Socially Responsible Investing

Panko A.S, Yakimchyk N.S, Kurennoi I.I, Agafonov N.S

Vienna University of Economics and Business

June 26, 2019

Overview

- Intoduction
 - Objectives
 - Data and methodology
 - Analyzed Portfolios
- Portfolio characteristics
 - Portfolio return
 - Portfolio risk
 - Sharpe Ratio
- Equally-weighted portfolio
 - Description
 - Results
- Mean-variance optimized portfolio
 - Description
 - General quadratic programming problem
 - Results
- Conclusion

SRI and SIN definitions

Socially Responsible Investing (SRI) - investing strategy that avoids investment in companies involved in socially disadvantageous activities (e.g. production or selling alcohol and tobacco).

SIN industries - companies involved in socially disadvantageous activities (e.g. drug, selling weapons).

Objective

Analyze the profitability and riskiness of SRI in comparison with SIN industries and the market

Data

Data

- Annual returns of US 49 industry indexes in period 1970 -2014
 - Source: Ken Frenchs website
 - Link: http://mba.tuck.dartmouth.edu/pages/faculty/ ken.french/data_library.html
- Treasury Bills interest rates
 - Source: Federal Reserve Economic Data
 - Link: https://fred.stlouisfed.org/series/TB3MS

Download data in R and Methodology

R code: Download data

To download data from .csv file into a data frame object next function is used:

```
data_frame <- read.csv('File_Name.csv', header=TRUE)</pre>
```

Methodology

- Equally-weighted portfolio
- Mean-variance optimized portfolio

Define SIN and SRI industries

SIN industries

SRI industries

Candy and Soda

Other 40 industries

- Beer and Liquor
- Tobacco Products
- Chemicals
- Subber and Plastic Products
- Operation
 Operation
- Coal
- Oil
- Utilities

Total: 49 industries (MKT - Market)

Portfolio characteristics

Let P be a portfolio of n indices.

- $w = (w_1, \dots, w_n)^T$ vector of weights
- r Treasury Bill interest rate
- ullet covariance matrix of indices returns

Then portfolio return $\mu(P)$ is:

$$\mu(P) = \mu^T w \tag{1}$$

Portfolio risk $\sigma(P)$ is:

$$\sigma(P) = \sqrt{var(P)} = \sqrt{w^T \sum w}$$
 (2)

Sharpe Ratio SR(P) is:

$$SR(P) = \frac{\mu(P) - r}{\sigma(P)} \tag{3}$$

Equally-weighted portfolio

Description

Equally-weighted portfolio is a portfolio of n assets with all equal weights:

$$w_1 = w_2 = \cdots = w_n = \frac{1}{n}$$

Portfolios' statistics

	Return	Standard.Deviation	Sharpe.Ratio
SIN Portfolio	18.05	21.31	0.61
MKT Portfolio	16.28	25.68	0.44
SRI Portfolio	15.88	27.24	0.40

Cumulative returns

1 USD invested in 1970:

Cumulative Returns

Sharpe ratios

Let's find the best place for the money!

	Sharpe.Ratio
Soda	0.44
Beer	0.47
Smoke	0.64
Chems	0.46
Rubbr	0.40
Guns	0.53
Coal	0.19
Oil	0.31
Util	0.60

Mean-Variance optimized portfolio

Description

Changing weights it is possible to make returns higher and risk lower. To find appropriate weights, next optimization problem is solved

$$var(P) - q\mu(P) \underset{\mu}{\rightarrow} min$$
 (4)

- $q \ge 0$ risk tolerance. If q = 0, the aim is to minimize portfolio variance(risk)
- if $q = \inf$, the aim is to maximize portfolio return
- ullet for the research q=1 is chosen

Our case

With q = 1 formula (4) is:

$$w^T \sum w - \mu^T w \xrightarrow{w} min \tag{5}$$

Constraints

- $\sum_{i=1}^{n} w_i = 1$
- ② $w_i \ge 0$ for i = 1,...,n
- $w_i \le 0.1$ (SRI and MKT) $w_i \le 0.2$ (SIN)

General quadratic programming problem

In R exists a function, which solves general quadratic problem:

```
library(quadprog)
result <- solve.QP(Dmat, dvec, Amat, bvec, meq)
```

Quadratic programming problem

$$\frac{1}{2}w^{T}Dw - d^{T}w \xrightarrow{w} min \tag{6}$$

$$A^{T}w > b \tag{7}$$

$$A^T w \ge b \tag{7}$$

Function Parameters

- $D = 2 \sum$
- $d = \mu$
- meq = 1

The matrix of constraints A:

$$A = \begin{bmatrix} 1 & 1 & \dots & -1 & \dots & 0 \\ 1 & 1 & \dots & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \dots & 1 & \dots & -1 \end{bmatrix}$$

$$b = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ -0.2 \\ \vdots \end{bmatrix}$$

Results

Mean-Variance Portfolios' Statistics					
Return	Standard.Deviation	Sharpe.Ratio			
17.65	19.18	0.66			
15.78	17.98	0.60			
14.64	20.82	0.46			
	Return 17.65 15.78	Return Standard Deviation 17.65 19.18 15.78 17.98			

Results: weights SIN

Results: weights MKT

Results: weights SRI

Results: Cumulative returns

Cumulative Returns

Conclusion

- The SRI mean-variance and equally weighted portfolios show the worst performance comparing to other portfolios
- The SIN mean-variance and equally weighted portfolios show the best performance comparing to other portfolios