Wydział:	Dzień:Poniedziałek 14-17		Zespół:
Fizyki	Data: 20.03.2017		8
Imiona i nazwiska:	Ocena z przygotowania:	Ocena ze sprawozdania:	Ocena końcowa:
Marta Pogorzelska			
Paulina Marikin			
Prowadzący:		Podpis:	

1 Wstęp teoretyczny

Poziomy energetyczne elektronów w atomie są skwantowane, czyli mogą przyjmować tylko określone, dyskretne wartości. Zmiana poziomu energetycznego z niższego na wyższy(wzbudzony) może zajść tylko gdy elektron otrzyma porcję energii równą różnicy między tymi poziomami. James Franc i Gustaw Hertz w swoim doświadczeniu z 1913 roku potwierdzili ten fakt, czym pomogli ugruntować kwantową teorię atomu. W swoim eksperymencie badali przewodzenie prądu przez elektrony w lampach wypełnionych gazowym neonem albo oparami rtęci. Zmiana prądu związana ze zwiększaniem energii dostarczanej do elektronów nie zachodzi w takim przypadku monotonicznie, ale rośnie i maleje w równych przedziałach czasu. Dzieje się tak gdyż atomy mogą pochłaniać energie rozpędzonych elektronów dopiero gdy osiągnie ona konkretną wartość odpowiadającą różnicy między dwoma poziomami energetycznymi.

2 Opis układu i metody pomiarowej

W skład układu pomiarowego dla lampy rtęciowej wchodzą:

- lampa rteciowa
- piec do ogrzania rtęci
- termopara z woltomierzem mierząca temperaturę rtęci
- wentylator
- zasilacz z możliwocią regulacji napięcia żarzenia, napięcia hamowania i napięcia przyspieszającego
- cztery woltomierze mierzące powyższe napięcia i napięcie anodowe

Układ pomiarowy dla noeonu jest podobny jednak nie zawiera pieca, termopary ani wentylatora, gdyż neon w temperaturze pokojowej jest w stanie gazowym. Zawiera zaś niewystępującą w zestawie rtęci siatke pozwalającą na ukierunkowanie strumienia elektronów.

W dowiadczeniu najpierw podgrzano rtęć do postaci gazowej. Następnie ustalono, stałe przez całe doświadczenie napięcie żarzenia i napięcie hamowania. Mierzone było napięcie anodowe (będące wprost proporcjonalne do prądu anodowego) w zależności o zmienianego przez eksperymentatora napięcia przyspieszającego w zakresie od 0 do 30 voltów. Doświadczenie dla neonu przebiegało analogicznie. Jedynymi różnicami był brak początkowego podgrzewania i zakres napięcia przyspieszającego od 0 do 70 voltów.

3 Wyniki pomiarów

		TT[37]	TT - [T7]
	0	U[V]	Ua[V]
	0	0.2	3.12
	1	0.5	3.18
	2	2.6	3.82
	3	3.6	3.01
	4	4.5	2.85
	5 c	5.5	3.75
	6 7	$6.6 \\ 7.6$	4.26
	8	8.2	4.11 3.69
	9		
		$9.0 \\ 9.4$	4.15
	10	9.4 10.6	4.85
	11 12	11.0	10.60 12.10
	13	11.0	12.10 13.77
	14	11.6	13.18
	15	12.5	6.42
	16	13.1	4.59
	17	13.1	4.31
	18	13.5	4.65
	19	14.2	5.69
	20	15.2	11.26
	21	15.2 15.7	16.60
	22	16.2	19.70
	23	16.2 16.4	19.89
	24	16.6	18.22
Rtęć	25	17.6	7.65
	26	18.0	5.91
	27	18.3	5.17
	28	18.9	5.87
	29	20.0	12.68
	30	20.5	18.78
	31	20.8	23.37
	32	21.1	26.53
	33	21.4	27.97
	34	21.7	26.70
	35	22.7	12.85
	36	23.2	9.50
	37	23.5	8.41
	38	23.9	9.06
	39	24.5	11.47
	40	25.1	19.38
	41	26.1	32.45
	42	26.1 26.4	34.67
	43	26.8	34.68
	44	27.2	31.35
	45	28.2	19.44
	46	28.6	19.44 17.12
	40	29.2	17.12 16.76
	48	29.2 29.5	18.05
	40	∠9.0	10.00

49

50

30.5

30.9

28.12

33.55

- 4 Analiza niepewności
- 5 Wnioski

..