**אלגוריתמים חמדניים - מסלולים קלים ביותר** מפגש 4

### שבוע שעבר ראינו

- סיימנו סריקות בגרף (DFS,BFS)
  - מיון טופולוגי

## התוכנית להיום

- מסלולים קלים ביותר
  - אלגוריתם גנרי
- אלגוריתם דייקסטרא •

# אלגוריתמים חמדניים

# חלק ו

# מסלולים קלים ביותר בגרפים מכוונים עם מקור יחיד

# הקדמה

- נוסיף אספקט נוסף לגרף, גרף ממושקל.
  - נוספת פונקציית משקל על הקשתות:

$$w:E \to \mathbb{R}$$

- הגדרה: משקל של מסלול הינו סך משקולות הצלעות
  - : $\delta$  פונקציית מרחק

$$\delta(s,v)=\delta(v)=egin{cases} \infty, & v ext{-}\ b s & s \ v + b \end{cases}$$
אין מסלול בין  $\delta(s,v)=\delta(v)$  אחרת משקל מסלול קל ביותר מ-s ל-v, משקל מסלול אין אחרת

• הערה: במידה וקיים מעגל שלילי (=מעגל במשקל שלילי) במסלול כלשהו בין s ל- v אזי הפונקציה  $\delta$  לא מוגדרת היטב. נשלים את ההגדרה במקרה זה כ-

$$\delta(\mathbf{S}, \mathbf{V}) = -\infty$$

# בעיית מציאת מסלולים קלים ביותר בגרפים מכוונים עם מקור יחיד ומשקולות אי-שליליים

- $w:E o\mathbb{R}^+\cup\{0\}$  מכוון,  $s\in V$  קודקוד מקור. G=(V,E)
  - . אם קיים,  $v \in V$  אם למצוא: לכל  $v \in V$  אם קיים.

#### הערות

- את נחשב את המרחקים לכל  $v \in V$  ולאחר מכן נשחזר את המסלולים עצמם ע"י שימוי במרחקים הנ"ל.
  - ?לכל קשת, איך נוכל לפתור את הבעיה w(e)=c אם
    - מסלול קל ביותר הינו בהכרח מסלול פשוט.

#### טענה

- תת מסלול של מסלול קל ביותר הינו מסלול קל ביותר. (הוכחה על הלוח)
  - מסקנה: רישא של מסלול קל ביותר הינו גם מסלול קל ביותר.

#### הערה נוספת

:מתקיים (u,v) מתקיים

$$\delta(s, v) \le \delta(s, u) + w(u, v)$$

#### אלגוריתם גנרי

**Init:** 
$$\forall v \in V, d(v) \leftarrow \infty, d(s) \leftarrow 0$$

**Step:** If exists 
$$(u, v)$$
 s.t

$$d(v) > d(u) + w(u, v)$$
 do  $Relax(u, v)$ 

### Relax(u, v)

If 
$$d(v) > d(u) + w(u, v)$$

$$d(v) \leftarrow d(u) + w(u,v)$$

#### טענה נשמרת

משקל  $d(v)<\infty$  ואם  $d(v)\geq\delta(s,v)$  אזי משקל בכל שלב באלגוריתם s - ל- s מסלול כלשהו מ-

הוכחה על הלוח

## משפט נכונות האלגוריתם הגנרי

$$v \in V$$
 אם האלגוריתם עוצר אזי לכל

$$d(v) = \delta(s, v)$$

# הוכחה על הלוח

