```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
from sklearn.preprocessing import OneHotEncoder, MinMaxScaler, StandardScaler, RobustScaler
from sklearn.decomposition import PCA
import seaborn as sns
dados = pd.read csv("Stars.csv")
colunas = dados.columns
#verifica se há células vázias no dataframe dados
null = pd.isnull(dados)
if True in null.values:
    print("Há células vázias no dataframe")
#preparando a base de dados
dados["Color"] = dados["Color"].str.lower()
dados["Color"] = dados["Color"].str.replace('-', " ")
print(dados)
categoriesColor = list(dados["Color"].unique())
categoriesSpec = list(dados["Spectral Class"].unique())
encoder = OneHotEncoder(categories= [categoriesColor])
encoder.fit_transform(dados["Color"].values.reshape(-1,1))
buffer = encoder.transform(dados["Color"].values.reshape(-1,1)).toarray()
dados = dados.join(pd.DataFrame(data = buffer, columns = categoriesColor))
dados = dados.drop(columns= ['Color'])
encoder = OneHotEncoder(categories= [categoriesSpec])
encoder.fit_transform(dados["Spectral_Class"].values.reshape(-1,1))
buffer = encoder.transform(dados["Spectral_Class"].values.reshape(-1,1)).toarray()
dados = dados.join(pd.DataFrame(data = buffer, columns = categoriesSpec))
dados = dados.drop(columns= ['Spectral_Class'])
correlation matrix = dados.corr()
sns.heatmap(correlation_matrix, cmap='coolwarm')
# Adicione título e rótulos dos eixos
plt.title('Matriz de Correlação')
plt.xlabel('Variáveis')
plt.ylabel('Variáveis')
print(dados)
dados = dados.drop(columns= ['Type'])
```

	MIITCE	устт	OMTOIL	WIITC	c har	Le ye	TTOM	UI alig	-	MILTICE ACTION	ACTTOMT311	١
0	0.0			0.	0			0.	0	0.0	0.0	
1	0.0			0.	0			0.	0	0.0	0.0	
2	0.0			0.	0			0.	0	0.0	0.0	
3	0.0			0.	0			0.	0	0.0	0.0	
4	0.0			0.	0			0.	0	0.0	0.0	
• •	• • •				•					• • •	• • •	
235	0.0			0.	0			0.	0	0.0	0.0	
236	0.0			0.	0			0.	0	0.0	0.0	
237	1.0	0.0						0.	0	0.0	0.0	
238	1.0			0.	0			0.	0	0.0	0.0	
239	0.0			0.	0			0.	0	0.0	0.0	
	orange		М	В	Α	F	0	K	G			
0		0.0	1.0	0.0		0.0		0.0	0.0			
1		0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0			
2		0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0			
3		0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0			
4		0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0			
• •		• • •							• • •			
235		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0			
236		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0			
237		0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0			
238		0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0			
239		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0			

[240 rows x 24 columns]


```
from scipy.stats import kurtosis
def histograma(dado, title, bin = 50):
   plt.hist(dado, bins = bin)
   plt.title(title)
   plt.xlabel(title)
   plt.ylabel('Frequência')
   mean = np.mean(dado)
   q3 = np.percentile(dado, 75)
   q1 = np.percentile(dado, 25)
   IIQ = q3 - q1
    plt.axvline(x=mean, color="red", linestyle="--", label = "Média")
   plt.axvline(x=q3 + 1.5*IIQ, color="g", linestyle="--", label = "Máximo")
   plt.axvline(x=q1 - 1.5*IIQ, color="g", linestyle="--", label = "Mínimo")
   plt.axvline(x= np.percentile(dado, 50), color="black", linestyle="--", label = "Mediana")
   plt.legend()
   plt.show()
go = True
if go == True:
   histograma(dados["Temperature"], "Temperatura") #não é normal
   histograma(dados["L"], "L") #não é normal
   histograma(dados["R"], "R") #não é normal
   histograma(dados["A_M"], "A_M") #é normal
    #histograma(dados["Type"], "Type") #é normal
```



```
scaler1 = MinMaxScaler()
scaler2 = StandardScaler()

dados['Temperature'] = scaler2.fit_transform(dados[['Temperature']])
dados["L"] = scaler1.fit_transform(dados[["L"]])
dados["R"] = scaler1.fit_transform(dados[["R"]])
#dados["Type"] = scaler1.fit_transform(dados[["Type"]])

dados["A_M"] = scaler2.fit_transform(dados[["A_M"]])
```

```
pca = PCA()
pca.fit(dados)
expl = pca.explained_variance_ratio_
svalues = pca.singular values
dados_reduzidos = pca.transform(dados)
explainability = pca.explained_variance_ratio_.cumsum()
factors = np.arange(1,dados.shape[1]+1,1)
plt.scatter(factors,explainability)
plt.hlines(0.9,0,20,'r')
plt.xlabel('Número de componentes')
plt.ylabel('Explicabilidade dos dados')
plt.show()
factors_below_threshold = factors[explainability < 0.9]</pre>
if len(factors_below_threshold) > 0:
    p = factors_below_threshold.max() + 1
else:
   p = 2
if p<2:
    p=2
print('90% dos dados são explicados com as ' + str(p) + ' componentes.')
pca = PCA(n_components=p)
pca.fit(dados)
dados_reduzidos = pca.transform(dados)
singular_values = pca.singular_values_
# Calculando a razão da variação
variation_ratio = singular_values**2 / np.sum(singular_values**2)
# Imprimindo a razão da variação
print("Razão da Variação:", variation_ratio*100)
```


