Positivity in Function Algebras

Jason Ekstrand

Intel Corporation

INFAS, March 2015

What is a functional analyst doing at Intel?

Not functional analysis.

- I work on the Open-source 3-D graphics driver team
- Modern graphics cards are specialized processors that perform moderate calculations millions of times per second.
- My work has focused on the compiler for Intel GPUs
- My work so far has been:
 - 20% Graph Theory
 - ▶ 15% Algebraic Identities/Reductions
 - 65% Problem Solving and writing C Code

Overview

- Introduction
 - Problem Statement
 - Notation
- Positivity
 - Positivity in the Disc
 - Positivity in the Annulus
 - Positivity in more General Domains
- Connections with Representation Theory
- Future Work
- References

Problem Statement

Let $\mathcal{A}(\mathbb{D})$ be the disc algebra and give $\mathcal{A}(\mathbb{D})$ the involution

$$f\mapsto f^*;\quad f^*(z)=\overline{f(\bar{z})}$$

This yields a Banach *-algebra that is *not* a C^* -algebra.

Properties of $\mathcal{A}(\mathbb{D},*)$

- ▶ $\mathcal{A}(\mathbb{D})$ (without the involution) is a norm-closed subalgebra of $\mathcal{C}(\mathbb{T})$ so it is an operator algebra
- ▶ $\mathcal{A}(\mathbb{D},*)$ is a *-subalgebra of $\mathcal{C}[-1,1]$
- ▶ For every $f \in \mathcal{A}(\mathbb{D})$, $\sigma(f) = f(\mathbb{D}^-)$

We wish to study the positive elements of $\mathcal{A}(\mathbb{D}, *)$.

Definition

Let \mathcal{A} be a general *-algebra (no assumptions of norm). Then the set of *positive* elements of \mathcal{A} , denoted \mathcal{A}_+ , is given by

$$\mathcal{A}_{+}=\left\{ \sum_{k}a_{k}^{st}a_{k}:a_{k}\in\mathcal{A}
ight\} .$$

Definition

Let \mathcal{A} be a unital C^* -algebra. Then an element $a \in \mathcal{A}$ is said to be *positive* if $a^* = a$ and $\sigma(a) \subseteq \mathbb{R}_+$.

What is a good definition of positivity in $\mathcal{A}(\mathbb{D}, *)$?

Definition

Let $f \in \mathcal{A}(\mathbb{D}, *)$. Then f is said to be *positive* if

$$f([-1,1]) \subseteq \mathbb{R}_+.$$

Is this the right definition?

Theorem (Ekstrand & Peters, 2013)

Let $f \in \mathcal{A}(\mathbb{D},*)$. Then f is positive (as defined above) if and only if $f = g^*g$ for some $g \in \mathcal{A}(\mathbb{D})$.

Notation

For a domain $G \subseteq \mathbb{C}$, we have the following algebras:

- $ightharpoonup \mathcal{H}(G)$ of holomorphic functions on G
- ▶ $H^{\infty}(G)$ of bounded holomorphic functions on G
- ► A(G) of bounded holomorphic functions on G which have continuous extension to G⁻

If $f: G \to \mathbb{C}$ and $r\mathbb{T} \subseteq G$ and, we define the function

$$f_r: [-\pi, \pi] \to \mathbb{C}; \quad f_r(t) = f(re^{it}).$$

When it makes sense, we define the p^{th} Hardy space

$$H^p(G) = \{ f \in \mathcal{H}(G) : ||f_r||_p \text{ is bounded in } r \}$$

Positivity in the Disc

We begin with the case of non-vanishing functions.

Let $f \in \mathcal{A}(\mathbb{D})$ be non-vanishing. Since \mathbb{D} is simply connected,

$$f(z) = e^{h(z)}$$
 for some $h \in \mathcal{H}(\mathbb{D})$.

However, h need be neither bounded nor continuous on \mathbb{D}^- .

Lemma

Suppose $h: \mathbb{D} \to \mathbb{C}$ is continuous and that there is a continuous function $F: \mathbb{D}^- \to \mathbb{C}$ with $F = e^h$ on \mathbb{D} . If K is the set of zeros of F on \mathbb{T} then h can be continuously extended to $\mathbb{D}^- \setminus K$.

Theorem

Let $f \in \mathcal{H}(\mathbb{D})$ be positive with no roots in \mathbb{D} . Then, for every integer n > 0 there is a unique positive function $g \in \mathcal{H}(\mathbb{D})$ such that $f = g^n$. If $f \in \mathcal{H}^p(\mathbb{D})$ for some $1 \le p \le \infty$, then $g \in \mathcal{H}^{np}(\mathbb{D})$. If $f \in \mathcal{A}(\mathbb{D})$, then $g \in \mathcal{A}(\mathbb{D})$.

