EVRP - Electric Vehicle Routing Problem

Tabela 1. Definições de conjuntos

N	Conjunto de todos os pontos (clientes e pontos de recarga)	
$R \subset N$	Conjunto de pontos de recarga	
$C \subset N$	Conjunto de clientes	
K	Conjunto de veículos	
$N'=N\ \cup\ \{0\}$	Conjunto de pontos, incluindo o depósito 0 (centro de distribuição).	

Tabela 2. Definições de parâmetros

$\overline{d_{ij}}$	Distância entre os pontos i e j
Q_k	Capacidade da bateria do veículo $k \pmod {kWh}$
v	Velocidade média do Veículo
c_k	Quantidade de energia que o veículo $k $ consome por quilômetro (em kWh/km)
r_i	Potência de recarga no posto de recarga $i \in R$ (em kW)
q_i	Demanda do pedido do cliente $i \in \mathcal{C}$
l_i	Leadtime do cliente $i \in \mathcal{C}$
s_i	Tempo de serviço necessário para atender o cliente $i \in \mathcal{C}$
t_0	Tempo de partida no centro de distribuição 0

Tabela 3. Definições de variáveis

x_{ij}^k	Binária	Variável binária que indica se o veículo \boldsymbol{k} viaja do ponto \boldsymbol{i} para o ponto \boldsymbol{j}
y_i^k	Reais positivos	Quantidade de bateria restante no veículo \boldsymbol{k} ao sair do ponto \boldsymbol{i}
t_i^k	Reais positivos	Tempo de chegada do veículo k para atender o cliente $i \in \mathcal{C}$
u_i^k	Reais positivos	Quantidade de carga adicionada ao veículo $k $ no ponto de recarga $i (i \in R)$
z_i^k	Binária	Variável binária que indica se o veículo k recarrega no ponto $i(i\in R)$

Função objetivo:

$$\min \sum_{k \in K} \sum_{j \in N'} \sum_{j \in N'} d_{ij} \cdot x_{ij}^k$$

Minimizar a distância total percorrida pelos veículos

Sujeito a:

\sum	\sum	$x_{i,i}^k \geq 1$
$k \in K$	j∈N₁	ij —

 $\forall i \in C$

Atendimento de todos os pedidos de um cliente: Cada pedido $p \in P_i$ deve ser atendido exatamente uma vez

$$y_i^k \leq \frac{Q_k}{c_k}$$

 $\forall i \in N', \, \forall k \in K$

Capacidade de bateria e consumo de energia: A carga da bateria deve ser suficiente para percorrer a distância entre dois pontos, e a recarga ocorre apenas nos pontos de recarga

$$y_i^k + u_i^k \cdot z_i^k \le \frac{Q_k}{c_k}$$

 $\forall i \in R, \ \forall k \in K$

Nos pontos de recarga $R \subset N$

$$z_i^k = 0$$

 $\forall i \notin R, \forall k \in K$

Recarga apenas em pontos de recarga: A recarga só pode ocorrer nos pontos de recarga $\forall i \in R$

$$y_i^k - y_j^k \ge d_{ij} \cdot x_{ij}^k$$

 $\forall i,j \in N', \, \forall k \in K$

Autonomia garantida: A bateria do veículo nunca pode ser completamente descarregada ao se mover de um ponto \dot{i} para \dot{j}

$$t_i^k + s_i \le l_i$$

 $\forall i \in C, \forall k \in K$

Leadtime dos pedidos: O tempo de chegada do veículo k para atender o pedido $p \in P_i$ deve respeitar o leadtime associado ao pedido

$$\sum_{j \in N'} x_{ij}^k = \sum_{j \in N'} x_{ji}^k$$

$$\forall i \in N', \forall k \in K$$

Conservação de fluxo: O fluxo de veículos entre os nós deve ser mantido

$$t_j^k \geq t_i^k + s_i + \frac{d_{ij}}{v} + \left(u_i^k \cdot \frac{r_i}{c_k} \cdot z_i^k\right)$$

$$\forall i \in N', \forall j \in N',$$

 $\forall k \in K$

Tempo de serviço por pedido: O tempo de chegada do veículo para atender o pedido $p \in P_i$ deve incluir o tempo de serviço

$$\sum_{j \in N'} x_{0j}^k = 1$$

$$\forall k \in K$$

 $\sum_{i \in N'} x_{i0}^k = 1$