21 Deterministický konečný automat, jazyk přijímaný konečným automatem. (A4B01JAG)

21.1 Jazyky - úvod

21.1.1 Abeceda

Konečnou neprázdnou množinu Σ budeme nazývat *abecedou*. Prvky množiny Σ nazýváme symboly, písmeny apod.

21.1.2 Slovo nad abecedou

Pro danou abecedu Σ slovo nad Σ je libovolná konečná posloupnost prvků abecedy Σ . Tedy např. pro $\Sigma = \{a, b\}$ jsou aab, b, bbaba slova nad Σ .

Prázdné slovo, značíme je ϵ , je posloupnost, která neobsahuje ani jeden symbol.

21.1.3 Délka slova

Je dáno slovo nad abecedou Σ . Délka slova je rovna délce posloupnosti, tj. počtu symbolů, které se ve slově nacházejí. Délku slova u značíme |u|.

Tedy, délka slova aab je rovna 3, délka b je 1, délka prázdného slova ϵ je 0.

21.1.4 Zřetězení slov

Je dána abeceda Σ . Pro dvě slova u, v nad abecedou Σ definujeme operaci zřetězení takto: Je-li $u=a_1a_2\dots a_n$ a $v=b_1b_2\dots b_k$, pak

$$u \cdot v = a_1 a_2 \dots a_n b_1 b_2 \dots b_k$$
.

Často znak pro operaci zřetězení vynecháváme; píšeme tedy uv místo přesnějšího $u \cdot v$. Zřetězení slov je asociativní operace na množině všech slov nad danou abecedou, prázdné slovo ϵ je neutrální prvek této operace.

 Σ^* , Σ^+ . Označíme Σ^* množinu všech slov nad abecedou Σ . (Tj. prázdné slovo patří do Σ^*) Pak Σ^* spolu s operací zřetězení tvoří monoid, jehož neutrálním prvkem je prázdné slovo ϵ .

Označíme Σ^+ množinu všch neprázdných slov nad abecedou Σ . (Tj. $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$.) Pak Σ^* spolu s operací zřetězení tvoří pologrupu.

Zřetězení slov není komutativní. Např. pro u=aab a v=b je uv=aabb, ale vu=baab.

Pro libovolná slova u a v nad stejnou abecedou platí:

$$|uv| = |u| + |v|.$$

Je-li slovo nad abecedou Σ , pak

$$u^0 = \epsilon$$
,

$$u^{i+1} = uu^i$$
 pro každé i .

21.1.5 Podslovo

Je dáno slovo u. Řekneme, že slovo w je podslovem slova u, jestliže existují slova $x,\ y$ taková, že

$$u = xwy$$
.

21.1.6 Prefix slova

Je dáno slovo u. Řekneme, že slovo w je prefix slova u, jestliže existuje slovo y takové, že

$$u = wy$$
.

21.1.7 Jazyk nad abecedou

Je dána abeceda Σ . Jazyk L nad abecedou Σ je libovolná množina slov, tj. $L \subseteq \Sigma^*$. Je-li Σ abeceda, pak množina všech slov Σ^* je spočetná. Jazyků, jako podmnožin spočetné množiny, je víc - nespočetně mnoho.

21.2 Deterministické konečné automaty

21.2.1 Použití

Konečné automaty se používají v různých oborech. Jako příklady můžeme uvést překladače, dále se používají při zpracování přirozeného jazyka, pří návrzích hardwaru.

Zhruba řečeno konečný automat obsahuje konečnou množinu stavů Q, konečnou množinu vstupů Σ , přechodovou funkci δ a počáteční stav q_0 . V některých případech ještě i množinu výstupních symbolů Y a výstupních funkcí.

21.2.2 Příklad 1

Uvažujme zjednodušený příklad automatu na kávu. Automat přijímá mince 1 Kč, 2 Kč a 5 Kč. Automat vydává jediný druh kávy, káva stojí 7 Kč. Automat na tlačítko s vrátí nevyužité peníze. Tento příkad uvedeme podrobněji.

