flea bit(e)s and pieces

Alexander Maringele

June 15th, 2016

Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.

— Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

- 1 Previously
- 2 Procedure
- 3 Equality
- 4 Bernays-Schönfinkel-Ramsey
- 5 work to do

References

- Douglas R. Hofstadter, *Gödel, Escher, Bach: An Eternal Golden Braid*, Basic Books, Inc., New York, NY, USA, 1979.
 - Robert Nieuwenhuis, Thomas Hillenbrand, Alexandre Riazanov, and Andrei Voronkov, *On the evaluation of indexing techniques for theorem proving*, Automated Reasoning (Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, eds.), Lecture Notes in Computer Science, vol. 2083, Springer Berlin Heidelberg, 2001, pp. 257–271.

Goal

Definition (Ordered Resolution)

$$\frac{L \vee C \quad \neg L' \vee D}{(C \vee D)\sigma}$$

where

 $L\sigma$ strictly maximal in $C\sigma$, $\neg L'\sigma$ maximal in $D\sigma$, $\sigma = \text{mgu}(L, L')$.

Definition (Inst-Gen)

$$\frac{L \vee C \quad \neg L' \vee D}{(L \vee C)\sigma \quad (\neg L' \vee D)\sigma}$$

where

$$\operatorname{sel}(L \vee C) = L$$
 $\operatorname{sel}(\neg L' \vee D) = \neg L'$ $\sigma = \operatorname{mgu}(L, L')$

Alexander Maringele flea

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y) \quad \neg \mathsf{P}(\mathsf{a})}{\neg \mathsf{P}(y) \quad \mathsf{P}(\mathsf{b})} \ y \mapsto \mathsf{b}$$

Example (Inst-Gen)

$$S_{0} \perp = \{ \mathsf{P}(\perp) \vee \neg \mathsf{P}(\perp), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}) \}$$

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y)) \quad \neg \mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)} \quad x \mapsto \mathsf{a}$$

$$S_{1} \perp \supseteq \{ \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \frac{\mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a})} \vee \neg \mathsf{P}(\perp) \}$$

$$\frac{\mathsf{P}(\mathsf{b}) \quad \mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)}{\mathsf{P}(\mathsf{a}) \vee \mathsf{P}(\mathsf{b})} \quad y \mapsto \mathsf{b}$$

$$S_{2} \perp \supseteq \{ \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(\mathsf{b}) \}$$

satisfiable

satisfiable

unsatisfiable

$$S = \{C, D, \ldots\} \qquad \exists \theta \ C\theta \subseteq D$$

C subsumes D

$$S$$
 satisfiable \iff $(S \setminus D)$ satisfiable

 θ is proper, $S \perp$ satisfiable $\stackrel{\mathsf{X}}{\Longleftrightarrow} (S \setminus D) \perp$ satisfiable

 θ is renaming, $S\bot$ satisfiable \iff $(S\setminus D)\bot$ satisfiable

Example

$$\begin{aligned} \{\mathsf{P}(x,y),\neg\mathsf{P}(\mathsf{a},z)\} & \quad \{\mathsf{P}(x,y),\neg\mathsf{P}(\mathsf{a},z),\mathsf{P}(\mathsf{a},z)\} \\ \{\mathsf{P}(\bot,\bot),\neg\mathsf{P}(\mathsf{a},\bot)\} & \quad \{\mathsf{P}(\bot,\bot),\neg\mathsf{P}(\mathsf{a},\bot), \textcolor{red}{\mathsf{P}(\mathsf{a},\bot)}\} \end{aligned}$$

Alexander Maringele

- 1 representation of clauses, literals and terms
- 2 fast retrieval of clauses with a selected literal that is unifiable with the negation selected literal of a given clause
- 3 fast retrieval of clauses with a set of literals that is a renamed subset of a given clause

$$\{ {}^{1:}\mathsf{P}(\mathsf{f}(x,x)), {}^{2:}\mathsf{P}(\mathsf{g}(\mathsf{a},x)), {}^{3:}\mathsf{P}(\mathsf{f}(y,z)), {}^{4:}\mathsf{P}(\mathsf{g}(\mathsf{a},y)), {}^{5:}\mathsf{P}(\mathsf{f}(y,x)), {}^{6:}\mathsf{P}(\mathsf{g}(y,a)) \}$$

$$\neg P(g(b, z)) \mapsto \{P.1.g.1.b, P.1.g.2.*\} \mapsto \{6\} \cap \{2, 4, 6\}$$

Alexander Maringele

$$\begin{split} S = & \{ \mathsf{P}(\mathsf{a}), \neg \mathsf{P}(\mathsf{f}(\mathsf{a},\mathsf{b})), \mathsf{f}(x,\mathsf{b}) = x \} \\ S \bot = & \{ \mathsf{P}(\mathsf{a}), \neg \mathsf{P}(\mathsf{f}(\mathsf{a},\mathsf{b})), \mathsf{f}(\bot,\mathsf{b}) = \bot \} \\ & \mathsf{a} \neq y \vee \neg \mathsf{P}(\mathsf{a}) \vee \mathsf{P}(y) \end{split}$$

unsatisfiable satisfiable P(a), congruence

Schemata

$$x = x \qquad s \neq s$$

$$x \neq y \lor y = x \qquad s \neq t$$

$$x \neq y \lor y \neq z \lor x = z \qquad s \neq t$$

$$x_1 \neq y_1 \lor x_2 \neq y_2 \lor \mathsf{f}(x_1, x_2) = \mathsf{f}(y_1, y_2) \qquad \mathsf{f}(s_1, s_2) \neq \mathsf{f}(t_1, t_2)$$

$$x \neq y \lor \neg \mathsf{P}(x) \lor \mathsf{P}(y) \qquad \mathsf{P}(s)$$

$$x \neq y \lor \neg \mathsf{P}(x) \lor \mathsf{P}(y) \qquad \neg \mathsf{P}(s)$$

Symmetry and transitivity are consequences of reflexivity and congruence.

Symmetry.

$$\frac{\overline{x_1 \neq y_1 \vee x_2 \neq y_2 \vee x_1 \neq x_2 \vee y_1 = y_2}}{\frac{x \neq y \vee x \neq x \vee x \neq x \vee y = x}{x \neq y \vee y = x}} \, \mathop{\mathsf{R}}^{\mathsf{C}} x_1 \mapsto x, x_2 \mapsto x, y_1 \mapsto y, y_2 \mapsto x$$

Transitivity.

$$\frac{\overline{x_1 \neq y_1 \vee x_2 \neq y_2 \vee x_1 \neq x_2 \vee y_1 = y_2}}{\frac{x \neq x \vee y \neq z \vee x \neq y \vee x = z}{x \neq y \vee y \neq z \vee x = z}} \, \mathop{\mathsf{R}}^{\mathsf{C}}$$

The Bernays–Schönfinkel-Ramsey class of first-order formulae is a decidable fragment of first-order logic. Each formulae in this fragment is equivalent to a formula $\exists a_1 \ldots a_m \forall y_1 \ldots y_n F(a_1, \ldots, a_m, y_1, \ldots, y_n)$ where F is quantifier free and does not contain any function symbol, which can easily transformed into $\forall y_1 \ldots y_n G(y_1, \ldots, y_n)$ where G contains only constant function symbols.

Example

$$\mathsf{a} \neq x \vee \mathsf{Q}(\mathsf{a},x), \mathsf{Q}(y,\mathsf{b})$$

Alexander Maringele flea June 15th, 2016

- migrate to Linux / Swift 3
- integrate unit superposition
- integrate ordered maximal completion
- experiments
- optimizations

