461	-7.89		371 1.0	0 17.58
ATOM	4168		PRO !	B 147 B 148		3.568	-7.1		309 1.0	0 15.81
MOTA	4169		ALM :	B 148		2.732	-8.3	62 78.0		0 19.82
MOTA	4170		21.2	B 148		2.049	-8.3	12 79.	_	0 17.50
MOTA	4171		A.1.A	в 148		1.683	-8.4			0 22.58
ATOM	4172		ALA	B 148	4	1.419	-9.5			00 18.38 00 22.48
ATOM	4174		VAL	в 149		1.080				0 19.04
ATOM	4175	CA	VAL	B 149	4	10.086	-7.3		100 I.U	00 18.96
ATOM	4176		VAL	B 149	:	9.503	-5.8			00 17.32
MOTA MOTA	4177		1 VAL	B 149		38.691			462 1.0	00 15.33
ATOM	4178		2 VAL	B 149		38.621		~	166 1.0	00 22.12
ATOM	4179		VAL	B 149		40.763 40.240			421 1.0	00 21.83
ATOM	4180	0	VAL	B 149	•	40.240 41.927	-0.3 -7.1			00 19.51
ATOM	418	1 N	GLY	в 150	'	2 L . J L /	.,.1			
=										

					. •				
			<i>c</i> >	GLY B 150		42.657	-7.433		1.00 19.32
	MOTA	4182	CA	GLY 3 150		43.033	-8.901		1.00 19.59
	MOTA	4183	C	GLY B 150		42.862	-9.550	71.568	1.00 22.28
	MOTA	4184	O N	ILE B 151		43.558	-9.435	73.700	1.00 19.51
	MOTA	4185	N CA	ILE B 151		43.958 -	-10.834	73.723	1.00 23.21
-	MOTA	4186	CE	ILE B 151		44.666 -	-11.175	75.053	1.00 23.50
	MOTA	4187	CG2	ILE B 151		44.918 -	-12.679	75.158	1.00 20.01
	MOTA	4188	CG1	ILE B 151		45.988 -	-10.394	75.129	1.00 21.98
	MOTA	4189		ILE B 151		46.716 -	-10.502	76.457	1.00 21.24
	MOTA	4190 4191	CDI	ILE B 151		42.749	-11.741	73.490	1.00 28.40
	MOTA	4192	0	ILE B 151 -		42.832	-12.692	72.706	1.00 22.96
	MOTA	4193	N	GLU B 152		41.623	-11.450	74.144	1.00 27.32
	MOTA	4194	CA	GLU B 152		40.417	-12.265	73.939	1.00 27.62
	ATOM	4195	СВ	GLU B 152		39.294	-11.845	74.886	1.00 26.46
	MOTA	4196	CG	GLU B 152		39.533	-12.200	76.347	1.00 28.26
	MOTA	4197	CD	GLU B 152		39.513	-13.708	76.592	1.00 31.10
	ATOM ATOM	4198	OE1			39.668	-14.123	77.767	1.00 29.55 1.00 30.51
		4199	OE2	GLU B 152		39.626	-14.481	75.617	1.00 30.31
	ATOM ATOM	1200	C	GLU B 152		39.948	-12.125	72.497	1.00 25.58
	ATOM	4201	ō	GLU B 152		39.463	-13.082	71.893	1.00 26.23
	ATOM	4202	N	TYR B 153			-10.923	71.948 70.563	1.00 28.19
	ATOM	4203	CA	TYR B 153		39.720		70.303	1.00 27.94
	ATOM	4204	CB	TYR B 153		40.082	-9.235	68.735	1.00 28.46
	ATOM	4205	CG	TYR B 153		39.379	-8.886	68.240	1.00 25.69
	ATOM	4206	CD1	TYR B 153		38.618	-8.560 -8.195	66.898	1.00 30.73
	MOTA	4207	CEl	TYR B 153		38.447	-8.193 -8.847	67.856	1.00 24.82
	ATOM	4208	CD3	TYR B 153		40.962	-8.488	66.526	1.00 29.26
	ATOM	≟2 09	CE2	TYR B 153	٠	40.801 39.547	-8.161	66.054	1.00 31.25
	ATOM	4210	CZ	TYR B 153		39.406	-7.803	64.735	1.00 34.22
	MOTA	4211	OH	TYR B 153			-11.627	69.674	1.00 28.11
	MOTA	4212	C	TYR- B 153		39 975	-12.248	68.759	1.00 22.06
	ATOM	4213	0	TYR B 153		41 310	-11.725	69.944	1.00 26.77
	ATOM	4214	N	LEU B 154 LEU B 154		42.681	-12.597	69.168	1.00 28.79
	MOTA	4215	CA	LEU B 154		44.142	-12.386	69.592	1.00 28.06
	ATOM	4216	CB CG	LEU B 154		44.789	-11.087	69.083	1.00 27.71
	ATOM	4217	CD1			46.119	-10.860	69.759	1.00 34.15
	ATOM	4218 4219	CD2			44.968	-11.171	67.571	1.00 26.71
	ATOM	4220	C	LEU B 154		42.299	-14.074	69.274	1.00 25.98
	MOTA MOTA	4221	Ö	LEU B 154		42.282	-14.787	68.271	1.00 29.88 1.00 23.19
	ATOM	1222	N	ARG B 155		41.996	-14.536	70.480	1.00 29.47
	ATOM	4223	CA	ARG B 155		41.622	-15.936	70.669	1.00 28.53
	MOTA	4224	СB	ARG B 155		41.339	-16.230	72.144	1.00 35.03
	ATOM	4225	CG	ARG B 155		42.527	-15.965	73.053 74.507	1.00 39.42
	ATOM	4226	CD	ARG B 155			-16.276	74.792	_, , ,
	ATOM	4227	NE	ARG B 155		42.165	-17.706	75.986	
	ATOM	4228	CZ	ARG B 155		41.869	-18.209 -17.394	77.002	47
	ATOM	4229	NH]	- 		41.591	-19.523	76.178	
	MOTA	4230		2 ARG B 155		40 303 41.012	-16.260	69.832	1.00 29.07
	ATOM	4231		ARG B 155		40.333	-17.311	69.203	1.00 25.31
	atom	4232		ARG B 155		30.J2J	-15.357	69.828	1.00 28.99
•	ATOM	4233		LYS B 156		38 216	-15.573		1.00 34.63
	ATOM	4234		LYS B 156 LYS B 156		37.148	-14.534	69.386	1.00 36.63
	ATOM	1235		LYS B 156		36.393	-14.883	70.646	
	ATOM	4236		LYS B 156		37.292	-14.900	71.868	
	ATCM	4237		LYS B 156		36.685	-15.712	73.009	
	MOTA	1238		LYS B 156		36.561	17.172	72.677	
	ATOM	4239		LYS B 156		38.504	-15.562	67.538	
	ATOM	4240 4241		LYS B 156		37.722	-16.088	66.754	
	ATCM	4242		LYS B 157		39.625	-14.966	67.140	
	ATOM	243				39.996	5 -14.945	65.734	
	ATOM	1244				40.888	3 -13.746	65.418	
	atom atom	4245				40.157	7 -12.426	65.359	10
	ATOM	4246	-			39.132	2 -12.424	64.239	21 00
						38.395	5 -11.103	64.17	1.00 52.50
	ATOM	747							

		157	2	7 406	-11.380	63.054	1.00 32.91
ATOM	4248	NZ LYS B 157			-16.234	65.381	1.00 31.92
ATOM	4249	C LYS B 157					1.00 33.58
ATOM	4250	O LYS B 157			-16.421	64.246	1.00 28.97
	4251	N GLY B 158			-17.111	66.368	1.00 20.97
ATOM		100	4	1.546	-18.379	66.112	1.00 28.98
ATOM	4252				-18.569	66.622	1.00 33.33
ATOM	4253				-19.672	66.522	1.00 30.58
ATOM	4254	O GLY B 158	4	3.303	-17.521	67.164	1.00 32.80
ATOM	4255	N PHE B 159	4	3.5/8	-11.341	67.678	1.00 28.89
ATOM	4256	CA PHE B. 159			-17.657	67.076	1.00 30.33
	4257	CB - PHE B 159	4	5.560	-16.286	67,934	1.00 30.53
MOTA		CG PHE B 159	4	5.748	-15.470	66.692	1.00 28:53
MOTA	4258	CD1 PHE B 159	4	4.682	-14.787	66.121	1.00 24.58
MOTA	4259		. 4	6 989	-15.420	66.068	1.00 24.21
ATOM	4260		4	1 219	-14.066	64.948	1.00 25.26
ATOM	4261	CE1 PHE B 159	7	7 160	-14.706	64.895	1.00 23.66
MOTA	4262	CE2 PHE B 159	4	7.100	-14.026	64.332	1.00 26.65
ATOM	4263	CZ PHE B 159	4	6.095	-14.020	68.958	1.00 30.92
ATOM	4264	C PHE B 159	4	4.969	-18.484		1.00 24.26
ATOM	4265	O PHE B 159			-18.334	69.820	1.00 28.86
	4266	N LYS B 160	4	15.979	-19.347	69.077	1.00 20.00
ATOM		CA LYS B 160	4	6.123		70.237	1.00 30.27
ATOM	4267		4	6.085	-21.692	69.800	1.00 32.05
ATOM	4268			4.806	_	69.113	1.00 41.13
ATOM	4269			4.809		68.826	1.00 40.73
ATOM	4270	CD LYS B 160				67.904	1.00 43.16
ATOM	4271	CE LYS B 160		15.945		66.554	1.00 48.69
-TOM	4272	NZ LYS B 160	•	15.812	-23.408		1.00 28.23
ATOM	4273	C LYS B 160		47.394	-19.997	71.048	1.00 25.29
	4274	O LYS B 160		47.552	-20.561	72.130	1.00 23.23
ATOM	4275	N ARG B 161		48.320	-19.206	70.520	1.00 28.51
MOTA	4213	1/1		49.550	-18.921	71.247	1.00 25.84
ATOM	4276	4.64		50.724	-19.719	70.667	1.00 25.33
MOTA	4277		•	50 551	-21.245	70.781	1.00 27.47
ATOM	4278			50.55	-21.985	70.394	1.00 32.27
MOTA	4279	CD ARG B 161		51.033 51.033	-21.761	69.002	1.00 34.90
ATOM	4280	NE ARG B 161		52.210	22.701	67.954	1.00 38.45
ATOM	4281	CZ ARG B 161		51.584	-22.276		1.00 38.77
ATOM	4282	NH1 ARG B 161		50.527	-23.056	68.130	1.00 38.64
	4283	NH2 ARG B 161		51.999	-22.000	66.725	1.00 30.40
MOTA	4284	C ARG B 161		49.818	3 -17.421	71.182	1.00 30.40
ATOM		O ARG B 161		50.393	-16.912	70.218	1.00 27.50
ATOM	4285	163		49.376	-16.722	72.221	1.00 25.64
MOTA	4286			49 515	-15.273	72.303	1.00 27.44
MOTA	4287			4D.324	1 -14.618	72.545	1.00 24.53
MOTA	4288	CB ILE B 162		40.13	-13.101	72.473	1.00 25.49
ATOM	4289	CG2 ILE B 162		40.24	2 -15.101	71.487	1.00 29.46
ATOM	4290	CG1 ILE B 162		47.14	2 -13.101	71.758	1.00 31.94
ATOM	4291	CD1 ILE B 162		45.68	8 -14.707	73.429	1.00 22.68
ATOM	4292	C ILE B 162		50.46	5 -14.868	73.449	1.00 24.25
	4293			5^.31	1 -15.302	74.568	1.00 24.25
ATOM	4294			545	4 -14.042	73.100	1.00 19.49
ATOM	4295			51.42	5 -13.561	74.081	
atom				53.85	0 -13.686	73.528	
ATOM	4296			54 97	9 -12.975	74.295	1.00 18.84
ATOM	4297			55 10	2 -13.538		1.00 20.55
ATOM	4298	CD1 LEU B 16		55.TO	2 -13.330 3 -13.148		
ATOM	4299	CD2 LEU B 16	,	50.29	3 -13.190		
ATCM	4300	C LEU B 16	}	52.15	8 -12.099		
	4301		}	51.89	8 -11.277	73.549	
ATOM	4302			52.22	7 -11.780	75.715	
ATOM			1	52.02	7 -10.411	76.191	
MOTA	1303		- 1	50.77	7 -10.323	77.070	1.00 16.01
ATOM	4304		- 1	50.53			1.00 15.08
ATOM	4305	CG TYR B 16	7	50.14			1.00 19.51
ATOM	4306		± •				1.00 12.88
ATOM	4307			49.94			
ATOM	4308	CD2 TYR B 16		50.71	5 -8.724		
ATOM	4309) CE2 TYR B 16		50.52	0 -7.463		
				50.13	9 -6.40		
ATOM	431			49.95	32 - 5.163	79.354	10 11
ATOM				53.24	16 -10.01	77.018	
ATOM			4	53.53	9 -10.64	2 78.036	1.00 26.51
ATOM	431	3 O TAK B 10	-			•	
•							

					E2 064	-8.992	76.573	1.00 22.40
MOTA	4314	N 1	LE B	165	53.964	-8.518	77.285	1.00 17.72
ATOM				165	55.148	-8.465	76.343	1.00 22.51
ATOM			LE B	165	56.352	-7.902	77.079	1.00 16.36
MOTA				165	57.582	-9.880	75.818	1.00 19.82
MOTA			LE B	165	56.632	-9.942	74.742	1.00 21.74
ATOM	4319		ILE B	165	57.721	-7.126	77.850	1.00 22.54
ATOM			ILE B	165	54.851	-6.223	77.111	1.00 16.60
ATOM	4321	0 :	ILE B	165	54.478	-6.223 -6.961	79.156	1.00 15.78
ATOM	4322	N I	ASP B	166	55.046	-5.704	79.840	1.00 20.62
ATOM	4323		ASP B	166	54.740	-5.996	80.949	1.00 17.57
ATOM	4324		ASP B	166	53.719	-4.742	81.486	1.00 25.39
MOTA			ASP B	166	53.063 53.779	-3.859	82.003	1.00 19.68
MOTA	4326	OD1 .	ASP B	166	51.824	-4.637	81.377	1.00 29.22
MOTA	4327		ASP B		55.976	-5.002	80.423	1.00 19.01
MOTA	4328		ASP B		56.509	-5.412	81.456	1.00 19.74
ATOM	4329		ASP B		56.414	-3.923	79.775	1.00 17.88
MOTA	4330		LEU B		57.598	-3.211	80.235	1.00 14.99
MOTA	4331		LEU B LEU B	167	58.412	-2.710	79.044	1.00 19.22
MOTA	4332				58.871	-3.799	78.069	1.00 22.68
MOTA	4333		LEU B		59.835	-3.179	77.074	1.00 25.35
MOTA	4334				59.570	-4.943	78.808	1.00 17.54
MOTA	4335		LEU B		57.284	-2.059	81.183	1.00 17.49
MOTA	4336		LEU B		58.189	-1.359	81.639	1.00 13.39
MOTA	4337		ASP S		56.003	-1.878	81.479	1.00 20.03
MOTA	4338	N	ASP E		55.549	-0.848	82.412	1.00 21.98
MOTA	4339	CA	ASP E		54.030	-0.955	82.597	1.00 21.21
MOTA	4340	CB	ASP E		53.453	0.186	83.428	1.00 24.92
ATOM	4341	CG C	ASP E		56.241	-1.139	83.753	1.00 22.98
ATOM	4342	0	ASP E		56.447	-2.304	84.091	1.00 18.36
ATOM	4343		ASP E		52.849	1.099	82.825	1.00 22.03
MOTA	4344 4345	OD2	ASP E		53.606	0.189	84.676	1.00 18.43
MOTA	4345	N	ALA E		56.581	-0.095	84.514	1.00 15.46
MOTA	4347	CA	ALA I		57.263	-0.∙268	85.807	1.00 18.73
ATOM	4348	CB	ALA I		57.764	1.084	86.323	1.00 11.98
ATOM ATOM	4349	c	ALA I		56.400	-0.940	86.886	1.00 21.82
MOTA	4350	ō	ALA I		56.886	-1.262	87.980	1.00 22.51 1.00 18.75
ATOM	4351	N	HIS I		55.120		86.600	1.00 18.73
ATOM	4352	CA	HIS 1	в 170	54.238	-1.776	87.570 87.015	1.00 22.75
MOTA	4353	C	HIS 3	в 170	53.716		87.013	1.00 21.94
ATOM	4354	0	HIS !		53.536		87.927	1.00 21.28
ATOM	4355	CB	HIS :		53.050		88.460	1.00 18.89
MOTA	4356	CG		В 170	53.449		87.626	1.00 19.13
ATOM	4357	ND1		в 170	53.695		88.412	1.00 19.41
ATOM	4358	CE1	HIS	B 170	54.046 53.660		89.746	1.00 19.02
MOTA	4359	CD2	HIS	B 170	54.042		89.710	1.00 20.45
ATOM	4360	NE2	HIS	B 170	53.474		87.907	1.00 19.20
ATOM	4361	N	HIS	B 171	52.961		87.519	1.00 21.20
ATOM	4362	CA	HIS	B 171	52.964			1.00 22.00
MOTA	4363	CB	HIS	B 171	52.541			1.00 24.64
ATOM	4364	CG	HIS	B 171	53.056			1.00 19.19
MOTA	4365	CD2	HIS	B 171	51.441			1.00 25.71
MOTA	4366	NDI	HIS	B 171	51.295			1.00 25.30
MOTA	4367	CEI	HIS	B 171	52.261			1.00 24.71
MOTA	4368		HIS	B 171	51.549			1.00 23.91
MOTA	4369	Ċ	HIS	B 171	50.67			1.00 18.93
MOTA	4370	0	HTD	B 171	51.33		85.865	
atom	4371	N	CIS	В 172 В 172	50.03		85.207	1.00 20.03
ATOM	4372	CA	CYS	B 172	50.24		83.732	1.00 22.46
ATOM	4373	CB		B 172	51.25		83.419	1.00 23.49
ATOM	4374	SG	CVE	B 172	49.11		85.913	
ATOM	4375		CVS	B 172	48.71		L 85.327	1.00 18.23
ATOM	4376		255	B 173	48.76		L 87.170	
ATOM	1377		7CD	B 173	47.90	9 -7.776	5 87.928	1.00 18.81
ATOM	1378 1379		76b	B 173	47.63		5 89.344	1.00 20.39
ATCM	<u>:</u> 379		A)E				-	

ATOM	4380	CG ASP B 173			00 23.40
ATOM	4381	OD1 ASP B 173	46.564 -5.435		00 18.64 00 19.24
ATOM	4382	OD2 ASP B 173	46.834 -5.231		00 17.46
ATOM	4383	C ASP B 173	46.595 -8.116		00 15.53
MOTA	4384	O ASP B 173	46.162 -9.272		00 13.46
ATOM	4385	N GLY B 174	45.978 -7.130		00 18.18
ATOM	4386	CA GLY B 174	44.733 -7.391 44.904 -8.392	84.741 1.	00 17.85
ATOM	4387	C GLY B 174	44.904 -8.392 44.104 -9.316		00 18.27
MOTA	4388	O GLY B 174	45.951 -8.214		00 16.14
ATOM	4389	N VAL B 175 CA VAL B 175	46.206 -9.111	82.829 1.	.00 17.00
MOTA	4390		47.305 -8.552	81,902 1.	.00 27.22
ATOM	4391	CB VAL B 175 CG1 VAL B 175	47.533 -9.507		.00 19.75
ATOM	4392 4393	CG2 VAL B 175	46.896 -7.169		.00 18.66
MOTA	4394	C VAL B 175	46.635 -10.486		.00 22.82
ATOM ATOM	4395	O VAL B 175	46.255 -11.503		.00 18.06
ATOM	4396	N GLN B 176	47.439 -10.520		.00 21.67 .00 21.55
ATOM	4397	CA GLN B 176	47.889 -11.798	-	.00 19.68
MOTA	4398	CB GLN B 176	48.824 -11.602	86.105 1 86.862 1	.00 20.17
ATOM	4399	CG GLN B 176	49.088 -12.905	87.996 1	.00 25.42
MOTA	4400	CD GLN B 176	50.066 -12.759 51.243 -12.442		.00 21.56
MOTA	4401	OE1 GLN B 176	49.592 -13.000		.00 20.18
MOTA	4402	NE2 GLN B 176 C GLN B 176	46.689 -12.630	85.348 1	.00 24.78
MOTA	4403	7 176	46.618 -13.817	85.057 1	.00 22.91
MOTA	4404	O GLN B 176 N GLU B 177	45.751 -12.007		.00 23.69
ATOM	4405 4406	CA GLU B 177	44.571 -12.727		.00 27.01
MOTA	4407	CB GLU B 177	43.703 -11.825	•	.00 24.73
MOTA MOTA	4408	CG GLU B 177	42.633 -12.581		.00 37.46
MOTA	4409	CD GLU B 177	41.767 -11.676		.00 42.48 .00 44.35
ATOM	4410	OE1 GLU B 177	40.875 -11.002		.00 45.63
ATOM	4411	OE2 GLU B 177	41.993 -11.627		.00 26.56
ATOM	4412	C GLU B 177	43.732 -13.247. 43.240 -14.375	85.408 1	00 27.71
ATOM	4413	O GLU B 177	43.573 -12.418		.00 24.58
ATOM	4414	N ALA B 178	42.776 -12.775		00 25.86
MOTA	4415	CA ALA B 178 CB ALA B 178	42.778 -11.628		00 24.20
MOTA	4416	CB ALA B 178 C ALA B 178	43.231 -14.054		00 25.72
MOTA MOTA	4417 4418	O ALA B 178	42.406 -14.838		00 22.38
MOTA	4419	N PHE B 179	44.535 -14.282		1.00 27.19 1.00 27.05
ATOM	4420	CA PHE B 179	44.990 -15.489		1.00 27.03
ATOM	4421	CB PHE B 179	45.714 -15.086		1.00 20.36
ATOM	4422	CG PHE B 179	44.992 -14.020		1.00 25.23
ATOM	4423	CD1 PHE B 179	45.387 -12.687 43.860 -14.332	78.902	1.00 19.22
ATOM	4424	CD2 PHE B 179	44.659 -11.677	79.102	1.00 19.25
ATOM	4425	CE1 PHE B 179	43.128 -13.315	78.272	1.00 20.65
MOTA	4426	CE2 PHE B 179 CZ PHE B 179	43.528 -12.001	78.374	1.00 25.64
MOTA	4427	CZ PHE B 179 C PHE B 179	45.866 -16.398	82.556	1.00 23.50
ATOM	4428 4429	O PHE B 179	46.652 -17.182		1.00 18.26
ATOM	1430	N TYR B 180	45.689 -16.313		1.00 23.24
MOTA MOTA	4431	CA TYR B 180	46.479 -17.106	• • • • • •	1.00 26.76 1.00 25.72
ATOM	4432	CB TYR B 180	46.150 -16.665		1.00 29.66
MOTA	4433	CG TYR B 180	47.226 -16.969	•	1.00 27.07
MOTA	4434	CD1 TYR B 180	47.037 -17.942	88.237 89.170	1.00 30.08
ATOM	4435	CE1 TYR B 180	48.039 -18.222 48.444 -16.283	87.216	1.00 29.68
MOTA	4436	CD2 TYR B 180	49.451 -16.552	88.139	1.00 30.99
ATCM	4437	CE2 TYR B 180	49.431 -16.532	89.112	1.00 33.16
ATOM	4438		50.262 -17.791	90.006	1.00 28.47
ATOM	1439	100	46.256 -18.619	84.649	1.00 29.13
ATOM	4440	100	47.163 -19.416		1.00 23.43
ATOM	4441 4442		45.073 -19.021	84.190	1.00 25.67
ATOM	4443		44.784 -20.445	84.075	1.00 28.28
ATOM ATOM	1444	CB ASP B 181	43.446 -20.759	84.757	1.00 32.13 1.00 36.12
ATCM	1445	101	42.247 -20.410	83.890	1.00 00.12

```
42.202 -19.300 83.329
41.334 -21.249 83.782
                                                               1.00 41.04
       4446 OD1 ASP B 181
MOTA
                                                               1.00 44.36
              OD2 ASP B 181
       4447
MOTA
                                                      82.664
                                    44.773 -21.018
                                                               1.00 32.41
                   ASP B 181
ATOM
        4448
              C
                                    44.246 -22.115
                                                      82.444
                                                               1.00 31.67
                   ASP B 181
        4449
              0
MOTA
                                                      81.702
                                                               1.00 29.24
                                   45.345 -20.302
                   THR B 182
        4450
              N
MOTA
                                                              1.00 30.57
1.00 30.03
                                   45.363 -20.823
44.468 -20.008
                                                      80.340
                   THR B 182
        4451
              CA
MOTA
                                                      79.397
              CB THR B 182
OG1 THR B 182
        4452
ATOM
                                    44.516 -20.598
44.947 -18.561
46.759 -20.870
                                                              1.00 28.22
                                                      78.095
ATOM
        4453
                                                               1.00 26.55
                                                      79.310
              CG2 THR B 182
        4454
ATOM
                                                               1.00 32.31
                                                      79.740
                   THR B 182
        4455
ATOM
                                                               1.00 27.27
                                    47.591 -20.007
                                                      80.008
                   THR B 182
        4456
              0
MOTA
                                                               1.00 29.94
                                    46.999 -21.878
                                                      78.909
                   ASP B 183
        4457
              N
MOTA
                                                      78.273
                                                               1.00 31.40
                                    48.296 -22.049
                  ASP B 183
        4458
              CA
MOTA
                                                               1.00 33.36
                                    48.648 -23.536
                                                      78.228
                  ASP B 183
              CB
        4459
MOTA
                                    47.718 -24.319
46.513 -23.988
                                                      77.328
                                                               1.00 33.33
              CG ASP B 183
        4460
MOTA
                                                      77.287
                                                               1.00 28.06
               OD1 ASP B 183
        4461
ATOM
                                    48.186 -25.271
                                                               1.00 38.19
                                                      76.675
              OD2 ASP B 183
        4462
MOTA
                                                               1.00 31.14
1.00 28.74
                                                      76.864
                                    48.321 -21.462
        4463
                   ASP B 183
               С
ATOM
                                    49.332 -21.557
                                                      76.168
                   ASP B 183
        4464
               0
                                                               1.00 25.34
ATOM
                                    47.217 -20.852 76.446 1.00 25.34
47.151 -20.251 75.118 1.00 28.59
45.712 -20.256 74.581 1.00 26.84
                   GLN B 184
        4465
               N
MOTA
                   GLN B 184
        4466
               CA
MOTA
                   GLN B 184
        4467
               CB
ATOM
                                    45.060 -21.632
                                                               1.00 34.86
                                                      74.529
                   GLN B 184
               CG
        4468
ATOM
                                                               1.00 32.27
                                    43.760 -21.647
                                                      73.736
                   GLN B 184
        4469
               CD
ATOM
                                    42.897 -20.789 73.912
43.611 -22.641 72.870
                                                                1.00 35.43
               OE1 GLN B 184
        4470
MOTA
                                    43.611 -22.641
47.672 -18.817
47.871 -18.171
                                                                1.00 28.92
              NE2 GLN B 184
        4471
MOTA
                                                      75.175
                                                                1.00 27.28
                    GLN B 184
        4472
              С
ATOM
                                                                1.00 29.70
                                                      74.148
                    GLN B 184
        4473
              0
ATOM
                                                      76.386
                                                                1.00 27.64
                                    47.900 -18.325
              N
                    VAL B 185
        4474
 ATOM
                                                      76.575
                                                                1.00 26.26
                                     48.400 -16.972
                    VAL B 185
         4475
              CA
 MOTA
                                     47.304 -16.039 77.145
47.879 -14.642 77.395
46.136 -15.967 76.191
                                                                1.00 22.85
                   VAL B 185
         4476
              CB
 MOTA
                                                                1.00 23.10
               CG1 VAL B 185
         4477
 MOTA
                                                                1.00 21.67
               CG2 VAL B 185
         4478
 MOTA
                                                                1.00 27.01
                                     49.570 -16.964 77.547
                    VAL B 185
VAL B 185
               C
         4479
 ATOM
                                     49.456 -17.469 78.663
                                                                1.00 23.75
         4480
               0
                                     50.696 -16.403 77.115
51.868 -16.301 77.978
53.142 -16.763 77.252
 ATOM
                                                                1.00 22.02
                    PHE B 186
         4481
               N
 ATOM
                                                                1.00 21.83
                   PHE B 186
               CA
         4482
 MOTA
                                                                1.00 17.02
                   PHE B 186
         4483
               CB
 MOTA
                                                                1.00 24.84
                                     54.336 -16.921
                                                      78.170
                    PHE B 186
         4484
               CG
                                                                1.00 22.70
1.00 20.26
 ATOM
                                                       78.580
                                     54.756 -18.189
               CD1 PHE B 186
         4485
 MOTA
                                     55.004 -15.805
                                                       78.670
               CD2 PHE B 186
         4486
                                                                1.00 21.47
 ATOM
                                                       79.471
                                     55.819 -18.338
               CE1 PHE B 186
         4487
 MOTA
                                                                1.00 20.01
                                                       79.563
                                     56.071 -15.941
56.481 -17.206
               CE2 PHE B 186
         4488
 ATOM
                                                                1.00 17.84
                                                       79.968
                    PHE B 186
         4489
               CZ
 MOTA
                                                                1.00 18.12
                                     52.032 -14.827
                                                       78.368
                    PHE B 186
         4490
              C
 ATOM
                                                                1.00 15.92
                                                       77.508
                                     52.038 -13.946
                                                                1.00 18.06
                    PHE B 186
               0
         4491
 ATO:
                                                       79.661
                                     52.161 -14.565
                    VAL B 187
               N
         4492
                                                                1.00 17.67
 ATO.4
                                     52.348 -13.208
                                                       80.153
               CA VAL B 187
         4493
 ATOm
                                                                1.00 22.85
                                     51.282 -12.839
51.608 -11.473
                                                       81.225
                    VAL B 187
         4494
               CB
 MOTA
                                                                1.00 24.08
                                                       81.840
         4495 CG1 VAL B 187
 MOTA
                                                       80.598. 1.00 18.82
                                     49.882 -12.808
              CG2 VAL B 187
         1496
 MOTA
                                                                1.00 18.32
                                                       80.788
                                     53.735 -13.060
         4497
               С
                    VAL B 187
 MOTA
                                                        81.707
                                                                 1.00 18.82
                                     54.092 -13.807
                    VAL B 187
         4498
               0
                                                                1.00 14.70
 MOTA
                                                        80.282
                                     54.503 -12.103
                    LEU B 188
         4499
               N
 ATCM
                                     55.832 -11.789
56.900 -11.948
                                                                1.00 18.84
                                                        80.798
                    LEU B 188
         4500
               CA
 MOTA
                                                        79.716
                                                                1.00 18.64
                    LEU B 188
         4501
               CB
  ATCM
                                                        80.082 1.00 21.23
                                     58.230 -11.277
                    LEU B 188
                                                                1.00 18.55
         4502
                CG
  MOTA
                                                        81.395
                                     58.769 -11.832
               CD1 LEU B 188
         4503
  ATOM
                                                                 1.00 20.49
                                                        78.957
                                      59.227 -11.489
               CD2 LEU B 188
         4504
  MOTA
                                                                1.00 22.14
                                     55.836 -10.339
                                                        81.280
                     LEU B 188
         4505
                                                                 1.00 19.96
  ATCM
                                                        80.517
                                              -9.410
                                      55.527
                    LEU B 188
          ≟506
                0
  ATOM
                                                                1.00 21.08
                                                        82.540
                                      56.187 -10.133
                     SER B 189
                N
         ₹507
                                                                1.00 21.85
  ATOM
                                                        83.061
                                              -8.782
                                      56.203
                     SER B 189
          4508 CA
                                                        83.908 1.00 25.95
 - ATOM
                                      54.956
                                              -8.543
                     SER B 189
          4509
               CB
                                                                 1.00 21.91
  ATOM
                                                        84.475
                                      54.988
                                              -7.252
                     SER B 189
          4510 OG
  ATCM
                                                        83.883 1.00 23.62
                                      57.423 -8.420
                     SER B 189
          4511 C
  ATOM
```

			•			
		o SER B 189	57.829	-9.174	84.766	1.00 18.61
ATOM	4512		58.020		83.569	1.00 20.33
ATOM	4513	N LEU B 190				1.00 21.85
MOTA	4514	CA LEU B 190	59.149			1.00 22.85
ATOM	4515	CB LEU B 190	60.278		83.473	
	4516	CG LEU B 190	60.964		82.413	1.00 32.59
ATOM		CD1 LEU B 190	62.337	-6.479	82.140	1.00 29.27
MOTA	4517	CDI LEG B 190	61.136	-8.511	82.379	1.00 31.98
MOTA	4518	CD2 LEU B 190	58.505		85.085	1.00 21.28
MOTA	4519	C LEU B 190			84.501	1.00 15.72
ATOM	4520	O LEU B 190	57.695			1.00 18.16
ATOM	4521	N _ HIS B 191	58.857	-5.421	86.351	
	4522	CA HIS B 191	58.249	-4.357	87.145	1.00 17.46
ATOM		CB HIS B 191	56.759	-4.690	87.369	1.00 16.00
MOTA	4523		56.517	-6.085	87.880	1.00 22.14
MOTA	4524		56.341	-6.551	89.143	1.00 12.25
MOTA	4525		56.372	-7.179	87.049	1.00 18.02
MOTA	4526	ND1 HIS B 191		-8.256	87.775	1.00 8.17
MOTA	4527	CE1 HIS B 191	56.119		89.049	1.00 19.79
ATOM	4528	NE2 HIS B 191	56.094	-7.902		
ATOM	4529	C HIS B 191	58.945	-4.197	88.484	
	4530	O HIS B 191	59.769	-5.029	88.867	1.00 18.74
ATOM	4531	N GLN B 192	58.618	-3.114	89.182	1.00 18.20
MOTA			59.173	-2.854	90.502	1.00 18.41
MOTA	4532		58.690	-1.500	91.034	1.00 20.71
ATOM	4533		58.871	-0.334	90.072	1.00 21.49
MOTA	4534	CG GLN B 192		0.930	90.594	1.00 20.65
ATOM	4535	CD GLN B 192	58.226		91.459	1.00 21.52
ATOM	4536	OE1 GLN B 192	58.775	1.615		1.00 15.10
ATOM	4537	NE2 GLN B 192	57.029	1.226	90.098	
ATOM	4538	C GLN B 192	58.608	-3.945	91.395	1.00 17.55
	4539	O GLN B 192	57.415	-4.256	91.320	1.00 17.48
ATOM		100	59.447	-4.522	92.240	1.00 15.71
ATOM	4540	103	58.986	-5.574	93.143	1.00 20.58
ATOM	4541	403	60.093	-5.963	94.120	1.00 20.71
MOTA	4542	CB SER B 193		-6.804	95.138	1.00 22.55
ATOM	4543	OG SER B 193	59.571		93.947	1.00 21.31
ATOM	4544	C SER B 193	57.774	-5.112		1.00 20.82
ATOM	4545	O SER B 193	57.769	-4.003	94.486	1.00 21.80
ATOM	4546	N PRO B 194	56.745	-5.967	94.063	
	4547	CD PRO B 194	56.648	-7.331	93.524	1.00 24.27
ATOM	4548	CA PRO B 194	55.524	-5.643	94.812	1.00 23.58
ATOM			54.678	-6.909	94.642	1.00 22.98
MOTA	4549		55.168	-7.458	93.317	1.00 26.35
ATOM	4550		55.841	-5.366	96.283	1.00 25.79
MOTA	4551	C PRO B 194	55.009	-4.831	97.022	1.00 27.26
ATOM	4552	O PRO B 194		-5.736	96.710	1.00 23.20
ATOM	4553	N GLU B 195	57.045		98.093	1.00 29.56
ATOM	4554	CA GLU B 195	57.428	-5.514		1.00 32.38
ATOM	4555	CB GLU B 195	58.816	-6.090	98.379	1.00 32.35
	4556	CG GLU B 195	58.940	-7.567	98.049	
ATOM		CD GLU B 195	60.206	-8.189	98.613	1.00 50.44
ATOM	4557	OE1 GLU B 195	61.290	-7.580	98.471	<u>:.00 50.51</u>
MOTA	4558	OE2 GLU B 195	60.118	-9.297	99.184	1.00 49.77
MOTA	4559	105	57.414	-4.035	98.425	1.00 25.11
ATOM	4560	C GLU B 195	57.095	-3.659	99.551	1.00 29.05
ATOM	4561	O GLU B 195		-3.191	97.445	1.00 22.90
ATOM	4562	N TYR B 196	57.729		97.696	1.00 22.46
ATOM	4563	CA TYR B 196	57.743	-1.750		1.00 22.72
ATCM	4564	100	59.188	-1.223	97.668	1.00 22.72
	.4565	100	59.855	-1.234	96.301	1.00 24.17
ATOM			59.639	-0.203	95.385	1.00 20.87
MOTA	4566		60.229	-0.222	94.118	1.00 18.31
MOTA	4567	100	60.684	-2.289	95.916	1.00 24.63
ATOM	4568		61.276	-2.318	94.648	1.00 24.39
ATOM	4569		01.4/0		93.756	1.00 23.01
ATOM	4570	CZ TYR B 196	61.042	-1.284		1.00 19.86
ATOM	4571	100	61.592	-1.328	92.492	1.00 23.54
	4572		56.896		96.725	1.00 17.53
ATOM			56.779	0.275	96.869	1.00 11.33
ATOM	4573		56.293	-1.589	95.740	1.00 22.11
ATOM	4574		55.503		94.779	1.00 24.28
ATOM	4575		56.310			1.00 23.03
ATOM	4576	CB ALA B 197				
MOTE	4577	C ALA B 197	54.153	-1.412		-

		^	ALA B 197		53.910	-2.609	94.549	1.00 17.67
MOTA	4578	0	PHE B 198		53.278	-0.541	93.932	1.00 26.40
ATOM	4579	N	PHE B 198		51.956	-0.950	93.495	1.00 28.19
ATOM	4580	CA			51.152	0.263	93.035	1.00 29.51
MOTA	4581	СВ	PHE B 198		49.721	-0.050	92.711	1.00 29.50
MOTA	4582	CG	PHE B 198		48.732	0.100	93.674	1.00 32.77
MOTA	4583	CD1	PHE B 198		49.367	-0.533	91.455	1.00 25.82
MOTA	4584		PHE B 198			-0.223	93.394	1.00 36.70
ATOM	4585	CEl	PHE B 198		47.410	-0.223	91.170	1.00 29.29
ATOM	4586	CE2	PHE B.198		48.050		92.141	1.00 33.05
ATOM	4587	CZ	PHE B 198		47.071	-0.703	92.284	1.00 28.28
ATOM	4588	С	PHE B 198		52.170	-1.858	91.456	1.00 27.15
MOTA	4589	0	PHE B 198		53.045	-1.602	92.185	1.00 31.37
ATOM	4590	N	PRO B 199		51.407	-2.952	91.045	1.00 37.07
ATOM	4591	CD	PRO B 199		51.440	-3.887	93.144	1.00 35.32
ATOM	4592	CA	PRO B 199		50.386	-3.369	92.321	1.00 33.88
ATOM	4593	CB	PRO B 199		49.545	-4.328	91.578	1.00 36.75
MOTA	4594	CG	PRO B 199		50.641	-5.068	94.184	1.00 36.93
ATOM	4595	С	PRO B 199		51.241	-4.082	93.860	1.00 50.93
ATOM	4596	0	PRO B 199		52.308	-4.603	95.422	1.00 37.04
ATOM	4597	N	PHE B 200		50.804	-4.127		1.00 30.13
ATOM	4598	CA	PHE B 200		51.644	-4.763	96.421 97.723	1.00 28.70
ATOM	4599	CB	PHE B 200		51.547	-3.968		1.00 29.98
ATOM	4600	CG	PHE B 200		51.760	-2.485	97.543	1.00 28.92
ATOM	4601	CD1	PHE B 200		50.717	-1.660	97.137	1.00 28.92
MOTA	4602	CD2	PHE B 200		53.016	-1.919	97.746	1.00 23.60
MOTA	4603	CE1	PHE B 200		50.922	-0.289	96.938	1.00 27.05
MOTA	4604	CE2	PHE B 200		53.229	-0.558	97.547	1.00 23.30
MOTA	4605	CZ	PHE B 200		52.182	0.260	97.143	1.00 25.51
ATOM	4606	С	PHE B 200		51.296	-6.227	96.658	1.00 20.92
ATOM	4607	0	PHE B 200		52.112	-6.984	97.167	1.00 20.32
ATOM	4608	N	GLU B 201		50.094	-6.618	96.252	1.00 31.98
ATOM	4609	CA	GLU B 201		49.576	-7.972	96.454 96.487	1.00 31.57
MOTA	4610	CB	GLU B 201		48.056	-7.928		1.00 39.17
ATOM	4611	CG	GLU B 201		47.486	-6:935	97.449 97.316	1.00 40.31
ATOM	4612	CD	GLU B 201		45.987	-6.853	97.500	1.00 38.90
ATOM	4613	OE:			45.332	-7.902 -5.751	97.019	1.00 35.04
MOTA	4614	OE			45.475	-9.018	95.422	1.00 30.83
MOTA	4615	С	GLU B 201		49.979	-10.219	95.690	1.00 26.34
MOTA	4616	0	GLU B 201		50.362	-8.573	94.234	1.00 24.95
MOTA	4617	N	LYS B 202		50.764	-9.501	93.195	1.00 22.79
ATOM	4618	CA	LYS B 202		49.588	-9.773	92.258	1.00 25.12
ATOM	4619	CB	LYS B 202			-10.523	93.000	1.00 35.38
MOTA	4620	CG	LYS B 202		40.404	-11.099	92.103	1.00 38.67
MOTA	4621	CD	LYS B 202		46 498	-11.998	92.903	1.00 40.98
MOTA	4622	CE			45 491	-12.659	92.028	1.00 46.65
MOTA	4623		LYS B 202 LYS B 202		51.975	-9.007	92.435	1.00 24.62
MOTA	4624	C	LYS B 202		52.355	-7.838	92.549	1.00 21.83
MOTA	4625	0	GLY B 203		52.598			1.00 17.60
MOTA	4626				53.779			1.00 19.41
MOTA	4627		GLY B 203		55.014	-10.297		1.00 20.36
MOTA	4628		GLY B 203		56.101	-10.070	90.888	1.00 23.83
MOTA	4629		PHE B 204		54.855	-11.201	92.358	1.00 24.82
MOTA	4630				55.992	-11.957	92.859	1.00 24.24
ATOM	4631				55.690	-12.567	94.236	1.00 22.72
ATOM	4632				55.485	-11.549	95.322	1.00 25.26
ATOM	4633		1		54.235	-10.977	95.535	1.00 23.80
MOTA	4634				56.551	-11.159	96.133	1.00 20.25
ATOM	4635		4		54.048	-10.036	96.545	1.00 29.98
ATOM	4636		_ ^ ^ ^		56.377	-10.221	97.141	
ATOM	4637				55.124		97.350	
ATOM	4638		PHE B 204		56.412	-13.057	91.894	
ATCM	4639		PHE B 204		55.613	-13.540	91.091	
ATOM	4640		LEU B 205			-13.449	91.986	
ATOM	4643		_ ^ ^ -			-14.472	2 91.114	
ATOM	1642			,	59.723	-14.637	7 91.413	1.00 34.01
ATOM	164	3 CE					•	

			CO 40E 11	E 660	90.592	1.00 34.12
MOTA	4644	CG LEU 3 205	60.495 -1			1.00 32.95
MOTA	4645	CD1 LEU 3 205	60.356 -1		89.109	
		CD2 LEU B 205	61.957 -1	5.629	91.005	1.00 36.49
MOTA	4646		57.535 -1		91.205	1.00 30.51
ATOM	4647		57.467 -1	6 562	90.220	1.00 25.89
ATOM	4648	O LEU B 205			92.382	1.00 30.43
ATOM	4649	N GLU B 206	57.010 -1			
	4650	CA GLU 3 206	56.338 -1	7.423	92.605	
MOTA			56.025 -1	7.601	94.093	1.00 34.77
MOTA	4651	CD	57.227 -1		95.033	1.00 42.50
ATOM	4652		57.718 -1		95.270	1.00 45.76
MOTA	4653	CD GLU 3 206			94.333	1.00 42.62
ATOM	4654	OE1 GLU B 206	58.228 -1	5.438		1.00 50.22
	4655	OE2 GLU B 206	57.585 -1	5.602	96.413	
MOTA		C GLU B 206	55.045 -1	7.587	91.811	1.00 31.13
ATOM	4656	200	54.607 -1	8.708	91.563	1.00 28.18
MOTA	4657	O GLU B 200	54.430 -1	6 472	91.425	1.00 25.16
ATOM	4658	N GLU B 207	53.178 -1	6 499	90.664	1.00 28.78
ATOM	4659	CA GLU B 207			90.695	1.00 30.76
ATOM	4660	CB GLU B 207	52.546 -1		90.093	1.00 29.39
ATOM	4661	CG GLU B 207	52.121 -1		92.093	1.00 27.87
	4662	CD GLU B 207	52.057 <i>-</i> 1	.3.151	92.230	
MOTA		OE1 GLU B 207	51.6 5 6 -1	.2.477	91.261	1.00 24.38
MOTA	4663		52.389 -1	2.636	93.316	1.00 25.36
MOTA	4664	V	53.453 -1	6.922	89.224	1.00 29.48
MOTA	4665	C GLU B 207			88.351	1.00 27.48
ATOM	4666	O GLU 3 207	53.658 -1			1.00 26.67
ATOM	4667	N ILE B 208		18.230	88.976	1.00 20.07
	4668	CA ILE B 208	53.735 -1	18.754	87.646	1.00 32.60
MOTA		^ ^ ^	54.789 -1	19.877	87.740	1.00 34.26
MOTA	4669			20.296	86.352	1.00 41.65
MOTA	4670	CG2 ILE B 208		19.404	88.532	1.00 36.07
MOTA	4671	CG1 ILE B 208		18.338	87.851	1.00 45.18
ATOM	4672	CD1 ILE B 208			86.870	1.00 32.26
ATOM	4673	C ILE B 208	•	19.289		
	4674	O ILE B 208		19.799	85.759	
ATOM		N GLY B 209	51.328 -	19.165	87.442	1.00 32.60
MOTA	4675		50.139 -	19.652	86.760	1.00 35.07
ATOM	4676		• • • • • •	20.892	87.420	1.00 36.19
ATOM	4677	C GLY B 209		21.524	88.235	1.00 31.61
MOTA	4678	O GLY B 209			87.066	1.00 36.98
ATOM	4679	N GLU B 210		21.245		1.00 40.60
ATOM	4680	CA GLU B 210		22.412	87.647	
	4681	CB GLU B 210		21.964	88.672	1.00 37.98
MOTA			45.446 -	21.234	88.058	1.00 42.78
MOTA	4682		44.470 -	20.717	89.098	1.00 48.41
MOTA	4683		43.400 -		88.709	1.00 51.03
MOTA	4684	OE1 GLU B 210		20.814	90.306	1.00 49.90
ATOM	4685	OE2 GLU B 210			86.564	1.00 39.48
ATOM	4686	C GLU B 210	46.996 -	23.248		
	4687	O GLU B 210	46.709 -	22.751	85.471	
ATOM		N GLY B 211	46.736 -	24.515	86.876	1.00 39.18
ATOM	4688		46.087 -	25.399	85.923	1.00 38.43
MOTA	1689		46.877 -	25.500	84.637	1.00 40.29
MOTA	4690	C GLY B 211	48.101 -	25 610	84.666	1.00 39.39
ATOM	4691	O GLY B 211	40.101	25.010	83.504	1.00 40.90
ATOM	4692	N LYS B 212	46.187 -	25.458	82.219	1.00 43.53
MOTA	4693	CA LYS B 212	46.864 -	-25.538		1.00 43.33
	4694	CB LYS B 212	45.842 -	25.548	81.080	1.00 47.87
ATOM			44.795 -	26.665	81.144	1.00 53.09
ATOM	4695	044	45.398 -	-28.076	81.130	1.00 58.61
ATOM	4696	CD LYS 3 21	46.069 -	28 454	82.452	1.00 59.78
MOTA	4697	CE LYS B 21	46.009	20.434	82.420	1.00 62.17
ATOM	4698	NZ LYS B 213	46.670 -	-23.023		
ATOM	4699		47.823 -	-24.363	82.040	
	4700		48.797 -	-24.457	81.295	
ATOM			47.543 -	-23.262	82.731	
MOTA	4701		48.384 -	-22.081	82.627	1.00 34.66
ATOM	4702		49.625		83.505	1.00 37.09
ATOM	4703	C GLY B 21		22.107	83.489	
ATOM	4704	0 GLY 3 21	50.425	-21.100		
	4705	N LYS B 21	49.794 -	-23.180	84.273	
ATOM	4706		50.953	-23.297	85.148	
MOTA			50.886 ·	-24.598	85.954	1.00 38.89
ATOM	1707			-24.786	86.938	1.00 39.29
ATOM	4708	G 515 B 41		-26 094	87.704	1.00 43.60
ATCM	1709	CD LYS B 21	32.070	20.024	•	

	4710	CE LYS B 214	53.04	7 -26.334	88.640	1.00 47.36
MOTA	4710		53 16	5 -25.264	89.666	1.00 54.03
MOTA	4711	NZ LYS B 214		9 -23.275	84.291	1.00 34.16
ATOM	4712	C LYS B 214				
ATOM	4713	O LYS B 214	52.40		83.438	1.00 34.70
	4714	N GLY B 215	53.05	7 -22.279	84.523	1.00 33.58
MOTA		N GB1 B 215	54.27	5 -22.152	83.743	1.00 28.27
MOTA	4715	CA GLY B 215			82.605	1.00 31.02
ATOM	4716	C GLY B 215	54.10			
	4717	O GLY B 215	55.03	3 -20.911	81.833	1.00 23.68
MOTA		N TYR B 216	52.91	8 -20.564	82.493	1.00 22.45
MOTA	4718	N 11K B 210	52.68		81.426	1.00 24.03
ATOM	4719	CA TYR B 216			80.603	1.00 17.60
ATOM	4720	CB TYR B 216	51.45			1.00 25.96
MOTA	4721	CG TYR B 216	. 51.68	32 -21.291	79.806	
	4722	CD1 TYR B 216	51.69	2 -22.538	80.435	1.00 21.41
ATOM			51 98	3823 .704	79.729	1.00 23.78
ATOM	4723		51.97		78.439	1.00 19.62
MOTA	4724	CD2 TYR B 216	21.2		77.72-2	1.00 26.39
ATOM	4725	CE2 TYR B 216		59 -22.402		
	4726	CZ TYR B 216	52.27	77 -23.630	78.379	1.00 29.35
MOTA		OH TYR B 216	52.5	77 -24.782	77.690	1.00 27.75
ATOM	4727		52.5		81.884	1.00 24.53
ATOM	4728	C TYR B 216			81.159	1.00 18.99
ATOM	4729	O TYR B 216	52.0			1.00 21.41
MOTA	4730	N ASN B 217	53.0		83.098	
	4731	CA ASN B 217	53.0	73 -16.534	83.642	1.00 21.23
MOTA			51.9		84.669	1.00 16.78
MOTA	4732		51.8		85.162	1.00 22.07
MOTA	4733	CG ASN B 217			86.163	1.00 23.13
ATOM	4734	OD1 ASN B 217	52.5			1.00 19.26
ATOM	4735	ND2 ASN B 217		46 -14.058	84.435	• •
	4736	C ASN B 217	54.4	37 -16.339	84.291	1.00 19.40
MOTA				57 -17.145	85.124	1.00 19.28
MOTA	4737	010	55.0	30 -15.273	83.905	1.00 18.65
ATOM	4738	N LEU B 218	55.1	50 -15.275	84.444	1.00 16.41
MOTA	4739	CA LEU B 218	56.4	59 -15.004		
ATOM	4740	CB LEU B 218	57.5	12 -15.244	83.368	1.00 18.29
		CG LEU B 218	58.8	51 -15.872	83.782	1.00 28.15
MOTA	4741		59 B	73 -15.563	82.695	1.00 20.50
MOTA	4742	V	50.3	32 -15.348	85.116	1.00 22.53
MOTA	4743	CD2 LEU B 218			84.926	1.00 17.89
ATOM	4744	C LEU B 218	56.5			
ATOM	4745	O LEU B 218	56.4	69 -12.627	84.128	1.00 14.48
			56.8	59 -13.395	86.219	1.00 14.09
ATOM	4746	N ASN B 219		44 -12.075	86.821	1.00 18.41
ATOM	4747	CA ASN B 219		38 -11.922	88.111	1.00 14.64
ATOM	4748	CB ASN B 219			87.868	1.00 27.12
ATOM	4749	CG ASN B 219	54.7	48 -11.898		
	4750	OD1 ASN B 219	54.2	86 -11.332	86.880	1.00 20.21
ATOM		ND2 ASN B 219	53.9	82 -12.480	88.787	1.00 23.62
MOTA	4751		58 5	04 -11.843	87.172	1.00 20.39
MOTA	4752	C ASN B 219	50.5	15 -12.672	87.841	1.00 20.41
ATOM	4753	O ASN B 219	29.1	15 -12.072		1.00 15.11
MOTA	4754	N ILE B 220	59.0	56 -10.717	86.729	
ATOM	4755	CA ILE B22C	60.4	41 -10.394	87.033	1.00 17.16
		CB ILE B 220	61.2	50 -10.083	85.740	1.00 20.78
ATOM	4756	CB 1DB D 220	62.7		86.094	1.00 18.08
MOTA	4757	CG2 ILE B 22C	62.7	.38 -11.250		1.00 17.62
ATOM	4758	CG1 ILE B 220	61.1	.36 -11.230	05.730	1.00 20.72
ATOM	4759	CD1 ILE B 220	61.6	46 -12.590	85.273	1 00 20 17
	4760	C ILE B 220	60.4	75 -9.161		1.00 21.17
MOTA			60.5	65 -8.036	87.470	1.00 16.03
MOTA	4761		60.3			1.00 21.74
ATOM	4762	N PRO B 221	60.5	35 -10.619		1.00 22.96
ATOM	4763	CD PRO B 221				1.00 19.16
ATOM	4764	CA PRO B 221	60.3			1.00 19.10
	4765	CB PRO B 221	59.9			1.00 19.40
ATOM				64 -10.251	91.407	1.00 23.02
ATOM	4766		61.7			1.00 22.42
ATOM	4767	C PRO B 221				1.00 20.71
ATOM	4768	O PRO B 221	62.	780 -8.369		1.00 22.74
	4769	N LEU B 222	61.8			1.00 22.79
ATOM		CA LEU B 222	63.			1.00 21.18
ATOM	4770		63.4	_		1.00 17.21
MOTA	4771		63.4			1.00 20.26
ATCM	4772	CG LEU B 222				1.00 20.00
ATOM	4773	CD1 LEU B 222	63.4			1.00 21.93
	4774	CD2 LEU B 222	64.			1.00 20 00
ATCM	4775		63.	335 -4.616	91.353	1.00 20.04
ATOM	4/13				•	

							4 00 17 50
	4776	O LEU B	222	62.350		91.806	1.00 17.58
ATOM	-			64.571	-4.394	91.830	1.00 19.48
ATOM	4777		223	65.806	-5.072	91.400	1.00 16.80
MOTA	4778	CD PRO B	223			92.915	1.00 20.38
MOTA	4779	CA PRO B	223	64.873	-3.454	-	
	4780		223	66.274	-3.881	93.327	
ATOM				66.884	-4.161	91.973	1.00 19.74
ATOM	4781	CG PRO B	223		-1.971	92.553	1.00 21.39
·ATOM	4782	C PRO B	223	64.818			1.00 17.16
ATOM	4783	C PRO B	223	64.815	-1.598	91.380	
	4784	N LYS B	224	64.798	-1.142	93.589	1.00 20.65
MOTA			224	64.755	0.311	93.462	1.00 27.00
MOTA	4785	CA. LYS B	224		0.938	94.844	1.00 36:47
MOTA	4786	CB LYS B	224	64.577			1.00 37.72
ATOM	4787	CG LYS B	224	63.415	0.389	95651	
•	4788	CD LYS B	224	63.541	0.833	97.101	1.00 42.06
ATOM				62.420	0.276	97.955	1.00 45.18
ATOM	4789			62.645		99.399	1.00 46.30
ATOM	4790		224			92.874	1.00 27.01
MOTA	4791	C LYS B	224	66.071	0.808	92.074	
	4792	O LYS B	224	67.098	0.139	92.995	
ATOM			225	66.038	1.989	92.259	1.00 22.66
MOTA	1793		225	67.239	2.565	91.669	1.00 25.67
MOTA	4794				1.809	90.459	1.00 24.95
MOTA	4795		225	67.768			1.00 26.83
MOTA	4796	O GLY B	225	68.917	1.975	90.069	1.00 20.00
	4797	N LEU B	226	6 6 .926	0.980	89.855	1.00 21.79
ATOM			226	67.319	0.180	88.692	1.00 22.31
ATOM	4798			66.067	-0.473	88.099	1.00 23.29
ATOM	1799		226			87.091	1.00 26.71
ATOM	4800	CG LEU B	226	66.238	-1.605		1.00 25.44
ATOM	4801	CD1 LEU B	226	66.846	-2.804	87.813	
		CD2 LEU B	226	64.877	-1.997	86.508	1.00 22.96
MOTA	4802		226	68.008	1.017	87.603	1.00 22.66
MOTA	4803			67.517	2.087	87.250	1.00 20.19
ATOM	4804		226			87.060	1.00 15.52
ATOM	4805	n ASN B	227	69.134	0.549		
	4806	CA ASN B	227	69.794	1.317	85.998	
ATOM			227	71.304	1.474	86.270	1.00 20.43
ATOM	4807			72.062	0.161	86.206	1.00 28.97
ATOM	4808		227		-0.546	85.199	1.00 24.30
ATOM	4809		227	72.015		87.276	1.00 20.88
MOTA	4810	ND2 ASN B	227	72.786	-0.160		1.00 21.26
	4811	C ASN B	227	69.548	0.671	84.630	
ATOM			227	69.004	-0.432	84.555	1.00 18.90
ATOM	4812			69.949	1.347	83.552	1.00 20.98
ATOM	4813	N ASP B	220	69.720	0.817	82.208	1.00 22.51
MOTA	4814	CA ASP B	228			31.126	1.00 23.46
ATOM	4815	CB ASP B	228	70.270	1.753		1.00 26.12
	4816	CG ASP 3	228	69.596	3.113	81.119	
MOTA		OD1 ASP B		68.387	3.193	81.415	1.00 26.75
ATCM	4817	ODI ASE D	228	70.276	4.101	80.773	1.00 30.22
atom	4818	OD2 ASP B	220	70.286	-0.573	81.952	1.00 23.49
ATOM	4819	C ASP B	228			81.288	1.00 19.31
ATOM	4820	O ASP B	228	69.651	-1.390		1.00 22.24
ATCM	4821	N ASN B		71.484	-0.836	82.453	1.00 22.24
		- · · · · · - · -	229	72.111	-2.135	82.250	1.00 23.30
ATOM	4822	CA ASN B	220	73.562	-2.101	82.737	1.00 20.99
ATOM	4823	CB ASN B	223			81.859	1.00 25.71
ATCM	4824	CG ASN B	229	74.441			1.00 26.40
ATOM	4825	OD1 ASN B	229	74.644	-1.538	80.678	1.00 20.10
	4826	ND2 ASN B	229	74.955		82.417	1.00 27.44
ATOM			229	71.341		82.943	1.00 23.74
atom	4827	C ASN B	220	71.207		82.402	1.00 20.51
ATCM	∔828	C ASN B	229			84.139	
MOTA	4829	N GLU B	230	70.832			
ATOM	4830		230	70.069		84.874	
			230	69.799	-3.480	86.297	
ATOM	4831	CD GLU 2	230	71.069	-3.201	87.087	1.00 27.28
MOTA	4832		230			88.470	1.00 27.47
ATOM	4833	CD GLU B	ن کے ک	70.792			
ATOM	4834	OE1 GLU E	3 230	70.086			
	4835		230	71.286	-3.232	89.455	
ATOM			2 730	68.749		84.146	1.00 24.25
ATOM	4836		220	68.347			1.00 15.89
ATCM	4837	O GLU E	0 د د				
ATOM	;838	N PHE	3 231	68.391	-3.242		
	4839		3 231	66.814			1.00 22.04
ATOM			3 231	66.210	-2.079	82.529	
, ATOM	4840		2 2 2 1	64.803			1.00 26.13
ATOM	4841	. CG PHE E	221	54.505		•	

	4042	CD1	PHE B	231	63.738	-2.514	82.805	1.00 25.00
MOTA	4842		PHE B	231	64.550	-1.956	80.627	1.00 22.93
MOTA	4843		PHE B		62.440	-2.618	82.304	1.00 25.03
MOTA	4844		PHE B		63.250	-2.059	80.114	1.00 27.46
ATOM	4845		PHE B		62.196	-2.390	80.957	1.00 20.25
MOTA	4846	CZ	PHE B		66.978	-4.288	81.677	1.00 23.14
ATOM	4847	C			66.221	-5.239	81.464	1.00 20.02
MOTA	4848	0	PHE B		67.963	-3.952	80.845	1.00 22.02
ATOM	4849	N	LEU B	222	68.200	-4.697	79.614	1.00 19.97
MOTA	4850	CA	LEU B		69.192	-3.942	78.734	1.00 24.99
MOTA	4851	CB	LEU B		68.665	-2.581	78.263	1.00 29.73
MOTA	4852	CG	LEU B		69.746	-1.856	77.454	1.00 28.11
	4853	CDI	LEU B	232	67.409	-2.784	77.414	1.00 26.54
MOTA	4854		LEU B		68.688	-6.119	79.898	1.00 19.25
MOTA	4855	C	LEU B		68.365	-7.051	79,162	1.00 19.49
ATOM	4856	0	PHE B	223	69.468	-6.280	80.962	1.00 20.50
ATOM	4857	N	PHE B	222	69.950	-7.599	81.378	1.00 20.70
ATOM	4858	CA	PHE E		70.825	-7.471	82.632	1.00 23.75
MOTA	4859	CB CG	PHE E		71.217	-8.790	83.239	1.00 28.58
MOTA	4860		PHE E		72.285	-9.519	82.731	1.00 30.48
ATOM	4861	CD2	PHE E		70.481	-9.328	84.294	1.00 25.32
MOTA	4862	CE1	PHE E		72.617	-10.762	83.262	1.00 31.87
MOTA	4863		PHE E		70.803	-10.573	84.832	1.00 31.26
ATOM	4864	CZ	PHE E	233	71.871	-11.292	84.317	1.00 32.29
ATOM	4865 4866		PHE		68.712	-8.439	81.727	1.00 20.23
ATOM	4867	0	PHE E		68.553	-9.567	81.270	1.00 21.56
MOTA	4868	N	ALA E		67.842	-7.878	82.560	1.00 21.26
MOTA	4869	CA	ALA E		66.626	-8.576	82.963	1.00 19.60
MOTA	4870	CB	ALA I		65.835	-7.733	83.950	1.00 19.25
MOTA	4871	c	ALA I		65.772	-8.898	81.749	1.00 18.87
MOTA MOTA	4872	ō	ALA I		65.253	-10.010	81.624	1.00 21.91
ATOM	4873	N	LEU I		65.634	-7.934	80.845	1.00 20.29
ATOM	4874	CA	LEU I		64.822	-8.141	79.652	1.00 19.53
ATOM	4875	CB	LEU I		64.773	-6:874	78.795	1.00 24.07
ATOM	4876	ÇG		3 235	63.465	-6.607	78.024	1.00 27.87
MOTA	4877	CD1	LEU I	3 235	63.783	-5.813	76.770	1.00 20.77
ATOM	4878	CD2	LEU !	3 235	62.761	-7.897	77.664	1.00 26.94 1.00 20.79
ATOM	4879	С		3 235	65.376	-9.276	78.795	'_
MOTA	4880	0		B 235	64.648	-10.205	78.431	1.00 18.25 1.00 19.33
ATOM	4881	N	GLU :	B 236	66.665	-9.191	78.462	1.00 19.33
MOTA	4882	CA	GLU :	в 236	67.303		77.629 77.384	1.00 27.33
ATOM	4883	CB		В 236	68.777	-9.853	76.548	1.00 43.60
MOTA	4884	CG	GLU		68.969	-8.597	76.259	1.00 45.19
MOTA	4885	CD	GLU		70.428	-8.292	75.538	1.00 48.77
ATOM	4886	OEl			70.697	-7.309	76.751	1.00 52.72
ATOM	4887.	OE2	GLU	B 236	71.300	-9.032	78.209	1.00 24.89
MOTA	4888	С	GLU	B 236	67.20.	-11.607 -12.552	77.501	1.00 22.06
ATCM	1889	0	GLU	B 236	66.865	-11.748	79.492	1.00 24.20
ATCM	4890	N	LYS	B 237	67.520		80.130	1.00 27.10
MOTA	4891	CA		B 237		-12.984	81.562	
ATOM	4892	СВ	LYS	B 237		-12.641	81.650	1.00 29.46
ATOM	4893	CG	LYS	B 237	70 305	-13.683	80.924	1.00 31.65
ATOM	4894	CD	LYS	B 237	70.303	-13.356	80.993	1.00 39.70
MOTA	4895	CE	LYS	B 237	72.702	-14.363	80.242	1.00 46.74
MOTA	4896	NZ	LYS	B 237	72.300 66 010	-13.615	80.143	1.00 30.92
ATOM	4897	C	LYS	B 237	65.017	-14.766	79.763	1.00 31.42
MOTA	4898	0	LYS	B 237		-12.806	80.573	1.00 25.86
MOTA	4899	Ŋ	SER	B 238	63.037	-13.280	80.620	1.00 27.98
ATOM	4900	CA	SER	B 238		-12.241	81.289	1.00 23.89
MOTA	1901	CB	SER	B 238	62.110	-11.028		1.00 29.27
ATCM	1902	OG	SER	B 238	52.730	-13.642	79.229	1.00 28.32
ATOM	4903	C	SER	B 238	62 187	-14.605		1.00 29.65
MOTA	1904	0	SER	B 238	63 536	-12.886		1.00 27.39
ATOM	4905	N	LEU	B 239	63.550	-13.192		1.00 32.52
ATCM	4906		LEU	B 239		-12.129		
ATOM	4907	CB	LEU	в 239	099		•	

