линейный конгруэнтный метод

1. Понятие линейной конгруэнтной последовательности (ЛКП)

Псевдослучайной числовой последовательностью порядка k над кольцом Z целых чисел называется потенциально бесконечная периодическая числовая последовательность, определяемая по некоторому закону (как правило, по закону рекурсии) случайно выбираемыми k начальными элементами. Аналогично определяются псевдослучайные последовательности вычетов над кольцом Z_m . Как разновидность таких последовательностей в предыдущих лекциях изучались псевдослучайные линейные рекуррентные последовательности (ЛРП) над полем F_p и способ их порождения с помощью линейных регистров сдвига (ЛРС).

В этой лекции изучается линейный конгруэнтный метод (ЛКМ) (Д.Х.Лемер, 1948) порождения псевдослучайных последовательностей над кольцом Z_m .

Определение 1. Линейная конгруэнтная последовательность (ЛКП) над кольцом Z_m получается при выбранном начальном значении $X_0, X_0 > 0$, по закону рекурсии

$$X_{n+1} = (aX_n + c) \mod m, \ n \ge 0,$$
 (1)

e

 $X_n \in Z_m$ – вычеты по модулю m,

 $a, \ a \in Z_m, \ a \neq 0$ – множитель (его «полезными» значениями могут быть только значения $a \geq 2;$

 $c, c \in Z_m$ – приращение; $m, m \in N, m \neq 1$ – модуль.

При выбранных указанных параметрах ЛКП обозначают четверкой

$$(X_0, a, c, m).$$

При c=0, ЛКМ называется мультипликативным конгруэнтным методом (тогда и ЛКП называется мультипликативной), при c=0, – смешанным конгруэнтным методом.

Используется также обозначение

$$b = a - 1, b > 1.$$

При $a \ge 2$ индукцией по k получается обобщенная формула:

$$X_{n+k} = (a^k X_n + (a^k - 1)c/b) \mod m, \ k \ge 0, \ n \ge 0.$$

При n=0 получаем

$$X_k = (a^k X_0 + (a^k - 1)c/b) \mod m, \ k \ge 0,$$
(2)

— формулу для вычисления k-го члена ЛКП, определяемой законом рекурсии (1).

Пример 1. При $m=8,\ a=7,\ c=3, X_0=2$ получается ЛКП

$$2, 1, 2, 1, \dots$$

Параметры a, c и m рекуррентного уравнения (1) выбираются из соображений

- ускорения вычислений,
- получения ЛКП ,большого периода,
- получения ЛКП с удовлетворительными статистическими свойствами.

2. Выбор модуля m

Наиболее просто вычисления осуществляются, если $m=w=2^p$, где w – увеличенное на 1 максимальное представимое в машине целое число (тогда результат получается в младших разрядах произведения и не требуется выполнять деление по общему алгоритму деления для вычисления остатка произведения по модулю m):

$$a \cdot X \mod m = (a \cdot X)_p$$

где p — длина машинного слова . 1

Но тогда, если d – делитель числа m и $Y_n = X_n \mod 2^d$, то

$$Y_{n+1} = (a \cdot Y_n + c) \bmod 2^d,$$

и последовательность, образованная d младшими разрядами членов ЛКП имеет период, не превышающий 2^d . Таким образом, младшие цифры числа X_n получаются намного менее случайными, чем старшие.

Так, если $m=w=2^p,\ d=4$ то младшие четыре бита чисел X_n представляют числа $Y_n=X_n \mod 16$ образуют конгруэнтную последовательность с периодом, не превышающим 16. Самый младший бит либо не изменяется, либо строго чередуется от 0 к 1.

Подобный эффект не возникает при $m=w\pm 1$, в этих случаях младшие биты ведут себя также случайно, как и старшие.

 $^{^{1}}$ Запись $y]_{p}$ обозначает число, образуемое p младшими разрядами 2p-разрядного числа y. (Язык Ассемблера позволяет обращаться с такими числами и использовать их старшую и младшую части раздельно).

