

产品操作说明书

产品名称: VML-100 智能车位锁检测模块

版 本: <u>V1.2</u>

版本	日期	更新记录	核准人
V1.0	2017.5.30	创建	王昆鹏
V1.1	2017.7.31	修订	颜宁东
V1.2	2017.8.11	修改引脚配置,新增调试用指令	王昆鹏

目录

产品操作说明书	1
1. 简介	3
2. 掌握 VML-100	4
2.1 规格参数	4
2.2 引脚配置	5
2.3 外形尺寸	6
3 引脚使用说明	7
3.1 RST	7
3.2 ISP	7
3.3 Ctrl_I/Ctrl_O :	7
3.4 STATE :	7
3.5 READY :	7
4. 通信协议	9
4.1 通信方式	9
4.2 工作流程及消息协议	10
5 工作流程	11
6. 外接电路参考设计	14
6 安装注意事项	15
百名信 自	16

1. 简介

感谢购买 VML-100,该操作说明书是为即将使用的工程技术人员介绍说明 VML-100 的物理参数,电气性能,软件操作。

本文档中模块均指 VML-100 智能车位锁检测模块,后续不再说明,请知晓。

模块是微传科技专为智能车位锁而设计的检测模块,基于自主研发的国内首创各向异性磁阻 (AMR)三轴磁传感技术;具有低功耗、高灵敏度、高可靠性和高判定率等特点。

该模块能直接输出车位车辆"有/无"判定,通过串口方式输入输出方便灵活,支持多种调试指令,方便集成到智能车位锁系统。同时自带温度补偿功能,可适用于室内室外绝大多数环境中。超小体积、内嵌算法稳定性高,精度好,维护方便,还可无线升级。

产品特点

- ▶ 基于 QMC5883传感器设计,数据精度高
- ▶ 超小尺寸,安装简便,方便集成入其他系统
- 兼容垂直和水平车位
- ▶ 低成本,超低功耗
- ▶ 车辆判定准确率 ≥ 98%
- > 支持无线升级
- 温度补偿,室内外全天候工作

2. 掌握 VML-100

2.1 规格参数

项目	规格	单位	
尺寸	21.8*12.8	mm	
重量	1.2	g	
工作温度	-30~80	℃	
ESD静电放电电压	2000	V	
工作电压	2.16~3.3	V	
车位检测灵敏度	4 档可选	N/A	
功耗	6 (休眠)	uA	
功耗	100 (平均功耗)	uA	
输出方式	串口 (9600)	bps	
综合检测率	≥98	%	

2.2 引脚配置

I 输入 O 输出

管脚序号	管脚名称	功能说明	类型	备注
1	GND	电源地		
2	READY	准备就绪指示	0	高电平表示模块准备就绪可以检测车辆
3	RX	串行数据输入口	I	
4	ISP	ISP 控制口	I	接地后上电将进入 Bootloader
5	STATE	车位状态指示	0	高电平有车,低电平无车
6	GND	电源地		
7	vcc	电源		
8	RST	系统复位	I	保持 1s 以上低电平确保完全复位
9	NC			预留
10	NC			预留
11	TX	串行数据输出口	0	
12	NC			预留
13	CTRL_I	模块串口接收控制引脚	I	向模块发送数据前应拉高该引脚
14	CTRL_O	模块串口发送控制引脚	0	模块发送数据前会拉高该引脚

1	GND	CTRL_O	14
2	READY	CTRL_I	13
	READY	CINE_I	
3	RX	NC	12
4	ISP	TX	11
5	STATE	NC	10
	SIAIE	INC	
6	GND	NC	9
7	VCC	RST	8

2.3 外形尺寸

单位: mm

3 引脚使用说明

3.1 **RST**

模块复位引脚,该引脚上50ns低电平将复位模块。

建议进行复位操作时保持 100ms 以上低电平以确保复位正确执行

3.2 **ISP**

ISP 控制口,该引脚拉低时上电模块会进入 ISP 升级模式,详情请参见《ISP 升级》

3.3 Ctrl_I/Ctrl_O:

串口通信控制引脚

向 VML-100 发送串行数据前应拉高 Ctrl I

VML-100 向外发送串行数据前会拉高 Ctrl_O

3.4 STATE:

车辆有无输出引脚

高电平表示检测到进车

低电平表示检测到出车

3.5 READY:

模块初始化完成,准备就绪引脚

高电平表示模块已初始化完成,可以进行车辆检测(一般在模块开始工作后3秒内就绪)

低电平表示模块还未完成初始化,此时进行车辆检测效果没有保障(一般由于环境磁场不稳定导致模块无法完成初始化)

4. 通信协议

4.1 通信方式

车位锁控制板和模块在做数据交互时,需要先通过 GPIO 上升沿唤醒对方,然后再向对方发送数据的方式。数据格式以 ASCII 字符\n 作为每一条消息的结尾。

Sender 代表数据发送端, Receiver 代表数据接收端, 车位锁控制板和模块在工作流程的不同阶段, 可以分别为 Sender 或 Receiver, 每一次的数据通信流程如下图。

Sender 发送数据后,如果 500ms 内未收到来自 Receiver 的应答消息,数据重发,次数为 5次;

Receiver 返回的应答消息遵循:

