ВМК МГУ

Задание 8. Коды БЧХ

Практикум 317 группы, весна 2015

Начало выполнения задания: 7 мая 2015 Срок сдачи: **20 мая 2015 (среда), 23:59.** Среда для выполнения задания – РҮТНОN.

Содержание

Необходимая теория
Задача помехоустойчивого кодирования
Кодирование с помощью линейного циклического блокового кода
Коды БЧХ: кодирование
Коды БЧХ: декодирование
Декодер PGZ
Декодер Euclid
Формулировка задания
Рекомендации по выполнению задания
Оформление задания

Необходимая теория

Задача помехоустойчивого кодирования

Рассмотрим задачу передачи потока битовой информации по каналу с шумом с возможностью автоматического исправления ошибок, допущенных при передаче. При *блоковом* кодировании входящий поток информации разбивается на блоки фиксированной длины k. Обозначим один такой блок через $\mathbf{u} \in \{0,1\}^k$. Предполагается, что во входном потоке данных, вообще говоря, нет избыточности. Поэтому для реализации схемы, способной исправлять ошибки, необходимо закодировать блок \mathbf{u} в некоторое кодовое слово большей длины путем добавления избыточности в передаваемые данные. Обозначим кодовое слово через $\mathbf{v} \in \{0,1\}^n$, n > k. Для кодирования всевозможных блоков \mathbf{u} необходимо использовать 2^k кодовых слов длины n. Определим минимальное расстояние кода d как минимальное хэммингово расстояние для всех различных пар кодовых слов. Назовём множество 2^k кодовых слов длины n с минимальным расстоянием d (n, k, d)-блоковым кодом, а величину r = k/n - c скоростью кода. При передаче по каналу с шумом кодовое слово \mathbf{v} превращается в принятое слово $\mathbf{w} \in \{0,1\}^n$, которое, вообще говоря, отличается от \mathbf{v} . Далее алгоритм декодирования пытается восстановить переданное слово \mathbf{v} путем поиска среди всевозможных кодовых слов ближайшего к \mathbf{w} . Обозначим результат работы алгоритма декодирования через $\hat{\mathbf{v}}$. На последнем этапе декодированное слово $\hat{\mathbf{v}}$ переводится в декодированное слово исходного сообщения $\hat{\mathbf{u}}$. Очевидно, что (n, k, d)-блоковый код способен гарантированно обнаруживать до d-1 ошибки и исправлять до d-1 ошибок.

Кодирование с помощью (n, k, d)-линейного циклического блокового кода

Множество $\{0,1\}^n$ с операциями суммы и произведения по модулю 2 образует линейное пространство над конечным полем \mathbb{F}_2 . (n,k,d)-блоковый код называется *линейным*, если множество его кодовых слов образует линейное подпространство размерности k общего линейного пространства $\{0,1\}^n$. Таким образом, для линейного кода произвольная линейная комбинация кодовых слов является кодовым словом. Минимальное кодовое расстояние d для линейного кода определяется как минимальный хэммингов вес (количество ненулевых бит) среди ненулевых кодовых слов. (n,k,d)-линейный блоковый код называется *циклическим*, если любой циклический сдвиг кодового слова является кодовым словом. Поставим в соответствие произвольному вектору

 $\mathbf{v} = [v_{n-1}, v_{n-2}, \dots, v_1, v_0] \in \{0, 1\}^n$ полином вида $v(x) = v_{n-1}x^{n-1} + v_{n-2}x^{n-2} + \dots + v_1x + v_0$. Тогда можно показать, что для (n, k, d)-линейного циклического блокового кода найдется полином g(x) степени m = n - k такой, что

- Все кодовые слова v(x) могут быть представлены как g(x)u(x), где u(x) некоторый полином степени, не превышающей k-1;
- Полином g(x) является делителем полинома $x^n 1$.

Такой полином g(x) называется порождающим полиномом циклического кода. Любой полином, являющийся делителем $x^n - 1$, является порождающим для некоторого циклического кода.