		CG LEU B 239	62.833	-10.772	75.895	1.00 36.06
MOTA	4908		63.404	-9.836	74.842	1.00 29.64
ATOM	4909	CD1 LEU B 239			75.667	1.00 30.73
MOTA	4910	CD2 LEU B 239	61.338			
ATOM	4911	C LEU B 239	63.598	-14.563	76.430	1.00 34.15
	4912	O LEU B 239	62.879	-15.340	75.803	1.00 33.23
ATOM			64.844	-14.859	76.788	1.00 31.39
MOTA	4913	0.40		-16.152	76.472	1.00 33.79
MOTA	4914		66.859		77.011	1.00 38.51
ATOM	4915	CB GLU B 240				1.00 40.56
ATOM	4916	CG GLU B. 240	67.878		76.275	
ATOM	4917	CD GLU B 240	69.256	-15.532	76.903	1.00 48.20
	4918	CE1 GLU B 240	69.685	-16.679	77.161	1.00 45.36
MOTA			69.912		77.130	1.00 48.21
MOTA	4919		64.604		77.108	1.00 33.23
ATOM	4920	C GLU B 240	64.391		76.510	1.00 32.15
MOTA	4921	O GLU B 240	64.391	-10.310	78.331	1.00 29.72
ATOM	4922	N ILE B 241	64.146	-17.017		1.00 29.85
ATOM	4923	CA ILE B 241		-17.989	79.047	
ATOM	4924	CB ILE B 241	63.006	-17.489	80.466	1.00 30.42
	4925	CG2 ILE B 241		-18.456	81.162	1.00 29.88
MOTA			64.309	-17.311	81.254	1.00 29.77
ATOM	4926			-16.760	82.654	1.00 32.92
ATOM	4927			-18.247	78.298	1.00 34.65
ATOM	4928	C ILE B 241			78.149	1.00 30.22
ATOM	4929	C ILE B 241	61.592	-19.396		1.00 31.16
ATOM	4930	N VAL B 242	61.379	-17.178	77.823	
ATOM	4931	CA VAL B 242		-17.312	77.105	1.00 34.55
	4932	CB VAL B 242	59.476	-15.937	76.825	1.00 30.77
MOTA			58.191	-16.113	76.038	1.00 32.18
ATOM	4933			-15.214	78.140	1.00 31.57
ATOM	4934			-18.042	75.787	1.00 36.56
ATOM	4935	c VAL B 242			75.453	1.00 33.93
ATOM	4936	O VAL B 242		-18.959		1.00 38.64
MOTA	4937	N LYS B 243		-17.527	75.042	1.00 44.36
ATOM	4938	CA LYS B 243	61.659	-18.241	73.760	1.00 44.30
	4939	CB LYS B 243	62.966	-17.659	73.214	1.00 48.33
ATOM	4940	CG LYS B 243	62.810	-16.399	72.386	1.00 53.88
MOTA			62.185	-16.718	71.036	1.00 53.72
MOTA	4941	CD LYS B 243		-17.681	70.242	1.00 54.69
MOTA	4942	CE LYS B 243		-18.025	68.923	1.00 57.75
. ATOM	4943	NZ LYS B 243	62.430	10.025	73.824	1.00 43.21
MOTA	4944	C LYS B 243	61.793	-19.755		1.00 42.92
ATOM	4945	O LYS B 243		-20.455	72.884	
ATOM	4946	: GLU B 244		-20.257	74.935	
	4947	CA GLU B 244		-21.687	75.085	1.00 47.72
MOTA	4948	CB GLU B 244	63.669	-21.925	76.075	1.00 50.89
MOTA			64.080	-23.378	76.208	1.00 57.16
MOTA	4949			-23.564	77.173	1.00 57.74
MOTA	4950	CD GLU B 244		-22.967	76.942	1.00 60.18
ATOM	4951	CE1 GLU B 244			78.160	1.00 61.59
ATOM	4952	OE2 GLU B 244		-24.308		1.00 47.78
ATOM	4953	C GLU B 244	61.312	-22.507	75.505	
MOTA	4954	O GLU B 244	61.376	-23.736	75.544	1.00 51.39
	4955	N VAL B 245	60.200	-21.851	75.805	1.00 43.31
MOTA		CA VAL B 245	59.019	-22.589	76.230	1.00 43.55
ATOM	4956		58 867	-22.514	77.771	1.00 45.89
ATOM	4957		57 665	-23.322	78.231	1.00 49.90
ATOM	4958	CG1 VAL B 245	57.005	-23.040	78.435	1.00 46.37
ATOM	4959	CG2 VAL B 245	00.737	22.090	75.565	1.00 41.01
ATOM	4960	C VAL B 245	57.727	-22.115		1.00 39.36
MOTA	4961	O VAL B 245	56.659	-22.676	75.798	1.00 34.37
	4962	☐ PHE B 246	57.814	-21.101	74.716	1.00 34.37
MOTA		CA PHE B 246	56,610	-20.602	74.077	1.00 34.36
MOTA	4963		55.986	-19.517	74.958	1.00 30.80
MOTA	4964			-19.230	74.644	1.00 32.57
MOTA	4965	CG PHE B 246	52 5/0	-20.142	74.989	1.00 27.72
MOTA	4966	CD1 PHE B 246	53.340	10 040		1.00 28.20
ATOM	4967	CD2 PHE B 246	54.174	-18.048		
ATOM	4968	CE1 PHE B 246		-19.878		
	4969			-17.773		
ATOM		246		-18.689		1.00 26.18
ATOM	1970			-20.040	72.682	
MOTA	1971			-19.153		1.00 31.73
ATOM.	4972	0.47		-20.568		00
ATOM	4973	: GLU B 247	50.20	. 20.500	•	

	4074	C D	GLU B	247	56.3	363	-20.137	70.296	1.00 40.73
ATOM	4974						-21.347	69.370	1.00 43.38
ATOM	4975		GLU B				-22.702	70.073	1.00 51.49
MOTA	4976		GLU B				-23.214	70.718	1.00 55.29
MOTA	4977		GLU B						1.00 49.08
ATOM	4978		GLU B				-22.601	71.691	
ATOM	4979	OE2	GLU B	247			-24.246	70.241	1.00 60.95
MOTA	4980	С	GLU B	247			-19.379	69.939	1.00 39.04
	4981	ō	GLU B	247	54.	129	-19.960	69.436	1.00 39.49
MOTA			PRO B				-18.064	70.182	1.00 35.13
MOTA	4982	N	PRO B				-17.279	70.733	1.00 33.57
ATOM	4983	CD					-17.188	69.916	1.00 36.03
ATOM	4984	CY	PRO B				-15.878	70.562	1.00 35.33
MOTA	4985	CB	PRO B					70.332	1.00 32.85
MOTA	4986	CG	PRO B				-15.880		1.00 32.03
MOTA	4987	C	PRO B	248	53.	563	-16.990	68.457	
ATOM	4988	0		248			-16.808	67.604	1.00 29.38
ATOM	4989	N	GLU B	249	52.	263	-17.012	68.182	1.00 32.23
	4990	CA		249	51.	773	-16.782	66.828	1.00 29.35
MOTA	4991	CB	GLU B	249	50.	374	-17.366	66.645	1.00 31.87
MOTA		CG	GLU B	249			-18.867	66.787	1.00 28.64
ATOM	4992		GLU B	249			-19.338	66.747	1.00 33.37
MOTA	4993	CD		249			-18.917	67.630	1.00 26.38
ATOM	4994						-20.115	65.835	1.00 37.71
MOTA	4995			249			-15.273	66.650	1.00 28.25
ATOM	4996	С	GLU B	249				65.537	1.00 21.47
MOTA	4997	0	GLU B	249			-14.765	67.768	1.00 21.77
MOTA	4998	N	VAL B	250			-14.564		1.00 21.41
ATOM	4999	CA	VAL B	250		459		67.756	1.00 21.41
ATOM	5000	CB	VAL B	250			-12.676	67.357	
ATOM	5001	CG1	VAL B	250		037		68.378	1.00 20.96
ATOM	5002	CG2	VAL B	250		931		67.243	1.00 24.68
ATOM	5003	С	VAL B				-12.608	69.168	1.00 22.88
	5004	Ö	VAL B	250	51.	592	-13.354	70.133	1.00 18.00
MOTA	5005	N	TYR B		52.	201	-11.359	69.295	1.00 20.28
MOTA		CA	TYR B	251	52.	481	-10.823	70.620	1.00 22.33
MOTA	5006		TYR B	251		956	-11.043	70.999	1.00 20.67
MOTA	5007	ĊВ	TYR B	251			-10.045	70.427	1.00 21.89
MOTA	5008	CG	TIRD	751 751		198	-8.834	71.072	1.00 19.31
MOTA	5009	CD1	TYR B			129	-7.922	70.562	1.00 23.73
MOTA	5010	CE1		251		651		69.254	1.00 18.72
MOTA	5011	CD2					-9.417	68.734	1.00 22.71
MOTA	5012	CE2	TYR B	251		580		69.390	1.00 27.33
MOTA	5013	CŻ	TYR B	251		813	-8.220		1.00 23.18
MOTA	5014	oh	TYR B	251		.705	-7.308	68.865	1.00 25.71
ATOM	5015	C	TYR B	251		.134	-9.349	70.732	1.00 20.14
MOTA	5016	0	TYR B	251		. 095	-8.622	69.728	
ATOM	5017	N	LEU B	252		. 834	-8.930	71.958	1.00 21.13
ATOM	5018	CA	LEU B	252	51	. 533	-7.532	72.252	1.00 24.61
MOTA	5019	СВ	LEU B	252	50	. 154	-7.373	77.897	1.00 22.88
	5020	CG	LEU B	252	48	.915	-7.435	¹1.996	1.00 23.73
MOTA	5021	CDI	LEU B	252	48	.779		1.360	1.00 23.18
ATOM		CD2		252		. 697		72.833	1.00 29.06
ATOM	5022		LEU B	252		.610		73.217	1.00 24.77
ATOM	5023	C	LEU D	252		.064		74.076	
MOTA	5024	0	LEU B	252		.011		73.071	1.00 20.14
ATOM	5025	N	LEU B	500				73.911	1.00 20.33
MOTA	5026	CA	LEU B	253		.057			1.00 15.18
ATOM	5027	CB	LEU B	253		.304			1.00 18.34
MOTA	5028	CG	LEU B			.490		73.688	1.00 14.11
ATOM	5029	CD1	LEU B	253		.062		74.829	1.00 10 50
ATOM	5030	CD2	LEU B	253		. 552		72.624	1.00 19.60
ATOM	5031	C	LEU B	253		.550		74.536	1.00 20.54
ATOM	5032	Š	LEU B			.200		73.821	1.00 22.80
	5033	N	GLN B	254	53	.495	-3.858	75.865	1.00 20.37
ATOM	5034	CA	GLN B			.000		76.539	1.00 21.77
ATOM		CB	GLN B			.129		77.755	1.00 17.85
ATOM	5035		GLN E			.724		79.124	1.00 32.51
ATOM	5036	CG				.563		79.609	1.00 28.19
ATOM	5037	CD	GLN E			.507		80.124	1.00 26.96
ATCM	5038	OEI	GLN E	474		.603		79.432	
ATOM	5039	NE2	GLN E	454	53		-0.012		

					76 007	1.00 20.15
MOTA	5040	C GLN B 254	54.211	-1.793	76.887	
MOTA	5041	O GLN B 254	55.186	-2.254	77.497	1.00 20.11
	5042	N LEU B 255	54.146	-0.532	76.468	1.00 19.46
ATOM	_		55.268	0.386	76.614	1.00 15.99
ATOM	5043	CA LEU B 255	55.692	0.831	75.211	1.00 18.15
ATOM	5044	CB LEU B 255	-		74.296	1.00 21.80
ATOM	5045	CG LEU B 255	56.143	-0.316		
MCTA	5046	CD1 LEU B 255	56.215	0.159	72.850	1.00 16.70
	5047	CD2 LEU B 255	57.501	-0.843	74.771	1.00 13.76
ATOM			55.083	1.614	77.492	1.00 21.41
MOTA	5048	C LEU B 255	55.379	2.741	77.065	1.00 18.40
MOTA	5049	O _LEU B 255		1.408	78.718	1.00 16.80
ATOM	5050	N GLY B 256	54.618			1.00 19.90
ATOM	5051	CA GLY B 256	54.456	2.519	79.634	
ATOM	5052	C GLY B 256	· 55.816	3.181	79.818	1.00 17.68
	5053	O GLY B 256	56.854	2.514	79.841	1.00 13.96
ATOM			55.824	4.497	79.936	1.00 19.55
MOTA	5054	N THR B 257	57.081	5.205	80.098	1.00 19.47
ATOM	5055	CA THR B 257		6.547	79.340	1.00 21.49
ATOM	5056	CB THR B 257	57.044			1.00 17.43
MCTA	5057	OG1 THR B 257	55.989	7.365	79.858	
ATOM	5058	CG2 THR B 257	56.780	6.311	77.850	1.00 22.49
	5059	C THR B 257	57.440	5.466	81.564	1.00 20.75
ATOM		553	58.480	5.054	81.843	1.00 25.01
MOTA	5060		56.618	5.004	82.504	1.00 17.23
ATOM	5061		_	5.277	83.906	1.00 17.42
ATOM	5062	CA ASP B 258	56.929			1.00 12.75
MOTA	5063	CB ASP B 258	55.744	4.940	84.846	1.00 12.75
ATOM	5064	CG ASP B 258	55.197	3.524	84.676	
ATOM	5065	C ASP B 258	58.245	4.718	84.460	1.00 16.09
	5066	O ASP B 258	58.667	5.116	85.542	1.00 22.07
ATOM	-	OD1 ASP B 258	55.901	2.642	84.150	1.00 17.74
ATOM	5067	ODI ASP B 258	54.041	3.281	85.109	1.00 18.68
atom	5068	OD2 ASP B 258		3.746	83.779	1.00 20.98
ATOM	5069	N PRO B 259	58.879			1.00 17.75
ATOM	5070	CD PRO B 259	58.474	2.901	82.641	
ATOM	5071	CA PRO B 259	60.154	3.257	84.321	1.00 22.63
	5072	CB PRO B 259	60.395	1.988	83.506	1.00 23.46
ATOM	_		59.800	2.343	82.199	1.00 27.08
ATOM	5073			4.284	84.172	1.00 23.86
ATOM	5074		62.406	4.082	84.698	1.00 24.24
ATOM	5075	O PRO B 259			83.465	1.00 20.49
ATOM	5076	N LEU B 260	61.054	5.387		1.00 15.17
ATOM	5077	CA LEU B 260	62.080	6.417	83.262	1.00 13.17
ATOM	5078	CB LEU B 260	61.626	7.408	82.185	1.00 17.03
	5079	CG LEU B 260	61.431	6.881	80.760	1.00 16.02
MOTA		CD1 LEU B 260	60.703	7.915	79.901	1.00 17.03
ATOM	5080		62.803	6.546	80.163	1.00 18.58
ATOM	5081		62.449	7.194	84.541	1.00 22.45
ATOM	5082	C LEU B 260			85.412	1.00 17.84
ATOM	5083	O LEU B 260	61.611	7.440		1.00 22.90
ATOM	5084	N LEU B 261	63.713	7.588	84.635	
	3085	CA LEU B 261	64.219	8.332	85.782	1.00 26.34
ATOM	5086	CB LEU B 261	65.605	8.914	85.473	1.00 20.58
ATOM			66.180	9.850	86.553	1.00 28.44
ATOM	5087		66.481	9.055	87.812	1.00 29.84
ATOM	5088	CD1 LEU B 261		10.522	86.057	1.00 32.10
ATOM	5089	CD2 LEU B 261	67.462			1.00 27.61
ATOM	5090	C LEU B 261	63.315	9.475	86.227	
ATOM	5091	O LEU B 261	62.978	9.586	87.408	1.00 24.02
	5092	N GLU B 262	62.934	10.315	85.269	1.00 23.33
ATOM			62.126	11.490	85.530	1.00 23.38
ATOM	5093		62.115	12.415	84.302	1.00 23.17
MOTA	5094	CB GLU B 262		12.854	83.806	1.00 28.98
ATOM	5095	CG GLU B 262	63.503			1.00 32.26
ATOM	5096	CD GLU B 262	64.179	11.831	82.902	
ATOM	5097	CE1 GLU B 262	63.702	10.673	82.838	1.00 29.28
	5098	OE2 GLU B 262	65.201	12.186	82.264	1.00 25.42
ATOM			60.693	11.249	85.976	1.00 23.25
ATOM	5099		60.013	12.192	86.368	1.00 27.63
ATCM	5100	O GLU B 262				1.00 22.25
ATOM	5101	N ASP B 263	60.219	10.011		
ATOM	5102	CA ASP B 263	58.840	9.751	86.345	
ATOM	5103	CB ASP B 263	58.214	8.659	85.465	
	5104		56.710	8.543		
ATOM			55.995	8.318		1.00 21.82
ATOM	5105	ODI MOE D 200	32.233	-,	•	

					56.239	8.666	86.811	1.00 18.31
MOTA	5106	OD2	ASP B 263					
	5107	С	ASP B 263	•	58.834	9.339	87.814	
MOTA	-				59.437	8.335	88.179	1.00 22.11
ATOM	5108	0	ASP B 263					1.00 25.81
ATOM	5109	N	TYR B 264		58.155	10.124	88.648	
					58.101	9.864	90.084	1.00 30.96
MOTA	5110	CA						1.00 36.80
	5111	CB	TYR B 264		57.511	11.055	90.841	
ATOM					58.241	12.356	90.645	1.00 46.58
MOTA	5112	CG	TYR B 264					
	5113	CD1	TYR B 264		57.981	13.166	89.542	
MOTA					58.654	14.370	89.364	1.00 50.25
ATOM	5114.	CE1	TYR B 264					1.00 50.94
ATOM	5115	CD2	TYR B 264		59.197	12.779	91.565	
			TYR B 264		59.876	13.977	91.396	1.00 51.28
MOTA	5116	CE2					90.297	1.00 52.21
ATOM	5117	CZ	TYR B 264		59.600	14.769		
			TYR B 264		60.268	15.961	90.142	1.00 49.65
ATOM	5118	ОН					90.525	1.00 31.04
MOTA	5119	С	TYR B 264		57.340	8.628		
		0	TYR B 264		57.514	8.181	91.657	1.00 24.50
MOTA	5120				56.491	8.074	89.666	1.00 26.68
MOTA	5121	N	LEU B 265					1.00 24.17
ATOM	5122	CA	LEU B 265		55.744	6.900	90.086	
			LEU B 265		54.371	6.838	89.390	1.00 24.69
MOTA	5123	CB	LEU B 20-				89.761	1.00 26.00
ATOM	5124	CG	LEU B 265		53.415	7.982		
	5125	CD1	LEU B 265		51.970	7.583	89.460	1.00 22.21
ATOM .	-		110 D 200		53.530	8.281	91.238	1.00 29.31
ATOM	5126	CD2	LEU B 265					1.00 25.83
	5127	С	LEU B 265		56.478	5.568	89.948	
MOTA			LEU B 265		55.848	4.512	89.908	1.00 21.74
ATOM	5128	0	TEO B 703	'				1.00 23.30
MOTA	5129	N	SER B 266		57.808	5.618	89.867	
		-	SER B 266		58.608	4.398	89.813	1.00 20.75
ATOM	5130	CA					88.378	1.00 19.67
ATOM	5131	CB	SER B 266	1	58.820	3.900		1.00 19.01
	5132	. OG	SER B 266	;	59.863	4.615	87.739	1.00 18.11
ATOM						4.710	90.420	1.00 23.01
ATOM	5133	С	SER B 266		59.963			1.00 17.74
	5134	0	SER B 266	;	60.437	5.845	90.345	
ATOM					60.590	3.707	91.023	1.00 24.25
MOTA	5135	N					91.613	1.00 23.79
MOTA	5136	CA	LYS B 26		61.905	3.916		1.00 25.75
			LYS B 26	,	62.027	3.153	92.929	1.00 23.71
MOTA	5137	CB				3.582	93.960	1.00 27.29
ATOM	5138	CG	LYS B 26		60.989			1.00 30.33
	5139	CD	LYS B 26	7	61.059	5.088	94.207	1.00 30.33
ATOM			7.7.C D 36'	,	60.067	5.535	95.273	1.00 30.90
ATOM	5140	CE	LYS B 26	_			95.509	1.00 33.37
ATOM	5141	NZ	LYS B 26	7	60.155	7.004		
			LYS B 26		62.990	3.483	90.634	1.00 26.41
MOTA	5142	С			64.153	3.317	91.016	1.00 25.33
ATOM	5143	0	LYS B 26					1.00 22.18
	5144	N	PHE B 26	3	62.595	3.288	89.375	
MOTA					63.529	2.919	88.318	1.00 22.78
ATOM	5145	CA				2.171	87.179	1.00 20.55
MOTA	5146	CB	PHE B 26	3	62.814			
		CG	PHE B 26	3	62.389	0.761	87.526	1.00 19.23
MOTA	5147				61.722	-0.025	86.585	1.00 20.72
ATOM	5148	CD	PHE B 26					1.00 18.17
MOTA	5149	CD2	PHE B 26	3	62.673	0.207	88.773	
		000	PHE B 26		61.344	-1.336	86.875	1.00 18.83
MOTA	5150	CE	L PRE 5 20	_			89.073	1.00 20.05
ATOM	5151	CE2	PHE B 26	3	62.300	-1.105		1.0' 19.70
	5152	CZ	PHE B 26	8	61.634	-1.879	88.122	
ATOM ·			200 2 26		64.114	4.222	87.785	1.00 23.66
ATOM	5153	С	PHE B 26	.				1.00 19.40
ATOM	5154	0	PHE B 26	В	63.412	5.232	87.692	1.00 13.40
			ASN B 26	a	65.396	4.203	87.437	1.00 21.96
ATOM	5155	N	ASN B ZO	_		5.396	86.926	1.00 25.04
MOTA	5156	СA	ASN B 26	9	66.060			1 00 25 65
		CB	ASN B 26	9	67.243	5.783	87.824	1.00 25.68
ATOM	5157		ASN 5 30	_	66.845	5.946	89.273	1.00 27.04
ATOM	5158	CG	ASN B 26	7				1.00 28.81
ATOM	5159	OD.	1 ASN B 26	9	65.832	6.557	89.579	1.00 20.01
			2 ASN B 26	۵	67.659	5.419	90.176	1.00 31.12
ATOM	5160		ADN B 40	_			85.523	1.00 25.87
ATOM	5161	С	ASN B 26	9	66.579	5.151		
			ASN B 26		67.769	5.336	85.268	1.00 24.58
ATOM	5162	0	7211 5 20	_		4.757	84.611	1.00 21.37
ATOM	5163	N	LEU B 27	U	65.695		02.041	1.00 16.35
		ÇA		0	66.116	4.462	83.241	
MOTA	5164			_	65.176	3.426	82.610	1.00 24.12
ATOM	5165	CB	LEU B 27	U			83.412	1.00 27.89
	5166	CG	LEU B 27	0	64.909			
ATOM		~~	1 LEU B 27	0	64.181	1.136	82.515	1.00 23.03
ATOM	5167	Ω٦	<u>، نہ</u> ⊂ ∪حب <u>ہ</u>	•				
ATOM	5168	CD	2 LEU B 27	U	66.221			
	5169		LEU B 27	0	66.184	5.682	82.337	
ATOM					65.654		82.663	1.00 16.3
ATOM	5170		LEU B 27					
ATOM	5171		SER B 27	1	66.839	5.497	-	1.00
AIUH			_				_	

					•				
\ 	5172	CA	SER B	271	66.989	6.546	80.200	1.00	21.20
MOTA			SER B		68.437	6.621	79.714		21.80
MOTA	5173	CB			68.772	5.485	78.921		21.47
MOTA	5174	OG	SER B			6.228	79.000		22.83
ATOM	5175	С		271	66.106				16.12
ATOM	5176	0	SER B		65.631	5.102	78.854		
ATOM	5177	Ŋ	ASN B	272	65.916	7.238	78.154		20.84
ATOM	5178	CA	ASN B	272	65.152	7.156	76.906	_	27.82
ATOM	5179	CB	ASN B	272	65.263	8.478	76.123		30.30
ATOM	5180	CG		272	64.198	9.456	76.475		37.83
	5181	OD1	•		64.167	10.575	75.946		37.72
MOTA	5182			272	63.299	9.052	77.360	1.00	41.69
ATOM			ASN B		65.701	6.088	75.974	1.00	26.88
ATOM	5183	C	ASN B		64.967	5.280	75.412	1.00	23.12
MOTA	5184	0			67.012	6.160	75.774		20.40
MOTA	5185	N		273	67.745	5.260	74.899	_	27.34
MOTA	5186	CA	VAL B			5.705	74.805		30.40
ATOM	5187	CB	VAL B		69.225		74.029		34.98
ATOM	5188			273	70.036	4.691			33.57
MOTA	5189		VAL B		69.299	7.057	74.115		24.23
ATOM	5190	С		273	67.664	3.812	75.343		
ATOM	5191	0		273	67.590	2.913	74.513		24.19
MOTA	5192	N	ALA B	274	67.690	3.580	76.648		20.96
ATOM	5193	CA	ALA B	274	67.589	2.220	77.151		18.12
ATOM	5194	CB	ALA B	274	67.858	2.195	78.646		19.09
ATOM	5195	c		274	66.172	1.729	76.863		18.23
ATOM	5196	ō		274	65.962	0.567	76.525	1.00	20.77
	5197	N	PHE B		65.207	2.631	77.003	1.00	18.50
ATOM	5198	CA		275	63.802	2.310	76.761	1.00	21.25
MOTA		CB	PHE B		62.941	3.546	77.037	1.00	22,24
ATOM	5199			275	61.466	3.303	76.921	1.00	24.72
ATOM	5200	CG		275	60.815	2.483	77.826		23.64
MOTA	5201	CD1			60.732	3.893	75.907		27.31
MOTA	5202	CD2	PHE B		59.450	2.254	77.722		27.82
MOTA	5203	CE1	PHE B			3.670	75.795		27.62
MOTA	5204	CE2	PHE B		59.365		76.701		25.78
MOTA	5205	CZ	PHE B		58.727	2.851	75.305		24.47
ATOM	5206	С		275	63.642	1.860			
ATOM	5207	0	PHE B	275	63.045	0.821	75.030	1.00	
ATOM	5208	N		276	64.183	2.648	74.378		23.85
MOTA	5209	CA	LEU B	276	64.128	2.330	72.946		21.28
ATOM	5210	CB	LEU B	276	64.814	3.421	72.134	1.00	
MOTA	5211	CG	LEU B	276	65.114	3.132	70.662		24.94
MOTA	5212	CD1	LEU B	276	63.818	2.852	69.936		24.81
MOTA	5213	CD2	LEU B	276	65.840	4.312	70.018		21.01
MOTA	5214	C	LEU B	276	64.841	1.021	72.653		22.33
MOTA	5215	ŏ		276	64.348	0.191	71.886		20.73
	5216	N	LYS B		66.011	0.857	73.261		20.72
ATOM	5217	CA	LYS 3		66.823	-0.335	73.076	1.00	24.36
ATOM		CB	LYS B		68.086	-0.239	73.938	1.00	27.37
ATOM	5218	CG	LYS 3		69.303	-0.973	73.381	1.00	35.58
ATOM	5219		LYS B		69.061	-2.456	73.188		43.87
ATOM	5220	CD			70.283	-3.137	72.580		44.87
ATOM	5221	CE	LYS B			-2.586	71.230.	1.00	49.66
MOTA	5222	NZ	LYS B		70.616	-1.554	73.482	1 00	24.22
MOTA	5223	С	LYS B		66.000		72.777		19.90
ATOM	5224	0	LYS B		65.987	-2.568	74.624	1.00	22.32
MOTA	5225	N	ALA B		65.319	-1.454		1.00	21.71
ATOM	5226	CA	ALA B	278	64.476	-2.544	75.114	1.00	17 24
MOTA	5227	CB	ALA B	278	63.752	-2.117	76.381	1.00	17.34
MOTA	5228	С	ALA B	278	63.459	-2.896	74.031	1.00	22.68
ATOM	5229	Ö	ALA B		63.231	-4.068	73.723	1.00	19.27
ATOM	5230	N	PHE B		62.849	-1.862	73.464	1.00	24.79
	5231	CA	PHE B		61.860	-2.014	72.398	1.00	22.74
ATOM		CB	PHE B		61.395	-0.629	71.955	1.00	22.46
ATOM	5232		PHE B		60.467	-0.640	70.778	1.00	22.62
ATOM	5233	CG			59.196	-1.182	70.882	1.00	21.74
MOTA	5234		PHE B		60.862	-0.078	69.567		26.07
MOTA	5235		PHE B			-1.162	69.799		27.02
ATOM	5236		PHE B		58.325	-0.051	68.476		25.57
ATOM	5237	CE2	PHE B	279	60.001	-0.031			

			PHE B	270	58.727	-0.594	68.592	1.00 25	13
ATOM	5238	CZ						1.00 23	
ATOM	5239	Ç	PHE B	279	62.472	-2.768	71.212		
			PHE B	279	61.866	-3.697	70.678	1.00 26	.54
MOTA	5240	0					70.804	1.00 21	93
ATOM	5241	N	ASN B	280	63.677	-2.376			
		CA	ASN B	280	64.318	-3.046	69.680	1.00 23	.70
MOTA	5242						69.164		2.63
MOTA	5243	CB	ASN B	280	65.520	-2.248			
		CG	ASN B	280	65.107	-0.937	68.505	1.00 30).83
MOTA.	5244						67.796	1.00 25	81
MOTA	5245	OD1	ASN B	280	64.094	-0.878			
	5246	MT)2	ASN B.	280	65.900	0.112	68.714	1.00 26	5.54
MOTA			YOM D.	200		-4.466	70.009	1.00 26	10
MOTA	5247	С	ASN B	280	64.746				
	5248	0	ASN B	280 -	64.775	-5.321	69.124	1.00 26	.16
MOTA						-4.724	71.272	1.00 26	5.10
ATOM	5249	N	ILE B	781	65.080				
	5250	CA	ILE B	281	65.485	-6.067	71.667	1.00 25	
ATOM			T. D. D	-01	66.006	-5.098	73.124	1.00 28	3.50
ATOM	5251	CB	ILE B	201					3.53
ATOM	5252	CG2	ILE B	281	66.046	-7.527	73.648		
			ILE B		67.392	-5.454	73.173	1.00 32	2.07
MOTA	5253	CG1					74.541	1.00 28	3.24
MOTA	5254	CD1	ILE B	281	68.038	-5.442			
	5255	С	ILE B	281	64.320	-7.030	71.507	1.00 25).//
ATOM					64.484	-8.131	70.982	1.00 23	3.39
MOTA	5256	0		281				1.00 2	
MOTA	5257	N	VAL B	282	63.139	-6.618	71.950	1.00 2.	1.30
			VAL B	282	61.961	-7.465	71.813	1.00 22	2.90
ATOM	5258	CA					72.387	1.00 24	
MOTA	5259	CB	VAL B	282	60.703	-6.775			
	5260	CG1		282	59.464	-7.611	72.093	1.00 2	2.28
ATOM					.60.865	-6.587	73.906	1.00 20	5.89
ATOM	5261	CG2		282					
MOTA	5262	С	VAL B	282	61.718	-7.795	70.339	1.00 2	
				282	61.462	-8.949	69.978	1.00 2	2.65
MOTA	5263	0							3.19
ATOM	5264	N	ARG B	283	61.799	-6.779	69.488		
		CA		283	61.576	-6.971	68.060	1.00 2	7.95
MOTA	5265				61.510	-5.612	67.359	1.00 2	5.48
MOTA	5266	CB	ARG B	283				1.00 2	
	5267	CG	ARG B	283	60.337	-4.760	67.838	1.00 2	
MOTA					60 442	3.333	67.339	1.00 3	1.52
ATOM	5268	CD	ARG B	203				1.00 2	
ATOM	5269	NE	ARG B	283	60.210	-3.208	65.908		
		CZ	ARG B	283	60.915	-2.414	65.116	1.00 2	6.45
MOTA	5270		ANG D	203		-1.676	65.622	1.00 2	6 04
ATOM	5271 .	NH1	ARG B	283	61.902			- 00 -	0.01
ATOM	5272	NH2	ARG B	283	60.634	-2.356	63.825	1.00 2	
					62.634	-7.855	67.402	1.00 3	2.04
ATOM	5273	С	ARG B	483				1.00 2	
MOTA	5274	0	ARG B	283	62.341	-8.552	66.431	1.00 2	9.70
				284	63.859	-7.821	67.923	1.00 3	1.50
MOTA	5275	N				-8.646	67.381	1.00 3	2.42
ATOM	5276	CA	GLU B	284	64.934				
ATOM	5277	CB	GLU B	284	66.289	-8.260	67.992	1.00 3	8.31
					66.798	-6.864	67.640	1.00 4	8.93
ATOM	5278	CG		284				1.00 5	
MOTA	5279	CD	GLU B	284	68.102	-6.518	68.362	1.00 5	0.20
	5280	OE1		284	69.084	-7.281	68.222	1.00 5	7.37
MOTA						-5.485	69.069	1.00 5	5.42
ATOM	5281	OE2	GLU B		68.150				
ATOM	5282	С	GLU B	284	64.638	-10.105	67.714	1.00 3	1.93
			GLU B		64 899	-11.001	66.913	1.00 2	8.26
ATOM	5283	0						1.00 2	8 09
ATOM	5284	N	VAL B	285		-10.340	68.901	1.00 2	0.00
	5285	CA	VAL B	285	63.765	-11.697	69.325	1.00 3	0.67
ATOM						-11.802	70.863	1.00 2	8.33
ATOM	5286	CB	VAL B					1.00 2	
ATOM	5287	CG1	VAL B	285	63.257	-13.206	71.262		
		553	VAL B	2.85	65 037	-11.470	71.478	1.00 2	6.93
MOTA	5288	CGZ	VAL B	255.				1.00 3	1 19
ATOM	5289	С	VAL B	285		-12.265	68.758		
		ō	VAL B		62.422	-13.423	68.349	1.00 3	
ATOM	5290		VAL D	205		-11.460	68.729	1.00 2	8.21
ATOM	5291	N	PHE B	286				1 00 3	E 71
MOTA	5292	CA	PHE B	286	60.105	-11.948	68.249	1.00 2	
			2112 2	236		-11.853	69.374	1.00 2	4.57
ATOM	5293	CB						1.00 2	6 87
ATOM	5294	CG	PHE B	286	59.311	-12.804	70.514	1.00 2	
		201	PHE B	286	59,651	-12.331	71.779	1.00 2	.D.16
MOTA	5295			200		-14.180	70.319	1.00 2	2.51
ATCM	5296	CD2	PHE B	286				1.00	2 22
	5297	CE1	PHE B		59.880	-13.213	72.833	1.00 2	. 2 . 3 2
ATOM				225		-15.063	71.362	1.00 2	1.99
ATOM	5298	CE2	PHE 3	_ 30				1.00 2	6.75
ATOM	5299	CZ	PHE B	286	59.772	-14.578	72.626	1.00 4	, , , , ,
			PHE B	286	1 59.518	-11.318	66.993	1.00 2	15.90
ATOM	5300	C	rne p	200			66.620	1.00 2	22.84
ATOM	5301	0	PHE B	200		-11.630		1.00 2	2 27
	5302	N	GLY B	287	60.272	-10.451	66.329	1.00	, , , , , ,
ATOM			GLY B	287	59.756		65.130	1.00 2	8 د . د ي
ATOM	5303	CA	GTI D	20,	22.720		•		

								1 20 20 17
ATCM	5304	С	GLY B 2	287	58.765	-8.719	65.498	1.00 29.17
ATCM	5305	0	GLY B 2	287	58.786	-8.216	56.517	1.00 22.88
	5306	N	GLU B 2		57.896	-8.361	64.558	1.00 26.77
ATCM					56.893	-7.324	64.754	1.00 25.38
ATOM	5307	CA	GLU B 2			-6.791	63.405	1.00 29.51
MOTA	5308	CB	GLU B 2		56.405			
ATCM	5309	CG	GLU B 2	288	57.430	-6.003	62.605	1.00 36.06
	5310	CD	GLU B.2		57.906	-4.769	63.347	1.00 41.10
ATCM			GLU B 2		57.058	-4.055	63.919	1.00 41.19
ATCM	5311	OEI	GLU D 2	.00	59.125	-4.503	63.348	1.00 44.69
ATCM	5312		GLU B 2	288			65.527	1.00 27.87
MOTA	5313	C	-GLU B 2		55.682	-7.819		
ATOM	5314	0 .	GLU B 2	288	55.209	-8.931	65.308	1.00 26.80
ATOM	5315	N	GLY B 2		55.176	-6.973	66.419	1.00 24.53
	5316	CA	GLY B 2		54.006	-7.326	67.204	1.00 29.17
ATCM				289	53.015	-6.171	67.244	1.00 30.46
ATCM	5317	С				-5.326	66.358	1.00 26.17
ATOM	5318	0	GLY B 2		53.005		-	1.00 23.95
ATOM	5319	N		290	52.171	-6.142	68.268	
ATCM	5320	CA	VAL B 2	290	51.194	-5.079	68.440	1.00 22.25
ATOM	5321	CB	VAL B	290	49.794	-5.655	68.783	1.00 18.71
	5322			290	48.810	-4.525	69.047	1.00 22.67
ATOM				290	49.289	-6.504	67.629	1.00 19.26
ATOM	5323				51.722	-4.232	69.593	1.00 21.55
ATCM	5324	С		290			70.687	1.00 21.32
ATOM	5325	0		290	51.960	-4.741		
ATCM	5326	N	TYR B	291	51.913	-2.941	69.346	1.00 21.06
ATOM	5327	CA	TYR B	291	52.479	-2.063	70.357	1.00 19.29
ATOM	5328	CB	TYR B	291	53.582	-1.216	69.711	1.00 20.40
	5329	CG	TYR B		54.553	-2.072	68.918	1.00 23.09
MOTA			TYR B		54.740	-1.875	67.549	1.00 19.52
ATOM	5330	CD1			55.580	-2.712	66.809	1.00 20.67
ATOM	5331	CE1	TYR B	291	55.234	-3.122	69.527	1.00 22.88
ATOM	5332	CD2	TYR B	291			68.800	1.00 26.04
MOTA	5333	CE2	TYR B	291 .	56.070	-3.960		1.00 23.44
ATOM ·	5334	CZ	TYR B	291	56.235	-3.752	67.442	
ATOM	5335	OH	TYR B	291	57.027	-4.612	66.722	1.00 28.02
	5336	С	TYR B	291	51.465	-1.180	71.068	1.00 26.89
ATOM	5337	õ	TYR B		50.668	-0.479	70.429	1.00 20.26
ATOM			LEU B	202	51.522	-1.204	72.399	1.00 21.75
ATCM	5338	N	LEU B	202	50.604	-0.426	73.227	1.00 22.11
ATOM	5339	CA			49.765	-1.369	74.088	1.00 20.92
ATOM	5340	CB	LEU B			-2.542	73.375	1.00 22.94
ATOM	5341	CG	LEU B		49.091			1.00 21.03
MCTA	5342	CD1	LEU B	292	48.328	-3.362	74.411	
ATOM	5343	CD2	LEU B	292	48.149	-2.043	72.281	1.00 18.04
ATOM	5344	С	LEU B		51.330	0.557	74.147	1.00 21.59
	5345	õ	LEU B		52.514	0.404	74.426	1.00 19.96
ATOM		N	GLY B		50.606	1.571	74.613	1.00 23.31
ATOM	5346			293	51.195	2.537	75.521	1.00 20.76
ATOM	5347	CA			51.163	1.979	76.930	1.00 26.15
ATOM	5348	С	GLY B			0.765	77.133	1.00 20.96
ATOM	5349	0	GLY B		51.263			
ATOM	5350	N	GLY B	294	51.017	2.859	77.914	1.00 24.63
ATOM	5351	CA	GLY B	294	50.980	2.407	79.293	1.00 20.00
ATCM	5352	C	GLY B		51.176	3.538	80.285	1.00 22.59
		ō	GLY B		51.145	4.719	79.916	1.00 17.46
ATOM	5353		GLY B	295	51.373	3.179	81.551	1.00 17.10
ATOM	5354	N	GLIS	205	51.577	4.180	82.582	1.00 16.52
ATOM	5355	CA	GLY B	295		5.145	82.232	1.00 19.54
ATOM	5356	C	GLY B	295	52.695			1.00 16.31
ATOM	5357	o	GLY B		53.738	4.737	81.732	1.00 21.93
ATOM	5358	N	GLY B	296	52.467	6.430	82.497	
ATOM	5359	ÇA	GLY B	296	53.448	7.465	82.207	1.00 20.05
	5360	c	GLY B	296	52.869	8.750	82.759	1.00 22.20
ATOM			GLY B	296	51.790	9.160	82.336	1.00 20.48
ATOM	5361	0	TYR B	297	53.573	9.402	83.682	1.00 20.93
ATOM	5362	N	TYK B	207	53.025	10.598	84.306	1.00 23.25
ATOM	5363	CA	TYR B	23/			85.774	1.00 19.93
ATOM	5364	CB	TYR 3	297	52.731	10.284	85.900	1.00 24.76
ATOM,	5365	CG	TYR B	297	52.041	8.944		1.00 21.97
ATOM	5366	CDI	TYR B	297	52.779	7.758	85.936	1.00 21.37
ATOM	5367	CE:	TYR B	297	52.148	6.514	85.912	1.00 19.79
	5368	כח:	TYR B	297	50.653	8.850	85.849	1.00 20.86
ATOM		CE:		297	50.012	7.612	85.822	1.00 19.57
ATOM	5369	دت.					•	

				_			451	1 00 00 05
ATOM	5370	CZ	TYR B 297		50.758	6.457	85.851	1.00 23.85
	5371	OH	TYR B 297		50.106	5.254	85.806	1.00 17.83
MOTA			TYR B 297		53.839	11.877	84.181	1.00 25.22
MOTA	5372	С	TIN D 207		53.451	12.925	84.705	1.00 21.77
MOTA	5373	0	TYR B 297		54.974	11.794	83.497	1.00 23.21
ATOM	5374		HIS B 298			12.976	83.270	1.00 25.62
ATOM	5375	CA	HIS B 298		55.787		83.534	1.00 22.88
ATOM	5376	СВ	HIS B 298		57.270	12.713		
ATOM	5377	CG	HIS B 298		58.097	13.956	83.502	1.00 25.13
	5378	CD2	HIS B 298		58.406	14.791	82.482	1.00 28.22
MOTA	5379	ומוא	HIS B 298		58.617	14.536	84.641	1.00 32.76
MOTA		CEI	HIS B 298		59.209	15.674	84.323	1.00 26.52
ATOM	5380	727	HIS B 298		59.094	15.852	83.019	1.00 32.15
ATOM	5381				55.589	13.307	81.795	1.00 25.66
MOTA	5382	C			56.087	12.589	80.923	1.00 25.84
MOTA	5383	0	HIS B 298		54.901	14.424	81.496	1.00 27.02
ATOM	5384	N	PRO B 299		-	15.424	82.447	1.00 29.91
MOTA	5385	CD	PRO B 299		54.388		80.127	1.00 26.53
ATOM	5386	CA	PRO B 299		54.616	14.864	80.342	1.00 27.76
MOTA	5387	CB	PRO B 299		53.952	16.232		1.00 27.97
ATOM	5388	CG	PRO B 299		54.583	16.696	81.656	1.00 27.08
ATOM	5389	С	PRO B 299		55.815	14.930	79.194	1.00 27.00
ATOM	5390	0	PRO B 299		55.738	14.472	78.057	1.00 28.58
ATOM	5391	N	TYR B 300		56.925	15.484	79.668	1.00 27.30
	5392	CA	TYR B 300		58.114	15.593	78.824	1.00 27.17
ATOM	5393	CB	TYR B 300		59.173	16.496	79.466	1.00 31.65
MOTA		CG	TYR B 300		58,684	17.851	79.921	1.00 31.61
MOTA	5394		TYR B 300		57.414	18.318	79.582	1.00 32.71
MOTA	5395	CD1	TYR B 300		56.971	19.568	80.014	1.00 38.52
MOTA	5396	CE1	TYR B 300		59.499	18.670	80.701	1.00 30.92
MOTA	5397	CD2			59.072	19.917	81.138	1.00 32.13
MOTA	5398	CE2	TYR B 300		57.808	20.361	80.795	1.00 39.17
MOTA		CZ	TYR B 300			21.585	81.252	1.00 43.90
MOTA	5400	OH	TYR B 300		57.374	14.218	78.572	1.00 25.20
ATOM	5401	С	TYR B 300		58.731		77.445	1.00 25.15
ATOM	5402	0	TYR B 300		59.106	13.894	79.628	1.00 20.55
ATOM	5403	N	ALA B 301		58.845	13.419		1.00 22.12
ATOM	5404	CA	ALA B 301		59.414	12.080	79.508	1.00 17.09
MOTA	5405	CB	ALA B 301		59.417	11.388	80.874	1.00 17.05
ATOM	5406	С	ALA B 301		58.608	11.260	78.505	1.00 13.20
ATOM	5407	0	ALA B 301		59.161	10.629	77.613	
MOTA	5409	N	LEU B 302		57.295	11.290	78.667	1.00 18.02
MOTA	5409	CA	LEU B 302		56.381	10.553	77.815	1.00 19.88
MOTA	5410	CB	LEU B 302		54.957	10.702	78.362	1.00 21.72
	5411	CG	LEU B 302		53.767	10.118	77.606	1.00 31.08
MOTA	5412	CD1	LEU B 302		52.576	9.980	78.549	1.00 31.35
MOTA	5413	CDI	LEU B 302		53.434	11.011	76.415	1.00 27.11
ATOM			LEU B 302		56.445	10.988	76.351	1.00 21.13
ATOM	5414	2	LEU B 302		56.473	10.149	75.449	1.00 21.76
ATOM	5415	0	ALA B 303		56.472	12.293	76.115	1.00 17.69
MOTA	5416	N	YEW B 202		56.516	12.811	74.755	1.00 17.79
MOTA	5417	CA	ALA B 303		56.357	14.326	74.780	1.00 24.50
ATOM	5418	CB	ALA B 303		57.803	12.425	74.040	1.00 20.84
ATOM	5419	С	ALA B 303	-	57.781	11.968	72.891	1.00 19.33
MOTA	5420	0	ALA B 303		_	12.594	74.723	1.00 21.08
MOTA	5421	N	ARG B 304		58.930		74.120	1.00 25.56
MOTA	5422	CA	ARG B 304		60.215	12.269		1.00 18.37
ATOM	5423	CB	ARG B 304		61.375	12.825	74.962	1.00 23.12
MOTA	5424	CG	ARG B 304		61.427	14.356	75.072	1.00 29.00
	5425	CD	ARG B 304		62.797	14.758	75.624	
ATOM	5426	NE	ARG B 304		63.073	13.938	76.789	1.00 33.28
ATOM	5427	C2	ARG B 304		64.271	13.689	77.283	1.00 30.24
ATOM					65.363	14.194	76.723	
MOTA	5428				64.365	12.896	78.333	1.00 36.15
ATOM	5429		ARG B 304		60.406			1.00 20.46
ATOM	5430				60.850			1.00 18.70
ATCM	5431		ARG B 304		60.070			1.00 22.48
ATOM	5432		ALA B 305		60.226			1.00 19.70
ATOM			ALA B 305		59.847			1.00 24.24
ATCM	5434		ALA B 305		59.407			
ATOM	5435	C	ALA B 305)	33.407	, . 5 5 0	-	

		_		· E	59.938	7.184	72.888	1.00 19.12
ATOM	5436	0	ALA B 30		_			1.00 18.65
MOTA	5437	N	TRP B 30)6	58.113	8.230	73.659	
			TRP B 30	16	57.298	7.668	72.600	1.00 19.57
ATOM	5438	CA			55.800	7.856	72.893	1.00 18.26
ATOM	5439	CB	TRP B 30				73.953	1.00 20.71
ATOM	5440	CG	TRP B 30)6	55.301	6.911		
	5441	CD2	TRP B 30)6	54.087	7.025	74.708	1.00 23.94
MOTA					53.988	5.870	75.513	1.00 24.73
MOTA	5442	CE2				7.991	74.780	1.00 26.01
ATOM	5443	CE3	TRP B 30)6	53.073			
ATOM	5444	CD1	TRP B 30)6	55.872	5.721	74.326	1.00 20.04
			TEP B 30		55.092	5.093	75.260	1.00 19.17
ATOM	5445	NE1			52.912	5.655	76.385	1.00 28.04
ATOM	5446	CZ2	TRP B 30				75.646	1.00 28.68
ATOM	5447	CZ3	TRP B 30	06	52.001	7.779		
	5448	CH2	TRP B 30	06	51.930	6.619	76.437	1.00 31.22
MOTA			TRP B 30		57.665	8.223	71.226	1.00 23.48
MOTA	5449	C			57.416	7.574	70.212	1.00 22.38
ATOM	5450	0					71.176	1.00 22.36
MOTA	5451	N	THR B 30	o7 ·	58.262	9.412		
ATOM	5452	CA	THR B 30	07	58.672	9.953	69.880	1.00 25.94
		¢в	THR B 30	0.7	59.143	11.417	69.986	1.00 25.88
ATOM	5453				58.015	12.261	70.258	1.00 21.07
ATOM	5454	OG1				11.864	68.686	1.00 22.52
ATOM	5455	CG2			59.827			
ATOM	5456	С	THR B 30	07	59.815	9.078	69.350	
	5457	Ō	THR B 30	07	59.922	8.834	68.144	1.00 25.82
MOTA			LEU B 30		60.564	8.596	70.258	1.00 27.54
ATOM	5458	Ŋ	150 B 30	00	61.773	7.734	69.857	1.00 26.76
MOTA	5459	CA	LEU B 30					1.00 24.24
ATOM	5460	CB	LEU B 30	08	62.691	7.424	71.054	
	5461	CG	LEU B 3	0.8	63.420	8.614	71.718	1.00 31.16
MOTA					64.282	8.147	72.877	1.00 24.71
ATOM	5462	CD1				9.325	70.700	1.00 24.59
MOTA	5463	CD2		80	64.289			1.00 27.20
ATOM	5464	С	LEU B 30	08	61.184	6.443	69.287	
	5465	0		08	61.609	5.961	68.234	1.00 23.52
MOTA				09	60.190	5.898	69.980	1.00 25.10
MOTA	5466	N			59.537	4.679	69.530	1.00 25.14
ATOM	5467	CA		09				1.00 27.05
ATOM	5468	CB	ILE B 3	09	58.387	4.266	70.485	
	5469	CG2	_	09	57.646	3.058	69.926	1.00 23.57
ATOM		CG1		09	58.952	3.947	71.868	1.00 22.98
MOTA	5470		_		59.927	2.793	71.868	1.00 24.25
MOTA	5471	CD1		09		4.885	68.133	1.00 25.41
ATOM	5472	С		09	58.958			
ATOM	5473	0	ILE B 3	09	59.177	4.064	67.243	
	5474	N	TRP B 3		58.232	5.984	67.943	1.00 27.45
MOTA				10	57.618	6.266	66.648	1.00 29.27
ATOM	5475	CA			56.721	7.505	66.715	1.00 27.00
ATOM	5476	C3	TRP B 3				65.378	1.00 28.26
MOTA	5477	CG	TRP B 3	10	56.112	7.847		
	5478	CD2	TRP B 3	10	55.172	7.061	64.633	1.00 27.50
MOTA		CE		10	54.947	7.729	63.408	1.00 30.47
ATOM	5479		_		54.500	5.856	64.877	1.00 29.85
ATOM	5480	CE3	_			P.929	64.597	1.00 29.76
MOTA	5481	CD:	TRP B 3		56.406			1.00 26.71
ATOM	5482	NE:	TRP B 3	10	55.713	.865	63.415	1.00 20.71
	5483	cz:		10	54.076	.234	62.429	1.00 28.23
MOTA			_		53.636	5.362	63.901	1.00 30.24
ATCM	5484	CZ				6.053	62.692	1.00 27.63
ATOM	5485	CH	TRP B 3	10	53.433			1.00 30.16
ATOM	5486	С	TRP B 3	10	58.629	6.424	65.520	
	5487	ō	TRP B 3		58.378	5.964	64.410	1.00 30.04
ATOM			CYS B 3		59.762	7.069	65.793	1.00 24.26
ATCM	5488	N	_YS B 3	1 4 4		7.233	64.764	1.00 27.97
MOTA	5489	CA	CYS B 3		60.782			1.00 28.21
MOTA	5490	CB	CYS B 3	11	61.893	8.157	65.252	
	5491	SG	CYS B 3	11	61.422	9.905	65.381	1.00 33.38
ATOM			CYS B 3		61.380	5.886	64.351	1.00 30.02
MOTA	5492	Ċ			61.670	5.660	63.172	1.00 25.45
ATOM	5493	0	CYS B 3	7.7				1.00 31.59
ATOM	5494	N	GLU B 3	312	61.570	5.001	65.327	
	5495	CA	GLU B 3		62.111	3.669	65.067	1.00 33.48
ATOM			GLU B 3		62.142	2.843	66.352	1.00 34.78
ATOM	5496	CB	200 D 3	112		2.307	66.758	
ATOM	5497	CG	GLU B 3	14	63.487			
ATOM	5498	CD	GLU B 3	312	64.171	1.513	65.675	
ATOM	5499			312	63.539	0.614	65.081	
			GLU B 3	312	65.358	1.782	65.437	1.00 39.26
, ATOM	5500		د <u>م</u> ان ن	112	61.197	2.959		
2 TOM	5501	С	GLU B 3	14	ロエ・エフィ	2.933		

					-			
ATOM	5502	0 .	GLU B 312		61.640			1.00 31.38
ATOM	5503	N	LEU B 313		59.919			1.00 26.70 1.00 26.73
ATOM	5504	CA	LEU B 313		58.930		63.598 64.297	1.00 25.83
MOTA	5505		LEU B 313		57.571	2.173 1.224	65.477	1.00 35.18
MOTA	5506		LEU B 313		57.429 56.063	1.434	66.130	1.00 32.49
MOTA	5507	CD1	LEU B 313			-0.215	64.989	1.00 29.71
MOTA	550.8	CD2	LEU B 313 LEU B 313		58.768	2.866	62.248	1.00 29.03
MOTA	5509 5510	С 0	LEU B 313		58.716	2.187	61.228	1.00 25.39
ATOM ATOM	5510	N	SER B 314		58.677	4.194	62.263	1.00 30.13
ATOM	5512	CA	SER B 314	-	58.498	5.006	61.060	1.00 34.06
ATOM	5513	CB	SER B 314		58.206	6.456	61.445 62.234	1.00 31.15 1.00 48.58
ATOM	5514	OG	SER B 314		57.041	6.537 5.003	60.151	1.00 31.84
MOTA	5515	C	SER B 314		59.707 59.632	5.469	59.026	1.00 34.15
ATOM	5516	0	SER B 314 GLY B 315		60.831	4.515	60.655	1.00 31.81
ATOM	5517 5518	N CA	GLY B 315		62.036	4.485	59.848	1.00 37.27
ATOM ATOM	5519	C	GLY B 315		62.659	5.851	59.616	1.00 39.93
ATOM	5520	ŏ	GLY B 315		63.363	6.054	58.624	1.00 39.79 1.00 38.22
ATOM	5521	N	ARG B 316		62.422	6.798	60.518 60.336	1.00 38.22 1.00 38.66
ATOM	5522	CA	ARG B 316		63.004 61.908	8.121 9.184	60.275	1.00 40.20
MOTA	5523	CB	ARG B 316		61.908	9.345	61.520	1.00 39.00
ATOM	5524	CG	ARG B 316 ARG B 316		60.032	10.398	61.284	1.00 42.13
ATOM	5525 5526	CD NE	ARG B 316		59.002	9.954	60.352	1.00 45.09
MOTA MOTA	5527	CZ	ARG B 315		58.075	10.754	59.838	1.00 40.84
ATOM	5528	NH1	ARG B 316		58.064	12.033	60.170	1.00 48.44 1.00 35.96
ATOM	5529	NH2	ARG B 316		57.150	10.278 8.467	59.014 61.408	1.00 39.03
MOTA	5530	C	ARG B 316		64.031 63.952	7.988	62.539	1.00 34.34
MOTA	5531	0	ARG B 316 GLU B 317		65.003	9.296	61.035	1.00 39.58
MOTA	5532	N CA	GLU B 317		66.074	9.697	61.943	1.00 43.35
MOTA MOTA	5533 5534	CB	GLU B 317		67.142	10.509	61.203	1.00 49.34
ATOM	5535	CG	GLU B 317		67.609	9.910	59.884	1.00 57.04 1.00 62.79
MOTA	5536	CD	GLU B 317		66.546	10.009	58.798 58.467	1.00 63.46
MOTA	5537	0E1	GLU B 317		66.146 66.108	11.149 8.954	58.280	1.00 64.46
ATOM	5538	OE2	GLU B 317 GLU B 317		65.555	10.528	63.100	1.00 41.58
ATOM	5539	С 0	GLU B 317		64.658	11.356	62.939	1.00 39.74
MOTA	5540 5541	И	VAL B 318		66.118	10.301	64.278	1.00 35.38
MOTA MOTA	5542	CA	VAL B 318		65.706	11.049	65.448	1.00 38.76 1.00 42.28
ATOM	5543	CB	VAL B 318		66.000	10.265	66.750 67.962	1.00 38.26
MOTA	5544	CG1	VAL B 318		65.560 65.287	11.080 8.916	66.722	1.00 39.99
MOTA	5545	CG2	VAL B 318		66.459	12.370	65.478	1.00 41.82
ATOM	5546		VAL B 318 VAL B 318		67.689	12.395	65.570	1.00 37.20
MOT.	5547 5548	о 0	PRO B 319		65.735	13.491	65.356	1.00 43.18
ATOM ATOM	5549	CD	PRO B 319		64.290	13.672	65.155	1.00 41.90 1.00 44.31
ATOM	5550	CA	PRO B 319		66.402	14.792	65.388 65.181	1.00 44.58
ATOM	5551	CB	PRO B 319		65.241	15.763 15.011	65.795	1.00 43.34
MOTA	5552		PRO B 319		64.079 67.086	14.965	66.741	1.00.44.62
ATOM	5553	C	PRO B 319 PRO B 319		66.541	14.565	67.771	1.00 43.75
ATOM	5554	O N	GLU B 320		68.277	15.552	66.735	1.00 44.16
ATOM	.5555 5556		GLU B 320		69.029	15.762	67.967	1.00 45.92
MOTA MOTA	5557		GLU B 320		70.381	16.406	67.663	
ATOM	5558		GLU B 320		71.165	16.768	68.919 68.620	
ATOM	5559	CD	GLU B 320		72.455	17.505 17.874		1.00 56.37
ATOM	5560		1 GLU B 320		73.161 72.762	17.714		1.00 60.07
MOTA	5561		2 GLU B 320 GLU B 320		68.311	16.625	68.995	1.00 44.42
ATOM	5562		GLU B 320		68.244	16.279	70.168	
ATOM	5563 5564		LYS B 321		67.778	17.753		
ATCM ATOM	5565		LYS B 321		67.102	18.672		
ATOM	5566		LYS B 321		67.853	20.000		
MOTA	5567				67.890	20.802	. 00.19	, 1.00 01.44

						20 111	67.057	1.00 57.24
ATOM	5568	CD	LYS B	321	68.700	20.144	-	
ATOM	5569	CE	LYS B	321	67.936	19.062	66.280	1.00 55.24
		NZ		321	66.738	19.588	65.558	1.00 55.31
MOTA	5570				65.662	18.971	69.098	1.00 43.44
MOTA	5571	С	LYS B				67.978	1.00 43.03
MOTA	5572	0	LYS B	321	65.211	18.736		
MOTA	5573	N	LEU B	322	64.947	19.512	70.076	1.00 39.45
			LEU B		63.563	19.885	69.875	1.00 40.31
ATOM	5574	CA			62.846	20.034	71.215	1.00 40.88
ATOM	5575	CB		322				1.00 40.09
ATOM	5576	CG	LEU B	322	62.943	18.901	72.234	
ATOM	5577	CDL	LEU B	322	62.001	19.175	73.388	1.00 38.17
				322	62.588	17.596	71.580	1.00 41.56
ATOM	5578				63.615	21.244	69.197	1.00 41.23
AŢOM	5579	С		322			69.531	1.00 39.22
MOTA	5580	0	LEU B	322 .	64.466	22.070		
ATOM	5581	Ń	ASN B	323	62.735	21.473	68.233	1.00 40.04
	5582	CA	ASN B	323	62.703	22.771	67.582	1.00 43.32
ATOM				323	61.985	22.707	66.234	1.00 41.53
MOTA	5583	CB	ASN B			22.085	66.335	1.00 41.89
ATOM	5584	CG	ASN B	323	60.617			1.00 39.79
ATOM	5585	OD1	ASN B	323	59.889	22.308	67.304	
	5586		ASN 3	323	60.243	21.317	65.317	1.00 40.43
ATOM			ASN B	323	61.949	23.690	68.532	1.00 44.76
ATOM	5587	C			61.402	23.237	69.539	1.00 45.80
MOTA	5588	0	ASN B	323			68.210	1.00 46.85
ATOM	5589	N	ASN B	324	61.902	24.973		
ATOM	5590	CA	ASN B	324	61.234	25.930	69.076	1.00 47.60
	5591	CB	ASN B	324	61.460	27.348	68.549	1.00 50.87
ATOM					61.089	28.407	69.562	1.00 55.06
ATOM	5592	CG	ASN B	324		28.565	69.919	1.00 60.68
ATOM	5593		ASN B	324	59.925			
ATOM	5594	ND2	ASN B	324	62.091	29.131	70.048	1.00 59.17
	5595	С	ASN B	324	59.740	25.664	69.249	1.00 43.97
ATOM			ASN B	324	59.190	25.898	70.322	1.00 41.33
MOTA	5596	0	ASN 5	324	59.087	25.168	68.201	1.00 43.49
ATOM	5597	N	LYS B	325				1.00 45.95
ATOM	5598	CA	LYS B	325	57.655	24.892	68.264	
ATOM	5599	CB	LYS B	325	57.112	24.415	66.909	1.00 48.97
		CG	LYS B		57.212	25.400	65.731	1.00 53.41
ATOM	5600		113 D	325	58.582	25.386	65.024	1.00 58.77
MOTA	5601	CD	LYS B	325		26.013	65.846	1.00 58.10
ATOM	5602	CE	LYS B		59.700			1.00 53.38
MOTA	5603	NZ	LYS B	325	61.024	25.906	65.178	
ATOM	5604	С	LYS B	325	57.368	23.822	69.309	1.00 45.79
			LYS B		56.375	23.891	70.034	1.00 43.91
ATOM	5605	0			58.245	22.829	69.381	1.00 44.28
ATOM	5606	N	ALA B				70.336	1.00 44.25
ATOM	5607	CA	ALA B		58.078	21.746		1.00 41.44
ATOM	5608	CB	ALA B	326	59.013	20.589	69.986	
	5609	c	ALA B		58.342	22.233	71.757	1.00 40.92
ATOM					57.639	21.843	72.688	1.00 39.02
ATOM	5610	0	ALA B		59.352	23.085	71.922	1.00 38.14
ATOM	5611	N	LYS B				73.246	1.00 40.11
ATOM	5612	CA	LYS B	327	59.689	23.603		
ATOM	5613	CB	LYS E	327	60.892	24.552	73.178	1.00 42.36
	5614	CG	LYS E		62.174	23.922	72.: 59	1.00 45.78
ATOM			LYS E		63.325	24.926	72.f 75	1.00 48.46
ATOM	5615	CD			64.594	24.367	72.031	1.00 49.62
ATOM	5616	CE	LYS E					1.00 48.53
ATOM	5617	NZ	LYS E	327	65.108	23.139	72.700	
ATOM	5618	С	LYS E		58.500	24.338	73.841	1.00 39.17
	5619		LYS E		58.132	24.112	74.994	1.00 38.87
ATOM		0	D13 E	720	57.898	25.215	73.048	1.00 41.06
atom	5620	N	GLU E			25.986	73.512	1.00 42.35
ATOM	5621	CA	GLU E		56.750			1.00 44.02
ATOM	5622	CB	GLU E	3 3 2 8	56.357	27.028	72.463	
	5623	ĊĠ	GLU E		57.434	28.084	72.258	1.00 44.80
ATOM					57.835	28.742	73.569	1.00 48.40
ATOM	5624	כם	GLU E			29.317	74.237	1.00 51.20
ATOM	5625		l GLU E		56.949			1.00 47.81
ATOM	5626	OE:	GLU E	3 328	59.029	28.680	73.935	
	5627	c c	GLU E		55.569	25.087	73.839	
ATOM					54.794	25.377	74.750	1.00 41.20
ATOM	5628	0	GLU :			23.999	73.090	
ATOM	5629	N	LEU :		. 55.429			
ATOM	5630	CA	LEU F	3 329	54.349	23.056	73.334	
	5631	CB	LEU I	3 329	54.404	21.900	72.334	
ATOM			LEU I		53.344		72.544	
ATOM	5632	CG			51.958	21.430		
ATOM	5633	CD	1 LEU !	5 329	31.336	22.300		

