#### Pyrimidine Derivatives

The present invention relates to novel pyrimidine derivatives, to processes for their production, their use as pharmaceuticals and to pharmaceutical compositions comprising them.

More particularly the present invention provides in a first aspect, a compound of formula I

wherein

each of R<sup>0</sup>, R<sup>1</sup>, R<sup>2</sup>,and R<sup>3</sup> independently is hydrogen, C<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>2</sub>-C<sub>8</sub>alkenyl, C<sub>2</sub>-C<sub>8</sub>alkinyl, C<sub>3</sub>-C<sub>8</sub>cycloalkyl, C<sub>3</sub>-C<sub>8</sub>cycloalkylC<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>5</sub>-C<sub>10</sub>arylC<sub>1</sub>-C<sub>8</sub>alkyl, hydroxyC<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>1</sub>-C<sub>8</sub>alkyl, aminoC<sub>1</sub>-C<sub>8</sub>alkyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, unsubstituted or substituted C<sub>5</sub>-C<sub>10</sub>aryl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1, 2 or 3 hetero atoms selected from N, O and S, hydroxy, C<sub>1</sub>-C<sub>8</sub>alkoxy, hydroxyC<sub>1</sub>-C<sub>8</sub>alkoxy, C<sub>1</sub>-C<sub>8</sub>alkoxy, haloC<sub>1</sub>-C<sub>8</sub>alkoxy, unsubstituted or substituted C<sub>5</sub>-C<sub>10</sub>arylC<sub>1</sub>-C<sub>8</sub>alkoxy, unsubstituted or substituted heterocyclyloxy, or unsubstituted or substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, unsubstituted or substituted amino, C<sub>1</sub>-C<sub>8</sub>alkylthio, C<sub>1</sub>-C<sub>8</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>8</sub>alkylsulfonyl, C<sub>5</sub>-C<sub>10</sub>arylsulfonyl, halogen, carboxy, C<sub>1</sub>-C<sub>8</sub>alkoxycarbonyl, unsubstitued or substituted sulfamoyl, cyano or nitro;

or R<sup>0</sup> and R<sup>1</sup>, R<sup>1</sup> and R<sup>2</sup>, and/or R<sup>2</sup> and R<sup>3</sup> form, together with the carbon atoms to which they are attached, a 5 or 6 membered carbocyclic or heterocyclic ring comprising 0, 1, 2 or 3 heteroatoms selected from N, O and S;

R<sup>4</sup> is hydrogen or C<sub>1</sub>-C<sub>B</sub>alkyl;

each of  $R^5$  and  $R^6$  independently is hydrogen,  $C_1$ - $C_8$ alkyl,  $C_1$ - $C_8$ alkoxy $C_1$ - $C_8$ alkyl, halo $C_1$ - $C_8$ alkoxy, halogen, carboxy,  $C_1$ - $C_8$ alkoxycarbonyl, unsubstitued or substituted carbamoyl, cyano, or nitro;

each of  $R^7$ ,  $R^8$ ,  $R^9$ , and  $R^{10}$  independently is  $C_1$ - $C_8$ alkyl,  $C_2$ - $C_8$ alkenyl,  $C_2$ - $C_8$ alkinyl,  $C_3$ - $C_8$ cycloalkyl,  $C_3$ - $C_8$ cycloalkyl,  $C_5$ - $C_{10}$ aryl $C_1$ - $C_8$ alkyl, hydroxy $C_1$ - $C_8$ alkyl,  $C_1$ - $C_8$ alkyl, arnino $C_1$ - $C_8$ alkyl, halo $C_1$ - $C_8$ alkyl, unsubstituted or substituted  $C_5$ - $C_{10}$ aryl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1, 2 or 3

hetero atoms selected from N, O and S, hydroxy,  $C_1$ - $C_8$ alkoxy, hydroxy $C_1$ - $C_8$ alkoxy,  $C_1$ - $C_8$ alkoxy, halo $C_1$ - $C_8$ alkoxy, unsubstituted or substituted  $C_5$ - $C_{10}$ aryl $C_1$ - $C_8$ alkoxy, unsubstituted or substituted heterocyclyloxy, or unsubstituted or substituted heterocyclyl $C_1$ - $C_8$ alkoxy, unsubstituted or substituted amino,  $C_1$ - $C_8$ alkylthio,  $C_1$ - $C_8$ alkylsulfinyl,  $C_1$ - $C_8$ alkylsulfonyl,  $C_5$ - $C_{10}$ arylsulfonyl, halogen, carboxy,  $C_1$ - $C_8$ alkoxycarbonyl, unsubstitued or substituted carbamoyl, unsubstitued or substituted sulfamoyl, cyano or nitro; wherein  $R^7$ ,  $R^8$  and  $R^9$  independently of each other can also be hydrogen;

or R<sup>7</sup> and R<sup>8</sup>, R<sup>8</sup> and R<sup>9</sup>, and/or R<sup>9</sup> and R<sup>10</sup> form together with the carbon atoms to which they are attached, a 5 or 6 membered carbocyclic or heterocyclic ring comprising 0, 1, 2 or 3 heteroatoms selected from N, O and S:

A is C or N, most preferably C; and salts thereof.

The general terms used hereinbefore and hereinafter preferably have within the context of this disclosure the following meanings, unless otherwise indicated:

Where the plural form is used for compounds, salts, and the like, this is taken to mean also a single compound, salt, or the like.

Any asymmetric carbon atoms may be present in the (R)-, (S)- or (R,S)-configuration, preferably in the (R)- or (S)-configuration. The compounds may thus be present as mixtures of isomers or as pure isomers, preferably as enantiomer-pure diastereomers.

The invention relates also to possible tautomers of the compounds of formula I.

 $C_1$ - $C_8$ alkyl denotes a an alkyl radical having from 1 up to 8, especially up to 4 carbon atoms, the radicals in question being either linear or branched with single or multiple branching; preferably,  $C_1$ - $C_8$ alkyl is butyl, such as n-butyl, sec-butyl, isobutyl, tert-butyl, propyl, such as n-propyl or isopropyl, ethyl or methyl; especially methyl, propyl or tert-butyl.

C<sub>2</sub>-C<sub>8</sub>alkenyl denotes a an alkenyl radical having from 2 up to 8, especially up to 5 carbon atoms, the radicals in question being either linear or branched with single or multiple branching; preferably, C<sub>2</sub>-C<sub>8</sub>alkenyl is pentenyl, such as 3-methyl-2-buten-2-yl, butenyl, such as 1- or 2-butenyl or 2-buten-2-yl, propenyl, such as 1-propenyl or allyl, or vinyl.

 $C_2$ - $C_8$ alkinyl denotes a an alkinyl radical having from 2 up to 8, especially up to 5 carbon atoms, the radicals in question being either linear or branched; preferably,  $C_2$ - $C_8$ alkinyl is propinyl, such as 1-propinyl or propargyl, or acetylenyl.

 $C_3$ - $C_8$ cycloalkyl denotes a cycloalkyl radical having from 3 up to 8 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl, cyclopentyl or cyclopentyl or cyclohexyl.

C<sub>1</sub>-C<sub>8</sub>alkoxy is especially methoxy, ethoxy, isopropyloxy, or tert-butoxy.

HydroxyC<sub>1</sub>-C<sub>8</sub>alkyl is especially hydroxymethyl, 2-hydroxyethyl or 2-hydroxy-2-propyl.

HydroxyC<sub>1</sub>-C<sub>8</sub>alkoxy is especially 2-hydroxyethoxy or 3-hydroxypropoxy.

C<sub>1</sub>-C<sub>8</sub>alkoxyC<sub>1</sub>-C<sub>8</sub>alkoxy is especially 2-methoxyethoxy.

 $C_1$ - $C_8$ alkoxy $C_1$ - $C_8$ alkyl is especially methoxymethyl, 2-methoxyethyl or 2-ethoxyethyl.

Halogen is preferably fluorine, chlorine, bromine, or iodine, especially fluorine, chlorine, or bromine.

 $HaloC_1-C_8$ alkyl is preferably chloro $C_1-C_8$ alkyl or fluoro $C_1-C_8$ alkyl, especially trifluoromethyl or pentafluoroethyl.

 $HaloC_1-C_8$ alkoxy is preferably chloro $C_1-C_8$ alkoxy or fluoro $C_1-C_8$ alkoxy, especially trifluoromethoxy.

 $C_1$ - $C_8$ alkoxycarbonyl is especially tert-butoxycarbonyl, iso-propoxycarbonyl, methoxycarbonyl or ethoxycarbonyl.

Unsubstitued or substituted carbamoyl is carbamoyl substituted by one or two substituents selected from hydrogen, C<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>2</sub>-C<sub>8</sub>alkenyl, C<sub>2</sub>-C<sub>8</sub>alkinyl, C<sub>3</sub>-C<sub>8</sub>cycloalkyl, C<sub>3</sub>-C<sub>8</sub>cycloalkyl, C<sub>3</sub>-C<sub>8</sub>alkyl, C<sub>5</sub>-C<sub>10</sub>arylC<sub>1</sub>-C<sub>8</sub>alkyl, hydroxyC<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>1</sub>-C<sub>8</sub>alkyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>1</sub>-C<sub>8</sub>alkyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, haloC<sub>1</sub>-C<sub>8</sub>alky

 $C_8$ alkyl, unsubstitued or substituted  $C_6$ - $C_{10}$ aryl, or amino $C_1$ - $C_8$ alkyl, or carbamoyl wherein the substituents and the nitrogen atom of the carbamoyl group represent a 5 or 6 membered heterocyclyl further comprising 0, 1 or 2 hetero atoms selected from N, O and S; and is preferably carbamoyl, methylcarbamoyl, dimethylcarbamoyl, propylcarbamoyl, hydroxyethylmethyl-carbamoyl, di(hydroxyethyl)carbamoyl, dimethylaminoethylcarbamoyl, or pyrrolidinocarbonyl, piperidinocarbonyl, N-methylpiperazinocarbonyl or morpholinocarbonyl, especially carbamoyl or dimethylcarbamoyl.

Unsubstitued or substituted sulfamoyl is sulfamoyl substituted by one or two substituents selected from hydrogen,  $C_1$ - $C_8$ alkyl,  $C_2$ - $C_8$ alkenyl,  $C_2$ - $C_8$ alkinyl,  $C_3$ - $C_8$ cycloalkyl,  $C_3$ - $C_8$ cycloalkyl,  $C_5$ - $C_{10}$ aryl $C_1$ - $C_8$ alkyl, hydroxy $C_1$ - $C_8$ alkyl,  $C_1$ - $C_8$ alkyl, halo $C_1$ - $C_8$ alkyl, unsubstitued or substituted  $C_5$ - $C_{10}$ aryl, or amino $C_1$ - $C_8$ alkyl, or sulfamoyl wherein the substituents and the nitrogen atom of the sulfamoyl group represent a 5 or 6 membered heterocyclyl further comprising 0, 1 or 2 hetero atoms selected from N, O and S; and is preferably sulfamoyl, methylsulfamoyl, propylsulfamoyl, cyclopropylmethyl-sulfamoyl, 2,2,2-trifluoroethylsulfamoyl, dimethylaminoethylsulfamoyl, dimethylsulfamoyl, hydroxyethyl-methylsulfamoyl, di(hydroxyethyl)sulfamoyl, or pyrrolidinosulfonyl, piperidinosulfonyl, N-methylpiperazinosulfonyl or morpholinosulfonyl, especially sulfamoyl or methylsulfamoyl.

Unsubstitued or substituted amino is amino substituted by one or two substituents selected from hydrogen,  $C_1$ - $C_8$ alkyl,  $C_2$ - $C_8$ alkenyl,  $C_2$ - $C_8$ alkinyl,  $C_3$ - $C_8$ cycloalkyl,  $C_3$ - $C_8$ cycloalkyl,  $C_4$ - $C_8$ alkyl,  $C_5$ - $C_4$ 0aryl $C_4$ - $C_8$ alkyl, hydroxy $C_4$ - $C_8$ alkyl,  $C_4$ - $C_8$ alkyl, halo $C_4$ - $C_8$ alkyl, unsubstitued or substituted  $C_5$ - $C_4$ 0aryl, amino $C_4$ - $C_8$ alkyl, acyl, e.g. formyl,  $C_4$ - $C_8$ alkylcarbonyl,  $C_5$ - $C_4$ 0arylcarbonyl,  $C_4$ - $C_8$ alkylsulfonyl or  $C_5$ - $C_4$ 0arylsulfonyl, and is preferably amino, methylamino, dimethylamino, propylamino, benzylamino, hydroxyethyl-methyl-amino, di(hydroxyethyl)amino, dimethylaminoethylamino, acetylamino, acetyl-methyl-amino, benzoylamino, methylsulfonylamino or phenylsulfonylamino, especially amino or dimethylamino.

Amino $C_1$ - $C_8$ alkyl is especially aminoethyl, methylaminoethyl, dimethylaminopropyl.

Unsubstituted or substituted  $C_5$ - $C_{10}$ aryl is, for example, phenyl, indenyl, indanyl, naphthyl, or 1,2,3,4-tetrahydronaphthalenyl, optionally substituted by  $C_1$ - $C_8$ alkyl,  $C_1$ - $C_8$ alkoxy $C_1$ - $C_8$ alkyl, halo $C_1$ - $C_8$ alkyl, hydroxy,  $C_1$ - $C_8$ alkoxy, methylenedioxy, amino, substituted amino, halogen,

carboxy, C<sub>1</sub>-C<sub>8</sub>alkoxycarbonyl, carbamoyl, sulfamoyl, cyano or nitro; preferably phenyl, tolyl, trifluoromethylphenyl, methoxyphenyl, dimethoxyphenyl, methylenedioxyphenyl, chlorophenyl or bromophenyl, whereby the substituents may be in ortho, meta or para position, preferably meta or para.

C<sub>5</sub>-C<sub>10</sub>aryloxy is especially phenoxy or methoxyphenoxy, e.g. p-methoxyphenoxy.

 $C_5$ - $C_{10}$ aryl $C_1$ - $C_8$ alkyl is especially benzyl or 2-phenylethyl.

 $C_5$ - $C_{10}$ aryl $C_1$ - $C_8$ alkoxy is especially benzyloxy or 2-phenylethoxy.

Unsubstitued or substituted 5 or 6 membered heterocyclyl comprising 1, 2 or 3 hetero atoms selected from N, O and S may be unsaturated, partially unsaturated or saturated, and further condensed to a benzo group or a 5 or 6 membered heterocyclyl group, and may be bound through a hetero or a carbon atom, and is, for example, pyrrolyl, indolyl, pyrrolidinyl, imidazolyl, benzimidazolyl, pyrazolyl, triazolyl, benzotriazolyl, tetrazolyl, pyridyl, quinolinyl, isoquinolinyl, 1,2,3,4-tetrahydroquinolinyl, piperidyl, pyrimidinyl, pyrazinyl, piperazinyl, purinyl, tetrazinyl, oxazolyl, isoxalyl, morpholinyl, thiazolyl, benzothiazolyl, oxadiazolyl, and benzoxadiazolyl. Substituents considered are C<sub>1</sub>-C<sub>8</sub>alkyl, hydroxyC<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>1</sub>-C<sub>8</sub>alkoxyC<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>1</sub>- $C_8$ alkoxy $C_1$ - $C_8$ alkoxy, halo $C_1$ - $C_8$ alkyl, hydroxy, amino, substituted amino,  $C_1$ - $C_8$ alkoxy, halogen, carboxy,  $C_1$ - $C_8$ alkylcarbonyl,  $C_1$ - $C_8$ alkoxycarbonyl, carbamoyl,  $C_1$ - $C_8$ alkylcarbamoyl, cyano, oxo, or unsubstitued or substituted 5 or 6 membered heterocyclyl as defined in this paragraph. 5 or 6 membered heterocyclyl preferably comprises 1 or 2 hetero atoms selected from N, O and S, and is especially indolyl, pyrrolidinyl, pyrrolidonyl, imidazolyl, N-methylimidazolyl, benzimidazolyl, S,S-dioxoisothiazolidinyl, piperidyl, 4-acetylaminopiperidyl, 4-methylcarbamoylpiperidyl, 4piperidinopiperidyl, 4-cyanopiperidyl, piperazinyl, N-methylpiperazinyl, N-(2hydroxyethyl)piperazinyl, morpholinyl, 1-aza-2,2-dioxo-2-thlacyclohexyl, or sulfolanyl.

In unsubstituted or substituted heterocyclyloxy, heterocyclyl has the meaning as defined above, and is especially N-methyl-4-piperidyloxy. In unsubstituted or substituted heterocyclyl $C_1$ - $C_8$ alkoxy, heterocyclyl has the meaning as defined above, and is especially 2-pyrrolidinoethoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 1-methyl-piperidin-3-ylmethoxy, 3-(N-methylpiperazino)propoxy or 2-(1-imidazolyl)ethoxy.

In a 5 or 6 membered carbocyclic or heterocyclic ring comprising 0, 1, 2 or 3 heteroatoms selected from N, O and S, and formed by two adjacent substituents together with the benzene ring, the ring may be further substituted, e.g. by C<sub>1</sub>-C<sub>8</sub>alkyl, C<sub>1</sub>-C<sub>8</sub>alkoxy, haloC<sub>1</sub>-C<sub>8</sub>alkyl, hydroxy, amino, substituted amino, C<sub>1</sub>-C<sub>8</sub>alkoxy, halogen, carboxy, C<sub>1</sub>-C<sub>8</sub>alkoxycarbonyl, carbamoyl, cyano, or oxo. The two adjacent substituents forming such a ring are preferably propylene, butylene, 1-aza-2-propylidene, 3-aza-1-propylidene, 1,2-diaza-2-propylidene, 2,3-diaza-1-propylidene, 1-oxapropylene, 1-oxapropylene, methylenedloxy, difluoromethylenedioxy, 2-aza-1-oxopropylene, 2-aza-2-methyl-1-oxopropylene, 1-aza-2-oxopropylene, 2-aza-1,1-dioxo-1-thiapropylene or the corresponding butylene derivatives forming a 6 membered ring.

Salts are especially the pharmaceutically acceptable salts of compounds of formula I.

Such salts are formed, for example, as acid addition salts, preferably with organic or inorganic acids, from compounds of formula I with a basic nitrogen atom, especially the pharmaceutically acceptable salts. Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid. Suitable organic acids are, for example, carboxylic, phosphonic, sulfonic or sulfamic acids, for example acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, glycolic acid, lactic acid, fumaric acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, malic acid, tartaric acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, cyclohexanecarboxylic acid, adamantanecarboxylic acid, benzolc acid, salicylic acid, 4-aminosalicylic acid, phthalic acid, phenylacetic acid, mandelic acid, cinnamic acid, methane- or ethane-sulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 1,5-naphthalene-disulfonic acid, 2-, 3- or 4-methylbenzenesulfonic acid, methylsulfuric acid, ethylsulfuric acid, dodecylsulfuric acid, N-cyclohexylsulfamic acid, N-methyl-, N-ethyl- or N-propyl-sulfamic acid, or other organic protonic acids, such as ascorbic acid.

For isolation or purification purposes it is also possible to use pharmaceutically unacceptable salts, for example picrates or perchlorates. For therapeutic use, only pharmaceutically acceptable salts or free compounds are employed (where applicable in the form of pharmaceutical preparations), and these are therefore preferred.

In view of the close relationship between the novel compounds in free form and those in the form of their salts, including those salts that can be used as intermediates, for example in the purification or identification of the novel compounds, any reference to the free compounds hereinbefore and hereinafter is to be understood as referring also to the corresponding salts, as appropriate and expedient.

The compounds of formula I have valuable pharmacological properties, as described hereinbefore and hereinafter.

- In formula I the following significances are preferred independently, collectively or in any combination or sub-combination. In each of the following significances A is C or N preferably C:
- (a) each of R<sup>0</sup> or R<sup>2</sup> independently is hydrogen, C<sub>1</sub>-C<sub>8</sub>alkyl, e.g. methyl, ethyl or isopropyl, hydroxyC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. hydroxyethyl or hydroxybutyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. trifluoromethyl, unsubstituted or substituted C<sub>5</sub>-C<sub>10</sub>aryl, e.g. phenyl or methoxyphenyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N, O and S, e.g. morpholino, piperidino, piperazino or N-methylpiperazino, C<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. methoxy, ethoxy or isopropoxy, haloC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. trifluoromethoxy, C<sub>5</sub>-C<sub>10</sub>aryloxy, e.g. phenoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. 2-(1-imidazolyl)ethoxy, 3-morpholinopropoxy or 2-morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino, dimethylamino or acetylamino, C<sub>1</sub>-C<sub>8</sub>alkylsulfonyl, e.g. methylsulfonyl, halogen, e.g. fluoro or chloro, unsubstituted or substituted carbamoyl, e.g.
  - cyclohexylcarbamoyl, piperidinocarbonyl, piperazinocarbonyl, N-methylpiperazinocarbonyl or morpholinocarbonyl, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl or dimethylsulfamoyl; preferably hydrogen, piperazino, N-methylpiperazino or 1-methyl-4-piperidyloxy, in particular hydrogen;
- (b) R¹ is hydrogen, C₁-C₀alkyl, e.g. methyl, ethyl or isopropyl, hydroxyC₁-C₀alkyl, e.g. hydroxyethyl or hydroxybutyl, haloC₁-C₀alkyl, e.g. trifluoromethyl, unsubstituted or substituted C₅-C₁₀aryl, e.g. phenyl or methoxyphenyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N, O and S, e.g. morpholino, piperidino, piperazino or N-methylpiperazino, C₁-C₀alkoxy, e.g. methoxy, ethoxy or isopropoxy, haloC₁-C₀alkoxy, e.g. trifluoromethoxy, C₅-C₁₀aryloxy, e.g. phenoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or

substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. 2-(1-imidazolyl)ethoxy, 3-morpholinopropoxy or 2-morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino, dimethylamino or acetylamino, C<sub>1</sub>-C<sub>8</sub>alkylsulfonyl, e.g. methylsulfonyl, halogen, e.g. fluoro or chloro, unsubstituted or substituted carbamoyl, e.g. cyclohexylcarbamoyl, piperidinocarbonyl, piperazinocarbonyl, N-methylpiperazinocarbonyl or morpholinocarbonyl, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl or dimethylsulfamoyl; preferably hydrogen, piperazino, N-methylpiperazino, morpholino, 1-methyl-4-piperidinyloxy, 3-morpholinopropoxy or 2-morpholinoethoxy, in particular hydrogen;

- (c) R³ is hydrogen, C₁-C₀alkyl, e.g. methyl or ethyl, hydroxyC₁-C₀alkyl, e.g. hydroxyethyl or hydroxybutyl, haloC₁-C₀alkyl, e.g. trifluoromethyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 heteroatoms selected from N, O and S, e.g. 2-pyrrolidonyl or S,S-dioxoisothiazolidinyl, C₁-C₀alkoxy, e.g. methoxy, substituted amino, e.g. acetylamino, acetyl-methyl-amino, benzoylamino, methylsulfonylamino or phenylsulfonyl-amino, C₁-C₀alkylsulfonyl, e.g. methylsulfonyl, C₀-C₁oarylsulfonyl, e.g. phenylsulfonyl, halogen, e.g. fluoro or chloro, carboxy, substituted or unsubstituted carbamoyl, e.g. carbamoyl, methylcarbamoyl or dimethylcarbamoyl, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl, propylsulfamoyl, isopropylsulfamoyl, isobutylsulfamoyl, cyclopropylmethyl-sulfamoyl, 2,2,2-trifluoroethylsulfamoyl, dimethylsulfamoyl or morpholinosulfonyl; preferably sulfamoyl, methylsulfamoyl or propylsulfamoyl;
- (d) each pair of adjacent substituents  $R^0$  and  $R^1$ , or  $R^1$  and  $R^2$ , or  $R^2$  and  $R^3$  are -CH<sub>2</sub>-NH-CO-, -CH<sub>2</sub>-CH<sub>2</sub>-NH-CO-, -CH<sub>2</sub>-CH<sub>2</sub>-CO-NH-, -CH<sub>2</sub>-CH<sub>2</sub>-NH-SO<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-NH-SO<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-SO<sub>2</sub>-NH-, -CH<sub>2</sub>-CH<sub>2</sub>-SO<sub>2</sub>-NH-, -CH<sub>2</sub>-CH<sub>2</sub>-SO<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-SO<sub>2</sub>-, -O-CH<sub>2</sub>-O-, or -O-CF<sub>2</sub>-O-, and such pairs wherein hydrogen in NH is replaced by C<sub>1</sub>-C<sub>8</sub>alkyl; preferably the pair of adjacent substituents  $R^0$  and  $R^1$ , or  $R^1$  and  $R^2$  being -O-CH<sub>2</sub>-O-, and the pair of adjacent substituents  $R^2$  and  $R^3$  being -CH<sub>2</sub>-NH-CO- or -CH<sub>2</sub>-NH-SO<sub>2</sub>-.
- (e)  $R^4$  is hydrogen or  $C_1$ - $C_8$ alkyl, e.g. methyl; preferably hydrogen;
- (f) R<sup>5</sup> is hydrogen; C₁-C₀alkyl, e.g. methyl or ethyl, halogen, e.g. chloro or bromo, haloC₁-C₀alkyl, e.g. trifluoromethyl, cyano or nitro; preferably hydrogen, methyl, ethyl, chloro, bromo, trifluoromethyl or nitro; in particular chloro or bromo;
- (g) R<sup>6</sup> is hydrogen;
- (h) each of R<sup>7</sup> and R<sup>9</sup> independently is hydrogen, C<sub>1</sub>-C<sub>8</sub>alkyl, e.g. methyl, ethyl or isopropyl, hydroxyC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. hydroxyethyl or hydroxybutyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. trifluoromethyl, unsubstituted or substituted C<sub>5</sub>-C<sub>10</sub>aryl, e.g. phenyl or methoxyphenyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N,

O and S, e.g. morpholino, piperidino, piperazino or N-methylpiperazino,  $C_1$ - $C_8$ alkoxy, e.g. methoxy, ethoxy or isopropoxy, halo $C_1$ - $C_8$ alkoxy, e.g. trifluoromethoxy,  $C_5$ - $C_{10}$ aryloxy, e.g. phenoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or substituted heterocyclyl $C_1$ - $C_8$ alkoxy, e.g. 2-(1-imidazolyl)ethoxy, 3-morpholinopropoxy or 2-morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino, dimethylamino or acetylamino,  $C_1$ - $C_8$ alkylsulfonyl, e.g. methylsulfonyl, halogen, e.g. fluoro or chloro, unsubstituted or substituted carbamoyl, e.g. cyclohexylcarbamoyl, piperidinocarbonyl, piperazinocarbonyl, N-methylpiperazinocarbonyl or morpholinocarbonyl, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl or dimethylsulfamoyl; preferably hydrogen, methyl, isopropyl, trifluoromethyl, phenyl, methoxyphenyl, piperidino, piperazino, N-methylpiperazino, morpholino, methoxy, ethoxy, isopropoxy, phenoxy, 3-morpholinopropoxy, 2-morpholinoethoxy, 2-(1-imidazolyl)ethoxy, dimethylamino, fluoro, morpholinocarbonyl, piperazinocarbonyl, piperazinocarbonyl, piperazinocarbonyl, piperazinocarbonyl, piperazinocarbonyl, piperidinocarbonyl, piperazinocarbonyl, piperazinoca

- (i)  $R^8$  is hydrogen,  $C_1$ - $C_8$ alkyl, e.g. methyl, ethyl or isopropyl, hydroxy $C_1$ - $C_8$ alkyl, e.g. hydroxyethyl or hydroxybutyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. trifluoromethyl, C<sub>5</sub>-C<sub>10</sub>aryl, e.g. phenyl or methoxyphenyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N, O and S, e.g. morpholino, piperazino or Nmethylpiperazino,  $C_1$ - $C_8$ alkoxy, e.g. methoxy, ethoxy or isopropoxy, halo $C_1$ - $C_8$ alkoxy, e.g. trifluoromethoxy, C<sub>5</sub>-C<sub>10</sub>aryloxy, e.g. phenoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or substituted heterocyclylC₁-C₀alkoxy, e.g. 2-(1imidazolyl)ethoxy, 3-morpholinopropoxy or 2-morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino or dimethylamino, C₁-C₀alkylsulfonyl, e.g. methylsulfonyl, halogen, e.g. fluoro or chloro, unsubstituted or substituted carbamoyl, e.g. cyclohexylcarbamoyl, piperidinocarbonyl, piperazinocarbonyl, N-methylpiperazinocarbonyl or morpholinocarbonyl, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl or dimethylsulfamoyl, cyano, or nitro; preferably hydrogen, methyl, piperidino, piperazino, Nmethylpiperazino, morpholino, methoxy, ethoxy, trifluoromethoxy, phenoxy, 1-methyl-4piperidyloxy, 3-morpholinopropoxy, 2-morpholinoethoxy, 3-(N-methylpiperazino)-propoxy, methylamino, fluoro, chloro, sulfamoyl or nitro;
- (j) R<sup>10</sup> is C<sub>1</sub>-C<sub>8</sub>alkyl, e.g. methyl, ethyl or butyl, hydroxyC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. hydroxyethyl or hydroxybutyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. trifluoromethyl, C<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. methoxy or ethoxy, unsubstituted or substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. 2-(1-imidazolyl)ethoxy, unsubstituted or substituted amino, e.g. methylamino or dimethylamino, halogen, e.g. fluoro

- or chloro; carboxy, carbamoyl, or unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl or dimethylsulfamoyl; preferably methyl, butyl, methoxy, ethoxy, 2-(1-imidazolyl)ethoxy, methylamino, dimethylamino or fluoro; and
- (k) each pair of adjacent substituents R<sup>7</sup> and R<sup>8</sup>, or R<sup>8</sup> and R<sup>9</sup> or R<sup>9</sup> and R<sup>10</sup>, are -NH-CH=CH-, -CH=CH-NH-, -NH-N=CH-, -CH=N-NH-, -CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-, or -O-CF<sub>2</sub>-O-, or -O-CF<sub>2</sub>-O-; preferably the pair of adjacent substituents R<sup>7</sup> and R<sup>8</sup> or R<sup>8</sup> and R<sup>9</sup> being -O-CH<sub>2</sub>-O- or the pair of adjacent substituents R<sup>9</sup> and R<sup>10</sup> being -NH-CH=CH-, -CH=N-NH-, -CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-O-.

More preferred are the following meanings, independently, collectively or in any combination or sub-combination:

- (a') each of R<sup>0</sup> or R<sup>2</sup> independently is hydrogen, C<sub>1</sub>-C<sub>8</sub>alkyl, e.g. methyl, ethyl or isopropyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. trifluoromethyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N, O and S, e.g. morpholino, piperidino, piperazino or N-methylpiperazino, C<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. methoxy, ethoxy or isopropoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. 2-(1-imidazolyl)ethoxy, 3-morpholinopropoxy or 2-morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino, dimethylamino or acetylamino, halogen, e.g. fluoro or chloro; preferably hydrogen, piperazino, N-methylpiperazino or 1-methyl-4-piperidyloxy, in particular hydrogen;
- (b') R¹ is hydrogen, C₁-C₀alkyl, e.g. methyl, ethyl or isopropyl, haloC₁-C₀alkyl, e.g. trifluoromethyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N, O and S, e.g. morpholino, piperidino, piperazino or N-methylpiperazino, C₁-C₀alkoxy, e.g. methoxy, ethoxy or isopropoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or substituted heterocyclylC₁-C₀alkoxy, e.g. 2-(1-imidazolyl)ethoxy, 3-morpholinopropoxy or 2-morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino, dimethylamino or acetylamino, halogen, e.g. fluoro or chloro; preferably hydrogen, piperazino, N-methylpiperazino, morpholino, 1-methyl-4-piperidinyloxy, 3-morpholinopropoxy or 2-morpholinoethoxy, in particular hydrogen;
- (c') R³ is hydrogen, C₁-C₀alkyl, e.g. methyl or ethyl, haloC₁-C₀alkyl, e.g. trifluoromethyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 heteroatoms selected from N, O and S, e.g. 2-pyrrolidonyl or S,S-dioxoisothiazolidinyl, C₁-C₀alkoxy, e.g.

methoxy, substituted amino, e.g. acetylamino, acetyl-methyl-amino, benzoylamino, methylsulfonylamino or phenylsulfonylamino,  $C_1$ - $C_8$ alkylsulfonyl, e.g. methylsulfonyl,  $C_5$ - $C_{10}$ arylsulfonyl, e.g. phenylsulfonyl, halogen, e.g. fluoro or chloro, carboxy, substituted or unsubstituted carbamoyl, e.g. carbamoyl, methylcarbamoyl or dimethylcarbamoyl, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl, propylsulfamoyl, isopropylsulfamoyl, isobutylsulfamoyl, cyclopropylmethyl-sulfamoyl, 2,2,2-trifluoroethylsulfamoyl, dimethylsulfamoyl or morpholinosulfonyl; preferably sulfamoyl, methylsulfamoyl or propylsulfamoyl;

- (d') each pair of adjacent substituents R<sup>0</sup> and R<sup>1</sup>, or R<sup>1</sup> and R<sup>2</sup>, or R<sup>2</sup> and R<sup>3</sup> are -CH<sub>2</sub>-NH-CO-, -CH<sub>2</sub>-NH-SO<sub>2</sub>-, -CH<sub>2</sub>-CH<sub>2</sub>-SO<sub>2</sub>-, -O-CH<sub>2</sub>-O-, or -O-CF<sub>2</sub>-O-, and such pairs wherein hydrogen in NH is replaced by C<sub>1</sub>-C<sub>8</sub>alkyl; preferably the pair of adjacent substituents R<sup>0</sup> and R<sup>1</sup>, or R<sup>1</sup> and R<sup>2</sup> being -O-CH<sub>2</sub>-O-, and the pair of adjacent substituents R<sup>2</sup> and R<sup>3</sup> being -CH<sub>2</sub>-NH-CO- or -CH<sub>2</sub>-NH-SO<sub>2</sub>-.
- (e') R⁴ is hydrogen;
- (f') R⁵ is hydrogen, halogen, e.g. chloro or bromo, haloC₁-C₂alkyl, e.g. trifluoromethyl, or nitro; preferably hydrogen, chloro, bromo, trifluoromethyl or nitro; in particular chloro or bromo;
- (g') R<sup>6</sup> is hydrogen;
- (h') each of R<sup>7</sup> and R<sup>9</sup> independently is hydrogen, C₁-C₀alkyl, e.g. methyl, ethyl or isopropyl,  $haloC_1-C_8alkyl$ , e.g. trifluoromethyl, unsubstituted or substituted  $C_5-C_{10}aryl$ , e.g. phenyl or methoxyphenyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N, O and S, e.g. morpholino, piperidino, piperazino or Nmethylpiperazino, C<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. methoxy, ethoxy or isopropoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. 2-(1-imidazolyl)ethoxy, 3-morpholinopropoxy or 2morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino, dimethylamino or acetylamino, halogen, e.g. fluoro or chloro, unsubstituted or substituted carbamoyl, e.g. cyclohexylcarbamoyl, piperidinocarbonyl, piperazinocarbonyl, N-methylpiperazinocarbonyl or morpholinocarbonyl, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl or dimethylsulfamoyl; preferably hydrogen, methyl, isopropyl, trifluoromethyl, phenyl, o-, m- or p-methoxyphenyl, piperidino, piperazino, Nmethylpiperazino, morpholino, methoxy, ethoxy, isopropoxy, phenoxy, 3morpholinopropoxy, 2-morpholinoethoxy, 2-(1-imidazolyl)ethoxy, dimethylamino, fluoro, morpholinocarbonyl, piperidinocarbonyl, piperazinocarbonyl or cyclohexylcarbamoyl;

- (i') R<sup>8</sup> is hydrogen, C<sub>1</sub>-C<sub>8</sub>alkyl, e.g. methyl, ethyl or isopropyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. trifluoromethyl, C<sub>5</sub>-C<sub>10</sub>aryl, e.g. phenyl or methoxyphenyl, unsubstituted or substituted 5 or 6 membered heterocyclyl comprising 1 or 2 hetero atoms selected from N, O and S, e.g. morpholino, piperidino, piperazino or N-methylpiperazino, C<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. methoxy, ethoxy or isopropoxy, haloC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. trifluoromethoxy, C<sub>5</sub>-C<sub>10</sub>aryloxy, e.g. phenoxy, unsubstituted or substituted heterocyclyloxy, e.g. 1-methyl-4-piperidyloxy, unsubstituted or substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. 2-(1-imidazolyl)ethoxy, 3-morpholinopropoxy or 2-morpholinoethoxy, unsubstituted or substituted amino, e.g. methylamino or dimethylamino, halogen, e.g. fluoro or chloro, unsubstituted or substituted sulfamoyl, e.g. sulfamoyl, methylsulfamoyl or dimethylsulfamoyl, or nitro; preferably hydrogen, methyl, piperidino, piperazino, N-methylpiperazino, morpholino, methoxy, ethoxy, trifluoromethoxy, phenoxy, 1-methyl-4-piperidyloxy, 3-morpholinopropoxy, 2-morpholinoethoxy, 3-(N-methylpiperazino)-propoxy, methylamino, fluoro, chloro, sulfamoyl or nitro;
- (j') R<sup>10</sup> is C<sub>1</sub>-C<sub>8</sub>alkyl, e.g. methyl, ethyl or butyl, haloC<sub>1</sub>-C<sub>8</sub>alkyl, e.g. trifluoromethyl, C<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. methoxy or ethoxy, unsubstituted or substituted heterocyclylC<sub>1</sub>-C<sub>8</sub>alkoxy, e.g. 2-(1-imidazolyl)ethoxy, unsubstituted or substituted amino, e.g. methylamino or dimethylamino, halogen, e.g. fluoro or chloro; preferably methyl, butyl, methoxy, ethoxy, 2-(1-imidazolyl)ethoxy, methylamino, dimethylamino or fluoro; and

Most preferred as compounds of the formula I are those wherein the substituents have the meaning given in the Examples.

The present invention also provides a process for the production of a compound of formula I, comprising reacting a compound of formula II

wherein R<sup>0</sup>, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, and R<sup>6</sup> are as defined above, and Y is a leaving group, preferably halogen such as bromide, iodine, or in particular chloride;

with a compound of formula III

$$H_2N$$
 $R^9$ 
 $R^{10}$ 
 $R^9$ 
(III)

wherein R7, R8, R9 and R10 are as defined above;

and, if desired, converting a compound of formula I, wherein the substituents have the meaning as defined above, into another compound of formula I as defined;

and recovering the resulting compound of formula I in free from or as a salt, and, when required, converting the compound of formula I obtained in free form into the desired salt, or an obtained salt into the free form.

The reaction can be carried out in a manner known per se, the reaction conditions being dependent especially on the reactivity of the leaving group Y and the reactivity of the amino group in the aniline of formula III, usually in the presence of a suitable solvent or diluent or of a mixture thereof and, if necessary, in the presence of an acid or a base, with cooling or, preferably, with heating, for example in a temperature range from approximately -30°C to approximately +150°C, especially approximately from 0°C to +100°C, preferably from room temperature (approx. +20 °C) to +80 °C, in an open or closed reaction vessel and/or in the atmosphere of an inert gas, for example nitrogen.

If one or more other functional groups, for example carboxy, hydroxy or amino, are or need to be protected in a compound of formula II or III, because they should not take part in the reaction, these are such groups as are usually used in the synthesis of peptide compounds, cephalosporins and penicillins, as well as nucleic acid derivatives and sugars.

The protecting groups may already be present in precursors and should protect the functional groups concerned against unwanted secondary reactions, such as substitution reaction or solvolysis. It is a characteristic of protecting groups that they lend themselves readily, i.e. without undesired secondary reactions, to removal, typically by solvolysis, reduction, photolysis or also by enzyme activity, for example under conditions analogous to physiological conditions, and that they are not present in the end-products. The specialist knows, or can easily establish, which protecting groups are suitable with the reactions mentioned hereinabove.

Salts of a compound of formula I with a salt-forming group may be prepared in a manner known per se. Acid addition salts of compounds of formula I may thus be obtained by treatment with an acid or with a suitable anion exchange reagent.

Salts can usually be converted to compounds in free form, e.g. by treating with suitable basic agents, for example with alkali metal carbonates, alkali metal hydrogencarbonates, or alkali metal hydroxides, typically potassium carbonate or sodium hydroxide.

Stereoisomeric mixtures, e.g. mixtures of diastereomers, can be separated into their corresponding isomers in a manner known per se by means of suitable separation methods. Diastereomeric mixtures for example may be separated into their individual diastereomers by means of fractionated crystallization, chromatography, solvent distribution, and similar procedures. This separation may take place either at the level of a starting compound or in a compound of formula I itself. Enantiomers may be separated through the formation of diastereomeric salts, for example by salt formation with an enantiomer-pure chiral acid, or by means of chromatography, for example by HPLC, using chromatographic substrates with chiral ligands.

It should be emphasized that reactions analogous to the conversions mentioned in this chapter may also take place at the level of appropriate intermediates.

The compounds of formula I, including their salts, are also obtainable in the form of hydrates, or their crystals can include for example the solvent used for crystallization (present as solvates).

The compound of formula II used as starting materials may be obtained by reacting a compound of formula IV

$$R^{5}$$
 $N$ 
 $Y^{1}$ 
 $N$ 
 $Y^{2}$ 
 $(IV)$ 

with a compound of formula V

$$R^1$$
 $R^2$ 
 $NHR^4$ 
 $(V)$ 

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> are as defined above, and Y<sup>1</sup> and Y<sup>2</sup> are identical or different leaving groups as defined above for Y. The reaction conditions are those mentioned above for the reaction of a compound of formula II with a compound of formula III.

The compounds of formula IV and V are known or may be produced in accordance with known procedures.

The compounds of formula I and their pharmaceutically acceptable salts exhibit valuable pharmacological properties when tested in vitro in cell-free kinase assays and in cellular assays, and are therefore useful as pharmaceuticals. In particular, the compounds of the invention are inhibitors of Focal Adhesion Kinase, and are useful as pharmaceuticals to treat conditions caused by a malfunction of signal cascades connected with Focal Adhesion Kinase, in particular tumors as described hereinbelow.

Focal Adhesion Kinase (FAK) is a key enzyme in the integrin-mediated outside-in signal cascade (D. Schlaepfer et al., Prog Biophys Mol Biol 1999, 71, 435-478). Interaction between cells and extracellular matrix (ECM) proteins is transduced as intracellular signals important for growth, survival and migration through cell surface receptors, integrins. FAK plays an essential

role in these integrin-mediated outside-in signal cascades. The trigger in the signal transduction cascade is the autophosphorylation of Y397. Phosphorylated Y397 is a SH2 docking site for Src family tyrosine kinases. The bound c-Src kinase phosphorylates other tyrosine residues in FAK. Among them, phsophorylated Y925 becomes a binding site for the SH2 site of Grb2 small adaptor protein. This direct binding of Grb2 to FAK is one of the key steps for the activation of down stream targets such as the Ras-ERK2/MAP kinase cascade.

The inhibition of endogenous FAK signalling results in reduced motility and in some cases induces cell death. On the other hand, enhancing FAK signalling by exogenous expression increases cell motility and transmitting a cell survival signal from ECM. In addition FAK is overexpressed in invasive and metastatic epithelial, mesenchymal, thyroid and prostate cancers. Consequently, an inhibitor of FAK is likely to be a drug for anti-tumor growth and metastasis. The compounds of the invention are thus indicated, for example, to prevent and/or treat a vertebrate and more particularly a mammal, affected by a neoplastic disease, in particular breast tumor, cancer of the bowel (colon and rectum), stomach cancer and cancer of the ovary and prostate, non-small cell lung cancer, small cell lung cancer, cancer of liver, melanoma, bladder tumor and cancer of head and neck.

The relation between FAK inhibition and immuno-system is described e.g. in G.A. van Seventer et al., Eur. J. Immunol. 2001, 31, 1417-1427. Therefore, the compounds of the invention are, for example, useful to prevent and/or treat a vertebrate and more particularly a mammal, affected by immune system disorders, diseases or disorders mediated by T lymphocytes, B lymphocytes, mast cells and/or eosinophils e.g. acute or chronic rejection of organ or tissue allo- or xenografts, atherosclerosis, vascular occlusion due to vascular injury such as angioplasty, restenosis, hypertension, heart failure, chronic obstructive pulmonary disease, CNS disease such as Alzheimer disease or amyotrophic lateral sclerosis, cancer, infectious disease such as AIDS, septic shock or adult respiratory distress syndrome, ischemia/reperfusion injury e.g. myocardial infarction, stroke, gut ischemia, renal failure or hemorrhage shock, or traumatic shock. The agent of the invention are also useful in the treatment and/or prevention of acute or chronic inflammatory diseases or disorders or autoimmune diseases e.g. rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, diabetes (type I and II) and the disorders associated with therewith, respiratory diseases such as asthma or inflammatory liver injury, inflammatory glomerular injury, cutaneous manifestations of immunologically-mediated disorders or illnesses, inflammatory and

hyperproliferative skin diseases (such as psoriasis, atopic dermatitis, allergic contact dermatitis, irritant contact dermatitis and further eczematous dermatitises, seborrhoeic dermatitis), inflammatory eye diseases, e.g. Sjoegren's syndrome, keratoconjunctivitis or uveitis, inflammatory bowel disease, Crohn's disease or ulcerative colitis.

Compounds of the invention are active in a FAK assay system as described in the Examples, and show an inhibition IC $_{50}$  in the range of 1 nM to 100 nM. Particularly active are the compounds Example No. 3-12 and No. 3-17 described hereinbelow showing IC $_{50}$  vales in the range of 1 to 5 nM.

Some of the compounds of the invention exhibit also ZAP-70 (zeta chain-associated protein of 70 kD) protein tyrosine kinase inhibiting activity. ZAP-70 protein tyrosine kinase interaction of the agents of the invention may be demonstrated by their ability to prevent phosphorylation of e.g. LAT-11 (linker for activation of T cell) by human ZAP-70 protein tyrosine kinase in aqueous solution, as described in the Examples. The compounds of the invention are thus also indicated for the prevention or treatment of disorders or diseases where ZAP-70 inhibition inhibition play a role.

Compounds of the invention are active in a ZAP-70 assay system as described in the Examples, and show an inhibition  $IC_{50}$  in the range of 1  $\mu$ M to 10  $\mu$ M, e.g. the compounds Example No. 2 and No. 3-2 described hereinbelow.

Compounds of the present invention are also good inhibitors of the IGF-IR (insulin like growth factor receptor 1) and are therefore useful in the treatment of IGF-1R mediated diseases for example such diseases include proliferative diseases, such as tumours, like for example breast, renal, prostate, colorectal, thyroid, ovarian, pancreas, neuronal, lung, uterine and gastro-intestinal tumours as well as osteosarcomas and melanomas. The efficacy of the compounds of the invention as inhibitors of IGF-IR tyrosine kinase activity can be demonstrated using a cellular "Capture ELISA". In this assay the activity of the compounds of the invention against Insulin-like growth factor I (IGF-I) induced autophosphorylation of the IGF-IR is determined.

The compounds of the present invention also exhibit powerful inhibition of the tyrosine kinase activity of anaplastic lymphoma kinase (ALK) and the fusion protein of NPM-ALK. This protein tyrosine kinase results from a gene fusion of nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK), rendering the protein tyrosine kinase activity of ALK ligand-

independent. NPM-ALK plays a key role in signal transmission in a number of hematopoetic and other human cells leading to hematological and neoplastic diseases, for example in anaplastic large-cell lymphoma (ALCL) and non-Hodgkin's lymphomas (NHL), specifically in ALK+ NHL or Alkomas, in inflammatory myofibroblastic tumors (IMT) and neuroblastomas. (Duyster J et al. 2001 Oncogene 20, 5623-5637). In addition to NPM-ALK, other gene fusions have been identified in human hematological and neoplastic diseases; mainly TPM3-ALK (a fusion of nonmuscle tropomyosin with ALK).

The inhibition of ALK tyrosine kinase activity can be demonstrated using known methods, for example using the recombinant kinase domain of the ALK in analogy to the VEGF-R kinase assay described in J. Wood et al. Cancer Res. <u>60</u>, 2178-2189 (2000). In vitro enzyme assays using GST-ALK protein tyrosine kinase are performed in 96-well plates as a filter binding assay in 20 mM Tris·HCl, pH = 7.5, 3 mM MgCl<sub>2</sub>, 10 mM MnCl<sub>2</sub>, 1 mM DTT, 0.1  $\mu$ Ci/assay (=30  $\mu$ I) [ $\gamma$ -<sup>33</sup>P]-ATP, 2  $\mu$ M ATP, 3  $\mu$ g/ml poly (Glu, Tyr 4:1) Poly-EY (Sigma P-0275), 1 % DMSO, 25 ng ALK enzyme. Assays are incubated for 10 min at ambient temperature. Reactions are terminated by adding 50  $\mu$ I of 125 mM EDTA, and the reaction mixture is transferred onto a MAIP Multiscreen plate (Millipore, Bedford, MA, USA), previously wet with methanol, and rehydrated for 5 min with H<sub>2</sub>O. Following washing (0.5 % H<sub>3</sub>PO<sub>4</sub>), plates are counted in a liquid scintillation counter. IC<sub>50</sub> values are calculated by linear regression analysis of the percentage inhibition. Compared with the control without inhibitor, the compounds of formula I inhibit the enzyme activity by 50 % (IC<sub>50</sub>), for example in a concentration of from 0.001 to 0.5  $\mu$ M, especially from 0.01 to 0.1  $\mu$ M.

The compounds of formula I potently inhibit the growth of human NPM-ALK overexpressing murine BaF3 cells (DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany). The expression of NPM-ALK is achieved by transfecting the BaF3 cell line with an expression vector pClneo™ (Promega Corp., Madison WI, USA) coding for NPM-ALK and subsequent selection of G418 resistant cells. Non-transfected BaF3 cells depend on IL-3 for cell survival. In contrast NPM-ALK expressing BaF3 cells (named BaF3-NPM-ALK hereinafter) can proliferate In the absence of IL-3 because they obtain proliferative signal through NPM-ALK kinase. Putative inhibitors of the NPM-ALK kinase therefore abolish the growth signal and result in antiproliferative activity. The antiproliferative activity of putative inhibitors of the NPM-ALK kinase can however be overcome by addition of IL-3 which provides growth signals through an NPM-ALK independent mechanism. [For an analogous cell system

using FLT3 kinase see E Weisberg et al. Cancer Cell; 1, 433-443 (2002)]. The inhibitory activity of the compounds of formula I is determined, briefly, as follows: BaF3-NPM-ALK cells (15,000/microtitre plate well) are transferred to 96-well microtitre plates. The test compounds [dissolved in dimethyl sulfoxide (DMSO)] are added in a series of concentrations (dilution series) in such a manner that the final concentration of DMSO is not greater than 1 % (v/v). After the addition, the plates are incubated for two days during which the control cultures without test compound are able to undergo two cell-division cycles. The growth of the BaF3-NPM-ALK cells is measured by means of Yopro™ staining [T Idzlorek et al. J. Immunol. Methods; 185: 249-258 (1995)]: 25 µl of lysis buffer consisting of 20 mM sodium citrate, pH 4.0, 26.8 mM sodium chloride, 0.4 % NP40, 20 mM EDTA and 20 mM is added to each well. Cell lysis is completed within 60 min at room temperature and total amount of Yopro bound to DNA is determined by measurement using the Cytofluor II 96-well reader (PerSeptive Biosystems) with the following settings: Excitation (nm) 485/20 and Emission (nm) 530/25.

IC<sub>50</sub> values are determined by a computer-aided system using the formula:

$$IC_{50} = [(ABS_{test} - ABS_{start})/(ABS_{control} - ABS_{start})] \times 100. (ABS = absorption)$$

The IC $_{50}$  value in those experiments is given as that concentration of the test compound in question that results in a cell count that is 50 % lower than that obtained using the control without inhibitor. The compounds of formula I exhibit inhibitory activity with an IC $_{50}$  in the range from approximately 0.01 to 1  $\mu$ M.

The antiproliferative action of the compounds of formula I can also be determined in the human KARPAS-299 lymphoma cell line (DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) [described in WG Dirks et al. Int. J. Cancer 100, 49-56 (2002)] using the same methodology described above for the BaF3-NPM-ALK cell line. The compounds of formula I exhibit inhibitory activity with an IC50 in the range from approximately 0.01 to 1  $\mu$ M.

The action of the compounds of formula I on autophosphorylation of the ALK can be determined in the human KARPAS-299 lymphoma cell line by means of an immunoblot as described in WG Dirks et al. Int. J. Cancer  $\underline{100}$ , 49-56 (2002). In that test the compounds of formula I exhibit an IC50 of approximately from 0.001 to 1  $\mu$ M.

WO 2004/080980 PCT/EP2004/002616

Among the compounds of formula I, 2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzamide is an especially potent ALK inhibitor, in that this compound inhibits the growth of the BaF3-NPM-ALK cells with an  $IC_{50}$  of 97 nM. Further specifically preferred compounds that inhibit the tyrosine kinase activity of anaplastic lymphoma kinase (ALK) are the compounds described hereinafter in the examples 7A and 7B, as well as 7-2, 7-15, 7-36, 7-39, 7-44 and 7-52, respectively, all of which are having an  $IC_{50}$  within the range from <0.5 to 200 nM.

For the above uses in the treatment of neoplastic diseases and immune system disorders the required dosage will of course vary depending on the mode of administration, the particular condition to be treated and the effect desired. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.1 to about 100 mg/kg body weight. An indicated daily dosage in the larger mammal, e.g. humans, is in the range from about 0.5 mg to about 2000 mg, conveniently administered, for example, in divided doses up to four times a day or in retard form.

The compounds of the invention may be administered by any conventional route, in particular parenterally, for example in the form of injectable solutions or suspensions, enterally, preferably orally, for example in the form of tablets or capsules, topically, e.g. in the form of lotions, gels, ointments or creams, or in a nasal or a suppository form. Pharmaceutical compositions comprising a compound of the invention in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with a pharmaceutically acceptable carrier or diluent. Unit dosage forms for oral administration contain, for example, from about 0.1 mg to about 500 mg of active substance. Topical administration is e.g. to the skin. A further form of topical administration is to the eye.

The pharmaceutical compositions of the present invention are prepared in a manner known per se, for example by means of conventional mixing, granulating, coating, dissolving or lyophilizing processes.

Preference is given to the use of solutions of the active ingredient, and also suspensions or dispersions, especially isotonic aqueous solutions, dispersions or suspensions which, for example in the case of lyophilized compositions comprising the active ingredient alone or together with a carrier, for example mannitol, can be made up before use. The pharmaceutical

compositions may be sterilized and/or may comprise exciplents, for example preservatives, stabilizers, wetting agents and/or emulsifiers, solubilizers, salts for regulating osmotic pressure and/or buffers and are prepared in a manner known per se, for example by means of conventional dissolving and lyophilizing processes. The said solutions or suspensions may comprise viscosity-increasing agents, typically sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone, or gelatins, or also solubilizers, e.g. Tween 80® (polyoxyethylene(20)sorbitan mono-oleate).

Suspensions in oil comprise as the oil component the vegetable, synthetic, or semi-synthetic oils customary for injection purposes. In respect of such, special mention may be made of liquid fatty acid esters that contain as the acid component a long-chained fatty acid having from 8 to 22, especially from 12 to 22, carbon atoms, for example lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid or corresponding unsaturated acids, for example oleic acid, elaidic acid, erucic acid, brassidic acid or linoleic acid, if desired with the addition of antioxidants, for example vitamin E, β-carotene or 3,5-di-tert-butyl-4-hydroxytoluene. The alcohol component of these fatty acid esters has a maximum of 6 carbon atoms and is a monovalent or polyvalent, for example a mono-, di- or trivalent, alcohol, for example methanol, ethanol, propanol, butanol or pentanol or the isomers thereof, but especially glycol and glycerol. As fatty acid esters, therefore, the following are mentioned: ethyl oleate, isopropyl myristate, isopropyl palmitate, "Labrafil M 2375" (polyoxyethylene glycerol), "Labrafil M 1944 CS" (unsaturated polyglycolized glycerides prepared by alcoholysis of apricot kernel oil and consisting of glycerides and polyethylene glycol ester), "Labrasol" (saturated polyglycolized glycerides prepared by alcoholysis of TCM and consisting of glycerides and polyethylene glycol ester; all available from Gattefossé, France), and/or "Miglyol 812" (triglyceride of saturated fatty acids of chain length  $C_8$  to  $C_{12}$  from Hüls AG, Germany), but especially vegetable oils such as cottonseed oil, almond oil, olive oil, castor oil, sesame oil, soybean oil and more especially groundnut oil.

The manufacture of injectable preparations is usually carried out under sterile conditions, as is the filling, for example, into ampoules or vials, and the sealing of the containers.

Pharmaceutical compositions for oral administration can be obtained, for example, by combining the active ingredient with one or more solid carriers, if desired granulating a resulting

mixture, and processing the mixture or granules, if desired or necessary, by the inclusion of additional excipients, to form tablets or tablet cores.

Suitable carriers are especially fillers, such as sugars, for example lactose, saccharose, mannitol or sorbitol, cellulose preparations, and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, and also binders, such as starches, for example corn, wheat, rice or potato starch, methylcellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone, and/or, if desired, disintegrators, such as the above-mentioned starches, also carboxymethyl starch, crosslinked polyvinylpyrrolidone, alginic acid or a salt thereof, such as sodium alginate. Additional excipients are especially flow conditioners and lubricants, for example silicic acid, talc, stearic acid or salts thereof, such as magnesium or calcium stearate, and/or polyethylene glycol, or derivatives thereof.

Tablet cores can be provided with suitable, optionally enteric, coatings through the use of, inter alia, concentrated sugar solutions which may comprise gum arabic, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, or coating solutions in suitable organic solvents or solvent mixtures, or, for the preparation of enteric coatings, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate. Dyes or pigments may be added to the tablets or tablet coatings, for example for identification purposes or to indicate different doses of active ingredient.

Pharmaceutical compositions for oral administration also include hard capsules consisting of gelatin, and also soft, sealed capsules consisting of gelatin and a plasticizer, such as glycerol or sorbitol. The hard capsules may contain the active ingredient in the form of granules, for example in admixture with fillers, such as corn starch, binders, and/or glidants, such as taic or magnesium stearate, and optionally stabilizers. In soft capsules, the active ingredient is preferably dissolved or suspended in suitable liquid excipients, such as fatty oils, paraffin oil or liquid polyethylene glycols or fatty acid esters of ethylene or propylene glycol, to which stabilizers and detergents, for example of the polyoxyethylene sorbitan fatty acid ester type, may also be added.

Pharmaceutical compositions suitable for rectal administration are, for example, suppositories that consist of a combination of the active ingredient and a suppository base. Suitable

suppository bases are, for example, natural or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols or higher alkanols.

For parenteral administration, aqueous solutions of an active ingredient in water-soluble form, for example of a water-soluble salt, or aqueous injection suspensions that contain viscosity-increasing substances, for example sodium carboxymethylcellulose, sorbitol and/or dextran, and, if desired, stabilizers, are especially suitable. The active ingredient, optionally together with exciplents, can also be in the form of a lyophilizate and can be made into a solution before parenteral administration by the addition of suitable solvents.

Solutions such as are used, for example, for parenteral administration can also be employed as infusion solutions.

Preferred preservatives are, for example, antioxidants, such as ascorbic acid, or microbicides, such as sorbic acid or benzoic acid.

The compounds of the invention may be administered as the sole active ingredient or together with other drugs useful against neoplastic diseases or useful in immunomodulating regimens. For example, the agents of the invention may be used in accordance with the invention in combination with pharmaceutical compositions effective in various diseases as described above, e.g. with cyclophosphamide, 5-fluorouracil, fludarabine, gemcitabine, cisplatinum, carboplatin, vincristine, vinblastine, etoposide, irinotecan, paclitaxel, docetaxel, rituxan, doxorubicine, gefitinib, or imatinib; or also with cyclosporins, rapamycins, ascomycins or their immunosuppressive analogs, e.g. cyclosporin A, cyclosporin G, FK-506, sirolimus or everolimus, corticosteroids, e.g. prednisone, cyclophosphamide, azathioprene, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, mycophenolic acid, mycophenolate, mofetil, 15-deoxyspergualine, immuno-suppressive monoclonal antibodies, e.g. monoclonal antibodies to leukocyte receptors, e.g. MHC, CD2, CD3, CD4, CD7, CD25, CD28, CD40, CD45, CD58, CD80, CD86, CD152, CD137, CD154, ICOS, LFA-1, VLA-4 or their ligands, or other Immunomodulatory compounds, e.g. CTLA4lg.

