Embeddability of graphs and Weihrauch degrees

Vittorio Cipriani joint work with Arno Pauly (Swansea University)

CCC 2021, Birmingham (virtual)

September 19, 2021

Introduction

In this talk we study graph theoretic problems using the framework of Weihrauch reducibility.

Introduction

In this talk we study graph theoretic problems using the framework of Weihrauch reducibility.

By graph here we always mean *undirected* ones, without multiple edges and self-loops. In particular, we will consider the complexity of *subgraph* and *induced subgraph* relations.

Definition

An undirected graph (V_0, E_0) is a subgraph of (V, E) if and only if $V_0 \subseteq V$ and $E_0 \subseteq E$. We say it is an induced subgraph if furthermore $E_0 = E \cap (V_0 \times V_0)$.

Definition

An undirected graph (V_0, E_0) is a subgraph of (V, E) if and only if $V_0 \subseteq V$ and $E_0 \subseteq E$. We say it is an induced subgraph if furthermore $E_0 = E \cap (V_0 \times V_0)$.

This is an (induced) subgraph.

Definition

An undirected graph (V_0, E_0) is a subgraph of (V, E) if and only if $V_0 \subseteq V$ and $E_0 \subseteq E$. We say it is an induced subgraph if furthermore $E_0 = E \cap (V_0 \times V_0)$.

This is a subgraph, but not an induced one.

Definition

An undirected graph (V_0, E_0) is a subgraph of (V, E) if and only if $V_0 \subseteq V$ and $E_0 \subseteq E$. We say it is an induced subgraph if furthermore $E_0 = E \cap (V_0 \times V_0)$.

Notation

A vertex v_i belong to G is denoted by $v_i \in V^G$. Two vertices v_i, v_j are connected in G is denoted by $(v_i, v_j) \in E^G$.

In computable analysis, to study computability on some space X, we transfer notions of computability in $\mathbb{N}^{\mathbb{N}}$ into X.

In computable analysis, to study computability on some space X, we transfer notions of computability in $\mathbb{N}^{\mathbb{N}}$ into X. To do so, we encode each element of X with some $p \in \mathbb{N}^{\mathbb{N}}$.

In computable analysis, to study computability on some space X, we transfer notions of computability in $\mathbb{N}^{\mathbb{N}}$ into X. To do so, we encode each element of X with some $p \in \mathbb{N}^{\mathbb{N}}$.

Definition

A represented space is a pair (X, δ_X) where $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \twoheadrightarrow X$.

 $p \in \mathbb{N}^{\mathbb{N}}$ is said to be a *name* for $x \in X$.

In computable analysis, to study computability on some space X, we transfer notions of computability in $\mathbb{N}^{\mathbb{N}}$ into X. To do so, we encode each element of X with some $p \in \mathbb{N}^{\mathbb{N}}$.

Definition

A represented space is a pair (X, δ_X) where $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \twoheadrightarrow X$.

 $p \in \mathbb{N}^{\mathbb{N}}$ is said to be a *name* for $x \in X$.

Now we can think of a computational problem as a (possibly partial) *multivalued functions* $f :\subseteq X \Rightarrow Y$, where X, Y are represented spaces.

In computable analysis, to study computability on some space X, we transfer notions of computability in $\mathbb{N}^{\mathbb{N}}$ into X. To do so, we encode each element of X with some $p \in \mathbb{N}^{\mathbb{N}}$.

Definition

A represented space is a pair (X, δ_X) where $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \twoheadrightarrow X$.

 $p \in \mathbb{N}^{\mathbb{N}}$ is said to be a *name* for $x \in X$.

Now we can think of a computational problem as a (possibly partial) *multivalued functions* $f :\subseteq X \rightrightarrows Y$, where X, Y are represented spaces.

In the space **Gr** of countable undirected graphs we have that *p* is a name for a graph *G* iff

- $p(\langle i, i \rangle) = 1$ iff $v_i \in V^G$ and
- for $i \neq j$, $p(\langle i, j \rangle) = 1$ iff $(v_i, v_i) \in E^G$.

Weihrauch Reducibility

Let f, g be (partial multivalued) functions on represented spaces.