При этом сохраняется простота алгоритма приведения по модулю. Заметим, что

$$a\cdot X=q(w+1)+r,$$
 то есть $a\cdot X=q(2^p+1)+r,$ или $a\cdot X=q(2^p)+(r+q),$

где $r \leq w, \ q$ — старшая "половина "произведения, а s = r + q — младшая. При этом $0 \leq q < w, \ 0 \leq s < w$ так что имеем

$$-w < -q \le 0,$$

$$0 \le s < w,$$

откуда получаются неравенства

$$-w < s - q < w$$
.

Таким образом,

$$(a\cdot X) \bmod (w+1) = r = (s-q) \bmod (w+1) \left\{ \begin{array}{ll} s-q, & \text{если } s-q \geq 0, \\ s-q+(w+1), & \text{если } s-q < 0. \end{array} \right.$$

Пример 2. a) Пусть w = 16, a = 7, X = 5, m = w + 1 = 17.

$$a \cdot X = 0111 \cdot 0101 = 0010 \ 0011$$
,

$$q=0010=2,\ s=0011=3,\ s-q=1\to r=s-q=1.$$

б) Пусть w = 16, a = 7, X = 7, m = w + 1 = 17.

$$a \cdot X = 0111 \cdot 0111 = 0011 \ 0001,$$

$$q = 0011 = 3$$
, $s = 0001 = 1$, $s - q = -2 \rightarrow r = s - q + w + 1 = -2 + 17 = 15$.

Аналогично, если m = w - 1, то

$$a\cdot X = q(w-1) + r,$$
 то есть $a\cdot X = q(2^p-1) + r,$ или $a\cdot X = q(2^p) + (r-q),$

где q – старшая "половина" произведения, а s=r-q – младшая.

Поскольку $0 \le q < w, \ 0 \le s \le w-1,$ имеем $0 \le s+q < 2w-1.$ Таким образом,

$$(a \cdot X) \bmod (w-1) = r = (s+q) \bmod (w-1) \left\{ \begin{array}{ll} s+q, & \text{если } s+q < w-1, \\ s+q-(w-1), & \text{если } s+q \geq w-1 \end{array} \right.$$

Пример 3. a) Пусть w = 16, a = 7, X = 7, m = w - 1 = 15.

$$a \cdot X = 0111 \cdot 0111 = 0011 \ 0001,$$

$$q = 0011 = 3, \ s = 0001 = 1, \ s + q = 4 \rightarrow r = s + q = 4.$$

6) $\Pi ycmb \ w = 16, \ a = 7, \ X = 11, \ m = w - 1 = 15.$

$$a \cdot X = 0111 \cdot 1011 = 0100 \ 1101$$
,

$$q=0100=4,\ s=1101=13,\ s+q=17\to r=s+q-(w-1)=17-15=2.$$

3. Выбор множителя a и приращения c

Выбор множителя и приращения должен обеспечить большую длину периода. 2

Из «автоматной» интерпретации, как и для ЛРП, следует, что длина периода не превышает величины модуля m в общем случае и величины m-1 при c=0 (то есть для мультипликативного ЛКМ.)

ЛКМ максимального периода m. Исследуем все способы выбора a и c, дающие период длины m. Учитывая, что в периоде длины m каждое число от 0 до m-1 встречается ровно один раз, можем заключить, что выбор начального значения X_0 на длину периода не влияет.

Теорема 1. Длина периода линейной конгруэнтной последовательности равна т тогда и только тогда. когда

с и т взаимно просты

b = a - 1 кратно p для любого простого p, являющегося делителем m, b кратно 4, если m кратно 4.

Иными словами, при разложении

$$m = 2^{e_0} p_1^{e_1} ... p_t^{e_t}, \ e_0 \ge 0, \ e_i \ge 1, \ i = 1, ..., t$$

 ΠKM имеет максимальный период m тогда и только тогда, когда

$$(c,m)=1,$$
 $2^{e_0}p_1...p_t|b, \quad ext{если } e_0<2$ $2^2p_1...p_t|b, \quad ext{если } e_0>2.$

Мультипликативные ЛКП наибольшего периода. Факт, что не существуют мультипликативные ЛКП максимального периода согласуется с приведенной теоремой 1: при c=0, $\mathrm{HOД}(c,m)=0$.

