Relativistic Density-Field Gravity (RDFG)

A Complete Causal Theory of Gravitation

Abstract

Relativistic Density-Field Gravity (RDFG) proposes that gravity emerges from variations in the relative density (ρ_r) of a universal medium, which modulates all fundamental interactions. This framework provides a mechanistic, causal description of gravity as a refractive effect in a variable-density medium, encompassing both weak-field and strong-field regimes with distinct, falsifiable predictions.

I. Fundamental Postulates & Causal Mechanism

1.1 Universal Medium (Praesto)

A universal medium exists with variable relative density:

$$ho_r = rac{
ho_{
m local}}{
ho_{
m critical}}$$

1.2 Causal Chain of Gravity

Mass/Energy → Medium Compression → ρ_r Variation → Constant Modulation → Effective Curvature

This establishes the complete causal sequence from energy density to gravitational phenomena, resolving the action-at-a-distance problem.

1.3 Coupling Modulation

The effective values of fundamental constants are determined by local ρ_r :

$$lpha(
ho_r)=rac{lpha_0}{g_lpha(
ho_r)},\quad c(
ho_r)=rac{c_0}{f_c(
ho_r)}$$

1.4 Complete Causal Framework

- Strong-field: Local ρ_r variations around massive objects
- \bullet Weak-field: ρ_r gradients across interstellar space
- Cosmological: Large-scale ρ_r distribution

II. Mathematical Framework

2.1 Density-Field Equation

$$\Box
ho_r = 4\pi G_0 T_{\mu\nu} F(
ho_r)$$

where:

• □: d'Alembertian operator

• $F(
ho_r)$: Coupling function encoding source effectiveness

2.2 Geodesic Equation in pr-Dependent Metric

$$rac{d^2x^i}{d au^2} = -c_0^2\Gamma^i_{jk}(
ho_r)rac{dx^j}{d au}rac{dx^k}{d au}$$

2.3 Internal Gravitational Structure

Within massive objects, gravity decreases toward the center due to ρ_r field geometry:

$$ho_{r, ext{eff}}(r) = \int_r^\infty
ho_{ ext{matter}}(r') rac{dV}{|r-r'|}$$

Only matter outside the current radius contributes to local gravitational effects, naturally producing shell theorem behavior.

2.3 Self-Consistent Field Solutions

The ρ_r field and matter distribution must satisfy both field equations simultaneously:

$$ho_{
m matter}(r) =
ho_0 \exp \left[rac{\Delta \phi(r)}{k T_{
m eff}(
ho_r)}
ight]$$

where $T_{\rm eff}(
ho_r)$ represents the effective "temperature" for matter redistribution in varying ho_r .

III. Regimes of Behavior

3.1 Weak-Field Regime ($\rho_r \approx 1$)

Environment: Solar System, galactic halos

Key Characteristics:

- Electromagnetic interactions dominate coupling variations
- · Recovers Newtonian gravity with MOND-like modifications
- · Produces effective dark matter phenomena

Predictions:

ullet Enhanced Shapiro delay: $\Delta t = \Delta t_{
m GR} imes [1 + eta
ho_r]$

ullet Orbital precession: $\delta arphi = \delta arphi_{
m GR} imes [1 + \gamma
ho_r]$

ullet Galactic rotation: $v_{
m rot}(r)=v_{
m Newt}(r)\sqrt{1+rac{\deltalpha(r)}{lpha_0}}$

3.2 Strong-Field Regime ($\rho_r \gg 1$)

Environment: Neutron stars, collapse regions

Key Characteristics:

- · Strong nuclear interactions dominate
- ullet Coupling function $F(
 ho_r)$ modified by nuclear equation of state
- $lpha_s(
 ho_r)$ variation drastically alters nuclear physics

Predictions:

- · Modified neutron star maximum mass
- · Filia state instead of singularity
- · Altered gravitational wave inspiral signatures

3.3 The Filia State

Definition: Final stable state of gravitational collapse where $lpha(
ho_r) o 0$ and $lpha_s(
ho_r) o 0$

Properties:

- No true singularity physics changes completely rather than breaking down
- Particle geons dissolve in extreme ρ_r environment
- Pure medium topology dominates over particle interactions

