EE568 Project-1

EBRU GENÇ

1) Between 2 yellow line angle is 77 degree. At figure 1 position is assumed as initial.

Figure 1. 2D Model

- Coils are wound within 30mmx10mm rectangle areas
- Each airgap clearance is 0.5mm
- Depth of the core is 20mm
- Number of turns = 250
- Coil Current = 3 A DC

$$\varphi * R = N * I$$

$$\lambda = N * \varphi$$

$$\varphi = \frac{N * I}{R}$$

$$\lambda = \frac{N^2 * I}{R}$$

$$L = \frac{d\lambda}{dI}$$

For linear system we can assumed $L=rac{\lambda}{I}$

$$L = \frac{N^2}{R_{\theta}}$$

$$E = \frac{I^2 * L}{2}$$

$$E = \frac{I^2 * N^2}{2 * R_{\theta}}$$

$$T = \frac{dE_{\theta}}{d\theta}$$

$$T = \frac{\left(\frac{1}{2}\right) * I^{2} * N^{2} * d\left(\frac{1}{R_{\theta}}\right)}{d\theta}$$

$$R = \frac{L}{\mu_{0} * \mu_{r} * A}$$

$$A = \pi * D * L * \left(\frac{77}{360}\right)$$

$$A = \pi * 12.5 * 20 * \frac{77}{360} * 10^{-6} = 168 * 10^{-6} m^{2}$$

$$A_{\theta} = 168 * 10^{-6} \left(\frac{77 - \theta}{77}\right)$$

$$R_{\theta} = \frac{L}{\mu_0 * \mu_r * A_{\theta}} = \frac{0.5 * 10^{-3}}{(4 * \pi * 10^{-7}) * (1) * A_{\theta}}$$

Reluctance funtion for rotation anle θ ;

$$R_{\theta} = 2.37 * 10^6 * \left(\frac{77}{77 - \theta}\right)$$

Inductance funtion for rotation anle θ ;

$$L_{\theta} = \frac{N^2}{R_{\theta}} = \frac{250^2}{2.37 * 10^6 * \left(\frac{77}{77 - \theta}\right)} = 0.026 * \left(\frac{77 - \theta}{77}\right)$$

At initial position ($\theta=0$) Inductance will be 26 mH according to calculated formula. FEA 2D modeling results and analytical calculated results are nearly same.

$$E = \frac{I^2 * L}{2}$$

$$T = \frac{dE_{\theta}}{d\theta}$$

$$T = \frac{d\left(0.026\left(1 - \frac{\theta}{77}\right) * \frac{3^2}{2}\right)}{d\theta} = \frac{0.117}{77 * \frac{\pi}{180}} = 0.087 Nm$$

Figure 2. Generated Torque

2) FEA Modeling (2D-Linear Materials)

Figure 1. Inductance for linear Materials System

Figure 2. Torque for linear Materials System

Figure 3. Flux Density Vectors at 0 position for linear Materials System

Figure 4. Flux Density Vectors at 45 position for linear Materials System

Figure 5. Flux Density Vectors at 90 position for linear Materials System

3) FEA Modeling (2D-Nonlinear Materials)

Figure 6. Inductance for Nonlinear Materials System

Figure 7. Torque for Nonlinear Materials System

Figure 8. Flux Density Vectors at 0 position for Nonlinear Materials System

Figure 9. Flux Density Vectors at 45 position for Nonlinear Materials System

Figure 10. Flux Density Vectors at 90 position for Nonlinear Materials System