Prelab 1, Analog Integrated Curcuits

Ole Janse, Finn Rautenberg, 29.11.2022, Lübeck

f) Task: Determine the transconductance g_m of the transistor at VGS = 0.5 V

Simulation of DC-Sweep of G_gs,dc from 0V to 1V

Plot of I_d,dc and the slope g_m= I_d,dc/V_gs,dc at G_gs,dc=0,5V by D(I(IM1)

g_m= 124 μS @ V_gs,dc=0,5V

g) Task: Determine the transistor V_{th} value by sketching the tangent line at the highest slope of $I_{d,dc}/V_{gs,dc}$ and determin the voltage of $U_{gs,dc}$ at $I_{d,dc}=0$ A of the tangent

Simulation of DC-Sweep of G_gs,dc from 0V to 2V

The highest slope was determined at V_gs,dc=1,91V with g_m=230 uS

A linear straight was applied as Tangent to I_dc,dc (Cursor Y1) with the parameter 230u * V_VGDC - 125u which crossed I_d,dc = 0A at U_gs,dc = U_th = 539mV (Cursor Y2)

i) Task: Determine the linear (triode) region of the transistor

To satisfy linear region

- V_gs,dc < V_th = 539mV → always fulfilled because V_gs,dc = 500mV < 539mV
- and V_ds,dc < V_gs,dc V_th = 500mV 539mV = -39mV (Sim zeigt das bis ~164mV ende von V_ds,dc linearer Bereich :/ Ist V_th oder Formel falsch?)

Simulation of DC-Sweep of G_ds,dc from 0V to 2V Plot of I_d,dc

V_pinch,off ~ 150mV

- j) Task: Determin small signal output resistance $r_ds = r_o$. Determine slope $r_o = l_d, dc/D_ds, dc$
 - r_ds = 5,10 kOhm @ V_ds,dc = 0V
 - r_ds = 8,41 kOhm @ V_ds,dc = 50mV
 - r_ds = 515,4 kOhm @ V_ds,dc = 0,9V

Simulation of DC-Sweep of G_ds,dc from 0V to 2V

Plot of I_d,dc and Derivation D(ID(M1))

k) Task: Repeat for L=1μm j)

The highest slope was determined at V_gs,dc=1,67V with g_m=119 uS

New threshold value 813mV

To satisfy linear region

- V_gs,dc < V_th = 813mV → always fulfilled because V_gs,dc = 500mV < 813mV
- and V_ds,dc < V_gs,dc V_th = 500mV 813mV = -313mV

V_pinch,off ~ 100mV

r_0 = 45,8 MOhm, lower channel length modulation as expected

1) Task: Determin I_d,dc for steady state by simulation, switched back to L=250nm

What todo??

m) Task: Compare values of dc sweep and bias point simulation

	Sim DC-sweep	Sim Bias Point (V_gs,dc=0,9V)
V_th	539mV	328mV
G_m	230μS	132μS
r_o	515 kOhm	512 kOhm

Deviation on V_th and g_m due to selection on V-ds,dc != 0,9V as in bias point simulation