## Assignment 1 - Problem 53

## Vishnu Gollamudi

## January 2022

Question 53) Suppose (X,Y) follows bivariate normal distribution with means  $\mu 1\mu 2$ , standard deviations  $\sigma 1,\sigma 2$  and correlation coefficient  $\rho$ , where all parameters are un-known. Then, testing Ho:  $\sigma 1=\sigma 2$  is equivalent to testing the independence of

- 1.) X and Y
- 2.) X and X-Y
- 3.) X+Y and Y
- 4.) X+Y and X-Y

Answer: 4, X+Y and X-Y

Solution: Given X and Y are bi-variate random variables. Bivariate random variables are distribution of normal distribution to two coordinates. If any two random variables,  $X_1 and X_2$  are said independent, then it follows that the correlation co-efficient  $\rho[X_1, X_2]$  is equal to 0.

$$\rho[X_1, X_2] = 0$$

We know that, for a bi-variate random variable correlation is given as follows:

$$\rho[X,Y] = \frac{\sigma_{[X,Y]}}{\sqrt{\sigma_X^2 \times \sigma_Y^2}}$$

For for testing independence of [X+Y,X-Y], we need to see if  $\rho[X+Y,X-Y]$  becomes 0.

if  $\rho[X+Y,X-Y]=0$ , then it follows from the bivariate random distribution that  $\sigma_{[X+Y,X-Y]}$  equates to 0

We know that

$$\sigma_{[X+Y,Z]} = \sigma_{[X,Z]} + \sigma_{[Y,Z]} \tag{1}$$

$$\sigma_{[X,X]} = \sigma_{[X]}^2 \tag{2}$$

- 1. Testing for the independence of X,Y
  - (a)  $\sigma_{[X,Y]}$  is always not equal to 0 when  $\sigma_1^2 = \sigma_2^2$ .

- (b) Also if  $\sigma_{[X,Y]}$  is equal to 0, it means that XY are in the form of  $Y = C \times X$ , which means both of them are dependent.
- (c) So,  $\sigma_1^2 = \sigma_2^2$  does not imply X,Y are in-dependent.
- 2. Testing independence of X,X-Y

(a)

$$\sigma_{[X-Y,X]} = \sigma_{[X,X]} - \sigma_{[X,Y]}$$
$$= \sigma_X^2 - \sigma_{[X,Y]}$$

- (b) if  $\sigma_X^2 = \sigma_{[X,Y]}$  then it means Y = X which means they are dependant
- (c)  $\sigma_X^2 \neq \sigma_{[X,Y]}$  which  $\implies$  X,X-Y are not independent
- 3. Testing for independence of X,X+Y

(a)

$$\sigma_{[X+Y,X]} = \sigma_{[X,X]} + \sigma_{[X,Y]}$$
$$= \sigma_X^2 + \sigma_{[X,Y]}$$

- (b) if  $\sigma_X^2 = \sigma_{[X,Y]}$  then it means Y = -X which means they are dependant
- (c)  $\sigma_X^2 \neq -\sigma_{[X,Y]}$  which  $\implies$  X,X-Y are not independent
- 4. Testing for independence of X+Y,X-Y

(a)

$$\begin{split} &\sigma_{[X+Y,X-Y]} \\ &= \sigma_{[(X+Y),X]} - \sigma_{[(X+Y),Y]} \\ &= \sigma_{[X,X]} + \sigma_{[X,Y]} - \sigma_{[X,X]} - \sigma_{[X,Y]} \\ &= \sigma_X^2 - \sigma_Y^2 \end{split}$$

- (b) Now testing for  $\sigma_1 = \sigma_2 \implies \sigma_{[X+Y,X-Y]} = 0$
- (c)  $\Rightarrow \rho[X+Y,X-Y] = 0$
- (d) Hence testing for  $\sigma_1 = \sigma_2 \implies X + Y, X Y$  are independent.