

# MHD-EMP (E3) Assessment of the US Power Grid

GIC and Transformer Thermal Assessment

NERC Joint OC-PC Webinar July 25, 2017

REMOTE HOME CONTROL

122 C MORN

2 122 C MORN

2 122 C MORN

2 123 C MORN

2 124 C MORN

2 124 C MORN

2 125 C MOR

Randy Horton, Ph.D., P.E. Senior Program Manager

#### **High-altitude Electromagnetic Pulse (HEMP)**



#### Potential Impacts of HEMP on Bulk-Power System

- E1 (early-time)
  - Damage to electronics
  - MV and HV insulation
- E2 (intermediate time)
  - Damage to MV insulation
- E3 (late time)
  - Voltage collapse
  - Damage to bulk-power transformers (thermal)







#### **Historical Perspective**

- The U.S. government (and others) have known about EMP for a long time.
- U.S. performed high-altitude nuclear tests in 50's and 60's to determine impacts to military infrastructure.
- Starfish Prime Test 1.4 MT weapon detonated approximately 400 km above Johnston Atoll in the South Pacific.
- Disrupted communication systems, damaged satellites, and impacted electrical systems in Hawaii.







#### **Background and Motivation for HEMP Research**

- Portrayed as a "Dooms Day" scenario in the media
- Potential for regulatory and legislative action
- MIL STD hardening options are costly and impractical in some cases
- Potential for unintended consequences











#### Three Year Research Plan April 2016 – April 2019

#### **Primary Research Focus in 2017**



## MHD-EMP Assessment of the Continental United States: GIC and Transformer Thermal Analysis



| CONTENTS                                                                                           |           |
|----------------------------------------------------------------------------------------------------|-----------|
| AB\$TRACT                                                                                          |           |
| EXECUTIVE SUMMARY                                                                                  | V         |
| 1 INTRODUCTION                                                                                     | 1-        |
| Background and Motivation for This Research                                                        |           |
| Objective                                                                                          |           |
| Scope                                                                                              |           |
| Approach                                                                                           | 1-        |
| 2 GEOMAGNETICALLY INDUCED CURRENT MODEL AND MAGNETOHYDR                                            | RODYNAMIC |
| ELECTROMAGNETIC PULSE (E3) ENVIRONMENT                                                             | 2-        |
| Overview                                                                                           | 2-        |
| Modeling Approach                                                                                  |           |
| Geomagnetically Induced Current Calculations                                                       | 2-        |
| Dc Modeling Parameters                                                                             |           |
| Magnetohydrodynamic Electromagnetic Pulse (E3) Environment                                         |           |
| E3A: Blast Wave                                                                                    | _         |
| E3B: Heave Wave                                                                                    | _         |
| 3 TRANSFORMER THERMAL ASSESSMENT                                                                   | 3-        |
| Overview                                                                                           |           |
| Geomagnetically Induced Current Analysis                                                           |           |
| Transformer Thermal Analysis                                                                       |           |
| Transformer Fleet Assessment                                                                       | 3-        |
| 4 CONCLUSIONS                                                                                      | 4-        |
| 5 REFERENCES                                                                                       | 5-        |
| A TRANSFORMER THERMAL MODEL                                                                        | A-        |
| Overview                                                                                           | A-        |
| Model Development                                                                                  | A-        |
| Model Parameters                                                                                   | A-        |
| Transformer Model A (Structural Part)                                                              | A-        |
| Transformer Model B (Structural Part)                                                              | A-        |
| Transformer Model C (Structural Part)                                                              | A-        |
| Transformer Model D (Winding)                                                                      | A-        |
| Transformer Model E (Winding)                                                                      | A-        |
| B COMPARISON OF MAGNETOHYDRODYNAMIC ELECTROMAGNETIC PU<br>WAVESHAPE ON TRANSFORMER HOTSPOT HEATING |           |
| C ANALYSIS OF GEOMAGNETICALLY INDUCED CURRENT IMPACTS ON                                           |           |
| AUTOTRANSFORMER DELTA TERTIARY WINDINGS                                                            | C-        |
| Overview                                                                                           |           |

http://www2.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002009001



#### **Motivation and Purpose for the E3 Assessment**

 Widespread loss of bulk-power system transformers would result in a long-term blackout.



 EPRI's analysis used the latest scientific advancements to model/assess GIC and its effects on bulk-power transformers.



