

MIS 6334.001 – ADVANCED BUSINESS ANALYSTICS WITH SAS PROF. XIANJUN GENG

PROJECT 2 REPORT

PROJECT MEMBERS:

GROUP NO. 8

VINEET PRADEEP JOSHI
PIYUSH KAMDAR
SANGSANG JIA
ANDREA TAPIA
JUN ZHOU

Part I. Modeling Count Data

1. SAS Code:

```
proc sql;
create table datanew as
          select a.userid, a.education, a.region, a.hhsz, a.age,
     a.income, a.child, a.race, a.country, sum(a.qty new) as total
          from
               (select *, CASE WHEN domain = "amazon.com" THEN qty
     = 0
                               Else qty = qty END AS qty new
               from Mis 6334. Aba project2 data books) a
          group by a.userid, a.education, a.region, a.hhsz, a.age,
     a.income, a.child, a.race, a.country;
     quit;
     data Mis 6334.BNN 1;
     set Work.datanew;
     run;
     proc print data = Mis 6334.Bnn 1 (obs=10); run;
```


2. SAS Code:

3. Calculation Findings:

```
Reach: 1-P(X(t)=0)=1-(\alpha/(\alpha+1))^r=1-(0.1439/1.1439)^0.1014=0.1896 Average Frequency: r/\alpha=0.7046 GRP:100*0.7046=70.46 4. SAS Code: PROC NLMIXED DATA=Mis_6334.Bnn_1; /* m stands for lamdha */ parms m0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0; m=m0*exp(b1*education+b2*region+b3*hhsz+b4*age+b5*income+b6*child+b7*race+b8*country); l1 = total*log(m)-m-log(fact(total)); MODEL total ~ general(l1); RUN;
```


Managerial Takeaways:

- In terms of using "date" in the regression, we opted not to include as books are year-round purchases and we would need much more data with a timestamp. Additionally, for those customers who purchased once or very little in a time frame, that record would not be meaningful.
- Poisson Regression Model LL: -17,682.5
- Upon comparing with 0.05 alpha-level, the following predictor variables are not significant, and we can infer that these factors do not affect the customer purchasing behavior at Barnes and Noble.
 - o b1 (education)
 - o b3 (House hold size)
 - o b6 (child)
- In contrast, the following factors are significant per a 0.05 alpha-level.
 - o b2 (region)
 - o b4 (age)
 - o b5 (income)
 - o b7 (race)
 - o b8 (country)

5. SAS Code:

```
exp(b1*education+b2*region+b3*hhsz+b4*age+b5*income+b6*child+b7*
race+b8*country);
    l1 = log( (gamma(r + total) / (gamma(r)*perm(total))) *
    ((alpha/(alpha+m))**r) * ((m/(alpha+m))**total) );
```

6. SAS Code:

SAS Results:

Managerial Takeaways:

- NBD Regression model LL: -8,246
- Upon comparing with 0.05 alpha-level, the following predictor variables are not significant:
 - o b1(education)
 - o b3(House hold size)
 - o b5 (income)
 - o b6 (child)
 - o b7 (race)
 - o b8 (country)
- In contrast, the following factors are significant per a 0.05 alpha-level.
 - o b2(region)
 - \circ b4(age)
- Moreover, we plotted the Gamma distribution using shape and scale parameters Source: http://keisan.casio.com/exec/system/1180573216

7. Noticeable difference regarding the managerial takeaways:

- In comparing LL values, we find that the NBD Regression model LL value of -8,246 is greater than the Poisson LL value of -17,682.5 which suggests that NBD regression fits the data better.
- The NBD Regression model has less significant variables than the Poisson model.

8. LR test Takeaways:

Null Hypothesis - NBD Regression model is not different from the Poisson Regression model.

NBD Regression model has one extra degree of freedom than the Poisson Regression model.

