计算方法作业 #9

陈文轩

KFRC

更新: April 25, 2025

题目 1

- 1. (4pts) 设 n 阶实方阵 A 有相异的特征根 $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > 0$ 。对给定的实数 $\alpha \neq \lambda_i$ $(i = 1, 2, \dots, n)$,利用规范幂法或规范反幂法,设计一个能计算离 α <mark>距离最近</mark>的矩阵 A 的 特征根的迭代格式 (注:不容许对矩阵求逆)。
- 2. (8pts) 考虑用 Jacobi 方法计算矩阵 $A=\begin{bmatrix}7&1&2\\1&4&0\end{bmatrix}$ 的特征值。求对 A 作一次 Givens 相似变 换时的 Givens(旋转)变换矩阵 Q(要求相应的计算效率最高)以及 Givens 变换后的矩阵 B (其中, $B = Q^{T}AQ$)。
- 3. (8pts) 设 p < q, $Q(p,q,\theta)$ 为 n 阶Givens矩阵, θ 为角度。记

$$A = (a_{ij})_{n \times n}, B = (b_{ij})_{n \times n} = Q^{\top}(p, q, \theta) A Q(p, q, \theta),$$

假设 $a_{pq} \neq 0$,证明: 当 θ 满足 $\cot 2\theta = \frac{a_{qq} - a_{pp}}{2a_{pq}}$ 时,有

$$\sum_{i=1}^{n} b_{ii}^2 = \sum_{i=1}^{n} a_{ii}^2 + 2a_{pq}^2.$$

提示: 只需证 $b_{pp}^2+b_{qq}^2=a_{pp}^2+a_{qq}^2+2a_{pq}^2$ 。
4. (10pts) 设 $A=\frac{1}{25}\begin{bmatrix} 7&7&24\\0&50&-25\\24&24&-7 \end{bmatrix}$,利用 Householder 矩阵,求 A 的正交分解,即 A=QR,

其中 Q、R 分别为 Householder 正交阵和上三角阵。

Deadline: 2025.5.5

2 解答