

PCT/GB 2004 / 0 0 1 3 9 0

INVESTOR IN PEOPLE

The Patent Office

Concept House

Cardiff Road

Newport

South Wales

NP10 8QQ

REC'D 10 MAY 2004

WIPO

PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

I also certify that the application is now proceeding in the name as identified herein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed *Andrew Genge*
Dated 30 April 2004

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

GB 0307082.8

By virtue of a direction given under Section 30 of the Patents Act 1977, the application is proceeding in the name of:

MPATHY MEDICAL DEVICES LIMITED,
6.05 Kelvin Campus,
West of Scotland Science Park,
GLASGOW,
G20 0SP,
United Kingdom

Incorporated in the United Kingdom,

[ADP No. 08730905001]

Patents Form 1/77

Patents Act 1977
(Rule 16)

THE PATENT OFFICE
CD
27 MAR 2003
RECEIVED BY FAX

27MAR03 E795753-1 D02884
P01/7700 0.00-0307082.8

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ**Request for grant of a patent**

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

P29925-CMU/RTH/RMC

2. Patent application number*(The Patent Office will fill in this part)*

0307082.8

27 MAR 2003

3. Full name, address and postcode of the or of each applicant *(underline all surnames)*

Gyne Ideas Limited
1 Bell Leys
Wingrave
Buckinghamshire HP22 4BD
United Kingdom

*Patents ADP number (if you know it)**If the applicant is a corporate body, give the country/state of its incorporation*

United Kingdom

4. Title of the invention

"Drug Delivery Device and Method"

5. Name of your agent *(if you have one)*

"Address for service" in the United Kingdom
to which all correspondence should be sent
(including the postcode)

Murgitroyd & Company

Scotland House
165-169 Scotland Street
Glasgow
G5 8PL

Patents ADP number (if you know it)

1198015

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and *(if you know it)* **the or each application number**

Country

Priority application number
*(if you know it)*Date of filing
*(day / month / year)***7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application**

Number of earlier application

Date of filing
*(day / month / year)***8. Is a statement of inventorship and of right to grant of a patent required in support of this request?** *(Answer 'Yes' or 'No')*
 a) *any applicant named in part 3 is not an inventor, or*
 b) *there is an inventor who is not named as an applicant, or*
 c) *any named applicant is a corporate body.*
See note (d))

Yes

Patents Form 1/77

0064734 27-Mar-03 05:12

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description	26
Claim(s)	-
Abstract	-
Drawing(s)	5

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)Request for preliminary examination and search (*Patents Form 9/77*)Request for substantive examination
(*Patents Form 10/77*)Any other documents
(please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature Date
27 March 2003
Murgitroyd & Company

12. Name and daytime telephone number of person to contact in the United Kingdom

ROISIN MCNALLY

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 "Drug Delivery Device and Method"

2

3 This invention relates to a drug delivery device and
4 a method of delivering a drug.

5

6 There is a huge number of drugs which may be
7 administered to the human and animal body for the
8 prevention or treatment of disease. Different types
9 of drugs call for different ways of administering
10 the drug to the human or animal body.

11

12 Perhaps the most common method of delivering a drug
13 is by ingestion. In other words, drugs are provided
14 in pill, capsule, powder or liquid form for oral
15 administration to a human or animal. The drug is
16 then absorbed by the digestive system and will
17 usually enter the blood stream via the liver to take
18 effect. However, far from all drugs are suitable
19 for such administration. For example, many drugs
20 would be broken down by the digestion process and
21 destroyed before they can enter the blood stream.
22 This problem is caused by what is commonly referred
23 to as the "first past liver metabolism" of the human

1 or animal body, i.e. the process by which all
2 substances absorbed by the digestive system must
3 pass through the liver into the blood stream.

