Exploratory Data Analysis

Description of data at a glance

We will use this dataframe for further analysis

A brief overview of the dataframe

```
RangeIndex: 13611 entries, 0 to 13610
Data columns (total 17 columns):
#
    Column
                      Non-Null Count
                                      Dtype
- - -
     -----
 0
                      13611 non-null
    Area
                                      int64
                      13611 non-null
 1
    Perimeter
                                      float64
 2
    MajorAxisLength 13611 non-null
                                      float64
 3
    MinorAxisLength
                      13611 non-null
                                      float64
    AspectRation
                      13611 non-null
                                      float64
 5
    Eccentricity
                      13611 non-null
                                      float64
 6
                      13611 non-null
    ConvexArea
                                      int64
    EquivDiameter
 7
                      13611 non-null float64
 8
    Extent
                      13611 non-null float64
 9
    Solidity
                      13611 non-null float64
 10
    roundness
                      13611 non-null float64
 11 Compactness
                      13611 non-null float64
                      13611 non-null
 12
    ShapeFactor1
                                      float64
 13
    ShapeFactor2
                      13611 non-null float64
 14
    ShapeFactor3
                      13611 non-null
                                      float64
 15
    ShapeFactor4
                      13611 non-null
                                      float64
                      13611 non-null
 16 Class
                                      object
dtypes: float64(14), int64(2), object(1)
memory usage: 1.8+ MB
```

- We have 16 features, 12 dimensional and 4 shape features
- The Class column contains the Classes
- We have 13,611 rows each corresponding to 16 features per bean
- We have got 5 different classes: 'SEKER', 'BARBUNYA', 'BOMBAY', 'CALI', 'HOROZ', 'SIRA', 'DERMASON'

Analysisng the Classes

_ = sns.countplot(data=df, x='Class')

Obvservation

• We have got 5 classes and above are the counts of the classes. As, we can see that the majority class is DERMASON and minority one is BOMBAY. The data is imbalanced as BOMBAY has only 500 examples where as DERMASON has 3500 examples.

Analysing the features

Univariate Analysis

Features and their distributions

Obvservation

- BOMBAY class can be differentiated easily using any feature
- The other classes have a lot of overlap and are not easy to distinguish

Bivariate Analysis

Since there are a lot of features, let's look at the pair plot first and then we can progress

obvservation

- So, it's kinda cumbersome, but still it gives us some details about it our data
- The green colored points are points belonging to BOMBAY our minority class. It seems any feature is good enough for separating BOMBAY from other classe.
- We can't really say the same for other classes

Now, lets zoom in on some features which are highly correlated to each other

• ShapeFactor3 and Eccentricity are high negative correlation, they seem to be perfectly lining up

Few other features with high negative and positive correlation

• This is pretty interesting to look at, Area and ConvexArea seem to be the exact same features. Makes sense as ConvexArea approximates Area to the closest convex polygon

Let's Move on to correlation analysis

Correlation Analysis

Obvservation

- As, we can see that most of our features are highly correlated either negatively or positively.
- My hypothesis is even if we use very less features, we will still be able to descibe our data well.

Let's use PCA and see if that holds true. The idea of PCA is simple — reduce the number of variables of a data set, while preserving as much information as possible.

- It's interesting to see that just the first 5 components are good enough to explain 96 % of the data. If we take just 8 out of the 16 components, we can explain the whole data
- But PCA is like not so good for interpretebility. Nonetheless, it kind of validates my hypothesis

Feature importances

- $\bullet \quad \hbox{ShapeFactor3, Compactness, Perimeter have the highest importances}.$
- We will use one of them to remove outliers.

Cleaning the data

Dealing with missing values

_	L	L _
column	NA count	Null count
Area	0	0
Perimeter	0	j 0 j
MajorAxisLength	0	0 j
MinorAxisLength	0	0
AspectRation	0	0
Eccentricity	0	0
ConvexArea	0	0
EquivDiameter	0	0
Extent	0	0
Solidity	0	0
roundness	0	0
Compactness	0	0
ShapeFactor1	0	0
ShapeFactor2	0	0
ShapeFactor3	0	0

ShapeFactor4	0	0	
Class	0	0	ĺ
+			· - +

• As you can see, the dataset is fairly complete with no missing or na values. So, we don't need to deal with them

Checking for negative values

Since all the featues are either dimensional or derived from the dimensional features, thhe values can't be negative. Let's cehck for negative features.

Area	0
Perimeter	0
MajorAxisLength	0
MinorAxisLength	0
AspectRation	0
Eccentricity	0
ConvexArea	0
EquivDiameter	0
Extent	0
Solidity	0
roundness	0
Compactness	0
ShapeFactor1	0
ShapeFactor2	0
ShapeFactor3	0
ShapeFactor4	0
dtype: int64	

Obvservation

· All the columns have positive values which is good as we can now use all rows

Outlier Removal

Let's see the distirbution of the features

column	method	% data retained
roundness	zscore	100.0
Solidity	zscore	100.0
ShapeFactor4	zscore	100.0
Extent	zscore	100.0
Eccentricity	zscore	100.0
ShapeFactor1	zscore	99.993
Compactness	zscore	99.993
ShapeFactor2	zscore	99.963
ShapeFactor3	zscore	99.941
AspectRation	zscore	99.89
MajorAxisLength	zscore	97.678
Perimeter	zscore	97.032
EquivDiameter	zscore	96.584
ConvexArea	zscore	96.451
Area	zscore	96.451
MinorAxisLength	zscore	96.268

Removal of outliers using iqr method

column	 method	% data retained
ShapeFactor2	iqr	100.0
roundness	iqr	99.331
Compactness	iqr	99.199
ShapeFactor3	iqr	98.567
Extent	İiqr	97.98
MajorAxisLength	iqr	j 97.215 j
AspectRation	iqr	j 96.525 j
Perimeter	İiqr	j 96.327 j
EquivDiameter	İiqr	96.135
ShapeFactor1	İiqr	96.084
ConvexArea	İiqr	95.959
Area	İiqr	95.952
MinorAxisLength	İiqr	95.82
ShapeFactor4	İiqr	94.365
Solidity	İiqr	j 94.284 j
Eccentricity	iqr	j 93.806 j
+	+	++

Conclusion

We get a lot of insights from the data:

- The dataset is clean
- Features are highly correlated
- Removal of few features will not impact the performance or interpretability