Tarea 3

Econometría I (ECO3404) Primer Semestre 2025 Universidad Anáhuac

Analiza cómo varía el peso de los niños (variable dependiente) con su altura (variable independiente) utilizando una regresión lineal simple y la base de datos del libro *Introducción a la Ecología Experimental* de T. Lewis y L.R. Taylor (1967). En la base, el peso está en libras (1 libra = 0.45 kg), la altura en pulgadas (1 pulgada = 2.54 cm) y la edad en meses.

- En una hoja de Excel realiza lo siguiente:²
- 1. En celdas. Calcula el promedio de las variables dependiente e independiente: \bar{y} , \bar{x} .
- 2. En columna. Calcula la desviación de cada observación de la variable dependiente con respecto a su media: $y_{_i} \bar{y}$.
- 3. En columna. Calcula la desviación de cada observación de la variable independiente con respecto a su media: $x_i \bar{x}$.
- 4. En columna. Calcula el producto de las desviaciones de las variables dependiente e independiente con respecto a sus medias: $(y_i \bar{y})(x_i \bar{x})$.
- 5. En columna. Calcula el cuadrado de la desviación de cada observación de la variable independiente con respecto a su media: $(x_{i} \bar{x})^{2}$.
- 6. En celda. Calcula el estimado para β_1 dividiendo la suma de la columna del paso 4 entre la suma de la columna del paso 5: $\hat{\beta}_1 = \sum (y_i \bar{y})(x_i \bar{x}) / \sum (x_i \bar{x})^2$.
- 7. En celda. Calcula el estimado para β_0 utilizando los valores obtenidos en los pasos 1 y 6: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$.
- 8. En columna. Obtén la predicción para la variable dependiente \hat{y} utilizando los estimados $\hat{\beta}_0$ y $\hat{\beta}_1$ obtenidos en los pasos 6 y 7: $\hat{y_i} = \hat{\beta}_0 + \hat{\beta}_1 x_i$.
- 9. En columna. Obtén los residuales \hat{u} como la resta de la variable dependiente observada y la ajustada obtenida en el paso 8: $\hat{u_i} = y_i \hat{y_i}$.
- 10. En columna. Obtén el cuadrado de la desviación de la variable dependiente ajustada (paso 8) con respecto a la media de la variable dependiente (paso 1): $(\hat{y}_{i} \bar{y})^{2}$.
- 11. En columna. Obtén el cuadrado de cada uno de los residuales: $\stackrel{^{\wedge}}{u_{_{i}}}$.
- 12. En columna. Obtén el cuadrado de la desviación de la variable dependiente observada con respecto a su media (paso 1): $(y_i \bar{y})^2$.

² Revisa las fórmulas vistas en clase para confirmar cómo se obtienen los diferentes valores.

- 13. En columna. Obtén el cuadrado de cada observación de la variable independiente: x_i^2 .
- En celda. Obtén la suma de cuadrados explicada (SCE) sumando la columna del paso
 10.
- 15. En celda. Obtén la suma de cuadrados de los residuales (SCR) sumando la columna del paso 11.
- 16. En celda. Obtén la suma de cuadrados total (SCT) sumando la columna del paso 12. En otra celda, verifica que se obtiene lo mismo al sumar las celdas de los pasos 14 y 15.
- 17. En celda. Calcula el coeficiente de determinación R^2 dividiendo los valores de los pasos 14 y 16: $R^2 = SCE/SCT$. En otra celda, verifica que se obtiene el mismo valor si se calcula utilizando los valores de los pasos 15 y 16: $R^2 = 1 SCR/SCT$.
- 18. En celda. Calcula el número de observaciones: n.
- 19. En celda. Calcula los grados de libertad: n-2.
- 20. En celda. Calcula la R^2 ajustada: $R_{aj}^2 = 1 (1 R^2) * (n 1)/(n 2)$.
- 21. En celda. Estima la varianza del error σ^2 dividiendo los valores en los pasos 15 y 19: $\overset{\hat{}}{\sigma}^2 = SCR/(n-2)$.
- 22. En celda. Calcula el error estándar de la regresión (también conocido como la raíz del error cuadrático medio) como la raíz del valor obtenido en el paso 21: $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$.
- 23. En celda. Estima la varianza de $\hat{\beta}_0$ dividiendo dos productos. El numerador es el producto de $\hat{\sigma}^2$ (paso 21) y la suma de la columna del paso 13. El denominador es el producto del número de observaciones (paso 18) y la suma de la columna del paso 5.
- 24. En celda. Estima la varianza de $\hat{\beta}_1$ dividiendo $\hat{\sigma}^2$ (paso 21) entre la suma de la columna del paso 5.
- 25. En celdas. Obtén los errores estándar de $\hat{\beta}_0$ y $\hat{\beta}_1$ como la raíz cuadrada de los valores en los pasos 23 y 24.
- II. Una vez que obtengas los valores anteriores, verifica que tus resultados:
 - Son iguales a lo que genera el comando LINEST o ESTIMACION.LINEAL de Excel.
 - Satisfacen las siguientes propiedades: $\bar{y} = \bar{\hat{y}}, \sum \hat{u}_i = 0, corr(x, \hat{u}) = 0, \ \bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$.
- III. Gráfica \hat{u} del paso 9 (eje y) contra los valores ajustados \hat{y} del paso 8 (eje x) usando un diagrama de dispersión, ¿la varianza de los residuales parece constante?
- IV. Sin repetir los pasos anteriores, ¿cómo cambiarían $\hat{\beta}_0$, $\hat{\beta}_1$ y sus errores estándar si quisiéramos expresar los resultados en kilogramos y centímetros? ¿Cómo cambia el peso en kg con 1 cm adicional?