ECON 3113 Microeconomic Theory I Lecture 6: Demand

Pak Hung Au

Department of Economics, HKUST

March 2020

Introduction

- What is the relationship between consumption and prices?
- What is the relationship between consumption and income?
- How to measure the strength of these relationship?
- How to measure the gains or losses of a consumer after a change in prices or income?

Demand Function

Recall that the consumer's problem is

$$\max_{(x_1, x_2, ..., x_n) \ge 0} u(x_1, x_2, ..., x_n)$$

subject to the budget constraint

$$p_1x_1 + p_2x_2 + ... + p_nx_n \leq I$$
.

- The solution to the problem is dependent on prices p_1 , p_2 ,..., p_n and income I.
- We will assume throughout that the preference is strictly convex, or equivalently DMRS is satisfied.
- An immediate implication is that the solution to the consumer's problem is unique.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

Demand Function

Denote this solution by

$$x_1 = x_1 (p_1, ..., p_n, I);$$

 $x_2 = x_2 (p_1, ..., p_n, I);$
....
 $x_n = x_n (p_1, ..., p_n, I).$

- These are the **demand functions** of the consumer.
- With only two goods, the demand functions are simply

$$x_1 = x_1(p_1, p_2, I)$$
 and $x_2 = x_2(p_1, p_2, I)$.

Pak Hung Au (HKUST)

Demand Function: Homogeneity

- What happens to the consumer's demand if we double all the prices and incomes?
- The consumer's problem becomes

$$\max_{(x_1, x_2, ..., x_n) \ge 0} u(x_1, x_2, ..., x_n)$$

subject to the budget constraint

$$\lambda p_1 x_1 + \lambda p_2 x_2 + \ldots + \lambda p_n x_n \le \lambda I.$$

- The problem is identical to the original one!
- So is the solution.

Theorem

The demand functions are **homogeneous of degree zero**. That is, $x_i(\lambda p_1, ..., \lambda p_n, \lambda I) = x_i(p_1, ..., p_n, I)$ for all $\lambda > 0$.

Demand Function: Walras' Law

 A bundle lying strictly within the budget set is clearly not optimal, if more goods is always preferred.

Theorem

If preference is monotone, the demand functions satisfy

$$p_1x_1(p_1,...,p_n,I) + p_2x_2(p_1,...,p_n,I) + ... + p_nx_n(p_1,...,p_n,I) = I.$$

Changes in Income: Normal Goods

- Suppose the consumer's income increases, will she consume more of everything?
- An increase in income corresponds to a parallel outward shift of the budget line.
- These goods look normal.

Changes in Income: Inferior Goods

 Good 1 is called an inferior goods. E.g., instant noodles, budget airline flights, low-quality goods.

Normal Good vs Inferior Good

Definition

A good i is a **normal good** (in a range of income) if its consumption $x_i(p, I)$ increases with income, i.e., $\partial x_i/\partial I \geq 0$, in that range.

A good i is an **inferior good** (in a range of income) if its consumption

 $x_i(p, I)$ decreases with income, i.e., $\partial x_i/\partial I < 0$, in that range.

Changes in Prices

- Lower price ⇒ more purchase?
 - aka Law of Demand
- A change in the price of a good has two effects:
- it changes the "exchange rate" of the goods
- it changes the consumer's purchasing power
 - Suppose the price of goods 1 goes down.
 - She needs to give up less of goods 2 to acquire each extra unit of goods 1.
 - Her purchasing power goes up: she can afford every bundle previously affordable, plus something more.

Changes in Prices

- We can hypothetically decompose the change in budget line into two stages.
 - Rotation along the initial indifference curve
 - Parallel shift

11 / 56

Pak Hung Au (HKUST) Demand March 2020

Changes in Prices

- We can hypothetically decompose the change in budget line into two stages.
 - Rotation along the initial indifference curve
 - Parallel shift

Substitution and Income Effect

- The effect of a price change on demand can be (hypothetically) decomposed into the following two effects.
- **Substitution effect**: change in the demand due to a change in the price, holding utility constant.
- **Income effect**: change in demand due to a change in purchasing power, holding the relative prices constant.
- Total effect: sum of substitution effect and income effect.

