(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2003-125396

(P2003-125396A)

(43)公開日 平成15年4月25日(2003.4.25)

(51) Int.Cl. ⁷		證別記号	FΙ		テ	-マコード(参考)
H 0 4 N	7/18		H04N	7/18	J	5B057
B60R	1/00		B 6 0 R	1/00	Α	5 C 0 2 2
BOOK	1/08			1/08	В	5 C 0 5 4
	21/00	6 2 8		21/00	628Z	5 L 0 9 6
G06T	1/00	3 3 0	G 0 6 T	1/00	330B	
	2, 33	_	審査請求 未請求 請求	項の数15 OL	(全 16 頁)	最終頁に続く

(21)出願番号

特願2001-317373(P2001-317373)

(22)出願日

平成13年10月15日(2001.10.15)

(71)出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 栗山 昭彦

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 100078282

弁理士 山本 秀策

最終頁に続く

(54) 【発明の名称】 車両周囲表示装置、車両周囲表示方法及び車両周囲表示プログラム

(57)【要約】

【課題】 車両の周囲状況を的確に把握することができる。

【解決手段】 最大周囲360°の視野領域から入射される光を所定方向に反射する光学系4aと光学系4aで反射する反射光を撮像して全方位画像データを取得する撮像部4bとを有し、車両の側部に設けられた全方位カメラ4と、全方位カメラ4によって撮像された全方位画像データを、予め設定された表示形態の画像データに変換する画像データ変換部6と、車両の運転者の近傍に設けられ、画像データ変換部6によって変換された変換画像データを表示する表示部9と、を備えている。

【特許請求の範囲】

【請求項1】 最大周囲360°の視野領域から入射される光を所定方向に反射する光学系と、該光学系で反射する反射光を撮像して全方位画像データを取得する撮像部とを有し、車両の側部に設けられた全方位カメラと、該全方位カメラによって撮像された全方位画像データを、予め設定された表示形態の画像データに変換する画像データ変換部と、

車両の運転者の近傍に設けられ、該画像データ変換部に よって変換された変換画像データを表示する表示部と、 を備えたことを特徴とする車両周囲表示装置。

【請求項2】 前記全方位カメラは、車両の左右の各側部にそれぞれ設けられている、請求項1に記載の車両周囲表示装置。

【請求項3】 前記全方位カメラは、車両の左右の各側部にそれぞれ設けられるミラー装置の先端部に取り付けられている、請求項1または2に記載の車両周囲表示装置。

【請求項4】 前記全方位カメラは、車両両側部において運転席及び助手席の近傍にそれぞれ設けられるサイドミラーの先端部にそれぞれ取り付けられている、請求項1~3のいずれかに記載の車両周囲表示装置。

【請求項5】 前記全方位カメラは、車両側部のフェンダーに設けられるフェンダーミラーの先端部にそれぞれ取り付けられている、請求項1~3のいずれかに記載の車両周囲表示装置。

【請求項6】 前記全方位カメラは、前記ミラー装置の 内部に組み込まれている、請求項1~5のいずれかに記 載の車両周囲表示装置。

【請求項7】 前記全方位カメラの光学系は、放物面状または双曲面状等の凸型回転体ミラーによって構成されている、請求項1~6のいずれかに記載の車両周囲表示装置。

【請求項8】 前記画像データ変換部は、前記全方位カメラによって撮像された全方位画像データを、パノラマ画像データまたは透視画像データに変換する、請求項1~7のいずれかに記載の車両周囲表示装置。

【請求項9】 車両に設けられたハンドル、方向指示器 等の動作を検知することにより車両の運転操作を検知す る運転操作検知部と、

該運転操作検知部による検知結果に基づいて、車両の走 行方向を含む運転情報を生成する運転情報生成部と、 前記表示部に表示される画像を前記運転情報生成部によ って生成される運転情報に基づいて制御する表示制御部 と、

をさらに備えている、請求項1~8のいずれかに記載の 車両周囲表示装置。

【請求項10】 前記表示部には、前記画像データ変換 部が変換した変換画像データと共に、道路地図を含む多 目的情報が画面上に表示される、請求項1~9のいずれ かに記載の車両周囲表示装置。

【請求項11】 前記表示部の画面上に表示された前記 変換画像において所望の表示範囲を指定する表示範囲指 定部をさらに備え、

前記表示部の画面上には、該表示範囲指定部により指定 された表示範囲の画像データが拡大されて表示される、 請求項1~10のいずれかに記載の車両周囲表示装置。

【請求項12】 前記全方位カメラにより撮像された全方位画像データをフレーム単位で順次更新して記憶する画像データ記憶部と、

該画像データ記憶部にフレーム単位で相前後した更新記憶された各全方位画像データをパターンマッチングして、車両に接近する移動体を検知する移動体検知部と、車両に設けられた車両速度計を参照して、該移動体検知部によって検知された移動体が移動する速度を測定する移動体速度測定部と、

該移動体速度測定部にて測定された移動体の速度が、所 定値以上の速度で車両に接近していた場合に、警報また は警報情報を出力する警報出力部と、

をさらに備えている、請求項1~11のいずれかに記載 の車両周囲表示装置。

【請求項13】 予め指定された外部の端末装置と通信接続して各種情報を送信する通信部をさらに備え、 前記移動体検知部が、車両の運転停止後にも動作するように設定されており、

該移動体検知部が車両の近辺に所定時間以上にわたって 接近した移動体を検知した場合に、前記警報出力部から 警報音が出力されると共に、前記通信部によって、検知 した移動体の画像データを含む警報情報が前記端末装置 に送信され、前記画像データ記憶部は、該端末装置に送 信した画像データを記憶する、請求項12に記載の車両 周囲表示装置。

【請求項14】 最大周囲360°の視野領域から入射される光を所定方向に反射する光学系と該光学系で反射する反射光を撮像して全方位画像データを取得する撮像部とを有する全方位カメラを、車両の側部に設け、

該全方位カメラを用いて撮像された車両の側部及び下部 を含む全方位画像データを用いて、予め設定された表示 形態の変換画像データに変換し、

該変換画像データを、車両の運転者の近傍に設けられた 表示部に表示することを特徴とする車両周囲表示方法。

【請求項15】 請求項14に記載の車両周囲表示方法 を実行するための車両周囲表示プログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両周囲表示装置に関し、詳細には、自動車等の車両の両側部にそれぞれ設けられるサイドミラーまたはフェンダーミラーを直接視認して得られる視覚情報に加えて、サイドミラーまたはフェンダーミラーに組み込まれた小型CCDカメラ等

の撮像手段によって取得される映像情報により車両の周 囲状況を広範囲にわたって把握することができる車両周 囲表示装置に関する。

[0002]

