Problem 1: Please sort all trees on 8 vertices into homeomorphism classes.

The trees with 8 vertices are given as

and each homeomorphism class is given in the table below along with the index of each corresponding tree.

Homeomorphism Class	Tree Indices	Homeomorphism Class	Tree Indices
· ·	(1,1)	į.	(1,2), (1,3), (1,4), (1,5)
\perp	(1,6), (1,7), (1,8)	$\dot{\lambda}$	(2,1), (2,2)
	(2,3)		(2,4)
	(2,5), (2,6), (2,7), (2,8), (3,1), (3,2)	· • • • • • • • • • • • • • • • • • • •	(2,7), (2,8), (3,1) start here
\sim	(3,2)		(3,2)

<u>Problem 2</u>: Show that the graph G (defined later) is not planar in two ways: (1) Use Kuratowski's Theorem, and (2) use the Euler identity n-e+f=2. Notation: For $n\in\mathbb{N}$, $[n]=\{1,2,3,\ldots,n\}$, and $[0]=\emptyset$. Define G=(V,E) as follows. Let $V=\{2\text{-sets of }[5]\}$, with vertices x and y adjacent if and only if $x\cap y=\emptyset$.

insert text her

Problem 3: Please prove that no pair of the directed graphs in the figure below are isomorphic.

insert solution here