MTL122 - Real and complex analysis Assignment-1

Department of Mathematics Indian Institute of Technology Delhi

Question 1

Let A, B and C be sets.

$$\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

$$\bullet \ A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution: a) To prove $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

• Let $x \in A \setminus (B \cup C)$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.
- Thus we have $x \in A \setminus B$ and $x \in A \setminus C$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.
- Thus we have $x \in A \setminus B$ and $x \in A \setminus C$.
- $\therefore x \in (A \setminus B) \cap (A \setminus C)$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.
- Thus we have $x \in A \setminus B$ and $x \in A \setminus C$.
- $\therefore x \in (A \setminus B) \cap (A \setminus C)$.
- Thus we finally have $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution: a) To prove $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.
- Thus we have $x \in A \setminus B$ and $x \in A \setminus C$.
- $\therefore x \in (A \setminus B) \cap (A \setminus C)$.
- Thus we finally have $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

Now we prove the other side inclusion

• Let $x \in (A \setminus B) \cap (A \setminus C)$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution: a) To prove $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.
- Thus we have $x \in A \setminus B$ and $x \in A \setminus C$.
- $\therefore x \in (A \setminus B) \cap (A \setminus C)$.
- Thus we finally have $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

- Let $x \in (A \setminus B) \cap (A \setminus C)$.
- $\therefore x \in (A \setminus B)$ and $x \in (A \setminus C)$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution: a) To prove $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.
- Thus we have $x \in A \setminus B$ and $x \in A \setminus C$.
- $\therefore x \in (A \setminus B) \cap (A \setminus C)$.
- Thus we finally have $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

- Let $x \in (A \setminus B) \cap (A \setminus C)$.
- $\therefore x \in (A \setminus B)$ and $x \in (A \setminus C)$.
- This implies $x \in A, x \notin B$ and $x \notin C$.

Question 1

Let A, B and C be sets.

- $\bullet \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution: a) To prove $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

- Let $x \in A \setminus (B \cup C)$.
- $\therefore x \in A \text{ but } x \notin (B \cup C).$
- This implies $x \in A, x \notin B$ and $x \notin C$.
- Thus we have $x \in A \setminus B$ and $x \in A \setminus C$.
- $\therefore x \in (A \setminus B) \cap (A \setminus C)$.
- Thus we finally have $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

- Let $x \in (A \setminus B) \cap (A \setminus C)$.
- $\therefore x \in (A \setminus B)$ and $x \in (A \setminus C)$.
- This implies $x \in A, x \notin B$ and $x \notin C$.

• Thus we have $x \in A$ and $x \notin B \cup C$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - Let $x \in A \setminus (B \cap C)$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - Let $x \in A \setminus (B \cap C)$.
 - $\therefore x \in A \text{ but } x \notin (B \cap C).$

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - Let $x \in A \setminus (B \cap C)$.
 - $\therefore x \in A \text{ but } x \notin (B \cap C).$
 - This implies $x \in A$ and either $x \notin B$ or $x \notin C$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - Let $x \in A \setminus (B \cap C)$.
 - $\therefore x \in A \text{ but } x \notin (B \cap C).$
 - This implies $x \in A$ and either $x \notin B$ or $x \notin C$.
 - Thus we have $x \in A \setminus B$ or $x \in A \setminus C$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - Let $x \in A \setminus (B \cap C)$.
 - $\therefore x \in A \text{ but } x \notin (B \cap C).$
 - This implies $x \in A$ and either $x \notin B$ or $x \notin C$.
 - Thus we have $x \in A \setminus B$ or $x \in A \setminus C$.
 - $\therefore x \in (A \setminus B) \cup (A \setminus C)$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - Let $x \in A \setminus (B \cap C)$.
 - $\therefore x \in A \text{ but } x \notin (B \cap C).$
 - This implies $x \in A$ and either $x \notin B$ or $x \notin C$.
 - Thus we have $x \in A \setminus B$ or $x \in A \setminus C$.
 - $\bullet :: x \in (A \setminus B) \cup (A \setminus C).$
 - Thus we finally have $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$.

- Thus we have $x \in A$ and $x \notin B \cup C$.
- $\therefore x \in A \setminus (B \cup C)$.
- Thus we finally have $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- Thus we have proved the needful.
- 2) To prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - Let $x \in A \setminus (B \cap C)$.
 - $\therefore x \in A \text{ but } x \notin (B \cap C).$
 - This implies $x \in A$ and either $x \notin B$ or $x \notin C$.
 - Thus we have $x \in A \setminus B$ or $x \in A \setminus C$.
 - $\bullet :: x \in (A \setminus B) \cup (A \setminus C).$
 - Thus we finally have $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$.

Now we prove the other side inclusion

• Let $x \in (A \setminus B) \cup (A \setminus C)$

- Let $x \in (A \setminus B) \cup (A \setminus C)$
- $\therefore x \in (A \setminus B)$ or $x \in (A \setminus C)$

- Let $x \in (A \setminus B) \cup (A \setminus C)$
- $\therefore x \in (A \setminus B)$ or $x \in (A \setminus C)$
- This implies $x \in A$ and either $x \notin B$ or $x \notin C$

- Let $x \in (A \setminus B) \cup (A \setminus C)$
- $\therefore x \in (A \setminus B)$ or $x \in (A \setminus C)$
- This implies $x \in A$ and either $x \notin B$ or $x \notin C$
- Thus we have $x \in A$ and $x \notin B \cap C$.

- Let $x \in (A \setminus B) \cup (A \setminus C)$
- $\therefore x \in (A \setminus B)$ or $x \in (A \setminus C)$
- This implies $x \in A$ and either $x \notin B$ or $x \notin C$
- Thus we have $x \in A$ and $x \notin B \cap C$.
- $\therefore x \in A \setminus (B \cap C)$

- Let $x \in (A \setminus B) \cup (A \setminus C)$
- $\therefore x \in (A \setminus B)$ or $x \in (A \setminus C)$
- This implies $x \in A$ and either $x \notin B$ or $x \notin C$
- Thus we have $x \in A$ and $x \notin B \cap C$.
- $\therefore x \in A \setminus (B \cap C)$
- Thus we finally have $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$

- Let $x \in (A \setminus B) \cup (A \setminus C)$
- $\therefore x \in (A \setminus B)$ or $x \in (A \setminus C)$
- This implies $x \in A$ and either $x \notin B$ or $x \notin C$
- Thus we have $x \in A$ and $x \notin B \cap C$.
- $\therefore x \in A \setminus (B \cap C)$
- Thus we finally have $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$
- Thus we have proved the needful.

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If *h* is not injective then both the function f and g is not injective.

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If *h* is not injective then both the function f and g is not injective.

Solution: a)

• Given: *h* is not injective.

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If *h* is not injective then both the function f and g is not injective.

Solution: a)

- Given: h is not injective.
- Let us assume both f and g are injective.

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If *h* is not injective then both the function f and g is not injective.

- Given: *h* is not injective.
- Let us assume both f and g are injective.
- $\therefore \exists x, y \in A, x \neq y \text{ such that } h(x) = h(y).$

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If *h* is not injective then both the function f and g is not injective.

- Given: *h* is not injective.
- Let us assume both f and g are injective.
- $\therefore \exists x, y \in A, x \neq y \text{ such that } h(x) = h(y).$
- Thus g(f(x)) = g(f(y)) and since g is injective we have f(x) = f(y)

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If *h* is not injective then both the function f and g is not injective.

- Given: h is not injective.
- Let us assume both f and g are injective.
- $\therefore \exists x, y \in A, x \neq y \text{ such that } h(x) = h(y).$
- Thus g(f(x)) = g(f(y)) and since g is injective we have f(x) = f(y)
- Now as f is injective we have, x = y which is a contradiction.

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If h is not injective then both the function f and g is not injective.

- Given: *h* is not injective.
- Let us assume both f and g are injective.
- $\therefore \exists x, y \in A, x \neq y \text{ such that } h(x) = h(y).$
- Thus g(f(x)) = g(f(y)) and since g is injective we have f(x) = f(y)
- Now as f is injective we have, x = y which is a contradiction.
- Thus this statement is True

Question 2

Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. State (give reasons/counterexamples) whether the following statements are true or false:

- If h is not injective, then at least one of the functions f and g is not injective.
- If h is not injective then both the function f and g is not injective.

- Given: *h* is not injective.
- Let us assume both f and g are injective.
- $\therefore \exists x, y \in A, x \neq y \text{ such that } h(x) = h(y).$
- Thus g(f(x)) = g(f(y)) and since g is injective we have f(x) = f(y)
- Now as f is injective we have, x = y which is a contradiction.
- Thus this statement is True

b)

• Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

Question 3

Let $f: A \to B$ be a function. Let $W \subseteq B$.

- Prove that $f(f^{-1}(W)) \subseteq W$.
- Prove that if f is surjective then $f(f^{-1}(W)) = W$.

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

Question 3

Let $f: A \to B$ be a function. Let $W \subseteq B$.

- Prove that $f(f^{-1}(W)) \subseteq W$.
- Prove that if f is surjective then $f(f^{-1}(W)) = W$.

Solution:

a)To Prove: $f(f^{-1}(W)) \subseteq W$ for a function $f: A \to B$ and $W \subseteq B$

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

Question 3

Let $f: A \to B$ be a function. Let $W \subseteq B$.

- Prove that $f(f^{-1}(W)) \subseteq W$.
- Prove that if f is surjective then $f(f^{-1}(W)) = W$.

- a)To Prove: $f(f^{-1}(W)) \subseteq W$ for a function $f: A \to B$ and $W \subseteq B$
 - Let $x \in f(f^{-1}(W))$

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

Question 3

Let $f: A \to B$ be a function. Let $W \subseteq B$.

- Prove that $f(f^{-1}(W)) \subseteq W$.
- Prove that if f is surjective then $f(f^{-1}(W)) = W$.

- a)To Prove: $f(f^{-1}(W)) \subseteq W$ for a function $f: A \to B$ and $W \subseteq B$
 - Let $x \in f(f^{-1}(W))$
 - $\therefore \exists y \in A \text{ such that } x = f(y) \text{ and } y \in f^{-1}(W)$

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

Question 3

Let $f: A \to B$ be a function. Let $W \subseteq B$.

- Prove that $f(f^{-1}(W)) \subseteq W$.
- Prove that if f is surjective then $f(f^{-1}(W)) = W$.

