#### **Data Analytics III**

- 1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

# Setup

In [23]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import GaussianNB
```

```
In [2]:
```

```
np.random.seed(0)
sns.set()
```

#### In [11]:

```
!wget https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d5
```

```
--2022-02-11 10:09:52-- https://gist.githubusercontent.com/netj/88362
01/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv (https://gis
t.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d53761
9d0e07d5ae3/iris.csv)
Resolving gist.githubusercontent.com (gist.githubusercontent.com)... 1
85.199.108.133, 185.199.109.133, 185.199.110.133, ...
Connecting to gist.githubusercontent.com (gist.githubusercontent.com)
185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3975 (3.9K) [text/plain]
Saving to: 'iris.csv.1'
iris.csv.1
                    100%[===========]
                                                3.88K --.-KB/s
                                                                   in
05
2022-02-11 10:09:52 (34.4 MB/s) - 'iris.csv.1' saved [3975/3975]
```

# Loading the dataset

```
In [3]:
```

```
df = pd.read_csv('./iris.csv')
```

In [4]:

df.shape

Out[4]:

(150, 5)

## In [5]:

df.head()

### Out[5]:

|   | sepal.length | sepal.width | petal.length | petal.width | variety |
|---|--------------|-------------|--------------|-------------|---------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | Setosa  |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | Setosa  |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | Setosa  |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | Setosa  |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | Setosa  |

## In [6]:

df.head()

Out[6]:

|   | sepal.length | sepal.width | petal.length | petal.width | variety |
|---|--------------|-------------|--------------|-------------|---------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | Setosa  |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | Setosa  |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | Setosa  |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | Setosa  |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | Setosa  |

### In [7]:

```
df['variety'].unique()
```

Out[7]:

array(['Setosa', 'Versicolor', 'Virginica'], dtype=object)

In [8]:

```
le = LabelEncoder()
le.fit(["Setosa", "Versicolor", "Virginica"])
```

## Out[8]:

LabelEncoder()

### In [9]:

```
variety = df['variety']
variety = le.transform(variety)
```

## In [10]:

df['variety'] = variety

## In [11]:

df

## Out[11]:

|     | sepal.length | sepal.width | petal.length | petal.width | variety |
|-----|--------------|-------------|--------------|-------------|---------|
| 0   | 5.1          | 3.5         | 1.4          | 0.2         | 0       |
| 1   | 4.9          | 3.0         | 1.4          | 0.2         | 0       |
| 2   | 4.7          | 3.2         | 1.3          | 0.2         | 0       |
| 3   | 4.6          | 3.1         | 1.5          | 0.2         | 0       |
| 4   | 5.0          | 3.6         | 1.4          | 0.2         | 0       |
|     |              |             |              |             |         |
| 145 | 6.7          | 3.0         | 5.2          | 2.3         | 2       |
| 146 | 6.3          | 2.5         | 5.0          | 1.9         | 2       |
| 147 | 6.5          | 3.0         | 5.2          | 2.0         | 2       |
| 148 | 6.2          | 3.4         | 5.4          | 2.3         | 2       |
| 149 | 5.9          | 3.0         | 5.1          | 1.8         | 2       |

150 rows × 5 columns

# **Splitting into Train and Test data**

## In [12]:

```
X, Y = df.drop('variety', axis='columns'), df['variety']
```

## In [13]:

Χ

## Out[13]:

|     | sepal.length | sepal.width | petal.length | petal.width |
|-----|--------------|-------------|--------------|-------------|
| 0   | 5.1          | 3.5         | 1.4          | 0.2         |
| 1   | 4.9          | 3.0         | 1.4          | 0.2         |
| 2   | 4.7          | 3.2         | 1.3          | 0.2         |
| 3   | 4.6          | 3.1         | 1.5          | 0.2         |
| 4   | 5.0          | 3.6         | 1.4          | 0.2         |
|     |              |             |              |             |
| 145 | 6.7          | 3.0         | 5.2          | 2.3         |
| 146 | 6.3          | 2.5         | 5.0          | 1.9         |
| 147 | 6.5          | 3.0         | 5.2          | 2.0         |
| 148 | 6.2          | 3.4         | 5.4          | 2.3         |
| 149 | 5.9          | 3.0         | 5.1          | 1.8         |

150 rows × 4 columns

## In [14]:

Y Out[14]: 0 0

145 2 146 2

147 2

14821492

Name: variety, Length: 150, dtype: int64

# In [15]:

X\_train, X\_val, Y\_train, Y\_val = train\_test\_split(X, Y, stratify=Y, random\_state=0)

### In [16]:

X\_train.shape, X\_val.shape, Y\_train.shape, Y\_val.shape

## Out[16]:

((112, 4), (38, 4), (112,), (38,))

# **Training the Naive Bayes Classifier**

```
In [17]:
model = GaussianNB()
In [18]:
model.fit(X_train, Y_train)
Out[18]:
GaussianNB()
Evaluation
In [19]:
Y pred = model.predict(X val)
In [20]:
accuracy = accuracy_score(Y_val, Y_pred)
In [21]:
print("Accuracy of Naive Bayes Classfier : ", accuracy * 100)
Accuracy of Naive Bayes Classfier: 97.36842105263158
Confusion Matrix
In [24]:
cm = confusion_matrix(Y_val, Y_pred)
In [25]:
cm
Out[25]:
array([[13, 0, 0],
       [ 0, 13, 0],
       [ 0, 1, 11]])
In [30]:
np.sum(cm, axis=1)
Out[30]:
array([13, 13, 12])
```

#### In [46]:

```
sns.heatmap(cm/np.sum(cm), annot=True, fmt='.2%', cmap='Blues')
plt.show()
```



## We need to get the TP, TN, FP, FN, Precision and Recall for each class

#### In [50]:

```
def evaluate_metrics_for_class(cm, class_no):
    row_sums, col_sums = np.sum(cm, axis=1), np.sum(cm, axis=0)
    TP, FP, FN = cm[class_no][class_no], row_sums[class_no] - cm[class_no][class_no
    TN = np.sum(cm) - TP - FP - FN
    precision = TP / (TP + FP)
    recall = TP / (TP + FN)
    return TP, FP, FN, TN, precision, recall
```

#### In [55]:

TP\_Setosa, FP\_Setosa, FN\_Setosa, TN\_Setosa, precision\_Setosa, recall\_Setosa = evalu

#### In [56]:

```
print("For Class Setosa")
print("TP : ", TP_Setosa)
print("FP : ", FP_Setosa)
print("FN : ", FN_Setosa)
print("TN : ", TN_Setosa)
print("Precision : ", precision_Setosa)
print("Recall : ", recall_Setosa)
```

For Class Setosa

TP: 13
FP: 0
FN: 0
TN: 25
Precision: 1.0

Recall: 1.0

#### In [57]:

```
TP_Versicolor, FP_Versicolor, FN_Versicolor, TN_Versicolor, precision_Versicolor, r
```

### In [58]:

```
print("For Class Versicolor")
print("TP : ", TP_Versicolor)
print("FP : ", FP_Versicolor)
print("FN : ", FN_Versicolor)
print("TN : ", TN_Versicolor)
print("Precision : ", precision_Versicolor)
print("Recall : ", recall_Versicolor)
```

For Class Versicolor

TP: 13
FP: 0
FN: 1
TN: 24

Precision: 1.0

Recall: 0.9285714285714286

#### In [59]:

```
TP_Virginica, FP_Virginica, FN_Virginica, TN_Virginica, precision_Virginica, recall
```

## In [60]:

```
print("For Class Virginica")
print("TP : ", TP_Virginica)
print("FP : ", FP_Virginica)
print("FN : ", FN_Virginica)
print("TN : ", TN_Virginica)
print("Precision : ", precision_Virginica)
print("Recall : ", recall_Virginica)
```

For Class Virginica

TP: 11 FP: 1 FN: 0 TN: 26

Precision: 0.916666666666666

Recall: 1.0