#### LIBROS PREUNIVERSITARIOS RUBIÑOS y Otros

# Funciones hiperbólicas

### INTRODUCCIÓN:

A las funciones trigonométricas a veces se llaman funciones circulares debido a la relación estrecha que tiene con el círculo x²+y²=1.

En la misma forma ciertas combinaciones de las exponenciales e<sup>x</sup>, e<sup>-x</sup> se relacionan con la hipérbola que son : Seno hiperbólico, coseno hiperbólico, tangente huperbólica, cotangente hiperbólica, secante hiperbólica y cosecante hiperbólica y que denotaremos por : senh, cosh, tgh, ctgh, sech, csch; respectivamente.



# **FUNCIONES HIPERBÓLICAS**

Se llaman funciones hiperbólicas, porque de alguna manera tienen propiedades similares a las funciones trigonométricas y se relacionan con la hipérbola en la forma en la que las funciones circulares (funciones trigonométricas) se relacionan con el círculo.

# SENO HIPERBÓLICO

Se define así :

$$\mathbb{R} \to \mathbb{R}$$
:  $f(x) = senhx = \frac{e^x - e^{-x}}{2}$ 

donde:

$$\mathsf{Domf} = \langle -\infty; \infty \rangle \land \mathsf{Ranf} = \langle -\infty; \infty \rangle$$



# COSENO HIPERBÓLICO

Se define así:

$$f: \mathbb{R} \to \mathbb{R}: f(x) = coshx = \frac{e^x + e^{-x}}{2}$$

donde:

$$\mathsf{Domf} = \langle -\infty; \infty \rangle \land \mathsf{Ranf} = \langle 1; +\infty \rangle$$

Su gráfica es :



A la gráfica del coseno hiperbólico se le llama «CATERIANA», la cual adopta la forma de un cable flexible y uniforme que cuelga de dos puntos fijos .

### PROPIEDADES:

$$cosh^2 x - senh^2 x = 1$$

$$e^{-x} = \cosh x - \sinh x$$

# TANGENTE HIPERBÓLICA

Se define así:

$$f: \mathbb{R} \to \mathbb{R}: f(x) = tghx = \frac{senhx}{coshx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

donde:

$$\mathbf{Domf} = \langle -\infty; \infty \rangle \land \mathbf{Ranf} = \langle -1; 1 \rangle$$

Su gráfica es :



# COTANGENTE HIPERBÓLICA

Se define así:

$$f: \mathbb{R} \to \mathbb{R}: f(x) = ctghx = \frac{coshx}{senhx} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

donde:

$$\mathbf{Domf} = \langle -\infty; \mathbf{0} \rangle \cup \langle \mathbf{0}; +\infty \rangle \wedge \mathbf{Ranf} = \langle -\infty; -1 \rangle \cup \langle \mathbf{1}; +\infty \rangle$$

Su gráfica es :



# SECANTE HIPERBÓLICO

Se define así :

$$f: \mathbb{R} \to \mathbb{R}: f(x) = \operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{x}}$$

donde:

$$Domf = \langle -\omega; \omega \rangle \land Ranf = < 0;1]$$

Su gráfica es:



## COSECANTE HIPERBOLICA

Se define así :

$$f: \mathbb{R} \to \mathbb{R}: \boxed{f(x) = cschx = \frac{1}{senhx} = \frac{2}{e^x - e^{-x}}}$$

donde:

$$\mathsf{Domf} = \langle -\infty; \mathbf{0} \rangle \cup \langle \mathbf{0}; +\infty \rangle \wedge \mathsf{Ranf} = \langle -\infty; \mathbf{0} \rangle \cup \langle \mathbf{0}; +\infty \rangle$$

Su gráfica es:



En un solo gráfico



| Valores límite |                   |                 |                |
|----------------|-------------------|-----------------|----------------|
| _              | $x \rightarrow 0$ | $x \to -\infty$ | $x \to \infty$ |
| senh x =       | 0                 | -8              | 8              |
| $ \cosh x = $  | 1                 | 8               | 8              |
| tanh x =       | 0                 | -1              | 1              |
| coth x =       | ±«                | -1              | 1              |

Relaciones mutuas  

$$\operatorname{senh} x = \sqrt{\cosh^2 x - 1} = \frac{\tanh x}{\sqrt{1 - \tanh^2 x}} = \frac{1}{\sqrt{\coth^2 x - 1}}$$

$$\cosh x = \sqrt{\sinh^2 x + 1} = \frac{1}{\sqrt{1 - \tanh^2 x}} = \frac{\coth x}{\sqrt{\coth^2 x - 1}}$$

$$\tanh x = \frac{\sinh x}{\sqrt{\sinh^2 x + 1}} = \frac{\sqrt{\cosh^2 x - 1}}{\cosh x} = \frac{1}{\coth x}$$