- a)To Prove: $f(f^{-1}(W)) \subseteq W$ for a function $f: A \to B$ and $W \subseteq B$
 - Let $x \in f(f^{-1}(W))$
 - $\therefore \exists y \in A \text{ such that } x = f(y) \text{ and } y \in f^{-1}(W)$
 - Now since $y \in f^{-1}(W)$, we have $f(y) \in W$ and thus $x \in W$.

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

Question 3

Let $f: A \to B$ be a function. Let $W \subseteq B$.

- Prove that $f(f^{-1}(W)) \subseteq W$.
- Prove that if f is surjective then $f(f^{-1}(W)) = W$.

- a)To Prove: $f(f^{-1}(W)) \subseteq W$ for a function $f: A \to B$ and $W \subseteq B$
 - Let $x \in f(f^{-1}(W))$
 - $\therefore \exists y \in A \text{ such that } x = f(y) \text{ and } y \in f^{-1}(W)$
 - Now since $y \in f^{-1}(W)$, we have $f(y) \in W$ and thus $x \in W$.
 - Hence Proved

b)

- Take $A = B = C = \mathbb{R}$. Let f(x) = 2x and g(x) = |x|.
- We have h(x) = |2x| and this is a sufficient counterexample.
- Thus this statement is False.

Question 3

Let $f: A \to B$ be a function. Let $W \subseteq B$.

- Prove that $f(f^{-1}(W)) \subseteq W$.
- Prove that if f is surjective then $f(f^{-1}(W)) = W$.

- a)To Prove: $f(f^{-1}(W)) \subseteq W$ for a function $f: A \to B$ and $W \subseteq B$
 - Let $x \in f(f^{-1}(W))$
 - $\therefore \exists y \in A \text{ such that } x = f(y) \text{ and } y \in f^{-1}(W)$
 - Now since $y \in f^{-1}(W)$, we have $f(y) \in W$ and thus $x \in W$.
 - Hence Proved

b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.

- b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.
 - We have already proved one side. We now prove the other side.

- b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.
 - We have already proved one side. We now prove the other side.
 - Let $x \in W$ and thus $x \in B$

- b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.
 - We have already proved one side. We now prove the other side.
 - Let $x \in W$ and thus $x \in B$
 - Since f is surjective we have $\exists y \in A$ such that f(y) = x

- b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.
 - We have already proved one side. We now prove the other side.
 - Let $x \in W$ and thus $x \in B$
 - Since f is surjective we have $\exists y \in A$ such that f(y) = x
 - Now since $x \in W$, we have $y \in f^{-1}(W)$ and thus $x \in f(f^{-1}(W))$

- b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.
 - We have already proved one side. We now prove the other side.
 - Let $x \in W$ and thus $x \in B$
 - Since f is surjective we have $\exists y \in A$ such that f(y) = x
 - Now since $x \in W$, we have $y \in f^{-1}(W)$ and thus $x \in f(f^{-1}(W))$
 - Hence Proved

- b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.
 - We have already proved one side. We now prove the other side.
 - Let $x \in W$ and thus $x \in B$
 - Since f is surjective we have $\exists y \in A$ such that f(y) = x
 - Now since $x \in W$, we have $y \in f^{-1}(W)$ and thus $x \in f(f^{-1}(W))$
 - Hence Proved

Question 4

Consider the formula $f(x) = 2 - \sqrt{x+4}$.

- What is the largest subset of $A \subseteq \mathbb{R}$ so that $f: A \to \mathbb{R}$ defined by $f(x) = 2 \sqrt{x+4}$ is a function?
- Compute the image of $f: A \to \mathbb{R}$.
- Compute f([5, 12]).
- Compute $f^{-1}([0,2])$.

- b) To Prove: $f(f^{-1}(W)) = W$ if f is surjective.
 - We have already proved one side. We now prove the other side.
 - Let $x \in W$ and thus $x \in B$
 - Since f is surjective we have $\exists y \in A$ such that f(y) = x
 - Now since $x \in W$, we have $y \in f^{-1}(W)$ and thus $x \in f(f^{-1}(W))$
 - Hence Proved

Question 4

Consider the formula $f(x) = 2 - \sqrt{x+4}$.

- What is the largest subset of $A \subseteq \mathbb{R}$ so that $f: A \to \mathbb{R}$ defined by $f(x) = 2 \sqrt{x+4}$ is a function?
- Compute the image of $f: A \to \mathbb{R}$.
- Compute f([5, 12]).
- Compute $f^{-1}([0,2])$.

Solution:

(a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.

8/39

- (a) For the codomain to be $\mathbb R$ we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.

- (a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.
- (c) Since \sqrt{x} is an increasing function for all $x \ge 0$, f([5,12]) is [-2,-1].

- (a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.
- (c) Since \sqrt{x} is an increasing function for all $x \ge 0$, f([5,12]) is [-2,-1].
- (d) We have to compute $f^{-1}([0,2])$ i.e.

$$0 \le f(x) \le 2$$

- (a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.
- (c) Since \sqrt{x} is an increasing function for all $x \ge 0$, f([5,12]) is [-2,-1].
- (d) We have to compute $f^{-1}([0,2])$ i.e.

$$0 \le f(x) \le 2$$
$$0 < 2 - \sqrt{x+4} < 2$$

- (a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.
- (c) Since \sqrt{x} is an increasing function for all $x \ge 0$, f([5,12]) is [-2,-1].
- (d) We have to compute $f^{-1}([0,2])$ i.e.

$$0 \le f(x) \le 2$$

$$0 \le 2 - \sqrt{x+4} \le 2$$

$$0 \le \sqrt{x+4} \le 2$$

- (a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.
- (c) Since \sqrt{x} is an increasing function for all $x \ge 0$, f([5,12]) is [-2,-1].
- (d) We have to compute $f^{-1}([0,2])$ i.e.

$$0 \le f(x) \le 2$$

$$0 \le 2 - \sqrt{x+4} \le 2$$

$$0 \le \sqrt{x+4} \le 2$$

$$0 \le x+4 \le 4$$

- (a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.
- (c) Since \sqrt{x} is an increasing function for all $x \ge 0$, f([5,12]) is [-2,-1].
- (d) We have to compute $f^{-1}([0,2])$ i.e.

$$0 \le f(x) \le 2$$

$$0 \le 2 - \sqrt{x+4} \le 2$$

$$0 \le \sqrt{x+4} \le 2$$

$$0 \le x+4 \le 4$$

$$-4 \le x \le 0$$

Solution:

- (a) For the codomain to be \mathbb{R} we require $x+4\geq 0$, which gives us $x\geq -4$. Now since \sqrt{x} is a function for all $x\geq 0$ we have that $A=[-4,\infty)$.
- (b) Since \sqrt{x} is an increasing function for all $x \ge 0$, the image is $(-\infty, 2]$.
- (c) Since \sqrt{x} is an increasing function for all $x \ge 0$, f([5,12]) is [-2,-1].
- (d) We have to compute $f^{-1}([0,2])$ i.e.

$$0 \le f(x) \le 2$$

$$0 \le 2 - \sqrt{x+4} \le 2$$

$$0 \le \sqrt{x+4} \le 2$$

$$0 \le x+4 \le 4$$

$$-4 \le x \le 0$$

Hence $f^{-1}([0,2]) = [-4,0]$.

Question 5

Let ${\mathcal S}$ be a collection of sets. The relation on ${\mathcal S}$ defined by

$$A \sim B \iff$$
 there is a bijection $f: A \rightarrow B$

is an equivalence relation.

Question 5

Let ${\mathcal S}$ be a collection of sets. The relation on ${\mathcal S}$ defined by

$$A \sim B \iff$$
 there is a bijection $f: A \rightarrow B$

is an equivalence relation.

Solution:

• Reflexive: $A \sim A$ as $f(x) = x \ \forall x \in A$ is a bijection.

Question 5

Let ${\mathcal S}$ be a collection of sets. The relation on ${\mathcal S}$ defined by

$$A \sim B \iff$$
 there is a bijection $f: A \rightarrow B$

is an equivalence relation.

- Reflexive: $A \sim A$ as $f(x) = x \ \forall x \in A$ is a bijection.
- Symmetric: Suppose $A \sim B$. Then \exists a bijection $f: A \to B$. It can be easily proven that $f^{-1}: B \to A$ is also a bijection.

Question 5

Let ${\mathcal S}$ be a collection of sets. The relation on ${\mathcal S}$ defined by

$$A \sim B \iff$$
 there is a bijection $f: A \rightarrow B$

is an equivalence relation.

- Reflexive: $A \sim A$ as $f(x) = x \ \forall x \in A$ is a bijection.
- Symmetric: Suppose $A \sim B$. Then \exists a bijection $f: A \to B$. It can be easily proven that $f^{-1}: B \to A$ is also a bijection.
- Transitive: Suppose $A \sim B$ and $B \sim C$ then $\exists f : A \rightarrow B$ and $g : B \rightarrow C$ which are bijections. Use the fact that $f \circ g : A \rightarrow C$ is also a bijection.

Question 5

Let ${\mathcal S}$ be a collection of sets. The relation on ${\mathcal S}$ defined by

$$A \sim B \iff$$
 there is a bijection $f: A \rightarrow B$

is an equivalence relation.

- Reflexive: $A \sim A$ as $f(x) = x \ \forall x \in A$ is a bijection.
- Symmetric: Suppose $A \sim B$. Then \exists a bijection $f: A \to B$. It can be easily proven that $f^{-1}: B \to A$ is also a bijection.
- Transitive: Suppose $A \sim B$ and $B \sim C$ then $\exists f : A \rightarrow B$ and $g : B \rightarrow C$ which are bijections. Use the fact that $f \circ g : A \rightarrow C$ is also a bijection.

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $((x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1 \}.$
- $(\frac{1}{4}, \frac{3}{4})$.

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $\{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$
- $(\frac{1}{4}, \frac{3}{4})$.

Solution: a) $\{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$

• This set can alternatively represented as $S = \{(n, \frac{1}{n}) : n \in \mathbb{N}\}.$

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $\bullet \ \{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$
- $(\frac{1}{4}, \frac{3}{4})$.

- This set can alternatively represented as $S = \{(n, \frac{1}{n}) : n \in \mathbb{N}\}.$
- Now define the bijection $\phi: \mathbb{N} \to S$ as $\phi(n) = (n, \frac{1}{n})$.

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $\bullet \ \{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$
- $(\frac{1}{4}, \frac{3}{4})$.

