Summary of Angle Modulation

FM & PM

146

Definitions

• The general expression for an FM/PM signal:

$$f(t) = A_c \cos \theta_i(t) = A_c \cos \left[2\pi f_c t + \phi(t) \right]$$

where $\phi(t)$ denotes the instantaneous phase.

- The <u>instantaneous freq.</u> $f_i(t) = \frac{1}{2\pi} \cdot \frac{d\theta_i(t)}{dt} = f_c + \frac{1}{2\pi} \cdot \frac{d\phi(t)}{dt}$
- The <u>instantaneous freq. deviation</u> $\Delta f_i(t) = \frac{1}{2\pi} \cdot \frac{d\phi(t)}{dt}$
- $\blacksquare PM: \phi(t) = 0 + k_p \cdot m(t)$
- FM: $f_i(t) = f_c + k_f \cdot m(t)$, or equivalently, $\Delta f_i(t) = k_f \cdot m(t)$

Single Tone Modulation

- Single tone message: $m(t) = A_m \cos[2\pi f_m t]$
- Single-tone PM signal:

$$f_{PM}(t) = A_c \cos[2\pi f_c t + \beta_p \cos 2\pi f_m t]$$
 where PM modulation index $\beta_p = k_p A_m$.

Single-tone FM signal:

$$f_{FM}(t) = A_c \cos[2\pi f_c t + \beta \sin 2\pi f_m t]$$
 where FM modulation index $\beta \triangleq \frac{\Delta f}{f_m} = \frac{k_f A_m}{f_m}$ Here, $\Delta f = k_f A_m$ is the peak frequency deviation.

148

Narrow-Band FM

• Narrow-band FM: $\beta \le 0.2$

$$f_{FM}(t) = A_c \cos[2\pi f_c t + \beta \sin 2\pi f_m t]$$

$$\approx A_c \cos[\omega_c t] + \frac{\beta A_c}{2} \cos[(\omega_c + \omega_m)t] - \frac{\beta A_c}{2} \cos[(\omega_c - \omega_m)t]$$

- ✓ Compare with conventional AM signals.
- Phasor diagram.
- ✓ Indicate all necessary <u>amplitudes</u> and <u>angles</u>.

Wide-Band FM

• For single-tone message and arbitrary β value:

$$f_{FM}(t) = A_c \cos \left[2\pi f_c t + \beta \sin 2\pi f_m t \right]$$
$$= A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos \left[(\omega_c + n\omega_m) t \right]$$

• So, the amplitude spectrum is

$$|F_{FM}(f)| = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} |J_n(\beta)| [\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m)]$$

- Bandwidth estimation: 1% rule and Carson's rule.
- ✓ Power calculation (before & after a BPF, within some BW, etc).

150

Generation of Wide-Band FM — Indirect Method

- Message signal m(t) first modulates the carrier to an NBFM signal (with $\beta_1 \le 0.2$).
- The <u>frequency multiplier</u> and <u>frequency converter</u>
 (i.e., mixer) are used next to generate a WBFM
 signal with desired carrier frequency and
 modulation index.
- ✓ Design of the frequency multiplier and mixer: Order of frequency multiplication, mixer design (filter bandwidth, filter centre frequency, etc).

Demodulation of FM Signals

- What is a frequency discriminator? It consists of <u>Differentiator</u>, <u>Envelope Detector</u> and <u>DC Blocking</u>.
- Understand the step-by-step demodulation procedures.
- Understand the FM receiver model.
- ✓ What is purpose of each block in this model?
- √ How to demodulate a PM signal?

152

SNRs in FM Demodulator

- Input SNR: $\frac{S_i}{N_i} = \frac{A_c^2/2}{\eta \cdot B_{FM}}$
- Output SNR: $\frac{S_0}{N_0} = \frac{3A_c^2\beta^2}{4\eta f_m}$ (for single-tone message)
- Using Carson's rule for B_{FM} , it can be easily shown that $\frac{S_0}{N_0} = 3\beta^2 \left(\beta + 1\right) \frac{S_i}{N_i}$.
- ✓ FM demodulation threshold occurs when $\frac{S_i}{N_i}$ = 10 dB . This is due to the "capture effect".