

Coded Data Access with R

Dave Bosworth

CA Department of Water Resources (DWR)

Division of Integrated Science and Engineering (DISE)

Collaborative Science and Innovation Section (CSI)

What are we talking about here?

- Using code to import data into R from an external (non-local) and open source
- NOT: importing data from your hard drive, shared network, or SharePoint

Outline

- Simple Methods
- Dedicated R packages
- IEP Integrated datasets

```
- RStudio
                    Session Build Debug Profile Tools Help
                    🖶 📄 Go to file/function 🔭 🔻 🚟 ▼ Addins ▼
              Knit on Save | ABC 🔍 | 🌌 Knit 🔻 🗱 🔻
                                                                                                  •c - 1 - Run - 1 - - -
             "Coded data access"
          or: "Dave Bosworth"
        e: "`r sys.Date()`'
tput: html_document
        itor_options:
       chunk_output_type: console
       `{r setup, include=FALSE}
                                                                                                                   *
     knitr::opts_chunk$set(echo = TRUE)
     library(tidyverse)
  9 # Simplist Method
  21 - ```{r read csv dayflow, message = FALSE}
                                                                                                                ☆ ▼ ▶
 22 library(readr)
 25 url_dayflow_2023 <- "https://data.cnra.ca.gov/dataset/06ee2016-b138-47d7-9e85-f46fae674536/resource/f7c1ba7f-b
     d64-4762-88e3-6db9b2501b38/download/davflowcalculations2023.csv'
 26 df_dayflow_2023 <- read_csv(url_dayflow_2023)</pre>
     Coded data access
               Background Jobs
  R 4.2.3 C:/Repositories/04_IEP_Org/iep-data-workshop-2024/
Natural language support but running in an English locale
is a collaborative project with many contributors.
pe 'contributors()' for more information and
itation()' on how to cite R or R packages in publications.
pe 'demo()' for some demos, 'help()' for on-line help, or
elp.start()' for an HTML browser interface to help.
 pe 'q()' to quit R.
  ibrary(tidyverse)
   ttaching core tidyverse packages
                                                                                                   tidyverse 2.0.0 —
                                  2.1.5
          1.1.4
                     ✓ readr
    cats 1.0.0

√ stringr 1.5.1

    ot2 3.5.0
                                  3.2.1
                     √ tibble
     idate 1.9.3

√ tidyr

                                  1.3.1
          1.0.2
       icts ---
                                                                                            tidyverse_conflicts() —
       filter() masks stats::filter()
        lag() masks stats::lag()
         conflicted package to force all conflicts to become errors
```

Why bother?

Efficiency

Reproducibility

Transportable

Versioning

Simple Methods

- 1) read_csv() or read.csv() with a URL
- 2) download.file() to tempdir(), then import

Simple Methods

read_csv() with URL

Open Data

Organizations

Topics

Training

🗥 / Organizations / California Department of... / Dayflow / Dayflow Results 2023

Dayflow Results 2023

URL: https://data.cnra.ca.gov/dataset/06ee2016-b138-47d7-9e85-f46fae674536/resource/f7c1ba7f-bd64-4762-88e3-6db9b2501b38/download/dayflowcalculations2023.csv
Dayflow results for Water Year 2022-2023.

Data Table

Use this workflow when URL points to a csv file

dayflowcalculations2023.csv

Add Filter

Show 10 ✓ entries

Showing 1 to 10 of 365 entries

_id ‡	Year ↓↑	Mo ↓↑	Date ↓↑	SAC IT	YOLO 11	CSMR ↓↑	MOKE ↓↑	MISC 11	SJR ↓↑	EAST IT	тот 🕼	ccc 🏗	SWP ↓↑	CVP ↓↑	NBAQ ↓↑	EXPORTS \$\frac{1}{2}
1	2022	10	10/1/2022	7210	35	25	88	150	212	476	7721	132	494	1821	33	2480
2	2022	10	10/2/2022	7470	36	26	0	145	218	389	7895	132	499	1815	26	2471

https://data.cnra.ca.gov/dataset/dayflow/resource/f7c1ba7f-bd64-4762-88e3-6db9b2501b38

read_csv("url")

