0903 김솔 1차 발표

1. Epidemic model

- SIR: 면역이 생기는 model
- SIS : 면역이 생기지 않고 재감염가능한 model
- SEIR: pre infectious period이 무시할 수 없을 만큼 긴 면역이 생기는 model
- SEIS: pre infectious period 이 무시할 수 없을 만큼 긴 재감염 가능한 model
- SIRS : 일정시간 이후 면역이 사라지고 재감염 가능해지는 model
- Etc.

1. Epidemic model

가정

- 1. 모집단의 평균 구성원은 시간당 βN 의 다른 사람들을 감염시킬 만큼 접촉을 한다.
- 2. 감염자들은 감염 집단에서 시간당 γI 의 속도로 빠져나간다.

(감염자들은 E집단에서 시간당 fE 의 속도로 빠져나간다.)

3. (질병으로 인한 사망을 제외하고) 전체집단에서 유입/이탈은 없다.

1-2. Model 에서 사용된 변수 소개

가정

1. 모집단의 평균 구성원은 시간당 βN 의 다른 사람들을 감염시킬 만큼 접촉을 한다.

$$S' = -\beta SI$$

$$E' = \beta SI - fE$$

$$I' = fE - \gamma I$$

$$R' = \gamma I$$

Transmission rate
$$\beta$$

$$\beta = \frac{C_e}{N} \ \ \text{and} \ \ R_0 = C_e D$$

$$R_0 = \beta N D$$

-Random contact에서 한 명의
$$I$$
 가 S와 접촉할 확률은 $\frac{S}{N}$ 이므로, the number of new infectious = $(\beta N) * \left(\frac{S}{N}\right) * I$ -(또 다른 해석) 감염 인구 비율 = $\frac{I}{N}$ 이므로 한 S 가 새로운 감염자에 의해 감염될 확률 = $(\beta N) * \left(\frac{I}{N}\right)$ the number of new infectious = $(\beta N) * \left(\frac{I}{N}\right) * S$

1-2. Model 에서 사용된 변수 소개

가정

2. 감염자들은 감염 집단에서 시간당 γI 의 속도로 빠져나간다

•
$$S' = -\beta SI$$

•
$$E' = \beta SI - fE$$

•
$$I' = fE - \gamma I$$

•
$$R' = \gamma I$$

u(s)를 s시간 이후 에도 여전히 감염상태에 있는 Cohort(동시 감염된 집단)수 라고 하자.

단위 시간 당 γ 의 비율로 I 를 빠져 나가므로

$$u' = -\gamma u$$
$$u(s) = u(0)e^{-\gamma s}$$

평균적으로 I에 머무는 기간을 계산해보면, $\frac{1}{\gamma}$ 이다.

1-2. Model 에서 사용된 변수 소개

$$S' = -\beta SI$$

$$E' = \beta SI - fE$$

$$I' = fE - \gamma I$$

$$R' = \gamma I$$

비현실적으로 간단한 가정들:

접촉률이 모집단 N에 비례한다는 가정 / beta가 상수 / exponentially distributed recovery rate : γ

(현실적인 모델도 이것으로 부터 도출되므로 similar qualitative behaviours 를 가질 것이다.)

1. Epidemic model

•
$$S' = \Pi - \beta SI - \mu S$$

•
$$E' = \beta SI - fE - \mu E$$

•
$$I' = fE - \gamma I - \mu I$$

•
$$R' = \gamma I - \mu R$$

2. Difference vs. Differential

- 어떤 모델을 사용할 것인지.
- Choose model structure: SIS, SIR, SEIR, SEIRS, ...
- Choose model method: Stochastic, Deterministic,

홍역데이터의 short term에서 day단위로 볼것이므로 E(8days)를 무시할수 없음 SEIR모델을 택하고 계절적요인이랑 연령층을 고려하지 않는 random mixing을 가정하고 모델을 비교해볼것이다 김솔, 2021-08-30 김1

1-1. Deterministic Model for SEIR

• Difference

•
$$S(t+1) = S(t) + (-\beta SI)$$

•
$$E(t + 1) = E(t) + (\beta SI - fE)$$

•
$$I(t+1) = I(t) + (fE - \gamma I)$$

•
$$R(t+1) = R(t) + (\gamma I)$$

•
$$S' = -\beta SI$$

•
$$E' = \beta SI - fE$$

•
$$I' = fE - \gamma I$$

•
$$R' = \gamma I$$

슬라이드 9

- **12** Difference의 경우 이산적 시간 단위를 사용하기 때문에 dt를 1day로 가정하고 진행 김솔, 2021-08-30
- **23** Differential의 경우 더 작은 timestep을 사용하여 그것의 극한값을 취하여 계산한다. 이것은 연속적인 시간단위에서 사용 김솔, 2021-08-30

