ELTE IK - Programtervező Informatikus BSc

Záróvizsga tételek

13.1 Logika

Logika

Ítéletkalkulus és elsőrendű predikátumkalkulus: szintaxis, szemantika, ekvivalens átalakítások, a szemantikus következmény fogalma, rezolúció.

1 Logika

1.1 Alapfogalmak

A logika tárgya az emberi gondolkodási folyamat vizsgálata és helyes gondolkodási formák keresése, illetve létrehozása.

Fogalmak:

- Állítás: Olyan kijelentés, melynek logikai értéke (igaz volta) eldönthető, tetszőleges kontextusban igaz vagy hamis. Azt mondjuk, hogy egy állítás igaz, ha információtartalma megfelel a valóságnak (a tényeknek), és hamis az ellenkező esetben.
 - A mindennapi beszédben használt kijelentő mondatok legtöbbször nem állítások, mivel a mondat tartalmába a kontextus is beleszámít: időpont, környezet állapota, általános műveltség bizonyos szintje, stb. (pl. nem állítás az, hogy "ma reggel 8-kor sütött a nap", de állítás pl. az, hogy "minden páros szám osztható 2-vel").
- 2. **Igazságérték**: Az igazságértékek halmaza $\mathbb{L} = \{igaz, hamis\}$.
- 3. Gondolkodási forma: Gondolkodási forma alatt egy olyan (F, A) párt értünk, ahol A állítás, $F = \{A_1, A_2, ..., A_n\}$ pedig állítások egy halmaza.

A gondolkodásforma helyes, ha minden esetben, amikor F minden állítása igaz, akkor A is igaz.

1.2 Ítéletkalkulus

1.2.1 Az ítéletlogika szintaxisa

Az ítéletlogika ábécéje

Az ítéletlogika ábécéje $V_0 = V_v \cup \{(,)\} \cup \{\neg, \land, \lor, \supset\}$, ahol V_v az ítéletváltozók halmaza. Tehát V_0 az ítéletváltozókat, a zárójeleket, és a logikai műveletek jeleit tartalmazza.

Az ítéletlogika nyelve

Az ítéletlogika nyelve (\mathcal{L}_0) ítéletlogikai formulákból áll, amelyek a következőképpen állnak elő:

1. Minden ítéletváltozó ítéletlogikai formula. Ezek az úgynevezett prímformulák (vagy atomi formulák).

- 2. Ha A ítéletlogikai formula, akkor $\neg A$ is az.
- 3. Ha A és B ítéletlogikai formulák, akkor $(A \wedge B)$, $(A \vee B)$ és $(A \supset B)$ is ítéletlogikai formulák.
- 4. Minden ítéletlogikai formula az 1-3. szabályok véges sokszori alkalmazásával áll elő.

Literál: Ha X ítéletváltozó, akkor az X és $\neg X$ formulák literálok, amelyek alapja X.

Közvetlen részformula:

- 1. Prímformulának nincs közvetlen részformulája.
- 2. $\neg A$ közvetlen részformulája A.
- 3. $A \circ B$ (\circ a \land , \lor , \supset binér összekötőjelek egyike) közvetlen részformulái A (bal oldali) és B (jobb oldali).

Részformula: Legyen $A \in \mathcal{L}_0$ egy ítéletlogikai formula. Ekkor A részformuláinak halmaza a legszűkebb olyan halmaz, melynek

- 1. eleme az A, és
- 2. ha a C formula eleme, akkor C közvetlen részformulái is elemei.

Szerkezeti fa: Egy C formula szerkezeti fája egy olyan véges rendezett fa, melynek csúcsai formulák,

- 1. gyökere C,
- 2. a $\neg A$ csúcsának pontosan egy gyermeke van, az A,
- 3. a $A \circ B$ csúcsának pontosan két gyermeke van, rendre az A és B formulák,
- 4. levelei prímformulák.

ábra 1: Példa szerkezeti fára.

Logikai összetettség: Egy formula logikai összetettsége a benne található logikai összekötőjelek száma.

Művelet hatásköre: Egy művelet hatásköre a formula részformulái közül az a legkisebb logikai összetettségű részformula, melyben az adott művelet előfordul.

Fő logikai összekötőjel: Egy formula fő logikai összekötőjele az az összekötőjel, amelynek hatásköre maga a formula.

Precedencia: A logikai összekötőjelek precedenciája csökkenő sorrendben a következő: $\neg, \land, \lor, \supset$.

A definíciók alapján egyértelmű, hogy egy teljesen zárójelezett formulában mi a logikai összekötőjelek hatásköre és mi a fő logikai összekötőjel. Most megmutatjuk, hogy egy formulában milyen esetekben és mely részformulákat határoló zárójelek hagyhatóak el úgy, hogy a logikai összekötőjelek hatásköre ne változzon. A részformulák közül a prímformuláknak és a negációs formuláknak nincs külső zárójelpárja, ezért csak az $(A \circ B)$ alakú részformulákról kell eldöntenünk, hogy írható-e helyettük $A \circ B$. A zárójelek elhagyását mindig a formula külső zárójelehárjának (ha van ilyen) elhagyásával kezdjük. Majd ha egy részformulában már megvizsgáltuk a külső zárójelelhagyás kérdését, utána ezen részformula közvetlen részformuláinak külső zárójeleivel foglalkozunk. Két eset lehetséges:

- 1. A részformula egy negációs formula, melyben az $(A \circ B)$ alakú közvetlen részformula külső zárójelei nem hagyhatók el.
- 2. A részformula egy $(A \bullet B)$ vagy $A \bullet B$ alakú formula, melynek A és B közvetlen részformuláiban kell dönteni a külső zárójelek sorsáról. Ha az A formula $A_1 \circ A_2$ alakú, akkor A külső zárójelpárja akkor hagyható el, ha \circ nagyobb precedenciájú, mint \bullet . Ha a B formula $B_1 \circ B_2$ alakú, akkor B külső zárójelpárja akkor hagyható el, ha \circ nagyobb vagy egyenlő precedenciájú, mint \bullet .
- 3. Ha egy $(A \wedge B)$ vagy $A \wedge B$ alakú formula valamely közvetlen részformulája szintén konjunkció, illetve egy $(A \vee B)$ vagy $A \vee B$ alakú formula valamely közvetlen részformulája szintén diszjunkció, akkor az ilyen részformulákból a külső zárójelpár elhagyható.

