МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №7 по дисциплине «Машинное обучение»

Тема: Классификация (Байесовские методы, деревья)

Студент гр. 8303	Гришин К. И.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами классификации из библиотеки Sklearn.

Ход выполнения работы

Загрузка данных

1. Скачать датасет: https://archive.ics.uci.edu/ml/datasets/iris.

2. Загрузить данные в датафрейм

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

- 3. Данные отделены от меток
- 4. Метки преобразованы в числа
- 5. Выборка данных разбита на обучающую и тестовую

Байесовские методы

1. Проведена классификация наивным байесовским методом.

Тестовая и обучающая выборки представляют собой исходные данные, поделенные пополам.

Неправильно классифицировано 4 значения.

Атрибут	Описание
class_count_	Количество обучающих выборок, наблюдаемых в каждом классе
class_prior_	Вероятность каждого класса
classes_	Метки классов
epsilon_	Абсолютная аддитивная величина дисперсий
sigma_	Дисперсия каждого признака по классу
theta_	Среднее каждого признака по классу

2. Точность классификации `score()`.

$$`score(X_{test}, Y_{test})` = 0.99$$

Я

3. График зависимости количества неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. random_state = 830303. (рис. 1)

GaussianNB

Рисунок 1. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *GaussianNB*.

Точность классификации остается выше 90% на большей части выборки. При размере тестовой выборке от 0.2, точность классификатора стабильно увеличивается.

Это связано с нормальным распределением данных в классах, на основе которых ведется расчет в GaussianNB.

4. Проведена классификация с использованием *MultinomialNB*, *ComplementNB*, *BernoulliNB* (рис. 2, 3, 4 соотв.).

MultinomialNB

Рисунок 2. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *MultinomialNB*.

ComplementNB

100 - 0.95 - 0.90 - 0.95 - 0.90 - 0.75 - 0.75 - 0.70 - 0.7

Рисунок 3. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *ComplementNB*.

Test size

0.65

0.2

0.8

Рисунок 4. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *BernoulliNB*.

MultinomialNB – полиномиальное функция появления наблюдения в классе.

ComplementNB — важное отличие в способе определения вероятности принадлежности классу. В отличие от обычного NB, здесь ведется поиск минимума в принадлежности другим классам.

BernoulliNB – реализация NB, где данные представлены многомерными векторами Бернулли (содержат двоичные данные).

Лучший результат показал *GaussianNB*, поскольку данные действительно нормально распределены. *MultinomialNB* и *ComplementNB*, показали худший результат, поскольку оперируют полиномиальным распределением.

Худший результат показал *BernoulliNB*, т.к. он оперирует данными отличными от предоставленных.

Классифицирующие деревья

- 1. Проведена классификация при помощи деревьев на тех е данных. Неправильно классифицировано 4 значения
- 2. Точность классификации `score()`.

$$`score()` = 0.95$$

3. Характеристики деревьев.

$$get_n_{leaves()} = 5; get_{depth()} = 4$$

4. Полученное дерево (рис. 5).

Рисунок 5. Дерево DecisionTreeClassifier.

Для каждого узла указываются: условие разбиения по признаку, значение загрязненности, количество наблюдений, распределение наблюдений по классам. В листах условие разбиения отсутствует.

5. График зависимости количества неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. random_state = 830303 (рис. 6).

DecisionTreeClassifier

10 0.96 - 0.94 - 0.90 -

Рисунок 6. Зависимость количества неправильно классифицированных данных и точности классификации от размера тестовой выборки *DecisionTreeClassifier*.

0.2

0.6

0.8

0.2

0.6

Наблюдается слабая зависимость между качеством классификации и размером выборки, что говорит, о хорошей классифицируемости данных выборки.

6. Работа классифицирующего дерева при различных параметрах *criterion*, *splitter*, *max_depth*, *min_samples_split*, *min_samples_leaf*.

criterion (рис. 7)

Рисунок 7. DecissionTreeClassifier(criterion=)

splitter (рис. 8)

 ${\tt Pucyhok~8.}\ Decission Tree Classifier (splitter=).$

Рисунок 9. $DecissionTreeClassifier(max_depth=)$.

Рисунок 10. $DecissionTreeClassifier(max_depth=)$.

min_samples_split (11, 12, 13)

min_samples_split=10.0

 ${\tt Pucyhok~11.}\ Decission Tree Classifier (min_samples_split=).$

Рисунок 12. DecissionTreeClassifier(min_samples_split=).

Рисунок 13. DecissionTreeClassifier(min_samples_split=).

min_samples_leaf (рис 14, 15)

min_samples_leaf=10.0

Рисунок 14. $DecissionTreeClassifier(min_samples_leaf=).$

Рисунок 15. $DecissionTreeClassifier(min_samples_leaf=)$.

Параметр	Описание
criterion	Критерий определения загрязненности узла. Не повлиял на ре-
	зультаты.
splitter	Стратегия разбиения узла. Может быть лучшим или случайным.
	Случайное переобучает дерево и ведет к ухудшению классифика-
	ции.
max_depth	Максимальная глубина дерева. При уменьшении ведет к ухудше-
	нию результата.
min_sampes_split	Минимальное количество данных узла. Если данных меньше ука-
	занных, то узел не может быть разделен. При сильном увеличении
	сильно страдает точность
min_samples_leaf	Минимальное количество данных наследника. Не может быть со-
	здан наследник с количеством данных, меньше указанного. При
	сильном увеличении сильно страдает точность

Вывод

В ходе лабораторной работы исследованы методы классификации: NaiveBayes и DecisionTreeClassifier.

NaiveBayes — наивный метод классификации, опирающийся на независимость признаков. Основной задачей является поиск вероятности попадания в класс $p(f_1, ..., f_n | c) = \prod_{i=1}^n p(f_i | c)$. В обычном NB выбирается класс, который имеет наибольшую вероятность. Однако существуют различные модификации. По различному может определятся выбор $p(f_i | c)$ и выбор наиболее подходящего класса.

DecisionTreeClassifier — метод классификации данных, основанный на по строении дерева вариантов. Используя критерий загрязненности, выбираются наиболее подходящие места разделения узлов (изначально все данные представляют собой один большой узел). В какой-то момент, загрязненность становится слишком мала, или дальнейшее разделение нерационально, полученный узел называется определяющим класс.