Universidad Nacional de San Agustín de Arequipa

Escuela Profesional de Ciencia de la Computación

Computación Gráfica (Código: 1704146)

Semestre 2020A

Indice

I	Curriculum Vitae en Formato ICACII	. 3
2	Sílabo del Curso en Formato DUFA	. 6
3	Sílabo del Curso en Formato ICACIT	11
	Prueba de Entrada	
4.1	Evidencias	17
5	Evaluación Primer Parcial	19
5.1	Evidencias	28

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN Facultad de INGENIERÍA DE PRODUCCIÓN Y SERVICIOS Escuela Profesional de Ingeniería DE SISTEMAS

Currículum Vitae del Docente

Nombre	VICENTE ENRIQUE MACHACA ARCEDA
Educación	 Magíster en ciencias informática con mención en tecnologías de información, 2016 / Universidad Nacional de San Agustín Ingeniero de sistemas, 2017 / Universidad Nacional de San Agustín Bachiller en Ingeniería de sistemas, 2011 / Universidad Nacional de San Agustín
Experiencia Académica	 Cátedra de Postgrado; Universidad Universidad Nacional de San Agustín; 2017, 2018 Cátedra de Pregrado; Universidad Universidad Nacional de San Agustín; 2017, 2018 Cátedra de Pregrado; Universidad La Salle; 2017, 2018
Experiencia No Académica	 Vex Soluciones E.I.R.L.; Analista; 2017 - 2017. Tata Consultancy Services – Tcs; System Engennier; 2013 - 2014. Superintendencia Nacional de Aduanas y Administración Tributaria (SUNAT); IPM: 2011 – 2014. Coriing Eirl; Analista; 2011 – 2013 Ctd V&C Sac; Analista; 2010 – 2011 Regesa Scrl; Programador; 2009 – 2010
Registro Profesional	Colegio de Ingenieros del Perú, CIP: 211444
Membresía actual en organizaciones profesionales	· Colegio de Ingenieros del Perú, 2018. CIP: 211444

Honores y Premios	 Acreedor a una beca integral para estudiar una maestría en ciencias informática. Alumno revelación de la maestría en ciencias informática
Actividades de Servicio (dentro y fuera de la Institución)	
Publicaciones y Presentaciones (últimos 5 años)	Publicaciones – Artículos · Small Ship Detection on Optical Satellite Imagery with YOLO and YOLT. Presentado en: FTC 2020 - Future of Information and Communication Conference San Francisco, EEUU, 2020. · Fast Car Crash Detection. Presentado en: CLEI 2018 - The Latin American Computing Conference, São Paulo, Brasil, 2018. · Fast Face Detection in Violent Video Scenes. Publicado en: ScienceDirect. Presentado en: CLEI 2016 - The Latin American Computing Conference, Valparaiso, Chile, 2016. · Real Time Violence Detection in Video with ViF and Horn-Schunck. Publicado en: LACCEI. Presentado en: The Latin American and Caribbean Consortium of Engineering Institutions, San Jose, Costa Rica, 2016. · Optimization model for face detection in video sequences. Publicado en: LACCEI. Presentado en: The Latin American and Caribbean Consortium of Engineering Institutions, San Jose, Costa Rica, 2016. · Real Time Violence Detection in Video. Publicado en: IEEE Explore y IET Digital Library. Presentado en: International Conference on Pattern Recognition Systems, Talca, Chile, 2015.
Actividades de Desarrollo Profesional (últimos 3 años)	 Docente con experiencia en los niveles de pregrado y postgrado en diversas la Universidad Nacional de San Agustín y la Universidad La Salle. Ponencias en Conferencias Internacionales LACCEI 2018, CLEI 2016.

