GigaDevice Semiconductor Inc.

GD32150R-EVAL

User Guide V3.0

(Nov.20.2019)

Table of Contents

Та	ble of	Contents	1
Lis	st of F	Figures	4
Lis	st of T	「ables	5
1.	Sur	nmary	6
2.	Fun	nction Pin Assign	6
3.	Get	ting started	7
4.	Har	dware layout overview	8
	4.1.	Power supply	8
4	4.2.	Boot option	8
4	4.3.	LED	9
4	4.4.	KEY	9
	4.5.	USART	10
4	4.6.	RS485	10
4	4.7.	ADC/DAC	10
	4.8.	I2S	11
4	4.9.	I2C	11
	4.10.	SPI-TF CARD	12
	4.11.	SPI-TFT LCD	12
4	4.12.	USB	13
	4.13.	CMP	13
	4.14.	HDMI-CEC	13
	4.15.	TSI	14
	4.16.	IFRP	14
	4.17.	RTC	15
	4.18.	GD-Link	15
	4.19.	BEEPER	16
	4.20.	Extension	16
	4.21.	MCU	17
5.	Roi	utine use quide	17

5.1. GI	PIO_Running_LED	17
5.1.1.	DEMO purpose	
5.1.2.	DEMO running result	17
5.2. GI	PIO_Key_Polling_mode	18
5.2.1.	DEMO purpose	18
5.2.2.	DEMO running result	18
5.3. EX	KTI_Key_Interrupt_mode	18
5.3.1.	DEMO purpose	
5.3.2.	DEMO running result	18
5.4. GI	PIO_BEEPER	19
5.4.1.	DEMO purpose	
5.4.2.	DEMO running result	19
5.5. US	SART_Printf	10
5.5.1.	DEMO purpose	
5.5.2.	DEMO running result	
	SART_HyperTerminal_Interrupt	
5.6.1.	DEMO purpose	
5.6.2.	DEMO running result	
	•	
5.7. U \$ 5.7.1.	SART_DMADEMO purpose	
5.7.1. 5.7.2.	DEMO running result	
	S485_Test	
5.8.1. 5.8.2.	DEMO purpose DEMO running result	
	· ·	
	DC_Conversion_Triggered_By_Timer	
	DEMO purpose	
5.9.2.	DEMO running result	23
	DAC_Output_Voltage_Value	
5.10.1.		
5.10.2.	DEMO running result	23
5.11.	Comparator_Obtain_Brightness	23
5.11.1.		
5.11.2.	DEMO running result	23
5.12.	I2C_EEPROM	24
5.12.1.	DEMO purpose	24
5.12.2.	DEMO running result	24
5.13.	SPI_TFT_LCD_Driver	25
5.13.1.		
5.13.2.	·	

	5.14.	SPI_TF_Card_Block_Operation	26
	5.14.1	. DEMO purpose	26
	5.14.2	. DEMO running result	26
	5.15.	SPI_TF_Card_FATFS_Operation	27
	5.15.1		
	5.15.2	. DEMO running result	27
	5.16.	HDMI-CEC_HostSlaveCommunication	28
	5.16.1	. DEMO purpose	28
	5.16.2	. DEMO running result	28
	5.17.	I2S_Audio_Player	29
	5.17.1	. DEMO purpose	29
	5.17.2	. DEMO running result	29
	5.18.	RCU_Clock_Out	29
	5.18.1		
	5.18.2		
	5.19.	PMU_sleep_wakeup	30
	5.19.1	•	
	5.19.2	·	
	5.20.	RTC_Calendar	30
	5.20.1	_	
	5.20.2	·	
	5.21.	IRInfrared_Transceiver	
	5.21.1	_	
	5.21.2	·	
	5.22.	TIMER Breath LED	
		. DEMO purpose	31
	5.22.2	·	
	5.23.	TSI_TouchKey_leds	
	5.23.1		
	5.23.2	·	
	5.24.	USB_Device	
	5.24.1	_	
	5.24.2		
6.		ion history	
v.	revisi	IUII IIISIUI Y	

