

ScMitoMut: Single Cell Lineage Informative Mitochondrial Mutation Calling Tool

Wenjie SUN

No conflicts of interest to disclose.

Using mtDNA somatic mutation to follow the lineage

Challenge: Calling lineage informative mtDNA in single cell sequencing data

Fitting single cell mtDNA mutation with beta-binomial distribution

Common ancester

Calling mutation with statistical test

Common ancester

Daugher cells

Preselect WT reference using binomial-mixture model

Step1: Preselect WT cells

WT Reference

Quick Prototyping with R

{data.table} -> handling data

{mixtolls} -> fitting binomial-mixture model

{VGAM} -> fitting beta-binomial model

mtDNA somatic mutations seperate two cell lines

mtDNA somatic mutations seperate two tissue types

Memory requirement

10,000 cells 18,000 bp 4 base: A, T, C, G

Memory needs to keep **input data**: 10,000 * 18,000 * 4 * 8 bytes = **5.36GB X 4 (Intermediate results)**

R ests a lot of memory?

Using H5 file to optimizing the memory usage

Model fitting CPU time

18,000 bp

1 sec per locus 18,000 sec (5 hours)

R too slow?

Improvded binomial-mixture model fitting speed

There is no difference in model fitting results

Improvded beta-binomial model fitting time

Fitting results: scMitoMut eq VGAM better than bbml

Complex model can be simple; "optimizing" is possible.