ROBOTINO, système mécatronique mobile fascinant!

La robotique mobile autonome dans l'industrie

- La robotique mobile autonome est de plus en plus utilisée dans de nombreux milieux, notamment dans le milieu industriel.
- Dans celui-ci, cette technologie sera utilisée, par exemple, dans le transport de matériels entre différentes machines ou dans la logistique.
- La robotique mobile et autonome permet, de manière automatisée, de créer un flux des matériels de tailles et de masses différentes vers des lieux différents.
- Ainsi, une très grande flexibilité de flux de matière est ainsi possible.

Vidéo: Exemple industriel

Robotino: Un système fascinant venant de l'industrie

- En partant de ces exemples industriels concrets, le Robotino a été créé.
- Une technologie fascinante:

Les robots mobiles sont des exemples exceptionnels de systèmes pour le domaine de la mécatronique.

- Le Robotino est un système mécatronique mobile complet > Un concentré de technologies.
- La découverte et l'approfondissement de différentes technologies et modes de programmation tout en éveillant la curiosité et développant l'intérêt de l'élève jour après jour, telle est la philosophie du Robotino.
- Grâce à cette technologie embarquée, de nombreuses applications et travaux pratiques peuvent être réalisés par les élèves.

ROBOTINO: Plus qu'un robot ... un pack complet

Robotino: Un nouveau concept

• Dimensions:

■ Diamètre du châssis: 350 mm

■ Hauteur: 200 mm (sans caméra)

• Masse : 11 Kgs.

• Capacité de charge: 6 Kgs

Robotino: Un environnement pédagogique idéal

Alexis PACHOVSKI

Robotino

04.04.2011

Robotino®: IHM intégrée

Les fonctions suivantes sont disponibles:

- Mise en marche du robot.
- Sélection de la langue (DE,EN,ES,FR).
- Status des batteries.
- Adresses du réseau.
- Sélection de programmes.

Robotino: Accés facile et rapide à tout le hardware

- Ouverture du carter de la partie commande aisée.
- Démontage de la partie commande rapide.
- Le montage/démontage des batteries est facile.
- Accès aisé aux moteurs, réducteur et aux roues

Robotino: une partie commande complète

La partie commande est composée de :

- Un processeur PC 104+ cadencée à 500 MHz
- SDRAM 128 MB
- Carte mémoire Compact Flash 1 GO
- OS Linux temps réel: Linux UBUNTU 9.1
- Point d'accès LAN Wireless
- 1 x port Ethernet
- 2 x port USB 2.0
- 1 x port VGA
- Accès rapide à l'OS par :
 - -Soit par connexion avec "putty.exe" à partir de votre ordinateur
 - -Ou soit par connexion d'un écran et clavier → Robotino == Ordinateur

Robotino: De nombreux capteurs embarqués (1)

• Capteurs à infrarouges (x 9, SHARP)

		Absolute maximum ratings		Electro-optical characteristics*1				
Model No.	Features	Vcc (V)	Topr (°C)	Distance measuring range (cm)	Voh (V) MIN.	Vol (V) MAX.	Dissipation Operating (mA)	on current Standby (μΑ)
GP2D02J0000F	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, 8-bit serial output	-0.3 to +10	-10 to +60	10 to 80	Vcc -0.3	0.3	MAX. 35	MAX. 8
GP2D12J0000F	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, Linear voltage output	-0.3 to +7	-10 to +60	10 to 80	(at L = ΔVo (TY	P.) = 0.4 V 80 cm), P.) = 2.0 V m → 10 cm)	MAX. 50	-
GP2Y0A21YK0F	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, Linear voltage output	-0.3 to +7	-10 to +60	10 to 80	(at L = ∆Vo (TY	P.) = 0.4 V 80 cm), P.) = 1.9 V m → 10 cm)	MAX. 40	_
GP2D120XJ00F	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, Linear voltage output	-0.3 to +7	-10 to +60	4 to 30	(at`L = ΔVo (TYF	P.) = 0.4 V 30 cm), P.) = 2.25 V cm → 4 cm)	MAX. 50	
GP2Y0D310K	Digital voltage output according to the measured distance (at 10 cm) of GP2Y0D340K	-0.3 to +7	-10 to +60	-	Vcc -0.3	0.6	MAX. 35	-
GP2Y0D340K	Compact, thin type (15 x 9.6 x 8.7 mm: sensor part), Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, Digital voltage output according to the measured distance (at 40 cm)	-0.3 to +7	-10 to +60	-	Vcc -0.3	0.6	MAX. 35	-
GP2D15J0000F	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, Digital voltage output	-0.3 to +7	-10 to +60	10 to 80	Vcc -0.3	0.6	MAX. 50	_
GP2Y0D21YK0F	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, Digital voltage output	-0.3 to +7	-10 to +60	10 to 80	Vcc -0.3	0.6	MAX. 40	_