4

5 Another very common way in which drugs are
6 administered, which avoids the problems of the first
7 past liver metabolism, is by injection. Drugs
8 desired to take an instant effect in the blood
9 stream of a human or animal body may be injected
10 into a vein, i.e. intravenously. Alternatively,
11 drugs may be injected into muscle tissue from which
12 the drug is absorbed more slowly into the blood
13 stream. Drugs for injection into muscle tissue may,
14 for example, be provided in an oily base which helps
15 to regulate the rate of absorption. However,
16 injections can be painful and difficult,
17 particularly injections into muscle tissue, and can
18 lead to tissue damage where frequent injections are
19 required on a long term basis, e.g. of insulin for
20 diabetics. Other types of drug delivery include
21 nasal sprays for administration of drugs to the
22 nasal tissues and lungs; patches, such as the
23 Nicorette® patch, for the application of drugs, e.g.
24 Nicotine, through the skin; and lotions or ointments
25 for topical application, i.e. directly to an
26 affected part of the body.

27

28 All of the above drug delivery methods are useful
29 for particular types of drugs and medicines, but are
30 unable to provide therapeutic levels of drugs over a
31 long term, e.g. weeks and months rather than days,

1 without repeated application by the patient or a
2 carer.

3

4 For passive application of drugs on a long term
5 basis, various implants have been developed. One
6 such type of implant may be inserted under the skin
7 and have a mechanism for slowly releasing a drug
8 into the blood stream of the human or animal in
9 which it is implanted. For example, Norplant® or
10 Implanon® comprise an implant having small capsules
11 or rods which slowly release levonorgestrel or
12 etonorgestrel into the blood stream to provide a
13 contraceptive effect for women. Norplant® can be
14 effective for up to five years. However, the
15 insertion of such an implant is painful and requires
16 local anaesthesia on both insertion and removal.
17 Furthermore, implantation can cause significant
18 bruising and discomfort. In addition, as such
19 implants are placed under the skin in for example
20 the arm, they can be visible and cause
21 discolouration of the skin. As the arm contains
22 many different types of tissue and planes of tissue,
23 movement of the implant along or through these
24 tissue planes can occur. This can mean the implant
25 moves to locations other than where it was placed
26 during insertion which can lead to complications for
27 the patient, in particular during removal of the
28 implant. Difficulties with the Norplant® implant
29 has led to it being withdrawn from clinical use.
30

31 Another type of implant is a contraceptive coil or
32 intrauterine device, IUD or IUCD which is placed in

1 the uterus to provide a contraceptive effect. A
2 coil may be impregnated with hormones such as
3 levonorgestrel to reduce the thickening of the
4 endometrium of the uterus during the menstrual
5 cycle. Likewise vaginal rings, comprising soft
6 plastic rings of around 4cm to 5cm in diameter
7 impregnated with a desired drug, are sometimes used
8 for hormone replacement therapy. Vaginal rings are
9 placed in the vagina around the cervix where they
10 can slowly release a drug into the bloodstream
11 through the soft tissue of the cervix. However,
12 such vaginal rings are uncomfortable during sex and
13 both vaginal rings and coils can lead to vaginal
14 discharges and general discomfort to the wearer.
15 Coils in particular can cause severe discomfort,
16 such as stomach cramps, due to the direct
17 application of levonorgestrel to the uterus.
18

19 According to the present invention there is provided
20 a drug delivery device comprising an implant for
21 insertion into the myometrium (the smooth muscle of
22 the uterus).

23
24 In one embodiment the implant comprises a point to
25 facilitate insertion into the myometrium and a body
26 in which a drug can be held prior to delivery.
27

28 The implant may further comprise insertion and / or
29 retrieval means to allow manipulation. This is
30 advantageous over implants previously known in the
31 art as the myometrium has few somatic (pain) nerves.
32 Further there is little tissue or muscle movement in

1 the myometrium compared with for example the tissues
2 of the arm or the leg. In addition, the myometrium
3 does not comprises as many layers or planes of
4 tissue as in the arm or leg, minimising the
5 likelihood of movement of the implant following
6 insertion to a different location.

7

8 There is also provided a method of delivering a drug
9 comprising inserting at least one drug delivery
10 device into the myometrium.

11

12 The myometrium is the smooth muscle of the body of
13 the uterus and the cervix.

14

15 Preferably the drug delivery device is an implant
16 which can be inserted into the myometrium, for
17 retention therein.

18

19 Preferably the drug delivery device is an implant
20 which can be inserted into the myometrium, for
21 retention therein for a defined period of time.

