TI Übungsstunde 5

Marcel Schmid

marcesch@student.ethz.ch

23.09.2020

1 Korrekturen

- Lemma 3.3 Beweise sehr, sehr gut! Genau so machen an einer Prüfung
- Aufpassen, mit "gefährlichen" Schlüssen, e.g. wenn L_1 nicht regulär ist, dann ist $L_1 \cup L$ nicht regulär für L regulär
- ⇒ "Sinn" der Aufgabe 12, solche intuitiven Annahmen zu widerlegen!
- Nur in Vorlesung/Buch/Serien bewiesene Aussagen ohne Beweis weiterverwenden
- Bei Aufgabe 12 waren viele fast zu lasch mit Begründung/Beweise der Nichtregularität ("offensichtlich")
- \Rightarrow E.g. $\{1^n0^n \mid n \in \mathbb{N}\} \notin \mathbb{L}_{EA}$ ok nur mit Begründung
- \Rightarrow Aber bspw. $\{0^i 1^j \mid i \geq j\}$ muss dann gezeigt werden
- Ein EA ist ein Quintupel, keine Menge!

2 Theorie/Repetition

2.1 Nichtdeterministische EA

- Grosser Unterschied zwischen EA und NEA?
- $\Rightarrow \delta_D: Q \times \sigma \to Q$ wird zu $\delta_N: Q \times \Sigma \to \mathcal{P}(Q)$
 - \Rightarrow Also kann es nun mehrere oder keine Transitionen für ein $a \in \Sigma$ geben!
 - \Rightarrow Der NEA ist eine Art "intelligente" Maschine, der automatisch/magisch den richtigen Berechnugnspfad auswählt.
- Die Konstruktion aus Satz 3.2. zeigt, dass NEAs und DEAs die gleichen Sprachen erkennen (nichtdeterminismus ist kein "stärkeres" mathematisches Modell)

2.2 Turing Machines

- Ihr werdet nie eine TM formell angeben müssen, aber ihr solltet das Modell kennen
- Unterschied zu EAs?
- ⇒ "Arbeitsspeicher" mit separatem Alphabet!
- $q_{\text{accept}}, q_{\text{reject}}$ und unendliche Berechnung
- $\Rightarrow L(M)$ sind alle Eingaben von M, wo M in einem akzeptierenden Zustand landet
 - ⇒ Damit sind alle akzeptierten Berechnungen endlich
 - \Rightarrow man muss daher aufpassen mit Aussagen über $L(M)^C$
- $\mathcal{L}_{RE} = \{L(M) \mid M \text{ ist eine TM}\}$, rekursiv aufzählbar
- $\mathcal{L}_R = \{L(M) \mid M \text{ hält zudem immer}\}$, rekursiv

- MTMs: wie in Section 4.4. gesehen kann man immer eine MTM konstruieren statt einer TM (L4.2) \Rightarrow das macht Beweise der Form $L \in L_{R/RE}$ leichter
- NTM wieder sehr ähnlich wie NEAs; die Maschine macht "automatisch" das richtige, i.e. trifft die richtige Wahl
- \bullet Kod(M): es gibt die Möglichkeit, eine TM eindeutig mit endlich vielen Bits zu kodieren.

3 Übungen

3.1 HS8, 1a)

Sei $L = \{1x \mid x = y1$ für ein $y \in \{0,1\}^*$ oder x = z00 für $z \in \{0,1\}^*\}$. Konstruiere einen NEA mit höchstens 4 Zuständen, der L erkennt.

