Introducción

Preliminares

Basándonos en [1]

2.1. Definibilidad por fórmulas abiertas

TEOREMA 1 (Los embeddings preservan fórmulas abiertas). Sean **A**, **B** estructuras $y \gamma : \mathbf{A} \to \mathbf{B}$ una función. Son equivalentes:

- 1. γ es un embedding de A en B.
- 2. Para toda fórmula abierta $\varphi(\bar{x})$ y para cada \bar{a} de A vale que:

$$\mathbf{A} \vDash \varphi \left[\bar{a} \right] \Leftrightarrow \mathbf{B} \vDash \varphi \left[\gamma(\bar{a}) \right]$$

Demostración. $1 \Rightarrow 2$)

Sea γ un embedding de A en B, sea $\varphi(x_1,...,x_n)$ una fórmula abierta y $\bar{a} \in A^n$, el caso base sale directo ya que los homomorfismos preservan términos. Veamos los casos inductivos:

Sea $\varphi(\bar{x}) = \neg \varphi_1(\bar{x}) \text{ con } \varphi_1 \in F_k^{\tau}$:

$$\mathbf{A} \vDash \neg \varphi_1[\bar{a}] \text{ sii } \mathbf{A} \not\vDash \varphi_1[\bar{a}] \text{ sii } \mathbf{B} \not\vDash \varphi_1[\gamma(\bar{a})] \text{ sii } \mathbf{B} \vDash \neg \varphi_1[\gamma(\bar{a})]$$

Sea $\varphi(\bar{x}) = (\varphi_1 \eta \varphi_2)(\bar{x}) \text{ con } \varphi_1, \varphi_2 \in F_k^{\tau}$:

 $\mathbf{A} \vDash (\varphi_1 \eta \varphi_2)[\bar{a}] \text{ sii } \mathbf{A} \vDash \varphi_1[\bar{a}] "\eta" \mathbf{A} \vDash \varphi_2[\bar{a}] \text{ sii } \mathbf{A} \vDash \varphi_1[\gamma(\bar{a})] "\eta" \mathbf{B} \vDash \varphi_2[\gamma(\bar{a})] \text{ sii } \mathbf{B} \vDash (\varphi_1 \eta \varphi_2)[\gamma(\bar{a})]$ $2 \Rightarrow 1)$

Supongamos que para toda fórmula abierta $\varphi = \varphi(\bar{x})$ y cada $\bar{a} \in A^m$ vale que:

$$\mathbf{A} \vDash \varphi[\bar{a}] \Leftrightarrow \mathbf{B} \vDash \varphi[\gamma(\bar{a})]$$

• Veamos que γ es inyectiva:

$$\gamma(a) = \gamma(a')
\mathbf{B} \models (x_1 \equiv x_2)[\gamma(a), \gamma(a')]
\mathbf{A} \models (x_1 \equiv x_2)[a, a']
a = a'$$

 \bullet Veamos que γ es un homomorfismo:

Sea $c \in \mathcal{C}$

$$\mathbf{A} \vdash (c \equiv x_1)[c^{\mathbf{A}}]$$

$$\mathbf{B} \vdash (c \equiv x_1)[\gamma(c^{\mathbf{A}})]$$

$$c^{\mathbf{B}} = \gamma(c^{\mathbf{A}})$$

Sea $r \in \mathcal{R}_n$

$$(a_1, \dots, a_n) \in r^{\mathbf{A}}$$

$$\mathbf{A} \models r(x_1, \dots, x_n)[a_1, \dots, a_n]$$

$$\mathbf{B} \models r(x_1, \dots, x_n)[\gamma(a_1), \dots, \gamma(a_n)]$$

$$(\gamma(a_1), \dots, \gamma(a_n)) \in r^{\mathbf{B}}$$

Sea $f \in \mathcal{F}_n$

$$\mathbf{A} \models (f(x_1, \dots, x_n) \equiv x_{n+1})[a_1, \dots, a_n, f^{\mathbf{A}}(a_1, \dots, a_n)]$$

$$\mathbf{B} \models (f(x_1, \dots, x_n) \equiv x_{n+1})[\gamma(a_1), \dots, \gamma(a_n), \gamma(f^{\mathbf{A}}(a_1, \dots, a_n))]$$

$$f^{\mathbf{B}}(\gamma(a_1), \dots, \gamma(a_n)) = \gamma(f^{\mathbf{A}}(a_1, \dots, a_n))$$

• Veamos que γ es embedding: Sea $r \in \mathcal{R}_n$

$$(\gamma(a_1), \dots, \gamma(a_n)) \in r^{\mathbf{B}}$$

 $\mathbf{B} \models r(x_1, \dots, x_n)[\gamma(a_1), \dots, \gamma(a_n)]$
 $\mathbf{A} \models r(x_1, \dots, x_n)[a_1, \dots, a_n]$
 $(a_1, \dots, a_n) \in r^{\mathbf{A}}$

Teorema 2. Si **A** es una subestructura de **B** y $\varphi(\bar{x})$ es una fórmula abierta, entonces para cada $\bar{a} \in A^n$ vale que

$$\mathbf{A} \vDash \varphi [\bar{a}] \Leftrightarrow \mathbf{B} \vDash \varphi [\bar{a}]$$

