Linear Dynamic Systems Notes

Chris Beard

10 August 2011

Contents

1	Lect	ture 2	9
	1.1	Interpretation for $y = Ax$:
	1.2	Example in notes	4
		1.2.1 Linear elastic structure	4
		1.2.2 Force/Torque on rigid body	4
		1.2.3 Thermal System	4
2		ture 3	4
	2.1		4
			4
	2.2		4
		2.2.1 Computing $C = AB$	4
		2.2.2 Zero nullspace (in notes)	
		2.2.3 Interpretations of nullspace	Į.
		2.2.4 Range	Į.
		2.2.5 Rank of matrix	7
		2.2.6 Various wrap-up items	7
_	- .		_
3		ture 5	7
	3.1	r-r	8
	3.2		8
	3.3	Expansion in orthonormal basis	5
	3.4	Gram-Schmidt procedure	5
	3.5	QR decomposition	S
	3.6	General Gram Schmidt procedure ('rank revealing QR algorithm')	G
	3.7	Applications	6
	3.8	Least Squares Approximation	G
4	Lect	ture 6	c
-	4.1	Overdetermined equations	C
		Least Squares 'Solution'	
	4.3	Projection on $\mathcal{R}(A)$	
	4.4	Orthogonality principle	
	4.5	Least-squares via QR factorization	
	4.6	Full QR factorization	
	4.0	Applications for least squares approximations	
	4.7	BLUE: Best linear unbiased estimator	
	4.8	Range-finding example	
		Quantizer example	
		Least Squares data-fitting	
	4.12	Least-squares polynomial fitting	12

5	Lect	ture 7	1	
	5.1	Least-squares polynomial fitting, cont'd	. 1	2
	5.2	Growing sets of regressors	. 1	2
	5.3	Least-squares system identification (important topic)	. 1	3
	5.4	Model order selection	. 1	3
		5.4.1 Cross-validation	. 1	3
	5.5	Growing sets of measurements	. 1	3
	5.6	Recursive ways to do least squares	. 1	3
	5.7	Fast update algorithm for recursive LS		
	5.8	Multi-objective least squares	. 1	4
6	Lect	ture 8	1	
	6.1	Plot of achievable objective pairs		
	6.2	Minimizing weighted-sum objective		
	6.3	Example: frictionless table		
	6.4	Regularized least-squares		
	6.5	Nonlinear least squares (NLLS) problem		
	6.6	Gauss-Newton method for NLLS		
	6.7	G-N example	. 1	7
	6.8	Underdetermined linear equations	. 1	7
	6.9	Least norm solution	. 1	7
7	Lect	ture 9 pt 2	1	
	7.1	General norm minimization with equality constraints		
	7.2	Autonomous linear dynamical systems		
	7.3	Block diagrams		
	7.4	Linear circuit example	. 1	8
0	T	. 10		0
			- 1	
		ture 10	1	
	8.1	Example: Series reaction $A \to B \to C$. 1	8
	8.1 8.2	Example: Series reaction $A \to B \to C$. 1	8
	8.1 8.2 8.3		. 1 . 1 . 1	8 9 9
	8.1 8.2 8.3 8.4		. 1. 1. 1. 1	8 9 9
	8.1 8.2 8.3 8.4 8.5	$ \begin{array}{llllllllllllllllllllllllllllllllllll$. 1. 1. 1. 1	8 9 9 9
	8.1 8.2 8.3 8.4 8.5 8.6		. 1. 1. 1. 1. 1	8 9 9 9 9
	8.1 8.2 8.3 8.4 8.5	$ \begin{array}{llllllllllllllllllllllllllllllllllll$. 1. 1. 1. 1. 1	8 9 9 9 9
	8.1 8.2 8.3 8.4 8.5 8.6 8.7		. 1. 1. 1. 1. 1. 2	8 9 9 9 9 9
	8.1 8.2 8.3 8.4 8.5 8.6 8.7	$\begin{array}{llllllllllllllllllllllllllllllllllll$. 1 . 1 . 1 . 1 . 1 . 1 . 2	8 9 9 9 9 9 0 0
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$. 1 . 1 . 1 . 1 . 1 . 1 . 2	8 9 9 9 9 9 0 0
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$. 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2	8 9 9 9 9 0 0 0 0 0
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2	8 9 9 9 9 0 0 0 0 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 0 0 0 0 1 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2	8 9 9 9 9 0 0 0 0 1 1 1 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential	. 1 . 1 . 1 . 1 1 2 . 2 . 2 2 2 2 2 2 2 2 2 2 2	8 9 9 9 9 9 0 0 0 1 1 1 1 1 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7	$\begin{array}{c} \text{Example: Series reaction } A \to B \to C \\ \text{Discrete time Markov chain} \\ \text{Numerical integration of continuous system} \\ \text{Higher order linear dynamical systems} & \\ \text{Example: Mechanical systems} \\ \text{Example: Mechanical systems} \\ \text{Linearization near equilibrium point} \\ \text{Example: pendulum linearization} \\ \\ \textbf{ture 11} \\ \text{Laplace transform} \\ \text{Example: Harmonic oscillator} \\ \text{Example: Double Integrator} \\ \text{Characteristic polynomial} \\ \text{Get eigenvalues of } A \text{ and poles of resolvent} \\ \text{Matrix exponential} \\ \text{Time transfer property} \\ \end{array}$. 1 . 1 . 1 . 1 1	8 9 9 9 9 0 0 0 0 1 1 1 1 1 1 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential	. 1 . 1 . 1 . 1 1	8 9 9 9 9 0 0 0 0 1 1 1 1 1 1 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system	. 1 . 1 . 1 . 1 . 1 . 1 1 . 2 . 2 .	8 9 9 9 9 0 0 0 0 1 1 1 1 1 1 2
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Lect	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system	. 1 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 0 0 0 1 1 1 1 1 2 2
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Lect	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system ture 12 Stability	. 1 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 9 0 0 0 0 1 1 1 1 1 2 2 2
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Lect 10.1 10.2	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system ture 12 Stability Eigenvectors and diagonalization	. 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 0 0 0 0 1 1 1 1 1 2 2 2 2 2
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Lect 10.1 10.2	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system ture 12 Stability Eigenvectors and diagonalization Scaling intepretation	. 1 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 0 0 0 0 1 1 1 1 1 2 2 2 2 2
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Lect 10.1 10.2 10.3 10.4	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system ture 12 Stability Eigenvectors and diagonalization Scaling intepretation Dynamic intepretation	. 1 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 9 9 9 0 0 0 0 0 0 1 1 1 1 1 1 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Lect 10.1 10.2 10.3 10.4 10.5	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system ture 12 Stability Eigenvectors and diagonalization Scaling intepretation Dynamic intepretation Invariant set	. 1 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 9 9 9 0 0 0 0 0 1 1 1 1 1 1 1 1
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 Lect 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Lect 10.1 10.2 10.3 10.4 10.5 10.6	Example: Series reaction $A \to B \to C$ Discrete time Markov chain Numerical integration of continuous system Higher order linear dynamical systems $(\dot{x} = Ax)$ Example: Mechanical systems Linearization near equilibrium point Example: pendulum linearization ture 11 Laplace transform Example: Harmonic oscillator Example: Double Integrator Characteristic polynomial Get eigenvalues of A and poles of resolvent Matrix exponential Time transfer property Application: sampling a continuous time system ture 12 Stability Eigenvectors and diagonalization Scaling intepretation Dynamic intepretation	. 1 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	8 9 9 9 9 9 9 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3