Поэтому при c=0 исследуются способы выбора множителя a, обеспечивающие наибольшую возможную, хотя и меньшую, чем m, длину периода числовой последовательности.

В частности, число 0 не может войти в этот период, поскольку, все последующие числа будут нулевыми. Кроме того, если d – делитель модуля m, и если X_n кратно d, то все последующие числа $X_{n+1},\ X_{n+2}$... также будут кратны числу d, а это ограничивает длину периода. Поэтому при c=0 желательно, чтобы X_n были взаимно просты с m для всех n.

Опишем условия, определяющие множитель a так, чтобы при нулевом приращении c длина периода была наибольшей.

Лемма 1. Пусть разложение модуля т на простые множители имеет вид

$$m = p_1^{e_1} \cdots p_t^{e_t}.$$

²Однако, следует подчеркнуть, что большая длина периода еще не гарантирует случайность последовательности, а является одним из *необходимых* признаков случайности.

Длина λ периода ЛКП (X_0, a, c, m) , равна наименьшему общему кратному длин λ_j периодов линейных конгрузитных последовательностей

$$(X_0 \mod p_i^{e_j}, a \mod p_i^{e_j}, c \mod p_i^{e_j}, p_i^{e_j}), \quad 1 \le j \le t.$$

Таким образом, при c=0 период последовательности полностью определяется периодами $\lambda(p^e)$ последовательностей таких, что $m=p^e$. Поэтому изучим эту ситуацию. В этом случае

$$X_{n+1} = aX_n \mod m$$
, откуда $X_n = a^n X_0 \mod m$.

Длина периода не превосходит e, если a кратно p. Поэтому выберем a взаимно простым с p^e . Тогда период $\lambda(p^e)$ равен наименьшему целому λ , такому, что $X_{\lambda}=a^{\lambda}X_0 \mod p^e$. Если наибольший общий делитель X_0 и p^e есть p^f , это условие эквивалентно условию

$$a^{\lambda} \equiv 1 \pmod{p^{e-f}}.$$
 (0.1)

По теореме Эйлера

$$a^{\varphi(p^{e-f})} \equiv 1 \pmod{p^{e-f}};$$

следовательно (с учетом следствия из теоремы Лагранжа), $\lambda(p^e)$ есть делитель числа

$$\varphi(p^{e-f}) = p^{e-f-1}(p-1).$$

Тем более, $\lambda(p^e)$ есть делитель числа

$$\varphi(p^e) = p^{e-1}(p-1).$$

Обратим внимание, что длина периода $\lambda(p^e)$ есть порядок множителя $a, a \in Z_{p^e}$. Он может быть вычислен по разложению числа $\varphi(p^e) = p^e(p-1)$ на простые множители.

Пример 4. Рассмотрим ЛКП с нулевым смещением с множителем a=5, модулем $m=3^3=27$. вычислим $\varphi(3^3)=3^2\cdot 2=18$.

Заметим, что в кольце Z_{27} ord 5=18, что подтверждает следующая таблица степеней этого элемента (в том, что порядок 5 совпадает с порядком мультипликативной группы можно убедиться и проще, проверив, $5^{18/2} \mod 27 \neq 1$ $5^{18/3} \mod 27 \neq 1$).

٠.				. ,			/			,									
	i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	5^i	1	5	25	17	4	20	19	14	16	26	22	2	10	23	7	8	13	11

При $X_0 = 2$ получаем период длины 18:

2,10,23,7,8,13,11,1,5,25,17,4,20,19,14,16,26,22.

