MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

September 5, 2024

Lecture 12

Power series

Power series

• A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$
(0.1)

Power series

• A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$
(0.1)

Here the **center** a and the **coefficients** $c_0, c_1, \ldots, c_n, \cdots$ are constants.

• A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$
 (0.2)

◆ロ ▶ ◆ 個 ▶ ◆ 国 ▶ ◆ 国 ● 夕 ○ ○

Power series

• A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$
(0.1)

Here the **center** a and the **coefficients** $c_0, c_1, \ldots, c_n, \cdots$ are constants.

• A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$
 (0.2)

◆ロ ▶ ◆ 個 ▶ ◆ 国 ▶ ◆ 国 ● 夕 ○ ○

• Geometric series: $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$

• Geometric series: $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$

The series converges to $\frac{1}{1-x}$ for all -1 < x < 1 and diverges if |x| > 1. At $x = \pm 1$, the series clearly diverges.

• Geometric series: $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$

The series converges to $\frac{1}{1-x}$ for all -1 < x < 1 and diverges if |x| > 1. At $x = \pm 1$, the series clearly diverges.

•
$$\sum_{n=0}^{\infty} (-\frac{1}{2})^n (x-2)^n = 1 - \frac{1}{2} (x-2) + \frac{1}{4} (x-2)^2 - \cdots$$

• Geometric series: $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$

The series converges to $\frac{1}{1-x}$ for all -1 < x < 1 and diverges if |x| > 1. At $x = \pm 1$, the series clearly diverges.

• $\sum_{n=0}^{\infty} (-\frac{1}{2})^n (x-2)^n = 1 - \frac{1}{2}(x-2) + \frac{1}{4}(x-2)^2 - \cdots$. The series converges when |x-2| < 2. In that case, the series converges to $f(x) = \frac{1}{1 - \frac{-1}{2}(x-2)} = \frac{2}{x}$.

•
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

Apply Ratio test:
$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{|x|}{1 + 1/n} \to |x|.$$

• By ratio test, if |x| < 1 the the series converges.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$
Apply Ratio test:
$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{|x|}{1 + 1/n} \to |x|.$$

- By ratio test, if |x| < 1 the the series converges.
- If |x| > 1, then $\{(-1)^{n-1} \frac{x^n}{n}\}$ is divergent and hence the series diverges.

- By ratio test, if |x| < 1 the the series converges.
- If |x| > 1, then $\{(-1)^{n-1} \frac{x^n}{n}\}$ is divergent and hence the series diverges.
- For x = 1, the series is an alternating harmonic series and hence it converges.

- By ratio test, if |x| < 1 the the series converges.
- If |x| > 1, then $\{(-1)^{n-1} \frac{x^n}{n}\}$ is divergent and hence the series diverges.
- For x = 1, the series is an alternating harmonic series and hence it converges.
- For x = -1 the series becomes negative of harmonic series hence it diverges.

Find the values of x where the following series converges and diverges.

• (a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$$
, (b) $\sum_{n=0}^{\infty} \frac{(n+1)(x-2)^n}{(2n+1)!}$
(c) $\sum_{n=0}^{\infty} n! x^n$.

Theorem 0.1.

If the power series $\sum_{n=0}^{\infty} a_n x^n$ converges at $x=c\neq 0$, then it converges absolutely for all x with |x|<|c|. If the series diverges at x=d, then it diverges for all x with |x|>|d|.

Theorem 0.1.

If the power series $\sum_{n=0}^{\infty} a_n x^n$ converges at $x=c\neq 0$, then it converges absolutely for all x with |x|<|c|. If the series diverges at x=d, then it diverges for all x with |x|>|d|.

Proof: Suppose that the series converges for x = c that is $\sum_{n=0}^{\infty} a_n c^n$ converges.

Theorem 0.1.

If the power series $\sum_{n=0}^{\infty} a_n x^n$ converges at $x = c \neq 0$, then it converges absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

Proof: Suppose that the series converges for x = c that is $\sum_{n=0}^{\infty} a_n c^n$ converges.

It implies $\lim_{n\to\infty} a_n c^n = 0$ by n-th term test. Hence there exists a positive integer N such that $|a_n c^n| < 1$ for all n > N.

We have that
$$|a_n| < \frac{1}{|c|^n}$$
 for $n > N$.

