

3.3 堆(Heap)

- 一、ADT堆
- → 堆的定义
 - 如果一棵完全二叉树的任意一个非终端结点的元素都不小 于其左儿子结点和右儿子结点(如果有的话)的元素,则 称此完全二叉树为最大堆(大顶堆、大根堆)。
 - 如果一棵完全二叉树的任意一个非终端结点的元素都不大 于其左儿子结点和右儿子结点(如果有的话)的元素,则 称此完全二叉树为最小堆(小顶堆、小根堆)。
 - ■特点:根结点的元素是最大(小)的。。。。。。

(最大堆)操作: 1、MaxHeap(maxsize) 创建一个空堆

2、HeapFull(heap, n) 判断堆是否为满

3、Insert(heap,item) 插入一个元素

4、HeapEmpty(heap) 判断堆是否为空

5、DeleteMax(heap) 删除最大元素

#define Maxsize 200

(最大堆)类型定义

int key; /* other fields */ Elementtype;

Typedef struct {

Typedef struct {

Elementtype elements[MaxSize]; int n: /*当前元素个数计数器*/

HEAP;

堆操作


```
Void MaxHeap (Heap heap)
  heap.n = 0;
Bool HeapEmpty( HEAP heap )
  return( !heap.n );
Bool HeapFull (HEAP heap)
  return( heap.n == MaxSize -1 );
```


第3章 树(Tree)

2018 Harbin Institute of Technology

3.3 堆(Heap)

二、ADT堆的实现—最大堆的实现

- ▶ 堆的基本操作的实现
 - 4 插入

void Insert(HEAP& heap, ElemType elem)

```
j/2
```

```
int i;
if (!HeapFull(heap)){
    i=heap.n+1;
    while((i!=1)&&(elem >heap.data[i/2])){
        heap.data[i]=heap.data[i/2];//下推
        i/=2;
    }
```

heap.data[i]= elem;
heap.n++

//时间复杂性O (logn)

DeleteMax(HEAP heap)

3.3 堆 (Heap)

■⑤删除最大元素 ElemType DeleteMax(HEAP &heap) int parent=1, child=2; ElemType elem, tmp; if (!HeapEmpty(heap)){ elem=heap.data[1]; tmp=heap.data[heap.n--]; while (child<=heap.n){ 23 65 if ((child< heap.n)&& (heap.data [child]<heap.data [child+1])) child++; //找最大子结点(左右儿子的大者) if (tmp>= heap.data[child]) break; heap.data[parent]= heap.data[child];//上推 parent=child; child*=2; 2i+1heap[parent]=tmp; //腾出位置后,把最后一个结点放到适当的位置中 return elem; }//时间复杂性O(logn)

第3章 树与二叉树

经常使用堆来实现优先级队列(priority queue)。与第二章 所讨论的队列不同的是,优先级队列只对最高(或最低)优先级的 元素进行删除。但是在任何时候,都可以把任意优先级的元素插入 到优先级队列。

操作系统中的进程管理是优先级队列的一个应用实例,系统中使用一个优先队列来管理进程。

每个进程有进程任务号和优先级两部分组成。当有多个进程排队时,优先级高的先操作。

第3章 树与二叉树

练习题:设计一个程序模仿操作系统的进程管理问题,进程服务按优先级高的先服务,同优先级的先到先服务的管理原则。设文件task.dat中存放了仿真进程服务请求,其中第一列是进程任务号,第二列是进程的优先级。

1 30

2 20

3 40

4 20

5 0

算法: 1) 建立队列

2) 建堆

3)循环出队,输出。

3.4 选择树(Selection Tree)

一、背景

→ 如何从n个元素中选择最小的,进而对n个元素排序?

→ 如何把K个非递减的序列归并成一个非递减的序列?

3.4 选择树(Selection Tree)

二、胜者树(Winner Tree)

▶ 输出一个记录并重建胜者树:新进入的结点与兄弟结点比较

3.4 选择树(Selection Tree)

三、败者树(Loser Tree)

- ▶ 败者树的构建
 - ■内部结点保存<mark>败者</mark>,胜者参加下一轮比赛
 - ■根结点记录比赛的败者,最终的胜者需一个结点进行记录

Slide 3-113

2018/11/15

3.4 选择树(Selection Tree)