List of Figures

Figure 4-1 Schematic diagram of power supply	8
Figure 4-2 Schematic diagram of boot option	8
Figure 4-3 Schematic diagram of LED function	9
Figure 4-4 Schematic diagram of Key function	9
Figure 4-5 Schematic diagram of USART function	10
Figure 4-6 Schematic diagram of RS485 function	10
Figure 4-7 Schematic diagram of ADC/DAC function	10
Figure 4-8 Schematic diagram of I2S function	11
Figure 4-9 Schematic diagram of I2C function	11
Figure 4-10 Schematic diagram of SPI-TF CARD function	12
Figure 4-11 Schematic diagram of SPI-TFT LCD function	12
Figure 4-12 Schematic diagram of USB function	13
Figure 4-13 Schematic diagram of CMP function	13
Figure 4-14 Schematic diagram of HDMI-CEC function	13
Figure 4-15 Schematic diagram of TSI function	14
Figure 4-16 Schematic diagram of IFRP function	14
Figure 4-17 Schematic diagram of RTC function	15
Figure 4-18 Schematic diagram of GD-Link function	15
Figure 4-19 Schematic diagram of BEEPER function	16
Figure 4-20 Schematic diagram of Extension Pin	16
Figure 4-21 Schematic diagram of MCU Pin	17

List of Tables

Table 2-1 Pin assignment	6
Table 4-1 Boot configuration	
Table 6-1 Revision history	34

1. Summary

GD32150R-EVAL-V1.3 evaluation board uses GD32F150RBT6 as the main controller. As a complete development platform of GD32F1x0 powered by ARM® Cortex™-M3 core, the board supports full range of peripherals. It uses mini-USB interface or AC/DC adapter to supply 3.3V power. SWD, Reset, Boot, User button key, LED, I2C, I2S, USART, RS485, TFT-LCD, HDMI-CEC, LDR, TSI, IFRP LED, IR Receiver, RTC, SPI, USB, ADC, DAC and Extension Pin are also included. This document details its hardware schematic and the relevant applications.

2. Function Pin Assign

Table 2-1 Pin assignment

Function	Pin	Description
	PC10	LED1
150	PC11	LED2
LED	PC12	LED3
	PD2	LED4
RESET		K1-Reset
	PA0	K2-Wakeup
KEY	PF7	K3-User Key
	PC13	K4-Temper
BEEPER	PC7	BEEPER_CTL
	PA11	USBDM
USB	PA12	USBDP
	PC2	USBDP pull up pin
ID	PC6	IR_RX
IR -	PB9	IR_TX
100	PB6	I2C0_SCL
I2C	PB7	I2C0_SDA
	PB6 I2 PB7 I2 PA4 I:	I2S_WS
	PA5	I2S_CK
128	PA7	I2S_DIN
	PA15	MSEL
	PB3	MCLK
	PB5	MDIN
	PA6	I2S_MCK
USART0 -	PA9	USART0_TX
USAKIU	PA10	USART0_RX
	PA2	RS485_TX
RS485	PA3	RS485_RX
	PA1	RS485_DIR

Function	Pin	Description
	PB11	TSI_G5_IO0
TSI -	PB12	TSI_G5_IO1
	PB13	TSI_G2_IO2
	PB14	TSI_G5_IO3
	PC5	TSI_G2_IO0
	PB0	TSI_G2_IO1
	PB3	SPI0_SCK
SPI -	PB4	SPI0_MISO
	PB5	SPI0_MOSI
381	PF5	TFT_CS
	PF4	TF_CARD_CS
	PC4	TFT_RESET
ADC	PC1	ADC_IN11
HDMI-CEC	PB8	CEC
COMPARATOR	PA1	COMP0_IP
DAC	PA4	DAC_OUT

3. Getting started

The EVAL Board uses mini-USB connecter or AC/DC adapter to get power, the hardware system power is +3.3V. A mini-USB cable and a J-Link tool are necessary to down programs. Select the correct boot mode and then power on, the LED6 will turn on, which indicates the power supply is ready.