In accordance with the foregoing, the present invention also provides:

(1) A compound of the invention for use as a pharmaceutical;

- (2) a compound of the invention for use as a FAK inhibitor, an ALK inhibitor and/or ZAP-70 inhibitor, for example for use in any of the particular indications hereinbefore set forth;
- (3) a pharmaceutical composition, e.g. for use in any of the indications herein before set forth, comprising a compound of the invention as active ingredient together with one or more pharmaceutically acceptable diluents or carriers;
- (4) a method for the treatment of any particular indication set forth hereinbefore in a subject in need thereof which comprises administering an effective amount of a compound of the invention or a pharmaceutical composition comprising same;
- (5) the use of a compound of the invention for the manufacture of a medicament for the treatment or prevention of a disease or condition in which FAK, ALK and/or ZAP-70 activation plays a role or is implicated;
- (6) the method as defined above under (4) comprising co-administration, e.g. concomitantly or in sequence, of a therapeutically effective amount of a compound of the invention and one or more further drug substances, said further drug substance being useful in any of the particular indications set forth hereinbefore;
- (7) a combination comprising a therapeutically effective amount of a compound of the invention and one or more further drug substances, said further drug substance being useful in any of the particular indications set forth hereinbefore;
- (8) use of a compound of the invention for the manufacture of a medicament for the treatment or prevention of a disease which responds to inhibition of the anaplastic lymphoma kinase;
- (9) the use according to (8), wherein the disease to be treated is selected from anaplastic large-cell lymphoma, non-Hodgkin's lymphomas, inflammatory myofibroblastic tumors and neuroblastomas;
- (10) the use according to (8) or (9), wherein the compound is 2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzamide or a pharmaceutically acceptable salt thereof, or any of the the compounds described hereinafter in the examples or a pharmaceutically acceptable salt of any one of these;
- (11) a method for the treatment of a disease which responds to inhibition of the anaplastic lymphoma kinase, especially a disease selected from anaplastic large-cell lymphoma, non-Hodgkin's lymphomas, inflammatory myofibroblastic tumors and neuroblastomas, comprising administering an effective amount of a compound of the invention, especially 2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzamide, or a pharmaceutically acceptable salt thereof.

Additionally preferred a compound according to the present invention that is useful as herein before described is a compound specifically mentioned in the examples.

Additional specifically preferred compounds according to the present invention that are useful either as FAK inhibitor, as ALK inhibitor or for inhibition of both and which may be prepared essentially according to the methods described hereinbefore are the following:

2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzamide,

 $N^2$ -(4-[1,4]Bipiperidinyl-1'-yl-2-methoxy-phenyl)-5-chloro- $N^4$ -[2-(propane-1-sulfonyl)-phenyl]-pyrimidine-2,4-diamine,

2-{5-Chloro-2-[2-methoxy-4-(4-methyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-ylamino}-N-isopropyl-benzenesulfonamide,

2-[5-Bromo-2-(2-methoxy-5-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzenesulfonamide

2-{2-[5-(1-Acetyl-piperidin-4-yloxy)-2-methoxy-phenylamino]-5-bromo-pyrimidin-4-ylamino}-N-methyl-benzenesulfonamide,

N-[5-Bromo-2-(2,5-dimethoxy-phenylamino)-pyrimidin-4-yl]-N-(4-morpholin-4-yl-phenyl)-methanesulfonamide,

5-Bromo-N-4-(4-fluoro-phenyl)-N\*2\*-(2-methoxy-4-morpholin-4-yl-phenyl)-pyrimidine-2,4-diamine,

2-[5-Chloro-2-(2-methoxy-4-piperazin-1-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzenesulfonamide,

2-[5-Bromo-2-(5-fluoro-2-methoxy-phenylamino)-pyrimidin-4-ylamino]-N-methylbenzenesulfonamide,

2-[5-Chloro-2-(5-fluoro-2-methoxy-phenylamino)-pyrimidin-4-ylamino]-N-isobutyl-benzenesulfonamide, and

2-{5-Chloro-2-[2-methoxy-5-(4-methyl-piperazin-1-ylmethyl)-phenylamino]-pyrimidin-4-ylamino}-N-methyl-benzenesulfonamide.

The invention also provides a compound of formula 2-{5-Chloro-2-[4-(3-methylamino-pyrrolidin-1-yl)-phenylamino]-pyrimidin-4-ylamino}-N-isopropyl-benzenesulfonamide

The following Examples serve to illustrate the invention without limiting the invention in its scope.

### **Examples**

#### **Abbreviations**

AcOH = acetic acid, ALK = anaplastic lymphoma kinase, ATP = adenosine 5'-triphosphate, brine = saturated sodium chloride solution, BSA = bovine serum albumin, DIAD = diisopropyl azodicarboxylate, DIPCDI = N,N'-diisopropylcarbodiimid, DMAP = 4-dimethylaminopyridine, DMF = N,N-dimethylformamide, DTT = 1,4-dithio-D,L-threitol, EDTA = ethylene diamine tetraacetic acid, Et = ethyl, EtOAc = ethyl acetate, EtOH = ethanol, Eu-PT66 = LANCE<sup>TM</sup> europium-W1024-labelled anti-phosphotyrosine antibody (Perkin Elmer), FAK = Focal Adhesion Kinase, FRET = fluorescence resonance energy transfer, HEPES = N-2-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid, HOAt = 1-hydroxy-7-azabenzotriazole, Me = methyl, RT-PCR = reverse transcription polymerase chain reaction, SA-(SL)APC = Streptavidin conjugated to SuperLight<sup>TM</sup> allophycocyanin (Perkin Elmer), subst. = substituted, TBTU = O-(benzotriazol-1-yl)-N,N,N',N'-tetramethylammonium tetrafluoroborate, THF = tetrahydrofuran.

# <u>Example 1: 2-[2-(2,5-Dimethoxy-phenylamino)-5-nitro-pyrimidin-4-ylamino]-N-methyl-benzenesulfonamide</u>

To a solution of 2-(2-chloro-5-nitro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide (100 mg, 0.29 mmol) in EtOH (3 mL), 2,5-dimethoxyaniline (49 mg, 0.32 mmol) is added at room temperature. The mixture is heated at 78°C for 5 h. The solvent is evaporated, and the mixture is purified by reverse phase HPLC to give the title product in.

Rf = 0.47 (n-hexane : ethyl acetate = 1:1).  $^{1}$ H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 2.36 (d, 3H), 3.57 (s, 3H), 3.73 (s, 3H), 6.72 (d, 1H), 6.99 (d, 1H), 7.17 (s, 1H), 7.35 (t, 1H), 7.4-7.6 (m, 1H), 7.63 (d, 1H), 7.81 (d, 1H), 8.0-8.2 (m, 1H), 9.13 (s, 1H), 9.41 (br.s, 1H), 11.0 (s, 1H).

Preparation of 2-(2-chloro-5-nitro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide: 2,4-Dichloro-5-nitro-pyrimidine (1.94 g, 10 mmol) and 2-amino-N-methyl-benzenesulfonamide (1.86 g, 10 mmol) are dissolved in CHCl<sub>3</sub> (30 mL). The reaction mixture is heated at 61°C for 2 h. The solvent is evaporated and the residue is washed with ether to give the title product.

Rf = 0.5 (n-hexane : ethyl acetate = 1:1).  $^{1}$ H-NMR (400MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 2.67 (d, 3H), 4.6-4.7 (m, 2H), 7.41 (dd, 1H), 7.7 (dd, 1H), 8.04 (d, 1H), 8.15 (d, 1H), 9.21 (s, 1H), 11.2 (s, 1H).

Example 2: 2-[5-Bromo-2-(2,4-dimethoxy-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzenesulfonamide

To a solution of 2-(5-bromo-2-chloro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide (300 mg, 0.79 mmol), 2,4-dimethoxyaniline (181.5 mg, 1.18 mmol) in ethanol (3 mL), 1 N hydrochloric acid (0.03 mL) is added and stirred under reflux condition for 5 hours. The reaction mixture is cooled to room temperature, poured into water and extracted twice with ethyl acetate. The organic layer is successively washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane : ethyl acetate = 5:1 to 1:1) to afford the title compound.

 $^{1}$ H-NMR (CDCl<sub>3</sub>), δ (ppm): 8.95 (s, 1H), 8.44 (d, 1H), 8.20 (s, 1H), 7.98 (dd, 1H), 7.58 (ddd, 1H), 7.22-7.32 (m, 1H), 6.51 (d, 1H), 6.40 (d, 1H), 4.56-4.48 (m, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 2.64 (d, 3H). Rf (n-hexane : ethyl acetate = 1:1): 0.31.

Preparation of 2-(5-bromo-2-chloro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide
A solution of 5-bromo-2,4-dichloropyrimidine (684 mg, 3.0 mmol) and 2-amino-N-methyl-benzenesulfonamide (559 mg, 3.0 mmol) in N,N-dimethylformamide (10 mL) containing potassium carbonate (830 mg, 6.0 mmol) is stirred at room temperature for 23 hours. Saturated aqueous ammonium chloride is added and the mixture is poured into water and extracted twice with ethyl acetate. The organic layer is washed with brine, dried over sodium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane ethyl acetate gradient) to afford the title compound as a slightly yellow solid.

<sup>1</sup>H-NMR (CDCl<sub>3</sub>), δ (ppm): 2.67 (d, 3H), 4.79 (q, 1H), 7.26 (s, 1H), 7.29 (ddd, 1H), 7.66 (ddd, 1H), 7.95 (dd, 1H), 8.37 (s, 1H), 8.48 (d, 1H), 9.52 (s, 1H). Rf (n-hexane : ethyl acetate = 10:3): 0.33.

## Example 3:

The following 2-[5-bromo-2-(subst. phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzene-sulfonamides are prepared from 2-(5-bromo-2-chloro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide and the corresponding aniline following the procedure of Example 2:

| ExplNo. | Rx       | Rf (solvent)        | THE NIMED (ACCOUNTY) OF                                          |
|---------|----------|---------------------|------------------------------------------------------------------|
|         | 100      |                     | <sup>1</sup> H-NMR (400MHz), δ (ppm)                             |
|         |          | or MS               |                                                                  |
|         |          |                     | CDCl <sub>3</sub> : 2.64(d, 3H), 4.48-4.40(m, 1H), 6.78(d,1H),   |
| 3-1     | <b>₽</b> | 0.48                | 6.87(bs, 1H), 6.99(dd, 1H), 6.82(s, 1H),7.54(ddd, 1H),           |
|         | o F      | ( <i>n</i> -hexane: | 7.79(d, 1H), 7.97(dd, 1H), 8.28(s, 1H), 8.32(dd, 1H),            |
|         |          | AcOEt=1:1)          | 9.07(s, 1H)                                                      |
|         |          |                     | CDCl <sub>3</sub> : 2.25(s, 3H), 2.33(s, 3H), 2.63(d, 3H), 4.53- |
| 3-2     | Me       | 0.58                | 4.45(m, 1H), 6.61(bs, 1H), 6.99(dd, 1H), 7.04(s, 1H),            |
|         |          | ( <i>n</i> -hexane: | 7.18(ddd, 1H), 7.43(ddd, 1H), 7.56(d, 1H), 7.92(dd,              |
|         | Me<br>Me | AcOEt=1:1)          | 1H), 8.19(s, 1H), 8.41(dd, 1H), 9.08(s, 1H)                      |
|         |          |                     | CDCl <sub>3</sub> : 2.23(s, 3H), 2.62(d, 3H), 3.69(s, 3H), 4.53- |
| 3-3     | Me       | 0.36                | 4.44(m, 1H), 6.62(dd, 1H), 6.69(bs, 1H), 7.10(d, 1H),            |
|         | MeO      | ( <i>n</i> -hexane: | 7.19(dd, 1H), 7.48(d, 1H), 7.51(dd, 1H), 7.93(dd, 1H),           |
|         |          | AcOEt=1:1)          | 8.22(s, 1H), 8.44(dd, 1H), 9.09(s1, 1H)                          |
|         |          |                     | CDCl <sub>3</sub> : 2.32(s, 3H), 2.63(d, 3H), 4.45-4.44(m, 1H),  |
| 3-4     | F        | 0.41                | 6.85(d, 1H), 6.91(d, 1H), 7.00(bs, 1H), 7.28-7.24(m,             |
|         |          | ( <i>n</i> -hexane: | 1H), 7.57(dd, 1H), 7.99(dd, 1H), 8.25 (s, 1H), 8.39(d,           |
|         | <br>Me   | AcOEt=1:1)          | 1H), 9.00(bs, 1H)                                                |

|      | T :      | T                   | 0001 0001                                                           |
|------|----------|---------------------|---------------------------------------------------------------------|
|      | OMe      |                     | CDCl <sub>3</sub> : 2.33(s, 3H), 2.63(d, 3H), 3.87(s, 3H), 4.46-    |
| 3-5  |          | 0.39                | 4.44(m, 1H), 6.66(d, 1H), 6.71(s, 1H), 7.48(bs, 1H),                |
|      |          | (n-hexane:          | 7.63-7.59(m, 1H), 7.97(dd, 1H), 8.05(d, 1H), 8.23 (s,               |
|      | l<br>Me  | AcOEt=1:1)          | 1H), 8.44(d, 1H), 8.92(bs, 1H)                                      |
|      |          |                     | CDCl <sub>3</sub> : 2.63(d, 3H), 3.90(s, 3H), 4.45-4.40(m, 1H),     |
| 3-6  | OMe      | , 0.27              | 6.90-6.86(m, 2H), 7.00-6.96(m, 1H), 7.23-7.17 (m,                   |
|      |          | ( <i>n</i> -hexane: | 3H), 7.45(dd, 1H), 7.50-7.60(m, 2H), 7.97(dd, 1H),                  |
|      |          | AcOEt=3:1)          | 8.22(d, 1H), 8.26 (s, 1H), 8.43(d, 1H), 8.94(bs, 1H)                |
|      |          |                     | CDCl <sub>3</sub> : 2.30(s, 3H), 2.63(d, 3H), 4.44-4.43(m, 1H),     |
| 3-7  | Me       | 0.34                | 6.68 (bs, 1H), 7.00-6.68(m, 1H), 7.23-7.17(m, 2H),                  |
|      |          | ( <i>n</i> -hexane: | 7.46-7.43(m, 1H), 7.76(d, 1H), 7.93(dd, 1H), 8.22 (s,               |
|      |          | AcOEt=3:1)          | 1H), 8.40(d, 1H), 9.01(bs, 1H)                                      |
|      | l u      |                     | CDCl <sub>3</sub> : 2.62(d, 3H), 2.81(s, 3H), 4.07-3.98(m, 1H),     |
| 3-8  |          | 0.12                | 4.52-4.45(m, 1H), 6.37(bs, 1H), 6.77-6.73 (m, 2H),                  |
|      |          | ( <i>n</i> -hexane: | 7.12(dd, 1H), 7.24-7.20(m, 1H), 7.30-7.27(m, 1H),                   |
|      |          | AcOEt=3:1)          | 7.35(dd, 1H), 7.88(dd, 1H), 8.18 (s, 1H), 8.41(d, 1H),              |
|      |          |                     | 9.19(bs, 1H)                                                        |
|      |          |                     | CDCl <sub>3</sub> : 2.62(d, 3H), 3.94(s, 3H), 4.49-4.43(m, 1H),     |
| 3-9  | OMe      | 0.28                | 6.99-6.90 (m, 3H), 7.18-7.23(m, 1H), 7.31-7.24(m,                   |
|      |          | ( <i>n</i> -hexane: | 3H), 7.63(bs, 1H), 7.93-7.86(m, 1H), 8.28-8.23(m,                   |
|      |          | AcOEt=3:1)          | 1H), 8.28 (s, 1H), 8.45(bs, 1H), 8.89(bs, 1H)                       |
|      | <b>~</b> |                     |                                                                     |
|      |          |                     | CDCl <sub>3</sub> : 0.91(t, 3H), 1.37 (dd, 2H), 1.64-1.55 (m, 2H),  |
| 3-10 |          | 0.23                | 2.64-2.60 (m, 2H), 4.45-4.40 (m, 1H), 6.69 (bs, 1H),                |
|      |          | ( <i>n</i> -hexane: | 7.23-7.10(m, 1H), 7.46-7.38 (m, 1H), 7.73 (d 1H),                   |
|      |          | AcOEt=3:1)          | 7.92 (d, 1H), 8.21 (s, 1H), 8.38-8.46 (m, 1H), 9.09 (bs,            |
|      |          |                     | 1H)                                                                 |
|      |          |                     | CDCl <sub>3</sub> : 2.63 (d, 3H), 4.15-4.10 (m, 1H), 6.58 (bs, 1H), |
| 3-11 |          | 0.12                | 7.31-7.10(m, 4H), 7.53-7.49 (m, 1H), 7.71(d 1H), 7.95               |
|      |          | ( <i>n</i> -hexane: | (d, 1H), 8.30-8.23 (m, 1H), 8.26 (s, 1H), 8.45 (d, 1H),             |
|      | N, H     | AcOEt=3:1)          | 9.03 (bs, 1H)                                                       |
| Ll   |          | <u> </u>            |                                                                     |

|      | T        | · · · · · · · · · · · · · · · · · · · |                                                                        |
|------|----------|---------------------------------------|------------------------------------------------------------------------|
|      |          |                                       | CDCl <sub>3</sub> : 2.09 (dd, 2H), 2.63 (d, 3H), 2.85(t, 2H), 2.96 (t, |
| 3-12 |          | 0.4                                   | 2H), 4.46-4.43 (m, 2H), 6.73 (bs, 1H), 6.99 (d, 1H),                   |
|      |          | ( <i>n</i> -hexane:                   | 7.09 (dd, 1H), 7.25-7.20(m, 1H), 7.52 (dd, 1H), 7.74                   |
|      |          | AcOEt=3:1)                            | (d 1H), 7.92 (dd, 1H), 8.22 (s, 1H), 8.42 (d, 1H), 9.02                |
|      |          |                                       | (bs, 1H)                                                               |
|      | <u> </u> |                                       | CDCl <sub>3</sub> : 2.63 (d, 3H), 4.63-4.64 (m, 1H), 7.11(d, 2H),      |
| 3-13 |          | 0.33                                  | 7.18(dd, 1H), 7.42-7.34(m, 1H), 7.58-7.55(m, 1H),                      |
|      | N        | (AcOEt)                               | 7.96(d, 1H), 8.07(s, 1H), 8.19-8.10(m, 1H), 8.24(s,                    |
|      |          |                                       | 1H), 9.15(s, 1H), 11.6-11.4(m, 1H)                                     |
| ]    |          |                                       | CDCl <sub>3</sub> : 2.63(d, 3H), 3.88(s, 3H), 3.89(s, 3H), 4.47-       |
| 3-14 | OMe      | 0.28                                  | 4.41(m, 1H), 6.60(d,1H), 6.92 (dd,1H), 7.64 (dd,                       |
|      |          | ( <i>n</i> -hexane:                   | 1H),7.66-7.61(m,1H), 7.89(d, 1H), 7.98(dd, 1H),                        |
|      | OMe      | AcOEt=3:1)                            | 8.26(s, 1H), 8.43(d, 1H), 8.95(s, 1H)                                  |
|      |          |                                       | CDCl <sub>3</sub> : 2.63(d, 3H), 3.66(s, 3H), 3.85(s, 3H), 4.45-       |
| 3-15 | OMe      | 0.30                                  | 4.44(m, 1H), 6.48(dd,1H), 6.79(d,1H), 7.64(dd, 1H),                    |
|      |          | (n-hexane:                            | 7.97(dd, 2H), 8.26(s, 1H), 8.44(d, 1H), 8.96(s, 1H)                    |
|      | MeO      | AcOEt=3:1)                            |                                                                        |
|      |          |                                       |                                                                        |
|      |          | i                                     | CDCl <sub>3</sub> : 2.17(s, 3H), 2.22(s, 3H), 2.64(s, 3H), 2.63(d,     |
| 3-16 | Me       | 0.22                                  | 3H), 4.46-4.44(m, 1H), 6.57(bs, 1H), 7.00(s,1H),                       |
|      |          | ( <i>n</i> -hexane:                   | 7.17(dd,1H), 7.44-7.40(m,1H), 7.44(s, 1H), 7.93(dd,                    |
|      | Me Me    | AcOEt=3:1)                            | 1H), 8.19(s, 1H), 8.43(d, 1H), 9.06(s, 1H)                             |
|      |          |                                       | CDCl <sub>3</sub> : 2.22(s,3H), 2.63(d, 3H), 3.68(s, 3H), 3.89(s,      |
| 3-17 | Me       | 0.46                                  | 3H), 4.52-4.47(m, 1H), 6.51(s,1H), 6.74(s,1H),                         |
|      | MeO      | (AcOEt)                               | 7.12(s,1H), 7.16-7.12(m,1H), 7.40(dd, 1H), 7.91(dd,                    |
|      | OMe      |                                       | 1H), 8.19(s, 1H), 8.42(d, 1H), 9.12(s, 1H)                             |
|      |          |                                       | CDCl <sub>3</sub> : 1.16(d, 6H), 2.25 (s, 3H), 2.62(d, 3H), 2.77(t,    |
| 3-18 | Me       | 0.35                                  | 1H), 4.49-4.48(m, 1H), 7.00(s,1H), 7.15(d,1H), 7.41-                   |
|      |          | (n-hexane:                            | 7.37(m,1H), 7.49(d,2H), 7.54(dd, 1H), 7.92(dd, 1H),                    |
| :    | [        | AcOEt=3:1)                            | 8.21(s, 1H), 8.32(d, 1H), 9.02(s, 1H)                                  |
|      |          |                                       |                                                                        |

|               |                                       |                     | CDCl <sub>3</sub> : 2.63(d, 3H), 3.13-3.10 (m, 4H), 3.87(s, 3H),   |
|---------------|---------------------------------------|---------------------|--------------------------------------------------------------------|
| 3-19          | OMe                                   | 0.23                | 3.89-3.86(m, 4H), 4.97-4.93(m, 1H), 6.41(dd,1H),                   |
|               |                                       | (n-hexane:          | 6.52(d,1H), 7.24-7.22(m,1H), 7.32(s,1H), 7.57(dd,1H),              |
|               | I N                                   | AcOEt=1:1)          |                                                                    |
|               |                                       |                     | 8.98 (s, 1H)                                                       |
|               | 0                                     |                     |                                                                    |
|               |                                       |                     | CDCl <sub>3</sub> : 2.22(s, 3H), 2.64(d, 3H), 3.00-3.2.97 (m, 4H), |
| 3-20          | Me                                    | 0.36                | 3.76-3.74(m, 4H), 4.54-4.50(m, 1H), 6.64(d,1H),                    |
|               |                                       | (n-hexane:          | 6.66(dd, 1H), 7.11(d,1H), 7.18(dd,1H), 7.37(d, 1H),                |
|               | N N                                   | AcOEt=1:1)          |                                                                    |
| ļ             |                                       |                     | 7.46(dd, 1H), 7.93(dd, 1H), 8.22(s, 1H), 8.42(d, 1H), 9.09 (s, 1H) |
|               |                                       |                     |                                                                    |
| 3-22          | Me                                    | 0.07                | CDCl <sub>3</sub> : 2.33(s, 3H), 2.65(d, 3H), 3.60-3.45(m, 8H),    |
| J <b>-</b> 22 |                                       | 0.27                | 4.53-4.49(m, 1H), 6.74(s, 1H), 7.11(d, 1H), 7.22-                  |
|               |                                       | (AcOEt)             | 7.18(m, 1H), 7.58-7.54(m 1H), 7.94(dd, 1H), 8.00(d,                |
|               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                     | 1H), 8.22(s, 1H), 8.37(d, 1H), 9.13(s, 1H)                         |
|               |                                       |                     |                                                                    |
|               |                                       |                     | CDCl <sub>3</sub> : 1.24-1.08(m, 2H), 1.46-1.32(m, 2H),1.76-       |
| 3-23          | Me                                    | 0.38                | 1.67(m, 2H), 1.98-1.90(m, 2H), 2.33(s, 3H), 2.64(d,                |
|               |                                       | (AcOEt)             | 1                                                                  |
|               |                                       | (10021)             | 3H), 3.95-3.90(m, 1H), 4.49-4.47(m, 1H), 5.89-                     |
|               | INF                                   |                     | 5.80(m, 1H), 6.66(s, 1H), 7.15(dd, 1H), 7.48-7.31(m,               |
|               |                                       |                     | 2H), 7.91(dd, 1H), 8.12(s, 1H), 8.23(s, 1H), 8.41(d,               |
|               |                                       |                     | 1H), 9.18(s, 1H)                                                   |
|               |                                       |                     | CDCl <sub>3</sub> : 2.35(s, 3H), 2.71(s, 3H), 3.07-2.73(m, 2H),    |
| 3-24          | Me                                    | 0.11                | 3.86-3.31(m, 6H), 6.85(s, 1H), 7.10(d, 1H), 7.24-                  |
|               |                                       | (AcOEt)             | 7.19(m, 1H), 7.52-7.48(m, 1H), 7.66-7.59(m, 2H),                   |
|               |                                       |                     | 7.93(d, 1H), 8.06(s, 1H), 8.27-8.21(m, 1H), 8.23(s,                |
|               |                                       |                     | 1H), 9.11(s, 1H)                                                   |
|               | TAT                                   |                     |                                                                    |
|               |                                       |                     | CDCl <sub>3</sub> : 2.52(d, 3H), 2.62(s, 3H), 4.36-4.32(m, 1H),    |
| 3-25          | Me                                    | 0.5                 | 6.74(s, 1H), 6.87(d, 2H), 7.00-6.91(m, 2H), 7.00-                  |
|               |                                       | ( <i>n</i> -hexane: | 6.97(m, 2H), 7.38(dd, 2H), 7.86(dd, 1H), 7.98(s, 1H),              |
|               | MeO                                   | AcOEt=1:1)          | 8.23(s, 1H), 8.28(d, 1H), 9.04(s, 1H)                              |
|               |                                       | <b>'</b> [          | ( , , , , , , , , , , , , , , , , , , ,                            |
|               |                                       |                     |                                                                    |

|      |              |                     | <u> </u>                                                                                                            |
|------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
|      |              |                     | CDCl <sub>3</sub> : 1.62-1.34(m, 6H), 2.13(s, 3H), 2.56(d, 3H),                                                     |
| 3-26 | Me           | 0.45                | 3.01-2.87(m, 4H), 4.54-4.38(m, 1H), 6.59(s, 1H),                                                                    |
|      | $\backslash$ | ( <i>n</i> -hexane: | 6.69-6.59(m, 1H), 7.02(d, 1H), 7.10-7.07(m, 1H),                                                                    |
|      |              | AcOEt=1:1)          | 7.37(dd, 1H), 7.84(dd, 1H), 8.15(s, 1H), 8.34(d, 1H),                                                               |
|      |              |                     | 9.01(s, 1H)                                                                                                         |
|      | 1            |                     | CDCl <sub>3</sub> : 2.32(s, 3H), 2.58(d, 3H), 3.75(s, 3H), 4.37-                                                    |
| 3-27 | Me           | 0.45                | 4.44(m, 1H), 6.77-6.73(m, 1H), 6.89-6.82(m 1H),                                                                     |
|      |              | ( <i>n</i> -hexane: | 6.97-6.91(m, 2H), 6.96(d, 1H), 7.20(dd, 1H), 7.25-                                                                  |
|      |              | AcOEt=1:1)          | 7.24(m, 1H), 7.33-7.29(m, 1H)                                                                                       |
|      | OMe          |                     |                                                                                                                     |
|      | Me           |                     | CDCl <sub>3</sub> : 2.34(s, 3H), 2.64(d, 3H), 3.81(s, 3H), 4.57-                                                    |
| 3-28 |              | 0.35                | 4.50(m, 1H), 6.76(bs, 1H), 6.91-6.84(m, 41H), 7.04(d,                                                               |
|      |              | ( <i>n</i> -hexane: | 1H), 7.83(dd, 1H), 8.06(d, 1H), 8.19(dd, 1H), 8.23(s,                                                               |
|      | OMe          | AcOEt=1:1)          | 1H), 9.00(s, 1H)                                                                                                    |
|      |              |                     | CDCl <sub>3</sub> : 1.50(t, 3H), 2.62 (d, 3H), 4.17(dd, 2H), 4.51-                                                  |
| 3-29 | OEt          | 0.45                | 4.44(m, 1H), 6.95-6.89 (m, 2H), 6.94(d, 1H), 7.16 (dd,                                                              |
|      |              | ( <i>n</i> -hexane: | 1H), 7.31-7.23(m, 5H), 7.67(s, 1H), 7.11(dd, 1H),                                                                   |
|      |              | AcOEt=1:1)          | 7.23(d, 2H), 7.65(s, 1H), 7.88(dd, 1H), 8.28-8.23(m,                                                                |
|      |              | ,,,,                | 1H), 8.28(s, 1H), 8.43(s, 1H), 8.89(s, 1H)                                                                          |
|      | 1            |                     |                                                                                                                     |
| 3-30 | OEt          | 0.45                | CDCl <sub>3</sub> : 1.49(t, 3H), 2.63(d, 3H), 3.85(s, 3H), 4.16(dd, 2H), 4.55-4.48(m, 4H), 6.84(dd, 4H), 6.05-6.04( |
|      |              | ( <i>n</i> -hexane: | 2H), 4.55-4.48(m, 1H), 6.81(dd, 1H), 6.95-6.91(m,                                                                   |
|      |              | AcOEt=1:1)          | 3H), 7.11(dd, 1H), 7.23(d, 2H), 7.65(s, 1H), 7.90-                                                                  |
|      | OMe          | A00E(-1.1)          | 7.88(m, 1H), 8.28-8.26(m, 1H), 8.27(s, 1H), 8.39(s,                                                                 |
|      |              |                     | 1H), 8.90(s, 1H)                                                                                                    |
| 2.24 |              | 0.00                | <sup>1</sup> H-NMR: (CDCl <sub>3</sub> ) 1.83-1.72 (4H, m), 2.63 (3H, d),                                           |
| 3-31 |              | 0.29                | 2.66-2.62 (2H, m), 2.80 (2H, t), 4.41-4.44 (1H, m),                                                                 |
|      |              | (n-hexane:          | 6.64 (1H, br.s), 6.92 (1H, d), 7.09 (1H, dd), 7.18 (1H,                                                             |
|      | ~ ~          | AcOEt=1:1)          | dd), 7.45 (1H, dd), 7.59 (1H, dd), 7.92 (1H, d), 8.20                                                               |
|      |              |                     | (1H, s), 8.42 (1H, d), 9.08 (1H, br.s).                                                                             |
| 0.00 |              |                     | DMSO-d <sub>6</sub> : 2.43(s, 3H), 2.80-2.82(m, 4H), 3.61-3.64                                                      |
| 3-32 |              | 0.3                 | (m, 4H), 3.75(s,3H), 6.62(dd, 1H), 6.93(d, 1H), 7.46(d,                                                             |
|      | N N N        | (n-hexane:          | 1H), 7.54(dd, 1H), 7.77(dd, 2H), 8.14(bs, 1H), 8.32(s,                                                              |
|      | <b>↓</b>     | AcOEt=1:1)          | 1H), 8.38-8.30(m, 1H), 9.14(bs, 1H)                                                                                 |
|      | -            |                     |                                                                                                                     |

|      | <del></del>                            |            |                                                                   |
|------|----------------------------------------|------------|-------------------------------------------------------------------|
|      |                                        |            |                                                                   |
|      |                                        |            | ·                                                                 |
|      | J.0.                                   |            | DMSO-d <sub>6</sub> : 1.59-1.68(m, 2H), 1.88-1.98(m, 2H), 2.13-   |
| 3-33 |                                        | 0.61       | 2.25(m,2H), 2.19(s, 3H), 2.43(s, 3H), 2.60-2.70(m,                |
|      |                                        | (MeOH:     | 2H), 3.75(s, 3H), 4.32-4.40(m, 1H), 6.51(dd, 1H),                 |
|      |                                        | CH2Cl2=1:  | 6.64(d, 1H), 7.20(dd, 1H), 7.39(d, 1H), 7.75(dd, 1H),             |
|      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1)         | 7.70-7.78(s, 1H), 8.22(s, 1H), 8.26(s, 1H), 8.38-                 |
|      |                                        |            | 8.41(m, 1H), 9.22(s, 1H)                                          |
|      | 100                                    |            | CDCl <sub>3</sub> : 2.11(s, 3H), 2.68(d, 3H), 2.76-2.83(m, 2H),   |
| 3-34 |                                        | 0.17       | 2.89-2.97(m, 2H), 3.47-3.55(m, 2H), 3.58-3.66(m,                  |
|      |                                        | (AcOEt)    | 2H), 3.86(s, 3H), 4.70-4.78(m, 1H), 6.53(dd, 1H),                 |
|      | Ac N                                   |            | 6.81(d, 1H), 7.23(dd, 1H), 7.54-7.62(m, 2H), 7.97(dd,             |
|      |                                        |            | 1H), 8.02-8.03(m, 1H), 8.29(s, 1H), 8.40(d, 1H),                  |
|      |                                        |            | 8.99(bs, 1H)                                                      |
|      | <b>L</b> 0.                            |            | DMSO-d <sub>6</sub> : 2.40-2.48(m, 7H), 2.63(t, 2H), 3.50-3.58(m, |
| 3-35 |                                        | 0.22       | 4H), 3.77(s, 3H), 3.91(t, 2H), 6.60(dd, 1H), 6.93(d,              |
|      |                                        | (AcOEt     | 1H), 7.28(dd, 1H), 7.56(d, 1H), 7.60(dd, 1H), 7.75-               |
|      | _N_                                    | only)      | 7.80(m, 1H), 7.80(dd, 1H), 8.10(s, 1H), 8.35(s, 1H),              |
|      | (0)                                    |            | 8.40(d, 1H), 9.21(s, 1H)                                          |
| 3-36 |                                        | 0.4        | DMSO-d <sub>6</sub> : 2.43(s, 3H), 7.03-7.08(m, 1H), 7.21-        |
|      |                                        | (n-hexane: | 7.23(m, 1H), 7.25-7.36(m, 1H), 7.47-7.57(m, 2H),                  |
|      | F                                      | AcOEt=1:1) | 7.74-7.77(m, 2H), 8.28(s, 1H), 8.35(d, 1H), 9.09(s,               |
|      |                                        |            | 1H), 9.24(s, 1H)                                                  |
| 3-37 | CI                                     | 0.4        | CDCl <sub>3</sub> : 2.64(d, 3H), 4.53-4.54(m, 1H), 6.88-6.93(m,   |
|      |                                        | (n-hexane: | 1H), 7.14-7.28(m, 3H), 7.54-7.58(m, 1H), 7.95-                    |
| }    | F                                      | AcOEt=1:1) | 7.98(m, 1H), 8.16-8.21(m, 1H), 8.24(s, 1H), 8.33-                 |
|      |                                        |            | 8.36(m, 1H), 9.05(s, 1H)                                          |
| 3-38 | CI                                     | 0.42       | CDCl <sub>3</sub> : 2.64(d, 3H), 4.46-4.47(m, 1H), 6.63-6.68(m,   |
|      |                                        | (n-hexane: | 1H), 7.30-7.32(m, 2H), 7.55(s, 1H), 7.64-7.68(m, 1H),             |
|      |                                        | AcOEt=1:1) | 7.97-7.99(m, 1H), 8.20-8.39(m, 3H), 9.03(s, 1H)                   |

| 3-39 | T                                     | Т           | CDOID 0.07/- 0111 0.00 5 5 11                         |
|------|---------------------------------------|-------------|-------------------------------------------------------|
| 3-39 | 0                                     |             | CDCl3: 2.37(s, 3H), 2.58-2.64(m, 7H), 3.15-           |
| İ    |                                       | 562, 564    | 3.18(m,4H), 3.87(s, 3H), 4.60-4.65(m,1H),             |
|      | T T                                   | [M+1]+      | 6.43(dd,1H), 6.44-6.54(m, 1H), 7.22(d, 1H), 7.30(s,   |
|      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |             | 1H), 7.57(dd, 1H), 7.94-7.99(m, 2H), 8.18(s, 1H),     |
|      | \ \ \ <sub>N</sub> \                  |             | 8.45(d, 1H), 8.95(s, 1H)                              |
|      | 1                                     |             |                                                       |
| 3-40 | 1                                     |             | DMSO-d6: 1.79-1.88(m,2H), 1.98-2.02(m, 2H), 2.43(s,   |
|      | \ \rightarrow\^\\                     | 572, 574    | 3H), 3.02-3.08(m, 3H), 3.28-3.39(m, 2H), 3.76(s, 3H), |
|      |                                       | [M+1]+      | I .                                                   |
|      | <br>  N                               | [[4] . 1] . | 6.47(dd, 1H), 6.65(d, 1H), 7.22(dd, 1H), 7.39(d, 1H), |
|      |                                       |             | 7.45-7.50(m, 1H), 7.74-7.77(m, 2H), 8.18(s, 1H),      |
|      |                                       |             | 8.22(s, 1H), 8.41-8.44(m, 1H), 9.21(bs, 1H)           |
|      |                                       |             |                                                       |
|      | Ň                                     |             |                                                       |
| 3-41 | <u> </u>                              |             | DMSO-d6: 2.44(d, 3H), 2.69-2.71(m, 4H), 3.49-         |
|      |                                       | 565, 567    | 3.52(m, 4H), 3.76(s, 3H), 6.45(dd, 1H), 6.62(d, 1H),  |
|      |                                       | [M+1]+      | 7.23(ddd, 1H), 7.38(d, 1H), 7.46-7.50(m, 1H), 7.72-   |
|      |                                       |             | 7.77(m, 2H), 8.19(s, 1H), 8.22(s, 1H), 8.42-8.45(m,   |
|      | $\bigcap$                             |             | 1H), 9.22(s, 1H)                                      |
|      |                                       |             |                                                       |
|      | S                                     |             |                                                       |
|      |                                       |             | DMSO-d6: 2.44(s, 3H), 3.31(s, 6H), 3.48-3.53(m, 8H),  |
| 3-42 |                                       | 595, 597    | 3.72(s, 3H), 6.24(dd, 1H), 6.37(d, 1H), 7.18-7.21(m,  |
|      |                                       | [M+1]+      | 2H), 7.40-7.55(m, 1H), 7.72-7.76(m, 2H), 8.17-        |
|      | _ N_                                  |             | 8.19(m, 2H), 8.40-8.50(m, 1H), 9.23(s, 1H)            |
|      | ] [                                   |             |                                                       |
|      | ✓°                                    |             |                                                       |
| 3-43 |                                       |             | DMSO-d6: 1.64-1.71(m, 2H), 1.75-1.82(m, 2H), 2.21-    |
|      | ~~ \                                  | 590, 592    | 2.28(m,1H), 2.43(d, 3H), 2.62-2.67(m,2H), 3.68-       |
|      |                                       | [M+1]+      | 3.74(m, 2H), 3.76(s, 3H), 6.45(dd,1H), 6.63(d, 1H),   |
|      | <br> N_                               | for dil.    |                                                       |
|      |                                       |             | 6.75-6.81(m, 1H), 7.20(ddd, 1H), 7.25-7.30(m, 1H),    |
|      | $\rightarrow$                         |             | 7.35(d, 1H), 7.45-7.52(m, 1H), 7.70-7.77(m, 2H),      |
|      | H <sub>2</sub> N 0                    |             | 8.18(s, 1H), 8.21(s, 1H), 8.40-8.47(m, 1H), 9.22(s,   |
|      | 1 1g/1 U                              |             | 1H)                                                   |
|      |                                       |             |                                                       |

| 3-44 | N N N N N N N N N N N N N N N N N N N | 597, 599<br>[M+1]+ | DMSO-d6: 2.44(s, 3H), 3.12-3.17(m, 4H), 3.68-3.85(m, 4H), 3.79(s, 3H), 6.55(dd, 1H), 6.71(d, 1H), 7.19-7.25(m, 1H), 7.43(d, 1H), 7.46-7.53(m, 1H), 7.73-7.78(m, 2H), 8.19-8.22(m, 1H), 8.22(s, 1H), 8.38-8.45(m, 1H), 9.20(bs, 1H)                                                          |
|------|---------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-45 |                                       | 600, 602<br>[M+1]+ | DMSO-d6: 1.85-1.95(m, 2H), 2.19(t, 2H), 2.25-2.35(m, 4H), 2.43(s, 3H), 3.52-3.64(m, 4H), 4.19(t, 2H), 6.65(d, 1H), 7.05(dd, 1H), 7.20(d, 1H), 7.23(ddd, 1H), 7.27(d, 1H), 7.40-7.46(m, 1H), 7.42(d, 1H), 7.70-7.75(m, 1H), 7.76(dd, 1H), 8.32(s, 1H), 8.45(d, 1H), 9.22(s, 1H), 9.23(s, 1H) |
| 3-46 |                                       | 590, 592<br>[M+1]+ | DMSO-d6: 2.05(s, 3H), 2.44(s, 3H), 3.08-3.17(m, 4H), 3.55-3.63(m, 4H), 3.77(s, 3H), 6.48(dd,1H), 6.67(d, 1H), 7.23(dd, 1H), 7.41(d, 1H), 7.45-7.52(m, 1H), 7.76(dd, 1H), 7.72-7.78(m, 1H), 8.19(s, 1H), 8.22(s, 1H), 8.40-8.47(m, 1H), 9.22(bs, 1H)                                         |
| 3-47 |                                       | 548, 550<br>[M+1]+ | DMSO-d6: 2.43(s, 3H), 2.82-2.87(m, 4H), 2.99-3.15(m, 4H), 3.76(s, 3H), 6.43(dd,1H), 6.61(d, 1H), 7.22(dd, 1H), 7.36(d, 1H), 7.43-7.51(m, 1H), 7.75(dd, 1H), 8.17(s, 1H), 8.21(s, 1H), 8.38-8.45(m, 1H), 9.12-9.28(m, 1H)                                                                    |
| 3-48 | N N N N N N N N N N N N N N N N N N N | MS<br>530, 532     | CDCl3: 2.65 (d, 3H), 3.96 (s, 3H), 4.40-4.48 (m, 1H), 6.85-6.88 (m, 2H), 7.22 (d, 1H), 7.25-7.31 (m, 1H), 7.56-7.65 (m, 3H), 7.79 (s, 1H), 8.00 (dd, 1H), 8.29 (s, 1H), 8.39 (dd, 1H), 9.00 (s, 1H).                                                                                        |

|      |                                        | T          | LODOL O 40 P                                                       |
|------|----------------------------------------|------------|--------------------------------------------------------------------|
| 3-49 |                                        |            | CDCl <sub>3</sub> : 2.18-2.50 (m, 4H), 2.28 (s, 3H), 2.65 (d, 3H), |
| 3-49 |                                        | Rf         | 3.10-3.75 (m, 4H), 3.93 (s, 3H), 4.50-4.61 (m, 1H),                |
|      |                                        | (AcOEt:    | 6.89 (d, 1H), 7.06 (dd, 1H), 7.59-7.67 (m, 2H), 7.93-              |
|      | N.                                     | MeOH=9:1)  | 7.97 (m, 1H), 8.26 (s, 1H), 8.37-8.43 (m, 2H), 9.02 (s,            |
|      |                                        | 0.20       | 1H).                                                               |
|      | Ņ                                      |            |                                                                    |
|      |                                        |            |                                                                    |
|      |                                        | Rf         | CDCl3: 2.63 (d, 3H), 3.90 (s, 3H), 4.00 (s, 3H), 4.39-             |
| 3-50 | 0                                      | 0.4        | 4.47 (m, 1H), 6.23 (d, 1H), 7.00 (s, 1H), 7.22-7.25 (m,            |
|      |                                        | (Hexane/Ac | 1H), 7.57 (dd, 1H), 7.96 (dd, 1H), 8.22 (s, 1H), 8.25              |
|      | N                                      | OEt=1/1)   | (d, 1H), 8.37 (d, 1H), 8.96 (s, 1H)                                |
| 1    |                                        | ·          | ( ) ( ) ( ) ( ) ( )                                                |
|      |                                        |            |                                                                    |
| ļ    | ,                                      | MS         | CDCl2: 4.47 /4. 21 N. 4.74 4.72 /                                  |
| 3-51 |                                        |            | CDCl3: 1.17 (t, 3H), 1.71-1.79 (m, 1H), 2.28 (s, 3H),              |
| 00.  |                                        | 535, 537   | 2.62 (d, 3H), 3.41 (q, 2H), 3.46 (t, 2H), 3.79 (q, 2H),            |
|      |                                        |            | 4.41-4.48 (m, 1H), 6.43 (s, 1H), 6.10-6.18 (m, 2H),                |
|      |                                        |            | 7.15 (dd, 1H), 7.33 (d, 1H), 7.35-7.42 (m, 1H), 7.90               |
|      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |            | (dd, 1H), 8.16 (s, 1H), 8.45 (d, 1H), 9.07 (s, 1H).                |
|      |                                        |            |                                                                    |
|      | / но                                   |            |                                                                    |
|      | 1                                      | Rf         | CDCl3: 2.66 (d, 3H), 3.91 (s, 3H), 4.41-4.47 (m, 1H),              |
| 3-52 |                                        | - 1        | 6.80 (d, 1H), 6.92 (dd, 1H), 7.26-7.35 (m, 1H), 7.54 (s,           |
|      |                                        |            |                                                                    |
|      | cı                                     |            | 1H), 7.76 (dd, 1H), 8.00 (dd, 1H), 8.27-8.32 (m, 2H),              |
|      |                                        | MC         | 8.38 (dd, 1H), 8.97 (s, 1H).                                       |
| 3-53 |                                        | MS         | CDCl <sub>3</sub> : 2.26 (s, 3H), 2.62 (d, 3H), 2.68 (s, 6H), 4.72 |
| U-UU |                                        | 491, 493   | (q, 1H), 6.78 (s, 1H), 6.89 (d, 1H), 7.12 (d, 1H), 7.15            |
|      |                                        | 1          | (d, 1H), 7.40-7.47 (m, 2H), 7.91 (dd, 1H), 8.40 (s, 1H),           |
|      | "\                                     |            | 8.41 (dd, 1H), 9.11 (s, 1H).                                       |
|      |                                        | MS         | CDCl <sub>3</sub> : 2.04 (s, 3H), 2.65 (d, 3H), 4.42-4.48 (m, 1H), |
| 3-54 |                                        | 525, 527   | 6.79 (s, 1H), 6.96-7.00 (m, 2H), 7.28-7.34 (m, 4H),                |
|      |                                        | i          | 7.87-7.91 (m, 1H), 8.18 (s, 1H), 8.23-8.26 (m, 2H),                |
|      |                                        |            | 8.53 (d, 2H), 9.07 (s, 1H).                                        |
|      | N _//                                  |            | (-, ), σιστ (σ, 11 ).                                              |
| ···  |                                        | L          |                                                                    |

|      | <del></del>                           | 1 = 2 (1)   |                                                                        |
|------|---------------------------------------|-------------|------------------------------------------------------------------------|
| 0.55 |                                       | Rf (Hexane: | CDCl <sub>3</sub> : 1.34 (t, 3H), 1.44 (t, 3H), 2.63 (d, 3H), 3.81 (q, |
| 3-55 |                                       | AcOEt=3:1)  | // (i) = 1,7 to 10 (4, 11), 0.70 (4,                                   |
|      | \                                     | 0.19        | 1H), 7.63-7.69 (m, 2H), 7.94 (d, 1H), 7.98 (dd, 1H),                   |
|      |                                       | 1           | 8.42 (d, 1H), 8.93 (s, 1H).                                            |
|      | 1.0                                   | MS          | CDCl <sub>3</sub> : 2.63 (d, 3H), 3.85 (s, 3H), 3.93 (s, 3H), 4.52     |
| 3-56 |                                       | 570, 572    | (q, 1H), 6.78-6.83 (m, 2H), 6.93 (d, 2H), 6390-7.02                    |
|      |                                       |             | (m, 1H), 7.11-7.15 (m, 1H), 7.21-7.27 (m, 1H), 7.61                    |
|      |                                       |             | (s, 1H), 7.87-7.92 (m, 1H), 8.26 (s, 1H), 8.20-8.30 (m,                |
|      |                                       |             | 1H), 8.38-8.41 (m, 1H), 8.92 (s, 1H).                                  |
|      | J .~                                  | Rf          | CDCl <sub>3</sub> : 1.44 (t, 3H), 2.65 (d, 3H),2.79-2.89 (m, 4H),      |
| 3-57 |                                       | (Hexane:Ac  | 3.65-3.74 (m, 4H), 4.07 (q, 2H), 4.52 (q, 4H), 6.48                    |
|      |                                       | OEt=3:1)    | (dd, 1H), 6.80 (d, 1H), 7.20-7.25 (m, 1H), 7.55-7.67                   |
|      | 6~                                    | 0.16        | (m, 2H), 7.92-7.98 (m, 2H), 8.29 (s, 1H), 8.43 (d, 1H),                |
|      |                                       |             | 8.95 (s, 1H).                                                          |
|      | 1.0                                   | Rf          | CDCl <sub>3</sub> : 1.46 (t, 3H), 2.63 (d, 3H), 3.08-3.13 (m, 4H),     |
| 3-58 |                                       | 0.17        | 3.83-3.90 (m, 4H), 4.09 (q, 2H), 4.46 (q, 1H), 6.39                    |
|      |                                       | (Hexane/Ac  | (dd, 1H), 6.51 (d, 1H), 7.21-7.28 (m, 1H), 7.37 (s, 1H),               |
|      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | OEt=1/1)    | 7.58 (dd, 1H), 7.97 (dd, 1H), 8.03 (d, 1H), 8.21 (s,                   |
|      |                                       |             | 1H), 8.46 (d, 1H), 8.94 (s, 1H).                                       |
|      | `O'                                   |             |                                                                        |
|      | 1,0~0                                 | MS          | CDCl <sub>3</sub> : 2.63 (d, 3H), 3.44 (s, 3H), 3.65 (s, 3H), 3.69-    |
| 3-59 |                                       | 538, 540    | 3.73 (m, 2H), 4.10-4.15 (m, 2H), 4.40 (q, 1H), 6.45                    |
|      | 10'                                   |             | (dd, 1H), 6.85 (d, 1H), 7.19-7.25 (m, 1H), 7.61 (dd,                   |
|      | ·                                     |             | 1H), 7.88 (s, 1H), 7.93-7.97 (m, 2H), 8.27 (s, 1H),                    |
|      |                                       |             | 8.46 (d, 1H), 8.95 (s, 1H).                                            |
|      | ↓ <sub>o</sub> oH                     | Rf (AcOEt)  | CDCl <sub>3</sub> : 2.63 (d, 3H), 3.67 (s, 3H), 4.18 (t, 2H), 4.38-    |
| 3-60 |                                       | 0.54        | 4.49 (m, 3H), 6.46 (dd, 1H), 6.81 (d, 1H), 7.60-7.69                   |
|      | ,°~                                   |             | (m, 2H), 7.92-7.99 (m, 2H), 8.27 (s, 1H), 8.49 (d, 1H),                |
|      |                                       |             | 9.00 (s, 1H).                                                          |
|      |                                       | Rf (Hexane: | CDCl <sub>3</sub> : 1.44 (t, 3H), 2.63 (d, 3H), 3.64 (s, 3H), 4.07 (q, |
| 3-61 |                                       | AcOEt=2:1)  | 2H), 4.47 (q, 1H), 6.45 (dd, 1H), 6.78 (d, 1H), 7.21-                  |
|      | ·/~''                                 | 0.46        | 7.28 (m, 1H), 7.40-7.48 (m, 2H), 7.93-7.99 (m, 2H),                    |
|      |                                       |             | 8.26 (s, 1H), 8.44 (d, 1H), 8.96 (s, 1H).                              |
|      |                                       |             | ,, (-)                                                                 |

|      |                 | Rf          | CDCI + 4 20 (4 010) 0 20 (4 010)                                    |
|------|-----------------|-------------|---------------------------------------------------------------------|
| 3-62 |                 |             | CDCl <sub>3</sub> : 1.36 (d, 6H), 2.63 (d, 3H), 3.63 (s, 3H), 4.41- |
| 3-02 | · ·             | (Hexane:Ac  | 4.52 (m, 2H), 6.45 (dd, 1H), 6.81 (d, 1H), 7.21-7.26                |
|      |                 | OEt=3:1)    | (m, 1H), 7.59-7.68 (m, 2H), 7.91-7.98 (m, 2H), 8.26                 |
|      | / 0             | 0.31        | (s, 1H), 8.45 (d, 1H), 8.96 (s, 1H).                                |
|      | 1.0~/           | Rf (Hexane: | CDCl <sub>3</sub> : 1.07 (t, 3H), 1.84 (m, 2H), 6.63 (d, 3H), 3.64  |
| 3-63 |                 | AcOEt=3:1)  | (s, 3H), 3.96 (t, 2H), 4.40-4.49 (m, 1H), 6.46 (dd, 1H),            |
|      | ,0/~            | 0.40        | 6.79 (d, 1H), 7.20-7.27 (m, 1H), 7.58-7.66 (m, 2H),                 |
|      |                 |             | 7.94-7.97 (m, 2H), 8.26 (s, 1H), 8.45 (d, 1H), 8.97 (s,             |
|      |                 |             | 1H).                                                                |
|      | 0               | Rf          | CDCl <sub>3</sub> : 2.62 (d, 3H), 6.68 (s, 6H), 3.84 (s, 3H), 4.41- |
| 3-64 |                 | (Hexane:Ac  | 4.48 (m, 1H), 6.36 (dd, 1H), 6.80 (d, 1H), 7.17-7.24                |
|      |                 | OEt=3:1)    | (m, 1H), 7.51-7.62 (m, 2H), 7.83 (s, 1H), 7.95 (dd,                 |
|      |                 | 0.19        | 1H), 8.27 (s, 1H), 8.3*9-8.45 (m, 1H), 8.91 (s, 1H).                |
|      |                 | Rf          | CDCl <sub>3</sub> : 2.66 (d, 3H), 3.97 (s, 3H), 4.47-4.55 (m, 1H),  |
| 3-65 |                 | (Hexane:Ac  | 6.96-7.10 (m, 3H), 7.21-7.24 (m, 1H), 7.66 (s, 1H),                 |
|      |                 | OEt=1:1)    | 7.93 (dd, 1H), 8.25 (d, 1H), 8.31 (s, 1H), 8.47 (d, 2H),            |
|      | N N             | 0.12        | 8.59 (s, 1H), 8.96 (s, 1H).                                         |
|      |                 | MS          | CDCl <sub>3</sub> : 2.65 (d, 3H), 3.96 (s, 3H), 4.61-4.71 (m, 1H),  |
| 3-66 | °-              | 541, 543    | 6.89-7.05 (m, 3H), 7.16 (dd, 1H), 7.15-7.23 (m, 1H),                |
|      |                 |             | 7.60 (d, 1H), 7.65 (s, 1H), 7.89 (d, 1H), 8.21 (d, 1H),             |
|      |                 |             | 8.28 (d, 1H), 8.51 (br. s, 2H), 8.57 (s, 1H), 8.93 (s,              |
|      | . "             |             | 1H).                                                                |
|      |                 | MS          | CDCl <sub>3</sub> : 2.65 (d, 3H), 3.96 (s, 3H), 4.51 (q, 1H), 6.90- |
| 3-67 | ~~              | 541, 543    | 7.06 (m, 3H), 7.11-7.16 (m, 1H), 7.38 (d, 1H), 7.50-                |
|      |                 |             | 7.61 (m, 2H), 7.62-7.67 (m, 1H), 7.89 (dd, 1H), 8.29                |
|      |                 |             | (s, 1H), 8.34 (d, 1H), 8.53 (d, 1H), 8.79 (br.s, 1H),               |
|      |                 |             | 8.94 (s, 1H).                                                       |
|      | ↓o.             |             | CDCl <sub>3</sub> : 1.45-1.59 (m, 2H), 1.70-1.78 (m, 1H), 1.82-     |
| 3-68 |                 | LC-MS       | 1.90 (m, 1H), 2.38-2.50 (m, 1H), 2.43 (s, 3H), 2.62-                |
|      | _N_             | 590         | 2.77 (m, 2H), 3.56-3.70 (m, 2H), 3.76 (s, 3H), 6.46                 |
|      | NH <sub>2</sub> |             | (dd, 1H), 6.63 (d, 1H), 6.82-6.88 (br, 1H), 7.22 (dd,               |
|      | Ö               |             | 1H), 7.31-7.40 (m, 2H), 7.43-7.51 (m, 1H), 7.50-7.80                |
|      |                 |             | (m, 2H), 8.14-8.20 (br, 1H), 8.21 (s, 1H), 8.39-8.48                |
|      |                 | <del></del> |                                                                     |

|      | <del></del>                            | <del>7</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|----------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                        |              | (m, 1H), 9.16-9.26 (br, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ·                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3-69 | , O.                                   | 0.34         | CDCl <sub>3</sub> : 1.58-1.82 (br, 7H), 1.88-2.03 (br, 3H), 2.44-2.45 (m,5H), 3.42-3.52 (m, 3H), 3.75 (s, 3H), 6.66 (dd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1    | N N                                    | (CH2Cl2:M    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                        |              | 1H), 6.92 (d, 1H), 7.28 (dd, 1H), 7.44 (br, 1H), 7.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | ~                                      | eOH=9:1)     | (dd, 1H), 7.79-7.81 (m, 2H), 8.18 (s, 1H), 8.32 (s, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                        |              | 8.35-8.37 (m, 1H), 9.17 (s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.70 |                                        |              | DMSO-d6: 1.84-1.92(m, 2H), 2.34-2.41(m, 4H), 2.41-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3-70 |                                        | Ms:607,      | 2.45(m, 3H), 2.44(t, 2H), 3.58(t, 4H), 3.75(s, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                        | 609          | 4.02(t, 2H), 6.48(dd, 1H), 6.63(d, 1H), 7.21(dd, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                        |              | 7.41(d, 1H), 7.46(dd, 1H), 7.72-7.78(m, 1H), 7.76(dd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | , N                                    |              | 1H), 8.22(s, 1H), 8.25(s, 1H), 8.40(d, 1H), 9.22(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1                                      |              | DMSO-d6: 1.84-1.92(m, 2H), 2.14(s, 3H), 2.35-2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3-71 |                                        | Ms:591,      | l i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                        | 593          | (m, 4H), 2.43(t, 2H), 2.44(d, 3H), 3.58(t, 4H), 4.01(t, 2H), 6.77(dd, 1H), 6.83(d, 4H), 7.47(dd, 4H), 7.03(dd, 4H), 7.47(dd, 4H) |
|      | ٥                                      | 030          | 2H), 6.77(dd, 1H), 6.82(d, 1H), 7.17(dd, 1H), 7.20(d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 5                                      | 1            | 1H), 7.3-7.39(m, 1H, 7.71-7.77(m, 2H), 8.2(s, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |              | 8.35-8.44(m, 1H), 8.71(s, 1H), 9.27(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | ( <sub>0</sub> )                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1 0                                    |              | DMSO-d6: 1.82-1.9 (m, 2H), 2.13-2.17 (m, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3-72 |                                        | Ms:620,      | 2.25-2.47(m, 13H), 3.75 (s, 3H), 4.01 (t, 2H), 6.47 (dd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                        | 622          | 1H), 6.63(d, 1H), 7.19-7.24 (m, 1H), 7.41 (d, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | °                                      |              | 7.43-7.5(m, 1H), 7.70-7.79(m, 2H), 8.22(s, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | \ \ \ \ \                              |              | 8.25(brs, 1H), 8.37-8.44(m, 1H), 9.22(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | ∠'n¬                                   |              | ( , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | \ <sub>N</sub>                         | į            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                        |              | DMSO-d6: 1.78 (t, 2H), 2.32-2.36 (m, 4H9, 2.35-2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3-73 |                                        | Ms:607,      | (m, 3H), 3.54-3.59 (m, 4H), 3.74 (t, 3H), 3.78 (s, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | ζ                                      | 609          | 6.38-6.42 (m, 1H), 6.85 (d, 1H), 6.86-6.95 (m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | _a                                     |              | 7.33-7.43(m, 2H), 7.63-7.68 (m, 1H), 7.85-8.15 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | <u>_</u>                               |              | 3H), 8.64-8.8 (m, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|      |          |            | DMSO-d6: 1.47-1.67(m, 2H), 1.84-2.01(m, 2H), 2.03        |
|------|----------|------------|----------------------------------------------------------|
| 3-74 |          | Ms:605,    | (s, 3H), 2.41-2.46 (m, 3H), 3.23-3.39 (m, 2H), 3.65-     |
|      |          | 607        | 3.73 (m, 1H), 3.81(s, 3H), 3.8-3.88 (m, 1H), 4.58-4.65   |
| :    |          |            | (m, 1H), 6.55 (dd, 1H), 6.68 (d, 1H), 7.2-7.26(m, 1H),   |
| j    |          |            | 7.43(d, 1H), 7.42-7.51 (m, 1H), 7.7-7.8(m, 2H), 8.23     |
|      |          |            | (s, 1H), 8.26 (brs, 1H), 8.37-8.44(m, 1H), 9.22(brs,     |
|      |          |            | 1H)                                                      |
|      |          |            | DMSO-d6: 1.38-1.6(m, 2H), 1.74-1.9(m, 2H), 2.0 (s,       |
| 3-75 |          | Ms:605,    | 3H), 2.42-2.47 (m, 3H), 3.12-3.3 (m, 2H), 3.55-3.65      |
|      |          | 607        | (m, 1H), 3.7-3.8 (m, 1H), 3.78 (s, 3H), 4.27-4.34 (m,    |
|      |          |            | 1H), 6.65 (dd, 1H), 6.94 (d, 1H), 7.24-7.3 (m, 1H),      |
|      | N        | ·          | 7.53-7.63(m, 2H), 7.74-7.83 (m, 2H), 8.09 (brs, 1H),     |
|      | ∕~o      |            | 8.35 (s, 1H), 8.38(d, 1H), 9.19(brs, 1H)                 |
|      |          |            | DMSO-d6: 1.51-1.61 (m, 2H), 1.79-1.87 (m, 2H),           |
| 3-76 |          | Ms:577,    | 2.03-2.11 (m, 2H), 2.14 (s, 3H), 2.42-2.47 (m, 3H),      |
|      | ٩٨٨      | 579        | 2.52-2.6 (m, 2H), 3.77 (s, 3H), 4.02-4.09 (m, 1H), 6.6   |
|      |          |            | (dd, 1H), 6.92 (d, 1H), 7.24-7.3 (m, 1H), 7.52-7.6(m,    |
|      | , ,      |            | 2H), 7.74-7.82 (m, 2H), 8.08 (brs, 1H), 8.34 (s, 1H),    |
|      | <b>,</b> |            | 8.4 (d, 1H), 9.2 (brs, 1H)                               |
|      |          |            | DMSO-d6: 2.41-2.45 (m, 3H), 6.89-6.96 (m, 1H),           |
| 3-77 | F        | Rf: 0.4    | 6.69(bs, 1H), 7.24-7.33 (m, 2H), 7.51-7.57 (m, 1H),      |
|      | F .      | (n-hexane: | 7.63-7.7 (m, 1H), 7.73-7.78 (m, 1H), 7.79 (dd, 1H),      |
|      |          | AcOEt=7:3) | 8.37(s, 1H), 8.41(d, 1H), 9.21 (brs, 1H), 9.24 (brs, 1H) |
|      |          |            | DMSO-d6: 1.33-1.43 (m, 2H), 1.79-1.86 (m, 2H),           |
| 3-78 | ~~~      | Ms:563,    | 2.43-2.46 (m, 3H), 2.46-2.53 (m, 2H), 2.87-2.94 (m,      |
|      | 0        | 565        | 2H), 3.77 (s, 3H), 4.07-4.14 (m, 1H), 6.59 (dd, 1H),     |
|      | $\perp$  | ¦<br>·     | 6.91 (d, 1H), 7.23-7.28 (m, 1H), 7.53-7.59 (m, 2H),      |
|      |          | ,          | 7.79 (dd, 1H), 8.03 (brs, 1H), 8.32 (s, 1H), 8.38 (d,    |
|      | H        |            | 1H), 8.7-9.5 (brs, 1H)                                   |
|      |          |            |                                                          |

|          | <del></del> | <del></del> |                                                         |
|----------|-------------|-------------|---------------------------------------------------------|
|          | 0,          |             | DMSO-d6: 1:41-1.51 (m, 2H), 1.88-1.95 (m, 2H),          |
| 3-79     |             | Ms:563,     | 2.41-2.45 (m, 3H), 2.54-2.63 (m, 2H), 2.92-3.0 (m,      |
|          |             | 565         | 2H), 3.75 (s, 3H), 4.35-4.43 (m, 1H), 6.50 (dd, 1H),    |
|          |             |             | 6.63 (d, 1H), 7.18-7.23 (m, 1H), 7.40 (d, 1H), 7.42-    |
|          |             |             | 7.48 (m, 1H), 7.75 (dd, 1H), 8.21 (s, 1H), 8.22-8.25    |
|          | H           |             | (m, 1H), 8.37-8.42 (m, 1H), 8.9-9.5 (brs, 1H)           |
|          | i           |             | DMSO-d6: 2.4-2.46 (m, 3H), 3.79 (s, 3H), 6.72 (ddd,     |
| 3-80     | , °         | Ms:482,     | 1H), 6.99 (dd, 1H), 7.21-7.26 (m, 1H), 7.47-7.53 (m,    |
|          |             | 484         | 1H), 7.59-7.64 (m, 1H), 7.76 (dd, 1H), 8.25 (s, 1H),    |
|          | ļ.          |             | 8.29-8.37 (m, 2H), 8.8-9.6 (m, 1H)                      |
|          |             |             | DMSO-d6: 2.41-2.49 (m, 3H), 3.82 (s, 3H), 6.80 (ddd,    |
| 3-81     |             | Ms:482,     | 1H), 7.01 (dd, 1H), 7.3-7.35 (m, 1H), 7.56-7.63 (m,     |
|          | F T         | 484         | 1H), 7.7-7.8 (m, 1H), 7.82 (dd, 1H), 7.85 (dd, 1H),     |
|          |             |             | 8.16 (s, 1H), 8.35 (dd, 1H), 9.18 (brs, 1H)             |
|          |             |             | DMSO-d6: 1.73-1.82 (m, 1H), 2.23-2.34 (m, 4H),          |
| 3-82     |             | Ms:563,     | 2.34-2.42(m, 3H), 2.42-2.46 (m, 3H), 2.59 (dd, 1H),     |
|          |             | 565         | 2.62-2.68 (m, 1H), 2.80 (dd, 1H), 3.75 (s, 1H), 4.85-   |
|          | Ý           |             | 4.91(m, 1H), 6.42 (dd, 1H), 6.57(d, 1H), 7.19-7.24(m,   |
|          | $\Diamond$  |             | 1H), 7.41 (d, 1H), 7.43-7.51(m, 1H), 7.68-7.79 (m,      |
|          | _n_         |             | 2H), 8.22(s, 1H), 8.23(s, 1H), 8.37-8.43 (m, 1H), 9.21  |
|          |             |             | (brs, 1H).                                              |
|          | <u> </u>    |             | 2.36 (s, 3H), 2.65 (d, 3H), 3.93 (s, 3H), 4.46-4.51 (m, |
| 3-83     |             | MS          | 1H), 6.75-6.80 (m, 2H), 6.97-7.04 (m, 2h), 7.25-7.30    |
|          |             | 544, 546    | (m, 1H), 7.56-7.66 (m, 2H), 7.98 (dd, 1H), 8.29 (s,     |
|          | N.          |             | 1H), 8.36-8.44 (m, 2H), 9.01 (s, 1H).                   |
|          | 1           |             | CDCl3: 2.32 (s, 3H), 2.39-2.47 (m, 4H), 2.64 (d, 3H),   |
| 3-84     |             | MS          | 2.89-2.97 (m, 4H), 3.85 (s, 3H), 4.54-4.52 (m, 1H),     |
|          |             | 562, 564    | 6.52 (dd, 1H), 6.79 (d, 1H), 7.22 (m, 1H), 7.52-7.64    |
|          | _N          | , •• •      | (m, 2H), 7.94-7.99 (m, 2H), 8.28 (s, 1H), 8.42 (d, 1H), |
|          |             |             | 8.93 (s, 1H).                                           |
| <u> </u> |             |             | 0.00 (0, 111).                                          |

