Comparing Perturbed Optimizer and Barrier Function Method for Differentiating Linear Programs

Mingrui Zhao Supervised by: Prof. Stephen Gould

28 Oct 2021

Table of Contents

- Introduction
- Theoretical Background
 - Barrier Function Method
 - Perturbed Optimiser
- Results
 - Differentiating Toy LP
 - Back Propagation through LP Declarative Node
 - Trainability of LP declarative node on CIFAR10
- 4 Conclusion & Future Works

Table of Contents

- Introduction
- 2 Theoretical Background
 - Barrier Function Method
 - Perturbed Optimiser
- Results
 - Differentiating Toy LP
 - Back Propagation through LP Declarative Node
 - Trainability of LP declarative node on CIFAR10
- 4 Conclusion & Future Works

Deep Learning

- Applied in image classification, voice recognition and so much more.
- Core of deep learning: Artificial Neural Networks.
 - Directed graph of parametrised processing nodes [1]

Figure: A conceptual sketch of a neural network

Deep Learning

- Learning: Tune node parameters
- Done through back propagation
- Require node gradient

Figure: Conceptual sketch of back propagation of a neural network

Declarative Nodes

Figure: Imperative Node [1]

Figure: Declarative Node [1]

- All imperative nodes can be expressed as declarative nodes
- Declarative node has functions beyond the capability of imperative nodes, such as hard-code constraints into nodes.

Linear Program (LP)

• Declarative node fails on Linear Program

Definition

Optimisation problem with linear objective function and constraints. The canonical form of a Linear Program is

minimize
$$c^T x$$

subject to $Ax \leq b$

where $c, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

• The solution to a Linear Program always lies on a vertex of its feasible region

Toy Example

$$\begin{array}{ll} \text{minimize} & \theta x_1 - 4x_2 \\ \text{subject to} & x_1 + x_2 \leq 30 \\ & x_2 \geq 0, x_1 \geq 1 \end{array} \tag{1}$$

Figure: Feasible region

Figure: Solution of LP versus θ

A constant zero gradient defects back propagation, hence model training

Figure: Solution of LP versus θ

Figure: Gradient of solution versus θ

Research Question

Barrier function method v.s. Perturbed optimizer method

Table of Contents

- Introduction
- Theoretical Background
 - Barrier Function Method
 - Perturbed Optimiser
- 3 Results
 - Differentiating Toy LP
 - Back Propagation through LP Declarative Node
 - Trainability of LP declarative node on CIFAR10
- 4 Conclusion & Future Works

Barrier Function Method

Combine constraints functions with the objective function through log barrier function.

Definition

Consider the optimisation problem

minimize
$$c^T x$$

subject to $Ax \leq b$

Applying barrier function method transforms this LP to an unconstrained optimisation problem

minimize
$$tc^T x - \sum_{i=1}^m \log (b_i - a_i^T x)$$

where a_i^T is the i_{th} row of A

$$\frac{\partial x}{\partial c} = -D_{xx}^{-1} f(x,c) D_{xc} f(x,c) [1]$$

Perturbed Optimiser Method

 $\frac{\partial \mathbf{x}}{\partial c} = \mathbf{E} \left[\mathbf{x}^* (c + \epsilon \mathbf{Z}) \nabla_{\mathbf{z}} \nu (\mathbf{Z})^\top / \epsilon \right]$ where \mathbf{Z} is the noise, $\nu(\mathbf{z})$ is a function defined from noise distribution and ϵ is the temperature parameter of noise [2].

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Figure: Geometric interpretation of perturbed optimizer

Table of Contents

- Introduction
- 2 Theoretical Background
 - Barrier Function Method
 - Perturbed Optimiser
- Results
 - Differentiating Toy LP
 - Back Propagation through LP Declarative Node
 - Trainability of LP declarative node on CIFAR10
- 4 Conclusion & Future Works

Differentiating Toy LP

Recall the toy LP problem shown earlier

Toy Example $\begin{array}{ccc} \text{minimize} & \theta u_1 - 4u_2 \\ \text{subject to} & u_1 + u_2 \leq 30 \\ & u_2 \geq 0, u_1 \geq 1 \end{array} \tag{2}$

