1 General properties of Conditional Expectation

1.1 Idea

Mimic general properties of ordinary expectations

$$\mathbb{E}(X_1 + X_2) = \mathbb{E}X_1 + \mathbb{E}X_2 \qquad \mathbb{E}(cX) = c\mathbb{E}X \tag{1.1}$$

but with \mathcal{G} -measurable RVs playing the role of constants c.

1.2 Some basic properties of CE

Let $X : (\Omega, \mathcal{F}P) \to \mathbb{R}$, $\mathbb{E}|X| < \infty$, $\mathcal{G} \subset \mathcal{F}$. $\mathbb{E}[X \mid \mathcal{G}]$ is *the* RV Z such that

- (a) Z is \mathcal{G} -measurable
- (b) $\mathbb{E}[Z1_G] = \mathbb{E}[X1_G] \quad \forall G \in \mathcal{G}.$

Lemma 1.1. For $Z = \mathbb{E}[X \mid \mathcal{G}]$, $\mathbb{E}[VZ] = \mathbb{E}(VX]$, we have

- (a) $\mathbb{E}[X_1 + X_2 \mid \mathcal{G}] = \mathbb{E}[X_1 \mid \mathcal{G}] + \mathbb{E}[X_2 \mid \mathcal{G}]$
- (b) $\mathbb{E}[VX \mid \mathcal{G}] = V\mathbb{E}[X \mid \mathcal{G}]$ for bounded \mathcal{G} -measurable V.
- (c) If $0 \le X_n \uparrow X$ a.s., then $\mathbb{E}[X_n \mid \mathcal{G}] \uparrow \mathbb{E}[X \mid Y]$ a.s.
- (d) If $X \ge 0$ a.s., then $\mathbb{E}[X \mid \mathcal{G}] \ge 0$ a.s.
- (e) $|\mathbb{E}[X \mid \mathcal{G}]| \leq \mathbb{E}[|X| \mid \mathcal{G}] \text{ a.s.}$
- (f) $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}X$
- (g) If X is G-measurbale, then $\mathbb{E}[X \mid G] = X$ If G is trivial, then $\mathbb{E}[X \mid G] = \mathbb{E}X$.
- (h) Tower Property: If $\mathcal{G} \subset \mathcal{H}$ then $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{H} \mid \mathcal{G}]]$.

Proof. (a) Write $Z_i = \mathbb{E}[X_i \mid \mathcal{G}]$.

Need to show $Z := Z_1 + Z_2 = \mathbb{E}[X_1 + X_2 \mid \mathcal{G}]$

Z is \mathcal{G} -measurable because Z_i are \mathcal{G} -measurable.

$$\underbrace{\mathbb{E}[Z1_G]}_{=\mathbb{E}[X_11_G]+\mathbb{E}[X_21_G]}\underbrace{(X_1+X_2)1_G}_{=\mathbb{E}[X_11_G]+\mathbb{E}[X_21_G]} \quad \forall G \in \mathcal{G}$$

$$(1.2)$$

(b) Define $Z = V\mathbb{E}[X \mid \mathcal{G}]$. To show $Z = \mathbb{E}[VX \mid \mathcal{G}]$, need to show Z, V, and $\mathbb{E}[X \mid \mathcal{G}]$ are \mathcal{G} -measurable.

Z is \mathcal{G} -measurable by Lemma applied to $V1_G$. TODO: Check

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] \underbrace{V1_G}_{\mathcal{G}\text{-meas}} = \mathbb{E}[X \underbrace{V1_G}_{\mathcal{G}\text{-meas}}] \quad \forall G \in \mathcal{G}$$
(1.3)

- (c) Exercise.
- (d) Exercise.
- (e) Exercise.
- (f) $G = \Omega$ in def.
- (g) By definition.

 \mathcal{G} trivial $\Longrightarrow \mathbb{E}[X \mid \mathcal{G}]$ constant $\Longrightarrow \mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}X$

(h) Write $Z = \mathbb{E}[X \mid \mathcal{G}]$. Need to check $\mathbb{E}[Z1_G] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{H}]1_G]$. But LHS $= \mathbb{E}[X1_G]$ by definition of Z, and RHS $= \mathbb{E}[X1_G]$ by definition of $\mathbb{E}[X \mid H]$ and $G \in \mathcal{G} \implies G \in \mathcal{H}$.

(L^2 setting): Now assume $\mathbb{E}X^2 < \infty$.

- $X \mapsto \mathbb{E}[X \mid \mathcal{G}]$ is the orthogonal projection in Hilbert space
- Cauchy-Schwarz $\mathbb{E}|VX| \leq \sqrt{(\mathbb{E}X)^2(\mathbb{E}V)^2} < \infty$

From Lemma

$$\mathbb{E}[(X - \mathbb{E}[X \mid \mathcal{G}]) \mid V] = 0 \tag{1.4}$$

for V \mathcal{G} -measurable and $\mathbb{E}V^2 < \infty$. This gives

Lemma 1.2. $X - \mathbb{E}[X \mid \mathcal{G}]$ and V are orthogonal $\forall V$ \mathcal{G} -measurable.

Recall $Var(X) = \mathbb{E}[X - \mathbb{E}[X]]^2$.

