Detecting Cancer Metastases On Gigapixel Pathology Images

Aditya Natarajan (an2867)

Aashish Misraa (akm2215)

PROBLEM STATEMENT

- Develop a deep learning model that outputs a heatmap showing regions of a biopsy image likely to contain cancer
- We explore different deep learning techniques to arrive at a solution that can be used to assist in diagnosis

Biopsy image

Ground truth (from pathologist)

Model predictions

WORKFLOW

Obtain data

Extract patches

Pre-processing

Train model Test model Evaluate results

OBTAINING DATA

- CAMELYON 16 dataset
- The training and testing data are a single slide each (randomly chosen)
 - Training slide : tumor_078.tif (and associated mask)
 - Testing slide: tumor_I 10.tif (and associated mask for evaluation)
- Choose two levels per slide: levels 3 and 6 (could not use more due to memory issues!)
 - Downsample factor for level 3 is 8
 - Downsample factor for level 6 is 64

EXTRACTING PATCHES

- Patch size : 100 x 100
- Central window size: 60 x 60 (To extract the mask context, referenced from the original paper)
- Stride: 60
- Patches are extracted using a sliding window technique

PRE - PROCESSING

- Data augmentation:
 - Rotating the patch by 90 degrees (4 times, so all rotations are obtained)
- Sampling
 - To combat the class imbalance problem there are far more non-cancer patches than there are cancer patches (anywhere between I: I0 to I: I5, depending on the extraction method)
 - The non cancer patches were added to the training data if a randomly generated choice was above a certain threshold
 - Threshold value was set through trial-and-error

PRE – PROCESSING (CONTD.)

- We finally obtain the patches across the different levels, shuffle them and create a final training set of patches and labels
 - Label I for tumor cell
 - Label 0 for normal cell
- The data is now ready to be used for training the model

TRAIN MODEL

- Use the same model to train patches across both levels (Deviation from the paper, which uses different InceptionV3 towers for each level)
 - Done due to memory restrictions (Colab runs out of RAM)
- Use transfer learning with InceptionV3 (as the base)
- Model is NOT trained on ImageNet weights!
- Base is followed by Global Average Pooling, 2 Dense layers(relu and sigmoid) and 0.2
 Dropout

TRAIN MODEL (CONTD.)

- Model parameters:
 - Optimizer : RMSprop (learning rate is 0.0001)
 - Loss: Binary Crossentropy
 - Metric : Accuracy
 - Number of epochs : 20
 - Batch size : 64 (also experiment with 32)
- Use model.fit() 's validation_split feature to divide data into 75% for train, 25% for validation

MODEL SUMMARY

Model: "sequential"

Layer (type)	Output Sha	ape	Param #
inception_v3 (Model)	(None, 1,	1, 2048)	21802784
global_average_pooling2d (Gl	(None, 204	48)	0
dense (Dense)	(None, 128	3)	262272
dropout (Dropout)	(None, 128	3)	0
dense_1 (Dense)	(None, 1)		129

Total params: 22,065,185
Trainable params: 262,401

Non-trainable params: 21,802,784

TEST MODEL

- Model predicts on a test slide at level 3 (uses a similar patch extraction approach)
- Model performance can be improved!

For 20 epochs

TEST MODEL (CONTD.)

For 60 epochs

EVALUATION

- Use Precision, Recall and AUC score
- Plot an ROC curve
- Display the confusion matrix

EVALUATION FOR 20 EPOCHS

AUC : 0.885454056201899

Threshold: 0.4063341021537781

CONFUSION MATRIX

[[69306304 19757455]

[246256 16202945]]

True Positive: 16202945

True Negative: 69306304

False Positive: 19757455

False Negative : 246256

Precision: 0.45057744074037

Recall: 0.9850293032470088

EVALUATION FOR 60 EPOCHS

AUC: 0.8401566635430748

Threshold: 0.45884621143341064

CONFUSION MATRIX

[[70509827 18553932]

[342333 16106868]]

True Positive: 16106868

True Negative: 70509827

False Positive: 18553932

False Negative : 342333

Precision: 0.46469983381803076

Recall: 0.9791884724370503

OBSERVATIONS AND TAKEAWAYS

- Smaller patch sizes seem to work better
 - Tried various patch sizes from 90×90 to 200×200 smaller patches yielded best results
- Model can identify tissue correctly (no red patches outside the tissue)
- Model performs well on cancerous cells
 - Evidenced from high recall and relatively lower false negatives
- Model does not perform well on non-cancerous cells
 - Evidenced from high false positives
- KEY TAKEAWAY: Model performs reasonably well, but can be improved
 - Better to mislabel cell as cancerous than the other way round can compromise on precision if it leads to high recall (which our model follows)

OTHER APPROACHES ATTEMPTED

- Approach: Select only patches from the slide with tissue percent above a specified threshold (say 10%)
 - Observation : Did not significantly impact performance

- Approach: Use patches from multiple slides (10+), at a higher level, say 7
 - Observation : Yielded less accurate results

OTHER APPROACHES ATTEMPTED (CONTD.)

- Approach: Train different models for different levels, and then ensemble them
 - Observation : Ran out of RAM in Colab

- Approach : Extreme case set patch stride as I (Extracted 200000+ patches per slide at level 7)
 - Observation : Ran out of RAM in Colab

FUTURE WORK

- Experiment with more architectures
 - We used only VGG16 and InceptionV3 increasing the number of epochs did not necessarily improve the performance
- Better data extraction techniques leading to more diverse and balanced training data
- Possibly better metric ?
 - Using accuracy to train the model led to large red patches because model optimized for accuracy

Code Walkthrough