【従来の技術】自動車等の車両には、その車両を運転する運転者が車両の両側部の状況を把握するために、サイドミラーが車両の左右の側部にそれぞれ設けられ、また、車両の後部の状況を把握するために、ルームミラーが車両内の中央部に設けられる。

【0003】図11は、このようなサイドミラー及びルームミラーを備えることによって車両の運転席に乗る運転者が視認することができる水平方向の視野領域及び車両の死角となって視認することができない水平方向の死角領域をそれぞれ示す平面図である。

【0004】図11に示すように、車両の前方には、車 両に乗る運転者が、直接、目視することによって得られ る前方視野領域Aが所定の視野角で形成されている。ま た、車両の左右の各側方には、車両の左右の各側部にそ れぞれ備えられたサイドミラーによって得られる側方視 野領域Bが所定の視野角でそれぞれ形成されている。さ らに、車両の後方には、車両内の前側中央部に備えられ ているルームミラーによって得られる後方視野領域℃が 所定の視野角で形成されている。これらの視野領域A~ Cに対して、前方視野領域Aと左右の側方視野領域Bと の間は、運転者が前方に向いた状態では視野領域に入ら ず、且つ、サイドミラーの視野領域にも入らない側方死 角領域Dが形成されている。また、前方視野領域A内に おいても、サイドミラーが障害物となることによって生 じる前方側死角領域Eが車両の左右斜め前方にわたって それぞれ形成されている。さらに、左右の各側方視野領 30 域Bと後方視野領域Cとの間には、左右のサイドミラー 及びルームミラーのいずれにも映らない後方死角領域F がそれぞれ形成されている。

【0005】図12は、同様に、車両の運転席に乗る運転者が視認することができる垂直方向の視野領域を示す車両の右側側方からの側面図である。

【0006】図12に示すように、車両の前方には、車両に乗る運転者が、直接、目視することによって得られる垂直方向の前方視野領域Gが形成されている。また、車両の後方には、車両に乗る運転者が、車両内に備えられたルームミラーを目視することによって得られる垂直方向の後方視野領域Hが形成されている。他の領域は、運転者が視認することができない死角領域となっている。

【0007】このように、車両の周囲には、正常な乗車 姿勢で前方方向を目視すること、またはサイドミラー、 ルームミラーを視認することによっては得られない死角 領域が形成されており、運転中の運車者は、例えば、左 または右方向に進路変更する場合には、正常な運転姿勢 において前方に置かれた視線を、適宜、車両の横方向に 形成された側方死角領域D及び後方に形成された後方死角領域Fにそれぞれ向けて、その死角領域に注意を払って、その安全を図った上で、車両の進行方向を操作しなければならず、車両操作の安全を図る上で問題がある。

【0008】このように、車両に備えられたサイドミラー(またはフェンダーミラー)、ルームミラーによって得られる視野領域には限界がある。しかし、死角領域を低減するために、サイドミラーを大きく構成すると、サイドミラーが存在することによって発生する前方側死角領域Eが大きくなり、また、車両のデザイン上の観点から好ましいことではない。したがって、現状の車両に備えられるサイドミラーは、安全性及びデザイン性から相反する要求の妥協点で設計され、十分な安全性を提供するものではない。

【0009】このようなサイドミラーの視野領域の限界を改善する例として、例えば、特開平7-223487号公報には、サイドミラー、ルームミラー等の鏡類に代えて、CCDカメラを車両の外部及び内部の所望の位置に取り付け、このCCDカメラによって取得される画像データを映し出すディスプレイ等の表示手段を車両内の前方側に備える構成が開示されている。このような構成にすると、車両の側方等の画像を得るためのCCDカメラの突出量をサイドミラー等の鏡類を車両外に突出させる場合に比較して小さく形成することができ、また、車両の横方向に視線を移す必要がなく、正常な運転姿勢における視線方向のままで車両の側方等の情報を車両の前方側に設けられた表示手段を介して確認することができるので、車両運転時の安全性を向上することができる。

【0010】しかし、この構成では、小型CCDカメラの撮影範囲に制限があり、死角領域を低減するために、標準レンズと広角レンズとの切換え機構、小型CCDカメラを回動させて撮像領域を調整する回動機構等の複雑且つ高価な構成を備えることが必要になる。また、車両の運転中にこのような複雑な機構を操作することにより、運転者がその操作に気を取られ、さらに、所望の映像を取得するために長時間を要する等の問題が生じ、安全性が損なわれる。

【0011】また、小型CCDカメラを車外に取り付けるために雨水が浸入しないような防水構造を設けることが必要であり、その防水構造のために撮像手段自体が大型化するために車両のデザイン性が損なわれ、さらには、コストの面でも問題となる。

【0012】このような問題を解消する構成として、特開2000-127850号公報には、車両の両側部に設けられたサイドミラーに、車両のそれぞれの側部の視覚情報を映像として検知する小型CCDカメラを組み込み、このCCDカメラが検知した視覚情報を、運転者の前方に設けた表示手段に映像として表示する構成が開示されている。この構成では、サイドミラーを視認することによって得られる視覚情報と、小型CCDカメラによ

徴とするものである。

って撮影される視覚情報との双方によって、車両の左右 の各側方及び後方の視覚情報が得られ、車両の安全を確 認しながら車両を運転することができる。

【0013】また、特開平7-186831号公報には、ドアミラー装置のミラーをハーフミラーとし、このハーフミラーの背面側に、車両の後側方の状況を監視するカメラを内蔵した後側方監視装置が開示されている。この公報の後側方監視装置では、ハーフミラーの背面側にカメラを内蔵するようにしたので、車両の外部に新たな突出物を設けることがなく、また、大きさ、コストの面でも不利とならない構成となっている。

[0014]

【発明が解決しようとする課題】上記の特開平7-186831号公報及び特開2000-127850号公報のそれぞれに記載された構成により、車両の後部及び側部の視覚情報を画像として投影することができる。しかし、このような小型CCDカメラは撮影範囲に制限があるため、このCCDカメラを用いて取得される視覚領域は、サイドミラーによって得られる視覚領域とほぼ同じであり、車両のそれぞれの側方に存在する側方死角領域であり、車両の後方に存在する後方死角領域に関する視覚情報を得ることができず、また、車両の下側に関する視覚情報を得ることができないので、上記各公報の構成では、車両の周囲状況を十分に確認することができないという問題がある。

【0015】また、車両の各側部に設けられた小型カメラの撮影範囲に制限がある問題を解消するために、ミラー本体に組み込まれた小型CCDカメラを回動可能な構成とすれば、小型CCDカメラを回動可能とするための回動機構が新たに必要となり、装置が複雑且つ高価になると共に、車両の運転中に、それらの回動機構を操作すること等によって安全性が損なわれるという問題もある。