▶ 败者树的重构

- 将新进入的结点<mark>与其父结点</mark>进行比赛:将败者存入父结点中,胜者再 与上一级的父结点比较。
- 比赛沿着到根的路径不断进行,直到Is[1]处。把败者存放在结点Is[1]中,胜者存放在Is[0]中。

第3章 树与二叉树

练习题:

- 1. 已知顺串R1[10,15,16],R2[9,20,38].R3[20,20,30],R4[6,15,25],R5[8,15,20],R6[9,11,16],R7[90,100,110],R8[17,18,20]建立败者树。
- 2. 简答题:分别利用堆和败者树,给出求n个数中的前k个最小数的方法描述。并分析时间复杂度和空间占用情况。(*)

3.5 树

树的基本操作

- Parent(n,T) 求结点n 的父节点
- LeftMostChild(n,T)返回结点n的最左儿子
- RightSibling(n , T) 返回结点 n 的右兄弟
- Data(n,T) 返回结点n 的信息
- CreateK k (v , T1 , T2 , , Tk) , k = 1 , 2 ,
 - 建立data域值为v的根结点r,有k株子树T1,T2,.....,Tk,且自 左至右排列;返回r。
- Root(T) 返回树T的根结点
- 树的遍历操作
 - →从根结点出发,按照某种次序访问树中所有结点,使得每个结点被 访问一次且仅被访问一次。

2018/11/14 Slide 3-116

树的四种遍历

■ 先根顺序

访问根结点;

先根顺序遍历**T₁;**

先根顺序遍历**T**,;

先根顺序遍历**T**,;

■中根顺序

中根顺序遍历**T**₁;

访问根结点:

中根顺序遍历**T**,;

中根顺序遍历T_k;

先根遍历序列: RADEBCFGHK

中根遍历序列: DAERBGFHKC

后根遍历序列: DEABGHKFCR

■后根顺序

后根顺序遍历**T**₁;

后根顺序遍历**T**。;

后根顺序遍历**T**,; 访问根结点;

例:假设树的类型为TREE,结点的类型为node,数据项的类型为elementtype,用递归方法给出树的先根遍历如下:

```
void PreOrder(node n , TREE T )
  node c;
  If(n)
     visit( DATA( n,T ) );
     c = LeftMostChild(n, T);
     while (c!= NULL) {
       PreOrder(c,T);
       c = RightSibling(c, T);
先根遍历整株树: PreOrder(ROOT(T), T)
```

思考题: 写出树的中根遍历和后根遍历算法

树的存储结构

- → 双亲表示法(单链表示、父链表示)
 - ■每个结点(根结点除外)都只有唯一的双亲结点
 - ■因此,可以把各个结点(一般按层序)存储一维数组中, 同时记录其唯一双亲结点在数组中的下标。

	1	2	3	4	5	6	7	8	9
data									
parent	0	1	1	2	2	2	3	3	5

结点结构定义

Struct node {
 char data;
 int parent; };

Typdef node TREE[9];

- ▶ 双亲表示法(单链表示、父链表示)
 - ■存储特点:
 - ●每个结点均保存父结点所在的数组单元下标
 - ●兄弟结点的编号连续。
 - ■如何查找双亲结点和祖先?时间性能?
 - ■如何查找孩子结点?时间性能?
 - ■如何查找兄弟结点?时间性能?

_			3	4	D	O		Ŏ	9
data	A	В	C	D	E	F	G	Н	Ι
parent	0	1	1	2	2	2	3	3	5
irstchild	2	4	7	0	9	0	0	0	0
rightsib	0	3	0	5	6	0	8	0	0

▶ 双亲孩子表示法

- ◆ 二叉链表表示法((左)孩子-(右)兄弟链表表示)
 - ■某结点的右兄弟是唯一的

■设置两个分别指向该结点的第一个孩子和右兄弟的指针

2018/11/14 Slide 3-123

2018/11/14 Slide 3-124

- ▶ 二叉链表表示法((左)孩子一(右)兄弟链表表示)
 - 结点结构: firstchild | data | rightsib
 - 类型定义:

struct CSNode { //动态存储结构

DataType data;

CSNode *firstchild, *rightsib;

};

typedef struct CSNode *CSTree;

3.6 森林(树)与二叉树间的转换

	树			二叉树
结点关系	兄弟关系	+	1	双亲和右孩子
	双亲和长子	+		双亲和左孩子

2018/11/14 Slide 3-126

3.6 森林(树)与二叉树间的转换(Cont.)