Кодирование называется систематическим, если все биты исходного сообщения u копируются в некоторые биты кодового слова v. При систематическом кодировании обратный процесс преобразования из декодированного кодового слова \hat{v} в декодированное слово сообщения \hat{u} становится тривиальным. Для циклического кода, задаваемого порождающим полиномом g(x), процесс систематического кодирования может быть реализован как

$$v(x) = x^m u(x) + \mod(x^m u(x), g(x)).$$

Здесь через $\mod(f(x),g(x))$ обозначена операция взятия остатка от деления многочлена f(x) на многочлен g(x).

Коды БЧХ: кодирование

Полином $m_{\alpha}(x) \in \mathbb{F}_2[x]$ называется минимальным полиномом для элемента $\alpha \in \mathbb{F}_2^q$, если он является неприводимым полиномом минимальной степени, для которого α является корнем. В частности, минимальный полином для примитивного элемента α называется примитивным полиномом. Можно показать, что корнями минимального полинома $m_{\alpha}(x)$ являются

$$\{\alpha, \alpha^2, \alpha^4, \dots, \alpha^{2^s}\}.$$

Данный набор элементов из поля \mathbb{F}_2^q называется *циклотомическим классом смежности* для элемента α . Количество элементов в смежном классе либо равно q, либо является делителем q. Циклотомические классы, порождённые различными элементами поля, либо совпадают, либо не пересекаются. Можно показать, что полином

$$\prod_{i=0}^{s} (x + \alpha^{2^{i}}) = x^{s+1} + \lambda_{s} x^{s} + \dots + \lambda_{1} x + \lambda_{0}$$

имеет коэффициенты из \mathbb{F}_2 и является минимальным полиномом для α , а также для всех элементов поля, входящих вместе с α в один циклотомический класс. Отсюда выводится метод построения минимального полинома для заданного элемента поля α :

- 1. Построить циклотомический класс, порожденный элементом α ;
- 2. Найти коэффициенты полинома $m_{\alpha}(x)$ путем перемножения многочленов $x+\alpha^{2^i}$ для всех $i=0,\ldots,s$.

Пусть $n=2^q-1, t\leq \lfloor (n-1)/2\rfloor$. Тогда кодом ВЧХ называется (n,k)-линейный циклический код, в котором порождающий многочлен g(x) определяется как минимальный многочлен для элементов $\alpha,\alpha^2,\alpha^3,\ldots,\alpha^{2t}$ из поля \mathbb{F}_2^q , где α – произвольный примитивный элемент поля \mathbb{F}_2^q . Набор элементов $\alpha,\alpha^2,\ldots,\alpha^{2t}$ называется нулями БЧХ-кода. Можно показать, что минимальное кодовое расстояние кода БЧХ d не меньше, чем величина 2t+1. В результате БЧХ-коды по построению способны исправлять не менее t ошибок.

Коды БЧХ: декодирование

Поставим в соответствие позициям принятого слова $\boldsymbol{w} = [w_{n-1}, \dots, w_0]$ элементы $\alpha^{n-1}, \dots, \alpha^0$. При передаче по шумовому каналу кодовое слово v(x) переходит в слово w(x) = v(x) + e(x), где $e(x) = x^{j_1} + \dots + x^{j_{\nu}}$ – полином опибок, а j_1, \dots, j_{ν} – позиции, в которых произошли опибки. Назовем *синдромами* принятого сообщения w(x) значения полинома w(x) в нулях БЧХ-кода, т.е. $s_i = w(\alpha^i), \ i = 1, \dots, 2t$. Если w(x) является кодовым словом, то все синдромы $s_i = 0$. Рассмотрим *полином локаторов ошибок*

$$\Lambda(z) = \prod_{i=1}^{\nu} (1 + \alpha^{j_i} z) = \Lambda_{\nu} z^{\nu} + \dots + \Lambda_1 z + 1.$$

