IBM DATA SCIENCE – CAPSTONE Battle Of The Neighborhoods

Choosing The Best Vacation Destination Between Dubai, Paris, New York and Kuala Lumpur

Muhammad Umar Salman

Introduction and Problem Description

In this Capstone Project, I will use my learnings and understandings from IBM's Professional Data Science Certificate to solve this never-ending problem of which place is it better to go for a vacation between these four famous cities. Many foreign tourists are trying to find a vacation spot which gives the whole package and is worth them taking their time out of their lives to come and enjoy. Tourists want to choose a place that has a variety of activities to do and a variety of places to go. In this project I will try to explore the two cities to see which city offers the best vacation destination in terms of hotels, restaurants, malls, museums, sight-seeing venues and fun outdoor activities.

This data will be able to solve this problem as we can see what the reviews, ratings and tips for places in the city are. How many 5 – Star hotels does the city have. How many different categories of places are available and how far are their distances from the places where the tourists plan to live. Furthermore, we can see what Tourists look for in ideal vacation venues and cross check them with cities to see whether those cities provide those places or not.

Data Section

1. Requirements

The data required in this is all types of categories for vocational purposes such as Hotels, Restaurants, Shopping Malls, Museums, Sight-Seeing Venues and Fun-Outdoor Activities. For that purpose, I will use the Foursquare API to 'Search' and 'Explore' all these Vacation venues to observe and do exploratory data analysis on the following cities.

2. Source

The data for this project will be collected using Foursquare API using the following link: https://foursquare.com/developers. In order to extract our data, I will use my Client ID and Client Secret to create a query which will fetch the data I need from the website.

```
1 CLIENT_ID = '******' # your Foursquare ID
2 CLIENT_SECRET = '******' # your Foursquare Secret
3 VERSION = '*****' # Foursquare API version
```

Dubai

Paris

Kuala Lumpur

New York

3. Audience

The audience for this report will be the foreign tourists and travelers looking for their perfect vacation destination. It will not only benefit these travelers but will also give insight to the tourist industry as to what things make a place a better spot and more likely place for people to go for their holidays. **Tourism** industry is important for the benefits it brings and due to its role as a commercial activity that creates demand and growth for many more industries.

Methodology Section

1. Feature Engineering

First of all, we requested venues from the Foursquare API as shown above. For each of the 4 cities we looked at all the with a RADIUS of 10000. From the Geolocator we found out the location of all the cities and mapped them out as shown below.

Paris

Dubai

New York

Kuala Lumpur

We then converted the raw JSON to a DataFrame.

	id	name	categories	referralld	hasPerk	location.address	location.lat	location.Ing	location.labeledLatLng
0	4c73295213228cfa74312d65	Dataran DBKL	[{'id': '4bf58dd8d48988d163941735', 'name': 'P	V- 1585689957	False	Menara DBKL	3.151427	101.694462	[{'label': 'display', 'la 3.151427172961877
1	4c75ac31ff1fb60ca9faf6a7	Menara DBKL 1	[{'id': '4bf58dd8d48988d129941735', 'name': 'C	V- 1585689957	False	Jalan Raja Laut	3.152314	101.694662	[{'label': 'display', 'la 3.152314298073572
2	4ec4f9b9e300e6894f206ae2	Dewan Bandaraya Kuala Lumpur Menara 2	[{'id': '4bf58dd8d48988d129941735', 'name': 'C	V- 1585689957	False	Bangunan DBKL Menara 2, Tingkat 6	3.151609	101.694551	[{'label': 'display', 'la 3.15160866153506,
3	4d65cd0a56746dcbae433fff	Cafeteria DBKL	[{'id': '4bf58dd8d48988d142941735', 'name': 'A	V- 1585689957	False	Tkt 2, Menara DBKL 1	3.152154	101.694922	[{'label': 'display', 'la 3.152153558414952

However, a lot of feature engineering had to be done. So firstly, we dropped all the columns which we were not going to need, and which

didn't give us any meaning. Then we looked into categories and extracted out the venue. We divided all the venues for all the city Data Frames into 6 very generic categories all which would be essential in a vacation trip. The following are:

	Category	Rank
0	Hotels	1
1	Activities	2
2	Food	3
3	Sight Seeing	4
4	Travel	5
5	Shopping	6

We assigned a rank to each of the categories based on the importance it had for tourists which on popular opinion was in this order. After all the Feature Engineering we managed to shape our Data Frame to be exactly as we had hoped.