- This set can alternatively represented as $S = \{(n, \frac{1}{n}) : n \in \mathbb{N}\}.$
- Now define the bijection $\phi: \mathbb{N} \to S$ as $\phi(n) = (n, \frac{1}{n})$.
- Then $\phi: \mathbb{N} \to S$ is a bijection. (Excercise)

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $\bullet \ \{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$
- $(\frac{1}{4}, \frac{3}{4})$.

- This set can alternatively represented as $S = \{(n, \frac{1}{n}) : n \in \mathbb{N}\}.$
- Now define the bijection $\phi: \mathbb{N} \to S$ as $\phi(n) = (n, \frac{1}{n})$.
- Then $\phi: \mathbb{N} \to S$ is a bijection. (Excercise)
- Hence S is **countable**.

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $\bullet \ \{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$
- $(\frac{1}{4}, \frac{3}{4})$.

- This set can alternatively represented as $S = \{(n, \frac{1}{n}) : n \in \mathbb{N}\}.$
- Now define the bijection $\phi: \mathbb{N} \to S$ as $\phi(n) = (n, \frac{1}{n})$.
- Then $\phi: \mathbb{N} \to S$ is a bijection. (Excercise)
- Hence S is **countable**.
- b) S = (1/4, 3/4)
 - Define $f: [0,1] \to S$ as $f(x) = \frac{1}{4} + \frac{x}{2}$.

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $\bullet \ \{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$
- $(\frac{1}{4}, \frac{3}{4})$.

- This set can alternatively represented as $S = \{(n, \frac{1}{n}) : n \in \mathbb{N}\}.$
- Now define the bijection $\phi: \mathbb{N} \to S$ as $\phi(n) = (n, \frac{1}{n})$.
- Then $\phi: \mathbb{N} \to S$ is a bijection. (Excercise)
- Hence S is **countable**.
- b) S = (1/4, 3/4)
 - Define $f:[0,1] \to S$ as $f(x) = \frac{1}{4} + \frac{x}{2}$.
 - Then $f:[0,1] \to S$ is a bijection. (Excercise)

Question 6

Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.

- $\bullet \ \{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$
- $(\frac{1}{4}, \frac{3}{4})$.

- This set can alternatively represented as $S = \{(n, \frac{1}{n}) : n \in \mathbb{N}\}.$
- Now define the bijection $\phi: \mathbb{N} \to S$ as $\phi(n) = (n, \frac{1}{n})$.
- Then $\phi: \mathbb{N} \to S$ is a bijection. (Excercise)
- Hence S is **countable**.
- b) S = (1/4, 3/4)
 - Define $f: [0,1] \to S$ as $f(x) = \frac{1}{4} + \frac{x}{2}$.
 - Then $f:[0,1] \to S$ is a bijection. (Excercise)
 - Hence S is **uncountable**.

Question 7

Let $\mathbb N$ be the set of natural numbers. Prove that $\mathbb N\times\mathbb N$ is countable.

Question 7

Let $\mathbb N$ be the set of natural numbers. Prove that $\mathbb N \times \mathbb N$ is countable.

Recall

Let A be a non-empty set. Then the following are equivalent.

- A is countable.
- There exists a surjection $f : \mathbb{N} \to A$.
- There exists an injection $g: A \to \mathbb{N}$.

Question 7

Let $\mathbb N$ be the set of natural numbers. Prove that $\mathbb N \times \mathbb N$ is countable.

Recall

Let A be a non-empty set. Then the following are equivalent.

- A is countable.
- There exists a surjection $f : \mathbb{N} \to A$.
- There exists an injection $g: A \to \mathbb{N}$.

Solution:

• Define $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $f(n, m) = 2^n 3^n$.

Question 7

Let $\mathbb N$ be the set of natural numbers. Prove that $\mathbb N \times \mathbb N$ is countable.

Recall

Let A be a non-empty set. Then the following are equivalent.

- A is countable.
- There exists a surjection $f : \mathbb{N} \to A$.
- There exists an injection $g: A \to \mathbb{N}$.

- Define $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $f(n, m) = 2^n 3^n$.
- Now we will prove that g is injective.

Question 7

Let $\mathbb N$ be the set of natural numbers. Prove that $\mathbb N \times \mathbb N$ is countable.

Recall

Let A be a non-empty set. Then the following are equivalent.

- A is countable.
- There exists a surjection $f: \mathbb{N} \to A$.
- There exists an injection $g: A \to \mathbb{N}$.

- Define $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $f(n, m) = 2^n 3^n$.
- Now we will prove that g is injective.
- Assume that $(n, m), (k, l) \in \mathbb{N} \times \mathbb{N}$ such that f(n, m) = f(k, l) i.e. $2^n 3^m = 2^k 3^l$.

Question 7

Let $\mathbb N$ be the set of natural numbers. Prove that $\mathbb N \times \mathbb N$ is countable.

Recall

Let A be a non-empty set. Then the following are equivalent.

- A is countable.
- There exists a surjection $f: \mathbb{N} \to A$.
- There exists an injection $g: A \to \mathbb{N}$.

- Define $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $f(n, m) = 2^n 3^n$.
- Now we will prove that g is injective.
- Assume that $(n, m), (k, l) \in \mathbb{N} \times \mathbb{N}$ such that f(n, m) = f(k, l) i.e. $2^n 3^m = 2^k 3^l$.
- Suppose that n < k, then $3^m = 2^{k-n}3^l$.

Question 7

Let $\mathbb N$ be the set of natural numbers. Prove that $\mathbb N \times \mathbb N$ is countable.

Recall

Let A be a non-empty set. Then the following are equivalent.

- A is countable.
- There exists a surjection $f: \mathbb{N} \to A$.
- There exists an injection $g: A \to \mathbb{N}$.

- Define $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $f(n, m) = 2^n 3^n$.
- Now we will prove that g is injective.
- Assume that $(n, m), (k, l) \in \mathbb{N} \times \mathbb{N}$ such that f(n, m) = f(k, l) i.e. $2^n 3^m = 2^k 3^l$.
- Suppose that n < k, then $3^m = 2^{k-n}3^l$.

• This gives contradiction, since LHS is odd and RHS is even.

- This gives contradiction, since LHS is odd and RHS is even.
- Hence n = k.

- This gives contradiction, since LHS is odd and RHS is even.
- Hence n = k. Similarly we can prove that k = l.

- This gives contradiction, since LHS is odd and RHS is even.
- Hence n = k. Similarly we can prove that k = l.
- Therefore g is injective and $\mathbb{N} \times \mathbb{N}$ is countable

Question 8

Prove that supremum and infimum of a set is unique.

- This gives contradiction, since LHS is odd and RHS is even.
- Hence n = k. Similarly we can prove that k = l.
- Therefore g is injective and $\mathbb{N} \times \mathbb{N}$ is countable

Question 8

Prove that supremum and infimum of a set is unique.

Proof

• Suppose S is not bounded below, then inf $S=-\infty$, we are done. Now consider S is bounded below(Bounded).

- This gives contradiction, since LHS is odd and RHS is even.
- Hence n = k. Similarly we can prove that k = l.
- Therefore g is injective and $\mathbb{N} \times \mathbb{N}$ is countable

Question 8

Prove that supremum and infimum of a set is unique.

Proof

- Suppose S is not bounded below, then inf $S=-\infty$, we are done. Now consider S is bounded below(Bounded).
- To prove the uniqueness of infimum: Suppose there exists two such infimum a, b ∈ ℝ such that a ≤ x and b ≤ x for all x ∈ S. So a and b are both lower bounds for the set S and in particular, since a and b are both infimum, a ≤ b and b ≤ a by the definition of infimum. Hence by the Trichotomy Principle, we conclude a = b.

- This gives contradiction, since LHS is odd and RHS is even.
- Hence n = k. Similarly we can prove that k = l.
- Therefore g is injective and $\mathbb{N} \times \mathbb{N}$ is countable

Question 8

Prove that supremum and infimum of a set is unique.

Proof

- Suppose S is not bounded below, then inf $S=-\infty$, we are done. Now consider S is bounded below(Bounded).
- To prove the uniqueness of infimum: Suppose there exists two such infimum $a,b\in\mathbb{R}$ such that $a\leq x$ and $b\leq x$ for all $x\in S$. So a and b are both lower bounds for the set S and in particular, since a and b are both infimum, $a\leq b$ and $b\leq a$ by the definition of infimum. Hence by the Trichotomy Principle, we conclude a=b.
- Similarly supremum case is obvious.

Question 9

Prove that for any two number $x, y \in \mathbb{R}$ such that 0 < x < y, there are positive integers m, n such that $x < \frac{m^2}{n^2} < y$.

Question 9

Prove that for any two number $x, y \in \mathbb{R}$ such that 0 < x < y, there are positive integers m, n such that $x < \frac{m^2}{n^2} < y$.

Question 9

Prove that for any two number $x, y \in \mathbb{R}$ such that 0 < x < y, there are positive integers m, n such that $x < \frac{m^2}{n^2} < y$.

Definition

Archimedean properties:

- (i) If x > 0, then there exist $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.
- (ii) If x > 0, then there exist $n \in \mathbb{N}$ such that $n 1 \le x < n$.

Question 9

Prove that for any two number $x, y \in \mathbb{R}$ such that 0 < x < y, there are positive integers m, n such that $x < \frac{m^2}{n^2} < y$.

Definition

Archimedean properties:

- (i) If x > 0, then there exist $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.
- (ii) If x > 0, then there exist $n \in \mathbb{N}$ such that $n 1 \le x < n$.

Proof

• Clearly y - x > 0, then there exist $n \in \mathbb{N}$ such that

$$\frac{1}{n} < y - x.$$

Then nx + 1 < ny.

Question 9

Prove that for any two number $x, y \in \mathbb{R}$ such that 0 < x < y, there are positive integers m, n such that $x < \frac{m^2}{n^2} < y$.

Definition

Archimedean properties:

- (i) If x > 0, then there exist $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.
- (ii) If x > 0, then there exist $n \in \mathbb{N}$ such that $n 1 \le x < n$.

Proof

• Clearly y - x > 0, then there exist $n \in \mathbb{N}$ such that

$$\frac{1}{n} < y - x.$$

Then nx + 1 < ny.

• Since x > 0, then nx > 0. Now there exist $m \in \mathbb{N}$ s.t.

$$m-1 \le nx < m$$

Then $m \le nx + 1 < m + 1$.

• Since x > 0, then nx > 0. Now there exist $m \in \mathbb{N}$ s.t.

$$m-1 \le nx < m$$

Then $m \le nx + 1 < m + 1$.