Если в качестве множителя брать элементы меньшего порядка, то получим ЛКП меньших периодов

Соответственно имеем периоды:

$$5^{2i}X_0$$
, $i = 0, 1, 2, 3, 4, 5, 6, 7, 8 : 2,23,8,11,5,17,20,14,26.$

$$5^{3i}X_0$$
, $i = 0, 1, 2, 3, 4, 5 : 2, 7, 11, 25, 20, 16.$

$$5^{6i}X_0$$
, $i = 0, 1, 2: 2, 11, 20$.

$$5^{9i}X_0$$
, $i = 0, 1:2,25$.

Элемент a мультипликативной группы Z_m^* максимально возможного порядка $\lambda(m)$ называется nepeoofpaзным элементом этой группы. Из рассмотренных элементов 5, $5^2=25$, $5^3=17$, $5^6=19$ и $5^9=26$ первообразным элементом группы $Z_{27}*$ является элемент 5.

Примечание. Если группа Z_m^* – циклическая, в частности, если m –простое число, то первоообразный элемент по модулю m есть образующий элемент мультипликативной группы Z_m^* , а его порядок есть порядок этой группы. Рассмотренная выше группа Z_{27}^* циклическая и первообразный элемент является образующим элементом. Другими первообразными (и одновременно образующими) элементами этой группы являются элементы $5^i,\ i=5,7,11,13,15,17.$ всего имеем 6 первообразных по числу степеней любого из них, взаимно простых с порядком группы. Общая формула для числа первообразных группы $Z_{p^e},\ p>2$ следующая

$$\varphi(\varphi(p^e)) = \varphi(p^{e-1}(p-1)).$$

Можно найти точные значения $\lambda(m)$ в следующих случаях:

$$\lambda(2)=1,\ \lambda(4)=2,\ \lambda(2^e)=2^{e-2},\ \text{если }e\geq 3,$$

$$\lambda(p^e)=p^{e-1}(p-1),\ \text{если }p>2,$$

$$\lambda(p_1^{e_1}\cdots p_t^{e_t})=\ \text{HOK}(\lambda(p_1^{e_1}),\cdots,\lambda(p_t^{e_t})).$$
 (3)

Пример. Рассмотрим группу $Z_{2^4}=Z_{16}$. В этом случае $\lambda(m)=2^2=4$. Для элемента a=5 получаем множество из четырех различных степеней: $5^4=5^0=1$, $5^1=5$, $5^2=9$, $5^3=13$. Остальные элементы группы Z_{16}^* получим как степени элемента 11: $11^4=11^0=1$, $11^2=9$, $11^3=3$.

Далее рассмотрим группу $Z_{3^2}=Z_9$. В этом случае $\lambda(m)=3\times 2=6$. Для элемента a=5 получаем множество из шести различных степеней: $5^6=5^0=1,\ 5^1=5,\ 5^2=7,\ 5^3=8,\ 5^4=4$. $5^5=2$

Различные степени элемента 5 в кольце $Z_{16\times 9}=Z_{144}$ представлены в первой строке таблицы.

i	0	1	2	3	4	5	6	7	8	9	10	11
5^i	1	5	25	125	49	101	73	77	97	53	121	29
11^i												
13^i	1	13	25	37	49	61	73	85	97	109	121	133

Заметим, что порядок группы Z_{144}^* равен $\varphi(144)=2^3\times(3\times2)=48$ и эта группа не циклическая.

$$Z_{144}^* = \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, \\ 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143\}$$

Элемент 5 является ее первообразным, но не образующим элементом. Некоторые другие элементы группы перечислены во второй и третьей строках таблицы как степени некоторых первообразных элементов. В качестве упражнения с помощью Алгебраического процессора можно найти прочие первообразные элементы и вычислить недостающие элементы группы. Все 16 первообразных:

$$\{1, 5, 11, 13, 29, 43, 47, 61, 67, 77, 83, 85, 101, 115, 131, 133\}$$

Справедлива теорема

Теорема 2. (Р. Кармайкл, 1910) Максимально возможный при c=0 период равен $\lambda(m)$, где $\lambda(m)$ определяется выражениями (3). Такой период реализуется, если

 X_0 и m – взаимно простые числа;

a – nервообразный элемент по модулю <math>m.