Figure: Solution of LP versus θ

Figure: Gradient of solution versus θ

Differentiating Toy LP – Barrier Function Method

 $\begin{array}{l} t = 0.5 \\ \text{Avg. time cost for sol/grad} = 0.01 \text{s}/0.0001 \text{s} \end{array}$

Figure: u against θ

Figure: Gradient of u against θ

Differentiating Toy LP - Perturbed Optimizer Method

 $\sigma=$ 0.7, Gumbel Noise, Sample Size = 2,000 Avg. time cost for sol/grad = 14.82s/0.0002s

Figure: u against θ

Figure: Gradient of u against θ

Back Propagation through LP Declarative Node

LP Declarative Node

minimize
$$c^T x$$

subject to $u_1 + u_2 \le 30$
 $u_2 \ge 0, u_1 \ge 1$ (3)

Initialise c = [-8, -4] with $x^* = [30, 0]$ Aim to update c with approximated gradient to achieve $x^* = [1, 29]$

28 Oct 2021

Back Propagation through LP Declarative Node Barrier Function Method

Loss =
$$\|\bar{x} - [1, 29]\|_2^2$$
, learning rate = 0.01, t=0.1

Figure: \bar{x} over training iterations

Figure: Log loss of declarative node

Back Propagation through LP Declarative Node Perturbed Optimizer Method

Loss =
$$\|\bar{x} - [1, 29]\|_2^2$$
, learning rate = 0.01 $\epsilon = 0.5$, Sample Size = 200, Noise type = Gumbel

Figure: \bar{x} over training iterations

Figure: Loss of declarative node

Trainability of LP declarative node on CIFAR10

- CIFAR10: An image dataset contains 10 classes of object
- Initialise a Convolutional Neural Network and embed an LP declarative node.
- Perform Image classification tasks on CIFAR10
- Not aiming for state of the art results, but to demonstrate the ability of incorporating differentiable LP into an end-to-end learnable model.

Trainability of LP declarative node on CIFAR10

	Original CNN	Plain LP
Mean Average Accuracy	63%	10%
	Perturbed Optimizer	Barrier Function Method
Mean Average Accuracy	30%	N/A

- Proves the trainability of LP declarative node within a complete network
- Barrier function method failed due to limited computational resource
 - Determine the gradient of barrier function method requires inverting a Hessian matrix, in this model the matrix is 400×400 in dimension.

Table of Contents

- Introduction
- 2 Theoretical Background
 - Barrier Function Method
 - Perturbed Optimiser
- 3 Results
 - Differentiating Toy LP
 - Back Propagation through LP Declarative Node
 - Trainability of LP declarative node on CIFAR10
- 4 Conclusion & Future Works

Conclusion

Barrier Function Method

- Low computational cost for low dimensional LP
- Exponentially raising computational cost for high dimensional LP
- Deterministic approximation
- Smooth gradient approximation
- Require optimisation problem solver capable for log barrier terms

Perturbed Optimiser Method

- Computational cost is sample size dependent, generally it is high
- Relatively Lower computational cost for high dimensional LP
- Stochastic approximation
- Non-smooth gradient approximation, can be improved by increasing sample size
- Capable with any solver

Future Works

- Determine theoretical equivalency between perturbed optimizer and barrier function methods
- Find constructive LP declarative nodes for model training, aim for state of the art results

Bibliorgraphy

- S. Gould, R. Hartley, and D. Campbell, "Deep declarative networks: A new hope," arXiv preprint arXiv:1909.04866, 2019.
- Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach, "Learning with differentiable perturbed optimizers," arXiv preprint arXiv:2002.08676, 2020.
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," *nature*, vol. 521, no. 7553, pp. 436–444, 2015.
- S. Boyd, S. P. Boyd, and L. Vandenberghe, *Convex optimization*. Cambridge university press, 2004.
- J. Abernethy, C. Lee, and A. Tewari, "Perturbation techniques in online learning and optimization," *Perturbations, Optimization, and Statistics*, p. 233, 2016.
- A. Krizhevsky, V. Nair, and G. Hinton, "Cifar-10 (canadian institute for advanced research),"