【0016】本発明は以上の事情を考慮してなされたものであり、例えば、車両の運転者が、車両の両側後方の映像を投影する二つのミラー装置による映像情報と車両の両側及びその下側の映像を撮像する二つの全方位カメラによる映像情報とに基づいて、車両の周囲状況を的確に把握できる車両周囲表示装置を提供する。

[0017]

【課題を解決するための手段】上記課題を解決するため、本発明の車両周囲表示装置は、最大周囲360°の視野領域から入射される光を所定方向に反射する光学系と、該光学系で反射する反射光を撮像して全方位画像データを取得する撮像部とを有し、車両の側部に設けられた全方位画像データを、子め設定された表示形態の画像データに変換する画像データ変換部と、車両の運転者の近傍に設けられ、該画像データ変換部によって変換された変換画像データを表示する表示部と、を備えたことを特.50

【0018】上記本発明の車両周囲表示装置において、 前記全方位カメラは、車両の左右の各側部にそれぞれ設 けられていることが好ましい。

【0019】上記本発明の車両周囲表示装置において、 前記全方位カメラは、車両の左右の各側部にそれぞれ設 けられるミラー装置の先端部に取り付けられていること が好ましい。

【0020】上記本発明の車両周囲表示装置において、 前記全方位カメラは、車両両側部において運転席及び助 手席の近傍にそれぞれ設けられるサイドミラーの先端部 にそれぞれ取り付けられていることが好ましい。

【0021】上記本発明の車両周囲表示装置において、前記全方位カメラは、車両側部のフェンダーに設けられるフェンダーミラーの先端部にそれぞれ取り付けられていることが好ましい。

【0022】上記本発明の車両周囲表示装置において、 前記全方位カメラは、前記ミラー装置の内部に組み込ま れていることが好ましい。

【0023】上記本発明の車両周囲表示装置において、前記全方位カメラの光学系は、放物面状または双曲面状等の凸型回転体ミラーによって構成されていることが好ましい。

【0024】上記本発明の車両周囲表示装置において、 前記画像データ変換部は、前記全方位カメラによって撮 像された全方位画像データを、パノラマ画像データまた は透視画像データに変換することが好ましい。

【0025】上記本発明の車両周囲表示装置において、 車両に設けられたハンドル、方向指示器等の動作を検知 することにより車両の運転操作を検知する運転操作検知 部と、該運転操作検知部による検知結果に基づいて、車 両の走行方向を含む運転情報を生成する運転情報生成部 と、前記表示部に表示される画像を前記運転情報生成部 によって生成される運転情報に基づいて制御する表示制 御部と、をさらに備えていることが好ましい。

【0026】上記本発明の車両周囲表示装置において、 前記表示部には、前記画像データ変換部が変換した変換 画像データと共に、道路地図を含む多目的情報が画面上 に表示されることが好ましい。

【0027】上記本発明の車両周囲表示装置において、前記表示部の画面上に表示された前記変換画像において所望の表示範囲を指定する表示範囲指定部をさらに備え、前記表示部の画面上には、該表示範囲指定部により指定された表示範囲の画像データが拡大されて表示されることが好ましい。

【0028】上記本発明の車両周囲表示装置において、前記全方位カメラにより撮像された全方位画像データをフレーム単位で順次更新して記憶する画像データ記憶部と、該画像データ記憶部にフレーム単位で相前後した更新記憶された各全方位画像データをパターンマッチング

6

8

して、車両に接近する移動体を検知する移動体検知部と、車両に設けられた車両速度計を参照して、該移動体 検知部によって検知された移動体が移動する速度を測定 する移動体速度測定部と、該移動体速度測定部にて測定 された移動体の速度が、所定値以上の速度で車両に接近 していた場合に、警報または警報情報を出力する警報出 力部と、をさらに備えていることが好ましい。

【0029】上記本発明の車両周囲表示装置において、 予め指定された外部の端末装置と通信接続して各種情報 を送信する通信部をさらに備え、前記移動体検知部が、 車両の運転停止後にも動作するように設定されており、 該移動体検知部が車両の近辺に所定時間以上にわたって 接近した移動体を検知した場合に、前記警報出力部から 警報音が出力されると共に、前記通信部によって、検知 した移動体の画像データを含む警報情報が前記端末装置 に送信され、前記画像データ記憶部は、該端末装置に送 信した画像データを記憶することが好ましい。

【0030】また、本発明の車両周囲表示方法は、最大周囲360°の視野領域から入射される光を所定方向に反射する光学系と該光学系で反射する反射光を撮像して全方位画像データを取得する撮像部とを有する全方位カメラを、車両の側部に設け、該全方位カメラを用いて撮像された車両の側部及び下部を含む全方位画像データを用いて、予め設定された表示形態の変換画像データに変換し、該変換画像データを、車両の運転者の近傍に設けられた表示部に表示することを特徴とするものである。

【0031】また、本発明の車両周囲表示プログラムは、上記本発明の車両周囲表示方法を実行するものである。

[0032]

【発明の実施の形態】以下、本発明の車両周囲表示装置 について、図面に基づいて詳細に説明する。

【0033】図5は、本発明の車両周囲表示装置を、一例として、車両の両側部に取り付けられるミラー装置であるサイドミラーに取り付けた場合を示しており、図5(a)は、平面図、図5(b)は、正面図をそれぞれ示している。

【0034】本発明の車両周囲表示装置は、図5に示すように、自動車等の車両50の両側部に設けられるミラー装置5であるサイドミラーまたはフェンダーミラーに 40 組み込んだ状態に取り付けられた周囲360°の視野領域を撮像することができる全方位カメラ4と、この全方位カメラ4が撮像した画像情報を表示する表示部9とを有している。この車両周囲表示装置では、全方位カメラ4によって撮像された画像情報が、車両内の運転席の前方側等の所望の位置に備えられた表示部9に表示される。これにより、車両50を運転等している運転者は、表示部9に提示される広範囲の画像を視認することにより、車両50の両側部等の視覚情報を詳細に把握することができ、広範囲にわたる良好な視野領域を得ることが 50

