MATLAB ® / R Reference

February 11, 2008

David Hiebeler
Dept. of Mathematics and Statistics
University of Maine
Orono, ME 04469-5752

http://www.math.umaine.edu/faculty/hiebeler

•

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching my course "MAT400, Modeling & Simulation" at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in a computer lab where students work through modeling & simulation exercises. When I taught earlier versions of the course, it was based on MATLAB only. In Spring 2007, some biology graduate students in the class who had learned R in statistics courses asked if they could use R in my class as well, and I said yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went, every time I learned how to do something in R for the course, I added it to this reference, so that I wouldn't forget it later. Some items took a huge amount of time searching for a simple way to do what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do in MATLAB had an equivalent in R. I was also inspired to do this after seeing the "R for Octave Users" reference written by Robin Hankin.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful will be appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language; I often tried to do things in a similar way in both languages. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors, and Stephen Eglen for suggesting I include R's vectorized "ifelse".

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Copyright ©2007,2008 David Hiebeler

Contents

1	Online help	3		
2	Entering/building/indexing matrices 2.1 Cell arrays and lists	4 5		
3	Computations 3.1 Basic computations	6 6 7 10 11		
4	Conditionals, control structure, loops	11		
5	Functions, ODEs	14		
6	Probability and random values			
7	Graphics 7.1 Various types of plotting	20 20 27 28		
8	Working with files	28		
9	Misc 9.1 Variables 9.2 Misc	29 29 30		
10	9 Spatial Modeling	32		
In	ndex of MATLAB commands and concepts	33		
In	ndex of R commands and concepts	37		

1 Online help

No.	Description	Matlab	R
1	Show help for a function (e.g.	help sqrt, or helpwin sqrt to see	help(sqrt) or ?sqrt
	$\mathbf{sqrt})$	it in a separate window	
2	Show help for a built-in key-	help for	help('for') or ?'for'
	word (e.g. \mathbf{for})		
3	General list of many help top-	help	library() to see available libraries,
	ics		or library(help='base') for very
			long list of stuff in base package which
			you can see help for
4	Explore main documentation	helpdesk	help.start()
	in browser		
5	Search documentation for	lookfor binomial	help.search('binomial')
	keyword or partial keyword		
	(e.g. functions which refer to		
	"binomial")		

2 Entering/building/indexing matrices

No.	Description	Matlab	R
6	Enter a row vector \vec{v} =	v=[1 2 3 4]	v=c(1,2,3,4) or alternatively
	$\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$		v=scan() then enter "1 2 3 4" and
	ı J		press Enter twice (the blank line
			terminates input)
	[1]		1 /
_		F4 0 0 47	(4.0.0.4)
7	Enter a column vector $\begin{bmatrix} 2\\3 \end{bmatrix}$	[1; 2; 3; 4]	c(1,2,3,4)
	4		
			(R does not distinguish between row
			and column vectors.)
8	Enter a matrix	[1 2 3 ; 4 5 6]	To enter values by row:
0	$\begin{bmatrix} \text{Effice} & \text{Hatrix} \\ 4 & 5 & 6 \end{bmatrix}$	[1 2 3 , 4 3 0]	matrix(c(1,2,3,4,5,6), nrow=2,
	_		byrow=TRUE) To enter values by
			column: $matrix(c(1,4,2,5,3,6),$
			nrow=2)
9	Access an element of vector v	v(3)	v[3]
10	Access an element of matrix	A(2,3)	A[2,3]
	\mathbf{A}		
11	Access an element of matrix	A(5)	A[5]
	A using a single index: in-		
	dices count down the first col-		
	umn, then down the second		
	column, etc.		
12	Build the vector [2 3 4 5 6 7]	2:7	2:7
13	Build the vector [7 6 5 4 3 2]	7:-1:2	7:2
14	Build the vector [2 5 8 11 14]	2:3:14	seq(2,14,3)
15	Build a vector containing	linspace(a,b,n)	seq(a,b,length.out=n) or just
	n equally-spaced values be-		seq(a,b,len=n)
1.0	tween a and b inclusive	(1.4) (6.1	(0.1)
16	Build a vector of length k	zeros(k,1) (for a column vector) or	rep(0,k)
177	containing all zeros	zeros(1,k) (for a row vector)	(1-)
17	Build a vector of length k	j*ones(k,1) (for a column vector)	rep(j,k)
	containing the value j in all	or j*ones(1,k) (for a row vector)	
18	positions Build an $m \times n$ matrix of zeros	zeros(m,n)	matrix(0,nrow=m,ncol=n) or just
10	Dung an $m \times n$ matrix of zeros	Zeros(m,n)	matrix(0, mrow=m, ncol=n) or just matrix(0, m, n)
19	Build an $m \times n$ matrix con-	j*ones(m,n)	matrix(0,m,n) matrix(j,nrow=m,ncol=n) or just
10	taining j in all positions	J. 01105 (m, 11)	matrix(j,m,n)
20	$n \times n$ identity matrix I_n	eye(n)	diag(n)
21	"Glue" two matrices a1 and	[a1 a2]	cbind(a1,a2)
21	a2 (with the same number of	u_ u	051114(41,42)
	rows) side-by-side		
22	"Stack" two matrices a1 and	[a1; a2]	rbind(a1,a2)
	a2 (with the same number of	,	
	columns) on top of each other		
L	, and the state of		

No.	Description	Matlab	R
23	Column 2 of matrix A	A(:,2)	A[,2]
24	Row 7 of matrix A	A(7,:)	A[7,]
25	All elements of A as a vector,	A(:) (gives a column vector)	c(A)
20	column-by-column	(gives a column vector)	0 (11)
26	Rows 2–4, columns 6–10 of A	A(2:4,6:10)	A[2:4,6:10]
20	(this is a 3×5 matrix)	1(2.1,0.10)	N[2.1,0.10]
27	A 3×2 matrix consisting of	A([7 7 6], [2 1])	A[c(7,7,6),c(2,1)]
21	rows 7, 7, and 6 and columns	11([, , 0], [2 1])	1[0(1,1,0),0(2,1)]
	2 and 1 of A (in that order)		
28	Given a single index ind into		
	an $m \times n$ matrix A , compute	5 7	
	the row \mathbf{r} and column \mathbf{c} of	<pre>[r,c] = ind2sub(size(A), ind)</pre>	r = ((ind-1) % m) + 1
	that position (also works if		c = floor((ind-1) / m) + 1
	ind is a vector)		
29	Given the row r and column		
	c of an element of an $m \times n$	ind (A))	ind = (c-1)*m + r
	matrix A, compute the single	<pre>ind = sub2ind(size(A), r, c)</pre>	1 ind = (C-1) * m + r
	index ind which can be used		
	to access that element of $\bf A$		
	(also works if ${\bf r}$ and ${\bf c}$ are vec-		
	tors)		
30	Given equal-sized vectors r		
	and \mathbf{c} (each of length k), set	<pre>inds = sub2ind(size(A),r,c);</pre>	inds = cbind(r,c)
	elements in rows and columns	A(inds) = 12;	A[inds] = 12
	of matrix \mathbf{A} equal to 12.	n(11105) - 12,	A[INGO] - IZ
	That is, k elements of A will		
	be modified.		

2.1 Cell arrays and lists

No.	Description	Matlab	R
31	Build a vector v of length n , capable of containing different data types in different elements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R)	$v = cell(1,n)$ In general, $cell(m,n)$ makes an $m \times n$ cell array. Then you can do e.g.: $v\{1\} = 12$ $v\{2\} = 'hi there'$ $v\{3\} = rand(3)$	<pre>v = vector('list',n) Then you can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>
32	Extract the $i^{\rm th}$ element of a cell/list vector ${\bf v}$	<pre>w = v{i} If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre>	<pre>w = v[[i]] If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the ith element of v.</pre>
33	Set the name of the i^{th} element in a list.	(Matlab does not have names associated with elements of cell arrays.)	names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.

3 Computations

3.1 Basic computations

No.	Description	Matlab	R
34	a+b, a-b, ab, a/b	a+b, a-b, a*b, a/b	a+b, a-b, a*b, a/b
35	\sqrt{a}	sqrt(a)	sqrt(a)
36	a^b	a^b	a^b
37	a (note: for complex ar-	abs(a)	abs(a)
	guments, this computes the		
	modulus)		
38	e^a	exp(a)	exp(a)
39	$\ln(a)$	log(a)	log(a)
40	$\log_2(a), \log_{10}(a)$	log2(a), log10(a)	log2(a), log10(a)
41	$\sin(a), \cos(a), \tan(a)$	sin(a), cos(a), tan(a)	sin(a), cos(a), tan(a)
42	$\sin^{-1}(a), \cos^{-1}(a), \tan^{-1}(a)$	asin(a), acos(a), atan(a)	asin(a), acos(a), atan(a)
43	$\sinh(a), \cosh(a), \tanh(a)$	sinh(a), cosh(a), tanh(a)	sinh(a), cosh(a), tanh(a)
44	$\sinh^{-1}(a), \qquad \cosh^{-1}(a),$	asinh(a), acosh(a), atanh(a)	asinh(a), acosh(a), atanh(a)
	$\tanh^{-1}(a)$		
45	$n \mod k$ (modulo arith-	mod(n,k)	n %% k
	metic)		
46	Round to nearest integer	round(x)	round(x) (Note: R uses IEC 60559
			standard, rounding 5 to the even digit
			— so e.g. round(0.5) gives 0 , not 1 .
47	Round down to next lowest	floor(x)	floor(x)
	integer		
48	Round up to next largest in-	ceil(x)	ceiling(x)
	teger		

