0 Graphing Techniques

0.1 Graph Features

0.1.1 Basic characteristics

Axial Intercepts

x-intercept: y=0y-intercept: x=0

Stationary Points

Stationary points are points on a curve where

$$\left. \frac{dy}{dx} \right|_{x=k} = 0, \, k \in \mathbb{R}$$

The Nature of the stationary point can be determined by using the second or first derivative tests

Asymptotes

A Line or curve that a function approaches arbitrarily close to

Horizontal: when $x \to \infty$, $y \to a$, where $a \in \mathbb{R}$: y = a

Vertical: when $y \to \infty$, $x \to b$, where $b \in \mathbb{R}$: x = b

Oblique : when $x \to \infty$, $y \to cx + d$, where $c, d \in \mathbb{R}$

$$\therefore y = cx + d$$

A Horizontal Asymptote can be cut through, but vertical asymptotes will never be passed through

0.1.2 Symmetry

Symmetric about the x-axis

If (x, y) is a point on the curve,

(x, -y) will also be a point on the curve

Symmetric about the y-axis (Even Functions)

Mathematically, f(x) = f(-x)

Symmetric about the origin (Odd Functions)

Mathematically, f(x) = -f(x)

0.2 Types of Graphs

0.2.1 Power Functions

General Power Function : $f(x) = ax^n$, $a \in \mathbb{R}^+$

When n is an even positive integer

Function Type: Even Function

Common Points : (-1, a), (0, 0), (1, a)

When n is an odd positive integer, $n \geq 3$

Function Type: Odd Function

Common Points : (-1, -a), (0, 0), (1, a)

When n is an even negative integer

Function Type: Even Function

Common Points: (-1, a), (0, 0), (1, a)

Horizontal Asymptote : y = 0

Vertical Vertical : x = 0

When n is an odd negative integer

Function Type: Odd Function

Common Points: (-1, -a), (0, 0), (1, a)

Horizontal Asymptote : y = 0

Vertical Vertical: x = 0

When $n \in \mathbb{Q}$ in the form $\frac{1}{k}$ Such that k is an even positive integer

Common Points: (0,0), (1,a)

When $n \in \mathbb{Q}$ in the form $\frac{1}{k}$ Such that k is an odd positive integer

Function Type : Odd Function

Common Points: (-1, -a), (0, 0), (1, a)

Piecewise Functions

Different intervals each has a different definition

$$f(x) = \begin{cases} H(x), & \text{if } a \le x < b \\ G(x), & \text{if } b \le x < c \\ Q(x), & \text{Otherwise} \end{cases}$$

When the function is **discontinuous** between intervals, A Solid dot is used if the point is on the interval, an empty is used if it isn't

When the function is **Continuous** between intervals, dots are not needed

0.2.3**Periodic Functions**

A function that repeats itself after an interval, Mathematically, $f(x+\alpha)=f(x)$, where $\alpha\in\mathbb{R}$

In this example, the function f(x) had an interval of $0 \le x < a$

0.2.4 Rational Functions

A rational function is in the form $y = \frac{p(x)}{q(x)}$, where p(x), q(x)are polynomials

Types of Rational Functions

Degree of p(x) < Degree of q(x)

y = 0 is the Horizontal Asymptote

Solutions to q(x) = 0 will yield the Vertical Asymptote(s)

Degree of $p(x) \ge$ Degree of q(x)

Degree of
$$p(x) \ge$$
 Degree of $q(x)$

$$y = \frac{p(x)}{q(x)} \equiv y = h(x) + \frac{r(x)}{q(x)}, \text{ where } deg(r(x)) < deg(q(x))$$

$$y = h(x) \text{ is the Oblique Asymptote}$$

Solutions to q(x) = 0 will yield the Vertical Asymptote(s)

Rectangular Hyperbola

Rectangular Hyperbola : $y = \frac{ax+b}{cx+d} \implies y = p + \frac{ax+b}{cx+d}$

$$\frac{r}{cx+d}$$
,

where $c \neq 0, x \neq -\frac{d}{c}$. The possible curve shapes are

3

The Function is first to be rationalized by long division,

the Asymptotes and graph features can be found with the information above

Quadratic Over Linear Functions
$$y = \frac{ax^2 + bx + c}{dx + f} \implies y = px + q + \frac{r}{dx + f}$$

One Oblique Asymptote : y = px + q

One Vertical Asymptote : $x = -\frac{f}{d}$

${\bf Case}\ 1:\ {\bf Two}\ {\bf Turning}\ {\bf Points}$

Case 2 : No Turning Points

Linear Over Quadratic Functions
$$y = \frac{dx + f}{ax^2 + bx + c} \implies y = 0 + dx + fax^2 + bx + c$$

One Horizontal Asymptote : y = 0

Vertical Asymptote(s) : Solve for denominator = 0

 \mid Solutions = Asymptote(s)

