-		
Exam	No:	

GANPAT UNIVERSITY

B. TECH SEM-VI (Computer Engineering) SECOND INTERNAL EXAMINATION - APRIL-MAY 2024

2CEIT601: Theory of Computation

TIME: 1 Hour **Instructions:**

TOTAL MARKS: 20

- 1) Figures to the right indicate full marks.
- 2) Be precise and to the point in your answer.
- 3) Assume suitable data, if necessary.
- 4) The text just below marks indicates the Course Outcomes Numbers, (CO) followed by the bloom's taxonomy level of the question, i.e., R: Remembering, U: Understanding, A: Applying, N: Analyzing, E: Evaluating, C: Creating.
- **Q.1** Convert the following CFG to Chomsky Normal Form (CNF).

[4]

 $S \rightarrow ASB$

2A

 $A \rightarrow aAS|a|\epsilon$

 $B \rightarrow SbS|A|bb$

Solutions: first remove Null production, we get following grammar

 $S \rightarrow ASB|SB|AS|S$

 $A \rightarrow aAS|a|aS$

 $B \rightarrow SbS|A|bb$

After removal of Unit Production on the above Grammar, we get

 $S \rightarrow ASB|SB|AS$

 $A \rightarrow aAS|a|aS$

 $B \rightarrow SbS|bb| aAS|a|As$

Now in this Grammar S becomes Useless Production, So S is Starting symbol of the grammar, so we cannot convert the above grammar into CNF.

(A) Define Ambiguous Grammar and check that the given grammar is ambiguous or not. **Q.2**

[4]

 $S \rightarrow aSb \mid SS$

1R

 $S \rightarrow \epsilon$

Solution: Ambiguous Grammar: A grammar is said to be ambiguous if there exists more than one left most derivation or more than one right most derivation or more than one parse tree for a given input string.

(1) It is **ambiguous** because for the string "aabb" the grammar can generate two parse trees.

(B) Define the Formal Grammar and its type.

Solutions: formal Definition of Grammar:

Any Grammar can be represented by 4 tuples - < N, T, P, S >

- N Finite Non-Empty Set of Non-Terminal Symbols.
- **T** Finite Set of Terminal Symbols.
- **P** Finite Non-Empty Set of Production Rules.

- S Start Symbol (Symbol from where we start producing our sentences or strings
- **Q.3** Construct a PDA for language $L = \{0^n \ 1^m \ 2^m \ 3^n \mid n \ge 1, \ m \ge 1\}$ **Solutions:**

[4] 3C

- **Q.4** Write the Context Free Grammar (CFG) for the following languages.
 - (1) L= $\{a^m b^n \mid m \neq n\}$

[4] 1A

Solutions: $S \rightarrow X \mid Y$

 $X \rightarrow aXb|aBb$

 $\mathbf{B} \rightarrow \mathbf{a} \mathbf{B} \mid \mathbf{a}$

 $Y \rightarrow aYb \mid aAb$

 $A \rightarrow bA|b$

- (2) L= $\{a^n b^n \mid n \ge 1\}$
- Solutions: $S \rightarrow aSb \mid ab$
 - (3) L= {Set of all palindromes over a's and b's}

Solutions: $S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$

(4) L= { Set of all balanced parenthesis}

Solutions: $S \rightarrow (S) | SS | \epsilon$

Q.5 Apply Pumping lemma for regular language. Prove that $L = \{a^n b^n \mid n \ge 1\}$ is not regular. **Solutions:**

[4] 2A

- At first, we assume that L is regular and n is the number of states.
- Let $w = a^n b^n$. Thus $|w| = 2n \ge n$.
- By pumping lemma, let w = xyz, where $|xy| \le n$.
- Let $x = a^p$, $y = a^q$, and $z = a^r b^n$, where p + q + r = n, $p \ne 0$, $q \ne 0$, $r \ne 0$. Thus $|y| \ne 0$.
- Let k = 2. Then $xy^2z = a^pa^{2q}a^rb^n$.
- Number of as = (p + 2q + r) = (p + q + r) + q = n + q
- Hence, $xy^2z = a^{n+q} b^n$. Since $q \neq 0$, xy^2z is not of the form a^nb^n .
- Thus, xy²z is not in L. Hence L is not regular.

-----END OF PAPER-----