## In-context learning and Induction Heads

Докладчик: Лишуди Дмитрий

### Мотивация

- Современные языковые модели умеют имитировать умные алгоритмы in-context.
- Но нейросети серый ящик.
- Для их изучения стоит использовать реверс-инжиниринг.
- Утверждаются, что эти алгоритмы реализуются индукционными головами Attention'a.

### **In-context learning**

#### Few-shot?

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

### In-context learning



Больше контекста - проще предсказать.

$$L(t_{500}, \underbrace{model(text[: 500])}_{\hat{t}_{500}}) - L(t_{50}, \underbrace{model(text[: 50])}_{\hat{t}_{500}})$$

### Индукционные головы

Это такие головы трансформера, что для произвольных (случайных) последовательностей токенов имеет свойства:

- **Нахождение префикса**: голова *обращает внимание* на токены, которые следовали за текущими.
- Копирование: голова дает больший вес токенам, на которые обращено внимание.

То есть реализует базовый индукционный вывод:

[A][B] ... [A] -> [A][B] ... [A] [B]

### Устройство трансформера

- Decoder-only: подаем последовательность токенов, предсказываем следующий.
- На практике чередуются Multi-Head Attention и MLP, мы в основном исследуем **без MLP**.
- Residual: к исходному представлению X последовательно добавляем выходы слоев.
- В конце идет линейный слой и softmax для логитов следующего токена.

### **One Head Attention**

$$W_Q, W_K, W_V, W_O \in \mathbb{R}^{d \times n}; \ X \in \mathbb{R}^{n \times L}; \ H(X) \in \mathbb{R}^{n \times L}$$

$$K=W_K X$$
 A =  $\operatorname{softmax}(Q^T K) = \operatorname{softmax}(X^T \underbrace{W_Q^T W_K}_{W_{QK}} X) \in \mathbb{R}^{L imes L}$ 

$$Q=W_Q X$$
 внимани  $H(X)$ 

$$V = W_V K$$

$$H(X) = W_O^T V A = \underbrace{W_O^T W_V}_{W} X A$$

Токен - Токен

Позиция - Позиция

### Комбинация Attention

$$T_i(X) = X + \sum_{h \in H_i} H(X)$$

$$T_2(T_1(X)) = X + \sum_{h \in H_1 \cup H_2} h(x) + \sum_{h_1 \in H_1} \sum_{h_2 \in H_2} W_{OV}^{h_2} W_{OV}^{h_1} X A_{h_1} A_{h_2}$$







### Комбинация Attention

$$T_i(X) = X + \sum_{h \in H_i} H(X)$$

$$T_2(T_1(X)) = X + \sum_{h \in H_1 \cup H_2} h(x) + \sum_{h_1 \in H_1} \sum_{h_2 \in H_2} W_{OV}^{h_2} W_{OV}^{h_1} X A_{h_1} A_{h_2}$$







Матрица A зависит от  $T_1(X)$ !

### Композиции в А

$$\begin{split} A_{h_2} &= \text{softmax} \Big( (X + h_1(X))^T W_{QK}(X + h_1(X)) \Big) \\ &= \text{softmax} \Bigg( X^T W_{QK} X + A_{h_1}^T X^T (W_{OV}^{h_1})^T W_{QK} W_{OV}^{h_1} X A_{h_1} \\ &+ A_{h_1}^T X^T (W_{OV}^{h_1})^T W_{QK} X + X^T W_{QK} W_{OV}^{h_1} X A_{h_1} \Bigg) \end{split}$$

### Откуда берутся индукционные головы

| out about the Potters. Mrs Potter was |        | neighbours would say if the Potters arrived in       |
|---------------------------------------|--------|------------------------------------------------------|
|                                       | attern | moves information logit effect                       |
| out about the Potters. Mrs Potter was | •••    | neighbours would say if the Potters arrived in query |
| out about the Potters. Mrs Potter was |        | neighbours would say if the Potters arrived in       |

| Mr and Mrs Dursley, of number |                    |                       |
|-------------------------------|--------------------|-----------------------|
| attention pattern             | moves information  | logit effect          |
| Mr and Mrs Dursley, of number | with such nonsense | e. Mr Dursley was the |
| key                           |                    | query                 |
| Mr and Mrs Dursley, of number | with such nonsense | e. Mr Dursley was the |

### Влияние композиций



Сила связи зависит от коэффициентов вида:

$$\frac{\|W_{QK}^{h_1}W_{OV}^{h_1}\|_F}{\|W_{QK}^{h_1}\|_F\|W_{OV}^{h_1}\|_F}$$

## Реверс-инжиниринг маленьких моделей явно показывает на связь с in-context.

Аргумент №1

- Сам факт существования опреленных нами индукционных голов подразумевает хорошее in-context обучение.
- При этом мы действительно знаем их внутреннее устройство для малых моделей.



## Индукционные головы способны на сложные алгоритмы

Аргумент №2

 Есть головы, имплементирующие сложные индукционные алгоритмы:

- A\* похожа на А, В\* похожа на В.
- При этом они подходят под критерий индукционных голов.
- Большие модели создают
   абстрактные представления,
   которые позволяют получить такие
   алгоритмы

### Метрики "индукционности" головы

- **Нахождение префикса:** Генерируем случайную последовательность, повторяем 4 раза. Вычисляем А, усредняем веса соответствующим правильному продолжению.
- **Копирование:** Генерируем случайную последовательность, смотрим вывод головы, преобразуем последним слоем модели в логиты. Из логитов вычитаем среднее и прогоняем через ReLU. Берём отношение искомого логита ко всем остальным, нормируем.
- **Предыдущий токен:** Выбираем случайный объект из тренировочной выборки. Считаем A, усредняем веса соответствующие парам токен i <-> токен i-1.

### Одновременные фазовые переходы

Аргумент №3

- Во время обучения трансформеры проходят фазовый переход.
- В этот фазовый переход метрика in-context значительно падает.
- В то же время у модели появляется большое число индукционных голов.

### Фазовый переход



### Фазовый переход



### Чем легче архитектуре создать индукционные головы, тем лучше in-context

Аргумент №4

• Добавляем "размазывание" ключей:

$$k_j^h = \sigma(lpha^h) k_j^h + (1 - \sigma(lpha^h)) k_{j-1}^h$$

 Теперь даже однослойные модели могут создать индукционные головы.



# In-context обучение сильно ухудшается при удалении индукционных голов.

Аргумент №5

### Убираем случайные головы, смотрим как влияет на метрики в зависимости от головы.



# Предыдущие аргументы можно экстраполировать на сложные модели.

Аргумент №6

- В прошлых аргументах исследовались двухслойные трансформеры без MLP.
- Явно обобщить те аргументы на сложные модели нельзя.
- Можно показать, что по многим показателям сложные модели ведут себя так же, как простые.
- Графики из фазовых переходов получаются почти одинаковыми.

### Экстраполяция на сложные модели



Нет

### Влияние размера на метрику in-context

### "IN-CONTEXT LEARNING SCORE" SENSITIVITY TO DEFINITION





Our in-context learning score requires one to pick two context indices to compare. But it appears that for a wide range of definition choices, models of different sizes still have nearly identical amounts of in-context learning. For some definitions, small models do more.

#### Заключение

- Особенные комбинации голов явно реализуют умные алгоритмы.
- Большая часть аргументов прямо относится лишь к маленьким моделям без MLP слоев.
- Глубокие трансформеры способны значительно усложнять эти алгоритмы.
- Фазовый переход появления индукционных голов может быть связан со многими DL эффектами.