Zde $Q=\{0,1,2,3,4,5,6\}, \Sigma=\{1,2,5,s\}, Y=\{K,0,1,2,3,4,5,6\},$ přechodová a výstupní funkce jsou dány následující tabulkou:

V prvním sloupci jsou stavy, ve kterých se automat může nacházet, v prvním řádku jsou vstupní symboly. V řádku odpovídajícím stavu q a sloupci se vstupen a je dvojice (nový stav, výstup). (K znamená kávu, číslo udává vrácené peníze).

	1	2	5	s
0	1/0	2/0	5/0	0/0
1	2/0	3/0	6/0	0/1
2	3/0	4/0	0/K	0/2
3	4/0	5/0	1/K	0/3
4	5/0	6/0	2/K	0/4
5	6/0	0/K	3/K	0/5
6	0/K	1/K	4/K	0/6

21.2.3 Obecně rozlišujeme čtuři typy automatů

Mealyho automat, Mooreův automat, akceptor a automat bez výstupu. Dále se budeme zabývat hlavně tzv. akceptory.

21.2.4 Mealyho automat

Mealyho automat je šestice $(Q, \Sigma, Y, \delta, q_0, \lambda)$. kde Q, Σ, Y a q_0 mají stejný význam jako v 21.2.1, přechodová funkce je zobrazení $\delta: Q \times \Sigma \to Q$ a výstupní funkce je zobrazení $\lambda: Q \times \Sigma \to Y$.

21.2.5 Moorův automat

Moorův automat je šestice $(Q, \Sigma, Y, \delta, q_0, \beta)$. kde Q, Σ, Y, δ a q_0 mají stejný význam jako v 21.2.4, β je zobrazení β : $Q \to Y$ (říká se mu značkovací funkce).

21.2.6 Akceptor, též DFA

DFA je pětice $(Q, \Sigma, \delta, q_0, F)$, kde Q, Σ, δ a q_0 mají stejný význam jako v 21.2.5 a $F \subseteq Q$ je množina koncových (též přijímajících) stavů.

Jedná se vlastně o Mooreův automat, kde množina výstupních symbolů má dva prvky, totiž $Y = \{0, 1\}$, a proto značkovací funkci β nahrazujeme množinou těch stavů, kterým značkovací funkce přiřazuje 1.

21.2.7 Automat bez výstupu

Automat bez výstupu je "společnou částí" všech výše uvedených automatů; tj. jedná se o (Q, Σ, δ, q_0) .

21.2.8 Stavový diagram

Kromě tabulky, můžeme konečný automat zadat též stavovým diagramem.

Je dán konečný automat s množinou stavů Q, množinou vstupních symbolů Σ , přechodovou funkcí δ . Stavovým diagramem nazýváme orientovaný ohodnocený graf, jehož vrcholy jsou stavy (tj. V=Q) a orientovaná hrana vede z vrcholu q do vrcholu p právě tehdy, když $\delta(q, a) = p$; v tomto případě je hrana ohodnocena vstupním symbolem a pro Moorův automat a DFA, nebo dvojicí $a/\lambda(q, a)$ v případě, že se jedná o Mealyho automat.

Jesliže se jedná o Mooreův automat, vrcholy stavového diagramu jsou navíc ohodnoceny značkovací funkcí β . Pro akceptor, tj DFA, označujeme pouze množinu koncových stavů, a to buď šipkou mířící ze stavu ven nebo jiným označením stavů, které patří do množiny F. Počáteční stav q_0 je označován šipkou mířící do něj.

21.2.9 Rozšířená přechodová funkce

Je dán automat (Q, Σ, δ) . Rozšířená přechodová funkce $\delta^*: Q \times \Sigma^* \to Q$ je definovaná induktivně takto:

- 1. $\delta^{\star}(q, \epsilon) = q$, pro všechna $q \in Q$,
- 2. $\delta^{\star}(q, ua) = \delta(\delta^{\star}(q, u), a)$, pro všechna $q \in Q, a \in \Sigma, u \in \Sigma^{\star}$.

