



#### Table of Contents

| Introduction/Purpose                                                   | . 2 |
|------------------------------------------------------------------------|-----|
| Strengths and Weaknesses of Commercially Available Senson Technologies |     |
| Federal Highway Administration (FHWA) 13 Vehicle Classifications       | 7   |
| Glossary                                                               | 6   |
| Reference to Other Standards 1                                         | LO  |
| References 1                                                           | LO  |
| Study Questions                                                        | 11  |

#### Module Description

Transportation Sensor Systems (TSS) is defined as any system capable of sensing and communicating near real-time traffic parameters using the National Transportation Communications for ITS Protocol (NTCIP). Transportation system managers use TSS in a variety of ways to improve transportation system operations. To facilitate efficient movement within a transportation system, system operators need timely and accurate information on traffic flow within the system. This is typically accomplished by measuring traffic parameters at desired locations within the transportation system.

This module will provide participants with information on how to identify and use the NTCIP 1209 v2 Standard appropriately and acquire a TSS system based on what the user is seeking to accomplish with support from tools and resources such as a Protocol Requirements List (PRL) in following a Systems Engineering Process (SEP).

#### 1. Introduction/Purpose

A312a: Understanding User Needs for Transportation Sensor Systems (TSS) Based on NTCIP 1209 Standard is the first of two modules of the Professional Capacity Building (PCB) program on using NTCIP communications with transportation sensor systems and/or devices. A312a provides participants with an understanding of the structure of the NTCIP 1209 v02 Standard. It identifies specific TSS user needs (features), and introduces the protocol requirements list (PRL) table, which is used to specify implementations of the standard. A312a is a prerequisite for module A312b Specifying Requirements for Transportation Sensor Systems (TSS) Based on NTCIP 1209 Standard.

# 2. Strengths and Weaknesses of Commercially Available Sensor Technologies

#### (From the FHWA Detector Handbook)

| Technology                                             | Strengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weaknesses                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inductive loop                                         | <ul> <li>Flexible design to satisfy large variety of applications.</li> <li>Mature, well understood technology.</li> <li>Large experience base.</li> <li>Provides basic traffic parameters (e.g., volume, presence, occupancy, speed, headway, and gap).</li> <li>Insensitive to inclement weather such as rain, fog, and snow.</li> <li>Provides best accuracy for count data as compared with other commonly used techniques.</li> <li>Common standard for obtaining accurate occupancy measurements.</li> <li>High frequency excitation models provide classification data.</li> </ul> | <ul> <li>Installation requires pavement cut.</li> <li>Improper installation decreases pavement life.</li> <li>Installation and maintenance require lane closure.</li> <li>Wire loops subject to stresses of traffic and temperature.</li> <li>Multiple loops usually required to monitor a location.</li> <li>Detection accuracy may decrease when design requires detection of a large variety of vehicle classes.</li> </ul> |
| Magnetometer (two-axis fluxgate magnetometer)          | <ul> <li>Less susceptible than loops to stresses of traffic.</li> <li>Insensitive to inclement weather such as snow, rain, and fog.</li> <li>Some models transmit data over wireless radio frequency (RF) link.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Installation requires pavement cut.</li> <li>Improper installation decreases pavement life.</li> <li>Installation and maintenance require lane closure.</li> <li>Models with small detection zones require multiple units for full lane detection.</li> </ul>                                                                                                                                                         |
| Magnetic (induction<br>or search coil<br>magnetometer) | <ul> <li>Can be used where loops are not feasible (e.g., bridge decks).</li> <li>Some models are installed under roadway without need for pavement cuts. However, boring under roadway is required.</li> <li>Insensitive to inclement weather such as snow, rain, and fog.</li> <li>Less susceptible than loops to stresses of traffic.</li> </ul>                                                                                                                                                                                                                                        | <ul> <li>Installation requires pavement cut or<br/>boring under roadway.</li> <li>Cannot detect stopped vehicles unless<br/>special sensor layouts and signal<br/>processing software are used.</li> </ul>                                                                                                                                                                                                                     |

