Bases de données (organisation générale)

Répétition 4

La théorie des dépendances, normalisation, décomposition

Les décompositions: pourquoi?

Les affirmations suivantes sont-elles vraies ou fausses? Justifier.

- a) Si $X \cap Z \neq 0$ alors $\{X \rightarrow Y, Z \rightarrow W\} \vdash X \cap Z \rightarrow Y \cap W$
- b) Soit r une relation de schéma R et $X \subset R$.

 $\Pi_X(r)$ a le même nombre de tuples que r ssi X est une superclé de r.

c) $\{XY \rightarrow ZY\} \vdash X \rightarrow Z$

a) Si
$$X \cap Z \neq 0$$
 alors $\{X \rightarrow Y, Z \rightarrow W\} \vdash X \cap Z \rightarrow Y \cap W$

On aurait, par exemple:

Essayons de trouver un contre-exemple :

Ici, on a bien $EA \rightarrow BF$, $EC \rightarrow DF$, mais pas $E \rightarrow F$

b) Soit r une relation de schéma R et $X \subset R$.

 $\Pi_X(r)$ a le même nombre de tuples que r ssi X est une superclé de r.

Si $|\Pi_X(r)| = |r|$, alors $X \to R$ (donc X superclé)

Par l'absurde

Imaginons que $t_1(X) = t_2(X)$ mais $t_1(R) \neq t_2(R)$

Donc $\exists t_i^{\Pi} \in \Pi(X) \land \exists t_1, t_2 \in r : t_1 \neq t_2 \land t_1(X) = t_i^{\Pi}(X) \land t_2(X) = t_i^{\Pi}(X)$

Donc $|\Pi_X(r)| < |r|$

Ce qui rend notre hypothèse fausse.

Donc, nous avons prouvé la surjectivité.

b) Soit r une relation de schéma R et $X \subset R$. $\Pi_X(r)$ a le même nombre de tuples que r ssi X est une superclé de r.

- Si $X \to R$ (donc X superclé), alors $|\Pi_X(r)| = |r|$
- i. Est-ce que je pourrais avoir $|\Pi_X(r)| < |r|$? Non, car $\forall t_1, t_2 \in r: t_1 \neq t_2 \Rightarrow t_1(X) \neq t_2(X)$
- ii. Est-ce que je pourrais avoir $|\Pi_X(r)| > |r|$?

 Non, car une projection ne peut jamais augmenter le nombre de tuples.

Donc, nous avons prouvé l'injectivité.

Finalement, nous avons prouvé que l'hypothèse est valide, dans les deux sens.

c)
$$\{XY \rightarrow ZY\} \vdash X \rightarrow Z$$

Essayons de trouver un contre-exemple.

$$\begin{array}{cccc} X & Y & Z \\ \hline x_1 & y_1 & z_1 \\ \hline x_1 & y_2 & z_2 \end{array}$$

Donc, $\{XY \rightarrow ZY\}$ n'implique pas $X \rightarrow Z$

Trouver une relation r pour laquelle la décomposition

$$\rho = (R1, R2)$$
, avec $R1 \cap R2 \neq \emptyset$,

est sans perte mais qui ne satisfait

- ni
$$(R1 \cap R2) \rightarrow (R1 - R2)$$

- ni
$$(R1 \cap R2) \rightarrow (R2 - R1)$$
.

Trouver une relation r pour laquelle la décomposition $\rho = (R1, R2)$, avec $R1 \cap R2 \neq \emptyset$, est sans perte mais qui ne satisfait ni $(R1 \cap R2) \rightarrow (R1 - R2)$ ni $(R1 \cap R2) \rightarrow (R2 - R1)$.

Rappel : Une décomposition $\rho(R1,R2)$ est sans perte par rapport à r, si $\Pi_{R1}(r)\bowtie \Pi_{R2}(r)=r$.

