HW #4 Answers & Solutions

Questions 1-2: Computer Assignments:

Q1. You should be able to verify that the gain margin of the system is $\approx 15.5 dB$ in three different ways (polar plot, Bode plot and root locus), by using the provided code in the question.

- Gain margin $\approx 15.5 dB$
- Phase margin $\approx 90^{\circ}$.

Q2.

a.

- Gain cross-over frequency =5.96rad/s.
- Phase cross-over frequency =12. 5rad/s.
- Phase margin $\approx 50^{\circ}$
- Gain margin = 10.7dB

b. Desired phase margin is 55° . One can expect that a lead compensator with maximum phase (ϕ_{max}) of 10° ($10 \approx$ desired p.m. – actual p.m. + 5°) should be sufficient to increase the phase margin to 55° . Unfortunately, since the phase of the system around the gain cross-over frequency changes too fast, it is not possible to achieve the desired phase margin with $\phi_{max} = 10^{\circ}$.

If you take the extra phase term added to be $> 20^{\circ}$ instead of $5^{\circ}(i.e., \phi_{max} > 25)$, you can achieve the desired phase margin.

c. The desired phase margin can be achieved by using a lag compensator $G_c(s) \approx \frac{1+2.5s}{1+4s}$.

(3)
(a)
$$G(s) = \frac{O \cdot 2}{s^2(s+102)}$$
 $ess = \frac{1}{12} \frac$

d) ii) (Section: 3d4) =>
$$G_{c}(1) = \frac{1+\alpha T_{5}}{1+T_{5}}$$
, $\alpha > 1$, $\alpha >$