	10.8 Summary:	23
	10.9 Example- companion matrix	
11	Lecture 13	23
	11.1 Example: Markov chain	23
	11.2 Diagonalization	24
	11.3 Not all matrices diagonalizable	24
	11.4 Distinct eigenvalues	24
	11.5 Diagonalization and left eigenvectors	24
	11.6 Modal form	25
	11.7 Real modal form	25
	11.8 Diagonalization simplification	25
	11.9 Simplify for analytical functions of a matrix	
	11.10Solution via diagonalization	
	11.11Interpretation	26
	11.12Application	26
	11.13Stability of discrete-time systems	
	11.14Jordan Canonical form	
	11.15Jordan block example	
12	Lecture 14	27
13	Appendix	27
	13.1 Inverse, transpose properties	27
	13.2 Invertibility implications	
	13.3 Tips	
14	Homework assignments	28

Following notes from the EE263 Course Reader. Orgmode \rightarrow LATEX 2_{ε}

Matlab files Linear Algebra Index

1 Lecture 2

Official Lecture Notes

1.1 Interpretation for y = Ax

- \bullet A a transformation matrix
- \bullet y an observed measurement, x an unknown
- x is input, y is output; for rows i and columns j in A, $\mathbf{i} \to \mathbf{y}$, $\mathbf{j} \to \mathbf{x}$
 - indexed as **output**, **input**
- Lower diagonal Matrix should make you expect or have a vague thought about causality.
 - $-a_{ij} = 0$ for $i < j \Rightarrow y_i$ only depends on $x_1, ..., x_i$
 - A is diagonal; output only depends on input
- Sparcity pattern (block of zeroes) in a matrix should have you wonder why...usually not coincidental
- A_{35} positive $\Rightarrow x_5$ increased corresponds to an increase in 3rd output, y_3

1.2 Example in notes 2 LECTURE 3

1.2 Example in notes

1.2.1 Linear elastic structure

- a_{11} probably positive
 - $-x_1$ input gives positive push to y_1 output

1.2.2 Force/Torque on rigid body

• Net torque/force on body is linearly related to force inputs

1.2.3 Thermal System

• despite normally needing a Poisson equation, the steady state heat of the different locations can be represented as a linear system Ax = y

2 Lecture 3

2.1 Review of Linearization (affine approximation)

1. If $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at $x_0 \in \mathbf{R}^n$, then x near $x_0 \Rightarrow f(x)$ very near $f(x_0) + Df(x_0)(x - x_0)$ where

$$Df(x_0)_{ij} = \frac{\partial f_i}{\partial x_j}\bigg|_{x_0}$$

is the derivative (Jacobian) matrix.

- 2. with $y = f(x), y_0 = f(x_0)$, define 'input deviation' $\delta x := x x_0$, 'output deviation' $\delta y := y y_0$
- 3. then we have $\delta y \approx Df(x_0)\delta x$

i.e., we get a linear function for looking at how the output changes with small changes in the input

4. When deviations are small, they are approximately related by a linear function

2.1.1 Good intuition range-finding problem

2.2 Interpetations of Ax = y

 \bullet Scaled combination of columns in A

$$A = [a_1 a_2 ... a_n] \to y = x_1 a_1 + x_2 a_2 + ... + x_n a_n$$

- Looking at the rows: the multiplication is the inner product of rows and vector x
- I/O ordering is backwards in control; in A_{ij} , j refers to input and i refers to output
 - indexing is likewise backwards in block diagram indexing

AB = I; $\tilde{a}_i^T \cdot b_j = 0$ if $i \neq j$, where \tilde{a}_i is the *ith* row in A, and b_j is *jth* column in B

2.2.1 Computing C = AB

How to compute this faster than using formula $c_{ij} = \sum_{k=1} A_{ik} B_{kj}$: have computer break it up into submatrices and do the multiplication on them

2.2.2 Zero nullspace (in notes)

- if 0 is only element in $\mathcal{N}(A)$
 - -A is one-to-one
 - * linear transformation doesn't lose information
 - columns of A are independent, and basis for their span
 - A has a left inverse \Rightarrow you can use this to undo the transformation and find the input x, given the output y
 - $-|A^TA| \neq 0$

2.2.3 Interpretations of nullspace

supposing $z \in \mathcal{N}(A)$

- Measurements
 - -z is undetectable from sensors
 - x and x + z are indistinguishable from sensors: Ax = A(x + z)
 - the nullspace characterizes ambiguity in x from measurement y = Ax
 - * large nullspace is bad
- y = Ax is output from input x
 - -z is input with no result
 - -x and x+z have same result
 - the nullspace characterizes freedom of input choice for given result
 - * large nullspace is good: more room for optimization because of more input possibilities

2.2.4 Range

Range of $A \in \mathbb{R}^{m \times n}$ defined as $\mathcal{R}(A) = \{Ax | x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$

- The set of vectors that can be 'hit' by linear mapping y = Ax
- \bullet span of columns of A
- set of vectors y for which Ax = y has a solution
- possible sensor measurement
 - in design, you'll want to throw an exception if a measurement is outside the range; the sensor is bad
 - test for a bad 13th sensor: remove 13th row in A; if the reduced y is in the range of the reduced matrix, the 13th sensor might not have been bad
- Onto matrices

A is 'onto' if $\mathcal{R}(A) = \mathbb{R}^m$

- you can solve Ax = y for any y
- columns of A span \mathbb{R}^m
- -A has a right inverse B s.t. AB = I
 - * can do ABy = A(By) = y: you want an x that gives you y? Here it is.
 - * Design procedure
- rows of A are independent

* a.k.a.,
$$\mathcal{N}(A^T) = \{0\}$$

- $|AA^T| \neq 0$

- Interpretations of range
 - supposing $v \in \mathcal{R}(A)$
 - *v reachable
 - * else, not reachable
- Inverse

Note: square matrices are impractical for engineering. They don't let you take advantage of redundant sensors/controllers, or let you build a robust system to take care of broken sensors

- $-\ A \in \mathbb{R}^{n \times n}$ is invertible or nonsingular if det $A \neq 0$
 - * columns of A are basis for \mathbb{R}^n
 - * rows of A are basis for \mathbb{R}^n
 - * y = Ax has a unique solution x for every $y \in \mathbb{R}^n$
 - * A has left and right inverse $A^{-1} \in \mathbb{R}^{n \times n}$, s.t. $AA^{-1} = A^{-1}A = I$
 - * $\mathcal{N}(A) = \{0\}$
 - $* \mathcal{R}(A) = \mathbb{R}^n$
 - * det $A^T A = |AA^T| \neq 0$
- Dual basis interretation of inverse

 a_i are columns of A, and \tilde{b}_i^T are rows of $B = A^{-1}$

- * y = Ax, column by column, looks like $y = x_1a_1 + ... + x_na_n$
 - · multiply both sides of y = Ax by $A^{-1} = B$ gives x = By
 - · so $x_i = \tilde{b}_i^T y$

$$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \dots & a_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$x = A^{-1}y$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \cdots & \tilde{b}_1^T & \cdots \\ \cdots & \tilde{b}_2^T & \cdots \\ \vdots & \vdots \\ \cdots & \tilde{b}_r^T & \cdots \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 a_1 + \dots + x_n a_n \end{bmatrix} = \begin{bmatrix} (\tilde{b}_1^T y) a_1 + \dots + (\tilde{b}_n^T y) a_n \end{bmatrix}$$

Beautiful thing:

$$y = \sum_{i=1}^{n} (\tilde{b}_i^T y) a_i$$

2.2.5 Rank of matrix

Rank of $A \in \mathbb{R}^{m \times n}$ as $\mathbf{rank}(A) = \mathbf{dim} \mathcal{R}(A)$

