Correction du TD

I | Acide carbonique

On considère l'acide carbonique, un diacide (p $K_1 = 6.4$ et p $K_2 = 10.3$) dans l'eau.

1) Écrire les équilibres liant les espèces des couples ${\rm H_2CO_3/HCO_3}^-$ et ${\rm HCO_3}^-/{\rm CO_3}^{2-}$

— Réponse –

$$K_{A,1}$$
 $H_2CO_{3(aq)} + H_2O_{(l)} = HCO_3^{-}_{(aq)} + H_3O^{+}_{(aq)}$ (1)

$$K_{A,2}$$
 $HCO_3^-_{(aq)} + H_2O_{(l)} = CO_3^{2-}_{(aq)} + H_3O^+_{(aq)}$ (2)

 $--- \diamond --$

2) Exprimer les constantes d'acidité associées aux deux couples en fonction de concentrations à l'équilibre.

– Réponse

$$K_1 = \frac{[\mathrm{H_3O^+}]_{\mathrm{eq}}[\mathrm{HCO_3^-}]_{\mathrm{eq}}}{[\mathrm{H_2CO_3}]_{\mathrm{eq}}c^{\circ}}$$
 et $K_1 = \frac{[\mathrm{H_3O^+}]_{\mathrm{eq}}[\mathrm{CO_3}^{2-}]_{\mathrm{eq}}}{[\mathrm{HCO_3^-}]_{\mathrm{eq}}c^{\circ}}$

3) Préciser sur un axe gradué en pH les domaines de prédominance des différentes espèces.

Réponse -

Écrire la réaction entre H_2CO_3 et CO_3^{2-} . Quelle est la valeur de la constante d'équilibre?

Réponse -

 $---- \diamond -$

 K_3

$$H_2CO_{3(aq)} + CO_3^{2-}{}_{(aq)} = 2 HCO_3^{-}{}_{(aq)}$$
 (3) = (1) - (2)

$$\Rightarrow K_3 = \frac{K_{A,1}}{K_{A,2}} \Leftrightarrow \underline{K_3 = 10^{3,9}}$$

5) Déterminer l'espèce majoritaire dans les trois solutions S_1, S_2 et S_3 caractérisées par :

a)
$$pH_{S_1} = 3$$

b)
$$[H_3O^+]_{S_2} = 1 \times 10^{-8} \,\text{mol} \cdot \text{L}^{-1}$$
 c) $[HO^-]_{S_3} = 1 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$

c)
$$[HO^{-}]_{S} = 1 \times 10^{-2} \text{ mol} \cdot L^{-1}$$

— Réponse —

- 1) Si pH = 3, H_2CO_3 prédomine;
- 2) Si $[{\rm H_3O^+}] = 1 \times 10^{-8}\,{\rm mol \cdot L^{-1}},$ alors pH = 8 et HCO $_3^-$ prédomine ;
- 3) Si $[HO^-] = 1 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$, alors $[H_3O^+] = 1 \times 10^{-12} \text{ mol} \cdot \text{L}^{-1}$ puisque d'après le produit ionique de l'eau on a

$$K_e = \frac{[\text{H}_3\text{O}^+][\text{HO}^-]}{c^{\circ 2}} = 10^{-14}$$

D'où pH = 12 et CO_3^{2-} prédomine.

À retenir

$$pH + pOH = 14$$

2

Exploitation de courbes de distribution

L'acide citrique $C_6H_8O_7$ est présent dans le jus de citron. C'est un tétra-acide noté H_4Cit , dont la 4^e acidité n'est pas observée dans l'eau. Les courbes représentées représentent le pourcentage de chacune des espèces lorsque le pH varie.

1) Associer à chaque courbe l'espèce correspondante.

2) Déterminer par lecture graphique les pK_A des trois premières acidités.

----- Réponse

$$pK_{A,1} \approx 3$$
 ; $pK_{A,2} \approx 4.8$; $pK_{A,3} \approx 6.4$

3) Le pH mesuré d'un jus de citron est de 2,5. Donner sa composition en terme de pourcentage de chaque espèce.

