In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	CH4	CO	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2
0	2017-06-01 01:00:00	NaN	NaN	0.3	NaN	NaN	4.0	38.0	NaN	NaN	NaN	NaN	5.0
1	2017-06-01 01:00:00	0.6	NaN	0.3	0.4	0.08	3.0	39.0	NaN	71.0	22.0	9.0	7.0
2	2017-06-01 01:00:00	0.2	NaN	NaN	0.1	NaN	1.0	14.0	NaN	NaN	NaN	NaN	NaN
3	2017-06-01 01:00:00	NaN	NaN	0.2	NaN	NaN	1.0	9.0	NaN	91.0	NaN	NaN	NaN
4	2017-06-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	19.0	NaN	69.0	NaN	NaN	2.0
210115	2017-08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	27.0	NaN	65.0	NaN	NaN	NaN
210116	2017-08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	14.0	NaN	NaN	73.0	NaN	7.0
210117	2017-08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	4.0	NaN	83.0	NaN	NaN	NaN
210118	2017-08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	11.0	NaN	78.0	NaN	NaN	NaN
210119	2017-08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	14.0	NaN	77.0	60.0	NaN	NaN

210120 rows × 16 columns

In [3]:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210120 entries, 0 to 210119 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	210120 non-null	object
1	BEN	50201 non-null	float64
2	CH4	6410 non-null	float64
3	CO	87001 non-null	float64
4	EBE	49973 non-null	float64
5	NMHC	25472 non-null	float64
6	NO	209065 non-null	float64
7	NO_2	209065 non-null	float64
8	NOx	52818 non-null	float64
9	0_3	121398 non-null	float64
10	PM10	104141 non-null	float64
11	PM25	52023 non-null	float64
12	S0_2	86803 non-null	float64
13	TCH	25472 non-null	float64
14	TOL	50117 non-null	float64
15	station	210120 non-null	int64
dtyp	es: float	64(14), int64(1),	object(1)

t64(1), object(1) memory usage: 25.6+ MB

In [4]: b=a.fillna(value=172)

Out[4]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	S
0	2017-06-01 01:00:00	172.0	172.0	0.3	172.0	172.00	4.0	38.0	172.0	172.0	172.0	172.0	
1	2017-06-01 01:00:00	0.6	172.0	0.3	0.4	0.08	3.0	39.0	172.0	71.0	22.0	9.0	
2	2017-06-01 01:00:00	0.2	172.0	172.0	0.1	172.00	1.0	14.0	172.0	172.0	172.0	172.0	1
3	2017-06-01 01:00:00	172.0	172.0	0.2	172.0	172.00	1.0	9.0	172.0	91.0	172.0	172.0	1
4	2017-06-01 01:00:00	172.0	172.0	172.0	172.0	172.00	1.0	19.0	172.0	69.0	172.0	172.0	
210115	2017-08-01 00:00:00	172.0	172.0	0.2	172.0	172.00	1.0	27.0	172.0	65.0	172.0	172.0	1
210116	2017-08-01 00:00:00	172.0	172.0	0.2	172.0	172.00	1.0	14.0	172.0	172.0	73.0	172.0	
210117	2017-08-01 00:00:00	172.0	172.0	172.0	172.0	172.00	1.0	4.0	172.0	83.0	172.0	172.0	1
210118	2017-08-01 00:00:00	172.0	172.0	172.0	172.0	172.00	1.0	11.0	172.0	78.0	172.0	172.0	1
210119	2017-08-01 00:00:00	172.0	172.0	172.0	172.0	172.00	1.0	14.0	172.0	77.0	60.0	172.0	11

210120 rows × 16 columns

```
In [5]:
```

In [6]: c=b.head(11)

