

應用機器學習

Brian Chan 陳醒凡

關於我:

我是 Brian, 陳醒凡

土生土長的香港人、80後

肖景: BBA in Finance; MSc in Fin. Math.; PhD in Systems Engineering

職業:目前在對沖基金公司從事計量研究工作

研究興趣: 金融數據分析、資產定價和交易策略開發

申報...

為什麼要任教 這門課程?

- 1. 有趣
- 分享我學到的知識並推動自己梳理一下對機器 學習的所知所學
- 3. 傳授有用的數據處理和機器學習工具

課程目標

- 1. 了解基本的數據分析
- 2. 了解基本的機器學習(Machine Learning)方法
- 3. 掌握Python的基本操作和一些有用的package
- 4. 處理及從網上下載數據
- 5. 在Python上應用機器學習

MY PLAN (暫定)

課堂內容

第一課 講解機器學習的分類及經典應用例子

第二課 講解 Python 的基本應用

第三課 講解如何以 Python 作數據處理及常見問題

第四課 教授迥歸法(Regression)及其應用例子

第五課 教授分類法(Classification)及其應用例子

第六課 教授分群法(Clustering)及其應用例子

第七課 機器學習模型的評估方法(Model Evaluation)

第八課 總結各種機器學習模型及其在基金公司內部的應用例子

第九課 介紹人工神經網路(Artificial Neural Network)及其應用例子

MY PLAN (暫定)

課堂內容

第一課 講解機器學習的分類及經典應用例子

第二課 講解 Python 的基本應用

第三課 講解如何以 Python 作數據處理及常見問題 + 網路爬蟲 (Web scrapping) + Mysql 資料庫

第四課 教授迥歸法(Regression)及其應用例子 (e.g.紅酒評分和股票對沖)

第五課 教授分類法(Classification – Bayesian Classifier)及其應用例子 (e.g."誰在說謊")

第六課 教授分群法(Clustering – K mean classifier)及其應用例子

第七課機器學習模型的評估方法(Model Evaluation)

第八課 總結各種機器學習模型及其在基金公司內部的應用例子

第九課 介紹人工神經網路(Artificial Neural Network)及其應用例子

今天課堂 概要

- 1. 什麼是機器學習?機器學習的「前世今生」
- 2. 人工智能技術的前沿
- 3. 機器學習方法概述
- 4. 機器學習的編程語言比較
- 5. 關於機器學習的一些關鍵概念
- 6. 互動示範 (K-means集群)

什麼是 機器學習?

- 主要是設計和分析一些讓電腦可以自動「學習」的演算法。
- 從數據中自動分析獲得規律,並利用規律對未知數據進行預測的 演算法。
- 多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、計算 複雜性理論等多門學科。
- 因為學習演算法中涉及了大量的統計學理論,機器學習與推斷統計學聯絡尤為密切,也被稱為統計學習理論。
- 機器學習已廣泛應用於數據探勘、電腦視覺、自然語言處理、生物特徵辨識、搜尋引擎、醫學診斷、檢測信用卡欺詐、證券市場分析、DNA序列測序、語音和手寫辨識、戰略遊戲和機械人等領域。

Source: https://zh.wikipedia.org/zh-

hk/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92

機器學習的「前世今生」

世界第二次大戰(1939-45)

統計學與運籌學

人工智能的前沿

1. Twitter訊息(文本分析)

Natural Language Processing 自然語言處理

2. 圍棋比賽(AlphaGo / AlphaGo Zero)Reinforcement Learning 強化學習

3. AI照片生成器

Generative adversarial networks 生成性對抗性網絡

4. 圖像處理(計算抗議人數)

Pattern recognition (Deep learning) 深度學習

1. TWITTER訊息

https://news.cnyes.com/news/id/3054033

"Twitter mood predicts the stock market",

Journal of computational science 2 (2011) 1-8

〈分析〉Twitter情緒指數 果真是預測市場走勢新法寶?