Copy URL for csv file


```
# Import data from a URL using read_csv()
url_dayflow_2023 <- "https://data.cnra.ca.gov/dataset/06ee2016-b138-47d7-9e85-f46fae674536/
resource/f7c1ba7f-bd64-4762-88e3-6db9b2501b38/download/dayflowcalculations2023.csv"
df_dayflow_2023 <- read_csv(url_dayflow_2023)
df_dayflow_2023</pre>
```



```
Mo Date
<db1> <db1> <chr>
                                                                 <db1> <db1>
                                                                                <db1> <db1>
                                                                   476 <u>7</u>721
                                                                                 132
                                                                                        494
2022
         10 10/1/20...
                        <u>7</u>210
                                                      150
                                                            212
                                                                                              1821
2022
         10 10/2/20...
                        <u>7</u>470
                                         26
                                                      145
                                                                         7895
                                                                                 132
                                                                                        499
                                                                                              1815
                                                            218
                                                                    389
2022
         10 10/3/20...
                        7550
                                         26
                                                     147
                                                            245
                                                                   418 8004
                                                                                 136
                                                                                        499
                                                                                              1809
                                                                                                        25
2022
         10 10/4/20...
                        <u>7</u>640
                                         26
                                                     129
                                                            234
                                                                         <u>8</u>065
                                                                                 128
                                                                                        498
                                                                                                        31
                                                                    390
                                                                                              1817
                                         26
2022
         10 10/5/20...
                                                      93
                                                            222
                                                                    341
                                                                                        490
                                                                                               899
                                                                                                        28
                        7590
                                                                         7967
                                                                                 170
2022
         10 10/6/20...
                        <u>7</u>440
                                         26
                                                       63
                                                            213
                                                                         <u>7</u>776
                                                                                                        23
                                                                    301
                                                                                 159
                                                                                        486
                                                                                                914
2022
         10 10/7/20...
                                         25
                        7460
                                                       50
                                                            216
                                                                   291 <u>7</u>784
                                                                                 136
                                                                                        494
                                                                                                914
                                         24
2022
         10 10/8/20...
                        7200
                                                                                                        23
                                  33
                                                       59
                                                            248
                                                                    331 7564
                                                                                 111
                                                                                        493
                                                                                               915
2022
         10 10/9/20...
                        7010
                                                                                                        28
                                  32
                                         24
                                                 0
                                                            308
                                                                    398
                                                                         <u>7</u>440
                                                                                 113
                                                                                        491
                                                                                               917
2022
         10 10/10/2...
                                  32
                                         24
                                                                                                        31
                        6870
                                                       71
                                                            305
                                                                   400
                                                                         7302
                                                                                 116
                                                                                        490
```


Simple Methods

download.file() then import

download.file() then import

```
url_edi_emp_2022 <- "https://portal.edirepository.org/nis/dataviewer?packageid=edi.458.10&e
ntityid=cf231071093ac2861893793517db26f3"
download.file(url_edi_emp_2022, file.path(tempdir(), "EMP_DWQ_1975_2022.csv"), mode = "wb")
       df_emp_2022 <- read_csv(file.path(tempdir(), "EMP_DWQ_1975_2022.csv"))</pre>
       df_emp_2022
                                                SampleDescription Flag FlagDescription FieldNotes Weather AirTemp
                         Station Date
                                <date>
                                          <time> <chr>
                                                                <chr> <chr>
                                                                                    <chr>>
                                                                                                       <db1>
                         <chr>>
                                                                                              <chr>>
                       1 D11
                                1975-01-07 13:00
                                                                                                        53.6
                                                                                    NA
                       2 D15
                                                                                                        57.2
                       3 D16
                                1975-01-07 16:00 NA
                                                                                                        55.4
                       4 D19
                                1975-01-07 15:00 NA
                                                                                    NA
                                                                                                        55.4
                       5 D22
                                1975-01-07 13:00 NA
                                                                                                        55.4
                       6 D24
                                1975-01-07 14:00 NA
                                                                                                        55.4
                       7 D26
                                1975-01-07 15:00 NA
                                                                                                        55.4
                       8 D4
                                                                                                        51.8
                                1975-01-07 12:00 NA
                       9 D10
                                                                                                        53.6
                                1975-01-08 13:00 NA
                                                                                                        55.4
                      10 D12
                                1975-01-08 14:00 NA
```

Dedicated R packages

- 1) EDIutils EDI data
- 2) dataRetrieval USGS NWIS
- 3) cder CDEC data

EDIutils

- REST API client for the Environmental Data Initiative (EDI)
- Allows for searching, accessing, and uploading data from R environment
- Package documentation: https://docs.ropensci.org/EDIutils/
- Available on CRAN

Dedicated R Packages

EDIutils

https://portal.edirepository.org/nis/simpleSearch

Terms used in this search: emp, iep

Displaying 1-10 of 48 matching data packages

<< < 1 2 3 4 5 > >>

Title ▲ ▼	Creators ▲ ▼	Publication Date ▲ ▼	Package ld ▲ ▼
Interagency Ecological Program: Benthic invertebrate monitoring in the Sacramento-San Joaquin Bay-Delta, collected by the Environmental Monitoring Program, 1975-2023.	Wells, Elizabeth Interagency Ecological Program	2024	edi.1036.4
Interagency Ecological Program: Discrete dissolved oxygen monitoring in the Stockton Deep Water Ship Channel, collected by the Environmental Monitoring Program, 1997-2018	Interagency Ecological Program (IEP) Lesmeister, Sarah Rinde, Jenna	2020	edi.276.2
Interagency Ecological Program: Discrete water quality monitoring in the Sacramento-San Joaquin Bay-Delta, collected by the Environmental Monitoring Program, 1975-2022	Battey, Morgan Perry, Sarah	2023	edi.458.10