We have that
$$|a_n| < \frac{1}{|c|^n}$$
 for $n > N$.

Now for any |x| < |c|, we see that

$$|a_n x^n| = |a_n||x|^n < \frac{|x|^n}{|c|^n} = |x/c|^n \text{ for } n > N.$$

We have that $|a_n| < \frac{1}{|c|^n}$ for n > N.

Now for any |x| < |c|, we see that

$$|a_n x^n| = |a_n||x|^n < \frac{|x|^n}{|c|^n} = |x/c|^n \text{ for } n > N.$$

Since |x/c| < 1, the geometric series $\sum_{n=0}^{\infty} |x/c|^n$ converges, and hence by comparison test, the series $\sum_{n=0}^{\infty} |a_n x^n|$ converges.

We have that
$$|a_n| < \frac{1}{|c|^n}$$
 for $n > N$.

Now for any |x| < |c|, we see that

$$|a_n x^n| = |a_n||x|^n < \frac{|x|^n}{|c|^n} = |x/c|^n \text{ for } n > N.$$

Since |x/c| < 1, the geometric series $\sum_{n=0}^{\infty} |x/c|^n$ converges, and hence by comparison test, the series $\sum_{n=0}^{\infty} |a_n x^n|$ converges.

Therefore the $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for |x| < |c|.

Now suppose that the series $\sum_{n=0}^{\infty} a_n x^n$ diverges for x = d. We have to prove that the series $\sum_n a_n x^n$ diverges for |x| > |d|.

Now suppose that the series $\sum_{n=0}^{\infty} a_n x^n$ diverges for x = d. We have to prove that the series $\sum_n a_n x^n$ diverges for |x| > |d|.

Proof by contradiction:

Now suppose that the series $\sum_{n=0}^{\infty} a_n x^n$ diverges for x = d. We have to prove that the series $\sum_n a_n x^n$ diverges for |x| > |d|.

Proof by contradiction: Suppose that for any x with |x| > |d|, the series $\sum_{n=0}^{\infty} a_n x^n$ is convergent.

Now suppose that the series $\sum_{n=0}^{\infty} a_n x^n$ diverges for x = d. We have to prove that the series $\sum_n a_n x^n$ diverges for |x| > |d|.

Proof by contradiction: Suppose that for any x with |x| > |d|, the series $\sum_{n=0}^{\infty} a_n x^n$ is convergent. .

Then by first part, the series $\sum_{n=0}^{\infty} a_n d^n$ is convergent which contradicts the hypothesis.

Now suppose that the series $\sum_{n=0}^{\infty} a_n x^n$ diverges for x = d. We have to prove that the series $\sum_n a_n x^n$ diverges for |x| > |d|.

Proof by contradiction: Suppose that for any x with |x| > |d|, the series $\sum_{n=0}^{\infty} a_n x^n$ is convergent. .

Then by first part, the series $\sum_{n=0}^{\infty} a_n d^n$ is convergent which contradicts the hypothesis.

Therefore, the series $\sum_n a_n x^n$ is not convergent (diverges) for any |x| > |d|.

The above theorem deals with convergence of power series of the form $\sum_{n=0}^{\infty} a_n x^n$. For the series of the form $\sum_{n=0}^{\infty} a_n (x-a)^n$, we can replace (x-a) by t and apply the results to the series $\sum_{n=0}^{\infty} a_n t^n$.

- The above theorem deals with convergence of power series of the form $\sum_{n=0}^{\infty} a_n x^n$. For the series of the form $\sum_{n=0}^{\infty} a_n (x-a)^n$, we can replace (x-a) by t and apply the results to the series $\sum_{n=0}^{\infty} a_n t^n$.
- ② If the power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ converges for some x=c then it converges absolutely for all x such that |x-a|<|c-a|.

- The above theorem deals with convergence of power series of the form $\sum_{n=0}^{\infty} a_n x^n$. For the series of the form $\sum_{n=0}^{\infty} a_n (x-a)^n$, we can replace (x-a) by t and apply the results to the series $\sum_{n=0}^{\infty} a_n t^n$.
- 2 If the power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ converges for some x=c then it converges absolutely for all x such that |x-a|<|c-a|.
- If the power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ diverges for some x=d then it diverges for all x such that |x-a|>|x-d|.