## Example 4: 2-[5-Bromo-2-(subst. phenylamino)-pyrimidin-4-ylamino]-N-propyl-benzene-sulfonamides

These compounds are prepared in analogy to Example 2 using 2-(5-bromo-2-chloro-pyrimidin-4-ylamino)-N-propyl-benzenesulfonamide and the corresponding aniline to give compounds No. 4-1 to 4-31 having the substituent Rx as listed under Example 3 for compounds No. 3-1 to 3-31. Preparation of 2-(5-bromo-2-chloro-pyrimidin-4-ylamino)-N-propyl-benzenesulfonamide

To a solution of 5-bromo-2,4-dichloropyrimidine (90  $\mu$ L, 0.70 mmol) and 2-amino-N-propyl-benzenesulfonamide (100 mg, 0.47 mmol), sodium hydride (54.2 mg, 0.56 mmol) in DMSO (1.0 mL) is added and the resulting solution is stirred at 80°C for 3.0 h. The mixture is poured into water and extracted with ethyl acetate three times. The organic layer is washed with water and then brine, dried over sodium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane : ethyl acetate = 5 : 1) to afford the title compound as a slightly yellow solid.

<sup>1</sup>H-NMR (δ, ppm) : 0.89 (t, 3H), 1.41 (q, 2H), 3.56 (t, 2H), 4.92 (br.s, 2H), 6.71 (dd, 1H), 6.77 (dd, 1H), 7.33 (dd, 1H), 7.54 (dd, 1H), 8.79 (s, 1H)

Rf (hexane: ethyl acetate = 1:1): 0.64.

### Example 5: 2-[5-Trifluoromethyl-2-(subst. phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzenesulfonamides

These compounds are prepared in analogy to Example 2 using 2-(2-chloro-5-trifluoromethyl-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide and the corresponding aniline to give compounds No. 5-1 to 5-31 having the substituent Rx as listed under Example 3 for compounds No. 3-1 to 3-31.

Preparation of 2-(2-chloro-5-trifluoromethyl-pyrimidin-4-vlamino)-N-methyl-benzenesulfonamide To a solution of 2,4-dichloro-5-trifluoromethyl-pyrimidine (386 mg, 1.79 mmol) in acetonitrile (10 mL), 2-amino-N-methyl-benzenesulfonamide (333 mg, 1.79 mmol) and 1,8-diaza[5.4.0]-bicyclo-7-undecene (280  $\mu$ L, 1.88 mmol) are added successively at ambient temperature. After stirring for 15 h at room temperature, dichloromethane (30 mL) is added to the mixture, and the solution is washed with saturated aqueous sodium hydrogen carbonate and saturated aqueous sodium chloride, dried over magnesium sulfate, and evaporated in vacuo. The resulting solid is purified by flash chromatography.

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 3.73(s, 3H), 6.67-6.69(m, 1H), 6.72-6.73(m, 1H), 7.27-7.31(m, 1H), 7.78 (dd, 1H), 8.60(s, 1H). Rf (hexane : ethyl acetate = 1:1): 0.28.

## Example 6: 2-[5-Bromo-2-(2,3-[difluoromethylenedioxy]phenylamino)-pyrimidin-4-ylamino]-benzenesulfonamide

This compound is obtained as a side product formed by N-demethylation on reaction of 2-(5-bromo-2-chloropyrimidin-4-ylamino)-N-methyl-benzenesulfonamide with 2,3-(difluoromethylene-dioxy)aniline following the procedure of Example 2. It may also be prepared by reaction of 2-(5-bromo-2-chloropyrimidin-4-ylamino)benzenesulfonamide with 2,3-(difluoromethylenedioxy)-aniline.

Rf (n-hexane: ethyl acetate = 1:1): 0.46.

<sup>1</sup>H-NMR: (CDCl<sub>3</sub>) 4.83 (bs, 2H), 6.77 (dd, 1H), 6.86 (s, 1H), 6.97 (dd, 1H), 7.31-7.24 (m, 1H), 7.57 (dd, 1H), 7.81 (d, 1H), 8.02 (dd, 1H), 8.28 (d, 1H), 8.29 (s, 1H), 8.88 (s, 1H).

Preparation of 2-(5-bromo-2-chloropyrimidin-4-ylamino)benzenesulfonamide: To a solution of 5-bromo-2,4-dichloropyrimidine (300 mg, 1.32mmol) and 2-amino-benzenesulfonamide (340 mg, 1.97 mmol) in 2-propanol (3 mL), concentrated hydrochloric acid (0.06 mL) is added and the mixture is stirred at 90°C for 4.5 hours. The mixture is poured into aqueous sodium hydrogen carbonate and extracted with ethyl acetate three times. The organic layer is washed with water, dried over sodium sulfate, and evaporated in vacuo. The residue is purified by column chromatography (hexane : ethyl acetate = 2:1) to afford the title compound.

Rf (hexane : ethyl acetate = 1:1): 0.55.  $^{1}$ H-NMR (400MHz, CDCl3)  $\delta$  : 4.78 (br.s, 2H), 7.22 (dd, 1H), 7.61 (ddd, 1H), 7.95 (dd, 1H), 8.35 (s, 1H), 8.35 (d, 1H), 9.18 (s, 1H).

Example 7A: 2-[5-Chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzamide

To a suspension of 2-(2,5-dichloro-pyrimidin-4-yl-amino)-*N*-methyl-benzamide (5.05 g, 17.0 mmol) in 90 mL of 2-methoxyethanol are added 2-methoxy-4-morpholinoaniline dihydrochloride (4.56 g, 16.2 mmol) and 17.0 mL of 1N ethanolic solution of hydrogen chloride (17.0 mmol). After the reaction mixture is stirred at 110°C for 4 hours and cooled to room temperature, the mixture is neutralized with 1N aqueous NaOH solution and extracted with EtOAc (100 mL $\times$ 3). The organic layer is washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The resulting black solid is washed with EtOH (90 mL), then purified with silica gel column chromatography (CH<sub>2</sub>Cl<sub>2</sub> to CH<sub>2</sub>Cl<sub>2</sub>: AcOEt=1:2 ) to give 2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzamide as a pale yellow solid. <sup>1</sup>H-NMR (400MHz, DMSO-d6,  $\delta$ ): 2.80 (d, 3H, J = 4.52 Hz), 3.10-3.20 (m, 4H), 3.78 (s, 3H), 3.70-3.80 (m, 4H), 6.49 (dd, 1H, J = 8.56, 2.52 Hz), 6.66 (d, 1H, J = 2.52 Hz), 7.08 (dd, 1H, J = 8.04, 8.04 Hz), 7.44 (d, 1H, J = 8.56 Hz), 7.71 (dd, 1H, J = 8.04, 1.48 Hz), 8.10 (s, 1H), 8.13 (s, 1H), 8.59 (d, 1H, J = 8.04 Hz) 8.68-8.75 (m, 1H), 11.59 (S, 1H). MS *m/z* 469, 471 (M+1)<sup>+</sup>.

The following 2-[5-Chloro-2-(substituted phenylamino)-pyrimidin-4-ylamino]-N-methylbenzamide are prepared from 2-(2,5-Dichloro-pyrimidin-4-ylamino)-N-methylbenzamide and the corresponding aniline following the procedure of Example 7A.

| Expl | Rx | Rf (solvent) | NMR (400MHz) , δ (ppm) |
|------|----|--------------|------------------------|
| No.  |    | or MS        |                        |
|      |    |              |                        |

|     | Υ                                      |                                                   | TD1100 10 111100 1                                              |
|-----|----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|
| -   |                                        |                                                   | DMSO-d6: 1.44-1.33 (m, 2H), 1.64-1.45 (m, 6H),                  |
| 7-1 |                                        | MS: m/z                                           | 1.73-1.89 (m, 2H), 2.34-2.44 (m, 1H), 2.43-2.55 (m,             |
|     | N                                      | 550, 552                                          | 4H), 2.65 (t, 2H), 2.80 (d, 3H), 3.75 (s, 3H), 3.72-3.75        |
|     |                                        | (M+1)                                             | (m, 2H), 6.48 (dd, 1H), 6.62 (d, 1H), 7.06 (dd, 1H),            |
|     | <u></u>                                |                                                   | 7.32 (dd, 1H), 7.39 (d, 1H), 7.71 (dd, 1H), 8.09(s, 1H),        |
|     |                                        |                                                   | 8.60 (d, 1H), 8.70 (d, 1H), 11.58 (s, 1H)                       |
|     |                                        |                                                   | CDCl <sub>3</sub> : 1.70-1.97(m, 4H) ,2.62-2.79(m, 1H), 3.04(d, |
| 7-2 |                                        | 0.3                                               | 3H), 3.02-3.18(m, 2H), 3.23-3.33( m, 2H), 3.88 (s,              |
|     |                                        | (MeOH:                                            | 3H), 5.39-5.47(m, 1H), 6.15-6.24(m, 1H), 6.55-                  |
|     | Ň                                      | AcOEt                                             | 6.62(m, 2H), 6.74-6.82(m, 1H), 7.09 (dd, 1H),7.23-              |
|     |                                        | =5:95)                                            | 7.32 (m, 1H), 7.46-7.52(m, 2H), 8.09(s, 1H), 8.15(d,            |
|     | NH <sub>2</sub>                        |                                                   | 1H), 8.68(d, 1H) 11.0(bs, 1H)                                   |
|     |                                        | *** <del>**********************************</del> | DMSO-d6: 2.24 (s, 3H), 2.45-2.55 (m, 4H), 2.80 (d,              |
| 7-3 | o o                                    | MS (ESI)                                          | 3H, J = 4.52 Hz), 3.12-3.17 (m, 4H), 3.76 (s, 3H), 6.48         |
|     |                                        | m/z 482,                                          | (dd, 1H, J = 8.56, 2.52 Hz), 6.63 (d, 1H, J = 2.52 Hz),         |
|     | N                                      | 484 (M+1) <sup>+</sup>                            | 7.05-7.10 (m, 1H), 7.27-7.35 (m, 1H), 7.40 (d, 1H, J =          |
|     |                                        |                                                   | 8.56 Hz), 7.69-7.72 (m, 1H), 8.09 (s, 1H), 8.12 (s,             |
|     | Ï                                      |                                                   | 1H), 8.55-8.65 (m, 1H), 8.67-8.75 (m, 1H), 11.59 (s,            |
|     |                                        |                                                   | 1H)                                                             |
|     | _                                      |                                                   | DMSO-d6: 2.48-2.55(m, 4H), 2.71(t, 2H), 2.80(d, 3H),            |
| 7-4 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0.46                                              | 3.58-3.61(m, 4H), 3.76(s, 3H), 4.11(t, 2H), 6.52(dd,            |
|     |                                        | (MeOH:                                            | 1H), 6.66(d, 1H), 7.06(dd, 1H), 7.32(dd, 1H), 7.46(d,           |
|     | ا o ا                                  | CH <sub>2</sub> Cl <sub>2</sub> =1:4)             | 1H), 7.71(dd, 1H), 8.11(s, 1H), 8.19 (s, 1H), 8.54-             |
|     | , N                                    |                                                   | 8.60(m, 1H), 8.60-8.75(m, 1H), 11.6(s, 1H)                      |
|     | \ <u></u>                              |                                                   |                                                                 |
|     |                                        |                                                   | DMSO-d6: 1.60-1.70 (m, 2H), 1.90-1.98 (m, 2H),                  |
| 7-5 |                                        | <i>m/z</i> 497,                                   | 2.13-2.25 (m, 2H), 2.19 (s, 3H), 2.60-2.67 (m, 2H),             |
|     |                                        | 499 (M+1) <sup>+</sup>                            | 2.80 (d, 3H, J = 4.52 Hz), 3.75 (s, 3H), 4.30-4.40 (m,          |
|     | · · · ·                                |                                                   | 1H), 6.54 (dd, 1H, J = 8.56, 2.0 Hz), 6.65 (d, 1H, J =          |
|     | /N/                                    |                                                   | 2.0 Hz), 7.04-7.09 (m, 1H), 7.25-7.35 (m, 1H), 7.43 (d,         |
|     |                                        |                                                   | 1H, J = 8.56 Hz), 7.68-7.73 (m, 1H), 8.10 (s, 1H), 8.18         |
|     |                                        |                                                   | (s, 1H) 8.52-8.59 (m, 1H), 8.68-8.75 (m, 1H), 11.57 (s,         |
|     |                                        |                                                   | 1H)                                                             |
|     |                                        | <del></del>                                       |                                                                 |

|      |                                        | <del></del>         | Long.                                                              |
|------|----------------------------------------|---------------------|--------------------------------------------------------------------|
|      | 0                                      |                     | CDCl <sub>3</sub> : 2.95 (m, 4H), 3.03 (d, 3H), 3.75 (m, 4H), 3.86 |
| 7-6  |                                        | 0.25                | (s, 3H), 6.21-6.19 (br, 1H), 6.49 (dd, 1H), 6.80 (d, 1H),          |
|      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ( <i>n</i> -hexane: | 7.09-7.05 (m, 1H), 7.50 (dd, 1H), 8.08 (d, 1H), 8.13               |
|      | 0~                                     | AcOEt=1:2)          | (s, 1H), 8.68 (d, 1H), 11.07 (s, 1H)                               |
|      |                                        |                     | DMSO-d6: 2.06 (s, 3H), 2.80 (d, 3H), 3.11 (t, 2H),                 |
| 7-7  |                                        | MS                  | 3.16 (t, 2H), 3.60 (dd, 4H), 3.77 (s, 3H), 6.51 (dd, 1H),          |
|      |                                        | m/z 510,            | 6.68 (d, 1H), 7.08 (dd, 1H), 7.33 (dd, 1H), 7.46 (d,               |
|      | Ň                                      | 512 (M+1)           | 1H), 7.71 (d, 1H), 8.10(s, 1H), 8.12(s, 1H), 8.59-8.61             |
|      | , M                                    |                     | (m, 1H), 8.70-8.71(m, 1H), 11.59 (s, 1H)                           |
|      | Ac                                     |                     |                                                                    |
|      |                                        |                     | CDCl₃: 1.46(d, 1H), 1.68-1.82(m, 2H), 2.02-2.09(m,                 |
| 7-8  | 0                                      | 0.48                | 2H), 2.83-2.96 (m, 2H), 3.03(d, 3H),3.44-3.53(m, 2H),              |
| ·    |                                        | (MeOH:              | 3.82-3.92(m, 1H),3.87(s, 3H), 6.15-6.23(m, 1H), 6.51               |
|      | Ň                                      | AcOEt               | (d, 1H), 6.56(bs, 1H), 7.07(dd, 1H), 7.48(d, 2H),                  |
|      |                                        | =5:95)              | 8.08(s, 1H), 8.08-8.10(m, 1H), 8.69(d, 1H), 11.0(bs,               |
|      | он                                     |                     | 1H)                                                                |
|      |                                        |                     | CDCl <sub>3</sub> : 1.22 (t, 3H), 1.73-1.85 (m, 2H), 2.00-2.09 (m, |
| 7-9  | · 6                                    | 0.4                 | 2H), 2.81-2.90 (m, 2H), 3.03 (d, 3H), 3.41-3.56 (m,                |
|      |                                        | ( <i>n</i> -hexane: | 3H), 3.56 (dd, 2H), 3.58-3.62 (m, 2H), 3.64-3.68 (m,               |
|      | N                                      | AcOEt=1:1)          | 2H), 3.86 (s, 3H), 6.15-6.24 (m, 1H), 6.50 (dd, 1H),               |
|      |                                        |                     | 6.56 (d, 1H), 7.07(dd, 1H), 7.24-7.30 (m, 1H), 7.45-               |
|      |                                        |                     | 7.52(m, 2H), 8.08(s, 1H), 8.06-8.08 (m, 1H), 8.69 (d,              |
|      |                                        |                     | 1H), 11.0 (bs, 1H)                                                 |
|      |                                        | _                   | CDCl <sub>3</sub> : 1.73-1.85(m, 2H), 2.01-2.10(m, 2H), 2.82-      |
| 7-10 | °                                      | 0.4                 | 2.90(m, 2H), 3.03(d, 3H), 3.41(s, 3H), 3.45-3.51(m,                |
|      |                                        | (n-hexane:          | 2H), 3.56-3.58(m, 2H), 3.65-3.68(m, 2H), 3.86(s, 3H),              |
|      | , N                                    | AcOEt=1:1)          | 6.14-6.22(m, 1H), 6.50 (dd, 1H), 6.56 (d, 1H),                     |
|      | $\vee$                                 |                     | 7.07(dd, 1H), 7.23-7.30(m, 1H), 7.44-7.52(m, 2H),                  |
|      |                                        |                     | 8.08(s, 1H), 8.06-8.08(m, 1H), 8.69(d, 1H), 11.0(bs,               |
|      | ĭ                                      |                     | 1H)                                                                |
|      |                                        |                     |                                                                    |

|      | Τ                        | <del>r</del>                          | DUO 10, 4 70 4 00/ 411) 0 40 0 00/                            |
|------|--------------------------|---------------------------------------|---------------------------------------------------------------|
|      | 1 .0.                    |                                       | DMSO-d6: 1.78-1.89(m, 1H), 2.13-2.22(m, 1H),                  |
| 7-11 |                          | 0.54                                  | 2.22(s, 6H), 2.77-2.87(m, 1H), 2.79(d, 3H), 3.04-             |
|      |                          | (MeOH:                                | 3.10(m, 1H), 3.23-3.50(m, 3H), 3.75(s, 3H), 6.11(dd,          |
|      | $\langle ^{N} \rangle$   | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 1H), 6.22(d, 1H), 7.05(dd1H), 7.21-7.32(m, 1H),               |
|      | N                        |                                       | 7.26(d, 1H), 7.70(d, 1H), 8.06(s, 1H), 8.08(s, 1H),           |
|      | <b>/</b> ''              |                                       | 8.57-8.66(m, 1H), 8.66-8.73 (m, 1H), 11.6(s, 1H)              |
|      |                          |                                       | DMSO-d6: 1.77-1.87(m, 1H), 2.09-2.18(m, 1H),                  |
| 7-12 |                          | 0.27                                  | 2.35(s, 3H), 2.79(d, 1H), 3.02-3.07(m, 1H), 3.23-             |
|      |                          | (MeOH:                                | 3.50(m, 4H), 3.74(s, 3H), 6.09(dd, 1H), 6.20(d, 1H),          |
|      | $\langle {}^{N} \rangle$ | CH <sub>2</sub> Cl <sub>2</sub> =1:1) | 7.04(dd, H), 7.22-7.32(m, 1H), 7.26(d, 1H), 7.70(d,           |
|      | \(                       |                                       | 1H), 8.05(s, 1H), 8.08(s, 1H), 8.57-8.67(m, 1H), 8.67-        |
|      | H                        |                                       | 8.73 (m, 1H), 11.6(s, 1H)                                     |
|      |                          |                                       | CDCl <sub>3</sub> : 1.62-1.74(m, 3H), 1.76-1.85(m, 2H), 2.00- |
| 7-13 |                          | 0.23                                  | 2.09(m, 2H), 2.20-2.31(m, 1H), 2.64-2.69 (m, 2H),             |
|      |                          | (MeOH:                                | 2.79 (d, 3H), 3.56-4.04(m, 2H), 4.04(s, 3H), 6.49(dd,         |
|      | Ň                        | AcOEt                                 | 1H), 6.63(d, 1H), 6.78(bs, 1H), 7.07 (dd, 1H), 7.28-          |
|      |                          | =5:95)                                | 7.38 (m, 1H), 7.39(d, 1H), 7.71(d, 1H), 8.09-8.11(m,          |
|      | H <sub>z</sub> N O       |                                       | 2H), 8.09(s, 1H), 8.60(d, 1H), 8.71(d, 1H),11.6(bs,           |
|      |                          |                                       | 1H)                                                           |
|      |                          |                                       | DMSO-d6: 1.61-1.46(m, 2H), 1.92-1.82 (m, 2H), 2.14            |
| 7-14 | ~ \                      | 0.30                                  | (s, 3H), 2.41-2.23 (m, 5H, 2.60-2.45 (m, 4H), 2.67 (t,        |
|      |                          | (MeOH:                                | 2H), 2.79 (d, 3H), 3.75 (s, 3H), 3.71-3.75 (m, 2H),           |
|      | N                        | CH <sub>2</sub> Cl <sub>2</sub> =4:1) | 6.48 (dd, 1H), 6.63 (d, 1H), 7.10-7.03 (m, 1H), 7.34-         |
|      |                          |                                       | 7.27 (m, 1H), 7.43-7.35 (m, 1H), 7.71(dd, 1H), 8.09 (s,       |
|      | )<br>N                   |                                       | 1H), 8.11 (bs, 1H), 8.65-8.56 (m, 1H), 8.75-8.67 (m,          |
|      |                          |                                       | 1H), 11.6 (s, 1H)                                             |
|      | _N_                      |                                       |                                                               |
|      |                          |                                       |                                                               |

|         | 1                                      |                        | DMCO de, 0.40.0.07 /m 410.0.05.0.05 (                     |
|---------|----------------------------------------|------------------------|-----------------------------------------------------------|
| - 45    | ,0,                                    | 140 (501)              | DMSO-d6: 2.19-2.37 (m, 4H), 2.65-2.85 (m, 3H),            |
| 7-15    |                                        | MS (ESI)               | 2.80 (d, 3H, J = 4.5 Hz), 3.15-3.21 (m, 1H), 3.48-3.59    |
|         |                                        | m/z 524,               | (m, 2H), 3.61-3.67 (m, 1H), 3.72-3.81 (m, 1H), 3.76       |
|         | , N                                    | 526 (M+1) <sup>†</sup> | (s, 3H), 6.47 (dd, 1H, J = 8.6, 2.5 Hz), 6.65 (d, 1H, J = |
|         | \_\ <b>\</b> "                         | :                      | 2.5 Hz), 7.04-7.10 (m, 1H), 7.28-7.35 (m, 1H), 7.42 (d,   |
|         |                                        |                        | 1H, J = 8.6 Hz), 7.69-7.74 (m, 1H), 8.09 (s, 1H), 8.12    |
|         | °                                      |                        | (s, 1H), 8.55-8.63 (m, 1H), 8.68-8.73 (m, 1H), 11.60      |
|         |                                        |                        | (s, 1H)                                                   |
|         |                                        | :                      |                                                           |
|         |                                        |                        | DMSO-d6: 2.19-2.37 (m, 4H), 2.65-2.85 (m, 3H), 2.80       |
| 7-16    | ~ ° \                                  | MS (ESI)               | (d, 3H, J = 4.5 Hz), 3.15-3.21 (m, 1H), 3.48-3.59 (m,     |
|         |                                        | m/z 524,               | 2H), 3.61-3.67 (m, 1H), 3.72-3.81 (m, 1H), 3.76 (s,       |
|         | N                                      | 526 (M+1) <sup>+</sup> | 3H), 6.47 (dd, 1H, J = 8.6, 2.5 Hz), 6.65 (d, 1H, J =     |
|         | ,, н                                   |                        | 2.5 Hz), 7.04-7.10 (m, 1H), 7.28-7.35 (m, 1H), 7.42 (d,   |
|         | Ņ                                      |                        | 1H, J = 8.6 Hz), 7.69-7.74 (m, 1H), 8.09 (s, 1H), 8.12    |
|         | \_\_\0                                 |                        | (s, 1H), 8.55-8.63 (m, 1H), 8.68-8.73 (m, 1H), 11.60      |
|         |                                        |                        | (s, 1H)                                                   |
|         |                                        | MS                     | DMSO-d6: 0.98 (t, 3H), 1.81-1.71 (m, 3H), 1.95-1.84       |
| 7-17    |                                        | 510                    | (m, 3H), 2.68-2.63(m, 1H), 2.80 (d, 3H), 3.12-3.08 (m,    |
|         |                                        |                        | 4H), 3.28(d, 2H), 3.76(s,3H), 6.50 (dd, 1H), 6.64 (d,     |
|         | N                                      |                        | 1H), 6.86(bs, 1H), 7.07(dd, 1H), 7.46-7.19 (m, 3H),       |
|         |                                        |                        | 7.71 (d, 1H), 8.09(s, 1H), 8.15-8.10 (m, 1H), 8.66-       |
|         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                        | 8.58(m, 1H), 8.77-8.70(m, 1H), 11.6(s, 1H)                |
|         | NH <sub>2</sub>                        |                        |                                                           |
|         |                                        | MS                     | DMSO-d6: 0.98 (t, 3H), 1.81-1.71 (m, 3H), 1.95-1.84       |
| 7-18    |                                        | 510                    | (m, 3H), 2.68-2.63(m, 1H), 2.80 (d, 3H), 3.12-3.08 (m,    |
|         |                                        |                        | 4H), 3.28(d, 2H), 3.76(s,3H), 6.50 (dd, 1H), 6.64 (d,     |
|         | , N                                    |                        | 1H), 6.86(bs, 1H), 7.07(dd, 1H), 7.46-7.19 (m, 3H),       |
|         |                                        |                        | 7.71 (d, 1H), 8.09(s, 1H), 8.15-8.10 (m, 1H), 8.66-       |
|         |                                        |                        | 8.58(m, 1H), 8.77-8.70(m, 1H), 11.6(s, 1H)                |
|         | ŅH₂                                    |                        | , , , , , , , , , , , , , , , , , , , ,                   |
| لـــــا |                                        |                        |                                                           |

|      |                   | <del></del>                             |                                                          |
|------|-------------------|-----------------------------------------|----------------------------------------------------------|
|      |                   |                                         | 1.40-1.53 (m, 2H), 1.72-1.80 (m, 2H), 2.18 (s, 3H),      |
| 7-19 |                   | 0.16                                    | 2.19-2.44 (m, 5H), 2.80 (d, 3H), 3.46 (m, 2H), 3.74 (s,  |
| [    | N                 | (CH2Cl2:M                               | 3H), 6.65 (dd, 1H), 6.91 (d, 1H), 7.07-7.10 (m, 1H),     |
|      | $\sim$ N          | eOH=9:1)                                | 7.36-7.40 (m, 1H), 7.45-7.49 (m, 1H), 7.73 (dd, 1H),     |
|      | /N                |                                         | 8.12 (s, 1H), 8.18 (s, 1H), 8.61 (d, 1H), 8.72-8.77 (m,  |
|      |                   |                                         | 1H), 11.68 (s, 1H)                                       |
|      |                   |                                         | 1.25-1.37 (m, 2H), 1.62-1.79 (m, 3H), 1.81-1.9 (m,       |
| 7-20 | ~~~               | Ms : 511                                | 2H), 2.16 (s, 3H), 2.75-2.85 (m, 5H), 3.76 (s, 3H), 3.8- |
|      |                   |                                         | 3.88 (m, 2H), 6.45-6.55 (m, 1H), 6.6-6.67 (m, 1H),       |
|      | þ l               |                                         | 7.02-7.12 (m, 1H), 7.25-7.35 (m, 1H), 7.4-7.5 (m, 1H),   |
|      | $\longrightarrow$ |                                         | 7.67-7.78 (m, 1H), 8.1 (s, 1H), 8.19 (brs, 1H) 8.5-8.62  |
|      |                   |                                         | (m, 1H), 8.66-8.8 (m, 1H), 11.6 (s, 1H)                  |
| !    |                   | · • • • • • • • • • • • • • • • • • • • | 2.17 (s, 3H), 2.29-2.39 (m, 3H), 2.45-2.56 (m, 4H), 2.7  |
| 7-21 | ~^~               | Ms : 526                                | (t, 2H), 3.76 (s, 3H), 4.09 (t, 2H), 6.52 (dd, 1H), 6.66 |
|      |                   |                                         | (d, 1H), 7.06 (dd, 1H), 7.31 (dd, 1H), 7.45 (d, 1H),     |
|      |                   |                                         | 7.71 (dd, 1H), 8.1 (s, 1H), 8.19 (s, 1H), 8.5-8.6 (m,    |
|      |                   |                                         | 1H), 8.67-8.75 (m, 1H), 11.6 (s, 1H)                     |
|      | N                 |                                         |                                                          |
|      | <u> </u>          |                                         |                                                          |
|      |                   |                                         | 2.24 (s, 3H), 2.42-2.5 (m, 4H), 2.8 (d, 3H), 2.94-3.0    |
| 7-22 | ~ \ \             | Ms : 482                                | (m, 4H), 3.74 (s, 3H), 6.65 (dd, 1H), 6.93 (d, 1H),      |
|      |                   |                                         | 7.07-7.14 (m, 1H), 7.34-7.4 (m, 1H), 7.45 (d, 1H),       |
|      | Ň                 |                                         | 7.73 (dd, 1H), 8.14 (s, 1H), 8.18 (s, 1H), 8.61 (dd,     |
|      |                   |                                         | 1H), 8.7-8.77 (m, 1H), 11.7 (s, 1H)                      |
|      |                   |                                         | 1.67-1.76 (m, 1H), 2.0-2.1 (m, 1H), 2.25-2.31 (m, 3H),   |
| 7-23 |                   | Ms : 482                                | 2.8 (d, 3H), 2.85-2.91 (m, 1H), 3.04-3.12 (m, 1H),       |
|      |                   |                                         | 3.14-3.3 (m, 3H), 3.7 (s, 3H), 6.26 (dd, 1H), 6.91 (d,   |
|      | <b>)</b>          |                                         | 1H), 7.01-7.04 (m, 1H), 7.07 (dd, 1H), 7.32 (dd, 1H),    |
|      | HN                |                                         | 7.72 (d, 1H), 8.14 (s, 1H), 8.17 (s, 1H), 8.63 (d, 1H),  |
|      |                   |                                         | 8.7-8.78 (m, 1H), 11.6 (s, 1H)                           |

|                                         | , – – .  | 1.35-1.57 (m, 8H), 1.7-1.78 (m, 2H), 2.81 (d, 3H),       |
|-----------------------------------------|----------|----------------------------------------------------------|
|                                         | Ms : 550 | 3.46-3.52 (m, 2H), 3.74 (s, 3H), 6.65 (dd, 1H), 6.91 (d, |
|                                         |          | 1H), 7.05-7.12 (m, 1H), 7.34-7.42 (m, 1H), 7.46 (d,      |
| $\bigcap_{\mathbf{N}}$                  |          | 1H), 7.73 (dd, 1H), 8.11 (s, 1H), 8.18 (s, 1H), 8.62     |
|                                         |          | (dd, 1H),8.71-8.78 (m, 1H), 11.7 (s, 1H)                 |
|                                         |          | DMSO-d6: 1.48-1.58(m, 2H), 1.65-1.72(m, 4H), 1.90-       |
|                                         | 536      | 1.97(m, 2H), 2.07-2.14(m, 1H), 2.49-2.55(m, 4H),         |
|                                         | [M+1]+   | 2.70-2.77(m, 2H), 2.79(d, 3H), 3.60-3.65(m, 2H),         |
| , N                                     |          | 3.75(s, 3H), 6.48(dd, 1H), 6.63(d, 1H), 7.03-7.09(m,     |
|                                         |          | 1H), 7.28-7.34(m, 1H), 7.39(d, 1H), 7.71(dd, 1H),        |
| $\longrightarrow$                       |          | 8.09(s, 1H), 8.11(s, 1H), 8.55-8.65(m, 1H), 8.69-        |
| , N                                     |          | 8.73(m, 1H), 11.59(s, 1H)                                |
| /                                       |          |                                                          |
| <u> </u>                                |          | DMSO-d6: 2.80(d, 3H), 2.84-2.89(m, 4H), 3.04-            |
| ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 468      | 3.08(m, 4H), 3.76(s, 3H), 6.47(dd,1H), 6.62(dd, 1H),     |
|                                         | [M+1]+   | 7.04-7.10(m, 1H), 7.28-7.35(m, 1H), 7.40(d, 1H), 7.69    |
| ]<br>-N.                                |          | -7.73(m, 1H), 8.09(s, 1H), 8.12(s, 1H), 8.55-8.63(m,     |
|                                         |          | 1H), 8.68-8.73(m, 1H), 11.59(s, 1H)                      |
| \ <sub>N</sub> /                        |          | (an aliphatic NH is hidden)                              |
| н                                       |          |                                                          |
|                                         | 000      | DMSO-d6: 2.80(d, 3H), 6.64-6.67(m, 1H), 7.01-            |
|                                         |          | 7.08(m, 2H), 7.15(d, 1H), 7.24-7.29(m, 2H), 7.44(d,      |
| ₩ Å                                     | [M+1]+   | 1H), 7.69-7.73(m, 1H), 8.20(s, 1H), 8.65-8.73(m, 2H),    |
|                                         |          | 9.15(s, 1H), 11.06(s, 1H), 11.63(s, 1H)                  |
|                                         |          | DMSO-d6: 2.81(d, 3H), 3.79(s, 3H), 6.67(d, 1H), 7.05-    |
|                                         | 407      | 7.10(m, 1H), 7.12(d, 1H), 7.17(d, 1H), 7.23(d, 1H),      |
| N                                       | [M+1]+   | 7.25-7.30(m, 1H), 7.50(d, 1H), 7.70-7.73(m, 1H),         |
| \                                       |          | 8.20(s, 1H), 8.67(d, 1H), 8.70-8.75(m, 1H), 9.17(s,      |
|                                         |          | 1H), 11.64(s, 1H)                                        |
|                                         |          | 536 [M+1]+  468 [M+1]+  393 [M+1]+                       |

| 7-29 | 492<br>[M+1]+    | DMSO-d6: 2.80(d, 3H), 2.91-2.99(m, 4H), 3.65-3.81(m, 2H), 3.82-3.95(m, 2H), 4.12(s, 3H), 6.58(d, 1H), 6.90(d, 1H), 7.05-7.09(m, 1H), 7.14(d, 1H), 7.22-7.28(m, 1H), 7.30(d, 1H), 7.70(dd, 1H), 8.16(s, 1H), 8.63-8.67(m, 1H), 8.68-8.72(m, 1H), 9.06(s, 1H), 11.64(s, 1H)                         |
|------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-30 | MS<br>m/z<br>510 | DMSO-d <sub>6</sub> : 2.02 (s, 3H), 2.80 (d, 3H), 2.82-2.92 (m, 2H), 2.92-3.01 (m, 2H), 3.44-3.53 (m, 4H), 3.76 (s, 3H), 6.68 (dd, 1H), 6.95 (d, 1H), 7.09 (dd, 1H), 7.35-7.40 (m, 1H), 7.50 (brs, 1H), 7.73 (d, 1H), 8.15 (s, 1H), 8.19 (s, 1H), 8.59 (d, 1H), 8.69-8.76 (m, 1H), 11.66 (s, 1H). |

The following 2-[5-Bromo-2-(substituted phenylamino)-pyrimidin-4-ylamino]-N-ethyl-benzamide are prepared from 2-(5-bromo-2-chloro-pyrimidin-4-ylamino)-N-ethyl-benzamide and the corresponding aniline following the procedure of Example 7A

| Expl | Rx | Rf (solvent)                              | NMR                                                                                                                                                                                                                                                 |
|------|----|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |    | or MS                                     |                                                                                                                                                                                                                                                     |
| 8-1  |    | 0.27<br>( <i>n</i> -hexane:<br>AcOEt=1:2) | DMSO-d6: 2.80(d, 3H), 2.88(t, 4H), 3.65 (m, 4H), 3.75 (s, 3H), 6.64 (dd, 1H), 6.94 (d, 1H), 7.11-7.08 (m, 1H), 7.38-7.34 (m, 1H), 7.47-7.46 (m, 1H), 7.70 (dd, 1H), 8.11 (s, 1H), 8.26 (s, 1H), 8.51-8.49 (m, 1H), 8.72-8.71 (m, 1H), 11.41 (s, 1H) |

|     | 100 |            | DMSO-d6: 2.79 (d, 3H, J = 4.04 Hz), 3.10-3.20 (m,       |
|-----|-----|------------|---------------------------------------------------------|
| 8-2 |     | m/z 513,   | 4H), 3.77 (s, 3H), 3.70-3.80 (m, 4H), 6.45-6.55 (m,     |
|     |     | 515 (M+1)  | 1H), 6.63-6.69 (m, 1H), 7.05-7.10 (m, 1H), 7.28-7.34    |
|     | Ň   |            | (m, 1H), 7.40-7.45 (m, 1H), 7.65-7.70 (m, 1H), 8.13     |
| ]   | 6   |            | (s, 1H), 8.16 (s, 1H), 8.50-8.56 (m, 1H) 8.65-8.72 (m,  |
|     |     |            | 1H), 11.40 (s, 1H)                                      |
|     | 1 0 |            | DMSO-d6: 2.80(d, 3H), 3.83(s, 3H), 4.11(t, 2H),         |
| 8-3 |     | 0.48       | 6.82(ddd, 1H), 7.03(dd, 1H), 7.15(dd, 1H), 7.44(dd,     |
|     | F / | (n-Hexane: | 1H), 7.73(d, 1H), 7.93(dd, 1H), 8.13(s, 1H), 8.33 (s,   |
|     |     | AcOEt=4:1) | 1H), 8.50(d, 1H), 8.70-8.77(m, 1H), 11.3(s, 1H).        |
|     |     |            | 2.79 (d, 3H), 3.79 (s, 3H), 6.75 (ddd, 1H), 7.0 (dd,    |
| 8-4 | ~~~ | MS         | 1H), 7.05-7.12 (m, 1H), 7.3-7.36 (m, 1H), 7.62 (dd,     |
|     |     | 446, 448   | 1H), 7.69 (dd, 1H), 8.2 (s, 1H), 8.29 (s, 1H), 8.45 (d, |
|     | F   |            | 1H), 8.66-8.73 (m, 1H), 11.4 (brs, 1H).                 |

The following 2-[5-Chloro-2-(substituted phenylamino)-pyrimidin-4-ylamino]-N-ethyl-benzamide are prepared from 2-(2,5-Dichloro-pyrimidin-4-ylamino)-N-ethyl-benzamide and the corresponding aniline following the procedure of Example 7A

| Expl | Rx | Rf (solvent)                     | NMR (400MHz) , δ (ppm)                                                                                                                                                                                                                                    |
|------|----|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |    | or MS                            |                                                                                                                                                                                                                                                           |
| 9-1  |    | 0.35<br>(n-hexane:<br>AcOEt=1:2) | CDCl <sub>3</sub> : 1.27 (t, 3H), 3.10-3.15 (m, 4H), 3.47-3.58 (m, 2H), 3.85-3.93 (m, 4H), 3.89 (s, 3H), 6.08-6.17 (m, 1H), 6.48 (dd, 1H), 6.53 (d, 1H), 7.05-7.11 (m, 1H), 7.42-7.53 (m, 2H), 8.08 (s, 1H), 8.12 (d, 1H), 8.67 (d, 1H), 10.94 (brs, 1H). |

|             | T             | <del>,</del>                          |                                                                   |
|-------------|---------------|---------------------------------------|-------------------------------------------------------------------|
|             |               |                                       | CDCl <sub>3</sub> : 1.26 (t, 3H, J = 7.56Hz), 2.37 (s, 3H), 2.57- |
| 9-2         |               | MS (ESI)                              | 2.62 (m, 4H), 3.15-3.20 (m, 4H), 3.49 (dq, 2H, J =                |
|             |               | m/z 497,                              | 7.56, 1.52 Hz), 3.87 (s, 3H), 6.11-6.16 (m, 1H), 6.49             |
|             | Ň             | 499 (M+1) <sup>+</sup>                | (dd, 1H, J = 8.56, 2.52 Hz), 6.55 (d, 1H, J = 2.52 Hz),           |
|             |               |                                       | 7.05-7.10 (m, 1H), 7.23 (s, 1H), 7.41-7.50 (m, 2H),               |
|             |               |                                       | 8.07 (s, 1H), 8.08 (d, 1H, J = 8.56Hz), 8.65-8.69 (m,             |
|             |               |                                       | 1H), 10.93 (s, 1H)                                                |
|             | .0            |                                       | DMSO-d6: 1.26 (t, 3H, J = 7.56Hz), 1.40-1.50 (m,                  |
| 9-3         |               | m/z 564,                              | 2H), 1.56-1.64 (m, 4H), 1.67-1.82 (m, 2H), 1.88-1.97              |
|             |               | 566 (M+1) <sup>†</sup>                | (m, 2H), 2.33-2.44 (m, 1H), 2.52-2.57 (m, 4H), 2.63-              |
|             | Ň.            |                                       | 2.73 (m, 2H), 3.51 (dq, 2H, J = 7.56, 1.52 Hz), 3.62-             |
|             |               |                                       | 3.69 (m, 2H), 3.86 (s, 3H), 6.10-6.15 (m, 1H), 6.49               |
|             | N_            |                                       | (dd, 1H, J = 8.56, 2.52 Hz), 6.55 (d, 1H, J = 2.52 Hz),           |
|             |               |                                       | 7.05-7.10 (m, 1H), 7.23 (s, 1H), 7.43-7.50 (m, 2H)                |
|             | -             |                                       | 8.05-8.11 (m, 1H), 8.07 (s, 1H), 8.65-8.69 (m, 1H),               |
|             |               |                                       | 10.91 (s, 1H)                                                     |
|             | <u> </u>      |                                       | DMSO-d6: 1.19 (t, 3H), 1.52-1.68 (m, 2H), 1.71-1.79               |
| 9-4         |               | 0.39                                  | (m, 4H), 1.92-2.05 (m, 2H), 2.12-2.23 (m, 1H), 2.76-              |
|             |               | (MeOH:                                | 2.85 (m, 2H), 3.65-3.73 (m, 2H), 3.82 (s, 3H), 6.54               |
|             |               | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | (dd, 1H), 6.69 (d, 1H), 7.13 (m, 1H), 7.45 (d, 1H), 7.79          |
|             | $\rightarrow$ |                                       | (dd, 1H), 8.15 (s, 1H), 8.15-8.18 (m, 1H), 8.60-8.68              |
| j           | ⟨Ñ⟩           |                                       | (m, 1H), 8.74-8.83 (m, 1H).                                       |
|             | <u></u>       |                                       |                                                                   |
|             |               | Rf                                    | CDCl3: 1.27 (t, 3H), 3.08-3.14 (m, 4H), 3.52 (q,2H),              |
| 9-5         |               | (Hexane:                              | 3.71-3.90 (m, 7H), 6.05-6.18 (m, 1H), 6.47 (dd, 1H),              |
| ľ           |               | AcOEt =                               | 6.53 (dd, 1H), 7.08 (dd, 1H), 7.41-7.53 (m, 2H), 8.08             |
|             | Ť I           | 1:2):                                 | (s, 1H), 8.12 (d, 1H), 8.67 (d, 1H), 10.94 (s, 1H).               |
|             | N             | 0.30                                  |                                                                   |
|             |               |                                       |                                                                   |
|             | 0             |                                       | 1                                                                 |
| <del></del> |               |                                       |                                                                   |

| 9-6 |       | Rf<br>(AcOEt:Me<br>OH= 4:1)<br>0.050 | DMSO: 1.11 (t, 3H), 1.60-1.69 (m, 1H), 1.88-1.96 (m, 2H), 2.19 (s, 3H), 2.55-2.68 (m, 2H), 3.30-3.45 (m, 2H), 3.75 (s, 3H), 4.33-4.43 (m, 1H), 6.54 (dd, 1H), 6.65 (d, 1H), 7.07 (dd, 1H), 7.30 (dd, 1H), 7.43 (d, 1H), 7.71 (dd, 1H), 8.11 (s, 1H), 8.20 (s, 1H), 8.54 (br.d, 1H), 8.75 (dd, 1H), 11.49 (s, 1H).                                    |
|-----|-------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9-7 | ON ON | 0.44<br>(CH2Cl2:M<br>eOH=8:2)        | CDCl3: 1.34 (t, 3H), 1.62-1.68 (m, 2H), 1.93-2.18 (m, 8H), 2.37-2.40 (br, 2H), 2.74-2.86 (br, 3H), 3.20-3.23 (m, 2H), 3.34 (br, 2H), 3.53 (q, 2H), 3.85 (s, 3H), 6.47 (dd, 1H), 6.76 (d, 1H), 7.04-7.08 (m, 1H), 7.30 (dd, 1H), 7.53 (s, 1H), 8.00 (d, 1H), 8.13-8.17 (m, 1H), 8.22 (d, 1H), 8.42-8.53 (br, 1H), 10.91 (s, 1H), 11.59-11.75 (br, 1H) |

The following 2-[5-Chloro-2-(substituted phenylamino)-pyrimidin-4-ylamino]-6,N-dimethyl-benzamide are prepared from 2-(2,5-Dichloro-pyrimidin-4-ylamino)-6,N-dimethyl-benzamide and the corresponding aniline following the procedure of Example 7A

| Expl | Rx | Identification |
|------|----|----------------|
| No.  |    |                |
|      |    |                |

|        | I    |                                                                             |
|--------|------|-----------------------------------------------------------------------------|
| 1      | 1 10 | NMR (400MHz, DMSO-d6, δ): 1.58-1.68(m, 2H), 1.87-1.96(m,                    |
| 10-1   |      | 2H), 2.13-2.22(m, 2H), 2.18(s, 3H), 2.18(s, 3H), 2.29(s, 3H), 2.57-         |
|        |      | 2.65(m, 2H), 2.76(d, 3H), 3.75(s, 3H), 4.29-4.37(m, 1H), 6.45(dd,           |
|        |      | 1H), 6.61(d, 1H), 6.98(d, 1H), 7.18(dd, 1H), 7.47(d, 1H), 7.89(d,           |
|        |      | 1H), 8.02(s, 1H), 8.07 (s, 1H), 8.37-8.43(m, 1H), 8.49(s, 1H).              |
|        |      | Rf: 0.39 (MeOH: CH <sub>2</sub> Cl <sub>2</sub> =1:4).                      |
|        |      | NMR (400MHz, DMSO-d6, δ): 1.35-1.42 (m, 2H), 1.45-1.60 (m,                  |
| 10-2   |      | 6H), 1.75-1.85 (m, 2H), 2.29 (s, 3H), 2.30-2.35 (m, 1H), 2.43-2.50          |
|        |      | (m, 4H), 2.57-2.66 (m, 2H), 2.76 (d, 3H, J = 5.0Hz), 3.65-3.74 (m,          |
|        | , N  | 2H), 3.76 (s, 3H), 6.40 (dd, 1H, J = 9.0, 2.0 Hz), 6.59 (d, 1H, J =         |
|        |      | 2.0 Hz), 6.98 (d, 1H, J = 7.6 Hz), 7.20 (dd, 1H, J = 7.6, 7.6 Hz),          |
|        | N    | 7.43 (d, 1H, $J = 9.0$ Hz), $7.91-7.94$ (m, 1H), $7.93$ (s, 1H), $8.06$ (s, |
| ;<br>: |      | 1H), 8.36-8.42 (m, 1H) 8.47 (s, 1H).                                        |
|        | ·    | MS (ESI) m/z 564, 566 (M+1) <sup>+</sup>                                    |
| 10-3   |      | DMSO-d6: 2.29(s, 3H), 2.77(d, 3H), 3.07-3.11(m, 4H), 3.73-                  |
|        | ~~~  | 3.76(m, 4H), 3.77(s, 3H), 6.41(dd, 1H), 6.63(d, 1H), 7.00 (d, 1H),          |
|        |      | 7.21(dd, 1H), 7.49(d, 1H), 7.93(d, 1H), 7.96(s, 1H), 8.07(s, 1H),           |
|        | ĆŅ,  | 8.37-8.42(m, 1H), 8.49(s, 1H).                                              |
|        |      | MS m/z 483 [M+1] <sup>+</sup>                                               |
|        |      |                                                                             |

The following 2-[5-Chloro-2-(substituted phenylamino)-pyrimidin-4-ylamino]-5-fluoro-N-methylbenzamide are prepared from 2-(2,5-Dichloro-pyrimidin-4-ylamino)-5-fluoro-N-methylbenzamide and the corresponding aniline following the procedure of Example 7A

| Expl | Rx . | Identification |
|------|------|----------------|
| No.  |      |                |
| L    |      |                |

| Γ     | ,                 | NIME (400ML) - DIAGO TO STATE                                   |
|-------|-------------------|-----------------------------------------------------------------|
|       |                   | NMR (400MHz, DMSO-d6, δ): 2.79(d, 3H), 3.10-3.15(m, 4H),        |
| 11-1  |                   | 3.74-3.78(m, 7H), 6.50(dd, 1H), 6.66(d, 1H), 7.13-7.20 (m,      |
|       |                   | 1H), 7.41(d, 1H), 7.57(dd, 1H), 8.09(s, 1H), 8.14(s, 1H), 8.55- |
|       | N                 | 8.65(m, 1H), 8.75-8.82(m, 1H), 11.39(s, 1H).                    |
|       |                   | MS (ESI): m/z 487, 489 (M+1).                                   |
|       | `0                | ·                                                               |
|       |                   | NMR (400MHz, DMSO-d6, δ): 1.68-1.33 (m, 8H), 1.93-1.73          |
| 11-2  |                   | (m, 2H), 2.35-2.60 (m, 1H), 2.62-2.74 (m, 2H), 2.67 (t, 2H),    |
|       |                   | 2.74 (d, 3H), 3.25-3.38 (m, 4H), 3.76 (s, 3H), 3.83-3.71 (m,    |
| 1     | Ň                 | 2H), 6.48 (dd, 1H), 6.49 (dd, 1H), 6.63 (d, 1H), 7.15 (dd, 1H), |
|       |                   | 7.36 (d, 1H), 7.57 (dd, 1H), 8.09(s, 1H), 8.12(s, 1H), 8.65-    |
|       | N                 | 8.55 (m, 1H), 8.78(d, 1H), 11.39 (s, 1H)                        |
|       |                   | MS (ESI): m/z 568, 570 (M+1)                                    |
| 11-3  |                   | DMSO-d6: 2.80(d, 3H), 3.79(s, 3H), 6.64(d,1H), 7.05-7.20(m,     |
|       |                   | 3H), 7.23(d, 1H), 7.42-7.49(d, 1H), 7.57(dd, 1H), 8.20(s, 1H),  |
|       |                   | 8.62-8.69(m, 1H), 8.75-8.82(m, 1H), 9.17(s, 1H), 11.43(s,       |
|       | ~ N               | 1H).                                                            |
|       |                   | MS m/z 425 [M+1] <sup>+</sup>                                   |
| 11-4  | 1                 | <u> </u>                                                        |
| 1 1-4 | ~~                | DMSO-d6: 2.06(s, 3H), 2.79(d, 3H), 3.10-3.14(m, 2H), 3.15-      |
|       |                   | 3.19(m, 2H), 3.55-3.62(m, 4H), 3.77(s, 3H), 6.52(dd, 1H),       |
|       | Ť                 | 6.69(d, 1H), 7.15-7.23(m, 1H), 7.43(d, 1H), 7.58(dd, 1H),       |
|       | \(\mathbb{\chi}\) | 8.10(s, 1H), 8.14(s, 1H), 8.56-8.65(m, 1H), 8.75-8.81(m, 1H),   |
|       | \ <u>\</u>        | 11.39(s, 1H).                                                   |
|       |                   | MS m/z 528 [M+1] <sup>†</sup>                                   |
|       | · ·               |                                                                 |
|       |                   |                                                                 |
|       |                   |                                                                 |
|       |                   |                                                                 |

12-1 Preparation of 7-[5-Chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-2-methyl-2,3-dihydro-isoindol-1-one

Synthetic procedure for 7-(2,5-Dichloro-pyrimidin-4-ylamino)-2-methyl-2,3-dihydro-isoindol-1-one

N-Methyl-7-nirto-2,3-dihydroisoindole-1-one. At room temperature, a solution of methyl 2-bromomethyl-6-nitrobenzoate (1.26 g, 4.63 mmol) in THF (13 mL) is treated with 2M soln. of methylamine in THF (14 mL), stirred for 5 h, diluted with EtOAc (100 mL), washed with sat. aqueous solution of NaHCO<sub>3</sub> (15 mL) and brine (15 mL), dried (MgSO<sub>4</sub>), and evaporated. A flash chromatography (30 g of silica gel; CH<sub>2</sub>Cl<sub>2</sub>/EtOAc 1:1) gives N-Methyl-7-nirto-2,3-dihydroisoindole-1-one (0.561 g, 2.92 mmol) in 63%. Yellow solid.  $R_f$  (CH<sub>2</sub>Cl<sub>2</sub>/EtOAc 1:1) 0.46. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) 3.21 (s), 4.44 (s), 7.63 – 7.69 (m, 2 H), 7.70 – 7.75 (m, 1 H).

