Problem 1

Theorem 1. Let B be an $(m+1) \times (n+1)$ matrix, where $B_{11} = 1$, and $B_{1j} = B_{i1} = 0$ for $2 \le j \le n+1$ and $2 \le i \le m+1$. Define B' to be the $m \times n$ submatrix of B obtained by removing the first column and the first row of B. Then, if rank(B) = r, then rank(B') = r - 1.

Solution

Proof. For this proof, we will use the fact that rank of a matrix is equal to the dimension of its column space. Since the first element of $B_{\cdot 1}$ is non zero, and the first elements of each vector in the set of remaining column vectors $\{B_{\cdot 2}, \ldots, B_{\cdot (n+1)}\}$ are zero, it follows that

$$B_{\cdot 1} \notin \text{Span} \left(\{ B_{\cdot 2}, \dots, B_{\cdot (n+1)} \} \right).$$

Thus, we can conclude that

$$\dim \left(\operatorname{Span} \left(\left\{ B_{\cdot 2}, \dots, B_{\cdot (n+1)} \right\} \right) \right) = \dim \left(\operatorname{Span} \left(\left\{ B_{\cdot 1}, \dots, B_{\cdot (n+1)} \right\} \right) \right) - 1$$

$$= r - 1.$$

Now, define $\{v_1, ..., v_{r-1}\}$ to be the resulting set of reducing $\{B._2, ..., B_{\cdot (n+1)}\}$ to a basis of Span $(\{B._2, ..., B_{\cdot (n+1)}\})$. Now, define a new set of vectors $\{v'_1, ..., v'_{r-1}\} \subseteq \{B'_{\cdot 1}, ..., B'_{\cdot n}\}$ such that for all $1 \le i \le r-1$, v'_i is the vector obtained by removing the first element of v_i . All that remains is to that $\{v'_1, ..., v'_{r-1}\}$ is a basis of Span $(B'_{\cdot 1}, ..., B'_{\cdot n}\}$.

To see that $\{v_1',...,v_{r-1}'\}$ is linearly independent, let $\{a_1,\ldots,a_{r-1}\}\subseteq\mathbb{F}$ be such that

$$\sum_{i=1}^{r-1} a_i v_i' = 0.$$

Then, since the first element of each vector in $\{v_1, ..., v_{r-1}\}$ is zero, we have

$$\sum_{i=1}^{r-1} a_i v_i = 0.$$

By linear independence of $\{v_1, ..., v_{r-1}\}$, we can conclude that $a_i = 0$ for each i, and we have shown that $\{v'_1, ..., v'_{r-1}\}$ is linearly independent.

To end the proof, we must now show that

$$\mathrm{Span}(\{v_1,...,v_{r-1}\}) = \mathrm{Span}(\{B'_{\cdot 1},...,B'_{\cdot n}\}).$$

One side of this equality follows directly from the fact that $\{v'_1, ..., v'_{r-1}\} \subseteq \{B'_{1}, ..., B'_{n}\}$. For the other direction, let $v' \in \text{Span}(\{B'_{1}, ..., B'_{n}\})$. Define $v \in \text{Span}(\{B_{2}, ..., B_{(n+1)}\})$ by adding a zero to the top of v'. Then, there exist scalars $\{a_1, ..., a_{r-1}\} \subseteq \mathbb{F}$ such that

$$\sum_{i=1}^{r-1} a_i v_i = v.$$

Since vector addition is defined element wise, it follows immediately that

$$\sum_{i=1}^{r-1} a_i v_i' = v',$$

and our proof is complete.

August 25, 2023