

PLANO DE ENSINO E APRENDIZAGEM

Curso: Jogos Digitais

Atividade Acadêmica: Fundamentos de Computação Gráfica

Carga horária: 60 horas teóricas + 15h práticas

Tipo de Atividade: Teoria aplicada

Professora: Rossana Baptista Queiroz (rossanaqueiroz@unisinos.br)

Conhecimentos

 Introdução à Computação Gráfica e contextualização: conceito de processamento gráfico e apresentação das principais subáreas, das quais computação gráfica é parte.
Aplicações em jogos digitais.

- Pipeline gráfico: Arquitetura. Visão geral dos estágios do pipeline.
- Transformações: mapeamentos entre os sistemas de coordenadas nas etapas do pipeline gráfico.
- Transformações geométricas. Quaternions.
- Câmera sintética: projeções ortográficas e perspectiva.
- Sistemas de cores: modelos de representação.
- Mapeamento de texturas: conceitos básicos e mapeamento UV.
- Técnicas aplicadas a jogos digitais: skyboxes, billboards, sprites e camadas...

Atividades de ensino-aprendizagem

Aulas expositivas, sob o enfoque da discussão e análise crítica (sob ambos os pontos de vista, técnico e humano) dos conteúdos apresentados, intercaladas com a realização de exercícios de cunho prático, experimentos e seminários.

As horas de prática ocorrerão extraclasse no desenvolvimento de implementações de pequenos experimentos de jogos, aplicando-se os conhecimentos trabalhados em aula. Poderão também ocorrer, em contextos de atuação profissional, como empresas e instituições, e envolverão metodologias variadas, como observação, coleta de dados, pesquisas e desenvolvimento de projetos.

Cronograma de desenvolvimento

Em 2024/1, todos os encontros ocorrerão de forma REMOTA. Os encontros são síncronos e realizados pelo MS Teams. Toda e qualquer alteração nas datas serão discutidas em sala de aula e atualizadas via Moodle.

Semana	Data	Conteúdo/Atividades
1		Apresentação da disciplina Introdução à área e suas aplicações Introdução ao Pipeline Gráfico

2	09/03/2024	Primitivas gráficas Introdução à OpenGL Moderna. Entendendo os estágios do Pipeline
3	16/03/2024	Entendendo os estágios do Pipeline. Shaders & Buffers
4	23/03/2024	Entendendo os estágios do Pipeline. Shaders & Buffers
5	30/03/2024	Feriado (Páscoa)
6	06/04/2024	Exercícios
7	13/04/2024	Transformações: mapeamentos entre sistemas de coordenadas
8	20/04/2024	Transformações geométricas
9	27/04/2024	Introdução ao Mapeamento de texturas
10	04/05/2024	Sprites e Camadas. Aula para esclarecimento de dúvidas e desenvolvimento do trabalho do Grau A
11	11/05/2024	Apresentação e Entrega do Trabalho do Grau A
12	18/05/2024	Tilemaps
13	25/05/2024	Câmera Sintética: projeções ortográficas e perspectiva
14	01/06/2024	Tilemaps
<u>15</u>	08/06/2024	Apresentação e Entrega do Trabalho do Grau A
16	15/06/2024	Visão Isométrica
17	22/06/2024	Aula para esclarecimento de dúvidas e desenvolvimento do trabalho do Grau B
18	29/06/2024	Aula para esclarecimento de dúvidas e desenvolvimento do trabalho do Grau B
<u>19</u>	06/07/2024	Apresentação e Entrega do Trabalho do Grau B
<u>20</u>	13/07/2024	<u>Grau C</u>

Avaliações

- Grau A: composto por exercícios práticos, valendo 30% da nota (entregas individuais), e um trabalho prático, valendo 70% da nota (trabalho em grupo). Enunciados serão apresentados em aula e disponibilizados no Moodle. Entrega via Moodle nas datas combinadas e mediante apresentação junto ao professor.
- Grau B: composto por exercícios práticos, valendo 30% da nota (entregas individuais), e um trabalho prático, valendo 70% da nota (trabalho em grupo). Composto por um trabalho prático, valendo 100% da nota (trabalho em grupo). Enunciados serão apresentados em aula e disponibilizados no Moodle. Entrega via Moodle nas datas combinadas e mediante apresentação junto ao professor.

 Grau C: prova <u>ou</u> reentrega e reapresentação dos trabalhos ou exercícios conforme combinação feita com o professor durante a semana de comunicação de grau. Apenas um grau pode ser substituído (Grau A ou Grau B).

Bibliografia básica

HUGHES, John F. Computer graphics: principles and practice. 3rd ed. New Jersey: Addison-Wesley, 2013.

LENGYEL, Eric. Mathematics for 3D game programming and computer graphics. 3rd ed. Boston: Course Technology, Cengage Learning, c2012.

MÖLLER, Tomas et al. **Real-time rendering**. 4th ed. Boca Raton: CRC Press, 2018. Recurso online.

Bibliografia complementar

ARORA, Sumeet. Foundations of 3D Computer Graphics. Birmingham, UK: Packt Publishing. 2014.

SELLERS, Graham; WRIGHT, Richard S.; HAEMEL, Nicholas. **OpenGL superbible:** comprehensive tutorial and reference. 7th ed. New York: Addison-Wesley, 2016.

ARORA, Sumeet. WebGL Game Development. Birmingham, UK: Packt Publishing. 2014.

MADSEN, Robert; MADSEN, Stephen. **OpenGL Game Development by Example**. Series: Community Experience Distilled. Birmingham: Packt Publishing. 2016.

LAPINSKI, Pawel. Vulkan Cookbook. Birmingham, UK: Packt Publishing. 2017.