Combining two conditions, we have

$$nx < m \le nx + 1 < ny$$

Hence $x < \frac{m}{n} < y$, when 0 < x < y.

• Since x > 0, then nx > 0. Now there exist $m \in \mathbb{N}$ s.t.

$$m-1 \le nx < m$$

Then $m \le nx + 1 < m + 1$.

Combining two conditions, we have

$$nx < m \le nx + 1 < ny$$

Hence $x < \frac{m}{n} < y$, when 0 < x < y.

• Now replace x and y by \sqrt{x} and \sqrt{y} respectively. And take square both side we have given result.

• Since x > 0, then nx > 0. Now there exist $m \in \mathbb{N}$ s.t.

$$m-1 \le nx < m$$

Then $m \le nx + 1 < m + 1$.

Combining two conditions, we have

$$nx < m \le nx + 1 < ny$$

Hence $x < \frac{m}{n} < y$, when 0 < x < y.

• Now replace x and y by \sqrt{x} and \sqrt{y} respectively. And take square both side we have given result.

Question 10

Suppose that A, B are nonempty sets of real numbers such that $x \le y$ for all $x \in A$ and $y \in B$. Then sup $A \le \inf B$.

Question 10

Suppose that A, B are nonempty sets of real numbers such that $x \le y$ for all $x \in A$ and $y \in B$. Then sup $A \le \inf B$.

Proof

• If A is empty, then $\sup A = -\infty$ (we are done) and B is empty, then $\inf B = \infty$ (we are done).

Question 10

Suppose that A, B are nonempty sets of real numbers such that $x \le y$ for all $x \in A$ and $y \in B$. Then sup $A \le \inf B$.

Proof

- If A is empty, then $\sup A = -\infty$ (we are done) and B is empty, then $\inf B = \infty$ (we are done).
- Suppose that A and B are non-empty. Here $x \leq y$ for all $x \in A$.

Question 10

Suppose that A, B are nonempty sets of real numbers such that $x \le y$ for all $x \in A$ and $y \in B$. Then sup $A \le \inf B$.

Proof

- If A is empty, then $\sup A = -\infty$ (we are done) and B is empty, then $\inf B = \infty$ (we are done).
- Suppose that A and B are non-empty. Here $x \leq y$ for all $x \in A$.
- Then y is an upper bound for A and hence $\sup A \leq y$.

Question 10

Suppose that A, B are nonempty sets of real numbers such that $x \le y$ for all $x \in A$ and $y \in B$. Then sup $A \le \inf B$.

Proof

- If A is empty, then $\sup A = -\infty$ (we are done) and B is empty, then $\inf B = \infty$ (we are done).
- Suppose that A and B are non-empty. Here $x \leq y$ for all $x \in A$.
- Then y is an upper bound for A and hence $\sup A \leq y$.
- Again for all $y \in B$, sup A is lower bound of B. Then

 $\sup A \leq \inf B$.

Question 11

For each of the following sets S, find the sup S and inf S if they exist. You need to justify your answer.

- (a) $S = \{x \in \mathbb{R} : x^2 < 5\}.$
- (b) Let $A = \{1/n : n \in \mathbb{N} \text{ and } n \text{ is prime}\}.$

Question 11

For each of the following sets S, find the sup S and inf S if they exist. You need to justify your answer.

- (a) $S = \{x \in \mathbb{R} : x^2 < 5\}.$
- (b) Let $A = \{1/n : n \in \mathbb{N} \text{ and } n \text{ is prime}\}.$

Proof

- (a) $S = (-\sqrt{5}, \sqrt{5})$, then $\sup S = \sqrt{5}$, $\inf S = -\sqrt{5}$.
- (b) $A = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{5} \cdots \}$, then $\sup A = \frac{1}{2}, \inf A = 0$.

Question 12

Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty}a_n=a$.

Question 12

Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty}a_n=a$.

Proof

• Suppose $\{a_n\}$ does not converge. $(a_n \nrightarrow a)$

Question 12

Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty}a_n=a$.

Proof

- Suppose $\{a_n\}$ does not converge. $(a_n \nrightarrow a)$
- So there is $\epsilon_0 > 0$ and for all $n_k \in \mathbb{N}, \quad k = 1, 2, \dots, \text{ s.t.}$

$$|a_{n_k}-a|\geq \epsilon_0. \tag{1}$$

Question 12

Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty}a_n=a$.

Proof

- Suppose $\{a_n\}$ does not converge. $(a_n \nrightarrow a)$
- So there is $\epsilon_0 > 0$ and for all $n_k \in \mathbb{N}, \quad k = 1, 2, \dots, \text{ s.t.}$

$$|a_{n_k}-a|\geq \epsilon_0. \tag{1}$$

Here we have a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ of $\{a_n\}_{n\in\mathbb{N}}$.

Question 12

Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty}a_n=a$.

Proof

- Suppose $\{a_n\}$ does not converge. $(a_n \nrightarrow a)$
- So there is $\epsilon_0 > 0$ and for all $n_k \in \mathbb{N}, \quad k = 1, 2, \dots, \text{ s.t.}$

$$|a_{n_k}-a|\geq \epsilon_0. \tag{1}$$

Here we have a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ of $\{a_n\}_{n\in\mathbb{N}}$.

• Since $\{a_n\}_{n\in\mathbb{N}}$ is bounded, then $\{a_{n_k}\}_{k\in\mathbb{N}}$ is bounded in \mathbb{R} .

Question 12

Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty}a_n=a$.

Proof

- Suppose $\{a_n\}$ does not converge. $(a_n \nrightarrow a)$
- So there is $\epsilon_0 > 0$ and for all $n_k \in \mathbb{N}, \quad k = 1, 2, \dots, \text{ s.t.}$

$$|a_{n_k}-a|\geq \epsilon_0. \tag{1}$$

Here we have a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ of $\{a_n\}_{n\in\mathbb{N}}$.

- Since $\{a_n\}_{n\in\mathbb{N}}$ is bounded, then $\{a_{n_k}\}_{k\in\mathbb{N}}$ is bounded in \mathbb{R} .
- By Bolzano-Wierstrass to $\{a_{n_k}\}$ has a convergent subsequence which is again a subsequence of $\{a_n\}_{n\in\mathbb{N}}$.

Question 12

Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty}a_n=a$.

Proof

- Suppose $\{a_n\}$ does not converge. $(a_n \nrightarrow a)$
- So there is $\epsilon_0 > 0$ and for all $n_k \in \mathbb{N}, \quad k = 1, 2, \dots, \text{ s.t.}$

$$|a_{n_k}-a|\geq \epsilon_0. \tag{1}$$

Here we have a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ of $\{a_n\}_{n\in\mathbb{N}}$.

- Since $\{a_n\}_{n\in\mathbb{N}}$ is bounded, then $\{a_{n_k}\}_{k\in\mathbb{N}}$ is bounded in \mathbb{R} .
- By Bolzano-Wierstrass to $\{a_{n_k}\}$ has a convergent subsequence which is again a subsequence of $\{a_n\}_{n\in\mathbb{N}}$.

 By (1), we obtain that the subsequence can never converge to a, but according to question the subsequence must converge to a, both contradict to each other.

- By (1), we obtain that the subsequence can never converge to a, but according to question the subsequence must converge to a, both contradict to each other.
- Hence $a_n \rightarrow a$.

- By (1), we obtain that the subsequence can never converge to a, but according to question the subsequence must converge to a, both contradict to each other.
- Hence $a_n \rightarrow a$.

Question 13

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers satisfying

$$|a_{n+1}-a_n|\leq \frac{1}{2}|a_n-a_{n-1}|.$$

Show that the sequence converges.

Question 13

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers satisfying

$$|a_{n+1}-a_n|\leq \frac{1}{2}|a_n-a_{n-1}|.$$

Show that the sequence converges.

Proof

We can get the inequality,

$$|a_{n+1}-a_n| \leq \frac{1}{2}|a_n-a_{n-1}| \leq (1/2)^n|a_1-a_0|.$$

Question 13

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers satisfying

$$|a_{n+1}-a_n|\leq \frac{1}{2}|a_n-a_{n-1}|.$$

Show that the sequence converges.

Proof

We can get the inequality,

$$|a_{n+1}-a_n| \leq \frac{1}{2}|a_n-a_{n-1}| \leq (1/2)^n|a_1-a_0|.$$

$$|a_n - a_m| = |a_n - a_{n+1} + a_{n+1} - a_{n+2} + a_{n+2} - \cdots + a_{m-1} - a_m|$$

$$|a_n - a_m| = |a_n - a_{n+1} + a_{n+1} - a_{n+2} + a_{n+2} - \dots + a_{m-1} - a_m|$$

$$\leq |a_n - a_{n+1}| + |a_{n+1} - a_{n+2}| + \dots + |a_{m-1} - a_m|$$

$$|a_{n} - a_{m}| = |a_{n} - a_{n+1} + a_{n+1} - a_{n+2} + a_{n+2} - \dots + a_{m-1} - a_{m}|$$

$$\leq |a_{n} - a_{n+1}| + |a_{n+1} - a_{n+2}| + \dots + |a_{m-1} - a_{m}|$$

$$\leq \left(\frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}}\right) |a_{1} - a_{0}|$$

$$|a_{n} - a_{m}| = |a_{n} - a_{n+1} + a_{n+1} - a_{n+2} + a_{n+2} - \dots + a_{m-1} - a_{m}|$$

$$\leq |a_{n} - a_{n+1}| + |a_{n+1} - a_{n+2}| + \dots + |a_{m-1} - a_{m}|$$

$$\leq \left(\frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}}\right) |a_{1} - a_{0}|$$

$$= \frac{1}{2^{n}} \left(1 + 1/2 + \dots + \frac{1}{2^{m-1-n}}\right) |a_{1} - a_{0}|$$

$$\begin{aligned} |a_{n} - a_{m}| &= |a_{n} - a_{n+1} + a_{n+1} - a_{n+2} + a_{n+2} - \dots + a_{m-1} - a_{m}| \\ &\leq |a_{n} - a_{n+1}| + |a_{n+1} - a_{n+2}| + \dots + |a_{m-1} - a_{m}| \\ &\leq \left(\frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}}\right) |a_{1} - a_{0}| \\ &= \frac{1}{2^{n}} \left(1 + 1/2 + \dots + \frac{1}{2^{m-1-n}}\right) |a_{1} - a_{0}| \\ &\leq \frac{1}{2^{n}} \times 2 \times |a_{1} - a_{0}|. \end{aligned}$$

$$\begin{aligned} |a_{n} - a_{m}| &= |a_{n} - a_{n+1} + a_{n+1} - a_{n+2} + a_{n+2} - \dots + a_{m-1} - a_{m}| \\ &\leq |a_{n} - a_{n+1}| + |a_{n+1} - a_{n+2}| + \dots + |a_{m-1} - a_{m}| \\ &\leq \left(\frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}}\right) |a_{1} - a_{0}| \\ &= \frac{1}{2^{n}} \left(1 + 1/2 + \dots + \frac{1}{2^{m-1-n}}\right) |a_{1} - a_{0}| \\ &\leq \frac{1}{2^{n}} \times 2 \times |a_{1} - a_{0}|. \end{aligned}$$