Formulaláncok: A zárójelek elhagyására vonatkozó megállapodásokat figyelembe véve úgynevezett konjunkciós, diszjunkciós, illetve implikációs formulaláncokat is nyerhetünk. Ezek alakja $A_1 \wedge ... \wedge A_n$, $A_1 \vee ... \vee A_n$, illetve $A_1 \supset ... \supset A_n$ Ezeknek a láncformuláknak a fő logikai összekötőjelét a következő zárójelezési megállapodással fogjuk meghatározni: $(A_1 \wedge (A_2 \wedge ... \wedge (A_{n-1} \wedge A_n)...))$, $(A_1 \vee (A_2 \vee ... \vee (A_{n-1} \vee A_n)...))$, illetve $(A_1 \supset (A_2 \supset ... \supset (A_{n-1} \supset A_n)...))$

1.2.2 Az ítéletlogika szemantikája

Interpretáció: \mathcal{L}_0 interpretációján egy $\mathcal{I}: V_v \to \mathbb{L}$ függvényt értünk, mely minden ítéletváltozóhoz egyértelműen hozzárendel egy igazságértéket.

Boole-értékelés: \mathcal{L}_0 -beli formulák \mathcal{I} interpretációbeli Boole-értékelése a következő $\mathcal{B}_{\mathcal{I}}: \mathcal{L}_0 \to \mathbb{L}$ függvény:

- 1. ha A prímformula, akkor $\mathcal{B}_{\mathcal{I}}(A) = \mathcal{I}(A)$,
- 2. $\mathcal{B}_{\mathcal{I}}(\neg A)$ legyen $\neg \mathcal{B}_{\mathcal{I}}(A)$,
- 3. $\mathcal{B}_{\mathcal{I}}(A \wedge B)$ legyen $\mathcal{B}_{\mathcal{I}}(A) \wedge \mathcal{B}_{\mathcal{I}}(B)$,
- 4. $\mathcal{B}_{\mathcal{I}}(A \vee B)$ legyen $\mathcal{B}_{\mathcal{I}}(A) \vee \mathcal{B}_{\mathcal{I}}(B)$,
- 5. $\mathcal{B}_{\mathcal{I}}(A \supset B)$ legyen $\mathcal{B}_{\mathcal{I}}(A) \supset \mathcal{B}_{\mathcal{I}}(B)$,

Bázis: A formula ítéletváltozóinak egy rögzített sorrendje.

Szemantikus fa: Egy formula különböző interpretációit szemantikus fa segítségével szemléltethetjük. A szemantikus fa egy olyan bináris fa, amelynek i. szintje (i >= 1) a bázis i. ítéletváltozójához tartozik, és minden csúcsából két él indul, az egyik a szinthez rendelt ítéletváltozóval, a másik annak negáltjával címkézve. Az X ítéletváltozó esetén az X címke jelentse azt, hogy az X igaz az adott interpretációban, a $\neg X$ címke pedig azt, hogy hamis az

adott interpretációban. A szemantikus fa minden ága egy-egy lehetséges interpretációt reprezentál. Egy n változós formula esetén minden ág n hosszú, és a fának 2^n ága van és az összes lehetséges interpretációt tartalmazza.

ábra 2: Az X,Y,Z ítéletváltozókat tartalmazó formula szemantikus fája.

Igazságtábla: Egy n változós formula igazságtáblája egy n+1 oszlopból és 2^n sorból álló táblázat. A táblázat fejlécében az i. oszlophoz (1 <= i <= n) a formula bázisának i. ítéletváltozója, az n+1. oszlophoz maga a formula van hozzárendelve. Az első n oszlopban az egyes sorokhoz megadjuk rendre a formula különböző interpretációit, majd a formula oszlopába minden sorba beírjuk a formula - a sorhoz tartozó interpretációbeli Boole-értékeléssel kapott - igazságértékét.

A logikai műveletek igazságtáblája:

			$X \wedge Y$	$X \vee Y$	$X\supset Y$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	h h i	h	i	i
h	h	i	h	h	i

Igazhalmaz, hamishalmaz: Egy A formula igazhalmaza (A^i) azon interpretációk halmaza, melyen a formula igazságértékelése igaz. Az A formula hamishalmaza (A^h) pedig azon interpretációk halmaza, melyekre a formula igazságértékelése hamis.

Igazságértékelés függvény: Olyan függvény, amely minden formulához hozzárendeli az igazhalmazát (φA^i) vagy a hamishalmazát (φA^h) .

Legyen A egy tetszőleges ítéletlogikai formula. Határozzuk meg A-hoz az interpretációira vonatkozó φA^i , illetve φA^h feltételeket a következőképpen:

- 1. Ha A prímformula, a φA^i feltételt pontosan azok az \mathcal{I} interpretációk elégítik ki, melyekre $\mathcal{I}(A)=igaz$, a φA^h feltételt pedig pontosan azok melyekre $\mathcal{I}(A)=hamis$.
- 2. A $\varphi(\neg A)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h feltételek.
- 3. A $\varphi(A \wedge B)^i$ feltételek pontosan akkor teljesülnek, ha a φA^i és a φB^i feltételek egyszerre teljesülnek.
- 4. A $\varphi(A \vee B)^i$ feltételek pontosan akkor teljesülnek, ha a φA^i vagy a φB^i feltételek teljesülnek.
- 5. A $\varphi(A \supset B)^i$ feltételek pontosan akkor teljesülnek, ha a φA^h vagy a φB^i feltételek teljesülnek.

Tétel: Tetszőleges A ítéletlogikai formula esetén a φA^i feltételeket pontosan az A^i -beli interpretációk teljesítik.

