INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
Instructor: Prof Mohammad Saud Afzal
Department of Civil Engineering
Course: CE21003
Submission Deadline:
Total Marks:

Dimensional Analysis

- Q1) A laboratory model of a river is built to a geometric scale of 1:100. The fluid used in the model is oil of mass density 900 kg/m³. The highest flood in the river is 10,000m³/s. Find the corresponding discharge in the model.
- Q2) The flow of glycerin (kinematic viscosity $v = 5 \times 10^{-4} \text{ m}^2/\text{s}$) in an open channel is to be modeled in a laboratory flume using water ($v=10^{-6} \text{ m}^2/\text{s}$) as the flowing fluid. If both gravity and viscosity are important, what should be the length scale (i.e. ratio of prototype to model dimensions) for maintaining dynamic similarity?
- Q3) At low velocities (laminar flow), the volume flow Q through a small-bore tube is a function only of the tube radius R, the fluid viscosity μ , and the pressure drop per unit tube length dp/dx. Using the pi theorem, find an appropriate dimensionless relationship.
- Q4) The capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ , surface tension σ , and the contact angle θ . Find a dimensionless statement of this relation.