SISTEMAS DE NUMERACIÓN

Sistema Decimal

O sistema de numeración que utilizamos denomínase decimal xa que emprega dez díxitos para indicar unha cantidade, e é ademais un sistema posicional xa que cada díxito debe o seu valor á posición que ocupa na cantidade á que pertence.

Teorema fundamental da numeración (tfn)

Trátase dun teorema que relaciona unha cantidade expresada en calquera sistema de numeración coa mesma cantidade expresada no sistema decimal.

...+X4*B⁴+X3*B³+ X2*B²+X1*B¹+ X0*B⁰+X-1*B⁻¹+ X-2*B⁻²...
onde o número en base B é ... X4 X3 X2 X1 X0 X-1 ...

Sistema Binario

O sistema binario, como o decimal, é un sistema posicional; pero o valor da posición vén dado por potencias de 2 $(2^0, 2^1, 2^2, \dots)$ xa que só se utilizan dous díxitos, o cero e o un. Por tanto, se queremos converter un número en base 2 (binario) ao sistema decimal (base 10), non temos mais que multiplicar o díxito $(0 \circ 1)$ pola potencia de 2 correspondente á súa posición.

Para 1011_{12} temos que 8 + 0 + 2 + 1 = 1 temos que o seu valor en decimal é 10.

Se o que queremos é converter un número binario a decimal, dividiremos sucesivamente o valor decimal por 2 até chegar a 1. Os restos das divisións indicarannos o valor en binario.

Polo tanto $52_{(10} = 110100_{(2)}$

O Binario nas computadoras

Como xa vimos, os computadores "utilizan" este sistema de numeración, en cada posición de memoria só poden almacenar 1 bit (0 ou 1). Denomínase **bit** á unidade mínima de información que se pode representar, é dicir, un 0 ou un 1.

- Cun bit só se poden representar 2 estados: 0 e 1
- Con 2 bits xa podemos representar 4 estados: 00, 01, 10 e 11

<u>IES LELIADOURA</u> 1 ºDAM - SI

- Con 3 bits xa podemos representar 8 estados
- O número de estados posibles (N) depende do número de bits utilizados (n) : N = 2n

Sistema Octal

O sistema octal tamén é posicional. O valor da posición dase en potencias de 8 (8^0 , 8^1 , 8^2 ,...), as cifras a utilizar son 0, 1, 2, 3, 4, 5, 6 e 7. Por exemplo un número en octal podería ser $2567431_{(8)}$

Valor posicional	86	85	84	83	8 ²	8 ¹	80		
1 en 8 ⁰							1	1×8^{0}	1
3 en 8 ¹						3		3×8^1	24
4 en 8 ²					4			4×8^2	256
7 en 8 ³				7				7×8^3	3854
6 en 8 ⁴			6					6×8^4	24576
5 en 8 ⁵		5						5×8^5	163840
2 en 8 ⁶	2							2×8^6	524288
								Total:	716569

A razón de usar o sistema octal, é que a conversión de binario a octal resulta inmediata. É dicir, 3 díxitos binarios correspóndense exactamente a un díxito octal. Entón podemos facer o seguinte:

É dicir, $1100111111010_{(2)} = 6372_{(8)}$

Sistema Hexadecimal

O sistema hexadecimal, como os anteriores, tamén é posicional. Neste caso o valor da posición vén dado por potencias de 16 (16°, 16¹, 16²,. . .). Como só posuímos 10 caracteres para representar os posibles díxitos, engádense as letras A, B, C, D, E e F, coa seguinte disposición:

Decimal	Hexadecimal
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	В
12	C
13	D
14	E
15	F

Para realizar a conversión dende o sistema decimal seguiremos o mesmo método que no octal ou binario, pero usando o 16 como base, tendo en conta que si obtemos como restos 10, 11, 12, 13, 14 ó 15 debemos substituílos por A, B, C, D, E ou F.

Do mesmo xeito que no sistema octal, a conversión de binario a hexadecimal resulta inmediata. 4 díxitos binarios correspóndense exactamente a un díxito hexadecimal:

Polo tanto, $11010111110110110_{12} = E7B6_{116}$

Conversións con decimais

Si a cantidade decimal ten parte fraccionaria, para pasala a un sistema noutra base, realízanse os seguintes pasos:

- a) Á cantidade decimal réstaselle a súa parte enteira.
- b) O resultado (parte fraccionaria decimal) multiplícase pola base. A parte enteira do resultado é a primeira cifra da parte fraccionaria en devandita base.
- c) Se xa non hai parte fraccionaria, acabouse. Si aínda queda parte fraccionaria, vólvese ao momento a) co valor obtido no paso anterior.

UNIDADES DE MEDIDA

Almacenamento

Prefixos do sistema internacional SI

Prefijo	Símbolo	Factor y valor	
kilo	k	$10^3 = 1000$	1000 unidades
mega	M	10 ⁶ = 1 000 000	1000 k
giga	G	10° = 1 000 000 000	1000 M
tera	T	$10^{12} = 1\ 000\ 000\ 000\ 000$	1000 G
peta	P	$10^{15} = 1\ 000\ 000\ 000\ 000\ 000$	1000 T

Multiplos do byte

Para expresar unidades maiores do byte débense utilizan os prefixos binarios, que son nomes ou simbolos que preceden ao byte para indicar o seu multiplicacion por potencias de dúas. Os Prefixos Binarios establécense no EC IEEE-1541-2002. (publicado no ano 2002 e elevado a estandar de uso completo no ano 2005).