Out[6]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2
0	2017-06-01 01:00:00	172.0	172.0	0.3	172.0	172.00	4.0	38.0	172.0	172.0	172.0	172.0	5.0
1	2017-06-01 01:00:00	0.6	172.0	0.3	0.4	0.08	3.0	39.0	172.0	71.0	22.0	9.0	7.0
2	2017-06-01 01:00:00	0.2	172.0	172.0	0.1	172.00	1.0	14.0	172.0	172.0	172.0	172.0	172.0
3	2017-06-01 01:00:00	172.0	172.0	0.2	172.0	172.00	1.0	9.0	172.0	91.0	172.0	172.0	172.0
4	2017-06-01 01:00:00	172.0	172.0	172.0	172.0	172.00	1.0	19.0	172.0	69.0	172.0	172.0	2.0
5	2017-06-01 01:00:00	0.1	172.0	0.3	0.2	172.00	1.0	26.0	172.0	70.0	26.0	172.0	1.0
6	2017-06-01 01:00:00	0.3	172.0	0.2	0.1	0.17	1.0	19.0	172.0	79.0	23.0	9.0	3.0
7	2017-06-01 01:00:00	172.0	172.0	172.0	172.0	172.00	1.0	9.0	172.0	87.0	172.0	172.0	172.0
8	2017-06-01 01:00:00	172.0	172.0	0.3	172.0	172.00	3.0	30.0	172.0	70.0	172.0	172.0	172.0
9	2017-06-01 01:00:00	172.0	172.0	0.1	172.0	172.00	1.0	15.0	172.0	172.0	22.0	172.0	10.0
10	2017-06-01 01:00:00	0.7	172.0	172.0	1.0	172.00	1.0	25.0	172.0	172.0	21.0	10.0	2.0

In [7]: d=c[['BEN','CO','EBE','NMHC','NO_2','O_3']]

Out[7]:

	BEN	СО	EBE	NMHC	NO_2	O_3
0	172.0	0.3	172.0	172.00	38.0	172.0
1	0.6	0.3	0.4	0.08	39.0	71.0
2	0.2	172.0	0.1	172.00	14.0	172.0
3	172.0	0.2	172.0	172.00	9.0	91.0
4	172.0	172.0	172.0	172.00	19.0	69.0
5	0.1	0.3	0.2	172.00	26.0	70.0
6	0.3	0.2	0.1	0.17	19.0	79.0
7	172.0	172.0	172.0	172.00	9.0	87.0
8	172.0	0.3	172.0	172.00	30.0	70.0
9	172.0	0.1	172.0	172.00	15.0	172.0
10	0.7	172.0	1.0	172.00	25.0	172.0

In [8]:

Out[8]: <AxesSubplot:>


```
In [14]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[14]:
                   Co-efficient
            BEN -3.512958e-11
             CO 1.000000e+00
            EBE 3.514969e-11
           NMHC -6.107000e-14
           NO_2 5.495238e-16
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x16c0ed10e20>
           175
           150
           125
           100
            75
            50
            25
                      25
                            50
                                  75
                                       100
                                             125
                                                   150
                                                         175
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9999986435877276
In [20]: la=Lasso(alpha=10)
Out[20]: Lasso(alpha=10)
In [21]: -
Out[21]: 0.9999772585745981
```

In [22]:	a1=b.head(7000)													
Out[22]:	date BEN CH4 CO EBE NMHC NO NO_2 NOx O_3 PM10 PM25 SO_													
	0	2017-06-01 01:00:00		172.0			172.00				172.0		172.0	5 5
	1	2017-06-01 01:00:00	0.6	172.0	0.3	0.4	0.08	3.0	39.0	172.0	71.0	22.0	9.0	7.
	2	2017-06-01 01:00:00	0.2	172.0	172.0	0.1	172.00	1.0	14.0	172.0	172.0	172.0	172.0	172
	3	2017-06-01 01:00:00	172.0	172.0	0.2	172.0	172.00	1.0	9.0	172.0	91.0	172.0	172.0	172
	4	2017-06-01 01:00:00	172.0	172.0	172.0	172.0	172.00	1.0	19.0	172.0	69.0	172.0	172.0	2
	6995	2017-06-13 06:00:00	172.0	172.0	0.2	172.0	172.00	1.0	9.0	172.0	84.0	172.0	172.0	172
	6996	2017-06-13 06:00:00	172.0	172.0	172.0	172.0	172.00	1.0	13.0	172.0	172.0	7.0	172.0	9
	6997	2017-06-13 06:00:00	172.0	172.0	172.0	172.0	172.00	1.0	11.0	172.0	172.0	20.0	17.0	172
	6998	2017-06-13 06:00:00	172.0	172.0	172.0	172.0	172.00	1.0	2.0	172.0	172.0	8.0	4.0	172
	6999	2017-06-13 06:00:00	172.0	172.0	172.0	172.0	172.00	1.0	3.0	172.0	76.0	172.0	172.0	172
	7000 r	rows × 16 cc	olumns											
In [23]:	e=a1[['BEN', 'C	0', '	EBE',	NMHC'	, 'NO_	_2','0_	3',						
In [24]:	f=e.i	loc[:,0:14	1]											
In [25]:		1 16 7	<i>/</i> \	•		(0)								
In [26]:	logr=	LogisticRe	gress	ion(ma	x_ite	r=1000	90)							
Out[26]:	Logis	ticRegress	sion(m	ax_it	er=100	00)								
In [27]:	from	sklearn.mo	odel_s ·	electi	ion im	port 1	rain_t	est_	split		_	~ \		
In [28]:		0 00 00 40												
In [29]:	predi	ction=logr	r.pred	ict(i)										
	[2807	9050]	•											

