Deep Generative Models

Lecture 8

Roman Isachenko

Autumn, 2022

Let our data y comes from discrete distribution $\Pi(y)$.

Discrete model

- ▶ Use **discrete** model (e.x. $P(\mathbf{y}|\theta) = \mathsf{Cat}(\pi(\theta))$).
- ▶ Minimize any suitable divergence measure $D(\Pi, P)$.

Continuous model

Use **continuous** model (e.x. $p(\mathbf{x}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{x}), \sigma_{\theta}^2(\mathbf{x}))$), but

- ▶ **discretize** model (make the model outputs discrete): transform $p(\mathbf{x}|\theta)$ to $P(\mathbf{y}|\theta)$;
- **dequantize** data (make the data continuous): transform $\Pi(y)$ to $\pi(x)$.

Model discretization through CDF

$$F(\mathbf{x}|\boldsymbol{\theta}) = \int_{-\infty}^{\mathbf{x}} p(\mathbf{x}'|\boldsymbol{\theta}) d\mathbf{x}'; \quad P(\mathbf{y}|\boldsymbol{\theta}) = F(\mathbf{y} + 0.5|\boldsymbol{\theta}) - F(\mathbf{y} - 0.5|\boldsymbol{\theta})$$

Salimans T. et al. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications, 2017

Uniform dequantization bound

Let dequantize discrete distribution $\Pi(\mathbf{y})$ to continuous distribution $\pi(\mathbf{x})$ in the following way: $\mathbf{x} = \mathbf{y} + \mathbf{u}$, where $\mathbf{u} \sim U[0,1]$.

Theorem

Fitting continuous model $p(\mathbf{x}|\theta)$ on uniformly dequantized data is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{y}|\boldsymbol{ heta}) = \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{ heta}) d\mathbf{u}$$

Variational dequantization bound

Introduce variational dequantization noise distribution $q(\mathbf{u}|\mathbf{y})$ and treat it as an approximate posterior.

$$\log P(\mathbf{y}|oldsymbol{ heta}) \geq \int q(\mathbf{u}|\mathbf{y}) \log rac{p(\mathbf{y}+\mathbf{u}|oldsymbol{ heta})}{q(\mathbf{u}|\mathbf{y})} d\mathbf{u} = \mathcal{L}(q,oldsymbol{ heta}).$$

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}].$$

ELBO surgery

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta)}_{\text{Reconstruction loss}} - \underbrace{\mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - \textit{KL}(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Optimal prior

$$KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior distribution p(z) is aggregated posterior q(z).

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, I) \Rightarrow$ over-regularization;
- ▶ $p(z) = q_{agg}(z) = \frac{1}{n} \sum_{i=1}^{n} q(z|x_i) \Rightarrow$ overfitting and highly expensive.

ELBO revisiting

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\boldsymbol{\theta}) = \mathsf{RL} - \mathsf{MI} - \mathcal{KL}(q_{\mathsf{agg}}(\mathbf{z})||p(\mathbf{z}|\boldsymbol{\lambda}))$$

It is Forward KL with respect to $p(\mathbf{z}|\lambda)$.

ELBO with flow-based VAE prior

$$\begin{split} \mathcal{L}(\phi, \theta) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}|\lambda) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \underbrace{\left(\log p(f(\mathbf{z}, \lambda)) + \log \left| \det(\mathbf{J}_f) \right| \right)}_{\text{flow-based prior}} - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \end{split}$$

- RealNVP with coupling layers.
- ▶ Autoregressive flow (fast $f(\mathbf{z}, \lambda)$, slow $g(\mathbf{z}^*, \lambda)$).

ELBO decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

- ► E-step of EM-algorithm: $KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},\theta)) = 0$. (In this case the lower bound is tight $\log p(\mathbf{x}|\theta) = \mathcal{L}(q,\theta)$).
- $q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x}))$ is a unimodal distribution (not expressive enough).
- NF convert a simple distribution to a complex one. Let use NF in VAE posterior.

Apply a sequence of transformations to the random variable

$$\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi}) = \mathcal{N}(\mathbf{z}|oldsymbol{\mu_{\phi}}(\mathbf{x}), oldsymbol{\sigma_{\phi}^2}(\mathbf{x})).$$

Let $q(\mathbf{z}|\mathbf{x}, \phi)$ (VAE encoder) be a base distribution for a flow model.

