

# Learning the value of information in an uncertain world

Timothy E J Behrens<sup>1,2</sup>, Mark W Woolrich<sup>1</sup>, Mark E Walton<sup>2</sup> & Matthew F S Rushworth<sup>1,2</sup>

2020.05.11 Heesun Park

### Introduction

We make decisions based on the outcomes of similar decisions in the past.

prediction error

Reinforcement Learning Model:

$$Q(a_t) \leftarrow Q(a_t) + \alpha (r_{t+1} - Q(a_t)).$$
learning rate

- Goal: maximization of the power to predict future outcomes
- Bayesian accounts of RL
  - Learning rate should depend on the uncertainty
  - $\circ$  Volatile environment: **recent experience**>distant experience o **large** lpha
  - $\circ$  Stable environment: salient historical information  $\to$  **small**  $\alpha$

#### Methods

### Task

- One-armed bandit task
- Experiment structure (behav, first exp)
  - Stable environment (120 trial)
    - the probability of a blue being a correct color was 75%
  - Volatile environment (170 trial)
    - 80% blue and 80% green every 30 or 40 trials
  - 9: stable → volatile
  - $\circ$  9: volatile  $\rightarrow$  stable



#### Methods - First experiment

## Behavior - Bayesian Learner

- The Optimal Bayesian Learner
- k: distrust in the constancy of the volatility
- v: volatility
- r: reward probability
- y: data



#### Methods - First experiment

### Behavior - Delta rule model

Predictor - estimates the current reward rate given past observations

$$|\hat{r}_{i+1}| = \hat{r}_i + \alpha \varepsilon_i$$

• Selector - generates actions based on the estimates of predictor

$$g_{\text{blue } i+1} = \hat{r}_{i+1} f_{\text{blue } i+1}$$

$$g_{\text{green } i+1} = (1 - \hat{r}_{i+1}) f_{\text{green } i+1}$$

$$g_{\text{green } i+1} = F(\hat{r}_{i+1}, \gamma) f_{\text{blue } i+1}$$

$$g_{\text{green } i+1} = F(1 - \hat{r}_{i+1}, \gamma) f_{\text{green } i+1}$$

$$F(r, \gamma) = \max[\min[(\gamma(r-0.5) + 0.5), 1], 0]$$

$$P(C = Green) = \frac{1}{1 + \exp(-\beta(g_{green} - g_{blue}))}$$

#### Results - First experiment

## Bayesian learner and human behavior





#### Methods - Second experiment

### fMRI - Second experiment

- The same task as in the behavioral experiment (18 sub)
- Experiment structure
  - Stable: 60 trials (75% blue)
  - Volatile: 60 trials (80% blue and 80% green every 20 trials)
- DECIDE → INTERVAL → MONITOR: 3 phases in a trial
- The Anterior Cingulate Cortex (ACC)

### Volatility related activity in the ACC

- DECIDE (orange)
- MONITOR (blue)
- Volatility x MONITOR (green)



## Confounding factors

- 1. Reward attained by the subject
- 2. Switch trials
- 3. Predicted value of the chosen option
- 4. Reaction time
- Prediction error
- 6. Magnitude of prediction error
- Predicted reward likelihood
- 8. Error trials
- 9. Local variance in reward attained
- 10. The difference in value between the two options presented at the trial





## Estimated volatility and variance in r







## Estimated volatility and variance in r

a







### **Discussion**

- Implication
  - The role of the ACC
- Alternative interpretation
  - ACC related to subject arousal and changes in attention by response conflict?
- Ignorance of task structure and assumption on continuous outcome probability