

Grants

- T/NA078/20 Examining the performance of Nektar++ for fusion applications; 01/01/2021-30/06/2022
- T/AW084/21 Solving high-dimensional plasma kinetics using Nektar++; 01/09/2021-22/09/2022
- T/AW085/22 (Nektar++ for fusion applications work is continuation of T/NA078/20); 01/09/2022-15/02/2024

All are joint KCL / Imperial College London.

Main UKAEA personnel: Ed Threlfall (since June 2020), Owen Parry (joined early this year).

- Approach: use Nektar++ for studying problems in heat transport slot convection problem.
- Compare outputs with results in literature.
- Learn Nektar++ / note any issues discovered / Nektar-users mail list (or DM/CC) for queries.

$$\frac{1}{Pr} \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + Ra \, T \, \hat{\mathbf{y}} + \nabla^2 \mathbf{u}$$
$$\left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla^2 T$$
$$\nabla \cdot \mathbf{u} = 0.$$

- Cf. J.W. Elder's experiments / numerics (1965).
- See UKAEA report Finite Element Models: Complementary Activities I (
 <u>Documents/CD-EXCALIBUR-FMS0051-M6.1.pdf at main · ExCALIBUR-NEPTUNE/Document (github.com)</u>

• Spectral convergence verified for a laminar convective flow (evaluate error vs. converged solution).

• Uncovered issue with VelocityCorrectionScheme algorithm (is in pressure Poisson solve – also emerges generally in Helmholtz solver algorithm). Solution is to use alternate VCSWeakPressure

algorithm.

 Added new "filters" to Nektar++ to obtain heat flux (Nusselt number) and to study properties of hot spot on cavity wall where heat transfer is maximal, all as time series.

Figure 7: Transient behaviour associated to boundary-layer waves. The left-hand-side plot shows the maximum temperature at a small displacement from the cold-side wall and the right-hand-side one shows the vertical position of the hottest point near the cold wall, both as time series.

Also constructed a GP fit to time series ... used VECMA toolkit to drive Nektar++ UQ campaign (in hackathons organized by UCL).

applications

• Further comparison with literature / exploration of Nektar++ capabilities ...

 MIT benchmark convection problem; Nu = 4.57946. (See <u>MIT Benchmark - Featflow (tu-dortmund.de)</u>)

Same problem; time-dependent component of field near turbulent

transition.

Element order p	time-av. Nusselt number Nu	Execution time / s (16 logical cores)
1	3.66566	38
2	4.95898	97
3	4.62167	171
4	4.54045	336
5	4.56850	601
6	4.57956	799
7	4.57977	1047
8	4.57943	1627
9	4.57936	1903
10	4.57935	2466
11	4.57935	3029

Table 1: Table of time-averaged Nusselt number values for $Ra = 3.4 \times 10^5$ obtained from *Nektar++*.

 See report Finite Element Models: Complementary Activities 2 (<u>Documents/CD-EXCALIBUR-FMS0064-M6.2.pdf at main · ExCALIBUR-NEPTUNE/Documents (github.com)</u>

Figure 3: Nektar++ fluctuation fields for $T,\,v,\,u$ (respectively temperature, vertical velocity, horizontal velocity), corresponding to Figs.5-7 of [8], computed by subtracting fields averaged over one period of $Ra=3.4\times10^5$ case. Scales are excluded as phase does not correspond to that used in figures from the reference.

- Initial study of Nektar++-based proxyapps:
- Compared Nektar-Diffusion outputs with analytic solutions.
- Experimented with same problem in Firedrake inc. mock-up of coupled problem ... ongoing. See GitHub https://github.com/ethrelfall/Heat-transport.
- Compared output of Nektar-Driftwave Hasegawa-Wakatani solver with published results.
- See report Finite Element Models: Performance (Documents/CD-EXCALIBUR-FMS0047-M2.2.2.pdf at m <u>ain · ExCALIBUR-NEPTUNE/Documents (github.com)</u>

i) A semi-infinite domain maintained at a unit temperature at x = 0 at all times, for which the solution is

$$T(x;t) = 1 - \operatorname{erf}\left(\frac{x}{\sqrt{4Dt}}\right).$$
 (1)

ii) A finite domain e.g. $x \in [0,1]$ with unit temperature at x=0 and zero temperature at x=1 for all times, with solution (expressible also in closed form as the integral of the Jacobi theta function of imaginary

$$T(x;t) = 1 - x - \sum_{n=1}^{\infty} \frac{2}{\pi n} e^{-n^2 \pi^2 Dt} \sin n\pi x.$$
 (2)

 Simple performance study in 1D plus comparison to C++ and SYCL (Nvidia GPU via Codeplay ComputeCpp) implementations of the same.

