

11-01-11

Attorney Docket No.: 119941-1083

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

"Express Mail" mailing label no. EL152182301US

In re Application of: Jeff L. DeJong

Date of Deposit October 30, 2000

Divisional of Serial No.: 09/326,529

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10, with sufficient postage, on the date indicated above and is addressed to Commissioner for Patents, Washington, D.C. 20231.

Filed: June 4, 1999

Linda L. Gibson
(Printed Name)

Group Art Unit: 1652

Examiner: Richard Hutson

For: TRANSCRIPTION FACTORS RELATED TO TFIIA

BOX: NEW APPLICATION
Commissioner for Patent
Washington, D.C. 20231REQUEST FOR FILING DIVISIONAL APPLICATION
UNDER 37 C.F.R. 1.53(b)

Dear Sir:

This is a request for filing a divisional application under 37 C.F.R. 1.53(b), of pending prior application 09/326,529, filed June 4, 1999, entitled TRANSCRIPTION FACTORS RELATED TO TFIIA. The inventor of the invention being claimed in this Application is: Jeff L. DeJong. Please amend the specification by inserting before the first line the sentence: "This application is a division of pending application number 09/326,529, filed on June 4, 1999."

1. A preliminary amendment is submitted herewith.
2. A true copy of the prior application as filed in the parent application is enclosed.
3. Informal drawings are enclosed.
4. A Declaration Claiming Small Entity Status under 37 C.F.R. 1.9 was filed in the prior application and such status is still proper and desired and a copy is enclosed herewith.

5. A Declaration is enclosed.
6. An Election Under 37 C.F.R. §§ 3.71 and 3.73 and Power of Attorney is enclosed.
7. A copy of the Sequence Listing with accompanying floppy disk is enclosed.
8. Please cancel in this application original Claims 1 and 3-32 of the prior application and add new claims 71-85 before calculating the filing fee.

The filing fee is calculated below:

For	Number Filed	Number Extra	Rate	Fee
Total Claims	54	34	9.00	\$306.00
Independent Claims	10	7	40.00	\$280.00
Basic Filing Fee				\$355.00
Multiple Dependent Claim	0	0	130.00	\$0.00
TOTAL FILING FEE				\$941.00

9. Two checks one in the amount of \$355.00 for the filing fee and one in the amount of \$586.00 for the extra claims are enclosed for the filing fee.

I hereby verify that the attached papers are a true copy of prior application Serial No. 09/326,529, filed June 4, 1999, and further that all statements made herein are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Please address all future correspondence to:

Gardere & Wynne, L.L.P.
1601 Elm Street, Suite 3000
Dallas, Texas 75201

and direct all telephone calls to Edwin S. Flores at (214) 999-4559.

Respectfully submitted,

GARDERE & WYNNE L.L.P.

By:
Edwin S. Flores
Attorney for Applicant
Registration No.: 38,453

Date: October 30, 2000
3000 Thanksgiving Tower
1601 Elm Street
Dallas, Texas 75201
(214) 999-4559

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Jeff DeJong

§

§

Examiner:

Serial No.:

§

§

Group Art Unit:

Filed: Concurrently herewith

§

§

Atty. Dkt.: 119941-1053

For: Transcription Factors Related to TFIIA

§

**DECLARATION CLAIMING SMALL ENTITY STATUS
37 C.F.R. §§ 1.9(f) and 1.27(d) - NONPROFIT ORGANIZATION**

Commissioner of Patents
and Trademarks
Washington, D.C. 20231

Sir:

I hereby declare that I am an official empowered to act on behalf of the nonprofit organization identified below:

Name of Organization: Board of Regents
The University of Texas System

Address of Organization: 201 West 7th Street
Austin, Texas 78701

The type of organization is a university.

I hereby declare that the organization identified above qualifies as a nonprofit organization as defined in 37 C.F.R. § 1.9(e) (1), and thus is a "small entity" as defined in § 1.9(f), for purposes of paying reduced fees under Sections 41(a) and (b) of Title 35, United States Code, with regard to the above-referenced application.

I hereby declare that exclusive rights to the invention have been conveyed to and remain with the organization, with respect to the above-referenced invention, nor have I assigned, granted, conveyed or licensed and am under no obligation under contract or law to assign, grant, convey or license, any rights in the invention to any person who could not be classified as an independent inventor under 37 CFR § 1.9(c) if that person had made the invention, or to any concern which would not qualify as a small business concern

under 37 CFR § 1.9(d) or a nonprofit organization under 37 CFR § 1.9(e), with the exception that the Government may have rights in the invention pursuant to a funding agreement under 35 U.S.C. § 202(c)(4):

NONE

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

BOARD OF REGENTS,
THE UNIVERSITY OF TEXAS SYSTEM

By:

Name: Ray Farabee
Title: Vice Chancellor
and General Counsel

Date: May 27, 1999

719942.1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Jeff L. DeJong
Divisional Serial No.: 09/326,529
Filed: June 4, 1999
Title: TRANSCRIPTION FACTORS RELATED TO TFIIA
Current Examiner: Richard Hutson
Art Unit No.: 1652

Express Mail No.: **EL152182301US**
Date of Deposit: October 30, 2000
I certify that the accompanying paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to BOX: PATENT APPLICATION, Commissioner for Patents, Washington, DC 20231

Linda L. Gibson

PRELIMINARY AMENDMENT

Commissioner for Patents
Washington, D.C. 20231

Sir:

Please find below Applicant's Preliminary Amendment that accompanies the request for filing a Divisional Application under 37 CFR 1.53(b) filed herewith. Please amend the above-identified patent application as follows:

IN THE SPECIFICATION

On page 2, please add the following reference to the co-pending application:

"This application is a Division Application of co-pending United States Patent Application Serial Number 09/326,529, filed on June 4, 1999."

IN THE CLAIMS:

Cancel in this Application original claims 1 and 3-32 of co-pending application before calculating the filing fee.

Please add new claims 71-85:

71. (New Claim) A purified ALF protein encoded by an oligonucleotide comprising a nucleic acid sequence substantially homologous to the coding strand of the gene sequence set forth in SEQ ID NO:1.

72. (New Claim) The purified protein of claim 71, wherein said protein is a human ALF protein.

73. (New Claim) The purified protein of claim 71, wherein said protein is the human ALF protein of SEQ ID NO.:2.

74. (New Claim) A fusion protein comprising a portion of the ALF protein of claim 71 and a non-ALF protein sequence.

75. (New Claim) The fusion protein of claim 74, wherein said ALF protein is a human ALF protein and said non-ALF protein is SALLF.

76. (New Claim) The fusion protein of claim 74, wherein said non-ALF protein is a transcriptional factor.

77. (New Claim) The fusion protein of claim 74, wherein said non-ALF protein is a human transcriptional factor.

78. (New Claim) The fusion protein of claim 74, wherein said SALLF protein is the human ALF protein of SEQ ID NO.:4.

79. (New Claim) A purified ALF protein encoded by an oligonucleotide comprising a nucleic acid sequence substantially homologous to the coding strand of the gene sequence set forth in SEQ ID NO:3.

80. (New Claim) The purified protein of claim 79, wherein said protein is a human SALF protein.

81. (New Claim) The purified protein of claim 79, wherein said protein is the human ALF protein of SEQ ID NO.:4.

82. (New Claim) A fusion protein comprising a portion of the SALF protein of claim 77 and a non-SALF protein sequence.

83. (New Claim) The fusion protein of claim 82, wherein said non-ALF protein is a transcriptional factor.

84. (New Claim) The fusion protein of claim 82, wherein said non-ALF protein is a human transcriptional factor.

85. (New Claim) The fusion protein of claim 82, wherein said SALF protein is the human ALF protein of SEQ ID NO.:4.

COMMENTS

Should any fees under 37 C.F.R. §§ 1.16 to 1.18 be required for any reason relating to the enclosed materials, or should an overpayment be included herein, the Commissioner is authorized to deduct or credit said fees from or to Gardere & Wynne, L.L.P. Deposit Account No. 07-0153.

An action on the merits of all of the claims and a Notice of Allowance thereof are respectfully requested. The Examiner is invited to telephone the undersigned at the telephone number listed below if he or she has any questions or suggested amendments to the claims.

Dated this 30th day of October, 2000.

Respectfully submitted:

Edwin S. Flores
Attorney for Applicant
Registration No. 38,453
Gardere & Wynne, L.L.P.
1601 Elm Street, Suite 3000
Dallas, Texas 75201-4767
(214) 999-3000 - Tel
(214) 999-4667 - Fax

DALLAS 933475v1

TRANSCRIPTION FACTORS RELATED TO TFIIA

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field of recombinant nucleic acids, polypeptides and other derived materials and, more particularly, to the identification, isolation and characterization of human transcription factors that are involved in the expression of human genes.

BACKGROUND OF THE INVENTION

Without limiting the scope of the invention, its background is described in connection with the isolation, characterization and use of human transcription factors that are expressed throughout the organism, as an example.

5 Unlike the nucleic acid polymerases of prokaryotes, purified RNA polymerase II from eukaryotes initiates transcription very poorly and essentially at random. One key difference between prokaryotic and eukaryotic polymerases is the need for accessory factors that provide for the accurate initiation of transcription. These factors are referred to as the "general" or "basal" transcription factors, in that they are required, in addition to RNA
10 polymerase II, for the transcription of all eukaryotic protein coding genes. As such, the general transcription factors are expected to be active, or at least present, in all or most tissues. One such general factor is called transcription factor IID (TFIID) and is responsible in large part for promoter recognition. Other general transcription factors include TFIIA, TFIIB, TFIIE, TFIIF and TFIH.

15 Appropriate levels of gene- and tissue-specific transcription is achieved by another set of factors called activator proteins. These factors are often composed of two domains, a sequence-specific DNA recognition domain and an activation domain. When bound to DNA, the activation domain facilitates the formation and function of a preinitiation complex that consists of the general transcription factors and RNA polymerase II. In this way it is possible to direct the selective transcription of genes in an appropriately regulated fashion.
20

25 The structure of a typical promoter for a eukaryotic gene consists of two general regions. The core promoter is located at or near the actual site of transcription initiation and often includes a TATA sequence element located at about 30 base pairs upstream of the initiation site. The other regions are defined as sequence elements which are recognized by activator proteins. These are often located at various distances further upstream, but may be also be located downstream relative to the core promoter of the gene being regulated. Interactions between bound regulatory factors and the preinitiation complex are responsible for the precisely regulated transcription of each individual gene.

TFIIA is an essential general transcription factor and the purified factor from higher eukaryotes consists of three subunits, designated alpha (35 kD), beta (19 kD) and gamma (12 kD). In humans, the alpha and beta subunits are encoded by DNA sequences present in the TFIIA α/β cDNA, sometimes referred to as the 'large' subunit cDNA. These two subunits are post-translationally processed from a large 55 kD product of TFIIA α/β . The gamma subunit is encoded by DNA sequences present in the TFIIA γ cDNA, sometimes referred to as the 'small' subunit cDNA. This sequence is the subject of United States Letters Patent No. 5,562,117 issued to Moore and Rosen. TFIIA has multiple roles in transcription initiation by RNA polymerase II, including an ability to stabilize TBP-TATA element interactions, displace TBP-associated repressors and serve as a cofactor during the processes of transcription activation.

Most of the known human general transcription factors appear to be generally required in all tissues for gene expression by RNA polymerase II. Thus, these factors will be important as markers to evaluate disease states which may arise from inappropriately regulated gene expression and as pharmacological reagents and/or targets with which to modulate patterns of gene expression. Similarly, overexpression via gene therapy or other means should have broad effects on the expression of many or all cellular genes. In contrast, mutations in the genes for activator proteins, which are normally observed to control expression of a select set of genes, often in a tissue or developmentally restricted pattern, typically result in specific defects. Likewise, overexpression of activator proteins only affects expression of cellular genes which contain cognate recognition sequences.

Testis has important endocrine (hormonal) functions and is the site for the production of haploid spermatozoa from undifferentiated stem cells, a process called spermatogenesis. Mutations in some specialized transcriptional activator proteins, such as A-myb and CREM, cause male infertility and show defects in spermatogenesis. The identification of tissue-specific human general transcription factor would bridge an important gap between the generality for general transcription factor function and the specificity of gene-specific transcriptional activator protein function. If such factors were testis-specific, they would be expected to regulate patterns of gene expression that are important in the endocrine,

spermatogenic and other functions of this organ. The present invention satisfies a need in the art for new compositions for polynucleotide sequences and encoded polypeptide products, immunological reagents and other derived materials in terms of providing unique reagents for the detection of defects in testis function such as idiopathic male infertility or other syndromes, for detection of dysfunctional patterns of gene expression and as reagents that can modulate gene expression.

SUMMARY OF THE INVENTION

The present invention includes DNA sequences that encode two structurally distinct isoforms of the human general transcription factor TFIIA α/β . One of these sequences is denoted as ALF, for TFIIA α/β -like factor, which is expressed predominantly in human testis. The second sequence contains ALF connected to a unique upstream sequence and is denoted as SALF, for Stoned B/TFIIA α/β -like factor. The present invention is also direct to recombinant polypeptide products and other derived materials. The uses of the invention include, but are not necessarily limited to, the propagation and preparation of the ALF and SALF DNA, RNA and recombinant proteins, and use of these materials as reagents and markers to detect and/or modify the function of eukaryotic cells in normal and disease states.

The present invention may be used in the detection of the endogenous ALF and SALF RNAs in eukaryotic cells using hybridization, polymerase chain reactions, immunological analysis and other methods. The invention may also be used along with the endogenous ALF and SALF DNAs, RNAs and proteins as specific *in vivo* pharmacological targets to artificially modulate the expression of eukaryotic genes. Furthermore, the ALF, SALF and the variable carboxyl terminal end may be introduced in a normal or modified versions of the ALF and SALF genes for expression in eukaryotic cells in order to replace or augment endogenous transcription factor activities (gene therapy). The present invention may also be used as testis-specific antigens for contraceptive vaccine development.

The present invention, in a general and overall sense, concerns the isolation and characterization of a novel transcriptional factor gene, ALF and carboxy terminal variable region. One embodiment of the present invention is a purified nucleic acid segment that encodes a protein having an amino acid sequence as shown in Figure 2, in accordance with SEQ ID NO.:2. Another embodiment of the present invention is a purified nucleic acid segment, further defined as including a nucleotide sequence in accordance with SEQ ID NO.:1.

The present invention also concerns the isolation and characterization of a novel transcriptional factor gene, SALF and a carboxy terminal variable region. One embodiment of the present invention is a purified nucleic acid segment that encodes a protein having an

amino acid sequence as shown in Figure 3, in accordance with SEQ ID NO.:4. Another embodiment of the present invention is a purified nucleic acid segment, further defined as including a nucleotide sequence in accordance with SEQ ID NO.:3. The 3' variable region that ALF and SALF have in common is encoded by the nucleic acid segment in accordance with SEQ ID NO.:5 and expressed as an amino acid sequence as shown in SEQ ID NO.:6.

In one embodiment the purified nucleic acid segment includes the nucleotide sequence of SEQ ID NOS.:1, 3 and 5. As used herein, the term "nucleic acid segment" and "DNA segment" are used interchangeably and refer to a DNA molecule that has been isolated free of total genomic DNA of a particular species. Therefore, a "purified" DNA or nucleic acid segment as used herein, refers to a DNA segment that includes novel transcriptional factor genes, ALF, SALF and a carboxy terminal variable coding sequence, yet is isolated away from, or purified free from, total genomic DNA, for example, total cDNA or human genomic DNA. Included within the term "DNA segment", are DNA segments and smaller fragments of such segments and recombinant vectors, including, for example, plasmids, cosmids, phage, viruses and the like.

Similarly, a DNA segment encoding an isolated or purified novel transcriptional factor genes, ALF, SALF and a carboxy terminal variable coding sequence, gene refers to a DNA segment including ALF, SALF and a carboxy terminal variable coding sequence isolated substantially away from other naturally occurring genes or protein encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences or combinations thereof. "Isolated substantially away from other coding sequences" means that the gene of interest, in this case ALF, SALF and a carboxy terminal variable coding sequence, forms the significant part of the coding region of the DNA segment. Of course, this refers to the DNA segment as originally isolated and does not exclude genes or coding regions later added by the hand of man to the segment.

In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences that encode novel transcriptional factor

genes, ALF, SALF and a carboxy terminal variable coding sequence genes, and that include within the amino acid sequence an amino acid sequence in accordance with SEQ ID NO.:2. Moreover, in other particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences that encode a gene which includes within its amino acid sequence the amino acid sequence of a ALF, SALF and a carboxy terminal variable coding sequence

Another embodiment of the present invention is a purified nucleic acid segment that encodes proteins in accordance with SEQ ID NOS.:2, 4 and 6, further defined as a recombinant vectors. As used herein the term, "recombinant vector", refers to a vector that has been modified to contain a nucleic acid segment that encodes ALF, SALF, or the carboxy terminal variable coding sequence protein, or a fragment thereof. The recombinant vector may be further defined as an expression vector that includes a promoter operatively linked to the ALF, SALF, or the ALF/SALF variants having the carboxy terminal variable coding sequence encoding a nucleic acid segment.

A further embodiment of the present invention is a host cell, made recombinant with a recombinant vector including ALF, or SALF, and if present, a carboxy terminal variable coding sequence. The recombinant host cell may be a prokaryotic cell. In a one embodiment, the recombinant host cell is a eukaryotic cell. As used herein, the term "engineered" or "recombinant" cell is intended to refer to a cell into which a recombinant gene, such as a gene encoding ALF, SALF, or the carboxy terminal variable coding sequence, has been introduced. Therefore, engineered cells are distinguishable from naturally occurring cells which do not contain a recombinantly introduced gene. Engineered cells are thus cells having a gene or genes introduced through the hand of man. Recombinantly introduced genes will either be in the form of a cDNA, a copy of a genomic gene, or will include genes positioned adjacent to a promoter not naturally associated with the particular introduced gene.

It may be more convenient, however, to employ as the recombinant gene a cDNA version of the gene. One advantage of working with cDNAs is that the size of the gene is generally smaller and more readily employed to introduce into or "transfect" the targeted cell

than will a genomic gene; typically an order of magnitude larger than cDNA gene. Alternatively, a genomic version of a particular gene may be used where desired.

In certain embodiments, the invention concerns isolated DNA segments and recombinant vectors that encode a protein or peptide which includes within its amino acid sequence an amino acid sequence essentially as set forth in SEQ ID NOS.:2, 4 or 6. Naturally, where the DNA segment or vector encodes a full length ALF or SALF protein, or is intended for use in expressing the sequences will be as essentially as set forth in SEQ ID NOS.:2, 4 and 6.

The term "a sequence essentially as set forth in SEQ ID NO.:2" means that the sequence substantially corresponds to a portion of SEQ ID NO.:2 and has relatively few amino acids which are not identical to, or a biologically functional equivalent of, the amino acids of SEQ ID NO.:2. Likewise the phrase is equally applied to SEQ ID NOS.: 4 and 6. The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein as a gene having a sequence essentially as set forth in SEQ ID NOS.:2, 4 or 6, and that is associated with RNA transcription. Accordingly, sequences that have between about 70% and about 80%; or between about 81% and about 90%; or even between about 91% and about 99%; of amino acids that are identical or functionally equivalent to the amino acids of SEQ ID NOS.:2, 4 or 6.

In certain other embodiments, the invention concerns isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in SEQ ID NOS.:1, 3 or 5. The term "essentially as set forth in SEQ ID NO.: 1," is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of SEQ ID NO.:1, and has relatively few codons that are not identical, or functionally equivalent, to the codons of SEQ ID NO.:1. Likewise the phrase is equally applied to SEQ ID NOS.: 3 and 5. The functionally equivalent codons are known in the art.

It will also be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the

sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, i.e., introns, which are known to occur within genes.

Excepting intronic or flanking regions, and allowing for the degeneracy of the genetic code, sequences that have between about 70% and about 80%; or between about 80% and about 90%; or between about 90% and about 99%; of nucleotides that are identical to the nucleotides of SEQ ID NOS.:1, 3 or 5 will be sequences that are "essentially as" the respective SEQ ID NOS. Sequences that are essentially the same as those set forth in SEQ ID NOS.:1, 3 or 5 may also be functionally defined as sequences that are capable of hybridizing to a nucleic acid segment containing the complement of SEQ ID NO.:1 under relatively stringent conditions. Suitable relatively stringent hybridization conditions will be well known to those of skill in the art and are clearly set forth herein, for example conditions for use with southern and northern blot analysis as described herein.

Naturally, the present invention also encompasses DNA segments that are complementary, or essentially complementary, to the sequence set forth in SEQ ID NOS.:1, 3 or 5. The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. A nucleic acid fragment of almost any length may be employed, with the total length being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, nucleic acid fragments may be prepared that include a short stretch complementary to SEQ ID NOS.:1, 3 or 5, such as about 10 to 15 or 20, 30, or 40 or so nucleotides, and which are up to 10,000 or 5,000 base pairs in length, with segments of 3,000 being used in certain cases. DNA segments with total lengths of about 1,000, 500, 200, 100 and about 50 base pairs in length are also useful.

Another embodiment of the present invention is a nucleic acid segment that includes at least a 14-nucleotide long stretch that corresponds to, or is complementary to, the nucleic acid sequence of SEQ ID NOS.:1, 3 or 5. In one embodiment the nucleic acid is further defined as including at least a 20, 30, 50, 100, 200, 500, 1000, or at least a 3824 nucleotide long stretch that corresponds to, or is complementary with, the nucleic acid sequence of SEQ ID NOS.:1, 3 or 5. The nucleic acid segment may be further defined as having the nucleic acid sequence of SEQ ID NOS.:1, 3 or 5.

A related embodiment of the present invention is a nucleic acid segment that includes at least a 14-nucleotide long stretch that corresponds to, or is complementary with, the nucleic acid sequence of SEQ ID NO.:1 or 3, further defined as including a nucleic acid fragment of up to 10,000 base pairs in length. Another embodiment is a nucleic acid fragment including from 14 nucleotides of SEQ ID NO.:1 or 3 up to 5,000, 3,000, 1,000, 500 or 100 base pairs in length.

Naturally, it will also be understood that this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NOS.: 2, 4 and 6. Recombinant vectors and isolated DNA segments may therefore variously include the ALF, SALF and variable region coding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides that nevertheless include ALF, SALF or variable region-coding segments or may encode biologically functional equivalent proteins or peptides that have variant amino acids sequences.

The DNA segments of the present invention encompass biologically functional equivalent ALF, SALF and variable region peptides. Such sequences may arise as a consequence of codon redundancy and functional equivalency that are known to occur naturally. Alternatively, functionally equivalent proteins or peptides may be created via the application of recombinant DNA technology, where changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the ALF,

SALF or variable region mutants in order to examine transcriptional activity or determine the presence of ALF, SALF or variable region protein in various cells and tissues at the molecular level.

Another embodiment of the present invention is a purified composition comprising
5 a polypeptide having an amino acid sequence in accordance with SEQ ID NOS.:2, 4 or 2 or
4 with 6. The term "purified" as used herein, refers to a transcriptional factor protein
composition, wherein the ALF, SALF or ALF and SALF having the variable region proteins
are purified to any degree relative to its naturally-obtainable state, i.e., in this case, relative
to its purity within a eukaryotic cell extract, or a testis sample. A cell for the isolation of
10 ALF, SALF or variants thereof is a cell of testicular origin, however, these proteins may also
be isolated from patient specimens, recombinant cells, tissues, isolated subpopulations of
tissues, and the like, as will be known to those of skill in the art, in light of the present
disclosure. Purified ALF, SALF or variants thereof also refer to polypeptides having the
15 amino acid sequence of SEQ ID NOS.:2, 4, 2 and 6 or 4 and 6, free from the environment
in which it may naturally occur. One may also prepare fusion proteins and peptides, e.g.,
where the ALF, SALF or variable portion coding regions are aligned within the same
expression unit with other proteins or peptides having desired functions, such as for
purification or immunodetection purposes (e.g., proteins that may be purified by affinity
20 chromatography and enzyme label coding regions, respectively).

Turning to the expression of ALF, SALF and variable genes whether from cDNA or
genomic DNA, protein may be prepared using an expression system to make recombinant
preparations of ALF, SALF and variable genes proteins. The engineering of DNA
segment(s) for expression in a prokaryotic or eukaryotic system may be performed by
techniques generally known to those of skill in recombinant expression. For example, ALF,
25 SALF and variable genes-GST (glutathione-S-transferase) fusion proteins are a convenient
means of producing protein in a bacterial expression. Virtually any expression system may
be employed in the expression of ALF, SALF and variable gene products. Eukaryotic
expression systems, however, may also be used.

Transformation of host cells with DNA segments encoding ALF, SALF and variable genes also provides a convenient means for obtaining a protein for ALF, SALF and ALF or SALF including the variable portions. Complementary DNA (cDNA), genomic sequences and combinations thereof, are suitable for eukaryotic expression, as the host cell will, of course, process the genomic transcripts to yield functional mRNA for translation into protein.

Another embodiment is a method of preparing a protein composition comprising growing recombinant host cell comprising a vector that encodes a protein that includes an amino acid sequence in accordance with SEQ ID NOS.:2, 4 or 6, under conditions permitting nucleic acid expression and protein production followed by recovering the protein so produced. The host cell, conditions permitting nucleic acid expression, protein production and recovery, will be known to those of skill in the art, in light of the present disclosure of the ALF, SALF and variable region genes.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures which corresponding numerals in the different figures refer to the corresponding parts and in which:

FIG. 1 depicts the cDNA sequence of ALF (SEQ ID NO. 1);

FIG. 2 depicts the corresponding deduced amino acid sequence of ALF (SEQ ID NO. 2), standard one-letter abbreviations for amino acids is used;

FIG 3 depicts the cDNA sequence of SALF (SEQ ID NO. 3);

FIG 4 depicts the corresponding deduced amino acid sequence of ALF (SEQ ID NO. 4), standard one-letter abbreviations for amino acids is used;

FIG 5 depicts the cDNA sequence of an alternative 3'-coding and untranslated region for both ALF and SALF (SEQ ID NO 5);

FIG 6 depicts the corresponding deduced amino acid sequence of ALF (SEQ ID NO. 6), standard one-letter abbreviations for amino acids is used;

FIG 7A and 7B depicts the schematic structures of the ALF and SALF cDNA sequences. A, The SALF cDNA sequence includes TFIIA α/β -like sequences and an upstream Stoned β -like region and is shown with selected restriction enzyme sites. B, The ALF cDNA sequence consists of TFIIA α/β -like sequences. The 5'-end of ALF was identified using gene-specific primers 2a2-20 and 2a2-22 and library-specific primers AP1 and AP2. The resulting clone, pRACE22, is shown as a single line. A PCR product that spans the entire ALF sequence (pRACE17) was obtained using gene-specific primer 2a2- 17 and library-specific primer AP1. C, PCR products from SALF are amplified and visualized from human placenta and liver cDNA libraries. The primers used are indicated above each lane (2a2-1, 2a2-6 and 2a2-8). Lanes 5 and 6 are control reactions to which no cDNA template was added;

FIG 8A and 8B are schematic diagrams showing alignments of ALF and SALF sequences with related genes. A, ALF contains conserved regions I, III and IV and an internal nonconserved region II. Beneath ALF are diagrams of TFIIA large subunits from

human (hTFIIA α/β), Arabidopsis (aTFIIA-L), Drosophila (dTIIA-L) and yeast (yTOA1). B, A diagram of the N-terminus of SALF is shown, indicating an upstream serine, threonine, a proline-rich domain and a downstream domain that is homologous to Drosophila Stoned β and the clathrin APs $\mu 1$ (AP47) and $\mu 2$ (AP50) proteins.