library(EDIutils)
edi_scope <- "edi"
edi_emp_id <- 458</pre>

list_data_package_revisions()


```
ibrary(EDIutils)
edi_scope <- "edi
list_data_package_revisions(scope = edi_scope, identifier = edi_emp_id)
                                                                                                         1. edi.458.1 (Uploaded 2020-01-06)
edi_emp_rev <- list_data_package_revisions(</pre>
                                                                                                         2. edi.458.2 (Uploaded 2020-01-27)
  scope = edi_scope,
                                                                                                         3. edi.458.3 (Uploaded 2020-10-02)
  identifier = edi_emp_id,
  filter = "newest"
                                                                                                         4. edi.458.4 (Uploaded 2021-02-17)
                                                                                                         5. edi.458.5 (Uploaded 2022-06-01)
edi_emp_pid <- paste(edi_scope, edi_emp_id, edi_emp_rev, sep = ".")</pre>
                                                                                                         6. edi.458.6 (Uploaded 2022-06-16)
edi_emp_pid
                                                                                                         7. edi.458.7 (Uploaded 2022-08-11)
                                                                                                         8. edi.458.8 (Uploaded 2023-04-04)
                                                                                                         9. edi.458.9 (Uploaded 2023-05-26)
                                                                                                        10. edi.458.10 (Uploaded 2023-11-23)
```

Dedicated R Packages - EDIutils

read_data_entity_names()

```
RS
```

```
edi_emp_pid <- paste(edi_scope, edi_emp_id, edi_emp_rev, sep = ".")

df_edi_emp_pid

df_edi_emp_ent <- read_data_entity_names(packageId = edi_emp_pid)

df_edi_emp_ent

entityId entityName

1 cf231071093ac2861893793517db26f3 EMP_DWQ_1975_2022

2 86dd696bc3f8407ff52954094e1e9dcf EMP_DWQ_Stations_1975-2022

3 afc5b55a61e9a16d29fcaef4d802f5be EMP_DWQ_FlagCodes

4 b399c042c893809547dc196a762b929f EMP_DWQ_metadata_methods</pre>
```

```
previous revision
               all revisions
              View Full Metadata (283 views)
Resources:
              View Quality Report
                 Full Data Package (Zip)
                                         (8 downloc
               Data Entities:
                1. EMP DWQ 1975 2022 (4.3 MiB; 1
                    Download
                                   Explore Data
                2. EMP DWQ Stations 1975-2022 (5
                                   Explore Data
                    Download
                3. EMP DWQ FlagCodes (183 B; 37)
                                   Explore Data
                    Download
```

Download

4. EMP DWQ metadata methods (1.

edi.458.10 (Uploaded 2023-11-23)

"edi.458.10"

Package ID:

read_data_entity()

1975-01-07 15:00 NA

1975-01-07 13:00 NA

1975-01-07 14:00 NA

5 D22

6 D24

entityName

EMP_DWQ_1975_2022

EMP_DWQ_FlagCodes

EMP DWO metadata methods

```
edi_emp_pid <- paste(edi_scope, edi_emp_id, edi_emp_rev, sep =
                                                                                  "edi.458.10"
edi_emp_pid
                                                                                                       entityId
df_edi_emp_ent <- read_data_entity_names(packageId = edi_emp_pid)</pre>
                                                                              cf231071093ac2861893793517db26f3
df_edi_emp_ent
                                                                              86dd696bc3f8407ff52954094e1e9dcf EMP_DWQ_Stations_1975-2022
                                                                              afc5b55a61e9a16d29fcaef4d802f5be
                                                                              b399c042c893809547dc196a762b929f
edi_emp_ent_id <- df_edi_emp_ent %>%
  filter(entityName == "EMP_DWQ_1975_2022") %>%
  pull(entityId)
raw_emp_2022_edi <- read_data_entity(packageId = edi_emp_pid, entityId = edi_emp_ent_id)</pre>
df_emp_2022_edi <- read_csv(raw_emp_2022_edi)</pre>
df_emp_2022_edi
        df emp 2022 edi
      # A tibble: 17.366 × 73
                                SampleDescription Flag FlagDescription FieldNotes Weather AirTemp
        Station Date
        <chr>
                <date>
                          <time> <chr>
                                                  <chr> <chr>
                                                                      <chr>>
                                                                                <chr>
                                                                                          <db1>
      1 D11
                1975-01-07 13:00 NA
                                                                                          53.6
      2 D15
                                                                                          57.2
                1975-01-07 14:00 NA
      3 D16
                1975-01-07 16:00 NA
                                                                                          55.4
      4 D19
                                                                                          55.4
```

NOTE:

55.4

55.4

read_data_entity() imports data as raw bytes, need to use a reader function with it

Dedicated R Packages

dataRetrieval

- Allows for loading USGS data into the R environment
- NWIS and WQP web services
- Package documentation: https://doi-usgs.github.io/dataRetrieval/
- Available on <u>CRAN</u>

whatNWISsites()

⊠USGS

Provides site information from NWIS

Sacramento R a Freeport CA - 11447650

April 2, 2024 - April 9, 2024


```
library(dataRetrieval)

df_srf_sta_info <- whatNWISsites(sites = "11447650")
glimpse(df_srf_sta_info)</pre>
```



```
glimpse(df_srf_sta_info)
Rows: 1
Columns: 8
              <chr> "USGS"
$ agency_cd
 site_no
              <chr> "11447650"
 station_nm
             <chr> "SACRAMENTO R A FREEPORT CA"
$ site_tp_cd
             <chr> "ST"
$ dec_lat_va <dbl> 38.45566
 dec_long_va <db1> -121.5016
 colocated
              <7q7> FALSE
 queryTime
              <dttm> 2024-04-16 13:16:38
```