LLB = -2LL for the NBD Regression model is 16,492

LLA = -2LL for the Poisson Regression model is 35,365

LR = -2 (LL (for NBD Regression) - LL(for Poisson Regression)) = 35,365 - 16,492 = 18,873

 $X^2(0.05, 1) = 3.841$

To reject the null hypothesis, LR = -2 (LLB- LLA) > $X^2(0.05, 1)$

To reject the null hypothesis, LR = 18,873 > 3.841

Clearly, we reject the null hypothesis. Our NBD Regression model is different from the Poisson regression model.

Additionally, after finding that the NBD Regression and Poisson models are different when comparing their LL values, we find that the NBD Regression model LL value of -8,246 is greater than the Poisson LL value of -17,682.5 which suggests that NBD regression fits the data better.

Part II. Improving the model

9. SAS Code:

```
proc freq data=mis6334.datanew;
table education;
run;
```

SAS Results:

The SAS System The FREQ Procedure							
		educatio	n				
education	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
0	1	0.01	1	0.01			
1	638	6.75	639	6.76			
2	772	8.17	1411	14.93			
3	13	0.14	1424	15.07			
4	811	8.58	2235	23.65			
5	302	3.20	2537	26.84			
99	6914	73.16	9451	100.00			

Per the proc freq output, we find education has 6,914 missing values so we should remove this variable.

10. SAS Code:

Code for creating the weekend variable

```
/* Extract day of the week */
DATA abasas.dataset;
SET abasas.Aba_project2_data_books;
date = input(put(date,8.),yymmdd8.);
format date yymmdd10.;
day_of_week = weekday(date);
RUN;
```

```
Group 8
```

```
/* Create a variable for weekend purchases */
DATA abasas.dataset;
SET abasas.dataset;
IF (day of week < 2) OR (day of week > 6)
THEN weekend = 1;
ELSE weekend = 0;
RUN;
/* Table for purchases made on weekends from B and N */
PROC SQL;
CREATE TABLE dummy 1 AS
SELECT userid, region, hhsz, age, income, child, race, country,
domain,
CASE WHEN domain = "amazon.com" THEN qty = 0
ELSE qty = qty END AS qty new
FROM abasas.dataset
WHERE weekend = 1;
OUIT;
/* Aggregating weekend purchases per user */
PROC SQL ;
CREATE TABLE dummy 3 AS
SELECT userid, SUM(qty new) AS total count weekend
FROM dummy 1
GROUP BY userid;
QUIT;
/* Merging weekend count data with the original dataset */
DATA abasas.weekend;
MERGE abasas.count data dummy 3;
BY userid;
IF total count weekend = . THEN
total count weekend = 0;
RUN;
/* NBD Regression excluding education but including weekend*/
PROC NLMIXED DATA = dummy 7;
PARMS r = 1 alpha = 1 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5=0 b6=0 b7=0
/* m gives us the exp(beta*x) values which are then used in the
formula for calculating the log likelihood */
exp(b1*total count weekend+b2*region+b3*hhsz+b4*age+b5*income+b6
*child+b7*race+b8*country);
11 = log( (gamma(r + total count)/(gamma(r)*perm(total count)))
* ((alpha/(alpha+m))**r) * ((m/(alpha+m))**total count) );
MODEL total count ~ general(ll);
```

RUN;

SAS Results:

NBD Regression results excluding education and including the total_weekend_count variable

Fit Statistics					
-2 Log Likelihood	15714				
AIC (smaller is better)	15734				
AICC (smaller is better)	15734				
BIC (smaller is better)	15806				

Parameter Estimates								
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient
r	0.1506	0.005397	9440	27.90	<.0001	0.1400	0.1612	0.017414
alpha	0.3149	0.05817	9440	5.41	<.0001	0.2008	0.4289	0.012147
b1	0.6250	0.03896	9440	16.04	<.0001	0.5486	0.7013	0.002130
b2	-0.08022	0.02829	9440	-2.84	0.0046	-0.1357	-0.02476	-0.01008
b3	0.05938	0.02856	9440	2.08	0.0376	0.003400	0.1154	-0.00572
b4	0.02481	0.01200	9440	2.07	0.0388	0.001281	0.04834	-0.03438
b5	-0.00691	0.01635	9440	-0.42	0.6726	-0.03896	0.02514	-0.00926
b6	-0.07725	0.08052	9440	-0.96	0.3374	-0.2351	0.08060	-0.00330
b7	-0.1784	0.09336	9440	-1.91	0.0561	-0.3613	0.004646	-0.00674
b8	-0.01606	0.08318	9440	-0.19	0.8469	-0.1791	0.1470	0.000820