• Now let $\frac{1}{2^{n-1}}|a_1 - a_0| < \epsilon$

• Now let $\frac{1}{2^{n-1}}|a_1-a_0|<\epsilon$ i.e. $\frac{1}{2^{n-1}}<\frac{\epsilon}{|a_1-a_0|}$

• Now let $\frac{1}{2^{n-1}}|a_1 - a_0| < \epsilon$ i.e. $\frac{1}{2^{n-1}} < \frac{\epsilon}{|a_1 - a_0|}$ i.e. $2^{n-1} > \frac{|a_1 - a_0|}{\epsilon}$

• Now let $\frac{1}{2^{n-1}}|a_1 - a_0| < \epsilon$ i.e. $\frac{1}{2^{n-1}} < \frac{\epsilon}{|a_1 - a_0|}$ i.e. $2^{n-1} > \frac{|a_1 - a_0|}{\epsilon}$ i.e. $(n-1)\log 2 > \log\left(\frac{|a_1 - a_0|}{\epsilon}\right)$

• Now let $\frac{1}{2^{n-1}}|a_1-a_0|<\epsilon$ i.e. $\frac{1}{2^{n-1}}<\frac{\epsilon}{|a_1-a_0|}$ i.e. $2^{n-1}>\frac{|a_1-a_0|}{\epsilon}$ i.e. $(n-1)\log 2>\log\left(\frac{|a_1-a_0|}{\epsilon}\right)$ i.e. $n-1>\frac{1}{\log 2}\times\log\left(\frac{|a_1-a_0|}{\epsilon}\right)$

• Now let $\frac{1}{2^{n-1}}|a_1-a_0| < \epsilon$ i.e. $\frac{1}{2^{n-1}} < \frac{\epsilon}{|a_1-a_0|}$ i.e. $2^{n-1} > \frac{|a_1-a_0|}{\epsilon}$ i.e. $(n-1)\log 2 > \log\left(\frac{|a_1-a_0|}{\epsilon}\right)$ i.e. $n-1 > \frac{1}{\log 2} \times \log\left(\frac{|a_1-a_0|}{\epsilon}\right)$ i.e. $n > 1 + \frac{1}{\log 2} \times \log\left(\frac{|a_1-a_0|}{\epsilon}\right)$

$$\begin{split} \bullet & \text{ Now let } \frac{1}{2^{n-1}}|a_1-a_0|<\epsilon\\ & \text{ i.e. } \frac{1}{2^{n-1}}<\frac{\epsilon}{|a_1-a_0|}\\ & \text{ i.e. } 2^{n-1}>\frac{|a_1-a_0|}{\epsilon}\\ & \text{ i.e. } (n-1)\log 2>\log\left(\frac{|a_1-a_0|}{\epsilon}\right)\\ & \text{ i.e. } (n-1)>\frac{1}{\log 2}\times\log\left(\frac{|a_1-a_0|}{\epsilon}\right)\\ & \text{ i.e. } n-1>\frac{1}{\log 2}\times\log\left(\frac{|a_1-a_0|}{\epsilon}\right)\\ & \text{ i.e. } n>1+\frac{1}{\log 2}\times\log\left(\frac{|a_1-a_0|}{\epsilon}\right)\\ & \text{ Let } \mathcal{N}=\left[1+\frac{1}{\log 2}\times\log\left(\frac{|a_1-a_0|}{\epsilon}\right)\right]. \end{split}$$

• Now let $\frac{1}{2^{n-1}}|a_1-a_0|<\epsilon$ i.e. $\frac{1}{2^{n-1}} < \frac{\epsilon}{|a_1 - a_0|}$ i.e. $2^{n-1} > \frac{|a_1-a_0|}{|a_1-a_0|}$ i.e. $(n-1)\log 2 > \log\left(\frac{|a_1-a_0|}{\epsilon}\right)$ i.e. $n-1>\frac{1}{\log 2}\times\log\left(\frac{|a_1-a_0|}{\epsilon}\right)$ i.e. $n > 1 + \frac{1}{\log 2} \times \log \left(\frac{|a_1 - a_0|}{\epsilon} \right)$ Let $N = \left[1 + \frac{1}{\log 2} \times \log\left(\frac{|a_1 - a_0|}{\epsilon}\right)\right]$. So $|a_n - a_m| < \epsilon$ when n > N and m > N, (: m > n).

• Now let $\frac{1}{2^{n-1}}|a_1-a_0|<\epsilon$ i.e. $\frac{1}{2^{n-1}} < \frac{\epsilon}{|a_1 - a_0|}$ i.e. $2^{n-1} > \frac{|a_1-a_0|}{|a_1-a_0|}$ i.e. $(n-1)\log 2 > \log\left(\frac{|a_1-a_0|}{\epsilon}\right)$ i.e. $n-1>\frac{1}{\log 2}\times\log\left(\frac{|a_1-a_0|}{\epsilon}\right)$ i.e. $n > 1 + \frac{1}{\log 2} \times \log \left(\frac{|a_1 - a_0|}{\epsilon} \right)$ Let $N = \left[1 + \frac{1}{\log 2} \times \log\left(\frac{|a_1 - a_0|}{\epsilon}\right)\right]$. So $|a_n - a_m| < \epsilon$ when n > N and m > N, (: m > n). Hence $\{a_n\}$ is Cauchy sequence, then its limit is unique.

Question 14

If a sequence converges, then its limit is unique.

Question 14

If a sequence converges, then its limit is unique.

Proof

• Let us assume a_n converges to a and b. i.e., $a_n \to a$ and $a_n \to b$. We need to show a = b.

Question 14

If a sequence converges, then its limit is unique.

Proof

- Let us assume a_n converges to a and b. i.e., $a_n \to a$ and $a_n \to b$. We need to show a = b.
- By definition of convergence of sequence For each $\epsilon>0$ there exist a natural number $N_1\in\mathbb{N}$ such that

$$|a_n-a|<rac{\epsilon}{2} \quad ext{ when } n\geq N_1.$$

Question 14

If a sequence converges, then its limit is unique.

Proof

- Let us assume a_n converges to a and b. i.e., $a_n \to a$ and $a_n \to b$. We need to show a = b.
- By definition of convergence of sequence For each $\epsilon>0$ there exist a natural number $N_1\in\mathbb{N}$ such that

$$|a_n-a|<\frac{\epsilon}{2}\quad \text{ when } n\geq N_1.$$

For each $\epsilon > 0$ there exist a natural number $N_2 \in \mathbb{N}$ such that

$$|a_n-b|<rac{\epsilon}{2}$$
 when $n\geq N_2$.

Question 14

If a sequence converges, then its limit is unique.

Proof

- Let us assume a_n converges to a and b. i.e., $a_n \to a$ and $a_n \to b$. We need to show a = b.
- By definition of convergence of sequence For each $\epsilon > 0$ there exist a natural number $N_1 \in \mathbb{N}$ such that

$$|a_n-a|<rac{\epsilon}{2}$$
 when $n\geq N_1$.

For each $\epsilon > 0$ there exist a natural number $N_2 \in \mathbb{N}$ such that

$$|a_n-b|<rac{\epsilon}{2}$$
 when $n\geq N_2$.

• Now, for $N > \max\{N_1, N_2\}$,

$$|a-b|=|a-a_N+a_N-b|\leq |a_N-a|+|a_N-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

• Since $|a-b|<\epsilon$, and $\epsilon>0$ is arbitrary.

- Since $|a-b| < \epsilon$, and $\epsilon > 0$ is arbitrary.
- Hence a = b.

Question 15

Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:

- $|x_{n+1}-x_n| \le \alpha^n, n=1,2,3,\ldots$
- $|x_{n+2}-x_{n+1}| \leq \alpha |x_{n+1}-x_n|, n=1,2,3,\ldots$

Then prove that (x_n) satisfies the Cauchy criterion.

Note: Whenever you use this result, you have to show that the number α that you get, satisfies $0<\alpha<1$. The condition

 $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) . Give examples.

Question 15

Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:

- $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|, n = 1, 2, 3, \dots$

Then prove that (x_n) satisfies the Cauchy criterion.

Note: Whenever you use this result, you have to show that the number α that you get, satisfies $0<\alpha<1$. The condition

 $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) . Give examples.

Solution:

Question 15

Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:

- $|x_{n+1}-x_n| \le \alpha^n, n=1,2,3,\ldots$
- $|x_{n+2}-x_{n+1}| \leq \alpha |x_{n+1}-x_n|, n=1,2,3,\ldots$

Then prove that (x_n) satisfies the Cauchy criterion.

Note: Whenever you use this result, you have to show that the number α that you get, satisfies $0<\alpha<1$. The condition

 $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) . Give examples.

Solution:

$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_m|$$

Question 15

Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:

$$|x_{n+1}-x_n| \le \alpha^n, n=1,2,3,\ldots$$

$$|x_{n+2}-x_{n+1}| \le \alpha |x_{n+1}-x_n|, n=1,2,3,\ldots$$

Then prove that (x_n) satisfies the Cauchy criterion.

Note: Whenever you use this result, you have to show that the number α that you get, satisfies $0<\alpha<1$. The condition

$$|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$$
 does not guarantee the convergence of (x_n) . Give examples.

Solution:

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

Question 15

Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:

$$|x_{n+1}-x_n| \le \alpha^n, n=1,2,3,\ldots$$

$$|x_{n+2}-x_{n+1}| \leq \alpha |x_{n+1}-x_n|, n=1,2,3,\ldots$$

Then prove that (x_n) satisfies the Cauchy criterion.

Note: Whenever you use this result, you have to show that the number α that you get, satisfies $0<\alpha<1$. The condition

$$|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$$
 does not guarantee the convergence of (x_n) . Give examples.