| Technology                    | Strengths                                                                                                                                                                                                                       | Weaknesses                                                                                                                                                                                                                                                                                                               |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microwave radar               | <ul> <li>Typically insensitive to inclement weather at the relatively short ranges encountered in traffic management applications.</li> <li>Direct measurement of speed.</li> <li>Multiple lane operation available.</li> </ul> | Continuous wave (CW) Doppler sensors cannot detect stopped vehicles.                                                                                                                                                                                                                                                     |
| Active infrared (laser radar) | <ul> <li>Transmits multiple beams for accurate measurement of vehicle position, speed, and class.</li> <li>Multiple lane operation available.</li> </ul>                                                                        | <ul> <li>Operation may be affected by fog when visibility is less than appximately 20 feet (ft) (6 m) or blowing snow is present.</li> <li>Installation and maintenance, including periodic lens cleaning, require lane closure</li> </ul>                                                                               |
| Passive infrared              | Multizone passive sensors measure speed.                                                                                                                                                                                        | <ul> <li>Passive sensor may have reduced vehicle sensitivity in heavy rain, snow and dense fog.</li> <li>Some models not recommended for presence detection.</li> </ul>                                                                                                                                                  |
| Ultrasonic                    | <ul> <li>Multiple lane operation available.</li> <li>Capable of overheight vehicle detection.</li> <li>Large Japanese experience base.</li> </ul>                                                                               | <ul> <li>Environmental conditions such as temperature change and extreme air turbulence can affect performance. Temperature compensation is built into some models.</li> <li>Large pulse repetition periods may degrade occupancy measurement on freeways with vehicles traveling at moderate to high speeds.</li> </ul> |
| Acoustic                      | <ul> <li>Passive detection.</li> <li>Insensitive to precipitation.</li> <li>Multiple lane operation available in some models.</li> </ul>                                                                                        | <ul> <li>Cold temperatures may affect vehicle count accuracy.</li> <li>Specific models are not recommended with slow-moving vehicles in stop-and-go traffic.</li> </ul>                                                                                                                                                  |

| Technology            | Strengths                                                                                                                                                                                                                                                                               | Weaknesses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Video image processor | <ul> <li>Monitors multiple lanes and multiple detection zones/lane.</li> <li>Easy to add and modify detection zones.</li> <li>Rich array of data available.</li> <li>Provides wide-area detection when information gathered at one camera location can be linked to another.</li> </ul> | <ul> <li>Installation and maintenance, including periodic lens cleaning, require lane closure when camera is mounted over roadway (lane closure may not be required when camera is mounted at side of roadway).</li> <li>Performance affected by inclement weather such as fog, rain, and snow; vehicle shadows; vehicle projection into adjacent lanes; occlusion; day-to-night transition; vehicle/road contrast; and water, salt grime, icicles, and cobwebs on camera lens.</li> <li>Reliable nighttime signal actuation requires street lighting.</li> <li>Requires 30- to 50-ft (9- to 15-m) camera mounting height (in a side-mounting configuration) for optimum presence detection and speed measurement.</li> <li>Some models susceptible to camera motion caused by strong winds or vibration of camera mounting structure.</li> <li>Generally cost effective when many detection zones within the camera field of view or specialized data are required.</li> </ul> |

### 3. Federal Highway Administration (FHWA) 13 Vehicle Classifications

**Class 1 – Motorcycles:** All two- or three-wheeled motorized vehicles. Typical vehicles in this category have saddle type seats and are steered by handle bars rather than wheels. This category includes motorcycles, motor scooters, mopeds, motor-powered bicycles, and three-wheeled motorcycles.

**Class 2 – Passenger Cars:** All sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers and including those passenger cars pulling recreational or other light trailers.

Class 3 – Other Two-Axle, Four-Tire, Single Unit Vehicles: All two-axle, four-tire vehicles other than passenger cars. Included in this classification are pickups, panels, vans, and other vehicles such as campers, motor homes, ambulances, hearses, carryalls, and minibuses. Other two-axle, four-tire single unit vehicles pulling recreational or other light trailers are included in this classification.

**Class 4 – Buses:** All vehicles manufactured as traditional passenger-carrying buses with two axles and six tires or three or more axles. This category includes only traditional buses (including school buses) functioning as passenger-carrying vehicles. Modified buses should be considered to be trucks and be appropriately classified.