1-1. Deterministic Model for SEIR

• Difference equation

$$N_{t+1} = N_t - nk \times N_t \rightarrow N_t = (1 - nk)^t \times N_0$$

Differential equation

$$N'(t) = -rate \times N(t) \rightarrow N(t) = N(0)e^{-rate \times t}$$

$$\Rightarrow 1 - nik = e^{-rate}$$
 or $rate = -\ln(1 - nik)$

1-3. Difference vs. Differential 비교

2. The Natural Dynamics for Infectious Diseases

- 감염병 증가 감소를 결정짓는 요소
- 발병 성장률을 보고 R_0를 계산하는 방법
- Epidemic cycles

2-1. 감염병 증/감을 결정짓는 요소(R_0)

$$\bullet \frac{dI(t)}{dt} = fE(t) - \gamma I(t) > 0$$

•
$$\beta S(t)I(t) > \gamma I(t)$$

•
$$\frac{\beta S(t)}{\gamma} > 1$$

전염병 발생 초기에는 S(t)=N 라고 간주하여 아래와 같은 식을 유도할 수 있다.

$$\frac{\beta N}{\gamma} > 1$$

$$R_0 = \beta ND > 1$$

$$D = \frac{1}{\gamma} \ (infectious \qquad period \quad)$$

따라서 beta*ND가 1보다 커지면 초기에 감염자 증가가 시작된다고 볼 수 있다.

2-2. growth rate(Λ)을 보고 R_0 를 계산하는 방법

• Growth rate (Λ)

$$\frac{dI}{dt} = \Lambda I$$
라고 하면 $I(t) = I(0)e^{\Lambda}$ 이다.

전염병 발생 초기(S(t)=N) 에 pre infectious가 무시할 수 있을 만큼 짧다고 가정하면 (SIR model)

$$\frac{dI}{dt} = \beta NI - \gamma I$$
 이므로 $\frac{dI}{dt} = (\beta N - \gamma)I = \Lambda I$

$$\beta N - \gamma = \Lambda \Rightarrow R_0 = 1 + \Lambda D$$

2-3. Epidemic cycles

• Net reproduction number ${\it R}_n$ & Basic reproduction number ${\it R}_0$

$$R_n = \frac{\beta S(t)}{\gamma}$$
$$R_0 = \frac{\beta N}{\gamma}$$

만약 new infectious가 증가한다면,

$$R_n = R_0 s(t) > 1 \Rightarrow s(t) > \frac{1}{R_0}$$

Number of new infectious people	R_n	Proportion susceptible $s(t)$
increasing	>1	> 1/R ₀
decreasing	<1	$< 1/R_0$
peaking	=1	$= 1/R_0$

Epidemic threshold = $\frac{1}{R_0}$, Herd immunity threshold = $1 - \frac{1}{R_0}$ 여기서 만약 S에 새로운 인구 유입이 없다면 S(t)는 점점 줄어들고 임계점 $\frac{1}{R_0}$ 아래로 내려가며 전염병이 소멸하게 될 것이다.

2-3. Epidemic cycles

N = 10000 D = 7(days) R_0 = 13 Beta = R_0/(ND) 로 계산

S(t)의 임계점 = 1/R_0 = 0.0769 H = 0.9230 (약 92%)

2-3. Epidemic cycles

S(t)의 임계점 = 1/R_0 = 0.0769 H = 0.9230 (약 92%)

2-3. Epidemic cycles을 만들어내는 또 다른 요인

- Seasonality in transmission
- Age-dependent mixing (v) (홍역의 경우 예측과 다른 결과가 나오는 경우가 있었다.)
- Stochastic effects

0

• 연령별로 다른 접촉률을 보이는 집단의 특징을 담은 matrix

3-1. WAIFW matrix

- 1. 연령별로 다른 mixing patterns
- 2. 연령별로 질병 취약율이 다를 수 있다.