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No.	Description	Matlab	R
49	Enter a complex number	1+2i	1+2i
50	Modulus (magnitude)	abs(z)	abs(z) or Mod(z)
51	Argument (angle)	angle(z)	Arg(z)
52	Complex conjugate	conj(z)	Conj(z)
53	Real part of z	real(z)	Re(z)
54	Imaginary part of z	imag(z)	Im(z)

3.3 Matrix/vector computations

No.	Description	Matlab	R
55	Matrix multiplication AB	A * B	A %*% B
56	Element-by-element multipli-	A .* B	A * B
	cation of A and B		
57	Transpose matrix \mathbf{A}	A' (This is actually the complex con-	t(A)
		jugate transpose; use A., for the	
		non-conjugate transpose if you like;	
	→	they are equivalent for real matrices.)	
58	Solve $A\vec{x} = \vec{b}$	A\b Warning: if there is no solution,	solve(A,b) Warning: this only works
		Matlab gives you a least-squares	with square invertible matrices.
		"best fit." If there are many solu-	
		tions, Matlab just gives you one of	
		them.	
59	Reduced echelon form of A	rref(A)	R does not have a function to do this
60	Compute inverse of A	inv(A)	solve(A)
61	Compute AB^{-1}	A/B	A %*% solve(B)
62	Element-by-element division	A ./ B	A / B
60	of A and B	A) B	7 (4) 9/ 9/ 7
63	Compute $A^{-1}B$	A\B	solve(A) %*% B
64	Square the matrix A	A^2	A %*% A
65	Raise matrix A to the k^{th}	A^k	(No easy way to do this in R
	power		other than repeated multiplication
CC	Raise each element of A to	A.^k	A %*% A %*% A)
66	the k^{th} power	A. K	A^k
67	Set \mathbf{w} to be a vector of eigen-	[V,D]=eig(A) and then w=diag(D)	<pre>tmp=eigen(A); w=tmp\$values;</pre>
07	values of A , and V a matrix	since Matlab returns the eigenval-	V=tmp\$vectors
	containing the corresponding	ues on the diagonal of \mathbf{D}	v-tmpqvectors
	eigenvectors	des on the diagonal of D	
68	Compute mean of all ele-	mean(v) for vectors, mean(A(:)) for	mean(v) or mean(A)
	ments in vector or matrix	matrices	
69	Compute means of columns	mean(A)	colMeans(A)
	of a matrix		
70	Compute means of rows of a	mean(A,2)	rowMeans(A)
	matrix		
71	Compute standard deviation	std(v) for vectors, std(A(:)) for	sd(v) or sd(A). This normalizes by
	of all elements in vector or	matrices. This normalizes by $n-1$.	n-1.
	matrix	Use $std(v,1)$ to normalize by n .	
72	Compute standard deviation	std(A). This normalizes by $n-1$.	apply(A,2,sd). This normalizes by
	of columns of a matrix	Use $std(A,1)$ to normalize by n	n-1.
73	Compute standard deviation	std(A,0,2) to standardize by $n-1$,	apply(A,1,sd). This normalizes by
	of rows of a matrix	std(A,1,2) to standardize by n	n-1.
74	Compute variance	var(v) (var works like std)	var(v) (var works like sd)
75	Compute sum of all elements	<pre>sum(v) for vectors, sum(A(:)) for</pre>	sum(v) or sum(A)
	in vector or matrix	matrices	
76	Compute sums of columns of	sum(A)	colSums(A)
	matrix		~ (1)
77	Compute sums of rows of ma-	sum(A,2)	rowSums(A)
	trix		

No.	Description	Matlab	R
78	Compute matrix exponential $e^A = \sum_{k=0}^{\infty} A^k / k!$	expm(A)	expm(Matrix(A)), but this is part of the Matrix package which you'll need to install (see item 230 for how to in- stall/load packages).
79	Compute cumulative sum of values in vector	<pre>cumsum(v). Note cumsum(A) on ar- ray A will do cumulative sum of each column. Use cumsum(A,2) to do cumulative sum for each row, or cumsum(A(:)) to operate over all el- ements in A (column-by-column)</pre>	cumsum(v)
80	Compute differences between consecutive elements of vector \mathbf{v} . Result is a vector \mathbf{w} 1 element shorter than \mathbf{v} , where element i of \mathbf{w} is element $i+1$ of \mathbf{v} minus element i of \mathbf{v}	diff(v)	diff(v)
81	Make a vector \mathbf{y} the same size as vector \mathbf{x} , which equals 4 everywhere that \mathbf{x} is greater than 5, and equals 3 everywhere else (done via a vectorized computation).	$z = [3 \ 4]; y = z((x > 5)+1)$	y = ifelse(x > 5, 4, 3)
82	Compute minimum of values in vector v	min(v)	min(v)
83	Compute minimum of all values in matrix A	min(A(:))	min(A)
84	Compute minimum value of each column of matrix A	min(A) (returns a row vector)	apply(A,2,min) (returns a vector)
85	Compute minimum value of each row of matrix A	min(A, [], 2) (returns a column vector)	apply(A,1,min) (returns a vector)
86	Given matrices A and B , compute a matrix where each element is the minimum of the corresponding elements of A and B	min(A,B)	pmin(A,B)
87	Given matrix A and scalar c , compute a matrix where each element is the minimum of c and the corresponding element of A	min(A,c)	pmin(A,c)
88	Find minimum among all values in matrices A and B	min([A(:) ; B(:)])	min(A,B)
89	Find index of the first time min(v) appears in v, and store that index in ind	[y,ind] = min(v)	<pre>ind = which.min(v)</pre>

Notes:

- Matlab and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both Matlab and R, doing the computations for each element of the matrix.

No.	Description	Matlab	R
90	Number of rows in A	size(A,1)	nrow(A)
91	Number of columns in A	size(A,2)	ncol(A)
92	Dimensions of A , listed in a vector	size(A)	dim(A)
93	Number of elements in vector \mathbf{v}	length(v)	length(v)
94	Total number of elements in matrix A	numel(A)	length(A)
95	Max. dimension of A	length(A)	max(dim(A))
96	Sort values in vector v	sort(v)	sort(v)
97	Sort values in \mathbf{v} , putting sorted values in \mathbf{s} , and indices in \mathbf{idx} , in the sense that $\mathbf{s}[\mathbf{k}]$ = $\mathbf{x}[\mathbf{idx}[\mathbf{k}]]$	[s,idx]=sort(v)	<pre>tmp=sort(v,index.return=TRUE); s=tmp\$x; idx=tmp\$ix</pre>
98	To count how many values in the vector x are between 4 and 7 (inclusive on the upper end)	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
99	Given vector \mathbf{v} , return list of indices of elements of \mathbf{v} which are greater than 5	find(v > 5)	which(v > 5)
100	Given matrix A , return list of indices of elements of A which are greater than 5, us- ing single-indexing	find(A > 5)	which(A > 5)
101	Given matrix A , generate vectors r and c giving rows and columns of elements of A which are greater than 5	[r,c] = find(A > 5)	<pre>w = which(A > 5, arr.ind=TRUE); r=w[,1]; c=w[,2]</pre>
102	Given vector x (of presumably discrete values), build a vector v listing unique values in x , and corresponding vector c indicating how many times those values appear in x	<pre>[v,c] = listvals(x) (not stan- dard in MATLAB; I wrote this*). In standard MATLAB, this seems to work, although it's ugly: [v,i,j]=unique(w); c = diff([0; find([diff(sort(j(:))); 1])])</pre>	<pre>w=table(x); c=as.numeric(w); v=as.numeric(names(w))</pre>
103	Given vector \mathbf{x} (of presumably continuous values), divide the range of values into k equally-sized bins, and build a vector \mathbf{m} containing the midpoints of the bins and a corresponding vector \mathbf{c} containing the counts of values in the bins	<pre>[m,c] = bins(x,k) (not standard in Matlab; I wrote this*). But see also hist and histc in standard Matlab.</pre>	<pre>w=hist(x,seq(min(x),max(x), length.out=k+1), plot=FALSE); m=w\$mids; c=w\$counts</pre>

 $^{^{\}ast}$ The listvals and bins Matlab functions are available on my web site at http://www.math.umaine.edu/faculty/hiebeler/comp/matlabR.html.