**Note:** In reporting information on trucks, the following criteria should be used:

- a. Truck tractor units traveling without a trailer will be considered single unit trucks.
- b. A truck tractor unit pulling other such units in a "saddle mount" configuration will be considered as one single unit truck and will be defined only by axles on the pulling unit.
- c. Vehicles shall be defined by the number of axles in contact with the roadway. Therefore, "floating" axles are counted only when in the down position.
- d. The term "trailer" includes both semi- and full trailers.
- Class 5 Two-Axle, Six-Tire, Single Unit Trucks: All vehicles on a single frame including trucks, camping and recreational vehicles, motor homes, etc., having two axles and dual rear wheels.
- **Class 6 Three-axle Single unit Trucks:** All vehicles on a single frame including trucks, camping and recreational vehicles, motor homes, etc., having three axles.
- Class 7 Four or More Axle Single Unit Trucks: All trucks on a single frame with four or more axles.
- Class 8 Four or Less Axle Single Trailer Trucks: All vehicles with four or less axles consisting of two units, one of which is a tractor or straight truck power unit.
- **Class 9 Five-Axle Single Trailer Trucks:** All five-axle vehicles consisting of two units, one of which is a tractor or straight truck power unit.
- Class 10 Six or More Axle Single Trailer Trucks: All vehicles with six or more axles consisting of two units, one of which is a tractor or straight truck power unit.

Class 11 – Five or Less Axle Multi-Trailer Trucks: All vehicles with five or less axles consisting of three or more units, one of which is a tractor or straight truck power unit.

Class 12 – Six-Axle Multi-Trailer Trucks: All six-axle vehicles consisting of three or more units, one of which is a tractor or straight truck power unit.

**Class 13 – Seven or More Axle Multi-Trailer Trucks:** All vehicles with seven or more axles consisting of three or more units, one of which is a tractor or straight truck power unit.

#### 4. Glossary

| Term                 | Definition                                                                |
|----------------------|---------------------------------------------------------------------------|
| Agency Specification | A document that has been prepared by an agency to define                  |
|                      | requirements for a subject item or process when procured by the           |
|                      | agency.                                                                   |
| ASC                  | Actuated Signal Control                                                   |
| Arming Enable        | A selected state of an arming input bit or Arming Pin of the TSS that     |
|                      | can be used to modify its operation.                                      |
| Arming Input Bit     | An external event that is reported to the TSS using this protocol and     |
|                      | used to modify its operation.                                             |
| Arming Pin           | A physical input to the TSS that can be monitored and used to             |
|                      | modify its operation.                                                     |
| Class                | A subdivision of collected historical sample data.                        |
| Compatibility        | Two or more systems or components perform their required                  |
|                      | functions while sharing the same environment.                             |
| Compliance           | A condition that exists when an item meets all of the requirements        |
|                      | of an agency specification.                                               |
| Conformance          | A condition that exists when an item meets all of the mandatory           |
|                      | requirements as defined by the standard. It can be measured on the        |
|                      | standard as a whole, which means that it meets all mandatory (and         |
|                      | applicable conditional) requirements of the standard or on a feature      |
|                      | level (i.e., it conforms to feature X as defined in section X.X.X), which |
|                      | means that it meets all mandatory (and applicable conditional)            |
|                      | requirements of the feature.                                              |
| ConOps               | Concept of Operations                                                     |
| Delay                | A feature that allows the detection output from a TSS detector to be      |
|                      | deferred for a user set time period.                                      |
| Deprecated           | In the context of an MIB, "deprecated" is an object STATUS value          |
|                      | that indicates the object is valid in limited circumstances and may       |
|                      | have been replaced by another.                                            |
| DST                  | Daylight Savings Time                                                     |

| Term                   | Definition                                                               |  |
|------------------------|--------------------------------------------------------------------------|--|
| Extension              | A feature that allows the detection output from a TSS detector to be     |  |
|                        | lengthened for a user set time period.                                   |  |
| Fail-Safe Mode         | Capable of compensating automatically and safely for a failure, as a     |  |
|                        | mechanism or power source.                                               |  |
| Feature                | A service provided by or behavior of the TSS.                            |  |
| Firmware Version       | A manufacturer specified description for identifying the software        |  |
|                        | currently embedded in the TSS.                                           |  |
| Hardware Version       | A manufacturer specified description for identifying the electronic      |  |
|                        | components that comprise the TSS.                                        |  |
| ICD                    | Interface Control Document                                               |  |
| Interchangeability     | A condition that exists when two or more items possess such              |  |
|                        | functional and physical characteristics as to be equivalent in           |  |
|                        | performance and durability, and are capable of being exchanged one       |  |
|                        | for the other without alteration of the items themselves, or             |  |
|                        | adjoining items, except for adjustment, and without selection for fit    |  |
|                        | and performance. (National Telecommunications and Information            |  |
|                        | Administration, U.S. Department of Commerce)                             |  |
| Interoperability       | The ability of two or more systems or components to exchange             |  |
|                        | information and use the information that has been exchanged.             |  |
| Live Data              | A specific operational network configuration between the                 |  |
|                        | management station and the TSS where the information exchange            |  |
|                        | can be performed without the need for initiating and terminating a       |  |
|                        | physical network connection between the management station and           |  |
|                        | TSS. From a network perspective, this configuration is an "always on"    |  |
|                        | connection, where the management station has access to the               |  |
|                        | "current" information available in the TSS.                              |  |
| Management Information | A structured collection or database of related managed objects           |  |
| Base (MIB)             | defined using Abstract Syntax Notation One (ASN.1).                      |  |
| Management Station     | A remote computer (e.g., Traffic Management Center), local               |  |
|                        | computer (e.g., Laptop), or local controller (e.g., Traffic Controller). |  |
| MVI                    | Multi-Version Interoperability (backward compatibility)                  |  |
| Near Real-Time Data    | Data that depicts an event as it existed at the current time less the    |  |
|                        | processing time. The data varies from real-time data because it is       |  |
|                        | dependent on the type and speed of transmission. This data is            |  |
|                        | useable for identifying changes in traffic flows.                        |  |
| NTCIP                  | National Transportation Communication for ITS Protocol                   |  |
| Normalized             | Process of reducing sample data to a common denominator to               |  |
|                        | accommodate comparison of the measured data.                             |  |
| Occupancy              | A measurement of vehicle presence within a zone of detection,            |  |
|                        | expressed in seconds of time a given point or area is occupied by a      |  |
|                        | vehicle.                                                                 |  |

