

12. HANK-SAM

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl

2023

From RANK to HANK:

- 1. Income effects more important relative to substitution effects
- 2. Cash-flows more important relative to relative prices
- Central: High MPCs
 - I. Idiosyncratic risk + incomplete markets \rightarrow
 - II. Precautionary saving and liquidity constraint \rightarrow
 - III. Concave consumption function \rightarrow high MPCs

- From RANK to HANK:
 - 1. Income effects more important relative to substitution effects
 - 2. Cash-flows more important relative to relative prices
- Central: High MPCs
 - I. Idiosyncratic risk + incomplete markets \rightarrow
 - II. Precautionary saving and liquidity constraint \rightarrow
 - III. Concave consumption function \rightarrow high MPCs
- SAM: Search-And-Matching labor market

New: Endogenous fluctuations in idiosyncratic risk

From RANK to HANK:

- 1. Income effects more important relative to substitution effects
- 2. Cash-flows more important relative to relative prices
- Central: High MPCs
 - I. Idiosyncratic risk + incomplete markets \rightarrow
 - II. Precautionary saving and liquidity constraint \rightarrow
 - III. Concave consumption function \rightarrow high MPCs
- SAM: Search-And-Matching labor market

New: Endogenous fluctuations in idiosyncratic risk

Today:

GEModelTools: Model description of HANK-SAM

Broer, Druedahl, Harmenberg and Öberg:

2024: »Stimulus effects of common fiscal policies«

2023: »The Unemployment-Risk Channel in Business-Cycle Fluctuations«

Overview

- Intermediate producers:
 - 1. Hire and fire in search-and-matching labor market
 - 2. Sell homogeneous good at price p_t^X .
- Wholesale price-setters:
 - 1. Set prices in monopolistic competition subject to adjustment costs
 - 2. Pay out dividends
- Final producers: Aggregate to final good
- Government:
 - 1. Pay transfers and unemployment insurance
 - 2. Collect taxes and issues debt
- Central bank: Sets nominal interest rate
- Households: Consume and save

Equilibrium dynamics

- Incomplete markets: Unemployment risk → demand Complete markets / representative agent: Only total income matters
- 2. **Sticky prices:** Demand → profitability
- 3. Frictional labor market: Profitability \rightarrow unemployment risk

Household problem

$$\begin{aligned} v_t(\beta_i, u_{it}, a_{it-1}) &= \max_{c_{it}, a_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} + \beta_i \mathbb{E}_t \left[v_{t+1} \left(\beta_i, u_{it+1}, a_{it} \right) \right] \\ \text{s.t. } a_{it} + c_{it} &= (1+r_t) a_{it-1} + (1-\tau_t) y_t(u_{it}) + \mathsf{div}_t + \mathsf{transfer}_t \\ a_{it} &\geq 0 \end{aligned}$$

- 1. Dividends and government transfers: div_t and transfer_t
- 2. Real wage: Wss
- 3. Income tax: τ_t
- 4. **Separation rate** for employed: δ_{ss}
- 5. **Job-finding rate** for unemployed: $\lambda_t^{u,s} s(u_{it-1})$ (where $s(u_{it-1})$ is exogenous search effectiveness)
- 6. US-style duration-dependent **UI system:**
 - a) High replacement rate $\overline{\phi}\text{, first }\overline{u}\text{ months}$
 - b) Low replacement rate ϕ , after \overline{u} months

Income process

Income is

$$y_{it}(u_{it}) = w_{ss} \cdot egin{cases} 1 & ext{if } u_{it} = 0 \ \overline{\phi} \mathsf{UI}_{it} + (1 - \mathsf{UI}_{it}) \underline{\phi} & ext{else} \end{cases}$$

where the share of the month with UI is

$$\mathsf{UI}_{it} = egin{cases} 0 & ext{if } u_{it} = 0 \ 1 & ext{else if } u_{it} < \overline{u} \ 0 & ext{else if } u_{it} > \overline{u} + 1 \ \overline{u} - (u_{it} - 1) & ext{else} \end{cases}$$

• Note: Hereby \overline{u} becomes a continuous variable.

