빅 데이터 분석 주요 사용 사례

빅 데이터는 모든 산업과 모든 조직에서 유용하게 사용될 수 있습니다. 22개의 주요 빅 데이터 사용 사례를 확인해 보세요.

소개

오늘날 조직들은 그 어느 때보다 많은 데이터에 액세스할 수 있습니다. 하지만 그와 같은 <u>빅 데이터</u> 를 제대로 활용하는 방법을 알지 못한다면, 해당 데이터는 아무런 가치도 창출해 내지 못 합니다.

귀사의 빅 데이터 여정을 돕기 위해 Oracle이 마련한 22가지 빅 데이터 <u>사용 사례</u> 를 확인해 보세요. 각 사용 사례에서는 여러 기업들이 의사결정 개선, 신규 시장 진입, 보다 효과적인 고객 경험 제공 등을 위해 데이터 인사이트를 활용한 실제 사례를 확인할 수 있습니다. 이번 보고서에서는 아래에 나열된 6가지 산업분야의 빅 데이터 사용 사례를 다룹니다.

상단의 산업 분야가 귀사와 무관하더라도, 소개된 사용 사례를 통해 유용한 정보와 적용 가능한 인사이트를 얻으실 수 있을 겁니다. 더 자세한 정보를 원한다면 Oracle에 문의해 주세요.

제조

디지털 혁명은 제조 산업을 변화시켰습니다. 제조업체들은 이제 자사가 생성한 모든 데이터를 활용해 운영 효율성을 높이고, 비즈니스 프로세스를 간소화하고, 수익성과 성장을 촉진할 가치 있는 인사이트를 확보하는 새로운 방법을 찾아내고 있습니다.

제조 빅 데이터 사용 사례

예측 유지보수

빅 데이터는 장비 고장 예측에 활용될 수 있습니다. 정형 데이터(장비 연식, 제조사, 모델) 및 다중 구조 데이터(로그 항목, 센서 데이터, 오류 메시지, 엔진 온도 및 기타 요소)의 분석을 통한 잠재적인 문제 발견도 가능합니다. 이와 같은 데이터를 사용하면 제조업체들은 부품 및 장비의 가동 시간을 극대화하고, 유지보수를 보다 비용 효율적으로 수행할 수 있습니다.

이 데이터는 장비 고장 예측 그 이상의 역할을 수행할 수 있습니다. 다양한 제조 프로세스에서는 시스템 및 부품의 남은 최적 수명을 예측하여, 해당 시스템 및 부품이 보장된 사양 내에서 작동되도록 하는 일 역시 중요합니다. 장비가 고장 나지 않았다고 하더라도, 허용된 사양을 초과한 운영은 장비 고장만큼이나 부정적인 영향을 초래할 수 있습니다. 예를 들어 약물 제조 산업에서는 아직 기능은 하지만 결함이 있는 부품 사용으로 인해 유효성분의 양이 지나치게 많이 또는 지나치게 적게 첨가될 수 있습니다.

도전 과제

기업들은 각기 다양한 양식으로부터 수집된 데이터를 통합해 유지보수 최적화에 도움이 되는 신호를 식별해 내야 합니다.

인 운영 효율성

운영 효율성은 빅 데이터가 수익성에 가장 큰 영향을 미칠 수 있는 영역 중 하나입니다. 빅 데이터를 활용하면 생산 프로세스를 분석 및 평가하고, 고객 피드백에 선제적으로 대응하고, 미래의 수요를 예측할 수 있습니다.

도전 과제

데이터 팀은 데이터의 양과 증가하는 소스, 사용자 및 애플리케이션의 개수 사이의 균형을 유지해야 합니다.

생산 최적화

생산 라인을 최적화하면 비용 절감 및 수익 증대 효과를 얻을 수 있습니다. 빅 데이터는 제조업체가 생산 라인에 걸쳐 각 품목의 흐름을 파악하고, 어떤 영역이 개선의 여지가 있는지 확인할 수 있게 해 줍니다. 또한 데이터 분석을 통해 생산 시간 증대의 원인이 되는 단계와, 지연을 발생시키는 영역을 파악할 수 있습니다.

도전 과제

생산을 최적화하기 위해서는 제조업체가 생산 장비 데이터, 재료의 사용 및 기타 요소를 분석할 수 있어야 합니다. 또한 다양한 유형의 데이터를 결합하는 과정에서 문제가 발생할 수 있습니다.

