快速 3*3 中值滤波

作者: 采石工 QQ: 544617183

邮箱: quarrying@qq.com

博客: http://www.cnblogs.com/quarryman/

更新时间: 2016年04月22日

版权声明:自由分享,保持署名-非商业用途-非衍生,知识共享 3.0 协议。

如有错误和建议,欢迎发邮件或留言!转载请保留上述信息!

很早之前群主发过一份代码《Fastest 3_3 Median Blur》(群共享中有),觉得有必要研究一下,代码中为了确定 9 个数据的中值,进行了 19 次比较,但不知为何如此可以确定中值,于是推导了一下,如下(注意我修改了一下比较的顺序,以便记忆和理解,但不影响结果),并编码验证了其正确性。不过与 OpenCV 的 cvSmooth 比较后,发现 Fastest 3_3 Median Blur 的速度不及 OpenCV 的。翻阅 OpenCV 的源码,发现其内部使用的也是相同方法(在medianBlur_SortNet),只是其用到了 SSE2 加速。于是将相关代码抠出,进行比较,结果一致。OpenCV 还用类似方法实现了 5*5 的快速中值滤波,时间所限,不做证明和验证。

$$\begin{array}{|c|c|c|c|c|} \hline \vec{x}_0 & \vec{x}_1 & \vec{x}_2 \\ \hline \vec{x}_3 & \vec{x}_4 & \vec{x}_5 \\ \hline \vec{x}_6 & \vec{x}_7 & \vec{x}_8 \\ \hline \end{array} , \quad & & & & & & & & & & \\ \hline \vec{x}_i & \vec{x}_i & \vec{x}_k & \vec{x}_k & \vec{x}_k \\ \hline$$

1)每行像素独立完全排序。

若
$$I_1 > I_2$$
, swap (I_1, I_2) ,则 $I_1 \le I_2$ 。

若
$$I_4 > I_5$$
, swap (I_4, I_5) , 则 $I_4 \le I_5$ 。

若
$$I_7 > I_8$$
, swap (I_7, I_8) ,则 $I_7 \le I_8$ 。

若
$$I_0 > I_1$$
, swap (I_0, I_1) , 则 $I_0 \le I_1$, 又 $I_0 \le I_2$ 。

若
$$I_3 > I_4$$
, swap (I_3, I_4) ,则 $I_3 \le I_4$,又 $I_3 \le I_5$ 。

若
$$I_6 > I_7$$
, swap (I_6, I_7) , 则 $I_6 \le I_7$, 又 $I_6 \le I_8$ 。

若
$$I_1 > I_2$$
, swap (I_1, I_2) ,则 $I_1 \le I_2$,又 $I_0 \le I_2$ 和 $I_0 \le I_1$,即 $I_0 \le I_1 \le I_2$ 。

若
$$I_4 > I_5$$
, swap (I_4, I_5) , 则 $I_4 \le I_5$, 又 $I_3 \le I_5$ 和 $I_3 \le I_4$, 即 $I_3 \le I_4 \le I_5$ 。

若 $I_7 > I_8$, swap (I_7, I_8) ,则 $I_7 \le I_8$,又 $I_6 \le I_8$ 和 $I_6 \le I_7$,即 $I_6 \le I_7 \le I_8$ 。

综上,有 $I_0 \le I_1 \le I_2$, $I_3 \le I_4 \le I_5$ 和 $I_6 \le I_7 \le I_8$ 。

2) 第一列像素部分排序, I_6 成列上最大值, I_0 和 I_3 不可能是中值。

若 $I_0 > I_3$, $\operatorname{swap} \left(I_0, I_3 \right)$,则 $I_0 \le I_3$,又 $I_3 \le I_1 \le I_2$, $I_0 \le I_4 \le I_5$ 和 $I_6 \le I_7 \le I_8$,简化为 $I_0 \le I_3 \le I_1 \le I_2 \text{ , } \quad I_0 \le I_4 \le I_5 \text{ 和 } I_6 \le I_7 \le I_8 \text{ .}$

若 $I_3 > I_6$, $\operatorname{swap}(I_3, I_6)$,则 $I_3 \leq I_6$,又 $I_0 \leq I_6 \leq I_1 \leq I_2$, $I_0 \leq I_4 \leq I_5$ 和 $I_3 \leq I_7 \leq I_8$ 。 由于 $I_0 \leq I_6 \leq I_1 \leq I_2$ 和 $I_0 \leq I_4 \leq I_5$,所以 I_0 不可能是中值;由于 $I_3 \leq I_6$, $I_0 \leq I_6 \leq I_1 \leq I_2$ 和 $I_3 \leq I_7 \leq I_8$,所以 I_0 不可能是中值。

