السدوال اللوغاريتميسة سلسلة التماري

السنة الدراسية: 2012-2011

الثانية باك علوم رياضيــة

تمرین 1

• بسط كلا من العددين:

$$A=\ln 2+\ln \left(2+\sqrt{2+\sqrt{2}}
ight)+\ln \left(2-\sqrt{2+\sqrt{2}}
ight)$$

$$B=\ln(ab^2)-\ln\left(\sqrt[3]{a^2b^5}
ight)+\lnrac{a}{\sqrt{b}}\ln\left(\sqrt[4]{a^2b^6}
ight)$$

$$\ln\left(rac{a+b}{3}
ight)=rac{1}{2}(\ln a+\ln b)$$
 أحسب $rac{a}{b}$ إذا علمت أن

$$\left|\ln\left(rac{a+b}{2}
ight)\geqslantrac{1}{2}(\ln a+\ln b)
ight.$$
و d من \mathbb{R}^{+*} بين أن d

حدد مجموعة تعريف الدالة f في الحالات التالية: $f(x) = \ln(x^2 - 3x + 2) + f(x) = \ln(1 - |x|)$ $f(x) \Rightarrow \sqrt{\ln^2 x} - \ln x$: $f(x) = \sqrt{1 - \ln^2 x}$: $f(x) = \frac{\ln(x+1)}{\ln(x-2)}$: $f(x) = \ln|3x-6|$: $\left|rac{x+2}{x-1}
ight| + \left|f(x)
ight| = \left|rac{1}{x\ln(x)}
ight|$ f(x)

$$f(x) = rac{1}{1-\ln(x)}$$
 : $f(x) = \ln\left(rac{x+2}{3-x}
ight)$

$$f(x)=rac{\ln x}{1-\ln x}:f(x)=\sqrt{rac{1+\ln x}{1-\ln x}}$$

 $\ln(-3x+3)+\ln 2=0$ حل في $\mathbb R$ المعادلات التالية: $oldsymbol{0}$ $\ln^2|x| - \ln(x^2) - 3 = 0 : 2\ln\sqrt{1-x} = \ln 3 :$ $\ln \sqrt{x} + \sqrt{\ln x} - 2 = 0 \qquad :$ $(\ln x)^3 - 4(\ln x)^2 - \ln x + 4 = 0$ عل في \mathbb{R}^2 النظمة التالية: \mathbf{Q}

$$\begin{cases} \ln x + \ln y = \ln \sqrt{3} - 2 \ln 2 \\ 2(x+y) = \sqrt{3} + 1 \end{cases}$$

 $|\ln |1-x| \leqslant 2|$ المتراجحات التالية: $\| \ln |1-x|$ $\ln(2x^2 - 3x) < 2\ln(6 - x) + \ln^2|x| - \ln(x^2) > 3$

تمرین 4 . ـــــ

بين أن لكل x من $[2;+\infty[$ لدينا:

$$\ln\left(x-2\sqrt{x-1}
ight)=2\ln\left(\sqrt{x-1}-1
ight)$$

بين أن لكل x من $]0;+\infty[$ لدينا: $oldsymbol{arphi}$

$$\ln^2(1+x) - \ln^2(x) = \ln\left(x^2+x\right)\ln\left(1+rac{1}{x}
ight)$$

أحسب النهايات التالية:

$$\lim_{0^+} (\sin x \ln x) : \lim_{-\infty} (x + \ln x^2) : \lim_{+\infty} (3x - 5 \ln x) = \lim_{x \to -\infty} (x^2 + \ln(-x)) : \lim_{x \to 0^+} (\ln^2 x - \ln x) = \lim_{x \to 0^+} (\ln^2 x - \ln x) = \lim_{x \to +\infty} (\ln^2 x - x) : \lim_{x \to 0^+} (\ln x \ln(x + 1)) = \lim_{x \to +\infty} x \ln \left(\frac{x+2}{x}\right) : \lim_{+\infty} \frac{(\ln x)^2}{x} : \lim_{0^+} (\sqrt[3]{x} \ln^4 x) = \lim_{x \to +\infty} (x - 1) \frac{\ln(x)}{x} : \lim_{x \to -\infty} \ln \left(\frac{x^2 + x + 1}{3 + 2x^2}\right) = \lim_{0^+} \frac{\ln(1-x)}{\sqrt{x}} : \lim_{0^+} \frac{\ln(1+x-x^2)}{x} : \lim_{0^+} \frac{x - \ln(x)}{x} = \lim_{0^+} \frac{\ln(x)}{x} = \lim_{0^+} \frac{\ln(x)$$