	应答内容	举例
接收到有效数据,并确认	接收到的命令:OK	MAG_OPEN:OK
接收到有效数据,执行失败	接收到的命令:XX	MAG_OPEN:XX
接收到不识别的命令	CMD_ERR	CMD_ERR
IO 口上升沿后, 200ms 内未接收到\n	不应答,丢掉收到的数据	

4.2 工作流程及消息协议

模块是被动接收车位锁主控模块的命令,车位锁锁臂在升起和降下过程中会波动磁场变化,

因此所有流程须满足:

- ◆ 车位锁锁臂在升起和降下的过程中,模块必须处于休眠状态
- ◆ 模块处于工作状态时,车位锁锁臂不能有升起或者降下的动作(特殊情况除外)

约定本文档中,除特殊说明外,所有命令均采用字符串格式。

命令汇总表

名称	流向	内容	意义	应答
启动检测	车位锁=>模块	MAG_OPEN	摇臂躺平后,命令模块开启检测	MAG_OPEN:OK
继续检测	车位锁=>模块	MAG_CONT	摇臂升起失败再躺平后,继续地磁检	MAG_ CONT:OK
			测	
停止检测	车位锁=>模块	MAG_STOP	摇臂开始升之前,命令中止地磁检测	MAG_ STOP:OK
查询状态	车位锁=>模块	MAG_CARS	查询地磁检测到的上方车辆状态	MAG_CARS:CA 初始校准中
				MAG_CARS:PA 有车
				MAG_CARS:NO 无车
读取版本	车位锁=>模块	MAG_VERS	读取目前通信协议版本	MAG_VERS:W1
车辆停入	模块=>车位锁	CAR_PARK	车辆停入空位,告知车位锁有车	CAR_PARK:OK
车辆驶出	模块=>车位锁	CAR_AWAY	停入车辆开走,告知车位锁无车	CAR_ AWAY:OK

调试指令

名称	流向	内容	应答	备注
初始化时间设置	车位锁=>模块	MAG_INITIME	SET	%d 为 0-1
		=%d	MAG_INITIME %d	
灵敏度设置	车位锁=>模块	MAG_SENS=%d	SET	%d 为 0-2
			MAG_SENS %d	
基线查询	车位锁=>模块	MAG_BL=?	CURRENT	
			MAG_BL 空车基	
			线 有车基线	
基线重做	车位锁=>模块	MAG_BL=%d	CURRENT	%d = 0 空车基线
			MAG_BL 空车基	%d = 1 有车基线
			线 有车基线	

5工作流程

大致工作流程如下,串口发送时需遵循第四章节"串口通信协议"中内容:

- 1. 主控板控制车锁落锁
- 2. 落锁后, 主控板发送 "MAG_OPEN\n" 命令模块开始工作
- 3. 模块初始化(落锁后 3 秒内完成,可通过 READY 引脚监控)
- 4. 模块检测到车辆驶入,拉高 STATE 引脚,并且串口向外发送 "CAR_PARK\n"
- 5. 主控板保持落锁状态
- 6. 模块检测到车辆驶出,拉低 STATE 引脚,并且串口同时向外发送 "CAR_AWAY\n"
- 7. 主控板升锁,同时发送"MAG_STOP\n",命令模块停止工作
 - a) 若升锁遇阻 ,说明模块检测出错 ,主控应再次落锁。落锁完成后发送 "MAG_CONT" 给模块 ,模块更正状态 ,回到正常流程
 - b) 若正常升锁成功,一次落锁进车、出车自动升锁流程结束

工作流程示意图

VTran

6. 外接电路参考设计

出于超低功耗的考虑,使用时请关闭主控端 MCU 所有与 VML-100 模块的相关功能引脚(Ctrl_I/Ctrl_O)对接的 GPIO 口内置上拉/下拉电阻功能,外接阻值更高的上拉电阻,参考设计如下:

- 1. 关闭相关管脚上拉下拉功能
- 2. 按照参考设计所示进行外部上下拉配置,建议上拉电阻大于1兆欧姆

6 安装注意事项

- 1. 模块可以 360°任意放置,但应与地面保持水平(如车位是斜坡,模块应与斜坡平行)
- 2. 模块距离地面越高(距离车底越近),每个档位的检测灵敏度相对提高越多
- 3. 模块应尽量远离无线发射天线、电源等可能会影响磁场的元器件
- 4. 车位锁外壳尽量采用无磁性的材料,以免车位锁外壳被磁化影响检测准确性
- 5. 安装后确保模块平稳固定

更多信息

微传智能科技(常州)有限公司 VTranTech.com 获取更多信息、定制化系统等,欢迎联系

商务邮箱: sales@vtrantech.com

常州市武进区常武中路 18 号 常州 常州科教城创研港,5 号楼 1504 邮编:213000

上海市浦东新区秋月路 26 号 上海 矽岸国际 1 号楼三层 E 单元 邮编:201210

本报告所包含的信息如有更改,恕不另行通知。微传科技努力保证信息的正确性,但不对技术或编辑上的错误或漏失承担任何责任,最终解释权归微传科技所有微传科技版权所有未经许可不得扩散

© Copyright 2017VTranTech CORPORATION LIMITED. All rights reserved.