– Réponse -

 $- \diamondsuit$

$$\alpha(\mathrm{H_4Cit}) \approx 69\%$$
 ; $\alpha(\mathrm{H_3Cit^-}) \approx 29\%$; $\alpha(\mathrm{H_2Cit^{2-}}) \approx 2\%$

III État d'équilibre d'une base faible

L'ion phosphate PO_4^{3-} est une base faible, qui intervient dans les couples HPO_4^{2-}/PO_4^{3-} de p $K_A=12,3$. On l'introduit en solution aqueuse à la concentration initiale $c_0=1\times 10^{-1}\,\mathrm{mol\cdot L^{-1}}$.

1) Déterminer la composition du système à l'équilibre, ainsi que le pH.

FIGURE 1 – Échelle p K_A

 $\theta = H_3O^+ = \sqrt{g}$

—— Réponse –

Pour trouver la réaction en jeu, on trace l'échelle de p K_A . La réaction prépondérante est celle entre la base la plus forte, $\mathrm{PO_4}^{3-}$, et l'acide le plus fort, ici l'eau. Ainsi :

Équation		$PO_4^{3-}_{(aq)}$ -	$+$ $H_2O_{(l)}$ $-$	\rightarrow HPO ₄ ²⁻ (aq)	$+ \mathrm{HO}^{-}_{\mathrm{(aq)}}$
Initial	x = 0	c_0	excès	0	0
Final	$x_f = x_{\rm eq}$	$c_0 - x_{\rm eq}$	excès	$x_{\rm eq}$	$x_{\rm eq}$

Réaction défavorisée $(\gamma) \Rightarrow K^{\circ} = 10^{\mathrm{p}K_a - \mathrm{p}K_e} = 10^{-1.7}\,;$ or

$$K = \frac{x_{\text{eq}}^2}{c_0 - x_{\text{eq}}} \Leftrightarrow x_{\text{eq}}^2 + Kx_{\text{eq}} - Kc_0 = 0$$

Lycée Pothier 2/8 MPSI3 – 2023/2024

IV. Iodure de plomb

$$\Rightarrow \Delta = K^2 + 4Kc_0 \quad \text{ et } \quad x_{\text{eq},\pm} = -\frac{K \pm \sqrt{K^2 + 4Kc_0}}{2} \\ \Rightarrow \begin{cases} x_{\text{eq},-} = -5.6 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1} \\ x_{\text{eq},+} = 3.2 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1} \end{cases}$$

La réaction étant en sens direct forcément (pas de réactifs au début), on prend la solution positive, et ainsi

$$\frac{x_{\rm eq} = 3.2 \times 10^{-2} \, {\rm mol \cdot L}^{-1}}{{\rm [HPO_4}^{2-}]_{\rm eq}} = 6.3 \times 10^{-2} \, {\rm mol \cdot L}^{-1} \quad ; \quad [{\rm HPO_4}^{2-}]_{\rm eq} = 3.2 \times 10^{-2} \, {\rm mol \cdot L}^{-1} = [{\rm HO}^{-}]_{\rm eq} \Leftrightarrow {\rm pH} = 12.8$$

IV Iodure de plomb

1) Une solution contient initialement des ions Pb^{2+} à la concentration $c = 1 \times 10^{-1} \text{ mol} \cdot L^{-1}$, et des ions iodure I⁻ de même concentration. On donne $pK_s(PbI_2) = 8$.

a – Déterminer les concentrations en ions Pb^{2+} et I^- dans l'état final.