Transition probabilities

Beginning-of-period value function:

$$\underline{v}_{t}\left(\beta_{i}, u_{it-1}, a_{it-1}\right) = \mathbb{E}\left[v_{t}(\beta_{i}, u_{it}, a_{it-1}) \mid u_{it-1}, a_{it-1}\right]$$

- **Grid:** $u_{it} \in \{0, 1, \dots, \#_u 1\}$
- Workers with $u_{it-1} = 0$: $u_{it} = \begin{cases} 0 & \text{with prob. } 1 \delta_{ss} \\ 1 & \text{with prob. } \delta_{ss} \end{cases}$
- **Unemployed** with $u_{it-1} = 1$:

$$u_{it} = \begin{cases} 0 & \text{with prob. } \lambda_t^{u,s} s(u_{it-1}) \\ u_{it-1} + 1 & \text{with prob. } 1 - \lambda_t^{u,s} s(u_{it-1}) \end{cases}$$

Trick: $u_{it} = \min \{u_{it-1} + 1, \#_u - 1\}$

■ All unemployed search: $s(u_{it-1}) = \begin{cases} 0 & \text{if } u_{it-1} = 0 \\ 1 & \text{else} \end{cases}$

Aggregation

Distributions:

- 1. Beginning-of-period: $\underline{\mathbf{D}}_t$ over β_i , u_{it-1} and a_{it-1}
- 2. At decision: \mathbf{D}_t over β_i , u_{it} and a_{it-1}
- Stochastic transition matrix: $\Pi_{t,z} = \Pi_z(\lambda_t^u)$
- Deterministic savings policy matrix: Λ'_t
- Transition steps:

$$oldsymbol{D}_t = \Pi'_{t,z} \underline{oldsymbol{D}}_t \ \underline{oldsymbol{D}}_{t+1} = \Lambda'_t oldsymbol{D}_t$$

- Searchers: $S_t = \int s(\beta_i, u_{it-1}, a_{it-1}) d\underline{\boldsymbol{D}}_t$
- Savings: $A_t^{hh} = \int a_t^*(\beta_i, u_{it}, a_{it-1}) d\mathbf{D}_t$
- Consumption: $C_t^{hh} = \int c_t^*(\beta_i, u_{it}, a_{it-1}) d\mathbf{D}_t$

Beginning-of-period value function:

$$\underline{v}_{a,t}(\beta_i, u_{it-1}, a_{it-1}) = \mathbb{E}_t\left[v_{a,t}(\beta_i, u_{it}, a_{it-1})\right] = \mathbb{E}_t\left[(1+r_t)c_{it}^{-\sigma}\right]$$

Endogenous grid method: Vary u_{it} and a_{it} to find

$$c_{it} = (\beta \underline{v}_{a,t+1}(\beta_i, u_{it}, a_{it}))^{-\frac{1}{\sigma}}$$

$$m_{it} = c_{it} + a_{it}$$

Consumption and labor supply: Use linear interpolation to find

$$c_t^*(\beta_i, u_{it}, a_{it-1})$$
 with $m_{it} = (1 + r_t)a_{it-1}$

• Savings: $a^*(u_{it}, a_{it-1}) = (1 + r_t)a_{it-1} - c_t^*(\beta_i, u_{it}, a_{it-1})$

Producers: Hiring and firing

Job value:

$$V_t^j =
ho_t^X Z_t - w_{ ext{ss}} + eta^{ ext{firm}} \mathbb{E}_t \left[(1 - \delta_{ ext{ss}}) V_{t+1}^j
ight]$$

Vacancy value:

$$V_t^{
m v} = -\kappa + \lambda_t^{
m v} V_t^j + (1-\lambda_t^{
m v})(1-\delta_{
m ss})eta^{
m firm} \mathbb{E}_t \left[V_{t+1}^{
m v}
ight]$$