Essayons d'abord de trouver une relation r qui ne satisfasse pas les dépendances de l'hypothèse :

$$\begin{array}{ccccc}
A & B & C \\
\hline
a_1 & b_1 & c_1 \\
a_2 & b_1 & c_2
\end{array}$$

La décomposition est-elle sans perte?

$$\Pi_{AB}(r) \bowtie \Pi_{BC}(r) = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_1 \end{pmatrix} \bowtie \begin{pmatrix} b_1 & c_1 \\ b_1 & c_2 \end{pmatrix}$$
$$= \begin{pmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_2 \\ a_2 & b_1 & c_1 \\ a_2 & b_1 & c_2 \end{pmatrix} \neq r$$

Et avec cette nouvelle relation?

- Les décompositions suivantes, considérées sur le schéma de relation R(A,B,C,D,E), sont-elles sans pertes par rapport à l'ensemble de dépendance $F = \{ABC \rightarrow DE, AE \rightarrow BC, AC \rightarrow E\}$?
- Conservent-elles les dépendances de *F*?
- a) $\rho = (ABDE, ACE)$
- b) $\rho = (ABCD, CDE)$

- Les décompositions suivantes, considérées sur le schéma de relation R(A,B,C,D,E), sont-elles sans pertes par rapport à l'ensemble de dépendance $F = \{ABC \rightarrow DE, AE \rightarrow BC, AC \rightarrow E\}$?
- Conservent-elles les dépendances de F?
- a) $\rho = (ABDE, ACE)$
- b) $\rho = (ABCD, CDE)$

Rappel:

ho(R1,R2) est sans perte $\div F$ si $\begin{cases} R1 \cap R2 \to R1 - R2 \in F^+, ou \\ R1 \cap R2 \to R2 - R1 \in F^+ \end{cases}$

cela implique que $\forall r$ satisfaisant F, $\rho(R1,R2)[r]$ est sans perte

 $\rho(R1,R2)$ conserve les dépendances si $\Pi_{R1}(F^+) \cup \Pi_{R2}(F^+) \vdash F$

$$F = \{ABC \rightarrow DE, AE \rightarrow BC, AC \rightarrow E\}$$

Calcul de F^+ :

$$A^{+} = A$$
 $B^{+} = B$
 $C^{+} = C$
 $D^{+} = D$
 $E^{+} = E$
 $AE^{+} = AEBCD$
 $AC^{+} = ACEBD$
 ABC^{+} ?

 $\rightarrow AC^{+} = R$

Donc,
$$F^+ = (AE \rightarrow R, AC \rightarrow R)$$

+ dérivées
+ triviales

$$F = \{ABC \to DE, AE \to BC, AC \to E\}$$

$$F^{+} = (AE \to R, AC \to R) + \text{dérivées} + \text{triviales}$$

a)
$$\rho = (ABDE, ACE)$$

 $\begin{cases} R1 \cap R2 \to R1 - R2 \in F^+, ou\\ R1 \cap R2 \to R2 - R1 \in F^+ \end{cases}$ $\rho(R1,R2) \text{ conserve les dépendances si}$ $\Pi_{R1}(F^+) \cup \Pi_{R2}(F^+) \vdash F$

 $\rho(R1,R2)$ est sans perte $\div F$ si

i. Sans perte ?
$$\begin{cases} AE \to C \in F^+? \\ AE \to BD \in F^+? \end{cases}$$

Oui (pour les deux, bien qu'un seul soit suffisant)

ii. Conserve les dépendances?

$$\Pi_{ABDE}(F^+) = \{AE \to B, AE \to D\}$$

$$\Pi_{ACE}(F^+) = \{AE \to C, AC \to E\}$$

$$ABC^+ = ABCED$$
, donc $ABC \rightarrow DE$ est conservée $AE^+ = AEBDC$, donc $AE \rightarrow BC$ est conservée $AC^+ = ACEBD$, donc $AC \rightarrow E$ est conservée

$$F = \{ABC \to DE, AE \to BC, AC \to E\}$$

$$F^{+} = (AE \to R, AC \to R) + \text{dérivées} + \text{triviales}$$

b)
$$\rho = (ABCD, CDE)$$

i. Sans perte ? $\begin{cases} CD \to AB \in F^+? \\ CD \to E \in F^+? \end{cases}$

