

Autumn Examinations 2018/2019

Course Instance Code(s)	1CSD1, 1CSD2, 1SPE1
Exam(s)	MSc in Computer Science (Data Analytics)
Module Code(s) Module(s)	CT5120 Introduction to Natural Language Processing
Paper No. Repeat Paper	1 Yes
External Examiner(s) Internal Examiner(s)	Professor Pier Luca Lanzi Dr. Michael Madden *Dr. Paul Buitelaar Dr. John McCrae
se	swer all parts of all questions. There are 4 sections; each ction is worth 25 marks (100 marks total). Use a separate swer book for each section answered.
Duration No. of Pages Discipline(s) Course Co-ordinator	2 hours 5 Engineering and Information Technology (s) Dr. Enda Howley
Requirements: Release in Exam Venu	ue Yes X No
MCQ	Yes No X
Handout Statistical/ Log Tables Cambridge Tables Graph Paper Log Graph Paper Other Materials Graphic material in col	None None None

CT5120 Natural Language Processing

Exam Duration: 2 Hours

You must complete Sections 1 to 4

Section 1: Semantics

Instructions: Provide answers for questions 1A, 1B and 1C

Question 1A 10 Marks

Consider the following frequency vectors:

black	4	4	2	6	0
white	4	8	0	2	10

Using cosine similarity, compute the distributional semantic distance between 'black' and 'white'.

Question 1B 10 Marks

Consider the following sense definitions for 'bank':

bank#1 - the slope beside a body of water

bank#2 - a financial institution that accepts deposits and channels the money into lending activities

Now consider the following occurrence of 'bank' in this sentence:

The bank was left free to offer interest on demand deposits.

How would you apply the Lesk algorithm to disambiguate 'bank' between the two senses given above?

Question 1C 5 Marks

Define homonymy, synonymy, and antonymy.

PTO

Section 2: Part-of-speech tagging

Instructions: Provide answers for question 2A and 2B

Question 2A 10 Marks

Consider a Hidden Markov Model with the following probabilities (S designates the start state):

$p(w_i t_i)$	$w_i = the$	w _i = University	$w_i = of$	w _i = Ireland
$t_i = B$	0.2	0.7	0.2	0.4
$t_i = I$	0.2	0.2	0.5	0.4
$t_i = O$	0.6	0.1	0.3	0.2

$p(t_i t_{i-1})$	t _{i-1} = B	$t_{i-1} = I$	t _{i-1} = O	t _{i-1} = S
$t_i = B$	0.1	0.3	0.3	0.3
$t_i = I$	0.6	0.4	0.0	0.0
$t_i = O$	0.1	0.2	0.3	0.4

What is the probability of the sequence "the University of Ireland" being tagged as "O B I I"?

Question 2B 15 Marks

Given an *annotated* text corpus, describe how you would find probabilities such as given in the table above. Write any algorithms you would use in pseudo-code.

PTO

Section 3: Sentiment Analysis

Instructions: Provide answers for question 3A, 3B, 3C and 3D

Question 3A 10 Marks

Explain two challenges for automatic approaches to sentiment analysis

Question 3B 5 Marks

What is a sentiment lexicon and how may it be used as a feature in a sentiment analysis classifier?

Question 3C 5 Marks

Provide a suggestion of **one** way in which negation may be handled in a sentiment analysis.

Question 3D 5 Marks

What is meant with aspect-based sentiment analysis? Give an example of an aspect.

PTO

Section 4: Information Extraction

Instructions: Provide answers for questions 4A and 4B

Consider the following corpus of sentences about company acquisitions, with named entity annotation (COM:company) and gold standard labeling if the sentence does or does not express a company acquisition:

#	company acquisition Y/N	Sentence
1	Y	[COM Salesforce] to acquire data analytics firm [COM Tableau] in \$15.7 billion deal.
2	Υ	[COM Bird] confirms acquisition of [COM Scoot].
3	Y	[COM Shutterfly] to be merged with [COM Snapfish] after \$2.7B acquisition.
4	N	A \$3.3 billion [COM Walmart] acquisition of [COM Jet.com] is under discussion.
5	Y	[COM Mediahuis] acquisition of [COM INM] approved by regulator.

Question 4A 15 Marks

What is the Precision, Recall and F-score of an information extraction system that has just one pattern, applied to the 5 sentences given above:

[COM X] * acquisition of * [COM Y]

Explain how you derived your answers.

Question 4B 10 Marks

Give the formula for Cohen's kappa coefficient. What is it used for in information extraction?

END