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

VICERRECTORADO ACADÉMICO

FACULTAD DE INGENIERIA DE PRODUCCION Y SERVICIOS DEPARTAMENTO ACADÉMICO DE INGENIERIA DE SISTEMAS E INFORMATICA

SÍLABO 2020 - A ASIGNATURA: COMPUTACION GRAFICA

1. INFORMACIÓN ACADÉMICA

Periodo académico:	2020 - A			
Escuela Profesional:	CIENCIA DE LA COMP	CIENCIA DE LA COMPUTACIÓN		
Código de la asignatura:	1704146			
Nombre de la asignatura:	COMPUTACION GRAFICA			
Semestre:	VII (séptimo)			
Duración:	17 semanas			
	Teóricas:	2.0		
	Prácticas:	2.0		
Número de horas (Semestral)	Seminarios:	0.0		
	Laboratorio:	2.0		
	Teórico-prácticas:	0.0		
Número de créditos:	: 4			
Prerrequisitos:	ESTRUCTURAS DE DATOS AVANZADOS (1703238)			
Prerrequisitos.	MATEMATICA APLICADA A LA COMPUTACION (1703241)			

2. INFORMACIÓN DEL DOCENTE, INSTRUCTOR, COORDINADOR

DOCENTE	GRADO ACADÉMICO	DPTO. ACADÉMICO	HORAS	HORARIO
MACHACA ARCEDA, VICENTE Magister INGENIERIA DE SISTEMAS E INFORMATICA		0	Mar: 14:00-15:40	
MACHACA ARCEDA, VICENTE Magister INGENIERIA	INGENIERIA DE SISTEMAS E INFORMATICA	U	Vie: 08:50-10:30	

3. INFORMACIÓN ESPECIFICA DEL CURSO (FUNDAMENTACIÓN, JUSTIFICACIÓN)

Ofrece una introducción para el área de Computación Gráfica, la cual es una parte importante dentro de Ciencias de la Computación. El propósito de este curso es investigar los principios, técnicas y herramientas fundamentales para esta área.

4. COMPETENCIAS/OBJETIVOS DE LA ASIGNATURA

Dominar tópicos y algoritmos de computación gráfica. (Resultado [a] nivel 2)

Solucionar problemas aplicando algoritmos de computación gráfica. (Resultado [a] nivel 2, Resultado [b] nivel 2)

5. CONTENIDO TEMATICO

PRIMERA UNIDAD

Capítulo I: Operadores

Tema 01: Imágenes y bits

Tema 02: Operadores: Thresholding, constraint stretching, histogram equalization, logarithm

operator, xponential operator

Capítulo II: Operaciones, Operadores morfológicos y geométricos

Tema 03: Operaciones: Suma, resta, multiplicación, división y operadores lógico

Tema 04: Geométricos: Traslación, escala, rotación, twril

Tema 05: Morfológicos: Erosión, dilatación, opening, closing

Capítulo III: Filtros

Tema 06: Filtro de media y filtro de mediana

Tema 07: Filtro Gaussiano

Tema 08: Conservative smoothing

SEGUNDA UNIDAD

Capítulo IV: Modelado en 3D

Tema 09: Introducción

Tema 10: Trazado de curvas en dispositivos matriciales

Tema 11: Rellenado de polígonos

Tema 12: Transformaciones geométricas

Tema 13: Observación de escenas 3D

Tema 14: Curvas y superficies

Tema 15: Rendering

6. PROGRAMACIÓN DE ACTIVIDADES DE INVESTIG. FORMATIVA Y RESPONSABILIDAD SOCIAL

6.1. Métodos

Expositivo en clases teóricas y desarrollo de un trabajo práctico.

6.2. Medios

Google Classroom, DUTIC, google meet.

6.3. Formas de organización

Clases teóricas, exposición de clases magistrales.

6.4. Programación de actividades de investigación formativa y responsabilidad social

Desarrollo de talleres y exposición de entregables.

7. CRONOGRAMA ACADÉMICO

SEMANA	TEMA	DOCENTE	%	ACUM.
	Imágenes y bits	V. Machaca	7	7.00
	Operadores: Thresholding, constraint stretching, histogram equalization, logarithm operator, xponential operator	V. Machaca	7	14.00
	Operaciones: Suma, resta, multiplicación, división y operadores lógico	V. Machaca	7	21.00
	Geométricos: Traslación, escala, rotación, twril	V. Machaca	7	28.00
	Morfológicos: Erosión, dilatación, opening, closing	V. Machaca	7	35.00
	Filtro de media y filtro de mediana	V. Machaca	7	42.00
	Filtro Gaussiano	V. Machaca	7	49.00
	Conservative smoothing	V. Machaca	7	56.00
	Introducción	V. Machaca	6	62.00
	Trazado de curvas en dispositivos matriciales	V. Machaca	7	69.00
	Rellenado de polígonos	V. Machaca	7	76.00
	Transformaciones geométricas	V. Machaca	6	82.00
	Observación de escenas 3D	V. Machaca	6	88.00
	Curvas y superficies	V. Machaca	6	94.00
	Rendering	V. Machaca	6	100.00

8. ESTRATEGIAS DE EVALUACIÓN

8.1. Evaluación del aprendizaje

Evaluación Continua. Práctica y Laboratorios en cada clase sobre los temas realizados, tanto para el primer parcial ´(EC1), segundo parcial (EC2) y tercer parcial (EC3).

