Class 08 Mini Project

Jessica Diaz-Vigil

Getting Organized

First I will import the correct data.

```
fna.data <- "https://marcos-diazg.github.io/BIMM143_SP23/class-material/class8/WisconsinCa
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean	texture_mean	perimeter_mean	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	М	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	${\tt smoothness_mean}$	compa	ctness_mean co	oncavity_mean co	oncave.poir	nts_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f	ractal	_dimension_mea	n radius_se te	xture_se pe	erimeter_se
842302	0.2419		0.0787	1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	0.7456	0.7869	4.585
84348301	0.2597		0.0974	0.4956	1.1560	3.445
84358402	0.1809		0.0588	0.7572	0.7813	5.438
843786	0.2087		0.0761	.3 0.3345	0.8902	2.217
	area_se smoothn	ess_se	compactness_s	se concavity_se	concave.po	oints_se

842302	153.40 0	.006399	0.04904	0.05373	0.01587
842517	74.08 0	.005225	0.01308	0.01860	0.01340
84300903	94.03 0	.006150	0.04006	0.03832	0.02058
84348301	27.23 0	.009110	0.07458	0.05661	0.01867
84358402	94.44 0	.011490	0.02461	0.05688	0.01885
843786	27.19 0	.007510	0.03345	0.03672	0.01137
	symmetry_se fr	actal_dimens	ion_se radi	ius_worst textu	re_worst
842302	0.03003	0.	006193	25.38	17.33
842517	0.01389	0.	003532	24.99	23.41
84300903	0.02250	0.	004571	23.57	25.53
84348301	0.05963	0.	009208	14.91	26.50
84358402	0.01756	0.	005115	22.54	16.67
843786	0.02165	0.	005082	15.47	23.75
	perimeter_wors	t area_worst	smoothness	s_worst compact:	ness_worst
842302	184.6			0.1622	0.6656
842517	158.8	1956.0)	0.1238	0.1866
84300903	152.5	1709.0)	0.1444	0.4245
84348301	98.8	7 567.7	•	0.2098	0.8663
84358402	152.2	1575.0)	0.1374	0.2050
843786	103.4	741.6	;	0.1791	0.5249
	•	-		${\tt symmetry_worst}$	
842302	0.711	9	0.2654	0.4601	
842517	0.241	6	0.1860	0.2750	
84300903	0.450	4	0.2430	0.3613	
84348301	0.686	9	0.2575	0.6638	
84358402	0.400	0	0.1625	0.2364	
843786	0.535	5	0.1741	0.3985	
	<pre>fractal_dimens</pre>	ion_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

We need to remove the diagnosis. To do this we will remove the column.

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

radius_mean texture_mean perimeter_mean area_mean smoothness_mean 842302 17.99 10.38 122.80 1001.0 0.11840

842517	20.57	17.77		326.0	0.08474
84300903	19.69	21.25		203.0	0.10960
84348301	11.42	20.38		386.1	0.14250
84358402	20.29	14.34		297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mean	concavity_mean	concave.poin	ts_mean symme	etry_mean
842302	0.27760	0.3001		0.14710	0.2419
842517	0.07864	0.0869		0.07017	0.1812
84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimensio	n_mean radius_se	texture_se	perimeter_se	area_se
842302	0	.07871 1.0950	0.9053	8.589	153.40
842517	0	.05667 0.5435	0.7339	3.398	74.08
84300903	0	.05999 0.7456	0.7869	4.585	94.03
84348301	0	.09744 0.4956	1.1560	3.445	27.23
84358402	0	.05883 0.7572	0.7813	5.438	94.44
843786	0	.07613 0.3345	0.8902	2.217	27.19
	smoothness_se co	mpactness_se con	cavity_se co	ncave.points_	_se
842302	0.006399	0.04904	0.05373	0.015	587
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020)58
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	385
843786	0.007510	0.03345	0.03672	0.011	L37
	symmetry_se frac	tal_dimension_se	radius_wors	t texture_wor	rst
842302	0.03003	0.006193	25.3	8 17.	. 33
842517	0.01389	0.003532	24.9	9 23.	.41
84300903	0.02250	0.004571	23.5	7 25.	. 53
84348301	0.05963	0.009208	14.9	1 26.	. 50
84358402	0.01756	0.005115	22.5	4 16.	. 67
843786	0.02165	0.005082	15.4	7 23.	.75
	perimeter_worst	area_worst smoot	hness_worst	compactness_v	vorst
842302	184.60	2019.0	0.1622	0.	6656
842517	158.80	1956.0	0.1238	0.	1866
84300903	152.50	1709.0	0.1444	0.	4245
84348301	98.87	567.7	0.2098	0.	8663
84358402	152.20	1575.0	0.1374	0.	2050
843786	103.40	741.6	0.1791	0.	5249
	concavity_worst	concave.points_w	orst symmetr	y_worst	
842302	0.7119	0.	2654	0.4601	
842517	0.2416	0.	1860	0.2750	

84300903	0.4504	0.2430	0.3613
84348301	0.6869	0.2575	0.6638
84358402	0.4000	0.1625	0.2364
843786	0.5355	0.1741	0.3985
fra	ctal_dimension_worst		
842302	0.11890		
842517	0.08902		
84300903	0.08758		
84348301	0.17300		
84358402	0.07678		
843786	0.12440		

We need to set up a new vector called diagnosis that contains the data from the diagnosis column, but we will store it as a factor.

