Examen de calcul différentiel ISIMA première année, juin 2013.

1 Exercice.

On se donne la fonction f dont le graphe passe par les points suivants, pour $i=0,\cdots,3$:

x_i	-2	0	1	3
y_i	0	-2	0	70

- 1. Déterminer la base de Lagrange associée aux points x_0, x_1, x_2 .
- 2. En déduire le polynôme p_2 d'interpolation de Lagrange associé aux points $(x_i, y_i)_{i=0,\dots,2}$.
- 3. Retrouver l'expression du polynôme p_2 par l'algorithme de Newton.
- 4. Donner le polynôme d'interpolation associé aux points $(x_i, y_i)_{i=0,\dots,3}$.

2 Exercice.

Dans cet exercice on considère le problème suivant, pour $t \in [0, 1]$:

$$y' = -ty^2$$
, $y(0) = 2$,

dont la solution exacte est $y(t) = \frac{2}{1+t^2}$. Vous noterez h le pas de temps.

- 1. Représenter y sur [0,1].
- 2. Donner le schéma d'Euler explicite.
- 3. Donner le schéma d'Euler implicite. On rappelle que nécessairement $y_{n+1} \longrightarrow_{h \to 0} y_n$.
- 4. Pour un pas de temps h=0.1, calculer les valeurs y_1 données par Euler explicite, implicite, ainsi que la valeur exacte. On donne $\sqrt{1.08} \simeq 1.039$ et $\frac{2}{1.01} \simeq 1.98$. Commentez.

3 Exercice.

Soit Ω la surface délimitée par le quart de cercle $(R\cos\theta, R\sin\theta)$ où $\theta \in [\frac{\pi}{4}, \frac{3\pi}{4}]$, la droite passant par le centre $\overrightarrow{0}$ et le point $(R\cos(\pi/4), R\sin(\pi/4))$, ainsi que la droite passant par le centre $\overrightarrow{0}$ et le point $(R\cos(3\pi/4), R\sin(3\pi/4))$. Soit Γ le bord dans Ω . Soit :

$$I = \int_{\Gamma} x^2 y dy - xy^2 dx.$$

- 1. Faire un dessin et paramétrer Ω .
- 2. Calculer I à l'aide de la formule de Green-Riemann.
- 3. Faire un dessin et paramétrer Γ .
- 4. Calculer directement I.

4 Exercice.

Soit la courbe d'équation paramétrique $\vec{r}(t)=\begin{pmatrix}3t^2\\4t^3\\3t^4\end{pmatrix}$ pour $t\in[1,2].$

- 1. Calculer le vecteur vitesse $\vec{r}'(t)$ ainsi que sa norme. On devra trouver $||\vec{r}'(t)|| = 6t (1+2t^2)$.
- 2. Calculer la longueur de la courbe $\Gamma = \text{Im}(\vec{r})$.
- 3. Soit \vec{q} la courbe qui exprime \vec{r} en coordonnées paramétriques intrinsèques, c'est à dire donnée par $\vec{q}(s) = \vec{r}(t(s))$ où $s \to t(s)$ est le changement de variables croissant d'inverse $t \to s(t)$ tel que $||\vec{q}'(s)|| = 1$. Calculer s'(t).
- 4. Calculer $\vec{q}''(s)$, puis $k(s) = ||\vec{q}''(s)||$ (la courbure).
- 5. Donner $\vec{n}(s) = \frac{\vec{q}''(s)}{||\vec{q}''(s)||}$ (vecteur normal unitaire).
- 6. Calculer $\vec{b}(s) = \vec{q}'(s) \wedge \vec{n}(s)$ (le vecteur binormal).
- 7. Calculer $\vec{b}'(s)$ puis $\tau(s)$ (la torsion) tel que $\vec{b}'(s) = \tau(s)\vec{n}(s)$.