Evaluación Periódica. Al ser un curso basado en lenguajes de programación, la evaluación periódica consta en la revisión de un trabajo de implementación.

8.2. Cronograma de evaluación

EVALUACIÓN	FECHA DE EVALUACIÓN	EXAMEN TEORÍA	EVAL. CONTINUA	TOTAL (%)
Primera Evaluación Parcial		15%	15%	30%
Segunda Evaluación Parcial		15%	15%	30%
Tercera Evaluación Parcial		20%	20%	40%
			TOTAL	100%

9. REQUISITOS DE APROBACIÓN DE LA ASIGNATURA

Para aprobar el curso se deberá haber presentado todos sus trabajos. Los trabajos o tareas deberán ser originales, la copia o plagio a cualquier tipo de nivel, o cualquier tipo de actitud deshonesta, será castigado con cero en todo el componente donde se haya detectado la copia.

10. BIBLIOGRAFIA: AUTOR, TÍTULO, AÑO, EDITORIAL

10.1. Bibliografía básica obligatoria

[1] J. Foley and A. van Dam. Computer Graphics: Principles and Practice. Addison-

Wesley, 1990.

10.2. Bibliografía de consulta

[2] D Hearn and M P Baker. Computer Graphics in C. Prentice Hall, 1994

Arequipa, 07 de Junio del 2020

MACHACA ARCEDA, VICENTE

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS

Sílabos del Curso

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

1. Nombre del curso:

Código	Nombre	Semestre	
1704146	Computación gráfica	2020-A	

2. Créditos y horas semanales:

N ^a créditos	H. Teoría	H. Práctica	Н. Т-Р	H. Lab	T. Horas
4	2	2		2	6

3. Nombre del instructor o coordinador del curso:

MSc. Vicente Machaca Arceda

- 4. Libro texto: Título, autor y año:
 - a. Obligatoria

Título	Autor	Año
Computer Graphics: Principles and Practice	J. Foley and A. van Dam	1990

b. Otros materiales suplementarios

Título	Autor	Año
Computer Graphics in C.	D Hearn and M P Baker	1994

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS

- 5. Información específica del curso:
 - a. Breve descripción del contenido del curso:

Computación gráfica y dispositivos de visualización. Animación por computadora. Trazado de curvas, relleno de polígonos y transformaciones geométricas. Observación de escenas y recorte de primitivas. Curvas y superficies, modelado de sólidos y rendering. Colores y procesamiento de imágenes.

b. Requisitos previos o correquisitos:

1703238 - Estructuras de datos avanzadas

1703241 - Matemática aplicada a la computación

c. Obligatorio o Electivo:

Obligatorio	Electivo	X
-------------	----------	---

6. Objetivos específicos del curso:

Dominar tópicos y algoritmos de computación gráfica. (Resultado [a] nivel 2) Solucionar problemas aplicando algoritmos de computación gráfica. (Resultado [a] nivel 2, Resultado [b] nivel 2)

7. Breve lista de temas a ser abordados en el curso:

Operadores punto

Operaciones, Operadores morfológicos y geométricos

Filtros

Modelado en 3D

Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Gráfica

EXAMEN DE ENTRADA

Docente: MSc. Vicente Machaca Arceda Abril, 2020

Apellidos
Nombre:
CIII.

- Con Matlab, Ocave o Numpy desarrolle: (5 puntos)
 Dadas la siguiente matriz: A = [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12; 13, 14, 15]
 Cómo obtengo la submatriz B = [2, 3; 5, 6] a partir de la matriz A
- 2. Una imagen se representa como un arreglo en 3 dimensiones, la dimensión x y y representan el ancho y alto de la imagen respectivamente, mientras que la dimensión z representa los canales de la imagen. Los canales tienen 3 valores y estos representan el color Red, Green y Blue. Desarrolle un programa que convierta la imagen a cuestión en una imagen a escala de grises, es decir, la imagen resultante tendrá 2 dimensiones. (8 puntos)

Entrada: int img[2][4][3] = $\{3, 4, 2, 3, 0, -3, 9, 11, 23, 12, 23, 2, 13, 4, 56, 3, 5, 9, 3, 5, 5, 1, 4, 9\}$; Salida:: int img_out[2][4] = ?

