Homework 6

- 1. Get the dataset from here (\leftarrow this is a link). We have two variables: hourly wage (denoted as y) and ASVAB percentile (denoted as x). ASVAB is a standardized test. We use it as a proxy for ability.
- (a) Use nonparametric regression to estimate the mean of y conditional on x, i.e., $\hat{E}(y|x)$. For the bandwidth selection, use leave-one-out least squares cross-validation. Plot $\hat{E}(y|x)$ versus x for $0 \le x \le 100$.
- (b) Comment on the estimated relationship between hourly wage and ASVAB percentile.
- (c) (Optional) Redo part (a) and (b) with conditional mean being replaced by conditional median.

Submit your codes and results.

2. Consider a measurement-error model

$$y^* = \beta_0 + \beta_1 x^* + \epsilon$$
$$x = x^* + \eta$$

with $\beta_0 = 1$ and $\beta_1 = 1$. x^* , η and ϵ are independent of each other, and all follow standard normal distribution. Let the sample size be 1000.

- (a) If we run regression of y^* on x, calculate the theoretical attenuation bias. Simulate the model 1000 times and calculate the mean of $\hat{\beta}_1$. Is the estimated bias close to the theoretical bias?
 - (b) Consider a second measurement

$$z = x^* + v$$

with $v \sim N(0,1)$ being independent of x^* , η and ϵ . Use z as IV for x to estimate $\hat{\beta}_1$. Simulate the model 1000 times and calculate the mean of $\hat{\beta}_1$. Does the IV fix the bias?

1

Submit your codes and results.