USGS Water Data: https://waterdata.usgs.gov/monitoring-location/11447650/

whatNWISdata()

Provides data availability for a site from NWIS

```
df_srf_uv_data_avail <- whatNWISdata(siteNumber = "11447650", service = "uv")
glimpse(df_srf_uv_data_avail)</pre>
```

```
glimpse(df_srf_uv_data_avail)
                                                                                                                             Rows: 15
                                                                                                                             Columns: 24
                                                                                                                            $ agency_cd
                                                                                                                                                                                                          <chr> "USGS", 
                                                                                                                             $ site_no
                                                                                                                                                                                                          <chr> "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", "11447650", 
                                                                                                                            $ station_nm
                                                                                                                                                                                                          <chr> "SACRAMENTO R A FREEPORT CA", "SACRAMENTO R A FREEPORT CA", "SACRAMENTO R A FREEPORT CA".
                                                                                                                            $ site_tp_cd
                                                                                                                                                                                                          <chr> "ST", 
                                                                                                                           $ dec_lat_va
                                                                                                                                                                                                          <db1> 38.45566, 38.45566, 38.45566, 38.45566, 38.45566, 38.45566, 38.45566, 38.45566, 38.45566, 38.45566.
                                                                                                                            $ dec_long_va
                                                                                                                                                                                                          <db/>db/> -121.5016, -121.5016, -121.5016, -121.5016, -121.5016, -121.5016, -121.5016, -121.5016, -
                                                                                                                                                                                                          $ coord_acv_cd
                                                                                                                            $ dec_coord_datum_cd <chr> "NAD83", "NAD83", "NAD83", "NAD83", "NAD83", "NAD83", "NAD83", "NAD83", "NAD83", "NAD83".
                                                                                                                           $ alt_va
                                                                                                                                                                                                          $ alt_acy_va
                                                                                                                                                                                                          $ alt_datum_cd
                                                                                                                                                                                                          $ huc_cd
                                                                                                                                                                                                           chr> "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163", "18020163",
                                                                                                                             $ data type cd
                                                                                                                                                                                                          <chr> "uv". "uv".
USGS Parameter Code
                                                                                                                             $ parm_cd
                                                                                                                                                                                                          <chr> "00010", "00010", "00060", "00065", "00095", "00300", "00301", "00400", "00480", "32295".
                                                                                                                             $ stat_cd
                                                                                                                                                                                                           $ ts_id
                                                                                                                                                                                                          <chr> "15731", "15760", "236032", "15738", "236034", "15757", "259962", "15735", "257748", "24...
                                                                                                                                                                                                          <chr> "[Right Bank Pump Stand]", "BGC PROJECT, [East Fender]", NA, "[PRIMARY]", "BGC PROJECT, ...
                                                                                                                            $ loc_web_ds
                                                                                                                                                                                                          <chr> "wat", "wat...
                                                                                                                             $ medium_qrp_cd
                                                                                                                            $ parm_grp_cd
                                                                                                                                                                                                           <chr> "1645597", "1645597", "1645423", "17164583", "1646694", "154302", "154302", "17028275",
                                                                                                                             $ srs_id
                                                                                                                             $ access_cd
                                                                                                                                                                                                           $ begin_date
                         Period of record
                                                                                                                                                                                                           <date> 2007-10-01, 2013-08-30, 2007-10-01, 2007-10-01, 2013-08-30, 2013-08-30, 2013-08-30, 2013...
                                                                                                                              $ end_date
                                                                                                                                                                                                           <date> 2024-04-09, 2024-04-09, 2024-04-09, 2024-04-09, 2024-04-09, 2024-04-09, 2024-04-09, 2024-04-09
                         Sample count
                                                                                                                              $ count_nu
                                                                                                                                                                                                           <db1> 6035, 3875, 6035, 6035, 3875, 3875, 3875, 3875, 3875, 3875, 1095, 3875, 1398, 3875, 3112, 3113
```

Dedicated R Packages - dataRetrieval

parameterCdFile

Complete list of USGS parameter codes

as_tibble(parameterCdFile)


```
as_tibble(parameterCdFile)
# A tibble: 24,200 \times 6
   parameter_cd parameter_group_nm parameter_nm
                                                                                             casrn srsname parameter_units
   <chr>
                 <chr>>
                                                                                                            <chr>>
                                    Location in cross section, distance from right bank...
1 00001
                 Information
                                                                                                            ft
                                    Location in cross section, distance from right bank...
 2 00002
                 Information
                Information
                                     Sampling depth, feet
3 00003
                                    Stream width, feet
 4 00004
                Physical
                                                                                                    'Instr… ft
                Information
                                    Location in cross section, fraction of total depth,...
 5 00005
                 Information
                                     Sample accounting number
6 00008
                                                                                                            nu
                Information
                                    Location in cross section, distance from left bank .
                                                                                                           ft
 7 00009
                                     Temperature, water, degrees Celsius
                Physical Physical
                                                                                                    Tempe... deg C
8 00010
                                     Temperature, water, degrees Fahrenheit
9 00011
                Physical
                                                                                                    "Tempe... deg F
                                    Evaporation temperature, 48 inch pan, degrees Celsi...
10 00012
                Physical
                                                                                                            deg C
# i 24.190 more rows
```

