Faster maximal clique enumeration in large real-world link streams

Alexis BAUDIN

January 30, 2024

IRIF - Graph seminar

Table of contents

- 1 Maximal clique enumeration in link streams
- 2 New algorithm
- 3 Complexity analysis
- 4 Experimental study: performance gains
- 5 Conclusion and perspectives

link streams

1 - Maximal clique enumeration in

> Link stream: model temporal interactions

Link stream

- Vertices : a, b, c et d
- Time period : [0,12]
- Interaction : temporal links
 - a, b linked over [3, 7]

Advantages

- deals directly with the stream of interactions
- no arbitrary choice of time scale
- time is continuous

> Link stream: model temporal interactions

Link stream

- Vertices : a, b, c et d
- Time period : [0,12]
- Interaction : temporal links
 - a, b linked over [3, 7]
 - ...

Advantages

- deals directly with the stream of interactions
- no arbitrary choice of time scale
- time is continuous

> Maximal cliques in link streams

> Maximal cliques in link streams

$$({a, b, c}, [4, 6])$$
 is a clique

> Maximal cliques in link streams

$$({a, b, c}, [4, 6])$$
 is a clique

 \rightarrow ({a, b, c}, [4, 5]) is not time-maximal

> Maximal cliques in link streams

- \rightarrow ({a, b, c}, [4, 5]) is not time-maximal
- $\rightarrow (\underline{\{a,b\}},[4,6])$ is not vertex-maximal

> Maximal cliques in link streams

- \rightarrow ({a, b, c}, [4,5]) is not time-maximal
- \rightarrow ($\{a,b\}$, [4,6]) is not vertex-maximal

> Maximal cliques in link streams

 $({a, b, c}, [4, 6])$ is a clique (maximal).

- \rightarrow ({a, b, c}, [4, 5]) is not time-maximal
- \rightarrow ({a,b},[4,6]) is not vertex-maximal

> Maximal cliques in link streams

 $(\{a,b,c\},[4,6])$ is a clique (maximal).

- \rightarrow ({a, b, c}, [4, 5]) is not time-maximal
- \rightarrow ({a,b},[4,6]) is not vertex-maximal

> Maximal cliques in link streams

$$(\{a,b,c\},[4,6])$$
 is a clique (maximal).

- \rightarrow ({a, b, c}, [4, 5]) is not time-maximal
- $\rightarrow (\underline{\{a,b\}},[4,6])$ is not vertex-maximal

> Enumeration problem

How to efficiently enumerate maximal cliques in massive real-world link streams?

Input: A link stream.

Output: List of all its maximal cliques.

> Enumeration problem

How to efficiently enumerate maximal cliques in massive real-world link streams?

Input: A link stream.

Output: List of all its maximal cliques.

> Input datastructure

List of temporal links sorted chronologically

Evolving instantaneous graph G_t , with end dates

 $G_1: t=1$

 $G_3: t=3$

 $G_4: t=4$

 $G_5: t=5$

> Input datastructure

List of temporal links sorted chronologically

Evolving instantaneous graph G_t , with end dates

> Input datastructure

List of temporal links sorted chronologically

Evolving instantaneous graph G_t , with end dates

 $G_1: t=1$

 $G_3: t=3$

 $G_{\Lambda}: t = 4$

 $G_5: t=5$

> Input datastructure

List of temporal links sorted chronologically

Evolving instantaneous graph G_t , with end dates

 $G_1: t=1$

 $G_3: t=3$

 $G_4: t = 4$

 $G_5: t=5$

> Input datastructure

List of temporal links sorted chronologically

Evolving instantaneous graph G_t , with end dates

> Maximal cliques that begin at each time t

> Maximal cliques that begin at each time t

Instantaneous graph G₄

> Maximal cliques that begin at each time t

> Maximal cliques that begin at each time t

Instantaneous graph G₄

 \rightarrow cliques of G_4 containing a new edge

> Maximal cliques that begin at each time t

Instantaneous graph G_4

- \rightarrow cliques of G_4 containing a new edge
- \rightarrow starting time: t = 4

> Maximal cliques that begin at each time t

Instantaneous graph G₄

$$({b, c}, [4, 7]), ({a, b, c}, [4, 6]), ({a, b}, [4, 6])$$

- \rightarrow cliques of G_4 containing a new edge
- \rightarrow starting time: t = 4
- \rightarrow end time: min of edge end times

> Maximal cliques that begin at each time t

Instantaneous graph G_4

- \rightarrow cliques of G_4 containing a new edge
- \rightarrow starting time: t = 4
- \rightarrow end time: min of edge end times
- → filter vertex-maximal cliques

> Maximal cliques that begin at each time t

Instantaneous graph G₄

$$({b, c}, [4, 7]), ({a, b, c}, [4, 6]), ({a, b}, [4, 6])$$

- \rightarrow cliques of G_4 containing a new edge
- \rightarrow starting time: t = 4
- ightarrow end time: min of edge end times
- → filter vertex-maximal cliques

Back to a graph problem: clique enumeration in G_t .

