HW 1

HW 1

5.

Suppose otherwise. Let e = [1]; then e is the identity element because for all $k \in \mathbb{Z}$ we have e * [k] = [1] * [k] = [1 * k] = [k]. Let x = [0] and $x^{-1} = [k]$ for some $k \in \mathbb{Z}$, which exists because of the existence of inverses in a group. By the uniqueness of identities in groups we have $[1] = e = x * x^{-1} = [0] * [k] = [0 * k] = [0]$, which means $0 \sim 1$, which means $0 \sim 1$, which means $0 \sim 1$, which is not true for $0 \sim 1$.

7.

Let \sim be a equivalence relation on real numbers: for real numbers a, b let $a \sim b$ if b - a is an integer. This is reflexive as 0 is an integer, and transitive as the sum of two integers is an integer.

Let f(l) be the fractional part of l. We have $f(l) = l - [l] \ge 0$ because $[l] \le l$ by definition. We have f(l) = l - [l] < 1 because otherwise, [l] + 1 would be an integer less than l. Hence $x * y \in R$.

Lemma 1: for a positive real number a we have [a]+1=[a+1]. Proof: $[a]+1\leq a+1$ by adding 1 to both sides of the inequality $[a]\leq a$. Suppose there is an integer t>[a]+1 which satisfies $t\leq a+1$; then because the difference of two distinct integers is at least 1, $[a]+2\leq t\leq a+1$ which means $[a]+1\leq a$, contradicting the definition of [a].

Lemma 2: for a positive real number a and a positive integer k we have [a] + k = [a + k] by induction on k.

Lemma 3: for two positive reals a, b we have $a \sim b \implies f(a) = f(b)$. Proof: WLOG b = a + k for a positive integer k, then f(b) = f(a+k) = a + k - [a+k] = a + k - ([a] + k) = a - [a] = f(a).

Lemma 4: for a positive real $a, f(a) \sim a$. Proof: their difference is an integer by the defition of f.

Identity: 0 is the identity since for all $x \in G$, 0 * x = f(x + 0) = f(x) = x.

Inverse: let $x \in G$; then $1 - x \in G$ and their group product is f(1 - x + x) = f(1) = 0.

Commutativity: for $x, y \in G$ we have x + y = y + x hence f(x + y) = f(y + x).

Associativity: for $x, y, z \in G$ we have $x*(y*z) \sim x*(y+z) \sim x+(y+z) = (x+y)+z \sim (x*y)+z \sim (x*y)*z$.

14.

I'll write the powers of the elements, represented as integers modulo 36.

```
1; o(1) = 1
-1, 1; o(-1) = 2
5, 25, 17, 13, 29, 1; o(5) = 6
13, 25, 1; o(13) = 3
-13, 25, -1, 13, -25, 1; o(-13) = 6
17, 1; o(17) = 1
```

22.

For all positive integers k we have $(g^{-1}xg)^k=g^{-1}x^kg$ by induction on k, with inductive step $(g^{-1}xg)^{k+1}=(g^{-1}xg)^k(g^{-1}xg)=g^{-1}x^kgg^{-1}xg=g^{-1}x^kxg=g^{-1}x^{k+1}g$ and base case k=1.

In particular for k=n we have $(g^{-1}xg)^n=g^{-1}x^ng=g^{-1}g=1$, hence $o(g^{-1}xg)\leq 1$. Suppose $o(g^{-1}xg)=k$ with k< n; then we have $g^{-1}x^kg=1\implies x^kg=g\implies x^k=gg^{-1}=1$, contradicting that n is the least positive integer such that $x^n=1$.

We have $o(ab) = o(a^{-1}aba) = o(ba)$.

31.

For every $g \in t(G)$ create an edge from g to g^{-1} ; since t(G) does not contain elements which are their own inverses, each edge points to a different element. Since we have $(g^{-1})^{-1} = g$ this forms a set of bidirectional edges, meaning that |t(G)| is even. Hence |G - t(G)| is even, and since $e \notin t(G)$ it has at least two elements. Let x be such an element with $x \neq e$. We have $x = x^{-1} \implies x^2 = 1$. Since $x \neq e, o(x) = 2$.

32.

Suppose otherwise, and let $x^a = x^b$ with a < b be two equal elements from the list, and let t = b - a. We have $t \le n - 1$ since $b \le n, 0 \le a$. Then $x^t = x^{b-a} = x^b(x^a)^{-1} = x^b(x^b)^{-1} = 1$, contradicting the fact that n is the least positive integer such that $x^n = 1$.

Suppose t = |x| > |G|; then $x^0, x^1, \dots x^{t-1}$ are all distinct elements of G, hence $|G| \ge |\{x^0, x^1, \dots x^{t-1}\}| = t > |G|$, a contradiction.

35.

Let x^k be such an integer power, and let k = qn + r where $0 \le r < n$. We have $x^k = x^{qn+r} = (x^n)^q x^r = 1^q x^r = x^r$ as required.