FVVII: Tarea 1

Alonso Oma Alonso

11 de octubre de 2022

${\rm \acute{I}ndice}$

1. Problema 2

1. Problema

Sea \mathcal{X} un conjunto, $\mathcal{A} \subset P(\mathcal{X})$ una familia de subconjuntos de X, e $Y \subset \mathcal{X}$. Denotemos $\mathcal{A}_y = \{A \cap Y : A \in \mathcal{A}\}$. Probar que las operaciones de generación e inducción se pueden intercambiar, es decir, $\sigma(\mathcal{A})_y = \sigma(\mathcal{A}_y)$.

Definición 1.1. Sea $S \subset P(\mathcal{X})$. La intersección de todas las σ -álgebras que contienen a S se denomina σ -ágebra generada por S y se denota por \mathcal{M}_S .

Definición 1.2. Sea $\{X, M\}$ un espacio medible, y sea $A \in M$. La σ -álgebra $\{A \cap B : B \in M\}$ se denomina σ -álgebra inducida en A y se denota M_A .

La σ -álgebra generada por $\mathcal{A} \subset P(\mathcal{X})$ es la intersección de todas las σ -álgebras que contienen a \mathcal{A} . Es decir, $\sigma(\mathcal{A})$ es la menor σ -álgebra que contiene a \mathcal{A} y, además, da lugar a un espacio medible. Por lo tanto, ahora podemos aplicar la definición de σ -álgebra inducida en el espacio $\{\mathcal{X}, \mathcal{M}_{\mathcal{A}}\}$. Entonces $\sigma(\mathcal{A})_y = \{Y \cap B : B \in \mathcal{M}\}$ será la σ -álgebra inducida en Y, y la denotaremos como $\mathcal{M}_{\mathcal{A}_y}$.

Ahora, veamos qué es $\sigma(\mathcal{A}_y)$: Por hipótesis, tenemos que $\mathcal{A}_y = \{A \cap Y : A \in \mathcal{A}\}$ la cuál no podemos dar por supuesto que es una σ -álgebra ya que no sabemos si $\{\mathcal{X}, \mathcal{A}\}$ es un espacio medible. Sin embargo, $\sigma(\mathcal{A}_y)$ sí que es una σ -álgebra, y además es la menor σ -álgebra que contiene a \mathcal{A}_y , por lo que la denominaremos $\mathcal{M}'_{\mathcal{A}_y}$.

- Para ver que $\mathcal{M}'_{\mathcal{A}_y} \subset \mathcal{M}_{\mathcal{A}_y}$ vamos a ver que $\mathcal{A}_y \subset \mathcal{M}_{\mathcal{A}_y}$. Para ello es fácil ver que $\mathcal{A} \subset \mathcal{M}_{\mathcal{A}} \Longrightarrow \{Y \cap A : A \in \mathcal{A}\} \subset \{Y \cap B : B \subset \mathcal{M}_{\mathcal{A}}\}$. Pero como por definición $\mathcal{M}'_{\mathcal{A}_y}$ es la intersección de todas las sigma-álgebras que contienen a \mathcal{A}_y , entonces $\mathcal{M}'_{\mathcal{A}_y} \subset \mathcal{M}_{\mathcal{A}_y}$.
- Veamos ahora que $\mathcal{M}_{\mathcal{A}_y} \subset \mathcal{M}'_{\mathcal{A}_y}$: Esta la resolveremos por reducción al absurdo. Supongamos que no fuese cierto. Entonces existiría