Основы теории графов

осень 2013

Александр Дайняк

www.dainiak.com

Квазитриангуляции

Квазитриангуляция— это планарный граф, границы всех граней которого являются простыми циклами, причём границы всех внутренних граней— треугольники.

Лемма о красно-синей альтернативе

Лемма.

Пусть вершины квазитриангуляции G покрашены в красный и синий цвета. Пусть цикл C — граница внешней грани G.

Пусть u, w — произвольная пара красных вершин на C. Тогда

- ullet найдётся красная цепь, соединяющая u и w,
- или найдётся синяя цепь, соединяющая две вершины из разных компонент связности $C \{u, w\}$.

Доказательство леммы о красно-синей альтернативе

Пусть U — красные вершины G, до которых можно добраться по красным цепям.

Если $w \in U$, то искомая красная цепь между u и v нашлась.

Пусть теперь $w \notin U$ и пусть W — компонента связности (G - U), содержащая w. Пусть v' и v'' — синие вершины из $C \cap W$, по разные стороны от w и наиболее далёкие от w.

Тогда есть синяя цепь, проходящая по той части границы W, которая «ближе к u». (Наличие красных вершин на этой части границы противоречило бы квазитр. и определению U.)

Лемма о цепях в «толстой» квазитриангуляции

Лемма.

Пусть $v_0v_1\dots v_{2k-1}$ — внешний цикл квазитриангуляции G.

Тогда если $d(v_0,v_k)=k$, то найдутся k непересекающихся по вершинам цепей из v_i в v_{2k-i} для $i=0,\ldots,k-1$.

Доказательство леммы о цепях

Пусть $X \coloneqq \{v_0, \dots, v_k\}$ и $Y \coloneqq \{v_k, \dots, v_{2k-1}, v_0\}$.

Пусть S — наименьший X, Y-разделитель. Отметим, что $v_0, v_k \in S$.

Будем считать вершины из S красными, а остальные — синими, и применим лемму о красно-синей альтернативе:

- синей цепи между X и Y нет (т.к. S разделитель),
- ullet значит, есть красная цепь между v_0 и v_k .

По условию, пути между v_0 и v_k имеют длину $\geq k$, отсюда $|S| \geq k$.

Отсюда, по теореме Пима, найдутся k непересекающихся путей между X и Y.

В силу планарности, эти пути соединяют v_i с v_{k-i} .

Сепарация графов

Общая концепция: удалить из графа «совсем небольшое» число вершин/рёбер, так, чтобы оставшиеся вершины распались на два несмежных множества, в константу раз меньшие исходного.

Применение.

В алгоритмах типа «разделяй и властвуй».

Пример-упражнение.

В любом бинарном n-вершинном дереве можно удалить одно ребро, так, что оно распадётся на два дерева, в каждом из которых менее 2n/3 вершин.

Сепарация графов

Общая концепция: удалить из графа «совсем небольшое» число вершин/рёбер, так, чтобы оставшиеся вершины распались на два несмежных множества, в константу раз меньшие исходного.

Формальное определение.

 (m,α) -сепаратор графа G — это такое подмножество V' вершин G, что $|V'| \leq m$ и (G-V') можно разбить на части G_1 и G_2 , где $|G_i| \leq \alpha \cdot |G|$, и между G_1 , G_2 рёбер нет.

Теорема Липтона—Тарджена

Teopeма. (R.J. Lipton, R. Tarjan)

У любого планарного n-вершинного графа есть $\left(\frac{2\sqrt{2n}}{1-\sqrt{2/3}},\frac{1}{2}\right)$ -сепаратор.

Смысл.

Любой планарный граф G можно раскроить на две почти равные части, удалив o(|G|) вершин.

Сначала докажем существование $(2\sqrt{2n}, \frac{2}{3})$ -сепаратора.

Уложим G на плоскости и дополним рёбрами до триангуляции (любой сепаратор полученной триангуляции будет также сепаратором исходного графа).

Для цикла C через $c_{\rm int}$ и $c_{\rm ext}$ обозначим число вершин графа G внутри и вне C соответственно.

Пусть $k\coloneqq \left|\sqrt{2n}\right|$. Пусть C выбран так, что:

- $|C| \leq 2k$
- $c_{\text{ext}} \leq \frac{2n}{3}$
- $(c_{\text{int}} c_{\text{ext}}) \rightarrow \min$

Отметим, что C существует, т.к. первым двум ограничениям удовлетворяет внешний цикл G.

Покажем, что C — искомый сепаратор. Допустим, что это не так, и придём к противоречию.

- $k\coloneqq \left[\sqrt{2n}\right]$, $|\mathcal{C}|\le 2k$, $c_{\mathrm{ext}}\le \frac{2n}{3}$, $(c_{\mathrm{int}}-c_{\mathrm{ext}})\to \min$ Пусть \mathcal{C} не $\left(2\sqrt{2n},\frac{2}{3}\right)$ -сепаратор. Тогда $c_{\mathrm{int}}>\frac{2n}{3}$.
- Заметим, что |C|=2k. В противном случае, можно было бы добавить к C одну из $c_{\rm int}$ вершин, уменьшив $(c_{\rm int}-c_{\rm ext})$.

•
$$k \coloneqq \left[\sqrt{2n}\right]$$
, $|C| \le 2k$, $c_{\text{ext}} \le \frac{2n}{3}$, $(c_{\text{int}} - c_{\text{ext}}) \to \min$

• Предположили, что C не сепаратор: $c_{\mathrm{int}} > \frac{2n}{3}$.

Для вершин $u,v\in V(C)$ пусть $d_C(u,v)$ — расстояние между u и v «по циклу», а $d_{\mathrm{int}}(u,v)$ — длина кратчайшего пути между ними, состоящего только из вершин на C и внутри C.