できる。

【0035】本発明の車両周囲表示装置の概略構成について、図1に示すブロック図を参照して説明する。

【0036】本発明の車両周囲表示装置20は、最大周 囲360°の視野領域を撮像することができる全方位カ メラ4と、この全方位カメラ4及び以下の車両周囲表示 装置20を構成する各構成の全体を制御する制御部1 と、車両周囲表示装置20の各構成を制御するための各 種の制御プログラムを記憶するプログラムメモリ2と、 制御部1が制御する各種データを更新記憶するバッファ メモリ3と、全方カメラ4によって取得された画像デー タを透視変換画像、パノラマ画像等の所望の表示形態の 画像に変換する画像データ変換部6と、全方位カメラ4 によって撮像された画像データを所望の表示形態の画像 に変換するための関係式及び定数等の情報を記憶する変 換情報記憶部7と、全方位カメラ4により撮像される画 像データ及びこの画像データに基づいて作成された変換 画像データを記憶する画像データ記憶部8と、全方位カ メラ4によって撮像された撮像画像及びこの撮像画像に 基づいて変換された変換画像を画面上に表示する表示部 9と、表示部9を制御する表示制御部10と、車両に備 えられたハンドル、方向指示器等の動作によって運転操 作を検知する運転操作検知部12と、この運転操作検知 部12による検知結果に基づいて車両の走行方向等の運 転情報を生成する運転情報生成部13と、全方位カメラ 4によって撮像された撮像画像データの表示範囲を指定 する表示範囲指定部11と、全方位カメラ4に撮像され た撮像画像データから車両に接近する移動体を検知する 移動体検知部14と、移動体検知部14によって検知さ れた移動体の速度を測定する移動体速度測定部15と、 警報音または警報情報を出力する警報出力部16と、警 報出力部16が出力する警報情報を送信する通信部17 と、各構成を接続するバス18とを有している。

【0037】以下、各構成について説明する。

【0038】まず、全方位カメラ4について詳細に説明する。

【0039】全方位カメラ4は、例えば、放物面状または双曲面状等の凸型回転体ミラーからなる光学系4aと、保護ガラス、CCDカメラ、A/D変換回路、画像処理回路を有する撮像部4bとを備えている。凸型回転体ミラーからなる光学系4aは、最大周囲360°にわたる全方位の視野領域を有する映像を撮像部4bのCCDカメラの受光面に向けて投影し、撮像部4bは、光学系4aから投影された映像を全方位画像データとして撮像する。

【0040】このような構成を有する全方位カメラ4は、車両の左右の各側部に設けられたサイドミラーまたはフェンダーミラー等のそれぞれのミラー装置に組み込まれる。

【0041】図2は、サイドミラー等のミラー装置5に

7

本発明に係る全方位カメラ4を組み込んだ状態の一例を示しており、図2(a)は、車両の右側に取り付けられるミラー装置5に本発明に係る全方位カメラ5を組み込んだ状態を示す平面図、図2(b)は、図2(a)の右方から見た側面図、図2(c)は、図2(a)の後方(図2(a)において下側)から見た側面図である。

【0042】ミラー装置5は、図2(a)~(c)にそ れぞれ示すように、所定範囲の視覚情報を映し出す矩形 状のミラー5aを有しており、直方体状に設けられた筐 体5bの後面をほぼ覆うように取り付けられている。こ の筐体5 bは、車両側部に設けられた取付部5 cに車両 の左右の各側方に突出するように取り付けられる。この 取付部5c内には、筐体5bの一端側を回動自在に支持 する軸部51 c が垂直状態で設けられており、取付部5 cの軸部51cに水平方向に回動可能に支持された筐体 5 bは、ミラー装置5の使用時(車両走行の際)におい ては、車両の側部にほぼ直交する方向に固定され、ミラ 一装置5の不使用時(車両を駐停車させる際)には、車 両の側部に沿う方向に折りたたまれて収納された位置に 固定されるようになっており、ほぼ90°の範囲で回動 可能になっている。筐体5bの先端部には、全方位カメ ラ4を保持する保持部5dが設けられている。ミラー装 置5の筐体5bの先端側及び全方位カメラ4を保持する 保持部5dは、光を透過する透明プラスチックまたは透 光性物質で全方位カメラ4を覆って構成されており、こ のような構成により、全方位カメラ4が有する視野角を 広く利用することができ、かつ雨水が浸入しないように 防水構造に形成することができる。

【0043】図3は、全方位カメラ4をミラー装置5の保持部5dに保持した状態を示す要部の斜視図である。 ここでは、全方位カメラ4を保持する保持部5dと筐体 5bとは一体に形成されている。

【0044】図3に示すように、全方位カメラ4を保持 する保持部5 dが、上方に突出した状態になっており、 筐体5bの上面は、上方に突出する保持部5dの上部を 覆うように上方にむかって湾曲している。この保持部5 d内に収容された全方位カメラ4は、放物面状または双 曲面状等の凸型回転体ミラーにより形成された光学系 4 a が凸部を下方に向けて保持部5dの上側に保持されて いる。保護ガラス、CCDカメラ、A/D変換回路、画 像処理回路等を有する撮像部4bは、その受光面を上側 にして保持部5d内において、光学系4aの下方に保持 されている。この図3に示す例では、全方位カメラ4を 保持する保持部5 dが、保持部5 dを覆う筐体5 bの上 面以外の部分よりも上方に突出しているために、その上 方に突出した部分に、凸型回転体ミラー等の光学系4 a が配置されていることによって広範囲の視野領域を画像 情報として取得することができる。

【0045】図4は、全方位カメラ4をミラー装置5の 保持部5dに保持した他の例を示す斜視図である。ここ でも図3の例と同様に、全方位カメラ4を保持する保持 部5dと筺体5bとは一体に形成されている。

【0046】図4に示す例では、全方位カメラ4を保持する保持部5dの高さが筐体5bと同じ高さに形成されており、この保持部5dの上部に、凸型回転体ミラー等の光学系4aが凸部を下方に向けて保持されている。保持部5d内における光学系4aの下方には、撮像部4bがその受光面を上側にして保持されている。また、この図4の例では、外部からの光を光学系4aに十分に受光することがでできるように、保持部5dの全体が光を透過する透明なプラスチックにより形成されている。

【0047】この図4に示す例では、保持部5dの上面と筐体5bの上面とが同じ高さに形成されているため、 光学系4aによって得られる視野領域が筐体5bによって若干低減されるが、保持部5dの全体が透明に構成されていることによって、ミラー装置5の外側に十分に広い視野領域を確保することができる。また、保持部5dが全方位カメラ4の全体を覆っていることにより、雨水等が浸入しないような防水構造になっている。

【0048】なお、ミラー装置5は、車両の側方から過度に突出しないように設けることがデザイン上の点から好ましいため、筐体5bの後面に取り付けられるミラー5aをハーフミラーで構成して、全方位カメラ4を、筐体5bとミラー5aの間に配置するようにしてもよい。この場合、ミラー5aは、35%以上の反射率を有することが、工業規格上(JIS-D5797)規定されているため、ハーフミラーを透過する光の光量は、65%以下になる。ただし、ハーフミラーを透過する光の光量が、このように制限されていても、全方位カメラ4の撮像部4bは、感度の調整、画像処理の調整によって十分に視認性に優れた画像を形成することができる。