There are Keil version and IAR version of all projects. Keil version of the projects are created based on Keil MDK-ARM 4.74 uVision4. IAR version of the projects are created based on IAR Embedded Workbench for ARM 7.40.2. During use, the following points should be noted:

- 1. If you use Keil uVision4 to open the project, install the GD32F1x0_AddOn.3.2.0.exe to load the associated files.
- 2. If you use Keil uVision5 to open the project, there are two ways to solve the "Device Missing (s)" problem. One is to install GigaDevice.GD32F1x0_DFP.3.2.0.pack. In Project menu, select the Manage sub menu, click on the "Version Migrate 5 Format..." menu, the Keil uVision4 project will be converted to Keil uVision5 project. Then add "C:\Keil_v5\ARM \Pack\ARM\CMSIS\4.2.0\CMSIS\Include" to C/C++ in Option for Target. The other is to install Addon directly. Select the installation directory of Keil uVision5 software, such as C:\Keil_v5, in Destination Folder of Folder Selection. Select the corresponding device in Device of Option for Target and add "C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS \Include" to C/C++ in Option for Target.
- 3. If you use IAR to open the project, install IAR_GD32F1x0_ADDON.3.2..0.exe to load the associated files.

4. Hardware layout overview

4.1. Power supply

Figure 4-1 Schematic diagram of power supply

4.2. Boot option

Figure 4-2 Schematic diagram of boot option

Table 4-1 Boot configuration

BOOT1	воото	Boot Mode
Default	2-3	User memory
Delault	1-2	System memory
Changed by ISP	1-2	SRAM memory

4.3. LED

Figure 4-3 Schematic diagram of LED function

4.4. KEY

Figure 4-4 Schematic diagram of Key function

4.5. **USART**

Figure 4-5 Schematic diagram of USART function

4.6. RS485

Figure 4-6 Schematic diagram of RS485 function

4.7. ADC/DAC

Figure 4-7 Schematic diagram of ADC/DAC function

4.8. I2S

Figure 4-8 Schematic diagram of I2S function

4.9. I2C

Figure 4-9 Schematic diagram of I2C function

4.10. SPI-TF CARD

Figure 4-10 Schematic diagram of SPI-TF CARD function

4.11. SPI-TFT LCD

Figure 4-11 Schematic diagram of SPI-TFT LCD function

4.12. USB

Figure 4-12 Schematic diagram of USB function

4.13. CMP

Figure 4-13 Schematic diagram of CMP function

4.14. HDMI-CEC

Figure 4-14 Schematic diagram of HDMI-CEC function

TSI 4.15.

Figure 4-15 Schematic diagram of TSI function R12 PB14 10KΩ = GND R13 PB13 10KΩ R14 PB12 10K Ω TSI1 TSC-line-KEY R15 2.2KΩ

ACTIVE SHIELD

C9 220nF

_ GND

4.16. **IFRP**

Figure 4-16 Schematic diagram of IFRP function R9 100Ω LED5 KD-03144R PC6 JP2 _{-5V} GND 100Ω Q2 8050 R10 PB9 HS0038B 1KΩ C2 10V/4.7uF R11 10KΩ = GND

PB0

4.17. RTC

Figure 4-17 Schematic diagram of RTC function

4.18. **GD-Link**

Figure 4-18 Schematic diagram of GD-Link function

4.19. BEEPER

Figure 4-19 Schematic diagram of BEEPER function

4.20. Extension

Figure 4-20 Schematic diagram of Extension Pin

4.21. MCU

Figure 4-21 Schematic diagram of MCU Pin

5. Routine use guide

5.1. **GPIO_Running_LED**

5.1.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO for controlling the LED
- Learn to use SysTick to generate 1ms delay

GD32150R-EVAL-V1.3 board has four LEDs. The LED1, LED2, LED3 and LED4 are controlled by GPIO. This demo will show how to light the LEDs.

5.1.2. DEMO running result

Download the program <01_GPIO_Running_LED> to the EVAL board, four LEDs will turn on one by one from LED1 to LED4 every 200ms, and then turn off together. 200ms later, the four LEDs work like previous again.

5.2. **GPIO_Key_Polling_mode**

5.2.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY
- Learn to use SysTick to generate 1ms delay

GD32150R-EVAL-V1.3 board has four keys and four LEDs. The four keys are Reset key, Tamper key, User key and Wakeup key. The LED1, LED2, LED3 and LED4 are controlled by GPIO.

This demo will show how to use the Tamper key to control the LED2. When press down the User Key, it will check the input value of the IO port. If the value is 0, wait for 50ms. Then check the input value of the IO port again. If the value is still 0, indicates that the button is pressed down successfully, and light the LED2.