5

FIG. 9 shows human genomic DNA digested with either BglII or EcoRI and hybridized with an ALF probe. The enzymes are indicated above each lane (lanes 1 BglII; lanes 2, EcoRI). The positions of the molecular weight size markers are indicated to the left of each panel.

10

FIG 10A through 10E are Northern blot analysis autoradiographs of ALF, TFIIA α/β and TFIIA γ transcripts. Poly(A) mRNA from various human tissues were probed with various gene-specific probes. A, ALF; B, 5'-SALF; C, TFIIA α/β ; D, TFIIA γ ; and E, actin.

15

FIG 11A through 11F are RNA dot blot analyses autoradiographs of ALF, TFIIA α/β and TFIIA γ transcripts; A single dot blot containing poly(A) mRNA from multiple human tissues is probed with A, ALF, B, 5'-SALF, C, TFIIA α/β , D, TFIIA γ ; and E, a ubiquitin control. The source of the mRNA for each spot is listed in F, dashes indicate positions that do not contain mRNA.

20

FIG 12A through 12D show expression and functional analysis of ALF and SALF polypeptides. A, Coomassie-stained SDS-PAGE gel shows that the recombinant histidine-tagged ALF protein migrates at 69 kD (lane 2) and that the recombinant rat TFIIA α/β and TFIIA γ proteins used in these studies migrate at 55 kD and 12 kD, respectively (lanes 3 and 4). B, p69 (ALF) can substitute for (TFIIA α/β) p55 in stabilizing the interaction between TBP and the Adenovirus Major Late promoter TATA element (-40 to -16). Additions to each reaction are listed above each lane. Polyclonal antiserum against human p55 is added to reactions in lanes 8 (2 μ l), 9 (4 μ l) and 10 (4 μ l). C, Addition of p69 (ALF) and p12 (TFIIA γ) restore activity to transcriptionally inactive TFIIA-depleted HeLa nuclear extracts. Control (undepleted) and TFIIA-depleted extracts are indicated by a "C" and "D", respectively. D, A T7-promoter driven SALF construct produces an [35S]-labeled protein of approximately 170 kD in in vitro transcription- translation reactions.

25

DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts.
5 The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.

Human transcription factor IIA (TFIIA) is a cellular factor that, together with additional protein components, regulates the expression of human genes. TFIIA is composed of proteins produced from two nucleic acid sequences (genes), one called hTFIIA α/β and the other hTFIIA γ (Patent No. 5,652,117). These factors are expressed in human tissues and are thought to function primarily through interactions with the TATA-binding protein (TBP), a universally-required eukaryotic protein that functions at promoter DNA sequences to regulate gene expression.
10
15

In addition to the DNA sequences themselves, the functionality of the recombinant polypeptides produced from the ALF DNA sequences is shown using several biochemical assays. First, in conjunction with a recombinant TFIIA γ polypeptide, the recombinant ALF protein overproduced and purified from *E. coli*, can interact with recombinant human TATA binding protein to stabilize interactions on promoter DNA. Second, in conjunction with a recombinant TFIIA γ polypeptide, the recombinant ALF polypeptide can restore RNA polymerase II transcription activity to nuclear extracts from human cells that have been depleted of TFIIA. Related, antibody reagents raised against the recombinant ALF polypeptides react with the corresponding overproduced polypeptides suggesting that immunological detection of the endogenous protein(s) will be feasible. These studies substantiate the prediction that the ALF protein has a role in the regulation of human gene expression.
20
25

DEFINITIONS

As used throughout the present specification the following abbreviations are used:
TF, transcription factor; TBP, TATA binding protein; ORF, open reading frame, EST,

expressed sequence tag; kb, kilobase (pairs); UTR, untranslated region; kD, kilodalton; nt, nucleotide; aa, amino acids; bp, base pairs; PCR, polymerase chain reaction; AP, adaptor protein; DTT, dithiothreitol; PMSF, phenylmethylsulfonyl flouride; EDTA, ethylenediaminetetraacetic acid; IPTG, isopropyl β -D-thiogalactoside; AdML, Adenovirus Major Late; ALF, TFIIA α/β -like factor; SALF, Stoned B/ TFIIA α/β -like factor.

5 Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as "a", "an" and "the" are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe 10 specific embodiments of the invention, but their usage does not limit the invention, except as outlined in the claims.

The term "ALF" (TFIIA α/β -like factor) refers to the nucleotides essentially as set forth (SEQ ID NO. 1) or amino acid sequences essentially as set forth (SEQ ID NO 2). The term "SALF" (Stoned B/TFIIA α/β -like factor) refers to the nucleotides essentially as set forth (SEQ ID NO.3) or amino acid sequence essentially as set forth (SEQ ID NO. 4). The term "alternative carboxy terminal domain" refers to nucleotide essentially as set forth (SEQ ID NO. 5) and amino acid sequences essentially as set forth (SEQ ID NO. 6) It is to be understood that alternative carboxy terminal sequence is present as an alternative 3'-coding and untranslated region that can be found on some ALF or SALF transcripts or cDNAs and is meant to be included or implied in all references to the term "ALF and SALF", without referring to this alternative sequence explicitly each time.

20 The terms "a sequence essentially as set forth in SEQ ID NO. (#)", "a sequence similar to", "nucleotide sequence" and similar terms, with respect to nucleotides, refers to sequences that substantially correspond to any portion of the sequences in SEQ ID NOS 1, 25 3 and 5. These terms refer to synthetic as well as naturally-derived molecules and includes sequences that possess biologically, immunologically, experimentally, or otherwise functionally equivalent activity, for instance with respect to hybridization by nucleic acid segments, or the ability to encode all or portions of ALF or SALF activities. Naturally, these terms are meant to include information in such a sequence as specified by its linear order.

The terms "a sequence essentially as set forth in SEQ ID NO. (#)", "a sequence similar to", "amino acid sequence" and similar terms, with respect to amino acids, refers to peptides, polypeptides, proteins, fragments, fusions, derivatives and alterations thereof that substantially correspond to any portion of the sequences in SEQ ID NOS. 2, 4 and 6. These terms refer to synthetic as well as naturally-derived molecules and includes sequences that possess biologically, immunologically, experimentally, or otherwise functionally equivalent activities, for instance, segments of amino acids which possess immunological activity as an antigenic determinant. Naturally, these terms are meant to include information in such a sequence as specified by its linear order.

The term "homology" and "similarity" refers to the extent to which two nucleic acids are complementary. The term "gene" is used to refer to a functional protein, polypeptide, or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences, or fragments or combinations thereof, as well as gene products, including those that may have been altered by the hand of man.

The term "biologically equivalent" or "functionally equivalent" are understood in the art and is further defined herein as sequences that are interchangeable or similarly useful with reference to a given property, for instance selectivity of hybridization, or which encode amino acid segments that have similar properties.

The term "vector" refers to DNA or RNA sequences that have been modified to contain a nucleic acid segment that encodes ALF or SALF, or a fragment thereof. The vector may be further defined as one designed to propagate ALF and SALF sequences, or as an expression vector that includes a promoter operatively linked to the ALF or SALF sequences, or one designed to cause such a promoter to be introduced. The vector may exist in a state independent of the host cell chromosome, or may be integrated into the host cell chromosome

The term "host cell" refers to cells that have been engineered to contain nucleic acid segments from ALF or SALF, or altered segments, whether archeal, prokaryotic, or eukaryotic. Thus, engineered, or recombinant cells, are distinguishable from naturally occurring cells that do not contain recombinantly introduced genes through the hand of man.

5 The term "agonist" refers to a molecule that enhances either the strength or the time of an effect of ALF or SALF and encompasses small molecules, proteins, nucleic acids, carbohydrates, lipids, or other compounds. The term "antagonist" refers to a molecule that decreases either the strength or the time of an effect of ALF or SALF and encompasses small molecules, proteins, nucleic acids, carbohydrates, lipids, or other compounds.

10 The term "altered" or "alterations", or "modified" with reference to nucleic acid or polypeptide sequences is meant to include changes such as insertions, deletions, substitutions, fusions with related or unrelated sequences, such as might occur by the hand of man, or those that may occur naturally such as polymorphisms, alleles and other structural types. Alterations encompass genomic DNA and RNA sequences that may differ with respect to their hybridization properties using a given hybridization probe. Alterations of polynucleotide sequences that encode ALF or SALF, or fragments thereof, include those that increase, decrease, or have no effect on functionality. Alterations of polypeptides refer to those that have been changed by recombinant DNA engineering, chemical, or biochemical modifications, such as amino acid derivatives or conjugates, or post-translational modifications.

15 The term "antibody" refers to any of a class of immunological molecules with the capacity to interact specifically with one or more epitopes of ALF or SALF and includes those that have been altered or modified, for example, 'humanized' antibodies.

20 The term "complementary" refers to polynucleotide sequence that may form stable base pairs with another sequence under a given set of conditions. For instance a complementary strand refers to a sequence that is a sequence of nucleotides whose composition is dictated by the Watson-Crick base pairs (A-T, G-C). This term also refers to any polynucleotide sequence that can selectively interact with another under either permissive or stringent hybridization conditions, as known to those skilled in the art and, in this respect, includes sequences of DNA or oligonucleotides, RNA, protein nucleic acid, other nucleic acid derivatives and fragments thereof, which can reliably detect a particular sequence with a specificity that is useful for genetic or diagnostic studies.

The term "modulate" refers to the ability to effect a change in the structure, function, or regulation of ALF or SALF genes or gene products. These include methods for altering ALF or SALF gene activity and protein function.

5 The terms "segment", "fragment", "portion", "part", "region", or "domain", refers to any subsections, regardless of length, of nucleotide or amino acid sequences set forth in this invention that are either whole or which have been divided either naturally or by the hand of man.

10 The term "oligonucleotide probe" or "oligonucleotide primer" refers to a polynucleotide sequence between approximately 6 nucleotides to 70 to 80 nucleotides, but typically between 15-30 nucleotides, that can be used in direct hybridization, including microarray techniques, or in amplification assays to achieve a substantially selective detection of a complementary sequence. Such sequences are used for a wide variety of additional purposes, the basis of which is the relatively selective annealing to a particular target complementary nucleic acid sequence.

15 The term "sample" refers to any biochemical or biological specimen that is typically being analyzed for some property, for instance biological or biochemical activity of ALF or SALF, presence or absence of ALF or SALF protein, nucleic acid, including any alteration in the normal distribution or structure of these genes or encoded products. Samples may include, but are not limited to, cells and cell extracts or extracts thereof, including protein and membrane fractions, chromosomes, genomic DNA, RNA, cDNA and so forth, regardless of the particular state of isolation.

20 The term "stringent hybridization conditions" refers to an setting in which two polynucleotide sequences are hybridized under conditions that favor specific over nonspecific interactions. For instance, stringent hybridization conditions might include combinations of salt, organic reagents, blocking agents, detergents, temperature and so forth that allow for hybridization between highly similar sequences, such as those related by 95% or greater identity over a length of sequence sufficient for stable hybridization. The term "hybridization" also refers to complementary interactions between a polynucleotide sequence and an oligonucleotide, and may be performed under conditions of varying stringency that

would be dictated by length and homology of the oligonucleotide(s) used and would be determined by one skilled in the art without undue experimentation.

The term "permissive hybridization conditions" refers to an setting in which two polynucleotide sequences are hybridized under conditions in that polynucleotide sequences with less similarity, for instance as low as 50-60%, are caused to interact. For instance, permissive hybridization conditions might include combinations of salt, organic reagents, blocking agents, detergents, temperature, and so forth that allow for stable hybridization, but may allow a greater degree of nonspecific, or background, hybridization than would be observed under stringent conditions. Hybridization between less related sequences is also facilitated by the use of nucleotides such as inosine within hybridizing nucleic acid segments.

The term "transformation" refers to any means by which DNA or RNA is caused to enter a recipient, or host, chromosome, cell, or organism.

The term "detection" refers to the ability to selectively detect a particular biological or biochemical compound. Detection of polynucleotide sequences in a sample, or the levels of such sequences in a sample, is often achieved by hybridization with a complementary polynucleotide or oligonucleotide sequence, or by amplification. Detection of polypeptides is often achieved on the basis of immunological recognition with antigen specific antibodies. Detection of biological or biochemical activity is often achieved by assaying a sample for an activity that is possessed by the compound being assayed.

The term "amplification" refers to the production of multiple copies of a given polynucleotide sequence. Amplification can be achieved as the growth of a vector contained within a host cell. Alternatively, the amplification of specific DNA, or reverse transcribed RNA, sequences that lie between two oligonucleotide primers can be achieved through the polymerase chain reaction, as known in the art.

The term "purified" or "isolated" with reference to DNA or other nucleic acid segment, or amino acid segment, refers to a sequence that includes novel transcription factor genes ALF and SALL, yet is isolated substantially away from, or purified substantially away from total genomic DNA, total cDNA, total or poly(A) RNA, total cellular, subcellular, or tissue extract, or other populations of molecules.

The term "ligand" refers to any molecule, whether nucleic acid, amino acid, or other chemical compositions that interacts with ALF or SALF.

INTRODUCTION

5 The synthesis of accurately-initiated messenger RNA in eukaryotic organisms requires the assembly of RNA polymerase II and the general transcription factors (TFIIA, B, D, E, F and H) at core promoters (1, 2). Human TFIIA is composed of 35 (a), 19 (b) and 12 (g) kD subunits encoded by the hTFIIA α/β (3, 4) and hTFIIA γ (5-7) (Patent No. 5,652,117) cDNAs and evolutionarily conserved cDNAs have been characterized in yeast (γ TOA1 and γ TOA2) (8) and Drosophila (dTIIA-L and dTIIA-S) (9-11). The human TFIIA subunits are expressed in all or most human tissues and are thought to function primarily through interactions with the TATA-binding protein (TBP), a universally required eukaryotic protein that functions a promoter sequences to facilitate and regulate gene expression.

10 TFIIA has multiple roles in transcription initiation by RNA polymerase II. First, TFIIA stabilizes the TBP-TATA element interaction (14-17). TFIIA also stimulates transcription by displacing TBP-associated repressors such as Dr1/NC2, Dr2/Topo1, HMG1 and DSP1 (18-22) and counteracts the ability of ADI/MOT1, hTAFII172, γ TAFII145 and hTAFII250 to inhibit TBP binding to DNA (23-27). Second, TFIIA serves as a cofactor for the AP-1, Gal4-AH, Zta, VP16, CTF, NTF and Sp1 activators (4-7, 10, 28-31) and for the PC4 and HMG-2 coactivators (32, 33). Third, TFIIA is required for the isomerization and extension of TFIID-promoter contacts (34, 35) and for stabilizing interactions between TFIID and initiator sequences (36).

15 One of the nucleic acid sequences disclosed herein is called SALF (Stoned B/TFIIA α/β -like factor). SALF is composed of both Stoned B/clathrin AP-like and TFIIA α/β -like sequences. An initial incomplete SALF sequence was recognized in NCBI database queries using TFIIA α/β sequence query by the inventor as an expressed sequence tag (EST) DNA sequence (ID 259637) described by the I.M.A.G.E. consortium (37). Characterization and isolation of additional sequences by the inventor has revealed a composite 3,853 bp cDNA sequence (FIG 3) that contains a 114 nucleotide 5'-UTR and a

161 nucleotide 3'-UTR with a poly(A) addition signal and a 29 nucleotide poly(A) tract. The deduced ORF commences with a putative start codon (AAGATGT) that is preceded by an in-frame stop codon 27 nucleotides upstream and predicts a 1,182-residue polypeptide (FIG 4) with a molecular weight of 132 kD and pI of 5.1.

5 Another new DNA sequence described herein is called ALF, for TFIIA α / β -like factor. ALF is isolated by PCR from a human testis cDNA library and is described as a 1,617 bp cDNA (FIG 1) that predicts a 478 amino acid polypeptide (FIG 2) with a molecular weight of 52 kD and pI of 4.4. ALF contains a 15 nt UTR, a putative initiation codon (GTCATGG) that conforms to the Kozak consensus (A/G NNATGG) (38) and 17 bp downstream of the ATG that predict six amino acids (ACLNPV) not present in SALF. ALF is expressed predominantly, if not exclusively, in testis (FIG 10A). Two additional new sequences that contain partial ALF-like sequences connected at nucleotide 1,344 to an alternative 261 bp 3'-end (FIG 5) are identified (I.M.A.G.E. Consortium CloneIDs 785133 and 1657721). These sequences predict a C-terminus in which the last 35 amino acids of ALF are replaced with the residues "AFPRRTSFNT" (FIG 6) followed by a stop codon and a 3'-UTR that contains a poly(A) addition signal and a poly(A) tail. PCR analysis has verified that both ALF and SALF cDNAs which contain this alternative 3'-end are present and can be PCR amplified, from human cDNA libraries. Importantly, none of the sequences disclosed herein have been previously reported, except as partial I.M.A.G.E. Consortium ESTs and as products of the inventor's work as currently disclosed and their intact sequences, structures, functions, uses and other characteristics.

10
15
20
25 A schematic comparison of ALF and other TFIIA large subunit sequences from human (3, 4), Drosophila (9), Arabidopsis (Genbank Accession number X98861) and yeast (8) is shown in FIG 8A. These sequences share a common organization consisting of conserved regions I and IV, acidic region III and an internal nonconserved region II. ALF is similar to its human TFIIA α / β counterpart in region I (aa 1-54; 67%) and region IV (aa 417-478; 73%) and in the negatively-charged region III (aa ~340-414; 42% D/E residues). In contrast, region II shares no homology with the corresponding region in hTFIIA α / β (or other TFIIA large subunits) and is approximately 100 residues longer. The unique

N-terminus of SALF is 711 amino acids in length (FIG 8B) and contains a region between amino acids 44 to 150 that is rich in proline (20%), serine (21%) and threonine (9%) residues. Residues between 275 and 692 display 47% similarity to the Drosophila Stoned B protein (39) and 46% similarity to an uncharacterized Stoned β-like ORF in C. elegans, C27H6.1 (53). The Drosophila stoned locus was first identified as a class of mutations that caused neurological defects such as temperature-sensitive paralysis (41) and it has been suggested that Stoned B functions in membrane trafficking in neurons (39). In addition, residues from 410 to 692 within the Stoned B-homology region are 33% and 37% similar to the mouse μ1 (AP47) and rat μ2(AP50) clathrin APs, respectively (FIG 7B) (42, 43). The μ1 (AP47) and μ2 (AP50) clathrin APs are subunits of the AP-1 and AP-2 complexes associated with the trans-Golgi and plasma membranes, respectively and function in the internalization, sorting and recycling of receptors and other membrane proteins (44, 45). Thus, the N-terminus of SALF is related to a family of proteins involved in membrane trafficking.

ALF AND SALF GENES

One aspect of the present invention is the polynucleotide sequences essentially as set forth as SEQ ID NOS. 1, 3 and 5, and in FIGS. 1 and 3, the complement of these sequences, the RNA versions of both DNA strands and the information otherwise contained within the linear sequence of these polynucleotide sequences and fragments thereof. In the case of nucleic acid segments, sequences for use with the present invention are those that have greater than about 50 to 60% homology with any portion of the polynucleotide sequences described herein, sequences that have between about 61% and about 70%; sequences that have between about 71 and about 80%; or between about 81% and about 90%; or between 91% and about 99%; or which contain nucleotides that are identical, functionally equivalent, or functionally irrelevant, with respect to the nucleotides present in SEQ ID NOS 1, 3 and 5 are considered to be essentially similar. Also encompassed within the present invention are nucleic acids that encode polypeptides that are at least 40% identical or similar to the amino acid sequences shown in SEQ ID NOS. 2, 4 and 6, and in FIGS. 2, 4 and 6.

The invention also encompasses other nucleic acids or nucleic acid like molecules that are sufficient in any regard to mimic, substitute for, or interfere with the ALF or SALF polynucleotide sequences or fragments thereof. It will also be understood that the nucleic acid and amino acid sequences may include additional residues, such as additional 5'- or 3'- sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth, including the maintenance of functionality, or for the purpose of engineering altered functionality with respect to ALF and SALF.

Included within the invention are DNA or RNA segments including oligonucleotides, polynucleotides and fragments thereof, including DNA or RNA or nucleic acid-like sequences of genomic or synthetic origin, single or double stranded. The invention includes nucleic acid molecules, or nucleic acid-like molecules that are able to hybridize to the sequences in SEQ ID NOS. 1, 3 and 5, under stringent or under permissive hybridization conditions, or to the complement of said sequences.

The invention also includes oligonucleotide, or oligonucleotide-like sequences such as phosphothioates, or peptide nucleic acid sequences, that possess sufficient similarity with the sequences disclosed herein such that they are able to stably hybridize to the disclosed sequences, or their complements. Such sequences may be intended as antisense regulators of gene expression, or for the selective amplification or extension of adjoining sequences, for instance by PCR using a given annealing temperature, as would be determined by someone skilled in the art.

In addition to the sequences disclosed here, related sequences in other organisms, or homologs, will be readily identified by hybridization using the present sequences. This will facilitate the development of animal models for understanding disorders related to the overexpression, underexpression, or expression of forms with altered functionality, with respect to ALF, SALF, and similar sequences. Thus, related genes, and related mRNA transcripts, can be identified by one skilled in the art. The invention thus encompasses methods for the use of the disclosed sequences in various screening procedures aimed at isolating such species. For instance, colony or plaque hybridization techniques can be

performed using radiolabeled sequences as a probe to detect complementary sequences in genomic and cDNA libraries.

Hybridization conditions with respect to temperature, formamide and salt concentrations, in such studies are chosen by one skilled in the art and vary with respect to the organism from which sequences are being isolated, and the sequence similarity, or lack thereof, that is expected based on evolutionary distances. Similar techniques will apply to the isolation of the genomic sequences that encode ALF and SALF, as well as those that encode related genes from organisms other than humans. Reference is particularly made to flanking regions, including upstream sequences that encode the core promoter and regulatory regions, as well as downstream regions, introns and intron/exon boundaries. Similar techniques will also apply to the identification of mutant alleles, polymorphisms, deletions, insertions, and so forth, in genomic and cDNA sequences. These may occur within the ALF and SALF sequences themselves, or may occur in regulatory regions, introns, intron/exon boundaries, or may reflect various insertions, partial or whole gene deletions, or substitutions, any of which may affect biological activity of a gene and gene product. In the case of humans, the identification of interindividual genomic differences in the ALF and SALF genes will be useful in diagnostic determinations.

Whole or partial sequences referred to above may also be identified and isolated using techniques that involve annealing of short oligonucleotides to complementary sequences, such as those as might be present in the genomic DNA of a particular organism, or in genomic or cDNA, including expression cDNA, libraries. Thus, PCR is used to obtain DNA sequences homologous to, and which lie between, two primers, usually between 15 to 30 nucleotides which have annealing temperatures typically between 60-80 degrees Celsius may be substantially purified. The choice of primer sequences, annealing conditions (temperature), number of amplification cycles, choice of polymerase, and so forth would be within the knowledge of one skilled in the art. Amplification assays will be generally applicable to the identification of sequences homologous to ALF and SALF, to the identification of flanking genomic or cDNA sequences, to the identification of mutated alleles, and so forth, in a manner that lends itself to rapid diagnostics.

Variations in PCR technology are also relevant, such as reverse transcriptase mediated PCR, in which mRNA or total RNA is reverse transcribed typically with an oligo dT or gene specific primer prior to PCR amplification. Techniques are also available which utilize only one gene-specific primer, together with a linker or adapter primer as may be present in a vector or attached to the ends of the DNAs to be amplified. For instance, the 5 Genome Walker (Clontech) technique allows the isolation of genomic DNA that flanks a given oligonucleotide primer. Thus, the invention provides a method to isolate the testis-specific ALF gene promoter that can be used to drive cell- or tissue-specific expression of unrelated genes. Techniques are also available in which altered oligonucleotides are employed to generate specific mutations, deletions, insertions, or fusions in the disclosed 10 sequences, or fragments thereof, for instance site directed mutagenesis.

Likewise, the current invention provides methods to map particular regions of a chromosome, and to identify and isolate homologous regions in artificial chromosomes, such as YACs, PACs, single chromosome libraries, and so forth. The current invention also 15 provides techniques such as *in situ* hybridization in order to map disease-associated genes or other chromosomal markers, as well as mutations such as polymorphisms, inversion, translocations, deletions, insertions, and the like, which may be associated with particular health conditions.

Naturally, it will be understood that this invention is not limited to the particular 20 nucleic acid sequences presented herein. Recombinant vectors, including for example plasmids, phage, viruses, and other sequences, and isolated DNA or RNA segments may therefore variously include the ALF and Salf sequences or their complements, and coding regions, as well as those that may bear selected alterations or modifications that nevertheless 25 include ALF or Salf segments or may encode biologically or experimentally relevant amino acid sequences. Such sequences may be created by the application of recombinant DNA technology, where changes are engineered based on the consideration of the nucleotides or amino acids being exchanged, deleted, inserted, fused, or otherwise modified.

Likewise, the current invention encompasses sequences that may be naturally present as extensions of, or insertions within, the sequences disclosed herein, including alternative

or longer 5' or 3' mRNA sequences, or intronic and promoter genomic sequences, or allelic or polymorphic versions of a gene. Similarly, natural, artificial, or synthetic fusions of ALF and SALF, and fragments thereof, with unrelated nucleic acids or amino acids such as those that encode epitope tags, binding proteins, marker proteins, and other amino acid sequences are included.