7-Amino-N-methyl-2,3-dihydroisoindole-1-one. At room temperature, a solution of N-Methyl-7-nirto-2,3-dihydroisoindole-1-one (561.0 mg, 2.92 mmol) in EtOAc (8.4 mL) is treated with SnCl<sub>2</sub>•2H<sub>2</sub>O (2.68 g), stirred at 80°C under reflux for 5 h, and treated with 30 mL of 5N NaOH at 0°C. After the both layers are separated, the aqueous layer is extracted with EtOAc (2 x 8 mL), the combined extracts are washed with brine (5 mL), dried (MgSO<sub>4</sub>), and evaporated to give 7-Amino-N-methyl-2,3-dihydroisoindole-1-one (455.9 g, 2.81 mmol) in 96%. Yellow solid.  $R_f$  (CH<sub>2</sub>Cl<sub>2</sub>/EtOAc 1:1) 0.53. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) 3.12 (s), 4.28 (s), 5.20 (br. s), 6.56 (d, J = 8.0), 6.68 (d, J = 8.0), 7.21 (dd, J = 8.0, 8.0).

7-(4-Amino-2,5-dichloropyrimidin-4-yl)amino-N-methyl-2,3-dihydroisoindole-1-one. At 0°C, a solution of 7-Amino-N-methyl-2,3-dihydroisoindole-1-one (232.6 mg, 1.43 mmol) in DMF (2.0 mL) is treated with 60% NaH (89.8 mg), stirred at the same temperature for 1.5 h, treated with a solution of 2,4,5-trichlropyrimidine (0.557 g) in DMF (3.5 mL), stirred for 1 h, and warmed to room temperature. After furthermore stirring for 13 h, the mixture is treated with sat. aqueous NH4Cl (6 mL), and the resulting brown precipitates are collected by a filtration, followed by washing with H2O, hexane, and CH3CN to give 7-(4-Amino-2,5-dichloropyrimidin-4-yl)amino-N-methyl-2,3-dihydroisoindole-1-one (130.2 g, 0.416 mmol) in 26%. Brown solid.  $R_f$  (CH2Cl2/EtOAc 1:1) 0.50.  $^1$ H-NMR (400 MHz, CDCl3): 3.22 (s), 4.43 (s); 7.15 (d, J = 8.0), 7.59 (dd, J = 8.0, 8.0), 8.24 (s), 8.71 (d, J = 8.0), 11.05 (br. s).

The following 7-[5-Chloro-2-(substituted phenylamino)-pyrimidin-4-ylamino]-2-methyl-2,3-dihydro-isoindol-1-one are prepared from 7-(2,5-Dichloro-pyrimidin-4-ylamino)-2-methyl-2,3-dihydro-isoindol-1-one and the corresponding aniline following the procedure of Example 7A. 7-[5-Chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-2-methyl-2,3-dihydro-isoindol-1-one

<sup>1</sup>H-NMR (400MHz, DMSO-d6, δ): 3.07 (s, 3H), 3.13-3.17 (m, 4H), 3.75 (s, 3H), 3.34-3.78 (m, 4H), 4.46 (s, 2H), 6.54 (dd, 1H, J = 8.6, 2.5 Hz), 6.67 (d, 1H, J = 2.5 Hz), 7.15 (d, 1H, J = 7.6 Hz), 7.25-7.34 (m, 1H) 7.36 (d, 1H, J = 8.6 Hz), 8.13 (s, 1H), 8.36 (s, 1H), 8.37-8.50 (m, 1H) 10.57 (s, 1H). MS (ESI) m/z 481. 483 (M+1)<sup>+</sup>

The following7-(5-Chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino)-2-methyl-2,3- dihydro-isoindol-1-ones are prepared from 7-(2,5-Dichloro-pyrimidin-4-ylamino)- 2-methyl-2,3-dihydro-isoindol-1-one and the corresponding aniline following the procedure of Example 2:

| Expl | Rx    | Mass(m/z)                 | AIMO (AOOM) 2 (=LIMOOA) CIMIA                                                                                                                                                                                                                                                               |
|------|-------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |       |                           | NMR (400MHz) δ (ppm)                                                                                                                                                                                                                                                                        |
| 12-2 | o N   | 494<br>[M+1] <sup>†</sup> | DMSO-d6: 2.24(s, 3H), 2.45-2.50(m,4H), 3.07(s, 3H), 3.15-3.19(m, 4H), 3.74(s, 3H), 4.46(s, 2H), 6.52(dd, 1H), 6.66(d, 1H), 7.15 (d, 1H), 7.25-7.36(m, 2H), 8.12(s, 1H), 8.35(s, 1H), 8.35-8.45(m, 1H), 10.57(s, 1H)                                                                         |
| 12-3 | OH OH | 495<br>[M+1] <sup>†</sup> | DMSO-d6: 1.48-1.57(m, 2H), 1.83-1.88(m, 2H), 2.83-2.90(m, 2H), 3.07(s, 3H), 3.51-3.60(m, 2H), 3.61-3.70(m, 2H), 3.73(s, 3H), 4.46(s, 2H), 4.69(d, 1H), 6.52(dd, 1H), 6.64(d, 1H), 7.14 (d, 1H), 7.25-7.35(m, 2H), 8.12(s, 1H), 8.33(s, 1H), 8.35-8.45(m, 1H), 10.57(s, 1H)                  |
| 12-4 |       | 577<br>[M+1] <sup>†</sup> | DMSO-d6: 1.48-1.59(m, 2H), 1.83-1.88(m, 2H), 2.14(s, 3H), 2.25-2.39(m, 4H), 2.42-2.60(m, 5H), 2.66-2.73(m, 2H),3.07(s, 3H), 3.73-3.77(m, 2H), 3.74(s, 3H), 4.46(s, 2H), 6.52(dd, 1H), 6.64(d, 1H), 7.14 (d, 1H), 7.25-7.34(m, 2H), 8.12(s, 1H), 8.34(s, 1H), 8.35-8.45(m, 1H), 10.57(s, 1H) |
| 12-5 |       | 562<br>[M+1] <sup>†</sup> | DMSO-d6: 1.35-1.65(m, 8H), 1.73-1.85(m, 2H), 2.40-2.59(m, 7H), 3.08(s, 3H), 3.52-3.61(m,2H), 3.73(s, 3H), 4.47(s, 2H), 6.72(dd, 1H), 6.94(d, 1H), 7.17(d, 1H), 7.34-7.39(m, 2H), 8.21(s, 1H), 8.37(s, 1H), 8.45-8.53(m, 1H), 10.64(s, 1H)                                                   |

| 12-6 |  | MS<br>m/z<br>536 | DMSO-d <sub>6</sub> : 2.19-2.42 (m, 4H), 2.65-2.89 (m, 3H), 3.07 (s, 3H), 3.11-3.30 (m, 1H), 3.48-3.61 (m, 2H), 3.62-3.71 (m, 1H), 3.75 (s, 3H), 3.75-3.83 (m, 2H), 4.47 (s, 2H), 6.48-6.52 (m, 1H), 6.66 (d, 1H), 7.15 (d, 1H), 7.26-7.37 (m, 2H), 8.13 (s, 1H), 8.35 (s, 1H), 8.42 (brs, 1H), 10.57 (s, 1H). |
|------|--|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|--|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The following 7-(5-Chloro-2-(subst.phenylamino) -pyrimidin-4-ylamino)-2-ethyl-2,3-dihydroisoindol-1-ones are prepared from 7-(2,5-Dichloro-pyrimidin-4-ylamino)-2- ethyl-2,3-dihydro-isoindol-1-one and the corresponding aniline following the procedure of Example 2:

| Expl | Rx | Mass(m/z)                 | NMR (400MHz) δ (ppm)                                                                                                                                                                                                              |
|------|----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |    |                           |                                                                                                                                                                                                                                   |
| 13-1 |    | 508<br>[M+1] <sup>+</sup> | DMSO-d6: 1.19(t, 3H), 2.24(s, 3H), 2.47-2.51(m, 4H), 3.15-3.21(m, 4H), 3.54(q, 2H), 3.74(s, 3H), 4.48(s, 2H), 6.54(dd, 1H), 6.65(d, 1H), 7.15 (d, 1H), 7.26-7.36(m, 2H), 8.12(s, 1H), 8.34(s, 1H), 8.37-8.48(m, 1H), 10.58(s, 1H) |

# Example 7B: 2-[5-Chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzamide (alternative synthesis to Example 7A)

To a suspension of 2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-benzoic acid (5.5 g, 12.1 mmol) in 100 mL of THF are added Et<sub>3</sub>N (2.06 mL, 14.8 mmol) and isobutyl chloroformate (1.7 mL, 12.8 mmol) at -5°C. After stirring at the same temperature for 30 min, the reaction mixture is further stirred at room temperature for 1 hour and then H<sub>2</sub>O is added to the reaction mixture. The resulting precipitate is collected by filtration,

washed with  $H_2O$ , and dried under reduced pressure to give an intermediate (4.80 g) (10.96 mmol, 91%) as yellow solid.

NMR (400MHz, DMSO-d6,  $\delta$ ): 3.10-3.20 (m, 4H), 3.70-3.80 (m, 4H), 3.93 (s, 3H), 6.53 (dd, 1H, J = 9.08, 2.0 Hz), 6.70 (d, 1H, J = 2.0 Hz), 7.49-7.54 (m, 1H), 7.67 (d, 1H, J = 8.56 Hz), 7.89 (s, 1H), 7.85-7.95 (m, 1H), 8.23 (d, 1H, J = 9.08 Hz), 8.26 (d, 1H, J = 8.56Hz), 12.60 (s, 1H).

To a 1M solution of methylamine in THF (560 μl, 0.56 mmol) is added 82 mg of the obtained intermediate (0.187 mmol) followed by 1M solution of NaHMDS in THF (560 μl, 0.56 mmol) dropwise. After the reaction mixture is stirred for 10 minutes, 5 mL of H<sub>2</sub>O is added and extraction is performed with AcOEt. The organic layer is washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure, and purified by silica gel column chromatography (Hexane: AcOEt=1:1 to AcOEt) to give the title compound as a pale yellow solid. Data are given in Example 7A.

By repeating the procedures described above using appropriate starting materials and conditions the following compounds are obtained as identified below.

| Expl<br>No. | Ry | Rf (solvent)<br>or MS            | NMR (400MHz) , δ (ppm)                                                                                                                                                                                                              |
|-------------|----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-1        |    | 0.10<br>(n-hexane:<br>AcOEt=1:1) | CDCl <sub>3</sub> : 3.02-3.19 (m, 10H), 3.83-3.91 (m, 4H), 3.87 (s, 3H), 6.45 (dd, 1H), 6.52 (d. 1H), 7.09-7.14 (m, 1H), 7.29 (m, 1H), 7.31 (dd, 1H), 7.38-7.45 (m, 1H), 8.06 (s, 1H), 8.14 (d, 1H), 8.39 (d, 1H), 8.97 (s, 1H).    |
| 14-2        |    | 0.36<br>(n-hexane:<br>AcOEt=1:2) | CDCl <sub>3</sub> : 1.27 (d, 6H), 3.09-3.16 (m, 4H), 3.81-3.92 (m, 4H), 3.89 (s, 3H), 4.26-4.37 (m, 1H), 5.93-5.98 (m, 1H), 6.48 (dd, 1H), 6.53 (d, 1H), 7.05-7.11 (m, 1H), 7.42-7.49 (m, 2H), 8.08 (s, 1H), 8.12 (d, 1H), 8.65 (d, |

|      |     | <del></del>                              | 1H), 10.88 (br.s, 1H).                                                                                                                                                                                                                                                                             |
|------|-----|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |     |                                          |                                                                                                                                                                                                                                                                                                    |
| 14-3 | A F | 505<br>[M+1]+                            | DMSO-d6: 2.79(d, 3H), 3.09-3.14(m, 4H), 3.74-3.77(m, 4H), 3.75(s, 3H), 6.49(dd, 1H), 6.65(d, 1H), 7.30 (d, 1H), 7.84(dd, 1H), 8.12(s, 1H), 8.40(s, 1H), 8.65-8.79(m, 2H), 11.39(s, 1H)                                                                                                             |
| 14-4 |     | 466<br>[M+1]+                            | DMSO-d6: 2.70-2.75(m, 2H), 3.04-3.09(m, 2H), 3.12-3.18(m, 4H), 3.74-3.80(m, 4H), 3.75(s, 3H), 6.54(dd, 1H), 6.67(d, 1H), 7.14 (d, 1H), 7.34(d, 1H), 7.37-7.44(m, 1H), 8.17(s, 1H), 8.35-8.50(m, 1H), 8.44(s, 1H), 10.59(s, 1H)                                                                     |
| 14-5 | N P | Rf (Hexane<br>:<br>AcOEt=1:2)<br>: 0.31  | DMSO: 1.18 (t, 3H), 3.11-3.21 (4, 4H), 3.30-3.60 (m, 2H), 3.71-3.85 (m, 7H), 6.50-6.58 (m, 1H), 6.71 (d, 1H), 7.17-7.26 (m, 1H), 7.46 (d, 1H), 7.64 (dd, 1H), 8.14 (s, 1H), 8.19 (s, 1H), 8.57-8.68 (m, 1H), 8.80-8.87 (m, 1H), 11.36 (s, 1H).                                                     |
| 14-6 |     | Rf (Hexane<br>:<br>AcOEt=1:1)<br>: 0.051 | DMSO: 1.71-1.92 (m, 2H), 1.92-2.06 (m, 2H), 3.08-3.14 (m, 4H), 3.48-3.57 (m, 2H), 3.63-3.75 (m, 2H), 3.84-3.90 (m, 7H), 6.47 (dd, 1H), 6.53 (d, 1H), 7.09 (ddd, 1H), 7.25-7.29 (m, 1H), 7.38-7.44 (m, 1H), 8.06 (s, 1H), 8.15 (d, 1H), 8.45 (dd, 1H), 9.60 (s, 1H).                                |
| 14-7 |     |                                          | <sup>1</sup> H-NMR (400MHz, δ ppm, CDCl <sub>3</sub> ): 3.04-3.10 (m, 4H), 3.10-3.16 (m, 4H), 3.63-3.68 (m, 4H), 3.85-3.90 (m, 7H), 6.46 (dd, 1H), 6.53 (d, 1H), 7.20-7.25 (m, 1H), 7.33 (brs, 1H), 7.56-7.62 (m, 1H), 7.85 (dd, 1H), 8.03 (d, 1H), 8.12 (s, 1H), 8.57-8.61 (m, 1H), 9.30 (s, 1H). |

The following 2-(5-Chloro-2-(subst. phenylamino)-pyrimidin-4-ylamino)-N-methyl-5- pyrrolidin-1-yl-benzamides are prepared from 2-(5-Chloro-2-methyl-pyrimidin-4- ylamino)-N-methyl-5- pyrrolidin-1-yl-benzamide and the corresponding aniline following the procedure of Example 2:

| Expl | Rx | Mass(m/z)                 | NMR (400MHz) δ (ppm)                                                                                                                                                                                                                                                                       |
|------|----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |    |                           |                                                                                                                                                                                                                                                                                            |
| 15-1 | 0  | 551<br>[M+1] <sup>+</sup> | DMSO-d6: 1.94-1.99(m, 4H), 2.23(s, 3H), 2.43-2.48(m, 4H), 2.78(d, 3H), 3.11-3.17(m, 4H), 3.22-3.29(m, 4H), 3.76(s, 3H), 6.46(dd, 1H), 6.48-6.53(m, 1H), 6.63(d, 1H), 6.79(d, 1H), 7.44(d, 1H), 7.89(s, 1H), 7.99(s, 1H), 8.24(d, 1H), 8.60(d, 1H), 10.88(s, 1H)                            |
| 15-2 |    | 566<br>[M+1] <sup>+</sup> | DMSO-d6: 1.60-1.70(m, 2H), 1.90-2.00(m, 6H), 2.12-2.20(m, 2H), 2.18(s, 3H), 2.60-2.65(m, 2H), 2.78(d, 3H), 3.22-3.28(m, 4H), 3.75(s, 3H), 4.25-4.37(m, 1H), 6.49-6.55(m, 2H), 6.62(d, 1H), 6.80(d, 1H), 7.53(d, 1H), 7.90(s, 1H), 8.00(s, 1H), 8.24(d, 1H), 8.58-8.63(m, 1H), 10.88(s, 1H) |

The following 2-[5-Chloro-2-(4-fluoro-2-methoxy-phenylamino)-pyrimidin-4- ylamino]-5-subst.-N-methyl-benzamide are prepared from the corresponding aniline following the procedure of Example 2:

| Expl | Ry  | Mass(m/z)                 | NMR (400MHz) δ (ppm)                                                                                                                                                                                         |
|------|-----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |     |                           |                                                                                                                                                                                                              |
| 16-1 | o o | 487<br>[M+1] <sup>+</sup> | DMSO-d6: 2.79(d, 3H), 3.11-3.15(m, 4H), 3.74-3.81(m, 4H), 3.81(s, 3H), 6.76(ddd, 1H), 6.95-7.05(m, 2H), 7.21(d, 1H), 7.72(dd, 1H), 8.08(s, 1H), 8.09(s, 1H), 8.33(d, 1H), 8.63-8.73(m, 1H), 11.17(s, 1H)     |
| 16-2 | , N | 500<br>[M+1] <sup>†</sup> | DMSO-d6: 2.24(s, 3H), 2.45-2.52(m, 4H),2.79(d, 3H), 3.13-3.18(m, 4H), 3.81(s, 3H), 6.75(ddd, 1H), 6.94-7.02(m, 2H), 7.20(d, 1H), 7.73(dd, 1H), 8.03-8.11(m, 2H), 8.30(d, 1H), 8.60-8.70(m, 1H), 11.14(s, 1H) |
| 16-3 | 0   | 432<br>[M+1] <sup>†</sup> | DMSO-d6: 2.79(d, 3H), 3.80-3.81(m, 6H), 6.75(ddd, 1H), 6.90-7.02(m, 2H), 7.27(d, 1H), 7.67(dd, 1H), 8.10(s, 1H), 8.16(s, 1H), 8.39(d, 1H), 8.70-8.76(m, 1H), 11.20(s, 1H)                                    |

| 16-4 | -N<br>N<br>N | 568<br>[M+1] <sup>†</sup> | DMSO-d6: 1.35-1.62(m, 8H), 1.78-1.85(m, 2H), 2.30-2.40(m, 1H), 2.41-2.52(m, 4H), 2.60-2.70(m, 2H), 2.78(d, 3H), 3.70-3.80(m, 2H), 3.81(s, 3H), 6.75(ddd, 1H), 6.95-7.02(m, 2H), 7.20(d, 1H), 7.72(dd, 1H), 8.05-8.08(m, 2H), 8.28(d, 1H), 8.63-8.69(m, 1H), 11.12(s, 1H) |
|------|--------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|--------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Example 16B

CDCl<sub>3</sub>: 3.01-3.10 (m, 4H), 3.63-3.68 (m, 4H), 3.89 (s, 3H), 6.59 (ddd, 1H), 6.66 (dd, 1H), 7.20-7.26 (m, 1H), 7.36 (s, 1H), 7.57-7.63 (m, 1H), 7.84 (dd, 1H), 8.09-8.14 (m, 1H), 8.14 (s, 1H), 8.53 (d, 1H), 9.30 (s, 1H).

#### Example 16C

 $CDCI_3$ : 3.56-3.65 (m, 2H), 3.88 (s, 3H), 5.11-5.19 (m, 1H), 6.50-6.56 (m, 1H), 6.61-6.66 (m, 1H), 7.25-7.29 (m, 1H), 7.38 (brs, 1H), 7.58-7.62 (m, 1H), 7.97 (dd, 1H), 8.02-8.10 (m, 1H), 8.15 (s, 1H), 8.41 (dd, 1H), 8.81 (s, 1H).

The following 2-(5-Chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino)-5-fluoro-N-methylbenzamide are prepared from 2-(2,5-Dichloro-pyrimidin-4-ylamino)-5-fluoro-N-methylbenzamideand the corresponding aniline following the procedure of Example 2:

| Expl<br>No. | Rx | Mass(m/z)                 | NMR (400MHz) δ (ppm)                                                                                                                                                                                                                                        |
|-------------|----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18-1        |    | 595<br>[M+1] <sup>+</sup> | DMSO-d6: 2.06 (s, 3H), 2.78 (d, 3H), 3.05-3.18 (m, 8H), 3.53-3.64 (m, 4H), 3.68-3.77 (m, 4H), 3.77 (s, 3H), 6.51 (dd, 1H), 6.69 (d, 1H), 6.88 (br.d, 1H), 7.20 (d, 1H), 7.43 (d, 1H), 7.99-8.03 (m, 2H), 8.34 (br.d, 1H), 8.63-8.71 (m, 1H), 11.15 (s, 1H). |

The following 2-[5-chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino]-N-isopropyl-benzene-sulfonamides are prepared from 2-(5-chloro-2-chloro-pyrimidin-4-ylamino)-N-isopropyl-benzenesulfonamide and the corresponding aniline following the procedure of Example 7A

| ExplNo. | Rx | Rf (solvent) | NMR (400MHz), δ (ppm) |
|---------|----|--------------|-----------------------|
|         |    | Or MS        |                       |
| L       |    | <u></u>      |                       |

|      | · · · · · · · · · · · · · · · · · · · |                                       | DMSO de 0 04/d CID 4 75 4 CA                                     |
|------|---------------------------------------|---------------------------------------|------------------------------------------------------------------|
| 19-1 | 0                                     | 0.39                                  | DMSO-d6: 0.94(d, 6H), 1.75-1.84(m, 1H), 2.07-                    |
| 13-1 |                                       | ł                                     | 2.16(m, 1H), 2.33(s, 3H), 2.98-3.04(m, 1H), 3.22-                |
|      | , N.                                  | (MeOH:                                | 3.36(m, 5H), 3.42-3.47(m, 1H), 3.74(s, 3H), 6.05(dd,             |
|      |                                       | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                          |
|      | )—<br>N—                              |                                       | 7.45(m, 1H), 7.77-7.82(m, 1H), 7.70-8.10(m, 1H),                 |
|      | ''                                    |                                       | 8.09-8.17 (m, 2H), 8.45-8.63(m, 1H), 9.34(s, 1H)                 |
| 40.0 |                                       | į                                     | CDCl <sub>3</sub> : 1.00(d, 6H), 1.13(t, 3H), 1.83-1.92(m, 1H),  |
| 19-2 |                                       | 0.40                                  | 2.23-2.30(m,1H), 2.70-2.78(m, 2H), 3.08-3.13(m, 1H),             |
|      |                                       | ( <i>n</i> -hexane:                   | 3.27-3.54 (m, 5H), 3.85(s, 3H), 4.33(d, 1H), 6.05(d,             |
|      | \(\frac{\sigma}{\sigma}\)             | AcOEt=1:1)                            | 1H), 6.13(s, 1H), 7.13(bs, 1H), 7.18-7.22(m, 1H),                |
|      | N                                     |                                       | 7.52-7.56(m, 1H), 7.83-7.86(m, 1H), 7.95-7.98(m,                 |
|      | н \                                   |                                       | 1H), 8.09(s, 1H), 8.47-8.49(m, 1H), 8.89(s, 1H)                  |
|      | 1 0                                   |                                       | CDCl <sub>3</sub> : 0.93 (d, 6H), 1.05-1.09(m, 1H), 1.48-1.99(m, |
| 19-3 |                                       | 0.30                                  | 6H), 2.16(s,3H), 2.61-2.67(m, 1H), 2.80-2.83(m, 1H),             |
|      |                                       | ( <i>n</i> -hexane:                   | 3.75(s, 3H), 3.80-3.89(m, 2H), 6.44-6.47(m, 1H),                 |
|      | ٥                                     | AcOEt=1:1)                            | 6.62-6.63(m, 1H), 7.18-7.22(m, 1H), 7.42-7.46(m,                 |
|      |                                       |                                       | 1H), 7.80-7.89(m, 2H), 8.17(s, 1H), 8.23(s, 1H), 8.42-           |
|      | \_N_                                  |                                       | 8.44(m, 1H), 8.89(s, 1H)                                         |
|      | 1                                     |                                       | DMSO 46 . 0.04/4 OLD 4 45 4 57/                                  |
| 19-4 |                                       | 0.69                                  | DMSO-d6: 0.94(d, 6H), 1.45-1.57(m, 2H), 1.80-                    |
| .54  |                                       |                                       | 1.88(m, 2H), 2.14(s, 3H), 2.25-2.35(m, 4H), 2.45-                |
|      | , N.                                  | (MeOH:                                | 2.55(m, 4H), 2.62-2.70(m, 2H), 3.28-3.37(m, 1H),                 |
|      |                                       | CH <sub>2</sub> Cl <sub>2</sub> =1:3) | 3.68-3.74(m, 2H), 3.75(s, 3H), 6.44(dd, 1H, <i>J</i> =8.82,      |
|      | $\searrow$                            |                                       | 2.0Hz), 6.61(d, 1H, <i>J</i> =2.0Hz), 7.21(dd, 1H), 7.37(d,      |
|      |                                       |                                       | 1H), 7.45(dd, 1H), 7.81(dd, 1H, <i>J</i> =1.82, 1.52Hz), 7.84-   |
|      | \n\ \                                 |                                       | 7.92(m, 1H), 8.12-8.20(m, 1H), 8.16(s, 1H), 8.43 -               |
|      | Ī                                     |                                       | 8.51(m, 1H), 9.31(s, 1H)                                         |
|      | 1 .                                   |                                       | CDCl <sub>3</sub> : 0.93(d, 6H), 2.23(s, 3H), 2.45-2.48(m, 4H),  |
| 19-5 |                                       | 0.35                                  | 3.12-3.15(m,4H), 3.75(s, 3H), 6.42-6.45(m, 1H), 6.63             |
|      | <b>Y</b>                              | (n-hexane:                            | (s, 1H), 7.19-7.23(m, 1H), 7.38-7.47(m, 2H), 7.80-               |
|      |                                       | AcOEt=1:1)                            | 7.89(m, 2H), 8.16(s, 1H), 8.46-8.48(m, 1H), 9.34(s,              |
|      | \n\ \                                 |                                       | 1H)                                                              |
|      |                                       |                                       |                                                                  |

| 400   | <del></del>                    | T                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|--------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-6  |                                | 0.45                                  | CDCl <sub>3</sub> : 0.99(d, 6H), 3.40-3.49(m, 1H), 3.88(s, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                | (n-hexane:                            | 4.29-4.31(d, 1H), 6.51-6.56(m, 1H), 6.62-6.65 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | l Y                            | AcOEt=1:1)                            | 1H), 7.24-7.28(m, 1H), 7.37(s, 1H), 7.56-7.60(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | , r                            |                                       | 7.98-8.15(m, 3H), 8.34-8.37(m, 1H), 8.89(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19-7  |                                | 0.28                                  | DMSO-d6: 0.93(d, 6H), 1.59-1.67(m, 2H), 1.90-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                                | ( <i>n</i> -hexane:                   | 1.93(m, 2H), 2.10-2.24(m, 5H), 2.60-2.67(m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                | AcOEt=1:1)                            | 3.74(s, 3H), 4.33-4.37(m, 1H), 6.47-6.50(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                |                                       | 6.63(d, 1H), 7.18-7.22(m, 1H), 7.41-7.45(m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                |                                       | 7.79-7.87(m, 2H), 8.16(s, 1H), 8.21(s, 1H), 8.41 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                | ļ                                     | 8.43(m, 1H), 9.29(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 19-8  |                                | 0.25                                  | DMSO-d6: 0.93(d, 6H), 3.09-3.12(m, 4H), 3.74-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                                | ( <i>n</i> -hexane:                   | 3.76(m, 7H), 6.43-6.46(m, 1H), 6.64(s, 1H), 7.19-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                | AcOEt=1:1)                            | 7.23(m, 1H), 7.41-7.48(m, 2H), 7.80(d, 1H), 7.82(d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                |                                       | 1H), 8.17(s, 1H), 8.46-8.48(m, 1H), 9.31(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 0                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19-9  |                                |                                       | DMSO-d6: 0.93(d, 6H), 1.89-1.90(m, 1H), 2.30(bs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                | 0.56                                  | 6H), 3.13-3.50(m, 6H), 3.74(s, 3H), 6.10(d, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                | (MeOH:                                | 6.22(s, 1H), 7.16-7.20(m, 1H), 7.25-7.27(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | $\langle \overset{N}{\rangle}$ | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 7.40(bs, 1H), 7.79-7.81(m, 1H), 7.86-7.88(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·     | <b>N</b> -                     |                                       | 8.12(s, 1H), 8.15(s, 1H), 8.51(s, 1H), 9.34(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19-10 | 1                              |                                       | CDCl <sub>3</sub> : 0.99(d, 12H), 2.27(s, 2H), 2.31(s, 6H), 2.96(s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | ~~~                            | 0.45                                  | 2H), 3.39-3.48(m, 1H), 3.83(s, 3H), 4.30(d, 1H), 6.09-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | _ 😽                            | (MeOH:                                | 6.12(m, 1H), 6.19(d, 1H), 7.11(s, 1H), 7.19-7.23(m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | HN                             | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 1H), 7.51-7.57(m, 1H), 7.76-7.79(m, 1H), 7.95(d, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | , N                            |                                       | 8.09(s, 1H), 8.46-8.49(m, 1H), 8.88(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19-11 |                                | 0.30                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                | ( <i>n</i> -hexane:                   | DMSO-d6: 0.93(d, 6H), 2.96-2.99(m, 4H), 3.74-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | ↓                              | AcOEt=1:1)                            | 3.76(m, 7H), 6.67-6.72(m, 1H), 7.21-7.25(m, 1H), 7.31-7.34(m, 1H), 7.44.7.48(m, 1H), 7.65.7.89(m, 1H), |
|       | _N                             | 7100L(-1.1)                           | 7.31-7.34(m, 1H), 7.44-7.48(m, 1H), 7.80-7.83(m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                |                                       | 1H), 7.88(d, 1H), 8.21(s, 1H), 8.42(d, 1H), 8.58(s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                |                                       | 1H), 9.30 (s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

.

|             | .,                                    |                                       | <u>'</u>                                                        |
|-------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------|
| 19-12       |                                       |                                       | DMSO-d6: 0.94(d, 6H), 1.68-1.76(m, 1H), 1.99-                   |
|             |                                       | 0.42                                  | 2.07(m, 1H), 2.29(s, 3H), 3.05-3.49(m, 6H), 3.75(s,             |
|             | F                                     | (MeOH:                                | 3H), 6.36-6.40(m, 1H), 7.10-7.37(m, 3H), 7.70-                  |
|             | $\langle \gamma \rangle$              | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 7.80(m, 1H), 8.08-8.39(m, 3H), 9.24(s, 1H)                      |
|             | <u></u>                               |                                       |                                                                 |
| 19-13       |                                       | 0.50                                  | CDOL 4 04/1 01/1 4 04/4 02/                                     |
| 19-13       |                                       |                                       | CDCl <sub>3</sub> : 1.01(d, 6H), 1.94-1.96(m, 1H), 2.01(s, 3H), |
|             |                                       | (MeOH:                                | 2.29-2.37(m, 1H), 3.19-3.58(m, 5H), 3.86(s, 3H),                |
|             | N                                     | CH <sub>2</sub> Cl <sub>2</sub> =1:4) |                                                                 |
|             | $\bigcup_{n}$                         |                                       | 6.08(m, 1H), 6.15-6.16(m, 1H), 7.17-7.24(m, 2H),                |
|             | h A                                   |                                       | 7.53-7.57(m, 1H), 7.90(d, 1H), 7.91-7.98(m, 1H),                |
|             |                                       |                                       | 8.09(s, 1H), 8.47(d, 1H), 8.91(s, 1H)                           |
| 19-14       |                                       | 0.53                                  | CDCl <sub>3</sub> : 1.00(d, 6H), 2.04(s, 3H), 2.05-2.29(m, 2H), |
|             |                                       | (MeOH:                                | 2.96(s, 3H), 3.19-3.54(m, 5H), 3.86(s, 3H), 4.57-               |
|             | )<br>N                                | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | , , , , , , , , , , , , , , , , , , ,                           |
|             |                                       |                                       | 6.16(d, 1H), 7.18-7.26(m, 2H), 7.53-7.57(m, 1H),                |
|             | )v—(                                  |                                       | 7.89-7.98(m, 2H), 8.08(s, 1H), 8.47(d, 1H), 8.94(d,             |
|             | , ,                                   |                                       | 1H)                                                             |
| 19-15       | J .0.                                 |                                       | DMSO-d6: 0.93(d, 6H), 1.48-1.56(m, 2H), 1.65-                   |
|             |                                       | 0.56                                  | 1.75(m, 4H), 1.90-1.93(m, 2H), 2.05-2.15(m, 1H),                |
|             |                                       | (MeOH:                                | 2.45-2.55(m, 5H), 2.69-2.75(m, 2H), 3.61(d, 2H),                |
|             |                                       | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 3.74(s, 1H), 6.42-6.51(m, 1H), 6.61(d, 1H), 7.18-               |
|             | $\rightarrow$                         |                                       | 7.22(m, 1H), 7.37(d, 1H), 7.43-7.47(m, 1H), 7.80(d,             |
|             | $\langle  \rangle$                    |                                       | 1H), 7.81-7.89(m, 1H), 8.16(d, 1H), 8.46-8.48(m, 1H),           |
|             |                                       |                                       | 9.31(s, 1H)                                                     |
| 19-16       |                                       |                                       | DMSO-d6: 0.92(d, 6H), 1.65-1.75(m, 4H), 1.88-                   |
|             |                                       | 0.56                                  | 2.00(m, 4H), 2.39-2.43(m, 2H), 2.60-2.65(m, 2H),                |
|             |                                       | (MeOH:                                | 3.03-3.07(m, 1H), 3.03-3.40(m, 2H), 3.70(s, 3H),                |
|             | N N N N N N N N N N N N N N N N N N N | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 3.77-3.78(m, 1H), 6.09(d, 1H), 6.23(s, 1H), 7.13-               |
|             |                                       |                                       | 7.17(m, 1H), 7.23-7.25(m, 1H), 7.30-7.42(m, 1H),                |
|             |                                       |                                       | 7.78(d, 1H), 7.86(d, 1H), 8.10(s, 1H), 8.13(s, 1H),             |
|             |                                       |                                       | 8.40-8.50(m, 1H), 9.31(s, 1H)                                   |
| <del></del> |                                       |                                       |                                                                 |

| 19-17 | <del></del>     | T 0.55              | I Division in the second secon |
|-------|-----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-17 |                 | 0.23                | DMSO-d6: 0.93(d, 6H), 1.24-1.57(m, 4H), 1.69-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                 | ( <i>n</i> -hexane: | 1.78(m, 2H), 1.98-2.04(m, 1H), 2.15-2.33(m, 5H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Ĭ               | AcOEt=1:1)          | 2.70-2.80(m, 1H), 3.74(s, 3H), 3.91-3.94(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                 |                     | 4.05-4.09(m, 1H), 6.46-6.49(m, 1H), 6.63(d, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                 |                     | 7.18-7.22(m, 1H), 7.42-7.46(m, 2H), 7.80(d, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                 |                     | 7.89(d, 1H), 8.17(s, 1H), 8.25(s, 1H), 8.42 -8.44(m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                 |                     | 1H), 9.31(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19-18 |                 | 0.48                | DMSO-d6: 0.93(d, 6H), 1.03(t, 3H), 1.13(t, 3H), 1.42-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |                 | ( <i>n</i> -hexane: | 1.81(m, 4H), 2.57-2.83(m, 4H), 3.17-3.41(m, 4H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                 | AcOEt=1:1)          | 3.65-3.75(m, 1H), 3.80(s, 3H), 4.21(bs, 1H), 6.42-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                 |                     | 6.47(m, 2H), 6.51(d, 1H), 6.63(d, 1H), 7.18-7.22(m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                 |                     | 1H), 7.38-7.47(m, 2H), 7.80-7.82(m, 1H), 7.89(d, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 0               |                     | 8.16(s, 1H), 8.47 -8.49(m, 1H), 9.31(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                 |                     | CDCl3: 1.45-1.62 (m, 2H), 1.72-1.78 (m, 1H), 1.82-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19-19 | <b>,</b>        | 0.44                | 1.90 (m, 1H), 2.40-2.46 (m, 1H), 2.61-2.75 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | -N.             | (CH2Cl2:M           | 3.75-3.70 (m, 2H), 3.76 (s, 3H), 6.45 (dd, 1H), 6.62 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | NH <sub>2</sub> | eOH=9:1)            | 1H), 6.85 (s, 1H), 7.19-7.23 (m, 1H), 7.36-7.48 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | v y ²           |                     | 3H), 7.80-7.82 (m, 1H), 7.85-7.93 (br, 1H), 8.16 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                 |                     | 2H), 8.43-8.52 (m, 1H), 9.31 (s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | _               |                     | DMSO-d6: 0.94 (d, 6H), 1.73-1.82 (m, 1H), 2.23-2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19-20 | ~~~             | Ms : 547            | (m, 4H), 2.34-2.41 (m, 1H), 2.54-2.62 (m, 1H), 2.62-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | . 🕌             |                     | 2.69 (m, 1H), 2.77-2.82 (m, 1H), 3.25-3.35 (m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | þ Í             |                     | 3.74 (s, 3H), 4.85-4.92 (m, 1H), 6.4 (dd, 1H), 6.57 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | $\wedge$        |                     | 1H), 7.16-7.24 (m, 1H), 7.38-7.51 (m, 1H), 7.81 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | \_n\(           |                     | 1H), 7.82-7.94 (m, 1H), 8.16 (s, 1H), 8.22 (brs, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | `               |                     | 8.38-8.48 (m, 1H), 9.3 (brs, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19-21 | <b>!</b>        |                     | DMSO-d6: 0.92 (d, 6H), 1.61-1.71 (m, 2H), 1.86-1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                 | Ms : 579            | (m, 2H), 2.12-2.22 (m, 5H), 2.57-2.64 (m, 2H), 3.2-3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | V <sub>F</sub>  |                     | (m, 1H), 3.77 (s, 3H), 4.27-4.35(m, 1H), 6.86 (dd, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| İ     | <b> </b>        |                     | 7.19-7.27 (m, 1H), 7.39-7.46 (m, 1H), 7.81 (dd, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | $\rightarrow$   |                     | 7.84-7.92 (m, 1H), 8.21 (s, 1H), 8.36-8.42 (m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                 |                     | 8.62 (s, 1H), 9.28 (s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | ï               |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|       | <u> </u>     |             |                                                          |
|-------|--------------|-------------|----------------------------------------------------------|
| 19-22 |              |             | DMSO-d6: 0.90 (s, 6H), 0.94 (d, 6H), 2.9 (d, 2H),        |
|       |              | Ms : 549    | 3.24 (d, 2H), 3.25-3.35(m, 1H), 3.27-3.36 (m, 1H),       |
|       |              | 1           | 3.68 (s, 3H), 4.58 (t, 1H), 5.3 (t, 1H), 6.16 (dd, 1H),  |
|       | ин он        |             | 6.39 (d, 1H), 7.13 (d, 1H), 7.15-7.21 (m, 1H), 7.35-     |
|       | $\backslash$ |             | 7.45 (m, 1H), 7.8 (dd, 1H), 7.83-7.92 (m, 1H), 8.09 (s,  |
|       |              |             | 1H), 8.11 (s, 1H), 8.45-8.57 (m, 1H), 9.33 (s, 1H)       |
| 19-23 |              |             | DMSO-d6: 0.94 (d, 6H), 1.22 (s, 6H), 3.25-3.35 (m,       |
|       | ~°~          | Rf : 0.51   | 1H), 3.36 (d, 2H), 3.68 (s, 3H), 4.73-4.79 (brs, 1H),    |
|       |              | (n-hexane : | 4.81 (t, 1H), 6.29 (dd, 1H), 6.44 (d, 1H), 7.14-7.22 (m, |
|       | ИН           | AcOEt=1:1)  | 2H), 7.38-7.46 (m, 1H), 7.8 (dd, 1H), 7.85-7.9 (m, 1H),  |
|       | ОН           |             | 8.1 (s, 1H), 8.13 (s, 1H), 8.45-8.55 (m, 1H), 9.32 (s,   |
|       | •            |             | 1H)                                                      |
| 19-24 |              |             | DMSO-d6: 0.93 (d, 6H), 0.96 (s, 6H), 2.22 (s, 6H),       |
|       | ~^°          | Ms : 577    | 3.25-3.35 (m, 1H), 3.7 (s, 3H), 3.75 (s, 3H), 6.46 (dd,  |
|       |              |             | 1H), 6.62 (d, 1H), 7.16-7.23 (m, 1H), 7.38-7.47 (m,      |
|       | þ l          |             | 1H), 7.81 (dd, 1H), 7.85-7.9 (m, 1H), 8.17 (s, 1H),      |
|       | , N          |             | 8.23 (s, 1H), 8.38-8.48 (m, 1H), 9.31 (s, 1H)            |
|       | /\           |             |                                                          |
| 19-25 | 1            |             | DMSO-d6: 0.94 (d, 6H), 3.12 (t, 4H), 3.25-3.35 (m,       |
|       | F            | Ms : 521    | 1H), 3.75 (t, 4H), 6.73 (dd, 1H), 6.85 (dd, 1H), 7.16-   |
|       |              |             | 7.24 (m, 1H), 7.25-7.32 (m, 1H), 7.38-7.47 (m, 1H),      |
|       | N            |             | 7.8 (dd, 1H), 7.88 (d, 1H), 8.18 (s, 1H), 8.42-8.52 (m,  |
|       |              |             | 1H), 8.86 (s, 1H), 9.36 (s, 1H)                          |
|       | · O          |             |                                                          |
|       | _            | - /         | DMSO-d6: 0.93 (d, 6H), 2.4-2.56 (m, 4H), 2.69 (t,        |
| 19-26 |              | Ms : 565    | 2H), 3.25-3.38 (m, 1H), 3.59 (t, 4H), 4.11 (t, 1H), 6.75 |
|       |              |             | (dd, 1H), 6.93 (dd, 1H), 7.16-7.23 (m, 1H), 7.3-7.4 (m,  |
|       | ٥_           |             | 1H), 7.4-7.38 (m, 1H), 7.8 (dd, 1H), 7.88 (d, 1H), 8.19  |
|       | \_N          |             | (s, 1H), 8.36-8.5 (m, 1H), 8.92 (s, 1H), 9.34 (s, 1H)    |
|       |              |             |                                                          |
|       |              |             |                                                          |

| 19-27 |       | Τ                                     | DMCO 46 : 0.00 (4.01) 4.0 (.00)                                                                                                                                                                                                                                                                                     |
|-------|-------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-27 |       | Ms : 614                              | DMSO-d6: 0.93 (d, 6H), 1.3-1.62 (m, 8H), 1.75-1.85 (m, sH), 2.26-2.4 (m, 1H), 2.4-2.58 (m, 4H), 3.28-3.38 (m, 1H), 3.68-3.78 (m, 5H), 6.42 (dd, 1H), 6.64 (d, 1H), 7.18-7.24 (m, 1H), 7.42-7.5 (m, 2H), 7.77 (d, 1H), 7.82 (dd, 1H), 8.13 (s, 1H), 8.17 (s, 1H), 8.4-8.5 (m, 1H), 9.36 (s, 1H)                      |
| 19-28 | F C N | Rf : 0.5<br>(MeOH:<br>CH2Cl2=3;<br>7) | DMSO-d6: 0.93 (d, 6H), 1.6-1.7 (m, 2H), 1.88-1.98 (m, 2H), 2.17-2.35 (m, 5H), 2.6-2.73 (m, 2H), 3.25-3.4 (m, 1H), 4.34-4.44 (m, 1H), 6.75 (dd, 1H), 6.93 (dd, 1H), 7.16-7.23 (m, 1H), 7.29-7.36 (m, 1H), 7.37-7.47 (m, 1H), 7.8 (dd, 1H), 7.89 (d, 1H), 8.19 (s, 1H), 8.36-8.46 (m, 1H), 8.92 (s, 1H), 9.31 (s, 1H) |
| 19-29 |       | Ms : 577                              | DMSO-d6: 0.93 (d, 6H), 2.45-2.55 (m, 4H), 2.7 (t, 2H), 3.25-3.35 (m, 1H), 3.59 (t, 3H), 3.76 (s, 3H), 4.1 (t, 1H), 6.48 (dd, 1H), 6.65 (d, 1H), 7.18-7.24 (m, 1H), 7.4-7.5 (m, 2H), 7.82 (dd, 1H), 7.88 (d, 1H), 8.17 (s, 1H), 8.24 (s, 1H), 8.4-8.48 (m, 1H), 9.31 (s, 1H)                                         |
| 19-30 |       | Ms : 590                              | DMSO-d6: 0.93 (d, 6H), 2.15 (s, 3H), 2.2-2.4 (m, 4H), 2.4-2.6 (m, 4H), 2.69 (t, 2H), 3.25-3.35 (m, 1H), 3.75 (s, 3H), 4.08 (t, 2H), 6.47 (dd, 1H), 6.64 (d, 1H), 7.18-7.24 (m, 1H), 7.41-7.49 (m, 2H), 7.81 (dd, 1H), 7.86-7.91 (m, 1H), 8.17 (s, 1H), 8.24 (s, 1H), 8.39-8.46 (m, 1H), 9.31 (s, 1H)                |

| 19-31 |     | Ms : 588 | DMSO-d6: 0.94 (d, 6H), 2.19-2.36 (m, 4H), 2.66-2.85 (m, 3H), 3.15-3.21 (m, 1H), 3.73-3.8 (m, 5H), 6.43 (dd, 1H), 6.63 (d, 1H), 7.18-7.25 (m, 1H), 7.4 (d, 1H), 7.43-7.5 (m, 1H), 7.81 (dd, 1H), 7.89 (d, 1H), 8.16 (s, 1H), 8.17 (s, 1H), 8.42-8.52 (m, 1H), 9.32 (s, 1H)                                                                            |
|-------|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-32 | O N | Ms : 560 | CDCl3: 1.01(s, 6H), 1.45-1.56 (m, 2H), 2.03-2.11 (m, 2H), 2.11-2.2 (m, 2H), 2.31 (s, 3H), 2.78-2.87 (m, 2H), 3.22-3.31 (m, 1H), 3.39-3.5 (m, 1H), 3.82 (s, 3H), 4.5-4.6 (m, 1H), 6.13 (dd, 1H), 6.21 (d, 1H), 7.16 (s, 1H), 7.18-7.24 (m, 1H), 7.5-7.57 (m, 1H), 7.82 (d, 1H), 7.97 (dd, 1H), 8.16 (s, 1H), 8.08 (s, 1H), 8.46 (d, 1H), 8.92 (s, 1H) |

The following 2-[5-chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzene-sulfonamides are prepared from 2-(5-chloro-2-chloro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide and the corresponding aniline following the procedure of Example A

| ExplNo. | Rx | Rf (solvent)<br>or MS | NMR (400MHz), δ (ppm)                                                                                                                                                                                      |
|---------|----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20-1    |    | 0.50<br>(AcOEt)       | CDCl <sub>3</sub> : 2.63(d, 3H), 3.14(t, 4H), 3.87-3.90(m,7H), 4.64(m,1H), 6.45(dd, 1H), 6.55(d, 1H), 7.23-7.26(m, 1H), 7.51-7.55(m, 1H), 7.91(d, 1H), 7.95(dd, 1H), 8.06(s, 1H), 8.47(d, 1H), 9.26(s, 1H) |

| 00.0 |                      |                                       | DMSO-d6: 2.06 (s, 3H), 2.43 (s, 3H), 3.10 (m, 2H),               |
|------|----------------------|---------------------------------------|------------------------------------------------------------------|
| 20-2 |                      |                                       | 3.16 (m, 2H), 3.59-3.62 (m, 4H), 3.77 (s, 3H), 6.49              |
|      |                      | m/z 546,                              | (dd, 1H), 6.68 (d, 1H), 7.21-7.25 (m, 1H), 7.42 (d, 1H),         |
|      |                      | 548 (M+1)                             | 7.49 (dd, 1H), 7.75-7.77 (m, 1H), 7.78(s, 1H), 8.16(s,           |
|      | \n                   |                                       | 1H), 8.21 (s, 1H), 8.50(d, 1H), 9.35 (s, 1H)                     |
|      | Ac                   |                                       |                                                                  |
| 20-3 | , O. F               | 0.27                                  | CDCI <sub>3</sub> : 2.65(d, 3H), 4.45-4.49(m, 1H), 6.99-7.04(m,  |
|      | F                    | ( <i>n</i> -hexane:                   | 1H), 7.17-7.28(m, 4H), 7.56-7.60(m, 1H), 7.96-                   |
|      |                      | AcOEt=3:1)                            | 7.98(m, 1H), 8.18(s, 1H), 8.31-8.34(m, 1H), 8.41-                |
|      |                      | <u> </u>                              | 8.44(m, 1H), 9.14(s, 1H)                                         |
| 20-4 | , D. F               | 0.27                                  | CDCl <sub>3</sub> : 2.65(d, 3H), 4.54-4.58(m, 1H), 6.53(dd, 1H), |
|      | H                    | ( <i>n</i> -hexane:                   | 6.98-7.02(m, 1H), 7.11-7.15(m, 2H), 7.24-7.28(m,                 |
|      |                      | AcOEt=3:1)                            | 1H), 7.35(bs, 1H), 7.57-7.61(m, 1H), 7.95-7.98(m,                |
|      |                      | }                                     | 1H), 8.16(s, 1H), 8.29-8.32(m, 1H), 8.42-8.46(m, 1H),            |
|      |                      |                                       | 9.14(s, 1H)                                                      |
| 20-5 | 1 0                  | 0.46                                  | CDCl <sub>3</sub> : 1.95-2.00(m, 5H), 2.29-2.37(m, 1H), 2.62(d,  |
|      |                      | (MeOH:                                | 3H), 3.20-3.78(m, 4H), 3.86(s, 3H), 4.60-4.64(m, 2H),            |
|      |                      | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 5.68-5.69(m, 1H), 6.09-6.16(m, 2H), 7.15(bs, 1H),                |
|      | · ·                  |                                       | 7.19-7.23(m, 1H), 7.54-7.58(m, 1H), 7.88-7.95(m,                 |
|      | N-C                  |                                       | 2H), 8.06(s, 1H), 8.55-8.57(m, 1H), 9.08(s, 1H)                  |
|      | н \                  |                                       |                                                                  |
| 20-6 | $\downarrow$ $\circ$ |                                       | DMSO-d6: 2.23(s, 3H), 2.43(s, 3H), 2.45-2.50(m, 4H),             |
|      |                      | 518                                   | 3.12-3.17(m, 4H), 3.76(s, 3H), 6.45(dd,1H), 6.63(d,              |
|      |                      | [M+1]+                                | 1H), 7.22(dd, 1H), 7.37(d, 1H), 7.45-7.50(m, 1H),                |
|      |                      |                                       | 7.74-7.78(m, 1H), 7.76(d, 1H), 8.15(s, 1H), 8.19(s,              |
|      | N                    |                                       | 1H), 8.46-8.53(m, 1H), 9.35(bs, 1H)                              |
|      | I                    |                                       |                                                                  |
| 20-7 |                      |                                       | DMSO-d6: 2.43(s, 3H), 2.80-2.89(m, 4H), 2.99-                    |
|      |                      | 504                                   | 3.07(m, 4H), 3.76(s, 3H), 6.44(dd,1H), 6.61(d, 1H),              |
|      | )<br>N               | [M+1]+                                | 7.18-7.24(m, 1H), 7.37(d, 1H), 7.44-7.50(m, 1H),                 |
|      |                      |                                       | 7.76(dd, 1H), 8.15(s, 1H), 8.18(s, 1H), 8.45-8.55(m,             |
|      | _H                   |                                       | 1H), 9.20-9.45(m, 1H)                                            |
|      |                      |                                       |                                                                  |

| 20-8  | · · · · · · · · · · · · · · · · · · · | <del></del>                             |                                                         |
|-------|---------------------------------------|-----------------------------------------|---------------------------------------------------------|
| 20-8  |                                       |                                         | DMSO-d6: 1.35-1.43(m, 2H), 1.45-1.61(m, 6H), 1.75-      |
|       |                                       | 586                                     | 1.85(m,2H), 2.30-2.40(m, 1H), 2.43(d, 3H), 2.42-        |
|       |                                       | [M+1]+                                  | 2.55(m, 4H), 2.60-2.70(m, 2H), 3.68-3.77(m, 2H),        |
|       |                                       | •                                       | 3.75(s, 3H), 6.45(dd, 1H), 6.62(d, 1H), 7.21(dd, 1H),   |
|       |                                       |                                         | 7.36(d, 1H), 7.43-7.51(m, 1H), 7.73-7.81(m, 1H),        |
|       | , N                                   |                                         | 7.75(dd, 1H), 8.15(s, 1H), 8.17(s, 1H), 8.45-8.52(m,    |
|       |                                       |                                         | 1H), 9.34(bs, 1H)                                       |
| 20-9  |                                       | <del> </del>                            | DMSO-d6: 1.85-1.95(m, 2H), 2.15(s, 3H), 2.18(t, 2H),    |
| İ     |                                       | 569                                     | 2.22-2.40(m, 8H), 2.43(s, 3H), 4.17(t, 2H), 6.65(d,     |
|       | N                                     | [M+1]+                                  | 1H), 7.06(dd, 1H), 7.20(d, 1H), 7.22(ddd, 1H), 7.25(d,  |
|       | 1                                     |                                         | 1H), 7.39-7.47(m, 2H), 7.72-7.82(m, 1H), 7.77(dd,       |
|       | / · · · ·                             |                                         | 1H), 8.26(s, 1H), 8.52(d, 1H), 9.22(s, 1H), 9.36(s, 1H) |
|       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                         |                                                         |
|       |                                       |                                         |                                                         |
|       |                                       |                                         | DMSO-d6: 1.85-1.95(m, 2H), 2.19(t, 2H), 2.25-           |
| 20-10 |                                       | 556                                     | 2.35(m, 4H), 2.43(s, 3H), 3.55-3.60(m, 4H), 4.19(t,     |
|       | N                                     | [M+1]+                                  | 2H), 6.66(d, 1H), 7.06(dd, 1H), 7.17-7.24(m, 1H),       |
|       |                                       |                                         | 7.21(d, 1H), 7.27(d, 1H), 7.39-7.45(m, 1H), 7.44(d,     |
|       |                                       |                                         | 1H), 7.70-7.80(m, 1H), 7.76(dd, 1H), 8.26(s, 1H),       |
|       | _ N_                                  |                                         | 8.52(d, 1H), 9.21(s, 1H), 9.36(s, 1H)                   |
|       |                                       |                                         |                                                         |
|       | `0                                    |                                         |                                                         |
| 00.44 | J .o -                                |                                         | DMSO-d6: 2.64 (d, 3H), 2.87-2.96 (m, 4H), 3.65-3.74     |
| 20-11 |                                       | Rf                                      | (m, 4H), 3.86 (s, 3H), 4.41-4.51 (m, 1H), 6.50 (dd,     |
|       |                                       | (Hexane :                               | 1H), 6.81 (d, 1H), 7.55-7.64 (m, 2H), 7.96 (d, 1H),     |
|       | o                                     | AcOEt=1:1)                              | 8.01 (s, 1H), 8.19 (s, 1H), 8.49 (d, 1H), 9.07 (s, 1H). |
|       |                                       | 0.29                                    |                                                         |
| 20-12 |                                       | MO                                      | DMSO-d6: 2.64 (d, 3H), 3.05 (bs, 4H), 3.59 (bs, 3H),    |
| 20-12 |                                       | MS                                      | 3.87(bs, 3H), 3.89 (bs, 4H), 4.52-4.48 (m, 1H),         |
|       | _0                                    | 535                                     | 6.57(bs, 1H), 7.25-7.20(m, 1H), 7.44-7.32 (m, 1H),      |
|       | \_N                                   |                                         | 7.63-7.52 (m, 1H), 7.94(bs, 1H), 8.06 (d, 1H), 8.25(s,  |
|       | \ <sub>0</sub> \\                     |                                         | 1H), 8.48(d, 1H), 9.06(bs, 1H)                          |
|       |                                       | - · · · · · · · · · · · · · · · · · · · |                                                         |

|       | T                  | T         | Tours is                                                |
|-------|--------------------|-----------|---------------------------------------------------------|
|       |                    |           | DMSO-d6: 2.17 (bs, 3H), 2.63 (d, 3H), 2.68 (bs, 4H),    |
| 20-13 |                    | MS        | 3.10(bs, 4H), 3.57 (s, 3H), 4.54-4.46 (m, 1H),          |
|       | 0                  | 548       | 6.59(bs, 1H), 7.27-7.18(m, 1H), 7.37 (bs, 1H), 7.62-    |
|       | N                  |           | 7.55 (m, 1H), 7.94(bs, 1H), 7.95 (d, 1H), 8.16(s, 1H),  |
|       |                    |           | 8.48(d, 1H), 9.04(bs, 1H)                               |
|       | N N                |           |                                                         |
|       | <br>               |           |                                                         |
|       |                    |           | DMSO-d6: 1.06 (t, 3H), 1.86 (dd, 2H), 2.37 (s, 3H),     |
| 20-14 |                    | MS        | 2.62-2.59 (m, 4H), 2.64(d, 3H), 4.00-3.97 (m, 4H),      |
|       |                    | 546       | 4.62-4.54 (m, 1H), 6.44 (dd, 1H), 6.54(d, 1H), 7.27-    |
|       | , N                |           | 7.22(m, 1H), 7.34(bs, 1H), 7.58-7.54(m, 1H), 7.95(dd,   |
|       |                    |           | 1H), 8.02(d, 1H), 8.11(s, 1H), 8.53(d, 1H), 9.07(bs,    |
|       |                    |           | 1H)                                                     |
|       | 1                  |           | DMSO-d6: 1.46-1.62 (m, 2H), 1.72-1.79 (m, 1H),          |
| 20-15 | _ <b>_</b>         | LC-MS     | 1.82-1.90 (m, 1H), 2.38-2.46 (m, 1H), 2.43 (s, 3H),     |
|       |                    | 545       | 1                                                       |
|       | ∠N'_               | 040       | 2.62-2.76 (m, 2H), 3.59-3.69 (m, 2H), 3.43 (s, 3H),     |
|       | NH <sub>2</sub>    |           | 6.47 (dd, 1H), 6.63 (d, 1H), 6.82-6.89 (br, 1H), 7.21   |
|       | Ö                  |           | (dd, 1H), 7.32-7.41 (m, 2H), 7.44-7.52 (m, 1H), 7.71-   |
|       |                    |           | 7.82 (m, 2H), 8.15 (s, 1H), 8.15-8.20 (br, 1H), 8.44-   |
|       |                    |           | 8.53 (m, 1H), 9.28-9.38 (m, 1H)                         |
|       | <b>\_</b> 0\       |           | DMSO-d6: 1.47-1.55 (m, 2H), 1.80-1.91 (m, 2H), 2.16     |
| 20-16 |                    | 0.24      | (s, 3H), 2.25-2.41 (m, 5H), 2.42-2.48 (m, 3H), 2.61-    |
|       | ſ <sup>Ń</sup> ¬   | (CH2Cl2:M | 2.73 (m, 2H), 3.68-3.79 (m, 5H), 6.45 (dd, 1H), 6.62    |
|       | Y                  | eOH=8:2)  | (d, 1H), 7.21 (dd, 1H), 7.34 (d, 1H), 7.45-7.49 (m,     |
|       | ( <sup>N</sup> )   |           | 1H), 7.73-7.80 (m, 2H), 8.15 (s, 1H), 8.20 (s, 1H),     |
|       | `N                 |           | 8.45-8.54 (m, 1H), 9.34 (s, 1H)                         |
|       | ı                  | ·         | DMSO-d6: 1.76-1.84 (m, 1H), 2.08-2.16 (m, 1H), 2.33     |
| 20-17 | , O,               | LC-MS     | (s, 3H), 2.42 (s, 3H), 3.00-3.03 (m, 1H), 3.23-3.27 (m, |
|       |                    | 518       | 3H), 3.42-3.46 (m, 1H), 3.74 (s, 3H), 6.06 (dd, 1H),    |
|       | ζŃ <sub>&gt;</sub> |           | 1 · · · · · · · · · · · · · · · · · · ·                 |
|       | <u> </u>           |           | 6.18- 6.20 (m, 1H), 7.17-7.23 (m, 1H), 7.38-7.48 (br,   |
|       | H_                 |           | 1H), 7.72-7.77 (m, 1H), 8.12 (s, 1H), 8.17-8.21 (br,    |
|       |                    | <u></u>   | 1H), 8.46-8.58 (br, 1H), 9.30-9.40 (br, 1H)             |

