Project Development

Delivery Of Sprint-2

Date	October 2022
Team ID	PNT2022TMID37447
Project Name	Project - Corporate Employee Attrition Analytics

DATA UNDERSTANDING, DATA PREPARATION & EDA

DIVIDING CATEGORICAL COLUMNS INTO ORDINAL_COLUMNS AND NOMINAL_COLUMNS AND PROCEDDING UNIVARIANT ANALYSIS FOR THEM

```
#Divide into CategoricalColumns
num attrition=num col eda+['Attrition']
Education=['Below-College','College','Bachelor','Master','Doctor']
EnvironmentSatisfaction=['Low','Medium','High','Very High']
JobInvolvement=['Low','Medium','High','Very High']
JobSatisfaction=['Low','Medium','High','Very High']
RelationshipSatisfaction=['Low','Medium','High','Very High']
PerformanceRating=['Low','Good','Excellent','Outstanding']
WorkLifeBalance=['Bad','Good','Better','Best']
val=[Education,EnvironmentSatisfaction,JobInvolvement,JobSatisfaction,Perfor
manceRating, WorkLifeBalance]
cat1=['Education','EnvironmentSatisfaction','JobInvolvement','JobSatisfaction','P
erformanceRating','WorkLifeBalance']
cat_col_eda=set(columns) - set(num_col_eda)
cat col eda=set(cat col eda) - set(cat1)
fig = plt.figure(figsize=(16,20))
```

FOR ORDINAL COLUMNS UNIVARIANT ANALYSIS

```
#2. chaning nums as x_ticks to categorys as x_ticks fig = plt.figure(figsize=(30,28)) for idx,i in enumerate(zip(cat1,val)):
```

```
#crosstab = pd.crosstab(index=final_df[i[0]], columns=final_df["Attrition"])
ax=plt.subplot(6,4,idx+1)

#crosstab.plot(kind="bar",stacked=True,ax=ax)

#sns.countplot(x=i[0],data=final_df,ax=ax)

sns.countplot(final_df[i[0]],hue=final_df['Attrition'],ax=ax)

ax.set(xticks=range(len(i[1])), xticklabels=[j for j in i[1]])

plt.show()
```


INFERENCES:

there is no particular distinction

FOR NOMINAL_COLUMN DOING UNIVARIANT ANALYSIS CODING:

#Divide into CategoricalColumns

#1. with categorys as x_ticks

fig = plt.figure(figsize=(20,26))

for idx,i in enumerate(cat_col_eda):

crosstab = pd.crosstab(index=final_df[i], columns=final_df["Attrition"])

```
ax=plt.subplot(6,4,idx+1)
crosstab.plot(kind="bar",stacked=True,ax=ax)
#sns.countplot(x=i[0],data=final_df,ax=ax)
#ax.set(xticks=range(len(i[1])), xticklabels=[j for j in i[1]])
plt.show()
```



```
#2. chaning nums as x_ticks to categorys as x_ticks
fig = plt.figure(figsize=(20,26))
for idx,i in enumerate(zip(cat1,val)):
    crosstab = pd.crosstab(index=final_df[i[0]], columns=final_df["Attrition"])
    ax=plt.subplot(6,4,idx+1)
    crosstab.plot(kind="bar",stacked=True,ax=ax)
    #sns.countplot(x=i[0],data=final_df,ax=ax)
```

ax.set(xticks=range(len(i[1])), xticklabels=[j for j in i[1]])
plt.show()

OUTPUT:


```
#for i in num_attrition:
#crosstab = pd.crosstab(index=final_df[i], columns=final_df["Attrition"])
#num_attrition=num_col_eda+['Attrition']
fig = plt.figure(figsize=(20,26))
for idx,i in enumerate(num_attrition):
    crosstab = pd.crosstab(index=final_df[i], columns=final_df["Attrition"])
    ax=plt.subplot(6,4,idx+1)
    #sns.boxplot(x=i,data=final_df,ax=ax)
    crosstab.plot(kind="bar",stacked=True,ax=ax)
```


FINDING OUTLIER IN NUMERICAL DATA

CODING:

#Box Plot for finding "Outiler" in our data

fig = plt.figure(figsize=(20,26))

for idx,i in enumerate(num_col_eda):

ax=plt.subplot(6,4,idx+1)

sns.boxplot(x=i,data=final_df,ax=ax)

RESULTS FROM ABOVE GRAPH:

- from above Boxplots, we are trying to find is there any outliers in Numerical columns
- We can Observe outliers on Monthly Income, Total Working Years and Years at Company Columns that those columns don't outliers Because there is highly possibilities on occurring

PAIR-PLOT

CODING:

#Pair-Plot

sns.pairplot(final_df[num_attrition], hue = 'Attrition')

 By Observing above plot, for any considering any two columns we cannot get any conclusion on Attrition feature

CODING:

for i in num_attrition:
 sns.FacetGrid(final_df,hue="Attrition",size=3).map(sns.distplot,i).add_le
 gend()
 plt.show()

FEATURE EXTRACTION

	Age	Marital Standa YearsA Enviror	ionField IStatus	Employ Month StockO ny tisfactio	n	t Employ NumCo vel nceLastF	reeID mpanies TotalW Promotion sfaction	Gender Worked orkingYe on	ears YearsW	el Percent Training 'ithCurrN	gTimesLa	e ike astYear	t
	0	51	No	Travel	Rarely	Sales	6	2	Life Scie	ences	1	1	
Female 1			Healthcare Representat			-			131160		Y	11	
		8	0	1.0	6	1	0	0	3.0	4.0	2.0	3	3
		50	40-60									_	
	1	31	Yes	Traval	Fraguer	n+lv	Rospara	h & Day	elonma	nt	10	1	Life
	Science			Travel_Frequently 2 Female 1			Research & Development Research Scientist Single				41890	0.0	Υ
	Science	23	8	1	6.0	3	5	1	4	3.0	2.0	4.0	2
		4	30	20-40	0.0	3	5	1	4	3.0	2.0	4.0	2
		7	30	20 40									
	2	32	No	Travel_	Frequen	ntly	Research & Development				17	4	
		Other	1	3	Male	ale 4 Sales Executive Marr			Marrie	t	193280	1.0	Υ
		15	8	3	5.0	2	5	0	3	2.0	2.0	1.0	3
		3	30	20-40									
	3	38	B No Non-Travel R			Researc	Research & Development			2	5	Life	
Sciences 1		4	Male	3	Human Resources			Married	t	83210	3.0		
		Υ	11	8	3	13.0	5	8	7	5	4.0	4.0	3.0
		2	3	30	20-40								
	4	32	No	Travel	Rarely	Researc	ch & Development		10	1	Medical1		
		5	Male	1	•	xecutive		•	4.0	Υ	12	8	2
		9.0	2	6	0	4	4.0	1.0	3.0	3	3	30	20-
	40												

#lambda x: x*10 if x<2 else (x**2 if x<4 else x+10)

#final_df['age_fs']=final_df['Age'].map(lambda x: "20" if(x<30) else ("30" if(30<= \times 40) else ("40" if(40<= \times 50) else "50")))

final_df['age_fs1']=final_df['Age'].map(lambda x: "20-40" if(x<40) else "40-60")

#sns.FacetGrid(final_df,hue="Attrition",size=3).map(sns.distplot,'age_fs').add_le gend()

#plt.show()

#sns.FacetGrid(final_df,hue="Attrition",size=3).map(sns.distplot,'Age').add_lege nd()

#final_df['age_fs1']=final_df['Age'].map(lambda x: "20-40" if(x<40) else "40-60") sns.countplot(final_df["age_fs1"],hue=final_df['Attrition']) plt.show()

OUTPUT:

FINDING CORRELATION

CORRELATION ON NUMERICAL FEATURES

CODING:

fig, ax = plt.subplots(figsize=(10,7)) # Sample figsize in inches

sns.heatmap(final_df_numerical_data.corr(),cmap='YlOrRd',linewidths=.5,ax
=ax)

INFERENCES:

 There is no higher dependency between column to columns from above heat Map Plot