1. Problem

An experiment has $n_1 = 4$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	16.4	14.2	19.4	17.3		
sample 2:	10.3	9.9	9.4	11	10.4	10.7

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail p-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level $\alpha = 0.02$? (yes or no)

Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 16.8$$

$$\overline{x_2} = 10.3$$

$$s_1 = 2.15$$

$$s_2 = 0.571$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(4, 6) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 4.54$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(2.15)^2}{4} + \frac{(0.571)^2}{6}} = 1.1$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-11.494, -1.506)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.91$$

We use the table to determine bounds on p-value. Remember, df = 3 and p-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\rm obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 3
- (b) 4.54
- (c) 1.1
- (d) -11.494
- (e) -1.506
- (f) 5.909
- (g) 0.005
- (h) 0.01
- (i) yes