

Today's Objectives

By the end of class, you will be able to:

- Describe the flow of typical HTTP conversations at the application layer.
- Describe the flow of DNS conversations at the application layer.
- Describe the flow of typical TCP conversations.

Activity: Leaky HTTP Traffic

In this partner activity, you'll use Wireshark to retrieve a user's username and password being communicated through an insecure website.

Times Up! Let's Review.

Leaky HTTP Traffic

HTTP: Hypertext Transfer Protocol

HTTP is an application-layer protocol designed primarily for communication between web browsers and web servers, and uses typical client/server architecture.

HTTP Request

HTTP Status Codes

Туре	Status Codes	Examples
Informational	1xx	100: Continue, 101: Switching Protocol
Success	2xx	200: OK, 201: Created, 202: Accepted
Redirection	3xx	300: Multiple Choices, 301: Moved Permanently, 302: Found
Client Error	4xx	400: Bad Request, 403: Forbidden, 404: Not Found, 422: Unprocessable Entity
Server Error	5xx	500: Internal Server Error, 503: Service Unavailable

HTTP vs HTTPS

HTTPs (HTTP Secure) uses an SSL certificate (TLS) to encrypt data before sending, and decrypt upon arrival.

Activity: Analyzing HTTP

In this activity, you will look at HTTP conversations to reverse-engineer the HTTP protocol.

Times Up! Let's Review.

Analyzing HTTP

Activity: The Search for Something Cool

In this activity, you will open a previously captured file and then tasked with importing a pcap file and using display filters to retrace a user's browsing history.

Instructions sent via Slack.

Times Up! Let's Review.

The Search for Something Cool

Today's Objectives Checkout

By the end of class, you will be able to:

Describe the flow of DNS conversations at the application layer.

Describe the flow of typical TCP conversations.

DNS

Domain Name System (DNS) is an application-layer protocol designed to translate domain names into IP addresses.

Domain Names

nslookup is a command line tool used for manual DNS resolution.

```
$ nslookip google.com
```

Server: RAC2V1S

Address: 192.168.1.1

Non-authoritative answer:

Name: google.com

Addresses:

2607:f8b0:4004:800:200e

172.217.15.110

DNS Record Types

DNs allows you to query for more than just domain \rightarrow IP Address. Record types:

A record: IPv4 address from a hostname query
AAAA record: IPv6 address from a hostname query
MX record: mail server for the domain
CNAME: alias to the domain name
NS record: nameserver of the domain
PTR record: hostname from an IP address

Instructor Demonstration

DNS in Wireshark

Activity: Wireshark DNS Analysis

In this activity, you will look at pcap files and identify DNS traffic.

Your Turn: Analyzing DNS in Wireshark

ı	nc'	tr	11	\sim 1	tı.	\sim	n	C	•
ı	ns	u	u	U	Lľ	U	ıı	J	

pe	n the dns-1.pcap file.
	This file only contains DNS replies. How many DNS requests were there?
	When the user asked for assets.espn.go.com, what happened?
	What is/are the IP address(es) for a1.espncdn.com?
pe	n the dns-2.pcap file.
	This capture contains an attempted query, but something went wrong.
	What happened?
	Which flag in the packet reveals what went wrong?
	The request went to 8.8.8.8. Did the response come directly from 8.8.8.8?

Transport Layer Protocol

Transport Layer Protocol

UDP

UDP is stateless or "connectionless," and it's used when we don't care whether we get all of our data. It is also typically faster

UDP Request / Response Paradigm:

TCP

TCP is used when all transmitted data must be received. Used with familiar protocols such as HTTP, FTP, SSH, and SMTP.

TCP Headers and Flags

TCP Headers and Flags

```
Transmission Control Protocol, Src Port: 34836 (34836), Dst Port: ftp (21), Seq: 1, Ack: 1, Len: 0
   Source Port: 34836 (34836)
   Destination Port: ftp (21)
   [Stream index: 2]
   [TCP Segment Len: 0]
   Sequence number: 1 (relative sequence number)
   Acknowledgment number: 1 (relative ack number)
   1000 .... = Header Length: 32 bytes (8)
   Flags: 0x010 (ACK)
     000. .... = Reserved: Not set
     ...0 .... = Nonce: Not set
     .... 0... = Congestion Window Reduced (CWR): Not set
     .... .0.. .... = ECN-Echo: Not set
                                                                            Flags in TCP Headers
     .... ..0. .... = Urgent: Not set
     .... 1 .... = Acknowledgment: Set
     .... .... 0... = Push: Not set
      .... .... .0.. = Reset: Not set
     .... .... ..0. = Syn: Not set
      .... .... ...0 = Fin: Not set
     [TCP Flags: ······A····]
```

TCP Headers and Flags

Flags to indicate what kind of TCP message is contained within:

TCP Handshake

Connection-Oriented, 3-way handshake, 4-way close

TCP Handshake

TCP vs UDP Comparison Example

Scenario: you want your friend's toy.

TCP:

- You call your friend's phone number.
- He picks up and says, "Howdy, Buzz!"
- 3. You say "Hey, Woody!"
- 4. You ask for the toy.
- 5. He sends you the toy

UDP:

3 - Wav

Handshake

 You call and leave a voicemail saying you want his toy.

1. The toy may arrive in the mail.

Activity: Explain / Draw the Process

In this activity, you will practice explaining the basics of what happens in layers 4-7 of the OSI Model and then draw the process of request/response for an HTTP page through the network.

Instructions sent via Slack.

Your Turn: Analyzing DNS in Wireshark

Instructions:

Draw the process of request/response for an HTTP page through the network in the context of the OSI model, labelling:

- ☐ The protocol(s) used at each layer
- ☐ How the protocol works at that stage of the process
- □ The format of the data at that point in the layer

When confident in your drawing, compare with your partner's drawing.

Try to explain your diagram, and note any differences between the two.

Act out the TCP communication and handshake process with your partner.

Bonus: Do the same for DNS.

Times Up! Let's Review.

Explaining and Drawing the Process

Activity: Digging Into TCP Communication

In this activity, students will observe a pcap with TCP communication and answer a few questions about the file.

Instructions sent via Slack.

Your Turn: Digging Into TCP Communications

Instructions:

- □ Open the tcp.pcapng file with Wireshark
- ☐ Filter for TCP packets only.
- ☐ Find all TCP SYN packets.
- ☐ Find all TCP FIN packets.
- ☐ Filter for a single TCP stream using the "FTP" protocol.
- ☐ Find the 3-way handshake sequence.
- ☐ Find the TCP teardown sequence.
- □ What are the source/destination IP addresses and ports?

Times Up! Let's Review.

Digging into TCP Communications

Today's Objectives

By the end of class, you will be able to:

- Describe the flow of typical HTTP conversations at the application layer.
- Describe the flow of DNS conversations at the application layer.
- Describe the flow of typical TCP conversations.