有机化学

白若鹏 重庆大学化学化工学院 理科楼LC220 ruopeng@cqu.edu.cn

第十四章 碳负离子反应

α-H的酸性

×α-H的酸性

	pK _a
C_2H_6	50
C_2H_4	44
NH ₃	34
C_2H_2	25
CH ₃ COCH ₃	20
C_2H_5OH	15.9
H ₂ O	15.74
Ph-OH	10
H_2CO_3	6.5

酸性条件:

碱性条件:

$$H_3C-C-CH_3 \xrightarrow{OH^-} H_2C-C-CH_3 \xrightarrow{OH^-} H_2C-C-CH_3 \xrightarrow{H_2O} H_2C-C-CH_3$$

单羰基化合物

$$H_3C$$
 H_2C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_4
 H_2C
 H_4
 H_2C
 H_3
 H_4
 H_5
 H_5
 H_5
 H_6
 H_7
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_9
 H_9

以醛(酮)式为主

β-二羰基化合物

烯醇式含量增大

碱催化

CH₃CHO + CH₃CHO
$$\frac{10\%\text{NaOH}}{5^{\circ}\text{C}, \ 4^{\sim}5\text{h}}$$
 CH₃CHCH₂CHO 60% $\frac{\beta^{-}$ 羟基丁醛 OH OH CH₃CH₂CHO + CH₃CH₂CHO $\frac{\text{稀 OH}^{-}}{5^{\circ}\text{C}}$ CH₃CH₂CHCHCHO 72% CH₃

α-甲基-β-羟基戊醛

CH₃CHO
$$\stackrel{\frown}{\longrightarrow}$$
 CH₂CHO $\stackrel{\frown}{\longrightarrow}$ CH₃CHCH₂CHO $\stackrel{\frown}{\longrightarrow}$ CH₃CHCH₂CHO $\stackrel{\frown}{\longrightarrow}$ OH CH₃CHCH₂CHO

酸催化

$$2 CH_{3}CHO \xrightarrow{\text{\vec{H}}} CH_{3}CH = CHCHO$$

$$H - H_{2}C - C - H + H^{\dagger} \longrightarrow H - CH_{2}C - H \xrightarrow{-H^{\dagger}} CH_{2} = CHOH$$

$$H_{3}C - C - H + CH_{2} = C - OH \longrightarrow CH_{3} - C - C - C = OH \longrightarrow CH_{3} - C - C - CHO \longrightarrow CH_{3} - C - C - CHO \longrightarrow CH_{3} - C - C - CHO \longrightarrow CH_{3} - C - CHO \longrightarrow CH_{3} - CH - CHO$$

$$CH_{3} - CH - CH_{2} - CHO \longrightarrow CH_{3} - C - CHO \longrightarrow CH_{3} - CH - CHO$$

12

B.酮的羟醛缩合反应

$$CH_{3}COCH_{3} + CH_{3}COCH_{3} \xrightarrow{Ba(OH)_{2}} CH_{3}CCH_{2}COCH_{3} \xrightarrow{5\%}$$

β-甲基-β-羟基-2-戊酮

提高产率方法:改变反应装置,用索氏提取器,移去产物酸性离子交换树脂催化,使生成的β-羟基酮脱水

交叉羟醛缩合反应

Claisen-Schmidt反应(克莱森-斯密特反应)不含 α -H的反应物(芳香醛、甲醛)与碱混合,将含 α -H的醛酮慢慢滴加至混合物

PhCHO + CH₃CHO
$$\xrightarrow{\text{6 OH}^-}$$
 PhCH=CHCHO + H₂O 90%

肉桂醛, 苄叉基乙醛, β--苯基丙烯醛

> 胺甲基(Mannich曼尼希)化反应

$$\begin{array}{c} O \\ R'CCH_2R \end{array} \stackrel{H^+}{\longleftarrow} \begin{array}{c} H\ddot{O} \\ C=CHR \\ R' \end{array}$$

$$\begin{array}{c} O \\ R'CCH_2R \end{array} \stackrel{H^+}{\longleftarrow} \begin{array}{c} H\ddot{O} \\ R' \end{array} \stackrel{H^+}{\longleftarrow} \begin{array}{c} C+CH_3 \\ CH_3 \end{array} \stackrel{H^+}{\longleftarrow} \begin{array}{c} CH_3 \\ CH_3 \end{array} \stackrel{H^+}{\longleftarrow} \begin{array}{c} CH_3 \\ CH_3 \end{array}$$