|       |                                        |          | DMSO-d6: 1.36-1.49 (m, 2H), 1.69-1.76 (m, 2H), 2.13                                                            |
|-------|----------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|
| 20-18 | $\sim$                                 | LC-MS    | (s, 3H), 2.15-2.23 (m, 1H), 2.24-2.36 (br, 4H), 2.39-                                                          |
|       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 601      | 2.48 (m, 5H), 2.43 (s, 3H), 3.27-3.40 (m, 2H), 3.74 (s,                                                        |
|       | _N                                     |          | 3H), 6.62 (dd, 1H), 6.90 (d, 1H), 7.22-7.26 (m, 1H),                                                           |
|       |                                        |          | 7.41-7.46 (m, 1H), 7.49-7.53 (m, 1H), 7.55-7.86 (br,                                                           |
|       |                                        |          | 1H), 7.77 (dd, 1H), 8.16 (s, 1H), 8.25 (s, 1H), 8.42 (d,                                                       |
|       |                                        |          | 1H), 9.28 (s, 1H)                                                                                              |
|       |                                        |          | DMSO-d6: 1.37-1.46 (m, 2H), 1.69-1.75 (m, 2H), 2.43                                                            |
| 20-19 |                                        | LC-MS    | (s, 3H), 2.53-2.61 (m, 2H), 3.18-3.26 (m, 2H), 3.40-                                                           |
|       | HO N                                   | 519      | 3.74 (m, 2H), 4.62 (d, 1H), 6.62 (dd, 1H), 6.90 (d, 1H),                                                       |
|       |                                        |          | 7.22-7.26 (m, 1H), 7.42-7.46 (br, 1H), 7.48-7.55 (m,                                                           |
|       |                                        |          | 1H), 7.77-7.80 (m, 2H), 8.13-8.18 (br, 1H), 8.25 (s,                                                           |
|       |                                        |          | 1H), 8.40-8.45 (m, 1H), 9.25-9.30 (m, 1H)                                                                      |
|       |                                        |          | DMSO-d6: 1.66-1.76 (m, 1H), 2.00-2.07 (m, 1H), 2.14                                                            |
| 20-20 |                                        | LC-MS    | (s, 6H), 2.43 (s, 3H), 2.68-2.76 (m, 1H), 2.87-2.91 (m,                                                        |
|       | تـر                                    | 532      | 1H), 2.99-3.10 (m, 2H), 3.24-3.28 (m, 1H), 3.71 (s,                                                            |
|       | -N                                     |          | 3H), 6.25 (dd, 1H), 6.90 (d, 1H), 7.00-7.03 (m, 1H),                                                           |
|       |                                        |          | 7.21-7.24 (m, 1H), 7.40-7.45 (m, 1H), 7.78-7.83 (m,                                                            |
|       |                                        |          | 2H), 8.19 (s, 1H), 8.24 (s, 1H), 8.46 (d, 1H), 9.27-9.36                                                       |
|       |                                        |          | (br, 1H)                                                                                                       |
| 20-21 | 1.0                                    |          | DMSO-d6: 2.37-2.47 (m, 4H), 2.48-2.53 (m, 3H), 2.64                                                            |
|       |                                        | Ms : 549 | (t, 2H), 3.57 (t, 3H), 3.77 (s, 3H), 3.92 (t, 2H), 6.61(dd,                                                    |
|       |                                        |          | 1H), 6.93 (d, 1H), 7.28 (dd, 1H), 7.56-7.63 (m, 2H),                                                           |
|       | )<br>N                                 |          | 7.75-7.85 (m, 2H), 7.74-7.84 (m, 2H), 8.14 (s, 1H),                                                            |
|       |                                        |          | 8.29 (s, 1H) 8.46 (d, 1H), 9.33(s, 1H)                                                                         |
|       |                                        |          | DMSO_d6: 2.20 (c. 3H) 2.2.2.5 ( 441) 2.24                                                                      |
| 20-22 |                                        | Ms:562   | DMSO-d6: 2.20 (s, 3H), 2.3-2.5 (m, 11H), 2.64 (t, 2H), 3.77 (s, 3H), 3.91 (t, 2H), 6.61(dd, 1H), 6.94 (d, 1H), |
|       |                                        |          | 7.25-7.31(m, 1H), 7.57 (d, 1H), 7.58-7.64 (m, 1H),                                                             |
|       | <u> </u>                               |          | 7.74-7.84 (m, 2H), 8.12 (brs, 1H), 8.28 (s, 1H) 8.46 (d,                                                       |
|       | 4                                      |          | 1H), 9.33(brs, 1H)                                                                                             |
|       |                                        |          |                                                                                                                |

|       |       |        | - 78 -                                                                                                                                                                                                                                                                                                                          |
|-------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20-23 | F     | Ms:438 | DMSO-d6: 2.42-2.45 (m, 3H), 3.83 (s, 2H), 6.8 (ddd, 1H), 7.02 (dd, 1H), 7.3-7.36 (m, 1H), 7.58-7.64 (m, 1H), 7.74-7.8 (m, 1H), 7.82 (dd, 1H), 7.85 (dd, 1H), 8.18 (brs, 1H), 8.31 (s, 1H), 8.41 (d, 1H), 9.3 (brs, 1H)                                                                                                          |
| 20-24 | , o , | Ms:438 | DMSO-d6: 2.41-2.45 (m, 3H), 3.79 (s, 2H), 6.74 (ddd, 1H), 7.0 (dd, 1H), 7.22-7.28 (m, 1H), 7.49-7.55 (m, 1H), 7.6 (dd, 1H), 7.75-7.8 (m, 2H), 8.21 (s, 1H), 8.37 (brs, 1H), 8.39-8.45 (m, 1H), 9.34 (brs, 1H)                                                                                                                   |
| 20-25 |       | Ms:547 | DMSO-d6: 1.24-1.38 (m, 2H), 1.64-1.8 (m, 3H), 1.83-1.92 (m, 2H), 2.16 (s, 3H), 2.41-2.45(m, 3H), 2.76-2.83 (m, 2H), 3.75 (s, 3H), 3.84 (d, 2H), 6.48 (dd, 1H), 6.64 (d, 1H), 7.2-7.25 (m, 1H), 7.41 (d, 1H), 7.43-7.5 (m, 1H), 7.74-7.8 (m, 2H), 8.16 (s, 1H), 8.26 (brs, 1H) 8.44-8.5 (m, 1H), 9.34 (brs, 1H)                  |
| 20-26 |       | Ms:547 | DMSO-d6: 1.18-1.3 (m, 2H), 1.56-1.7 (m, 3H), 1.8-1.88 (m, 2H), 2.15 (s, 3H), 2.41-2.45(m, 3H), 2.73-2.8 (m, 2H), 3.75 (s, 3H), 3.65 (d, 2H), 3.77 (s, 3H), 6.57 (dd, 1H), 6.93 (d, 1H), 7.25 (dd, 1H), 7.51-7.6 (m, 2H), 7.7-7.9 (m, 2H), 8.09 (brs, 1H), 8.28 (s, 1H), 8.45 (d, 1H), 9.31 (brs, 1H)                            |
| 20-27 |       | Ms:533 | DMSO-d6: 1.62-1.72 (m, 2H), 1.9-1.99 (m, 2H), 2.3-2.35 (m, 5H), 2.41-2.45(m, 3H), 2.64-2.74 (m, 2H), 3.75 (s, 3H), 4.35-4.43 (m, 1H), 6.52 (dd, 1H), 6.65 (d, 1H), 7.19-7.25 (m, 1H), 7.41 (d, 1H), 7.43-7.49 (m, 1H), 7.74-7.8 (m, 2H), 8.16 (s, 1H), 8.27 (brs, 1H), 8.42-8.5 (m, 1H), 9.34 (brs, 1H)                         |
| 20-28 |       | Ms:547 | DMSO-d6: 0.96-1.2 (m, 2H), 1.75-1.9 (m, 1H), 2.2-2.3 (m, 1H), 2.35-2.45 (m, 1H), 2.41-2.45(m, 2H), 2.43(d, 3H), 2.6-3.0 (m, 3H), 3.76 (s, 3H), 4.85-5.0 (m, 1H), 6.43-6.49 (m, 1H), 6.57-6.64 (m, 1H), 7.18-7.25 (m, 1H), 7.39-7.52 (m, 2H), 7.73-7.83 (m, 2H), 8.17 (s, 1H), 8.27 (brs, 1H), 8.44-8.51 (m, 1H), 9.35 (brs, 1H) |

|             | T                                     | T        | I DAVIGO 10 / File                                        |
|-------------|---------------------------------------|----------|-----------------------------------------------------------|
| 00.00       |                                       |          | DMSO-d6: 1.74-1.83 (m, 1H), 2.23-2.31 (m, 1H), 2.28       |
| 20-29       |                                       | Ms:519   | (s, 3H), 2.35-2.4 (m, 1H), 2.41-2.45(m, 3H), 2.58-2.63    |
|             |                                       |          | (m, 1H), 2.63-2.7 (m, 1H), 2.78-2.83 (m, 1H), 3.75 (s,    |
|             | \ \(\int_{\text{N}}\)                 |          | 3H), 4.86-4.92 (m, 1H), 6.43 (dd, 1H), 6.58 (d, 1H),      |
|             |                                       |          | 7.19-7.25 (m, 1H), 7.41 (d, 1H), 7.44-7.51 (m, 1H),       |
|             |                                       |          | 7.73-7.83 (m, 2H), 8.16 (s, 1H), 8.26 (brs, 1H), 8.43-    |
|             |                                       |          | 8.52 (m, 1H), 9.34 (brs, 1H)                              |
|             |                                       |          | DMSO-d6: 1.04 (t, 3H), 1.74-1.82 (m, 1H), 2.23-2.33       |
| 20-30       |                                       | Ms : 533 | (m, 1H), 2.47-2.5(m, 6H), 2.62-2.72 (m, 2H), 2.8-2.87     |
|             | <b> </b>                              |          | (m, 1H), 3.75 (s, 3H), 4.86-4.92 (m, 1H), 6.44 (dd,       |
|             |                                       |          | 1H), 6.59 (d, 1H), 7.19-7.25 (m, 1H), 7.41 (d, 1H),       |
|             |                                       |          | 7.44-7.51 (m, 1H), 7.73-7.8 (m, 2H), 8.16 (s, 1H), 8.26   |
|             |                                       |          | (brs, 1H), 8.44-8.51 (m, 1H), 9.34 (brs, 1H)              |
|             |                                       |          | DMSO-d6: 2.23(s, 3H), 2.38-2.47 (m, 7H), 2.87-2.93        |
| 20-31       |                                       | Ms : 518 | (m, 4H), 3.75 (s, 3H), 6.63 (dd, 1H), 6.93 (d, 1H),       |
|             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          | 7.22-7.28 (m, 1H), 7.42 (d, 1H), 7.48-7.54 (m, 1H),       |
|             | _N                                    |          | 7.76-7.84 (m, 1H), 8.2 (s, 1H), 8.25(s, 1H), 8.43 (dd,    |
|             |                                       |          | 1H) 9.29 (s, 1H)                                          |
|             |                                       |          | DMSO-d6: 1.35-1.55 (m, 8H), 1.66-1.75 (m, 2H),            |
| 20-32       |                                       | Ms : 586 | 2.23(s, 3H), 2.41-2.45 (m, 3H), 3.74 (s, 3H), 6.63 (dd,   |
|             |                                       |          | 1H), 6.91 (d, 1H), 7.21-7.28 (m, 1H), 7.44 (d, 1H),       |
| į           | ~                                     |          | 7.48-7.54 (m, 1H), 7.76-7.87 (m, 1H), 8.16 (s, 1H),       |
| ·           |                                       |          | 8.25 (s, 1H), 8.43 (dd, 1H) 9.29 (s, 1H)                  |
|             | 1 .                                   |          | DMSO-d6: 1.62-1.71 (m, 1H), 1.95-2.04 (m, 1H),            |
| 20-33       |                                       | Ms : 518 | 2.23-2.27 (m, 3H), 2.39-2.43 (m, 3H), 2.93-3.1 (m,        |
|             | J.                                    |          | 2H), 3.13-3.26 (m, 2H), 3.71 (s, 3H), 6.19 (dd, 1H),      |
|             |                                       |          | 6.88 (d, 1H), 7.07-7.13 (m, 1H), 7.13-7.2 (m, 1H), 7.4-   |
|             |                                       |          | 7.48 (m, 1H), 7.75 (dd, 1H), 8.06 (brs, 1H), 8.18 (s,     |
|             | ,                                     |          | 1H), 8.4 (d, 1H)                                          |
|             | <u> </u>                              |          | DMSO-d6: 2.02 (m, 1H), 2.42-2.46 (m, 3H), 2.71-2.91       |
| 20-34       |                                       | Ms : 546 | (m, 4H), 3.44-3.51 (m, 4H), 3.76 (s, 3H), 6.66 (dd,       |
|             |                                       |          | 1H), 6.94 (d, 1H), 7.21-7.27 (m, 1H), 7.75-7.85 (m,       |
|             |                                       |          | 2H), 8.19 (s, 1H), 8.26 (s, 1H), 8.41 (d, 1H), 9.28 (brs, |
|             |                                       |          | 1H).                                                      |
| <del></del> | <del></del>                           |          |                                                           |

| 20-35 |  | MS (ESI)<br>464 (M+H) | HPLC Retention time (min) 2.68 |
|-------|--|-----------------------|--------------------------------|
|-------|--|-----------------------|--------------------------------|

The following 2-[5-chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino]-N-sec-butyl-benzene-sulfonamides are prepared from 2-(5-chloro-2-chloro-pyrimidin-4-ylamino)-N-sec-butyl-benzenesulfonamide and the corresponding aniline following the procedure of Example 7A

| ExplNo. | Rx  | Rf (solvent)<br>or MS                     | NMR (400MHz) , δ (ppm)                                                                                                                                                                                                                                             |
|---------|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21-1    | N N | 0.35<br>( <i>n</i> -hexane:<br>AcOEt=1:1) | CDCl <sub>3</sub> : 0.62(t, 3H), 0.88(d, 3H), 1.22-1.29(m, 2H), 2.23(s,3H), 2.45-2.47(m, 4H), 3.05-3.14(m, 5H), 3.75 (s, 3H), 6.40-6.43(m, 1H), 6.62(s, 1H), 7.18-7.22(m, 1H), 7.39-7.47(m, 2H), 7.80-7.82(m, 1H), 8.15-8.16(m, 2H), 8.44-8.46(m, 1H), 9.32(s, 1H) |
| 21-2    | P O | 0.30<br>( <i>n</i> -hexane:<br>AcOEt=3:1) | DMSO-d6: 0.62(t, 3H), 0.87(d, 3H), 1.17-1.26(m, 2H), 3.03-3.10(m, 1H), 3.79(s, 3H), 6.66-6.71(m, 1H), 6.96-7.00(m, 1H), 7.21-7.25(m, 1H), 7.47-7.51(m, 1H), 7.60-7.64(m, 1H), 7.79-7.83(m, 2H), 8.21(s, 1H), 8.31(s, 1H), 8.35-8.37(m, 1H), 9.29(s, 1H)            |

| 21-3 | 0.30<br>( <i>n</i> -hexane:<br>AcOEt=1:1) | DMSO-d6: 0.61(t, 3H), 0.87(d, 3H), 1.21-1.29(m, 2H), 1.58-1.67(m, 2H), 1.86-1.93(m, 2H), 2.14-2.20(m, 5H), 2.59-2.67(m, 2H), 3.06-3.08(m, 1H), 3.74(s, 3H), 4.32-4.36(m, 1H), 6.46-6.48(m, 1H), 6.63(d, 1H), 7.17-7.21(m, 1H), 7.40-7.50(m, 2H), 7.79-7.81(m, 2H), 8.16(s, 1H), 8.21(bs, 1H), 8.35-8.42(m, 1H), 9.29(s, 1H)                  |
|------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21-4 | 0.30<br>( <i>n</i> -hexane:<br>AcOEt=1:1) | DMSO-d6: 0.61(t, 3H), 0.87(d, 3H), 1.22-1.29(m, 2H), 2.43-2.47(m, 2H), 2.61-2.63(m, 1H), 2.68-2.70(m, 2H), 3.04-3.11(m, 1H), 3.56-3.60(m, 5H), 3.75(s, 3H), 3.93-3.96(m, 1H), 4.08-4.11(m, 2H), 6.45-6.47(m, 1H), 6.64(d, 1H), 7.18-7.22(m, 1H), 7.43-7.46(m, 2H), 7.80-7.82(m, 2H), 8.17(s, 1H), 8.21(s, 1H), 8.42-8.44(m, 1H), 9.31(s, 1H) |

The following 2-[5-chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino]-N-iso-butyl-benzene-sulfonamides are prepared from 2-(5-chloro-2-chloro-pyrimidin-4-ylamino)-N-sec-butyl-benzenesulfonamide and the corresponding aniline following the procedure of Example 7A

| ExplNo. | Rx | Rf (solvent)                              | NMR (400MHz) , δ (ppm)                                                                                                                                                                                               |
|---------|----|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |    | or MS                                     |                                                                                                                                                                                                                      |
| 22-1    | F  | 0.30<br>( <i>n</i> -hexane:<br>AcOEt=3:1) | DMSO-d6: 0.69(d, 6H), 1.52-1.59(m, 1H), 2.57-2.58(m, 2H), 3.82(s, 3H), 6.75-6.80(m, 1H), 6.99-7.02(m, 1H), 7.29-7.33(m, 1H), 7.56-7.60(m, 1H), 7.82-7.93(m, 3H), 8.14(bs, 1H), 8.31(s, 1H), 8.33(s, 1H), 9.23(s, 1H) |

| 22-2 | 0.30<br>( <i>n</i> -hexane:<br>AcOEt=3:1) | CDCl <sub>3</sub> : 0.74(d, 6H), 1.57-1.64(m, 1H), 2.72-2.76(m,2H), 3.88(s, 3H), 4.55-4.56(m, 1H), 6.52-6.57 (m, 1H), 6.62-6.65(m, 1H), 7.24-7.28(m, 2H), 7.36(bs, 1H), 7.56-7.60(m, 1H), 7.95-8.08(m, 1H), 8.10-8.14(m, 2H), 8.36-8.39(m, 1H), 8.98(bs, 1H) |
|------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22-3 | 0.54<br>(AcOEt)                           | DMSO-d6: 0.73(d, 6H), 1.55-1.62(m, 1H), 2.56-2.59(m, 2H), 3.10-3.12(m, 4H), 3.74-3.76(m, 7H), 6.43-6.46(m, 1H), 6.65(d, 1H), 7.20-7.24(m, 1H), 7.40-7.48(m, 2H), 7.76-7.78(m, 1H), 7.90-7.95(m, 1H), 8.16(s, 1H), 8.17(s, 1H), 8.43-8.45(m, 1H), 9.32(s, 1H) |

The following 2-[5-chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino]-N-(1-ethyl-propyl)-benzenesulfonamides are prepared from 2-(5-chloro-2-chloro-pyrimidin-4-ylamino)-N-(1-ethyl-propyl)-benzenesulfonamide and the corresponding aniline following the procedure of Example 7A

| ExplNo. | Rx | Rf (solvent)<br>or MS         | NMR (400MHz) , δ (ppm)                                                                                                                                                                                                                                                                                          |
|---------|----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23-1    |    | 0.46<br>(MeOH:<br>CH₂Cl₂=3:7) | DMSO-d6: 0.58(t, 6H), 1.14-1.34(m, 4H), 1.58-1.68(m, 2H), 1.87-1.96(m, 2H), 2.12-2.22(m, 2H), 2.18(s, 3H), 2.57-2.65(m, 2H), 2.86-2.96(m, 1H), 3.75(s, 3H), 4.30-4.39(m, 1H), 6.46(dd, 1H), 6.63(d, 1H), 7.19(dd, 1H), 7.39-7.48(m, 2H), 7.75-7.84(m, 2H), 8.18(s, 1H), 8.20 (s, 1H), 8.39(m, 1H), 9.33(bs, 1H) |

|      |                     | Т                                     | 0001 0 704                                                     |
|------|---------------------|---------------------------------------|----------------------------------------------------------------|
| 00.0 | 0                   |                                       | CDCl <sub>3</sub> : 0.59(t, 6H), 1.14-1.34(m, 4H), 2.23(s,3H), |
| 23-2 |                     | 0.35                                  | 2.45-2.47(m, 4H), 2.90-2.95(m, 1H), 3.11-3.14(m,               |
|      | )                   | (n-hexane:                            | 4H), 3.76 (s, 3H), 6.39-6.42(m, 1H), 6.62(s, 1H), 7.18-        |
| i    |                     | AcOEt=1:1)                            | 7.22(m, 1H), 7.41-7.46(m, 2H), 7.76-7.82(m, 2H),               |
|      | N N                 | )                                     | 8.12(s, 1H), 8.16(s, 1H), 8.43-8.44(m, 1H), 9.35(s,            |
|      |                     |                                       | 1H)                                                            |
| 23-3 |                     |                                       | DMSO-d6: 0.59(t, 6H), 1.16-1.35(m, 4H), 1.75-                  |
|      |                     | 0.41                                  | 1.89(m, 1H), 2.08-2.15(m, 1H), 2.32(s, 3H), 2.90-              |
|      |                     | (MeOH:                                | 3.02(m, 2H), 3.21-3.45(m, 4H), 3.73(s, 3H), 6.02(dd,           |
|      | $\langle  \rangle$  | CH <sub>2</sub> Cl <sub>2</sub> =1:4) |                                                                |
|      | 4-                  | 1                                     | 7.45(m, 1H), 7.77-7.82(m, 2H), 8.10 (s, 1H) 8.12 (s,           |
|      |                     |                                       | 1H), 8.45-8.55(m, 1H), 9.38(s, 1H)                             |
| 23-4 | 1 .                 |                                       | DMSO-d6: 0.60(t, 6H), 1.04(t, 3H), 1.17-1.35(m, 4H),           |
|      |                     | 0.41                                  | 1.76-1.83(m, 1H), 2.10-2.15(m, 1H), 2.56-2.64(m,               |
|      |                     | (MeOH:                                | 2H), 2.91-3.01(m, 2H), 3.21-3.47(m, 4H), 3.74(s, 3H),          |
|      | $\langle n \rangle$ | CH <sub>2</sub> Cl <sub>2</sub> =1:4) | 6.02(dd, 1H), 6.18(d, 1H), 7.14-7.17(m, 1H), 7.28(d,           |
|      | N-                  |                                       | 1H), 7.35-7.45(m, 1H), 7.77-7.82(m, 2H), 8.11 (s, 1H)          |
|      |                     |                                       | 8.12 (s, 1H), 8.45-8.55(m, 1H), 9.38(s, 1H)                    |
| 23-5 | ۵.                  | 0.25                                  | DMSO-d6: 0.58(t, 6H), 1.06-2.16(m, 11H), 2.16(s,               |
|      |                     | ( <i>n</i> -hexane:                   | 3H), 2.62-2.67(m, 1H), 2.81-2.94(m, 2H), 3.75(s, 3H),          |
|      |                     | AcOEt=1:1)                            | 3.80-3.89(m, 2H), 6.41-6.44(m, 1H), 6.62(d, 1H),               |
|      |                     |                                       | 7.17-7.21(m, 1H), 7.42-7.47(m, 2H), 7.77-7.82(m,               |
|      |                     |                                       | 2H), 8.18(s, 1H), 8.19(s, 1H), 8.35 -8.42(m, 1H),              |
|      | N                   |                                       | 9.35(s, 1H)                                                    |
|      |                     |                                       | DMSO-d6: 0.59 (t, 6H), 1.14-1.38 (m, 4H), 2.87-2.98            |
| 23-6 |                     | Ms : 561                              | (m, 1H), 3.1 (t, 4H), 3.72-3.79 (m, 7H), 6.42 (dd, 1H),        |
|      |                     |                                       | 6.64 (d, 1H), 7.18-7.24 (m, 1H), 7.42-7.5 (m, 2H),             |
|      | _N_                 |                                       | 7.77 (d, 1H), 7.81 (dd, 1H), 8.13 (s, 1H), 8.17 (s, 1H),       |
|      |                     |                                       | 8.4-8.5 (m, 1H), 9.36 (s, 1H)                                  |
|      | 0                   |                                       |                                                                |

| 23-7 | Ms : 575 | DMSO-d6: 0.58 (t, 6H), 1.13-1.37 (m, 4H), 1.72-1.82 (m, 1H), 2.21-2.31 (m, 4H), 2.32-2.4 (m, 1H), 2.54-                                                                                                                                                                                             |
|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |          | 2.61 (m, 1H), 2.62-2.68 (m, 1H), 2.75-2.82 (m, 1H), 2.87-2.97 (m, 1H), 3.75 (s, 3H), 4.84-4.91 (m, 1H), 6.37 (dd, 1H), 6.56 (d, 1H), 7.14-7.24 (m, 1H), 7.38-7.52 (m, 2H), 7.72-7.86 (m, 1H), 8.12-8.25 (m, 2H), 8.34-8.45 (m, 1H), 9.33 (brs, 1H)                                                  |
| 23-8 | Ms : 605 | DMSO-d6: 0.58 (t, 6H), 1.14-1.36 (m, 4H), 2.43-2.53 (m, 4H), 2.69 (t, 2H), 2.89-2.95 (m, 1H), 3.59 (t, 4H), 3.76 (s, 3H), 4.09 (t, 1H), 6.45 (dd, 1H), 6.64 (d, 1H), 7.17-7.23 (m, 1H), 7.41-7.52 (m, 2H), 7.78 (d, 1H), 7.81 (dd, 1H), 8.18 (s, 1H), 8.19 (s, 1H), 8.36-8.46 (m, 1H), 9.35 (s, 1H) |
| 23-9 | Ms : 618 | DMSO-d6: 0.58 (t, 6H), 1.14-1.37 (m, 4H), 2.15 (s, 1H), 2.25-2.4 (m, 4H), 2.45-2.55 (m, 4H), 2.68 (t, 2H), 2.88-2.97 (m, 1H), 3.76 (s, 3H), 4.07 (t, 1H), 6.44 (dd, 1H), 6.64 (d, 1H), 7.15-7.23 (m, 1H), 7.41-7.51 (m, 2H), 7.7-7.84 (m, 2H), 8.12-8.22 (m, 1H), 8.34-8.44 (m, 1H), 9.34 (s, 1H)   |

The following 2-[5-chloro-2-(subst.phenylamino)-pyrimidin-4-ylamino]-N-iso-butyl-benzene-sulfonamides are prepared from 2-(5-chloro-2-chloro-pyrimidin-4-ylamino)-N-cyclobutyl-benzenesulfonamide and the corresponding aniline following the procedure of Example 7A

|   | ExplNo. | Rx | Rf (solvent) | NMR (400MHz) , δ (ppm) |
|---|---------|----|--------------|------------------------|
|   |         |    | or MS        |                        |
| ł | L       |    |              |                        |

| 24-1 | 0 | 0.35<br>( <i>n</i> -hexane:<br>AcOEt=1:1)               | DMSO-d6: 1.37-1.48(m, 2H), 1.69-1.91(m, 4H), 3.09-3.12(m, 4H), 3.63-3.74(m, 1H), 3.76(s, 3H), 6.43-6.45(m, 1H), 6.63(d, 1H), 7.18-7.22(m, 1H), 7.41-7.47(m, 2H), 7.76-7.78(m, 1H), 8.17-8.24(m, 3H), 8.46(d, 1H), 9.33(s, 1H)                                                                  |
|------|---|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24-2 |   | 0.46<br>(MeOH:<br>CH <sub>2</sub> Cl <sub>2</sub> =3:7) | DMSO-d6: 1.37-1.93(m, 10H), 2.18(s, 3H), 2.59-2.62(m, 1H), 3.60-3.74(m, 1H), 3.77(s, 3H), 4.32-4.36(m, 1H), 6.46-6.49(m, 1H), 6.62(d, 1H), 7.16-7.20(m, 1H), 7.41-7.44(m, 2H), 7.75-7.77(m, 1H), 8.16(s, 1H), 8.22 (bs, 1H), 8.40-8.42(m, 1H), 9.30(bs, 1H)                                    |
| 24-3 |   | 0.46<br>(MeOH:<br>CH <sub>2</sub> Cl <sub>2</sub> =1:4) | CDCl <sub>3</sub> : 1.45-1.75(m, 5H), 1.94-2.06(m, 6H), 2.29-2.37(m, 1H), 3.21-3.56(m, 4H), 3.72-3.81(m, 1H), 3.86(s, 3H), 4.55-4.65(m, 1H), 4.90(d, 1H), 5.72(d, 1H), 6.07(bs, 1H), 6.15(bs, 1H), 7.18-7.22(m, 2H), 7.52-7.56(m, 1H), 7.89-7.94(m, 2H), 8.08(s, 1H), 8.50(d, 1H), 9.00(s, 1H) |

| Expl<br>No. | Rx | Ms       | NMR (400MHz), δ (ppm)                                                                                                                                                                                                                                      |
|-------------|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25-1        |    | Ms : 559 | DMSO-d6: 1.2-1.38 (m, 4H), 1.4-1.65 (m, 4H), 3.11 (t, 4H), 3.42-3.5 (m, 1H), 3.7-3.8 (m, 7H), 6.44 (dd, 1H), 6.64 (d, 1H), 7.18-7.26 (m, 1H), 7.38-7.5 (m, 2H), 7.81 (d, 1H), 7.88-7.96 (m, 1H), 8.16 (s, 1H), 8.17 (s, 1H), 8.4-8.5 (m, 1H), 9.34 (s, 1H) |

| 25-2 | Ms: | DMSO-d6: 1.2-1.38 (m, 4H), 1.42-1.6 (m, 6H), 1.88-1.98 (m, 2H), 2.1-2.25 (m, 5H), 2.55-2.65 (m, 2H), 3.4-3.5 (m, 1H), 3.74 (s, 3H), 4.3-4.4 (m, 1H), 6.48 (dd, 1H), 6.63 (d, 1H), 7.18-7.24 (m, 1H), 7.38-7.47 (m, 1H), 7.77-7.82 (m, 1H), 7.88-7.96 (m, 1H), 8.17 (s, 1H), 8.22 (s, 1H), 8.36-8.46 (m, 1H), 9.31 (s, 1H) |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The following 5-Chloro- $N^2$ -(substituted phenyl)- $N^4$ -[2-(propane-1-sulfonyl)-phenyl]-pyrimidine-2,4-diamine are prepared from (2,5-Dichloro-pyrimidin-4-yl)-[2-(propane-1-sulfonyl)-phenyl]-amine and the corresponding aniline following the procedure of Example 7A

| ExplN | Rx          | Rf (solvent) | NMR (400MHz) , δ (ppm)                                          |
|-------|-------------|--------------|-----------------------------------------------------------------|
| О.    |             | , MS or Mp   |                                                                 |
|       |             |              | CDCl <sub>3</sub> : 0.97(t,3H), 1.72-1.82(m, 2H), 3.08-3.14(m,  |
| 26-1  |             | 0.58         | 6H), 3.87-3.89(m, 7H), 6.46(dd, 1H), 6.53(d,1H), 7.24-          |
|       | , N         | (AcOEt)      | 7.28(m,1H), 7.30(s, 1H), 7.60-7.64(m, 1H), 7.94(dd,             |
|       |             |              | 1H), 8.05(d, 1H), 8.15(s, 1H), 8.59(d, 1H), 9.40(s, 1H)         |
|       | <b>*0</b> * |              |                                                                 |
|       |             |              | CDCl <sub>3</sub> : 0.98(t, 3H), 1.85-1.68(m, 2H), 2.15(s, 3H), |
| 26-2  |             | 0.57         | 3.16-3.07(m, 6H), 3.67-3.62(m, 2H), 3.81-3.78(m,                |
|       | )<br>N      | (MeOH:       | 2H), 3.89(s, 3H), 6.47(d, 1H), 6.55(d, 1H), 7.36-               |
|       |             | AcOEt=1:4)   | 7.33(m, 1H), 7.62 (dd, 1H), 7.95(dd, 1H), 8.08(d, 1H),          |
|       | N Ac        |              | 8.15(s, 1H),8.58(d, 1H), 9.41(s, 1H)                            |
|       |             |              |                                                                 |

|               | 1                                      |            |                                                                      |
|---------------|----------------------------------------|------------|----------------------------------------------------------------------|
| 00.0          |                                        |            | CDCl <sub>3</sub> : 0.97(t, 3H), 1.43-1.52(m, 2H), 1.52-1.67 (m,     |
| 26-3          |                                        | 0.13       | 4H), 1.69-1.72(m, 4H), 1.90-1.98(m, 2H), 2.34-                       |
|               | , N                                    | (MeOH:     | 2.46(m, 1H), 2.51-2.59(m, 4H), 2.64-2.74(m, 2H),                     |
|               |                                        | AcOEt=1:4) | 3.11(dd, 2H), 3.64-3.73(m, 2H), 3.87(s, 3H), 6.47(dd,                |
|               | , N.                                   |            | 1H), 6.56 (d, 1H), 7.24-7.33(m, 1H), 7.62(dd, 1H),                   |
|               |                                        |            | 7.94(dd, 1H), 8.00(d, 1H), 8.14(s, 1H), 8.59(d, 1H),                 |
|               |                                        |            | 9.39(bs, 1H).                                                        |
|               |                                        |            | CDCl <sub>3</sub> : 0.97(t, 3H), 1.45(d, 1H), 1.68-1.82(m, 4H), 2.0- |
| 26-4          |                                        | 0.22       | 2.1(m, 2H), 2.91(ddd, 2H),3.10(ddd, 2H), 3.46-3.51                   |
|               |                                        | (AcOEt)    | (m, 2H), 3.84-3.92(m, 1H), 3.88 (s, 1H), 6.48(dd, 1H),               |
|               |                                        |            | 6.57(d, 1H), 7.23-7.32 (m, 1H), 7.62(dd, 1H),                        |
|               | $\bigvee_{i}$                          |            | 7.94(dd,1H), 8.02 (dd, 1H), 8.14(s, 1H), 8.59(d, 1H),                |
|               | он                                     |            | 9.39(bs, 1H)                                                         |
|               |                                        |            | CDCl <sub>3</sub> : 0.97(t, 3H) ,1.71-1.82(m, 2H), 1.86-1.98(m,      |
| 26-5          |                                        | 0.1        | 2H), 2.01-2.08(m, 2H), 2.25-2.37(m, 1H), 2.75 (ddd,                  |
|               |                                        | (AcOEt)    | 2H), 3.10(ddd, 2H), 3.63-3.66(m, 2H), 3.88(s, 3H),                   |
|               |                                        |            | 5.25-5.40(m, 1H), 5.40-5.58 (m, 1H), 6.48(dd, 1H),                   |
|               | $\rightarrow$                          |            | 6.57(d, 1H), 7.22-7.34 (m, 1H), 7.62(ddd, 1H), 7.93                  |
|               | O NH                                   |            | (d, 1H), 7.94 (dd, 1H), 8.02 (d, 1H), 8.14(s, 1H),                   |
|               |                                        | į          | 8.59(d, 1H), 9.40(m, 1H)                                             |
|               |                                        |            | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.77 (ddd, 2H), 2.00-1.85 (m, 4H), |
| 26-6          |                                        | MS         | 2.27-2.18(m, 1H), 2.72(ddd, 2H) 3.12-3.08 (m, 2H),                   |
|               |                                        | 587        | 3.69-3.61(m, 2H), 3.58-3.46(m, 1H), 3.64 (t, 2H),                    |
|               | N                                      |            | 3.80(t, 2H), 3.88(s,3H), 5.56-5.46 (m, 1H), 6.47(dd,                 |
|               |                                        |            | 1H), 6.55(d, 1H), 7.32-7.23 (m, 1H), 7.30(bs, 1H),                   |
|               | Y                                      |            | 7.64-7.60(m, 1H), 7.94(dd, 1H), 8.02(d, 1H), 8.14(s,                 |
|               | A O                                    |            | 1H), 8.59(d, 1H), 9.40(s, 1H)                                        |
| <del>  </del> |                                        |            | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.46(bs, 6H) 1.82-1.73 (m, 2H),    |
| 26-7          |                                        | MS         | 2.17(s, 3H), 3.58-3.46(m, 1H), 2.95-2.84 (m, 2H),                    |
|               |                                        | 587        | 3.12-3.08 (m, 2H), 3.90(s,3H), 6.48(dd, 1H), 6.52(d,                 |
|               | , N                                    |            | 1H), 7.30-7.22 (m, 1H), 7.31(bs, 1H), 7.66-7.60(m,                   |
|               |                                        |            | 1H), 7.95(dd, 1H), 8.06(d, 1H), 8.15(s, 1H), 8.59(d,                 |
|               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |            | 1H), 9.43(s, 1H)                                                     |
| <u> </u>      | Åc                                     |            |                                                                      |

| 26-8  |      | MS<br>573 | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.19(t, 3H), 1.77 (ddd, 2H), 2.41(m, 2H), 3.18-3.09(m, 6H), 3.68-3.64 (m, 2H), 3.85-3.78 (m, 2H), 3.89(s,3H), 6.47(dd, 1H), 6.55(d, 1H), 7.29-7.25 (m, 1H), 7.34(bs, 1H), 7.64-7.60(m, 1H), 7.95(dd, 1H), 8.07(d, 1H), 8.15(s, 1H), 8.58(d, 1H), 9.41(s, 1H)                            |
|-------|------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26-9  |      | MS<br>587 | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.17(d, 3H) 1.76 (ddd, 2H), 2.88-2.81(m, 2H), 3.18-3.05(m, 6H), 3.74-3.67 (m, 2H), 3.86-3.78 (m, 2H), 3.89(s,3H), 6.47(dd, 1H), 6.55(d, 1H), 7.29-7.20(m, 1H), 7.34(bs, 1H), 7.64-7.60(m, 1H), 7.95(dd, 1H), 8.07(d, 1H), 8.15(s, 1H), 8.58(d, 1H), 9.41(s, 1H)                         |
| 26-10 | O NH | MS<br>517 | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.76 (ddd, 2H), 2.86(d, 3H), 3.14-3.08(m, 2H), 3.13(t, 4H), 3.55 (t, 4H), 3.89(s,3H), 4.48-4.39 (m, 1H), 6.46(dd, 1H), 6.55(d, 1H), 7.29-7.21(m, 1H), 7.34(bs, 1H), 7.64-7.60(m, 1H), 7.95(dd, 1H), 8.06(d, 1H), 8.15(s, 1H), 8.58(d, 1H), 9.41(s, 1H)                                  |
| 26-11 | N Ac | MS<br>587 | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.51 (s, 6H), 1.82-1.72 (m, 1H), 2.13 (s, 3H), 3.12-3.08 (m, 2H), 3.26(s, 2H), 3.44 (t, 2H), 3.74(t, 2H), 3.88(s,3H), 5.56-5.46 (m, 1H), 6.45(dd, 1H), 6.51(d, 1H), 7.00(bs, 1H), 7.62-7.58 (m, 1H), 7.64-7.60(m, 1H), 7.93(d, 1H), 7.96(dd, 1H), 8.13(s, 1H), 8.62(d, 1H), 9.42(s, 1H) |

|       | <del></del>     | 1           |                                                                    |
|-------|-----------------|-------------|--------------------------------------------------------------------|
| 00.40 |                 |             | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.81-1.71 (m, 3H), 1.95-1.84 (m, |
| 26-12 |                 | MS          | 3H), 2.68-2.63(m, 1H), 3.12-3.08 (m, 4H), 3.28(d, 2H),             |
| 1     |                 | 559         | 3.89(s,3H), 5.45-5.38 (m, 1H), 6.53(dd, 1H), 6.59(d,               |
|       | N               |             | 1H), 6.71-6.62 (m, 1H), 7.28-7.21 (m, 1H), 7.35(bs,                |
|       |                 |             | 1H), 7.65-7.61(m, 1H), 7.95(dd, 1H), 8.08(d, 1H),                  |
|       |                 |             | 8.15(s, 1H), 8.58(d, 1H), 9.41(s, 1H)                              |
|       | NH <sub>2</sub> |             |                                                                    |
|       |                 |             | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.81-1.71 (m, 3H), 1.95-1.84 (m, |
| 26-13 |                 | MS          | 3H), 2.68-2.63(m, 1H), 3.12-3.08 (m, 4H), 3.28(d, 2H),             |
|       |                 | 559         | 3.89(s,3H), 5.45-5.38 (m, 1H), 6.53(dd, 1H), 6.59(d,               |
|       | N               | ĺ           | 1H), 6.71-6.62 (m, 1H), 7.28-7.21 (m, 1H), 7.35(bs,                |
|       |                 |             | 1H), 7.65-7.61(m, 1H), 7.95(dd, 1H), 8.08(d, 1H),                  |
|       |                 |             | 8.15(s, 1H), 8.58(d, 1H), 9.41(s, 1H)                              |
|       | ŃН <sub>2</sub> |             |                                                                    |
|       |                 |             | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.85-1.74 (m, 3H), 2.00-1.86 (m, |
| 26-14 |                 | MS          | 3H), 2.70-2.51(m, 1H), 3.13-3.08 (m, 4H), 3.29-3.27                |
|       |                 | 559         | (m, 2H), 3.89(s,3H), 5.46-5.37 (m, 1H), 6.53(dd, 1H),              |
|       |                 |             | 6.59(d, 1H), 6.69-6.56 (m, 1H), 7.29-7.19 (m, 1H),                 |
|       |                 |             | 7.34(bs, 1H), 7.65-7.61(m, 1H), 7.95(dd, 1H), 8.08(d,              |
|       |                 |             | 1H), 8.15(s, 1H), 8.58(d, 1H), 9.41(s, 1H)                         |
|       | ŇH <sub>2</sub> |             |                                                                    |
|       |                 |             | CDCl <sub>3</sub> : 0.99(t, 3H), 1.79-1.72 (m, 2H), 2.92 (t, 2H),  |
| 26-15 |                 | MS          | 2.98(t, 2H), 3.16-3.12 (m, 2H), 3.53(t, 2H), 3.67(t, 2H),          |
|       | N N N           | 559         | 3.87(s,3H), 6.54(dd, 1H), 6.82 (d, 1H), 7.29-7.19 (m,              |
|       | Ac_N            |             | 1H), 7.56(bs, 1H), 7.67-7.62(m, 1H), 7.96(dd, 1H),                 |
|       | 1               |             | 8.07(d, 1H), 8.21(s, 1H), 8.59(dd, 1H), 9.46(s, 1H)                |
|       |                 |             | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.81-1.72 (m, 2H), 2.49 (t, 4H), |
| 26-16 |                 | MS          | 2.66 (t, 2H), 3.12-3.08(m, 2H), 3.18 (t, 2H), 3.74(t,              |
|       |                 | 561         | 4H), 3.86(s,3H), 6.53(dd, 1H), 6.20(dd, 1H), 6.26 (d,              |
|       | NH              |             | 1H), 7.13(bs, 1H), 7.25-7.21 (m, 1H), 7.62-7.57(m,                 |
|       |                 |             | 1H), 7.87(dd, 1H), 7.93(dd, 1H), 8.12(s, 1H), 8.62(d,              |
| ļ     | )<br>_N         |             | 1H), 9.40(s, 1H)                                                   |
|       |                 |             |                                                                    |
|       |                 |             |                                                                    |
|       |                 | <del></del> |                                                                    |

|       |                 |     | **************************************                                                                       |
|-------|-----------------|-----|--------------------------------------------------------------------------------------------------------------|
|       |                 |     | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.78-1.73 (m, 2H), 2.49 (t, 4H),                                           |
| 26-17 |                 | MS  | 2.66 (t, 2H), 2.94-2.92 (m, 4H), 3.15-3.11(m, 2H),                                                           |
|       | N N             | 518 | 3.76-3.73(m, 4H), 3.88(s,3H), 6.52(dd, 1H), 6.82(d,                                                          |
|       |                 |     | 1H), 7.28-7.24 (m, 1H), 7.57(bs, 1H), 7.25-7.21 (m,                                                          |
|       |                 |     | 1H), 7.68-7.63(m, 1H), 7.95(dd, 1H), 8.02(d, 1H),                                                            |
|       |                 |     | 8.20(s, 1H), 8.56(d, 1H), 9.41(s, 1H)                                                                        |
|       |                 |     | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.81-1.72 (m, 2H), 2.08-2.00 (m,                                           |
| 26-18 |                 | MS  | 2H), 2.49 (t, 4H), 2.66 (t, 2H), 2.40 (t, 2H), 3.59 (t,                                                      |
|       |                 | 559 | 2H), 3.69(t, 2H), 3.87(s,3H), 6.41 (dd, 1H), 6.51(d,                                                         |
|       | <b>(</b>        |     | 1H), 7.29-7.25 (m, 2H), 7.65-7.60(m, 1H), 7.95(dd,                                                           |
|       |                 |     | 1H), 8.05(d, 1H), 8.15(s, 1H), 8.56(d, 1H), 9.41(s, 1H)                                                      |
|       | N-FO            |     |                                                                                                              |
|       |                 |     | ,                                                                                                            |
|       |                 |     | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.82-1.73 (m, 2H), 2.14 (s, 3H),                                           |
| 26-19 |                 | MS  | 3.12-3.08 (m, 2H), 3.55-3.45(m, 2H), 3.66-3.56 (m,                                                           |
|       |                 | 587 | •                                                                                                            |
|       | o=              |     | 4H), 3.79-3.68 (m, 2H), 3.95(s,3H), 6.95(dd, 1H), 7.03 (d, 1H), 7.32-7.28(m, 1H), 7.69-7.64 (m, 1H), 7.71(s, |
|       | <b>&gt;</b> \—\ |     | 1H), 7.97(dd, 1H), 8.22 (s, 1H), 8.39(d, 1H), 8.52(d,                                                        |
|       |                 |     | 1H), 9.46(s, 1H)                                                                                             |
|       | "7              |     | , , , , , , , , , , , , , , , , , , , ,                                                                      |
| 26-20 | 1               |     | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.82-1.73 (m, 2H), 3.12-3.08 (m,                                           |
|       | 0               | MS  | 2H), 3.80-3.58(m, 8H), 3.94(s,3H), 6.94(dd, 1H), 7.02                                                        |
| ŀ     |                 | 546 | (d, 1H), 7.32-7.28(m, 1H), 7.69-7.64 (m, 1H), 7.32-                                                          |
|       | o=              |     | 7.28(m, 1H), 7.97(dd, 1H), 8.21 (s, 1H), 8.34(d, 1H),                                                        |
|       | )v—\            |     | 8.52(d, 1H), 9.45(s, 1H)                                                                                     |
|       |                 |     |                                                                                                              |
|       |                 |     | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.82-1.72 (m, 2H), 2.71 (t, 3H),                                           |
| 26-21 |                 | MS  | 3.05 (s, 2H), 3.10 (m, 2H), 3.18 (t, 4H), 3.88(s,3H),                                                        |
|       |                 | 615 | 4.17-4.08 (m, 1H), 6.47 (dd, 1H), 6.54 (d, 1H), 6.99-                                                        |
|       |                 |     | 6.89(m, 1H), 7.28-7.24 (m, 1H), 7.31(bs, 1H), 7.65-                                                          |
|       | 7               |     | 7.60 (m, 1H), 7.32-7.28(m, 1H), 7.95(dd, 1H), 8.05 (d,                                                       |
|       | HN C            |     | 1H), 8.15(s, 1H), 8.59(d, 1H), 9.41(s, 1H)                                                                   |
|       | <b>&gt;</b>     |     |                                                                                                              |
|       |                 |     |                                                                                                              |

|       | <u> </u>    | T           | CDCL: 0.08 (f. 3Ll.) 4.00 4.74 (m. 31.) 3.43 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26-22 |             | MS          | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.80-1.74 (m, 2H), 3.12-3.08 (m, 2H), 3.45-3.42 (m, 2H), 3.55-3.53 (m, 2H), 0.87 (m, 2H), 3.55-3.53 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2H), 0.87 (m, 2 |
|       |             | 530         | 2H), 3.45-3.42 (m, 2H), 3.55-3.53 (m, 2H), 3.87 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |             | 550         | 2H), 3.89(s,3H), 5.98-5.89 (m, 1H), 6.44 (dd, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |             |             | 6.50(d, 1H), 7.35-7.19 (m, 2H), 7.62-7.58(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | l \n\sqrt_0 |             | 7.95(dd, 1H), 8.09 (d, 1H), 8.15(s, 1H), 8.57(d, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | н           |             | 9.43(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |             |             | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.10 (s, 3H), 1.12 (s, 3H), 1.80-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26-23 |             | MS          | 1.74(m, 2H), 2.80-2.63 (m, 5H), 3.12-3.08 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }     |             | 558         | 3.19-3.17 (m, 4H), 3.87(s,3H), 6.48 (dd, 1H), 6.56(d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | N           |             | 1H), 7.30-7.23 (m, 2H), 7.62-7.58(m, 1H), 7.94(dd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |             |             | 1H), 8.00 (d, 1H), 8.14(s, 1H), 8.59(d, 1H), 9.40(s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |             |             | 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |             |             | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.81-1.72 (m, 2H), 2.03-1.91 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26-24 |             | MS          | 1H), 2.28-2.19 (m, 1H), 2.33 (s, 6H), 2.92-2.84 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |             | 544         | 1H), 3.12-3.08 (m, 2H), 3.17(t, 1H), 3.35(ddd, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | N           |             | 3.51-3.42 (m, 2H), 3.87 (s, 3H), 6.11 (dd, 1H), 6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | <u></u> ,   |             | (d,1H), 7.09 (s, 1H), 7.26-7.20(m, 1H), 7.60-7.56 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | N           |             | 1H), 7.85(d, 1H), 7.92(dd, 1H), 8.11(s, 1H), 8.38(d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ]     | ,           |             | 1H), 9.41(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |             |             | CDCl <sub>3</sub> : 0.98 (t, 3H), 1.82-1.71 (m, 2H), 1.96-1.86 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26-25 |             | MS          | 1H), 2.33-2.20 (m, 1H), 2.51 (s, 1H), 3.17-3.08 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |             | 530         | 3H), 3.35-3.30 (m, 1H), 3.54-3.30 (m, 3H), 3.87 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | , N         |             | 3H), 6.12 (dd, 1H), 6.16 (d,1H), 7.09 (s, 1H), 7.32-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |             |             | 7.21(m, 1H), 7.58 (dd, 1H), 7.85(d, 1H), 7.92(dd, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | ИН          |             | 8.11(s, 1H), 8.64(d, 1H), 9.40(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |             | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 0           |             | GDCl <sub>3</sub> : 0.98 (t, 3H), 1.83-1.71 (m, 2H), 1.98-1.81 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26-26 |             | MS          | 2H), 2.16-2.02(m, 2H), 2.53-2.28 (m, 5H), 2.87-2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Ť           | 546         | (m, 2H), 3.12-3.08 (m, 2H), 3.88 (s, 3H), 4.32 (bs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |             | i           | 3H), 6.44 (dd, 1H), 6.53(d, 1H), 7.32-7.25 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |             |             | 7.63-7.59 (m, 2H), 7.94(dd, 1H), 8.04 (d, 1H), 8.15(s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | Ĩ           |             | 1H), 8.57(d, 1H), 9.42(s, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 26-27 | OH OH | MS<br>545      | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.38-1.30 (m, 1H), 1.49-1.40 (m, 2H), 1.70-1.62 (m, 1H), 1.83-1.72 (m, 2H), 1.89 (d, 2H), 2.74-2.10 (m, 2H), 3.12-3.08 (m, 2H), 3.57 (d, 2H), 3.63 (d, 2H), 3.90 (s,3H), 6.50 (d, 1H), 6.58 (s, 1H), 7.34-7.24 (m, 2H), 7.64-7.60(m, 1H), 7.94(dd, 1H), 8.02 (d, 1H), 8.14(s, 1H), 8.60(dd, 1H), 9.40(s, 1H) |
|-------|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26-28 | OH OH | MS<br>517      | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.88-1.65 (m, 3H), 2.05-1.97 (m, 2H), 2.21-2.08 (m, 1H), 2.67-2.55 (m, 4H), 2.78-2.71(m, 2H), 3.12-3.08 (m, 2H), 3.61 (d, 2H), 3.87 (s,3H), 6.47 (dd, 1H), 6.56 (d, 1H), 7.28-7.23 (m, 2H), 7.64-7.60(m, 1H), 7.94(dd, 1H), 7.99 (d, 1H), 8.13(s, 1H), 8.60(dd, 1H), 9.39(s, 1H)                             |
| 26-29 |       | MS<br>585      | CDCl <sub>3</sub> : 0.97 (t, 3H), 1.89-1.65 (m, 8H), 2.03 (d, 2H), 2.20-2.10 (m, 1H), 2.68-2.58 (m, 4H), 2.78-2.72 (m, 2H), 3.12-3.08 (m, 2H), 3.61(d, 2H), 3.87(s,3H), 6.47 (dd, 1H), 6.56(d, 1H), 7.30-7.23 (m, 2H), 7.64-7.60(m, 1H), 7.94(dd, 1H), 7.99 (dd, 1H), 8.13(s, 1H), 8.60(dd, 1H), 9.39 (s, 1H)                                  |
| 26-30 | F 0   | MS<br>451, 453 | 0.97 (t, 3H), 1.71-1.82 (m, 2H), 3.06-3.14 (m, 2H), 3.89 (s, 1H), 6.60 (ddd, 1H), 6.66 (dd, 1H), 7.25-7.30 (m, 1H), 7.35 (br.s, 1H), 7.63 (dd, 1H), 7.95 (dd, 1H), 8.09-8.18 (m, 1H), 8.17 (s, 1H), 8.52 (dd, 1H), 9.42 (s, 1H).                                                                                                               |
| 26-31 |       | MS<br>647, 649 | 0.98 (t, 3H), 1.71-1.83 (m, 2H), 2.18 (s, 3H), 2.47-2.64 (m, 4H), 2.72-2.84 (m, 2H), 3.08-3.15 (m, 2H), 3.42-3.54 (m, 2H), 3.58-3.69 (m, 2H), 3.84 (s, 3H), 3.94-4.03 (m, 2H), 6.45-6.51 (m, 1H), 6.78 (d, 1H), 7.22-7.27 (m, 1H), 7.60 (s, 1H), 7.67-7.74 (m, 1H), 7.93-7.97 (m, 1H), 7.73 (d, 1H), 8.02 (s, 1H), 8.54 (d, 1H), 9.33 (s, 1H). |

| 26-32 | <del></del> | т     |                                                          |
|-------|-------------|-------|----------------------------------------------------------|
| 20-32 |             | m.p.  | 400MHz, CDCl3, δ (ppm): 0.98 (t; 3H), 1.55-1.90 (m;      |
|       |             | 139,4 | 6H), 2.38 (s; 3H), 2.45-2.80 (m; 6H), 3.13 (m; 2H),      |
|       |             |       | 3.47 (m; 2H), 3.84 (s; 3H), 6.54 (dd; 1H), 6.79 (d; 1H), |
|       |             |       | 7.23 (dd; 1H); 7.51 (s; 1H), 7.64 (dd: 1H), 7.92 (d;     |
|       |             |       | 1H), 8.00 (s; 1H), 8.19 (s; 1H), 8.57 (d; 1H), 9.41 (s;  |
|       |             |       | 1H).                                                     |
| 26-33 |             | m.p.  | 400MHz, CDCl3, δ (ppm): 0.98 (t; 3H), 1.50-1.90 (m;      |
|       |             | 163,4 | 6H), 2.24 (bs; 1H), 2.45-2.65 (m; 6H), 3.12 (m; 2H),     |
|       | N           |       | 3.45 (m; 2H), 3.77 (m; 4H9, 3.85 (s; 3H), 6.55 (dd;      |
|       |             | 1     | 1H); 6.79 (d; 1H), 7.24 (dd; 1H). 7.52 (s; 1H), 7.64     |
|       |             |       | (dd; 1H), 7.93 (d; 1H), 8.01 (s; 1H), 8.20 (s; 1H9, 9.42 |
|       |             | ,     | (s; 1H).                                                 |
| 26-34 | <u> </u>    | m.p.  | 400MHz, CDCl3, δ (ppm): 1.00 (s; 3H), 1.78 (m; 2H),      |
|       |             | 232,9 | 2.83 (s; 3H), 3.03 (m; 2H), 3.12 (m; 2H), 3.38-3.60 (m;  |
|       |             |       | 8H), 3.88 (s; 3H), 6.56 (m; 1H), 6.82 (d; 1H), 7.29 (m;  |
| i     |             |       | 1H), 7.60 (s; 1H), 7.64 (m; 1H), 7.95 (d; 1H), 8.12 (s;  |
|       |             |       | 1H), 8.20 (s; 1H), 8.59 (d; 1H), 9.50 (s; 1H).           |
| 26-35 |             | m.p.  | 400MHz, CDCl3, δ (ppm): 0.99 (t; 3H), 1.43 (m; 1H),      |
| !     |             | 197,3 | 1.63 (m; 2H), 1.77 (m; 2H), 1.90 (m; 2H), 2.70 (m;       |
|       |             |       | 2H), 3.13 (m; 2H), 3.28 (m; 2H), 3.75 (s; 1H), 3.84 (s;  |
|       | но          |       | 3H), 6.55 (m; 1H), 6.80 (d; 1H), 7.24 (m; 1H), 7.53 (s;  |
|       |             |       | 1H), 7.64 (s; 1H), 7.93 (d; 1H), 8.02 (s; 1H), 8.20 (s;  |
|       |             |       | 1H), 8.58 (d; 1H), 9.41 (s; 1H).                         |
| 26-36 |             | m.p.  | 400MHz, CDCl3, δ (ppm): 1.00 (t; 3H), 1.78 (m; 2H),      |
|       |             | 147,6 | 3.12 (m; 2H), 3.56 (m; 1H), 3.87 (s; 3H), 6.53 (dd;      |
|       |             |       | 1H), 6.80 (d; 1H), 7.30 (dd; 1H), 7.52 (s; 1H), 7.64 (m; |
|       |             |       | 1H), 7.95 (dd; 1H), 8.08 (s; 1H), 8.20 (s; 1H), 8.60 (d; |
|       |             |       | 1H), 9.48 (s; 1H).                                       |
| 26-37 | 1 1         | m.p.  | FOOMULE CDOIS S (see ) 2 22 (see )                       |
|       |             | 143.2 | 500MHz, CDCl3, δ (ppm): 0.96 (t; 3H), 1.70 (m; 2H),      |
|       |             | 170,4 | 2.11 (m; 1H), 2.39 (m; 1H), 2.75 (s; 3H), 3.02 (m; 1H),  |
|       | \           |       | 3.22 (m; 2H), 3.43 (d; 2H), 3.82 (s; 3H), 3.86 (m; 1H),  |
|       | ни          |       | 6.40 (dd; 1H), 6.94 (d; 1H), 7.34 (ddd; 1H), 7.47 (s;    |
|       |             |       | 1H), 7.63 (ddd; 1H), 7.93 (dd; 1H), 8.18 (s; 1H), 8.51   |

|       |                  |               | (d; 1H).                                                                                                                                                                                                                                                                          |
|-------|------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26-38 |                  | m.p.<br>133.5 | 400MHz, CDCl3, δ (ppm): 1.00 (t; 3H), 1.70-1.95 (m; 6H), 2.63 (s; 1H), 2,92 (s; 1H), 3.00-3.25 (m; 5H), 3.89 (s; 3H), 5.42 (s; 1H), 6.70 (s; 1H), 6.83 (m; 2H), 7.25 (m; 1H), 7.55 (s; 1H), 7.63 (m; 1H9, 8.95 (m; 1H), 8.15 (s; 1H), 8.23 (s; 1H), 8.54 (d; 1H), 9.45 (s; 1H).   |
| 26-39 | ONH <sub>2</sub> | m.p.<br>188.8 | 400MHz, CDCl3, δ (ppm): 0.99 (t; 3H), 1.70-1.90 (m; 3H), 2.08 (m; 1H), 2.28 (s; 6H9, 2.83 (s; 1H), 3.00-3.23 (m; 4H9, 3.37 (m; 1H), 3.83 (s; 3H), 6.19 (dd; 1H), 6.83 (d; 1H), 7.23 (dd; 1H), 7.50 (s; 1H), 7.59 (m; 2H), 7.93 (d; 1H), 8.19 (s; 1H), 8.60 (d; 1H), 9.42 (s; 1H). |

The following 5-Chloro- $N^2$ -(substituted phenyl)- $N^4$ -[2-ethanesulfonyl-phenyl]-pyrimidine-2,4-diamine are prepared from (2,5-Dichloro-pyrimidin-4-yl)-[2-ethanesulfonyl-phenyl]-amine and the corresponding aniline following the procedure of Example 7A

| Expl | Rx | Rf (solvent)    | NMR (400MHz), δ (ppm) or                                                                                                                                                                                       |
|------|----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |    | or MS           | Retention time min. (HPLC)                                                                                                                                                                                     |
| 27-1 |    | 0.53<br>(AcOEt) | CDCl <sub>3</sub> : 1.28(t,3H), 3.12-3.19(m, 6H), 3.87-3.89(m, 7H), 6.45(dd, 1H), 6.53(d,1H), 7.24-7.28(m,1H), 7.31(s, 1H), 7.60-7.64(m, 1H), 7.95(dd, 1H), 8.04(d, 1H), 8.14(s, 1H), 8.58(d, 1H), 9.39(s, 1H) |

|      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del> |      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| 27-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 585 (M+H)   | 2.38 |
|      | , in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |             |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |
| 27-3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 486 (M+H)   | 3.07 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |
| 27-4 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 587 (M+H)   | 2.29 |
|      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |
| 27-5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 545 (M+H)   | 2.59 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |
|      | <b>↓</b> ₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |
| 27-6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 545 (M+H)   | 2.45 |
|      | NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |
|      | 1812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | ·    |

|      |                   | <del></del> |      |
|------|-------------------|-------------|------|
| 27-7 |                   | 531 (M+H)   | 2.25 |
|      |                   |             |      |
| 27-8 |                   | 545 (M+H)   | 2.45 |
|      | N NH <sub>2</sub> |             |      |
| 27-9 |                   | 600 (M+H)   | 2.17 |
|      |                   |             |      |
|      |                   |             |      |
|      | Pl C condition    |             |      |

**HPLC** condition

Column: YMC CombiScreen ODS-A (5um, 12nm), 50 x 4.6 mm I.D.

