TRIGONOMETRY Chapter 13

RAZONES TRIGONOMÉTRICAS

DE UN ÁNGULO EN

POSICIÓN NORMAL I

Coordenadas Geográficas

Determinan la posición del observador sobre la superficie terrestre. Aunque sabemos que la Tierra está achatada por los polos vamos a suponer, en primera aproximación, que es una esfera perfecta. Un punto cualquiera de la esfera terrestre queda determinado por dos coordenadas geográficas: la longitud y la latitud.

Cualquier plano paralelo al del ecuador, comprendido entre los polos norte, N, y sur, S, corta a la esfera en una circunferencia denominada paralelo. Las infinitas esferas que pasan por los polos N y S son los meridianos

ÁNGULO EN POSICIÓN NORMAL

DEFINICIÓN:

Es aquel ángulo trigonométrico ubicado sobre el plano cartesiano, donde :

- Vértice : Origen de coordenadas.
- Lado inicial : Semieje X positivo.
- Lado final : Se ubica en cualquier cuadrante o semieje del plano.

OBSERVACIÓN:

Representación gráfica:

La posición del lado final de un ángulo en posición normal, determina el cuadrante o semieje al cual pertenece dicho ángulo.

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL I

α: ángulo en posición normal.

x: abscisa del punto P.

y: ordenada del punto P.

r : radio vector del punto P.

$$r = \sqrt{x^2 + y^2}$$
 (r > 0)

DEFINICIONES:

senα	cosα	tanα	cotα	secα	cscα
y	X	y	X	r	r
r	r	X	<u>y</u>	X	

OBSERVACIONES:

Si
$$0^{\circ} < \alpha < 90^{\circ}$$

$$\Rightarrow$$
 $\alpha \in IC$

Si
$$90^{\circ} < \alpha < 180^{\circ}$$

$$\Rightarrow$$
 $\alpha \in IIC$

Si
$$180^{\circ} < \alpha < 270^{\circ}$$
 \Rightarrow $\alpha \in IIIC$

$$\Rightarrow \alpha \in IIIC$$

Si
$$270^{\circ} < \alpha < 360^{\circ}$$
 $\Rightarrow \alpha \in IVC$

$$\Rightarrow$$
 $\alpha \in IVC$

SIGNOS DE LAS COORDENADAS **CUADRANTE:**

Del gráfico, calcule senθ

RESOLUCIÓN

Para el punto P, tenemos:

$$x = 4$$
; $y = -3$

$$r = \sqrt{(4)^2 + (-3)^2}$$

$$r = \sqrt{16 + 9} \implies r = 5$$

Calculamos senθ:

$$sen\theta = \frac{y}{r} = -\frac{3}{5}$$

Del gráfico, calcule $\sqrt{5}$ cos α

RESOLUCIÓN

Para el punto A, tenemos:

$$\mathbf{x} = -\mathbf{4} \quad ; \quad \mathbf{y} = \mathbf{2}$$

$$r = \sqrt{(-4)^2 + (2)^2} = \sqrt{16 + 4}$$

$$\Rightarrow \mathbf{r} = \sqrt{20}$$

Luego:

$$\sqrt{5} \cos \alpha = \sqrt{5} \left(\frac{-4}{\sqrt{20}} \right) = -\frac{4\sqrt{5}}{2\sqrt{5}} = -2$$

Del gráfico, efectúe T = senΦ. cosΦ

RESOLUCIÓN

Para el punto P, tenemos:

$$x = -5$$
; $y = 2$
 $r = \sqrt{(-5)^2 + (2)^2} = \sqrt{25 + 4}$
 $\Rightarrow r = \sqrt{29}$

Calculamos T:

T = senΦ.cosΦ =
$$(\frac{2}{\sqrt{29}})(-\frac{5}{\sqrt{29}}) = -\frac{10}{29}$$

Si el punto M(6; -8) pertenece al lado final del ángulo α en posición normal; efectué K = secα + tanα

RESOLUCIÓN

Para el punto M, tenemos:

$$x = 6$$
; $y = -8$

$$r = \sqrt{(6)^2 + (-8)^2} = \sqrt{36 + 64} = \sqrt{100}$$

$$\Rightarrow \mathbf{r} = \mathbf{10}$$

Calculamos K:

K =
$$\sec \alpha + \tan \alpha = (\frac{10}{6}) + (-\frac{8}{6}) = \frac{2}{6} = \frac{1}{3}$$

Si el punto P(2; -3) pertenece al lado final del ángulo α en posición normal, efectué E = 2 tan α + $\sqrt{13}$ cos α

RESOLUCIÓN

Para el punto P, tenemos:

$$x = 2$$
; $y = -3$
 $r = \sqrt{(2)^2 + (-3)^2} = \sqrt{4+9} \implies r = \sqrt{13}$

Calculamos E:

E = 2 tan
$$\alpha$$
 + $\sqrt{13}$ cos α = 2($\frac{-3}{2}$) + $\sqrt{13}$ ($\frac{2}{\sqrt{13}}$)

$$E = -3 + 2$$

$$\therefore \mathbf{E} = -\mathbf{1}$$

Gilbert se presentó a su examen final de Geometría y Trigonometría; los puntajes A y B respectivamente, corresponden a las notas de cada materia. Averigüe en cual materia obtuvo más alto puntaje.

RESOLUCION

Para el punto P: x = -3; $y = \sqrt{7}$

$$r = \sqrt{(-3)^2 + (\sqrt{7})^2} \implies r = 4$$

A =
$$16(\frac{\sqrt{7}}{4})^2 + 12 = 16(\frac{7}{16}) + 12 = 19$$

Para el punto Q : x = 2 ; $y = -\sqrt{3}$

$$r = \sqrt{(2)^2 + (-\sqrt{3})^2} \implies r = \sqrt{7}$$

B =
$$4(\frac{\sqrt{7}}{2})^2 + 13 = 4(\frac{7}{4}) + 13 = 20$$

Milagros ha rendido sus exámenes de Lenguaje, Literatura y Razonamiento Verbal, obteniendo notas P, Q y R respectivamente . - Si para obtener dichos valores se tiene que resolver el siguiente ejercicio . - ¿ En cuál de los cursos obtuvo mayor calificación?... Datos : $P = 8\sqrt{2}$ sen $\alpha + 10$; $Q = 9\sqrt{2}$ cos $\alpha + 10$; R = 10 tan $\alpha + 10$

Recordar:

$$sen\alpha = \frac{y}{r}$$
 $cos\alpha = \frac{x}{r}$ $tan\alpha = \frac{y}{x}$

RESOLUCIÓN

❖ Calculamos coordenadas de M:

M(x;y) =
$$(\frac{-2+8}{2}; \frac{4+2}{2})$$
 = M(3;3)

$$r = \sqrt{(3)^2 + (3)^2} \implies r = 3\sqrt{2}$$

Calculamos notas:

$$P = 8\sqrt{2} \left(\frac{3}{3\sqrt{2}}\right) + 10 = 18$$

$$R = 10\left(\frac{3}{3}\right) + 10 = 20$$

$$Q = 9\sqrt{2} \left(\frac{3}{3\sqrt{2}}\right) + 10 = 19$$