- 1. Wir brauchen sicher schon mal 2 States, um die Bedingung 1x zu Prüfen.
- 2. Weiter brauchen wir sicherlich 2 weitere States, um die Bedingung x = z00 zu prüfen.
- 3. Der Trick besteht nun darin, zu sehen, wie wir noch die letzte Bedingung x=y1 prüfen können: wir haben keine States mehr "über", die wir hinzufügen könnten. Aber wir können die 4 Zustände noch um Transitions ergänzen.
 - \Rightarrow Von den 4 Zst. ist lediglich der Zustand "hinter" x00 akzeptierend. Wir wollen, dass ein Suffix 1 auch dort endet \Rightarrow daher können wir eine Transition dorthin noch einfügen, welche bei "1" genommen werden kann:

4. Begründung: Wir müssen begründen, dass alle Wörter, welche im akzeptierenden Zustand enden, von der gefrgten Form sind (Präfix und Suffix wird geprüft).

Zudem sollten wir kurz erklären, warum ein Wort in L erkennt werden kann $(y/z \in \{0,1\}^*$ wird in q_1 geprüft.)

3.2 HS18, 3b))

Sei $L_n = \{x \in \{0,1\}^* \mid |x|_1 \ge n\}$. Zeige, dass jeder DEA, der L_n akzeptiert, mindestens n+1 Zst. hat:

- 1. Das ist sehr ähnlich wie die üblichen Lemma 3.3. Beweise, aber wenn mans noch nie gesehen hat, kanns schwierig sein.
- 2. Wir machen wie immer einen Widerspruchsbeweis: Wir nehmen an, dass es einen EA $A = (Q, \Sigma, \delta, q_0, F)$ gibt, der weniger als n Zustände braucht und L_n akzeptiert.
- 3. Dann betrachten wir die folgenden Wörter:

$$1^i, \quad i \in \{0, \dots, n\}$$

4. Für unser EA muss Lemma 3.3 gelten, in anderen Worten: Falls für $i \neq j$ gilt $\hat{\delta}(q_0, 1^i) = \hat{\delta}(q_0, 1^j)$, dann gilt für alle $z \in \Sigma^*$:

$$\hat{\delta}(q_0, 1^i z) = \hat{\delta}(q_0, 1^j z)$$

5. Da wir per Annahme nur n Zustände haben, aber n+1 Wörter betrachten, muss es i, j geben mit i < j so dass obige Gleichung erfüllt ist.

 \Rightarrow das führt aber direkt zu einem Widerspruch: denn für das Suffix $z=1^{n-i}$ gilt:

$$1^{i}z = 1^{i}1^{n-i} = 1^{n} \in L_{n}$$

Aber:

$$1^{j}z = 1^{j}1^{n-i} = 1^{n-i+j} \notin L_n$$

Denn wegen i < j folgt, dass die Anzahl an Einsen in $1^{j}z$ strikt grösser als n ist.

6. Somit haben wir einen Widerspruch und wir haben die Behauptung gezeigt.

3.3 HS15, 4a)

Zeige: $L = \{0^{n \cdot \lceil \sqrt{n} \rceil} \mid n \in \mathbb{N}\}$ ist nicht regulär (mit Kolmogorov-Methode):

1. Wir betrachten die folgende Präfixsprache für alle $n \in \mathbb{N}$:

$$L_{0^{n\cdot\lceil\sqrt{n}\rceil-\lceil\log n\rceil}}$$

- 2. Note: Vor einer Woche war λ das erste Wort in der Sprache und basierend auf dieser Begründung konnten wir das nächste Wort in der Präfixsprache in kanonischer Ordnung suchen.
 - \Rightarrow Hier "sehen" wir, dass $0^{\lceil \log n \rceil}$ das erste Wort der Sprache ist, aber ist es das wirklich?
 - \Rightarrow Wir müssen zeigen, dass für alle $n \in \mathbb{N}$ (oder zumindest für unendlich viele, siehe später im Beweis) das erste Wort in $L_{0^{n \cdot \lceil \sqrt{n} \rceil \lceil \log n \rceil}}$ of $0^{\lceil \log n \rceil}$ ist.
- 3. Dazu schauen wir uns das folgende Wort an:

$$w := 0^{n \cdot \lceil \sqrt{n} \rceil - \lceil \log n \rceil} 0^{\lceil \log n \rceil} = 0^{n \cdot \lceil \sqrt{n} \rceil} \in L$$

Offenbar ist das in L, also gibt es ein $k \in \mathbb{N}$, so dass w das k-te Wort in kanonischer Ordnung in L ist. Wir schreiben $w = w_k$

4. Jetzt schauen wir uns das (k-1)-te Wort in L an:

$$w_{k-1} = 0^{(n-1)\cdot\lceil\sqrt{n-1}\rceil}$$

da $n \cdot \lceil \sqrt{n} \rceil$ offenbar monoton steigt.