Robotino: De nombreux capteurs embarqués (2)

• Encodeur (x 3, Dunkermotoren)

			// \			
Data / Leistungso	laten	RE 30-2	/ RE 30-3	RE 30-3 TI	RE 56-3	RE 56-3 TI
Operating voltage/ Versorgungsspannung	VDC	5	5	5	5	5
impulses per revolution/ Impulszahl pro Umdrehung	ppr	100 512	500 512	500 512	1000	1000
Signal rise time/ Signalanstiegszeit	ns	200	180	180	180	180
Signal decay time/ Signalabfalizeit	ns*	50	40	40	40	40
Current consumption/ Stromaufnahme	mΔ	17 (max. 40)	57 (max. 85)	max. 85	57 (max. 85)	max. 85
Output voltage / Ausgangsspannung (low-level)	VDC	max. 0.4 (3.2 mA)	max. 0.4 (3.9 mA)	nnax. 0.5 (20 mA)	max. 0.4 (3.9 mA)	max. 0.5 (20 mA)
Output voitage/ Ausgangsspannung (high-level)	VDC	mln. 2.4 (40 μA)	mln. 2.4 (200 μA)	jnin. 2.4 (200 μA)	min. 2.4 (200 μA)	mln. 2.4 (200 μA)
Max. output current/ max. Ausgangsstrom	mΔ	- 1	-	70	-	70
Operating temperature/ Betriebstemperatur	°C	- 40 + 100	- 40 + 100	- 40 + 100	- 40 + 100	- 40 + 100
Protection dass/ Schutzart	IP	30	30 /	30	30	30

Robotino: De nombreux capteurs embarqués (3)

Capteur anti-collision (x 1, MAYSER)

Data Sheet

Safety Edge comprising sensor SL/W and SL/BK assembled in rubber profile GP 39/50/60 with mounting rail and control unit

rubber profile GP 39/50/60 with mounting rail and control unit					
Protection class sensor *)	IP 65	100			
Switching operations sensor *)	> 105	\mathcal{N}_{i}			
Switching times	GP 39 EPDM	GP 50 EPDM	GP 60 EPDM		
Control unit SG-	EFS 1X4 Z	(2/1			
Response time *)	38 ms	144 ms	95 ms		
			100 mm/s		
Reset	manual or a	utomatic			
Actuating force, actuating distance	e, overtravel a	and switching	angle		
Testing basis:		Ĭ	-		
	-	-	_		
	A	_	В		
	yes		yes		
	< 150 N	< 150 N	< 150 N		
		1			
			7 mm		
	4 mm	15 mm	10 mm		
	_	/			
			20 mm		
			16 mm		
Effective switching angle "	45°	90°	90°		
Behaviour in fault instance	EN 954 Cate	egory 3			
	ditions				
	00 oc to	. EE 00			
DIN V 31 000 12, Type B	+ 5 -0 10	+ 35 °C			
Operation – Maintenance					
Maintenance	The sensor	is maintenand	ce free.		
Monitoring	The control	unit aids moni	itoring.		
Expertinspection	 Depending 	g on the worki	ng rate, the		
	Protection class sensor *) Switching operations sensor *) Switching times Control unit SG- Response time *) Test speed Reset Actuating force, actuating distance Testing basis: prEN 1760-2 DIN V 31006 T2, Type GS-BE-17 Actuating force *) Actuating distance *) at 100 mm/s at 100 mm/s at 100 mm/s Seffective switching angle *) Behaviour in fault instance Operating and environmental cond Ambient temperature sensor *) GS-BE-17 DIN V 31 006 T2, Type A DIN V 31 006 T2, Type B Operation – Maintenance Maintenance Maintenance Monitoring	Protection class sensor *) IP 65 Switching operations sensor *) > 10° Switching times GP 39 Control unit SG-Response time *) 38 ms Test speed 100 mm/s Reset manual or an Actuating force, actuating distance, overtravel at the sensor feet of the sensor feet o	Protection class sensor *)		

7.3 Expert inspection (once per year) per ZH 1/494

- he control unit aids monitoring. Depending on the working rate, the sensors should be tested for function at regular intervals either manually or by applying the relevant testpiece. A visual examination for damages should
- also be carried out.
 Test to insure that the rubber profile is sitting properly in the aluminium retaining rail.
- Chemical resistance

The sensor is resistant to customary chemical influences such as diluted acids, alkaline solutions and alcohol for an exposure duration of 24 hours.