Отсюда, если m – простое число, то можно получить период длины m-1, то есть всего на единицу меньше максимально возможного при $c \neq 0$.

Теорема 3. Число a есть первообразный элемент по модулю p^e тогда и только тогда, когда

- а) $p^e=2$, a нечетное; или $p^e=4$, $a \mod 4=3$; или $p^e=8$, $a \mod 8=3,5,7$; или $p=2,\ e\geq 4,\ a \mod 8=3$ или 5;
- б) p нечетное, e=1, $a\not\equiv 0\pmod{p}$ и $a^{(p-1)/q}\not\equiv 1\pmod{p}$ для любого простого делителя q числа p-1;
- в) p нечетное. e > 1, а удовлетворяет условиям б) и $a^{p-1} \not\equiv 1 \pmod{p^2}$ (подразумевается, что p простое).

Для важного случая $m=2^e$ при $e\geq 4$ приведенные условия сводятся к единственному требованию, чтобы $a\equiv 3$ или 5 (mod 8). В этом случае четвертая часть всех возможных множителей дает максимальный период.

Приведем алгоритм 1 поиска элемента максимального порядка группы $Z_{p\cdot q}^*$. Пусть $n=p\cdot q$, где p и q – различные нечетные простые числа. Тогда $Z_{p\cdot q}^*$ – группа порядка $\varphi(n)=(p-1)(q-1)$, не являющаяся циклической (см. рис. refcaption 1.7). Его можно обобщить для общего случая модуля.

4. Необходимое условие обеспечения статистических свойств ЛКП. Мощность ЛКП.

Заметим, что множитель $a=z^k+1,\ 1\leq k< e,$ где z – основание системы счисления, а e длина машинного слова, удовлетворяет (при k>1, если z=2,e>1) условиям теоремы 1, то есть обеспечивает максимально возможный период. При этом можно также принять c=1. Тогда рекуррентное соотношение примет вид

$$X_{n+1} = ((z^k + 1)X_n + 1) \bmod z^e.$$

Алгоритм 1.

```
ВХОД: два различных нечетных простых числа p и q, факторизация чисел p-1 и q-1. ВЫХОД: элемент \alpha максимального порядка \mathrm{HOK}(p-1,q-1) группы Z_n^*, n=p\cdot q. 
1. Применяя известный алгоритм к G=Z_p^* и факторизацию числа p-1, найти образующий элемент a группы G_p^*. 
2. Применяя известный алгоритм к G=Z_q^* и факторизацию числа q-1, найти образующий элемент b группы G_q^*. 
3. Найти целое \alpha, 1\leq \alpha \leq n-1, удовлетворяющее сравнениям \alpha\equiv a \pmod p, \alpha\equiv b \pmod q. 
4. Вернуть \alpha.
```

Рис. 1: Алгоритм поиска элемента максимального порядка мультипликативной группы.

Правая часть легко вычислима, поскольку можно избежать умножения, заменив его сложением и сдвигом. Однако, такой вариант линейного соотношения, как правило, приводит к недостаточно случайным числам. Объяснение этого связано с концепцией мощности.

 ${\it Мощностью}$ линейной конгруэнтной последовательности максимального периода называется наименьшее целое число s, такое, что

$$b^s \equiv 0 \pmod{m}$$
.

Такое число всегда существует, поскольку удовлетворяются условия Теоремы 1 (в частности, если b кратно любому простому делителю m). При анализе можем считать, что $X_n = 0$, так как 0 принадлежит максимальному периоду.

Если a=1, то мощность равна 1 $X_n\equiv cn \mod m$, то есть последовательность (1) явно не случайна. Не случайно выше отмечено, что «полезными» могут быть только значения множителя $a\geq 2$.

При $X_0 = 0, \ a \ge 2$, по формуле общего члена ЛКП (2)

$$X_n = ((a^n - 1)c/b) \bmod m.$$

Разложение $a^n - 1 = (b+1)^n - 1$ по формуле бинома Ньютона позволяет заключить, что

$$X_n = (((b+1)^n - 1)c/b) \mod m =$$

$$= \left(\left(n + \binom{n}{2} b + \dots + \binom{n}{s} b^{s-1} \right) - 1)c/b \right) \mod m,$$

поскольку все члены с $b^s,\,b^{s+1}$ и т.д. можно опустить как кратные m.

