

台灣化學纖維股份有限公司化工三部

龍德PTA廠4-CBA品質控制優化

報告人:江慶堂 2020年7月15日

【密】【會後收回】

內 容

- 一、化三部AI推動規劃
- 二、4-CBA品質控制優化動機
- 三、模組開發應用成果
- 四、模組開發流程
- 五、結論及後續推動事項

化三部AI專案彙總

年效益單位:千元

類別		年效益		
米 貝 <i>八</i> 八	委外	自行開發	合計	(已完成)
(一)製程優化	7 (1)	3 (1)	10 (2)	81,516 (10,443)
(二)品質優化	1 (0)	4 (1)	5 (1)	33,682 (16,939)
(三)設備預警	1 (0)	2 (2)	3 (2)	-
(四)工廠安全	2 (0)	0 (0)	2 (0)	-
合 計	11 (1)	9 (4)	20 (5)	115,198 (27,382)

製程優化專案有10件,預期年效益81,516千元,已完成2件,年效益 10,443千元,初期主要透過產學合作,目前以自行開發為主。

10,110	/	仍然工具型之屋了口	2 11 744 -	7 H 11 M W	
類別	項次	項目名稱	合作單位	預完/完成日	年效益(千元)
	1	麥寮廠CTA蒸餾塔穩定 控制(第一階段)	北科大	2018/10 完成	10,443
	2	麥寮廠CTA蒸餾塔穩定 控制(第二階段)	JU/1/X	2020/10	11,138
	3	麥寮廠結晶高壓蒸汽節 能與粒徑分析	台科大	2020/8	26,935
	4	麥寮廠高壓過濾機(RPF) 優化	自行開發	2020/8	-
	5	龍德廠CIA氧化塔反應 穩定控制	北科大	2020/9	2,586
(一)製程優化	6	龍德廠CTA蒸餾塔穩定 控制	金波數位	2020/12	15,440
	7	醋酸廠成品塔及丙酸塔 穩定控制	北科大	2020/9	958
	8	醋酸廠iEM監控分析系統診斷規劃	自行開發	2019/10 完成	-
	9	醋酸廠POx反應器進料 單元最佳化操作	華貿企業	2021/6	13,292
	10	寧波廠冷卻水系統用電 優化	自行開發	2021/6	724
	小計				81,516

▶ 品質優化專案有5件,其中1案是委託長庚AI中心,其餘4案為自行開發,預期年效益33,682千元;設備預警有3件、工廠安全有2件。

1114 47		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. ,	
類別	項次	項目名稱	合作單位	預完/完成日	年效益(千元)
	1	麥寮廠PTA成品平均粒 徑及細粒徑預測管控	長庚AI中心	2020/10	-
	2	麥寮廠4-CBA品質控制 優化	自行開發	2020/9	16,743
(二)品質優化	3	龍德廠4-CBA品質控制 優化	自行開發	2020/5 (完成)	16,939
	4	龍德廠CTA V205觸媒組 成預測管控	自行開發	2020/9	-
	5	龍德廠CTA品質OD控制 優化	自行開發	2020/12	-
	小計				33,682
	1	利用iEM軟體開發設備 健康度監診	自行開發	2020/5 (完成)	-
(三)設備預警	2	利用PRiSM軟體開發設 備健康度監診	自行開發	2019/5 (完成)	-
	3	麥寮廠氫化塔進料泵軸 封智能監控診斷	工研院	2021/3	-
(四)工廠安全	1	龍德電氣室高壓盤操作 人員穿著安全防護監測	廣宣科技	2021/1	-
(口)上風女生	2	醋酸廠氫氣管線洩漏監 控系統	強將實業	2020/12	-
合計	20	四大類別自行開發合計共	共9件(年效益34	4,406千元)	115,198

氧化段製程

● 含人工取樣品質項目

- ➤ 氧化反應為CTA製程核心,影響成品的品質與醋酸、觸媒單耗,但進料 調配組成與CTA品質皆為人工取樣,每4小時只有一筆數據,因此本部 須先開發預測模組,建立代替人工取樣的軟儀錶點,讓數據連續化。
- ▶ 目前正在開發4個品質預測模組,在進料調配單元,有觸媒濃度預測與水分預測;在CTA品質方面,有4-CBA預測與OD值(光學密度)預測。
- > 後續將規劃整合,開發氧化反應單元的醋酸單耗與觸媒單耗優化模組。

