



## WARSAW UNIVERSITY OF TECHNOLOGY DEVELOPMENT PROGRAMME

# Association Rules - Informally

- Let item {fish} occur in 5% of sales transactions and set {fish, white wine} occur in 4% of them. This information allows us to derive an association rule stating that:
- 4 out of 5 customers; that is, 80% of customers who buy fish also buy white wine.
- In order to derive such rules we need to know how many transactions support respective sets of items (or itemsets).



# 6

#### Support of Itemsets

- Let dataset D be a set of *transactions*, where each transaction is a subset of items in *I*.
- Support of an itemset X, denoted by sup(X), is the number of transactions in D that contain all items in X; that is,

$$sup(X) = |\{T \in D \mid X \subseteq D\}|.$$

4

# Example: Supports of Itemsets

## Example dataset D

| Transaction   |
|---------------|
| <i>ABCDEG</i> |
| <i>ABCDEF</i> |
| <i>ABCDEH</i> |
| ABDE          |
| ACDEH         |
| BCE           |
|               |

- sup(ABC) = 3.
- sup(EH) = 2.
- Supports of all supersets of EH are not greater than 2 either.
- Supports of all subsets of EH can be greater than 2.

5





# Relative Support of Itemsets

 Relative support of an itemset X, denoted by rSup(X), is the ratio of the number of the transactions in D that contain all items in X to the number of all transactions in D:

$$rSup(X) = sup(X) / |D|.$$

 Remark: rSup(X) can be regarded as an estimation of the probability of the occurrence of itemset X in D.





## Example: Relative Supports

Example dataset D

| Id    | Transaction   |
|-------|---------------|
| $T_1$ | <i>ABCDEG</i> |
| $T_2$ | <i>ABCDEF</i> |
| $T_3$ | <i>ABCDEH</i> |
| $T_4$ | ABDE          |
| $T_5$ | ACDEH         |
| $T_6$ | BCE           |

- rSup(ABC) = 3/6 = 50%,
- $rSup(EH) = 2/6 \approx 33\%$ .





## Frequent Itemsets

 X is defined a frequent itemset if sup(X) > minSup,

where *minSup* is the user-defined threshold value.

 Basic property of itemsets: Supports of supersets of an itemset X are not greater than sup(X).

8





## Example: In(frequent) Itemsets

Example dataset D

| Id    | Transaction    |
|-------|----------------|
| $T_1$ | <i>ABC</i> DEG |
| $T_2$ | <i>ABCDEF</i>  |
| $T_3$ | <i>ABCDEH</i>  |
| $T_4$ | ABDE           |
| $T_5$ | <i>ACDEH</i>   |
| $T_6$ | BCE            |

- sup(ABC) = 3, sup(EH) = 2.
- Let minSup = 2. Then: ABC is frequent, EH is not frequent.
- Supports of all supersets of EH are not greater than 2 either, hence supersets of EH are not frequent.
- However, supports of subsets of EH can be greater than 2. Thus, it may happen that subsets of EH are frequent.





## Association Rules (ARs)

 An association rule is an expression associating two itemsets:

$$X \rightarrow Y$$

where  $\emptyset \neq Y \subseteq I$  and  $X \subseteq I \setminus Y$ .

- X is called an antecedent of  $X \rightarrow Y$ .
- Y is called a *consequent* of  $X \rightarrow Y$ .
- $X \rightarrow Y$  is said to be *based on*  $X \cup Y$ , and  $X \cup Y$  is called the *base* of  $X \rightarrow Y$ .

40

# WARSAW UNIVERSITY OF TECHNOLOGY DEVELOPMENT PROGRAMME



# Support of Association Rule

 Support of X → Y is defined as the number of transactions that contains the base of X → Y; that is,

$$sup(X \rightarrow Y) = sup(X \cup Y)$$
.

