Comparaciones múltiples

Método	Estadístico	RH_0 si	Distribución	Comparaciones
Bonferroni	$t = \frac{\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}}{\sqrt{S_p^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \sim t_{n_i + n_j - 2}$	$ \bar{y}_{i\cdot} - \bar{y}_{i'\cdot} > t_{\alpha/(2k);n_i + n_j - 2} \sqrt{S_p^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$	t de Student	todas
Scheffe	$F = \frac{(\bar{y}_{i} - \bar{y}_{i'})^{2}}{(a-1)MS_{E}\left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)} \sim F_{a-1,N-a}$	$ \bar{y}_{i\cdot} - \bar{y}_{i'\cdot} > \sqrt{F_{\alpha;a-1,N-a} \cdot (a-1)} \sqrt{MS_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$	F de Fisher	todas
Tukey	$q = \frac{\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}}{\frac{1}{\sqrt{2}}\sqrt{MS_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \sim q_{a,N-a}$	$ \bar{y}_{i\cdot} - \bar{y}_{i'\cdot} > \frac{1}{\sqrt{2}} q_{\alpha;a,N-a} \sqrt{M S_E \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$	q de Tukey	todas
LSD	$t = \frac{\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}}{\sqrt{MS_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \sim t_{N-a}$	$ \bar{y}_{i\cdot} - \bar{y}_{i'\cdot} > t_{\alpha/2;N-a} \sqrt{MS_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$	t de Student	todas
Dunnett	$d = \frac{\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}}{\sqrt{MS_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \sim d_{a,N-a}$	$ \bar{y}_{i\cdot} - \bar{y}_{i'\cdot} > d_{\alpha;a,N-a} \sqrt{MS_E\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$	D de Dunnett	todas vs referencia

Nivel de significación global α . Métodos ordenados de más a menos conservadores (o de menos a más potentes)

- Bonferroni: pairwise.t.test(resp,grupo,p.adjust.method="bonferroni") package=stats
- Scheffe: scheffe.test(modelo,"grupo",console=TRUE) package=agricolae
- Tukey:
 HSD.test(modelo,"grupo",console=TRUE) package=agricolae
- LSD: LSD.test(modelo, "grupo", console=TRUE) package=agricolae
- Dunnett: summary(glht(modelo,linfct=mcp(grupo="Dunnett"))) package=multcomp

Nota: se supone que la variable respuesta se llama "resp" y la variable grupo "grupo".