El-Shorouk Academ	The Higher Institute of Engineering
Computer and control engineering	
Third year 2023	Electromagnetic waves

Sheet two:Transmission lines(T.L.)

- [1] Consider a T.L with $R = 12m\Omega/m$, $G = 0.8\mu\Omega^{-1}/m$, $L = 1.3\mu H/m$ and $C = 0.7\mu F/m$. For a wave frequency =5 KHz. Find the following: (i) The propagation coefficient (γ).
- (ii) The attenuation coefficient (α) The phase shift coefficient(β).(iii) The characteristic impedance (Z_0).(v) The attenuation in 2 km length in dB.
- [2] Consider **a lossless** transmission line with $L=0.4\mu H$ and C=0.1nF for a wave has frequency of 200 MHz. (i) draw it equivalent circuit diagram. Then, find the following: (i) The propagation coefficient (γ). (ii) The attenuation coefficient(α) and phase shift coefficient(β).(iii) The velocity of wave propagation(Vp).(iv)The characteristic impedance of the line(Z_0).
- [3] Consider **a lossless** T.L with $L=0.6\mu H/m$, C=240PF/m, f=100MHz. Find the following: (i) The propagation coefficient (γ) . (ii) The propagation Wavelength of the line (λ) .(iii)The input impedance for the line with $l=\frac{\lambda}{4}$ when terminated by $Z_L=-j100\Omega$
- [4] Consider **a lossless** T.L of characteristic impedance $Z_0 = 50\Omega$ is terminated by $Z_L = 200 + j200\Omega$. Find the following :(i) The voltage reflection coefficient. (ii)VSWR.(iii)The impedance for the line at 0.75λ from the load.
- [5] Consider a **lossless** line with characteristic impedance $Z_0 = 50\Omega$.
- A. Find the input impedance Z_{in} of the line at a distance $\frac{\lambda}{10}$ in the following cases: (i) Load impedance = 100Ω . (ii) Load is open circuit. (iii) Load is short circuit.
- B.Determine the reflection coefficient at the load when: (i) Load impedance= $j50\Omega$.(ii) Load impedance= 100Ω .(iii) Load impedance = 50Ω . (iv) Load is open circuit. (v) load is short circuit.
- [6] Consider a transmission line has constants $R = 12m\Omega/m$, $G = 1.4\mu\Omega^{-1}/m$, $L = 1.5\mu H/m$ and C = 1.4nF/m at 7KHz. Find the following :(i) The characteristic impedance(Z_0). (ii)The propagation coefficient (γ). (iii) The attenuation in 2 km length in dB.

- [7] Consider **a** transmission line with characteristic impedance $Z_0 = 50\Omega$. Find the reflection coefficient (Γ) when Z_L has the following values:. (i) 100Ω . (ii) 25Ω . (iii) 50Ω .
- [8] Consider **a** transmission line has $R = 30\Omega/km$, L = 10mH/km, $G = 0andC = 20\mu F/km$ operate at f=1 KHz. Obtain the following :(i) The characteristic impedance of the line(Z_0).(ii) The propagation coefficient (γ).(iii) The propagation phase velocity(Vp).

.....

Best wishes

Dr.Hamed EL-Shenawy