	E C 2 A	CD2	LEU B	329	53.521	19.699	71.525	1.00	
ATOM	5634		DEU D	220	54.504	22.507	74.747	1.00	34.07
ATOM	5635		LEU B		53.621	22.664	75.583	1.00	
MOTA	5636		LEU B				75.013	1.00	
MOTA	5637		LEU B		55.640	21.873			
MOTA	5638	CA	LEU B	330	55.889	21.311	76.330	1.00	
	5639			330	57.267	20.642	76.382	1.00	
ATOM			LEU B		57.466	19.428	75.470	1.00	34.91
MOTA	5640	CG	LEU 5	330	58.832	18.817	75.728	1.00	34.69
ATOM	5641	CD1	LEU B	330		18.396	75.742		34.10
ATOM	5642	CD2	LEU B	330	56.369			1.00	
MOTA	5643	С	LEU B	330	55.789	22.363	77.429		
MOTA	5644	0	LEU B	330	55.210	22.110	78.482	1.00	
	5645		LYS B		56.353	23.540	77.186	1.00	
MOTA			LYS B		56.313	24.604	78.181		43.35
MOTA	5646	CA	LYS B	221	57.162	25.788	77.712	1.00	46.25
MOTA	5647	CB	LIS B	227	58.658	25.496	77.685	1.00	51.07
MOTA	5648		LYS B		59.482	26.610	77.021	1.00	49.96
ATOM	5649	CD	LYS B	331			77.733		53.08
MOTA	5650	CE	LYS B	331	59.371	27.957			56.18
ATOM	5651	NZ	LYS B	331	58.013	28.569	77.662		
ATOM	5652	С.	LYS B	331	54.892	25.069	78.494		
	5653	ō	LYS B	331	54.588	25.416	79.631		
MOTA	-		SER B	332	54.018	25.056	77.492	1.00	
ATOM	5654	N		332	52.639	25.502	77.679	1.00	46.58
MOTA	5655	CA	SER B		51.975	25.751	76.329	1.00	48.75
ATOM	5656	CB	SER B			24.527	75.646	1.00	49.55
ATOM	5657	OG	SER B		51.769		78.451	1.00	49.56
ATOM	5658	С	SER B	332	51.780	24.507			46.67
ATOM	5659	0	SER B	332	50.618	24.791	78.749		
ATOM	5660	N	ILE B		52.341	23.345	78.770		50.55
	5661	CA	ILE B	333	51.586	22.326	79.488		51.93
MOTA		CB	ILE B	333	52.259	20.945	79.376		51.82
ATOM	5662		ILE B	333	51.447	19.902	80.134	1.00	50.29
MOTA	5663	CG2	175 5	222	52.359	20.539	77.905	1.00	52.18
ATOM	5664	CG1	ILE B	333		19.210	77.693	1.00	55.42
MOTA	5665	CD1	ILE B	333	53.044		80.964	1.00	51.45
ATOM	5666	C	ILE B	333	51.367	22.634			50.96
ATOM	5667	0	ILE B	333 -	52.180	23.290	81.614		
ATOM	5668	N	ASP B	334	50.245	22.141	81.472		54.05
ATOM	5669	CA	ASP B		49.850	22.306	82.865		58.15
	5670	CB	ASP B		48.320	22.216	82.959		60.38
MOTA			ASP B	331	47.751	20.972	82.262		63.85
MOTA	5671	CG		224	48.017	19.833	82.710	1.00	59.16
MOTA	5672	9D1			47.033	21.138	81.252	1.00	59.71
ATOM	5673	OD2				21.207	83.701	1.00	55.47
ATOM	5674	С	ASP E		50.506		84.171	1 00	54.08
ATOM	5675	0	ASP E	3 3 3 4	49.833	20.291	83.906	1 00	54.60
MOTA	5676	N	PHE E	335	51.816	21.307		1.00	56.60
MOTA	5677	CA	PHE E	3 3 3 5	52.524	20.266	84.641		
ATOM	5678	CB	PHE E	3 3 3 5	53.718	19.784	83.811	1.00	53.01
	5679	CG			54.522	18.717	84.482		49.30
ATOM		CG 1	PHE E		53.898	17.589	85.008	1.00	45.61
MOTA	5680	CDI	PRE	335	55.901	18.843	84.605	1.00	46.83
ATCM	5681	CDZ	PHE E	3 333	54.637	16.600	85.651	1.00	
MOTA	5682	CEl	PHE F	3 3 3 5		17.860	85.247		46.02
ATOM	5683	CE2	PHE E	3 335	56.651		85.772	1 00	46.08
MOTA	5684	CZ	PHE F		56.018	16.737			57.29
ATOM	5685	С	PHE E	3 3 3 5	52.971	20.559	86.072	1.00	57.23
	5686	ō	PHE I	3 3 3 5	52.197	20.378	87.012	1.00	63.54
ATOM	5687	N	GLU I	3 3 3 6	54.223	20.983	86.229		55.21
MOTA			CITI	336	54.818	21.286	87.535	1.00	60.30
MOTA	5688	CA	GLU A	3 336	53.783	21.846	88.517	1.00	64.95
MOTA	5689	CB		B 336	54.375		89.867		71.50
ATOM	5690	CG	GLU 1	B 336			90.787		75.37
ATCM	5691	CD	GLU I	в 336	53.363				75.32
ATOM	5692	OE1	GLU I	в 336	52.796				76.84
ATOM	5693	OE2		B 335	53.137				, ,0.04
	5694	c	GLU	B 336	55.485	20.058			55.66
ATOM				B 336	54.823	19.093	88.529		49.97
ATOM	5695		CTIT	B 337	56.807	20.125			54.26
MOTA	5696		G1-11	737 737	57.630				54.35
ATCM	5697			B 337	59.101			1.00	54.08
ATOM	5698	CB		B 337					54.15
ATOM	5699		GLU	B 337	60.074	18.315		. 2.0	· -

3.0034	E700	CD	GLU B	337	59.856	17.496	87.259	1.00 48.94
MOTA	5700				59.958	18.049	86.142	1.00 41.06
ATOM	5701		-	337		16.292	87.391	1.00 50.23
ATOM	5702	OE2		337	59.581			
MOTA	5703	С	GLU B	337	57.278	18.740	90.227	1.00 55.08
ATOM	5704	0	GLU B	337	57.130	19.651	91.039	1.00 54.51
				338	57.140	17.458	90.557	1.00 56.20
ATOM	5705	N				17.048	91.918	1.00 57.73
MOTA	5706	CA		338	56.798			
MOTA	5707	CB	PHE B	338	56.713	15.527	92.020	1.00 58.47
ATOM	5708	CG	PHE B	338	56.231	15.034	93.359	1.00 63.17
		CD1		338	54.882	15.096	93.696	1.00, 64.86
ATOM	5709				57.129	14.526	94.293	
ATOM	5710	CD2		338	_		94.943	1.00 65.25
MOTA	5711	CE1		338	54.434	14.656		
ATOM	5712	CE2	PHE B	338	56.693	14.087	95.539	1.00 63.64
ATOM	5713	CZ		338	55.342	14.152	95.864	1.00 66.30
	5714	Ċ	PHE B		57.836	17.539	92.918	1.00 61.85
ATOM					57.520	17.807	94.078	1.00 58.15
ATOM	5715	0	PHE B			17.636	92.466	1.00 64.63
ATOM	5716	N		339	59.081			1.00 67.53
ATOM	5717	CA	ASP B		60.167	18.099	93.316	
ATOM	5718	CB	ASP B	339	61.286	17.059	93.362	1.00 67.32
ATOM	5719	CG	ASP B	339	62.474	17.524	94.174	1.00 68.13
	5720		ASP B		62.280	17.909	95.346	1.00 68.68
MOTA			ASE D	220	63.603	17.502	93.646	1.00 69.03
ATOM	5721	OD2	ASP B	333		19.435	92.829	1.00 69.03
MOTA	5722	С	ASP B		60.718			
ATOM	5723	0	ASP B	339	61.211	19.545	91.708	1.00 67.54
ATOM	5724	N	ASP B	340	60.626	20.442	93.693	1.00 72.19
ATOM	5725	CA		340	61.088	21.797	93.402	1.00 75.20
	5726	CB		340	61.113	22.623	94.689	1.00 77.04
ATOM					59.766	22.671	95.375	1.00 78.70
ATOM	5727	CG		340		23.181	94,763	1.00 79.66
MOTA	5728	OD1		340	58.803			1.00 80.53
ATOM	5729	OD2		340	59.668	22.194	96.525	
MOTA	5730	Ċ	ASP B	340	62.464	21.856	92.751	1.00 74.82
ATOM	5731	0	ASP B	340	62.615	22.400	91.659	1.00 78.48
ATOM	5732	N		341	63.465	21.303	93.426	1.00 74.11
	5733	CA		341	64.827	21.312	92.907	1.00 76.25
MOTA				341	65.818	21.596	94.040	1.00 79.54
MOTA	5734	CB			67.277	21.653	93.596	1.00 82.33
ATOM	5735	ÇG		341			92.577	1.00 83.24
ATOM	5736	CD		341	67.539	22.750		1.00 85.25
ATOM	5737	OE1	GLU B	341	67.333	23.937	92.910	
ATOM	5738	OE2	GLU B	341	67.950	22.427	91.443	1.00 83.72
ATOM	5739	С	GLU B	341	65.196	19.998	92.227	1.00 73.97
ATOM	5740	ō	GLU B		65.627	19.051	92.883	1.00 77.10
	5741	N	VAL B		65.033	19.946	90.910	1.00 71.92
ATOM					65.354	18.744	90.151	1.00 68.51
MOTA	5742	CA		342		18.027	89.663	1.00 68.83
MOTA	5743	CB		342	64.081			1.00 67.57
MOTA	5744	CG1	VAL 3	342	63.268	17.552	90.837	
ATOM	5745	CG2	VAL B	342	63.255	18.969	88.806	1.00 67.72
ATOM	5746	С	VAL B	342	66.201	19.059	88.927	1.00 65 35
ATOM	5747	Ö	VAL B		67.177	18.366	88.640	1.00 68.31
			ASP B		65.819	20.112	88.213	1.00 60.89
MOTA	5748	N			66.514	20.520	86.998	1.00 58.89
ATOM	5749	CA	ASP B				87.223	1.00 63.48
ATOM	5750	CB	ASP B	343	68.024	20.636		
MOTA	5751	CG	ASP B	343	68.763	21.070	85.966	1.00 66.69
ATOM	5752	OD1	ASP B	343	70.012	21.070	85.970	1.00 67.64
ATOM	5753	002	ASP B	343	68.089	21.420	84.973	1.00 65.42
	5754	c	ASP B	343	66.264	19.499	85.900	1.00 53.17
MOTA			ASP B		66.993	18.516	85.766	1.00 49.70
MOTA	5755	0				19.735	85.124	1.00 50.24
MOTA	5756	N	ARG B	344	65.216	10.053	84.022	1.00 46.49
MOTA	5757	CA	ARG B	344	64.868	18.853		1.00 40.43
ATOM	5758	CB	ARG B	344	63.467	18.269	84.228	1.00 42.41
ATOM	5759	CG	ARG B		63.317	17.367	85.452	1.00 38.59
	5760	CD	ARG B		64.344	16.246	85.432	1.00 37.12
ATOM			ARG B		64.169	15.310	86.537	1.00 36.55
ATOM	5761	NE			65.078	14.413	86.905	1.00 37.20
MOTA	5762	CZ	ARG B			14.331	86.259	1.00 33.53
ATOM	5763		ARG B		66.234		87.915	1.00 28.79
ATOM	5764	NH2	ARG B		64.830	13.595		1.00 44.45
ATOM	5765	C	ARG B	344	64.910	19.660	82.732	T.00 44.43
	-						-	

3 mov	5766	0	ARG B 344	64.328	19.269	81.720	1.00 38.73
ATOM				65.618	20.784	82.783	1.00 42.44
ATOM	5767	N	-	65.740	21.677	81.637	1.00 41.74
ATOM	5768	CA	SER B 345				1.00 43.47
ATOM	5769	CB	SER B 345	66.661	22.849	81.993	
	5770	OG	SER B 345	67.956	22.388	82.351	1.00 46.96
MOTA				66.244	20.981	80.375	1.00 36.32
ATOM	5771	С				79.273	1.00 35.70
MOTA	5772	0	SER B 345	65.840	21.333		
ATOM	5773	N -	TYR B 346	67.117	19.992	80.534	
	5774	CA	TYR B 346	67.661	19.264	79.391	1.00 34.77
MOTA	_		TYR B 346	68.660	18.206	79.877	1.00 36.09
MOTA	5 7 75	CB			17.146	80.774	1.00 34.27
ATOM	5776	ÇG	TYR B 346	. 68.054			1.00 37.62
ATOM	5777	CD1	TYR B 346	67.433	16.013	80.240	
	5778	CE1	TYR B 346	66.843	15.048	81.077	1.00 36.73
MOTA		CD2	TYR B 346	68.072	17.294	82.157	1.00 36.40
ATOM	5779			67.489	16.344	82.999	1.00 36.54
ATOM	5780	CE2	TYR B 346			82.45-7	1.00 36.54
ATOM	5781	CZ	TYR B 346	66.878	15.228		
ATOM	5782	OH	TYR B 346	66.310	14.306	83.306	
	5783	С	TYR B 346	66.563	18.599	78.570	1.00 36.26
ATOM			TYR B 346	66.719	18.385	77.367	1.00 40.50
MOTA	5784	0		65.445	18.282	79.214	1.00 32.72
ATOM	5785	N	MET B 347			78.516	1.00 35.43
ATOM	5786	CA	MET B 347	64.346	17.628		
ATOM	5787	CB	MET B 347	63.280	17.164	79.513	1.00 34.36
	5788	CG	MET B 347	63.819	16.292	80.635	1.00 28.32
MOTA				62.515	15.604	81.669	1.00 34.47
MOTA	5789	SD		61.654	17.027	82.142	1.00 39.60
ATOM	5790	CE	MET B 347			77.465	1.00 39.04
MOTA	5791	С	MET B 347	63.701	18.525		
ATOM	5792	0	MET B 347	63.060	18.029	76.540	1.00 37.38
	5793	N	LEU B 348	63.857	19.839	77.606	1.00 39.21
MOTA				63.272	20.773	76.645	1.00 40.81
MOTA	5794	CA			22.058	77.339	1.00 36.87
ATOM	5795	CB	LEU B 348	62.806			1.00 42.66
MOTA	5796	ÇG	LEU B 348	61.690	21.975	78.384	
ATOM	5797		LEU B 348	61.507	23.337	79.032	1.00 43.41
		CD2		60.391	21.511	77.741	1.00 40.47
MOTA	5798			64.289	21,133	75.573	1.00 41.13
MOTA	5799	,C	LEU B 348		21.968	74.711	1.00 38.93
MOTA	5800	0	LEU B 348	64.018			1.00 37.70
ATOM	5801	N	GLU B 349	65.455	20.495	75.632	
	5802	CA	GLU B 349	66.527	20.757	74.681	1.00 42.48
MOTA			GLU B 349	67.856	20.953	75.422	1.00 45.02
MOTA	5803	CB		67.834	22.035	76.493	1.00 53.82
ATOM	5804	CG	GLU B 349		23.402	75.938	1.00 57.46
ATOM	5805	CD	GLU B 349	67.483			1.00 59.62
ATOM	5806	OE1	GLU B 349	68.211	23.885	75.044	
	5807	OE2		66.480	23.993	76.397	1.00 57.91
MOTA			GLU B 349	66.709	19.638	73.664	1.00 43.57
ATOM	5808	C	-	66.577	19.849	72.459	1.00 41.26
ATOM	5809	0	GLU B 349		18.448	74.161	1.00 41.95
ATOM	5810	N	THR B 350	67.027			1.00 40.02
MOTA	5811	CA	THR B 350	67.264	17.299	73.298	
	5812	CE	THR B 350	68.689	16.775	73.504	1.00 43.08
MOTA	5813			68.894	16.490	74.894	1.00 41.07
ATOM		OG1	F 111V B 320	69.703	17.816	73.049	1.00 45.05
ATOM	5814	CG2				73.510	1.00 37.56
ATOM	5815	C	THR B 350	66.278	16.154		1.00 33.64
MOTA	5816	0	THR B 350	65.754	15.966	74.611	1.00 33.04
	5817	N	LEU B 351	66.043	15.391	72.445	1.00 32.86
ATOM			LEU B 351	65.126	14.260	72.475	1.00 35.00
MOTA	5818	CA		64.776	13.810	71.053	1.00 31.61
MOTA	5819	CB	LEU B 351		14.601	70.312	1.00 35.31
MOTA	5820	CG	LEU B 351	63.709	_		1.00 37.88
ATOM	5821	CD:	1 LEU B 351	63.552	14.064	68.904	1.00 37.86
	5822	CD		62.397	14.474	71.068	1.00 39.36
ATOM				65.662	13.065	73.240	1.00 33.33
MOTA	5823	С	LEU B 351		12.469	74.046	1.00 31.48
MOTA	5824	O	LEU B 351	64.956			1.00 29.58
ATOM	5825	N	LYS B 352	66.915	12.720	72.981	1.00 22.30
aton	5826		LYS B 352	67.527	11.576	73.633	1.00 36.77
			LYS B 352	68.457	10.864	72.647	1.00 34.32
ATCM	5827		712 D 225	67.777	10.563	71.326	1.00 39.29
ATOM	5828				9.949	70.294	1.00 42.25
ATOM	5829	CD		68.703			1.00 46.22
ATOM	5830			69.110	8.541		
	5831			69.831	7.905	69.516	1.00 44.15
atom	7071					•	

205/263

		_	5 353		68.295	11.983	74.878	1.00 36.30
ATOM	5832	С	LYS B 352				74.865	1.00 36.65
ATOM	5833	0	LYS B 352		69.086	12.931		
	5834	N	ASP B 353		68.049	11.275	75.967	1.00 30.01
MOTA			ASP B 353		68.757	11.569	77.188	1.00 33.99
ATOM	5835	CA				11.308	78.394	1.00 38.57
MOTA	5836	CB	ASP B 353		67.852			
MOTA	5837	CG	ASP B 353		67.134	9.986	78.315	1.00 43.90
			ASP B 353		66.034	9.851	78.926	1.00 22.39
MOTA	5838				67.679	9.078	77.649	1.00 50.42
MOTA	5839	OD2					77.202	1.00 35.83
ATOM	5840	С	ASP B 353		70.022	10.723		
-	5841	0	ASP B 353		70.189	9.833	76.368	1.00 23.71
ATOM		N	PRO B 354		70.954	11.025	78.116	1.00 36.36
ATOM	5842				70.928	12.093	79.132	1.00 38.28
ATOM	5843	CD	PRO B 354			10.277	78.212	1.00 33.62
ATOM	5844	CA	PRO B 354	•	72.205			1.00 34.46
ATOM	5845	CB	PRO B 354		73.003	11.104	79.213	
	5846	CG	PRO B 354		71.896	11.556	80.164	1.00 38.08
ATOM			PRO B 354		71.924	8.883	78.733	1.00 33.62
ATOM	5847	C	PRO B 354		70.894	8.643	79.366	1.00 24.82
MOTA	5848	0	PRO B 354			7.954	78.468	1.00 31.76
MOTA	5849	N	TRP B 355		72.833			
ATOM	5850	CA	TRP B 355		72.635	6.611	78.969	
		СВ	TRP B 355		73.653	5.655	78.359	1.00 34.02
MOTA	5851		TRP B 355		73.025	4.378	77.910	1.00 44.37
MOTA	5852	CG			73.263	3.072	78.436	1.00 45.39
MOTA	5853	CD2					77.734	1.00 44.31
ATOM	5854	CE2	TRP B 355		72.418			
	5855	CE3	TRP B 355		74.107	2.569	79.432	1.00 47.19
MOTA		CD1			72.073	4.230	76.935	1.00 42.18
MOTA	5856				71.704	2.910	76.826	1.00 37.84
ATOM	5857	NE1				0.808	77.999	1.00 44.97
ATOM	5858	CZ2	TRP B 355		72.395			1.00 50.83
ATOM	5859	CZ3	TRP B 355		74.084	1.207	79.694	
	5860	CH2			73.231	0.341	78.979	1.00 48.73
MOTA			TRP B 355		72.819	6.685	80.485	1.00 30.67
MOTA	5861	C	TRF 5 355		73.622	7.474	80.981	1.00 26.93
MOTA	5862	0	TRP B 355			5.880	81.218	1.00 24.96
MOTA	5863	N	ARG B 356		72.061			
MOTA	5864	CA	ARG B:356		72.147	5.848	82.671	
	5865	CB	ARG B 356		70.811	6:319	83.257	1.00 24.71
MOTA			ARG B 356		70.534	7.795	82.941	1.00 23.66
MOTA	5866	CG	ARG 5 350		69.067	8.212	83.055	1.00 20.14
ATOM	5867	CD	ARG B 356				82.642	1.00 20.59
ATOM	5868	NE	ARG B 356		68.926	9.610		1.00 25.41
ATOM	5869	CZ	ARG B 356		67.787	10.192	82.288	1.00 23.41
	5870		1 ARG B 356		66.644	9.508	82.287	1.00 17.01
atom		NH			67.796	11.464	81.910	1.00 20.07
MOTA	5871				72.481	4.410	83.085	1.00 26.57
ATOM	5872	C	ARG B 356		71.610	3.641	83.485	1.00 23.02
ATOM	5873	0	ARG B 356				82.978	1.00 23.92
ATOM	5874	N	GLY B 357		73.761	4.063		1.00 25.54
ATOM	5875	CA	GLY B 357		74.186	2.712	83.294	
	5876	c	GLY B 357		74.796	2.464	84.657	1.00 24.35
ATOM			GLY B 357		74.523	3.161	85.628	1.00 25.88
ATOM	5877	0	GLI B 337		75.638	1.444	84.718	1.00 24.32
. ATCM	5878	N	GLY B 358			1.070	85.960	1.00 23.56
ATOM	5879	CA	GLY B 358		76.282			1.00 29.26
ATCM	5880	С	GLY B 358		76.412	-0.441	85.924	
	5881	ō	GLY B 358		76.146	-1.051	84.889	1.00 23.71
ATOM			GLU B 359		76.814		87.033	1.00 27.64
ATCM	5882	N			76.955		87.078	1.00 32.15
ATOM	5883	CA						1.00 30.40
ATOM	5884	CB	GLU B 359		77.822		88.265	
	5885				77.125	-2.772	89.601	1.00 31.23
ATOM					77.844	-3.479	90.741	1.00 37.96
ATOM	5886				77.287			1.00 33.89
atcm	5887							
ATOM	5888	OE	2 GLU B 359		78.959			
ATOM	5889		GLU B 359		75.571			-
			GLU B 359		74.612	-2.429		
ATOM	5890		VAL B 360		75.482		87.053	1.00 29.61
ATOM	5891				74.230			
ATCM	5892	. CA						
ATOM	5893	C3			74.035			
	5894		1 VAL B 360		72.764	-7.045		
ATOM					73.969			
ATOM	5895		. AUT D 260		74.342			1.00 26.00
ATOM	5896		VAL B 360					
ATCM	5897	· 0	VAL B 360		75.150	, -0.093		

	E000). NT	ARG	D	361	73.	553	-5.289	89.575	1.00	26.45
ATOM	5898	И				73	558	-5.821	90.935	1.00	28.47
ATOM	5899	CA	ARG			/3.	220		91.787		30.55
ATOM	5900	CB	ARG	В	361		479	-5.146			
	5901	CG	ARG		361	72.	937	-3.877	92.485		32.61
ATOM					361	71	749	-3.163	93.117	1.00	35.00
MOTA	5902	CD	ARG			_	858	-2.617	92.094		30.31
ATOM	5903	ΝE	ARG		361						29.45
MOTA	5904	CZ	ARG	В	361		753	-1.925	92.350		
	5905		ARG			69.	385	-1.689	93.605	1.00	18.49
MOTA		14117	מות	5	261		041	-1.428	91.348	1.00	30.49
ATOM	5906		ARG	в.	307			-7.322	91.001		30.17
MOTA	5907	С	ARG				351				
ATOM	5908	0	ARG	В	361	72.	665	-7.910	90.168		23.60
			LYS		362	73	949	-7.922	92.022	1.00	33.09
MOTA	5909	N					864	-9.351	92.272	1.00	36.94
MOTA	5910	CA	LYS			-			93.513		40.24
MOTA	5911	CB	LYS	В	362		. 687	-9.706			
ATOM	5912	CG	LYS	В	362	76	.190	-9.527	93.337	1.00	52.55
	5913	CD	LYS			76	. 571	-8.126	92.849	1.00	56.65
MOTA							.149	-7.032	93.819	1.00	53.39
MOTA	5914	CE	LYS		362				93.341		48.87
ATOM	5915	NZ	LYS				. 553	-5.680			
MOTA	5916	С	LYS	В	362	72	. 427	-9.826	92.463		32.84
		ō	LYS	B	362	72	.045	-10.867	91.938	1.00	28.27
ATOM	5917						.628	-9.075	93.215	1.00	34.67
MOTA	5918	N	GLU					-9.493	93.435		35.72
MOTA	5919	CA	GLU				. 245				
ATOM	5920	CB	GLU	В	363	69	.519	-8.532	94.390		36.04
		CG	GLU			69	.502	-7.077	93.977		44.81
ATOM	5921				363		.859	-6.186	95.033	1.00	52.14
ATOM	5922	CD	GLU					-6.370	95.341		48.46
MOTA	5923	OE1			363		.661				
MOTA	5924	OE2	GLU	В	363	69	.562	-5.300	95.566		57.31
	5925	C	GLU			69	.501	-9.619	92.111	1.00	30.68
MOTA								-10.530	91.944	1.00	30.45
MOTA	5926	0	GLU					-8.724	91.166		26.19
ATOM	5927	N	VAL	В	364		.784				
MOTA	5928	CA	VAL	В	364	69	.138	-8.789	89.852		24.65
	5929	СВ	VAL			69	.536	-7.599	88.958		23.49
MOTA							.924	-7.770	87.563	1.00	21.01
ATOM	5930	CG1						-6.293	89.587		23.08
MOTA	5931	CG2					.049				
ATOM	5932	С	VAL	В	364			-10.083	89.144		23.19
	5933	ō	VAL		364	68	.691	-10.749	88.542		23.06
ATOM					365	70	810	-10.436	89.216	1.00	27.15
ATOM	5934	N							88.594	1 00	29.18
ATOM	5935	CA	LYS	В	365	/ 1		-11.000			28.61
ATOM	5936	CB	LYS	В	365			-11.758	88.704		
ATOM	5937	CG			365	73	.554	-10.617	88.030		30.27
			LYS		365	75	.074	-10.768	88.154	1.00	32.58
ATOM	5938	CD					.790		87.516	1.00	29.13
MOTA	5939	CE			365				87.606		35.17
MOTA	5940	NZ	LYS	В	365	77	.271	-9.689			
ATOM	5941	С	LYS	В	365	70		-12.879	89.276	1.00	25.30
	5942	ō			365	70	.282	-13.837	88.613		26.81
MOTA								-12.831	90.604	1.00	26.10
MOTA	5943	N			366				91.347		28.29
ATOM	5944	CA	ASP	В	366	69	963	-13.938		1.00	20.23
ATOM	5945	CB	ASP	В	366	70	.105	-13.731	92.859	1.00	29.44
			ACD	- B	366	71	. 557	-13.669	93.311	1.00	32.95
ATOM	5946	CG						-14.099	92.551	1.00	26.37
ATOM	5947	נסס	ASP	B	300	72	011	12.035	94.442		35.26
MOTA	5948	OD2	ASP	В	366	71	. SIT	-13.216	-		
	5949	С	ASP	В	366	68	.487	-14.110	90.986	1.00	28.61
MOTA			100		366	68	000	-15.231	90.869	1.00	27.00
MOTA	5950	0				65	777	-13.002	90.801	1.00	28.63
ATOM	5951	N			367	0 /	. / / /	-13.002		1 00	27.35
ATOM	5952	CA	THR	В	367	66	.365	-13.080	90.438	1.00	, 2,
	5953	CB	THR	В	367	65	.726	-11.683	90.359		27.63
ATCM						65	771	-11.068	91.656		28.12
MOTA	5954	OG:			367	- 0	200	-11.786			22.94
MOTA	5955	CG			367	64	280	, -11./00		1 00	25.46
ATOM	5956	С	THR	В	367	66	5.197	-13.782	89.094		
					367	65	3.389	-14.693	88.964		24.48
ATOM	5957	0				6	962	-13.361	88.092	1.00	23.33
ATOM	5958	N			368	0.0		13.000	86.785		28,.99
ATOM	5959	CA	LEU	JB	368	66	.85/	-13.990			77 67
	5960	CB			368	61	7.719	-13.256	85.759		27.67
ATOM		CG			368	61	7.060) -12.070	85.046	1.00	29.47
ATOM	5961					21	5 007	-12.607	84.195	1.00	32.45
ATOM	5962		1 LEU			0.		_31 027			19.43
ATOM	5963	CD:	2 LEU	JB	368	6	. 546	-11.027			

						162	-15.454	86.888	1.00 32.40
ATOM	5964	С		368	67.	202	15.300	86.179	1.00 31.80
ATOM	5965	0		368			-16.309		
	5966	N	GLU B	369			-15.735	87.774	1.00 33.59
ATOM	5967	CA		369			-17.101	88.003	1.00 39.68
	5968	СВ		369	69.	736	-17.141	89.082	1.00 42.61
ATOM			GLU B				-17.138	88.537	1.00 50.65
	5969	CG					-18.443	87.842	1.00 55.81
MOTA	5970	CD	GLU B	369				87.299	1.00 57.42
ATOM	5971	OE1	GLU B	369			-18.561		1.00 57.42
MOTA	5972	OE2	GLU B	369			-19.353	87.841	
MOTA	5973	С	GLU B	369	67.	479	-17.954	88.442	1.00 34.94
	5974	ō		369	67.	190	-18.974	87.827	1.00 32.71
MOTA			LYS B				-17.541	89.512	1.00 34.92
ATOM	5975	N			65	656	-18.295	89.993	1.00 35.12
MOTA	5976	CA		370				91.268	1.00 37.39
MOTA	5977	CB		370	65.	061	-17.679		1.00 44.70
ATOM	5978	CG	LYS B	370	65.	879	-17.916	92.532	
ATOM	5979	CD	LYS B	370			-16.741	92.892	1.00 48.10
	5980	CE	LYS B	370	65.	956	-15.537	93.346	1.00 47.82
ATOM		NZ	LYS B	370	66.	804	-14.387	93.786	1.00 45.41
MOTA	5981			370			-18.375	88.930	1.00 33.21
MOTA	5982	C					-19.409	88.773	1.00 29.52
ATOM	5983	0		370	63.	221	13.100	88.191	1.00 31.62
ATOM	5984	N		371	64.	390	-17.288		1.00 37.19
ATOM	5985	CA	ALA B	371	63.	368	-17.274	87.153	
MOTA	5986	CB		371	63.	392	-15.938	86.403	1.00 35.65
	5987	C		371	63.	572	-18.431	86.181	1.00 37.79
MOTA				371	62	627	-19.137	85.838	1.00 34.46
ATOM	5988	0		372	64	810	-18.644	85.759	1.00 40.10
MOTA	5989	IJ			04.	1 47	-19.698	84.792	1.00 40.46
MOTA	5990	CA	LYS B	372				85.348	1.00 43.15
MOTA	5991	С		372			-21.066		1.00 43.57
ATOM	5992	0	LYS B	372			-22.053	84.591	
ATOM	5993	CB	LYS B	372		654		84.517	1.00 40.51
	5994	CG	LYS B		67.	029	-18.925	83.248	1.00 20.00
MOTA			LYS B				-19.390	82.635	1.00 20.00
MOTA	5995	CD			60.	511	-20.907	82.706	1.00 20.00
ATOM	5996	CE	LYS B	3/2				82.116	1.00 20.00
MOTA	5997	NZ	LYS B	372 -	59.	814	-21:354		1.00 47.80
ATOM	5998	N	ALA B		64.	412	-21.159	86.624	
MOTA	5999	CA	ALA B	373	64.	014	-22.425	87.239	1.00 49.71
	6000	CB	ALA B	373	64.	762	-22.639	88.546	1.00 48.25
ATOM		c			62.	515	-22.443	87.494	1.00 53.38
ATOM	6001			373				86.903	1.00 58.01
MOTA	6002	0	ALA B			029		88.269	1.00 55.13
ATOM	6003	OXT		373					1.00 32.54
HETATM	2991	ZN	en c	1		660		109.464	1.00 28.76
HETATM	2992	31	TSA D	2		669	8.189		1.00 25.81
HETATM	2993	02	TSA D	2		952		108.340	
HETATM	2994	03	TSA D	2	52	458		101.667	1.00 36.93
TEIMIN	2005	N1	TSA D	2	47	800	7.789	108.131	1.00 31.21
HETATM				2		013		101.259	1.00 30.57
HETATM		N2	TSA D			859		101.610	1.00 28.47
HETATM	2997	Cl	TSA D	2				101.666	1.00 25.57
HETATM	2998	C2	TSA D	2		. 907		101.000	1.00 21.68
HETATM	2999	C3	TSA D			241		101.551	1.00 21.00
HETATM	3000	C4	TSA D	2	52	. 626	0.026	101.366	1.00 23.11
HETATM	2001	C5	TSA D		53	. 589	1.080	101.303	1.00 25.02
HETATM	2001					. 218		101.418	1.00 29.24
HETATM	3002	. C6	TSA D					101.734	1.00 32.98
HETATM	3003	C7	TSA D			. 572		101.996	1.00 29.05
HETATM	1 3004	C8	TSA D	2		.108		101.330	1.00 28.13
HETATM	1 3005	C9	TSA D	2		. 052	5.421	103.338	1.00 26.13
HETATM	1 3006	C10	TSA D	2	49	.060	5.357	104.279	1.00 25.99
HETATM	3007	C11		_	49	. 315	6.155	105.504	1.00 32.05
HETATE	1 700,		TSA D	2		. 515	6.184	106.595	1.00 27.37
HETATM						. 855		107.756	1.00 29.02
HETATM	1 3009	C13							1.00 30.21
HETAT	1 3010	C14				. 680		104.132	1.00 30.60
HETAT	4 3011	C15	TSA D	2		.776		104.132	1.00 23.45
HETATE	4 3012	C17				. 438		101.139	
HETAT	1 3012	C16			52	.044	-2.416	101.316	
neTAT:	* 2004	ZN	ZN E	_		. 949		85.681	1.00 28.19
HETATI	4 0004			_		.964		85.428	
HETAT	4 6005	01	TSA F						
HETAT	M 6006	02	TSA F	2	21	. 255	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

нетатм	6007	03	TSA	F	2		51.	569	6.5	12	93.2			27.89
HETATM	6008	N1	TSA		2		50.	347	1.2	221	86.6			27.23
HETATM	5000	N2	TSA		2		47.	061	11.1	L39	93.7	13		16.24
HETAIM	6010	C1	TSA		2		49.	443	7.5	79	93.3	04		27.18
HETATM	6010	C2	TSA		2		48.	035	7.5	529	93.2	67		25.98
HETATM	POIT		TSA		2			227	8.6		93.3	98	1.00	24.59
HETATM	6012	C3						837		71	93.5			25.75
HETATM	6013	C4 .	TSA		2			274	10.0		93.6			26.53
HETATM	6014	C5	TSA		2			041		369	93.4			28.36
HETATM	6015	C6	TSA		2					105	93.1			25.27
HETATM	6016	C7	TSA		2			349	_		92.9			24.18
HETATM	6017	C8	TSA		2	•		716		006	91.5			27.20
HETATM	6018	C9	TSA	F	2		_	134		552				30.21
HETATM	6019	C10	TSA	F	2			419		807	90.6			_
HETATM	6020	C11	TSA	F	2			118		553	89.3		1.00	
HETATM	6021	C12	TSA	F	2			762		624	88.4			23.47
HETATM	6022	C13	TSA	F	2		50.	529		462	87.			28.28
HETATM	6023	C14	TSA	F	2		50.	208		019	93.9			28.83
HETATM	6024	C15	TSA		2		48.	013		270	90.		1.00	
HETATM	6025		TSA		2		47.	699	12.	456	93.			27.37
HETATM	6025	C16			2		45.	610	11.	107	93.			25.36
HETATM	6027	OH2	WAT		1		61.	.391	6.	723	88.		1.00	12.93
HETATM	6027		WAT		2		55.	. 595	-4.		83.		1.00	7.53
HETATM	6020	OH2			3		58.	656	12.	731	106.	749	1.00	12.33
HETATM	6029	OH2			4			. 347	15.	263	111.	460	1.00	14.54
HETATM	6030	OH2			5			.523	13.	627	76.	224	1.00	
HETATM	6031	OH2			6			.466	-6.	064	85.	688		22.41
HETATM	6032		WAT		7				-17.		80.	769		21.99
HETATM	6033				8			.344	-15.	640	87.	809	1.00	26.67
HETATM	6034	OH2	TAW TAW		9				-14.		83.		1.00	23.94
HETATM	6035				10			.540			122.		1.00	26.96
HETATM	6036		WAT					.414		497	84.		1.00	22.51
HETATM	6037		WAT		11			.671	18	074	114.		1.00	32.15
HETATM	6038	OH2	TAW	٠	12			.335	10	679	117.	140		19.47
HETATM	6039		WAT		13			.565		469		366		18.81
HETATM	6040		VAT		14			.311		237		508		26.11
HETATM	6041		TAW		15			.628		883	104.			24.28
HETATM	6042		TAW		16					507		576		18.30
HETATM	6043	OH2			17			.672		923		709		22.27
HETATM	6044	OH2			18			.830		831	108.			24.68
HETATM	6045	OH2			19		_	.813				823		30.00
HETATM	6046	OH2	raw !	G	20			.885		352		841		17.32
HETATM	6047	OH2			21		36	.382				422	1 00	27.38
HETATM	6048	OH2	NAT	G	22				-10.			346	1 00	21.73
HETAT	6049	OH2	LAW :	G	23			.802		446	140.		1.00	34.17
HETATI	4 6050	OH2	CAW !	G	24			.292				744		40.67
HETAT	4 6051	OH2	CAW S	G	25			.747		830				27.92
HETAT	4 6052	OH2	WAT	r G	26		41	.952		. 19	100	. 110	1.00	24.31
HETAT	4 6053	OH2	CAW S	r G	27			.268			106		1.00	30.93
HETATI	1 6054	OH2	WA!	r G	28			.342		.79.		.076		29.34
HETATI	6055	OH	WA?	r G	29			.651		. 985		.845	1.00	, 22.34
нетат	4 6056		WA?		30		39	.287		. 257		.623	1.00	22.61
HETAT	4 6057		WA!		31			.221		. 462		.256	1.00	29.85
neava.	4 6058		WA		32			.167			107		1.00	36.40
BETVII	M 6059		WA:		33		64	. 657	-2	. 682		. 225		18.70
UEIVII	M 6060		WA!		34		44	.059	-2	. 698 [.]		. 805	1.00	30.02
HETATI	M 6061		'AW		35		38	.480		.763		.051	1.00	28.03
HETAT	4 6061		NA!		36			.899		.654	112	.976		0 26.46
HETATI	M 6062		WA'		37			.092		.145	93	.309		0 22.31
HETAT	M 6063		WA'		38			.194	-1	.400	118	.878	1.0	0 30.83
HETAT	M 6064	OH.	Z WA		39			.400		.200		.379		0.30.98
HETAT	M 6065		2 WA					1.024		.540		.852	1.0	0 38.13
HETAT	м 6066	OH:	2 WA	T. C	40			6.65		.880		.402	1.0	0 29.24
HETAT	м 6067		2 WA		41			1.976		499	109	.692	1.0	0 46.34
HETAT	м 6068		2 WA		42			5.533		.511	94	.759	1.0	0 23.13
HETAT	м 6069		2 WA		43			L.448		.833		.306	1.0	0 27.0
HETAT	M 6070	OH	2 WA	T G	44		-).578	, 13	107	105	.248	1.0	0 42.43
HETAT	M 6071		2 WA		45					.936		.021		0 38.9
HETAT	M 6072	OH	2 WA	TG	46		53	3.938	, -y	. ,,0				

HETATM	6073	OH2	WAT	G	47		38.45		-0.443	63.035	1.00 2	
HEININ	6074		MAT		48		64.78	6	7.930	107.466	1.00 3	
HETATM	6074				49		50.82		36.521	114.809	1.00 4	0.51
HETATM	6075		WAT				22 05	ž.	-10.352	68.080	1.00 3	
HETATM	6076		WAT		50		33.30		14 221	86.007	1.00 3	
HETATM	6077		WAT	G	51				-14.321	79.836	1.00 3	
HETATM	6078	OH2	WAT	G	52		63.27		10.210			
HETATM	6079		WAT	G	53		59.26	3	-12.096	94.306	1.00 2	
MEIAIM	6090		WAT		54		46.04	1	10.641	76.561	1.00 2	7.97
HETATM	6060		TAW		55				-13.620	89.775	1.00 2	4.25
HETATM	908T						76.60		0.622	89.097	1.00 2	9.19
HETATM	6082		TAW		56					79.089		4.05
HETATM	6083	OH2	WAT	G	57		53.55		6.439			5.02
HETATM	6084	OH2	WAT	G	58		71.30)1	11.026	83.310		
HETATM	6085		TAW	G	59	•	28.18	88	-9.956	81.594		3.21
REIAIM	6005		TAW		60		53.08	14	20.992	98.483	1.00 2	7.64
HETATM	6000		WAT		61		59.48		8.630	93.423	1.00 3	0.30
HETATM	6087						26.19	-	-3.809	95.805	1.00 3	3.04
HETATM	6088		TAW		62				-0.121	89.620		7.39
HETATM	6089		TAW		63		26.09		-0.121		1.00 2	
HETATM	6090	OH2	WAT	G	64		47.10			109.711		
HETATM	6091		WAT		65		23.27		0.731	92.275	1.00	
HETATM	6002		VAT		66		45.34	10	-24.751	72.694	1.00	
HETATM	6092	0112	TAW	Č	67		33.75		16.234	111.676	1.00	34.63
HETATM	6093				68		52.83			126.276	1.00 4	17.11
HETATM	6094		WAT						16.953	111.099	1.00 2	
HETATM	6095		WAT		69		50.21					24.95
HETATM	6096	OH2	WAT	G	70		44.79		5.844			
HETATM	6097	OH2	WAT	G	71		49.53	17	-18.731		1.00	
HETATM	6098		WAT		72		76.37	79	10.131		1.00	
TEIMIM	6000		MAT		73		30.23		-8.086	87.873	1.00	
HETATM	6100		WAT		74		45.32		12.061		1.00	30.80
HETATM	6100						72.88		5.360		1.00	29.04
HETATM	6101		WAT		75		72.00	7.4	-23.046		1.00	
HETATM	6102	OH2			76				-23.040	100.345	1.00	
HETATM	6103	OH2	WAT	G	77		40.6					
HETATM	6104	OH2		G	78				-19.477		1.00	
HETATM	6105	OH2			79		46.4	80	-6.539		1.00	
HETAIM	(105		WAT		80		35.7		-12:230	81.646	1.00	
HETATM	6100				81		28.2		8.745	121.961	1.00	41.15
HETATM	6107	OH2					68.8		3.154		1.00	
HETATM	6108	OH2			82						1.00	
HETATM	6109	OH2			83				-11.158		1.00	
HETATM	6110	OH2	WAT	G	84		75.3		-1.773	92.264		
HETATM	6111	OH2			85		46.9	57	12.230		1.00	
HETATM	6112	OH2	_		86		63.7	89	9.551	64.329	1.00	
HETATM	0112				87		60.6		21.185	72.215	1.00	
HETATM	6113	OH2					56.5		9.50		1.00	31.10
HETATM	6114	OH2			88		26.3		-0.876		1.00	29.70
HETATM	6115	OH2			89.				-16.583		1.00	32.85
HETATM	6116	OH2	TAK	G	90		67.6		-10.50		1.00	42.95
HETATM	6117	OH2	WAT	G	91		23.9	10	1.899	82.068		
HET; TM	6118	OH2	WAT	G	92		50.0		4.10	117.380	1.00	30.05
HEAT IN	6 6110	OH2	WAT	Ġ	93		26.7	74	-9.492	83.952	1.00	43.59
HET.IM	0113		WAT		94		42.7		-0.63	7 113.787		40.17
HETAIM	1 5120						57.9		7 989	134.170		47.82
HETATM	1 6121		TAK		95				-3 550	119.086		36.62
HETATM	6122		WAT		96		54.4		13 (0)	5 101.718		41.62
HETATM	1 6123	OH2	WAT	, G	97		53.0	65	11.09	5 101./10		
HETAT	6124		WAT		98		58.2	86	-23.64	68.207		45.98
HETAT	1 6105	OH2			99		54.8	55	-9.61	4 121.975		34.57
HETATE	1 0177						57.4		-3.35	2 57.145		42.14
HETATN	1 6126	OH2					63.5			3 123.667	1.00	33.87
HETATN	4 6127	OH2					40.1	20			1.00	30.23
HETAT	4 6128	OH	TAW S	G	102				-23.14		1 00	52.01
HETATI	4 6129	OH2	TAW S				62.8		6.91	-		36.29
22m2m	4 6130	OH			104		34.5	66				
ELALE.	4 6131	Un.	VAT				51.5		20.86	9 67.459		36.85
==TAT	4 6131		NAT				28.1			0 129.379	1.00	42.87
HETATI	M 6132	OH.	. NAL		100		40.7	182	-11.45		1.00	43.62
HETAT	M 6133	OH:	LAW 2	G	10/						1.00	41.95
HETATI	M 6134		raw s				44.7	- /	-0.00	-		35.71
והלהבה	M 6135	OH	CAN: S	rG	109				-11.90	0 34.ULS		35.40
	M 6136	OH:	CAW S	r G	110		49.5			3 100.800		55.30
EE IAII	W 6127		2 WAT				75.8	353		0 124.536		56.20
HETAT	N 013/		2 WAT				54.3	83		0 136.095	1.00	36.40
HETAT	M 6138	OH.	νA'.		112		J-1			-		

							1 76	4 67	113	1.00	37 N1
HETATM	6139	OH2 WAT	G 1	.13	33	.114	1.76			1.00	
HETATM		OH2 WAT	G 1	.14	42	.618		7 102			
		OH2 WAT			53	.605	-10.81	.6 66	.281	1.00	
HETATM						.410	-1.01	0 90	.400	1.00	34.72
HETATM	6142	OH2 WAT			60	000	3 78	9 110	. 221	1.00	35.69
HETATM	6143	OH2 WAT						9 112	425	1.00	
HETATM	6144	OH2 WAT	G 1	.18		.474	19.15	9 112	. 423		
HETATM	67.45	OH2 WAT			39	.749	-0.61	6 132	.45/	1.00	
HEIAIM	6145	OH2 WAT				.921	1.08	39 137	.137	1.00	
HETATM	6146					.081	7.61		.105	1.00	40.86
HETATM	6147	OH2 WAT					12.01	7 105			33.58
HETATM	6148	OH2 WAT			35	.554					38.10
HETATM		OH2 WAT	G 1	L23	41	.381	-23.53		. 872		
TEIAIN	6150	OH2 WAT	G 1	24	31	.999	1.99		.813		33.97
HETATM	6130	OH2 WAT	C 1	25		.761	10.28	35 101	.654	1.00	47.66
HETATM	912T					.596		54 133	642	1.00	37.98
HETATM	6152	OH2 WAT			30		5 3/	17 136	114		46.39
HETATM	6153	OH2 WAT	G I	L27	59	. 611	5.34	1 130	. 114		30.77
HETATM	6154	OH2 WAT	G 1	128	24	.190		20 124	.0/9		
HETATM	6155	OH2 WAT	G 1	129	70	.078	4.45	55 86	.283		36.11
HETATM	6155	OH2 WAT	6 1	130	57	.882	-4.33	14 125	. 597		41.40
HETATM	9120	UNZ WAI	9 3	130	45	838	-20.69		.884	1.00	35.98
HETATM	6157	OH2 WAT	G.	131	4.5	.030	20.0.	86 79			36.67
HETATM	6158	OH2 WAT	G :	132	4.7	.5/4	3.10	00 /3	205		45.40
HETATM	6159	OH2 WAT	G :	133			-18.9	OT 65	.295		
HETATM	6160	OH2 WAT	G '	134	4.0	.164	5.04	47 95	.358		31.38
HETAIM	0100	OH2 WAT	~	135		.268		05 122	.461		38.16
HETATM	PTPT	OHZ WAI	<u>.</u>	133	= .	200	-20.1		.212	1.00	37.55
HETATM	6162	OH2 WAT	G.	136	24	475	10 5	34 103			37.96
HETATM	6163	OH2 WAT	G	137	4:	.435	-10.5	34 IO2	400		43.94
HETATM	6164	OH2 WAT	G	138	31	633	25.0	30 106	. 433		
HETATM	61'65	OH2 WAT	G	139	79	.029	- 7.5		.606		40.55
REIAIM	6165	OH2 WAT				3.597	20.7	11 111	685		33.25
HETATM	9100	Onz WAI		141		.263	8.5	24 113	8.832	1.00	40.63
HETATM	6167	OH2 WAT			4.0	207	-24 4	85 70	152	1.00	34.07
HETATM	6168	OH2 WAT	G G	143					3.604	1 00	32.22
HETATM	6169	OH2 WAT	Ġ	144		3.383	-3.8			1.00	35.94
HETATM	6170	OH2 WAT	' G	145	42	2.360	-0.7		1.686	1.00	35.34
DEIAIN	6171	OH2 WAT	· G	146	34	1.421	-3.3		5.685	1.00	35.42
HETATM	01/1					1.506	3.4	09 89	579		39.86
HETATM	61/2	OH2 WAT		147		1.963	10.6		1.806	1.00	31.12
HETATM	6173	OH2 WAT	G	148	٠.	. 200			5.769		46.65
HETATM	6174	OH2 WAT	G	149			-15.0	00. 30		1.00	39.22
HETATM	6175	OH2 WAT	G	150		4.695		91 13		1.00	39.22
HETATM	6176	OH2 WAT	G	151	4	0.348	1.3		1.905	1.00	34.09
HETAIM	(177	OH2 WAT		152	6	6.912	17.6	66 12	7.489		45.19
HETATM	01//	Onz WAI		152		1.096	19.9	00 10	3.232	1.00	43.45
HETATM	[6178	OH2 WAT	. G	155		B.074			0.175	1.00	28.86
HETATM	6179	OH2 WAT	G	154					9.003	1 00	41.15
HETATM	6180	OH2 WAT	G	155	6	3.586	-1.0	374 7			40.92
HETATM	6181	OH2 WAT	r G	156			-22.2		8.415		
HETATM	6192	OH2 WAT	r G	157	6	2.443	13.7		9.547		33.69
HEIMIN	. (102	OH2 WAS	rc	158	5	8.832	9.7	798 10	1.311		31.00
HETATM		ONZ WA		150		7.701	-5.5	28 11	9.322	1 00	45.00
HETATI	1 6184	OH2 WAS	! G	133		3.599			1.274	1 00	38.43
HETAT	1 6185	OH2 WAT	r G	160				27 0		1 00	51.83
HETATN	1 6186	OH2 WA	r G	161		3.540			6.111	1 00	41.92
HETAT	6187	OH2 WAY	rG	162		9.915		318 11	0.8/3	1.00	91.72
HETATI	6199	OH2 WA	r G	163	5	1.265	-8.2		0.546	1.00	31.25
HETAIR	1 0100	OH2 WA		164	5	8.109	7.0	024 9	8.294		46.30
HETATI	1 6189	UHZ WA		104		6.553			4.179	1.00	37.53
HETATI	4 6190	OH2 WA	r G	165	4	6.333			2.515	1 00	43.91
HETATI	4 5191	OH2 WA					-21.0				43.13
HETATI	M 6192	OH2 WA	T G	167		7.146		958 10			
115155	M 6193	OH2 WA	T G	168	4	7.445	-3.0		4.746	1.00	27.99
HETAII	4 6193	OH2 WA				5.193		304 6	3.562	1.00	36.05
HETATI	4 6194	UHZ WA	1 0	103		6.176			2.024	1.00	39.63
HETATI	M 6195	OH2 WA	T G	170					0.886		44.69
HETAT	M 6196	OH2 WA	T G	171	7	0.527					51.41
HETAT	M 6197	OH2 WA	TG	172	6	7.166			4.628		53.49
מבשעש	м 6198	OH2 WA			1	9.700			1.850		2 22 42
UEIVI	4 6100	OH2 WA		174		5.875			37.176		38.63
HETAT	M 6199	ORZ NA	. G	175	-	1.874		432 9	1.682		40.08
HETAT	M 6200	OH2 WA	1 G	1/3	2	6.77	-6.		1.530	1.0	32.57
HETAT	M 6201	OH2 WA			-				9.317		0 29.83
HETAT	м 6202	OH2 WA	T G	177		3.224			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0 47.28
UETAT	м 6203	OH2 WA	TG	178		9.606		-	32.470	1.0	0 36 00
TELLIA.	M 6204	OH2 WA				2.81	11.	799	8.957	1.0	0 36.09
ne TAT	r 0.04	···	- 0	,	-			•			

HETATM	6205	OH2	WAT G	180	38.	589	18.249	88.356	1.00	
HETATM	6206		WAT G		43.	734	-15.681	61.135	1.00	
HETATM	6200	0112	WAT G	182	42.		15.251	91.437	1.00	37.96
HETATM	6207				57	121	-11.129	126.206	1.00	45.78
HETATM	6208		WAT G		50	011	-19.367	92.127	1.00	
HETATM	6209	OH2	WAT G	184			2.453	95.969	1.00	
HETATM	6210		WAT G		56.		2.433		1.00	
HETATM	6211	OH2	WAT G	186	26.		14.125	125.052		
HETATM	6212	OH2	WAT G	187	24.	631		122.650	1.00	
HETATM	6213	OH2	WAT G	.188	23.	516	4.964	81.599	1.00	
HEIMIM	6214	OH2	WAT G	189	55.	017	14.964	62.948	1.00	
HETATM	6214		WAT G			371	13.710	105.640	1.00	37.04
${\tt HETATM}$	6215	OHZ	WAIG	100			-10.386	91.144	1.00	36.62
HETATM	6216	OHZ	WAT G	191		437	22 668	121.285		38.19
HETATM	6217	OH2	WAT G	192			24.057	122.112		42.05
HETATM	6218	OH2	WAT G	193		786		96.101		48.35
HETATM	6219		WAT G			852	3.461			32.60
HETATM	6220	OH2	WAT G	195	41.	681	11.318	92.011	1.00	47 70
HETATM	6221		WAT G		26.	812	-10.229	111.631	1.00	47.70
HETATM	6222	OH2	WAT G	197	42.	432	-23.250	76.629		48.86
HETATM	6223	OH2	WAT G	198	25.	484		121.410		43.09
HETATM	6223	0112	WAT G	199	43.	514	-20.514	111.706		46.80
HETATM	5224	0112	WAT G	200	74	273	-13.079	95.699	1.00	44.89
HETATM	6225	OHZ	WATS	200		982	24 383	103.984	1.00	40.63
HETATM	6226	OH2	WAT G	201			-12.771	74.705		35.13
HETATM	6227	OH2	WAT G	202			9.211			33.53
HETATM	6228	OH2	WAT G	203		708				48.49
HETATM	6229	OH2	WAT G	204		256		122.243		41.26
HETATM	6230	OH2	WAT G	205		706	16.208			
HETATM	6231	OH2	WAT G	206	50.	000	34.998		1.00	39.15
HETATM	6232	OH2	WAT G	207	68.	078	-16.236	83.621		29.70
HETATM	5233	OH2	WAT G	208	24.	395	-4.134	111.635		50.82
HEIAIM	6233	0112	WAT G	209	53.	384	-2.664	114.289		44.49
HETATM	6234	0112	WAT	210		120				31.97
HETATM	6235	OHZ	WAT	. 210		405		111.744	1.00	44.97
HETATM	6236	OH2	WAT G	211		.214				59.14
HETATM		OH2	WAT G	212	30	.754	6:983			41.78
HETATM	6238	OH2	WAT G	213						41.02
HETATM	6239	OH2	WAT G	214		.820	-0.465	1 22.101	1.00	38.42
HETATM	6240	OH2	WAT C	215		.143	22.096	124.775	1.00	32.50
HETATM	6241	OH2	WAT	; 216		.674			1.00	56.50
HETATM	6242	он2	WAT C	217		.009				
HETATM	6243	OH2		218	63	.361		109.653		49.66
HETATM	6244	OH2	_	219	66	.583	-8.146			50.91
HETATM	6245	OH2		220	44	.627	-2.583		1.00	36.99
HEIMIN	6 6245	OH2) MAT (221	24	.470	-8.606		1.00	47.24
HETAT			WAT			.913		83.973		50.43
HETAT	1 624/			2 222		.788	0.651	129.136		42.47
HETAT	1 6248	OH2					-16.880		1.00	46.69
HETAT	1 6249		TAW S			.567				43.17
HETATI	1 6250	OH	WAT	3 225						35.84
HETAT	4 6251	OH.	. WAT	3 226		.681			1 00	42.39
HETATI	4 6252	OH	TAW :	G 227		.263	15.23			52.23
HETATI	1 6253	OH	2 WAT	G 228	_	.933		108.488		46.56
HETATI	4 6254	OH	XAT (G 229	33	.755	14.939	70.228		1 40.30
מבתאתו	1 6255	OH	WAT	G 230	51	. 521		4 100.859		52.96
TEINI-	1 6256	OH:	2 WAT	G 231	34	.140	0.56	5 63.039		31.02
HEIAII	4 6255	OH	2 WAT	332		.277		7 81.662	1.00	39.83
HETATI	6257	On	2 WAT	C 233		.307			1.00	28.55
HETATI	4 6258					.718		0 125.707		53.16
HETAT!	4 6259	OH.	TAW S	G 234		. 624				51.02
HETAT	M 6260	OH:	2 WAT	G 235						57.50
HETAT	4 6261	OH:	2 WAT	G 236		. 35.7				38.65
HETAT	M 6262		2 WAT			.454			_	44.95
HETAT	M 6263	OH:	2 WAT	G 238		.836				42.95
הרהשת	M 6264	OH	2 WAT	G 239	. 54	. 933	3 23.34		_	0 45.78
::::::::::::::::::::::::::::::::::::::	M 6265	ОН	2 WAT	G 240	34		2 -15.27			U 41⊒./0 A 30 A1
	M 5266		2 WAT	G 241	35	.966	6 -1.05			38.91
ALIAI.	M 4247		2 WAT	G 242	29	. 681	7 1.89	8 127.376		0 44.85
HETAT	M 6267		2 WAT	G 243	49	.53	4 -10.15	0 113.501		0 38.32
HETAT	M 6268		2 WAT			7.25		3 96.696	1.0	0 48.83
HETAT	м 6269					2.31				0 38.54
HETAT	M 6270	CH	2 WAT	G 243	02			•		