Prefijo	Símbolo	Nombre prefijo+byte	Símbolo del múltiplo del byte	Factor y valor	
kibi	Ki	kibibyte	KiB	$2^{10} = 1024$	1024 B
mebi	Mi	mebibyte	MiB	$2^{20} = 1\ 048\ 576$	1024 KiB
gibi	Gi	gibibyte	GiB	$2^{30} = 1\ 073\ 741\ 824$	1024 MiB
tebi	Ti	tebigyte	TiB	2 ⁴⁰ = 1 099 511 627 776	1024 GiB
pebi	Pi	pebibyte	PiB	2 ⁵⁰ = 1 125 899 906 842 624	1024 TiB
exbi	Ei	exbibyte	EiB	2 ⁶⁰ = 1 152 921 504 606 846 976	1024 PiB
zebi	Zi	zebibyte	ZiB	2 ⁷⁰ = 1 180 591 620 717 411 303 424	1024 EiB
yobi	Yi	yobibyte	YiB	2 ⁸⁰ = 1 208 925 819 614 629 174 706 176	1024 ZiB

É dicir, tradicionalmente en informatica empréganse prefixos do SI pero con significado relativo a potencias binarias. Isto introduce confusion en moitos casos.

- Kilobyte (KB).- Un KB son 1.024 bytes.
- Megabyte (MB).- O MB son 1.024 KB.

- Gigabyte (GB).- Un GB son 1.024 MB.
- Terabyte(TB).- Un TB son 1.024 GB.

A partir dos GB as diferenzas son grandes. (segundo sexan multiplos de 1000 ou multiplo de 1024). Hai que ter moi en conta (sobre todo nas capacidades dos discos duros) a mayoria dos fabricantes utilizan o termo GB refiriendose non a 1.024 MB, senón a 1.000 MB, o que representa unha perda de capacidade na compra.

Ao mercar o disco duro o fabricante dá a capacidade de almacenamento do dispositivo empregando os prefixos do $SI \rightarrow multiplos$ de 1.000; pero o Sistema operativo do computador devolve o dato segun multiplos do sistema binario \rightarrow multiplos de 1.024. O S.Ou. Windows aínda utiliza os prefixos de uso habitual (GB, .), pero algunhas distribucións Linux como Ubuntu ou Fedora xa utilizan os prefixos binarios (GiB,..)

Exemplo: un disco duro de 500 GB (SI) en realidade ten 465 GiB

$$\frac{500*10^9}{2^{30}} = 465,66$$

Polo que a capacidade expresada con prefixo binario será de 465 gibibytes (GiB) (deben desprezarse os decimais). Ao conectar o disco duro ao computador compróbase que efectivamente indica a cantidade dispoñible como 465 gibibytes (GiB) (ou 465 gigabytes (GB) si o sistema operativo utiliza incorrectamente os prefixos do SI como multiplos de 1024)

Frecuencia de transmisión

Un herio, hertzio ou hertz (símbolo Hz) é unha unidade de frecuencia que equivale a un ciclo ou repetición dun evento por segundo: 1 Hz = 1 ciclo / segundo

8:	Múltiplos del hercio (SI)				
Símbolo	Nombre	Valor			
KHz	Kilohercio	$10^3 \text{ Hz} = 1.000 \text{ Hz}$			
MHz	megahercio	106 Hz = 1.000.000 Hz =1.000 KHz			
GHz	Gigahercio	10° Hz = 1.000.000.000 Hz =1.000 MHz			

A velocidade de procesamiento dun procesador mídese en múltiplos do hercio. Así, un procesador que traballe a unha velocidade de 500 megahercios é capaz de repetir 500 millóns de ciclos por segundo. Na actualidade, dada a gran velocidade dos procesadores, a unidade máis frecuente é o gigahercio, que corresponde a 1.000 millóns de hercios por segundo.

Estas unidades de medida utilízanse tamén para medir a frecuencia de comunicación entre os diferentes elementos do computador.

Velocidade de transferencia de datos / Taxa de transferencia

A velocidade de transferencia de datos ou taxa de transferencia defínese como o número de bits que se transmiten por unidade de tempo a través dun sistema de transmisión dixital ou entre dous dispositivos dixitais.

A unidade utilizada polos SSII para expresar a velocidade de transferencia é o bit por segundo: bps, bit/s, b/s. Tamén utilizan outros múltipos

- kbps o kbit/s (kb/s, kilobit/s) → 1.000 bits por segundo.
- Mbps o Mbit/s (Mb/s, Megabit/s) → 1.000.000 bits por segundo.
- Gbps o Gbit/s (Gb/s, Gigabit/s) →1.000.000.000 bits por segundo.
- B/s o byte/s = 8 bits por segundo
- KB/s o kilobyte/s =1.000 B/s
- MB/s o Megabyte/s = 1.000 KB/s
- GB/s o Gigabyte/s = 1.000 MB/s

Para pasar de KB/s a Kbps simplemente multiplícase por 8.

Unha transmisión que se nos indica como de 308 KB/s corresponde a unha velocidade de transmisión de 2.464 Kbps, ou o que é o mesmo, 2,46 Mbps.