Докажем, что $d_{\mathrm{int}}(u,v)=d_{\mathcal{C}}(u,v)$ для любых $u,v\in V(\mathcal{C}).$

Допустим, что $d_{\mathrm{int}}(u,v) < d_{\mathcal{C}}(u,v)$ для каких-то $u,v \in V(\mathcal{C})$.

Среди всех таких пар u, v выберем пару с наименьшим $d_{\mathrm{int}}(u,v)$.

Пусть P — кратчайший путь между u и v внутри \mathcal{C} .

В силу выбора пары u,v имеем $V(P) \cap V(C) = \{u,v\}$.

Пусть C' и C'' — циклы, образованные P и C.

Б.о.о. считаем, что $c'_{\rm int} \ge c''_{\rm int}$.

•
$$k \coloneqq \left[\sqrt{2n}\right]$$
, $|C| \le 2k$, $c_{\text{ext}} \le \frac{2n}{3}$, $(c_{\text{int}} - c_{\text{ext}}) \to \min$

- $d_{int}(u, v) < d_C(u, v), V(P) \cap V(C) = \{u, v\}$
- $c'_{\text{int}} \ge c''_{\text{int}}$

В предположении, что $c_{\mathrm{int}} > \frac{2n}{3}$, получаем

$$c'_{\text{ext}} = n - |C'| - c'_{\text{int}} \le n - (2 \cdot |P| - 2) - \frac{c'_{\text{int}} + c''_{\text{int}}}{2} \le$$

 $\le n - \frac{|P| - 2 + c'_{\text{int}} + c''_{\text{int}}}{2} = n - \frac{c_{\text{int}}}{2} < \frac{2n}{3}$

Кроме того,

$$|C'| = |C| - d_C(u, v) + d_{int}(u, v) < |C| \le 2k$$

Очевидно, $(c'_{int} - c'_{ext}) < (c_{int} - c_{ext})$ — противоречие с выбором C.

В предположении, что $c_{\rm int}>\frac{2n}{3}$, мы вывели, что |C|=2k и $d_{\rm int}(u,v)=d_C(u,v)$ для любых $u,v\in V(C)$.

Занумеруем вершины C: $v_0v_1\dots v_{2k-1}$ и применим Лемму о цепях в «толстой» квазитриангуляции к вершинам C и его внутренности: так как $d_{\mathrm{int}}(v_0,v_k)=k$, то есть k непересекающихся цепей внутри C между v_i и v_{2k-i} .

Число вершин на цепи такого вида не меньше, чем $\min\{2i+1, 2(k-i)+1\}$.

Отсюда

$$|C| + c_{\text{int}} \ge \sum_{i=0}^{k} \min\{2i+1, \ 2(k-i)+1\} \ge 2 \cdot \sum_{i=0}^{\lfloor (k-1)/2 \rfloor} (2i+1) = 2 \cdot \left(\left\lfloor \frac{k-1}{2} \right\rfloor + 1 \right) \cdot \left(2 \cdot \left\lfloor \frac{k-1}{2} \right\rfloor + 2 \right) \ge (k+1)^2 > n$$

Доказательство теоремы Липтона—Тарджена: построение $\left(\frac{2\sqrt{2n}}{1-\sqrt{2/3}},\frac{1}{2}\right)$ -сепаратора

Итак, у любого планарного графа есть $\left(2\sqrt{2n},\frac{2}{3}\right)$ -сепаратор.

Построим $\left(\frac{2\sqrt{2n}}{1-\sqrt{2/3}},\frac{1}{2}\right)$ -сепаратор «рекурсивной балансировкой».

Пусть G — планарный граф.

Построим последовательность A_i , B_i , C_i , D_i , где

- $V(G) = A_i \sqcup B_i \sqcup C_i \sqcup D_i$
- нет рёбер вида $A_i B_i$, $A_i D_i$ и $B_i D_i$,
- $|A_i| \le |B_i| \le n/2$

Доказательство теоремы Липтона—Тарджена:

построение
$$\left(\frac{2\sqrt{2n}}{1-\sqrt{2/3}}, \frac{1}{2}\right)$$
-сепаратора

Полагаем $A_0 \coloneqq \emptyset$, $B_0 \coloneqq \emptyset$, $C_0 \coloneqq \emptyset$, $D_0 \coloneqq V(G)$.

Пусть уже построены $A_i \dots D_i$. Тогда $A_{i+1} \dots D_{i+1}$ строим так:

Строим $(2\sqrt{2n}, \frac{2}{3})$ -сепаратор C^* графа $G|_{D_i}$.

Пусть A^* и B^* — части, на которые $G|_{D_i}$ разбивается с помощью C^* , обозначенные так, что $|A^*| \leq |B^*|$. Полагаем

- $C_{i+1} \coloneqq C_i \cup C^*$
- $A_{i+1} \coloneqq$ меньшее из множеств $A_i \cup A^*$ и B_i
- $B_{i+1} \coloneqq$ большее из множеств $A_i \cup A^*$ и B_i
- $D_{i+1} \coloneqq B^*$

Доказательство теоремы Липтона—Тарджена: построение $\left(\frac{2\sqrt{2n}}{1-\sqrt{2/3}},\frac{1}{2}\right)$ -сепаратора

 $D_0\coloneqq V(G)$ и D_i меньше D_{i+1} по крайней мере в полтора раза, поэтому число шагов k до момента, когда $D_i=\emptyset$, не превосходит $\log_{3/2} n$

На последнем шаге

$$|C_k| \le \sum_{i=0}^k 2\sqrt{2|D_i|} < \sum_{i=0}^\infty 2\sqrt{2n(\frac{2}{3})^i} = \frac{2\sqrt{2n}}{1 - \sqrt{2/3}}$$

