SOLUZIONI APPELLO 2020-07

1. VERO.

2. FALSO.

3. NO.

NON esiste un automa a stati finiti in grado di riconoscere il linguaggio.

4. SÌ. Esiste un automa a stati finiti in grado di riconoscere il linguaggio.

6. (COSTRUZIONE IDENTICA AD ES. 5 DEL 2021-08) 3 STATI, 3 FINALI.

11.

I quattro conflitti si trovano nelle entry:

- -(P[EaE],a);
- -(P[EaE],b);
- -(P[EbE],a);
- -(P[EbE],b).

12.

Essendo tutti i conflitti risolti a favore del REDUCE, ogni operazione è immediatamente valutata da Sx verso Dx.

Siccome la parola 'nbnan' appartiene al linguaggio generato dalla grammatica, segue che la valutazione di '3b2a2' produce 10.

13. (IDENTICO AD ES. 13 DEL 2021-08)

Una possibile grammatica libera da contesto in grado di generare il linguaggio è la seguente:

 $S \rightarrow aSb \mid ab$.

Dunque, come da consegna, il linguaggio è libero.

Se si tentasse di dimostrare la validità del NEGATO del Pumping Lemma (per i linguaggi liberi) si dovrebbe dimostrare che, fissato p, esiste almeno una parola z (con |z|>p) dove per ogni giustapposizione di u,v,w,x e y esiste almeno un naturale 'i' t.c. 'i' sbilanci z.

Una parola con tali proprietà, tuttavia, NON esiste dato che L è per definizione libero. La dimostrazione NON termina in quanto l'algoritmo testa tutte le parole del linguaggio, che in questo caso sono infinite.