При мощности 2

$$X_n \equiv \left(\frac{cn}{2} + c\binom{n}{2} - \frac{c}{2}\right) \pmod{m}.$$

Это также последовательность с определенно выраженной закономерностью: разность между соседними случайными числами

$$X_n - X_{n-1} \equiv cn - \frac{c}{2} \pmod{m}$$
.

выражается простой зависимостью от n.

Для достаточно случайных последовательностей потребуется мощность не менее 5.

5. Спектральный тест

Конечное преобразование Фурье. Рассмотрим конечное преобразование Фурье функции, определённой на конечном множестве. Пусть $F(t_1,t_2,\ldots,t_n)$ – функция, определённая для всех комбинаций целых чисел $t_k,\ 0\leq t_k < m$ и принимающая комплексные значения. *Преобразование Фурье* функции $F(t_1,t_2,\ldots,t_n)$ определяется как функция

$$f(s_1, \dots, s_n) =$$

$$= \sum_{0 \le t_1, \dots, t_n \le m} \exp\left(\frac{-2\pi i}{m}(s_1 t_1 + \dots s_n t_n)\right) F(t_1, \dots, t_n),$$

определённая для всех комбинаций целых s_k , Эта функция периодическая в том смысле, что

$$f(s_1, \ldots, s_n) = f(s_1 \bmod m, \ldots, s_n \bmod m).$$

Исходная функция восстанавливается по её преобразованию Фурье следующим образом:

$$F(t_1, t_2, \dots, t_n) =$$

$$= \frac{1}{m^n} \sum_{0 \le s_1, \dots, s_n \le m} \exp\left(\frac{-2\pi i}{m} (t_1 s_1 + \dots t_n s_n)\right) f(s_1, \dots, s_n).$$

При этом величина

$$(1/m^n)f(s_1,\ldots,s_n)$$

представляет n-мерную комплексную волну с частотами $s_1/m, \ldots, s_n/m$.

Функция предельной плотности для числовой последовательности и ёё конечное преобразование Фурье. Будем использовать функцию

$$\delta(z) = \begin{cases} 1 & \text{если } z - \text{целое,} \\ 0 & \text{если } z - \text{не целое.} \end{cases}$$

Пусть дана бесконечная последовательность чисел $X_0, X_1, \ldots, 0 \le X_k < m$ и пусть n – фиксированное натуральное число.

Определим функцию

$$F(t_1, \dots, t_n) = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le k \le N} \delta(X_k/t_1) \cdot \delta(X_{k+1}/t_2) \cdots \delta(X_{k+n-1}/t_n).$$

Эта функция равна предельной плотности числа появлений комбинации $(t_1, \dots t_n)$ в виде n следующих друг за другом элементами последовательности X_0, X_1, \dots Если последовательность периодическая, то этот предел существует, причём для его вычисления можно принять N равным единице периода. Если последовательность действительно случайна, то все комбинации чисел появляются с одинаковой частотой и для любых t_1, \dots, t_n значение $F(t_1, \dots, t_n) = \frac{1}{m^n}$.

Преобразованием Фурье данной функции является функция

$$f(s_1, \dots, s_n) = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le k \le N} \exp\left(\frac{-2\pi i}{m} (s_1 X_k + s_2 X_{k+1} + \dots + s_n X_{k+n-1})\right).$$

Если последовательность является действительно случайной, должен получиться образ константы $\frac{1}{m^n}$. То есть для случайной последовательности должно быть

$$f(s_1, \dots, s_n) = \begin{cases} 1, & \text{если } s_1 \equiv \dots \equiv s_n \equiv 0 \pmod{m}, \\ 0 & \text{в противном случае} \end{cases}$$
 (4)

Величину отклонения $f(s_1,...,s_n)$ от от значений (4), отвечающих действительно случайной последовательности можно использовать для оценки случайности.

