Importing pandas library

import pandas as pd

Reading dataset

```
df = pd.read_csv('heart.csv')
# 303 rows × 14 columns
₹
                                                                                                         \blacksquare
           age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp caa thall output
       0
                            145
                                 233
                                                  0
                                                                  0
                                                                          2.3
                                                                                0
                                                                                                         ılı.
            37
                                         0
                                                          187
                                                                  0
                                                                                0
                                                                                     0
                            130
                                 250
                                                                         3.5
                            130
                                 204
                                                                          1.4
            56
                                                          178
                                                                  0
                                                                         8.0
                                                                                2
                            120
                                 236
                                         0
                                                                                2
            57
                  0
                     0
                            120
                                 354
                                         0
                                                  1
                                                          163
                                                                  1
                                                                         0.6
                                                                                                    1
            57
                            140
                                         0
                                                  1
                                                                                            3
                                                                                                    0
      298
                  0
                     0
                                 241
                                                          123
                                                                  1
                                                                         0.2
                            110
                                 264
                                                                          1.2
      299
                                                          141
                                                                  0
                                                                         3.4
                                                                                                    0
      300
                            144
                                  193
      301
            57
                            130
                                         0
                                                  1
                                                          115
                                                                  1
                                                                         1.2
                                                                                1
                                                                                            3
                                                                                                    0
                                 131
      302
            57
                            130
                                 236
                                         0
                                                  0
                                                          174
                                                                  0
                                                                         0.0
                                                                                                    0
     303 rows × 14 columns
 Next steps: Generate code with df
                                    View recommended plots
                                                                 New interactive sheet
```

Cleaning dataset

df = df.drop_duplicates()

df

	age	sex	ср	trtbps	cnol	tbs	restecg	thalachh	exng	отареак	sīp	caa	tnall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0
02 rc	ws ×	14 col	umns	3										

Duplicates removed

```
df.isna().sum()
# No null values, it's clean
                0
        age
                0
                0
        sex
         ср
                0
                0
       trtbps
        chol
                0
        fbs
                0
               0
       restecg
      thalachh 0
        exng
                0
      oldpeak
               0
        slp
                0
        caa
                0
                0
        thall
               0
       output
```

Visualization plot

Pie graph

```
sex_counts = df['sex'].value_counts()
plt.figure(figsize=(6, 6))
plt.pie(sex_counts, labels=['Male', 'Female'], autopct='%1.1f%%', startangle=90)
plt.title('Distribution of Sex')
plt.show()
```


Distribution of Sex

Bar plot

4

```
avg_chol_by_cp = df.groupby('cp')['chol'].mean()
plt.figure(figsize=(8, 6))
plt.bar(avg_chol_by_cp.index, avg_chol_by_cp.values)
plt.xlabel('Chest Pain Type')
plt.ylabel('Average Cholesterol')
plt.title('Average Cholesterol Levels by Chest Pain Type')
plt.show()
```


Box plot

```
plt.figure(figsize=(8, 6))
sns.boxplot(x='output', y='age', data=df)
plt.xlabel('Heart Disease (1=Yes, 0=No)')
plt.ylabel('Age')
plt.title('Distribution of Age by Heart Disease Presence')
plt.show()
```


Histogram

```
plt.figure(figsize=(8, 6))
plt.hist(df['trtbps'], bins=10)
plt.xlabel('Resting Blood Pressure')
plt.ylabel('Frequency')
plt.title('Distribution of Resting Blood Pressure')
plt.show()
```


Scatter plot

```
plt.figure(figsize=(8, 6))
plt.scatter(df['age'], df['thalachh'])
plt.xlabel('Age')
plt.ylabel('Maximum Heart Rate')
```

plt.title('Relationship between Age and Maximum Heart Rate')
plt.show()

Heat plot

plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix of Heart Disease Dataset')
plt.show()

Line plot

```
plt.figure(figsize=(8, 6))
sns.lineplot(data=df, x='age', y='chol', hue='output')
plt.xlabel('Age')
plt.ylabel('Cholesterol')
plt.title('Cholesterol Levels vs. Age (Colored by Heart Disease)')
plt.show()
```


50

Age

60

70

Pair plot

30

```
temp_df = df[['age', 'cp', 'trtbps', 'chol', 'fbs', 'output']]
sns.pairplot(temp_df, hue='output')
plt.show()
```

40

Word Cloud

```
Generated code may be subject to a license | Km103/nlp_project
```

```
!pip install wordcloud
from wordcloud import WordCloud
import matplotlib.pyplot as plt

with open('samplewords.txt', 'r') as f:
    text = f.read()
```