12

- Dimensional tolerances
- Length of SL per DIN 7715-L2
- · Distances per DIN ISO 2768-v

Robotino: De nombreux capteurs embarqués (4)

• Caméra IP (x 1)

Technical Specifications	
Image Sensor	Colour VGA CMOS
Colour Depth	24 Bit True Colour
PC-connection	USB 1.1
Video resolutions	160 x 120, 30fps (SQCGA) 176 x 144, 30fps (QCIF) 320 x 240, 30fps (QVGA) 352 x 288, 30fps (CIF) 640 x 480, 15fps (VGA)
Still Image Resolutions	160 x 120 (SQCGA) 176 x 144 (QCIF) 320 x 240 (QVGA) 352 x 288 (CIF) 640 x 480 (VGA) 1024 x 768 (SVGA)
Still Capture Format	BMP, JPG

Robotino: Extension de capteurs et/ou actionneurs possible (1)

Robotino: Extension de capteurs et/ou actionneurs possible (2)

Dans le pack Robotino, 2 types de capteurs supplémentaires sont fournis:

• Capteur inductif (x 1, FESTO)

Technical data	
Operating voltage	15 – 30 V DC
Output voltage	0 – 10 V
Туре	SIEA-M12B-UI-S
Part no.	538292
Diameter	M12
Sensing range	0 to 6 mm
Mounting	Quasi embeddable
Switching frequency	1000 Hz
Ambient temperature	-25 -+70° C
Protection	IP 67
Housing material	Chrome-plated brass
Max. tightening torque	10 Nm
Reproducibility	0.01 mm

Robotino: Une mécanique originale (1)

Le système directionnel est composé de:

- 3 Moteurs avec un encoder par moteur.
- Transmission 1/16.
- Roues omnidirectionnelles (diamètre: 80 mm).

• Nombreux fichiers Solidworks fournis (sur demande)

Robotino: Une mécanique originale (2)

• Moteur DC (x 3, Dunkelmotoren, GR 42x25)

• •		
Moteur DC (GR 42x25)	Valeur	Unité
Tension nominale	24	V DC
Vitesse nominale	3600	tr/min
Couple nominale	3.8	Ncm
Courant nominal	0.9	Α
Vitesse à vide	4200	tr/min
Courant à vide	0.17	Α
Moment d'inertie	71	gcm ²
Masse	390	g

• Roue (x 3)

Roue (ARG 80)	Valeur	Unité
Diamètre	80	mm
Charge maximale	40	Kg

Robotino: Plusieurs possibilités de réseaux

- La communication avec le Robotino peut être réalisé soit par Wifi, soit par une connexion directe avec un câble Ethernet.
- Différentes possibilités de réseaux sont possibles pour se connecter à un ou plusieurs Robotinos:

1.

Robotino: Une plateforme de programmation fascinante et complète

Robotino est une plateforme de programmation très évoluée. En effet, il peut-être programmé avec de nombreux langages:

- Robotino View
- C++
- JAVA
- (
- Visual Basic
- Matlab
- Labview

Robotino

Nouvelle interface de programmation graphique: RobotinoView 2

Robotino: Robotino View 2 (1)

21

Robotino: Robotino View 2(2)

- RobotinoView 2 fonctionne avec Windows 2000 ou XP ou Vista.
- Interaction directe par Wifi avec le robot mobil sans aucune compilation.
- Librairie de blocs de fonctions très entendue.
- Affichage en temps réel des entrés et des sorties de blocs de fonctions.
- Affichage de fenêtre de paramétrage pour chaque blocs de fonctions afin de changer leurs paramètres internes → Effet en temps réel.
- Une strict séparation entre:
 - Les blocs de fonctions "outils".
 - Les blocs de fonctions "Hardware".
- Plusieurs programmes peuvent fonctionner en même temps et s'échanger des données.
- Un design proche de celui de "Windows Explorer".
- Outil pour pour créer ses propres blocks et ses propres fonctions C++.
- Programmation en GRAFCET.
- Intégration de plusieurs matériels dans une application ou une application peut contrôler plusieurs Robotinos en même temps.
- Outil pour créer une communication OPC.
- Outil pour télécharger toute l'application dans le Robotino → Le Robotino est autonome.
- ... etc.

