

MPPT CHARGE CONTROLLER DESIGN AND APPLY TO AIR QUALITY SYSTEM

STUDENT: DO QUOC DAT – ADVISOR: Ph.D HUSSAIN FAYAZ ELECTRICAL ENGINEERING DEPARTMENT, TON DUC THANG UNIVERSITY

OBJECTIVES

- To create a model of MPPT charge controller.
- To evaluate the efficiency of the solar panel when it uses MPPT algorithm.
- To supply and analyze solar energy for the air quality monitor system.
- IOT solution application to monitor status of solar energy system.

INTRODUCTION

- Solar energy leads the way in power generating capacity and is considered a energy source of new generation in the world. However, PV systems still perform low efficiency so the improved efficiency of the solar panel is a concerning challenge.
- MPPT charge controller is designed to improve the efficiency of solar panel. IOT solution is also applied to monitor status of solar panel.

SYSTEM MODEL

BLOCK DIAGRAM OF SYSTEM

PCB DESIGNING OF SYSTEM

DASHBOARD OF SYSTEM

Power consumption

RESULT

CONCLUSIONS

- The battery is charged at the maximum power point.
- MPPT charge controller is equipped with an IOT platform that easily monitor the condition of solar panel.
- MPPT charge controller has a performance and efficiency around 94%.
- MPPT charge controller works stable, safe, correct.

ACKNOWLEDGEMENT

17.5

15

I would like give my teacher Dr. Hussain Fayaz, my gratitude for helping learning and obtaining new knowledge throughout this project.

RFFRFNCFS

- [1] Faranda, R., & Leva, S., Energy comparison of MPPT techniques for PV Systems. WSEAS transactions on power systems,3(6), 446-455. 2008.[2] ASHRAE fundamental handbook 2017.
- [2] Guidelines, P.D., PCB Design Guidelines. Retrieved on 02-02-2021. Available at; https://www.eurocircuits.com/pcb-design-guidelines/. 2021.

a few seconds acc

- [3] Lee, J., Basic calculation of a buck converter's power stage In Application Note AN041 (pp. 1-8). Richtek Technology Corporation. 2015.
- [4] Kamran, M., et al., Implementation of improved Perturb&Observe MPPT technique with confined search space for standalone photovoltaic system. Journal of King Saud University Engineering Sciences, 2020. 32(7): p. 432-441.
- [5] Quamruzzaman, M., et al., Highly efficient maximum power point tracking using DC–DC coupled inductor single-ended primary inductance converter for photovoltaic power systems. International Journal of Sustainable Energy, 2016. 35(9): p. 914-932.