5

ALF AND SALF PROTEINS AND POLYPEPTIDES

One aspect of the invention is the protein, polypeptide, oligopeptide, or amino acid sequences or fragments thereof, of ALF and SALF, essentially as set forth in SEQ ID NOS. 10 2, 4 and 6. Sequences that have greater than about 40-50% homology with any portion of the amino acid sequences described herein, sequences that have between about 51% and about 60%; sequences that have between about 61% and about 70% sequences that have between about 70 and about 80%; or between about 81% and about 90%; or between 91% and about 99%; or those that contain amino acids that are identical, functionally equivalent, or functionally irrelevant, for instance those specified by conservative, evolutionarily conserved, and degenerate substitutions, with respect to the amino acid sequences presented 15 in SEQ ID NOS 2, 4 and 6 are included. The invention thus applies to ALF and SALF sequences, or fragments thereof, and nucleic acids which encode such polypeptides, such as those of other species. Reference is particularly, but not exclusively, made to the conserved N- (amino acids 1-54) and C-terminal (amino acids 417-478) regions of ALF and SALF, in contrast to similarity throughout the entire length. The invention thus encompasses amino acid sequences, or amino acid-like molecules, that are sufficient in any regard to mimic, substitute for, or interfere with the ALF or SALF amino acid sequences, or fragments thereof.

20 The invention encompasses ALF and SALF amino acid sequences that have been altered in any form, either through the use of recombinant engineering, or through post-translational or chemical modifications, including those that may be produced by natural, biological, artificial, or chemical methods. Naturally, it will be understood that this invention is not limited to the particular amino acid sequences presented herein. Altered amino acid sequences include those which have been created by the application of 25

recombinant technology such that specific residues, regions, or domains have been altered, and which may be functionally identical, or which may possess unique biological or experimental properties with regards to function or interactions with natural and artificial ligands.

5 For instance such modifications may confer longer or shorter half-life, reduced or increased sensitivity to ligands that modify function, ability to detect or purify polypeptides, solubility, and so forth. Alternatively, such sequences may be shorter oligopeptides that possess an antigenic determinant, or property that interferes, or competes, with the function of a larger polypeptide, for instance sequences similar to the functionally important and conserved N- and C-terminal domains, and those that affect interactions between TFIIA 10 subunits and other proteins. Such sequences may be created by the application of recombinant DNA technology, where changes are engineered based on the consideration of the nucleotides or amino acids being exchanged, deleted, inserted, fused, or otherwise modified. Likewise, the current invention encompasses sequences that may be naturally present as extensions of, or insertions within, the sequences disclosed herein, including alternative or longer N- and C-terminal sequences, or alternatively spliced protein isoforms.

15 Production and purification of polypeptides may be achieved in any of a variety of expression systems known to those skilled in the art, including recombinant DNA techniques, genetic recombination, and chemical synthesis. For instance, expression in prokaryotic cells may be achieved by placing protein coding nucleic acid sequences downstream of a promoter, such as T7, T3, lacI, lacZ, trp, or other cellular, viral, or artificially modified promoters including those that may be inducible by IPTG, tetracycline, maltose, and so forth. Such promoters are often provided for in commercially available recombinant DNA vectors such as pRSET ABC, pBluescript, pKK223-3, and others, or are 20 easily constructed to achieve such a purpose, and often include the presence of multiple cloning sites (MCS) to facilitate restriction digestion mediated cloning of full or partial coding fragments. Such vectors typically contain efficient ribosome binding sites, and in some cases transcription termination signals.

Cells for the expression of such proteins are normally *E. coli*, but could include *B. subtilis*, *Streptomyces* or others prokaryotes. The incorporation of such recombinant DNA can be efficiently achieved by calcium chloride transformation, electroporation, and so forth. In the case of *E. coli*, cells typically grow in LB media with an appropriate antibiotic selection, for instance ampicillin, chloramphenicol, tetracycline and so forth in order to retain the recombinant vector, although vectors which integrate into the cellular chromosome are also possible. The promoter of many recombinant expression vectors require induction by an inducer compound, for instance IPTG, to facilitate high levels of transcription initiation and subsequent protein production. In some instances, nucleic acid sequences within the coding region may be altered to suit the codon usage patterns of a given model expression system or organism.

Peptides, oligopeptides and polypeptides may also be produced by chemical synthesis, for instance solid phase techniques, either manually or under automated control such as Applied Biosystems 431 peptide synthesizer (Perkin Elmer). After synthesis, such molecules are often further purified by preparative high performance liquid chromatography. Thus, the invention provides methods for the production of epitopes for antibody production, or the production of small molecules that enhance or interfere with a specific function or interaction of the ALF or SALF polypeptides.

Methods to produce and purify said polypeptides in eukaryotic systems are widely available and understood by those proficient in the art. Cells for such production are known to include yeast and other fungi, *Drosophila* and Sf9 cells, cells of other higher eukaryotic organisms such as HeLa, COS, CHO and others, as well as plant cells. Similarly, expression could be achieved in prokaryotic or eukaryotic extracts that are able to translate RNAs into proteins, such as rabbit reticulocyte lysates.

Vectors for expression in such systems are widely available both commercially or can be prepared. Such vectors typically are driven by promoters derived from cellular or viral genes, such as CMV, HSV, EBV, SV40, Adenovirus, LTRs, vaccinia, baculovirus polyhedrin promoter, CaMV, TMV, Rubisco, and so forth, and could obviously include the promoters for the ALF or SALF genes themselves. Such vectors are often designed be

regulated by the presence of enhancer or other regulatory element sequences. Introduction of such vectors into cells is often achieved by calcium phosphate or DEAE dextran technologies, liposome mediated techniques, electroporation, or viral mediated infection. Maintenance of such vectors may be achieved by selectable marker such as that conferred by HSV thymidine kinase, HGPRTase, herbicide resistance, visible markers, and so forth.

Selection of an appropriate methodology would be within the scope of those skilled in such methodologies, using the current invention, and would include any combination of host cell and vector which can achieve desired production goals. For instance, the ability of a host cell to drive efficient full-length polypeptide production, glycosylation, membrane anchoring, secretion, absence of contaminating mammalian proteins or infectious agents, proteolytic processing, lipid modification, phosphorylation and so forth may dictate the use of baculovirus/insect cell systems, mammalian cells systems, plant cell systems and so on. In the case of in vitro translation extracts, one embodiment is the coupled transcription and translation of a nonreplicable recombinant vector, where translation is often visualized by the incorporation of a radiolabeled amino acid. The system selected may further depend on the desirability of obtaining purified polypeptides for further characterization, on whether the intent is to evaluate the effect of the overexpressed proteins on cellular gene expression, in vivo or in vitro, to identify compounds that enhance or interfere with the function of the overexpressed polypeptides, or other purposes.

For stable, long term expression, integration within the host cell chromosome, or as an autonomously replicating element, may be used. ALF or SALF genes, including defective (knock-out) genes themselves, can also be introduced to produce transgenic animals, for instance rodents, primates, insects, and other organisms. These methods provide an opportunity to develop and study animal models for specific gene defects, or for augmented expression of certain genes. Such techniques include pronuclear microinjection, retrovirus mediated transfer and other viral vectors, gene targeting into embryonic stem cells, homologous or nonhomologous recombination and electroporation. The presence and expression of transgenes may occur in all or some cells of a given organism. Likewise, expression of the transgene may be constitutive or inducible and may occur in all or only

some cell types. Characterization of the introduced transgene, or mutant (knock-out) construct is typically achieved by genomic Southern blotting and/or PCR analysis of genomic DNA, and its expression by RNA-RNA, DNA-RNA, DNA-DNA hybridization such as Northern analysis, or by RT-PCR analysis.

5 The invention also relates to cells which contain such recombinant constructs, where the host cell refers to mammalian, plant, yeast, insect, or other eukaryotic cells, or to prokaryotic, or archae, and vectors that are designed for a given host. Promoter-vector combinations could be chosen by a person skilled in these arts. In some cases, the desired outcome may not be protein, but RNA, and recombinant vectors would include those with 10 inserts present in either forward or reverse orientations.

Many of the vectors and hosts have specific features that facilitate expression or subsequent purification. For instance DNA sequences to be expressed as proteins often appear as fusion with unrelated sequences that encode polyhistidine tags, or HA, FLAG, myc and other epitope tags for immunochemical purification and detection, or phosphorylation sites, or protease recognition sites, or additional protein domains such as glutathione S-transferase (GST), maltose binding protein (MBP), and so forth which facilitate purification. Vectors may also be designed which contain elements for polyadenylation, splicing and termination, such that incorporation of naturally occurring genomic DNA sequences that contain introns and exons can be produced and processed, or such that unrelated introns and other regulatory signals require RNA processing prior to production of mature, translatable RNAs. Proteins produced in the systems described above could be subject to a variety of post-translational modifications, such as glycosylation, phosphorylation, nonspecific or specific proteolysis or processing.

Purification of ALF, SALF, or carboxy terminal variants produces as described above 25 can be achieved by any of several widely available methods. Cells may be subject to freeze-thaw cycles or sonication to achieve disruption, or may be fractionated into subcellular components such as nuclear and cytoplasmic fractions prior to further purification. Purification may be achieved by one or more techniques such as precipitation with salts or organic solvents, ion exchange, hydrophobic interaction, HPLC and FPLC chromatographic

techniques. Affinity chromatographic techniques could include the use of polyclonal or monoclonal antibodies raised against the expressed polypeptide, or antibodies raised against or available for an epitope tag such as HA or FLAG. Similarly, purification can be aided by affinity chromatography using fusions to the desired proteins such as GSH-affinity resin, maltose affinity resin, carbohydrate (lectin) affinity resin or, in a one embodiment, Ni-affinity resin, and so forth. In some instances purification is achieved in the presence of denaturing agents such as urea or guanidine, and subsequent dialysis techniques may be required to restore functionality, if desired.

10 ANTIBODIES TO ALF AND SALF PROTEINS

The current invention encompasses antibodies of any class, such as IgA, IgD, IgE, IgG, IgM, and subclasses, including polyclonal, monoclonal, chimeric, single chain, humanized and antibody fragments, including synthetic antibodies as in recombinant antibody expression library, single chain antibodies, anti-idiotype antibodies and other immunological, or binding, factors that recognize one or more epitopes of the ALF and SALF proteins. Such reagents as derived from ALF and SALF provide methods for detection and purification of ALF and SALF polypeptides, including endogenous, recombinant, or synthetic factors, and as a means to affect changes in gene expression or other functions by immunochemically targeting ALF or SALF. Proteins, polypeptides, oligopeptides, or peptides will be suitable for the production of monoclonal and/or polyclonal antibodies against the ALF, SALF, and alternative C-terminal regions, and for the use as standards or controls in assays such as ELISA, RIA, FACS, Western analysis, and so forth.

Antigens used to generate antibody reagents have a length of at least five amino acids, and in some cases 10 or more, up to the length of the full-length protein. Techniques that are used to obtain such reagents are described in, e.g., Harlow, et al., *Antibodies: A laboratory Manual*, Cold Spring Harbor Laboratories, New York (1988). For polyclonal antibodies, animals such as rabbits, mice, rats, goats, and so forth are injected with up to several hundred micrograms of antigen together with an adjuvant such as Freund's, either complete or incomplete, followed by a series of booster injections. Blood (serum) collected at intervals

following injections are tested for antibody titer and specificity. Use of such antibodies is often facilitated by further purification by salt fractionation, antigen affinity chromatography, or other purification methods, to obtain more pure, and thus more specific, antibodies.

Monoclonal antibody production can be achieved by several methods, including the hybridoma technique, the human B-cell hybridoma technique and the EBV-mediated hybridoma technique. Thus, in one embodiment, antibody producing cells from mice spleen are fused with myeloma cells. Hybrids are then subcloned and screened for antibodies with the antigen, in this case ALF, SALF, the alternative C-terminal domain, or related antigenic fragments. Antibodies against related polypeptides which are intended for the same purpose constitute an included methodology for detection.

Humanized antibodies are those in which the antigen recognition region from an antibody with a given specificity that possess domains from human antibodies so as not to be recognized or rejected by humans. Chimeric antibodies are those in which genes for the antigen recognition region and the constant regions are spliced from different organisms, for instance mouse and human.

In another embodiment, ALF or SALF antigens may be used to generate an immunological reaction, as described above, which generates an immunological response that, in turn, causes a biological or developmental effect, such as modulation of gene expression, or which affects a cellular process such as testis function or spermatogenesis.

DETECTION OR DIAGNOSIS OF ALF OR SALF GENES, GENE PRODUCTS AND ABNORMALITIES THEREOF.

One embodiment of the invention is the use of the invention for the detection of DNA and RNA sequences of ALF, SALF and the alternative carboxy terminus. Such efforts might be directed towards evaluating the levels of these polynucleotides, to evaluate whether such sequences are present or absent in given individuals, or to evaluate whether corresponding sequences in given individuals are in some way absent, abnormal, or otherwise altered. Thus, the invention encompasses methods and reagents for the production and use of oligonucleotide probes, or DNA or RNA probes of various lengths, that have sufficient

similarity to ALF and SALF nucleic acids to allow for selective detection. Methods for labeling could employ radioactive nucleotides, e.g., using T4 polynucleotide kinase, DNA polymerases, in vitro synthesis of RNA probes, PCR amplification of labeled DNAs, as well as nonradioactive techniques such as incorporation and detection of fluorescent, chromogenic, chemiluminescent compounds, as well as avidin/biotin based systems.

Other detection methods could include those based on direct hybridization, such as include fluorescent in situ hybridization (FISH), in situ hybridization, DNA "chip", or "microarray" hybridization technology, Southern and Northern hybridization analysis, RNA dot blot hybridization, dipstick, pin, dot blot, in situ PCR, and other techniques. Others methods may be based on annealing between short, typically 15-30 nucleotide, complementary DNA or RNAs followed by enzymatic extension, such as PCR analysis of genomic DNA or cDNA, reverse-transcriptase mediated PCR using RNA. Such oligonucleotides are derived from the sequences in SEQ ID NOS 1, 3, or 5, or their complements, or from flanking 5'- or 3' cDNA or genomic regions, or from introns or alternatively spliced exons, alleles, promoter or enhancer regions, and so forth. Visualization of the results from such methods is accomplished by a number of methods, including light or fluorescent microscopy, autoradiographic detection, or detection based on ethidium bromide stained agarose gels, DNA sequencing, and so forth. These and other techniques would be those available to and recognized by those skilled in the art.

To provide a basis to establish whether gene structure or expression correlates with a given pathology, results between normal and experimental subjects are compared with respect to the sizes of hybridizing bands, nucleic acid sequence differences, quantitative differences in gene copy number and expression. Thus standard values from normal individuals are compared to those from individuals which display a particular set of symptoms to determine if symptomatic individuals fall outside normal deviations. Such detection may be facilitated by ELISA, or microplate, type assays in which a chemical composition may be coupled to a support to facilitate reading of multiple samples rapidly, for instance in an automated format, as judged by some spectrophotometric or colorimetric response. Such techniques could also be used to assess the efficacy of other treatments

related to the function or production of ALF or SALL genes and gene products. The ability to detect corresponding DNA or RNA sequences could be provided for in an appropriately licensed pharmaceutical kit that would contain sequence-specific reagents capable of selective detection. Such detection might be made with whole genomic DNA, for example from blood or other tissues, or from RNA or DNA obtained from cultured cells or sampled tissues, or using chromosomes of cells, as examples.

Comparison among samples derived from given individuals using a given detection methodology, for example differential hybridization, conformational polymorphisms, sequencing, and so forth would be compared to those from normal controls. Such procedures may be directed towards the detection of ALF, SALL, and alternative carboxy terminal sequences themselves, or to corresponding genomic sequences, including the promoter and intronic sequences, or to the lack of these sequences due to deletion. Detection procedures would enable differences in test samples, for example those which may be testis-derived, including those which may be dysfunctional or cancerous, to be compared with normal samples.

In one embodiment of the invention, a polynucleotide sequence derived from those disclosed herein is used as a target in a microarray as a means to identify the presence or absence of expression, the presence or absence of gene mutants, and so forth. For instance, an oligonucleotide, or oligonucleotides, are synthesized (typically between 6 and 70 or 80 nucleotides long) that are computer optimized for minimal secondary structure and minimal likelihood of nonspecific interactions. These oligonucleotides, or mixed sets of oligonucleotides, are then coupled to, or synthesized directly on a support, usually in a grid arrangement, such as nylon, glass, or other membrane, wafer, chip, slide, and so forth. Labeled probes from a biological sample may be either DNA, RNA, or reverse transcribed DNA, are used to hybridize to the microarray. After washing, the retention of the probe to a given oligonucleotide is typically determined by fluorescence analysis in a scanner. These techniques are understood by one of skill in the art and performed in accordance with the appropriate instrumentation.

Alternatively, the invention provides a method for isolating identical or related genes from humans or other organisms that may have similar functionality, for instance by PCR or hybridization analysis of genomic and/or cDNA libraries. The invention also provides a means to identify the corresponding genomic DNA and the corresponding tissue-specific promoter DNA and regulatory sequences.

The present invention provides a means to use the ALF or SALF specific antibodies described above in the form of an appropriately licensed kit or pharmaceutical pack which contains reagents and supplies for detecting the expression of relevant polypeptides in cells and tissues. Such approaches include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescent activated cell sorting (FACS). Another approach is a Western blot, in which crude protein extracts are separated on SDS-PAGE gels, transferred to nitrocellulose and hybridized with a specific antibody. Hybridization typically involves prior blocking with nonspecific proteins and dilution of antibody to a level that facilitates specific as opposed to nonspecific interactions. Visualization typically occurs by the action of a secondary antibody which is typically coupled with a domain such as horse radish peroxidase or radiolabeled protein A which possesses an activity or property which can be visualized. Samples tested may be identical in size and abundance to those observed in normal samples, or they may be increased or decreased in abundance, or they may possess altered mobilities.

Likewise, the level of ALF and SALF antigen in a given sample may be evaluated through the use of an ELISA assay, in which samples are attached to a support, typically a set of plastic wells and are incubated with specific antibody. After washing, secondary antibodies are added that allow visualization, and indicate levels, of the primary antigen which are present. Controls, or standards, would consist of recombinant antigen present in a series of dilutions, as a standard curve. Plates are then read with a microplate spectrophotometer. Antibodies are also used for immunolocalization of antigenic proteins within tissues and cells, to determine appropriate expression and localization of antigen among various subcellular compartments. Antibodies may be employed in specific immunoprecipitation or immunopurification protocols that are designed to identify and

isolate corresponding cellular antigens, or complexes that may contain such antigens. Differences among cells or tissues that may be causative with respect to abnormal biological function are identified in this way.

The invention also provides a means to identify endogenous levels of ALF and SALF activity. Tissue samples or biopsies are obtained and extracts of nuclear proteins or whole cell extracts are produced by homogenization in a physiological buffer together the presence of protease inhibitors, if necessary. Extracts are then tested directly for activity, for instance as described in the TBP-dependent bandshift assay. Alternatively, further precipitation or chromatographic purification may sometimes be necessary to isolate and differentiate endogenous activities away from crude samples.

IDENTIFICATION OF LIGANDS AND INTERACTION PARTNERS OF ALF AND SALF

The invention provides a method of identifying compounds, whether they be specific chemicals or drugs, polypeptide fragments of ALF, SALF or other proteins, in vitro or in vivo selected oligopeptides isolated by selections such as phage display, or RNA or DNA sequences that with affinity for such proteins and complexes. Such compounds are typically identified based on affinity-based interaction assays, or on their ability to modulate function in simple representative functional assays, for instance, modulation of TBP-TATA interactions as visualized by bandshift assays. Such compounds are typically next tested in an in vitro functional assay such as that described to test their ability to interfere with (antagonists), or facilitate (agonists), the function of RNA polymerase II, either in terms of basal or activated transcription. Such compounds may be tested in tissue-derived cells, or in cell lines for modulation of activity, for instance gene expression. Such compounds are then evaluated for their efficacy as therapeutic agents, particularly with respect to the modulation of gene expression in a tissue or organisms itself.

Thus, such compounds may be added individually, or in pools, to assess whether in the presence of the polypeptides, RNA polymerase II and other required general factors and upstream activators, and they can affect initiation and chain elongation of RNA from

particular promoters, including those which may be tissue- or cell-type specific. For instance, compounds may be tested for their ability to modulate the expression of genes that require ALF or SALF function, as judged by visualization of a reporter such as beta-galactosidase, luciferase, G-free cassette, and so forth. Similarly, the invention provides
5 a method to identify compounds that could confer could confer an activated phenotype, or a dominant negative phenotype, in terms of the polypeptides themselves. In particular, mutations are constructed according to site-directed mutagenesis techniques or by random mutagenesis techniques that are known to practitioners of the art, and selected and evaluated for functionality. Further, computer modeling of the ALF or SALF polypeptides, either
10 based on X-ray crystallographic data, or on comparisons with known TFIIA structures provides a method to fit, or design, compounds that may interfere with various functions or interactions of ALF or SALF, for instance subunit- subunit interactions, subunit-TBP interactions, and so forth.

The method also provides for solid phase high throughput screening methods for identifying ligands which interact with ALF or SALF. For instance ALF or SALF, alone or with a TFIIA γ subunit, or even with TBP, promoter DNA, or other factors, are linked to a solid support. Compounds to be tested for interaction are co-incubated, washed to remove nonspecific or less specific interactions, and those that remain are of relatively higher affinity. Detection is achieved by any of a number of techniques, including antibody linked markers, radioisotopic counting and so forth, preferably via automated sample handling.
15

Identification of ligands may also be achieved using multiple rounds of PCR-mediated selection of high affinity nucleic acid ligands, in which interacting ligands are typically separated from non-interacting ligands by gel shift. Likewise, the promoter element sequences that have affinity for ALF or SALF containing complexes, for instance those which contain TFIIA γ and even TBP, can be selected for by multiple rounds of PCR amplification starting from either random or TATA-containing oligonucleotides. The derived sequences may be compared to the genomic DNA sequences, such as promoters.
20

Factors such a proteins, or small peptides that interact with ALF or SALF may be identified by phage display, in which a library of oligopeptides with diverse sequences are

detected by virtue of their ability to be recognized, or selectively retained by, ALF or SALF polypeptides that are labeled, or fixed to solid support. Interacting phage are detected, reamplified and reselected until single isolates, or plaques are obtained. The sequence of the interacting motif is identified by sequencing all or part of the coat protein which has been engineered to contain such sequences.

The invention also provides techniques to identify natural interacting proteins of ALF and SALF. For instance, immunoprecipitation using antibodies specific to ALF, or SALF, or to epitope tags that have been engineered within recombinant ALF or SALF nucleic acids, can be used to remove, or pull-down, ALF and SALF containing complexes from cellular extracts, for instance those derived from testis tissue or testis cell lines. Such techniques can be performed either in solution, or with the antibody linked to a solid support, such as a resin or a well.

Similarly, ALF or SALF with GST-encoding nucleic acids in the form of a recombinant expression vector allow overproduction and purification of the fusion protein. Such a protein may be bound to affinity resin such as S-hexyl glutathione, and cellular or recombinant proteins, or fragments thereof, can be tested for their ability to interact with ALF or SALF. Such an analysis typically involves comparisons of the bound proteins compared to eluted proteins using a resin that is loaded with the fusion protein and a resin that is loaded with the GST domain alone.

The yeast two-hybrid and related systems also provide methods to identify interacting factors. In this method, genetic fusions of DNA binding domains and activation domains are made separately to the target and bait polypeptides and clones that express interacting epitopes are identified based on a transcription activation assay *in vivo*. This may be performed in variety of cell types, including yeast and mammalian cells.

The invention provides a means to identify genes which may be selectively regulated by the ALF or SALF polypeptides. For instance, targets of ALF or SALF function may be identified in cells which are engineered to overexpress, or underexpress the ALF or SALF genes, or altered forms of these proteins. RNA isolated from such cells may be purified and compared to that present in normal cells. For instance, differential display, subtractive

hybridization and microarray techniques are available to evaluate differences in gene expression, or RNAs, present in two or more populations. For use with microarray analysis, gene specific oligonucleotides or segments, typically 6 to 70 or 80 nucleotides are coupled to, or synthesized on, a solid support and mRNA populations (cDNA) are prepared from normal control cells or tissues and from cells or tissues which are either overexpressing ALF or SALF, or which contain knockouts in these genes. After hybridization and washing, the microarrays can be scanned for hybridization, for instance as registered by fluorescence. In this way genes whose expression is unaltered, decreased, or increased in response to the presence or absence of the transcription factors ALF or SALF can be identified.

Likewise, serial analysis of gene expression (SAGE) analysis provides a method in which short sequences derived from cDNAs from two populations of mRNA are quantitatively compared for their frequency of identification. The technique relies on the use of restriction enzymes that cut away from their binding site and the concatamerization of the resulting fragments into a vector for sequencing. Thus, single sequencing runs of each isolate can give data from multiple original cDNAs. Confirmation of the isolates is often achieved by Northern or quantitative or semi-quantitative PCR analysis. Thus, engineered ALF and SALF genes provide a method to identify additional genes that are "downstream" or regulated, by ALF or SALF, which may in turn be targets for detection, diagnosis and intervention with regard to correlating disease conditions.

TREATMENT OF ALF- AND SALF-RELATED DISORDERS

The invention provides methods for the isolation, detection, diagnosis, development of animal models, or therapeutic protocols applicable to any organism, such as cats, dogs, pigs, cows, horses, rabbits, birds, primates and humans. Thus, nucleic acid sequences, antibodies and other agonistic or antagonistic ligands may be used to inhibit or augment patterns of gene expression by modifying ALF and SALF function, or the function of the ALF or SALF genes themselves. Such compounds could be delivered in various media, including buffered saline or other carriers or solvents dependent on the chemical nature of the compound and the route of delivery. Delivery mechanisms could include intranasal,

subcutaneous, intramuscular, intraperitoneal, intradermal, intravenous, topical, enteral, rectal, intramedullary, intraarterial, sublingual, or other means. Doses would vary depending on the need to alleviate or correct particular symptoms and on the particular agent. Standard measures of effectiveness and toxicity in cell cultures and animals are given by ED₅₀, the dose that is therapeutic for 50% of the sample, and LD₅₀, the dose that is lethal to 50% of the sample. Administration of polypeptides, drugs and other therapeutic compounds would be apparent to those skilled in the art with respect to the present teachings, and in accordance with licensing and regulatory requirements. Normal dosages range from 0.1 ug to 100 mg, up to a total dose of 1g, depending on the particular formulation, delivery route, patient sensitivity, patient history, clearance rates, half-life, and other considerations as would be generally available to one skilled in the art. Compositions with high therapeutic indices will generally be used. Additional details are available in such references as Remington's Pharmaceutical Sciences. Initial estimates as to effective concentrations may be determined using cells grown in culture, or in animal models. The invention also provides for the use of proteins, agonists, antagonists, nucleic acid sequences and vectors administered in conjunction with other therapeutic agents, according to accepted usages by those skilled in the art.

