Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No

Faculty of Engineering

End Sem (Even) Examination May-2019 EC3CO16 Microwave Engineering

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1

(a) Generate modes (c) Degenerate modes (d) Regenerate modes ii. Consider a transmission line of characteristic impedance 50 ohm. Let it be terminated at one end by +j50 ohm. The VSWR produced by it in the transmission line will be (a) +1 (b) 0 (c) ∞ (d) +j iii. The structure consisting of two ground planes separated by a dielectric and a metal strip in the centre is (a) Microstrip line (b) Strip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive	J .1 (N	ACQs)	should be written in full instead of only a, b, c or d.						
 ii. Consider a transmission line of characteristic impedance 50 ohm. Let it be terminated at one end by +j50 ohm. The VSWR produced by it in the transmission line will be (a) +1 (b) 0 (c) ∞ (d) +j iii. The structure consisting of two ground planes separated by a dielectric and a metal strip in the centre is (a) Microstrip line (b) Strip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive 	Q.1	i.	(a) Generate modes (b) Dominant modes	1					
Let it be terminated at one end by +j50 ohm. The VSWR produced by it in the transmission line will be (a) +1 (b) 0 (c) ∞ (d) +j iii. The structure consisting of two ground planes separated by a dielectric and a metal strip in the centre is (a) Microstrip line (b) Strip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive		••		1					
by it in the transmission line will be (a) +1 (b) 0 (c) ∞ (d) +j iii. The structure consisting of two ground planes separated by a 1 dielectric and a metal strip in the centre is (a) Microstrip line (b) Strip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix 1 are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. 1 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive		11.	•	1					
 (a) +1 (b) 0 (c) ∞ (d) +j iii. The structure consisting of two ground planes separated by a 1 dielectric and a metal strip in the centre is (a) Microstrip line (b) Strip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode v. In an ideal directional coupler, all the diagonal elements of S-matrix 1 are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. 1 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive 			· ·						
iii. The structure consisting of two ground planes separated by a dielectric and a metal strip in the centre is (a) Microstrip line (b) Strip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive			•						
dielectric and a metal strip in the centre is (a) Microstrip line (b) Strip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: (a) GaAs is cost effective (b) Less temperature sensitive									
(a) Microstrip line (c) Coplanar line (d) Slot line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. 1 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive		iii.		1					
(c) Coplanar line iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain vii. GaAs is used in the fabrication of GUNN diodes because: (a) GaAs is cost effective (b) Less temperature sensitive			-						
iv. The mode of propagation in a microstrip line is: (a) Quasi TEM mode (b) TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain vii. GaAs is used in the fabrication of GUNN diodes because: (a) GaAs is cost effective (b) Less temperature sensitive									
(a) Quasi TEM mode (c) TM mode (d) TE mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. (a) Low attenuation (b) High attenuation (c) High gain vii. GaAs is used in the fabrication of GUNN diodes because: (a) GaAs is cost effective (b) Less temperature sensitive			* * *						
(c) TM mode v. In an ideal directional coupler, all the diagonal elements of S-matrix are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers		iv.	The mode of propagation in a microstrip line is:	1					
v. In an ideal directional coupler, all the diagonal elements of S-matrix 1 are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. 1 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive			(a) Quasi TEM mode (b) TEM mode						
are (a) One (b) Two (c) Non-zero (d) Zero vi. Isolator offers in the reverse direction. 1 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive			(c) TM mode (d) TE mode						
vi. Isolator offers in the reverse direction. 1 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive		v.	-						
 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive 			(a) One (b) Two (c) Non-zero (d) Zero						
 (a) Low attenuation (b) High attenuation (c) High gain (d) Low gain vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive 		vi.	Isolator offers in the reverse direction.	1					
vii. GaAs is used in the fabrication of GUNN diodes because: 1 (a) GaAs is cost effective (b) Less temperature sensitive									
(a) GaAs is cost effective(b) Less temperature sensitive			(c) High gain (d) Low gain						
(b) Less temperature sensitive		vii.	GaAs is used in the fabrication of GUNN diodes because:	1					
• • • • • • • • • • • • • • • • • • • •			(a) GaAs is cost effective						
• • • • • • • • • • • • • • • • • • • •			(b) Less temperature sensitive						
(c) It has low conduction band electrons			(c) It has low conduction band electrons						
(d) Less forbidden energy gap			• •						
•		vii.	GaAs is used in the fabrication of GUNN diodes because: (a) GaAs is cost effective	1					

P.T.O.

[2]

	viii.	The BARITT diode has	1
		(a) No drift region (b) Short drift region	
		(c) Long drift region (d) None of these.	
	ix.	An ideal filter have following properties	1
		I. Zero insertion loss in passband	
		II. Finite insertion loss in passband	
		III. Linear phase response in passband	
		IV. Infinite attenuation in the stopband	
		(a) I, II and IV (b) II, III and IV	
		(c) I, II and III (d) I, III and IV	
	х.	Microstrip Stepped-impedance low pass filters design using	1
		(a) Low characteristics impedance lines	
		(b) High characteristics impedance lines	
		(c) Low and high characteristics impedance lines alternative	
		(d) None of these	
Q.2	i.	What is meant by mode of an electromagnetic wave in	2
		waveguide?	
	ii.	For an air filled rectangular waveguide of 2 cm x 1 cm, calculate the	3
		cut-off wavelength for TE_{11} and TE_{10} modes.	
	iii.	Derive voltage and current equation of transmission line in terms of	5
		secondary constants.	
OR	iv.	Derive the Transverse component (Ex, Ey, Hx, Hy) in terms of	5
		longitudinal component (E _z and H _z) using Maxwell's Curl Equation.	
Q.3	i.	What is planar structure?	2
V .5	ii.	Differentiate between strip-line and micro-strip line	3
	iii.	Explain the construction and field pattern of Strip lines.	5
OR	iv.	Draw field lined of Micro-strip line and write the formula of	5
		following:	
		(a) Effective relative permittivity	
		(b) Characteristics impedance	
Q.4	i.	Calculate the coupling factor of a directional coupler when incident	2
		power is 500 mW and power in auxiliary waveguide is 400 µW.	
	ii.	Distinguish between E-plane Tee and H-plane Tee.	3