21.2.10 Jazyk přijímaný konečným automatem

Je dán DFA $M=(Q,\Sigma,\delta,q_0,F)$. Řekneme, že slovo $u\in\Sigma^\star$ je přijímáno automatem M právě tehdy, když

$$\delta^{\star}(q_0, u) \in F$$
.

Množina všech slov, které automat přijímá, se nazývá jazyk přijímaný M, značíme ji L(M). Tedy,

$$L(M) = \{\omega | \delta^{\star}(q_0, \omega) \in F\}.$$

21.2.11 Regulární jazyky

Každý jazyk, který je přijímán některým DFA, nazveme *regulární jazyk*. Třídu všech regulárních jazyků označujeme **Reg**.

21.2.12 Pumping lemma pro regulární jazyky

Pro každý regulární jazyk L nad abecedou Σ (tj. jazyk, který je přijímán nějakým DFA) existuje přirozené číslo n s touto vlastností:

Jestliže nějaké slovo $u \in L$ je delší než n (tj. |u| > n), pak u lze rozdělit na tři slova u = xwy tak, že

- 1. $w \neq \epsilon$,
- 2. $|xw| \le n$,
- 3. $xw^iy \in L$ pro každé přirozené číslo $i = 0, 1, \ldots$

Důkaz: Předpokládejme, že jazyk L je regulární. Tedy existuje DFA M, který tento jazyk přijímá. Označme n počet jeho stavů. Vezměme libovolné slovo $u \in L$ délky větší než n. Sled ve stavovém diagramu, který odpovídá práci automatu nad slovem u, musí obsahovat cyklus (má větší délku než je počet vrcholů – stavů). Označme x slovo, které odpovídá té části sledu než poprvé vstoupíme do cyklu, w slovo, které odpovídá jednomu průchodu tímto cyklem, a y slovo odpovídající zbylé části sledu.

Není těžké se přesvědčit, že slova x, w, y splňují vlastnosti z pumping lemmatu.

Využití pumping lemmatu: Jazyk $L = \{0^m 1^m | m \ge 0\}$ není regulární jazyk.

Kdyby L byl regulární jazyk, muselo by existovat přirozené číslo n s vlastností z 21.2.12. Položme $u=0^n1^n$. Zřejmě $u\in L$ a |u|=2n>n. Tedy $u=xwy,\ w\neq\epsilon,\ |xw|\leq n$ a $xw^2y\in L$. To ale není možné; slovo w by muselo obsahovat jen 0, protože délka slova xw je menší nebo rovna n a prefix slova u délky n je 0^n . Navíc slovo w není prázdné, a tedy $w=0^k$ pro $0< k\leq n$. Pak ale slovo xw^2y je rovno $0^{n+k}1^n$ a nemá stejný počet 0 i 1, tj. neleží v jazyce L. Spor.

21.2.13 Ekvivalentní automaty

Řekneme, že dva automaty M_1 a M_2 jsou *ekvivalnetní*, jestliže přijímají stejný jazyk, tj. jestliže $L(M_1) = L(M_2)$.

21.2.14 Dosažitelné stavy

Je dán DFA $M=(Q, \Sigma, \delta, q_0, F)$. Řekneme, že stav $q \in Q$ je dosažitelný, jestliže existuje slovo $u \in \Sigma^*$ takové, že $\delta^*(q_0, u) = q$. Jinými slovy, stav q je dosažitelný, jestliže je dosažitelný z počátečního stavu q_0 ve stavovém diagramu M (tj. z q_0 vede do q orientovaný sled).

Je zřejmé, že stavy, které jsou nedosažitelné, nemají vliv na jazyk, který daný automat přijímá.

21.2.15 Ekvivalence stavů \sim

Máme DFA M = $(Q, \Sigma, \delta, q_0, F)$. Řekneme, že dva stavy $p, q \in Q$ jsou ekvivalentní, jestliže pro každé slovo $u \in \Sigma^*$ platí

$$\delta^{\star}(p, u) \in F \text{ iff } \delta^{\star}(q, u) \in F.$$

Fakt, že dva stavy p a q jsou ekvivalentní, zapisujeme $p \sim q$.