Concentrations for delivery of nucleic acids, polypeptides, antibodies and transgenics will be specific to particular cells, conditions, etc. For instance, the invention provides methods for the use of oligonucleotides, phosphorothioate oligonucleotides, peptide nucleic acids and other nucleic acid-like, or nucleic acid binding molecules that could be administered in a manner and amount designed to treat the specific indications using antisense therapy. Such sequences may contain additional, or other modifications, such as methylation, acetylation, thiolation of normal bases, as well as the use of unconventional bases in order to enhance stability. Such complementary sequences are generally targeted along the coding or control regions of ALF or SALF, so as to control transcription or translation and may be supplied as a drug, or as an antisense transcript, or other functional molecule such as a ribozyme, derived from from a transgene.

Similarly, pharmaceutical intervention would also be applicable to specific antibodies and to other compounds that target ALF and SALF function. Therapeutic antibodies that recognize ALF or SALF may be used to directly target, and inactivate, ALF and SALF polypeptides through antibody-epitope interactions, possibly when coupled with compounds that facilitate cellular entry. Likewise, such antibodies may serve as a carrier or targeting molecule by which other therapeutic compounds might be brought to cells which harbor ALF or SALF.

ENGINEERED ORGANISMS AND ANIMAL MODELS

The present invention provides methods for the production of engineered cells and organisms such as rodents, but which may include humans or other organisms in need of therapy, that express ALF or SALF or altered forms in the form of a recombinantly introduced gene (transgene). For instance, cells can be engineered with polynucleotide sequences so that expression of active or dominant negative ALF or SALF polypeptides are produced, for instance to compensate for the loss, or overactivity, of such polypeptides in a patient. The current invention also provides methods for ex vivo gene therapy, in which recombinant vectors are introduced into stem cells, or other accessible cell population, and, after engineering and propagation, are transplanted back into the patient. Such engineered constructs might be designed to produce RNA that will be translated into ALF or SALF proteins, or altered versions thereof. Alternatively, such constructs might be designed to produce antisense RNA designed to inhibit transcription or translation, or to produce ribozymes that target ALF and SALF RNAs for degradation. Alternatively, the current invention also provides methods by which deletions, or knock-outs of the ALF or SALF genes can be produced, in order to establish animal models for pathological conditions that result from the absence of these genes.

These methods are known to those in the art, and may include stable integration of DNA sequences by recombination, adenoviral, retroviral and other means which are intended to introduce and propagate sequences in engineered cells, by techniques such as pronuclear microinjection, liposome mediated uptake, electroporation of embryos, homologous

(targeted) recombination, and so forth. One embodiment is receptor-mediated gene transfer, whereby the transgene is coupled with a ligand via polylysine, where the ligand is some molecule that interacts selectively with surface molecules, or receptors, on a selective cell population such as those that might be present in testis, or an antibody that has specificity for

5

a cell-specific surface marker.

Depending on the method chosen, the introduced gene might replicate autonomously as part of a vector, or may integrate a specific or random sites. Such a gene may be engineered so as to contain regulatory sequences that drive expression in a constitutive, inducible, tissue- or cell-cycle specific, or other manner, as desired. Another embodiment 10 of the invention is the use of homologous recombination targeting vector that contains a recombinant ALF or SALF gene that has been engineered to be nonfunctional. Such a construct can be used replace the endogenous gene by homologous recombination, for instance, in embryonic stem ES cells from mice, followed by selection, implantation and development of the modified cells into adult organisms which contain targeted defects in 15 ALF or SALF genes.

10

15

20

25

The presence of the transgene, or knockout construct, may be established by genomic blotting or genomic PCR, and its expression, or lack thereof, by Northern blotting or RT-PCR, or other hybridization technologies. Transgenes that express ALF or SALF proteins, or altered forms, can be further detected using antibodies specific for the expressed protein. Once transgenic founder animals are produced, they are bred to produce colonies of animals with particular genotypes, including inbreeding and outbreeding to develop homo- and heterozygous animals, with respect to the transgene, in different backgrounds. Cells derived from such animals may also be isolated and propagated for study. Further examination at the organismal, tissue, cellular, subcellular and biochemical levels will establish the biological effects of organisms that contain engineered ALF or SALF genes. Such organisms and cells will also provide assay systems with which to identify agonists and antagonists that may compensate for observed defects, and which may perform similar functions in other organisms, including humans.

The invention may be better understood with reference to the following examples. These examples, however, should not be taken to limit the scope of the invention in any way.

EXAMPLE 1

CLOTHING AND DETECTION OF ALF AND SALF

The 5'-end of SALF was amplified by PCR (40 cycles) using 4 µl of the human placental cDNA library (Clontech) with primer 2a2-6 (5'-AGTAACCCGAATGCTTAA- 3') (SEQ ID NO.: 8) and a commercially available library-specific adapter primer AP1 (Clontech). The resulting products were reamplified (35 cycles) with primer 2a2-8 (5'ATGCTAGCTGAACCACTG-3') (SEQ ID NO.: 9) and a commercially available nested library-specific adaptor primer AP2 (Clontech) used to obtain a 2,930 bp product, which was subcloned into the pCRII cloning vector (Invitrogen) to form pRACE4 (FIG 7A). Sequence analysis of this and EST ID 256637 constitute SEQ ID NO. 3. Human SALF cDNAs were identified by PCR amplification (35 cycles) of 1.1 and 0.9 kb products from human placenta, liver and testis "Marathon" cDNA libraries (Clontech) using 25 pmol of the upstream primer 2a2-1 (5'- AGAAATTCCCTCTGATTG-3') (SEQ ID NO.: 7) and the downstream primers 2a2-6 and 2a2-8. The 1.1 and 0.9 kb products derived from the liver cDNA library were subcloned into pGEM-T Easy (Promega). Sequence analysis of the liver-derived products shows that they are identical to those present in both SEQ ID NO. 3. These products are diagrammed in FIG 7A, and shown in FIG 7C.

ALF sequences were isolated by PCR (35 cycles) using 4 µl of the human testis cDNA library (Clontech) with the gene-specific primer 2a2-20 (5'-CCAGAAGGTAGAATTGCGGGTTGCTGTAGC-3') (SEQ ID NO. 12) and primer AP1 (Clontech), and reamplified with 2a2-22 (5'-GGAGTTGAAGTGCCCAGGTCTGCTGTGG-3') (SEQ ID NO.: 19) and primer AP2 (Clontech). The 369 bp amplification product is subcloned into pGEM-T Easy (Promega) to form pRACE22. The resulting clone (pRACE22; FIG 7B) contains 298 bp that are identical to SALF and a 35 bp 5'-end that is unique to SEQ ID NO. 1. A full-length ALF PCR product is amplified (35 cycles) from 4 ml of the testis cDNA library (Clontech) using

primer 2a2-17 (5'- GGTGCTGTCATGGCCTGCCTCAACCCGG-3') (SEQ ID NO. 13), located within the unique 5'-end of ALF, and primer AP1 (Clontech). The resulting 1.7 bp fragment is subcloned into pGEM-T Easy to form pRACE17 (FIG 7B). The sequence of the resulting clone is identical to the composite SALF sequence except for its unique 5'-end and a longer poly(A) tail (~90 nucleotides) which begins four nucleotides downstream of the poly(A) tail in SALF. The composite sequences of pRACE17 and pRACE22 are SEQ ID NO. 1.

EXAMPLE 2

DETECTION OF GENOMIC DNA SEQUENCES THAT ENCODE ALF.

Genomic DNA (10 µg) from HeLa cells is digested with the indicated restriction enzymes (BglII and EcoRI), electrophoresed on 0.7% agarose gels using 1X TBE buffer, and transferred overnight to nitrocellulose membranes (Schleicher and Schuell). Hybridization is performed under stringent conditions at 42° C in 50% formamide, or at 68° C, in hybridization buffer (6X SSC, 0.5% SDS, 5X Denhardt's solution, and 100 µg/ml salmon sperm DNA). The probe is a full-length NdeI-BamHI ALF fragment contained within the vector construct pRSET-ALF. The blot is washed at 65° C in 0.1X SSC and 0.5% SDS, and exposed at -80° C to XAR-5 film (Kodak). Hybridization with the ALF probe revealed bands of 8.6, 6.9, 5.0, and 1.0 kb (BglII; lane 1), or 11.5, 8.4, 6.0, and 4.5 kb (EcoRI; lane 2). These results (FIG 9) show that sequences complementary to ALF are present and detectable in human genomic DNA.

EXAMPLE 3

EXPRESSION OF ALF AND OTHER HUMAN TFIIA SUBUNIT mRNAs

Northern blots containing 2 ug of poly(A) mRNA from 16 human tissues are obtained from Clontech. Gene-specific probes for hybridization are as follows: ALF, a 621 bp NcoI-KpnI fragment or an 899 bp HincII-BglII fragment from region II (FIG 7B); 5'-SALF, a 1,002 bp EcoRI-EcoRI fragment from pRACE4 containing the 5'-UTR and nucleotides

encoding the first 282 residues (FIG 7A); hTFIIA α/β , a full-length 1.1 kb EcoRI-EcoRI fragment from lambda11 or a 282 bp HaeIII-Hae III fragment from region II; hTFIIA γ , a full-length 355 bp NdeI-BamHI fragment or a 262 bp NdeI-EcoRI fragment from pRSEThp12; and actin controls (Clontech). DNA fragments were typically labeled with [α 32P]-dCTP using Ready-to-Go DNA Labeling Beads (Pharmacia) and purified over NICK columns (Pharmacia). Northern blots are hybridized for 1 hour in ExpressHyb solution (Clontech) and washed at 68° C for 1 hour. Membranes were typically exposed for 1-2 days to either XAR-5 film (Kodak) or a PhosphorImager screen (Molecular Dynamics). The results are shown in FIG 10A-10E.

Hybridization with a probe from the TFIIA α/β -like region of SALF reveals a 1.8 kb mRNA that is present in testis, but not in other tissues (FIG 10A, lane 12). The isolation of the ALF cDNA which corresponds to this species is illustrated in FIG 7B. The predicted 3.8 kb SALF mRNA is not visible in mRNA from any of the tissues examined, including placenta, liver, and testis from which SALF can be amplified by PCR (FIG 7A and C). These results indicate that ALF, and TFIIA α/β , are the major transcripts encoding human TFIIA large subunits, and that SALF is relatively rare. Hybridization with a probe specific for the 5'-end of SALF (5'-SALF) reveals a 6.5 kb species that is present at highest levels in heart, placenta, kidney, prostate, and uterus (FIG 10B, lanes 1, 3, 7, 11, and 13) and at lower levels in other tissues. This transcript, termed RNA6.5, was not detected using the ALF-specific probe (FIG 10A), indicating that it does not contain a downstream ALF domain. Thus, RNA6.5 is an independent human transcript that contains sequences similar, or identical, to those present at the 5'-end of SALF.

A dot blot purchased from Clontech containing 89-514 ng poly(A) mRNA from 50 adult and fetal tissues is hybridized as follows: [α 32P]-dCTP-labeled DNA is combined with 30 μ g Cot1 DNA (Boehringer-Mannheim) and 100 μ g salmon sperm DNA, denatured, and allowed to renature in 200 ml of 5X SSC at 68° C for 30 minutes prior to addition. After hybridization in 5 ml ExpressHyb solution at 65° C overnight with the probe, the blot was washed in 0.1X SSC at 55° C. Membranes were exposed as follows: FIG 11A, 19 hours; 11B, 2 hours 45 minutes; 11C, 14 hours; 11D, 25 hours, and 11E, 30 minutes. For

reprobing, Northern and dot blots were stripped twice with 0.5% SDS at 100° C, cooled to room temperature, and exposed overnight to confirm the loss of the previous signals. Quantitation of hybridization signals is performed using ImageQuaNT (Molecular Dynamics), and relative transcript levels in testis are determined by comparison to an average level from non-testis tissues. Ubiquitin (FIG 11E) is a control provided by the manufacturer (Clontech).

Using an ALF-specific probe, a strong signal was observed in testis that is due to the presence of the 1.8 kb ALF transcript (FIG 11A, position D1). In addition, weak signals were observed in approximately 24 of the remaining tissues, including small intestine, bladder, uterus, and prostate (positions E3, C5, C6, and C7). These signals indicate that ALF, or SALF, is expressed to low levels in non-testis tissues, and their detection in this study reflects the greater sensitivity of the dot blot. When this blot was stripped and reprobed with the 5'-SALF probe, signals were detected in all tissues (FIG 11B), with highest levels in placenta, uterus, spinal cord, and fetal kidney (positions F4, C6, B7, and G3) and several others, and lower levels in the remaining tissues. Because this probe detected high levels of RNA6.5 (but not SALF) in Northern analysis, the signals in Figure 6B are primarily due to the expression of RNA6.5.

Further inspection of the data reveals that the signals detected with the ALF- specific probe in FIG 11A are present in a range of tissues that is nearly identical to those observed in FIG 11B. This holds true for approximately 20 tissues, including bladder, uterus, prostate, ovary, placenta (positions C5, C6, C7, D2, and F4), and others, but not for testis (position D1). Likewise, the absence of signals in Figure 6A correlates with the absence of signals in FIG 11B. The results suggest a relationship between the expression of RNA6.5 with ALF-containing transcripts (possibly SALF) present at low levels in non-testis tissues. Hybridization with human TFIIA α/β - and TFIIA γ -specific probes (FIG 11C and 11D) shows that the corresponding mRNAs are expressed in all tissues. Quantitation of the results confirms that ALF (50-fold), TFIIA α/β (4-fold), and TFIIA γ (10-fold) are enriched in testis tissue.

EXAMPLE 4

PRODUCTION OF ALF AND SALF POLYPEPTIDES

To prepare recombinant ALF protein for functional assays, a 479 amino acid histidine-tagged polypeptide that spans residues Val7 to Trp478 was overexpressed and purified. Primers used in these studies had the corresponding sequences as follows: A1 (5'-ACTACTCATATGGCACACCACCATCACCACCATGTACCTAAACTCTACAGATC T-3') (SEQ ID NO.: 14) and A2 (5'-AGTAGTGGATCCTTACCACTCTGCATCACC-3") (SEQ ID NO.: 15) were used to create a 1,445 bp NdeI-BamHI PCR fragment whose reading frame begins with the N-terminal extension MHHHHHHV (SEQ ID NO.: 16) and terminates with the natural TAA stop codon. This construct does not encode the first six amino acids (MACLNP, SEQ ID NO.: 17) found in the intact testis-derived ALF cDNA. After subcloning into pRSETC (Invitrogen), the resulting construct (pRSET-ALF) was transformed into *E. coli* BL21(DE3)pLysS (Novagen) and was expressed and purified essentially as follows. Cells were grown in LB media at 37° C to an OD₆₀₀ of ~0.5, and production of the 69 kD recombinant ALF protein is induced with 2 mM IPTG. Cells were harvested 3 hours post-induction, solubilized in Buffer A (0.1 M NaH2PO4, 0.01 M Tris pH 8.0, and either 6 M guanidine or 8 M urea), and sonicated five times for 30 seconds. The denatured cell lysate (~20 ml) was incubated with 2 ml Ni-NTA agarose resin (Qiagen) at room temperature for 1 hour. The resin was washed successively with Buffer A containing 8 M urea at pH 8.0, 6.3, and 5.9, and bound polypeptides are eluted at pH 3.5. Preparation of expression constructs for rat TFIIA α/β and rat TFIIA γ subunits (Genbank Accession numbers AF000943 and AF000944, respectively) and purification of the corresponding 55 and 12 kD recombinant proteins were performed. For transcription studies the recombinant p69 and p12 proteins were codialyzed in order to prevent precipitation of the p12 subunit.

The predicted size of this polypeptide is 53 kD, but the mobility on SDS-PAGE is 69 kD (FIG 12A, lane 2). This observation is similar to results showing that the predicted 42 kD product of hTFIIA α/β migrates at 55 kD (3,4), and may be due to the effect of charged region III. The mobilities of the purified recombinant rat TFIIA α/β (p55) and TFIIA γ (p12)

subunits used in these studies are also shown in FIG 12A (lanes 3 and 4). These polypeptides are at least 98% identical to their human counterparts.

A related procedure is used to prepare human TBP. Specifically, TBP was expressed in *E. coli* BL21(DE3)pLysS (Novagen) from a pET11d (Novagen) vector that contains a histidine tagged TBP open reading frame, induced with 2 mM IPTG at OD600 0.3 and purified at 4° C from the soluble fraction of the bacterial lysate over Ni-NTA agarose. Purification was performed by washing the resin with D700 buffer (20 mM HEPES, 20% glycerol, 0.2 mM EDTA, 10 mM β-mercaptoethanol, 0.5 mM PMSF, and 700 mM KCl) that contained 5 mM, 10 mM and 15 mM imidazole, and eluting bound polypeptides with D700 buffer that contained 100 mM imidazole. Recombinant proteins were dialyzed against Buffer C (10 mM Tris pH 7.9, 2 mM DTT, 20% glycerol, and 0.5 mM PMSF) containing 100 mM KCl prior to use.

To express SALF in a rabbit reticulocyte lysate system, primers NN1 (5'-TACTGCTCGAGCAACTTAGAGT-3') (SEQ ID NO.: 18) and 2a2-8 were used to generate a 2,988 bp product from pRACE4. An internal 2,207 bp XhoI-BglII fragment (aa 1-716) derived from this PCR product was then inserted into the XhoI-BglII digested pT7T3D vector that contains EST ID259637. Because an internal BglII-BglII fragment that spans aa 717-1,084 was excised during preparation of this vector, this fragment was later reinserted in the appropriate orientation to create a full-length SALF ORF (pT7T3-SALF). This construct (0.8 mg) was used to program rabbit reticulocyte lysates in the presence of [³⁵S]-methionine as described by the manufacturer (Promega). Labeled polypeptides are separated on 8% SDS-PAGE gels, and visualized by autoradiography. To determine whether this full-length SALF cDNA construct is capable of directing the translation of an intact protein, *in vitro* transcription-translation reactions were performed.

As shown in FIG 12D, rabbit reticulocyte lysates programmed with pT7T3-SALF produced an [³⁵S]-methionine- labeled polypeptide that migrated at 170 kD (compared to a predicted size of 132 kD). Lysates programmed with pT7T3-SALF truncated at an internal EcoRI site at nucleotide position 960 produced a 36 kD product similar to the predicted size of 32 kD (data not shown). These results demonstrate that although SALF contains a

suboptimal ATG initiation codon (AAGATGT) and encodes a large ORF composed of two distinct regions, it can be translated efficiently.

EXAMPLE 5

ALF IS A TRANSCRIPTION FACTOR FOR RNA POLYMERASE II.

Functionality of ALF was demonstrated in TBP-dependent mobility shift assays and in RNA polymerase II-dependent *in vitro* transcription assays. Mobility shift assays were performed using 10 fmol of a [γ -³²P] ATP kinase-labeled TATA-containing an oligonucleotide that spans nucleotides -40 to -16 of the Adenovirus Major Late (AdML) promoter. Binding reactions (25 μ l final volume) were performed in 10 mM HEPES (pH 7.9), 2% (wt/vol) PEG-8000, 60 mM KCl, 5 mM DTT, 0.2 mM EDTA, 5 mM ammonium sulfate, 4 mM MgCl₂, and 8% glycerol. Recombinant rat p55 (30 ng; 29 nM), rat p12 (1.1 ug; 3.5 uM), human ALF (180 ng; 137 nM) and human TBP (125 ng; 133 nM) were added to reactions as indicated. Reactions were incubated for 30 minutes at room temperature, and complexes are separated on native 5% polyacrylamide gels containing 0.5X TBE and 5% glycerol. Competition experiments contain either cold AdML TATA or SP1 oligonucleotides, and antibody supershift reactions contain 2-4 μ l of rabbit polyclonal antiserum raised against the 55 kD hTFIIA α/β polypeptide (3).

The activity of polypeptides was tested in electrophoretic mobility shift assays under conditions in which TATA-Binding Protein (TBP) alone is unable to bind DNA (FIG 12B, lane 1). The presence of TFIIA α/β (p55) and TFIIA γ (p12) stabilized the TBP-DNA interaction via TFIIA $\alpha/\beta/\gamma$ -TBP-DNA complex formation (lane 2). Likewise, the recombinant ALF (p69) polypeptide, in conjunction with the TFIIA γ (p12) subunit, was able to form ALF/ γ - TBP-DNA complexes (lane 5). Formation of this complex depends on the presence of both ALF and TFIIA γ . Although ALF (p69) is 102 amino acids longer than TFIIA α/β (p55) and migrates as a larger species in SDS-PAGE, the ALF/ γ -TBP- DNA complex migrates slightly faster than the TFIIA $\alpha/\beta/\gamma$ -TBP-DNA complex (lanes 2 and 5). These reactions are run side-by-side on the same gel using ALF and TFIIA subunits that have been purified and renatured using the same procedure. The specificity of ALF/ γ -TBP-DNA

complexes is similar to TFIIA α / β / γ -TBP-DNA complexes, as judged by competition with specific TATA (lanes 3 and 6) and nonspecific Sp1-site (lanes 4 and 7) oligonucleotides. In addition, both complexes are supershifted to the well when co-incubated with antiserum against hTFIIA α / β (lanes 8 and 9), indicating that ALF and TFIIA α / β are immunologically related, and are present in the respective complexes.

To demonstrate that ALF is a functional polypeptide that regulates gene expression, TFIIA-dependent *in vitro* transcription assays are performed. For this purpose, advantage was taken of the fact that TFIIA α / β contains an intrinsic seven-histidine region that allows for the efficient removal of TFIIA from HeLa cell nuclear extracts using Ni-NTA agarose. In brief, 200 μ l of extract were incubated with 100 μ l Ni-NTA agarose resin for 30 minutes at 4 °C in the presence of 400 mM KCl. Control extracts were processed similarly, except that no Ni-NTA agarose was present. After microcentrifugation for 5 minutes, the supernatants were removed and dialyzed for 3 hours against Buffer C that contains 100 mM KCl. Transcription reactions were performed using a template (pMLC2AT) that contains the AdML promoter upstream of a G-free cassette. The template was linearized at a SmaI site just beyond the G-free cassette prior to use. Each reaction (20 μ l) contained: 8 μ l nuclear extract (~60 μ g protein), 2 μ l (550 ng) of recombinant p69 (0.22 μ M) and p12 (0.9 μ M) proteins, 1 μ g pMLC2AT, 10 mM HEPES (pH 7.5), 25 mM KCl, 6 mM MgCl₂, 625 μ M UTP, 625 μ M ATP, 35 μ M CTP, 200 μ M O-methyl-GTP, 3% glycerol, 0.7 μ l [α -32P] CTP and 37.3 units of RNAGuard (Pharmacia). After incubation at 30° C for 45 minutes, the reactions were terminated by adding 270 μ l stop solution (0.25 M NaCl, 1% SDS, 20 mM Tris pH 7.5, 5 mM EDTA and 66.7 μ g/ml tRNA) and extracted with an equal volume of 1:1 phenol/chloroform. Ethanol precipitated transcripts were resuspended in formamide-containing loading dye and electrophoresed on 5% acrylamide gels containing 1X TBE and 8 M urea. Depleted extracts were transcriptionally inactive, but were restored to normal activity by the addition of TFIIA. As shown in FIG 12C (lane 1), control (undepleted) extracts produce a [γ ³²P]-CTP labeled G-free RNA transcript were expressed under the control of the AdML promoter (pMLC2AT). The addition of recombinant ALF (p69) and TFIIA γ (p12) to these extracts did not enhance transcription (lane 2).

TFIIA-depleted extracts were transcriptionally inactive, and were not affected by the re-addition of either ALF (p69) or TFIIA γ (p12) alone (lanes 3-5). The addition of both ALF (p69) and TFIIA γ (p12), however, restored transcription to the level observed with control extracts (lane 6). The results of the electrophoretic mobility shift and in vitro transcription assays shown in FIG 12B and 12C, demonstrate that ALF has TFIIA α/β -like functional activity via TBP, and that both ALF and TFIIA α/β require TFIIA γ , or a functionally similar subunit, for activity.

While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.