- Réponse -

Équation		$Pb^{2+}_{(aq)}$	+ 2I ⁻ (aq)	$= PbI_{2(s)}$
Initial	$\xi = 0$	cV	cV	0
Final	$\xi_f = \xi_{\text{max}}$	$cV - \xi_{\max}$	$cV - 2\xi_{\text{max}}$	$\xi_{ m max}$

$$K^{\circ} = \frac{1}{K_s} = 10^8$$
 et $Q_{r,i} = \frac{c^{\circ 3}}{c^3} = 10^3 \ll 10^8$

La réaction se fait donc dans le sens direct et est totale. On suppose donc que l'état final est $\xi_{\rm eq} = \xi_{\rm max}$, et on cherche $\xi_{\rm max}$:

$$\begin{cases} cV - \xi_{\text{max}} = 0 \\ cV - 2\xi_{\text{max}} = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_{\text{max}} = cV \\ \xi_{\text{max}} \frac{cV}{2} \end{cases} \Rightarrow \boxed{\xi_{\text{max}} = \frac{cV}{2}}$$
$$\boxed{n_{\text{PbI}_2,\text{eq}} = \frac{cV}{2}} \quad ; \quad [\text{I=}]_{\text{eq}} = \varepsilon \quad ; \quad [\text{Pb}^{2+}]_{\text{eq}} = \frac{c}{2} \end{cases}}$$

Ainsi

Important

On vérifie l'hypothèse de totalité en calculant ε :

$$K = \frac{c^{\circ 2}}{\varepsilon \frac{c}{2}} \Leftrightarrow \varepsilon = \frac{2}{Kc} = 2 \times 10^{-7} \,\mathrm{mol}.^{-1} \ll \frac{c}{2}$$

C'est bien vérifié ✓!

b – Même question si $c=2\times 10^{-5}\,\mathrm{mol}{\cdot}\mathrm{L}^{-1}$

– Réponse –

$$c = 2 \times 10^{-5} \,\text{mol} \cdot \text{L}^{-1} \quad \Rightarrow \quad Q_{r,i} = 1.25 \times 10^{14} > K^{\circ}$$

On devrait donc aller dans le sens indirect, ce qui n'est pas possible : le système n'évolue pas.

2) c – Déterminer la solubilité de l'iodure de plomb dans de l'eau pure.

Réponse

1	Équ	ation	$PbI_{2(s)}$ =	$= Pb^{2+}_{(aq)}$	$+$ $2I^{-}_{(aq)}$
	Initial	$\xi = 0$	n	0	0
	Final	$\xi_f = \xi_{\rm eq}$	$n - \xi_{\rm eq}$	$\xi_{ m eq}$	$2\xi_{\mathrm{eq}}$

2 Par définition,
$$n_{\text{dis,max}} = \xi_{\text{eq}} = sV \quad \Rightarrow \begin{cases} [\text{Pb}^{2+}]_{\text{eq}} = s \\ [\text{I}^{-}]_{\text{eq}} = 2s \end{cases}$$
3 Or,
$$K_{s} = \frac{[\text{Pb}^{2+}]_{\text{eq}} \times [\text{I}^{-}]_{\text{eq}}^{2}}{c^{\circ 3}} = 4\left(\frac{s}{c^{\circ}}\right)^{3}$$

$$\Rightarrow s = c^{\circ} \left(\frac{10^{-\text{p}K_{s}}}{4}\right)^{1/3} \quad \Rightarrow \quad \underline{s} = 2,0 \times 10^{-3} \, \text{mol} \cdot \text{L}^{-1} = 0,92 \, \text{g} \cdot \text{mol}^{-1}$$

d – Même question dans une solution d'iodure de sodium (Na⁺,I⁻) de concentration $c = 1 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$.

Dá	2020
\mathbf{n}	ponse

- 🔷

1	Équ	ation	PbI _{2(s)} =	$= Pb^{2+}_{(aq)}$	+	$2I^{-}_{(aq)}$
	Initial	$\xi = 0$	n	0		cV
	Final	$\xi_f = \xi_{\rm eq}$	$n-\xi_{\mathrm{eq}}$	$\xi_{ m eq}$		$cV + 2\xi_{\rm eq}$

 $n_{\rm dis,max} = \xi_{\rm eq} = sV \quad \Rightarrow \quad \begin{cases} [{\rm Pb}^{2+}]_{\rm eq} = s \\ [I^{-}]_{\rm eq} = c + 2s \end{cases}$ 2 Par définition, $c^{\circ 3}K_s = s(c+2s)^2 = sc^2 + 4cs^2 + 4s^3$

La résolution d'équation d'ordre 3 n'est pas au programme. On doit trouver une astuce nous permettant de négliger quelque chose. Ici, on peut supposer que $s \ll c$: en effet, dans le meilleur des cas avec le calcul précédent on a $s = 1.2 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ et l'effet d'ion commun ne fait que baisser la solubilité, pas l'augmenter. Comme $c = 1 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$, cette hypothèse est plausible.

