Распределённое обучение нейросетей

и другие техники работы с большими данными

> Лишуди Дмитрий Петров Михаил Набатова Дарья

Современные модели и наборы данных

- Современные нейросети очень большие, миллиарды параметров
 - о GPT-3: 175 млрд параметров
 - 1 млрд 32-битных переменных занимают 4Гб памяти
- Чем больше параметров тем больше требуется данных; увеличение размера датасета увеличивает точность
 - Для стабильного спуска батчи придётся брать достаточно большими.
 - Из-за этого одна эпоха обучается очень долго

Цели

- Ускорить обучение на больших объёмах данных
- Сжать объёмы данных, занимаемых нейронной сетью
- Найти способ разделить модель между разными машинами

Какие решения бывают?

Data Parallel

- Хотим максимально задействовать в обучении несколько машин
 - о Поместим копию модели на каждую машину
- Обучение должно быть эквивалентно обучению на одной машине
 - Но если очень хочется, можно это нарушить
- Паралеллим батчи
 - Машины независимо делают шаги, затем обмениваются градиентами

Фундаментальные проблемы

- Выбирая размер батча, хотим золотую середину между скоростью и точностью:
 - о Маленькие батчи нестабильное обучение
 - о Слишком большие батчи маленький прирост качества
- Не любую нейросеть получится легко распараллелить
 - BatchNorm требует усреднения по всему батчу
 - Можно усреднять по микробатчам
 - RNN требует информации о предыдущих объектах
 - Нужно придумывать модификации

Какие особенности учесть?

- Скорость коммуникаций
 - Несколько GPU? Локальный кластер? Машины разбросанные по всей планете?
 - о Стоит учитывать пропускную способность сети: лучше нагружать равномерно
- Количество
 - Машин много или мало?
- Надёжность
 - Сколько сбоев и помех ожидать в машинах? В сети?

Способы обмена градиентами

По топологии

- 1. Централизовано
- 2. Децентрализовано

По времени

- 1. Синхронно
- 2. Асинхронно

Способы обмена градиентами

По топологии

- 1. Централизовано
- 2. Децентрализовано

По времени

- 1. Синхронно
- 2. Асинхронно

Децентрализовано + синхронно

- 1. Ждём, пока все закончат прямой проход
- 2. С помощью AllReduce получаем средний градиент по минибатчам
- 3. Меняем параметры
- 4. Модели на всех машинах совпадают, повторяем итерацию

Децентрализовано + синхронно

- 1. Ждём, пока все закончат прямой проход
- 2. С помощью AllReduce получаем средний градиент по минибатчам
- 3. Меняем параметры
- Модели на всех машинах совпадают, повторяем итерацию

Топологии коммуникаций

- Имеем М машин.
- Каждая машина хранит Р байт результатов.
- Хотим, чтобы каждая машина узнала результаты всех других

Топологии коммуникаций

- Имеем М машин.
- Каждая машина хранит Р байт результатов.
- Хотим, чтобы каждая машина узнала результаты всех других
- Каждый с каждым
 - 1 шаг
 - М(М-1)Р переданных байт
 - Большая нагрузка на каждую машину

- 1. Делим результаты на М групп весом Р/М
- На каждом шаге получаем сумму, прибавляем свой элемент и на следующий шаг отправляем эту группу

- 1. Делим результаты на М групп весом Р/М
- 2. На каждом шаге получаем сумму, прибавляем свой элемент и на следующий шаг отправляем эту группу

- 1. Делим результаты на М групп весом Р/М
- 2. На каждом шаге получаем сумму, прибавляем свой элемент и на следующий шаг отправляем эту группу

- 1. Делим результаты на М групп весом Р/М
- 2. На каждом шаге получаем сумму, прибавляем свой элемент и на следующий шаг отправляем эту группу

- 1. Делим результаты на М групп весом Р/М
- 2. На каждом шаге получаем сумму, прибавляем свой элемент и на следующий шаг отправляем эту группу
- 3. После 1 круга в каждой из машин будет сумма одной группы
- Делаем второе кольцо, в каждой машине будет сумма каждой группы

- 2(M-1) шагов
- Р/М байт одна машина передаёт каждый шаг
- 2PM(M-1)/M = 2P(M-1) байт суммарно
- По 2Р байт на машину равномерно и не зависит от М!
- А если кто-то может подвести?
 - Можно нескольким машинам дать одинаковый минибатч и дождаться самую быструю
 - Нужны дополнительные рёбра и вершины

TreeAllReduce

- 1. Передаём градиенты от листьев к корню
- 2. В каждом родителе суммируем
- 3. Передаём градиенты от корня к листьям

