

# NVIDIA 部分产品的详细分析

众所周知, GPU 的强大算力推动了 AI 的快速发展,变革了社会的各个行业。如何选择适合自己领域的 GPU 是公司采购时经常困惑的地方,本文的对比分析意在为此提供参考。

#### 1. NVIDIA 部分产品目录

NVIDIA 的产品众多,涉及到游戏、专业视觉、AI 计算、自动驾驶等各个领域,不同领域对应多款产品,表 1-1 列出了部分产品对应的系列及架构。

| 架构系列            | Pascal                                                  | Volta           | Turing                  |  |
|-----------------|---------------------------------------------------------|-----------------|-------------------------|--|
| Tesla<br>(高速计算) | P100 (SXM2,PCIE),<br>P40, P4                            | V100(SXM2,PCIE) | T4                      |  |
| GeForce         | GTX (1030,1050,1050Ti,1060,                             |                 | RTX (2070,2080,         |  |
| (游戏显卡) Quadro   | 1070,1070Ti,1080,1080Ti)<br>P400,P600,P620,P1000,P2000, | GV100           | 2080Ti) RTX (5000,6000, |  |
| (专业绘图) TITAN    | P4000,P5000,P6000,GP100                                 | V               | 8000)<br>RTX            |  |
| (通用)            | X, Xp                                                   | ,               | KIX                     |  |
| (嵌入式系统)         | TX2                                                     | AGX Xavier      |                         |  |

表 1-1 NVIDIA 不同产品对应的系列及架构

NVIDIA DGX 系列侧重于为 AI 行业提供端到端的解决方案。主要有: DGX station 采用 4 块 V100GPU, DGX-1 采用 8 块 V100GPU, DGX-2 采用 16 块 V100GPU。

**NVIDIA HGX** 系列侧重于为企业提供云平台服务, 主要有: HGX-1 采用 8 块 V100GPU, HGX-2 采用 16 块 V100GPU。

思腾合力侧重于 AI 和高性能计算,因此本文重点介绍 Tesla 系列,GeForce 系列,TITAN 系列和 Jetson 系列产品。

#### 2. Tesla 系列产品

利用 Tesla GPU 能够快速地处理要求最严格的高性能计算 (HPC) 和超大规模数据中心任务,数据科学家和研究人员可以在能源勘探、生物医疗、深度学习等应用场景解析 PB 级的数据,速度比传统CPU 快几个数量级。此外,基于 Tesla GPU 组成的 HGX 系列和 DGX 系列产品分别为虚拟桌面和工作站提供超高性能和用户密度。



## 2.1 Tesla 系列产品的详细参数

表 2-1 NVIDIA Tesla GPU 参数

| GPU<br>指标          | P100<br>(SXM2)       | P100<br>(PCIE) | P40              | P4               | V100<br>(PCIE) | V100<br>(SXM2)    | T4               |
|--------------------|----------------------|----------------|------------------|------------------|----------------|-------------------|------------------|
| CUDA 核             | 3584                 | 3584           | 3840             | 2560             | 5120           | 5120              | 2560             |
| Tensor core        | NA                   | NA             | NA               | NA               | 640            | 640               | 320              |
| FP64 峰值/<br>TFLOPS | 5.3                  | 4.7            | NA               | NA               | 7              | 7.8               | NA               |
| FP32 峰值/<br>TFLOPS | 10.6                 | 9.3            | 12               | 5.5              | 14             | 15.7              | 8.1              |
| FP16 峰值/<br>TFLOPS | 21.2                 | 18.7           | NA               | NA               | 112            | 125               | 65               |
| INT8 峰值/<br>TIOPS  | NA                   | NA             | 47               | 22               | NA             | NA                | NA               |
| GPU 内存/            | 16                   | 16/12          | 24               | 8                | 32             | 32                | 8                |
| GB                 | HBM2                 | HBM2           | GDDR5            | GDDR5            | HBM2           | HBM2              | GDDR6            |
| 内存带宽/<br>GB/s      | 732                  | 732/549        | 346              | 192              | 900            | 900               | 320+             |
| 系统接口               | NVLink +<br>PCIe 3.0 | PCIe 3.0       | PCIe 3.0         | PCIe 3.0         | PCIe 3.0       | NVLink + PCIe 3.0 | PCIe 3.0<br>×16  |
| 硬件加速<br>视频引擎       |                      |                | 1×解码引擎<br>2×编码引擎 | 1×解码引擎<br>2×编码引擎 |                |                   | 1×解码引擎<br>2×编码引擎 |
| 功耗/W               | 300                  | 250            | 250              | 50-75            | 250            | 300               | 70               |
| 发布时间               | 2016.4.5             | 2016.6.20      | 2016.9.13        | 2016.9.13        | 2017.6.21      | 2017.6.21         | 2018.9.12        |

