

VIPM Project: Are you good or bad?

Alessandro Gherardi – mat.817084 Simone Giuseppe Locatelli – mat.816781

Introduzione

- Classificazione: buono/cattivo
- Content Based Image Retrieval
- Iterative Search Refinement

Dataset

Validation set:

- 300 Savory
- 300 Unsavory

Test set:

- 300 Savory
- 300 Unsavory

Soluzione proposta

Face Detection

- MTCNN (Multi-Task Cascaded Convolutional Neural Networks)
- Costruzione dell'immagine piramidale come input dell'algoritmo
- Algoritmo suddiviso in 3 fasi:
 - P-Net -> FCN per estrarre bounding-box candidate
 - R-Net -> CNN per raffinare risultati ottenuti
 - O-Net -> CNN per produrre bounding-box finale e posizione punti chiave (occhi, naso, ...)

Credit: Zhang et al. Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

Models

- · Addestramento di modelli sul dataset di training
- Modelli basati su features hand-crafted:
 - SVM -> BOVW sfruttando features SIFT
 - Random Forest -> Istogramma Colore RGB
 - Random Forest -> Combinazione SIFT + Colore

- Modelli Neurali
 - CNN -> Features apprese autonomamente, robuste al rumore e gerarchiche

Models – BOVW

Costruzione modello BOVW utilizzando descrittori SIFT.

- Estrazione descrittori SIFT (128-dim) da una griglia regolare.
- Creazione del vocabolario tramite K-Means -> 150 parole visuali (i centroidi individuati).
- Creazione istogramma normalizzato delle parole visuali.

Credit: Patch Autocorrelation Features: a translation and rotation invariant approach for image classification

Feature – Color Histogram

- Istogramma RGB normalizzato con 8 bin per canale.
- Descrittore di dimensione 512 ad immagine.

Models - CNN

- Struttura CNN e Iperparametri individuati tramite ottimizzazione Bayesiana.
- Ottimizzazione effettuata su un sottoinsieme (25%) di train e validation set.

Phase	Accuracy	Loss
Train	86.8%	0.38
Validation	81.1%	0.46
Test	88.6%	0.34

Struttura CNN

Classification Performance

F1-

score

90%

91%

SVM: BOVW

Precision

94%

87%

Savory

Unsavory

Recall

86%

95%

Random Forest: Color

	Precision	Recall	F1- score	
Savory	82%	95%	88%	
Unsavory	94%	80%	86%	

Random Forest: BOVW+Color

	Precision	Recall	F1- score
Savory	88%	92%	90%
Unsavory	92%	88%	90%

BOVW Robustezza (1)

Passate alla classificazione, dopo preprocessing, 16 foto:

- 8 con barba lunga e "capelli"
- 8 con barba corta e rasato
- Foto accoppiate per espressione facciale

Test effettuato con modello trainato senza le nostre facce nel database

BOVW Robustezza (2)

CBIR

- Retrieval tramite struttura dati KDTree.
- Permette di organizzare punti (le features estratte dalle immagini) in uno spazio K-D partizionato.
- Garantisce una ricerca in tempo O(n).
- Per ogni modello utilizzato viene costruito il rispettivo albero con le relative features estratte dal train set.
 - Per la CNN, le features sono state estratte dall'ultimo layer di maxpooling (5184-D).

Retrieval Performance

- Sono state scelte 20 immagini casuali, 10 per classe.
- Come metrica per il retrieval è stata utilizzata la Precisione (P) media, a diverse soglie: 1, 5 e 10.

$$P \equiv \frac{|\{\text{No. relevant images}\} \cap \{\text{No. retrieved images}\}|}{|\{\text{No. retrieved images}\}|}$$

Model	P@1	P@5	P@10
BOVW	50%	45%	44%
Color Histogram	60%	44%	43%
BOVW+Color	55%	47%	43%
CNN	75%	68%	65%

NB: Il bot utilizza due tree separati per le due classi, ritornando i 5 piu simili savory e i 5 più simili unsavory

Esempio Retrieval

* You are: savory, with 99.0 confidence! *

/6 - savory - Rank: 6 - dist: 0.067 /7 - unsavory - Rank: 7 - dist: 0.067 /8 - savory - Rank: 8 - dist: 0.067 /9 - savory - Rank: 9 - dist: 0.067 /10 - unsavory - Rank: 10 - dist: 0.067

BOVW

* You are: savory, with 80.0 confidence! *

Query-by-example: savory

* You are: savory, with 69.0 confidence! *

BOVW+Color

* You are: savory, with 97.00000286102295 confidence! *

Color **CNN**

Iterative Relevance Feedback

Possibili sviluppi da test scartati

Siamese Network: modello scartato, ottima classificazione, troppo oneroso computazionalmente, scarso retrieval

Utilizzo di **hand-crafted features** estratte dalle sezioni del viso per il retrieval

Fine-tuning di CNN come DenseNet e ResNet

Conclusioni

Il task di classificazione binaria risulta, anche grazie alla qualità del dataset, facilmente risolvibile con vari modelli

Il task di retrieval risulta più complesso poiché è sono necessarie feature più discriminanti per discernere tra un volto e un altro

In classificazione, quindi, il descrittore migliore è risultato essere BOVW, mentre in fase di retrieval la CNN riesce ad estrapolare una rappresentazione più efficacie.

Appendice - MTCNN

P-Net Conv: 3x3 Conv: 3x3 Conv: 3x3 MP: 2x2 classification 1x1x2bounding box regression input size Facial landmark localization 5x5x10 3x3x16 1x1x32 12x12x3 1x1x10 R-Net Conv: 3x3 Conv: 2x2 fully face classification MP: 3x3 MP: 3x3 bounding box regression input size 24x24x3 ☐ Facial landmark 11x11x28 4x4x48 3x3x64 128 localization O-Net Conv: 3x3 Conv: 3x3 Conv: 2x2 fully connect / face classification MP: 3x3 MP: 3x3 MP: 2x2 bounding box regression 3x3x128 256 Facial landmark localization input size 23x23x32 10x10x64 4x4x64

Appendice - Bayesian optimization

- Approcci manuali o Grid Search per l'individuazione degli iperparametri migliori non efficienti.
- Sfrutta il teorema di Bayes, per limitare lo spazio di ricerca degli iperparametri di un modello.
 - P(A|B) = P(B|A)*P(A) / P(B)
- L'ottimizzazione sfrutta la conoscenza ottenuta durante i vari tentativi, per guidare la ricerca verso gli iperparametri migliori.

# Filtri I conv	Dim. Filtro	Dim. I Max pooling	# layer Conv	# Filtri i- esima conv.	# Dense layer	Dim. I-esimo Dense layer	Apply Dropout	Optimizer	Learning rate
[32, 64]	[(3x3), (5x5)]	[(3x3), (5x5)]	[1, 2]	[64, 128, 256]	[1, 2]	[64, 128, 256]	[True, False]	[adam, rmsprop, adamax]	[0.001 <i>,</i> 0.01]

Appendice - Tentativi - Siamese CNN

Triplet loss on two positive faces (Obama) and one negative face (Macron). (Source: Olivier Moindrot)

Appendice - Tentativi - Hand-crafted features

Features:

- Colore medio occhi
- Distanza occhio-occhio, occhi-naso, naso-bocca, lunghezza bocca
- Per tutti gli elementi, dopo trasholding:
 - Asse maggiore e minore
 - Area
 - Perimetro
 - Eccentricità