Parameter codes:

https://help.waterdata.usgs.gov/codes-and-parameters/parameters

parameterCdFile - filtered


```
df_srf_uv_parm_cd
# A tibble: 13 \times 3
   parameter_cd parameter_nm
                                                                                                        parameter_units
   <chr>>
                <chr>>
                                                                                                        <chr>
                Temperature, water, degrees Celsius
 1 00010
                                                                                                        deg C
                Discharge, cubic feet per second
 2 00060
                                                                                                        ft3/s
                Gage height, feet
 3 00065
                Specific conductance, water, unfiltered, microsiemens per centimeter at 25 degrees C... us/cm @25C
4 00095
                Dissolved oxygen, water, unfiltered, milligrams per liter
 5 00300
                                                                                                        mg/1
 6 00301
                Dissolved oxygen, water, unfiltered, percent of saturation
                                                                                                        % saturatn
                pH, water, unfiltered, field, standard units
 7 00400
                                                                                                        std units
                Salinity, water, unfiltered, parts per thousand
 8 00480
                                                                                                        ppth
                Dissolved organic matter fluorescence (fDOM), water, in situ, concentration estimate... ug/l QSE
 9 32295
                Chlorophyll fluorescence (fChl), water, in situ, concentration estimated from refere... ug/l
10 32316
11 63680
                Turbidity, water, unfiltered, monochrome near infra-red LED light, 780-900 nm, detec... FNU
12 72137
                Discharge, tidally filtered, cubic feet per second
                                                                                                        ft3/s
13 72255
                Mean water velocity for discharge computation, feet per second
                                                                                                        ft/sec
```

readNWISuv()

Import instantaneous data ("uv") for one or more stations and parameters from NWIS

```
df_srf_spc_inst <- readNwISuv(
    siteNumbers = "11447650",
    parameterCd = "00095",
    startDate = "2023-01-01", endDate = "2023-12-31",
    tz = "America/Los_Angeles"
)
as_tibble(df_srf_spc_inst)</pre>
```

```
readNWISdv() –
Import daily data ("dv") from NWIS
```

Same arguments with the addition of 'statCd':

'00001' – daily maximum

'00002' – daily minimum

'00003' – daily mean (default)

'00006' – daily sum

'00008' – daily median

https://help.waterdata.usgs.gov/code/stat_c d_nm_query?stat_nm_cd=%25&fmt=html


```
as_tibble(df_srf_spc_inst)
 A tibble: 34.216 \times 6
  agency_cd site_no dateTime
                                          X_00095_00000 X_00095_00000_cd tz_cd
                      <dttm>
                                                   <db1> <chr>
1 USGS
             11447650 2023-01-01 00:00:00
                                                     122 P
                                                                          America/Los_Angeles
                                                                          America/Los_Angeles
2 USGS
             11447650 2023-01-01 00:15:00
                                                     121 P
3 USGS
            11447650 2023-01-01 00:30:00
                                                     121 P
                                                                          America/Los_Angeles
4 USGS
                                                                          America/Los_Angeles
            11447650 2023-01-01 00:45:00
                                                     120 P
5 USGS
            11447650 2023-01-01 01:00:00
                                                     120 P
                                                                          America/Los_Angeles
                                                                          America/Los_Angeles
6 USGS
            11447650 2023-01-01 01:15:00
                                                     120 P
7 USGS
            11447650 2023-01-01 01:30:00
                                                     119 P
                                                                          America/Los_Angeles
                                                                          America/Los_Angeles
8 USGS
            11447650 2023-01-01 01:45:00
                                                     119 P
9 USGS
            11447650 2023-01-01 02:00:00
                                                                          America/Los_Angeles
                                                     118 P
                                                                          America/Los_Angeles
10 USGS
            11447650 2023-01-01 02:15:00
                                                     117 P
# i 34.206 more rows
   Use `print(n = ...)` to see more rows
```

WQP Web Services

1) whatWQPsites() - Station Information

```
whatWQPsites(siteid = "USGS-11447650")
```

2) readWQPsummary() – Data availability

```
df_srf_nutr_data_avail <- readWQPsummary(
    siteid = "USGS-11447650",
    characteristicType = "Nutrient"
)</pre>
```

3) readWQPqw() – Import data

```
df_srf_nitrate <- readwQPqw(
    siteNumbers = "USGS-11447650",
    parameterCd = "Nitrate",
    startDate = "2023-01-01", endDate = "2023-12-31",
    tz = "America/Los_Angeles"
)</pre>
```


NOTE:

WQP functions require "USGS-" prefix for site codes

Dedicated R Packages

cder

- Web API client for the California Data Exchange Center (CDEC)
- Allows for importing data into the R environment
- Package documentation:
 https://hydroecology.net/cder/index.html
- Available on CRAN

Dedicated R Packages - cder

cdec_meta()

Station information from CDEC

Map of surrounding area

Station ID	FPT	Elevation	0 ft
River Basin	SACRAMENTO RIVER	County	SACRAMENTO
Hydrologic Area	SACRAMENTO RIVER	Nearby City	FREEPORT
Latitude	38.456112°	Longitude	-121.500300°
Operator	US Geological Survey	Maintenance	None Specified

The following data types are available online. Select one of the links below to retrieve recent data.