Dans ce cas, $c + 2s \approx c$, et ainsi

Ce qui vérifie par la même occasion l'hypothèse.

Domaine d'existence de l'hydroxyde de fer II

On considère l'hydroxyde de fer II $Fe(OH)_2$ de $pK_s = 15$.

1) Quelle est la valeur de pOH = $-\log \frac{[\text{HO}^-]}{c^2}$ de début de précipitation de Fe(OH)₂ à partir d'une solution en ions Fe²⁺ à la concentration $c_0 = 1 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$?

------ Réponse ------On a

2) En déduire le pH de début de précipitation.

—— Réponse ———

solu

|3| Or,

- \$ -----3) Indiquer sur un diagramme, avec le pH en abscisse, les domaines de prédominance des ions Fe^{2+} et d'existence du solide.

——— Réponse solu

Stabilité de solutions

On considère les couples acido-basiques suivants :

$$pK_{A.1} (HCOOH/HCOO^{-}) = 3.7$$
 $pK_{A.2} (HClO/ClO^{-}) = 7.5$

1) Tracer un diagramme de prédominance contenant les domaines des 4 espèces à considérer.

Réponse -

solu

5) L	Déterminer les les deux mélanges suivants sont stables (aucune réaction quantitative n'a lieu) :
	$n-n_{ m HCOOH,0}=1{ m mol}$ et $n_{ m HClo,0}=1{ m mol}$ dans $V=1{ m L}$
	solu
	<u>soiu</u>
b	o – $n_{\text{ClO}-,0=1 \text{mol}}$ et $n_{\text{HCOOH},0} = 1 \text{mol}$ dans $V = 1 \text{L}$ Réponse –
	solu
_	$\overline{}$
$ig \mathbf{V}$	II Titrage de l'acide acétique d'un vinaigre
d'u	Le vinaigre est obtenu par fermentation acétique, soit d'une solution aqueuse d'éthanol (vinaigre d'alcool), soin vin (vinaigre de vin). La fermentation est effectuée par des bactéries, qui oxydent l'éthanol CH_3CH_2OH en acide anoïque CH_3CO_2H , aussi appelé acide acétique.
d'al	La base conjuguée de l'acide éthanoïque est l'ion éthanoate $\mathrm{CH_3CO_2}^-$, de p $K_A=4,75$. On étudie un vinaigre locol du commerce, dont le pH vaut 2,6. Afin de doser l'acidité de ce vinaigre, on prépare tout d'abord une solution leuse contenant $10,0\mathrm{mL}$ du vinaigre dans $200,0\mathrm{mL}$ d'eau.
un	volume $V_1=20,0\mathrm{mL}$ de cette solution diluée est placée dans bécher, dans lequel on place deux électrodes pour la mesure pH. De l'eau est ajoutée pour obtenir l'immersion dans les
élec	trodes. Une solution aqueuse de soude NaOH de concentration $0.10\mathrm{mol\cdot L^{-1}}$ est placée dans une burette. Le dosage consiste
suiv	erser progressivement cette solution dans le bécher, tout en Hours l'évolution du pH. La figure ci-contre montre le pH en
	ction du volume V de solution de NaOH versé. quivalence est repérée par le saut de pH, qui se produit pour
un	volume versé $V_{\rm eq} = 12,75\mathrm{mL}$ (volume pour lequel la dérivée pH en fonction de V est maximale).
	$0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
l) F	Caire des schémas des différentes étapes en notant les quantités et concentrations importantes. Réponse
S	olu
2) É	Crire la réaction de CH ₃ CO ₂ H avec HO [−] . Calculer sa constante d'équilibre et commenter.
S	olu
d	Calculer le nombre de moles d'acide éthanoïque dans la solution diluée dosée, puis la concentration en acide éthanoïque dans le vinaigre non dilué.
	olu
4) C	Calculer la masse d'acide éthanoïque pour $100\mathrm{g}$ de vinaigre. On donne les masses molaires :
	$M_{\rm C} = 12.0 \mathrm{g \cdot mol}^{-1} \qquad M_{\rm O} = 16.0 \mathrm{g \cdot mol}^{-1} \qquad M_{\rm H} = 1.0 \mathrm{g \cdot mol}^{-1}$
_	Réponse —
S	olu
5) C	Calculer les concentrations de $\mathrm{CH_3CO_2H}$ et de $\mathrm{CH_3CO_2}^-$ dans le vinaigre.
S	olu
	\wedge

