Introduction To Regression

R Open Labs Workshop Series

Evan Wyse

2020-03-02

Download slides at http://bit.ly/duke_lib_regression

Agenda

- What is regression?
- Fitting a model in R
- Interpreting Output
- Model Diagnostics
- Checking Assumptions
- Interactive Exercises + Q&A

Disclaimer

- Regression is a complicated and deep subject. While this talk is a solid introduction, there are some significant caveats to its use. There is a whole undergraduate course at Duke on regression (STA 210). As such, it's probably not a good idea to publish a paper based on what a statistics grad student taught you in an hour.
- These slides make significant use of the course material from STA
 210, taught by Professor Maria Tackett
 - You can access course materials <u>here</u> they provide significantly more detail than is available here

Simple Linear Regression

- lacktriangle We observe a dataset f Y composed of n observations, $Y_1\ldots Y_n$, and an explanatory variable $X_1\ldots X_n$
- Suspect that there is an (imperfect) linear relationship between ${f Y}$ and ${f X}$, thus our model is $Y_i=eta_0+eta_1x_{i1}+\epsilon$
 - ullet is an error term we assume that it's drawn from a normal (bell-curve) distribution with an unknown variance σ^2
- We don't know what β_0, β_1 , or σ^2 are but we'd like to estimate them
 - We'll call our estimate for the unknown β and σ^2 as $\hat{\beta}$ and $\hat{\sigma^2}$ respectively

Regression Visualized

Expanding To Multiple Predictors

- Dataset of n observations of a response variable \mathbf{Y} , believed to be driven by p explanatory variables \mathbf{X} plus an intercept
- lacksquare Each $Y_i=eta_0+eta_1x_{i1}+eta_2x_{i2}+\cdots+eta_px_{ip}+\epsilon$
- lacktriangle We can write this in matrix notation as $\mathbf{Y} = \mathbf{X}eta + \epsilon$
- This allows us to estimate the individual impact that changes to a specific variable will have on future observations while controlling for the impact of other (correlated) variables

Ordinary Least Squares (OLS) Regression

- Collectively, the standard technique for regression with one or more is called ordinary least squares (OLS)
- OLS finds the vector (straight line) that minimizes the squared vertical distance between the line and each of the data points -- We refer to this squared distance as the sum of squared error. We want to minimize it.

Categorical Data

- Frequently, somes variables are discrete categories (gender, race, education level, etc)
- R will assume you'd like to regress an explanatory variable categorically if the column is stored as a factor, and generate the categories automatically for you
- lacktriangle We can capture this using linear regression by adding k-1 binary (taking values 1 or 0) variables into our model for a variable with k different levels
- If X_j is a categorical variable:

$$X_j = 0 \implies X_j \beta_j = 0$$

$$X_j = 1 \implies X_j \beta_j = \beta_j$$

Example: Wage Data

■ In the 1970s Harris Trust and Savings Bank was sued for discrimination on the basis of gender. The following dataset is a collection of wages for bank employees

Variables

Explanatory

- Educ: Education, either 'HighSchool', 'Bachelors', or 'Graduate'
- **Exper:** months of previous work experience (before hire at bank)
- Sex: "Male" or "Female"
- Senior: months worked at bank since hire
- Age: age in months

Response

■ **Bsal:** annual salary at time of hire

Glimpse of data

Fitting a model

 R allows you to use formula objects to interact with your data using column names

```
model <- lm(Bsal ~ Education + Exper + Sex + Age, data=wages)
broom::tidy(model) %>% kable(format="markdown", digits=3) # View 1
```

term	estimate	std.error	statistic	p.value
(Intercept)	4541.806	307.768	14.757	0.000
EducationGraduate	378.285	131.869	2.869	0.005
EducationHighSchool	-256.727	180.654	-1.421	0.159
Exper	0.051	1.150	0.045	0.964
SexMale	746.467	141.848	5.262	0.000
Age	1.109	0.786	1.411	0.162

- Note that R has automatically converted the 'Sex' and 'Education' variables to categorical variables and added categories as necessary
 - The 'missing' category is captured by the intercept

Additional Syntax

- Can also use Bsal ~ . to regress a column named Bsal against everything else in the data frame
- Can use summary function to obtain an easy-to-read output

```
model2 <- lm(Bsal ~ ., data=wages)</pre>
summary(model)
##
## Call:
## lm(formula = Bsal ~ Education + Exper + Sex + Age, data = wages)
##
## Residuals:
##
       Min
                 10 Median 30
                                         Max
## -1050.48 -389.96 -24.56 321.94 2021.29
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4541.80562 307.76782 14.757 < 2e-16
## EducationGraduate 378.28523 131.86917 2.869 0.00517
## EducationHighSchool -256.72742 180.65427 -1.421 0.15886
```

Interpreting the output

- **estimate**: the estimated value of the β coefficient for that explanatory variable.
 - For most coefficients, the way to interpret this is "for every 1 unit increase in X, we observe a β unit increase in Y."
 - For the **intercept**: the interpretation is "the expected (average) value for Y if all the X variables are 0". If we have categorical variables, the baseline category is included here.
- **std.error**: The standard error estimate for the coefficient
- **statistic**: The t-statistic for deviation
- p.value: The p-value implied by the t-statistic
 - The interpretation of the p-value for a particular coefficient $\hat{\beta}_j$ is "the probability of calculating a $\hat{\beta}_j$ this extreme or more extreme assuming the null hypothesis is true (in this case, null hypothesis is $\beta_j = 0$)