$$\lim_{0^+} rac{\ln(\cos(x))}{x^2}: \lim_{0^+} rac{\ln\left|\sqrt{x}-1
ight|}{x}: \lim_{+\infty} rac{x-3\ln(x)}{2x-\ln(x)} = \lim_{e} rac{\ln(x)-1}{x-e}: \lim_{3} rac{\ln(x-2)}{x-3}: \lim_{2} rac{\ln(2x-3)}{x^2-x-2} = \lim_{x o 1} rac{\ln(1+\ln(x))}{x^2-1}: \lim_{x o 1^+} rac{\ln(1+\sqrt{x-1})}{x-1} = \lim_{x o 0^+} rac{1}{\ln(x)} - rac{1-x^2}{x\ln(x)}: \lim_{x o 2} \ln\left(rac{x^2-x-2}{x^2+5x-14}
ight)$$

في الحالات التالية حدد arphi مجموعة قابلية اشتقاق الدالة $: \mathscr{D}$ ثم أحسب f'(x) لكل x من f $f(x) = \ln(\ln(x)) : f(x) = \ln(x-1)$ $f(x) = \ln\left(\sqrt{1-2x}\right) : f(x) = \ln(1+x^2)$ $f(x) = \frac{\ln(1+x)}{\ln(x)} + f(x) = \ln\left(\frac{x}{x+x}\right)$ $f(x) = \ln\left(\frac{x^2 - 6x + 5}{2x^2 + 3x + 1}\right) f(x) = \frac{1}{\ln(x)}$

حدد الدوال الأصلية للنالة f على $\mathcal I$ في الحالات : $f(x) = rac{1}{(1+x^2)\arctan(x)} : \left\{egin{array}{l} f(x) = rac{x}{1+x^2} \ \mathcal{I} =]1; +\infty[\end{array}
ight.$ $\mathcal{I} =]1; +\infty[$ $f(x) = rac{\sin(x)}{2+\cos(x)}$ $\mathcal{I} = \mathbb{R}$ $\mathcal{I} = [1; +\infty[$ $f(x)=rac{1}{\sin(2x)} \ \mathcal{I}=\left]0;rac{\pi}{2}
ight[$ $f(x) = \frac{1}{x + \sqrt{x}}$ $\mathcal{I}=[2;+\infty[$ $\left\{egin{array}{l} f(x)=rac{1}{x-3}-rac{2}{x+1} \ \mathcal{I}=]3;+\infty[\end{array}
ight. :\left\{egin{array}{l} f(x)=rac{1}{ an(x)} \ \mathcal{I}=]0;\pi[\end{array}
ight.$

 $g(x) = x \ln(x)$: بما یلی $[0; +\infty[$ معرفة علی gليكن n من $\mathbb N$. بين أن الدالة المشتقة من الرتبة n للدالة g معرفة بما يلى:

$$(n\geqslant 2)\quad g^{(n)}(x)=(-1)^nrac{(n-2)!}{x^{n-1}}$$

تمرين 9 . لتكن f دالة معرفة بما يلي :

$$f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$

- حدد \mathscr{D}_f . بين أن f دالة فردية ثم أحسب النهايتين $\lim_{x o -\infty} f(x)$ و $\lim_{x o +\infty} f(x)$
 - (\mathscr{C}_f) أدرس الفروع اللانهائية للمنحنى (\mathscr{C}_f) .
 - \mathscr{C}_f أدر س تغيرات f ثم أنشى المنحنى \mathscr{C}_f).

