1 HW4.4b

Пример в общем виде выглядит так (нас наводит на это задача 1с):

$$(A_0 \to (\alpha_0 \lor \neg \alpha_0)) \lor (\neg A_0 \to ((\alpha_0 \lor \neg \alpha_0))),$$

где α_i в свою очередь такого же вида, то есть:

$$\alpha_i = (A_i \to (\alpha_{i+1} \lor \neg \alpha_{i+1})) \lor (\neg A_i \to ((\alpha_{i+1} \lor \neg \alpha_{i+1})))$$

и в свою очередь финальное по вложенности $\alpha_{n-2} = A_{n-2}$

Таким образом, я утверждаю, что данная формула не может быть опровергнута моделью Крипке глубиной n и меньше.

Доказательство 1 Будем доказывать по индукции/рекурсии:

База n=1: Очевидно, что $A \vee \neg A$ не получить глубиной 0, m.к. если в мире W без потомков $\not\models A$ (что является обязательным условием), то в нем увы $\vdash \neg A \Rightarrow$ противоречие \Rightarrow должна быть глубина хотя бы 1. Также заметим, что это, очевидно, верно не только для переменной A, но u для формулы α

А также вспомним пример из лекции для достижения опровержения данной конструкции миоделью Крипке глубиной 1:

Переход(рекурсивный): заметим, что в мире, который все опровергает (W) должно быть (из свойства \vee) следующее

U с другой стороны $W_1 \not\preceq W_2$, т.к. $\forall X \succeq W_1$ выполняется $\Vdash A_0$, а значит $X \not\Vdash \neg A$

Значит W_1 и W_2 в некотором смысле параллельные миры, т.к. не могут быть наследниками друг друга. А значит в лучшем случае W - их общий ближсайший предок (родитель). А значит данная рекурсия доказывает добавление +1 за каждое погружение вглубь. (Более того ветки миров W_1 и W_2 вообще потом не могут пересекаться) \Rightarrow как минимум получили +1 к общей глубине дерева. Далее аналогично все раскрывается для α_0 . Посмотрим на картинке:

