

C2-03

Pas de corrigé pour cet exercice.

L'asservissement de vitesse est à présent modélisé par le schéma-blocs de la figure suivante à retour unitaire. Cet asservissement n'est valable que pour les petites variations de vitesse. H(p) correspond à la fonction de transfert en boucle ouverte naturelle (non corrigée), C(p) est le correcteur.

$$H(p) = \frac{K_N}{(1 + T_m p)(1 + T_e p)}$$
 avec $K_N = 20 \text{ ms}^{-1} \text{V}^{-1}$, $T_m = 5 \text{ s}$, $T_e = 0.5 \text{ s}$.

Objectif

- ► Exigence 1.2 : Garantir un déplacement du chariot de vitesse :
 - 1.2.3 Précision:
 - * Erreur statique pour une entrée $v_c(t) = V_0 u(t)$ avec $V_0 = 8 \,\mathrm{m\,s^{-1}}$: $E_S = 0 \,\mathrm{m\,s^{-1}}$.
 - * Erreur de trainage pour une entrée $v_c(t) = \gamma_0 t u(t)$ avec $\gamma_0 = 1.6 \,\mathrm{m\,s^{-2}}: E_T \le 0.16 \,\mathrm{m\,s^{-1}}.$

Le concepteur choisit un correcteur Proportionnel Intégral : $C_1(p) = \frac{C}{T_i p} (1 + T_i p)$ avec $T_i = T_m$.

Question 1 Déterminer les expressions littérales de l'erreur statique E_S (consigne : échelon d'amplitude V_0) et de l'erreur de trainage E_T (consigne : rampe de pente γ_0) de cet asservissement corrigé avec $C_1(p)$ en fonction de la consigne, du gain K_N et des paramètres du correcteur et C et T_m .

Question 2 En déduire la condition (notée C_{ε}) sur le gain C du correcteur permettant de satisfaire l'exigence 1.2.3 du cahier des charges.

On choisit finalement un correcteur PID : $C_2(p) = C\left(1 + \frac{1}{T_ip} + T_dp\right)$ avec $T_i = 2T_e$ et $T_d = \frac{T_e}{2}$.

Question 3 Montrer qu'on peut mettre ce correcteur sous la forme $C_2(p) = \frac{K}{p} (1 + Tp)^2$ et donner les expressions de K et de T en fonction de C et T_e .

Question 4 Donner l'expression de la fonction de transfert en boucle ouverte du système corrigé.

Question 5 Déterminer les expressions littérales de l'erreur statique E_S (consigne : échelon d'amplitude V_0) et de l'erreur de trainage E_T (consigne : rampe de pente γ_0) de cet asservissement corrigé.

Question 6 En déduire la condition sur la valeur du gain *K* du correcteur permettant de satisfaire l'exigence 1.2.3 du cahier des charges.

Corrigé voir .