- A A什麼要先進行氧化段的4-CBA品質控制優化?
- ▶ 4-CBA(4-羧基苯甲醛)是PX氧化反應速率決定步驟的反應物,4-CBA含量 高低可以做為鑑定反應好壞及穩定的指標。

➤ 氧化反應為劇烈放熱反應,反應不穩定造成氧化塔溫度晃動大,會增加 PX、醋酸燃燒損失,並且伴隨生成的不純物含量較多,為確保品質,須 提高醋酸母液purge量,增加觸媒單耗。

○【成果一】 4-CBA品質穩定度提升

- 1. 導入AI前,盤控人員須根據每4小時取樣檢驗的結果,依照SOP調整製程,4-CBA平均偏離量121ppm。
- 2. 第一個預測模組上線後,每30分鐘提供4-CBA預測值,盤控人員可即時依照 SOP調整製程,平均偏移量降為81ppm。
- 3. 第二個操作建議模組上線後,結合SOP提供製程條件量化的調整建議, 平均偏移量降為61ppm。

○ 氧化反應溫度穩定度提升

4-CBA偏移量降低,表示反應穩定,氧化塔溫度標準差由0.46°C降為0.33°C。

尾氣CO₂由1.117%降為1.106% (-0.011%),反映出PX及醋酸燃燒損失減少。

○【成果二】PX及醋酸燃燒單耗降低

折算PX燃燒單耗降低0.45 kg/噸PTA, 年效益6,086千元;醋酸燃燒單耗降低1.52 kg/噸PTA, 年效益10,853千元,合計年效益16,939千元。

st PX與醋酸原單位包含氧化反應、燃燒損失、母液pruge損失、尾氣挾帶等,由 CO_2 可推算燃燒損失單耗。

> 定義問題:

CTA粉品質主要指標4-CBA,目前每4小時由人工取樣送品管檢驗,盤 控人員根據分析結果,依照SOP調整製程條件,存在品管數據量不對等、 調整時間落後及製程時間不對齊問題,影響品質穩定度。

> 專案目標:

以4-CBA為目標,透過多變量分析,發展AI預測及操作建議模組,協助 盤控人員提早因應調整,提升品質的穩定度,降低PX、醋酸燃燒損失。

1. 數據收集:

模組開發流程

收集2019/11至2020/1的4-CBA分析數據(每4小時一筆,共419筆)及氧化 反應相關的12個製程變數數據(每分鐘一筆,共9.5萬筆)。

剔

除 3

倍

標準

差

以

外

的

數

2. 異常值處理:

模組開發流程

剔除製程異常或停開車產生的離群值,保留製程穩定時的數據,數據量由9.5萬筆降至8萬筆。

3. 數據標準化:

因每個變數的單位尺度不同,使用Z分數進行標準化轉換,將原始數據轉為平均值等於0、標準差等於1的分佈型態,提高準確度。

原始儀錶點數據 (每個變數落在不同範圍)

	,,			
time			PTA3-DCS- LIC_301B03.PV	
2019- 12-31 23:01:00	1.463507	77.667190	77.755833	191.023709
2019- 12-31 23:02:00	1.464478	77.796714	77.682159	190.994493
2019- 12-31 23:03:00	1.469656	78.228240	78.141642	191.065570
2019- 12-31 23:04:00	1.458934	78.724828	78.732147	191.145090
2019- 12-31 23:05:00	1.411694	78.744752	78.712053	191.224611
2019- 12-31 23:06:00	1.395878	78.608471	78.494589	191.304131
2019- 12-31 23:07:00	1.444106	78.459902	78.300360	191.383651
2019- 12-31 23:08:00	1.491995	78.299407	78.118770	191.452985
	•		•	•
•	•	•	•	•

