$q_m = 19$. There are 13 points strictly inside the slab.

The last value of ν is $\nu=0.97$, see Figure 56.15. We have $p_f=23, q_f=24, p_m=25$ and $q_m=25$. There are 0 points strictly inside the slab. The slab is so narrow that it does not contain any of the points x_i in it. Running the program with any value $\nu>0.97$ yields $\epsilon=0$.

Figure 56.15: Running ν -SV regression on a set of 50 points; $\nu = 0.97$.

56.4 Kernel ν -SV Regression

Since the formulae for w, b, and f(x),

$$w = \sum_{i=1}^{m} (\mu_i - \lambda_i) x_i$$

$$b = \frac{1}{2} (y_{i_0} + y_{j_0} - w^{\top} (x_{i_0} + x_{j_0}))$$

$$f(x) = \sum_{i=1}^{m} (\mu_i - \lambda_i) x_i^{\top} x + b,$$

only involve inner products among the data points x_i and x, and since the objective function $-G(\alpha, \mu)$ of the dual program also only involves inner products among the data points x_i , we can kernelize the ν -SV regression method.