

Álgebra Vectorial

Operaciones elementales

Dr. Juan Luis Palacios Soto

palacios.s.j.l@gmail.com

Teorema (Propiedades de campo para \mathbb{R})

- \bullet $x + y \in \mathbb{R}$ (Clausura bajo la suma).
- ② $xy \in \mathbb{R}$ (Clausura bajo el producto).
- **3** x + y = y + x (Conmutatividad con la suma).
- xy = yx (Conmutatividad con el producto).
- (xy)z = x(yz) = xyz (Asociatividad bajo el producto).
- **2** Existe un único elemento $0 \in \mathbb{R}$ llamado neutro aditivo tal que x + 0 = x. (Existencia y unicidad de neutro aditivo)
- **1** Dado $x \in \mathbb{R}$ existe un único elemento $y \in \mathbb{R}$ llamado inverso aditivo tal que x + y = 0, es $decir\ y = -x$. (Existencia y unicidad de inversos aditivos)
- Existe un único elemento $1 \in \mathbb{R}$ llamado neutro multiplicativo tal que 1x = x1 = x. (Existencia y unicidad del neutro multiplicativo)
- ullet Dado $x \neq 0$ existe un único elemento $y \in \mathbb{R}$ llamado neutro multiplicativo, tal que xy = 1, es decir $y = x^{-1}$. (Existencia y unicidad de inversos multiplicativos) ۲,7, ٤,٤
- ① x(y+z) = (xy+xz) (Distributividad).

ey de tricotomia

$$1N = \{1, 2, 3, ...\}$$

 $3 + 7 = 10 \in \mathbb{N}$?

7 03 = 4 EN no cerrada en IN. 3-7=-4¢N

Definición (Conjunto \mathbb{R}^n)

El conjunto \mathbb{R}^n lo definiremos como

$$\mathbb{R}^n = \{(x_1,x_2,...,x_n): \underline{x_i} \in \mathbb{R}, \quad \text{ para todo } (\forall) i=1,2,...,n\}.$$

A los elementos $x=(x_1,x_2,...,x_n)$ se les denomina vectores de \mathbb{R}^n o n-adas.

Notación en física, matemática y en computación.

$$(3/4), 2,5) \rightarrow No lo es$$

 $\vec{x} = (2,-5,7,4) \in \mathbb{R}^4$
 $M \in x \rightarrow 15$
 $y = 46$

Ejemplo (Conjunto \mathbb{R}^2)

El conjunto \mathbb{R}^2 son todos los elementos de la forma (x,y) con $x,y\in\mathbb{R}$, es decir,

$$\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}.$$

Podemos representar a los elementos de \mathbb{R}^2 en el llamado plano cartesiano, el cual se divide en cuatro regiones llamadas cuadrantes, los cuales se recorren de manera antihoraria por convención. Wolframalpha

Ejemplo (Conjunto \mathbb{R}^3)

El conjunto \mathbb{R}^3 son todos los elementos de la forma (x,y,z) con $x,y,z\in\mathbb{R}$, es decir,

$$\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}.$$

En este caso el espacio tridimensional se divide en ocho regiones llamadas octantes, los cuales se recorren de manera antihoraria, primero para z>0 y luego para z<0.

Definición (Suma en \mathbb{R}^n)

Para todo par de elementos $x,y\in\mathbb{R}^n$, de la forma

$$x = (\underline{x_1, x_2, ..., x_n}), \quad y = (y_1, y_2, ..., y_n),$$

definimos una operación llamada suma de x con y, denotada por x+y, como

$$\underline{x+y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$
.

