A quick guide to small superpressure

https://github.com/richardeoin/a-quick-guide

Richard Meadows

UKHAS Conference 2016

Superpressure is..

- Gas sealed within the envelope.
- Envelope is intended to be inelastic.

Figure : GHOST Balloon, Lally 1967

Can Amateurs do this too?

- Yes!
- ▶ See also Dan Bowen at UKHAS 2011.

Figure: UBSEDS6, 7th June 2015

Figure: B-64, Leo Bodnar 2014

In Flight

Figure: UBSEDS20 balloon at 12.5km float, 29th August 2016

Floating

Float when:

Atmospheric Density = System Density =
$$\frac{\sum n}{V}$$

Figure: Density in the International Standard Atmosphere

The Origins of Superpressure

- ► Free lift
- Supertemperature
- Vertical Air Currents (Lally 1967, VI. D. p.31)

Calculating Superpressure 1

Ideal gas law PV = nRT

$$P_{gas}V = \frac{m_{gas}}{M_{gas}}RT_{gas}$$

$$P_{air}V = rac{m_{system}}{M_{air}}RT_{air}$$

Calculating Superpressure 2

Definitions of Superpressure and Supertemperature:

$$P_{super} = P_{gas} - P_{air}$$

 $T_{super} = T_{gas} - T_{air}$

Assuming volumes are equal:

$$P_{super} = rac{R}{V} igg[igg(rac{m_{gas}}{M_{gas}} - rac{m_{system}}{M_{air}} igg) T_{air} + rac{m_{gas}}{M_{gas}} T_{super} igg]$$

The second term dominates, so:

$$rac{P_{super}}{T_{super}} pprox rac{m_{gas}}{M_{gas}} rac{R}{V}$$

Supertemperature

Table 9

RADIATION ENVIRONMENT FOR SUPERPRESSURE BALLOON

Altitude	Season	Air Temperature	Mylar balloon (α ₀ = 0.05)		
			Temperature in- crease per w/m ² increment, ⁰ C	Maximum added solar flux w/m²	Maximum daytime temperature in- crease, °C
9 km (300 mb)	Temperate, winter	-50	0.36	40	14
	Temperate, summer	-35	0.34	40	13
	Tropic	-30	0.34	40	13
12 km (200 mb)	Temperate, winter	-55	0.36	45	16
	Temperate, summer	-55	0.36	45	16
	Tropic	-50	0.36	45	16
16 km (100 mb)	Temperate, winter	-60	0.42	45	19
	Temperate, summer	-65	0.42	45	19
	Tropic	-80	0.47	45	21
24 km (30 mb)	Temperate, winter	-55	0.45	45	20
	Temperate, summer	-55	0.45	45	20
	Tropic	-55	0.45	45	20

Figure: Lally 1967, Table 9 p.24 (edited)

Mylar Balloon Shape 1

Figure: Paulsen 1994, Figure 1

$$\int_0^a \sqrt{1 + f'(x)^2} \ dx = r$$

Mylar Balloon Shape

Figure: Crimping means a small area the in centre is stressed.

The Magic of Pre-stretch

- ► Minimise Creep and relieve manufacturing stresses (Lally 1967, VI. C. p.28)
- Increases Γ, leading to higher float and lower superpressure.
- Re-distributes stresses around mylar balloon shape.

Envelope Construction

Figure: Drawing for 1.9m balloon

Envelope Construction

Film Specification (dimensions in micrometers)

Figure : 50μ m film cross section

Thanks to Exploratory Ideas grant from CEOI.

Further Work

- Web based calcuator like the Burst Calculator.
- Numerical analysis of previous flights.
- Guidelines for minimum free lift.
- Modelling and measuring supertemperature.
- Model for mylar tube shape.
- Explore Γ > 2
- Measuring strain on the ground (Angell and Pack, Apr. 1960).
- Relationship between stress and strain.

Further Work

► Have fun flying round the world...

Meridianal Hoop

Figure: Meridianal Hoop of a Mylar Balloon