數據標準化 (各變數縮放至特定區間)

time			PTA3-DC\$- LIC_301B03.PV		î
2019- 12-31 3:01:00	-0.924609	-1.318849	-1.053741	-1.031830	
2019- 12-31 3:02:00	-0.912330	-0.962676	-1.250343	-1.146163	
2019- 12-31 3:03:00	-0.846890	0.223965	-0.024192	-0.868012	
2019- 12-31 3:04:00	-0.982393	1.589518	1.551597	-0.556818	
2019- 12-31 3:05:00		1.644306	1.497974	-0.245624	
2019- 12-31 3:06:00	-1.779325	· · ·	換後,每		
2019- 12-31 3:07:00	-1.169807		皆為平均等於1的	• •	V
2019- 12-31 3:08:00	-0.564552	0.419665	-0.085226	0.648096	
		:	:	•	

標準化轉換

○ 數據探索分析

- > 將選定的12個可能影響4-CBA變化的變數,進行探索性分析。
- ▶ 以皮爾森相關分析法,發現第一結晶槽空氣量(二次氧化)與4-CBA相關 性最高,與製程操作經驗相符。
- ▶ 兩者相關係數為0.61,未達高度相關標準(相關係數0.7以上),無法直接 用於預測4-CBA。

- 模組開發流程
 - 分析2019/11至2020/1數據,第一結晶槽空氣量與4-CBA整體的變化趨勢 雖然同步,但相關係數只達0.61(中度相關),經過仔細觀察發現在不同 時段存在不同差值,才導致整體相關程度下降。
 - ▶ 嘗試縮短時間分析,先以26天的數據計算,相關係數可提升到0.68。

▶ 再進一步將時間段縮短為13天分析,相關係數可提升到0.7以上(分別為0.72及0.78),達高度相關標準,可用來預測4-CBA。

○ 預測模組建立

模組開發流程

▶ 分別測試以1天、2天、3天、...、10天的時間長度,計算第一結晶槽空 氣量與4-CBA的相關係數,結果顯示時間長度過長或過短皆不佳,最終 以5天為單位,相關係數最高,同時透過迴歸分析預測的誤差也最低。

依照上述測試的結果,設計滾動式模組,隨著時間遞延,持續不斷讀取 最近5天的數據,組成訓練集動態更新參數。

滾動式建模

模組開發流程

- ▶ 預測模組讀取第一結晶槽空氣量,可提早預測3小時後(第一結晶槽至 乾燥機出口取樣點的時間)4-CBA品質,並設定每30分鐘計算一次。
- ▶ 4/9~5/8上線應用,4-CBA實際和預測值的平均絕對誤差為59ppm,趨勢 正確率77%,預測模組已具備參考性,可供製程做為調整依據。

- 模組應用成果
- ▶ 預測模組上線後,盤控人員可即時預知 4-CBA變化,並依SOP做調整, 4-CBA平均偏離量(與管制中心值3,200ppm差異)由121ppm降為81ppm。

模組開發流程

- 提前預測4-CBA變化,建立軟儀錶點將4-CBA品質連續化。
- 解決品管分析數據與製程條件時間不對齊的問題。

第二部分: 4-CBA操作建議模組

- 利用預測模組提供的4-CBA軟儀錶點,建立操作建議模組。
- > 提供調整方向及調整量。

預測及操作建議模組架構

模組開發流程

- 氧化反應的製程變數是動態的組合,使用固定權重的模型無法描述實際 製程特性,因此以滾動方式進行迴歸分析。
- ▶ 將12個變數,扣除二次氧化空氣量(預測模組)及4個不可控變數,剩下7個可控變數與4-CBA迴歸,結果顯示權重的排序會隨時間改變。

○ 操作建議模組建立

▶ 步驟一:透過預測模組計算4-CBA總偏移量,並標示預警狀態。

> 步驟二:使用PLSR(偏最小平方法迴歸),計算7個可控變數各別偏移量。

> 步驟三:透過操作建議模組,提供變數調整方向及調整量。

▶ 步驟二:使用PLSR,計算7個可控變數各別偏移量

總偏移量 =
$$\sum_{i=1}^{7} \beta_i \times X_i$$

可控變數名稱
PX流量
觸媒比
母液purge流量
氧化塔中層溫度
氧化塔液位
氧化塔尾氣O ₂
母液總量

β_i (β _i (權重)		
$oldsymbol{eta_1}$	35.5		
β_2	-71.9		
β_3	27.7		
$oldsymbol{eta_4}$	-23.8		
β_5	-47.6		
β_6	-13.4		
β_7	19.1		