소매 유통

소매 유통 분야는 경쟁이 매우 치열합니다. 따라서 경쟁사를 앞지르려면 기업은 스스로를 차별화할 수 있어야 합니다. 빅 데이터는 제품 예측에서 수요 예측, 매장 최적화에 이르는 소매 유통 프로세스의 전 단계에서 활용될 수 있습니다 빅 데이터를 사용하는 유통업체들은 혁신을 위한 새로운 길을 찾을 수 있습니다.

소매 유통 빅 데이터 사용 사례

제품 개발

빅 데이터는 고객 수요 예측에 도움을 줄 수 있습니다. 과거 및 현재 제품의 주요 속성을 분류한 다음, 각 속성과 상품의 상업적 성공 사이의 관계를 모델링하여 신제품 및 서비스를 위한 예측 모델을 구축할 수 있습니다. 포커스 그룹, 소셜 미디어, 테스트 시장 및 초기 매장 출시 등으로부터 확보한 데이터 및 분석 결과를 바탕으로 심도 깊은 분석을 수행해 신규 제품을 계획, 생산 및 출시할 수 있습니다.

도전 과제

기업들은 다양한 양식으로 제공되는 대량의 데이터를 분석한 뒤 고객 행동에 따라 각각을 위한 세그먼트를 생성해야 합니다. 또한 정교한 사용 패턴 및 행동을 파악해 이를 신규 상품 매핑에 활용할 수 있어야 합니다.

고객 경험

고객 유치 경쟁이 한창입니다. 빅 데이터는 소매 유통업체에 고객 경험에 대한 보다 명확한 시각을 제공해 그에 따라 운영을 세밀하게 조정할 수 있게 해 줍니다. 기업들은 고객의 소셜 미디어, 웹 방문, 통화 일지(call logs) 및 타 기업과의 상호 작용으로부터 데이터를 수집해 고객 상호 작용을 개선하고, 창출되는 가치를 극대화할 수 있습니다. 빅 데이터 분석은 개인화된 상품을 제공하고, 고객 이탈을 줄이고, 문제에 사전 예방적으로 대응하는 데 활용될 수 있습니다.

도전 과제

다양한 소스로부터 수집한 대량의 데이터를 통합하는 일은 어려울 수 있습니다. 데이터가 통합된 이후에도. 경로 분석을 활용해 경험 경로를 파악하고 각각의 경로를 다양한 행동 세트와 연계해야 합니다.

고객 생애주기 가치

기업들에게 있어 고객은 모두 소중합니다. 그러나 그중에서도 다른 고객들보다 더 가치 있는 고객이 있습니다. 빅 데이터는 고객 행동 및 소비 패턴에 대한 인사이트를 제공하기 때문에, 이를 활용하면 귀사를 위한 최고의 고객을 파악할 수 있습니다. 최고의 고객을 파악한 후에는 마케팅 팀이 이들을 타깃으로 특별 상품을 제안하고. 영업 팀이 이들에게 더 많은 시간을 할애할 수 있습니다. 이 고객들의 이탈 조짐이 감지되는 경우에는 사전 예방적인 고객 서비스를 제공할 수도 있습니다.

도전 과제

가치 있는 고객을 파악하기 위해서는 대량의 고객 트랜잭션 데이터를 분석해 이들의 과거 행동을 분석하고. 미래 행동을 예측하는 정교한 모델을 생성해야 합니다.

소매 유통 빅 데이터 사용 사례

매장 내 쇼핑 경험

빅 데이터는 매장 내 경험을 개선하는 데에 활용될 수 있습니다. 많은 소매 유통업체들이 고객이 구매를 완료할 수 있도록 독려하기 위해 모바일 앱, 매장 내 구매, 지리적 위치 등으로부터 수집한 데이터를 분석해 상품화를 최적화하기 시작했습니다.

도전 과제

고객 경로 및 행동을 파악하려면 복잡한 그래프 및 경로 분석이 필요합니다. 게다가 매장 내 행동의 정확한 분석을 위해 이 분석 데이터를 여러 데이터세트와 연계 및 결합해야 합니다.

가격 정책 분석 및 최적화

소매 유통업체들은 고객의 진정한 수익성, 시장 세분화 방법, 미래 기회 발생의 잠재력 등을 파악해야 합니다. 엔드투엔드 수익 및 마진 분석은 가격 정책 개선 기회 및 수익이 새어나가고 있는 영역을 파악하는 데 도움을 줄 수 있습니다.

도전 과제

가격 정책 데이터를 정확히 분석하기 위해서는 소매 유통업체가 수백만 건의 트랜잭션 데이터를 관리하고, 다양한 종류의 데이터세트를 활용할 수 있어야 합니다.