Substitution and Income Effect

Pak Hung Au (HKUST)

Substitution Effect

- Suppose the price of goods 1 decreases from p_1 to p'_1 .
- The hypothetical budget line is $p'_1x_1 + p_2x_2 = I'$, where **income is adjusted down** to some I' so that the consumer's attainable utility is preserved.

Substitution Effect

- Recall the optimal bundle (if interior) can be identified by equating MRS (slope of IC) with price ratio (p_1/p_2) .
- As the consumer's preference satisfies DMRS, a reduction in p_1 always results in an increase in the optimal choice of x_1 , holding utility fixed.
- As the substitution effect always drives price and quantity in opposite direction, substitution effect is always negative.

Substitution Effect

Compensated Demand Curve

- The compensated (Hicksian) demand curve of a consumer depicts the relationship between the price of a goods and her quantity of that goods, holding fixed the prices of other goods and the utility level.
- As the substitution effect is always negative, the compensated (Hicksian) demand curve is downward-sloping.

Compensated Demand Curve

Pak Hung Au (HKUST)

Calculating the Substitution Effect

- Consider Cobb-Douglas utility $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$.
- Fix some utility level \bar{u} and price of goods 2.
- What is the consumption bundle that satisfies the tangency condition while delivering a utility \bar{u} ?

$$MRS = \frac{\alpha}{1 - \alpha} \frac{x_2}{x_1} = \frac{p_1}{p_2} \text{ and } x_1^{\alpha} x_2^{1 - \alpha} = \bar{u}.$$

• Substituting the second equation $(x_2=(\bar ux_1^{-\alpha})^{\frac{1}{1-\alpha}})$ into the first and simplifying, we get

$$x_1 = \left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha} \bar{u}^{-1} \left(\frac{p_2}{p_1}\right)^{1-\alpha}.$$

The compensated demand is thus

$$\mathsf{x}_1^{\mathsf{C}}\left(\mathsf{p}_1,\mathsf{p}_2,\mathsf{U}\right) = \left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha} \mathsf{U}^{-1}\left(\frac{\mathsf{p}_2}{\mathsf{p}_1}\right)^{1-\alpha}.$$

Pak Hung Au (HKUST) Demand March 2020 20 / 56

Calculating the Substitution Effect

- Consider quasi-linear utility $u\left(x_1,x_2\right)=v\left(x_1\right)+x_2$, with some strictly concave v.
- Fix some utility level \bar{u} and price of goods 2 at $p_2=1$.
- What is the consumption bundle that satisfies the tangency condition while delivering a utility \bar{u} ?

$$MRS = v'(x_1) = p_1 \text{ and } v(x_1) + x_2 = \bar{u}.$$

• For intermediate p_1 such that the solution is interior,

$$x_1^{C}(p_1, p_2, U) = (v')^{-1}(p_1).$$

• It coincides with the regular (uncompensated) demand!

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Income Effect

- Continue to consider a decrease in the price of goods 1 from p_1 to p'_1 .
- Now consider the second stage of budget-line adjustment: parallel outward shift.
- If good 1 is a *normal goods*, this parallel outward shift of the budget line increases the consumption of goods 1.

Income Effect: Normal Goods

Income Effect: Inferior Goods

• If good 1 is an *inferior goods*, this parallel outward shift of the budget line decreases the consumption of goods 1.

Income Effect

- The direction of the income effect therefore depends on whether the goods is normal or inferior.
- Normal goods:
 lower price ⇒ stronger purchasing power ⇒ increase in consumption
- Inferior goods:
 lower price ⇒ stronger purchasing power ⇒ decrease in consumption

Calculating the Income Effect

- Consider again the Cobb-Douglas utility $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$.
- Fix the prices at some (p_1, p_2) .
- How does the optimal bundle changes in response to income changes?
- Recall that when the consumer has income I, the optimal bundle has

$$x_1(p_1, p_2, I) = \alpha \frac{I}{p_1}.$$

• Goods 1 is therefore a normal good, as its consumption always increases in *I*, i.e., the income effect is positive.