 $f(x) = rac{1}{x} + \ln |x|$ معرفة بما يليf

- \mathscr{D}_f حدد \mathscr{D}_f . ثم أحسب نهايات f عند محدات \mathscr{D}_f
- igwedge أدرس تغيرات f و أعط جدو f تغيراتها. $oldsymbol{arphi}$
- $f_n'(x)=rac{g_n(x)}{x^2}$ بين أن المعادلة f(x)=0 تقبل حلا و حيدا lpha . lpha أن -2<lpha<-1
 - . بين أن المنحنى (\mathscr{C}_f) يقبل نقطة انعطاف
 - \mathscr{C}_f أدرس الفروع اللانهائية لـ (\mathscr{C}_f) . ثم أنشئ \mathscr{C}_f).
 - $g(x) = \ln\left(f(x)
 ight)$ حدد مجموعة تعريف الدالة $oldsymbol{G}$

 $(orall n\in \mathbb{N}^*):u_n=1\!+\!rac{1}{2}\!+\!rac{1}{3}\!+\!\cdots\!+\!rac{1}{n}$ نعتبر المتتالية

- $.ig(orall x\in\mathbb{R}^+ig):rac{x}{1+x}\leqslant \ln(1+x)\leqslant x$ بين أن: $oldsymbol{0}$

$$(orall k \in \mathbb{N}^*): \; rac{1}{1+k} \leqslant \ln(1+k) - \ln(k) \leqslant rac{1}{k}$$

- $(orall n \in \mathbb{N}^*): \ln(1+n) \leqslant u_n \leqslant 1 + \ln(n):$ بين $oldsymbol{\Im}$ $\lim u_n$ ثم حدد
- نعتبر المتتاليتين $(v_n)_{n\geqslant 2}$ و $(w_n)_{n\geqslant 2}$ بحيث $oldsymbol{\Phi}$ ين $.w_n=u_{n-1}-\ln(n)$ و $v_n=u_n-\ln(n)$ أن (v_n) و (w_n) متحاديتان و استنتج أن لهما نفس

$$f(0) = 0$$
 : معرفة على \mathbb{R}^+ بما يلي $f(x) = x^2 \sqrt{-\ln(x)}\;; \quad 0 < x \leqslant 1$ و $f(x) = (x-1)\ln(x-1)\;; \quad x > 1$

- $oldsymbol{0}$ أدرس اتصال و قابلية اشتقاق f على يمين b و يسار $oldsymbol{0}$
 - $oldsymbol{2}$ أدرس تغيرات f و أعط جدول تغيراتها.
 - (\mathscr{C}_f) أدرس الفرع اللانهائي بجوار $+\infty$. ثم أنشئ 3

 \mathbb{N}^* ليكن n من

نعتبر الدالة g_n المعرفة بما يلى: (I

$$g_n(x) = x^2 - n (1 - \ln(x))$$

- g_n أحسب $\lim_{n \to +\infty} g_n(x)$ و $\lim_{n \to +\infty} g_n(x)$ ؛ أدر س تغيرات $\mathbf{0}$
- بين أن المعادلة $g_n(x)=\stackrel{\circ}{0}$ بين أن المعادلة $g_n(x)=\stackrel{\circ}{0}$ بحيث $.1 \leqslant \alpha_n < 3$
 - $.]0;lpha_n[$ و $]lpha_n;+\infty[$ على $g_n(x)$ و $oldsymbol{0}$
 - نعتبر الدالة f_n المعرفة بما يلى:

$$f_n(x) = x - n \left(1 + rac{\ln(x)}{x}
ight)$$

- $\lim_{x o 0^+} f_n(x)$ و $\lim_{x o +\infty} f_n(x)$ أحسب النهايتين $\mathbf{0}$
- $.f_n(lpha_n) = -n\left(1+rac{1}{lpha_n}
 ight) + 2lpha_n$ بين أن $oldsymbol{artheta}$
- $(D_n);\; y=x-n$ عط جدول تغيرات f_n ثم بين أن ${f 9}$ $+\infty$ مقارب مائل للمنحنى (\mathscr{C}_{f_n}) بجوار
 - (D_n) و المستقيم النسبي لـ (\mathscr{C}_{f_n}) و المستقيم (D_n)
 - $\lim_{x o +\infty} f_n(x) f_{n+1}(x)$ أحسب النهاية ${f 6}$
 - $h(x)=1+rac{\ln(x)}{x}$ نعتبر الداله $oldsymbol{0}$