Definition 1.3. The conditional variance

$$Var(X \mid \mathcal{G}) = \mathbb{E}[(X - \mathbb{E}[X \mid \mathcal{G}])^2 \mid \mathcal{G}]$$
(1.5)

Lemma 1.4 (Bias-variance decomposition). *If* Y *is* G-*measurable*, $\mathbb{E}Y^2 < \infty$

$$\mathbb{E}[(X - Y)^2 \mid \mathcal{G}] = Var(X \mid \mathcal{G}) + (\mathbb{E}[X \mid \mathcal{G}] - Y)^2$$
(1.6)

Proof.

$$\mathbb{E}[(X-Y)^2 \mid \mathcal{G}] = \mathbb{E}[X^2 - 2XY + Y^2 \mid \mathcal{G}]$$
(1.7)

$$= \mathbb{E}[X^2 \mid \mathcal{G}] - 2Y \mathbb{E}[X \mid \mathcal{G}] + Y^2 \tag{1.8}$$

$$= (\mathbb{E}[X^2 \mid \mathcal{G}] - \mathbb{E}[X \mid \mathcal{G}]^2) + (\mathbb{E}[X \mid \mathcal{G}]^2 - 2Y\mathbb{E}[X \mid \mathcal{G}] + Y^2)$$
(1.9)

$$= \operatorname{Var}(X \mid \mathcal{G}) + (\mathbb{E}[X \mid \mathcal{G}] - Y)^{2}$$
(1.10)

Lemma 1.5. $Var(X) = \mathbb{E}Var(X \mid \mathcal{G}) + Var\mathbb{E}[X \mid \mathcal{G}]$

Proof. Replace X by X – changes no term, so wlog assume $\mathbb{E}X = 0$.

$$Var(X) = \mathbb{E}[X^2] = \mathbb{E}[\mathbb{E}[X^2 \mid \mathcal{G}]]$$
(1.11)

$$\mathbb{E}[X^2 \mid \mathcal{G}] = \mathbb{E}\left[\left(\underbrace{(X - \mathbb{E}[X \mid \mathcal{G}])}_{\rightarrow a} + \underbrace{\mathbb{E}[X \mid \mathcal{G}]}_{\rightarrow b}\right)^2 \mid \mathcal{G}\right], \qquad \mathbb{E}[ab \mid \mathcal{G}] = 0 \qquad (1.12)$$

$$= \mathbb{E}[a^2 \mid \mathcal{G}] + b^2 \tag{1.13}$$

$$= \operatorname{Var}(X \mid \mathcal{G}) + (\mathbb{E}[X \mid \mathcal{G}])^{2}, \qquad \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}X = 0 \tag{1.14}$$

$$Var(X) = \mathbb{E}[Var(X \mid \mathcal{G}) + (\mathbb{E}[X \mid \mathcal{G}])^{2}]$$
(1.15)

$$= \mathbb{E} \operatorname{Var}(X \mid \mathcal{G}) + \underbrace{\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] - 0]^{2}}_{=\operatorname{Var}\mathbb{E}[X \mid \mathcal{G}]}$$
(1.16)

Lemma 1.6 (Connection with independence). A *S*-valued *RV X* is independent of $\mathcal{G} \iff \mathbb{E}[h(X) \mid \mathcal{G}] = \mathbb{E}h(X) \; \forall \; bounded \; measurable \; h : S \to \mathbb{R}.$

Proof. ⇒. NTS $\mathbb{E}[\mathbb{E}h(x)1_G] = \mathbb{E}[h(X)1_G] \ \forall G \in \mathcal{G}$. But $\mathbb{E}h(X)$ is a consstant so LHS $= (\mathbb{E}h(X))(\mathbb{E}1_G)$ and by independence RHS $= (\mathbb{E}h(X))(\mathbb{E}1_G)$

 \Leftarrow . Take $h = 1_B$ for $B \subset S$. From the same argument

$$\mathbb{E}[h(X)1_G] = \mathbb{E}[h(x)]\mathbb{E}[1_G] \tag{1.17}$$

$$= P(X \in B, G) = P(X \in B)P(G)$$
 (1.18)

Holds $\forall B, G \implies X$ and \mathcal{G} independent.

2 Background to conditional independence

Recall

Definition 2.1. X, Y independent $\iff \mathbb{E}(h_1(X)h_2(Y)) = (\mathbb{E}h_1(X))(\mathbb{E}h_2(Y))$ for all bounded meas. h_1, h_2

Example 2.2. Bayes (X_i) conditionally independent given Θ

- (i) Random Θ , values in $\{PMs \text{ on } \mathbb{R}\} = \mathcal{P}(\mathbb{R})$
- (ii) Conditional on $\Theta = \theta \in \mathcal{P}(\mathbb{R})$ take X_1, X_2, X_3, \cdots IID (θ) .

Simple Markov property for $(X_n, n \ge 0)$ Past $X_{0:(n-1)}$ and future X_{n+1} conditionally independent given present X_n .

$$P(X_{n+1} = x_{n+1} \mid X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = P(X_{n+1} = x_{n+1} \mid X_n = x_n)$$
(2.1)

Locally dependent : Given $(W_{\tilde{x}}, \tilde{x} = (x_1, x_2) \in \mathbb{Z}^2)$.

Idea: $W_{\tilde{x}}$ depends only on $W_{\tilde{y}}: \tilde{y} \in N(\tilde{x})$ and not on the other W_s .

Formally: TODO: Conditionally indep given ...