Weihrauch Reducibility

Let f, g be (partial multivalued) functions on represented spaces.

f is Weihrauch reducible to g ($f \leq_W g$) if there are computable $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Given a name p for $x \in dom(f)$, $\Phi(p)$ is a name for $z \in dom(g)$;
- Given a name q for $w \in g(z)$, $\Psi(p,q)$ is a name for $y \in f(x)$;

Let f, g be (partial multivalued) functions on represented spaces.

f is Weihrauch reducible to g ($f \leq_W g$) if there are computable $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Given a name p for $x \in dom(f)$, $\Phi(p)$ is a name for $z \in dom(g)$;
- Given a name q for $w \in g(z)$, $\Psi(p,q)$ is a name for $y \in f(x)$;

p

name for $x \in dom(f)$

Let f, g be (partial multivalued) functions on represented spaces.

f is Weihrauch reducible to g ($f \leq_W g$) if there are computable $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Given a name p for $x \in dom(f)$, $\Phi(p)$ is a name for $z \in dom(g)$;
- Given a name q for $w \in g(z)$, $\Psi(p,q)$ is a name for $y \in f(x)$;

$$p \longrightarrow \Phi$$

name for $x \in dom(f)$

Let f, g be (partial multivalued) functions on represented spaces.

f is Weihrauch reducible to g ($f \leq_W g$) if there are computable $\Phi, \Psi : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ such that

- Given a name p for $x \in dom(f)$, $\Phi(p)$ is a name for $z \in dom(g)$;
- Given a name q for $w \in g(z)$, $\Psi(p,q)$ is a name for $y \in f(x)$;

$$p \longrightarrow \Phi \longrightarrow g$$
name for $z \in dom(g)$

Weihrauch Reducibility

Let f, g be (partial multivalued) functions on represented spaces.

f is Weihrauch reducible to g ($f \leq_W g$) if there are computable $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Given a name p for $x \in dom(f)$, $\Phi(p)$ is a name for $z \in dom(g)$;
- Given a name q for $w \in g(z)$, $\Psi(p,q)$ is a name for $y \in f(x)$;

Weihrauch Reducibility

Let f, g be (partial multivalued) functions on represented spaces.

f is Weihrauch reducible to g ($f \leq_W g$) if there are computable $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Given a name p for $x \in dom(f)$, $\Phi(p)$ is a name for $z \in dom(g)$;
- Given a name q for $w \in g(z)$, $\Psi(p,q)$ is a name for $y \in f(x)$;

$$p \longrightarrow \Phi \longrightarrow g \longrightarrow \Psi \longrightarrow \Psi(p,q)$$
 name for $x \in \mathit{dom}(f)$ name for $g \in \mathit{g}(z)$ name for $g \in \mathit{g}(z)$

If the Ψ has no access to p, the reduction is called *strong* (\leq_{sW}).

(Induced) subgraph problem

BeMent, Hirst and Wallace [BHW21] introduced the (induced) subgraph isomorphism problem as follows:

- S: Given inputs of graphs G and H, output 1 if G is isomorphic to an induced subgraph of H and 0 if it is not;
- S_G: Given a graph *H* as input, output 1 if *G* is isomorphic to an induced subgraph of *H* and 0 otherwise.

(Induced) subgraph problem

BeMent, Hirst and Wallace [BHW21] introduced the (induced) subgraph isomorphism problem as follows:

- S: Given inputs of graphs G and H, output 1 if G is isomorphic to an induced subgraph of H and 0 if it is not;
- S_G : Given a graph H as input, output 1 if G is isomorphic to an induced subgraph of H and 0 otherwise.

The reduction $S_G \leq_{sW} S$ is immediate.

(Induced) subgraph problem

BeMent, Hirst and Wallace [BHW21] introduced the (induced) subgraph isomorphism problem as follows:

- S: Given inputs of graphs G and H, output 1 if G is isomorphic to an induced subgraph of H and 0 if it is not;
- S_G: Given a graph *H* as input, output 1 if *G* is isomorphic to an induced subgraph of *H* and 0 otherwise.

The reduction $S_G \leq_{sW} S$ is immediate.

• SE_G: Given a graph *H* as input, output 1 if *G* is isomorphic to a subgraph of *H* and 0 otherwise.

The problems in the previous slides are directly related to the subsystem of second-order arithmetic Π_1^1 -CA₀. Indeed, the problem below, also known in the literature as $\chi_{\Pi_1^1}$, directly follows from Lemma VI.I.I. of Simpson [Sim09].

• WF: Given a tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ as input, output 1 if T is well-founded and 0 otherwise.

The problems in the previous slides are directly related to the subsystem of second-order arithmetic Π_1^1 -CA₀. Indeed, the problem below, also known in the literature as $\chi_{\Pi_1^1}$, directly follows from Lemma VI.I.I. of Simpson [Sim09].

• WF: Given a tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ as input, output 1 if T is well-founded and 0 otherwise.

Let *L* be the infinite line graph with vertex set $V = \{v_i : i \in \mathbb{N}\}$ and edges $E = \{(v_i, v_i + 1) : i \in \mathbb{N}\}.$

Theorem ([BHW21])

 $WF \equiv_{\mathsf{sW}} S_L \equiv_{\mathsf{sW}} S.$

Proof Sketch:

 $(S_L \leq_{\mathsf{sW}} S)$: Trivial.