→ 森林(树)转换成二叉树

连线:

抹线:

§ **连线**: 把每株树的各兄弟结点连起来; 把各株树的根结点连起来(视为兄弟)

§ 抹线: 对于每个结点,只保留与其最左儿子的连线,抹去该结点

与其它结点之间的连线

§ 旋转:按顺时针旋转**45**度角(左链竖画,

右链横画)

3.6 森林(树)与二叉树间的转换(Cont.)

3.6 森林(树)与二叉树间的转换(Cont.)

- ▶ 非空森林的基本遍历
 - ■先根遍历
 - 访问第一株树的根结点;
 - 按先根顺序遍历第一棵树的子树森林;
 - 按先根顺序遍历其余子树森林。
 - ■后根遍历

● 按后根顺序遍历第一株树的子树森林;

• 访问第一株树的根结点;

• 按后根顺序遍历其余子树森林。

遍历	森林	树	二叉树
先序	→	+	→ ✓
中序	×	× ✓	1
后序	→	→	√

哈夫曼(Huffman)树

Huffman编码 (最优编码)

问题的提出:

哈 2594

尔 2291

滨 1785

工 2504

业 5024

大 2083

学 4907

啊1601阿1602吖6325嗄6436腌7571锕7925埃1603挨1604哎1605唉1606哀1607皑1608癌1609蔼1610矮1611 6441赟7040赟7208暌7451砹7733锿7945霭8616鞍1616氨1617安1618俺1619按1620暗1621岸1622胺1623案 7281铵7907鹌8038黯8786肮1625昂1626盎1627凹1628敖1629熬1630鄡1631袄1632傲1633奥1634懊1635澳 6959鰛7033骜7081嫯7365骜8190骜8292鏊8643鰲8701鏖8773芭1637捌1638扒1639叭1640吧1641笆1642八 1649耙1650坝1651霸1652罢1653爸1654菱6056菝6135岜6517灞6917钯7857粑8446鲅8649魃8741白1655柏 1662換6267呗6334掰7494斑1663班1664搬1665扳1666般1667颁1668板1669版1670扮1671拌1672伴1673瓣 7851瘢8103癍8113舨8418邦1678帮1679梆1680榜1681膀1682绑1683棒1684磅1685蚌1686镑1687傍1688谤 1693剥1694薄1701雹1702保1703堡1704饱1705宝1706抱1707报1708暴1709豹1710鲍1711爆1712葆6165孢 1713碑1714悲1715卑1716北1717辈1718背1719贝1720钡1721倍1722狈1723备1724惫1725焙1726被1727孛 6703碚7753鹎8039褙8156鐾8645鞴8725奔1728苯1729本1730笨1731畚5946坌5948贲7458锛7928崩1732綳 7420逼1738鼻1739比1740鄙1741笔1742彼1743碧1744萞1745蔽1746毕1747毙1748毖1749市1750庇1751痹 1758臂1759瞬1760哗1761上,5616俾5734荜6074莘6109薜6221吡6333哗6357哗6589庳6656愎6725漟6868渔 7815铋7873秕7985複8152筚8357箪8375篦8387舭8416櫱8437跸8547體8734鞭1762边1763编1764贮1765扁 1772谝1773鳫5650弁5945苄6048忭6677汴6774缏7134飚7614煸7652砭7730碥7760字8125褊8159蝙8289铳 7027骠7084村7228飑7609飙7613镖7958镳7980瘭8106裱8149鳔8707髟8752瞥1778歟1779别1780瘜1781蹩 1787傧5747豳6557缤7145玢7167槟7336殡7375膑7587镔7957髌8738蹩8762兵1788冰1789柄1790丙1791秉

编码(如电报码)

_等长编码 _不等长编码 编码长度 特点: 译码速度

传输速度

第3章 树与二叉树

增长树

√内结点 ○

外结点 □

如内结点数为 n,则外结点 S = n + 1

内结点路径长度 I = 2×1+3×2+1×3 = 11

外结点路径长度 E = 1×2+5×3+2×4 = 25

如内结点路径长度为I,则外结点路径长度 $E = I + 2 \times n$

设: $w_i = \{2,3,4,11\}$

求: $\sum w_j \cdot l_j$ (加权路长)

- (a) $11 \times 1 + 4 \times 2 + 2 \times 3 + 3 \times 3 = 34$
- (b) $2 \times 1 + 3 \times 2 + 4 \times 3 + 11 \times 3 = 53$
- (c) $2\times2+11\times2+3\times2+4\times2=40$