SEQUENCE LISTING

5 <110> DeJong Dr., Jeff

10 <120> Transcription Factors Related to TFIIA

15 <130> 119941-1053

20 <140>

25 <141>

30 <160> 20

35 <170> PatentIn Ver. 2.0

40 <210> 1

45 <211> 1617

50 <212> DNA

55 <213> Homo sapiens

60 <220>

65 <221> CDS

<222> (16)..(1449)

5 <400> 1

gctggagggtg ctgtc atg gcc tgc ctc aac ccg gtg cct aaa ctc tac aga 51

Met Ala Cys Leu Asn Pro Val Pro Lys Leu Tyr Arg

10

15

tct gta att gaa gat gta att gaa gga gtt cgg aat cta ttt gct gaa 99

Ser Val Ile Glu Asp Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu

15 20 25

20

gaa ggt ata gag gaa caa gtt tta aaa gac ttg aag cag ctc tgg gaa 147

25 Glu Gly Ile Glu Glu Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu

30 35 40

30

acc aag gtt ttg cag tct aaa gca aca gaa gac ttc ttc aqa aat aqg 195

Thr Lys Val Leu Gln Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser

35

45 50 55 60

atc caa tca cct ctg ttt act ctt cag ttg ccg cac agc ttg cac caa 243

40

Ile Gln Ser Pro Leu Phe Thr Leu Gln Leu Pro His Ser Leu His Gln

65 70 75

aca ttg caa tcg tca aca gca tca tta gtt att cct gct ggt aga act 291

5 Thr Leu Gln Ser Ser Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr

80 . 85 90

10

ctt cca agt ttt acc aca gca gaa ctg ggc act tca aac tcc agt gca 339

Leu Pro Ser Phe Thr Thr Ala Glu Leu Gly Thr Ser Asn Ser Ser Ala

15

95 100 105

20

aac ttt act ttt cct ggt tat ccc att cat gta cca gca ggt gtg aca 387

Asn Phe Thr Phe Pro Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr

110 115 120

25

cta cag act gta tct ggt cac ctt tat aaa gtc aat gta cca att atg 435

Leu Gln Thr Val Ser Gly His Leu Tyr Lys Val Asn Val Pro Ile Met

30

125 130 135 140

35

gtg aca gag act tct gga aga gca ggt att ctt cag cat cca att cag 483

Val Thr Glu Thr Ser Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln

40

145 150 155

caa gta ttt caa cag ctt ggc cag cct tca gta ata caa act agt gtt 531

Gln Val Phe Gln Gln Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val

160 165 170

5

cca caa ttg aat cca tgg tct ctt .caa gca act act gaa aaa tca cag 579

Pro Gln Leu Asn Pro Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln
10

175 180 185

15 aga att gaa acc gtg cta cag caa ccc gca att cta cct tct ggg cca 627

Arg Ile Glu Thr Val Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro

190 195 200

20

gta gat agg aaa cac tta gaa aat gcc acc agt gat ata ctt gta tct 675

25

Val Asp Arg Lys His Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser

205 210 215 220

30

cct gga aat gag cat aaa atc gtg cct gaa gct ttg ttg tgt cat cag 723

Pro Gly Asn Glu His Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln

35

225 230 235

gaa agt tct cac tat atc agt ctt cca ggt gtt gta ttt tct cca cag 771

40

Glu Ser Ser His Tyr Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln

240 245 250

gtc tct caa aca aat tct gat gtg gag tca gtg ctc agt ggt tca gct 819

5 Val Ser Gln Thr Asn Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala

255 260 265

10

agc atg gct caa aat ctg cat gat gag tcc ctc tcc aca agc cct cat 867

Ser Met Ala Gln Asn Leu His Asp Glu Ser Leu Ser Thr Ser Pro His

15 270 275 280

20 ggg gct ctc cac cag cac gtg act gat att cag ctt cat att ctt aaa 915

Gly Ala Leu His Gln His Val Thr Asp Ile Gln Leu His Ile Leu Lys

285 290 295 300

25

aat agg atg tat gga tgt gat tct gta aag caa cca aga aat ata gag 963

Asn Arg Met Tyr Gly Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu

30 305 310 315

35 gaa ccc agc aac ata cct gta tca gag aag gat tct aat tct cag gtg 1011

Glu Pro Ser Asn Ile Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val

320 325 330

40

gat tta agc att cggtt act gat gat gat att ggt gaa ata att caa 1059

Asp Leu Ser Ile Arg Val Thr Asp Asp Asp Ile Gly Glu Ile Ile Gln

335

340

345

5

gta gat gga agc ggt gat aca tct.tcc aat gaa gaa ata gga agt aca 1107

Val Asp Gly Ser Gly Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr

10

350

355

360

15

aga gat gca gat gag aat gaa ttt cta ggg aat att gac ggg gga gat 1155

Arg Asp Ala Asp Glu Asn Glu Phe Leu Gly Asn Ile Asp Gly Gly Asp

20

365

370

375

380

25

ctg aag gta cct gaa gaa gct gac agt att tca aat gag gat tca 1203

30

Leu Lys Val Pro Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser

35

385

390

395

40

gcc aca aac agt agt gat aat gaa gac cct caa gta aac att gta gaa 1251

Ala Thr Asn Ser Ser Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu

35

400

405

410

gag gac cct tta aat tct gga gat gat gtt agt gaa cag gat gtg cca 1299

40

Glu Asp Pro Leu Asn Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro

415

420

425

gac ctg ttt gac acg gat aat gta att gtc tgt cag tat gat aag att 1347

5 Asp Leu Phe Asp Thr Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile

430 435 440

10

cat cga agc aag aac aaa tgg aaa ttc tat ttg aaa gat ggt gtt atg 1395

His Arg Ser Lys Asn Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met

15 445 450 455 460

20tgt ttt gga ggg aga gac tat gta ttt gca aaa gcc att ggt gat gca 1443

Cys Phe Gly Gly Arg Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala

465 470 475

25

gag tgg taaaccttgc gagctcgat catctatttt gtgaacatca gttggactat 1499

30Glu Trp

35

attgcattt gtgaattcat ttttattttg aatatagtcc agcacagagc tgttcaaatt 1559

40tttagttcac tgcgtatggaat ttaataaaaat tataattcag atgcagatac aattacac 1617

<210> 2

<211> 478

<212> PRT

5 <213> Homo sapiens

10 <400> 2

Met Ala Cys Leu Asn Pro Val Pro Lys Leu Tyr Arg Ser Val Ile Glu

1 5 10 15

15

Asp Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu Glu Gly Ile Glu

20 25 30

Glu Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu Thr Lys Val Leu

25 30 35 40 45

Gln Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser Ile Gln Ser Pro

30 35 40 45 50 55 60

35 Leu Phe Thr Leu Gln Leu Pro His Ser Leu His Gln Thr Leu Gln Ser

65 70 75 80

40

Ser Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr Leu Pro Ser Phe

85 90 95

60

Thr Thr Ala Glu Leu Gly Thr Ser Asn Ser Ser Ala Asn Phe Thr Phe

5

100

105

110

10

Pro Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr Leu Gln Thr Val

15

Ser Gly His Leu Tyr Lys Val Asn Val Pro Ile Met Val Thr Glu Thr

130

135

140

20

Ser Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln Gln Val Phe Gln

145

150

155

160

25

Gln Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val Pro Gln Leu Asn

30

165

170

175

35

Pro Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln Arg Ile Glu Thr

180

185

190

40

Val Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro Val Asp Arg Lys

195

200

205

His Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser Pro Gly Asn Glu

210 215 220

5

His Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln Glu Ser Ser His

225 230 235 240

10

Tyr Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln Val Ser Gln Thr

15 245 250 255

Asn Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala Ser Met Ala Gln
20

260 265 270

25 Asn Leu His Asp Glu Ser Leu Ser Thr Ser Pro His Gly Ala Leu His

275 280 285

30 Gln His Val Thr Asp Ile Gln Leu His Ile Leu Lys Asn Arg Met Tyr
290 295 300

35

Gly Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu Glu Pro Ser Asn

305 310 315 320

40

Ile Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val Asp Leu Ser Ile

325 330 335

5 Arg Val Thr Asp Asp Asp Ile Gly Glu Ile Ile Gln Val Asp Gly Ser

340 345 350

10 Gly Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr Arg Asp Ala Asp

355 360 365

15 Glu Asn Glu Phe Leu Gly Asn Ile Asp Gly Asp Leu Lys Val Pro

20 370 375 380

25 Glu Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser Ala Thr Asn Ser

30 385 390 395 400

35 Ser Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu Asp Pro Leu

405 410 415

35 Asn Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro Asp Leu Phe Asp

420 425 430

40 Thr Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile His Arg Ser Lys

435 440 445

Asn Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met Cys Phe Gly Gly

5 450 455 460

Arg Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala Glu Trp
10 465 470 475

15

<210> 3

20 <211> 3824

<212> DNA

<213> Homo sapiens

25 <220>

30 <221> CDS

<222> (115)..(3660)

35 <400> 3

ggactttggg actggacaga cctggtcaca gtctaggta tacatcttac tggtcgagca 60

40 actttagagt caacctattt gatttcttga caagaccaca atctgatccc aaag atg 117

Met

5 tgc tcc aca aat cca ggc aaa tgg gtc acc ttt gat gat gat cct gct 165
Cys Ser Thr Asn Pro Gly Lys Trp Val Thr Phe Asp Asp Asp Pro Ala
10 5 10 15
gtt caa tct tct caa aag tca aag aat ttt cct ctg gag aat caa ggt 213
15 Val Gln Ser Ser Gln Lys Ser Lys Asn Phe Pro Leu Glu Asn Gln Gly
20 25 30
gtc tgt aga cca aat gga ctg aag ctg aac cct cct ggc ctc agg gaa 261
Val Cys Arg Pro Asn Gly Leu Lys Leu Asn Pro Pro Gly Leu Arg Glu
25 30 35 40 45
ttt ccc agt gga tct tcc tcc acc agc agc act cct ctc tcc tcc ccc 309
30 Phe Pro Ser Gly Ser Ser Thr Ser Ser Thr Pro Leu Ser Ser Pro
35 50 55 60 65
att gta gat ttt tat ttc agt cca gga cct cca agt aac tct cct ctt 357
Ile Val Asp Phe Tyr Phe Ser Pro Gly Pro Pro Ser Asn Ser Pro Leu
40 70 75 80

tct aca cct acc aaa gac ttc cca ggt ttt cct ggc atc ccc aaa gca 405

Ser Thr Pro Thr Lys Asp Phe Pro Gly Phe Pro Gly Ile Pro Lys Ala

5

85

90

95

10

ggg act cat gtg ctt tat cct att cca gaa tca tct tca gac agc cca 453

15

ctc gca ata tca gga gga gaa tct tcc tta ctg cct acc aga cca aca 501

20

Leu Ala Ile Ser Gly Gly Glu Ser Ser Leu Leu Pro Thr Arg Pro Thr

115

120

125

25

tgt tta tcc cat gcc ttg tta ccc agt gac cac tca tgt aca cat cca 549

30

Cys Leu Ser His Ala Leu Leu Pro Ser Asp His Ser Cys Thr His Pro

130

135

140

145

35

act ccc aaa gta ggt ctt cca gat gaa gtt aat cct caa cag gct gaa 597

Thr Pro Lys Val Gly Leu Pro Asp Glu Val Asn Pro Gln Gln Ala Glu

150

155

160

40

agc cta gga ttc caa agt gat gat ctc ccc cag ttt cag tat ttt cga 645

Ser Leu Gly Phe Gln Ser Asp Asp Leu Pro Gln Phe Gln Tyr Phe Arg

165 170 175

5 gag gac tgt gct ttt tca agt cca ttt cgg aaa gat gaa ggc agt gat 693

Glu Asp Cys Ala Phe Ser Ser Pro Phe Arg Lys Asp Glu Gly Ser Asp

10 180 185 190

tcc cat ttc acc ctt gac cca cca gga agc aaa aag atg ttc tca tca 741

15 Ser His Phe Thr Leu Asp Pro Pro Gly Ser Lys Lys Met Phe Ser Ser

195 200 205

20 aga aac aag gag atg cct att gac caa aaa agc cta aat aag tgt tca 789
Arg Asn Lys Glu Met Pro Ile Asp Gln Lys Ser Leu Asn Lys Cys Ser

25 210 215 220 225

30 ctc aac tat atc tgt gag aag ctt gaa cat ctc cag tca gct gag aac 837

Leu Asn Tyr Ile Cys Glu Lys Leu Glu His Leu Gln Ser Ala Glu Asn

35

caa gac tca ctt aga agt ttg tct atg cac tgt cta tgt gct gaa gaa 885

Gln Asp Ser Leu Arg Ser Leu Ser Met His Cys Leu Cys Ala Glu Glu

40

245 250 255

aat gcc tct tcc ttt gtc ccc cac aca ctc ttc agg agt cag cca aaa 933

Asn Ala Ser Ser Phe Val Pro His Thr Leu Phe Arg Ser Gln Pro Lys

5 260 265

270

10 tcc gga tgg tct ttc atg ctg aga att cct gag aag aag aat atg atg 981

Ser Gly Trp Ser Phe Met Leu Arg Ile Pro Glu Lys Lys Asn Met Met

275 280 285

15

tct tcc cgg caa tgg gga cca att ttt ctg aaa gtt ttg cct gga gga 1029

Ser Ser Arg Gln Trp Gly Pro Ile Phe Leu Lys Val Leu Pro Gly Gly

20

290 295 300 305

25

att ttg cag atg tat tat gaa cag gga tta gaa aaa cca ttt aaa gag 1077

Ile Leu Gln Met Tyr Tyr Glu Gln Gly Leu Glu Lys Pro Phe Lys Glu

30

310 315 320

ata cag ctt gat cca tat tgt agg ctt tct gaa ccc aag gtt gag aac 1125

35

Ile Gln Leu Asp Pro Tyr Cys Arg Leu Ser Glu Pro Lys Val Glu Asn

325 330 335

40

ttc agt gta gca gga aaa atc cac act gtg aag att gaa cat gtg tct 1173

Phe Ser Val Ala Gly Lys Ile His Thr Val Lys Ile Glu His Val Ser

5 340 345 350

5 tac aca gaa aaa agg aaa tac cat tct aag aca gaa gta gtt cat gaa 1221
Tyr Thr Glu Lys Arg Lys Tyr His Ser Lys Thr Glu Val Val His Glu

10 355 360 365

10 cct gac ata gag cag atg ctg aag ttg ggg tcc aca tcg tac cat gac 1269
Pro Asp Ile Glu Gln Met Leu Lys Leu Gly Ser Thr Ser Tyr His Asp

15 370 375 380 385

15 ttc ctt gac ttt ctg act act gtg gag gag gag ctg atg aag ttg cca 1317
Phe Leu Asp Phe Leu Thr Thr Val Glu Glu Leu Met Lys Leu Pro

20 390 395 400

20 gct gtt tca aaa cca aaa aag aac tac gag gag caa gaa att tcc ttg 1365
Ala Val Ser Lys Pro Lys Lys Asn Tyr Glu Glu Gln Glu Ile Ser Leu

25 405 410 415

25 gaa att gtg gac aac ttt tgg ggt aaa gtc aca aaa gaa gga aaa ttt 1413
Glu Ile Val Asp Asn Phe Trp Gly Lys Val Thr Lys Glu Gly Lys Phe

30 420 425 430

gtt gaa agt gct gtg ata act caa att tat tgc ctc tgc ttt gtg aat 1461

Val Glu Ser Ala Val Ile Thr Gln Ile Tyr Cys Leu Cys Phe Val Asn

5 435 440 445

10 ggg aac ctg gaa tgc ttt tta acc ttg aat gac ctt gag ttg ccg aag 1509

Gly Asn Leu Glu Cys Phe Leu Thr Leu Asn Asp Leu Glu Leu Pro Lys

15 450 455 460 465

cga gat gaa tcc tat tat gag aag gac tca gaa aaa aag ggg att gat 1557

20 Arg Asp Glu Ser Tyr Tyr Glu Lys Asp Ser Glu Lys Lys Gly Ile Asp

25 470 475 480

att ctt gac tac cat ttt cat aag tgt gtg aat gta caa gaa ttt gag 1605

Ile Leu Asp Tyr His Phe His Lys Cys Val Asn Val Gln Glu Phe Glu

30 485 490 495

caa tca aga atc att aag ttt gta cct ctg gat gcc tgc cgg ttt gag 1653

35 Gln Ser Arg Ile Ile Lys Phe Val Pro Leu Asp Ala Cys Arg Phe Glu

500 505 510

40 ctg atg cgt ttc aag act ttg tat aat ggg gat aat ctt ccc ttt tcc 1701

Leu Met Arg Phe Lys Thr Leu Tyr Asn Gly Asp Asn Leu Pro Phe Ser

515 520 525

5 ttg aag tct gta gtg gtt gtc cag gga gca tac gtg gaa ctt cag gct 1749
Leu Lys Ser Val Val Val Val Gln Gly Ala Tyr Val Glu Leu Gln Ala.

10 530 535 540 545

ttt gtc aac atg gcc tca ttg gcg cag agg tca tcc tat gct ggt tcc 1797
15 Phe Val Asn Met Ala Ser Leu Ala Gln Arg Ser Ser Tyr Ala Gly Ser

550 555 560

20 tta agg tcc tgt gac aat ata agg ata cac ttt cct gtc cca tcg cag 1845
Leu Arg Ser Cys Asp Asn Ile Arg Ile His Phe Pro Val Pro Ser Gln

25 565 570 575

30 tgg atc aag gcc ctt tgg acc atg aac ctc cag agg cag aag tct ctg 1893
Trp Ile Lys Ala Leu Trp Thr Met Asn Leu Gln Arg Gln Lys Ser Leu

35 580 585 590

aaa gct aaa atg aac cgc cga gca tgt ctg ggg agt tta cag gaa ctt 1941
40 Lys Ala Lys Met Asn Arg Arg Ala Cys Leu Gly Ser Leu Gln Glu Leu

595 600 605

gaa tct gaa cct gtc att caa gtc act gtg ggg tca gca aaa tat gag 1989

Glu Ser Glu Pro Val Ile Gln Val Thr Val Gly Ser Ala Lys Tyr Glu

5 610 615 620 625

10 agt gcc tac cag gca gtg gta tgg aag ata gat cgg ctt cca gac aaa 2037

Ser Ala Tyr Gln Ala Val Val Trp Lys Ile Asp Arg Leu Pro Asp Lys

630 635 640

15

aat tca agt cta gat cat ccc cat tgt ctg tca tac aaa tta gag ctt 2085

Asn Ser Ser Leu Asp His Pro His Cys Leu Ser Tyr Lys Leu Glu Leu

20 645 650 655

25 gga tca gac caa gaa att ccc tct gat tgg tat cca ttt gct act gtt 2133

Gly Ser Asp Gln Glu Ile Pro Ser Asp Trp Tyr Pro Phe Ala Thr Val

30 660 665 670

cag ttt tcc gtg cct gac acc tgt gcc tca agg aca gag gtc agg tct 2181

35 Gln Phe Ser Val Pro Asp Thr Cys Ala Ser Arg Thr Glu Val Arg Ser

675 680 685

40

ctg gga gtg gag agt gat gtc cag cca cag aaa cat gtt cag cag cga 2229

Leu Gly Val Glu Ser Asp Val Gln Pro Gln Lys His Val Gln Gln Arg

690 695 700 705

5 gct tgc tac aac atc cag cct aaa ctc tac aga tct gta att gaa gat 2277

Ala Cys Tyr Asn Ile Gln Pro Lys Leu Tyr Arg Ser Val Ile Glu Asp

10 710 715 720

gta att gaa gga gtt cg^g aat cta ttt gct gaa gaa ggt ata gag gaa 2325

15 Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu Glu Gly Ile Glu Glu

725 730 735

20 caa gtt tta aaa gac ttg aag cag ctc tgg gaa acc aag gtt ttg cag 2373
Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu Thr Lys Val Leu Gln

25 740 745 750

30 tct aaa gca aca gaa gac ttc ttc aga aat agc atc caa tca cct ctg 2421

Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser Ile Gln Ser Pro Leu

755 760 765

35

ttt act ctt cag ttg ccg cac agc ttg cac caa aca ttg caa tcg tca 2469

40 Phe Thr Leu Gln Leu Pro His Ser Leu His Gln Thr Leu Gln Ser Ser

770 775 780 785

aca gca tca tta gtt att cct gct ggt aga act ctt cca agt ttt acc 2517

Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr Leu Pro Ser Phe Thr

5 790 795 800

aca gca gaa ctg ggc act tca aac tcc agt gca aac ttt act ttt cct 2565

10 Thr Ala Glu Leu Gly Thr Ser Asn Ser Ser Ala Asn Phe Thr Phe Pro

805 810 815

15

ggt tat ccc att cat gta cca gca ggt gtg aca cta cag act gta tct 2613

Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr Leu Gln Thr Val Ser

20 820 825 830

25 ggt cac ctt tat aaa gtc aat gta cca att atg gtg aca gag act tct 2661

Gly His Leu Tyr Lys Val Asn Val Pro Ile Met Val Thr Glu Thr Ser

30 835 840 845

gga aga gca ggt att ctt cag cat cca att cag caa gta ttt caa cag 2709

35 Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln Gln Val Phe Gln Gln

850 855 860 865

40

ctt ggc cag cct tca gta ata caa act agt gtt cca caa ttg aat cca 2757

Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val Pro Gln Leu Asn Pro

870 875 880

5 tgg tct ctt caa gca act act gaa aaa tca cag aga att gaa acc gtg 2805

Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln Arg Ile Glu Thr Val

885 890 895

10

cta cag caa ccc gca att cta cct tct ggg cca gta gat agg aaa cac 2853

15

Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro Val Asp Arg Lys His

900 905 910

20

tta gaa aat gcc acc agt gat ata ctt gta tct cct gga aat gag cat 2901

Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser Pro Gly Asn Glu His

25

915 920 925

30

aaa atc gtg cct gaa gct ttg ttg tgt cat cag gaa agt tct cac tat 2949

Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln Glu Ser Ser His Tyr

930 935 940 945

35

atc agt ctt cca ggt gtt gta ttt tct cca cag gtc tct caa aca aat 2997

Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln Val Ser Gln Thr Asn

40

950 955 960

tct gat gtg gag tca gtg ctc agt ggt tca gct agc atg gct caa aat 3045

Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala Ser Met Ala Gln Asn

5

965

970

975

10

ctg cat gat gag tcc ctc tcc aca agc cct cat ggg gct ctc cac cag 3093

Leu His Asp Glu Ser Leu Ser Thr Ser Pro His Gly Ala Leu His Gln

980

985

990

15

cac gtg act gat att cag ctt cat att ctt aaa aat agg atg tat gga 3141

20

His Val Thr Asp Ile Gln Leu His Ile Leu Lys Asn Arg Met Tyr Gly

995

1000

1005

25

tgt gat tct gta aag caa cca aga aat ata gag gaa ccc agc aac ata 3189

Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu Glu Pro Ser Asn Ile

30

1010

1015

1020

1025

35

cct gta tca gag aag gat tct aat tct cag gtg gat tta agc att cg 3237

Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val Asp Leu Ser Ile Arg

1030

1035

1040

40

gtt act gat gat att ggt gaa ata att caa gta gat gga agc ggt 3285

Val Thr Asp Asp Asp Ile Gly Glu Ile Ile Gln Val Asp Gly Ser Gly

1045 1050 1055

5 gat aca tct tcc aat gaa gaa ata gga agt aca aga gat gca gat gag 3333

Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr Arg Asp Ala Asp Glu

1060 1065 1070

10

aat gaa ttt cta ggg aat att gac ggg gga gat ctg aag gta cct gaa 3381

15 Asn Glu Phe Leu Gly Asn Ile Asp Gly Gly Asp Leu Lys Val Pro Glu

1075 1080 1085

20

gaa gaa gct gac agt att tca aat gag gat tca gcc aca aac agt agt 3429

Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser Ala Thr Asn Ser Ser

25

1090 1095 1100 1105

30

gat aat gaa gac cct caa gta aac att gta gaa gag gac cct tta aat 3477

Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu Glu Asp Pro Leu Asn

1110 1115 1120

35

tct gga gat gat gtt agt gaa cag gat gtg cca gac ctg ttt gac acg 3525

Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro Asp Leu Phe Asp Thr

40

1125 1130 1135

gat aat gta att gtc tgt cag tat gat aag att cat cga agc aag aac 3573

Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile His Arg Ser Lys Asn

5

1140

1145

1150

10

aaa tgg aaa ttc tat ttg aaa gat ggt gtt atg tgt ttt gga ggg aga 3621

Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met Cys Phe Gly Arg

15

1155

1160

1165

20
25
30

gac tat gta ttt gca aaa gcc att ggt gat gca gag tgg taaaccttgt 3670

Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala Glu Trp

1170

1175

1180

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
120

<213> Homo sapiens

5

<400> 4

Met Cys Ser Thr Asn Pro Gly Lys Trp Val Thr Phe Asp Asp Asp Pro

10

1 5 10 15

Ala Val Gln' Ser Ser Gln Lys Ser Lys Asn Phe Pro Leu Glu Asn Gln

15

15 20 25 30

Gly Val Cys Arg Pro Asn Gly Leu Lys Leu Asn Pro Pro Gly Leu Arg

20

20 25 30 35 40 45

Glu Phe Pro Ser Gly Ser Ser Ser Thr Ser Ser Thr Pro Leu Ser Ser

25

25 30 35 40 45 50 55 60

Pro Ile Val Asp Phe Tyr Phe Ser Pro Gly Pro Pro Ser Asn Ser Pro

30

30 35 40 45 50 55 60 65 70 75 80

100 105 110

5 Pro Leu Ala Ile Ser Gly Gly Glu Ser Ser Leu Leu Pro Thr Arg Pro

115 120 125

10

Thr Cys Leu Ser His Ala Leu Leu Pro Ser Asp His Ser Cys Thr His

130 135 140

15

Pro Thr Pro Lys Val Gly Leu Pro Asp Glu Val Asn Pro Gln Gln Ala

20 145 150 155 160

Glu Ser Leu Gly Phe Gln Ser Asp Asp Leu Pro Gln Phe Gln Tyr Phe

25 165 170 175

30 Arg Glu Asp Cys Ala Phe Ser Ser Pro Phe Arg Lys Asp Glu Gly Ser

35 180 185 190

Asp Ser His Phe Thr Leu Asp Pro Pro Gly Ser Lys Lys Met Phe Ser

40 195 200 205

Ser Arg Asn Lys Glu Met Pro Ile Asp Gln Lys Ser Leu Asn Lys Cys

210 215 220

Ser Leu Asn Tyr Ile Cys Glu Lys Leu Glu His Leu Gln Ser Ala Glu

5 225 230 235 240

Asn Gln Asp Ser Leu Arg Ser Leu Ser Met His Cys Leu Cys Ala Glu

10 245 250 255

15 Glu Asn Ala Ser Ser Phe Val Pro His Thr Leu Phe Arg Ser Gln Pro

 260 265 270

20 Lys Ser Gly Trp Ser Phe Met Leu Arg Ile Pro Glu Lys Lys Asn Met

 275 280 285

25 Met Ser Ser Arg Gln Trp Gly Pro Ile Phe Leu Lys Val Leu Pro Gly

 290 295 300

30 Gly Ile Leu Gln Met Tyr Tyr Glu Gln Gly Leu Glu Lys Pro Phe Lys

35 305 310 315 320

40 Glu Ile Gln Leu Asp Pro Tyr Cys Arg Leu Ser Glu Pro Lys Val Glu

 325 330 335

Asn Phe Ser Val Ala Gly Lys Ile His Thr Val Lys Ile Glu His Val

340

345

350

5

Ser Tyr Thr Glu Lys Arg Lys Tyr His Ser Lys Thr Glu Val Val His

355

360

365

10

Glu Pro Asp Ile Glu Gln Met Leu Lys Leu Gly Ser Thr Ser Tyr His

15

370

375

380

20

Asp Phe Leu Asp Phe Leu Thr Thr Val Glu Glu Glu Leu Met Lys Leu

385

390

395

400

25

Pro Ala Val Ser Lys Pro Lys Lys Asn Tyr Glu Glu Gln Glu Ile Ser

30

405

410

415

Leu Glu Ile Val Asp Asn Phe Trp Gly Lys Val Thr Lys Glu Gly Lys

420

425

430

35

Phe Val Glu Ser Ala Val Ile Thr Gln Ile Tyr Cys Leu Cys Phe Val

435

440

445

40

Asn Gly Asn Leu Glu Cys Phe Leu Thr Leu Asn Asp Leu Glu Leu Pro

450 455 460

5 Lys Arg Asp Glu Ser Tyr Tyr Glu Lys Asp Ser Glu Lys Lys Gly Ile

465 470 475 480

10 Asp Ile Leu Asp Tyr His Phe His Lys Cys Val Asn Val Gln Glu Phe

485 490 495

15 Glu Gln Ser Arg Ile Ile Lys Phe Val Pro Leu Asp Ala Cys Arg Phe

20 500 505 510

25 Glu Leu Met Arg Phe Lys Thr Leu Tyr Asn Gly Asp Asn Leu Pro Phe

30 515 520 525

35 Ser Leu Lys Ser Val Val Val Gln Gly Ala Tyr Val Glu Leu Gln

30 530 535 540

35 Ala Phe Val Asn Met Ala Ser Leu Ala Gln Arg Ser Ser Tyr Ala Gly

40 545 550 555 560

45 Ser Leu Arg Ser Cys Asp Asn Ile Arg Ile His Phe Pro Val Pro Ser

565 570 575

Gln Trp Ile Lys Ala Leu Trp Thr Met Asn Leu Gln Arg Gln Lys Ser

5 580 585 590

Leu Lys Ala Lys Met Asn Arg Arg Ala Cys Leu Gly Ser Leu Gln Glu

10 595 600 605

15 Leu Glu Ser Glu Pro Val Ile Gln Val Thr Val Gly Ser Ala Lys Tyr

610 615 620

20 Glu Ser Ala Tyr Gln Ala Val Val Trp Lys Ile Asp Arg Leu Pro Asp

625 630 635 640

25 Lys Asn Ser Ser Leu Asp His Pro His Cys Leu Ser Tyr Lys Leu Glu

645 650 655

30 Leu Gly Ser Asp Gln Glu Ile Pro Ser Asp Trp Tyr Pro Phe Ala Thr

35 660 665 670

40 Val Gln Phe Ser Val Pro Asp Thr Cys Ala Ser Arg Thr Glu Val Arg

675 680 685

Ser Leu Gly Val Glu Ser Asp Val Gln Pro Gln Lys His Val Gln Gln

690 695 700

5

Arg Ala Cys Tyr Asn Ile Gln Pro Lys Leu Tyr Arg Ser Val Ile Glu

705 710 715 720

10

Asp Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu Glu Gly Ile Glu

15

725 730 735

20

Glu Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu Thr Lys Val Leu

740 745 750

25

Gln Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser Ile Gln Ser Pro

755 760 765

30

Leu Phe Thr Leu Gln Leu Pro His Ser Leu His Gln Thr Leu Gln Ser

770 775 780

35

Ser Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr Leu Pro Ser Phe

785 790 795 800

40

Thr Thr Ala Glu Leu Gly Thr Ser Asn Ser Ser Ala Asn Phe Thr Phe

805 810 815

5 Pro Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr Leu Gln Thr Val

820 .825 830

10 Ser Gly His Leu Tyr Lys Val Asn Val Pro Ile Met Val Thr Glu Thr

835 840 845

15

Ser Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln Gln Val Phe Gln

20 850 855 860

Gln Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val Pro Gln Leu Asn

25 865 870 875 880

30 Pro Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln Arg Ile Glu Thr

885 890 895

35 Val Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro Val Asp Arg Lys

900 905 910

40

His Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser Pro Gly Asn Glu

915 920 925

His Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln Glu Ser Ser His

5 930 935 940

Tyr Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln Val Ser Gln Thr
10 945 950 955 960

15 Asn Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala Ser Met Ala Gln
965 970 975

20 Asn Leu His Asp Glu Ser Leu Ser Thr Ser Pro His Gly Ala Leu His
980 985 990

25 Gln His Val Thr Asp Ile Gln Leu His Ile Leu Lys Asn Arg Met Tyr
995 1000 1005

30 Gly Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu Glu Pro Ser Asn
35 1010 1015 1020

40 Ile Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val Asp Leu Ser Ile
1025 1030 1035 1040

Arg Val Thr Asp Asp Asp Ile Gly Glu Ile Ile Gln Val Asp Gly Ser

1045

1050

1055

5

Gly Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr Arg Asp Ala Asp

1060

1065

1070

10

Glu Asn Glu Phe Leu Gly Asn Ile Asp Gly Gly Asp Leu Lys Val Pro

15

1075

1080

1085

20

Glu Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser Ala Thr Asn Ser

1090

1095

1100

25

Ser Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu Glu Asp Pro Leu

105

1110

1115

1120

30

Asn Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro Asp Leu Phe Asp

1125

1130

1135

35

Thr Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile His Arg Ser Lys

1140

1145

1150

40

Asn Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met Cys Phe Gly Gly

1155 1160 1165

5 Arg Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala Glu Trp

1170 1175 1180

10

<210> 5

15 <211> 261

<212> DNA

20 <213> Homo sapiens

25 <220>

30 <221> CDS

35 <222> (1)..(30)

40 <223> Variable 3' end for both ALF and SALF

<400> 5

gca ttc cca aga agg aca tcg ttt aac acc taaactcatt taacaaaagg'a 50

Ala Phe Pro Arg Arg Thr Ser Phe Asn Thr

1 5 10

40

tccgagaaga acagggacag tgtggaaaga aatcttcttg tgatggcata ttgccttcc 110

atatttcttc tggaatcatg ttcgcttggc ttccctgatta aaaacacagt tttattgctc 170

5

tctgcactgc caaaccaata aatttacaga agagaaagct gtattccact gtaccccttg 230

10

cagcatcaat aaaactgaca gccaaaaaaaaa a 261

15

<210> 6

20

<211> 10

25

<212> PRT

30

<213> Homo sapiens

35

<400> 6

40

Ala Phe Pro Arg Arg Thr Ser Phe Asn Thr

1

5

10

35

<210> 7

40

<211> 18

<212> DNA

<213> Homo sapiens

<400> 7

5 agaaattccc tctgattg

18

10

<210> 8

<211> 18

15

<212> DNA

<213> Homo sapiens

20

<400> 8

agtaacccga atgcttaa

18

25

<210> 9

<211> 18

<212> DNA

35

<213> Homo sapiens

<400> 9

40

atgctagctg aaccactg

18

<210> 10

5 <211> 27

<212> DNA

<213> Homo sapiens

10

<400> 10

15 ccatcctaat acgactcact atagggc

27

20

<210> 11

<211> 23

<212> DNA

<213> Homo sapiens

30

<400> 11

actcactata gggctcgagc ggc

23

35

40 <210> 12

<211> 30

<212> DNA

<213> Homo sapiens

5

<400> 12

ccagaaggta gaattgcggg ttgctgttagc

30

10

<210> 13

15

<211> 28

<212> DNA

20

<213> Homo sapiens

25

<400> 13

ggtgctgtca tggcctgcct caacccgg

28

30

<210> 14

35

<211> 52

<212> DNA

<213> Homo sapiens

40

<400> 14

actactcata tggcacacca tcaccatcac catgtaccta aactctacag at

52

5 <210> 15

<211> 30

<212> DNA

10 <213> Homo sapiens

15 <400> 15

agtagtggat ctttaccact ctgcattcacc

30

20
25
30

<210> 16

<211> 8

<212> PRT

<213> Homo sapiens

<400> 16

35 Met His His His His His Val

1

5

40

<210> 17

20
25
30
35
40

<211> 6

<212> PRT

5

<213> Homo sapiens

10
15
20
25
30
35
40

<400> 17

Met Ala Cys Leu Asn Pro

1

5

15

20
25
30
35
40

<210> 18

<211> 23

<212> DNA

<213> Homo sapiens

20
25
30
35
40

<400> 18

tactgctcga gcaacttttag agt

23

35

<210> 19

<211> 6

<212> PRT

<213> Homo sapiens

<400> 19

5 Ala Cys Leu Asn Pro Val

1 5

10

<210> 20

15 <211> 29

<212> DNA

20 <213> Homo sapiens

<400> 20

25 ggagtttgaa gtgcccaggt ctgctgtgg

29

30

References

1. Roeder, R.G. (1991) *Trends Biochem. Sci.* 21, 327-335.
2. Orphanides, G., Lagrange, T., and Reinberg, D. (1996) *Genes Dev.* 10, 2657-2683.
3. DeJong, J. and Roeder, R.G. (1993) *Genes Dev.* 7, 2220-2234.
4. Ma, D., Watanabe, H., Mermelstein, F., Admon, A., Oguri, K., Sun, X., Wada, T., Imai, T., Shiroya, T., Reinberg, D., and Handa, H. (1993) *Genes Dev.* 7, 2246-2257.
5. Ozer, J., Moore, P.A., Bolden, A.H., Lee, A., Rosen, C.A., and Leiberman, P. (1994) *Genes Dev.* 8, 2324-2335.
10. Sun, X., Ma, D., Sheldon, M., Yeung, K., and Reinberg, D. (1994) *Genes Dev.* 8, 2336-2348.
11. DeJong, J., Bernstein, R., and Roeder, R.G. (1995) *Proc. Natl. Acad. Sci.* 92, 3313-3317.
15. Ranish, J.A., Lane, W.S., and Hahn, S. (1992) *Science* 255, 1127-1129.
16. Yokomori, K., Admon, A., Goodrich, J.A., Chen, J.-L., and Tjian, R. (1993) *Genes Dev.* 7, 2235-2245.
17. Yokomori, K., Zeidler, M.P., Chen, J.-L., Verrijzer, C.P., and Tjian, R. (1994) *Genes Dev.* 8, 2313-2323.
20. Bernstein, R., DeJong, J., and Roeder, R.G. (1994) *J. Biol. Chem.* 269, 24361-14366.
21. Tan, S., Hunziker, Y., Sargent, D.F., and Richmond, T.J. (1996) *Nature* 381, 127-134.
22. Geiger, J.H., Hahn, S., Lee, S., and Sigler, P.B. (1996) *Science* 272, 830-836.
23. Buratowski, S., Hahn, S., Sharp, P.A., and Guarente, L. (1989) *Cell* 56, 549-561.
24. Lee, D.K., DeJong, J., Hashimoto, S., Horikoshi, M., and Roeder, R.G. (1992) *Mol. Cell. Biol.* 12, 5189-5196.
25. Imbalzano, A.N., Zaret, K.S., and Kingston, R.E. (1994) *J. Biol. Chem.* 269, 8280-8286.
26. Weidman, C.A., Netter, R.C., Benjamin, L.R., McAllister, J.J., Schmiedekamp, L.A., Coleman, R.A., and Pugh, B.F. (1997) *J. Mol. Biol.* 271, 61-75.
27. Meisterernst, M. and Roeder, R.G. (1991) *Cell* 67, 557-567.
28. Inostroza, J.A., Mermelstein, F.H., Ha, I., Lane, W.S., and Reinberg, D. (1992) *Cell* 70, 477-489.
29. Merino, A., Madden, K.R., Lane, W., Champoux, J.J., and Reinberg, D. (1993) *Nature* 365, 227-232.
30. Ge, H. and Roeder, R.G. (1994) *J. Biol. Chem.* 269, 17136-17140.
31. Kirov, N.C., Lieberman, P.M., and Rushlow, C. (1996) *EMBO J.* 15, 7079-7087.
32. Auble, D.T. and Hahn, S. (1993) *Genes Dev.* 7, 844-856.
33. Auble, D.T., Hansen, K.E., Mueller, C.G., Lane, W.S., Thorner, J., and Hahn, S. (1994) *Genes Dev.* 8, 1920-1934.
34. Chicca, J.J. II, Auble, D.T., and Pugh, B.F. (1998) *Mol. Cell. Biol.* 18, 1701-1710.

5

26. Kokubo, T., Swanson, M.J., Nishikawa, J.I., Hinnebusch, A.G., and Nakatani, Y. (1998) *Mol. Cell. Biol.* 18, 1003-1012.

27. Ozer, J., Mitsouras, K., Zerby, D., Carey, M., and Lieberman, P.M. (1998) *J. Biol. Chem.* 273, 14293-14300.

28. Wang, W., Gralla, J.D., and Carey, M. (1992) *Genes Dev.* 6, 1716-1727.

29. Lieberman, P.M. and Berk, A.J. (1994) *Genes Dev.* 8, 995-1006.

30. Ma, D., Olave, I., Merino, A., and Reinberg, D. (1996) *Proc. Natl. Acad. Sci.* 93, 6583-6588.

10

31. Ozer, J., Bolden, A.H., and Lieberman, P.M. (1996) *J. Biol. Chem.* 271, 11182-11190.

32. Ge, H. and Roeder, R.G. (1994) *Cell* 78, 513-523.

33. Shykind, B.M., Kim, J., and Sharp, P.A. (1995) *Genes Dev.* 9, 1354-1365.

34. Oelgeschlager, T., Chiang, C.-M., and Roeder, R.G. (1996) *Nature* 382, 735-738.

15

35. Chi, T. and Carey, M. (1996) *Genes Dev.* 10, 2540-2550.

36. Emami, K.H., Jain, A., and Smale, S.T. (1997) *Genes Dev.* 11, 3007-3019.

37. Lennon, C.G., Auffray, C., Polymeropoulos, M., and Soares, M.B. (1996) *Genomics* 33, 151-152.

20

38. Kozak, M. (1984) *Nuc. Acids Res.* 12, 857-872.

39. Andrews, J., Smith, M., Merakovsky, J., Coulson, M., Hannan, F., and Kelly, L.E. (1996) *Genetics* 143, 1699-1711.

40. Wilson et al. (1994) *Nature* 368, 32-38.

25

41. Grigliatti, T.A., Hall, L., Rosenbluth, R., and Suzuki, D.T. (1973) *Mol. Gen. Genet.* 120, 107-114.

42. Thurieau, C., Brosius, J., Burne, C., Jolles, P., Keen, J.H., Mattalia, R.J., Chow, E.P., Ramachandran, K.L., and Kirchhausen, T. (1988) *DNA* 7, 663-669.

43. Nakayama, Y., Goebl, M., O'Brine Greco, B., Lemmon, S., Chow, E.P.-C., and Kirchhausen, T. (1991) *Eur. J. Bioch.* 202, 569-574.

25

44. Keen, J.H. (1990) *Ann. Rev. Bioch.* 59, 415-438.

30

45. Hirst, J. and Robinson, M.S. (1998) *Bioch. Biophys. Acta* 1404, 173-193.

What is claimed is:

1. An isolated polynucleotide sequence comprising a nucleotide sequence that encodes a polypeptide of SEQ ID NO. 2, or fragments of said sequence.

5

2. A composition comprising a polypeptide sequence set out in SEQ ID NO. 2 and fragments thereof, or those which are functionally equivalent.

10

3. The DNA segment of claim 1, that encodes the human testis-specific transcriptional factor ALF.

15

4. The DNA segment of claim 1, comprising a human testis-specific transcriptional factor that includes at least 30 contiguous nucleotides from position 16 to 1617 of SEQ ID NO.:1.

20

5. The DNA segment of claim 1, comprising a human testis-specific transcriptional factor that encodes the amino acids of SEQ ID NO.: 2.

6. The DNA segment of claim 1, whereby the segment encodes amino acids 1 to 478 of SEQ ID NO.: 2.

7. The DNA segment of claim 1, positioned under the control of a promoter.

25

8. The DNA segment of claim 1, further defined as comprising a recombinant vector.

9. An isolated nucleic acid segment characterized as:

(a) a nucleic acid segment comprising a sequence that consists essentially of at least 30 contiguous nucleotides that have substantially the same sequence as, or are complementary to, 30 contiguous nucleic acids of SEQ ID NO.:1; or

5 (b) a nucleic acid segment of from 14 to about 1434 nucleotides in length that hybridize to the nucleic acid segment of SEQ ID NO.:1, or complement thereof, under high stringency hybridization conditions.

10 10. The nucleic acid segment of claim 9, wherein the segment comprises a sequence region of at least 30 contiguous nucleotides from SEQ ID NO.:1, or the complement thereof.

15 11. The nucleic acid segment of claim 9, wherein the segment comprises a sequence region of at least about 30 nucleotides; or wherein the segment is about 30 nucleotides in length.

20 12. The nucleic acid segment of claim 11, wherein the segment comprises a sequence region of at least about 30 nucleotides; or wherein the segment is about 30 nucleotides in length.

25 13. The nucleic acid segment of claim 12, wherein the segment comprises a sequence region of at least about 50 nucleotides; or wherein the segment is about 50 nucleotides in length.

14. The nucleic acid segment of claim 13, wherein the segment comprises a sequence region of at least about 100 nucleotides; or wherein the segment is about 100 nucleotides in length.

15. The nucleic acid segment of claim 14, wherein the segment comprises a sequence region of at least about 200 nucleotides; or wherein the segment is about 200 nucleotides in length.

5 16. The nucleic acid segment of claim 15, wherein the segment comprises a sequence region of at least about 500 nucleotides; or wherein the segment is about 500 nucleotides in length.

10 17. The nucleic acid segment of claim 16, wherein the segment comprises a sequence region of at least about 1000 nucleotides; or wherein the segment is about 1000 nucleotides in length.

15 18. The nucleic acid segment of claim 16, wherein the segment comprises a sequence region of about 1434 nucleotides; or wherein the segment is about 1434 nucleotides in length.

20 19. The nucleic acid segment of claim 9, wherein the segment is up to 10,000 base pairs in length.

20 20. The nucleic acid segment of claim 19, wherein the segment is up to 5,000 base pairs in length.

25 21. The nucleic acid segment of claim 20, wherein the segment is up to 3,000 base pairs in length.

22. The nucleic acid segment of claim 21, wherein the segment is up to 1,000 base pairs in length.

23. The nucleic acid segment of claim 9, further defined as a DNA segment.

24. The nucleic acid segment of claim 9, further defined as a RNA segment.

25. A recombinant host cell comprising a DNA segment as defined in claim 9.

5

26. The recombinant host cell of claim 25, wherein the DNA segment is introduced into the cell by means of a recombinant vector.

10 27. The recombinant host cell of claim 25, wherein the whole cell expresses the DNA segment to produce the encoded human testis-specific transcriptional factor protein or peptide wherein said protein or peptide has the amino acid sequence of SEQ ID NO.:2.

28. The recombinant host cell of claim 25, further defined as a bacterial host cell.

15 29. The recombinant host cell of claim 28, wherein the bacterial host cell is E. coli.

30. A method of using a DNA segment that includes an isolated testis-specific transcriptional factor gene, comprising the steps of:

- (a) preparing a recombinant vector in which a testis-specific transcriptional factor gene encoding DNA segment, or a fragment thereof, is positioned under the control of a promoter wherein said testis-specific transcriptional factor gene has the sequence of SEQ ID NO.:2;
- (b) introducing said recombinant vector into recombinant host cell;
- (c) culturing a recombinant host cell under conditions effective to allow expression of the encoded testis-specific transcriptional factor gene protein or peptide; and
- (d) collecting said testis-specific transcriptional factor gene protein or peptide.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
946

36. The isolated polynucleotide sequence of claim 35, comprising a nucleic acid molecule that comprises the nucleotide sequence of SEQ ID NO. 3, or fragments of said sequence.

5 37. The DNA segment of claim 35, that encodes a human transcriptional factor related to the *Drosophila* Stoned gene.

10 38. The DNA segment of claim 35, that encodes the human transcriptional factor SALF.

15 39. The DNA segment of claim 35, comprising a human testis-specific transcriptional factor that includes at least 30 contiguous nucleotides from position 16 to 3824 of SEQ ID NO.:3.

20 40. The DNA segment of claim 35, comprising a human testis-specific transcriptional factor that encodes the amino acids of SEQ ID NO.: 4.

25 41. The DNA segment of claim 35, which encodes amino acids 1 to 11821 of SEQ ID NO.: 4.

42. The DNA segment of claim 35, positioned under the control of a promoter.

43. The DNA segment of claim 35, further defined as comprising a recombinant vector.

44. An isolated nucleic acid segment characterized as:

(a) a nucleic acid segment comprising a sequence that consists essentially of at least 30 contiguous nucleotides that have substantially the same sequence as, or are complementary to, 30 contiguous nucleic acids of SEQ ID NO.:3; or

(b) a nucleic acid segment of from 14 to about 3824 nucleotides in length that hybridize to the nucleic acid segment of SEQ ID NO.:3, or complement thereof, under high stringency hybridization conditions.

5 45. The nucleic acid segment of claim 43, wherein the segment comprises a sequence region of at least 30 contiguous nucleotides from SEQ ID NO.:3, or the complement thereof.

46. The nucleic acid segment of claim 43, wherein the segment comprises a
sequence region of at least about 30 nucleotides; or wherein the segment is about 30
nucleotides in length.

47. The nucleic acid segment of claim 45, wherein the segment comprises a sequence region of at least about 30 nucleotides; or wherein the segment is about 30 nucleotides in length.

48. The nucleic acid segment of claim 46, wherein the segment comprises a sequence region of at least about 50 nucleotides; or wherein the segment is about 50 nucleotides in length.

49. The nucleic acid segment of claim 47, wherein the segment comprises a sequence region of at least about 100 nucleotides; or wherein the segment is about 100 nucleotides in length.

25 50. The nucleic acid segment of claim 48, wherein the segment comprises a sequence region of at least about 200 nucleotides; or wherein the segment is about 200 nucleotides in length.

51. The nucleic acid segment of claim 49, wherein the segment comprises a sequence region of at least about 500 nucleotides; or wherein the segment is about 500 nucleotides in length.

5 52. The nucleic acid segment of claim 50, wherein the segment comprises a sequence region of at least about 1000 nucleotides; or wherein the segment is about 1000 nucleotides in length.

10 53. The nucleic acid segment of claim 51, wherein the segment comprises a sequence region of about 3824 nucleotides; or wherein the segment is about 3824 nucleotides in length.

15 54. The nucleic acid segment of claim 43, wherein the segment is up to 10,000 base pairs in length.

20 55. The nucleic acid segment of claim 53, wherein the segment is up to 5,000 base pairs in length.

56. The nucleic acid segment of claim 54, wherein the segment is up to 3,000 base pairs in length.

25 57. The nucleic acid segment of claim 55, wherein the segment is up to 1,000 base pairs in length.

58. The nucleic acid segment of claim 43, further defined as a DNA segment.

59. The nucleic acid segment of claim 43, further defined as a RNA segment.

60. A recombinant host cell comprising a DNA segment as defined in claim 43.

5 61. The recombinant host cell of claim 59, wherein the DNA segment is introduced into the cell by means of a recombinant vector.

10 62. The recombinant host cell of claim 59, wherein the whole cell expresses the DNA segment to produce the encoded transcriptional factor protein or peptide wherein said protein or peptide has the amino acid sequence of SEQ ID NO.:4.

15 63. The recombinant host cell of claim 59, further defined as a bacterial host cell.

20 64. The recombinant host cell of claim 62, wherein the bacterial host cell is E. coli.

25 65. A method of using a DNA segment that includes an isolated testis-specific transcriptional factor gene, comprising the steps of:

- (a) preparing a recombinant vector in which a human transcriptional factor gene encoding DNA segment is positioned under the control of a promoter wherein said testis-specific transcriptional factor gene has the sequence of SEQ ID NO.:4;
- (b) introducing said recombinant vector into recombinant host cell;
- (c) culturing a recombinant host cell under conditions effective to allow expression of the encoded transcriptional factor gene protein or peptide; and
- (d) collecting the human testis-specific transcriptional factor gene protein or peptide.

25 66. A method of making a recombinant vector comprising inserting the isolated DNA segment of SEQ ID NO.:3 into a vector.

67. An isolated DNA segment comprising the sequence of Genbank Accession number AF026169, its complement, and fragments of said sequence.

5 68. An isolated polypeptide comprising a mature polypeptide having an amino acid sequence encoded by a nucleic acid segment that is at least 95% identical to SEQ ID NO.:3.

10 69. The isolated polypeptide of claim 20, comprising amino acids 1 to 1182 of SEQ ID NO.: 4.

15 70. An isolated nucleic acid segment characterized as:

- (a) a nucleic acid segment comprising a sequence that consists essentially of at least 30 contiguous nucleotides that have substantially the same sequence as, or are complementary to, 30 contiguous nucleic acids of SEQ ID NO.:5; or
- (b) a nucleic acid segment of from 1 to about 30 nucleotides in length that hybridize to the nucleic acid segment of SEQ ID NO.:5, or complement thereof, under high stringency hybridization conditions.

GENBANK AF026169

TRANSCRIPTION FACTORS RELATED TO TFIIA

ABSTRACT OF THE DISCLOSURE

The invention provides human polynucleotide sequences that encode transcription factor polypeptides that are termed ALF and SALF, and an alternative C-terminal sequence. The invention includes ALF, SALF and alternative C-terminus polypeptides, peptides, fusion proteins, expression vectors, agonists, antagonists, host cells that overexpress these polypeptides, including transgenic animals, and recombinant knock-out animals that cannot express the relevant RNAs and polypeptides. The invention also provides methods for the detection, diagnosis, screening, and monitoring disorders related to inappropriate expression, production, or activity of ALF and SALF, and provides methods to increase or decrease gene expression with respect to treating disorders related to inappropriate or ineffectual patterns of gene expression.

691850.4

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION: Jeff L. DeJong)
SERIAL NO.:)
FILED: Concurrently Herewith)
FOR: TRANSCRIPTION FACTORS)
RELATED TO TFIIA)

Box Patent Application
Assistant Commissioner
for Patents
Washington, D.C. 20231

"EXPRESS MAILING" Mailing Label No.
EL152179982US. Date of Deposit: June 4, 1999. I
hereby certify that this paper is being deposited with
the U.S. Postal Service Express Mail Post Office to
Addressee Service under 37 CFR 1.10 on the date
shown above and is addressed to the Ass't
Commissioner for Patents, Washington, D.C. 20231.

Rita J. Carr

SEQUENCE LISTING

Dear Sir:

Kindly accept the attached Sequence Listing and disk related to the above-identified
Application for Patent.

Attached please find a hard copy of a Sequence Listing along with a diskette containing a
Sequence Listing in computer readable form in ASCII-DOS format in accordance with the
requirements of 37 C.F.R. 1.824.

REMARKS

A diskette with a Sequence Listing in ASCII-DOS format is attached and consideration of the application is requested. The content of the paper and computer readable copies are the same as required by 37 C.F.R. 1.821(f).

For the foregoing reasons, the Sequence Listing is submitted to be in order, and complies with the Sequence Rules 37 C.F.R. 1.821 - 1.825.

Dated this 4th day of June, 1999.