Wolframalpha

$$z = (1,2)$$

$$y = (-1,1)$$

$$x = (0,3)$$

$$y = (0,3)$$

Definición (Vector de y a x)

Diferencia de vectores, representa el vector que une el punto y con el punto x. en cambio si la diferencia es y-x, entonces tendremos una flecha de la misma longitud pero en sentido opuesto. Wolframalpha

Definición (Producto de un vector \mathbb{R}^n con escalares reales)

Para todo escalar real c y para todo elemento $x \in \mathbb{R}^n$, de la forma $x = (x_1, x_2, ..., x_n)$. definimos una operación llamada producto de c con x, denotada por cx, como

$$cx = (cx_1, cx_2, ..., cx_n).$$

Wolframalpha y geogebra.

De manera geométrica, si multiplicas un vector por un escalar, es alargar o acortar el vector, manteniendo la misma dirección si el escalar es positivo, mientras que el sentido es contrario si el escalar es negativo.

5: C>1 alargar y mismo suntido STOCC<1 acorta jo y mismo sentido Sintido o puesto y cambia suntido Si C<-1 alargar y cambia sentido

Definición (Producto de un vector \mathbb{R}^n con escalares reales)

Para todo escalar real c y para todo elemento $x \in \mathbb{R}^n$, de la forma $x=(x_1,x_2,...,x_n)$. definimos una operación llamada **producto** de c con x, denotada por cx, como

$$cx = (cx_1, cx_2, ..., cx_n).$$

Wolframalpha v geogebra.

De manera geométrica, si multiplicas un vector por un escalar, es alargar o acortar el vector, manteniendo la misma dirección si el escalar es positivo, mientras que el sentido es contrario si el escalar es negativo.

$$C = 3 = 7 3(1,2) = (3,6)$$

$$C = 6.5 = 7 6.5(1.2) = (0.5,1)$$

$$C = -3 = 7 -3(1.2) = (-3,-6)$$

Teorema (Propiedades de la suma y el producto con escalar)

Para todo $x,y,z\in\mathbb{R}^n$ y para todo par de escalares $\alpha,\beta\in\mathbb{R}$, se cumplen los siguientes 10 axiomas:

Axiomas de clausura

- ① $x + y \in \mathbb{R}^n$ (Clausura bajo la suma).

Axiomas bajo la suma

3.
$$x + y = y + x$$
 (Conmutatividad).

4.
$$x + (y + z) = (x + y) + z$$
 (Asociatividad).

$$(3,7)+(0,0)=(3,7)$$

- 5. Existe un único elemento $\underline{0}=(0,0,...,0)\in\mathbb{R}^n$ llamado neutro tal que $\underline{x+0}=\underline{x}$ (Elemento neutro).
- 6. Existe un único elemento $y \in \mathbb{R}^n$ tal que x + y = 0, es decir y = -x (Existencia de inversos).

Axiomas bajo el producto con escalar

7.
$$\alpha(\beta x) = (\alpha \beta) x$$
 (Asociatividad).

8.
$$(\alpha + \beta)x = \alpha x + \beta x$$
 (Distributividad).

9.
$$\alpha(x+y) = \alpha x + \alpha y$$
 (Distributividad).

10.
$$1x = x$$
, $1 \in \mathbb{R}$.

Ejercicio:

Para los vectores $x=(7,3,6,\pi),\ y=(-2,5,6,1),$ en \mathbb{R}^4 , determine: (i) 3x-2y; (ii) $\pi x+3y$; (iii)los inversos aditivos de $x,\ y$.

Definición (Vectores idénticos)

Decimos que dos vectores $x,y\in\mathbb{R}^n$, de la forma

$$x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n),$$

son idénticos si y sólo si $x_i=y_i$ para toda i=1,2,...,n, es decir,

$$x_1 = y_1, \quad x_2 = y_2, \quad \cdots, \quad x_n = y_n.$$

Nota: Dos vectores tienen la misma magnitud y la misma dirección, aunque tengan distintos puntos de aplicación.