22

23 The retention of the implant in the myometrium for a
24 defined period of time allows the delivery of a drug
25 to the surrounding tissues and bloodstream over a
26 period of time.

27

28 Preferably access to the myometrium is via the
29 vagina through the cervix. This has the advantage
30 that the implant can be suitably located using a
31 speculum in an outpatient setting. The insertion of
32 the implant in the myometrium would be similar in

1 both the time taken and the discomfort to the
2 patient as the taking of a smear.

3

4 Preferably the implant is located in the myometrium
5 of the cervix. Vaginal access allows the implant to
6 be located in the myometrium of the cervix and the
7 location of the implant can be checked by speculum
8 examination following implantation.

9

10 Alternatively access to the myometrium may be
11 available during open or laproscopic surgery. This
12 has the advantage of allowing the implant to be
13 placed at any suitable location in the myometrium,
14 usually of the body of the uterus. The implant may
15 thus be placed in the myometrium of the body of the
16 uterus, or other positions which would not be
17 accessible by access via the vagina.

18

19 According to another aspect of the present invention
20 there is provided a drug delivery device comprising
21 an implant for insertion into the prostate gland.

22

23 There is also provided a method of delivering a drug
24 comprising inserting at least one drug delivery
25 device into the prostate gland.

26

27 Preferably the drug delivery device is an implant
28 which can be inserted into the prostate for
29 retention therein.

30

31 This has the advantage that drugs can be delivered
32 to the tissue of the prostate, surrounding the

1 prostate, and the bloodstream. Further, delivery of
2 drugs directly to the prostate means the drugs are
3 not subjected to liver metabolism as would be the
4 case for drugs provided orally.

5

6 Preferably the drug delivery device is an implant
7 which can be inserted into the prostate for
8 retention therein for a defined period of time.

9

10 This has the advantage that drugs can be supplied to
11 the tissue of the prostate, the tissue surrounding
12 the prostate, and the bloodstream over a period of
13 time.

14

15 Preferably the defined period of time is between 1
16 month and 5 years from insertion of the implant.

17

18 In other words, in one embodiment a drug delivery
19 device is implanted in the myometrium where it
20 releases a drug for absorption through the smooth
21 muscle and soft tissue into the blood stream.

22

23 Alternatively, a drug delivery device is implanted
24 in the prostate where it releases a drug for
25 absorption into the blood stream.

26

27 The drug delivery device of the present invention
28 differs from the coil or a vaginal ring as disclosed
29 in the prior art, in that the drug delivery device
30 is actively inserted into the tissue of the
31 myometrium. The coil is located in the cavity of
32 the uterus (endometrium) and vaginal rings are

1 placed at the top of the vagina around the cervix.
2 These devices of the prior art therefore differ from
3 the delivery device of the present invention which
4 is actively inserted into the smooth muscle of the
5 cervix or of the uterine body (myometrium).

6

7 Preferably the implant comprises an insertion point
8 and a body including a drug carrying medium which
9 includes the drug to be administered.

10

11 The drug is therefore administered by release from
12 the medium, e.g. by the medium dissolving.

13

14 Preferably the body is retrievable at the end of the
15 drug application, e.g. after a few weeks, months or
16 years. This has the advantage that the drug
17 delivery means are not left in the body forever and
18 further provides a means for controlling the amount
19 of drug given and the time over which the drug is
20 provided. It can also be removed if the patient
21 requests for any reason or if problems are
22 encountered.

23

24 The body may be any material which is capable of
25 providing a semi-sharp point.

26

27 Preferably at least the insertion point is metallic.

28

29 The myometrium surrounding the uterus and vaginal
30 cavity has very few or no somatic sensory (pain)
31 nerves and insertion and retention of the implant in

1 this smooth muscle and tissue is therefore
2 substantially painless for the patient or wearer.
3

4 This has significant advantages over conventional
5 implants such as Norplant® which are inserted under
6 the skin. Unlike these conventional implants which
7 are inserted into the skin, which has sensory nerves
8 and into which insertion is painful, the implant
9 described by the present invention is inserted into
10 tissues which have minimal numbers of sensory
11 nerves. In addition the minimal number of sensory
12 nerves in the myometrium means that withdrawal of
13 the implant is substantially painless and the
14 presence of the implant during use is not painful
15 and minimal discomfort is experienced by the
16 patient. In effect the implant is "invisible" to
17 the patient, but visible to the clinician if
18 required.