23

Robotino: Robotino View 2 (3)

- Communication OPC avec Robotino View 2
 - Communication OPC: Open Communication Interface basée sur un protocole de communication Client Serveur.
 - ■Dans cette configuration, *Robotino View* agit comme un client OPC. L'utilisateur choisi le serveur OPC et les variables à échanger.
 - Il peut être échangé jusqu'à 4 octets d'E/S TOR.
 - Il peut être échangé jusqu'à 4 valeurs analogiques.

Robotino: Robotino View 2 (4)

- Par la communication OPC, le Robotino peut être contrôlé par un automate.
- Exemple de configuration:
 - ➤ Robotino View et un logiciel de programmation automate (Unity Pro, STEP 7, CoDeSys) sont lancés sur un PC.
 - ➤ Un automate externe est connecté au PC avec un Easyport.
 - ➤ Le PC communique en Wifi avec le Robotino.
- Approche générale:
 - ➤ Des programmes basiques de contrôle sont implémentés sur *Robotino View 2*.
 - Le contrôle général est réalisé par l'automate.

Le logiciel EzOPC permettant de mettre en place la communication OPC est fourni gratuitement!!

Robotino: Robotino View 2 (5)

RobotinoView offre de nombreuses possibilités d'exploitations et d'exercices possibles. Ce logiciel est fourni avec le Robotino. Voici, par exemple, les domaines qui pourront être abordés:

- La logique / La logique de commande
- Etude de capteurs / Etalonnage de capteurs
- Mécanique
- Mécanique du point / Calcul vectoriel
- Traitement de l'image
- Outils de robotique
- Asservissement de position (Odométrie)
- Asservissement de vitesse
- Calcul de distance mesurée
- Navigation
- Echange de données / Serveur OPC
- ... etc.

Robotino: Programmation C++

• Programmation directe à partir de Windows: Librairie complète de fonctions et API fourni.

<u>Compilateur s utilisables:</u> Visual Studio 2003 avec SP1, Visual Studio 2005 avec SP1, Visual Studio 2008, Visual C++ 2008 Express Edition, Visual C 2008 Express Edition.

→ Robotino pilotable directement à partir de Windows

- Programmation à partir de **Linux**: Editeur Linux et un compilateur C++ intégré au PC 104 (Librairie complète de fonctions fournie):
 - Soit accès via un terminal de programmation (Putty.exe) sur Windows et connexion par WLAN:

- Soit connexion directe d'un moniteur et d'un clavier USB sur le contrôleur du robot (PC 104). Accès direct à l'éditeur embarqué.

Robotino: Un dossier pédagogique complet

Avec le Robotino, un dossier pédagogique couvrant différents niveaux, est proposé. Il est composé de diverses parties:

- <u>Introduction:</u> Contextualisation du Robotino et explicatif du Robotino en tant que matériel de formation.
- Partie A: Théorie de base
 - Technologie des capteurs.
 - Mécanique.
 - Asservissement.
 - Guide d'utilisation de Robotino View.
- Partie B: Exercices / Projets
 - 11 projets de différents niveaux sont proposés.
- Partie C: Solutions des Exercices / Projets.
- <u>CD sources:</u> Documentations techniques et exemples de programmes.

A commander en plus du Robotino !!!

Robotino: Deux sites internet dédiés

- Il existe deux sites dédiés au Robotino.
- Site n°1: www.openrobotino.org
 - Forum pour poser vos questions → Une personne de chez Festo vous répond pour vous aider.
 - Base de téléchargement pour RobotinoView et RobotinoSim.
 - Travaux pratiques téléchargeables venant de différentes institutions du monde entier.
- **Site n°2:** http://wiki.openrobotino.org/index.php?title=Main_Page
 - Plateforme de téléchargement pour les APIs et drivers.
 - Toutes les dernières versions des APIs et drivers pour les différents langages de programmation sont disponibles gratuitement.
 - Des informations complémentaires sur chaque langage de programmation sont aussi disponibles.

AUSSI:

De nombreuses vidéos sur le site <u>www.youtube.com</u> sont disponibles!

Robotino

Plateforme de programmation étendue

Robotino: Programmation avec JAVA

- Afin de programmer le Robotino en JAVA, Festo Didactic fournit l'API (OpenRobotino API) ainsi qu'une bibliothèque de fonctions.
- De nombreux exemples de programmes JAVA sont aussi fournis.
- Différents logiciels de programmation JAVA peuvent être utilisés. Par exemple ECLIPSE.