- $rank(A) = rank(A^T)$
- rank(A) is maximum number of independent columns or rows of A: $rank(A) \leq min(m, n)$
- $\operatorname{rank}(A) + \operatorname{dim} \mathcal{N}(A) = n$
- Conservation of degrees of freedom (dimension)
 - $\operatorname{rank}(A)$ is dimension of set 'hit' by mapping y = Ax
 - $-\operatorname{dim}\mathcal{N}(A)$ is dimension of set of x 'crushed' to zero by y=Ax
 - Example
 - * $A \in \mathbb{R}^{20 \times 10} \mathbf{rank}(A) = 8$
 - · you can do 8 dimensions worth of stuff
 - · 10 knobs, 2 redundant knobs, which is $\dim \mathcal{N}(A) = 2$
- Coding interpretation of rank
 - rank of product: $\operatorname{rank}(BC) \le \min\{\operatorname{rank}(B), \operatorname{rank}(C)\}\$
 - supposedly really cool stuff based on this
 - low rank matrices let you do fast computations

2.2.6 Various wrap-up items

• RMS

$$\mathbf{rms}(x) = \left(\frac{1}{n} \sum_{i=1}^{n}\right)^{1/2} = \frac{\|x\|}{\sqrt{n}}$$

• Inner product

$$\langle x, y \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n = x^T y$$

- interretation of inner product signs:
- $-x^Ty > 0$: acute; roughly point in same direction
- $-x^Ty > 0$: obtuse; roughly point in opposite direction
- Orthonormal set of vectors
 - set of k vectors $u_1, u_2, ..., u_k \in \mathbb{R}^n$ orthonormal; $U = [u_1 \cdots u_k]$
 - $-U^TU=I_k \leftrightarrow \text{set of column vectors of } U \text{ are orthonormal}$
 - warning: $UU^T \neq I_k$ if k < n
 - * say U is 10×3 , U^T is 3×10 , rank of U is $3 \Rightarrow$ rank of UU^T is at most 3
 - * but UU^T will be a 10×10 matrix, so it can't be the identity matrix

3 Lecture 5

A good source for more on orthogonality at University of Minnesota

3.1 Geometric properties of orthonormal vectors

• columns of U are $ON \Rightarrow$ mapping under U preserves distances

$$-w = Uz \Rightarrow ||w|| = ||z||$$

- Also preserves inner product
- Also preserves angles
- Something like a rigid transformation

3.2 Orthonormal basis for \mathbb{R}^n

- if there are n orthonormal vectors (remember, with dimension n), it forms an orthonormal basis for \mathbb{R}^n
- $U^{-1} = U^T$
 - $U^TU = I \Leftrightarrow U$'s column vectors form an orthonormal basis for \mathbb{R}^n
 - $-\sum_{i=1}^{n} u_i u_i^T = I \in \mathbb{R}^{n \times n}$ (known as a dyad, or outer product; inner products reverses the two and gives a scalar, outer gives a matrix)
 - outer products take 2 vectors, possibly of different sizes, and multiplies every combination of elements one with another

3.3 Expansion in orthonormal basis

- U orthogonal $\Rightarrow x = UU^T$
- $x = \sum_{i=1}^{n} (u_i^T x) u_i$
 - because $U^TU = I$, the thing in sum is really $u_i u_i^T x$
 - $-u_i^T x$ is really a scalar, so this can be moved to the front of u_i , giving our result
 - This says x is a linear combination of u_i 's

3.4 Gram-Schmidt procedure

• $a_1, ..., a_k \in \mathbb{R}^n$ are LI; G-S finds ON vectors $q_1, ..., q_k$ s.t.

$$\mathbf{span}(a_1,...,a_r) = \mathbf{span}(q_1,...,q_r)$$

for $r \leq k$

- so $q_1, ..., q_r$ is an ON basis for span $(a_1, ..., a_r)$
- Basic method: orthogonalize each vector wrt the previous ones, then normalize result
 - 1. $\tilde{q}_1 = a_1$
 - 2. normalize: $q_1 = \tilde{q}_1 / \|\tilde{q}_1\|$
 - 3. remove q_1 component from a_2 : $\tilde{q}_2 = a_2 (q_1^T a_2)q_1$
 - 4. normalize q_2
 - 5. remove q_1, q_2 components: $\tilde{q}_3 = a_3 (q_1^T a_3)q_1 (q_2^T a_3)q_2$
 - 6. normalize q_3
- $a_i = (q_1^T a_i)q_1 + (q_2^T a_i)q_2 + \dots + (q_{i-1}^T a_i)q_{i-1} + \|\tilde{q}_i\|q_i$
 - $= r_{1i}q_1 + r_{2i}q_2 + \cdots + r_{ii}q_i \ (r_{ii} \ge 0 \text{ is the length of } \tilde{q}_i)$

 $3.5 \quad QR \text{ decomposition}$ 4 LECTURE 6

3.5 QR decomposition

This can be written as A = QR, where $A \in \mathbb{R}^{n \times k}$, $Q \in \mathbb{R}^{n \times k}$, $R \in \mathbb{R}^{k \times k}$

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_k \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{kk} \end{bmatrix}$$

- R triangular because computation of a_i only involves up to q_i
 - a sort of causality, since you can calculate q_7 without seeing q_8
- Columns of Q are ON basis for $\mathcal{R}(A)$

3.6 General Gram Schmidt procedure ('rank revealing QR algorithm')

- Basically the same, but if one of the \tilde{q}_i 's is zero (meaning a_i is dependent on previous a vectors), then just go to the next column
- referring to notes, upper staircase notation shows which vectors are dependent on previous ones (columns without the x's)
 - entries with x are 'corner' entries

3.7 Applications

- check if $b \in \mathbf{span}(a_1, a_2, ..., a_k)$
- Factorize matrix A

3.8 Least Squares Approximation

Overdetermined linear equation (tall, skinny, more equations than unknowns, dimensionally redundant system
of equations)

4 Lecture 6

On skinny, full rank matrices

4.1 Overdetermined equations

- Skinny, more equations than unknowns
- Given $y = Ax, A \in \mathbb{R}^{m \times n}$, a randomly-chosen y in \mathbb{R}^m has 0 probability of being in the range of A
- To approximately solve for y, minimize norm of error (residual) r = Ax y
- find $x = x_{ls}$ (least squares approx.) that minimizes ||r||

4.2 Least Squares 'Solution'

- square ||r||, get expansion, set gradient wrt x equal to zero
- $x_{ls} = (A^T A)^{-1} A^T y$ = $B_{ls} y$ (linear operation)
- $A^T A$ should be invertible, square, full rank
- $(A^TA)^{-1}A^T$ is a generalized inverse (is only inverse for square matrices, though)
 - Also known as the A^{\dagger} , 'pseudo-inverse'
 - Which is a left inverse of A

4.3 Projection on $\mathcal{R}(A)$

 Ax_{ls} is the point closest to y (i.e., projection of y onto $\mathcal{R}(A)$)

•
$$Ax_{ls} = \mathbf{proj}_{\mathcal{R}(A)}(y) = (A(A^TA)^{-1}A^T)y$$

4.4 Orthogonality principle

The optimal residual is orthogonal to C(A)

- $r = Ax_{ls} y = (A(A^TA)^{-1}A^T I)y$ orthogonal to C(A)
- $\langle r, Az \rangle = y^T (A(A^T A)^{-1} A^T I)^T Az = 0$ for all $z \in \mathbb{R}^n$