Prediction

```
x_star <- data.frame(Age=329, Education='HighSchool', Exper=14.0,
predict(model, x_star, interval='prediction', level=0.95)</pre>
```

```
## fit lwr upr
## 1 5397.236 4218.215 6576.257
```

- Code above shows how to obtain an estimate ('fit') as well as the lower and upper bounds of the 95% prediction interval
- Types of uncertainty estimates for predictions:
 - lacktriangledown Confidence interval (interval='confidence') captures the uncertainty inherent in estimating eta this is our best guess for the average value of Y at X
 - lacktriangledown Prediction interval (interval='prediction') captures the uncertainty in obtaining \hat{eta} , plus the uncertainty from the error inherent in Y

Checking Assumptions of Linear Regression

- OLS only gives unbiased estimates if four assumptions are satisfied
 - lacktriangle Linearity: Y cannont depend on ${f X}$ in a nonlinear way -
 - Normality: The error must be normally distributed, and centered at 0. Note: \mathbf{X} can be distributed however you want it's just the error ϵ that needs to be normally distributed
 - Constant Error The amount of error can't change as the predicted value changes
 - Independence: Each individual Y_i can't depend on any of the other Y_i 's except via their individual X values
- If these assumptions don't hold, the estimates $\hat{\beta}, \hat{\sigma}^2$ (and the p-values) are not guaranteed to be accurate

Assumption 1: Linearity

- lacksquare How to check: Plot the predicted value \hat{Y} against residuals
 - lacksquare Values should be centered around 0 at every value of \hat{Y}
- When conducting multiple linear regression, it's advisable to check the relationship for each individual predictor, as well as \hat{Y} overall.
- lacktriangledown You can fix this by transforming Y or X to make the relationship linear but remember then that your predictors, confidence intervals, etc, are all going to be in the transformed space

Assumption 1: Linearity

Residuals without Nonlinearities (Good)

- DON'T worry if the data is bunched in some areas left-to-right
- DO worry if the data appears to be bunched above/below the line

Assumption 1: Linearity

Residuals with Nonlinearity (Bad)

- DON'T worry if the data is bunched in some areas left-to-right
- DO worry if the data appears to be bunched above/below the line

Assumption 2: Normality

- ullet must be distributed **normally** i.e. from a bell curve
- How to check: Make a histogram and QQ-plot of the residuals, and examine if the data appears to be normally distributed
 - You should observe a roughly bell-shaped curve. Anything else indicates that the normality assumption is violated

Assumption 2: Normality

 DON'T worry if the histogram shows a somewhat spikey pattern this happens a lot just due to inherent randomness if your sample

Assumption 3: Constant Error

- ullet The expected squared error σ^2 can't change as X changes
- How to check: Plot the predicted value \hat{Y} against residuals. The spread above/below zero shouldn't change.

Assumption 3: Constant Error

Assumption 3: Constant Error

Assumption 4: Independence

- lacksquare Each Y_i can't depend in some way on any other Y_j , beyond what's captured in X
- Common issues with this assumption are:
 - Serial effect: If data are collected over time, there is a chance of autocorrelation in the dataset
 - lacktriangleright Cluster effect: If Y depends on some variable that's not included in your model

Example Residuals: Cluster Effect

Example Residuals: Serial Effect

```
ggplot(data=pew_data, aes(x=Year,y=residuals,color=State)) + geom_
geom_hline(yintercept=0,color="red")+
labs("Residuals vs. Year") +
scale_x_continuous(breaks=seq(2000,2009,1))
```

Common Scenarios That Violate Assumptions

- I'm predicting one or more time series: Most time series suffer from some amount of *autocorrelation*, which violates the independence assumption. A common fix is to calculate the growth rate between each time step, and run your regression on that, though this isn't guaranteed to
- I'm predicting an index value, like app ratings: Because indexes are typically bounded, the normality assumption breaks down as we get closer to our bounds. Try dividing your data into , and using multinomial regression
- I'm predicting the number of times something happens: Similarly, as *Y* approaches 0, the assumption of normality breaks down . This isn't a huge problem if your observations aren't close to zero. Otherwise, consider Poisson regression for a more appropriate model.

Cautions

- Avoid extrapolation:
 - Relationships can change at different portions of the data
 - Almost all continuous functions are locally linear but a nonlinear trend might emerge as you extend beyond the scope of your data
- Regression shows only correlation, not causation
 - Proving causality requires a carefully designed experiment or carefully accounting for confounding variables in an observational study
- Be careful of providing variables that are too correlated
 - You can use model selection techniques to help understand which variables you should retain
- Don't add too many variables
 - Adding too many variables
- Model selection is an iteractive process

Important Topics We Didn't Cover:

- Interaction terms: What to do when some of your variables might produce an additional response when viewed together
- Model selection: How to know which variables to include in your model
- Outlier detection: Use of Cook's Distance and other techniques for detecting outliers
- Logistic Regression: When your observed variable is a binary (yes/no) response
- Multinomial Regression: Similar to logistic regression, when your response is one or more discrete categories
- Penalized regression: Wide class of techniques used to obtain more stable estimates of β at the expense of an unbiased estimate
- Poisson regression: Used to model count-based data
- **Bayesian approaches to regression**: How to use priors to gain estimates of the distribution of $\hat{\beta}$, $\hat{\sigma^2}$

Try it out

Download and save the .Rmd from
 https://raw.githubusercontent.com/wyseguy7/intro_regression/master/intro_regression.F
 so we can step through exercises together