| Term                      | Definition                                                            |  |
|---------------------------|-----------------------------------------------------------------------|--|
| Output                    | The condition of an on/off status generated by a change of state.     |  |
| Output Mode               | There are two common modes, presence and pulse. In the presence       |  |
|                           | output mode, a detection of a vehicle is output constantly while the  |  |
|                           | vehicle is in the zone. In the pulse output mode, detection is output |  |
|                           | for 125 milliseconds (± 25 milliseconds) and then the zone is         |  |
|                           | retuned.                                                              |  |
| PRL                       | Protocol Requirements List                                            |  |
| Protocol                  | A specific set of rules, procedures, and conventions defining the     |  |
|                           | format and timing of data transmissions between devices that are      |  |
|                           | accepted and used to understand each other.                           |  |
| <b>Protocol Version</b>   | A standardized description for identifying the version of the TSS     |  |
|                           | standard to which the TSS is designed to conform.                     |  |
| Requirement               | A condition or capability to which a system must conform, either      |  |
|                           | derived directly from the user needs, or stated in a contract,        |  |
|                           | standard, specification, or other formally imposed document. A        |  |
|                           | desired feature, property, or behavior of a system.                   |  |
| Requirements Traceability | The ability to follow or study the logical progression among the      |  |
|                           | needs, requirements, and design details in a step-by-step fashion.    |  |
| RTC                       | Real Time Clock                                                       |  |
| RTM                       | Requirements Traceability Matrix                                      |  |
| Sample Period             | Duration of time in seconds when data for the zone is being           |  |
|                           | collected.                                                            |  |
| Sensitivity               | The ability of the TSS to react to incoming signals, expressed as the |  |
|                           | minimum input signal required to produce an output signal.            |  |
| Sensitivity Mode          | A characteristic of the loop detector being used. It is defined as    |  |
|                           | either $\Delta$ L/L, $\Delta$ L/ $$ L, or $\Delta$ L.                 |  |
| Sensor                    | A physical device used for sensing traffic.                           |  |
| SEP                       | Systems Engineering Process                                           |  |
| SNMP                      | Simple Network Management Protocol                                    |  |
| SRS                       | Software Requirements Specification                                   |  |
| Transportation Sensor     | Any system capable of sensing and communicating near real-time        |  |
| System (TSS)              | traffic parameters using NTCIP.                                       |  |
| User                      | A person who will utilize the system that is developed.               |  |
| User Need                 | The business or operational problem (opportunity) that must be        |  |
|                           | fulfilled in order to justify purchase or use. While this is termed a |  |
|                           | "user need" within the NTCIP community, it reflects needs of all      |  |
|                           | stakeholders.                                                         |  |

| Term                                                            | Definition                                                           |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------|--|
| Virtual Zone                                                    | A logical combination of one or more zones to create a new zone      |  |
|                                                                 | with its own conditioning and arming enables. This is useful in      |  |
|                                                                 | combining zones to a single zone to provide one output from many     |  |
|                                                                 | zones. This can also be used to alias a zone so that the same zone   |  |
|                                                                 | can provide multiple outputs, each with different conditioning       |  |
|                                                                 | parameters, sample periods, and/or trigger usage.                    |  |
| Volume                                                          | The number of vehicles crossing a section of road per unit time at a |  |
|                                                                 | selected period.                                                     |  |
| Zone An area in which traffic parameters can be measured and/or |                                                                      |  |
|                                                                 | data can be generated.                                               |  |
| Zone Options                                                    | Special settings for controlling the behavior of zones.              |  |

