LinearRegression

In [4]:

```
import numpy as np
import pandas as pd
```

data collection

In [5]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
```

In [7]:

```
df = pd.read_csv(r"C:\Users\user\Desktop\fitness.csv")
df
```

Out[7]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	0.06	0.08	0.06	75
1	В	0.04	0.17	0.19	160
2	С	0.10	0.12	0.05	101
3	D	0.03	0.22	0.08	127
4	E	0.25	0.11	0.12	179
5	F	0.08	0.16	0.18	167
6	G	0.19	0.09	0.17	171
7	Н	0.26	0.06	0.14	170
8	Grand Total	1.00	1.00	1.00	1150

first 10 rows

```
In [8]:
```

```
df.head(10)
```

Out[8]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	0.06	0.08	0.06	75
1	В	0.04	0.17	0.19	160
2	С	0.10	0.12	0.05	101
3	D	0.03	0.22	0.08	127
4	Е	0.25	0.11	0.12	179
5	F	0.08	0.16	0.18	167
6	G	0.19	0.09	0.17	171
7	Н	0.26	0.06	0.14	170
8	Grand Total	1.00	1.00	1.00	1150

data cleaning

In [9]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9 entries, 0 to 8

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Row Labels	9 non-null	object
1	Sum of Jan	9 non-null	float64
2	Sum of Feb	9 non-null	float64
3	Sum of Mar	9 non-null	float64
4	Sum of Total Sales	9 non-null	int64

dtypes: float64(3), int64(1), object(1)

memory usage: 488.0+ bytes

In [10]:

df.describe()

Out[10]:

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
count	9.000000	9.000000	9.000000	9.000000
mean	0.223333	0.223333	0.221111	255.555556
std	0.304097	0.295508	0.296625	337.332963
min	0.030000	0.060000	0.050000	75.000000
25%	0.060000	0.090000	0.080000	127.000000
50%	0.100000	0.120000	0.140000	167.000000
75%	0.250000	0.170000	0.180000	171.000000
max	1.000000	1.000000	1.000000	1150.000000

In [11]:

df.columns

Out[11]:

In [12]:

sb.pairplot(df)

Out[12]:

<seaborn.axisgrid.PairGrid at 0x1da2cdb2b50>

In [13]:

sb.distplot(df["Sum of Jan"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[13]:

<AxesSubplot:xlabel='Sum of Jan', ylabel='Density'>

In [14]:

sb.distplot(df["Sum of Jan"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[14]:

<AxesSubplot:xlabel='Sum of Jan', ylabel='Density'>

In [16]:

Out[16]:

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	0.06	0.08	0.06	75
1	0.04	0.17	0.19	160
2	0.10	0.12	0.05	101
3	0.03	0.22	0.08	127
4	0.25	0.11	0.12	179
5	0.08	0.16	0.18	167
6	0.19	0.09	0.17	171
7	0.26	0.06	0.14	170
8	1.00	1.00	1.00	1150

In [17]:

```
sb.heatmap(df1.corr())
```

Out[17]:

<AxesSubplot:>

model building

```
7/31/23, 3:07 PM
                                                3 ftness - Jupyter Notebook
  In [19]:
  x = df1[['Sum of Jan', 'Sum of Feb', 'Sum of Mar',
         'Sum of Total Sales']]
 y = df1['Sum of Jan']
  In [20]:
  from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
  linear regression
  In [21]:
  from sklearn.linear_model import LinearRegression
  lr = LinearRegression()
  lr.fit(x_train,y_train)
  Out[21]:
  LinearRegression()
  In [22]:
  print(lr.intercept_)
  0.0
  In [23]:
  coef = pd.DataFrame(lr.coef_,x.columns,columns=['Co_efficient'])
  coef
  Out[23]:
                    Co_efficient
        Sum of Jan
                  1.000000e+00
```

Sum of Feb 9.273251e-15 Sum of Mar 1.194422e-14 Sum of Total Sales -2.583192e-17

```
In [24]:
```

```
print(lr.score(x_test,y_test))
```

1.0

```
In [25]:
```

```
prediction = lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[25]:

<matplotlib.collections.PathCollection at 0x1da2f98fcd0>

lasso and ridge regression

```
In [26]:
1r.score(x_test,y_test)

Out[26]:
1.0

In [27]:
1r.score(x_train,y_train)

Out[27]:
1.0

In [28]:
from sklearn.linear_model import Ridge,Lasso
```

In [29]:

```
r = Ridge(alpha=10)
r.fit(x_train,y_train)
r.score(x_test,y_test)
r.score(x_train,y_train)
```

Out[29]:

0.9847590101289931

In [30]:

```
1 = Lasso(alpha=10)
1.fit(x_train,y_train)
1.score(x_test,y_test)
1.score(x_train,y_train)
Out[30]:
0.9788499697747168
elasticnet
In [31]:
from sklearn.linear_model import ElasticNet
e = ElasticNet()
e.fit(x_train,y_train)
Out[31]:
ElasticNet()
In [32]:
print(e.coef_)
                                       0.00088423]
[ 0.
             -0.
                          0.
In [33]:
print(e.intercept_)
-0.02061028760433356
In [34]:
predictions = e.predict(x_test)
predictions
Out[34]:
array([0.13766746, 0.12970936, 0.12086703])
In [35]:
print(e.score(x_test,y_test))
-0.17063906992605493
In [36]:
from sklearn import metrics
```

mean absolute error

```
In [37]:
```

```
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, predictions))
```

Mean Absolute Error: 0.10783006866853657

mean squared error

```
In [38]:
```

```
print("Mean Squared Error:", metrics.mean_squared_error(y_test,predictions))
```

Mean Squared Error: 0.012044575319461409

root mean squared error

```
In [39]:
```

```
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

Root Mean Squared Error 0.10974778047624202

In []: