- 1. Rudin, page 139. Problems 10 12, 15, 17, 19.
 - 10. Let p and q be positive real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove the following statements.

(a) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

Equality holds if and only if $u^p = v^q$.

(b) If $f \in \mathcal{R}(\alpha)$, $g \in \mathcal{R}(\alpha)$, $f \ge 0$, $g \ge 0$, and

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha,$$

then

$$\int_{a}^{b} fg d\alpha \le 1.$$

(c) If f and g are complex functions in $\mathcal{R}(\alpha)$, then

$$\left| \int_a^b f g d\alpha \right| \le \left(\int_a^b |f|^p d\alpha \right)^{1/p} \left(\int_a^b |g|^q d\alpha \right)^{1/q}.$$

This is Hölder's inequality. When p = q = 2 it is usually called the Schwarz inequality. (Note that Theorem 1.35 is a very special case of this.)

(d) Show that Hölder's inequality is also true for the "improper" integrals described in Exercises 7 and 8.

Solution

(a) The inequality is trivial when either u=0 or v=0, so assume both are positive. $z\to e^z$ is a concave up, hence for any $x,y\in\mathbb{R}$ and $t\in[0,1]$,

$$(1-t)e^x + te^y \ge e^{(1-t)x+ty} = (e^x)^{1-t} (e^y)^t$$
.

Setting $x = \ln u^p$, $y = \ln v^q$, and $t = \frac{1}{q}$ establishes the inequality. Note that equality is achieved when either $t \in \{0,1\}$ (which, for positive p,q, cannot happen) or when x = y, which happens if and only if $u^p = v^q$.

(b) Using the above inequality, for all $x \in [a, b]$,

$$\frac{f(x)^p}{p} + \frac{g(x)^q}{q} \ge f(x)g(x),$$

hence, given $\int f^p d\alpha = \int g^q d\alpha = 1$,

$$1 = \int_{a}^{b} \left(\frac{f^{p}}{p} + \frac{g^{q}}{q} \right) d\alpha \ge \int_{a}^{b} fg d\alpha.$$

(c) Let

$$c = \left(\int_a^b |f|^p d\alpha\right)^{1/p},$$
$$d = \left(\int_a^b |g|^q d\alpha\right)^{1/q}.$$

Then $\int \left| \frac{f}{c} \right|^p d\alpha = \int \left| \frac{g}{d} \right|^q d\alpha = 1$, hence the preceding inequality gives

$$\int_{a}^{b} \left| \frac{f}{c} \right| \left| \frac{g}{d} \right| d\alpha \le 1$$

from which it follows that

$$\int_a^b |f| |g| d\alpha \leq cd = \left(\int_a^b |f|^p d\alpha \right)^{1/p} \left(\int_a^b |g|^q d\alpha \right)^{1/q}.$$

(d)

11. Let α be a fixed increasing function on [a,b]. For $u \in \mathcal{R}(\alpha)$, define

$$||u||_2 = \left(\int_a^b |u|^2 d\alpha\right)^{1/2}.$$

Suppose $f, g, h \in \mathcal{R}(\alpha)$, and prove that triangle inequality

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37. Solution

$$\begin{split} \|f-h\|_2^2 &= \int |f-h|^2 d\alpha = \int \left(|f|^2 + |h|^2 - f\overline{h} - \overline{f}h\right) d\alpha \\ &= \int \left(|f|^2 + |g|^2 - f\overline{g} - \overline{f}g\right) d\alpha + \int \left(|g|^2 + |h|^2 - g\overline{h} - \overline{g}h\right) d\alpha \\ &+ \int \left(f\overline{g} + g\overline{h} - f\overline{h} - |g|^2\right) d\alpha + \int \left(\overline{f}g + \overline{g}h - \overline{f}h - |g|^2\right) d\alpha \\ &= \int |f-g|^2 d\alpha + \int |g-h|^2 d\alpha + \int (f-g)\overline{(g-h)} d\alpha + \int \overline{(f-g)}(g-h) d\alpha \\ &\leq \|f-g\|_2^2 + \|g-h\|_2^2 + 2\left(\int |f-g|^2 d\alpha\right)^{1/2} \left(\int |g-h|^2 d\alpha\right)^{1/2} \\ &= \|f-g\|_2^2 + \|g-h\|_2^2 + 2\|f-g\|_2 \|g-h\|_2 \\ &= (\|f-g\|_2 + \|g-h\|_2)^2 \,. \end{split}$$

12. With the notations of Exercise 11, suppose $f \in \mathcal{R}(\alpha)$ and $\epsilon > 0$. Prove that there exists a continuous function g on [a,b] such that $||f-g||_2 < \epsilon$.

