SLIDES BY

GOH SIAU CHIAK

WITH ADDITIONS FROM AARON

AND EDITS BY THEODORE LEEBRANT

Tutorial 8: Relations

Q1. Let
$$A = \{1, 2, ..., 10\}$$
 and $B = \{2, 4, 6, 8, 10, 12, 14\}$. Define a relation R from A to B by setting $x R y \iff x$ is prime and $x \mid y$

for each $x \in A$ and each $y \in B$. Write down the sets R and R^{-1} in roster notation. Do not use ellipses (...) in your answers.

What is R^{-1} ?

 R^{-1} is the inverse relation of R, i.e. $R^{-1} = \{(y,x) : (x,y) \in R\}$, or, $y R^{-1} x$ iff x R y.

(Note: Unlike functions, every relation has a (unique) inverse.)

(Arrow diagrams shown for illustration purpose only.)

$$R = \{(2,2), (2,4), (2,6), (2,8), (2,10), (2,12), (2,14), (3,6), (3,12), (5,10), (7,14)\}$$

$$R^{-1} = \{(2,2), (4,2), (6,2), (8,2), (10,2), (12,2), (14,2), (6,3), (12,3), (10,5), (14,7)\}$$

Q2. Let R be a relation on set A. Show that R is symmetric $\Leftrightarrow R = R^{-1}$.

(Observation: If R is a symmetric relation on a set A, how would the arrow diagrams for R and R^{-1} look like?)

- 1. $(\Rightarrow)^{-1}$
 - 1.1 Suppose *R* is symmetric.
 - 1.2 $(R \subseteq R^{-1})$
 - 1.2.1 Let $x, y \in A$ such that $(x, y) \in R$.
 - **1.2.2** Then x R y (by the definition of xRy)
 - 1.2.3 \therefore y R x (as R is symmetric)
 - 1.2.4 $\therefore x R^{-1} y$ (by the definition of R^{-1})
 - 1.2.5 \therefore $(x, y) \in R^{-1}$ (by the definition of $xR^{-1}y$)
 - 1.3 $(R \supseteq R^{-1})$
 - 1.3.1 Let $x, y \in A$ such that $(x, y) \in R^{-1}$.
 - 1.3.2 Then $x R^{-1} y$ (by the definition of $xR^{-1}y$)
 - 1.3.3 : y R x (by the definition of R^{-1})
 - 1.3.4 $\therefore x R y$ (as R is symmetric)
 - 1.3.5 \therefore $(x, y) \in R$ (by the definition of xRy)
 - 1.4 : $R = R^{-1}$.

Eg: Let $A = \{1,2,3,4,5,6\}$ and R be a relation on A s.t. $x R y \Leftrightarrow x + y = 6$. Show the arrow diagrams for R and R^{-1} .

Tutor: Get students to draw the diagrams themselves, to discover that they are the same.

Q2. Let R be a relation on set A. Show that R is symmetric $\Leftrightarrow R = R^{-1}$.

- (\Rightarrow) 1.1 Suppose *R* is symmetric. 1.2 $(R \subseteq R^{-1})$ 1.2.1 Let $x, y \in A$ such that $(x, y) \in R$. **1.2.2** Then x R y (by the definition of xRy) 1.2.3 \therefore y R x (as R is symmetric) 1.2.4 $\therefore x R^{-1} y$ (by the definition of R^{-1}) 1.2.5 \therefore $(x, y) \in R^{-1}$ (by the definition of $xR^{-1}y$) 1.3 $(R \supseteq R^{-1})$ 1.3.1 Let $x, y \in A$ such that $(x, y) \in R^{-1}$. 1.3.2 Then $x R^{-1} y$ (by the definition of $xR^{-1}y$) 1.3.3 : y R x (by the definition of R^{-1}) 1.3.4 $\therefore x R y$ (as R is symmetric) 1.3.5 ∴ $(x, y) \in R$ (by the definition of xRy) 1.4 $\therefore R = R^{-1}$.
- 2. (⇐)
 - 2.1 Suppose $R = R^{-1}$. 2.1.1 Let $x, y \in A$ such that x R y. 2.1.2 Then $(x, y) \in R$ (by the definition of xRy) 2.1.3 $\therefore (x, y) \in R^{-1}$ (as $R = R^{-1}$)
 - 2.1.4 $\therefore x R^{-1} y$ (by the definition of $xR^{-1}y$)
 - 2.1.5 : y R x (by the definition of R^{-1})
 - 2.2 $\therefore R$ is symmetric.

