# Intuitive Tour of Key Complexity Classes

Aimal Rextin

SEECS-NUST

# Roadmap

- P
- 2 NP
- NP-Complete
- 4 EXP
- Undecidable

# Why decision problems?

- Canonical yes/no form: every instance has a single-bit answer, making time and
- Optimisation ⇒ decision: most search or optimisation tasks are polynomial-time equivalent to a decision version (e.g. is there k weight path between s to other vertices versus shortest path).

# Why decision problems?

- Canonical yes/no form: every instance has a single-bit answer, making time and
- Optimisation ⇒ decision: most search or optimisation tasks are polynomial-time equivalent to a decision version (e.g. is there k weight path between s to other vertices versus shortest path).

# **P** — "Fast" Algorithms

#### Intuition

Problems solvable by an algorithm whose running time grows at most like a polynomial in the input size (e.g. n,  $n^2$ ,  $n^3$ ).

## **P** — "Fast" Algorithms

#### Intuition

Problems solvable by an algorithm whose running time grows at most like a polynomial in the input size (e.g. n,  $n^2$ ,  $n^3$ ).

- Sorting n numbers  $(O(n \log n))$ .
- Finding a shortest path in a road network.
- Checking if a year is a leap-year.

# **P** — "Fast" Algorithms

#### Intuition

Problems solvable by an algorithm whose running time grows at most like a polynomial in the input size (e.g. n,  $n^2$ ,  $n^3$ ).

- Sorting n numbers  $(O(n \log n))$ .
- Finding a shortest path in a road network.
- Checking if a year is a leap-year.
- Take-away: These are the tasks we can usually handle even at massive scale.

# NP — Solutions Check Quickly

#### Intuition

A problem is in NP if, \*\*given a proposed solution\*\*, a regular computer can verify its correctness in polynomial time.

## **NP** — Solutions Check Quickly

#### Intuition

A problem is in NP if, \*\*given a proposed solution\*\*, a regular computer can verify its correctness in polynomial time.

- Solving a Sudoku: easy to check a filled board, hard to fill it.
- Finding a Hamiltonian path in a graph.
- Satisfying a Boolean formula (SAT).

•

$$(\neg x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee x_1)$$

# NP-Complete — Toughest in NP

#### Intuition

If you design a fast (polynomial) algorithm for any NP-complete problem, every NP problem inherits a fast algorithm.

# NP-Complete — Toughest in NP

#### Intuition

If you design a fast (polynomial) algorithm for any NP-complete problem, every NP problem inherits a fast algorithm.

- First discovered: SAT.
- 3-SAT, Clique, Travelling-Salesperson (decision version).

# NP-Complete — Toughest in NP

#### Intuition

If you design a fast (polynomial) algorithm for any NP-complete problem, every NP problem inherits a fast algorithm.

- First discovered: SAT.
- 3-SAT, Clique, Travelling-Salesperson (decision version).
- P vs NP: Do such fast algorithms exist? Still unknown.

# **EXP** — Exponential-Time Algorithms

#### Intuition

Problems whose best known \*\*deterministic\*\* algorithms may take time like  $2^{\text{poly}(n)}$  in the worst case.

# **EXP** — Exponential-Time Algorithms

#### Intuition

Problems whose best known \*\*deterministic\*\* algorithms may take time like  $2^{\text{poly}(n)}$  in the worst case.

• Exhaustively exploring all game states in certain video games.

# **EXP** — Exponential-Time Algorithms

#### Intuition

Problems whose best known \*\*deterministic\*\* algorithms may take time like  $2^{\text{poly}(n)}$  in the worst case.

- Exhaustively exploring all game states in certain video games.
- Provably P ⊆ EXP; so some tasks are guaranteed to lie beyond polynomial time.

# Undecidable Problems — No Algorithm Works for All Inputs

#### Intuition

Some tasks cannot be solved by *any* algorithm that always halts with the correct answer.

# Undecidable Problems — No Algorithm Works for All Inputs

#### Intuition

Some tasks cannot be solved by *any* algorithm that always halts with the correct answer.

• "Will this program ever stop?" — the famous Halting Problem.

# Undecidable Problems — No Algorithm Works for All Inputs

#### Intuition

Some tasks cannot be solved by *any* algorithm that always halts with the correct answer.

- "Will this program ever stop?" the famous Halting Problem.
- Consequence: No matter how clever we are, a universal solution is impossible.

# Time/Space Hierarchy (Not to Scale)



**Heuristic / Al approach** 

## Heuristic / Al approach

• Often works well in practice on typical instances.

## Heuristic / Al approach

- Often works well in practice on typical instances.
- But has no worst-case guarantee on solution quality or running time.

### **Approximation algorithm**

## Heuristic / Al approach

- Often works well in practice on typical instances.
- But has no worst-case guarantee on solution quality or running time.

## Heuristic / Al approach

- Often works well in practice on typical instances.
- But has no worst—case guarantee on solution quality or running time.

## Approximation algorithm

• Comes with a provable performance ratio  $\alpha$ .

## Heuristic / Al approach

- Often works well in practice on typical instances.
- But has no worst—case guarantee on solution quality or running time.

## Approximation algorithm

- Comes with a provable performance ratio  $\alpha$ .
- Guarantees a solution within  $1/\alpha$  (or  $\alpha$  times) of optimum.

## Heuristic / Al approach

- Often works well in practice on typical instances.
- But has no worst—case guarantee on solution quality or running time.

## Approximation algorithm

- Comes with a provable performance ratio  $\alpha$ .
- Guarantees a solution within  $1/\alpha$  (or  $\alpha$  times) of optimum.

|       | Optimal               | Our answer<br>80 |  |
|-------|-----------------------|------------------|--|
| Value | 100                   |                  |  |
| Ratio | 0.80 (80% of optimum) |                  |  |

## Heuristic / Al approach

- Often works well in practice on typical instances.
- But has no worst—case guarantee on solution quality or running time.