3. Explique que es la transformada de Fourier (7 puntos)

Universidad Nacional de San Agustín de Arequipa **Escuela Profesional de Ciencia de la Computación** Curso: Computación Gráfica

EXAMEN DE ENTRADA

Docente: MSc. Vicente Machaca Arceda Abril, 2020

Apellidos: Nombre: CUI:

Con Matlab, Ocave o Numpy desarrolle: (5 puntos)
 Dadas la siguiente matriz: A = [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12; 13, 14, 15]
 Cómo obtengo la submatriz B = [2, 3; 5, 6] a partir de la matriz A

A[0:2, 1,3]

2. Una imagen se representa como un arreglo en 3 dimensiones, la dimensión x y y representan el ancho y alto de la imagen respectivamente, mientras que la dimensión z representa los canales de la imagen. Los canales tienen 3 valores y estos representan el color Red, Green y Blue. Desarrolle un programa que convierta la imagen a cuestión en una imagen a escala de grises, es decir, la imagen resultante tendrá 2 dimensiones. (8 puntos)

```
Entrada: int img[2][4][3] = {3, 4, 2, 3, 0, -3, 9, 11, 23, 12, 23, 2, 13, 4, 56, 3, 5, 9, 3, 5, 5, 1, 4, 9};

Salida: int img_out[2][4] = ?

r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]

gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
```

3. Explique que es la transformada de Fourier (7 puntos)

Es una transformación matemática empleada para transformar señales entre el dominio del tiempo y el dominio de la frecuencia. En otras palabras, también se dice que cualquier señal puede expresarse como la suma de muchas señales de senos y cosenos, esta representación de senos y cosenos es la transformada de Fourier.

4.1 Evidencias

Rindieron la Prueba de Entrada 34 estudiantes de los 38 estudiantes matriculados, lo que representa un 90%. La nota promedio fue de 07, y se debe a la falta de habilidades en programación de los alumnos.

Tabla 4.1: Notas y evidencias del examen de entrada

APELLIDOS	NOMBRES	P1	P2	P3	NOTA	EVIDENCIA
ARCOS/PONCE	SERGIO MANUEL				3	Link
AZA/MAMANI	NICOLL DEL ROSARIO	0	0	3	0	Link
BERMUDEZ/NAVARRO	WILLIAN BRAULIO				0	Link
CAIRA/AGUILAR	GONZALO ALEJANDRO	4	0	3	7	Link
CCOPA/HANCCO	DANIELA	6	4	3	13	Link
CHÁVEZ/LÓPEZ	CAROLINA BONIEE	6	0	3	9	Link
CRUZ/MAMANI	MILAGROS CELIA	6	0	3	9	Link
CUEVA/FLORES	JONATHAN BRANDON	6	0	2	8	Link
DEXTRE/AIQUIPA	MARKS CRISTOPHER				0	Link
DIAZ/VENTURA	CELSO EFRAIN NOEL				0	Link
GARCIA/DIAZ	GERMAN FLAVIO	0	3	2	5	Link
GOMEZ/CONTRERAS	JUNIOR VALENTIN	3	0	4	7	Link
GUTIERREZ/GUTIERREZ	DIEGO ANTONY	6	0	0	6	Link
HERMOZA/LOAYZA	MIGUEL ANGEL	0	0	0	0	Link
HERRERA/COOPER	MIGUEL ALEXANDER	0	3	3	6	Link
HUAYPUNA/HUANCA	JOHANN FRANZ	0	0	3	3	Link
HUISA/FLORES	CESAR GABRIEL	0	8	0	8	Link
INCA/CHIPANA	GUSTAVO HERNAN	6	6	0	12	Link
LIPE/HUAMANI	BRAYAN ALEXANDER	0	0	4	4	Link
MAGUIÑA/DEL CASTILLO	BRAYAN JEAN POOL	6	0	3	9	Link
MONTESINOS/APAZA	SERGIO	6	0	0	6	Link
ÑACA/RODRIGUEZ	ANDY GIANPIERO	2	8	3	13	Link
NIFLA/CATASI	WILLIAMS FIDEL	2	0	5	7	Link
PILCO/PANCCA	LUZ MARINA	0	0	5	5	Link
ROSAS/AROTAYPE	OSCAR EUGENIO	0	6	2	8	Link
SANCHEZ/HINCHO	EDUARDO ANTONIO	0	5	2	7	Link
SARAVIA/VELASQUEZ	PAUL DIEGO	2	3	3	8	Link
SEJJE/CONDORI	ERIKA	6	3	5	14	Link
SONCCO/LUPA	JEAN CARLOS	0	0	3	3	Link
SUBIA/HUAMAN	EDGAR ANDRE	3	0	3	6	Link
TACCA/GUTIERREZ	JESUS BRAYAN	6	0	0	6	Link
TACORA/CRUZ	RICHARD JAVIER	2	0	3	5	Link
TORRES/LIMA	JOSE MANUEL	3	0	0	3	Link
TORRES/MAMANI	FERNANDO MIGUEL	0	8	0	8	Link
TORRES/RODRIGUEZ	JAIME FRANCISCO	3	0	2	5	Link
VICENTE/CASTRO	RENZO OMAR	0	2	3	5	Link
VILLANUEVA/FLORES	LUIS GUILLERMO	6	0	2	8	Link
VILLANUEVA/SANCHEZ	FERNANDO THOMAS	1	0	3	4	Link