Definición (Vectores paralelos)

Decimos que dos vectores $x,y\in\mathbb{R}^n$ no nulos son paralelos si existe una escalar $c\neq 0$, tal que

$$x = cy.$$
 $y = cx$

La notación de paralelismo entre vectores es $x \parallel y$.

$$E_{J}$$
. $(2,4,6)=X$ $x=Cy$ $(2,4,6)=(4c,14c,21c)$ $(7,14,21)=y$ $(2,4,6)=(4c,14c,21c)$

(3)
$$6 = 21() \rightarrow c = \frac{6}{21} = \frac{2}{4}$$

Ejemplo

Determine si los vectores $x=(12,-6,15),\,y=(-4,2,-5)$ son paralelos.

Ejemplo

Determine si los vectores x = (-2, 5, 7), y = (-3, 7, -5) son paralelos.

Definición (Norma, magnitud o

de un vector $x \in \mathbb{R}^n$

Para todo $x \in \mathbb{R}^n$, de la forma $x = (x_1, x_2, ..., x_n)$. definimos la norma de x, denotada por ||x||, como

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Nota: longitud de un vector en matemáticas \neq longitud de un vector en programación.

<u>norm</u> (-2,7)

Ejemplo

Determine la norma del vector x = (-4, -4, -12).

Teorema

En \mathbb{R}^n , toda norma tiene las siguientes propiedades para todo $x,y\in\mathbb{R}^n$ y todos los escalares c:

- **1** ||x|| = 0, si x = 0
- ||cx|| = |c||x|| (homogeneidad).
 - $||x+y|| \le ||x|| + ||y||$ (designaldad triangular), con ignaldad si y sólo si $x \parallel y$, ambos en la misma dirección.

Teorema (Vector unitario o normalizado)

Para todo $x \in \mathbb{R}^n$, no nulo, el vector

Norm
$$\chi = (/ > 0)$$
 $\frac{1}{|D|} > 0$ $u = \frac{1}{||x||} x$, parallel es un vector unitario y en la misma dirección que el vector x .

<u>l</u> y

unit vector (2, 3, 4, 5)

Teorema (Vector unitario o normalizado)

Para todo $x \in \mathbb{R}^n$, no nulo, el vector

$$u = \frac{1}{||x||}x,$$

es un vector unitario y en la misma dirección que el vector x.

Fjercicio: obtener el vector unitario para $x = (2, -3, 0, 1, 7, 5) \in \mathbb{R}^6$.

norm x en Wolfram no lo da. Longitud -> dimensión

mugnetud=norma

Definición (Distancia entre dos vectores en \mathbb{R}^n)

Para todo $x,y\in\mathbb{R}^n$, de la forma $x=(x_1,x_2,...,x_n),\ y=(y_1,y_2,...,y_n)$ definimos el distancia que separa a x de y, denotado por $d(x,\overline{y})$, \overline{como} $|x-\overline{y}| = |x-\overline{y}|,\ x_2-\overline{y}_2,...,x_n\rangle$ $|x-\overline{y}| = |x-\overline{y}|,\ x_2-\overline{y}_2,...,x_n\rangle$ $|x-\overline{y}| = |x-\overline{y}|,\ x_2-\overline{y}_2,...,x_n\rangle$

Teorema

En \mathbb{R}^n , la distancia tiene las siguientes propiedades para todo $x,y,z\in\mathbb{R}^n$:

- 0 d(x,x) = 0
- **2** d(x,y) > 0, si $x \neq y$.
- **3** d(x,y) = d(y,x)
- **4** $d(x,y) \le d(x,z) + d(z,y)$

Ejemplo

Determine la distancia entre el vector x = (1, 2, 3, 4) y y = (4, 3, 2, 1).

$$d(x,y) = 2\sqrt{5}$$

$$d(x,y) = ||x-y|| = \sqrt{3^2 + 1^2 + 1^2 + 3^2}$$

$$= \sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \sqrt{5} = 2\sqrt{5}$$

Definición (Producto punto)

