

## Post training 4-bit quantization of convolutional networks for rapid-deployment Ron Banner, Yury Nahshan and Daniel Soudry



- 4-bit Post training quantization of weights and activations
  - No retraining
  - No data set



| Method               | VGG   | VGG-BN | IncepV3 | Res18 | Res50 | Res101 |
|----------------------|-------|--------|---------|-------|-------|--------|
| Baseline             | 67.2% | 64.5%  | 30.6%   | 51.6% | 62.0% | 62.6%  |
| All methods combined | 70.5% | 71.8%  | 66.4%   | 67.0% | 73.8% | 75.0%  |
| Reference (FP32)     | 71.6% | 73.4%  | 77.2%   | 69.7% | 76.1% | 77.3%  |

## Analytical Clipping







## Bit-allocation

$$M_i = \left\lfloor \log_2 \left( \frac{\alpha_i^{\frac{2}{3}}}{\sum_i \alpha_i^{\frac{2}{3}}} \cdot B \right) \right\rfloor$$









## Bias-correction

$$\mu_c = \mathbb{E}(W_c) - \mathbb{E}(W_c^q)$$

$$\xi_c = \frac{||W_c - \mathbb{E}(W_c)||_2}{||W_c^q - \mathbb{E}(W_c^q)||_2}$$

$$w \longleftarrow \xi_c \left( w + \mu_c \right), \quad \forall w \in W_c^q$$

