CMSC 651, Automata Theory, Fall 2010

Sandipan Dey, Homework Assignment - 11

December 18, 2010

Problem 1 Solution

We have to show that for any language L,

$$L \in Co - NE \Rightarrow L \in NE/poly$$

Proof

We have, $L \in Co - NE \Rightarrow \bar{L} \in NE$.

Also, let's assume that we have a set of NTMs M_c , each machine runs for $2^{c|x|}$ steps & accepts if $x \in \bar{L}$, $\forall c = 1, 2, ...$

Let's Construct a TM M s.t.

M(x)

- 1. Constructs NTMs M_c , $c \ge 1$.
- 2. Runs M_1, M_2, \ldots simultaneously on x.
- 3. Accepts x if any of the M_c s accepts, ow rejects.

M accepts iff $x \in \bar{L} \Rightarrow L(M) = \bar{L}$.

Now we have to construct a TM M' that runs in NE with size of advice function being polynomial in input size and decides L. We have to decide the membership in L, which is same as non-membership in \bar{L} and can be nondeterministically decided using census in the following manner:

M'(x)

- 1. Constructs & runs NTMs $M'_c(\langle x, c|x| \rangle)$, each machine guesses $|L(M_c)| = 2^{2^{c|x|}}$ different (e.g. lexicographically) strings in $L(M_c)$ & accepts if none equals x.
- 2. Accepts x if every M'_c accepts, ow rejects.

M' accepts iff $x \in L \Rightarrow L(M') = L \in NE/poly$.

Problem 2 Solution

To prove: $\exists .BP.P \subseteq BP.\exists .P$.

Proof

Let $L \in \exists \cdot BP \cdot P$.

Then there exist a language L' in $BP \cdot P$ and a bound $p' \in \mathbf{poly}$ such that $L = \exists^{p'}(L')$ By probability amplification to obtain a language L'' in P and a bound $p'' \in \mathbf{poly}$ s. t.

$$\begin{split} (\langle x,w\rangle,\langle y,w\rangle) \in L' &\implies \Pr_r \left[(\langle \langle x,w\rangle,r\rangle,\langle \langle y,w\rangle,r\rangle) \in L'' \right] \geq 1 - 2^{-\ell_n'-2} \ , \ \text{and} \\ (\langle x,w\rangle,\langle y,w\rangle) \notin L' &\implies \Pr_r \left[(\langle \langle x,w\rangle,r\rangle,\langle \langle y,w\rangle,r\rangle) \in L'' \right] \leq 2^{-\ell_n'-2} \end{split}$$

for every n-bit input pair (x, y) and witness w.

Here, $\ell'_n := \lceil p'(\log n) \rceil$, and the random string r is uniformly drawn from $\mathbb{B}^{\ell''_n}$, where $\ell''_n := \lceil p''(\log n) \rceil$.

$$\begin{array}{l} \text{Define} \quad L''' := \left\{ \left(\langle \langle x, r_1 \rangle, w_1 \rangle, \langle \langle y, r_2 \rangle, w_2 \rangle \right) \, \middle| \, \left(\langle \langle x, w_1 \rangle, r_1 \rangle, \langle \langle y, w_2 \rangle, r_2 \rangle \right) \in L'' \right\} \\ \text{Hence, } \quad L'''' := \exists^{\vec{p'}}(L''') \in \exists \cdot \text{P}. \end{array}$$

Now,

$$\begin{split} (x,y) \in L &\implies \exists w \colon (\langle x,w \rangle, \langle y,w \rangle) \in L' \\ &\implies \Pr_r \left[\exists w \colon (\langle \langle x,w \rangle, r \rangle, \langle \langle y,w \rangle, r \rangle) \in L'' \right] \geq \frac{3}{4} \\ &\implies \Pr_r \left[\exists w \colon (\langle \langle x,r \rangle, w \rangle, \langle \langle y,r \rangle, w \rangle) \in L''' \right] \geq \frac{3}{4} \\ &\implies \Pr_r \left[(\langle x,r \rangle, \langle y,r \rangle) \in L'''' \right] \geq \frac{3}{4} \ , \end{split}$$

$$\begin{split} (x,y) \not\in L &\implies \forall w \colon (\langle x,w \rangle, \langle y,w \rangle) \not\in L' \\ &\implies \Pr_r \left[\exists w \colon (\langle \langle x,w \rangle, r \rangle, \langle \langle y,w \rangle, r \rangle) \in L'' \right] \leq 2^{\ell'_n} \cdot 2^{-\ell'_n - 2} \\ &\implies \Pr_r \left[(\langle x,r \rangle, \langle y,r \rangle) \in L'''' \right] \leq \frac{1}{4} \ . \end{split}$$

 $\implies L \in \mathrm{BP} \cdot \exists \cdot \mathrm{P}.$

$$\text{Hence, } L \in \exists \cdot \mathsf{BP} \cdot \mathsf{P.} \implies L \in \mathsf{BP} \cdot \exists \cdot \mathsf{P.} \qquad \quad \textbf{...} \ \exists \cdot \mathsf{BP} \cdot \mathsf{P} \subseteq \mathsf{BP} \cdot \exists \cdot \mathsf{P.}$$

It works for $BP.\exists.P\subseteq\exists.BP.P$ as well.

Problem 3 Solution

The reduction in Cook's theorem is parsimonious.

Proof

We need to show that $\#acc_N(x) = \#SAT(\Phi)$, where the formula $\Phi = \Phi_{cell} \wedge \Phi_{start} \wedge \Phi_{move} \wedge \Phi_{acccept}$. It's enough to show that there is a one-to-one correspondence between the # of distinct satisfying assignments of Φ and the # accepting configurations of N, as per the construction of Cook's reduction.

From theorem 3.37, it's easy to see that an accepting configuration of N on input x (s.t. q_0x \$ $\vdash yq_{acc}$ \$) corresponds to a satisfying assignment of the formula Φ , since $\Phi_{start} \wedge \Phi_{accept} = True$ ensures that the satisfying assignment must satisfied the starting and accepting configuration of N, while $\Phi_{cell} \wedge \Phi_{move} = True$ ensures that every cell contains exactly one symbol and every move of N is a legal move. Also, for a any two distinct satisfying assignments must have two different configurations in N, since they must be different in Φ_{move} and/or Φ_{accept} , there must be different configurations in N.

Hence, $\#acc_N(x) = \#SAT(\Phi)$.