Работа 4. Циклы с заданным числом повторений

Цель работы: изучение приёмов алгоритмизации и программирования задач, требующих организации циклов с заданным числом повторений с использованием рекуррентных формул, выработка умений отладки и тестирования программ с циклами.

Даны действительное число \mathbf{x} и натуральное число \mathbf{n} .

Необходимо:

- ✓ Вычислить значение выражения при заданных ${\bf x}$ и ${\bf n}$ для выражения из таблицы 1.
- ✓ Вывести для четных вариантов значение каждого третьего элемента, для нечетных значение каждого четвертого элемента.

Таблица 1

вариант	задание
1	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!}$
2	$\frac{(x-2)(x-4)(x-2)^n}{(x-1)(x-3)(x-(2^n-1))}$
3	$\sum_{i=1}^{n} \frac{x^{i} - i}{i!}$
4	$\prod_{k=1}^{n} \frac{(1-x)^{k+1}+1}{(k-1)!}$
5	$\prod_{i=0}^{n} \left(\sin^{i} x + \frac{1}{\sqrt{x}} \right), 0 < x < B$
6	$\sum_{i=1}^{n} (\ln x^{i-1} / \frac{(-1)^{i}}{x}), 0,5 \le x \le 2$
7	$\sum_{k=0}^{n} \frac{k(k+1) - x^{k}}{x^{2k+1}}, 2 \le x \le 5$

Продолжение таблицы 1

8	$\frac{(1-x)(1-2x)\dots(1-nx)}{1+2x)(1+4x)\dots(1+2nx)}, 0 \le x \le 2$
	$(1+2x)(1+4x)(1+2nx)^{-1}$
9	$\sum_{k=0}^{n} \sqrt[k]{x} \cdot k \cdot (-1)^k$
	$\sum_{k=1}^{n} \frac{\sqrt[k]{x} \cdot k \cdot (-1)^{k}}{x^{k-1}}, 1 \le x \le 5$
10	$S = \sum_{i=0}^{n} \frac{x^{i+2}}{5^{i} + i} , \mathbf{x} < 4$
11	$\sum_{k=0}^{n} x^{k-1}$
	$\sum_{k=1}^{n} \frac{x^{k-1}}{k!}$
12	$\sum_{k=1}^{n} \left(x - k\right)^{k+1} / k!$
13	n 1.
	$\sum_{k=1}^{\infty} (x^k + 1)/(k-1)!$
	k=1
14	$\sum_{i=1}^{n} \frac{a^{2^{*i-1}}}{(i+2)!}$
	$\sum_{i=1}^{2} (i+2)!$