

Contents lists available at ScienceDirect

Comparative Biochemistry and Physiology, Part A

journal homepage: www.elsevier.com/locate/cbpa

Ecological factors affect the level and scaling of avian BMR

Brian Keith McNab*

Department of Zoology, University of Florida, Gainesville, FL 32611, USA

ARTICLE INFO

Article history:
Received 26 May 2008
Received in revised form 14 August 2008
Accepted 20 August 2008
Available online 27 August 2008

Keywords: Avian flight Ecological factors Energetics Geography Mammalian flight Migration Non-passerines Passerines Phylogeny

ABSTRACT

The basal rate of metabolism (BMR) in 533 species of birds, when examined with ANCOVA, principally correlates with body mass, most of the residual variation correlating with food habits, climate, habitat, a volant or flightless condition, use or not of torpor, and a highland or lowland distribution. Avian BMR also correlates with migratory habits, if climate and a montane distribution is excluded from the analysis, and with an occurrence on small islands if a flightless condition and migration are excluded. Residual variation correlates with membership in avian orders and families principally because these groups are behaviorally and ecologically distinctive. However, the distinction between passerines and other birds remains a significant correlate of avian BMR, even after six ecological factors are included, with other birds having BMRs that averaged 74% of the passerine mean. This combination of factors accounts for 97.7% of the variation in avian BMR, Yet, migratory species that belong to Anseriformes, Charadriiformes, Pelecaniformes, and Procellariiformes and breed in temperate or polar environments have mass-independent basal rates equal to those found in passerines. In contrast, penguins belong to an order of polar, aquatic birds that have basal rates lower than passerines because their flightless condition depresses basal rate. Passerines dominate temperate, terrestrial environments and the four orders of aquatic birds dominate temperate and polar aquatic environments because their high BMRs facilitate reproduction and migration. The low BMRs of tropical passerines may reflect a sedentary lifestyle as much as a life in a tropical climate. Birds have BMRs that are 30-40% greater than mammals because of the commitment of birds to an expensive and expansive form of flight.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A variety of approaches have been used to analyze avian basal rates of metabolism (BMR), which are the minimal rates in the zone of thermoneutrality when birds do not increase heat production for temperature regulation. The argument to be made here is that avian BMR varies with a variety of factors, especially body mass, but also with avian behavior and conditions in the environment, a pattern that was seen in a recent analysis of BMR in mammals (McNab, 2008). This pattern has ecological consequences for birds.

Analyses of avian BMR began with Brody and Procter (1932), who described the combined BMR of birds and mammals as a power function of body mass, an approach partially followed by Benedict (1938), even though he argued that the use of logarithms diminished species differences. King and Farner (1961) subsequently demonstrated that birds have higher basal rates than mammals of the same mass, especially at masses less than 100 g.

Lasiewski and Dawson (1967) found that passerines had basal rates, corrected for body mass, that were 65% greater than those of

the same mass and that birds collectively have higher basal rates than mammals. The conclusion that birds have higher basal rates than mammals was challenged by Gillooly et al. (2001) and White and Seymour (2004), who argued that birds and mammals have the same basal rates after their rates were 'corrected' through the use of a Q_{10} function for their difference in body temperature ($T_{\rm b}$), birds generally having higher body temperatures than mammals. Even if this argument were correct, it does not account for the higher body

other birds, which in turn had basal rates that were approximately 11%

greater than mammals. Then, Aschoff and Pohl (1970a,b) noted that

thermoneutral rates of metabolism in birds and mammals were

minimal during the period of inactivity, a condition that since has

been incorporated into the definition of basal rate of metabolism. They also showed that passerines during the rest period have basal rates

that averaged 65% greater than other birds. The Aschoff-Pohl

relationship has been widely used as the standard scaling relationship

for birds, but it was derived from only 17 species, 3 of which were

domesticated and many repeatedly measured, for a total of 31

measurements. Kendeigh et al. (1977), using data from 172 species,

demonstrated that basal rate in birds is 15-25% greater in winter than

summer and that passerines have basal rates that are 57-70% greater

than non-passerines. Thus, the consensus until the mid-1990s was

that passerines have appreciably higher basal rates than other birds of

^{*} Tel.: +1 352 392 1178. E-mail address: bkm@zoo.ufl.edu.

temperatures of birds, and thus represents an incomplete analysis. A more fundamental criticism is that this proposition confuses endothermy with ectothermy: the heat content of endotherms and therefore the temperature differential $(\Delta T = T_b - T_a)$ maintained with the environment (T_a) is a product of the balance between heat gained from metabolism (M) and heat lost through thermal conductance (C): $\Delta T = M/C$ (Scholander et al., 1950). Birds have higher body temperatures than mammals because birds have higher rates of metabolism, not visa versa, just as mammals with high basal rates have higher body temperatures. Birds also have lower conductances than mammals (Lasiewski et al., 1967), which further contributes to their larger ΔT s and higher body temperatures. This view, of course, raises the question why birds have higher BMRs than mammals, which shall be addressed later in this article.

A new approach to the analysis of basal rates of metabolism has recently appeared. Like the analyses of Lasiewski and Dawson and those who followed, it tried to account for the residual variation in the BMR-mass relationship. Whereas the earlier analyses described much of the residual variation in terms of a passerine/non-passerine dichotomy, the new approach incorporates a cladogram and gives preference to phylogeny as an explanation for the variation in BMR beyond that associated with body mass. For example, Reynolds and Lee (1996), using such an analysis, found no difference in BMR between passerines and non-passerines in 254 species. Rezende et al. (2002), using a similar technique on 32 species, agreed with this conclusion. The emphasis on the passerine/non-passerine dichotomy in earlier studies actually was a type of phylogenetic analysis: passerines have high BMRs presumably because they are passerines, whatever that may mean, but those analyses did not have the formality of an included cladogram.

Reynolds and Lee's analysis was criticized by McKechnie and Wolf (2004), who argued that many of the data that were used did not conform to the conditions required for basal rates, maintaining that "...good predictions need good data." They appropriately discarded some of the data used by Reynolds and Lee, but added an arbitrary criterion for data acceptance, requiring at least three individuals to be measured for a species to be included. Consequently, they discarded data on 187 species, but added 59 others from recent literature for a total of 126 species. When they used a conventional ANCOVA analysis, McKechnie and Wolf demonstrated that passerines indeed had higher basal rates than non-passerines, but this difference disappeared when a phylogenetically-based technique was used, so they concluded that passerines and non-passerines have indistinguishable BMRs.

In an attempt to simplify the analysis, I (2005a), using all available data on tropical frugivores, demonstrated that 7 passerines (5 birds-of-paradise [Paradisaeidae] and 2 manakins [Pipridae]) had massindependent basal rates that averaged 57% greater than 26 non-passerines (3 mousebirds [Coliidae], 15 pigeons [Columbidae], 7 toucans [Ramphastidae], and a hornbill [Bucerotidae]), a difference similar to that found by Lasiewski and Dawson (1967) and Kendeigh et al. (1977). That is, when frugivorous passerines were directly compared to non-passerines with the same food habits, *uncompromised by theoretical assumptions*, these passerines had higher basal rates.

Much ambiguity still exists as to the factors responsible for the variation in avian BMR and how it should be analyzed: good predictions indeed need good data *and* good analytical techniques. Here I shall try to account for the variation in the BMR of birds and to explain why birds have higher basal rates than mammals. For this analysis, I have accumulated data on BMR from 533 species that belong to 97 families and 26 orders, which are organized by the widely used classification of Dickinson (2003). The foods consumed, habitats used, climates occupied, their volant or flightless condition, use or not of torpor, their use or not of migration, and restriction or not to mountains and to islands are indicated for each species, as is time of measurement (see the Appendix). The reason to think that these

factors might influence BMR is that most behaviors and responses to conditions in the environment require an expenditure of energy, which makes them likely candidates to influence the level of energy expenditure.

This analysis is offered as an alternative to those proposed by Reynolds and Lee (1996), Rezende et al. (2002), and McKechnie and Wolf (2004). Most of the variation in avian BMR will be accounted for, but we will still have large gaps in our knowledge, especially with regard to species and families endemic to the tropics, where the greatest species diversity is found. Data need to be obtained from these species before we can feel confident that we understand the degree to which avian BMR varies, as well as determining the causes and consequences of this variation. Two recent studies, Wiersma et al. (2007) on 69 lowland Panamanian species and McNab (in prep.) on 46 highland New Guinean species, have significantly increased our knowledge of tropical bird energetics, although they represent only a small fraction of tropical endemics. For example, we have almost no data on the energetics of birds from the South American (except as they are shared with Panama), African, and Asian tropics. Even when the correlation among BMR, body mass, and other factors is high, an appreciable inability to account for the variation in BMR will remain.

2. Data and methods

2.1. Data

As pointed out by McKechnie and Wolf (2004), the selection of data is an important criterion if the sources of variation in avian BMR are to be understood. The criteria generally accepted to define BMR are that the measurements must be made 1) in post-absorptive adults, 2) in the zone of thermoneutrality, 3) while the birds are thermoregulating, and 4) when they are inactive during the period of inactivity (McNab, 1997). These criteria give assurance that the differences in rate of metabolism reflect the species, not the conditions under which they are measured.

Given the observations of Kendeigh et al. (1977), measurement in summer or possibly autumn should probably be another criterion for basal rate, at least in polar and temperate species, as long as reproduction is not occurring, when rate of metabolism might be higher. In species measured in several seasons, winter values were chosen only when they were the lowest seasonal measurements. Of measurements on 96 species derived from V.M. Gavrilov and V.R. Dol'nik (Kendeigh et al., 1977; Gavrilov and Dol'nik, 1985; Gavrilov, 1996), 56 were measured in summer, 20 in autumn, and 20 in winter. A similar concern may exist with respect to a wet–dry seasonality in tropical species. For example, a study of seasonal variation in the BMR of a scrub-wren, *Sericornis frontalis*, in western Australia indicated that BMR was lower in a xeric than in a semi-xeric or mesic environment, but only in summer when the rainfall and insect abundance was very low (Ambrose and Bradshaw, 1988).

Measurements that do not meet these criteria generally should not be counted as estimates of BMR, although some studies (MacMillen and Trost, 1967; Wijnandts, 1984; Gabrielsen et al., 1991; Grajal, 1991; McNab and Salisbury, 1995; Ellis and Jehl, 2003; McNab, 2003a, 2005; McNab and Ellis, 2006) have demonstrated no difference in rate of metabolism between day and night. Large species may be less prone to show a circadian rhythm in standard rate of metabolism: 26 of 33 species in the Appendix with no temporal difference in metabolism weigh more than 120 g. Consequently, data on 15 diurnal species that weigh more than 250 g, six of which weigh more than 1.7 kg and are polar, are included, even though they were measured in daytime while inactive. Time of measurement, considered either as during the inactive or active period (including measurements that may have been in the active period [indicated by ? in the Appendix]), demonstrated no correlation ($F_{1,528}$ =0.94, P=0.42) with log_{10} BMR when combined with log_{10} mass.

Some conditions required for BMR are difficult to evaluate, especially the criterion for being post-absorptive. Individuals usually were not fed for several hours before measurement to ensure that they were post-absorptive, which probably is adequate in small species. The time required for a sufficient food deprivation undoubtedly increases with body mass, if only because a large gut can contain more food. The greatest difficulty, however, is encountered in herbivores, especially in those that depend on microbial fermentation in the gut, a problem more widespread in mammals than birds. The takahe (*Porphyrio hochstetteri*), a 2.8 kg fermenting herbivorous rallid from New Zealand, however, had a lower thermoneutral rate of metabolism after food was withdrawn for a day compared to when it was deprived food for only a few hours (McNab and Ellis, 2006).

Restriction of measurements to the zone of thermoneutrality is an important criterion for BMR. The lower limit of thermoneutrality is often as high as 30–32 °C in species that weigh <15 g; room-temperature measurements will not suffice for these species. A gray area of judgment is found in polar species at cool temperatures in summer. In many cases the measurements were made at ambient temperatures between 7 and 15 °C, which probably are in thermoneutrality if the birds weighed over 200 g.

McKechnie and Wolf (2004) were sensitive to these criteria, but they excluded all Russian data reported in Kendeigh et al. (1977) and Gavrilov and Dol'nik (1985) because the number of individuals used was unreported and *may have been* <3 (McKechnie, pers. com.). Nevertheless, the time of day, season, and range of ambient temperatures used were indicated for these measurements, as was an estimate of the limits of thermoneutrality; they undoubtedly used many individuals in most species. (As an example of the thoroughness of their measurements, see Gavrilov (1995).) By excluding the work of Gavrilov and Dol'nik, McKechnie and Wolf rejected the most complete picture of the energetics of a continental avifauna, thereby greatly diminishing the diversity in measured avian BMRs. I included these data, subject to the above criteria.

Several individuals should represent a species to be sure that the variation in a population is included in the estimate of a species' basal rate, but as a practical matter many species are difficult to obtain. When birds are obtained by mist-netting, some species are readily captured, whereas others are captured only now and then, even if the mist-netting occurs over an extended period. A decision then has to be made whether to report data when only one, two, or three individuals are captured. This becomes a problem in small species that cannot be easily kept in captivity because their reluctance to feed reduces the number of measurements (n), which makes it difficult to define their narrow zones of thermoneutrality. Two sample sizes therefore are important, both the number of individuals (N) and n. In the study of Wiersma et al. (2007), only N is given without any indication of n: it is one condition to have a small N and another to have a small n, the latter being a greater difficulty.

Availability should not be the basis for the exclusion of species, especially if endangered, rare, or secretive species are physiologically distinctive (see McNab, 2006); that is, species personality may be an important variable influencing availability as well as rate of metabolism (Careau et al., 2008). With the permission of the New Zealand Department of Conservation, I was able to make extensive measurements on two takahe (McNab and Ellis, 2006), which represented 1% of the world's population. The data from these individuals agreed with each other. To exclude these measurements because only two individuals of this remarkable endangered species were available is unconscionable. (If we had measurements on one Archeopteryx lithographica, would that not be intensively informative?) My experience indicates that an extensive set of data from one or two individuals usually gives a result similar to measurements on several individuals from the same population. Besides, if only one or two individuals of an uncommon species are measured, these data can potentially be replaced or supplemented should more data become available. However, the possibility exists that more data on some species will never become available and these few measurements would then become invaluable. Research, like life, is bounded by opportunity.

Another potential concern is that the basal rates of populations within a species may reflect the environmental conditions in which they live, as has been often seen (Ambrose and Bradshaw, 1988; Klaassen, 1995; Piersma et al., 1996; Merola-Zwartjes and Ligon, 2000; Williams and Tieleman, 2000; Wikelski et al., 2003). If several populations of a species are included in an analysis, these species will have a greater influence than those represented by one population (e.g., Aschoff and Pohl, 1970a,b). However, if data from only one population is used to characterize a species that has had populations from several environments measured, the basis for its selection is unclear. Sometimes the values from several populations are averaged, but I preferentially chose those that gave the lowest estimate of BMR, because higher measurements are potentially due to activity, anxiety, personality, or season and the validity of low rates can be checked if body temperature is reported (to eliminate torpor values).

McKechnie et al. (2006) indicated that the basal rates of wildcaught birds are higher than those obtained from captives. They suggested that this difference may reflect a change of diet in captivity, which may lead to changes in body composition, especially in the gut. Higher rates in newly captured birds may also represent bird anxiety. As a practical matter, some species are not likely to be captured in the field, including endangered, evasive, and large species, which is why we usually must rely on captives in these species. (I would never have obtained permission to capture takahes in the field: they were measured at Mt. Bruce Wildlife Centre.) The comparison between wild-caught and captive individuals is best accomplished within a species to avoid differences among species that may reflect factors other than their source, including ecology, behavior, and climate. I have measured basal rate in captive and field-caught Loria's birds-ofparadise (Cnemophilus loriae), finding no difference, and Papuan boobook (Ninox theomacha), with slightly lower rates in captives, but I have also found that captive amakihis (Hemignathus virens) had higher BMRs than wild-caught individuals. Weathers et al. (1983) found no difference in BMR between captive and wild-caught apapanes (Himatione sanguinea). So, the effect of captivity may be complex and species specific.

Rates of metabolism are expressed as kJ/h, which are converted from mLO₂/h, the usual units of measurement, by multiplying those values by 0.020 kJ/mLO₂ (= \sim 20.08 kJ/LO₂)/(1000 mL/L).

2.2. Ecological factors

Describing the ecological characteristics of species is complicated. For example, species were assigned to 26 food habits, 20 habitats, 5 climates, 2 flight conditions, 4 torpor states, 2 migratory categories, and 6 distributional states (see Appendix). As a result, 249,600 potential combinations exist for the 533 species. Data for the ecological characteristics came mainly from the first 12 volumes of the Handbook of the Birds of the World (del Hoyo et al., 1992–2007), as well as from handbooks on several passerine families not yet included in the HBW.

In the case of torpor, some species that had their basal rates measured were not demonstrated to enter torpor, but they were closely related to species that have been shown to enter torpor with similar behaviors and living in similar environments. Therefore, the question whether these species use torpidity is unclear, so they were indicated in the Appendix by?

2.3. Statistical methods

The analytical method used here is the analysis of covariance (ANCOVA), which permits an estimate of the BMR-mass power

Fig. 1. Log₁₀ basal rate of metabolism as a function of \log_{10} body mass in 533 species of birds (data taken from Appendix).

function to be calculated with the inclusion of taxonomic affiliations and various qualitative ecological variables. The variables were directly entered into the analysis, not as dummy variables. The statistical program used was SuperANOVA. BMR was first examined alone with respect to body mass and then with the presence of the passerine/non-passerine dichotomy, avian orders, avian families, and various ecological/behavioral factors. Each of these analyses requires one power for mass, which facilitates comparisons among the various alternate states, but in the case of avian orders, a better representation of the data are curves fitted individually for each order, when the powers of body mass are not required to be equal. An examination of the ecological/behavioral characters often found that the various conditions for one factor had statistically indistinct BMRs, which permitted them to be combined until the largest set of conditions with statistically distinct BMRs are determined for each factor (see Table 3). As a result, the potential combinations are reduced to no more than 432, only 44 of which were found.

3. Results

3.1. Scaling

 Log_{10} BMR of the 533 species correlated with log_{10} mass ($F_{1,531}$ = 8694.21, P<0.0001); r^2 = 0.942 (Fig. 1). When this relationship is taken out of logarithms, BMR scales according to the relationship

$$BMR(kJ/h) = 0.145 m^{0.652 \pm 0.007}, \tag{1}$$

where m is mass in grams, and Eq. (1) has an r^2 = 0.906. The units of this equation can be converted into mLO_2/h by multiplying the coefficient 0.145 by 50 (=1/0.020), which then becomes 7.25. An examination of Fig. 1 indicates that an appreciable variation (5.8%) occurs around the mean logged curve. Even more variation occurs in the unlogged relationship (9.4%). The question therefore is whether any factors other than body mass account for the remaining variation in BMR. For example, is there a difference between passerines and non-passerines, as has been both claimed and denied?

3.2. Passerines vs. non-passerines

When the distinction between passerines and non-passerines is introduced into the analysis, \log_{10} BMR correlates both with \log_{10} mass ($F_{1,530}$ =6484.97, P<0.0001) and the passerine/non-passerine dichotomy ($F_{1,530}$ =118.22, P<0.0001); r^2 =0.953 (Fig. 2). Then,

BMR(kJ/h) =
$$0.127(P)m^{0.721\pm0.009}$$
, (2)

where P is a non-dimensional coefficient, which when taken out of logarithms equals 1.00 in passerines (n=272) and 0.71 in non-passerines (n=261). Passerines have basal rates that averaged

141% (=100/0.71) of non-passerines, the coefficient in Eq. (2) now being 0.127 in passerines and 0.127×0.71=0.090 in other birds (compare Fig. 2a and b). This reconfirms the conclusion that has been made many times, namely that passerines have higher basal rates than the non-passerine collective and confirms the approximate magnitude of this difference. If Eq. (2) is used as a standard for oxygen consumption, the coefficient would be 4.50 for non-passerines and 6.35 for passerines, which are similar to the resting phase curves described by Aschoff and Pohl (1970), whose coefficients were 4.00 and 6.60, respectively, when the exponent was 0.730. Notice that with the increase in number of species measured, the mean passerine curve decreased (as we shall see, a result of including more tropical species) and the mean non-passerine curve increased (by including more polar species).

Another way to approach the difference between passerines and non-passerines is to scale BMR in each group independently, which unlike the analysis that led to Eq. (2), does not require these groups to have the same scaling exponent. Then,

$$BMR(kJ/h) = 0.089m^{0.724 \pm 0.013}$$
(3)

for non-passerines (r^2 =0.927 for the logged curve) and

$$BMR(kJ/h) = 0.130m^{0.713\pm0.013} \tag{4}$$

for passerines (r^2 = 0.919 for the logged curve). Whether the difference in BMR between passerines and other birds is due to "phylogeny" or not, their means are different.

The difficulty with a comparison of passerines with non-passerines, given the array of ca. 28 avian orders, is that it is hard to see what non-passerines share, except that all *are* birds and they *are not* passerines. It would do well, then, to examine the extent to which non-passerine orders are similar to each other and to passerines. Does the BMR of avian orders share any patterns? And how distinct is avian BMR with regard to familial affiliation?

Fig. 2. Log₁₀ basal rate of metabolism as a function of \log_{10} body mass a) in 261 birds other than passerines, 43 (16.5%) of which have a mass equal or greater than a mass of 1 kg. The passerine curve is indicated by a dashed curve. b) in 272 passerines, only one (0.4%) of which has a mass greater than 1 kg. The curve for birds other than passerines is indicated by a solid curve.

Table 1Mean BMR in avian orders and the probability that they differ from that of Passeriformes

Order	N	Coefficient O ^a	Least squares mean	P^{b}
		(Eq. (5))	BMR (kJ/h)	
Anseriformes	30	1.48	2.75	0.20
Apodiformes	6	1.24	2.31	0.0057
Apterygifomres	3	0.85	1.59	< 0.0001
Caprimulgiformes	8	0.70	1.30	< 0.0001
Casuariiformes	1	0.87	1.61	0.0072
Charadriiformes	25	1.56	2.90	0.81
Ciconiiformes	4	1.00	1.87	< 0.0001
Coliiformes	4	0.70	1.31	< 0.0001
Columbiformes	40	0.98	1.82	< 0.0001
Coraciiformes	9	1.06	1.98	< 0.0001
Cuculiformes	5	1.23	2.29	0.0099
Falconiformes	16	1.02	1.91	< 0.0001
Gabuliformes	1	0.95	1.77	0.016
Galliformes	14	1.27	2.37	0.0005
Gruiformes	15	1.01	1.89	< 0.0001
Passeriformes	272	1.58	2.94	-
Pelecaniformes	4	1.58	2.94	1.00
Piciformes	13	1.10	2.05	< 0.0001
Podicipediformes	1	1.57	2.93	0.99
Procellariiformes	13	1.46	2.72	0.26
Psittaciformes	21	1.43	2.65	0.041
Pteroclidiformes	1	1.24	2.32	0.26
Sphenisciformes	9	1.22	2.26	0.0028
Strigiformes	16	1.00	1.86	< 0.0001
Struthioniformes	1	0.79	1.46	0.0020
Tinamiformes	1	1.00	1.86	0.032

a BMR(kJ/h)= $0.085(O)m^{0.705}$.

3.3. Avian orders and families

To determine whether the BMRs of avian orders share any pattern, ANCOVA was run again, but this time \log_{10} BMR was examined with respect to \log_{10} mass and the 26 orders for which data are available. The result was that \log_{10} BMR correlated with \log_{10} mass ($F_{1,506}$ = 5303.62, P<0.0001) and order affiliation ($F_{25,506}$ = 17.67, P<0.0001); r^2 =0.969. Consequently,

$$BMR(kJ/h) = 0.085(0)m^{0.705\pm0.010},$$
(5)

where O is a coefficient for order affiliation. Note that because of the distinctiveness of the orders in terms of BMR, the unexplained variation in \log_{10} BMR is now down to 3.1%.

Each order has its distinctive coefficient and least squares mean basal rate (Table 1), the lowest basal rates occurring in Caprimulgiformes (frogmouths, goatsuckers) and the Coliiformes (mousebirds).

Passerines have a mean BMR that is 2.25 times that of caprimulgiforms and coliiforms. (Because ANCOVA forced each order to have the same power [slope on a log–log plot], these curves are not necessarily the best representatives of these orders as when examined individually, but they facilitate interordinal comparisons; see Table 2 for the best-fit relationships for orders with >5 species measured.)

What is most interesting about this analysis is that several orders have mean basal rates that are not significantly different from that of Passeriformes, including Anseriformes (N=30, P=0.20 [also see Miller and Eadie, 2006]), Procellariiformes (N=13, P=0.26), Charadriiformes (N=25, P=0.81) and Pelecaniformes (N=4, P=1.00), ignoring orders with only one species studied. These orders share being aquatic (pelagic, marine, or freshwater) and highly mobile, often in association with a polar or cold-temperate breeding distribution. The 'aquatic' orders that have a significantly lower BMR than passerines are the generally low-latitude Ciconiiformes (N=4, P<0.0001) and the high-latitude Sphenisciformes (N=9, P=0.0028).

After orders were dropped from the analysis, familial affiliation was added to \log_{10} body mass. Then \log_{10} BMR correlated with \log_{10} mass ($F_{1,435}$ =3195.73, P<0.0001) and family ($F_{96,435}$ =7.44, P<0.0001); r^2 =0.978. Thus, the inclusion of family affiliation further increases the ability to account for the variation in \log_{10} BMR with only 2.2% of the variation unaccounted for, an improvement over the inclusion of orders. However, given that data have been accumulated on species that belong to 97 families, further analysis would be exceedingly complex. A better strategy would be to analyze the factors that might be responsible for the diversity in BMR at the familial and ordinal levels, which will be examined by bringing ecological factors into the analysis, as was implied by the correlation of high BMR, non-passerine orders with aquatic habits, high mobility, and a temperate or polar breeding distribution.

3.4. Ecological factors

When all eight ecological factors were combined with \log_{10} mass, \log_{10} BMR correlated with \log_{10} mass, food habits, climate, habitat, the restriction or not to mountains, the use or not of torpor, and a volant or flightless condition, but not with the restriction to islands (P=0.10) or the use of migration (P=0.16). However, restriction to islands becomes a significant (P=0.0024) correlate of \log_{10} BMR when a flightless condition and migration are dropped, which reflects the common occurrence of a flightless condition in island endemics, as well as the sedentary nature of flighted island endemics. Migration is a significant ($F_{2,523}$ =12.04, P<0.0001) correlate of \log_{10} BMR, if climate and mountains are dropped from the analysis because most migrants have a polar or temperate breeding distribution and most montane endemics live in the tropics. A difficulty is that far too many categories

Table 2Fitted curves for basal rate of metabolism in various avian orders

Order	N	Δ mass	Coefficient	Power	r ²
Anseriformes	30	23.0	0.082	0.767	0.866
Apodiformes	6	7.9	0.091	0.761	0.813
Caprimulgiformes	8	9.5	0.052	0.731	0.923
Charadriiformes	25	32.2	0.075	0.807	0.922
Columbiformes	40	64.3	0.106	0.657	0.897
Coraciiformes	9	282.8	0.123	0.628	0.970
Falconiformes	16	28.9	0.132	0.636	0.905
Galliformes	14	86.9	0.079	0.759	0.968
Gruiformes	15	70.0	0.098	0.681	0.889
Passeriformes	272	231.3	0.130	0.713	0.919
Piciformes	11	25.0	0.123	0.639	0.903
Procellariiformes	13	182.3	0.135	0.691	0.982
Psittaciformes	21	31.0	0.137	0.678	0.940
Sphenisciformes	9	21.2	0.032	0.844	0.986
Strigiformes	16	45.0	0.077	0.723	0.889

 Δ mass = maximal mass/minimal mass.

^b Probability that the equation differs from that of Passeriformes.

Fig. 3. a. \log_{10} measured basal rate of metabolism in 533 species of birds as a function of \log_{10} basal rate of metabolism calculated from Eq. (6). b. Measured basal rate of metabolism of birds as a function of basal rate calculated from Eq. (6).

in food habits and habitat exist for this relationship to be of any practical value because, even with the migration and island factors dropped, there still were 41,600 categorical combinations of ecological factors for the 533 species. These must be simplified.

The categories for a particular ecological factor can be combined when they have mean BMRs that are not statistically different. For example, the four torpor categories condense into two, the BMR of species that use torpor not being different (P=0.067) from the BMR of those related species that might use torpor (represented by ?), which was not different (P=0.23) from the BMR of the one species known to enter hibernation (Phalaenoptilus nuttallii). After this condensation, species that do not use torpor had higher basal rates (F_{1,484}=40.22, P<0.0001) than those that use, or may use, torpor.

Climate, when combined with \log_{10} mass, condensed torpor, and the other factors, condensed into three distinct categories, "polar," "temperate," and "tropical," "temperate/tropical" being indistinguishable (P=0.15) from "tropical" and clearly different from (P<0.0001) from "temperate." When temperate/tropical species were combined with tropical species, polar species had higher basal rates than temperate species (t=3.25, P=0.0012) and temperate species had higher basal rates than tropical species (t=5.83, P<0.0001).

When the categories for habitat were examined with the other factors, the 20 combinations reduced to three. One combined pelagic and marine species, a combination that was seen in non-passerine orders that had high basal rates. One of the other two habitat categories combined deserts, grasslands, savannahs, with tundra, whereas the other combined forests, alpine, open, with disturbed areas. Then each of the categories had a mean BMR that was different from the others, with "marine/pelagic" species greater than "forest"

species (t=4.78, P<0.0001), which in turn was greater than "desert/grassland" species (t=5.83, P<0.0001).

The greatest difficulty was to condense the 26 (=12 simple and 14 combined) food habits. Ultimately, they condensed into three categories: species with a nectar/pollen, nut diet, or aquatic vegetation diet had higher basal rates (t=3.35, P=0.0009) than omnivores, those feeding on grass, insects, and vertebrates, which collectively had higher basal rates (t=3.35, P=0.0009) than species committed to feeding on fruit or fruit mixed with vertebrates, leaves, or seeds.

When the complete analysis was re-examined, \log_{10} BMR correlated with \log_{10} mass and six ecological/behavioral factors, including torpor and mountains; r^2 =0.966, which is appreciably better than with \log_{10} mass alone (when r^2 =0.942). As effective as was this analysis in accounting for the variation in avian BMR, 3.5% variation in \log_{10} BMR remained. When a similar analysis was made on 639 species of mammals (McNab, 2008), the dichotomy between eutherians and other mammals retained significance, even though seven ecological and behavioral factors were included. This raises the question whether the dichotomy between passerines and other birds that was shown to exist (Eq. (2)) was accounted for by the ecological and behavioral differences between these two groupings.

When the passerine/non-passerine dichotomy was added, \log_{10} BMR now correlated with \log_{10} mass ($F_{1,521}$ =6968.62, P<0.0001), food habits ($F_{2,521}$ =30.69, P<0.0001), mountains ($F_{1,521}$ =6.73, P=0.0097), climate ($F_{2,521}$ =43.91, P<0.0001), torpor ($F_{1,521}$ =35.34, P<0.0001), passerine/non-passerine dichotomy ($F_{1,521}$ =107.69, P<0.0001), habitat ($F_{2,521}$ =38.47, P<0.0001), and flight ($F_{1,521}$ =37.97, P<0.0001); r^2 =0.972 (Fig. 3a). When taken out of logarithms:

$$BMR(kJ/h) = 0.139(F \cdot A \cdot C \cdot E \cdot T \cdot U \cdot S)m^{0.689 \pm 0.008},$$
(6)

where the non-dimensional coefficients F stands for food, A for altitude, C for climate, E for passerine/non-passerine, T for torpor, U for habitat, and S for flight; r^2 =0.977 (Fig. 3b). This equation accounts for 97.7% of the variation in BMR in all 533 species. It represents a great increase in the ability to account for the variation in avian BMR compared to Eq. (1) in which body mass alone accounted for 90.6% of the variation in BMR, realizing that a great increase in information is required for r^2 to approach the asymptote of 1.00. Time of measurement was added to Eq. (6) to determine whether BMR now correlated with it after the various behavioral/ecological factors were included: time of measurement still was not a significant correlate (P=0.63) of log₁₀ BMR.

Table 3Coefficients for various ecological characteristics in Eq. (6)

Character state	Condition	Coefficient
F (food habits)	Fruit	0.69
	Insects/seeds/omnivores/aquatic vegetation/	
	Aquatic invertebrates/vertebrates	0.74
	Nut/nectar/pollen	1.00
A (altitude)	Lowlands	0.93
	Mountains	1.00
C (climate)	Tropical	1.00
	Temperate	1.16
	Polar	1.41
U (habitat)	Deserts/grasslands/savannahs/tundra	0.70
	Forests/open/disturbed/lakes/wetlands	0.80
	Marine/pelagic	1.00
T (torpor)	Torpor/?/HIB	1.00
	No torpor	1.28
E (passerine/nonpass)	Non-passerines	0.76
	Passerines	1.00
S (flight)	Flightless	1.00
	Flighted	1.35

The non-dimensional coefficients in Eq. (6) are given in Table 3. Note that some modification of the values has occurred in the complete analysis (e.g., the non-passerine coefficient was 0.71 in Eq. (2), but 0.76 in Eq. (6)). For example, a volant non-passerine that feeds on aquatic invertebrates and lives in a lowland, temperate, marine environment, and does not enter torpor would be expected to have a basal rate estimated by Eq. (6), when the coefficient equaled 0.139 $(0.74 \times 0.93 \times 1.16 \times 1.00 \times 1.28 \times 0.76 \times 1.35) = 0.146$. Consequently, a wandering albatross (Diomedea exulans) weighing 8130 g would be expected to have a basal rate equal to 72.2 kJ/h, a value that is 99% of the measured value of 73.2 kJ/h. The frugivorous/insectivorous emerald toucanet (Aulacorhynchus prasinus) at 175 g would be expected from Eq. (6) to have a basal rate equal to 3.5 kJ/h, when the coefficient is $0.139 (0.74 \times 0.93 \times 1.28 \times 1.00 \times 0.80 \times 0.76 \times 1.35) = 0.101$, which is 16% higher than the measured basal rate, 3.0 kJ/h. The house sparrow (Passer domesticus), a seed-eating passerine that weighs 23.0 g, had a measured basal rate equal to 1.3 kJ/h and one predicted by Eq. (6), when the coefficient is 0.153, equal to 1.3 kJ/h. When the basal rates of all 533 species are compared to the values expected from Eq. (6), the mean ± S.E. is 101.6 ± 0.88%, which is not different from 100% (Fig. 3), and r^2 = 0.977.

4. Discussion

This analysis of the factors influencing avian BMR has implications for phylogenetically-based analyses, scaling, taxonomic affiliation, the effect of food habits, and geographical ecology, as well as raising some questions why this model is unable to account completely for the variation in avian BMR. It also permits a comparison of the energetics of birds with that of the other endothermic vertebrate class, Mammalia.

4.1. Phylogenetic analyses

ANCOVA analyses assume that the datum from each species is independent of the data from other species, which raises a fundamental question: can similar characteristics in two related species truly be considered to be 'independent'? This question was raised by Felsenstein (1985), which caused a mass movement to 'correct' all analyses of the evolution of phenotypes for the effects of phylogeny.

The answer to this question depends on what is meant by independent: if the evolution of character states is considered, then they may not be independent if two species with a particular character state has a common ancestor that show that state. However, if physiological rates are considered, then it may not make any difference whether they were attained by ancestry or convergence because they must be in sufficient harmony with conditions in the environment and the species' behavior to permit the survival of species having these character states, at least as long as the function does not depend on a unique morphological structure. Thus, a vertebrate cannot persistently expend energy at rates that are unattainable from the resources exploited, irrespective of ancestry. As was clearly stated by Westoby et al. (1995, p. 728): "...if...the reason for similarity were ecological factors acting after the [related] species had become reproductively isolated and had separate opportunities for extinction or trait-change, then each species would be an independent [my italics] item of evidence, adding to our confidence that ... ecological factors did indeed cause those outcomes." The highly flexible relationship of quantitative physiological rates to conditions in the environment is what is analyzed here.

Furthermore, phylogenetically-based analyses suffer from their dependence on cladograms. This is especially a problem when, as encountered here, an analysis is attempted for a large taxonomic unit, such as a class of vertebrates. No cladogram for a class exists today that is both complete and acceptable without controversy. For example, the cladogram invariably used in the analysis of BMR in the Class Aves

by Reynolds and Lee (1996), Rezende et al. (2002), McKechnie and Wolf (2004), and Wiersma et al. (2007) was derived (with various selective additions) from Sibley and Ahlquist (1990), which was based on the temperature at which hybrid DNA molecules derived from pairs of species showed 50% dissociation.

Few avian taxonomists accept the Sibley–Ahlquist classification (David Steadman, pers. com.), which is a radical classification compared to those based on morphology. In it the family Fringillidae contains blackbirds, New World sparrows, New World warblers, tanagers, two kinds of honeyeaters, cardinals, and New World orioles; passerines are grouped with Columbiformes, Gruiformes, and Ciconiiformes; and Ciconiiformes, besides the usual herons, storks, and ibises, contains the Charadriiformes, Falconiformes, Podicepidiformes, Procellariiformes, Sphenisciformes, Gaviiformes, and the Pelicaniformes. This grouping is responsible for the inability of Sibley–Ahlquist-based analyses to find that Passeriformes has a higher BMR than the collective of other birds because of dumping the Charadriiformes, Procellariiformes, and the Pelecaniformes, all orders with high BMRs, into one order that was closely allied with the Passeriformes.

Genomics is drastically, if somewhat chaotically, modifying our understanding of avian relationships. Recent analyses of the evolution of birds, based primarily on DNA base sequences by Barker et al. (2004), Fain and Houde (2004), Ericson et al. (2006), and Hackett et al. (2008), are very different from that proposed by Sibley and Ahlquist. Barker et al. (p. 11042) "... suggest not only that the DNA hybridization hypothesis [of Sibley and Ahlquist] is problematic, but also that use of the revised taxonomy based partially on it...as a proxy for evolutionary relationship is also questionable...." For example, Barker et al. concluded that the three species belonging to the bird-of-paradise subfamily Cnemophilinae are not paradisaeids (see also Cracraft and Feinstein, 2000), but are related to the Callaeatidae, the New Zealand wattlebirds! And many classically defined avian orders apparently are not monophyletic, including Falconiformes, Pelecaniformes, Ciconiiformes, and Gruiformes, whereas Apodiformes was combined with Caprimulgiformes (Hackett et al., 2008). With such flux, we are far from any consensus on avian phylogeny, which indicates that the description of order BMRs seen in Tables 1 and 2 will need to be revised, subject to subsequent revisions of avian taxonomy. Thus, if Falconiformes is broken into a narrowly defined Falconiformes, which among measured species includes the Falconidae, and 'Accipitriformes,' which includes the Accipitridae, Falconiformes would have a mean BMR equal to 1.95 kJ/h and 'Accipitriformes' 1.89 kJ/h.

Phylogeny and the environment influence phenotype in different ways and at different times (McNab, in press). Phylogeny influences the evolution of character states as a result of commitments made to solve problems previously encountered, sometimes restricting future possibilities and sometimes opening new opportunities, but they do not normally influence directly the narrow adjustments in physiology that connect behavior to conditions in the environment. That is, phylogeny may indicate whether a clade could evolve a particular food habit, but if that food habit evolves, energy expenditure reflects it and the environment in which the species lives. Two examples in birds of early commitments that opened new opportunities, the evolution of endothermy and the evolution of avian flight (see later), have had a radical impact on energy expenditure. Nevertheless, the refined adjustment of energy expenditure in these two cases is under the control of conditions in the environment, which are never part of any cladogram. Besides, the most adamant supporters of phylogenetic analyses of physiological character states admit the direct impact of body mass on energy expenditure. My view is that some factors other than mass have the same effect, including at least food habits and climate (McNab, 2003b).

The best means of controlling for phylogeny, when analyzing the impact of phylogenetic commitments on character states, should that be necessary, is obtained by comparing populations within a species

(e.g., Ambrose and Bradshaw, 1988; Klaassen, 1995; Wikelski et al., 2003), species within a genus (e.g., McNab, 2000, 2003a, 2005; Tieleman et al., 2002; McNab and Ellis, 2006), and genera within a family (e.g., Williams and Tieleman, 2000; McNab, 2005). As analyses move from populations to species, genera, families, orders, and classes, phylogenetic uncertainty increases.

4.2. Scaling

Body mass has the greatest impact on avian BMR of all effective factors because of its great range, in this study by a factor of 10^{4.2}-fold, i.e., the largest species (Struthio camelus) has a mass that is 17,300 times that of the smallest species (Aethopyga christanae). However, the addition or subtraction of various factors other than mass in an analysis influences the power of mass in the fitted scaling relationship of BMR, if the factors correlate with mass. When mass is the only factor used, the power of body mass describing BMR in birds is 0.652 ± 0.007, whereas when the dichotomy between passerines and nonpasserines is added, the power becomes 0.721 ± 0.009 , or 0.705 ± 0.010 when all 26 orders are incorporated into the analysis. When six ecological factors and the passerine/non-passerine dichotomy are added, the power equaled 0.689 ± 0.008. This variation in the power reflects the correlation of various factors with mass, including the passerine/non-passerine dichotomy (P=0.0019), orders (P<0.0001), families (P<0.0001), and flight (P<0.0001). This flexibility raises a doubt that a "universal" value exists (Glazier, 2005; Bokma, 2004; McNab, 2008), as has been advocated in mammals by MacMahon (1973), Heusner (1982), West et al. (1999), and White and Seymour (2003), although White et al. (2006, 2007) appear to have changed their minds. All advocates of a universal power for metabolism ignore its residual variation, as if it were simply experimental error or inconvenient.

4.3. Taxonomic affiliations

The higher BMR of passerines than the pooled mean of other birds is reconfirmed here, although more important is the observation that 'non-passerines' is not a uniform category, as should be expected from the morphological, ecological, and behavioral diversities among these orders. Especially interesting is the observation that orders that share aquatic habits, a polar or temperate breeding distribution, and a mobile lifestyle have basal rates that do not differ from those of passerines. (This probably should also apply to the Podicipediformes, as it does with the one species studied, the eared grebe [Podiceps nigricollis].)

The mobility of these orders possibly influences BMR through a variation in body composition (Daan et al., 1990). Daan et al. emphasized the correlation of BMR with the sum of heart and kidney masses, which are only a small proportion of body mass, so this correlation may represent a correlation with the *capacity* for maximal metabolic output. McNab and Ellis (2006) showed that the reduction of BMR in flightless rails correlated with a reduction in pectoral muscle mass. Piersma et al. (1996) demonstrated a correlation of BMR with lean body composition in two subspecies of the migratory shorebird *Calidris canutus*.

The observation that penguins belong to the only aquatic, high-latitude order with basal rates that were lower than those of passerines reflects their flightless condition, given that flightless birds have lower basal rates than flighted species. Flightless birds collectively have basal rates that averaged 74% of flighted species, penguins have basal rates that averaged 78% of flighted species, their slightly higher basal rates probably reflecting an adaptation to cold-water. If the mean basal rate of penguins (2.26 kJ/h; Table 1) is adjusted for their flightless condition, their mean rate would be (2.26/0.78)=2.89 kJ/h, which is indistinguishable from that of passerines (2.94 kJ/h). The use of phylogenetic analyses in this case would be unable to distinguish a flightless condition from

membership in the Sphenisciformes, which represents the ultimate failure of phylogenetic analyses—the inability to dissect causative relationships.

Familial affiliation accounted for more of the variation in BMR when combined with body mass than ordinal affiliation probably because families are more uniform in their ecological and behavioral characteristics than orders, and consequently there are greater ecological, behavioral, and their associated physiological differences among families than among orders.

4.4. Food habits

Most of the variation in BMR that correlates with orders or families is associated with their ecological characteristics. Given that species feeding only on fruit, flying insects, or vertebrates have low basal rates, it is not surprising that the orders with the lowest mean basal rates (Table 1) include the Caprimulgiformes (insects), Coliiformes (fruit), Columbiformes (fruit, seeds), Coraciiformes (insects, fruit), Gruiformes (vertebrates, insects), Piciformes (insects, fruit), Falconiformes (insects, vertebrates), and Strigiformes (insects, vertebrates). This conclusion, of course, is sample dependent in that it reflects the species that were measured: although most temperate columbids are seed eaters, the majority (19/36) of measured species were tropical frugivores, which led to the low basal rate seen in the sample representing this order. A trophically balanced sample from this order might well have a higher basal rate.

Whether these avian orders have low basal rates because they have these food habits, or whether these food habits are correlated with low BMRs because they are found in these orders, may be subject to contention. However, the latter view is unintelligible in that it advocates a vague historical argument without any functional basis, whereas the former suggestion reflects an ecophysiological basis that will account for the consistencies seen among many phylogenetic units. For example, the similarly low mass-independent basal rates in frugivores that belong to the Columbidae, Coliidae, Bucerotidae, Ramphastidae, Pipridae, Paradisaeidae, and Pycnonotidae (McNab, 2005) cannot be the product of an immediate shared ancestry.

Why should BMR correlate with food habits? Note that feeding on insects or fruit alone is associated with intermediate basal rates, whereas the combination of insects with seeds or fruit correlates with some of the highest basal rates (McNab, 1988). Indeed, this pattern was seen in birds-of-paradise (McNab, 2005), all of which are to some extent frugivorous. Possibly the consumption of carbohydrates (seeds, fruit) or protein (insects) alone is inadequate to sustain a high BMR, whereas their mixture is associated with high BMRs. Or this difference in metabolism may reflect the temporal availabilities of foods, a combination of fruits and insects reducing periods of food shortage in the tropics, whereas BMR may be lower in species specializing on foods that are highly seasonal in availability, such as flying insects.

The analysis of the effect of food habits on the energetics of endotherms would be best accomplished by a detailed examination of the effects of digestibility of foods, their available energy contents, and the occurrence of secondary compounds (Cruz-Neto and Bozinovic, 2004), but we are presently a long way from this capacity. The correlation of BMR with food habits should remind us that we are dealing with associations and not necessarily directly with causative factors, which may be delineated only by careful, detailed experimental studies. This analysis, at best, is a preliminary step in the delineation of causative agencies.

4.5. Geographical ecology

The analysis represented by Eq. (6) demonstrated that the 262 temperate bird species have basal rates that averaged 116% of those

in 246 tropical species (Table 3). This difference is also found in 272 passerines, 144 of which are tropical: \log_{10} BMR correlates with \log_{10} mass ($F_{1,269}$ =3328.02, P<0.0001) and climate ($F_{1,269}$ =31.15, P<0.0001); r^2 =0.927:

$$BMR(k]/h) = 0.125(C)m^{0.708 \pm 0.012},$$
(7)

where the log-transformed climate coefficient *C* equals 1.00 in tropical and temperate/tropical species and 1.13 in one polar (*Carduelis flammea*) and 127 temperate passerines. Temperate passerines therefore have basal rates that are 13% greater than tropical species, a smaller difference than in birds generally, but still conforming to the avian pattern. The greater difference in birds other than passerines may be related to the marine and pelagic habits of many temperate and polar species.

These observations are relevant to the conclusions of Gavrilov (1995, 1998, 1999), who attributed the dominance of temperate, terrestrial environments by passerines to their high basal rates. He argued that: 1) the high BMRs of temperate passerines were correlated with high potential energy and productive expenditures and 2) these two capacities permit temperate passerines to expend more energy on temperature regulation (and therefore tolerate lower ambient temperatures), reproduction, and migration than other birds, but 3) this advantage disappears at masses greater than 150 g. Furthermore, Lindström and Kvist (1995) showed that the maximal rate of energy intake is proportional to basal rate in temperate passerines. As a result, passerines dominate temperate, terrestrial environments at masses between 5 and 150 g. In the data assembled for this analysis, only 9 of 127 temperate passerines weigh more than 150 g, all of which are corvids. Gavrilov's analysis may explain why the largest passerine, the raven (Corvus corax), has a mass of only 1.2 kg and is sedentary.

As was suggested by Gavrilov for temperate passerines, the high BMRs of Anseriformes, Charadriiformes, Pelicaniformes, and Procellariiformes may be a means of ensuring a high reproductive output to compensate for a high mortality in cool to cold environments and to facilitate long distance migration. This pattern permits passerines to dominate temperate and polar terrestrial environments and the four high-latitude 'aquatic' orders to dominate temperate and polar aquatic environments. Sedentary species belonging to these orders, then, might be expected to have low BMRs, which may also explain why tropical passerines have low BMRs, rather than as an adaptation to a warm climate. Few sedentary species belonging to these aquatic orders have been measured, but compatible with the suggestion that they should be characterized by low basal rates, flighted and flightless anatids endemic to New Zealand have low basal rates (McNab, 2003a). New Zealand, in fact, has many sedentary aquatic birds, including the charadriiform wrybill (Anarhynchus frontalis), dotterels (Charadrius spp.), New Zealand snipe (Coenocorypha spp.), and black stilt (Himantopus novaezelandiae), and the pelicaniform shags Phalacrocorax [Stictocarbo] punctatus and P. [Leucocarbo] spp., which should be measured to test this hypothesis. Given the pelagic habits of procellariiforms, however, there may be no sedentary species and therefore none with low basal rates. Yet, the distinction between migratory and sedentary species is not absolute: some semi-sedentary or locally migratory shorebirds, like the Wilson's plover (Charadrius wilsoni), and tropical passerines should be examined.

4.6. Complications

Because Eq. (6) has r^2 equal to 0.977 with only 2.3% of the variation in BMR unaccounted for, a temptation exists to think that this analysis is nearly complete. However, when individual measurements are compared to the basal rates expected from Eqs. (1) and (6), the confidence associated with a high r^2 disappears. If we first

examine the distribution of BMR, expressed as a percentage of the mean—the "raw data"—262 of the 533 species (49.2%) have values <30%, which reflects the fact that 194 of the species (36.1%) weigh <30 g (Fig. 4). The great spread in these data (from 4.8 to 3442.7% of the mean) is greatly reduced when the data are represented relative to the value expected from mass by Eq. (1), which reemphasizes the determinative power of mass on BMR; then the mean ratio ± S.E. of measured to calculated BMR is 104.0 ± 1.22%, which ranged from is 40.0 to 225.6%, i.e., a 5.6 fold variation in residuals. These ratios conform to a normal distribution truncated at 40% (Fig. 4). As expected, Eq. (6) further improves the ability to account for the variation in BMR with the mean ± S.E. equal to 101.6 ± 0.88% and range from 50.5 to 205.3%, still a 4.1-fold variation (Fig. 4). Yet, both of these equations leave a remarkable variation in BMR unaccounted for, even though Eq. (6) reduces the residual S.E. by 30% compared to Eq. (1).

One possible explanation for this failure is that although BMR in birds correlates with many factors, others that are important have been neglected. If that is the case, what might they be? One is that Ellis (1980) demonstrated that mass-independent BMR in four herons varies with plumage color: white egrets had higher BMRs than the dark little blue heron (*Egretta caerulea*), both selecting an exposed nesting site, whereas another dark heron (*E. tricolor*) selected a sheltered nesting site and had a high BMR.

Another approach to unexplained variation in BMR is to examine the species that have the extreme ratios of measured to calculated BMR to see if they share some common characteristic, as was found in a similar analysis in mammals (McNab, 2008). However, in this study no pattern appears either in the species over- or underestimated. Some of the species that are underestimated may represent measurements that were not standard. This might well be the case in the acrocephaline warbler *Hippolais icterina*, which has a reported BMR (192% of the value expected from Eq. (6)), almost twice those reported from other temperate sylviids (which were between 88 and 116%), and *S. frontalis* (188%), which is much higher than three New Guinean *Sericornis* (93, 103, and 124%). The greatest overestimated species (two owls, a swallow, and two finches) also demonstrate no clear pattern, unless the owls and the swallow have unusually low BMRs for undefined reasons.

The assumption in Eq. (6) that each factor acts independently is unacceptable, as was seen with the addition of migration or an island distribution to the analysis, which required the dropping of other factors. As reasonable as the possibility of factor interaction might be, a cursory examination of some of these possibilities in $food \times climate$ (P=0.28), $migration \times climate$ (P=0.83), $migration \times island \times climate$ (P=0.64), and $migration \times food \times climate$ (P=0.084) were not significant when added to Eq. (6). However, among mammals, the term $food \times substrate \times climate \times habitat$ was a significant correlate of log_{10} BMR (McNab, 2008), and its addition increased r^2 .

4.7. The comparative energetics of birds and mammals

This analysis and a similar one on mammals (McNab, 2008) permit a comparison of the factors that influence BMR in these two clades that independently evolved endothermy. As seen above, the combination of body mass, climate, habitat, food habits, a highland/lowland distribution, the use of torpor, the use of flight, and the passerine/non-passerine dichotomy accounted for 97.7% of the variation in the BMR of 533 species of birds. In mammals, a combination of body mass, climate, habitat, substrate, food habits, the use of torpor, an island/continental distribution, and a highland/lowland distribution, in addition to the unique reproductive dichotomy between eutherians and monotremes/marsupials, accounted for 98.8% of the variation in the BMR of 639 species.

These analyses obviously had very similar results, which suggests that both groups of endotherms have independently

Fig. 4. The frequency distribution of basal rates of metabolism in 533 species of birds as a percentage of the basal rates expected from Eqs. (1) and (6).

responded to the same environmental factors since there is no evidence that birds and mammals had a shared endothermic ancestor. A close examination, however, demonstrates some fundamental differences in the energetics of birds and mammals, one of which is that birds collectively have BMRs that are much higher than those of mammals of the same mass (King and Farner, 1961; Aschoff and Pohl, 1970b).

Another notable difference is the response of birds and mammals to particular food habits. Although mammals and birds that feed on nectar have high basal rates, and those that feed on seeds or grass have intermediate BMRs, mammals and birds that feed on insects, vertebrates, or fruit have different basal rates. In mammals these foods are correlated with intermediate to high basal rates, whereas in birds they are associated with intermediate to low basal rates.

A complication in the comparison of birds and mammals is demonstrated in raptors: some (Falco, Accipiter, Pandion) have higher mass-independent basal rates than others (Buteo, Parabuteo, Aquila) (Wasser, 1986). The first group uses powered flight to capture vertebrate prey and has larger pectoral muscle masses, whereas the second group search for prey by soaring or using sit-and-wait tactics and has smaller pectoral muscle masses (Hartman, 1961). The reduction of BMR in flightless rails also correlates with a reduction in pectoral muscle mass compared to their flighted relatives (McNab and Ellis, 2006). Furthermore, birds that pursue insects in flight have higher basal rates than those that sit and wait for insect prey (Bonaccorso and McNab, 2003).

Flight, possibly as it reflects body composition, therefore, may be a factor pivotal to the difference in BMR between birds and mammals. Indeed, 22 species of flightless birds (3 kiwis, the emu, the ostrich, 2 ducks, 9 penguins, and 6 rails) have basal rates that

averaged 109.5±5.78% of the values expected from mammals, whereas they averaged only 74% of volant birds. That is, the basal rates of flightless birds conform better to the mean mammal curve than to the mean bird curve (Fig. 5). The slightly higher basal rates (by mammalian standards) of some flightless birds reflect their coldwater distributions, namely penguins (105–160%), Auckland Island teal (*Anas aucklandica*, 135%), and Campbell Island teal (*A. nesiotis*, 119%).

As noted, birds generally have higher basal rates than mammals of the same mass. Because the mean mammalian scaling relation (McNab, 2008) is

$$BMR(kJ/h) = 0.070m^{0.721 \pm 0.006}$$

birds have BMRs that are approximately 0.145/0.070=2.1 times those of mammals (at a mass of 1 g). But because the scaling power in birds is lower (0.652) than that of mammals (0.721), the difference in BMR between birds and mammals decreases with an increase in mass: these two equations reach equality at a mass of 38.3 kg (Fig. 5).

Two factors account for the lower power of the bird curve. One is that at masses > 3 kg, 9 of 15 measured species are flightless and all 4 of those that weigh > 10 kg are flightless (Fig. 5). That is, the accumulation of a flightless condition at intermediate and large masses pulls down the bird curve at higher masses, thereby contributing to its lower power. Another factor is the general commitment of small birds to continuous endothermy, which requires birds (and a few mammals) at masses < 50 g to have increasingly high basal rates compared to a general mass standard as mass decreases (McNab, 1983, 1992). In contrast, only a minority of small mammals is committed to continuous endothermy (McNab, 2008).

Fig. 5. Log₁₀ mean basal rate of metabolism of birds and mammals as a function of log₁₀ body mass. Values for flightless birds and for birds that weigh < 50 g that do not enter torpor are indicated and a resulting curve for birds with these values deleted is indicated.

When flightless birds and those continuously endothermic species that weigh <50 g are deleted from the bird curve, avian BMR now scales according to the relation (N=277):

BMR(kJ/h) = $0.105m^{0.708\pm0.014}$.

which is parallel to the mammal curve, the two powers, 0.721 and 0.730, being indistinguishable, as are the powers of the bird and mammal curves that incorporate all of the ecological factors (0.693 and 0.689, respectively). The modified bird curve is elevated compared to the mammal curve (Fig. 5): flighted birds that have not made a commitment to continuous endothermy at masses <50 g have a mean BMR that is 30–40% greater than that found in mammals.

One mammalian order, Chiroptera, is committed to flight: does the presence of flight in mammals have an impact on BMR similar to that in Aves? No: when flight is entered as the only factor with log₁₀ body mass, log_{10} BMR in mammals correlates ($F_{1.629}$ = 10.68, P=0.0011) with flight, but non-flying mammals, unlike flightless birds, have higher basal rates (1.17:1) than fliers, which is opposite to the pattern in birds. A potential difficulty with this analysis is that most bats that belong to the suborder Microchiroptera feed on flying insects and enter torpor. So, to factor out the impacts of food habits and torpor, the analysis was rerun with the addition of condensed torpor and condensed food habits. Then, flight in bats remains a significant ($F_{1,626}$ =22.74, P<0.0001) influence on log_{10} BMR, but now with non-flying mammals having a mean BMR that is 1.24 times those of bats! As other factors are added to the analysis in various combinations, the effect of flight on BMR in mammals gains or loses significance. When added to the complete analysis in mammals (McNab, 2008), flight has no impact ($F_{1.618}$ =0.095, P=0.76) on BMR.

This comparison of birds and mammals implies that the higher basal rates of birds reflect their commitment to a particular morphological form of flight and its absence in mammals. Hartman (1961) demonstrated in flighted birds that pectoral muscle mass varied from 9 to 36% of body mass, whereas the thoracic muscle masses in bats varied only from 7 to 12% (Hartman 1963). More

recently, Bullen and McKenzie (2004) reported that total flight muscle mass in bats varied from 9 to 23%, which is still less than the maximum seen in birds. The observation of Winter and Helversen (1998) that the cost of flapping flight in small bats is 20–25% less than the cost in small birds therefore is not surprising.

The correlation of basal rate in birds with pectoral muscle mass and the extent and type of flight appears to be the principal contributor to the difference in BMR between these classes. Whereas flight in birds is used for local, long distance, and pelagic movements, flight in bats is principally used for local movements. Temperate bats, which mainly feed on flying insects, usually respond to cold winters by hibernating in local caves. Temperate passerines with similar habits are migratory. The evolution of the avian form of flight clearly appears to have had an expansive impact on avian energetics, including the widespread occupation of polar and island environments. In contrast, the evolution of bat flight has had a more restricted influence, although a few temperate bats are migratory, especially species belonging to the genera Lasiurus, Lasionycteris, and Nyctalus, bats whose physiology (Genoud, 1993), large litter sizes (Banfield, 1974), and predatory behavior (Dondini and Vergari, 2000; Ibáñez et al., 2001; Popa-Lisseanu et al., 2007) are quite different from those characters in temperate Myotis. Other examples of the impact of history—i.e., phylogeny—on energy expenditure include the independent evolution of a commitment to endothermy in birds and mammals, and the evolution of a eutherian form of reproduction in mammals (McNab, 2008). As these cases demonstrate, the impact of a historical event on energy expenditure may be appreciable, if only occasional.

5. Conclusions

The analysis proposed here represents the most complete analysis of the standard energy expenditure of birds yet available, even given the difficulty accounting for the basal rates of individual species. When analyzing the factors responsible for the energy expenditure of birds, or any important component of the life history of a large assembly of species, we are trying to uncover the highly complex set of

factors responsible for that component. The ecological and behavioral factors influencing the BMR of birds and mammals are nearly identical, except as some historical adjustments in both clades were made that influenced energetics, including the evolution of endothermy and an avian form of flight in birds and endothermy and a eutherian form of reproduction in mammals.

These analyses are not easily accomplished. Organic nature is inherently complicated which permits organisms to survive by their opportunistic exploitation of resources, a behavior that leads to biological complexity and diversity. The persistent hope that organic nature is governed by a few simple rules is at best naïve;

there appear to be rules, but they usually consist of a series of conditional clauses. The greatest necessity today is to examine biological diversity, some of which will not persist due to a surplus of people.

Acknowledgements

I thank Harvey Lillywhite, Nathaniel Seavy, David Steadman, Charles Woods, and two anonymous reviewers for their critical evaluations of earlier versions of this article. I also thank Rebecca Kimball for her perspective on the phylogeny of birds.

Appendix A

A Basal rate of metabolism in birds

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climate ^d	Habitat ^e	Torpor? ^f	$Migration^{\rm g}$	Islands?h	Mountains?i	Flightless? ^j	Reference
Struthioniformes												
Struthionidae												
Struthio camelus	92,400	209.66	N	0	TR	G	0	0	0	0	+	Withers 1983
Casuariiformes												
Dromaiidae												
Dromaius	38,900	126.04	N	0	T	G	0	0	0	0	+	Maloney & Dawson 1994
novaehollandiae	30,500	12010 1	••	Ü	•	Ü	Ŭ	· ·	Ŭ	ŭ		maioney a Davison 155 1
Apterygiformes												
Apterygidae												
	1277	14.21	D	I	T	F	0	0	L	0	+	McNab 1996
Apteryx owenii	1377											
Apteryx haastii	2529	19.02	D	I	T	F	0	0	L	0	+	McNab 1996
Apteryx australis	3137	16.60	D	I	T	F	0	0	L	0	+	McNab 1996
Tinamiformes												
Tinamidae												
Nothoprocta perdicaria	458	6.35	D	S	T	G	0	0	0	+	0	Withers et al. 1987
Galliformes												
Odontophoridae												
Callipepla gambelii	126.1	2.72	N	S	T	D	0	0	0	0	0	Weathers 1981
Callipepla californica	137.1	2.76	N	S/L	T	G	0	0	0	0	0	Hudson & Brush 1964
Phasianidae	137.1	2.70	14	JIL	•	G	O	O	O	O	O	riddson & Brusii 1504
Tetraoninae												
	226	0.50	N.I.	r	T		0	0	0		0	I-1 1000
Lagopus leucurus	326	8.50	N	L	T	A	0	0	0	+	0	Johnson 1968
Lagopus mutus	465	9.86	N	L	P	T	0	0	0	+	0	Mortensen & Blix 1986
Lagopus lagopus	658	10.10	N	L	P	T	0	0	0	+	0	Mortensen & Blix 1986
Dendrogapus	1131	17.85	N	L	T	F	0	0	0	+	0	Pekins et al. 1992
obscurus												
Tetrao urogallus	3900	42.92	N	L	T	F	0	0	0	0	0	Kendeigh et al. 1977
Perdicinae												· ·
Coturnix chinensis	44.9	1.32	N	S	TR	G	0	0	0	0	0	Roberts & Baudinette 198
Coturnix pectoralis	95.8	2.29	N	S	T	G	0	0	0	0	0	Roberts & Baudinette 198
Coturnix coturnix	97	3.21	N	S	T	G	0	+	0	0	0	Kendeigh et al. 1977
Coturnix japonica	115	3.52	N	S	T	G	0	+	0	0	0	Prinzinger & Hänssler 198
Alectoris chukar	475	7.06	D?	S	T	G	0	0	0	0	0	Marder & Bernstein 1983
Perdix perdix	501	7.75	N	S/L	T	G	0	0	0	0	0	Kendeigh et al. 1977
Alectoris graeca	633	9.12	N	S	T	G	0	0	0	+	0	Kendeigh et al. 1977
Anseriformes												
Anatidae												
Ansirenae												
Branta bernicula	1253	21.82	N	G	T	W	0	+	0	0	0	Daan et al. 1990
Anser canagicus	2609	32.25	N	G	P	T	0	+	0	0	0	Gavrilov & Dolnik 1985
Chen ^k	2930	27.90	D?	G	P	T	0	+	0	0	0	Boisemena et al. 1992
caerulescens	2330	27.30	D:	G	1	1	U		O	O	O	boiscincila et al. 1992
	2250	20.01	N.I.	_	T	X A 7	0		0	0	0	V - d - d - d - d - d - 1 1077
Anser anser	3250	39.01	N	G	T	W	0	+	0	0	0	Kendeigh et al. 1977
Cygnus olor	8538	112.12	D	AV	T	W	0	+	0	0	0	Bech 1980
Tadorninae												
Hymenolaimus	717.1	11.31	D/N	ΑI	T	W	0	0	L	+	0	McNab 2003
malacorhynchos												
Tadorna variegata	1193.6	12.04	N	G	T	G	0	0	L	0	0	McNab 2003
Anatinae												
Anas crecca	250	6.00	N	AV	T	L	0	+	0	0	0	Prinzinger & Hänssler198
Anas querquedula	289	8.04	N	0	T	W	0	+	0	0	0	Prinzinger & Hänssler 198
Anas nesiotis	371.1	5.94	D/N	AI	T	W	0	0	S	0	+	McNab 2003
Anas aucklandica	373.1	6.75	D/N	AI	T	W	0	0	S	0	+	McNab 2003
Anas gracilis	393.7	11.98	D/N	AV	T	W	0	0	0	0	0	McNab 2003
Lophodytes	413.3	7.03	D/N	V/AI	T	L	0	+	0	0	0	McNab 2003
cucullatus												
Aythya nyroca	440	11.78	N	AV	T	W	0	+	0	0	0	Prinzinger & Hänssler 198
Aix sponsa	448	8.09	N	AV	T	W	0	+	0	0	0	Kendeigh et al. 1977

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climated	Habitate	Torpor?f	Migrationg	Islands?h	Mountains?i	Flightless?	Reference
Anseriformes		(3/ /										
Anatidae												
Anatinae			_						_			
Anas castanea	483.3 488.4	6.86 8.40	D/N	O AI	T T	W L	0	0	O L	0	0	McNab 2003 McNab 2003
Aythya novaeseelandiae	400.4	0.40	D/N	Al	1	L	U	U	L	U	U	IVICINAD 2005
Anas rhynchotis	508.0	9.47	D	AI	T	W	0	0	0	0	0	McNab 2003
Anas chlorotis	528.8	8.35	D/N	AI	T	W	0	0	L	0	0	McNab 2003
Anas clypeata	554	13.96	N	AI	T	W	0	+	0	0	0	Prinzinger & Hänssler 1980
Aythya affinus	561.5	10.33	N	0	T	L	0	+	0	0	0	McNab 2003
Aythya fuligula	574	9.73	N	AV	T	L	0	0	0	0	0	Prinzinger & Hänssler 1980
Aythya collaris	681.5	11.84	N	0	T T	W W	0	+	0	0	0	McNab 2003
Anas acuta Anas penelope	721 723	15.71 10.15	N N	AV AV	T	W	0	+	0	0	0	Prinzinger & Hänssler 1980 Kendeigh et al. 1977
Anas strepera	723 791	22.33	N	AV	T	W	0	+	0	0	0	Prinzinger & Hänssler 1980
Aythya ferina	816	20.94	N	AV	T	W	0	+/O	0	0	0	Prinzinger & Hänssler 1980
Anas platyrhynchos	1020	14.64	N	0	T	W	0	+	0	0	0	Kendeigh et al. 1977
Netta rufina	1237	25.56	N	AV	T	L	0	+	0	0	0	Prinzinger & Hänssler 1980
Somateria mollissima	1660	21.99	D	AI	P	M	0	+	0	0	0	Jenssen et al. 1989
Sphenisciformes												
Spheniscidae Eudyptula minor	1100	11.40	NI	V	T	М	0	0	0	0		Baudinette et al. 1986
Eudyptula minor Eudyptes chrysocome	1100 2330	11.49 21.00	N ?	v AI	P	M M	0	+	0	0	+ +	Gavrilov 1977; Brown 1984
Eudyptes chrysocome Eudyptes	2600	24.92	? N	AI	T	M	0	+	0	0	+	Drent & Stonehouse 1971
pachyrhynchus	2000	2 1,32	.,	711	•	171	Ü		Ü	3		Diene d Stonenouse 13/1
Eudyptes chrysolophus	3870	31.13	?	AI	T	P	0	+	0	0	+	Gavrilov 1977; Brown 1984
Spheniscus humboldti	3870	34.14	N	V	T	M	0	+	0	0	+	Drent & Stonehouse 1971
Pygoscelis adeliae	3970	44.04	D?	AI	P	M	0	+	0	0	+	Kooyman et al. 1976
Megadyptes antipodes	4800	41.45	N	V	T	M	0	0	0	0	+	Drent & Stonehouse 1971
Aptenodytes	11,080	78.67	?	V	P	P	0	0	0	0	+	Gavrilov 1977
patagonicus Aptenodytes forsteri	23,370	154.19	D	V	P	P	0	+	0	0	+	Pinshow et al. 1976
Procellariiformes	23,370	154.19	D	V	P	P	U	т	U	U	т	PHISHOW et al. 1970
Diomedeidae												
Phoebetria fusca	2875	29.79	N	AI	T	P	0	+	0	0	0	Adams & Brown 1984
Diomedea chrysostoma	3753	30.63	N	AI	T	P	0	+	0	0	0	Adams & Brown 1984
Diomedea exulans	8130	73.17	N	AI	T	P	0	+	0	0	0	Brown & Adams 1984
Procellariidae												
Halobaena caerulea	191	6.38	N	AI	T	P	0	0	0	0	0	Brown 1988
Pterodroma mollis	274	6.29	N	AI	T T	P	0	+	0	0	0	Adams & Brown 1984
Pterodroma brevirostris	315	6.38	N	AI	I	P	0	+	0	0	0	Brown & Adams 1984
Puffinus puffinus	367	8.38	N	V	T	M	0	+	0	0	0	Bryant & Furness 1995
Pterodroma	479	9.71	N	ΑI	T	P	0	+	0	0	0	Brown 1988
macroptera												
Fulmarus glacialis	728	13.75	N	AI	P	M	0	+	0	0	0	Bryant & Furness 1995
Procellaria cinerea	1014	18.04	N	AI	T	P	0	+	0	0	0	Brown & Adams 1984
Procellaria	1287	22.71	N	ΑI	T	P	0	+	0	0	0	Brown & Adams 1984
aequinoctialis	4700	40.00	NI		D		0		0	0	0	D 0. A.l 1004
Macronectes giganteus Hydrobatidae	4780	48.08	N	V	P	M	0	+	0	0	0	Brown & Adams 1984
Hydrobatinae												
Oceanodroma furcata	44.6	1.59	N	AI	T	P	0	+	0	0	0	Vleck & Kenagy 1980
Podicipediformes												
Podicipedidae												
Podiceps nigricollis	317	7.71	D/N	AI	T	W	0	+	0	0	0	Ellis & Jehl 2003
Ciconiiformes												
Ardeidae	200.2	2.50			TI ITID	* 4 7					_	EII. 1000
Egretta ^k caerulea Bebulcus ibis	290.3	3.59	D	AI	T/TR	W	0	+	0	0	0	Ellis 1980
Bedulcus ibis Egretta ^k tricolor	299.2 309.0	4.74 6.12	D D	O V	T/TR T/TR	W/O W	0	+	0	0	0	Ellis 1980 Ellis 1980
Egretta thula	314.0	4.89	D	v V/AI	T/TR	W	0	+	0	0	0	Ellis 1980
Pelecaniformes	314.0	4.03	Ь	V / / 11	1/110	**	O		O	O	O	LIII3 1300
Sulidae												
Morus bassanus	2574	44.96	N	V	T	M	0	+	0	0	0	Bryant & Furness 1995
Phalacrocoracidae												·
Phalacrocorax auritus	1330	19.77	N	V	T	M/L	0	+	0	0	0	Hennemann 1983
Phalacrocorax aristotelis	1619	30.79	N	V	T	M	0	0	0	0	0	Bryant & Furness 1995
Anhingidae	1040	11.40	N	V	TD	I /\A/	0	0	0	0	0	Honnomann 1002
Anhinga anhinga Falconiformes	1040	11.49	N	V	TR	L/W	0	0	0	0	0	Hennemann 1983
Falconidae												
Caracarinae												
Daptrius ater	362	4.32	N	0	TR	F	0	0	0	0	0	Wasser 1986

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climate ^d	Habitat ^e	Torpor? ^f	Migration ^g	Islands?h	Mountains?i	Flightless? ^j	Reference
Falconiformes												
Falconidae												
Falconinae	11.0	2.20	N	,	T	6	0	. 10	0	0	0	W100C
Falco sparverius Falco tinnunculus	116 131	2.38 2.79	N N	I V	T T	G G	0	+/O +/O	0	0	0	Wasser 1986 Gavrilov & Dol'nik 1985
Falco subbuteo	208	4.67	N	v I	T	F	0	+/0	0	0	0	Kendeigh et al. 1977
Falco mexicanus	430	6.99	N	V	T	D	0	0	0	0	0	Wasser 1986
Accipitridae	450	0.55	14	•		Ь	O	O	O	O	O	VV033C1 1300
Pandioninae												
Pandion haliaetus	1495	19.88	N	V	T	L/W	0	0	0	0	0	Wasser 1986
Accipitrinae						,						
Accipiter striatus	83	2.52	N	V	T	F	0	+	0	0	0	Wasser 1986
Accipiter nisus	135	3.42	N	V	T	F	0	+	0	0	0	Kendeigh et al. 1977
Ictinia	232	3.29	N	FI	T	F	0	+	0	0	0	Wasser 1986
mississippiensis												
Accipiter cooperi	452	7.66	N	V	T	F	0	+/0	0	0	0	Wasser 1986
Parabuteo unicinctus	572	5.07	N	V	TR	D	0	0	0	0	0	Wasser 1986
Pernis apivorus	652	8.41	N	I	T	F F	0	+	0	0	0	Kendeigh et al. 1977
Buteo lineatus Buteo buteo	658 1012	7.60 13.52	N N	V V	T T	F G	0	0	0	0	0	Wasser 1986
Buteo jamaicensis	1475	11.43	N	V	T	G	0	+	0	0	0	Prinzinger & Hänssler 1980 Wasser 1986
Aquila rapax	2398	16.27	N	V	TR	G	0	0	0	0	0	Wasser 1986
Gruiformes	2330	10.27	14	v	1 IX	ď	U	O	U	O	O	Wassel 1900
Rallidae												
Atlantisia rogersi	39.4	0.81	N	0	T	G	0	0	S	0	+	Ryan et al. 1989
Porzana cinerea	47.9	1.78	D/N	0	TR	W	0	0	0	0	0	McNab & Ellis 2006
Crex crex	96	2.83	N	0	T	G	0	+	0	0	0	Kendeigh et al. 1977
Gallirallus philippensis	171.7	3.51	D/N	0	TR	G	0	0	0	0	0	McNab & Ellis 2006
Gallirallus owstoni	198.8	3.30	D/N	0	TR	F	0	0	S	0	+	McNab & Ellis 2006
Gallinula ventralis	309.2	5.81	D/N	AV	T	W	0	0	0	0	0	McNab & Ellis 2006
Aramides cajanea	374.3	5.55	D/N	0	TR	F	0	0	0	0	0	McNab & Ellis 2006
Fulica atra	412	7.36	N	AV	T	L	0	+/O	0	0	0	Kendeigh et al. 1977
Gallinula tenebrosa	512.4	8.42	D/N	AV	T	W	0	0	0	0	0	McNab & Ellis 2006
Gallirallus australis	813.5	6.58	D/N	0	T	F	0	0	L	0	+	McNab & Ellis 2006
Amaurornis ineptus	856.6	4.83	N D/N	0	TR	F	0	0	0	0	+	McNab & Ellis 2006
Porphyrio porphyrio	919.3	13.31	D/N	AV	TR	W	0	0	0	0	0	McNab & Ellis 2006
Gallinula mortierii	954.4 2758.3	11.47 24.79	D/N D	AV G	T T	G A	0	0	O L	0	+	McNab & Ellis 2006 McNab & Ellis 2006
Porphyrio hochstetteri Turnicidae	2/36.3	24.79	D	G	1	Α	U	U	L	т	т	WICHAD & EIIIS 2000
Turnix suscitator	58.1	1.39	N	S	TR	G	0	0	0	0	0	Prinzinger et al. 1993
Charadriiformes	30.1	1.55	14	3	IK	ď	O	O	O	O	O	Timzinger et al. 1999
Haematopodidae												
Haematopus	554	10.48	N	AI	T	M/L	0	+	0	0	0	Kersten & Piersma 1987
ostralegus						'						
Charadriidae												
Pluvialinae												
Pluvialis apricaria	151	4.47	N	ΑI	P	T	0	+	0	0	0	Daan et al. 1990
Pluvialis squatorola	226	6.41	N	ΑI	P	T	0	+	0	0	0	Kersten & Piersma 1987
Charadriinae												
Charadrius dubius	36	1.50	N	ΑI	T	В	0	+	0	0	0	Kendeigh et al. 1977
Thinocoridae		440		4.4	T /TD							El 0 M . 4000
Thinocorus	55.5	1.12	N	AI	T/TR	D	0	+	0	0	0	Ehlers & Morton 1982
rumicivorus												
Jacanidae	107.0	3.62	N	AI	TR	W	0	0	0	0	0	Wiersma et al. 2007
Jacana jacana Scolopacidae	107.0	3.02	IN	AI	1 K	VV	U	U	U	U	U	Wieisilia et al. 2007
Scolopacinae												
Scolopac minor	156.7	3.85	N	AI	T	F	0	+	0	0	0	Vander Haegen et al. 1994
Scolopax rusticola	430	7.78	N	AI	T	F	0	+	0	0	0	Kendeigh et al. 1977
Arenacinae	130	0		• ••	•	•	Ü		Ü	ŭ	· ·	nenaeign et an 1077
Arenaria interpres	90	3.32	N	AI	P	T/B	0	+	0	0	0	Kersten & Piersma 1987
Calidris canutus	130	3.17	N	ΑI	P	T/B	0	+	0	0	0	Piersma et al. 1995
Tringinae						,						
Tringa ochropus	90	3.32	N	AI	T	F	0	+	0	0	0	Prinzinger & Hä
Limosa lapponica	240	5.47	N	AI	P	T	0	+	0	0	0	Daan et al. 1990
Laridae												
Rhodostethia rosea	155	3.83	N	AI	P	T	0	+	0	0	0	Gavrilov 1996
Rissa tridactyla	305	9.88	N	AI	P	В	0	+	0	0	0	Bryant & Furness 1995
Larus ridibundus	306	6.70	N	AI	T	M/L	0	+	0	0	0	Kendeigh et al. 1977
Larus canus	431	8.10	N	AI	T	M	0	+	0	0	0	Kendeigh et al. 1977
Larus argentatus	924	17.83	N	0	T	M/L	0	+	0	0	0	Bryant & Furness 1995
Stercoraridae					_							
Stercorarius parasiticus Sterocrarius skua	351	8.29	N	V	P	M	0	+	0	0	0	Bryant & Furness 1995
	1159	22.42	N	V	P	M	0	+	0	0	0	Bryant & Furness 1995

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climated	Habitat ^e	Torpor?f	Migration ^g	Islands?h	Mountains?i	Flightless? ^j	Reference
Charadriiformes												
Alcidae												
Alle alle	152.5	7.40	D/N	AI	P	P	0	+	0	0	0	Gabrielsen et al. 1991
Fratercula arctica	329	9.25	N	V	T	M	0	+	0	0	0	Bryant & Furness 1995
Cepphus grille	342.2	10.92	D/N	AI	P	M	0	+	0	0	0	Gabrielsen et al. 1991
Alca torda	589	12.96	N	V/I	T	M	0	+	0	0	0	Bryant & Furness 1995
Uria aalge	771	16.25	N	V	T	M	0	+	0	0	0	Bryant & Furness 1995
Uria lomvia	819	18.25	N	V/I	P	M	0	+	0	0	0	Bryant & Furness 1995
Pteroclidiformes												
Pteroclididae					_				_			
Pterocles orientalis	386.4	7.01	N	S	T	G	0	0	0	0	0	Hinsley et al. 1993
Columbiformes												
Columbidae												
Columbinae												
Oena capensis	36	0.88	N	S	T/TR	G	0	+/O	0	0	0	Schleucher 2001
Geopelia cuneata	39	0.96	N	S	T/TR	G	+	0	0	0	0	Schleucher & Withers 2002
Columbina inca	41.5	0.94	D/N	S	T	F	0	0	0	0	0	MacMillen & Trost 1967
Columbina talpacoti	45.7	1.49	N	S	TR	В	0	0	0	0	0	Wiersma et al. 2007
Geopelia placida	52	1.28	N	S	T/TR	F	0	0	0	0	0	Schleucher & Withers 2002
Gallicolumba beccarii	68.8	1.92	N	F/S	TR	F	0	0	0	+	0	McNab, pers. obs.
Geophaps plumifera	81	1.52	N	S	TR	G	0	0	0	0	0	Withers & Williams 1990
Zenaida macroura	91.4	2.33	N	S	T	G	0	+/O	0	0	0	Hudson & Brush 1964
Geotrygon montana	107.3	2.43	N	F/S	TR	F	0	0	0	0	0	Wiersma et al. 2007
Streptopelia	108	3.05	N	S	TR	F	0	0	0	0	0	Kendeigh et al. 1977
senegalensis												
Chalcophaps indica	124	2.85	N	S	TR	F	0	0	0	0	0	Schleucher & Withers 2002
Leptotila verreauxi	131	3.19	N	S	T	F	0	0	0	0	0	Vleck & Vleck 1979
Streptopelia turtur	154	4.10	N	S	T	F	0	+	0	0	0	Kendeigh et al. 1977
Streptopelia decaocto	170	3.42	N	S	T	В	0	0	0	0	0	Daan et al. 1990
Ocyphaps lophotes	187	3.91	N	S	T/TR	G	0	0	0	0	0	Schleucher & Withers 2002
Phaps elegans	190	4.46	N	S	T	F	0	0	0	0	0	Schleucher & Withers 2002
Geophaps smithii	198	3.14	N	S	TR	F	0	0	0	0	0	Schleucher & Withers 2002
Columba	251.9	4.84	N	F	TR	F	0	0	I	0	0	McNab 2000
leucocephala	231,3	1.01	14	1	1 IX	1	O	O	1	O	O	Wici vab 2000
Phaps histrionica	257	4.67	N	S	T/TR	G	0	0	0	0	0	Schleucher & Withers 2002
•	304	5.50	N	S	T	F	0	0	0	0	0	Schleucher & Withers 2002
Phaps chalcoptera						г В	0	0	0	0	0	
Columba livia	368	5.97	N	S	T/TP							Gavrilov & Dol'nik 1985
Columba leucomela	456	8.77	N	F/S	T/TR	F	0	0	0	0	0	Schleucher & Withers 2002
Columba vitiensis	467.9	5.20	N	F	TR	F	0	0	0	0	0	McNab 2000
Leucosarcia	468.0	6.02	N	F/S	T	F	0	0	0	0	0	McNab 2000
melanoleuca					-	_						
Caloenas nicobarica	613.0	6.53	N	N/F	TR	F	0	0	S	0	0	McNab 2000
Gourinae												
Goura cristata	2313.4	15.36	N	F	TR	F	0	0	0	0	0	McNab 2000
Treroninae												
Ptilinopus	98	1.76	N	F	TR	F	0	0	0	0	0	Schleucher & Withers 2002
melanospila												
Ptilinopus superbus	120.4	2.72	N	F	TR	F	0	0	0	0	0	Schleucher 2002
Ptilinopus perlatus	196.0	3.82	N	F	TR	F	0	0	0	0	0	McNab 2000
Drepanoptila	198	2.97	N	F	TR	F	+	0	I	0	0	Schluecher 2002
holosericea												
Gymnophaps	241.6	3.40	N	F	TR	F	0	0	0	+	0	McNab 2000
albertisii												
Ducula pacifica	333.4	2.86	N	F	TR	F	0	0	S	0	0	McNab 2000
Ducula radiata	333.6	5.06	N	F	TR	F	0	0	0	0	0	McNab 2000
Ducula rufigaster	376.7	4.58	N	F	TR	F	0	0	0	0	0	McNab 2000
Ducula pistrinaria	394.2	3.86	N	F	TR	F	0	0	S	0	0	McNab 2000
Ducula rubricera	418.8	4.91	N	F	TR	F	0	0	0	0	0	McNab 2000
Hemiphaga	435.6	6.78	N	F/L	T	F	0	0	L	0	0	McNab 2000 McNab 2000
novaeseelandiae	155.0	5.70	.,	1/2	•	•	3	,	-	5	,	
Ducula spilorrhoa	453.6	4.94	N	F	TR	F	0	0	S	0	0	McNab 2000
Ducula spilorriou Ducula zoeae	456.2	6.13	N	F	TR	r F	0	0	0	0	0	McNab 2000
			N N	r F	TR	F F	0	0	0		0	
Ducula pinon Psittaciformes	583.8	6.41	IN	Г	1 K	r	U	U	J	0	U	McNab 2000
Psittacidae												
Nestorinae	200.2	7.74	D	E/I	т	Г	0	0	*	0	0	M-N-1-0 C-1' 1 40C=
Nestor meridionalis	369.3	7.71	D D/N	F/I	T	F	0	0	L	0	0	McNab & Salisbury 1995
Nestor notabilis	836.9	15.98	D/N	F/L	T	A	0	0	L	+	0	McNab & Salisbury 1995
Cacatuinae												
Nymphicus	85.6	2.48	N	S	T/TR	F	0	0	0	0	0	Kendeigh et al. 1997
hollandicus												
Cacatua roseicapilla	268.7	4.50	N	S	T/TR	F/G	0	0	0	0	0	Williams et al. 1991
Calyptorhynchus	535.3	10.68	N	N	TR	F	0	0	0	0	0	Williams et al. 1991
banksii												
Cacatua tenuirostris	549.9	11.40	N	S	T	F/G	0	0	0	0	0	Williams et al. 1991
				S	T/TR	F	0	0	0	0	0	

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food	Climated	Habitat ^e	Torpor?f	Migration ^g	Islands?h	Mountains?i	Flightless? ^j	Reference
Psittaciformes												
Psittacidae												
Loriinae	1271	4.20	NI	D	TD	г	0	0	0	0	0	W/:II:
Trichoglossus haematodous	137.1	4.30	N	P	TR	F	0	0	0	0	0	Williams et al. 1991
Psittacinae												
Loriculus galgulus	27	1.86	N	F	TR	F	0	0	0	0	0	Prinzinger & Hänssler 1980
Melopsittacus undulatus		1.33	N	S	T/TR	F	0	0	0	0	0	Weathers & Schoenbaechler
metopolitueus unuutus	33.7	1.55	• •	J	-,	•	Ŭ	Ŭ	ŭ	· ·		1976
Neopsephotus bourkii	40	1.94	N	S	T	F/G	0	0	0	0	0	Prinzinger & Hänssler 1980
Neophema pulchella	40	2.09	N	F/S	T	F/G	0	0	0	0	0	Prinzinger & Hänssler 1980
Agapornis roseicollis	48.1	1.67	N	S	T	F	0	0	0	0	0	Kendeigh et al. 1977
Neophema petrophila	48.4	2.28	N	S	T	F/G	0	0	0	0	0	Williams et al. 1991
Cyanorhamphus	52.9	1.77	D/N	S/L	T	F	0	0	L	0	0	McNab & Salisbury 1995
auriceps												
Cyanorhamphus	56.1	2.24	D/N	F/L	T	F	0	0	L	0	0	McNab & Salisbury 1995
novaezelandiae						7/0						
Agapornis fischeri	56.7	1.90	N	S	T	F/G	0	0	0	0	0	Gavrilov & Dol'nik 1985
Brotogeris jugularis	63.5	2.07	N	F/S	TR	G	0	0	0	0	0	Wiersma et al. 2007
Myiopsitta monachus	80.4 129.4	1.89 3.89	N D/N	S L	T T	F/G G	0	0	0 S	0	0	Weathers & Caccamise 1978
Cyanorhamphus unicolor	129.4	3.69	D/N	L	1	G	U	U	3	U	U	McNab & Salisbury 1995
Barnardius zonarius	131.8	2.85	N	F/S	T	F	0	0	0	0	0	Williams et al. 1991
Cuculiformes	131.0	2.03	14	1/3	1	1	O	U	U	O	O	Williams Ct al. 1991
Opisthocomidae												
Opisthocomus hoazin	598	5.76	D/N	L	TR	F	0	0	0	0	0	Grajal 1991
Cuculidae			-,	_		-	_	_	_		_	
Cuculinae												
Cuculus canorus	111.6	3.02	N	I	T	F	0	+	0	0	0	Kendeigh et al. 1977
Eudynamys scolopacea	188	5.92	N	F	T/TR	F	0	+/0	0	0	0	Prinzinger & Hänssler 1980
Centropinae												· ·
Centropus senegalensis	175	5.43	N	I	TR	F/G	0	0	0	0	0	Prinzinger & Hänssler 1980
Neomorphinae												
Geococcyx californicus	294.6	4.55	N	I/L	T	D	0	0	0	0	0	Ohmart & Lasiewski 1971
Strigiformes												
Tytonidae			_		en lenna							-1 1 100-
Tyto alba	533.2	6.46	D	V	T/TR	G	0	0	0	0	0	Edwards 1987
Tyto tenebricosa	770.0	10.36	D	V	TR	F	0	0	0	0	0	McNab, pers. obs.
Strigidae												
Striginae Otus scops	78.9	1.70	D	I	T	F	0	+	0	0	0	Gavrilov & Dol'nik 1985
Otus trichopsis	99.8	1.50	D	I	TR	F	0	0	0	0	0	Ligon 1969
Otus asio	165.5	2.16	D	V/I	T	F	0	0	0	0	0	Ligon 1969
Strix occidentalis	571	9.63	D	V	T	F	0	0	0	0	0	Ganey et al. 1993
Bubo virginianus	1000	15.62	D	V	T/TR	F	0	0	0	0	0	Ganey et al. 1993
Nyctea scandiaca	2026	11.84	D	V	P	T	0	+	0	0	0	Gessaman 1972
Surniinae												
Micrathene whitneyi	45	0.91	D	I	T	D	0	+	0	0	0	Ligon 1968
Glaucidium gnoma	52.0	1.67	D	I	T/TR	F	0	0	0	+	0	Ligon 1969
Aegolius acadicus	118.1	2.25	D	V	T	F	0	+	0	0	0	Ligon 1969
Aegolius funereus	130.0	4.07	D	V	T	F	0	0	0	+	0	Hohtola et al. 1994
Athene cunicularia	146.7	2.80	D	V/I	T	G	0	+/0	0	0	0	Coulombe 1970
Ninox theomacha	151.4	3.77	D	I	TR	F	0	0	0	0	0	McNab, pers. obs.
Uroglaux dimorpha	245.3	5.27	D	V/I	TR	F	0	0	0	0	0	McNab, pers. obs.
Asioninae	252	2.42	D/N	17	т	FIC	0		0	0	0	Wiin and to 1004
Asio otus Caprimulgiformes	252	3.43	D/N	V	T	F/G	0	+/O	0	0	U	Wijnandts 1984
Podargidae												
Podarginae												
Podargus ocellatus	145	2.04	D	FI	TR	F	?	0	0	0	0	Lasiewski et al. 1970
Podargus papuensis	314.6	3.85	D	FI	TR	F	?	0	0	0	0	McNab & Bonaccorso 1995
Podargus strigoides	380.3	3.72	D	FI	T/TR	F	+	0	0	0	0	Bech & Nichol 1999
Caprimulgidae					,							
Chordeilinae												
Chordeilus minor	72	1.59	D	FI	T	G	+	+	0	0	0	Lasiewski & Dawson 1964
Eurostopodinae												
Eurostopodus argus	88	1.47	D	FI	T/TR	F/G	?	0	0	0	0	Dawson & Fisher 1969
Eurostopodus mystacalis	162	1.73	D	FI	T/TR	F	?	+/O	0	0	0	McNab & Bonaccorso 1995
Caprimulginae												
Phalaenoptilus nuttalli	40	0.64	D	FI	T	D	HIB	+/0	0	0	0	Bartholomew et al. 1962
Caprimulgus macrurus	68.6	1.12	D	FI	TR	F	?	0	0	0	0	McNab & Bonaccorso 1995
Apodiformes												
Apodidae	6.0	0.20	N	Ei	TD	Е		0	0	0	0	McNah 9. Paragas 1005
Collocalia esculenta	6.8	0.29	N N	FI	TR	F F	+ ?	0	0	0	0	McNab & Bonaccorso 1995
Collocalia vanikorensis Apus apus	11.6 44.9	0.43 1.57	N N	FI FI	TR T	r D/G	? +	+	0	0	0	McNab & Bonaccorso 1995 Kendeigh et al. 1977
приз ириз	77.3	1.37	1.4	11	1	טום			U	9	U	Kenucign et al. 19//

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food	Climated	Habitat ⁶	Torpor?	Migration ^g	Islands?h	Mountains?i	Flightless? ^j	Reference
Apodiformes												
Trochilidae Sephanoides sephanoides	5.7	0.37	N	P	T	F	(+)	+	0	0	0	Lopez-Calleja & Bozinovic
0	0.4	0.00			TIP.				0	0	0	1995
Oreotrochilus estella	8.4	0.69	N N	P P	TR	A C/A	+	0	0	0	0	Carpenter 1976
Patagona gigas Coliiformes	19.1	1.03	IN	Р	TR	G/A	+	+/O	U	+	U	Lasiewski et al. 1967
Collidae												
Colius colius	35.1	0.64	N	F	T	F	+	0	0	0	0	McKechnie & Lovegrove 2001b
Colius striatus	51.1	0.85	N	F	TR	F	+	0	0	0	0	McKechnie & Lovegrove 2001a
Urocolius macrourus	51.3	0.86	N	F	TR	F	+	0	0	0	0	Prinzinger 1988
Colius castanotus	69	1.66	N	F	TR	F	+	0	0	0	0	Prinzinger et al. 1981
Coraciiformes Alcedinidae												Ü
Alcedininae												
Alcedo atthis	34.3	1.36	N	V	T/TR	W	+/O	0	0	0	0	Kendeigh et al. 1977
Dacelo novaeguineae	336	4.02	N	V/I	T/TR	G	0	0	0	0	0	Buttemer et al. 2003
Cerylinae												
Chloroceryle aenea	11.8	0.63	N	V/I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Todidae												
Todus mexicanus	6.3	0.41	N	I	TR	F	+	0	I	0	0	Merola-Zwartjes & Ligon 2000
Momotidae												
Momotus momota	102.4	1.77	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Meropidae												
Merops viridis	33.8	1.07	N	I	TR	G	0	0	0	0	0	Bryant et al. 1984
Upupidae												
Upupa epops	67.0	1.99	N	I	T/TR	G	0	+/O	0	0	0	Prinzinger & Hänssler 1980
Phoeniculidae												
Phoeniculus purpureus Bucerotidae	74.1	1.25	N	I	TR	G	0	0	0	0	0	Boix-Hinzen & Lovegrove 1998
Rhyticeros plicatus	1781.6	16.33	N	F	TR	F	0	0	0	0	0	McNab 2001
Gabuliformes	1,0110	10.55	.,	•	•••	•	Ü	Ü	Ŭ	· ·	Ü	
Bucconidae												
Notharchus	43.2	1.14	N	I	TR	G	0	0	0	0	0	Wiersma et al. 2007
macrorhynchos												
Piciformes												
Ramphastidae												
Ramphastinae												
Aulacorhynchus	131.7	2.44	N	F/I	TR	F	0	0	0	0	0	McNab 2001
sulcatus												
Baillonius bailloni	133.0	2.53	N	F	TR	F	0	0	0	0	0	McNab 2001
Aulacorhynchus	174.7	2.99	N	F/I	TR	F	0	0	0	0	0	McNab 2001
prasinus												
Pteroglossus aracari	200.7	3.20	N	F/I	TR	F	0	0	0	0	0	McNab 2001
Ramphastos dicolorus	328.9	4.55	N	F/V	TR	F	0	0	0	0	0	McNab 2001
Ramphastos tucanus	420.3	6.15	N	F/V	TR	F	0	0	0	0	0	McNab 2001
Ramphastos toco	582.0	8.72	N	F/V	TR	F	0	0	0	0	0	McNab 2001
Lybiinae												
Trachyphonus	36.6	0.79	N	0	TR	G	0	0	0	0	0	McNab 2001
darnaudii												
Picidae												
Jygninae												
Jynx toquilla	31.8	1.29	N	I	T	F	0	+	0	0	0	Kendeigh et al. 1977
Picinae												
Picoides pubescens	23.3	1.19	N	I	T	F	0	+	0	0	0	Liknes & Swanson 1996
Melanerpes rubricapillus	48.7	1.93	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Celeus loricatus	83.1	2.47	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Dendrocopus major	98	3.22	N	I	T	F	0	0	0	0	0	Kendeigh et al. 1977
Passeriformes												
Pittidae												
Pitta versicolor	83.1	2.04	D/N	I	T/TR	F	0	+	0	0	0	McNab pers obs
Pipridae						_				_		
Lepidothrix coronata	9.2	0.54	N	F/I	TR	F	?	0	0	0	0	Wiersma et al. 2007
Pipra mentalis	12.3	0.70	N	F/I	TR	F	+	0	0	0	0	Bartholomew et al. 1983
Manacus vitellinus	15.5	0.84	N	F/I	TR	F	+	0	0	0	0	Bartholomew et al. 1983
Chiroxiphia lanceolata	18.4	1.22		F	TR	F	?	0	0	0	0	Wiersma et al. 2007
Cotingidae	41.0	2.00	N	1.10	T		0	. 10	0	0	0	Beer de et 1 2000
Phytotoma rara	41.6	2.06	N	L/G	T	G	0	+/O	0	0	0	Rezende et al. 2001
Tyrannidae												
Elaeniinae	7.0	0.01	N	,	TD	D	0	0	0	0	0	W
Todirostrum cinereum	7.3	0.61	N	I	TR	В	0	0	0	0	0	Wiersma et al. 2007
Mionectes oleagineus	10.3	0.59	N	F	TR	F	0	0	0	0	0	Wiersma et al. 2007
Camptostoma obsoletum	12.5	0.95	N N	I	TR	В	0	0	0	0	0	Wiersma et al. 2007
Cnipodectes subbrunneus	20.5	0.99	N	I	TR	F	0	0	0		0	Wiersma et al. 2007
Rhynchocyclus olivaceus	21.0	1.08	N	I	TR	F	0	0	U	0	0	Wiersma et al. 2007

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food	Climated	Habitat ^e	Torpor?	f Migration ^g	Islands?h	Mountains?i	Flightless?j	Reference
Tyrannidae	(0)	(3) -)										
Fluvicolinae												
Empidonax virescens	12.3	0.64	N	FI	T	F	0	+	0	0	0	Yarbrough 1971
Contopus virens	13.9	0.93	N	FI	T	F	0	+	0	0	0	Yarbrough 1971
Sayornis phoebe	21.6	1.24	N	FI	T	F	0	+	0	0	0	Yarbrough 1971
Tyranninae					_	_						
Myiarchus crinitus	33.9	1.38	N	FI	T	F	0	+	0	0	0	Yarbrough 1971
Tyrannus tyrannus	35.7	1.57	N	FI FI	T TR	G	0 0	+	0	0	0	Yarbrough 1971
Tyrannus melancholicus Myiodynastes maculatus	38.0	1.31 2.12	N N	FI	TR	G F	0	+/O +/O	0	0	0	Wiersma et al. 2007 Wiersma et al. 2007
Furnariidae	41.0	2.12	14	11	1 K	1	U	1,0	U	O	U	Wicisilia Ct al. 2007
Xenops minutus	9.9	0.82	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Dendrocolaptidae												
Glyphorynchus spirurus	13.5	0.72	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Dendrocincla fuliginosa	39.0	1.77	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Xiphorhynchus guttatus	45.2	1.61	N	I	TR	F	0	0	0	0	0	Vleck & Vleck 1979
Thamnophilidae												
Myrmotherula axillaris	9.6	0.78	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Cercomacra tyrannina	15.4	0.68	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Hylophylax naevioides	16.1	0.86	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
	20.5	1.01	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Thamnophilus punctatus Thamnophilus doliatus	26.2	1.24 1.03	N N	I I	TR TR	F F	0 0	0	0	0	0	Vleck & Vleck 1979 Wiersma et al. 2007
Mymeciza longipes	27.4	1.03	N	I	TR	r F	0	0	0	0	0	Wiesma et al. 2007
Gymnopithys bicolor	27.4	1.17	N N	I	TR	r F	0	0	0	0	0	Wiesma et al. 2007
Myrmeciza exsul	28.3	1.04	N	I	TR	F	0	0	0	0	0	Wiesma et al. 2007
Meliphagidae	20.3					•	Ü		ŭ .	-		
Lichmera indistincta	10.1	0.76	N	P/I	T/TR	F	0	0	0	0	0	Vitali et al. 1999
Melithreptus lunatus	14.3	0.90	N	ľ	T [']	F	0	0	0	0	0	Vitali et al. 1999
Phylidonyris melanops	18.8	1.05	N	P/I	T	0	0	0	0	0	0	Vitali et al. 1999
Ptiloprora guisei	20.7	1.05	N	F/I	TR	F	0	0	0	+	0	McNab, pers. obs.
Lichenostomus virescens	(25)	1.07	N	P/I	T/TR	D	0	0	0	0	0	Collins et al. 1980
Melipotes fumigatus	57.1	2.44	N	F	TR	F	0	0	0	+	0	McNab, pers. obs.
Melidectes rufocrissalis	62.8	2.80	N	P/I	TR	В	0	0	0	+	0	McNab, pers. obs.
Philemon buceroides	140.5	5.06	N	0	TR	F	0	0	0	0	0	Bonaccorso &
			_		_	_				_		McNab pers. obs.
Prosthemadera	144.2	3.98	D	F/I	T	F	0	0	L	0	0	McNab, pers.obs.
novaeseelandiae												
Pardalotidae	0.0	0.70	NI	T	TD	Г	0	0	0		0	MaNah mana aha
Sericornis perspicillatus	8.8 10.4	0.78 0.66	N N	I I	TR TR	F F	0 0	0	0	+	0	McNab, pers. obs.
Sericornis papuensis Sericornis frontalis	11.0	0.66`	N	I	T/TR	r B	0	0	0	0	0	McNab, pers. obs. Ambrose &
Sericornis frontaiis	11.0	0.00	IN	1	1/110	ь	U	U	U	U	U	Bradshaw 1988
Crateroscelis nigrorufa	14.6	0.74	N	I	TR	F	0	0	0	+	0	McNab, pers. obs.
Sericornis nouhuysi	16.6	1.01	N	Ī	TR	F	0	0	0	+	0	McNab, pers. obs.
Crateroscelis robusta	17.3	0.91	N	I	TR	F	0	0	0	+	0	McNab, pers. obs.
Cinclosomatidae												•
Ifrita kowaldi	28.9	1.13	N	I	TR	F	0	0	0	+	0	McNab, pers. obs.
Rhipiduridae												
Rhipidura albolimbata	9.7	0.59	N	FI	TR	F	0	0	0	+	0	McNab, pers. obs.
Rhipidura atra	11.0	1.11	N	FI	TR	F	0	0	0	+	0	McNab, pers. obs.
Monarchidae												
Macheirhamphus	9.7	0.83	N	I	TR	F	0	0	0	+	0	McNab, pers. obs.
nigripectes	17.5	1.01	N		TD	г	0	0	0		0	NA-NI-L 1
Monarchus axillaris	17.5	1.81	N	I	TR	F	0	0	0	+	0	McNab, pers. obs.
Petroicidae	12.5	111	N	EI	TD	Е	0	0	0		0	McNab, pers. obs.
Microeca papuanus	12.5	1.11	N	FI I	TR TR	F F	0 0	0	0	+	0	
Peneothello sigillatus Peneothello cyanus	21.6 23.8	1.12 1.26	N N	I	TR	r F	0	0	0	+	0	McNab, pers. obs. McNab, pers. obs.
Poecilodryas albonotata	36.4	1.62	N	FI	TR	F	0	0	0	+	0	McNab, pers. obs
Pachycephalidae	30.4	1.02	11	11	TK.	1	O	O	O	•	O	wicivab, pers. obs
Eulacestoma nigropectus	19 9	1.24	N	I	TR	F	0	0	0	+	0	McNab, pers. obs.
Pachycephala schlegelii	22.6	1.00	N	F/I	TR	F	0	0	0	+	0	McNab, pers. obs.
Pachycephala soror	23.3	1.31	N	I	TR	F	0	0	0	+	0	McNab, pers. obs.
Pachycephala rufinucha	38.6	1.50	N	F/I	TR	F	0	0	0	+	0	McNab, pers. obs.
Pitohui nigrescens	70.5	2.27	N	F/I	TR	F	0	0	0	+	0	McNab, pers. obs.
Melanocharitidae												
Toxorhamphus poliopterus	13.2	0.69	N	P/I	TR	F	0	0	0	+	0	McNab, pers. obs.
Melanocharis versteri	13.6	0.88	N	F/I	TR	F	0	0	0	+	0	McNab, pers. obs.
Oreocharis arfaki	22.3	1.16	N	F	TR	F	0	0	0	+	0	McNab, pers. obs.
Paramythia montium	40.3	1.50	N	F	TR	F	0	0	0	+	0	McNab, pers. obs.
Laniidae												
Lanius collurio	27.0	1.38	N	V/I	T	0	0	+	0	0	0	Kendeigh et al. 1977
Lanius excubitor	72.4	3.68	N	V/I	T	0	0	+/O	0	0	0	Kendeigh et al. 1977
Oriolidae	646	224			m		0		0	0	0	W 111
Oriolus oriolus	64.9	2.34	N	I	T	F	0	+	0	0	0	Kendeigh et al. 1977

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climated	Habitate	Torpor?f	Migration ^g	Islands?h	Mountains?i	Flightless? ^j	Reference
Tyrannidae		(3) /					•					
Corvidae												
Cyanocitta cristata	80.8	3.00	N	0	T	0	0	0	0	0	0	Misch 1960
Nucifraga caryocatactes	147.0	4.85	N	0	T	F	0	0	0	+	0	Kendeigh et al. 1977
Pica nuttalli	151.9	5.28	N	0	T	0	0	0	0	0	0	Hayworth & Weathers 1984
Garrulus glandarius	153.0	4.99	N	0	T	F	0	0	0	0	0	Kendeigh et al. 1977
Pica pica	158.9	4.31	N	0	T	0	0	0	0	0	0	Hayworth & Weathers 1984
Corvus monedula	188	6.19	N	0	T	0	0	0	0	0	0	Daan et al. 1990
Pyrrhocorax graculus	206.4	6.17	N	0	T	0	0	0	0	+	0	Kendeigh et al. 1977
Corvus frugilegus	390.0	9.42	N	0	T	F/O	0	+/0	0	0	0	Kendeigh et al. 1977
Corvus corone	518.0	11.93	N	0	T	0	0	0	0	0	0	Kendeigh et al. 1977
Corvus ruficollis	660.0	12.23	N	V/I	T	D	0	0	0	0	0	Kendeigh et al. 1977
Corvus corax Artamidae	1203.0	19.80	N	0	T	0	0	0	0	0	0	Kendeigh et al. 1977
Artamus maximus	60.0	1.99	N	FI	TR	0	0	0	0	+	0	McNab, pers. obs.
Paradisaeidae Cnemophilinae												
Cnemophilus Ioriae	78.1	2.38	D/N+	F	TR	F	0	0	0	+	0	McNab 2005
Cnemophilus macgregori	89.0	2.68	N N	F	TR	F	0	0	0	+	0	McNab, pers. obs.
Paradisaeinae	00.0	2.00		•	•••	•	Ŭ	ŭ	Ü		· ·	meras, pers. obs.
Cicinnurus regius	54.0	2.10	N	F/I	TR	F	0	0	0	0	0	McNab 2005
Lophorina superba	74.6	2.60	D/N	F/I	TR	F	0	0	0	0	0	McNab 2005
Diphyllodes ^k magnificus	82.3	2.84	N	F/I	TR	F	0	0	0	0	0	McNab 2005
Parotia lawesi	144.9	4.13	N	F	TR	F	0	0	0	0	0	McNab 2005
Astrapia stephaniae	148.2	5.80	D/N	F/I	TR	F	0	0	0	+	0	McNab 2005
Paradisaea rudolphi	156.1	5.48	N	F/I	TR	F	0	0	0	0	0	McNab 2005
Parotia wahnesi	164.2	4.64	N	F	TR	F	0	0	0	0	0	McNab 2005
Phonygammus ^k keraudrenii	170.7	4.31	N	F	TR	F	0	0	0	0	0	McNab 2005
Manucodia chalybata	177.2	4.94	N	F	TR	F	0	0	0	0	0	McNab 2005
Ptiloris magnificus	177.2	5.40	D/N	F/I	TR	F	0	0	0	0	0	McNab 2005 McNab 2005
Epimachus meyeri	202.7	6.63	D/N D/N	F/I	TR	F	0	0	0	+	0	McNab 2005 McNab 2005
Paradisaea raggiana	215.7	6.75	D/N	F/I	TR	F	0	0	0	0	0	McNab 2005
Bombycillidae	213.7	0.75	DJIN	1/1	IK	1	U	O	U	O	O	WICNAD 2003
Bombycillinae												
Bombycilla garrulus	72.5	3.43	N	F/I	T	F	0	+	0	0	0	Kendeigh et al. 1977
Paridae	12.3	5,45	14	1/1	1	1	O	•	O	O	O	Kendergii et al. 1377
Parus caeruleus	9.6	0.60	N	I/S	T	F	0	+/O	0	0	0	Lindström & Kvist 1995
Poecile atricapillus	10.3	0.91	N	I/S	T	F/O	0	Ó	0	0	0	Rising & Hudson 1974
Parus ater	10.8	0.85	N	I/S	T	F	0	+/O	0	0	0	Kendeigh et al. 1977
Parus montanus	11.6	0.99	N	I/S	T	F	0	Ó	0	0	0	Reinertsen & Haftorn 1986
Parus major	16.5	1.26	N	I/S	T	F	+	+/O	0	0	0	Reinertsen & Haftorn 1986
Hirundinidae				•				·				
Tachycineta albilinea	11.7	0.90	N	FI	TR	0	0	0	0	0	0	Wiersma et al. 2007
Stegidopteryx ruficollis	11.9	0.57	N	FI	TR	0	0	0	0	0	0	Wiersma et al. 2007
Riparia riparia	13.6	0.84	N	FI	T	0	0	+	0	0	0	Kendeigh et al. 1977
Hirundo tahitica	14.1	0.64	N	FI	TR	0	0	0	0	0	0	Bryant et al. 1984
Tachycineta bicolor	16.4	1.03	N	FI	TR	0	0	+	0	0	0	Wiersma et al. 2007
Delichon urbica	18.0	0.46	N	FI	T	0	+	+	0	0	0	Prinzinger & Hänssler 1980
Hirundo rustica	18.4	1.08	N	FI	T	0	+	+	0	0	0	Gavrilov & Dol'nik 1985
Progne chalybea	34.9	1.68	N	FI	TR	0	0	+/O	0	0	0	Wiersma et al. 2007
Aegithalidae								•				
Psaltriparus minimus	5.5	0.46	N	I/S	T	F/O	0	0	0	0	0	Chaplin 1982
Aegithalos caudatus	8.9	0.72	N	Í	T	F	0	+/O	0	0	0	Gavrilov & Dol'nik 1985
Alaudidae												
Eremalauda dunni	20.6	1.00	N	I/S	TR	В	0	0	0	0	0	Tieleman et al. 2002
Lullula arborea	25.5	2.06	N	Í	T	В	0	+/O	0	0	0	Tieleman et al. 2002
Eremophila alpestris	26.0	1.19	N	I	T	B/G	0	+/0	0	0	0	Trost 1972
Certhilauda	27.3	1.50	N	I	T	D	0	Ó	0	0	0	Williams 1999
erythrochlamys												
Alauda arvensis	31.7	2.60	N	I/S	T	G	0	+	0	0	0	Tieleman et al. 2002
Alaemon alaudipes	37.7	1.54	N	Í	T	D	0	0	0	0	0	Tieleman et al. 2002
Pycnonotidae												
Phyllastrephus hypochloris	18.9	0.95	N	I	TR	F	0	0	0	+	0	Seavy & McNab 2007
Andropodus curvirostris	23.0	1.06	N	F	TR	F	0	0	0	0	0	Seavy & McNab 2007
Andropodus virens	24.2	1.19	N	F	TR	F	0	0	0	0	0	Seavy & McNab 2007
Andropodus latirostris	26.6	1.30	N	F	TR	F	0	0	0	0	0	Seavy & McNab 2007
Pycnonotus barbatus	40.3	1.72	N	F	TR	F	0	0	0	0	0	Seavy & McNab 2007
Sylviidae												J
Acrocephalinae												
Acrocephalus	10.8	0.73	N	I	T	В	0	+	0	0	0	Kendeigh et al. 1977
palustris												J
Acrocephalus	11.5	0.78	N	I	T	В	0	+	0	0	0	Kendeigh et al. 1977
schoenobaenus												
Hippolais icterina	12.5	1.69	N	I	T	F	0	+	0	0	0	Kendeigh et al. 1977

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climated	Habitate	Torpor?f	Migrationg	Islands?h	Mountains?i	Flightless? ^j	Reference
Sylviidae												
Phylloscopinae												
Phylloscopus collybita	8.2	0.59	N	I	T	F	0	+/O	0	0	0	Kendeigh et al. 1977
Phylloscopus sibilatrix	9.2	0.63	N	I	T	F	0	+	0	0	0	Kendeigh et al. 1977
Phylloscopus trochilus	10.7	0.75	N	I	T	В	0	+	0	0	0	Kendeigh et al. 1977
Sylviinae	10.0	0.72	N	ī	т	D	0		0	0	0	Vandainh at al 1077
Sylvia curruca Sylvia nisoria	10.6 21.3	0.72 1.38	N N	I Ĭ	T T	B B	0	+	0	0	0	Kendeigh et al. 1977
Sylvia atricapilla	21.3	1.50	N N	I Ĭ	T	Б F	0	+ +/O	0	0	0	Kendeigh et al. 1977 Kendeigh et al. 1977
Sylvia diricapilia Svlvia borin	24.8	1.50	N	I	T	F	0	+	0	0	0	Kendeigh et al. 1977 Kendeigh et al. 1977
Zosteropidae	24.0	1.50	IN	1	1	1	O	•	O	O	U	Kendelgii et al. 1577
Zosterops lateralis	11.8	0.58	N	0	T/TR	В	0	0	0	0	0	Maddocks & Geiser 199
Regulidae				_	-,	_	_	_	_		_	
Regulus regulus	5.5	0.66	N	I	T	F	0	+/O	0	0	0	Kendeigh et al. 1977
Troglodytidae								,				
Troglodytes	8.9	0.60	N	I	T	F	0	+/O	0	0	0	Lindström & Kvist 1995
troglodytes												
Troglodytes aedon	10.2	0.75	N	I	T	0	0	+	0	0	0	Wiersma et al. 2007
Troglodytes musculus	13.3	0.76	N	I	TR	0	0	0	0	0	0	Wiersma et al. 2007
Thryothorus	14.9	1.29	N	I	T	F	0	0	0	0	0	Eberhardt 1994
ludovicianus												
Thryothorus leucotis	18.0	0.76	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Thryothorus rufalbus	22.6	1.07	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Thryothorus	27.2	1.12	N	I	TR	F	0	0	0	0	0	Wiersma et al. 2007
fasciatoventris												
Sittidae												
Sitta carolinesis	18.3	1.04	N	I/S	T	F	0	0	0	0	0	Liknes & Swanson 1996
Sturnidae												
Sturnus vulgaris	75.0	3.16	N	0	T	0	0	0	0	0	0	Kendeigh et al. 1977
Turdidae												
Myiadestinae												
Sialia mexicana	27.5	1.52	N	F/I	T	F	0	+/O	0	0	0	Mock 1991
Turdinae												
Turdus iliacus	58.0	2.60	N	F/I	T	F/O	0	+	0	0	0	Kendeigh et al. 1977
Turdus migratorius	62.4	2.74	N	F/I	T	F/B	0	+/0	0	0	0	Wiermsa et al. 2007
Turdus philomelos	62.8	2.61	N	F/I	T	F	0	+/O	0	0	0	Gavrilov & Dol'nik 1985
Turdus poliocephalus	66.1	2.56	N	F/I	TR	F/O	0	0	0	+	0	McNab, pers. ob.
Turdus grayi	77.9	2.44	N	F/I	TR	F/O	0	0	0	0	0	Wiersma et al. 2007
Turdus merula	82.6	3.34	N	I	T	F	0	+/0	0	0	0	Kendeigh et al. 1977
Turdus viscivorus	108.2	3.97	N	F/I	T	F	0	+/O	0	0	0	Kendeigh et al. 1977
Saxicoliinae												
Phoenicurus	13.0	0.84	N	F/I	T	F	0	+	0	0	0	Kendeigh et al. 1977
phoenicurus					_				_			
Phoenicurus ochruros	13.8	0.87	N	F/I	T	0	0	+/O	0	0	0	Kendeigh et al. 1977
Saxicola rubetra	14.3	0.87	N	I	T	0	0	+	0	0	0	Kendeigh et al. 1977
Tarsiger cyanurus	14.8	0.85	N	I	T	F	0	+	0	+	0	Gavrilov & Dol'nik 1985
Saxicola torquata	16.5	0.92	N	I E'	TR	D	0	+/0	0	0	0	Klaassen 1995
Erithacus rubecula	17.6	1.01	N	F/I	T	F	0	+/0	0	0	0	Kendeigh et al. 1977
Luscinia svecica	20.8	1.29	N	I	T	F/O	0	+	0	+	0	Kendeigh et al. 1977
Mimidae	442	2.44	N	0	т	D	0	0	0	0	0	W
Mimus polyglottus	44.2	2.44	N	0	T	В	0	0	0	0	0	Wiersma et al. 2007
Mimus gilvus	68.9	2.66	N	0	TR	В	0	0	0	0	0	Wiersma et al. 2007
Muscicapidae Ficedula hypoleuca	11.7	0.84	N	I	T	F	0	+	0	0	0	Kendeigh et al. 1977
Muscicapa striata	14.4	0.89	N	I I	T	0	0	+	0	0	0	Kendeigh et al. 1977
	14.4	0.89	IN	1	1	U	U	+	U	U	U	Kendeign et al. 1977
Nectariniidae	5.2	0.49	N	C	TD	Б	0	0	0	0	0	Dringinger et al. 1000
Aethopyga christinae	5.2	0.48	N	S D/I	TR	F	0	0	0	0	0	Prinzinger et al. 1989
Cinnyris ^k minimus	5.5	0.42	N N	P/I	TR	F	0	0	0	0	0	Seavy 2006
Cinnyris ^k bifiscatus Cinnyris ^k reichenowi ^k	6.2	0.33	N N	P/I	TR	B F	0	+/0	0	0	0	Prinzinger et al. 1989
•	6.7	0.51	N N	P/I	TR	В	0	+/0	0	0	0	Seavy 2006
Cinnyris ^k chloropygius	6.8	0.50	N N	P/I	TR		0	+/0				Seavy 2006
Aethopyga siparaja	6.8	0.53	N	P/I	TR	F	0	+/0	0	0	0	Prinzinger et al. 1989
Cinnyris ^k venustus Hedydipna ^k collaris	7.1	0.50	N N	P/I	TR	F	0	+/0	0	+	0	Prinzinger et al. 1989
Hedydipna ^k collaris Cyanomitra ^k veroxii	8.3	0.61	N	I	TR	F	0	0	0	0	0	Prinzinger et al. 1989
	8.4	0.48	N N	I D/I	TR	F E/O	0	0	0	0	0	Prinzinger et al. 1989
Cinnyris ^k cupreus	9.0	0.59	N	P/I	TR	F/O	0	+/0	0	0	0	Seavy 2006
Chalcomitrak adelberti	9.5	0.63	N	P/I	TR	F	0	0	0	0	0	Prinzinger et al. 1989
Chalcomitra ^k amethystina		0.63	N	P/I	TR	F	0	+/0	0	0	0	Prinzinger et al. 1989
Chalcomitra ^k rubescens	10.0	0.66	N	P/I	TR	F	0	0	0	0	0	Seavy 2006
Chalcomitra ^k obscura	11.2	0.72	N	P/I	TR	F	0	0	0	0	0	Seavy 2006
Anthreptes orientalis	11.8	0.55	N	P/I	TR	0	0	0	0	0	0	Prinzinger et al. 1989
Nectarinia tacazze	13.5	0.88	N	P/I	TR	0	+	0	0	+	0	Prinzinger et al. 1989
Chalcomitra ^k senegalensis Cyanomitra ^k verticalis		0.86	N	P/I	TR	F/O	0	+/0	0	0	0	Seavy 2006
c vanomitra" verticalis	14.1	0.90	N	P/I	TR	F	0	0	0	0	0	Seavy 2006

Appendix A (continued)

Trustales Communitation 15.8 0.98 N P3 TR F O O O O O O Sevey 2006	Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climated	Habitat ^e	Torpor?f	Migration ^g	Islands?h	Mountains?i	Flightless? ^j	Reference
Openions 1,5 0,0 0 0 0 0 0 0 0 0	Turdidae												
Second common Second commo													
Methods Meth	Cyanomitra ^k	15.8	0.98	N	P/I	TR	F	0	0	0	0	0	Seavy 2006
Passeriale													
Experiment relations 1.51 0.56 N F/5 TR B O O O O O Methol, pers. obs.		16.2	0.94	N	P/I	TR	F	0	0	0	+	0	Seavy 2006
Occasionalista Go. Go. O. O. O. O. O. O. O.	Passeridae												
Pulsar moments	Erythrura trichroa	15.1	0.86	N		TR		0	0		+		McNab, pers. obs.
Fuser montamis 2.3 1.46	Oreostruthus	16.0	0.59	N	F/S	TR	В	0	0	0	+	0	McNab, pers. obs.
Passer domesticus 23.0 13.2 N S L T O O O O O Cendergh et al. 1977	fuliginosus												
Estriidina regloud 7.5 0.47 N IJS TR 0 0 0 0 0 0 0 Marschall & Prinzinger 19 Estriidin regloud 7.5 0.47 N IJS TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Passer montanus	22.3	1.46	N	I/S	T	0	0	0	0	0	0	Kendeigh et al. 1977
Estrildinae Estrildina meljooda Estrildina meljooda Estrildina meljooda T. 5	Passer domesticus	23.0	1.32	N	S/L	T	0	0	0	0	0	0	Kendeigh et al. 1977
Estridia melgoods 75	Estrildidae												_
Estraida regiologies 25 0.54	Estrildinae												
Estraida regiologies 25 0.54	Estrilda melpoda	7.5	0.47	N	I/S	TR	0	0	0	0	0	0	Marschall & Prinzinger 1991
Unequipulation Uneq	-		0.54			TR	0	0	0	0	0	0	
Chicheling guilding		9.2	0.59	N		TR	F/O	0	0	0	0	0	_
Amadina piscatata 1,22 0,77 N S,14 T/TR 0 0 0 0 0 0 0 Marschall & Prinzinger 19 Amadina 2,17 0,76 N S,14 T/TR 0 0 0 0 0 0 0 McKechnie & Lovegrove 2003 erythrocephala Thereinoygog guttata 11.7 0,74 N I/L T/TR 0 0 0 0 0 0 0 Calder 1964 Lovegrove 2003 Everythrocephala Tourishing the property of the prope						T	,	0	0				
Amadama													
Company Comp													_
Poephilinian Taeningypig guttuta 17		2	0.70	• •	5/1	-,	Ü	Ŭ	Ü	ŭ	ŭ	· ·	
Tampingping guttatat 11,7 0,74 N J L T/TR O O O O O O Calder 1964													Lovegrove 2005
Lonchura fiscans	-	11.7	0.74	N	1/1	T/TD	0	0	0	0	0	0	Caldor 1064
Lonchum Striate 10.3		11.7	0.74	IN	1/L	1/110	U	U	U	U	U	U	Caldel 1904
Lonchural crucillata 10.3 0.77 N S TR B O O O O Colorgrove & Smith 2003 Lonchural crucillata 10.6 0.39 N S T/TR O O O O O O O Colorgrove & Smith 2003 Lonchural crystowa 25.4 1.11 N O T F/G O O O O O O O Marschell & Principles † 1977 Moracillade Principles † 10.5 Principles † 1977 Principles † 1978 Principles † 19		0.5	0.20	NI	C	TD	0	0	0	0	0	0	Manthaus 1077
Dencharde cacalilata 10.6 0.39 N S T/TR O O O O O O O Marschell & Principage 19													
Denchurd orycivora 25.4 1.11 N O T F G O O O O O O Marschell & Prinzinger 19													
Prunellia modularis 16.8 1.17						,							
Primelle modularis 16.8 1.17		25.4	1.11	N	0	1	F/G	0	O	0	0	O	Marschell & Prinzinger 1991
Motacillidae						_	_	_		_			
Motocilla flava		16.8	1.17	N	I	T	В	0	+/O	0	0	0	Kendeigh et al. 1977
Motocilla alba 18.0 1.08 N I T O 0 +(O O O Gavrilov & Dolfnit 1985. Anthus trivalis 19.7 1.22 N I T O 0 +(O O Chedeigh et al. 1977 Anthus trivalis 19.7 1.22 N I T O 0 + O O Kendeigh et al. 1977 Fringilliace Trivigilliace Fringillia coelebs 21.0 1.34 N S T F O +(O O O Gavrilov & Dol'nik 1985 Carduelis richina Trigilliace oelebs 21.0 1.34 N S T F O +(O O O Gavrilov & Dol'nik 1985 Carduelis richina 1.0 1.2 N S T F O +(O O O Cavrilov & Dol'nik 1985 Carduelis carduelis 1.0 N S T F													
Anthus protensis 18.9 1.08 N I T O O O + O O O O C Mendeigh et al. 1977 Anthus trinoits: 19.7 1.22 N I T O O O + O O O C Mendeigh et al. 1977 Anthus campestris 21.8 1.38 N I T O O O + O O O Mendeigh et al. 1977 Fringillidae Frindilidae Frindilidae Frindilidae Frindilidae Fringillidae Frindilidae Frindilidae Frindilidae Frindilidae Fringillidae Frindilidae Frindilid	· ·												_
Anthus trivalis	Motacilla alba								'				
Anthus campestris 21.8 1.38 N 1 T O O Hendeigh et al. 1977 Fringilliane Fr	Anthus pratensis	18.9	1.08	N			0	0	+/O	0	0		Kendeigh et al. 1977
Fringillinae Carduelis tristis 12.8 10.9 N S T F F O +/O O O O Gavrilov & Dol'nik 1985 Carduelis tristis 12.8 10.9 N S T F F O +/O O O O Dawson & Carey 1976 Carduelis tristis 12.8 10.9 N S T F F O +/O O O O Mendeigh et al. 1977 Carduelis flamme 14.7 12.5 N S T F F O +/O O O O Rendeigh et al. 1977 Carduelis flamme 14.7 12.5 N S T F O O +/O O O O Rendeigh et al. 1977 Carduelis flamme 15.9 12.2 N S T B O +/O O O O Rendeigh et al. 1977 Carduelis carduelis 16.5 12.2 N S T B O +/O O O O Rendeigh et al. 1977 Carduelis carduelis 16.5 12.2 N S T B O +/O O O O Rendeigh et al. 1977 Carduelis carduelis carduelis 16.5 12.2 N S T B O +/O O O O Rendeigh et al. 1977 Carduelis carduelis carduelis 16.5 12.2 N S T B O +/O O O O Rendeigh et al. 1977 Carduelis carduelis carduelis 16.5 12.5 12.5 N S T B O +/O O O O Rendeigh et al. 1977 Carduelis carduelis carduelis 16.5 12.2 N S T F D O O O O O Rendeigh et al. 1977 Carduelis carduelis carduelis 16.5 17.7 18.7 1	Anthus trivalis	19.7	1.22	N	I		0	0	+	0	0	0	Kendeigh et al. 1977
Fringilla coelebs	Anthus campestris	21.8	1.38	N	I	T	0	0	+	0	0	0	Kendeigh et al. 1977
Fringilla coelebs	Fringillidae												
Carduelis trists 12.8 1.09 N S T F O + O O O Dawson & Carey 1976	Fringillinae												
Carduelis ristis	Fringilla coelebs	21.0	1.34	N	S	T	F	0	+/O	0	0	0	Gavrilov & Dol'nik 1985
Carduelis ristis 12.8 1.09 N S T F O O + O O O O Dawson & Carey 1976	Fringilla montifringilla	21.0	1.38	N	0	T	F	0	+	0	0	0	Kendeigh et al. 1977
Carduelis spinus													, and the second
Carduelis spinus		12.8	1.09	N	S	T	F/O	0	+/O	0	0	0	Dawson & Carev 1976
Carduelis flammea							,		'				
Carduelis carduelis 16.5 1.25 N S T O O +/O O O Carduelis carduelis carduelis cambaina 16.9 1.22 N S T B O +/O O O O Carduelis cambaina 16.9 1.22 N S T B O +/O O O O Carduelis cambaina 1.22 N S T D O O O O O Carduelis cambaina 1.22 N S T D O O O O O Carduelis cambaina 1.22 N S T D O O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D O O Carduelis cambaina 1.22 N S T D D O Carduelis cambaina 1.22 N S T D D O Carduelis cambaina 1.22 N S T D D O Carduelis cambaina 1.22 N S T D D O									'				
Carduelis cannabina 16.9 1.22									+/0				
Carpodacus mexicanus 20.4 1.12 N S T O O O O O Weathers 1981 Carpodacus existiii 27.4 1.22 N S T F O O O Cendeigh et al. 1977 Carduelis chloris 28.2 1.71 N S T F O O O O Kendeigh et al. 1977 Loxia leucoptera 29.8 1.67 N S T F O O O O Kendeigh et al. 1977 Loxia leucoptera 29.8 1.67 N S T F O O O Dawson & Tordoff 1964 Pyrrhula pyrrhula 30.4 1.99 N L T F O O O Cendeigh et al. 1977 Loxia curvirostra 39.4 2.16 N S T F O O O Kendeigh et al. 1977 Coccothraustes Loxia pytyopsittacus 53.7									,				
Carpodacus erythrinus 21.2 1.33 N S/L T B O + O O O Carpodacus cassini 27.4 1.22 N S T F O +/O O + O Weathers 1981									,				
Carpodacus cassinii 27.4 1.22 N S T F O +/O O + O Weathers 1981 Carduelis chloris 28.2 1.71 N S T F O O O O Kendeigh et al. 1977 Loxia leucoptera 29.8 1.67 N S T F O +/O O O O Dawson & Tordoff 1964 Pyrrhula pyrrhula 30.4 1.99 N L T F O O O O Cendeigh et al. 1977 Loxia curvirostra 39.4 2.16 N S T F O O O Cendeigh et al. 1977 Coccothraustes 48.3 2.51 N O T F O + O O Kendeigh et al. 1977 Coccothraustes 53.7 2.87 N S T F O + O O Kendeigh et al. 1977													
Carduelis chloris 28.2 1.71 N S T F O O O O Demdroica guine Loxia leucoptera 29.8 1.67 N S T F O +/O O D Dawson & Tordoff 1964 Pyrrhula pyrrhula 30.4 1.99 N L T F O O O O Kendeigh et al. 1977 Loxia curvirostra 39.4 2.16 N S T F O O O O Kendeigh et al. 1977 Coccothraustes 48.3 2.51 N O T F O O O Kendeigh et al. 1977 Coccothraustes 53.7 2.87 N S T F O + O O Kendeigh et al. 1977 Coccothraustes 54.5 2.71 N S/N T F O +/O O O Kendeigh et al. 1977 Coccothraustes 54													
Loxia leucoptera 29.8 1.67 N S T F O +/O O + O Dawson & Tordoff 1964	-								,				
Pyrrhula pyrrhula 30.4 1.99													
Loxia curvirostra					_	I T	Г		_'				
Coccothraustes 48.3 2.51 N O T F O O O O Kendeigh et al. 1977 coccothraustes SA Z.87 N S T F O + O O O Kendeigh et al. 1977 coccothraustes SA SA N S T F O +/O O O Kendeigh et al. 1977 coccothraustes Auxiliary coccothraustes SA T F O +/O O O Kendeigh et al. 1977 coccothraustes Auxiliary coccothraustes						I	r						
coccothraustes Loxia pytyopsittacus 53.7 2.87 N S T F O + O O Kendeigh et al. 1977 Coccothraustes 54.5 2.71 N S/N T F O +/O O + O West & Hart 1966 vespertina Pinicola enucleator 78.4 3.91 N L T F O +/O O + O Gavrilov & Dol'nik 1985 Drepanidinae Himatione sanguinea 13.5 1.08 N P TR F O O I O O Weathers et al. 1983 Telespiza cantans 31.6 1.53 N O TR G O I O O Weathers et al. 1983 Telespiza cantans 31.6 1.53 N O TR G O I O O Weathers & van Riper 198 Vireonidae Vireo flavoviridis 15.9 1.0													
Loxia pytyopsittacus 53.7 2.87 N S T F O + O O O Kendeigh et al. 1977		48.3	2.51	IN	U	1	r	U	U	U	0	U	Kendeign et al. 1977
Coccothraustes 54.5 2.71 N S/N T F O +/O O + O West & Hart 1966 vespertina Pinicola enucleator 78.4 3.91 N L T F O +/O O + O Gavrilov & Dol'nik 1985 Drepanidinae Himatione sanguinea 13.5 1.08 N P TR F O O I O O Weathers et al. 1983 Telespiza cantans 31.6 1.53 N O TR G O O I O O Weathers & van Riper 198 Loxioides bailleui 34.8 1.61 N S TR F O O I O O Weathers & van Riper 198 Vireonidae Vireo flavoviridis 15.9 1.01 N I TR B O + O O O Wiersma et al. 2007 Vireo olivaceus 16.2 0.86 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td>_</td><td></td><td>_</td><td></td><td></td><td></td></th<>						_	_	_		_			
vespertina Pinicola enucleator 78.4 3.91 N L T F O +/O O + O Gavrilov & Dol'nik 1985 Drepanidinae Himatione sanguinea 13.5 1.08 N P TR F O O I O O Weathers et al. 1983 Telespiza cantans 31.6 1.53 N O TR G O I O O Weathers & van Riper 198 Loxioides bailleui 34.8 1.61 N S TR F O O I O O Weathers & van Riper 198 Vireonidae Vireo flavoviridis 15.9 1.01 N I TR B O + O O Wiersma et al. 2007 Vireo flavoviridis 15.9 1.01 N I T B O + O O O Wiersma et al. 2007 Vireo flavoviridis 15.9 0.86 N I	1001												
Pinicola enucleator 78.4 3.91 N L T F O +/O O + O Gavrilov & Dol'nik 1985		54.5	2.71	N	S/N	T	F	0	+/O	0	+	0	West & Hart 1966
Drepanidinae Himatione sanguinea 13.5 1.08 N P TR F O O I O O Weathers et al. 1983	vespertina												
Himatione sanguinea 13.5 1.08 N P TR F O O I O O Weathers et al. 1983 Telespiza cantans 31.6 1.53 N O TR G O O I O O Weathers & van Riper 198 Loxioides bailleui 34.8 1.61 N S TR F O O I O O Weathers & van Riper 198 Vireonidae Vireo flavoviridis 15.9 1.01 N I TR B O + O O O Wiersma et al. 2007 Vireo olivaceus 16.2 0.86 N I T B O + O O O Wiersma et al. 2007 Parulidae Vermivora pinus 7.8 0.54 N I T F/O O + O O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T <td>Pinicola enucleator</td> <td>78.4</td> <td>3.91</td> <td>N</td> <td>L</td> <td>T</td> <td>F</td> <td>0</td> <td>+/O</td> <td>0</td> <td>+</td> <td>0</td> <td>Gavrilov & Dol'nik 1985</td>	Pinicola enucleator	78.4	3.91	N	L	T	F	0	+/O	0	+	0	Gavrilov & Dol'nik 1985
Telespiza cantans 31.6 1.53 N O TR G O I O O Weathers & van Riper 198 Loxioides bailleui 34.8 1.61 N S TR F O O I O O Weathers & van Riper 198 Vireonidae Vireo flavoviridis 15.9 1.01 N I TR B O + O O O Wiersma et al. 2007 Vireo olivaceus 16.2 0.86 N I T B O + O O O Wiersma et al. 2007 Parullidae Vermivora pinus 7.8 0.54 N I T F/O O + O O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T F O + O O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F	Drepanidinae												
Telespiza cantans 31.6 1.53 N O TR G O I O O Weathers & van Riper 198 Loxioides bailleui 34.8 1.61 N S TR F O O I O Weathers & van Riper 198 Vireonidae Vireo flavoviridis 15.9 1.01 N I TR B O + O O O Wiersma et al. 2007 Vireo olivaceus 16.2 0.86 N I T B O + O O O Wiersma et al. 2007 Parullidae Vermivora pinus 7.8 0.54 N I T F/O O + O O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T F O + O O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N F/I T F O	Himatione sanguinea	13.5	1.08	N	P	TR	F	0	0	I	0	0	Weathers et al. 1983
Loxioides bailleui 34.8 1.61 N S TR F O O I O O Weathers & van Riper 198 Vireonidae Vireo flavoviridis 15.9 1.01 N I TR B O + O O O Wiersma et al. 2007 Vireo olivaceus 16.2 0.86 N I T B O + O O O Wiersma et al. 2007 Parulidae Vermivora pinus 7.8 0.54 N I T F/O O + O O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T F O + O O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F			1.53	N	0	TR	G	0	0	I	0	0	Weathers & van Riper 1982
Vireonidae Vireo flavoviridis 15.9 1.01 N I TR B O + O O O Wiersma et al. 2007 Vireo olivaceus 16.2 0.86 N I T B O + O O O Wiersma et al. 2007 Parulidae Vermivora pinus 7.8 0.54 N I T F/O O + O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T F O + O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F O + O O Yarbrough 1971 Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O + O <										Ī			
Vireo flavoviridis 15.9 1.01 N I TR B O + O O O Wiersma et al. 2007 Vireo olivaceus 16.2 0.86 N I T B O + O O O Wiersma et al. 2007 Parullidae Vermivora pinus 7.8 0.54 N I T F/O O + O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T F O + O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F O + O O O Yarbrough 1971 Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O + O O <td></td> <td>3</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td></td>		3			-			-	_		_	_	
Vireo olivaceus 16.2 0.86 N I T B O + O O O Wiersma et al. 2007 Parulidae Vermivora pinus 7.8 0.54 N I T F/O O + O O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T F O + O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F O + O O Yarbrough 1971 Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O +/O O O Yarbrough 1971		15.0	1.01	N	ī	TD	D	0	_	0	0	0	Wiorema et al 2007
Parulidae Vermivora pinus 7.8 0.54 N I T F/O O + O O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T O O + O O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F O + O O O Yarbrough 1971 Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O +/O O O Yarbrough 1971													
Vermivora pinus 7.8 0.54 N I T F/O O + O O O Yarbrough 1971 Dendroica palmarum 9.8 0.56 N I T O O + O O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F O + O O O Yarbrough 1971 Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O +/O O O Yarbrough 1971		10.2	0.80	IN	1	I	В	U	+	U	U	U	vviersilia et al. 2007
Dendroica palmarum 9.8 0.56 N I T O O + O O O Yarbrough 1971 Dendroica dominica 9.8 0.58 N I T F O + O O O Yarbrough 1971 Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O +/O O O O Yarbrough 1971		7.0	0.54	N		T	EIC	0		0	0	0	V. d
Dendroica dominica 9.8 0.58 N I T F O + O O O Yarbrough 1971 Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O +/O O O Yarbrough 1971	•						,						
Dendroica coronata 11.5 0.68 N F/I T F O + O O O Yarbrough 1971 Dendroica pinus 12.0 0.64 N I T F O +/O O O Yarbrough 1971	*												o .
Dendroica pinus 12.0 0.64 N I T F O +/O O O Yarbrough 1971		9.8											
	Dendroica coronata	11.5	0.68	N	F/I		F	0	+	0	0	0	Yarbrough 1971
	Dendroica pinus	12.0	0.64	N	I	T	F	0	+/0	0	0	0	Yarbrough 1971
					I		F	0	,				<u> </u>
Protonotaria citrea 12.8 0.72 N I T F O + O O Yarbrough 1971					I				+				

Appendix A (continued)

Species	Mass ^a (g)	BMR (kJ/h)	Time ^b	Food ^c	Climated	Habitate	Torpor?f	Migration ^g	Islands?h	Mountains?i	Flightless? ^j	Reference
Estrildidae												
Parulidae	40.7	4.04		,	TT.						0	V 1 1 4074
Seiurus novaeboracensis	18.7	1.01	N	I	T	F	0	+	0	0	0	Yarbrough 1971
Seiurus aurocapillus	19.0	0.87	N	I	T	F	0	+	0	0	0	Yarbrough 1971
Icteridae	2.4	1.01	NT.	E/I	т	Г	0		0	0	0	Pi-i 1000
Icterus bullocki	34	1.81	N	F/I	T T	F F	0	+	0	0	0	Rising 1969
Icterus galbula	34	1.81	N	F/I		-	_	+	_	_	_	Rising 1969
Sturnella militaris	38.2	1.59	N	I	TR	G	0	0	0	0	0	Wiersma et al. 2007
Agelaius phoeniceus	43.1	1.74	N	I/S	T	W	0	+/0	0	0	0	Weathers 1981
Quiscalus quiscula	92.2	3.56	N	0	T	В	0	+/O	0	0	0	Wiersma et al. 2007
Quiscalus mexicanus	137.3	4.06	N	0	TR	В	0	0	0	0	0	Wiersma et al. 2007
Coerebidae	10.0	0.77			TTD			0		•	0	N. 1 7 .: 1000
Coereba flaveola	10.0	0.77	N	P	TR	F	0	0	I	0	0	Merola-Zwartjes 1998
Thraupidae				w (m					_			
Cyanerpes cyaneus	13.5	0.98	N	F/P	TR	В	0	0	0	0	0	Wiersma et al. 2007
Euphonia laniirostris	13.5	1.06	N	F	TR	В	0	0	0	0	0	Wiersma et al. 2007
Tanagra larvata	16.2	0.85	N	F/I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Rhamphocelus dimidiatus	26.4	1.32	N	F/I	TR	В	0	0	0	0	0	Wiersma et al. 2007
Thraupis episcopus	30.4	1.44	N	F/I	TR	В	0	0	0	0	0	Wiersma et al. 2007
Eucometis penicillata	30.7	1.42	N	F/I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Rhamphocelus	32.0	1.50	N	F/I	TR	В	0	0	0	0	0	Wiersma et al. 2007
flammingerus												
Thraupis palmarum	32.6	1.42	N	F/I	TR	В	0	0	0	0	0	Wiersma et al. 2007
Habia fuscicauda	40.0	1.28	N	F/I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Emberizidae												
Sporophila americana	10.2	0.71	N	S	TR	0	0	0	0	0	0	Wiersma et al. 2007
Amphispiza bilineata	11.6	0.71	N	I/S	T	D	0	+/O	0	0	0	Weathers 1981
Spizella passerina	11.9	0.70	N	I/S	T	F	0	+	0	0	0	Yarbrough 1971
Oryzoborus angolensis	12.3	0.72	N	S	TR	В	0	+	0	0	0	Wiersma et al. 2007
Ammodramus savannarum	13.8	0.64	N	I/S	T	G	0	+	0	0	0	Yarbrough 1971
Melospiza georgiana	14.9	0.76	N	I/S	T	В	0	+	0	0	0	Yarbrough 1971
Passerculus sandwichensis	15.9	0.80	N	I/S	T	G	0	+	0	0	0	Williams & Hansell 1981
Emberiza schoeniclus	17.6	1.08	N	S	T	0	0	+/O	0	0	0	Kendeigh et al. 1977
Melospiza melodia	19.1	0.90	N	I/S	T	В	0	+	0	0	0	Yarbrough 1971
Zonotrichia albicollis	20.2	1.00	N	F/S	T	В	0	+	0	0	0	Yarbrough 1971
Pooectes gramineus	21.5	0.98	N	I/S	T	G	0	+	0	0	0	Yarbrough 1971
Emberiza hortulana	24.3	1.50	N	I	T	0	0	+	0	0	0	Gavrilov & Dol'nik 1985
Zonotrichia leucophrys	26.1	1.21	N	F/S	T	В	0	+	0	0	0	Yarbrough 1971
Emberiza citrinella	26.8	1.57	N	S	T	0	0	+/O	0	0	0	Gavrilov & Dol'nik 1985
Zonotrichia querula	33.3	1.77	N	I/S	T	В	0	+	0	0	0	Yarbrough 1971
Arremonops conirostris	39.7	1.63	N	S	TR	F	0	0	0	0	0	Wiersma et al. 2007
Cardinalidae												
Cyanocompsa cyanoides	27.9	1.35	N	F/S	TR	F	0	0	0	0	0	Wiersma et al. 2007
Cardinalis sinuatus	32.0	1.41	N	I/S	T	В	0	0	0	0	0	Hinds & Calder 1973
Saltator orenocensis	32.7	1.13	N	F/L	TR	В	0	0	0	0	0	Bosque et al. 1999
Cardinalis cardinalis	41.0	1.81	N	I/S	T	В	0	0	0	0	0	Hinds & Calder 1973
Saltator striatipectus	42.1	1.83	N	F/I	TR	В	0	0	0	0	0	Wiersma et al. 2007
Saltator maximus	44.8	1.97	N	F/I	TR	F	0	0	0	0	0	Wiersma et al. 2007
Saltator coerulescens	47.0	1.40	N	F/L	TR	В	0	0	0	0	0	
Saltator coerulescens	4/.0	1.40	N	F/L	IR	R	U	U	U	U	U	Bosque et al. 1999

^aMass: (), intermediate within mass range.

References for Appendix:

Adams & Brown. 1984. Comp. Biochem. Physiol. A 77: 169–173.

Ambrose & Bradshaw.1988. Comp. Biochem. Physiol. A 89: 79–83.

Bartholomew et al. 1962. Condor 64: 117–125.

Bartholomew et al. 1983. Condor 56: 370-379.

Baudinette et al. 1986. Austral. J. Zool. 34: 35–45.

Bech. & Nichol. 1999. Austral. J. Zool. 47: 143-153.

Boismenu et al. 1992. Auk 109: 511-521.

Boix-Hinzen et al. 1998. J. Zool., Lond. 244: 33-41.

Bosque et al. 1999. Auk 116: 246-252.

Brown & Adams. 1984. Condor 86: 182–186.

Brown, 1984. Comp. Biochem. Physiol. A 77 345-350.

Brown. 1988. Ostrich 59: 67-70.

Bryant et al. 1984. Auk 101: 25-37.

Buttemer et al. 2003. J. Comp. Physiol. B. 173: 223–230.

^bTime of measurement: D, daytime in nocturnal species; N, night in diurnal species; D/N, rates equal day and night.

^cFood:Al, aquatic invertebrates; AV, aquatic vegetation; F, fruit; Fl, flying insects; G, grass; L, leaves; I, insects and arthropods; N, nuts; O, omnivore; P, pollen and nectar; S, seeds; V, vertebrates. ^dClimate: P, polar; T, temperate; TR, tropical.

eHabitat: A, alpine; B, bare or disturbed grounds, brush; D, desert; F, forests, woodlands; G, grasslands and savannahs; L, lakes; M, marine; O, open; P, pelagic; T, tundra; W, wetlands. Torpor?: O, no torpor; +, torpor; HIB, hibernation.

gMigration?: O, no; +, yes.

^hIslands?: S, small island; I, intermediate island; L, large island; O, not an island endemic.

ⁱMountains?: +, mountain endemic; O, not a mountain endemic.

^jFlightless?: +, yes; O, no.

^kGeneric or specific name changes from the original report.