3) 第三列像素部分排序, I_2 成列上最小值, I_5 和 I_8 不可能是中值。

若 $I_5 > I_8$, $\operatorname{swap}(I_5, I_8)$,则 $I_5 \le I_8$,又 $I_3 \le I_6$, $I_0 \le I_6 \le I_1 \le I_2$, $I_0 \le I_4 \le I_8$ 和 $I_3 \le I_7 \le I_5$,简化为 $I_3 \le I_6$, $I_0 \le I_6 \le I_1 \le I_2$, $I_0 \le I_4 \le I_8$ 和 $I_3 \le I_7 \le I_5 \le I_8$ 。 若 $I_2 > I_5$, $\operatorname{swap}(I_2, I_5)$,则 $I_2 \le I_5$,又 $I_3 \le I_6$, $I_0 \le I_6 \le I_1 \le I_5$, $I_0 \le I_4 \le I_8$ 和 $I_3 \le I_7 \le I_2 \le I_8$ 。由于 $I_0 \le I_4 \le I_8$ 和 $I_3 \le I_7 \le I_2 \le I_8$,所以 I_8 不可能是中值;由于 $I_2 \le I_5$, $I_0 \le I_6 \le I_1 \le I_5$ 和 $I_3 \le I_7 \le I_2 \le I_8$,所以 I_8 不可能是中值;

4) 对第二列像素完全排序, I_{4} 成列上中值, I_{1} 和 I_{7} 不可能是中值。

若 $I_4 > I_7$, $\operatorname{swap} \left(I_4, I_7 \right)$,则 $I_4 \leq I_7$,又 $I_2 \leq I_5$, $I_3 \leq I_6$, $I_0 \leq I_6 \leq I_1 \leq I_5$, $I_0 \leq I_7 \leq I_8$ 和 $I_3 \leq I_4 \leq I_2 \leq I_8$ 。

若 $I_1 > I_4$, swap (I_1, I_4) ,则 $I_1 \le I_4$,又 $I_1 \le I_7$, $I_2 \le I_5$, $I_3 \le I_6$, $I_0 \le I_6 \le I_4 \le I_5$, $I_0 \le I_7 \le I_8$ 和 $I_3 \le I_1 \le I_2 \le I_8$ 。

若 $I_4 > I_7$, $\operatorname{swap} \left(I_4, I_7 \right)$,则 $I_4 \leq I_7$,又 $I_1 \leq I_7$,又 $I_1 \leq I_4$, $I_2 \leq I_5$, $I_3 \leq I_6$, $I_0 \leq I_6 \leq I_7 \leq I_5$, $I_0 \leq I_4 \leq I_8$ 和 $I_3 \leq I_1 \leq I_2 \leq I_8$,简化为 $I_1 \leq I_4 \leq I_7$, $I_2 \leq I_5$, $I_3 \leq I_6$, $I_0 \leq I_6 \leq I_7 \leq I_5$, $I_0 \leq I_4 \leq I_8$ 和 $I_3 \leq I_1 \leq I_2 \leq I_8$ 。可见 I_1 和 I_7 不可能是中值。

5) 对反对角线像素完全排序。

若
$$I_4 > I_2$$
, $\operatorname{swap}(I_4, I_2)$, 则 $I_4 \le I_2$, 又 $I_1 \le I_2 \le I_7$, $I_4 \le I_5$, $I_3 \le I_6$, $I_0 \le I_6 \le I_7 \le I_5$, $I_0 \le I_2 \le I_8$ 和 $I_3 \le I_1 \le I_4 \le I_8$ 。
若 $I_6 > I_4$, $\operatorname{swap}(I_6, I_4)$, 则 $I_6 \le I_4$, 又 $I_6 \le I_2$, $I_1 \le I_2 \le I_7$, $I_6 \le I_5$, $I_3 \le I_4$, $I_0 \le I_4 \le I_7 \le I_5$, $I_0 \le I_2 \le I_8$ 和 $I_3 \le I_1 \le I_6 \le I_8$ 。
若 $I_4 > I_2$, $\operatorname{swap}(I_4, I_2)$, 则 $I_4 \le I_2$, 又 $I_6 \le I_2$, $I_6 \le I_4$, $I_1 \le I_4 \le I_7$, $I_6 \le I_5$, $I_3 \le I_2$, $I_0 \le I_2 \le I_7 \le I_5$, $I_0 \le I_4 \le I_8$ 和 $I_3 \le I_1 \le I_6 \le I_8$, 简化为 $I_6 \le I_4 \le I_2$, $I_1 \le I_4 \le I_7$, $I_6 \le I_5$, $I_3 \le I_2$, $I_1 \le I_4 \le I_7$, $I_6 \le I_5$, $I_3 \le I_2$, $I_1 \le I_6 \le I_8$, 可得 $I_6 \le I_4 \le I_2 \le I_7 \le I_5$; 由 $I_6 \le I_4 \le I_2$ 和 $I_3 \le I_1 \le I_6 \le I_8$,可得 $I_3 \le I_1 \le I_6 \le I_4 \le I_2$;

参考:

OpenCV 之 medianBlur SortNet

http://ndevilla.free.fr/median/median/index.html

https://en.wikipedia.org/wiki/Median of medians

https://en.wikipedia.org/wiki/Quickselect

又因为 $I_0 \le I_4 \le I_8$, 所以, I_4 是中值。

https://news.ycombinator.com/item?id=5727966

https://www.reddit.com/r/programming/comments/2poc3t/fast_median_search_an_ansi_c_implementation/