【0049】また、ミラー装置5の保持部5dに保持された全方位カメラ4は、光学系4aを筐体5bの上端から上部に突出するように、上下方向にスライド可能に保持する構成としてもよい。このようにすれば、さらに広範囲の周囲画像を得ることができる。

【0050】図5には、上記構成の全方位カメラを、車両の両側部に取り付けられるミラー装置であるサイドミラーに取り付けた場合、車両に乗車する運転者が得ることができる視野領域を示している。

【0051】図5(a)及び(b)では、車両50の例として乗用車を示しており、車両50内の運転者は、フロントウインド51を通して直接目視により前方の視野領域を得ることができ、また、車両内の前側中央部に設けられたルームミラー(図示せず)によって、車両後部のリアウインド52より後ろ側の視野領域を得ることができる。全方位カメラ4によって撮像された画像は、車両内の前方側に設けられた表示部9によって視認することができる。また、この図5にて示す例では、ミラー装置であるサイドミラー5は、フロントウインド51の近

辺の両側にそれぞれ取り付けられているものとする。

【0052】図5 (a) においては、車両50の両側部に取付けられたそれぞれのサイドミラー5によって得られる視野領域kを、一点鎖線によって囲まれる範囲によって表している。また、全方位カメラ4によって得られる視野領域mを、点線によって囲まれる範囲によって表している。また、図5 (b) では、全方位カメラによって得られる視野領域nを、点線によって囲まれる範囲によって表している。

【0053】図5(a)を参照すると、全方位カメラ4によって得られる視野領域は、全方位カメラ4が配置された位置を中心として、 180° 以上にわたる広範囲の視野角 θ の視野領域kが得られている。このため、全方位カメラ4によって撮像された画像データを視認することによって、サイドミラー5のみによっては得られない広い範囲にわたる視野領域を得ることができる。

【0054】また、図5 (b) に示されるように、全方位カメラ4が撮像する画像データによって鉛直方向にも広い視野領域を得ることができ、水平方向に対して上方に10°、下方に80°にわたる視野角φの視野領域nを得ることができる。このことから、全方位カメラ4によって、車両の左右の各側方だけではなく、上下方向にも、視野領域を拡大することができる。特に、視野領域nの水平方向に対して下方の視野領域は、従来のCCDカメラでは得ることができない視野領域である。

【0055】このようにして全方位カメラ4により得られる全方位の画像データは、パノラマ画像、透視画像等の運転者の所望の変換画像に変換されて、運転者の前方等に設置される表示部9に表示される。

【0056】次に、この全方位カメラ4に使用される凸型回転体ミラー等の光学系4aについて説明する。

【0057】図6は、全方位カメラ4に使用される光学 系4aである凸型回転体ミラーとして双曲面ミラーの構 成を示す概略構成図である。

【0058】図6に示す双曲面ミラーは、水平面上の互いに直交するX軸及びY軸と水平面に対して直交する2軸とする三次元空間において、Z軸を軸とする双曲線を Z軸を中心として回転して得られる2つの二葉双曲面のうち、Z>0で示される一方であり、

 $(X^2 + Y^2) / a^2 - Z^2 / b^2 = -1$

 $c^2 = a^2 + b^2$

にて表される。このように表される双曲面の表面の全体 に鏡面を形成することによって双曲面ミラー4 a が構成 される。

【0059】なお、上記式において、a及びbは双曲面ミラーの双曲面の形状によって決められる定数であり、cは二葉双曲面の焦点を示している。上記式およびこの式に関係する定数等の変換情報は、後述の変換情報記憶部7に予め記憶されている。

【0060】この双曲面ミラーでは、原点口を挟んで、

距離 c の位置に 2 つの焦点 F 1 及び F 2 をそれぞれ有しており、この双曲面の外部から双曲面側の焦点 F 1 に向かう光は、双曲面ミラーにて反射されて、どの方向から照射された光であっても全て他方の焦点 F 2 に向かうという特徴を有している。

【0061】したがって、撮像レンズ4bの受光面を、双曲面ミラーの回転軸(Z軸)と撮像部4bの撮像レンズの光軸と一致させると共に、他方の焦点F2の位置に撮像レンズの第1主点が一致するように配置することにより、凸型回転体ミラーにて反射された光を撮像する撮像部4bには、一方の焦点F1を視点位置として全視野方向に向けられた状態と同様の画像が得られる。

【0062】撮像部4bでは、双曲面ミラーに投影された映像を、保護ガラス、CCDカメラ、CMOS等からなる固体撮像素子によって、全方位画像データとして撮像する。

【0063】次に、本発明の車両周辺表示装置の構成について、再び図1に基づいて、順次説明する。

【0064】制御部1は、例えば、コンピュータのCP U、MPU等によって構成されている。また、プログラ ムメモリ 2 は、例えば、ROM、RPROM、フラッシ ュメモリ、ハードディスク等によって構成されている。 【0065】プログラムメモリ2は、車両の両側部の後 方をそれぞれ投影するように、車両の両側部にそれぞれ 設けられた2つのミラー装置5にそれぞれ組み込まれた 2 つの全方位カメラ4を用いて、車両の左右の各側方及 び下側の映像を全方位画像データとして撮像するプログ ラムを有していると共に、後述の画像データ変換部6に よって、各全方位カメラ4によりそれぞれ撮像された全 方位画像データを予め設定された表示形態の画像データ に変換するためのプログラムと、後述の表示制御部10 によって、変換された変換画像データを車両の運転席前 方に設けられた表示部9の画面に表示するためのプログ ラムとを有している。制御部1は、このような各種のプ ログラムを実行することにより、全方位カメラ4、画像 データ変換部6、表示部9等の各構成をそれぞれ制御す

【0066】バッファメモリ3は、例えば、RAMで構成され、制御部1によって制御された各種データを更新して記憶する。

【0067】画像データ変換部6は、例えば、画像データ変換プログラムを記憶している。また、変換情報記憶部7は、例えば、ROM、EPROM、フラッシュメモリ、ハードディスク等によって構成されており、凸型回転体ミラー等の光学系4aにより撮像された全方位画像データを変換画像に変換するために必要な関係式及び定数を含む変換情報を記憶している。

