Chapitre 30

Déterminant

30	Déterminant	1
	30.4 Exemple	2
	30.11Détermination d'une application n-linéaire sur une base	2

30.4 Exemple

Exemple 30.4

On considrée l'application :

$$\delta: \mathbb{K}^2 \times \mathbb{K}^2 \to \mathbb{K}; ((a,b),(c,d)) \mapsto ad - bc$$

Montrer que cette application est bien 2-linéaire.

$$\delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} + \lambda \begin{pmatrix} c' \\ d' \end{pmatrix}\right) = \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c + \lambda c' \\ d + \lambda d' \end{pmatrix}\right)$$

$$= a(d + \lambda d') - b(c + \lambda c')$$

$$= ad - bc + \lambda (ad' - bc')$$

$$= \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix}\right) + \lambda \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c' \\ d' \end{pmatrix}\right)$$

30.11 Détermination d'une application n-linéaire sur une base

Propostion 30.11

Soit pour tout $i \in [1, n]$, $(e_{i,j})_{1 \le j \le d}$ une base de E_i et pour tout $(j_1, \ldots, j_n) \in [1, d_1] \times \cdots \times [1, d_n]$, $f_{j_1, \ldots, j_n} \in F$.

Alors il existe une unique application n-linéaire $f: E_1 \times \cdots \times E_n \to F$ telle que :

$$\forall (j_1, \dots, j_n) \in [1, d_1] \times \dots \times [1, d_n], \varphi(e_{1,j_1}, \dots, e_{n,j_n}) = f_{j_1, \dots, j_n}$$

Si $(e_{i,j})_{1 \leq j \leq d}$ est une base de E_i alors $((e_{1,2},0,\ldots,0,\ldots,e_{1,d},0,\ldots,0),\ldots,(0,\ldots,0,e_{n,1},\ldots,(0,\ldots,0,e_{n,d})))$ est une base de $E_1 \times \cdots \times E_n$. (22.16), théorème de rigidité.