19
20 The location of the implant within the smooth muscle
21 of the cervix and uterus provides a novel means of
22 drug delivery to a specific location in the body.
23 The location of the implant promotes rapid
24 absorption of released drug and the released drug
25 does not require to undergo liver metabolism. In
26 addition, drug delivery by means located within the
27 tissue of the myometrium minimises problems of
28 absorption through mucosal layers overlying tissues,
29 as experienced in drug delivery means placed around
30 tissues or in cavities such as vaginal rings and
31 intrauterine devices.

32

10

1 Preferably, the drug delivery device of the present
2 invention is significantly smaller than coils, IUD
3 or vaginal rings. This is advantageous as there
4 will be less discomfort to the person in which the
5 drug delivery device is implanted and less
6 likelihood of rejection of the implant by the body
7 or responses such as inflammation.

8
9 The drug delivery device of the present invention is
10 inserted in and retained in the smooth muscle of the
11 myometrium. This differs from the location of
12 intrauterine devices and vaginal rings which are not
13 inserted into tissue or smooth muscle, but instead
14 are placed within the cavity of the uterus or in the
15 vaginal cavity around and not within the tissue of
16 the cervix.

17
18 Preferably the implant does not therefore cause any
19 discomfort to the wearer during use.

20
21 Another advantage of the present invention is that
22 insertion of the implant into the myometrium
23 provides efficient absorption of the drug. The
24 vaginal cavity is lined or covered with mucus, i.e.
25 vaginal mucosa. Drugs released from a vaginal ring
26 must pass through the vaginal mucosa before being
27 absorbed into the vaginal wall and passing into the
28 blood stream. In contrast, as the implant of the
29 present invention is located in the myometrium,
30 drugs released from the implant pass directly into
31 the smooth muscle and blood stream. This is
32 advantageous as it provides for systemic delivery of

11

1 drugs which unlike drugs provided orally do not
2 require to undergo liver metabolism on entry into
3 the body.

4
5 The myometrium has a high density of blood vessels
6 and is therefore particularly suited to absorbing
7 drugs released from the implant. The myometrium is
8 also in a convenient location, at the top of the
9 vaginal cavity, for insertion and removal of the
10 implant. This is advantageous as it allows the
11 implant to be placed by vaginal access in an
12 outpatient setting. Further, the location of the
13 implant can be easily checked by speculum
14 examination.

15
16 Preferably the implant is inserted and retained in
17 the smooth muscle tissue of the cervix.

18
19 Preferably the implant is inserted into the smooth
20 muscle of the cervix via the vagina.

21
22 Alternatively the implant is inserted into the
23 myometrium through serosa surrounding the
24 myometrium.

25
26 In a further alternative the implant is inserted
27 into the myometrium through the transendometrium.

28
29 The prostate is a gland in males which surrounds the
30 top of the bladder.

31

12

1 Preferably insertion of an implant into the prostate
2 is by a transrectal route.

3

4 Alternatively the implant can be inserted into the
5 prostate by a trans perineal route.

6

7 Preferably insertion of an implant is performed
8 using ultrasound.

9

10 As mentioned above, the implant may comprise a body
11 and drug delivery means. More specifically, the
12 implant may comprise a metallic, e.g. surgical
13 steel, body.

14

15 Preferably the body comprises a first end which
16 includes a semi-sharp point, a middle portion which
17 provides for drug delivery and retrieval means at
18 second opposite end of the body. It is advantageous
19 if the retrieval means allow the location of the
20 body to be determined by either visual or physical
21 examination.

22

23 The body can be of any shape which allows
24 implantation.

25

26 Preferably the body is elongate. This allows the
27 implant to be easily inserted into the tissue.

28

29 In cross section the body can be of any preferred
30 shape to influence the drug delivery characteristics
31 of the implant. For example the body may be cross

1 shaped to increase the surface area of the body
2 exposed to the surrounding tissue.