										7 00	
HETATM	6271	CH2	WAT G	246		50.248			102.815	1.00	
11217111	6272	OH2	WAT G	247		47.966	;	21.564	79.321	1.00	36.79
HETATM	62/2								108.414	1.00	35 30
HETATM	6273	OH2	WAT G	248		62.507					
HETATM	6274	OH2	WAT G	249		53.971		19.763	61.067	1.00	
HEIAIM	6076	0112	WAT G	250		38.406		9.828	67.749	1.00	33.71
HETATM	62/5									1.00	
HETATM	6276	OH2	WAT G	251		35.304		-6.179			
HETATM	6277	OH2	WAT G	252		39.218	} -	12.667	85.010	1.00	36.17
HETATM	02//	0112	WAI O	252		56.350		5.089	97.225	1.00	46.38
HETATM	6278	OH2	WAT G	253							
HETATM	6279	OH2	WAT G	254		69.850)	3.406	122.119	1.00	
11517711	6380	0113	WAT G	255		75.703	}	2.630	128.600	1.00	30.64
HETATM	6280					22 020	`	12 973	113.965	1.00	34 48
HETATM	6281		WAT G		-				113.303		
HETATM	6282	OH2	WAT G	257		54.081	Ĺ	3.421	56.994		39.11
DEIRII	6202	OH2	WAT G			32.801	L	-6.170	91.078	1.00	35.72
HETATM	6283					45.040		0.301	95.449	1 00	36.57
HETATM	6284		WAT G								40.10
HETATM	6285	OH2	WAT G	260		39.815			128.855		
11217111	6286	OH2	WAT G	261		28.763	3	10.408	93.790	1.00	44.39
HETATM	0200	0112	C	202		40 669	· _	12.050	60.539	1.00	50.89
HETATM	6287	OH2	WAT G					12.030			62.67
HETATM	6288	OH2	WAT G	263		64.353			117.495		_
112222	6289		WAT G			75.183	3	13.021	128.124	1.00	50.42
HETATM	0203							6.826	52.485	1.00	46.86
HETATM	6290	он2				46.289			70.958		37.90
HETATM	6291	OH2	WAT G	266		68.708	3	13.973			
11513111	6202		WAT G			71.504	4	12.997	130.029	1.00	38.78
HETATM	0232					36.309		-4 716	130.364	1.00	42.92
HETATM	6293		WAT G								
HETATM	6294	OH2	WAT G	269		65.973	3	12.195	79.625		51.68
III I MILI	6205	OH2				71.952	2	13.021	74.292	1.00	37.70
HETATM	6295					44 433	2	-17.578	62.734	1.00	49.33
HETATM	6296	CH2								-	
HETATM	6297	OH2	WAT G	272		26.91		15.038	89.067		38.07
	6200	OH2				63.380	0	-5.416	126.550	1.00	41.73
HETATM	0230					63.360		-5.356	95.641	1.00	37.54
HETATM	6299	OH2				65.500	_				37.42
HETATM	6300	OH2	WAT G	275		65.94	/ -	-13.015	97.485		
HETATM	6301	OH2				26.40	6	25.831	117.328		48.37
HETAIM	0501					41 89	٦ -	-10.251	98.201	1.00	46.36
HETATM	6302		WAT G					6 507	117.764		49.87
HETATM	6303	OH2	WAT G	278		30.34					
HETATM	6304	OH2	WAT G	279 .		45.13	5	32:419	111.056		43.93
HETAIN	6304	,				50.55		-1.365	120.511	1.00	54.02
HETATM		OH2						12 652	105.130		31.10
HETATM	6306	OH2				60.42					
HETATM	6307	OH2	WAT G	282		30.34	2	2.204			45.19
REININ						60.35	8	15.921	127.736	1.00	33.17
HETATM	6300	OH2				64.19		3.421		1 00	45.81
HETATM	6309	OH2									48.98
HETATM	6310	OH2	WAT G	285		45.46	8		105.853		
HETATM	6311	OH2				47.51	4	3.808	98.279	1.00	46.45
HETATM	1 0311					72.14		-6.345		1.00	40.04
HETATM	1 6312	OH2									43.62
HETATM	6313	OH2	WAT G	288		54.14		-5.100			
HETATM	6314	OH2	NAT G	289		48.98	2	13.297			46.98
HEIRIE	1 0314					41.17		34.107	115.807	1.00	51.76
HETATM			WAT G						104.170		44.27
HETATM	6316		WAT G			36.49					
HETATM	6317	OHO	WAT G	292	•	48.58	0	23.117	85.456		40.96
HEINII.			WAT G			55.85		22.934	98.099		40.95
HETATN	1 0219					61.72		11.077			41.21
HETATM	1 6319	OH2	WAT G	294		61.72	U			1.00	42 22
HETATI	1 6320	OH	WAT G	295				-18.552	114.112		42.32
"FIVIE	. 6323	0111	WAT G	206		53.00		-6.305	129.052		37.41
HETATM	1 6321	Onz	WAIG	230				24.928		1 00	48.09
HETATI	4 6322	OH2	WAT G	297		70.25		24.920			
HETATN	4 6323	OH	NAT G	298		77.49			130.507		51.77
NEIAIL		0111	NAT G	200		32.23	.3	12.182	83.028	1.00	53.51
HETAT	4 6324	OH.	. AT C	433				12.878			46.49
HETATN	4 6325	OH	NAT G	300		40.66		12.070			48.51
ער ביד אינו	1 6326	OH:	NAT G	301		50.97			114.597		
	4 6333	On	WAT G	302		54.23	6	3.817	92.196		41.15
HETATI	4 6327	OH.	LAL C	, ,,,,,		59.52		-1.343			36.71
HETATI	4 6328	OH2	2 WAT C	303						_	47.70
מה קור מו	6329	OH:	TAW S	304		70.33	1	3.940			
	4 5330	OH:				60.€2	6	6.969	127.780		41.96
HETATI	4 6330	UM.				42.15	. 6	-0.139		1.00	32.19
HETATI	4 6331	OH.	2 WAT C	ە∪د ,							53.60
	4 6332	OH:	2 WAT C	307		58.88		16.514			
	4 6333	On.	2 WAT	308		67.51	7	-1.589			40.36
EL AT		O11.		300		35 86	5.8	-10.936		1.00	48.80
HETATI	4 6334	OH.	2 WAT C	צטכ נ		JJ.00	76	25 399	3 131.914		48.99
בייבייביי	4 6335	OH	2 WAT C	310		45.57	0			1 00	27 06
	M 6336	CH	2 WAT C	311		37.58	33	-6.243	3 64.257	1.00	37.06
HE LATE	0330	J.1.	/			-			•		

									1 00 45 07
HETATM	6337	OH2	WAT G	312		66.759	16.408	94.600	1.00 45.07
HEINIH	6336	OH2	MAT G	217		24.142	11.212	113.340	1.00 52.23
HETATM						69.409	16.702	64.230	1.00 39.88
HETATM	6339	OH2	WAT G	314			24 050	115.328	1.00 50.23
HETATM	6340	OH2	WAT G	315		22.064	24.858	113.326	
HETATM	6341	OH2	WAT G	316		50.171	9.551	100.345	1.00 37.32
REIMIN	6343	0112	WAT G	317		55.104	31.302	119.497	1.00 44.78
HETATM	6342	OHZ	WAT	317		65.333		95.866	1.00 44.21
HETATM	6343	OH2	WAT G				-10.103		1.00 41.95
HETATM		OH2	WAT G	319		31.415		128.127	
HETATM	6345	OH2		320		37.423	13.143	88.069	1.00 44.79
HETATM	6343			321		43.619	14.292	96.509	1.00 54.69
HETATM	6346	OHZ-					14 555	126.016	1.00 42.75
HETATM	6347	OH2	WAT G	322		68.048		120.010	1.00 37.06
HETATM	6348	OH2	WAT G	323		34.778	-2.509	130.204	1.00 37.00
HEITHIA	6340	OH2	WAT G	324	•	27.972	18.144	103.841	1.00 47.34
HETATM	0349					53.550	23.610	97.592	1.00 38.03
HETATM	6350	OHZ	WAT G	323			4.171	103.451	1.00 50.60
HETATM	6351	OH2	WAT G	326		33.776			1.00 48.34
HETATM	6352	OH2	WAT G	327		37.862	35.632	114.870	
III I I I I I	6353	OH2	WAT G	328		50.893	14.612	93.478	1.00 38.77
HETATM	6333	0112	WAT G	320		71 422	-20.913	86.137	1.00 47.69
HETATM	6354	OHZ	WAT	323		50 310	-23.133	74.502	1.00 41.94
HETATM	6355	OH2	WAT G	330			-23.133		1.00 54.93
HETATM	6356	OH2	WAT G	331		41.520	7.269	60.583	
HETATM	6357	OH2	WAT G	332		75.879	13.737	106.089	1.00 44.65
HETATM	6357	0112	WAT G	333		51.923	9.027	138.493	1.00 41.08
HETATM	6358	OHZ	WAIG	333		49.511	27.611		1.00 39.05
HETATM	6359		WAT G					110.192	1.00 41.42
HETATM	6360	OH2	WAT G	335		69.385			
HETATM	6361	OH2	WAT G	336		40.952		101.880	1.00 42.50
REIAIM	(262	0112	WAT G	337		32.998	7.200	103.784	1.00 54.22
HETATM	6364	UNZ	WAIG	227		54.366	15 261	136.205	1.00 52.69
HETATM	6363		WAT G				13.727		1.00 35.83
HETATM	6364	OH2	WAT G	339		35.674	13.727	03.132	
HETATM	6365	OH2	WAT G	340		66.606	-21.361	87.138	1.00 46.26
HETATM	6366	OH3	WAT G	341		72.053	4.708	131.550	1.00 45.27
HETATM	6366	0112	WAI C	,343	•	28.072	-1.358		1.00 34.92
HETATM	6367		WAT G				-3.981		1.00 52.99
HETATM	6368		WAT G			23.611	-3.561	100.150	1.00 58.16
HETATM	6369	OH2	WAT G	344		53.684	2.564	122.150	
HETATM	6370	OH2				30.624	-6:528	125.556	1.00 34.71
HETAIR	6370					27.870	13.838	113.997	1.00 44.91
HETATM	1 63/1					31.903	-9 588	116.327	1.00 55.34
HETATM	1 6372					31.903			1.00 48.99
HETATM	6373	OH2	WAT G	348		71.763	15.094		
HETATM	6374	OH2	WAT G	349		25.258		114.760	1.00 37.19
REIAIR	. (375	OH2				43.765	12.162	78.143	1.00 42.32
HETATM	1 03/3					32.452	5.338	73.909	1.00 33.70
HETATM	1 63/6	OH2				52.896		101.894	1.00 46.40
HETAT	4 6377	OH2				_			1.00 34.62
HETATI	4 6378	OH2	WAT G	353		47.968		115.852	1.00 34.02
HETATI	4 6379	OH2				38.561	-9.302		1.00 49.80
RETAIN	- 6300					63.791	17.454	74.354	1.00 56.40
HETATI	1 0300	OH2	WAIG	355		41.360	2 648	133.760	1.00 50.00
HETAT	4 6381		WAT G				7 035	122.328	1.00 38.01
HETATI	4 6382		WAT C			42.467			
וווע מידים	4 6383	OH2	WAT G	358		50.890	-0.362		1.00 39.26
1151441	4 6384	Uns	WAT G	359		54.217	-23.881	67.865	1.00 55.18
HETATI	4 0304	0112		360		64.959	9.539	105.032	1.00 38.83
HETAT	4 6385	OHZ	WAT C	300		FO 113	-19.846		1.00 38.60
HETATI	4 6386	OH2	WAT	361			-19.040	02.500	1.00 31.47
HELVAL	4 6387	OH2	WAT C	362		42.245	-1.140	93.572	1.00 51.47
	4 6388	OH?	WAT C	363		73.552	17.770	125.885	1.00 54.89
HETATI	. 6300	0112	WAT	361		68.769	15.898	3 106.810	1.00 45.53
HETATI	M 6389	OHZ	WAT	304					1.00 45.15
HETATI	M 6390	OH2	WAT	3 365		37.543			1.00 44.99
HETATI	M 6391	OH2	WAT	366		55.583			1.00 34.55
11222	M 6392	OH2	TAK	367		41.284	9.699	9 78.250	1.00 36.58
HEIAI	0332	0112	WAT	368		25.203		2 126.362	1.00 46.60
HETAT	M 6393	OHZ	TAW	3 300		74.742			1.00 47.85
HETAT	M 6394	OH2	TAW	3 369					1.00 51.46
HETAT	м 6395	OH2	WAT C	370		70.349			
::::::::::::::::::::::::::::::::::::::	м 6396	OH2	WAT (371		42.936	20.63	1 94.720	
SEIAI			WAT	372		34.162	-16.11	4 114.141	1.00 44.01
HETAT	M 5397			272		33.863		8 100.275	1.00 44.66
HETAT	м 5398		TAW S	3/3					
HETAT	м 6399	OH2	TAW S	374		21.613	12.56		
7547u	M 6400		TAW S	g 375				2 100.583	
ESIA!	M 5402		TAW S	376		70.095	13.39	5 117.505	1.00 52.02
HETAT	M 5401		. 1625 L \	277		41.853		8 131.799	1.00 46.47
HETAT	M 6402	OH4	TAW S	١١ د د		41.000		•	

									65.487	. 00	49.09
HETATM	6403	CH2	WAT	G :	378	55.780					
HETATM		OH2	TAW	G.	379	40.990		1.205	91.611	1.00	41.02
						48.157	, ,	1 057	116.992	1.00	44.84
HETATM	6405		TAW						128.334		37.09
HETATM	6406	OH2	WAT	G :	381	37.954		5.221			
			TAW			30.221	. 2'	7.743	109.194	1.00	39.92
HETATM						49.926			118.421	1.00	58.95
HETATM	6408		WAT			49.920	-1	2.020			_
HETATM		OH2	WAT	G :	384	42.435	-1	7.636	81.477		48.47
			TAW			58.226	-2	5.990	71.378	1.00	48.18
HETATM									128.741		43.82
HETATM	6411	OH2	WAT	G :	386	40.495) <u>T</u>				
HETATM	6/12	೧೮೨	WAT	G	3.87	31.943		6.301	109.475		35.53
			****	~	700	47.277	,	2.559	100.509	1.00	43.00
HETATM			TAW						102.620		31.70
HETATM	6414	OH2	WAT	G :	389	38.862		9.112			
HETATM	6/15	OH2	TAW	G	390	71.652	2 1	4.568	105.167		49.63
		0112		~	201	68.554		0.518	73.331	1.00	38.16
HETATM			TAW								32.16
HETATM	6417	OH2	TAW	G	392	70.496) _T	p.100			
HETATM		252	WAT	G	393	44.698	3 –2	4.950	75.603	1.00	43.38
						56.172		5.369		1.00	47.44
HETATM	6419		WAT		394						47.98
HETATM	6420	CH2	WAT	Ģ	395	46.150		9.441			
	(401		WAT		396	26.892	2 -	8.356	89.057		34.99
HETATM								4.380		: 00	50.78
HETATM	6422		WAT		397	31.73	, .	4.500	70.333		50.86
HETATM	6423	OH2	WAT	G	398	36.26	l -1	3.824	62.777		
MEIAII	6423		WAT		399	37.313	2 1	5,242	134.977	1.00	43.57
HETATM	6424					37.72		2 773	126.419	1 00	57.13
HETATM	6425	OH2	WAT	G	400	33.72		2.113	120.312		
HETATM		OH2	WAT	G	401	45.26			130.311		49.55
REIRIM	6427			~	402	44.88	7 -1	7.414	111.508	1.00	54.29
HETATM	6421	OH2						0 455	136.711		49.90
HETATM	6428		WAT			68.92					
HETATM	6429	OH2	WAT	G	404	43.27	1 -2	1.571	64.425		48.61
REIAIN	6420					24.24	ন –	4.781	108.590	1.00	51.05
HETATM	6430	OH2						5.311		7.00	43.43
HETATM	6431	OH2				54.82					
HETATM	6432	OH2	WAT	G	407	53.46			124.076		47.83
		0112	TAW	Č	108	70.83	3 -1	8.390	85.386	1.00	49.26
HETATM	6433							5 297	113.071	1 00	34.52
HETATM	6434		WAT			71.49	/ 1	.3.407	113.071		
HETATM	6435	OH2	TAW	G	410	36.40	7 -1	.8.480	110.466		55.43
REIAIM	6436					26.22	ი -	9.551	78.158	1.00	47.69
HETATM	6436	OH2					-	6.326		1 00	42.00
HETATM	6437	OH2			412	52.31		.0.320			
HETATM	6438	OH2	TAW S	G	413	76.17	31	.4.097	122.253		44.90
HETAIM	6430					58.37		6.335	123.024	1.00	54.61
HETATM	6439		TAW				- -	6.705			50.63
HETATM	6440	OH2	TAW S	G	415	72.16		.0./0	02./13		
HETATM	6441	OH2				63.55	7 2	26.152	65.944		39.83
HETATM	0441					38.93		3.070	122.742	1.00	52.57
HETATM	6442		TAW S			55.55	- 1	0 71	124.501	1 00	42.38
HETATM	6443	OH2	TAW S	G	418			10.714	124.501		
HETATM	6444	047	TAW S	G	419	55.44	3 -	-9.037	110.170		46.47
						73.87	٦ ،	6.578	123.288	1.00	46.54
HETATM	1 6445	OH2					-	2 66	117.527	1 00	43.62
HETATM	6446	OH2			421	74.42					
HETATM	6117	OHO	TAW S	G	422	52.37	4 -	-0.368	3 51.502		56.99
DEIAIR	1 0447					60.33	9 3	20.21	84.713	1.00	36.27
HETATM	1 6448		TAW S					1.35			38.53
HETATM	6449	OH2	TAW S	G	424	48.30		,	- 115 000 TOC.FC		
HETATM	6450	OH:	2 WAT	G	425	61.75	7 2	21.60	5 115.976		61.09
BETAIR			, 1122 M		126	33 22	2 -	14.91	119.528	1.00	51.12
HETATM	1 6451	OH	Z WAT	ی	420			2 25	112.298		46.10
HETATM	4 6452	OH	2 WAT	G	427	47.47		رود. د	, 114.430		
HETATM	4 6453	ua.	2 WAT	G	428	39.90	9	2.27	2 138.388		35.33
HETATE	1 0433	0.11		. ~	420	57.82		15.33	5 126.262	1.00	62.59
HETATM	1 6454	CH.	2 WAT	G	429				7 119.191	1 00	51.45
HETATM	4 6455	CH:	2 WAT	G	430	48.91		-5.85	, 113.131		
**************************************	. 6166	ΩÜ.	2 WAT		431	44.13	9 .	-3.81	2 132.964	1.00	44.91
HETATI	1 0410	0112		. ~	422	38.88		18.59	4 95.398	1.00	50.23
HETAT	1 6457	OH	2 WAT	ف	434			7 00	4 55.271		38.96
HETAT	4 6458	OH:	2 WAT	, C	433	52.62		- / . 00			47 30
	4 5150		2 WAT	· G	434	60.64	4	-0.73	1 101.129	1.00	47.30
HETAT	1 0433	Jili		. ~	12 E	64.77		5.80		1.00	50.81
HETAT	4 6460	OH:	2 WAT	G	433						34.07
HETAT:	4 6467	OH:	2 WAT	G	436	39.57		16.70			
		211	2 WAT		437	32.79	91	-0.55	1 65.371		41.40
HETATI		JH.			120	58.33		-7 98	9 60.087	1.00	46.94
HETAT:	4 6463	OH	2 NAT	ં ઉ	420			·	4 120 400		46.28
ಗಿದ್ದಿನಗು	M 6464	ЭH	2 WAT	G	439	26.98		5.4/	4 120.408	1.00	5 50 13
::E1WII		211	2 WAT	Ö	440	72.13	8 8	1.23	3 90.050		50.13
HETATI	M 6465	Un	A NAI		444	29.49		10 97	1 118.393	1.00	56.30
HETATI	M 6466	ЭH	2 WAT	: G	441				4 113.941		58.17
		OH	2 MATE	G	442	69.2	52	5.59	4 113.241		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	M KAKT	UR									_ /1 /7
HETAT	M 6467					61.4	59	11.57	6 71.140	1.0	0 61.67
HETAT	M 6467 M 6468		2 WAT			61.4	59	11.57	6 .71.140	1.0	0 61.67

		_		_			59.592	2.195	58.518	1 00	42.66	
HETATM	6469	OH2	TAW	G	444							
		OH2	TAU	G	445		47.407	6.152	111.310		45.14	
HETATM							36.254	18.203	99.930	1.00	44.76	
HETATM	6471		TAW								47.72	
MTATH		OH2	WAT	G	447		49.525	32.050	116.235			
							21.801	-5.358	81.109	1.00	42.07	
HETATM	6473		TAW						95.380	1 00	40.76	
HETATM	6474	OH2	TAW	G	449		52.131	-14.007				
			WAT				39 712	-19.983	72.499	1.00	51.69	
·HETATM								5.620	67.102	1 00	42.38	
HETATM	6476	OH2	WAT	G	451		67.651					
		043	WAT	G	452		77.344	1.313	79.207		63.64	
HETATM							EE 240	-29.426	86.187	1.00	44.98	
HETATM	6478	OH2	WAT	Ģ	453					1 00	49.12	
HETATM		OH2	WAT	G	454		64.429	-11.004	98.104			
							45.456	-0.814	129.510	1.00	61.60	
HETATM	6480		TAW						68.028	1 00	40.08	
HETATM		OH2	WAT	G	456		65.066	-14.790				
			WAT				34.732	5.611	94.924	1.00	58.32	
HETATM	6482	ORZ	MWT	.5	40,	٠,	34	•				

Figure	1	9-]
--------	---	----	---

				D.	sidue	e il	X	Y	Z .	В	Segment	ID	
		CB	ALA		2 2	u	45.368	37.229	75.022		57.10		بتبيية
ATCM	1	C = C	ALA		2		46.761	38.761	73.244		55.49		ببهجية
ATOM	3	S	ALA		2		46.339	39.800	73.750	1.00	55.57		સેસેસ્સ
ATOM	د 4	::	ALA		2		48.280	37.746	74.937		57.26		ääää
ATOM	5	ca Ca	ALA		2		47.062	37.537	74.110		56.37		AAAA
ATOM	5	::	LYS		3			38.628	71.938		53.94		AAAA
ATOM	7	CÀ	LYS		3		46.721	39.716	71.002		51.97		AAA.
ATCH ATCM	. 8	CE		à	3		47.815	39.778	69.939		53.86		AAAA
ATOM ATOM	9	CG	LIS		3			.39.276	70.490	1.00	56.47		AAAA AAAA
ATOM	10	22	LYS		3		50.252	39.570	69.387		57.84		AAAA
ATOM	11	CE	LYS		3		51.654	39.597	69.957	1.00	58.89		AAAA
ATOM	12	::z	LYS		3		52.643	39.283	68.895	1.00	59.33		AAAA
ATOM	13	c	LYS	À	3		45.393	39.494	70.305	1.00	49.57 49.33		AAAA
ATOM	14	Ō	LYS		3		44.894	38.373	70.246		46.23		AAAA
ATOM	15	11	VAL	A	· 4		44.826	40.574	69.777		42.51		AAAA
ATOM	16	CA	::'AL	A	4		43.561	40.516	69.056 69.630		42.26		AAAA
ATOM	17	CЗ	VAL		4		42.543	41.516	68.940		41.51		AAAA
ATCM	18	CG1	VAL	A	4		41.213	41.352	71.128		42.00		AAAA
ATOM	19	CG2	VAL	A	4		42.401	41.307	67.638	. 00	39.94		AAAA
ATOM	20	Ξ	VAL		7		43.918	40.913 42.032	67.395	3 00	40.39		AAAA
ATOM	21	਼	VAL		4		44.332	40.001	66.695		36.94		AAAA
ATOM	22	:1	LYS		5		43.766	40.305	65.323		34.10		AAAA
ATOM	23	CA	LYS		5		44.142 45.179	39.290	64.846	1.00	35.02		AAAA
ATOM	24	CB	LYS		5		46.424	39.182	65.698		34.07		አልአል
ATOM	25	CG	LYS	À	5 '		47.233	40.452	65.652	1.00	33.44		ääää
ATOM	26	22	LYS		5 5		48.555	40.239	66.333	1.00	32.38		ääää
ATOM	27	CE	LYS	-	5		49.372	41.460	66.222	1.00	31.26		aaaa
ATOM	28	::2	UYS UYS	~	5		42.997	40.293	64.333	1.00	31.38		AAAA
ATOM	29	C	LYS		5		42.053	39.523	64.466	1.00	31.74		AAAA
ATOM	30	0 17	LEU	2	6		43.090	41.142	63.326	1.00	28.50		AAAA
ATOM	31	 CA	LEU	Ξ.	6		42.075	41.167	62.289	1.00	26.90		AAAA
MOTA	32 33	CB	LEU		6		41.530	42.580	62.067	1.00	26.43		AAAA
MOTA	34 34	cs	LEU		5		40.321	42.748	61.129	1.0	25.89		aaaa aaaa
MOTA	35	. 551					40.108	44.224	60.826	1.0	0 25.50		AAAA
atom Atom	36	200	LEU	À	ร์		40.550	42.032	59.828	1.0	0 26.64		AAAA
ATOM	37		LEU	A	5		42.818	40.701	61.049	1.0	0 25.74		AAAA
ATOM	38	-	LEU	À	5		43.877	41.226	60.717	1.0	0 24.60 0 25.90		AAAA
ATOM	39	::	ILE	A	7		42.282	39.704	60.367	1.0	0 26.75		AAAA
ATOM	40		112	A	7		12.939	39.212	59.173 59.089	1.0			አ እሕሕ
ATOM	41	3	===	À	?		42.839	37.712 37.227	57.783	1.0			AAAA
ATCM	42	23	2 IL E	À	-		43.474		60.310	1.0			AAAA
ATCM	43		1 111	À	Ξ		43.528	37.116 35.640	60.350		0 27.46		አልልል
ATOM	44	CD	1 ILE	: A			43.507	39.814	57.929	1.0	0 25.70		AAAA
ATOM	45		===	. A	<u>.</u>		42.339 41.162	39.655	57.581		0 27.68		AAAA
ATOM	46		===		7		43.144	40.509	57.142		0 27.94		AA A
atom	47	N	323		8		42.598			1.0	0 29.78		AA/ A
ATOM	÷8	ÇA	GL		8 8		43.587			1.0	0 30.38	•	aaaa
ATOM	÷9			A	8		44.785			1.0	0 29.39		AAAA
ATOM	50			A :	9		43.051		53.971	1.0	0 31.84		AAAA
ATOM	51	N CA		2 2	9		43.832		52.962		0 32.41		AAAA
ATCM	52			2 2	9		44.606		52.064		0 31.12		AAAA
ATCM	53				9		45.324		51.053		0 30.74		AAAA
ATOM	54 55				9		43.654	41.140			0 30.27		AAAA
ATOM	56			R A	9		42.886		52.091		0 32.94		aaaa Aaaa
ATCM	57			R A	9		41.705	43.625			00 33.62		AAAA
ATOM	56			JÀ	10		43.396	45.009			00 33.20		2444 2444
ATOM	59			JA	10		42.573	45.840	50.611		00 33.29		AAAA
ATOM	50			U A			43.117	47.275	50.484		00 33.12		- AAAA
ATOM ATOM	5.			U A			43.142		51.566		00 32.95 00 31.99		AAAA
ATOM	5. 5.			U A			41.743		52.288		00 34.71		AAAA
ATOM	6.			U A			44,116		52.675		00 33.18		AAAA
ATOM	6			ג ט			42.527		49.218 48.328		00 32.52		AAAA
ATOM	6			IJ A	10		41.376			5	00 33.56		አአአአ
ATOM	6			P A			43.230	44.12	- 43.02	'			•

										•
		C.	ASP A	11		43.240	43.489	47.716	1.00 34.24	AAAA
ATOM	67		ASP A	11		44.393	42.499	47.607	1.00 35.81	AAAA
MOTA	68			11		45.739	43.190	47.604	1.00 37.57	AAAA
MOTA	69		ASP A			45.890	44.178	46.855	1.00 37.95	AAAA
MOTA	70		ASP A	11		46.650	42.750	48.332	1.00 40.31	AAAA
MOTA	71		ASP A	11		41.929	42.813	47.341	1.00 34.03	AAAA
ATOM -	72		ASP A	11			42.652	46.150	1.00 34.80	AAAA
ATOM	73		ASP A	11		41.629		48.335	1.00 32.34	AAAA
ATOM	74		TYR A	12		41.142	42.417	48.017	1.00 32.53	AAAA
ATOM	75	CA	TYR A	12		39.871	41.803		1.00 32.33	AAAA
ATOM	76	CB	TYR A	12		39.043	41.569	49.290	1.00 31.32	AAAA
ATOM	77	CG	TYR A	12		39.551	40.438	50.162		AAAA
ATOM	78	CD1	TYR A.	12		39.983	40.669	51.469	1.00 28.52	AAAA
ATOM	79		TYR A	12	•	40.413	39.614	52.279-	1.00 28.03	
ATOM	80	CD2	TYR A	12		39.568	39.128	49.688	1.00 28.47	AAA
ATOM	81	CE2	TYR A	12		39.992	38.083	50.483	1.00 28.47	AAAA
ATOM	82	CZ	TYR A	12		40.408	38.330	51.775	1.00 28.43	- AAAA
	83	OH	TYR A	12		40.786	37.277	52.569	1.00 29.86	AAAA
ATOM	84	c c	TYR A	12		39.146	42.749	47.066	1.00 33.16	AAAA
MOTA	85	Õ	TYR A	12		38.554	42.324	46.082	1.00 33.36	AAAA
MOTA	86	N	GLY A	13		39.237	44.041	47.356	1.00 34.76	AAAA
ATOM		CA	GLY A	13		38.594	45.065	46.546	1.00 36.60	AAAA
MOTA	87		GLY A	13		38.814	44.961	45.052	1.00 37.85	AAAA
MOTA	88	C	GLY A	13		38.105	45.591	44.275	1.00 37.40	AAAA
MOTA	89	0	LYS A	14		39.799	44.171	44.647	1.00 39.55	AAAA
MOTA	90	N	LYS A	14		40.091	43.981	43.231	1.00 40.66	AAAA
MOTA	91	CA	LYS A	14		41.605	43.977	42.995	1.00 42.26	AAAA
MOTA	92	CB				42.300	45.309	43.239	1.00 44.54	AAAA
ATOM	93	CG	LYS A			41.820	46.445	42.304	1.00 46.32	AAAA
ATOM	94	CD	LYS A			42.033	46.158	40.810	1.00 46.64	AAAA
ATOM	95	CE	LYS A			41.133	45.086	40.256	1.00 47.23	AAAA
MOTA	96	NZ	LYS A			39.499	42.675	42.707	1.00 40.35	AAAA
ATOM	97	C	LYS A			39.593	42.377	41.511	1.00 39.97	AAAA
ATOM	98	0	LYS A			38.897	41.901	43.605	1.00 39.95	AAAA
MOTA	99	N	TYR A			38.300	40.617	43.245	1.00 40.30	AAAA
ATOM	100	CA	TYR A		•		39.490	44.050	1.00 38.46	AAAA
MOTA	101	CB	TYR A			38.962	39.519	44.021	1.00 37.01	AAAA
MOTA	102	CG	TYR A			40.472		45.137	1.00 36.24	AAAA
ATOM	103	CD1				41.213	39.136 39.220	45.144	1.00 35.73	AAAA
MOTA	104	CE1				42.604		42.902	1.00 36.84	AAAA
MOTA	105	CD2	TYR A			41.163	39.976	42.898	1.00 36.53	AAAA
MOTA	106	CE2				42.556	40.064	44.028	1.00 36.24	AAAA
MOTA	107	CZ	TYR A			43.271	39.689		1.00 36.49	AAAA
ATOM	108	OH	TYR A			44.648	39.816	44.042	1.00 41.98	AAAA
ATOM	109	С	TYR A			36.802	40.647	43.556	1.00 42.59	AAAA
ATOM	110	0	TYR A	15		36.288	39.786	44.280	1.00 42.81	AAAA
ATOM	111	N	ARG A	16		36.101	41.638	43.014	1.00 43.47	AAAA
ATOM	112	CA	ARG A	16		34.670	41.753		1.00 45.27	AAAA
ATOM	113	CB	ARG A	16		34.205	43.197	43.111	1.00 48.06	AAAA
ATOM	114	CG	ARG A	16		35.021	44.234		1.00 49.63	AAAA
ATOM	115	CD	ARG A	16		34.891	44.196			AAAA
ATOM	116	NE	ARG A	16		35.632	45.322			AAAA
ATOM	117	CZ	ARG A			35.382	46.602		1.00 52.71	AAAA
ATOM	118		ARG A	16		34.406	46.931			AAAA
ATOM	119		ARG A			36.124	47.560			AAAA
MOTA	120	С	ARG A			33.913	40.929			AAAA
ATOM	121	ō	ARG A			34.455	40.541			AAAA
	122	N	TYR A			32.651	40.668			
MOTA	123	CA	TYR			31.818	39.942			AAA
ATOM	124		TYR			30.675	39.254	42.333		AAAA
ATOM			TYR	-		31.097			1.00 38.35	AAAA
MOTA	125		TYR A			32.169	38.148		1.00 36.15	AAAA
ATOM	126		L TYR	1 17		32.519	37.069		1.00 34.76	AAAA
ATOM	127	_		_		30:386			1.00 36.40	AAAA
MOTA	128	_		-		30.726		43.912	1.00 35.31	AAAA
MOTA	129		2 TYR			31.792			1.00 35.00	AAAA
ATOM	130		TYR .			32.115			1.00 33.29	AAAA
ATOM	131		TYR .			31.296			4	AAAA
ATOM	132	C	TYR	A 17		7 0		•		• •
							•			

218/263 Figure 19-3

					1.8				
- 2014	133	0	TYR A	17	31.346	42.194		1.00 44.68	AAAA
ATOM ATOM	134		PRO A	18	30.799	40.574	••••	1.00 45.95	AAAA AAAA
MOTA	135		PRO A	18	30.707	39.175	38.994	1.00 46.08 1.00 47.24	AAAA
MOTA	136	CA	PRO A	18	30.268	41.465	38.402 37.312	1.00 47.24	AAAA
ATOM	137		PRO A	18	29.854	40.482	37.512	1.00 46.79	AAAA
ATOM	138		PRO A	18	30.876	39.338 42.390	38.834	1.00 48.98	AAAA
ATOM	139		PRO A	18	29.129 28.298	42.330	39.660	1.00 49.11	AAAA
ATOM	140		PRO A	18	29.114	43.593	38.253	1.00 50.59	AAAA
MOTA	141		LYS A	19 19	28.125	44.654	38.519	1.00 52.10	AAAA
ATOM	142		LYS A LYS A	19	27.876	45.466	37.246	1.00 54.41	AAAA
MOTA	143 144		LYS A	19	29.120	45.911	36.498	1.00 57.78	AAAA
MOTA	145		LYS A	19	28.747	46.508	35.142	1.00 59.34	AAAA AAAA
ATOM ATOM	146		LYS A	19	29.978	46.774	34.288	1.00 60.33	AAAA
MOTA	147		LYS A	19	29.616	47.277	32.932	1.00 61.03 1.00 51.53	AAAA
ATOM	148	С	LYS A	19	26.764	44.162	39.012 40.071	1.00 51.55	AAAA
ATOM	149	0	LYS A		26.281	44.556 43.314	38.203	1.00 50.13	AAAA
ATOM	150	N	ASN A		26.146 24.831	42.750	38.482	1.00 48.44	AAAA
MOTA	151	CA	ASN A		24.336	42.061	37.209	1.00 49.67	AAAA
MOTA	152	CB	ASN A		25.389	41.132	36.613	1.00 51.61	AAAA
MOTA	153 154	CG	ASN A		25.677	40.064	37.154	1.00 51.70	AAAA
ATOM	155	ND2	ASN A		25.998	41.562	35.509	1.00 53.00	AAAA AAAA
ATOM ATOM	156	C	ASN A		24.789	41.765	39.649	1.00 45.57 1.00 44.67	AAAA
ATOM	157	0	ASN A		23.764	41.127	39.877 40.398	1.00 42.71	AAAA
ATOM	158	N	HIS A		25.883	41.662	41.506	1.00 40.69	AAAA
ATOM	159	CA	HIS A		25.958	40.709 39.857	41.353	1.00 40.16	AAAA
MOTA	160	СВ	HIS A		27.216 27.186	38.587	42.140	1.00 39.93	AAAA
MOTA	161	CG	HIS A		27.329	38.353	43.467	1.00 39.27	AAAA
ATOM	162		HIS A		26.951	37.359	41.557	1.00 39.47	AAAA
MOTA	163 164		HIS 7		26.948	36.425	42.493	1.00 39.36	AAAA AAAA
ATOM ATOM	165		HIS A		27.174	37.003	43.660	1.00 39.44 1.00 38.93	AAAA
ATOM	166	C	HIS F		25.974	41.349	42.892	1.00 38.78	AAAA
MOTA	167	0 '	HIS A		26.660	42.338	43.116 43.853	1.00 37.11	AAAA
ATOM	168	N	PRO P		25.229	39.579	43.814	1.00 36.09	AAAA
MOTA	169	CD	PRO A		24.371 25.224	41.361	45.199	1.00 35.81	AAAA
ATOM	170	CA	PRO A		24.473	40.306	46.012	1.00 36.04	AAAA
MOTA	171	CB	PRO A		23.464	39.810	45.003	1.00 36.19	AAAA
MOTA	172 173	CG C	PRO A		26.638	41.637	45.751	1.00 34.39	AAAA AAAA
MOTA ATOM	174	Ö	PRO A		26.867	42.653	46.417	1.00 34.09	AAAA
ATOM	175	Ň	LEU		27.572	40.731	45.451	1.00 31.98 1.00 29.65	AAAA
MOTA	176	CA	LEU	A 23	28.954	40.827	45.900 46.014	1.00 27.88	AAAA
MOTA	177	CB	LEU 2		29.564	39.432 38.528	47.048	1.00 27.31	AAAA
ATOM	178	CG	LEU		28.896 29.656	37.217	47.149	1.00 26.64	LAAA
ATOM	179		LEU .		28.879	39.212	48.399	1.00 26.75	AAAA .
MOTA	180		LEU .		29.838	41.709	45.018	1.00 29.20	AAAA
ATOM	181 182	C O	LEU		31.057	41.606	45.028	1.00 28.38	AAAA
MOTA	183	N	LYS		29.204	42.582		1.00 29.27	AAAA AAAA
MOTA MOTA	184		LYS		29.903	43.512			AAAA
ATOM	185		LYS		28.881	44.091			AAAA
ATOM	186	CG	LYS	A 24	29.328		41.601 41.994		AAAA
ATOM	187		LYS		28.537 27.025				AAAA
MOTA	188		LYS		26.221			1.00 34.37	AAAA
ATOM	189		LYS		30.580			1.00 28.14	AAAA
ATOM	190		LYS		31.617	45.162	43.840	1.00 27.93	AAAA
MOTA	191		LYS ILE		29.990	44.919	45.377		AAAA
MOTA	192 193				30.468	45.945	46.296		AAAA AAAA
MOTA MOTA	194				29.425	46.262	47.364		AAAA
atom	195	CG	2 ILE	A 25	28.190	46.846			AAAA
ATOM	196	CG	1 ILE	A 25	01/				AAAA
ATOM	197	CD	1 ILE	A 25					AAAA
ATOM	198	3 C	ILE	A 25	31.700	, 40.00		= =	•
•			•						

					J				
3 mOM	199	o	ILE A	25	32.037	44.379	47.183	1.00 24.48	AAAA
ATOM ATOM	200	_	PRO A	26	32.375	46.547	47.714	1.00 24.98	AAAA
MOTA	201		PRO A	26	32.062	47.980	47.638	1.00 24.98	AAAA
ATOM	202		PRO A	26	33.570	46.367	48.543	1.00 24.44	AAAA
ATOM	203		PRO A	26	34.094	47.792	48.701	1.00 24.75	AAAA
MOTA	204		PRO A	26	33.435	48.546	47.538	1.00 25.51	AAAA
ATOM	205		PRO A	26	33.021	45.838	49.862	1.00 23.42	AAAA
ATOM	206		PRO A	26	31.930	46.233	50.272	1.00 22.12	AAAA AAAA
ATOM	207	N	ARG A	27	33.754	44.960	50.532	1.00 23.06 1.00 23.04	AAAA
MOTA	208		ARG A	27	33.244	44.421	51.776	1.00 23.04	AAAA
ATOM	209		ARG A	27	32.633	43.043	51.492 50.503	1.00 22.20	AAAA
ATOM	210		ARG A		31.463	43.152	50.303	1.00 19.64	AAAA
MOTA	211		ARG A	27	30.762	41.844 41.168	51.315	1.00 16.51	AAAA
MOTA	212		ARG A	27	30.181 30.774	40.188	51.982	1.00 16.57	AAAA
MOTA	213	CZ	ARG A	27	31.969	39.763	51.605	1.00 17.50	AAAA
ATOM	214		ARG A	27 27	30.185	39.643	53.038	1.00 16.45	AAAA
MOTA	215		ARG A	27	34.265	44.381	52.905	1.00 23.62	AAAA
ATOM	216	C	ARG A	27	34.107	45.077	53.919	1.00 23.69	AAAA
ATOM	217	O N	ARG A VAL A	28	35.305	43.570	52.736	1.00 24.25	AAAA
MOTA	218 219	N CA	VAL A	28	36.355	43.466	53.737	1.00 23.36	AAAA
MOTA	220	CB	VAL A	28	37.022	42.062	53.671	1.00 22.75	AAAA
MOTA MOTA	221		VAL A	28	38.292	42.031	54.475	1.00 22.95	AAAA
ATOM	222		VAL A	28	36.061	41.011	54.249	1.00 22.20	AAAA
ATOM	223	c	VAL A	28	37.363	44.609	53.511	1.00 23.70	AAAA AAAA
ATOM	224	0	VAL A	28	37.943	45.156	54.455	1.00 22.62	AAAA
ATOM	225	N	SER A	29	37.538	44.989	52.253 51.910	1.00 24.27 1.00 26.03	AAAA
ATOM	226	CA	SER A		38.444	46.082	50.381	1.00 25.95	AAAA
ATOM	227	CB	SER A		38.632	46.178 46.417	49.716	1.00 27.57	AAAA
MOTA	228	og	SER A		37.395 37.793	47.354	52.440	1.00 25.52	AAAA
MOTA	229	C	SER A		38.463	48.311	52.828	1.00 25.49	AAAA
ATOM	230	0	SER A		36.468	47.342	52.448	1.00 26.09	AAAA
MOTA	231	N	LEU A		35.692	48.471	52.926	1.00 26.39	AAAA -
ATOM	232	CA CB	LEU A		34.262	48.365	52.393	1.00 25.89	AAAA
ATOM	233 234	CG	LEU A		33.265	49.470	52.755	1.00 27.15	AAAA
MOTA MOTA	235		LEU A		32.486	49.101	53.999	1.00 26.34	AAAA
MOTA	236		LEU A		34.015	50.813	52.897	1.00 25.81	AAAA
MOTA	237	c	LEU A		35.713	48.534	54.453	1.00 26.26	AAAA AAAA
ATOM	238	0	LEU A	. 30	35.731	49.612	55.037	1.00 27.50 1.00 25.57	AAAA
MOTA	239	N	LEU A		35.730	47.379	55.097 56.545	1.00 25.57 1.00 26.87	AAAA
MOTA	240	CA	LEU A		35.776	47.343	57.029	1.00 27.28	AAAA
MOTA	241	CB	LEU A		35.752	45.900	58.383	1.00 27.87	AAAA
ATOM`	242	CG	LEU A		35.135 35.855	45.563 44.313	58.906	1.00 27.01	AAAA
MOTA	243		LEU A		35.855 35.261	46.706	59.372	1.00 26.32	AAAA
MOTA	244		LEU A		37087	48.003	57.012	1.00 28.08	AAAA
ATOM	245	C	LEU A		37 094	48.854	57.901	1.00 27.42	AAAA
MOTA	246	0 N	LEU A		38.197	47.584	56.409	1.00 29.52	AAAA
ATOM	247 248	N CA	LEU A		39.508	48.121	56.750	1.00 30.96	AAAA
ATOM	249	CB	LEU A	-	40.607	47.394	55.950	1.00 31.58	AAAA
MOTA	250	CG	LEU A		40.792	45.904	56.293	1.00 31.63	AAAA
MOTA MOTA	251		LEU A		41.810	45.246	55.380	1.00 31.31	AAAA
ATOM	252	CD2	LEU A	32	41.232	45.780	57.743	1.00 32.23	AAAA
ATOM	253	c	LEU A		39.599		56.543	1.00 31.59	AAAA AAAA
ATOM	254	0	LEU A		40.081			1.00 31.70 1.00 32.72	AAAA
ATOM	255	N	ARG A		39.140			1.00 32.72	AAAA
ATOM	256	CA	ARG A	33	39.178			1.00 35.10	AAAA
ATOM	257	CB	ARG 2	33	38.643			1.00 37.84	AAAA
ATOM	258	CG	ARG A		39.627				AAAA
ATCM	259	CD	ARG A		39.310				AAA
MOTA	260	NE	ARG		38.255				AAAA
MOTA	261	CZ	ARG :	A 33	37.662 38.016			1.00 44.61	aaaa
MOTA	262	NH.	ARG	A 33	36.723			1.00 45.23	AAAA
ATOM	263		2 ARG		38.352				AAAA
ATCM	264	С	ARG	A 33	30.332	. ,,,,,,,,	•		•

220/263Figure 19-5

				•	1 iguic 12	•			
:2 EOM	265	0	ARG A	33	38.713	53.390	56.592	1.00 33.61	AAAA
MOTA MOTA	266	Ŋ	PHE A	34	37.247	51.682	56.562	1.00 33.78	AAAA
MOTA	267	CA	PHE A	34	36.292	52.233	57.517	1.00 33.79	AAAA
ATOM	268	CB	PHE A	34	35.065	51.310	57.573	1.00 33.88	AAAA
ATOM	269	CG	PHE A	34	33.925	51.840	58.405	1.00 33.16	AAAA
MOTA	270		PHE A	34	33.108	52.856	57.925	1.00 32.77	AAAA
ATOM	271		PHE A	34	33.668	51.315	59.672	1.00 33.05	AAAA
ATOM	272		PHE A	34	32.044	53.343	58.695	1.00 32.86	AAAA
ATOM	273	CE2		34	32.607	51.797	60.454	1.00 33.07	AAAA
ATOM	274	CZ	PHE A	34	31.794	52.809	59.966	1.00 32.58	AAAA
ATOM	275	C	PHE A	34	36.881	52.414	58.918	1.00 34.01	AAAA
ATOM	276	O	PHE A	34	. 36.903	53.524	59.455	1.00 33.49	AAAA
ATOM	277	N	LYS A	35	37.350	51.324	59.516	1.00 34.00	AAAA
ATOM	278	CA	LYS A	35	37.928	51.401	60.843	1.00 33.90	AAAA
MOTA	279	CB	LYS A	35	38.230	50.010	61.362	1.00 34.07	AAAA
ATOM	280	CG	LYS A	35	37.000	49.190	61.662	1.00 33.94	AAAA AAAA
ATOM	281	CD	LYS A	35	37.414	47.810	62.106	1.00 35.31 1.00 35.91	AAAA
ATOM	282	CE	LYS A	35	38.062	47.072	60.948	1.00 35.91	AAAA
ATOM	283	NZ	LYS A	35	39.058	47.928	60.236	1.00 36.19	AAAA
MOTA	284	С	LYS A	35	39.185	52.255	60.881 61.929	1.00 34.19	AAAA
MOTA	285	0	LYS A	35	39.554	52.775	59.745	1.00 33.99	AAAA
MOTA	286	N	ASP A	36	39.853	52.384 53.216	59.680	1.00 35.17	AAAA
MOTA	287	CA	ASP A	36	41.034	52.943	58.388	1.00 37.40	AAAA
MOTA	288	CB	ASP A	36	41.812	53.908	58.186	1.00 38.64	AAAA
ATOM	289	CG	ASP A	36	42.964 43.648	54.218	59.184	1.00 40.02	AAAA
MOTA	290		ASP A	36	43.201	54.341	57.035	1.00 38.74	AAAA
MOTA	291		ASP A	36	. 40.568	54.670	59.724	1.00 35.85	AAAA
MOTA	292	C	ASP A	36 36	41.231	55.527	60.306	1.00 36.88	AAAA
MOTA	293	0	ASP A ALA A	37	39.420	54.940	59.111	1.00 34.96	AAAA
ATOM-	294	N CA	ALA A	37	38.851	56.280	59.108	1.00 34.47	AAAA
MOTA	295 296	CB	ALA A	37	37.751	56.373	58.067	1.00 33.80	AAAA
ATOM	297	C	ALA A	37	38.291	56.617	60.499	1.00 34.66	AAAA
MOTA MOTA	298	Ö	ALA A	37	38.268	57.779	60.899	1.00 34.55	AAAA
MOTA	299	N	MET A	3.8	37.830	55.600	61.226	1.00 34.24	AAAA
ATOM	300	CA	MET A	38	37.287	55.794	62.572	1.00 33.07	AAAA
ATOM	301	CB	MET A	38	36.289	54.687	62.917	1.00 32.82	AAAA
ATOM	302	CG	MET A	38	35.084	54.559	61.996	1.00 32.72	AAAA
ATOM	303	SD	MET A	38	33.980	55.948	62.101	1.00 33.65	AAAA AAAA
ATOM	304	CE	MET A	38	33.550	55.878	63.849	1.00 33.77 1.00 33.12	AAAA
ATOM	305	С	MET A	38	38.430	55.724	63.583	1.00 33.12	AAAA
ATOM	306	0	MET A	38	38.226	55.930	64.777	1.00 32.64	AAAA
MOTA	307	N	asn a	39	39.628	55.428	63.090 63.935	1.00 32.38	AAAA
ATOM	308	CA	ASN A		40.805	55.266 56.600	64.589	1.00 32.93	AAAA
ATOM	309	CB	ASN A		41.200	57.736	63.571	1.00 34.40	AAAA
MOTA	310	CG	ASN A	39	41.393 42.180	57.624	62.630	1.00 34.98	AAAA
MOTA	311		L ASN A	39	40.677	58.838	63.772	1.00 33.52	AAAA
MOTA	312		ASN A	39	40.483	54.212	65.009	1.00 31.69	AAAA
ATOM	313	C	ASN A		40.565	54.490	66.205	1.00 31.12	AAAA
ATOM	314	0	ASN A		40.095	53.010	64.570		AAAA
ATOM	315	N	LEU A		39.750	51.898	65.474	1.00 32.48	AAAA
MOTA	316	CA CB	LEU A		38.259	51.559	65.386	1.00 32.55	AAAA
ATOM	317	CG	LEU A		37.231	52.581		1.00 32.84	AAAA
MOTA	.318		l LEU A		35.837	52.089	65.554	1.00 33.79	AAAA
ATOM	319		LEU A		37.372	52.798	67.376	1.00 32.45	AAAA
MOTA	320 321	CD.	LEU A		40.555	50.628	65.187	1.00 32.92	AAAA
ATOM	322	0	LEU A		40.196	49.530	65.618	1.00 31.64	AAAA
MOTA	323	Ŋ	ILE A		41.652	50.794	64.464	1.00 34.12	AAAA
ATOM ATOM	324		ILE A		42.508	49.680	64.116	1.00 36.07	AAAA
ATOM ATOM	325		ILE A		42.017	48.991	62.811	1.00 35.51	AAAA
ATOM	326		2 ILE A		42.070	49.952	61.636	1.00 33.37	AAAA
ATOM	327		l ILE A		42.898	47.790	62.480	1.00 35.97	AAAA
ATOM	328		1 ILE A		42.854	46.701		1.00 37.19	AAAA AAA A
ATOM	329		ILE A		43.921	50.226		1.00 38.85	AAAA
ATOM	330		ILE A			51.346	63.413	1.00 38.98	WWW
							=		•

					0				
		.,	ASP A	42	44.914	49.446	64.329	1.00 40.61	AAAA
ATOM				42		49.843	64.181	1.00 42.57	AAAA
MOTA			ASP A		46.973	50.021	65.553	1.00 42.42	AAAA
ATOM			ASP A	42	46.316	51.110	66.381	1.00 42.27	AAAA
MOTA			ASP A	42		52.250	65.883	1.00 41.20	AAAA
ATOM	335		ASP A	42	46.227		67.526	1.00 43.36	AAAA
_MOTA	336	OD2	ASP A	42	45.891	50.833		1.00 44.05	AAAA
ATOM	337	С	ASP A	42	47.011	48.752	63.392		AAAA
ATOM	-	0	ASP A	42	46.525	47.620	63.333	1.00 44.88	
ATOM		N	GLU A	. 43	48.147	49.090	62.789	1.00 45.10	AAAA
ATOM			GLU A	43	48.905	48.141	61.980	1.00 46.11	AAAA
			GLU A	43	50.172	48.796	61.454	1.00 46.89	AAAA
MOTA		CG	GLU A		49.924	50.057	60.668	1.00 49.30	AAAA
ATOM			GLU A	43	51.187	50.580	60.028	1.00 49.67	AAAA
ATOM		CD	GLU A		51.760	49.839	59.201	1.00 50.60	AAAA
MOTA	_				51.601	51.714	60.349	1.00 49.60	AAAA
. ATOM			GLU A		49.290	46.859	62.701	1.00 46.27	- AAAA
MOTA	346	C	GLU A		49.214	45.773	62.131	1.00 46.00	AAAA
MOTA	347	0	GLU A		49.708	46.986	63.954	1.00 46.52	AAAA
ATOM	348	N	LYS A			45.832	64.730	1.00 46.31	AAAA
MOTA	349	CA	LYS A		50.135		66.048	1.00 48.16	AAAA
MOTA	350	CB	LYS A		50.762	46.306 47.215	65.799	1.00 51.59	AAAA
ATOM	351	CG	LYS A	44	51.977			1.00 52.87	AAAA
ATOM	352	CD	LYS A	44	52.641	47.734	67.071	1.00 53.34	AAAA
ATOM	353	CE	LYS A	44	53.851	48.601	66.727	1.00 53.34	AAAA
ATOM	354	NZ	LYS A	44	54.615	49.033	67.936		AAAA
ATOM	355	С	LYS A		49.029	44.828	64.996	1.00 44.74	AAAA
ATOM	356	ō	LYS A		49.296	43.735	65.480	1.00 45.35	
ATOM	357	N	GLU A	_	47.793	45.190	64.659	1.00 42.49	AAAA
	358	CA	GLU A		46.638	44.320	64.894	1.00 40.54	AAAA
ATOM	359	CB	GLU A		45.493	45.125	65.517	1.00 40.55	AAAA
ATOM			GLU A		45.788	45.731	66.882	1.00 38.87	AAAA
ATOM	360	CG	GLU A		44.663		67.360	1.00 37.57	AAAA
MOTA	361	CD			44.383	47.631	66.693	1.00 36.29	AAAA
ATOM	362	OE1			44.056	46.300	68.399	1.00 38.44	AAAA
MOTA	363	OE2			46.126	43.648	63.630	1.00 39.15	AAAA
ATOM	364	С	GLU A		45.301	42.737	63.681	1.00 39.29	AAAA
ATOM	365	0	GLU A			44.115	62.497	1.00 37.62	AAAA
MOTA	366	N	LEU A		46.619		61.211	1.00 35.88	AAAA
MOTA	367	CA	LEU A		46.219	43.589	60.229	1.00 36.09	AAAA
MOTA	368	CB	LEU A		46.125	44.750		1.00 36.50	AAAA
ATOM	369	CG	LEU A		45.608	44.550	.58.817	1.00 36.66	AAAA
ATOM	370	CD1	LEU A	46	44.182	44.021	58.843	1.00 35.85	AAAA
ATOM	371	CD2	LEU A	46	45.646	45.893	58.113	1.00 34.97	AAAA
ATOM	372	С	LEU A	46	47.211	42.542	60.714		AAAA
ATOM	373	Ō	LEU A		48.424	42.670	60.900	1.00 35.72	AAAA
ATOM	374	N	ILE A	A 47	46.680	41.484	60.118	1.00 33.25	
	375	CA	ILE		47.497	40.411	59.560	1.00 30.92	AAAA
ATOM	376	CB	ILE	_	47.144	39.024	60.167	1.00 31.22	AAAA
ATOM	377		ILE		48.093	37.97¢			AAAA
ATOM			ILE		47.220	39.063	61.694	1.00 32.04	AAAA
ATOM	378		ILE		48.596	39.241	62.242	1.00 34.13	AAAA
ATOM	379				47.138	40.381		1.00 29.70	AAAA
ATOM	380	C	ILE .		45.956	40.373			AAAA
MOTA	381	0	ILE .		48.150	40.380			AAAA
ATOM	382	N	LYS .			40.349			AAAA
ATOM	383	CA	LYS .		47.920	40.727			AAAA
ATOM	384	CB	LYS .		49.203				AAAA
MOTA	385	CG	LYS		49.116	40.695			AAAA
MOTA	386	CD	LYS	A 48	50.464	41.104			AAAA
ATOM	387	CE	LYS		50.493	40.893			AAAA
ATOM	388	NZ	LYS		49.409	41.645		1.00 29.68	AAAA
	389	c	LYS		47.449				
ATOM		o	LYS		48.024	37.938			AAAA
ATOM	390		SER	_	46.385	38.892			AAAA
ATOM	391	N	SER		45.854			1.00 26.41	AAAA
ATOM	392	CA			44.514		53.420	1.00 25.40	AAAA
ATOM	393	CB	SER		43.541			1.00 25.58	AAAA
ATOM	394	OG		A . 49	46.814			1.00 26.03	AAAA
MOTA	395	C	SER						AAAA
ATOM	396	0	SER	A 49	47.462	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		•
•									

222/263

					1.8				
ATOM	397	N	ARG A	50	46.910	35.576	53.354	1.00 25.51	AAAA
MOTA	398		ARG A	50	47.755	34.794	52.474	1.00 25.45	AAAA
ATOM	399	CB	ARG A	50	48.807	33.985	53.252	1.00 25.85	AAAA
ATOM	400	CG	ARG A	50	48.229	32.819	54.009	1.00 27.16	AAAA AAAA
ATOM	401	CD	ARG A	50	49.280	31.995	54.720	1.00 27.57	AAAA
ATOM	402	NE	ARG A	50	48.673	30.896	55.482	1.00 27.90 1.00 28.34	AAAA
MOTA	403	CZ	ARG A	50	48.106	29.820	54.946 53.630	1.00 28.34	AAAA
ATOM	404		ARG A	50	48.055	29.672 28.884	55.735	1.00 28.62	AAAA
ATOM	405		ARG A	50	47.592 46.806	33.834	51.762	1.00 24.91	AAAA
MOTA	406	C	ARG A	50 50	45.740	33.510	52.283	1.00 23.57	AAAA
ATOM	407	0	ARG A PRO A	51	47.172	33.392	50.549	1.00 24.28	AAAA
ATOM	408 409	И CD	PRO A	51	48.361	33.761	49.770	1.00 24.13	AAAA
ATOM ATOM	410	CA	PRO A	51	46.355	32.462	49.776	1.00 24.18	AAAA
ATOM	411	CB	PRO A	51	47.012	32.512	48.390	1.00 24.24	AAAA
ATOM	412	CG	PRO A	51	47.766	33.862	48.405	1.00 24.11	AAAA
ATOM	413	С	PRO A	51	46.473	31.070	50.393	1.00 23.69	AAAA AAAA
ATOM	414	0	PRO A	51	47.545	30.680	50.839 50.422	1.00 24.13 1.00 23.36	AAAA
ATOM	415	N	ALA A	52	45.381	30.325 28.972	50.952	1.00 23.64	AAAA
MOTA	416	CA	ALA A	52	45.419 44.012	28.405	51.029	1.00 23.86	AAAA
ATOM	417	CB	ALA A	52 52	46.260	28.145	49.994	1.00 23.58	AAAA
ATOM	418 419	С 0	ALA A	52	46.240	28.383	48.806	1.00 24.52	AAAA
ATOM	419	N	THR A	53	47.009	27.185	50.501	1.00 24.41	AAAA
ATOM ATOM	421	CA	THR A	53	47.815	26.352	49.628	1.00 26.26	AAAA
ATOM	422	CB	THR A	5 3	48.933	25.642	50.405	1.00 26.37	AAAA
ATOM	423	OG1	THR A	53	48.355	24.763	51.375	1.00 26.51	AAAA AAAA
ATOM	424	CG2	THR A	53	49.810	26.648	51.106	1.00 24.48 1.00 27.63	AAAA
MOTA	425	C	THR A	53	46.889	25.299	49.034 49.620	1.00 27.03	AAAA
ATOM	426	0	THR A	53	45.870 47.240	24.982 24.776	47.867	1.00 29.31	AAAA
MOTA	427	N	LYS A	54 54	46.450	23.752	47.189	1.00 30.61	AAAA
ATOM	428	CA CB	LYS A	54	47.249	23.182	46.015	1.00 31.68	AAAA
ATOM	429 430	CG	LYS A	54		22.020	45.304	1.00 34.38	AAAA
ATOM ATOM	431	CD	LYS A	54	45.449	22.464	44.417	1.00 36.00	AAAA
ATOM	432	CE	LYS A	54	45.943	22.850	43.025	1.00 37.55	AAAA
ATOM	433	NZ	LYS A	54	46.425	21.664	42.236	1.00 37.57	AAAA AAAA
ATOM	434	С	LYS A	54	46.127	22.640	48.170	1.00 31.26 1.00 31.72	AAAA
ATOM	435	0	LYS A	54	45.025	22.097	48.176 49.006	1.00 31.72	AAAA
MOTA	436	N	GLU A	55	47.102 46.961	22.312 21.260	50.011	1.00 32.29	AAAA
ATOM	437	CA	GLU A	55 55	48.266	21.089	50.778	1.00 34.43	AAAA
ATOM	438 439	CB CG	GLU A	55	48.265	19.901	51.706	1.00 38.39	AAAA
MOTA	440	CD	GLU A	55	49.513	19.839	52.584	1.00 41.46	AAAA
MOTA MOTA	441		GLU A	55	49.745	18.770	53.200	1.00 43.30	AAAA
MOTA	442		GLU A	55	50.245	20.859	52.672	1.00 42.45	AAAA AAAA
ATOM	443	C	GLU A	5 5	45.851	21.555	51.013	1.00 30.43 1.00 30.59	AAAA
MOTA	444	0	GLU A	55	45.048	20.681	51.332 51.517	1.00 30.33	AAAA
MOTA	445	N	GLU A	56	45.822	22.782 23.164	52.488	1.00 27.69	AAAA
ATOM	446	CA	GLU A	56	44.812 45.078	24.588	52.989	1.00 27.90	AAAA
ATOM	147	CB	GLU A	56 56	46.434	24.721	53.670	1.00 26.64	AAAA
ATOM	448 449	CG CD	GLU A GLU A	56	46.769	26.135	54.098	1.00 26.35	AAAA
MOTA	449		GLU A	56	46.615	27.057	53.265	1.00 25.12	AAAA
ATOM ATOM	451		GLU A	56	47.213	26.315	55.255	1.00 25.70	AAAA
ATOM	452	C	GLU A	56	43.408	23.043	51.914	1.00 26.99	AAAA
ATOM	453	0	GLU A	56	42.495	22.574	52.588	1.00 26.25	AAAA AAAA
MOTA	454	N	LEU A	57	43.252	23.447	50.659	1.00 27.26 1.00 27.17	AAAA
ATOM	455	CA	LEU A	57	41.965	23.389	49.967	1.00 27.17	AAAA
ATOM	456	CB	LEU A	57	42.077	24.063 25.545	48.596 48.656	1.00 27.64	AAAA
ATOM	457	CG	LEU A	57	42.491	25.545	47.269	1.00 26.66	AAAA
ATOM	458		LEU A	57 57	42.770 41.389			1.00 26.92	AAAA
ATOM	159		LEU A	57 57	41.552	21.946		1.00 27.26	AAAA
ATOM	460 461	0	LEU A	57	40.363	21.612		1.00 27.53	AAAA
ATOM	461 462	N	LEU A	58	42.547	21.085		1.00 27.42	AAAA
ATOM	302	41	-20 A				•		•

imose	463	CA LEU A	58	42.293	19.675	49.457	1.00 26.10	AAAA
ATOM	463 464		58	43.486	19.019	48.794	1.00 25.43	AAAA
ATOM	465		58	43.623	19.577	47.385	1.00 26.66	AAAA
MOTA	465		58	44.760	18.884	46.705	1.00 27.12	AAAA
ATOM			58	42.334	19.355	46.600	1.00 26.43	AAAA
MOTA	467		58	41.938	18.956	50.731	1.00 25.79	AAAA
ATOM	468		58	41.648	17.763	50.692	1.00 26.50	AAAA
ATOM	469	•	59	41.977	19.666	51.858	1.00 24.91	AAAA
MOTA	470		59	41.595	19.070	53.136	1.00 25.15	AAAA
MOTA	471	CA LEU A	59	41.958	19.991	54.322	1.00 25.44	AAAA
ATOM	472	CB LEU A	59	43.423	20.280	54.710	1.00 24.67	AAAA
MOTA	473	CG LEU A	59	43.502	21.461	55.652	1.00 23.70	AAAA
MOTA	474		59	44.044	19.044	55.357	1.00 24.08	AAAA
MOTA	475	CD2 LEU A	59	40.074	18.870	53.090	1.00 25.41	AAAA
ATOM	476	C LEU A	59	39.503	18.266	53.993	1.00 25.88	AAAA
ATOM	477	O LEU A	60	39.436	19.392	52.031	1.00 25.05	AAAA
ATOM	478	N PHE A	60	37.983	19.276	51.823	1.00 24.11	AAAA
MOTA	479	CA PHE A	60	37.250	20.476	52.440	1.00 21.80	AAAA
MOTA	480	CB PHE A		35.778	20.534	52.098	1.00 20.07	AAAA
MOTA	481	CG PHE A	60	34.917	19.501	52.462	1.00 19.27	AAAA
MOTA	482	CD1 PHE A	60	35.249	21.628	51.399	1.00 19.82	AAAA
MOTA	483	CD2 PHE A	60	33.550	19.557	52.136	1.00 19.26	AAAA
MOTA	484	CE1 PHE A	60	33.890	21.688	51.071	1.30 17.45	AAAA
MOTA	485	CE2 PHE A	60	33.042	20.652	51.440	1.00 17.92	AAAA
ATOM	486	CZ PHE A	60	37.557	19.139	50.345	1.00 24.02	AAAA
MOTA	487	C PHE A	60	36.846	18.201	49.974	1.00 23.27	AAAA
ATOM	488	O PHE A	60	37.982	20.079	49.511	1.00 24.40	AAAA
MOTA	489	N HIS A	61	37.526	20.073	48.099	1.00 25.04	AAAA
ATOM	490	CA HIS A	61	37.768	21.449	47.494	1.00 24.19	AAAA
. ATOM	491	CB HIS A	61	36.744	22.429	47.979	1.00 24.44	AAAA
ATOM	492	CG HIS A	61		22.559	47.683	1.00 24.12	AAAA
ATOM	493	CD2 HIS A	61	35.429 37.038	23.444	48.864	1.00 24.36	AAAA
ATOM	494	ND1 HIS A	61	35.952	24.159		1.00 23.18	AAAA
ATOM	495	CE1 HIS A	61		23.643	48.385	1.00 23.91	AAAA
MOTA	496	NE2 HIS A	61	34.962	19.054	47.253	1.00 25.60	AAAA
MOTA	497	C HIS A	61	38.416	18.805	47.498	1.00 26.94	AAAA
MOTA	498	O HIS A	61	39.596 3 7 .754	18.496	46.244	1.00 26.68	AAAA
ATOM	499	N THR A	62		17.522	45.333	1.00 28.17	AAAA
MOTA	500	CA THR A	62	38.369 37.290	16.695	44.614	1.00 28.15	AAAA
ATOM	501	CB THR A	62	36.544	17.541	43.731	1.00 28.10	AAAA
MOTA	502	OG1 THR A	62	36.334	16.094	45.629	1.00 28.24	AAAA
MOTA	503	CG2 THR A	62	39.226	18.217	44.278	1.00 29.28	AAAA
MOTA	504	C THR A	62	38.876	19.286	43.792	1.00 29.52	AAAA
ATOM	505	O THR A	62	40.344	17.606	43.912	1.00 31.33	AAAA
MOTA	506	N GLU A	63	41.249	18.202	42.928	1.00 32.42	AAAA
MOTA	507	CA GLU A	63	42.333	17.219	42.536	1 00 34.37	AAAA
MOTA	508	CB GLU A	63	43.304	16.869	43.609	1 00 37.20	AAAA
MOTA	509	CG GLU A	63	44.427	16.022	43.052	1 00 38.79	AAAA
MOTA	510	CD GLU A	63	45.100	16.499		1.00 37.96	AAAA
MOTA	511	OE1 GLU A	63	44.619	14.892	43.564	1.00 39.68	AAAA
MOTA	512	OE2 GLU A	63	40.607	18.687	41.639		AAAA
MOTA	513	C GLU A	63	40.824	19.816		1.00 32.10	AAAA
ATOM	514	O GLU A	63	39.845	17.814		1.00 31.52	AAAA
ATOM	515	N ASP A	64	39.204	18.165		1.00 31.36	AAAA
MOTA	516	CA ASP A	64	38.301	17.018			AAAA
MOTA	517	CB ASP A	64	30.301	16.694		1.00 37.38	AAAA
ATOM	518	CG ASP A	64		15.801			AAAA
ATOM	519	OD1 ASP A	64	36.375	17.332			AAAA
ATOM	520	OD2 ASP A	64	37.188	19.465			AAAA
MOTA	521	C ASP A	64	38.412				AAAA
ATOM	522	A PZA C	64	38.462	20.331			AAAA
ATOM	523	N TYR A	65	37.695	19.608			AAAA
ATCM	524		65	36.918	20.814			AAAA
ATOM	525	CB TYR A	65	36.010				AAAA
ATOM	526		65	35.339				AAAA
ATOM	527	CD1 TYR A	65	34.525	22.636			AAAA
ATOM	528		65	33.914	23.823	, 42.300	1.00 -0.01	