${\bf 3.4}\quad {\bf Function\ optimization/minimization}$

No.	Description	Matlab	R
104	Find value m which minimizes a function $f(x)$ of one	Define function $f(x)$, then do	Define function $f(x)$, then do
	variable within the interval	m = fminbnd(f, a, b)	<pre>m = optimize(f,c(a,b))\$minimum</pre>
	from a to b		
105	Find value m which minimizes a function $f(x, p_1, p_2)$	Define function $f(x,p1,p2)$, then use an "anonymous function":	Define function f(x,p1,p2), then: # first define values for p1
	with given extra parameters (but minimization is only oc-	% first define values for p1	# and p2, and then do:
	curing over the first argu-	% and p2, and then do:	m = optimize(f, c(a,b), p1=p1,
	ment), in the interval from a to b .	m=fminbnd(@(x) f(x,p1,p2),a,b)	p2=p2)\$minimum
106	Find values of x, y, z which minimize function $f(x, y, z)$, using a starting guess of $x = 1$, $y = 2.2$, and $z = 3.4$.	First write function $\mathbf{f}(\mathbf{v})$ which accepts a vector argument \mathbf{v} containing values of x , y , and z , and returns the scalar value $f(x, y, z)$, then do:	First write function $\mathbf{f}(\mathbf{v})$ which accepts a vector argument \mathbf{v} containing values of x , y , and z , and returns the scalar value $f(x, y, z)$, then do:
		fminsearch(@f,[1 2.2 3.4])	optim(c(1,2.2,3.4),f)\$par
107	Find values of x, y, z which minimize function $f(x, y, z, p_1, p_2)$, using a starting guess of $x = 1$, $y = 2.2$, and $z = 3.4$, where the function takes some extra parameters (useful e.g. for doing things like nonlinear least-squares optimization where you pass in some data vectors as extra parameters).	First write function $f(v,p1,p2)$ which accepts a vector argument \mathbf{v} containing values of x , y , and z , along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2)$, then do: fminsearch(@f,[1 2.2 3.4], [], p1, p2) Or use an anonymous function: fminsearch(@(x) f(x,p1,p2), [1 2.2 3.4])	First write function $f(\mathbf{v},\mathbf{p1},\mathbf{p2})$ which accepts a vector argument \mathbf{v} containing values of $x, y,$ and $z,$ along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2),$ then do: optim(c(1,2.2,3.4), f, p1=p1, p2=p2)\$par

3.5 Curve fitting

No.	Description	Matlab	R
108	Fit the line $y = c_1 x + c_0$ to		
	data in vectors \mathbf{x} and \mathbf{y} .	<pre>p = polyfit(x,y,1)</pre>	p = coef(lm(y ~x))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p}(1)$ is c_1 , and $\mathbf{p}(2)$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , and $\mathbf{p}[2]$ is c_1 .
109	Fit the quadratic polynomial $y = c_2x^2 + c_1x + c_0$ to data in vectors x and y .	p = polyfit(x,y,2)	p = coef(lm(y ~ x + I(x^2)))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_2 , $\mathbf{p(2)}$ is c_1 , and $\mathbf{p(3)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , $\mathbf{p}[2]$ is c_1 , and $\mathbf{p}[3]$ is c_2 .
110	Fit n^{th} degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors \mathbf{x} and \mathbf{y} .	$p = polyfit(x,y,n)$ The return vector p has the coefficients in descending order, $p(1)$ is c^n , $p(2)$ is c^{n-1} , etc.	There isn't a simple function built into the standard R distribution to do this, but see the polyreg function in the mda package (see item 230 for how to install/load packages).
111	Fit the quadratic polynomial with zero intercept, $y = c_2x^2 + c_1x$ to data in vectors \mathbf{x} and \mathbf{y} .	(I don't know a simple way do this in Matlab, other than to write a function which computes the sum of squared residuals and use fminsearch on that function. There is likely an easy way to do it in the Statistics Toolbox.)	p=coef(lm(y ~ -1 + x + I(x^2))) The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_1 , and $\mathbf{p}[2]$ is c_2 .

4 Conditionals, control structure, loops

No.	Description	Matlab	R
112	"for" loops over values in a vector v (the vector v is often constructed via a:b)	for i=v command1 command2 end	If only one command inside the loop: for (i in v) command or for (i in v) command If multiple commands inside the loop: for (i in v) { command1 command2 }

No. Description	Matlab	R
113 "if" statements with no else clause	if cond command1 command2 end	<pre>if only one command inside the clause: if (cond) command or if (cond) command If multiple commands: if (cond) { command1 command2 }</pre>
114 "if/else" statement	if cond command1 command2 else command3 command4 end Note: MATLAB also has an "elseif" statement, e.g.: if cond1 command1 elseif cond2 command2 elseif cond3 command3 else command4 end	<pre>if one command in clauses: if (cond) command1 else command2 or if (cond) cmd1 else cmd2 If multiple commands: if (cond) { command1 command2 } else { command3 command4 } Warning: the "else" must be on the same line as command1 or the "}" (when typed interactively at the command prompt), otherwise R thinks the "if" statement was finished and gives an error. R does not have an "elseif" statement.</pre>

Logical comparisons which can be used on scalars in "if" statements, or which operate element-by-element on vectors/matrices:

Matlab	R	Description
x < a	x < a	True if x is less than a
x > a	x > a	True if x is greater than a
x <= a	x <= a	True if x is less than or equal to a
x >= a	x >= a	True if x is greater than or equal to a
x == a	x == a	True if x is equal to a
x ~= a	x != a	True if x is not equal to a

Description	Matlab	R
a AND b	a && b	a && b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

The && and $| \ |$ operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and $| \ |$ stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description	Matlab	R
a AND b	a & b	a & b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

No.	Description	Matlab	R
115	To test whether a scalar value	if $((x > 4) \&\& (x <= 7))$	if ((x > 4) && (x <= 7))
	\mathbf{x} is between 4 and 7 (inclu-		
	sive on the upper end)		
116	To count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
117	Test whether all values in	all(v)	all(v)
	a logical/boolean vector are		
	TRUE		
118	Test whether any values in	any(v)	any(v)
	a logical/boolean vector are		
	TRUE		

No.	Description	Matlab	R
119	"while" statements to do iteration (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform random numbers between 0 and 1 (and their squares) until their sum is greater than 20:	<pre>mysum = 0; mysumsqr = 0; while (mysum < 20) r = rand; mysum = mysum + r; mysumsqr = mysumsqr + r^2; end</pre>	<pre>mysum = 0 mysumsqr = 0 while (mysum < 20) { r = runif(1) mysum = mysum + r mysumsqr = mysumsqr + r^2 } (As with "if" statements and "for" loops, the curly brackets are not necessary if there's only one statement inside the "while" loop.)</pre>

No.	Description	Matlab	R
120	"Switch" statements for integers	<pre>switch (x) case 10 disp('ten') case {12,13} disp('dozen (bakers?)') otherwise disp('unrecognized') end</pre>	R doesn't have a switch statement capable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic example of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1, 2, mystr = switch(x, 'one', 'two', 'three') print(mystr) Note that switch returns NULL if x is larger than 3 in the above case. Also, continuous values of x will be truncated to integers.

5 Functions, ODEs

No.	Description	Matlab	R
121	Implement a function	Put the following in add.m :	Enter the following, or put it in a file
	add(x,y)	function metrol-odd(v.v.)	and source that file:
		function retval=add(x,y)	add - function(v. v.)
		<pre>retval = x+y;</pre>	<pre>add = function(x,y) { return(x+y)</pre>
			\ \
		Then you can do e.g. add(2,3)	J
			Then you can do e.g. add(2,3).
			Note, the curly brackets aren't needed
			if your function only has one line.
122	Numerically solve ODE	First implement function	First implement function
	dx/dt = 5x from $t = 3$ to	<pre>function retval=f(t,x)</pre>	f = function(t,x,parms) {
	t = 12 with initial condition	retval = 5*x;	return(list(5*x))
	x(3) = 7	160var – 54x,	}
		Then do ode45(@f,[3,12],7)	,
		to plot solution, or	Then do $y=1soda(7, seq(3,12,$
		[t,x]=ode45(@f,[3,12],7) to get	0.1), f,NA) to obtain solution
		back vector \mathbf{t} containing time values	values at times $3, 3.1, 3.2, \dots, 11.9, 12$.
		and vector \mathbf{x} containing correspond-	The first column of y , namely $y[,1]$
		ing function values. If you want	contains the time values; the second
		function values at specific times,	column $y[,2]$ contains the correspond-
		e.g. $3, 3.1, 3.2, \dots, 11.9, 12$, you can	ing function values. Note: lsoda is
		do $[t,x]=ode45(@f,3:0.1:12,7)$.	part of the odesolve package (see
		Note: in older versions of Matlab,	item 230 for how to install/load
		use 'f' instead of @f.	packages).

No.	Description	Matlab	R
123	Numerically solve system of	First implement function	First implement function
	ODEs $dw/dt = 5w$, $dz/dt = 3w + 7z$ from $t = 3$ to $t = 12$ with initial conditions $w(3) = 7$, $z(3) = 8.2$	<pre>function retval=myfunc(t,x) w = x(1); z = x(2); retval = zeros(2,1); retval(1) = 5*w; retval(2) = 3*w + 7*z;</pre>	<pre>myfunc = function(t,x,parms) { w = x[1]; z = x[2]; return(list(c(5*w, 3*w+7*z))) }</pre>
		Then do ode45(@myfunc,[3,12],[7; 8.2]) to plot solution, or $[t,x]=ode45(@myfunc,[3,12],[7; 8.2])$ to get back vector t containing time values and matrix x , whose first column containing corresponding $w(t)$ values and second column contains $z(t)$ values. If you want function values at specific times, e.g. $3,3.1,3.2,\ldots,11.9,12$, you can do $[t,x]=ode45(@myfunc,3:0.1:12,[7:8.2])$. Note: in older versions of MATLAB, use 'f' instead of @f.	Then do $y=lsoda(c(7,8.2), seq(3,12, 0.1), myfunc,NA)$ to obtain solution values at times $3,3.1,3.2,\ldots,11.9,12$. The first column of y , namely $y[,1]$ contains the time values; the second column $y[,2]$ contains the corresponding values of $w(t)$; and the third column contains $z(t)$. Note: $lsoda$ is part of the $odesolve$ package (see item 230 for how to install/load packages).
124	Pass parameters such as $r = 1.3$ and $K = 50$ to an ODE function from the command line, solving $dx/dt = rx(1 - x/K)$ from $t = 0$ to $t = 20$ with initial condition $x(0) = 2.5$.	First implement function function retval=func2(t,x,r,K) retval = r*x*(1-x/K) Then do ode45(@func2,[0 20], 2.5, [], 1.3, 50). The empty matrix is necessary between the initial condition and the beginning of your extra parameters.	First implement function func2=function(t,x,parms) { r=parms[1]; K=parms[2] return(list(r*x*(1-x/K))) } Then do y=lsoda(2.5,seq(0,20,0.1) func2,c(1.3,50)) Note: lsoda is part of the odesolve package (see item 230 for how to install/load packages).

