Домашнее задание 6

1

Язык L принадлежит классу RP, если существует такой предикат $V(x,r) \in P$ и такой полинома q(|x|) = |r|, что:

если $x \in L$, то $P(V(x,r)=1) \geqslant \frac{1}{2}$,

если $x \notin L$, то $P(V(x,r)=1)=\tilde{0}$. (r- результаты "бросаний монетки"в результате работы МТ, то есть случайная последовательность битов).

Тогда любое значение r, при котором V(x,r) = 1 будет доказательством того, что $x \in L$. То есть можем передать его как сертификат и получим, что $L \in NP$.

4

- (*i*) Проверим следующим образом: $AB = C \iff AB C = E_0 \iff (AB C)x = 0$, где E_0 нулевая матрица. Следовательно, получаем систему из n полимонов степени не выше 1 каждый. Выберем какой-то вектор ξ . Тогда каждый из полиномов обращается при данных значениях с вероятностью не больше чем $\frac{n}{N}$. То есть все одновременно обращаются в ноль с вероятностью не более $(\frac{n}{N})^n$. Получается, если матрицы не равны, случайный вектор оказывается "удачным"с вероятностью не больше $(\frac{n}{N})^n$. Тогда $p = (\frac{n}{N})^n$, $N = \frac{n}{n^{1/n}}$.
- (iv) Чтобы уменьшить N можно выполнять немного другую проверку: A(Bx)x = (Cx)x, тогда, в результате умножения, получаем один полином от n переменных степени не выше 2. Тогда вероятность того, что полином не равен нулю, но при подобранном x обнуляется не более $\frac{2n}{N}$ по лемме. $N = \frac{2n}{p}$. При проверке A(Bx)y = (Cx)y тоже самое, но полином от 2n переменных, $N = \frac{2n}{p}$.

3

(i) Пусть язык $L \in BPP$. Пусть BPP_w — класс таких языков, на входе из языка вероятностная машина Тьюринга ошибается с вероятностью не больше чем $\frac{1}{2} + \epsilon$, где $0 < \epsilon \le 1/2$ и дает ответ за полиномиальное в среднем число шагов. Докажем, что $BPP = BPP_w$. $BPP \subset BPP_w$, так как $\frac{1}{3} < \frac{1}{2} + \epsilon$.

Покажем обратное включение: пусть есть машина M, принимающая слово из языка с вероятностью строго больше $\frac{1}{2}$. Построим машину M': запустим M n раз, получим последовательность из 0 и 1. Если, количество 1 больше половины — выдаем 1, иначе 0. Покажем, что вероятность правильного ответа M' при n = poly(|x|) не меньше $\frac{2}{3}$. Машина M выдает правильный ответ с вероятностью строго больше 1/2. Тогда вероятность i успехов в n испытаниях (машина M не ошибакется) равна $C_n^i p^i (1-p)^{n-i}$. Оценим эту вероятность с помощью неравенства Хефдинга, с вероятностью успеха $p+\epsilon P(M'$ не ошибется $\geq 1-e^{-2\epsilon^2 n}$. В нашем случае p=1/2. Тогда при $n=\lfloor \frac{\ln 3}{2\epsilon^2} \rfloor+1$, вероятность того, что машина вероятностная машина Тьюринга M' дает правильный ответ будет не меньше 2/3. Следовательно, $BPP_w \subset BPP$.

В общем, идея в том, что вероятность ошибки можно уменьшить с помощью увеличения числа запуском машины.

(ii) Скажем, что язык $L \in BPP$, если

 $\mathbf{2}$

Задача сравнить 2 бинарных файла размера n. Представим файлы X и Y как битовые строки длины n. Выбираем простое число на отрезке от [2;N]. Вычисляем $u=X \mod p, v=Y \mod p$. Передаем v и u и сравниваем. Получается, алгоритм ошибается, если $X\overline{Y}$, но |X-Y| делится на p. $\pi(n) \sim \frac{n}{\ln n}$. Количество простых делителей в разложении числа |X-Y| не превосходит n. Возьмем за $N=n^2$. Тогда вероятность найти среди простых делителей числа |X-Y| число p не больше $\left(\frac{n}{n^2/2\ln n}\right)=\frac{2\ln n}{n}\to 0$ при $n\to\infty$. При $n\le 32$ $P\le \frac{\ln 32}{16}<3/4$.

- (i) Пусть в графе G минимальный разоер состоит из k ребер. Тогда в графе по крайней мере $\frac{nk}{2}$ ребер, где n число вершин. Тогда P(случайно выбранное ребро входит в минимальный разрез) $<\frac{2k}{nk}=\frac{2}{n}$.
- (ii) Вероятность того, что полученный в результате алгоритма разрез будет минимальным равна вероятности того, что в ходе алгоритма мы не стянули ни одно ребро, входящее в минимальный разрез. Посчитаем вероятность того, что на i-ом шаге стянули ребро из разреза. Число вершин уменьшилось, тогда число ребер в полученном графе не превосходит $\frac{k(n-i+1)}{2}$. Вероятность того, что стянем ребро из разреза не больше $\frac{2}{n-i+1}$. Тогда вероятность того, что это будет резро не из разреза не меньше $1-\frac{2}{n-i+1}$. Тогда вероятность того, что ни разу не стянули ребро из разреза не меньше $\prod_{i=1}^{n-2}(1-\frac{2}{n-i+1})=\prod_{i=1}^{n-2}(\frac{n-i-1}{n-i+1})=\frac{n-2}{n}\cdot\frac{n-3}{n-1}\cdot\ldots\cdot\frac{n-n+3-1}{n-n+3+1}=\frac{2}{n(n-1)}$. Следовательно, вероятность того, что MINCUT выдает минимальный разрев не меньше $\frac{2}{n(n-1)}$.
- (iii) Запустим алгоритм MINCUT n^2 раз. Тогда вероятность того, что алгоритм ни разу не выдаст минимальный разрев не превышает $(1-\frac{2}{n(n-1)})^{n^2}<(1-\frac{2}{n^2})^{n^2}\to \frac{1}{e^2}$ при $n\to\infty,\,\frac{1}{e^2}\approx 0.14$, следовательно, минимальный разрез найдется с вероятностью >0.85.