Flow rate: 2.0 ml/mln

Eluent: A) TFA/water (0.1/100), B) TFA/acetonitrile (0.1/100)

Gradient: 5-100%B (0-5min) Detection: UV at 215nm

The following 5-Chloro- $N^2$ -(substituted phenyl)- $N^4$ -[2-(propane-2-sulfonyl)-phenyl]-pyrimidine-2,4-diamine are prepared from (2,5-Dichloro-pyrimidin-4-yl)-[2-(propane-2-sulfonyl)-phenyl]-amine and the corresponding aniline following the procedure of Example 7A

| ExplN | Rx              | Rf (solvent)                 | NMR (400MHz) , δ (ppm) or                                                                                                                                                                                                                                  |
|-------|-----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.    |                 | or MS                        | Retention time min. (HPLC)                                                                                                                                                                                                                                 |
| 28-1  |                 | 0.2<br>(AcOEt)               | CDCl <sub>3</sub> : 1.31 (d, 6H), 1.85-1.73 (m, 1H), 1.86-1.98 (m, 3H), 2.62-2.70 (m, 1H), 3.11-3.13 (m, 2H), 3.21-8.28 (m, 1H), 3.28 (m, 2H), 3.88 8s, 3H), 5.41 (brs, 1H),                                                                               |
|       |                 | <del>!</del>                 | 6.53 (d, 1H), 6.59 (d, 1H), 6.64 (brs, 1H), 7.28-7.34 (m, 1H), 7.34 (s, 1H), 7.60-7.67 (m, 1H), 7.91 (dd,                                                                                                                                                  |
|       | NH <sub>2</sub> |                              | 1H), 8.08 (d, 1H), 8.13 (s, 1H), 8.60 (d, 1H), 9.55 (s, 1H).                                                                                                                                                                                               |
| 28-2  | o N             | MS<br>m/z 561,<br>563 (M+1). | CDCl <sub>3</sub> : 1.31(d, 6H), 2.64 (t, 2H), 2.68-2.77 (m, 4H), 3.19(t, 4H), 3.17-3.28(m, 1H), 3.68(t, 2H), 3.88(s, 3H), 6.48(dd, 1H), 6.55 (d, 1H), 7.23-7.32(m, 1H), 7.62(ddd, 1H), 7.91(dd, 1H), 8.04(dd, 1H), 8.12(s, 1H), 8.60(d, 1H), 9.54(bs, 1H) |
| 28-3  | OH O            | 0.55<br>(AcOEt)              | CDCl <sub>3</sub> : 1.31(d, 6H), 3.12-3.14(m, 4H), 3.21-3.27(m, 1H), 3.87-3.89(m, 7H), 6.46(dd, 1H), 6.53(d,1H), 7.23-7.27(m, 1H), 7.30(s, 1H), 7.59-7.64(m, 1H), 7.91(dd, 1H), 8.05(d, 1H), 8.14(s, 1H), 8.60(d, 1H), 9.55(s, 1H)                         |
| 28-4  | N N             | 0.37<br>(AcOEt)              | CDCl <sub>3</sub> : 1.32(d, 6H), 3.21-3.27(m, 1H), 4.00(s, 1H), 7.11(dd, 1H), 7.26-7.27(m, 1H), 7.29-7.33(m, 1H), 7.64(s, 1H), 7.66-7.71(m, 1H), 7.95(dd, 1H), 8.10(s, 1H), 8.21(s, 1H), 8.46(d, 1H), 8.50(s, 1H), 8.54(d, 1H), 9.59(s, 1H)                |

|      | T             | 1 000       |                                                                  |
|------|---------------|-------------|------------------------------------------------------------------|
|      |               | 0.03        | CDCl <sub>3</sub> : 1.31(d, 6H), 1.67-1.77(m, 2H), 1.95-2.05 (m, |
| 28-5 |               | (AcOEt)     | 2H), 2.39-2.48 (m, 1H), 2.48-2.61(m, 2H), 2.63-                  |
|      |               |             | 2.78(m, 8H), 3.24 (sept, 1H), 3.71-3.63 (m, 2H),                 |
|      | , N           |             | 3.87(s, 3H), 6.47(dd, 1H), 6.55 (d, 1H), 7.21-7.28(m,            |
|      |               |             | 1H), 7.61(ddd, 1H), 7.91(dd, 1H), 8.00(dd, 1H),                  |
| ]    | N.            |             | 8.12(s, 1H), 8.60(d, 1H), 9.53(bs, 1H)                           |
|      |               |             | ( 1.1. (c) 1.1.), 0.00(d, 111), 0.00(d3, 111)                    |
|      | N             |             | ·                                                                |
|      | <u>'</u>      |             | ·                                                                |
| 000  |               | 502 (M+H)   | 2.84                                                             |
| 28-6 |               |             |                                                                  |
|      |               |             |                                                                  |
|      | Ň             |             |                                                                  |
|      |               |             |                                                                  |
|      | 1             | 478 (M+H)   | 4.50                                                             |
| 28-7 | 0             | 470 (IVITA) | 4.53                                                             |
| 20-7 |               |             |                                                                  |
|      | Ĭ.            |             | ·                                                                |
|      | 0-^N          |             |                                                                  |
|      |               |             | CDCl <sub>3</sub> : 1.31(d, 6H),1.51-1.42(m, 2H), 1.67-1.53(m,   |
| 28-8 | 0             | MS          | 4H), 1.81-1.68(m, 2H), 1.96-1.89(m, 2H), 2.47-                   |
|      |               | 599         | 2.36(m, 1H), 2.57-2.54(m, 4H), 2.69(dd, 2H)3.24(sept,            |
|      | Ţ             |             | <b>.</b>                                                         |
|      |               | İ           | 1H), 3.67(d,1H), 3.87( s , 1H), 6.48 (dd, 1H), 6.56 (d,          |
| 1    | $\rightarrow$ |             | 1H), 7.31-7.21(m, 1H), 7.63-7.59 (m, 1H), 8.00(d, 1H),           |
|      | , N           | İ           | 8.12(s, 1H), 8.60(d, 1H), 9.55(s, 1H)                            |
|      |               |             |                                                                  |
|      |               |             |                                                                  |
| 28-9 |               |             | CDCl <sub>3</sub> : 1.26 (t, 3H), 1.31(d, 6H),1.74-1.68(m, 2H),  |
|      | 0             | MS          | 1.85-1.76(m, 4H), 2.08-1.98(m, 2H), 2.19-2.10(m,                 |
|      |               | 585         | 2H), 2.67-2.58(m, 4H), 2.79-2.72(m, 2H), 3.24(sept,              |
|      | Į.            |             | 1H) 3.61(d, 2H), 3.87(s,3H), 6.48(dd, 1H), 6.56 (d,              |
| ļ    |               |             | 1H), 7.29-7.22 (m, 1H), 7.62(dd, 1H), 7.90(dd, 1H),              |
| l    | $\vee$        |             |                                                                  |
| -    | , N           |             | 7.99(d, 1H), 8.12(s, 1H), 8.60(d, 1H), 9.53(s, 1H)               |
|      |               |             | ļ                                                                |
|      |               |             |                                                                  |

|       | ···           | ·   |                                                                                                                      |
|-------|---------------|-----|----------------------------------------------------------------------------------------------------------------------|
| 28-10 |               | MS  | CDCl <sub>3</sub> : 1.31(d, 6H),1.59-1.37(m, 2H), 1.81-1.69(m, 1H), 1.87(d, 2H), 2.73-2.67(m, 2H), 3.28-3.21(m, 1H), |
|       |               | 559 | 3.37(s, 3H),3.61(d, 1H),3.87(s, 3H),6.49(dd,                                                                         |
|       | , N           |     | 1H),6.57(s, 1H), 7.31-7.21(m, 1H),7.64-7.60 (m, 1H),                                                                 |
| j     |               |     | 7.91(dd, 1H), 8.00(d, 1H), 8.60(d, 1H) 9.53(s, 1H)                                                                   |
|       |               |     | (33) 7, 333 (3, 43), 333 (2, 111) 6.33 (3, 111)                                                                      |
|       | . 0           |     |                                                                                                                      |
|       |               |     | CDCl <sub>3</sub> : 1.31(d, 6H), 2.15(s, 3H), 3.12(ddd, 4H),                                                         |
| 28-11 |               | MS  | 3.24(sept, 1H), 3.64 (t, 2H), 3.80(t, 2H), 3.89(s,                                                                   |
|       |               | 558 | 3H),6.47(dd, 1H),6.55(d, 1H),7.29-7.24(m,                                                                            |
|       | N             |     | 1H),7.33(bs, 1H), 7.62(m, 1H),7.92(dd, 1H), 8.08(d,                                                                  |
|       |               |     | 1H), 8.14(s, 1H), 8.60(d, 1H) 9.55(s, 1H)                                                                            |
| į     | N<br>Ac       |     |                                                                                                                      |
|       |               |     | CDCl <sub>3</sub> : 1.16, (t, 3H), 1.31(d, 6H), 2.56-2.44(b, 2H),                                                    |
| 28-12 |               | MS  | 2.71-2.60 (m, 4H), 3.28-3.17(m, 5H), 3.88(s, 3H),                                                                    |
|       |               | 544 | 6.48(dd, 1H),6.58(d, 1H),7.30-7.22(m, 1H), 7.63-                                                                     |
|       | N.            |     | 7.58(m, 1H),7.90(dd, 1H), 8.01(d, 1H), 8.12(s, 1H),                                                                  |
|       |               |     | 8.60(d, 1H) 9.54(s, 1H)                                                                                              |
|       | N             |     |                                                                                                                      |
|       | /             |     |                                                                                                                      |
|       |               |     | CDCl <sub>3</sub> : 1.31(d, 6H, J=6.55),1.75-1.63(m, 2H),2.00-                                                       |
| 28-13 |               | MS  | 1.91(m, 2H),2.37-2.27(m, 1H),2.60 (t, 4H, J=4.79),                                                                   |
| j     |               | 601 | 2.74-2.59(m, 2H), 3.24(sept, 1H), 3.66 (d, 2H,                                                                       |
| j     | , N           |     | J=12.1), 3.75(t, 4H, J=4.53), 3.88(s, 3H), 6.48(dd, 1H,                                                              |
|       |               |     | J=2.52, 8.56),6.56(d, 1H, J=2.52),7.33-7.22(m, 1H),                                                                  |
|       | $\overline{}$ |     | 7.64-7.59 (m, 1H),7.91(dd, 1H, J=8.05, 1.51), 8.01(d,                                                                |
| [     | Ň             |     | 1H, J=8.56), 8.12(s, 1H), 8.61(d, 1H, J=7.55) 9.54(s,                                                                |
|       |               | i   | 1H)                                                                                                                  |
|       |               |     |                                                                                                                      |

|       |                     | 1           | CDCI 1 11 (d OIL 1-0 FE) 1 01/d OIL : = ===                         |
|-------|---------------------|-------------|---------------------------------------------------------------------|
| 28-14 |                     | MS          | CDCl <sub>3</sub> : 1.11 (d, 6H, J=6.55), 1.31(d, 6H, J=7.05),      |
| 20-14 |                     | 1           | 2.82-2.68(m, 5H), 3.20-3.17(m, 4H), 3.28-3.17(m,                    |
|       | \(\frac{1}{2}\)     | 559         | 1H), 3.87(s, 3H), 6.48(dd, 1H, J=2.52, 8.56),6.56(d,                |
|       | , N                 |             | 1H, J=2.52),7.33-7.24(m, 1H), 7.62-7.58(m,                          |
| 1     |                     |             | 1H),7.90(dd, 1H, J=), 8.01(d, 1H, J=8.56), 8.12(s,                  |
|       | l Ï                 |             | 1H), 8.60(d, 1H, J=8.56) 9.54(s, 1H)                                |
|       |                     |             |                                                                     |
|       |                     |             | CDCl <sub>3</sub> : 1.31 (d, 6H, J=7.05), 1.97-1.85(m, 2H), 2.17-   |
| 28-15 |                     | MS          | 1.98(m, 2H), 2.35-2.25(m, 1H), 2.75(m, 2H),                         |
|       |                     | 559         | 3.24(sept, 1H), 3.65(d, 2H), 3.88(s, 3H), 5.30 (bs,                 |
|       | N                   |             | 1H), 5.48(bs, 1H), 6.48(dd, 1H, J=2.51, 8.56), 6.56(d,              |
|       |                     |             | 1H, J=2.52), 7.33-7.21(m, 1H), 7.62 (m, 1H), 7.91(dd,               |
|       |                     |             | 1H, J=1.51, 8.06), 8.03(dd, 1H, J=3.02, 8.56), 8.13(s,              |
|       | H <sub>2</sub> N O  |             | 1H), 8.60(d, 1H, J=8.57), 9.54(s, 1H)                               |
|       |                     |             | CDCl <sub>3</sub> : 1.31 (d, 6H, J=7.06), 1.46-1.43(m, 1H), 1.79-   |
| 28-16 |                     | MS          | 1.68(m, 2H), 2.08-1.99(m, 2H),2.99-2.88(m, 2H),                     |
|       |                     | 532         | 3.24(sept, 1H), 3.51-3.45(m, 2H), 3.91-3.80(m, 1H),                 |
|       | N                   |             | 3.88(s, 3H), 6.49(dd, 1H, J=2.52, 8.56),6.57(d, 1H,                 |
|       |                     |             | J=2.52),7.34-7.23(m, 1H), 7.64-7.60(m, 1H),7.91(dd,                 |
|       | $\longrightarrow$   |             | 1H, J=1.51, 8.06), 8.02(dd, 1H, J=3.02, 9.06), 8.13(s,              |
|       | ÓН                  |             | 1H), 8.60(d, 1H, J=8.06) 9.53 (s, 1H)                               |
| 28-17 | .                   |             | CDCl <sub>3</sub> : 1.31 (d, 6H, J=6.96), 2.18-2.12(m, 2H),         |
|       |                     | MS          | 3.24(sept, 1H),3.37-3.32(m, 2H), 3.39(s, 3H), 3.43(d,               |
|       |                     | 532         | 1H, J=8.56), 3.51(dd, 1H, J=5.04, 10.6), 3.87(s, 3H),               |
|       | Ĭ,                  |             | 4.17—4.09 (m,1H) 6.13 (dd, 1H, J=2.51,                              |
|       | $\langle \ \rangle$ |             | 8.56),6.16(d, 1H, J=2.52),7.09(bs, 1H),7.31-7.21(m,                 |
|       | 0.                  |             | 1H), 7.60-7.56 (m, 1H),7.85(d, 1H, J=8.56), 7.89(dd,                |
|       |                     |             | · · · · · ·                                                         |
|       |                     |             | 1H, J=1.51, 8.06), 8.10(s, 1H), 8.65(d, 1H, J=9.06)<br>9.54 (s, 1H) |
|       |                     | <del></del> | 3.07 (3, 1H)                                                        |

|       |               |         | CDCl <sub>3</sub> : 1.31 (d, 6H, J=7.05), 1.82-1.70(m, 2H), 2.08- |
|-------|---------------|---------|-------------------------------------------------------------------|
| 28-18 |               | MS      | 1.99(m, 2H),2.96-2.87(m, 2H), 3.24(sept, 1H), 3.41-               |
|       |               | 546     | 3.33(m, 1H), 3.40(s, 3H),3.51-3.42(m, 2H), 3.87(s,                |
|       | N N           |         | 3H), 6.49(dd, 1H, J=2.52, 9.07),6.57(d, 1H,                       |
|       |               |         | J=2.52),7.32-7.22(m, 1H), 7.64-7.60 (m, 1H),7.91(dd,              |
|       | Y             |         | 1H,), 8.00(dd, 1H, J=3.02, 9.06), 8.12(s, 1H), 8.60(d,            |
|       | 0             |         | 1H, J=8.56) 9.53 (s, 1H)                                          |
|       |               | 0.33    | CDCl <sub>3</sub> : 1.31 (d, 6H, J=7.05), 1.82-1.70(m, 2H), 2.08- |
| 28-19 |               | (AcOEt) | 1.99(m, 2H),2.96-2.87(m, 2H), 3.24(sept, 1H), 3.41-               |
|       |               |         | 3.33(m, 1H), 3.40(s, 3H),3.51-3.42(m, 2H), 3.87(s,                |
|       | <b> </b>      |         | 3H), 6.49(dd, 1H, J=2.52, 9.07),6.57(d, 1H,                       |
|       |               |         | J=2.52),7.32-7.22(m, 1H), 7.62(m, 1H),7.91(dd, 1H,),              |
| i     |               |         | 8.00(dd, 1H, J=3.02, 9.06), 8.12(s, 1H), 8.60(d, 1H,              |
| ļ     | 7             |         | J=8.56) 9.53 (s, 1H)                                              |
|       | 1             |         | CDCl <sub>3</sub> : 1.31 (d, 6H), 1.66-1.53(m, 2H), 2.10-2.01(m,  |
| 28-20 |               | MS      | 2H),2.51 (s, 3H), 2.70-2.13(m, 1H),2.83-2.74(m, 2H),              |
|       |               | 544     | 3.24(Sept, 1H), 3.63-3.55(m, 2H), 3.87(s, 3H), 4.34-              |
|       | Ĭ             |         | 4.25(m, 1H), 6.48(dd, 1H),6.56(d, 1H),7.34-7.24(m,                |
|       |               |         | 1H), 7.64-7.60(m, 1H),7.90(dd, 1H), 8.00(d, 1H),                  |
| ļ     | $\rightarrow$ |         | 8.12(s, 1H), 8.60(dd, 1H), 9.53(s, 1H)                            |
|       | _\NH          |         | 0.72(s, 177), 0.00(dd, 177), 9.00(s, 177)                         |
|       |               |         | CDCl <sub>3</sub> : 1.30 (s, 3H),1.32 (s, 3H), 2.33-2.22(m, 1H),  |
| 28-21 |               | MS      | 2.54(s, 3H), 3.37-3.20(m, 3H),3.57-3.44(m, 3H),                   |
|       |               | 531     | 3.86(s, 3H), 6.12(dd, 1H),6.16(d, 1H),7.14-7.08(m,                |
|       |               | į       | 1H), 7.30-7.20(m, 1H),7.65-7.58(m, 1H), 7.93-7.87(m,              |
|       |               |         | 1H,), 8.10(s, 1H), 8.64(d, 1H) 9.54 (s, 1H)                       |
|       | NH            |         | , , , , , , , , , , , , , , , , , , , ,                           |
|       | /             |         |                                                                   |
|       |               |         |                                                                   |

| 28-22 |                                        | MS<br>545                    | CDCl <sub>3</sub> : 1.30 (s, 3H), 1.32 (s, 3H), 2.03-1.89(m, 1H), 2.30-2.18(m, 1H), 2.34(s, 6H), 2.96-2.83(m, 1H), 3.29-3.16(m, 2H), 3.40-3.34(m, 1H), 3.53-3.43(m, 2H),                                                                                                                                                             |
|-------|----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                              | 3.87(s, 3H), 6.11(dd, 1H,) 6.13(dd, 1H),7.08(bs, 1H),7.31-7.21(m, 1H), 7.60-7.56(m, 1H),7.85(d, 1H), 7.89(dd, 1H), 8.10(s, 1H), 8.66(d, 1H) 9.54(s, 1H)                                                                                                                                                                              |
| 28-23 |                                        | MS<br>545                    | CDCl <sub>3</sub> : 1.31 (s, 3H), 1.32 (s, 3H),3.05(s, 3H), 3.24(sept, 1H), 3.50-3.43(m, 4H),3.85(s, 2H), 3.89(s, 3H), 6.11(dd, 1H,) 6.43(dd, 1H),6.50(d, 1H),7.31- 7.28(m, 1H), 7.64-7.60(m, 1H),7.92(dd, 1H), 8.09(d, 1H), 8.13(s, 1H), 8.58(d, 1H) 9.55(s, 1H)                                                                    |
| 28-24 | Z Z Z                                  | 0.05<br>(AcOEt/Me<br>OH=4/1) | CDCl <sub>3</sub> : 1.30 (s, 3H), 1.32 (s, 3H), 1.92-1.83(m, 1H),2.17-1.95(m, 1H), 2.43-2.27(m, 2H),2.79-2.71(m, 4H), 3.15-2.97(m, 4H), 3.23-3.16(m, 4H),3.24(sept, 1H), 3.87(s, 3H), 6.11(dd, 1H,) 6.47(dd, 1H),6.55(d, 1H),7.33-7.23(m, 1H), 7.63-7.59(m, 1H),7.95(dd, 1H), 8.01(dd, 1H), 8.12(s, 1H), 8.60(d, 1H) 9.54(s, 1H)     |
| 28-25 |                                        | MS<br>600                    | CDCl <sub>3</sub> : 1.30 (s, 3H), 1.32 (s, 3H), 1.80-1.70(m, 2H),2.01-1.93(m, 2H), 2.49-2.28(m, 12H),2.76-2.62(m, 4H), 3.04-2.96(m, 4H), 3.16-3.05(m, 2H),3.24(sept, 1H), 3.72-3.63(m, 2H), 3.87(s, 3H),6.48(dd, 1H),6.55(d, 1H),7.31-7.23(m, 1H), 7.66-7.589(m, 1H),7.91(dd, 1H), 8.01(d, 1H), 8.12(s, 1H), 8.60(d, 1H) 9.53(s, 1H) |

| 28-26 | N O                       | MS<br>573 | CDCl <sub>3</sub> : 1.30 (s, 3H), 1.32 (s, 3H), 2.59-2.43 (m, 4H),2.78-2.73(m, 1H), 3.00-2.86(m, 2H),3.38-3.20(m, 3H), 3.54-2.45(m, 1H), 3.73(dd, 1H),3.84-3.77(m, 1H), 3.94-3.87(m, 1H), 3.88(s, 3H),6.46(dd, 1H),6.53(d, 1H),7.32-7.23(m, 1H), 7.31 (bs, 1H), 7.63-7.52(m, 1H),7.91(dd, 1H), 8.04(d, 1H), 8.13(s, 1H), 8.60(d, 1H) 9.54(s, 1H) |
|-------|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28-27 | O NH <sub>2</sub>         | MS<br>559 | CDCl <sub>3</sub> : 1.30(s, 3H), 1.32 (s, 3H), 1.82-1.73 (m, 1H), 1.97-1.84(m, 3H), 2.73-2.51 (m, 1H), 3.12(t, 2H), 3.31-3.20 (m, 3H), 3.90(s,3H), 5.46-5.37(m, 1H), 6.53(dd, 1H), 6.59(d, 1H), 6.68-6.62 (m, 1H), 7.28-7.21 (m, 1H), 7.33(bs, 1H), 7.65-7.61(m, 1H), 7.92(dd, 1H), 8.08(d, 1H), 8.14(s, 1H), 8.60(d, 1H), 9.55(s, 1H)           |
| 28-28 | N<br>H<br>NH <sub>2</sub> | MS<br>559 | CDCl <sub>3</sub> : 1.30(s, 3H), 1.32 (s, 3H), 1.82-1.73 (m, 1H), 1.97-1.84(m, 3H), 2.73-2.51 (m, 1H), 3.12(t, 2H), 3.31-3.20 (m, 3H), 3.90(s,3H), 5.46-5.37(m, 1H), 6.53(dd, 1H), 6.59(d, 1H), 6.68-6.62 (m, 1H), 7.28-7.21 (m, 1H), 7.33(bs, 1H), 7.65-7.61(m, 1H), 7.92(dd, 1H), 8.08(d, 1H), 8.14(s, 1H), 8.60(d, 1H), 9.55(s, 1H)           |
| 28-29 |                           | MS<br>413 | CDCl <sub>3</sub> : 1.31 (s, 3H), 1.33(s, 3H),2.92(t, 4H), 3.28(sept, 1H) 3.73(t, 4H), 3.87(s,3H), 6.51(dd, 1H), 6.82(d, 1H), 7.32-7.23 (m, 1H), 7.57(bs, 1H), 7.70- 7.64(m, 1H), 7.92(dd, 1H), 8.01(bs, 1H), 8.12(s, 1H), 8.60(d, 1H), 9.53(s, 1H)                                                                                              |
| 28-30 |                           | MS<br>493 | CDCl <sub>3</sub> : 1.30 (s, 3H), 1.33(s, 3H), 3.25(sept, 1H) 3.60 (bs,3H), 3.89(s, 3H), 6.59(s, 1H), 7.27-7.18 (m, 1H),7.61(dd, 1H), 7.83(bs, 1H), 7.90(dd, 1H), 8.15 (s, 1H), 8.55(d, 1H), 9.55(s, 1H)                                                                                                                                         |

| 28-31 |  | MS<br>445 | CDCl <sub>3</sub> : 1.31(d, 6H),1.59-1.37(m, 2H), 1.81-1.69(m, 1H), 1.87(d, 2H), 2.73-2.67(m, 2H), 3.28-3.21(m, 1H), 3.37(s, 3H),3.61(d, 1H),3.87(s, 3H),6.49(dd, 1H),7.025(bs, 1H), 7.28-7.23(m, 1H),7.64-7.59(m, 1H), 7.93-7.89(m, 2H), 8.15(s, 1H), 8.57(dd, 1H) 9.56(s, 1H) |
|-------|--|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------|--|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Expl | Rx  | HPLC       | Mass (ESI) |
|------|-----|------------|------------|
| No.  |     | Retention  | m/z        |
|      |     | time (min) |            |
| 29-1 |     | 3.30       | 546 (M+H)  |
|      | o N |            |            |
| 29-2 |     | 2.82       | 627 (M+H)  |
|      |     |            |            |
| 29-3 |     | 3.07       | 587 (M+H)  |
|      |     |            |            |

| Expl | Rx              | HPLC       | Mass (ESI) |
|------|-----------------|------------|------------|
| No.  |                 | Retention  | m/z        |
|      |                 | time (min) | 111/2      |
|      |                 | 2.82       | 516 (M+H)  |
| 30-1 |                 | 1.02       | 310 (M+A)  |
|      |                 |            |            |
|      | , N             |            |            |
|      |                 |            |            |
|      | <u> </u>        | 2.65       |            |
| 30-2 |                 | 2.00       | 557 (M+H)  |
|      |                 |            |            |
|      | rů)             |            |            |
|      |                 |            |            |
|      | <u></u>         |            |            |
|      |                 | 2.50       | 557 (M+H)  |
| 30-3 |                 |            |            |
|      | N               |            |            |
|      |                 |            |            |
|      | NH <sub>2</sub> |            |            |
|      |                 | 3.10       | 498 (M+H)  |
| 30-4 |                 |            | . ,        |
|      |                 |            | 1          |
|      | n'',            |            | ·          |
|      | <u> </u>        |            |            |

| 30-5 |                                       | 2.30 | 543 (M+H) |
|------|---------------------------------------|------|-----------|
|      |                                       | ·    |           |
| 30-6 |                                       | 2.52 | 557 (M+H) |
|      | NH <sub>2</sub>                       |      |           |
| 30-7 |                                       | 2.23 | 612 (M+H) |
|      | N                                     |      |           |
|      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |      |           |

| Expl | Rx | HPLC       | Mass (ESI) |
|------|----|------------|------------|
| No.  |    | Retention  | m/z        |
|      |    | time (min) |            |
| 31-1 |    | 3.15       | 423 (M+H)  |

| 31-2 |          | 2.62 | 490 (M+H) |  |
|------|----------|------|-----------|--|
|      |          |      |           |  |
|      | <b>6</b> |      |           |  |

| Expl | Rx               | MS        | NMR (400MHz) in CDCl <sub>3</sub> , δ (ppm)                                                                                                                                                                                                                                     |
|------|------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |                  |           |                                                                                                                                                                                                                                                                                 |
| 32-1 | N Ac             | 585.3     | 1.03 (s, 3H), 1.04(s, 3H),2.15(s, 3H), 2.32(sept, 1H) 3.00(d, 2H) 3.10(t, 2H), 3.13(t, 2H), 3.64(t, 2H),3.79(t, 2H), 3.89(s,3H), 6.45(dd, 1H), 6.55(d, 1H), 7.34-7.26 (m, 1H), 7.52(bs, 1H), 7.64-7.60(m, 1H), 7.97(dd, 1H), 8.07(d, 1H), 8.15(s, 1H), 8.54(d, 1H), 9.32(s, 1H) |
| 32-2 | ~<br>~<br>~<br>~ | 532 (M+H) | 3.17                                                                                                                                                                                                                                                                            |

| Expl | Rx   | MS        | NMR (400MHz) in CDCl <sub>3</sub> , δ (ppm)                                                                                                                                                                                                                                                                        |
|------|------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  | N N  | 585.3     | 1.66-1.52 (m, 2H), 1.92-1.73 (m, 4H), 2.12-2.03 (m, 2H), 2.15(s, 3H), 3.00(d, 2H) 3.11(t, 2H), 3.14(t, 2H), 3.58-3.46(m, 1H), 3.64 (t, 2H),3.80(t, 2H), 3.89(s,3H), 6.48(dd, 1H), 6.55(d, 1H), 7.30-7.24 (m, 1H), 7.52(bs, 1H), 7.63-7.58(m, 1H), 7.94(dd, 1H), 8.08(d, 1H), 8.14(s, 1H), 8.60(d, 1H), 9.54(s, 1H) |
| 33-2 | Ac O | 544 (M+H) | 3.15                                                                                                                                                                                                                                                                                                               |

| Expl<br>No. | Rx | HPLC<br>Retention | Mass (ESI) |
|-------------|----|-------------------|------------|
|             |    | time (min)        | m/z        |
| 34-1        |    | 3.15              | 532 (M+H)  |

| 34-2 | 3.34 | 558 (M+H) |
|------|------|-----------|
| 34-3 | 3.35 | 546 (M+H) |
| 34-4 | 3.32 | 546 (M+H) |
| 34-5 | 3.09 | 566 (M+H) |
| 34-6 | 2.87 | 552 (M+H) |

| Ex<br>No |                | MS             | NMR (400MHz), CDCl <sub>3</sub> , ō ppm                                                                                                                                                                                                                   |
|----------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34-7     | G N N NH OF OF | MS<br>435, 436 | 1.05 (t, 3H), 1.69-1.78 (m, 2H), 2.86-2.95 (m, 1H), 3.16-3.25 (m, 1H), 6.57-6.68 (m, 2H), 7.17 (dd, 1H), 7.35-7.39 (m, 1H), 7.50 (dd, 1H), 8.13 (s, 1H), 8.16-8.21 (m, 1H), 8.48 (d, 1H), 10.14 (s, 1H)                                                   |
| 34-8     |                | MS<br>549, 551 | 0.94 (t, 3H), 1.69-1.80 (m, 2H), 2.38 (s, 3H), 2.55-2.64 (m, 4H), 3.02-3.08 (m, 2H), 3.22-3.29 (m, 4H), 3.88 (s, 3H), 6.55 (ddd, 1H), 6.60-6.66 (m, 1H), 7.13-7.18 (m, 1H), 7.34 (br.s, 1H), 7.44 (d, 1H), 8.10 (s, 1H), 8.10-8.23 (m, 2H), 8.88 (s, 1H). |

| 35-1 | 567<br>[M+1]+             | DMSO-d6: 2.24 (s, 3H), 2.45-2.50 (m, 4H), 2.78 (d, 3H), 3.10-3.17 (m, 8H), 3.74-3.79 (m, 7H), 6.49 (dd, 1H), 6.66 (d, 1H), 6.85-6.89 (m, 1H), 7.18 (d, 1H), 7.40 (d, 1H), 7.98-8.02 (m, 2H), 8.29 (br.d, 1H), 8.60-8.66 (m, 1H), 11.17 (s, 1H). |
|------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35-2 | 505<br>[M+1] <sup>†</sup> | DMSO-d6: 2.24(s, 3H), 2.46-2.50(m, 4H), 2.79(d, 3H), 3.13-3.17(m, 4H), 3.78(s, 3H), 6.69(d, 1H), 6.87(dd, 1H), 7.07-7.17(m, 2H), 7.19-7.23(m, 2H), 7.54(d, 1H), 8.13(s, 1H), 8.45(s, 1H), 8.65-8.75(m, 1H), 9.04(s, 1H), 11.19(s, 1H)           |

# Example 36 (Intermediates for Left anilines)

# 36-1 Preparation of 2-amino-N-methyl-benzamide

To a suspension of 16.3 g (100 mmol) of isatoic anhydride in 100mL of  $H_2O$  is added portionwise 100mL of 2N methylamine - tetrahydrofuran solution (200 mmol) at room temperature. The reaction mixture is stirred for 1 hour and then extracted with AcOEt. The organic layer is washed with  $H_2O$  and brine, dried over  $Na_2SO_4$ , and concentrated under

reduced pressure to give 13.79 g of desired product, 2-amino-N-methyl-benzamide (92 mmol, 92%) as colorless solid.

NMR (400MHz, CDCl3,  $\delta$ ): 2.97 (d, 3H, J = 4.52 Hz), 5.49 (bs, 1H), 6.07 (bs, 1H), 6.64 (ddd, 1H, J = 8.04, 7.56, 1.0 Hz), 6.68 (dd, 1H, J = 8.32, 1.0 Hz), 7.20 (ddd, 1H, J = 8.32, 7.56, 1.52 Hz), 7.29 (dd, 1H, J = 8.04, 1.52 Hz).

#### <u>36-2</u>

## 2-(2,5-Dichloro-pyrimidin-4-ylamino)-N-methyl-benzamide

To a solution of 15.0 g (99.8 mmol) of 2-amino-*N*-methyl-benzamide in DMF (300mL) are added 2, 4, 5-trichloropyrimidine (23.8 g, 130 mmol) and potassium carbonate (17.9 g, 130 mmol). The reaction mixture is stirred at 75°C for 5 hours, cooled to room temperature, and then poured into  $H_2O$  (600mL). The resulting precipitate is collected by a filtration followed by washing with 50% aqueous CH<sub>3</sub>CN (200mL) and dried under reduced pressure (40°C, 10 hours) to give desired 2-(2,5-dichloro-pyrimidin-4-yl-amino)-*N*-methyl-benzamide as ivory solid (26.4 g, 88.9 mmol, 89%).

NMR (400MHz, DMSO-d6,  $\delta$ ): 2.81 (d, 3H, J = 4.52 Hz), 7.22 (dd, 1H, J = 8.56, 8.04 Hz), 7.60 (ddd, 1H, J = 8.56, 8.56, 1.0 Hz), 7.81 (dd, 1H, J = 8.04, 1.0 Hz), 8.48 (s, 1H), 8.52 (d, 1H, J = 8.56 Hz) 8.80-8.90 (m, 1H), 12.18 (s, 1H).

According the manner described above, the following compounds are prepared.

#### <u>36-3</u>

## 2-(5-Bromo-2-chloro-pyrimidin-4-ylamino)-N-methyl-benzamide

NMR (400MHz, DMSO-d<sub>6</sub>,  $\delta$ ): 2.81(d, 3H), 7.23(ddd, 1H, J=7.54, 7.54, 1.0Hz), 7.59(ddd, 1H, J=7.93, 8.06, 1.52Hz),7.79(dd, 1H, J=7.8, 1.52Hz), 8.47(dd, 1H J=8.06, 1.0Hz), 8.55(s, 1H), 8.81-8.87(m, 1H), 12.0(brs, 1H). Rf: 0.46 (n-Hexane: AcOEt=7:3).

#### 36-4

### 2-(2,5-Dichloro-pyrimidin-4-ylamino)-N-ethyl-benzamide

NMR (400MHz, CDCl<sub>3</sub>,  $\delta$ ): 1.28 (t, d=7.04, 3H), 3.48-3.57 (m, 2H), 6.22 (br. s, 1H), 7.11-7.17 (m, 1H), 7.51 (dd, J=1.0, 8.04, 1H), 7.53-7.61 (m, 1H), 8.22 (s, 1H), 8.69-8.74 (m, 1H), 11.66 (br. s, 1H). Rf: 0.60 (Hexane :AcOEt=1:1).

#### 36-5

# Preparation of 2-(5-bromo-2-chloro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide

A suspension of 5-bromo-2,4-dichloropyrimidine (684 mg, 3.0 mmol) and 2-amino-N-methyl-benzenesulfonamide (559 mg, 3.0 mmol) in N,N-dimethylformamide (10 mL) containing potassium carbonate (830 mg, 6.0 mmol) is stirred at room temperature for 23 hours. Saturated aqueous ammonium chloride is added and the mixture is poured into water and extracted twice with ethyl acetate. The organic layer is washed with brine, dried over sodium sulfate, and evaporated in vacuo. The residue is purified by silica gel column chromatography (n-hexane - ethyl acetate gradient) to afford the title compound as a slightly yellow solid.

<sup>1</sup>H-NMR (CDCl<sub>3</sub>),  $\delta$  (ppm): 2.67 (d, 3H), 4.79 (q, 1H), 7.26 (s, 1H), 7.29 (ddd, 1H), 7.66 (ddd, 1H), 7.95 (dd, 1H), 8.37 (s, 1H), 8.48 (d, 1H), 9.52 (s, 1H). Rf (n-hexane : ethyl acetate = 10:3): 0.33.

According to the manner described above, the following compound is prepared.

#### <u>36-6</u>

# 2-(2,5-Dichloro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide

 $^{1}$ H-NMR (400MHz, CDCl<sub>3</sub>, δ);2.67(d, 3H),4.97-5.04(m, 1H), 7.29(ddd, 1H, J=7.54, 7.54, 1.0Hz), 7.66(ddd, 1H, J=7.93, 8.08, 1.48Hz),7.94(dd, 1H, J=8.04, 1.52Hz), 8.24(s, 1H), 8.51(dd, 1H J=8.06, 1.0Hz), 9.64(brs, 1H). Rf: 0.45 (n-Hexane: AcOEt=4:1).

#### 36-7

# 2-(2,5-Dichloro-pyrimidin-4-ylamino)-N-isopropyl-benzenesulfonamide

To a solution of 2-amino-N-isopropyl-benzenesulfonamide (16.1g, 75.1mmol) in DMI (150mL) is added sodium hydride (6.6g, 165.3mmol) portionwise at 0°C. After the mixture is stirred at room temperature for one hour, 2, 4, 5-trichloropyrimidine (20.7g, 112.7mmol) is added at 0°C. After further stirring at room temperature for 5 hrs, water is added and the mixture is extracted with AcOEt three times. Organic layer is washed with brine, dried over sodium sulfate and evaporated under reduced pressure. The residue is purified by silica gel column chromatography (Hexane to Hexane:AcOEt=4:1) to afford the title compound as pale brown solid (10.2g, 38%).

<sup>1</sup>H-NMR (400MHz, CDCl<sub>3</sub>, δ);1.06(d, 6H), 3.43-3.53(m, 1H), 4.38(d,1H), 7.29(dd, 1H), 7.66(dd, 1H), 7.98(d, 1H), 8.29(s, 1H), 8.51(d, 1H), 9.51(brs, 1H). Rf: 0.45 (n-Hexane:AcOEt=4:1)

The following compounds are prepared in the same manner described above.

| Expl | Rz | Rf (solvent)                     | NMR (400MHz) , δ (ppm)                                                                                                                                                           |
|------|----|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  | }  | or MS                            | N. C. C. C. C. C. C. C. C. C. C. C. C. C.                                                                                                                                        |
| 36-8 |    | 0.45<br>(n-Hexane:<br>AcOEt=4:1) | DMSO-d <sub>6</sub> ; 0.63(t, 6H), 0.86(d, 3H), 1.21-1.31(m, 2H), 3.02-3.12(m, 1H), 7.37(dd,1H), 7.71(dd, 1H), 7.85(d, 1H), 7.89(d, 1H), 8.20(d, 1H), 8.56(s, 1H), 9.51(brs, 1H) |
| 36-9 |    | 0.46<br>(n-Hexane:<br>AcOEt=7:3) | CDCl <sub>3</sub> ; 0.70(t, 6H),1.23-1.45(m, 4H), 3.03-3.13(m, 1H), 4.27(d,1H), 7.27(dd, 1H), 7.65(dd, 1H), 7.98(d, 1H), 8.29(s, 1H), 8.52(d, 1H), 9.59(brs, 1H)                 |

36-10
Preparation of 2-(2-chloro-5-nitro-pyrimidin-4-ylamino)-N-methyl-benzenesulfonamide:

2,4-Dichloro-5-nitro-pyrimidine (1.94 g, 10 mmol) and 2-amino-N-methyl-benzenesulfonamide (1.86 g, 10 mmol) are dissolved in CHCl<sub>3</sub> (30 mL). The reaction mixture is heated at 61°C for 2 h. The solvent is evaporated and the residue is washed with ether to give the title product. Rf = 0.5 (n-hexane : ethyl acetate = 1:1).  $^{1}$ H-NMR (400MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 2.67 (d, 3H), 4.6-4.7 (m, 2H), 7.41 (t, 1H), 7.7 (t, 1H), 8.04 (d, 1H), 8.15 (d, 1H), 9.21 (s, 1H), 11.2 (s, 1H).

#### <u> 36-11</u>

Preparation of (2,5-Dichloro-pyrimidin-4-yl)-[2-(propane-1-sulfonyl)-phenyl]-amine

To a solution of 2-(Propane-1-sulfonyl)-phenylamine (3.69g, 18.5 mmol) of N,N-dimethylformamide (40mL), sodium hydride (1.48g, 37 mmol) is added portionwise at 0°C. After stirring, 2,4,5-trichloropyrimidine (2.1mL, 18.5 mmol) is added. The mixture is stirred at 0°C for 30 minutes and is further stirred at room temperature for 7hrs. After adding saturated aqueous ammonium chloride, the mixture is poured into water and extracted twice with ethyl acetate. The organic layer is washed with brine, dried over sodium sulfate, and evaporated in vacuo. The residue is purified by silica gel column chromatography (n-hexane - ethyl acetate gradient) to afford the title compound as colorless solids.

 $^{1}$ H-NMR (CDCl<sub>3</sub>), δ (ppm): 0.99 (t, 3H), 1.77 (d, 2H), 3.07-3.11 (m, 2H), 7.26 (s, 1H), 7.32 (ddd, 1H), 7.73 (ddd, 1H), 7.95 (dd, 1H), 8.31 (s, 1H), 8.61 (dd, 1H), 9.94 (bs, 1H). Rf (n-hexane : ethyl acetate = 3:1): 0.63

According to the manner described above, the following compounds are prepared.

| ExplN<br>o. | Rx | Identification                                                                                                                                                                              |
|-------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36-12       |    | <sup>1</sup> H-NMR (CDCl <sub>3</sub> ), δ (ppm): 1.35(d, 6H), 3.18-3.24(m, 1H), 7.30-7.34(m, 1H), 7.70-7.75(m, 1H), 7.92(dd, 1H), 8.30(s, 1H), 8.63(d, 1H), 10.06(s, 1H). Rf 0.70: (AcOEt) |
| 36-13       |    | NMR (400MHz) in CDCl <sub>3</sub> , δ (ppm): 1.29(t, 3H), 3.15(q, 1H), 7.31-7.35(m, 1H), 7.71-7.75(m, 1H), 7.96(dd,                                                                         |

|       | 1H), 8.31(s, 1H), 8.60(d, 1H), 9.92(s, 1H). Rf: 0.67 (AcOEt).                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36-14 | 1.01-1.06(m, 2H), 1.32-1.37(m, 2H), 2.49-2.55(m,1H), 7.29-7.33(m, 1H), 7.69-7.73(m, 1H), 7.91(dd, 1H), 8.31(s, 1H), 8.58(d, 1H), 9.90(s, 1H). Rf 0.69 (AcOEt) |
| 36-15 | 0.99(t, 6H), 1.72-1.90(m, 4H), 2.76-2.82(m, 1H), 7.26-7.34(m, 1H), 7.69-7.74(m, 1H), 7.92(dd, 1H), 8.30(s, 1H), 8.62(d, 1H), 10.02(s, 1H). Rf: 0.73 (AcOEt)   |

#### Example 36-16

Synthesis of substituted amines which are commercially not available:

# Preparation of 3-amino-4'-methoxy-4-methylbiphenyl

To a solution of 4-methoxyphenyl-boronic acid (500 mg, 3.29 mmol) in toluene (5.2 mL) and ethanol (1.3 mL), potassium carbonate (910 mg, 6.58 mmol), tetrakis(triphenylphosphine)-palladium (228.1 mg, 0.099 mmol) and 4-bromo-1-methyl-2-nitrobenzene (711 mg, 3.29 mmol) are added and stirred at 100°C for 7 hours. The mixture is poured into water and extracted with ethyl acetate two times. The organic layer is washed with water and then brine, dried over magnesium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane: ethyl acetate = 5:1) to afford the 4'-methoxy-4-methyl-3-nitro-biphenyl as a yellow solid.

<sup>1</sup>H-NMR (ō, ppm): 2.62 (s, 3H), 3.86 (s, 3H), 7.02-6.98 (m, 2H), 7.37 (d, 1H), 7.54 (dd, 2H), 7.68 (dd, 1H), 8.18 (d, 1H). Rf (hexane: ethyl acetate = 3:1): 0.40.

A suspension of 4'-methoxy-4-methyl-3-nitrobiphenyl (630 mg, 2.95 mmol) and 10% palladium on charcoal (63 mg, 0.059 mmol) in methanol (6 mL) is stirred under hydrogen atmosphere for 12 hours. Palladium catalyst is removed by filtration and the resulting solution is evaporated in vacuo to afford the title compound.

<sup>1</sup>H-NMR (δ, ppm) : 2.20 (s, 3H), 3.84 (s, 3H), 6.87 (d, 1H), 6.89 (dd, 1H), 6.95 (d, 2H), 7.09 (d, 1H), 7.48 (d, 2H). Rf (n-hexane : ethyl acetate = 1:1): 0.50.

Preparation of 4-(3-amino-4-methylbenzoyl)-piperazine-1-carboxylic acid tert-butyl ester

To a solution of 4-methyl-3-nitro-benzoic acid (300 mg, 2.76 mmol), N-butoxycarbonyl-piperazine (340 mg, 1.83 mmol) in DMF (3.0 mL), triethylamine (300  $\mu$  L, 3.59 mmol), TBTU (800 mg, 2.49 mmol) and HOAt (270.5 mg,1.99 mmol) are added and stirred at room temperature for 24 hours. The mixture is poured into water and extracted twice with ethyl acetate. The organic layer is washed with water and then brine, dried over magnesium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane : ethyl acetate = 5 : 1) to afford 4-(4-methyl-3-nitrobenzoyl)-piperazine-1-carboxylic acid tert-butyl ester as a colorless solid.

<sup>1</sup>H-NMR (δ, ppm): 1.47 (s, 9H), 2.64 (s, 3H), 3.28-3.88 (m, 8H), 7.42 (d, 1H), 7.56 (dd, 1H), 8.03 (d, 1H). Rf (hexane: ethyl acetate = 10:1): 0.13.

The title compound is obtained by reduction with hydrogen over 10% palladium on charcoal in methanol solution.

# Preparation of 4-(3-amino-4-methylphenyl)-morpholine

To a solution of 4-bromo-1-methyl-2-nitrobenzene (225 mg, 1.04 mmol), morpholine (125  $\mu$  L, 1.25 mmol), and cesium carbonate (474.4 mg, 1.46 mmol) in toluene, palladium diacetate (31.2 mg, 0.139 mmol) and 2-(di-t-butylphosphino)biphenyl (125 mg, 0.403 mmol) are added and stirred at 100°C for 5 hours. After cooling, the mixture is filtered to remove insoluble material. The filtrate is poured into water and extracted with ethyl acetate twice. The organic layer is washed with water and then brine, dried over magnesium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane : ethyl acetate = 5 : 1) to afford 4-(4-methyl-3-nitrophenyl)-morpholine as a yellow solid.

 $^{1}$ H-NMR (δ, ppm) : 2.50 (s, 3H), 3.17-3.19 (m, 4H), 3.86-3.88(m, 4H), 7.04 (dd, 1H), 7.21 (d, 1H), 7.47 (d, 1H). Rf (hexane : ethyl acetate = 5:1): 0.20.

The title compound is obtained by reduction with hydrogen over 10% palladium on charcoal in methanol solution.

Example 37: Synthesis of substituted amines which are commercially not available:

37-1
Preparation of 1-(3-Methoxy-4-nitro-phenyl)-piperdin-4-ol

To a suspension of piperidin-4-ol (2.79g, 28 mmol) and potassium carbonate (3.88 g, 28 mmol) in N,N-dimethylformamide (40 mL), 4-Fluoro-2-methoxy-1-nitro-benzene (4.0g, 23 mmol) is added and stirred at room temperature for 24 hours. The mixture is poured into water and the precipitate is collected by a filtration. The resulting solid is dried in vacuo at  $50^{\circ}$ C to afford 1-(3-methoxy-4-nitro-phenyl)-piperidin-4-ol (5.23g) as yellow solids in 89% yield. <sup>1</sup>H-NMR (400MHz, CDCl<sub>3</sub>,  $\delta$ , ppm) :1.54(d, 1H), 1.62-1.71(m, 2H), 1.98-2.04(m, 2H), 3.22(ddd, 4H), 3.73-3.80(m, 2H), 3.95(s, 3H), 3.98-4.02(m, 1H), 6.33(d, 1H), 6.43(dd, 1H), 8.00(d, 1H).

