

Electromagnetic spectrum

From Seguin & Villeneuve, Astromnomie et Astrophysique

Eundamentals

Remote Sensing observations mode

The electromagnetic radiation Coming from the Earth

Radar Fundamentals

RADAR:

RAdio Detection And Ranging

Emition of emw*Reception* backscattered echoes

Road RADAR

(© US police)

US Army

Imaging RADAR PALSAR

(© NASDA)

Vegetation classification with SAR data

Spaceborne Remote Sensing
Optical since 70's
Radar since 1991

Source: Centre canadien de télédétection

Different polarizations

Insensitive to clouds and atmosphere + day / night acquisitions

Radar particularly suitable for heavily cloudy areas

§ Not sensitive to cloud cover $(\lambda > 2 \text{ cm})$

Frequency - wavelength

Radar: all weather acquisition

Source: Wikipedia

SPACEBORNE SAR SENSORS

Wavelength

$$f = \frac{c}{\lambda}$$

Band	Wavelength $\pmb{\lambda}$ (cm)	Frequency f
X	~ 3 cm	~ 10 GHz
С	~ 6 cm	~ 5 GHz
L	~ 25 cm	~ 1,2 GHz
P	~ 70 cm	~ 400 MHz

SPACEBORNE SAR SENSORS

SPACEBORNE SAR SENSORS

Sentinel-1 Constellation Observation Scenario: Revisit & Coverage Frequency

validity start: 02/2018

SAR data: summary

Name	Acquisition period	Band Frequency	Polarization mode	Spatial resolution (m)	Revisit time (days)	Scene cover (km)
ERS-1/2	91 - 11	С	VV	20	35	185x185
JERS	92 - 98	L	HH	20	44	75 x 75
Radarsat	95 – 13	С	HH	10-100	24	35 x 500
ASAR	01-13	С	1 or 2 pol. HH/HV/VV	30-1000	few -35	100x500
PALSAR	07-11	L	Polarimetric HH/HV/VV	10-100	few-24	100-500
Radarsat-2	2007 -	С	Polarimetric HH/HV/VV	1-15	5 to 10	NA
TerraSAR-X	2007 -	X	1 or 2 pol. HH/HV/VV	1-20	few-11	5-100
Cosmo- Skymed	2007 -	X	1 or 2 pol HH/HV/VV	1-100	12 h	10-200
SAOCOM	2015	L	Polarimetric HH/HV/VV	7-100	few-16	60-320
Sentinel 1	2015	С	1 or 2 pol HH/HV/VV	5 - 100m	few-12	80-400
ALOS-2	2015	L	Polarimetric HH/HV/VV	3-100	few-14	25-350

OUTLINE

- I. Radar imaging Spatial resolution
- **II. Polarization Polarimetry**
- III.Radar response sensitivity
- **IV. Relief effects**
- V. Speckle and Filtering