TreeAllReduce

- 1. <u>Передаём гр</u>адиенты от листьев к корню
- 2. В каждом родителе суммируем
- 3. Передаём градиенты от корня к листьям

- Не менее 2log М шагов
- 2Р(М-1) байт передать по всем машинам
- В среднем 2Р, но неравномерная нагрузка
- Можно заводить лишние машины
- Можно выполнять асинхронно

Централизовано (сервер параметров)

- Заводим отдельный серверы параметров
- Сервер собирает градиенты и редуцирует их

Централизовано (сервер параметров)

- Заводим отдельный сервер(ы) параметров
- Сервер собирает градиенты и редуцирует их
- Легко добавить асинхронность
 - Пока сервер редуцирует можно делать следующий шаг
 - Если градиенты каких-то машин задерживаются, можно пропустить их и усреднять по остальным

Централизовано (сервер параметров)

- Заводим отдельный сервер(ы) параметров
- Сервер собирает градиенты и редуцирует их
- Легко добавить асинхронность
 - Пока сервер редуцирует можно делать следующий шаг
 - Если градиенты каких-то машин
 задерживаются, можно пропустить их и
 усреднять по остальным
- Как синхронизировать?
 - Синхронизировать трудно, лучше использовать кольцо

Проблемы нагрузки

- Если сервер параметров один (или их мало), у него большая нагрузка сети.
- Если серверов слишком много, то получается проблема All-to-All
- Могут быть эффективны топологии деревьев

Градиенты с задержкой

- Градиенты для асинхронного сервера получатся с задержкой
- Они показывают направление наискорейшего спуска для прошлого набора параметров
- Это может сильно ухудшить сходимость градиентного спуска, придётся придумывать трюки
 - Например уменьшать весь таких градиентов

Итоги

Синхронно	Асинхронно
+ Хорошая точность; обучение в точности как на одной машине	- Нестабильность и снижение точности из-за устаревших градиентов
- Возможен боттлнек из-за медленной коммуникации	+ Устойчивость к задержкам сети и отказам отдельных машин

Итоги

	Централизовано	Децентрализовано
-	Большая сетевая нагрузка на один сервер, пропорциональна количеству машин. На несколько серверов требуется много коммуникаций от каждой машины	+ Можно сделать сетевую нагрузку на все машины равномерной и не зависящей от их количества с помощью кольца
-	Дополнительные траты на создание и поддержку серверов	+ Не требуется дополнительных затрат, машины обмениваются непосредственно
+	Устойчивость к задержкам сети и отказам отдельных машин	- Задержки или сбои сети и машин сильно затормаживают решение через кольцо
+	Легко выполнять асинхронно, но синхронно выполнять не стоит	+ Легко выполнять синхронно, но можно выполнять и асинхронно

Model Parallelism

Разбиение модели на части.

- каждая машина учит свой набор параметров;
- процессы обмениваются данными при проходе вперёд-назад;
- устройства также могут отвечать за разные части данных.

Полносвязные слои

Меньше коммуникаций – лучше!

Weights are shown for processing element 1.

Полносвязные слои

Умножать матрицы можно более или менее хитро.

$$egin{pmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{pmatrix} = egin{pmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{pmatrix} egin{pmatrix} B_{11} & B_{12} \ B_{21} & B_{22} \end{pmatrix} = egin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

Свёрточные слои

- если разбивать ядро поканально, слишком объёмная коммуникация;
- можно разбивать ожидаемый выход на области;
- обычно model parallel не применяется к свёрткам, так как по памяти проблем нет.

Pipelining

Частный случай model parallelism, когда разбиение модели имеет строго последовательную структуру.

Hybrid Parallelism

Можно комбинировать техники и использовать для каждого слоя ту технику, которая больше подходит под природу слоя.

Оптимизации при работе с данными

- Работа с графами вычислений gradient checkpoint
- Сжатие данных mixed precision training
- Компактное представление тензоров ТТ-разложение

Оптимизация при работе с графом вычислений

- Оптимальное решение по времени – хранить все вычисления в памяти
- Сложность по времени O(n)
- Сложность по памяти O(n)

- Оптимальное решение по памяти – каждый раз пересчитывать узлы
- Сложность по времени $O(n^2)$
- Сложность по памяти O(1)

- Хотим иногда пересчитывать узлы, но не слишком часто
- Идея пометить некоторые узлы
- Непомеченные узлы хранятся в памяти до тех пор, пока больше не потребуются

