Finding limity:
If $\lim_{x \to \infty} f(x) = L$ (for $x \in \mathbb{R}$)
and $a_n = f(n)$ then $\lim_{n \to \infty} a_n = \mathcal{L}$.
limits at 00 from calc 1.
Ex: Find $\lim_{n\to\infty} \frac{e^{2n}+n}{3e^{2n}-5} = \infty$
$=\lim_{\chi \to \varphi} \frac{e^{2x} + 1}{3e^{2x} - 5}$ L'Hopitale
$=\frac{\lim_{x\to\infty}\frac{2e^{2x}+1}{6e^{2x}}=\frac{\infty}{\infty}$
$= \lim_{x \to \infty} \frac{4e^{2x}}{12e^{2x}}$
$= \frac{1}{\chi} \rightarrow \infty \frac{4}{12} = \boxed{\frac{1}{3}}$
Ex: Im sin (Mn) n 9n
even though 4 0
even though 4 0 I'm sin (ITX) = DNE.

we have seen this before.
$2 + \frac{7}{10} + \frac{1}{100} + \frac{8}{1000} + \frac{2}{100000000000000000000000000000000000$
= 2.718282
= e
Any decimal number is an infinite sum of Fractions: if its irrational them all the numerators are used, or it its repeating.
$0.33333 = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \dots$
= = =
If the serves summer to a real number, we say its convergent. If not, divergent. We often write that a convergent sener "= its limit.
Ex: geometric series $\sum_{n=1}^{\infty} (r)^n = \frac{r}{1-r} \text{for fractions}$ $\sum_{n=1}^{\infty} (r)^n = \frac{r}{1-r} \text{for fractions}$
$ex \sum_{n=1}^{\infty} \frac{1}{2^{n}} = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n} = \frac{\frac{1}{2}}{1-\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$