- Other performance issues ... e.g. large memory use of incompressible Navier-Stokes solver dialogue with David Moxey (established that non-essential pre-static-condensed matrix is retained).
- I have attended Nektar++ workshop events.

T/AW084/21 Solving high-dimensional plasma physics using Nektar++

- Grant exploring solutions of Boltzmann-type equations in phase space; allows use of two meshes (real space and velocity space).
- Wrote exploratory code solving 1+1D Vlasov-Poisson problem within Nektar++ framework (new solver; used Microsoft Visual Studio).

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + E \frac{\partial f}{\partial v} = 0.$$
 $\frac{\partial^2 \phi}{\partial x^2} = \omega_P^2 \left(\int f \frac{dv}{v_0} - 1 \right)$

 Studied two-stream instability problem ... will be useful for assessing proxyapp developed under grant to solve same problem. Internal report Support High-Dimensional Procurement (<u>Documents/CD-EXCALIBUR-FMS0066-M4.1.pdf at main · ExCALIBUR-NEPTUNE/Document s (github.com)</u>

) provided to grantee.

T/AW084/21 Solving high-dimensional plasma physics using Nektar++

 Benchmark code against analytic solution for instability growth rate as function of plasma frequency and mode number. (Must use smooth initial data!)

Figure 7: Theoretical predictions for the growth rates of modes n=1-4 (spatial wavenumber $k=n\pi$) as a function of the plasma frequency ω_P . Overlain are numerical results from the *Nektar++* implementation, showing good agreement.

$$1 = -\frac{\omega_P^2}{2\sigma^2 k^2} \left(2 - \sqrt{\pi} A e^{-A^2} (\operatorname{erfi}(A) - i) - \sqrt{\pi} A' e^{-A'^2} (\operatorname{erfi}(A') - i) \right)$$
 with $A \equiv \frac{\omega - k v_0}{\sqrt{2}\sigma k}$, $A' \equiv \frac{\omega + k v_0}{\sqrt{2}\sigma k}$.

 Good agreement; long-term energy conservation behaviour less nice (energy grows, even with upwinded DG).

System 2-6 plasma fluid equations supplied to grantee for Nektar++ implementation.

number density n_e , "vorticity" ($\nabla \cdot \mathbf{E}^+$), electron energy \mathcal{E}_e , ion energy \mathcal{E}_i and neutral number density n_n are respectively

$$\partial_t n_e + \nabla \cdot (n_e \mathbf{u}_e) = S_{n_e} - \frac{n_e}{\tau_{n_e}} \tag{94}$$

$$\partial_t \nabla \cdot \mathbf{E}^+ + \nabla \cdot \left(\nabla \cdot \left(\mathbf{u}_i \otimes \mathbf{E}^+ \right) \right) = \nabla \cdot \left(n_i \left(\mathbf{u}_{\nabla Bi} + \mathbf{u}_{cx} \right) - \frac{1}{Z_i} n_e \mathbf{u}_{\nabla Be} \right)$$

$$+\frac{1}{Z_i}\frac{n_e}{\tau_{n_e}} - \frac{n_i}{\tau_{n_i}} + \nabla \cdot \left(\nu \nabla_{\perp} \left(\nabla \cdot \mathbf{E}^+\right)\right) \tag{95}$$

$$\partial_t \mathcal{E}_e + \nabla \cdot (\mathcal{E}_e \mathbf{u}_e + p_e \mathbf{u}_e) = S_{\mathcal{E}_e} - \frac{\mathcal{E}_e}{\tau_{Ee}} + Q_{ie} + \nabla \cdot (\chi_{\perp e} n_e \nabla_{\perp} T_e)$$
(96)

$$\partial_t \mathcal{E}_i + \nabla \cdot (\mathcal{E}_i \mathbf{u}_i + p_i \mathbf{u}_i) = S_{\mathcal{E}_i} - \frac{\mathcal{E}_i}{\tau_{E_i}} - Q_{ie} + \nabla \cdot (\chi_{\perp i} n_i \nabla_{\perp} T_i)$$
(97)

$$\partial_t n_n = S_{n_n} + \nabla \cdot (D_n \nabla_\perp p_n) \tag{98}$$

where with the usual notation for species α pressure p_{α} , temperature T_{α} , charge state Z_i , species mass m_{α} , electric potential Φ and magnetic field \mathbf{B} ,

Owen Parry embedded in Nektar++ development team at KCL.

- Exploring use of structure-preserving methods to enforce conservation laws / provide guarantees of validity of numerical methods (e.g. immanent stability removes requirement to add numerical dissipation).
- Hasegawa-Wakatani shown earlier is candidate, but equations may need re-framing (usually presented in scalar form but need vector).
- Started with simple Discrete Exterior Calculus problems assessed using Method of Manufactured Solutions or analytic solutions.