Robotino: Programmation avec MATLAB/SIMULINK

- Festo Didactic fournit, gratuitement, un Driver pour permettre la communication et la programmation du Robotino en utilisant directement le logiciel MATLAB/SIMULINK.
- Possibilités de programmation démultipliées.
- De nombreux domaines pourront ainsi être approfondis tels que:
 - Asservissement / Régulation
 - Intelligence par Grafcet avec l'outil « Stateflow »
 - Modélisation
 - Mesures et obtention de courbes facilitées

Robotino: Programmation avec Labview

- Festo Didactic fournit un complément complet de bibliothèques afin de pouvoir exploiter le Robotino avec le logiciel LabView.
- Labview, logiciel performant de modélisation et de réalisation et d'exploitations de mesures.
- Exploitations des signaux de tous les capteurs Optimisées.

Robotino

Outils de simulation

Robotino: La robotique par la simulation (1)

- En plus du robot en lui-même, un outil de simulation est fourni.
- Le Robotino évolue dans un domaine bien précis composé d'obstacles, de lignes,...etc.
- Dans cet environnement de simulation, le Robotino peut être programmé et piloté avec RobotinoView, en C++, en JAVA, avec MATLAB/SIMULINK et Labview,...etc.
- Outil parfait pour tester les programmes avant de les implanter dans le robot.
- 2 outils de simulation sont proposés:
 - Robotino SIM
 - Robotino SIM Professional

Robotino: La robotique par la simulation (2)

Robotino SIM

- Logiciel gratuit (téléchargeable sur notre site).
- Disponible dès maintenant.
- Environnement de simulation fixe.
- 1 seul Robotino simulé à la fois.

Robotino SIM Professional:

- Logiciel non gratuit.
- Package fourni: CD, Guide utilisateur, Clé USB de licences: 25 licences réseaux et 1 licences poste fixe.
- Les principaux outils composant ce logiciel:
 - Editeur d'environnement: Divers environnements peuvent être modélisés
 - Librairie d'objets d'environnement: Murs, obstacles, ligne métallique, etc (Mise à jour gratuite de librairie Online).
 - Librairie de composants supplémentaires pour le Robotino: Capteurs, pinces, laser, etc (Mise à jour gratuite de librairie Online).
 - Librairie d'intégration aux stations MPS.
- Un ou plusieurs Robotino peuvent évoluer en même temps dans ce logiciel de simulation.

Robotino

Carte E/S performante et communicante

Robotino: Carte d'E/S performante et communicante (1)

• Au niveau de la partie commande, nous avons l'architecture suivante:

Robotino: Carte d'E/S performante et communicante (2)

- Plusieurs interfaces disponibles: Ethernet, RS 232, CAN.
- Propre adresse IP.
- Propre alimentation 5 V DC.
- Processeur LPC 2378 ouvert pour reprogrammation.
- Fréquence de communication avec les capteurs/actionneurs: 50 MHz.
- Fréquence de communication avec le PC 104 +: 100 Hz.
- Possibilité de communication directe avec la carte E/S sur base Ethernet (sans passer par le PC 104)
 - → Fréquence de communication: 1 kHz.
- Permet de réaliser des applicatifs « Hardware in the loop ».

Robotino: Carte d'E/S performante et communicante (3)

- La carte dispose de sa propre connexion Ethernet et sa propre adresse IP.
- L'utilisateur peut ainsi soit connecter directement à la carte E/S soit au PC 104.
- Ainsi de nombreux contrôleurs externes (software et/ou hardware) peuvent être implémentés afin d'exploiter et de piloter le Robotino.
- La connexion directe à la carte permet de raccourcir considérablement le temps de communication entre le contrôleur et la carte (et ses actionneurs connectés).
- Cette connexion directe permet aussi d'améliorer considérablement la précision dans le déplacement et le positionnement du Robotino.

Robotino: Carte d'E/S performante et communicante (4)

• Temps de communication considérablement réduit!

Robotino: Carte d'E/S performante et communicante (5)

- Afin de faciliter le traçage des courbes ainsi que le choix du contrôleur, une interface d'exploitation de cette nouvelle carte sera fournie: EA 09 View.
- Cet applicatif permet, entre autres, de choisir le contrôleur du moteur à utiliser (PID présent sur la carte, contrôleur externe), le moteur pour lequel on souhaite étudier les signaux et relever les courbes.
- Les signaux pouvant être affichés (au choix) sont:
 - La consigne de vitesse
 - La commande générée
 - I a vitesse actuelle
 - Le courant généré

Alexis PACHOVSKI Robotino 04.04.2011

Mode de

contrôle

communication /

Robotino: Carte d'E/S performante et communicante (6)

• Sur cette carte, chaque moteur est contrôlé avec un pont en H et le courant est mesuré grâce à une petite résistance placée juste après ce pont.