헬스케어

헬스케어 조직들은 수익성 개선에서부터 생명을 살리는 일에 이르기까지 모든 영역에서 빅 데이터를 활용합니다. 헬스케어 기업, 병원, 연구원들은 방대한 양의 데이터를 수집합니다. 그러나 격리된 상태의 데이터는 쓸모가 없습니다. 트렌드 및 위협의 패턴을 강조하고 예측 모델을 생성하기 위해서는 데이터의 분석 시기가 중요합니다.

헬스케어 빅 데이터 사용 사례

유전체 연구

빅 데이터는 유전체 연구에 있어 중대한 역할을 할 수 있습니다. 빅 데이터를 활용하면 연구자들이 질병 유전자 및 바이오마커를 식별하여 환자가 미래에 직면하게 될 건강 문제를 정확히 짚어낼 수 있습니다. 또한 헬스케어 조직들은 그 결과를 활용하여 개인화된 치료를 설계할 수 있습니다.

도전 과제

유전체 데이터의 양은 방대하고, 해당 데이터에 대한 복잡한 알고리즘의 실행은 까다로우며, 장기간의 처리 시간이 소요될 수 있습니다.

환자 경험 및 치료 결과

많은 헬스케어 조직들은 비용 증대 없이 보다 효과적인 치료 및 양질의 케어를 제공할 수 있는 방안을 모색 중입니다. 빅 데이터는 이들이 가장 비용 효율적인 방식으로 환자 경험을 개선할 수 있도록 지원합니다. 빅 데이터를 활용하면 헬스케어 조직은 환자가 다양한 치료 및 담당 부서를 거치는 동안 환자 케어에 관한 360도 뷰를 생성할 수 있습니다.

도전 과제

환자 경험 개선을 위해서는 대량의 환자 데이터가 필요합니다. 게다가 그중 일부는 의사 메모 또는 이미지 등 다중 구조 데이터입니다. 또한 환자 여정을 분석하기 위해서는 종종 경로 및 그래프 분석도 필요합니다.

청구 사기

한 건의 의료비용 청구 시마다 다양한 양식으로 이루어진 수백 건의 관련 보고서가 생성될 수 있습니다. 이 때문에 보험 인센티브 프로그램의 정확성을 검증하고 사기성 활동을 나타내는 패턴을 찾는 일이 극도로 어려워집니다. 빅 데이터는 특정 행동 발생 시 해당 행동에 대한 추가 검증을 실시함으로써 헬스케어 조직이 사기의 잠재성을 감지할 수 있게 해 줍니다.

도전 과제

청구 사기 분석은 다양한 데이터 세트의 통합, 청구 데이터의 분석, 복잡한 사기 패턴 식별 등을 포함하는 복잡한 프로세스입니다.

헬스케어 빅 데이터 사용 사례

12

헬스케어 청구 분석

빅 데이터는 조직의 수익성 향상에 도움을 줄 수 있습니다. 청구서 및 청구 데이터를 분석함으로써 조직은 수익 손실 가능성 및 개선의 여지가 있는 결제 현금 흐름을 파악할 수 있습니다. 이 사용 사례를 확보하기 위해서는 다양한 납부자의 청구 데이터 통합, 해당 대규모 데이터의 분석, 청구 데이터 내의 활동 패턴 식별 과정이 필요합니다.

도전 과제

특히 다양한 데이터 소스를 통합해야 하는 경우에는 대량의 데이터에 대한 면밀한 분석 과정이 더욱 복잡해질 수 있습니다.

석유 및 가스

지난 몇 년간 석유 및 가스 산업은 새로운 혁신 방법을 모색하는 과정에서 빅 데이터를 활용해 왔습니다. 또한 오랜 기간 데이터 센서를 활용해 유정, 시추용 기계 및 운영 성능을 추적 및 모니터링했습니다. 석유 및 가스 기업들은 이 데이터를 활용해 유정 활동을 모니터링하고, 지구 모델을 만들어 새로운 유전을 찾고, 다양한 부가가치 작업을 수행할 수 있었습니다.

석유 및 가스 빅 데이터 사용 사례

예측 장비 유지보수

석유 및 가스 기업들, 특히 해양 및 깊은 바닷속 등 원격으로 장비를 운영하는 기업들이 장비 상태에 대한 가시성을 확보하지 못하는 경우가 종종 있습니다. 빅 데이터가 제공하는 인사이트를 활용하면 기업들은 시스템 및 부품의 남은 최적 수명을 예측하여 최적의 생산 환경에서 자산을 운영할 수 있습니다.