Sensor Description	Sensor Number	Duration	Plot	Data Collection	Data Available
FLOW, RIVER DISCHARGE, CFS	20	(daily)	(FLOW)	COMPUTED	10/01/1948 to present
WATER, TURBIDITY FNU, FNU	221	(daily)	(TURB WF)	COMPUTED	12/04/2009 to present
FLOW, RIVER DISCHARGE, CFS	20	(event)	(FLOW)	DATA XCHG-USGS	10/29/2004 to present
RIVER STAGE, FEET	1	(event)	(RIV STG)	DATA XCHG-USGS	05/06/2013 to present
WATER, TURBIDITY FNU, FNU	221	(event)	(TURB WF)	DATA XCHG-USGS	12/03/2009 to present
WATER, VELOCITY, FT/SEC	21	(event)	(VLOCITY)	DATA XCHG-USGS	05/06/2013 to present

cdec_query()

Import data for one or more stations and sensors from CDEC

```
df_fpt_turb <- cdec_query(
   stations = "FPT", sensors = 221, durations = "E",
   start.date = "2024-03-01", end.date = "2024-03-31"
)
df_fpt_turb</pre>
```

```
Options for 'durations' argument:
```

'E' - event

'H' – hourly

'D' – daily

'M' – monthly

```
tibble: 2,877 \times 9
  StationID Duration SensorNumber SensorType DateTime
                                                                                        Value DataFlag SensorUnits
                                                                   ObsDate
   <chr>>
             <chr>
                             <int> <chr>
                                               <dttm>
                                                                   <dttm>
                                                                                        <db1> <chr>
                                                                                                       <chr>>
 1 FPT
                               221 TURB WF
                                               2024-03-01 00:00:00 2024-03-01 00:00:00 23.2 ""
                                                                                                       FNU
 2 FPT
                               221 TURB WF
                                               2024-03-01 00:15:00 2024-03-01 00:15:00
                                                                                                       FNU
 3 FPT
                               221 TURB WF
                                               2024-03-01 00:30:00 2024-03-01 00:30:00 22.9
                                                                                                       FNU
4 FPT
                               221 TURB WF
                                               2024-03-01 00:45:00 2024-03-01 00:45:00
                                                                                         23.3
                                                                                                       FNU
                               221 TURB WF
 5 FPT
                                               2024-03-01 01:00:00 2024-03-01 01:00:00 23.5
                                                                                                       FNU
 6 FPT
                               221 TURB WF
                                               2024-03-01 01:15:00 2024-03-01 01:15:00
                                                                                         22.9
                                                                                                       FNU
7 FPT
                               221 TURB WF
                                               2024-03-01 01:30:00 2024-03-01 01:30:00 23.1
                                                                                                       FNU
8 FPT
                               221 TURB WF
                                               2024-03-01 01:45:00 2024-03-01 01:45:00
                                                                                                       FNU
9 FPT
                               221 TURB WF
                                               2024-03-01 02:00:00 2024-03-01 02:00:00
                                                                                                       FNU
10 FPT
                               221 TURB WF
                                               2024-03-01 02:15:00 2024-03-01 02:15:00
                                                                                                       FNU
# i 2.867 more rows
```

IEP Integrated datasets

Interagency Ecological Program

- 1) deltafish
- 2) zooper
- discretewq
- 4) deltamapr

Need to use "devtools::install_github()" function to install these packages

Also, for Windows computers, need to have RTools installed: https://cran.r-project.org/bin/windows/Rtools/

IEP Integrated datasets

deltafish

- Provides easy query access to the very large published EDI dataset of IEP fish abundance and length data
- 1959-2021 from 9 surveys: Bay Study, FMWT, EDSM, 20mm, SLS, SKT, DJFMP, Suisun Marsh, STN
- Available on GitHub: https://github.com/Delta-Stewardship-Council/deltafish
- EDI data repository: https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=1075

Build and load database

1) Build and cache database – set 'update' to TRUE to rebuild to latest version

```
# install.packages("devtools")
# devtools::install_github("Delta-Stewardship-Council/deltafish")
library(deltafish)
# Build the database - this takes a while, use update = TRUE to
    # re-build cached database
create_fish_db()
```

2) Open two data files in database

```
# Open two data files
surv <- open_survey()
fish <- open_fish()</pre>
```