Creating variable for loyalty (BN Purchases/Total Purchases)

```
/* Amazon purchases */
data amazon;
set abasas.Aba_project2_data_books;
if domain='amazon.com';
run;

/* B and N purchases */
data bandn;
set abasas.Aba_project2_data_books;
if domain~='amazon.com';
run;

/* Total Amazon */
proc sql;
create table amazon_total as
```

```
Group 8
select userid, sum(qty) as total_amazon
from amazon
group by userid;
quit;
/* Total Barnes and Nobles */
proc sql;
create table bandn total as
select userid, sum(qty) as total bandn
from bandn
group by userid;
quit;
/* Total Amazon and Barnes and Nobles */
data all;
merge amazon total bandn total;
```

```
by userid;
run;
/* Loyalty table */
data all;
set all;
if total amazon=. then loyalty=1;
else if total bandn=. then loyalty=0;
else loyalty =total bandn/(total bandn+ total amazon);
run;
/* Merging the table with the loyalty variable with the original
dataset */
data abasas.weekend;
merge abasas.weekend all;
by userid;
run;
/* NBD Regression excluding education but including weekend and
loyalty*/
PROC NLMIXED DATA = abasas.weekend;
PARMS r = 1 alpha = 1 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5=0 b6=0 b7 =
0 b8 = 0 b9 = 0;
/* m gives us the exp(beta*x) values which are then used in the
formula for calculating the log likelihood */
exp(b1*total count weekend+b2*region+b3*hhsz+b4*age+b5*income+b6
*child+b7*race+b8*country + b9*loyalty);
11 = log( (gamma(r + total count)/(gamma(r)*perm(total count)))
```

* ((alpha/(alpha+m))**r) * ((m/(alpha+m))**total count));

```
MODEL total_count ~ general(11);
RUN;
```

SAS Results:

NBD Regression results excluding education and including the total_weekend_count and loyalty

Fit Statistics					
-2 Log Likelihood	10659				
AIC (smaller is better)	10681				
AICC (smaller is better)	10681				
BIC (smaller is better)	10759				

Parameter Estimates								
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient
r	1.0460	0.04767	9440	21.94	<.0001	0.9525	1.1394	0.003773
alpha	19.8157	3.1154	9440	6.36	<.0001	13.7087	25.9226	-0.00038
b1	0.1993	0.01155	9440	17.26	<.0001	0.1767	0.2219	-0.03246
b2	-0.01597	0.02285	9440	-0.70	0.4848	-0.06076	0.02883	0.008383
b3	0.03029	0.02345	9440	1.29	0.1967	-0.01569	0.07626	0.036835
b4	0.01777	0.009652	9440	1.84	0.0657	-0.00115	0.03669	0.046141
b5	0.000844	0.01325	9440	0.06	0.9492	-0.02514	0.02683	0.047490
b6	-0.03556	0.06588	9440	-0.54	0.5893	-0.1647	0.09357	0.008425
b7	-0.05791	0.07678	9440	-0.75	0.4507	-0.2084	0.09260	0.013793
b8	-0.1337	0.06815	9440	-1.96	0.0498	-0.2673	-0.00014	0.002793
b9	4.1861	0.06121	9440	68.38	<.0001	4.0661	4.3060	-0.00036

Managerial Takeaways:

- NBD Regression model LL: -5,329.5 which is a much more improved model.
- Upon comparing with 0.05 alpha-level, the following predictor variables are not significant:
 - o b2(region)
 - o b3(House hold size)
 - \circ b4(age)
 - o b5 (income)
 - o b6 (child)
 - o b7 (race)

