CHE 260: THERMODYNAMICS AND HEAT TRANSFER

FINAL FOR HEAT TRANSFER

12th DECEMBER 2014

1.4	\rightarrow	·v·	٠,

STUDENT ID NUMBER:

Q1	Q2	Q3	Q4	Q5	Q6	Total
15	10	20	15	15	15	90

INSTRUCTIONS

- 1. This examination is open textbook (the custom textbook for this course) along with one 8.5" x 11" aid sheet (both sides), closed internet, closed all communication devices.
- 2. All non-communicating calculators are permissible.
- 3. Please write legibly. If your handwriting is unreadable, your answers will not be assessed.
- 4. Answers written in pencil will NOT be re-marked. This is University policy.
- 5. For all problems, you must present the solution process in a step by step fashion for partial marks.
- 6. ANSWERS WRITTEN ON THE BLANK, LEFT SIDES OF THE ANSWER BOOK WILL NOT BE ASSESSED. USE THE LEFT SIDES FOR ROUGH WORK ONLY. THIS WILL BE IMPLEMENTED STRICTLY THIS TIME.

Q.1. [15 points] DEEP-FRIED ICE-CREAM

I recently went to a Thai restaurant, where, on the dessert menu, they had an item called deep-fried ice-cream. It was described as "A combination of hot and cold. The hot crispy crust and creamy filling cold make this dessert a delight!" I ordered it and dissected it, only to discover that deep-fried ice cream is essentially a spherical scoop of ice-cream, coated with a thick layer of batter, and deep fried in hot oil.

I decided to make some deep-fried ice-cream at home for my wife. The initial temperature of the ice-cream was -18°C. The oil was maintained at a temperature of 185°C. The ice-cream scoop I took was initially a sphere of 2.0 cm radius, and I coated it with a 0.5 cm thick layer of batter, and immersed it in oil. To ensure that the batter was completely cooked, I allowed the ice-cream to be deep-fried for 20 min.

<u>Use the one-term approximation to solve parts (b), (c) and (d)</u>. Comment on the validity of the one-term approximation for these parts. For your calculations, assume the batter to also be at an initial temperature of -18°C. The convective heat transfer coefficient is 450 W/m²-K, and the thermal conductivities of the batter and ice-cream are both 1 W/m-K. The density and the specific heat capacity of the batter and ice-cream are 980 kg/m³ and 4000 J/kg-K respectively.

(a) [3 points] What is the rate-controlling step in this heat transfer problem, conduction within the solid, or convection past the solid surface?

(b) [4 points] After my deep fry experiment, did the ice-cream inside melt completely (this would classify as a fried-ice-cream 'fail')? Assume that the ice-cream melts at 0°C.

(c)	[4 points] What is the maximum duration of deep fry over which at least some fraction of the ice-cream would have been in a solid state?
	naction of the ice-cream would have been in a solid state:
(d)	[4 points] What is the maximum duration of deep fry over which all the ice-cream
	remains frozen?

Q.2. [10 points] DRAG ON A PLATE

For flow over a flat plate with an extremely rough surface, convection heat transfer effects are known to be correlated by the expression: $Nu_x = 0.04 Re_x^{0.9} Pr^{1/3}$, where Nu_x is the local Nusselt number at a distance x from the leading edge of the plate, Re_x is a Reynolds number based on the length x, and Pr is the Prandtl number. For flow of a fluid over the plate at 10 m/s, what is the surface shear stress at x = 1 m from the plate's leading edge? Take the fluid density and viscosity to be 1000 kg/m^3 and 10^{-3} Pa-s respectively.

Q. 3. [20 points] HEAT LOSSES FROM A STEAM PIPE

An uninsulated steam pipe is used to transport high temperature steam from one building to another. The pipe is 0.5 m in diameter, has a surface temperature of 150°C, and is exposed to ambient air at -10°C. The air moves in cross-flow fashion over the pipe with a velocity of 5 m/s.

- (a) [10 points] What is the heat loss per unit length of pipe?
- (b) [10 points] What is the heat loss per unit length after the pipe is insulated with a rigid urethane foam ($k = 0.026 \text{ W/m}^{\circ}\text{C}$) of 10 cm thickness?

Use an appropriate correlation from the textbook to determine the heat transfer coefficient. Get air properties from table A-22.

