JUKLAK PROJECT MANAGEMENT

BACKGROUND & MODEL

1.1 Background

Model ini digunakan untuk memperhitungkan prediksi dari suatu laporan proyek pada unit proses waktu dan biaya. Prediksi berdasarkan pada model machine learning yang dibangun dengan Python based Jupyter Notebook.

1.2 Model

Model didasarkan pada rancangan pelaksanaan modeling secara teknis berdasarkan requirement modeling pre-process, automate model dan interpretation. Secara khusus dibagi menjadi 3 fase yakni fase pembacaan directory, automate model dan visualisasi data.

TECHNICAL DETAIL

Requirement Environmental: Jupyter Notebook and Power BI.

1.1 Installation Modul

Harap install modul intallasi library yang dibutuhkan, file ini bernama "Installation Modul.ipynb" dan berada diarea luar directory.

1.2 Setting Dataset

Pada directory Dataset terbagi menjadi 3 yakni :

- 1. MEP = Cost, Time
- 2. ARSI = Cost, Time
- 3. KONS = Cost, Time

Masing-masing terdapat data seperti dibawah harap "**tidak merubah letak format, dan bila ada perubahan hanya rubah isi data**". Detail yang bisa dirubah ditunjukan kotak merah dibawah :

4	Α	В	С
ī	Minggu	Planned Value	Farned Value
2	1	0,189	0,000
3	2	0,408	0,000
1	3	0,630	0,000
5	4	0,878	0,000
5	5	1,127	0,000
7	6	1,375	0,000
3	7	2,705	0,000
)	8	4,155	0,000
0	9	5,742	0,000
1	10	7,335	0,000
2	11	8,932	0,139
3	12	10,530	0,151
4	13	12,079	0,849
5	14	12,969	1,105
6	15	13,860	1,130
7	16	14,750	1,130
8	17	15,641	0,560
9	18	16,548	1,510
0	19	17,435	1,616
1	20	18,322	1,638
2	21	10 177	1 705

Sheetname sudah disetting sesuai **requirement** tidak bisa dirubah, harap masukan data sesua sheet masing-masing.

1.3 Main Model Python

Model utama terdapat 12 python yang terdapat pada directory:

1. "C:/Users/User/Videos/Project Management and Machine

Learning/Ensemble/MEP/Time/ENSEMBLE-MEP-TIME.ipynb"

2. "C:/Users/User/Videos/Project Management and Machine Learning/Ensemble/MEP/Cost/ENSEMBLE-MEP-COST.ipynb"

3. "C:/Users/User/Videos/Project Management and Machine Learning/Ensemble/KONS/Time/ENSEMBLE-KONS-TIME.ipynb"

4. "C:/Users/User/Videos/Project Management and Machine Learning/Ensemble/KONS/Cost/ENSEMBLE-KONS-COST.ipynb"

5. "C:/Users/User/Videos/Project Management and Machine Learning/Ensemble/ARSI/Time/ENSEMBLE-ARSI-TIME.ipynb"

6. "C:/Users/User/Videos/Project Management and Machine Learning/Ensemble/ARSI/Cost/ENSEMBLE-ARSI-COST.ipynb"

7. "C:/Users/User/Videos/Project Management and Machine Learning/Konvesional/MEP/Time/KONVE-MEP-TIME.ipynb"

8. "C:/Users/User/Videos/Project Management and Machine Learning/Konvesional/MEP/Cost/KONVE-MEP-COST.ipynb"

9. "C:/Users/User/Videos/Project Management and Machine Learning/Konvesional/KONS/Time/KONVE-KONS-TIME.ipynb"

10."C:/Users/User/Videos/Project Management and Machine Learning/Konvesional/KONS/Cost/KONVE-KONS-COST.ipynb"

11. "C:/Users/User/Videos/Project Management and Machine Learning/Konvesional/ARSI/Time/KONVE-ARSI-TIME.ipynb"

12. "C:/Users/User/Videos/Project Management and Machine Learning/Konvesional/ARSI/Cost/KONVE-ARSI-COST.ipynb"

1.3.1 RUNNING MODEL AND CHECK:

1. Harap Ganti Directory pada setiap model diatas -> harus buka 12 model. Detail yang diganti pada variable PATH dan CLEAR_PATH.

