Endterm Evaluation

EE392A: UGPII (Audio Processing)

Wav2Vec2.0 Architecture

Results

- Total 7 types of noises used on SNR ranging from o-25
- 1000 Audio files from Libreespeech test dataset used to obtain the codebook pairs corresponding to clean and noisy versions
- Types of comparison
 - Offset + noise
 - Reverb + offset
 - Reverb + offset + noise
- Average accuracy with various reverb

RIR	0.1	0.2	0.4	0.5	0.7	0.8
Avg	8.04	5.13	4.53	2.1	2.65	1.12

• Average accuracy for different type of Noise + offset

Noise v/s SNR	Babbl e	Cafete ria	Car	Livingr oom	Shopp	Traffic	Train station	Avg
0	1.45	2.25	10.35	3.63	2.86	3.1	4.33	4
5	3.01	4.19	13.05	6.55	5.03	5.39	7.2	6.35
10	5.25	6.4	15.7	9.26	7.88	8.58	10.75	9.12
15	8.13	9.08	17.12	11.72	10.75	11.67	13.59	11.72
20	11.05	11.77	17.86	13.88	13.34	14.23	15.71	13.98
25	13.75	11.22	19.99	15.73	15.46	16.14	17	16.04
Avg	7.11	7.99	15.68	10.13	9.22	9.85	11.43	10.2

Percentage Change for the SNRs and given noise file with reverb = 0.5

SNR	Babble	Car	Cafeteri a	Livingro om	Shoppin g	Traffic	Train station	Average
0	0.36	0.89	0.41	0.55	0.53	0.45	0.5	0.54
5	0.57	1.13	0.63	0.81	0.77	0.8	0.74	0.78
10	0.8	1.32	0.86	1.06	1.01	1.05	0.99	1.01
15	1.07	1.42	1.07	1.23	1.22	1.29	1.25	1.23
20	1.3	1.56	1.26	1.41	1.4	1.45	1.44	1.4
25	1.45	1.66	1.44	1.56	1.57	1.61	1.58	1.55
Avg	0.93	1.34	0.95	1.1	1.09	1.13	1.08	1.09

HuBERT Architeture

HuBERT Framework

The training process alternates between two steps:

- clustering step to create
 pseudo-targets
- prediction step
 where the model
 tries to guess
 these targets at
 masked positions.

Discover "hidden units" targets through clustering

- Mel-Frequency
 Cepstral Coefficients
 (MFCCs) are used for
 the first clustering
 step.
- However, for subsequent clustering steps, representations from an intermediate layer of the HuBERT transformer encoder (from the previous iteration) are re-used.

Discover "hidden units" targets through clustering

The first step is to extract the hidden units (pseudo-targets) from the raw waveform of the audio. The K-means algorithm is used to assign each segment of audio (25 milliseconds) into one of K clusters.

Each identified cluster will then become a hidden unit, and all audio frames assigned to this cluster will be assigned with this unit label.

Each hidden unit is then mapped to its corresponding embedding vector that can be used during the second step to make predictions

Predict "noisy" targets from context

50% of transformer encoder input features are masked, and the model is asked to predict the targets for these positions.

The cosine similarity is computed between the transformer outputs and each hidden unit embedding from all possible hidden units to give prediction logits.

Predict "noisy" targets from context

The cross-entropy loss is then used to penalize wrong predictions.

The loss is only applied to the masked positions as it has been shown to perform better when using noisy labels.

WavLM Architecture

Results

- Total 7 types of noises used on SNR ranging from o-25
- 1000 Audio files from Libreespeech test dataset used to obtain the codebook pairs corresponding to clean and noisy versions
- Types of comparison
 - Offset + noise
 - Reverb + offset
 - Reverb + offset + noise
- Average accuracy with various reverb

RIR	0.1	0.2	0.4	0.5	0.7	0.8
Percent change	26.27	23.54	23.11	13.48	19.59	8.26

• Average accuracy for different type of Noise + offset

Noise v/s SNR	Babbl e	Cafete ria	Car	Livingr oom	Shopp	Traffic	Train station	Avg
0	3.65	8.22	30.34	16.26	13.73	19.78	3.65	13.66
5	13.34	16.33	31.22	23.37	21.89	25.41	13.34	20.7
10	22.76	24.55	31.64	27.91	26.62	26.11	22.76	26.05
15	26.7	28.62	32.02	30.04	27.16	27.43	26.7	28.38
20	28.97	30.28	32.24	31.06	28.2	28.02	28.97	29.68
25	30.02	31.12	32.45	31.42	28.72	29.18	30.12	30.45
Avg	28.93	23.19	31.66	26.68	24.39	25.99	20.92	25.97

Percentage Change for the SNRs and given noise file with reverb = 0.5

SNR	Babble	Car	Cafeteria	Livingroo m	Shopping	Traffic	Train station	Avg
0	1.39	8.77	1.74	3.39	3.31	4.99	3.45	3.86
5	2.48	10.73	2.77	5.14	5.4	7.47	6.48	5.78
10	5.35	11.99	4.96	7.44	8.2	9.82	9.11	8.12
15	8.69	13.75	7.7	9.83	10.07	11.38	9.79	10.17
20	10.76	15.79	9.79	11.37	11.58	12.33	10.57	11.74
25	11.79	16.41	10.12	12.28	12.49	12.85	13.49	12.78
Avg	6.74	12.91	6.18	8.24	8.51	9.81	8.81	8.74