3
4 Preferably the body has maximal surface area in
5 relation to its length or volume. This has the
6 advantage of providing maximal absorption of the
7 drug into the surrounding tissues and / or smooth
8 muscle.

9
10 Preferably along the length of the body is at least
11 one drug delivery means.

12
13 Preferably the drug delivery means comprises a
14 medium carried by the body, in which medium the drug
15 to be administered is carried.

16
17 Alternatively, the implant may be a homogeneous
18 unit. For example the body may be formed from the
19 medium carrying the drug. The medium carrying the
20 drug may be absorbable.

21
22 In one embodiment the implant is non-absorbable.

23
24 Alternatively the implant is at least partially
25 absorbable.

26
27 The medium carrying the drug may be enclosed by the
28 body.

29
30 Alternatively the medium carrying the drug is not
31 enclosed by the body.

32

1 The implant itself may be the medium in which the
2 drug to be administered is carried. In this
3 example, the implant can be soluble. The entire
4 implant can therefore be absorbed over the period of
5 time that the drug is administered.

6

7 The implant may have any structure suitable for
8 insertion and retention in the smooth muscle of the
9 myometrium or the tissue of the prostate. For
10 example the implant may comprise barbed portions or
11 surface patterns to promote retention of the implant
12 in the myometrium or prostate. This may be
13 advantageous if movement of the tissue in which the
14 implant is inserted is likely to cause the implant
15 to work loose and move from its intended position.

16

17 Preferably, the implant is generally needle shaped
18 or the implant is a needle.

19

20 Alternatively the implant comprises a pointed metal
21 spiral attached to means which allows the implant to
22 be moved into the myometrium or the prostate.

23

24 The means which allow the implant to be moved into
25 the myometrium or the prostate may also allow the
26 removal of the implant from the myometrium or the
27 prostate.

28

29 Preferably the implant is corkscrew shaped.

30

31 Preferably the implant has a point at one (distal)
32 end for aiding insertion of the implant into the

1 myometrium or the prostate. This is advantageous as
2 it allows the implant to be easily inserted into the
3 smooth muscle of the myometrium or the tissue of the
4 prostate. The implant can therefore be pressed into
5 the myometrium using the pointed distal end.

6

7 Alternatively, an insertion tool is provided having
8 a pointed end for driving the implant into the
9 myometrium or the prostate. This is advantageous as
10 it means the implant to be left in the body does not
11 require a pointed portion.

12

13 According to another aspect of the present
14 invention, there is provided a tool for inserting a
15 drug delivery implant into the myometrium or the
16 prostate, the tool comprising a pointed end for
17 penetrating the smooth muscle and soft tissue and a
18 collar for releasably retaining the implant.

19

20 The implant need not have an integral pointed
21 portion.

22

23 Preferably the implant is provided in an insertion
24 tool the collar of the tool releasably retaining the
25 implant in the tool while the implant is driven into
26 the myometrium or the prostate using the tool. The
27 implant can then be released from the tool when the
28 implant is suitably located in its intended position
29 and the tool withdrawn.

30

31 Preferably the implant further comprises retrieval
32 means. This is advantageous as it allows the

16

1 implant to be removed after a period of time and
2 allows control over the length of time a drug is
3 delivered. Further, it means the delivery device is
4 not required to be retained in the body forever.

5

6 Preferably the retrieval means is adapted to allow
7 the implant to be removed from the myometrium or the
8 prostate after use.

9

10 The retrieval means can be any means which allows
11 the removal of the implant from the myometrium or
12 the prostate following a determined period of time.
13 This provides a means for controlling the length of
14 time over which the drug is delivered.

15

16 Preferably, the retrieval means comprises a hook at
17 a proximal end of the implant.

18

19 Preferably, the body is generally J or U shaped such
20 that the proximal end of the implant forms a loop or
21 hook.

22

23 Alternatively the retrieval means comprises an
24 elongate flexible member.

25

26 Preferably the elongate flexible member is a thin
27 length of cord, twine or fibre.

28

29 Preferably the elongate flexible member is string.

30

31 Preferably the elongate flexible member can be left
32 outside the myometrium and soft tissue surrounding

17

1 the uterus and / or vaginal cavity without causing
2 irritation to a patient.

