МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО» Факультет информационных технологий и программирования

Аппаратное обеспечение вычислительных систем Лабораторная работа № 4 Вариант № 4

Выполнил студент:

Васильков Дмитрий Алексеевич

Группа: М3115

САНКТ-ПЕТЕРБУРГ

2023

<u>Цель работы</u> - изучение способов связи между программными модулями, команды обращения к подпрограмме и исследование порядка функционирования ЭВМ при выполнении комплекса взаимосвязанных программ.

Подготовка к выполнению работ.

- 1. Восстановить текст заданного варианта программы и подпрограммы (программного комплекса).
- 2. Составить описание программного комплекса.

<u>Порядок выполнения работы</u>. Занести в память базовой ЭВМ заданный вариант программы и заполнить таблицу трассировки, выполняя эту программу по командам.

<u>Содержание отчета по работе</u>. Текст программы с комментариями, таблица трассировки; описание программы.

Варианты программ (первая команда программы помечена знаком "+").

Текст программы с комментариями

Адрес	Код команды	Мнемоника	Комментарий	
00A	0000	ISZ 000	Не используется.	
00B	0000	ISZ 000	Не используется.	
00C	0000	ISZ 000	Не используется.	
00D	0019	ISZ 019	Нужна для цикла.	
00E	0000	ISZ 000	Не используется.	
00F	0000	ISZ 000	Не используется.	
010	+F200	CLA	Очистка аккумулятора.	
011	480D	ADD (00D)	Добавление в аккумулятор значения, которое лежит по адресу, указанному в ячейке 00D, а затем увеличивает значение в 00D.	
012	B014	BEQ 014	Присваивает регистру СК значение 014,	

			если регистр A равен 0.
013	2045	JSR 045	Присваивает регистру СК значение 045, после чего увеличивает его на 1.
014	0018	ISZ 018	Увеличивает значение в ячейке 018 на 1, после чего увеличит СК на 1, если значение в ячейке 018 больше 0.
015	C010	BR 010	Присваивает регистру СК значение 010.
016	F000	HLT	Останавливает ЭВМ.
017	0000	ISZ 000	Нужна для записи результата.
018	FFFD	HZF	Необходимо для цикла.
019	8018	BCS 018	Значение для вычислений.
01A	0000	ISZ 000	Значение для вычислений.
01B	81FF	BCS 1FF	Значение для вычислений.
01C	0000	ISZ 000	Не используется.
01D	0000	ISZ 000	Не используется.

045	0000	ISZ 000	Ячейка для записи места,
			куда нужно вернуться после
			выполнения подпрограммы.
046	F200	CLA	Очистка аккумулятора.
047	F800	INC	Увеличивает значение регистра A на 1.
048	4017	ADD 017	добавляет значение из ячейки 017 в аккумулятор.
049	3017	MOV 017	Присваивает ячейке 017 значение из регистра А.
04A	C845	BR (045)	Выход из подпрограммы.

Таблица трассировки

Адресс	Код	СК	PA	РК	РД	A	C	Адрес	Новый код
010	F200	0011	0010	F200	F200	0000	0		
011	480D	0012	0019	480D	8018	8018	0	00D	001A
012	B014	0013	0012	B014	B014	8018	0		
013	2045	0046	0045	2046	0014	8018	0	045	0014
046	F200	0047	0046	F200	F200	0000	0		
047	F800	0048	0047	F800	F800	0001	0		
048	4017	0049	0017	4017	0000	0001	0		
049	3017	004A	0017	3017	0001	0001	0	017	0001
04A	C845	0014	0045	C845	0014	0001	0		
014	0018	0015	0018	0018	FFFE	0001	0	018	FFFE
015	C010	0010	0015	C010	C010	0001	0		
010	F200	0011	0010	F200	F200	0000	0		

011	480D	0012	001A	480D	0000	0000	0	00D	001B
012	B014	0014	0012	B014	B014	0000	0		
014	0018	0015	0018	0018	FFFF	0000	0	018	FFFF
015	C010	0010	0015	C010	C010	0000	0		
010	F200	0011	0010	F200	F200	0000	0		
011	480D	0012	001B	480D	81FF	81FF	0	00D	001C
012	B014	0013	0012	B014	B014	81FF	0		
013	2045	0046	0045	2046	0014	81FF	0		
046	F200	0047	0046	F200	F200	0000	0		
047	F800	0048	0047	F800	F800	0001	0		
048	4017	0049	0017	4017	0001	0002	0		
049	3017	004A	0017	3017	0002	0002	0	017	0002
04A	C845	0014	0045	C845	0014	0002	0		
014	0018	0016	0018	0018	0000	0002	0	018	0000
016	F000	0017	0016	F000	F000	0002	0		

Описание программы

```
017 = 0;

Void inc ()

{

017++;

}

While (018 <= 0)

{

If(00D != 0)

{

inc();

}

018 ++;
```

То есть программа увеличивает значение в ячейке 017, если значение 00D не равно 0.

Область представления данных и результата: 019 – 01С.

Начало программы — 010. Конец программы — 016.

Вывод

Проделав данную работу мы изучили способоы связи между программными модулями, команды обращения к подпрограмме и исследование порядка функционирования ЭВМ при выполнении комплекса взаимосвязанных программ.