β_i :模型計算

X _i (標:	X_i (標準化數值單位)				
X_1	0.4				
X_2	1.36				
X_3	0.61				
X_4	2.32				
X_5	0.88				
<i>X</i> ₆	0.45				
<i>X</i> ₇	-1.11				

X;: 標準化後的單位數

偏移量
+14 ppm
-97 ppm
+17 ppm
-55 ppm
-42 ppm
-6 ppm
-21 ppm

總偏移量: -190 ppm

● 權重β_i:表示各變數影響4-CBA的強度,決定後續調整影響4-CBA的力道

X

- 標準化數值單位X_i:表示各變數原始值經過標準化(Z分數)轉換後的數值
- 偏移量:表示各變數導致4-CBA偏離管制中心的量化值

- > 步驟三:透過操作建議模組提供變數調整方向及調整量
- ※依照各變數SOP調整的幅度,計算影響4-CBA的量。

定義問題

與目標

可控變數名稱	β_i (權重)	X _i (標	準化數值1單位)	影響4-CBA
PX流量	$oldsymbol{eta_1}$	35.5	X_1	1	+35.5 ppm
觸媒比	$oldsymbol{eta}_2$	-71.9	X_2	1	-71.9 ppm
母液purge流量	β_3	27.7	<i>X</i> ₃	1	+27.7 ppm
氧化塔中層溫度	$oldsymbol{eta_4}$	-23.8	X_4	1	-23.8 ppm
氧化塔液位	$oldsymbol{eta}_5$	-47.6	<i>X</i> ₅	1	-47.6 ppm
氧化塔尾氣02	β_6	-13.4	<i>X</i> ₆	1	-13.4 ppm
母液總量	β_7	19.1	<i>X</i> ₇	1	+19.1 ppm

由模組的權重得知,每個 變數調整標準化數值1單位 ,可影響4-CBA的量

X_i ()	原始數值1單位)	影響4-CBA
X_1	0.1 T/H	↑ 1 ppm
X_2	0.05	♣ 23 ppm
<i>X</i> ₃	0.2 T/H	↑ 4 ppm
<i>X</i> ₄	0.1 °C	♣ 26 ppm
X ₅	0.1 %	♣ 5 ppm
<i>X</i> ₆	0.1 %	♣ 7 ppm
<i>X</i> ₇	1 T/H	♣ 7 ppm

依照各變數SOP原始數值 調整的幅度為單位進行轉 換,計算影響4-CBA的量

○ 模組應用架構

模組開發流程

- ▶ 藉由4-CBA預測模組(模組一),判斷4-CBA是否超限。
- > 當4-CBA超限時,利用操作建議模組(模組二),提供調整方向及調整量。
- ▶ 盤控依建議值進行調整,並回饋給預測模組,再次進行判斷,形成loop 持續不斷更新。

- 模組上線應用說明
- > 將預測及操作建議模組導入RTPMS,建置網頁畫面。

> 以下圖為例說明:

當前時間為2020/5/17 中午12:00,預測2020/5/17 下午03:00的 4-CBA值為3,142ppm,偏離管制中心-58ppm。

模組將總偏移量-58ppm,解析7個可控變數各自的貢獻值,讓盤控了解目前 4-CBA偏移的原因是由哪些可控變數的變動造成,並在下方趨勢圖中以紅色 燈號警示。

當連續兩筆預測值皆高於3,250ppm或低於3,150ppm時(偏移量超出管制中心值±50ppm),初期模組以調整氧化塔溫度為優先因應對策,提供操作建議,避免影響其他品質項目。

如下圖所示:連續兩筆預測值低於3,150ppm,建議氧化塔溫度調降0.2度,可提升4-CBA 47ppm

- 模組應用效益
- ▶ 4-CBA品質穩定度提升,偏移量由121ppm降至61ppm,同時氧化塔尾氣的CO₂含量由1.117%降至1.106%,顯示PX及醋酸燃燒損失減少。

