كلية العلوم الحقيقة جامعة جيلاني ليابس Se Faculté des Sciences Exactes

Département de Probabilités-Statistique

Module : Réseaux de files d'attente

Examen-Corrigé

Exercice 1. 07 points Soit $(N_t)_{t\geq 0}$ un processus de Poisson de taux λ .

- 1 Pour $0 \le s < t$, calculez $\mathbb{P}(N(s) = 0, N(t) = 1)$.
- Calculer $\mathbb{P}(N_1 = 1/N_2 = 3)$, $\mathbb{P}(N_2 = 1/N_1 = 1)$, $\mathbb{P}(N_2 = 0/N_1 = 1)$.

Réponse:

1 Pour $0 \le s < t$,

$$\mathbb{P}(N(s) = 0, N(t) = 1) = \mathbb{P}(N(t) - N(s) = 1, N(s) = 0)$$

$$= \mathbb{P}(N(t) - N(s) = 1)\mathbb{P}(N(s) = 0)$$

$$= e^{-\lambda(t-s)} \frac{(\lambda(t-s))^1}{1!} e^{-\lambda s} \frac{(\lambda s)^0}{0!}$$

$$= \lambda(t-s)e^{-\lambda t}$$
 01 points

2

$$\mathbb{P}(N_1 = 1/N_2 = 3) = \frac{\mathbb{P}(N_1 = 1; N_2 = 3)}{\mathbb{P}(N_2 = 3)} = \frac{3}{8}$$
 [02 points]

$$\mathbb{P}(N_2 = 1/N_1 = 1) = \mathbb{P}(N_2 - N_1 = 0) = e^{-\lambda}$$
 [02 points]

$$\mathbb{P}(N_2 = 0/N_1 = 1) = 0$$
 (événement impossible). **02 points**

Exercice 2. 13 points

(I) On considère un processus de sauts markovien X_t sur $\mathcal{X} = \{0,1\}$, de générateur infinitésimal

$$L = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

- 1 Déterminer la distribution stationnaire du processus.
- 2 Le processus X_t est-il irréductible?
- 3 Le processus X_t est-il réversible?

L'équation différentielle a une solution unique $p_t(0,0) = \frac{1}{2} + \frac{1}{2}e^{-t}$.

Et par suite $p_t(0,1) = \frac{1}{2} - \frac{1}{2} e^{-t}$.

De la même manière, on trouve $p_t(1,1) = \frac{1}{2} + \frac{1}{2} e^{-t}$ et $p_t(1,0) = \frac{1}{2} - \frac{1}{2} e^{-t}$.

Conclusion:

$$P_{t} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2} e^{-t} & \frac{1}{2} - \frac{1}{2} e^{-t} \\ \frac{1}{2} - \frac{1}{2} e^{-t} & \frac{1}{2} + \frac{1}{2} e^{-t} \end{pmatrix}$$

$$\frac{\mathbf{02 points}}{\mathbf{02 points}}$$

(II)

1 On a

$$\mathbb{P}(Z_t = 1 / Z_0 = 0) = \mathbb{P}(Y_{N_t} = 1 / Y_0 = 0)$$

$$= \sum_{k \ge 0} \mathbb{P}(N_t = k) \, \mathbb{P}(Y_k = 0 / Y_0 = 0) = \sum_{k \ge 0} e^{-t} \, \frac{t^k}{k!} \, p_k(0, 1)$$
O1 points

Or pour tout $k \ge 1$, $P^k = P$ et $P^0 = I$ ce qui implique que $p_0(0, 1) = 0$ et pour $k \ge 1$, $p_k(0, 1) = \frac{1}{2}$.

Donc

$$\mathbb{P}(Z_t = 1 / Z_0 = 0) = \frac{1}{2} - \frac{1}{2} e^{-t}$$
 [01 points]

Et par suite

$$\mathbb{P}(Z_t = 0 / Z_0 = 0) = 1 - \mathbb{P}(Z_t = 1 / Z_0 = 0) = \frac{1}{2} + \frac{1}{2} e^{-t}$$

De la même manière, on trouve

$$\mathbb{P}(Z_t = 0 / Z_0 = 1) = \frac{1}{2} - \frac{1}{2} e^{-t}$$

et

$$\mathbb{P}(Z_t = 1 / Z_0 = 1) = \frac{1}{2} + \frac{1}{2} e^{-t}$$

- A l'aide des équations de Kolmogrov, déterminer le noyau de transition P_t pour $t \geq 0$.
- (II) Soient $(N_t)_t$ un processus de Poisson de taux $\lambda = 1$ et $(Y_n)_n$ une chaîne de Markov homogène à valeurs dans $\mathcal{X} = \{0,1\}$ de transition

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Notons pour tout $t \geq 0$, $Z_t = Y_{N_t}$.

- 1 Déterminer le noyau de transition du processus Z
- 2 En déduire son générateur infinitésimal ainsi que sa distribution stationnaire.

Réponse:

(I)

- La distribution stationnaire $\pi = (\pi_0, \pi_1)$ vérifie $\pi_0 + \pi_1 = 1$ et π L = 0. Ce système linéaire de trois équations à deux inconnues admet une solution unique $\pi_0 = \pi_1 = \frac{1}{2}$.
- Il est clair que q(0,1)q(1,0) > 0, donc ce processus est irréductible. **02 points**
- 3 On a $q(0,1) = q(1,0) = \frac{1}{2}$ et $\pi_0 = \pi_1 = \frac{1}{2}$, donc $\pi(0)q(0,1) = \pi(1)q(1,0)$.

 Donc ce processus est réversible.

 02 points
- 4 Posons

$$P_t = \begin{pmatrix} p_t(0,0) & p_t(0,1) \\ p_t(1,0) & p_t(1,1) \end{pmatrix}$$

La matrice P_t vérifie les équations de Kolomogorov $P'_t = P_t L = L P_t$.

01 points

Le produit de la première ligne de la matrice P_t avec la première colonne de la matrice L, nous donne

$$p_t'(0,0) = -\frac{1}{2} p_t(0,0) + \frac{1}{2} p_t(0,1) = -\frac{1}{2} p_t(0,0) + \frac{1}{2} (1 - p_t(0,0)) = -p_t(0,0) + \frac{1}{2}$$

Le noyau de transition du processus Z est

$$\begin{pmatrix} \frac{1}{2} + \frac{1}{2} e^{-t} & \frac{1}{2} - \frac{1}{2} e^{-t} \\ \frac{1}{2} - \frac{1}{2} e^{-t} & \frac{1}{2} + \frac{1}{2} e^{-t} \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{2} + \frac{1}{2} e^{-t} & \frac{1}{2} + \frac{1}{2} e^{-t} \\ \frac{1}{2} - \frac{1}{2} e^{-t} & \frac{1}{2} + \frac{1}{2} e^{-t} \end{pmatrix}$$
01 points

Les processus X et Z ont le même noyau de transition, cependant Z admet la matrice L comme générateur infinitésimal et $\pi = \left(\frac{1}{2}, \frac{1}{2}\right)$ comme distribution stationnaire. **01 points**