#### **Big Picture: GIC and Transformer Thermal Assessment**

11 Target Locations Across the Continental U.S.



#### **Transformer Thermal Analysis**

- Time-domain thermal model was used to perform assessment.
  - Meta-R-321 assessment used GIC magnitude only as screening criteria.
- Five different conservative transformer thermal models were used to represent the U.S. transformer fleet.
- The initial (pre-event) top oil temperature of all transformers in the analysis was assumed to be 80°C regardless of pre-event loading.
- Transformers experiencing effective GIC levels less than 75
   Amps/phase were assumed to be immune to thermal damage.



#### **Example Results (Single Case)**

Example results with GIC(t) generated by MHD-EMP (E3)



#### **Condition-Based GIC Susceptibility**

- Temperature limits in IEEE C57.163 assume transformers are in new condition.
- The concept of Condition-Based GIC Susceptibility was developed to account for variability in condition of US bulkpower transformers.
- The Condition-Based GIC Susceptibility Category of a given transformer was estimated using:
  - PTX Condition Code (based on trends of dissolved gases)
  - Moisture Content in oil (transformer age was used as a proxy)
- Transformer design was accounted for in thermal models.



#### **Performance Criteria**

#### Condition-based GIC Susceptibility Categories

| Parameter                                                       | Condition-Based GIC Susceptibility Category |       |     |
|-----------------------------------------------------------------|---------------------------------------------|-------|-----|
|                                                                 | L                                           | II    | III |
| Age                                                             | 0–25                                        | 25–40 | >40 |
| Power Transformer Expert (PTX) software Abnormal Condition Code | 1                                           | 2–3   | 4–5 |

#### **Conservative Temperature Limits**

| Condition-based GIC        | Hotspot Temperature Limit |                  |  |
|----------------------------|---------------------------|------------------|--|
| Susceptibility<br>Category | Structural Parts<br>(°C)  | Windings<br>(°C) |  |
| L                          | 180                       | 160              |  |
| II                         | 160                       | 140              |  |
| III                        | 140                       | 120              |  |

For comparison, IEEE C57.163 limits are 200°C for structural parts and 180°C cellulose insulation (windings).



#### **Transformer Thermal Assessment Process**



#### **Step 1: Broad Category Assessment**

- Assessment was performed assuming every transformer in the CONUS was Category I, Category II or Category III.
- Provided "book ends" to analysis.

|                    |                                                                        | Total Number of Transformers Exceeding<br>Temperature Limits Based on Assumed<br>Condition-Based GIC Susceptibility Category<br>of Entire Transformer Fleet |             |              |
|--------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| Target<br>Location | Number of<br>Transformers<br>with GIC <sub>eff</sub> ≥75<br>Amps/Phase | Category I                                                                                                                                                  | Category II | Category III |
| 1                  | 1897                                                                   | 0                                                                                                                                                           | 2           | 22           |
| 2                  | 1872                                                                   | 2                                                                                                                                                           | 4           | 15           |
| 3                  | 1938                                                                   | 1                                                                                                                                                           | 4           | 22           |
| 4                  | 1912                                                                   | 2                                                                                                                                                           | 6           | 19           |
| 5                  | 1812                                                                   | 0                                                                                                                                                           | 5           | 21           |
| 6                  | 2435                                                                   | 0                                                                                                                                                           | 3           | 15           |
| 7                  | 689                                                                    | 0                                                                                                                                                           | 2           | 10           |
| 8                  | 692                                                                    | 0                                                                                                                                                           | 1           | 7            |
| 9                  | 675                                                                    | 2                                                                                                                                                           | 3           | 11           |
| 10                 | 2382                                                                   | 1                                                                                                                                                           | 4           | 23           |
| 11                 | 1965                                                                   | 3                                                                                                                                                           | 6           | 28           |

# Step 2: Estimate the Condition-Based GIC Susceptibility Category of U.S. Bulk-Power Transformers

 The condition-based GIC susceptibility category distribution of the U.S. fleet was estimated from 1,451 230 kV and above transformers contained in the EPRI database.



