EVALUACIÓN 2

Manuel Vicente Bolaños Quesada

Problema 1

Sea
$$A = \left\{ n \in \mathbb{N} : \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{5 \cdot 7 \cdot 9 \cdots (2n+3)} < \frac{\sqrt{6}}{\sqrt{(n+1)(n+2)(n+3)}} \right\}$$

Evidentemente, $A \subseteq \mathbb{N}$. Veamos ahora que $1 \in A$. Tenemos que

$$\frac{2}{5} = \frac{2 \cdot 1}{2 \cdot 1 + 3} < \frac{\sqrt{6}}{\sqrt{2 \cdot 3 \cdot 4}} = \frac{1}{2},$$

por lo que $1 \in A$, como queríamos ver.

Supongamos ahora que $n \in A$, y veamos que $n + 1 \in A$.

$$\begin{split} \frac{2 \cdot 4 \cdot 6 \cdot \cdots (2n)[2(n+1)]}{5 \cdot 7 \cdot 9 \cdot \cdots (2n+3)(2n+5)} &< \frac{\sqrt{6}}{\sqrt{(n+1)(n+2)(n+3)}} \cdot \frac{2(n+1)}{2n+5} \\ &= \frac{\sqrt{6}\sqrt{n+1}}{\sqrt{(n+1)(n+2)(n+3)}\sqrt{n+4}} \cdot \frac{2\sqrt{n+1}\sqrt{n+4}}{2n+5} \\ &= \frac{\sqrt{6}}{\sqrt{(n+2)(n+3)(n+4)}} \cdot \frac{2\sqrt{(n+1)(n+4)}}{2n+5} \\ &\leq \frac{\sqrt{6}}{\sqrt{(n+2)(n+3)(n+4)}} \cdot \frac{2n+5}{2n+5} \\ &= \frac{\sqrt{6}}{\sqrt{(n+2)(n+3)(n+4)}}, \end{split}$$

tal y como queríamos demostrar. En la última desigualdad hemos usado la desigualdad entre la media geométrica y aritmética de esta manera:

$$\frac{(n+1) + (n+4)}{2} \ge \sqrt{(n+1)(n+4)}$$

Podemos dividir por $\sqrt{n+4}$ y por $\sqrt{n+1}$ ya que $\sqrt{n+4} > \sqrt{n+1} \ge \sqrt{2} > 0$. Así, pues, $\mathbb{N} \subseteq A \implies A = \mathbb{N}$, por lo que la desigualdad del enunciado se verifica para todos los naturales.

Problema 2

Como A está acotado, tiene supremo. Sea $\alpha = sup(A)$. Demostremos que B no es vacío, demostrando que α es un casi-mayorante. Tenemos que $\{x \in A : \alpha < x\} = \emptyset$, ya que α es el supremo de A. Como \emptyset es finito, $\alpha \in B$. Es más, $Mayor(A) \subseteq B$, ya que si $\delta \in Mayor(A) \implies \{x \in A : \delta < x\} = \emptyset$, que es finito.

Sea $r \in Minor(A)$. Entonces, $\{x \in A : r < x\}$, o bien es la totalidad de A, o bien es igual a $A \setminus \{inf(A)\}$. En cualquiera de los dos casos, el conjunto es infinito, por lo que ningún minorante de A pertenece a B. Por lo tanto, los minorantes de A, también son minorantes de B, y queda demostrado que B está minorado.

Manuel Vicente Bolaños Quesada

Como B está minorado, tiene sentido considerar su ínfimo. Sea $\beta = inf(B)$. Entonces, $\forall b \in B, \beta \leq b$, y, en particular, $\beta \leq \alpha$ (ya demostramos que $\alpha \in B$), como queríamos probar.

<u>Lema:</u> Sean $r \in B, s \in \mathbb{R}$ tales que s > r, entonces, $s \in B$.

<u>Demostración:</u> Como $r \in B$, tenemos que $\{x \in A : r < x\}$ es un conjunto finito. Además, como s > r, tenemos que

$$\# \{x \in A : r < x\} \ge \# \{x \in A : s < x\},\$$

por lo que el conjunto $\{x \in A : s < x\}$ también es infinito, y por tanto $s \in B$. Como consecuencia, $\beta, +\infty[\subseteq B$.

Demostremos ahora que si $\beta < \alpha$, entonces A tiene máximo. Supongamos, en busca de una contradicción, que A no tiene máximo. Entonces, podemos encontrar números pertenecientes a A tan cercanos a α como queramos.