Igazságértékelés-fa: Egy A formula φA^i , illetve φA^h feltételeket kielégítő interpretációit az igazságértékelés-fa segítségével szemléltethetjük. Az igazságértékelés-fát a formula szerkezeti fájának felhasználásával állítjuk elő. A gyökérhez hozzárendeljük, hogy A melyik igazságértékre való igazságértékelés-feltételeit keressük, majd a gyökér alá A közvetlen részformulái kerülnek a megfelelő feltétel-előírással, az alábbiak szerint:

ábra 3: Igazságértékelés-fa feltétel-előírásai.

Ezután a gyökérhez a \checkmark (feldolgozott) jelet rendeljük. Az eljárást rekurzívan folytatjuk, amíg egy ágon a fel nem dolgozott formulák

- (a) mind ítéletváltozók nem lesznek, vagy
- (b) ugyanarra a formulára egymásnak ellentmondó előírás nem jelenik meg.

Az (a) esetben az ágon előforduló ítéletváltozóknak az ágon rögzített igazságértékeit tartalmazó n-esek mind elemei φA^i gyökér esetén a formula igazhalmazának, φA^h gyökér esetén a formula hamishalmazának.

A (b) esetben nem áll elő ilyen igazságérték n-es.

ábra 4: Az $(Y \vee Z) \wedge (Z \supset \neg X)$ formula igazságértékelés-fája.

A fenti példában a formula igazhalmaza az igazságértékelés-fa alapján: $\{(i,i,h),(h,i,i),(h,i,h),(h,h,i)\}$

Kiterjesztett igazságtábla: Egy igazságtáblában a formula igazságértéke kiszámításának megkönnyítésére vezették be a kiterjesztett igazságtáblát. A kiterjesztett igazságtáblában az ítéletváltozókhoz és a formulához rendelt oszlopokon kívül rendre a formula részformuláihoz tartozó oszlopok is megjelennek. Tulajdonképpen a szerkezeti fában megjelenő részformulák vannak felsorolva.

X	Y	Z	$Y \vee Z$	$\neg X$	$Z\supset \neg X$	$(Y \lor Z) \land (Z \supset \neg X)$
i	i	i	i	h	h	h
i	i	h	i	h	i	i
i	h	i	i	h	h	h
i	h	h	h	h	i	h
h	i	i	i	i	i	i
h	i	h	i	i	i	i
h	h	i	i	i	i	i
h	h	h	h	i	i	h

ábra 5: Az $(Y \vee Z) \wedge (Z \supset \neg X)$ formula kiterjesztett igazságtáblája.

Formula kielégíthetősége, modellje: Egy A ítéletlogikai formula kielégíthető, ha létezik olyan \mathcal{I} interpretáció, melyre $\mathcal{I} \models_0 A$, azaz a $\mathcal{B}_{\mathcal{I}}$ Boole-értékelés A-hoz igaz értéket rendel. Egy ilyen interpretációt A modelljének nevezünk. Ha A-nak nincs modellje, akkor azt mondjuk, hogy kielégíthetetlen.

Ha A igazságtáblájában van olyan sor, amelyben a formula oszlopában igaz érték szerepel, akkor a formula kielégíthető, különben kielégíthetetlen. Ugyanígy, ha φA^i nem üres, akkor kielégíthető, különben kielégíthetetlen.

Ítéletlogikai törvény, tautológia: Egy A ítéletlogikai formula *ítéletlogikai törvény* vagy másképpen tautológia, ha \mathcal{L}_0 minden interpretációja modellje A-nak. (jelölés: $\models_0 A$)

Eldöntésprobléma: Eldöntésproblémának nevezzük a következő feladatokat:

- 1. Döntsük el tetszőleges formuláról, hogy tautológia-e!
- 2. Döntsük el tetszőleges formuláról, hogy kielégíthetetlen-e!

Tautologikusan ekvivalens formulák: Az A és B ítéletlogikai formulák tautologikusan ekvivalensek (jelölés: $A \sim_0 B$), ha \mathcal{L}_0 minden \mathcal{I} interpretációjában $\mathcal{B}_{\mathcal{I}}(A) = \mathcal{B}_{\mathcal{I}}(B)$.

Formulahalmaz kielégíthetősége, modellje: \mathcal{L}_0 formuláinak egy tetszőleges Γ halmaza kielégíthető, ha van \mathcal{L}_0 -nak olyan \mathcal{I} interpretációja, melyre: $\forall A \in \Gamma : \mathcal{I} \models_0 A$. Egy ilyen \mathcal{I} interpretáció modellje Γ-nak. Ha Γ-nak nincs modellje, akkor Γ kielégíthetetlen.

Lemma: Egy $\{A_1, A_2, ..., A_n\}$ formulahalmaznak pontosan azok az \mathcal{I} interpretációk a modelljei, amelyek a $A_1 \wedge A_2 \wedge ... \wedge A_n$ formulahak. Következésképpen $\{A_1, A_2, ..., A_n\}$ pontosan akkor kielégíthetetlen, ha az $A_1 \wedge A_2 \wedge ... \wedge A_n$ formula kielégíthetelen.

Szemantikus következmény: Legyen Γ ítéletlogikai formulák tetszőleges halmaza, B egy tetszőleges formula. Azt mondjuk, hogy a B formula tautologikus következménye a Γ formulahalmaznak (jelölés: $\Gamma \models_0 B$), ha minden olyan interpretáció, amely modellje Γ -nak, modellje B-nek is. A Γ -beli formulákat feltételformuláknak, vagy premisszáknak, a B formulát következményformulának (konklúziónak) hívjuk.

Tétel: Legyen Γ ítéletlogikai formulák tetszőleges halmaza, A,B,C tetszőleges ítéletlogikai formulák. Ha $\Gamma \models_0 A$, $\Gamma \models_0 B$ és $\{A,B\} \models_0 C$, akkor $\Gamma \models_0 C$.

Tétel: Legyenek $A_1, A_2, ..., A_n, B$ tetszőleges ítéletlogikai formulák. $\{A_1, A_2, ..., A_n\} \models_0 B$ pontosan akkor, ha a $\{A_1, A_2, ..., A_n, \neg B\}$ formulahalmaz kielégíthetetlen, azaz a $A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$ formula kielégíthetetlen.