224/263

					_				
				c =	35.525	22.486	44.136	1.00 24.65	AAAA
MOTA		_	ryr A	65	34.920	23.677	44.497	1.00 25.86	AAAA
ATOM	530	_	ryr A	65			43.576	1.00 26.69	AAAA
MOTA	531	CZ 7	ryr a	65	34.110	24.349		1.00 27.20	AAAA
MOTA	532	OH :	ryr A	65	33,499	25.543	43.924		
			TYR A	65	37.814	22.022	41.464	1.00 24.91	AAAA
ATOM			TYR A	65	37.460	23.129	41.096	1.00 25.62	AAAA
MOTA					38.965	21.812	42.080	1.00 23.20	AAAA
ATOM		-	ILE A	56		22.902	42.328	1.00 22.33	AAAA
ATOM	536	CA :	ILE A	56	39.877		43.402	1.00 21.45	AAAA
MOTA	537	CB :	ILE A	66	40.924	22.520			AAAA
ATOM		CG2	ILE A	56	41.927	23.652	43.617	1.00 20.00	AAAA
			ILE A	66	40.220	22.289	44.729	1.00 20.16	
MOTA			ILE A	56	39.528	23.523	45.228	1.00 19.68	, AAAA
MOTA					40.558	23.261	41.023	1.00 22.68	AAAA
MOTA			ILE A	66	40.636	24.425	40.665	1.00 23.19	AAAA
MOTA	542		ILE A	66		22.262	40.295	1.00 22.96	AAAA
ATOM	543	N .	ASN A	67	41.036		39.029	1.00 23.92	AAAA
ATOM	544	CA .	ASN A	67	41.698	22.545		1.00 24.24	AAAA
ATOM	545	CB .	ASN A	67	42.292	21.261	38.395		AAAA
	546		ASN A	67	43.344	20.588	39.289	1.00 23.38	
MOTA			ASN A	67	44.196	21.256	39.859	1.00 23.47	AAAA
MOTA	547			67	43.290	19.258	39.392	1.00 23.20	AAAA
ATOM	548		ASN A		40.717	23.216	38.063	1.00 23.82	AAAA
ATOM	549	_	ASN A	67		23.996	37.204	1.00 24.63	AAAA
ATOM	550	0	ASN A	67	41.123		38.213	1.00 24.08	AAAA
ATOM	551	N	THR A	68	39.427	22.928		1.00 25.28	AAAA
MOTA	552	CA	THR A	68	38.428	23.534	37.343		AAAA
	553		THR A	58	37.030	22.904	37.525	1.00 24.55	
ATOM			THR A	68	37.090	21.500	37.258	1.00 24.64	AAAA
MOTA	554			58	36.049	23.534	36.564	1.00 23.58	AAAA
MOTA	555		THR A		38.322	25.023	37.664	1.00 26.31	AAAA
MOTA	556	С	THR A	68		25.854	36.771	1.00 26.69	AAAA
ATOM	557	0	THR A	68	38.114		38.945	1.00 26.59	KAAA
MOTA	558	N	LEU A	69	38.462	25.351		1.00 27.05	AAAA
ATOM	559	CA	LEU A	59	38.381	26.729	39.378		AAAA
MOTA	560		LEU A		38.321	26.807	40.904	1.00 27.15	
	561		LEU A		37.003	26.397	41.551	1.00 25.68	AAAA
ATOM			LEU A	69	37.088	26.491	43.062	1.00 26.30	AAAA
MOTA	562				35.933	27.316	41.044	1.00 26.14	AAAA
ATOM	563		LEU A		39.570	27.508	38.867	1.00 28.44	AAAA
ATOM	564	С	LEU A			28.619	38.356	1.00 28.59	AAAA
MOTA	565	0	LEU Y		39.425		39.009	1.00 29.31	AAAA
MOTA	566	N	MET A	. 70	40.748	26.914		1.00 29.89	AAAA
ATOM	567	CA	MET A	. 70	41.981	27.536	38.571	1.00 31.04	AAAA
MOTA	568	CB	MET A	70	43.160	26.692	39.044	1.00 31.04	AAAA
	569	ĊĠ	MET A		43.164	26.528	40.562	1.00 31.79	
ATOM		SD	MET A		44.608	25.684	41.183	1.00 32.58	AAAA
MOTA	570				45.859	26.820	40.670	1.00 30.82	AAAA
ATOM	571	CE	MET A		42.017	27.723	37.057	1.00 30.36	AAAA
MOTA	572	С	MET ?			28.769	36.559	1.00 30.18	AAAA
MOTA	573	0	MET 2		42.462		36.328	1.00 30.34	AAAA
MOTA	574	- N	GLU 3	71	41.538	26.719		1.00 30.73	AAAA
ATOM	575	CA	GLU A	71	41.519	26.795	34.874		AAAA
	576	CB	GLU A		41.140	25.442	34.266	1.00 33.47	
ATOM	577	CG	GLU A		41.122	25.430	32.731	1.00 37.11	AAAA
ATOM					42.513	25.676	32.093	1.00 40.49	AAAA
ATOM	578	CD	GLU A		42.570	25.798	30.844	1.00 41.95	AAAA
MOTA	579		GLU A			25.738			AAAA
ATOM	580	OE2	GLU ?		43.541				AAAA
ATOM	581	С	GLU A		40.537	27.851			AAAA
MOTA	582	0	GLU 2	71	40.852	28.642			AAAA
	583	N	ALA A		39.352	27.855			
MOTA	584	CA	ALA A	-	38.296	28.790	34.635	1.00 29.88	AAAA
MOTA				-	37.022	28.432	35.374	1.00 29.07	AAAA
MOTA	585	СВ	ALA :		38.667			1.00 30.78	АААА
ATOM	586	C	ALA A						AAAA
MOTA	587	O	ALA A		38.359				AAAA
ATOM	588	N	GLU :	A 73	39.336				AAAA
ATOM	589	CA	GLU :		39.710				AAAA
	590	CB	GLU		40.243				
ATOM			GLU		40.643		38.198		AAAA
ATOM	591	CG			41.076			1.00 28.77	AAAA
ATOM	592	CD	GLU .		40.239			1.00 28.94	AAAA
ATOM	593	OEI	GLU .	A 73					AAAA
ATOM	594	OE2	GLU	A 73	42.258	. 33.133	,		•
						•			

225/263 Figure 19-10

•					1.	iguie 17					
	505	_	GLU A	. 73		40.726	32.461	35.378	1.00 33.54	AA	
ATOM	595 506	-	GLU A			40.456	33.499	34.767	1.00 34.93	AA	
ATOM	596	Ŋ	ARG A			41.885	31.832	35.214	1.00 34.35	AA.	
MOTA	597 598	CA	ARG A	-		42.890	32.428	34.334	1.00 36.04		AA
ATOM	599	CB	ARG A			44.238	31.710	34.482	1.00 36.92	AA	
ATOM	600	CG	ARG A			44.327	30.313	33.923	1.00 38.14		AA
ATOM-	601	CD	ARG A			45.508	29.589	34.543	1.00 39.55		AA.
MOTA	602	NE	ARG A	-		45.893	28.404	33.785	1.00 42.02		AA
ATOM	603	CZ	ARG A	-		46.632	28.436	32, 675	1.00 42.69		AA ·
MOTA	604		ARG A			47.071	29.593	32.191	1.00 42.76		AA
MOTA MOTA	605		ARG A			46.933	27.309	32.046	1.00 42.92		AA
ATOM	606	C	ARG A			42.476	32.532	32.864	1.00 36.56		AA
ATOM	607	Ö	ARG A		-	42.842	33.493	32.187	1.00 37.73		AA
ATOM	608	N	SER A			41.711	31.567	32.367	1.00 36.60		AAA
ATOM	609	CA	SER A			41.248	31.622	30.987	1.00 36.82	AA - AA	AAA
ATOM	610	CB	SER A	A 75		40.916	30.218	30.478	1.00 36.10 1.00 36.39		AA.
ATOM	611	OG	SER A			39.736	29.723	31.083	1.00 36.39		LAA
ATOM	612	С	SER A			39.980	32.476	31.001	1.00 36.25		AAA
ATOM	613	. 0	SER A			39.401	32.791	29.963	1.00 37.62		AA.
ATOM	614	N	GLN A			39.568	32.845	32.208 32.427	1.00 37.02		AAA
ATOM	615	CA	GLN A			38.368	33.639	32.049	1.00 37.32		AAA
ATOM	616	CB	GLN A			38.613	35.100	32.717	1.00 40.67		AAA
MOTA	617	CG	GLN A			37.630	36.048 36.298	34.199	1.00 41.40		AAA
ATOM	618	CD	GLN A			37.929	35.379	34.973	1.00 40.79		AAA
MOTA	619		GLN A			38.226 37.833	37.556	34.597	1.00 42.32		AAA
MOTA	620	NE2				37.223	33.064	31.600	1.00 37.75		AAA
ATOM	621	C	GLN A			36.521	33.789	30.901	1.00 38.13		AAA
ATOM	622	0	GLN .		•	37.045	31.749	31.685	1.00 37.52	A	AAA
MOTA	623	N	SER			35.990	31.061	30.950	1.00 37.75	A.	AAA
ATOM	624	CA	SER .			36.537	30.440	29.664	1.00 37.90		AAA
MOTA	625	CB	SER .			36.851	31.441	28.724	1.00 40.32		AAA
MOTA	626 627	C OĠ	SER			35.338	29.960	31.757	1.00 37.55		AAA
ATOM	628	0	SER			35.790	29.620	32.846	1.00 36.81		AAA
MOTA	629	N.	VAL			34.264	29.412	31.198			AAA
ATOM ATOM	630	CA	VAL			33.538	28.309	31.812	1.00 37.99		AAA
ATOM	631	CB	VAL			32.027	28.514	31.715	1.00 37.19		AAA
ATOM	632		VAL	A 78		31.310	27.439	32.497	1.00 36.84		AAA AAA
ATOM	633		VAL			31.662	29.906	32.201	1.00 37.60 1.00 38.28		AAA
MOTA	634	С	VAL	A 78		33.918	27.089	30.976	1.00 38.28		AAA
ATOM	635	0	VAL			33.497	26.959	29.819	1.00 37.69		AAA
ATOM	636	N	PRO			34.734	26.187	31.537 32.869	1.00 37.65		AAA
ATOM	637	CD	PRO			35.347	26.167	30.797	1.00 37.53		AAA
ATOM	638	CA	PRO			35.146	24.998 24.325	31.759	1.00 37.45		AAA
ATOM	639	CB	PRO			36.127	25.489	32.557	1.00 37.65	· A	AAA
ATOM	640	CG	PRO			36.655 33.980	24.089	30.434	1.00 37.20		AAA
ATOM	641	, C	PRO			32.958	24.050	31.120	1.00 36.43	Α	AAA
MOTA	642	0	PRO			34.154	23.363	29.338	1.00 37.42	A	AAA
ATOM	643	N	LYS			33.160	22.423	28.855	1.00 37.35	A	AAA
ATOM	644	CA	LYS			33.757	21.586	27.725	1.00 37.99		AAA
ATOM	645	CB	LYS LYS			32.928	20.379	27.280	1.00 38.94		AAA
ATOM	646 647	CD	LYS			31.835	20.710		1.00 39.07		AAA
ATOM	.648	CE	LYS			31.320	19.402		1.00 40.43		AAAA
ATOM	649	NZ	LYS			30.498	19.543	24.450	1.00 40.48		AAA
ATOM	650	C	LYS			32.752	21.515		1.00 36.85		AAA
ATOM	651	ō	LYS			33.610	20.942				AAA
ATOM	652		GLY			31.443					AAAA
MOTA	653	CA	GLY			30.903	20.570			_	AAAA
atom atom	-654	C	GLY			31.110	21.054				AAAA
ATOM	655		GLY			30.749		33.644			AAAA AAAA
ATOM	656		ALA			31.677			1.00 35.17		AAAA
ATOM	657		ALA			31.919		34.213			aaaa Aaaa
ATOM	658		ALA		2	33.076					AAAA
ATOM	659		ALA			30.674					AAAA
ATOM	660		ALA	A 8	2	30.451	. 23.332	36.001	. 1.00 33.02	•	•

	661	N	ARG A	83	29.858	23.960	33.932	1.00 34.77	AAAA
MOTA	661		ARG A	83	28.637	24.613	34.361	1.00 35.34	AAAA
MOTA	662	CA				25.180	33.150	1.00 36.26	AAAA
ATOM	663	CB	ARG A	83	27.899		33.464	1.00 37.09	AAAA
ATOM	664	CG	ARG A	83	27.045	26.395			AAAA
ATOM	665	CD	ARG A	83	26.209	26.141	34.686	1.00 37.48	
ATOM	666	NE	ARG A	83	25.475	27.310	35.134	1.00 37.35	AAAA
MOTA	667	CZ	ARG A	83	24.711	27.311	36.218	1.00 37.77	AAAA
	668		ARG A	83	24.606	26.204	36.940	1.00 37.29	AAAA
ATOM			ARG A	83	24.040	28.401	36.568	1.00 38.34	AAAA
MOTA	669				27.739	23.603	35.065	1.00 36.30	AAAA
MOTA	670	С	ARG A	83		23.854	36.154	1.00 36.17	AAAA
ATOM	671	0	ARG A	83	27.232		34.431	1.00 37.19	AAAA
ATOM	672	N	GLU A	84	27.565	22.450		1.00 37.13	AAAA
ATOM	673	CA	GLU A	84	26.721	21.382	34.948		
ATOM	674	CB	GLU A	84	26.466	20.375	33.833	1.00 40.55	AAAA
ATOM	675	CG	GLU A	84	25.643	. 19.171	34.232	1.00 43.12	AAAA
ATOM	676	CD	GLU A	84	25.362	18.268	33.046	1.00 44.98	AAAA
	677		GLU A	84	24.573	17.301	33.195	1.00 46.36	AAAA
ATOM			GLU A	84	25.937	18.532	31.962	1.00 44.94	AAAA
ATOM	678		GLU A	84	27,290	20.657	36.158	1.00 37.07	AAAA
MOTA	679	С			26.642	20.555	37.199	1.00 36.17	AAAA
ATOM	680	0	GLU A	84	28.506	20.152	35.999	1.00 36.23	AAAA
MOTA	681	N	LYS A	85	_	19.412	37.043	1.00 35.36	AAAA
MOTA	682	CA	LYS A	85	29.202			1.00 36.96	AAAA
ATOM	683	CB	LYS A	85	30.449	18.761	36.437	1.00 30.90	AAAA
ATOM	584	CG	LYS A	85	31.394	18.158	37.465		
ATOM	685	CD	LYS A	85	30.995	16.766	37.919	1.00 40.59	AAAA
ATOM	686	CE	LYS A	85	31.508	15.719	36.933	1.00 41.88	AAAA
ATOM	687	NZ	LYS A	85	32.998	15.817	36.757	1.00 42.00	AAAA
	688	C	LYS A	85	29.620	20.202	38.289	1.00 33.86	AAAA
ATOM	689	Ö	LYS A	85	29.576	19.679	39.404	1.00 33.82	AAAA
ATOM	690	N	TYR A	86	30.014	21.458	38.097	1.00 32.06	AAAA
ATOM			TYR A	86	30.514	22.279	39.194	1.00 29.44	AAAA
MOTA	691	CA		86	31.956	22.683	38.875	1.00 29.97	AAAA
MOTA	692	CB	TYR A		32.872	21.496	38.621	1.00 29.99	AAAA
ATOM	693	CG	TYR A	86	33.281	20:666	39.666	1.00 29.24	AAAA
MOTA	694		TYR A	86		19.582	39.437	1.00 29.85	AAAA
ATOM	695		TYR A	86	34.126		37.329	1.00 30.16	AAAA
ATOM	696	CD2	TYR A	86	.33.329	21.204	37.087	1.00 30.10	AAAA
ATOM	697	CE2		86	34.173	20.118		1.00 29.79	AAAA
ATOM	698	CZ	TYR A	86	34.570	19.313	38.148	1.00 29.48	AAAA
ATOM	699	OH	TYR A	86	35.414	18.253	37.923		AAAA
ATOM	700	С	TYR A	86	29.705	23.509	39.572	1.00 27.81	AAAA
ATOM	701	0	TYR A	86	30.052	24.202	40.524	1.00 27.56	
ATOM	702	N	ASN A	87	28.642	23.784	38.828	1.00 26.60	AAAA
ATOM	703	CA	ASN A	87	27.777	24.924	39.111	1.00 26.56	AAAA
	704	CB	ASN A	87	27.172	24.772	40.508	1.00 26.39	AAAA
MOTA	705	CG	ASN A	87	25.863	25.544	40.684	1.00 26.64	AAAA
MOTA	706		ASN A	87	25.335	25.632	41.790	1.00 26.84	AAAA
MOTA	707		ASN A	87	25.330	26.084	39.597	1.00 26.33	AAAA
ATOM			ASN A	87	28.587	26.217	39.024	1.00 26.40	AAAA
ATOM	708	C			28.430	27.129	39.832	1.00 24.80	AAAA
MOTA	709	0	ASN A		29.448	26.273	38.015	1.00 27.57	AAAA
MOTA	710	N	ILE A	88		27.409	37.767	1.00 27.88	AAAA
ATOM	711	CA	ILE A		30.330		37.648	1.00 27.38	AAAA
MOTA	712	CB	ILE A		31.817	26.932		1.00 26.34	AAAA
ATOM	713	CG2	ILE A	88	32.684	27.994	36.986		AAAA
ATOM	714	CG1	ILE A	88	32.354	26.543	39.026	1.00 28.35	AAAA
ATOM	715		ILE A		32.356	27.671	40.042	1.00 27.78	
ATOM	716	C	ILE A		29.946	28.110	36.472	1.00 29.17	AAAA
	717	õ	ILE A		29.530	27.469	35.515	1.00 29.75	AAAA
MOTA	718	N	GLY A		30.092	29.429	36.443	1.00 29.96	AAAA
ATOM		CA	GLY A		29.791	30.162	35.229	1.00 30.24	AAAA
ATOM	719				28.430		35.242	1.00 30.44	AAAA
ATOM	720	C	GLY A		28.177	31.769		1.00 31.14	AAAA
MOTA	721	0	GLY A		27.542	30.268			AAAA
MOTA	722	N	GLY A		26.221	30.841			AAAA
ATOM	723	CA	GLY A		26.283	32.262			AAAA
ATOM	724	С	GLY A						AAAA
. ATCM	⁻ 25	0	GLY A		27.356	32.795			AAAA
TOM	726	N	TYR A	91	25.112	32.873	30.700	1.00 54.05	

						04 077	24 212	37.290	1.00 31.27	AAAA
MOTA	727	CA	TYR A	91		24.977	34.213		-	AAAA
ATOM	728	CB	TYR A	91		23.515	34.634	37.195	1.00 31.82	
ATOM	729	CG	TYR A	91		23.169	35.825	38.047	1.00 31.81	AAAA
	730		TYR A	91		23.536	37.108	37.670	1.00 32.44	AAAA
MOTA				91		23.250	38.203	38.475	1.00 31.88	AAAA
MOTA	731		TYR A			22.505	35.663	39.254	1.00 32.63	AAAA
MOTA	732		TYR A	91			36.754	40.068	1.00 32.60	AAAA
MOTA	733	CE2	TYR A	91		22.215			1.00 31.59	AAAA
ATOM	734	CZ	TYR A	91		22.589	38.016	39.668		
ATOM	735	OH	TYR A	91		22.283	39.094	40.450	1.00 31.94	AAAA
	736	C	TYR A	91		25.384	34.202	38.753	1.00 31.56	AAAA
MOTA			TYR A	91		26.075	35.105	39.233	1.00 31.21	AAAA
MOTA	737	0				24.925	33.158	39.438	1.00 31.51	AAAA
ATOM	738		GLU A				32.941	40.865	1.00 32.70	AAAA
ATOM	739	ÇA	GLU A			25.143		41.268	1.00 33.55	AAAA
ATOM	740	CB	GLU A			24.463	31.626		1.00 33.35	AAAA
ATOM	741	CG	GLU A	92		24.174	31.495	42.747		AAAA
ATOM	742	CD	GLU A	92		23.311	30.278	43.087	1.00 35.31	
	743		GLU A			23.857	29.148	43.152	1.00 34.30	AAAA
MOTA	744		GLU A			22.076	30.466	43.275	1.00 35.36	AAAA
MOTA						26.619	32.902	41.248	1.00 33.02	AAAA
MOTA	745	С	GLU A			27.073	33.623	42.140	1.00 32.91	AAAA
MOTA	746	0	GLU A					40.550	1.00 32.84	AAAA
MOTA	747	N	ASN A	. 93		27.358	32.049		1.00 31.92	AAAA
ATOM	748	CA	ASN A	93		28.785	31.861	40.777		
MOTA	749	C3	ASN A	93		29.015	30.437	41.278	1.00 31.18	AAAA
	750		ASN A			27.948	29.994	42.259	1.00 30.34	AAAA
MOTA		001	ASN A			27.723	30.642	43.271	1.00 31.20	AAAA
ATOM	751					27.284	28.892	41.955	1.00 29.02	AAAA
MOTA	752		ASN A				32.052	39.411	1.00 30.84	AAAA
ATOM	753	С	ASN A			29.442		38.758	1.00 30.82	AAAA
ATOM	754	0	ASN A	93		29.823	31.082		1.00 30.52	AAAA
ATOM	755	N	PRO A	94		29.605	33.309	38.975		AAAA
ATOM	756	CD	PRO A	94		29.312	34.590	39.626	1.00 29.03	
	757	CA	PRO A			30.209	33.564	37.671	1.00 28.89	AAAA
MOTA			PRO F			29.890	35.045	37.416	1.00 28.22	AAAA
ATOM	758	СЗ				28.839	35.377	38.435	1.00 29.50	AAAA
MOTA	759	CG	PRO A			31.698	33.351	37.664	1.00 28.25	AAAA
ATOM	760	C	PRO A		•		32.996	38.671	1.00 28.21	AAAA
ATOM	761	0	PRO A			32.308		36.488	1.00 27.36	AAAA
ATOM	762	N	VAL A	4 95		32.257	33.593		1.00 27.38	AAAA
ATOM	763	CA	VAL A	A 95		33.676	33.530	36.247		AAAA
ATOM	764	CЗ	VAL A	95		33.945	33.289	34.741	1.00 26.10	
	765		VAL A			35.373	33.717	34.357	1.00 25.47	AAAA
ATOM	766					33.736	31.826	34.434	1.00 25.59	AAAA
MOTA						34.178	34.919	36.647	1.00 26.56	AAAA
MOTA	767	C	VAL	_		33.560	35.937	36.307	1.00 27.18	AAAA
MOTA	768	0	VAL A				34.966	37.382	1.00 25.23	AAAA
MOTA	769	N	SER 2			35.280		37.790	1.00 24.51	AAAA
MOTA	770	CA	SER A	A 96		35.858	36.237			·AAAA
ATOM	771	CВ	SER A	A 96		34.935	36.961	38.774		
	772	OG	SER A	A 96		34.941	36.297	40.014	1.00 19.76	AAAA
ATOM	773	c	SER			37.169	35.920	38.485	1.00 24.84	AAAA
ATOM		0	SER			37.590	34.764	38.530	1.00 25.97	AAAA
MOTA	774					37.824	36.933	39.030	1.00 24.02	AAAA
ATOM	775	N	TYR A			39.047	36.664	39.744	1.00 24.55	AAAA
ATOM	776	CA	TYR .				37.762	39.504	1.00 23.94	AAAA
MOTA	777	CB	TYR .			40.071	37.702		1.00 23.72	AAAA
ATOM	778	CG	TYR .	a 97		40.682	37.636	38.128		AAAA
ATOM	779	CD1				40.177	38.341	37.039	1.00 23.11	
	780	C#1	TYR			40.700	38.136	35.758	1.00 23.50	AAAA
ATOM						41.717	36.735	37.903	1.00 22.25	AAAA
MOTA	781	CD2		-		42.236	36.526	36.640	1.00 22.86	AAAA
ATOM	782	CE2				41.730	37.217	35.572	1.00 23.56	AAAA
ATOM	783	CI	TYR				36.941	34.318	1.00 24.06	AAAA
ATOM	784	CH	TYR			42.232	30.341		1.00 25.08	AAAA
MOTA	785	C	TYR	A 97		38.800	36.436		1 00 25.00	AAAA
	786	Ö	TYR			39.739	36.266		1.00 26.91	
MOTA	787	N	ALA			37.522	36.406	41.589	1.00 24.73	AAAA
ATCM				_		37.083	36.159		1.00 24.50	AAAA
ATOM	788	CA	ALA			35.800	36.925		1.00 24.48	AAAA
ATOM	789	CB	ALA				34.661		1.00 23.95	AAAA
ATCM	790	C	ALA			36.824			1.00 24.21	AAAA
ATOM	791	0	ALA	A 98		36.929				AAAA
ATOM	792	И	MET	A 99		36.502	34.011	41.976	1.00 43.10	LUM B.
3100										•

228/263

				42.000	1.00 22.61	AAAA
ATOM	793 CA MET A 99		32.584	42.000	1.00 23.25	AAAA
ATOM	794 CB MET A 99	35.855	32.089			
	795 CG MET A 99	37.009	32.063	39.607	1.00 23.22	AAAA
ATOM			31.808	37.952	1.00 25.21	AAAA
MOTA	,,,,		30.374	38.258	1.00 22.04	AAAA
ATOM	797 CE MET A 99		31.720	42.581	1.00 21.80	AAAA
ATOM	798 C MET A 99	-			1.00 21.29	AAAA
MOTA	799 O MET A 99		30.695	43.199		AAAA
	800 N PHE A 100	38.567	32.111	42.380	1.00 21.87	
MOTA		39.650	31.322	42.936	1.00 21.11	AAAA
ATOM		40.388	30.552	41.841	1.00 20.25	AAAA
ATOM		41.451	29.648	42.375	1.00 20.14	AAAA
MOTA	803 CG PHE A 100			43.010	1.00 20.49	AAAA
ATOM	804 CD1 PHE A 100	41.114	28.462	42.373	1.00 19.82	AAAA
ATOM	805 CD2 PHE A 100	42.785	30.050		1.00 19.54	AAAA
ATOM	806 CE1 PHE A 100	42.090	27.695	43.646		AAAA
	807 CE2 PHE A 100	43.755	29.300	43.001	1.00 19.22	
MOTA		43.410	28.122	43.641	1.00 19.47	AAAA
ATOM		40.649	32.161	43.743	1.00 21.37	AAAA
MOTA	809 C PHE A 100	40.959	31.822	44.887	1.00 21.26	AAAA
ATOM	810 O PHE A 100			43.161	1.00 20.94	AAAA
MOTA	811 N THR A 101	41.142	33.252		1.00 21.95	AAAA
ATOM	812 CA THR A 101	42.119	34.097	43.847	1.00 22.21	AAAA
	813 CB THR A 101	42.691	35.181	42.905		
MOTA		43.511	34.552	41.917	1.00 22.90	AAAA
ATOM		43.535	36.186	43.667	1.00 21.38	AAAA
ATOM		41.584	34.755	45.117	1.00 22.60	AAAA
MOTA	816 C THR A 101		34.723	46.147	1.00 23.38	AAAA
ATOM	817 O THR A 101	42.248		45.049	1.00 22.13	AAAA
ATOM	818 N GLY A 102	40.394	35.343		1.00 22.03	AAAA
ATOM	819 CA GLY A 102	39.826	35.972	46.227		AAAA
	820 C GLY A 102	39.340	34.928	47.221	1.00 21.36	
MOTA		39.433	35.104	48.439	1.00 20.02	AAAA
ATOM		38.816	33.833	46.677	1.00 21.86	AAAA
MOTA	822 N SER A 103	38.311	32.719	47.466	1.00 21.68	AAAA
MOTA	823 CA SER A 103		31.668	46.557	1.00 21.56	AAAA
MOTA	824 CB SER A 103	37.699			1.00 23.67	AAAA
ATOM	825 OG SER A 103	36.604	32.216	45.857	1.00 23.67	AAAA
	826 C SER A 103	39.450	32.098	48.229		AAAA
ATOM	827 O SER A 103	39.314	31.806	49.412.	1.00 22.44	
ATOM		40.578	31.898	47.545	1.00 23.37	AAAA
MOTA		41.746	31.305	48.183	1.00 23.50	AAAA
ATOM	829 CA SER A 104		31.070	47.172	1.00 24.80	AAAA
ATOM	830 CB SER A 104	42.862	30.169	46.175	1.00 28.38	AAAA
ATOM	831 OG SER A 104	42.441		49.256	1.00 22.79	AAAA
ATOM	832 C SER A 104	42.254	32.230		1.00 22.66	AAAA
ATOM	833 O SER A 104	42.707	31.794	50.307	1.00 22.00	AAAA
	834 N LEU A 105	42.160	33.518	48.970	1.00 22.08	
ATOM		42.626	34.541	49.870	1.00 21.70	AAAA
MOTA		42.524	35.882		1.00 21.89	AAAA
ATOM	836 CB LEU A 105	43.332	37.038		1.00 23.64	AAAA
ATOM	837 CG LEU A 105		36.692		1.00 22.01	AAAA
ATOM	838 CD1 LEU A 105	44.830	30.094		1.00 23.60	AAAA
ATOM	839 CD2 LEU A 105	43.004	38.304		1.00 22.29	AAAA
ATOM	840 C LEU A 105	41.767	34.525	51.131	1.00 22.25	AAAA
	841 O LEU A 105	42.277	34.595	52.249	1.00 21.95	
atom		40.458	34.429	50.934	1.00 22.23	AAAA
MOTA		39.515	34.394	52.042	1.00 22.32	AAAA
ATOM	843 CA ALA A 106	38.068	34.472			Aaaa
MOTA	844 CB ALA A 106		33.126			AAAA
ATOM	845 C ALA A 106	39.704				AAAA
ATOM	846 O ALA A 106	39.578	33.145			AAAA
ATOM	847 N THR A 107	40.011	32.032			AAAA
	848 CA THR A 107	40.209	30.732			
MOTA		40.170	29.571	51.749	1.00 19.82	AAAA
MOTA		38.903	29.553		1.00 18.56	АААА
MOTA	850 OG1 THR A 107		28.242			AAAA
ATOM	851 CG2 THR A 107	40.360				AAAA
ATOM	852 C THR A 107	41.516	30.630			AAAA
	853 O THR A 107	41.537	30.040			AAAA
ATOM	854 N GLY A 108	42.601	31.176			
ATOM		43.878	31.14	5 53.684	1.00 18.20	АААА
ATOM		43.739	31.93		1.00 18.43	Алла
ATOM -	856 C GLY A 108		31.600			AAAA
ATOM	857 O GLY A 108	44.335				, AAAA
ATOM	858 N SER A 109	42.909	32.96	, ,4.,4.		•

229/263

•		J				
	100	42.683	33.805	56.098	1.00 19.67	AAAA
MOTA	859 CA SER A 109		35.058	55.707	1.00 20.27	AAAA
ATOM	860 CB SER A 109				1.00 21.80	AAAA
ATOM	861 OG SER A 109		35.803			AAAA
	862 C SER A 109	41.955	33.066	57.219	1.00 19.61	
MOTA		42.078	33.426	58.388	1.00 18.40	AAAA
ATOM			32.042	56.866	1.00 19.88	AAAA
ATOM -	864 N THR A 110		31.288	57.891	1.00 20.51	AAAA
MOTA	865 CA THR A 110			57.001	1.00 20.62	ÄAAA
	866 CB THR A 110	39.365	30.438	57.304		AAAA
ATOM		38.236	31.284	57.050	1.00 20.80	•
MOTA		38.974	29.313	58.262	1.00 20.53	AAAA
ATOM	· · · · · · · · · · · · · · · · ·	41.504	30.420	58.601	1.00 20.36	AAAA
ATOM	869 C THR A 110		30.268	59.822	1.00 20.78	AAAA
MOTA	870 O THR A 110	41.455	_		1.00 20.85	AAAA
ATOM	871 N VAL A 111	42.431	29.855	57.832	1.00 20.03	AAAA
	872 CA VAL A 111	43.480	29.053	58.423		
ATOM		44.318	28.323	57.345	1.00 21.05	AAAA
MOTA		45.537	27.644	57.983	1.00 19.91	-AAAA
MOTA	874 CG1 VAL A 111	43.460	27.281	56.648	1.00 18.39	AAAA
MOTA	875 CG2 VAL A 111			59.232	1.00 21.84	AAAA
ATOM	876 C VAL A 111	44.374	30.005	-	1.00 22.73	AAAA
	877 O VAL A 111	44.825	29.671	60.331	1.00 22.73	AAAA
MOTA	878 N GLN A 112	44.612	31.204	58.712	1.00 21.62	
MOTA		45.449	32.133	59.452	1.00 21.89	AAAA
MOTA		45.630	33.450	58.690	1.00 22.50	AAAA
ATOM	880 CB GLN A 112		33.283	57.335	1.00 23.68	AAAA
ATOM	881 CG GLN A 112	46.288		_	1.00 23.18	AAAA
ATOM	882 CD GLN A 112	46.414	34.578	56.569		AAAA
	883 OE1 GLN A 112	47.389	35.310	56.722	1.00 23.86	
MOTA		45.413	34.879	55.752	1.00 21.90	AAAA
MOTA		44.766	32.383	60.774	1.00 21.84	AAAA
ATCM	885 C GLN A 112	45.389	32.316	61.835	1.00 22.47	AAAA
ATOM	886 O GLN A 112			60.700	1.00 21.34	AAAA
ATOM	887 N ALA A 113	43.468	32.651		1.00 20.84	AAAA
ATOM	888 CA ALA A 113	42.682	32.934	61.884	1.00 18.52	AAAA
	889 CB ALA A 113	41.244	33.172	61.504	1.00 18.52	
MOTA		42.795	31.782	62.865	1.00 21.75	AAAA
ATOM	413	42.880	31.985	64.084	1.00 22.24	AAAA
MOTA		42.797	30.569	62.329	1.00 22.54	AAAA
ATOM	892 N ILE A 114		29.393	63.160	1.00 23.16	AAAA
ATOM	893 CA ILE A 114	42.891		62.352	1.00 23.33	AAAA
ATOM	894 CB ILE A 114	42.557	28.146		1.00 23.80	AAAA
	895 CG2 ILE A 114	42.939	26.912	63.106		AAAA
ATOM		41.058	28.130	62.047	1.00 23.48	
ATOM		40.610	26.951	61.204	1.00 22.08	AAAA
MOTA		44.268	29.270	63.792	1.00 24.33	AAAA
MOTA	898 C ILE A 114		29.013	64.990	1.00 25.30	AAAA
ATCM	899 O ILE A 114	44.373		63.002	1.00 24.96	AAAA
ATOM	900 N GLU A 115	45.319	29.490		1.00 26.61	AAAA
	901 CA GLU A 115	46.699	29.395	63.503		AAAA
MOTA	902 CB GLU A 115	47.708	29.753	62.406	1.00 24.75	
atom		47.444	29.033	61.103	1.00 25.80	AAAA
ATOM		48.471	29.323	60.030	1.00 26.07	AAAA
ATCM	904 CD GLU A 115		30.484		1.00 27.15	AAAA
MOTA	905 OE1 GLU A 115	48.911			1.00 25.45	AAAA
MOTA	906 OE2 GLU A 115	48.819	28.402		1.00 27.89	AAAA
ATOM	907 C GLU A 115	46.877	30.340			AAAA
	908 O GLU A 115	47.480	29. 9 75	65.695	1.00 28.04	
ATOM		46.337	31.552	.64.531	1.00 29.15	AAAA
MOTA		46.408	32.579		1.00 29.42	AAAA
MOTA	910 CA GLU A 116		33.871		1.00 28.26	AAAA
ATOM	911 CB GLU A 116	45.751			1.00 28.93	AAAA
ATOM	912 CG GLU A 116	46.482	34.529			AAAA
	913 CD GLU A 116	47.902	34.937	64.318		AAAA
MOTA		48.081	35.878	65.123	1.00 27.68	
atom		48.838	34.297	63.810	1.00 27.38	AAAA
ATOM	915 OE2 GLU A 116	45.737			1.00 29.77	AAAA
ATOM	916 C GLU A 116					AAAA
ATOM	917 O GLU A 116	46.338				AAAA
	918 N PHE A 117	44.492				AAAA
ATCM		43,741	31.204		1.00 29.33	
ATOM		42.425		67.480	1.00 28.89	AAAA
ATOM		41.604			1.00 28.93	AAAA
ATOM	921 CG PHE A 117			_ •		AAAA
ATOM	922 CD1 PHE A 117	41.010		·		AAAA
ATCM	923 CD2 PHE A 117	41.441	28.72			AAAA
	924 CE1 PHE A 117	40.261	30.58	g 70.610	1.00 20.00	
ATOM	724 VIII					

					. `					
. =	025	CE2	PHE A	117		40.695	28.284	70.009	1.00 29.16	AAAA
ATOM	925 926		PHE A			40.103	29.227	70.862	1.00 29.03	AAAA
ATOM ATOM	927		PHE A			44.545	30.195	68.671	1.00 29.22	AAAA
ATOM	928		PHE A			44.677	30.315	69.884	1.00 30.29	AAAA
ATOM	929		LEU A			45.066	29.195	67.965	1.00 29.24	AAAA
ATOM	930		LEU A			45.864	28.145	68.576	1.00 29.50	AAAA AAAA
ATOM	931	CB	LEU A	118		46.182	27.047	67.550	1.00 28.57	AAAA AAAA
ATOM	932		LEU A		•	44.962	26.296	66.989	1.00 28.16 1.00 25.58	AAAA
ATOM	933		LEU A			45.421	25.090	66.191 68.128	1.00 25.58	AAAA
MOTA	934		LEU A			44.053	25.846	69.227	1.00 27.04	AAAA
ATOM	935	С	LEU A			47.150	28.649	70.056	1.00 30.14	AAAA
MOTA	936	0	LEU A			47.727 47.602	27.954 29.845	68.847	1.00 31.36	AAAA
ATOM	937	N	LYS A			47.602	30.451	69.448	1.00 32.52	AAAA
MOTA	938	CA	LYS A			49.396	31.539	68.559	1.00 32.38	AAAA
ATOM	939	CB	LYS A			49.882	31.108	67.199	1.00 33.03	AAAA
MOTA	940	CG	LYS A			50.371	32.321	66.411	1.00 32.74	AAAA
ATOM	941 942	CD CE	LYS ?			50.681	31.939	64.972	1.00 33.94	AAAA
ATOM	942	NZ	LYS A			51.125	33.099	64.152	1.00 34.93	AAAA
MOTA	944	C	LYS ?			48.385	31.143	70.744	1.00 33.74	AAAA
MOTA MOTA	945	o	LYS A	119		49.218	31.748	71.413	1.00 34.85	AAAA
ATOM	946	N	GLY A			47.096	31.079	71.073	1.00 33.68	AAAA
ATOM	947	CA	GLY A			46.600	31.736	72.263	1.00 33.69	AAAA
ATOM	948	С	GLY A	120		45.987	33.110	71.988	1.00 34.11	AAAA AAAA
ATOM	949	0	GLY 2			45.588	33.802	72.932	1.00 33.65	AAAA
ATOM	950	\cdot N	ASN A			45.904	33.513	70.717 70.368	1.00 33.58 1.00 33.35	AAAA
MOTA	951	CA	ASN A	121		45.326	34.820	69.341	1.00 33.33	AAAA
ATOM	952	CB	ASN A		•	46.194	35.537 35.828	69.859	1.00 34.31	AAAA
MOTA	953	CG	ASN A			47.570 48.333	34.921	70.154		AAAA
ATOM	954		ASN A			40.333	37.096	69.975	1.00 34.18	AAAA
ATOM	955		ASN A			43.888	34.805	69.839	1.00 32.85	AAAA
ATOM	956	C		A 121		43.304	33.751	69.599	1.00 32.78	AAAA
ATOM	957	0		A 121		43.338	36.003	69.655	1.00 32.47	AAAA
ATOM	958 95 9	N CA		A 122		41.980	36.200	69.148	1.00 30.89	AAAA
ATOM	960	CB		A 122		41.182	37.145	70.070	1.00 31.05	AAAA
MOTA MOTA	961		VAL			39.831	37.423	69.489	1.00 30.95	AAAA
ATOM	962		VAL :			41.038	36.516	71.440	1.00 31.19	AAAA
ATOM	963	С		A 122		42.056	36.805	67.750	1.00 30.19	AAAA AAAA
ATOM .	964	0		A 122		42.694	37.840	67.535	1.00 31.28 1.00 28.62	AAAA
ATOM	965	N		A 123		41.405	36.147	66.800	1.00 28.62 1.00 26.49	AAAA
ATOM	966	CA		A 123		41.415	36.589	65.421 64.599	1.00 26.51	AAAA
MOTA .	967	CB		A 123		42.323	35.708 36.570	64.836	1.00 25.59	AAAA
ATOM	968	С		A 123		40.038	35.814	65.252	1.00 26.27	AAAA
MOTA	969	0		A 123		39.173 39.848	37.421	62.847	1.00 25.44	AAAA
MOTA	970	N		A 124		38.590	37.534	62.156	1.00 23.87	AAAA
MOTA	971	CA	PHE.	A 124 A 124		37.832	38.779	63.646	1.00 23.58	AAAA
ATOM	972	CB		A 124		36.591	39.119	62.841	1.00 23.71	AAAA
ATOM	973 974	CG	PHE			35.668	38.140	62.495	1.00 23.44	AAAA
ATOM	975		PHE			36.311	40.449	62.498	1.00 23.75	AAAA
ATOM	976	CE1	PHE	A 124		34.479	38.483	61.823	1.00 23.31	AAAA
ATOM ATOM	977		PHE			35.131	40.796	61.833	1.00 21.71	AAAA
ATOM	978	CZ		A 124		34.217	39.815	61.497	1.00 22.35	AAAA
ATOM	979	c		A 124		38.951	37.673	61.700	1.00 23.26	AAAA AAAA
ATCM	980	ō		Á 124		39.720	38.555	61.323	1.00 22.29	
ATOM	981	N	ASN	A 125		38.427	36.759	60.897	1.00 23.24	AAAA AAAA
ATOM	982	CA	ASN	A 125		38.622	36.785	59:457	1.00 21.08 1.00 19.90	AAAA
ATOM	983	СВ	ASN	A 125		39.181	35.470	58.951	1.00 19.90	AAAA
ATOM	984	CG	ASN	A 125		39.098	35.360	57.454	1.00 20.64	AAAA
ATOM	285			A 125		39.389	36.317	56.748 56.956	1.00 19.93	AAAA
ATOM	986	ND2		A 125		38.721	34.190	58.813		AAAA
ATOM	987	С		A 125		37.269	37.059 36.148			AAAA
ATOM	588	0	ASN	A 125		36.469	38.340			AAAA
ATOM	989	N	PRO	A 126		36.991				AAAA
ATOM	990	CD	PRO	A 126		37.893	JJ.40U			

				5						
			nno n 126		35.766	38.849	57.932	1.00 1	9.52	AAAA
ATOM		CA	PRO A 126 PRO A 126		36.005	40.359	57.941	1.00 1	8.55	AAAA
MOTA	-	CB	PRO A 126		37.511	40.465	57.799	1.00 1		AAAA
MOTA	993		PRO A 126		35.456	38.313	56.526	1.00 1		AAAA
ATOM	994		PRO A 126		34.303	38.349	56.080	1.00 1		AAAA
MOTA	995		ALA A 12		36.477	37.814	55.835	1.00 1	8.17	AAAA
MOTA	996		ALA A 12		36.283	37.314	54.481	1.00 1		AAAA
MOTA	997		ALA A 12		37.547	37.520	53.658	1.00 1	7.08	AAAA
MOTA	998	CB	ALA A 12		35.875	35.857	54.443	1.00 1		AAAA
ATOM	999	C	ALA A 12		35.438	35.359	53.409	1.00 1		AAAA
MOTA	1000	0	GLY A 12		36.019	35.180	55.570	1.00 1		AAAA
MOTA	1001	N	GLY A 12		35.685	33.780	55.642	1.00 1		AAAA
MOTA	1002	CA	GLY A 12	-	34.226	33.593	55.955	1.00 1		AAAA
MOTA	1003	С 0	GLY A 12		33.485	34.557	55.997	1.00 1		AAAA
ATOM	1004 1005	N	GLY A 12	á	33.821	32.353	56.198	1.00 1		AAAA
MOTA	1005	CA	GLY A 12	9	32.426	32.082	56.462	1.00 1		AAAA
MOTA	1007	C	GLY A 12	9	31.669	31.822	55.169	1.00 1		AAAA
ATOM	1007	ō	GLY A 12	9	30.469	32.051	55.108	1.00 1		- AAAA AAAA
MOTA	1009	N	MET A 13	0	32.380	31.368	54.137	1.00 2		AAAA AAAA
MOTA MOTA	1010	CA	MET A 13	0	31.790	31.029	52.826	1.00 2	21.60	AAAA
	1011	CB	MET A 13	0	32.866	31.117	51.744	1.00 2	22.02	AAAA
MOTA MOTA	1012	CG	MET A 13		33.551	32.472	51.698	1.00 2		AAAA
ATOM	1013	SD	MET A 13	0	34.971	32.567	50.599	1.00 2		AAAA
ATOM	1014	CE	MET A 13	0	34.268	32.137	49.048	1.00 2		AAAA .
ATOM	1015	C.	MET A 13	0	31.328	29.587	53.002	1.00 2		AAAA
ATOM	1016	ō	MET A 13	0	31.970	28.641	52.546	1.00 2	22.30	AAAA
ATOM	1017	N	HIS A 13		30.184	29.452	53.659	1.00		AAAA
ATOM	1018	CA	HIS A 13	1	29.618	28.171	54.062	1.00		AAAA
ATOM	1019	CB	HIS A 13	1	28.832	28.421	55.342	1.00		AAAA
ATOM	1020	CG	HIS A 13	1	27.679	29.360	55.161	1.00		AAAA
ATOM	1021	CD2	HIS A 13	1	27.091	29.846	54.043	1.00	19 33	AAAA
ATOM	1022	ND1	HIS A 13	1	26.952	29.854	56.219 55.758	1.00	16.99	AAAA
ATOM	1023	CE1	HIS A 13	1	25.968	30.607	54.441	1.00		AAAA
MOTA	1024	NE2	HIS A 13	1	26.031	30.617	53.141	1 00	19.97	AAAA
ATOM	1025	C	HIS A 13		28.763	27.332	53.541	1 00	19.61	AAAA
ATOM	1026	0	HIS A 13	1	28.330	26.262 27.796	51.923	1.00	20.11	AAAA
ATOM	1027	N	HIS A 13	2	28.518	27.758	50.994	1.00	17.76	AAAA
MOTA	1028	CA	HIS A 1	2	27.673	28.044	50.127		16.76	AAAA
MOTA	1029	CB	HIS A 1	2	26.879 25.824	28.815	50.862		15.35	AAAA
ATOM	1030	CG	HIS A 1	2	25.567		50.920	1.00	14.15	AAAA
MOTA	1031	CD2	HIS A 1	2	24.804	28.200	51.557	1.00	16.15	AAAA
MOTA	1032	ND1	HIS A 1	2	23.966		52.005	1.00	14.13	AAAA
MOTA	1033	CEI	HIS A 1	12	24.405		51.632	1.00	14.65	AAAA
MOTA	1034	NE2	HIS A 1	22	28.355		50.065		17.99	AAAA
MOTA			HIS A 1 HIS A 1	32	27.742		49.684	1.00	18.54	AAAA
MOTA	1.36	0	ALA A 1	12	29.604		49.690	1.00	17.82	AAAA
MOTA	1.37	N	ALA A 1	33	30.300		48.742	1.00	18.38	AAAA
MOTA	1038	CA CB	ALA A 1		31.684			1.00	17.53	AAAA
ATOM	1039	C	ALA A 1		30.366				20.92	AAAA
ATOM	1040 1041	o	ALA A 1		30.578		50.298		21.79	AAAA
ATOM	1041	N	PHE A 1		30.184	23.086		1.00	20.58	AAAA
MOTA	1042	CA	PHE A 1		30.258	21.663	48.455	1.00	21.38	AAAA AAAA
MOTA	1043	CB	PHE A 1		29.168	20.860			19.41	AAAA
ATOM	1045	CG	PHE A 1	34	27.772	21.229		1.00	18.32	AAAA
MOTA	1045		1 PHE A 1	34	27.027				19.22	AAAA
MOTA	1047		2 PHE A 1	34	27.193				19.14	AAAA
MOTA ATOM	1048		1 PHE A 1	34	25.714			1.00	18.56	AAAA
MOTA	1049				25.889				17.72	AAAA
ATOM	1050				25.158				18.01 22.90	AAAA
MOTA	1051		PHE A 1		31.629				23.37	AAAA
MOTA	1052		PHE A 1		32.459				24.63	AAAA
ATOM	1053		LYS A 1	35	31.842				27.16	AAAA
ATOM	1054		LYS A	35	33.09		48.122		28.53	AAAA
ATOM	1055	_	LYS A 1	.35	32.92				31.01	AAAA
ATOM	1056			.35	34.13	3 16.84	48.292	. 1.00	J U.	
A.On										

		CD	tve :	A 135	33.879	15.472	48.910	1.00 32.75	AAAA
MOTA	1057			A 135	33.961	15.495	50.457	1.00 33.96	AAAA
MOTA	1058			A 135	35.371	15.664	50.976	1.00 33.04	AAAA
ATOM	1059			A 135	33.577	19.390	46.673	1.00 27.37	AAAA
ATOM	1060			A 135	34.769	19.596	46.437	1.00 27.35	AAAA
MOTA	1061				32.658	19.354	45.714	1.00 27.32	AAAA
MOTA	1062			A 136	33.028	19.527	44.313	1.00 28.31	AAAA
MOTA	1063			A 136	33.023	18.162	43.626	1.00 28.56	AAAA
MOTA	1064			A 136	33.822	17.242	44.417	1.00 29.28	AAAA
MOTA	1065			A 136	31.993	20.395	43.599	1.00 28.91	AAAA
MOTA	1066			A 136		20.080	42.486	1.00 28.78	AAAA
ATOM	1067	0		A 136	. 31.568	21.502	44.212	1.00 29.08	AAAA.
ATOM	1068			A 137	31.595	22.311	43.576	1.00 29.66	AAAA
MOTA	1069			A 137	30.574	21.528	43.657	1.00 31.65	AAAA
MOTA	1070			A 137	29.259	22.273	43.355	1.00 33.89	AAAA
ATOM	1071			A 137	27.989	21.267	43.373	1.00 35.93	AAAA
MOTA	1072			A 137	26.862	20.366	42.228	1.00 36.31	AAAA
MOTA	1073	NE		A 137	26.961	20.560	41.015	1.00 35.99	AAAA
ATOM	1074	CZ		A 137	26.505	21.834	40.798	1.00 34.63	AAAA
MOTA	1075			A 137	25.915		40.025	1.00 35.35	AAAA
ATOM	1076		ARG .	A 137	26.650	19.786 23.723	44.116	1.00 28.53	AAAA
ATOM	1077	С		A 137	30.402		45.324	1.00 28.51	AAAA
ATOM	1078	0		A 137	30.418	23.946	43.202	1.00 27.53	AAAA
ATOM	1079	N		A 138	30.247	24.673	43.581	1.00 27.64	AAAA
MOTA	1080	CA		A 138	30.039	26.063	42.381	1.00 27.87	AAAA
MOTA	1081	CB		A 138	30.236	26.984	44.079	1.00 27.27	AAAA
ATOM	1082	С		A 138	28.601	26.130	43.671	1.00 28.30	AAAA
MOTA	1083	0		A 138	27.769	25.321	44.951	1.00 26.16	AAAA
ATOM	1084	N		A 139	28.292	27.080	45.480	1.00 25.39	AAAA
MOTA	1085	CA		A 139	26.945	27.134	46.282	1.00 24.58	AAAA
ATOM	1086	CB		A 139	26.673	25.847	47.017	1.00 25.37	AAAA
ATOM	1087	CG		A 139	25.343	25.872	46.413	1.00 24.20	AAAA
ATOM	1088	ODl	ASN	A 139	24.272	26.017 25.720	48.338	1.00 24.91	AAAA
ATOM	1089		ASN	A 139	25.408		46.341	1.00 24.90	AAAA
ATOM	1090	Ç	ASN	A 139	. 26.683	28.358	47.348	1.00 24.98	AAAA
ATOM	1091	0	ASN	A 139	27.346	28.570	45.916	1.00 24.46	AAAA
ATOM	1092	11		A 140	25.702	29.145	46.625	1.00 22.96	AAAA
ATOM	1093	ÇA		A 140	25.294	30.336	46.755	1.00 22.24	AAAA
ATOM	1094	С		A 140	26.383	31.358	47.867	1.00 23.09	AAAA
ATOM	1095	0		A 140	26.663	31.817	45.625	1.00 20.60	AAAA
MOTA	1096	N	PHE	A 141	26.992	31.711	45.572	1.00 19.43	AAAA
MOTA	1097	CA		A 141	28.075	32.700 33.920	46.430	1.00 19.86	AAAA
ATOM	1098	CB		A 141	27.758	34.577	46.114	1.00 21.18	AAAA
ATOM	1099	CG		A 141	26.453		46.934	1.00 20.49	AAAA
ATOM	1100			A 141	25.974	35.592	44.985	1.00 21.42	· AAAA
MOTA	1101	CD2	PHE	A 141	25.723	34.218	46.638	1.00 22.45	AAAA
MOTA	1102	CE1	PHE	A 141	24.800	36.242 34.859	44.672	1.00 :1.76	AAAA
MOTA	1103			A 141	24.540	35.881	45.499	1.00 `3.05	AAAA
ATOM	1104	CZ		A 141	24.072	32.132	46.069	1.00 18.68	AAAA
MOTA	1105	С		A 141	29.396	32.784	45.944	1.00 19.19	AAAA
ATOM	1106	0		A 141	30.438	30.930	46.635	1.00 16.93	AAAA
ATOM	1107	N		A 142	29.367	30.332		1.00 16.80	AAAA
ATOM	1108	CA		A 142	30.594	29.689		1.00 16.51	AAAA
MOTA	1109	CB		A 142	30.323	29.009	49.617	1.00 15.01	AAAA
ATOM	1110	SG		A 142	29.524	29.315		1.00 16.45	AAAA
MOTA	1111	С		A 142	31.227			1.00 15.32	AAAA
ATCM	1112	0		A 142	30.533	28.565			AAAA
ATOM	1113	N		A 143	32.558	29.311		1.00 18.63	AAAA
MOTA	1114	CA		A 143	33.340				AAAA
ATOM	1115	CB		A 143	34.298				AAAA
ATOM	1116	CG	TYR	A 143	33.664				AAAA
ATOM	1117	CD1	TYR	A 143	33.480				AAAA
ATOM	1118	CE1	TYR	A 143	32.856				AAAA
ATOM	1119	CD2	TYR	A 143	33.212				AAAA
ATOM	1120		TYR	A 143	32.588				AAAA
ATOM	1121	CZ		A 143	32.414				AAAA
ATCM	1122	OH	TYR	A 143	31.787	33.0/1		- • • • • • • •	•

					_	•		•		
	1122	С	TYR A	143		34.162	27.490	46.283	1.00 19.06	AAAA
ATOM	1123 1124		TYR A			34.319	26.289	46.032	1.00 18.40	AAAA
ATOM	1125	-	ILE A			34.695	28.087	47.344	1.00 19.15	AAAA
MOTA	1125		ILE A			35.490	27.350	48.315	1.00 19.97	AAAA
ATOM	_		ILE A			36.952	27.861	48.355	1.00 19.74	AAAA
ATOM	1127		ILE A			37.757	27.088	49.410	1.00 18.03	AAAA
ATOM	1128		ILE A			37.584	27.671	46.965	1.00 20.12	AAAA
MOTA	1129	CDI	ILE A	144		39.053	28.072	46.846	1.00 21.05	AAAA
MOTA	1130		ILE A			34.833	27.532	49.665	1.00 20.22	AAAA
MOTA	1131	C .	ILE A			34.357	28.626	49.981	1.00 19.94	AAAA
MOTA	1132		ASN A			34.787	26.451	50.440	1.00 20.57	AAAA
MOTA	1133	N	ASN A			34.165	26.448	51.770	1.00 20.39	AAAA
MOTA	1134	CA CB	ASN A		-	33.450	25.114	51.990	1.00 19.39	AAAA
MOTA	1135	CG	ASN A			32.505	25.143	53.171	1.00 19.31	AAAA
MOTA	1136		ASN A			32.862	25.583	54.263	1.00 21.26	AAAA
MOTA	1137	ND3	ASN A	145		31.290	24.667	52.960	1.00 17.08	- AAAA
ATOM	1138	C	ASN A			35.236	26.621	52.856	1.00 20.17	AAAA
MOTA	1139	0	ASN A			35.690	25.622	53.421	1.00 19.75	AAAA
ATOM	1140	N	ASN A			35.644	27.862	53.148	1.00 20.06	AAAA
ATOM	1141 1142	CA	ASN A			36.671	28.075	54.166	1.00 20.98	AAAA
ATOM	1142	CB	ASN A			37.019	29.573	54.333	1.00 21.78	AAAA
MOTA		CG	ASN A			35.876	30.411	54.882	1.00 22.78	AAAA
MOTA	1144 1145		ASN A			35.651	30.465	56.091	1.00 22.83	AAAA
MOTA	1145	MD2	ASN A	146		35.144	31.078	53.983	1.00 23.70	AAAA
MOTA	1147	C	ASN A	146		36.307	27.413	55.496	1.00 21.18	AAAA
ATOM	1148	Ö	ASN A			37.169	26.823	56.139	1.00 21.48	AAAA
MOTA	1149	N	PRO A			35.031	27.476	55.922	1.00 20.88	AAAA
MOTA	1150	CD	PRO A			33.835	28.120	55.358	1.00 21.85	AAAA
ATOM	1151	CA	PRO A			34.674	26.831	57.183	1.00 21.42	AAAA
MOTA	1152	CB	PRO A	147		33.176	27.073	57.261	1.00 21.00	AAAA
MOTA MOTA	1153	CG	PRO A		•	33.052	28.408	56.605	1.00 20.47	AAAA
ATOM	1154	c	PRO A			35.015	25.334	57.174	1.00 22.79	AAAA
ATOM	1155	Ö	PRO A			35.650	24.833	58.099	1.00 25.69	AAAA
ATOM	1156	N	ALA A			34.603	24:616	56.136	1.00 22.34	AAAA
ATOM	1157	CA	ALA A			34.889	23.193	56.070	1.00 22.23	AAAA AAAA
MOTA	1158	CB	ALA A			34.260	22.561	54.825	1.00 22.87	AAAA
ATOM	1159	c	ALA A			36.378	22.998	56.054	1.00 22.33	AAAA
ATOM	1160	Ō	ALA A	148		36.912	22.249	56.861	1.00 23.42	AAAA
ATOM	1161	N	VAL A	149		37.050	23.661	55.122	1.00 22.50	AAAA
ATOM	1162	CA	VAL A	149		38.505	23.569	55.018	1.00 21.29 1.00 20.46	AAAA
ATOM	1163	CB	VAL A			39.066	24.581	54.002	1.00 20.40	AAAA
ATOM	1164	CG1	VAL A	149		40.578	24.607	54.085	1.00 20.03	AAAA
ATOM	1165	CG2	VAL A	A 149		38.608	24.229	52.593	1.00 20.03	AAAA
ATOM	1166	С		A 149		39.164	23.848	56.367	1.00 22.11	AAAA
MOTA	1167	0		A 149		40.147	23.197	56.735 57.088	1.00 21.19	AAAA
MOTA	1168	N		A 150		38.628	24.826	58.386	1.00 21.70	AAAA
ATOM	1169	CA	GL .	A 150		39.171	25.176	59.368	1.00 22.31	AAAA
MOTA	1170	С		A 150		38.973	24.043	60.026	1.00 22.51	AAAA
ATOM	1171	0		A 150		39.913	23.597	59.453	1.00 22.86	AAAA
ATOM	1172	N		A 151		37.736	23.566 22.474	60.346		AAAA
MOTA	1173	CA		A 151		37.388	22.124		1.00 21.51	AAAA
ATOM	1174	CB		A 151		35.894		61.019	1.00 21.36	AAAA
ATOM	1175	CG2	ILE .	A 151		35.542	20.899 23.329			AAAA
ATOM	1176	CGI	L ILE	A 151		35.051				AAAA
ATOM	1177	CD1	L ILE .	A 151		33.576	23.199			AAAA
MOTA	1178	С	ILE	A 151		38.265	21.243			AAAA
ATOM	1179	0		A 151		38.786	20.660			AAAA
ATCM	1180			A 152		38.435	20.853			AAAA
ATOM	1181			A 152		39.267	19.697			AAAA
ATOM	1182	CB		A 152		39.242	19.404			AAAA
ATOM	1183	CG	GLU	A 152		37.910	18.886			AAAA
ATOM	1184	CD		A 152		37.500	17.570			AAAA
ATOM	1185		1 GLU	A 152		36.345	17.158		05 00	AAAA
ATOM	1186	OE:	2 GLU	A 152		38.315				AAAA
ATOM	1187	C		A 152		40.694			0/ 40	AAAA
ATOM			GLU	A 152		41.425	19.035	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•
2.01			•							