Hint: Let $P = \{x_0, \dots, x_n\}$ be a suitable partition of [a, b], define

$$g(t) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$$

if $x_{i-1} \leq t \leq x_i$.

Solution

Since $f \in \mathcal{R}(\alpha)$, f is bounded, say $|f| \leq M$. Given $\epsilon > 0$, choose $P = \{x_0, \ldots, x_n\}$ a partition of [a, b] according to Theorem 6.6 for $\epsilon/2M$:

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon/2M$$
.

Set q as in the hint, i.e.,

$$g(t) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$$

for $t \in [x_{i-1}, x_i]$. Then g is continuous (since $g(x_i) = f(x_i)$ whether we consider $t = x_i$ to be in $[x_{i-1}, x_i]$ or $[x_i, x_{i+1}]$), and for $t \in [x_{i-1}, x_i]$, g(t) is between $f(x_{i-1})$ and $f(x_i)$, hence $m_i \leq g(t) \leq M_i$. It follows that

$$m_i \Delta \alpha_i \le g(t) \Delta \alpha_i \le M_i \Delta \alpha_i, \ t \in [x_{i-1}, x_i],$$

hence

$$\int_{a}^{b} |f(t) - g(t)| d\alpha \le \sum_{i} (M_{i} - m_{i}) \Delta \alpha_{i} < \epsilon/2M,$$

and since $|f(t) - g(t)| \le 2M$ (g(t) is bounded in absolute value by M as well since it is bounded by images of f over each interval in P), we have that

$$||f - g||_2^2 = \int_0^b |f(t) - g(t)|^2 d\alpha < \epsilon.$$

15. Suppose f is a real, continuously differentiable function on [a,b], f(a)=f(b)=0, and

$$\int_{a}^{b} f^{2}(x)dx = 1.$$

Prove that

$$\int_{a}^{b} x f(x) f'(x) dx = -\frac{1}{2}$$

and that

$$\int_a^b \left(f'(x)\right)^2 dx \cdot \int_a^b x^2 f^2(x) dx > \frac{1}{4}.$$

Solution

By Theorem 6.22 (Integration by Parts) for F(x) = xf(x) and g(x) = f'(x),

$$\int_{a}^{b} x f(x) f'(x) dx = x f(x) f(x) \Big|_{a}^{b} - \int_{a}^{b} (f(x) + x f'(x)) f(x) dx = -1 - \int_{a}^{b} x f(x) f'(x),$$

hence

$$\int_a^b x f(x) f'(x) dx = -\frac{1}{2}.$$

By Cauchy-Schwarz,

$$\int_{a}^{b} (f'(x))^{2} dx \cdot \int_{a}^{b} (xf(x))^{2} dx \ge \left(\int_{a}^{b} f'(x)xf(x)dx\right)^{2} = \frac{1}{4}$$

with equality if and only if

$$f'(x) = cxf(x)$$

for some $c \in \mathbb{R}$. This is a separable differential equation with solution

$$f(x) = Ce^{cx^2/2}.$$

Now since $x \mapsto e^{cx^2/2}$ is never zero, the condition that f(a) = f(b) = 0 forces C = 0, hence $f \equiv 0$ and $\int f^2 dx = 0$ for any [a, b], violating the givens. We conclude that equality is impossible, and the inequality is strict.

17. Suppose α increases monotonically on [a,b], g is continuous, and g(x)=G'(x) for $a\leq x\leq b$. Prove that

$$\int_{a}^{b} \alpha(x)g(x)dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} Gd\alpha.$$

Hint: Take g real, without loss of generality. Given $P = \{x_0, x_1, \dots, x_n\}$, choose $t_i \in (x_{i-1}, x_i)$ so that $g(t_i)\Delta x_i = G(x_i) - G(x_{i-1})$. Show that

$$\sum_{i=1}^{n} \alpha(x_i)g(t_i)\Delta x_i = G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta \alpha_i.$$

Solution

Let $\epsilon > 0$ be given. Let $M = \max\{|\alpha(a)|, |\alpha(b)|\}$ (thus $\alpha \leq M$ on [a,b]). Since g is continuous on [a,b], which is compact, g is uniformly continuous on [a,b]. Similarly, G is differentiable on [a,b], hence continuous, hence uniformly continuous. Hence there exists a $\delta > 0$ such that $|g(x) - g(y)| < \epsilon/M(b-a)$ and $|G(x) - G(y)| < \epsilon/(\alpha(b) - \alpha(a))$ whenever $|x-y| < \delta$.

