

Симплекс метод №2

Завдання 1.

$$L(x_1,x_2,x_3) = 2x_1 + x_2 - 2x_3 o \min \ egin{cases} x_1 + x_2 - x_3 \geq 8 \ x_1 - x_2 + 2x_3 \geq 2 \ -2x_1 - 8x_2 + 3x_3 \geq 1 \ x_i \geq 0 \end{cases}$$

Розв'язок. Доповнимо систему обмежень:

$$egin{cases} x_1+x_2-x_3-x_4=8 \ x_1-x_2+2x_3-x_5=2 \ -2x_1-8x_2+3x_3-x_6=1 \ x_i\geq 0 \end{cases}$$

Або:

$$egin{cases} -x_1-x_2+x_3+x_4=-8 \ -x_1+x_2-2x_3+x_5=-2 \ 2x_1+8x_2-3x_3+x_6=-1 \ x_i\geq 0 \end{cases}$$

Складемо сімплекс таблицю:

_	x_1	x_2	x_3	x_4	x_5	x_6	B
x_4	-1	-1	1	1	0	0	-8
x_5	-1	1	-2	0	1	0	-2
x_6	2	8	-3	0	0	1	-1
L	2	1	-2	0	0	0	0

Вільний член -8 мінімальний від'ємний, отже змінюємо x_1,x_4 . Маємо

Симплекс метод №2

_	x_1	x_2	x_3	x_4	x_5	x_6	B
x_4	1	1	-1	-1	0	0	8
x_5	-1	1	-2	0	1	0	-2
x_6	2	8	-3	0	0	1	-1
L	2	1	-2	0	0	0	0

_	x_1	x_2	x_3	x_4	x_5	x_6	В
x_1	1	1	-1	-1	0	0	8
x_5	0	2	-3	-1	1	0	6
x_6	0	6	-1	2	0	1	-17
L	0	-1	0	2	0	0	-16

Далі мінімальний невід'ємний вільний член -17, тому змінюємо x_2,x_6 :

_	x_1	x_2	x_3	x_4	x_5	x_6	B
x_1	1	1	-1	-1	0	0	8
x_5	0	2	-3	-1	1	0	6
x_2	0	1	$-\frac{1}{6}$	$\frac{1}{3}$	0	$\frac{1}{6}$	$-\frac{17}{6}$
L	0	-1	0	2	0	0	-16

_	x_1	x_2	x_3	x_4	x_5	x_6	B
x_1	1	0	$-\frac{5}{6}$	$-\frac{4}{3}$	0	$-\frac{1}{6}$	$\frac{65}{6}$
x_5	0	0	$-\frac{8}{3}$	$-\frac{5}{3}$	1	$-\frac{1}{3}$	$\frac{35}{3}$
x_2	0	1	$-\frac{1}{6}$	$\frac{1}{3}$	0	$\frac{1}{6}$	$-\frac{17}{6}$
L	0	0	$-\frac{1}{6}$	$\frac{7}{3}$	0	$\frac{1}{6}$	$-\frac{113}{6}$

Функція необмежена, оскільки нам потрібно замінити x_3 , але усі значення в колонці від'ємні.

Завдання 2.

$$L(x_1,x_2,x_3)=-3x_1+x_2+4x_3 o \max \ egin{cases} -x_2+x_3\leq 1\ -5x_1+x_2+x_3=2\ -8x_1+x_2+2x_3\geq 3\ x_1,x_2,x_3\geq 0 \end{cases}$$

Доповнимо нашу систему обмежень:

Симплекс метод №2

$$egin{cases} -x_2+x_3+x_4=1 \ -5x_1+x_2+x_3=2 \ 8x_1-x_2-2x_3+x_5=-3 \ x_i>0 \end{cases}$$

Далі коротко наведу розрахунки. Після побудови симплекс таблиці та зробивши кілька ітерацій, отримаємо

_	x_1	x_2	x_3	x_4	x_5	B
x_3	-5/2	0	1	1/2	0	3/2
x_5	1/2	0	0	1/2	1	1/2
x_2	-5/2	1	0	-3/2	0	-13/2
L	19/2	0	0	-3/2	0	-13/2

Після проведення наступної ітераці (заміни x_5, x_1), отримаємо:

_	x_1	x_2	x_3	x_4	x_5	B
x_3	0	0	1	3	5	4
x_1	1	0	0	1	2	1
x_2	0	1	0	2	5	3
L	0	0	0	-11	-19	-16

Таким чином $L_{
m max} = 16$ при $x_1 = 1, x_2 = 3, x_3 = 4.$

Завдання 3.

