4. PoE – Power over Ethernet

4.1. Leiterwiderstand

Der spezifische elektrische Widerstand ϱ (rho) ist so groß wie der Widerstand eines Leiters von 1~m Länge und $1~mm^2$ Querschnitt.

Die elektrische Leitfähigkeit γ (gamma) ist der Kehrwert des spezifischen Widerstandes.

$$R = \frac{\varrho^* l}{A} \qquad [R] = \frac{\frac{\Omega^* m m^2}{m} * m}{m m^2} = \Omega$$

- R Widerstand
- *l* Leiterlänge
- A Leiterquerschnitt
- *ϕ* spezifischer Widerstand (rho)
- γ elektrische Leitfähigkeit (gamma)

$$R = \frac{l}{\gamma^* A} \qquad \qquad \gamma = \frac{1}{6}$$

$$\left[\gamma\right] = \frac{1}{\frac{\Omega^* m m^2}{m}} = \frac{m}{\Omega^* m m^2}$$

Werkstoff	Leitfähigkeit γ	Spezifischer Widerstand <i>Q</i>	
Aluminium (AI)	35	0,0286	
CuMn 12 Ni	2,3	0,4350	
CuNi 44 (Konstantan)	2,04	0,490	
Kupfer (Cu)	56	0,01786	
Silber	60	0,0167	
Stahl (WM13)	7,7	0,13	
Zink (Zn)	16	0,06250	

4.2. **Spannungsfall Gleichstrom**

$$\Delta U = U_1 - U_2 \qquad \qquad \Delta U = \frac{2 * I * l}{\gamma * A}$$

 $\Delta~U$ Spannungsfall I Leiterstrom

 U_1 Spannung am Leitungsanfang γ elektr. Leitfähigkeit

 U_2 Spannung am Leitungsende A Leiterquerschnitt

$$\Delta u = \frac{\Delta U * 100\%}{U}$$

 Δu Spannungsfall in % der Netznennspannung

Beispiel:

An einem USB Kabel mit einem Adern-Durchmesser von 0,5 mm liegen 5 V Spannung und 0,5 A Stromstärke an.

Berechnen Sie a) den Spannungsfall ΔU in V bei einer Kabellänge von 5 m.

b) den Spannungsfall ΔU in V bei einer Kabellänge von 10 m.

$$A = \frac{d^{2*}\pi}{4} = \frac{0.5^{2*}\pi}{4} = 0.196 \ mm^{2}$$

$$\Delta U = \frac{2*I*l}{\gamma*A} = \frac{2*0,5*5}{56*0,196} = 0,455 V$$

$$\Delta U = \frac{2*I*l}{\gamma*A} = \frac{2*0,5*10}{56*0,196} = 0,911 V$$

USB Speccification 2.0 Supply Voltage: High-power Port 4.75 - 5.25 V Low-power Port 4.40 - 5.25 V

4.3. Verstärkungsmaß, Dämpfungsmaß

$$A_u = 20*lg\frac{U_1}{U_2} \qquad \qquad A_p = 10*lg\frac{P_1}{P_2}$$

$$G_u = 20*lg\frac{U_2}{U_1} \qquad \qquad G_p = 10*lg\frac{P_2}{P_1}$$

$$A_u \qquad \text{Spannungsdämpfungsmaß in } dB \\ U_1 \qquad \text{Eingangsspannung in } V \\ U_2 \qquad \text{Ausgangsspannung } in V \\ U_2 \qquad \text{Ausgangsspannung } in V \\ G_u \qquad \text{Spannungsverstärkungsmaß} \qquad G_p \qquad \text{Leistungsverstärkungsmaß} \\ \text{in } dB \qquad \qquad G_p \qquad \text{Leistungsverstärkungsmaß}$$
 in dB

4.4. Beispiel Spannungsfall / Dämpfung

UC300 HS24 Cat.5e SF/UTP AWG24/1 Installationskabel 85 m

PATCH-C6AQ 1 BL

Cat.6a High Quality-Patchkabel, blau, 1,0M

Kabeltyp: 4x2 AWG 26/7

PATCH-C6AQ 5 BL

Cat.6a High Quality-Patchkabel, blau, 5M

Kabeltyp: 4x2 AWG 26/7

	Switch		- Patchpanel		RJ45 Dose -		WLAN
	PoE	Pachkabel		Installationskabel		Patchkabel	AP
	24 V	1 m		85 M		5 m	I = 0,5 A
	U_1	R_1	U_2	R ₂	U_3	R ₃	U_4
1	RX+						
	RX-						
3	TX+	Stro	mteiler auf Ader 4	4 und 5			
4	V+	I _{ges} -	I _{1/2}				
5	V+		I _{1/2}				
6	TX-						
7	V-						
8	V-						