5.2.2. **DEMO** running result

Download the program <02_GPIO_Key_Polling_mode> to the EVAL board, first of all, all the LEDs will be flashed once for test. Then press down the Tamper Key, if the value is 0 for 50ms, LED2 will be turned on. Press down the Tamper Key again, LED2 will be turned off.

5.3. EXTI_Key_Interrupt_mode

5.3.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO to control the LED and the KEY
- Learn to use EXTI to generate external interrupt

GD32150R-EVAL-V1.3 board has four keys and four LEDs. The four keys are Reset key, Wakeup key, User key and Tamper key. The LED1, LED2, LED3 and LED4 are controlled by GPIO.

This demo will show how to use EXTI interrupt line to control the LED2. When press down the Tamper Key, it will produce an interrupt. In the interrupt service function, the demo will toggle LED2.

5.3.2. DEMO running result

Download the program <03_EXTI_Key_Interrupt_mode> to the EVAL board, first of all, all the LEDs will be flashed once for test. Then press down the Tamper Key, LED2 will be turned

on. Press down the Tamper Key again, LED2 will be turned off.

5.4. GPIO_BEEPER

5.4.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the beeper
- Learn to use SysTick to generate 1ms delay

GD32150R-EVAL-V1.3 board has one beeper and connected by PC7. This demo will show how to use GPIO to control the beeper.

5.4.2. **DEMO** running result

Download the program <04_GPIO_BEEPER> to the EVAL board, when the program running, the status of the beeper will change every 200ms.

5.5. **USART_Printf**

5.5.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO: the Tamper key control the LED
- Learn to retarget the C library printf function to the USART

5.5.2. DEMO running result

Download the program <05_USART_Printf> to the EVAL board and connect serial cable to COM. This implementation outputs "please press the Tamper Key" on the hyperterminal. Press the Tamper key, serial port will output "USART Printf Example". The information via a serial port output as following.

please press the Wakeup Key

USART printf example

5.6. USART_HyperTerminal_Interrupt

5.6.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

 Learn to use the EVAL_COM transmit and receive interrupts to communicate with the hyperterminal

5.6.2. DEMO running result

Download the program <06_USART_HyperTerminal_ Interrupt> to the EVAL board and run. Firstly, all the LEDs are turned on and off for test. Then, the COM sends the tx_buffer array (from 0x00 to 0xFF) to the hyperterminal and waits for receiving data from the hyperterminal that you must send. The string that you have sent is stored in the rx_buffer array. The receive buffer have a BUFFER_SIZE bytes as maximum. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, LED1 and LED2 are turned on, LED3 and LED4 are turned off. Otherwise, LED1 and LED2 are turned off, LED3 and LED4 are turned on.

The information via a serial port output as following:

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
```

5.7. USART_DMA

5.7.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

Learn to use the COM transmit and receive using DMA

5.7.2. DEMO running result

Download the program <07_USART_DMA> to the EVAL board and run. Firstly, all the LEDs are turned on and off for test. Then, the COM sends the tx_buffer array to the hyperterminal and waits for receiving data from the hyperterminal that you must send. The string that you

have sent is stored in the rx_buffer array. The receive buffer have a BUFFER_SIZE bytes as maximum. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, ftx_buffer is same with rx_buffer, LED1, LED2, LED3 and LED4 are turned on. Otherwise, LED1, LED2, LED3 and LED4 are turned off.

The information via a serial port output as following:

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
```

5.8. **RS485_Test**

5.8.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to use the USART RS485

5.8.2. DEMO running result

Jump the JP12 to RS485 with the jumper cap. This routines need to prepare two GD32F150R_EVAL boards, one board as a sender, the other as a receiver. First connect two GD32150R-EVAL-V1.3 boards through RS485 line A and B, and then download the program <08_RS485_Test> to the board for running. When press the Wakeup key on one board, the board is set as RS485 transmitter and LED2 is on and when press the Tamper key on one board, the board is set as RS485 receiver and LED3 is on.

Download the program <08_RS485_Test> to the EVAL board and run, the information via a serial port output as following:

GD32F15OR_EVAL RS485_Test

--> Press down KEY_WAKEUP to set GD32F15OR_EVAL as RS485
transmitter

--> Press down KEY_TAMPER to set GD32F15OR_EVAL as RS485
receiver

According to the tips, press down Tamper key to set one board as a receiver first and then press down Wakeup key to the other as a transmitter. The transmitter output as following.