4.5 Least-squares via QR factorization

A is still skinny, full rank

- Factor as A = QR; $Q^TQ = I_n, R \in \mathbb{R}^{n \times n}$ upper triangular, invertible
- pseudo-inverse: $(A^T A)^{-1} A^T = R^{-1} Q^T \Rightarrow R^{-1} Q^T y = x_{ls}$
- Pretty straight-forward
- Matlab for least squares approximation

$$xl = inv(A' * A)*A'y;$$
 # So common that has shorthand in MATLAB
 $xl = A \ y;$ # Works for non-skinny matrices, may do unexpected things

4.6 Full QR factorization

- $A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$
 - New Q is square, orthogonal matrix; R_1 is square, upper triangular, invertible
- Remember, multiplying by orthogonal matrix doesn't changet the norm:
 - $\|Ax y\|^2 = \|R_1x Q_1^Ty\|^2 + \|Q_2^Ty\|^2$
 - Find least squares approximation with $x_{ls} = R_1^{-1}Q_1^T y$ (zeroes first term)

4.7 Applications for least squares approximations

- if there is some noise v in y = Ax + v
 - you can't reconstruct x, but you can get close with the approximation
- Estimation: choose some \hat{x} that minimizes $||A\hat{x} y||$, which is the deviation between the think we observed, and what we would have observed in the absence of noise

4.8 BLUE: Best linear unbiased estimator

- A still full rank and skinny; have a 'linear estimator' $\hat{x} = By$ (B is fat)
 - $-\hat{x} = B(Ax + v)$
- Called unbiased if there is no estimation error when there's no noise; the estimator works perfectly in the absence of noise
 - if v = 0 and BA = I; B is left inverse/perfect reconstructor
- Estimation error uf unbiased linear estimator is $x \hat{x} = sBv$, so we want B to be small and BA = I; small means error isn't sensitive to the noise
- The pseudo-inverse is the smallest left inverse of A:

$$- A^{\dagger} = (A^{T} A)^{-1} A^{T}$$
$$- \sum_{i,j} B_{ij}^{2} \ge \sum_{i,j} A_{ij}^{\dagger 2}$$

4.9 Range-finding example

• Find ranges to 4 beacons from an unknown position x

$$\bullet \ y = -\begin{bmatrix} k_1^T \\ k_2^T \\ k_3^T \\ k_4^T \end{bmatrix} x + v$$

- actual position x = (5.59, 10.58); measurement y = (-11.95, -2.84, -9.81, 2.81)
 - these numbers aren't consistent in Ax = y, since there's also the error; there is no such x value that can give this y value
- There are 2 redundant sensors (2 more y values than x values); one method for estimating \hat{x} is 'just enough' method: you only need 2 y values; take inverse of top half of A and pad the rest of the matrix with 0's

• use
$$\hat{x} = B_{justenough}y = \begin{bmatrix} \begin{bmatrix} k_1^T \\ k_2^T \end{bmatrix}^{-1} & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1.0 & 0 & 0 \\ -1.12 & .5 & 0 & 0 \end{bmatrix} y = \begin{bmatrix} 2.84 \\ 11.9 \end{bmatrix}$$

- Least Squares method: $\hat{x}A^{\dagger}y = \text{this has a much smaller norm of error}$
- Just enough estimator doesn't seem to have good performance...unless last two measurements were really off, since JEM only takes 2 measurements into account

4.10 Quantizer example

Super-impressive least squares estimate; more precise than A-D converter

4.11 Least Squares data-fitting

- use functions $f_1, f_2, ..., f_n : S \to \mathbb{R}$ are called regressors or basis functions
- applications
 - interpolation-, extrapolation, smoothing of data

Applications

interpolation don't have sensors in specific location, but want the temperature

extrapolation get good basis functions for better interpolation

data smoothing de-noise measurements

simple, approximate data model Get a million samples, use the data-fitting to get a simple approximate function

4.12 Least-squares polynomial fitting

• Vandermonde matrix?

5 Lecture 7

5.1 Least-squares polynomial fitting, cont'd

- have data samples $(t_i, y_i), i = 1, ..., m$
- fit coefficients a_i of polynomial $p(t) = a_0 + a_1t + \cdots + a_{n-1}t^{t-1}$ so that when evaluated at t_i it will give you the associated y value
- basis functions are $f_j(t) = t^{j-1}, j = 1, ..., n$
- use Vandermonde matrix A ('polynomial evaluator matrix'):

$$A = \begin{bmatrix} 1 & t_1 & t_1^2 & \dots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \dots & t_2^{n-1} \\ & \vdots & & & \vdots \\ 1 & t_m & t_m^2 & \dots & t_m^{n-1} \end{bmatrix}$$

• side note: use this when you want to fit throughout an interval, use a Taylor series fit if you want it close to a point

5.2 Growing sets of regressors

- Given ordered set of vectors; find best fit with first vector, then best fit with first and second, then best fit with first three...
- These vectors called *regressors*, or columns
- Say you have some master list A with n columns, and $A^{(p)}$ will be the matrix with the first p columns of it
 - we want to minimize different sets of $||A^{(p)}x-y||$
 - i.e., project y onto a growing span $\{a_1, a_2, ..., a_p\}$
- • Solution for each $p \leq n$ given by $x_{ls}^{(p)} = (A_p^T A_p)^{-1} A_p^T y = R_p^{-1} Q_p^T y$
 - In MATLAB, A(:,1:p)\y, though technically it's faster to do a sort of for loop
- Residual, $\|\sum_{i=1}^p x_i a_i y\|$ reduces as p (number of columns) increases
 - though it may be same as residual with previous value of p if the optimal $x_1 = 0$, when $y \perp a_1$
 - if the residual drops 15% from that of previous value of p, you say that a_1 explains 15% of y

5.3 Least-squares system identification (important topic)

- measure input, output u(t), y(t) for t = 0, ..., N of unknown system, and try to get a model of system
- example: moving average (MA) model with n delays (try to approximate what are the weights h_i for each delay)
 - see equation/matrix in notes, though there are different ways to write it
 - get best answer with LSA

5.4 Model order selection

- how large should n be?
- the larger, the smaller prediction error on data used to form model
- but at a certain point, predictive ability of model on other I/O data from same system worsens
- probably best to choose the 'knee' on the graph on notes slide for prediction of new data

5.4.1 Cross-validation

- check with new data, only if you're getting small residuals on data you've already seen
- when n gets too large (greater than n = 10 on graph), the error with 'validation data' actually gets larger
- this example is ideal, since n = 10 is the obvious order for the model
- **Application note**: in medical, many industries, there's a firm wall between validation data and model-developing data, so someone *else* tests your model
- in this example, it is known as overfit when the validation data error gets larger for n too large

5.5 Growing sets of measurements

- similar to GSo Regressors, except you add new rows, not columns
- this would happen if we're estimating a parameter x (which is constant)
- Solution: $x_{ls} = \left(\sum_{i=1}^{m} a_i a_i^T\right)^{-1} \sum_{i=1}^{m} y_i a_i$
- new way to think of least squares equation

5.6 Recursive ways to do least squares

- don't have to re-add for each new measurement
 - i.e., memory is bounded
 - use equation from notes; solution is $x_{ls}(m) = P(m)^{-1}q(m)$

5.7 Fast update algorithm for recursive LS

• Was a big deal back in the day; somewhat still

5.8 Multi-objective least squares

- Sometimes you have 2+ objectives to minimize
 - say $J_1 = ||Ax y||^2$ (what we've done so far)
 - and $J_2 = ||Fx g||^2$
 - these are usually competing (minimize one at cost of other)
- Variable in question is $x \in \mathbb{R}^n$
- Plot in notes shows plot of $(J_1(x_i), J_2(x_i))$
- Some points are unambiguously worse than others, but there is some ambiguity when $J_1(x_1) < J_1(x_2)$, while $J_2(x_1) > J_2(x_2)$
- Fix this ambiguity with 'weighted-sum objective'
- $J_1 + \mu J_2 = ||Ax y||^2 + \mu ||Fx g||^2$
 - Say, there's a trade-off between smoothness (no noise) and better fit; μ can have different dimensions if J_2 does
- Use slope of μ in graph ('indifference curve', in economics) [slide 7-6]