【0068】画像データ変換部6は、制御部1の制御によって、各全方カメラ4によって撮像された全方位画像データを入力画像データとして入力し、この入力画像デ

ータを変換情報記憶部7に記憶された変換情報に基づいてパノラマ画像データ、透視画像データ等の所望の表示 形態の画像に変換する。

13

【0069】図7は、全方位カメラ4によって撮影された全方位画像データをパノラマ画像に変換する方法を説明する概略図であり、図7(a)は、全方位カメラ4によって撮像された全方位画像データ31を示し、図7(b)は、画像データ変換部6が変換画像記憶部7に記憶された変換情報に基づいて全方位画像データをパノラマ画像に切り開く途中におけるリング状の画像データ32を示し、図7(c)は、リング状の画像データ32を、さらに、変換画像記憶部7に記憶された変換情報に基づいて変換された矩形状のパノラマ画像データ33を示している。

【0070】図7(a)において、点P(r、 θ)は、全方位画像データ上の極座標で示しされる画素を示している。図7(c)における点P(X、Y)は、X Y座標で示される画素を示している。この点P(X、Y)は、前記極座標で示される点P(r, θ)に対応しており、全方位画像データ上の点P(r, θ)がパノラマ画像に変換される際に、パノラマ画像上の点P(X, Y)に変換されることを表している。また、P0(r0、 θ 0)は、全方位画像データをパノラマ画像に切り開く際の基準点を示している。

【0071】全方位カメラ4によって撮影される全方位画像データは、円形画像であり、実際上、正確な視覚情報を得るためには見にくい画像であるので、表示部9の画面上には、円形画像である全方位画像データをそのまま表示するのではなく、この全方位画像データをパノラマ画像、透視画像等の変換画像に変換して表示部9の画面上に表示する。ただし、全方位画像データの透視画像データへの変換方法の詳細については、特開平6-295333号公報に詳細に説明しているので、ここでは、特開平6-295333号公報に記載された変換方法を参照するとして、その詳細な説明は省略する。

【0072】画像データ変換部6にて変換されたパノラマ画像データは、全方位カメラ4が、サイドミラー等のミラー装置5の筐体5bに隣接する保持部5d内に収納された状態で取付けられた場合、全方位カメラ4によって撮像される視野領域は、筐体5bが障害物となって制限されるため、全方位画像データによって実際に撮像される領域は、図5に示すように、略180°の領域となる。したがって、全方位画像データは、実際には、座標O(X0、Y0)を中心に略180°の視野領域を有するような半円形状の画像データとなり、その円形画像を切り開いて変換されるパノラマ画像データは、横軸が略半分になった画像データとなる。

【0073】画像データ記憶部8は、例えば、RAMで構成される。この画像データ記憶部8は、制御部1の制御により駆動された各全方位カメラ4により撮像された。50

全方位画像データをフレーム単位で順次更新記憶する領域及び画像データ変換部6によって変換したパノラマ画像データ、透視画像データ等の変換画像データを記憶する領域を備えている。

【0074】表示部9は、例えば、LCD(液晶ディスプレイ)、PD(プラズマ・ディスプレイ)等の画像表 . 示装置により構成される。

【0075】この表示部9は、運転席前方に設置された ルームミラーに近接する位置、またはその下方、または ハンドルに隣接する位置等の所望の位置に設置される。

【0076】また、この表示部9は、カーナビゲーションシステムの表示部と共用するように構成してもよい。この場合には、カーナビゲーションシステムによって得られる地図情報を、全方位カメラ4で撮影した画像情報と同一の画面上に映し出すことが可能となる。

【0077】なお、表示部9がカーナビゲーションシステムの表示部を共有するように構成されている場合に、表示部9の画像情報と同一の画面上に表示される情報は、上記の地図情報に限定されず、他の多目的情報を画面に表示されるようにすれば、表示部9の利便性をさらに向上させることができる。

【0078】表示制御部10は、例えば、表示制御プログラムを記憶している。表示部9は、表示制御部10が記憶する表示制御プログラムに基づいて、全方位画像データから変換されたパノラマ画像データ、透視画像データ等の変換画像を表示する。

【0079】表示範囲指定部11は、表示部9の画面上に表示された画像データから表示範囲を指定できる構成、例えば、キースイッチ、画面上に形成されたタッチパネルを備えている。この表示範囲指定部11により表示範囲が指定された場合、表示制御部10は、その指定された表示範囲の画像データを拡大表示するようになっている。

【0080】図8は、運転席の前方に設置される表示部 9に画像データを表示する一例を示す平面図である。

【0081】この表示部9は、図8に示すように、表示部9の幅方向のほぼ全体にわたって、液晶表示装置等によって形成された画面部90が形成されており、この画面部90は、左側画像領域90a及び右側画像領域90bの2つの画像領域が画面部90をその中央部から2分割して設けられている。それぞれの画像領域90a及び90bには、それぞれ、車両の左側及び右側に配置された全方位カメラ4によって撮像された全方位画像データをパノラマ画像、透視画像等に変換された変換画像データが表示される。

【0082】また、画面部90の下方には、表示範囲指定部11であるキースイッチが設けられており、このキースイッチを操作することにより、必要に応じて、画面部90に画面表示される画像の所望の領域を指定すること、表示部9に表示される画像データを上下または左右

方向に移動すること、表示部 9 の必要な部分を拡大表示 することができるようになっている。

【0083】運転操作検知部12は、車両のハンドル、 方向指示器等の変動を検知して、車両の操作方向を検知 するために備えられ、例えば、エンコーダ、磁気センサ 等によって構成される。

【0084】運転情報生成部13は、運転操作検知部12によって検知された検知結果に応じて、車両の走行方向等の運転情報を生成する。この運転情報生成部13は、運転情報を生成するための運転情報生成プログラムを記憶していると共に、生成された運転情報を記憶する運転情報記憶部を有している。

【0085】運転情報生成部13が運転操作検知部12 の検知結果に基づいて、運転情報を生成すると、表示部 9を制御する表示制御部10は、この生成された運転情 報に基づいて、車両の左側及びその下側を映し出す画像 データ、または車両の右側及びその下側を映し出す画像 データを表示部9の画面に表示するようになっている。

【0086】これにより、運転者が、運転中にハンドルまたは方向指示器を操作したときに、車両のどの視野領域を画像データとして映し出すのかを指示する操作を行うことなく、所望の視野領域が表示部9に表示されるため、より一層の安全性の向上を図ることができる。

【0087】ここで、このように生成された運転情報に基づいて画像データを表示部9の画面に表示する際には、表示部9の一画面の全体に、車両の左側及びその下側を映し出す画像を拡大して表示するようにしてもよい。

【0088】例えば、車両を高速走行で運転している場合、右の方向指示器を操作したときに、運転情報生成部 30 1 3 が運転操作検知部の検知結果に基づいて、車両が右方向に走行する運転情報を生成し、この運転情報に基づいて、表示部9の全体に車両の右後方部分の視覚情報が映し出されるようにする。また、同様に、左側の方向指示器を操作した場合には、左後方の視覚情報が表示部9に映し出されるようにし、運転者がバックギアに入れたときには、助手席側の後方下側が表示部9に映し出されるようにする。