Tétel: Legyenek $A_1, A_2, ..., A_n, B$ tetszőleges ítéletlogikai formulák. $\{A_1, A_2, ..., A_n\} \models_0 B$ pontosan akkor, ha $\models_0 A_1 \land A_2 \land ... \land A_n \supset B$.

Ekvivalens átalakítások

Fogalmak:

- 1. Egy prímformulát (ítéletváltozót), vagy annak a negáltját közös néven *literálnak* nevezünk. A prímformula a *literál alapja*. Egy literált bizonyos esetekben *egységkonjunkciónak* vagy *egységdiszjunkciónak* (*egységklóznak*) is hívunk.
- 2. Elemi konjunkció az egységkonjunkció, illetve a különböző alapú literálok konjunkciója (∧ kapcsolat a literálok között). Elemi diszjunkció vagy klóz az egységdiszjunkció és a különböző alapú literálok diszjunkciója (∨ kapcsolat a literálok között). Egy elemi konjunkció, illetve elemi diszjunkció teljes egy n-változós logikai műveletre nézve, ha mind az n ítéletváltozó alapja valamely literáljának.
- 3. Diszjunktív normálformának (DNF) nevezzük az elemi konjunkciók diszjunkcióját. Konjunktív normálformának (KNF) nevezzük az elemi diszjunkciók konjunkcióját. Kitüntetett diszjunktív, illetve konjunktív normálformákról (KDNF, ileltve KKNF) beszélünk, ha a bennük szereplő elemi konjunkciók, illetve elemi diszjunkciók teljesek.

Tetszőleges logikai műveletet leíró KDNF, KKNF előállítása: Legyen $b: \mathbb{L}^n \to \mathbb{L}$ egy n-változós logikai művelet. Adjuk meg b művelettábláját. Az első n oszlop fejlécébe az $X_1, X_2, \dots X_n$ ítéletváltozókat írjuk.

A b-t leíró KDNF előállítása:

1. Válasszuk ki azokat a sorokat a művelettáblában, ahol az adott igazságérték n-eshez b igaz értéket rendel hozzá. Legyenek ezek a sorok rendre $s_1, s_2, ...s_r$. Minden ilyen sorhoz rendeljünk hozzá egy $X_1' \wedge X_2' \wedge ... \wedge X_n'$ teljes elemi konjunkciót úgy, hogy az X_j' literál X_j vagy $\neg X_j$ legyen aszerint, hogy ebben a sorban X_j igaz vagy hamis igazságérték szerepel. Az így nyert teljes elemi konjunkciók legyenek rendre $k_{s_1}, k_{s_2}, ...k_{s_r}$.

2. Az így kapott teljes elemi konjunkciókból készítsünk egy diszjunkciós láncformulát: $k_{s_1} \vee k_{s_2} \vee ... \vee k_{s_r}$. Ez a formula lesz a b művelet kitüntetett diszjunktív normálformája (KDNF).

X	Y	Z	b		a teljes elemi konjunkciók
i	i	i	h		
i	i	h	i	*	$X \wedge Y \wedge \neg Z$
i	h	i	h		
i	h	h	i	*	$X \wedge \neg Y \wedge \neg Z$
h	i	i	i	*	$\neg X \wedge Y \wedge Z$
h	i	h	h		
h	h	i	i	*	$\neg X \wedge \neg Y \wedge Z$
h	h	h	i	*	$\neg X \wedge \neg Y \wedge \neg Z$

ábra 6: Egy háromváltozós b logikai művelet művelettáblája és az előállított teljes elemi konjunkciók.

A fenti példa b műveletének kitüntetett diszjunktív normálformája a következő formula: $(X \wedge Y \wedge \neg Z) \vee (X \wedge \neg Y \wedge \neg Z) \vee (\neg X \wedge Y \wedge Z) \vee (\neg X \wedge \neg Y \wedge Z) \vee (\neg X \wedge \neg Y \wedge \neg Z)$.

A b-t leíró KKNF előállítása:

- 1. Válasszuk ki azokat a sorokat a művelettáblában, ahol az adott igazságérték n-eshez b hamis értéket rendel hozzá. Legyenek ezek a sorok rendre $s_1, s_2, ...s_r$. Minden ilyen sorhoz rendeljünk hozzá egy $X_1' \vee X_2' \vee ... \vee X_n'$ teljes elemi diszjunkciót úgy, hogy az X_j' literál X_j vagy $\neg X_j$ legyen aszerint, hogy ebben a sorban X_j hamis vagy igaz igazságérték szerepel. Az így nyert teljes elemi diszjunkciók legyenek rendre $d_{s_1}, d_{s_2}, ...d_{s_r}$.
- 2. Az így kapott teljes elemi diszjunkciókból készítsünk egy konjunkciós láncformulát: $d_{s_1} \wedge d_{s_2} \wedge ... \wedge d_{s_r}$. Ez a formula lesz a b művelet kitüntetett konjunktív normálformája (KKNF).

X	Y	Z	b		a teljes elemi diszjunkciók
\bar{i}	i	i	h	*	$\neg X \lor \neg Y \lor \neg Z$
i	i	h	i		
i	h	i	h	*	$\neg X \lor Y \lor \neg Z$
i	h	h	i		
h	i	i	i		
h	i	h	i		
h	h	i	h	*	$X \lor Y \lor \neg Z$
h	h	h	i		

ábra 7: Egy háromváltozós b logikai művelet művelettáblája és az előállított teljes elemi diszjunkciók.

A fenti példa b műveletének kitüntetett konjunktív normálformája a következő formula: $(\neg X \lor \neg Y \lor \neg Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor \neg Z)$.

KNF, DNF egyszerűsítése: Egy ítéletlogikai formula logikai összetettségén a formulában szereplő logikai összekötőjelek számát értettük. Ugyanazt a logikai műveletet leíró formulák közül azt tekintjük egyszerűbbnek, amelynek kisebb a logikai összetettsége (azaz kevesebb logikai összekötőjelet tartalmaz).