6 Lecture 8

Multi-objective least-squares

6.1 Plot of achievable objective pairs

- if it approximates an L shape (has a 'knee'), the knee is usually the obvious optimal location, so least-squares isn't as helpful
 - optimal point isn't very sensitive to μ
- Other extreme: trade-off curve looks linear (negative slope), where it's zero-sum
 - optimal point very sensitive to μ
 - slope commonly called exchange rate curve
- In this class, they must be convex curves (cup up/outward)
- To find Pareto optimal points, minimize $J_1 + \mu J_2 = \alpha$
 - on plot, can have level curves with slope μ
 - Find point on Pareto Optimal Curve that has slope μ

6.2 Minimizing weighted-sum objective

ullet note: norm-squared of a stacked vector is norm-square of the top+norm-square of bottom

$$J_{1} + \mu J_{2} = ||Ax - y||^{2} + \mu ||Fx - g||^{2} = \left\| \begin{bmatrix} A \\ \sqrt{\mu}F \end{bmatrix} x - \begin{bmatrix} y \\ \sqrt{\mu}g \end{bmatrix} \right\|^{2}$$
$$= \left\| \tilde{A}x - \tilde{y} \right\|$$

where

$$\tilde{A} = \begin{bmatrix} A \\ \sqrt{\mu}F \end{bmatrix}, \tilde{y} = \begin{bmatrix} y \\ \sqrt{\mu}g \end{bmatrix}$$

If \tilde{A} is full rank,

$$x = \left(\tilde{A}^T \tilde{A}\right)^{-1} \tilde{A}^T \tilde{y} \tag{1}$$

$$= (A^T A + \mu F^T F)^{-1} (A^T y + \mu F^T g)$$
 (2)

Note: to plot the tradeoff curve, calculate the minimizer x_{μ} , and plot the resulting pairs (J_1, J_2) In MATLAB, [A; sqrt(mu) * F]\[y; sqrt(mu) * g]

6.3 Example: frictionless table

- y is final position at t = 10; $y = a^T x$, $a \in \mathbb{R}^{10}$
- $J_1 = (y-1)^2$, (final position difference from y=1 squared)
- $J_2 = ||x||^2$ sum of force squares
- Q: Why do we often care about sum of squares? A: **It's easy to analyze** (not necessarily because it corresponds to energy)
 - $\max |x_i|$ corresponds to maximum thrust
 - $-\sum |x_i|$ corresponds to fuel use
- Optimal tradeoff curve is quadratic

6.4 Regularized least-squares

- famous example of multi-objective least squares
 - second J term is simply $J_2 = ||x||$, though first is the same: $J_1 = ||Ax y||^2$
- Tychonov regularization works for any A
 - regularized least-squares solution: $x_{\mu} = (A^T A + \mu I)^{-1} A^T y$, for F = I, g = 0

Show $(A^TA + \mu I)$ is invertible, no matter what size/values of A (assuming $\mu > 0$): If this is not invertible (singular), it means some nonzero vector z gets mapped to zero $(z \in \mathcal{N}(A))$

$$(A^T A + \mu I)z = 0, z \neq 0 \tag{3}$$

$$z^{T}(A^{T}A + \mu I)z = 0 \text{ since } z^{T}\vec{0} = 0$$

$$\tag{4}$$

$$z^T A^T A z + \mu z^T z = 0 (5)$$

$$||Az||^2 + \mu ||z||^2 = 0 \tag{6}$$

$$z = \vec{0} \tag{7}$$

So, z can only be zero, meaning $\mathcal{N}(A) = \{0\} \Rightarrow (A^T A - \mu I)$ is invertible. This is also why μ must be positive. Or, you know it's invertible, since it is full rank (and skinny) when you stack μI below it (see definition of \tilde{A}).

- Application of Regularized least-squares
 - estimation/inversion
 - -Ax-y is sensor residual
 - prior information that x is really small
 - or, model only accurate for small x
 - Tychonov solution trades off sensor fit and size of x
- Image processing example
 - Laplacian regularization
 - * image reconstruction problem
 - x is vectorized version of image
 - $\|Ax y\|^2$ is difference from real image
 - Want new objective to minimize roughness
 - * vector Dx (from new matrix D) which has difference between neighboring pixels as elements
 - · $D_v x$ measures vertical difference
 - · $D_h x$ measures horizontal difference
 - · Nullspace is vector where there is no variation between pixels
 - minimize $||Ax y||^2 + \mu ||[D_h x \ D_v x]^T||^2$
 - * if μ is turned way up, it'll be all smoothed out
 - * if you care about total size of image, you can add another parameter λ : $||Ax-y||^2 + \mu ||[D_h x \ D_v x]^T||^2 + \lambda ||x||^2$

6.5 Nonlinear least squares (NLLS) problem

- find $x \in \mathbb{R}^n$ that minimizes $||r(x)||^2 = \sum_{i=1}^m r_i(x)^2$
- r(x) is vector of residuals; $r(x) = Ax y \Rightarrow$ problem reduces to linear least squares problem
- in general, can't really solve a NLLS problem, but can find good heuristics to get a locally optimal solution

6.6 Gauss-Newton method for NLLS

- \bullet Start guess for x
- Loop
 - linearize r near current guess
 - new guess is linear LS solution, using linearized r
 - if convergence, stop
- Linearize?
 - Jacobian: $(Dr)_{ij} = \partial r_i/\partial x_j$
 - Linearization: $r(x) \approx r(x^{(k)}) + Dr(x^{(k)})(x x^{(k)})$
 - Set this linearized approximation equal to $r(x) \approx A^{(k)}x b^{(k)}$
 - $* A^{(k)} = Dr(x^{(k)})$
 - $* b^{(k)} = Dr(x^{(k)})x^{(k)} r(x^{(k)})$

6.7 G-N example 7 LECTURE 9 PT 2

- See rest in notes
- At k th iteration, approximate NLLS problem by linear LS problem:
 - * $||r(x)||^2 \approx ||A^{(k)}x b^{(k)}||^2$
 - · if you wanna make this really cool add a $\mu \|x x^{(k)}\|^2$ term on RHS
 - · called a 'trust region term';
 - · first (original) part says to minimize sum of squares for model
 - · trust region term says 'but don't go far from where you are now'
- Could also linearize without calculus; works really well
 - See 'particle filter'

6.7 G-N example

- Nice graph and residual plot
- As practical matter, good to run simulation several times (with different initial guesses)
- 'exuastive simulation'

6.8 Underdetermined linear equations

- $A \in \mathbb{R}^{m \times n}, m < n \ (A \text{ is fat})$
- more variables than equations
- \bullet x is underspecified
- For this section assume A is full rank
- Set of all solutions has form $\{x|Ax=y\}=\{x_p+z|z\in\mathcal{N}(A)\}$
- solution has dim $\mathcal{N}(A) = n m$ 'degrees of freedom'
 - many DOF: good for design (flexibility), bad for estimation (stuff you don't/can't know with available measurements)

6.9 Least norm solution

- $\bullet \mid x_{ls} = A^T (AA^T)^{-1} y$
 - similar to our familiar skinny A version: $x_{ls} = (A^T A)^{-1} A^T y$
 - mnemonic: $(\cdot)^{-1}$ thing must be square
 - * if A skinny, both $A A^T$ and $A^T A$ could be square (syntactically)
 - * semantically, you need the up and down patterns that will form the smallest square, i.e., full rank matrix

7 Lecture 9 pt 2

Thank you fucking Suncheon.