Solution:

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^m$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

= $\alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

• Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

- Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = (1 \alpha)\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

- Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = (1 \alpha)\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.
- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} < \epsilon$ for all $n, m > n_0$.

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

- Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = (1 \alpha)\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.
- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

- Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = (1 \alpha)\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.
- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.
- 2) Let $\epsilon > 0$ be given. Then consider

$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n|$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

- Since $\lim_{m \to \infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = (1 \alpha)\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.
- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.
- 2) Let $\epsilon > 0$ be given. Then consider

$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n| \le \alpha^2 |x_n - x_{n-1}|$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

- Since $\lim_{m \to \infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = (1 \alpha)\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.
- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.
- 2) Let $\epsilon > 0$ be given. Then consider

$$|x_{n+2}-x_{n+1}| \le \alpha |x_{n+1}-x_n| \le \alpha^2 |x_n-x_{n-1}| \le \alpha^n |x_2-x_1|.$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1})$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha}$$

$$< \frac{\alpha^{m}}{1 - \alpha}.$$

- Since $\lim_{m \to \infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = (1 \alpha)\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.
- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.
- 2) Let $\epsilon > 0$ be given. Then consider

$$|x_{n+2}-x_{n+1}| \le \alpha |x_{n+1}-x_n| \le \alpha^2 |x_n-x_{n-1}| \le \alpha^n |x_2-x_1|.$$

$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_m|$$

$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_m|$$

$$\leq |x_n - x_{n-1}| + \dots + |x_{m+1} - x_m|$$

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) |x_{2} - x_{1}|$$

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) |x_{2} - x_{1}|$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1}) |x_{2} - x_{1}|$$

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) |x_{2} - x_{1}|$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1}) |x_{2} - x_{1}|$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha} |x_{2} - x_{1}|$$

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) |x_{2} - x_{1}|$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1}) |x_{2} - x_{1}|$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha} |x_{2} - x_{1}|$$

$$< \frac{\alpha^{m}}{1 - \alpha} |x_{2} - x_{1}|.$$

Now consider

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) |x_{2} - x_{1}|$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1}) |x_{2} - x_{1}|$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha} |x_{2} - x_{1}|$$

$$< \frac{\alpha^{m}}{1 - \alpha} |x_{2} - x_{1}|.$$

• Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) |x_{2} - x_{1}|$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1}) |x_{2} - x_{1}|$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha} |x_{2} - x_{1}|$$

$$< \frac{\alpha^{m}}{1 - \alpha} |x_{2} - x_{1}|.$$

- Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = \frac{(1-\alpha)}{|x_2-x_1|}\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) |x_{2} - x_{1}|$$

$$= \alpha^{m} (1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1}) |x_{2} - x_{1}|$$

$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha} |x_{2} - x_{1}|$$

$$< \frac{\alpha^{m}}{1 - \alpha} |x_{2} - x_{1}|.$$

- Since $\lim_{m\to\infty} \alpha^m = 0$. (why?)
- This implies, for $\epsilon_0 = \frac{(1-\alpha)}{|x_2-x_1|}\epsilon > 0$, $\exists n_0$ such that $|\alpha^m| < \epsilon_0$ for all $m > n_0$.

• Therefore $|x_n - x_m| < \frac{\alpha^m}{1-\alpha} |x_2 - x_1| < \epsilon$ for all $n, m > n_0$.

- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} |x_2 x_1| < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.

- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} |x_2 x_1| < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.

Now we will check that whether the condition $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) .

- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} |x_2 x_1| < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.

Now we will check that whether the condition $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) .

• Take $x_n = n$.

- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} |x_2 x_1| < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.

Now we will check that whether the condition $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) .

- Take $x_n = n$.
- Then clearly $|x_{n+2}-x_{n+1}| \le |x_{n+1}-x_n|$ is satisfied but x_n is not cauchy.

- Therefore $|x_n x_m| < \frac{\alpha^m}{1-\alpha} |x_2 x_1| < \epsilon$ for all $n, m > n_0$.
- Hence it is cauchy.

Now we will check that whether the condition $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) .

- Take $x_n = n$.
- Then clearly $|x_{n+2}-x_{n+1}| \le |x_{n+1}-x_n|$ is satisfied but x_n is not cauchy.
- Hence the condition $|x_{n+2} x_{n+1}| \le |x_{n+1} x_n|$ does not guarantee the convergence of (x_n) .

Question 16

For two sets S_1 and S_2 in \mathbb{R}^n , prove or disprove:

- **1** $S_1 + S_2$ is open if both S_1 and S_2 are open.
- ② $S_1 + S_2$ is closed if both S_1 and S_2 are closed.
- \circ $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded. Are the converses of these statements true? Prove or disprove their converses.

Question 16

For two sets S_1 and S_2 in \mathbb{R}^n , prove or disprove:

- **1** $S_1 + S_2$ is open if both S_1 and S_2 are open.
- ② $S_1 + S_2$ is closed if both S_1 and S_2 are closed.
- 3 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded. Are the converses of these statements true? Prove or disprove their converses.

Question 16(a)

 $S_1 + S_2$ is open if both S_1 and S_2 are open.

Question 16

For two sets S_1 and S_2 in \mathbb{R}^n , prove or disprove:

- **①** $S_1 + S_2$ is open if both S_1 and S_2 are open.
- ② $S_1 + S_2$ is closed if both S_1 and S_2 are closed.
- 3 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded. Are the converses of these statements true? Prove or disprove their converses.

Question 16(a)

 $S_1 + S_2$ is open if both S_1 and S_2 are open.

Solution: True.

• Assume that S_1 and S_2 are open.

Question 16

For two sets S_1 and S_2 in \mathbb{R}^n , prove or disprove:

- **1** $S_1 + S_2$ is open if both S_1 and S_2 are open.
- ② $S_1 + S_2$ is closed if both S_1 and S_2 are closed.
- \circ $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded. Are the converses of these statements true? Prove or disprove their converses.

Question 16(a)

 $S_1 + S_2$ is open if both S_1 and S_2 are open.

Solution: True.

- Assume that S_1 and S_2 are open.
- Since $S_1+S_2=\bigcup_{q\in S_{S_1}}\{q+S_2\}$, and arbitrary union of open sets is open.

Question 16

For two sets S_1 and S_2 in \mathbb{R}^n , prove or disprove:

- **1** $S_1 + S_2$ is open if both S_1 and S_2 are open.
- ② $S_1 + S_2$ is closed if both S_1 and S_2 are closed.
- \circ $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded. Are the converses of these statements true? Prove or disprove their converses.

Question 16(a)

 $S_1 + S_2$ is open if both S_1 and S_2 are open.

Solution: True.

- Assume that S_1 and S_2 are open.
- Since $S_1+S_2=\bigcup_{q\in S_{S_1}}\{q+S_2\}$, and arbitrary union of open sets is open.
- Therefore it is sufficient to show that $q+S_2$ is open for all $g\in S_1$.

Question 16

For two sets S_1 and S_2 in \mathbb{R}^n , prove or disprove:

- **1** $S_1 + S_2$ is open if both S_1 and S_2 are open.
- ② $S_1 + S_2$ is closed if both S_1 and S_2 are closed.
- \circ $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded. Are the converses of these statements true? Prove or disprove their converses.

Question 16(a)

 $S_1 + S_2$ is open if both S_1 and S_2 are open.

Solution: True.

- Assume that S_1 and S_2 are open.
- Since $S_1+S_2=\bigcup_{q\in S_{S_1}}\{q+S_2\}$, and arbitrary union of open sets is open.
- Therefore it is sufficient to show that $q+S_2$ is open for all $g\in S_1$.

• Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse?

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

ullet Take A=1,-1 and $B=\mathbb{R}\backslash\{0\}$,

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

• Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

Solution: False.

• Take $A = \{n + \frac{1}{n} : n \in \mathbb{N}\}$ and $B = \{-n : n \in \mathbb{N}\}.$

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

- Take $A = \{n + \frac{1}{n} : n \in \mathbb{N}\}$ and $B = \{-n : n \in \mathbb{N}\}$.
- Then $A + B = \{-m + n + \frac{1}{n} : n, m \in \mathbb{N}\}$

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

- Take $A = \{n + \frac{1}{n} : n \in \mathbb{N}\}$ and $B = \{-n : n \in \mathbb{N}\}$.
- Then $A + B = \{-m + n + \frac{1}{n} : n, m \in \mathbb{N}\}$
- Clearly $\{\frac{1}{n}: n \in \mathbb{N}\} \subseteq A + B$.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

- Take $A = \{n + \frac{1}{n} : n \in \mathbb{N}\}$ and $B = \{-n : n \in \mathbb{N}\}$.
- Then $A + B = \{-m + n + \frac{1}{n} : n, m \in \mathbb{N}\}$
- Clearly $\{\frac{1}{n}: n \in \mathbb{N}\} \subseteq A + B$.
- This implies 0 is a limit point of A + B. But $0 \notin A + B$.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

- Take $A = \{n + \frac{1}{n} : n \in \mathbb{N}\}$ and $B = \{-n : n \in \mathbb{N}\}$.
- Then $A + B = \{-m + n + \frac{1}{n} : n, m \in \mathbb{N}\}$
- Clearly $\{\frac{1}{n}: n \in \mathbb{N}\} \subseteq A + B$.
- This implies 0 is a limit point of A + B. But $0 \notin A + B$.
- Hence A + B is not closed.

- Let $p \in S_2$. Since S_2 is open, there exists r > 0 such that $N_r(p) \subseteq S_2$.
- Let $q \in S_1$. Then $N_r(q+p) = q + N_r(p) \subseteq q + S_2$. (why?)
- Therefore $q + S_2$ is open.
- Hence $S_1 + S_2$ is open.

What about converse? False

- Take A = 1, -1 and $B = \mathbb{R} \setminus \{0\}$, then $A + B = \mathbb{R}$.
- Cleary A + B is open but A is not open.

Question 16(b)

 $S_1 + S_2$ is closed if both S_1 and S_2 are closed.

- Take $A = \{n + \frac{1}{n} : n \in \mathbb{N}\}$ and $B = \{-n : n \in \mathbb{N}\}$.
- Then $A + B = \{-m + n + \frac{1}{n} : n, m \in \mathbb{N}\}$
- Clearly $\{\frac{1}{n}: n \in \mathbb{N}\} \subseteq A + B$.
- This implies 0 is a limit point of A + B. But $0 \notin A + B$.
- Hence A + B is not closed.

What about converse?

