



# **BBC4111 A**

Joint Programme Examinations 2022/23

**BBC4111 Engineering Mathematics** 

Paper A

Time allowed 2 hours

**Answer ALL EIGHT questions** 

| Eor | OVO | min | orc' | use | onl  | N. / |
|-----|-----|-----|------|-----|------|------|
| 101 | CAG |     | CIS  | use | OIII | У    |

| 1     |  |
|-------|--|
| 2     |  |
| 3     |  |
| 4     |  |
| 5     |  |
| 6     |  |
| 7     |  |
| 8     |  |
| Total |  |

Complete the information below about yourself very carefully.

**BUPT student number** 

**Class number** 

NOT allowed: electronic calculators and electronic dictionaries.

#### **INSTRUCTIONS**

- 1. You must NOT take answer books, used or unused, from the examination room.
- 2. Write only with a black or blue pen and in English.
- 3. Do all rough work in the answer book **do not tear out any pages**.
- 4. If you use Supplementary Answer Books, tie them to the end of this book.
- 5. Write clearly and legibly.
- 6. Read the instructions on the inside cover.

#### **Examiners**

Dr Lihua Zhang, Dr Xia Shi

Filename: 2223\_BBC4111\_A No answer book required

#### Instructions

#### Before the start of the examination

- 1) Place your BUPT and QM student cards on the corner of your desk so that your picture is visible.
- 2) Put all bags, coats and other belongings at the back/front of the room. All small items in your pockets, including wallets, mobile phones and other electronic devices must be **placed in your bag in advance**. Possession of mobile phones, electronic devices and unauthorised materials is an offence.
- 3) Please ensure your mobile phone is switched off and that no alarm will sound during the exam. A mobile phone causing a disruption is also an assessment offence.
- 4) Do not turn over your question paper or begin writing until told to do.

#### **During the examination**

- 1) You must not communicate with or copy from another student.
- 2) If you require any assistance or wish to leave the examination room for any reason, please raise your hand to attract the attention of the invigilator.
- 3) If you finish the examination early you may leave, but not in the first 30 minutes or the last 10 minutes.
- 4) For 2 hour examinations you may **not** leave temporarily.
- 5) For examinations longer than 2 hours you **may** leave temporarily but not in the first 2 hours or the last 30 minutes.

#### At the end of the examination

- 1) You must stop writing immediately if you continue writing after being told to stop, that is an assessment offence.
- 2) Remain in your seat until you are told you may leave.

#### Question 1. [24 marks total, 2 marks for each blank]

Fill in all the following blanks. Only the final results are required to be written down.

- a). The exponential form of  $\frac{(\cos 5\varphi + i \sin 5\varphi)^2}{(\cos 3\varphi i \sin 3\varphi)^3}$  is ( ).
- **b).** Suppose that  $A \operatorname{rg}(z+2) = \frac{\pi}{3}$  and  $A \operatorname{rg}(z-2) = \frac{5\pi}{6}$ . Determine that z = (
- c).  $\lim_{z \to i} \frac{z i}{z(1 + z^2)} = ($
- **d).** If  $\cos(2+z) = 3$ , then z = (
- e). Let C denote the semicircle |z|=1 from 1 to -1. Then  $\int_C (z^2+z\overline{z})dz=($
- f).  $\int_{-\infty}^{+\infty} \frac{1}{(1+x^2)^2} dx = ($
- g). The partial differential equation (i.e. PDE)  $\frac{\partial^2 u}{\partial x^2} + 5 \frac{\partial^2 u}{\partial x \partial t} + 6xu + 5t = 0$  is of ( ) type.
- h). The general solution of the equation  $(1-x^2)y''(x)-2xy'(x)+12y(x)=0$  is ( ).
- i). The characteristic curves of  $\frac{\partial^2 u}{\partial x^2} 3 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y^2} = \sin(x^2 + y^2)$  are ().
- j). The eigenvalues of the problem

$$\begin{cases} X''(x) + \lambda X(x) = 0, & 0 < x < l \\ X'(0) = 0, & X(l) = 0 \end{cases}$$

are ( ), and the corresponding eigenfunctions are ( ).