Sea $\varepsilon > 0$ tal que $\beta < \alpha - \varepsilon < \alpha$. Tenemos que $\alpha - \varepsilon \in]\beta, +\infty[$, lo que implica, por el lema, que $\alpha - \varepsilon \in B$, pero entonces $\{x \in A : \alpha - \varepsilon < x\}$ es finito. Sin embargo, entre $\alpha - \varepsilon$ y α hay infinitos números reales. Así pues, hemos llegado a una contradicción, y la hipótesis inicial es falsa. Por lo tanto A tiene máximo.

Problema 3

i) Como f es creciente, tenemos que

$$inf\{f(t) : \alpha < t \le b\} \ge f(\alpha)$$

$$\sup\{f(s): a \leq s < \alpha\} \leq f(\alpha) \implies -\sup\{f(s): a \leq s < \alpha\} \geq -f(\alpha)$$

Sumando las dos desigualdades anteriores, obtenemos que

$$\omega(f, \alpha) \ge f(\alpha) - f(\alpha) = 0,$$

como queríamos demostrar.

Sea $\varepsilon \geq 0$ tal que $\alpha \leq \alpha + \varepsilon < v \leq b$. Entonces, utilizando que f es creciente

$$\inf\{f(t) : \alpha < t \le b\} \le f(\alpha + \varepsilon) \le f(v)$$

Similarmente, sea $\varepsilon' > 0$ tal que $a > u > \alpha - \varepsilon' > \alpha$. Entonces, usando que f es creciente obtenemos que

$$sup\{f(s): a \le s < \alpha\} \ge f(\alpha - \varepsilon') \ge f(u) \implies -sup\{f(s): a \le s < \alpha\} \le -f(u)$$

Sumando las dos últimas desigualdades obtenemos que

$$\omega(f, \alpha) \le f(v) - f(u),$$

que es lo que se pedía demostrar.

ii) Consideramos los puntos $a=x_0<\alpha_1< x_1<\alpha_2< x_2<\alpha_3<\cdots< x_{p-1}<\alpha_p< x_p=b$ Usando el resultado del apartado i) tenemos que

$$\omega(f, \alpha_i) \le f(x_i) - f(x_{i-1}), \forall i \in \mathbb{N}, 1 \le i \le p$$

Entonces, tenemos que

$$\sum_{i=1}^{p} \omega(f, \alpha_i) \le \sum_{i=1}^{p} f(x_i) - \sum_{i=0}^{p-1} f(x_i) = f(x_p) - f(x_0) = f(b) - f(a),$$

como queríamos demostrar.

Manuel Vicente Bolaños Quesada

iii) Supongamos, en busca de una contradicción, que el conjunto S_n es infinito para cada $n \in \mathbb{N}$. Sea $m \in \mathbb{N}$. Si sumamos m elementos del conjunto S_n , a saber: $\omega(f, \alpha_1), \omega(f, \alpha_2), ..., \omega(f, \alpha_m)$, tendremos que

$$\sum_{i=1}^{m} \omega(f, \alpha_i) \ge m \cdot \frac{1}{n}$$

Sin embargo, por el apartado ii), sabemos que

$$f(b) - f(a) \ge \sum_{i=1}^{m} \omega(f, \alpha_i),$$

de donde

$$f(b) - f(a) \ge \frac{m}{n}$$
.

Ahora bien, como el conjunto S_n es infinito, y por la propiedad arquimediana de los número naturales, podemos elegir un m, tal que $\frac{m}{n} > f(b) - f(a)$, lo que es una contradicción, y por lo tanto, la hipótesis inicial es falsa. En conclusión, S_n es finito para cada $n \in \mathbb{N}$.

iv) Sea el conjunto $T_n = \left\{ \alpha \in]a,b[:\omega(f,\alpha) > \frac{1}{n} \right\}$, para cada $n \in \mathbb{N}$. Está claro que $\#T_n \leq \#S_n$, por lo que T_n es finito para cada n natural. Además,

$$S = \bigcup_{n \in \mathbb{N}} T_n,$$

ya que podemos aproximar 0 con $\frac{1}{n}$, haciendo n cada vez mayor. Sabemos que \mathbb{N} es numerable. Para cada $n \in \mathbb{N}$, tenemos que T_n es un conjunto numerable no vacío (es finito). Entonces, el conjunto

$$\bigcup_{n\in\mathbb{N}}T_n$$

también es numerable, o lo que es lo mismo, S es numerable.