領亨網編譯李業德 綜合外電 2012/02/20 21:57

以Twitter分析大眾情緒,可預測股市走勢。(圖為Twitter首頁)

市場研究機構 MarketPsych 主管 Richard Peterson 約在8年前,便對避險基金經理人們宣稱,社交媒體可用以預測股市走向,但當時觀念過於新穎難為人接受。

Peterson 主張, 社交媒體的動向可用以網羅民眾想法以及觀感, 而這些資訊可轉化為有力的投資理念。

經理人們對他說到:「你瘋了,基金怎麼可能分析社交媒體?」沒有人認真考量他的觀點。

	date	user_loc	message	full_name	country	country_code
0	2018-04- 09 23:52:02	London, England	look back today the first time paul ryan said "" without hint irony	Wandsworth, London	United Kingdom	GB
1	2018-04- 09 23:56:39	NaN	paul ryan and mitch mcconnell are big sissies	Pennsylvania, USA	United States	US
2	2018-04- 09 23:57:41	Florida, USA	were are mcconell and paul ryan your silence sickening	Boynton Beach, FL	United States	
3	2018-04- 10 00:00:04	New York City	over under paul ryan potus cinco impeacho	Manhattan, NY	United States	
4	2018-04- 10 00:03:42	Miami, FL	where are paul ryan mitch mcconnell	Miami, FL	United States	

Public Sentiment on Twitter vs Facebook Stock Price

no_pauls

[look, back, today,

without, hint, irony]

[mitch, mcconnell,

big, sissies]

first, time, said,

tokens

[', look, back, today, first,

time, paul, ryan, said, ", ",

[paul, ryan, mitch, mcconnell,

without, hint, irony]

big, sissies]

geo_code

[-0.19372,

51,4516561

[-77.604684,

41.117936]

Average Sentiment over time & market price 18 May: 10am - 1pm ET

Trading on Sentiment: The Power of Minds Over Markets Book by Richard L. Peterson

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119219149

U.S. Social Sentiment Index

Measuring the content of millions of Twitter messages each hour is one way to gauge the nation's changing mood in near-real time. Here, the Wall Street Journal and IHS Markit have plotted that sentiment, comparing it to recent norms. How this is determined

By WSJ Graphics

Last updated June 21, 2019 at 8:08 a.m. ET

Related article: A New Index Tracks Our National Mood One Tweet at a Time

U.S. SENTIMENT, FOR 11 A.M. ET

92 -2 pts.

Lower than the ave

This section, updated hourly, compares current sentiment to the historical average.

http://graphics.wsj.com/twitter-sentiment/

24 HOURS 7 DAYS 30 DAYS

SENTIMENT BY STATE

U.S. average: 92 (24 hours through 11 a.m. ET on Feb. 2, 2019)

AK										ME
									VT	NH
WA	ID	МТ	ND	MN		МІ		NY	MA	RI
OR	UT	WY	SD	IA	WI	IN	ОН	PA	И	СТ
CA	NV	со	NE	МО	IL	KY	wv	VA	MD	DE
	AZ	NM	KS	AR	TN	NC	sc	DC		
			ОК	LA	MS	AL	GA			
Н			тх					FL		

MOST POSITIVE STATES

State	Sentiment Index	vs. U.S. average
Ark.	100	+8
Neb.	98	+6
S.D.	98	+6
Ala.	97	+5
N.D.	97	+5
Iowa	96	+4
Idaho	96	+4
Utah	95	+3
N.H.	95	+3
Vt.	95	+3

Five highest scores shown

MOST NEGATIVE STATES

State	Sentiment Index	vs. U.S. average
Del.	87	-5
N.M.	88	-4
La.	88	-4
Va.	88	-4
Md.	88	-4
D.C.	89	-3
Alaska	90	-2
Texas	90	-2
Mich.	90	-2
Conn.	91	-1
S.C.	91	-1
Ariz.	91	-1
Fla.	91	-1
Miss.	91	-1
N.J.	91	-1
Wash.	91	-1
Ga.	91	-1

Five lowest scores shown

The sentiment of U.S. twitter users as measured by the U.S. Social Sentiment Index

THE WALL STREET JOURNAL

 $\frac{\text{https://blogs.wsj.com/economics/}2017/05/08/\text{a-new-index-tracks-our-national-mood-one-tweet-at-a-time/}$

http://graphics.wsj.com/twitter-sentiment/#methodology-anchor (methodology and limitations)

2. ALPHAGO ZERO — REINFORCEMENT LEARNING

Google DeepMind研發的AlphaGo:

在2016年3月,AlphaGo以4:1戰胜韓國頂尖棋手李世乭九段,讓AI成為了目前最熱門的話題之一。

在2017年5月,新版AlphaGo以3:0戰勝當今世界圍棋第一人,中國的柯潔九段。所有棋手都同意它已全面勝過人類,但它仍需要人類棋譜作為訓練的前期輸入。

在2017年10月,名為AlphaGo Zero的最新版已能完全脫離人類棋譜,從零開始,純粹依靠自我探索,自我對弈,就能實現超越此前所有版本的棋力。

在2017年12月,DeepMind還將AlphaGo Zero的方法用於國際象棋、日本將棋,稱為AlphaZero。它僅需幾個小時的訓練,就打敗了此前世界最強的程序,證明AlphaGo方法的通用性極強。