- Q3. For each of the following relations on \mathbb{Q} , determine if it is (i) reflexive, (ii) symmetric, (iii) transitive, (iv) antisymmetric, (v) an equivalence relation.
- (a) R is defined by setting $x R y \text{ iff } xy \ge 0 \text{ for all } x, y \in \mathbb{Q}.$

Reflexive?
$$\forall x \in \mathbb{Q}, x \cdot x = x^2 \ge 0$$

Let A be a set and R a relation on A.

- (1) R is reflexive: $\forall x \in A (x R x)$.
- (2) R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.
- (3) R is transitive: $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz)$.
- (4) R is antisymmetric: $\forall x, y \in A \ (xRy \land yRx \Rightarrow x = y)$.
- (5) *R* is an equivalence relation: *R* is reflexive, symmetric and transitive.

Symmetric?
$$\forall x, y \in \mathbb{Q}, xy \geq 0 \Rightarrow yx = xy \geq 0$$
 (by commutativity of \times)

Transitive?

Counter-example: 1 R 0 and 0 R (-1) but 1 R (-1).

Antisymmetric?

Counter-example: 1 R 2 and 2 R 1 but $1 \neq 2$.

Equivalence relation? R is not transitive.

Q3. For each of the following relations on \mathbb{Q} , determine if it is (i) reflexive, (ii) symmetric, (iii) transitive,

(iv) antisymmetric, (v) an equivalence relation.

(b) *S* is defined by setting $x S y \text{ iff } xy > 0 \text{ for all } x, y \in \mathbb{Q}.$

- (1) R is reflexive: $\forall x \in A (x R x)$.
- (2) R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.
- (3) R is transitive: $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz)$.
- (4) R is antisymmetric: $\forall x, y \in A \ (xRy \land yRx \Rightarrow x = y)$.
- (5) *R* is an equivalence relation: *R* is reflexive, symmetric and transitive.

Reflexive? Counter-example:0 \$ 0

Symmetric?

$$\forall x, y \in \mathbb{Q}, xy > 0 \Rightarrow yx = xy > 0$$
 (by commutativity of \times)

- 1. Let $x, y, z \in \mathbb{Q}$ such that xy > 0 and yz > 0.
- 2. Then $xy \cdot yz = xz \cdot y^2 > 0$ (by associativity and commutativity of \times)
- 3. Either $xz > 0 \land y^2 > 0$ or $xz < 0 \land y^2 < 0$ (by T25, midterm test Q21)
- 4. But $y^2 \ge 0 \ \forall y \in \mathbb{Q}$, so the second case is a contradiction.
- 5. Therefore, xz > 0 (by elimination and specialisation)

Transitive?

Antisymmetric?

Counter-example: 1 S 2 and 2 S 1 but $1 \neq 2$.

Equivalence relation? S is not reflexive.

- Q3. For each of the following relations on \mathbb{Q} , determine if it is (i) reflexive, (ii) symmetric, (iii) transitive,
 - (iv) antisymmetric, (v) an equivalence relation.
- (c) *T* is defined by setting $x T y \text{ iff } |x - y| \le 2 \text{ for all } x, y \in \mathbb{Q}.$

Reflexive?
$$\forall x \in \mathbb{Q}, |x - x| = 0 \le 2.$$

- Let A be a set and R a relation on A.
- (1) R is reflexive: $\forall x \in A (x R x)$.
- (2) R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.
- (3) R is transitive: $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz)$.
- (4) R is antisymmetric: $\forall x, y \in A \ (xRy \land yRx \Rightarrow x = y)$.
- (5) *R* is an equivalence relation: *R* is reflexive, symmetric and transitive.

