Exercice 1

Montrons d'abord que la somme A+C est directe. Soit $x\in A\cap C$, comme $x\in C$, on a forcément $x\in B$ (car $C\subset B$), ainsi $x\in A\cap B$, mais on a aussi $x\in C$ et $(A\cap B)\oplus C=B$, donc $x=0_E$.

Montrons que A+C=A+B. Comme $C\subset B$, on a bien sûr $A+C\subset A+B$. Montrons l'inégalité réciproque :

Soit $x \in A + B$, alors il existe $x_A \in A$ et $x_B \in B$ tels que $x = x_A + x_B$. Mais $B = (A \cap B) + C$, donc il existe $x_{A \cap B} \in A \cap B$ et $x_C \in C$ tels que $x_B = x_{A \cap B} + x_C$

Ainsi
$$x = \underbrace{x_A + x_{A \cap B}}_{\in A} + x_C \in A + C.$$

Exercice 2

Montrons que $A \cap (B \cap C) = \{0_E\}$. Soit donc $x \in A \cap (B \cap C)$. Alors $x \in (A \cap B) \cap C$, et comme

A est en somme directe avec B, donc $A \cap B = \{0_E\}$, donc $x \in \{0_E\} \cap C = \{0_E\}$, donc $x = 0_E$.

Montrons maintenant que $C = A + (B \cap C)$

- Soit $x \in C$, alors $x \in E$, donc $\exists (x_A, x_B) \in A \times B$ tell que $x = x_A + x_B$, et $A \subset C$, donc $x_A \in C$ Ainsi comme C est un sev, on a $x - x_A \in C$, donc $x_B \in C$. Ainsi $x_B \in B \cap C$, donc $x \in A + (B \cap C)$
- Soit $x \in A + (B \cap C)$, alors $\exists (x_A, x_{B \cap C}) \in A + (B \cap C)$, $x = x_A + x_{B \cap C}$ Or $A \subset C$, donc $x_A \in C$, et $x_{B \cap C} \in B \cap C \subset C$ Or C est un sev, donc $x \in C$.

Exercice 3

1) Montrons que F est un sev de E.

La fonction nulle est évidemment π -périodique, reste à prouver que toute combinaison linéaire de fonction π -périodique l'est également.

Soient f et g deux fonction π -périodiques, alors $\forall x \in \mathbb{R}, f(x+\pi) = f(x)$ et $g(x+\pi) = g(x)$. Ainsi $\forall \lambda \in \mathbb{R}$,

$$(\lambda f + g)(x + \pi) = \lambda f(x + \pi) + g(x + \pi) = \lambda f(x) + g(x) = (\lambda f + g)(x)$$

Ainsi toute combinaison linéaire de fonctions de F est un élément de F. Donc F est un sev de E.

Montrons que G est un sev de E.

La fonction nulle tend évidemment vers 0 en $+\infty$.

Soient $f, g \in G, \lambda \in \mathbb{R}$.

Alor

$$(\lambda f + g)(x) = \lambda f(x) + g(x) \xrightarrow[x \to +\infty]{} 0$$

Donc toute combinaison de fonctions de G est élément de G. Donc G est un sev de E

2) Soit $f \in F \cap G$. Alors $f(x) \xrightarrow[x \to +\infty]{} 0$ et $f(x + \pi) = f(x)$ pour tout $x \in \mathbb{R}$

On peut prouver très facilement que $\forall n \in \mathbb{N}, f(x + n\pi) = f(x)$

Ainsi comme $f \in G$, on a :

$$f(x+n\pi) \xrightarrow[n\to+\infty]{} 0$$

Donc $\forall x \in \mathbb{R}$, f(x) = 0, c'est-à-dire f est la fonction nulle.

Ainsi $F \cap G \subset \{0_E\}$, et l'autre implication est triviale.

Donc $F \cap G = \{0_E\}$.

3) Soit h la fonction définie sur $\mathbb R$ telle que $\forall x \in \mathbb R, h(x) = x$. Montrons que h ne peut pas s'écrire comme élément de la somme F+G. Soient $(f,g) \in F \times G$, telles que h=f+g. $\forall n \in \mathbb N$, on a $h(n\pi) = f(n\pi) + g(n\pi) = f(0) + g(n\pi) \xrightarrow[n \to +\infty]{} f(0) \in \mathbb R$ Or $h(n\pi) \xrightarrow[n \to +\infty]{} + \infty$. C'est absurde, donc F et G ne sont pas en somme directe.

Exercice 4

1) On ne va en démontrer qu'une, puisque toutes les démonstrations suivent le même schéma. Soit $u=(u_1,u_2,u_3,u_4)\in F\cap G$, alors $\exists a,b,c,d\in\mathbb{R}$, tels que

$$u = a(u_1 + u_2) + bu_3 = c(u_1 + u_3) + du_4$$

 $car u \in F \text{ et } u \in G.$

Ainsi, on a aussi $(a - c)u_1 + au_2 + (b - c)u_3 - du_4 = 0$

Mais la famille (u_1, u_2, u_3, u_4) est libre, donc

$$a - c = a = b - c = 0$$

Et donc a = b = c = d = 0

On en déduit u=0, donc $F\cap G\subset \{0_E\}$, et l'implication réciproque et évidemment triviale.

2) Le seul moyen que nous disposons pour prouver qu'une somme n'est pas directe et de trouver plusieurs décompositions d'un même vecteur dans F + G + H.

On peut par exemple remarquer que $u_1 = \underbrace{-u_3}_{\in F} + \underbrace{u_1 + u_3}_{\in G} + \underbrace{0}_{\in F} = \underbrace{0}_{\in F} + \underbrace{(-u_4)}_{\in G} + \underbrace{u_1 + u_4}_{\in H}$