LADR 2C

Lucas Zheng

Dimension

2.35 Basis length doesn't depend on basis
Proof. Let B_1, B_2 be bases for V . Then, $len(B_1) \ge len(B_2) \land len(B_2) \ge len(B_1) \implies len(B_1) = len(B_2)$.
2.36 Definition: dimension (dim V)
Length of any basis of V.
2.38 Dimension of a subspace \(\leq \text{ the space } \)
Proof. Trivial.
2.39 Linearly independent list of right length is basis
2.42 Spanning list of right length is basis
2.43 Dimension of a sum
$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$
<i>Proof.</i> Intersection is a subspace w/ dimension m. We can extend it by j vectors to create a basis for U_1 . Similarly, we can extend it by k vectors to create a basis for U_2 . Finally, $\dim(U_1 + U_2) = (m+j) + (m+k) - m$.