Theorem ([BHW21])

WF $\equiv_{\mathsf{sW}} \mathsf{S}_L \equiv_{\mathsf{sW}} \mathsf{S}$.

Proof Sketch:

 $(S_L \leq_{\mathsf{sW}} S)$: Trivial.

(WF $\leq_{sW} S_L$): Just consider the input $T \subseteq \mathbb{N}^{<\mathbb{N}}$ as a graph G.

Then *T* is ill-founded iff *L* is isomorphic to an induced subgraph of *G*.

Theorem ([BHW21])

WF $\equiv_{\mathsf{sW}} \mathsf{S}_L \equiv_{\mathsf{sW}} \mathsf{S}$.

Proof Sketch:

 $(S_L \leq_{\mathsf{sW}} S)$: Trivial.

(WF \leq_{sW} S_L): Just consider the input $T \subseteq \mathbb{N}^{<\mathbb{N}}$ as a graph G.

Then *T* is ill-founded iff *L* is isomorphic to an induced subgraph of *G*.

 $(S \leq_{\mathsf{sW}} \mathsf{WF})$: From G compute T, i.e. the tree of initial segments of isomorphisms between G and H. Then there exists an isomorphism between H and a subgraph of G iff T is ill-founded.

When *G* is finite

[BeHiWa] also considered the case in which G is a finite graph. The problem S_G in this case is equivalent to a well-studied principle, namely LPO.

• LPO: Given in input a sequence $p \in 2^{\mathbb{N}}$, output 1 iff $p = 0^{\omega}$.

Anyway, there is a huge gap between LPO and WF (i.e. Σ_1^0 vs Π_1^1).

When *G* is finite

[BeHiWa] also considered the case in which G is a finite graph. The problem S_G in this case is equivalent to a well-studied principle, namely LPO.

• LPO: Given in input a sequence $p \in 2^{\mathbb{N}}$, output 1 iff $p = 0^{\omega}$.

Anyway, there is a huge gap between LPO and WF (i.e. Σ^0_1 vs Π^1_1).

The authors left open the following question: What about the problem S_G for other graphs G? That is,

is there a graph G s.t. LPO $<_{sW} S_G <_{sW} WF$?

If we switch from induced subgraphs to subgraphs, the answer is yes.

If we switch from induced subgraphs to subgraphs, the answer is yes.

LPO' denotes the jump of LPO, where a name for an input of LPO' is a sequence converging to a name for an input of f and LPO $<_{sW}$ LPO'.

If we switch from induced subgraphs to subgraphs, the answer is yes.

LPO' denotes the jump of LPO, where a name for an input of LPO' is a sequence converging to a name for an input of f and LPO $<_{sW}$ LPO'.

Lemma (Pauly)

Let G be the graph composed by infinitely many triangles (i.e. cycles of length 3). Then $SE_G \equiv_W LPO'$.

If we switch from induced subgraphs to subgraphs, the answer is yes.

LPO' denotes the jump of LPO, where a name for an input of LPO' is a sequence converging to a name for an input of f and LPO $<_{sW}$ LPO'.

Lemma (Pauly)

Let G be the graph composed by infinitely many triangles (i.e. cycles of length 3). Then $SE_G \equiv_W LPO'$.

Proof Sketch.

 $(SE_G \le_W LPO')$: LPO' counts how many disjoint triangles are in G.

If we switch from induced subgraphs to subgraphs, the answer is yes.

LPO' denotes the jump of LPO, where a name for an input of LPO' is a sequence converging to a name for an input of f and LPO $<_{sW}$ LPO'.

Lemma (Pauly)

Let G be the graph composed by infinitely many triangles (i.e. cycles of length 3). Then $SE_G \equiv_W LPO'$.

Proof Sketch.

 $(SE_G \le_W LPO')$: LPO' counts how many disjoint triangles are in G.

(LPO' \leq_W SE_G): given a set build a graph having a triangle for each member of the set.

First lemma: Having *L* as a subgraph

Lemma

For any graph G such that L is a <u>subgraph</u> of G, we have that $WF \equiv_{\mathsf{sW}} S_G \equiv_{\mathsf{sW}} SE_G$

Proof sketch.

 $(S_G, SE_G \leq_{sW} WF)$: Follows from [BeHiWa].

First lemma: Having L as a subgraph

Lemma

For any graph G such that L is a <u>subgraph</u> of G, we have that $WF \equiv_{sW} S_G \equiv_{sW} SE_G$

Proof sketch.

 $(S_G, SE_G \leq_{sW} WF)$: Follows from [BeHiWa].