6 Probability and random values

No.	Description	Matlab	R
125	Generate a continuous uniform random value between 0	rand	runif(1)
100	and 1		
126	Generate vector of n uniform random vals between 0 and 1	rand(n,1) or rand(1,n)	runif(n)
127	Generate $m \times n$ matrix of uniform random values between 0 and 1	rand(m,n)	<pre>matrix(runif(m*n),m,n) or just matrix(runif(m*n),m)</pre>
128	Generate $m \times n$ matrix of continuous uniform random values between a and b	a+rand(m,n)*(b-a) or if you have the Statistics toolbox then unifrnd(a,b,m,n)	<pre>matrix(runif(m*n,a,b),m)</pre>
129	Generate a random integer between 1 and k	floor(k*rand) + 1	floor(k*runif(1)) + 1 Note: sample(k)[1] would also work, but I believe in general will be less efficient, because that actually generates many random numbers and then just uses one of them.
130	Generate $m \times n$ matrix of discrete uniform random integers between 1 and k	floor(k*rand(m,n))+1 or if you have the Statistics toolbox then unidrnd(k,m,n)	<pre>floor(k*matrix(runif(m*n),m))+1</pre>
131	Generate $m \times n$ matrix where each entry is 1 with probability p , otherwise is 0	<pre>(rand(m,n)<p)*1 (true="" 1="" also="" back="" by="" could="" do="" double(rand(m,n)<p)<="" false)="" into="" logical="" multiplying="" note:="" numeric="" pre="" re-="" sult="" the="" turns="" values.="" you=""></p)*1></pre>	(matrix(runif(m,n),m) <p)*1 (Note: multiplying by 1 turns the logical (true/false) result back into numeric values; using as.numeric() to do it would lose the shape of the matrix.)</p)*1
132	Generate $m \times n$ matrix where each entry is a with probability p , otherwise is b	b + (a-b)*(rand(m,n) <p)< td=""><td>b + (a-b)*(matrix(runif(m,n),m)<p)< td=""></p)<></td></p)<>	b + (a-b)*(matrix(runif(m,n),m) <p)< td=""></p)<>
133	Generate a random integer between a and b inclusive	floor((b-a+1)*rand)+a or if you have the Statistics toolbox then unidrnd(b-a+1)+a-1	floor((b-a+1)*runif(1))+a
134	Flip a coin which comes up heads with probability p , and perform some action if it does come up heads	<pre>if (rand < p) some commands end</pre>	<pre>if (runif(1) < p) { some commands }</pre>
135	Generate a random permutation of the integers $1, 2, \ldots, n$	randperm(n)	sample(n)
136	Generate a random selection of k unique integers between 1 and n	<pre>[s,idx]=sort(rand(n,1)); ri=idx(1:k) or another way is ri=randperm(n); ri=ri(1:k)</pre>	ri=sample(n,k)
137	Set the random-number generator back to a known state (useful to do at the beginning of a stochastic simulation when debugging, so you'll get the same sequence of random numbers each time)	rand('state', 12)	set.seed(12)

Note that the "*rnd," "*pdf," and "*cdf" functions described below are all part of the MATLAB

Statistics Toolbox, and not part of the core Matlab distribution.

No.	Description	Matlab	R
138	Generate a random value	binornd(n,p)	rbinom(1,n,p)
	from the $Binomial(n, p)$ dis-		
	tribution		
139	Generate a random value	poissrnd(lambda)	rpois(1,lambda)
	from the Poisson distribution		
	with parameter λ		
140	Generate a random value	exprnd(mu) or -mu*log(rand) will	rexp(1, 1/mu)
	from the Exponential distri-	work even without the Statistics	
	bution with mean μ	Toolbox.	
141	Generate a random value	unidrnd(k) or floor(rand*k)+1	sample(k,1)
	from the discrete uniform dis-	will work even without the Statistics	
	tribution on integers $1 \dots k$	Toolbox.	
142	Generate n iid random values	unidrnd(k,n,1) or	<pre>sample(k,n,replace=TRUE)</pre>
	from the discrete uniform dis-	floor(rand(n,1)*k)+1 will work	
	tribution on integers $1 \dots k$	even without the Statistics Toolbox.	
143	Generate a random value	unifrnd(a,b) or (b-a)*rand + a	runif(1,a,b)
	from the continuous uniform	will work even without the Statistics	
	distribution on the interval	Toolbox.	
	(a,b)		
144	Generate a random value	normrnd(mu,sigma) or	rnorm(1,mu,sigma)
	from the normal distribution	mu + sigma*randn will work	
	with mean mu and standard	even without the Statistics Toolbox.	
	deviation σ		

Notes:

- The Matlab "*rnd" functions above can all take additional \mathbf{r} , \mathbf{c} arguments to build an $r \times c$ matrix of iid random values. E.g. $\mathtt{poissrnd}(3.5,4,7)$ for a 4×7 matrix of iid values from the Poisson distribution with mean $\lambda = 3.5$. The $\mathtt{unidrnd}(n,k,1)$ command above is an example of this, to generate a $k \times 1$ column vector.
- The first parameter of the R "r*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No.	Description	Matlab	R
145	Compute probability that	binopdf(x,n,p) or	dbinom(x,n,p)
	a random variable from the	$nchoosek(n,x)*p^x*(1-p)^(n-x)$	
	Binomial (n, p) distribution	will work even without the Statistics	
	has value \mathbf{x} (i.e. the density,	Toolbox, as long as \mathbf{n} and \mathbf{x} are	
	or pdf).	non-negative integers and $0 \leq \mathbf{p}$	
		≤ 1 .	
146	Compute probability that a	poisspdf(x,lambda) or	dpois(x,lambda)
	random variable from the	exp(-lambda)*lambda^x /	
	$Poisson(\lambda)$ distribution has	factorial(x) will work even	
	value \mathbf{x} .	without the Statistics Toolbox, as	
		long as \mathbf{x} is a non-negative integer	
		and $lambda \ge 0$.	
147	Compute probability density	exppdf(x,mu) or	dexp(x,1/mu)
	function at \mathbf{x} for a random	(x>=0)*exp(-x/mu)/mu will work	
	variable from the exponential	even without the Statistics Toolbox,	
	distribution with mean μ .	as long as mu is positive.	

No.	Description	Matlab	R
148	Compute probability density	normpdf(x,mu,sigma) or	dnorm(x,mu,sigma)
	function at \mathbf{x} for a random	exp(-(x-mu)^2/(2*sigma^2))/	
	variable from the Normal dis-	(sqrt(2*pi)*sigma) will work even	
	tribution with mean μ and	without the Statistics Toolbox.	
	standard deviation σ .		
149	Compute probability density	unifpdf(x,a,b) or	<pre>dunif(x,a,b)</pre>
	function at \mathbf{x} for a random	((x>=a)&&(x<=b))/(b-a) will	
	variable from the continuous	work even without the Statistics	
	uniform distribution on inter-	Toolbox.	
	val (a,b) .		
150	Compute probability that a	unidpdf(x,n) or ((x==floor(x))	((x==round(x)) && (x >= 1) &&
	random variable from the dis-	&& (x>=1)&&(x<=n))/n will work	$(x \le n)/n$
	crete uniform distribution on	even without the Statistics Toolbox,	
	integers $1 \dots n$ has value x .	as long as \mathbf{n} is a positive integer.	

Note: one or more of the parameters in the above "*pdf" (MATLAB) or "d*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

The corresponding CDF functions are below:

No.	Description	Matlab	R
151	Compute probability that a random variable from the Binomial (n, p) distribution is less than or equal to \mathbf{x} (i.e. the cumulative distribution function, or cdf).	binocdf(x,n,p). Without the Statistics Toolbox, as long as n is a non-negative integer, this will work: r = 0:floor(x); sum(factorial(n)./(factorial(r).*factorial(n-r)).*p.^r.*(1-p).^(n-r)). (Unfortunately, MATLAB 's nchoosek function won't take a vector argument for k.)	pbinom(x,n,p)
152	Compute probability that a random variable from the Poisson(λ) distribution is less than or equal to \mathbf{x} .	<pre>poisscdf(x,lambda). With- out the Statistics Toolbox, as long as lambda ≥ 0, this will work: r = 0:floor(x); sum(exp(-lambda)*lambda.^r ./factorial(r))</pre>	ppois(x,lambda)
153	Compute cumulative distribution function at \mathbf{x} for a random variable from the exponential distribution with mean μ .	expcdf(x,mu) or (x>=0)*(1-exp(-x/mu)) will work even without the Statistics Toolbox, as long as mu is positive.	pexp(x,1/mu)
154	Compute cumulative distribution function at \mathbf{x} for a random variable from the Normal distribution with mean μ and standard deviation σ .	normcdf(x,mu,sigma) or 1/2 - erf(-(x-mu)/(sigma*sqrt(2)))/2 will work even without the Statistics Toolbox, as long as sigma is positive.	pnorm(x,mu,sigma)
155	Compute cumulative distribution function at \mathbf{x} for a random variable from the continuous uniform distribution on interval (a, b) .	unifcdf(x,a,b) or $(x>a)*(min(x,b)-a)/(b-a)$ will work even without the Statistics Toolbox, as long as $b>a$.	<pre>punif(x,a,b)</pre>
156	Compute probability that a random variable from the discrete uniform distribution on integers $1 \dots n$ is less than or equal to \mathbf{x} .	unidcdf(x,n) or (x>=1)*min(floor(x),n)/n will work even without the Statistics Toolbox, as long as n is a positive integer.	(x>=1)*min(floor(x),n)/n