Sketch of proof.

- ▶ $f = e^h$ for some $h \in \mathcal{H}(\mathbb{D})$; let $g = e^{h/n}$ on \mathbb{D}
- ▶ Define $x : \mathbb{T} \to \mathbb{C}$ as $x = e^{h/n}$ on $\mathbb{T} \setminus K$ and x = 0 on K
- ▶ Then x is continuous on \mathbb{T} and x is a.e. the boundary values of g so $g \in \mathcal{A}(\mathbb{D})$.

BSF Factorization

For any function $f \in H^1(\mathbb{D})$, we can write f = BSF where

$$F(z) = \lambda \exp\left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|f(e^{i\theta})| \ d\theta\right],$$

for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and

$$B(z) = z^{\rho_0} \prod_{n=1}^{\infty} \left[\frac{\bar{\alpha}_n}{|\alpha_n|} \frac{\alpha_n - z}{1 - \bar{\alpha}_n z} \right]^{\rho_n}$$

where $\{\alpha_n\}$ are the roots of f with multiplicities p_n and

$$S(z) = \exp \left[-\int \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta) \right]$$

for some singular positive measure μ on $[-\pi, \pi]$.

If we are going to use the BSF factorization, we need to handle the positivity and continuity of the different pieces.

Theorem

Let $f \in \mathcal{A}(\mathbb{D})$ and decompose f as f = gB where $g \in H^{\infty}(\mathbb{D})$ and g is a Blaschke product. Then $g \in \mathcal{A}(\mathbb{D})$ and g has the same zeros on \mathbb{T} as f.

Theorem

Let $f \in \mathcal{A}(\mathbb{D})$ and let B be a Blaschke product such that f(z) = 0 whenever z is a limit point of the roots of B. Then $fB \in \mathcal{A}(\mathbb{D})$.

Theorem

Let B be the Blaschke product. If B has the same roots as some positive $f \in \mathcal{H}(\mathbb{D})$, then there is another Blaschke product B_+ with $B = B_+^* B_+$.

Theorem

Let $f \in H^p(\mathbb{D})$ for some $1 \le p \le \infty$. Then f is positive if and only if there exists $g \in H^{2p}(\mathbb{D})$ so that $f = g^*g$. If $f \in \mathcal{A}(\mathbb{D})$ then g may also be chosen to be in $\mathcal{A}(\mathbb{D})$.

Positivity in the Annulus

Definition

Fix $0 < r_0 < 1$ and define the annulus

$$A = \{z \in \mathbb{C} : r_0 < |z| < 1\}.$$

We define the following algebras:

- \triangleright $\mathcal{H}(A)$ of all holomorphic functions on A,
- ▶ $H^p(A)$ of all holomorphic functions on A with $||f_r||_p$ bounded for $r_0 < r < 1$,
- ightharpoonup A(A) of all holomorphic functions on A with continuous extension to A^- .

Properties of $\mathcal{H}(A)$

Given a function $f \in \mathcal{H}(A)$, we have the Laurent series

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} a_{-n} \frac{1}{z^n}$$

so $f(z) = g(z) + h(r_0/z)$ where $g, h \in \mathcal{H}(\mathbb{D})$.

Observation

- $f \in H^p(A)$ if and only if $g, h \in H^p(\mathbb{D})$
- ▶ $f \in \mathcal{A}(A)$ if and only if $g, h \in \mathcal{A}(\mathbb{D})$
- $f \in H^p(A)$ can be recovered from its boundary values

Positivity in $H^P(A)$

Definition

Let $f \in \mathcal{H}(A)$. Then f is said to be *positive* if

$$f(x) \ge 0$$
 for all $x \in A \cap \mathbb{R}$.

- How do we study positive functions on A?
- ▶ For $f \in \mathcal{H}(A)$, $f(z) = g(z) + h(r_0/z)$ where $g, h \in \mathcal{H}(D)$. However, f positive does not imply that g or h is positive.
- ▶ $f \in \mathcal{H}(A)$ non-vanishing does not imply $f = e^g$.
- How do we replace our use of the BSF factorization?

Non-vanishing functions in $\mathcal{H}(A)$

The problem here is that *A* is not simply connected.

Theorem

Let G be a domain and f be holomorphic on G. Suppose f is non-vanishing and

$$\oint_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

for every simple closed curve γ . Then there exists a holomorphic function g on G so that $f = e^g$.

Definition

For $f \in \mathcal{H}(A)$ non-vanishing, define the *winding number* of f by

$$wn(f) = \frac{1}{2\pi i} \oint_{\gamma_r} \frac{f'(z)}{f(z)} dz$$

where $\gamma_r(t) = re^{it}$ for $t \in [-\pi, \pi]$ and $r_0 < r < 1$.