6

- 1) 2-CNF язык, состоящий из выполнимых КНФ, в каждом дизъюнкте которой не более двух литералов. Покажем, что язык разрешим за полимон. Для это преобразуем исходную КНФ в РОВНО-2-КНФ, преобразовав дизъюнкты вида x_i в $x_i \vee x_i$. Распишем каждый дизъюнкт по формуле: $x_i \vee x_j = \bar{x}_i \to x_j$. Представим данную КНФ в виде ориентированного графа. Для это для каждой переменной x_i создадим 2 вершины: x_i и \bar{x}_i . Будем проводить ребро (\bar{x}_i, x_j) , если в преобразованной КНФ есть подформула вида $(\bar{x}_i \to x_j)$. Получим ориентированный граф. Тогда КНФ будет выполнима тогда и только тогда, когда построенный граф не будет иметь ребра (x_i, \bar{x}_j) и (\bar{x}_i, x_j) , так как данные ребра в данном представлении графа соответсвуют формуле $(x_i \vee x_j) \wedge (\bar{x}_i \vee \bar{x}_j)$, которая не выполнима. Следовательно, КНФ выполнима тогда и только тогда, когда граф имеет более одной компаненты сильной связности. А это проверяется за O(|V|+|E|) (|V|=2n,n число переменных в КНФ \Rightarrow полиномиально от длины входа) с помощью модифицировнного алгоритма поиска в глубину. Таким образом, доказали, что $2-SAT \in P$.
- (*ii*) В класс RP. Если КНФ не выполнима, то никогда не найдется выполняющий набор. Следовательно, если $x \notin 2-SAT$, то P(m(x)=1)=0, где m вероятностная машина Тьюринга. А если $x \in 2-SAT$, то $P(m(x)=1) \geqslant 1/2^n$, А так константа 1/2 в определении RP может быть заменена на любую другую из промежутка (0,1), поскольку требуемой вероятности можно добиться множественным запуском программы, то $2-SAT \in RP$.

7

- (i) Докажем по индукции, что все, что находится под n-1-ой картой равномерно перемешано на любом шаге цикла. База: на первом шаге (берем первую карту из колоды) под n-1 одна карта. Индукционный переход: пусть на k-ом шаге (берем k-ую карту из колоды, то есть под n-1-ой картой не больше k карт) все под n-1-ой картой равномерно перемешано. Докажем, что на k+1 шаге все перемешено равномерно. Возможны 2 случая:
- 1)n-1-ая карта поднимается, то есть для k-ой карты выбираем с вероятностью $\frac{1}{k+1}$ одно из k+1 мест. Так как до этого перемешаны карты были равномерно и так как карта может занять любое место с одинаковой вероятностью, получаем снова равномерно перемешанные карты.
- 2)n-1-ая карта не поднимается: ничего не меняется карты остаются равномерно перемешанными.
- (ii) Доказано в пункте 1). Идея в том, что перестановки k карт под n-1-ой все равно вероятны, так как мы выбираем место, куда кладем следующую карту независимо.
- (iii) Найдем математическое ожидание числа шагов. Пусть ξ число шагов, которые нужно совершить, чтобы n-1-ая карта окажется наверху колоды и будет рандомно поставлена в любое место колоды. Определим величину ξ_i как число шагов при условии, что под n-1-ой картой находится ровно i карт. Тогда $E\xi=\sum E\xi_i$ в силу линейности математического ожидания.
- $E\xi_i = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p, \ p$ вероятность того, что карта поднимется (то есть мы положим под

нее карту, взятую с верху колоды), k — номер "попытки с которой карта поднимется. То есть мы выбираем этот номер попытки k, причем предыдущие k-1 раз n-1-ая карта оставалась на месте, поэтому домножаем на вероятность того, что карта не поднимется в степени k-1, $p=\frac{i+1}{n}$.

$$E\xi = \sum_{i=1}^{n-2} \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p + 1,$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k, \frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} kx^{k-1},$$

$$1 - x = p, \frac{1}{p^2} = \sum_{k=1}^{\infty} k(1-p)^{k-1} \Rightarrow E\xi_i = \frac{n}{i+1},$$

$$E\xi = 1 + \sum_{i=1}^{n-2} \frac{n}{i+1} = 1 + \sum_{i=1}^{n-2} \frac{n}{i+1} = 1 + n \sum_{i=1}^{n-2} \frac{1}{i+1} = 1 + n \cdot (\frac{1}{2} + \dots + \frac{1}{n-1}) = n \cdot H(n) - n.$$