Для линейной конгруэнтной последовательности, имеющей максимальный период, выражение для $f(s_1, \ldots, s_n)$ имеет более простой вид:

$$f(s_1, ..., s_n) = \frac{1}{m} \sum_{0 \le k < m} \exp\left(\frac{-2\pi i}{m} (s_1 X_k + s_2 X_{k+1 + \dots + s_n X_{k+n-1}})\right) =$$

$$= \frac{1}{m} \sum_{0 \le k < m} \exp\left(\frac{-2\pi i}{m} \left(s(a) X_k + \frac{s(a) - s(1)}{a - 1} c\right)\right),$$

где

$$s(a) = s_1 + s_2 a + s_3 a^2 + \dots + s_n a^{n-1},$$

что следует из представления

$$X_{k+r} \equiv a^r X_k + \frac{a^r}{a-1} c \pmod{m},$$

полученного выше.

Учитывая, что в последовательности максимального периода встречаются все значения X_n , можно заключить, что

$$f(s_1,\ldots,s_n) = \frac{1}{m} \sum_{0 \le k < m} \exp\left(\frac{-2\pi i}{m} \left(s(a)k + \frac{s(a) - s(1)}{a - 1}c\right)\right).$$

Рассматривая последнее выражение как сумму геометрической прогрессии, можно получить следующую основную формулу

$$f(s_1, \dots, s_n) = \exp\left(\frac{-2\pi ic}{m} \left(\frac{s(a) - s(1)}{a - 1}\right) \delta\left(\frac{s(a)}{m}\right)\right).$$
 (5)

Напомним, что $f(s_1, \ldots, f_n)/m^n$ интерпретируется физически как амплитуда n-мерной комплексной плоской волны, соответствующей "частоте" $(s_1/m, \ldots, s_n/m)$ этой волны. При этом по следующей формуле определяется "волновое число," соответствующее этой частоте:

$$\nu = \sqrt{s_1^2 + \dots + s_n^2}$$

при $|s_k| \le \frac{m}{2}, \ 1 \le k < n.$

Существование компонент с ненулевой частотой говорит об отклонении от случайности. Низкочастотные компоненты сильнее влияют на случайность, чем высокочастотные.

Формула (5) даёт "спектр"линейной конгруэнтной последовательности, указывая, какие типы волн имеются в преобразовании Фурье функции $F(t_1,\ldots,t_n)$. Значение $f(s_1,\ldots,s_n)=0$ всегда, кроме случаев, когда

$$s_1 + s_2 a + s_3 a^2 + \dots + s_n a^{n-1} \equiv 0 \mod m,$$
 (6)

то есть, когда $|f(s_1,\ldots,s_n)|=1$. Следовательно, для линейных конгруэнтных последовательностей с максимальным периодом наименьшее ненулевое волновое число в спектре равно

$$\nu_n = \min \sqrt{s_1^2 + s_2^2 + \dots + s_n^2},\tag{7}$$

где минимум берётся по всем n-наборам целых чисел $\{s_1, s_2, \dots s_n\} \neq 0$, удовлетворяющих условию (6). Если ν_n — наименьшее значение волнового числа (7), для которого $f(s_1, \dots, s_n) \neq 0$ в линейной конгруэнтной последовательности с максимальным периодом, то последовательность

$$X_0/m, X_1/m, X_2/m...$$

можно считать последовательностью случайных чисел, равномерно распределённых между 0 и 1 и представленных с "точностью" ("ошибкой округления") $1/\nu_n$, при этом имеется в виду независимость n последовательных значений при усреднении по полному периоду.

Действительно, если взять случайную последовательность целых чисел $X_0, X_1, X_2 \dots$ с $m=2^e$, то можно заметить, что при отбрасывании (обнулении) одного, двух и т.д. разрядов двоичных представлений таких чисел будут появляться компоненты с волновыми числами $2^{e-1}, 2^{e-2}, 2^{e-3}$ и т.д.

