13.2 实现矩阵相乘的并行计算

矩阵A, B 均为N*N的方阵,试计算矩阵C=AB; 使用P个进程并行计算(N可以被P整除): $C_y = \sum_{k=1}^N A_{ik} B_{ik}$ 矩阵A, B及C均采用分布式存储; A, C按行分割,B按列分割存储(见本稿 47页)。 要求编写计算C矩阵的MPI程序,并进行计算。

实际计算时,矩阵A,B请采用如下值, N设为10000

 $A_{ij} = e^{y_j} \sin 3x_i; B_{ij} = (x_i + \cos 4x_i)(1 + y_j); x_i = (i - 1)/(N - 1); y_j = (j - 1)/(N - 1)$

计算出C矩阵后,请计算 $s=\frac{1}{N}\sum_{i}\sum_{j}$,并由根节点打印出来。 将S值与串行程序的结果进行对比,校验程序的正确性; 使用1.2.4.10个进程进行计算,并利用MPI_Wtime()函数计算程序的运行时间;考核加速比及计算效率。

要求: 1)提交计算程序; 2)使用1,2,4,10个进程计算,提交计算结果(S值及计算时间)、计算效率及加速比。

算法说明:

由于这道题目在 HPC 课上也有记录,故采用行列分块算法,每个进程内含有 A 矩阵一小块的行,含有 B 矩阵一小块的列。具体过程如下所示。

(a)A阵起始对准

(b)B阵起始对准

4	4	4	4
A _{0, 2} B _{2, 0}	A _{0, 3}	$A_{0, 0}$ $B_{0, 2}$	A _{0, 1}
A _{1, 3} B _{3, 0}	A _{1, 0}	$A_{1, 1}$ $B_{1, 2}$	A _{1, 2}
A _{2,0} B _{0,0}	A2, 1	$A_{2, 2}$ $B_{2, 2}$	A _{2, 3}
A _{3, 1}	A _{3, 2}	A _{3, 3} → B _{3, 2}	A _{3, 0}
(e)ĝ	第二次移位	后的子阵化	文置

*	4	4	4
A _{0, 1}	A _{0, 2}	$A_{0, 3}$ $B_{3, 2}$	A _{0, 0}
A _{1, 2}	$A_{1, 3}$ $B_{3, 1}$	$A_{1,0}$ $B_{0,2}$	$A_{1, 1}$ $B_{1, 3}$
A2, 3 B3, 0	A2, 0	$A_{2, 1}$ $B_{1, 2}$	$A_{2, 2}$ $B_{2, 3}$
A3, 0	$A_{3, 1}$ $B_{1, 1}$	$A_{3, 2}$ $B_{2, 2}$	A _{3, 3} B _{3, 3}
(d)第一次移位后的子阵位置			

A _{0, 3}	A _{0, 0}	^A 0, 1	A _{0, 2}
B _{3, 0}	B _{0, 1}	B _{1, 2}	B _{2, 3}
$^{A_{1, 0}}_{\mathcal{B}_{0, 0}}$	$A_{1, 1}$ $B_{1, 1}$	A _{1, 2} B _{2, 2}	А _{1, 3} В _{3, 3}
$^{A_{2, 1}}_{B_{1, 0}}$	$A_{2, 2}$	^А 2, 3	$A_{2, 0}$
	$B_{2, 1}$	В _{3, 2}	$B_{0, 3}$
A _{3, 2}	Аз, з	^A 3, 0	$A_{3, 1}$ $B_{1, 3}$
B _{2, 0}	Вз, 1	^B 0, 2	

(f)第三次移位后的子阵位置

求解思路:

- 1、首先规划笛卡尔网格进程,对每个进程进行赋值
- 2、通过 MPI 打包函数将单核的赋值数据与多核的赋值数据进行对比,确认赋值正确
 - 3、开始计时,并且通过 Canno 算法对矩阵乘进行求解
 - 4、根进程求解全局矩阵得到时间

由于该算法需要 \sqrt{P} 个进程数目,故在 10000*10000 计算时采用 1, 4, 16, 25 个处理器对其进行测试,结果如下,其中

加速比=单个进程执行的时间/N个进程执行的时间;并行效率=加速比/N,单核采用的算法为 $O(n^3)$ 的矩阵乘,未做优化。

	1	4	16	25	64
S	15183725. 9	15183725. 9	15183725. 9	15183725. 9	15183725. 9
计算时间(s)	4813. 4	772	285	287	269
计算效率		1. 55	1. 03	0. 67	0. 27
加速比		6. 2	16. 88	16. 77	17. 89

16 核计算实例:

由于电脑只有8个核心,多了也是虚拟出来的进程的,多余八个后会分摊掉原有的八个核的性能,所以后来加速比不理想,如要测试应当由确切的实际数量核心的测试平台。除此之外,效果相比商业计算软件不佳的原因是在计算中全局矩阵传递时,采用的是MPI_Sendrecv_replace函数,该函数无需各个进程缓冲区,直接替换数据,在这个过程中需要大量时间同步,除此之外可能算法优化还有数学处理上,商业软件来的更好。

附 Ryzen 7 5800H

CPU 核心数量	8
基准时钟频率	3. 2GHz
最大加速时钟频率	4. 4GHz
默认 TDP/TDP	45W

TLB\Reorder Buffer 大小暂未查询到