도전 과제

다양한 유형의 장비로부터 수집한 머신, 로그, 센서 데이터는 다양한 양식으로 제공됩니다. 그리고 각각의 데이터를 통합하는 일은 어려울 수 있습니다. 게다가 가동 중단을 효과적으로 예방하기 위해서는 이와 같은 데이터를 신속히 분석한 뒤 운영에 활용해야 합니다.

석유 탐사 및 발견

석유 및 가스 탐사는 비용이 많이 드는 활동입니다. 하지만 시추 및 생산 과정에서 생성된 방대한 양의 데이터를 활용하면 기업들은 새로운 시추 지점에 대한 정보에 기반한 결정을 내릴 수 있습니다. 또한 지진 모니터로부터 생성된 데이터를 사용해 이전에 간과되었던 흔적들을 식별함으로써 신규 석유 및 가스 매장지를 찾을 수 있습니다.

도전 과제

잠재적인 신규 석유 매장지를 발견하기 위해서는 기업이 방대한 비정형 데이터를 통합 및 분석해야 합니다.

석유 생산 최적화

비정형 센서 및 과거 데이터를 사용해 유정 생산을 최적화할 수 있습니다. 기업은 예측 모델을 생성함으로써 유정 생산량을 측정해 사용률을 파악할 수 있습니다. 엔지니어들은 보다 심도 있는 데이터 분석을 통해 실제 유정의 생산량이 예측과 일치하지 않는 이유를 파악할 수 있습니다.

도전 과제

이 사용 사례에는 방대한 양의 데이터 분석이 포함됩니다. 해당 데이터와 관련 있는 곡선을 식별하여 추세를 파악하기 위해서는 복잡한 알고리즘 역시 필요합니다.

텔레콤

스마트 폰 및 기타 모바일 기기의 인기 덕분에 텔레콤 기업들은 엄청난 성장 기회를 얻게 되었습니다. 하지만 각 기업이 새로운 디지털 서비스에 대한 고객의 수요를 충족하는 동시에 그 어느 때보다 커진 데이터 양을 관리해야 했기 때문에 어려움 역시 따랐습니다.

텔레콤 빅 데이터 사용 사례

네트워크 용량 최적화

최적의 네트워크 성능은 텔레콤 기업의 성장에 필수적인 요소입니다. 네트워크 사용 분석은 기업이 초과 용량을 식별하고 필요에 따라 대역폭을 다시 라우팅하는 데 도움이 될 수 있습니다. 빅 데이터 분석은 기업이 인프라 투자 계획을 수립하고 고객 수요에 부응하는 신규 서비스를 설계할 수 있게 해 줍니다. 새로운 인사이트를 손에 넣은 텔레콤 기업들은 이제 고객 충성도를 유지하고 경쟁사에 매출을 빼앗기는 상황을 피할 수 있게 되었습니다.

도전 과제

네트워크 서비스와 고객 사이의 복잡한 관계 모델을 생성해야 하는 것은 물론, 네트워크 사용 분석을 위해 대량의 통화 세부 기록까지 분석해야 합니다.

텔레콤 고객 이탈

텔레콤 기업들은 서비스 품질, 사용 편의성 등 이미 확보한 데이터를 분석해 전반적인 고객 만족도를 예측할 수 있습니다. 또한 고객 이탈 위험 감지 경보를 설정하고, 유지 캠페인 및 사전 예방적인 상품 등으로 마땅한 조치를 취할 수 있습니다.

도전 과제

이 사용 사례에서는 과거 및 현재 데이터 분석을 통한 고객 이탈 예측용 신규 모델 생성이 필요합니다. 또한 패턴 및 행동 분석을 위해서는 시계열 및 관계형 분석을 수행해야 합니다. 그래프 분석은 최근 이탈한 고객과, 최근 이탈한 고객과의 친분 때문에 이탈 가능성이 높은 현재 고객 간의 관계를 파악하는 데 쓰일 수 있습니다.

신규 제품

빅 데이터는 신규 제품 및 기능을 설계하는 데 도움이 되는 가치 있는 인사이트를 기업에 제공합니다. 고객 행동에 대한 이해도가 개선되면 기업은 미래의 상품을 위해 세분화된 다양한 고객에게 맞춤형 서비스를 제공할 수 있습니다.

도전 과제

이 사용 사례에는 다양한 양식의 대용량 제품 로그 데이터가 필요합니다. 또한 텔레콤 기업들은 고객 행동을 기반으로 뷰 세그먼트를 생성하고, 정교한 사용 환경 및 행동을 식별해 서비스 기능을 매핑해야 합니다.