Current sensing will be done via a small resistor at this point. Hence the current is always positive.

Robotino: Carte d'E/S performante et communicante (7)

- <u>1^{ère} possibilité:</u> RobotinoView2 et interface de visualisation EA09 View.
- Réglage de la consigne et des paramètres du PID, en temps réel, à travers RobotinoView2.
- Matériel utilisé: PC, RobotinoView2, PC 104, Carte E/S.
- Communication par Wifi.

Robotino: Carte d'E/S performante et communicante (8)

- 2ème possibilité: Matlab
- Réglage des consignes et implémentation de divers types de contrôleurs (PID, Fuzzy, LQR, H∞,...) dans Matlab.
- •Matériel utilisé: PC, Matlab, Carte E/S.
- Connexion et communication directe avec la carte E/S en Ethernet.
- Courbes moteurs avec PID carte E/S ou sans aucun contrôleur.

Alexis PACHOVSKI

Robotino

04.04.2011

Robotino: Carte d'E/S performante et communicante (9)

- 3ème possibilité: Interface Telnet et EA 09 View.
- Réglage direct des paramètres du PID de la carte E/S par interface Telnet.
- Matériel utilisé: PC, Carte E/S.
- Connexion et communication par Ethernet directement avec la carte E/S.

Robotino: Carte d'E/S performante et communicante (10)

- <u>4^{ème} possibilité</u>: Carte contrôleur externe (programmable en C++) et EA View 09.
- Matériel utilisé: Carte contrôleur externe, Carte E/S.
- Connexion et communication directe avec la carte E/S en Ethernet.
- Contrôleur programmé en C++ et implanté dans la carte.
- Visualisation des courbes avec EA View 09.

Robotino

Pince électrique

Robotino: Pince électrique (1)

- Une pince électrique peut être installée.
- Cette pince est actuellement disponible.
- Elle est livrée sous forme de kit qui se compose de:
 - Pince électrique industrielle (Fonction serrage; Pas de déplacement suivant x, y ou z).
 - Câbles électriques.
 - Capteur inductif supplémentaire.
 - Scotch métallique.
 - Jeu de pièces à manipuler.
 - Support métallique, à la hauteur du Robotino, pour pièces manipulées.
- Bloc fonction pince dans *RobotinoView*.

Robotino®

Gripper

Robotino: Pince électrique (2)

- Le status de la pince (ouvert/fermé) est détecté par une mesure du courant.
- La présence de pièce entre les mors de la pince est détecté par une barrière lumineuse.
- Quand la pince entre en contact avec une plateforme support, un switch à contact (4) sera actionné.

Robotino

Moyens de Navigation

Robotino - Moyens de navigation (1)

• Afin de palier les problèmes de navigation, le Robotino a besoin de capteurs et de solutions pour pouvoir avoir des information sur sa position actuelle et son orientation relative à certains points de référence.

Robotino - Moyens de navigation (2): Odométrie

- L'Odométrie est un moyen de calcul de la position actuelle du robot basé sur la rotation précédente des roues du robot.
- Pour chaque période, la distance parcourue par le robot est calculée grâce à la vitesse de rotation des roues, donnée par l'encodeur de chaque moteur.
- Par intégration, on obtient le mouvement actuel par rapport à la position de démarrage.

Information: Seulement disponible avec RobotinoView 1.7 (ou supérieure) et la carte flash de 1 GB.

• Remarques:

- Bonne performance locale
- Précision moins bonne sur de longues distances à cause du glissement des roues et des conditions du sol

Robotino - Moyens de navigation (3): Odométrie

• Exemple:

Alexis PACHOVSKI

Robotino

04.04.2011

Spin axis

Rotor

Robotino - Moyens de navigation (4): Intégration d'un gyroscope

Vidéo: Avec gyroscope

- En standard sur le Robotino, les changements de direction ne pouvaient pas être mesurés.
- C'est pour cette raison que nous vous proposons un capteur gyroscopique
 - → Il permet de mesurer les changements de direction lors du déplacement du Robotino.
 - → Ainsi, une plus grande précision dans la navigation est obtenue.
- Le capteur proposé en option, est le suivant:
 - CruizCore XG1000 / XG1010
 - Connecteur RS 232 et USB
 - Sortie capteur ajustable

Largeur: 5 cm Hauteur: 2 cm Masse: 50 g

04.04.2011

Gyroscope

frame

Gimbal

Vidéo: Sans gyroscope

Robotino

Alexis PACHOVSKI

Robotino

Référentiel absolu

Robotino: Navigation dans un référentiel absolu (1)

- Le système proposé permet de créer un référentiel absolu.
- Le capteur de navigation « North Star » identifie les 2 spots lumineux par les différentes fréquences générées par les sources lumineuses.