					•				
			TYR A	157	41.085	21.225	58.925	1.00 27.30	AAAA
ATOM	1189	N	TYR A		42.422	21.632	59.334	1.00 27.63	AAAA
ATOM	1190	CA	TYR A		42.532	23.153	59.268	1.00 26.99	AAAA
MOTA	1191	CB	TYR A		43.856	23.719	59.710	1.00 27.03	AAAA
ATOM	1192	CG			44.942	23.790	58.837	1.00 27.78	AAAA
ATOM	1193		TYR A		46.165	24.356	59.250	1.00 28.40	AAAA
MOTA	1194				44.017	24.215	61.007	1.00 27.52	AAAA
MOTA	1195		TYR A		45.216	24.774	61.425	1.00 27.66	AAAA
ATOM	1196		TYR A		46.284	24.845	60.547	1.00 28.15	AAAA
ATOM	1197	CZ	TYR A		47.457	25.407	60.974	1.00 28.83	AAAA
MOTA	1198	OH	TYR A		42.618	21.172	60.769	1.00 27.82	AAAA
MOTA	1199	C	TYR A		43.613	20.552	61.110	1.00 27.15	AAAA
MOTA	1200	0	TYR A		41.636	21.487	61.604	1.00 29.25	AAAA `
MOTA	1201	N	LEU A		41.665	21.138	63.014	1.00 29.35	AAAA
MOTA	1202	CA	LEU A		40.507	21.829	63.715	1.00 30.25	AAAA
MOTA	1203	CB	LEU A	154	40.685	23.346	63.792	1.00 31.10	AAAA
MOTA	1204	CG	LEU A		39.348	24.020	64.092	1.00 31.24	AAAA
MOTA	1205		LEU A		41.747	23.669	64.852	1.00 29.84	AAAA
MOTA	1206		LEU A		41.625	19.639	63.263	1.00 29.73	AAAA.
MOTA	1207	Ç	LEU A		42.313	19.151	64.150	1.00 30.51	AAAA
MOTA	1208	0	ARG A		40.832	18.903	62.489	1.00 28.95	AAAA
MOTA	1209	N	ARG A		40.771	17.459	62.671	1.00 28.94	AAAA
MOTA	1210	CA	ARG A	155	39.742	16.820	61.723	1.00 28.64	AAAA
ATOM	1211	CB	ARG A		38.312	17.312	61.952	1.00 27.82	AAAA
ATOM	1212	CG	ARG A	155	37.319	16.751	60.955	1.00 27.19	AAAA
ATOM	1213	CD	ARG A	155	36.804	15.444	61.338	1.00 28.86	AAAA
ATOM	1214	NE CZ	ARG F		35.939	14.742	60.612	1.00 28.93	AAAA
ATOM	1215 1216		ARG A		35.500	15.227	59.459	1.00 29.47	AAAA
MOTA	1217	MAS	ARG A	155	35.486	13.574	61.053	1.00 28.76	AAAA
MOTA	1217	C	ARG A	155	42.158	16.853	62.438	1.00 30.20	AAAA
MOTA	1219	ō		155	42.572	15.949	63.164	1.00 30.74	AAAA
MOTA	1220	N		156	42.890	17.362	61.447	1.00 30.32	AAAA
MOTA	1221	CA	LYS	156	44.224	16.838	61.173	1.00 30.07	AAAA
ATOM	1222	CB		156	44.771	17.373	59.847	1.00 30.26	AAAA
MOTA MOTA	1223	CG		A 156	46.168	16.869	59.525	1.00 30.16	AAAA
MOTA	1224	CD		A 156	46.686	17.368	58.181	1.00 31.19	AAAA AAAA
MOTA	1225	CE		A 156	45.884	16.813	56.986	1.00 31.70	AAAA
ATOM	1226	NZ		A 156	45.963	15.324	56.824	1.00 31.20	AAAA
MOTA	1227	C		A 156	45.167	17.202	62.306	1.00 30.08 1.00 29.16	AAAA
ATOM	1228	0	LYS A	A 156	46.192	16.550	62.485	1.00 29.10	AAAA
ATOM	1229	N	LYS	A 157	44.816	18.252	63.053	1.00 30.00	AAAA
ATOM	1230	CA	LYS	A 157	45.608	18.691	64.196	1.00 31.03	AAAA
ATOM	1231	CB		A 157	45.446	20.201	64.452	1.00 32.12	AAAA
MOTA	1232	CG	LYS .	A 157	46.067	21.134	63.419	1.00 32.12	AAAA
ATOM	1233	CD		A 157	47.580	21.041	63.348 62.226		AAAF
ATOM	1234	CE		A 157	48.080	21.941	61.996	1.00 32.74	AAA
ATOM	1235	NZ	LYS .	A 157	49.556	21.921	65.458	1.00 31.73	. TAAA
MOTA	1236	С		A 157	45.196	17.923	66.558	1.00 31.93	AAAA
MOTA	1237	0		A 157	45.652	18.230	65.299	1.00 32.41	AAAA
MOTA	1239	N		A 158	44.312	16.942		1.00 32.34	AAAA
MOTA	1239	CA		A 158	43.901	16.140	67.172	1.00 32.65	AAAA
ATOM	1240	. C		A 158	42.604	16.429			AAAA
ATOM	1241	0		A 158	42.182	15.604		1.00 33.16	AAAA
ATCM	1242	N		A 159	41.960	17.565			AAAA
ATOM	1243	CA		A 159	40.712	17.842 19.281			AAAA
ATOM	1244	CB		A 159	40.220				AAAA
MOTA	1245			A 159	41.134	20.343 20.669			AAAA
MOTA	1246		1 PHE	A 159	42.327	20.009			AAAA
MOTA	1247	CD:	2 PHE	A 159	40.821	21.610			AAAA
MOTA	1248		1 PHE	A 159	43.197	21.924			AAAA
ATOM	1249			A 159	41.689		·		AAAA
MOTA	1250			A 159	42.878				AAAA
ATOM	1251		PHE	A 159	39.645				AAAA
ATOM	1252		PHE	A 159	39.568				AAAA
ATOM	1253		LYS	A 160	38.839				AAAA
MOTA	1254	CA	LYS	A 160	37.794	15.415	,		

							U				
- mos/	1255	СВ	LYS A	Δ.	160		38.060	14.140	68.763	1.00 33.97	AAAA
MOTA			LYS /					13.491	68.457	1.00 35.31	AAAA
MOTA	1256 1257		LYS A				39.833	12.364	69.429	1.00 36.48	AAAA
MOTA	1258	CE	LYS A	Δ .	160		39.095	11.037	69.243	1.00 37.97	AAAA
ATOM	1259		LYS A				37.636	11.080	69.568	1.00 39.67	AAAA
MOTA	1260		LYS				36.385	15.941	68.210	1.00 31.68	AAAA
MOTA	1261		LYS A				35.405	15.290	67.887	1.00 31.51	AAAA
MOTA		N	ARG	Δ	161		36.291	17.114	68.819	1.00 31.11	AAAA
ATOM	1262	CA	ARG A				35.003	17.719	69.114	1.00 30.92	AAAA
MOTA	1263	CB	ARG				34.655	17.592	70.604	1.00 31.78	AAAA
MOTA	1264	CG	ARG				34.451	16.157	71.102	1.00 32.91	AAAA
MOTA	1265 1266	CD	ARG				33.994	16.126	72.570	1.00 33.26	AAAA
MOTA		NE	ARG				34.929	16.797	73.476	1.00 34.01	AAAA
MOTA	1267	CZ	ARG .				36.183	16.404	73.698	1.00 34.88	AAAA
MOTA	1268 1269		ARG				36.675	15.334	73.081	1.00 34.89	AAAA
MOTA	1270	MHJ	ARG	Α.	161		36.954	17.084	74.537	1.00 34.71	AAAA
ATOM	1271	C	ARG				35.061	19.185	68.714	1.00 30.28	AAAA
MOTA	1271	Ö	ARG				35.365	20.059	69.529	1.00 29.86	AAAA
MOTA	1272	N	ILE				34.774	19.433	67.437	1.00 28.86	AAAA
MOTA	1274	CA	ILE				34.788	20.774	66.862	1.00 26.41	AAAA
ATOM	1275	CB	ILE				35.443	20.762	65.464	1.00 26.87	AAAA
MOTA	1276		ILE				35.453	22.160	64.872	1.00 26.91	AAAA
MOTA	1277		ILE			•	36.877	20.234	65.578	1.00 28.19	AAAA
MOTA	1277		ILE				37.614	20.090	64.240	1.00 28.24	AAAA
MOTA	1278	C	ILE	A	162		33.369	21.283	66.731	1.00 24.08	AAAA
ATOM ATOM	1280	Ö	ILE				32.485	20.572	66.267	1.00 24.40	AAAA
ATOM	1281	N	LEU				33.153	22.519	67.153	1.00 22.25	AAAA
ATOM	1282	CA	LEU				31.838	23.126	67.074	1.00 20.48	AAAA
ATOM	1283	CB	LEU				31.408	23.671	68.440	1.00 20.97	AAAA
ATOM	1284	CG	LEU				30.099	24.477	68.486	1.00 20.50	AAAA
MOTA	1285		LEU				28.998	23.695	67.799	1.00 19.07	AAAA
ATOM	1286		LEU				29.738	24.802	69.950	1.00 19.76	AAAA
MOTA	1287	C	LEU	Α	163		31.801	24.241	66.055	1.00 18.76	AAAA
ATOM	1288	ō	LEU				32.756	24.986	65.894	1.00 18.41	AAAA
MOTA	1289	N			164		30.677	24.344	65.368	1.00 17.85	AAAA AAAA
ATOM	1290	CA			164		30.496	25.372	64.373	1.00 17.16	AAAA
ATOM	1291	CB	TYR	Α	164		30.644	24.768	62.983	1.00 17.45	AAAA
ATOM	1292	CG	TYR	Α	164		30.484	25.783	61.900	1.00 17.70	AAAA
ATOM	1293	CD1	TYR	Α	164		31.444	26.772	61.701	1.00 16.23 1.00 17.35	AAAA
ATOM	1294	CEl	TYR	Α	164		31.280	27.734	60.721	1.00 17.95	AAAA
ATOM	1295	CD2			164		29.350	25.781	61.092	1.00 18.03	AAAA
ATOM	1296	CE2			164		29.173	26.746	60.103	1.00 17.30	AAAA
ATOM	1297	CZ			164		30.138	27.717	59.919 58.926	1.00 16.70	AAAA
ATOM	1298	OH			164		29.955	28.647	64.514	1.00 15.85	AAAA
MOTA	1299	С			164		29.123	26.016	64.416	1.00 16.44	AAAA
ATOM	1300	0	TYR	Α	164		28.101	25.351	64.743	1.00 15.54	AAAA
ATOM	1301	N	ILE	A	165		29.115	27.319 28.088	64.897	1.00 15.71	AAAA
MOTA	1302		ILE	Α	165 .		. 27.878	28.819	66.250	1.00 15.18	AAAA
ATOM	1303	CB			165		27.869	29.685	66.374	1.00 13.94	AAAA
MOTA	1304	CG2	ILE	A	165		26.621	27.797	67.386		AAAA
ATOM	1305	CG1	ILE	A	165		28.000	28.421	68.747		AAAA
MOTA	1306		ILE				28.356	29.124		1.00 16.00	AAAA
ATOM	1307	C			165		27.808	29.941	63.576		AAAA
MOTA	1308	0			165		28.711	29.087			AAAA
MOTA	1309	N	ASP	A	166		26.721		61.865		AAAA
MOTA	1310	CA	ASP	A	166		26.524	29.962 29.066			AAAA
ATOM	1311	СВ	ASP	A	166		26.240	29.809			AAAA
ATOM	1312	CG	ASP	A	166		26.238	30.659			AAAA
ATOM	1313				166		25.353				AAAA
ATOM	1314	OD2	2 ASP	A	166		27.131	29.521			
ATOM	1315	С			166		25.342	30.904			AAAA
MOTA	1316	0	ASP	Α	166		24.206	30.459			AAAA
ATOM	1317		LEU	Α	167		25.605	32.202			AAAA
ATOM	1318		LEU	Α	167		24.526	33.135 34.116			аааа
ATOM	1319		LEU	A	167		24.923				AAAA
ATOM	1320	CG	LEU	A	167		25.499	33.529	-		•

							J					
ATOM	1321	CD1	LEU	А	167		25.760	34.671	65.933		18.72	AAAA
MOTA	1322		LEU				24.566	32.507	65.547		17.06	AAAA
ATOM	1323	C	LEU				24.146	33.897	61.307		17.18	AAAA
ATOM	1324	ō	LEU				23.390	34.850	61.358		17.21	AAAA
ATOM	1325	N	ASP				24.683	33.457	60.178		17.83	AAAA
ATOM	1326	CA	ASP				24.382	34.067	58.904		17.84	AAAA
ATOM	1327		ASP				25.178	33.397	57.807		20.42	AAAA
ATOM	1328	CG Î	ASP				25.140	34.162	56.529		21.41	AAAA
ATOM	1329	C	ASP				22.915	33.783	58.660		18.35	AAAA
ATOM	1330	ō	ASP				22.419	32.722	59.032		19.62	AAAA
ATOM	1331		ASP			_	26.066	34.972	56.330		22.42	AAAA
ATOM	1332		ASP				24.186	33.971	55.746		21.79	AAAA
MOTA	1333	N	ALA				22.239	34.717	58.010		17.98	AAAA
ATOM	1334	CA	ALA				20.824	34.601	5 7 .708		17.36	AAAA
MOTA	1335	CB	ALA				20.348	35.860	57.007	1.00	17.00	AAAA
ATOM	1336	C	ALA				20.439	33.377			18.64	AAAA
ATOM	1337	0			169		19.255	33.043	56.819		19.46	AAAA
ATOM	1338	N			170		21.412	32.712	56.262		18.71	AAAA
ATOM	1339	CA	HIS	Α	170		21.107	31.518	55.464		18.43	AAAA
ATOM	1340	С	HIS	Α	170		21.802	30.265	55.986		18.02	AAAA
ATOM	1341	0			170		22.910	30.332	56.514		17.20	AAAA
ATOM	1342	CB	HIS	Α	170		21.539	31.678	54.004		18.79	AAAA
ATOM	1343	CG	HIS	Α	170		21.137	32.968	53.386		17.65	AAAA
ATOM	1344	ND1	HIS	Α	170		21.644	34.162	53.828		18.08	AAAA
ATOM	1345	CE1	HIS	A	170	•	21.112	35.081	53.054		18.95	AAAA AAAA
MOTA	1346		HIS				20.301	33.194	52.348		18.81	AAAA
ATOM	1347	NE2	HIS				20.291	34.544	52.140		19.66 17.53	AAAA
ATOM	1348	N			171		21.142	29.124	55.793		16.38	AAAA
ATOM	1349	CA			171		21.662	27.822	56.193		16.32	AAAA
MOTA	1350	CB			171		20.644	26.740	55.830		15.91	AAAA
ATOM	1351	CG			171		21.157	25.337	55.958 55.051		14.14	AAAA
MOTA	1352				171		21.241	24.336	57.151		16.79	AAAA
MOTA	1353				171		21.602	24.807	56.973	1 00	14.91	AAAA
MOTA	1354				171		21.937	23.543	55.709		15.45	AAAA
MOTA	1355				171		21.725	27.522	55.509		16.94	AAAA
MOTA	1356	C			171		22.982 23.146	27.725	54.318		18.71	AAAA
MOTA	1357	0			171		23.140	27.019	56.279		16.99	AAAA
MOTA	1358	N			172 172		25.237	26.670	55.778		16.23	AAAA
MOTA	1359	CA			172		26.219	26.721	56.947		17.89	AAAA
MOTA	1360	CB			172		25.638	25.773	58.397	1.00	17.89	AAAA
ATOM	1361	SG			172		25.205	25.271	55.210		16.57	AAAA
ATOM	1362 1363	С 0	CVS		172		25.947	24.413	55.670	1.00	17.66	AAAA
MOTA	1364	N			173		24.364	25.026	54.214	1.00	18.25	AAAA
ATOM	1365	CA			173		24.253	23.680	53.620	1.00	19.91	AAAA
MOTA	1366	CB			173		23.342	23.699	52.397	1.00	20.86	AAAA
MOTA	1367	CG	ASP	Ā	173		23.780	24.719	51.358	1.00	21.90	AAAA
MOTA MOTA	1368		ASP	Ā	173		23.257	24.640	50.217	1.00	21.35	AAAA
ATOM	1369	OD2	ASP	A	173		24.624	25.597	51.687	1.00	21.35	AAAA
ATOM	1370	c			173		25.573	23.021	53.227	1.00	21.02	AAAA
MOTA	1371	ō	ASP	A	173		25.673	21.785	53.199	1.00	22.79	AAAA
ATOM	1372	N	GLY	A	174		26.579	23.832	52.912	1.00	20.03	AAAA
ATOM	1373	CA			174		27.870	23.277	52.553	1.00	19.72	AAAA
ATOM	1374	С			174		28.537	22.680		1.00	20.27	AAAA
ATOM	1375	Ō			174		29.110	21.599	53.711	1.00	19.77	AAAA
ATOM	1376	N			175		28.448	23.387	54.893	1.00	21.38	AAAA
ATOM	1377	CA			175		29.056	22.934	56.135	1.00	22.26	AAAA
ATOM	1378	CB			175		29.032	24.040	57.203	1.00	23.15	AAAA AAAA
ATOM	1379	CG1	VAL	. ;	175		29.853	23.617	58.418	1.00	22.84	AAAA
ATOM	1380	CG2	VAL	, ;	175		29.562	25.347	56.612	1.00	23.43	AAAA
ATOM	1381	C	VAI	, ;	175		28.302	21.724	56.654	1.00	23.51	AAAA
ATOM	1382	ŏ	VAI	, 7	175		28.893	20.803	57.210	1.00	23.74	AAAA
ATOM	1383	N	GLN	1 ;	176		26.993	21.721	56.452	1.00	25.41	AAAA
ATOM	1384	CA	GL1	1 2	176		26.171	20.601	56.893		24.77	
ATOM	1385	CB	GLN	1 1	176		24.689		56.694		26.23	AAAA
ATOM	1386	CG	GLN	1 1	176		23.799	19.735	57.036	1.00	, 20.23	

3 TOM	1387	CD	GLN	Α	176	22.334	20.094	57.069	1.00 27.17	AAAA
MOTA	-					21.902	20.879	57.911	1.00 28.24	AAAA
ATOM	1388	OE1								AAAA
ATOM	1389	NE2	GLN	A	176	21.556	19.522	56.151	1.00 26.54	
			GLN			26.512	19.293	56.180	1.00 25.67	AAAA
MOTA	1390								1.00 26.98	AAAA
MOTA	1391	0	GLN-	A	176	26.789	18.285	56.820		
		NT	GLU	2.	177	26.490	19.309	54.853	1.00 26.34	AAAA
MOTA	1392					_		54.073	1.00 26.18	AAAA
MOTA	1393	CA	GLU	Α	177	26.786	18.117			
		CB	GLU	Δ	177	26.746	18.468	52.580	1.00 27.13	AAAA
MOTA	1394						17.269	51.628	1.00 29.77	AAAA
MOTA	1395		GLU			26.769			1.00 23.7	AAAA
	1396	CD -	GLU	A	177	26.623	17.660	50.147	1.00 31.29	
MOTA						27.655	17.935	49.500	1.00 31.35	AAAA
ATOM	1397	OE1							1.00 32.05	AAAA
ATOM	1398	OE2	GLU	Α	177	25.471	17.703	49.636		
			GLU			28.160	17.556	54.460	1.00 26.38	AAAA
ATOM	1399								1.00 25.41	AAAA
ATOM	1400	0	GLU	A	177	28.338	16.349	54.595		
			ALA			29.115	18.458	54.659	1.00 27.58	AAAA
MOTA	1401						18.119	55.004	1.00 27.66	- AAAA
ATOM	1402		ALA			30.495				AAAA
	1403	CB	ALA	A ·	178	31.345	19.385	54.994	1.00 26.20	
MOTA						30.713	17.370	56.318	1.00 28.33	AAAA
ATOM	1404		ALA						1.00 29.44	AAAA
MOTA	1405	0	ALA	А	178	31.685	16.626	56.439		
			PHE			29.849	17.564	57.308	1.00 28.25	AAAA
ATOM	1406	N					16.852	58.561	1.00 29.20	AAAA
ATOM	1407	CA	PHE			30.036				AAAA
	1408	CB	PHE	Α	179	30.570	17.794	59.624	1.00 29.35	
MOTA						31.751	18.572	59.171	1.00 30.26	AAAA
MOTA	1409	CG	PHE						1.00 31.01	AAAA
MOTA	1410	CD1	PHE	А	179	31.582	19.777	58.497		
					179	33.033	18.069	59.339	1.00 30.37	AAAA
MOTA	1411							57.993	1.00 31.20	AAAA
MOTA	1412	CE1	PHE	Α	179	32.670			1.00 31.20	
	1413	CE2	PHE	Δ	179	34.133	18.749	58.840	1.00 31.74	AAAA
MOTA								58.161	1.00 31.81	AAAA
ATOM	1414	CZ	PHE			33.950			1.00 30.33	AAAA
ATOM	1415	С	PHE	A	179	28.760	16.180	59.040		
						28.624	15.810	60.215	1.00 31.82	AAAA
MOTA	1416	, O	PHE						1.00 29.18	AAAA
MOTA	1417	N	TYR	Α	180	27.842		58.105		
		CA			180	26.564	15.379	58.389	1.00 28.99	AAAA
MOTA	1418					25.725		57.123	1.00 28.30	AAAA
ATOM	1419	CB			180				1.00 28.27	AAAA
MOTA	1420	CG	TYR	Α	180 .	24.244	15.422	57.384	1.00 28.27	
			TYR			23.392	14.386	57.021	1.00 27.05	AAAA
MOTA	1421							57.197	1.00 28.51	AAAA
ATOM	1422	CE1	TYR	Α	180	22.029			1.00 20.32	AAAA
	1423	CD2	TYR	Α	180	23.686	16.573	57.942	1.00 29.34	
MOTA						22.316		58.125	1.00 29.27	AAAA
MOTA	1424	CE2	TYR	А	190				1.00 29.33	AAAA
ATOM	1425	CZ	TYR	A	180	21.495	15.645	57.746		
		OH	TVD	2	180	20.141	15.775	57.893	1.00 30.83	AAAA
MOTA	1426							58.940	1.00 28.79	AAAA
ATOM	1427	С			180	26.673			1.00 28.71	AAAA
MOTA	1428	0	TYR	A	180	25.877	13.577	59.785		
					181	27.662	13.214	. 58.472	1.00 29.03	AAAA
ATOM	1429	N							1.00 28.49	AAAA
ATOM	1430	CA	ASP	A	181	27.813			1.00 20.49	· AAAA
	1431	CB			181	28.140	10.930	57.715	1.00 27.59	
MOTA						29.548		57.229	1.00 28.82	AAAA
ATOM	1432	ÇG	ASP	A	181				1.00 29.25	AAAA
ATOM	1433	OD1	ASP	Α	181	29:981	. 12 292	57.183	1.00 29.23	
		000	ASP		1 8 1	30.216		56.887	1.00 28.68	AAAA
ATCM	1434		MOP	A	101				1.00 27.67	AAAA
ATOM	1435	С			181	28.863			1 00 27 57	AAAA
	1436	ō			181	29.271	. 10.504	60.293	1.00 27.57	
ATOM			LOF		101	29.308	12.713		1.00 26.27	AAAA
ATCM	1437	N			182				1.00 26.22	AAAA
	1438	CA	THR	A	182	30.284	12.544	61.689	1.00 20.22	
ATOM						31.670		61.317	1.00 25.92	AAAA
ATOM	1439	CB			182					AAAA
ATCM	1440	OG1	THR	A	. 182	32.564	12.935		1.00 25.00	
	1441		THR			31.57	14.594	60.974	1.00 25.25	AAAA
MOTA									1.00 25.87	AAAA
ATOM	1442	C			. 182	29.79				AAAA
	1443	0	THR	٦	182	28.942	14.102		1.00 20.33	
ATOM						30.32			1.00 25.86	AAAA
ATCM	1444	11			183					AAAA
ATOM	1445	CA	ASP	A	183	29.95				AAAA
	1446	CB			183	29.46	3 12.260	66.274		
ATOM						30.51				AAAA
ATCM	1447	CG			183	30.51				AAAA
	1448	נתם	455	- 2	183	31.06	3 10.691			
ATOM						30.78		67.657	1.00 29.21	ĄAAA
ATOM	1449				183					AAAA
ATCM	1450	С	ASP	,	183	31.12				AAAA
	1451	0	200	2	183	31.03	4 14.566			
ATCM						32.22		65.254	1.00 26.05	AAAA
ATCM	1452	N	GLN	P	184	26.66				

238/263

				_	, ,		14 003	65.766	1.00 25.85	AAAA
MOTA	1453		GLN			33.381	14.983	65.095	1.00 26.30	AAAA
ATOM	1454		GLN			34.674	14.510	65.303	1.00 27.42	AAAA
ATOM	1455		GLN			34.920	13.030	64.822	1.00 28.40	AAAA
MOTA	1456		GLN			36.273	12.583	63.709	1.00 30.05	AAAA
ATOM	1457	OE1				36.685	12.905	65.651	1.00 29.24	AAAA
MOTA	1458		GLN			36.970	11.816		1.00 25.24	AAAA
MOTA	1459		GLN			33.159	16.474	65.536	1.00 23.22	AAAA
ATOM	1460		GLN			33.734	17.316	66.220	1.00 25.17	AAAA
ATOM	1461	N	VAL	Α	185	32.290	16.791	64.584		AAAA
ATOM	1462		VAL			31.975	18.182	64.291	1.00 24.49 1.00 23.20	AAAA
ATOM	1463		VAL			32.324	18.563	62.832	1.00 23.20	AAAA
ATOM	1464	CG1	VAL	Α	185	32.045	20.060	62.599	1.00 19.72	AAAA '
ATOM	1465	CG2				33.777	18.205	62.543	1.00 20.87	AAAA
ATOM	1466	C	VAL			30.494	18.421	64.501	1.00 24.81	AAAA
MOTA	1467	0	VAL			29.664	17.787	63.844	1.00 27.07	AAAA
ATOM	1468	N	PHE			30.162	19.311	65.434	1.00 20.31	AAAA
MOTA	1469	CA			186	28.768	19.645	65.684	1.00 20.31	AAAA
ATOM	1470	CB.	PHE			28.513	19.937	67.164	1.00 13.77	AAAA
MOTA	1471	CG	PHE			27.057	20.037	67.500	1.00 13.33	AAAA
ATOM	1472	CD1	PHE	Α	186	26.359	18.918	67.945	1.00 17.70	AAAA
MOTA	1473		PHE			26.358	21.213	67.263	1.00 17.35	AAAA
ATOM	1474		PHE			24.999	18.964	68.147	1.00 17.33	AAAA
ATOM	1475	CE2	PHE			24.997	21.271	67.459	1.00 18.67	AAAA
ATOM	1476	CZ			186	24.308	20.138	67.905	1.00 18.07	AAAA
ATOM	1477	С			186	28.464	20.911	64.895	1.00 19.10	AAAA
MOTA	1478	0			186	29.079	21.940	65.129	1.00 18.34	AAAA
MOTA	1479	N			187	27.520	20.834	63.964	1.00 16.47	AAAA
ATOM	1480	CA			187	27.137	21.993	63.160	1.00 14.30	AAAA
ATOM	1481	CB			187	27.006	21.630	61.655	1.00 10.34	AAAA
ATOM	1482				187	26.628	22.869	60.828	1.00 10.34	AAAA
ATOM	1483	CG2			187	28.314	21.031	61.160	1.00 17.43	AAAA
ATOM	1484	С			187	25.806	22.511	63.665	1.00 17.45	AAAA
MOTA	1485	0	VAL	Α	187	24.852	21.746	63.792 63.960	1.00 18.66	AAAA
ATOM	1486	N			188	25.763	23.809		1.00 10.00	AAAA
MOTA	1487	CA			188	24.555	24.507	64.460 65.914	1.00 21.24	AAAA
MOTA	1488	CB			188	24.752	24.995	66.395	1.00 20.80	AAAA
MOTA	1489	CG			188	23.702	26.019	66.493	1.00 19.77	AAAA
ATOM	1490	CD1	LEU	A	188	22.365	25.323 26.627	67.750	1.00 20.63	AAAA
ATOM	1491				188	24.085	25.735	63.591	1.00 20.41	AAAA
ATOM	1492	С			188	24.297	26.484	63.288	1.00 21.86	AAAA
MOTA	1493	0			188	25.223	25.987	63.233	1.00 19.32	AAAA
MOTA	1494	N			189	23.049 22.786	27.130	62.381	1.00 18.06	AAAA
ATOM	1495	CA			189		26.715	60.906	1.00 18.54	AAAA
MOTA	1496	CB			189	22.970	27.731	59.998	1.00 17.47	AAAA
MOTA	1497	OG			189	22.559		62.554	1.00 17.90	AAAA
MOT A	1498	С	SER	. A	189	21.418	27.051	62.540	1.00 19.54	AAAA
MOLE	1499	0	SER	. A	189	20.404 21.386	29.067	62.722	1.00 16.97	AAAA
A_OM	1500	N			190	20.117	29.772	62.797	1.00 18.49	AAAA
MOTA	1501	CA			190	20.117	30.865	63.886	1.00 17.78	AAAA
ATOM	1502	CB			190		30.600	65.337		AAAA
ATOM	1503	CG	LEU	A	190	20.534	31.406	66.266	1.00 15.50	AAAA
ATOM	1504	CD1	LEU	A	190		29.147	65.686		AAAA
MOTA	1505				190	20.455	30.408	61.416		AAAA
ATOM	1506	С			190	20.111	30.891	60.967		AAAA
MOTA	1507	Ō			190	21.136	30.397	60.736		AAAA
ATOM	1508	N			191	18.975	30.955	59.383	1.00 23.55	AAAA
MOTA	1509	CA			191	18.897	30.933	58.426		AAAA
ATOM	1510	CB			191	19.626	28.597	58.533		AAAA
ATOM	1511	CG			191	19.157		59.009		AAAA
ATOM	1512	CD2	HIS	, A	191	19.770	27.485 23.217	58.217		AAAA
MOTA	1513	ND1	HIS	•	191	17.869	26.217			AAAA
ATOM	1514	CE1	HIS	<i>.</i>	191	17.709				AAAA
MOTA	1515		HIS	, ,	191	18.849	26.467 31.119			AAAA
ATOM	1516				191	17.446				AAAA
ATOM	1517		HIS	5 7	191	16.519	30.658 31.789			АААА
ATOM	1518	N	GLI	Į	192	17.249	31.707			

					^ ^6	544.0				
MOTA	1519	CA	GLN .	A 192		15.899	31.959	57.269	1.00 25.77	AAAA
ATOM	1520	CB	GLN	A 192		15.881	32.896	56.060	1.00 26.51	AAAA
ATOM	1521	CG		A 192		16.467	34.271	56.325	1.00 26.99	AAAA
ATOM	1522	CD		A 192		16.581	35.076	55.062	1.00 27.98	AAAA
	1523			A 192		15.583	35.496	54.493	1.00 30.48	AAAA
ATOM	1524			A 192	•	17.802	35.274	54.595	1.00 29.04	AAAA
ATOM	1525	C		A 192		15.463	30.573	56.832	1.00 25.77	AAAA
	1526	ō		A 192		16.211	29.865	56.169	1.00 26.73	AAAA
-	1527	N		A 193		14.259	30.184	57.214	1.00 25.48	AAAA
MOTA	1528	CA		A 193		13.750	28.877	56.863	1.00 24.51	AAAA
MOTA	1529	CB		A 193		12.288	28.788	57.286	1.00 23.77	AAAA
ATOM	1530	OG		A 193		11.753	27.517	57.010	1.00 24.81	AAAA
ATOM	1531	C		A 193		13.906	28.597	55.361	1.00 24.53	AAAA
MOTA	1531	0		A 193		13.736	29.479	54.522	1.00 22.32	AAAA
ATOM	1533	N .		A 194		14.226	27.348	55.007	1.00 25.69	AAAA
ATOM	1534	CD		A 194		14.411	26.167	55.862	1.00 25.02	AAAA
ATOM	1535	CA		A 194		14.399	26.976	53.604	1.00 27.05	AAAA
MOTA	1536	CB	PRO	A 194 "		14.906	25.535	53.697	1.00 26.30	AAAA
ATOM	1537	CG ·		A 194		15.479	25.466	55.124	1.00 26.44	AAAA
ATOM	1538	C		A 194		13.076	27.057	52.849	1.00 27.79	AAAA
ATOM	1539	0		A 194		13.066	27.057	51.625	1.00 28.82	AAAA
ATOM	1540	N		A 195		11.966	27.133	53.582	1.00 28.29	AAAA
ATOM	1541	CA		A 195		10.656	27.187	52.950	1.00 29.08	AAAA
MOTA	1542	CB		A 195		9.534	27.030	54.001	1.00 31.08	AAAA
ATOM	1542	CG		A 195		9.070	28.294	54.722	1.00 35.07	AAAA
ATOM				A 195		7.850	28.980	54 064	1.00 38.05	AAAA
ATOM	1544	CD OF1		A 195		7.389	30.017	54.601	1.00 38.80	AAAA
MOTA	1545	OFI	CLU	A 195		7.342	28.487	53.024	1.00 39.20	AAAA
ATOM	1546			A 195		10.483	28.471	52.150	1.00 28.05	AAAA
MOTA	1547	C		A 195		9.722	28.512	51.189	1.00 28.57	AAAA
MOTA	1548	0		A 195		11.223	29.510	52.514	1.00 27.39	AAAA
MOTA	1549	N				11.108	30.769	51.802	1.00 25.80	AAAA
MOTA	1550	CA	TYK	A 196 A 196		10.275	31.743	52.645	1.00 24.97	AAAA
MOTA	1551	CB				10.971	32.281	53.868	1.00 23.41	AAAA
MOTA	1552	CG		A 196		11.911	33.306	53.765	1.00 23.99	AAAA
MOTA	1553	CD1		A 196		12.559	33.805	54.892	1.00 23.44	AAAA
MOTA	1554	CE1		A 196		10.697	31.768	55.126	1.00 23.24	AAAA
	1555	CD2	TYK	A 196		11.336	32.256	56.254	1.00 23.93	AAAA
MOTA	1556	CE2		A 196		12.265	33.270	56.133	1.00 24.07	AAAA
MOTA	1557	CZ		A 196		12.913	33.731	57.247	1.00 25.06	AAAA
MOTA	1558	OH	TYR	A 196		12.450	31.406	51.411	1.00 24.97	AAAA
ATOM	1559	Ċ	TYR	A 196		12.475	32.495	50.840	1.00 25.14	AAAA
ATOM	1560	0	TYR	A 196		13.563	30.737	51.686	1.00 23.81	AAAA
ATOM	1561	N	ALA	A 197		14.855	31.330	51.337	1.00 23.32	AAAA
MOTA	1562	CA		A 197		15.350	32.220	52.488	1.00 23.33	AAAA
ATOM	1563	CB		A 197		15.952	30.356	50.957	1.00 22.74	AAAA
ATOM —	1564	C	ALA	A 197		15.951	20.330	.51.37	1.00 22.47	AAAA
ATOM	1565		ALA	A 197		16, 900	30.852	50.16	1.00 23.23	AAAA
MOTA		И	PHE				30.081	49.741	1.00 23.68	AAAA
ATOM	1567	CA	PHE	A 198		18.062		49.069	1.00 23.33	AAAA
MOTA	1568	CB	PHE	A 198	•	19.083	31.006 30.280	48.464	1.00 22.98	AAAA
MOTA	1569	CG	PHE	A 198		20.250		47.203	1.00 22.75	AAAA
MOTA	1570	CD1	PHE	A 198		20.151	29.713	49.175	1.00 23.32	AAAA
MOTA	1571	CD2	PHE	A 198		21.436	30.127		1.00 22.13	AAAA
ATOM	1572	CE1	PHE	A 198		21.207	29.003	46.645 48.622	1.00 22.83	AAAA
ATOM	1573	CE2	PHE	A 198	1	22.512	29.408		1.00 22.55	
MOTA	1574	CZ		A 198	,	22.386	28.849	47.351	1.00 23.69	AAAA
ATOM	1575	С		A 198		18.689	29.490	51.008	1.00 23.09	AAAA
ATOM	1576	0	PHE	A 198		18.802	30.171	52.012	1.00 23.96	AAAA
ATOM	1577	N	PRO	A 199		19.166	28.236	50.954	1.00 24.26	AAAA
MOTA	1578	CD		A 199		19.833	27.639	52.123	1.00 24.20	AAAA
ATOM	1579	CA		A 199		19.199	27.286		1.00 23.30	AAAA
ATOM	1580	CB		A 199		20.163	26.222		1.00 23.30	AAAA
ATOM	1581	CG		A 199		19.797	26.162			AAAA
ATOM	1582	С		A 199		17.885	26.679			AAAA
ATOM	1583	0		A 199		17.866	26.145			AAAA
ATOM	1584	N		A 200		16.811	26.756	50.116	1.00 25.09	MAMA
AION.		,						•		•

240/263

				•		_		40 763	1 00	26.29	AAAA
ATOM	1585	CA .	PHE A	200	15.49			49.763			AAAA
MOTA	1586	CB	PHE A	200	15.00	54		48.340	1.00	25.65	
	1587		PHE A		14.80			48.122		24.65	AAAA
ATOM		CD1	PHE A	200	15.80)6	28.781	47.439		24.42	AAAA
MOTA	1588	CDI	PHE A	200	13.7		28.671	48.608	1.00	23.79	AAAA
MOTA	1589	CD2	PRE A	200	15.6		30.125	47.246	1.00	24.41	AAAA
ATOM_	1590	CEI	PHE A	200	13.5		30.035	48.418	1.00	24.94	AAAA
ATOM	1591	CE2	PHE A	200			30.760	47.738		24.57	AAAA.
ATOM	1592		PHE A		14.4			49.863		28.54	AAAA
ATOM	1593		PHE A		15.4		24.656			28.76	AAAA
ATOM	1594	0	PHE A	200	14.3		24.096	50.251		29.67	AAAA
ATOM	1595	N	GLU A	201	16.4	99	23.981	49.504			
	1596		GLU A		16.5	39	22.528	49.524		31.88	AAAA
MOTA	1597	CB	GLU A	201 .	17.4	34	22.045	48.392-		32.71	AAAA
ATOM			GLU A		16.8	97	22.415	47.017		34.87	AAAA
MOTA	1598		GLU A		17.8		22.147	45.912		35.14	AAAA
ATOM	1599		GLU A		18.2		20.982	45.735		36.09	_ AAAA
ATOM	1600				18.2		23.112	45.221	1.00	36.30	AAAA
ATOM	1601		GLU A		16.9		21.894	50.835	1.00	32.77	AAAA
ATOM	1602	_	GLU A				20.690	51.046	1.00	33.44	AAAA
MOTA	1603	0	GLU A		16.8			51.711		32.31	AAAA
ATOM	1604	N	LYS A	202	17.5		22.690	52.974		32.09	AAAA
ATOM	1605	CA	LYS A	202	18.1		22.168		1.00	33.02	AAAA
ATOM	1606	CB	LYS A	202	19.5		21.750	52.811	1.00	34.95	AAAA
ATOM	1607	CG	LYS A	202	19.8	36	20.847	51.623	1.00	34.33	AAAA
	1608	CD	LYS A	202	21.3	34	20.619	51.436		37.92	
MOTA	1609	CE	LYS A	202	21.6	55	19.804	50.169		39.19	AAAA
ATOM	_	NZ	LYS A	202	23.1		19.522	49.988	1.00	38.58	AAAA
MOTA	1610		LYS A	202	17.9		23.241	54.037		30.85	AAAA
MOTA	1611	C	LYS A	202	17.7		24.389	53.739		30.49	AAAA
ATOM	1612	0	GLY A	202 .	18.2		22.867	55.281	1.00	30.81	AAAA
MOTA	1613	N	GLY A	203	18.1		23.831	56.356	1.00	30.86	AAAA
ATOM	1614	CA	GLY A	203	16.9		23.578	57.280	1.00	30.84	AAAA
MOTA	1615	С	GLY A	203	16.8		24.285	58.272	1.00	31.58	AAAA
MOTA	1616	0	GLY A	203			22.570	56.965		30.54	AAAA
MOTA		N	PHE A	204	16.1		22.241	57.797		30.51	AAAA
MOTA	1618	CA	PHE A		15.0		21.317	57.058		29.06	AAAA
MOTA	1619	CB	PHE A		14.0			55.787		27.13	AAAA
ATOM	1620	CG	PHE A		13.5		21.890	54.601	1 00	26.52	AAAA
ATOM	1621	CD1	PHE A	204	14.		21.762		1.00	26.50	AAAA
MOTA	1622	CD2	PHE A	204	12.		22.548	55.779		26.44	AAAA
ATOM	1623	CE1	PHE A	204	13.		22.276	53.420		26.69	AAAA
MOTA	1624	CE2	PHE A	204	11.		23.069	54.600		25.65	AAAA
MOTA	1625	CZ	PHE A	204	12.	190	22.931	53.416	1.00	30.87	AAAA
ATOM	1626	С	PHE A	204	15.4		21.590	59.127			AAAA
	1627	ō	PHE A		16.	395	20.875	59.228		31.12	AAAA
MOTA	1628	N	LEU A	205	14.	580	21.844	60.139		31.22	AAAA
MOTA	1629	CA	LEU A	205	14.		21.329	61.489	1.00	31.43	
ATOM			LEU A	2.25	13.	575	21.691	62.357	1.00	31.42	AAAA
MOTA	1630	CB	LEU A	115	13.		21.078	63.755	1.00	31.76	AAAA
MOTA	1631	CG	LEU A	235	14.		21.492	64.457	1.00	32.36	AAAA
ATOM	1632	CDI	LEU A	205	12.		21.516	64.536	1.00	31.31	AAAA
MOTA	1633		LEU A	205	15.		19.829	61.625	1.00	31.35	AAAA
MOTA	1634	Č	LEU A	205			19.392	62.546	_	0 31.40	AAAA
MOTA	1635	0	LEU A	. 205	15.		19.059	60.707	1.0	0 31.79	AAAA
ATOM	1636	N	GLU A	. 206	14.			60.706	1 0	0 32.08	AAAA
ATOM	1637	CA	GLU A	206	14.		17.603		1.0	0 33.18	AAAA
MOTA	1638	CB.	GLU A	. 206	13.		17.054		1.0	0 34.20	AAAA
MOTA	1639	CG	GLU A	206	12.		17.651			0 33.44	AAAA
ATOM	1640	CD	GLU A	206	11.		19.136	59.453	1.0	0 33.32	AAAA
	1641	OE1	GLU A	206	10.	854	19,675			0 33.32	AAAA
ATOM	1642	OF	GLU A	206	13.	005	19:777		1.0	0 35.12	
ATOM			GLU A	206		882	17.045			0 32.34	AAAA
MOTA	1643	C	GLU A	206		209	15.909			0 31.83	AAAA
MOTA	1644	0	GLU A	200		680	17.847			0 32.48	AAAA
ATOM	1645		GLU A	207		017	17.431		1.0	0 31.67	AAAA
MOTA	1646		GLU A	207		552	18.385		1.0	0 30.39	AAAA
MOTA	1647		GLU A	207	70.	768			1.0	0 29.63	AAAA
MOTA	1648	CG	GLU A	20/			19.547	56.121		0 30.04	AAAA
ATOM	1649	CD	GLU A	3 207		953	19.991	55.971	1.0	0 30.31	AAAA
ATOM	1650	OE:	1 GLU ?	1 207	19.	108	13.331				•
				•							

241/263

	-		227		16.947	20.070	55.604	1.00 30.76	AAAA
ATOM	1651	OE2	GLU A 207			17.433	60.537	1.00 32.04	AAAA
MOTA	1652	C	GLU A 207		18.879		60.910	1.00 31.57	AAAA
ATOM	1653	0	GLU A 207		19.472	18.448		1.00 32.57	AAAA
ATOM	1654	N	ILE A 208	•	18.935	16.272	61.178		AAAA
ATOM	1655	CA	ILE A 208		19.674	16.111	62.408	1.00 33.37	
	1656	CB	ILE A 208		18.709	15.647	63.519	1.00 33.65	AAAA
MOTA		CD	ILE A 208		19.443	15.380	64.806	1.00 34.11	AAAA
ATOM	1657				17.673	16.742	63.757	1.00 33.94	· AAAA
MOTA	1658		ILE A 208		16.628	16.386	64.794	1.00 37.00	AAAA
MOTA	1659	CD1	ILE A.208			15.174	62.280	1.00 34.00	AAAA
ATOM	1660	C	ILE A 208		20.863		63.265	1.00 34.40	AAAA
ATOM	1661	0	ILE A 208		21.506	14.829		1.00 34.64	AAAA
MOTA	1662	N	GLY A 209		21.177	14.768	61.062	1.00 35.55	AAAA
ATOM	1663	CA	GLY A 209		22.321	13.903	60.913	1.00 35.55	AAAA
	1664	C	GLY A 209		22.164	12.671	60.057	1.00 36.80	
MOTA		Ö	GLY A 209		21.148	12.461	59.400	1.00 37.32	AAAA
ATOM	1665		GLU A 210		23.199	11.836	60.100	1.00 37.78	AAAA
MOTA	1666	N	GLU A 210		23.256	10.621	59.315	1.00 38.04	AAAA
MOTA	1667	CA	GLU A 210		23.600	11.013	57.892	1.00 38.54	AAAA
ATOM	1668	CB	GLU A 210		23.469	9.960	56.858	1.00 38.99	AAAA
MOTA	1669	CG	GLU A 210			10.412	55.580	1.00 40.10	AAAA
MOTA	1670	CD	GLU A 210	•	24.118		55.555	1.00 40.86	AAAA
ATOM	1671	OE1	GLU A 210		25.365	10.437		1.00 40.41	AAAA
MOTA	1672	OE2	GLU A 210		23.396	10.767	54.619	1.00 37.98	AAAA
ATOM	1673	С	GLU A 210		24.377	9.770	59.894		AAAA
	1674	ŏ	GLU A 210		25.498	10.244	60.041	1.00 38.52	
ATOM		N	GLY A 211		24.085	8.517	60.220	1.00 38.02	AAAA
ATOM	1675		GLY A 211		25.116	7.654	60.770	1.00 38.09	AAAA
MOTA	1676	CA	GLY A 211		25.542	8.075	62.164	1.00 38.26	AAAA
MOTA	1677	C	GLI A 211		24.697	8.443	62.977	1.00 37.82	AAAA
MOTA	1678	0	GLY A 211		26.848	8.030	62.434	1.00 38.20	AAAA
ATOM	1679	N	LYS A 212		27.396	8.399	63.743	1.00 37.56	AAAA
MOTA	1680	CA	LYS A 212			8.209	63.766	1.00 38.86	AAAA
ATOM	1681	CB	LYS A 212		28.921		63.385	1.00 40.93	AAAA
ATOM	1682	CG	LYS A 212		29.416	6.810		1.00 42.04	AAAA
ATOM	1683	CD	LYS A 212		29.001	5.746	64.405	1.00 42.80	AAAA
ATOM	1684	CE	LYS A 212		29.251	4.318	63.891		AAAA
	1685	NZ	LYS A 212		30.673	4.002	63.562	1.00 42.32	AAAA
ATOM	1686	C	LYS A 212		27.093	9.859	64.054	1.00 37.08	
ATOM			LYS A 212		27.075	10.269	65.218	1.00 36.94	AAAA
MOTA	1687	0	GLY A 213		26.854	10.636	63.002	1.00 35.41	AAAA
MOTA	1688	N			26.592	12.054	63.170	1.00 34.24	AAAA
MOTA	1689	CA	GLY A 213		25.163	12.438	63.470	1.00 33.27	AAAA
ATOM	1690	С	GLY A 213		24.861	13.611	63.666	1.00 33.29	AAAA
ATOM	1691	0	GLY A 213			11.451	63.512	1.00 31.79	AAAA
MOTA	1692	N	LYS A 214		24.280		63.794	1.00 30.47	AAAA
MOTA	1693	CA	LYS A 214		22.883	11.710	63.737	1.00 30.35	AAAA
ATOM	1694	CB	LYS A 214		22.111	10.396		1.00 30.45	AAAA
MOTA	1695	CG	LYS A 214		20.676	10.552	63.280	1.00 29.75	AAAA
ATOM	1696		LYS A 214		20.141	9.241	62.759	1.00 29.75	AAAA
	1697		LYS A 214		18.737	9.400	62.229	1.00 30.19	AAAA
MOTA			LYS A 214		18.179	8.138		1.00 31.35	
MOTA	1698		LYS A 214		22.778	12.374	65.168	1.00 30.31	AAAA
MOTA	1699		LYS A 214		23.193	11.814		1.00 30.44	AAAA
ATOM	1700		DIO A 444		22.243	13.590		1.00 29.95	AAAA
MOTA	1701		GLY A 215		22.128	14.325		1.00 29.16	AAAA
MOTA	1702	CA	GLY A 215			15.379			AAAA
ATOM	1703	С	GLY A 215		23.222				AAAA
MOTA	1704	. 0	GLY A 215		23.306	16.061			AAAA
ATOM	1705	N	TYR A 216		24.063	15.521			AAAA
MOTA	1706				25.150	16.497			AAAA
	1707				26.516	15.800	65.531		AAAA
MOTA	1708				26.786	14.966			AAAA
MOTA			1 TYR A 216		26.138		66.955		
ATOM	1709		1 TYR A 216		26.311			1.00 30.03	AAAA
ATOM	1710				27.619			1.00 29.71	AAAA
ATOM	1713		2 TYR A 216					1.00 29.96	AAAA
ATOM	1712		2 TYR A 216		27.798		<u>-</u> -		AAAA
ATOM		3 C2	TYR A 216)	27.143				AAAA
ATCM			TYR A 216	5	27.297			40	AAAA
MOTA					25.055				AAAA
ATOM		_	TYR A 216		26.046	18.240	64.243	, 1.00 20.50	•
ATOM									
,									

242/263

					2.2	0.45	17.791	64.076	1.00 2	23.55	AAAA
ATOM	1717	N .	ASN A	A 217		-		63.119	1.00 2	1 52	AAAA
ATOM	1718	CA	ASN A	A 217			18.830				AAAA
	_			A 217	23.		18.282	61.699	1.00 2		
MOTA	1719			A 217		202	19.386	60.669	1.00 2		AAAA
MOTA	1720					089	19.888	60.499	1.00	18.03	AAAA
ATOM	1721	OD1	ASN 7	A 217				60.004	1.00	19 95	AAAA
ATOM	1722	ND2	ASN A	A 217		274	19.790		1.00	11 64	AAAA
	1723	C	NZA	A 217	22.	216	19.346	63.605	1.00	21.04	
MOTA				A 217		263	18.576	63.757	1.00	20.34	AAAA
ATOM	1724	0	ASN .	A 217		165	20.647	63.873	1.00	22.22	AAAA
ATOM	1725	N	LEU .	A 218				64.388	1.00	22.03	AAAA
ATOM	1726	CA	LEU .	A 218		.960	21.282		1.00	20 97	AAAA
	1727	CB	LEU	A 218	21	. 195	21.711	65.840	1.00	20.37	AAAA
MOTA				A 218	20	.051	21.838	66.841	1.00	20.94	
MOTA	1728	CG	- EU	210		.513	22.744	67.936	1.00	20.31	AAAA
ATOM	1729	CDI	LEU	A 218			22.412	66.227	1.00	21.27	AAAA
ATOM	1730	CD2	LEU	A 218		.818		63.547	1.00	22.70	AAAA
ATOM	1731	С	LEU	A 218		. 669	22.513	63.547	1.00	22 64	AAAA
	1732	ō	LEU.	A 218	21	.451	23.454	63.557	1.00	22.04	
MOTA			D CNI	A 219	19	.564	22.491	62.808	1.00	24.00	AAAA
MOTA	1733	N	ASN	210		.166	23.626	61.990	1.00	25.33	AAAA
ATOM	1734	CA	ASN	A 219			23.190	60.614	1.00	26.94	AAAA
ATOM	1735	CB	ASN	A 219		.656		59.749	1 00	26.68	AAAA
	1736	CG	ASN	A 219	19	.737	22.601		1.00	20.00	AAAA
ATOM		001	ΔSM	A 219	20	.812	23.169	59.626	1.00	28.06	
ATOM	1737	001	N CN	A 219		.446	21.471	59.117	1.00	26.26	AAAA
ATOM	1738		ASN	A 219		.046	24.345	62.710	1.00	25.69	AAAA
ATOM	1739	C	ASN	A 219				63.210	1 00	27.51	AAAA
ATOM	1740	0	ASN	A 219		.118	23.706		1 00	25.05	AAAA
	1741	N	ILE	A 220	18	.122	25.667	62.753			AAAA
MOTA		CA	TÌE	A 220	17	.107	26.457	63.428		25.87	
MOTA	1742		T T E	A 220		.733	27.331	64.557	1.00	25.04	AAAA
MOTA	1743	CB	ڪيا ن	A 220		.654	28.152	65.227	1.00	25.24	AAAA
ATOM	1744	CG2	ILE	A 220			26.447	65.584	1.00	24.07	AAAA
MOTA	1745	CG1	ILE	A 220		.460			1 00	22.28	AAAA
	1746	CD1	ILE	A 220		.557	25.502	66.378	1.00	26.20	AAAA
MOTA		C	TLE	A 220	16	.430	27.370	62.414	1.00	26.20	
MOTA	1747		TIE	A 220		.801	28.534	62.265	1.00	25.35	AAAA
MOTA	1748	0	115	A 220		.421	26.850	61.704	1.00	26.70	AAAA
MOTA	1749	N	PRO	A 221			25.501	61.778	1.00	27.17	AAAA
ATOM	1750	CD		A 221		.840			1 00	27.67	AAAA
ATOM	1751	CA	PRO	A 221	14	.706	27.640	60.703	1.00	26.81	AAAA
	_	CB		A 221	13	.771	26.613	60.064	1.00	20.01	
ATOM	1752		DBO	A 221		.473	25.293	60.346	1.00	27.36	AAAA
MOTA	1753	CG	PRO	221		.944	28.763	61.390		28.61	AAAA
MOTA	1754	C	PRO	A 221			28.515	62.363	1.00	29.91	AAAA
MOTA	1755	0	PRO	A 221		3.218			1 00	28.15	AAAA
MOTA	1756	N	LEU	A 222		1.100	29.990	60.900	1.00	28.48	AAAA
	1757	CA	L.E.U	A 222	13	3.408	31:117	61.511	1.00	20.40	AAAA
MOTA			1 511	A 222		1.431	32.041	62.191	1.00	28.69	
MOTA	1758	CB		2 222		5.187	31.394	63.371	1.00	28.67	AAAA
MOTA	1759	CG	LEU	A 222			32.300	63.837	1.00	28.62	AAAA
MOTA	1760	CD1	LEU	A 222	1.0	5.304		64.527	1 00	27.65	AAAA
ATOM	1761	CD2	LEU	A 222	14	4.231	31.106			28.44	AAAA
	1762	C		A 222	1.	2 26	31.882	60.518	1.00	20.44	AAAA
ATOM			t EII	A 222		2.318	31.958	59.325	1.00	27.90	
MOTA	1763	0	220	A 223		113	32.441	61.009	1.00	28.79	AAAA
MOTA	1764	N	PRO	- 223		0.966	32.357	62.410	1.00	29.20	AAAA
ATOM	1765	CD	PRO	A 223				60.227	1.00	29.36	AAAA
MOTA	1766	CA	PRO	A 223		0.437	33.202			28.98	AAAA
	1767	CB	PRO	A 223		9.256	33.287			20.50	AAAA
MOTA			DPA	A 223		9.965	33.502	62.485		28.68	
MOTA	1768		PRO	, , , , , ,		0.890	34.585		1.00	30.15	AAAA
MOTA	1769	С	PRO	A 223			35.152			30.18	AAAA
ATOM	1770	0	PRC	A 223		1.864				30.50	AAAA
ATOM	1771	N	LYS	A 224		0.150	35.112			29.92	
	1772		T.YS	A 224	1	0.398	36.422	58.213		20.52	AAAA
ATOM			tve	A 224		9.491	36.661	57.008		30.57	
MOTA	1773		1112	, , , , , ,		9.588	35.676		1.00	30.06	AAAA
MOTA	1774		LYS	A 224					1.00	30.91	AAAA
MOTA	1775	CD	LYS	A 224		8.640				32.15	AAAA
ATOM	1776		LYS	S A 224		8.575				32.75	AAAA
			7.79	A 224		7.628	35.476			0 20 75	AAAA
MOTA			7 77	A 224	1	0.050		59.260		0 29.75	
MOTA			LI		-	9.308			1.0	0 29.84	AAAA
ATOM			LYS	5 A 224	_				1.0	0 29.39	АААА
ATOM) N	GL:	Y A 225		0.555				0 29.87	AAAA
ATOM			GL:	Y A 225		0.261				0 29.85	AAAA
MOTA			GL'	Y A 225	1	0.809	39.447	61.41	J 1.0		•
- A I I M*I											

		_	CT 1/	x	225		10.371	40.051	62.392	1.00 29.85	AAAA
ATOM	1783		GLY . LEU .				11.775	38.536	61.499	1.00 29.50	AAAA
ATOM	1784	N	LEU .	γ. 	226		12.374	38.175	62.778	1.00 29.80	AAAA
ATOM	1785	CA	LEU .	ν 	226		13.513	37.170	62.570	1.00 28.81	AAAA
MOTA	1786		LEU				14.097	36.514	63.820	1.00 27.29	AAAA
MOTA	1787		LEU .				13.132	35.452	64.275	1.00 26.06	AAAA
ATOM	1788	CDI	LEU .	ν	226		15.455	35.888	63.538	1.00 27.03	AAAA
MOTA	1789.		LEU				12.936	39.428	63.448	1.00 30.68	AAAA
MOTA	1790		LEU				13.636	40:217	62.804	1.00 30.57	AAAA
MOTA	1791		ASN	Δ	227		12.624	39.617	64.729	1.00 31.46	AAAA
MOTA	1792 1793	N CA	ASN				13.139	40.769	65.469	1.00 32.06	AAAA
MOTA		CB	ASN			•	12.012	41.507	66.217	1.00 31.74	AAAA
MOTA	1794 1795	CG	ASN				11.291	40.630	67.234	1.00 32.07	AAAA
ATOM	1796		ASN				11.914	40.017	68.104	1.00 31.61	AAAA
MOTA	1797	ND2	ASN	A	227		9.962	40.592	67.141	1.00 31.59	AAAA
MOTA	1798	C	ASN	Α	227		14.225	40.334	66.444-	1.00 32.45	AAAA
MOTA	1799	Õ	ASN				14.413	39.140	66.688	1.00 32.78	AAAA
ATOM ATOM	1800	N	ASP			·	14.943	41.297	67.002	1.00 33.32	AAAA
ATOM	1801	CA	ASP				16.017	40.976	67.928	1.00 34.75	AAAA
ATOM	1802	CB	ASP				16.508	42.233	68.654	1.00 36.77	AAAA AAAA
ATOM	1803	CG	ASP				17.154	43.238	67.714	1.00 37.28	AAAA
MOTA	1804	OD1	ASP	Α	228		17.662	42.816	66.652	1.00 37.78	AAAA
ATOM	1805	OD2	ASP	Α	228		17.180	44.443	68.054	1.00 37.21	AAAA
ATOM	1806	С	ASP	Α	228		15.707	39.892	68.964	1.00 34.93 1.00 36.92	AAAA
ATOM	1807	0	ASP				16.448	38.919	69.056	1.00 38.92	AAAA
ATOM	1808	N	ASN				14.635	40.054	69.741	1.00 33.90	AAAA
ATOM	1809	CA	ASN	Α	229		14.268	39.079	70.775	1.00 33.01	AAAA
ATOM	1810	CB	ASN				12.965	39.481	71.455 72.369	1.00 34.04	AAAA
ATOM	1811	CG	ASN				13.131	40.663	73.405	1.00 34.25	AAAA
ATOM -	1812	OD1	ASN	A	229		13.783	40.564 41.797	71.988	1.00 34.05	AAAA
MOTA	1813		ASN	A	229		12.550	37.656	70.276	1.00 32.98	AAAA
MOTA	1814	С	ASN	A	229		14.114 14.529	36.697	70.944	1.00 32.77	AAAA
MOTA	1815	0	ASN				13.496	37.523	69.108	1.00 32.02	AAAA
ATOM	1816	N			230		13.277	36.227	68.516	1.00 30.72	AAAA
MOTA	1817	CA			230 230		12.399	36.375	67.272	1.00 31.38	AAAA
ATOM	1818	CB			230		11.006	36.896	67.583	1.00 31.02	AAAA
ATOM	1819	CG CD			230		10.175	37.187	66.350	1.00 31.52	AAAA
MOTA	1820 1821		GLU				10.644	37.970	65.497	1.00 31.89	AAAA
MOTA	1822		GLU				9.047	36.655	66.241	1.00 31.04	AAAA
ATOM	1823	C	GLU	A	230		14.628	35.622	68.180	1.00 30.79	AAAA
ATOM ATOM	1824	õ	GLU	A	230		14.905	34.465	68.512	1.00 31.05	AAAA
ATOM	1825	N	PHE	A	231	•	15.490	36.412	67.553	1.00 30.05	AAAA AAAA
MOTA	1826	CA			231		16.811	35.920	67.191	1.00 28.94	AAAA
ATOM	1827	CB	PHE	Α	231		17.632	37.015	66.528	1.00 29.33	AAAA
ATOM	1828	CĠ	PHE	Α	231		18.949	36.537	65.972	1.00 28.79 1.00 28.93	AAAA
MOTA	1829	CD1	PHE	Α	231		18.982	35.585	64.957	1.00 28.55	AAAA
ATOM	1830	CD2	PHE	A	231		20.152	37.067	66.436	1.00 28.32	AAAA
MOTA	1831	CE1	PHE	A	231		20.195	35.160	64.397 65.888	1.00 28.97	AAAA
ATOM	1832	CE2	PHE	A	231		21.376	36.657	64.860		AAAA
MOTA	1833	CZ			231		21.397	35.695	68.413	1.00 28.25	AAAA
ATOM	1834	С	PHE	A	. 231		17.559		68.485		AAAA
MOTA	1835	0	PHE	A	231		17.999	36.329	69.384		AAAA
ATOM	1836	N			232		17.691		70.590		AAAA
ATOM	1837	CA			232		18.425		71.484	1.00 28.16	AAAA
MOTA	1838	CB			232		18.521 19.220		70.747		AAAA
MOTA	1839	CG	LEU	A	232		19.220		71.587		AAAA
ATOM	1840	CDI	LEU	, A	232		20.639				AAAA
ATOM	1841		LEU	<u>ج</u> -	232		17.815				AAAA
ATOM	1842	C	ĿΕU	ڊر د	232		18.526			1.00 27.92	AAAA
ATOM	1843		LEU	تر ج	232 233		16.495			1.00 28.81	AAAA
ATCM	1844		PHE	نو •	233		15.786			1.00 30.27	AAAA
ATOM	1845		PHE	, ,	233		14.278			1.00 31.51	AAAA
ATOM	1846				233		13.465			1.00 32.38	AAAA
ATOM	1847		rnt Put	, ,	A 233		13.257				AAAA
ATOM	1948	CD.	· Luc		. 233				•		•