Legyen X egy ítéletváltozó k egy az X-et nem tartalmazó elemi konjunkció, d egy X-et nem tartalmazó elemi diszjunkció. Ekkor az

- (a) $(X \wedge k) \vee (\neg X \wedge k) \sim_0 k$ és
- (b) $(X \vee d) \wedge (\neg X \vee d) \sim_0 d$

egyszerűsítési szabályok alkalmazásával konjunktív és diszjunktív normálformákat írhatunk át egyszerűbb alakba.

Klasszikus Quine-McCluskey-féle algoritmus KDNF egyszerűsítésére:

- 1. Soroljuk fel a KDNF-ben szereplő összes teljes elemi konjunkciót az L_0 listában, j := 0.
- 2. Megvizsgáljuk az L_j -ben szereplő összes lehetséges elemi konjunkciópárt, hogy alkalmazható-e rájuk az (a) egyszerűsítési szabály. Ha igen, akkor a két kiválasztott konjunkciót \checkmark -val megjelöljük, és az eredmény konjunkciót beírjuk a L_{j+1} listába. Azok az elemi konjunkciók, amelyek az L_j vizsgálata során nem lesznek megjelölve, nem voltak egyszerűsíthetők, tehát bekerülnek az egyszerűsített diszjunktív normálformába.
- 3. Ha az L_{j+1} konjunkciólista nem üres, akkor j:=j+1. Hajtsuk végre újból a 2. lépést.
- 4. Az algoritmus során kapott, de meg nem jelölt elemi konjunkciókból készítsünk egy diszjunkciós láncformulát. Így az eredeti KDNF-el logikailag ekvivalens, egyszerűsített DNF-et kapunk.

Rezolúció

Legyenek $A_1, A_2, ..., A_n, B$ tetszőleges ítéletlogikai formulák. Azt szeretnénk bebizonyítani, hogy $\{A_1, A_2, ..., A_n\} \models_0 B$, ami ekvivalens azzal, hogy $\{A_1, A_2, ..., A_n, \neg B\}$ kielégíthetetlen. Írjuk át ez utóbbi formulahalmaz formuláit KNF alakba! Ekkor a $\{KNF_{A_1}, KNF_{A_2}, ..., KNF_{A_n}, KNF_{\neg B}\}$ formulahalmazt kapjuk, ami pontosan akkor kielégíthetetlen, ha a halmaz formuláiban szereplő klózok halmaza kielégíthetetlen.

A klózokra vonatkozó egyszerűsítési szabály szerint ha X ítéletváltozó, C pedig X-et nem tartalmazó klóz, akkor $(X \vee C) \wedge (\neg X \vee C) \sim_0 C$. Az X és a $\neg X$ egységklózok (azt mondjuk, hogy X és $\neg X$ komplemens literálpár) konjunkciójával ekvivalens egyszerűbb, egyetlen literált sem tartalmazó klóz az üres klóz, melyet a \square jellel jelölünk és definíció szerint minden interpretációban hamis igazságértékű.

Legyenek most C_1 és C_2 olyan klózok, melyek pontosan egy komplemens literálpárt tartalmaznak, azaz $C_1 = C_1' \vee L_1$ és $C_2 = C_2' \vee L_2$, ahol L_1 és L_2 az egyetlen komplemens literálpár (C_1' és C_2' üres klózok is lehetnek). Világos, hogy ha a két klózban a komplemens literálpáron kívül is vannak literálok, és ezek nem mind azonosak, az egyszerűsítési szabály alkalmazhatósági feltétele nem áll fenn.

Tétel: Ha $C_1 = C_1' \vee L_1$ és $C_2 = C_2' \vee L_2$, ahol L_1 és L_2 komplemens literálpár, akkor $\{C_1, C_2\} \models_0 C_1' \vee C_2'$

Rezolvens: Legyenek C_1 és C_2 olyan klózok, melyek pontosan egy komplemens literálpárt tartalmaznak, azaz $C_1 = C_1' \vee L_1$ és $C_2 = C_2' \vee L_2$, ahol L_1 és L_2 a komplemens literálpár, a $C_1' \vee C_2'$ klózt a (C_1, C_2) klózpár (vagy a $C_1 \vee C_2$ formula) rezolvensének nevezzük. Ha $C_1 = L_1$ és $C_2 = L_2$ (azaz C_1' és C_2' üres klózok), rezolvensük az üres klóz (\square). Az a tevékenység, melynek eredménye a rezolvens, a rezolválás.

	klózpár	rezolvens
(a)	$(X \vee Y, \neg Y \vee Z)$	$X \vee Z$
(b)	$(X \vee \neg Y, \ \neg Y \vee Z)$	nincs: mindkét azonos alapú literál negált
(c)	$(X \vee \neg Y, \ Z \vee \neg V)$	nincs: nincs azonos alapú literál
(d)	$(\neg X \vee \neg Y, \ X \vee Y \vee Z)$	nincs: két komplemens literálpár van
(e)	$(X, \neg X)$	

ábra 8: Példák klózpárok rezolválhatóságára, rezolvensére.

Tétel: Ha a C klóz a (C_1, C_2) klózpár rezolvense, akkor azon \mathcal{I} interpretációk a $\{C_1, C_2\}$ klózhalmazt nem elégíthetik ki, amelyekben C igazságértéke hamis, azaz $\mathcal{B}_{\mathcal{I}}(C) = hamis$.

Rezolúciós levezetés: Egy S klózhalmazból a C klóz rezolúciós levezetése egy olyan véges $k_1, k_2, ..., k_m (m \ge 1)$ klózsorozat, ahol minden j = 1, 2, ..., m-re

- 1. vagy $k_j \in S$,
- 2. vagy van olyan $1 \le s, t \le j$, hogy k_j a (k_s, k_t) klózpár rezolvense,

és a klózsorozat utolsó tagja, k_m , éppen a C klóz.