 $\lim_{x o 0^+} h(x)$ و $\lim_{x o 0^+} h(x)$ أحسب النهايتين

- eta استنتج أن المعادلة h(x)=0 تقبل حلا وحيدا 0<eta<1
- بحیث 0<eta<1 . $f_n(eta)=f_n(\mathscr{C}_{f_n})$ تمر من $f_n(eta)=g$ بین أن $f_n(eta)=g$
- $\mathscr{C}_{f_{n+1}}$ و أدرس الوضع النسبي لـ \mathscr{C}_{f_n} و \mathscr{C}_{f_n} في المرس الوضع النسبي المر $lpha_1=1$ و $lpha_2<1,3$ و $lpha_1=1$ ثم مثل مبيانيا \mathfrak{D} (\mathscr{C}_{f_2}) في نفس المعلم (\mathscr{C}_{f_1}) و

التكن f دالة معرفة على $]0;+\infty[$ بما يلى: (I

$$f(x) = \frac{4\ln(x)}{x^2} - \frac{1}{2}$$

 $||\overrightarrow{i}||=2cm$ عنحناها في م.م.م. $\left(O;\overrightarrow{i};\overrightarrow{j}
ight)$. حيث (\mathscr{C}_f)

- أحسب $f(x)=\lim_{x o 0^+}f(x)$ أحسب أ $\int_{x o 0^+}\lim_{x o 0^+}f(x)$ أخسب اللانهائيين للمنحنى (\mathscr{C}_f) .
 - $.(orall x>0):\ f'(x)=4\left(rac{1-2\ln(x)}{x^3}
 ight)$ بین أن ${\cal O}$ بین أن $f'(x)=4\left(rac{1-2\ln(x)}{x^3}
 ight)$ ثم أعط جدول تغیرات $f'(x)=4\left(rac{1-2\ln(x)}{x^3}
 ight)$
- بين أن المعادلة f(x)=0 تقبل بالضبط حلين lpha مختلفين lpha و eta بحيث $lpha<\sqrt{e}<eta<3$
- حدد معادلة المماس (T) للمنحنى (\mathscr{C}_f) في النقطة التي أفصو لها 1. ثم أنشئ المنحنى (\mathscr{C}_f) .
- $.(orall t\in [0;+\infty[):\ 1-t\leqslant rac{1}{1+t}\leqslant 1$ بین آن $oldsymbol{0}$
- $(orall x>0): x-rac{x^2}{2}\leqslant \ln(1+x)\leqslant x$ استنتج أن 2
- ا لكل عدد صحيح طبيعي n بحيث $n\geqslant 4$ نعتبر الدالة $f_n(x)=nrac{\ln(x)}{x^2}-rac{1}{2}$ المعرفة على f_n g(x)=n بما يلي: g(x)=n منحناها في ممم. g(x)=n منحناها في مم.م.
- أدرس تغيرات الدالة f_n . أدرس تقعر المنحنى $oldsymbol{0}$ و بين أنه يقبل نقطة انعطاف أفصولها $oldsymbol{e}^{rac{5}{6}}$
- قارن $f_n(x)$ و $f_{n+1}(x)$ حسب قيم x و استنتج الوضع النسبي لـ (\mathscr{C}_n) و (\mathscr{C}_{n+1}) .
- بين أن المعادلة $f_n(x)=0$ تقبل بالضبط حلين $oldsymbol{0}$ بين أن المعادلة $u_n < \sqrt{e} < v_n$ بحيث u_n و u_n بحيث u_n
- بين أن المتتالية $(u_n)_{n\geqslant 4}$ تناقصية . (يمكن استعمال نتيجة السؤال $oldsymbol{arphi}$
 - $n\geqslant 4$ بين أنه لكل n من $n\geqslant 4$ حيث $n\geqslant 4$ لدينا الم $(u_n-1)(3-u_n)$ $\leq \ln(u_n)\leqslant u_n-1$
 - ب) استنتج أن:

$$(orall n\geqslant 4):rac{(u_n)^2}{2n}\leqslant u_n-1\leqslant rac{(u_n)^2}{n(3-u_n)}$$

- $.(orall n\geqslant 4):rac{1}{2n}\leqslant u_n-1\leqslantrac{e}{n}$ بين أن $\left(orall n
 ight)$
- د) استنتج أن $u_n
 angle_{n \geqslant 4}$ متقاربة محددا نهايتها.
 - $(e^{rac{5}{6}} < 5,3) \, (orall n \geqslant 4): \, e^{rac{5}{6}} < v_n$ بين أن $\lim_{n o +\infty} v_n$ ثم استنتج

تمرین 15

نعتبر الدالة f المعرفة على المجال $[0;+\infty[$ بما يلي: $f(x) = A \operatorname{rctg}(\ln(x)) : x > 0$

$$\left\{ egin{aligned} f(x) &= \operatorname{Arctg}(\ln(x)) \; ; \; x > 0 \ f(0) &= -rac{\pi}{2} \end{array}
ight.$$

بين أن f متصلة على \mathbb{R}^+ . أحسب f(x) ، ثم أو ل هندسيا النتيجة المحصلة .