Respectfully submitted,

Daniel E. Perez
Attorney for Applicant
Reg. No. 33,755
Gardere & Wynne, L.L.P.
1601 Elm Street, Suite 3000
Dallas, TX 75201
(214) 999-4355 - Tel
(214) 999-4667 - Fax

730212.1

SEQUENCE LISTING

<110> DeJong Dr., Jeff

<120> Transcription Factors Related to TFIIA

<130> 119941-1053

<140>

<141>

<160> 19

<170> PatentIn Ver. 2.0

<210> 1

<211> 1617

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (16)..(1449)

<400> 1

gctggaggtg ctgtc atg gcc tgc ctc aac ccg gtg cct aaa ctc tac aga 51

Met Ala Cys Leu Asn Pro Val Pro Lys Leu Tyr Arg

1

5

10

tct gta att gaa gat gta att gaa gga gtt cgg aat cta ttt gct gaa 99

Ser Val Ile Glu Asp Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu

15

20

25

gaa ggt ata gag gaa caa gtt tta aaa gac ttg aag cag ctc tgg gaa 147

Glu Gly Ile Glu Glu Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu

30 35 40

acc aag gtt ttg cag tct aaa gca aca gaa gac ttc ttc aga aat agc 195

Thr Lys Val Leu Gln Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser

45 50 55 60

atc caa tca cct ctg ttt act ctt cag ttg ccg cac agc ttg cac caa 243

Ile Gln Ser Pro Leu Phe Thr Leu Gln Leu Pro His Ser Leu His Gln

65 70 75

aca ttg caa tcg tca aca gca tca tta gtt att cct gct ggt aga act 291

Thr Leu Gln Ser Ser Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr

80 85 90

ctt cca agt ttt acc aca gca gaa ctg ggc act tca aac tcc agt gca 339

Leu Pro Ser Phe Thr Thr Ala Glu Leu Gly Thr Ser Asn Ser Ser Ala

95 100 105

aac ttt act ttt cct ggt tat ccc att cat gta cca gca ggt gtg aca 387

Asn Phe Thr Phe Pro Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr

110 115 120

cta cag act gta tct ggt cac ctt tat aaa gtc aat gta cca att atg 435

Leu Gln Thr Val Ser Gly His Leu Tyr Lys Val Asn Val Pro Ile Met

125 130 135 140

gtg aca gag act tct gga aga gca ggt att ctt cag cat cca att cag 483

Val Thr Glu Thr Ser Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln

145 150 155

caa gta ttt caa cag ctt ggc cag cct tca gta ata caa act agt gtt 531

Gln Val Phe Gln Gln Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val

160 165 170

cca caa ttg aat cca tgg tct ctt caa gca act act gaa aaa tca cag 579
Pro Gln Leu Asn Pro Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln
175 180 185

aga att gaa acc gtg cta cag caa ccc gca att cta cct tct ggg cca 627
Arg Ile Glu Thr Val Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro
190 195 200

gta gat agg aaa cac tta gaa aat gcc acc agt gat ata ctt gta tct 675
Val Asp Arg Lys His Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser
205 210 215 220

cct gga aat gag cat aaa atc gtg cct gaa gct ttg ttg tgt cat cag 723
Pro Gly Asn Glu His Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln
225 230 235

gaa agt tct cac tat atc agt ctt cca ggt gtt gta ttt tct cca cag 771
Glu Ser Ser His Tyr Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln
240 245 250

gtc tct caa aca aat tct gat gtg gag tca gtg ctc agt ggt tca gct 819
Val Ser Gln Thr Asn Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala
255 260 265

agc atg gct caa aat ctg cat gat gag tcc ctc tcc aca agc cct cat 867
Ser Met Ala Gln Asn Leu His Asp Glu Ser Leu Ser Thr Ser Pro His
270 275 280

ggg gct ctc cac cag cac gtg act gat att cag ctt cat att ctt aaa 915
Gly Ala Leu His Gln His Val Thr Asp Ile Gln Leu His Ile Leu Lys
285 290 295 300

aat agg atg tat gga tgt gat tct gta aag caa cca aga aat ata gag 963

Asn Arg Met Tyr Gly Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu

305

310

315

gaa ccc agc aac ata cct gta tca gag aag gat tct aat tct cag gtg 1011

Glu Pro Ser Asn Ile Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val

320

325

330

gat tta agc att cgg gtt act gat gat att ggt gaa ata att caa 1059

Asp Leu Ser Ile Arg Val Thr Asp Asp Asp Ile Gly Glu Ile Ile Gln

335

340

345

gta gat gga agc ggt gat aca tct tcc aat gaa gaa ata gga agt aca 1107

Val Asp Gly Ser Gly Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr

350

355

360

aga gat gca gat gag aat gaa ttt cta ggg aat att gac ggg gga gat 1155

Arg Asp Ala Asp Glu Asn Glu Phe Leu Gly Asn Ile Asp Gly Gly Asp

365

370

375

380

ctg aag gta cct gaa gaa gct gac agt att tca aat gag gat tca 1203

Leu Lys Val Pro Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser

385

390

395

gcc aca aac agt agt gat aat gaa gac cct caa gta aac att gta gaa 1251

Ala Thr Asn Ser Ser Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu

400

405

410

gag gac cct tta aat tct gga gat gat gtt agt gaa cag gat gtg cca 1299

Glu Asp Pro Leu Asn Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro

415

420

425

gac ctg ttt gac acg gat aat gta att gtc tgt cag tat gat aag att 1347

Asp Leu Phe Asp Thr Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile

430

435

440

cat cga agc aag aac aaa tgg aaa ttc tat ttg aaa gat ggt gtt atg 1395
His Arg Ser Lys Asn Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met
445 450 455 460

tgt ttt gga ggg aga gac tat gta ttt gca aaa gcc att ggt gat gca 1443
Cys Phe Gly Gly Arg Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala
465 470 475

gag tgg taaaccttgt gagctcagta catctattt gtgaacatca gttggactat 1499
Glu Trp

attgcattt gtgaattcat ttttattttt aatatagtc agcacagagc tgttcaaatt 1559

ttagttcac tgtatggaat ttaataaaat tataattcag atgcagatac aattacac 1617

<210> 2
<211> 478
<212> PRT
<213> Homo sapiens

<400> 2
Met Ala Cys Leu Asn Pro Val Pro Lys Leu Tyr Arg Ser Val Ile Glu
1 5 10 15

Asp Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu Glu Gly Ile Glu
20 25 30

Glu Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu Thr Lys Val Leu
35 40 45

Gln Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser Ile Gln Ser Pro
50 55 60

Leu Phe Thr Leu Gln Leu Pro His Ser Leu His Gln Thr Leu Gln Ser
65 70 75 80

Ser Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr Leu Pro Ser Phe
85 90 95

Thr Thr Ala Glu Leu Gly Thr Ser Asn Ser Ala Asn Phe Thr Phe
100 105 110

Pro Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr Leu Gln Thr Val
115 120 125

Ser Gly His Leu Tyr Lys Val Asn Val Pro Ile Met Val Thr Glu Thr
130 135 140

Ser Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln Gln Val Phe Gln
145 150 155 160

Gln Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val Pro Gln Leu Asn
165 170 175

Pro Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln Arg Ile Glu Thr
180 185 190

Val Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro Val Asp Arg Lys
195 200 205

His Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser Pro Gly Asn Glu
210 215 220

His Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln Glu Ser Ser His
225 230 235 240

Tyr Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln Val Ser Gln Thr

245 250 255

Asn Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala Ser Met Ala Gln

260 265 270

Asn Leu His Asp Glu Ser Leu Ser Thr Ser Pro His Gly Ala Leu His

275 280 285

Gln His Val Thr Asp Ile Gln Leu His Ile Leu Lys Asn Arg Met Tyr

290 295 300

Gly Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu Glu Pro Ser Asn

305 310 315 320

Ile Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val Asp Leu Ser Ile

325 330 335

Arg Val Thr Asp Asp Asp Ile Gly Glu Ile Ile Gln Val Asp Gly Ser

340 345 350

Gly Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr Arg Asp Ala Asp

355 360 365

Glu Asn Glu Phe Leu Gly Asn Ile Asp Gly Gly Asp Leu Lys Val Pro

370 375 380

Glu Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser Ala Thr Asn Ser

385 390 395 400

Ser Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu Glu Asp Pro Leu

405 410 415

Asn Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro Asp Leu Phe Asp

420

425

430

Thr Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile His Arg Ser Lys

435

440

445

Asn Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met Cys Phe Gly Gly

450

455

460

Arg Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala Glu Trp

465

470

475

<210> 3

<211> 3824

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (115)..(3660)

<400> 3

ggactttggg actggacaga cctggtcaca gtctagggtc tacatttac tggtcgagca 60

acttttaggt caacctatTTT gatttcttga caagaccaca atctgatccc aaag atg 117

Met

1

tgc tcc aca aat cca ggc aaa tgg gtc acc ttt gat gat gat cct gct 165

Cys Ser Thr Asn Pro Gly Lys Trp Val Thr Phe Asp Asp Asp Pro Ala

5

10

15

gtt caa tct tct caa aag tca aag aat ttt cct ctg gag aat caa ggt 213

Val Gln Ser Ser Gln Lys Ser Asn Phe Pro Leu Glu Asn Gln Gly

20

25

30

gtc tgt aga cca aat gga ctg aag ctg aac cct cct ggc ctc agg gaa 261
Val Cys Arg Pro Asn Gly Leu Lys Leu Asn Pro Pro Gly Leu Arg Glu

35

40

45

ttt ccc agt gga tct tcc tcc acc agc agc act cct ctc tcc tcc ccc 309
Phe Pro Ser Gly Ser Ser Ser Thr Ser Ser Thr Pro Leu Ser Ser Pro
50 55 60 65

att gta gat ttt tat ttc agt cca gga cct cca agt aac tct cct ctt 357
Ile Val Asp Phe Tyr Phe Ser Pro Gly Pro Pro Ser Asn Ser Pro Leu
70 75 80

tct aca cct acc aaa gac ttc cca ggt ttt cct ggc atc ccc aaa gca 405
Ser Thr Pro Thr Lys Asp Phe Pro Gly Phe Pro Gly Ile Pro Lys Ala
85 90 95

ggg act cat gtg ctt tat cct att cca gaa tca tct tca gac agc cca 453
Gly Thr His Val Leu Tyr Pro Ile Pro Glu Ser Ser Ser Asp Ser Pro
100 105 110

ctc gca ata tca gga gga gaa tct tcc tta ctg cct acc aga cca aca 501
Leu Ala Ile Ser Gly Gly Ser Ser Leu Leu Pro Thr Arg Pro Thr
115 120 125

tgt tta tcc cat gcc ttg tta ccc agt gac cac tca tgt aca cat cca 549
Cys Leu Ser His Ala Leu Leu Pro Ser Asp His Ser Cys Thr His Pro
130 135 140 145

act ccc aaa gta ggt ctt cca gat gaa gtt aat cct caa cag gct gaa 597
Thr Pro Lys Val Gly Leu Pro Asp Glu Val Asn Pro Gln Gln Ala Glu
150 155 160

agc cta gga ttc caa agt gat gat ctc ccc cag ttt cag tat ttt cga 645
Ser Leu Gly Phe Gln Ser Asp Asp Leu Pro Gln Phe Gln Tyr Phe Arg
165 170 175

gag gac tgt gct ttt tca agt cca ttt cg^g aaa gat gaa ggc agt gat 693
Glu Asp Cys Ala Phe Ser Ser Pro Phe Arg Lys Asp Glu Gly Ser Asp
180 185 190

tcc cat ttc acc ctt gac cca cca gga agc aaa aag atg ttc tca tca 741
Ser His Phe Thr Leu Asp Pro Pro Gly Ser Lys Lys Met Phe Ser Ser
195 200 205

aga aac aag gag atg cct att gac caa aaa agc cta aat aag tgt tca 789
Arg Asn Lys Glu Met Pro Ile Asp Gln Lys Ser Leu Asn Lys Cys Ser
210 215 220 225

ctc aac tat atc tgt gag aag ctt gaa cat ctc cag tca gct gag aac 837
Leu Asn Tyr Ile Cys Glu Lys Leu Glu His Leu Gln Ser Ala Glu Asn
230 235 240

caa gac tca ctt aga agt ttg tct atg cac tgt cta tgt gct gaa gaa 885
Gln Asp Ser Leu Arg Ser Leu Ser Met His Cys Leu Cys Ala Glu Glu
245 250 255

aat gcc tct tcc ttt gtc ccc cac aca ctc ttc agg agt cag cca aaa 933
Asn Ala Ser Ser Phe Val Pro His Thr Leu Phe Arg Ser Gln Pro Lys
260 265 270

tcc gga tgg tct ttc atg ctg aga att cct gag aag aag aat atg atg 981
Ser Gly Trp Ser Phe Met Leu Arg Ile Pro Glu Lys Lys Asn Met Met
275 280 285

tct tcc cgg caa tgg gga cca att ttt ctg aaa gtt ttg cct gga gga 1029
Ser Ser Arg Gln Trp Gly Pro Ile Phe Leu Lys Val Leu Pro Gly Gly

290 295 300 305

att ttg cag atg tat tat gaa cag gga tta gaa aaa cca ttt aaa gag 1077
Ile Leu Gln Met Tyr Tyr Glu Gln Gly Leu Glu Lys Pro Phe Lys Glu

310 315 320

ata cag ctt gat cca tat tgt agg ctt tct gaa ccc aag gtt gag aac 1125
Ile Gln Leu Asp Pro Tyr Cys Arg Leu Ser Glu Pro Lys Val Glu Asn

325 330 335

ttc agt gta gca gga aaa atc cac act gtg aag att gaa cat gtg tct 1173
Phe Ser Val Ala Gly Lys Ile His Thr Val Lys Ile Glu His Val Ser

340 345 350

tac aca gaa aaa agg aaa tac cat tct aag aca gaa gta gtt cat gaa 1221
Tyr Thr Glu Lys Arg Lys Tyr His Ser Lys Thr Glu Val Val His Glu

355 360 365

cct gac ata gag cag atg ctg aag ttg ggg tcc aca tcg tac cat gac 1269
Pro Asp Ile Glu Gln Met Leu Lys Leu Gly Ser Thr Ser Tyr His Asp
370 375 380 385

ttc ctt gac ttt ctg act act gtg gag gag gag ctg atg aag ttg cca 1317
Phe Leu Asp Phe Leu Thr Thr Val Glu Glu Leu Met Lys Leu Pro

390 395 400

gct gtt tca aaa cca aaa aag aac tac gag gag caa gaa att tcc ttg 1365
Ala Val Ser Lys Pro Lys Lys Asn Tyr Glu Glu Gln Glu Ile Ser Leu

405 410 415

gaa att gtg gac aac ttt tgg ggt aaa gtc aca aaa gaa gga aaa ttt 1413
Glu Ile Val Asp Asn Phe Trp Gly Lys Val Thr Lys Glu Gly Lys Phe

420 425 430

gtt gaa agt gct gtg ata act caa att tat tgc ctc tgc ttt gtg aat 1461
Val Glu Ser Ala Val Ile Thr Gln Ile Tyr Cys Leu Cys Phe Val Asn
435 440 445

ggg aac ctg gaa tgc ttt tta acc ttg aat gac ctt gag ttg ccg aag 1509
Gly Asn Leu Glu Cys Phe Leu Thr Leu Asn Asp Leu Glu Leu Pro Lys
450 455 460 465

cga gat gaa tcc tat tat gag aag gac tca gaa aaa aag ggg att gat 1557
Arg Asp Glu Ser Tyr Tyr Glu Lys Asp Ser Glu Lys Lys Gly Ile Asp
470 475 480

att ctt gac tac cat ttt cat aag tgt gtg aat gta caa gaa ttt gag 1605
Ile Leu Asp Tyr His Phe His Lys Cys Val Asn Val Gln Glu Phe Glu
485 490 495

caa tca aga atc att aag ttt gta cct ctg gat gcc tgc cgg ttt gag 1653
Gln Ser Arg Ile Ile Lys Phe Val Pro Leu Asp Ala Cys Arg Phe Glu
500 505 510

ctg atg cgt ttc aag act ttg tat aat ggg gat aat ctt ccc ttt tcc 1701
Leu Met Arg Phe Lys Thr Leu Tyr Asn Gly Asp Asn Leu Pro Phe Ser
515 520 525

ttg aag tct gta gtg gtt gtc cag gga gca tac gtg gaa ctt cag gct 1749
Leu Lys Ser Val Val Val Val Gln Gly Ala Tyr Val Glu Leu Gln Ala
530 535 540 545

ttt gtc aac atg gcc tca ttg gcg cag agg tca tcc tat gct ggt tcc 1797
Phe Val Asn Met Ala Ser Leu Ala Gln Arg Ser Ser Tyr Ala Gly Ser
550 555 560

tta agg tcc tgt gac aat ata agg ata cac ttt cct gtc cca tcg cag 1845
Leu Arg Ser Cys Asp Asn Ile Arg Ile His Phe Pro Val Pro Ser Gln

565

570

575

tgg atc aag gcc ctt tgg acc atg aac ctc cag agg cag aag tct ctg 1893
Trp Ile Lys Ala Leu Trp Thr Met Asn Leu Gln Arg Gln Lys Ser Leu

580

585

590

aaa gct aaa atg aac cgc cga gca tgt ctg ggg agt tta cag gaa ctt 1941
Lys Ala Lys Met Asn Arg Arg Ala Cys Leu Gly Ser Leu Gln Glu Leu

595

600

605

gaa tct gaa cct gtc att caa gtc act gtg ggg tca gca aaa tat gag 1989
Glu Ser Glu Pro Val Ile Gln Val Thr Val Gly Ser Ala Lys Tyr Glu
610 615 620 625

agt gcc tac cag gca gtg gta tgg aag ata gat cgg ctt cca gac aaa 2037
Ser Ala Tyr Gln Ala Val Val Trp Lys Ile Asp Arg Leu Pro Asp Lys
630 635 640

aat tca agt cta gat cat ccc cat tgt ctg tca tac aaa tta gag ctt 2085
Asn Ser Ser Leu Asp His Pro His Cys Leu Ser Tyr Lys Leu Glu Leu
645 650 655

gga tca gaccaa gaa att ccc tct gat tgg tat cca ttt gct act gtt 2133
Gly Ser Asp Gln Glu Ile Pro Ser Asp Trp Tyr Pro Phe Ala Thr Val
660 665 670

cag ttt tcc gtg cct gac acc tgt gcc tca agg aca gag gtc agg tct 2181
Gln Phe Ser Val Pro Asp Thr Cys Ala Ser Arg Thr Glu Val Arg Ser
675 680 685

ctg gga gtg gag agt gat gtc cag cca cag aaa cat gtt cag cag cga 2229
Leu Gly Val Glu Ser Asp Val Gln Pro Gln Lys His Val Gln Gln Arg
690 695 700 705

gct tgc tac aac atc cag cct aaa ctc tac aga tct gta att gaa gat 2277
Ala Cys Tyr Asn Ile Gln Pro Lys Leu Tyr Arg Ser Val Ile Glu Asp
710 715 720

gta att gaa gga gtt cggtt aat cta ttt gct gaa gaa ggt ata gag gaa 2325
Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu Glu Gly Ile Glu Glu
725 730 735

caa gtt tta aaa gac ttg aag cag ctc tgg gaa acc aag gtt ttg cag 2373
Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu Thr Lys Val Leu Gln
740 745 750

tct aaa gca aca gaa gac ttc ttc aga aat agc atc caa tca cct ctg 2421
Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser Ile Gln Ser Pro Leu
755 760 765

ttt act ctt cag ttg ccg cac agc ttg cac caa aca ttg caa tcg tca 2469
Phe Thr Leu Gln Leu Pro His Ser Leu His Gln Thr Leu Gln Ser Ser
770 775 780 785

aca gca tca tta gtt att cct gct ggt aga act ctt cca agt ttt acc 2517
Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr Leu Pro Ser Phe Thr
790 795 800

aca gca gaa ctg ggc act tca aac tcc agt gca aac ttt act ttt cct 2565
Thr Ala Glu Leu Gly Thr Ser Asn Ser Ala Asn Phe Thr Phe Pro
805 810 815

ggt tat ccc att cat gta cca gca ggt gtg aca cta cag act gta tct 2613
Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr Leu Gln Thr Val Ser
820 825 830

ggt cac ctt tat aaa gtc aat gta cca att atg gtg aca gag act tct 2661
Gly His Leu Tyr Lys Val Asn Val Pro Ile Met Val Thr Glu Thr Ser

835 840 845

gga aga gca ggt att ctt cag cat cca att cag caa gta ttt caa cag 2709
Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln Gln Val Phe Gln Gln
850 855 860 865

ctt ggc cag cct tca gta ata caa act agt gtt cca caa ttg aat cca 2757
Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val Pro Gln Leu Asn Pro
870 875 880

tgg tct ctt caa gca act act gaa aaa tca cag aga att gaa acc gtg 2805
Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln Arg Ile Glu Thr Val
885 890 895

cta cag caa ccc gca att cta cct tct ggg cca gta gat agg aaa cac 2853
Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro Val Asp Arg Lys His
900 905 910

tta gaa aat gcc acc agt gat ata ctt gta tct cct gga aat gag cat 2901
Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser Pro Gly Asn Glu His
915 920 925

aaa atc gtg cct gaa gct ttg ttg tgt cat cag gaa agt tct cac tat 2949
Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln Glu Ser Ser His Tyr
930 935 940 945

atc agt ctt cca ggt gtt gta ttt tct cca cag gtc tct caa aca aat 2997
Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln Val Ser Gln Thr Asn
950 955 960

tct gat gtg gag tca gtg ctc agt ggt tca gct agc atg gct caa aat 3045
Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala Ser Met Ala Gln Asn
965 970 975

ctg cat gat gag tcc ctc aca agc cct cat ggg gct ctc cac cag 3093
Leu His Asp Glu Ser Leu Ser Thr Ser Pro His Gly Ala Leu His Gln
980 985 990

cac gtg act gat att cag ctt cat att ctt aaa aat agg atg tat gga 3141
His Val Thr Asp Ile Gln Leu His Ile Leu Lys Asn Arg Met Tyr Gly
995 1000 1005

tgt gat tct gta aag caa cca aga aat ata gag gaa ccc agc aac ata 3189
Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu Glu Pro Ser Asn Ile
1010 1015 1020 1025

cct gta tca gag aag gat tct aat tct cag gtg gat tta agc att cg 3237
Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val Asp Leu Ser Ile Arg
1030 1035 1040

gtt act gat gat att ggt gaa ata att caa gta gat gga agc ggt 3285
Val Thr Asp Asp Asp Ile Gly Glu Ile Ile Gln Val Asp Gly Ser Gly
1045 1050 1055

gat aca tct tcc aat gaa gaa ata gga agt aca aga gat gca gat gag 3333
Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr Arg Asp Ala Asp Glu
1060 1065 1070

aat gaa ttt cta ggg aat att gac ggg gga gat ctg aag gta cct gaa 3381
Asn Glu Phe Leu Gly Asn Ile Asp Gly Asp Leu Lys Val Pro Glu
1075 1080 1085

gaa gaa gct gac agt att tca aat gag gat tca gcc aca aac agt agt 3429
Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser Ala Thr Asn Ser Ser
1090 1095 1100 1105

gat aat gaa gac cct caa gta aac att gta gaa gag gac cct tta aat 3477
Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu Asp Pro Leu Asn

1110 1115 1120

tct gga gat gat gtt agt gaa cag gat gtg cca gac ctg ttt gac acg 3525
Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro Asp Leu Phe Asp Thr

1125 1130 1135

gat aat gta att gtc tgt cag tat gat aag att cat cga agc aag aac 3573
Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile His Arg Ser Lys Asn

1140 1145 1150

aaa tgg aaa ttc tat ttg aaa gat ggt gtt atg tgt ttt gga ggg aga 3621
Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met Cys Phe Gly Gly Arg

1155 1160 1165

gac tat gta ttt gca aaa gcc att ggt gat gca gag tgg taaaccttgt 3670
Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala Glu Trp