Theorem (Ekstrand, 2014)

Let $f \in \mathcal{H}(A)$ be positive and non-vanishing. Then wn(f) is an even number.

For any positive $f \in \mathcal{H}(A)$, the function $g(z) = f(z)z^{-\text{wn}(f)}$ is positive with wn(g) = 0.

Theorem (Ekstrand, 2014)

Let $f \in \mathcal{H}(A)$ be positive and non-vanishing. Then there exists a function $g \in \mathcal{H}(A)$ so that $f = g^*g$. Furthermore, if $f \in H^p(A)$, then $g \in H^{2p}(A)$ for $1 \le p \le \infty$ and, if $f \in \mathcal{A}(A)$, then $g \in \mathcal{A}(A)$.

Sketch of proof.

- ► Let $f_0(z) = f(z)z^{-\text{wn}(f)}$; wn $(f_0) = 0$.
- $f_0 = e^h$ for some $h \in \mathcal{H}(A)$.
- ▶ Define g by $g(z) = e^{h(z)/2} z^{wn(f)/2}$.
- Continuity is similar to the disc case.

H^p spaces of an annulus (Sarason, 1965)

In his 1965 work, Sarason studies holomorphic functions on A and tries to recover a BSF factorization for the annulus.

Sarason's work focuses on the universal covering surface

$$\hat{A} = \{ (r, t) \in \mathbb{R}^2 : r_0 < r < 1 \}$$

with the covering map

$$\varphi: \hat{A} \to A; \quad \varphi(r,t) = re^{it}.$$

- Sarason develops a BSF factorization for modulus automorphic functions Â
- ▶ Unfortunately, these result don't translate easily to $H^p(A)$

Blaschke Products on A

Sarason's construction is enough to get us the following:

Theorem (Sarason, 1965; Ekstrand, 2014)

Let $f \in H^{\infty}(A)$ that is not identically zero and let $\{a_n\}_{n=1}^{\infty}$ be the set of zeros of f repeated according to multiplicity. Then

$$\sum_{n=1}^{\infty}\min\left(1-|a_n|,1-\frac{r_0}{|a_n|}\right)<\infty.$$

Theorem (Ekstrand, 2014)

Let $f \in H^{\infty}(A)$ that is not identically zero and let $\{a_n\}$ be the roots of f repeated according to multiplicity. Then the Blaschke products

$$B_1(z) = \prod_{|a_n| \ge \sqrt{r_0}} \frac{\bar{a}_n}{|a_n|} \frac{a_n - z}{1 - \bar{a}_n z} \quad \text{and} \quad B_2(z) = \prod_{|a_n| < \sqrt{r_0}} \frac{a_n}{|a_n|} \frac{r_0/a_n - z}{1 - (r_0/\bar{a}_n)z}$$

converge and we may decompose f as $f(z) = g(z)B_1(z)B_2(r_0/z)$ where g is bounded, holomorphic, and non-vanishing on A. If f has a continuous extension to A^- then so does g.

Theorem (Ekstrand, 2014)

An element $f \in H^p(A)$ is positive if and only if $f = g^*g$ for some $g \in H^{2p}(A)$. Furthermore, if f is continuous on A^- , then g may be chosen continuous on A^- .

Generalizations to other domains

Definition

Let G be a domain. We say that G is symmetric if

$$G = G^* = \{\bar{z} : z \in G\}.$$

Theorem (Ekstrand, 2014)

Let G be a symmetric domain where ∂G is the union of finitely many disjoint Jordan curves and let $f \in H^{\infty}(G)$. Then f is positive if and only if there is some $g \in H^{\infty}(G)$ so that $f = g^*g$. Furthermore, if $f \in \mathcal{A}(G)$ then g may be chosen in $\mathcal{A}(G)$.

Connections with Representation Theory

Definition

Let \mathcal{A} be a *-algebra. Then a *-representation of \mathcal{A} is a pair (\mathcal{H}, φ) where \mathcal{H} is a Hilbert space and $\varphi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a *-homomorphism.

What about A(G, *)?

- ▶ If (\mathcal{H}, φ) is a *-representation of \mathcal{A} then, for all $g \in \mathcal{A}$, $\varphi(g^*g) = \varphi(g)^*\varphi(g)$ is positive in \mathcal{H} .
- ▶ The one-dimensional *-representations of $\mathcal{A}(G, *)$ are exactly the point-evaluations on $G \cap \mathbb{R}$.
- ▶ $f \in \mathcal{A}(G,*)$ is positive if and only if $\varphi(f) \ge 0$ for every one-dimensional *-representation φ of $\mathcal{A}(G,*)$.