Данный полином имеет корни α^{-j_i} . Можно показать, что коэффициенты полинома $\Lambda(z)$ удовлетворяют следующей СЛАУ:

$$\begin{bmatrix} s_1 & s_2 & \dots & s_{\nu} \\ s_2 & s_3 & \dots & s_{\nu+1} \\ \dots & \dots & \dots & \dots \\ s_{\nu} & s_{\nu+1} & \dots & s_{2\nu-1} \end{bmatrix} \begin{bmatrix} \Lambda_{\nu} \\ \Lambda_{\nu-1} \\ \dots \\ \Lambda_1 \end{bmatrix} = \begin{bmatrix} s_{\nu+1} \\ s_{\nu+2} \\ \dots \\ s_{2\nu} \end{bmatrix}.$$
 (1)

Отсюда получаем следующую общую схему декодирования БЧХ-кода:

- 1. Для принятого слова w(x) вычислить синдромы $s_i = w(\alpha^i), i = 1, \dots, 2t$. Если все $s_i = 0$, то вернуть w(x) в качестве ответа;
- 2. Найти количество допущенных ошибок ν и коэффициенты полинома локаторов ошибок путем решения СЛАУ (1);
- 3. Найти все корни полинома $\Lambda(z)$ путем полного перебора, по найденным корням вычислить номера позиций j_1, \ldots, j_{ν} , в которых произошли ошибки;
- 4. Исправить ошибки в позициях j_1, \dots, j_{ν} путем инвертирования соответствующих битов в w(x).

Различные алгоритмы декодирования БЧХ-кодов по-разному решают задачу на шаге 2 общего алгоритма декодирования. Рассмотрим две схемы декодирования.

Декодер PGZ (Peterson-Gorenstein-Zierler)

Данный декодер предполагает непосредственное решение СЛАУ (1). Основная трудность здесь – это определить количество фактически допущенных при передаче ошибок ν . В декодере PGZ происходит перебор по всем значениям ν , начиная с t. При текущем ν делается попытка решить СЛАУ (1). Если матрица СЛАУ является невырожденной, то текущее ν признается количеством допущенных ошибок, а коэффициенты полинома локаторов ошибок находятся из решения СЛАУ. Если матрица СЛАУ является вырожденной, то $\Lambda_{\nu}=0$, величина ν уменьшается на единицу, и процесс повторяется. Если СЛАУ решить не удается ни на одной итерации, то выдается отказ от декодирования. Также отказ от декодирования выдаётся в случае, если после исправления синдромы $\hat{v}(x)$ не равны нулю (кодовое слово не найдено).

Декодер Euclid

Рассмотрим синдромный полином вида $S(z) = s_{2t}z^{2t} + s_{2t-1}z^{2t-1} + \cdots + s_1z + 1$, где s_i – вычисленные ранее синдромы. Тогда можно показать, что S(z) и $\Lambda(z)$ удовлетворяют следующему уравнению:

$$z^{2t+1}A(z) + S(z)\Lambda(z) = r(z).$$

Здесь r(z) — некоторый многочлен из $\mathbb{F}_2^q[x]$, степень которого не превышает t. Решение данного уравнения $A(z),\Lambda(z),r(z)$ для заданных многочленов z^{2t+1} и S(z) может быть найдено с помощью расширенного алгоритма Евклида. Здесь итерации алгоритма Евклида проводятся до тех пор, пока степень текущего остатка r(z) не станет меньше или равна t. Степень найденного $\Lambda(z)$ равна количеству фактически допущенных при передаче опибок ν . Если количество корней у $\Lambda(z)$ не совпадает с ν , то выдаётся отказ от декодирования.

Формулировка задания

В задании выдаётся список всех примитивных многочленов степени q над полем \mathbb{F}_2 для всех $q=2,\ldots,16$. В этом списке каждый многочлен представлен десятичным числом, двоичная запись которого соответствует коэффициентам полинома над \mathbb{F}_2 , начиная со старшей степени.