RS485 transmitter is enabled

Data is being transmitted: GD32MCU

The receiver output as following.

RS485 receiver is enabled

Waiting for received data

The received data: [GD32MCU]

The received data: [GD32MCU]

The received data: [GD32MCU]

The received data: [GD32MCU]

5.9. ADC_Conversion_Triggered_By_Timer

5.9.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use ADC to convert analog to digital
- Learn to use TIMER to generate a compare event
- Learn to use LCD to show the ADC converted result

TIMER1 CH1 event triggers ADC conversion, the value displayed on the LCD corresponds to the ADC analog input, and changes with it. The converted data moved to SRAM through

DMA continuously.

5.9.2. **DEMO** running result

Download the program <09_ADC_Conversion_Triggered_By_Timer> to the GD32150R-EVAL-V1.3 board, adjust the adjustable potentiometer knob to change the analog input. The ADC, which is triggered by TIMER1 CH1 event, will convert the analog input, and the result, a voltage curve, is displayed on the LCD. The curve coincides with the analog input.

5.10. DAC_Output_Voltage_Value

5.10.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to use DAC channel to generate different voltages on DAC output

5.10.2. DEMO running result

Download the program <10_DAC_Output_Voltage_Value> to the EVAL board, the digital value is 0x7ff0, its converted analog voltage should be VREF/2, using the voltmeter to measure PA4, its value is 1.648V.

5.11. Comparator_Obtain_Brightness

5.11.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use DAC as input of comparator
- Learn to use comparator output compare result

There are two comparators on EVAL board and each comparator has two inputs. In this demo, one input is DAC's output voltage, and the other one is the photo resistance's output voltage. Compare the two input voltages, the output is a high or low level, and the LED1 will performs the corresponding action.

5.11.2. DEMO running result

Download the program <11_Comparator_obtain_brightness> to the EVAL board, cover the photo resistance with your finger to change the output voltage, comparing it with the DAC output voltage, if it is high, LED1 is on, otherwise LED1 is off.

5.12. **I2C_EEPROM**

5.12.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn how to use the master transmitting mode of the I2C module
- Learn how to use the master receiving mode of the I2C module
- Learn to read and write the EEPROM with the I2C interface

5.12.2. **DEMO** running result

Download the program <12_I2C_EEPROM> to the EVAL board and run. Connect serial cable to COM0, and open the HyperTerminal to show the print message.

Firstly, the data of 256 bytes will be written to the EEPROM from the address 0x00 and printed by the serial port. Then, reading the EEPROM from address 0x00 for 256 bytes and the result will be printed. Finally, compare the data that were written to the EEPROM and the data that were read from the EEPROM. If they are the same, the serial port will output "I2C-AT24C02 test passed!" and the four LEDs lights flashing, otherwise the serial port will output "Err: data read and write aren't matching." and all the four LEDs light.