iii.	Derive	the	scattering	matrix	of	Magic	Tee	&	write	any	two	
	applicat	of Magic Te										

OR	iv.	Explain	the	working	of	circulator	and	write	any	two	uses	of	5
		circulato	r.										

[3]

Q.5	i.	Write any two applications of TRAPATT diode?	2
	ii.	Calculate the operating frequency of a silicon based IMPATT diode	3
		with drift length of 3 μ m and drift velocity of 10^7 cm/sec.	

- iii. Explain the construction & working principal of Gunn diode. Define 5 transit time and limited space charge accumulation (LSA) mode of Gunn diode
- OR iv. Explain the construction & working principal of Parametric 5 amplifier.

Q.6 Attempt any two:

i.	Write all design steps of Filter Design by Insertion loss Method.	4
ii.	Write all design steps of Filter using coupled resonators.	4
iii.	Write all design steps of Stepped-Impedance low-pass filter.	4

Marking Scheme

EC3CO16 Microwave Engineering

Q.1	i.	Two modes with same cut off frequency are said to be	1					
		(c) Degenerate modes						
	ii.	Consider a transmission line of characteristic impedance 50 ohm. Let	1					
		it be terminated at one end by $+j50$ ohm. The VSWR produced by it						
		in the transmission line will be						
		(c) ∞						
	iii.	The structure consisting of two ground planes separated by a	1					
		dielectric and a metal strip in the centre is						
		(b) Strip line						
	iv.	The mode of propagation in a microstrip line is:	1					
		(a) Quasi TEM mode						
	v.	In an ideal directional coupler, all the diagonal elements of S-matrix	1					
		are						
		(d) Zero						
	vi.	Isolator offers in the reverse direction.	1					
		(b) High attenuation						
	vii.	GaAs is used in the fabrication of GUNN diodes because:	1					
		(d) Less forbidden energy gap						
	viii.	The BARITT diode has	1					
		(c) Long drift region						
	ix.	An ideal filter have following properties	1					
		I. Zero insertion loss in passband						
		II. Finite insertion loss in passband						
		III. Linear phase response in passband						
		IV. Infinite attenuation in the stopband						
		(d) I, III and IV						
	х.	Microstrip Stepped-impedance low pass filters design using						
		(c) Low and high characteristics impedance lines alternative						
0.2	:	Made of on electronic quetie move in move quide	2					
Q.2	i.	Mode of an electromagnetic wave in waveguide	2					
	ii.	TE ₁₁ 1.5 marks	3					
		TE ₁₀ modes. 1.5 marks	_					
	iii.	Voltage equation of transmission line 2.5 marks	5					
OD	:	Current equation of transmission line 2.5 marks	_					
OR	iv.	Transverse component (E_x, E_y, H_x, H_y) in terms of longitudinal	5					
		component (E _z and H _z) using Maxwell's Curl Equation.						
0.3	i.	Planar structure definition	2					
Q.3	1.	i ianai suuctuie uenniuon	2					

	ii.	Difference between strip-line and micro-stri	ip line	3
		1 mark for each difference	(1 mark * 3)	
	iii.	Construction	3 marks	5
		Field pattern of Strip lines	2 marks	
OR	iv.	Draw field lined of Micro-strip line	3 marks	5
		Formula of following:		
		(a) Effective relative permittivity	1 mark	
		(b) Characteristics impedance	1 mark	
Q.4	i.	Calculate the coupling factor of a directional	l coupler	2
	ii.	Distinguish b/w E-plane Tee and H-plane T	ee.	3
		1 mark for each difference	(1 mark * 3)	
	iii.	Scattering matrix of Magic Tee	3 marks	5
		Any two application of Magic Tee.	2 marks	
OR	iv.	Working of circulator	3 marks	5
		Any two uses of circulator.	2 marks	
Q.5	i.	Any two applications of TRAPATT diode		2
		1 mark for each application	(1 mark * 2)	
	ii.	Calculate the operating frequency of a silico	on based IMPATT diode	3
	iii.	Construction of Gunn diode	1 mark	5
		Working principal of Gunn diode	2 marks	
		Transit time	1 mark	
		Limited space charge accumulation (LSA)	1 mark	
OR	iv.	Construction of Parametric amplifier	2 marks	5
		Working principal of Parametric amplifier.	3 marks	
Q.6		Attempt any two:		
	i.	Design steps of Filter Design by Insertion lo	oss Method.	5
		Steps	3 marks	
		Design	2 marks	
	ii.	Design steps of Filter using coupled resonat	ors.	5
		Steps	3 marks	
		Design	2 marks	
	iii.	Design steps of Stepped-Impedance low-par	ss filter.	5
		Steps	3 marks	
		Design	2 marks	
