ASE-4046 Exercise 2 (Linear Programming)

Problem 1

Use the graphical method to solve this LP problem.

maximize
$$3x_1 + x_2$$

such that $-6x_1 + 5x_2 \le 30$
 $-7x_1 + 12x_2 \le 84$
 $19x_1 + 14x_2 \le 266$
 $4x_1 - 7x_2 \le 28$
 $0 \le x_1 \le 10$
 $0 < x_2 < 9$

Problem 2Suppose the following foods are available:

food	energy	protein	calcium	price	max no. of
	kcal/serv	g/serv	mg/serv	€/serv	servings
oatmeal	110	4	2	0.1	4
chicken	205	32	12	0.8	3
egg	160	13	54	0.4	2
milk	160	8	285	0.3	8
muffin	420	4	22	0.7	2
pea soup	260	14	80	0.6	2

Find the cheapest diet that provides at least 2000 kcal of energy, 55 g of protein, and 800 mg of calcium, and that respects the limit on the number of servings. Which constraints are active?

Problem 3

How fast does linprog solve the qap8 benchmark problem on your computer? How about the dfl001 benchmark?