7.1 General norm minimization with equality constraints

- Problem: minimize ||Ax b|| subject to Cx = d, with variable x
- Least squares/least norm are special cases
 - Least norm: set A = I, b = 0, then you just have norm of x subject to some linear equations
- Same as: minimize $(1/2)||Ax b||^2$ subject to Cx = d
- Lagrangian is...long ugly thing...look at notes
 - a bit easier to look at block matrix format

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

• recover least squares (maybe) by eliminating C from matrix (not setting to zero, but only having 1 row/column in first matrix)

7.2 Autonomous linear dynamical systems

"What the class is nominally about"

- In continuous time, autonomous LDS has form $\dot{x} = Ax$
- Solution: $x(t) = e^{ta}x(0)$
- $x(t) \in \mathbb{R}^n$ is called the state
 - -n is state dimension
- A basically maps where you are (x) to where you're going (\dot{x})
 - has units of s⁻¹, frequency
- Example illustration: vector fields

7.3 Block diagrams

- use integrators to express $\dot{x} = Ax$ instead of differentiators
 - block called 'bank of integrators'
 - historically used because of analog, mechanical computers
- \bullet notches to express n signals

7.4 Linear circuit example

8 Lecture 10

Examples of autonomous linear dynamical systems, $\dot{x} = Ax$

8.1 Example: Series reaction $A \to B \to C$

$$\dot{x} = \begin{bmatrix} -k_1 & 0 & 0 \\ k_1 & -k_2 & 0 \\ 0 & k_2 & 0 \end{bmatrix} x$$

- For second row, first term on rhs of $\dot{x}_2 = k_1 x_1 k_2 x_1$ is buildup
- Note: Column sums are 0 implies conservation of mass/materials;

8.2 Discrete time Markov chain

- $\bullet \ x(t+1) = Ax(t)$
- $x(t) = A^t x(0)$
- Given current state, the matrix of transition probabilities P will tell you probabilities of the next state, given the current state

8.3 Numerical integration of continuous system

- for a small time step h, find about where you'll be in h seconds b
- $x(t+h) \approx x(t) + h\dot{x}(t) = (I+hA)x(t)$
- problem: when you do it for a long time, error can build up pretty high

8.4 Higher order linear dynamical systems ($\dot{x} = Ax$)

$$x^{(k)} = A_{k-1}x^{(k-1)} + \dots + A_1x^{(1)} + A_0x, x(t) \in \mathbb{R}^n$$

ullet define new variable

$$z = \begin{bmatrix} x \\ x^{(1)} \\ \vdots \\ x^{(k-1)} \end{bmatrix} \in \mathbb{R}^{nk}, \dot{z} = \begin{bmatrix} x^{(1)} \\ \vdots \\ x^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & I \\ A_0 & A_1 & A_2 & \cdots & A_{k-1} \end{bmatrix} z$$

- 'upshift x, and zero-pad'
- z is the state, not x
- in notes, black diagram with chain of integrators

8.5 Example: Mechanical systems

• Ex: K_{12} is 'cross-stiffness', how much stiffness you'd feel at node 1 from node 2

8.6 Linearization near equilibrium point

Equilibrium point corresponds to constant solution $(f(x_e) = 0, x(t) = x_e)$

- if you start at an equilibrium point, you'll stay there
- if you start near equilibrium point
 - veer off (unstable)
 - go towards equilibrium (stable)
 - something in between
- but, you never stay at an unstable equilibrium position, since equation is really $\dot{x} = f(x) + w(t)$, where w(t) is noise
- Near equilibrium point, $\dot{\delta x}(t) \approx Df(x_e)\delta x(t)$, where D is the Jacobian
 - similar to euler forward equation
- Don't fully trust approximations on approximations (but hope they work)

8.7 Example: pendulum linearization

- $ml^2\ddot{\theta} = -lmg\sin\theta$
- rewrite as 1st order DE with state $x = [\theta \ \dot{\theta}]^T = [x_1 \ x_2]^T$:

$$\dot{x} = \begin{bmatrix} x_2 \\ -(g/l)\sin x_1 \end{bmatrix}$$

• \exists equilibrium point at x = 0 (and π), so we linearize system near $x_e = 0$, using a Jacobian matrix:

$$\dot{\delta x} = \begin{bmatrix} \frac{\partial x_2}{\partial x_1} & \frac{\partial x_2}{\partial x_2} \\ \frac{\partial}{\partial x_1} \left(-(g/l) \sin x_1 \right) |_{x_1 = 0} & \frac{\partial}{\partial x_2} \left(-(g/l) \sin x_1 \right) \end{bmatrix} \delta x = \begin{bmatrix} 0 & 1 \\ -g/l & 0 \end{bmatrix} \delta x$$

9 Lecture 11

Solution via Laplace transform and matrix exponential Remember, we've already overloaded $\dot{x} = ax$. Now, we'll overload exponentials to apply to matrices $x(t) = e^{ta}x(0)$.

9.1 Laplace transform

- $z: \mathbb{R}_+ \to \mathbb{R}^{p \times q}$ (function that maps non-negative real scalars to matrices)
- Laplace transform: $Z = \mathcal{L}(z)$, defined by $Z(s) = \int_0^\infty e^{-st} z(t) dt$
- Region of convergence of Z is mostly for confusing students
- Derivative property: $\mathcal{L}(\dot{z}) = sZ(s) z(0)$

So, we can use the Laplace transform to solve $\dot{x} = Ax$. Take Laplace: sX(s) - x(0) = AX(s), rewrite as (sI - A)X(s) = x(0), so $X(s) = (sI - A)^{-1}x(0)$. Then take the inverse transform: $x(t) = \mathcal{L}^{-1}((sI - A)^{-1})x(0)$

- takes advantage if linearity of the Laplace transform
- $(sI A)^{-1}$ is called the *resolvent* of A
 - but not defined for eigenvalues of A; s, ST $\det(sI A) = 0$
- $\Phi = \mathcal{L}^{-1}((sI A)^{-1})$ is called the *state-transition matrix*, which maps the initial state to state at time t: $x(t) = \Phi(t)x(0)$

9.2 Example: Harmonic oscillator

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x$$

• To solve for s, get the resolvent, then apply the Laplacion to it elementwise, getting

$$x(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} x(0)$$

Which is a circular rotation matrix. The solutions to $\dot{x} = ax$ is $x(t) = e^{ta}x(0)$

- a positive: exponential growth
- a negative: exponential decay
- a = 0: constant

9.3 Example: Double Integrator

- Note, with scalars, x in $\dot{x} = ax$ grows exponentially in time, and cannot grow linearly, as with matrices (can have a t element in matrix)
- What is first column of $\Phi(t)$ say? It tells what the state trajectory is if the initial condition was e_1 (second column tells what it is if $x(0) = e_2$)
- First row says the linear combination that x_1 is at time t given x(0)

9.4 Characteristic polynomial

 $\mathcal{X}(s) = \det(sI - A)$; called a *monic* polynomial

• roots of \mathcal{X} are eigenvalues of A, and \mathcal{X} has real coefficients, so e-values are real or occur in conjugate pairs

9.5 Get eigenvalues of A and poles of resolvent

Use Cramer's rule to get i, j entry:

$$(-1)^{i+j} \frac{\det \Delta_{ij}}{\det(sI - A)},$$

where Δ_{ij} is sI - A with j th row and i th column deleted. Poles of entries of resolvent **must** be eigenvalues of A.