Let $P = \{x_0, \dots, x_n\}$ be a partition as in Theorem 6.6, such that

$$U(P, \alpha g) - L(P, \alpha g) < \epsilon,$$

$$U(P, G, \alpha) - L(P, G, \alpha) < \epsilon,$$

and also such that $\Delta x_i < \delta$ for each i. As per the hint, we can choose $t_i \in [x_{i-1}, x_i]$ such that $g(t_i)\Delta x_i = G(x_i) - G(x_{i-1})$. Then

$$\sum_{i=1}^{n} \alpha(x_i)g(t_i)\Delta x_i = \sum_{i=1}^{n} \alpha(x_i) \left(G(x_i) - G(x_{i-1})\right)$$

$$= \sum_{i=1}^{n} G(x_i)\alpha(x_i) - \sum_{i=1}^{n} G(x_{i-1})\alpha(x_i)$$

$$= \sum_{i=2}^{n+1} G(x_{i-1})\alpha(x_{i-1}) - \sum_{i=1}^{n} G(x_{i-1})\alpha(x_i)$$

$$= G(x_n)\alpha(x_n) - \sum_{i=1}^{n} G(x_{i-1}) \left(\alpha(x_i) - \alpha(x_{i-1})\right) - G(x_0)\alpha(x_0)$$

$$= G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta\alpha_{i}.$$

Further,

$$\left| \sum_{i} \alpha(x_{i}) g(t_{i}) \Delta x_{i} - \sum_{i} \alpha(x_{i}) g(x_{i}) \Delta x_{i} \right| \leq \sum_{i} |\alpha(x_{i})| |g(t_{i}) - g(x_{i})| \Delta x_{i}$$

$$< \frac{\epsilon}{M(b-a)} \sum_{i} |\alpha(x_{i})| \Delta x_{i} \leq \frac{\epsilon}{b-a} \sum_{i} \Delta x_{i} = \epsilon,$$

while

$$\left| \sum_{i} G(x_{i-1}) \Delta \alpha_i - \sum_{i} G(x_i) \Delta \alpha_i \right| \leq \sum_{i} |G(x_{i-1}) - G(x_i)| \Delta \alpha_i < \frac{\epsilon}{\alpha(b) - \alpha(a)} \sum_{i} \Delta \alpha_i = \epsilon,$$

Hence we find that

$$\left| \int_a^b \alpha(x) g(x) dx - G(b) \alpha(b) + G(a) \alpha(a) + \int_a^b G d\alpha \right| < 4\epsilon,$$

and since ϵ was arbitrary, the equality is proved.

19. Let γ_1 be a curve in \mathbb{R}^k , defined on [a,b]; let ϕ be a continuous 1-1 mapping of [c,d] onto [a,b], such that $\phi(c) = a$; and define $\gamma_2(s) = \gamma_1(\phi(s))$. Prove that γ_2 is an arc, a closed curve, or a rectifiable curve if and only if the same is true of γ_1 . Prove that γ_2 and γ_1 have the same length.

Solution

 γ_1 is an arc if and only if γ_1 is one-to-one if and only if $\gamma_2 = \gamma_1 \circ \phi$ is one-to-one if and only if γ_2 is an arc.

 γ_1 is a closed curve if and only if $\gamma_1(a) = \gamma_1(b)$ if and only if $\gamma_2(c) = \gamma_1(a) = \gamma_1(b) = \gamma_2(d)$ if and only if γ_2 is a closed curve.

Given $Q = \{c = x_0, x_1, \dots, x_{n-1}, x_n = d\}$ a partition of [c, d], there exists a corresponding partition $P = \phi(Q)$ of [a, b]. Further, if we let $y_i = \phi(x_i)$,

$$\Lambda(P, \gamma_1) = \sum_{i=1}^n |\gamma_1(y_i) - \gamma_1(y_{i-1})| = \sum_{i=1}^n |\gamma_2(x_i) - \gamma_2(x_{i-1})| = \Lambda(Q, \gamma_2).$$

Conversely, given a partition P of [a,b], there exists a partition $Q = \phi^{-1}(P)$ of [c,d] such that $\Lambda(Q,\gamma_2) = \Lambda(P,\gamma_1)$ (ϕ^{-1} exists since ϕ is one-to-one and onto). It follows that

$$\Lambda(\gamma_1) = \sup_{P} \Lambda(P, \gamma_1) = \sup_{Q} \Lambda(Q, \gamma_1) = \Lambda(\gamma_2).$$