Для выполнения задания требуется:

- 1. Реализовать основные операции в поле \mathbb{F}_2^q : сложение, умножение, деление, решение СЛАУ, поиск минимального многочлена из $\mathbb{F}_2[x]$ для заданного набора корней из поля \mathbb{F}_2^q ;
- 2. Реализовать основные операции для работы с многочленами из $\mathbb{F}_2^q[x]$: произведение многочленов, деление многочленов с остатком, расширенный алгоритм Евклида для пары многочленов, вычисление значения многочлена для набора элементов из \mathbb{F}_2^q ;

- Реализовать процедуру систематического кодирования для циклического кода, заданного своим порождающим многочленом;
- 4. Реализовать процедуру построения порождающего многочлена для БЧХ-кода при заданных n и t;
- 5. Построить графики зависимости скорости БЧХ-кода r = k/n от количества исправляемых кодом ошибок t для различных значений n. Какие значения t следует выбирать на практике для заданного n?
- 6. Реализовать процедуру вычисления истинного минимального расстояния циклического кода d, заданного своим порождающим многочленом, путем полного перебора по всем 2^k-1 кодовым словам. Привести пример БЧХ-кода, для которого истинное минимальное расстояние больше, чем величина 2t+1;
- 7. Реализовать процедуру декодирования БЧХ-кода с помощью метода PGZ и на основе расширенного алгоритма Евклида. Провести сравнение двух методов декодирования по времени работы;
- 8. С помощью метода стат. испытаний реализовать процедуру оценки доли правильно раскодированных сообщений, доли ошибочно раскодированных сообщений и доли отказов от декодирования для БЧХ-кода. С помощью этой процедуры убедиться в том, что БЧХ-код действительно позволяет гарантированно исправить до t ошибок. Может ли БЧХ-код исправить больше, чем t ошибок? Как ведут себя характеристики кода при числе ошибок, превышающем t?
- 9. Составить отчет в формате PDF обо всех проведённых исследованиях.

Рекомендации по выполнению задания

- Для реализации операций умножения и деления ненулевых элементов в поле \mathbb{F}_2^q удобно пользоваться представлением элементов поля как степеней некоторого примитивного элемента α : $\mathbb{F}_2^q = \{0, \alpha, \alpha^2, \alpha^3, \dots, \alpha^{2^q-2}, \alpha^{2^q-1} = 1\}$. Тогда произведение двух элементов поля α^{k_1} и α^{k_2} равно $\alpha^{k_1+k_2 \mod 2^q-1}$. Аналогично частное этих двух элементов равно $\alpha^{k_1-k_2 \mod 2^q-1}$. Для быстрого перехода от десятичного представления элементов поля к степенному и обратно удобно завести таблицу размера $(2^q-1)\times 2$. В первой колонке этой таблицы в позиции i будет находится число j: $\alpha^j=i$, а во второй колонке в позиции i значение α^i .
- При реализации алгоритмов задания рекомендуется, помимо прочего, использовать следующие проверки на корректность:
 - порождающий полином БЧХ-кода должен быть делителем многочлена x^n-1 (иначе код не будет циклическим);
 - произвольное кодовое слово БЧХ-кода v(x) должно делиться без остатка на порождающий многочлен кода g(x), а также обращаться в ноль на нулях кода (все синдромы кодового слова равны нулю);
 - минимальный многочлен $m_{\alpha}(x)$ для элемента $\alpha \in \mathbb{F}_2^q$, вычисляемый как многочлен с корнями $\alpha, \alpha^2, \alpha^4, \dots, \alpha^{2^q}$, должен иметь коэффициенты из \mathbb{F}_2 ;
 - минимальное кодовое расстояние БЧХ-кода d, найденное полным перебором, должно быть не меньше, чем величина 2t+1.

Оформление задания

Выполненное задание с отчётом и всеми исходными кодами необходимо прислать преподавателю. Далее следует описание прототипов реализуемых функций. При желании студента и при дополнительном согласовании с преподавателем разрешается реализовать задание с другими прототипами с использованием классов РҮТНОN, перегрузкой операторов, введением дополнительного базового типа в питру и проч. Интересные реализации будут поощряться бонусными баллами.

- 1. Модуль gf.py с реализацией основных операций в конечном поле \mathbb{F}_2^q и операций над многочленами из $\mathbb{F}_2^q[x]$:
 - (a) gen_pow_matrix(primpoly) Описание параметров:

• primpoly – примитивный многочлен, десятичное число, двоичная запись которого соответствует коэффициентам полинома над \mathbb{F}_2 , начиная со старшей степени.

Функция возвращает матрицу соответствия между десятичным представлением и степенным представлением ненулевых элементов поля по стандартному примитивному элементу α , numpy.array-матрица размера $2^q - 1 \times 2$, в которой в первой колонке в позиции i стоит степень $j: \alpha^j = i$, а во второй колонке в позиции i стоит значение α^i , $i = 1, \ldots, 2^q - 1$.

(b) add(X, Y)

Описание параметров:

• X, Y — две матрицы одинакового размера из элементов поля \mathbb{F}_2^q , numpy.array-матрицы, каждый элемент в матрицах представляет собой десятичное число, двоичная запись которого соответствует коэффициентам полинома над полем \mathbb{F}_2 , первый разряд соответствует старшей степени полинома:

Функция возвращает **numpy.array**-матрицу размера **X**, являющуюся поэлементным суммированием матриц **X** и **Y**.

(c) sum(X, axis=0)

Описание параметров:

• X — матрица из элементов поля \mathbb{F}_2^q , numpy.array-матрица, каждый элемент в матрице представляет собой десятичное число, двоичная запись которого соответствует коэффициентам полинома над полем \mathbb{F}_2 , первый разряд соответствует старшей степени полинома;

Функция возвращает результат суммирования матрицы X по размерности, определяемой параметром axis.

(d) prod(X, Y, pm), divide(X, Y, pm)

Описание параметров:

- X, Y две матрицы одинакового размера из элементов поля \mathbb{F}_2^q , numpy.array-матрицы, каждый элемент в матрицах представляет собой десятичное число, двоичная запись которого соответствует коэффициентам полинома над полем \mathbb{F}_2 , первый разряд соответствует старшей степени полинома;
- pm матрица соответствия между десятичным и степенным представлением в поле \mathbb{F}_2^q ;

Функции возвращают **numpy.array**-матрицу размера X, являющуюся соответственно поэлементным произведением или делением матриц X и Y.

(e) linsolve(A, b, pm)

Описание параметров:

- A квадратная матрица из элементов поля \mathbb{F}_2^q ;
- b вектор из элементов поля \mathbb{F}_2^q ;
- ullet рт матрица соответствия между десятичным и степенным представлением в поле $\mathbb{F}_2^q;$

Функция возвращает решение СЛАУ в случае невырожденности А и numpy.nan иначе.

(f) minpoly(x, pm)

Описание параметров:

- \mathbf{x} вектор из элементов поля \mathbb{F}_2^q ;
- ullet рm матрица соответствия между десятичным и степенным представлением в поле $\mathbb{F}_2^q;$

Функция осуществляет поиск минимального полинома в $\mathbb{F}_2[x]$ для набора корней, задаваемых \mathbf{x} . Функция возвращает кортеж из переменных:

- найденный минимальный полином, numpy.array-вектор с бинарными числами;
- все корни минимального полинома (набор корней x, а также все смежные c ним), numpy.arrayвектор из элементов поля \mathbb{F}_2^q .
- (g) polyval(p, x, pm)

Описание параметров:

- р полином из $\mathbb{F}_2^q[x]$, numpy.array-вектор коэффициентов, начиная со старшей степени;
- \mathbf{x} вектор из элементов поля \mathbb{F}_2^q ;
- рм матрица соответствия между десятичным и степенным представлением в поле \mathbb{F}_2^q ;

Функция возвращает значения полинома р для набора элементов х.