3

4 When it is desired to remove the implant, the
5 flexible member can be manipulated to pull the
6 implant out of the myometrium.

7

8 Alternatively the retrieval means is capable of
9 accepting a screwdriver or other means for placing
10 the implant in the body and/or removing the implant
11 from the body.

12

13 Preferably the retrieval means can receive an
14 implant removal device.

15

16 Preferably the medium may be any suitable substance
17 for carrying a drug to be administered and slowly
18 releasing it into the myometrium or the prostate,
19 surrounding soft tissues and blood vessels.

20

21 Preferably the implant comprises a visible or
22 palpable locator. This is advantageous as it allows
23 the location of the implant to be determined by
24 either a visual inspection or by a physical
25 inspection.

26

27 More preferably the retrieval means is a visible or
28 palpable locator.

29

30 This is advantageous as the retrieval means is
31 typically accessible and would allow the location of

- 1 the implant to be checked by visual or physical
- 2 inspection.
- 3
- 4 Preferably the implant may be left in the myometrium
- 5 or the prostate for a prolonged length of time.
- 6
- 7 Preferably the implant may be left in the myometrium
- 8 or the prostate and the drug delivered over a period
- 9 of one month to 5 years.
- 10
- 11 The implant may be left in the myometrium or the
- 12 prostate and the drug delivered over a period of at
- 13 least one hour, 1 day, 1 to 3 months, 1 to 6 months,
- 14 1 to 12 months, 1 to 2 years or 1 to 5 years.
- 15
- 16 Preferably the medium for carrying the drug is any
- 17 suitable pharmacological medium known in the art.
- 18
- 19 More preferably the medium for carrying the drug is
- 20 a hydrogel, silicone based compound or elastomer.
- 21
- 22 Preferably the drug to be delivered cannot be taken
- 23 orally.
- 24
- 25 Preferably the drug to be delivered promotes a
- 26 contraceptive effect.
- 27
- 28 Preferably the drug to be delivered is a steroid.
- 29
- 30 More preferably the drug to be delivered is a
- 31 hormone, for example progestagen.
- 32

1 Preferably the drug to be delivered is
2 levonorgestrel or etonorgestrel for the provision of
3 a contraceptive effect.

4

5 Alternatively, the drug to be delivered is at least
6 one hormone for hormone replacement therapy (HRT).

7

8 It can be appreciated that a number of other drugs
9 may be suitable for delivery by the invention such
10 as agents for killing cancer cells or treating
11 cancer, particularly cancer cells of the bladder,
12 prostate or cervix or other pelvic malignancies. In
13 these embodiments it is preferable that the drug to
14 be delivered is cytotoxic.

15

16 Alternatively the delivery device can deliver one or
17 more drug means suitable for radiotherapy.

18

19 The device may also be used to deliver one or more
20 drugs for the treatment of an over active bladder,
21 such drugs including anti-cholinergic drugs or
22 calcium antagonists.

23

24 A drug delivered by the present invention may also
25 include a microbicide. A microbicide is any agent
26 detrimental to, or destructive of, the life of
27 microbes, viruses or bacterial organisms. Such a
28 microbicide could be used to destroy organisms
29 responsible for sexually transmitted diseases such
30 as gonorrhoea, chlamydia, genital herpes or HIV.

31

20

1 The drug delivery device and method of the present
2 invention promotes smooth, controlled release of
3 drugs to a specific site in the body, which allows
4 absorption of drugs without subjecting drugs to
5 liver metabolism.

6

7 Embodiments of the present invention will now be
8 described by way of example only with reference to
9 the accompanying drawings, in which:

10

11 Figure 1 is an illustration of a first drug
12 delivery device according to the invention;

13

14 Figure 2 is an illustration of the drug
15 delivery device of Figure 1 in use;

16

17 Figure 3 is a sectional view of the
18 illustration in Figure 2 along the line A-A;

19

20 Figure 4 is an illustration of a second drug
21 delivery device according to the invention;

22

23 Figures 5 and 6 are illustrations of further
24 embodiments of a drug delivery device according
25 to the present invention;