بین أن
$$\lim_{x o 0} rac{\operatorname{Arctg}(x)}{x} = 1$$
 و أن $oldsymbol{arrho}$

$$\left(orall x \in \mathbb{R}^{-*}
ight) : \operatorname{Arctg}(x) + \operatorname{Arctg}\left(rac{1}{x}
ight) = -rac{\pi}{2}$$

- $oldsymbol{\Theta}$ أدرس قابلية اشتقاق f على يمين 0. التأويل الهندسي.
- أحسب f'(x) لكل x من \mathbb{R}_+^* ثم أعط جدول التغيرات.
- . بین أن f تقابل من \mathbb{R}^+ نحو مجال J یتم تحدیده $oldsymbol{\mathfrak{G}}$
- $\left(f^{-1}
 ight)'(1)$ بين أن f^{-1} قابلة للاشتقاق على J. أحسب G
 - J من x لكل $f^{-1}(x)$ عدد ${\bf 0}$
- عند (\mathscr{C}_f) المنحنى المماس (T) عند النقطة ذات الأفصول 1.
- المعلم المستقيم (\mathcal{C}_f) ؛ ثم أنشئ في نفس المعلم المستقيم (T) و المنحنيين $(\mathcal{C}_{f^{-1}})$ و المعلم المستقيم (T)

تمرین 16 .

نعتبر الدالة g المعرفة على المجال $[0;+\infty[$ بما يلي:

$$g(x) = 2x - (1+2x)\ln(1+2x)$$

 $[0;+\infty[$ بين أن g تناقضية على $0;+\infty[$ بين أن $g(x) \leqslant 0$. $(orall x \in \mathbb{R}^+): g(x) \leqslant 0$ استنتج أن $g(x) \leqslant 0$ المعرفة على المجال $g(x) \in \mathbb{R}^+$ (II) نعتبر الدالة $g(x) = \frac{\ln(1+2x)}{x} = 0$ يلي: $g(x) = \frac{\ln(1+2x)}{x} = 0$ يلي: $g(x) = \frac{\ln(1+2x)}{x} = 0$ يلين g(x) = 0 منحناها في مم م g(x) = 0 و ليكن g(x) = 0 منحناها في مم م g(x) = 0

- 0 أحسب f(x) و بين أن f متصلة على يمين $\mathbf{0}$
 - $.\Big(orall x\in\mathbb{R}_+^*\Big):\ f'(x)=rac{g(x)}{x^2(1+2x)}$ نن أن: f بين أن: f بين أن: f تم أعط جدول تغيرات f
- $(orall t\geqslant 0):1-2t\leqslantrac{1}{1+2t}\leqslant 1-2t+4t^2$ بين أن x استنتج أنه لكل x من \mathbb{R}^+ لدينا:
 - $2x-2x^2 \leqslant \ln(1+2x) \leqslant 2x-2x^2+rac{8}{3}x^3$

- $(orall x\geqslant 0):-2\leqslant rac{f(x)-2}{x}\leqslant -2+rac{8}{3}x$ بين أن f قابلة للاشتقاق على يمين f استنتج أن
 - $.ig(O; \, \overrightarrow{i}\,; \, \overrightarrow{j}ig)$ أنشئ المنحنى (\mathscr{C}_f) في المعلم $f{G}$
 - $[0;+\infty[$ على المجال G تحقق أن f تقبل دالة أصلية G
- المعرفة على المجال F بما (III) نعتبر الدالة F المعرفة على المجال F(x)=G(2x)-G(x) يلي:
 - $[0;+\infty[$ المجال على المجال F أن Φ
 - بین آنه لکل x من $]0;+\infty[$ لدینا: $oldsymbol{arnothing}$

$$F'(x) = \frac{\ln(1+4x) - \ln(1+2x)}{x}$$

F استنتج تغيرات الدالة

- $(orall x>0): \ xf(2x) \leqslant F(x) \leqslant xf(x)$ بين أن $F(x) \leqslant xf(x)$ قابلة للاشتقاق على يمين F(x)
 - F أحسب ا $\lim_{x o +\infty} F(x)$ و أعطر جدول تغيرات $\mathbf{0}$

تمرین 17 .