> Pruning the enumeration in G_t

Clique enumeration in some G_t

> Pruning the enumeration in G_t

Clique enumeration in some G_t

c chosen as pivot at first step

> Pruning the enumeration in G_t

Clique enumeration in some G_t

c chosen as pivot at first step

Example 1: do not prune { a; b; e}

> Pruning the enumeration in G_t

Clique enumeration in some G_t

c chosen as pivot at first step

Example 1: do not prune {a; b; e}

Example 2: prune { a; b; d }

> Pruning branches with already processed edges

> Pruning branches with already processed edges

Instantaneous graph G₃

> Pruning branches with already processed edges

Instantaneous graph G₃

2 - New algorithm

> State of the art

Summary of the new algorithm

- ightarrow cliques not stored in memory \checkmark
- ightarrow interactions reduced at each time step \checkmark

2 - New algorithm

> State of the art

Summary of the new algorithm

- \rightarrow cliques not stored in memory \checkmark
- \rightarrow interactions reduced at each time step \checkmark

State of the art: four main works

```
\begin{array}{c} \text{Store all cliques} \\ \Rightarrow \text{too costly in memory} \end{array}
• Viard et al. 2016
• Viard et al. 2018
```

- Himmel et al. 2017
- Bentert et al. 2019

Need all past and future interactions

when processing a vertex.

> From input characteristics

Input characteristics

d: maximal instantaneous degree

m: number of links

> From input characteristics

Input characteristics

d: maximal instantaneous degree

m: number of links

Algorithm: for each link $(u \frac{[t_0,t_1]}{v})$:

- \rightarrow List and process cliques in G_{t_0} that contain $\{u,v\}$
 - Number of those cliques: $\mathcal{O}\left(2^{d}\right)$
 - Cost of computing and processing: $\mathcal{O}\left(d^2\right)$

> From input characteristics

Input characteristics

d: maximal instantaneous degree

m: number of links

Algorithm: for each link $(u \frac{[t_0,t_1]}{v})$:

- \rightarrow List and process cliques in G_{t_0} that contain $\{u, v\}$
 - Number of those cliques: $\mathcal{O}\left(2^{d}\right)$
 - Cost of computing and processing: $\mathcal{O}\left(d^2\right)$
- \Rightarrow Complexity: $\mathcal{O}\left(m \cdot d^2 \cdot 2^d\right)$

> From output characteristics

Instantaneous graph G₃

> From output characteristics

Instantaneous graph G₃

> From output characteristics

Instantaneous graph G₃

Ratio "good" leaves

time

$$r = \frac{\text{nb maximal clique leaves}}{\text{nb leaves}}$$

Here: $r = \frac{1}{4}$; optimal: r = 1.

> From output characteristics

Output characteristics

lpha: number of maximal cliques

q: maximal number of vertices in a clique

> From output characteristics

Output characteristics

lpha: number of maximal cliques

q: maximal number of vertices in a clique

Complexity: $\mathcal{O}((\text{nb nodes in the trees}) \cdot (\text{cost of a node}))$

> From output characteristics

Output characteristics

- lpha: number of maximal cliques
- q: maximal number of vertices in a clique

Complexity: $\mathcal{O}((\text{nb nodes in the trees}) \cdot (\text{cost of a node}))$

- \rightarrow Nb nodes: $\mathcal{O}((\text{max depth}) \cdot (\text{nb leaves}))$
 - $\max depth = q$
 - nb leaves = $\frac{1}{r} \cdot \text{(nb maximal clique leaves)} = \mathcal{O}\left(\frac{1}{r} \cdot \alpha\right)$

> From output characteristics

Output characteristics

- α : number of maximal cliques
- q: maximal number of vertices in a clique

Complexity: $\mathcal{O}((\text{nb nodes in the trees}) \cdot (\text{cost of a node}))$

- \rightarrow Nb nodes: $\mathcal{O}((\text{max depth}) \cdot (\text{nb leaves}))$
 - $\max depth = q$
 - nb leaves = $\frac{1}{r} \cdot (\text{nb maximal clique leaves}) = \mathcal{O}\left(\frac{1}{r} \cdot \alpha\right)$
- \rightarrow Cost of a node: $\mathcal{O}\left(d^2\right)$

> From output characteristics

Output characteristics

- α : number of maximal cliques
- q: maximal number of vertices in a clique

Complexity: $\mathcal{O}((nb \text{ nodes in the trees}) \cdot (cost \text{ of a node}))$

- \rightarrow Nb nodes: $\mathcal{O}((\text{max depth}) \cdot (\text{nb leaves}))$
 - max depth = q
 - nb leaves = $\frac{1}{r}$ · (nb maximal clique leaves) = $\mathcal{O}(\frac{1}{r} \cdot \alpha)$
- \rightarrow Cost of a node: $\mathcal{O}\left(d^2\right)$
 - \Rightarrow Complexity of the algorithm: $\left| \mathcal{O} \left(\frac{1}{r} \cdot \alpha \cdot \mathbf{q} \cdot \mathbf{d}^2 \right) \right|$