Non, donc pas sans perte.

ii. Conserve les dépendances?

$$\Pi_{ABCD}(F^+) = \{AC \to B, AC \to D\}$$

$$\Pi_{CDE}(F^+) = \emptyset \text{ (+triviales)}$$

 $ABC^+ = ABCD$, donc $ABC \rightarrow DE$ n'est pas conservée $AE^+ = AE$, donc $AE \rightarrow BC$ n'est pas conservée $AC^+ = ACBD$, donc $AC \rightarrow E$ n'est pas conservée

$$ho(R1,R2)$$
 est sans perte \div F si
$$\begin{cases} R1\cap R2 \to R1-R2 \in F^+, ou \\ R1\cap R2 \to R2-R1 \in F^+ \end{cases}$$
 $ho(R1,R2)$ conserve les dépendances si
$$\Pi_{R1}(F^+) \cup \Pi_{R2}(F^+) \vdash F$$

Soit un schéma de relation R(A,B,C,D,E) et l'ensemble de dépendances fonctionnelles $F = \{AB \rightarrow C,CD \rightarrow E,E \rightarrow D,D \rightarrow B\}$ associé à R.

- a) La décomposition en $R_1(A, B, C)$ et $R_2(A, C, D, E)$ est-elle sans perte par rapport à F?
- b) Sinon, appliquez l'algorithme de décomposition en BCNF vu au cours. Cette décomposition est-elle sans perte? Conserve-t-elle les dépendances?

$$F = \{AB \rightarrow C, CD \rightarrow E, E \rightarrow D, D \rightarrow B\}$$

a) La décomposition en $R_1(A, B, C)$ et $R_2(A, C, D, E)$ est-elle sans perte par rapport à F?

Calcul de F^+ :

$$A^{+} = A$$

 $B^{+} = B$
 $C^{+} = C$
 $D^{+} = DB$
 $E^{+} = EDB$
 $AB^{+} = ABC$
 $CD^{+} = CDEB$
 $AD^{+} = ADBCE$
 $AE^{+} = AEDBC$

Donc,
$$F^+ = (AD \rightarrow R, AE \rightarrow R, AB \rightarrow C, CD \rightarrow EB, E \rightarrow DB, D \rightarrow B)$$

+ dérivées
+ triviales

$$F = \{AB \to C, CD \to E, E \to D, D \to B\}$$

$$F^+ = (AD \to R, AE \to R, AB \to C, CD \to EB, E \to DB, D \to B) + \text{dérivées} + \text{triviales}$$

$$\rho = (ABC, ACDE)$$

a) Sans perte ? $\begin{cases} AC \to B \in F^+? \\ AC \to DE \in F^+? \end{cases}$

Non \rightarrow n'est pas sans perte.

- Si R n'est pas en BCNF, soit une dépendance non triviale $X \to A$ de F^+ , où X n'est pas une super-clé.
- On décompose R en $R_1=R-A$ et $R_2=XA$ (sans perte vu le critère : $R_1\cap R_2=X$ et $R_2-R_1=A$).
- On applique l'algorithme à : $R_1, \ \pi_{R_1}(F) \qquad \qquad R_2, \ \pi_{R_2}(F)$

- b) Décomposition avec algorithme.
- i. $AB \rightarrow C$ et AB n'est pas une clé \Rightarrow $\{ R_1(A, B, C) \ avec \ \{AB \rightarrow C\} \ (OK) \}$ $\{ R_2(A, B, D, E) \ avec \ \{AD \rightarrow BE, AE \rightarrow BD, E \rightarrow DB, D \rightarrow B\} \ (KO) \}$
- $ii. \quad D \to B \text{ et } D \text{ n'est pas une cl\'e} \Rightarrow \begin{cases} R_{21}(B,D) & avec \{D \to B\} (OK) \\ R_{22}(A,D,E) & avec \{AD \to E,AE \to D,E \to D\} (KO) \end{cases}$
- $iii. \ E \rightarrow D \ \text{et E n'est pas une cl\'e} \rightarrow \begin{cases} R_{221}(D,E) \ avec \ \{E \rightarrow D\} \ (OK) \\ R_{222}(A,E) \ avec \ \{AE \rightarrow AE\} \ (OK) \end{cases}$

Dépendances conservées : $\{AB \to C, D \to B, E \to D\}$ (et $CD \to E$ n'est pas conservée) Sans perte : Oui, car application de l'algorithme.

