Birla Institute of Technology and Science, Pilani

CS F351 (Theory of Computation)

Quiz-1

Q1. Over $\Sigma = \{a, b\}$, let $L = \{w \mid w \text{ contains at least two adjacent a's and at least two adjacent b's}\}$. Which of the following regular expression(s) accept L?

(a+b)*aabb(a+b)* + (a+b)*bbaa(a+b)* [cannot accept aababb]

(a+b)*aa(a+b)* + (a+b)*bb(a+b)* [accepts string aa, which should not be in the language]

(a+b)* (aa(a+b)*bb + bb(a+b)*aa) (a+b)* [Correct answer]

aa(a+b)*bb + bb(a+b)*aa [cannot accept abaabb]

Q2. Over $\Sigma = \{0, 1\}$, the length of the smallest string not present in the language for the regular expression 0*1*(10)*0* is

- a) 2
- b) 3
- c) 4
- d) 5

[Ans: Smallest string not present is 101, which makes length =3]

Q3. Over $\Sigma = \{0, 1\}$, let $L = \{w \mid w \text{ has even number of 1's}\}$. Which of the following regular expression(s) accept L?

a) (0*10*1)* [Cannot accept the string 110]

b) 0*(10*10*)* [correct answer] c) (0 + 10*10*)* [correct answer]

d) 0*1(10*1)*10* [Cannot accept empty string]

Q4 Consider the following two regular languages over $\Sigma = \{a, b\}$: L1=(ba)*ab and L2=ba*b*.

How many states would be there in the DFA for the language $L = L1 \cap L2$

a) 4

- b) 5
- c) 6 [Correct answer; because $L = \{baab\}$ and we require 6 states for the DFA, including trap]
- d) None of the options given here.

Q5. If $M = (Q, \Sigma, \Box, q_0, F)$ is an NFA and F = Q then $L(M) = \Sigma^*$. This statement is

- a) True
- **b)** False [Correct answer]