Network Design for QoS under IEEE 802.15.4 ("Zigbee") CSMA/CA for Internet of Things Applications

EECS Symposium

Abhijit Bhattacharya

Advisor: Prof. Anurag Kumar

Dept. of ECE, IISc, Bangalore

April 28, 2016

Wireless Sensor Networks and IoT

- Wireless sensor networks essential component of the emerging Internet of Things
- $\bullet \ \mathsf{Sensor} \ \mathsf{data} \to \mathsf{WSN} \to \mathsf{Gateway/sink} \to \mathsf{Internet} \to \mathsf{Cloud}$

How do we design wireless networks for interconnecting sensors in the field to the Internet with some guranteed QoS?

The Subgraph Design Problem

- Given: sensor locations, sink location, potential relay locations, fixed transmit power of the nodes
- Assume: the link qualities between the various locations known
 - Thus, there is a graph of "good" links
- Problem: select a set of potential relay locations to place relays
 - Obtain a multihop wireless network with some desired properties, e.g.,

The Subgraph Design Problem

- Given: sensor locations, sink location, potential relay locations, *fixed* transmit power of the nodes
- Assume: the link qualities between the various locations known
 - Thus, there is a graph of "good" links
- Problem: select a set of potential relay locations to place relays
 - Obtain a multihop wireless network with some desired properties, e.g., min number of relays s.t. $P[\text{end-to-end delay} \leq d_{\text{max}}] \geq p_{\text{del}}$

The Subgraph Design Problem

- Given: sensor locations, sink location, potential relay locations, fixed transmit power of the nodes
- Assume: the link qualities between the various locations known
 - Thus, there is a graph of "good" links
- Problem: select a set of potential relay locations to place relays
 - Obtain a multihop wireless network with some desired properties, e.g., min number of relays s.t. $P[\text{end-to-end delay} \leq d_{\text{max}}] \geq p_{\text{del}}$

Traffic Rate Regimes: Application Dependent

Very light traffic regime

- Environment/resource monitoring applications
- Measurements required at multiple seconds or minutes
- Essentially no inter-node contention
- In this regime, Target $p_{\text{del}} \Rightarrow \text{Hop Constraint}$

• Light to moderate traffic regime

- Sub-second measurement rates
- E.g., health monitoring
- Contention due to CSMA/CA

Theorem

To meet QoS target for light to moderate traffic regime, necessary to satisfy the same under very light traffic regime.

Very Light Traffic: Problem Formulation

- Given a graph over the sources, potential relay locations, and the sink
- Problem: Extract a subgraph spanning the sources, rooted at the sink
 - using a minimum number of relays s.t.
 - ullet Each source is connected to the sink with hop count at most $h_{
 m max}$
- Set Cover-Hard ⇒ We propose approximation algorithms
- Bhattacharya-Kumar, Elsevier Computer Networks, 2014

Network Design Algorithms: Outline

- Sequence of shortest path computations from the sources to the sink
 - Prune a relay in each iteration
 - Each time, compute a new SPT over only the remaining nodes
 - Until hop constraint is violated
- Trick is to choose which relay to prune next
- Empirical average case approx. ratio close to 1 from over 1000 randomly generated scenarios

Theorem

Worst case approx. ratio: $\min\{m(h_{\max}-1),(|R|-1)\}$, where m=# sources, $h_{\max}=$ hop constraint, and |R|=# potential relay locations

Too conservative

Average Case Analysis in a Random Geometric Graph Setting

Theorem

Average case approx. ratio, $\alpha \leq \frac{\overline{N}}{R_{Cot}}$ where,

$$\overline{\textit{N}} riangleq m \left[\textit{h}_{\sf max} - rac{1}{(1-\epsilon)^2 \textit{h}_{\sf max}^2} - \sum_{\textit{j}=2}^{\textit{h}_{\sf max}-1} rac{\emph{j}^2}{\emph{h}_{\sf max}^2}
ight] - \textit{m} + \; \textit{m} \delta(\textit{h}_{\sf max}-1)$$

$$\underline{R}_{Opt} \triangleq \left[1 - \left(\frac{h_{\mathsf{max}} - 1}{(1 - \epsilon)h_{\mathsf{max}}}\right)^{2m}\right] (1 - \delta) \sum_{i=1}^{h_{\mathsf{max}} - 1} \left(1 - \frac{\frac{n_i^2}{3}}{(1 - \epsilon)^2 h_{\mathsf{max}}^2}\right)^{m-1}$$

Multi-sink Network Deployment: An Example

- ullet Cost of each *potential* sink location, c_s
- Cost of each potential relay location, c_r

The Problem

- Extract a subgraph spanning the sources
 - using a minimum cost selection of relays and sinks s.t.
 - ullet each source has a path to at least one sink with hop count at most h_{max}
- Set Cover Hard; we employ a greedy heuristic
- Fast run-time; close to optimal solutions in practice

Multi-sink Network Deployment: An Example

- ullet Cost of each *potential* sink location, c_s
- Cost of each *potential* relay location, c_r