$$R_1 = \frac{122}{1000} = 0,122 \Omega$$
 $R_1 = \frac{l}{\gamma \cdot A} \rightarrow \gamma_1 = \frac{l}{R \cdot A} = \frac{1}{0,122 \cdot 0,141} = 58,132$

$$\Delta U_1 = \frac{2*I*l}{r*A} = \frac{2*0.25*1}{58.132*0.141} = 0.061 V \qquad U_2 = U_1 - \Delta U_1 = 24 V - 0.061 V = 23.939 V$$

$$R_2 = \frac{89.4}{1000} *85 = 7,599 \Omega$$
 $R_2 = \frac{l}{\gamma \cdot A} \rightarrow \gamma_2 = \frac{l}{R \cdot A} = \frac{85}{7,599 * 0,205} = 54,564$

$$\Delta U_2 = \frac{2*I*l}{\gamma_2*A} = \frac{2*0.25*85}{54.564*0.205} = 3,799 \ V \qquad U_3 = U_2 - \Delta U_2 = 23,939 \ V - 3,799 \ V = 20,140 \ V$$

$$R_{3} = \frac{122}{1000} *5 = 0.61 \Omega$$

$$\Delta U_{3} = \frac{2*I*l}{\gamma_{3}*A} = \frac{2*0.25*5}{58,132*0.141} = 0.305 V$$

$$R_{3} = \frac{l}{\gamma \cdot A} \rightarrow \gamma_{3} = \frac{l}{R \cdot A} = \frac{5}{0.61*0.141} = 58,132$$

$$U_{4} = U_{3} - \Delta U_{3} = 20,140 V - 0.305 V = 19,835 V$$

$$A_u = 20*lg \frac{U_1}{U_2} = 20*lg \frac{24}{19,835} = 1,655dB$$

AWG Tabelle	AWG Nr.	AWG AUFBAU nxAWG	LEITER QUERSCHNITT nxDraht-Ø mm	LEITER AUFBAU mm²	AUßEN DURCHMESSER mm	LEITER WIDERSTAND Ohm/ km	LEITER GEWICHT kg/ km
AWG 26	26 26 26 26	massiv 10/36 19/38 7/34	massiv 10x0.127 19x0.102 7x0.160	0.128 0.127 0.155 0.141	0.409 0.533 0.508 0.483	143.0 137.0 113.0 122.0	1.14 1.13 1.38 1.25
AWG 24	24	massiv	massiv	0.205	0.511	89.4	1.82

Seite 71 von 86

4.6. **Pegel**

$$L_u = 20*lg \frac{U}{U_0} \quad \begin{array}{c} L_u & \text{Spannungpegel in } dB \, \mu V \\ U & \text{Spannung in } \mu V \\ U_0 & \text{Bezugsspannung } 1 \, \mu V \, an \, 75 \, \Omega \\ \end{array}$$

$$L_p = 10*lg \frac{P}{P_0} \quad \begin{array}{c} L_p & \text{Leistungspegel in } dB \, mW \\ P & \text{Leistung } mW \\ P_0 & \text{Bezugsleistung } 1 \, mW \end{array}$$

4.6. Arbeitsblatt 11

Pegel

1. Berechnen Sie folgende Größen in der Tabelle.

L _u in dB μV		1	46		62
U in μV	240			100	
L _p in dB mW		1	28		87
P in mW	36,3			123	

- 2. Am Eingang eines Antennenverstärkers wird eine Spannung von $0.1 \, mV$, am Ausgang eine Spannung von $14 \, mV$ gemessen. a) Berechnen Sie den Spannungsverstärkungsfaktor V_u b) die Spannungspegel am Ein- und am Ausgang und c) das Spannungsverstärkungsmaß G_u des Verstärkers.
- 3. An einer Empfangsantenne wurde ein Pegel von $46~dB\mu V$ gemessen. Die Verbindungsleitung zwischen Antenne und Empfänger hat eine Länge von 24~m. Die Dämpfung der Leitung beträgt 8,4~dB pro 100~m. a) Welcher Spannungspegel ist am Empfänger vorhanden? b) Welches Verstärkungsmaß ist notwendig, wenn ein Mindestpegel von $60~dB\mu V$ am Empfänger anliegen muss?
- 4. In eine $75~\Omega$ Antennenleitung mit einer Dämpfung von 12~dB wird mit einem Messsender ein Pegel von 58~dBmW eingespeist. Die Antennenleitung ist mit einem $75~\Omega$ Widerstand abgeschlossen. Berechnen Sie für das Ende der Antennenleitung **a)** den Leistungspegel, **b)** die Spannung und **c)** den Spannungspegel.