- Ainsi, les 2 points fixes obtenus définissent un système de coordonnées.
- Grâce au référentiel ainsi obtenu, suite au mouvement, le capteur *« North Star »* permet de calculer la nouvelle position et la nouvelle orientation du Robotino: X, Y et α .
 - → Précision du mouvement accrue!!

Robotino: Navigation dans un référentiel absolu (2)

- Ainsi ce package est comparable à un GPS d'intérieur.
- Il est à ce jour disponible.
- Il se compose de 2 packages qui sont:
 - Capteur de navigation « North Star »
 - Capteur + carte électronique
 - Interface USB
 - Manuel

Le bloc, permettant d'utiliser ce capteur dans Robotino View, est fourni.

- Jeu de projecteur et spots lumineux:
 - 1 x Projecteur lumineux
 - Manuel

Capteur de navigation: North Star

Projecteur

Robotino

Bars manipulateur électrique

Robotino: Bras manipulateur électrique

- Manipulateur composé de 3 axes avec moteurs électriques CC.
- Une pince avec une dimension de saisie étendue à 4 cm; Capteurs de présence pièces.
- Charge admissible: 200 g.
- Carte de contrôle connectable directement sur le bornier.
- Interface USB.
- Alimentation: 24 V DC.
- Montage direct sur la face avant du Robotino.
- Disponibilité: 3^{ème} trimestre 2011.

Robotino

Laser de détection

Robotino: Laser de localisation et de Navigation

- Intégration d'un laser de localisation et de navigation.
- Ce laser permet au Robotino d'étudier son environnement (Obstacles et autres) et de se repérer par rapport à celui-ci.
- Afin d'utiliser complètement ce laser, différents blocs seront intégrés dans *Robotino View 2.0*. Ces blocs sont:
 - <u>Bloc composant « Scanning Laser »:</u> Bloc de l'élément laser.
 - <u>Bloc fonction « Protected Area »:</u> Permet de définir une zone de « protection » par rapport aux obstacles repérés. Ce bloc fournira un signal signifiant qu'un obstacle est dans cette zone.
 - <u>Bloc fonction « Localisation »:</u> Permet d'obtenir une carte de l'environnement et la position du Robotino dans cet environnement.
 - <u>Bloc fonction « Path planning »:</u> Permet de calculer les positions pour faire se déplacer le Robotino d'un point de départ vers un point final en évitant les obstacles.

Robotino: Un système pédagogique multi-technologique (1)

- Comme présenté, le Robotino est un concentré de technologies. Il permet d'aborder et d'approfondir les domaines suivants:
 - Conception mécanique
 - Technologie des capteurs (Etude des technologies; Etalonnage)
 - Réseaux / Communication (Ethernet, Wifi, OPC)
 - Programmation (Blocs, Grafcet, Automate, C++, C, JAVA, Matlab/Simulink, LabView,..etc)
 - Electronique
 - Mécanique du point (Cinématique, calcul vectoriel)
 - Asservissement / Régulation (Distance, Vitesse)
 - Navigation
 - Simulation
 - Robotique

Robotino: Un système pédagogique multi-technologique (2)

- Grâce à toutes ses composantes, de nombreux thèmes pédagogiques peuvent être couverts avec ce système:
 - **Thème n°1:** Acquisition d'une grandeur physique
 - **Thème n°2:** Traitement analogique du signal
 - Thème n°3: Traitement numérique du signal
 - Thème n°4: Transmission du signal
 - **Thème n°5:** Asservissement / Régulation (Systèmes linéaires)
 - **Thème n°6:** Concevoir (Analyser un dossier de spécification; Définir l'architecture globale d'un prototype ou d'un système; Justifier le choix d'une architecture matérielle pour une application donnée; Identifier les contraintes de temps d'une application temps réel en milieu industriel; Vérifier la compatibilité d'un matériel avec des contraintes de temps imposés; Valider l'organisation des tâches d'une application temps réel; Caractériser les contraintes principales d'un système de transmission de l'information; Décrire les tâches d'une application de communication)
 - **Thème n°7:** Réaliser (Ecrire les tâches d'une application; Ecrire les programmes de communication entre machines)
 - ...etc.

