MA2001 Envariabelanalys

Något om generaliserade integraler

Mikael Hindgren

27 november 2024

Exempel 1

Obegränsat intervall

Undersök

$$\int_{1}^{R} \frac{1}{x^{2}} dx \quad \text{och} \quad \int_{1}^{R} \frac{1}{x} dx \quad \text{då} \quad R \to \infty.$$

$$\int_{1}^{R} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{R} = -\frac{1}{R} - \left(-\frac{1}{1} \right) = 1 - \frac{1}{R} \to 1 \text{ då } R \to \infty$$

$$\int_{1}^{R} \frac{1}{x} dx = \left[\ln|x| \right]_{1}^{R} = \ln R - \ln 1 = \ln R \to \infty \text{ då } R \to \infty$$

Definition 1

Obegränsat intervall

Om funktionen f är integrerbar på [a, R] för alla $R \ge a$ och om gränsvärdet

$$\lim_{R\to\infty}\int_a^R f(x)dx=A$$

existerar ändligt så är den generaliserade integralen

$$\int_{a}^{\infty} f(x) dx$$

konvergent med värdet A. I annat fall är den divergent.

I exemplet ovan:

•
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 är konvergent

•
$$\int_{1}^{\infty} \frac{1}{x} dx$$
 är divergent

Obegränsat intervall

Exempel 2

Avgör om den generaliserade integralen

$$\int_{1}^{\infty} e^{-x} dx$$

är konvergent.

Lösning:

$$\begin{split} \int_1^R e^{-x} dx &= \left[-e^{-x} \right]_1^R = -e^{-R} - \left(-e^{-1} \right) = \frac{1}{e} - \frac{1}{e^R} \to \frac{1}{e} \, \mathrm{d} \, \mathrm{d} \, R \to \infty \\ &\Leftrightarrow \int_1^\infty e^{-x} dx = \frac{1}{e} \\ & \therefore \int_1^\infty e^{-x} dx \quad \text{\"ar konvergent.} \end{split}$$

Obegränsat intervall

Exempel 3

Undersök konvergensen hos

$$\int_1^\infty \frac{x}{1+x^2} dx.$$

Lösning:

$$\begin{split} \int_{1}^{R} \frac{x}{1+x^{2}} dx &= \frac{1}{2} \int_{1}^{R} \frac{\frac{f'(x)}{2x}}{1+x^{2}} dx = \frac{1}{2} \left[\ln \left| 1+x^{2} \right| \right]_{1}^{R} = \frac{1}{2} \left(\ln \left(1+R^{2} \right) - \ln 2 \right) \\ &= \frac{1}{2} \left(\ln \left(1+R^{2} \right) - \ln 2 \right) \to \infty \text{ då } R \to \infty \\ &\therefore \int_{1}^{\infty} \frac{x}{1+x^{2}} dx \quad \text{\"{ar divergent}}. \end{split}$$

Obegränsat intervall

Exempel 4

Undersök konvergensen hos

$$\int_0^\infty \sin x \, dx$$

Lösning:

$$\int_0^R \sin x \, dx = \left[-\cos x \right]_0^R = 1 - \cos R \to ?$$

 $\cos R$ saknar gränsvärde då $R o \infty$!

$$\therefore \int_0^\infty \sin x \, dx$$
 är divergent.

HÖGSKOLAN IHALMSTAD

Obegränsat intervall

Exempel 5

För vilka värden på α är den generaliserade integralen

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \quad \text{konvergent?}$$

Lösning:

Enligt Ex 1 är den divergent om $\alpha = 1$. För $\alpha \neq 1$:

$$\int_{1}^{R} \frac{1}{x^{\alpha}} dx = \int_{1}^{R} x^{-\alpha} dx = \left[\frac{1}{-\alpha + 1} x^{-\alpha + 1} \right]_{1}^{R}$$

$$= \frac{1}{\alpha - 1} \left(-R^{-\alpha + 1} + 1 \right) \rightarrow \begin{cases} \frac{1}{\alpha - 1} & \text{då } R \to \infty \text{ om } \alpha > 1. \\ \infty & \text{då } R \to \infty \text{ om } \alpha < 1. \end{cases}$$