k).  $\int_0^x x^4 J_1(x) dx = ($  ), where  $J_1(x)$  is the first kind of 1st order Bessel function.

| Do not write in this column |
|-----------------------------|
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |

| BBC4111 Paper A                                                                                                        | 2022/23                     |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                                        |                             |
|                                                                                                                        |                             |
|                                                                                                                        |                             |
|                                                                                                                        |                             |
|                                                                                                                        |                             |
|                                                                                                                        |                             |
|                                                                                                                        |                             |
|                                                                                                                        | 24<br>marks                 |
|                                                                                                                        | mai Ks                      |
| Question 2. [6 marks total, 2 marks for each one]<br>Please choose the correct answers for the following questions.    |                             |
| a). The convergence domain of the power series $\sum_{n=1}^{+\infty} \frac{(z-i)^n}{n^3}$ is ().                       |                             |
| A. $ z-i  < \frac{1}{n^3}$ B. $ z-i  < 1$ C. $ z  < 1$ D. $ z-i  < \frac{1}{n}$                                        |                             |
| <b>b).</b> Which one of the following four equation is <b>NOT</b> correct? ( )                                         |                             |
| A. $\int_{ z =2} \frac{3z-1}{z(z-1)} dz = 6\pi i$ B. $\oint_{ z-i =0.5} \frac{e^z dz}{z^2+1} = \pi(\cos 1 + i \sin 1)$ |                             |
| C. $\int_{ z =1}^{\infty} \frac{\cos z dz}{z^3} = -\pi i$ D. $\int_0^i (z-1)e^{-z} dz = -\sin 1 + i\cos 1$             |                             |
| c). Which one of the following four statements is correct? (                                                           |                             |
| A. $J_{\nu}(x)$ and $J_{-\nu}(x)$ are linearly dependent.                                                              |                             |
| B. The first kind of $n$ order Bessel function $J_n(x)$ and the Bessel function of second kin                          | $\mathbf{Y}_{n}(x)$ are     |
| linearly independent.                                                                                                  |                             |
| C. $\lim_{x \to \infty} J_n(x) = 0$ when $n$ is a positive integer.                                                    |                             |
| D. $J_n(0) = 0$ for all positive integers, and $J_{\nu}(0) = \infty$ when $\nu$ is nonnegative.                        |                             |
|                                                                                                                        |                             |
|                                                                                                                        | Do not write in this column |
|                                                                                                                        |                             |
|                                                                                                                        |                             |

6 marks

#### Question 3. [18 marks total, 6 marks for each part]

- a). Find out all points at which the function f(z) is differentiable and analytic (please give the explanation), when  $f(z) = \frac{\sin z \cdot \text{Log}(1+z)}{z}$ .
- b). If the real part of entire function f(z) is  $u(x,y) = e^x(x\cos y y\sin y)$ , and f(0) = 0, then find the imaginary part of f(z) and calculate the value of f'(1).
- c). Give the Laurent series expansions for the function  $f(z) = \frac{1}{z(z+1)}$  in the following annular domain 1 < |z-1| < 2.

|   | domain 1 \ \( \lambda \ 1 \ \rangle 2 \). |                                                  |                      |
|---|-------------------------------------------|--------------------------------------------------|----------------------|
|   |                                           | Do no this                                       | t write in<br>column |
|   |                                           |                                                  |                      |
|   | <u> </u>                                  |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
| Ì |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           | <del>                                     </del> |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  | _                    |
|   |                                           |                                                  |                      |
| ľ |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   |                                           | -                                                |                      |
|   |                                           |                                                  |                      |
|   |                                           | <del>                                     </del> |                      |
|   |                                           | <del></del>                                      |                      |
|   |                                           |                                                  |                      |
|   |                                           |                                                  |                      |
|   | <u> </u>                                  | '                                                | 18<br>marks          |
| Į | ·                                         | 1 '                                              | mai K5               |