Symmetric? 1.
$$\forall x \in \mathbb{Q}, |x| = |-x|$$
.

2.
$$|x - y| \le 2 \Rightarrow |-(x - y)| = |y - x| \le 2$$
.

Transitive?

Counter-example: -2 T 0 and 0 T 2 but -2 T 2.

Antisymmetric?

Counter-example: 1 T 2 and 2 T 1 but $1 \neq 2$.

Equivalence relation? T is not transitive.

Q4. Define a relation
$$R$$
 on \mathbb{Q} as follows

$$x R y \iff x - y \in \mathbb{Z}$$

(a) Show that R is an equivalence relation.

- 1. (Reflexivity) Let $x \in \mathbb{Q}$, then $x x = 0 \in \mathbb{Z}$. So x R x.
- 2. (Symmetry)
 - 2.1 Let $x, y \in \mathbb{Q}$ such that x R y.
 - 2.2 Then $x y \in \mathbb{Z}$ (by the definition of R)
 - 2.3 So $y x = (-1)(x y) \in \mathbb{Z}$ (closure of integers under \times)
 - 2.4 Hence, y R x (by the definition of R)
- 3. (Transitivity)
 - 3.1 Let $x, y, z \in \mathbb{Q}$ such that x R y and y R z.
 - 3.2 Then $x y \in \mathbb{Z}$ and $y z \in \mathbb{Z}$ (by the definition of R)
 - 3.3 So $x z = (x y) + (y z) \in \mathbb{Z}$ (by closure of integers under +)
 - 3.4 Hence, x R z (by the definition of R)
- 4. Since R is reflexive, symmetric and transitive, it is an equivalence relation.

Q4. Define a relation R on \mathbb{Q} as follows

$$x R y \iff x - y \in \mathbb{Z}$$

(b) Find an element a in the equivalence class $\left[\frac{37}{7}\right]$ that satisfies $0 \le a < 1$.

Idea: Look for a rational number r such that $\frac{37}{7} - r$ is an integer. Many possible answers.

- 1. Note that $\frac{37}{7} = 5 + \frac{2}{7}$.
- 2. So $\frac{37}{7} \frac{2}{7} = 5 \in \mathbb{Z}$.
- 3. Hence $\frac{37}{7} R^{\frac{2}{7}}$ and therefore $\frac{2}{7} \in \left[\frac{37}{7}\right]$.

Other answers include: $\frac{9}{7}$, $\frac{16}{7}$, $-\frac{5}{7}$, etc., that is, $\frac{37+7k}{7} \forall k \in \mathbb{Z}$.

Q4. Define a relation R on \mathbb{Q} as follows $x R y \iff x - y \in \mathbb{Z}$

- (c) Devise a general method to find, for each given equivalence class [x], where $x \in \mathbb{Q}$, an element $a \in [x]$ such that $0 \le a < 1$.
 - 1. Let $x \in \mathbb{Q}$, then $\exists m, n \in \mathbb{Z}$, $n \neq 0$ such that $x = \frac{m}{n}$.
 - 2. Without loss of generality, assume n > 0. (If n < 0 we rewrite the fraction $\frac{m}{n}$ by multiplying top and bottom by -1 to make the denominator positive).
 - 3. Let $a = \frac{m \mod n}{n}$.
 - 4. Then $0 \le a < 1$ (since $0 \le m \mod n < n$ by definition of \mod)
 - 5. Also, since $m = n(m \operatorname{div} n) + (m \operatorname{mod} n)$, we have

$$x - a = \frac{m}{n} - \frac{m \bmod n}{n} = \frac{m - m \bmod n}{n} = m \operatorname{div} n \in \mathbb{Z}$$

