Lógica para Computação Aula 14 - Lógica Proposicional¹

Sílvia M.W. Moraes

 $^{^1}$ Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a estudar a Lógica Proposicional: dedução natural.
- Este material foi construído com base nos slides do prof.
 Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica Proposicional: Dedução Natural

2 Próxima Aula

Lógica Proposicional - Relembrando ...

- Argumento Lógico = premissas + conclusão
- $\varphi_1, \varphi_2, ..., \varphi_n \models \psi$ é igual a $\phi_1, \phi_2, ..., \varphi_n \vdash \psi$?
- Regras de Dedução Natural
 - $\wedge e_1$ e $\wedge e_2$; $\wedge i$
 - ¬¬e
 - $\rightarrow e \ e \rightarrow i$
 - $\forall i_1 \in \forall i_2; \forall e$

Lógica Proposicional - Negação e Contradição

- Até agora, vimos apenas a eliminação da dupla negação (¬¬e).
- Não vimos nenhuma regra que introduz ou elimina a negação.
 Essas regras envolvem a noção de contradição.
- Contradições são expressões da forma: φ∧¬φ ou ¬φ∧φ, onde φ é uma fórmula.
 - Exemplos:
 - \bullet $r \wedge \neg r$
 - $(p \rightarrow q) \land \neg (p \rightarrow q)$
 - $\neg((r \lor s) \to t) \land ((r \lor s) \to t)$

Lógica Proposicional - Eliminação da Negação e Contradição

- Notação de uma contradição: ⊥
- Uma contradição pode demonstrar qualquer coisa. Isso é o que mostra a regra de eliminação da contradição: ⊥ e
- A introdução de uma contradição é representada pela regra de eliminação da negação: ¬e.

$$\frac{\perp}{\varphi} \; (\perp e) \qquad \qquad \frac{\varphi \neg \varphi}{\perp} \; (\neg e)$$

Lógica Proposicional - Introdução da Negação

- Se a hipótese de uma fórmula que é válida levar a uma contradição (qualquer fórmula e sua negação), sabemos que a hipótese estava errada.
- Assim, podemos descartar a hipótese e concluir a negação dela.

$$[arphi]$$
 \vdots
 $\psi \wedge
eg \psi$
 $\neg \varphi$
 $\neg \varphi$
, sendo que $\psi \wedge
eg \psi = \bot$

• Exemplo 1 - Prove que o sequente de $p \to q, p \to \neg q \vdash \neg p$ é válido, usando dedução natural:

1.
$$p \rightarrow q$$
 premissa
2. $p \rightarrow \neg q$ premissa
3. p hipótese
4. q $\rightarrow e$ 1,3
5. $\neg q$ $\rightarrow e$ 2,3
6. \bot $\neg e$ 4,5
7. $\neg p$ $\neg i$ 3-6

• Exemplo 2 - Prove que o sequente de $p \to (q \to r), p, \neg r \vdash \neg q$ é válido, usando dedução natural:

1.	p o (q o r)	premissa
2.	p	premissa
3.	$\neg r$	premissa
4.	q ightarrow r	ightarrow e 1,2
5.	q	hipótese
6.	r	ightarrow e 4,5
7.	$r \wedge \neg r$	<i>∧i</i> 3,6
8.	$\neg a$	¬ <i>i</i> 5-7

Lógica Proposicional - Exercícios

- Atividade I: Prove que os sequentes dos argumentos abaixo são válidos usando dedução natural.

Lógica Proposicional - Equivalência

- Duas fórmulas são ditas demonstravelmente equivalentes quando uma pode ser deduzida a partir da outra
- Quando os argumentos $\phi \vdash \varphi$ e $\varphi \vdash \phi$ são válidos, existe uma demonstração que leva de ϕ para φ e outra de φ para ϕ .
- Denota-se a equivalência por ⊢.
 - Exemplos:
 - $(p \land q) \rightarrow r \dashv \vdash p \rightarrow (q \rightarrow r)$
 - $\neg (p \land q) \dashv \vdash \neg q \lor \neg p$

• Exemplo 1 - Prove a equivalência $(p \land q) \rightarrow r \dashv \vdash p \rightarrow (q \rightarrow r)$ usando dedução natural:

1.	$(p \land q) \rightarrow r$	premissa
2.	р	hipótese
3.	q	hipótese
4.	$p \land q$	<i>∧i</i> 2,3
5.	r	ightarrow e 1,4
6.	$q \rightarrow r$	\rightarrow i 3-5
7.	p o (q o r)	→ <i>i</i> 2-6

2.	$p \wedge q$	hipótese
3.	р	$\wedge e_1$ 1
4.	(q ightarrow r)	ightarrow e 1,3
5.	q	$\wedge e_2$ 1
6.	r	ightarrow e 4,5
7	(A)	1:06

• Exemplo 2 - Prove a equivalência $p \to q \dashv \vdash \lnot q \to \lnot p$ usando dedução natural:

1.	p ightarrow q	premissa
2.	$\neg q$	hipótese
3.	р	hipótese
4.	q	ightarrow e 1,3
5.	$q \wedge \neg q$	∧ <i>i</i> 4,2
6.	$\neg p$	¬i 3-5
7.	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	→ <i>i</i> 2-6

1.	$^{\lnot}q \rightarrow ^{\lnot}p$	premissa
2.	р	hipótese
3.	$\neg q$	hipótese
4.		ightarrow e 1,3
5.	$p \wedge \neg p$	<i>∧i</i> 2,4
6.	$\neg \neg q$	¬ <i>i</i> 3-5
7.	q	$^{\lnot\lnot}e$
8	$\overline{\hspace{1cm} p o q}$	→ <i>i</i> 2-7

Lógica Proposicional - Teoremas

- Considere o argumento de uma linha:
 - 1 p premissa
- Ele demonstra que $p \vdash p$ e pode ser estendido para

$$\begin{array}{cccc}
1 & p & \text{hipótese} \\
2 & p \to p & \to i \text{ 1-1}
\end{array}$$

- Escreve-se esse argumento como $\vdash p \rightarrow p$ para expressar que o argumento $p \rightarrow p$ não depende de nenhuma premissa.
- Fórmulas lógicas (φ) com um sequente válido $(\vdash \varphi)$ são chamadas de teoremas.

• Exemplo 1 - Prove o teorema $\vdash p \rightarrow (q \rightarrow p)$ usando dedução natural:

1.	р	hipótese
2.	q	hipótese
3.	p	cópia de 1
4.	q o p	→ <i>i</i> 2-3
5.	p o (q o p)	→ <i>i</i> 1-4

 Exemplo 2 - Prove o teorema ⊢ ((p → q) ∧ p) → q usando dedução natural:

Lógica Proposicional - Exercícios

- Atividade II: Prove os teoremas abaixo são válidos usando dedução natural.
 - $\bullet \vdash (p \land q \rightarrow q \land p) \land (q \land p \rightarrow p \land q)$
- Atividade III: Prove as equivalências a seguir usando dedução natural:
 - \bigcirc $p \land q \dashv \vdash q \land p$

Leitura

• Souza, J. N. Lógica para Computação. Cap. 6