9.6 Matrix exponential

How to overload exponentials for matrices; start with $(I-C)^{-1} = I + C + C^2 + \dots$ Series converges if |eigenvalues of C |<1. Do series expansion of resolvent, then take the Laplacian of the series, which looks like the form for the expansion of e^{ta} (though square matrices replace scalars). So we end by learning that the state transition matrix, $\Phi(t)$ is the matrix exponential e^{tA} .

- Many scalar exponential properties don't extend to matrix exponential; with scalars, this is wrong: $e^{A+B} = e^A e^B$ (unless A and B commute: AB = BA)
- But this is ok: $e^{-A} = (e^A)^{-1}$
- So, how do you find the matrix exponential:

Find e^A ,

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Found $e^{tA} = \mathcal{L}^{-1}(sI - A)^{-1}$ in earlier example, so just plug in t = 1.

• Matlab: expm(A), not elementwise exp(A)

9.7 Time transfer property

Summary: for $\dot{x} = Ax$, $x(t) = \Phi(t)x(0) = e^{tA}x(0)$. The matrix e^{tA} propagates initial condition into state at time t. Also propagates backward in time if t < 0. If given x(12), find x(0) via $e^{-12A}x(12)$.

If given x(12), find x(0) via $e^{-x(12)}$.

- Can use first order forward Euler approximate state update for small t
- Discretized autonomous LDS: $z(k+1) = e^{hA}z(k)$ (not an approximation for these equations)

9.8 Application: sampling a continuous time system

10 Lecture 12

Piecewise constant system: A is constant for certain intervals of time.

- Qualitative behavior of x(t)
 - Eigenvalues determine (possible) behavior of x
 - Can plot eigenvalues on complex axes; like pole plot
 - Can put x in summation form with polynomial coefficient and exponential terms

10.1 Stability

- $\dot{x} = Ax$ is stable if $e^{tA} \to 0$ as $t \to \infty$
 - means that state x(t) converges to 0 as $t \to \infty$, no matter x(0)
 - all trajectories of $\dot{x} = Ax$ converge to 0 as $t \to \infty$
 - $-\dot{x} = Ax$ is stable iff all eigenvalues of A have negative real part

10.2 Eigenvectors and diagonalization

• $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if (characteristic polynomial)

$$\mathcal{X}(\lambda) = \det(\lambda I - A) = 0$$

• i.e., $(\lambda I - A)$ is singular, not invertible, $\mathcal N$ not equal to the 0 set

Equivalent to:

- \exists nonzero $v \in \mathbb{C}^n$ s.t. $(\lambda I A)v = 0$: $Av = \lambda v$ (v is the eigenvector)
 - columns are dependent
- \exists nonzero $w \in \mathbb{C}^n$ s.t. $w^T(\lambda I A) = 0$: $w^T A = \lambda w^T$ (w is the left eigenvector)
 - rows are dependent
- real A can still have complex e-pairs
- $A, \lambda \text{ real} \Rightarrow \lambda \text{ is associated with a real } v$
- conjugate (negate imaginary term of complex number[s])
- hermitian conjugate (and transpose)

10.3 Scaling interretation

Av is simply scaled version of v (λ times); all components get magnified by the same amount

10.4 Dynamic interretation

For
$$Av = \lambda v$$
, if $\dot{x} = Ax, x(0) = v \Rightarrow \boxed{x(t) = e^{\lambda t}v} = e^{tA}v$.

- $A^2v = \lambda^2v$
- So you just need a scalar in front of the v to calculate x(t)!
- An eigenvector is an initial condition x(0) for which the entire trajectory is really simple.
- solution $x(t) = e^{\lambda t}v$ is a mode of $\dot{x} = Ax$ (associated with eigenvalue λ)

10.5 Invariant set 11 LECTURE 13

10.5 Invariant set

a set $S \subseteq \mathbb{R}^n$ is invariant under $\dot{x} = Ax$ if whenever $x(t) \in S$, then $x(\tau) \in S$ for all $\tau \geq t$ (you stay stuck within the set)

 \bullet vector field interretation: trajectories only cut into S

If a single point is an invariant set, it must be in the nullspace; $S = \{x_0\} \Leftrightarrow x_0 \in \mathcal{N}(A)$, so $Ax_0 = 0 = \dot{x}$.

• line $\{tv|t\in\mathbb{R}\}$ is invariant for eigenvector v

10.6 Complex eigenvectors

• for $a \in \mathbb{C}$, complex trajectory $ae^{\lambda t}v$ satisfies $\dot{x} = Ax$, as well as real part

$$x(t) = \operatorname{Re}(ae^{\lambda t}v)$$

$$= e^{\sigma t} \begin{bmatrix} v_{re} & v_{im} \end{bmatrix} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix} \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$$

where

$$v = v_{re} + jv_{im}, \lambda = \sigma + j\omega, a = \alpha + j\beta$$

- σ gives logarithmic growth/decay factor
- ω gives angular velocity of rotation in plane
- trajectory stays in *invariant plane* span $\{v_{re}, v_{im}\}$

10.7 Dynamic interpretation: left eigenvectors

10.8 Summary:

- right eigenvectors are initial conditions from which resulting motion is simple (i.e., remains on line or in plane)
- left eigenvectors give linear functions of state that are simple, for any initial condition

10.9 Example- companion matrix

- Easy to get the characteristic polynomial
- General truth: with these matrices you can't generally tell the system behavior by just looking at it
- If you push a signal through an integrator, it gets less wiggly
- By multiplying by the left eigenvector, you've filtered out the sinusoid?

11 Lecture 13

11.1 Example: Markov chain

Probability vector $p \in \mathbb{R}^n$ that you're in each of n states: p(t+1) = Pp(t). This probability evolves in time by being multiplied by state transition matrix P.

- $p_i(t) = \mathbf{Prob}(z(t) = i) \Rightarrow \sum_{i=1}^n p_i(t) = 1$
- sum of each column is 1
 - called stochastic
- i.e., $[1\ 1\ \cdots 1]$ is a left eigenvector of P with $\lambda = 1$

11.2 Diagonalization 11 LECTURE 13

- so $\det(I-P)=0$, so there's also a nonzero right eigenvector s.t. Pv=v
 - -v can always be chosen to have non-negative elements, and can be normalized
- Interpretation: v is an equilibrium distribution; you don't change your probability distribution in time; always in v
 - if v unique, it's called the steady-state distribution of the Markov chain

11.2 Diagonalization

- $v_1, ..., v_n$ is LI set of eigenvectors of $A \in \mathbb{R}^{n \times n}$: $Av_i = \lambda_i v_i$
- Concatenate in matrix language:

$$A\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

or,
$$AT = T\Lambda$$
, or $T^{-1}AT = \Lambda$

- note, T is invertible, since its columns are linearly independent
- This is why, while $Av = \lambda v$ is more commonly used for a scalar eigenvalue, $Av = v\lambda$ is more general, as it can represent a vector of eigenvalues λ .
- \bullet so, A is diagonalizable if
 - $-\exists T \text{ s.t. } T^{-1}AT = \Lambda \text{ is diagonal}$
 - A has a set of linearly independent eigenvectors
 - * if A not diagonalizable, it is called defective

11.3 Not all matrices diagonalizable

i.e.,

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

11.4 Distinct eigenvalues

fact: distinct eigenvalues in $A \Rightarrow A$ diagonalizable

• converse not true, i.e., $I \in \mathbb{R}^{7 \times 7}$

11.5 Diagonalization and left eigenvectors

rewrite $T^{-1}AT = \Lambda$ as $T^{-1}A = \Lambda T^{-1}$:

$$\begin{bmatrix} w_1^T \\ \vdots \\ w_n^T \end{bmatrix} A = \Lambda \begin{bmatrix} w_1^T \\ \vdots \\ w_n^T \end{bmatrix}$$

- remember that Λ is diagonal matrix, and multiplying by a diagonal matrix on the left is equivalent to scaling rows of the matrix
 - on the right scales the columns

11.6 Modal form 11 LECTURE 13

Remeber left/right multiplication results (whether it scales columns or rows) with 2×2 matrix multiplication:

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = \begin{bmatrix} 2x_1 & 2x_2 \\ 3y_1 & 3y_2 \end{bmatrix}$$

I.e., right multiplication of diagonal matrix scales the rows.