VIII Hydroxyde d'étain

La solubilité s de l'hydroxyde d'étain $Sn(OH)_{2(s)}$ varie avec le pH en raison des équilibres suivants :

$$K_s = 10^{-25,2}$$
 $\operatorname{Sn}^{2+}_{(aq)} + 2 \operatorname{HO}^{-}_{(aq)} = \operatorname{Sn}(OH)_{2(s)}$ (S)

$$K_{A,1} = 10^{-2,1}$$
 $\operatorname{Sn}^{2+}_{(aq)} + \operatorname{H}_2 O_{(1)} = \operatorname{Sn}(OH)^{+}_{(aq)} + \operatorname{H}^{+}_{(aq)}$ (1)

$$K_{A,2} = 10^{-5.0}$$
 $\operatorname{Sn(OH)^+}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(1)} = \operatorname{Sn(OH)}_{2(aq)} + \operatorname{H}^+_{(aq)}$ (2)

$$K_{A,3} = 10^{-9.5}$$
 $\operatorname{Sn}(OH)_{2(aq)} + \operatorname{H}_2O_{(1)} = \operatorname{Sn}(OH)_{3^{-}(aq)} + \operatorname{H}^{+}_{(aq)}$ (3)

On donne le graphe $\log s = f(pH)$ ci-dessous :

1) Indiquer sur une échelle de pH les domaines de prédominance des différentes formes solubles de l'étain considérées ici.

- Réponse solu

2) Déterminer la solubilité de l'étain en ne considérant que l'équilibre :

 $\operatorname{Sn}(\operatorname{OH})_{2(\operatorname{aq})} = \operatorname{Sn}(\operatorname{OH})_{2(\operatorname{s})}$ — Réponse – solu

3) Exprimer la solubilité s de l'hydroxyde d'étain pour tout pH, en considérant cette fois tous les équilibres. Retrouver alors la pente de la courbe pour pH > 10,5.

— Réponse – solu

Diacide fort

 K°

On considère une solution d'acide sulfurique H_2SO_4 de concentration $c_0 = 0.010 \,\mathrm{mol \cdot L^{-1}}$.

1) En considérant que l'acide sulfurique est un diacide fort, calculer le pH de la solution.

- Réponse solu - \$ -----

2) En réalité, la première acidité de l'acide sulfurique est forte, et la seconde a un p $K_A(\mathrm{HSO_4}^-/\mathrm{SO_4}^{2-})=1,9$. Déterminer le pH en tenant compte de cette modification.

– Réponse solu

Solubilités dans l'eau pure de différents précipités

Déterminer la solubilité dans l'eau pure s de chacun des composés ci-dessous, en supposant que les ions formés lors de la dissociation des solides ne réagissent pas avec l'eau et que l'ion Zn^{2+} apparaît dans chaque dissolution.