Para todo $\underline{x},\underline{y} \in \mathbb{R}^n$, de la forma $x=(x_1,x_2,...,x_n),\ y=(y_1,y_2,...,y_n)$ definimos el producto punto de x con y, denotado por $x \cdot y$, como $x \cdot y$.

$$x \cdot y = \underline{x_1 y_1} + \underline{x_2 y_2} + \dots + \underline{x_n y_n} = \underbrace{\sum_{i=1}^n x_i y_i}_{ } \cdot \mathcal{ER} = 1, 2, \dots, M .$$

Nota: El producto punto es un escalar real, que es un caso particular de algo más general denominado **producto interior** y el cual definiremos en la unidad III.

dot product (1,3), (-2,4)

$$(1,3) \cdot (-2,4) = (1)(-2) + (3)(4)$$

$$= -2 + 12 = 10$$

$$(2,4) = -2 + 12 = 10$$

Ejemplo

Determine el producto punto de x = (2, 10, 6) con y = (3, -3, 6).

$$2 \cdot y = (2,10,6) \cdot (3,-3,6)$$

$$= (2)(3) + (6)(-3) + (6)(6)$$

$$= 6 - 30 + 36 = 12$$

$$= 6 - 30 + 36 = 12$$

$$= 6 - 30 + 36 = 12$$

Teorema

En \mathbb{R}^n , el producto punto satisface las siguientes propiedades, para todo $x,y,z\in\mathbb{R}^n$ y todos los escalares c:

- $\ \ \, (cx\cdot y)=c(x\cdot y) \,\, \hbox{\it (Asociatividad u homogeneidad)}.$
- **3** $x \cdot x > 0$ si $x \neq (0, 0, ..., 0)$ (positividad).

Definición (Ángulo entre dos vectores)

El ángulo θ entre dos vectores no nulos x,y en \mathbb{R}^n está dado por

$$\cos(\theta) = \frac{x \cdot y}{||x|| ||y||},$$

$$0 \le \theta \le \pi$$
.

$$\cos(\theta) = \frac{x \cdot y}{||x||||y||}, \quad 0 \le \theta \le \pi. \qquad \partial = \operatorname{arcos}\left(\frac{x \cdot y}{||x||||y||}\right)$$

Observe que

$$-1 \le \frac{x \cdot y}{||x||||y||} \le 1.$$

$$) \quad \text{si } \underline{x \cdot y} \quad \geq 0,$$

$$\geq 0$$
,

(i) si
$$x \cdot y \ge 0$$
, entonces θ es agudo, $0 \le \theta < \frac{\pi}{2}$ = 90°

$$0 \le \theta$$

$$(ii)$$
 si $x \cdot y$

si
$$x \cdot y = 0$$
,

$$\begin{array}{ll} \text{si } x \cdot y &= 0, & \text{entonces } \underline{\theta} \text{ es recto}, & \underline{\theta} = \frac{\pi}{2}. \\ \\ \text{si } x \cdot y &< 0, & \text{entonces } \underline{\theta} \text{ es obtuso}, & \underline{\frac{\pi}{2}} \leq \theta < \pi. \end{array}$$

$$\theta = \frac{\pi}{2}$$
.

$$(iii)$$
 si $x \cdot y$

$$(ii)$$
 si $x \cdot y$ < 0

onces
$$\theta$$
 es obtus

$$\frac{\pi}{2} \le \theta <$$

1x/11/1/1 =1

(d)
$$\frac{\pi}{2} < \theta < \pi$$
, (e) $\theta = \pi$, $\cos(\theta) < 0$, $\cos(\theta) = -1$, $\sin(\theta) =$

a)
$$(2,0) \cdot (3,0) = 6+0 = 6 > 0$$
 agudo - $||x|| = \sqrt{2^2+6^2} = 2$
b) $(1,2) \cdot (5,1) = 5+2=7 > 0$ agudo-
c) $(3,-1) \cdot (2,6) = 6+(-6) = 0$ recto-
d) $(-3,1) \cdot (3,1) = -9+1 = -8 < 0$ objuso.