1170 1175 1180

gagctcagta catctatttt gtgaacatca gttggactat attgcattt gtgaattcat 3730

ttttatTTG aatatAGTCC agcacAGAGC tGTTCAAATT tttAGTTcAC tGTATGGAAT 3790

ttaataaaat tataattcag atgcagatac aatt 3824

<210> 4

<211> 1182

<212> PRT

<213> Homo sapiens

<400> 4

Met Cys Ser Thr Asn Pro Gly Lys Trp Val Thr Phe Asp Asp Asp Pro

1 5 10 15

Ala Val Gln Ser Ser Gln Lys Ser Lys Asn Phe Pro Leu Glu Asn Gln

20

25

30

Gly Val Cys Arg Pro Asn Gly Leu Lys Leu Asn Pro Pro Gly Leu Arg

35

40

45

Glu Phe Pro Ser Gly Ser Ser Ser Thr Ser Ser Thr Pro Leu Ser Ser

50

55

60

Pro Ile Val Asp Phe Tyr Phe Ser Pro Gly Pro Pro Ser Asn Ser Pro

65

70

75

80

Leu Ser Thr Pro Thr Lys Asp Phe Pro Gly Phe Pro Gly Ile Pro Lys

85

90

95

Ala Gly Thr His Val Leu Tyr Pro Ile Pro Glu Ser Ser Ser Asp Ser

100

105

110

Pro Leu Ala Ile Ser Gly Gly Glu Ser Ser Leu Leu Pro Thr Arg Pro

115

120

125

Thr Cys Leu Ser His Ala Leu Leu Pro Ser Asp His Ser Cys Thr His

130

135

140

Pro Thr Pro Lys Val Gly Leu Pro Asp Glu Val Asn Pro Gln Gln Ala

145

150

155

160

Glu Ser Leu Gly Phe Gln Ser Asp Asp Leu Pro Gln Phe Gln Tyr Phe

165

170

175

Arg Glu Asp Cys Ala Phe Ser Ser Pro Phe Arg Lys Asp Glu Gly Ser

180

185

190

Asp Ser His Phe Thr Leu Asp Pro Pro Gly Ser Lys Lys Met Phe Ser

DRAFT COPY - NOT FOR DISTRIBUTION

195

200

205

Ser Arg Asn Lys Glu Met Pro Ile Asp Gln Lys Ser Leu Asn Lys Cys

210

215

220

Ser Leu Asn Tyr Ile Cys Glu Lys Leu Glu His Leu Gln Ser Ala Glu

225

230

235

240

Asn Gln Asp Ser Leu Arg Ser Leu Ser Met His Cys Leu Cys Ala Glu

245

250

255

Glu Asn Ala Ser Ser Phe Val Pro His Thr Leu Phe Arg Ser Gln Pro

260

265

270

Lys Ser Gly Trp Ser Phe Met Leu Arg Ile Pro Glu Lys Lys Asn Met

275

280

285

Met Ser Ser Arg Gln Trp Gly Pro Ile Phe Leu Lys Val Leu Pro Gly

290

295

300

Gly Ile Leu Gln Met Tyr Tyr Glu Gln Gly Leu Glu Lys Pro Phe Lys

305

310

315

320

Glu Ile Gln Leu Asp Pro Tyr Cys Arg Leu Ser Glu Pro Lys Val Glu

325

330

335

Asn Phe Ser Val Ala Gly Lys Ile His Thr Val Lys Ile Glu His Val

340

345

350

Ser Tyr Thr Glu Lys Arg Lys Tyr His Ser Lys Thr Glu Val Val His

355

360

365

Glu Pro Asp Ile Glu Gln Met Leu Lys Leu Gly Ser Thr Ser Tyr His

370

375

380

Asp Phe Leu Asp Phe Leu Thr Thr Val Glu Glu Leu Met Lys Leu
385 390 395 400

Pro Ala Val Ser Lys Pro Lys Lys Asn Tyr Glu Glu Gln Glu Ile Ser
405 410 415

Leu Glu Ile Val Asp Asn Phe Trp Gly Lys Val Thr Lys Glu Gly Lys
420 425 430

Phe Val Glu Ser Ala Val Ile Thr Gln Ile Tyr Cys Leu Cys Phe Val
435 440 445

Asn Gly Asn Leu Glu Cys Phe Leu Thr Leu Asn Asp Leu Glu Leu Pro
450 455 460

Lys Arg Asp Glu Ser Tyr Tyr Glu Lys Asp Ser Glu Lys Lys Gly Ile
465 470 475 480

Asp Ile Leu Asp Tyr His Phe His Lys Cys Val Asn Val Gln Glu Phe
485 490 495

Glu Gln Ser Arg Ile Ile Lys Phe Val Pro Leu Asp Ala Cys Arg Phe
500 505 510

Glu Leu Met Arg Phe Lys Thr Leu Tyr Asn Gly Asp Asn Leu Pro Phe
515 520 525

Ser Leu Lys Ser Val Val Val Gln Gly Ala Tyr Val Glu Leu Gln
530 535 540

Ala Phe Val Asn Met Ala Ser Leu Ala Gln Arg Ser Ser Tyr Ala Gly
545 550 555 560

Ser Leu Arg Ser Cys Asp Asn Ile Arg Ile His Phe Pro Val Pro Ser

565 570 575

Gln Trp Ile Lys Ala Leu Trp Thr Met Asn Leu Gln Arg Gln Lys Ser

580 585 590

Leu Lys Ala Lys Met Asn Arg Arg Ala Cys Leu Gly Ser Leu Gln Glu

595 600 605

Leu Glu Ser Glu Pro Val Ile Gln Val Thr Val Gly Ser Ala Lys Tyr

610 615 620

Glu Ser Ala Tyr Gln Ala Val Val Trp Lys Ile Asp Arg Leu Pro Asp

625 630 635 640

Lys Asn Ser Ser Leu Asp His Pro His Cys Leu Ser Tyr Lys Leu Glu

645 650 655

Leu Gly Ser Asp Gln Glu Ile Pro Ser Asp Trp Tyr Pro Phe Ala Thr

660 665 670

Val Gln Phe Ser Val Pro Asp Thr Cys Ala Ser Arg Thr Glu Val Arg

675 680 685

Ser Leu Gly Val Glu Ser Asp Val Gln Pro Gln Lys His Val Gln Gln

690 695 700

Arg Ala Cys Tyr Asn Ile Gln Pro Lys Leu Tyr Arg Ser Val Ile Glu

705 710 715 720

Asp Val Ile Glu Gly Val Arg Asn Leu Phe Ala Glu Glu Gly Ile Glu

725 730 735

Glu Gln Val Leu Lys Asp Leu Lys Gln Leu Trp Glu Thr Lys Val Leu

740

745

750

Gln Ser Lys Ala Thr Glu Asp Phe Phe Arg Asn Ser Ile Gln Ser Pro

755

760

765

Leu Phe Thr Leu Gln Leu Pro His Ser Leu His Gln Thr Leu Gln Ser

770

775

780

Ser Thr Ala Ser Leu Val Ile Pro Ala Gly Arg Thr Leu Pro Ser Phe

785

790

795

800

Thr Thr Ala Glu Leu Gly Thr Ser Asn Ser Ser Ala Asn Phe Thr Phe

805

810

815

Pro Gly Tyr Pro Ile His Val Pro Ala Gly Val Thr Leu Gln Thr Val

820

825

830

Ser Gly His Leu Tyr Lys Val Asn Val Pro Ile Met Val Thr Glu Thr

835

840

845

Ser Gly Arg Ala Gly Ile Leu Gln His Pro Ile Gln Gln Val Phe Gln

850

855

860

Gln Leu Gly Gln Pro Ser Val Ile Gln Thr Ser Val Pro Gln Leu Asn

865

870

875

880

Pro Trp Ser Leu Gln Ala Thr Thr Glu Lys Ser Gln Arg Ile Glu Thr

885

890

895

Val Leu Gln Gln Pro Ala Ile Leu Pro Ser Gly Pro Val Asp Arg Lys

900

905

910

His Leu Glu Asn Ala Thr Ser Asp Ile Leu Val Ser Pro Gly Asn Glu

915

920

925

His Lys Ile Val Pro Glu Ala Leu Leu Cys His Gln Glu Ser Ser His

930 935 940

Tyr Ile Ser Leu Pro Gly Val Val Phe Ser Pro Gln Val Ser Gln Thr

945 950 955 960

Asn Ser Asp Val Glu Ser Val Leu Ser Gly Ser Ala Ser Met Ala Gln

965 970 975

Asn Leu His Asp Glu Ser Leu Ser Thr Ser Pro His Gly Ala Leu His

980 985 990

Gln His Val Thr Asp Ile Gln Leu His Ile Leu Lys Asn Arg Met Tyr

995 1000 1005

Gly Cys Asp Ser Val Lys Gln Pro Arg Asn Ile Glu Glu Pro Ser Asn

1010 1015 1020

Ile Pro Val Ser Glu Lys Asp Ser Asn Ser Gln Val Asp Leu Ser Ile

1025 1030 1035 1040

Arg Val Thr Asp Asp Ile Gly Glu Ile Ile Gln Val Asp Gly Ser

1045 1050 1055

Gly Asp Thr Ser Ser Asn Glu Glu Ile Gly Ser Thr Arg Asp Ala Asp

1060 1065 1070

Glu Asn Glu Phe Leu Gly Asn Ile Asp Gly Gly Asp Leu Lys Val Pro

1075 1080 1085

Glu Glu Glu Ala Asp Ser Ile Ser Asn Glu Asp Ser Ala Thr Asn Ser

1090 1095 1100

Ser Asp Asn Glu Asp Pro Gln Val Asn Ile Val Glu Glu Asp Pro Leu
105 1110 1115 1120

Asn Ser Gly Asp Asp Val Ser Glu Gln Asp Val Pro Asp Leu Phe Asp
1125 1130 1135

Thr Asp Asn Val Ile Val Cys Gln Tyr Asp Lys Ile His Arg Ser Lys
1140 1145 1150

Asn Lys Trp Lys Phe Tyr Leu Lys Asp Gly Val Met Cys Phe Gly Gly
1155 1160 1165

Arg Asp Tyr Val Phe Ala Lys Ala Ile Gly Asp Ala Glu Trp
1170 1175 1180

<210> 5

<211> 261

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(30)

<223> Variable 3' end for both ALF and SALF

<400> 5

gca ttc cca aga agg aca tcg ttt aac acc taaactcatt taacaaagga 50

Ala Phe Pro Arg Arg Thr Ser Phe Asn Thr

1 5 10

tccgagaaga acagggacag tgtggagaaga aatcttcttg tcatggcata tttgttcct 110

atatttcttc tggaatcatg ttgcgttggc ttcctgatta aaaacacagt tttattgctc 170

tctgcactgc caaaccaata aatttacaga agagaaagct gtattccact gtacccttg 230

cagcatcaat aaaactgaca gccaaaaaaaa a 261

<210> 6

<211> 10

<212> PRT

<213> Homo sapiens

<400> 6

Ala Phe Pro Arg Arg Thr Ser Phe Asn Thr

1

5

10

<210> 7

<211> 18

<212> DNA

<213> Homo sapiens

<400> 7

agaaaattcccc tctgattg

18

<210> 8

<211> 18

<212> DNA

<213> Homo sapiens

<400> 8

agtaacccga atgcttaa

18

<210> 9
<211> 18
<212> DNA
<213> Homo sapiens

<400> 9
atgctagctg aaccactg

18

<210> 10
<211> 27
<212> DNA
<213> Homo sapiens

<400> 10
ccatcctaat acgactcact ataggc

27

<210> 11
<211> 23
<212> DNA
<213> Homo sapiens

<400> 11
actcaata gggctcgagc ggc

23

<210> 12
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:oligonucleotide

<400> 12
ccagaaggta gaattgcggg ttgctgttagc 30

<210> 13
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:oligonucleotide

<400> 13
ggtgctgtca tggcctgcct caaccgg 28

<210> 14
<211> 52
<212> DNA
<213> Homo sapiens

<400> 14
actactcata tggcacacca tcaccatcac catgtaccta aactctacag at 52

<210> 15
<211> 30
<212> DNA
<213> Homo sapiens

<400> 15
agttagtggat ccttaccact ctgcatcacc 30

<210> 16
<211> 8
<212> PRT
<213> Homo sapiens

<400> 16
Met His His His His His His Val
1 5

<210> 17
<211> 6
<212> PRT
<213> Homo sapiens

<400> 17
Met Ala Cys Leu Asn Pro
1 5

<210> 18
<211> 23
<212> DNA
<213> Homo sapiens

<400> 18
tactgctcga gcaactttag agt

23

<210> 19
<211> 29
<212> DNA
<213> Homo sapiens

<400> 19

ggagtttcaa gtgcccgagg ctgctgtgg

29

GCTGGAGGTGCTGTCATGGCCTGCCCAACCCGGTGCCTAAACTCTACAGATCTGAATTGAAGATGTAATTGAAGGGAGT
TCGGAATCTATTTGCTGAGAAGGTTAGAGGAACAAGTTAAAAGACTTGAGCAGCTGGGAAACCAAGGTTTGG
AGTCTAAAGCAACAGAACAGACTTCTTCAGAAATAGCATCCAATCACCTCTGTTACTCTTCAGTGGCGCACAGCTTGAC
CAAACATTGCAATGTCACAGCATCATTAGTTATTCCTGCTGTTAGACTCTTCAAGTTTACACAGCAGAACGACTGG
CACTTCAACATTCCAGTCGAAACTTTACTTTTCTGGTTATCCCCATTCACTGTAACCCAGGTGACACTACAGACTGTT
CTGGTCACCTTTAAAGTCATGCAATTAGGTCAGAGACAGACTTCTGGAAGAGCAGGTTATCTTCAGCATCCAAATT
CAGCAAGTATTCAACAGCTTGGCAGCCTTCAGTAATACAAACTAGTGTTCACAAATTGATCCATGGTCTTCAG
AACTACTGAAAAATCACAGAGAATTGAAACCGTGTACAGCAACCCGAATTCTACCTCTGGGCCAGTAGATAGGAAAC
ACTTAGAAAATGCCACCAGTGATACTTGTATCTCTGGAAATGAGCATAAAATCGGCCGAAAGCTTGTGTGTCAT
CAGGAAAGTCTCACTATATCAGTCTCCAGGTGTTGTTATTTCTCACAGGCTCTCAACAAATTCTGATGTGGAGTC
AGTGTGCTAGTGGTCAGTCAGCATGGCTCAAAATCTGATGAGTCCCTCTCCACAAGCCCTCATGGGCTCTCCACC
ACCACGTGACTGATATTCTAGCTTCATATTCTAAAAATAGGATGTTAGGATGTTAGCTGTAAGCAACCAAGAAATATA
GAGGAACCCAGCAACATACCTGTTACAGAGAAGGATTCTAATTCTGGATGTTAGCTGGTTACTGATGATGA
TATTGGTGAATAATTCAAGTAGATGGAAGCGGTGATACATCTCAATGAGAAATAGGAGTACAAGAGATGCAAGATG
AGAATGAATTCTAGGAAATTGACGGGGAGATCTGAAGGTACCTGAAAGAAGACGTCAGATTCTCAAATGAGGAT
TCAGGCCACAAACAGTAGTGATAATTGAAAGACCCCTCAAGTAAACATTGAGAAGAGGACCTTAAATTCTGGAGATGATGT
TAGTGAAACAGGATGTCAGACGCTGTTGACACGAGATAATTGTAATTGCTGTCAGTATGATAAGATTGATGAAAG
ACAAATGGAAATTCTATTGAAAGATGGTTATGTTGGAGGGAGAGACTATGTTAGCTGAAAGCCATTGGTGT
CGAGACAGTGGTAAACCTTGTGAGCTCAGTACATCTATTGTAACATCAGTGGACTATATTGCAATTGTAATTGCAATT
TTTATTGTAATAGTCCAGCACAGACTGTTCAATTGTTAGTCACTGTTAGTGAATTAAATTATAATTCAAG
TGCAGATACAAATTACAC

Figure 1.

MACLNPVPKLYRSVIEDVIEGVRNLFAEEGIEEQVLKDLKLQWLTKVLSQSKATEDFFRNSIQSPLFTLQLPHSLHQTLQS
STASLVIAPAGRTLPSFTAELGTSNSSANFTFPGPYPIHVPAGVTQTVSGHLKVNVPMIVTETSGRAGILQHPIQQVFQ
QLQCPSPVIQTSPVQLNEWSLQATTEKSQRRIETVLLQQPAILPSPGVDRKHLENATSIDLVSFGNEHKIVPEALLCHQESSH
YISLPGVVFSPQVSQNTSDVEVSLSGSASMAQNLHDESLSTSFGHALHQHVTDIQLHILKRNVMQGDSVKQPRNIEEPSN
IPVSEKSDNSQVDSLIRTVPTDDDEGI1QVGDQSGDTSNEEIGSTRDADENEFLGNIDGGDLKVPSEEADSISNEDSATNS
SDNEDPQVNIVEEDPLNSGDDVSEQDVFDLFDTNVIVCQYDKIHRSKNKWKFYLKDGMCFGGGRDYVFAKIGDAEW

Figure 2.

GGACTTTGGGACTGGACAGACCTGGTACAGTCTAGGTTTACATCTTACTGGTCAGCAACTTAGAGTCACACCTATTT
 GATTCTTGACAAGACCACAATCTGATCCAAAGATGTGTCACCAAATCCAGGCAATGGGTCACTTGTGATGATGATC
 CTGCTGTTCAATCTCTAAAAGTCAAGAATTCTCTGGAGAATCAAGGTGTCAGGACCAATGGACTGAAGCTG
 AACCCCTCTGGCCTCAGGGAATTCCCAGTGGATCTCCTCCACAGCAGCACTCTCTCTCCCTCCCCATTGAGATTT
 TTATTCAGTCCAGGACCTCCAAGTAACCTCCTCTTCTACACCTACCAAGACTTCCAGGTTTCTGGCATCCCCA
 AACAGGGACTCATGCTTATCCAGAATCATCTCAGACAGCCCAGCAGCAATATCAGGAGGAGAATCTTCC
 TTACTGCCTACAGACCAACATGTTATCCATGCCGTTACCAAGTGCACACTCATGTACACATCCAACCTCCAAAGT
 AGGTCTCCAGTGAAGTAACTCTCACAGGCTGAAGGCAGTCCAAAGTGATGATCTCCCCAGTTCAGTATT
 TTCGAGAGGACTGTGCTTTCAAGTCATCTCGGAAAGATGAAGGAGTGTGATCTCCATTTCACCCCTGACCCACCAGGA
 AGCAGAAAAGATGTTCTCATCGAAGAACAGGAGATGCTTATGACCCAAAGGCTAAATAAGTGTCACTCAACTATAT
 CTGAGAAGCTGAACATCTCAGTCACTGAGAACCAAGACTCACTTAGAAGTTGTCATGCACTGTCTATGCTG
 AAGAAAATGCCCTCTCCTTGTCCCCACACACTCTCAGGAGTCAGCAAAATCCGGATGCTTCTCATGCTGAGAATT
 CCTGAGAAGAAGAATATGATGTCCTCCCGCAATGGGGACCAATTCTGAAAGTTGCTGGAGGAATTGAGAT
 GTATTATGAACAGGATTAGAAAAACATTAAAGAGATACAGCTGATCCATTTGAGCTTCTGAACCCAAAGGTTG
 AGAACCTCAGTGTAGCAGGAAACACTGTCAGAAGATTGAAGATGTCAGTGTACACAGAAAAAGGAAATACCAATTCT
 AAGACAGAAGTAGTGTCACTGACATAGAGCAGATGCTGAAGTTGGGTCACACTGTCAGTACTGACTTCTGACTT
 TCTGACTACTGTGGAGGAGGACCTGATGAAGTCCAGCTGTCAGGCTTCAAAACAAAAGAACACTACAGGAGGAGAAGAAATT
 CCTTGGAAATTGAGCAACTTTGGGTAAGTCACAAAAGGAAAATTGAGCTGAAAGTGTGATAACTCAAATT
 TATTGCTCTGTTGTGAATGGGACTTGAATGCTTAACTTGAATGACCTTCTGACTACCATTTCATAAGTGTGTAATGACAAGAAT
 TTGAGCAATCAAGAATCATTAAGTTGACCTCTGGATGCCCTGCCGTTGAGCTGATGCTTCAAGACTTTGTATAAT
 GGGGATAATCTCCCTTCTGAAAGTGTGAGTGTGCTGCAAGGAGCATAACGGTAACTCAGGCTTGTCAACAT
 GGCCATGGGCAAGGGTCACTCTGCTGTTCTGCTGTTCTTAAGGCTCTGTGACAATATAAGGATACACTTCTGCCCCAT
 CGCAGTGGATCAAGGCCCTTGGACCATGAACTCTGCACTGTCATTCAAGTCACTGTGGGTCAGCAAAATGAACCGCAGGATGT
 CTGGGAGTTTACAGGAACTTGAACATCTGAACCTGTCACTGTCAGTGTGCTGAGGAGTGTGCTTACCA
 GCCAGTGGATGAGAAGATAGATGGCTTCAAGCAAAATTCAAGTCTAGATCATCCCCATTGCTGTCAACAAATTAG
 AGCTTGGATCAGACCAAGAAATTCCCTGATTGATCCATTGCTACTGTCAGTTCCGGTGTGACACCTGTGCC
 TCAAGGACAGAGGTCAAGGCTCTGGAGTGGAGTGTGTCAGGCCACAGAAACATGTCAGCAGCAGGCTGTACAA
 CATCCAGCCTAAACTCTACAGATCTGTAATTGAAGATGTAATTGAAGGAGTGTGCAATATTGCTGAAGAAGGTATAG
 AGGAACAAGTTAAAGACTTGAAGCAGCTGGAAACCAAGTTTGCACTGTCAAAGCAACAGAACAGACTTCTCAGA
 ATATGATCATTCTGCTGTTACTCTCACTGTCAGGCCACAGCTGCAACAAACATTGCAACAGCATT
 AGTTATTCTGCTGTTACTCTCAAGTTTCAACAGGACTCTCAAAACAAATTCTGATGTGGAGTGTGCTAGTGTGCAAAACTTACTT
 TTCCCTGGTTATCCATTCTGTCAGCAGGACTCTCAACAGGACTCTGATGTGTCAGTGTGCACTTAAAGTCAATGTACCA
 ATTATGGTACAGAGACTCTGGAAAGAGCAGGTATTCTCAGCATCAATTCAAGTCAAGTATTCAACAGCTGGCCAGCC
 TTCAGTAATACAAACTAGTGTCCACAATTGAATCCATGGTCTCTCAAGCAACTACTGAAAAATCACAGAGAATTGAAA
 CCGTGTACAGCAACCCGCAATTCTACCTCTGGGCACTAGATAGGAAACACTAGAAAATGCCACCACTGTGATATACTT
 GTATCTCTGGAATGAGCATAAAATCTGCTGTAAGCTTGTGTCATCAGGAAAGTCTCACTATATCAGTCTTCC
 AGGTGTTGTTCTCCACAGGTCTCTCAAAACAAATTCTGATGTGGAGTGTGCTAGTGTGTCAGTGTGCT
 AAAATCTGATGAGTGGCTCTCCACAGGCTCATGGGCTCTCCACAGCAGTGTGACTGATATTGAGCTTCAATATT
 CTAAAAAATAGGATGATGGATGATCTGTAAGCAACCAAAATAGGAAACCCAGCAACATACCTGTATCAGA
 GAAGGATTCTAATTCTCAGGTGGATTAAAGCATCGGTTACTGATGATGATATTGGTGAATAATTCAAGTATGGAA
 GCGGTGATACATCTCCAATGAAGAAATAGGAAAGTACAAGAGATGCAAGATGAGAATGAATTCTAGGGATATTGACGGG
 GGAGATCTGAAGGTACCTGAAGAAGAGCTGACAGTATTCTAAATGAGGATTGCCACAAACAGTAGTGATAATGAAGA
 CCCTCAAGTAACATTGAGAAGAGGACCTTAAATTCTGGAGATGATGTTAGTGAACAGGATGTGCCAGACCTGTTG
 ACACGGATAATGTAATTGTCAGTATGATAAGATTCTGCAAGCAAGAACATGAAATTCTATTGAAAGATGGT
 GTTATGTGTTGGAGGAGAGACTATGTTGCAAAAGGCTTGGTGTGAGCTGAGTGTGAAACCTTGTGAGGCTCAGTA
 CATCTATTGTGAACATCATGTTGACTATATTGCAATTGTAATTGAAATTAGTCCAGCACAGAGC
 GTTCAAATTAGTGTGACTGATGAAATTAAATTCAAGTACATT

Figure 3.

MCSTNPWKWTFDDDPAVQSSQSKNFPLENQVCRPNGLKLNPPGLREFPSGSSTSSTPLSSPIVDFYFSPGPPNSP
 LSTPTKDFPGPGIPKAGTHVLYPIPESSSDSPLAISSGESSLLPRTPTCLSHALLPSDHSCTHPTPKVGLPDEVNPQQA
 ESLGFQSDDLPQFQYFREDCAFSPFRKDEGSDSHFTLDPPGSKMMSSRNKEMPIDQKSLNKSCLNYICEKLEHLQSAE
 NQDSLRSLSMHCLCAEENASSFVPHTLFRSQPKSGWSFMLRIPEKKNMMSRQWPFIQLKVLPGGILQMYEQGLEKPK
 EIQLDPYCRLSEPKVENFSVAGKIHTVKIEHVSYTEKRKYHSKTEVVHEPDIEQMLKLGSTSYHDFLDELTVEEELMKL
 PAVSKPKKNYEEQEISLEIVDNFWGKVTKEGKFVESAVITQIYCLCFVNGLECFLTLNDLELPKRDESYYEKDSEKKGI
 DILDYHFHKCVNVQEFEQSRIIKFVPLDACRFELMRFKTLYNGDNLPFSLKSVVVQGAYVELQAFVNMASLAQRSSYAG
 SLRSCDNIRIHFVPSQWIKALWTMNLQRQKSLKAKMNRRACLGLSLOELESEPVIQVTVGSAKYESAYQAVVWKIDRLPD
 KNSSLDDHPHCLSYKLELGSDQEIIPSDWYPFATVQFSVPDTCSRTEVRSLVESDVQPQKHVQQRACYNIQPKLYRSVIE
 DVIEGVNRNLFEEGIEEQVLKDLKQLWETKVLQSKATEDFFRNSIQSPLFTLQLPHSLHQTLQSSTASLVI PAGRTLPSF
 TTAELGTSNSSANFTFPGYPIHVPAGVTLQTVSGHLYKVNVPIMVETSGRAGILQHPIQOVFQQLGPSPVQIQTSPQLN
 PWSLQATTEKSQRRIETVLQQPAILPSGPVDRKHLENATSDILVSPGNEHKIVPEALLCHQESSHYIISLPGVVFSPQVSOT
 NSDVESEVLGSGASMAQNLHDESLSTSHPHALQHVTIDQLHILKNRMYGCDSVKQPRNIEEPSNIPVSEKDSNSQVDLSI
 RVTDDDIGEIIVQVDGSGDTSNEEIGSTRADENEFLGNIDGGDLKVPPEEADSISNEDSATNNSDNEPDQPVNIVEEDPL
 NSGDDVSEQDVPDLFDTNVIVCQYDKIHRSKNKWFYKLKGVMFCGGRDYVFAKAIGDAEW

Figure 4.

GCATTCCAAGAAGGACATCGTTAACACCTAAACTCATTAAACAAGGATCCGAGAAGAACAGGGACAGTGTGGGAAGA
AATCTTCTTGATGGCATTTGCTTCTATATTCCTCTGGAAATCATGTTCCCTGGCTTCTGATTAACACAGT
TTTATTGCTCTGCACTGCCAACCAATAAATTACAGAAGAGAAAGCTGTATTCCACTGTACCCCTGCAGCATCAAT
AAAACGTGACAGCC

Figure 5.

AFPRRTSFNT

Figure 6.

FIG 7 A-C

A

B

FIG 8A, 8B

Fig 9

FIG 10 A - E

FIG II A - F

FIG 12 A-D

PATENT
Attorney Docket No.: 119941-1053
UTDal No. 99-003

DECLARATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled "**Transcription Factors Related to TFIIA**", the Specification of which:

X is attached hereto.
 was filed on as Application Serial No. .

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims.

I acknowledge the duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability of the subject matter claimed in this application, as "materiality" is defined in Title 37, Code of Federal Regulations, § 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

PRIOR FOREIGN APPLICATION(S)

Priority	<u>Claimed</u>		
(Number)	(Country)	(Date Filed)	Yes/No

I hereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below:

None

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose all information known to me to be material to patentability of the subject matter claimed in this application, as "materiality" is defined in Title 37, Code of Federal Regulations, § 1.56, which become available between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.) (Filing Date) (Status)

(Application Serial No.) (Filing Date) (Status)

I hereby direct that all correspondence and telephone calls be addressed to Daniel F. Perez, Gardere & Wynne, L.L.P., 1601 Elm Street, Suite 3000, Dallas, Texas 75201-4761, (214)999-3000.

I hereby declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Inventor's Full Name: Jeff L. DeJong
(First) (Initial) (Last)

Inventor's Signature: Jeff DeJong

Date: 8/20/99 Country of Citizenship: USA

Residence Address: 534 Newberry Drive, Richardson, Texas 75080

Post Office Address: _____
(if different from residence address) _____

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Jeff DeJong

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

Please direct all communications as follows:

Daniel F. Perez, Esq.
GARDERE & WYNNE, L.L.P.
3000 Thanksgiving Tower
1601 Elm Street
Dallas, Texas 75201-4761

ASSIGNEE:

BOARD OF REGENTS, THE
UNIVERSITY OF TEXAS SYSTEM

By:

Name: Ray Farabee
Title: Vice Chancellor

and General Counsel

Date: May 27, 1999

ASSIGNMENT:

Concurrently filed
 Previously recorded
Date: _____
Reel: _____
Frames: _____