Primer examen parcial

MSc. Vicente Machaca Arceda 28 de mayo de 2020

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia de la	Computación Gráfica
	Computación	

1. Preguntas

1. Mejore el contraste de la Figura 1. Utilice el operador adecuado según su criterio.

Figura 1: Izquierda: Imagen de entrada. Derecha: Salida deseada.

- 2. En la Figura 2 se muestra algunas celulas, diseñe un programa que segmente dichas células.
- 3. Thresholding es un método normalmente utilizado para la segmentación de objetos, pero existen casos donde este método no funciona adecuadamente, como es el caso de la Figura 3. Debido a esto es necesario aplicar un threshold adatativo, donde por cada pixel se tomará un threshold diferente. Este Threshold es igual al promedio de las intensidades de los pixeles vecinos menos una constante C. Implemente dicho operador, usted decide cuantos vecinos tomar y el valor de C.

Figura 2: Izquierda: Imagen de entrada. Derecha: Salida deseada.

Figura 3: Izquierda: Imagen de entrada. Derecha: Salida deseada.

Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Gráfica

Primer examen parcial - Solución

MSc. Vicente Machaca Arceda 8 de junio de 2020

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia de la	Computación Gráfica
	Computación	

1. Preguntas

1. Mejore el contraste de la Figura 1. Utilice el operador adecuado según su criterio.

Figura 1: Izquierda: Imagen de entrada. Derecha: Salida deseada.

```
def hist_equalization(hist, img, num_pixels):
    hist = hist.astype(np.float32)
    probability_hist = hist/(num_pixels)
    CH = np.zeros(probability_hist.shape[0])
    #print(probability_hist)
    acc = 0
    for i in range(probability_hist.shape[0]):
    acc += probability_hist[i]
    CH[i] = (L-1)*acc
    CH = np.floor(CH)
```

```
#print(CH)
  rows, cols = img.shape
  new_img = np.zeros((rows, cols))
  new_img = new_img.astype(np.float32)
  #print(new_img.shape)
  for i in range(rows):
  for j in range(cols):
  #new_img[i][j] = ((L-1)/(rows*cols))*equalized_histogram[ img[i][j] ]
  new_img[i][j] = CH[ img[i][j] ]
  return new_img
img = cv2.imread("../exams/img/question_1.png", 0)
a = 0
b = 255
c = img.min()
d = img.max()
#print("c:", c)
#print("d:", d)
rows, cols = img.shape
L = 256
hist, bin_edges = np.histogram(img, bins=256, range=(0, 255))
new_img = hist_equalization(hist, img, rows*cols)
cv2.imwrite("question_1_sol.png", new_img)
```