Megállapodásunk szerint a rezolúciós kalkulus eldöntésproblémája az, hogy levezethető-e S-ből \square . A rezolúciós levezetés célja tehát \square levezetése S-ből. Azt, hogy \square levezethető S-ből, úgy is ki lehet fejezni, hogy létezik S-nek rezolúciós cáfolata.

Példa: Próbáljuk meg levezetni \Box -t az $S = \{\neg X \lor Y, \neg Y \lor Z, X \lor Z, \neg V \lor Y \lor Z, \neg Z\}$ klózhalmazból. A levezetés bármelyik S-beli klózból indítható.

1.	$\neg V \vee Y \vee Z$	$[\ \in S\]$
2.	$\neg Z$	$[\ \in S\]$
3.	$\neg V \vee Y$	[1, 2 rezolvense]
4.	$\neg Y \vee Z$	$[\in S]$
5.	$\neg Y$	[2, 4 rezolvense]
6.	$\neg V$	[3, 5 rezolvense]
7.	$X \vee V$	$[\ \in S\]$
8.	X	[6, 7 rezolvense]
9.	$\neg X \vee Y$	$[\in S]$
10.	Y	[8,9 rezolvense]
11.		[5, 10 rezolvense]

ábra 9: \square rezolúciós levezetése S-ből.

Lemma: Legyen S tetszőleges klózhalmaz. S-ből történő rezolúciós levezetés esetén bármely S-ből levezetett klóz tautologikus következménye S-nek.

A rezolúciós kalkulus helyessége: A rezolúciós kalkulus helyes, azaz tetszőleges S klózhalmaz esetén amennyiben S-ből levezethető \square , akkor S kielégíthetetlen.

A rezolúciós kalkulus teljessége: A rezolúciós kalkulus teljes, azaz bármely véges, kielégíthetetlen S klózhalmaz esetén S-ből levezethető \square .

Levezetési fa: Egy rezolúciós levezetés szerkezetét *levezetési fa* segítségével szemléltethetjük. A levezetési fa csúcsai klózok. Két csúcsból pontosan akkor vezet él egy harmadik, közös csúcsba, ha az a két klóz rezolvense.

ábra 10: Az előző példa levezetési fája.

Rezolúciós stratégiák:

• Lineáris rezolúció: Egy S klózhalmazból való lineáris rezolúciós levezetés egy olyan $k_1, l_1, k_2, l_2, ..., k_{m-1}, l_{m-1}, k_m$ rezolúciós levezetés, amelyben minden j=2,3,...,m-re k_j a (k_{j-1},l_{j-1}) klózpár rezolvense. A k_j klózokat centrális klózoknak, az l_j klózokat mellékklózoknak nevezzük.

Tetszőleges rezolúciós levezetés átírható lineárissá, azaz a lineáris rezolúciós kalkulus teljes.

• Lineáris inputrezolúció: Egy S klózhalmazból való lineáris inputrezolúciós levezetés egy olyan $k_1, l_1, k_2, l_2, ..., k_{m-1}, l_{m-1}, l_{m-1}$ lineáris rezolúciós levezetés, amelyben minden j=1,2,...,m-1-re $l_j \in S$, azaz a lineáris inputrezolúciós levezetésben a mellékklózok S elemei.

A lineáris inputrezolúciós stratégia nem teljes, de megadható olyan formulaosztály, melyre az. A legfeljebb egy negált literált tartalmazó klózokat Horn-klózoknak nevezzük, a Horn-formulák pedig azok a formulák, melyek konjunktív normálformája Horn-klózok konjunkciója. A lineáris inputrezolúciós stratégia Horn-formulák esetén teljes.

1.3 Predikátumkalkulus

1.3.1 Elsőrendű logikai nyelvek szintaxisa

Egy elsőrendű logikai nyelv ábécéje logikai és logikán kívüli szimbólumokat, továbbá elválasztójeleket tartalmaz. A logikán kívüli szimbólumhalmaz megadható < Srt, Pr, Fn, Cnst > alakban, ahol:

- 1. Srt nemüres halmaz, elemei fajtákat szimbolizálnak,
- 2. Pr nemüres halmaz, elemei predikátumszimbólumok,
- 3. az Fn halmaz elemei függvényszimbólumok,
- $4.\ Cnst$ pedig a függvényszimbólumok halmaza.

Az < Srt, Pr, Fn, Cnst > ábécé szignatúrája egy $< \nu_1, \nu_2, \nu_3 >$ hármas, ahol

- 1. minden $P \in Pr$ predikátumszimbólumhoz ν_1 a predikátumszimbólum alakját, azaz a $(\pi_1, \pi_2, ..., \pi_k)$ fajtasorozatot,
- 2. minden $f \in Fn$ függvényszimbólumhoz ν_2 a függvényszimbólum alakját, azaz a $(\pi_1, \pi_2, ..., \pi_k, \pi)$ fajtasorozatot és

3. minden $c \in Cnst$ konstansszimbólumhoz ν_3 a konstansszimbólumhoz alakját, azaz (π) -t

rendel $(k > 0 \text{ és } \pi_1, \pi_2, ..., \pi_k, \pi \in Srt).$

Logikai jelek az ítéletlogikában is használt logikai összekötőjelek, valamint az univerzális (\forall) és egzisztenciális (\exists) kvantorok és a különböző fajtájú individuumváltozók. Egy elsőrendű nyelv ábécéjében minden $\pi \in Srt$ fajtához szimbólumoknak megszámlálhatóan végtelen $v_1^{\pi}, v_2^{\pi}, \dots$ rendszere tartozik, ezeket a szimbólumokat nevezzük π fajtájú változóknak. Elválasztójel a nyitó és csukó zárójelek, és a vessző.

Az elsőrendű logikai nyelvekben az elválasztójelek és a logikai jelek mindig ugyanazok, viszont a logikán kívüli jelek halmaza, illetve ezek szignatúrája nyelvről nyelvre lényegesen különbözhet. Ezért mindig megadjuk a < Srt, Pr, Fn, Cnst > négyest és ennek $< \nu_1, \nu_2, \nu_3 >$ szignatúráját, amikor egy elsőrendű logikai nyelv ábécéjére hivatkozunk. Jelölése $V[V_{\nu}]$, ahol V_{ν} adja meg a $< \nu_1, \nu_2, \nu_3 >$ szignatúrájú< Srt, Pr, Fn, Cnst > négyest.