For the opposite direction, let $\{v_0, v_1, \dots\}$ be an enumeration of the vertices in G and let T be the tree in input for WF. Then we (computably) build the input H for SE_G , as follows.

Notation

u is an initial segment of w in a tree T is denoted by $u \sqsubset_T w$. The incomparability between u and w is denote by $u \bot_T w$.

Input $T \subseteq \mathbb{N}^{<\mathbb{N}}$

$(WF \leq_{\mathsf{W}} S_G, SE_G)$

We add copies of each v_k into H, indexed by $\mathbb{N}^k \cap T$.

We add copies of each v_k into H, indexed by $\mathbb{N}^k \cap T$. Then, two vertices of index u and w are connected in H iff

- $(u \sqsubset_T w \lor w \sqsubset_T u)$ and
- the vertices of index |u| and |w| are connected in G.

We add copies of each v_k into H, indexed by $\mathbb{N}^k \cap T$. Then, two vertices of index u and w are connected in H iff

- $(u \sqsubset_T w \lor w \sqsubset_T u)$ and
- the vertices of index |u| and |w| are connected in G.

Here for example $(v_1, v_2), (v_0, v_2) \in E^G$ and $(v_0, v_2) \notin E^G$.

We add copies of each v_k into H, indexed by $\mathbb{N}^k \cap T$. Then, two vertices of index u and w are connected in H iff

- $(u \sqsubset_T w \lor w \sqsubset_T u)$ and
- the vertices of index |u| and |w| are connected in G.

Here for example $(v_1, v_2), (v_0, v_2) \in E^G$ and $(v_0, v_2) \notin E^G$. If T is ill-founded, H has an induced subgraph isomorphic to G (just select the vertices of the infinite path). Otherwise, H does not even have L as subgraph. \square

Main result

Recall that every infinite partial order contains either an infinite chain or an infinite antichain (CAC). From it we can easily derive the following.

Corollary

Let T be a well-founded tree and S an infinite subset of T. Then S contains an infinite antichain.

Main result

Recall that every infinite partial order contains either an infinite chain or an infinite antichain (CAC). From it we can easily derive the following.

Corollary

Let T be a well-founded tree and S an infinite subset of T. Then S contains an infinite antichain.

Let K_{ω} be the complete graph on ω vertices (where all vertices are connected each other).

Theorem (C., Pauly)

Let G be an infinite graph not having a subgraph isomorphic to K_{ω} . Then $S_G \equiv_W WF$.

Again $S_G \leq_W WF$ from [BHW21].

$WF \leq_{\mathsf{sW}} S_{G_1}$

We add copies of each v_k into H, indexed by $\mathbb{N}^k \cap T$.

We add copies of each v_k into H, indexed by $\mathbb{N}^k \cap T$. Then, two vertices of index u and w are connected in H iff

- $u \perp_T w$ or
- the vertices of index |u| and |w| are connected in G.

For example here $(v_1, v_2), (v_0, v_2) \in E^G$ and $(v_0, v_2) \notin E^G$.

If *T* is ill-founded, *H* has an induced subgraph isomorphic to *G* (just select the vertices belonging to an infinite path).

Otherwise, if T is well-founded, by CAC for trees, vertices of any infinite subset of H contain an antichain in T and, by construction, in H they are isomorphic to a copy K_{ω} . Hence, G is not a subgraph of H. This concludes the (sketch of) the proof.

Recall the initial question

is there a graph G s.t. LPO $<_{sW} S_G <_{sW} WF$?

Recall the initial question

is there a graph G s.t. LPO $<_{sW} S_G <_{sW} WF$?

As *L* is a subgraph of K_{ω} , applying the previous two lemmas, we get the following:

Theorem (C., Pauly)

Let G be a graph with at least two vertices. Then

- either $S_G \equiv_W LPO$;
- or $S_G \equiv_W WF$;

Recall the initial question

is there a graph G s.t. LPO $<_{\mathsf{sW}} \mathsf{S}_G <_{\mathsf{sW}} \mathsf{WF}$?

As *L* is a subgraph of K_{ω} , applying the previous two lemmas, we get the following:

Theorem (C., Pauly)

Let G be a graph with at least two vertices. Then

- either $S_G \equiv_W LPO$; if G is finite;
- or $S_G \equiv_W WF$; if G is infinite;

Thanks for your attention!

Bibliography

[BHW21] Zack BeMent, Jeffry Hirst, and Asuka Wallace. Reverse mathematics and Weihrauch analysis motivated by finite complexity theory. 2021. arXiv: 2105.01719 [math.LO].

[Sim09] Stephen G. Simpson. Subsystems of Second Order Arithmetic. 2nd ed. Perspectives in Logic. Cambridge University Press, 2009. DOI: 10.1017/CBO9780511581007.