Experimental Design and One-Way ANOVA

36-600

Experiments and Causation

- Throughout this course we have tried to uncover the association between a set of predictor variables \mathbf{x} and a response variable Y, if it exists
- However, even if a statistically significant association does exist...
 - ...association does not imply causation!

STOP GLOBAL WARMING: BECOME A PIRATE

WWW.VENGANZA.ORG

(image credit)

Case Study 1: Industrial Experiments

(The following case studies and the material on experimental design were provided by Professor Zach Branson)

- Apple wants to test the water durability of their laptops
 - they randomly sample 100 identical laptops for study, and pour water on half of them
 - 20 of 50 "treatment" (water-doused) keyboards continued to work, as opposed to 50 of 50 "control" keyboards
- Did the water *cause* the keyboards to break?
- Yes: the laptops were otherwise identical...the only difference was the treatment

Case Study 2: Clinical Trials

- The Food and Drug Administration wanted to determine whether a new drug alleviated hypertension
 - they randomly picked 100 people with hypertension...
 - ...and placed 50 people each into the treatment and control groups
 - 30 of 50 treated people had alleviated hypertension, as opposed to 10 of 50 in the control group
 - a two-sample population proportions test yielded a *p*-value of 0.0001
- Did the new drug *cause* alleviated hypertension?
- We cannot be sure.
- Let's say it turns out that, totally by accident, the 50 people in the treatment group had health insurance, while the 50 people in the control group did not
 - so perhaps it was the drug, or the insurance (or the fact that those without insurance were poorer, or...)
 - o randomization leads to identical treatment and control groups, but only on average..."unlucky" randomization can happen

Case Study 3: Epidemiology

- We wish to study the effect of smoking on lung health
- Ideally, we would run an experiment in which we randomly place people into a smoking treatment group, and into a non-smoking control group
 - however, it is not ethical to force people to smoke
- So we randomly select 5000 smokers and 5000 non-smokers to study, and we find that the smokers have worse lung health
- Does smoking *cause* the observed deterioration of lung function?
- Again, we cannot be sure.
- For instance, smokers tend to be older, poorer, and to not have insurance
- Can we mitigate this issue?

 \rightarrow if we can identify subsets of treatment and control groups that have similar age, income, education, insurance, etc., and find similar results as before, we are in a position to argue more strenuously for causality

Experiment Design

- Let's assume that we want to divide N people into two groups, a treatment group and a control group...(assume N is an even number)
- How might we do this?
- Via Bernoulli trials: assign people to groups effectively via coin flips
 - issue: the group sizes can end up being very different
- Via complete randomization: pick exactly N/2 people at random to be in the treatment group
 - o issue: while this resolves the group-size issue observed with Bernoulli trials, there is still the issue of covariates
 - for instance, perhaps we want to run a clinical trial that includes both smokers and non-smokers: it could turn out that one group ends up with many more smokers than the other
 - the "covariate issue" can be dealt with when analyzing the data...or during the experiment design stage
- Via *block randomization*: identify a potentially problematic covariate, divide people into groups on the basis of that covariate (e.g., smokers vs. non-smokers), and then perform complete randomization within each covariate group...this scheme can be extended to multiple covariates: e.g., male smokers, female non-smokers, etc.
 - o covariate examples: gender, socioeconomic status, geographic location, medical risk factors, education, etc.

Digression: Why Is Identifying Covariates Important?

How to Analyze Designed Experiment Data

- Let's assume that our data consists of a predictor variable with k categories (or treatment groups) and a response variable.
- If k=2 and the response variable is normally distributed within each group, we can do a two-sample t test
- If k=2 and the response variable is not normally distributed, but the distributions are known or can be assumed, we can utilize other hypothesis tests like the population proportions test
 - o this is realm of so-called A/B testing...the test that is used depends on the distribution of the response values for groups A and B
- If k>2 and the response variable is normally distributed within each group (with equal variances), we can do one-way analysis of variance (or ANOVA)
 - o if there are two categorical predictors, we can do a two-way ANOVA
- If k > 2 and the response variable is normally distributed within each group (with equal variances), and there is another continuous predictor that can be treated as a covariate (e.g., age), we can do (one-way) analysis of covariance (or ANCOVA)
- Etc.
- **NOTE:** if your work potentially involves the design of experiments, consider taking 36-749, *Experimental Design for Behavioral and Social Sciences* (offered every fall)

The One-Way ANOVA Setting

- Recall that a statistical model is a description of the data-generating process
- ullet In the simple linear regression setting, our data consists of a continuously valued predictor variable old x that we attempt to relate to the values of response variable old Y
 - however, what if instead the values of the predictor variable are discretely valued...and specifically, what if they represent groups (or categories)?
- If there are k>2 groups we would utilize one-way *analysis of variance* (or one-way *ANOVA*)
 - o "one-way" simply indicates that (in our chosen setting) there is only one (categorical) predictor variable

Why Not Use Simple Linear Regression?

- Because categories/groups may have no natural numerical order
- If we were to apply linear regression alone, then switch the placement of groups 1 and 2 and apply linear regression again, the slope would change!

Why Not Use Simple Linear Regression?

- Let's define the predictor variable x as a *factor variable*
- This causes R to change the definition of the model...
 - \circ a factor variable with k levels is split into k-1 so-called *dummy variables*; the other level becomes the so-called *reference level*
- The linear regression model becomes

$$Y_i = eta_0 + \mathcal{I}_{x_i=2}eta_2 + \mathcal{I}_{x_i=3}eta_3 + \epsilon_i$$

- \mathcal{I} is the *indicator function*, and it takes on value 1 if the condition is true and 0 otherwise
 - $\circ~$ for instance, $\mathcal{I}_{x_i=4}$ is 0 if $x_i=3$ or 5 and 1 if $x_i=4$
- We can rewrite the model in a form that might be more intuitive:

$$Y_i = \left\{egin{array}{ll} eta_0 & x_i = 1 \ eta_0 + eta_2 & x_i = 2 \ eta_0 + eta_3 & x_i = 3 \end{array}
ight.$$

• If we change the ordering of the groups, the β_i 's might change, but only because we perhaps define a new reference level

Why Not Use Simple Linear Regression?

- The dashed line is eta_0 and represents the predicted response for group 1
 - the negative coefficients for x2 and x3 in the lm() output indicate that the model is predicting that the means in groups 2 and 3 are smaller than the mean in group 1
- So...why not use simple linear regression? It turns out, we do use it...but the model definition changes since x is categorical and not quantitative
- So what then is ANOVA?
 - it is simply a mechanism for running a hypothesis test on linear regression output

One-Way Analysis of Variance

• For one-way ANOVA, the statistical model is

$$Y_{ij} = \mu + au_i + \epsilon_{ij}$$

- $\circ \; i$ denotes the treatment group (there are k groups overall)
- $\circ \; j$ denotes an observed datum within group i
- $\circ \mu$ is the overall mean response
- $\circ \;\; au_i$ is the $\mathit{deterministic}$ (i.e., not random) effect of treatment in group i
- $\circ~\epsilon_{ij}$ are the error terms, assumed to be independent, normally distributed, and of constant variance σ^2 ...thus $Y_{ij}\sim\mathcal{N}(\mu+ au_i,\sigma^2)$

ANOVA: Goal

• The goal of ANOVA is to perform the hypothesis test

$$H_o: \tau_1 = \cdots = \tau_k = 0$$
 vs. at least one value differs from zero

 $\circ~$ to reject the null, the value of one or more of the au_i 's has to be large with respect to σ

• The left figure represents a situation in which we would fail to reject the null hypothesis, while the right figure represents a situation in which we would reject the null

ANOVA Example

anova(lm(Y~x))

- the first column shows k-1 and n-k (so we can determine that k=3 and n=32)
- the second column shows the SST (top) and SSE (bottom) (see appendix)
- the third columns shows the MST (= SST /(k-1); top) and MSE (= SSE /(n-k); bottom) (again, see appendix)
- the fourth column shows F=MST/MSE
- the fifth and last column shows the *p*-value
- We observe that $p \ll \alpha = 0.05$, so we reject the null hypothesis and conclude that at least one of the means is different from the others

But Which Mean is Different?

• To try to determine *which* of the means is different from the others, we can use a "post-hoc" test such as the Tukey HSD (honest significant difference) test

```
TukeyHSD(aov(Y~x)) # one quirk: it won't work with anova() output, just aov() output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
```

- - the first column of output shows the groups being compared (2 vs. 1, etc.)
 - the second column gives the observed mean difference
 - the third and fourth columns provide confidence intervals on the *true* mean difference...if the interval does not contain zero, we conclude the means are different
 - the last column reinforces the confidence interval by providing a *p*-value (where the null is that the true difference is zero)

##

But Which Mean is Different?

```
TukeyHSD(aov(Y~x)) # one quirk: it won't work with anova() output, just aov() output
```

```
Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = Y ~ x)
##
## $x
##
              diff
                          lwr
                                     upr
                                             p adj
## 2-1 -1.27593333 -2.0039372 -0.5479295 0.0004657
## 3-1 -1.26000000 -2.2306718 -0.2893282 0.0088999
## 3-2 0.01593333 -0.9846122 1.0164789 0.9991476
```

- What do we conclude here?
 - o group 1 has a different mean from group 2, and from group 3...while the means in groups 2 and 3 are not significantly different

But Which Mean is Different?

- A final point to make is that the Tukey HSD test attempts to correct for *multiple comparisons*, i.e., for running many separate hypothesis tests
- If you run many tests, then you are more likely, by chance, to see p-values that are less than α even if the null is always true
- The Tukey HSD test attempts to control the "family-wise error rate" such that if all the nulls are correct, the probability of seeing $p < \alpha$ occur *once* is α
 - *however*, the algorithm for controlling the rate of false positives tends to be overly conservative
 - we will simply point out here that alternative test schemes are available, e.g., Dunnett's test, that one might want to explore using, particularly when the number of groups is large

Appendix: Sum of Squares of Errors and of Treatment Groups

ullet We break the total sum of squared differences between each datum Y_{ij} and the overall mean $ar{Y}$ into two pieces

$$\sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - ar{Y})^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - ar{Y}_{iullet})^2 + \sum_{i=1}^k n_i (ar{Y}_{iullet} - ar{Y})^2 = SSE + SST$$

- $\circ \ \ ar{Y}_{iullet}$ is the sample mean of the data of group i
- $\circ n_i$ is the sample size in group i
- \circ SSE is the sum of squares of the errors (where the "error" is how far each datum is from its group mean)
- \circ SST is the sum of squares for each treatment group (how far each group mean is from the overall mean)

Appendix: Hypothesis Testing

• We can form two statistics:

$$\frac{SSE}{\sigma^2}$$
 and $\frac{SST}{\sigma^2}$

• Under the null hypothesis that $au_1 = \dots = au_k = 0$, we can write that

$$rac{SSE}{\sigma^2} \sim \chi^2_{n-k} ~~ ext{and}~~ rac{SST}{\sigma^2} \sim \chi^2_{k-1}$$

- $\circ \chi^2_{\nu}$ is a chi-square distribution for ν degrees of freedom
- The following ratio defines a random variable that is sampled from an F distribution:

$$rac{SST/(k-1)}{SSE/(n-k)} = rac{MST}{MSE} = F \sim F_{k-1,n-k}$$

- $\circ k-1$ and n-k are the number of *numerator* and *denominator* degrees of freedom, respectively
- We reject the null hypothesis if the value of F is (far) larger than its mean value, (n-k)/(n-k-2) (which is pprox 1 if $n\gg k$)