## **Approximation algorithm**

- Comes with a provable performance ratio  $\alpha$ .
- Guarantees a solution within  $1/\alpha$  (or  $\alpha$  times) of optimum.

|       | Optimal   | Our answer    |  |
|-------|-----------|---------------|--|
| Value | 100       | 80            |  |
| Ratio | 0.80 (80% | 6 of optimum) |  |

The exact bound varies from algorithm to algorithm.

**Goal.** Get a solution that is *close* to optimum when exact optimisation is too slow.

**Goal.** Get a solution that is *close* to optimum when exact optimisation is too slow.

## Definition (minimisation)

$$cost(A(I)) \leq \rho \cdot OPT(I).$$

**Goal.** Get a solution that is *close* to optimum when exact optimisation is too slow.

## Definition (minimisation)

Algorithm A is a  $\rho$ -approximation if, for every instance I,

$$cost(A(I)) \leq \rho \cdot OPT(I).$$

•  $\rho = 2 \Rightarrow$  never worse than twice the best.

**Goal.** Get a solution that is *close* to optimum when exact optimisation is too slow.

## Definition (minimisation)

$$cost(A(I)) \leq \rho \cdot OPT(I).$$

- $\rho = 2 \Rightarrow$  never worse than twice the best.
- $\rho = 1 + \varepsilon$  (e.g. 1.1) is very tight.

**Goal.** Get a solution that is *close* to optimum when exact optimisation is too slow.

## Definition (minimisation)

$$cost(A(I)) \leq \rho \cdot OPT(I).$$

- $\rho = 2 \Rightarrow$  never worse than twice the best.
- $\rho = 1 + \varepsilon$  (e.g. 1.1) is very tight.
- $\rho$  may be a constant or a slow-growing function like log n.

**Goal.** Get a solution that is *close* to optimum when exact optimisation is too slow.

## Definition (minimisation)

$$cost(A(I)) \leq \rho \cdot OPT(I).$$

- $\rho = 2 \Rightarrow$  never worse than twice the best.
- $\rho = 1 + \varepsilon$  (e.g. 1.1) is very tight.
- ullet ho may be a constant or a slow-growing function like  $\log n$ .

| OPT(I) | A(I) | $\Rightarrow$ ratio = 1.8 (a 1.8-approx) |
|--------|------|------------------------------------------|
| 100    | 180  | $\rightarrow$ ratio $=$ 1.0 (a 1.0-appic |

**Goal.** Get a solution that is *close* to optimum when exact optimisation is too slow.

## Definition (minimisation)

$$cost(A(I)) \leq \rho \cdot OPT(I).$$

- $\rho = 2 \Rightarrow$  never worse than twice the best.
- $\rho = 1 + \varepsilon$  (e.g. 1.1) is very tight.
- ullet ho may be a constant or a slow-growing function like  $\log n$ .

| OPT(I) | A(I) | $\Rightarrow$ ratio = 1.8 (a 1.8-approx) |
|--------|------|------------------------------------------|
| 100    | 180  | $\rightarrow$ ratio $=$ 1.0 (a 1.0-appic |

#### Problem statement

**Input:** an undirected graph G = (V, E) of size n.

**Goal:** find the smallest subset  $C \subseteq V$  that *touches every edge*, i.e. for every  $\{u, v\} \in E$  we have  $u \in C$  or  $v \in C$ .

#### Problem statement

**Input:** an undirected graph G = (V, E) of size n.

**Goal:** find the smallest subset  $C \subseteq V$  that *touches every edge*, i.e. for every  $\{u, v\} \in E$  we have  $u \in C$  or  $v \in C$ .

NP-complete 

 exact solutions need exponential time in the worst case.

#### Problem statement

**Input:** an undirected graph G = (V, E) of size n.

**Goal:** find the smallest subset  $C \subseteq V$  that *touches every edge*, i.e. for every  $\{u, v\} \in E$  we have  $u \in C$  or  $v \in C$ .

- NP-complete 

  exact solutions need exponential time in the worst case.
- Best enumerate all  $2^n$  subsets and keep the smallest cover.

#### Problem statement

**Input:** an undirected graph G = (V, E) of size n.

**Goal:** find the smallest subset  $C \subseteq V$  that *touches every edge*, i.e. for every  $\{u, v\} \in E$  we have  $u \in C$  or  $v \in C$ .

- NP-complete 

  exact solutions need exponential time in the worst case.
- Best enumerate all  $2^n$  subsets and keep the smallest cover.

# Minimal Vertex Cover Example



Larger graphs generally need many vertices in a cover, and brute-force checking all subsets explodes to  $2^n$ .

# 2-Approximation for Vertex Cover

```
ApproxCover(G = (V, E)): S = NULL \qquad \# \text{ current cover} while E != empty set: pick \text{ an arbitrary edge e = (u, v)} S = S U \{u, v\} remove \text{ from E every edge incident to u or v} return S Runs in O(|E|) \text{ time and guarantees } |S| \le 2|O|.
```

# Why the Algorithm is a 2-Approximation

- A set of edges chosen by the algorithm (one per iteration)
- O an optimal vertex cover
- *S* vertices returned by the algorithm

$$|S| = 2|A|$$
 (both endpoints of every edge in A) (1)

$$|O| \ge |A|$$
 (each edge in A must be covered by O) (2)

From (1) and (2), 
$$\label{eq:second} \boxed{|\mathcal{S}| \leq 2\,|\mathcal{O}|}\,.$$

Hence the algorithm is a 2-approximation.