Build and run query

3) Build query by using 'dplyr' functions

```
# Filter for sources and taxa of interest and join them together
surv_FMWT <- surv %>% filter(Source == "FMWT") %>% select(SampleID, Date)

fish_smelt <- fish %>%
   filter(Taxa %in% c("Dorosoma petenense", "Morone saxatilis", "Spirinchus thaleichthys"))

df_fish <- left_join(surv_FMWT, fish_smelt)</pre>
```

4) Run query and import data into R workspace using 'dplyr::collect()'

```
# Collect the resulting data frame - collect executes
# the SQL query and gives you a table
df_fish_c <- collect(df_fish)
df_fish_c</pre>
```

```
df_fish_c
 A tibble: 175,009 \times 6
                       Length Count Notes_catch Taxa
   SampleID Date
                         <db1> <db1> <chr>
            <date>
                                                 Spirinchus thaleichthys
 1 FMWT 1
            1992-01-10
                                   0 NA
                                                 Morone saxatilis
 2 FMWT 1
            1992-01-10
                                   O NA
 3 FMWT 1
            1992-01-10
                                  0 NA
                                                 Dorosoma petenense
 4 FMWT 2
            1992-02-07
                                   0 NA
                                                 Spirinchus thaleichthys
 5 FMWT 2
            1992-02-07
                                  0 NA
                                                 Morone saxatilis
 6 FMWT 2
            1992-02-07
                                  0 NA
                                                 Dorosoma petenense
            1992-03-18
                                  0 NA
                                                 Spirinchus thaleichthys
 7 FMWT 3
            1992-03-18
                                                 Morone saxatilis
 8 FMWT 3
                                  0 NA
                                                 Dorosoma petenense
9 FMWT 3
            1992-03-18
                                   0 NA
                                                 Spirinchus thaleichthys
            1992-09-16
10 FMWT 4
                                  0 NA
 i 174.999 more rows
```

IEP Integrated datasets

zooper

- Allows for downloading and integrating IEP zooplankton data
- 1972-2021 from 7 surveys: 20mm, DOP, FRP, EMP, STN/FMWT, YBFMP, IEP zooplankton study
- Available on GitHub: <u>https://github.com/InteragencyEcologicalProgram/zooper</u>
- EDI data repository: https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=539

Zoopsynther()

```
zooper
```

```
# install.packages("devtools")
# devtools::install_github("InteragencyEcologicalProgram/zooper")
library(zooper)

df_zoop <- Zoopsynther(
   Data_type = "Community", Response = c("CPUE", "BPUE"),
   Sources = c("EMP", "FRP", "FMWT"), Size_class = "Meso",
   Date_range = c("1990-10-01", "2000-09-30")
)
df_zoop</pre>
```

Use 'Data_type' argument to choose between two approaches to resolving differences in taxonomic resolution:

'Taxa' - all available data on given Taxa

'Community' - to conduct a community analysis

```
A tibble: 151,478 x 35
  Source SizeClass Volume Lifestage Taxname Phylum Class Order Family Genus Species Taxlifestage SampleID CPUE
                                                  <chr> <chr> <chr> <chr> <chr> <chr> <chr>
   <chr> <chr>
                       <db1> <chr>
                                                                                             <chr>
                                                                                             Acanthocycl... EMP NZE... 11.3
                       10.6 Adult
                                        Acantho... Arthr... Cope... Cycl... Cyclo... Acan... NA
          Meso
2 EMP
          Meso
                       10.6 Adult
                                        Acartia... Arthr... Cope... Cala... Acart... Acar... NA
                                                                                              Acartia_UnI... EMP NZE... 1.89
3 EMP
                       10.6 Adult
                                        Acartie... Arthr... Cope... Cala... Acart... Acar... Acarti... Acartiella ... EMP NZE... 5.67
          Meso
4 EMP
                       10.6 Adult
                                        Asplanc... Rotif... Euro... Ploi... Aspla... Aspl... NA
                                                                                             Asplanchna_... EMP NZE... 0
          Meso
5 EMP
                       10.6 Adult
                                        Bosmina... Arthr... Bran... Clad... Bosmi... Bosmin... Bosmina lon... EMP NZE... 0
          Meso
6 EMP
          Meso
                       10.6 Adult
                                       Calanoi... Arthr... Cope... Cala... NA
                                                                                             Calanoida_U... EMP NZE... 0
                       10.6 Adult
                                       Cladoce... Arthr... Bran... Clad... NA
                                                                                             cladocera_U... EMP NZE... 7.56
          Meso
8 EMP
                       10.6 Adult
                                        Cyclopo... Arthr... Cope... Cycl... NA
                                                                                             Cyclopoida_... EMP NZE... 49.2
          Meso
9 EMP
                       10.6 Adult
                                        Daphnia... Arthr... Bran... Clad... Daphn... Daph... NA
                                                                                             Daphnia_UnI... EMP NZE... 5.67
          Meso
                       10.6 Adult
                                        Diaphan... Arthr... Bran... Clad... Sidid... Diap... NA
          Meso
                                                                                             Diaphanosom... EMP NZE... 0
# i 151.468 more rows
# i 21 more variables: BPUE <dbl>, Undersampled <lql>, Date <dttm>, Station <chr>, Chl <dbl>, Secchi <dbl>,
   Temperature <dbl>, BottomDepth <dbl>, Tide <chr>, TowType <chr>, Datetime <dttm>, Turbidity <dbl>, pH <dbl>,
   DO <dbl>, Microcystis <chr>, Year <dbl>, AmphipodCode <chr>, SalSurf <dbl>, SalBott <dbl>, Latitude <dbl>,
   Longitude <dbl>
   Use `print(n = ...)` to see more rows
```