7 Graphics

7.1 Various types of plotting

No.	Description	Matlab	R	
157	Create a new figure window	figure	<pre>windows() (when running R in Windows), quartz() (in Mac OS-X), or x11() (in Linux)</pre>	
158	Select figure number n	figure(n) (will create the figure if it doesn't exist)	dev.set(n) (returns the actual device selected; will be different from n if there is no figure device with number n)	
159	List open figure windows	I don't know of a way to do this in Matlab	<pre>dev.list()</pre>	
160	Close figure window(s)	close to close the current figure window, close(n) to close a specified figure, and close all to close all figures	<pre>dev.off() to close the currently ac- tive figure device, dev.off(n) to close a specified one, and graphics.off() to close all figure devices.</pre>	
161	Plot points using open circles	plot(x,y,'o')	plot(x,y)	
162	Plot points using solid lines	plot(x,y)	plot(x,y,type='1') (Note: that's a lower-case 'L', not the number 1)	
163	Plotting: color, point markers, linestyle	plot(x,y,str) where str is a string specifying color, point marker, and/or linestyle (see table below) (e.g. 'gs' for green squares with dashed line)	<pre>plot(x,y,type=str1, pch=arg2,col=str3, lty=arg4)</pre>	
101			See tables below for possible values of the 4 parameters	
164	Plotting with logarithmic axes	semilogx, semilogy, and loglog functions take arguments like plot , and plot with logarithmic scales for x, y , and both axes, respectively	plot(, log='x'), plot(, log='y'), and plot(, log='xy') plot with logarithmic scales for x , y , and both axes, respectively	
165	Make bar graph where the x coordinates of the bars are in \mathbf{x} , and their heights are in \mathbf{y}	bar(x,y) Or just bar(y) if you only want to specify heights. Note: if A is a matrix, bar(A) interprets each column as a separate set of observations, and each row as a different observation within a set. So a 20×2 matrix is plotted as 2 sets of 20 observations, while a 2×20 matrix is plotted as 20 sets of 2 observations.	Can't do this in R; but barplot(y) makes a bar graph where you specify the heights, barplot(y,w) also specifies the widths of the bars, and hist can make plots like this too.	
166	Make histogram of values in \mathbf{x}	hist(x)	hist(x)	
167	Given vector \mathbf{x} containing integer values, make a bar graph where the x coordinates of bars are the values, and heights are the counts of how many times the values appear in \mathbf{x}	[v,c]=listvals(x); bar(v,c) where listvals is a MATLAB function I wrote (available on my web page)	hist(x,(min(x)5):(max(x)+.5))	

No.	Description	Matlab	R
168	Given vector \mathbf{x} containing continuous values, lump the data into k bins and make a histogram / bar graph of the binned data	<pre>[m,c] = bins(x,k); bar(m,c) where bins is a MATLAB function I wrote (available on my web page)</pre> hist(x,seq(min(x), max(x), length.out=k+1))	
169	Make a plot containing errorbars of height s above and below (x, y) points	errorbar(x,y,s)	errbar(x,y,y+s,y-s) Note: errbar is part of the Hmisc package (see item 230 for how to install/load packages).
170	Make a plot containing errorbars of height a above and b below (x, y) points	errorbar(x,y,b,a)	errbar(x,y,y+a,y-b) Note: errbar is part of the Hmisc package (see item 230 for how to install/load packages).
171	Other types of 2-D plots	stem(x,y) and stairs(x,y) pie(v) for other types of 2-D plots. polar(theta,r) to use polar coordinates for plotting.	
172	Make a 3-D plot of some data points with given x , y , z coordinates in the vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} .	<pre>plot3(x,y,z) This works much like plot, as far as plotting symbols, line- types, and colors.</pre>	cloud(z~x*y) You can also use arguments pch and col as with plot. To make a 3-D plot with lines, do cloud(z~x*y,type='1', panel.cloud=panel.3dwire)
173	Surface plot of data in matrix A	surf(A)	persp(A)
		You can then click on the small curved arrow in the figure window (or choose "Rotate 3D" from the "Tools" menu), and then click and drag the mouse in the figure to rotate it in three dimensions.	You can include shading in the image via e.g. persp(A,shade=0.5). There are two viewing angles you can also specify, among other parameters, e.g. persp(A, shade=0.5, theta=50, phi=35).
174	Surface plot of $f(x,y) = sin(x+y)\sqrt{y}$ for 100 values of x between 0 and 10, and 90 values of y between 2 and 8	<pre>x = linspace(0,10,100); y = linspace(2,8,90); [X,Y] = meshgrid(x,y); Z = sin(X+Y).*sqrt(Y); surf(X,Y,Z) shading flat</pre>	<pre>x = seq(0,10,100) y = seq(2,8,90) f = function(x,y) return(sin(x+y)*sqrt(y)) z = outer(x,y,f) persp(x,y,z)</pre>
175	Other ways of plotting the data from the previous command	mesh(X,Y,Z), surfc(X,Y,Z), surfl(X,Y,Z), contour(X,Y,Z), pcolor(X,Y,Z), waterfall(X,Y,Z). Also see the slice command.	contour(x,y,z) Or do s=expand.grid(x=x,y=y), and then wireframe(z~x*y,s) or wireframe(z~x*y,s,shade=TRUE) (Note: wireframe is part of the lattice package; see item 230 for how to load packages). If you have vectors x, y, and z all the same length, you can also do symbols(x,y,z).

Adding various labels or making adjustments to plots

No.	Description	MATLAB	R	
176	Set axis ranges in a figure	axis([x1 x2 y1 y2])	You have to do this when	
	window		you make the plot, e.g.	
			<pre>plot(x,y,xlim=c(x1,x2),</pre>	
			ylim=c(y1,y2))	
177	Add title to plot	<pre>title('somestring')</pre>	title(main='somestring')	
			adds a main title,	
			title(sub='somestring') adds	
			a subtitle. You can also include	
			main= and sub= arguments in a	
			plot command.	
178	Add axis labels to plot	xlabel('somestring') and	title(xlab='somestring',	
		<pre>ylabel('somestring')</pre>	ylab='anotherstr'). You can	
			also include xlab = and ylab =	
			arguments in a plot command.	
179	Add grid lines to plot	grid on (and grid off to turn off)	grid() Note that if you'll be	
			printing the plot, the default style	
			for grid-lines is to use gray dot-	
			ted lines, which are almost invis	
			ible on some printers. You may	
			want to do e.g. grid(lty='dashed',	
			col='black') to use black dashed	
			lines which are easier to see.	
180	Add figure legend to top-left	legend('first', 'second',	legend('topleft',	
	corner of plot	'Location', 'NorthWest')	<pre>legend=c('first', 'second'),</pre>	
			col=c('red', 'blue'),	
			pch=c('*','o'))	

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

No.	Description	MATLAB	R
181	Adding more things to a figure	hold on means everything plotted from now on in that figure window is added to what's already there. hold off turns it off. clf clears the figure and turns off hold. points() and lines() we like plot, but add to what's already in the figure rather than clearing figure first. points and lines basically identical, just with difference default plotting styles. Note: as are not recalculated/redrawn who adding more things to a figure.	
182	Plot multiple data sets at once	plot(\mathbf{x} , \mathbf{y}) where \mathbf{x} and \mathbf{y} are 2-D matrices. Each column of \mathbf{x} is plotted against the corresponding column of \mathbf{y} . If \mathbf{x} has only one column, it will be re-used.	matplot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.
183	Plot $\sin(2x)$ for x between 7 and 18	fplot('sin(2*x)', [7 18])	curve(sin(2*x), 7, 18, 200) makes the plot, by sampling the value of the function at 200 values between 7 and 18 (if you don't specify the number of points, 101 is the default). You could do this manually yourself via commands like tmpx=seq(7,18,200); plot(tmpx, sin(2*tmpx)).
184	Plot color image of integer values in matrix A	image(A) to use array values as raw indices into colormap, or imagesc(A) to automatically scale values first (these both draw row 1 of the matrix at the top of the image); or pcolor(A) (draws row 1 of the matrix at the bottom of the image). After using pcolor, try the commands shading flat or shading interp.	image(A) (it rotates the matrix 90 degrees counterclockwise: it draws row 1 of A as the left column of the image, and column 1 of A as the bottom row of the image, so the row number is the x coord and column number is the y coord). It also rescales colors. If you are using a colormap with k entries, but the value k does not appear in A , use image(A,zlim=c(1,k)) to avoid rescaling of colors. Or e.g. image(A,zlim=c(0,k-1)) if you want values 0 through $k-1$ to be plotted using the k colors.
185	Add colorbar legend to image plot	colorbar, after using image or pcolor.	Use filled.contour(A) rather than image(A), although it "blurs" the data via interpolation, or use levelplot(A) from the lattice package (see item 230 for how to load packages). To use a colormap with the latter, do e.g. levelplot(A,col.regions=terrain.colors(100)).
186	Set colormap in image	colormap(hot). Instead of hot, you can also use gray, flag, jet (the default), cool, bone, copper, pink, hsv, prism. By default, the length of the new colormap is the same as the currently-installed one; use e.g. colormap(hot(256)) to specify the number of entries.	image(A,col=terrain.colors(100)). The parameter 100 specifies the length of the colormap. Other colormaps are heat.colors(), topo.colors(), and cm.colors().