Notes to Appendix A

Calder. 1964. Physiol. Zool. 37: 400-413.

Carpenter. 1976. Univ. Calif. Publ. Zool.

Chaplin. 1982. Auk 99: 424-430.

Collins et al. 1980. Comp. Biochem. Physiol. A 67, 629-635.

Coulombe. 1970. Comp. Biochem. Physiol. 35: 307–337.

Daan et al. 1990. Am. J. Physiol. 259: R333-R340.

Dawson & Carey. 1976. J.Comp. Physiol. B. 112: 317-333.

Dawson & Tordoff. 1964. Auk 81: 26–35. Dawson, & Fisher, 1969. Condor 71: 49–53.

Drent & Stonehouse. 1971. Comp. Biochem. Physiol. A 40: 689-710.

Eberhardt 1994. Auk 111: 124-130.

Edwards, 1987, Wilson Bull, 99: 704-706.

Ehlers & Morton. 1982. Comp. Biochem. Physiol. A 73: 233-235.

Ellis & Jehl. 2003. Waterbirds 26: 275–279. Ellis. 1980. Physiol. Zool. 53: 358–372. Gabrielsen et al. 1991. Auk 108: 71–78.

Ganev et al. 1993. Wilson Bull.105: 645-656.

Gavrilov & Dol'nik. 1985. Proc. XVIII Intl Ornith. Congr., Moscow: 421-466.

Gavrilov. 1977. In: Il'ichev. (ed.) The Adaptation of Penguins. Nauka, Moscow, 102-110.

Gavrilov. 1996. Biol. Bull.23: 55-59.

Gessaman. 1972. Arctic Alpine Res. 4: 223-238.

Grajal. 1991. Ph.D. Diss., Univ. Florida, Gainesville.

Hayworth & Weathers. 1984. Condor 86: 19–26.

Hennemann. 1983. Physiol. Zool. 56: 201–216.

Hinds & Calder. 1973. Physiol. Zool. 46: 55-71.

Hinsley et al. 1993. Physiol. Zool. 66: 20-42.

Hohtola et al. 1994. J. Comp. Physiol. B, 164: 430-437.

Hudson & Brush. 1964. Comp. Biochem. Physiol. 12:157-170.

Jenssen et al. 1989. Can. J. Zool. 67: 669-673.

Johnson 1968. Comp. Biochem. Physiol. 24: 1003-1014.

Kendeigh et al. 1977, In: Pinowski, J. & Kendeigh, S.C. (eds.) Granivorous Birds in

Ecosystems. Cambridge Univ. Press, N.Y., 129-204.

Kersten & Piersma. 1987. Ardea 75: 175-187.

Klaassen. 1995. Oecologia 104: 424-432.

Kooyman et al. 1976. Comp. Biochem. Physiol. A 54: 75-80.

Lasiewski & Dawson. 1964. Condor 66: 477-490.

Lasiewski et al. 1967.Comp. Biochem. Physiol. 23: 797-813.

Lasiewski et al. 1970. Condor 72: 332-338.

Ligon. 1968. Misc. Publ., Mus. Zool., Univ. Michigan. 136: 1-70.

Ligon. 1969. Auk 86: 458-472.

Liknes & Swanson. 1996. J. Avian Biol. 27: 279-288.

Lindström & Kvist. 1995. Proc. Roy. Soc. London B 261: 337–343.

Lopez-Calleja & Bozinovic. 1995. Auk 112: 1034-1036.

Lovegrove & Smith. 2003. Ibis 145: 547-557.

MacMillen & Trost. 1967. Comp. Biochem. Physiol. 20: 263–273.

Maddocks & Geiser. 1997. Condor 99: 104-112.

Maloney & Dawson. 1994. J. Comp. Physiol. B 164: 464-472.

Marden & Berstein. 1983. Comp. Biochem. Physiol. A 74: 149-154.

Marschall & Prinzinger. 1991. J. Ornith. 132: 319-323.

McKechnie & Lovegrove. 2001a. J. Comp. Physiol. B 171: 507–518. McKechnie & Lovegrove. 2001b. Physiol. Biochem. Zool. 74: 238–249.

McKechnie & Lovegrove. 2003. J. Comp. Physiol. B 173: 339-346.

McNab & Bonaccorso. 1995. Physiol. Zool. 68: 245-261.

McNab & Ellis. 2006. Comp. Biochem. Physiol. A 145: 295–311.

References

Ambrose, S.J., Bradshaw, S.D., 1988. Seasonal changes in standard metabolic rates in the white-browed scrubwren *Sericornis frontalis* (Acanthizidae) from arid, semi-arid and mesic environments. Comp. Biochem. Physiol. A 89, 79–83.

Aschoff, J., Pohl, H., 1970a. Der Ruheumsatz von Vögeln als Funktion der Tagezeit und der Körpergrösse. J. Ornithol. 111, 38–47.

Aschoff, J., Pohl, H., 1970b. Rhythmic variations in energy metabolism. Fed. Proc. 29, 1541–1552.

Banfield, A.W.F., 1974. The Mammals of Canada. Univ. Toronto Press, Toronto.

Barker, F.K., Cibois, A., Schikler, P., Feinstein, J., Cracraft, J., 2004. Phylogeny and diversification of the largest avian radiation. Proc. Natl. Acad. Sci., USA 101, 11040–11045.

Benedict, F.G, 1938. Vital Energetics: a Study in Comparative Basal Metabolism. Publ. 425. Carnegie Institute.

Bokma, F., 2004. Evidence against universal metabolic allometry. Funct. Ecol. 18, 184–187.

Bonaccorso, F.J., McNab, B.K., 2003. Standard energetics of leaf-nosed bats (Hipposideridae): its relationship to intermittent- and protracted-foraging tactics in bats and birds. J. Comp. Physiol. B 173, 43–53.

Brody, S., Procter, R.C., 1932. Relation between basal metabolism and mature body weight in different species of mammals and birds. Univ. Missouri Agr. Exper. Station Res. Bull. 116. 89–101.

Bullen, R.D., McKenzie, N.L., 2004. Bat flight muscle mass: implications for foraging strategy. Aust. J. Zool. 52, 605–622. McNab & Salisbury. 1995. New Zeal. J. Zool. 22: 339-349.

McNab. 1996. Auk 113: 687-692.

McNab. 2000. Comp. Biochem. Phsiol. A 127: 309-329.

McNab. 2001. Auk 118: 916-933.

McNab. 2003. Comp. Biochem. Physiol. A 135: 229-247.

McNab. 2005. J. Comp. Physiol. B 175, 117–132.

Merola-Zwartjes & Ligon. 2000. Ecology 81: 990-1003.

Merola-Zwartjes. 1998. Auk 115: 780–786. Misch. 1960. Physiol. Zool. 33: 252–259.

Mock. 1991. Condor 93: 598-611.

Mortensen & Blix. 1986. Ornis Scand. 17: 8-13.

Ohmart & Lasiewski. 1971. Science 172: 67-69.

Pekins et al. 1992. Can. J. Zool. 70: 22-24.

Piersma et al. 1995. J. Comp. Physiol. B 165:37–45.

Pinshow et al. 1976. Am. J. Physiol. 231: 903-912.

Prinzinger & Hänssler. 1980. Experientia 36: 1299-1300.

Prinzinger et al. 1981. Comp. Biochem. Physiol. A 69, 689–692. Prinzinger et al. 1989. Comp. Biochem. Physiol. A 92: 393–402.

Prinzinger et al. 1993. J. Ornithol. 13:4: 79–84.

Prinzinger. 1988. J. Comp. Physiol. B 157: 801-806.

Reinertsen & Haftorn. 1986. J. Comp. Physiol. B 156: 655–663.

Rezende et al. 2001. Auk 118: 781–785.

Rising & Hudson. 1974. Condor 76: 198-203.

Rising. 1969. Comp. Biochem. Physiol. 31: 915-925.

Roberts & Baudinette. 1986. Aust. J. Zool. 34: 25–33.

Ryan, P.G. et al. 1989. Condor 91: 465-467.

Schleucher & Withers. 2002. Physiol. Biochem. Zool. 75: 439-450.

Schleucher. 2001. J.Therm. Biol. 26: 287-293.

Schleucher. 2002. Comp. Biochem. Physiol. A 131: 417–428.

Seavy & McNab. 2007. Biotropica 39: 114-119.

Seavy. 2006. J. Zool., Lond. 270: 290-297.

Tieleman et al. 2002. Proc. Roy. Soc. Lond. B 270: 207-214.

Trost. 1972. Auk 89: 506-527.

Vander Hagen et al. 1994. Wilson Bull. 106: 338-343.

Vitali et al. 1999. Aust. J. Zool. 47: 385–391.

Vleck & Kenagy. 1980. Physiol. Zool. 53: 32-42.

Vleck & Vleck. 1979. Condor 81: 89-91.

Wasser. 1986. Condor 88: 57-62.

Weathers & Caccamise. 1978. Oecologia 35: 173-183.

Weathers & Schoenbaechler. 1976. Aust. J. Zool. 24: 39-47.

Weathers & vanRiper. 1982. Auk 99: 667-674.

Weathers et al. 1983. Auk 100: 977–978. Weathers et al. 1996. Aust. J. Zool. 44: 445–460.

Weathers. 1977. Aust. J. Zool. 25: 193-199.

Weathers. 1981. Physiol. Zool. 54: 345–361.

West & Hart. 1966. Physiol. Zool. 39: 171–184. Wiersma et al. 2007. Proc. Natl Acad. Sci. USA 104: 9340–9345.

Wijnandts. 1984. Ardea 72: 1–92.

Williams & Hansell 1981. Comp. Biochem. Physiol. A 69: 783–787.

Williams et al. 1991. Aust. J. Zool. 39: 131–142.

Williams. 1999. Condor 101: 432-438.

Withers & Williams. 1990. Condor 92: 961–969.

Withers 1983. Physiol. Zool 56: 568–579. Withers et al. 1987. Condor 89: 424–426.

Yarbrough, Comp. Biochem, Physiol. A 39: 235-266.

Careau, V., Thomas, D., Humphries, M.M., Réale, D., 2008. Energy metabolism and animal personality. Oikos 117, 641–653.

Cracraft, J., Feinstein, J., 2000. What is not a bird of paradise? Molecular and morphological evidence places Macgregoria in the Meliphagidae and Cnemophilinae near the base of the corvid tree. Proc. Biol. Sci. R. Soc. 267, 233–241.

Cruz-Neto, A.P., Bozinovic, F., 2004. The relationship between diet quality and basal metabolic rate in endotherms: insights from intraspecific analyses. Physiol. Biochem. Zool. 77, 877–889.

Daan, S., Masman, D., Groenewold, A., 1990. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am. J. Physiol. 25. R333–R340.

del Hoyo, J., Elliott, A., Sargetal, J., Christie, D.A., 1992–2007. Handbook of the Birds of the

World, Vols. 1–12. Lynx Edicions, Barcelona.

Dickinson, E.C. (Ed.), 2003. The Howard and Moore Complete Checklist of Birds of the World, 3rd Edition. Princeton University Press.

Dondini, G., Vergari, S., 2000. Carnivory in the greater noctule bat (*Nyctalus lasiopterus*) in Italy. J. Zool., Lond. 251, 233–236.

Ellis, H.I., Jehl Jr., J.R., 2003. Temperature regulation and the constraints of climate in the Eared Grebe. Waterbirds 26, 275–279.

Ericson, P.G.P., Anderson, D.L., Britton, T., Elzanowski, A., Johansson, U.S., Källersjö, M., Ohlson, J.I., Parsons, T.J., Zuccon, D., Mayr, G., 2006. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547.

Fain, M.G., Houde, P., 2004. Parallel radiations in the primary clades in birds. Evolution 58, 2558–2573.

- Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125, 1–15. Gabrielsen, G.W., Taylor, J.R.E., Konarzewski, M., Mehlum, F., 1991. Field and laboratory metabolism and thermoregulation in Dovekies (*Alle alle*). Auk 108, 71–78.
- Gavrilov, V.M., 1995. The maximal potential productive and normal levels of the metabolism of existence in passerine and non-passerine birds. 2. Correlations with the level of external work, energetics and ecological conditions (In Russian) Zool. Zhurnal 74 108–123
- Gavrilov, V.M., 1996. Standard metabolism, energy of life and energy cost of non-flight activities in the cuneate-tailed gull *Rhodostethia rosea* (Laridae, Aves). Biol. Bull. 23, 55–59.
- Gavrilov, V.M., 1998. Rationale for the evolutionary increase in basal metabolic rate of Passeriformes. Doklady Biol. Sci. 358, 85–88.
- Gavrilov, V.M., 1999. Ecological phenomena of Passeriformes as a derivative of their energetics. Acta Orn. 34, 165–172.
- Gavrilov, V.M., Dol'nik, V.R., 1985. Basal metabolic rate, thermoregulation and existence energy in birds: world data. Proc. XVIII Internatl. Orn. Congr., Moscow, pp. 421–466.
- Genoud, M., 1993. Temperature regulation in subtropical tree bats. Comp. Biochem. Physiol. A. 104, 321–331.
- Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., Charnov, E.L., 2001. Effects of size and temperature on metabolic rate. Science 293, 2248–2251.
- Glazier, D.S., 2005. Beyond the '3/4-power law": variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. Cambridge Phil. Soc. 80, 611–662.
- Grajal, A., 1991. Nutritional ecology and digestive physiology of the hoatzin, Opisthocomus hoazin, a folivorous bird with foregut fermentation. PhD Dissertation, University of Florida, Gainesville, FL.
- Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J., Chijnowski, J.L., Cox, W.A., Han, K.-L., Harshmann, J., Huddleston, C.J., Marks, B.D., Miglia, K.J., Moore, W.S., Sheldon, F.H., Steadman, D.W., Witt, C.C., Yuri, T., 2008. A phylogenetic study of birds reveals their evolutionary history. Science 320, 1763–1768.
- Hartman, F.A., 1961. Locomotor mechanisms of birds. Smithson. Misc. Collect. 143, 1–91. Hartman, F.A., 1963. Some flight mechanisms in bats. Ohio J. Sci. 63, 59–65.
- Heusner, A.A., 1982. Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber's equation a statistical artifact? Respir. Physiol. 48, 1–12.
- Ibáñez, C., Juste, J., Garcia-Mudarrra, Agirre-Mendi, P.T., 2001. Bat predation on nocturnally migrating birds. Proc. Natl. Acad. Sci., USA 98, 9700–9702.
- Kendeigh, S.C., Dol'nik, V.R., Gavrilov, V.M., 1977. Avian energetics. In: Pinowski, J., Kendiegh, S.C. (Eds.), Granivorous Birds in Ecosystems. Cambridge University Press, pp. 127–204.
- King, J.R., Farner, D.S., 1961. Energy metabolism, thermoregulation and body temperature. In: Marshall, A.J. (Ed.), Biology and Comparative Physiology of Birds, vol. II. Academic Press, pp. 215–288.
- Klaassen, M., 1995. Moult and basal metabolic costs in males of two subspecies of stonechats: the European Saxicola torquata rubicula and the East African S. t. axillaris. Oecologia 104, 424–432.
- Lasiewski, R.C., Dawson, W.R., 1967. A reexamination of the relation between standard metabolic rate and body weight in birds. Condor 69, 13–23.
- Lasiewski, R.C., Weathers, W.W., Bernstein, M.H., 1967. Physiological responses of the giant hummingbird, *Patagonia gigas*. Comp. Biochem. Physiol. 23, 797–813.
- Lindström, Å., Kvist, A., 1995. Maximal energy intake is proportional to basal metabolic rate in passerine birds. Proc. R. Soc. Lond. B 261, 337–343.
- MacMahon, T., 1973. Size and shape in biology. Science 179, 1201-1204.
- MacMillen, R.E., Trost, C.H., 1967. Thermoregulation and water loss in the Inca dove. Comp. Biochem. Physiol. 20, 263–273.
- McKechnie, A.E., Wolf, B.O., 2004. The allometry of avian basal metabolic rate: good predictions need good data. Physiol. Biochem. Zool. 77, 502–521.
- McKechnie, A.E., Freckleton, R.P., Jetz, W., 2006. Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc. R. Soc. B. 273, 931–937.
- McNab, B.K., 1983. Energetics, body size, and the limits to endothermy. J. Zool., Lond. 199. 1–29.
- McNab, B.K., 1988. Food habits and the basal rate of metabolism in birds. Oecologia, Berl. 77, 343–349.
- McNab, B.K., 1992. The comparative energetics of rigid endothermy: the Arvicolidae. J. Zool., Lond. 227, 585–606.
- McNab, B.K., 1997. On the utility of uniformity in the definition of basal rate of metabolism. Physiol. Zool. 70, 718–720.
- McNab, B.K., 2000. The influence of body mass, climate, and distribution on the energetics of South Pacific pigeons. Comp. Biochem. Physiol. A. 127, 309–329.

- McNab, B.K., 2003a. The energetics of New Zealand's ducks. Comp. Biochem. Physiol. A. 135, 229–247.
- McNab, B.K., 2003b. Standard energetics of phyllostomid bats: the inadequacies of phylogenetic-contrast analyses. Comp. Biochem. Physiol. A. 135, 357–368.
- McNab, B.K., 2005. Food habits and the evolution of energetics in birds of paradise (Paradisaeidae). J. Comp. Physiol. B 175, 117–132.
- McNab, B.K., 2006. The energetics of reproduction in endotherms and its implication for their conservation. Integr. Comp. Biol. 46, 1159–1168.
- McNab, B.K., 2008. An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. A. 151, 5–28.
- McNab, B.K., Ellis, H.I., 2006. Flightless rails endemic to islands have lower energy expenditures and clutch sizes than flighted rails on islands and continents. Comp. Biochem. Physiol. A. 145. 295–311.
- McNab, B.K., Salisbury, C.A., 1995. Energetics of New Zealand's temperate parrots. N.W.J. 2001. 22, 339–349
- Merola-Zwartjes, M., Ligon, J.D., 2000. Ecological energetics of the Puerto Rican tody: heterothermy, torpor, and intra-island variation. Ecology 81, 990–1003.
- Miller, M.R., Eadie, J. McA, 2006. The allometric relationship between resting metabolic rate and body mass in wild waterfowl (Anatidae) and an application to estimation of winter habitat requirements. Condor 108, 166–177.
- Piersma, T., Bruinzeel, L., Drent, R., Kersten, M., Van der Meer, J., Wiersma, P., 1996. Variability in basal metabolic rate of a long-distance migrant shorebird (red knot, *Calidris canutus*) reflects shifts in organ sizes. Physiol. Zool. 69, 191–217.
- Popa-Lisseanu, A.G., Delgado-Huertas, A., Forero, M.G., Rodriguez, A., Arlettaz, R., Ibáñez, C., 2007. Bats' conquest of a formidable forgaging niche: the myriads of nocturnally migrating songbirds. PloS One 2, 1–6.
- Reynolds, P.S., Lee III, R.M., 1996. Phylogenetic analysis of avian energetics: passerines and nonpasserines do not differ. Am. Nat. 147, 735–759.
- Rezende, E.L., Swanson, D.L., Novoa, F.F., Bozinovic, F., 2002. Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics. J. Exp. Biol. 205, 101–107.
- Scholander, P.F., Hock, R., Walters, V., Johnson, F., Irving, L., 1950. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99, 237–258.
- Sibley, C.G., Ahlquist, J.E., 1990. Phylogeny and Classification of Birds: a Study in Molecular Evolution. Yale University Press.
- Tieleman, B.I., Williams, J.B., Bloomer, P., 2002. Adaptation of metabolism and evaporative water loss along an aridity gradient. Proc. Zool. Soc. Lond. B 270, 207–214.
- Wasser, J.S., 1986. The relationship of energetics of falconiform birds to body mass and climate. Condor 88, 57–62.
- Weathers, W.W., Weathers, D.L., van Riper III, C., 1983. Basal metabolism of the Apapane: comparison of freshly caught birds with long-term captives. Auk 100, 977–978.
- West, G.B., Brown, J.H., Enquist, B.J., 1999. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679.
- Westoby, M., Leishman, M.R., Lord, J.M., 1995. Further remarks on phylogenetic correction. J. Ecol. 83, 727–734.
- White, C.R., Seymour, R.S., 2003. Mammalian basal metabolic rate is proportional to mass2/3. Proc. Natl. Acad. Sci. 100, 4046–4049.
- White, C.R., Seymour, R.S., 2004. Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life-history variables. Physiol. Biochem. Zool. 77, 929–941.
- White, C.R., Phillips, N.F., Seymour, R.S., 2006. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2, 125–127.
- White, C.R., Cassey, P., Blackburn, T.M., 2007. Allometric exponents do not support a universal metabolic allometry. Ecology 88, 315–323.
- Wiersma, P., Muñoz-Garcia, A., Walker, A., Williams, J.B., 2007. Tropical birds have a slow pace of life. Proc. Natl. Acad. Sci., USA 104, 9340–9345.
- Wijnandts, H., 1984. Ecological energetics of the long-eared owl (*Asio otus*). Ardea 72,
- Wikelski, M., Spinney, L., Schelsky, W., Scheuerlein, A., Gwinner, E., 2003. Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc. R. Soc. Lond. B 270, 2382–2388.
- Williams, J.B., Tieleman, I., 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J. Exp. Biol. 203, 3153–3159.
- Winter, Y., Helversen, O. von, 1998. The energy cost of flight: do small bats fly more cheaply than birds? J. Comp. Physiol. B 168, 105–111.