ليكن n من \mathbb{N}^* . نعتبر الدالة f_n المعرفة بما يلي:

$$f_n(x) = rac{x}{n} - 1 + \ln(x)$$

- أحسب نهايات f_n عند محدات \mathscr{D}_f . ثم أدر س تغيرات $\cdot f_n$
- $lpha_n$ بين أن المعادلة $f_n(x)=0$ تقبل حلا وحيدا $0;+\infty[$ ينتمي إلى $0;+\infty[$ و أن
- ليكن (Γ) منحنى دالة اللوغاريتم النيبيري في م م $(C; \overrightarrow{i}; \overrightarrow{j})$ م
- A(0;1) حدد معادلة المستقيم (Δ_n) المار من B(n;0) و
- (Δ_1) أنشئ المنحنى (Γ) و المستقيمات (Δ_1) و (Δ_2) و (Δ_3) و (Δ_3) و (Δ_3) و المنحنى (Γ) و المستقيم (Δ_n) .
- $(lpha_n)$ عدد قيمة $lpha_1$ ثم تظنن رتابة المتتالية ج
- د) بین أن 0<0 $f_{n+1}(lpha_n)<0$ ثم استنتج أن المتتالية e .e تزایدیة. e أن $(lpha_n)$ متقاربة نهایتها
- ليكن Θ_n حيز المستوى المحصور بين المنحنى $x=\alpha_n$ و المستقيمين x=e
 - $rac{lpha_n^2}{n}(u.m)$: هي Θ_n المساحة الحيز (ا

 $(e-lpha_n)\ln(lpha_n)\leqslantrac{lpha_n^2}{n}\leqslant e-lpha_n$ ب بین أن $n(e-lpha_n)$ خم استنتج تأطیرا لـ $(lpha_n)$ استنتج من جدید نهایة المتتالیة $(lpha_n)$

تمرین 18

 \mathbb{R}^{+*} ليكن n من $\mathbb{N}^*ackslash\{1\}$. نعتبر الدالة f_n المعرفة على المعرفة على بما يلي:

$$f_n(x) = rac{1 + n \ln(x)}{x^2}$$

 $ig(O; \, \overrightarrow{i}\,; \overrightarrow{j}ig)$ و ليكن $ig(\mathscr{C}_n)$ منحناها في م م م ig(I

- $\lim_{x o -\infty} f_n(x)$ و $\lim_{x o +\infty} f_n(x)$ التأويل الهندسي .
 - ❷ بين أن:

$$\left(orall x \in \mathbb{R}^{+*}
ight) : f_n'(x) = rac{n-2-2n\ln(x)}{x^3}$$

- أحسب $f_n\left(e^{rac{n-2}{2n}}
 ight)$ بدلالة n ثم استنتج جدول . f_n تغيرات
- (\mathscr{C}_{n+1}) و (\mathscr{C}_n) أدر س الوضع النسبي للمنحنيين Φ
 - (\mathscr{C}_3) و أنشئ المنحنيين (\mathscr{C}_2) و (\mathscr{C}_3) أنشئ المنحنيين $e^{rac{1}{6}}\simeq 1,18$ و $e^{rac{1}{6}}\simeq 1,18$
 - $n \geqslant 3$ نفترض أن (II)
 - $f_n\left(e^{rac{n-2}{2n}}
 ight)>1$:نحقق أن $\mathbf{0}$
- $\left[1;e^{rac{n-2}{2n}}
 ight[$ ي تحقق أن المعادلة $f_n(x)=1$ لا تقبل حلا في ${m arrho}$
- $lpha_n$ بين أن المعادلة $f_n(x)=1$ تقبل حلا وحيدا $oldsymbol{\mathfrak{G}}$. $\left[e^{rac{n-2}{2n}};+\infty
 ight[$ في المجال
 - $(orall n>e^2):\ f_n\left(\sqrt{n}
 ight)\geqslant 1$ بین آن: $(orall n>e^2): lpha_n\geqslant \sqrt{n}:$ استنتج آن