The output information via the serial port is as following.


```
I2C-24C02 configured.
The I2CO is hardware interface
The speed is 400000
AT24CO2 writing
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
                                        0x18 0x19 0x1A 0x1B 0x1C
                                                                  Ox1D Ox1E
0x20 0x21 0x22 0x23 0x24 0x25 0x26
                                   0x27 0x28 0x29 0x2A 0x2B 0x2C
                                                                  0x2D 0x2E
0x30 0x31 0x32 0x33
                    0x34 0x35
                              0x36
                                   0x37
                                        0x38 0x39
                                                   Ox3A Ox3B Ox3C
                                                                  Ox3D Ox3E
0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C
                                                                  Ox4D Ox4E Ox4E
0x50 0x51
          0x52 \ 0x53
                    0x54 0x55 0x56
                                   0x57
                                        0x58 0x59 0x5A 0x5B 0x5C
                                                                  0x5D 0x5E
                                                                            0x5F
     0x61
          0x62 0x63
                    0x64 0x65
                              0x66
                                   0x67
                                        0x68 0x69
                                                  Ox6A Ox6B Ox6C
0x60
                                                                  Ox6D Ox6E
0x70 0x71 0x72 0x73 0x74 0x75
                              0x76
                                   0x77
                                        0x78 0x79 0x7A 0x7B 0x7C
                                                                  Ox7D Ox7E
|0x80|
    0x81 0x82 0x83
                    0x84 0x85
                              0x86
                                   0x87
                                        0x88 0x89
                                                   Ox8A Ox8B Ox8C
                                                                  Ox8D Ox8E
                                                                            0x8F
0x90 0x91 0x92 0x93 0x94 0x95 0x96
                                   0x97
                                        0x98 0x99 0x9A 0x9B 0x9C
                                                                  Ox9D Ox9E
                                                                            0x9F
0xA0
    0xA1
          0xA2 0xA3
                    0xA4 0xA5
                              0xA6
                                   0xA7
                                        OxAS OxAS OxAA OxAB OxAC
                                                                  OxAD OxAE
                                                                            0xAF
          0xB2 0xB3
                    0xB4 0xB5
                                   0xB7
                                        0xB8
     0xB1
                              0xB6
                                              0xB9
                                                   OxBA OxBB OxBC
                                                                  OxBD OxBE
0xC0 0xC1 0xC2 0xC3
                    0xC4 0xC5
                              0xC6
                                   0xC7
                                        0xC8 0xC9 0xCA 0xCB 0xCC
                                                                  OxCD OxCE
OxDO OxD1 OxD2 OxD3 OxD4 OxD5 OxD6
                                   0xD7
                                        OxD8 OxD9 OxDA OxDB OxDC
                                                                  OxDD OxDE
                                                                            OxDF
OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7 OxE8 OxE9 OxEA OxEB OxEC
                                                                  OxED OxEE
                                                                            0xEF
OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6
                                   OxF7 OxF8 OxF9 OxFA OxFB OxFC
                                                                  OxFD OxFE OxFF
AT24CO2 reading.
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C
                                                                  Ox1D Ox1E
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27
                                        0x28 0x29 0x2A 0x2B 0x2C
                                                                  0x2D 0x2E 0x2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36
                                   0x37
                                        0x38 0x39 0x3A 0x3B 0x3C
                                                                  Ox3D Ox3E
                                                                            0x3F
     0x41
          0x42
               0x43
                    0x44 0x45
                              0x46
                                   0x47
                                        0x48
                                              0x49
                                                   Ox4A Ox4B Ox4C
                                                                  Ox4D Ox4E
                                                                  0x5D 0x5E
0x50 0x51 0x52 0x53
                    0x54 0x55 0x56
                                   0x57
                                        0x58 0x59
                                                  0x5A 0x5B 0x5C
                                                                            0x5F
N×60 0×61 0×62 0×63
                    0x64 0x65 0x66
                                   0x67
                                        0x68 0x69
                                                   Ox64 Ox6B Ox6C
                                                                  Ox6D Ox6E
                                                                            0x6F
0x70
    0x71
          0x72 0x73
                    0x74 0x75
                              0x76
                                   0x77
                                        0x78 0x79
                                                   0x7A 0x7B 0x7C
                                                                  0x7D
                                                                       0x7E
                                                                            0x7F
0x80 0x81
          0x82 0x83 0x84 0x85 0x86
                                   0x87
                                        0x88 0x89 0x8A 0x8B 0x8C
                                                                  Ox8D Ox8E
     0x91
          0x92
               0x93
                    0x94 0x95
                              0x96
                                   0x97
                                         0x98
                                              0x99
                                                   Ox9A Ox9B Ox9C
                                                                  Ox9D Ox9E
OxAO OxA1 OxA2 OxA3
                    0xA4 0xA5 0xA6
                                   0xA7
                                        OxA8 OxA9 OxAA OxAB OxAC
                                                                  OxAD OxAE
                                                                            0xAF
0xB0 0xB1 0xB2 0xB3
                    0xB4 0xB5
                                   0xB7
                                        OxB8 OxB9
                              0xB6
                                                  OxBA OxBB OxBC
                                                                  Owbo Owbe
                                                                            \Omega_X RF
lOxCO OxC1
          0xC2 0xC3
                    0xC4 0xC5
                              0xC6
                                   0xC7
                                        OxC8 OxC9 OxCA OxCB OxCC
                                                                  OxCD OxCE
                                                                            OxCF
OxDO OxD1 OxD2 OxD3 OxD4 OxD5 OxD6 OxD7 OxD8 OxD9 OxDA OxDB OxDC
                                                                  OxDD OxDE OxDF
OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7
                                        OxE8 OxE9 OxEA OxEB OxEC
                                                                  OxED OxEE
OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC OxFD OxFE OxFF
|I2C-AT24C02 test passed!
```

5.13. SPI_TFT_LCD_Driver

5.13.1. DEMO purpose

This Demo includes the following function of GD32 MCU:

Learn how to use SPI to drive TFT LCD screen and display

GD32150R-EVAL-V1.3 board has a TFT LCD screen which supports SPI interface. In this demo, tests of font, number, draw and color are displayed on the LCD screen respectively.