 λ 를 연령별로 구별한다고 생각하면

 λ_{ν} : young individuals이 감염 당하는 FOI

$$\lambda_y = \lambda_{yy} + \lambda_{yo}$$

 λ_o : old individuals이 감염 당하는 FOI

$$\lambda_o = \lambda_{oy} + \lambda_{oo}$$

슬라이드 20

김12	헤테로 FOI를 쓰는이유 김솔, 2021-08-31
김13	1. 연령별로 다른 mixing patterns : 아이들끼리 더 많이 만나고 잘 감염되는 행동을한다 김솔, 2021-08-31
김15	2. 연령마다 취약계층이 다를 수 있다. 김솔, 2021-08-31
김16	3. 지역별로 고위험군 저위험군이 다를수 있음 김솔, 2021-08-31
김14	여기서 베타가 나타내는것이 시간당 두 개인 사이에 효과적인 전염률 김솔, 2021-08-31

3-1. WAIFW matrix

Note that $\lambda(t) = \beta I(t)$

$$\lambda_{yy} = \beta_{yy}I_y , \lambda_{yo} = \beta_{yo}I_o , \qquad \lambda_y = \lambda_{yy} + \lambda_{yo}$$

$$\lambda_{oy} = \beta_{oy}I_y , \lambda_{yy} = \beta_{oo}I_o \qquad \lambda_o = \lambda_{oy} + \lambda_{oo}$$

$$\begin{bmatrix} \lambda_y \\ \lambda_o \end{bmatrix} = \begin{bmatrix} \beta_{yy} & \beta_{yo} \\ \beta_{oy} & \beta_{oo} \end{bmatrix} \begin{bmatrix} I_y \\ I_o \end{bmatrix}$$

3-1. WAIFW matrix

$$\begin{bmatrix} \lambda_y \\ \lambda_o \end{bmatrix} = \begin{bmatrix} \beta_{yy} & \beta_{yo} \\ \beta_{oy} & \beta_{oo} \end{bmatrix} \begin{bmatrix} I_y \\ I_o \end{bmatrix}$$

WAIFW matrix : $\begin{bmatrix} \beta_{yy} & \beta_{yo} \\ \beta_{oy} & \beta_{oo} \end{bmatrix}$

3-2. WAIFW structures

$$\bullet \begin{bmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{bmatrix}, \begin{bmatrix} \beta_1 & \beta_2 \\ \beta_2 & \beta_2 \end{bmatrix}, \begin{bmatrix} \beta_1 & \beta_2 \\ \beta_2 & \beta_1 \end{bmatrix}$$

두가지 문자로 표현될 수 있게 WAIFW matrix구조를 가정하고 λ 와 I (or S)가 주어지면 연립방정식을 풀어 WAIFW matrix entry를 모두 찾아낼 수 있다.

슬라이드 23

김23	중요한 문제는 모집단의 혼합패턴을 가장 잘 설명하는WAIFW 행렬이 무엇인지 확신할 수 없다는 것. 2126 , $2021-08-31$
김24	실제로 예측할때는 the most pessimistic scenario를 택해서 대비해라 김솔, 2021-08-31
김25	1. 혈청조사의 유병률 추정 김솔, 2021-08-31
김26	2. 서로 다른 군의 감염력(lam) 추정 김솔, 2021-08-31
김27	3. WAIFW 행렬구조 선택하고 계산한다 김솔, 2021-08-31

4. Next generation matrix

- NGM을 공식화 하여 이것으로 부터 R_0 를 계산
- Herd immunity threshold = $1 \frac{1}{R_0}$ 를 계산
- 각기 다른 Matrix에서 백신접종의 효율성 따지기

Review) Randomly mixing population

- $R_0 = \beta N D$
- $R_n = R_0 s$
- The herd immunity threshold $H = 1 1/R_0$
- Estimate R_0 using the growth rate in the number of infections

$$R_0 = 1 + \Lambda D$$

4-1. Next generation matrix

Note that $R_0 = \beta ND$

$$R_{yy} = \beta_{yy} N_y D , R_{yo} = \beta_{yo} N_y D ,$$

$$R_{oy} = \beta_{oy} N_o D , R_{yy} = \beta_{oo} N_o D$$

next generation matrix $\begin{bmatrix} R_{yy} & R_{yo} \\ R_{oy} & R_{oo} \end{bmatrix}$

슬라이드 26

김28	R0 = betaND 김솔, 2021-08-31
김29	R0 = Rn/s 김솔, 2021-08-31
김30	(equilibrium) R0 = 1/s 김솔, 2021-08-31
김31	R0 = 1+LamD 김솔, 2021-08-31