Реализация спектрального теста описана в [1]. Соответствующий алгоритм применяется для оценки множителя a в линейной конгруэнтной последовательности с максимальным периодом при заданном модуле m. Алгоритм проверяет статистическую независимость последовательных отрезков из n чисел, n=2,3,4.

В алгоритме предполагается, что заданы a, m и n; вычисляется $q = \nu_n^2$.

5. Теоретические тесты для линейного конгруэнтного метода

Линейный конгруэнтный метод позволяет применять anpuophue тесты, позволяющие теоретически предсказать результаты испытаний датчика теми или иными эмпирическими тестами, рассмотренными в предыдущей лекции. Такой подход позволяет более надежно выбирать правильные значения параметров a, m и c линейного конгруэнтного генератора.

Приведенные ниже результаты теории линейного конгруэнтного метода относятся к характеристикам линейного конгруэнтного генератора на полном периоде, что допустимо при проверке серий, интервалов, перестановок и т.д.

Суть следующей теоремы состоит в том, что если датчик обладает высокой мощностью, то примерно в половине случаев будет выполняться неравенство $X_{n+1} < X_n$.

Теорема 4. Пусть X_0 , a, u m определяют линейную конгруэнтную последовательность максимального периода; пусть b=a-1, a d=HOД(m,b). Тогда вероятность того, что $X_{n+1} < X_n$, равна $\frac{1}{2} + r$, где

$$r = \frac{(2(c \bmod d) - d)}{2m};$$

следовательно, $|r| < \frac{d}{2m}$.

Из теоремы следует, что практически при любом выборе a и c неравенство $X_{n+1} < X_n$ будет выполняться с нужной частотой, во всяком случае на полном периоде, кроме тех случаев, когда d велико, что соответствует малой мощности и отвергается заранее.

Следующая теорема позволяет оценить коэффициент последовательной корреляции на полном периоде.

Теорема 5. Коэффициент последовательной корреляции при любых a, m, u c, обеспечивающих максимальный период, определяется приближенно выражением

$$C \approx \frac{1}{a} \left(1 - 6\frac{c}{m} + 6\left(\frac{c}{m}\right)^2 \right)$$

Из теоремы следует, что надо избегать малых значений a. В то же время, большие значения a еще не гарантируют малую корреляцию, поскольку ошибка в оценке может достигать a/m. При $a=\sqrt{m}$ значения коэффициента корреляции ограничены величиной $2/\sqrt{m}$.

С помощью приведенных формул можно вычислять коэффициент корреляции между X_n и X_{n+t} , если вместо a и c подставлять

$$a_t = a^t \mod m, \ c_t = (a^t - 1)c/(a - 1) \mod m.$$

Это следует из того, что

$$X_{n+1} = (a_t X_n + c_t) \bmod n.$$

Концепция мощности дает только один из критериев выбора множителя. Наиболее эффективным критерием является критерий на основе "спектрального теста" (см. выше). Он включает мощность и величину множителя.

6. Контрольные вопросы

- 1. Дайте определение линейной конгруэнтной последовательности и запишите формулу ее общего члена.
- 2. Каким образом выбирается модуль $ЛК\Pi$, при котором исключается этап приведения по модулю m очередного вычисляемого элемента последовательности?

- 3. При каких условиях период ЛКП равен ее модулю m?
- 4. Как определить максимальный период ЛКП?
- 5. При каких множителях ЛКП имеет заведомо слабые статистические свойства?
- 6. Какой спектральный параметр ЛКП контролируется спектральным тестом?
- 7. Какие еще теоретические тесты для ЛКП Вам известны? Литература.
- [1] Кнут Д. искусство программирования для ЭВМ. М.: Мир. 1978. Кнут Д. искусство программирования. Т. 2, Киев, Санкт-Петербург: Вильямс. 2000.
- [2] Иванов М.А., Чугунков И.В. Теория, применение и оценка качества генераторов псевдослучайных последовательностей. М.: КУДИЦ-ОБРАЗ, 2003.