<sup>\*</sup>从 Volta 架构开始有 Tensor core, 其存在极大的提升了半精度的计算峰值。

## 2.2 Tesla 系列产品的性能对比分析

由表 2-1 可知, P100,V100 的 CUDA 核心数较多, FP64,FP32,FP16 计算峰值较高, 同时其内存采用 HBM2, 内存带宽较大,但其功耗也大,因此适应于高性能计算和 AI 中的训练环节。P4,T4 的功耗较低,体积较小,P4 的 INT8 峰值较高,T4 的 FP16 峰值高,因此适合于超高效横向扩展服务器和 AI 中的推理部署环节。P40 的 CUDA 核数多,FP32, INT8 的峰值高,内存大,功耗大,适合于训练和高吞吐量的推理

<sup>\*</sup>FP64表示双精度(double), FP32表示单精度(float), 分别在计算机存储中占 8, 4 个字节。

<sup>\*</sup>FP16表示半精度, INT8表示整型, 分别在计算机存储中占 2, 1个字节。

<sup>\*</sup> HBM2(High Bandwidth Memory),基于 3D 堆栈工艺的高性能 DRAM,其存储器带宽较高。

<sup>\*</sup> GDDR(Graphics Double Data Rate), GDDR6 的带宽相较于 GDDR5 可提升一倍。



## 3. GeForce 系列产品

GeForce GTX 10 系列和 RTX 20 系列产品能够提供强大的视觉特效和渲染技术,在高达 240 Hz 的刷新率及 HDR 等条件下,享受超级流畅,无画面撕裂的极致游戏体验。RTX 采用最新的 Turing 架构,同时为游戏引入了全新的实时光线追踪和 AI 技术。

### 3.1 GeForce 系列产品的详细参数

表 3-1 NVIDIA GeForce GPU 参数

| GPU<br>指标   | 1070      | 1080      | 1080Ti   | 2070    | 2080      | 2080Ti    |
|-------------|-----------|-----------|----------|---------|-----------|-----------|
| CUDA 架构     | Pascal    | Pascal    | Pascal   | Turing  | Turing    | Turing    |
| CUDA 核      | 1920      | 2560      | 3584     | 2304    | 2944      | 4352      |
| FP32/TFLOPS | 6.5       | 8.9       | 11.3     | 7.5     | 10.1      | 13.4      |
| RTX-OPS     | NA        | NA        | NA       | 42T     | 57T       | 76T       |
| 提升频率/MHz    | 1683      | 1733      | 1582     | 1620    | 1710      | 1545      |
| 显存速率/Gbps   | 8         | 10        | 11       | 14      | 14        | 14        |
| GPU 显存/GB   | 8 GDDR5   | 8GDDR5X   | 11GDDR5X | 8 GDDR6 | 8 GDDR6   | 11GDDR6   |
| 显存带宽/GB/s   | 256       | 320       | 484      | 448     | 448       | 616       |
| 功耗/W        | 150       | 180       | 250      | 175     | 215       | 250       |
| 发布时间        | 2016.6.10 | 2016.5.27 | 2017.3.5 | 2018.10 | 2018.9.20 | 2018.9.20 |

<sup>\*</sup>RTX-OPS 指 GPU 在阴影、光线跟踪等操作中的平均性能,以及每秒千兆光线的测量结果。

#### 3.2 GeForce 系列产品的性能对比分析

由表 3-1 可知,相较于 GTX 10 系列,RTX 20 系列产品 CUDA 核数增加,单精度的峰值更大,显存升级为 GDDR6,显存速率和带宽都相应提高,但其功耗增加不大,因此 RTX 20 的能耗比 GTX 10 的更高。