Total Effect

- Total effect is the sum of the substitution effect and the income effect.
- If the goods is a normal goods, both the substitution effect and the income effect operate in the same direction.
- Lower price ⇒ higher quantity purchased: law of demand always holds for normal goods.

Total Effect: Normal Goods

Total Effect: Inferior Goods

- If the goods is an inferior goods, the substitution effect and the income effect operate in opposite direction.
- Lower price may lead to higher or lower demand, depending on the relative strength of the two effects.

Total Effect: Inferior Goods

• If the substitution effect is stronger than the income effect, quantity demanded goes up following a price decrease.

Total Effect: Giffen Goods

- If the income effect is stronger than the substitution effect, quantity demanded goes down following a price decrease.
- In this case, we say the goods is a Giffen good.
 - No convincing evidence of its existence in the real world.

Interim Summary

- The effect of a price change on demand can be decomposed into the substitution effect and the income effect, by hypothetically decomposing the adjustment of the budget line into two steps.
 - Bear in mind this decomposition is a theoretical construct.
- Sign of the effects

	Substitution Effect	Income Effect	Total Effect
Normal	-	-	-
Inferior, non-Giffen	-	+	-
Giffen	-	+	+

Tracing the Demand Curve Graphically

Demand Curve vs Compensated Demand Curve

- Compensated demand curve captures only the substitution effect.
- (Uncompensated) Demand curve captures both the substitution effect and the income effect.
- Therefore, for a normal goods, the demand curve is flatter than the compensated demand curve.

Pak Hung Au (HKUST) Demand March 2020 34 / 56

Movement along Demand Curve vs Shift of Whole Curve

- The demand curve plots how the good's demand varies with its own price, holding all other things constant (other goods' prices, income and preference).
- Any change in other goods' prices, the consumer's income or preference will shift the whole demand curve.

Pak Hung Au (HKUST) Demand March 2020

Movement along Demand Curve vs Shift of Whole Curve

• Recall the optimal consumption bundle given Cobb-Douglas utility is

$$x_1\left(p_1,p_2,I\right)=lpharac{I}{p_1} \ ext{and} \ x_2\left(p_1,p_2,I\right)=\left(1-lpha
ight)rac{I}{p_2}.$$

• With $\alpha = 0.5$ and I = 10, the demand curve of goods 1 looks

Pak Hung Au (HKUST) Demand March 2020 36 / 56

Movement along Demand Curve vs Shift of Whole Curve

 Now suppose the consumer's income increases to 15, the new demand curve looks

Pak Hung Au (HKUST) Demand March 2020 37 / 56

Movement along Demand Curve vs Shift of Whole Curve

• Next suppose α decreases to 0.2 so that the consumer becomes less interested in goods 1, the new demand curve looks

Pak Hung Au (HKUST) Demand

38 / 56

(Own-)Price Elasticity of Demand

A measure of the sensitivity of the demand to price changes.

Definition

Price elasticity of demand of a goods is the percentage change in its quantity demanded in response to a unit percentage change in its price. In notation,

$$\varepsilon_{x_1,p_1} = \frac{\triangle x_1/x_1}{\triangle p_1/p_1} = \frac{\triangle x_1}{\triangle p_1} \frac{p_1}{x_1} = \frac{\partial x_1\left(p_1,p_2,I\right)}{\partial p_1} \frac{p_1}{x_1}.$$

Pak Hung Au (HKUST)

(Own-)Price Elasticity of Demand

Example

With Cobb-Douglas utility $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, the demand function of goods 1 is $x_1(p_1, p_2, I) = \alpha \frac{I}{p_1}$.

$$\varepsilon_{x_1,p_1} = \frac{\partial x_1(p_1,p_2,I)}{\partial p_1} \frac{p_1}{x_1} = \left(-\alpha \frac{I}{p_1^2}\right) \frac{p_1}{x_1} = -\frac{\alpha I}{p_1 x_1} = -1.$$

The demand is "unit-elastic."