Le schéma de relation R(A, B, C, D, E, G) est-il en 2FN, 3FN ou BCNF par rapport aux ensembles de dépendances F donnés ci-dessous? Justifier!

a)
$$F = \{ABC \rightarrow DE, AEG \rightarrow BC, AC \rightarrow EG\}$$

b)
$$F = \{AB \rightarrow CE, AC \rightarrow DG, G \rightarrow A, E \rightarrow B\}$$

c)
$$F = \{A \rightarrow B, B \rightarrow C, DE \rightarrow A\}$$

d)
$$F = \{AC \rightarrow B, CD \rightarrow E, EG \rightarrow AD, B \rightarrow CG\}$$

Rappel:

BCNF : Pour toute dépendance non triviale $X \rightarrow A$, X est une super-clé

3FN : Pour toute dépendance non triviale $X \to A$, où A est non-premier, X est une super-clé.

(attribut non premier = ne faisant partie d'aucune clé)

2FN : Pas d'attributs non premiers qui dépendent d'un sous-ensemble d'une clé

1FN: Attributs à valeur atomiques

a)
$$F = \{ABC \rightarrow DE, AEG \rightarrow BC, AC \rightarrow EG\}$$

• BCNF? Calcul des fermetures des parties gauche des dépendances

- i, $ABC^+ = ABCDEG \rightarrow clé$
- ii. $AEG^+ = AEGBCD$ → clé
- *iii.* $AC^+ = ACEGBD$ → clé → BCNF

b)
$$F = \{AB \rightarrow CE, AC \rightarrow DG, G \rightarrow A, E \rightarrow B\}$$

- BCNF? Calcul des fermetures des parties gauche des dépendances.
 - i. $AB^+ = ABCEDG \rightarrow clé$
 - ii. $AC^+ = ACDG \rightarrow \text{pas une clé}$
 - *iii.* $G^+ = GA \rightarrow \text{pas une clé}$
 - iv. $E^+ = EB \rightarrow \text{pas une clé}$
 - → pas en BCNF
- 3FN? Les dépendances problématiques en BCNF seront acceptées en 3FN si les attributs de la partie de droite sont premiers.

(premiers = faisant partie d'une clé)

Mes clés sont : AB, AE, GE, GB (à vérifier chez vous).

Si je considère $AC \to DG$, cela ne fonctionne pas en 3FN car D est non premier (les autres dépendances sont valides car G, A, $B \subset \{AB \lor GB\}$)

→ Pas en 3FN

b)
$$F = \{AB \rightarrow CE, AC \rightarrow DG, G \rightarrow A, E \rightarrow B\}$$

• 2FN? Est-ce que la partie gauche des dépendances problématiques en 3FN sont des sous-ensembles de clés?

Mes clés sont : AB, AE, GE, GB.

 $AC \rightarrow DG$, pose problème en 3FN.

AC n'est pas un sous-ensemble d'une clé.

 \rightarrow 2FN

c)
$$F = \{A \rightarrow B, B \rightarrow C, DE \rightarrow A\}$$

- BCNF? Calcul des fermetures des parties gauche des dépendances.
 - *i.* $A^+ = ABC$ → pas une clé → Pas en BCNF
- 3FN? Les dépendances problématiques en BCNF seront acceptées en 3FN si les attributs de la partie de droite sont premiers.

Mon unique clé est : DEG (à vérifier chez vous).

$$A \rightarrow B$$
, et B est non premier \rightarrow Pas en 3FN

• 2FN?

$$DE \rightarrow A$$
 avec A non premier et $DE \subset DEG$
 \Rightarrow Pas en 2FN

 \rightarrow 1FN

d)
$$F = \{AC \rightarrow B, CD \rightarrow E, EG \rightarrow AD, B \rightarrow CG\}$$

- BCNF? Calcul des fermetures des parties gauche des dépendances.
 - *i.* $AC^+ = ACBG$ → pas une clé → Pas en BCNF
- 3FN? Les dépendances problématiques en BCNF seront acceptées en 3FN si les attributs de la partie de droite sont premiers.

Mes clés sont : ACD, ACE, BD, BE, CDG, CEG (à vérifier chez vous).

Pas d'attributs non premiers

 \rightarrow 3FN

Les décompositions suivantes, considérées sur le schéma de relation R(A,B,C,D,E,G), sont-elles sans perte par rapport aux ensembles de dépendances F donnés? Conservent-elles les dépendances de F?

a)
$$F = \{AB \rightarrow E, C \rightarrow AB, E \rightarrow C, GB \rightarrow D\}$$

 $\rho = (ABED, ACEG)$
b) $F = \{AB \rightarrow C, CD \rightarrow BE, E \rightarrow A\}$
 $\rho = (ABCD, CDEG)$
c) $F = \{A \rightarrow BC, C \rightarrow CD, C \rightarrow EG, G \rightarrow A\}$
 $\rho = (ABC, CDEG)$
d) $F = \{ABC \rightarrow E, D \rightarrow C, EG \rightarrow BD, DE \rightarrow G\}$

 $\rho = (ABDG, BCDE)$

a)
$$F = \{AB \rightarrow E, C \rightarrow AB, E \rightarrow C, GB \rightarrow D\}$$

 $\rho = (ABED, ACEG)$

Sans perte?

$$AE \rightarrow BD \lor AE \rightarrow CG$$
?

Calcul de $AE^+ = AECB \rightarrow$ n'est pas sans perte.

Conserve les dépendances (calcul de F^+ à faire) ? $\Pi_{ABED}(F^+) = \{AB \to E, E \to AB\}$ $\Pi_{ACEG}(F^+) = \{C \to AE, E \to CA\}$

 $GB \rightarrow D$ n'est pas conservée.

b)
$$F = \{AB \rightarrow C, CD \rightarrow BE, E \rightarrow A\}$$

 $\rho = (ABCD, CDEG)$

Sans perte?

$$CD \rightarrow AB \vee CD \rightarrow EG$$
?

Calcul de $CD^+ = CDBEA \rightarrow$ sans perte.

Conserve les dépendances (calcul de
$$F^+$$
 à faire) ?
$$\Pi_{ABCD}(F^+) = \{AB \to C, CD \to BA\}$$

$$\Pi_{CDEG}(F^+) = \{CD \to E\}$$

 $E \rightarrow A$ n'est pas conservée.

c)
$$F = \{A \rightarrow BC, B \rightarrow CD, C \rightarrow EG, G \rightarrow A\}$$

 $\rho = (ABC, CDEG)$

Sans perte?

$$C \rightarrow AB \lor C \rightarrow DEG$$
?

Calcul de $C^+ = CEGABD \rightarrow$ sans perte.

Conserve les dépendances (calcul de
$$F^+$$
 à faire) ?
$$\Pi_{ABC}(F^+) = \{A \to BC, B \to AC, C \to AB\}$$

$$\Pi_{CDEG}(F^+) = \{C \to DEG, G \to CDE\}$$

Toutes les dépendances sont conservées.

d)
$$F = \{ABC \rightarrow E, D \rightarrow C, EG \rightarrow BD, DE \rightarrow G\}$$

 $\rho = (ABDG, BCDE)$

Sans perte?

$$BD \rightarrow AG \vee BD \rightarrow CE$$
?

Calcul de $BD^+ = BDC \rightarrow$ Pas sans perte.

Conserve les dépendances (calcul de F^+ à faire) ?

$$\Pi_{ABDG}(F^+) = \emptyset$$

$$\Pi_{BCDE}(F^+) = \{D \to C, DE \to BC\}$$

 $ABC \rightarrow E$ n'est pas conservée.