Lem 3.9 Let $L\subseteq \Sigma^*$. If L is decidable by a k-tape TM in time T(n), then it is decidable by a single-tape TM in time $O(k\cdot T(n)^2)$.

Proof: Use location $i-1, k+i-1, 2k+i-1, \ldots$ to store the content of the i^{th} tape, where $i=1,2,\ldots,k$. For every $a\in \Gamma$, introduce $a,\hat{a}\in \Gamma'$, where \hat{a} denotes the location of the head.

To simulate one step of M, the single-tape TM M^\prime will

- 1. Sweep the tape from left to right to read k symbols marked by $\hat{}$.
- 2. Apply M's transition function δ to determine the next state.
- 3. Sweep back from right to left to update k symbols, if needed, and move $\hat{\ }$, if needed.

In total, 1.2.3. take $O(k \cdot T(n))$ time.

A Bidirectional-tape TM is a TM where tape is infinite in both directions.

Lem 3.10 Let $L \subseteq \Sigma^*$. If L is decidable by a Bidirectional-tape TM in time T(n), then it is decidable by a single-tape TM in time O(T(n)).

Proof: Index the Bidirectional tape by \mathbb{Z} :

(Assuming that the Bidirectional tape was indexed by: $\dots, -3, -2, -1, 0, 1, 2, 3, \dots$)

$$Mapping: \{ egin{smallmatrix} i
ightarrow 2i \ -i
ightarrow 2i-1 \end{smallmatrix}$$

In this way, we create a new (single) tape indexed by: $0, -1, 1, -2, 2, \dots$

For every step of M, M' will:

- 1. Read the symbol
- 2. Transit to the next state
- 3. Update the symbol
- 4. Move left or right for 2 steps if needed

It takes O(1) to simulate 1 step. In total, the running time is O(T(n)). Q.E.D.

RAM TM

Def 3.11 A RAM TM is a TM with random access memory.

- 1. M has an infinite memory tape A indexed by \mathbb{N} .
- 2. One of M's tape is the address tape.
- 3. Γ contains 2 special symbols R (Read) and W (Write).
- 4. Q has some special states $Q_{access} \subseteq Q$.

Whenever M gets into a state $q \in Q_{access}$:

- 1. If the address tape contains iR, the value A[i] is written to the cell next to R.
- 2. If the address tape contains $iW\sigma$, then set A[i] to symbol σ .

Assume the RAM TM M has k work tapes, and an address tape. Then

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}, Q_{access}) \ \delta: Q imes \Gamma^{k+1} o Q imes \Gamma^{k+1} imes \{L, R, S\}^{k+1}$$

Lem 3.12 Let $L\subseteq\{0,1\}^*$. If L is decidable by a RAM TM in time T(n), it is decidable by a Multitape TM in time $O(T(n)^3)$.

• Moreover, if the address length is O(1), then L is decidable by a Multitape TM in time $O(T(n)^2)$.

Proof: Use an extra work tape as memory.

• Ignoring polynomial factors, all TM variants are equivalent.

$$\frac{C++}{T(n)} \rightarrow \frac{Assembly}{O(T(n))} \rightarrow \frac{RAM\ TM}{O(T(n))} \rightarrow \frac{Multitape}{O(T(n)^3)/O(T(n)^2)^*} \rightarrow \frac{Single-tape}{O(T(n)^6)/O(T(n)^4)^*}$$