6. Thus x R a (by definition of R) and so $a \in [x]$ (by definition of equivalence class)

Q5. Let A, B be nonempty sets and $f: A \rightarrow B$ be a surjection. Show that \mathcal{C} is a partition on A where

$$C = \{ \{ x \in A : f(x) = y \} : y \in B \}$$

- 1. We show that each component of \mathcal{C} is nonempty.
 - 1.1 Let $S \in \mathcal{C}$.
 - 1.2 Then $\exists y_0 \in B$ such that $S = \{x \in A: f(x) = y_0\}$ (by the definition of C)
 - 1.3 Then $\exists x_0 \in A$ such that $f(x_0) = y_0$ (by surjectivity of f)
 - 1.4 So $x_0 \in S$ and thus S is nonempty.
- 2. (≥ 1)
 - 2.1 Let $x_0 \in A$.
 - 2.2 Define $y_0 = f(x_0)$ and $S = \{x \in A: f(x) = y_0\} \in C$
 - 2.3 Then $x_0 \in S$ (as $f(x_0) = y_0$)
- 3. (≤ 1)
 - 3.1 Let $x_0 \in A$ and $S, S' \in C$ such that $x_0 \in S$ and $x_0 \in S'$.
 - 3.2 Then $\exists y, y' \in B$ such that $S = \{x \in A: f(x) = y\}$ and $S' = \{x \in A: f(x) = y'\}$ (by the definition of \mathcal{C})
 - 3.3 Then $f(x_0) = y$ and $f(x_0) = y'$ (as $x_0 \in S$ and $x_0 \in S'$)
 - 3.4 This implies y = y' (by the functionality of f) and so S = S'.
- 4. From (1), (2) and (3), C is a partition on A.

Observation:

- The components of \mathcal{C} are pairwise disjoint.
- Union of all the components of \mathcal{C} is A.

Definition 9.3.1

A partition of a set A is a set \mathcal{C} of nonempty subsets of A s.t. $(\geq 1) \forall x \in A \exists S \in \mathcal{C} (x \in S)$; and

 $(\leq 1) \ \forall x \in A \ \forall S, S' \in \mathcal{C} \ (x \in S \land x \in S' \Rightarrow S = S').$

Elements of a partition are called components of the partition.

Eg:

Let $A = \{1,2,3,4,5,6,7,8,9,10\}, B = \{0,1,2\},$ and $f: A \to B$ be defined as $f(x) = x \mod 3$.

Then $\{\{1,4,7,10\},\{2,5,8\},\{3,6,9\}\}$ is a partition on A.

That is, the preimages of 0,1,2 form the respective components of the partition.

Partial orders

R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.

R is antisymmetric: $\forall x, y \in A \ (xRy \land yRx \Rightarrow x = y)$.

Definition 9.4.1

Let A be a set and R be a relation on A.

R is a partial order if R is reflexive, antisymmetric and transitive.

Partial orders

R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.

R is antisymmetric: $\forall x, y \in A \ (xRy \land yRx \Rightarrow x = y)$.

Definition 9.4.1

Let A be a set and R be a relation on A.

R is a partial order if R is reflexive, antisymmetric and transitive.

Q6. Considering the "divides" relation of each of the following sets of integers, draw a Hasse diagram and find all largest, smallest, maximal and minimal elements, and a linearization.

(a)
$$A = \{1, 2, 4, 5, 10, 15, 20\}$$

Note that the "divides" relation on integers is a partial order.

Definition 9.5.1

Let \leq be a partial order on a set A, and $c \in A$.

- (1) c is a minimal element if $\forall x \in A \ (x \le c \Rightarrow c = x)$.
- (2) c is a maximal element if $\forall x \in A \ (c \le x \Rightarrow c = x)$.
- (3) c is the smallest (minimum) element if $\forall x \in A \ (c \leq x)$.
- (4) c is the largest (maximum) element if $\forall x \in A \ (x \le c)$.