두 인구 집단에서 100% young백신 접종 시, 백신효과가 좋은 집단을 찾아라.

$$\begin{bmatrix} 4 & 1 \\ 2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

$$R_{0} = 2 \qquad R_{0} = 1$$

4-1. Next generation matrix

$$\begin{array}{ccc} & \mathsf{y} & \mathsf{o} \\ \mathsf{y} & \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{array}$$

y o
$$y \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ 1 - \alpha \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow R_0 = 2$$

$$y$$
 o $y \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

y o
y
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha \\ 1 - \alpha \end{bmatrix} = \begin{bmatrix} 1 + \alpha \\ 2 - \alpha \end{bmatrix} \Rightarrow R_0 = 3$

$$\begin{array}{ccc} & y & o \\ y & \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \end{array}$$

y o
$$y \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} \alpha \\ 1 - \alpha \end{bmatrix} = \begin{bmatrix} 1 \\ 4 - 3\alpha \end{bmatrix} \Rightarrow R_0 = 5 - 3\alpha \dots$$

슬라이드 28

김32	R0 = betaND 김솔, 2021-08-31
김33	R0 = Rn/s 김솔, 2021-08-31
김34	(equilibrium) R0 = 1/s 김솔, 2021-08-31
김35	R0 = 1+LamD 김솔, 2021-08-31

4-1. Next generation matrix

$$y$$
 o $y \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}$

If there is an unlimited supply of susceptible individuals ...

$$\begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ 22 \end{bmatrix}$$

(Matrix eigenvalue를 구하는 power method..)

슬라이드 29

김36	R0 = betaND 김솔, 2021-08-31
김37	R0 = Rn/s 김솔, 2021-08-31
김38	(equilibrium) R0 = 1/s 김솔, 2021-08-31
김39	R0 = 1+LamD 김솔, 2021-08-31

Calculating R_0 from NGM - Example

generation	children	adults	total G _k	G _k /G _{k-1}
0	1	0	1	
1	1	1	2	2
2	2	5	7	3.5
3	7	22	29	4.1
4~7	•••	•••	•••	•••
8	9866	32585	42451	4.3
9	42451	140206	182657	4.3

4-2. Eigenvalue & Eigenvector of NGM

Power Method

Let x be a arbitrary vector. & Let A be a NGM ($A \in Mnxn(R)$) Let v_1, v_2, \dots, v_n be eigenvectors of A corresponding to $\lambda_1, \lambda_2, \dots, \lambda_n$ (WLOG, $|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|$)

If A is diagonalizable, X=BIVI+BIVI+---+BIVIN (BI,---, BNEIR)

AX=BIXIVI+---+BIXIVIN

=> AK=BIXKVI+--+BUXKVN = XK(BIVI+BZ(X)) VZ+--+BUXXI) EVN)

lun AKX = (lun Xi XIVI

AKRU High etgenvector 3-72.

4-2. Eigenvalue & Eigenvector of NGM

4-3. 모델을 보고 NGM만들고 R_0 찾기

$$S' = \Pi - \mu S - \beta SI$$

$$E' = \beta SI - (\mu + f)E$$

$$I' = \kappa E - (\mu + \gamma)I$$

$$R' = \gamma I - \mu R$$

4-3. 모델을 보고 NGM만들고 R_0 찾기

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix}, \qquad \mathcal{V} = \begin{pmatrix} (\mu + f)E \\ -fE + (\mu + \gamma)I \end{pmatrix}$$

$$F = \begin{pmatrix} 0 & \beta S \\ 0 & 0 \end{pmatrix} \quad V = \begin{pmatrix} (\mu + f) & 0 \\ -f & (\mu + \gamma) \end{pmatrix}$$

4-3. 모델을 보고 NGM만들고 R_0 찾기

Then,

$$K = FV^{-1} = \begin{pmatrix} \frac{f\beta S_0}{(\mu + f)(\mu + \gamma)} & \frac{\beta S_0}{(\mu + \gamma)} \\ 0 & 0 \end{pmatrix}$$
$$R_0 = \frac{f\beta S_0}{(\mu + f)(\mu + \gamma)}$$

4-4. R_0 와 Herd immunity

$$R_{0} = \frac{f\beta S_{0}}{(\mu+f)(\mu+\gamma)}$$

$$H = 1 - \frac{1}{R_{0}} = 1 - \frac{(\mu+f)(\mu+\gamma)}{f\beta S_{0}}$$