> Summary

From input characteristics

$$\mathcal{O}\left(\mathbf{m}\cdot\mathbf{d}^2\cdot2^d\right)$$

From output characteristics

$$\boxed{\mathcal{O}\left(\frac{1}{r}\cdot d^2\cdot q\cdot \alpha\right)}$$

> Summary

From input characteristics

$$\boxed{\mathcal{O}\left(\mathbf{m}\cdot\mathbf{d}^2\cdot\mathbf{2}^{\mathbf{d}}\right)}$$

- Viard et al. 2018: $\mathcal{O}\left(n^3 \cdot m^2 \cdot 2^n\right)$
- Himmel et al. 2018: $\mathcal{O}\left(m \cdot n \cdot |T| \cdot 3^{c/3} \cdot 2^{c}\right)$
- Bentert *et al.* 2019: $\mathcal{O}\left(n^4 \cdot |T|^2 \cdot 2^c\right)$ ($c \le d$ degeneracy, |T| number of time steps)

From output characteristics

$$\mathcal{O}\left(\frac{1}{r}\cdot d^2\cdot q\cdot \alpha\right)$$

> Summary

From input characteristics

$$\boxed{\mathcal{O}\left(\mathbf{m}\cdot\mathbf{d}^2\cdot\mathbf{2}^d\right)}$$

- Viard et al. 2018: $\mathcal{O}\left(n^3 \cdot m^2 \cdot 2^n\right)$
- Himmel et al. 2018: $\mathcal{O}\left(\mathbf{m}\cdot\mathbf{n}\cdot|\mathbf{T}|\cdot3^{c/3}\cdot2^{c}\right)$
- Bentert *et al.* 2019: $\mathcal{O}\left(n^4 \cdot |T|^2 \cdot 2^c\right)$ ($c \le d$ degeneracy, |T| number of time steps)

From output characteristics

$$\boxed{\mathcal{O}\left(\frac{1}{r}\cdot \mathbf{d^2}\cdot \mathbf{q}\cdot \alpha\right)}$$

• output size = $\mathcal{O}(q \cdot \alpha) \Rightarrow \text{factor } \frac{1}{r} \cdot d^2 \text{ from output size}$

> Summary

From input characteristics

$$\boxed{\mathcal{O}\left(\mathbf{m}\cdot\mathbf{d}^2\cdot\mathbf{2}^{\mathbf{d}}\right)}$$

- Viard et al. 2018: $\mathcal{O}\left(n^3 \cdot m^2 \cdot 2^n\right)$
- Himmel et al. 2018: $\mathcal{O}\left(\mathbf{m}\cdot\mathbf{n}\cdot|\mathbf{T}|\cdot3^{c/3}\cdot2^{c}\right)$
- Bentert *et al.* 2019: $\mathcal{O}\left(n^4 \cdot |T|^2 \cdot 2^c\right)$ ($c \le d$ degeneracy, |T| number of time steps)

From output characteristics

$$\boxed{\mathcal{O}\left(\frac{1}{r}\cdot \mathbf{d^2}\cdot \mathbf{q}\cdot \alpha\right)}$$

- output size = $\mathcal{O}(q \cdot \alpha) \Rightarrow \text{factor } \frac{1}{r} \cdot d^2 \text{ from output size}$
- $1 \le \frac{1}{r} \le 2^q$ but $\frac{1}{r} \approx 1.1$ in practice (experiments)

4 - Experimental study:

performance gains

4 - Experimental study: performance gains

Datasets: state of the art + massive link streams

- communication networks
- human interactions

4 - Experimental study: performance gains

Experimental protocol

- Code in Python and C++
- Maximum 24h and 390Gb RAM.

·

5 - Conclusion and perspectives

> Contributions

> Application

Communities in link streams by clique percolation

- \rightarrow temporal data analysis
- \rightarrow anomaly detection

> Application

Communities in link streams by clique percolation

- \rightarrow temporal data analysis
- \rightarrow anomaly detection

> Perspectives

Improve enumeration by ordering nodes

Ordering the nodes of each instantaneous graph G_t .

[Eppstein et al. 2010]: core ordering of vertices.

> Perspectives

Improve enumeration by ordering nodes

Ordering the nodes of each instantaneous graph G_t .

[Eppstein et al. 2010]: core ordering of vertices.

Other temporal enumeration using a same framework

Enumerate other motifs in each instantaneous graph G_t .

Faster maximal clique enumeration in link streams

Thank you for your attention!

Code in open-access:

https://gitlab.lip6.fr/baudin/maxcliques-linkstream

Contact: alexis.baudin@lip6.fr

Appendix

Appendix

Study the limits of computation

Appendix

Study the limits of computation

