4 4 Information and Information Technology

- Definition of Information
- Boole functions
- Multivalued Logic
- Signal processing of biological neurons
- Requirements of logic devices
- Physical limits of computation

4.1 Definition and Processing of Information

Reading: "Big Blue Book", General Introduction

Type of Information	Basic Set of Characters (alphabet)	Number of Basic Characters
Morse code	o – space	3
written English language	letters a b z A B Z digits 0 1 9 punctuation , . ! ?	111 printable ASCII characters
CJK-Ideograms (Chinese, Japa- nese, Korean)	examples 金 鉄 家 道	27.496 (Unicode v. 3.0)
decimal numbers	0 1 2 3 4 5 6 7 8 9	10

Alphabet (Code) = Basic set of characters of a language

Smallest, irreducible elements of a language are **characters**

binary numbers	0 1 alternatively false true other alternatives	2
hexadecimal numbers	0 1 2 3 4 5 6 7 8 9 A B C D E F	16
genetic DNA code	base groups A(denine) C(ytosine) G(uanine) T(hymine)	4
classical music	Frequencies 12 notes per octave 6 octaves Amplitudes 5 levels Duration 6 values	12 x 6 5 6
general sound	any frequency in the range 20 Hz to 20 kHz any amplitude from 0 dB to 120 dB	continuous
printed images	pixel (size depending on print technique) color	discrete or
smells	chemial compounds O volatile O excitable to olfactory nerve cells	> 10 ⁵

Information

$$I = -k \ln p$$

$$\Omega = N^m$$

$$p = \frac{1}{N^m}$$

Algebra of sets

intersection $a \cap b$

union $a \cup b$

 $\mathop{\rm complement}_{\bar{a}}$

Basic circuits

Boole's Function with two Input Variables

<i>x</i> ₀ <i>x</i> ₁	a b	0	0 1	1 0	1	realized by
f ₀ f ₁ f ₂ f ₃ f ₄ f ₅ f ₆ f ₁₀ f ₁₁ f ₁₂ f ₁₄ f ₁₅		0 0 0 0 0 0 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1	0 $x_0 \cdot x_1$ $x_0 \cdot \overline{x}_1$ x_0 $\overline{x}_0 \cdot x_1$ x_1 $x_0 \cdot \overline{x}_1 + \overline{x}_0 \cdot x_1$ $x_0 \cdot \overline{x}_1 + \overline{x}_0 \cdot \overline{x}_1$ $\overline{x}_0 \cdot \overline{x}_1$ $x_1 \cdot \overline{x}_1$ $x_1 \cdot \overline{x}_1$ $\overline{x}_1 + x_0$ \overline{x}_0 $\overline{x}_0 + x_1$ $\overline{x}_0 + \overline{x}_1$ 1

Basic circuits (cont.)

sequential logic ciruit

Multivalued logic

Reversible logic gates

- Irreversible logic gates: indispensible loss of information
- Reversible logic gates:
 no loss of information
 -> no loss of energy (ideal case)

Simplest example: NOT gate

NOT	output states		
	0	1	
input states 1 0	0 1	1 0	

C-NOT	out 00	put s 01	state 10	s <i>y</i> ₀ y ₁ 11
00 x ₀ x ₁	1	0	0	0
× 01	0	1	0	0
철 활 10	0	0	0	1
stat	0	0	1	0

CC-NOT		output states y ₀ y ₁ y ₂							
		000	001	010	011	100	101	110	111
	000	1	0	0	0	0	0	0	0
1x0x1	001	0	1	0	0	0	0	0	0
	010	0	0	1	0	0	0	0	0
	011	0	0	0	1	0	0	0	0
	100	0	0	0	0	1	0	0	0
np	101	0	0	0	0	0	1	0	0
0,	110	0	0	0	0	0	0	0	1
	111	0	0	0	0	0	0	1	0

4 4.2 Fundamentals of Logic Devices

Reading: "Big Blue Book", Introduction to Part III

Multivalued logic processing by threshold gates

Example: Full adder

Reading: "Big Blue Book", Introduction to Part III

Example:

Information processing by biological neurons

Further reading: "Big Blue Book", Chapter 6

Information processing and transfer: Generation of action potential spikes

Olfactory sensory neuron

Transfer function at the axon hillock

h(t) – binary step-like threshold function g(t) – refined function

Generic requirements of logic devices

Transfer characteristics of a logic gate (here: unity gate) showing the non-linear characteristics

Reading: "Big Blue Book", Introduction to Part III

Example CMOS Logic

Example Biological Neuron

Non-Linearity

Power Amplification

Concatenability

Feedback Supression

Feedback Supression

Basic Logic Functions

4 4.3 Physical limits of computation

Thermodynamical limit

$$W_{\text{TD,min}} = k_{\text{B}}T \ln 2 \approx 3 \cdot 10^{-21} \text{ J/bOp}$$

Quantum physics limit

$$W_{\rm QM,min} \equiv \Delta W \geq h/\Delta t$$

Average dissipated power per gate P_d vs. transition delay time t_d for T = 300K. Lines of equal energy dissipated during a logic operation:

$$W_{\rm d} = P_{\rm d} \cdot t_{\rm d}$$

Reading: "Big Blue Book", Introduction to Part III

Power dissipation of CMOS cirucits

CMOS inverter

Max. clock frequency

$$f_{\text{max}} = \beta / t_{\text{d}}$$

Transition time of the FET

$$t_{\rm d,FET} = L_{\rm ch}/v$$

Switching cycle for a CMOS inverter

Reading: "Big Blue Book", Introduction to Part III

Various properties of low power CMOS logic circuits vs. feature size *F* (DRAM ½ pitch)

Device density related properties of low power CMOS logic circuits vs. feature size *F* (DRAM ½ pitch)

Summary

- Definition of Information
 alphabet(code) = basic set of
 characters of a language; probability and information (bit)
- Boolean functions
 AND, OR, NOT; algebra of sets; generic functions
- Multivalued Logic generalized Boole fcts.;
- State variables of logic functions
 e.g. electron charge, spin, redox state, molecular configuration, phase of a wave
- Signal processing of biological neurons threshold gate; model of biological neuron
- Requirements of logic devices nonlinearity, power amplication, concatenability, feedback suppression, basic set
- Physical limits of computation electron charge
 - ⇒ ideal case: thermodynamic and quantum mech. limit
 - ⇒ real case (CMOS): scenarios as a fct of the minimum feature size F