#### Teoremas de adición

$$senh(A \pm B) = senh A cosh B \pm cosh A senh B$$

$$cosh(A \pm B) = cosh A cosh B \pm sinh A sinh B$$

$$tanh(A \pm B) = \frac{tanh A \pm tanh B}{1 \pm tanh A tanh B}$$

$$coth(A \pm B) = \frac{coth A coth B \pm 1}{coth A coth B}$$

# IDENTIDADES TRIGONOMÉTRICAS HIPERBÓLICAS

HIPERBOLICAS

1) 
$$\begin{bmatrix} \cosh^2 x - \sinh^2 x = 1 \end{bmatrix}$$
 2)  $\begin{bmatrix} 1 - \tanh^2 x = \sinh^2 x \end{bmatrix}$ 

3)  $\begin{bmatrix} 1 - \coth^2 x = \cosh^2 x \end{bmatrix}$  4)  $\begin{bmatrix} \tanh^2 x = \cosh^2 x \end{bmatrix}$ 

6) 
$$cosh2x = cosh^2 x + senh^2 x$$

7) 
$$senh(x \pm y) = senhx cosh y \pm cosh x senhy$$

8) 
$$cosh(x \pm y) = cosh x cosh y \pm senhxsenhy$$

9) 
$$tgh(x \pm y) = \frac{tghx \pm tghy}{1 \pm tghxtghy}$$

11) 
$$\cosh A + \cosh B = 2 \cosh \left(\frac{A+B}{2}\right) \cosh \left(\frac{A-B}{2}\right)$$

12) 
$$senh^2x = \frac{cosh2x - 1}{2}$$

$$13) \quad \cos h^2 x = \frac{\cosh 2x + 1}{2}$$

14) 
$$|(senhx + cosh x)^n = senhnx + cosh nx$$

15) 
$$senh3x = 3senhx + 4senh^3 x$$

16) 
$$cosh3x = 4 cosh^3x - 3 cosh x$$

# FUNCIONES HIPERBÓLICAS INVERSAS

Las funciones hiperbólicas senhx, tghx, ctghx y cschx son inyectivas en todo su dominio por lo tanto tienen inversa, y las funciones coshx y sechx no son inyectivas, pero si restringimos su dominio en el intervalo [0;1>,en este intervalo las funciones coshx, sechx son inyectivas por lo tanto se puede determinar su inversa.

## **INVERSA DEL SENO HIPERBÓLICO:**

notación: arcsenhx ó senh-1

y = arcsenhx ⇔ x = senhy

de donde: 

senh(arcsenhx) = x

arcsenh(senhy) = y

su gráfica es:

y

y=arcsenhx

x

# INVERSA DEL COSEÑO HIPERBÓLICO:

notación: arccoshx ó cosh-1

$$y = arccoshx \Leftrightarrow x = coshy; y \ge 0$$

**Dom** = 
$$[1;+\infty>;Ran = [0;+\infty>$$

$$\text{de donde:} \begin{cases} cosh\big(arccoshx\big) = x; x \geq 1 \\ arccosh\big(coshy\big) = y; y \geq 0 \end{cases}$$

# su gráfica es:



#### INVERSA DE LA TANGENTE HIPERBÓLICA:

notación: arctghx ó tgh-1

$$y = arctghx \Leftrightarrow x = tghy$$

$$Dom = \langle -1; 1 \rangle; Ran = \mathbb{R}$$

su gráfica es:



# INVERSA DE LA COTANGENTE HIPERBÓLICA:

notación : arcctghx ó c tgh-1

$$y = arcctghx \Leftrightarrow x = ctghy$$

$$\mathsf{Dom} = \langle -\infty; \mathsf{1} \rangle \cup \langle \mathsf{1}; +\infty \rangle; \mathsf{Ran} = \mathbb{R} - \{\mathsf{0}\}$$

su gráfica es:



# INVERSA DE LA SECANTE HIPERBÓLICA:

notación: arcsechx ó sech

$$y = arc sec x \Leftrightarrow x = sec hy$$

Dom = 
$$< 0;1];Ran = [0;+\infty >$$

su gráfica es:



# INVERSA DE LA COSECANTE HIPERBÓLICA:

notación: arcccschx ó csch-1

$$y = arccschx \Leftrightarrow x = cschy$$

$$\mathsf{Dom} = \left\langle -\infty; \mathbf{0} \right\rangle \bigcup \left\langle \mathbf{0}; +\infty \right\rangle$$

$$\mathbf{Ran} = \langle -\infty; \mathbf{0} \rangle \bigcup \langle \mathbf{0}; +\infty \rangle$$

su gráfica es:



# IDENTIDADES TRIGONOMÉTRICAS HIPERBÓLICAS INVERSAS

1) 
$$\operatorname{arcsenhx} = \operatorname{Ln}\left(x + \sqrt{x^2 + 1}\right) ; \forall x \in \mathbb{R}$$

2) 
$$\operatorname{arccoshx} = \operatorname{Ln}\left(x + \sqrt{x^2 - 1}\right)$$
;  $\forall x \ge 1$ 

3) 
$$arctghx = \frac{1}{2}Ln\left(\frac{1+x}{1-x}\right); |x| < 1$$

4) 
$$\left| \operatorname{arcctghx} = \frac{1}{2} \operatorname{Ln} \left( \frac{x+1}{x-1} \right); |x| > 1 \right|$$