Termek: A $V[V_{\nu}]$ ábécé feletti termek halmaza $\mathcal{L}_t[V_{\nu}]$, ami a következő tulajdonságokkal bír:

- 1. Minden $\pi \in Srt$ fajtájú változó és konstans π fajtájú term.
- 2. Ha az $f \in Fn$ függvényszimbólum $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú és $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek, akkor az $f(s_1, s_2, ..., s_k)$ egy π fajtájú term.
- 3. Minden term az 1-2. szabályok véges sokszori alkalmazásával áll elő.

Formulák: A $V[V_{\nu}]$ ábécé feletti elsőrendű formulák halmaza $\mathcal{L}_f[V_{\nu}]$, ami a következő tulajdonságokkal bír:

- 1. Ha a $P \in Pr$ predikátumszimbólum $(\pi_1, \pi_2, ..., \pi_k)$ alakú és az $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek, akkor a $P(t_1, t_2, ..., t_k)$ szó egy elsőrendű formula. Az így nyert formulákat atomi formuláknak nevezzük.
- 2. Ha S elsőrendű formula, akkor $\neg S$ is az.
- 3. Ha S és T elsőrendű formulák és o binér logikai összekötőjel, akkor $(S \circ T)$ is elsőrendű formula.
- 4. Ha S eleme elsőrendű formula, Q kvantor (\forall vagy \exists) és x tetszőleges változó, akkor QxS is elsőrendű formula. Az így nyert formulákat kvantált formuláknak nevezzük, a $\forall xS$ alakú formulák univerzálisan kvantált formulák, a $\exists xS$ alakú formulák pedig egzisztenciálisan kvantált formulák. A kvantált formulákban Qx a formula prefixe, S pedig a magja.
- 5. Minden elsőrendű formula az 1-4. szabályok véges sokszori alkalmazásával áll elő.

A $V[V_{\nu}]$ ábécé feletti elsőrendű logikai nyelv $\mathcal{L}[V_{\nu}] = \mathcal{L}_t[V_{\nu}] \cup \mathcal{L}_f[V_{\nu}]$, azaz $\mathcal{L}[V_{\nu}]$ minden szava vagy term, vagy formula.

A negációs, konjunkciós, diszjunkciós, implikációs (ezek jelentése ua., mint nulladrendben) és kvantált formulák összetett formulák.

Az elsőrendű logikai nyelv prímformulái az atomi formulák és a kvantált formulák.

Változó
előfordulás fajtái: Egy formula x változójának egy előfordulása:

- szabad, ha nem esik x-re vonatkozó kvantor hatáskörébe,
- kötött, ha x-re vonatkozó kvantor hatáskörébe esik.

Változó fajtái: Egy formula x változója:

- szabad, ha minden előfordulása szabad,
- kötött, ha minden előfordulása kötött, és

• vegyes, ha van szabad és kötött előfordulása is.

Formula zártsága, nyíltsága: Egy formula:

- zárt, ha minden változója kötött,
- nyílt, ha legalább egy változójának van szabad előfordulása és
- kvantormentes, ha nincs benne kvantor

Megjegyzés: a zárt formulák elsőrendű állításokat szimbolizálnak (egy elsőrendű állítás nem más, mint elemek egy halmazára megfogalmazott kijelentő mondat).

1.3.2 Az elsőrendű logika szemantikája

Matematikai struktúra: Matematikai struktúrán egy < U, R, M, K > négyest értünk, ahol:

- 1. $U = \bigcup_{\pi} U_{\pi}$ nem üres alaphalmaz (univerzum),
- 2. R az U-n értelmezett logikai függvények (relációk) halmaza,
- 3. M az U-n értelmezett matematikai függvények (alapműveletek) halmaza,
- 4. K az U kijelölt elemeinek (konstansainak) halmaza (lehet üres).

Interpretáció: Az interpretáció egy < U, R, M, K > matematikai struktúra és $\mathcal{I} = < \mathcal{I}_{Srt}, \mathcal{I}_{Pr}, \mathcal{I}_{Fn}, \mathcal{I}_{Cnst} >$ függvénynégyes, ahol:

- az $\mathcal{I}_{Srt}: \pi \mapsto U_{\pi}$ függvény megad minden egyes $\pi \in Srt$ fajtához egy U_{π} nemüres halmazt, a π fajtájú individuumok halmazát,
- az $\mathcal{I}_{Pr}: P \mapsto P^{\mathcal{I}}$ függvény megad minden $(\pi_1, \pi_2, ..., \pi_k)$ alakú $P \in Pr$ predikátumszimbólumhoz egy $P^{\mathcal{I}}: U_{\pi_1} \times U_{\pi_2} \times ... \times U_{\pi_k} \to \mathbb{L}$ logikai függvényt (relációt),
- az $\mathcal{I}_{Fn}: f \mapsto f^{\mathcal{I}}$ függvény hozzárendel minden $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú $f \in Fn$ függvényszimbólumhoz egy $P^{\mathcal{I}}: U_{\pi_1} \times U_{\pi_2} \times ... \times U_{\pi_k} \to U_{\pi}$ matematikai függvényt (műveletet),
- az $\mathcal{I}_{Cnst}: c \mapsto ct^{\mathcal{I}}$ pedig minden π fajtájú $c \in Cnst$ konstansszimbólumhoz az U_{π} individuumtartománynak egy individuumát rendeli, azaz $c^{\mathcal{I}} \in U_{\pi}$.

Változókiértékelés: Legyen az $\mathcal{L}[V_{\nu}]$ nyelvnek \mathcal{I} egy interpretációja, az interpretáció univerzuma legyen U és jelölje V a nyelv változóinak halmazát. Egy olyan $\kappa:V\to U$ leképezést, ahol ha x π fajtájú változó, akkor $\kappa(x)\in U_{\pi}, \mathcal{I}$ -beli változókiértékelésnek nevezünk.