What about converse? False

What about converse? False

ullet Take $S_1=1,-1$ and $S_2=\mathbb{R}ackslash\{0\}$,

What about converse? False

ullet Take $S_1=1,-1$ and $S_2=\mathbb{R}\backslash\{0\}$, then $S_1+S_2=\mathbb{R}.$

What about converse? False

- ullet Take $S_1=1,-1$ and $S_2=\mathbb{R}\backslash\{0\}$, then $S_1+S_2=\mathbb{R}$.
- Cleary $S_1 + S_2$ is closed but S_2 is not closed.

Question 16(c)

 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded.

What about converse? False

- ullet Take $S_1=1,-1$ and $S_2=\mathbb{R}\backslash\{0\}$, then $S_1+S_2=\mathbb{R}$.
- Cleary $S_1 + S_2$ is closed but S_2 is not closed.

Question 16(c)

 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded.

Solution:

• Since S_1 and S_2 is bounded.

What about converse? False

- Take $S_1=1,-1$ and $S_2=\mathbb{R}\backslash\{0\}$, then $S_1+S_2=\mathbb{R}$.
- Cleary $S_1 + S_2$ is closed but S_2 is not closed.

Question 16(c)

 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded.

- Since S_1 and S_2 is bounded.
- There exists $M_1, M_2 > 0$ such that $|a| < M_1$ and $|b| < M_2$ for all $a \in S_1, b \in S_2$.

What about converse? False

- Take $S_1=1,-1$ and $S_2=\mathbb{R}\backslash\{0\}$, then $S_1+S_2=\mathbb{R}$.
- Cleary $S_1 + S_2$ is closed but S_2 is not closed.

Question 16(c)

 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded.

- Since S_1 and S_2 is bounded.
- There exists $M_1, M_2 > 0$ such that $|a| < M_1$ and $|b| < M_2$ for all $a \in S_1, b \in S_2$.
- This gives $|a+b| < M_1 + M_2$ for all $a \in S_1$, $b \in S_2$.

What about converse? False

- Take $S_1=1,-1$ and $S_2=\mathbb{R}\backslash\{0\}$, then $S_1+S_2=\mathbb{R}$.
- Cleary $S_1 + S_2$ is closed but S_2 is not closed.

Question 16(c)

 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded.

- Since S_1 and S_2 is bounded.
- There exists $M_1, M_2 > 0$ such that $|a| < M_1$ and $|b| < M_2$ for all $a \in S_1, b \in S_2$.
- This gives $|a+b| < M_1 + M_2$ for all $a \in S_1$, $b \in S_2$.
- $S_1 + S_2$ is bounded.

What about converse? False

- Take $S_1=1,-1$ and $S_2=\mathbb{R}\backslash\{0\}$, then $S_1+S_2=\mathbb{R}$.
- Cleary $S_1 + S_2$ is closed but S_2 is not closed.

Question 16(c)

 $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded.

- Since S_1 and S_2 is bounded.
- There exists $M_1, M_2 > 0$ such that $|a| < M_1$ and $|b| < M_2$ for all $a \in S_1, b \in S_2$.
- This gives $|a+b| < M_1 + M_2$ for all $a \in S_1$, $b \in S_2$.
- $S_1 + S_2$ is bounded.

What about converse?

What about converse? True

What about converse? True

• Assume that $S_1 + S_2$ is bounded.

What about converse? True

- Assume that $S_1 + S_2$ is bounded.
- Fix $a_0 \in S_1$. Clearly $a_0 + S_2 \subseteq S_1 + S_2$.

What about converse? True

- Assume that $S_1 + S_2$ is bounded.
- Fix $a_0 \in S_1$. Clearly $a_0 + S_2 \subseteq S_1 + S_2$.
- Since $S_1 + S_2$ is bounded, this implies $a_0 + S_2$ is bounded.

What about converse? True

- Assume that $S_1 + S_2$ is bounded.
- Fix $a_0 \in S_1$. Clearly $a_0 + S_2 \subseteq S_1 + S_2$.
- Since $S_1 + S_2$ is bounded, this implies $a_0 + S_2$ is bounded.
- Hence S_2 is bounded. (why?)

What about converse? True

- Assume that $S_1 + S_2$ is bounded.
- Fix $a_0 \in S_1$. Clearly $a_0 + S_2 \subseteq S_1 + S_2$.
- Since $S_1 + S_2$ is bounded, this implies $a_0 + S_2$ is bounded.
- Hence S_2 is bounded. (why?)
- Similarly we can show that S_1 is also bounded.

Question 17

Show that the following sets are open in \mathbb{R} .

- **1** $A = \{x \in \mathbb{R} : x^3 > x\}$
- $B = \{ x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z} \}.$

Question 17

Show that the following sets are open in \mathbb{R} .

- **1** $A = \{x \in \mathbb{R} : x^3 > x\}$
- $B = \{ x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z} \}.$

1)
$$A = \{x \in \mathbb{R} : x^3 > x\}.$$

Question 17

Show that the following sets are open in \mathbb{R} .

- **1** $A = \{x \in \mathbb{R} : x^3 > x\}$
- $B = \{ x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z} \}.$

- 1) $A = \{x \in \mathbb{R} : x^3 > x\}.$
 - Clearly $x^3 x = x(x-1)(x+1) > 0$ for $x \in (-1,0) \cup (1,\infty)$.

Question 17

Show that the following sets are open in \mathbb{R} .

- **1** $A = \{x \in \mathbb{R} : x^3 > x\}$
- $B = \{ x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z} \}.$

- 1) $A = \{x \in \mathbb{R} : x^3 > x\}.$
 - Clearly $x^3 x = x(x-1)(x+1) > 0$ for $x \in (-1,0) \cup (1,\infty)$.
 - Therefore $A = (-1, 0) \cup (1, \infty)$.

Question 17

Show that the following sets are open in \mathbb{R} .

- **1** $A = \{x \in \mathbb{R} : x^3 > x\}$
- $B = \{ x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z} \}.$

- 1) $A = \{x \in \mathbb{R} : x^3 > x\}.$
 - Clearly $x^3 x = x(x-1)(x+1) > 0$ for $x \in (-1,0) \cup (1,\infty)$.
 - Therefore $A = (-1, 0) \cup (1, \infty)$.
 - Since, union of open sets is open. Hence A is open.

Question 17

Show that the following sets are open in \mathbb{R} .

- **1** $A = \{x \in \mathbb{R} : x^3 > x\}$
- $B = \{ x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z} \}.$

- 1) $A = \{x \in \mathbb{R} : x^3 > x\}.$
 - Clearly $x^3 x = x(x-1)(x+1) > 0$ for $x \in (-1,0) \cup (1,\infty)$.
 - Therefore $A = (-1, 0) \cup (1, \infty)$.
 - Since, union of open sets is open. Hence A is open.

Next, we have
$$B = \{x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z}\}.$$

Next, we have
$$B = \{x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z}\}.$$

• For $x = \frac{1}{n}$, we have $\frac{1}{x} \in \mathbb{Z}$. Therefore B can be written as

$$B = (0,1) \setminus \{\frac{1}{n} : n \in \mathbb{N}\}$$

Next, we have $B = \{x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z}\}.$

• For $x = \frac{1}{n}$, we have $\frac{1}{x} \in \mathbb{Z}$. Therefore B can be written as

$$B = (0,1) \setminus \{\frac{1}{n} : n \in \mathbb{N}\} = \bigcup_{k=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n}\right)$$

Next, we have $B = \{x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z}\}.$

• For $x = \frac{1}{n}$, we have $\frac{1}{x} \in \mathbb{Z}$. Therefore B can be written as

$$B = (0,1) \setminus \{\frac{1}{n} : n \in \mathbb{N}\} = \bigcup_{k=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n}\right)$$

• Since, arbitrary union of open sets is open. Hence *B* is open.

Question 18

Decide whether the following statements are true or false. If they're true, prove them. If they are false, provide counter examples

- **①** An open set that contains every rational number must necessarily contain all of \mathbb{R} .
- 2 Every nonempty open set contains a rational number.

Question 18

Decide whether the following statements are true or false. If they're true, prove them. If they are false, provide counter examples

- **1** An open set that contains every rational number must necessarily contain all of \mathbb{R} .
- 2 Every nonempty open set contains a rational number.

18(a)

An open set that contains every rational number must necessarily contain all of \mathbb{R} .

Solution: False

Question 18

Decide whether the following statements are true or false. If they're true, prove them. If they are false, provide counter examples

- **1** An open set that contains every rational number must necessarily contain all of \mathbb{R} .
- 2 Every nonempty open set contains a rational number.

18(a)

An open set that contains every rational number must necessarily contain all of \mathbb{R} .

Solution: False

• Let α be any irrational number.

Question 18

Decide whether the following statements are true or false. If they're true, prove them. If they are false, provide counter examples

- **1** An open set that contains every rational number must necessarily contain all of \mathbb{R} .
- 2 Every nonempty open set contains a rational number.

18(a)

An open set that contains every rational number must necessarily contain all of \mathbb{R} .

Solution: False

- Let α be any irrational number.
- Then $A = (-\infty, \alpha) \cup (\alpha, \infty)$ is a open set containing all the rational numbers.

Question 18

Decide whether the following statements are true or false. If they're true, prove them. If they are false, provide counter examples

- An open set that contains every rational number must necessarily contain all of \mathbb{R} .
- 2 Every nonempty open set contains a rational number.

18(a)

An open set that contains every rational number must necessarily contain all of \mathbb{R} .

Solution: False

- Let α be any irrational number.
- Then $A = (-\infty, \alpha) \cup (\alpha, \infty)$ is a open set containing all the rational numbers.
- But A doesn't contain all of ℝ

34 / 39

18(b)

Every nonempty open set contains a rational number.

18(b)

Every nonempty open set contains a rational number.

Solution:

• Let A be a nonempty open set.

18(b)

Every nonempty open set contains a rational number.

- Let A be a nonempty open set.
- Let $x \in A$. Then there exists r > 0 such that $N_r(x) \subseteq A$.

18(b)

Every nonempty open set contains a rational number.

- Let A be a nonempty open set.
- Let $x \in A$. Then there exists r > 0 such that $N_r(x) \subseteq A$.
- By Density property of \mathbb{Q} , there exist $q \in \mathbb{Q}$ such that $q \in N_r(x) \subseteq A$.

18(b)

Every nonempty open set contains a rational number.

- Let A be a nonempty open set.
- Let $x \in A$. Then there exists r > 0 such that $N_r(x) \subseteq A$.
- By Density property of \mathbb{Q} , there exist $q \in \mathbb{Q}$ such that $q \in N_r(x) \subseteq A$.
- Hence A contains a rational number.