```
wisc.df <- read.csv(fna.data, row.names=1)
diagnosis <- wisc.df[,1]</pre>
```

Exploratory Data Analysis

Q1. How many observations are in this dataset?

```
wisc.df <- read.csv(fna.data, row.names=1)
length(wisc.df$diagnosis)</pre>
```

[1] 569

There were 569 observations in this dataset.

Q2. How many of the observations have a malignant diagnosis?

```
wisc.df <- read.csv(fna.data, row.names=1)
table(diagnosis)</pre>
```

diagnosis B M 357 212 There were 212 observations which were malignant.

Q3. How many variables/features in the data are suffixed with _mean?

```
wisc.df <- read.csv(fna.data, row.names=1)
library(stringr)
cn<-colnames(wisc.data, do.NULL = TRUE, prefix = "col")
sum(str_count(cn, "_mean"))</pre>
```

[1] 10

There are 10 variables in the data which are suffixed with _mean

Principal Component Analysis

Performing PCA

```
round(colMeans(wisc.data), 2)
```

perimeter_mean	texture_mean	radius_mean
91.97	19.29	14.13
compactness_mean	${\tt smoothness_mean}$	area_mean
0.10	0.10	654.89
symmetry_mean	concave.points_mean	concavity_mean
0.18	0.05	0.09
texture_se	radius_se	fractal_dimension_mean
1.22	0.41	0.06
smoothness_se	area_se	perimeter_se
0.01	40.34	2.87
concave.points_se	concavity_se	compactness_se
0.01	0.03	0.03
radius_worst	fractal_dimension_se	symmetry_se
16.27	0.00	0.02
area_worst	perimeter_worst	texture_worst
880.58	107.26	25.68
concavity_worst	${\tt compactness_worst}$	smoothness_worst
0.27	0.25	0.13
<pre>fractal_dimension_worst</pre>	symmetry_worst	concave.points_worst
0.08	0.29	0.11

round(apply(wisc.data,2,sd), 2)