1)	$ZnCO_{3(s)}$	de p $K_{s,1}$	= 10,8.
----	---------------	----------------	---------

solu

– Réponse –

2) $\text{ZnCN}_{2(s)}$ de p $K_{s,2} = 12.6$.

solu

Réponse —

3) $\operatorname{Zn_3(PO_4)_{2(s)}} \operatorname{de} pK_{s,3} = 32,0.$

- 🔷 -

– Réponse —

solu

XI | Mesure de la constante d'acidité d'un indicateur coloré.

À partir du spectre d'absorption de la forme acide notée HIn du bleu de bromothymol (BBT), on détermine la longueur d'onde correspondant à son maximum d'absorption $\lambda_1=430\,\mathrm{nm}$. On détermine de même la longueur d'onde du maximum d'absorption de la forme basique In $\lambda_2=620\,\mathrm{nm}$.

1) Quelle est la couleur d'une solution contenant uniquement HIn? uniquement In¯?

solu

— Réponse -

2) Quelle est la couleur d'une solution de BBT dans sa zone de virage?

Réponse -

solu

3) Rappeler la loi de BEER-LAMBERT en précisant la signification des différents termes. Quelles sont les conditions de validité de cette loi?

validite de cette loi :

—— Réponse –

solu

On mesure l'absorbance pour la longueur d'onde λ_1 de trois solutions contenant du BBT à une même concentration

On mesure l'absorbance pour la longueur d'onde λ_1 de trois solutions contenant du BBT à une même concentration totale c:

- \diamond En milieu fortement acide, on mesure $A_1 = 0.196$;
- \diamond En milieu fortement basique, on mesure $A_2 = 0.076$;
- \diamond Pour une solution S à pH = 7,1, on mesure $A_S = 0,140$.
- 4) Montrer que le rapport des concentrations en forme acide et basique dans la solution S peut s'écrire

$$\frac{[\mathrm{HIn}]_S}{[\mathrm{In}^-]_S} = \frac{A_1 - A_S}{A_S - A_2}$$

5) En déduire la valeur de $pK_A(HIn/In^-)$.

Réponse —

solu

XII Titrage d'une amine

On veut déterminer par titrage la formule brute d'une amine $C_nH_{2n+1}NH_2$. Pour cela, on dissout une masse $m=0.146\,\mathrm{g}$ dans $100\,\mathrm{mL}$ d'eau et on dose la solution obtenue par une solution d'acide chlorhydrique $(\mathrm{H}^+,\mathrm{Cl}^-)$ de concentration molaire $c_A=0.25\,\mathrm{mol\cdot L}^{-1}$. On donne ci-contre la courbe de titrage pH = f(V), à laquelle sont superposées en traits fins deux courbes représentant les pourcentages respectifs des espèces $C_nH_{2n+1}NH_2$ et $C_nH_{2n+1}NH_3^+$ en solution en fonction du volume V de solution titrante versée.

Données

- $\diamond \ M_{\rm H} = 1.0 \, {\rm g \cdot mol}^{-1} \, ; \ M_{\rm C} = 12.0 \, {\rm g \cdot mol}^{-1} \, ; \ M_{\rm N} = 14.0 \, {\rm g \cdot mol}^{-1} \, ;$
- $\diamond\,$ Zones de virage d'indicateurs colorés :
 - \triangleright Phénolphtaléine 8,2 ; 10,0
 - ▷ BBT 6,0 ; 7,6
 - \triangleright Vert malachite 0,2 ; 1,8

,	Attribuer les courbes de pourcentages aux deux espèces $C_nH_{2n+1}NH_2$ et $C_nH_{2n+1}NH_3^+$ et déterminer le p K_A du couple.
	Réponse
	solu
2)	Écrire l'équation de la réaction. Calculer sa constante d'équilibre et justifier qu'elle peut servir de support de titrage.
	——————————————————————————————————————
	solu
	<u> </u>
3)	Justifier qualitativement l'allure de la courbe de pH, et en particulier l'existence du saut.
	——————————————————————————————————————
	solu
4)	Proposer un indicateur coloré adapté au repérage de l'équivalence.
	Réponse
	solu
	<u> </u>
5)	Déterminer la formule de l'amine.
	Réponse
	solu
	<u></u>