Nome:	RA:

Turma: ______ 1^a **PROVA** 28/08/2008

Questão	Nota
1	
2	
3	
4	
Total	

2,5 pts. Questão 1:

(1,0 pts.) (a) Verifique se existe $\lim_{(x,y)\to(0,0)} \frac{x^5}{x^5+y^5}$. Justifique sua resposta!

(1,5 pts.) (b) Determine se a função f, definida por

$$f(x,y) = \begin{cases} \frac{x^3}{7x^2 + 7y^2}, & \text{se } (x,y) \neq (0,0) \\ 1, & \text{se } (x,y) = (0,0), \end{cases}$$

é contínua em (0,0). Justifique!

2,5 pts. Questão 2: Determine a equação do plano tangente ao gráfico da função $f(x,y)=x^2+xy$ e paralelo ao plano 2x+3y-z=0.

2,5 pts. Questão 3: Determine a derivada direcional da função z=f(x,y), na direção do vetor (2,2) e no ponto (0,1), sendo z definida implicitamente pela equação

$$x^3 + y^3 + z^3 + xyz = 0.$$

Qual o valor máximo da derivada direcional de z = f(x, y), no ponto (0, 1)?

 $\mathbf{2,5}$ pts. Questão $\mathbf{4}$: Suponha f uma função diferenciável e admita que

$$f(3x+1, 3x-1) = 4.$$

Mostre que:
$$\frac{\partial f(3x+1,3x-1)}{\partial x} = -\frac{\partial f(3x+1,3x-1)}{\partial y}$$
.