#### 5. Reference to Other Standards

- Institute of Electrical and Electronics Engineers, IEEE 830-1988 Recommended Practice for Software Requirements Specifications. IEEE, 1998. <a href="http://standards.ieee.org/findstds/standard/830-1998.html">http://standards.ieee.org/findstds/standard/830-1998.html</a>
- International Council on Systems Engineering. Systems Engineering Handbook Version 3.2. January 2010. http://www.incose.org/ProductsPubs/products/sehandbook.aspx
- NTCIP Joint Committee, National Transportation Communications for ITS Protocol Object Definitions for Actuated Traffic Signal Controller Units Version 02. NTCIP Joint Committee, 2005. http://www.ntcip.org/library/documents/
- NTCIP Joint Committee, National Transportation Communications for ITS Protocol Object Definitions for Transportation Sensor Systems (TSS) Version 02. NTCIP Joint Committee.
   NTCIP JC Recommended Standard in process of publication.
   <a href="http://www.ntcip.org/library/documents/">http://www.ntcip.org/library/documents/</a>

#### 6. References

- Alexander, Ian and Ljerka Beus-Dukic. *Discovering Requirements*. Wiley, 2009.
- ITS PCB Training, <a href="http://www.pcb.its.dot.gov">http://www.pcb.its.dot.gov</a>
- United States Department of Transportation Federal Highway Administration. Systems
   Engineering Guidebook for Intelligent Transportation Systems Version 3.0. November 2009.

   <a href="https://www.fhwa.dot.gov/cadiv/segb/">www.fhwa.dot.gov/cadiv/segb/</a>
- United States Department of Transportation Federal Highway Administration. *Traffic Detector Handbook: Third Edition—Volume I.* October 2006.
   www.fhwa.dot.gov/publications/research/operations/its/06108/

#### 7. Study Questions

d) TSS; near; NTCIP

Participant Questions Included in Presentation

| 1) | Α_ | A is defined as any system or device capable of sensing and communicating real-time traffic parameters using |  |  |
|----|----|--------------------------------------------------------------------------------------------------------------|--|--|
|    |    |                                                                                                              |  |  |
|    | •  | detector; fast; Ethernet                                                                                     |  |  |
|    | b) | controller; conformant; NTCIP                                                                                |  |  |
|    | c) | NTCIP; conformant; Ethernet                                                                                  |  |  |

#### 2) What is the role of the processing element of a TSS?

- a) Creates raw sensor data using a specific sensor technology
- b) Turns the raw sensor data into usable output data
- c) Transfers output data to other devices or systems internal to the field cabinet
- d) Transfers output data to other devices or systems external to the field cabinet
- 3) Which one of the following choices is NOT considered a capability for the TSS?
  - a) Sampling
  - b) Timing
  - c) Location
  - d) Speed
- 4) Which of the following Control features allows the TSS to be set to a known condition?
  - a) Synchronize the TSS
  - b) Initiate Sensor Diagnostics
  - c) Reset the TSS
  - d) Update Arming Input Bits of the TSS
- 5) Which of the following Monitoring features lets a system or user know that there is a loss of contrast on a video detection camera?
  - a) Monitor System Status
  - b) Monitor TSS Sensor Status
  - c) Monitor Output States
  - d) Monitor Zone Status
- 6) Which of the following Collecting features identifies the user need to retrieve yearly average volume data from a TSS?
  - a) Retrieve In-Progress Sample Data
  - b) Retrieve Current Sample Data
  - c) Retrieve Historical Sample Data
  - d) None of the above

| The PRL is a good tool to |                           |
|---------------------------|---------------------------|
|                           | The PRL is a good tool to |

- a) Tailor an NTCIP specification for a particular TSS technology
- b) Learn the science used in sensor technologies
- c) Specify Ethernet communications
- d) Force TSS providers to support all requirements in the standard

#### 8) Which item below is **NOT** good practice when writing a specification for a TSS?

- a) Including the protocols used to communicate with the TSS
- b) Excluding NTCIP requirements because your favorite vendor does not support them
- c) Consistency with hardware requirements for the TSS
- d) Conformance to the NTCIP 1209 v02 Standard