Laboratorio di Fisica 3 BASE

Proff. D. Nicolò, C. Roda

Esercitazione N. 3 Amplificatore a transistor.

Scopo dell'esperienza

Realizzare e caratterizzare un amplificatore a transistor usando un transistor NPN 2N2222. Per i dettagli vedere il data-sheet disponibile nella Documentazione tecnica nel folder "Transistor BJT". Sono riportate in calce alla scheda le formule necessarie per

calcolare le quantità rilevanti nel circuito. Lo schema del circuito è mostrato in figura e le sue caratteristiche principali sono:

2N2222 Transistor Pinout

- alimentazione $V_{CC} = 5V$, $V_{EE} = -5V$;
- corrente di quiescenza di collettore di circa 1 mA;
- guadagno in tensione per frequenze 1-10 kHz intorno a 10.

Identificazione dei terminali del transistor.

Osservando il componente dall'alto e con la faccia piana alla vostra destra, i terminali sono nell'ordine dall'alto verso il basso C, B, E (si veda l'immagine in alto).

ATTENZIONE; Il pinout riportato sul data-sheet **non** è CONFORME a quello del componente presente nei kit. Per questo aspetto fate ESCLUSIVO riferimento alla figura in alto.

Montaggio del circuito e verifica del punto di lavoro.

Seguire i seguenti punti per il montaggio del circuito in figura:

- prima di iniziare a montare il circuito fatevi un progetto di come fare i collegamenti sulla basetta tenendo conto di tutti i componenti (in particolar modo tenendo conto del fatto che le resistenze di alcuni rami del circuito dovranno essere ottenute combinando in serie o in parallelo alcuni resistori disponibili nei kit);
- trovate i seguenti componenti:
 - \circ Rc=5.1 k Ω
 - \circ R_E=0.5 kΩ (da ottenere con due resistenze da 1kΩ in parallelo)
 - C_{IN}=220 nF
 - \circ Cout= 100 nF
 - \circ R₁=71 kΩ (da ottenere collegando in serie due resistenze da 51 kΩ e 20 kΩ)
 - \circ R₂=10 k Ω
- tutti i componenti o loro combinazioni devono essere preliminarmente misurati con il multimetro.

1. Verifica del punto di lavoro

Per questo punto lasciare V_{IN} scollegato dall'ingresso del circuito.

a. Utilizzare il multimetro digitale per misurare le componenti quiescenti (V_{BE}Q, V_{CE}Q, I_CQ) al punto di lavoro, confrontandole con i valori attesi, e verificare che il punto di lavoro si trovi circa a metà della retta di carico.

Nota: Ogni misura di corrente (da qui e fino alla fine del corso, salvo avviso contrario) deve essere ottenuta come rapporto tra la misura della d.d.p. misurata ai terminali di una resistenza inserita in quel ramo e la misura della stessa resistenza.

b. Stimare il valore di h_{FE} dal rapporto tra la corrente di collettore e quella di base, quest'ultima ottenuta dalla differenza tra le correnti attraverso R₁ (I₁) ed R₂ (I₂). Verificare che la corrente di base sia almeno un ordine di grandezza inferiore ad I₁ ed I₂, come necessario per un partitore "stiff".

2. Misura del guadagno dell'amplificatore a centro banda

Inviare in ingresso un segnale di frequenza 10 kHz ed osservare all'oscilloscopio i segnali di ingresso ed uscita. In particolare:

- a. verificare l'inversione di fase del segnale in uscita;
- **b.** misurare il guadagno $A_V = (V_{OUT}/V_{IN})$ per piccoli segnali (atteso circa 10) variando opportunamente l'ampiezza di V_{IN} e riportando le ampiezze (V_{IN} , V_{OUT} e relativi errori) in una tabella e in un grafico;
- c. verificare la linearità del circuito e i suoi limiti;
- **d.** discutere l'effetto di *clipping* del segnale di uscita (taglio dei segnali elevati) discutendo la sua simmetria e la relazione con la posizione del punto di lavoro sulla retta di carico.

3. Risposta in frequenza

- a. Utilizzando il "Network Analyzer", misurare la risposta in frequenza del circuito tra circa $10~{\rm Hz}$ e $10~{\rm MHz}$ avendo fissato l'ampiezza di $V_{\rm IN}$ a $200~{\rm mV}$.
- **b.** Determinare le frequenze di taglio dell'amplificatore (spiegando il metodo utilizzato).
- **c.** Confrontare la frequenza di taglio inferiore con la frequenza attesa.
- **d.** Discutere qualitativamente la dipendenza della frequenza di taglio superiore dalle caratteristiche reali del transistor ad alta frequenza.

Formule utili per il funzionamento del circuito amplificatore a transistor escludendo i condensatori di ingresso ed uscita.

$$\begin{split} A_{V} &= -\frac{R_{C}}{R_{E} + h_{ie}/h_{fe}} \approx -\frac{R_{C}}{R_{E}} \\ I_{C}^{Q} &= \frac{V_{BB} - V_{BE}^{Q}}{R_{E} + R_{BB}/h_{FE}}, \quad \text{con } V_{BB} \equiv \frac{V_{CC} - V_{EE}}{1 + R_{1}/R_{2}}, \quad R_{BB} \equiv R_{1} \parallel R_{2} \\ V_{CE}^{Q} &= V_{CC} - V_{EE} - (R_{C} + R_{E})I_{C}^{Q} \\ Z_{IN} &= (h_{ie} + h_{fe}R_{E}) \parallel R_{BB} \\ Z_{OUT} &= R_{C} \end{split}$$