No.	Description	Matlab	R
187	Build your own colormap us-	Use an $n \times 3$ matrix; each row	Use a vector of hexadecimal strings,
	ing Red/Green/Blue triplets	gives R,G,B intensities between 0	each beginning with '#' and giving
		and 1. Can use as argument with	R,G,B intensities between 00 and FF.
		colormap. E.g. for 2 colors: mycmap	E.g. c('#80CC33','#3333B3'); can
		= [0.5 0.8 0.2 ; 0.2 0.2 0.7]	use as argument to col = parameter
			to image. You can build such a
			vector of strings from vectors of Red,
			Green, and Blue intensities (each
			between 0 and 1) as follows (for a
			2-color example): r=c(0.5,0.2);
			g=c(0.8,0.2); b=c(0.2,0.7);
			mycolors=rgb(r,g,b).

MATLAB plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:

Symbol	Color	Symbol	Marker	Symbol	Linestyle
b	blue		point (.)	-	solid line
g	green	0	$circle (\circ)$:	dotted line
r	red	х	cross(x)		dash-dot line
С	cyan	+	plus sign $(+)$		dashed line
m	magenta	*	asterisk (*)		
У	yellow	S	square (\Box)		
k	black	d	diamond (\lozenge)		
W	white	V	triangle (down) (∇)		
		^	triangle (up) (Δ)		
		<	triangle (left) (\triangleleft)		
		>	triangle (right) (\triangleright)		
		р	pentragram star		
		h	hexagram star		

R plotting specifications for \mathbf{col} (color), \mathbf{pch} (plotting character), and \mathbf{type} arguments, for use with \mathbf{plot} , $\mathbf{matplot}$, \mathbf{points} , and \mathbf{lines} :

col	Description	pch	Description	type	Description
'blue'	Blue	'a'	a (similarly for other	р	points
			characters, but see '.'		
			below for an exception		
'green'	Green	19	solid circle	1	lines
'red'	Red	20	bullet (smaller circle)	Ъ	both
'cyan'	Cyan	21	open circle	С	lines part only of "b"
'magenta'	Magenta	22	square	0	lines, points overplotted
'yellow'	Yellow	23	diamond	h	histogram-like lines
'black'	Black	24	triangle point-up	s	steps
'#RRGGBB'	hexadecimal specifica-	25	triangle point-down	S	another kind of steps
	tion of Red, Green,				
	Blue				
(Other names)	See colors() for list of	, ,	rectangle of size 0.01	n	no plotting
	available color names.		inch, 1 pixel, or 1 point		
			(1/72 inch) depending		
			on device		
			(See table on next page		
			for more)		

R plotting specifications for lty (line-type) argument, for use with plot, matplot, points, and lines:

	0 1
lty	Description
0	blank
1	solid
2	dashed
3	dotted
4	dotdash
5	longdash
6	twodash

R plotting characters, i.e. values for ${\bf pch}$ argument (from the book R Graphics, by Paul Murrell, Chapman & Hall / CRC, 2006)

No.	Description	Matlab	R		
188	Divide up a figure window into smaller sub-figures Force graphics windows to	subplot($\mathfrak{m},\mathfrak{n},k$) divides the current figure window into an $m \times n$ array of subplots, and draws in subplot number k as numbered in "reading order," i.e. left-to-right, top-to-bottom. E.g. subplot(2,3,4) selects the first sub-figure in the second row of a 2×3 array of sub-figures. You can do more complex things, e.g. subplot($5,5,[1\ 2\ 6\ 7]$) selects the first two subplots in the first row, and first two subplots in the second row, i.e. gives you a bigger subplot within a 5×5 array of subplots. (If you that command followed by e.g. subplot($5,5,3$) you'll see what's meant by that.)	There are several ways to do this, e.g. using layout or split.screen, although they aren't quite as friendly as MATLAB 's. E.g. if you let $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, then layout(A) will divide the figure into 6 sub-figures: you can imagine the figure divide into a 3 × 3 matrix of smaller blocks; sub-figure 1 will take up the upper-left 2 × 2 portion, and sub-figures 2-6 will take up smaller portions, according to the positions of those numbers in the matrix A. Consecutive plotting commands will draw into successive sub-figures; there doesn't seem to be a way to explicitly specify which sub-figure to draw into next. To use split.screen(c(2,1)) to split into a 2 × 1 matrix of sub-figures (numbered 1 and 2). Then split.screen(c(1,3),2) splits sub-figure 2 into a 1 × 3 matrix of smaller sub-figures (numbered 3, 4, and 5). screen(4) will then select sub-figure number 4, and subsequent plotting commands will draw into it. A third way to accomplish this is via the commands par(mfrow=) or par(mfcol=) to split the figure window, and par(mfg=) to select which sub-figure to draw into. Note that the above methods are all incompatible with each other. R automatically updates graphics		
109	update update	updates figure windows when a script/function finishes and returns control to the MATLAB prompt, or under a couple of other circumstances. This forces it to update figure windows to reflect any recent plotting commands.)	windows even before functions/scripts finish executing, so it's not necessary to explictly request it.		

7.2 Printing/saving graphics

No.	Description	Matlab	R
190	To print/save to a PDF file named fname.pdf	print -dpdf fname saves the contents of currently active figure window	First do pdf('fname.pdf'). Then, do various plotting commands to make your image, as if you were plotting in a window. Finally, do dev.off() to close/save the PDF file. To print the contents of the active figure window, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist='inhibit').)
191	To print/save to a PostScript file fname.ps or fname.eps	print -dps fname for black & white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsulated PostScript. The first two save to fname.ps, while the latter two save to fname.eps.	postscript('fname.eps'), followed by your plotting commands, fol- lowed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your fig- ure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').) You can also include the horizontal=FALSE argument with dev.copy().
192	To print/save to a JPEG file fname.jpg with jpeg quality = 90 (higher quality looks better but makes the file larger)	print -djpeg90 fname	<pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>

$7.3 \quad Animating \ cellular \ automata \ / \ lattice \ simulations$

No.	Description	Matlab	R
193	To display images of cellu-	Repeatedly use either pcolor or	If you simply call image repeatedly,
	lar automata or other lattice	image to display the data. Don't	there is a great deal of flicker-
	simulations while running in	forget to call drawnow as well, oth-	ing/flashing. To avoid this, after
	real time	erwise the figure window will not be	drawing the image for the first time
		updated with each image.	using e.g. image(A), from then
			on only use image(A,add=TRUE),
			which avoids redrawing the entire
			image (and the associated flicker).
			However, this will soon consume a
			great deal of memory, as all drawn
			images are saved in the image buffer.
			There are two solutions to that
			problem: (1) every k time steps,
			leave off the "add=TRUE" argument
			to flush the image buffer (and get
			occasional flickering), where you
			choose k to balance the flickering
			vs. memory-usage tradeoff; or
			(2) after drawing the first image,
			do dev.control(displaylist=
			'inhibit') to prohibit retaining the
			data. However, the latter solution
			means that after the simulation is
			done, the figure window will not be
			redrawn if it is resized, or temporarily
			obscured by another window. (A
			call to dev.control(displaylist=
			'enable') and then one final
			image(A) at the end of the simulation will re-enable re-drawing
			after resizing or obscuring, without
			consuming extra memory.)
			consuming extra memory.)

8 Working with files

No.	Description	Matlab	R
194	Create a folder (also known	mkdir dirname	dir.create('dirname')
	as a "directory")		
195	Set/change working directory	cd dirname	setwd('dirname')
196	See list of files in current	dir	dir()
	working directory		
197	Run commands in file 'foo.m'	foo	source('foo.R')
	or 'foo.R' respectively		
198	Read data from text file	A=load('data.txt')	A=as.matrix(read.table(
	"data.txt" into matrix A		'data.txt'))
199	Write data from matrix A	save data.txt A -ascii	write(A, file='data.txt',
	into text file "data.txt"		ncolumn=dim(A)[2])

9 Misc

9.1 Variables

No.	Description	Matlab	R
200	Assigning to variables	x = 5	x < -5 or x = 5
201	Short list of defined variables	who	ls()
202	Long list of defined variables	whos	ls.str()
203	See detailed info about the	whos ab	str(ab)
	variable ab		
204	See detailed info about all	whos *ab*	ls.str(pattern='ab')
	variables with "ab" in their		
	name		
205	Clear one variable	clear x	rm(x)
206	Clear two variables	clear x y	rm(x,y)
207	Clear all variables	clear all	rm(list=ls())
208	See what type of object \mathbf{x} is	class(x)	class(x)
209	(Variable names)	Variable names must begin with a	Variable names may contain letters,
		letter, but after that they may con-	digits, the period, and the underscore
		tain any combination of letters, dig-	character. They cannot begin with a
		its, and the underscore character.	digit or underscore, or with a period
		Names are case-sensitive.	followed by a digit. Names are case-
			sensitive.