2. En la Figura 2 se muestra algunas celulas, diseñe un programa que segmente dichas células.

Figura 2: Izquierda: Imagen de entrada. Derecha: Salida deseada.

```
img = cv2.imread("../exams/img/question_2.png", 0)
new_img = img.copy()
#plt.hist(img.ravel(),256,[0,256]); plt.show()
rows, cols = new_img.shape
#print(rows, cols)
for i in range(rows):
for j in range(cols):
#if new_img[i][j] >= 60 and new_img[i][j] <= 150:
if new_img[i][j] >= 60:
new_img[i][j] = 255
else:
new_img[i][j] = 0
```

```
index_i = int(rows/2)
index_j = int(cols/2)
for i in range(index_i, rows):
for j in range(index_j, cols):
#if new_img[i][j] >= 60 and new_img[i][j] <= 150:
if img[i][j] >= 30:
new_img[i][j] = 255
else:
new_img[i][j] = 0

#new_img[new_img >= 60 and new_img <= 80] = 255
#new_img[new_img < 60 and new_img > 80] = 0

cv2.imwrite("question_2_sol.png", new_img)
```

3. Thresholding es un método normalmente utilizado para la segmentación de objetos, pero existen casos donde este método no funciona adecuadamente, como es el caso de la Figura 3. Debido a esto es necesario aplicar un threshold adatativo, donde por cada pixel se tomará un threshold diferente. Este Threshold es igual al promedio de las intensidades de los pixeles vecinos menos una constante C. Implemente dicho operador, usted decide cuantos vecinos tomar y el valor de C.

Figura 3: Izquierda: Imagen de entrada. Derecha: Salida deseada.

```
img = cv2.imread("../exams/img/question_3.png", 0)
windows = 11
C = 2

ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, windows, C)

#img = cv2.resize(img, (15, 15), interpolation = cv2.INTER_AREA)

#print(img.shape)
#print(img)
img_out = img.copy()

rows, cols = img.shape
```

```
for i in range(rows):
for j in range(cols):
y0 = i-int(windows/2)
y1 = i + int(windows/2) + 1
x0 = j-int(windows/2)
x1 = j+int(windows/2)+1
if y0 < 0:
y0 = 0
if y1 > rows:
y1 = rows
if x0 < 0:
x0 = 0
if x1 > cols:
x1 = cols
block = img[y0:y1, x0:x1]
#print(block)
thresh = np.mean(block) - C
if img[i, j] < thresh:</pre>
img_out[i, j] = 0
img_out[i, j] = 255
cv2.imwrite("question_3_sol.png", img_out)
```

CUI:20172214

```
Question
                                                                             Result
                                                                                                                                     Output Plagiarism
               Code
               #May-29-2020 09:33:53 AM
               import cv2
               import numpy as np
               import matplotlib as plt
                img = cv2.imread("question_1.png")
               img_out = cv2.imread('question_1.png', cv2.IMREAD_GRAYSCALE)
question_1
               b=255
May-29-2020 filas,columnas=img_out.shape
09:33:53
               lista=[0]*256
               total=filas*columnas
               arr=[]
               for x in range(filas):
                   for y in range(columnas):
    lista[img_out.item(x,y)]=lista[img_out.item(x,y)]+1
               for i in range(len(lista)):
    arr=arr+[i]*lista[i]
               x=5*total/100
               y=95*total/100
               #May-29-2020 09:45:52 AM
               import cv2
               import numpy as np
import matplotlib as plt
               img = cv2.imread("question_2.png")
               img_out = cv2.imread('question_2.png', cv2.IMREAD_GRAYSCALE)
               filas,columnas=img_out.shape
question_2
               for x in range(filas):
                   for y in range(columnas):
    if img_out.item(x,y)<=238 and 50<=img_out.item(x,y):
        img_out.itemset((x, y), 255)</pre>
May-29-2020
09:45:52
                           img_out.itemset((x, y), 0)
               ####### the result have to be set in img_out ####
               cv2.imwrite("question_2_sol.png", img_out)
               #May-29-2020 09:58:50 AM
               import cv2
               import numpy as np
import matplotlib as plt
               import math
               img = cv2.imread("question_3.png")
                img_out = cv2.imread('question_3.png', cv2.IMREAD_GRAYSCALE)
               a=0
b=255
question_3
May-29-2020 filas,columnas=img_out.shape
09:58:50
               lista=[0]*256
total=filas*columnas
                                                                                                       em with looks here or there
               arr=[]
c=30
               for x in range(filas):
                   for y in range(columnas):
    lista[img_out.item(x,y)]=lista[img_out.item(x,y)]+1
               for i in range(len(lista)):
    arr=arr+[i]*lista[i]
               x=35*total/100
```

1 of 1 8/6/20, 12:03 pm

CUI:20151124

1 of 1 8/6/20, 12:05 pm

5.1 Evidencias

Rindieron la Primera Evaluación Parcial 38 estudiantes de los 38 estudiantes matriculados, lo que representa un 100.0%.