	1040	CD2	PHE A	233	12.928	31.741	71.467	1.00 33.51	AAAA
MOTA	1849		PHE A	233	12.518	31.537	74.201	1.00 35.10	AAAA
ATOM	1850				12.193	30.677	71.975	1.00 34.21	AAAA
ATOM	1851		PHE A		11.986	30.572	73.344	1.00 35.23	AAAA
ATOM	1852	CZ	PHE A			32.301	71.483	1.00 30.55	AAAA
ATOM	1853	С	PHE A		16.219		72.280	1.00 30.65	AAAA
ATOM -	1854	0	PHE A	233	16.438	31.391		1.00 30.21	AAAA
ATOM	1855	N	ALA A	234	16.317	32.151	70.165		AAAA
	1856	CA	ALA A	234	16.698	30.892	69.549	1.00 28.97	
MOTA	1857	СВ	ALA A		16.398	30.942	68.065	1.00 30.40	AAAA
MOTA		C	ALA A		18.169	30.571	69.761	1.00 28.27	AAAA
MOTA	1858		ALA A		18.564	29.401	69.830	1.00 26.69	AAAA
MOTA	1859	0	LEU ?	2 225	18.978	31.614	69.855	1.00 27.56	AAAA
MOTA	1860	N	LEU A	1,233	20.402	31.427	70.055-	1.00 29.17	AAAA
MOTA	1861	CA	LEU A		21.126	32.767	69.989	1.00 29.04	AAAA
ATOM	1862	CB	LEU A	1 235		32.757	69.378	1.00 28.54	AAAA
ATOM	1863	CG	LEU A		22.527		70.058	1.00 27.05	- AAAA
MOTA	1864	CD1	LEU A	A 235	23.350	33.837	69.558	1.00 27.21	AAAA
ATOM	1865	CD2	LEU A	A 235	23.182	31.408		1.00 30.99	AAAA
ATOM	1866	С	LEU 2	A 235	20.637	30.799	71.429	1.00 30.55	AAAA
MOTA	1867	0	LEU A	A 235	21.159	29.697	71.547		AAAA
	1868	N		A 236	20.242	31.514	72.471	1.00 31.88	AAAA
MOTA	1869	CA		A 236	20.409	31.042	73.838	1.00 32.99	
ATOM		CB		A 236	19.689	31.990	74.790	1.00 34.63	AAAA
MOTA	1870			A 236	19.980	33.449	74.531	1.00 36.79	AAAA
ATOM	1871	CG		A 236	19.044	34.360	75.294	1.00 38.99	AAAA
MOTA	1872	CD	GLU A	A 230	17.803	34.303	75.070	1.00 39.03	AAAA
ATOM	1873	OE1	GLU .	A 230	19.559	35.132	76.126	1.00 41.56	AAAA
ATOM	1874		GLU .	A 236	19.806	29.656	73.982	1.00 32.94	AAAA
MOTA	1875	С		A 236		28.753	74.595	1.00 31.76	AAAA
ATOM	1876	0	GLU .	A 236	20.379		73.399	1.00 32.83	AAAA
MOTA	1877	Ŋ	LYS	A 237	18.631	29.503	73.471	1.00 33.59	AAAA
ATOM	1878	CA	LYS	A 237	17.906	28.256		1.00 35.00	AAAA
MOTA	1879	CB	LYS	A 237	16.504	28.506	72.942	1.00 35.60	AAAA
ATOM	1880	ĊĠ	LYS	A 237	15.516	27.436	73.213	1.00 30.09	AAAA
	1881	CD	LYS	A 237	14.310	28.008	73.940	1.00 38.53	AAAA
MOTA	1882	CE	LYS	A 237	14.636	28.331	75.392	1.00 39.27	
ATOM		NZ	LVS	A 237	13.398	28.531	76.204	1.00 39.42	AAAA
MOTA	1883		TVC	A 237	18.619	27.129	72.707	1.00 33.14	AAAA
ATOM	1884	C	TVC.	A 237	18.850	26.051	73.260	1.00 33.29	AAAA
MOTA	1885	0		A 238	18.985	27.374	71.452	1.00 32.13	AAAA
MOTA	1886	N	SER	M 230	19.671	26.345	70.685	1.00 31.25	AAAA
MOTA	1887	CA	SER	A 238	19.740	26.717	69.194	1.00 30.52	AAAA
MOTA	1888	CB	SER	A 238	20.544	27.851	68.970	1.00 29.95	AAAA
MOTA	1889	OG	SER	A 238		26.064	71.236	1.00 31.21	AAAA
MOTA	1890	С	SER	A 238	21.075	24.929	71.169	1.00 30.06	AAAA
MOTA	1891	. 0	SER	A 238	21.556	-	71.782	1.00 31.71	AAAA
MOTA	1892	N	LEU	A 239	21.740		72.351	1.00 33.47	AAAA
ATOM	1893	CA	LEU	A 239	23.070		72.331	1.00 31.25	AAAA
ATOM	1894	CB	LEU	A 239	23.698			1.00 29.80	AAAA
ATOM	1895	CG	LEU	A 239	23.988		71.977	1.00 29.00	AAAA
MOTA	1896	CDI	LEU	A 239	24.589		72.787	1.00 29.05	AAAA
	1897	CD	LEU	A 239	24.919	28.903	70.872	1.00 29.36	
MOTA	1898	c	UEU	A 239	22.933	25.839		1.00 35.41	AAAA
MOTA		ō	TEII	A 239	23.812		73.735	1.00 36.25	AAAA
MOTA	1899			A 240	21.816			1.00 37.34	AAAA
MOTA	1900			A 240	21.594			1.00 39.39	AAAA
MOTA	1901	CA			20.281			1.00 41.90	AAAA
MOTA	1902		GLU	A 240	20.040				AAAA
MOTA	1903	CG		A 240	19.665				AAAA
ATOM	1904			A 240					AAAA
ATOM	1905	OE:		A 240	18.670				AAAA
ATOM	1906	OE:		A 240	20.364				AAAA
ATOM	1907			A 240	21.583				AAAA
MOTA	1908		GLU	A 240	22.224				AAAA
	1909		ILE	A 241	20.847				AAAA
ATOM	1910		TI.E	A 241	20.75	21.95			
ATCM				A 241	19.91	21.994			AAAA
MOTA	1911			A 241	19.85		71.287		AAAA
MOTA			1 77 7	A 241	18.50			1.00 41.45	AAAA
MOTA	/		1 115	. A 444 A 2/11	17.64				AAAA
MOTA	1914	CD.	שעוו די	A 241	1,.04		•		•
	•		•						

			•		50 003	1.00 41.66	AAAA
> mov	1915 C	ILE A 24	11 22.1	59 21.424	,		
MOTA		ILE A 24	22.4	45 20.229		1.00 42.10	AAAA
MOTA	1916 0	105 2 24	· -		72.432	1.00 41.42	AAAA
MOTA	1917 N	VAL A 24	-			1.00 41.23	AAAA
ATOM	1918 CA				71.351	1.00 40.40	AAAA
ATOM	1919 CE	VAL A 24	25.0				AAAA
	1920 CC	1 VAL A 24	42 26.5	56 22.850	71.171	1.00 39.25	
MOTA		2 VAL A 24	24.4	38 23.384	70.004	1.00 39.79	AAAA
ATOM					73.298	1.00 42.67	AAAA
MOTA	1922 C	VAL A 24	••		73.316	1.00 41.83	AAAA
MOTA	1923 0	VAL A 24	42 25.8			1.00 44.41	AAAA
MOTA	1924 N	LYS A 24	43 25.1		74.318		AAAA
	1925 C		43 25.9	72 22.215	75.523	1.00 46.51	
ATOM					76.522	1.00 47.29	AAAA
ATOM	1926 CI		• •		77.564	1.00 48.40	AAAA
MOTA	1927 C	LYS A 2	-		78.823	1.00 48.88	AAAA
MOTA	1928 CI				78.380	1.00 49.62	AAAA
ATOM	1929 C	E LYS A 2	43 26.3			1.00 50.11	AAAA
	1930 N		43 25.9		79.505	1.00 30.11	AAAA
ATOM			43 25.6	539 20.891	76.209	1.00 47.59	
MOTA			43 26.5	37 20.216	76.711	1.00 48.17	AAAA
ATOM	1932 0	LIS A 4			76.237	1.00 48.86	AAAA
ATOM	1933 N	GLU A 2			76.877	1.00 50.82	AAAA
MOTA	1934 C.	A GLU A 2			77.103	1.00 52.08	AAAA
MOTA	1935 C	B GLU A 2	44 22.4			1.00 53.82	AAAA
	1936 C				77.829	1.00 53.02	AAAA
ATOM		D GLU A 2		359 20.174	78.230	1.00 54.49	
ATOM			· • •		78.595	1.00 55.15	AAAA
MOTA		E1 GLU A 2			78.200	1.00 54.98	AAAA
ATOM		E2 GLU A 2			76.033	1.00 51.06	AAAA
MOTA	1940 C	GLU A 2			76.477	1.00 51.68	AAAA
ATOM	1941 0	GLU A 2	24.			1.00 51.12	AAAA
MOTA	1942 N	VAL A 2	245 . 24.		74.820	1.00 51.12	AAAA
		A VAL A 2	245 25.		73.904	1.00 50.08	AAAA
MOTA		B VAL A 2	245 24.	217 17.263	72.677	1.00 50.22	
MOTA		G1 VAL A 2			71.651	1.00 51.07	AAAA
ATOM		GI VAL A 2			73.118	1.00 50.79	AAAA
ATOM		G2 VAL A 2			73.397	1.00 49.43	AAAA
ATOM	1947 C	VAL A 2		- · · -	72.917	1.00 48.65	AAAA
ATOM	1948	VAL A 2	245 27.		73.522	1.00 48.65	AAAA
ATOM	1949 N	I PHE A 2		220 18.408		1.00 47.97	AAAA
		A PHE A 2	246 28.	556 18.552	72.982	1.00 47.37	AAAA
MOTA		B PHE A	246 28.	420 19.212	71.607	1.00 46.45	AAAA
MOTA				553 18.932	70.671	1.00 45.35	
MOTA		G PHE A		841 17.629	70.280	1.00 44.13	AAAA
ATOM		D1 PHE A	 -	291 19.972		1:00 44.40	AAAA
MOTA	1954	D2 PHE A				1.00 43.95	AAAA
ATOM	1955 (CE1 PHE A				1.00 43.47	AAAA
ATOM	1956	CE2 PHE A		292 19.721		1.00 44.05	AAAA
MOTA		Z PHE A	246 31.	566 18.422		1.00 49.60	AAAA
		PHE A		481 19.383		1.00 48.60	AAAA
MOTA			246 29.	132 20.501	74.239	1.00 49.59	
MOTA				647 18.834		1.00 48.69	AAAA
MOTA	1300	M GLU A		644 19.578		1.00 49.45	AAAA
ATOM.	. 1961 (CA GLU A				1.00 51.91	AAAA
MOTA	1962	CB GLU A				1.00 54.39	AAAA
ATOM	1963	CG GLU A		.257 18.659		1.00 57.34	AAAA
-		CD GLU A		.986 17.845			AAAA
MOTA		OE1 GLU A		.100 18.315	76.393	1.00 58.48	
ATOM				.877 16.725	77.702	1.00 57.95	AAAA
MOTA				.807 19.903		1.00 47.39	AAAA
MOTA	1967	C GLU A					AAAA
MOTA	1968	O GLU A	'				AAAA
MOTA	1969	n PRO A	2.0	• •	_		AAAA
		CD PRO A	248 31	.651 22.03			AAAA
MOTA		CA PRO A		.710 21.61			AAAA
MOTA				.063 22.94	8 72.01 7		
ATOM		CB PRO A	• • •	.604 22.66	1 72.178	1.00 46.28	AAAA
MOTA		CG PRO A	2-10	.155 21.81		1.00 44.29	AAAA
MOTA	1974	C PRO A					AAAA
MOTA		O PRO A					аааа
MOTA		N GLU A		.100 21.36			AAAA
		CA GLU A	249 37	.522 21.52			AAAA
ATOM		CB GLU A		.344 20.46			AAAA
ATOM				.960 19.03		1.00 41.32	
ATOM		CG GLU A		.825 18.00			AAAA
ATOM	1980	CD GLU A	449 30	.525 10.00			•

					20 071	10 017	69.996	1.00 41.55	AAAA
ATOM	1981	OE1	GLU A	249	38.871	18.017		1.00 42.49	AAAA
ATOM	1982	OE2	GLU A	249	39.462	17.187	71.926		
	1983	C	GLU A		37.840	22.873	71.718	1.00 38.81	AAAA
ATOM					38.715	23.617	72.181	1.00 38.27	AAAA
MOTA	1984	0	GLU A				70.644	1.00 36.60	AAAA
MOTA	1985	N	VAL A		37.109	23.160		1.00 34.20	AAAA
ATOM	1986	CA	VAL A	250	37.242	24.402	69.890		
		CB	VAL A	250	38.379	24.321	68.862	1.00 33.73	AAAA
MOTA	1987				38.085	23.209	67.864	1.00 33.26	AAAA
ATOM	1988		VAL A					1.00 33.75	AAAA
ATOM	1989	CG2	VAL A	1, 250	38.546	25.678	68.153		AAAA
	1990	С	VAL A		35.945	24.617	69.130	1.00 31.98	
ATOM			VAL A		35.205	23.658	68.904	1.00 32.36	AAAA
MOTA	1991	0				25.863	68.760	1.00 28.65	AAAA
ATOM	1992	N	TYR A	1 251	35.657			1.00 26.49	AAAA
ATOM	1993	CA	TYR A	251	34.449	26.150	67.991		-
	1994	CB	TYR A		33.241	26.442	68.906	1.00 24.32	AAAA
-			TYR A		33.193	27.853	69.465	1.00 22.96	AAAA
MOTA	1995	CG				28.931	68.668	1.00 22.21	AAAA
ATOM	1996	CD1			32.771			1.00 21.29	AAAA
ATOM	1997	CE1	TYR A	A 251	32 <i>.</i> 791	30.234	69.151	1.00 21.29	
		CD2	TYR A		33.628	28.124	70.771	1.00 21.47	AAAA
MOTA	1998				33.651	29.425	71.265	1.00 20.80	AAAA
MOTA	1999	CE2	TYR A					1.00 20.77	AAAA
ATOM	2000	CZ		A 251	33.237	30.475	70.449		AAAA
ATOM	2001	OH	TYR	A 251	33.309	31.768	70.913	1.00 21.41	
-				A 251	34.691	27.345	67.092	1.00 24.59	AAAA
ATOM	2002	С			35.504	28.216	67.410	1.00 25.87	AAAA
ATOM	2003	0		A 251				1.00 22.49	AAAA
MOTA	2004	N	LEU A	A 252	33.984	27.374	65.970		AAAA
	2005	CA	LEU	A 252	34.082	28.482	65.045	1.00 20.96	
MOTA			7 511	A 252	34.523	28.018	63.657	1.00 21.31	AAAA
MOTA	2006	CB			35.940	27,472	63.556	1.00 21.03	AAAA
MOTA	2007	CG		A 252				1.00 22.16	AAAA
MOTA	2008	CD1	LEU A	A 252	35.947	26.028	63.977		
	2009	CD3	LEU A	A 252	36.440	27.594	62.143	1.00 22.13	AAAA
ATOM	-		T ETT	A 252	32.731	29.159	64.959	1.00 19.60	AAAA
MOTA	2010	С				28.523	65.070	1.00 19.95	AAAA
ATOM	2011	0	LEU .	A 252	31.689				AAAA
ATOM	2012	N	LEU .	A 253	32.748	30.461	64.756	1.00 17.93	
	2013	CA	LEII	A 253	31.521	31.222	64.675	1.00 17.33	AAAA
MOTA				A 253	31.441	32.142	65.900	1.00 16.31	AAAA
ATOM	2014	CB				33.070	66.153	1.00 15.81	AAAA
MOTA	2015	CG		A 253	30.266			1.00 14.74	AAAA
ATOM	2016	CDI	LEU	A 253	28.990	32.267	66.377		
	2017	CD3	LEU	A 253	30.602	33.925	67.368	1.00 15.83	AAAA
ATOM				A 253	31.564	32.035	63.386	1.00 16.60	AAAA
MOTA	2018	C				32.722	63.132	1.00 16.40	AAAA
ATOM	2019	0		A 253	32.548			1.00 15.88	AAAA
ATOM	2020	N	GLN	A 254	30.526	31.936	62.557		
	2021	CA		A 254	30.507	32.716	61.328	1.00 16.27	AAAA
MOTA				A 254	30.045	31.881	60.121	1.00 15.88	AAAA
MOTA	2022	CB				32.048	59.734	1.00 18.52	AAAA
ATOM	2023	ÇG		A 254	28.587			1.00 17.54	AAAA
ATOM	2024	CD	GLN	A 254	28.380	32.935	58.519		
	2025	OFI	CI.N	A 254	28.714	32.572	57.391	1.00 15.89	AAAA
ATOM					27.828	34.103	58.750	1 00 18.49	AAAA
MOTA	2026	NE2	GLN	A 234			61.650	1 00 16.91	AAAA
MOTA	2027	С	GLN	A 254	29.527	33.825	62.000	1 00 17.41	AAAA
ATOM	2028	0	GLN	A 254	28.450	33.571	62.198	1 70 17.41	
			TETT	A 255	29.911	35.053	61.319	1.00 16.68	AAAA
ATOM	2029	N	1,50	222	29.102	36.215	61.619	1.00 16.42	AAAA
ATOM	2030	CA	LEU	A 255					AAAA
MOTA	2031	CB	LEU	A 255	29.861	37.080			AAAA
	2032	CG	T.EU	A 255	30.269	36.301	63.860	1.00 13.90	
MOTA		CD1	1 211	A 255	31.494	36.924	64.515	1.00 12.24	AAAA
MOTA	2033	CDI	LEU	255		36.202	64.774	1.00 12.80	AAAA
MOTA	2034	CD2	LEU	A 255	29.083			1.00 18.32	AAAA
MOTA	2035	С	LEU	A 255	28.699	37.048		1.00 10.52	AAAA
	2036	ō		A 255	29.170	38.177		1.00 17.59	
ATOM			CT 17	A 256	27.813	36.482		1.00 19.75	AAAA
MOTA	2037	N	لابلق	A 230		37.188		1.00 20.77	AAAA
ATOM	2038	CA		A 256	27.322			1.00 21.73	AAAA
ATOM	2039	С	GLY	A 256	26.422	38.302			
				A 256	25.642	3ø.096	59.857	1.00 21.38	AAAA
MOTA	2040	0		. 250	26.528	39.485			AAAA
ATOM	2041	N		A 257					AAAA
ATOM	2042	CA	THR	A 257	25.721	40.622			AAAA
	2043	CB	THR	A 257	26.460	41.968			
MOTA			ייייין ו	A 257	26.729	42.169		1.00 25.54	AAAA
MOTA	2044		7 1111	A 257	27.780	41.985			AAAA
MOTA	2045	CG:	2 THR	A 257					AAAA
MOTA	2046	С	THR	A 257	24.438	40.691	. 3/.340	1.00 22.07	•
									-

	2017	_	THR A	257	23.692	41.672		1.00 25.84	AAAA
MOTA		0	ASP A	25.	24.152	39.665		1.00 25.18	AAAA
ATOM		N	ASP A	250	22.935	39.753	56.379	1.00 26.18	AAAA
MOTA	2049	CA	ASP A	258		38.830	55.149	1.00 25.52	AAAA
ATOM	2050	CB	ASP A	258	22.950		55.494	1.00 26.33	AAAA
ATOM	2051	CG	ASP A	258	23.211	37.392		1.00 26.74	AAAA
ATOM	2052	C	ASP A	258	21.649	39:574	57.178		AAAA
		o	ASP A	258	20.571	39.823	56.643	1.00 26.57	
ATOM	2053.	001	ASP A	258	23.014	37.029	56.675	1.00 26.85	AAAA
MOTA		ODI	ASP A	250	23.585	36:623	54.572	1.00 24.06	AAAA
MOTA	_		ASP A	250	21.727	39.114	58.449	1.00 26.95	AAAA
MOTA	2056	n	PRO A	. 259		38.589	59.271	1.00 27.34	AAAA
MOTA	2057	CD	PRO A	. 259 -	22.834		59.190	1.00 27.05	AAAA
MOTA	2058	CA	PRO A	259	20.467	38.976		1.00 26.38	AAAA
ATOM	2059	CB	PRO A	259	20.886	38.186	60.425		AAAA
	2060	CG	PRO A	259	22.247	38.718	60.669	1.00 27.84	
MOTA	_	C	PRO A	259	19.914	40.365	59.543	1.00 27.32	AAAA
MOTA	2061		PRO A	250	18.739	40.510	59.871-	1.00 27.29	AAAA
MOTA	2062	0			20.771	41.383	59.452	1.00 26.97	AAAA
MOTA	2063	N	LEU A	260	20.389	42.763	59.752	1.00 26.74	AAAA
MOTA	2064	CA	LEU A	1 260		43.680	59.680	1.00 27.21	AAAA
MOTA	2065	CB	LEU A	A 260	21.621		60.709	1.00 27.01	AAAA
ATOM	2066	CG	LEU A	3 260	22.732	43.465		1.00 25.51	AAAA
ATOM	2067	CD1	LEU A	A 260	23.889	44.380	60.408	1.00 27.39	AAAA
	2068	CD2	LEU A	A 260	22.189	43.718	62.112	1.00 27.39	AAAA
ATOM		C	TEII :	A 260	19.295	43.351	58.865	1.00 26.47	
MOTA	2069		7 577	A 260	19.278	43.137	57.649	1.00 26.72	AAAA
MOTA	2070	0	LEU A	200	18.413	44.126	59.494	1.00 26.32	AAAA
MOTA	2071	N	LEU	A 261	17.283	44.808	58.846	1.00 27.20	AAAA
MOTA	2072	CA		A 261	_	45.885	59.780	1.00 28.71	AAAA
MOTA	2073	CB		A 261	16.732		59.190	1.00 29.24	AAAA
ATOM	2074	CG	LEU .	A 261 .	15.644	46.789	58.883	1.00 29.44	AAAA
ATOM	2075	CD1	LEU 2	A 261	14.433	45.954		1.00 29.72	AAAA
ATOM -	2076	CD2	LEU .	A 261	15.284	47.906	60.162		AAAA
	2077	C	LEU	A 261	17.506		57.473	1.00 27.90	AAAA
ATOM			T EII	A 261	16.675	45.294		1.00 28.21	
MOTA	2078	0	CIII	A 262	18.597		57.310	1.00 27.61	AAAA
MOTA	2079	N	GLU	A 202	18.887			1.00 26.92	AAAA
MOTA	2080	CA	GLU	A 262 ·	19.949			1.00 25.85	AAAA
ATOM	2081	CB	GLU	A 262				1.00 25.36	AAAA
ATOM	2082	CG	GLU	A 262	19.549	49.119		1.00 25.78	AAAA
ATOM	2083	CD	GLU	A 262	19.552			1.00 24.64	AAAA
ATOM	2084	OE1	GLU	A 262	19.859			1.00 25.82	AAAA
	2085	OE2	GLU	A 262	19.255				AAAA
MOTA	2086	C	GLII	A 262	19.346	45.995			AAAA
MOTA				A 262	19.354			1.00 28.70	
MOTA	2087	0		A 263	19.743		55.179	1.00 29.57	AAAA
MOTA	2088	N	ASP	A 263	20.23		54.145	1.00 28.99	AAAA
ATOM	2089	CA	ASP	A 203	21.160	42.802		1.00 27.89	AAAA
MOTA	2090	CB	ASP	A 263	21.98			1.00 29.02	AAAA
MOTA	2091	CG	ASP	A 263					AAAA
MOTA	2092	OD1	LASP	A 263	23.19				AAAA
ATOM	2093	OD2	2 ASP	A 263	21.43	8 41.663			AAAA
MOTA	2094	С	ASP	A 263	19.06	6 43.19			AAAA
	2095	ō	ASP	A 263	18.25	8 42.510	54.043		AAAA
MOTA			TVD	A 264	19.00				
MOTA	2096	N	MAD	A 264	17.92		B 51.306	1.00 32.43	AAAA
ATOM	2097	CA	TIK	A 204	17.91			1.00 34.53	AAAA
MOTA	2098	CB	TYR	A 264		·			AAAA
MOTA	2099	CG	TYR	A 264	17.62				AAAA
ATOM	2100	CD:	1 TYR	A 264	18.66				AAAA
ATOM	2101	CE	1 TYR	A 264	18.40				AAAA
MOTA	2102	CD	2 TYR	A 264	16.31	6 45.51			AAAA
	_	CE		A 264	16.04	4 46.87	7 50.191	1.00 41.50	AAAA
MOTA			TVE	A 264	17.09	5 47.78	6 50.170	1.00 42.75	
MOTA			* 7 17	A 264	16.83		7 50.231		AAAA
MOTA			TYK	7 204	17.89			1.00 32.50	AAAA
ATOM			TYR	A 264				3 1.00 32.49	AAAA
ATOM	2107		TYR	A 264	16.81				AAAA
ATOM		11	LEU	A 265	19.06		-		AAAA
ATOM			LEU	A 265	19.12				AAAA
			LEU	A 265	20.52				AAAA
ATOM			וות.ו	A 265	20.80				AAAA
ATOM			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A 265	22.21		8 48.77	1 1.00 31.59	AAAA
ATOM	1 2112		اعد بدر	7 200	3		-		•
•									

							20 166	48.361	1.00 34.62	AAAA
ATOM	2113	CD2	LEU A	265		19.803	38.166			
		Ç	LEU F	265		18.693	38.540	52.296	1.00 30.33	AAAA
MOTA	2114	•				19.024	37.375	52.484	1.00 30.30	AAAA
ATOM	2115	0	LEU A						1.00 29.23	AAAA
	2116	N	SER A	266		17.945	39.230	53.147		
MOTA		-	CER 7	266		17.434	38.649	54.371	1.00 29.72	AAAA ,
ATOM	2117	CA	SER A	200			38.894	55.519	1.00 32.09	AAAA
ATOM -	2118	CB	SER A	266		18.398				AAAA
		OG	SER A	266		17.728	38.810	56.771	1.00 33.43	
MOTA	2119					16.115	39.290	54.698	1.00 28.71	ÀAAA
MOTA	2120	С	SER A	4 266					1.00 29.67	AAAA
	2121	0	SER A	A 266		15.924	40.473	54.444		
MOTA			- 110	A 267		15.209	38.517	55.276	1.00 27.82	AAAA
MOTA	2122	N	LID A	4 207				55.654	1.00 27.56	AAAA
ATOM	2123	CA	LYS A	A 267		13.908	39.045	_		AAAA
			TVC	A .267		12.821	38.076	55.222	1.00 28.75	
MOTA	2124	CB	D13 2	. 267	-	12.733	37 922	53.718 ⁻	1.00 29.67	AAAA
ATOM	2125	ÇG	LYS	A 267					1.00 30.13	AAAA
	2126	CD	LYS A	A 267		12.343	39.223	53.053	1.00 30.13	
MOTA			TVC	A 267		12.303	39.036	51.546	1.00 31.86	AAAA
ATOM	2127	CE	LID 4	A 207			40.252	50.843	1.00 33.92	- AAAA
ATOM	2128	ΝZ	LYS 2	A 267		11.796			1.00 27.18	AAAA
	2129	С	LVS	A 267		13.800	39.327	57.152	1.00 27.18	
ATOM				267		12.707	39.591	57.665	1.00 27.18	AAAA
ATOM	2130	0	LYS .	A 267				57.836	1.00 26.12	AAAA
	2131	N	PHE .	A 268		14.944	39.267		1.00 20.12	AAAA
MOTA			DUE	A 268		15.048	39.532	59.271	1.00 25.72	
ATOM	2132	CA	PRE	- 200		16.272	38.830	59.856	1.00 24.94	AAAA
ATOM	2133	CB	PHE	A 268					1.00 25.07	AAAA
	2134	CG	PHE	A 268		16.167	37.334	59.896		
MOTA						17.271	36.565	60.267	1.00 24.56	AAAA
MOTA	2135	CD1	PHE	A 268				59.629	1.00 23.76	AAAA
ATOM	2136	CD2	PHE	A 268		14.955	36.687		1.00 23 71	AAAA
		CE1	DUE	A 268		17.174	35.169	60.384	1.00 23.71	
MOTA	2137	CEL	Pnb	200		14.850	35.303	59.739	1.00 23.86	AAAA
ATOM	2138	CE2	PHE	A 268					1.00 23.68	AAAA
	2139	CZ	PHE	A 268		15.966	34.542	60.121	1.00 25.00	
MOTA			DITE	A 268		15.190	41.030	59.513	1.00 25.77	AAAA
ATOM	2140	С	PRE	A 200			41.734	58.726	1.00 25.81	AAAA
MOTA	2141	0	PHE	A 268		15.811			1.00 26.02	AAAA
	2142	N	ACN	A 269		14.606	41.524	60.595	1.00 20.02	
MOTA		-	7011	260		14.718	42.943	60.890	1.00 26.58	AAAA
MOTA	2143	CA	ASN	A 269				61.058	1.00 25.47	AAAA
ATOM	2144	CB	ASN	A 269		13.330	43.584		1.00 25.37	AAAA
			3 CM	A 269		12.379	43.252.	59.906	1.00 25.37	
MOTA	2145	CG	ASIV	- 200		12.761	43.260	58.734	1.00 23.82	AAAA
ATOM	2146	QD1	ASN	A 269					1.00 24.03	AAAA
	2147	2חוא	ASN	A 269		11.123	42.985	60.245	1.00 24.00	
ATOM			3 CM	A 269		15.540	43.112	62.169	1.00 26.82	AAAA
MOTA	2148	С	ADM	A 203			43.715	63.150	1.00 27.98	AAAA `
MOTA	2149	0	ASN	A 269		15.089			1.00 26.07	AAAA
		N	ा.सा	A 270		16.744	42.559	62.149	1.00 20.07	
MOTA	2150		220	A 270		17.639	42.642	63.289	1.00 25.97	AAAA
ATOM	2151	CA	LEU	A 2/0				63.265	1.00 23.76	AAAA
ATOM	2152	CB	LEU	A 270		18.634	41.479		1.00 23.36	AAAA
	_	CG	1 511	A 270		18.048	40.070	63.225	1.00 23.30	
MOTA	2153			270		19.115	39.090	63.710	1.00 21.90	AAAA
MOTA	2154	CD3	LEU	A 270					1.00 22.05	AAAA
MOTA	2155	· CD2	LEU	A 270		16.824	39.971		1.00 22.00	AAAA
			TEII	A 270		18.420	43.961	63.360	1.00 27.13	
MOTA	2156	C	150	270			44.750		1.00 25.99	AAAA
MOTA	2157	0		A 270		18.475				AAAA
	2158	N	SER	A 271		19.038	44.176		1.00 27.57	AAAA
ATOM			222	A 271		19.832	45.370	64.767	1.00 27.95	
ATOM	2159	CA	SEK	2 2/1			46.137			AAAA
ATOM	2160	CB	SER	A 271		19.235				AAAA
		OG	SER	A 271		19.184	45.297	67.089	1.00 27.50	
ATOM	2161		~==,	A 271		21.276	44.987		1.00 28.15	AAAA
ATOM	2162	C	SER	A 271						AAAA
ATOM	2163	0	SER	A 271		21.574	43.832			AAAA
			3 CM	A 272		22.156	45.980	64.979	1.00 28.96	
MOTA	2164	N	ASIN	7 272			45.861		1.00 29.54	AAAA
MOTA	2165	CA	ASN	A 272		23.590				AAAA
	2166		ASN	A 272		24.247	47.243			
ATOM				277		24.647	47.640	63.850	1.00 31.20	AAAA
MOTA	2167			A 272						AAAA
ATOM	2168	OD	1 ASN	A 272		24.960	48.794			AAAA
		_		A 272		24.670	46.674	62.948		
ATOM	2169		~ Y2W	7 2/2			45.309		1.00 29.63	AAAA
MOTA	2170	С	ASN	A 272		23.821				AAAA
	2171		ASN	A 272		.24.574	44.361			
MOTA						23.180	45.959	67.600	1.00 29.77	AAAA
MOTA	2172		VAL	A 273		23.100				AAAA
ATOM	2173	CA	VAL	A 273		23.290	45.602			AAAA
			1727	A 273		22.436	46.576			
atom	2174		VAL	2 272		22.716	_		1.00 33.17	AAAA
MOTA	2175	CG	1 VAL	A 273	-					AAAA
			2 VAT	A 273		22.740				AAAA
ATOM			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A 272		22.883		4 69.266	1.00 30.74	
MOTA	2177		VAL	A 273				.		AAAA
MOTA		3 0	VAL	A 273		23.550	43.43	, 0.024		•

					_											
				271	2	1.789	5 4	13.1	706	68.	659	1.0	0 3	30.	25	AAAA
MOTA	2179	N	ALA A ALA A	274		1.32		12.		68.		1.0	0 2	29.	87	AAAA
MOTA	2180	CA CB	ALA A	274		0.00		12.		68.	112	1.0	0 2	29.	64	AAAA
MOTA	2181	CB	ALA A	274	2	2.39	5 4	41.4	438	68.	247	1.0	0 2	29.	35	AAAA
MOTA	2182	С 0	ALA A	274		2.70		40.3	373	68.	778	1.0	0 2	29.	18	AAAA
ATOM	2183 2184	N	PHE A	275	2	2.94	6 4	41.	893	67.		1.0	0 2	29.	30	AAAA
ATOM	2185	CA	PHE A	275		3.99		41.	170	66.		1.0	0 3	28.	91	AAAA
MOTA	2186	CB	PHE A	275	2	4.37	5 4	41.	909	65.		1.0	0 2	28.	.77	AAAA
ATOM	2187	CG	PHE A	275	2	5.35		41.		64.		1.0	0	28.	80.	AAAA AAAA
MOTA MOTA	2188	CD1	PHE A	275		5.01	-	39.		63.		1.0	0 .	28. 20	.92	AAAA
ATOM	2189	CD2	PHE A	275	_	6.62		41.		64.		1.0	0	23. 20	.40 20	AAAA
MOTA	2190	CE1	PHE A	275		5.92			259	62.		1.0	0	23. 20	24	AAAA
ATOM	2191	CE2	PHE A	275		7.54			988		279 716	1.0	10	23. 28	.30	AAAA
ATOM	2192	CZ	PHE A	275		7.19	-		779 058		351	1.0	0	27	. 64	AAAA
ATOM	2193	С	PHE A	275		5.19	-		975		558	1.0	0	28	.65	AAAA
MOTA	2194	0	PHE A	275		5.72 5.60			189		902	1.0	00	26	.81	AAAA
MOTA	2195	N	LEU A	276		26.73	-		260		831	1.0	00	27	.38	AAAA
MOTA	2196	CA	LEU A	276		26.87			700		353				.53	AAAA
MOTA	2197	CB	LEU A	276		28.20			213		928	1.0	00	26	.37	AAAA
MOTA	2198	CG	LEU A	276		7.92			488	70.	721	1.0	00	25	.71	AAAA
MOTA	2199	CDI	LEU A	276		28.84			189	70.	827	1.0	00	27	.06	AAAA
ATOM	2200	CDZ	LEU A	276		26.48			317		.021	1.	00	26	.49	AAAA
ATOM	2201 2202	0	LEU A	276		27.38	7		603		471	1.	00	25	.26	AAAA
MOTA MOTA	2202	N	LYS A		:	25.25	7		322		.524	1.	00	27	.46	AAAA AAAA
ATOM	2204	CA	LYS A	A 277		24.89			468		. 642				. 63	AAAA
ATOM	2205	СВ	LYS A	a 277		23.54			. 862		. 223	1.	00	20	.63 .14	AAAA
ATOM	2206	CG		A 277		23.59			. 029		.153 .268	1	00	34	.94	AAAA
ATOM	2207	CD		A 277		22.59			.791		.029	1	00	36	.17	AAAA
ATOM	2208	CE	LYS	A 277		22.96			.519 .194		.104				.64	AAAA
MOTA	2209	NZ	LYS	A 277		21.97 24.84			.997		.297	ī.	00	28	.53	AAAA
ATOM	2210	С	LYS	A 277		24.0. 25.1			.152		.146				.45	AAAA
MOTA	2211	0	LYS	A 277 A 278		24.40			.681		.064	1.	00	28	3.47	AAAA
MOTA	2212	N	ALA .	A 278		24.4			.280	69	.656	1.	00	27	.66	AAAA
MOTA	2213	CA CB	ALA	A 278		23.9			.181		.201	1.	00	26	.40	AAAA
MOTA	2214 2215	C	ΔΙ.Δ	A 278		25.8		36	.754	69	.820	1.	00	26	.63	AAAA
MOTA	2215	ō	ALA	A 278		26.0	81		.644		.317	1.	00	25	5.19	AAAA AAAA
ATOM ATOM	2217	N	PHE	A 279		26.7			.616		.427	1.	00	20	5.50 5.83	AAAA
ATOM	2218	CA	PHE	A 279		28.1			.345		.481	1.	00	2.5	5.35	AAAA
ATOM	2219	CB	PHE	A 279		28.9			.521		.869 .796	1	00	2	7.92	AAAA
ATOM	2220	CG		A 279		30.4			.319		.072	1	00	28	3.58	AAAA
MOTA	2221	CDI	PHE	A 279		30.9			.201		.434	1.	00	- 21	B.33	AAAA
MOTA	2222	CD2	PHE	A 279		32.3			.078		.983	1.	00	21	8.22	AAAA
MOTA	2223	CE	PHE	A 2/9		32.6			.030		.349	1.	.00	21	8.11	AAAA
MOTA	2224		PHE	A 279		33.1			.968		.622	1.	.00	2	8.21	AAAA
MOTA	2225	CZ	PNE	A 279		28.6	65		.118	70	.901	1	. 00	2.	5.47	AAAA
MOTA	2226	С 0	DHE	A 279		29.2		36	.091	71	202	1	.00	2	4.32	AAAA
MOTA	2227 2228		ASN	A 280		28.3		38	.075		778	1	.00	2	5.12	AAAA
ATOM	2229			A 280		28.8	41	37	.944		1.147	1	.00	2	5.05	AAAA AAAA
MOTA MOTA	2230		ASN	A 280		28.7	80		.269		3.887	1	.00	2	4.42	AAAA
MOTA	2231		ASN	A 280		29.6	83		.300		3.364		. 00	. 2	4.56 3.24	AAAA
ATOM	2232		1 ASN	A 280		30.8	41		.980		3.080		. oc	1 2	4.59	AAAA
ATOM	2233		2 ASN	A 280		29.2			.543		3.249		. ინ	2	4.79	AAAA
ATCM	2234		ASN	A 280		28.2			814	_	3.925		. o c) 2	4.96	AAAA
ATOM	2235		ASN	A 280		28.8			5.272		1.825 3.565		.00	2	4.87	AAAA
MOTA	2236		ILE	A 281		26.9			5.444 5.337		4.220		.00	2	4.80	AAAA
ATOM	2237			A 281		26.3		25	5.252		3.780				4.40	AAAA
ATOM	2238	CB		A 281		24.8			3.232 3.907		4.124		.00	2	5.03	AAAA
MOTA	2239		2 ILE	A 281		24.2			6.386	_	4.424	. 1	.00) 2	4.70	AAAA
MOTA	2240		1 ILE	A 281		24.6			6.379		4.069	1	.00	0 2	6.49	AAAA
ATOM	2241		1 ILE	A 281		27.0)44		4.027		3.884	1	.00	0 2	5.21	AAAA
ATOM				A 281		27.	220		3.170		4.750) 1	.00	0 2	4.97	AAAA
ATOM				A 281 A 282		27.			3.866	_	2.620		.0	0 2	25.98	AAAA
A TOM	2244	N I	سلج	A 404				~ .		-						•

250/263

					•		100	1 00 05 15	3335
ATOM	2245	CA	VAL A	282	28.150	32.656	72.193	1.00 25.15	AAAA
	2246	CB	VAL A	282	28.451	32.666	70.677	1.00 23.83	AAAA
MOTA			VAL A		29.315	31.470	70.311	1.00 23.58	AAAA
MOTA	2247	CGI	VAL	202	27.173	32.633	69.899	1.00 22.73	AAAA
MOTA	2248	CG2	VAL A	282			72.936	1.00 25.73	AAAA
ATOM	2249		VAL A		29.478			1.00 25.31	AAAA
ATOM	2250	0 .	VAL A	282	29.928		73.275		AAAA
ATOM	2251		ARG A	283	30.100		73.176	1.00 26.90	
	2252		ARG A		31.372	33.760	73.885	1.00 28.87	AAAA
ATOM	_		ARG A		32.027		73.684	1.00 28.16	AAAA
MOTA	2253				32.364		72.240	1.00 27.22	AAAA
ATOM	2254		ARG A				72.098	1.00 27.08	AAAA
ATOM	2255		ARG A		32.821			1.00 26.73	AAAA
ATOM	2256	NE	ARG A	4 283	34.035		72.854		AAAA
ATOM	2257	CZ	ARG A	283	34.514	38.327	73.091	1.00 26.82	
	2258		ARG A		33.873	39.384	72.626	1.00 27.36	AAAA
MOTA		MELO.	ARG A	283	35.622	38.484	73.798	1.00 26.95	AAAA
ATOM	2259		ARG A	. 203	31.183		75.376	1.00 30.71	AAAA
MOTA	2260	С	ARG A	1 203	32.086		76.027	1.00 30.68	AAAA
MOTA	2261	0	ARG A	A 283			75.911	1.00 32.71	AAAA
MOTA	2262	N	GLU A	A 284	30.014			1.00 35.53	AAAA
ATOM	2263	CA	GLU A	A 284	29.735		77.323		AAAA
ATOM	2264	CB	GLU A	A 284	28.482		77.751	1.00 37.39	
	2265	CG		A 284	28.538	35.854	77.392	1.00 41.73	AAAA
MOTA				A 284	27.272	36.631	77.754	1.00 45.27	AAAA
MOTA	2266	CD			26.151		77.610	1.00 46.66	AAAA
MOTA	2267			A 284	27.405		78.148	1.00 46.94	AAAA
ATOM	2268	OE2		A 284	_		77.564	1.00 36.25	- AAAA
MOTA	2269	С	GLU A	A 284	29.524			1.00 37.85	AAAA
ATOM	2270	0	GLU A	A 284	29.920		78.601		AAAA
ATOM	2271	N	VAL .	A 285	28.916	31.464	76.591	1.00 35.24	
	2272	CA		A 285	28.63	7 30.041	76.708	1.00 33.88	AAAA
ATOM		CB		A 285	27.509	29.619	75.737	1.00 33.71	AAAA
MOTA	2273				27.20		75.888	1.00 32.59	AAAA
ATOM	2274	CGT	VAL	A 285	26.25		76.001	1.00 32.77	AAAA
ATOM	2275	CG2		A 285			76.456	1.00 33.47	AAAA
MOTA	2276	С		A 285	29.84			1.00 34.23	AAAA
MOTA	2277	0	VAL	A 285	30.14		77.257		AAAA
ATOM	2278	N		A 286	30.56		75.364	1.00 32.34	
	2279	CA		A 286	31.70	5 28.535	75.036	1.00 29.92	AAAA
MOTA				A 286	31.53	3 27.960	73.635	1.00 29.77	AAAA
ATOM	2280	CB			30.26		73.444	1.00 28.64	AAAA
ATOM	2281	CG		A 286	29.15		72.863	1.00 28.75	AAAA
MOTA	2282	CD1	PHE	A 286			73.827	1.00 28.55	AAAA
MOTA	2283	CD2	PHE	A 286	30.19			1.00 29.04	AAAA
MOTA	2284	CE1	PHE	A 286	27.98		72.660	1.00 28.19	AAAA
ATOM	2285	CE2	PHE	A 286	29.03		73.629	1.00 20.19	AAAA
	2286	CZ	PHE	A 286	27.92			1.00 28.73	
ATOM	2287	C		A 286	33.10	6 29.113	75.132	1.00 29.13	AAAA
ATOM			DAE	A 286	34.07		74.760	1.00 28.54	AAAA
MOTA	2288	0	PAL	A 200	33.22			1.00 28.42	AAAA
ATOM	2289	N	GLX	A 287	34.52			1.00 27.07	AAAA
MOTA	2290	CA	GLY	A 287				1.00 26.64	AAAA
ATOM	2291	С	GLY	A 287	34.93			1.00 27.13	AAAA
MOTA	2292	0	GLY	A 287	34.08			1.00 27.13	AAAA
MOTA	2293	N	GLU	A 288	36.22			1.00 27.20	AAAA
	2294	CA	GLU	A 288	36.71	9 32.238	72.900	1.00 27.52	
MOTA			CTI	A 288	38.07		73.108	1.00 28.18	AAAA
MOTA	2295	CB	GLU	A 200	38.03			1.00 28.88	AAAA
ATOM	2296	CG		A 288	37.32	9 35.330		1.00 29.58	AAAA
ATOM	2297	CD		A 288				1.00 29.94	AAAA
MOTA	2298	OE1	GLU	A 288	37.80				AAAA
ATOM	2299	OE2	GLU	A 288	36.28	1 35.761			
	2300	C	GLU	A 288	36.87	7 31.158			AAAA
MOTA				A 288	37.16	9 30.007	72.162	1.00 27.87	AAAA
ATOM	2301	0			36.66			1.00 26.55	AAAA
MOTA	2302	N		A 289					AAAA
ATOM	2303	CA	GLY	A 289	36.79				AAAA
ATOM	2304	С	GLY	A 289	37.28				AAAA
ATOM	2305	Ō	GLY	A 289	37.63				AAAA
	2306			A 290	37.32	0 30.765			
MOTA			177.7	A 290	37.75			1.00 23.76	AAAA
MOTA	2307		ميم.	3 200	38.28			1.00 24.94	AAAA
ATOM	2308			A 290	-				AAAA
MOTA	2309	CG	L VAL	A 290	38.83				AAAA
MOTA	2310	CG	VAL	A 290	39.37	75 29.50	00.00	1.00 24.73	•

				`					•
		_	VAL A 2	000	36.536	32.122	65.277	1.00 23.90	AAAA
ATOM	2311	C	VAL A 2	200	35.497	31.502	65.100	1.00 25.15	AAAA
ATOM	2312	•	TÝR A 2		36.662	33.415	64.976	1.00 23.09	AAAA
ATOM	2313		TYR A 2		35.544	34.211	64.446	1.00 21.41	AAAA
MOTA	2314	CA	TYR A 2	001	35.472	35.540	65.193	1.00 20.57	AAAA
ATOM	2315				35.511	35:346	66.677	1.00 19.87	AAAA
MOTA	2316	CG	TYR A 2	291	36.596	35.782	67.432	1.00 20.86	AAAA
ATOM	2317.	CD1	TYR A 2	291	36.677	35.513	68.793	1.00 21.47	AAAA
MOTA	2318		TYR A 2		34.509	34:647	67.318	1.00 20.90	AAAA
MOTA	2319		TYR A 2		34.579	34.372	68.675	1.00 21.90	AAAA
MOTA	2320		TYR A 2		35.661	34.800	69.403	1.00 21.25	AAAA
MOTA	2321	CZ	TYR A		35.737	34.469	70.730	1.00 23.75	AAAA
MOTA	2322	OH	TYR A		35.607	34.483	62.946	1.00 21.25	AAAA
MOTA	2323	C	TYR A		36.573	35.077	62.451	1.00 21.10	AAAA
MOTA	2324	0	TYR A 2		34.557	34.084	62.231	1.00 20.92	AAAA
MOTA	2325	N	LEU A		34.518	34.260	60.779-	1.00 20.92	AAAA
ATOM	2326	CA	LEU A		34.235	32.916	60.080	1.00 19.93	AAAA
MOTA	2327	CB	LEU A		35.104	31.688	60.399	1.00 17.31	AAAA
MOTA	2328	CG	LEU A		34.685	30.515	59.528	1.00 16.05	AAAA
ATOM	2329		LEU A		36.552	32.000	60.163	1.00 18.07	AAAA
MOTA	2330		LEU A	292	33.515	35.288	60.283	1.00 21.12	AAAA
ATOM	2331	C	LEU A		32.652	35.741	61.020	1.00 20.70	AAAA
MOTA	2332	0	GLY A	222	33.660	35.660	59.017	1.00 21.74	AAAA
ATOM	2333	N	GLY A		32.752	36.612	58.410	1.00 21.48	AAAA
ATOM	2334	CA	GLY A		31.612	35.856	57.770	1.00 21.65	AAAA
MOTA	2335	C	GLY A		31.237	34.790	58.235	1.00 22.25	AAAA
MOTA	2336	0	GLY A		31.060	36.392	56.691	1.00 22.66	AAAA
MOTA	2337	N CA	GLY A	294	29.957	35.714	56.034	1.00 23.61	AAAA
MOTA	2338 2339	CA	GLY A	294	29.180	36.653	55.146	1.00 24.56	AAAA
ATOM		0	GLY A		29.679	37.727	54.790	1.00 25.54	AAAA
ATOM -	2340 2341	N	GLY A		27.956	36.265	54.794	1.00 24.06	AAAA
ATOM	2341	CA	GLY A		27.139	37.093	53.927	1.00 22.78	AAAA
MOTA	2342	C	GLY A	295	26.902	38.479	54.483	1.00 23.11	AAAA
MOTA	2344	0.	GLY A	295	26.870	38.676	55.696	1.00 22.87	AAAA
MOTA	2345	N.	GLY A	296	26.733	39.442	53.584	1.00 22.78	AAAA
MOTA MOTA	2346	CA	GLY A		26.497	40.813	53.993	1.00 23.44	AAAA AAAA
ATOM	2347	C	GLY A		26.471	41.618	52.718	1.00 23.72	AAAA
MOTA	2348	ŏ	GLY A	296	27.474	41.661	52.004	1.00 23.73	AAAA
ATOM	2349	N	TYR A	297	25.356	42.280	52.425	1.00 23.41	AAAA
ATOM	2350	CA	TYR A	297	25.282	42.991	51.163	1.00 22.71 1.00 21.55	AAAA
MOTA	2351	CB	TYR A	297	24.252	42.294	50.296	1.00 21.33	AAAA
MOTA	2352	CG	TYR A	297	24.496	40.809	50.317	1.00 20.95	AAAA
ATOM	2353	CD1	TYR A	297	24.036	40.016	51.375	1.00 20.55	AAAA
MOTA	2354	CE1	TYR A	297	24.400	38.678	51.481 49.358	1.00 21.71	AAAA
MOTA	2355	CD2	TYR A	297	25.320	40.217	49.358	1.00 21.71	AAAA
MOTA	2356	CE2	TYR A	297	25.688	38.900	50.511	1.00 22.18	AAAA
MOTA	2357	CZ	TYR A	297	25.242	38.127 36.841	50.615	1.00 21.35	AAAA
MOTA	2358	OH	TYR A	297	25.721		51.225	1.00 22.90	AAAA
MOTA	2359	С	TYR A	297	25.042	44.485	50.203	1.00 23.17	AAAA
ATOM	2360	0	TYR A	297	25.106	45.172	52.417		AAAA
MOTA	2361	N	HIS A		24.772	44.989	52.566	1.00 24.27	AAAA
ATOM	2362	CA	HIS A	298	24.572	46.415 46.726	53.556		AAAA
ATOM	2363	CB	HIS A	298	23.468		53.572		AAAA
MOTA	2364	CG	HIS A	298	23.097	49.201	54.287		AAAA
MOTA	2365	CD2	HIS A	298	23.588	48.708			AAAA
ATOM	2366	ND:	L HIS A	298	22.199				AAAA
ATOM	2367		L HIS A		22.151	50.017 50.342			AAAA
ATOM	2368		HIS A	298	22.986				AAAA
MOTA	2369	С	HIS A	298	25.886				AAAA
ATOM	2370	0	HIS A	298	26.282				AAAA
ATOM	2371	N	PRO A		26.563				AAAA
ATOM	2372		PRO A		26.178				AAAA
MOTA	2373	CA	PRO A	299	27.840				AAAA
ATOM	2374		PRO A	299	28.156	49.383			AAAA
ATOM	2375	CG	PRO A	299	26.743	49.764			AAAA
ATCM	2376	C	PRO A	299	27.824	49.037	. 24.142	, 1.00 0,	•

					_	-				
				200		28.755	48.826	54.939	1.00 28.04	AAAA
MOTA	2377		PRO P	299		26.769	49.794	54.452	1.00 27.04	AAAA
MOTA	2378	N	TYR A	300			50.477	55.740	1.00 27.59	AAAA
MOTA	2379	CA	TYR A	300		26.629	51.437	55.700	1.00 30.57	AAAA
ATOM	2380	CB	TYR A			25.425		54.718	1.00 32.91	AAAA
MOTA	2381	CG		A 300		25.516	52.599		1.00 33.45	AAAA
ATOM -	2382	CD1	TYR A	A 300		26.181	52.464	53.491	1.00 33.43	AAAA
ATOM	2383	CE1	TYR A	A 300		26.160	53.487	52.538		AAAA
MOTA	2384	CD2		A 300		24.837	53.801	54.969	1.00 34.19	AAAA
	2385	CE2		A 300		24.809	54.830	54.018	1.00 34.64	
MOŢA	2386	CZ		A 300		25.468	54.657	52.807	1.00 34.56	AAAA
MOTA		OH	TVR	A 300		25.389	55.630	51.844	1.00 36.05	AAAA
ATOM	2387		TIN I	A 300		26.454	49.538	56.936	1.00 26.48	AAAA
ATOM	2388	C	myp :	A 300	-	27.073	49.726	57.979 -	1.00 25.81	AAAA
MOTA	2389	0	TIK	A 301		25.581	48.547	56.791	1.00 25.41	AAAA
MOTA	2390	N	ALA A	N 301		25.328	47.606	57.865	1.00 24.64	AAAA
MOTA	2391	CA	ALA	A 301		24.164	46.731	57.511	1.00 25.32	-AAAA
ATOM	2392	CB	ALA	A 301		26.568	46.775	58.067	1.00 25.53	AAAA
MOTA	2393	С	ALA .	A 301			46.567	59.194	1.00 26.39	AAAA
ATOM	2394	0	ALA .	A 301		27.030	46.304	56.950	1.00 25.83	AAAA
MOTA	2395	N	LEU .	A 302		27.108		56.926	1.00 26.32	AAAA
ATOM	2396	CA		A 302		28.323	45.500	55.479	1.00 27.38	AAAA
ATOM	2397	CB		A 302		28.782	45.378		1.00 28.18	AAAA
MOTA	2398	CG		A 302		30.081	44.723	55.024	1.00 29.32	AAAA
ATOM	2399	CD1	LEU	A 302		30.119	44.840	53.502	1.00 27.38	AAAA
ATOM	2400	CD2	LEU	A 302		31.296	45.389	55.613	1.00 27.36	AAAA
ATOM	2401	C	LEU	A 302		29.398	46.187	57.764	1.00 26.41	AAAA
	2402	ō		A 302		29.874	45.648	58.755	1.00 26.62	
ATOM	2403	N	AT.A	A 303		29.756	47.397	57.353	1.00 26.50	AAAA
ATOM	2403	CA	AT.A	A 303		30.778	48.176	58.022	1.00 25.92	AAAA
ATOM		CB	312	A 303		31.001	49.475	57.277	1.00 25.24	AAAA
ATOM	2405			A 303		30.490	48.464	59.487	1.00 26.03	AAAA
MOTA	2406	Ç.	אנה	A 303		31.325	48.175	60.340	1.00 26.95	AAAA
MOTA	2407	0	ALA.	A 304		29.322	49.028	59.792	1.00 25.29	AAAA
MOTA	2408.	N	ARG	A 304		28.999	49.353	61.179	1.00 23.46	AAAA
MOTA	2409	CA	ARG	A 304		27.641	50.059	61.291	1.00 23.78	AAAA
MOTA	2410	CB	AKG	A 304	•	27.553	51.451	60.629	1.00 24.59	AAAA
MOTA	2411	CG	ARG	A 304		26.302	52.223	61.091	1.00 25.85	AAAA
MOTA	2412	CD	ARG	A 304		25.067	51.465	60.869	1.00 27.54	AAAA
MOTA	2413	NE	ARG	A 304		23.007	51.547	61.637	1.00 28.36	AAAA
ATOM	2414	CZ	ARG	A 304			52.362	62.695	1.00 26.48	AAAA
ATOM	2415	NH1	ARG	A 304		23.957	50.794	61.358	1.00 28.45	AAAA
ATOM	2416	NH2	ARG	A 304		22.910	48.118	62.053	1.00 23.18	AAAA
ATOM	2417	С	ARG	A 304		28.991		63.135	1.00 22.26	AAAA
ATOM	2418	0	ARG	A 304		29.591	48.099	61.560	1.00 23.20	AAAA
MOTA	2419	N		A 305		28.330	47.075		1.00 22.33	AAAA
ATOM	2420	CA		A 305		28.200	45.817	62.292 61.516	1.00 22.17	AAAA.
ATOM	2421	CB	ALA	A 305		27.319	44.866			AAAA
ATOM	2422	С	ALA	A 305		29.516	45.137	62.621		AAAA
ATOM	2423	0	ALA	A 305		29.763	44.757	63.760		AAAA
MOTA	2424	N	TRP	A 306		30.366	44.969	61.620		AAAA
MOTA	2425	CA	TRP	A 306		31.634		61.861		AAAA
	2426	CB		A 306		32.279	43.885	60.553		AAAA
ATOM	2427	CG	TRP	A 306		31.703	42.618	60.004		
MOTA		CD.	ממד כ	A 306		31.886	42.103	58.683	1.00 19.54	AAAA
ATOM	2428	CD	ממת כ	A 306		31.352	40.795	58.668		AAAA
MOTA	2429	CE	O INF	A 306		32.456	42.616	57.510	1.00 19.59	AAAA
ATOM	2430	CE.) IRP	A 300		31.071			1.00 20.51	AAAA
MOTA	2431		1 TKP	A 306		30.864	40.537		1.00 19.74	AAAA
MOTA	2432		1 TRP	A 306		31.368	39.990			AAAA
MOTA	2433	CZ:	2 TRP	A 306						AAAA
MOTA	2434		3. TRP	A 306		32.474	41.810 40.513		45 64	AAAA
ATOM	2435	CH	2 TRP	A 306		31.933				AAAA
ATOM	2436		TRP	A 306		32.571				AAAA
ATOM	2437		TRP	A 306		33.459			10	AAAA
ATOM	2438		THR	A 307		32.373				AAAA
ATOM	2439		THR	A 307		33.175	47.399			AAAA
	2440		THR	A 307		32.861				AAAA
ATOM	2441		1 THR	A 307		33.329	49.159	61.718		AAAA
MOTA			7 THE	A 307		33.523		64.030	1.00 20.09	AAAA
MOTA	. 2442		_ IND					-		•

-												
- 501	2442	С	THR	Δ	307	32.853	47.135	64.893	1.00			AAAA
ATOM	2443	0	THR	Δ	307	33.738	47.175	65.747	1.00			AAAA
ATOM	2444 2445	Ŋ	LEU	Δ	308	31.588	46.851	65.192	1.00			AAAA
MOTA	_		LEU			31.189	46.543	66.559	1.00	21	.10	AAAA
MOTA	2446		LEU			29.671	46.340	66.644	1.00			AAAA
ATOM	2447	CB	LEU	Α	308	28.897	47.656	66.674	1.00			AAAA
MOTA	2448		LEU			27.397	47.473	66.411	1.00	19	.91	AAAA
ATOM	2449		LEU			29.177	48.283	68.045	1.00	21	.04	AAAA
MOTA	2450		LEU			31.886	45.284	67.052	1.00	21	.98	AAAA
ATOM	2451		LEU	7	308	32.284	45.186	68.215	1.00	22	.17	AAAA
MOTA	2452	0	ILE			32.023	44.310	66.165	1.00	22	.32	AAAA
MOTA	2453	N	ILE	ν. •	309	32.658	43.069	66.544	1.00	23	.12	AAAA
MOTA	2454	CA	ILE			32.590	42.016	65.413	1.00	22	.33	AAAA
ATOM	2455	CB	ILE			33.356	40.787	65.827	1.00	21	.76	AAAA
MOTA	2456	CG2	ILE	Α.	309	31.140	41.678	65.061	1.00	22	.16	AAAA
MOTA	2457	CG1	ILE			30.366	41.037	66.166	1.00			AAAA
ATOM	2458	CDI	TIF	Δ	309	34.115	43.377	66.790	1.00			AAAA
MOTA	2459	0	ILE	Δ	309	34.734	42.828	67.709	1.00			AAAA
MOTA	2460 2461	И			310	34.673	44.253	65.957	1.00	24	.70	AAAA
MOTA	2462	CA			310	36.075	44.570	66.099	1.00	24	.20	AAAA
ATOM	2462	CB.	TRP			36.587	45.417	64.944	1.00			AAAA
MOTA	2464	CG.			310	38.040	45.712	65.123	1.00			AAAA
MOTA	2465	CDS	TRP	A	310	39.104	44.752	65.257	1.00			AAAA
ATOM	2465	CE2	TRP	A	310	40.291	45.472	65.490	1.00			AAAA
ATOM	2467	CE3	TRP	A	310	39.165	43.354	65.202			0.01	AAAA
MOTA	2468	CD1			310	38.614	46.938	65.273			2.82	AAAA
ATOM	2469	NE1			310	39.967	46.803	65.497			2.30	AAAA
MOTA	2470	CZ2			310	41.521	44.845	65.668			9.91	AAAA
MOTA	2471	CZ3			310	40.388	42.734	65.381	1.00) 19	80.6	AAAA
MOTA	2472	CH2			310	41.547	43.477	65.610	1.00) 19	9.40	AAAA
MOTA MOTA	2473	C			310	36.318	45.279	67.411	1.0	2:	5.26	AAAA
MOTA	2474	Ö			310	37.262	44.945	68.109	1.00	2	4.71	AAAA
ATOM	2475	N			311	35.467	46.247.		1.0	0 20	6.76	AAAA AAAA
MOTA	2476	CA			311	35.608	46.975	69.007	1.0	0 2	7.89	AAAA
MOTA	2477	CB	CYS	Α	311	34.548	48.081	69.113	1.0	0 2	8.98	AAAA
MOTA	2478	SG			311	34.798	49.462	67.991	1.0	0 3	1.89	AAAA
ATOM	2479	С	CYS	A	311	35.495	46.043	70.212	1.0	0 2	7.51 6.90	AAAA
ATOM	2480	0	CYS	Α	311	36.289	46.127	71.135	1.0	0 2	7.33	AAAA
ATOM	2481	N			312	34.495	45.169	70.187	1.0	0 2	8.03	AAAA
ATOM	2482	CA			312	34.246	44.210	71.250	1.0	0 2	8.55	AAAA
ATOM	2483	CB			312	33.106	43.287	70.850			8.93	AAAA
ATOM	2484	CG	GLU	Α	312	31.903	43.333	71.741	1.0	0 2	9.78	AAAA
MOTA	2485	CD	GLU	Α	312	32.232	42.958	73.154 73.345		ก็จ	0.81	AAAA
MOTA	2486	0El	GLU	A	312	32.954	41.957	74.071		กร	0.79	AAAA
ATOM	2487	OE2	GLU	A	312	31.754	43.653	71 514		0 2	8.91	AAAA
MOTA	2488	С	GLU	A	312	35.463	43.357	72 662	1 0	0 3	0.57	AAAA
ATOM	2489	0			312	35.822	43.110	70.436		0 2	9.04	AAAA
MOTA	2490	N			313	36.081	42.889 42.045	70.516		0 2	8.87	AAAA
ATOM	2491	CA	LEU	- 2	313	37.266	41.373	69.157		0 2	9.39	AAAA
MOTA	2492	CB			313	37.524	40.311	68.644		0 3	0.32	AAAA
ATOM	2493	CG			313	36.548	39.872	67.215		0 3	0.26	AAAA
ATOM	2494	CD1	. LEU	7.7	313	36.910	39.114	69.593	_	0 3	0.42	AAAA
ATOM	2495				313	36.582	42.888		_	0 2	7.75	AAAA
MOTA	2496	С			313	38.474	42.553			0 2	7.34	AAAA
ATOM	2497	0			313	39.215				0 2	7.95	AAAA
MOTA	2498	N	SEF		314	38.642		70.376		0 2	8.62	AAAA
MOTA	2499				314	39.736				0 2	7.49	AAAA
ATOM	2500				314	39.690				0 3	0.12	AAAA
ATOM	2501				A 314	40.703				0 2	9.67	AAAA
ATOM	2502				A 314	39.666				0 2	9.00	AAAA
ATOM	2503		SEF	2	A 314	40.488		·	_	00	30.78	AAAA
MOTA	2504		GL'	()	A 315	38.676			_	00 3	32.92	AAAA
MOTA	2505		GL	7	A 315	38.535				00	34.92	AAAA
ATOM	2506		GL	Y .	A 315	38.542				00	35.17	AAAA
ATCM	2507				A 315	39.142				00	36.88	AAAA
MOTA	2508	N	AR	3 .	A 316	37.881	10.041					•
.*	•		•									