금융 서비스

미래 지향적인 은행 및 금융 서비스 기업들은 빅 데이터를 적극 활용합니다. 재무 서비스 조직들은 새로운 시장 기회 확보, 사기 감소 등 다양한 분야에서 빅 데이터를 경쟁 우위 확보의 수단으로 활용해 왔습니다.

금융 서비스 빅 데이터 사용 사례

사기 및 규정 준수

금융 서비스 산업의 보안은 몇 명의 악의적인 해커가 문제가 아닙니다. 이들은 전문가들로 이루어진 팀 단위의 해커에 대응해야 합니다. 그러는 동안에도 보안 지형 및 규정 준수 요구사항은 지속적으로 진화를 거듭합니다. 빅 데이터를 사용하면 기업들은 사기임을 보여주는 패턴을 감지하고, 대량의 정보를 통합해 규제 보고 절차를 간소화할 수 있습니다.

도전 과제

이 데이터를 활용하려면 다양한 트랜잭션 데이터세트와 상호작용 이벤트, 고객 행동 등 추가적인 정보를 통합해야 합니다. 또한 잠재적인 사기 패턴을 인지하려면 기업은 대량의 데이터를 면밀히 조사해야 합니다.

혁신의 가속화

빅 데이터는 조직의 혁신을 지원하는 가치 있는 인사이트를 제공합니다. 그리고 빅 데이터 분석은 인간, 기관, 엔티티, 프로세스 간의 상호 의존성을 보다 분명히 보여줍니다. 시장 트렌드 및 고객 니즈에 대해 정확히 파악하는 조직은 신제품 및 서비스에 관한 의사결정 역시 개선할 수 있습니다.

도전 과제

이질적인 데이터 소스를 수집 및 축적하는 일은 어려울 수 있습니다.

자금 세탁 방지

각국 정부가 자금 세탁 방지법을 통과시키면서 금융 서비스 기업들은 그 어느 때보다 큰 압박을 받고 있습니다. 이 법률은 은행에 적합하고 상당한 주의의 증거 및 의심스러운 활동에 대한 보고서를 제출하도록 요구하기 때문입니다. 이 극도로 복잡한 분야에서 빅 데이터 분석은 기업들이 잠재적인 사기 패턴을 식별할 수 있도록 지원합니다.

도전 과제

이 사용 사례는 대량의 트랜잭션 데이터(정형 데이터 및 다중 구조 데이터 포함) 분석과 복잡한 AML 트랜잭션 식별을 요구합니다. 또한 그래픽 분석을 통해 숨겨진 관계도 확인해야 합니다.

금융 서비스 빅 데이터 사용 사례

금융 규제 및 규정 준수 분석

금융 서비스 기업들은 위험, 행위, 투명성에 관한 광범위한 요구 사항을 준수해야 합니다. 또한 은행들은 도드-프랭크 법, 바젤 III 및 세부 보고서 제출을 골자로 하는 기타 규제를 준수해야 합니다.

도전 과제

금융 서비스 기업들은 대량의 데이터를 수집하고, 고급 위험 모델을 생성하는 동시에, 이 모든 일들을 다른 프로젝트에 대한 영향 없이 신속히 해내야 합니다.

ORACLE

저작권 © 2020, Oracle 및/또는 그 계열사. 무단 복제 및 사용 금지. 본 문서는 참고용으로만 제공되며, 문서의 내용은 사전 통지 없이 변경될 수 있습니다. Oracle은 본 문서의 무오류성을 보증하지 않습니다. 또한 본 문서에는 상업성 또는 특정 용도 수행을 위한 적합성과 관련된 암시적 보증 및 조건을 비롯한 구두상의 표현 또는 법 규정에 의한 어떠한 보증 또는 조건도 포함되어 있지 않습니다. Oracle은 본 문서에 관한 법적 책임을 일체 지지 않으며, 본 문서로 인한 직접 또는 간접적 계약 구속력 역시 일체 발생하지 않습니다. 본 문서는 Oracle의 사전 서면 승인 없이 전자적, 기계적 및 기타 모든 형태 또는 수단을 통해 복제 또는 전송될 수 없습니다.

Oracle 및 Java는 Oracle 및/또는 그 계열사의 등록 상표입니다. 기타 명칭들은 각 명칭을 소유한 기업의 상표일 수 있습니다.

Intel 및 Intel Xeon은 Intel Corporation의 상표 또는 등록 상표입니다. SPARC 상표 일체는 라이선스에 의거해 사용되며 SPARC International, Inc.의 상표 또는 등록 상표입니다. AMD, Opteron, AMD 로고 및 AMD Opteron 로고는 Advanced Micro Devices의 상표 또는 등록 상표입니다. Unix는 The Open Group의 등록상표입니다.