## 4. TITAN 系列产品

TITAN 系列产品意在打造运行速度更快的 PC 显卡,推动高性能计算和 AI 的外部极限,使研究人员快速运行其科学模型,在深度学习计算任务中,TITAN V 可达到 110TFLOPS 的浮点运算能力,TITAN RTX 更是具有 130TFLOPS 的性能。

#### 4.1 TITAN 系列产品的详细参数

| GPU<br>指标      | TITAN X  | TITAN Xp  | TITAN V   | TITAN RTX  |
|----------------|----------|-----------|-----------|------------|
| CUDA 架构        | Pascal   | Pascal    | Volta     | Turing     |
| CUDA 核         | 3072     | 3840      | 5120      | 4608       |
| Tensor core    | NA       | NA        | 640       | 576        |
| RT core        | NA       | NA        | NA        | 72         |
| FP32 峰值/TFLOPS | 11       | 12        | 15        |            |
| 提升频率/MHz       | 1075     | 1582      | 1455      | 1770       |
| 显存速率/Gbps      | 7        | 11.4      | 1.7       | 14         |
| GPU 显存/GB      | 12 GDDR5 | 12 GDDR5X | 12 HBM2   | 24 GDDR6   |
| 显存带宽/GB/s      | 336.5    | 547.7     | 652.8     | 672        |
| 功耗/W           | 250      | 250       | 250       | 280        |
| 发布时间           | 2016.8.2 | 2017.4.6  | 2017.12.7 | 2018.12.18 |

表 4-1 NVIDIA TITAN GPU 参数

### 4.2 TITAN 系列产品的性能对比分析

由表 4-1 可知,TITAN X 和 TITAN Xp 的显存速率较高,显存容量较大,作为游戏显卡,能够提供强大的视觉特效和图片渲染效果;TITAN V 的 CUDA 核数量很大,同时拥有 640 个 Tensor Core,其计算能力强大,可作为 PC 级的 GPU 加速卡,提高深度学习任务的训练速度。TITAN RTX 不仅拥有非常高的显存速率,非常大的显存容量,添加了 72 RT core 用于增强光线追踪能力,而且其 CUDA 核数和 Tensor Core 数也很多,因此利用 TITAN RTX,可以任意挥洒创意。



#### 5. Jetson 系列产品

NVIDIA Jetson 是业内领先的 AI 计算平台,面向移动嵌入式系统市场中的 GPU 加速并行处理。 Jetson 模块适用于计算密集型的嵌入式项目,非常适合低能耗和高计算性能的应用程序,使用者能够轻松上手并快速开发产品。例如,实时智能视频分析 (IVA) 系统助力创建更智能更安全的 AI 城市、无人机可协助检查手机信号塔、电线、风力涡轮机和其他基础设施、企业可以打造更高效且更具有可预见性的供应链和物流系统……

#### 5.1 Jetson 模块的详细参数

模块 **Jetson TX2** Jetson AGX Xavier 指标 512 Core Volta @1.37GHz **GPU** 256 Core Pascal @ 1.3GHz 64 Tensor cores 深度学习加速器  $(2\times)$  NVDLA 视觉加速器 (2×)7-way VLIW Processor ---6 core Denver and A57 @ 2GHz 8 core Carmel ARM CPU @ 2.26GHz **CPU**  $(2\times)$  2MB L2  $(4\times)$ 2MB L2+4MB L3 16GB 256-bit LPDDR4× @2133MHz 内存 8GB 128bit LPDDR4 58.4GB/s 137GB/s 存储 32GB eMMC 32GB eMMC 视频编码 (2×) 4K @ 30 HEVC  $(4\times)$  4Kp60/(8×) 4Kp30 HEVC  $(2\times) 8Kp30/(6\times) 4Kp60$ 视频解码  $(2\times)$  4k @ 30 12bit support 12 bit support 12 lanes MIPI CSI-2 D-PHY 1.2 16 lanes MIPI CSI-2|8 lanes SLVS-EC 摄像头 D-PHY 40Gbps / C-PHY 109Gbps 30Gbps 5 lanes PCIe Gen2 16 lanes PCIe Gen4 **PCIE**  $1\times4+1\times1$  or  $2\times1+1\times4$  $1\times8 + 1\times4 + 1\times2 + 2\times1$ 尺寸 50mm × 87mm (400 pin connector) 100mm×87mm (699 pin connector) 功耗/W 7.5/15 10/12/30