Robotino: Un système pédagogique multi-technologique (3)

- Aussi, de nombreuses activités orientées projets pourront être proposées aux élèves.
- A partir d'un cahier des charges, l'élève pourra mener des projets à bien.
- Ainsi il pourra développer des facultés nécessaires pour réussir dans sa vie professionnelle.
- Par exemple, les projets pouvant être proposés sont:
 - Déplacement du Robotino vers des emplacements spécifiques.
 - S'approcher d'un obstacle et le contourner.
 - Décrire une aire circulaire en maintenant le rayon et la direction.
 - Suivre un tracé (Scotch métallique).
 - Analyse et optimisation des contrôleurs PID des moteurs.
 - Reconnaissance d'objets par la couleur et réalisation d'un comportement spécifique par rapport à ces objets.
 - Avec les stations MPS, prise d'un objet au niveau d'une station et livraison de cet objet au niveau d'une autre station.
 - ..., etc.

Vidéo: Suivi de ligne; Vidéo: Communication inter-Robotino;

Vidéo: Communication Robotino avec autre système;

Robotino: Un système pédagogique multi-technologique (4)

• Exemple de projet: Intégration à une ligne de production type MPS

Robotino: Un système pédagogique multi-technologique (5)

- Exemple de projet: Intégration à une ligne de production type MPS
 - Difficultés:

Navigation

Position inconnue Obstacles dynamiques

Interaction avec les autres stations

Communication Précision des positions

Robotino: Un système pédagogique multi-technologique (6)

• Exemple de projet: Intégration à une ligne de production type MPS

Résolution des problèmes de navigation

- OdométrieCorrection par gyroscope
- Evitement des obstacles Capteurs infrarouges
- Précision de positionnement
 Capteur inductif (ligne métallique)
 Centrage mécanique

Robotino: Un système pédagogique multi-technologique (7)

• Exemple de projet: Intégration à une ligne de production type MPS

Résolution des problèmes de communication et d'intégration avec les autres stations

- Communication via Ethernet
- Intégration du Robotino via le WLAN
- Le système de supervision SCADA génère des ordres au système de contrôle local
- Les Robotinos reçoivent des tâches de transports.

Vidéo Projet: Robotino + MPS

Robotino: Un système pédagogique multi-technologique (8)

COMMUNICATION

- Wifi
- Fthernet
- OPC
- Communication entre Robotinos

Mécanique / Electronique

- PC embarqué
- Divers capteurs
- Moteurs CC avec réducteur
- Roues "suédoise"

ROBOTINO

Système mécatronique mobile

PROGRAMMATION

- -Programmation graphique
- GRAFCET
- -Matlab/Simulink
- C++
- LabView
- ...etc.

TEMPS-RÉEL

- Linux temps réel
- Multi-tâches

Contrôle / Asservissement

- Controller tuning-up
- Implementation of new controllers
- Perturbations
- Curve analysis

Robotino: Support de compétition (1)

RoboCup

- Compétition mondiale de robot avec
 Plusieurs types de compétitions.
- Une de ces compétitions ne se fait qu'avec des Robotinos
- → Festo Hockey-Challenge Cup

Les équipes s'affrontent en « Indoor Ice-Hockey »

Avantages:

- Equipement additionnel simple pour le Robotino.

- Investissement en équipement technique peu important pour les participants.
- Concentration sur le développement et l'implémentation de méthodes d'intelligence artificielle.

Vidéo: RoboCup

Robotino: Support de compétition(2)

• RoboCup 2010

- RoboCup 2010 aura lieu à Singapoure.
- Une de compétitons sera faite seulement avec le Robotino → « Festo Logistics Competition » (FLC).
- Cette compétition a comme inspiration le monde de la production industrielle: Les robots autonomes mobiles sont utilisés pour des opérations de logistiques dans des processus de production complexes.
- Chaque équipe aura 3 Robotinos avec le même équipement standard (Composants RFID et composants mécaniques pour pousser le palet ou bien tirer).
- Tous types de capteurs peuvent être ajoutés ou bien changés à part les composants RFID.
- Aucune modification de la partie commande et de la partie mécanique n'est autorisée.
- Aire de la compétition: surface de 6 m x 6 m avec 10 machines (Appareil de lecture/écriture RFID), aire de produits non finis, aire de produits finis.
- *Une équipe (L'équipe Logistique)* doit organiser la logistique pour la production et la livraison des produits; L'équipe adverse a la tâche de perturber la production et le processus de livraison.
- Chaque équipe doit parvenir à produire et livrer le maximum de produits finis.

Robotino: Support de compétition (3)

Robotino: Support de compétition (4)

• WorldSkills

■ Le Robotino est le support mobile pour le concours « WorldSkills », métier 23.