- In contrast, the following factors are significant per a 0.05 alpha-level. Where b1 and b9 were the variables that we created.
 - o b1(weekend)
 - o b8(country)
 - o b9(loyalty)

11. SAS Code:

```
/* NBD Regression with an interaction variable between region
and age*/
PROC NLMIXED DATA = abasas.weekend;

PARMS r = 1 alpha = 1 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5=0 b6=0 b7 =
0 b8 = 0;

/* m gives us the exp(beta*x) values which are then used in the
formula for calculating the log likelihood */

m =
exp(b1*region*age+b2*region+b3*hhsz+b4*age+b5*income+b6*child+b7
*race+b8*country);

11 = log( (gamma(r + total_count) / (gamma(r)*perm(total_count)))
* ((alpha/(alpha+m))**r) * ((m/(alpha+m))**total_count) );

MODEL total_count ~ general(11);
RUN;
```

SAS Results:

NBD Regression Results

Fit Statistics					
-2 Log Likelihood	16491				
AIC (smaller is better)	16511				
AICC (smaller is better)	16511				
BIC (smaller is better)	16582				

Parameter Estimates								
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confid	ence Limits	Gradient
r	0.1023	0.003269	9440	31.31	<.0001	0.09593	0.1087	0.22078
alpha	0.09642	0.02704	9440	3.57	0.0004	0.04341	0.1494	-0.28812
b1	0.01382	0.01171	9440	1.18	0.2381	-0.00914	0.03678	0.58568
b2	-0.1943	0.08980	9440	-2.16	0.0305	-0.3703	-0.01826	0.078536
b 3	0.004199	0.03280	9440	0.13	0.8981	-0.06009	0.06849	0.095624
b4	-0.00258	0.02940	9440	-0.09	0.9301	-0.06022	0.05506	0.21463
b5	0.01296	0.01864	9440	0.70	0.4869	-0.02359	0.04951	0.083829
b 6	-0.00884	0.09112	9440	-0.10	0.9227	-0.1875	0.1698	0.019808
b7	-0.1903	0.09942	9440	-1.91	0.0557	-0.3851	0.004637	0.029691
b8	-0.1335	0.09480	9440	-1.41	0.1590	-0.3194	0.05230	0.002805

```
/* NBD Regression with an interaction variable between income
and age*/
PROC NLMIXED DATA = abasas.weekend;

PARMS r = 1 alpha = 1 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5=0 b6=0 b7 =
0 b8 = 0;

/* m gives us the exp(beta*x) values which are then used in the
formula for calculating the log likelihood */

m =
exp(b1*income*age+b2*region+b3*hhsz+b4*age+b5*income+b6*child+b7
*race+b8*country);

11 = log( (gamma(r + total_count) / (gamma(r)*perm(total_count)))
* ((alpha/(alpha+m))**r) * ((m/(alpha+m))**total_count) );

MODEL total_count ~ general(11);

RUN;
```

Fit Statistics					
-2 Log Likelihood	16490				
AIC (smaller is better)	16510				
AICC (smaller is better)	16510				
BIC (smaller is better)	16582				

Parameter Estimates								
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient
r	0.1024	0.003270	9440	31.31	<.0001	0.09596	0.1088	-0.41438
alpha	0.1638	0.04812	9440	3.40	0.0007	0.06948	0.2581	0.19620
b1	-0.01038	0.007470	9440	-1.39	0.1649	-0.02502	0.004267	-1.51330
b2	-0.09452	0.03166	9440	-2.99	0.0028	-0.1566	-0.03246	-0.08529
b3	0.002533	0.03280	9440	0.08	0.9385	-0.06177	0.06683	-0.13524
b4	0.07327	0.03435	9440	2.13	0.0330	0.005930	0.1406	-0.25800
b5	0.08665	0.05568	9440	1.56	0.1197	-0.02249	0.1958	-0.16859
b6	-0.01010	0.09117	9440	-0.11	0.9118	-0.1888	0.1686	-0.03101
b7	-0.1917	0.09938	9440	-1.93	0.0538	-0.3865	0.003133	-0.04233
b8	-0.1384	0.09475	9440	-1.46	0.1441	-0.3241	0.04731	-0.01114

We also tried running models by including interaction variables, weekend, and loyalty but we noticed that whenever we included weekend and loyalty, all other variables were always insignificant.

Some examples below:

```
/* NBD Regression with demographic variables, interaction
variable between income and age, weekend, and loyalty*/
PROC NLMIXED DATA = abasas.weekend;

PARMS r = 1 alpha = 1 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5=0 b6=0 b7 = 0 b8 = 0 b9=0 b10=0;

/* m gives us the exp(beta*x) values which are then used in the formula for calculating the log likelihood */

m = exp(b1*income*age+b2*region+b3*hhsz+b4*age+b5*income+b6*child+b7*race+b8*country+b9*loyalty+b10*total_count_weekend);

l1 = log( (gamma(r + total_count)/(gamma(r)*perm(total_count)))
* ((alpha/(alpha+m))**r) * ((m/(alpha+m))**total_count));

MODEL total_count ~ general(l1);

RUN;
```

Fit Statistics					
-2 Log Likelihood	10657				
AIC (smaller is better)	10681				
AICC (smaller is better)	10681				
BIC (smaller is better)	10767				

Parameter Estimates								
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient
r	1.0455	0.04765	9440	21.94	<.0001	0.9521	1.1389	0.000032
alpha	24.3069	5.2812	9440	4.60	<.0001	13.9546	34.6592	5.654E-6
b1	-0.00704	0.005174	9440	-1.36	0.1734	-0.01719	0.003099	-0.00942
b2	-0.01669	0.02286	9440	-0.73	0.4655	-0.06150	0.02813	-0.00042
b3	0.02993	0.02347	9440	1.28	0.2022	-0.01607	0.07593	-0.00111
b4	0.04784	0.02411	9440	1.98	0.0473	0.000569	0.09510	-0.00161
b5	0.05097	0.03911	9440	1.30	0.1925	-0.02569	0.1276	-0.00101
b 6	-0.03675	0.06591	9440	-0.56	0.5772	-0.1660	0.09245	-0.00023
b7	-0.06008	0.07693	9440	-0.78	0.4349	-0.2109	0.09073	-0.00013
b8	-0.1348	0.06816	9440	-1.98	0.0480	-0.2684	-0.00119	0.000154
b9	4.1849	0.06123	9440	68.35	<.0001	4.0648	4.3049	0.000136
b10	0.1997	0.01155	9440	17.29	<.0001	0.1770	0.2223	-0.00158

```
/* NBD Regression with demographic variables, interaction
variable between income and hhsz, weekend, and loyalty*/
PROC NLMIXED DATA = abasas.weekend;

PARMS r = 1 alpha = 1 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5=0 b6=0 b7 = 0 b8 = 0 b9=0 b10=0;

/* m gives us the exp(beta*x) values which are then used in the formula for calculating the log likelihood */

m = exp(b1*income*hhsz+b2*region+b3*hhsz+b4*age+b5*income+b6*child+b7*race+b8*country+b9*loyalty+b10*total_count_weekend);

l1 = log( (gamma(r + total_count)/(gamma(r)*perm(total_count)))
* ((alpha/(alpha+m))**r) * ((m/(alpha+m))**total_count));

MODEL total_count ~ general(l1);

RUN;
```

Fit Statistics					
-2 Log Likelihood	10652				
AIC (smaller is better)	10676				
AICC (smaller is better)	10676				
BIC (smaller is better)	10762				