Theorem (Ekstrand, 2014)

Let G be a region so that ∂G is the union of finitely many disjoint Jordan curves in \mathbb{C}_{∞} . For each $f \in \mathcal{A}(G)$, TFAE:

- 1. f is positive, i.e., $f(G \cap \mathbb{R}) \geq 0$,
- 2. $f = g^*g$ for some $g \in A$,
- 3. $f = \sum_{i=1}^{n} g_i^* g_i$ for some $g_1, \ldots, g_n \in \mathcal{A}$,
- **4**. $f = \lim_{n \to \infty} f_n$ where each f_n is of the form given in 3.
- 5. $\varphi(f) \geq 0$ for every one-dimensional *-rep. (\mathbb{C}, φ) of $\mathcal{A}(G)$
- 5. is equivalent to $\sigma(a) \ge 0$ in abelian C^* -algebras

Future Work

- 1. Extend the results to even more general domains
 - While the restriction that ∂G is the union of finitely many disjoint Jordan curves is sufficient, I have no proof that it is necessary.
 - Unfortunately, such an extension would probably need a new technique.
- 2. Try and extend these results to a non-abelian case
 - ▶ These definitions extend fairly easily to $\mathcal{M}_{n \times n}(\mathcal{A}(G))$
- 3. Consider domains not in $\mathbb C$ such as Riemann surfaces
 - There is a 1965 paper by Voichick and Zalcman that gives a BSF factorization for a certain class of Riemann surfaces

References I

- Gert K. Pedersen, Analysis now, Graduate Texts in Mathematics, vol. 118, Springer-Verlag, New York, 1989. MR971256 (90f:46001)
- [2] Gerard J. Murphy, *C*-algebras and operator theory*, Academic Press, Inc., Boston, MA, 1990.
- [3] Krzysztof Ciesielski, Set theory for the working mathematician, London Mathematical Society Student Texts, vol. 39, Cambridge University Press, Cambridge, 1997.
- [4] John B. Conway, *A course in functional analysis*, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990.
- [5] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York, 1973. McGraw-Hill Series in Higher Mathematics.
- [6] Theodore W. Palmer, *Banach algebras and the general theory of* *-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. *-algebras.

References II

- [7] John B. Conway, Functions of one complex variable, 2nd ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978.
- [8] Walter Rudin, *Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987.
- [9] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall Inc., Englewood Cliffs, N. J., 1962.
- [10] Donald Sarason, The H^p spaces of an annulus, Mem. Amer. Math. Soc. No. 56 (1965), 78.
- [11] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992.
- [12] Rolf Nevanlinna, *Analytic functions*, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York, 1970.

References III

- [13] Michael Voichick and Lawrence Zalcman, Inner and outer functions on Riemann surfaces, Proc. Amer. Math. Soc. 16 (1965), 1200–1204.
- [14] Stewart S. Cairns, An elementary proof of the Jordan-Schoenflies theorem, Proc. Amer. Math. Soc. 2 (1951), 860–867.
- [15] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992.
- [16] Ryuji Maehara, The Jordan curve theorem via the Brouwer fixed point theorem, Amer. Math. Monthly 91 (1984), no. 10, 641–643, DOI 10.2307/2323369.

Thank You!

Idea Behind the Proof

Theorem (Riemann Mapping Theorem)

Let $G \subseteq \mathbb{C}$ be a simply connected region that is not the whole plane and let $a \in G$. Then there is a unique holomorphic bijection $\phi : G \to \mathbb{D}$ so that $\phi(a) = 0$ and $\phi'(a) > 0$.

Theorem (Carathéodory)

Let $G \subseteq \mathbb{C}$ be a simply connected region whose boundary is a Jordan curve. Then the Riemann map $\phi : G \to \mathbb{D}$ extends to a homeomorphism $\Phi : G^- \to \mathbb{D}^-$.

Start with some symmetric region G and $f \in H^{\infty}(G)$

Pick a single hole H in G

Define a Carathéodory map $\phi : \mathbb{C} \setminus H \to \mathbb{D}^-$

Pick r_0 so that $\{z \in \mathbb{C} : r_0 \le |z| < 1\} \subseteq \phi(G)$

- ▶ This gives us an annulus $A = \{z \in \mathbb{C} : r_0 \le |z| < 1\}$.
- ▶ We can factor $f \circ \phi^{-1}$ as $f \circ \phi^{-1} = gB$ where $g \in H^{\infty}(A)$ and B is a Blaschke product.
- ▶ Translating back to G, $f = (g \circ \phi)(B \circ \phi)$.
- ▶ A similar trick can be used to ensure $wn(f \circ \varphi^{-1}) = 0$.
- Decompose f, square root the non-vanishing part and put it back together as we did before.
- ▶ Thanks to the Carathéodory theorem, ϕ is a homeomorphism of $\mathbb{C} \setminus H$ and \mathbb{D}^- so continuity follows from results in the annulus.