AlphaGo Zero據DeepMind透露只用了四十天去訓練模型。

近來較新研發的AI 可在24小時內就能趕上學習人類棋譜的AlphaGo,並在40小時內超越與李世乭對戰的AlphaGo。

AlphaGo Zero 成功的關鍵:

- TPU (~40 GTX1018 Ti GPU)
- 2. 使用深度卷積網絡 (CNN)
- 3. 生成式對抗網絡 (Generative Adversarial Networks GAN)

Source: https://zhuanlan.zhihu.com/p/32378765

3. AI照片生成器

1. This Person Does Not Exist

https://www.thispersondoesnotexist.com/

2. Face transform

Source: https://www.theverge.com/2018/12/17/18144356/ai-image-generation-fake-faces-people-nvidia-generative-adversarial-networks-gans

Source: Youtuhttps://www.youtube.com/watch?v=kSLJriaOumA

4.圖像處理

計算遊行人數

https://hk.news.appledaily.com/local/realtime/article/20190611/59697822

機器學習 方法概覽

Source: https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

Machine Learning / Artificial Intelligence

Supervised Learning Unsupervised Learning Deep Learning Other Approaches

Regression

Classification

Clustering

Factor Analysis

Time Series

Unstructured

Reinforcement Learning

Lasso, Ridge, Loess, KNN, Spline, XGBoost Logistic, SVM, Random Forest, Hidden Markov K-means, Birch, Ward Spectral Cluster

PCA, ICA, NMF Multilayer Perceptron (MLP)
Convolutional Neural Nets (CNN)
Long Short-Term Memory (LSTM)
Restricted Boltzmann
Machine (RBM)

Semi-Supervised

Active Learning

課程範圍

機器學習方法

- 1. 迴歸模型 Regression model
- 2. 分類模型 Classification
- 3. 分群模型 Clustering

機器學習更多介紹

https://bigdatafinance.tw/index.php/tech/564-2018-03-28-09-55-07

機器學習的編程語言比較

	Speed	Support	Easy to learn (to me only!)	Popularity	Cost
Python	Fast	Best	Fair	Highest	Free
R	Slow	Good	Fair	Fair	Free
Matlab	Fast	Good	Easiest	Fair	\$800/yr

關於機器學習的一些關鍵概念

Development flow:

Data - Model - Evaluation - Apply

Over-fit vs under-fit

Over-parametrization: Penalization

Performance evaluation: Train set, Test set, Validation set

Enhancing methods: Cross Validation, Bagging, Boosting, Ensembling

開發流程

矩陣修覆

	Inside Out	Good Will Hunting	Mean Girls	Terminator	Titanic	Warrior
	INSUF BUT	COOD WILL HUNTING	DECREMAN - TRAFFEY MEANGRES	TERMINATOR	TITANIC	
Tina Fey	3	1	5	1	?	1
Helen Mirren	2	?	?	2	5	1
Sylvester Stallone	1	3	1	4	2	5
Tom Hanks	?	3	1	?	4	3
George Clooney	2	2	1	3	1	4

開發流程

- O. Source and prepare your data.
- 1. Data preprocessing
- Develop your model on data
- Select method
- Train model
- Evaluate model accuracy
- Tune hyperparameters
- 3. Model assessment: Train set, Test set and Validation set
- 4. Deploy your trained model.

These stages are iterative

過度訓練vs訓練不足

過度訓練vs訓練不足

互動演示(K-MEANS集群)

Source: http://alekseynp.com/viz/k-means.html

K-means Demonstration

K-means Demonstration

<u>Controls</u>

Iterate Algorithm Re-Initialise

Click and drag circles.

Data Generation

Method: Random Clustered ▼

Points: 1000

constant data cluster size

K-means

Clusters: 5

show history

今天課堂 總結

- 1. 什麼是機器學習?機器學習的「前世今生」
- 2. 人工智能技術的前沿
- 3. 機器學習方法概述
- 4. 機器學習的編程語言比較
- 5. 關於機器學習的一些關鍵概念
- 6. 互動示範 (K-means集群)

下一課...

Python基本操作:

- 1. 基本統計分析
- 2. 數據輸入和輸出
- 3. 有用的package (例如numpy和dataframe)
- 4. 定義函數
- 5. 製作圖表