Largest element

No largest

Smallest element

Maximal elements

20 and 15

Minimal elements

Linearization

 \leq on A (many other answers)

Q6. Considering the "divides" relation of each of the following sets of integers, draw a Hasse diagram and find all largest, smallest, maximal and minimal elements, and a linearization.

(b)
$$B = \{2, 3, 4, 6, 8, 9, 12, 18\}$$

Definition 9.5.1

Let \leq be a partial order on a set A, and $c \in A$.

- (1) c is a minimal element if $\forall x \in A \ (x \le c \Rightarrow c = x)$.
- (2) c is a maximal element if $\forall x \in A \ (c \le x \Rightarrow c = x)$.
- (3) c is the smallest (minimum) element if $\forall x \in A \ (c \leq x)$.
- (4) c is the largest (maximum) element if $\forall x \in A \ (x \le c)$.

Largest element

Smallest element

Maximal elements

Minimal elements

Linearization

No largest

No smallest

8, 12 and 18

2 and 3

 \leq on B (many other answers)

- Q7. Let \leq be a partial order on a set P, and $a, b \in P$
 - a, b are **comparable** if $a \le b$ or $b \le a$.
 - a, b are **compatible** if $\exists c \in P$ such that $a \leq c$ and $b \leq c$.
- (a) Is it true that in all partially ordered sets, any two comparable elements are compatible?

YES

- 1. Let $a, b \in P$ be comparable.
- 2. Then either $a \leq b$ or $b \leq a$ (by definition of comparability)
- 3. Case 1: $a \leq b$
 - 3.1 Let c = b.
 - 3.2 $\exists c \in P$ such that $a \leq c$ and $b \leq c$ (since $b \leq b$ by reflexivity).
 - 3.3 Therefore a and b are compatible (by the definition of compatibility)
- 4. Case 2: $b \leq a$
 - 4.1 Let c = a
 - 4.2 $\exists c \in P$ such that $b \leq c$ and $a \leq c$ (since $a \leq a$ by reflexivity).
 - 4.3 Therefore a and b are compatible (by the definition of compatibility)
- 5. In all cases a and b are compatible.

- Q7. Let \leq be a partial order on a set P, and $a, b \in P$
 - a, b are **comparable** if $a \le b$ or $b \le a$.
 - a, b are **compatible** if $\exists c \in P$ such that $a \leq c$ and $b \leq c$.
- (b) Is it true that in all partially ordered sets, any two compatible elements are comparable?

NO

- 1. Consider the "divides" relation | on \mathbb{Z}^+ which is a partial order on \mathbb{Z}^+ .
- 2. For $2, 3 \in \mathbb{Z}^+$, $2 \mid 6$ and $3 \mid 6$, so 2 and 3 are compatible.
- 3. However, $2 \nmid 3$ and $3 \nmid 2$, so 2 and 3 are not comparable.

Which of the relations below are **REFLEXIVE**?

Let A be a set and R a relation on A. R is reflexive: $\forall x \in A \ (x \ R \ x)$.

Which of the relations below are **REFLEXIVE**?

Let A be a set and R a relation on A. R is reflexive: $\forall x \in A \ (x \ R \ x)$.

Common mistake

It is wrong to say that "a is reflexive", "b is reflexive", "c is not reflexive". We say a R a (a is related to itself), c R c (c is not related to itself).

We either say the relation R is reflexive or not reflexive. We don't say an element of A is reflexive or not reflexive.

Reflexivity, symmetry and transitivity are properties of relations, not individual elements of A.

Which of the relations below are **SYMMETRIC**?

Let A be a set and R a relation on A. R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.

Which of the relations below are **SYMMETRIC**?

Let A be a set and R a relation on A. R is symmetric: $\forall x, y \in A \ (xRy \Rightarrow yRx)$.

Which of the relations below are TRANSITIVE?

Let A be a set and R a relation on A. R is transitive:

 $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz).$

Which of the relations below are TRANSITIVE?

Let A be a set and R a relation on A. R is transitive:

 $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz).$