• Free entry implies

$$V_t^v = 0$$

Labor market dynamics

Labor market tightness is given by

$$\theta_t = \frac{\mathsf{vacancies}_t}{\mathsf{searchers}_t} = \frac{v_t}{S_t}$$

Cobb-Douglas matching function

$$\mathsf{matches}_t = AS_t^{\alpha} v_t^{1-\alpha}, \ \ \alpha \in (0,1)$$

implies the job-filling and job-finding rates:

$$\lambda_t^{v} = \frac{\mathsf{matches}_t}{v_t} = A\theta_t^{-\alpha}$$
$$\lambda_t^{u,s} = \frac{\mathsf{matches}_t}{S_t} = A\theta_t^{1-\alpha}$$

Law of motion for unemployment:

$$u_t = u_{t-1} + \delta_t (1 - u_{t-1}) - \lambda_t^{u,s} S_t$$

Price setters

- Intermediate goods price: p_t^X
- Dixit-Stiglitz demand curve ⇒ Phillips curve relating marginal cost, MC_t = p_t^x, and final goods price inflation, Π_t = P_t/P_{t-1},

$$1 - \epsilon + \epsilon p_t^{\mathsf{x}} = \phi \pi_t (1 + \pi_t) - \phi \beta^{\mathsf{firm}} \mathbb{E}_t \left[\pi_{t+1} (1 + \pi_{t+1}) \frac{Y_{t+1}}{Y_t} \right]$$

with output
$$Y_t = Z_t(1-u_t)$$

- Flexible price limit: $\phi \to 0$
- Dividends:

$$\mathsf{div}_t = Y_t - w_t(1 - u_t)$$

Central bank

Taylor rule:

$$1+i_t = (1+i_{ss})\left(rac{1+\pi_t}{1+\pi_{ss}}
ight)^{\delta_\pi}$$

Government

- $\bullet \ \ \ \ \, \textbf{Unemployment insurance:} \ \ \Phi_t = w_{ss} \left(\overline{\phi} \mathsf{UI}_t^{hh} + \underline{\phi} \left(u_t \mathsf{UI}_t^{hh} \right) \right) \\$
- Total expenses: $X_t = \Phi_t + G_t + \text{transfer}_t$
- Total taxes: $taxes_t = \tau_t (\Phi_t + w_{ss}(1 u_t))$
- Government budget is

$$q_t B_t = (1 + q_t \delta_q) B_{t-1} + X_t - \mathsf{taxes}_t$$

Long-term debt: Real payment stream is $1, \delta, \delta^2, \ldots$. The real bond price is q_t .

Tax rule:

$$ilde{ au}_t = rac{\left(1 + q_t \delta_q
ight) B_{t-1} + X_t - q_{ss} B_{ss}}{\Phi_t + w_{ss}(1 - u_t)} \ au_t = \omega ilde{ au}_t + (1 - \omega) au_{ss}$$

• **Transfers:** transfer $_t = -\text{div}_{ss}$

Financial markets: No arbitrage

1. Pricing of government debt:

$$\frac{1 + \delta_q q_{t+1}}{q_t} = \frac{1 + i_t}{1 + \pi_{t+1}} = 1 + r_{t+1}$$

2. Ex post real return:

$$1+r_t = egin{cases} rac{(1+\delta_q q_0)B_{-1}}{A^{hh}} & ext{if } t=0 \ rac{1+i_{t-1}}{1+\pi_t} & ext{else} \end{cases}$$

Market clearing

- 1. Asset market: $A_t^{hh} = q_t B_t$
- 2. Goods market: $Y_t = C_t^{hh} + G_t$