(h) polyprod(p1, p2, pm)

Описание параметров:

- p1, p2 полиномы из $\mathbb{F}_2^q[x]$, numpy.array-вектор коэффициентов, начиная со старшей степени;
- рm матрица соответствия между десятичным и степенным представлением в поле \mathbb{F}_2^q ;

Функция возвращает результат произведения двух полиномов в виде **numpy.array**-вектора коэффициентов, начиная со старшей степени.

(i) polydivmod(p1, p2, pm)

Описание параметров:

- p1, p2 полиномы из $\mathbb{F}_2^q[x]$, numpy.array-вектор коэффициентов, начиная со старшей степени;
- pm матрица соответствия между десятичным и степенным представлением в поле \mathbb{F}_2^q ;

Функция осуществляет деление с остатком многочлена **p1** на многочлен **p2**. Функция возвращает кортеж из переменных:

- частное, numpy-array-вектор коэффициентов, начиная со старшей степени;
- остаток от деления, numpy-array-вектор коэффициентов, начиная со старшей степени.
- (j) euclid(p1, p2, pm, max_deg=0)

Описание параметров:

- p1, p2 полиномы из $\mathbb{F}_2^q[x]$, numpy.array-вектор коэффициентов, начиная со старшей степени;
- pm матрица соответствия между десятичным и степенным представлением в поле \mathbb{F}_2^q ;
- max_deg максимально допустимая степень остатка, число, если равно нулю, то алгоритм Евклида работает до конца;

Функция реализует расширенный алгоритм Евклида для пары многочленов p1 и p2. Функция возвращает кортеж из переменных:

- остаток, numpy-array-вектор коэффициентов, начиная со старшей степени;
- коэффициент при p1, numpy-array-вектор коэффициентов, начиная со старшей степени;
- коэффициент при p2, numpy-array-вектор коэффициентов, начиная со старшей степени.
- 2. Модуль bch.py с реализацией операций кодирования/декодирования БЧХ кодов:
 - (a) coding(U, g)

Описание параметров:

- U набор исходных сообщений для кодирования, numpy.array-матрица, бинарная матрица размера < число_сообщений > $\times k$;
- g порождающий многочлен кода, numpy.array-вектор длины m+1;

Функция осуществляет систематическое кодирование циклического кода и возвращает numpy.array-матрицу с закодированными сообщениями размера <число сообщений> $\times(k+m)$.

(b) dist(g, n)

Описание параметров:

- g порождающий многочлен кода, numpy.array-вектор;
- n длина кода, число;

Функция возвращает кодовое расстояние (число), найденное полным перебором.

(c) genpoly(n, t)

Описание параметров:

- n длина кода, число;
- t исправляемое число ошибок, число;

Функция строит порождающий многочлен БЧХ-кода по заданным параметрам. Функция возвращает кортеж из переменных:

- порождающий многочлен кода, numpy.array-вектор коэффициентов, начиная со старшей степени;
- нули кода, numpy.array-вектор десятичных чисел, соответствующих элементам из \mathbb{F}_2^q ;

- ullet матрица соответствия между десятичным и степенным представлением в поле $\mathbb{F}_2^q.$
- (d) decoding(W, R, pm, method='euclid')

Описание параметров:

- W набор принятых сообщений, numpy.array-матрица размера <число сообщений $> \times n;$
- R нули кода, numpy.array-вектор;
- рm матрица соответствия между десятичным и степенным представлением в поле \mathbb{F}_2^q ;
- method алгоритм декодирования, 'euclid' или 'pgz';

Функция осуществляет декодирование BЧХ кода и возвращает numpy.array-матрицу с декодированными сообщениями размера <число $_$ сообщений> $\times n$. B случае отказа от декодирования соответствующая строка матрицы состоит из numpy.nan.