The Problem

- Extract a subgraph spanning the sources
 - using a minimum cost selection of relays and sinks s.t.
 - ullet each source has a path to at least one sink with hop count at most h_{max}
- Set Cover Hard; we employ a greedy heuristic
- Fast run-time; close to optimal solutions in practice
 - Bhattacharya et al., SPCOM '14

Beyond Very Light Traffic: Overview of our Approach

- Consider a very light traffic design
- Hop counts h_i , $1 \le i \le m$, being bounded by h_{max} (= 5 in the example)
- Measurement generation rate at sensors is λ pkts/s
- How large can λ be until the packet drop probability at a link exceeds a target $\overline{\delta}$?
- Develop an analytical model for IEEE 802.15.4 CSMA/CA multihop networks
 - A decoupling approximation to analyze individual node processes
 - Yields a set of fixed point equations involving time-averaged node statistics
 - Srivastava et al., Elsevier Ad Hoc Networks, 2016
- Use the model to obtain constraints on arrival rates and topology to meet QoS
 - Bhattacharya & Kumar, Elsevier Ad Hoc Networks, 2015

Beyond Very Light Traffic: Overview of our Approach

- Consider a very light traffic design
- Hop counts h_i , $1 \le i \le m$, being bounded by h_{max} (= 5 in the example)
- Measurement generation rate at sensors is λ pkts/s
- How large can λ be until the packet drop probability at a link exceeds a target $\overline{\delta}$?
- Develop an analytical model for IEEE 802.15.4 CSMA/CA multihop networks
 - A decoupling approximation to analyze individual node processes
 - Yields a set of fixed point equations involving time-averaged node statistics
 - Srivastava et al., Elsevier Ad Hoc Networks, 2016
- Use the model to obtain constraints on arrival rates and topology to meet QoS
 - Bhattacharya & Kumar, Elsevier Ad Hoc Networks, 2015

9 / 10

- $h_i \leq h_{\text{max}}, 1 \leq i \leq m$
- ullet Arrival rate at each sensor λ pkts/s
- \bullet Find maximum λ s.t. drop probability at a link at most $\overline{\delta}$
- For the light traffic regime, we obtain a design constraint

$$\lambda \sum_{i=1}^m h_i \leq B(\overline{\delta}, T)$$

- T= packet duration on the medium; $B(\cdot,\cdot)$ has an explicit formula
- Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis
- Notice that $\lambda \sum_{i=1}^{m} h_i$ is the total *offered* packet rate on the medium
- Example: T=262 symbols, $\overline{\delta}=2\% \Rightarrow B(\overline{\delta},T)=95.2$ pkts/s
- Consequence: A Shortest Path Tree is approx., throughput optimal

- $h_i \leq h_{\text{max}}, 1 \leq i \leq m$
- Arrival rate at each sensor λ pkts/s
- \bullet Find maximum λ s.t. drop probability at a link at most $\overline{\delta}$
- For the light traffic regime, we obtain a design constraint

$$\lambda \sum_{i=1}^m h_i \leq B(\overline{\delta}, T)$$

- T= packet duration on the medium; $B(\cdot,\cdot)$ has an explicit formula
- Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis
- Notice that $\lambda \sum_{i=1}^{m} h_i$ is the total *offered* packet rate on the medium
- Example: T=262 symbols, $\delta=2\%\Rightarrow B(\delta,T)=95.2$ pkts/s
- Consequence: A Shortest Path Tree is approx., throughput optimal

- $h_i \leq h_{\text{max}}, 1 \leq i \leq m$
- ullet Arrival rate at each sensor λ pkts/s
- \bullet Find maximum λ s.t. drop probability at a link at most $\overline{\delta}$
- For the light traffic regime, we obtain a design constraint

$$\lambda \sum_{i=1}^m h_i \leq B(\overline{\delta}, T)$$

- ullet T= packet duration on the medium; $B(\cdot,\cdot)$ has an explicit formula
- Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis
- Notice that $\lambda \sum_{i=1}^{m} h_i$ is the total *offered* packet rate on the medium
- Example: T=262 symbols, $\overline{\delta}=2\% \Rightarrow B(\overline{\delta},T)=95.2$ pkts/s
- Consequence: A Shortest Path Tree is approx., throughput optimal

- $h_i \leq h_{\text{max}}, 1 \leq i \leq m$
- ullet Arrival rate at each sensor λ pkts/s
- \bullet Find maximum λ s.t. drop probability at a link at most $\overline{\delta}$
- For the light traffic regime, we obtain a design constraint

$$\lambda \sum_{i=1}^m h_i \leq B(\overline{\delta}, T)$$

- ullet T= packet duration on the medium; $B(\cdot,\cdot)$ has an explicit formula
- Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis
- Notice that $\lambda \sum_{i=1}^{m} h_i$ is the total *offered* packet rate on the medium
- Example: T=262 symbols, $\overline{\delta}=2\% \Rightarrow B(\overline{\delta},T)=95.2$ pkts/s
- Consequence: A Shortest Path Tree is approx., throughput optimal