IV. Experimental Tests & Falsifiability

4.1 Immediate Tests

Solar spectroscopy:

$$rac{\Delta \lambda}{\lambda} pprox 2\delta
ho_r pprox 4 imes 10^{-6}$$

Pulsar timing residuals: Modified orbital decay in binary systems

White dwarf spectral shifts: Enhanced gravitational redshift from ρ_r variations

4.2 Future Tests

Directional neutrino oscillations:

$$\Delta m_{
m eff}^2(heta,\phi) = \Delta m_{
m vacuum}^2 imes \left[1 + \eta_
ho \langle
ho_r({
m path})
angle
ight]$$

Late-inspiral gravitational waveforms:

$$h(t) = h_{\mathrm{GR}}(t) imes [1 + \epsilon_{\mathrm{RDFG}} imes
ho_r(\mathrm{source})]$$

Laboratory vacuum property measurements: Direct pr manipulation through electromagnetic fields

4.3 Critical Falsification Tests

- Absence of predicted coupling constant variations in controlled experiments
- Failure of galactic rotation curves to correlate with baryonic mass distribution
- Detection of dark matter particles independent of ρ_r variations

V. Resolution of Historical Problems

5.1 The 300-Year Causality Question

Newton's Problem: "How does distant mass create local gravitational effect?"

Einstein's Partial Solution: Spacetime curvature - but what curves spacetime?

RDFG Complete Answer: Mass compresses universal medium (Praesto) $\rightarrow \rho_r$ variations \rightarrow coupling constant changes \rightarrow effective curvature. True physical causality established.

5.2 Dark Matter Puzzle

Standard Model Problem: 85% of gravitating matter undetected

RDFG Solution: All "dark matter" effects emerge from ρ_r gradients affecting electromagnetic coupling. No exotic particles required.

Test: Dark matter distributions must precisely correlate with inferred ρ_r variations.

5.3 Singularity Avoidance

GR Problem: Physical laws break down at r=0

RDFG Mechanism: Filia state at extreme ρ_r where coupling constants vanish. Physics changes completely but remains well-defined.

5.4 Quantum Gravity Unification

Standard Problem: Incompatible mathematical frameworks

RDFG Path: Variable coupling constants provide natural interface. Quantum field theory in ρ_r -dependent background eliminates renormalization infinities.

VI. Observational Signatures

6.1 Solar System

- Planetary precession anomalies: Additional terms proportional to ρ_r gradients
- Light deflection enhancement: Modified by local $c(
 ho_r)$ variations
- Gravitational redshift variations: Beyond standard GR predictions

6.2 Stellar Systems

- Binary pulsar evolution: Modified orbital decay rates
- White dwarf cooling: Altered by changing coupling constants
- Neutron star structure: Different mass-radius relationships

6.3 Galactic Scale

- Rotation curve universality: Natural consequence of ρ_r distributions
- Tully-Fisher relation: Emerges from ρ_r-velocity correlations
- Missing satellite problem: Resolved by ρ_r threshold effects

6.4 Cosmological Scale

- Large-scale structure: Formation driven by ρ_r inhomogeneities
- CMB anomalies: Modified photon propagation through varying ρ_r
- Hubble tension: Resolution through ρ_r -dependent distance measurements

VIII. Theoretical Significance

8.1 Paradigm Completion

RDFG completes the transition from **descriptive** to **causal** gravitational physics, answering the fundamental question: "What is the physical mechanism of gravity?"

8.2 Unification Framework

By making all fundamental interactions ρ_r -dependent, RDFG provides natural path toward **Grand Unification** through shared medium dynamics.

8.3 Empirical Foundation

Unlike speculative theories requiring unobservable dimensions or particles, RDFG builds on **directly measurable** coupling constant variations.

IX. Conclusion

Relativistic Density-Field Gravity represents a fundamental advance in gravitational physics by providing the first complete causal mechanism for gravitational phenomena. Through the simple postulate of a variable-density universal medium, RDFG resolves historical mysteries, makes specific testable predictions, and opens new experimental frontiers in fundamental physics.

The framework demonstrates that **physical causality** can be restored to gravitational theory while maintaining mathematical rigor and empirical testability. RDFG offers a concrete path forward for 21st-century gravitational physics based on measurable, manipulable physical processes rather than abstract mathematical constructs.