5.13.2. DEMO running result

Firstly, JP10 and JP11 must be fitted to SPI port and then download the program <13_SPI_TFT_LCD_Driver> to the EVAL board. All the LEDs are turned on and then turned off for test. After that, the LCD screen on the board will display the GUI tests in infinite loop.

5.14. SPI_TF_Card_Block_Operation

5.14.1. DEMO purpose

This Demo includes the following function of GD32 MCU:

■ Learn how to use SPI to block read and write from TF card

In this demo, the SPI interface is used for reading from and writing to TF card. Write to TF card with 0 to 255, a total of 2048 bytes directly. Then read data from the original address, check the correctness of the written and read data. Note that, the FATFS is not used in this demo and in the absence of FATFS, read and write to the TF card will destroy the file system, please make a backup before testing.

5.14.2. DEMO running result

Firstly, JP10 and JP11 must be fitted to SPI and then download the program <14_SPI_TF_Card_Block_Operation> to the EVAL board. All the LEDs are turned on and then turned off for test. Insert the TF card to the board, the test results will be displayed on the LCD screen.

5.15. SPI_TF_Card_FATFS_Operation

5.15.1. DEMO purpose

This Demo includes the following function of GD32 MCU:

■ Learn how to use SPI to read and write from TF card with FATFS

In this demo, the SPI interface is used for reading from and writing to TF card. Make sure the TF card has FAT file system. If not, some information will be displayed on the LCD screen.

5.15.2. DEMO running result

Firstly, JP10 and JP11 must be fitted to SPI and then download the program <15_SPI_TF_Card_FATFS_Operation> to the EVAL board. All the LEDs are turned on and then turned off for test. Insert a formatted TF card, a text file will be created in this TF card. When the screen appears "FATFS FILE Create Success", you can remove the TF card and check whether the file is successfully created in the TF card with a card reader. When the exception occurs, op erate follow the screen prompts.

5.16. HDMI-CEC_HostSlaveCommunication

5.16.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn the communication function of HDMI-CEC

In the process of communication, the sender sends data to receiver through the key interrupt, the receiver for receiving data in the CEC interrupt. The entire communication process does not make the error processing.

5.16.2. DEMO running result

This routines need to prepare two EVAL board, one board as a sender, the other as a receiver. First use the DuPont to connect CEC bus (PB8) and ground wire (GND) pins in the two board, and then download the program <16_HDMI-CEC_HostSlaveCommunication> to the board for running. When the program runs, the first development board of the LCD display is data 0, press one of the development board USER key, the other piece of the development board LCD number will increase, which shows the end of a data transmission. Each it increases to 9, it will clear to 0 to re-increase; press the TAMPER key, the number will decrease, which also shows the end of a data transmission. Every time it decreases to 0, it will return to the number 9 to re-decrease.

The LCD display as following:

5.17. I2S_Audio_Player

5.17.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to use I2S module to output audio file

GD32150R-EVAL-V1.3 board integrates the I2S (Inter-IC Sound) module, and the module can communicate with external devices using the I2S audio protocol. This Demo mainly shows how to use the I2S interface of the board for audio output.

5.17.2. DEMO running result

Download the program <17_I2S_Audio_Player> to the EVAL board. After downloading the program, insert the earphone into the audio port J1, then listen to the audio file.

5.18. RCU_Clock_Out

5.18.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to use the clock output function of RCU
- Learn to communicate with PC by USART

5.18.2. DEMO running result

Download the program <18_RCU_Clock_Out> to the EVAL board and run. Connect serial cable to EVAL_COM0, open the HyperTerminal. When the program is running, HyperTerminal will display the initial information. Then user can choose the type of the output

clock by pressing the USER button. After pressing, the corresponding LED will be turned on and HyperTerminal will display which mode be selected. The frequency of the output clock can be observed through the oscilloscope by PA8 pin.

