Braids and the Jones polynomial

Thesis presentation

Apoorv Potnis

IISERB

April 2023

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 1

Outline

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 2

Braids

Subsection 1

Geometric definition

Three dimensional representation

Figure: Three dimensional geometric representation of a braid

Two dimensional representation

Figure: A projection of the braid

Multiplication of braids

Figure: Multiplication of two braids

The identity braid \mathbf{I}_n

Figure: The identity I₃

Inverse of braids

Figure: Inverse of a braid

Subsection 2

Generators and relations

Generators of the braid group

Figure: Generators σ_i and σ_i^{-1}

Type II move: $\sigma_i \sigma_i^{-1} = \mathbf{I}_n$

Figure: A type II move illustrating $\sigma_i \sigma_i^{-1} = \mathbb{I}_n$

Type III move: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Figure: A type III move illustrating $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Sliding of crossings: $\sigma_i \sigma_j = \sigma_j \sigma_i$

Figure: Sliding of crossings illustrating $\sigma_i \sigma_j = \sigma_j \sigma_i$

Subsection 3

Algebraic definition

Presentation of the braid group

The Artin braid group B_n admits the following presentation on the generators σ_i , for $1 \le i \le n-1$.

$$\mathsf{B}_n = \left\langle \begin{array}{ccc} \sigma_1, \dots, \sigma_{n-1} & \sigma_i \sigma_i^{-1} & = & \mathbf{I}_n \\ \sigma_i \sigma_{i+1} \sigma_i & = & \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } i+1 \leq n-1 \\ \sigma_i \sigma_i & = & \sigma_i \sigma_i & \text{if } |i-j| \geq 2 \end{array} \right\rangle$$

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 3

Closure

Subsection 1

Closure of a braid

Closure of a braid \overline{b}

Figure: Closure of a braid

Braids and links

Every closure of a braid is a link.

Theorem (Alexander)

Every link is ambient isotopic to a closure of a braid.

Subsection 2

Equivalence of closures of braids

Conjugation

Figure: Conjugation process illustrating the link equivalence of $\overline{gbg^{-1}}$ and \overline{b} (part 1)

Conjugation

Figure: Conjugation process illustrating the link equivalence of $\overline{gbg^{-1}}$ and \overline{b} (part 2)

Markov theorem

Theorem (Markov)

Two braids whose closures are ambient isotopic to each other are related by a finite sequence of the following operations.

- Braid equivalences, i.e. equivalences resulting due to the braid relations.
- 2. Conjugation.
- 3. Markov moves.

Markov move

Figure: Markov move with $b = \sigma_1^{-1}$.

Table of Contents

Outline

Braids

Geometric definition
Generators and relations
Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 4

Figure: A projection of the braid with downward orientation

For the consistency of the orientation, it must be either upwards or downwards for all strands.

Assignment of +1 to σ_{i}

Assignment of -1 to σ_i^{-1}