Лабораторная работа №1.1.1 Определение удельного сопротивления нихромовой проволки

Гёлецян А.Г.

22 июля 2022 г.

1 Введение

Цель работы:

- измерить удельное сопротивление нихромовой проволки
- вычислить систематические и случайные ошибки

В работе используются:

- линейка
- штангенциркуль
- микрометр
- отрезок проволки из нихрома
- амперметр
- вольтметр
- мост постоянного тока

2 Ход работы

Для расчета удельного сопротивления измерим сопротивление проволки с известной геометрией и высчитаем удельное сопротивление по формуле

$$\rho = \frac{R}{l} \frac{\pi d^2}{4} \tag{1}$$

где R - сопротивление проволки, l -длина проволки, d - диаметр проволки.

Измерения мы буедм проводить для 3х длин проволки - 50, 30, 20 см.

Для начала измерим толщину проволки, учитывая что из за неровностей она меняется по длине проволки, поэтому измерим его в нескольких точках и усредним. При измерении штангенциркулем везде получаем одно и то же значение

$$d_{\text{min}} = (0.35 \pm 0.025)_{\text{MM}}$$

При измерении микрометром получаем значения

d 2020	0.35								0.35
a, mm	0.36	0.35	0.36	0.35	0.34	0.36	0.35	0.36	-

Таблица 1: Измерения диаметра проволки микрометром

Усреднив значения из таблицы, посчитав дисперсию выборки и суммировав её с систематической ошибкой $\Delta d_{\text{сист}} = 0.005$ мм получаем

$$d_{\mathrm{Mp}} = (0.352 \pm 0.005)_{\mathrm{MM}}$$

Сразу же подсчитаем площадь поперечного сечения для обоих случаев

$$S_{ ext{iiii}} = (0.096 \pm 0.01) \text{mm}^2$$

 $S_{ ext{mp}} = (0.097 \pm 0.003) \text{mm}^2$

l, cm	20		30		50	
Nº	U , ${ m MB}$	I, м A	U, м B	I, м A	U, м B	I, м A
1	44	21.043	72	22.94	64	12.25
2	108	52.54	124	39.32	124	23.49
3	152	72.92	150	47.11	180	34.08
4	208	99.78	200	63.61	216	40.65
5	288	136.66	260	81.57	272	51.03
6	352	167.88	296	93.15	328	61.63
7	400	190.63	328	103.25	360	68.02
8	448	213.55	392	122.90	388	72.11
9	536	255.11	456	142.73	452	85.10
10	580	277.14	500	157.06	484	90.78
11			556	174.32	536	100.23
12					588	110.10

Таблица 2: Измерении зависимости U(I) при различных l

Рис. 1: Схема установки

Измерения будем проводить по схеме ниже. Обозначим показания вольтметра как U, а амперметра как I. Легко получить формулу для $R_{\rm np}$

$$R_{\rm np} = \frac{U}{I} \left(1 + \frac{U/I}{R_v} \right)$$

Из чарактеристик вольтметра знаем что сопротивление вольтметра порядка $k\Omega$, поэтому поправка $\frac{U/I}{R_v}$ порядка 0.5%, что больше относительных погрешностей вольтметра и амперметра в 2.5 раза. Исходя из этого пренебрежем влиянием сопротивления вольтметра и воспользуемся приближенной формулой

$$R_{\rm np} pprox rac{U}{I}$$

Для нахождения сопротивления построим график U(I), и из наклона прямой найдем сопротивление. Из графика получаем следующие данные.

l	, см	20	30	50
Ì	R_{np}, Ω	2.102 ± 0.008	3.199 ± 0.011	5.357 ± 0.031

Таблица 3: Расчетные $R_{\rm np}$ от l

Сравним с данными измерении от моста Р4833.

l, cm	20	30	50
R_{np}, Ω	2.2949	3.3843	5.4173

Таблица 4: $R_{\rm np}$ от l по измерениям Р4833

Рассмотрим на сколько процентов расчетные сопротивления меньше имерянных.

l, cm	20	30	50
$\varepsilon,\%$	8.4	5.5	1.1

Таблица 5: Различие между сопротивлениями

Эти различия очень большие и никак не объясняются погрешностями. Так как график идеально линейный, то на вряд ли это из за плохих измерении. Тут есть 2 объяснения. Первое это то что мост выдает сопротивление, которое отличается от реального умножением на константу, второе это то же самое но только с вольтметром. Я больше ссылаюсь на второй вариант, поэтому для расчета удельного сопротивления я буду брать сопротивления с моста.

Погрешность моста в диопазоне измерении $\pm 0.01\Omega$ (рассчитано по классу точности). Воспользуемся следующими формулами для подсчета удель-

ного сопротивления и его погрешности.

$$\rho = \frac{RS}{l}$$

$$\Delta \rho = \rho \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta S}{S}\right)^2 + \left(\frac{\Delta l}{l}\right)^2}$$

Для площади сечения S воспользуемся значением, полученным с помощью микрометра. Подставляя числа получаем

l, cm	20	30	50
$\rho, 10^{-4}\Omega$ cm	1.11	1.09	1.05
$\Delta \rho, 10^{-4} \Omega \text{cm}$	0.04	0.03	0.03

Таблица 6: Различие между сопротивлениями

Как ответ запишем среднее

$$\rho = (1.08 + 0.04)10^{-4} \Omega \text{cm}, \varepsilon_{\rho} \approx 4\%$$

3 Заключение

Значение удельного сопротивления совпадает с табличными значениями для нихрома. Значении сопротивлении измерянных косвенным методои оказались в среднем на 5% ниже реальных, что скорее всего объясненяется либо некалиброванностью вольтметра, либо его аномальной малостью внутреннего сопротивления вольтметра (порядка 100Ω). В любом случае даже использовав заниженные сопротивления приходим к тому же выводу что проволка действительно нихромовая.

Устройство	Вольтметр аналоговый, магнитлэлектрический
Класс точности	0.2
Предел измерении	600мВ
Цена деления	4мВ/дел
Чувтствительность	250дел/В
Абсолютная погрешность	2мВ
Внутреннее сопротивление	2000Ω

Устройство	Амперметр цифровой
Класс точности	0.2
Предел измерении	2A
Абсолютная погрешность	Единица младшего разряда
Внутреннее сопротивление	1.2Ω

Таблица 7: Характеристики измерительных приборов

Рис. 2: График зависимости U(I)