

Overview

- Introduction to Project
- Motivation & Problem
- Timeline
- Features
- Materials
- Progress
- Blockers
- Conclusion

Introduction

- F450 drone frame kits
 - Sensors
 - o Cameras
- Microcomputers or microcontrollers
 - Trained machine learning models
- Remote control system
 - Python programming
- 3D design and printing

Motivation and Problem

- The proliferation of Unmanned Ariel Systems (UAS) has had a profound effect on commercial practices and in individual entertainment worldwide.
- The remote nature of UAS permits a ratio of drones to pilots that is far greater than one.
 It becomes necessary to move away from a traditional controller scheme and innovate.
- How do you control several drones as one person?
- What sacrifices must be made to allow this functionality?
- How do we overcome these shortcomings?

Materials

- 1x Raspberry Pi
- 1x NodeMCU ESP8266
- 1x PixHawk Flight Controller
- 1x F-450 Drone Body
- 4x Brushless Motors
- 4x Motor Electric Speed Controllers
- LiPo Battery + Dis/Charge Controller

Timeline

Features

- Commands issued from a ground control station
 - TCP commands will be encrypted via RSA
- Autonomous Flight
 - Along pre-planned routes
 - Allow deviations to the flight plan as needed
 - Follow a target once identified
 - Collison avoidance
 - Airspace awareness
- Tracking
 - Camera vs drone following

- We have done preliminary research on potential sensors that we might want to use:
 - Camera
 - Range/distance sensor
 - Thermal imager
 - IR camera w/beacon
- We have looked at 3d printing and other materials that we may need to construct some of the housing.
- Familiarization with some of the computing techniques and components that we will be using.

Blockers

- We are unsure of how to acquire all of these components
 - Do we need to submit funding for VCUR?
 - If so, do we need to attend the conference in March?
 - When will we be able to get hands on with the drone kit? Flight Controller?
- We are not sure of what sensor to get.
 - What does our specific F-450 Drone kit include for sensors?
 - How many auxiliary components
- Unsure which environment we want to program in.
 - VSCode remote extension with RPGPIO in python looks promising so far

Conclusion

Our goal is to construct and program an aerial drone to identify and track an object.
Using a variety of sensors, microcontrollers, a raspberry pi, the RPI.GPIO Python
library, and 3d printed pieces and bases, we will construct a drone with a TCP-based
control system to implement autonomous flight with mapping and route planning