Tip: You should be able to verify Walras' law

Market clearing

- 1. Shocks: G_t
- 2. Unknowns: p_t^X , V_t^j , v_t , u_t , S_t , π_t , $\mathsf{UI}_t^{\mathsf{guess}}$
- 3. Targets:
 - 3.1 Error in Job Value
 - 3.2 Error in Vacancy Value
 - 3.3 Error in Law-of-Motion for u_t
 - 3.4 Error in Philips Curve
 - 3.5 Error in Asset Market Clearing
 - 3.6 $u_t = U_t^{hh} = \int 1\{u_{it} > 0\} d\mathbf{D}_t$
 - 3.7 $\mathsf{UI}_t^{\mathsf{guess}} = \mathsf{UI}_t^{\mathsf{h}\mathsf{h}} = \int \mathsf{UI}_{\mathsf{i}\mathsf{t}} d\boldsymbol{D}_\mathsf{t}$

Steady State

- 1. **Zero inflation:** $\pi_t = 0$
- 2. **SAM:** Choose A and κ to ensure $\delta_{ss}=0.02$ and $\lambda_{u.ss}^s=0.30$
- 3. HANK: Enforce asset market clearing
 - 3.1 Set r_{ss}
 - 3.2 Calculate implied A_{ss}^{hh}
 - 3.3 Adjust G_{ss} so $q_{ss}B_{ss}=A_{ss}^{hh}$

Calibration

- 1. Real interest rate: $1 + r_t = 1.02^{\frac{1}{12}}$
- 2. Households: $\sigma = 2.0$

30%:
$$\beta_i = \beta^{\text{HtM}} = 0$$

60%: $\beta_i = \beta^{\text{BS}} = 0.94^{\frac{1}{12}}$
10%: $\beta_i = \beta^{\text{PIH}} = 0.975^{\frac{1}{12}}$

- 3. Matching and bargaining: $\alpha = 0.60$, $\theta = 0.60$, $w_{ss} = 0.90$
- 4. **Producers:** $\beta^{\text{firm}} = 0.975^{\frac{1}{12}}$
- 5. **Price-setters:** $\epsilon = 6$ and $\phi = 600$
- 6. Monetary policy: $\phi = 1.5$
- 7. Government:

Tax:
$$\tau = 0.30$$

Debt:
$$\delta_q = 1 - \frac{1}{36}$$
 and $\omega = 0.05$
UI: $\overline{\phi} = 0.70$ $\phi = 0.40$ and $\overline{u} = 0.05$

UI:
$$\overline{\phi}=$$
 0.70, $\underline{\phi}=$ 0.40, and $\overline{u}=$ 6

Steady state analysis

In steady state:

- 1. Look at the consumption functions
- 2. Look at the distribution of savings
- 3. Look at how consumption evolves in unemployment

Policy analysis

Shock: Consider a 1% shock to government consumption

$$G_t - G_{ss} = 0.80^t \cdot 0.01 \cdot G_{ss}$$

Look at impulse responses for:

- 1. Output
- 2. Unemployment (risk)
- 3. Tax rate

What drives the consumption response?

- 1. Interest rate
- 2. Tax rate
- 3. Job-finding rate
- 4 Dividends

Is the effect from the job-finding rate larger than an equivalent change in income causes by wages? Why?

Stimulus Effects of Common

Fiscal Policies

Many types of fiscal policy:

- 1. Government consumption, G_t
- 2. Universal transfer, $T_t = \text{transfer}_t$
- 3. Higher unemployment benefits, $\overline{\phi}_t$
- 4. Longer unemployment benefit duration, \overline{u}_t
- 5. Hiring subsidies, hst
- 6. Retention subsidies, rst

Extended model:

- 1. Endogenous separations + sluggish entry
- 2. Dividends distributed equally
- 3. Decreasing search intensity/efficiency while unemployed
- 4. Risk of no unemployment benefits
- 5. More detailed calibration