8 of 13

```
In [30]: __
Out[30]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
               28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
               28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
               28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
              dtype=int64)
In [31]:
Out[31]: 0.0
In [32]:
Out[32]: 0.0
In [33]:
Out[33]: 0.9295238095238095
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
        C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_d
        escent.py:530: ConvergenceWarning: Objective did not converge. You might want
        to increase the number of iterations. Duality gap: 2.8279111983000207, tolera
        nce: 2.5288994283597512
          model = cd_fast.enet_coordinate_descent(
Out[34]: ElasticNet()
In [35]:
        [-0.08805575 0.99952198 0.08786105 0. -0.
                                                               1
In [36]:
        0.02624026845406391
In [37]: prediction=en.predict(x_test)
        0.9999990835844101
In [38]: | from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
Out[38]: RandomForestClassifier()
In [39]: parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
         'n_estimators':[10,20,30,40,50]
```

```
In [43]: from sklearn.tree import plot tree
             plt.figure(figsize=(80,50))
Out[43]: [Text(1781.3076923076922, 2491.5, 'X[5] <= 0.828\ngini = 0.958\nsamples = 311
              5\nvalue = [209, 222, 197, 205, 230, 194, 171, 214, 226, 166\n203, 215, 192,
              240, 202, 222, 238, 206, 172, 189\n211, 212, 186, 178]'),
               Text(858.4615384615383, 2038.5, 'X[1] <= -0.186 \setminus gini = 0.928 \setminus gini = 182
              6\nvalue = [0, 216, 0, 204, 227, 193, 160, 214, 226, 0, 0\n215, 0, 0, 0, 222,
              0, 206, 0, 187, 0, 212, 184\n178]'),
               Text(686.7692307692307, 1585.5, X[3] <= -1.22 = 0.855 = 879
              0, 167, 0, 0, 0, 0]'),
               Text(343.38461538461536, 1132.5, 'X[10] <= -1.238 \setminus gini = 0.486 \setminus gini = 2
              32\nvalue = [0, 216, 0, 0, 0, 0, 154, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0]'),
               Text(171.69230769230768, 679.5, 'gini = 0.0\nsamples = 141\nvalue = [0, 216,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
               Text(515.0769230769231, 679.5, 'gini = 0.0\nsamples = 91\nvalue = [0, 0, 0,
              0, 0, 0, 154, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
               Text(1030.1538461538462, 1132.5, 'X[10] \leftarrow -1.181 \mid = 0.8 \mid = 64
              7\nvalue = [0, 0, 0, 204, 0, 192, 6, 0, 226, 0, 0, 215, 0\n0, 0, 0, 0, 0, 0,
              167, 0, 0, 0, 0]'),
               Text(858.4615384615383, 679.5, 'gini = 0.0\nsamples = 126\nvalue = [0, 0, 0,
              204, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
               Text(1201.8461538461538, 679.5, 'X[10] <= -0.047\ngini = 0.75\nsamples = 52
              1\nvalue = [0, 0, 0, 0, 0, 192, 6, 0, 226, 0, 0, 215, 0\n0, 0, 0, 0, 0, 16
              7, 0, 0, 0, 0]'),
               Text(1030.1538461538462, 226.5, 'gini = 0.511 \setminus samples = 269 \setminus samples = [0, 0, 0]
              0, 0, 0, 192, 6, 0, 226, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
               Text(1373.5384615384614, 226.5, 'gini = 0.492\nsamples = 252\nvalue = [0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 215, 0, 0 \setminus 0, 0, 0, 0, 0, 167, 0, 0, 0, 0]'),
               Text(1030.1538461538462, 1585.5, 'gini = 0.86\nsamples = 947\nvalue = [0, 0,
              0, 0, 227, 1, 0, 214, 0, 0, 0, 0, 0, 0\n0, 222, 0, 206, 0, 20, 0, 212, 184, 1
              78]'),
               Text(2704.1538461538457, 2038.5, 'X[1] <= -0.188 \setminus ini = 0.901 \setminus insamples = 12