【0089】また、例えば、運転者が車両を道端に寄せる場合、または、車両を車庫に入れる場合に、運転情報 40 生成部13が運転操作検知部12の検知結果に基づいて、車両の操作方向に関する運転情報を生成し、この運転情報に基づいて、表示部9の全体に車両の右後方または左後方の視覚情報が映し出されるようにする。

【0090】なお、この場合には、車両を高速度で操作しているのではないので、運転者が、直接、表示範囲指定部11によって表示範囲を指定するようにしてもよい

【0091】移動体検知部14は、移動体を検知するための移動体検知プログラムを記憶している。この移動体 50

検知部14は、制御部1の制御により、画像データ記憶部8にフレーム単位で相前後して更新記憶された全方位画像データをパターンマッチングすることにより、移動体の動きにより生じる画像データの位置ずれを検知する。この検知結果により車両に接近する移動体を検知する。この移動体の接近を検知する動作について、さらに詳細に説明する。画像データ記憶部8に、全方位画像データが、フレーム単位で相前後して記憶されると、移動体検知部14は、その全方位画像データにあた、フレーム間差分2値化画像を計算し、この計算結果に基づいて、移動体の有無を検知する。移動体の存在が検知されると、その移動体についてパターンとプレーム間、その後、順次、登録されたパターンとフレーム間、

【0093】移動体速度測定部15は、移動体速度測定 プログラムを記憶すると共に、移動体の速度を測定する ための構成、例えば、予め車両に設けられた速度計の速 度データを取り込むインターフェースを有している。こ の移動体速度測定部15では、制御部1の制御により、 速度計の速度データを参照して、移動体の速度を測定する

でパターンマッチングを行うことにより移動体の移動を

検知すると同時に、移動体の移動に伴うパターンの変化

に対応して、登録パターンが順次更新される。

【0094】警報出力部16は、例えば、スピーカ、音声信号変換回路、警報情報記憶部等から構成され、移動体検知部14が所定以上の速度で車両に接近する移動体(例えば、後方から接近する他の自動車)を検知した場合に、警報音及び警報情報を出力するように構成されている。

【0095】通信部17は、例えば、無線信号を送信するアンテナ、モデム(信号変復調装置)、無線信号変換回路、通信回路接続回路等によって構成される。この通信部17は、移動体検知部14が車両が停止している間にも動作され、停車中の車両の近傍に所定時間の間、異常接近した移動体(例えば、不審者)を検知した場合に、制御部1の制御により、通信回線40を介して、車両所有者の端末装置30に、警報情報に検知した移動体の画像データを含めて送信する構成を有している。

【0096】次に、本発明の車両周囲表示装置20の動作について、図9に示すフローチャートを参照しながら説明する。なお、以下の動作の説明において、本発明の車両周囲表示装置20は、車両両側のサイドミラーに組み込まれている場合について説明する。

【0097】まず、図9のステップS1に示されるように、電源(図示せず)を投入して、車両周囲表示装置20を起動する。

【0098】次に、ステップS2により、左右の各全方位カメラ4の撮像部4bによって、各凸型回転体ミラー等の光学系4aに投影された映像を全方位画像データとして撮像する。

【0099】次に、ステップS3により、各全方位カメラ4により撮像された全方位画像データを画像データ記憶部8にフレーム単位で順次更新記憶する。

【0100】次に、ステップS4により、画像データ変 換部6によって、全方位カメラ4により撮像された全方 位画像データを、変換情報記憶部7に記憶された変換情 報に基づき、車両の両側及びその下側を映し出すパノラ マ画像データまたは透視画像データ等の変換画像データ に変換する。

【0101】次に、ステップS5により、運転操作検知部12によって、車両が走行中か否かを判断する。車両が走行中であると判断された場合には、次のステップS6に進み、車両が走行中でないと判断された場合には、図10に示すステップS21に進む。

【 0 1 0 2 】まず、車両が走行中である場合について説明する。

【0103】ステップ5にて車両が走行中であると判断されると、ステップS6にて、運転情報生成部13は、運転操作検知部12によるハンドル、方向指示器等の変動を検知した検知結果に基づいて進路変更等の運転情報 20 を生成する。

【0104】次に、ステップS7により、運転情報生成部13が生成した運転情報から車両が直進走行であるか否かを判断する。車両が直進走行であれば、ステップS10に進み、車両が直進走行でなければ、ステップS8に進む。

【0105】車両が直進走行でない場合、ステップS8にて、表示制御部10は、運転情報生成部13が生成した運転情報に基づいて、車両の両側に設けられたそれぞれの全方位カメラ4によって撮像された各全方位画像データのうち、いずれの全方位画像データに基づいて画像データを表示部9に表示するかを決定する。

【0106】次に、ステップS9にて、表示制御部10によって決定された側のパノラマ画像データ、透視画像データ等の変換画像を表示部9の一画面の全体に拡大して表示する。

【0107】ステップS7にて車両が直進走行であった場合及びステップS7にて車両が直進方向ではなく、ステップS7からステップS8を経て変換画像が表示部9の一画面の全体に拡大して表示された場合、ステップS10にて、表示制御部10は、表示部9に表示された画像データのどの部分の画像データを表示するかを指定する表示範囲指定部11により所望の表示範囲が指定されたか否かを判断する。表示範囲が指定された場合は、ステップS11に進み、表示範囲が指定されない場合には、ステップS12に進む。

【0108】表示範囲が指定された場合は、ステップS 11にて、画像データ変換部6は、指定された表示範囲 を拡大したパノラマ画像データ、透視画像データ等の変 換画像に変換し、その変換画像を表示部9の画面に表示 する。

【0109】次に、ステップS12にて、道路地図を含む多目的情報等の他の情報を表示部9の画面に表示する。

【0110】次に、ステップS13にて、移動体検知部 14によって、所定以上の速度で車両に接近する移動体 があるかどうかを検知する。接近する移動体が検知され た場合には、ステップS14に進み、移動体が検知され ない場合には、ステップS2に戻る。

【0111】このステップS13では、移動体検知部15によって、画像データ記憶部8にフレーム単位で相前後した更新記憶された全方位画像データのパターンマッチングにより検知した画像データによって検知し、さらに、この検知結果に基づいて、移動体速度測定部15は、車両に設けられた車両速度計を参照して、検知した移動体の速度を測定する。