Information via a serial port output as following:

```
/======== Gigadevice Clock output Demo ========/
press user key to select clock output source
CK_OUT: IRC14M, DIV:1
CK_OUT: IRC40K, DIV:1
CK_OUT: LXTAL, DIV:1
CK_OUT: CKSYS, DIV:4
CK_OUT: IRC8M, DIV:1
```

5.19. PMU_sleep_wakeup

5.19.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to use the USART receive interrupt to wake up the PMU from sleep mode

5.19.2. **DEMO** running result

Download the program < 19_PMU_sleep_wakeup > to the EVAL board, connect serial cable to EVAL_COM. After power-on, all the LEDs are off. The MCU will enter sleep mode and the software stop running. When the USART0 receives a byte of data from the HyperTerminal, the MCU will wake up from a receive interrupt. And all the LEDs will flash together.

5.20. RTC Calendar

5.20.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use RTC module to implement calendar function
- Learn to use LCD module to display the time of calendar

5.20.2. DEMO running result

Download the program <20_RTC_Calendar> to the EVAL board and run. When the program is running, the four LEDs, LED1 to LED4 turn on, then turn off. And then the LCD prints out the information of the board, and the calendar. When you press the Wakeup key, the time will be configured to 2016-05-13, 12:00:00.

If place a battery on GD32150R-EVAL-V1.3 board, it can realize no losing of time when

power down. In this case, notice that JP5 jump to the VBAT.

5.21. IRInfrared Transceiver

5.21.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use general timer output PWM wave
- Learn to use general timer generated update interrupt
- Learn to use general timer capture interrupt
- Learn to use general timer TIMER15 and TIMER16 implement Infrared function

5.21.2. DEMO running result

Download the program <21_IRInfrared_Transceiver> to the EVAL board and run. When the program is running, if the infrared receiver received data is correct, LED1, LED2, LED3, LED4 light in turn, otherwise LED1, LED2, LED3, LED4 toggle together.

5.22. TIMER_Breath_LED

5.22.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use Timer output PWM wave
- Learn to update channel value

5.22.2. DEMO running result

Use the DuPont line to connect the TIMER0_CH0 (PA8) and LED1 (PC10), and then download the program <22_TIMER_Breath_LED> to the GD32150R-EVAL-V1.3 board and run. PA8 should not be reused by other peripherals.

When the program is running, you can see LED1 lighting from dark to bright gradually and then gradually darken, ad infinitum, just like breathing as rhythm.

5.23. TSI_TouchKey_leds

5.23.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to use TSI module implement Touch Key function

5.23.2. DEMO running result

Download the program <23_TSI_TouchKey_Leds> to the EVAL board and run. When the program is running, you can use a finger slide the Touch Sensor (A-1, B, C or A-2) on the EVAL board, and then the associated LED is light.

5.24. USB_Device

5.24.1. DEMO purpose

This demo includes the following functions of GD32 MCU:

- Learn how to use the USBFS peripheral mode
- Learn how to implement USB HID(human interface) device

EVAL board has four keys and one USBD interface. The five keys are Reset key, Wakeup key, Tamper key and User key. In this demo, the EVAL board is enumerated as an USB Keyboard, which uses the native PC Host HID driver, as shown below. The USB Keyboard uses three keys(wakeup key, tamper key and user key) to output three characters ('b', 'a' and 'c'). In addition, the demo also supports remote wakeup which is the ability of a USB device to bring a suspended bus back to the active condition, and the wakeup key is used as the remote wakeup source.

5.24.2. DEMO running result

Download the program <24_USB_keyboard> to the EVAL board and run. If you press the Wakeup key, will output 'b'. If you press the User key, will output 'c'. If you press the Tamper key, will output 'a'.

If you want to test USB remote wakeup function, you can do as follows:

- Manually switch PC to standby mode
- Wait for PC to fully enter the standby mode
- Push the Wakeup key
- If PC is ON, remote wakeup is OK, else failed.

6. Revision history

Table 6-1 Revision history

Revision No.	Description	Date
1.0	Initial Release	Jun.28, 2017
2.0	Updated format across the whole document	Jun.1, 2019
3.0	Updated format across the whole document	Nov.1, 2019

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2019 GigaDevice - All rights reserved