2. Input Dataset

workbook.save(file)
workbook.close()

```
In [2]: path = "C:/Users/User/Videos/Project Management and Machine Learning/Dataset/COST/MEP"

3.Clear Excel Output

In [3]: def clear_all_data(file):
    workbook = load_workbook(file)
    sheet_names = workbook.sheetnames

if not sheet_names:
    # If there are no sheets, create a new sheet and make it visible
    workbook.create_sheet("Sheet1")
    else:
    # Remove all sheets except the first one
    for sheet_name in sheet_names[1:]:
    workbook.remove(workbook[sheet_name])
```

```
In [4]: clear_path = "C:/Users/User/Videos/Project Management and Machine Learning/Ensemble/MEP/COST"
In [5]: excel_file1 = clear_path+"/RESULT-ENSEMBLE-MEP-COST.xlsx"
excel_file2 = clear_path+"/PARAM-ENSEMBLE-MEP-COST.xlsx"
clear_all_data(excel_file1)
clear_all_data(excel_file2)
```

Sesuaikan sesuai dengan letak anda menyimpan file.

• Klik kanan pada file "Project Management and Machine Learning"

• RUBAH TANDA (\) MENJADI (/)

Tempelkan pada directory dibelakang project management sebagai contoh

C:/Users/User/Videos -> adalah directory disimpan.

"C:/Users/User/Videos/Project Management and Machine Learning/Dataset/COST/MEP"

Yang diblok merah saja yang diganti sesuai letak folder Project management.

1.3.2 Tuning Parameter Model:

Terdapat dua karakteristik yang berbeda antara ensemble dan konvesional:

1. Ensemble:

 Untuk model XGBOOST dan RandomForest terdapat pada section pertama dengan variable param_grid_xg dan param_grid_rf.
 SEMUA HARUS TERISI PARAMETER WALAUPUN SATU UNTUK SETIAP PARAMETER

Running MK1

 Sedangkan untuk model Blending terdapat pada function blending_ensemble. KLIK CTRL+F, CARI blending_ensemble. Scrooll pada looping iteration. Rubah DALAM BENTUK RANGE.
 SEMUA HARUS TERISI PARAMETER WALAUPUN SATU UNTUK SETIAP PARAMETER

```
def blending_ensemble (x):
   Data = pd.read_excel (path+"/Dataset.xlsx", sheet_name = Sheet )
   X = Data.drop (columns = 'ACWP')
   y = Data.drop (columns = X.columns)
   #Splitting Data Training and Testing
   x_train, x_test, y_train, y_test = train_test_split(X, y ,train_size = 0.8,random_state = 58)
   x_train = x_train.sort_index(ascending=True)
   y_train = y_train.sort_index(ascending=True)
   x_test = x_test.sort_index(ascending=True)
   y_test = y_test.sort_index(ascending=True)
   blg model = BlendingEnsemble()
   for alpha in np.arange (0.025,0.75,0.25):
       for alpha_r in np.arange(0.25,0.76,0.25):
           for degree in range (2.5) :
                   blg_model.alpha = alpha
                    blg_model.alpha_r = alpha_r
                    blg_model.degree = degree
                        ##create the model
                    blg_model.fit (x_train,y_train)
                        y_train_Pred = blg_model.predict (x_train)
y_train_Pred = pd.DataFrame({'Y_train_Pred':y_train_Pred.ravel()})
                    y_train.reset_index(drop=True,inplace=True)
                    y_train_Pred.reset_index(drop = True,inplace=True)
```

2. Konvensional:

Semua tuning parameter terdapat pada section running untuk kelompok pertama kali. Dengan param_gridd ANN ->ANN, param_grid_svm -> SVM dan param_grid_poly - >Polynomial Regression. **SEMUA HARUS TERISI**

PARAMETER WALAUPUN SATU UNTUK SETIAP PARAMETER

Running MK1

```
In [7]: data_source_file = path+"/Dataset.xlsx"
    result_file = "RESULT-KONVE-MEP-TIME.xlsx"
    params_file = "PARAM-KONVE-MEP-TIME.xlsx"
    ensemble = KonveRegressor(data_source_file, result_file,params_file )

param_grid_ann = { 'hidden_layer_sizes': [10,50, 100], 'activation': ['logistic', 'tanh', 'relu'], 'learning_rate_init': [0.01, 0. param_grid_sow = { 'kernel': [ 'poly', 'linear', 'rbf'] , 'C':[1,2,4], 'epsilon':[0.1,0.2,0.3]}
    param_grid_poly = {
        'polynomialfeatures_degree': [2, 3, 4],
        'linearregression_normalize': [True, False],
        'polynomialfeatures_include_bias': [True, False]
}
```

1.3.3 Output Model

Terdiri dari 2 output yakni "**PARAM-....**" untuk tuning parameter dan "**RESULT-...**" untuk hasil prediksi. Ouput adalah excel file.

• Contoh "PARAM-...."

• Contoh "RESULT-..."