哈夫曼树(最优二叉树):在给定权值为 w_1 , w_2 … w_n 的 n 个叶结点所构成的所有扩充二叉树中, $WPL = \sum w_j \cdot l_j$ 最小的称为huffman树。

优化(分类统计的)判定过程

例:输入一批学生成绩,将百分制转换成五分制。并且已知:

分数	0-59	60-69	70-79	80-89	90-100
比例数	0.05	0.15	0.40	0.30	0.10

```
if (a<60) b="fail"
else if (a<70) b="pass"
else if (a<80) b="general"
else if(a<90) b="good"
else b="excellent"
如图 (a) 所示
```


以5,15,40,30,10 为权构造一株扩充二 叉树如图(b)所示,将 判定框中的条件分开, 可得到(c),从而实现 判定过程的最优化。

- (a) $5 \times 1 + 15 \times 2 + 40 \times 3 + 30 \times 3 + 10 \times 4 = 285$
- (b) $40 \times 1 + 30 \times 2 + 15 \times 3 + 5 \times 4 + 10 \times 4 = 205$

(c) $5 \times 3 + 15 \times 3 + 40 \times 2 + 30 \times 2 + 10 \times 2 = 220$

哈夫曼树(最优二叉树)

在给定权值为 \mathbf{w}_1 , \mathbf{w}_2 … \mathbf{w}_n 的 \mathbf{n} 个叶结点所构成的所有扩充二叉树中,WPL = $\sum \mathbf{w}_i \cdot \mathbf{l}_i$ 最小的称为huffman树。

→ 哈夫曼树的特点:

- 权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远 离根结点。(构造哈夫曼树的核心思想)
- 只有度为**0**(叶子结点)和度为**2**(分支结点)的结点,不存在度 为**1**的结点。
- n个叶结点的哈夫曼树的结点总数为2n-1个。
- 哈夫曼树不唯一,但WPL唯一。

→ 哈夫曼树的构造方法:

- (1) 初始化:由给定的n个权值 $\{w_1, w_2, ..., w_n\}$ 构造n棵只有一个根结点、左右子树均空的二叉树,从而得到一个二叉树集合 $F=\{T_1, T_2, ..., T_n\}$;
- (2) 选取与合并: 在**F**中选取根结点的权值最小的两棵二叉树分别作为 左、右子树构造一棵新的二叉树,这棵新二叉树的根结点的权值为其 左、右子树根结点的权值之和;
- (3) 删除与加入: 在**F**中删除作为左、右子树的两棵二叉树,并将新建立的二叉树加入到**F**中;
- (4) 重复(2)、(3)两步,当集合**F**中只剩下一棵二叉树时,这棵二叉树便 是哈夫曼树。

- → 哈夫曼树的构造示例: W={2,3,4,11}
 - 初始化:
 - 选取与合并:

- 删除与加入:
- 重复:

$$F = \{ 9 \ 11 \}$$
 $(2) \ (3)$

▶ 哈夫曼树的存储结构----静态三叉链表

weight parent Ichild rchild typedef struct { // 结点型 double weight; // 权值 int lchild; // 左孩子链 rchild; // 右孩子链 parent; // 双亲链 **HTNODE**; typedef HTNODE HuffmanT[2n-1]; (2n-1)-**HuffmanT T**;

(7)(5)(2)(4)

3.7 树型结构的应用(Cont.)

▶ 哈夫曼树构造算法的实现示例:

	weight	paren	t lchild	l rchild
0	7	-1	-1	-1
1	5	-1	-1	-1
2	2	-1	-1	-1
3	4	-1	-1	-1
4		-1	-1	-1
5		-1	-1	-1
6		-1	-1	-1
		初始	化	

▶ 哈夫曼树构造算法的实现示例:

▼門八文州尚起弃仏Ⅱ	weight	paren	t lchild	l rchild
0	7	-1	-1	-1
1	5	-1	-1	-1
$\stackrel{\mathbf{p1}}{\longrightarrow} 2$	2	4 🔾	-1	-1
$\stackrel{\mathbf{p2}}{\longrightarrow} 3$	4	4 -1	-1	-1
$\stackrel{i}{\longrightarrow} 4$	6	-1	2 🔍	3 -1
$\begin{array}{c} (7) (5) (6) \\ \end{array}$		-1	-1	-1
$\bigcirc 2 \bigcirc 4 \bigcirc 6$		-1	-1	-1
		计程		1