18(b)

Every nonempty open set contains a rational number.

- Let A be a nonempty open set.
- Let $x \in A$. Then there exists r > 0 such that $N_r(x) \subseteq A$.
- By Density property of \mathbb{Q} , there exist $q \in \mathbb{Q}$ such that $q \in N_r(x) \subseteq A$.
- Hence A contains a rational number.

Question 19

Question 19

If $A \subseteq \mathbb{R}$ is a closed set bounded from above (below), show that A has a maximum(minimum).

• Let $M = \sup A$.

Question 19

- Let $M = \sup A$.
- Since A is closed. In order to show that $M \in A$, it is sufficient to show that M is a limit point of A.

Question 19

- Let $M = \sup A$.
- Since A is closed. In order to show that $M \in A$, it is sufficient to show that M is a limit point of A.
- Let $\epsilon > 0$ be given. Since $M = \sup A$, therefore $M \epsilon$ is not an upper bound of A.

Question 19

- Let $M = \sup A$.
- Since A is closed. In order to show that $M \in A$, it is sufficient to show that M is a limit point of A.
- Let $\epsilon > 0$ be given. Since $M = \sup A$, therefore $M \epsilon$ is not an upper bound of A.
- By definition of supremum, there exists $a \in A$ such that $M \epsilon < a < M$.

Question 19

- Let $M = \sup A$.
- Since A is closed. In order to show that $M \in A$, it is sufficient to show that M is a limit point of A.
- Let $\epsilon > 0$ be given. Since $M = \sup A$, therefore $M \epsilon$ is not an upper bound of A.
- By definition of supremum, there exists $a \in A$ such that $M \epsilon < a < M$.
- This gives $N_{\epsilon}^*(M) \cap A \neq \phi$.

Question 19

- Let $M = \sup A$.
- Since A is closed. In order to show that $M \in A$, it is sufficient to show that M is a limit point of A.
- Let $\epsilon > 0$ be given. Since $M = \sup A$, therefore $M \epsilon$ is not an upper bound of A.
- By definition of supremum, there exists $a \in A$ such that $M \epsilon < a < M$.
- This gives $N_{\epsilon}^*(M) \cap A \neq \phi$.
- Hence *M* is a limit point of *A*.

Question 19

- Let $M = \sup A$.
- Since A is closed. In order to show that $M \in A$, it is sufficient to show that M is a limit point of A.
- Let $\epsilon > 0$ be given. Since $M = \sup A$, therefore $M \epsilon$ is not an upper bound of A.
- By definition of supremum, there exists $a \in A$ such that $M \epsilon < a < M$.
- This gives $N_{\epsilon}^*(M) \cap A \neq \phi$.
- Hence M is a limit point of A.
- Similarly we can prove that $m = \inf A \in A$.

Question 19

- Let $M = \sup A$.
- Since A is closed. In order to show that $M \in A$, it is sufficient to show that M is a limit point of A.
- Let $\epsilon > 0$ be given. Since $M = \sup A$, therefore $M \epsilon$ is not an upper bound of A.
- By definition of supremum, there exists $a \in A$ such that $M \epsilon < a < M$.
- This gives $N_{\epsilon}^*(M) \cap A \neq \phi$.
- Hence M is a limit point of A.
- Similarly we can prove that $m = \inf A \in A$.

Question 20

Decide whether the following sets are open or closed. Determine the interior

- $(-1)^n + \frac{1}{n} : n \in \mathbb{N} \} \subseteq \mathbb{R}$

Solution: 1) $\mathbb{Z} \subseteq \mathbb{R}$.

Question 20

Decide whether the following sets are open or closed. Determine the interior

- $\mathbf{0} \ \mathbb{Z} \subseteq \mathbb{R}.$

Solution: 1) $\mathbb{Z} \subseteq \mathbb{R}$. We will show that

• $\mathbb{Z} \subset \mathbb{R}$ is closed.

Question 20

Decide whether the following sets are open or closed. Determine the interior

Solution: 1) $\mathbb{Z} \subseteq \mathbb{R}$. We will show that

• $\mathbb{Z} \subset \mathbb{R}$ is closed. i.e. $\mathbb{R} \backslash \mathbb{Z}$ is open.

Question 20

Decide whether the following sets are open or closed. Determine the interior

- $\mathbf{0} \ \mathbb{Z} \subseteq \mathbb{R}.$

Solution: 1) $\mathbb{Z} \subseteq \mathbb{R}$. We will show that

- $\mathbb{Z} \subset \mathbb{R}$ is closed. i.e. $\mathbb{R} \setminus \mathbb{Z}$ is open.
- Let $a \in \mathbb{Z}$. By archimedean property, there exist $k \in \mathbb{Z}$ such that k < a < k+1.

Question 20

Decide whether the following sets are open or closed. Determine the interior

Solution: 1) $\mathbb{Z} \subseteq \mathbb{R}$. We will show that

- $\mathbb{Z} \subset \mathbb{R}$ is closed. i.e. $\mathbb{R} \setminus \mathbb{Z}$ is open.
- Let $a \in \mathbb{Z}$. By archimedean property, there exist $k \in \mathbb{Z}$ such that k < a < k + 1.
- Consider

$$r = \min\left(\frac{k+1-a}{2}, \frac{a-k}{2}\right).$$

Question 20

Decide whether the following sets are open or closed. Determine the interior

- $(-1)^n + \frac{1}{n} : n \in \mathbb{N} \} \subseteq \mathbb{R}$

Solution: 1) $\mathbb{Z} \subseteq \mathbb{R}$. We will show that

- $\mathbb{Z} \subset \mathbb{R}$ is closed. i.e. $\mathbb{R} \setminus \mathbb{Z}$ is open.
- Let $a \in \mathbb{Z}$. By archimedean property, there exist $k \in \mathbb{Z}$ such that k < a < k + 1.
- Consider

$$r = \min\left(\frac{k+1-a}{2}, \frac{a-k}{2}\right).$$

• Then $(a-r,a+r)\subset (k,k+1)\subset \mathbb{R}\backslash \mathbb{Z}$.

Question 20

Decide whether the following sets are open or closed. Determine the interior

Solution: 1) $\mathbb{Z} \subseteq \mathbb{R}$. We will show that

- $\mathbb{Z} \subset \mathbb{R}$ is closed. i.e. $\mathbb{R} \setminus \mathbb{Z}$ is open.
- Let $a \in \mathbb{Z}$. By archimedean property, there exist $k \in \mathbb{Z}$ such that k < a < k + 1.
- Consider

$$r = \min\left(\frac{k+1-a}{2}, \frac{a-k}{2}\right).$$

- Then $(a-r,a+r)\subset (k,k+1)\subset \mathbb{R}\backslash \mathbb{Z}$.
- So Z is closed.

Now we will show that \mathbb{Z} is not open. i.e. $\mathbb{Z}^o \neq \mathbb{Z}$.

ullet We will show that \mathbb{Z}^o is empty.

- We will show that \mathbb{Z}^{o} is empty.
- Let if possible there exist $a \in \mathbb{Z}^{o}$.

- ullet We will show that \mathbb{Z}^{o} is empty.
- Let if possible there exist $a \in \mathbb{Z}^{o}$.
- Then there exist r > 0 such that $(a r, a + r) \subset \mathbb{Z}$.

- We will show that \mathbb{Z}^{o} is empty.
- Let if possible there exist $a \in \mathbb{Z}^{o}$.
- Then there exist r > 0 such that $(a r, a + r) \subset \mathbb{Z}$.
- Since every interval contains some irrationals, this is a contradiction.

- We will show that \mathbb{Z}^{o} is empty.
- Let if possible there exist $a \in \mathbb{Z}^{o}$.
- Then there exist r > 0 such that $(a r, a + r) \subset \mathbb{Z}$.
- Since every interval contains some irrationals, this is a contradiction.
- Therefore $Z^{o} = \phi$.

- We will show that \mathbb{Z}^{o} is empty.
- Let if possible there exist $a \in \mathbb{Z}^{o}$.
- Then there exist r > 0 such that $(a r, a + r) \subset \mathbb{Z}$.
- Since every interval contains some irrationals, this is a contradiction.
- Therefore $Z^{o} = \phi$.
- Hence \mathbb{Z} is not open.

- We will show that \mathbb{Z}^{o} is empty.
- Let if possible there exist $a \in \mathbb{Z}^{o}$.
- Then there exist r > 0 such that $(a r, a + r) \subset \mathbb{Z}$.
- Since every interval contains some irrationals, this is a contradiction.
- Therefore $Z^{o} = \phi$.
- Hence \mathbb{Z} is not open.

2)
$$A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$$

2)
$$A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$$

• Every closed set contains all of its limit points.

2)
$$A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$$

- Every closed set contains all of its limit points.
- Clearly -1 and 1 are limit points of the set which does not belong to the set.

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.
 - Now we will show that A is not open

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.
 - Now we will show that A is not open
 - we will claim that A^o is empty.

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.
 - Now we will show that A is not open
 - we will claim that A^o is empty.
 - Let if possible there exist $a \in A^{o}$.

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - ullet Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.
 - Now we will show that A is not open
 - we will claim that A^o is empty.
 - Let if possible there exist $a \in A^{o}$.
 - Then there exist r > 0 such that $(a r, a + r) \subset A$.

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.
 - Now we will show that A is not open
 - we will claim that A^o is empty.
 - Let if possible there exist $a \in A^{o}$.
 - Then there exist r > 0 such that $(a r, a + r) \subset A$.
 - Since every interval contains some irrationals, this is a contradiction.

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - ullet Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.
 - Now we will show that A is not open
 - we will claim that A^o is empty.
 - Let if possible there exist $a \in A^{o}$.
 - Then there exist r > 0 such that $(a r, a + r) \subset A$.
 - Since every interval contains some irrationals, this is a contradiction.
 - Therefore $A^{o} = \phi$.

- 2) $A = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$
 - Every closed set contains all of its limit points.
 - Clearly -1 and 1 are limit points of the set which does not belong to the set.
 - Hence A is not closed.
 - Now we will show that A is not open
 - we will claim that A^o is empty.
 - Let if possible there exist $a \in A^{\circ}$.
 - Then there exist r > 0 such that $(a r, a + r) \subset A$.
 - Since every interval contains some irrationals, this is a contradiction.
 - Therefore $A^{o} = \phi$.
 - Hence A is not open.

