ALGEBRA LINEARE - LEZIONE 27

Note Title 31/10/2023

	X	V	W	$\dim(V)$	$\dim(W)$	$\dim(V\cap W)$	$\dim(V+W)$
l	\mathbb{R}^2	(1,0)	(1,1)	1	1	0	2
2	\mathbb{R}^2	(1,1)	(2,2) $(3,3)$	1	1	1	1
3	\mathbb{R}^2	(1,2)	(3,4) $(5,6)$	1	2	1	2
4	\mathbb{R}^3	(1, 2, 3)	(1,1,0) (0,2,-1)	1	2	0	3
5	\mathbb{R}^3	(1,1,0) (1,0,1)	(0,1,1) (1,1,1)	2	2	1	3
6	\mathbb{R}^3	(1, 1, 0) (1, 0, 1)	(0,1,-1) (3,1,2)	2	2	2	2
7	\mathbb{R}^3	(-1,1,1) (2,1,0) (1,2,1)	(1,0,1) (0,5,0) (7,-6,7)	2	2		

due piam coincidenti $W_1 = U_1 - U_2$ $W_2 = U_1 + 2U_2$ $U_3 = U_1 + U_2$ $W_3 = 7W_1 - \frac{6}{5}W_2$

Dim (V+W) = 3 sim $(V \cap W) = 0$ $V \cap W = \{(0,0,0)\}$

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
 Det = $-2 \neq 0$ => dim $(V \cap W) = 1$
0 1 1 1 $\end{pmatrix}$ dim $(V + W) = 3$

Sappiano anche che V+W=R3.

Sanubbe bello trovore una base di VMW.

Osseniano a occluo che
$$U_1+U_2=2W_2-W_4$$
 e quindi $V \cap W = Span((2,1,1))$ $\stackrel{\circ}{\circ}$

Alternative per trovone interserione 1 parso i piani in cartesiana e metto a sistema 2) Risoevo au, + buz = cw1+dwz Troverò che una soluzione a=1, b=1, c=2, d=-1 Dalla relaxione les un vettore che sta in Ve W. (7) V = Span ((-1,1,1), (2,1,0)) Ho eliminato i tersi, e ho W= Span ((1,0,1), (0,1,0)) semplificato W2 1 1 0 1 0 Det 3×3 ≠0 => rango 3 => Dim (V+W) = 3 => V+W = R3 => Dim (VnW) = 1 => VnW è una retta Osseno de V1+V2 = W1+2W2 e quiudi VNW = Span ((1,2,1)) (1,2,1) _0 _ 0 _ Spazio vettoriale X = ℝ⁴. (a) $V = \{(x, y, z, w) \in \mathbb{R}^4 : x + y = z + w, x + z = y + w\},\$ $W = \text{Span}\{(1,0,0,-1),(1,2,3,4)\};$ (b) $V = \{(x, y, z, w) \in \mathbb{R}^4 : x + y = z + w\}, \quad W = \{(x, y, z, w) \in \mathbb{R}^4 : x + z = y + w\};$ (c) $V = \{(x, y, z, w) \in \mathbb{R}^4 : x = y, z = w\},$ (1,1,0,0) $W = \{(x,y,z,w) \in \mathbb{R}^4 : x+y+z+w=0, \ x-y+z-w=0\}. \quad \text{(1,0,-1,0)}$ $\omega_1 + \omega_2 = \omega_1 - \omega_2$ (1-,0,1,0) (a) $\{x+y-z-w=0\}$ $\{x+y-z-w=0\}$ $\{x-y+z-w=0\}$ w=t, ==s, y=s, x=z+w-y=s+t-s=t (x,y,z,w) = (t,s,s,t) = t(1,0,0,1) + s(0,1,1,0)verifico che stanno in V So che dim (V) = 2 e V = Span ((1,0,0,1), (0,1,1,0)) VeW sous s.sp. di 1R4 di dim 2.

```
    1
    0
    1

    0
    1
    0
    2

    0
    1
    0
    3

    1
    0
    -1
    4

                             Det = Laplace 1º colonna
                                    = Det \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 3 \end{pmatrix} - Det \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 3 \end{pmatrix}
                                    =-2+3-(2-3)=1+1=2\neq0
 Quiudi V+W = IR + e VNW = {(0,0,0,0)}
(P) 1 ~> x+n = 5+m
                                                 W No x+2 = y+w
     Dim(V) = Dim(W) = 3
     V= Span ((1,0,0,1), (0,1,0,1), (0,0,1,-1))
     W = Span ((1,0,0,1), (0,1,0,-1), (0,0,1,1))
     Per V+W li metto a colouna e veolo il rango
   \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} Laplace 1° riga

\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & -1 & 1 & -1 & 1 \end{pmatrix} - Det \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} = Det \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = 2 \neq 0
  Quindi V+W = R4 e quindi d'in (VnW) = 2
  Troviaus base di VNW
   E ouvio de (1,0,0,1) ∈ V ∩ W. Ne veoliamo un altro?
   Con un po'di occliro si vede che
                   U_2 + U_3 = W_2 + W_3 = (0,1,1,0)
   Questo a dice de
                  VNW = Span ((1,0,0,1), (0,1,1,0))
                  conello dopo video
 [ Bovino: risolvo av, +bv2+cv3 = dw1+ew2+fw3]
         Aurò 2 gradi di Diberta.
```