Outline

1. Flow-based VAE posterior vs flow-based VAE prior

2. Likelihood-free learning

3. Generative adversarial networks (GAN)

Outline

1. Flow-based VAE posterior vs flow-based VAE prior

Likelihood-free learning

3. Generative adversarial networks (GAN)

Flows in VAE posterior

- ▶ Encoder outputs base distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- Flow model $\mathbf{z}^* = f(\mathbf{z}, \boldsymbol{\lambda})$ transforms the base distribution $q(\mathbf{z}|\mathbf{x}, \phi)$ to the distribution $q(\mathbf{z}^*|\mathbf{x}, \phi, \boldsymbol{\lambda})$.
- ▶ Distribution $q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)$ is used as a variational distribution for ELBO maximization.
- ▶ Here ϕ encoder parameters, λ flow parameters.

Flow model in latent space

$$\log q(\mathbf{z}^*|\mathbf{x}, \boldsymbol{\phi}, \boldsymbol{\lambda}) = \log q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) + \log \left| \det \left(\frac{d\mathbf{z}}{d\mathbf{z}^*} \right) \right|$$
$$\mathbf{z}^* = f(\mathbf{z}, \boldsymbol{\lambda}) = g^{-1}(\mathbf{z}, \boldsymbol{\lambda})$$

ELBO with flow-based VAE posterior

$$\mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)} \log p(\mathbf{x}|\mathbf{z}^*, \theta) - KL(q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)||p(\mathbf{z}^*)).$$

The second term in ELBO is **reverse** KL divergence with respect to $q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)$.

Flow-based VAE posterior

ELBO objective

$$\begin{split} \mathcal{L}(\phi, \theta, \boldsymbol{\lambda}) &= \mathbb{E}_{q(\mathbf{z}^* | \mathbf{x}, \phi, \boldsymbol{\lambda})} \big[\log p(\mathbf{x} | \mathbf{z}^*, \theta) + \log p(\mathbf{z}^*) - \log q(\mathbf{z}^* | \mathbf{x}, \phi, \boldsymbol{\lambda}) \big] = \\ &= \mathbb{E}_{q(\mathbf{z}^* | \mathbf{x}, \phi, \boldsymbol{\lambda})} \bigg[\log p(\mathbf{x} | \mathbf{z}^*, \theta) + \log p(\mathbf{z}^*) - \\ &- \bigg(\log q(g(\mathbf{z}^*, \boldsymbol{\lambda}) | \mathbf{x}, \phi) + \log |\det (\mathbf{J}_g)| \bigg) \bigg]. \end{split}$$

- RealNVP with coupling layers.
- ▶ Inverse autoregressive flow (slow $f(\mathbf{z}, \lambda)$, fast $g(\mathbf{z}^*, \lambda)$).
- ▶ Is it OK to use AF for VAE posterior?

Flows-based VAE prior vs posterior

Theorem

VAE with the flow-based prior $p(\mathbf{z}|\lambda)$ for latent code \mathbf{z}^* is equivalent to VAE with flow-based posterior $q(\mathbf{z}^*|\mathbf{x},\phi,\lambda)$ for latent code \mathbf{z} .

Proof

$$\begin{split} \mathcal{L}(\phi, \theta, \lambda) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \underbrace{\mathcal{K}L(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\lambda))}_{\text{flow-based prior}} \\ &= \mathbb{E}_{q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)} \log p(\mathbf{x}|f(\mathbf{z}^*, \lambda), \theta) - \underbrace{\mathcal{K}L(q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)||p(\mathbf{z}^*))}_{\text{flow-based posterior}} \end{split}$$

(Here we use Flow KL duality theorem from Lecture 5 and LOTUS)

- ▶ IAF posterior decoder path: $\mathbf{z} \sim p(\mathbf{z})$, $\mathbf{x} \sim p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- AF prior decoder path: $\mathbf{z}^* \sim p(\mathbf{z}^*)$, $\mathbf{z} = f(\mathbf{z}^*, \lambda)$, $\mathbf{x} \sim p(\mathbf{x}|\mathbf{z}, \theta)$.

Flows-based VAE prior vs posterior

Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016 image credit: https://courses.cs.washington.edu/courses/cse599i/20au

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\pmb{\mu}_{\phi}(\mathsf{x}),\pmb{\sigma}_{\phi}^2(\mathsf{x})).$$

Outline

1. Flow-based VAE posterior vs flow-based VAE prior

2. Likelihood-free learning

3. Generative adversarial networks (GAN)

Likelihood based models

Is likelihood a good measure of model quality?

Poor likelihood Great samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x} | \mathbf{x}_i, \epsilon \mathbf{I})$$

For small ϵ this model will generate samples with great quality, but likelihood will be very poor.