> 胺甲基(Mannich曼尼希)化反应

(1)
$$Ph-C-CH_3 + CH_2O + (CH_3)_2NH_2CI$$

$$Ph-C-CH_2-CH_2-CH_3 CI$$

$$CH_3$$

$$(2) \qquad CH_2O + HN(CH_3)_2$$

$$OK \qquad H_2C=N(CH_3)_2 \qquad CH_2-N(CH_3)_2$$

> 胺甲基(Mannich曼尼希)化反应

例: Tropinone的合成(托品酮或颠茄酮)

1912 年Mannich 反应出现;1917 年Robinson用于合成Tropinone

> Michael 加成反应

Michael 加成——烯醇负离子与 α , β –不饱和羰基化合物的共轭加成

> Michael 加成反应

> Robinson 增环反应

$$H_3C$$
 H_3C
 H_3C

Michael 加成

分子内醇醛缩合

六元环状烯酮

Robinson 增环

醛、酮 + α,β-不饱和酮

- 1. Michael 加成
- 2. 分子内醇醛缩合

六元环状烯酮

> Robinson 增环反应

(2)
$$H_3CO_2C$$
 CH_3
 OCH_3
 OCH_3

Claisen (酯)缩合 (两个相同酯之间的缩合)

$$RCH_2-C-OR' + RCH-C-OR' \xrightarrow{\Theta} RCH_2-C-CH-C-OR' + HOR'$$

> Claisen 缩合举例:

Claisen 缩合机理

$$RCH$$
— C — OR' — RCH — C — OR' — RCH — C — OR' — RCH 2— C — OR' — RCH 3— R

交叉酯缩合 (两个不同酯之间的缩合)

24

Dieckmann 缩合 (分子内酯缩合)

对称二羧酸酯的 Dieckmann 缩合

碱为催化量时反应可逆

>碳负离子的烷基化、酰基化反应

一碳负离子的烷基化

不对称酮的烯醇负离子化

生成条件

弱碱 常温或加热 强碱时酮过量 (使可逆)

热力学控制

强碱 低温 酮不过量 (使不可逆)

动力学控制

>β-二碳基化合物在有机合成的应用

双活化位置,反应优先发生

其它活化基团如:
$$-CN$$
, $-NO_2$, $-Ar$
双活化例子
$$C \equiv N$$

$$N \equiv C$$

$$C \equiv N$$

$$H$$

$$Ar$$

$$C \equiv N$$

> 乙酰乙酸乙酯在有机合成的应用

酮式水解和酸式水解

合成上可用于制备取代乙酸

应用: 通过酰基化制备β-二酮类化合物

$$H_3C$$
 OC_2H_5 $OC_2H_$

一两二酸二乙酯在有机合成中的应

制备取代乙酸

EtO OEt R-X NaOEt
$$R-X$$
 NaOEt $R-X$ NaOEt

二取代乙酸

一两二酸二乙酯在有机合成中的应

制备二元羧酸

>Perkin 反应

PhCHO + $(CH_3CHO)_2O$

ArCHO +
$$(RCH_2CHO)_2O$$
 $\xrightarrow{RCH_2COOK(Na)}$ $\xrightarrow{H_3O^+}$ ArCH= C —COOH 制备 α , β -不饱和羧酸

175℃

肉桂酸, 苄叉基乙酸

→ PhCH=C—COOH

CHO +
$$(CH_3CO)_2O$$
 $\xrightarrow{CH_3COONa}$ $\xrightarrow{H_3O}$ $\xrightarrow{H_3O}$ $\xrightarrow{CH=CHCOOH}$ $\xrightarrow{T4\%}$

PhCHO +
$$(CH_3CH_2CO)_2O$$
 CH_3CH_2COONa
 CH_3O

PhHC=C-COOH

 CH_3
 CH_3
 CH_3
 CH_3COONa
 OH

>Knoevenagel (克脑文格) 反应

CHO +
$$CH_2(CN)_2$$
 PhCH₂NH₂ CH= $C(CN)_2$ + H_2O

CHO + CH_2COOEt CH= $C(CN)_2$ + H_2O

PhCHO + CH_3NO_2 NaOH PhCH₂= $CHNO_2$ + H_2O

>Darzen (达尔森) 反应

R—CO—R'(H) + CI—C—COOEt —EtONa R—COOEt —H R"
$$(H)$$
R" (H) R"

>Darzen (达尔森) 反应

>Benzoin (安息香) 缩合反应

➢小结

羟醛缩合

42

*本章要求

■羰基α位H的弱酸性及烯醇负离子

α位的烷酰基化反应

• 成环的反应及其它类型的负碳离子反应