Example

Suppose the demand function is linear: $x_1(p_1, p_2, I) = I - ap_1 + bp_2$.

$$\varepsilon_{x_1,p_1} = \frac{\partial x_1(p_1,p_2,I)}{\partial p_1} \frac{p_1}{x_1} = -a \frac{p_1}{x_1} = -a \frac{p_1}{I - ap_1 + bp_2},$$

so demand is more elastic at higher (own) prices.

Income Elasticity of Demand

• A measure of the sensitivity of the demand to income changes.

Definition

Income elasticity of demand of a goods is the percentage change in its quantity demanded in response to a unit percentage change in income. In notation,

$$\varepsilon_{x_{1},I} = \frac{\triangle x_{1}/x_{1}}{\triangle I/I} = \frac{\triangle x_{1}}{\triangle I} \frac{I}{x_{1}} = \frac{\partial x_{1} \left(p_{1}, p_{2}, I\right)}{\partial I} \frac{I}{x_{1}}.$$

Income Elasticity of Demand

Example

With Cobb-Douglas utility, the demand function of goods 1 is $x_1(p_1, p_2, I) = \alpha \frac{I}{p_1}$, so

$$\varepsilon_{x_1,I} = \frac{\partial x_1\left(p_1,p_2,I\right)}{\partial I} \frac{I}{x_1} = \left(\frac{\alpha}{p_1}\right) \frac{I}{x_1} = 1.$$

Example

With linear demand function, $x_1(p_1, p_2, I) = I - ap_1 + bp_2$, and

$$\varepsilon_{x_1,I} = \frac{\partial x_1\left(p_1,p_2,I\right)}{\partial I} \frac{I}{x_1} = \frac{I}{I - ap_1 + bp_2}.$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (^)

Cross-price Elasticity of Demand

 A measure of the sensitivity of the demand to changes in prices of other goods.

Definition

Cross-price elasticity of demand of a goods is the percentage change in its quantity in response to a unit percentage change in the price of some other good. In notation,

$$\varepsilon_{x_1,p_2} = \frac{\triangle x_1/x_1}{\triangle p_2/p_2} = \frac{\triangle x_1}{\triangle p_2} \frac{p_2}{x_1} = \frac{\partial x_1(p_1,p_2,I)}{\partial p_2} \frac{p_2}{x_1}.$$

Cross-price Elasticity of Demand

Example

With Cobb-Douglas utility, the demand function of goods 1 is $x_1(p_1, p_2, I) = \alpha \frac{I}{p_1}$, so

$$\varepsilon_{x_1,p_2} = \frac{\partial x_1(p_1,p_2,I)}{\partial p_2} \frac{p_2}{x_1} = 0 \left(\frac{p_2}{x_1}\right) = 0.$$

Example

With linear demand function, $x_1(p_1, p_2, I) = I - ap_1 + bp_2$, and

$$\varepsilon_{x_1,p_2} = \frac{\partial x_1(p_1,p_2,I)}{\partial p_2} \frac{p_2}{x_1} = \frac{bp_2}{I - ap_1 + bp_2}.$$

- 4日 > 4個 > 4 種 > 4種 > 種 > 種 の Q (で

Connection of Demand Elasticities: Homogeneity

- Recall demand function is homogeneous of degree zero, i.e., $x_1(\lambda p_1, \lambda p_2, \lambda I) = x_1(p_1, p_2, I)$ for all $\lambda > 0$.
- Differentiate this equation with respect to λ gives:

$$\frac{\partial x_1}{\partial p_1} \times p_1 + \frac{\partial x_1}{\partial p_2} \times p_2 + \frac{\partial x_1}{\partial I} \times I = 0.$$