discretewq

- Provides an integrated dataset of IEP water quality data
- 1959-2022 from 16 surveys: Bay Study, FMWT, EDSM, 20mm, SLS, SKT, SDO, EMP, YBFMP, DJFMP, USBR-SDWSC, Suisun Marsh, STN, USGS-SFBS, USGS-CAWSC, DWR-NCRO
- Available on GitHub: https://github.com/InteragencyEcologicalProgram/discretewq
- EDI data repository: https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=731

IEP Integrated datasets -discretewq

wq()


```
# install.packages("devtools")
# devtools::install_github("InteragencyEcologicalProgram/discretewg")
library(discretewq)

df_dwq <- wq(
    Sources = c("EMP", "NCRO", "USGS_CAWSC", "USGS_SFBS"),
    Start_year = 2020, End_year = 2022
)
df_dwq</pre>
```


deltamapr

- Provides spatial data for the SF Bay-Delta
- Data objects stored in 'sf' format as four data types:
 - Waterways (WW)
 - Regions (R)
 - Habitats (H)
 - Stations/Points (P)
- See GitHub repository for list of data available:

https://github.com/InteragencyEcologicalProgram/deltamapr

IEP Integrated datasets - deltamapr

WW_Delta


```
# install.packages("devtools")
# devtools::install_github("InteragencyEcologicalProgram/deltamapr")
library(deltamapr)
library(sf)
ww_Delta
```

```
> WW_Delta
Simple feature collection with 282 features and 9 fields
Geometry type: POLYGON
Dimension:
Bounding box: xmin: -122.6408 ymin: 37.41522 xmax: -120.9357 ymax: 38.67781
Geodetic CRS: NAD83
# A tibble: 282 × 10
      AREA PERIMETER HYDRO_POLY HYDRO_PO_1 HYDRO_24K_ TYPE HNAME Shape_Leng Shape_Area
                                                                                                              geometry
     <db1>
                                                                          <db1>
                <db1>
                                                   <int> <chr> <chr>
                                                                                      <db1>
                                                                                                         <POLYGON [°]>
 1 7.35e7 1033340
                                        797
                                                               SACR...
                                                                        2.45
                                                                                    3.48e-3 ((-121.5099 38.24711, -1...
                             791
                                                    798 MR
 2 8.76e4
                                                                                    9.06e-6 ((-121.5673 38.57437, -1...
               3319.
                            1965
                                        1963
                                                   1964 5
                                                                        0.0357
                                                                                   8.17e-4 ((-121.5238 38.56153, -1...
 3 7.92e6
               87428.
                            1967
                                                   1966 C
                                                                        0.829
                                        1965
                                                               SACT...
 4 1.04e5
               <u>2</u>719.
                            1970
                                        1969
                                                   1970 L
                                                               GREE...
                                                                        0.0264
                                                                                   1.07e-5 ((-121.6011 38.55476, -1...
                                                                                   1.10e-5 ((-121.5456 38.55452, -1...
 5 1.06e5
               2798.
                            1977
                                        1974
                                                   1975 L
                                                               LAKE...
                                                                        0.0283
 6 1.59e5
                <u>3</u>392.
                            1982
                                        1978
                                                   1979 S
                                                                        0.0314
                                                                                   1.65e-5 ((-121.6305 38.55163, -1...
                                                                        0.00952
                                                                                   4.40e-6 ((-121.6298 38.52384, -1...
 7 4.26e4
                1003.
                            1992
                                        1989
                                                   1990 5
                                                               W
 8 5.65e3
                498.
                            2001
                                        2008
                                                                        0.00548
                                                                                   5.84e-7 ((-121.6384 38.51655, -1...
                                                   2009 MR
                                                               SOUT...
                                                                                   4.28e-7 ((-121.6315 38.51578, -1...
 9 4.14e3
                 502.
                            2006
                                        2012
                                                   2013 MR
                                                               SOUT...
                                                                        0.00536
10 9.78e4
                                                                        0.0746
                                                                                   1.01e-5 ((-121.6825 38.5156, -12...
                6630.
                            2008
                                        2011
                                                   2012 MR
                                                               50UT...
# i 272 more rows
# i Use `print(n = ...)` to see more rows
```

IEP Integrated datasets - deltamapr

WW_Delta

Other Resources

- rvest package Web scraping https://rvest.tidyverse.org/index.html
- pdftools package Extracting data from .pdf file

https://docs.ropensci.org/pdftools/

 contentid package – work with external data through content identifiers

https://cboettig.github.io/contentid/

Code from this tutorial

https://github.com/InteragencyEcologicalProgram/iep-data-workshop-

2024/blob/main/coded_data_access/coded_data_access.Rmd