```
radius mean
                                    texture_mean
                                                           perimeter_mean
                   3.52
                                                                     24.30
                                            4.30
             area_mean
                                smoothness mean
                                                         compactness_mean
                 351.91
                                            0.01
                                                                      0.05
                            concave.points_mean
                                                            symmetry_mean
        concavity_mean
                                            0.04
                   0.08
                                                                      0.03
fractal dimension mean
                                       radius se
                                                               texture se
                   0.01
                                            0.28
                                                                      0.55
          perimeter_se
                                                            smoothness se
                                         area_se
                   2.02
                                           45.49
                                                                      0.00
                                                        concave.points_se
        compactness_se
                                    concavity_se
                   0.02
                                            0.03
                                                                      0.01
                           fractal_dimension_se
                                                             radius_worst
           symmetry_se
                                                                      4.83
                   0.01
                                            0.00
         texture_worst
                                perimeter_worst
                                                               area_worst
                   6.15
                                           33.60
                                                                   569.36
      smoothness_worst
                              compactness_worst
                                                          concavity_worst
                   0.02
                                            0.16
                                                                      0.21
                                  symmetry_worst fractal_dimension_worst
  concave.points_worst
                   0.07
                                            0.06
                                                                     0.02
```

```
wisc.pr <- prcomp( wisc.data, scale = T, center = T )
summary(wisc.pr)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172 Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251 Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010 PC8 PC9 PC10 PC11 PC12 PC13 PC14 Standard deviation 0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624 Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523 Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335 PC15 PC16 PC17 PC18 PC19 PC20 PC21 Standard deviation 0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731 Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010 Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966 PC22 PC23 PC24 PC25 PC26 PC27 PC28 Standard deviation0.165650.156020.13440.124420.090430.083070.03987Proportion of Variance0.000910.000810.00060.000520.000270.000230.00005Cumulative Proportion0.997490.998300.99890.999420.999690.999920.99997PC29PC30Standard deviation0.027360.01153Proportion of Variance0.000020.00000Cumulative Proportion1.000001.00000

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?
- Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

Interpreting PCA Results

Creating a biplot:

biplot(wisc.pr)

- Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why? This plot is very hard to understand since its so noisy and there are numbers everywhere that are comprehensible.
- **Q8.** Generate a similar plot for principal components 1 and 3. What do you notice about these plots?


```
diagnosis <- as.numeric(wisc.df[,1])</pre>
```

Warning: NAs introduced by coercion

```
plot(wisc.pr$x[, c(1, 3)],
     xlab = "PC1", ylab = "PC3")
```


Variance Explained


```
plot(cumsum(pve), xlab = "Principal Component",
    ylab = "Cumulative Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")
```


Communicating PCA Results

• **Q9.** For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean", 1]
[1] -0.2608538
```

This gives us a value of -0.26 which means that this is the value for that mean.

• Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
plot(cumsum(pve), xlab = "Principal Component",
    ylab = "Cumulative Proportion of Variance Explained",
    ylim = c(0, 1), type = "b")
```


We can see that above the horizontal line for 0.8 is attributed for the top 5 square sums

Hierarchical Clustering of Case Data

```
data.scaled <- scale(wisc.data)

data.dist <- dist(data.scaled)

wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Results of Hierarchical Clustering

• Q11. Using the plot() function, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust, h=20)
unique(wisc.hclust.clusters)</pre>
```

[1] 1 2 3 4

• Q12. Can you find a better cluster vs diagnoses match with by cutting into a different number of clusters between 2 and 10?

```
wisc.hclust.clusters <- cutree(wisc.hclust, k = 4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

K-means Clustering and Comparing Results

```
wisc.km <- kmeans(data.scaled, centers= 2, nstart= 20)
table(wisc.km$cluster, diagnosis)</pre>
```

• Q13. How well does k-means separate the two diagnoses? How does it compare to your helust results?

Clustering on PCA Results

```
wisc.pr.hclust <- hclust(data.dist, method="complete")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=4)</pre>
```

• Q14. How well does the newly created model with four clusters separate out the two diagnoses?

```
table(wisc.pr.hclust.clusters, diagnosis)
```

• Q15. How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

```
table(wisc.km$cluster, diagnosis)

   table(wisc.hclust.clusters, diagnosis)
```

• Q16. Which of your analysis procedures resulted in a clustering model with the best specificity? How about sensitivity?

I think the second one may be best