              89\nvalue = [209, 6, 197, 1, 3, 1, 11, 0, 0, 166, 203, 0\n192, 240, 202, 0, 2
              38, 0, 172, 2, 211, 0, 2, 0]'),
               Text(1888.6153846153845, 1585.5, 'X[10] <= -1.805 \setminus gini = 0.671 \setminus gini = 3
              82\nvalue = [209, 5, 0, 1, 0, 1, 0, 0, 0, 166, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
              209, 0, 0, 0]'),
               Text(1716.9230769230767, 1132.5, 'gini = 0.0\nsamples = 140\nvalue = [209,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
               Text(2060.3076923076924, 1132.5, X[10] <= 0.492  | X[10] <= 0.512  | X[10] <= 0.
              2\nvalue = [0, 5, 0, 1, 0, 1, 0, 0, 166, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 20
              9, 0, 0, 0]'),
               Text(1888.6153846153845, 679.5, X[4] \le 0.514 = 0.078 = 113
              nvalue = [0, 5, 0, 1, 0, 1, 0, 0, 0, 166, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0]'),
               Text(1716.9230769230767, 226.5, 'gini = 0.031\nsamples = 84\nvalue = [0, 0,
              0, 1, 0, 1, 0, 0, 0, 126, 0, 0, 0, 00, 0, 0, 0, 0, 0, 0, 0, 0]'),
               Text(2060.3076923076924, 226.5, 'gini = 0.198\nsamples = 29\nvalue = [0, 5,
              0, 0, 0, 0, 0, 0, 40, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
               0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 209, 0, 0]'),
               Text(3519.6923076923076, 1585.5, 'X[6] <= 0.407\ngini = 0.859\nsamples = 90
              7\nvalue = [0, 1, 197, 0, 3, 0, 11, 0, 0, 0, 203, 0, 192\n240, 202, 0, 238,
```

```
0, 172, 2, 2, 0, 2, 0]'),
   Text(2918.7692307692305, 1132.5, 'X[2] <= -0.597 \setminus initial = 0.832 \setminus initial = 0.8
9\nvalue = [0, 1, 0, 0, 0, 0, 0, 0, 0, 203, 0, 191\n239, 201, 0, 238, 0, 1
68, 0, 2, 0, 0, 0]'),
  Text(2575.3846153846152, 679.5, X[7] <= -0.194  = 0.498 \(\text{nsamples} = 23)
8\nvalue = [0, 1, 0, 0, 0, 0, 0, 0, 0, 203, 0, 0, \( \)\n0, 0, 0, 168, 0,
0, 0, 0, 0]'),
   Text(2403.6923076923076, 226.5, 'gini = 0.0\nsamples = 126\nvalue = [0, 0,
0, 0, 0, 0, 0, 0, 0, 203, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
   Text(2747.076923076923, 226.5, 'gini = 0.012\nsamples = 112\nvalue = [0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 168, 0, 0, 0, 0]'),
   Text(3262.1538461538457, 679.5, X[7] \leftarrow -0.157  ngini = 0.749 \ nsamples = 53
1\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 191, 239\n201, 0, 238, 0, 0,
0, 2, 0, 0, 0]'),
   Text(3090.461538461538, 226.5, 'gini = 0.0\nsamples = 126\nvalue = [0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 191, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
   Text(3433.8461538461534, 226.5, 'gini = 0.667\nsamples = 405\nvalue = [0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 239 n201, 0, 238, 0, 0, 0, 2, 0, 0, 0]'),
   Text(4120.615384615385, 1132.5, X[2] <= -1.772 \ngini = 0.209 \nsamples = 13
8\nvalue = [0, 0, 197, 0, 3, 0, 11, 0, 0, 0, 0, 1, 1\n1, 0, 0, 0, 4, 2, 0,
0, 2, 0]'),
   Text(3948.9230769230767, 679.5, 'X[4] <= -0.492 \setminus gini = 0.03 \setminus gini = 123 \setminus gini = 0.03 \setminus gini = 123 \setminus gin
nvalue = [0, 0, 195, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 3, 0, 0, 0,
0, 0]'),
   Text(3777.230769230769, 226.5, 'gini = 0.13\nsamples = 28\nvalue = [0, 0, 4
Text(4120.615384615385, 226.5, 'gini = 0.0\nsamples = 95\nvalue = [0, 0, 15
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
  Text(4292.307692307692, 679.5, 'gini = 0.747 \nsamples = 15 \nvalue = [0, 0, 0]
2, 0, 3, 0, 11, 0, 0, 0, 0, 1, 1\n1, 0, 0, 0, 1, 2, 0, 0, 2, 0]')]
```


From this observation I had observe that the

ELASTICNET is a highest accuracy of n 999990835844101

In []: