A SEMANTIC-BASED HOIST MUTATION OPERATOR FOR EVOLUTIONARY FEATURE CONSTRUCTION IN REGRESSION

HENGZHE ZHANG, QI CHEN, BING XUE, WOLFGANG BANZHAF, MENGJIE ZHANG

VICTORIA UNIVERSITY OF WELLINGTON

15/07/2024

TABLE OF CONTENTS

- 1 New Algorithm
- 2 Experimental Settings
- 3 Results
- 4 Conclusions

Introduction

- **Feature construction** is a critical task in the machine learning pipeline.
- Constructs m high-order features $\Phi = \{\phi_1(X), \dots, \phi_m(X)\}$ to improve prediction accuracy.
- **Genetic programming (GP)** is popular for feature construction due to its flexible representation and gradient-free search mechanism.

(a) Feature Construction on Linear Regression

(b) New Feature Space

2

BLOAT IN GP

- **Bloat** refers to the increase in the size of GP trees without a corresponding improvement in fitness.
- Several hypotheses explain bloat: hitchhiking, defense against crossover, removal bias, and the nature of the program search space.
- Bloat can trap GP in local optima and reduce model interpretability.

Growth of program size

BLOAT CONTROL METHODS

- Various methods have been proposed to control bloat in GP:
 - **▶** Parsimony pressure
 - Dynamic depth limit
 - Prune and plant
 - ► Multi-objective methods
 - **▶** Program simplification
- Prune and plant (PAP) is effective but may **disrupt informative components**.

SEMANTIC GENETIC PROGRAMMING

- **Semantics** in GP refers to the outputs of GP individuals.
- Semantic GP uses semantics to guide evolution, improving search performance and population diversity.

NEW ALGORITHM

OVERALL FRAMEWORK

- **SHM operator** reduces the size of GP trees in feature construction.
- Five steps: population initialization, solution evaluation, hoist mutation, parent selection, and offspring generation.

The workflow of SHM-GP

SEMANTIC-BASED HOIST MUTATION

Steps:

- Measure **cosine semantic similarity** between the semantics of each subtree $\psi(X)$ and target Y.
- Hoist the subtree with the **highest semantic similarity** to form a new GP tree.
- For multi-tree GP, apply this operator to all GP trees $\psi \in \Phi$.

An example of the semantic-based hoist mutation operator

7

HASH-BASED CHECKING

■ Hash-based checking strategy prevents generating repetitive features $\psi_1 = \psi_2$.

An example of hash-based checking.

LEARNING GUARANTEES

■ Theorem: The **generalization loss** of the constructed model can be bounded by:

$$L_{\exp}(\phi) \le (1 - \theta^2) \left(1 - \sqrt{p - p \ln p + \frac{\ln n}{2n}} \right)_{+}^{-1}$$
 (1)

■ Shows that the hoisted subtree generalizes at least as well as the original tree.

EXPERIMENTAL SETTINGS

DATASETS

- Experiments conducted on **98 regression datasets** from Penn Machine Learning Benchmark (PMLB).
- Datasets are **standardized before training**.

EVALUATION PROTOCOL

- Each dataset is divided into **training and test sets** (80:20 ratio).
- \blacksquare R^2 score metric is used to evaluate test performance.
- 30 independent runs with different random seeds for reliable conclusions.

BASELINE METHODS

- Seven GP approaches with bloat control methods are compared:
 - ► Standard GP with Depth Limit
 - Double Tournament Selection (DTS)
 - **▶** Tarpeian
 - ► Prune and Plant (PAP)
 - ightharpoonup α -MOGP
 - ► TS-S
 - **▶** Dynamic Subtree Approximation (DSA)

RESULTS

TEST PERFORMANCE

■ **SHM operator** maintains competitive performance to standard GP on most datasets, and even better on some.

Statistical comparison of **test** R^2 **score** for different bloat control methods. ("+"," \sim ", and "-" indicate using the method in a row is better than, similar to or worse than using the method in a column.)

	α MOGP	Tarpeian	DTS	PAP	TS-S	DSA	DepthLimiting
SHM	29(+)/68(~)/1(-)	13(+)/81(~)/4(-)	35(+)/57(~)/6(-)	46(+)/49(~)/3(-)	27(+)/65(~)/6(-)	19(+)/74(~)/5(-)	13(+)/80(~)/5(-)
α MOGP		2(+)/78(~)/18(-)	11(+)/79(~)/8(-)	40(+)/48(~)/10(-)	5(+)/76(~)/17(-)	1(+)/86(~)/11(-)	3(+)/75(~)/20(-)
Tarpeian	_	_	22(+)/73(~)/3(-)	44(+)/52(~)/2(-)	11(+)/80(~)/7(-)	7(+)/89(~)/2(-)	4(+)/91(~)/3(-)
DTS	_	_	_	32(+)/60(~)/6(-)	4(+)/87(~)/7(-)	1(+)/73(~)/24(-)	6(+)/64(~)/28(-)
PAP	_	_	_	_	2(+)/57(~)/39(-)	1(+)/58(~)/39(-)	4(+)/51(~)/43(-)
TS-S	_	_	_	_	_	6(+)/85(~)/7(-)	12(+)/62(~)/24(-)
DSA	_	_	_	_	_	_	8(+)/81(~)/9(-)

TREE SIZE

■ SHM operator significantly reduces tree size on all datasets.

Statistical comparison of **tree size** for different bloat control methods. ("+"," \sim ", and "-" indicate using the method in a row is better than, similar to or worse than using the method in a column.)

	α MOGP	Tarpeian	DTS	PAP	TS-S	DSA	DepthLimiting
SHM	98(+)/o(~)/o(-)	98(+)/o(~)/o(-)	61(+)/37(~)/o(-)	55(+)/40(~)/3(-)	58(+)/35(~)/5(-)	94(+)/4(~)/o(-)	98(+)/o(~)/o(-
α MOGP	_	o(+)/5(~)/93(-)	o(+)/o(~)/98(-)	o(+)/2(~)/96(-)	o(+)/1(~)/97(-)	o(+)/o(~)/98(-)	39(+)/51(~)/8(-
Tarpeian	_	_	o(+)/2o(~)/78(-)	o(+)/38(~)/6o(-)	o(+)/34(~)/64(-)	5(+)/45(~)/48(-)	98(+)/o(~)/o(-
DTS	_	_	_	32(+)/32(~)/34(-)	29(+)/37(~)/32(-)	47(+)/47(~)/4(-)	98(+)/o(~)/o(-
PAP	_	_	_	_	25(+)/44(~)/29(-)	49(+)/27(~)/22(-)	98(+)/o(~)/o(-
TS-S	_	_	_	_	_	60(+)/30(~)/8(-)	98(+)/o(~)/o(-
DSA	_	_	_	_	_		98(+)/o(~)/o(-

■ SHM operator significantly reduces tree size on all datasets.

The distribution of tree size for different bloat control methods.

20

OVERALL COMPARISONS

Friedman's rank of R² test scores and average tree sizes.

Algorithm	R ² Rank	P-Value	Size Rank	P-Value
SHM	3.05 (1)	-	1.48 (1)	-
Tarpeian	3.88 (2)	1.9e-02	5.42 (6)	0.0e+00
DepthLimiting	3.96 (3)	1.9e-02	7.83 (8)	0.0e+00
DSA	4.07 (4)	1.1e-02	4.48 (5)	0.0e+00
TS-S	4.55 (5)	7.3e-05	3.12 (2)	4.0e-06
lphaMOGP	5.01 (6)	1.1e-07	7.17 (7)	0.0e+00
DTS	5.11 (7)	2.3e-08	3.14 (3)	4.0e-06
PAP	6.37 (8)	0.0e+00	3.35 (4)	2.6e-07

OVERALL COMPARISONS

 R^2 scores, model sizes and training time of 23 algorithms on 120 regression problems.

EXAMPLE MODELS

■ Features constructed using Standard GP are **complex**.

An example of a constructed feature based on standrad GP with depth limiting

EXAMPLE MODELS

■ Features constructed using SHM-GP are **simple and interpretable**.

An example of constructed features based on the semantic-based hoist mutation operator

20

CONCLUSIONS

CONCLUSIONS

- **SHM operator** effectively controls bloat and improves predictive performance.
- Extensive experiments validate the superiority of SHM over other bloat control methods.

THANKS FOR LISTENING!

EMAIL: HENGZHE.ZHANG@ECS.VUW.AC.NZ

GITHUB PROJECT: HTTPS://GITHUB.COM/HENGZHE-ZHANG/EVOLUTIONARYFOREST