Parameter Estimates									
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient	
r	1.0495	0.04789	9440	21.92	<.0001	0.9556	1.1434	-0.03898	
alpha	29.1503	6.2903	9440	4.63	<.0001	16.8200	41.4806	0.001436	
b1	-0.02735	0.01052	9440	-2.60	0.0093	-0.04797	-0.00673	-0.62253	
b2	-0.01764	0.02284	9440	-0.77	0.4399	-0.06242	0.02713	-0.09181	
b3	0.1622	0.05585	9440	2.90	0.0037	0.05270	0.2716	-0.12660	
b4	0.01719	0.009619	9440	1.79	0.0739	-0.00166	0.03605	-0.28719	
b5	0.08554	0.03515	9440	2.43	0.0150	0.01664	0.1544	-0.18382	
b6	-0.04307	0.06589	9440	-0.65	0.5133	-0.1722	0.08609	-0.02912	
b7	-0.06268	0.07684	9440	-0.82	0.4147	-0.2133	0.08796	-0.03809	
b8	-0.1406	0.06811	9440	-2.06	0.0390	-0.2742	-0.00713	-0.01150	
b9	4.1887	0.06125	9440	68.39	<.0001	4.0686	4.3088	-0.02492	
b10	0.1988	0.01153	9440	17.24	<.0001	0.1762	0.2214	-0.01551	

Managerial Takeaways:

- NBD Regression model LL: -5,326 which is a very small improvement.
- After the addition of two new variables that are weekend and loyalty all the other variables turned out to be insignificant.
- We tried the below two interactions and saw no effect.
 - o income*age
 - o income*hhsz

Part III. Why Certain Customers Prefer Amazon over BN?

12. SAS Code:

```
/* Creating dummy variable for users who have made a purchase at
B and N */
data abasas.count_data;
set abasas.count_data;
if total_count>0 then purchase_at_bn=1;
else purchase_at_bn=0;
run;
/* Logistic Regression with loyalty and weekend */
proc logistic data= abasas.weekend;
class region age income child race country;
model total_count = region hhsz age income child race country
total_count_weekend loyalty / expb;
run;
```

Intercept	86	1	20.8312	1.6041	168.6376	<.0001	1.1139E9
region	1	1	-0.1597	0.0820	6.6478	0.0099	0.852
region	2	1	0.0187	0.0666	0.0788	0.7789	1.019
region	3	1	0.0857	0.0595	2.0720	0.1500	1.089
hhsz		1	0.00775	0.0345	0.0503	0.8225	1.008
age	1	1	0.1566	0.5807	0.0727	0.7874	1.170
age	2	1	0.3197	0.2840	1.2673	0.2603	1.377
age	3	1	0.0533	0.1722	0.0957	0.7570	1.058
age	4	1	-0.0547	0.1300	0.1770	0.6740	0.947
age	5	1	0.0197	0.1262	0.0245	0.8757	1.020
age	6	1	-0.1311	0.1090	1.4476	0.2289	0.87
age	7	1	0.1252	0.1161	1.1643	0.2806	1.13
age	8	1	-0.1440	0.1137	1.6032	0.2054	0.86
age	9	1	-0.1673	0.1219	1.8857	0.1697	0.84
age	10	1	0.1564	0.1510	1.0716	0.3006	1.16
income	1	1	-0.0110	0.1060	0.0108	0.9172	0.98
income	2	1	-0.0483	0.1272	0.1441	0.7042	0.95
income	3	1	-0.0670	0.1101	0.3700	0.5430	0.93
income	4	1	0.1910	0.0976	3.8308	0.0503	1.21
income	5	1	0.0258	0.0763	0.1143	0.7353	1.02
income	6	1	-0.0748	0.0868	0.7435	0.3885	0.92
child	0	1	-0.0226	0.0488	0.2153	0.6426	0.97
race	1	1	0.2225	0.1881	1.3990	0.2389	1.24
ra œ	2	1	0.6583	0.2555	6.6405	0.0100	1.93
ra œ	3	1	0.1120	0.2851	0.1543	0.6945	1.118
country	0	1	-0.0565	0.0493	1.3181	0.2513	0.94
total_count_weekend		1	-0.4808	0.0233	424.7183	<.0001	0.618
loyalty		1	-6.5480	0.1325	2442.5133	<.0001	0.00