90%% dos dados são explicados com as 5 componentes. Razão da Variação: [57.91187845 22.62610655 9.59885372 6.70204783 3.16111345]

```
pesos = pca.components
pesos_porcentagem = (pesos * variation_ratio[:, np.newaxis]*100 ).round(2)
#pesos porcentagem = (pesos*100 ).round(2)
# Criando um DataFrame com os pesos organizados
df_pesos = pd.DataFrame(pesos_porcentagem, columns=dados.columns)
# Supondo que 'df_pesos' seja o DataFrame contendo os pesos das variáveis nas componentes principais
df_pesos = df_pesos.drop(index=[3])
df_pesos = df_pesos.drop(index=[4])
def remove_soma(x, y, df_pesos, title):
    # Verificar se as colunas de 'x' até 'y' estão presentes no DataFrame
    if x in df_pesos.columns and y in df_pesos.columns:
        # Imprimir as colunas antes de remover
        print("Colunas antes de remover:")
        print(df pesos.columns)
        # Calcular a soma das colunas de 'x' até 'y' em cada linha
        df_pesos[title] = df_pesos.loc[:, x:y].sum(axis=1)
        # Remover as colunas de 'x' até 'y'
        df_pesos = df_pesos.drop(columns=df_pesos.loc[:, x:y].columns)
        # Visualizar o DataFrame atualizado
        print("\nDataFrame com a nova coluna de soma e as colunas de 'x' até 'y' removidas:")
        #print(df_pesos)
    else:
        print("As colunas especificadas não estão presentes no DataFrame.")
    return df_pesos
#df_pesos = remove_soma('red', 'orange red', df_pesos, "Color")
#df_pesos = remove_soma('M', 'G', df_pesos, "Spectral Class")
df_pesos = df_pesos.T
df_pesos['Soma'] = df_pesos.sum(axis=1)
df pesos = df pesos.T
print(df_pesos)
plt.figure(figsize=(10, 8))
# Criar o heatmap
sns.heatmap(df_pesos.T, cmap='coolwarm',annot=True, fmt=".2f")
# Configurar o título
plt.title('Contribuição de cada variável para a variação total explicada por cada componente princip
# Mostrar o heatmap
plt.show()
# Visualizando o DataFrame
print("Pesos das variáveis nas três primeiras componentes principais em porcentagem:")
print(df_pesos)
```

[4 rows x 23 columns]

Contribuição de cada variável para a variação total explicada por cada componente principal

Continuan	çao ac cada variav	ci para a variação	total explicada poi	cada componente	Pilli	cipai
Temperature -	38.30	-9.56	-2.18	26.56		
L-	5.31	2.49	-0.77	7.03		
R -	3.12	4.44	0.52	8.08		- 30
A_M -	-31.70	-17.56	-1.70	-50.96		
red -	-16.23	5.12	-2.40	-13.51		- 20
blue white -	4.57	-2.74	5.00	6.83		
white -	-0.18	-0.62	0.49	-0.31		
yellowish white -	-0.12	-0.35	0.06	-0.41		- 10
pale yellow orange -	-0.08	-0.10	0.03	-0.15		
blue -	12.26	-1.66	-4.18	6.42		- 0
whitish -	0.06	0.00	0.16	0.22		o o
yellow white -	-0.11	0.05	0.48	0.42		
orange -	0.08	0.38	0.13	0.59		10
white yellow -	-0.08	-0.10	0.03	-0.15		
yellowish -	-0.14	0.00	0.16	0.02		20
orange red -	-0.03	0.01	0.05	0.03		20
М -	-16.31	4.90	-2.46	-13.87		
В -	6.25	-4.83	3.16	4.58		30
A -	0.41	-0.50	1.98	1.89		
F -	-0.53	-0.98	0.69	-0.82		
0 -	10.19	0.80	-3.77	7.22		40
K -	-0.07	0.42	0.35	0.70		
G -	0.05	0.19	0.04	0.28		50
	Ö	1	2	Soma		

Pesos das variáveis nas três primeiras componentes principais em porcentagem:

yellowish white pale yellow orange blue ... white yellow \ 0 -0.12 -0.08 12.26 ... -0.08 1 -0.35 -0.10 -1.66 ... -0.10 0.03 -4.18 ... 2 0.06 0.03 -0.41 -0.15 6.42 ... -0.15 Soma