Great likelihood Poor samples

$$p_2(\mathbf{x}) = 0.01p(\mathbf{x}) + 0.99p_{\mathsf{noise}}(\mathbf{x})$$

$$egin{aligned} \log\left[0.01p(\mathbf{x})+0.99p_{\mathsf{noise}}(\mathbf{x})
ight] \geq \\ \geq \log\left[0.01p(\mathbf{x})
ight] = \log p(\mathbf{x}) - \log 100 \end{aligned}$$

Noisy irrelevant samples, but for high dimensions $\log p(\mathbf{x})$ becomes proportional to m.

Likelihood-free learning

- Likelihood is not a perfect quality measure for generative model.
- Likelihood could be intractable.

Where did we start

We would like to approximate true data distribution $\pi(\mathbf{x})$. Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Imagine we have two sets of samples

- \triangleright $S_1 = \{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real samples;
- \triangleright $S_2 = \{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\boldsymbol{\theta})$ generated (or fake) samples.

Two sample test

$$H_0: \pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}), \quad H_1: \pi(\mathbf{x}) \neq p(\mathbf{x}|\boldsymbol{\theta})$$

Define test statistic $T(S_1, S_2)$. The test statistic is likelihood free. If $T(S_1, S_2) < \alpha$, then accept H_0 , else reject it.

Likelihood-free learning

Two sample test

$$H_0: \pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}), \quad H_1: \pi(\mathbf{x}) \neq p(\mathbf{x}|\boldsymbol{\theta})$$

Desired behaviour

- \triangleright $p(\mathbf{x}|\theta)$ minimizes the value of test statistic $T(S_1, S_2)$.
- It is hard to find an appropriate test statistic in high dimensions. $T(S_1, S_2)$ could be learnable.

Generative adversarial network (GAN) objective

- ▶ **Generator:** generative model $\mathbf{x} = G(\mathbf{z})$, which makes generated sample more realistic. Here $\mathbf{z} \sim p(\mathbf{z})$, $\mathbf{x} \sim p(\mathbf{x}|\theta)$.
- ▶ **Discriminator:** a classifier $D(\mathbf{x}) \in [0,1]$, which distinguishes real samples from generated samples.

$$\min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log (1 - D(\mathbf{x})) \right]$$

Outline

1. Flow-based VAE posterior vs flow-based VAE prior

Likelihood-free learning

3. Generative adversarial networks (GAN)

Generative models zoo

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$.

Proof (fixed G)

$$V(G, D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x}))$$

$$= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta}) \log(1 - D(\mathbf{x})\right]}_{y(D)} d\mathbf{x}$$

$$\frac{dy(D)}{dD} = \frac{\pi(\mathbf{x})}{D(\mathbf{x})} - \frac{p(\mathbf{x}|\boldsymbol{\theta})}{1 - D(\mathbf{x})} = 0 \quad \Rightarrow \quad D^*(\mathbf{x}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}$$

GAN optimality

Proof continued (fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)} + \mathbb{E}_{p(\mathbf{x}|\theta)} \log \frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}$$

$$= KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2}\right) + KL\left(p(\mathbf{x}|\theta)||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2}\right) - 2\log 2$$

$$= 2JSD(\pi(\mathbf{x})||p(\mathbf{x}|\theta)) - 2\log 2.$$

Jensen-Shannon divergence (symmetric KL divergence)

$$JSD(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) + KL\left(p(\mathbf{x}|\boldsymbol{\theta})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) \right]$$

Could be used as a distance measure!

$$V(G^*, D^*) = -2 \log 2$$
, $\pi(\mathbf{x}) = p(\mathbf{x}|\theta)$, $D^*(\mathbf{x}) = 0.5$.

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$. Expectations

If the generator could be **any** function and the discriminator is **optimal** at every step, then the generator is **guaranteed to converge** to the data distribution.

Reality

- Generator updates are made in parameter space, discriminator is not optimal at every step.
- Generator and discriminator loss keeps oscillating during GAN training.

GAN

Let futher assume that generator and discriminator are parametric models: $D(\mathbf{x}, \phi)$ and $G(\mathbf{z}, \theta)$.

Objective

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}, \boldsymbol{\phi}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z}, \boldsymbol{\theta}), \boldsymbol{\phi})) \right]$$

- ightharpoonup $z \sim p(z)$ is a latent variable.
- $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} G(\mathbf{z}, \boldsymbol{\theta}))$ is deterministic decoder (like NF).
- ▶ We do not have encoder at all.

Summary

▶ It is possible to use flows in VAE prior and posterior. This is almost the same.

Likelihood is not a perfect criteria to measure quality of generative model.

Adversarial learning suggests to solve minimax problem to match the distributions.

GAN tries to optimize Jensen-Shannon divergence (in theory).