Họ và tên: Mã SV:

Lóp: Số ĐT:

ĐÊ 1 (Viết kết quả)-(Thời gian làm bài: 45 phút)

Câu 1: Các đạo hàm riêng cấp một của hàm số $z = 2x^2y^3 - 3xy^2$ là

$$\frac{\partial z}{\partial x} = 4y^3 2 - 3y^2$$

$$\frac{\partial z}{\partial y} = 6x^2y^2 - 6xy$$

Câu 2: Cho hàm ẩn y = f(x) xác định bởi phương trình $x^4y^5 - 7(x^2 + y^3) + 13 = 0$.

Ta có:
$$f'(x) = \frac{-(4x^3y^5 - 14x^6)}{-(4x^3y^5 - 14x^6)} = \frac{-4x^6 - 4x^5}{-(4x^6 - 2)(x^6 - 2)(x^6$$

Ta có: $f'(x) = \frac{-(4b)y5-49b}{5-49b} = \frac{-4by5}{5-24y2}$ $\sqrt{\text{Câu 3: Cho hàm số } f(x,y) = x^3 \arccos y, \text{ tính } \frac{\partial f}{\partial x}(1,0) \text{ và } \frac{\partial g}{\partial y}(1,0). \text{ Ta có:}$

$$\frac{\partial f}{\partial x}(1,0) = 3x^2 \text{ and } y(1,0) = \frac{3\pi}{2}$$

$$\frac{\partial f}{\partial y}(1,0) = \frac{y^{2}(1)}{1-y^{2}} - 1$$

Câu 6: Cho hàm số $f(x,y)=\frac{x+3y}{2x-y}$ và điểm $M_0(1,1)$. Khi đó $df(M_0)=$

Câu 7: Cho z=z(x,y) là hàm số ẩn xác định từ PT $3e^{xy}-y^3z^5-2=0$. Có $dz(0,1)=\frac{3}{5}$

 \checkmark Câu 8: Cho $I = \iint x^2 y dx dy, D = (x,y) \in \mathbb{R}^2 / 0 \le x \le 1, 0 \le y \le 2$. Có $I = \iint x^2 y dx dy, D = (x,y) \in \mathbb{R}^2 / 0 \le x \le 1, 0 \le y \le 2$.

Câu 9: Cho $I=\iint f(x,y)dxdy$, với $D=\ (x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 4,\,x\leq 0,\,y\leq 0$. Xác định cận của

r và φ khi thực hiện phép đổi biến sang hệ tọa độ cực. Ta có $\bigcirc \le r \le 2$ $\bigcirc \searrow 1$

Câu 10: Đổi thứ tự lấy TP trong TP sau: $I = \int_{-1}^{2} dy \int_{-1}^{6} f(x,y) dx$. Có $I = \int_{-1}^{6} \int_{-1}$

Câu 11: Tính thể tích V của vật thể giới hạn bởi các mặt: x=0,y=0,z=0,x+y=1,x+y-z=-2Ta có V = 12

 $extbf{Câu 12}$: Tính tích phân $I=\int\int (y-2x)^2 dx dy$, D là hình phẳng giới hạn bởi các đường thẳng y = x, y = x + 1, y = 2x - 1, y = 2x + 2. Ta có I = 3

V Câu 13: Cho V là miền giới hạn bởi các mặt $z=x^2+y^2$, $x^2+y^2=4$ và z=0. Tính

$$I = \iiint_V z dx dy dz$$
. Ta có $I = \frac{32}{3}$

Câu 14: Tính $I = \iiint_V x dx dy dz$, $V = (x, y, z) \in \mathbb{R}^3 \mid x \ge 0, y \ge 0, x^2 + y^2 \le z \le 1$. Có I = 2

Câu 15: Tính $I=\iiint_U z dx dy dz, \quad V=\ (x,y,z)\in \mathbb{R}^3 \mid x^2+y^2+z^2\leq 2y$. Có $I=\bigvee_U z dx dy dz$

Câu 16: Tính $I = \oint_C (2-3y)dx + (2x+7)dy$, C là đường tròn $x^2 + y^2 = 4$. Có I = 2

Câu 17: Cho C là đoạn thẳng nối hai điểm A(0,0) và B(1,-1). Tính $I=\int_C (x^3+5y)ds$. Có $I=-\frac{5}{2}$

Câu 18: Cho $I = \iint_{\mathcal{C}} z^2 dS$, S là phần mặt phẳng z = 3 với $x^2 + y^2 \leq 9$. Có I =

Câu 19: Tính $I = \int x^2 (3\sin y - 5y) dx + x(x^2\cos y + 5y^2) dy$ với cung AB là nửa trên đường tròn $x^2+y^2=1$ từ điểm A(1,0) đến điểm B(-1,0) . Ta có $I=\sqrt[4]{2}$

VCâu 20: Tính $I = \oint_{T} (e^{3x} \sin x^2 + 2x^2y) dx + (e^{-4y} + \cos^3 y - 2xy^2) dy$, L là đường tròn $x^2 + y^2 = 2y$. Có I = -9 M

Câu 21: Cho $I = \int (\sin y + 2y^2 + 2x^3) dx + (x \cos y + y^5) dy$, AB có phương trình $y = \sqrt{4 - x^2}$, $A(2,0)\,,\;B(-2,0).\;\text{Ta có}\;I=\frac{\sqrt{3}}{3}$ Câu 22 : Cho $D=\;(x,y)\in\mathbb{R}^2\;|\;x^2+y^2\geq 1,\;x^2+y^2\leq 2x,\;x\geq 0,\;y\geq 0\;$. Tính diện tích S của miền

D. Ta có S =

Câu 23: Cho $I=\int ydx-(x+1)dy+z^3dz$, cung AB có phương trình $\begin{cases} x^2+y^2=1\\ z=3 \end{cases}$, A(1,0,3), B(0,1,3). Ta có I = -2.51

Câu 24: Tính $I=\int_{\underline{\mathbb{Z}}}(1+4x^2+4z^2)dS$ với S là phần mặt paraboloid $y=1-x^2-z^2$ thỏa mãn $y\geq 0$ Ta có $I = 2\pi$. $\left(\frac{-1+25\sqrt{5}}{20}\right) = \frac{\pi}{10}\left(2\sqrt{5}\sqrt{5}\right)$ Câu 25: Tìm cực trị của hàm số $f(x,y) = e^{2y}(x^2 + y^2 - 2)$. Ta thấy hàm số đạt giá trị cực........

là tại điểm.....