Model summary

- Notation: $x = [X_0 X_{ss}, X_1 X_{ss}, \dots]$
- Household policies:

$$m{h} = \left[m{g}, m{t}, \overline{m{\phi}}, \overline{m{u}}
ight]'$$

Firm policies:

$$f = [hs, rs]'$$

• Income process:

$$inc = [\delta, \lambda^u, div]'$$

Model summary:

$$\mathbf{r}^{real} = M_{HA} inc + M_{h,r} \mathbf{h} + M_{f,r} \mathbf{f}, \tag{1}$$

$$\boldsymbol{p}^{\boldsymbol{x}} = M_{NK} \boldsymbol{r}^{real}, \tag{2}$$

$$inc = M_{SAM} p^{x} + M_{s,inc} f. (3)$$

Directed Cycle Graph

Directed Cycle Process

Let $||\cdot||$ denote the operator norm. If $||M_{SAM}M_{NK}M_{HA}|| < 1$, there is a unique solution to the system (1)-(3) given by

$$inc = \underbrace{\mathcal{G}}_{\text{GE}} \times \left(\underbrace{M_{\text{SAM}} M_{\text{NK}} \underbrace{M_{h,r} h}}_{\text{direct}} + \underbrace{M_{\text{SAM}} M_{\text{NK}} \underbrace{M_{f,r} f}}_{\text{direct}} + \underbrace{M_{f,\text{inc}} f}_{\text{direct}} \right),$$

where \mathcal{G} is defined by

$$\mathcal{G} = (I - M_{SAM} M_{NK} M_{HA})^{-1}.$$

Fiscal multipliers

Fiscal multiplier:

$$\mathcal{M} = ext{cumulative fiscal multiplier} = rac{\mathbf{1}' \mathbf{y}}{\mathbf{1}' \mathbf{taxes}}.$$
 $\mathbf{taxes} = M_{ ext{inc.taxes}} \mathbf{inc} + M_{b.taxes} \mathbf{h}$

Household policies 0 and 1: If same direct PE real interest rate

$$M_{h,r}\boldsymbol{h}^0=M_{h,r}\boldsymbol{h}^1$$

then output and income are the same $y^0 = y^1$ and $inc^0 = inc^1$. Differences in taxes are due to direct fiscal costs

$$\mathbf{1}'taxes^0 - \mathbf{1}'taxes^1 = \mathbf{1}'M_{h,taxes}h^0 - \mathbf{1}'M_{h,taxes}h^1$$

Fiscal multipliers are ordered by direct fiscal costs:

$$\mathcal{M}_{\textit{h}^0} \gtrapprox \mathcal{M}_{\textit{h}^1} \iff \mathbf{1}' \textit{M}_{\textit{h}, \text{taxes}} \textit{\textbf{h}}^0 \lessapprox \mathbf{1}' \textit{M}_{\textit{h}, \text{taxes}} \textit{\textbf{h}}^1.$$

• Firm policies: Same result, but only with representative agent

Policy experiment

• Experiment: Same output path for different policies.

Different fiscal multipliers

		House	ehold tra	_ Firm transfers _		
	G [level]	Transfer	Level	Duration	Retention	Hiring
1. Relative fiscal multiplier	1.0 [0.99]	0.28	0.44	1.03	1.64	0.72
2. Relative tax response	1.00	3.64	2.29	0.97	0.61	1.39
3. PE relative tax response	1.47	4.11	2.77	1.45	0.57	1.56
4. GE relative tax response	-0.47	-0.47	-0.47	-0.47	0.04	-0.17