过程

▶ 哈夫曼树构造算法的实现示例:

THE	ACT IAH	weight	paren	t lchild	l rchild
	0	7	-1	-1	-1
	$\stackrel{\mathbf{p}1}{\longrightarrow} 1$	5	5 -1	-1	-1
	2	2	4	-1	-1
$\overline{(7)}$ $\overline{(11)}$	3	4	4	-1	-1
	$\stackrel{\mathbf{p2}}{\longrightarrow} 4$	6	5 - 1	2	3
$(5) \qquad \qquad (6)$	$\stackrel{i}{\longrightarrow} 5$	11	-1	1 🖳	4 -1
2 (4 6		-1	-1	-1
			过程		

2018/11/14

▶ 哈夫曼树构造算法的实现示例:

		weight	parent	t lchild	l rchild
	$\stackrel{\mathbf{p1}}{\longrightarrow} 0$	7	6 4	-1	-1
	1	5	5	-1	-1
18)	2	2	4	-1	-1
(7) (11)	3	4	4	-1	-1
	4	6	5	2	3
(5) (6)	$\stackrel{\mathbf{p2}}{\longrightarrow} 5$	11	6 -1	1	4
\bigcirc	4) $\stackrel{i}{\longrightarrow}$ 6	18	-1	0 🔾	5 -1
			过程		

▶ 哈夫曼树构造算法的实现

```
void CreartHT(HuffmanTT)//构造huffam树,T[2n-2]为其根
{ int i ,p1 ,p2;
                                   //1.初始化
  InitHT(T);
                                   //2.输入权值
  InputW(T);
                                   //3. n-1次合并*/
  for (i = n; i < 2n-1; i++)
    SelectMin(T, i-1, &p1, &p2);
                                   //3.1
    T[p1].parent = T[p2].parent = i; //3.2
    T[i].lchild= p1;
    T[i].rchild=p2;
    T[i].weight = T[p1].weight + T[p2].weight;
```


哈夫曼树的应用----哈夫曼编码

- ■编码: 是指将文件(字符集)中的每个字符转换为一个唯一的二进制串。
- ■译码(解码): 是指将二进制串转换为对应的字符。
- § 对于给定的字符集,可能存在多种编码方案,但应选择最优的
- 3.编码的前缀性:
 - ■对字符集进行编码时,如果任意一个字符的编码都不是其它任何字符 编码的前缀,则称这种编码具有前缀性或前缀编码。
- ■注意
- ✓等长编码具有前缀性;
- ✓变长编码可能使译码产生二义性,即不具有前缀性。

如, E(00), T(01), W(0001), 则译码时无法确定信息串是ET还是W。

哈夫曼树的应用----哈夫曼编码

- ◆ 相关术语
 - 平均编码长度:
 - 对于给定的字符集(一组对象),可能存在多种编码方案,但应 选择最优的。
 - 平均编码长度:设每个(对象)字符 c_j 的出现的概率为 p_j ,其二进制位串长度(码长)为 l_j ,则 $\sum p_j$ l_j 表示该组对象(字符)的平均编码长度。
 - 最优前缀码: 使得平均编码长度 $\sum p_j \cdot l_j$ 最小的前缀编码称为最优的前缀码。

字符	a	b	c	d	e	f	平均
概率	0.45	0.13	0.12	0.16	0.09	0.05	码长
等长	000	001	010	011	100	101	3
变长	0	101	100	111	1101	1100	2.24

 $= \lceil \log_2 |C| \rceil$ $= \sum \mathbf{p_j} \cdot \mathbf{l_j}$

▶ 哈夫曼编码示例

字符	a	b	c	d	e	f	平均	
概率	0.45	0.13	0.12	0.16	0.09	0.05	码长	
等长	000	001	010	011	100	101	3	$=\lceil \log_2 C \rceil$
变长	0	101	100	111	1101 3	100	2.24	$= \sum \mathbf{p_j} \cdot \mathbf{l_j}$

_	ch	bits				
0	a	0				
1	b	101				
2 3	c	100				
	d	111				
4 5 6	e	1101				
6	f	1100				
编码表 H						

▶ 哈夫曼编码表的存储结构

typedef struct{

char ch; //存储被编码的字符 char bits[n+1]; //字符编码位串

}CodeNode;

typedef CodeNode HuffmanCode[n];