By repeating the procedures described above using appropriate starting materials and conditions the following compounds are obtained.

| Ex-No | Rx                | Identification                                                                                                                                                                                                                                           |
|-------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-2  |                   | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) :1.53-1.72(m, 2H), 1.80-1.83(m, 4H), 1.99-2.04(m, 2H), 2.24-2.31(m, 1H), 2.54-2.67(m, 4H), 3.03(dt, 2H), 3.84-3.89 (m, 2H), 3.95(s, 3H), 6.31(d, 1H), 6.42(dd, 1H), 8.01(d, 1H). Rf 0.54 (AcOEt) |
| 37-3  | O NH <sub>3</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.81-1.91(m, 2H), 1.99-2.04(m, 2H), 2.38-2.48(m, 1H), 3.03(ddd, 2H), 3.91-3.96(m, 2H), 3.95(s, 3H), 5.22-5.41(m, 1H), 5.40-5.53(m, 1H), 6.36(d, 1H), 6.43(dd, 1H), 8.00(d, 1H). Rf 0.15 (AcOEt) |

| 37-4 | 0 0-                                                        | TH NIMP (400MHz CDC) E - 1 4 45% CON CONTRACTOR                                                                                                                                                                                                                                      |
|------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-4 |                                                             | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.15(t, 3H),1.88-1.96(m, 1H), 2.22-2.30(m,1H), 2.68-2.77(m, 2H),3.15-3.18(m, 1H), 3.38-3.44(m, 1H), 3.52-3.62(m, 2H), 3.93(s, 3H), 5.92(d, 1H), 6.07-6.10(m, 1H), 8.00-8.02(m, 1H). Rf 0.65 ( <i>n</i> -hexane: AcOEt=1:1). |
|      |                                                             |                                                                                                                                                                                                                                                                                      |
|      | Ethyl-[1-(3-methoxy-4-nitro-phen<br>-pyrrolidin-3-yi]-amine |                                                                                                                                                                                                                                                                                      |
| 37-5 | 0 0                                                         | $^{1}$ H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 2.36(s, 3H), 2.52-2.57(m, 4H), 3.40-3.43(m, 4H), 3.95(s, 3H), 6.32(d, 1H, $J$ =2.52Hz), 6.43(dd, 1H, $J$ =9.56, 2.52Hz), 7.99(d, 1H, $J$ =9.08Hz). Rf 0.60 (MeOH : CH <sub>2</sub> Cl <sub>2</sub> =4:1).                        |
|      |                                                             |                                                                                                                                                                                                                                                                                      |
|      | 1-(3-Methoxy-4-nitro-phenyi)-4-meti<br>yi-piperazine        |                                                                                                                                                                                                                                                                                      |
| 37-6 |                                                             | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.10-1.19(m, 1H), 1.59-2.18(m, 6H), 2.28(s,3H), 2.71-2.74(m, 1H), 2.88-2.91(m, 1H), 3.86-3.95 (m, 5H), 6.47-6.52(m, 2H), 7.97-8.00(m, 1H). Rf 0.65 ( <i>n</i> -hexane: AcOEt=1:1)                                           |
|      |                                                             |                                                                                                                                                                                                                                                                                      |
|      | 3-{3-Methoxy-4-nitro-phenoxymethy<br>-1-methyl-piperidine   |                                                                                                                                                                                                                                                                                      |
| 37-7 | 0                                                           | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 4.08(s,3H), 7.30(dd,1H), 7.58(d, 1H), 8.05(d, 1H), 8.15(s, 1H), 8.67(s, 1H). Rf: 0.42 (AcOEt)                                                                                                                              |
|      | M                                                           |                                                                                                                                                                                                                                                                                      |

| 27.0  | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-8  |             | $^{1}$ H-NMR (400MHz, CDCl <sub>3</sub> , δ <sub>r</sub> ppm): 1.40 – 1.50 (m, 2H), 1.55 – 1.69 (m, 6H), 1.90 – 1.96 (m, 2H), 2.45 – 2.53 (m, 5H), 2.90 – 2.99 (m, 2H), 3.90 – 4.00 (m, 2H), 3.94 (s, 3H), 6.30 (d, 1H, J =, 2.5 Hz), 6.41 (dd, 1H, J = 9.0, 2.5 Hz), 7.99 (d, 1H, J = 9.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37-9  |             | <sup>1</sup> H-NMR (400MHz, DMSO-d6, δ, ppm) : 1.95-1.82(m, 2H), 2.15-2.06 (m, 1H), 2.30 (s, 3H), 3.17 (dd, 1H), 3.32-3.23 (m, 1H), 3.56-3.34 (m, 3H), 3.96 (s, 1H), 6.09 (d, 1H), 6.21 (dd, 1H), 7.91 (d, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37-10 | <u> </u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37-10 | O N H       | $^1\text{H-NMR}$ (400MHz, CDCl <sub>3</sub> , \(\delta\), ppm): 2.30 - 2.48 (m, 3H), 2.59 - 2.66 (m, 1H), 2.70 - 2.76 (m, 1H), 2.85 - 2.92 (m, 1H), 3.09 - 3.17 (m, 1H), 3.30 - 3.34 (m, 1H), 3.52 - 3.58 (m, 1H), 3.68 - 3.84 (m, 3H), 3.87 - 3.91 (m, 1H), 3.96 (s, 3H), 6.32 (d, 1H, J = 2.5 Hz ), 6.42 (dd, 1H, J = 9.6, 2.5 Hz ), 8.00 (d, 1H, J = 9.6 Hz )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37-11 | , N         | THE ALBERT (LOCALITY OF LOCALITY | 37-11 | 0,0         | <sup>1</sup> H-NMR (400MHz, DMSO-d6, CDCl <sub>3</sub> , δ, ppm): 1.90-1.79(m, 1H), 2.25-2.15 (m, 1H), 2.21 (s, 3H), 2.87-2.77 (m, 1H), 3.16 (dd, 1H), 3.42-3.32 (m, 1H), 3.59-3.52 (m, 1H), 3.67-3.61 (m, 1H), 3.91 (s, 3H), 6.13 (d, 1H), 6.24 (dd, 1H) ), 7.91 (dd, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | N—          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 37-12 |         | THE NAME (400) BY CORD III                                                                                                                                                                                                                          |
|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-12 |         | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.43-1.00(m, 2H),1.95-1.81 (m, 2H),2.94-2.17(m, 2H),2.96(s, 3H),3.27 (d, 2H), 3.35(s, 3H),3.97-3.90 (m, 2H), 3.95(s, 3H), 6.30(d, 1H), 6.42(dd, 1H) 8.00(d, 1H). Rf: 0.25 (AcOEt)                  |
| 37-13 | 0 N 0 - | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.14(t, 3H),2.48(dd, 2H), 2.59(t, 4H),3.42 (t, 4H), 3.95(s,3H), 6.32(d, 1H), 6.43(dd, 1H) 8.01(d, 1H). Rf 0.15 (AcOEt)                                                                             |
| 37-14 |         | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.02-0.89 (m, 2H), 2.01-1.94 (m, 2H), 2.52-2.38 (m, 1H), 2.65-2.53 (m, 4H),3.04-2.94(m, 2H), 3.79-3.69(m, 4H),3.97-3.88 (m, 2H), 3.95(s,3H), 6.32(d, 1H), 6.42(dd, 1H) 8.00(d, 1H) Rf 0.10 (AcOEt) |
| 37-15 |         | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.08 (s, 3H),1.09(s, 3H), 2.66(t, 4H),2.74 (sept, 1H), 3.41 (t, 4H), 3.95(s,3H), 6.32(d, 1H), 6.42(dd, 1H) 8.00(d, 1H). Rf 0.15 (AcOEt)                                                            |

| 37-16 | T                  | THE NIMED (ACCOUNTS OF COLORS                                                                                                                                                                                                                    |
|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-16 |                    | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.91-1.81 (m, 2H), 2.06-1.97(m, 2H),2.48-2.40(m, 1H), 3.07-2.98(m, 2H),3.97-3.93(m, 2H), 3.93(s,3H), 5.37-5.30(m, 1H),5.55-5.43 (m, 1H), 6.33(d, 1H), 6.43(dd, 1H) 8.00(d, 1H). Rf 0.10 (AcOEt) |
|       |                    |                                                                                                                                                                                                                                                  |
|       | H <sub>2</sub> N O |                                                                                                                                                                                                                                                  |
| 37-17 | 0 N0 -             | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.18-2.07 (m, 1H), 2.30-2.22 (m, 1H), 3.38(s, 3H), 3.56-3.44(m, 4H),3.95 (s, 3H), 4.13 (ddd,1H), 5.96(d, 1H), 6.12(dd, 1H) 8.03(d, 1H). Rf 0.30 (AcOEt)                                         |
|       |                    |                                                                                                                                                                                                                                                  |
| 37-18 | 0 N 0 -            | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.46(s, 9H),1.81-1.68(m, 4H), 2.73(bs, 3H),3.07-2.97(m, 2H), 3.95(s,3H), 4.03-3.94 (m, 2H), 6.32(d, 1H), 6.43(dd, 1H) 8.00(d, 1H). Rf 0.55 (Hexane:AcOEt)                                       |
|       | N                  |                                                                                                                                                                                                                                                  |
| 37-19 | 0,00               | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.60-3.57(m, 2H), 3.68-3.65(m, 2H), 3.97(s, 3H), 4.07(s, 2H), 6.17(bs, 1H), 6.26(d, 1H), 6.39(dd, 1H) 8.04(d, 1H). Rf 0.85 (AcOEt)                                                              |
|       | Cho.               |                                                                                                                                                                                                                                                  |

| 37-20 |                 | 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 |
|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-20 |                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.08(s, 3H), 3.54(dd, 2H),3.67(dd, 2H), 3.96 (s, 3H), 4.05(s, 2H), 6.25(d, 1H), 6.38(dd, 1H) 8.03(d, 1H) . Rf 0.30 (AcOEt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37-21 | 0 0             | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.73-1.55 (m, 2H), 1.99-1.91 (m, 2H), 2.09(s, 3H), 2.61-2.40 (m, 5H), 3.47(4, 2H), 2.62(1, 2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                 | 2H), 2.09(s, 3H),2.61-2.49 (m, 5H), 3.47(t, 2H),3.63(t, 2H), 3.99-3.89 (m, 3H), 3.95 (s, 3H), 6.32(d, 1H), 6.42(dd, 1H) 8.01(d, 1H) . Rf 0.10 (AcOEt:MeOH=4:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | \(\frac{1}{2}\) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37-22 | 0 <u>~</u> ,o-  | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.90(s, 3H), 3.98(s, 3H), 3.98 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                 | 3H), 6.56(s, 1H), 7.59(s, 1H) . Rf 0.605 (AcOEt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37-23 |                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.25-3.22 (m, 4H), 3.90-3.87 (m, 4H), 3.95(s, 3H), 6.48(s, 1H), 7.57(s, 1H) . Rf 0.060 (Hexane:AcOEt=5:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 37-24 | T       | TH NMP (400MHz CDOL): 0.07 ( CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | N. O    | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.37 (s, 3H), 2.61 (bs, 4H),3.27 (bs, 4H), 3.88 (s, 3H), 3.95(s, 3H), 6.48(s, 1H), 7.56(s, 1H) . Rf 0.10 (AcOEt:MeOH=5:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | N       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37-25 | 0_N-0-  | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.09(t, 3H), 1.89(dd, 2H), 2.36(s, 3H), 2.55(t, 4H), 3.39(t, 4H), 4.03(t, 2H), 6.32(d, 1H), 6.42(dd, 1H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7.08(d, 4H), 7 |
|       |         | 1H), 7.98(d, 1H) . Rf 0.12 (AcOEt:MeOH=9:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | , ,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37-26 | 0 0-    | <sup>1</sup> H-NMR (400MHz, CDCL): 1.36(6, 311), 1.00 (-, 811), 0.10 (-, 811)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 0 10 0  | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.36(s, 3H), 1.38 (s, 3H), 2.10 (s, 2H), 2.17(s, 3H), 3.27-2.96 (m, 2H), 3.71 (d, 2H), 3.96 (s, 3H), 6.33(d, 1H), 6.43(dd, 1H), 8.02(d, 1H) . Rf 0.10 (AcOEt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |         | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | N Ac    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37-27 | O N O - | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.16(s, 3H), 1.18 (s, 3H), 2.50(dd, 2H), 3.02-2.47 (m, 2H), 3.69 (dd, 2H), 3.96 (s, 3H), 6.31(d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |         | 1H), 6.43(dd, 1H), 8.00(d, 1H) . Rf 0.070(AcOEt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | N       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Th'     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37-28 | 0 N 0 - | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.16(d, 3H), 2.57(dd, 1H), 3.00-<br>2.89 (m, 4H), 3.18-3.11 (m, 1H), 3.75-3.68 (m, 2H),3.96 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |         | 3H), 6.31(d, 1H), 6.43(dd, 1H), 8.01(d, 1H) . Rf 0.070 (AcOEt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | N       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | Н       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 27.00 | T                                       |                                                                                                                                                                                                                        |
|-------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-29 | 0 0                                     | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.18(t, 3H), 2.40(dd, 2H), 3.47-3.38(m, 4H), 3.71-3.63(m, 2H), 3.85-3.79(m, 2H), 3.96(s, 3H), 6.32(d, 1H), 6.42(dd, 1H), 8.01(d, 1H). Rf 0.20 (AcOEt)                 |
|       |                                         |                                                                                                                                                                                                                        |
| 37-30 |                                         | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.16(s, 3H), 1.18(s, 3H), 2.82(sept, 1H), 3.50-3.37(m, 4H), 3.77-3.65(m, 2H), 3.86-3.78(m, 2H), 3.96(s, 3H), 6.33(d, 1H), 6.43(dd, 1H), 8.01(d, 1H) . Rf 0.48 (AcOEt) |
| 37-31 | O N N O N O N O N O N O N O N O N O N O | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.86(d, 3H), 3.48-3.45(m, 4H), 3.61-3.58(m, 4H), 3.96(s, 3H), 4.48-4.37 (m, 1H), 6.29(d, 1H), 6.40(dd, 1H), 8.01(d, 1H) . Rf 0.20 (AcOEt)                             |
| 37-32 |                                         | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.72-1.60(m, 2H), 2.06-1.97(m, 2H), 3.25-3.17 (d, 3H), 3.78-3.70(m, 2H), 3.95(s, 3H), 4.04-3.99(m, 1H), 6.33(d, 1H), 6.43(dd, 1H), 8.00(d, 1H). Rf 0.20 (AcOEt)       |

| 37-33 | N N N N N N N N N N N N N N N N N N N | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.53 (s, 6H), 2.14(s, 3H), 3.50(s, 2H), 3.61-3.58(m, 2H), 3.97-3.81(m, 2H), 3.97 (s, 3H), 6.10 (d, 1H), 6.26(dd, 1H), 8.05(d, 1H). Rf 0.030 (AcOEt) |
|-------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-34 | N N N N N N N N N N N N N N N N N N N | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.54-2.23 (m, 4H), 2.67 (t, 2H), 3.29-3.23(m, 2H), 3.74(t, 4H), 3.94(s, 3H), 6.07(d, 1H), 6.16 (dd, 1H), 8.00(d, 1H) . Rf 0.15 (AcOEt)              |
| 37-35 |                                       | <sup>1</sup> H-NMR (400MHz, CDCl₃): 2.10-2.02 (m, 2H), 2.41(t, 2H), 3.56(dd, 2H), 3.71(t, 2H), 3.95(s, 3H), 4.19(t, 2H), 6.49(dd, 1H), 6.55(d, 1H), 7.99(d, 1H) . Rf 0.10 (AcOEt)                    |
| 37-36 |                                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.14(s, 3H), 3.87-3.34(m, 8H), 3.99 (s, 3H), 7.01(dd, 1H), 7.16(d, 1H), 7.88(d, 1H) . Rf 0.25 (AcOEt)                                               |

| 37-37 |       | 1H NIMP (400MU) CPOL) 0 40 0 071                                                                                                                                                                                                  |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01-01 |       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.49-3.37(m, 2H), 3.88-3.55(m, 6H), 3.99 (s, 3H), 7.00(dd, 1H), 7.16(d, 1H), 7.87(d, 1H) . Rf 0.50 (AcOEt)                                                                       |
|       |       |                                                                                                                                                                                                                                   |
| 37-38 | 0     | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.17 (s, 3H), 1.19(s, 3H), 2.69 (t, 4H), 3.06(s, 2H), 3.42 (t, 4H), 3.96(s, 3H),4.13(sept, 1H), 6.34 (d, 1H), 6.44(dd, 1H), 6.90-6.79(m, 1H), 8.00(d 1H) . Rf 0.20 (AcOEt)       |
|       |       |                                                                                                                                                                                                                                   |
|       | HN    |                                                                                                                                                                                                                                   |
| 37-39 | 0 0   | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.44-1.34 (m, 2H),1.84-1.77 (m, 1H), 1.94-1.85 (m, 2H), 3.04-2.94 (m, 2H), 3.55 (t, 2H), 3.96-3.57(m, 2H), 3.95(s, 3H), 6.31(d, 1H), 6.42(dd, 1H), 8.00(d, 1H) . Rf 0.30 (AcOEt) |
|       | OH OH |                                                                                                                                                                                                                                   |
| 37-40 | OH OH | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.44-1.34 (m, 2H),1.84-1.77 (m, 1H), 1.94-1.85 (m, 2H), 3.04-2.94 (m, 2H), 3.55 (t, 2H), 3.96-3.57(m, 2H), 3.95(s, 3H), 6.31(d, 1H), 6.42(dd, 1H), 8.04(d, 1H) . Rf 0.45 (AcOEt) |
|       | ОН    |                                                                                                                                                                                                                                   |

| 07.44 |                                        |                                                                                                                                                                                                |
|-------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37-41 |                                        | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 4.05 (s, 3H), 7.07 (d, 1H), 7.08 (d, 1H), 7.27-7.26 (m, 1H), 7.33 (t, 1H), 7.92 (s, 1H), 8.04 (d, 1H). Rf: 0.20 (AcOEt)                       |
|       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                                                                                                                                                                                |
| 37-42 | 0 N O O                                | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :2.34 (s, 3H), 2.55-2.37 (m, 4H), 3.86-3.38 (m, 4H), 4.00 (s, 3H), 7.13 (d, 1H). 7.66 (dd, 1H).7.93 (d, 1H). Rf: 0.30 (AcOEt:MeOH=4:1)         |
| 37-43 | 0 N+ 0                                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.43 (s, 3H), 2.74 (s, 6H),                                                                                                                   |
| 37-43 |                                        | 7.91 (dd, 1H), 7.23 (d, 1H), 7.24 (d, 1H), 7.46 (dd, 1H). Rf: 0.70 (Hexane:AcOEt=5:1)                                                                                                          |
| 37-44 | 0, 1, 0                                | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :2.15 (s, 3H), 3.80-3.48 (m, 2H), 6.87 (dd, 1H), 6.92(dd, 1H), 7.09 (d, 1H), 7.40 (dd, 2H), 8.54 (dd, 2H).                                     |
| 37-45 |                                        | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :3.86 (s, 3H), 4.00 (s, 3H), 6.78 (d, 1H), 6.99 (dd, 2H), 7.14(d, 1H), 7.48 (dd, 2H), 7.71 (dd, 1H), 8.03 (d, 1H). Rf: 0.30 (Hexane:AcOEt=3:1) |

| 37-46 | 3                      | TH NIMD (400MH - ODG)                                                                                                                                                          |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                        | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ):1.44 (t, 3H), 3.10 (t, 4H), 3.86 (t, 4H), 4.13 (q, 2H), 7.01(dd, 1H), 7.08 (dd, 1H), 7.35 (d, 1H). Rf: 0.25 (Hexane:AcOEt=3:1) |
|       |                        | (4) 11) 111 0.25 (Nexame.Acoe(=3:1)                                                                                                                                            |
|       | N                      |                                                                                                                                                                                |
|       | 0                      |                                                                                                                                                                                |
| 37-47 | 0,,.0                  | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ):1.26 (t, 3H), 3.32 (t, 4H),                                                                                                    |
|       |                        | 3.85 (t, 4H), 4.15 (q, 2H), 6.34(d, 1H), 6.42 (dd, 1H), 7.98 (d, 1H). Rf: 0.45 (Hexane:AcOEt=5:1)                                                                              |
|       |                        | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                        |
|       | , N                    |                                                                                                                                                                                |
|       |                        |                                                                                                                                                                                |
| 37-48 | 0 0                    | TH NIMD (400MH - ODOL)                                                                                                                                                         |
|       | 0,000                  | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :3.45 (s, 3H), 3.77 (dd, 2H), 3.81 (s, 3H), 4.06 (t, 2H), 7.08-7.08(m, 2H), 7.37 (t,                                           |
|       |                        | 1H). Rf: 0.45 (Hexane:AcOEt=3:1)                                                                                                                                               |
|       | \o^*                   |                                                                                                                                                                                |
| 37-49 | 0                      | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :2.44 (t, 1H), 3.83 (s, 3H),                                                                                                   |
|       | , o ~ o ~ o ~          | 3.96 (ddd, 2H), 4.20 (t, 2H), 7.06 (d, 1H), 7.12(dd, 1H), 7.40 (d, 1H). Rf: 0.10 (Hexane:AcOEt=3:1)                                                                            |
|       |                        | ( ) ** ) * * * * * * * * * * * * * * * *                                                                                                                                       |
|       | ,° ~                   |                                                                                                                                                                                |
| 37-50 | o <sub>&gt;N</sub> +o⁻ | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :1.45 (t, 3H), 3.81 (s, 3H),                                                                                                   |
|       |                        | 4.13 (q, 2H), 7.01(d, 1H), 7.08 (dd, 1H), 7.36 (d, 1H). Rf: 0.20 (Hexane:AcOEt=3:1)                                                                                            |
|       |                        | (                                                                                                                                                                              |
|       | ,0/                    |                                                                                                                                                                                |
| 37-51 |                        |                                                                                                                                                                                |
| 37-51 | 0 N 0 /                | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ):1.35 (s, 3H), 1.36(s, 3H), 3.81(s, 3H), 4.52 (sept, 1H), 7.08-7.01 (m, 2H), 7.31                                               |
|       |                        | (d, 1H). Rf: 0.30 (Hexane:AcOEt=3:1)                                                                                                                                           |
|       |                        |                                                                                                                                                                                |
|       | ,0'                    |                                                                                                                                                                                |
|       |                        |                                                                                                                                                                                |

|       | T                                       |                                                                                                                                                                                             |
|-------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                         |                                                                                                                                                                                             |
| 37-52 | 0                                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ):1.05 (t, 3H), 1.83 (ddd, 2H), 3.81(s, 3H), 4.01(t, 2H), 7.01 (d, 1H), 7.08 (dd, 1H), 7.36 (d, 1H). Rf: 0.35 (Hexane:AcOEt=3:1)              |
|       |                                         |                                                                                                                                                                                             |
| 37-53 |                                         | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :3.86 (s, 6H), 3.79 (s, 3H), 6.91 (dd, 1H), 7.00 (d, 1H), 7.18 (d, 1H). Rf: 0.5 (Hexane:AcOEt=9:1)                                          |
| 37-54 | 0 N 0 -                                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :4.04(s, 3H), 7.22 (d, 1H), 7.48(dd, 2H), 7.83 (dd, 1H), 8.16 (d, 1H), 8.69 (dd, 2H). Rf: 0.12 (Hexane:AcOEt=1:1)                           |
| 37-55 | N N                                     | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :4.02 (s, 3H), 7.22 (d, 1H),                                                                                                                |
| 01 00 | 0 N 0 0 -                               | 7.39 (ddd, 1H), 7.77(dd, 1H), 7.85(ddd, 1H), 8.08 (d, 1H), 8.63(dd, 1H), 8.83 (d, 1H). Rf: 0.55 (Hexane:AcOEt=2:1)                                                                          |
|       |                                         |                                                                                                                                                                                             |
| 37-56 | 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <sup>1</sup> H-NMR (400MHz, CDCl₃) :4.03 (s, 3H), 7.19 (d, 1H), 7.28-7.24 (m, 1H), 7.72(dd, 1H), 7.80-7.76(m, 1H), 8.25 (dd, 1H), 8.52 (d, 1H), 8.69 (ddd, 1H). Rf: 0.55 (Hexane:AcOEt=2:1) |
|       | <u> </u>                                |                                                                                                                                                                                             |



Preparation of 1-[4-(4-Methoxy-3-nitro-phenyl)-piperazin-1-yl]-ethanone

To a solution of 5-bromo-1-methoxy-2-nitrobenzene (300 mg, 1.29 mmol) in dioxane, 1-acetyl piperazine (400mg, 3.12 mmol), cesium carbonate (1.0g, 3.07 mmol), palladium diacetate (29.0 mg, 0.129 mmol) and 2-(di-t-butylphosphino)biphenyl (77 mg, 0.258 mmol) are added and stirred at 100°C for 8 hours. After cooling, the mixture is filtered to remove insoluble material. The filtrate is poured into water and extracted with ethyl acetate twice. The organic layer is washed with water and then brine, dried over magnesium sulfate, and evaporated in vacuo. The residue is purified by silica gel column chromatography (n-hexane : ethyl acetate gradient) to afford 1-[4-(4-Methoxy- 3-nitro-phenyl)-piperazin-1-yl]-ethanone (319mg, 44%) as yellow solids. <sup>1</sup>H-NMR (400MHz, CDCl<sub>3</sub>, δ, ppm) : 2.14 (s, 3H), 3.63 (ddd, 4H), 3.63 (t, 2H), 3.78 (t, 2H), 3.92 (s, 3H), 7.03 (d, 1H), 7.12 (d, 1H), 7.41 (d, 1H). Rf (ethyl acetate): 0.18

39
Preparation of 1-(3-Methoxy-4-nitro-phenyl)-piperidin-4-one

To a solution of 4-piperidone hydrochloride monohydrate (10.0 g, 0.065mol) in DMF (80 mL) are added 4-Fluoro-2-methoxy-1-nitro-benzene (10.0 g, 0.058 mol) and potassium carbonate

(20.2 g), and the mixture is stirred at 70°C for 20 h. After a filtration, the filtrate is poured into  $H_2O$  (ca. 300 mL), and the resulting precipitates are collected by a filtration followed by washing with  $H_2O$  for several times to give title compound (8.98 g) in 61% yield. Orange solid.  $^1H$ -NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 2.65-2.62 (4H, m), 3.81-3.78 (4H, m), 3.98 (3H, s), 6.34 (1H, d), 6.45 (1H, dd), 8.05 (1H, d).

40
Preparation of 1-[1-(3-Methoxy-4-nitro-phenyl)-piperidin-4-yl]-4-methyl-piperazine

To a solution of 1-(3-Methoxy-4-nitro-phenyl)-piperidin-4-one (4.96g, 0.020mol) in dichloroethane (50 ml) is added N-methylpiperazine (2.7ml, 0.024 mol) at 0 °C and the mixture is stirred at room temperature. After 4 h, sodium triacetoxy-borohydride (5.04g, 0.024mol) is added and the mixture is further stirred at room temperature for 24 h. After addition of 1N sodium hydroxide at 0 °C, the mixture is poured into water and extracted three times with dichloromethane. The organic layer is combined and extracted three times with 1N hydrochloride. The water layer is basified with 2N sodium hydroxide and extracted three times with dichloromethane. The organic layer is washed with brine, dried over sodium sulfate, and evaporated in vacuo to give the title compound as yellow solids (6.04g) in 91% yield.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, δ): 1.70-1.57 (2H, m), 2.03-1.93 (2H, m), 2.29 (3H, s), 2.55-2.38 (5H, m), 2.70-2.56 (4H, m), 2.97 (2H, ddd), 3.97-3.92 (2H, m), 3.95 (3H, s), 6.31 (1H, d,), 6.42 (1H, dd), 8.00 (1H, d).

# 41 Preparation of 4'-Methoxy-4-methyl-3-nitro-biphenyl

To a solution of 4-methoxyphenyl-boronic acid (500 mg, 3.29 mmol) in toluene (5.2 mL) and ethanol (1.3 mL), potassium carbonate (910 mg, 6.58 mmol), tetrakis(triphenylphosphine)-palladium (228.1 mg, 0.099 mmol) and 4-bromo-1-methyl- 2-nitrobenzene (711 mg, 3.29 mmol) are added and stirred at 100°C for 7 hours. The mixture is poured into water and extracted with ethyl acetate two times. The organic layer is washed with water and then brine, dried over magnesium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane: ethyl acetate = 5:1) to afford the 4'-methoxy-4-methyl-3-nitro-biphenyl (630mg, 79%) as a yellow solid.

<sup>1</sup>H-NMR (400MHz, CDCl<sub>3</sub>,  $\delta$ , ppm) : 2.62 (s, 3H), 3.86 (s, 3H), 7.02-6.98 (m,2H), 7.37 (d, 1H), 7.54 (dd, 2H), 7.68 (dd, 1H), 8.18 (d, 1H). Rf (hexane : ethyl acetate = 3:1): 0.40.

# Preparation of 4-(2-Ethoxy-ethoxy)-1-(3-methoxy-4-nitro-phenyl)-piperidine

To a solution of 1-(3-Methoxy-4-nitro-phenyl)-piperidin-4-ol (300mg, 1.2 mmol) in N,N-dimethylformamide (3.0 mL), sodium hydride (1.52g, 3.8 mmol) is added. After stirring, 2-bromoethyl methyl ether (150μl, 1.6 mmol) is added and the mixture is further stirred at 70°C for 15 hours. After addition of saturated aqueous ammonium chloride, the mixture is poured into water and extracted twice with ethyl acetate. The organic layer is washed with brine, dried over sodium sulfate, and evaporated in vacuo. The residue is purified by silica gel column chromatography (n-hexane - ethyl acetate gradient) to afford 4-(2-Methoxy-ethoxy)-1-(3-methoxy-4-nitro-phenyl)-piperidine (111mg, 29%) as a yellow oil.

<sup>1</sup>H-NMŘ (400MHz, CĎĆl<sub>3</sub>, δ, ppm): 1.52(t, 3H), 1.95-2.00(m, 2H), 1.70-1.79(m, 2H), 3.23(ddd, 2H), 3.58-3.64(m, 2H), 3.65-3.68(m, 2H), 3.64-3.72(m, 2H), 3.95(s, 3H), 6.31(d, 1H), 6.42(dd, 1H), 8.00(d, 1H). Rf 0.53 (*n*-hexane: AcOEt=1:1).

According the procedure described above using appropriate alkyl halides, the following compounds are prepared.

|   | Ex-<br>No. | Rx  | Identification |
|---|------------|-----|----------------|
| ı |            | L., |                |

| 42-1 | O N N N N N N N N N N N N N N N N N N N | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 2.04-2.21(m, 1H), 2.63(t, 2H), 2.68(t, 2H), 3.42(t, 4H), 3.87(t, 4H), 3.96(s, 3H), 6.33(d, 1H), 6.44(dd, 1H), 8.02(d, 1H). Rf 0.09 (AcOEt).                                                                      |
|------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42-2 |                                         | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.71-1.79(m, 2H), 1.95-2.02(m, 2H), 3.22(ddd, 2H), 3.40(s, 3H), 3.55-3.57(m, 2H), 3.59-3.73(m, 3H), 3.65-3.67(m, 2H), 3.95(s, 3H), 6.31(d, 1H), 6.42(dd, 1H), 8.00(d, 1H). Rf 0.35 ( <i>n</i> -hexane: AcOEt=1:1) |

Example: 43
2-Methoxy-4-(1-methyl-piperidin-4-yloxy)-phenylamine 4-(3-Methoxy-4-nitro-phenoxy)-1-methyl-piperidine

To a solution of 4-Fluoro-2-methoxy-1-nitro-benzene (10.3g, 60 mmol) in toluene (50 mL) and 25% KOH aq.(50mL), 4-hydroxy-1-methylpiperidine (13.8g, 120 mmol) and tetra-n-butyl ammonium bromide (3.87g, 12mmol) are added at room temperature. The mixture is heated at 60°C for 1 day. The reaction mixture is cooled to room temperature, poured into ice water and extracted twice with ethyl acetate. The organic layer is successively washed with dil.HCl and brine, dried over sodium sulfate, and evaporated in vacuo to afford the crude compound in quantitative yield (13.4g).

Rf = 0.22 (methanol : dichloromethane = 1:4).  $^{1}$ H-NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 1.84-1.92(m, 2H), 2.0-2.1(m, 2H), 2.3-2.4 (m, 2H), 2.33 (s, 3H), 2.65-2.75(m, 2H), 3.94(s, 3H), 4.39-4.46(m, 1H), 6.49 (dd, 1H), 6.99 (d, 1H), 6.54 (d, 1H), 7.99 (d, 1H).

#### Example: 44

## 2-Methoxy-4-(2-morpholin-4-yl-ethoxy)-phenylamine

### 3-Methoxy-4-nitro-phenol

To a solution of 3-Fluoro-4-nitro-phenol (15.7g, 100 mmol) in THF (300 mL), 30% KOMe in Methanol(49mL, 210mmol) is added at 0°C. The mixture is heated to gentle reflux for 18 hours.

## 4-[2-(3-Methoxy-4-nitro-phenoxy)-ethyl]-morpholine

To a solution of 3-Methoxy-4-nitro-phenol (1.69g, 10 mmol) in DMF (25 mL), 4-(2-Chloroethyl)morpholine hydrochloride(2.05g, 11mmol), K2CO3(1.52g, 11mmol), KI(332mg, 2mmol) are added at room temperature. The mixture is heated to gentle reflux for 4 hours. The reaction mixture is cooled to room temperature and quenched with water. The resulting mixture is extracted twice with ethyl acetate and then the organic layer is successively washed with water and brine, dried over sodium sulfate, filtered and evaporated in vacuo to afford the crude compound in 90% yield (2.55g).

Rf = 0.11 (AcOEt only).  $^1$ H-NMR (400 MHz, CDCl<sub>3</sub>),  $\bar{\delta}$  (ppm): 2.56-2.61(m, 4H), 2.83(t, The reaction mixture is cooled to room temperature and quenched slowly with 1NHCl aq at 0°C. The resulting mixture is extracted twice with ethyl acetate and then the organic layer is successively washed with brine, dried over sodium sulfate, filtered and evaporated in vacuo to afford the crude compound in 94% yield(15.9g).

Rf = 0.22 (methanol : dichloromethane = 1:4).  $^{1}$ H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 3.95(s, 3H), 5.49(s, 1H), 6.44 (dd, 1H, J=8.8, 2.52Hz), 6.54 (d, 1H, J=2.52Hz), 7.96 (d, 1H J=8.6Hz).

3.72-3.76(m, 4H), 3.94(s, 3H), 4.18(t, 2H), 6.51 (dd, 1H, J=9.08, 2.52Hz), 6.56 (d, 1H, J=2.48Hz), 8.00 (d, 1H J=9.08Hz).

Example: 45

2-Methoxy-4-(2-morpholin-4-yl-ethoxy)-phenylamine

Acetic acid 4-methoxy-3-nitro-phenyl ester

To a solution of 4-Methoxyphenol (12.4g, 100 mmol) in AcOH (50 mL),  $Ac_2O$  (50mL) is added at room temperature. The mixture is heated to gentle reflux for 1.5 hour. The reaction mixture is cooled to room temperature and c.HNO<sub>3</sub> (d=1.38, 10mL) is added slowly at 0 °C. The mixture is heated to 55°C for 1.5h. The reaction mixture is cooled to room temperature and quenched with water at 0oC. The resulting solid is filtered on Buchner funnel to afford the crude compound in 76% yield (16.0g).

Rf = 0.59 (AcOEt : n-Hexane = 3:7).  $^{1}$ H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 2.31(s, 3H), 3.96(s, 3H), 7.08 (d, 1H, J=9.04Hz), 7.31 (dd, 1H, J=9.04, 3.04Hz), 7.96 (d, 1H J=3.04 Hz).

#### 4-Methoxy-3-nitro-phenol

To a solution of Acetic acid 4-methoxy-3-nitro-phenyl ester (1.06g, 5 mmol) in EtOH (20 mL), 1N NaOH aq (5.5mL) is added at 0°C. The mixture is stirred at room temperature for 2 hours. The reaction mixture is quenched with AcOH and extracted twice with ethyl acetate. The organic layer is successively washed with water and brine, dried over sodium sulfate, filtered and evaporated in vacuo to afford the crude compound in quantitative yield (840mg).

Rf = 0.59 (AcOEt : n-Hexane = 3:7).  $^{1}$ H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 3.91(s, 3H), 6.99 (d, 1H, J=9.04Hz), 7.17 (dd, 1H, J=9.04, 3.00Hz), 7.38 (d, 1H J=3.04 Hz).

## 4-[2-(4-Methoxy-3-nitro-phenoxy)-ethyl]-morpholine

To a solution of 4-Methoxy-3-nitro-phenol (1.01g, 6 mmol) in DMF (15 mL) , 4-(2-Chloroethyl)morpholine hydrochloride (1.34g, 7.2mmol), K2CO3 (2.49g, 18mmol), KI(2.99g, 18mmol) are added at room temperature. The mixture is heated to 80°C for 4 hours. The reaction mixture is cooled to room temperature and quenched with saturated NH4Cl solution in water. The resulting mixture is extracted twice with ethyl acetate and then the organic layer is successively washed with water and brine, dried over sodium sulfate, filtered and evaporated in vacuo to afford the crude compound in quantitative yield (1.70g). Rf = 0.14 (AcOEt only).  $^{1}$ H-NMR (400MHz, DMSO,  $\delta$ , ppm) : 2.36-2.51 (m, 4H), 2.67 (t, J=5.5, 2H), 3.52-3.60 (m, 4H), 3.86 (s, 3H), 4.11 (t, J=6.0, 2H), 7.25-7.29 (m, 2H), 7.46-7.49 (m, 1H).

# Preparation of 2-Methoxy-4-(1-methyl-piperidin-4-yloxy)-phenylamine:

To a solution of 4-(3-Methoxy-4-nitro-phenoxy)-1-methyl-piperidine (3.0g, 11.3 mmol) in ethanol (50 mL), 5% palladium on carbon(300mg) is added under a nitrogen atmosphere. The reaction vessel is fitted with a balloon adapter and charged with hydrogen and evacuated three times until the reaction is under a hydrogen atmosphere. The reaction is allowed to stir overnight. The reaction mixture is filtered through a pad of Celite and washed with methanol. The filtrate is concentrated in vacuo to afford 2-Methoxy-4-(1-methyl-piperidin-4-yloxy)-phenylamine in quantitative yield (2.7g).

Rf = 0.41 (methanol : dichloromethane = 1:1).  $^{1}$ H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 1.75-1.86(m, 2H), 1.92-2.05(m, 2H), 2.2-2.32 (m, 2H), 2.30 (s, 3H), 3.4-3.7(brs, 2H), 3.82(s, 3H), 4.1-4.2(m, 1H), 6.37(dd, 1H), 6.46 (d, 1H), 6.61 (d, 1H).

By repeating the procedures described above using appropriate starting materials and conditions the following compounds are obtained.

| Ex-  | Rx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identification                                                                                                                                                                                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | identification                                                                                                                                                                                                                                                                            |
| 46-1 | NH <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 3.92(s,3H), 3.97(br,2H), 6.75(d,1H), 7.00(dd, 1H), 7.12(d, 1H), 8.06(s, 1H), 8.41(s, 1H). Rf 0.32 (AcOEt)                                                                                                                        |
| 46-2 | NH <sub>2</sub> O NH <sub>2</sub> NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.13(t, 3H), 1.77-1.86(m, 1H), 2.19-2.27(m,1H), 2.67-2.75(m, 2H), 3.01-3.06(m, 1H), 3.20-3.26(m, 1H), 3.33-3.38(m, 1H), 3.42-3.49(m, 2H), 3.84(s, 3H), 6.04-6.07(m, 1H), 6.14-6.15(m, 1H), 6.64-6.66(m, 1H). Rf 0.2 (AcOEt only) |
| 46-3 | 2-Methoxy-4-(4-methyl-piperazin-1-i)-phenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 2.44(s, 3H), 2.70-2.73(m, 4H), 3.13-3.17(m, 4H), 3.48(brs, 2H), 3.84(s, 3H), 6.41(dd, 1H, <i>J</i> =8.5, 2.52Hz), 6.51(d, 1H, <i>J</i> =2.52Hz), 6.64(d, 1H, <i>J</i> =8.5Hz). Rf 0.2 (AcOEt only).                             |
| 46-4 | 2-Methoxy-4-(1-methyl-piperidin-3-lmethoxy)-phenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 1.01-1.12(m, 1H), 1.57-2.13(m, 6H), 2.26(s,3H), 2.74-2.77(m, 1H), 2.93-2.96(m, 1H), 3.47 (bs, 2H), 3.70-3.80(m, 2H), 3.82(s, 3H), 6.31-6.34(m, 1H), 6.44-6.45(m, 1H), 6.60-6.62(m, 1H). Rf 0.2 (AcOEt only)                     |

| 46-5 | ŅH,                                                 |                                                                                                                                                                                                                                                                                                                                                                                |
|------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40-5 |                                                     | <sup>1</sup> H-NMR (400 MHz, CDCl <sub>3</sub> ) 1.80-1.67 (2H, <i>m</i> ), 1.99-1.90 (2H, <i>m</i> ), 2.42-2.27 (1H, <i>m</i> ), 2.56-2.43 (4H, <i>m</i> ), 2.68-2.58 (2H, <i>m</i> ), 2.76-2.58 (4H, <i>m</i> ), 3.57-3.48 (2H, <i>m</i> ), 3.83 (3H. s), 6.41 (1H, <i>dd</i> ), 6.52 (1H, <i>d</i> ), 6.63 (1H, <i>d</i> ). <i>R<sub>f</sub></i> (hexane/acetone 1:1) 0.44. |
| 46-6 | NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 1.83-1.95 (m, 2H), 1.97-2.08 (m, 2H), 2.20-2.31 (m, 1H), 2.60-2.72 (m, 2H), 3.46-3.53 (m, 2H), 3.84 (s, 3H), 5.42-5.60 (m, 1H), 6.43 (dd, 1H), 6.53 (d, 1H), 6.64 (d, 1H).                                                                                                                                           |
| 46-7 | Ac N                                                | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 2.13 (s, 3H), 3.01-3.05 (m, 4H), 3.59 (t, 2H), 3.75 (t, 2H), 3.81 (s, 3H), 6.30 (dd, 1H), 6.39 (bs, 1H), 6.71 (d, 1H).                                                                                                                                                                                               |
| 46-8 | NH <sub>2</sub>                                     | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.84-1.97 (m, 2H), 1.98-2.07 (m, 2H), 2.20-2.32 (m, 1H), 2.61-2.72 (m, 2H), 3.47-3.55 (m, 2H), 3.95 (s, 3H), 5.20-5.38 (m, 1H), 5.40-5.56 (m, 2H), 6.43 (d, 1H), 6.53 (bs, 1H), 6.64 (d, 1H).                                                                                                                         |
| 46-9 | NH <sub>2</sub> O                                   | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 2.59-2.67 (m, 2H), 2.77-2.68 (m, 4H), 3.08-3.15 (m, 4H), 3.49-3.56 (m, 1H), 3.67-3.77 (m, 2H), 3.98 (s, 3H), 6.41-6.43 (m, 1H), 6.52 (bs, 1H), 6.65 (d, 1H).                                                                                                                                                         |

| 46-10 | ŅH <sub>2</sub> | 14 NMD (400ML) 000 5                                                                                                                                                                                                                                                                     |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40-10 |                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.72-1.96 (m, 2H), 1.98-2.10 (m, 2H), 2.63 (s, 3H), 2.73-2.84 (m, 2H), 3.40 (s, 3H), 3.34-3.42 (m, 2H), 3.44-3.49 (m, 1H), 3.55-3.57 (m, 2H), 3.64-3.66 (m, 2H), 3.83 (s, 3H), 6.41-6.43 (m, 1H), 6.53 (bs, 1H), 6.63 (d, 1H).  |
| 46-11 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.22(t, 3H), 1.72-1.84 (m, 2H), 2.00-2.10 (m, 2H), 2.72-2.82 (m, 2H), 3.33-3.38 (m, 2H), 3.43-3.49 (m, 1H), 3.55 (q, 2H), 3.58-3.61 (m, 2H), 3.64-3.66 (m, 2H), 3.83 (s, 3H), 6.41-6.43 (m, 1H), 6.53 (bs, 1H), 6.63 (d, 1H).   |
| 46-12 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 2.20 (s, 3H), 3.84 (s, 3H), 6.87 (d, 1H), 6.89 (dd, 1H), 6.95 (d, 2H), 7.09 (d, 1H), 7.48 (d, 2H). Rf (n-hexane : ethyl acetate = 1:1): 0.50.                                                                                  |
| 46-13 | NH <sub>s</sub> | <sup>1</sup> H- NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 1.49 – 1.59 (m, 3H), 1.70 – 1.95 (m, 6H), 2.00 – 2.20 (m, 2H), 2.60 – 2.90 (m, 7H), 3.50 – 3.60 (m, 3H), 3.83 (s, 3H), 3.85 - 3.91 (m, 1H), 6.41 (dd, 1H, J = 8.0, 2.5 Hz), 6.50 (d, 1H, J = 2.5 Hz), 6.63 (d, 1H, J = 8.0 Hz) |

| 46-14   | NH <sub>2</sub>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40-14   | .0.                                   | <sup>1</sup> H-NMR (400MHz, DMSO-d6, δ, ppm) : 1.87-1.79(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                                       | 2.22 (ddd, 1H), 2.48 (s, 3H), 3.05 (dd, 1H), 3.28-3.21 (m, 1H), 3.40-3.32 (m, 2H), 3.45 (dd, 1H), 3.84 (s, 3H), 6.06 (dd, 1H), 6.15 (dd, 1H), 3.84 (s, 3H), 6.06 (dd, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                       | 6.15 (d, 1H) ), 6.66 (d, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | , N                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | N-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.45   | H                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46-15   | NH,                                   | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm): 2.35 - 2.73 (m, 4H), 2.68 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | ~ ° \                                 | 1 2.75 (III, 10), 4.84 - 2.93 (M. 2H), 3.14 - 3.19 (m. 1H), 3.29 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                       | 3.40 (m, 2H), 3.50 - 3.60 (bs, 2H), 3.69 - 3.78 (m, 2H), 3.84 (s, 3H), 3.85 - 3.91 (m, 1H), 6.40 (dd, 1H, J = 8.0, 2.5 Hz), 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | Í                                     | (d, 1H, J = 2.5 Hz), 6.64 (d, 1H, J = 8.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | (")_н                                 | (4, 44, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | N                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46-16   | ŅH <sub>2</sub>                       | lu and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70-10   |                                       | <sup>1</sup> H-NMR (400MHz, DMSO-d6, δ, ppm) : 1.95-1.85(m, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                                       | 2.22-2.14 (m, 1H), 2.31 (s, 3H), 2.89-2.79 (m, 1H), 3.10 (t, 1H), 3.39-3.25 (m, 3H), 3.42 (t, 1H), 3.85 (s, 3H), 6.05 (dd, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                       | 1H), 6.14 (d, 1H), 6.67 (d, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | , N                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | $\langle \ \rangle$                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | N-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | <i>,</i> *                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 46-17   | NH <sub>2</sub>                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> , δ, ppm) : 1.68-1.81 (m, 2H), 1.97-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | 0                                     | 1 4.09 (m, 2H), 2.74-2.87 (m, 2H), 3.31-3.41 (m, 2H), 3.77-3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1       |                                       | (11, 10), 3.84 (S, 3H), 6.40-6.48 (m, 1H), 6.65 (bs. 1H)   6.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | , N.                                  | (d, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | $\rightarrow$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40.40   | ÓН                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46-18   | NH <sub>2</sub>                       | <sup>1</sup> H-NMR (400 MHz, CDCl <sub>3</sub> ), δ (ppm): 2.55-2.61(m, 4H), 2.80(t,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                       | 2-17, 3.72-3.77(m, 4H), 3.81(s, 3H), 4.05(t, 2H), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H, 1=8.56, 2.52H=), 6.24 (dd, 1H |
| İ       | 9                                     | J=8.56Hz). Rf = 0.31 (methanol : dichloromethane = 1:9).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | , (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | _/\_                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u></u> | U .                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 46-19 | ŅH,               | THE ARMS (400 AND COOK)                                                                                                                                                                                                                                               |
|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40-19 |                   | $^{1}$ H-NMR (400 MHz, CDCl <sub>3</sub> ), δ (ppm): 2.55-2.61(m, 4H), 2.78(t, 2H), 3.72-3.77(m, 4H), 3.82(s, 3H), 4.05(t, 2H), 6.35 (dd, 1H, $J$ =8.56, 2.52Hz), 6.47 (d, 1H, $J$ =2.52Hz), 6.63 (d, 1H, $J$ =8.56Hz). Rf = 0.61 (methanol : dichloromethane = 1:4). |
|       |                   |                                                                                                                                                                                                                                                                       |
| 46-20 | NH <sub>2</sub> O | <sup>1</sup> H-NMR (DMSO), δ (ppm): 3.84 (s, 3H), 6.95-7.00 (m, 1H), 7.08-7.12 (m, 2H).                                                                                                                                                                               |
| 46-21 | NH <sub>2</sub>   | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.47-1.34(m, 2H), 1.75-1.63 (m, 1H), 1.86-1.79(m, 2H), 2.64-2.58 (m, 2H), 3.28(d, 2H),3.61(d, 3H),3.87(s, 3H), 3.36(s, 1H),3.49-3.45 (m, 2H), 3.84(s,3H), 6.43(dd, 1H), 6.53(d, 1H) 6.64(d, 1H)                      |
| 46.00 |                   |                                                                                                                                                                                                                                                                       |
| 46-22 | NH <sub>2</sub>   | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.13(t, 3H),2.49(dd, 2H), 2.68-2.59 (m, 4H),3.10 (t, 4H), 3.84(s,3H), 6.43(dd, 1H), 6.53(d, 1H) 6.65(d, 1H)                                                                                                          |
| 40.00 |                   |                                                                                                                                                                                                                                                                       |
| 46-23 | NH <sub>2</sub>   | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.78-1.68 (m, 2H), 1.99-1.89 (m, 2H), 2.36-2.20(m, 1H),2.67-2.50(m, 6H), 3.56-3.48(m, 2H),3.79-3.69(m, 4H), 3.84(s,3H), 6.42(dd, 1H), 6.52(d, 1H) 6.64(d, 1H)                                                        |
|       |                   |                                                                                                                                                                                                                                                                       |
|       | 6/                |                                                                                                                                                                                                                                                                       |

| 46-24 | ŅH <sub>2</sub>    | H NMP (400ML) CPOL > 4 co.                                                                                                                                                                                                          |
|-------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                    | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.08 (s, 3H),1.10 (s, 3H), 2.69(t, 4H),2.72-2.68 (m, 1H), 3.08 (t, 4H), 3.83(s,3H), 6.42(dd, 1H), 6.53(d, 1H) 6.64(d, 1H)                                                          |
|       |                    |                                                                                                                                                                                                                                     |
|       |                    |                                                                                                                                                                                                                                     |
| 46-25 | NH <sub>2</sub>    | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.96-1.84 (m, 2H), 2.07-1.99 (m, 2H), 2.32-2.28(m, 1H), 2.70-2.60(m, 2H), 3.54-3.47(m, 2H), 3.84(s, 3H), 5.35-5.24(m,1H), 5.50-5.45 (m, 1H), 6.42(dd, 1H), 6.52(d, 1H) 6.64(d, 1H) |
|       | H <sub>z</sub> N O |                                                                                                                                                                                                                                     |
| 46-26 | NH <sub>2</sub>    | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.18-2.03 (m, 2H), 3.28-3.19 (m, 2H), 3.39-3.31(m, 1H), 3.36(s, 3H), 3.49-3.42 (m, 1H), 3.85 (s,3H), 6.07(dd, 1H), 6.16(d, 1H), 6.66(d, 1H)                                        |
|       | , No.              |                                                                                                                                                                                                                                     |
| 46-27 | NH <sub>2</sub>    | <sup>1</sup> H-NMR (400MHz, CDCl₃): 1.48(s, 9H), 1.88-1.71 (m, 2H), 1.97-1.82 (m, 2H), 2.78 (s, 3H), 2.84-2.64(m, 2H), 3.55-3.48(m, 2H), 3.95(s,3H), 3.84 (s, 3H), 6.43(d, 1H), 6.52(bs, 1H), 6.64(d, 1H)                           |
|       | N                  |                                                                                                                                                                                                                                     |
| 46-28 | NH <sub>2</sub>    | <sup>1</sup> H-NMR (400MHz, CDCl₃): 3.02(s, 3H), 3.33(dd, 2H), 3.44(t, 2H), 3.74 (s, 2H), 3.83(s, 3H), 6.38(dd, 1H), 6.47(d 1H), 6.66(d, 1H)                                                                                        |
|       | ·                  |                                                                                                                                                                                                                                     |
|       |                    |                                                                                                                                                                                                                                     |

| <del></del> |                 |                                                                                                                                                                                                                               |
|-------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46-29       | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.78-1.38 (m, 2H), 1.96-1.89 (m, 2H), 2.30(s, 3H),2.39-2.31(m, 1H), 2.55-2.42(m, 4H),2.71-2.56(m, 6H), 3.35-3.49 (m,2H), 3.83 (s, 3H), 6.41(dd, 1H), 6.52(d, 1H) 6.63(d, 1H) |
|             | N Ac            |                                                                                                                                                                                                                               |
| 46-30       | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.80(s, 3H), 3.82(s, 3H), 3.82 (s, 3H), 6.40(s, 1H), 6.54(s, 1H)                                                                                                             |
| 46-31       | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.20(t, 2H), 4.57(t, 2H), 6.55(dd, 1H), 6.70-6.65(m, 1H), 6.68 (d, 1H). Rf 040 (AcOEt)                                                                                       |
| 46-32       | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.98 (t, 4H), 3.62 (bs, 2H), 3.79 (s, 3H), 3.81 (s, 3H), 3.87(t, 4H), 6.36(s, 1H), 6.53(s, 1H)                                                                               |
| 46-33       | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.37 (s, 3H), 2.61 (t, 4H), 3.27 (t, 4H), 3.88 (s, 3H), 3.95(s, 3H), 6.48(s, 1H), 7.56(s, 1H)                                                                                |

| 46-34 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.05(t, 3H), 1.83 (ddd, 2H), 2.35(s, 3H), 2.58(t, 4H), 3.07(t, 4H), 3.94(t, 2H), 6.41(dd, 1H), 6.51(d, 1H), 6.65(d, 1H)                             |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46-35 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.28(s, 3H), 1.30 (s, 3H), 2.04 (s, 2H), 2.17(s, 3H), 2.84-2.72 (m, 2H), 3.20 (d, 2H), 3.86 (s, 3H), 6.41(d, 1H), 6.46(dd, 1H), 6.66(d, 1H),        |
| 46-36 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl₃): 1.18(t, 3H), 2.39(dd, 2H), 3.07-2.98(m, 4H), 3.61(t, 2H), 3.78(t, 2H), 3.88(s, 3H), 6.41(dd, 1H), 6.51(d, 1H), 6.65(d, 1H)                                       |
| 46-37 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.15(s, 3H), 1.16(s, 3H), 2.83(sept, 1H), 3.07-2.98(m, 4H), 3.73-3.64(m, 2H), 3.83-3.76(m, 2H), 3.84(s, 3H), 6.41(dd, 1H), 6.51(d, 1H), 6.65(d, 1H) |

| NU                                    | 111 NI PR (100 NI)                                                                                                                                                                                            |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.84(d, 3H), 3.02(t, 4H), 3.51(t, 4H), 3.84(s, 3H), 4.48-4.38(m, 1H), 6.41(dd, 1H), 6.51(d, 1H), 6.65(d, 1H)                                                 |
|                                       |                                                                                                                                                                                                               |
| - /                                   |                                                                                                                                                                                                               |
| NH <sub>2</sub>                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.99-1.81 (m, 2H), 2.23-2.12(m, 2H), 2.69-2.58(m, 2H), 2.84 (d, 3H), 3.54-3.45(m, 2H), 3.84(s, 3H), 5.55-5.45(m, 1H), 6.42(dd, 1H), 6.52(d, 1H), 6.64(d, 1H) |
|                                       | ·                                                                                                                                                                                                             |
| МН                                    |                                                                                                                                                                                                               |
| NH <sub>2</sub>                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.53 (s, 6H), 2.11(s, 3H), 3.05(s, 2H), 3.28(t, 2H), 3.64(t, 2H), 3.86 (s, 3H), 6.26 (dd, 1H), 6.33(d, 1H), 6.67(d, 1H)                                      |
| N Ac                                  |                                                                                                                                                                                                               |
| NH <sub>2</sub>                       | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.55-2.41 (m, 4H), 2.63 (t, 2H), 3.13(t, 2H), 3.77-3.68(m, 4H), 3.83(s, 3H), 6.15(dd, 1H), 6.62(d, 1H)                                                       |
| N N N N N N N N N N N N N N N N N N N |                                                                                                                                                                                                               |
|                                       | NH <sub>2</sub> O NH <sub>2</sub> O NH <sub>2</sub> O NH NH <sub>2</sub> O NH NH NH NH NH NH NH NH NH NH NH NH NH                                                                                             |

| 46-42 | AID             |                                                                                                                                                                                               |
|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40-42 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.05-2.00 (m, 2H), 2.39(t, 2H), 3.57(t, 2H), 3.64 (t, 2H), 3.83(s, 3H), 4.04(t, 2H), 6.32 (dd, 1H), 6.44(d, 1H), 6.63(d, 1H)                 |
|       |                 |                                                                                                                                                                                               |
| 46-43 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.13 (s, 3H), 3.53-3.46 (m, 2H), 3.65-3.55(m, 4H), 3.71-3.66(m, 2H), 3.88 (s, 3H), 6.67(d, 1H), 6.87(dd, 1H), 6.95(d, 1H)                    |
|       |                 |                                                                                                                                                                                               |
| 46-44 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.73-3.61(m,8H), 3.87(s, 3H), 6.65(d, 1H), 6.86(dd, 1H), 6.95(d, 1H)                                                                         |
| 46-46 | N—              |                                                                                                                                                                                               |
| 40-40 |                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.17 (s, 3H), 1.19(s, 3H), 2.69(t, 4H), 3.04 (s, 2H), 3.08(t, 4H),4.15-4.07(m, 1H), 6.41 (dd, 1H), 6.51(d, 1H), 6.65(d, 1H), 7.01-6.94(m 1H) |
|       | , ,             |                                                                                                                                                                                               |
|       | HN              |                                                                                                                                                                                               |

| 46-4  | 7 NH,           | THE MINER (400) ALL                                                                                                                                                                 |
|-------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 3.35-3.28 (m, 2H), 3.53-3.46(m, 2H), , 3.76 (s, 2H), 3.84(s, 3H), 5.92-5.83 (m, 1H), 6.40(dd, 1H), 6.48(d, 1H), 6.67 (d,1H)        |
|       | , N             |                                                                                                                                                                                     |
|       | H, o            |                                                                                                                                                                                     |
| 46-48 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl₃): 2.09-2.00 (m, 2H), 2.25-2.15 (m, 2H), 3.29-3.20 (m, 2H), 3.51-3.40(m, 4H), 3.85(s, 3H), 4.62-4.55(m, 1H), 6.08(d, 1H), 6.18(d, 1H), 6.67(d, 1H) |
|       | , in            |                                                                                                                                                                                     |
| 46-49 | ОН              |                                                                                                                                                                                     |
| 40-49 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 1.52-1.40 (m, 2H), 1.90-1.84 (m, 2H), 2.68-2.59 (m, 2H), 3.51-3.45(m, 2H), 3.84(s, 3H), 6.44(dd, 1H), 6.54(d, 1H), 6.64(d, 1H)     |
|       | OH              |                                                                                                                                                                                     |
| 46-50 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ): 2.14 (s, 3H), 2.66 (s, 6H), 6.44 (d, 1H), 6.54 (d, 1H), 6.98 (t, 1H).                                                              |
| 46-51 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :2.63 (s, 3H), 7.49-7.45 (m, 1H), 7.74-7.62 (m, 2H), 7.76 (dd, 1H), 8.24(d, 1H), 8.77-8.64 (m, 2H).                                 |
|       | N               |                                                                                                                                                                                     |
| 46-52 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :3.84 (s, 3H), 3.88 (s, 3H), 6.78(d, 1H), 6.83 (d, 1H), 7.00-6.89 (m, 3H), 7.45 (d, 1H).                                            |
|       |                 |                                                                                                                                                                                     |
|       |                 |                                                                                                                                                                                     |

| 46-54  WH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):1.26 (t, 3H), 3.02 (t, 4H), 3.85 (t, 4H), 4.05 (q, 2H), 6.40 (dd, 1H), 6.49 (d, 1H), 6.66 (d, 1H), 6.55  WH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):3.44 (s, 3H), 3.73 (s, 3H), 3.74-3.88 (m, 2H), 3.95-3.85 (m, 2H), 4.10-4.05 (m, 2H), 6.21 (dd 1H), 6.32 (d, 1H), 6.75 (d, 1H).  46-56  WH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):2.35-2.26 (m, 1H), 3.74 (s, 3H), 3.93-3.86 (m, 2H), 4.09-4.07 (m, 2H), 6.25 (dd, 1H), 6.34 (d, 1H), 6.76 (d, 1H).  46-57  WH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):1.40 (t, 3H), 3.71 (s, 3H), 4.00 (q, 2H), 6.22 (dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46-53 | NH <sub>2</sub>      | 1-H-NIMP (400MH= CDCI) 4 42                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46-56  NH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):1.26 (f, 3H), 3.02 (f, 4H), 3.85 (f, 4H), 4.05 (q, 2H), 6.40 (dd, 1H), 6.49 (d, 1H), 6.66 (d, 1H),  1H-NMR (400MHz, CDCl <sub>3</sub> ):3.44 (s, 3H), 3.73 (s, 3H), 3.74-3.68 (m, 2H), 3.95-3.85 (m, 2H), 4.10-4.05 (m, 2H), 6.21 (dd 1H), 6.32(d, 1H), 6.75 (d, 1H).  46-56  NH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):2.35-2.26 (m, 1H), 3.74 (s, 3H), 3.93-3.86 (m, 2H), 4.09-4.07 (m, 2H), 6.25 (dd, 1H), 6.34(d, 1H), 6.76 (d, 1H).  46-57  NH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):1.40 (f, 3H), 3.71 (s, 3H), 4.00 (q, 2H), 6.22(dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                      | <sup>1</sup> H-NMR (400MHz, CDCl₃) :1.40 (t, 3H), 3.03 (t, 4H), 3.84 (t, 4H), 4.00 (q, 2H), 6.27 (dd, 1H), 6.38 (d, 1H), 6.71 (dd, 1H),                   |
| 46-56  NH <sub>2</sub> OH  TH-NMR (400MHz, CDCl <sub>3</sub> ):2.35-2.26 (m, 1H), 3.74 (s, 3H), 3.93-3.86 (m, 2H), 4.09-4.07 (m, 2H), 6.25 (dd, 1H), 6.34(d, 1H), 6.76 (d, 1H).  TH-NMR (400MHz, CDCl <sub>3</sub> ):1.40 (t, 3H), 3.71 (s, 3H), 4.00 (q, 2H), 6.22(dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46-54 | NH <sub>2</sub>      | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ):1.26 (t, 3H), 3.02 (t, 4H), 3.85 (t, 4H), 4.05 (q, 2H), 6.40(dd, 1H), 6.49 (d, 1H), 6.66 (d, 1H),         |
| 46-56  NH <sub>2</sub> OH  TH-NMR (400MHz, CDCl <sub>3</sub> ):2.35-2.26 (m, 1H), 3.74 (s, 3H), 3.93-3.86 (m, 2H), 4.09-4.07 (m, 2H), 6.25 (dd, 1H), 6.34(d, 1H), 6.76 (d, 1H).  TH-NMR (400MHz, CDCl <sub>3</sub> ):1.40 (t, 3H), 3.71 (s, 3H), 4.00 (q, 2H), 6.22(dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | (°)                  |                                                                                                                                                           |
| 46-58  NH <sub>2</sub> 1-NMR (400MHz, CDCl <sub>3</sub> ):2.35-2.26 (m, 1H), 3.74 (s, 3H), 3.93-3.86 (m, 2H), 4.09-4.07 (m, 2H), 6.25 (dd, 1H), 6.34(d, 1H), 6.76 (d, 1H).  1-NMR (400MHz, CDCl <sub>3</sub> ):1.40 (t, 3H), 3.71 (s, 3H), 4.00 (q, 2H), 6.22(dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46-55 | NH <sub>2</sub>      | 3.00 (III, 217), 3.95-3.85 (M. 2H), 4.10-4.05 (m. 2H), 6.24 (dd                                                                                           |
| H-NMR (400MHz, CDCl <sub>3</sub> ):1.40 (t, 3H), 3.71 (s, 3H), 4.00 (q, 2H), 6.22(dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).  NH <sub>2</sub> 1H-NMR (400MHz, CDCl <sub>3</sub> ):1.32(d, 6H), 3.73(s, 3H), 3.85-3.71 (m, 2H), 4.37 (sept, 1H), 6.22 (dd, 1H), 6.32 (d, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), 6.72 (dd, 1H), |       | NH <sub>2</sub> O OH | 0.00°0.00 (III, 20), 4.09-4.07 (M. 2H) 6 25 (dd 1H) 6 24/d                                                                                                |
| NH <sub>2</sub> (m, 2H), 4.37 (sept, 1H), 6.22 (dd, 1H), 6.32 (d, 1H), 6.72 (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      | <sup>1</sup> H-NMR (400MHz, CDCl₃) :1.40 (t, 3H), 3.71 (s, 3H), 4.00 (q, 2H), 6.22(dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46-58 |                      | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :1.32(d, 6H), 3.73(s, 3H), 3.85-3.71 (m, 2H), 4.37 (sept, 1H), 6.22 (dd, 1H), 6.32 (d, 1H), 6.72 (d, 1H). |

| 46-59 | NH <sub>2</sub> |                                                                                                                                                                                                                   |
|-------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                 | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ):1.04 (t, 3H), 1.80 (ddd, 2H), 3.72 (s, 3H), 3.85-3.75 (m, 2H), 3.90 (t, 2H), 6.22 (dd, 1H), 6.33 (d, 1H), 6.69 (d, 1H).                                           |
| 46-60 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl₃) :2.94 (s, 6H), 3.89 (s, 3H), 6.16 (dd, 1H), 6.25 (d, 1H), 6.72 (d, 1H).                                                                                                        |
| 46-61 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :3.91(s, 3H), 6.87 (d, 1H), 7.02 (dd, 1H), 7.05 (d, 1H), 7.44 (dd, 2H), 8.59 (dd, 2H).                                                                            |
| 46-62 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ) :3.91 (s, 3H), 6.88 (d, 1H), 6.96-6.93(m, 1H), 7.31(ddd, 1H), 7.83-7.80 (m, 1H), 8.51(dd, 1H), 8.78(dd, 1H).                                                      |
| 46-63 | NH <sub>2</sub> | <sup>1</sup> H-NMR (400MHz, CDCl <sub>3</sub> ):3.91 (s, 3H), 6.87 (dd, 1H), 7.16(ddd, 1H), 7.34(dd, 1H), 7.43 (d, 1H), 7.72-7.64 (m, 2H), 8.63-8.61 (m, 1H).                                                     |
| 46-64 | NH <sub>2</sub> | mp 148.6°C; <sup>1</sup> H-NMR (500MHz, CDCl <sub>3</sub> ) δ (ppm): 1.63 (m; 2H), 1.99 (m; 2H), 2.27 (m; 1H), 2.60 (m; 6H), 3.52 (m; 2H), 3.71 (m; 4H), 3.78 (s; 3H), 6.36 (dd; 1H); 6.52 (d; 1H), 6.73 (d; 1H). |

Preparation of 4-(3-amino-4-methylbenzoyl)-piperazine-1-carboxylic acid tert-butyl ester

To a solution of 4-methyl-3-nitro-benzoic acid (300 mg, 2.76 mmol), N-butoxycarbonyl-piperazine (340 mg, 1.83 mmol) in DMF (3.0 mL), triethylamine (300  $\mu$ L, 3.59 mmol), TBTU (800 mg, 2.49 mmol) and HOAt (270.5 mg,1.99 mmol) are added and stirred at room temperature for 24 hours. The mixture is poured into water and extracted twice with ethyl acetate. The organic layer is washed with water and then brine, dried over magnesium sulfate, and evaporated in vacuo. The residue is purified with silica gel column chromatography (n-hexane : ethyl acetate = 5 : 1) to afford 4-(4-methyl-3- nitrobenzoyl)-piperazine-1-carboxylic acid tert-butyl ester as a colorless solid.