■ Relative fiscal multiplier: $\frac{\mathcal{M}_{h^j}}{\mathcal{M}_{h^G}}$

• Relative tax respones: $\frac{1'taxes^j}{1'taxes^G}$

Determinants of fiscal multipliers

		Household transfers			_ Firm transfers _	
	G [level]	Transfer	Level	Duration	Retention	Hiring
1. Baseline	1.0 [0.99]	0.28	0.44	1.03	1.64	0.72
2. Less sticky prices ($\phi = 178$)	1.0 [0.61]	0.30	0.47	1.03	3.43	1.15
3. More reactive mp ($\delta_{\pi} = 2$)	1.0 [0.64]	0.30	0.47	1.03	3.33	1.13
4. Representative agent	1.0 [0.54]	0.00	0.00	0.00	1.92	0.57
5. Fewer HtM (17.4%)	1.0 [0.80]	0.19	0.41	1.11	1.80	0.69
6. More tax financing ($\omega = 0.10$)	1.0 [0.84]	0.19	0.40	1.10	1.70	0.67
7. Exo. separations ($\psi = 0$)	1.0 [0.13]	0.35	0.52	1.02	1.39	3.38
8. Free entry $(\xi = \infty)$	1.0 [0.54]	0.31	0.47	1.03	1.50	1.21
9. Wage rule ($\eta_e = 0.50$)	1.0 [0.73]	0.29	0.46	1.03	1.55	0.74
10. 95% of div. to PIH	1.0 [0.82]	0.28	0.43	0.99	0.72	0.16

Endogenous search

Endogenous search

- Search decision:
 - 1. Discrete search choice: $s_{it} \in \{0, 1\}$
 - 2. Search cost: λ if $s_{it} = 1$
 - 3. Taste shocks: ε (s_{it}) \sim Extreme value (Iskhakov et. al., 2017)
- See also: Bardóczy (2021)
- **Note:** Drop β_i for notational simplicity
- Warning: This is advanced! Only for the interested if time permits.

Discrete search decision

Search intensity matter for transition:

$$\underline{v}_{t}\left(\beta_{i}, u_{it-1}, a_{it-1} \mid s_{it}\right) = \mathbb{E}\left[v_{t}(\beta_{i}, u_{it}, a_{it-1}) \mid u_{it-1}, a_{it-1}, s_{it}\right]$$

Standard logit formula:

$$\begin{split} \underline{v}_t(u_{it-1}, a_{it-1}) &= \max_{s_{it} \in \{0, 1\}} \left\{ \underline{v}_t(u_{it-1}, a_{it-1} \mid s_{it}) - \lambda \mathbf{1}_{s_{it}=1} + \sigma_{\varepsilon} \varepsilon \left(s_{it} \right) \right\} \\ &= \sigma_{\varepsilon} \log \left(\exp \frac{\underline{v}_t(u_{it-1}, a_{it-1} \mid 0)}{\sigma_{\varepsilon}} + \exp \frac{\underline{v}_t(u_{it-1}, a_{it-1} \mid 1)}{\sigma_{\varepsilon}} \right) \end{split}$$

Envelope condition

Choice probabilities:

$$P_t(s \mid u_{it-1}, a_{it-1}) = \frac{\exp \frac{\underline{v}_t(u_{it-1}, a_{it-1} \mid s)}{\sigma_{\xi}}}{\sum_{s' \in \{0,1\}} \exp \frac{\underline{v}_t(u_{it-1}, a_{it-1} \mid s')}{\sigma_{\xi}}}$$

Envelope condition:

$$\underline{v}_{a,t}(u_{t-1}, a_{t-1}) = \sum_{s \in \{0,1\}} P_t(s \mid u_{it-1}, a_{it-1}) \pi_t(u_{it} \mid u_{it-1}, s) v_{a,t}(u_{it}, a_{it-1})$$

$$= \sum_{s \in \{0,1\}} P_t(s \mid u_{it-1}, a_{it-1}) \pi_t(u_{it} \mid u_{it-1}, s) c_t^*(u_{it}, a_{it-1})^{-\sigma}$$

- Break of monotonicity ⇒ FOC still necessary, but not sufficient
 - 1. **Normally:** Savings $\uparrow \Rightarrow$ future consumption $\uparrow \Rightarrow$ marginal utility \downarrow
 - Now also: Future search jump ↓ ⇒ future income ↓
 ⇒ future consumption ↓ ⇒ marginal utility ↑