### Question 4. [10 marks total, 5 marks for each part]

Determine all the isolated singular points of the following two functions and identify their types, explaining each type. Hence, select **ONE** isolated point and calculate its residue.

a). 
$$f(z) = \frac{1}{z \sin\left(\frac{1}{z}\right)};$$

b). 
$$f(z) = \frac{\sin z - z}{\cos z - 1}.$$

| Do not<br>this c                                 | write in<br>column |
|--------------------------------------------------|--------------------|
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
| <u> </u>                                         |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
|                                                  |                    |
| <del>                                     </del> | 10                 |
| 1 1                                              | 10<br>marks        |

#### Question 5. [10 marks]

Solve the following problem of small oscillation of semi-infinite unloaded string with rigidly free end x = 0.

$$\begin{cases} u_{tt} - 4u_{xx} = 0, & 0 < x < +\infty, \ t > 0, \\ u_{x}(0, t) = 0, & t > 0, \\ u(x, 0) = x^{2}, u_{t}(x, 0) = x, & 0 < x < +\infty. \end{cases}$$

| Do not write in this column |
|-----------------------------|
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |
| 10<br>marks                 |
| marks                       |

# Question 6. [10 marks]

Determine the type of the PDE  $u_{xx} - 6u_{xy} + 9u_{yy} = xy^2$  and transform it into its standard form.

| Do no | t write in<br>column |
|-------|----------------------|
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       |                      |
|       | - 10                 |
|       | 10<br>marks          |

# Question 7. [12 marks]

Solve the following problem by means of separation of variables:

$$\begin{cases} u_{tt} - 4u_{xx} = 0, & 0 < x < 1, \ t > 0, \\ u_{x}(0, t) = 0, \ u_{x}(1, t) = 0, & t \ge 0, \\ u(x, 0) = \sin \pi x, \ u_{t}(x, 0) = 0, & 0 \le x \le 1. \end{cases}$$

| Do not write<br>this colum | e in<br>n |
|----------------------------|-----------|
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
|                            |           |
| 1<br>ma                    | 2<br>rks  |

# Question 8. [10 marks]

Solve the following vibration problem of a half infinite string:

$$\begin{cases} u_{tt} = c^{2}u_{xx}, & 0 < x < \infty, \quad t > 0, \\ u(x,0) = 0, & u_{t}(x,0) = 0, \\ u(0,t) = f(t), & \lim_{x \to +\infty} u_{x}(x,t) = 0. \end{cases}$$

| Do no                                            | t write in<br>column |
|--------------------------------------------------|----------------------|
|                                                  |                      |
|                                                  |                      |
|                                                  |                      |
| ļ                                                |                      |
| <u> </u>                                         |                      |
| <del> </del>                                     |                      |
| <del> </del>                                     |                      |
| <u> </u>                                         |                      |
| <del> </del>                                     |                      |
| <del>                                     </del> |                      |
| <del>                                     </del> |                      |
| <del> </del>                                     |                      |
| <del> </del>                                     |                      |
| <del>                                     </del> |                      |
| <del>                                     </del> |                      |
| <del> </del>                                     |                      |
| <del>                                     </del> |                      |
| <del>                                     </del> |                      |
| <u> </u>                                         | -                    |
|                                                  | 10<br>marks          |

| BBC4111 Paper A | Use this section for rough work | 2022/23                           |
|-----------------|---------------------------------|-----------------------------------|
|                 |                                 | Do not<br>write in this<br>column |
|                 |                                 | Column                            |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
| 4               | 2022-2023                       |                                   |
| Ro              | ugh Working                     |                                   |
|                 |                                 |                                   |
| Pa              | ige 11 of 13                    |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |
|                 |                                 |                                   |