Method of Solving the Equation xy + ax + by = c.

$$xy + ax + by = c$$

$$xy + ax + by + ab = ab + c$$

$$x(y+a) + b(y+a) = ab + c$$

$$(x+b)(y+a) = ab + c$$
(1)

There are two possible cases:

Case 1:

If ab + c = 0, then x + b = 0 or y + a = 0.

If x + b = 0, then x = -b, $b \in \mathbb{Z}$ and y is an arbitrary integer.

If y + a = 0, then y = -a, $a \in \mathbb{Z}$ and x is an arbitrary integer.

Example: Solve xy + x + y = -1.

Solution: Here a = 1, b = 1, c = -1. Then ab + c = 0.

So the possible solutions are $(x, y) = (-1, y), y \in \mathbb{Z}$ and $(x, y) = (x, -1), x \in \mathbb{Z}$.

Case 2:

If $ab + c \neq 0$, then let d_1, \dots, d_n be the divisors of ab + c.

So $x + b = d_i$ for some $i \in \{1, 2, \dots, n\}$.

Thus (1) becomes

$$d_i(y+a) = ab + c$$

$$y = \frac{ab + c}{d_i} - a$$

In this case, the solutions are given as $(x, y) = \left(d_i - b, \frac{ab+c}{d_i} - a\right)$, $i = 1, 2, \dots, n$.

Example: Solve xy + 2x + 3y = 1.

Solution: Here a = 2, b = 3, c = 1. Then $ab + c = 7 \neq 0$.

So let us collect all the divisors of ab + c = 7.

Take $d_1 = 1$, $d_2 = -1$, $d_3 = 7$, $d_4 = -7$.

d_i	$x = d_i - b$ $(x = d_i - 3)$	$y = \frac{ab + c}{d_i} - a$ $\left(y = \frac{7}{d} - 2\right)$
$d_1 = 1$	-2	$\begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

$d_2 = -1$	-4	-9
$d_3 = 7$	4	-1
$d_{A} = -7$	-10	-3

Thus the required solutions (x, y) are (-2,5), (-4, -9), (4, -1), (-10, -3).