Для простоти буду розглядати $x_1+x_2 o \max$ замість $3x_1+3x_2.$

$$L=x_1+x_2 o \max
otag \ \begin{cases} x_1+x_2\leq 8 \ 2x_1-x_2\geq 1 \ x_1-2x_2\leq 2 \ x_i\geq 0 \end{cases}$$

Отже доповнимо систему обмежень:

$$egin{cases} x_1+x_2+x_3=8 \ -2x_1+x_2+x_4=-1 \ x_1-2x_2+x_5=2 \end{cases}$$

3

Виражаємо x_3, x_4, x_5 :

$$egin{aligned} x_3 &= 8 - x_1 - x_2 \ x_4 &= -1 + 2x_1 - x_2 \ x_5 &= 2 - x_1 + 2x_2 \end{aligned}$$

Маємо від'ємний вільний член, тому змінюємо x_4, x_1 :

$$2x_1 = 1 + x_2 + x_4
ightarrow x_1 = rac{1}{2} + rac{1}{2}x_2 + rac{1}{2}x_4$$

Підставляємо у інші рівняння:

$$x_3 = 8 - rac{1}{2} - rac{1}{2}x_2 - rac{1}{2}x_4 - x_2 = rac{15}{2} - rac{3}{2}x_2 - rac{1}{2}x_4 \ x_5 = 2 - rac{1}{2} - rac{1}{2}x_2 - rac{1}{2}x_4 + 2x_2 = rac{3}{2} + rac{3}{2}x_2 - rac{1}{2}x_4$$

Маємо розв'язок (1/2,0,15/2,0,3/2). Функція:

$$L = rac{1}{2} + rac{1}{2}x_2 + rac{1}{2}x_4 + x_2 = rac{1}{2} + rac{3}{2}x_2 + rac{1}{2}x_4$$

Потрібно змінити x_2 на x_3 :

$$x_2 = 5 - rac{2}{3}x_3 - rac{1}{3}x_4$$

Підставляємо у інші вирази:

$$x_1 = rac{1}{2} + rac{5}{2} - rac{1}{3}x_3 - rac{1}{6}x_4 + rac{1}{2}x_4 = 3 - rac{1}{3}x_3 + rac{1}{3}x_4 \ x_5 = rac{3}{2} + rac{15}{2} - x_3 - rac{1}{2}x_4 - rac{1}{2}x_4 = 9 - x_3 - x_4$$

А тепер знову у цільову функцію:

$$L=x_1+x_2=3-rac{1}{3}x_3+rac{1}{3}x_4+5-rac{2}{3}x_3-rac{1}{3}x_4=8-x_3$$

Отже $L_{\mathrm{max}}=8$.

Завдання 4.

Для простоти будемо розв'язувати $L=2x_1-3x_2 o \min$. Отже, маємо

$$L=2x_1-3x_2 o \min \ egin{cases} x_1+x_2\geq 4\ 2x_1-x_2\geq 1\ x_1-3x_2\leq 1\ x_1,x_2\geq 0 \end{cases}$$

Доповнимо систему обмежень:

$$egin{cases} x_1+x_2-x_3=4\ 2x_1-x_2-x_4=1\ x_1-3x_2+x_5=1\ x_i\geq 0 \end{cases}$$

Виражаємо x_3, x_4, x_5 :

$$egin{aligned} x_3 &= -4 + x_1 + x_2 \ x_4 &= -1 + 2x_1 - x_2 \ x_5 &= 1 - x_1 + 3x_2 \end{aligned}$$

Мінімальний від'ємний вільний член це -4, тому змінюємо x_1, x_3 :

$$x_1 = 4 - x_2 + x_3$$

Тому

$$x_4 = -1 + 8 - 2x_2 + 2x_3 - x_2 = 7 - 3x_2 + 2x_3 \ x_5 = 1 - 4 + x_2 - x_3 + 3x_2 = -3 + 4x_2 - x_3$$

Маємо від'ємний вільний член -3, тому змінюємо x_2, x_5 :

$$4x_2=3+x_3+x_5 o x_2=rac{3}{4}+rac{1}{4}x_3+rac{1}{4}x_5$$

Тому

$$x_1 = 4 + x_3 - rac{3}{4} - rac{1}{4}x_3 - rac{1}{4}x_5 = rac{13}{4} + rac{3}{4}x_3 - rac{1}{4}x_5 \ x_4 = 7 - rac{9}{4} - rac{3}{4}x_3 - rac{3}{4}x_5 + 2x_3 = rac{19}{4} + rac{5}{4}x_3 - rac{3}{4}x_5$$

Підставляємо у цільову функцію:

$$L=2x_1-3x_2=rac{13}{2}+rac{3}{2}x_3-rac{1}{2}x_5-rac{9}{4}-rac{3}{4}x_3-rac{3}{4}x_5=\ rac{17}{4}+rac{3}{4}x_3-rac{5}{4}x_5$$

Нам потрібно замінити x_5 . Змінимо його та x_4 , оскільки $\min\{13,19/3\}=19/3$. Тому

$$rac{3}{4}x_5 = rac{19}{4} + rac{5}{4}x_3 - x_4
ightarrow x_5 = rac{19}{3} + rac{5}{3}x_3 - rac{4}{3}x_4$$

Підставляємо у інші вирази

$$x_2 = rac{3}{4} + rac{1}{4}x_3 + rac{19}{12} + rac{5}{12}x_3 - rac{1}{3}x_4 = rac{7}{3} + rac{2}{3}x_3 - rac{1}{12}x_4 \ x_1 = rac{13}{4} + rac{3}{4}x_3 - rac{19}{12} - rac{5}{12}x_3 + rac{1}{3}x_4 = 5 + rac{1}{3}x_3 + rac{1}{3}x_4$$

Отже

$$L=2x_1-3x_2=10+rac{2}{3}x_3+rac{2}{3}x_4-7-2x_3+x_4=3-rac{4}{3}x_3+rac{5}{3}x_4$$

Змінити x_3 ми не можемо. Отже, L необмежено зростає.