尾氣CO2平均值(%)		1.117		1.111 (-0.006)			1.106 (-0.011)	
尾氣CO ₂ (%)	1.120		المالية المالية	. M				
	1.115	مر بالالسر به الله	Property of the Landson		1/22			
	1.110				HATTER PHATEUR	╙╬╬╬╬╬╬ ╬ ╬	المطاولة	
1	1.105						LI LANGUE	date to the factor of the factor
		2020/2/15	2/26	4/11	4/22	5/3	5/14	5/25
PX原單位(kg/頓PTA)		651.93		651.80 (-0.13)			651.48 (-0.45)	
醋酸原單位(kg/頓PTA)		32.00		31.56 (-0.44)			30.48 (-1.52)	

五結論及後續推動事項

- 一. AI模組導入後,氧化反應穩定性提高,PX單耗降低 0.45 KG/噸、醋酸單耗降低 1.52 KG/噸 PTA,年效益16,939千元。
- 二. 麥寮、寧波PTA廠,亦將比照導入4-CBA控制優化模組,達到穩定 品質及降低單耗的目的。
- 三. 化三部AI專案已由初期產學合作轉為自行開發為主,建立自有的技術能力,確保模組開發效率以及可靠性。目前優先進行品質預測,解決數據不連續,與調整時間延遲落後的問題,後續將規劃整合,透過AI進一步優化氧化反應製程,降低醋酸、觸媒等單耗,降低成本來提升產品競爭力。

報告完準

氧化段的4-CBA控制優化提高PTA粉品質穩定度

氧化為劇烈放熱反應,反應強度不同, 產生的不純物種類及含量皆不同,這些 不純物會影響下游聚酯斷絲率、成品色 相等。氧化段的4-CBA可做為整體不純 物的主要指標,藉由穩定4-CBA以提升 PTA品質及客戶用料滿意度。

CTA氧化塔反應不純物含量一般基準

不純物項目	簡稱	含量基準(ppm)
4-羧基苯甲醛	4-CBA	< 5,000
4,4-二羧基芪	4,4-DCS	< 2
2,6-二羧基蒽醌	2,6-DCA	< 3
2,6-二羧基芴酮	2,6-DCF	< 40
2,7-二羧基芴酮	2,7-DCF	< 8
3,5-二羧基芴酮	3,5-DCF	< 8
9-芴酮-2-羧酸	9F-2CA	< 8
9-芴酮-4-羧酸	9F-4CA	< 4
其他芴酮	Fluorenone	< 60
4,4二羧基聯苯	4,4-DCB	< 16
2,5,4-三羧基聯苯	2,5,4-TCB	< 40
鄰苯二甲酸	PA	< 1,500
間苯二甲酸	IPA	< 4,500
苯甲酸	BA	< 6,000
偏苯三酸	TMA	< 1,500
對-甲苯甲酸	PTAC	< 4,000
4,4- 二羧基苯偶醯	4,4-DCBZ	< 4
4,4-二羧基二苯甲酮	4,4-DCBP	< 160
2,5,4-三羧基二苯甲酮	2,5,4-TCBP	< 80

Pearson correlation

皮爾遜積矩相關係數 $(\rho_{X,Y})$ 用於度量兩個變數X和Y之間的相關程度,其值介於-1與1之間,常用在機器學習或是統計分析上,主要衡量兩變數間線性關聯性的高低程度,探討變數間是否存在「線性」關係。

$$\rho_{X,Y} = \frac{\mathrm{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

附件三

相關係數 P _{X,Y}	相開程度		
0.16以下	非常低		
0.16~0.29	低		
0.30~0.49	中低		
0.50~0.69	中		
0.70~0.89	高		
0.90~1.00	非常高		

PLSR(Partial least squares regression)

- ●在進行迴歸分析時,通常都是多個變數X對一個目標Y的影響,但 當涉及多個複雜的分析是多個X對多個Y的影響、資料存在多重共 線性問題、或是樣本數量較少時,普通的多元線性迴歸無法有良好 的表現,PLSR(偏最小平方法迴歸)則能很好的解決這些問題。
- ●PLSR集合了主成分分析、相關性分析、多元線性迴歸三者於一,可以理解為:將多個X和多個Y,分別濃縮為成分(X對應主成分U, Y對應主成分V),然後借助於典型相關原理,可分析X與U的關係, Y與V的關係;以及結合多元線性迴歸原理,分析X對於V的關係, 從而研究到X對於Y的關係。