【0112】次に、ステップS14にて、警報出力部16によって警報音及び警報情報が出力され、ステップS2に戻る。

【0113】次に、上記ステップS5にて、車両が走行中でない場合における本発明の車両周囲表示装置の動作について、図10に示すフローチャートを参照して説明する。

【0114】また、図9に示すスローチャートにおけるステップS5にて、車両が走行中でないと判断されると、ステップS21にて、車両周囲表示装置20が車両の運転停止も動作を続けるように制御部1の制御プログラムに設定されているかを判断する。車両の運転中においても動作を続けるように設定されていれば、ステップS22に進み、図9に示すフローチャートのステップS2に戻る。

【0115】次に、ステップS22にて、車両の近辺に 所定時間以上にわたって接近した移動体を検知したか否 かを移動体検知部14によって判断する。移動体を検知 した場合には、ステップS23に進み、移動体を検知し ない場合には、図9に示すステップS2に戻る。

【0116】次に、ステップS23によって、車両の近辺に移動体が接近したことを車両所有等に知らせるために、警報出力部16によって警報音を出力する。

【0117】次に、ステップS24にて、通信部17によって、予め通信接続された外部の端末装置30に、検知した移動体の画像データを含む警報情報を端末装置30に送信する。

【0118】次に、ステップS25にて、検知した移動 体の画像データを画像データ記憶部9に記憶し、図9に 示すステップS2に戻る。

【0119】以上説明した各ステップを経た動作を行うことにより、車両に乗車する運転者は、全方位カメラ4によって車両の両側後方を投影する全方位画像データを画像情報として取得することができる。この全方位画像

データは、画像データ変換部6によって、車両の運転者の所望のパノラマ画像、透視画像等の変換画像に変換して表示部9に表示され、この表示部9に表示された画像データを視認することによって、車両の運転者は、車両の周囲の状況を的確に把握することができる。

【0120】したがって、車両の運転者は、本発明の画像周囲表示装置20によって提示された画像を視認することによって、車両走行の安全性を一層向上することができる。さらに、本発明の車両周囲表示装置20は、車両の周囲について広範囲の視覚情報、特に、車両の下部の視覚情報を取得することができるため、この車両周囲表示装置20の表示部9を視認することにより、車両を道路の端に寄せる場合に脱輪を防ぐことができ、また、車両を車庫に入れる場合に、車庫の壁等に車両を接触せることを防止することができ、また、車両走行時に走路からの逸脱を防止することができる。

【0121】また、本発明の車両周囲表示装置20は、全方位カメラ4によって車両周囲について最大周囲360°の視野領域を撮像することができるので、車両周囲を撮像する撮像手段に回動可能にするための回動機構及びその回動機構に付随する制御機構等を設ける必要がなく、車両周囲を撮像するための構成が簡単になり、低コストで且つ耐久性に優れている。

[0122]

【発明の効果】本発明の車両周囲表示装置は、車両の側部に設けられた全方位カメラによって車両の両側後方を投影する全方位画像データを画像情報として取得することができる。この全方位画像データは、画像データ変換部によって、車両の運転者の所望のパノラマ画像、透視画像等の変換画像に変換して表示部に表示され、車両を運転する運転者は、この表示部に表示された画像データを視認することによって、車両の周囲の状況を的確に把握することができる。したがって、車両の運転者は、本発明の画像周囲表示装置によって提示された画像を視認することによって、車両走行の安全性を一層向上することができる。

【図面の簡単な説明】

【図1】本発明の車両周囲表示装置の概略構成を示すブロック図である。

【図2】ミラー装置に本発明に係る全方位カメラを組み込んだ状態の一例を示しており、図2(a)は、車両の右側に取り付けられるミラー装置に全方位カメラを組み込んだ状態を示す平面図、図2(b)は、図2(a)の右方から見た側面図、図2(c)は、図2(a)の後方から見た側面図を示している。

【図3】全方位カメラをミラー装置の保持部に保持した 状態を示す斜視図である。

【図4】全方位カメラをミラー装置の保持部に保持した他の例を示す斜視図である。

【図5】本発明に係る全方位カメラを、車両の両側部に 50

取り付けられるサイドミラーに取り付けた場合、車両に 乗車する運転者が得ることができる視野領域を示してお り、図5 (a) は、平面図、図5 (b) は、正面図をそ れぞれ示している。

【図6】全方位カメラに使用される光学系である凸型回 転体ミラーとして双曲面ミラーの構成を示す概略構成図 である。

【図7】図7(a)は、全方位カメラによって撮像された全方位画像データ、図7(b)は、全方位画像データをパノラマ画像に切り開く途中におけるリング状の画像データ、図7(c)は、パノラマ画像データを示している。

【図8】運転席の前方に設置される表示部に画像データ を表示する一例を示す正面図である。

【図9】本発明の車両周囲表示装置の動作について説明 するフローチャートである。

【図10】車両が走行中でない場合の本発明の車両周囲 表示装置の動作を説明するフローチャートである。

【図11】サイドミラー及びルームミラーを備えることによって車両の運転席に乗る運転者が視認することができる視野領域及び車両の死角となって視認することができない死角領域をそれぞれ示す平面図である。

【図12】車両の運転席に乗る運転者が視認することができる視野領域を示す車両の右側側方からの側面図である。

【符号の説明】

- 1 制御部
- 2 プログラムメモリ
- 3 バッファメモリ
- 4 全方位カメラ
- 4 a 光学系
- 4 b 撮像部
- 5 ミラー装置
- 5 a フェンダーミラー (サイドミラー)
- 5 b 筐体
- 5 c 取付部
- 5 d 保持部
- 6 画像データ変換部
- 7 変換情報記憶部
- 8 画像データ記憶部
- 9 表示部
- 10 表示制御部
- 11 表示範囲指定部
- 12 運転操作検知部
- 13 運転情報生成部
- 14 移動体検知部
- 15 移動体速度測定部
- 16 警報出力部
- 17 通信部
- 18 バス

エンド

- -

フロントページの続き

(51) Int.C1.7		識別記号	FI		テーマコー	♪ (参考)
G 0 6 T	3/00	4 0 0 3 0 0	G 0 6 T	3/00	4 0 0 J	•
	7/00 7/20			7/00	3 0 0 E	
				7/20	Α	
H 0 4 N	5/225		H 0 4 N	5/225	С	
	37223				D	

F ターム(参考) 5B057 BA13 CA08 CA13 CA16 CB06 CB08 CB13 CB16 CD01 CD11 CE10 CH11 DA02 DA06 DA15 DB02 DB08 DC33 DC39 SC022 AA04 AC01 AC18 AC69 SC054 AA01 CA04 CG02 CH01 DA07 EA01 EA03 EA05 ED07 FC11 FD02 FE28 FF06 HA30 SA08 BA04 CA05 DA03 EA43

GA08 HA03 HA07 KA15 LA05