- 5. Unser Ziel ist es jetzt zu zeigen, dass quasi kein Wort "Platz" hat zwischen w_{k-1} und w_k : Nehmen wir mal an, dass w_k nicht das erste Wort in $L_{0^{n\cdot \lceil \sqrt{n}\rceil \lceil \log n \rceil}}$ ist. Dann gäbe es ein Wort $w_x = 0^x$ so dass $0^{n\cdot \lceil \sqrt{n}\rceil \lceil \log n \rceil}0^x = 0^{m\cdot \lceil \sqrt{m}\rceil}$ gilt für ein m < n.
- 6. Doch für x = 0 (i.e. $0^x = \lambda$) kriegen wir das Folgende¹:

Claim:
$$(n-1) \cdot \lceil \sqrt{n-1} \rceil < n \cdot \lceil \sqrt{n} \rceil - \lceil \log n \rceil + x$$

Proof:

$$(n-1) \cdot \lceil \sqrt{n-1} \rceil < n \cdot \lceil \sqrt{n} \rceil - \lceil \log n \rceil + x$$

$$\iff n \cdot \lceil \sqrt{n-1} \rceil - \lceil \sqrt{n-1} \rceil \le n \cdot \lceil \sqrt{n} \rceil - \lceil \sqrt{n} \rceil < n \cdot \lceil \sqrt{n} \rceil - \lceil \log n \rceil$$

$$\iff -\lceil \sqrt{n} \rceil < -\lceil \log n \rceil$$

Was offensichtlich für alle $n \geq n_0$ gilt für ein $n_0 \in \mathbb{N}$.

- 7. Was haben wir jetzt gezeigt?
 - \Rightarrow Wenn es ein Wort w_x in $L_{0^{n\cdot\lceil\sqrt{n}\rceil-\lceil\log n\rceil}}$ geben sollte, welches eine kleinere kanonische Ordnung hat als $w=w_k$, dann müsste es zwischen w_{k-1} und w_k liegen in L
 - \Rightarrow Widerspruch, also ist $0^{\lceil \log n \rceil}$ für alle $n \geq n_0$ (sprich unendlich viele) das erste Wort in der Präfixsprache
- 8. Somit kriegen wir aber einen Widerspruch zu Satz 3.1: Gemäss dem müsste dann nämlich für alle $n \ge n_0$ gelten, dass

$$K(0^{\lceil \log n \rceil}) \le \log(1+1) + c$$
, c konst.

Was natürlich nicht sein kann. Somit ist unsere Annahme, dass L regulär ist, falsch.

 $^{^1}$ Anm.: wir müssen diesen Claim für alle $0 \le x \le \lceil \log n \rceil$ zeigen. Wir können uns aber auf x = 0 beschränken, da wir zeigen wollen, dass wir mit keinem Suffix zu einem kleineren Wort als w_{k-1} "gelange" können – wenn wir nicht einmal mit dem leeren Wort ein kleineres Wort erreichen, dann erübrigen sich die anderen Suffixe damit auch.

4 Neue Serie

- 20 Punkte maximal möglich die Bonusaufgabe zählt wieder nicht
- Bonusaufgabe a) ist "normal" schwierig, b) ist recht tricky
- Bei Pumping-Lemma aufpassen, was ihr wählen dürft und was ihr für alle Möglichkeiten zeigen müsst.