Example : When there are 2 Vertical Asymptotes

0.2.5 Reciprocal Functions

y = f(x)	$y = \frac{1}{f(x)}$
x-intercept : $x = a$	Vertical Asymptote :
	x = a
*Vertical Asymptote :	*x-intercept : $x = a$
x = a	
(a,b)	$**\left(a,\frac{1}{b}\right)$
Local Maxima : (a, b)	Local Minima : ** $\left(a, \frac{1}{b}\right)$
Local Minima : (a, b)	Local Maxima : $ **\left(a, \frac{1}{b}\right) $
Horizontal Asymptote:	Horizontal Asymptote:
y = b	$y = \frac{1}{b}$
Oblique Asymptote :	Horizontal Asymptote:
y = ax + b	y = 0
f(x) is increasing	$\frac{1}{f(x)}$ is decreasing
f(x) is decreasing	$\frac{1}{f(x)}$ is increasing

^{*} True for \mathbf{most} cases

^{**} $b \neq 0$

0.3 Linear Transformations

0.3.1 Translation

$$y = f(x - a)$$

- Translation of the graph f(x) by a units in the direction of the x-axis
- Add a to all of the x-coordinates

$$y = f(x - a)$$

- Translation of the graph f(x) by -a units in the direction of the x-axis
- Subtract a to all of the x-coordinates

$$y = f(x) + a$$
 or $y - a = f(x)$

- Translation of the graph f(x) by a units in the direction of the y-axis
- \bullet Add a to all of the y-coordinates

$$y = f(x) - a$$
 or $y + a = f(x)$

- Translation of the graph f(x) by -a units in the direction of the y-axis
- Subtract a to all of the y-coordinates

0.3.2 Scaling

$$y = f\left(\frac{x}{a}\right)$$

- Scaling the graph f(x) by a scale factor of a parallel to the x-axis
- Multiply a to all of the x-coordinates

$$y = af(x)$$
 or $\frac{y}{a} = f(x)$

- Scaling the graph f(x) by a scale factor of a parallel to the y-axis
- Multiply a to all of the y-coordinates

0.3.3 Reflection

$$y = f(-x)$$

- Reflecting the graph f(x) about y-axis
- Multiply -1 to all of the x-coordinates

$$y = -f(x)$$

- Reflecting the graph f(x) about x-axis
- Multiply -1 to all of the y-coordinates

0.3.4 Modulus Transformations

y = |f(x)|

- Reflect the graph f(x) about y-axis for the regions below the x-axis
- Multiply -1 to the *y*-coordinates of the **reflected points**

$$y = f(|x|)$$

- Remove the graph that is in the **negative** x-axis Reflect the remaining graph f(x) about y-axis
- Multiply -1 to the *x*-coordinates of the **reflected points**

$$|y| = f(x)$$

- Remove the graph that is in the **negative** y-axis Reflect the remaining graph f(x) about x-axis
- Multiply -1 to the *y*-coordinates of the **reflected points**

0.3.5 Sequence of Tranformations

Suggested Sequence to minimise errors:

1. T_x Horizontal Translation

2. S_x Horizontal Scaling

3. S_y Vertical Scaling

4. T_y Vertical Translation

Sequence : $T_x S_x S_y T_y$

0.4 Conic Sections

0.4.1 Ellipses

Standard Form : $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

Properties

• Center: (h, k)

• Semi-Major-Axis : a

 \bullet Semi-Minor-Axis : b

• Symmetrical about x = h & y = k

0.4.2 Circles

Standard Form : $(x - h)^2 + (y - k)^2 = 1$

Properties

• Center: (h, k)

• Radius : a

• Symmetrical about x = h & y = k

0.4.3 Hyperbolas

Standard Form : $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Properties

6

• Center: (h, k)

• Symmetrical about x = h & y = k

• Vertices are 'b' units from the center (h, k)Vertically

• Oblique Asymptotes are $y = \pm \frac{b}{a}(x-h) + k$

Standard Form : $\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$

Properties

- Vertexes : $(h, k \pm b)$
- Symmetrical about x = h & y = k
- Vertices are 'a' units from the center (h, k)Horizontally

0.4.4 Parabolas

Standard Form : $(x - h)^2 = 4p(y - k)$

Properties

- Vertex : (h, k)
- Symmetrical about x = h
- If p > 0, $y \ge k \ \forall x (x \in \mathbb{R})$ If p < 0, $y \le k \ \forall x (x \in \mathbb{R})$

Standard Form : $(y - h)^2 = 4p(x - k)$

Properties

- Vertex : (h, k)
- Symmetrical about y = k
- If p > 0, $x \ge h \ \forall y (y \in \mathbb{R})$ If p < 0, $x \le h \ \forall y (y \in \mathbb{R})$

- 0.5 Parametric Equations
- 0.5.1 Sketching Parametric Curves
- 0.5.2 Finding Asymptotes of Parametric Curves
- $\begin{array}{cc} \textbf{0.5.3} & \textbf{Conversion of Parametric to Cartesian Equations} \\ \end{array}$