第3次作业

在一个5段的流水线处理机上,需要9拍才能完成一个任务,其预约表如下图所示。请写出:

(1) 延迟禁止表F (2) 初始冲突向量C (3) 画出流水线状态转移图 (4) 求出最小平均延迟及其对应的调度方案 (5) 若按 (4) 确定的流水线调度方案输入6个任务,求实际吞吐率

段	t_{0}	t_1	t_2	t_3	t ₄	t_5	t_6	t ₇	t ₈
S_1	~								\
S_2		~	~						
S_3				\			✓	\	
S_4				~	~				
S_5						>	~		

(1)
$$F = \{1, 3, 4, 8\}$$

(2) 初始冲突向量C共8位。根据F, 可得到 C= 10001101

- 注意:
- 1、状态转移图中, 启动距离〉=9是可行 的转移条件,相当 于串行执行;
- 2、从不同状态出发, 转移条件不一定相 同;
- 3、吞吐率的单位
- (4) {2,5}, {2,7}, {5}, {6}, {6,5}, {6,7}, {7}
 最佳调度方案 {2,5}, 平均启动距离3.5, TP_{max} = 1/3.5拍
- (5) 采用 (2,5) 进行调度,完成6个任务需要的总时间为 9+2+5+2+5+2 = 25拍 所以, TP = n/T = 6/25拍