NAME:	Shubham Solanki
UID:	2022301015
SUBJECT	Design and Analysis of Algorithms
EXPERIMENT NO:	1 (A)
AIM:	To implement the various functions e.g. linear, non-linear, quadratic, exponential etc.
PROGRAM:	<pre>#include <stdio.h> #include <math.h></math.h></stdio.h></pre>
	<pre>int cube(int n) { return n*n*n; }</pre>
	<pre>float fraction(int n) { int b = 3 * n; float result = (float)(b) / (float)(2); return result; }</pre>
	<pre>float logfc(int a) { float c = log10(a); return c; }</pre>
	<pre>float Infc(int a) { float c = log(a); return c; }</pre>
	<pre>float power(int a) { float b = pow(2, a); return b; }</pre>

```
float expo(int a) {
  float b = exp(a);
  return b;
float logPower(int a) {
  float b = pow(2, log10(a));
  return b;
float func5(int a) {
  float b = a * (pow(2, a));
  return b;
float rootlog(int a) {
  float b = sqrt(log10(a));
  return b;
float powerRootLog(int a) {
  float b = pow(sqrt(2), log10(a));
  return b;
float factorial(int a) {
  if (a <= 1) {
    return 1;
  return a * factorial(a - 1);
int main() {
  int a;
  float b;
  for (int i = 1; i <= 100; i++) {
    printf("%d", i);
    a = cube(i);
```

```
printf(" %d", a);
 b = fraction(i);
 printf(" %.2f", b);
 b = logfc(i);
 printf(" %.2f", b);
 b = lnfc(i);
 printf(" %.2f", b);
 b = power(i);
 printf(" %.1f", b);
 b = expo(i);
 printf(" %.2f", b);
  b = logPower(i);
 printf(" %.2f", b);
 b = func5(i);
 printf(" %.1f", b);
 b = rootlog(i);
 printf(" %.2f", b);
 b =powerRootLog(i);
  printf(" %.2f", b);
 if (i <= 20) {
   b = factorial(i);
   printf(" %f", b);
  printf("\n");
return 0;
```

Values of functions

n	n^3	3n/2	log n	log n ln n 2^n e^n 2^lo		2^lon n	n*2^n		sqrt(2)^log	
1	1	1 5	_	0	2	2.72	1	2	n)	n
1 2	1 8	1.5 3	0	0 0.69	2 4	2.72 7.39	1 1.23	2 8	0 0.55	1 1.11
3	27	3 4.5	0.3 0.48	1.1	8	20.09	1.23	24	0.55	1.11
4	64	4.5	0.48	1.39	16	54.6	1.52	64	0.09	1.18
5	125	7.5	0.7	1.61	32	148.41	1.62	160	0.78	1.23
6	216	7.5	0.78	1.79	64	403.43	1.71	384	0.84	1.31
7	343	10.5	0.75	1.95	128	1096.63	1.8	896	0.92	1.34
8	512	12	0.9	2.08	256	2980.96	1.87	2048	0.95	1.37
9	729	13.5	0.95	2.2	512	8103.08	1.94	4608	0.98	1.39
10	1000	15	1	2.3	1024	22026.46	2	10240	1	1.41
11	1331	16.5	1.04	2.4	2048	59874.14	2.06	22528	1.02	1.43
12	1728	18	1.08	2.48	4096	162754.8	2.11	49152	1.04	1.45
13	2197	19.5	1.11	2.56	8192	442413.4	2.16	106496	1.06	1.47
14	2744	21	1.15	2.64	16384	1202604	2.21	229376	1.07	1.49
15	3375	22.5	1.18	2.71	32768	3269017	2.26	491520	1.08	1.5
16	4096	24	1.2	2.77	65536	8886111	2.3	1048576	1.1	1.52
17	4913	25.5	1.23	2.83	131072	24154952	2.35	2228224	1.11	1.53
18	5832	27	1.26	2.89	262144	65659968	2.39	4718592	1.12	1.55
19	6859	28.5	1.28	2.94	524288	1.78E+08	2.43	9961472	1.13	1.56
20	8000	30	1.3	3	1048576	4.85E+08	2.46	20971520	1.14	1.57
21	9261	31.5	1.32	3.04	2097152	1.32E+09	2.5	44040192	1.15	1.58
22	10648	33	1.34	3.09	4194304	3.58E+09	2.54	92274688	1.16	1.59
23	12167	34.5	1.36	3.14	8388608	9.74E+09	2.57	1.93E+08	1.17	1.6
24	13824	36	1.38	3.18	16777216	2.65E+10	2.6	4.03E+08	1.17	1.61
25	15625	37.5	1.4	3.22	33554432	7.2E+10	2.64	8.39E+08	1.18	1.62
26	17576	39	1.41	3.26	67108864	1.96E+11	2.67	1.74E+09	1.19	1.63
27	19683	40.5	1.43	3.3	1.34E+08	5.32E+11	2.7	3.62E+09	1.2	1.64
28	21952	42	1.45		2.68E+08	1.45E+12		7.52E+09	1.2	1.65
29	24389	43.5	1.46		5.37E+08			1.56E+10		1.66
30	27000	45			1.07E+09	1.07E+13		3.22E+10		1.67
31	29791	46.5	1.49		2.15E+09	2.9E+13		6.66E+10		1.68
32	32768	48	1.51		4.29E+09	7.9E+13		1.37E+11		1.68
33	35937	49.5			8.59E+09	2.15E+14		2.83E+11		1.69
34	39304	51	1.53	3.53		5.83E+14		5.84E+11		1.7
35	42875	52.5	1.54	3.56		1.59E+15		1.2E+12		1.71
36	46656	54	1.56	3.58		4.31E+15		2.47E+12		1.71
37	50653	55.5	1.57	3.61		1.17E+16		5.09E+12		1.72
38	54872	57 58.5	1.58	3.64	2.75E+11	3.19E+16		1.04E+13		1.73
39	59319	58.5	1.59	3.66	5.5E+11	8.66E+16		2.14E+13		1.74
40	64000	60	1.6	3.69		2.35E+17		4.4E+13		1.74
41	68921	61.5	1.61	3.71	2.20+12	6.4E+17	3.00	9.02E+13	1.27	1.75

42	74088	63	1.62	3.74	4.4E+12	1.74E+18	3.08	1.85E+14	1.27	1.76
43	79507	64.5	1.63	3.76	8.8E+12	4.73E+18	3.1	3.78E+14	1.28	1.76
44	85184	66	1.64	3.78	1.76E+13	1.29E+19	3.12	7.74E+14	1.28	1.77
45	91125	67.5	1.65	3.81	3.52E+13	3.49E+19	3.15	1.58E+15	1.29	1.77
46	97336	69	1.66	3.83	7.04E+13	9.5E+19	3.17	3.24E+15	1.29	1.78
47	103823	70.5	1.67	3.85	1.41E+14	2.58E+20	3.19	6.61E+15	1.29	1.79
48	110592	72	1.68	3.87	2.81E+14	7.02E+20	3.21	1.35E+16	1.3	1.79
49	117649	73.5	1.69	3.89	5.63E+14	1.91E+21	3.23	2.76E+16	1.3	1.8
50	125000	75	1.7	3.91	1.13E+15	5.18E+21	3.25	5.63E+16	1.3	1.8
51	132651	76.5	1.71	3.93	2.25E+15	1.41E+22	3.27	1.15E+17	1.31	1.81
52	140608	78	1.72	3.95	4.5E+15	3.83E+22	3.29	2.34E+17	1.31	1.81
53	148877	79.5	1.72	3.97	9.01E+15	1.04E+23	3.3	4.77E+17	1.31	1.82
54	157464	81	1.73	3.99	1.8E+16	2.83E+23	3.32	9.73E+17	1.32	1.82
55	166375	82.5	1.74	4.01	3.6E+16	7.69E+23	3.34	1.98E+18	1.32	1.83
56	175616	84	1.75	4.03	7.21E+16	2.09E+24	3.36	4.04E+18	1.32	1.83
57	185193	85.5	1.76	4.04	1.44E+17	5.69E+24	3.38	8.21E+18	1.33	1.84
58	195112	87	1.76	4.06	2.88E+17	1.55E+25	3.4	1.67E+19	1.33	1.84
59	205379	88.5	1.77	4.08	5.76E+17	4.2E+25	3.41	3.4E+19	1.33	1.85
60	216000	90	1.78	4.09	1.15E+18	1.14E+26	3.43	6.92E+19	1.33	1.85
61	226981	91.5	1.79	4.11	2.31E+18	3.1E+26	3.45	1.41E+20	1.34	1.86
62	238328	93	1.79	4.13	4.61E+18	8.44E+26	3.46	2.86E+20	1.34	1.86
63	250047	94.5	1.8	4.14	9.22E+18	2.29E+27	3.48	5.81E+20	1.34	1.87
64	262144	96	1.81	4.16	1.84E+19	6.24E+27	3.5	1.18E+21	1.34	1.87
65	274625	97.5	1.81	4.17	3.69E+19	1.69E+28	3.51	2.4E+21	1.35	1.87
66	287496	99	1.82	4.19	7.38E+19	4.61E+28	3.53	4.87E+21	1.35	1.88
67	300763	100.5	1.83	4.2	1.48E+20	1.25E+29	3.55	9.89E+21	1.35	1.88
68	314432	102	1.83	4.22	2.95E+20	3.4E+29	3.56	2.01E+22	1.35	1.89
69	328509	103.5	1.84	4.23	5.9E+20	9.25E+29	3.58	4.07E+22	1.36	1.89
70	343000	105	1.85	4.25	1.18E+21	2.52E+30	3.59	8.26E+22	1.36	1.9
71	357911	106.5	1.85	4.26	2.36E+21	6.84E+30	3.61	1.68E+23	1.36	1.9
72	373248	108	1.86	4.28	4.72E+21	1.86E+31	3.62	3.4E+23	1.36	1.9
73	389017	109.5	1.86	4.29	9.44E+21	5.05E+31	3.64	6.89E+23	1.37	1.91
74	405224	111	1.87	4.3	1.89E+22	1.37E+32	3.65	1.4E+24	1.37	1.91
75 76	421875	112.5	1.88	4.32	3.78E+22	3.73E+32	3.67	2.83E+24	1.37	1.92
76	438976	114	1.88	4.33	7.56E+22	1.01E+33	3.68	5.74E+24	1.37	1.92
77	456533	115.5	1.89	4.34	1.51E+23	2.76E+33	3.7	1.16E+25	1.37	1.92
78	474552	117	1.89	4.36	3.02E+23	7.5E+33	3.71	2.36E+25	1.38	1.93
79	493039	118.5	1.9	4.37	6.04E+23	2.04E+34	3.73	4.78E+25	1.38	1.93
80	512000	120	1.9	4.38	1.21E+24	5.54E+34	3.74	9.67E+25	1.38	1.93
81	531441	121.5	1.91	4.39	2.42E+24	1.51E+35	3.75	1.96E+26	1.38	1.94
82	551368	123	1.91	4.41	4.84E+24	4.09E+35	3.77	3.97E+26	1.38	1.94
83	571787	124.5	1.92	4.42	9.67E+24	1.11E+36	3.78	8.03E+26	1.39	1.94
84 oc	592704 614125	126	1.92	4.43	1.93E+25	3.03E+36	3.8	1.62E+27	1.39	1.95
85 86	614125	127.5	1.93	4.44	3.87E+25	8.22E+36	3.81	3.29E+27	1.39	1.95
86 97	636056	129 120 5	1.93	4.45 4.47	7.74E+25	2.24E+37	3.82	6.65E+27	1.39	1.96
87 88	658503 681472	130.5 132	1.94 1.94	4.47 4.48	1.55E+26 3.09E+26	6.08E+37 1.65E+38	3.84 3.85	1.35E+28 2.72E+28	1.39 1.39	1.96 1.96
00	0014/2	132	1.54	4.40	J.UJE+20	T.03E+30	3.63	Z./ZE#Z0	1.39	1.50

89	704969	133.5	1.95	4.49	6.19E+26	1.#J	3.86	5.51E+28	1.4	1.97
90	729000	135	1.95	4.5	1.24E+27	1.#J	3.88	1.11E+29	1.4	1.97
91	753571	136.5	1.96	4.51	2.48E+27	1.#J	3.89	2.25E+29	1.4	1.97
92	778688	138	1.96	4.52	4.95E+27	1.#J	3.9	4.56E+29	1.4	1.98
93	804357	139.5	1.97	4.53	9.9E+27	1.#J	3.91	9.21E+29	1.4	1.98
94	830584	141	1.97	4.54	1.98E+28	1.#J	3.93	1.86E+30	1.4	1.98
95	857375	142.5	1.98	4.55	3.96E+28	1.#J	3.94	3.76E+30	1.41	1.98
96	884736	144	1.98	4.56	7.92E+28	1.#J	3.95	7.61E+30	1.41	1.99
97	912673	145.5	1.99	4.57	1.58E+29	1.#J	3.96	1.54E+31	1.41	1.99
98	941192	147	1.99	4.58	3.17E+29	1.#J	3.98	3.11E+31	1.41	1.99
99	970299	148.5	2	4.6	6.34E+29	1.#J	3.99	6.27E+31	1.41	2
100	1000000	150	2	4.61	1.27E+30	1.#J	4	1.27E+32	1.41	2

Factorial Values

1-1

2-2

3-6

4-24 5-120

6-720

7-5040

8-40320

9-362880

10-3628800

11-39916800

11-37710000

12-479001600

13-6227020800

14 - 87178289152

15-1307674411008

16-20922790576128

17-355687414628352

18-6402373530419200

19-121645104594157570

20-2432902023163674600

Graphs

Observation for n graph

- The graph of the equation f(n)=n has a slope of 1, and its y-intercept is 0.
- It goes through the origin (0, 0), and for each unit increase in n, there is an equal increment in f(n).

Observation

- As the value of n moves from a negative to a positive one, the graph of f(n)=n3 is a smooth, continuous curve that rapidly increases.
- The point is traversed by the graph (0, 0)

The graph of f(n)=3n/2 is a straight line with a slope of 3/2 and y-intercept of 0. It passes through the origin (0,0).

Observation

- The graph of the equation f(n)=log10(n), where log10 is the base-10 logarithm, is a smooth, continuous curve that begins at negative infinity and moves closer to zero as n moves closer to 1.
- The value of f(n) increases along with n, though more slowly.
- The graph goes through the point (1, 0), and f(n) rises by one unit for each factor of ten increase in n.

- The graph of the equation f(n)=log(n), where log is the natural logarithm (base e), is a smooth, continuous curve that begins at negative infinity and moves closer to zero as n moves closer to 1.
- The value of f(n) increases along with n, though more slowly.
- The graph goes through the point (1, 0), and f(n) rises by one unit for each unit increase in n caused by an increase in the factor e.

Observation

- The graph of the equation f(n)=2n is a smooth, continuous curve that rises quickly from 1 as n moves from negative to positive numbers.
- The point is traversed by the graph (0, 1)

- The graph of the equation f(n)=e^n, where e is a mathematical constant roughly equal to 2.71828, is a smooth, continuous curve that rises quickly as n moves from negative to positive values.
- The point is traversed by the graph (0, 1)

Observation

• When n climbs from 1 to positive values, the graph of f(n)=2(log10 n) is a smooth, continuous curve that starts at 1 and quickly rises.

• The graph of $f(n)=n*2^n$ is a smooth and continuous curve that rapidly increases as n increases from negative to positive values. The graph passes through the point (0, 0)

Observation

• The graph of the equation f(n)=sqrt(log10 n), where sqrt stands for the square root function and log10 for base-10 logarithm, is a smooth, continuous curve that rises from zero as n moves from one to positive numbers.

• The graph of the equation f(n)=sqrt(2)(log10 n) is a smooth, continuous curve that rises quickly as n rises from zero to positive values.

Observation

- The graph of the equation f(n)=n!, where n! denotes the factorial of n (the sum of all positive integers up to n), is a smooth, continuous curve that rises quickly as n climbs from zero to positive values.
- The point (0, 1) is on the graph, and as n increases towards positive infinity, f(n) increases towards positive infinity as well.

Conclusion

Through this experiment, I gained a comprehensive understanding of utilizing logarithmic and exponential functions in C programming language and the implementation of recursive functions, enhancing my programming skills and knowledge.