Definición (Vectores ortogonales)

Decimos que dos vectores \underline{x}, y en \mathbb{R}^n son ortogonales (perpendiculares), denotado como $\underline{x\perp y}$, si

$$x \cdot y = 0.$$

$$\underline{\iota}(4, -1) \text{ y } (-9, -2) \text{ son ortogonales?}$$

Teorema

Dos vectores x,y son ortogonales, si y sólo si

$$||x+y||^2 = ||x||^2 + ||y||^2.$$

$$(4,-1)\cdot(-9,-2)=-36+2=-34<0$$

Definición (Proyección ortogonal de x sobre y)

La proyección ortogonal de \underline{x} sobre un vector no nulo \underline{y} en \mathbb{R}^n , denotado como $proj_y x =$, está dada por $\underline{x \cdot y} = \underline{x \cdot y} =$

$$proj_{y}x = \frac{x \cdot y}{y \cdot y}y = \frac{x \cdot y}{||y||^{2}}y. \qquad \mathcal{X} = (\mathcal{X}_{1}\mathcal{A}_{2}, \dots, \mathcal{X}_{n})$$

$$\mathcal{Y} = (\mathcal{Y}_{1}\mathcal{Y}_{2}, \dots, \mathcal{Y}_{n})$$

Nota: $proj_yx\in\mathbb{R}^n,\ proj_yx
eq proj_xy$, ¿cuándo se da la igualdad?

Projection [{1, 3, 5}, {2, 1, -2}]
$$\leftarrow$$

$$\begin{cases}
y = (-3, 1), x = (1, 2)
\end{cases}$$

$$\begin{cases}
y = (-3, 1), x = (1, 2)
\end{cases}$$

$$\begin{cases}
y = (-3, 1), x = (1, 2)
\end{cases}$$

$$\begin{cases}
y = (-3, 1), x = (1, 2)
\end{cases}$$

$$= (-3, 1) = -\frac{1}{10}(-3, 1)$$

$$= (\frac{3}{10}, -\frac{1}{10})$$

$$= (-\frac{1}{5}, \frac{2}{5})$$

Definición (Proyección ortogonal de x sobre y)

La proyección ortogonal de x sobre un vector no nulo y en \mathbb{R}^n , denotado como $proj_yx=$, está dada por

$$proj_y x = \frac{x \cdot y}{y \cdot y} y = \frac{x \cdot y}{||y||^2} y.$$

Nota: $proj_yx\in\mathbb{R}^n,\,proj_yx
eq proj_xy$, ¿cuándo se da la igualdad?

Projection [{1, 3, 5}, {2, 1, -2}]
Proy
$$y^{\infty} = \frac{x \cdot y}{y \cdot y} = \frac{(1,3,5) \cdot (2,1,-2)}{(2,1,-2) \cdot (2,1,-2)} (2,1,-2)$$

$$= \frac{(1)(2) + (3)(1) + (5)(-2)}{2^2 + 1^2 + 2^2} (2,1,-2)$$

$$= \frac{-5}{9} (2,1,-2)$$
Proy $y^{\infty} = \frac{y \cdot x}{x \cdot x} = \frac{-5}{1^2 + 3^2 + 5^2} (1,3,5) = -\frac{5}{35} (1,3,5) = -\frac{1}{7} (1,3,5)$

Ejemplo

Determine la proyección de A=(-5,2,0,-1) en B=(-2,4,1,0) y viceversa.

Teorema (Distancia mínima)

Dados dos vectores $x,y\in\mathbb{R}^n$, con y no nulo, entonces

$$\int_{-\infty}^{\infty} d(x, proj_y x) < d(x, cy), \quad c \neq \frac{x \cdot y}{y \cdot y}.$$