	id	name	categories	latitude	longitude	distance
0	58f0cd8db1ec13241266420a	New York	Pizza Place	40.712784	-74.005940	8
1	4a676321f964a52051c91fe3	New York City Hall	City Hall	40.712659	-74.005880	13
2	4b475390f964a520f12e26e3	Mary's Coffee Shop	Coffee Shop	40.712786	-74.005944	8
3	4b57b0dff964a520293c28e3	MTA Subway - City Hall (R/W)	Metro Station	40.713394	-74.006934	107
4	4b79a5e8f964a52037082fe3	NY Gift Shop	Gift Shop	40.712733	-74.005978	3
5	3fd66200f964a520d8f11ee3	City Hall Park	Park	40.712415	-74.006724	69
6	51a4bc7c498e469047be66d6	City Hall Council Chambers	City Hall	40.712736	-74.005472	45
7	5ae3d3db3ba767002cf97a85	El Mexicano Restaurante & Cafe	Mexican Restaurant	40.675417	-74.000486	4179
8	4dd77d22b3adc64ae076925d	St comunity beach	Beach	40.712781	-74.005944	8
9	51b3b7da498efda7cefb2660	Dahlia's Mexican Restaurant	Mexican Restaurant	40.718754	-74.010337	763
10	4e31861d7d8b9b256bcc43a8	June's Fruit Cart	Food Truck	40.712786	-74.005944	8

2. Data Analysis

We then created for all cities a single Data Frame which we were going to use as a metric to discover which city gave the best results. From all the categories returned for each city we first took a count of the categories which actually fit for our problem. Then we took counts for all the individual broad categories for every city. Since we ranked the categories in terms of importance, we then calculated the weighted count for each individual category. The constructed data frame is shown below:

	City	Category Count	Hotels	Activities	Food	Sight Seeing	Travel	Shopping	Hotels Weighted	Activities Weighted	Food Weighted	Sight Seeing Weighted	Travel Weighted	Shopping Weighted	Weighted Category Count
0	Paris	26	1	2	11	2	4	6	6	10	44	6	8	6	80
1	Kuala Lumpur	38	2	7	18	6	0	5	12	35	72	18	0	5	142
2	New York	44	4	5	21	4	6	4	24	25	84	12	12	4	161
3	Dubai	33	1	18	10	2	0	2	6	90	40	6	0	2	144

We then marked the clusters for each category on the map. The diagrams are shown in the result section. We added up all the values for each city and got a total score. To normalize the score based on the number of categories that were actually present in that vicinity of the city we divided the Total by the Category count to get the normalized scores for each city. We sorted them by these values which led us to discover which city was the best in terms of the facilities they provide for tourists on vacations.

Results

First, we will see the clusters formed from the mapping of the categories in each city as show below:

Color of the clusters

- Hotels Yellow
- Activities Blue
- Food Green
- Sight Seeing Cyan
- Travel Red
- Shopping Purple

Paris

Dubai

Kuala Lumpur

New York

Now looking the total scores of each of the cities

City	Category Count	Hotels	Activities	Food	Sight Seeing	Travel	Shopping	Hotels Weighted	Activities Weighted	Food Weighted	Sight Seeing Weighted	Travel Weighted	Shopping Weighted	Weighted Category Count	Total
0 Paris	26	1	2	11	2	4	6	6	10	44	6	8	6	80	212
1 Kuala Lumpur	38	2	7	18	6	0	5	12	35	72	18	0	5	142	360
2 New York	44	4	5	21	4	6	4	24	25	84	12	12	4	161	410
3 Dubai	33	1	18	10	2	0	2	6	90	40	6	0	2	144	354

We then normalized these results and got the following

City	Score
Dubai	10.727273
Kuala Lumpur	9.473684
New York	9.318182
Paris	8.153846

From the following results we will now draw our conclusion discuss further observation that could be done.

Discussion

From the results above and the exploratory data analysis we can see that further analysis can be done by considering tips and ratings of all the venues. We could also look at successful countries in vacations and do a cluster analysis and see as to which place resembles the target place which is known to be a good vacation spot. We could also read reviews and use Natural language processing to see whether the reviews are positive or negative sentiment

Conclusion

From the following report and analysis that we have conducted it is the results show that Dubai among Paris, New York and Kuala Lumpur is the vacation destination as it scored most in all relevant categories and had the highest score. Due to Dubai's many outdoor activities and 5 star hotels and amazing Metro travel station it is clear that it deserves first place.