1.4 Running Automation

- 1. Hapus Semua File Excel Kecuali:
 - Parameter.xlsx
 - Result.xlsx
- 2. Restart dan Run All pada FILE "Automate-Process"
- 3. Succes akan muncul semua file excel

Name	Date modified	Туре	Size
.ipynb_checkpoints	6/10/2023 7:35 PM	File folder	
Automate-Process.ipynb	6/11/2023 10:00 AM	IPYNB File	10 KB
PARAM-ENSEMBLE-ARSI-COST	6/11/2023 9:56 AM	Microsoft Excel W	41 KB
PARAM-ENSEMBLE-ARSI-TIME	6/11/2023 9:55 AM	Microsoft Excel W	40 KB
PARAM-ENSEMBLE-KONS-COST	6/11/2023 9:53 AM	Microsoft Excel W	40 KB
PARAM-ENSEMBLE-KONS-TIME	6/11/2023 9:52 AM	Microsoft Excel W	41 KB
PARAM-ENSEMBLE-MEP-COST	6/11/2023 9:51 AM	Microsoft Excel W	52 KB
PARAM-ENSEMBLE-MEP-TIME	6/11/2023 9:49 AM	Microsoft Excel W	51 KB
Parameter	6/11/2023 9:59 AM	Microsoft Excel W	361 KB
PARAM-KONVE-ARSI-COST	6/11/2023 9:59 AM	Microsoft Excel W	28 KB
PARAM-KONVE-ARSI-TIME	6/11/2023 9:59 AM	Microsoft Excel W	36 KB
PARAM-KONVE-KONS-COST	6/11/2023 9:58 AM	Microsoft Excel W	28 KB
PARAM-KONVE-KONS-TIME	6/11/2023 9:58 AM	Microsoft Excel W	36 KB
PARAM-KONVE-MEP-COST	6/11/2023 9:57 AM	Microsoft Excel W	34 KB
PARAM-KONVE-MEP-TIME	6/11/2023 9:57 AM	Microsoft Excel W	45 KB
Result	6/11/2023 9:59 AM	Microsoft Excel W	197 KB
RESULT-ENSEMBLE-ARSI-COST	6/11/2023 9:56 AM	Microsoft Excel W	26 KB
RESULT-ENSEMBLE-ARSI-TIME	6/11/2023 9:55 AM	Microsoft Excel W	26 KB
RESULT-ENSEMBLE-KONS-COST	6/11/2023 9:53 AM	Microsoft Excel W	18 KB
RESULT-ENSEMBLE-KONS-TIME	6/11/2023 9:52 AM	Microsoft Excel W	18 KB
RESULT-ENSEMBLE-MEP-COST	6/11/2023 9:51 AM	Microsoft Excel W	29 KB
RESULT-ENSEMBLE-MEP-TIME	6/11/2023 9:49 AM	Microsoft Excel W	35 KB
RESULT-KONVE-ARSI-COST	6/11/2023 9:59 AM	Microsoft Excel W	26 KB
RESULT-KONVE-ARSI-TIME	6/11/2023 9:59 AM	Microsoft Excel W	27 KB
RESULT-KONVE-KONS-COST	6/11/2023 9:58 AM	Microsoft Excel W	18 KB
RESULT-KONVE-KONS-TIME	6/11/2023 9:58 AM	Microsoft Excel W	18 KB
RESULT-KONVE-MEP-COST	6/11/2023 9:57 AM	Microsoft Excel W	30 KB
RESULT-KONVE-MEP-TIME	6/11/2023 9:57 AM	Microsoft Excel W	36 KB

1.5 Buka File Power BI

1. Refresh Power BI

2. Succes maka akan muncul tampilan

3. Filter Tampilan

Filter Harus diisi semua sesuai dengan tampilan yang diharapkan. Dengan mandatory = Process, Method, Work, Model.

Pengisian Subwork harus berdasarkan pada Work yang dipilih sesuai table dibawah :

Work	Subwork
	MK1
	MK2
	EK1
	EK2
MEP	PB1
	PB2
	GKB1
	GKB2
	GKB
	INT1
	INT2
	EKS1
ARSI	EKS2
	GKB1
	GKB2
	KUM
	K1B1
	K1B2
	K2B1
KONS	K2B2
	K3B1
	K3B2

4. Interpretasi

Terdapat Interpretasi pada 2 kolom tampilan :

1. Prediction

Ketika **Process -> Cost**, Actual = ACWP dan Prediksi ACWP **Process -> Time,** Actual = EV dan Prediksi EV **AT -> Real Time**

2. Optimization Model

Terdapat penjelasan pemilihan param1, param2 dan param3 berdasarkan pemilihan **Model.**

Model	Param1	Param2	Param3
XGBoos	n_estimators	max_depth	learning_rate
t			
Random	n_estimators	max_depth	min_samples_split
Forest			

Blendin	alpha	alpha_r	degree
g			
ANN	hidden_layer_sizes	activation	learning_rate_init
SVM	kernel	С	epsilon
POLY	polynomialfeaturesdegr	linearregressionnormali	polynomialfeaturesinclude_bi
	ee	ze	as