21.2.16 Redukovaný automat

Je dán DFA $M=(Q,\Sigma,\delta,q_0,F)$. Řekneme, že M je redukovaný, jestliže nemá nedosažitelné stavy a žádné jeho dva různé stavy nejsou ekvivalentní. (To znamená, že ekvivalence \sim je identická ekvivalence.)

21.2.17 Konstrukce relace \sim

Konstruujeme relace \sim_i , $i=0,1,\ldots$, na množině všech stavů Q takto:

- $p \sim_0 q$ právě tehdy, když buď $p,q \in F$ nebo $p,q \notin F$;
- je-li $i \geq 0$, pak $p \sim_{i+1} q$ právě tehdy, když $p \sim_i q$ a pro každé $a \in \Sigma$ máme $\delta(p, a) \sim_i \delta(q, a)$.

Věta: Platí

$$\sim_0 \supseteq \sim_1 \supseteq \ldots \supseteq \sim_i \supseteq \ldots$$

Existuje k takové, že \sim_k je rovna \sim_{k+1} . Pak pro každé $j \geq 1$ platí $\sim_k = \sim_{k+j}$ a tedy $\sim_k = \sim$.

21.2.18 Algoritmus redukce

Je dán DFA $M = (Q, \Sigma, \delta, q_0, F)$.

- 1. Zkonstruujeme množinu Q^{\dagger} všech dosažitelných stavů automatu M. Postupujeme např. hledáním do šířky ze stavu q_0 ve stavovém diagramu.
- 2. Podle předchozího odstavce zkonstruujeme ekvivalenci ~ pro DFA $M' = (Q, \Sigma, \delta, q_0, F \cap Q')$.
- 3. Vytvoříme DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, kde $Q_1 = Q' / \sim = \{[q]_{\sim} | q \in Q'\}, q_1 = [q_0]_{\sim}, \delta_1([q]_{\sim}, a) = [\delta(q, a)]_{\sim} \text{ a } F_1 = \{[q]_{\sim} | q \in F \cap Q'\}.$

Automat M_1 vznikl takto: za stavy jsme vzali třídy ekvivalence \sim , počáteční stav je třída, ve které leží původní počáteční stav q_0 , přechodová funkce "pracuje" na třídách (což je možné vzhledem k vlastnosti \sim) a množina koncových stavů je množina těch tříd, ve kterých leží koncové stavy automatu $M^{\scriptscriptstyle \parallel}$.

21.2.19 Příklad

Je dán DFA M následující tabulkou:

$\mid a \mid$	b
2	3
2	4
3	5
2	7
6	3
6	6
7	4
2	3
9	4
	2 2 3 2 6 6 7

Nalezněte redukovaný automat k DFA M.

Řešení: Nejprve najdeme všechny dosažitelné stavy automatu M. Jsou to stavy $\{1,2,3,4,5,6,7\}$. Tedy $Q' = \{1,2,3,4,5,6,7\}$, $F' = F = \{3,5,6\}$.

Automat M' je dán tabulkou:

	$\mid a \mid$	$\mid b \mid$
1	2	3
2	2	4
3	3	5
4	2	7
5	6	3
6	6	6
7	7	4

Vytvoříme rozklad R_0 ekvivalence \sim_0 :

$$O = \{1, 2, 4, 7\}$$
 $F = \{3, 5, 6\}$.

Platí

$$\delta(1,a) = 2 \in O, \ \delta\left(2,a\right) = 2 \in O, \ \delta\left(4,a\right) = 2 \in O, \ \delta\left(7,a\right) = 7 \in O, \ \delta\left(1,b\right) = 3 \in F, \\ \delta\left(2,b\right) = 4 \in O$$

Tedy musíme množinu O rozdělit na dvě podmnožiny, a to $\{1\}$ a $\{2,4,7\}$. Dále $\delta\left(3,a\right)=3\in F,\ \delta\left(5,a\right)=6\in F,\ \delta\left(6,a\right)=6\in F,\ \delta\left(3,b\right)=5\in F,\ \delta\left(5,b\right)=3\in F,\ \delta\left(6,b\right)=6\in F.$

Proto množinu F nedělíme.