Effect	Point Estimate	95% Wald Confidence Limits		
region 1 vs 4	0.806	0.654	0.995	
region 2 vs 4	0.964	0.773	1.202	
region 3 vs 4	1.031	0.840	1.265	
hhsz	1.008	0.942	1.078	
age 1 vs 11	1.633	0.461	5.787	
age 2 vs 11	1.922	1.026	3.603	
age 3 vs 11	1.473	0.992	2.186	
age 4 vs 11	1.322	0.968	1,806	
age 5 vs 11	1.424	1.049	1.934	
age 6 vs 11	1,225	0.931	1.616	
age 7 vs 11	1.583	1.187	2.110	
age 8 vs 11	1.209	0.911	1.60	
age 9 vs 11	1.181	0.877	1.59	
age 10 vs 11	1.633	1.144	2.329	
income 1 vs 7	1.005	0.761	1.32	
income 2 vs 7	0.968	0.702	1.33	
income 3 vs 7	0.950	0.715	1.262	
income 4 vs 7	1.230	0.951	1.590	
income 5 vs 7	1,042	0.842	1.290	
income 6 vs 7	0.943	0.748	1.187	
child 0 vs 1	0.956	0.789	1.15	
race 1 vs 5	3.371	0.971	11.70	
race 2 vs 5	5.213	1.375	19.756	
race 3 vs 5	3.019	0.761	11.98	
country 0 vs 1	0.893	0.738	1.083	
total_count_weekend	0.618	0.591	0.64	
loyalty	0.001	0.001	0.000	

Managerial Takeaways:

- In our SAS results we find the odds ratio estimates which represent how the odds of the event, someone making a purchase from Barnes and Noble, change with a 1 unit increase in that variable, all other things being equal.
 - For example, for the "child 0 vs 1" effect, the odds ratio of a person without a child making a purchase is 0.956 which is less than the odds ratio of a person with a child. Which suggests a person with a child is more likely to buy a book from Barnes and Noble.
 - This key takeaway would be beneficial for Barnes and Noble marketing and sales team to target customers who have kids.
 - Similarly, for the "country 0 vs 1" effect, the odds ratio of a person inside of the U.S. is 0.893 times the odds ratio of a person outside of the U.S. Which suggests a person in the U.S. is less likely to buy a book from Barnes and Noble.
 - This key takeaway would be beneficial for Barnes and Noble marketing and sales team to consider as it relates to attracting the appropriate customer.
- Moreover, we found that most of this customer demographic information is not useful as most variables were not significant per a 0.05 alpha level.

Part IV. Summary

13.

• Key Managerial Takeaways

- o **Part I-** In comparing LL values, we find that the NBD Regression model LL value of -8,246 is greater than the Poisson LL value of -17,682.5 which suggests that NBD regression fits the data better.
- o **Part II-** NBD Regression results excluding education and including the total_weekend_count and loyalty, variables we created, is an improved model with an LL value of -5,329.5.
- o **Part III-**Apart from two key findings discussed in the managerial takeaways of this section, we found that most of this customer demographic information is not useful as most variables were not significant per a 0.05 alpha level.

• BA techniques

o In addition to strengthening our data analytics techniques, this project helped us practice identifying the type of distribution our data resembles and as a result the type of business analytics problem we may want to tackle. Thus, in considering the type of distribution our data resembles, we can add this activity as an additional step in the process of applying our human intuitions as well as statistical knowledge when looking at the data to solve a problem.

• SAS skills

• We appreciate the hands-on opportunity provided to complete the project using SAS code. As most of our team is composed of beginner SAS coders, it was extremely helpful to have SAS code examples included in the lecture materials as a guide, enabling us to spend most of our time understanding the components of the code and interpreting the consequent output.

• New perspectives of BA

o Furthermore, upon review our managerial takeaways, it was interesting to find that most of our variables were not significant. As novice data miners we may be prone to remove variables that are not significant. Yet, as a consequence of this action, we can cause earlier significant variables to now be insignificant and/or we then introduce a non-intended bias into the model.