 Relative support of X → Y is defined as the relative support of its base:

$$rSup(X \rightarrow Y) = rSup(X \cup Y)$$





#### Confidence of Association Rule

 Confidence of X → Y is defined as the ratio of the number of transactions that contain the base X ∪ Y to the number of transactions containing the antecedent X:

$$conf(X \to Y) = sup(X \to Y) / sup(X).$$

 Remark: conf(X → Y) can be regarded as an estimation of the conditional probability that Y occurs in a transaction T provided X occurs in T.









## Strong Association Rules

 Strong association rules (AR) are defined as those rules in AR whose support is above minSup and confidence is above minConf; that is,

$$AR = \{X \rightarrow Y \in AR | sup(X \rightarrow Y) > minSup \land conf(X \rightarrow Y) > minConf\},$$

where  $minSup \in [0, |D|)$  and  $minConf \in [0, 1)$ .

14







# Discovery of Strong Association Rules

AR is discovered in two steps:

- Find frequent itemsets F and their supports in dataset D.
- Generate AR only from F: Let Z∈ F, Z≠Ø and Y⊆ Z. Then, any candidate rule
   Z\Y → Y is a strong association one if:
   sup(Z) / sup(Z\Y) > minConf.

16







# Finding Frequent Itemsets

- Within each iteration i:
  - Determine supports of candidate itemsets of length i.
  - From those candidates of length i that turned out frequent, create candidates of length i+1.















**General observation.** Parents of each candidate of length i are its first two frequent subsets of length i-1.







# Discovery of Association Rules with AprioriRuleGen...

- In iteration i+1, consequents of candidates rules of base Z are created by merging iitem consequents of strong association rules of base Z that were found in the previous iteration.
- Property. Let r₁: Z\Y→Y and r₂: Z\Y'→Y', where Y⊂Y', be association rules.
  - $-conf(r_1)$  ≥  $conf(r_2)$ ,
  - If  $conf(r_1)$  ≤ minConf, then  $conf(r_2)$  ≤  $minConf_{.29}$











# Important Operations in Apriori and AprioriRuleGen

- An important time-consuming operation in *Apriori* is searching *i* item candidates supported by a given transaction.
- An important time-consuming operation in AprioriRuleGen is searching frequent i itemsets (candidate rule consequents) of a given frequent itemset in order to learn their supports.
- Thus, in both cases *i* item subsets of a given itemset are searched.

5





- A hash tree is used in order to make the identification of *i* item subsets of a given itemset efficient.
- In particular, all *i* item candidate sets are stored in a hash tree.

































































#### References...

- Agrawal R., Imielinski T., Swami A.: Mining Associations Rules between Sets of Items in Large Databases. In: Proc. of the ACM SIGMOD Conference on Management of Data, Washington, USA (1993) 207–216
- Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association Rules in Large Databases. <u>VLDB</u> 1994: 487-499
- Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A.I.: Fast Discovery of Association Rules. In: Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI, CA (1996) 307–328





#### References

- Jiawei Han, Micheline Kamber, Jian Pei: Data Mining: Concept and Techniques, The Morgan Kaufmann Series in Data Management Systems, 2011
- Kryszkiewicz, M.: Concise Representations of Frequent Patterns and Association Rules. Prace Naukowe Politechniki Warszawskiej. Elektronika 142. Publishing House of the Warsaw University of Technology (2002)
- Ashok Savasere, Edward Omiecinski, Shamkant B.
   Navathe: An Efficient Algorithm for Mining Association Rules in Large Databases. <u>VLDB 1995</u>: 432-444
- Mohammed Javeed Zaki, Karam Gouda: Fast vertical mining using diffsets. <u>KDD 2003</u>: 326-335





# Additional References – Other Algorithms for Discovery of Frequent Itemsets

- Ferenc Bodon: A fast APRIORI implementation. FIMI 2003
- Chen Wang, Mingsheng Hong, Jian Pei, Haofeng Zhou, Wei Wang, Baile Shi: Efficient Pattern-Growth Methods for Frequent Tree Pattern Mining. PAKDD 2004: 441-451
- Frequent Itemset Mining Implementations Repository: http://fimi.ua.ac.be/src/