4.7. Arbeitsblatt 11 Lösung

Pegel

1. Berechnen Sie folgende Größen in der Tabelle.

L _u in dBμV	47,6	1	46	40	62
U in µV	240	1,12	199,53	100	1259
L _p in dBmW	15,6	1	28	20,9	87
P in mW	36,3	1,26	631	123	5 · 108

2. Am Eingang eines Antennenverstärkers wird eine Spannung von 0,1 mV, am Ausgang eine Spannung von 14 mV gemessen. a) Berechnen Sie den Spannungsverstärkungsfaktor V_u b) die Spannungspegel am Ein- und am Ausgang und c) das Spannungsverstärkungsmaß G_u des Verstärkers.

217/4. a)
$$V_u = \frac{U_2}{U_1} = \frac{14 \text{ mV}}{0.1 \text{ mV}} = 140$$

b) Eingang: $L_{u_E} = 20 \cdot \lg \frac{U}{U_0} = 20 \cdot \lg \frac{0.1 \text{ mV}}{1 \mu \text{V}} = 20 \cdot \lg \frac{100 \mu \text{V}}{1 \mu \text{V}} = 20 \cdot 2 = 40 \text{ dB } \mu \text{V}$
Ausgang: $L_{u_A} = 20 \cdot \lg \frac{U}{U_0} = 20 \cdot \lg \frac{14 \text{ mV}}{1 \mu \text{V}} = 20 \cdot \lg \frac{14000 \mu \text{V}}{1 \mu \text{V}} = 20 \cdot 4.15 = 83 \text{ dB } \mu \text{V}$
c) $G_u = L_{u_A} - L_{u_C} = 83 \text{ dB} - 40 \text{ dB} = 43 \text{ dB}$

3. An einer Empfangsantenne wurde ein Pegel von 46 dBμV gemessen. Die Verbindungsleitung zwischen Antenne und Empfänger hat eine Länge von 24 m. Die Dämpfung der Leitung beträgt 8,4 dB pro 100 m. a) Welcher Spannungspegel ist am Empfänger vorhanden? b) Welches Verstärkungsmaß ist notwendig, wenn ein Mindestpegel von 60 dBμV am Empfänger anliegen muss?

217/5. a)
$$A_K = 8.4 \text{ dB} \cdot \frac{24 \text{ m}}{100 \text{ m}} = 2 \text{ dB};$$
 $L_u = L_c - A_K = 46 \text{ dB} \,\mu\text{V} - 2 \text{ dB} = 44 \text{ dB} \,\mu\text{V}$
b) $G_u = L_{min} - L_u = 60 \text{ dB} \,\mu\text{V} - 44 \text{ dB} \,\mu\text{V} = 16 \text{ dB}$

4. In eine $75~\Omega$ Antennenleitung mit einer Dämpfung von 12~dB wird mit einem Messsender ein Pegel von 58~dBmW eingespeist. Die Antennenleitung ist mit einem $75~\Omega$ Widerstand abgeschlossen. Berechnen Sie für das Ende der Antennenleitung **a)** den Leistungspegel, **b)** die Spannung und **c)** den Spannungspegel.

217/7. a)
$$L_p = L_{p1} - L_{p2} = 58 \text{ dB} - 12 \text{ dB} = 46 \text{ dB}$$

b) $L_p = \frac{U^2}{R} \Rightarrow U = \sqrt{L_p \cdot R} = \sqrt{46 \text{ mW} \cdot 75 \Omega} = \sqrt{0.046 \text{ W} \cdot 75 \Omega} = 1.85 \text{ V}$
c) $L_u = 20 \cdot \lg \frac{U}{U_0} = 20 \cdot \lg \frac{1.85 \text{ V}}{1 \, \mu \text{V}} = 20 \cdot \lg \frac{1.85 \cdot 10^6 \, \mu \text{V}}{1 \, \mu \text{V}} = 125 \, \text{dB} \, \mu \text{V}$

4.8. Arbeitsblatt 12

WLAN / CableModem

1. Ein WLAN-Router mit zwei 2,4 GHz Antennen hat eine Sendeleistung von 100 mW je Antenne. Diese ist die höchste erlaubte Sendeleistung in Österreich.

Eine der beiden Antennen muss in den Außenbereich montiert werden um diesen abzudecken.

Dämpfungen

- Je Antenne 4,5 dBi
- Antennenkabel RF-240 Koaxial 0,38 dB/m
- TNC-Buchse 1,5 dB
- TNC-Stecker 1,5 dB

Es werden zwei Kabel für die Verlagerung der Antenne benötigt, eines mit 9 m und ein zweites mit 7 m.

- Mit welcher Leistung sendet die Außenantenne?
- Wie könnte man den Leistungsverlust ersetzen?