HuffmanCode H;

ch weight parent lehild rehild

	ch	bits
0	a	0/0
1	b	101\0
2	c	100\0
3	d	111\0
4	e	1101\0
5	f	1100\0
1	编	码表H

		· ·	•					
0	a	0.45	10	-1	-1			
1	b	0.13	7	-1	-1			
2	c	0.12	7	-1	-1			
3	d	0.16	8	-1	-1			
4	e	0.09	6	-1	-1			
5	f	0.05	6	-1	-1			
6		0.14	8	5	4			
7		0.25	9	2	1			
8		0.30	9	6	3			
9		0.55	10	7	8			
10		1.00	-1	0	9			
-	哈夫曼树T							

門八叉們1

→ 哈夫曼编码算法的实现

```
void CharSetHuffmanEncoding( HuffmanT T, HuffmanCode H)
                                                     bits
                                                ch
{ //根据Huffman树T 求Huffman编码表 H
 int c, p, i; // c 和p 分别指示T 中孩子和双亲的位置
                                             ()
 char cd[n+1]; // 临时存放编码
 int start; // 指示编码在cd 中的位置
 cd[n]='\0'; // 编码结束符
                                             3
 for(i=0;i<n;i++){ // 依次求叶子T[i]的编码
  H[i].ch=getchar(); // 读入叶子T[i]对应的字符
                                             5
                 // 编码起始位置的初值
  start=n;
                 // 从叶子T[i]开始上溯
  c = i;
                                                编码表 H
   while((p=T[c].parent)>=0){ // 直到上溯到T[c]是树根位置
    cd[--start]=(T[p].lchild==c)? '0': '1';
    // 若T[c]是T[p]的左孩子,则生成代码0,否则生成代码1
          // 继续上溯
    c=p;
   strcpy(H[i].bits,&cd[start]); //复制编码为串于编码表H
```

- 编码:依次读入文件的字符c ,在huffman编码表H 中找到此字符,若H[i].ch==c,则将c 转换为H[i].bits中的编码串
- → 译码:依次读入文件的二进制码,在huffman树中从根结点T[m-1]出发,若读入0,则走左支,否则,走右支,一旦到达某叶结点T[i]时便译出相应的字符H[i].ch。然后重新从根出发继续译码,直到文件结束。
- ▶ 哈夫曼编码一定具有前缀性;
- → 哈夫曼编码是最小冗余码;
- ▶ 哈夫曼编码方法,使出现概率大的字符对应的码长较短;
- → 哈夫曼编码不唯一,可以用于加密;
- ◆ 哈夫曼编码译码简单唯一,没有二义性。
- ▶ 国际流行两种图像压缩编码标准:在多媒体技术如视频信号的压缩技术中用到了 哈夫曼编码。JPEG、MPEG
- ▶ 哈夫曼编码是一种无失真编码,即对源数据压缩后形成的编码,进行恢复时, 完全恢复源数据,但它对静态的数据是可行的。

作业2 树型结构及其应用

▶ 作业题目:哈夫曼编码与译码方法

哈夫曼编码是一种以哈夫曼树(最优二叉树,带权路径长度最小的二叉树)为基础变长编码方式。 其基本思想是:将使用次数多的代码转换成长度较短的编码,而使用次数少的采用较长的编码,并且 保持编码的唯一可解性。在计算机信息处理中,经常应用于数据压缩。是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩。要求实现一个完整的哈夫曼编码与译码系统。

→ 作业要求:

- → 从文件中读入任意一篇英文文本文件,分别统计英文文本文件中各字符(包括标点符号和空格) 使用频率;
- → 根据已统计的字符使用频率构造哈夫曼编码树,并给出每个字符的哈夫曼编码(字符集的哈夫曼编码表);
- ▶ 将文本文件利用哈夫曼树进行编码,存储成压缩文件(哈夫曼编码文件);
- ▶ 计算哈夫曼编码文件的压缩率;
- → 将哈夫曼编码文件译码为文本文件,并与原文件进行比较。 以下可以不做,供思考,做了可以适当加分
- ◆ 能否利用堆结构,优化的哈夫曼编码算法。
- ▶ 上述1-5的编码和译码是基于字符的压缩,考虑基于单词的压缩,完成上述工作,讨论并比较压缩效果。
- → 上述1-5的编码是二进制的编码,可以采用K叉的哈夫曼树完成上述工作,实现"K进制"的编码和译码,并与二进制的编码和译码进行比较。

2018/11/14 Slide 3-149