 $\mathcal{L}_t[V_{\nu}]$ szemantikája: Legyen az $\mathcal{L}[V_{\nu}]$ nyelvnek \mathcal{I} egy interpretációja és κ egy \mathcal{I} -beli változókiértékelés. Az $\mathcal{L}[V_{\nu}]$ nyelv egy π fajtájú t termjének értéke \mathcal{I} -ben a κ változókiértékelés mellett az alábbi – $|t|^{\mathcal{I},\kappa}$ -val jelölt – U_{π} -beli individuum:

- 1. ha $c \in Cnst \pi$ fajtájú konstansszimbólum, akkor $|c|^{\mathcal{I},\kappa}$ az U_{π} -beli $c^{\mathcal{I}}$ individuum,
- 2. ha $x \pi$ fajtájú változó, akkor $|x|^{\mathcal{I},\kappa}$ az U_{π} -beli $\kappa(x)$ individuum,
- 3. ha $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek és ezek értékei a κ változókiértékelés mellett rendre az U_{π_1} -beli $|t_1|^{\mathcal{I},\kappa}$, az U_{π_2} -beli $|t_2|^{\mathcal{I},\kappa}$... és az U_{π_k} -beli $|t_k|^{\mathcal{I},\kappa}$ individuumok, akkor egy $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú $f \in Fn$ függvényszimbólum esetén $|f(t_1, t_2, ..., t_k)|^{\mathcal{I},\kappa}$ az U_{π} -beli $f^{\mathcal{I}}(|t_1|^{\mathcal{I},\kappa}, |t_2|^{\mathcal{I},\kappa}, ..., |t_k|^{\mathcal{I},\kappa})$ individuum.

Változókiértékelés x-variánsa: Legyen x egy változó. A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = y$ minden x-től különböző y változó esetén.

Elsőrendű logikai formula logikai értéke: Legyen az $\mathcal{L}[V_{\nu}]$ nyelvnek \mathcal{I} egy interpretációja és κ egy \mathcal{I} -beli változókiértékelés. Az $\mathcal{L}[V_{\nu}]$ nyelv egy C formulájához \mathcal{I} -ben a κ változókiértékelés mellett az alábbi – $|C|^{\mathcal{I},\kappa}$ -val jelölt – igazságértéket rendeljük:

1.
$$|P(t_1, t_2, ..., t_k)|^{\mathcal{I}, \kappa} = \left\{ \begin{array}{ll} igaz & : P^{\mathcal{I}}(|t_1|^{\mathcal{I}, \kappa}, |t_2|^{\mathcal{I}, \kappa}, ..., |t_k|^{\mathcal{I}, \kappa}) = igaz \\ hamis & : kulonben \end{array} \right\}$$

- 2. $|\neg A|^{\mathcal{I},\kappa}$ legyen $\neg |A|^{\mathcal{I},\kappa}$
- 3. $|A \wedge B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \wedge |B|^{\mathcal{I},\kappa}$
- 4. $|A \vee B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \vee |B|^{\mathcal{I},\kappa}$
- 5. $|A \supset B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \supset |B|^{\mathcal{I},\kappa}$

6.
$$|\forall xA|^{\mathcal{I},\kappa} = \left\{ \begin{array}{ll} igaz & : |A|^{\mathcal{I},\kappa^*} = igaz \ \kappa \ minden \ \kappa^* \ x - variansara \\ hamis & : kulonben \end{array} \right\}$$

6.
$$|\forall xA|^{\mathcal{I},\kappa} = \begin{cases} igaz : |A|^{\mathcal{I},\kappa^*} = igaz \ \kappa \ minden \ \kappa^* \ x - variansara \\ hamis : kulonben \end{cases}$$
7. $|\exists xA|^{\mathcal{I},\kappa} = \begin{cases} igaz : |A|^{\mathcal{I},\kappa^*} = igaz \ \kappa \ valamely \ \kappa^* \ x - variansara \\ hamis : kulonben \end{cases}$

Elsőrendű formula kielégíthetősége: Egy A elsőrendű formula kielégíthető, ha van olyan $\mathcal I$ interpretáció és κ változókiértékelés, amelyre $|A|^{\mathcal{I},\kappa}=igaz$ (ekkor azt mondjuk, hogy az $\mathcal I$ interpretáció és κ változókiértékelés kielégíti A-t), különben kielégíthetetlen.

Amennyiben az A formula zárt, igazságértékét egyedül az interpretáció határozza meg. Ha $|A|^{\mathcal{I}} = igaz$, azt mondjuk, hogy az \mathcal{I} kielégíti A-t vagy másképpen: \mathcal{I} modellje A-nak ($\mathcal{I} \models A$).

Logikailag igaz elsőrendű formula: Egy A elsőrendű logikai formula logikailag igaz, ha minden \mathcal{I} interpretációban és \mathcal{I} minden κ változókiértékelése mellett $|A|^{\mathcal{I},\kappa} = igaz$. Jelölése: $\models A$.

Szemantikus következmény: Azt mondjuk, hogy a G formula szemantikus következménye az \mathcal{F} formulahalmaznak, ha minden olyan \mathcal{I} interpretációra, amelyre $\mathcal{I} \models \mathcal{F}$ fennáll, $\mathcal{I} \models G$ is igaz (jelölés: $\mathcal{F} \models G$).

Tétel: Legyenek $A_1, A_2, ..., A_n, B$ $(n \ge 1)$ tetszőleges, ugyanabból az elsőrendű logikai nyelvből való formulák. Ekkor $\{A_1, A_2, ..., A_n\} \models B$ akkor és csak akkor, ha $A_1 \land A_2 \land ... \land A_n \land \neg B$ kielégíthetetlen.

Rezolúció: Elsőrendű predikátumkalkulusban is végezhető rezolúció, ráadásul a módszer helyes és teljes is. Nehézséget a klózok kialakítása okozhat, amelyek zárt, univerzálisan kvantált literálok konjunkciójából állnak. Ehhez eszközeink a prenex-, illetve skolem-formák.