Deep Differentiable Logic Gate Networks

Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen

Interpreted by: John Tan Chong Min

Perceptron

Source: Mehul Motani's Neural Network Notes

Logic Gates

Source: Mehul Motani's Neural Network Notes

Perceptron is a linear separator

Source: Mehul Motani's Neural Network Notes

The XOR problem

• Try to draw a line to separate the black and white circles

Multi-Layer Perceptron

Single Layer (Perceptron)

Multiple Layers
(Multi-Layer Perceptron)

Logic Gates vs Neurons

Logic Gates vs Neurons

Only models linear decision boundaries!

Neural-like: Flexible learning of function

Slow learning and inference

Can have non-linear decision boundaries! E.g. XOR

Algorithm-like: Fixed function

Fast learning and inference

What Logic Gates to model?

 Model every possible 2input gate

Table 1: List of all real-valued binary logic ops.

ID	Operator	real-valued	00	01	10	11
0	False	0	0	0	0	0
1	$A \wedge B$	$A\cdot B$	0	0	0	1
2	$\neg(A \Rightarrow B)$	A - AB	0	0	1	0
3	A	A	0	0	1	1
4	$\neg (A \Leftarrow B)$	B - AB	0	1	0	0
5	B	B	0	1	0	1
6	$A \oplus B$	A + B - 2AB	0	1	1	0
7	$A \lor B$	A + B - AB	0	1	1	1
8	$\neg (A \lor B)$	1 - (A + B - AB)	1	0	0	0
9	$\neg(A \oplus B)$	1-(A+B-2AB)	1	0	0	1
10	$\ abla B$	1 - B	1	0	1	0
11	$A \Leftarrow B$	1 - B + AB	1	0	1	1
12	$\neg A$	1 - A	1	1	0	0
13	$A \Rightarrow B$	1 - A + AB	1	1	0	1
14	$\neg (A \land B)$	1 - AB	1	1	1	0
15	True	1	1	1	1	1

Classification

Difficulty of training logic gates

- Logic gates perform one fixed function, inherently not differentiable
- Could use evolutionary means to learn the logic gates -> not scalable
- Make network differentiable:
 - Link inputs to outputs using a differentiable function
 - Use some probabilistic way to select logic gates

Make output a function of the inputs

$$a' = f_i(a_1, a_2)$$

Make the gate selectable by backprop

$$a' = \sum_{i=0}^{15} \boxed{m{p_i}} \cdot f_i(a_1, a_2) = \sum_{i=0}^{15} \boxed{rac{e^{m{w}_i}}{\sum_j e^{m{w}_j}}} \cdot f_i(a_1, a_2)$$

Categorical Distribution via Softmax

Training Setup

• Initialization: Randomly initialize connections and parameterization of each neuron (normal distribution), Adam optimizer, 0.01 learning rate

 Logic Gate selection: Each neuron will be converted to the logic gate with the highest probability based on the categorical probability distribution

Configuring to Output (Classification)

 k classes, n output neurons. Group neuron outputs in groups of size n/k, then aggregate the classification scores. Train by passing through all outputs with a softmax, and class with largest sum of post-softmax values is winner

Aggregation of Output Neurons Now, we may have n output neurons $a_1, a_2, ..., a_n \in [0, 1]$, but we may want the logic gate network to only predict k < n values of a larger range than [0, 1]. Further, we may want to be able to produce graded outputs. Thus, we can aggregate the outputs as

$$\hat{y}_i = \sum_{j=i\cdot n/k+1}^{(i+1)\cdot n/k} a_j / \tau + \beta \tag{3}$$

where τ is a normalization temperature and β is an optional offset.

Results (Tabular - Classification)

Table 3: Results for the Adult and Breast Cancer data sets averaged over 10 runs.

Adult	Acc.	# Param.	Infer. Time	Space
Decision Tree Learner	79.5%	≈ 50	86ns ≈	≈ 130B
Logistic Regression	84.8%	234	63ns	936B
Neural Network	84.9%	3810	635ns	15KB
Diff Logic Net (ours)	84.8%	1280	5.1ns	640B
D4 C		" D		~
Breast Cancer	Acc.	# Param.	Infer. Time	Space
Decision Tree Learner		# Param. ≈ 100		$\frac{\text{Space}}{\approx 230\text{B}}$
Decision Tree Learner	71.9%	≈ 100	82ns ≈	≈ 230B

Fast inference, good accuracy for classification tasks in tabular datasets

Results (Binarized MNIST)

Table 4: Results for MNIST, all of our results are averaged over 10 runs. Times (T.) are inference times per image, the GPU is an NVIDIA A6000, and the CPU is a single thread at 2.5 GHz. For our experiments, i.e., the top block, we use binarized MNIST.