F yellowish orange red Μ В Α 0 Κ G 0 -0.14 -0.03 -16.31 6.25 0.41 -0.53 10.19 -0.07 0.05 1 0.00 0.01 4.90 -4.83 -0.50 -0.98 0.80 0.42 0.19 0.16 0.05 -2.46 3.16 1.98 0.69 -3.77 0.35 0.04 2 0.02 0.03 -13.87 4.58 1.89 -0.82 7.22 0.70 0.28 Soma

[4 rows x 23 columns]

```
import scipy.cluster.hierarchy as shc
import seaborn as sns

plt.figure(figsize=(10, 7))
plt.title("Dendrograma")
clusters = shc.linkage(dados_reduzidos, method='ward', metric="euclidean")
shc.dendrogram(Z=clusters)
plt.show()
```



```
from sklearn.metrics import silhouette_samples, silhouette_score
def ncluster(metodo, x, limite_superior):
    Ns = []
    for i in range(2, limite superior + 1):
        Ns.append(i)
    Ns = np.asarray(Ns)
    silhueta_scores = np.zeros(len(Ns))
    pontos bad = np.zeros(len(Ns))
    for i,N in enumerate(Ns):
        if metodo.upper() == "K":
            kmeans = KMeans(n_clusters=N).fit(x)
            categorias = kmeans.labels
        elif metodo.upper() == "H":
            aggclust = AgglomerativeClustering(n_clusters=N, linkage='ward').fit(x)
            categorias = aggclust.labels_
        silhueta_scores[i] = silhouette_score(x, categorias)
        sample_silhouette_values = silhouette_samples(x, categorias)
        mask = (sample_silhouette_values < 0 )</pre>
        pontos_bad[i] = (100 * mask.sum() / len(mask)).round(2)
    print(pontos_bad, silhueta_scores)
    if 0 in pontos bad:
        # Se sim, seleciona o índice do melhor valor de silhueta onde pontos ruins são diferentes de
        indices = np.where(pontos_bad == 0)[0]
        sil_valor = np.where(silhueta_scores == np.max(silhueta_scores[indices]))[0]
        melhor_indice = int(sil_valor)
        print('melhor', sil_valor)
        opt_n_clusters = Ns[melhor_indice]
        if len(silhueta scores[pontos bad == 0]) == 1:
            plt.plot(Ns[melhor_indice], silhueta_scores[pontos_bad == 0])
            plt.hlines(silhueta_scores[pontos_bad == 0],Ns[melhor_indice] - 0.75, Ns[melhor_indice]
        else:
            plt.plot(Ns[pontos_bad == 0],silhueta_scores[pontos_bad == 0])
        plt.xlabel('Clusters')
        plt.ylabel('Métrica de performance')
        plt.title("Fator de silhueta para o # de clusters sem pontos mal atribuídos")
        plt.show()
    else:
        opt_n_clusters = Ns[(silhueta_scores/pontos_bad).argmax()]
        plt.plot(Ns,silhueta_scores/pontos_bad)
        plt.xlabel('Clusters')
        plt.ylabel('Métrica de performance')
        plt.title("Métrica de performance para o # de clusters quando há ponto mal atribuidos")
        plt.show()
    return opt_n_clusters
from sklearn.cluster import AgglomerativeClustering
import time
start time = time.time()
n_clustersH = ncluster('H', dados_reduzidos, 10)
aggclust = AgglomerativeClustering(n_clusters=n_clustersH, linkage='ward').fit(dados_reduzidos)
```

```
categorias = aggclust.labels_
plt.scatter(dados_reduzidos[:,0], dados_reduzidos[:,1], c=categorias)
plt.text(-1.95,1.3,str(n_clustersH)+' Agrupamentos')
plt.title("Método de Agrupamento Hierárquico")
plt.xlabel('Componente Principal 1')
plt.ylabel('Componente Principal 2')
end_time = time.time()

# Calcula o tempo total de execução
execution_time1 = end_time - start_time

# Imprime o tempo total de execução
print("Tempo de execução:", execution_time1, "segundos")
```

[5. 4.58 2.92 0.42 0. 0.83 1.25 1.25 2.08] [0.40195525 0.43712321 0.55175941 0.57513255 (0.64608301 0.66160499 0.67511095] melhor [4]

<ipython-input-71-2af44a20ca5c>:33: DeprecationWarning: Conversion of an array with ndim > 0
 melhor_indice = int(sil_valor)

Tempo de execução: 0.38593411445617676 segundos

from sklearn.cluster import KMeans
n_clustersK = ncluster('K', dados_reduzidos, 10)
kmeans = KMeans(n_clusters=n_clustersK).fit(dados_reduzidos)
categorias = kmeans.labels_