Complex Analysis Homework 8

Colin Williams

November 25, 2020

Question 4

Let f be holomorphic in \mathbb{C} .

- (a) Prove that if |f(z)| > M in \mathbb{C} , then f is constant.
 - Consider the function g = 1/f. Then, since |f(z)| > M for all $z \in \mathbb{C}$, we know that $f(z) \neq 0$ for all $z \in \mathbb{C}$ which means that g is also holomorphic in \mathbb{C} . Furthermore, we can see that g is bounded since:

$$|g(z)| = \left| \frac{1}{f(z)} \right| = \frac{1}{|f(z)|} < \frac{1}{M}$$
 for all $z \in \mathbb{C}$

- Thus, Liouville's Theorem tells us that g must be a constant function since it is bounded and entire. Therefore, if g is constant, say g(z) = C for all $z \in \mathbb{C}$, then we can say that f(z) = 1/g(z) = 1/C for all $z \in \mathbb{C}$, so f is constant as well. \square
- (b) Prove that if e^f is bounded in \mathbb{C} , then f is constant.
 - Recall that $g(z) = e^z$ is an entire function, thus, since f is also entire, then the function $g \circ f = e^f$ is also entire. Thus, since we're assuming e^f is bounded, then we can apply Liouville's Theorem to say that e^f is constant. Thus, since the derivative of a constant is 0, we know that

$$\frac{d}{dz}\left(e^{f(z)}\right) = e^{f(z)}f'(z) = 0 \qquad \text{for all } z \in \mathbb{C}$$

This last equality implies that f'(z) = 0 for all $z \in \mathbb{C}$ since the exponential function never maps to 0. Thus, f must also be a constant function since its derivative is zero in all of \mathbb{C} .