- Take LI set of eigenvectors as columns, invert that matrix, then the rows are left eigenvectors
- An eigenvector is still an eigenvector after being scaled; so any can be normalized

11.6 Modal form

Take a LI set of eigenvectors from A, shove them together as columns of new matrix T ="A is diagonalizable by T"

- can define new coordinates by $x = T\tilde{x}$:
- \tilde{x} is coordinates of x in the T expansion; modal (or eigenvector) expansion
 - $-\tilde{x}$ is x in terms of the eigenvectors

$$T\dot{\tilde{x}} = AT\tilde{x} \Leftrightarrow \dot{\tilde{x}} = T^{-1}AT\tilde{x} \Leftrightarrow \dot{\tilde{x}} = \Lambda\tilde{x}$$

- in new coordinate system, system is diagonal (decoupled)
- normally, with $\dot{x} = Ax$, there's a ton of cross-gains from input x_i to output y_j , where all the outputs depend on all the inputs (assuming A has only non-zero entries)
 - diagonalized system decouples it; trajectory consists of n independent modes:

$$\tilde{x}_i(t) = e^{\lambda_i t} \tilde{x}_i(0)$$

11.7 Real modal form

when eigenvalues $(\Rightarrow T)$ are complex

• notes show block diagram of complex mode (note if real parts σ are removed, you get harmonic oscillator)

11.8 Diagonalization simplification

Simplifies calculation of:

- resolvent
- powers (A^k)
- exponential $(e^A = T \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})T^{-1})$
- So, diagonalization is largely a conceptual tool, and sometimes gives great computational advantage

11.9 Simplify for analytical functions of a matrix

11.10 Solution via diagonalization

 $\dot{x} = Ax$ solution is $x(t) = e^{tA}x(0)$

• with diagonalization, solution given as

$$x(t) = \sum_{i=1}^{n} e^{\lambda_i t} (w_i^T x(0)) v_i$$

11.11 Interpretation 11 LECTURE 13

11.11 Interpretation

- (left eigenvectors) decompose initial state x(0) into modal components $w_i^T x(0)$
- $e^{\lambda_i t}$ term propagates i th mode forward t seconds
- reconstruct state as linear combination of (right eigenvectors)

11.12 Application

Finding x(0) that gives stable solution.

11.13 Stability of discrete-time systems

- powers of complex numbers s^k go to zero if |s| < 1
 - imaginary part tells how much of a rotation at each step you get
- x(t+1) = Ax(t) is stable iff all eigenvalues of A have magnitude less than one
- spectral radius of $A: \rho(A) = \max |\lambda_i|$
 - so it is a stable system iff $\rho(A) < 1$
 - $-\rho$ gives rough growth or decay

11.14 Jordan Canonical form

• Any matrix $A \in \mathbb{R}^{n \times n}$ can be expressed in Jordan-canonical form (via 'similarity transformation,' for some invertible matrix T^{-1})

$$T^{-1}AT = J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_q \end{bmatrix}$$

where

$$J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_i \end{bmatrix} \in \mathbb{C}^{n_i \times n_i}$$

- J is 'upper bidiagonal'
- Jordan form is unique (up to permutations of blocks- blocks might be in different places in the diagonal)
- Almost strictly a conceptual tool; almost never used for numerical computations
- Jordan forms are inutil if the matrix is already diagonalizable
- When you get into Jordan form, you can use a chain of integrators to represent it in block diagram form
- Jordan blocks refer to dynamics blocks that cannot be decoupled
- Jordan blocks yield:
 - repeated poles in resolvent
 - terms of form $t^p e^{t\lambda}$ in e^{tA} : solution to $\dot{x} = Ax$ is in form of polynomials, with $t^n e^{\lambda t}$ terms

11.15 Jordan block example

$$\dot{x} = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & 0 & 1 \end{bmatrix} x$$

- Eigenvalues are all zero
- in the solutions you should expect $t^p e^0$ ('constant') terms: solution of form $t + t^2 + t^3$

12 Lecture 14

- Jordan canonical form: 'closest you can get to diagonalizable form, if matrix isn't diagonalizable'
- via inverse Laplace transform:

$$e^{tJ_{\lambda}} = e^{t\lambda} (I + tF_1 + \dots + (t^{k-1}/(k-1)!)F_{k-1})$$

$$= e^{t\lambda} \begin{bmatrix} 1 & t & \dots & t^{k-1}/(k-1)! \\ 1 & \dots & t^{k-2}/(k-2)! \\ & \ddots & & \vdots \\ & & 1 \end{bmatrix}$$

13 Appendix

Some special things to remember.

13.1 Inverse, transpose properties

- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^T = (A^T)^{-1} = A^{-T}$

13.2 Invertibility implications

For an n-by-n matrix A

Invertible	mnemonic
$ A \neq 0$	$ A = 0 \Rightarrow$ you can't compute the inverse
	- (remember base case 2 \times 2 matrix inverse involves $1/ A $ term)
non-singular	singular \Rightarrow the matrix sends a nontrivial subspace to the singular subspace, $\{0\}$
A is full rank	linearly independent columns (invertibility \Rightarrow 1-to-1/injective)
$\mathcal{N}(A) = \{0\}$	linearly independent columns
$\mathcal{R}(A) = \mathbb{R}^n$	linearly independent columns
Ax = b has unique solution for every b	- no more than one solution (can't add members of $\mathcal{N}(A)$ for multiple b)
	- one solution, since $\mathcal{R}(A) = \mathbb{R}^n$; everything reachable/surjective
	- one solution found using the unique inverse of A
$\operatorname{rref}(A) = I_n$	
A is a product of elementary matrices	

13.3 Tips

- to sum up all the elements in matrix A, multiply by one vectors: $\sum_{i,j} (A)_{i,j} = \mathbf{1}^T A \mathbf{1}$
- each row i in Z is a linear combination of rows i, ..., n in Y : Z = UY, where U is upper triangular: $U_{ij} = 0$ for i > j
 - more in 2.24, hw2

14 Homework assignments

```
Homework 1
               Lecture 4
                            2.1-2.4, 2.6, 2.9, 2.12, +
Homework 2
               Lecture 6
                            3.2, 3.3, 3.10, 3.11, 3.16, 3.17, +
Homework 3
                            2.17, 3.13, 4.1 - 4.3, 5.1, 6.9, +
               Lecture 8
Homework 4
               Lecture 10
                            5.2, 6.2, 6.5, 6.12, 6.14, 6.26, 7.3, 8.2
Homework 5
               Lecture 13
                            10.2, 10.3, 10.4, +
                            9.9, 10.5, 10.6, 10.8, 10.14, 11.3, and 11.6a
Homework 6
               Lecture 14
Homework 7
               Lecture 16
                            10.9, 10.11, 10.19, 11.13, 12.1, 13.1, +
Homework 8
               Lecture 18
                            13.17, 14.2, 14.3, 14.4, 14.6, 14.8, 14.9, 14.11, 14.13, 14.21, 14.33, +
Homework 9
               Lecture 20
                            14.16, 14.26, 15.2, 15.3, 15.6, 15.8, 15.10, and 15.11
```