9.2 Misc

No.	Description	Matlab	R
210	Line continuation	If you want to break up a MATLAB command over more than one line, end all but the last line with three periods: "". E.g.: x = 3 + 4	In R, you can spread commands out over multiple lines, and nothing extra is necessary. R will continue reading input until the command is complete. E.g.: x = 3 + 4
211	Controlling formatting of output	format short g and format long g are handy; see help format	options(digits=6) tells R you'd like to use 6 digits of precision in values it displays (it is only a suggestion, not strictly followed)
212	Exit the program	quit or exit	q()
213	Comments	% this is a comment	# this is a comment
214	Print a string	disp('hi there')	<pre>print('hi there')</pre>
215	Print a string containing single quotes	<pre>disp('It''s nice')</pre>	<pre>print('It\'s nice') or print("It's nice")</pre>
216	Give prompt and read input from user Concatenate strings	<pre>x = input('Enter data:') ['two hal' 'ves']</pre>	<pre>print('Enter data:') x = scan() paste('two hal', 'ves', sep='')</pre>
			Note: this will not combine strings which are in different elements within a vector. E.g. v=c('two hal', 'ves') followed by paste(v, sep='') will not combine the strings into a single string. For that, do paste(v, collapse='').
218	Convert number to string	num2str(x)	as.character(x)
219	Pause for x seconds	pause(x)	Sys.sleep(x)
220	Use sprintf to create a formatted string. Use % d for integers ("d" stands for "decimal", i.e. base 10), % f for floating-point numbers, % e for scientific-notation floating point, % g to automatically choose % e or % f based on the value. You can specify field-widths/precisions, e.g. %5 d for integers with padding to 5 spaces, or %.7 f for floating-point with 7 digits of precision. There are many other options too; see the docs.	<pre>x=2; y=3.5; s=sprintf('x is %d, y=%g', x, y)</pre>	x=2; y=3.5 s=sprintf('x is %d, y is %g', x, y)
221	Wait for user to press any key	pause	Don't know of a way to do this in R, but scan(quiet=TRUE) will wait until the user presses the Enter key

No.	Description	Matlab	R
222	Measure CPU time used to	t1=cputime;commands;	t1=proc.time();commands
	do some commands	cputime-t1	; (proc.time()-t1)[1]
223	Measure elapsed ("wall-	tic;commands; toc or	t1=proc.time();commands
	clock") time used to do some	t1=clock;commands ;	; (proc.time()-t1)[3]
	commands	etime(clock,t1)	, (1
224	Print an error message an in-	error('Problem!')	stop('Problem!')
	terrupt execution	,	
225	Print a warning message	<pre>warning('Smaller problem!')</pre>	<pre>warning('Smaller problem!')</pre>
226	Putting multiple statements	Separate statements by commas or	Separate statements by semicolons.
	on one line	semicolons. A semicolon at the end	T V
		of a statement suppresses display of	
		the results (also useful even with just	
		a single statement on a line), while a	
		comma does not.	
227	Evaluate contents of a string	eval(s)	eval(parse(text=s))
	\mathbf{s} as command(s).		
228	Show where a command is	which sqrt shows you where the file	R does not execute commands directly
		defining the sqrt function is (but	from files, so there is no equivalent
		note that many basic functions are	command.
		"built in," so the Matlab func-	
		tion file is really just a stub con-	
		taining documentation). This is use-	
		ful if a command is doing something	
		strange, e.g. sqrt isn't working. If	
		you've accidentally defined a variable	
		called sqrt, then which sqrt will	
		tell you, so you can clear sqrt to	
		erase it so that you can go back to	
		using the function sqrt.	
229	Query/set the search path.	path displays the current search path	R does not use a search path to look
		(the list of places Matlab searches	for files.
		for commands you enter). To add a	
		directory ~/foo to the beginning of	
		the search path, do	
		addpath ~/foo -begin	
		or to add it to the end of the path,	
		do addpath ~/foo -end (Note: you	
		should generally add the full path	
		of a directory, i.e. in Linux or Mac	
		OS-X something like ~/foo as above	
		or of the form /usr/local/lib/foo,	
		while under Windows it would be	
L		something like C:/foo)	

No.	Description	Matlab	R
230	Install and load a package.	Matlab does not have packages. It	To install e.g. the odesolve pack-
		has toolboxes, which you can pur-	age, you can use the command
		chase and install. "Contributed"	<pre>install.packages('odesolve').</pre>
		code (written by end users) can sim-	You then need to load the package
		ply be downloaded and put in a di-	in order to use it, via the command
		rectory which you then add to MAT-	library('odesolve'). When run-
		LAB's path (see item 229 for how to	ning R again later you'll need to load
		add things to Matlab's path).	the package again to use it, but you
			should not need to re-install it. Note
			that the lattice package is typically
			included with binary distributions of
			R, so it only needs to be loaded, not
			installed.

10 Spatial Modeling

No.	Description	Matlab	R
231	Take an $L \times L$ matrix A of	$A = (A \mid (rand(L) < p))*1;$	$A = (A \mid (matrix(runif(L^2),L))$
	0s and 1s, and "seed" frac-		< p))*1
	tion p of the 0s (turn them		
	into 1s), not changing entries		
	which are already 1.		
232	Take an $L \times L$ matrix A of 0s	A = (A & (rand(L) < 1-p))*1;	$A = (A \& (matrix(runif(L^2),L))$
	and 1s, and "kill" fraction p		< 1-p))*1
	of the 1s (turn them into 0s),		
	not changing the rest of the		
	entries		
233	Do "wraparound" on a coor-	mod(newx-1,L)+1 Note: for porta-	((newx-1) %% L) + 1 Note: for
	dinate newx that you've al-	bility with other languages such as	portability with other languages such
	ready calculated. You can	C which handle MOD of negative	as C which handle MOD of nega-
	replace \mathbf{newx} with $\mathbf{x} + \mathbf{dx}$ if	values differently, you may want to	tive values differently, you may want
	you want to do wraparound	get in the habit of instead doing	to get in the habit of instead doing
	on an offset x coordinate.	mod(newx-1+L,L)+1	((newx-1+L)%%L) + 1
234	Randomly initialize a portion	dx=ix2-ix1+1; dy=iy2-iy1+1;	dx=ix2-ix1+1; dy=iy2-iy1+1;
	of an array: set fraction p of	$A(iy1:iy2,ix1:ix2) = \dots$	A[iy1:iy2,ix1:ix2] =
	sites in rows iy1 through iy2	(rand(dy,dx) < p0)*1;	(matrix(runif(dy*dx),dy) <
	and columns $ix1$ through $ix2$		p0)*1
	equal to 1 (and set the rest of		
	the sites in that block equal		
	to zero). Note: this assume		
	iy1 < iy2 and $ix1 < ix2$.		

Index of MATLAB commands and concepts

	•
', 57	colon, see:
,, 226	colorbar, 185
.*, 56	colormap
\dots , 210	building your own, 187
./, 62	colormap, 186, 187
.^, 66	column vector, 7
/, 61	comments, 213
:, 12–14	complex numbers, 49–54
;, 226	conj, 52
=, 200	contour, 175
[, 6–8	cos, 41
%, 213	
	cosh, 43
&, 115, 116	cputime, 222
^, 36, 64, 65 ^ 50, 69	cumsum, 79
58, 63	cumulative distribution functions
$\{,32$	binomial, 151
1 97 50	continuous uniform on interval (a, b) , 155
abs, 37, 50	discrete uniform from $1n$, 156
$a\cos$, 42	exponential, 153
acosh, 44	normal, 154
addpath, 229	Poisson, 152
all, 117	,
angle, 51	diff, 80
any, 118	differential equations, see ode45
asin, 42	dir, 196
asinh, 44	disp, 214, 215
atan, 42	drawnow, 189, 193
atanh, 44	drawnow, 165, 155
	echelon form, see matrix
average, see mean	eig, 67
axis, 176	- '
bar, 165, 167, 168	element-by-element matrix operations, see ma-
binocdf, 151	trix
•	else, 114
binopdf, 145	elseif, 114
binornd, 138	error, 224
bins, 103	$\mathtt{errorbar},169,170$
boolean tests	$\mathtt{etime},223$
scalar, 115	eval, 227
vector, 116–118	exit, 212
- 405	exp, 38
cd, 195	expcdf, 153
ceil, 48	expm, 78
cell, 31	exppdf, 147
cell arrays, 31	exprnd, 140
extracting elements of, 32	
cellular automata animation, 193	eye, 20
class, 208	figure, 157, 158
clear, 205-207	file
clf, 181	
clock, 223	reading data from, 199
close, 160	running commands in, 197
01050, 100	

text	backen energtions on 100 101
reading data from, 198	boolean operations on, 100, 101
saving data to, 199	containing all indentical entries, 19 containing all zeros, 18
find, 99–101	
floor, 47	converting row, column to single index, 29 converting single-index to row, column, 28
fminbnd, 104, 105	echelon form, 59
fminsearch, 106, 107	· · · · · · · · · · · · · · · · · · ·
	eigenvalues and eigenvectors of, 67
for, 112	equation
format, 211	solving, 58
fplot, 183	exponential of, 78
function	extracting a column of, 23
multi-variable	extracting a rectangular piece of, 26
minimization, 106	extracting a row of, 24
minimization over first parameter only, 105	extracting specified rows and columns of, 27
minimization over only some parameters,	identity, 20
107	inverse, 60
single-variable	minimum of values of, 83
minimization, 104	minimum value of each column of, 84
user-written, 121	minimum value of each row of, 85
170	modifying elements given lists of rows and
grid, 179	columns, 30
halm 1 9	multiplication, 55
help, 1-3	element-by-element, 56
helpdesk, 4	powers of, 65
hist, 166	re-shaping its elements into a vector, 25
hold, 181	size of, 90–92, 94, 95
identity eee matrix	sum
identity, see matrix if, 113–115	of all elements, 75
	of columns of, 76
imag, 54	of rows of, 77
image, 184, 193	transpose, 57
imagesc, 184	mean, $68-70$
ind2sub, 28	mesh, 175
indexing	min, 82-85, 87-89
matrix, 10	mind, 86
with a single index, 11	mkdir, 194
vector, 9	$\mathtt{mod},45,233$
input, 216	modulo arithmetic, 45, 233
inv, 60	multiple statements on one line, 226
inverse, see matrix	martiple statements on one mie, 220
legend, 180	$\mathtt{normcdf}, 154$
	normpdf, 148
length, 93, 95	normrnd, 144
linspace, 15	num2str, 218
listvals, 102, 167	numel, 94
load, 198, 199	,
log, 39	ode $45,\ 122-124$
log10, 40	ones, $17, 19$
log2, 40	optimization, 104–107
loglog, 164	
lookfor, 5	$\mathtt{path},229$
	pause, 219, 221
matrix, 8	pcolor, 175, 184, 193
"gluing" together, 21, 22	perform some commands with probability p , 134