表 5-1 NVIDIA Jetson 模块技术规格

#### 5.2 Jetson 系列产品的性能对比分析

Jetson AGX Xavier 的 GPU 采用 Volta 架构,拥有 512CUDA 核和 64 个 Tensor core,深度学习加速器和视觉加速器,其并行计算能力大大提高,CPU 的核心数也增加至 8 个,主频增强至 2.26GHz,内存和存储也加大,视频编解码增强,摄像头增加至 16 路,因此 Xavier 产品的总体性能比 TX2 更强大,在深度学习、计算机视觉、工业机器人、车载设备等方面有很大的应用前景。



#### 6. 深度学习 GPU 产品

深度学习中两个最重要的张量操作是矩阵乘法和卷积。矩阵乘法与显存大小和带宽密切相关,卷积受计算速度的约束,因此、显存大小,显存带宽,处理能力(FLOPS 和 Tensor Core 的组合)是深度学习任务中选择 GPU 的重要指标。其中 Tensor Core 是专用计算单元,可以加速计算,同时允许使用 16-bit 数字进行计算,在软件支持的情况下,采用 16-bit 输入进行乘法计算,相当于内存翻倍。

### 6.1 深度学习 GPU 的部分参数

指标 FP32 峰值/TFLOPS 显存容量/GB 显存带宽/Gbps Tensor Core GPU V100(SXM2) 32 HBM2 900 640 15.7 TITAN RTX **24 GDDR6** 672 576 16.3 732 10.6 P100(SXM2) 16 HBM2 NA TITAN V 12 HBM2 652.8 640 15 11 GDDR6 616 544 13.4 RTX 2080Ti 8 GDDR6 RTX 2080 448 368 10.1 RTX 2070 8 GDDR6 448 288 7.5 TITAN Xp 12 GDDR5X 547.7 NA 12 RTX 1080Ti 11 GDDR5X 484 NA 11.3 TITAN X **12 GDDR5** 336.5 NA 11 GTX 1080 8 GDDR5X 484 NA 8.9 RTX 1070Ti 8 GDDR5 256 NA 8.1 RTX 1070 8 GDDR5 256 NA 6.5 RTX 1060 6 GDDR5 256 NA 4.4

表 6-1 NVIDIA 部分 GPU 产品的参数

#### 6.2 深度学习 GPU 的性能对比分析

递归神经网络 RNN 使用大量的矩阵乘法,卷积神经网络 CNN 使用大量的卷积计算。图 6-1 显示了适合深度学习的大部分 GPU(没有 TITAN RTX 和 P100)的运算速度,纵坐标是 GPU 型号,从下至上 GPU 的 CNN 和平均运算速度增强;图 6-2 显示了不同 GPU 的性价比,即 GPU 的运算速度与价格之比。

对于如何选择深度学习 GPU, 其建议如下:

对性能要求很严格: V100>TITAN RTX>TITAN V

对性能和价格要求都有要求(侧重于性能): 2070>2080>2080Ti>P100

对性能和价格要求都有要求(侧重于价格): 1080Ti >1080>TITAN X>TITAN Xp

刚进入深度学习领域,对价格要求严格: 1070Ti>1070>1060

购买时还要注意自己的数据集,如果一个 batch size 很大,一定要注意 GPU 的显存容量。





图 6-1 不同 GPU 的归一化运算速度



图 6-2 不同 GPU 的性价比

# 参考文献:

https://zhuanlan.zhihu.com/p/42809635

https://zhuanlan.zhihu.com/p/53667790

https://www.nvidia.com/zh-cn/

https://en.wikipedia.org/wiki/List\_of\_Nvidia\_graphics\_processing\_units#GeForce\_700\_Series