26

27 Figure 7 is a sectional view of the
28 illustration in Figure 2 along line B-B; and

29

30 Figure 8 is an illustration of an embodiment of
31 an implant of the present invention inserted in
32 the prostate.

1

2 Referring to Figure 1, a drug delivery device
3 comprises an implant 1 having a body 2 and a drug
4 delivery means 3. The distal end of the body 2 has
5 a point 4 for penetrating soft tissue and the
6 proximal end of the body 2 is bent toward the distal
7 end to provide a hook 5. The bent, curved portion
8 or hook at the proximal end of the body 2 restricts
9 the body 2 from becoming buried in soft tissue and
10 allows retrieval of the implant 1 from soft tissue
11 and the smooth muscle of the myometrium or the
12 prostate.

13

14 The retrieval means provided by the hook 5 can both
15 limit movement of the implant into the tissue and
16 also provide means by which the location of the
17 implant can be checked by visual or physical means.

18

19 The body is metallic and is typically constructed of
20 surgical steel or titanium.

21

22 A portion of the body 2 between the point 4 and hook
23 5 houses the drug delivery means 3. In this
24 example, a length of the body 2 between the point 4
25 and hook 5 has a reduced diameter relative to the
26 diameter of the body 2 at the distal and proximal
27 ends. The drug delivery means 3 comprises a
28 cylinder of material formed around the reduced
29 diameter portion of the body 2. In this example,
30 the cylinder or material is a hydrogel carrying the
31 drug to be delivered by the drug delivery device. In

1 another example, the material is a silicone based
2 material or elastomer.

3
4 The body 2 has a diameter of 1mm and a length of
5 40mm. These diameters and lengths are, of course,
6 for guidance only and other suitable dimensions will
7 be apparent to those skilled in the art. For
8 example depending of the amount of drug to be
9 delivered the length of the body may be 20mm or
10 60mm.

11

12 Referring to Figure 2, the female human genital area
13 comprises a bladder 6, urethra 7, vaginal cavity 8,
14 cervix 9, uterus 10 and anus 11. In particular, the
15 cervix 9, at a position between the vaginal cavity 8
16 and uterus 10, comprises the cervical canal 12
17 leading from the vaginal cavity 8 into the uterus 10
18 and surrounding smooth muscle known as the
19 myometrium 13. The myometrium is defined by the
20 serosa 20 (an epithelial layer of cells) and the
21 endometrium 22. A sectional view of the cervix
22 along line A-A is shown in Figure 3.

23

24 In use, the implant 1 is passed up the vaginal
25 cavity 8 to the cervix 9 and inserted into the
26 myometrium 13. The point 4 of the implant 1
27 facilitates easy insertion into the smooth muscle of
28 the myometrium 13. The implant 1 may be manipulated
29 using any suitable surgical tool during insertion,
30 such as forceps or the like. No local anaesthetic
31 is required as the myometrium has very few or no
32 sensory nerves.

1

2 The drug delivery means is thus implanted into the
3 myometrium 13. Surrounded by smooth muscle and soft
4 tissue, the hydrogel located between the point 4 and
5 the hook 5 slowly releases the drug it contains.

6

7 Depending of the release characteristics of the
8 hydrogel and the chemical composition of the drug;
9 release of the drug will typically occur between 1
10 month to 5 years from implantation.

11

12 During retention of the implant 1 in the myometrium
13 13, straightforward examination of the vaginal
14 cavity 8 by a medical practitioner can verify that
15 the implant 1 is in its intended position in the
16 myometrium 13. Whilst there is little chance of the
17 implant 1 becoming displaced, as the hook 5 remains
18 outside the myometrium 13, any such displacement can
19 be easily observed.

20

21 The location of the implant in the smooth muscle of
22 the cervix and part of the body of the smooth muscle
23 of the uterus of the myometrium allows the implant
24 to be easily inserted and the location of the
25 implant to be easily verified by routine
26 examination.

27

28 Further, the implant is removable from the
29 myometrium. The location of the implant in the
30 tissue overcomes the disadvantages associated with
31 vaginal rings and IUD coils such as discomfort,

1 particularly during intercourse, discharge and
2 religious objections.