• Dividing this equation by x_1 , we get

$$\varepsilon_{x_1,p_1}+\varepsilon_{x_1,p_2}+\varepsilon_{x_1,I}=0.$$

Connection of Demand Elasticities: Engel Aggregation

- Recall demand functions satisfy Walras' law, i.e., $p_1x_1(p_1, p_2, I) + p_2x_2(p_1, p_2, I) = I$.
- Differentiate this equation with respect to income gives:

$$p_{1}\frac{\partial x_{1}\left(p_{1},p_{2},I\right)}{\partial I}+p_{2}\frac{\partial x_{2}\left(p_{1},p_{2},I\right)}{\partial I}=1.$$

• By definitions, $\varepsilon_{x_1,I} = \frac{\partial x_1}{\partial I} \times \frac{I}{x_1}$ and $\varepsilon_{x_2,I} = \frac{\partial x_2}{\partial I} \times \frac{I}{x_2}$, so

$$\frac{p_1x_1}{I}\varepsilon_{x_1,I}+\frac{p_2x_2}{I}\varepsilon_{x_2,I}=1.$$

• Denote $s_i = p_i x_i / I$ as the share of income spent on goods i. The equation above can be simplified into

$$s_1 \varepsilon_{x_1,I} + s_2 \varepsilon_{x_2,I} = 1.$$

◆ロト ◆母 ト ◆ 重 ト ◆ 重 ・ 釣 Q ②

Substitutes and Complements

- It is natural to expect that if a consumer views two goods as substitutable, she consumes more of goods 1 if the price of goods 2 goes up.
- Conversely, if the consumer views two goods as complementary, she consumes less of goods 1 if the price of goods 2 goes up.

Definition

Good i is a **gross substitute** for goods j if an increase in the price of goods j increases the quantity of consumption of goods i.

Good i is a **gross complement** to goods j if an increase in the price of goods j decreases the quantity of consumption of goods i.

Substitutes and Complements

Substitutes and Complements

- These definitions turn out to be not always helpful because of asymmetry.
 - It is possible that goods i is a gross substitute of goods j but at the same time, goods j is a gross complement of goods i.
 - See textbook p.187 for an example.
- An alternative definition that overcomes the asymmetry problem above is to use compensated demands. The corresponding concepts are called net substitutes and net complements.

- By how much does a consumer gain from having access to a market?
- Utility is not a cardinal concept, so it can't be used as a welfare measure.
- Let's reframe this question: "How much income is the consumer willing to give up in order to acquire access to a market?"

- Initially the consumer does not have access to the market of goods 1 and so can consume only $(0, I/p_2)$.
 - Suppose this bundle gives her utility *U*.
- Suppose we offer her the deal "We can let you access market of goods 1 but you have to pay a lump sum \mathcal{T} ."
- What is the maximum amount of T that the consumer is willing to pay?
- Answer: T such that the optimal bundle given the budget set $\{x: p_1x_1+p_2x_2\leq I-T\}$ delivers exactly utility U.
- This is called the **consumer surplus**.

- Another way to compute the consumer surplus is to use the compensated demand.
- Recall compensated demand fixes a utility level, say U, and ask how the quantity of goods 1 (say) changes in response to p_1 .
 - obtained by solving

$$MRS(x_1, x_2) = \frac{p_1}{p_2} \text{ and } u(x_1, x_2) = U.$$

- Integrating the slope of a function returns the function itself.
- The area under the compensated demand therefore gives us the "height" of the indifference curve.
- The consumer surplus is equal to the pink area.

Welfare Analysis: Remarks

- In some welfare analyses, the consumer surplus is evaluated using the uncompensated demand curve.
- This is completely legitimate if the utility function is quasi-linear in the goods under study.
 - With quasi-linear utility, the compensated demand coincides with regular (uncompensated) demand.
- Otherwise, this is only an approximation.

Summary

- The effect of a price change can be decomposed into the substitution effect (due to a change in exchange rate) and the income effect (due to an increase in purchasing power).
- If the income effect is positive or mildly negative, the law of demand holds.
- Elasticities of demand are measures of the responsiveness of demand to changes in own price, other goods' prices or income.
- Consumer surplus, given by the area under the compensated demand curve (less the "expenditure box"), is a welfare measure.
 - Though in practice, the area under the demand curve is used as an approximation (which is valid provided that the income effect is not strong).