## Step 3: Estimate the Expected Number of Transformers to be at Risk of Potential Thermal Damage

 Expected number of transformers at potential risk of thermal damage.

$$E(X) = \sum_{j=1}^{K} p_j X_j$$
  
= 0.36 \cdot X\_1 + 0.25 \cdot X\_2 + 0.39 \cdot X\_3

where,

*E* is expected number of transformers to be at risk of thermal damage;

 $X_I$  is the number of transformers exceeding the temperature limits assuming all transformers are in Category I;

 $X_2$  is the number of transformers exceeding the temperature limits assuming all transformers are in Category II;

 $X_3$  is the number of transformers exceeding the temperature limits assuming all transformers are in Category III.



#### **Assessment Results**

 Expected number of transformers to be at risk of thermal damage ranged from 3 to 14 depending on target location.

|                    |                                                                        | Total Number of Transformers Exceeding Temperature mits Based on Assumed Condition-Based GIC Susceptibility ntire Transformer Fleet |             |              |                                               |
|--------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------------------------------------|
| Target<br>Location | Number of<br>Transformers with<br>GIC <sub>eff</sub> ≥75<br>Amps/Phase | Category I                                                                                                                          | Category II | Category III | Mixed Category<br>(I:36%, II:25%,<br>III:39%) |
| 1                  | 1897                                                                   | 0                                                                                                                                   | 2           | 22           | 9                                             |
| 2                  | 1872                                                                   | 2                                                                                                                                   | 4           | 15           | 8                                             |
| 3                  | 1938                                                                   | 1                                                                                                                                   | 4           | 22           | 10                                            |
| 4                  | 1912                                                                   | 2                                                                                                                                   | 6           | 19           | 10                                            |
| 5                  | 1812                                                                   | 0                                                                                                                                   | 5           | 21           | 9                                             |
| 6                  | 2435                                                                   | 0                                                                                                                                   | 3           | 15           | 7                                             |
| 7                  | 689                                                                    | 0                                                                                                                                   | 2           | 10           | 4                                             |
| 8                  | 692                                                                    | 0                                                                                                                                   | 1           | 7            | 3                                             |
| 9                  | 675                                                                    | 2                                                                                                                                   | 3           | 11           | 6                                             |
| 10                 | 2382                                                                   | 1                                                                                                                                   | 4           | 23           | 10                                            |
| 11                 | 1965                                                                   | 3                                                                                                                                   | 6           | 28           | 14                                            |

#### What's Next? Voltage Stability Analysis

- Evaluating the potential impacts of E3 on voltage stability.
- Using same E3 environment that was used in transformer thermal assessment.
- Performing time-domain analysis; load and machine dynamics are included.
  - Composite load model
  - Overexcitation Limiters
  - Relay models (PRC-023)
  - Generator voltage/frequency ride-through capability (PRC-024)
- Results expected by Q3 2017







#### What's Next? E1/E2 Threat Assessment

- Testing to determine E1/E2 threshold levels of components (Strength).
- Modeling to determine surge levels that components might be exposed (Stress).
- Analysis to determine the Probability of Damage or Upset of components.
- Analysis to determine Impact of damage or upset of components on overall bulkpower system.



#### **Conclusions**

- The potential effects of HEMP are real, but there are still a lot of open research questions that need to be addressed.
- The potential for transformer damage from E3 exists, but study results indicate the quantity would be limited and manageable.
- The potential for voltage collapse and wide-scale blackouts due to E3 is real, and still under investigation.
- Research needs to be completed before hardening measures based on MIL standards are employed widely for substation electronics; cost-effective solutions are needed.
- This is a complex engineering problem; building consensus and collaboration takes a great deal of time, effort and knowledge.





### **Together...Shaping the Future of Electricity**

## **Appendix**



#### **Analysis of Autotransformer Delta Tertiary Windings**

- Part-cycle saturation causes transformers to become harmonic current sources.
- The harmonic currents are "injected" into the system with some portion being absorbed by the tertiary winding.
- Circulating harmonic currents can increase hotspot heating.





#### **Analysis of Autotransformer Delta Tertiary Windings**

- The magnitudes and spectral contents of the delta currents were evaluated using an adaptation of IEEE C57.110.
- The harmonic currents were related to an equivalent fundamental-frequency current that can be compared with IEEE C57.109 damage curves.
- Analysis was applied to three different designs of a 230/115 kV 240 MVA autotransformer with 42 MVA 13.2 kV tertiary.
- Results indicate that for the transformer evaluated, circulating harmonic currents are not an issue for E3 events.