3

4 As smooth muscle of the cervix is highly
5 vascularised and has little somatic innervation,
6 drug delivery to these tissues show good
7 pharmacokinetics and insertion of the implant is
8 relatively painless for the patient.

9

10 Once the implant 1 has reached the end of its useful
11 life, i.e. the drug has been administered for the
12 intended length of time, the implant 1 can be
13 removed by pulling on the hook 5 to withdraw the
14 implant 1 from the myometrium 13.. Again, this is a
15 straightforward procedure without need for local
16 anaesthetic.

17

18 Referring to Figure 4, in a second embodiment of the
19 drug delivery device, an implant 14 comprises a rod
20 15 bent at a proximal end to form a hook 16. The
21 hook 16 again allows easy retrieval of the implant
22 14 from the myometrium 13, along with enabling
23 straightforward observation of the implant 14 during
24 use. The rod 15 is made from plastics material
25 impregnated with a drug to be delivered. The distal
26 end 17 of the rod 15 is blunt.

27

28 In use, the implant 14 is inserted into the
29 myometrium 13 in a similar way to the implant 1 of
30 the first embodiment. However, as the rod 15 of the
31 implant 14 has a blunt distal end 17, a needle-like
32 delivery device (not shown) is used to insert the

1 implant 14 in the myometrium 13. The delivery
2 device or tool more specifically comprises a sharp
3 point for penetrating the smooth muscle of the
4 myometrium 13 and attachment means for releasably
5 attaching the implant 14 to the tool. The tool is
6 driven into the myometrium 13 and the implant 14
7 released such that the tool can be withdrawn leaving
8 the implant 14 in place.
9

10 Wherein the implant itself is the medium by which
11 the drug to be administered is carried it can be
12 envisaged that the drug delivery device is a hollow
13 needle containing the implant and that the implant
14 is injected into the myometrium 13. The use of
15 implant comprising the medium of which the drug to
16 be administrated is included, allows insertion of
17 the implant into the myometrium 13 and delivery of
18 the drug to be limited to a very short time scale.
19

20 The drug may be delivered to the myometrium 13 and
21 be absorbed within a few minutes, hours, days or
22 weeks depending on the medium. It can be
23 appreciated that where the implant comprises the
24 drug delivery medium, removal of the implant is not
25 required. An absorbable implant therefore does not
26 require retrieval means.
27

28 In another example, the implants 1, 14 may be
29 provided with a string (not shown) attached to the
30 proximal end of the implant 1, 14. This may be in
31 addition to the hook 5, 16 or in place of the hook
32 5, 16. The string allows retrieval of the implant

26.

1 1, 14 by pulling on the string and is useful
2 particularly where the implant 1, 14 becomes buried
3 in the soft tissue and smooth muscle of the
4 myometrium 13.

5

6 Various improvements and modifications may be made
7 without departing from the scope of the present
8 invention. For example, it can be envisaged that
9 the body of the implant may be formed from
10 absorbable polymers. This would avoid the need to
11 remove the implant at a later date. As shown in
12 figure 5, the implant 25 can be corkscrew shaped.
13 The implant can comprise retrieval means which
14 includes a recess 26 capable of accepting a
15 screwdriver (not shown) or other such means to allow
16 the implant to be moved into and out of the tissue
17 of the myometrium or prostate. In an alternative
18 embodiment the implant can be a cylindrical mesh 30
19 (as shown in figure 6) which is able to be inserted
20 into the myometrium or the prostate. An implant of
21 cylindrical mesh shape would mean there would be an
22 increased surface area of the implant in contact
23 with the myometrium than would be present using a
24 singular rod of similar dimensions. The amount of
25 surface area of the implant in contact with
26 surrounding tissue or muscle can influence the drug
27 delivery characteristics of the implant. The
28 implant as shown in figure 6 can be pushed into the
29 myometrium or prostate and removed from the same
30 using retrieval means 32. A tool (not shown) can be
31 inserted into the retrieval means to allow removal
32 of the implant.

1/5

FIGURE 1

FIGURE 2

2/5

FIGURE 4

FIGURE 3

3/5

Figure 5.

Figure 6

4/5

Figure . 7

5/5

Figure 8