Reading a Reed

Name: Paul Chang

Advisor: Szymon Rusinkiewicz

What is a clarinet reed?

Motivation

Reeds look the same but play different

Time consuming reed selection process

Goal

Predict the sound of a reed given a subset of its features, without playing on the reed

Sound

Quantitative:

H. v. Helmoltz (1862): Musical timbre is characterized by distribution of partials summarized by spectral centroid.

Subjective:

Bright and Dark

How to link quantitative to subjective? J.M. Grey (1975): Spectral centroid is positively correlated with brightness.

Goal:

Predict brightness of reed given a subset of its features, without playing on it:

Part 1: Predict spectral centroid from reed's features

Part 2: Verify: high spectral centroid => bright sound

Related Work

- Physics of a reed:
 - John Backus (acoustician):
 - Small Vibration Theory of Clarinet (1962)
 - Vibrations of the Reed and the Air Column (1961)
- Reed to sound mapping:
 - Andre Almeida (2013):
 - How reed "hardness" affects spectral centroid.

Approaches for Part 1

 One approach: Use knowledge of physics to run computer simulations

- My approach: Machine learning algorithms:
 - Little knowledge of physics required
 - Train algorithms with data set mapping features to spectral centroid.

Data Collection

- Create data set that maps features to spectral centroids.
- No public data set available.

Key questions:

- Which features to measure?
- How to obtain consistent recordings?

Features

- Water content of reed:
 - Measure moisture absorption:
 - Mass of reed before and after soaking in water for 10 sec.
- Time stamp:
 - Use categories: 0, 1, 2, (3-5), >5
- Thickness across reed:
 - Take pictures and do image processing.

Image Processing

Light Box Apparatus:

- Take pictures at constant angle and height
- Use low flutter camera

Example Reeds:

Image Processing

High Intensity: Bright; Little wood
Low Intensity: Dark; A lot of wood

. .

0.20 -

Intensity = $ae^{(-b(row))} + c$

To describe image: [a, b, c]

Fitted Exponentials for 40 reeds

Recording Apparatus

Constants:

- Pitch (440 Hz)
- Noise level (90 dB)
- Angle of clarinet
- Distance to recorder
- Amount of reed in mouth
- Humidity/ Temperature
- Equipment

Sample data

```
0.39542561
                 0.00463563
                              0.03304037
                                            0.83
                                                  0.85
                                                         0.0240963855422
U3
N140
      0.3551609
                    0.0026928
                               -0.00961562
                                              0.79
                                                    0.83
                                                           0.0506329113924
                                                          0.0357142857143
N7t
     0.25542317
                  0.003115
                               0.01497096
                                             0.84
                                                   0.87
                                            0.83
                                                  0.85
U2
    0.23445603
                 0.00343772
                              0.02109684
                                                         0.0240963855422
                                                                                  1
019
     0.55150036
                  0.00311107
                              -0.01788694
                                             0.87
                                                   0.92
                                                          0.0574712643678
S6
    0.45923965
                 0.00357429
                              0.00623756
                                            0.81
                                                  0.86
                                                         0.0617283950617
N11t
      0.42998426
                   0.00434756
                                 0.02492862
                                              0.90
                                                    0.94
                                                           0.0444444444444
                                                                              2
                                                                                 1
                                                                                    0
      0.39708
                   0.00384055
                                 0.01293716
                                              0.81
                                                    0.83
                                                           0.0246913580247
018t
0260
      0.47616811
                   0.0042569
                                 0.01935778
                                              0.91
                                                    0.95
                                                           0.043956043956
                              0.0131129
                                                         0.0631578947368
                                                                                  1
02
    0.25851544
                 0.00315042
                                            0.95
                                                  1.01
N<sub>2</sub>o
                  0.00304434 - 0.00358304
                                             0.92
                                                   0.98
     0.42857277
                                                          0.0652173913043
                                                                                   0
      0.55674834
                   0.0034604
                               -0.00257139
                                              0.86
                                                    0.89
                                                           0.0348837209302
                                                                                 1
0210
                 0.00398534
    0.53603925
                              0.01481729
                                            0.91
                                                  0.97
                                                         0.0659340659341
                                                                                  0
L4
                              0.02132159
Ν9
    0.27208165
                 0.00364001
                                            0.90
                                                  0.98
                                                         0.088888888889
                  0.00361318
                               0.00716057
                                                   0.90
010
     0.46344939
                                             0.87
                                                          0.0344827586207
                                                                                1
                                                                                   1
                                           Mass
                                                   Mass
Label
                      b
                                                            % increase
          а
                                                                                G4 G5
                                                                         Time
                                           Before
                                                   After
```

120 rows - 240 recordings 80 training, 40 test

Results

G5

Algorithm	Percentage Correct	Precision	Recall	F-Beta	Area under ROC curve
Gaussian Naïve Bayes	45%	0.60	0.46	0.57	0.51
Decision Tree	60%	0.68	0.57	0.66	0.61
K- Neighbors	57.5%	0.63	0.65	0.63	0.54
Random Forest	70%	0.77	0.77	0.77	0.60

Results

G4

Algorithm	Percentage Correct	Precision	Recall	F-Beta	Area under ROC curve
Gaussian Naïve Bayes	45%	0.60	0.46	0.57	0.51
Decision Tree	60%	0.69	0.69	0.69	0.63
K- Neighbors	70%	0.77	0.77	0.77	0.69
Random Forest	62.5%	0.79	0.57	0.74	0.61

Part 2: Random Sampler Experiment

- Verification that spectral centroid correlates to brightness.
- Experiment steps:
 - 1. Choose 2 random sound samples (both G4 or G5)
 - 2. Ask user which is brighter
 - 3. Verify user input by checking true spectral centroid values

Random Sampler Experiment

- 10 experiments, each experiment with 10 pairs
- ~40% accuracy

Spectral centroids are not practical.

Conclusion

- Generated informative data set
- Mapping reed's features to bright and dark can be accurate but not practical

Future work

- Tune algorithm parameters
- New quantitative measure
 - Noise/signal ratio was not effective
- Transform into regression problem