Sats 1

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \text{ är konvergent } \Leftrightarrow \alpha > 1.$$

HÖGSKOLAN I HALMSTAD

Obegränsad integrand

Exempel 6

Undersök

$$\int_{\varepsilon}^1 \frac{1}{\sqrt{x}} dx \quad \text{och} \quad \int_{\varepsilon}^1 \frac{1}{x} dx \quad \text{då} \quad \varepsilon \to 0^+.$$

Båda integranderna $\to \infty$ då $x \to 0^+$ dvs de är obegränsade för $0 < x \le 1$. Borde då inte integralerna bli oändligt stora?

$$\begin{split} &\int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} dx &= \left[2\sqrt{x} \right]_{\varepsilon}^{1} = 2 - 2\sqrt{\varepsilon} \to 2 \text{ då } \varepsilon \to 0^{+} \\ &\int_{\varepsilon}^{1} \frac{1}{x} dx &= \left[\ln|x| \right]_{\varepsilon}^{1} = \ln 1 - \ln \varepsilon = -\ln \varepsilon \to \infty \text{ då } \varepsilon \to 0^{+} \end{split}$$

Obegränsad integrand

Definition 2

Om funktionen f är integrerbar över intervallet $[a+\varepsilon,b]$ för varje $\varepsilon>0$ men obegränsad i intervallet $a< x \le b$ och om gränsvärdet

$$\lim_{\varepsilon\to 0}\int_{a+\varepsilon}^b f(x)dx=A$$

existerar så är den generaliserade integralen $\int_a^b f(x)dx$ konvergent med värdet A. I annat fall är den divergent.

Anm: Om f(x) inte är definierad i x = a så säger man att integralen $\int_a^b f(x) dx$ är generaliserad i punkten a. I Ex 6:

- $\int_0^1 \frac{1}{\sqrt{x}} dx$ är konvergent
- $\int_0^1 \frac{1}{x} dx$ är divergent

och båda är generaliserade i x = 0.

Obegränsad integrand

Exempel 7

Avgör om

$$\int_0^1 \ln x \, dx$$

är konvergent.

Lösning:

Integralen är generaliserad i x = 0:

$$\int_{\varepsilon}^{1} \ln x \, dx = [x \ln x - x]_{\varepsilon}^{1} = 1 \cdot \ln 1 - 1 - (\varepsilon \ln \varepsilon - \varepsilon)$$

$$= -1 - \underbrace{\varepsilon \ln \varepsilon}_{\to 0 \text{ då } \varepsilon \to 0^{+}} + \varepsilon \to -1 \text{ då } \varepsilon \to 0^{+}.$$

$$\therefore \int_0^1 \ln x \, dx = -1 \quad \text{dvs konvergent.}$$

Obegränsad integrand

Exempel 8

För vilka värden på α är den generaliserade integralen

$$\int_0^1 \frac{1}{x^{\alpha}} dx$$
 konvergent?

Lösning:

Enligt Ex 6 är den divergent om $\alpha = 1$. För $\alpha \neq 1$:

$$\int_{\varepsilon}^{1} \frac{1}{x^{\alpha}} dx = \int_{\varepsilon}^{1} x^{-\alpha} dx = \left[\frac{1}{-\alpha + 1} x^{-\alpha + 1} \right]_{\varepsilon}^{1}$$

$$= \frac{1}{1 - \alpha} \left(1 - \varepsilon^{-\alpha + 1} \right) \to \begin{cases} \frac{1}{1 - \alpha} & \text{då } \varepsilon \to 0^{+} \text{ om } \alpha < 1. \\ \infty & \text{då } \varepsilon \to 0^{+} \text{ om } \alpha > 1. \end{cases}$$

