Chapitre 2: Compléments sur les suites numériques

I- Généralités sur les suites récurentes

- Suite du type $u_{n+1} = f(u_n)$
 - Méthode:
 - Déterminer le domaine de définition de f
 - Chercher un intervalle $I \in \mathbb{R}$ stable par f : $f(I) \subset I$
 - Etudier rapidement les variations de f dans I
 - Si f est **croissante** et $u_0 \le u_1$ alors la suite est croissante
 - Si f est **croissante** et $u_0 \ge u_1$ alors la suite est déroissante
 - Si f est **décroissante** alors la suite est alternée de plus les suites $(u_{2n}), (u_{2n+1})$ sont des suites monotones car fof est croissante
 - · Cas particulier:
 - \circ Si u_0 est un **point fixe** de f alors la suite est constante
 - Si f est continue et u_n CV alors $f(u_n) \rightarrow f(x)$

II- Exemple de suite récurrentes où on peut expliciter u_n en fonction de n

- Suites arithmétiques
- Suites Géométriques
 - $u_{n+1}=q.u_n\Rightarrow u_n=q^n.u_0$ Si $|q|<1,CV \rightarrow 0$, Si $q=1\lor u_0=0,cte$, Si $q=-1\land u_0\ne 0,DV$, Si $|q|\ge 1\land u_0\ne 0,DV$
- Arithméticogéométriques
 - $u_{n+1} = a u_n + b$ Faire une étude par point fixe :
 - Définir la fonction f(x)=ax+b Calculer le point fixe : α : f(x)=x
 - Définir la suite $v_n = u_n \alpha \Leftrightarrow u_n = v_n + \alpha$
 - Montrer que v_n est géométrique
 - Déterminer v_n en fonction de n puis u_n en fonction de n
- Homograpiques

$$\circ \qquad u_{n+1} = \frac{a \cdot u_n + b}{c \cdot u_n + d} = f(u_n)$$

- Si la suite passe par un point fixe alors elle est constante
 - Si $f(u_0)=u_0$ récurrence $u_n=u_0$ suite constante
 - Si $f(u_n)=u_n$ alors point fixe donc suite constante
- Si la suite ne passe pas par un point fixe :

•
$$f(x)=x \Leftrightarrow \frac{ax+b}{cx+d}=x \Leftrightarrow cx^2+(d-a)x-b=0$$

- \circ Si Δ>0 deux racines réelles $l_1 \neq l_2$ on pose $v_n = \frac{u_n l_1}{u_n l_2}$ et on prouve que (v(n)) est géométrique
- \circ Si $\Delta=0$ une racine double $l=\frac{a-d}{2c}$ on pose $v_n=\frac{1}{u_n-l}$ et on prouve que (v(n)) est arithmétique avec $r=\frac{2c}{c+d}$
- Attention aux exemples dégénéré, bien faire la partie I
- \circ Si $\Delta < 0$ 2 racines conjuguées $l_1, l_2 = \overline{l_1}$ même procédé que si $\Delta > 0$ et donc u_n diverge