permutation of integers $1n$, 135	standard deviation, see std
plot, 161-163, 182	$\mathtt{std},71 ext{}73$
plot3, 172	stem, 171
poisscdf, 152	stop, 224
poisspdf, 146	string
poissrnd, 139	concatenation, 217
polar, 171	converting number to, 218
polyfit, 108-110	sub2ind, 29, 30
print, 190-192	subplot, 188
probability density functions	sum, 75-77, 116
binomial, 145	surf, 173, 174
continuous uniform on interval (a, b) , 149	surfc, 175
discrete uniform from $1n$, 150	surfl, 175
exponential, 147	switch, 120
normal, 148	Sw1001, 120
Poisson, 146	tan, 41
1 OISSOII, 140	tanh, 43
quit, 212	tic, 223
qui0, 212	title, 177
rand, 125-133, 137	toc, 223
random values	
k unique values sampled from integers $1n$,	transpose, see matrix
136	unidcdf, 156
Bernoulli, 131	unidpdf, 150
binomial, 138	unidrnd, 141, 142
continuous uniform distribution on interval	
(a,b), 128, 143	unifcdf, 155
	unifpdf, 149
continuous uniform distribution on interval	unifrnd, 143
(0,1), 125-127	var, 74
discrete uniform distribution from ab, 133	variable names, 209
discrete uniform distribution from $1k$, 130 ,	
141, 142	variance, see var
discrete uniform distribution, 129	vector
exponential, 140	boolean operations on, 98, 99
normal, 144	containing all indentical entries, 17
Poisson, 139	containing all zeros, 16
setting the seed, 137	counts of binned values in, 103
$\mathtt{randperm},135$	counts of discrete values in, 102
real, 53	cumulative sum of elements of, 79
round, 46	differences between consecutive elements of,
row vector, 6	80
rref, 59	minimum of values of, 82
	position of first occurance of minimum value
save, 199	in, 89
semilogx, 164	size of, 93
semilogy, 164	sum of all elements, 75
\sin , 41	
\sinh , 43	warning, 225
${\tt size},90 – 92$	waterfall, 175
slice, 175	which, 228
sort, 96, 97, 136	while, 119
sprintf, 220	who, 201
sqrt, 35	whos, $202–204$
stairs, 171	
•	

 $\mathtt{xlabel},\,178$

 ${\tt ylabel},\,178$

 ${\tt zeros},\,16,\,18$

Index of R commands and concepts

*, 64	cog 41
	cos, 41
/, 62 . 12 12	cosh, 43
:, 12, 13	cumsum, 79
;, 226 200	cumulative distribution functions
<-, 200	binomial, 151
=, 200	continuous uniform on interval (a, b) , 155
?, 1, 2	discrete uniform from $1n$, 156
[[, 32	exponential, 153
#, 213	normal, 154
%%, 45, 233	Poisson, 152
&, 115, 116	curve, 183
^, 36, 66	dbinom, 145
abs, 37, 50	dev.control, 190, 191, 193
acos, 42	dev.copy, 190, 191
acosh, 44	dev.list, 159
all, 117	dev.off, 160, 190-192
any, 118	dev.set, 158
apply, 72, 73, 84, 85	dexp, 147
Arg, 51	diag, 20
as.character, 218	diff, 80
as.numeric, 102	differential equations, see lsoda
asin, 42	dim, 92, 95
	dir, 196
asinh, 44	
atan, 42	dr.create, 194
atanh, 44	dnorm, 148
average, see mean	dpois, 146
barplot, 165	dunif, 149
boolean tests	echelon form, see matrix
scalar, 115	eig, 67
vector, 116–118	element-by-element matrix operations, see ma-
	trix
c, 6, 7	else, 114
cbind, 21, 30	errbar, 169, 170
ceiling, 48	eval, 227
cellular automata animation, 193	exp, 38
class, 208	expand.grid, 175
cloud, 172	expm, 78
coef, 108, 109, 111	
colMeans, 69	file
colon, see:	reading data from, 199
colormap	running commands in, 197
building your own, 187	text
for image, 186	reading data from, 198
colSums, 76	saving data to, 199
column vector, 7	filled.contour, 185
comments, 213	floor, 47
complex numbers, 49–54	for, 112
Conj, 52	function
contour, 175	multi-variable

minimization, 106	eigenvalues and eigenvectors of, 67
minimization over first parameter only, 105	equation
minimization over only some parameters,	solving, 58
107	exponential of, 78
single-variable	extracting a column of, 23
minimization, 104	extracting a rectangular piece of, 26
user-written, 121	extracting a row of, 24
,	extracting specified rows and columns of, 27
grid, 179	identity, 20
	inverse, 60
$\mathtt{help},1,2$	minimum of values of, 83
${\tt help.search}, 5$	minimum value of each column of, 84
help.start, 4	minimum value of each row of, 85
hist, 103, 165-168	modifying elements given lists of rows and
	columns, 30
identity, see matrix	multiplication, 55
if, 113-115	element-by-element, 56
ifelse, 81	powers of, 65
Im, 54	re-shaping its elements into a vector, 25
image, 184, 193	size of, 90–92, 94, 95
indexing	sum
matrix, 10	of all elements, 75
with a single index, 11	of columns of, 76
vector, 9	of rows of, 77
${\tt install.packages},230$	
inverse, see matrix	transpose, 57
	matrix, 8, 18, 19
jpeg, 192	max, 95
- 100	mean, 68
layout, 188	min, 82-85, 88
legend, 180	Mod, 50
length, 93, 94	modulo arithmetic, 45, 233
levelplot, 185	multiple statements on one line, 226
library, 3, 230	names, 33, 102
lines, 181	ncol, 91
lists, 31	nrow, 90
extracting elements of, 32	niow, 90
lm, 108, 109, 111	${\tt optim}, 106, 107$
log, 39	optimization, 104–107
log10, 40	optimize, 104, 105
log2, 40	options
ls, 201	digits=, 211
ls.str, 202, 204	outer, 174
lsoda, $122-124$	04001, 111
100	packages
matplot, 182	installing, 230
matrix, 8	loading, 230
"gluing" together, 21, 22	par
boolean operations on, 100, 101	mfcol=, 188
containing all indentical entries, 19	mfrow=, 188
containing all zeros, 18	parse, 227
converting row, column to single index, 29	paste, 217
converting single-index to row, column, 28	pbinom, 151
echelon form, 59	pdf, 190

perform some commands with probability p , 134	Re, 53
permutation of integers 1n, 135	read.table, 198, 199
persp, 173, 174	rep, 16, 17
pexp, 153	rexp, 140
pie, 171	rgb, 187
plot, 161-164	${\tt rm},\ 205 – 207$
main=, 177	$\mathtt{rnorm},144$
sub=, 177	round, 46
xlab=, 178	row vector, 6
xlim=, 176	${\tt rowMeans},70$
ylab=, 178	$\mathtt{rpois},139$
ylim=, 176	$\mathtt{runif}, 125131, 133, 143$
pmin, 86, 87	
pnorm, 154	$\mathtt{sample},\ 135,\ 136,\ 141,\ 142$
points, 181	scan, 216, 221
postscript, 191	$\mathtt{sd},71 ext{}73$
ppois, 152	$\mathtt{seq},14,15$
print, 214, 215	$\mathtt{set.seed},137$
probability density functions	$\mathtt{setwd},195$
binomial, 145	\sin , 41
continuous uniform on interval (a, b) , 149	\sinh , 43
discrete uniform from $1n, 150$	$\mathtt{solve},58,60,61,63$
exponential, 147	$\mathtt{sort},96,97$
normal, 148	source, 197
Poisson, 146	split.screen, 188
proc.time, 222, 223	$\mathtt{sprintf}, 220$
punif, 155	$\mathtt{sqrt},35$
Puill, 100	standard deviation, see sd
q, 212	str, 203
quartz, 157	string
•	concatenation, 217
rand, 132	converting number to, 218
random values	sum, 75, 77, 116
k unique values sampled from integers $1n$,	switch, 120
136	symbols, 175
Bernoulli, 131	Sys.sleep, 219
binomial, 138	3
continuous uniform distribution on interval	t, 57
(a,b), 128, 143	${ t table},102$
continuous uniform distribution on interval	tan, 41
(0,1), 125, 127	tanh, 43
continuous uniform distribution on inteval	title, $177, 178$
(0,1), 126	transpose, see matrix
discrete uniform distribution from ab , 133	-
discrete uniform distribution from 1k, 130,	var, 74
141, 142	variable names, 209
discrete uniform distribution, 129	variance, see var
exponential, 140	vector
normal, 144	boolean operations on, 98, 99
Poisson, 139	containing all indentical entries, 17
setting the seed, 137	containing all zeros, 16
rbind, 22	counts of binned values in, 103
rbinom, 138	counts of discrete values in, 102
IDITION, 100	cumulative sum of elements of 79

```
differences between consecutive elements of, 80
minimum of values of, 82
position of first occurance of minimum value in, 89
size of, 93
sum of all elements, 75
vector, 31

warning, 225
which, 99-101
which.min, 89
while, 119
windows, 157
wireframe, 175
write, 199

x11, 157
```