Sats 2

$$\int_0^1 \frac{1}{x^{\alpha}} dx \ \text{ar konvergent} \ \Leftrightarrow \alpha < 1.$$

Jämförelsekriterier för generaliserade integraler med positiv integrand

Sats 3 Om $0 \le f(x) \le g(x)$ för alla x i integrations intervallet I så gäller o $\int_{I} g(x) dx$ konvergent $\Rightarrow \int_{I} f(x) dx$ konvergent o $\int_{I} f(x) dx$ divergent $\Rightarrow \int_{I} g(x) dx$ divergent

Jämförelsekriterier för generaliserade integraler med positiv integrand

Exempel 9

Undersök konvergensen hos $\int_{1}^{\infty} \frac{5x-4}{x^3+x} dx.$

Lösning:

$$\int_{1}^{R} \frac{5x-4}{x^{3}+x} dx = \dots \quad \text{Jobbigt!}$$

Vi behöver inte beräkna integralen! För $x \ge 1$ är

$$0 \le \frac{5x - 4}{x^3 + x} \le \frac{5x}{x^3 + x} \le \frac{5x}{x^3} = \frac{5}{x^2}$$

Sats 1
$$\Rightarrow \int_{1}^{\infty} \frac{5}{x^2} dx$$
 konvergent
Sats 3 $\Rightarrow \int_{1}^{\infty} \frac{5x - 4}{x^3 + x} dx$ konvergent

Jämförelsekriterier för generaliserade integraler med positiv integrand

Exempel 10

Undersök konvergensen hos $\int_{1}^{5} \frac{x^2 + 3x + 2}{x^2 - 1} dx$.

Lösning:

Integralen är generaliserad i x = 1. För $x \ge 1$:

$$\frac{x^2 + 3x + 2}{x^2 - 1} = \frac{(x+1)(x+2)}{(x+1)(x-1)} = \frac{x+2}{x-1} \ge \frac{2}{x-1}$$

$$\int_{1+\varepsilon}^{5} \frac{2}{x-1} dx = 2 \int_{1+\varepsilon}^{5} \frac{dx}{x-1} = 2 \left[\ln(x-1) \right]_{1+\varepsilon}^{5}$$

$$= 2 \left(\ln(5-1) - \ln(1+\varepsilon-1) \right)$$

$$= 2 \ln 4 - 2 \ln \varepsilon \to \infty \, d\mathring{a} \, \varepsilon \to 0$$

Sats 3:
$$\int_{1}^{5} \frac{2}{x-1} dx \text{ divergent} \Rightarrow \int_{1}^{5} \frac{x^2+3x+2}{x^2-1} dx \text{ divergent}$$

Jämförelsekriterier för generaliserade integraler med positiv integrand

Exempel 11

Avgör om
$$\int_2^\infty \frac{\arctan x}{x\sqrt{x^2+1}} dx$$
 är konvergent.

Lösning:

För x > 2 är

$$0 \leq \frac{\arctan x}{x\sqrt{x^2+1}} \leq \frac{\pi}{2} \frac{1}{x\sqrt{x^2+1}} \leq \frac{\pi}{2} \frac{1}{x\sqrt{x^2}} = \frac{\pi}{2} \frac{1}{x^2}$$

Sats 1
$$\Rightarrow \int_{2}^{\infty} \frac{1}{x^{2}} dx$$
 konvergent
Sats 3 $\Rightarrow \int_{2}^{\infty} \frac{\arctan x}{x\sqrt{x^{2}+1}} dx$ konvergent

Anm: Integranden $\frac{\arctan x}{x\sqrt{x^2+1}}$ saknar elementär primitiv funktion dvs en som kan uttryckas med elementära funktioner.

Integraler som är generaliserade på fler än ett sätt

Exempel 12

Avgör om
$$\int_0^\infty \frac{1}{x^2} dx$$
 är konvergent.

Lösning:

Integralen är generaliserad på två sätt:

Obegränsat intervall och obegränsad integrand (generaliserad i x=0).