Простая нейронная сеть с прямой связью с n слоями

- Хотим иногда пересчитывать узлы, но не слишком часто
- Идея пометить некоторые узлы
- Непомеченные узлы хранятся в памяти до тех пор, пока больше не потребуются

Простая нейронная сеть с прямой связью с n слоями

- Сложность по памяти $O(\sqrt{n})$
- Сложность по времени O(n)
- Проблема: нет единого
 алгоритма для всех графов,
 контрольные точки надо
 подбирать вручную

- Сложность по памяти $O(\sqrt{n})$
- Сложность по времени O(n)
- Проблема: нет единого алгоритма для всех графов, контрольные точки надо подбирать вручную

- Для дерева «Разделяй и властвуй»
- Для общего графа разложение по дереву

- Если граф близок к дереву и ширина графа при этом маленькая, можем решать задачу поиска оптимального выбора чекпоинтов рекурсивно
- На практике хватает O(n) времени

- Если граф близок к дереву и ширина графа при этом маленькая, можем решать задачу поиска оптимального выбора чекпоинтов рекурсивно
- На практике хватает O(n) времени

Mixed precision training

- FP16 для хранения градиентов и весов, FP32 используется для обновления весов
- Важно масштабировать потери

Mixed precision training

- FP16 для арифметики,
 хранения градиентов и копий весов, FP32 используется для хранения обновленных весов
- Важно масштабировать потери

Mixed precision training

bigLSTM English language model

Представление тензоров

- Тензор Т размерности d занимает в памяти $\mathcal{O}(n^d)$ места
- Аналогия с SVD для матриц SVD для тензоров. Занимает в памяти $O(rd^{-1}dnr)$ места

Представление тензоров

- SVD для матриц представление в виде одой диагональной матрицы и двух ортогональных
- SVD для тензоров представление в виде
 - тензора размерности d с размерами r
 - d ортогональных матриц

Представление тензоров

- Tensor Train разложение. Занимает в памяти $O(dnr^2)$ места.
- Тензор хранится в виде d 2 тензоров размерности 3 и двух матриц.

$$A(i_1, i_2, \ldots, i_d) = \sum_{\alpha_0, \alpha_1, \ldots, \alpha_d} G_1(\alpha_0, i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \ldots G_d(\alpha_{d-1}, i_d, \alpha_d),$$

где G_k — 3-мерные тензоры размеров $r_{k-1} \times n_k \times r_k$; $r_0 = r_d = 1$ (вводится искусственно для удобства).

Оптимизации при работе с данными

- Работа с графами вычислений gradient checkpoint
- Сжатие данных mixed precision training
- Компактное представление тензоров ТТ-разложение

Источники

- T. Ben-Nun and T. Hoefler. 2019. Demystifying parallel and distributed deep learning: An in-depth concurrency analysis. *ACM Computing Surveys (CSUR)*, *52*(4). 1–43. (https://arxiv.org/pdf/1802.09941).
- U. A. Muller and A. Gunzinger. 1994. Neural net simulation on parallel computers. In Neural Networks, IEEE International Conference on, Vol. 6. 3961–3966. (https://sci-hub.wf/10.1109/icnn.1994.374845).
- J. Ngiam, Z. Chen, D. Chia, P. W. Koh, Q. V. Le, and A. Y. Ng. 2010. Tiled convolutional neural networks. In *Advances in Neural Information Processing Systems* 23. 1279–1287. (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.186.5565&rep=rep1&type=pdf).
- A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro. 2013. Deep Learning with COTS HPC Systems. In *Proc. 30th International Conference on Machine Learning Volume 28 (ICML'13*). III–1337–III–1345. (http://proceedings.mlr.press/v28/coates13.pdf).
- G. Habib, and S. Qureshi. 2020. Optimization and Acceleration of Convolutional neural networks:
 A Survey. Journal of King Saud University-Computer and Information Sciences.

Источники

- https://arxiv.org/pdf/1710.03740.pdf
- https://github.com/cybertronai/gradient-checkpointing
- https://arxiv.org/pdf/1604.06174v2.pdf
- https://dlsys.cs.washington.edu/pdf/lecture11.pdf
- https://arxiv.org/pdf/1802.09941.pdf
- https://arxiv.org/pdf/2006.15704.pdf
- https://web.stanford.edu/~rezab/classes/cme323/S16/projects_reports/hedge_usmani.pdf
- http://seba1511.net/dist_blog/
- http://www.juyang.co/distributed-model-training-ii-parameter-server-and-allreduce/
- https://arxiv.org/pdf/1706.02677.pdf

Спасибо за внимание!