 D.S. Rufat. Spectral exterior calculus and its implementation. PhD thesis, Caltech, 2017.

$$\frac{\partial u}{\partial t} = \frac{\pi}{4} \; \frac{\partial^2 u}{\partial x^2},$$

$$u(x,t) = \theta_3(x;t) \equiv 1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 t} \cos 2nx,$$

Figure 6: Convergence of the discrete exterior calculus implementation of the diffusion problem explained in the main text (left). Solution curves for N=70 shown to right - the initial data corresponds to t=0.01 and the terminal solution t=0.21.

Verified spectral convergence of toy implementations (C++ / Boost / Intel MKL).
 © Crown Copyright 2022

- Investigating Finite Element Exterior Calculus (FEEC) techniques.
- Read textbook / papers of Douglas N. Arnold.
- Implemented a number of examples in Firedrake and committed to GitHub repository; see https://github.com/ethrelfall/Finite-element-exterior-calculus.
- These are generically "challenging" for conventional FEM but work nicely if use FEEC.

$$\nabla \cdot \underline{v} = \nabla \times \underline{v} = 0; \quad \nabla^2 \underline{v} = 0; \quad \rho \, \underline{v} \cdot \nabla \underline{v} = -\nabla p$$

I have canvassed opinion from members of the Firedrake community re FEEC.

• FEEC makes sense of large "zoo" of finite-element types.

Bernstein		scalar	interval, triangle, tetrahedron	Bell	BELL	scalar	triangle
Brezzi-Douglas-Marini	BDM	vector	triangle, tetrahedron	Lagrange	CG	scalar	interval, triangle, tetrahedron, quadrilateral, hexahedron
Brezzi-Douglas-Fortin-Marini	BDFM	vector	triangle, tetrahedron	Nedelec 1st kind H(curl)	N1curl	vector	triangle, tetrahedron
Bubble	В	scalar	interval, triangle, tetrahedron	Nedelec 2nd kind H(curl)	N2curl	vector	triangle, tetrahedron
FacetBubble	FB	scalar	interval, triangle, tetrahedron	Raviart-Thomas	RT	vector	triangle, tetrahedron
Crouzeix-Raviart	CR	scalar	triangle, tetrahedron	Regge		tensor	triangle, tetrahedron
Discontinuous Lagrange	DG	scalar	interval, triangle, tetrahedron, quadrilateral, hexahedron	DQ		scalar	interval, quadrilateral, hexahedron
Discontinuous Raviart-Thomas	DRT	vector	triangle, tetrahedron	Q		scalar	interval, quadrilateral, hexahedron
Discontinuous Taylor	TDG	scalar	interval, triangle, tetrahedron	RTCE		vector	quadrilateral
Gauss-Legendre	GL	scalar	interval	RTCF		vector	quadrilateral
Gauss-Lobatto-Legendre	GLL	scalar	interval	NCE		vector	hexahedron
HDiv Trace	HDivT	scalar	interval, triangle, tetrahedron, quadrilateral, hexahedron	NCF		vector	hexahedron
Hellan-Herrmann-Johnson	HHJ	tensor	triangle	Real	R	scalar	interval, triangle, tetrahedron, quadrilateral, hexahedron
Nonconforming Arnold-Winther	AWnc	tensor	triangle, tetrahedron	DPC		scalar	interval, quadrilateral, hexahedron
Conforming Arnold-Winther	AWc	tensor	triangle, tetrahedron	S		scalar	interval, quadrilateral, hexahedron
Hermite	HER	scalar	interval, triangle, tetrahedron	DPC L2		scalar	interval, quadrilateral, hexahedron
Kong-Mulder-Veldhuizen	KMV	scalar	triangle, tetrahedron	Discontinuous Lagrange L2	DG L2	scalar	interval, triangle, tetrahedron, quadrilateral, hexahedron
Argyris	ARG	scalar	triangle	Gauss-Legendre L2	GL L2	scalar	interval
Mardal-Tai-Winther	MTW	vector	triangle	DQ L2		scalar	interval, quadrilateral, hexahedron
Morley	MOR	scalar	triangle	Direct Serendipity	Sdirect	scalar	quadrilateral

... pick the right one!

- FabNEPTUNE plug-in made available by UCL.
- Facilitates NEPTUNE workflows on HPC and gives integration with SEAVEAtk UQ toolkit.
- Currently set-up to run Nektar++ convection simulations in 2D and 3D (189k elements).
 Ongoing ... 3D results have crossover with Smallab experimental program.