Dela upp integralen så att varje delintegral är generaliserad på endast ett sätt:

$$\int_0^\infty \frac{1}{x^2} dx = \int_0^1 \frac{1}{x^2} dx + \int_1^\infty \frac{1}{x^2} dx \quad \leftarrow \text{ en m\"{o}jlig uppdelning}$$

Integralen är konvergent om A och B båda är konvergenta. \leftarrow Definition Enligt Sats 1 & 2 är B konvergent men A är divergent.

$$\therefore \int_0^\infty \frac{1}{x^2} dx \quad \text{ar divergent}$$

Integraler som är generaliserade på fler än ett sätt

Anm:

$$\int_{-\infty}^{\infty} x^3 dx = \lim_{R \to \infty} \int_{-R}^{R} x^3 dx = \lim_{R \to \infty} \left[\frac{x^4}{4} \right]_{-R}^{R} = \lim_{R \to \infty} \left(\frac{R^4}{4} - \frac{(-R)^4}{4} \right) = 0$$

Integralen är alltså konvergent. Eller?

NEJ!!!
$$\int_{-\infty}^{\infty} x^3 dx = \int_{-\infty}^{0} x^3 dx + \int_{0}^{\infty} x^3 dx$$

Båda delintegralerna är divergenta!

$$\therefore \int_{-\infty}^{\infty} x^3 dx \text{ är divergent!}$$

Varning!

Enligt definitionen måste alltid uppdelning göras så att varje delintegral är generaliserad på endast ett sätt!

Integraler som är generaliserade på fler än ett sätt

Exempel 13

Avgör om
$$\int_0^\infty \frac{1}{\sqrt{x+x^3}} dx$$
 är konvergent.

Lösning:

Integralen är generaliserar på två sätt.

Dela upp den så att varje integral är generaliserad på endast ett sätt:

$$\int_0^\infty \frac{1}{\sqrt{x+x^3}} dx = \int_0^1 \frac{1}{\sqrt{x+x^3}} dx + \int_1^\infty \frac{1}{\sqrt{x+x^3}} dx$$
generaliserad i $x=0$ Obegrānsat intervall

$$0 < x \le 1:$$
 $0 \le \frac{1}{\sqrt{x + x^3}} \le \frac{1}{\sqrt{x}} = \frac{1}{x^{1/2}}$
Sats 2 $\Rightarrow \int_0^1 \frac{1}{x^{1/2}} dx$ konvergent
Sats 3 $\Rightarrow \int_0^1 \frac{1}{\sqrt{x + x^3}} dx$ konvergent

Integraler som är generaliserade på fler än ett sätt

Exempel 13 (forts.)

$$x \ge 1:$$
 $0 \le \frac{1}{\sqrt{x + x^3}} \le \frac{1}{\sqrt{x^3}} = \frac{1}{x^{3/2}}$
Sats $1 \Rightarrow \int_1^\infty \frac{1}{x^{3/2}} dx$ konvergent
Sats $3 \Rightarrow \int_1^\infty \frac{1}{\sqrt{x + x^3}} dx$ konvergent

$$\therefore \int_0^\infty \frac{1}{\sqrt{x+x^3}} dx$$
 är konvergent

Uppgifter från tentor

Exempel 14 (Tentamen 120413, uppgift 1)

(a) Beräkna
$$\int_{1}^{e} \frac{\ln(\ln x)}{x} dx$$
. (3p)

Exempel 15 (Tentamen 170113, uppgift 5)

(a) Beräkna den generaliserade integralen $\int_0^\infty \frac{e^x}{e^{2x}+1} dx$. (2p)

Exempel 16 (Tentamen 210115, uppgift 5)

- (a) Visa att den generaliserade integralen $\int_{1}^{\infty} \frac{\ln(1+x^2)}{x^3} dx$ är konvergent utan att beräkna den. (2p)
- (b) Beräkna den generaliserade integralen i (a). (3p)