Rozklad odpovídající ekvivalenci \sim_1 je

$$A = \{1\}, O = \{2, 4, 7\}, F = \{3, 5, 6\}.$$

Výpočet zahrneme do tabulky

	a	$\mid b \mid$	\sim_0	$\mid a \mid$	b	$\mid \sim_1 \mid$
1	2	3	О	О	F	A
2	2	4	О	О	О	0
3	3	5	F	F	F	F
4	2	7	О	О	О	0
5	6	3	F	F	F	F
6	6	6	F	F	F	F
7	7	4	О	О	О	0

Analogicky postupujeme k vytvoření ekvivalence \sim_1 . Výpočet již zkrátíme jen do tabulky.

	$\mid a \mid$	$\mid b \mid$	$ \sim_0 $	$\mid a \mid$	b	$ \sim_1 $	a	$\mid b \mid$	\sim_2
1	2	3	О	О	F	A	О	F	Α
2	2	$\mid 4 \mid$	О	О	О	0	О	О	О
3	3	5	F	F	F	F,	F	F	F
4	2	7	O	Ю	О	$\mid 0 \mid$	\cup O	$\mid \Omega \mid$	О
5	6	3	F	F	F	F	F	F	F
6	6	6	F	F	F	F	F	F	F O
7	7	$\mid 4 \mid$	О	О	О	F O	О	0	О

Z tabulky vyplývá , že $\sim_1=\sim_2$. Proto $\sim_1=\sim$ je hledaná ekvivalence.

Máme tedy tři třídy ekvivalence, a to $A,\ O$ a F. Redukovaný automat M_1 je dán tabulkou

Není těžké nahlédnout, že automat M_1 přijímá jazyk $L = \{bu | u \in \{a, b\}^*\}.$

Věta: Automat M i k němu redukovaný automat M_1 přijímají stejný jazyk, tj. jsou ekvivalentní.

Věta: Dva DFA M_1 a M_2 přijímají stejný jazyk (tj. jsou ekvivalentní) právě tehdy, když jejich odpovídající redukované automaty se liší pouze pojmenováním stavů.

21.2.20 Nerodova věta

Je dán jazyk L nad abecedou Σ . Pak L je regulární jazyk (tj. je přijímán nějakým DFA) právě tehdy, když existuje ekvivalence R na množině všech slov Σ^* taková, že

- 1. L je sjednocení některých tříd ekvivalence R.
- 2. R splňuje následující podmínku: Je-li uRv pro $u, v \in \Sigma^*$, pak pro každé slovo $w \in \Sigma^*$ platí uwRvw.
- 3. R má pouze konečně mnoho tříd ekvivalence.

Poznamenejme, že druhá podmínka vlastně říká, že ekvivalence R je pravá kongruence monoidu $(\Sigma^*, \cdot, \epsilon)$.

Důkaz: Jestliže je jazyk L regulární, pak existuje DFA $M=(Q,\Sigma,\delta,q_0,F)$, takový, že L=L(M). Definujme relaci R na Σ^* takto:

$$uRv$$
 iff $\delta^{\star}(q_0, u) = \delta^{\star}(q_0, v)$.

Takto definovaná relace splňuje všechny podmínky Nerodovy věty.

Předpokládejme, že pro jazyk L existuje ekvivalence R splňující všechny podmínky z Nerodovy věty. Definujme DFA $M=(Q,\Sigma,\delta,q_0,F)$ takto:

$$Q = \left\{ [u]_R \, | u \in \Sigma^\star \right\}, \quad q_0 = [\epsilon]_R \,, \quad F = \left\{ [u]_R \, | \, [u]_R \subseteq L \right\};$$

$$\delta\left(\left[u\right]_{R},a\right)=\left[ua\right]_{R}\qquad\text{pro každé }a\in\Sigma.$$

Pak DFA M přijímá jazyk L.

Poznámka: Podobně jako pumping lemma i Nerodova věta se dá použít k tomu, abychom ukázali, že některý jazyk není regulární. Navíc je ale možné Nerodovu větu použít i pro konstrukci automatu, který daný jazyk přijímá.