ATOM	2509	CA	ARG	Α	316	3.	7.841	49.493	72.702	1.00 39.49	AAAA
	2510	CB	ARG	Δ	316	31	8.608	49.968	71.484	1.00 39.86	AAAA
ATOM							7.946	49.677	70.161	1.00 40.77	AAAA
MOTA	2511	CG	ARG							1.00 41.47	AAAA
MOTA	2512	CD	ARG	A	316		8.843	50.226	69.077		
MOTA	2513	NE	ARG	Α	316	4	0.140	49.566	69.092	1.00 42.36	AAAA
	2514	CZ	ARG			4	1.224	50.057	68.515	1.00 43.38	AAAA
ATOM							1.159	51.217	67.882	1.00 44.76	AAAA
MOTA	2515	NHl								1.00 43.71	AAAA
MOTA	2516	NH2	ARG	Α	316		2.361	49.385	68.556		
	2517	C	ARG	A	316	3	6.418	50.015	72.631	1.00 41.54	AAAA
ATOM			ARG				5.564	49.429	71.959	1.00 42.64	AAAA
MOTA	2518	0						51.119	73.329	1.00 43.10	AAAA
ATOM	2519	N	GLU				6.163				AAAA
MOTA	2520	CA	GLU	Α	317	3.	4.830	51.720	73.356	1.00 44.51	
	2521	CB	GLU			3	4.809	52.936	74.293	1.00 46.17	AAAA
MOTA					317	3	4.472	52.614	75.759	1.00 49.65	AAAA
ATOM	2522	CG					5.426	51.623	76.439	1.00 52.51	AAAA
MOTA	2523	CD			317					1.00 53.37	AAAA
MOTA	2524		GLU				5.153	51.251	77.607		
ATOM	2525	OE2	GLU	Α	317	3	6.444	51.214	75.831	1.00 54.14	AAAA
	2526	C			317	3	4.318	52.098	71.974	1.00 43.86	AAAA
ATOM							5.067	52.532	71.108	1.00 42.46	AAAA
MOTA	2527	Ο,			317				71.779	1.00 44.79	AAAA
ATOM	2528	N	VAL	Α	318		3.023	51.916			AAAA
ATOM	2529	CA	VAL	Α	318	3	2.394	52.197	70.502	1.00 45.57	
	2530	CB	MAT.	Δ	318	3	1.098	51.369	70.324	1.00 45.36	AAAA
ATCM							0.537	51.558	68.924	1.00 45.44	AAAA
ATOM	2531		VAL						70.612	1.00 46.35	AAAA
MOTA	2532	CG2	VAL				1.366	49.911			AAAA
MOTA	2533	С	VAL	Α	318	3	2.007	53.652	70.377	1.00 46.41	
	2534	0			318	3	1.199	54.145	71.165	1.00 46.53	AAAA
MOTA			DBO	~	319		2.584	54.370	69.396	1.00 46.89	AAAA .
MOTA	2535	N					3.581	54.017	68.375	1.00 46.44	AAAA
MOTA	2536	CD			319					1.00 47.62	AAAA
ATOM	2537	CA			319		2.209	55.774	69.247		
ATOM	2538	CB	PRO	Α	319	3	3.022	56.206	68.024	1.00 46.96	AAAA
		CG	DDO	Δ	319		3.161	54.922	67.251	1.00 46.38	AAAA
MOTA	2539	_					0.709	55.743	68.977	1.00 48.64	AAAA
MOTA	2540	С			319					1.00 48.61	AAAA
MOTA	2541	0	PRO	Α	319		0.236	54.860	68.262		AAAA
ATOM	2542	N	GLU	A	320		9.944	56:.667	69.544	1.00 49.24	
	2543	CA			320	2	8.522	.56.598	69.288	1.00 50.01	AAAA
ATOM					320		7.720	57.330	70.363	1.00 51.15	AAAA
MOTA	2544	CB							70.339	1.00 53.01	AAAA
ATOM	2545	CG			320		7.828	58.831			AAAA
MOTA	2546	CD	GLU	Α	320	2	6.825	59.474	71.282	1.00 54.34	
ATOM	2547	OFI	GLU.	Α	320	2	5.604	59.273	71.077	1.00 54.04	AAAA
					320	2	7.255	60.171	72.228	1.00 55.06	AAAA
atom	2548		GLU	~	220		8.206	57.168	67.921	1.00 49.78	AAAA
ATOM	2549	С			320					1.00 49.79	AAAA
MOTA	2550	O			320	_	7.170	56.861	67.324		AAAA
ATOM	2551	N	LYS	A	321	. 2	9.116	57.980	67.407	1.00 49.26	
	2552	CA			321	2	8.906	58.589	66.109	1.00 49.20	AAAA
ATOM			1370	,	221		8.873	60.106	66.251	1.00 50.38	AAAA
MOTA	2553	CB			321					1.00 52.88	AAAA
MOTA	: 354	CG	LYS	Α	321	-	0.234	60.674	66.634		AAAA
ATOM	:.555	CD	LYS	A	321	3	0.717	60.180	68.002	1.00 53.76	
	2356	CE	LVS	Δ	321	3	2.229	60.348	68.154	1.00 55.00	AAAA
ATOM			1 7 0	``	321		2.715	61.725	67.829	1.00 55.95	AAAA
ATOM	2557	ΝZ						58.207	65.171	1.00 48.64	AAAA
ATOM	2558	С			321		0.037				AAAA
ATOM	2559	0	LYS	A	321		1.052	57.650	65.590	1.00 48.58	
	2560	N			322	2	9.854	58.511	63.894	1.00 47.78	AAAA
ATOM							0.870	58.238	62.896	1.00 46.13	AAAA
MOTA	2561	CA	ייביי	A	322				61.638	1.00 46.84	AAAA
ATOM	2562	CB	LEU	A	322		0.248	57.638		1.00 40.04	AAAA
ATOM	2563	CG	LEU	A	322	2	9.240	56.504	61.848	1.00 47.71	
		CD1	T.FII	2	322		8.788	55.998	60.491	1.00 48.02	AAAA
MOTA	2564	CDI	7 577	-	322		9.853	55.374	62.667	1.00 48.21	AAAA
MOTA	2565				322				62.580	1.00 44.61	AAAA
ATOM	2566	С			322		1.427	59.608		1 00 44 72	AAAA
MOTA	2567	0	LEU	A	322	3	0.674	60.571	62.491	1.00 44.73	
	2568	N			323		2.741	59.706	62.447	1.00 42.66	AAAA
ATOM					323		3.360	60.976	62.135	1.00 41.19	AAAA
ATOM	2569	CA	NCA	- ^	223				62.402	1.00 41.07	AAAA
ATOM	2570	CB			323		4.860				AAAA
ATOM	2571	CG	ASN	A	323		5.576	60.001	61.436		
	2572		ASN	A 1	323	3	5.117	58.901	61.147	1.00 42.46	AAAA
ATOM		VID.3	3 CM		323		6.720		60.943	1.00 41.77	AAAA
atom	2573		VOW		222						AAAA
ATOM	2574	С	ASN	ı A	323	-	3.068	61.223	_ 55.556		
•		•									

	•				0-				•	
		_		222	•	32.430	60.395	60.010	1.00 40.19	aaaa
MOTA	2575	0 . 4	ASN A ASN A	324		33.523	62.352	60.129	1.00 40.11	aaaa
ATOM	2576		ASN A ASN A			33.268	62.699	58.735	1.00 39.99	AAAA
MOTA	2577		ASN A ASN A			33.711	54.128	58.472	1.00 39.54	AAAA
MOTA	2578		ASN A			33.003	65.114	59.361	1.00 40.88	AAAA
MOTA	2579	CG .	ASN A	324		31.763	65.145	59.417	1.00 40.77	AAAA
MOTA	2580	MD3	ASN A	324		33.779	65.938	60.064	1.00 40.63	AAAA
ATOM	2581 2582	C	ASN A	324		33.918	61.786	57.712	1.00 40.10	AAAA
ATOM	2583		ASN A			33.320	61.468	56.678	1.00 39.24	AAAA
MOTA	2584		LYS A			35.144	61.376	58.011	1.00 40.41	AAAA
MOTA MOTA	2585	CA	LYS A	325		35.908	60.519	57.126	1.00 41.41	AAAA
MOTA	2586		LYS A			37.262	60.201	57.761	1.00 42.64	aaaa aaaa
ATOM	2587	CG	LYS A	325		38.224	59.504	56.828	1.00 44.45 1.00 45.61	AAAA
ATOM	2588	CD	LYS A	325		39.575	59.199	57.491	1.00 45.88	AAAA
ATOM	2589	CE	LYS A	325		40.358	60.464	57.850 58.404	1.00 45.88	AAAA
ATOM	2590	NZ	LYS ?	A 325		41.717	60.151	56.856	1.00 41.56	AAAA
ATOM	2591	С	LYS A	A 325		35.124	59.248 58.781	55.716	1.00 41.35	AAAA
MOTA.	2592			A 325		35.042 34.524	58.703	57.906	1.00 41.32	AAAA
MOTA	2593	N		326		33.732	57.492	57.774	1.00 41.07	AAAA
MOTA	2594	CA	ALA A	A 326		33.452	56.912	59.143	1.00 40.87	AAAA
MOTA	2595		ALA :	A 326 A 326		32.420	57.722	57.019	1.00 41.24	AAAA
MOTA	2596	C	ALA A	A 326		32.045	56.913	56.174	1.00 40.91	AAAA
ATOM	2597	И		A 327		31.719	58.815	57.316	1.00 41.92	AAAA
MOTA	2598 2599	CA		A 327		30.451	59.097	56.631	1.00 42.20	AAAA
MOTA MOTA	2600	CB		A 327		29.796	60.374	57.170	1.00 43.61	AAAA AAAA
ATOM	2601	CG		A 327		29.534	60.413	58,670	1.00 45.83	AAAA
ATOM	2602	CD	LYS 2	A 327	.*	28.745	61.681	59.029	1.00 47.34 1.00 48.28	AAAA
ATOM	2603	CE	LYS	A 327		28.682	61.952	60.538	1.00 48.28	AAAA
ATOM	2604	NZ	LYS .	A 327		28.090	60.845	61.351 55.125	1.00 41.33	AAAA
ATOM	2605	С		A 327		30.673	59.266	54.309	1.00 40.78	AAAA
MOTA	2606	0		A 327		29.879 31.761	58.797 59.950	54.781	1.00 40.39	AAAA
ATOM	2607	Ŋ		A 328		32.129	60.217	53.399	1.00 38.91	aaaa
MOTA	2608	CA	GLU .	A 328 A 328		33.300	61.199	53.369	1.00 40.04	AAAA
MOTA	2609	CB	GLU .	A 328		32.941	62.576	53.909	1.00 41.94	AAAA
MOTA	2610 2611	CG CD		A 328		34.131	63.515	53.994	1.00 43.77	AAAA
ATOM ATOM	2612			A 328		34.904	63.595	53.010	1.00 44.29	4444 4444
ATOM	2613	OE2	GLU	A 328		34.285	64.189	55.040	1.00 45.11	AAAA
ATOM	2614	C	GLU	A 328		32.497	58.938	52.675	1.00 37.39 1.00 37.31	AAAA
MOTA	2615	0		A 328		32.114	58.722	51.525 53.355	1.00 37.31	AAAA
ATOM	2616	N		A 329		33.255	58.091 56.820	52.783	1.00 33.03	AAAA
ATOM	2617	CA		A 329		33.657	56.012	53.813	1.00 30.62	AAAA
MOTA	2618	CB		A 329		34.451 34.760		53.481	1.00 27.48	AAAA
MOTA	2619	CG	LEU	A 329		35.549	54.453	52.193	1.00 ?6.24	AAAA
MOTA	2620	CDI	LEU	A 329 A 329		35.514	53.936	54.622	1.00 25.74	AAAA
MOTA			LEU	A 329		32.405	56.057		1.00 33.24	AAAA
MOTA	2622 2623	c o		A 329		32.239	55.708		1.00 32.72	AAAA
ATOM	2624	N		A 330		31.519	55.810		1.00 33.92	AAAA AAAA
MOTA MOTA	2625	CA	LEU	A 330		30.289	55.090		1.00 34.91	AAAA
ATOM	2626	CB		A 330		29.411	55.023		1.00 34.02	AAAA
MOTA	2627	CG	LEU	A 330		30.067	54.236		1.00 34.06 1.00 33.63	AAAA
ATOM	. 2623	CD1	LEU	A 330		29.096				AAAA
ATOM	2629	CD2	LEU	A 330		30.512	. .			AAAA
MOTA	2630			A 330		29.499				AAAA
ATOM	2631	0		A 330		28.984 29.415				AAAA
MOTA	2632		LYS	A 331		29.415			1.00 41.05	AAAA
MOTA	2633			A 331		28.407			1.00 41.83	AAAA
MOTA	2634			A 331 A 331		27.584			1.00 43.26	AAAA
MOTA	2635		TVC	A 331		27.202			1.00 44.15	AAAA
ATOM	2636			A 331		26.182	61.333	51,730	1.00 45.71	<i>አ</i> ሕሕሕ
ATOM	2637 2638			A 331		25.695	62.735	51.993		АААА АААА
ATOM	2639			A 331		29.342	57.681	49.490	1.00 42 22	AAAA
MOTA MOTA	2640			A 331		28.712	57.980	48.480	1.00 41.94	, where
W 1 (1)										

					_						
			SER A	222	30	.618	57.316	49.463	1.00	44.45	AAAA
MOTA	2641		SER A	332		.351	57.271	48.202		46.88	AAAA
MOTA	2642		SER A			.854	57.416	48.435	1.00	46.49	AAAA
MOTA	2643		SER A			.380	56.263	49.058	1.00	45.65	AAAA
ATOM	2644		SER A			.093	55.959	47.494	1.00	48.73	AAAA
MOTA	2645	C	SER A	332		.262	55.854	46.281	1.00	49.51	AAAA
ATOM -	2646	0	ILE A	332		.697	54.952	48.258	1.00	50.62	AAAA
MOTA	2647		ILE A			.420	53.648	47.686	1.00	52.65	AAAA
MOTA	2648	CA	ILE A.	333		.246	52.584	48.779	1.00	52.35	AAAA
ATOM	2649	CB	ILE A	333		.889	51.248	48.157	1.00	51.40	AAAA
ATOM	2650	CG1	ILE A	333	31	.522	52.465	49.596	1.00	52.29	AAAA
MOTA	2651 2652	CD1	ILE A	333		.403	51.463	50.696	1.00	53.23	AAAA AAAA
MOTA	2653	C	ILE A	333 -	29	.120	53.712	46.924-	1.00	54.42	AAAA
MOTA	2654	0	ILE A	333		.122	54.178	47.462	1.00	55.10	AAAA
MOTA	2655	N	ASP A	334		.118	53.274	45.672	1.00	56.56	. AAAA
MOTA ATOM	2656	CA	ASP A	334		.863	53.263	44.940	1.00	59.13 59.64	AAAA
ATOM	2657	СВ	ASP A	334		3.050	53.460	43.433	1.00	59.23	AAAA
ATOM	2658	CG	ASP A	334 .		3.976	52.446	42.823	1.00	58.87	AAAA
ATOM	2659	OD1	ASP A	334		3.853	52.194	41.606	1.00	59.34	AAAA
ATOM	2660	OD2	ASP A	334		839	51.925	43.559 45.215	1 00	60.95	AAAA
ATOM	2661	С	ASP A	334		7.251	51.898	44.840	1 00	61.15	AAAA
MOTA	2662	0	ASP A	334		7.803	50.861	45.897	1 00	62.56	AAAA
ATOM	2663	N	PHE A	335		5.113	51.914 50.701	46.257	1.00	64.12	AAAA
ATOM	2664	CA	PHE A			5.414	50.701	47.779	1.00	64.40	AAAA
MOTA	2665	CB	PHE A			5.311	49.714	48.263	1.00	64.98	AAAA
MOTA	2666	CG	PHE A	335		4.224 4.180	48.379	47.868	1.00	65.54	AAAA
MOTA	2667	CD1	PHE A	335		3.234	50.197	49.107	1.00	65.12	AAAA
MOTA	2668	CD2	PHE A	333	2	3.163	47.539	48.305	1.00	65.75	AAAA
MOTA	2669	CEI	PHE A	333		2.213	49.367	49.552	1.00	65.79	AAAA
MOTA	2670		PHE A	335	_	2.177	48.034	49.150	1.00	66.01	AAAA
MOTA	2671	CZ	PHE A	335		4.025	50.626	45.640	1.00	65.41	AAAA
MOTA	2672	C	PHE A	335		3.591	49.564	45.184	1.00	65.27	AAAA
MOTA	2673 2674	0 N	GLU A			3.338	51.763	45.618	1.00	66.38	AAAA AAAA
MOTA	2675	CA	GLU A	336	2	1.980	51.826	45.097	1.00	67.49	AAAA
MOTA	2676	CB	GLU A	336		1.893	51.260	43.673	1.00	68.25	AAAA
ATOM ATOM	2677	CG	GLU A	336		0.459	51.230	43.116	1.00	69.15	AAAA
ATOM	2678	CD	GLU A	336		0.334	50.465	41.804	1.00	69.57	AAAA
ATOM	2679	OE1	GLU A	336	_	0.710	49.271	41.784	1.00	69.10	AAAA
MOTA	2680	OE2	GLU A	336		9.851	51.051 50.999		1.00	67.68	AAAA
ATOM	2681	С	GLU A	336		1.098	49.776		1.00	67.58	AAAA
ATOM	2682	0	GLU À	336		1.216	51.679		1.00	67.87	AAAA
MOTA	2683	N	GLU A	337		0.227 9.317			1.00	0 68.66	AAAA
MOTA	2684	CA	GLU A	337		.9.517 .8.583	52.085	48.502	1.0	0 68.88	AAAA
MOTA	2685	CB	GLU A	A 337		8.279			1.0	0 68.12	AAAA
MOTA	2686		GLU	. 33/		9.527			1.0	0 67.70	AAAA
MOTA	2687		GLU .	337		0.319			1.0	0 67.05	AAAA
MOTA	2688	_	CLU .	. 337	1	9.711	50.518		1.0	0 67.79	AAAA
MOTA	2689		CIII 2	A 337]	8.322		46.827		0 69.28	AAAA
MOTA	2690		GEU A	A 337		7.886			_	0 69.50	AAAA
ATOM	2691		SHE 1	A 338	1	17.966	49.012			0 69.55	AAAA AAAA
MOTA	2692 2693		OHE ?	A 338		17.035	48.176			0 69 67.	AAAA
ATOM	2694		PHE 2	A 338	:	16.995	46.759			0 70.51	AAAA
MOTA	2695		PHE	A 338	:	16.225	45.789			0 71.57	AAAA
MOTA	2696		1 PHE	A 338		16.666			_	0 72.04	AAAA
MOTA MOTA	2697		2 PHE	A 338		15.052				0 71.69 0 72.23	AAAA
	2698		1 PHE	A 338		15.944				0 71.93	AAAA
MOTA MOTA	2699		2 PHE	A 338		14.323				0 72.11	AAAA
MOTA	2700		PHE	A 338		14.770				0 69.26	AAAA
ATOM		-	PHE	338 A		15.63			_	0 68.86	AAAA
ATOM		-	PHE	A 338		15.07		9 45.434		0 69.35	AAAA
ATOM		_	ASP	A 339		15.05				0 69.61	AAAA
ATOM			ASP	A 339		13.73				0 69.48	AAAA
· ATOM			ASP	A 339		13.13				0 69.72	'AAAA
MOTA			ASP	A 339		11.81	9 50.23	. 47.47	· ·		•
71011											

			220	11.813	51.462	49.058	1.00 69.39	AAAA
MOTA	2707 OI	ol ASP A	339		49.618		1.00 69.78	AAAA
ATOM	***	D2 ASP A	339		51.035	47.440	1.00 69.95	AAAA
MOTA	2709 C	ASP A	339		51.815	48.333	1.00 69.92	AAAA
ATOM	2710 0	ASP A	339	14.305	51.389		1.00 70.23	AAAA
MOTA	2711 N	ASP A	340	13.810	52.748	45.699	1.00 70.39	AAAA
MOTA	2712 C	A ASP A	340	14.023	53.283	45.041	1.00 70.64	AAAA
MOTA	2713 C	B ASP A	340	12.757	52.517	43.791	1.00 70.86	AAAA
ATOM	2714 C	G ASP A	340	12.397	51.302	43.903	1.00 70.93	AAAA
ATOM	2715 0	D1 ASP A	340	12.126	53.125	42.699	1.00 70.89	AAAA
ATOM	2716 0	D2 ASP A	340	12.399 14.482	53.674	46.807	1.00 70.63	AAAA
MOTA	2717 C	ASP A		15.688	53.847	47.008	1.00 71.13	AAAA
ATOM	2718 O	ASP A	340	13.543	54.259	47.544	1.00 69.95	AAAA
MOTA	2719 N		341	13.947	55.150	48.619	1.00 69.17	
MOTA	2720 C		341	13.547	56.613	48.266	1.00 70.83	
MOTA	2721 C	_	341	14.098	57.601	49.347	1.00 73.44	AAAA
ATOM		G GLU A		13.956	59.071	48.951	1.00 75.27	AAAA
MOTA		D GLU A	341	12.825	59.518	48.646	1.00 76.21	AAAA
ATOM	_	E1 GLU A	341	14.984	59.786	48.954	1.00 75.69	AAAA
ATOM		E2 GLU A	341	13.367	54.819	49.983	1.00 67.09	AAAA
MOTA	2726 C	GLU A		12.233	55.176	50.297	1.00 66.57	AAAA
MOTA	2727 C			14.158	54.114	50.785	1.00 64.87	AAAA
MOTA	2728 N		342	13.767	53.779	52.148	1.00 62.55	AAAA
MOTA		A VAL A		14.265	52.377	52.589	1.00 62.81	
MOTA		B VAL A	344	14.042	52.193	54.081	1.00 62.56	AAAA
MOTA		G1 VAL A	342	13.513	51.298	51.849	1.00 63.69	AAAA
ATOM	_	G2 VAL A	342	14.483	54.822	52.982	1.00 59.94	AAAA
MOTA	2733		342	14.022	55.215	54.054	1.00 59.9	l AAAA
MOTA			3 342	15.609	55.278	52.442	1.00 56.85	5 AAAA
MOTA			343	16.457	56.266	53.085	1.00 54.0	1 AAAA
MOTA		CA ASP A	343	15.639	57.446	53.605	1.00 54.1	AAAA 8
MOTA		CG ASP A	343	16.505	58.511	54.241	1.00 53.9	AAAA 6
MOTA	2739	DD1 ASP A		15.947	59.485	54.785	1.00 54.5	9 AAAA
MOTA	2740	OD2 ASP A	A 343 .	17.747	58.373	54.191	1.00 53.6	1 AAAA 2 AAAA
ATOM		C ASP	A 343	17.186	55.609	54.242	1.00 51.9	_
MOTA		O ASP	A 343	16.611	55.371	55.307	1.00 51.8	
MOTA MOTA		N ARG	A 344	18.458	55.306	54.029	1.00 48.8 1.00 45.5	
MOTA		CA ARG	A 344	19.240	54.676	55.069	1.00 43.3	•
ATOM		CB ARG	A 344	19.847	53.369	54.573	1.00 41.7	•
ATOM		CG ARG	A 344	18.847	52.289	54.220	1.00 38.9	_
ATOM		CD ARG	A 344	17.953	51.955	55.385	1.00 36.7	
ATOM		NE ARG	A 344	17.139	50.781	55.096 55.888	1.00 34.8	
ATOM	2749	CZ ARG	A 344	16.176	50.316	57.033	1.00 34.1	
MOTA	2750	NH1 ARG	A 344	15.890	50.927	55.537	1.00 31.8	_
MOTA	2751	NH2 ARG	A 344	15.506	49.228	55.520	1.00 44.8	
ATOM	2752	C ARG	A 344	20.340	55.604 55.157		1.00 43.9	7 A AA
MOTA	2753	O ARG	A 344	21.308 20.192	56.895	55.226	1.00 44.3	2 AFAA
ATOM	2754		A 345	20.192	57.877		1.00 43.7	4 AAAA
MOTA	2755		A 345	20.860	59.248		1.00 44.4	19 AAAA
ATOM		CB SER	A 345	19.645	59.729)7 AAAA
MOTA	2757		A 345	21.307	57.977		1.00 42.8	32 AAAA
ATOM	2758		A 345	22.304	58.472		1.00 42.9	1 AAAA
MOTA	2759	O SER	A 345	20.282	57.509		1.00 41.4	18 AAAA
ATOM	2760	N TYR	A 346	20.296			1.00 40.3	35 AAAA
MOTA	2761	CA TYR	A 346	18.947			1.00 40.3	38 AAAA
ATOM	2762		A 346	18.630			1.00 39.2	28 AAAA
MOTA	2763		A 346	19.293			1.00 38.	74 AAAA
ATOM		CD1 TYR	7 346	19.022		60.079	1.00 37.	71 AAAA
MOTA		CE1 TYR	A 346	17.682			1.00 38.	49 AAAA
ATOM		CD2 TYR	A 346	17.405			1.00 38.	17 AAAA
ATCM		CE2 TYR	A 346	18.079			1.00 37.	59 AAAA
ATOM			A 346	17.794		58.898		14 AAAA
ATOM		OH TYR	A 346	21.436		59.849		91 AAAA
ATOM		C TYR	A 346	21.967		7 60.921	1.00 40.	28 AAAA
ATOM			A 347	21.800		59.113	1.00 39.	14 AAAA
3 TOM	77772	.v ME.				•		•

					0					
						22 070	54.756	59.530	1.00 38.19	AAAA
MOTA	2773	CA :	MET A	347		22.879	53.582	58.566	1.00 38.26	AAAA
ATOM	2774	CB :	MET A	347		23.042		58.694	1.00 38.17	•
ATOM	2775	CG	MET A	347		21.973	52.523		1.00 38.05	
ATOM	2776	SD	MET A	347		22.317	51.115	57.641	1.00 37.61	
	2777	CE	MET A	347		22.237	51.892	56.101	1.00 37.01	
MOTA	2778	c	MET A	347		24.189	55.494	59.603	1.00 38.00	
MOTA		0	MET A	347		25.127	55.033	60.250	1.00 37.40	
MOTA	2779		LEU A			24.248	56.637	58.929	1.00 38.08	AAAA
ATOM	2780		LEU A			25.449	57.463	58.898	1.00 38.07	AAAA
ATOM	2781		LEU Y			25.445	58.330	57.638	1.00 36.66	
MOTA	2782	CB	LEU A	240		25.379	57.583	56.310	1.00 35.47	AAAA I
ATOM	2783	CG	LEU A	340		25.285	58.559	55.165	1.00 34.51	AAAA
MOTA	2784	CDI	LEU A	348		26.605	56.716	56.167	1.00 36.56	5 AAAA
ATOM	2785	CD2	LEU A	348		25.521	58.353	60.138	1.00 39.0	7 AAAA
ATOM	2786	С	LEU A	348			58.980	60.406	1.00 38.83	l AAAA
ATOM	2787	0	LEU A	348		26.546	58.385	60.898	1.00 39.90	AAAA (
MOTA	2788	N	GLU A	349		24.432		62.092	1.00 40.9	5 AAAA
ATOM	2789	CA	GLU A	349		24.363	59.213	62.203	1.00 41.7	-
MOTA	2790	CB	GLU A	349		22.961	59.821		1.00 42.2	•
MOTA	2791	CG	GLU A	349		22.515	60.629	60.966	1.00 42.2	=
	2792	CD	GLU F	349		23.349	61.891	60.708	1.00 42.5	-
ATOM	2793	OF1	GLU A	349		23.414	62.778	61.587	1.00 42.3	•
ATOM		OES	GLU A	349		23.933	61.998	59.614	1.00 43.3	=
ATOM	2794		GLU A	349		24.740	58.511	63.406	1.00 41.1	2 AAAA
ATOM	2795	C	GLU A	2/0		24.664	59.118	64.476	1.00 41.3	8 AAAA
MOTA	2796	0	GLU A	4 342 • 350 ·		25.140	57.243	63.326	1.00 40.8	6 AAAA
MOTA	2797	N	THE A	A 350		25.555	56.475	64.504	1.00 40.6	9 AAAA
MOTA	2798	CA	THR A	A 350		24.405	56.283	65.510	1.00 41.5	6 AAAA
MOTA	2799	CB	THR A	A 350		24.403	57.549	66.078	1.00 41.4	AAAA 8
ATOM	2800	CG1	THR A	A 350			55.345	66.638	1.00 41.1	9 AAAA
ATOM	2801	ÇG2	THR A	A 350		24.821		64.141		4 AAAA
ATOM	2802	С	THR A	A 350		26.109	55.109		1.00 39.9	з аааа
ATOM	2803	0	THR .	A 350		25.857	54.595	63.055	1.00 40.3	
ATOM	2804	N	LEU .	A 351		26.865	54.527	65.067	1.00 40.7	_
	2805	CA	LEU .	A 351		27.491	53.227	64.857	1.00 40.7	
ATOM	2806	CB	LEU .	A 351		28.855	53.213	65.540	1.00 39.8	•
ATOM	2807	CG	T.EU	A 351		29.911	52.290	64.951	1.00 39.6	
MOTA		CD1	1 211	A 351		31.170	52.403	65.772	1.00 39.8	
ATOM	2808	CDI	t Ell	A 351		29.414	50.861	64.945	1.00 40.7	O AAAA
ATOM	2809		I EII	A 351		26.612	52.091	65.384	1.00 41.1	L2 AAAA.
ATOM	2810	C	1 211	A 351		26.467	51.060	64.736	1.00 40.0	2 AAAA
ATOM	2811	0	LEO	A 352		26.040	52.292	66.567	1.00 42.9	9 AAAA
ATOM	2812	N	T X 2	N 332		25.138	51.326	67.201	1.00 43.9	3 AAAA
ATCM	2813	CA	LYS	A 352		25.412	51.225		1.00 43.3	
ATCM	2814	CB		A 352		26.743	50.597		1.00 44.	58 AAAA
ATOM	2815	CG	LYS	A 352		27.185	50.927		1.00 45.4	48 AAAA
ATCM	2816	CD		A 352		26.189	50.500		1.00 46.	21 AAAA
ATOM	2817	CE		A 352			50.944	72.895	1.00 47.	34 AAAA
MOTA	2818	NZ	LYS	A 352		26.646	50.344	67.003	1.00 44.	40 AAAA
ATOM	2819	С	LYS	A 352		23.723	51.838			79 AAAA
ATCM	2820	0	LYS	A 352		.3.375				78 AAAA
ATCM	2821	N	ASP	A 353		22.904				. •
ATOM	2822	CA	ASP	A 353		21.532				
	2823	СВ	ASP	A 353		21.050	51.030		1.00 45.	
ATOM	2824	CG	ASP	A 353		21.146				
ATOM	2825	OD.	1 2SP	A 353		21.806	49.086			• •
ATOM		20.	350	A 353		20.549	48.841			
ATOM	2826		JCD .	A 353		20.645	50.993	67.217	1.00 44.	44 AAAA
ATOM	2827		MOL	A 353		21.042			1.00 44.	29 AAAA
ATCM	2828		ASP	A 333		19.439			1.00 44.	22 AAAA
ATOM	2829			A 354		18.839			1.00 44.	38 AAAA
MOTA	2830			A 354					1.00 44.	18 AAAA
ATCM	2831	CA	PRO	A 354		18.500				52 AAAA
ATCM	2832	CB		A 354		17.371				66 AAAA
ATCM	2833	CG		A 354		17.368				
ATOM			PRO	A 354		17.995				-
ATOM			PRO	A 354		17.962				
			TRP	A 355		17.588				
ATCM				A 355		17.05				
ATOM			TRP	A 355		16.74	47.40	70.92	7 1.00 46	, 4.6
ATOM) ده د	,						=		

				`					
		_			17.959	47.052	71.695	1.00 49.91	AAAA
MOTA	2839	CG '	TRP A 3	333	18.476	45.733	71.903	1.00 51.56	AAAA
MOTA	2840		TRP A	355	19.684	45.868	72.627	1.00 52.03	AAAA
MOTA	2841		TRP A		18.038	44.450	71.548	1.00 52.25	AAAA
MOTA	2842		TRP A		18.846	47.915	72.284	1.00 50.53	AAAA
MOTA	2843		TRP A		19.885	47-208	72.846	1.00 51.63	AAAA
MOTA	2844		TRP A	355	20.460	44.763	73.003	1.00 52.64	AAAA
MOTA	2845	_	TRP A		18.810	43.352	71.921	1.00 53.12	AAAA
MOTA	2846		TRP A		20.008	43:518	72.642	1.00 53.02	AAAA
MOTA	2847	CH2	TRP A	300	15.788	47.767	68.675	1.00 40.28	AAAA
ATOM	2848	C	TRP A	355 355	15.783	48.720	68.591	1.00 39.82	AAAA
MOTA	2849	0	TRP A	355 .	15.591	46.610	68.065	1.00 36.83	AAAA
ATOM	2850	N	ARG A	356 356	14.440	46.365	67.225	1.00 33.70	AAAA
ATÓM	2851		ARG A		14.901	46.197	65.772	1.00 29.50	AAAA
MOTA	2852		ARG A		15.635	47.423	65.256	1.00 25.22	AAAA
MOTA	2853	CG	ARG A	330	16.418	47.194	63.973	1.00 21.53	AAAA
ATOM	2854		ARG A	350	17.055	48.435	63.533	1.00 18.55	AAAA
MOTA	2855	NE	ARG A	356	17.976	48.533	62.574	1.00 17.06	AAAA
ATOM	2856	CZ	ARG A	356	18.403	47.451	61.919	1.00 17.64	AAAA
ATOM	2857	NH1	ARG A	256	18.445	49.721	62.241	1.00 11.56	AAAA
MOTA	2858		ARG A	356	13.831	45.095	67.773	1.00 34.63	AAAA
MOTA	2859	C	ARG A	356	13.605	44.117	67.051	1.00 35.86	AAAA
ATOM	2860	0	ARG A	350	13.587	45.112	69.079	1.00 34.58	AAAA
ATOM	2861	И	GLY A	357	13.003	43.960	69.734	1.00 34.33	AAAA
ATOM	2862	CA	GLY A	357	11.536	43.783	69.395	1.00 34.31	AAAA
ATOM	2863	C	GLY A	357	11.006	44.418	68.484	1.00 33.56	AAAA
MOTA	2864	0	GLY A	357	10.876	42.906	70.139	1.00 34.47	AAAA
ATOM	2865	N	GLY A	358	9.468	42.656	69.916	1.00 34.61	AAAA
MOTA	2866	CA	GLY A	358	9.114	41.389	70.655	1.00 34.47	AAAA
MOTA	2867	C	GLY A	358	9.962	40.821	71.345	1.00 34.27	AAAA
ATOM -	2868	0	GLU A	359	7.869	40.948	70.523	1.00 34.16	AAAA
MOTA	2869	N	GLU A	359	7.438	39.729	71.180	1.00 33.94	AAAA
ATOM	2870	CA	GLU A	359	5.910	39.644	71.174	1.00 34.78	AAAA
MOTA	2871	CB	GLU A	359	5.278	40.648	72.123	1.00 36.70	AAAA
MOTA	2872	CG CD	GLU A	359	3.863	41.020	71.740	1.00 38.40	AAAA
MOTA	2873	OE1		359	3.017	40.108	71.600	1.00 39.65	AAAA
MOTA	2874	OE2	_	359	3.598	42.234	71.584	1.00 38.52	AAAA
MOTA	2875 2876	C	GLU A	359	8.058	38.549	70.464	1.00 32.86	AAAA AAAA
MOTA	2877	0	GLU A	359	8.678	38.692	69.427	1.00 32.92	AAAA
MOTA	2878	Ŋ	VAL A	360	7.918	37.375	71.036	1.00 32.63	AAAA
ATOM	2879	CA	VAL A	360	8.480	36.215		1.00 32.70	AAAA
ATOM	2860	CB	VAL A	360	9.422	35.472		1.00 33.24	AAAA
- ATOM	2881	CG1	VAL A	360	10.017	34.252		1.00 32.99 1.00 32.09	AAAA
MOTA	2882	CG2	VAL A	360	10.521	36.406		1.00 32.09	AAAA
MOTA	2883	c	VAL A		7.339	35.319	69.976	1.00 32.02	AAAA
MOTA MOTA	2884	ŏ	VAL A	360	6.702	34.660	70.791	1.00 32.02	AAAA
ATOM	2885	N	ARG A	361	7.084			1.00 33.12 1.00 33.52	AAAA
ATOM	2886	CA	ARG A	361	6.035				AAAA
MOTA	2887	СВ	ARG A	361	6.148				AAAA
ATOM	2888	CG	ARG A	361	5.731				AAAA
MOTA	2889	CD	ARG A	361	6.041	35.972			AAAA
MOTA	2890		ARG A	361	7.430				AAAA
MOTA	2891		ARG A	361	7.890				AAAA
MOTA	2892			361	7.068				AAAA
ATOM	2893		_	361	9.162				AAAA
ATOM	2894		ARG A	361	6.066				AAAA
	2895		ARG A	361	7.101				AAAA
MOTA MOTA	2896		LYS A	362	4.914				AAAA
MOTA			LYS A	362	4.808				AAAA
			LYS A	362	3.350		5 68.782		AAAA
ATOM			LYS 2	A 362	2.378		6 69.756		AAAA
MOTA			LYS A	A 362	2.50				AAAA
ATOM			LYS A	A 362	2.208				AAAA
MOTA MOTA			LYS A	A 362	2.47				AAAA
ATOM			LYS A	A 362	5.710	30.17			AAAA
ATOM			LYS	A 362	6.42	5 29.30	1 68.48	, 1.00 34.24	•
MICH		-							

			CT 11	A 363		5.661	30.460	66.703	1.00 35.12	AAAA
MOTA	2905	Ν.	GLU .	A 303		6.445	29.741	65.699	1.00 35.62	AAAA
MOTA	2906	CA	GLU .	A 363				64.424	1.00 36.81	AAAA
MOTA	2907	CB	GLU .	A 363		6.567	30.560			
	2908			A 363		5.280	30.808	63.711	1.00 38.66	AAAA
MOTA		-5	GDU .	263		5.477	31.704	62.517	1.00 39.60	AAAA
MOTA	2909	CD	GLU .	A 363			31.324	61.637	1.00 39.11	AAAA
ATOM -	2910	OE1	GLU	A 363		6.287			1.00 39.95	AAAA
ATOM	2911	OE2	GLU	አ 363		4.826	32.782	62.469		
		c	CLII	A 363		7.836	29.450	66.181	1.00 35.14	ÁAAA
ATOM	2912					8.321	28.316	66.098	1.00 34.50	AAAA
MOTA	2913	0	GLU	A 363				66.671	1.00 34.96	AAAA
MOTA	2914	N	VAL	A 364		8.475	30.505			AAAA
ATOM	2915			A 364		9.830	30.431	67.180	1.00 34.44	
	_			A 364		10.338	31.821	67.57D	1.00 33.68	AAAA
ATOM	2916					11.739	31.722	68.162 -	1.00 34.13	AAAA
MOTA	2917			A 364				66.347	1.00 31.83	AAAA
ATOM	2918	CG2	VAL	A 364		10.337	32.715		1.00 34.44	AAAA
ATOM	2919	С	VAL	A 364		9.908	29.499	68.370		
		ō	1721	A 364		10.789	28.640	68.430	1.00 36.01	AAAA-
MOTA	2920		VAL	266		8.980	29.649	69.305	1.00 33.27	AAAA
MOTA	2921	N	LYS	A 365			28.790	70.476	1.00 33.20	AAAA
MOTA	2922	CA	LYS	A 365		8.970			1.00 34.28	AAAA
ATOM	2923	CB	LYS	A 365		7.968	29.319	71.508		
		CG		A 365		8.307	30.705	72.033	1.00 33.67	AAAA
MOTA	2924					7.282	31.181	73.039	1.00 34.85	AAAA
ATOM	2925	CD	LYS	A 365		7.658	32.534	73.638	1.00 36.47	AAAA
MOTA	2926	CE	LYS	A 365					1.00 37.91	AAAA
ATOM	2927	NZ	LYS	A 365		6.698	32.990	74.710		
	2928	C		A 365		8.654	27.342	70.109	1.00 32.75	AAAA
MOTA						9.071	26.421	70.818	1.00 31.95	AAAA
MOTA	2929	0	LAZ	A 365		7.919	27.136	69.012	1.00 32.81	AAAA
MOTA	2930	N		A 366					1.00 33.65	AAAA
ATOM	2931	CA	ASP	A 366		7.600	25.777	68.581		AAAA
	2932	СВ		A 366		6.459	25.726	67.557	1.00 33.98	
ATOM				A 366		5.131	26.107	68.140	1.00 33.94	AAAA
ATOM	2933	CG				4.870	25.767	69.307	1.00 33.89	AAAA
ATOM	2934	ODl	ASP	A 366				67.412	1.00 35.08	AAAA
ATOM	2935	OD2	ASP	A 366		4.332	26.722		1.00 33.05	AAAA
ATOM	2936	С	ASP	A 366		8.820	25.167	67.940		
		ŏ		A 366		9.140	24.006	68.172	1.00 33.66	AAAA
MOTA	2937					9.473	25.959	67.102	1.00 33.07	AAAA
MOTA	2938	N		A 367			25.540	66.412	1.00 32.27	AAAA
ATOM	2939	CA		A 367		10.684			1.00 32.28	AAAA
ATOM	2940	CB	THR	A 367		11.304	26.719	65.641		AAAA
	2941		THR	A 367		10.473	27.039	64.520	1.00 30.64	
ATOM		001	TUTE	A 367		12.711	26.377	65.166	1.00 33.29	AAAA
ATOM	2942		1111	207		11.680	25.044	67.442	1.00 31.71	AAAA
ATOM	2943	С	THR	A 367				67.352	1.00 30.45	AAAA
ATOM	2944	0	THR	A 367		12.178	23.918		1.00 32.05	AAAA
MOTA	2945	N	LEU	A 368		11.955	25.896	68.426	1.00 32.03	
		CA	7 = 11	A 368		12.888	25.560	69.482	1.00 32.49	AAAA
MOTA	2946				•	13.085	26.749	70.421	1.00 32.27	AAAA
MOTA	2947	CB		A 368			27.809	69.960	1.00 32.71	AAAA
ATOM	2948	CG		A 368		14.097		69.899	1.00 33.00	AAAA
MOTA	2949	CD1	LEU	A 368		15.488	27.170			AAAA
	2950	CD2	LED	A 368		13.709	28 393	68.597	1.00 31.86	
MOTA			1 211	A 368		12.455	24.334	70.256	1.00 33.82	AAAA
MOTA	2951	C	LEU	2 300		13.266	23.133	70.489	1.00 34.29	AAAA
ATOM	2952	0	LEU	A 368			24.285	70.645	1.00 34.30	AAAA
ATOM	2953	N	GLU	A 369		11.183			1.00 36.07	AAAA
ATOM	2954	CA	GLU	A 369		10.687	23.135	71.375		AAAA
		CB	GLII	A 369		9.211	23.319	71.748	1.00 38.71	
MOTA	2955					8.974	24.285	72.920	1.00 40.18	AAAA
MOTA	2956	CG		A 369		7.509	24.359	73.341	1.00 41.56	AAAA
MOTA	2957	CD	GLU	A 369			29.333		1.00 41.83	AAAA
MOTA	.2958	OE1	GLU	A 369		6.917	23.276	73.572		AAAA
	2959	OF2	GLU	A 369		6.957	25.489	73.451	1.00 41.74	
MOTA			CLU	3 360		10.893	21.822	70.611	1.00 37.16	AAAA
MOTA	2960	C		A 369			20.831	71.196	1.00 37.00	AAAA
ATOM	2961	0	GLU	A 369		11.338		69.315	1.00 37.71	AAAA
ATOM	2962	N	LYS	A 370		10.586	21.788		1.00 37.71	AAAA
		CA		A 370		10.797	20.547	68.567	1.00 38.46	
MOTA	2963					10.166	20.604	67.177	1.00 39.96	AAAA
MOTA	2964	CB	LXS	A 370			20.532	67.186	1.00 42.68	AAAA
MOTA	2965	CG	LYS	A 370		8.646				AAAA
ATOM	2966	CD	LYS	A 370		8.092	20.320			AAAA
	2967		T.VC	A 370		6.572	20.075			
ATOM			7.10	A 370)	6.009	19.797		1.00 45.50	AAAA
ATOM	2968		LYS	A 370			20.235			AAAA
MOTA	2969	С	LYS	A 370		12.282				AAAA
ATCM	2970		LYS	A 370	}	12.683	19.071	68.493	1.00 37.00	•

					8								
			LA A	271		13.	105	21.266	68.311	1.00	37.69	AAAA	
		N A CA A	LA A	371		14.	543	21.057	68.226	1.00	37.20	AAAA AAAA	
		CB A	LA A	371		15.	258	22.375	67.936		35.48 37.63	AAAA	
	2974	C F	LA A	371			023	20.477	69.558 69.585	1.00	37.12	AAAA	
	2975	0 2	LA A	371			920	19.626 20.930	70.665	1.00	37.59	AAAA	
ATOM	2976	N I	YS A	372			.426 .796	20.432	71.995	1.00	37.46	AAAA	
ATOM	2977	CA I	YS A	372			.022	21.156	73.095	1.00	36.52	AAAA	
•	2978	CB I	LYS A LYS A	372			287	22.634	73.111	1.00	22.67	AAAA	
	2979	CG I	LYS A	372			309	23.396	74.022	1.00	22.67	AAAA AAAA	
	2980 2981	CE !	LYS A	372		13	.600	24.874	73.901	1.00	22.67 22.67	AAAA	
	2982	NZ :	LYS A	372	•		. 692	25.708	74.785 72.077	1.00	37.60	AAAA	
222	2983	C :	LYS A	372			. 495	18.957 18.171	72.407	1.00	37.26	AAAA	
ATOM	2984	0	LYS A	372			.367 .249	18.595	71.789	1.00	38.17	AAAA	
ATOM	2985	N .	ALA A	373			.812	17.206	71.829	1.00	39.55	AAAA	
MOTA	2986	CA .	ALA A ALA A	373			.365	17.109	71.395	1.00	39.34	AAAA	
MOTA	2987	CB C	ALA A	373			.675	16.277	70.972	1.00	41.02	AAAA AAAA	
MOTA	2988 2989	0	ALA	373			.366	15.410	71.561	1.00	42.26 42.06		
MOTA MOTA	2990	OXT	ALA A	373			. 663	16.416	69.725	1.00	27.38		
HETATM	2991	ZN	ZN F	3 951	-		.696	34.788	54.072 53.458	1.00	31.95		
HETATM	2992		SHA (.578	33.295 35.218	51.444	1.00	33.51	SAHA	
HETATM	2993		SHA (.294 .578	33.085	52.069	1.00	34.03	SAHA	
HETATM	2994		SHA (.063	34.053	51.246	1.00	34.25	SAHA	
HETATM	2995	C1	SHA (_			.090	33.625	50.259	1.00	36.87	SAHA	
HETATM	2996	C2 C3	SHA (.548	33.781	48.816	1.00	39.33	SAHA SAHA	
НЕТАТМ НЕТАТМ	2997	C4	SHA	_		22	.498	33.274	47.852	1.00	40.86 43.37	<i>2</i>	
HETATM	2999	C5	SHA		L		590	34.413	47.455	1.00	46.72		
HETATM	3000	C6	SHA	_	L		.061	34.017	46.092	1.00	48.75	-	
HETATM	3001	C7	SHA	_	L		754	34.714 35.720	44.693	1.00	50.75	s saha	
HETATM	3002	C8	SHA		Ļ		9.960 9.381	35.467	43.575	1.00	51.08	SAHA	
HETATM	3003	03	SHA	_	l l		5.591	36.956	45.085	1.00	52.52	SAHA	
HETATM	3004	N2	SHA SHA		ì		.842	38.330	44.507	1.00	54.25	5 SAHA 6 SAHA	
HETATM	3005	C9	SHA		1		243	39.431	45.215	1.00	55.76	=	
HETATM HETATM	3000		SHA		1		3.423	40.804	44.727	1.0	0 56.53 0 56.58	•	
HETATM	3008	C12	SHA	c :	1		0.169	41.085	43.545 42.827	_	0 55.9		
HETATM	3009	C13	SHA	C	1		0.755	39.942 38.546			0 54.6	5 SAHA	4
HETATM	3010		SHA		1		0.612 6.485			_	0 4.6	7 SOLV	
HETATM	1 3011	OH2	TAW		2 3		7.702			1.0	0 4.6		
HETATM	3012	OH2	TAW TAW	מ	3 4	_	3.251		59.575	1.0	0 10.1	2 SOLV	
HETATM	4 3013	OHZ	WAT	D	5	3	3.825	41.862			0 21.1	•	
HETAT	4 3015	OH2	TAW	D	6	2	4.866	44.453			0 23.7 0 18.1	_	
תבואוי	3016	OH2	WAT	D	7		4.145			_	0 20.7	-	
H_TAT	4 3017	OH2	WAT	D	8		7.921				0 28.9	4 SOL	
HLIATI	M 3018	OH2	TAW	D .	9		7.863 5.580	_		1.0	0 31.6	2 SOL	
HETATI	M 3019	OH2	WAT	DI	.0		9.208			1.0	0 14.7	0 SOL	
HETATI	M 3020	OH2	WAT	D 1	.1 .2		0.490			7 1.0	0 25.0	1 SOL	
HETATI	M 3021	OHZ	TAW TAW		.3		4.757	33.106	46.084	_	0 25.9	. •	
HETATI	м 3022 м 3023		TAW	D 1	.4	2	2.457	60.823	57.44		00 15.2 00 20.6		
HETATI	M 3024				.5		3.399			_	0 22.3	-	
NETAT	M 3025	OH2	TAW	D 1	.6		2.273		4 45.61 3 73.42		0 27.8		
HETAT	м 3026	OH2	TAW	D 1	L 7		6.328				0 15.0	9 SOL	V
HETAT	м 3027	OH2	TAW S	D 1	L 8		8.249				0 40.9	5 SOL	
HETAT	м 3028	OH2	TAW	D :	19		26.44		9 52.63	3 1.0	00 26.6	66 SOL	
HETAT	M 3029	OH	TAW S		20 21	-	26.55		3 59.65	0 1.	00 11.4	42 SOL	
HETAT	M 3030		TAW S		22		39.45	6 25.96	4 72.31	6 1.	00 20.	32 SOL	
HETAT	M 3031		WAI WAT	ם י	23		26.74	37.60	0 38.35	-	00 37.3	-	
HETAT	M 3032 M 3033		2 WAT	_	24	4	14.66	6 23.81		_	00 32.3 00 29.3	27 30L 24 SOL	
HETAT	M 3034	OH	2 WAT	. ם י	25		14.71				00 29.		
HETAT	M 303	OH:	2 WAT	, D	26		45.12			_	00 15.		
HETAT	TM 303		2 WAT	D	27		30.02	4 17.88				•	
			•										

				•					
		D	28,		20.659	28.788	43.520	1.00 28.55	SOLV
HETATM 303		D TAW	26. 29		32.271	38.000	53.512	1.00 47.72	SOLV
HETATM 303		WAT D	30		18.285	29.333	54.536	1.00 21.34	SOLV
HETATM 303		WAT D	31		49.978	38.669	73.461	1.00 31.02	SOLV
HETATM 304		WAT D	32		21.587	50.386	71.043	1.00 14.52	SOLV
HETATM 304		WAT D	33		46.784	32.121	33.375	1.00 31.79	SOLV
HETATM 304		WAT D	33 34		33.359	39.755	49.117	1.00 16.13	SOLV
HETATM 30		WAT D	35		7.687	37.657	51.568	1.00 27.22	SOLV
HETATM 30		WAT D	36		44.238	35.392	33.961	1.00 19.67	SOLV
HETATM 30		WAT D	37		10.908	25.384	58.206	1.00 33.51	SOLV
HETATM 30		WAT D	38		36.758	27.243	70.552	1.00 39.61	SOLV.
нетатм 30		WAT D	39		45.825	46.691	54.654	1.00 32.43	SOLV
нетатм 30		WAT D	40		52.489	20.282	52.165	1.00 39.37	SOLV
нетатм 30		WAT D	42		12.117	17.831	56.596	1.00 27.74	SOLV
HETATM 30		WAT D	43		45.023	26.168	35.172	1.00 14.09	SOLV
нетатм 30		WAT D	44		39.392	12.771	62.066	1.00 35.15	SOLV
нетатм 30		WAT D	45		3.930	26.970	63.814	1.00 22.23	SOLV
нетатм 30		WAT D	46		8.454	19.321	71.677	1.00 32.36	SOLV
HETATM 30	•	WAT D	47		20.280	18.126	73.237	1.00 33.88	SOLV
HETATM 30		WAT D	48		9.321	39.409	54.873	1.00 18.57	SOLV
HETATM 30	_	WAT D	49		50.852	41.323	58.048	1.00 21.25	SOLV
HETATM 30		WAT D	50		37.134	34.599	60.315	1.00 61.70	SOLV
HETATM 30		WAT D	51		14.944	62.815	48.613	1.00 42.50	SOLV
HETATM 30		WAT D	52		6.494	33.164	51.420	1.00 40.65	SOLV
HETATM 30		WAT D	53		24.913	44.799	72.298	1.00 17.10	SOLV SOLV
HETATM 30		WAT D			51.156	35.095	48.814	1.00 23.05	SOLV
HETATM 30		WAT D			16.518	41.750	45.596	1.00 49.25	SOLV
HETATM 30		WAT D			10.326	16.413	61.267	1.00 46.03	SOLV
HETATM 30		WAT D	57		25.316	47.708	73.062	1.00 22.73	SOLV
HETATM 3		WAT D	58		4.013	33.865	76.173	1.00 44.82	SOLV
HETATM 3		WAT D	59		24.846	18.072	36.805	1.00 34.67	SOLV
HETATM 30		WAT D			15.930	56.853	61.737	1.00 55.56	SOLV
HETATM 3		WAT D			49.662	44.249	48.982	1.00 28.72 1.00 13.11	SOLV
HETATM 3		WAT D	62.		23.232	17.421	53.920	1.00 13.11	SOLV
HETATM 3		WAT D	63		39.293	23.035	33.289	1.00 33.73	SOLV
HETATM 3		WAT D	64		19.908	20.169	44.339	1.00 45.10	SOLV
HETATM 3		WAT D	65		33.259	21.655	69.560	1.00 44.79	SOLV
HETATM 3	•	WAT E			27.528	53.947	68.629	1.00 54.01	SOLV
HETATM 3		TAW S	67		18.774	48.716	52.865 63.401	1.00 27.08	SOLV
HETATM 3	076 OH2	I TAW S	68		10.877	29.062	28.786	1.00 30.16	SOLV
HETATM 3	077 OH2	Z WAT I			43.057	31.367	43.447	1.00 20.11	SOLV
HETATM 3	078 OH2	2 WAT I	70		24.816	44.057 38.823	46.381	1.00 33.55	SOLV
HETATM 3	079 OH2	2 WAT I	71		37.368	18.327		1.00 31.34	SOLV
HETATM 3	080 OH	I TAW 2			9.038	20.829	65.265	1.00 28.32	SOLV
нетатм 3	081 OH	2 WAT I	73		51.799	58.515	57.254		SOLV
HETATM 3	082 OH	2 WAT I	74		17.556	27.904		1.00 27.13	SOLV
HETATM 3	083 OH	2 WAT I	75		28.436 18.939				SOLV
HETATM 3	084 OH	2 WAT I	76		34.359	31.251	·		SOLV
HETATM 3	085 OH	2 WAT !	2 77		44.373	51.649			SOLV
HETATM 3	086 OH	2 WAT			28.537			^^	SOLV
HETATM 3	3087 OH	2 WAT	D 79		6.869				SOLV
HETATM 3	8088 OH	2 WAT	D 80		42.882				SOLV
HETATM 3	3089 OH	2 WAT	D 81		36.712				SOLV
HETATM 3	3090 OH	2 WAT	D 82		37.506				SOLV
HETATM 3	3091 OH	2 WAT	D 83		40.054				SOLV
HETATM 3	3092 ОН	2 WAT	D 84		32.170				SOLV
HETATM 3	3093 OH	2 WAT	D 85		32.170	53.877			SOLV
HETATM 3	3094 OH	2 WAT	D 86		24.470 48.585			1.00 33.40	SOLV
HETATM :	3095 OH	2 WAT	อ 87					1.00 44.61	SOLV
HETATM :	3096 ОН	2 WAT	D 88		29.541			1.00 45.64	SOLV
HETATM	3097 OH	2 WAT	D 89		47.814			1.00 22.26	SOLV
HETATM :	3098 OH	2 WAT	D 90		49.377			1.00 39.90	SOLV
HETATM	3099 OH	2 WAT	D 91		44.219 25.913			1.00 48.28	SOLV
HETATM	3100 OH	IZ WAT	D 92		8.623			7 1.00 40.37	SOLV
HETATM	3101 OF	12 WAT	D 93		45.634				SOLV
HETATM	3102 OF	12 WAT	D 94		43.034	1.00			•
		•							

				•							
HETATM	3103	OH2	WAT		95	29.984	34.886	51.725	1.00		SOLV
HETATM	3104	OH2	WAT	D	96	13.051	21.934	49.804	1.00 4	46.73	SOLV
HETATM	3105	OH2	WAT	D	97	32.412	65.913	55.822	1.00 4	43.39	SOLV
HETATM	3106	OH2			98	35.056	43.390	38.348	1.00	34.53	SOLV
HETATM		OH2	WAT	D	99	22.360	47.680	60.688	1.00	19.16	SOLV
HETATM		OH2	TAW	D	100	50.755	19.722	57.906	1.00 4	42.45	SOLV
HETATM			WAT			7.875	37.690	74.094	1.00	37.18	SOLV
HETATM		OH2	WAT			24.080	26.796	43.617	1.00		SOLV
HETATM		OH2	WAT			45.206	34.126	75.765	1.00		SOLV
HETATM		OH2	WAT			26.110	54.786	40.685	1.00		SOLV
			TAW			25.918	39.658	77.647	1.00		SOLV
HETATM						41.578	18.191	36.809	1.00		SOLV
HETATM		OH2				31.945	51.420	73.896	1.00		SOLV
HETATM			TAW			16.722	60.311	51.182	1.00		SOLV
HETATM						43.604	38.573	78.141	1.00		SOLV
HETATM			TAW				15.496	69.430	1.00		SOLV
HETATM			WAT			16.063		49.145	1.00		SOLV
HETATM			WAT			21.630	22.785	44.026			
HETATM		OH2	WAT			27.479	56.647		1.00		SOLV
HETATM	_	OH2	TAW			14.739	51.674	61.674	1.00		SOLV
HETATM			WAT			50.063	26.435	54.358	1.00 !		SOLV
HETATM		OH2	WAT			43.935	38.427	73.129	1.00		SOLV
HETATM		OH2	TAW	_		49.707	31.478	57.709	1.00		SOLV
HETATM		OH2	TAW			25.032	43.463	55.676	1.00		SOLV
HETATM	3126	OH2	\mathbf{WAT}			10.618	46.623	59.838	1.00		SOLV
HETATM	3127	OH2	WAT			48.466	33.382	61.437	1.00		SOLV
HETATM	3128	OH2	WAT			44.157	40.058	37.907	1.00		SOLV
HETATM	3129	он2	WAT			51.267	29.446	52.889	1.00		SOLV
HETATM	3130	OH2	TAW	D	122	16.653	15.228	72.975	1.00		SOLV
HETATM	3131	-	\mathbf{WAT}			36.898	45.148	41.936	1.00		SOLV
HETATM	3132	OH2	TAW	D	124	49.655	34.591	59.117	1.00		SOLV
HETATM	3133	OH2	TAW	D	125	12.285	57.594	42.107	1.00		SOLV
HETATM	3134	OH2	TAW	D	126	28.294	57.644	73.289	1.00	34.79	SOLV
HETATM		OH2	WAT	D	127	19.138	60.403	61.551	1.00	28.58	SOLV
HETATM	3136	OH2	WAT	D	128	30.300	33.685	34.047	1.00	27.37	SOLV
HETATM		OH2	WAT	D	129	40.898	53.983	47.254	1.00	16.30	SOLV
HETATM		OH2	TAW	D	130	43.550	32.160	38.272	1.00	38.86	SOLV
HETATM		OH2	TAW	D	131	18.624	13.959	56.194	1.00	37.70	SOLV
HETATM		OH2	WAT	D	132	18.580	12.901	62.894	1.00 2	27.28	SOLV
HETATM		OH2	TAW	D	133	35.830	30.296	50.621	1.00	42.47	SOLV
HETATM	_		WAT			51.219	35.855	51.878	1.00	20.37	SOLV
HETATM			WAT			50.428	22.486	49.267	1.00	39.37	SOLV
HETATM		OH2	WAT			51.633	29.369	63.918	1.00	33.99	SOLV
HETATM			WAT			46.384	43.924	55.825	1.00		SOLV
HETATM			WAT	_		30.356	25.767	28.762	1.00		SOLV
HETATM			WAT			25.070	47.842	60.819	1.00		SOLV
HETATM			WAT			47.097	49.394	69.367	1.00		SOLV
HETATM			TAW			15.246	37.581	73.398	1.00		SOLV
HETATM		-	WAT			8.341	23.099	64.695	1.00		SOLV
HETATM			WAT			30.065	18.220	46.048	1.00		SOLV
			WAT			11.930	46.453	57.606	1.00		SOLV
HETATM	3134	Unz	AASS T	ט	724	11.700	-0.423	27.000	1.00		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/24700

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) :CO7K 14/00; GO1N 35/573 US CL :Please See Extra Sheet.					
	ternational Patent Classification (IPC) or to both	national classification and IPC			
	SEARCHED	III. II. Garian ambaba			
	entation searched (classification system follower e See Extra Sheet.	d by classification symbols)			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.					
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
Hu: Jou	KAKUTA et al. Crystal Structure of the Sulfotransferase Domain of Human Heparan Sulfate N-Deacetylase/N-Sulfotransferase 1. The Journal of Biological Chemistry. 16 April 1999, Volume 274, Number 16, pages 10673-10676, see especially the abstract.				
of :	TEYOSHI et al. A role of Lys-614 in human heparan sulfate N-deacetula tters. 1998, Volume 433, pages stract.	se/N-sulfotransferase. FEBS	1-19		
X Further do	ocuments are listed in the continuation of Box C	C. See patent family annex.			
* Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *Beccial categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			cation but cited to understand invention		
"E" carlier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other greated present (as greated presents). "T" document of particular relevance; the claimed invention cannot when the document is taken alone "Y" document of particular relevance; the claimed invention cannot when the document is taken alone "Y" document of particular relevance; the claimed invention cannot			od to involve an inventive step		
•	document inferring to an oral disclosure, use, exhibition or other with one or more other such documents, such combination being				
	P document published prior to the international filing date but later "e" document member of the same patent family than the priority date claimed				
Date of the actual	d completion of the international search	Date of mailing of the international sea 25 JAN 2001	urch report		
Name and mailing Commissioner of Box PCT Washington, D.C.	g address of the ISA/US Patents and Trademarks	Authorized officer Myse Bridgers ARDIN MARSOHEL			
Feerimile No.		Telephone No. (703) 308-0196	75		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/24700

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	AHMAD et al. WD Repeats of the p48 Subunit of Chicken Chromatin Assembly Factor-1 Required for in Vitro Interaction with Chicken Histone Deacetylase-2. The Journal of Biological Chemistry. 04 June 1999, Volume 274, Number 23, pages 16646-16653, see especially the abstract.	1-19
Y	JOHN et al. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proceedings of the National Academy of Sciences, USA. January 1993, Volume 90, pages 625-629, see especially the abstract.	1-19
A.	US 5,780,594 A (CARTER) 14 July 1998, see the entire disclosure.	1-19
	,	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/24700

_		
	A. CLASSIFICATION OF SUBJECT MATTER: US CL:	
	530/350 and 435/7.2	
	B. FIELDS SEARCHED Minimum documentation searched Classification System: U.S.	
	530/300,333,350; 435/6,7.9; 514/9	
	B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms use	d):
	CAS, BIOTECH ABS, MEDLINE, EMBASE, WPI, WEST covering search terms: inhibitor, x-ray, and crystallography	deacetylase, human, crystal, histone,
		•

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

4	BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.