La nota promedio de los estudiantes que rindieron la Primera Evaluación Parcial es 12 puntos. Las notas y la evidencia de la Primera Evaluación Parcial se encuentran en la siguiente tabla:

CUI	Apellidos y Nombres	EP1	Evidencia
20163426	ARCOS/PONCE, SERGIO MANUEL	12	Enlace
20143484	AZA/MAMANI, NICOLL DEL ROSARIO	9	Enlace
20131033	BERMUDEZ/NAVARRO, WILLIAN BRAULIO	2	Enlace
20163420	CAIRA/AGUILAR, GONZALO ALEJANDRO	14	Enlace
20122594	CCOPA/HANCCO, DANIELA	12	Enlace
20153702	CHÃVEZ/LÓPEZ, CAROLINA BONIEE	9	Enlace
20132402	CRUZ/MAMANI, MILAGROS CELIA	10	Enlace
20163436	CUEVA/FLORES, JONATHAN BRANDON	14	Enlace
20163417	DEXTRE/AIQUIPA, MARKS CRISTOPHER	9	Enlace
20131026	DIAZ/VENTURA, CELSO EFRAIN NOEL	12	Enlace
20173462	GARCIA/DIAZ, GERMAN FLAVIO	13	Enlace
20163427	GOMEZ/CONTRERAS, JUNIOR VALENTIN	13	Enlace
20143482	GUTIERREZ/GUTIERREZ, DIEGO ANTONY	13	Enlace
20170732	HERMOZA/LOAYZA, MIGUEL ANGEL	11	Enlace
20170735	HERRERA/COOPER, MIGUEL ALEXANDER	11	Enlace
20143483	HUAYPUNA/HUANCA, JOHANN FRANZ	7	Enlace
20160752	HUISA/FLORES, CESAR GABRIEL	13	Enlace
20160746	INCA/CHIPANA, GUSTAVO HERNAN	14	Enlace
20151099	LIPE/HUAMANI, BRAYAN ALEXANDER	12	Enlace
20163432	MAGUIÑA/DEL CASTILLO, BRAYAN JEAN POOL	11	Enlace
20173461	MONTESINOS/APAZA, SERGIO	12	Enlace
20170747	ÑACA/RODRIGUEZ, ANDY GIANPIERO	14	Enlace
20151124	NIFLA/CATASI, WILLIAMS FIDEL	6	Enlace
20041749	PILCO/PANCCA, LUZ MARINA	13	Enlace
20162010	ROSAS/AROTAYPE, OSCAR EUGENIO	15	Enlace
20172219	SANCHEZ/HINCHO, EDUARDO ANTONIO	14	Enlace
20172214	SARAVIA/VELASQUEZ, PAUL DIEGO	15	Enlace
20172211	SEJJE/CONDORI, ERIKA	10	Enlace
20160757	SONCCO/LUPA, JEAN CARLOS	12	Enlace
20132305	SUBIA/HUAMAN, EDGAR ANDRE	13	Enlace
20172215	TACCA/GUTIERREZ, JESUS BRAYAN	13	Enlace
20110202	TACORA/CRUZ, RICHARD JAVIER	12	Enlace
20101223	TORRES/LIMA, JOSE MANUEL	12	Enlace
20173452	TORRES/MAMANI, FERNANDO MIGUEL	12	Enlace
20173449	TORRES/RODRIGUEZ, JAIME FRANCISCO	14	Enlace
20170737	VICENTE/CASTRO, RENZO OMAR	14	Enlace
20172217	VILLANUEVA/FLORES, LUIS GUILLERMO	14	Enlace
20061776	VILLANUEVA/SANCHEZ, FERNANDO THOMAS	10	Enlace