<sup>1</sup>H-NMR (δ, ppm) : 1.47 (s,9H), 2.64 (s, 3H), 3.88-3.28 (m, 8H), 7.42 (d, 1H), 7.56 (dd, 1H), 8.03 (d, 1H). Rf (hexane : ethyl acetate = 10:1): 0.13.

The title compound is obtained by reduction with hydrogen over 10% palladium on charcoal in methanol solution.

48
Preparation of 4-(3-amino-4-methylphenyl)-morpholine



To a suspension of 4-bromo-1-methyl-2-nitrobenzene (225 mg, 1.04 mmol), morpholine (125  $\mu$  L, 1.25 mmol), and cesium carbonate (474.4 mg, 1.46 mmol) in toluene, palladium diacetate (31.2 mg, 0.139 mmol) and 2-(di-t-butylphosphino)biphenyl (125 mg, 0.403 mmol) are added and stirred at 100°C for 5 hours. After cooling, the mixture is filtered to remove insoluble material. The filtrate is poured into water and extracted with ethyl acetate twice. The organic layer is washed with water and then brine, dried over magnesium sulfate, and evaporated in

vacuo. The residue is purified with silica gel column chromatography (n-hexane : ethyl acetate = 5 : 1) to afford 4-(4-methyl-3-nitrophenyl)-morpholine as a yellow solid.

1H-NMR (ō, ppm): 2.50 (s, 3H), 3.19-3.17 (m, 4H), 3.88-3.86 (m, 4H), 7.04 (dd, 1H), 7.21 (d, 1H), 7.47 (d, 1H). Rf (hexane: ethyl acetate = 5:1): 0.20.

The title compound is obtained by reduction with hydrogen over 10% palladium on charcoal in methanol solution.

# 49 Preparation of 2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-benzoic acid

To a solution of 1.0 g (3.37 mmol) of 2-(2,5-dichloro-pyrimidin-4-ylamino)-*N*-methyl-benzamide in 15 mL of acetic acid are added 2-methoxy-4-morpholinoaniline dihydrochloride (1.9 g, 6.73 mmol) and 6.0 mL of 1N ethanolic solution of hydrogen chloride (6.0 mmol). After the reaction mixture is stirred at 120°C for 16 hours and cooled to room temperature, aqueous NaHCO<sub>3</sub> solution is added to adjust the acidity between pH 5 and pH 6. The resulting precipitate is collected by a filtration and dried under reduced pressure to give 2-[5-chloro-2-(2-methoxy-4-morpholin-4-yl-phenyl-amino)-pyrimidin-4-ylamino]-benzoic acid (970 mg, 2.12 mmol, 63%) as ivory solid.

NMR (400MHz, DMSO-d6,  $\delta$ ): 3.10-3.20 (m, 4H), 3.78 (s, 3H), 3.70-3.80 (m, 4H), 6.52 (dd, 1H, J = 8.56, 2.52 Hz), 6.67 (d, 1H, J = 2.52 Hz), 7.08 (dd, 1H, J = 8.04, 8.04 Hz), 7.39 (d, 1H, J = 8.56 Hz), 7.35-7.45 (m, 1H), 7.99 (dd, 1H, J = 8.04, 1.52Hz), 8.14 (s, 1H), 8.28 (s, 1H) 8.70-8.80 (m, 1H).

Example 50: Sulfonamide moieties are prepared as follows:

## Preparation of 2-amino-4-chloro-5-methyl-benzenesulfonyl chloride

To a solution of 2-amino-5-chloro-4-methyl-benzenesulfonic acid (3.0 g, 1.35 mmol) in dichloroethane (10 mL) is added sulfuryl chloride (4.4 mL, 3.83 mmol) and stirred at  $60^{\circ}$ C. After one hour, thionyl chloride (1.3 mL) is added and the mixture is further stirred at  $100^{\circ}$ C for 7.0 hours. The mixture is poured into iced water and extracted with ether three times. The organic layer is washed with water and then brine, dried over sodium sulfate, and evaporated in vacuo.  $^{1}$ H-NMR ( $\delta$ , ppm): 2.35 (s, 3H), 6.68 (s, 1H), 7.75 (s, 1H).

This substituted sulfonyl chloride is reacted with a suitable amine. On reaction e.g. with methylamine, 2-amino-5-chloro-4,N-dimethylbenzenesulfonamide is formed.

#### Example 51

<u>Preparation of 2-[5-bromo-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N. N-dimethyl-benznensulfonamide</u>

To a solution of 2-[5-Bromo-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-N-methyl-benzenesulfonamide (Ex3-19) (1.0g, 1.82mmol) in DMF (10mL), potassium carbonate (300mg, 2.17mmol) and iodomethane (116µl, 1.86mmol) are added. The resulting suspension is stirred at 50°C for 1h. To the reaction mixture, water is added and extracted with ethyl acetate three times. The organic layer is washed with water, dried over sodium sulfate, and concentrated in vacuo. The residue is purified by aluminum oxide column chromatography (AcOEt) to afford the title compound (728mg, 71% yield).

NMR (400MHz, CDCl<sub>3</sub>,  $\delta$ ): 2.74 ((s, 6H), 3.05-3.18 (m, 4H), 3.84-3.93 (m, 4H), 3.88 (s, 3H), 6.43 (dd, 1H), 6.53 (d, 1H), 7.24 (m, 1H), 7.31 (s, 1H), 7.56 (m, 1H), 7.87 (dd, 1H), 8.05 (d, 1H), 8.21 (s, 1H), 8.49 (d, 1H), 8.49 (d, 1H), 9.27 (s, 1H). Rf: 0.23 (AcOEt:Hexane=1:1).

#### Example 52

<u>Preparation of 2-[5-Bromo-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-5-fluoro-N-methyl-benzenesulfonamide</u>

## Preparation of 7-Fluoro-1,1-dioxo-1,4-dihydro-2H-1 λ 6-benzo[1,2,4]thiadiazin-3-one

To a solution of chlorosulfonylisocyanate (1.2mL, 13.5mmol) in nitroethane (10mL), 4-fluoroaniline (1.0g, 8.97mmol) is added dropwise at 0°C and the reaction mixture is stirred for 30min. To the solution, aluminum chloride (1.3g, 9.87mmol) is added at 0°C and the mixture is stirred at 100°C for 1 hour. After cooling to room temperature, water is added and the mixture is extracted with ethyl acetate twice. The organic layer is washed with brine, dried over sodium sulfate, and concentrated under reduced pressure. The resulting solids are collected by a filtration and wahed with ether to give slightly gray solids (803.9mg, 41%).

NMR (400MHz, DMSO-d6,  $\delta$ ): 7.22-7.28 (m, 1H), 7.45-7.57 (m, 1H), 7.60 (m, 1H), 11.15-11.30 (m, 1H). Rf: 0.43 (MeOH:AcOEt=1:5).

Preparation of 7-Fluoro-2-methyl-1,1-dioxo-1,4-dihydro-2H-1 λ 6-benzo[1,2,4]thiadiazin-3-one

To a solution of 7-Fluoro-1,1-dioxo-1,4-dihydro-2H-1- $\lambda^6$ -benzo[1,2,4]thiadiazin-3-one (5.19g, 24.0mmol) in DMF (50mL), sodium hydride (1.04g, 26.0mmol) and iodomethane (1.5mL, 24.0mmol) are added successively and the mixture is stirred for 1 hour at 70°C. After cooling to room temperature, the mixture is poured into water and the precipitate is collected by a filtration and washed with water and hexane, successively, to give slightly gray solids (5.38g, 94%).

NMR (400MHz, DMSO-d6,  $\delta$ ): 3.32 (s, 3H), 7.44 (dd, 1H), 7.75 (ddd, 1H), 7.94 (dd, 1H).

Rf (MeOH:AcOEt = 1:5): 0.21. Rf: 0.39 (Hexane:AcOEt=1:1).

## Preparation of 2-Amino-5-fluoro-N-methyl-benzenesulfonamide

6.79g of 7-Fluoro-2-methyl-1,1-dioxo-1,4-dihydro-2H-1  $\lambda$  <sup>6</sup>-benzo[1,2,4]thiadiazin-3-one (29.5mmol) is dissolved in 20% aq. sodium hydroxide and the resulting solution is stirred at 100°C for 13.5 hours. The mixture is cooled to room temperature and poured into water. 78mL of 5M HCl aq. is added and the precipitate is collected by a filtration and washed with water to afford slightly purple solids (3.96g, 65%).

NMR (400MHz, CDCl<sub>3</sub>,  $\delta$ ): 2.60 (d, 3H), 4.55-4.82 (m, 3H), 6.74 (dd, 1H), 7.05-7.12 (m, 1H), 7.45 (dd, 1H). Rf: 0.41 (Hexane:AcOEt=1:1).

2-(5-Bromo-2-chloro-pyrimidin-4-ylamino)-5-fluoro-N-methyl-benzenesulfonamide

The reaction of pyrimidine with 2-Amino-5-fluoro-N-methyl-benzenesulfonamide is performed in the same manner described in example B.

NMR (400MHz, CDCl<sub>3</sub>,  $\delta$ ): 2.67 (d, 3H), 4.56 (m, 1H), 7.36-7.45 (m, 1H), 7.68 (dd, 1H), 8.39 (s, 1H), 8.42 (dd, 1H), 9.26 (s, 1H). Rf 0.59 (Hexane:AcOEt = 1:1).

## 2-[5-Bromo-2-(2-methoxy-4-morpholin-4-yl-phenylamino)-pyrimidin-4-ylamino]-5-fluoro-N-methyl-benzenesulfonamide

The introduction of substituted aniline is performed according to the manner described in Example A.

NMR (400MHz, CDCl<sub>3</sub>,  $\delta$ ): 2.65 (d, 3H), 3.09-3.16 (m, 4H), 3.87 (s, 3H), 4.50 (q, 1H), 6.41 (dd, 1H), 6.52 (d, 1H), 7.25-7.33 (m, 2H), 7.69 (dd, 1H), 7.95 (d, 1H), 8.20 (s, 1H), 8.37 (dd, 1H), 8.70 (s, 1H). Rf 0.30 (Hexane:AcOEt = 1:1)

#### Example 53: FAK Assay

All steps are performed in a 96-well black microtiter plate. Purified recombinant hexahistidinetagged human FAK kinase domain is diluted with dilution buffer (50 mM HEPES, pH 7.5, 0.01% BSA, 0.05% Tween-20 in water) to a concentration of 94 ng/mL (2.5 nM). The reaction mixture is prepared by mixing 10  $\mu$ L 5x kinase buffer (250 mM HEPES, pH 7.5, 50  $\mu$ M Na<sub>3</sub>VO<sub>4</sub>, 5 mM DTT, 10 mM MgCl<sub>2</sub>, 50 mM MnCl<sub>2</sub>, 0.05% BSA, 0.25% Tween-20 in water), 20  $\mu$ L water, 5  $\mu$ L of 4  $\mu\text{M}$  biotinylated peptide substrate (Biot-Y397) in aqueous solution, 5  $\mu\text{L}$  of test compound in DMSO, and 5  $\mu L$  of recombinant enzyme solution and incubated for 30 min at room temperature. The enzyme reaction is started by addition of 5  $\mu L$  of 5  $\mu M$  ATP in water and the mixture is incubated for 3 hours at 37°C. The reaction is terminated by addition of 200  $\mu L$  of detection mixture (1 nM Eu-PT66, 2.5 µg/mL SA-(SL)APC, 6.25 mM EDTA in dilution buffer), and the FRET signal from europium to allophycocyanin is measured by ARVOsx+L (Perkin Elmer) after 30 min of incubation at room temperature. The ratio of fluorescence intensity of 665 nm to 615 nm is used as a FRET signal for data analysis in order to cancel the colour quenching effect by a test compound. The results are shown as percent inhibition of enzyme activity. DMSO and 0.5 M EDTA are used as a control of 0% and 100% inhibition, respectively.  $IC_{50}$  values are determined by non-linear curve fit analysis using the OriginPro 6.1 program (OriginLab).

The Biot-Y397 peptide (Biotin-SETDDYAEIID ammonium salt) is designed to have the same amino acid sequence as the region from S392 to D402 of human (GenBank Accession Number L13616) and is prepared by standard methods.

Purified recombinant hexahistidine-tagged human FAK kinase domain is obtained in the following way: Full-length human FAK cDNA is isolated by PCR amplification from human placenta Marathon-Ready<sup>TM</sup> cDNA (Clontech, No. 7411-1) with the 5' PCR primer (ATGGCAGCTGCTTACCTTGAC) and the 3' PCR primer (TCAGTGTGGTCTCGTCTGCCC) and subcloned into a pGEM-T vector (Promega, No. A3600). After digestion with AccIII, the purified DNA fragment is treated with Klenow fragment. The cDNA fragment is digested with BamHI and cloned into pFastBacHTb plasmid (Invitrogen Japan K.K., Tokyo) previously cut with BamHI and Stu I. The resultant plasmid, hFAK KD (M384-G706)/pFastBacHTb, is sequenced to confirm its structure. The resulting DNA encodes a 364 amino acid protein containing a hexahistidine tag, a spacer region and a rTEV protease cleavage site at the N-terminal and the kinase domain of FAK (Met384-Gly706) from position 29 to 351.

Donor plasmid is transposed into the baculovirus genome, using MaxEfficacy DH10Bac *E.coli* cells. Bacmid DNA is prepared by a simple alkaline lysis protocol described in the Bac-to-Bac® Baculovirus Expression system (Invitrogen). Sf9 insect cells are transfected based on the protocol provided by the vendor (CellFECTIN®, Invitrogen). The expression of FAK in each lysate is analysed by SDS-PAGE and Western blotting with anti-human FAK monoclonal antibody (clone #77 from Transduction Laboratories).

The virus clone that shows the highest expression is further amplified by infection to Sf9 cells. Expression in ExpresSF+® cells (Protein Sciences Corp., Meriden, Connecticut, USA) gives high level of protein with little degradation. Cell lysates are loaded onto a column of HiTrap<sup>TM</sup> Chelating Sepharose HP (Amersham Biosciences) charged with nickel sulfate and equilibrated with 50 mM HEPES pH 7.5, 0.5 M NaCl and 10 mM imidazole. Captured protein is eluted with increasing amounts of imidazole in HEPES buffer / NaCl, and further purified by dialysis in 50 mM HEPES pH 7.5, 10% glycerol and 1 mM DTT.

## Example 54: Cell-free ZAP-70 Kinase assay

The ZAP-70 kinase assay is based on time-resolved fluorescence resonance energy transfer (FRET). 80 nM ZAP-70 are incubated with 80 nM Lck (lymphoid T-cell protein tyrosine kinase)

and 4  $\mu$ M ATP in ZAP-70 kinase buffer (20 mM Tris, pH 7.5, 10  $\mu$ M Na<sub>3</sub>VO<sub>4</sub>, 1 mM DTT, 1 mM MnCl<sub>2</sub>, 0.01 % BSA, 0.05 % Tween-20) for 1 hour at room temperature in a siliconized polypropylene tube. Then, the selective Lck inhibitor PP2 (1-tert-butyl-3-(4-chloro-phenyl)-1Hpyrazolo[3,4-d]pyrimidin-4-ylamine; Alexis Biochemicals) is added (final concentration 1.2 μM) and incubated for further 10 min. 10  $\mu$ L of this solution is mixed with the 10  $\mu$ L biotinylated peptide LAT-11 (1  $\mu$ M) as substrate and 20  $\mu$ L of serial dilutions of inhibitors and incubated for 4 hours at room temperature. The kinase reaction is terminated with 10  $\mu L$  of a 10 mM EDTA solution in detection buffer (20 mM Tris, pH 7.5, 0.01 % BSA, 0.05 % Tween-20). 50  $\mu$ L europium-labelled anti-phosphotyrosine antibody (Eu-PT66; final concentration 0.125 nM); and 50 μL streptavidin-allophycocyanine (SA-APC; final concentration 40 nM) in detection buffer are added. After 1 hour incubation at room temperature fluorescence is measured on the Victor2 Multilabel Counter (Wallac) at 665 nm. Background values (low control) are obtained in the absence of test samples and ATP and are subtracted from all values. Signals obtained in the absence of test samples are taken as 100% (high control). The inhibition obtained in the presence of test compounds is calculated as percent inhibition of the high control. The concentration of test compounds resulting in 50% inhibition (IC<sub>50</sub>) is determined from the doseresponse curves. In this assay, the agents of the invention have  $IC_{50}$  values in the range of 10 nM to 2 µM, preferably from 10 nM to 100 nM.

Recombinant ZAP-70 kinase is obtained as follows: A nucleic acid encoding full-length human ZAP-70 (GenBank #L05148) is amplified from a Jurkat cDNA library by RT-PCR and cloned into the pBluescript KS vector (Stratagene, California, USA). The authenticity of the ZAP-70 cDNA insert is validated by complete sequence analysis. This donor plasmid is then used to construct a recombinant baculovirus transfer vector based on the plasmid pVL1392 (Pharmingen, California, USA) featuring in addition an N-terminal hexahistidine tag. Following co-transfection with AcNPV viral DNA, 10 independent viral isolates are derived via plaque-purification, amplified on small scale and subsequently analyzed for recombinant ZAP-70 expression by Western Blot using a commercially available anti-ZAP-70 antibody (Clone 2F3.1, Upstate Biotechnology, Lake Placid, NY, USA). Upon further amplification of one positive recombinant plaque, titrated virus stocks are prepared and used for infection of Sf9 cells grown in serum-free SF900 II medium (Life Technologies, Basel, Switzerland) under defined, optimized conditions. ZAP-70 protein is isolated from the lysate of infected Sf9 cells by affinity chromatography on a Ni-NTAcolumn (Qiagen, Basel, Switzerland).

Recombinant His-tagged ZAP-70 is also available from PanVera LLC, Madison, Wisconsin, USA.

LAT-11 (linker for activation of T cell): The biotinylated peptide LAT-11 (Biotin-EEGAPDYENLQELN) used as a substrate in the ZAP-70 kinase assay is prepared in analogy to known methods of peptide synthesis. The N- $\alpha$  Fmoc group of Fmoc-Asn(Trt)-oxymethyl-4phenoxymethyl-co(polystyrene-1%-divinyl-benzene), content of Asn approx. 0.5 mmol/g, is cleaved using piperidine, 20% in DMF. Four equivalents per amino-group of Fmoc-amino acid protected in their side chains [Asp(OtBu), Glu(OtBu), Asn(Trt), Gln(Trt) and Tyr(tBu)] are coupled using DIPCDI and HOBt in DMF. After complete assembly of the peptide chain the terminal Fmoc-protecting group is removed with piperidine in DMF as before. L(+)-biotinylaminohexanoic acid is then coupled to the terminal amino group using DIPCDI and HOBt in DMF using four equivalents of the reagents for four days at RT. The peptide is cleaved from the resin support and all side-chain protecting groups are simultaneously removed by using a reagent consisting of 5% dodecylmethylsulfide and 5% water in TFA for two hours at RT. Resin particles are filtered off, washed with TFA and the product is precipitated from the combined filtrates by the addition of 10 to 20 volumes of diethyl ether, washed with ether and dried. The product is purified by chromatography on a C-18 wide-pore silica column using a gradient of acetonitrile in 2% aqueous phosphoric acid. Fractions containing the pure compound are collected, filtered through an anion-exchange resin (Biorad, AG4-X4 acetate form) and lyophilized to give the title compound. MS: 1958.0 (M-H)<sup>-1</sup>

## Example 55: Phosphorylation levels of FAK

Phosphorylation levels of FAK at Tyr397 is quantified by the sandwich ELISA. Mouse mammary carcinoma 4T1 cells (1 x  $10^5$ ) are plated in wells of 96-well culture plates and incubated with or without various concentrations of inhibitors for 1 h in Dulbecco's modified eagle medium containing 0.5% BSA. The medium is removed and cells are lysed in 200  $\mu$ L 50 mM Tris-HCl, pH 7.4, containing 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM Na $_3$ VO $_4$ , 1 mM NaF, 1  $\mu$ g/mL aprotinin, 1  $\mu$ g/mL leupeptin and 1  $\mu$ g/mL pepstatin. After centrifugation, the supernatants are subjected to a sandwich ELISA to quantify the phosphorylated FAK and total FAK. Cell lysates are applied to 96-well flat-bottom ELISA plates which have been pre-coated with 100  $\mu$ L/well of 4  $\mu$ g/mL mouse monoclonal anti-FAK antibody (clone 77, Becton Dickinson Transduction Laboratories) in 50 mM Tris-HCl, pH 9.5, containing 150 mM NaCl for 18 h at 4°C and blocked with 300  $\mu$ L of BlockAce (Dainippon Pharmaceuticals

Co.) diluted at 1:4 with  $H_2O$  at room temperature for 2 h. After washing with TBSN (20 mM Tris-HCl, pH 8.3, containing 300 mM NaCl, 0.1% SDS and 0.05% NP-40), total FAK is detected with 100  $\mu$ L of 1  $\mu$ g/ml anti-FAK polyclonal antibody (#65-6140, Upstate Biology Inc.), and phosphorylated FAK is detected with 100  $\mu$ L of 0.25  $\mu$ g/ $\mu$ L anti-phosphorylated FAK (Y397) antibody (Affinity BioReagents, #OPA1-03071) in BlockAce diluted at 1:10 with  $H_2O$ . After 1 h incubation at room temperature, plates are washed with TBSN and 100  $\mu$ L of biotinylated antirabbit IgG (#65-6140, Zymed Laboratolies Inc.) diluted at 1:2000 with BlockAce diluted at 1:10 with  $H_2O$  is incubated at room temperature for 1 h. After washing with TBSN, ABTS solution substrate kit (#00-2011, Zymed Lobolatories Inc.) is used for color development. Absorbance at 405 nm is measured after 20 min incubation at room temperature. The concentration of compound causing 50% reduction of phosphorylation level of FAK is determined.

## Example 56: Anchorage-independent tumor cell growth assay

Mouse mammary carcinoma 4T1 cells ( $5 \times 10^3$ ) are plated in 96-well Ultra low Attachment plates (#3474, Corning Inc.) in 100  $\mu$ L of Dulbecco's modified eagle medium containing 10% FBS. Cells are cultured for 2 h and inhibitors are added at various concentrations in a final concentration of 0.1% DMSO. After 48 h, cell growth is assayed with the cell counting kit-8 (Wako Pure Chemical), which uses a water soluble tetrazolium salt WST8. Twenty  $\mu$ L of the reagent is added into each well and cells are further cultured for 2 h. The optical density is measured at 450 nm. The concentration of compound causing 50 % inhibition of growth is determined.

### Example 57: In vitro T cell migration assay:

Inhibitory activities of FAK inhibitors on the mobility of immune cells are secured by the following in vitro study. That is, Jurkat T human leukemic cell line are placed at  $1 \times 10^5$  cells in the upper chamber of Fluoroblok with 8 µm pores (Beckton Dickinson, UK), and are allowed to migrate by four hours cultivation at  $37^{\circ}$ C, in 95% air-5% CO<sub>2</sub> depending on a concentration gradient of fetal bovine serum (10% FBS). Cell mobility is appraised through the number of cells migrated into lower chamber by labeling with calceln-AM (Molecular Probes, Netherlands) at 8 µg/ml in HBSS for 1 h. For evaluation of FAK inhibitors, both the upper and lower chambers are added with various concentrations of FAK inhibitors (0.03 – 1 µM). IC50 values are calculated by the decrement of those fluorescent intensity compared to that in vehicle-treated group measured with Ascent (Ex: 485 nm, Em: 538 nm).

Example 58: Test for activity against IGF-I induced IGF-IR autophosphorylation using the cellular "Capture ELISA" test

The assay is conducted as follows:

For the assay NIH-3T3 mouse fibroblasts transfected with human IGF-IR cDNA (complete human IGF-IR cDNA: GenBank Acc. No. NM\_000875), prepared as described in Kato et al., J. Biol. Chem. <u>268</u>, 2655-61, 1993, are used. The cells which overexpress human IGF-IR are cultured in Dulbecco's minimal essential (DMEM) medium, containing 10 % Fetal Calf Serum (FCS). For the assay 5,000 cells/well are plated on day 1 on 96-well plates (Costar #3595) in normal growth medium and incubated for 2 days at 37°C in a standard  $CO_2$  cell incubator. The density of the cells does not exceed 70-80 % at day 3. On day 3 the medium is discarded and the cells are incubated for 24 h in minimal medium (DMEM, containing 0.5 % FCS). Compounds of formula I [starting from 10 mM dimethyl sulfoxide (DMSO) stock solutions] are added to produce final concentrations of 0.01, 0.03, 0.1, 0.3, 1, 3 and 10  $\mu$ M to determine the IC $_{50}$  value. The cells are incubated for 90 min in the presence of a compound of formula I. Thereafter the cells are stimulated with 50  $\mu$ I IGF-I (final concentration of IGF-I in the well = 10 ng/ml; IGF-I is obtained from Sigma; Product Code: I 3769) and incubated for 10 min at 37°C. The medium is discarded and the cells are washed twice with PBS/O (=Phosphate-Buffered

The medium is discarded and the cells are washed twice with PBS/O (=Phosphate-Buffered Saline without CaCl<sub>2</sub>) and lysed for 15 min on ice with 50 µl/well RIPA-buffer [50 mM Tris•HCl, pH=7.2, 120 mM NaCl, 1 mM EDTA, 6 mM EGTA, 1% NP-40, 20 mM NaF, 1 mM benzamidine, 15 mM sodium pyrophosphate, 1 mM Phenyl methyl sulphonyl fluoride (PMSF) and 0.5 mM Na<sub>3</sub>VO<sub>4</sub>] and shaken for 10 min using a 96-well plate shaker (=cellular extracts).

Packard HTRF-96 black plates are coated with 50  $\mu$ l IGF-IR monoclonal Antibody (mAB) (Santa Cruz; Cat. No.: SC-462) in a concentration of 5  $\mu$ g/ml at 4°C overnight. The plates are washed twice with 0.05% (v/v) Tween-20 in Phosphate-Buffered Saline (PBS) and once with nanopure H<sub>2</sub>O. Blocking is done for 2 h at room temperature (RT) with 3% Bovine Serum Albumin (BSA) in TBS-T buffer (20 mM Tris•HCl, pH=7.6, 137 mM NaCl, 0.05 % Tween-20). After blocking, the plates are washed once with nanopure H<sub>2</sub>O.

Cellular extracts (40  $\mu$ l/well) are pipetted onto the precoated Packard plates, together with 40  $\mu$ l of the anti-phosphotyrosine mouse mAB PY-20 conjugated with Alkaline Phosphatase (AP) (1:1000 diluted in RIPA buffer; the antibody is obtained from Transduction Labs; Cat. No.: P11120).

After incubating the extracts and the secondary antibody for 2 h at 4 °C, the extracts are discarded, the plates are washed twice with 0.05% (v/v) Tween-20 in PBS and once with nanopure water.

90  $\mu$ l/well AP substrate (CDP-Star; obtained from Tropix; Cat. No.: MS100RY) are then added and the plates are incubated for 45 min at RT in the dark, followed by measuring AP activity in a Packard Top Count Microplate Scintillation Counter. The IC<sub>50</sub> values for the compounds of formula I are calculated via linear regression analysis using the GraphPad Instat program (GraphPad Software, USA). IC<sub>50</sub> values in the range of 5 nM to 1  $\mu$ M, especially in the range of 5 nM to 300 nM are found.

Example 59 In vivo activity in the nude mouse xenograft model:

female or male BALB/c nude mice (5-8 weeks old, Charles River Japan, Inc., Yokohama, Japan) are kept under sterile conditions with water and feed ad libitum. Tumours are induced by subcutaneous injection of tumour cells (human epithelial cell line MIA PaCa-2; European Collection of Cell Cultures (ECACC), Salisbury, Wiltshire, UK, Catalogue Number 85062806; cell line from a 65 year old Caucasian male; undifferentiated human pancreatic carcinoma cell line) into left or right flank of mice under Forene® anaesthesia (Abbott Japan Co., Ltd., Tokyo, Japan). Treatment with the test compound is started when the mean tumor volumes reached approximately 100 mm<sup>3</sup>. Tumour growth is measured two times per week and 1 day after the last treatment by determining the length of two perpendicular axis. The tumour volumes are calculated in accordance with published methods (see Evans et al., Brit. J. Cancer 45, 466-8, 1982). The anti-tumour efficacy is determined as the mean increase in tumour volume of the treated animals divided by the mean increase in tumour volume of the untreated animals (controls) and, after multiplication by 100, is expressed as delta T/C [%]. Tumour regression is reported as the mean changes of tumor volume of the treated animals divided by the mean tumor volume at start of treatment and, after multiplication by 100, is expressed as regression [%]. The test compound is orally administered daily with or without drug holidays.

As an alternative to cell line MIA PaCa-2, another cell line may also be used in the same manner, for example:

- the 4T1 breast carcinoma cell line (ATCC Number CRL-2539; see also Cancer. 88(12 Supple), 2979-2988, 2000) with female BALB/c mice (injection into mammary fat pad).

On the basis of these studies, a compound of formula I according to the invention shows therapeutic efficacy especially against proliferative diseases responsive to an inhibition of a tyrosine kinase.

#### Example 60: Tablets

Tablets comprising 50 mg of active ingredient, for example one of the compounds of formula I described in Examples 1 to 131, and having the following composition are prepared in customary manner:

#### Composition:

| active ingredient      | 50 mg    |
|------------------------|----------|
| wheat starch           | 150 mg   |
| lactose                | 125 mg   |
| colloidal silicic acid | 12.5 mg  |
| talc                   | 22.5 mg  |
| magnesium stearate     | 2.5 mg   |
| Total:                 | 362.5 mg |

<u>Preparation</u>: The active ingredient is mixed with a portion of the wheat starch, with the lactose and the colloidal silicic acid and the mixture is forced through a sieve. A further portion of the wheat starch is made into a paste, on a water bath, with five times the amount of water and the powder mixture is kneaded with the paste until a slightly plastic mass is obtained.

The plastic mass is pressed through a sieve of about 3 mm mesh size and dried, and the resulting dry granules are again forced through a sieve. Then the remainder of the wheat starch, the talc and the magnesium stearate are mixed in and the mixture is compressed to form tablets weighing 145 mg and having a breaking notch.

#### Example 61: Soft Capsules

5000 soft gelatin capsules comprising each 50 mg of active ingredient, for example one of the compounds of formula I described in Examples 1 to 131, are prepared in customary manner:

#### Composition:

WO 2004/080980 PCT/EP2004/002616

- 163 -

active ingredient

250 g

Lauroglykol

2 litres

Preparation: The pulverized active ingredient is suspended in Lauroglykol® (propylene glycol laurate, Gattefossé S.A., Saint Priest, France) and ground in a wet pulverizer to a particle size of approx. 1 to 3  $\mu$ m. 0.419 g portions of the mixture are then dispensed into soft gelatin capsules using a capsule-filling machine.

## Biological results:

| Example      | FAK IC50 (nM) | Phos IC50<br>(μM) | Growth IC50<br>(μM) | T Cell<br>Migration IC50 | IGF-1R IC50<br>(μM) |
|--------------|---------------|-------------------|---------------------|--------------------------|---------------------|
| 1.00         | 140           | 0.7               | >10                 | (μ <b>M</b> )            | (1414)              |
| 2.00         | 13            | 1.2               |                     | <del> </del>             |                     |
| 3.01         | 44            | 0.34              | >10                 | <del> </del>             | ·                   |
| 3.02         | 36            | 0.85              | 4                   | <del> </del>             |                     |
| 3.03         | 9.1           | 0.14              | 0.8                 |                          |                     |
| 3.04         | 32            | 0.53              | 2                   |                          |                     |
| 3.05         | 21            | 0.17              | 2                   | <del></del>              |                     |
| 3.06         | 13            | 0.11              | 2 2                 |                          | >10                 |
| 3.07<br>3.08 | 16            | 0.45              | 2                   |                          |                     |
|              | 74            | 0.3               | 6                   |                          |                     |
| 3.09         | 48            | 0.5               | 0.7                 |                          |                     |
| 3.10         | 52            | 0.95              | >10                 |                          |                     |
| 3.11         | 9             | 0.04              | 0.3                 | <del></del>              |                     |
| 3.12         | 5.4           | 0.01              | 1                   |                          | 0.2                 |
| 3.13         | 58            | 1.7               | 0.6                 |                          |                     |
| 3.14         | 54            | 0.4               | 5                   |                          | 0.74                |
| 3.15         | 7             | 0.02              | 0.8                 |                          |                     |
| 3.16         | 48            | 1.1               | 3                   |                          | 0.94                |
| 3.17         | 2.8           | 0.03              | 0.2                 |                          |                     |
| 3.18<br>3.19 | 130           | 1.5               | 9                   | <del></del>              | <0.08               |
| 3.20         | 6.8           | 0.35              | 0.8                 |                          |                     |
| 3.22         | 16            | 0.22              | 0.3                 |                          | 0.1                 |
| 3.23         | 120           | 0.9               | 2                   |                          |                     |
|              | 38            | 0.39              | 0.5                 |                          |                     |
| 3.24         | 64            | 3.5               | 5                   |                          |                     |
| 3.25         | 22            | 0.3               | 0.3                 |                          |                     |
| 3.26         | 50            | 0.79              | 2                   |                          | 0.81                |
| 3.28         | 43            | 0.71              | 0.7                 |                          |                     |
| 3.29<br>3.30 | 89            | 0.6               | >10                 |                          |                     |
| 3.31         | 69            | 0.6               | 3                   |                          |                     |
| 3.32         | 13            | 1.1               | 5                   |                          |                     |
| 3.33         | 14            | 0.18              | 0.49                | 0.28                     | - 0.40              |
| 3.34         | 2.9           | 0.03              | 0.05                | 0.09                     | 0.12                |
| 3.35         | 7             | 0.1               | 0.24                | 0.13                     | 0.13                |
| 3.36         | 13            | 0.02              | 0.17                | 0.8                      | <0.08               |
| 3.37         | 43            | 1.8               | 2.8                 | 0.0                      | 3.55                |
| 3.38         | 39            | 1.1               | 2.6                 |                          |                     |
| 3.39         | 64            | 1.7               | 3.8                 |                          |                     |
| 3.40         | 2             | 0.02              | 0.03                | 1                        |                     |
| 3.41         | 9             | >10               | 0.9                 |                          | 0.09                |
| 3.42         | 22            | >10               | 0.43                |                          |                     |
| 3.43         | 29            | 0.35              | 0.3                 |                          |                     |
| 3.44         | 5.6           | 0.2               | 0.11                |                          | 0.07                |
| 3.45         | 11            | 0.05              | 0.09                |                          | 0.27                |
| 3.46         | 0.9           | 0.02              | 0.02                |                          | 0.09                |
| 3.47         | 4             | 0.1               | 0.18                | 0.3                      |                     |
| 3.48         | 1             | 0.1               | 0.06                | <u> </u>                 |                     |
| 3.49         | 7             | 0.07              | 0.3                 |                          | 0.24                |
| U.73         | 39            | 10                | 0.39                |                          | 0.21                |

| 3.50<br>3.51 | 13         | 0.12 | 1    | T    | 1.19                                             |
|--------------|------------|------|------|------|--------------------------------------------------|
|              | 29         | 0.2  | 0.4  |      | 0.41                                             |
| 3.52         | 29         | 0.42 | 2    |      | 0.71                                             |
| 3.53         | 6          | 0.07 | 0.21 |      |                                                  |
| 3.54         | 0.9        | 0.01 | 0.07 |      | <0.08                                            |
| 3.55<br>3.56 | 34         | >10  | 3    |      | 10.00                                            |
| 3.57         | 28         | 0.53 | 0.15 |      |                                                  |
|              | 28         | 0.61 | 3    |      |                                                  |
| 3.58         | 21         | 0.08 | -0.3 |      | 0.14                                             |
| 3.59<br>3.60 | 95         | 1.2  | >10  |      | 0.14                                             |
| 3.61         | 90         | 0.93 | 2    |      |                                                  |
| 3.62         | 12         | 10   | >10  |      |                                                  |
| 3.63         | 63         | >10  | >10  |      |                                                  |
| 3.64         | 27         | >10  | >10  |      | <del> </del>                                     |
| 3.65         | 5          | 0.13 | 0.7  | 0.21 | T                                                |
| 3.66         | 8          | 0.08 | 0.1  |      | 0.15                                             |
| 3.67         | 1          | 0.08 | 0.07 |      | 0.25                                             |
| 3.68         | 6          | 0.38 | 0.39 |      | 0.20                                             |
| 3.69         | 5.5        | 0.2  | 0.63 | 1    | <del> </del>                                     |
| 3.70         | 4          | 0.2  | 0.11 | 0.58 | <del>                                     </del> |
| 3.70         | 3.5        | 0.02 | 0.13 |      |                                                  |
| 3.72         | 11         | 0.05 | 0.08 |      | <del> </del>                                     |
| 3.73         | 2.1        | 0.11 | 0.06 |      |                                                  |
| 3.74         | 11         | 0.03 | 0.29 |      | 1.63                                             |
| 3.75         | 15         | 0.1  | 0.15 |      | 1.00                                             |
| 3.76         | 72         | 0.5  | 1.3  |      | <del></del> -                                    |
| 3.77         | 15         | 0.29 | 1.3  | 0.7  |                                                  |
| 3.78         | 65         | >10  | 3    |      |                                                  |
| 3.79         | 10         | >10  | 0.22 | •    |                                                  |
| 3.80         | 5          | 1.3  | 0.12 |      |                                                  |
| 3.81         | 12         | 0.22 | 0.45 |      | 5                                                |
| 3.82         | 21         | 0.52 | 0.98 |      | >10                                              |
| 3.83         | 4.8        | 0.2  | 0.07 |      |                                                  |
| 3.84         | 20         | 0.08 | 0.32 |      | 0.68                                             |
| 6.00         | 10         | 1    | 80.0 |      | 0.00                                             |
| 7.00         | 110        | 0.35 | 5    |      |                                                  |
| 7.01         | 5.3        | 0.21 | 0.47 | 0.04 | 0.19                                             |
| 7.02         | 4.7        | 0.6  | 0.54 |      | 0.19                                             |
| 7.02         | 7.5        | 0.1  | 0.36 |      | 0.77                                             |
| 7.04         | 2.9<br>5.2 | 0.3  | 0.39 |      | 0.27                                             |
| 7.05         | 6.2        | 1    | 0.29 |      |                                                  |
| 7.06         | 17         | 0.3  | 0.2  |      | 0.25                                             |
| 7.07         | 4.1        | 0.8  | 1.09 | 0.25 |                                                  |
| 7.08         | 8.7        | 0.9  | 0.18 |      |                                                  |
| 7.09         | 8.2        | 0.8  | 1    |      |                                                  |
| 7.10         | 6.6        | 1    | 0.85 |      |                                                  |
| 7.11         | 2.5        | 1    | 0.98 |      |                                                  |
| 7.12         | 1.9        | 0.6  | 1.2  |      | 0.77                                             |
| 7.13         | 5.5        | 0.9  | 1    | 0.31 | 0.62                                             |
| 7.14         | 7.6        | 0.8  | 1.22 |      |                                                  |
| 7.15         | 4.5        | 0.3  | 0.36 | ·    | 0.33                                             |
| 7.16         | 6.4        | 0.06 | 0.19 |      | 0.26                                             |
| 7.17         | 4.3        | 0.2  | 0.42 |      |                                                  |
| 7.18         | 6.2        | 0.7  | 0.69 |      |                                                  |
|              | U.Z        | 0.5  | 0.7  |      | ***************************************          |

| 7.40  | 1 40        |      |      | · · · · · · · · · · · · · · · · · · · |                                        |
|-------|-------------|------|------|---------------------------------------|----------------------------------------|
| 7.19  | 13          |      | 0.33 |                                       |                                        |
| 7.20  | 2.5         | >10  | 0.11 |                                       |                                        |
| 7.21  | 3.3         | >10  | 0.46 |                                       |                                        |
| 7.22  | 25          |      | 0.48 |                                       |                                        |
| 7.23  | 1.4         |      | 0.25 |                                       |                                        |
| 7.24  | 5.1         |      | 0.09 |                                       |                                        |
| 7.25  | 13          | 0.2  | 0.73 |                                       |                                        |
| 7.25  | 2           | >10  | 0.57 |                                       | ,                                      |
| 7.26  | 4.1         |      | 0.15 |                                       |                                        |
| 7.27  | 21          | 0.5  | 0.22 |                                       |                                        |
| 7.28  | 34          | 1    | 0.15 |                                       |                                        |
| 7.29  | 57          | 2    | 0.48 |                                       |                                        |
| 7.30  | 2.1         |      | 0.3  | 1                                     |                                        |
| 8.01  | 6.6         | 0.6  | 0.33 |                                       |                                        |
| 8.02  | 2.4         | 0.5  | 0.99 |                                       |                                        |
| 8.03  | 13          | 0.22 | 1    |                                       | >10                                    |
| 8.04  | 8           | >10  | 1.1  |                                       |                                        |
| 9.01  | 22          | 0.36 | 1    | 0.6                                   |                                        |
| 9.02  | 15          | 0.5  | 0.81 |                                       |                                        |
| 9.03  | 18          | 0.1  | 0.37 |                                       |                                        |
| 9.04  | 13          | 0.2  | 0.73 |                                       |                                        |
| 9.05  | 22          | 0.36 | 1.6  |                                       | 0.6                                    |
| 9.06  | 23          | 3    | 0.4  | 0.3                                   | <u> </u>                               |
| 9.07  | 17          | >10  | 0.26 |                                       |                                        |
| 10.01 | 39          | 1    | 0.44 |                                       |                                        |
| 10.02 | 26          | 0.9  | 1.06 |                                       |                                        |
| 10.03 | 23          | 0.9  | 2.4  |                                       |                                        |
| 11.01 | 9           | 0.7  | 0.85 |                                       |                                        |
| 11.02 | 4.1         | 0.8  | 0.69 |                                       | · · · · · · · · · · · · · · · · · · ·  |
| 11.03 | 26          | 0.41 | 0.1  |                                       |                                        |
| 11.04 | 4.3         | >10  | 3.2  |                                       |                                        |
| 12.01 | 2.5         | 0.09 | 0.4  | 0.22                                  |                                        |
| 12.02 | 1.6         |      | 0.05 |                                       |                                        |
| 12.03 | 2.3         |      | 0.25 |                                       |                                        |
| 12.04 | 1.1         |      | 0.14 | •                                     |                                        |
| 12.06 | 2.6         |      |      |                                       |                                        |
| 13.01 | 65          |      | 0.81 |                                       | ······································ |
| 14.01 | 19          | 0.2  | 1.47 | 0.28                                  |                                        |
| 14.02 | 190         | 2    | 1.1  | 1                                     |                                        |
| 14.03 | 30          | 10   | 1.01 | •                                     |                                        |
| 14.04 | 18          |      | 0.54 |                                       |                                        |
| 14.05 | 37          | >10  | 1    |                                       |                                        |
| 14.06 | 63          | 10   | 1.11 |                                       |                                        |
| 14.07 | 7.5         | 0.2  | 1.4  |                                       |                                        |
| 15.01 | 15          | 10   | 0.47 |                                       |                                        |
| 15.02 | 21          | >10  | 0.66 |                                       |                                        |
| 15.03 | 44          | 2    | 1.67 |                                       |                                        |
| 16.01 | 44          | >10  | 4    |                                       |                                        |
| 16.02 | 6           | >10  | 0.6  |                                       |                                        |
| 16.03 | 21          | 3    | >10  |                                       |                                        |
| 16.04 | 9.5         | >10  | 0.92 |                                       |                                        |
| 16B   | 11          | 3    | 7    |                                       |                                        |
| 16.C  | 28          | 0.9  | >10  |                                       |                                        |
| 18.01 | 19          | >10  | 1.29 |                                       |                                        |
| 19.01 | <1          | 0.2  | 0.3  | 0.20                                  | 4.44                                   |
|       | <del></del> | U.Z  | U.3  | 0.29                                  | 1.41                                   |

WO 2004/080980 PCT/EP2004/002616

- 167 -

| 19.02<br>19.03 | 1.6        | 0.13 | 0.38 |              | 0.04         |
|----------------|------------|------|------|--------------|--------------|
|                | <1         | 0.3  | 0.09 | T            | 0.91         |
| 19.04          | 1.6        | 0.2  | 0.34 | <del> </del> |              |
| 19.05          | 1.8        | 0.2  | 0.67 | 0.07         | 0.14         |
| 19.06          | 5          | 1    | 0.7  | - 0.07       | 0.47         |
| 19.07          | 2.1        | 0.3  | 0.11 | +            | <del></del>  |
| 19.08          | 3.2        | 0.03 | 0.4  | 0.29         | 0.40         |
| 19.09          | 1.3        | 0.17 | 0.39 | 0.3          | 0.13         |
| 19.10          | 1.3        | 0.06 | 0.56 | 0.0          | 0.48         |
| 19.11          | 38         | >10  | 2    |              | 1.02         |
| 19.12          | 9          | >10  | 0.7  |              | 0.60         |
| 19.13          | 2.5        | 0.3  | 1.1  | <del> </del> | 0.63         |
| 19.14          | 2.6        | 0.4  | 1.13 |              | 0.44         |
| 19.15          | 3.1        | 0.5  | 0.36 | <del> </del> | 0.44         |
| 19.16<br>19.17 | 2.3        | 0.7  | 1.1  |              | <del> </del> |
| 19.17          | 1          | >10  | 0.17 |              | <del> </del> |
| 19.18          | 7          | 0.13 | 0.87 |              | <del></del>  |
| 19.19          | 5.7        |      | 0.4  |              | <del></del>  |
| 19.21          | 1.6        | 0.03 | 0.07 |              | 0.23         |
| 19.21          | 84         | >10  | 1.71 |              | 0.23         |
| 19.23          | 3.4        | 0.12 | 0.51 |              | <del> </del> |
| 19.24          | 6.4        | 0.7  | 0.71 |              |              |
| 19.25          | 1.8        | 0.05 | 0.12 |              |              |
| 19.26          | 7.2        | 11   | 0.49 |              | 0.24         |
| 19.27          | 6.1        | 0.1  | 0.3  |              | 0.24         |
| 19.28          | 1.5        | 0.3  | 0.4  |              |              |
| 19.29          | 4.8<br>1.9 | 0.1  | 0.12 | 0.3          | 0.46         |
| 19.30          | <1         |      |      |              | 0.40         |
| 19.31          | 1.8        | 0.06 | 0.1  |              |              |
| 19.32          |            | 0.4  | 0.38 |              |              |
| 20.01          | 1.4        | 0.2  | 0.31 |              |              |
| 20.02          | 10         | 0.3  | 0.18 | 0.25         | 0.7          |
| 20.03          | 9<br>42    | 0.12 | 0.17 | 0.75         | 0.52         |
| 20.04          | 23         | 0.4  | 2.5  |              | 2.78         |
| 20.05          | 6.8        | 0.58 | 1.9  |              |              |
| 20.06          | 5          | 0.87 | 1.46 |              |              |
| 20.07          | 3          | 0.36 | 0.14 | 49           |              |
| 20.08          | 6.8        | 0.1  | 0.05 |              | 0.38         |
| 20.09          | 2          | 0.17 | 0.05 | 0.29         |              |
| 20.10          | 2          | 0.3  | 0.01 |              |              |
| 20.11          | 26         | 0.1  | 0.02 |              |              |
| 20.12          | 9.5        | 2    | 0.4  |              |              |
| 20.13          | 6.3        |      |      |              |              |
| 20.14          | 33         |      | 0.04 |              |              |
| 20.15          | 14         |      | 0.32 |              |              |
| 20.16          | 7.5        | 0.4  | 0.97 | 0.3          |              |
| 20.17          | 2          |      | 0.06 |              |              |
| 20.18          | 15         |      | 0.14 |              |              |
| 20.19          | 28         |      | 0.81 |              |              |
| 20.20          | 3.12       |      | 0.21 |              |              |
| 20.21          | 26         |      |      |              | 0.1          |
| 20.22          | 8          | 3    | 0.68 |              |              |
| 20.23          | 30         | >10  | 0.19 |              |              |
| 20.24          | 19         | 0.49 | 3 2  |              |              |
|                | 19         | 0.48 | 2    |              |              |

- 168 -

| 20.25 | 6.2        | 1 0.04      |      |         | _            |
|-------|------------|-------------|------|---------|--------------|
| 20.26 | 5.3        | 0.21        | 0.06 |         |              |
| 20.27 | 12         | 0.76        | 0.27 |         |              |
| 20.28 | 9.2        | 0.85        | 0.05 |         | 0.29         |
| 20.29 |            | 0.17        | 0.08 |         | 0.42         |
| 20.30 | 6.1<br>7.6 | 0.2         | 0.05 |         | 0.31         |
| 20.31 |            | 0.3         | 0.08 |         | 0.67         |
| 20.32 | 39         |             | 0.5  |         |              |
| 20.32 | 13         | <del></del> | 0.11 |         |              |
| 20.34 | 2.5        | <u> </u>    | 0.38 |         |              |
| 20.35 | 13         | 1           | 0.12 |         |              |
| 21.01 | 8.7        | 0.09        | 0.09 |         | 0.15         |
| 21.02 | 1 1        | 0.07        | 0.19 |         | 0.47         |
| 21.02 | 8.5        | 0.33        | >10  |         |              |
| 21.04 | 1.7        | 0.3         | 0.3  |         |              |
|       | 1.8        | 0.05        | 0.3  |         |              |
| 22.01 | 43         | >10         | >10  |         |              |
| 22.02 | 26         | 1           | 3    |         |              |
| 22.03 | 6.6        | 0.09        | 0.15 |         | 0.26         |
| 23.01 | 3.4        | 0.6         | 0.2  | 0.63    | 0.53         |
| 23.02 | 1.5        | 0.2         | 0.4  |         | 0.8          |
| 23.03 | 1.7        | 1           | 1.12 |         | 0.82         |
| 23.04 | 1.2        | 0.9         | 1.07 |         | 0.6          |
| 23.05 | 1.9        | >10         | 0.59 |         | 0.0          |
| 23.06 | 16         | 11          | 0.57 |         | <del> </del> |
| 23.07 | 2.1        | 3           | 0.84 |         |              |
| 23.08 | 6.7        | 0.3         | 0.49 |         |              |
| 23.09 | 2.1        | 0.2         | 0.28 |         |              |
| 24.01 | 3.6        | 0.11        | 0.44 |         | 0.05         |
| 24.02 | 2.1        | 0.5         | 0.11 |         | 0.39         |
| 24.03 | 11         | 0.3         | 1.08 |         | 0.00         |
| 25.01 | 8.5        | 3           | 1    |         |              |
| 25.02 | 3          | 0.4         | 0.13 |         | 0.64         |
| 26.01 | 4.4        | 0.05        | 0.35 |         | 0.29         |
| 26.02 | 1.9        | 0.03        | 0.12 | 0.09    | 0.39         |
| 26.03 | 1.4        | 0.1         | 0.13 |         | 0.23         |
| 26.04 | 4.9        | 0.05        | 0.43 | 0.29    | 1.16         |
| 26.05 | 2.1        | 0.09        | 0.23 |         | 1.5          |
| 26.06 | 4.4        | 0.1         | 0.35 |         | 1.0          |
| 26.07 | 11         | 0.5         | 0.95 |         |              |
| 26.08 | 2.9        | 0.01        | 0.18 |         |              |
| 26.09 | 2.3        | 0.04        | 0.22 |         |              |
| 26.10 | 2          | 0.01        | 0.14 |         |              |
| 26.11 | 4.4        | 0.4         | 0.78 | 0.5     | ·            |
| 26.12 | 3.7        | 0.2         | 0.19 | 0.0     | - **         |
| 26.13 | 1.6        | 0.2         | 0.44 |         | <del></del>  |
| 26.14 | . 5        |             | 0.19 | •       |              |
| 26.15 | 6.9        | 1.2         | 0.08 |         | 0.07         |
| 26.16 | 9          | 0.32        | 2    |         | 0.07         |
| 26.17 | 17         | 0.3         | 0.1  | 0.26    |              |
| 26.18 | 1.3        | 6           | 1.17 | <u></u> |              |
| 26.19 | 9.2        | 0.43        | 0.79 |         |              |
| 26.20 | 10         | 0.14        | 0.22 | 0.6     | 0.49         |
| 26.21 | 1.1        | 0.1         | 0.49 | 0.0     | 0.48         |
| 26.22 | <1         | 0.1         | 0.28 |         |              |
| 26.23 | 1.4        | 0.3         | 0.09 | 0.3     | 0.18         |
|       |            |             |      |         | U. 10        |

|             | 0.9          | 0.48 | 0.5          | 11  | 26.24 |
|-------------|--------------|------|--------------|-----|-------|
|             | 0.3          | 0.73 | 0.6          | <1  | 26.25 |
| 0.34        |              | 0.07 | 0.2          | 1.9 | 26.26 |
| 0.34        |              | 1.49 | 0.6          | 4.8 | 26.27 |
| <del></del> |              | 1.52 | 0.5          | 2.1 | 26.28 |
| <del></del> |              | 0.26 | 0.31         | <1  | 26.29 |
|             |              | 0.76 | 1            | 4.4 | 26.30 |
|             |              | 0.16 | 0.3          | 2   | 26.31 |
| <del></del> | 0.6          | 0.05 |              | 1.6 | 26.32 |
|             | 0.6          | 0.06 |              | 4   | 26.33 |
|             | 0.23         | 0.00 |              | 7   | 26.34 |
|             | 0.25         | 0.05 | <del> </del> | 4.5 | 26.35 |
|             | 0.3          |      | †            | 1.9 | 26.36 |
|             | 0.09         | 0.07 | <del> </del> | <1  | 26.37 |
|             |              |      |              | <1  | 26.38 |
|             |              |      |              | 3.1 | 26.39 |
|             |              |      | 0.00         | 14  | 27.01 |
|             |              | 0.47 | 0.06         | 5.1 | 27.02 |
|             |              | 1.1  | 0.5          | 6.3 | 27.03 |
|             |              | 0.56 | >10          |     | 27.04 |
|             |              | 0.27 | 0.1          | 11  | 27.05 |
|             |              | 0.3  | 0.04         | 8.2 |       |
|             |              | 0.31 | 0.08         | 1   | 27.06 |
|             |              | 0.57 | 2            | 5.5 | 27.07 |
|             |              | 0.75 | 0.6          | 9.3 | 27.08 |
|             |              | 0.36 | 0.5          | 4.2 | 27.09 |
| 0.0         | <del></del>  | 0.46 | 0.3          | 12  | 28.01 |
| 0.3<br>3.71 |              | 0.44 | 80.0         | 1.9 | 28.02 |
| 3.71        |              | 0.29 | 0.07         | 7.4 | 28.03 |
|             |              | 0.3  | 0.3          | 7.5 | 28.04 |
|             |              | 0.12 | 0.1          | 6.7 | 28.05 |
| 1.39        |              | 0.56 | 0.6          | 17  | 28.06 |
|             |              | >10  | 3            | 47  | 28.07 |
|             | <del></del>  | 0.37 | 0.4          | 4.6 | 28.08 |
|             |              | 0.36 | 0.5          | 3.1 | 28.09 |
|             |              |      | 3            | 20  | 28.10 |
|             |              | 1.85 | 0.5          | 4.2 | 28.11 |
|             |              | 0.63 | 0.3          | 3.2 | 28.12 |
| 0.1         |              | 0.43 | 0.3          | 7.8 | 28.13 |
|             | 0.29         | 0.55 | 0.1          | 3   | 28.14 |
|             |              | 1.44 | 0.5          | 10  | 28.15 |
|             |              | 0.69 | 0.11         | 11  | 28.16 |
|             | 0.6          |      |              | 15  | 28.17 |
|             |              | 1.9  | 0.16         | 9.1 | 28.18 |
|             |              | 2.03 | >10          | 3.7 | 28.19 |
|             |              | 0.14 | 0.5          |     | 28.20 |
|             |              | 0.4  | 2            | 4.4 | 28.21 |
|             |              | 0.23 | 0.1          | 1.3 | 28.22 |
|             |              | 0.3  | 0.1          | 1.3 | 28.23 |
|             |              | 0.28 | 0.5          | 5.9 |       |
| 2.57        |              | 0.09 | 0.2          | 2.9 | 28.24 |
|             |              | 0.13 | 0.04         | 3.9 | 28.25 |
| <del></del> |              | 0.57 | 0.2          | 6.6 | 28.26 |
|             | 0.5          | 0.42 | 0.3          | 2.4 | 28.27 |
|             | 1            | 0.52 | 0.4          | 5.2 | 28.28 |
| <del></del> | <del>'</del> | 0.36 | 0.4          | 11  | 28.29 |
|             | <del></del>  | 0.11 | 0.9          | 2.3 | 28.30 |

WO 2004/080980

- 170 -

| 28.31 | 7.4      | 0.06  | 1.06 |       |
|-------|----------|-------|------|-------|
| 29.01 | 13       | 0.7   | 2.2  |       |
| 29.02 | 3.3      | 0.7   | 1.1  | 0.09  |
| 29.03 | 5.6      | 0.1   | 0.99 |       |
| 30.01 | 22       | 0.2   | 0.89 |       |
| 30.02 | 12       | 0.2   | 0.85 |       |
| 30.03 | 19       | 0.5   | 0.68 |       |
| 30.04 | 25       | 0.3   | 0.99 |       |
| 30.05 | 8.5      | 2     | 0.29 |       |
| 30.06 | 15       | 1     | 1.03 |       |
| 30.07 | 8.8      | 0.6   |      |       |
| 31.01 | 30       | >10   | 0.47 |       |
| 31.02 | 31       | 0.28  | 1.6  |       |
| 32.01 | 4.1      | 0.28  | 0.29 | 0.42  |
| 32.02 | 5.9      | 0.05  | 0.29 |       |
| 33.01 | 2.5      | 0.08  | 0.37 | 0.12  |
| 33.02 | 5.2      |       | 0.25 |       |
| 34.01 | 8        | 0.06  | 0.25 | 0.1   |
| 34.02 | 11       | 0.1   | 0.37 | 0.28  |
| 34.03 | 33       | 0.08  | 1.17 |       |
| 34.04 | 13       | 0.19  | 2.25 |       |
| 34.05 | 51       | >10   | 1.22 |       |
| 34.06 |          | 0.36  | 5.1  |       |
| 34.07 | 14<br>27 | >10   | 3    |       |
| 34.08 |          | >10   | 2.7  |       |
| 35.01 | 8.7      | >10   | 1.9  |       |
| 35.02 | 6.8      | >10   | 1.43 |       |
|       | 6.1      | 0.7   | 0.23 |       |
| 51.00 | 8.1      | 0.013 | 0.19 | 0.2   |
| 52.00 | 13       | 0.2   | 0.41 | <0.08 |