Q.4. [15 points] THERMOCOUPLE JUNCTION

A thermocouple junction, which may be approximated as a sphere, is to be used for a temperature measurement in a fluid stream. The convection coefficient between the junction surface and the gas is $h = 500 \text{ W/m}^{2}\text{°C}$. The junction thermophysical properties are $k = 10 \text{ W/m}^{\circ}\text{C}$, $C_p = 400 \text{ J/kg}^{\circ}\text{C}$, $\rho = 8500 \text{ kg/m}^{3}$.

(a) [8 points] Determine the junction diameter required for the thermocouple to have a time constant of 0.5 seconds in response to temperature changes. [If F is a variable of interest that decays exponentially with time t as $F = F_0 \exp(-t/\tau)$, then τ is called its time constant.] Hint: What Bi regime would you want a 'fast' thermocouple to work in?

(b) [7 points] The junction, initially at 25°C, is suddenly placed in a fluid at 150°C. How long does it take for the temperature to reach 149°C?

Q.5 [15 points] TEMPERATURE DISTRIBUTION IN A SQUARE-SHAPED SOLID

Consider a square-shaped solid (thermal conductivity k) of side L in the x and y directions, and thickness B in the z direction. A constant source of heat $\dot{q}_0(\text{W/m}^3)$ is present everywhere within the solid. The solid is placed in an ambient fluid at a temperature T_{∞} . The heat transfer

coefficient corresponding to convective heat transfer past the surface of the plate is h. Answer the following questions:

(a) [4 points] Write down the governing equation for the temperature distribution under steady state conditions for a constant thermal conductivity. Specify the boundary conditions of each face. Note that the temperature will be, in general, a function of x, y and z co-ordinates.

(b) [5 points] Render the governing equations and the boundary conditions dimensionless. The spatial scales are given; keep the scale for the temperature undetermined as ΔT_c . Identify the spatial scales and the scale for temperature. There should be three dimensionless parameters appearing in the dimensionless equations: the Biot number $\mathrm{Bi} = \frac{hB}{k}$, the geometric aspect ratio, $\varepsilon = \frac{B}{L}$, and another parameter that involves the unknown temperature scale. Write the equations in terms of these parameters.

(c) [2 points] When the geometric aspect ratio $\varepsilon = \frac{B}{L}$ is much less than 1, i.e. when the solid is basically a plate, the governing equation simplifies to just two terms. Write this equation down. Hence identify the temperature scale.

(d) [4 points] Integrate the equation from (c), apply suitable boundary conditions, and get the temperature distribution. In which regions of the plate is this solution likely to fail?

Q. 6. [15 points] THERMAL AND MOMENTUM BOUNDARY LAYERS FOR FLOW PAST A WEDGE

Consider a fluid at a temperature T_{∞} that impinges against a stationary wedge of angle θ , as shown in the figure below. The wedge is maintained at a constant temperature $T_S > T_{\infty}$. As the fluid flows past the wedge, momentum and thermal boundary layers of thicknesses δ and δ_t respectively, are developed near the surface of the wedge. These thicknesses are functions of the position x measured along the surface of the wedge.

Above the wedge, outside the momentum boundary layer, the velocity, u_e , is not constant as in the flat plate problem, but a function of the position x:

$$u_e = c x^m$$
, where c is a constant, and $m = \theta / (2\pi - \theta)$.

If the fluid properties are such that <u>the thermal boundary layer is much thicker than the momentum boundary layer</u>, determine, up to an undetermined prefactor,

- (a) [5 points] the thickness of the momentum boundary layer, $\delta(x)$,
- (b) [5 points] the thickness of the thermal boundary layer, $\delta_t(x)$, and
- (c) [3 points] the Nusselt number for heat transfer, $Nu_x = hx/k_f$,

in terms of the flow conditions and the fluid properties: density ρ , specific heat capacity = C_p , viscosity = μ , and thermal conductivity k_f . Derive the answers for a general m, but write the solutions specifically for the case of the flow past a flat plate $\left[m=0\ (\theta=0)\right]$ and the flow against a perpendicular flat plate $\left[m=1\ (\theta=\pi)\right]$. Assume that the flow is laminar and that the fluid properties are constant. Sketch the momentum and thermal boundary layers [2 points].

Page 16 of 19

(Note that while the boundary layers have been shown only on the upper side of the wedge, identical boundary layers will exist on the bottom surface).