Upper envelope for given z^{i_z}

1. Generate candidate points: $\forall i_a \in \{0, 1, \dots, \#_a - 1\}$

$$w^{i_a} = \beta \underline{v}_{t+1}(z^{i_z}, a^{i_a})$$
 $c^{i_a} = u'^{-1} (\beta \underline{v}_{a,t+1}(z^{i_z}, a^{i_a}))$
 $m^{i_a} = a^{i_a} + c^{i_a}$
 $v^{i_a} = u(c^{i_a}) + w^{i_a}$

2. Apply upper-envelope: $\forall i_{a-} \in \{0, 1, \dots, \#_a - 1\}$

$$\begin{split} c^*(a^{i_{a-}}) &= \max_{j \in \{0,1,\dots\#_{s}-2\}} u\left(c^{i_{s-}}\right) + w^{i_{s-}} \text{ s.t.} \\ m^{i_{s-}} &= (1+r_t)a^{i_{s-}} + w_tz^{i_z} \in \left[m^j, m^{j+1}\right] \\ c^{i_{s-}} &= \min\left\{\text{interp }\left\{m^{i_s}\right\} \to \left\{c^{i_s}\right\} \text{ at } m^{i_{s-}}, m^{i_{s-}}\right\} \\ a^{i_{s-}} &= m^{i_{s-}} - c^{i_{s-}} \\ w^{i_{s-}} &= \text{interp }\left\{a^{i_s}\right\} \to \left\{w^{i_s}\right\} \text{ at } a^{i_{s-}} \end{split}$$

Illustration

- 1. **Numbering:** Different levels of end-of-period assets, a^{i_a}
- 2. **Problem:** Find the consumption function at m_1 and m_2
- 3. Largest value-of-choice: Denoted by the *triangles*

Source: Druedahl and Jørgensen (2017), G²EGM

Example

Beg.-of-period value function:

$$\underline{v}_{t+1}(a_t) = \sqrt{m_{t+1}} + \eta \max{\{m_{t+1} - \underline{m}, 0\}}$$
 where $m_{t+1} = (1+r)a_t + 1$

Derivative:

$$\underline{v}_{a,t+1}(a_t) = \frac{1}{2}(1+r)m_{t+1}^{-\frac{1}{2}} + (1+r)\eta \mathbf{1} \{m_{t+1} > \underline{m}\}$$

Budget constraint:

$$a_t + c_t = (1+r)a_{t-1} + 1$$

Next-period values

Raw values of c^{i_a} and v^{i_a}

Problem: Overlaps \Rightarrow not a function $m_t!$

Result after upper envelope

General problem structure

General problem structure with nesting:

$$\begin{split} \overline{v}_t\left(\overline{x}_t, d_t, e_t, m_t\right) &= \max_{c_t \in [0, m_t]} u(c_t, d_t, e_t) + \beta \underline{v}_{t+1} \left(\underline{\Gamma}_t \left(\overline{x}_t, d_t, e_t, a_t\right)\right) \\ & \text{with } a_t = m_t - c_t \\ v(x_t) &= \max_{d_t \in \Omega^d(x_t)} \overline{v}_t \left(\overline{\Gamma}_t \left(x_t, d_t\right)\right) \\ \underline{v}_t \left(\underline{x}_t\right) &= \max_{e_t \in \Omega^e(\underline{x}_t)} \mathbb{E}\left[v \left(\Gamma \left(\underline{x}_t, e_t\right)\right) \mid \underline{x}_t, e_t\right] \end{split}$$

- Finding c_t: EGM with upper envelope can (typically) still be used
- Finding d_t and e_t :
 - 1. Combination of discrete and continuous choices
 - 2. Typically requires use of numerical optimizer or root-finder
- Druedahl (2021), »A Guide on Solving Non-Convex Consumption-Saving Models« (costly with extra states in v̄)

Summary

Summary

HANK-SAM:

- 1. More realistic labor market and income process
- 2. Allow for fluctuations in idiosyncratic risk
- 3. Laboratory for studying e.g. fiscal policy

Solution methods:

- 1. Time-varying transition matrix is straigtforward
- 2. Non-sufficient Euler-equation create serious problems