MNIST	Acc.	# Param.	Space	T. [CPU]	T. [GPU]	OPs	FLOPs
Linear Regression Neural Network (<i>small</i>) Neural Network	$\begin{array}{c} 91.6\% \\ 97.92\% \\ 98.40\% \end{array}$	$4010 \\ 118282 \\ 22609930$	16KB 462KB 86MB	$3 \mu ext{s} \ 14 \mu ext{s} \ 2.2 ext{ms}$	2.4ns 12.4ns 819ns	(4M) (236M) (45G)	4K 236K 45M
Diff Logic Net (<i>small</i>) Diff Logic Net	$97.69\% \\ 98.47\%$	$48000 \\ 384000$	23KB 188KB	$625 \mathrm{ns} \ 7 \mu \mathrm{s}$	6.3ns (50ns)	48 K 384 K	_

Fast inference, good accuracy for larger image classification

Results (CIFAR)

Table 5: Results on CIFAR-10. Times (T.) are inference times per image, the GPU is an NVIDIA A6000, and the CPU is a single thread at 2.5 GHz. For our experiments, i.e., the top block, we use a color-channel resolution of 4 for the first 3 lines and a color-channel resolution of 32 for the *large* models. The other baselines were provided with the full resolution of 256 color-channel values. The numbers in parentheses are extrapolated / estimated.

CIFAR-10	Acc.	# Param	Space	T. [CPU]	T. [GPU]	OPs	FLOPs
Neural Network (color-ch. res. = 4)	50.79%	12.6M	48 MB	1.2ms	370ns	(25G)	25 M
Diff Logic Net (small) Diff Logic Net (medium) Diff Logic Net (large) Diff Logic Net (large × 2) Diff Logic Net (large × 4)	51.27% 57.39% 60.78% 61.41% 62.14%	48K 512K 1.28M 2.56M 5.12M	24KB 250KB 625KB 1.22MB 2.44MB	$1.3 \mu s$ $7.3 \mu s$ $(18 \mu s)$ $(37 \mu s)$ $(73 \mu s)$	19ns 29ns (73ns) (145ns) (290ns)	48K 512K 1.28M 2.56M 5.12M	_ _ _ _
Best Fully-Connected Baselines (coll Regularized SReLU NN [28] Student-Teacher NN [52] Student-Teacher NN [52]	68.70% 65.8% 74.3%	= 256) 20.3M 1M 31.6M	77MB 4MB 121MB	$1.9 \mathrm{ms}$ $112 \mu \mathrm{s}$ $2.9 \mathrm{ms}$	565ns 243ns 960ns	(40G) (2G) (63G)	40M 2M 63M

Fast inference, moderate accuracy for larger image classification

Exponential Growth of Gates!

Table 6: Logic gate network architectures.

Dataset	Model	Layers	Neurons / layer	Total num. of p.		au
MONK-1	_	6	24	144		1
MONK-2		6	12		72	1
MONK-3	_	6	12		72	1
Adult		5	256	32	1 280	1/0.075
Breast Cancer	_	5	128	8	640	1/0.1
MNIST	small	6	8 000	128	48000	1/0.1
	normal	6	64000	2048	384000	1/0.03
CIFAR-10	small	4	12000	1024	48000	1/0.03
	medium	4	128000		512000	1/0.01
	large	5	256000		1280000	1/0.01
	$large \times 2$	5	512000		2560000	1/0.01
	large×4	5	1024000		5120000	1/0.01

Exponential Increase

Requires more neurons than MLP (in orange)

Limitations

- Expensive Training Higher training cost compared to conventional neural networks. Mainly due to the differentiable categorical distribution used to decide the logic gate
- Convolutions and Residual connections are not modelled
- Limited to small architectures due to exponential scaling of number of logic gates in subsequent layers

Some of my thoughts

Benefits and drawbacks (my own thoughts)

- Benefits:
 - No gradient vanishing / exploding
 - Mimics biological neurons better output is always limited to 1
- Drawbacks:
 - Requires exponential amount of logic gates to model the input-output relation
 - Requires a lot of logic gate nodes as compared to the normal neurons
- Maybe take the paper's idea of constraining outputs, but use a more expressive architecture?

Artificial Tools used in Neural Networks to counter vanishing/exploding gradients

- Scaling of inputs to zero mean and unit variance (e.g. ImageNet)
- Normalization
 - Batch Norm
 - Layer Norm
- Gated RNNs
 - Forget Gate
 - Input Gate
 - Output Gate

https://paperswithcode.com/method/layer-normalization

Action Potential is a fixed magnitude Should we constrain outputs?

Saturated gradients:
How to solve?

10

5

Tanh

0.5

Sigmoid Function

-10

 $a = \frac{1}{1 + \exp(-z)}$

-5

Neurons can communicate in clusters: Directed Graph Neural Networks?

Questions to Ponder

- Why restrict the input of each logic gate to just 2 inputs? Why not up to n inputs?
- Should the logic gate connections be pseudo-randomly initialized, or should there be a fixed set of initial connections?
- Why not keep the logic gates fixed throughout rather than having it being selected via categorical distribution?
- Can we do with fewer operators rather than all 16 gates?
- Can we do a similar implementation on a neural network, but restrict output to magnitude 1 for all nodes?