29. a.	Determine the multiplicative inverse of $x^3 + x + 1$ in $GF(2^4)$ with	12	4	2	1
	$m(x) = x^4 + x + 1.$				
h	(OR)	10	2	•	
U.	Using Chinese remainder theorem find the smallest positive integer n such that	12	3	2	1
	$n \equiv 3 \mod 5$				
	$n \equiv 1 \mod 7$				
	$n \equiv 6 \mod 8$				
	$n = 0$ mod θ				
30. a.	Describe DES algorithm with neat diagram and explain the steps.	12	2	3	1
	(OR)				
Ъ.	Explain AES algorithm with all its round functions in detail.	12	3	3	1
31. a.	Find the public key of a user 'B' using elliptic curve cryptography. The	12	4	4	1
	parameters are E_{11} (1, 6), $G(2, 7)$ and B's secret key $n_B = 5$.				
1 .	(OR)				
D.1.	Find the private key and encrypt the following plain text using RSA algorithm with given inputs $p = 5$, $q = 7$, $e = 11$, $m = 7$.	6	4	4	1
ii.	Find the public keys and the secret key for the following input using Diffie Hellman algorithm $Q = 11$, $\alpha = 7$, $X_A = 5$, $X_B = 3$.	6	4	4	1
32. a.	Explain in detail about SHA-512 with necessary diagrams.	12	2	5	1
	(OD)				
h	(OR) Evaluin in detail about MDS with	10		_	
υ.	Explain in detail about MD5 with necessary diagram.	12	-2	5	1

		7.10			
					_
	The state of the s				
	the ball of the same of parties and proper resp. 1881			1	

Reg. No.														
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, MAY 2023

Fifth & Sixth Semester

18CSE381T - CRYPTOGRAPHY

					RYPTOGRAPHY e academic year 2018-2019 to 2021	2022)				
Note	:		(2 or one cumulates turninea auri	ng ine	e academic year 2016-2019 to 2021	-2022)				
(i)		to h	ct - A should be answered in OMR shall invigilator at the end of 40 th minut	e.		et shou	ıld be	han	ded o	over
(ii))	Pai	t - B & Part - C should be answered	in ans	wer booklet.					
Time	2: 3	hour	s			Max	. Mar	ks:	100	
			$PART - A (20 \times 1)$	= 20	Marks)		Marks	BL	СО	PO
	7		Answer ALL (Quest	ions					
	1.	Whitech	ich of the following is not a mique?	type	e of symmetric-key cryptogra	aphy	1	1	1	1
		(A)	Caesar cipher	(B)	Data encryption standard					
		(C)	Diffie Hellman cipher		Play fair cipher					
	2.	Whi	ich of the following security attacl	cs is i	not an active attack?		1	1	1	1
		(A)	Masquerade		Modification of message					
		(C)	Denial of service		Traffic analysis					
	3.	Whi	ch of the following options correc	tly d	efines the brute force attack?		1	1	1	1
		(A)	Brutally forcing the user to share the useful information like pins and passwords	(B)	Trying every possible key decrypt the message	to				
		(C)	One entity pretends to be some other entity	(D)	The message or information modified sending it to the rece					
	4.	The	method of conceal the existence of	of the	message is called		1	1	1	1
			Cryptography	(B)						
		(C)	Data flow	(D)	Encryption					
	5.		sider the following properties							
		,	Closure							
		,	Associative							
) Identity element							
	12) Inverse element							
		,	Commutative	(77)						
			G-i to G-v is an Abelian group		G-i to G-v is an field					
		(0)	G-i to G-v is an ring	(D)	G-i to G-iii is an group					
	6.		odular arithmetic; (c/d)				1	2	2	1
		(A)	$d(a^n-1)$	(B)	$d(c^n-1)$					
		(C)	$c(d^{-1})$	(D)	$d(c^{-1})$	1111				
					- ,					

	(C) $a^P \equiv 1 \pmod{P}$ (D)	divisible by P then $a^{P-1} \equiv P(\text{mod } P)$ $a^{P+1} \equiv 1(\text{mod } P)$		2 2			19.	What is a one-way password file? (A) A scheme in which the (B) A scheme is which the password password is jumbled and stored is XOR with a key and stored (C) A scheme in which the hash of (D) A scheme in which the password the password is stored is passed through	1	L	3	1
		Finding prime number Finding GCD					20.	In SHA-512, the size of the word is bits and the number of rounds involved in the process is	1	2	5	1
		ime. Stream cipher DES cipher	1	2	3	1		(A) 80, 64 (C) 64, 82 (B) 64, 80 (D) 128, 80	Marks	RI.	CO	PO
	DES encrypts bit blocks with	bit key.	1	2	3	1		PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	DE		
		56, 64 64, 56					21.	Explain about OSI security in detail.	4	2	1	1
		ey securely. Elliptic cryptography Cipher block chaining	1	2	3	1	22.	Using play fair cipher, encrypt the plaintext "FINAL YEARS" using key "MATRIX".	4	3	1	1
12.	What is the minimum and maximum size		1	2	3	1	23.	Find the primitive routs of prime number 23. Write the importance of primitive rout in the network security.	4	2	2	1
		32 bits, 48 bytes			4		24.	Consider the input state arrays to the add round key phase of AES algorithm	4	3	3	1
13.	 In public key encryption if A wants to sen (A) A encrypts message using his (B) private key (C) A encrypts message using B's (D) public key 	A encrypts message using B's private key	1	2	4	I		87 F2 4D 97 47 40 A3 4C 6E 4C 90 EC 37 D4 70 9F 46 E7 4A C3 94 E4 3A 42 A6 8C D8 95 ED A5 A6 BC Find the output state array of the add round key phae.				
14.	Which of the following ciphers uses asym (A) Rail Fence cipher (B) (C) Play fair cipher (D)		1		4	1	25.	Assume that Alice and Bob uses the Diffie-Hellman key management protocol. Show how the secret key is shared between them and prove that Alice and Bob obtain the same symmetric key that is $K = K'$. Show all works.	4	4	4	1
15.) Receiver) All the connected devices to the	1	2	4	1		Write about the magic constants of RC5.	4	3		1
16.	In RSA algorithm if $p = 7$, $q = 11$ and $e = 2$	network 13 then what will be the value of d =	1	3	4	1	27.	Sign the following message using Elgammal digital signature algorithm. The inputs are $Q = 13$, $\alpha = 11$,	4	4	5	,
	(A) 37 (B) (C) 55 (D)) 50) 36						PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL.	со	P
17.	Digital signatures authenticates the sende with thedigest. (A) Decrypted message (B) (C) Encrypted message (D)) Systematic approach	1	2	5	1	28. a	Using Hill cipher, encrypt and decrypt the message "CAPTIVES ELEVEN" with key: $\begin{pmatrix} 2 & 5 \\ 9 & 4 \end{pmatrix}$.	12	3	1	1
18.	What is the output of cryptographic hash (A) A variable set of bits (B) (C) An output which may be easily (D)	one-way mathematical operations Outputs of such functions are	1	2	5	1	b	(OR) Write the advantages of poly alphabetic cipher method. Encrypt and decrypt the plain text "hello" with key "dghbc" using vernam cipher method.	12	3	1	
ge 2 o	discovered by an adversary	number of importance	1F5&6	-18CSE	3811		Page 3	of 4	4MF5&	6-180	CSE38	1T

Page 2 of 4