Demostración. Sea ${\bf A}$ una subestructura de ${\bf B}$ y $\varphi\left(\bar{x}\right)$ una fórmula abierta. Como **A** es subestructura es cerrada sobre $r, f y c^{\mathbf{B}} \in A$

Sea $\gamma: \mathbf{A} \to \mathbf{B}$ tal que para todo $x \in A$, $\gamma(x) = x$. Como $\mathbf{A} \leq \mathbf{B}$, es directo que γ es un embedding. Entonces por el Teorema 1, $\mathbf{A} \models \varphi[\bar{a}] \Leftrightarrow \mathbf{B} \models \varphi[\gamma(\bar{a})]$

Finalmente, por definición de γ :

$$\mathbf{A} \vDash \varphi \left[\bar{a} \right] \Leftrightarrow \mathbf{B} \vDash \varphi \left[\bar{a} \right]$$

Notación 3. Dado un conjunto de fórmulas Δ , escribiremos $\Delta(\bar{x})$ para anunciar que cada una de las fórmulas en Δ tiene sus variables libres contenidas en la tupla \bar{x} , y que consideramos cada $\delta \in \Delta(\bar{x})$ declarada $\delta = \delta(\bar{x})$. Si **A** es una estructura y \bar{a} es una tupla de elementos de A, escribiremos $\mathbf{A} \models \Delta [\bar{a}]$ cuando $\mathbf{A} \models \delta [\bar{a}]$ para cada $\delta \in \Delta(\bar{x})$.

Definición 4. Sea **A** una estructura y sean $a_1, \ldots, a_n \in A$. Definimos el diagrama abierto para a_1, \ldots, a_n en **A** como:

$$\Delta_{\mathbf{A},\bar{a}}(x_1,\ldots,x_n) := \{\alpha \mid \alpha \text{ es abierta y } \mathbf{A} \vDash \alpha [\bar{a}] \}$$

TEOREMA 5. Sea **A** una estructura $y b_1, \ldots, b_n \in B$, son equivalentes:

- 1. $\mathbf{B} \models \Delta_{\mathbf{A}\bar{a}} \left[\bar{b} \right]$
- 2. Hay un isomorfismo γ de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$ tal que $\gamma(\bar{a}) = \bar{b}$

DEMOSTRACIÓN. Veamos 1⇒2:

Supongamos que $\mathbf{B} \models \Delta_{\mathbf{A}\bar{a}} \left[\bar{b} \right]$

Si α fórmula abierta y $\mathbf{A} \models \alpha [\bar{a}]$ entonces $\mathbf{B} \models \alpha [\bar{b}]$

Tomo
$$\langle \bar{a} \rangle^{\mathbf{A}} = \{ t^{\mathbf{A}}[a_1, \dots, a_n] : t \in T^{\tau}, a_1, \dots, a_n \in \bar{a} \} \ \mathbf{y} \ \langle \bar{b} \rangle^{\mathbf{A}} = \{ t^{\mathbf{A}}[b_1, \dots, b_n] : t \in T^{\tau}, b_1, \dots, b_n \in \bar{b} \}$$

Defino

$$\gamma: A' \to B'$$

 $\gamma: (t^{\mathbf{A}}[a_1, \dots, a_n]) = t^{\mathbf{B}}[b_1, \dots, b_n]$

Es claro que γ es un homomorfismo.

lacktriangle Veamos que γ es inyectivo Sean $a_1', a_2' \in A'$ tales que $a_1' \neq a_2'$

$$a'_{1} \neq a'_{2}$$

$$t_{1}^{\mathbf{A}}[\bar{a}] \neq t_{2}^{\mathbf{A}}[\bar{a}]$$

$$(2.1.1) \qquad \mathbf{A} \models \neg(t_{1} \equiv t_{2})[\bar{a}]$$

$$(2.1.2) \qquad \mathbf{B} \models \neg(t_{1} \equiv t_{2})[\bar{b}]$$

$$t_{1}^{\mathbf{B}}[\bar{b}] \neq t_{2}^{\mathbf{B}}[\bar{b}]$$

$$\gamma(t_{1}^{\mathbf{A}}[\bar{a}]) \neq \gamma(t_{2}^{\mathbf{A}}[\bar{a}])$$

ullet Veamos que γ es sobreyectivo Sea $b' \in B'$

$$b' \in B'$$
$$t^{\mathbf{B}}[\overline{b}] \in B'$$

Tomo $t^{\mathbf{A}}[\bar{a}] = a'$

$$\gamma \left(t^{\mathbf{A}} \left[\bar{a} \right] \right) = t^{\mathbf{B}} \left[\bar{b} \right]$$

Por lo tanto γ es un isomorfismo y $\gamma(a_j) = \gamma(x_j^{\mathbf{A}}[a_1, \dots, a_n]) = x_j^{\mathbf{B}}[b_1, \dots, b_n] = b_j$. Ahora veamos $2 \Rightarrow 1$:

Supongamos que hay un isomorfismo γ de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$ tal que $\gamma(\bar{a}) = \bar{b}$

Entonces, es claro que γ es un embedding de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$

Por el Teorema 1 para toda fórmula abierta $\varphi(\bar{x})$ y cada $\bar{a} \in A'$

$$\langle \bar{a} \rangle^{\mathbf{A}} \vDash \varphi[\bar{a}] \Leftrightarrow \langle \bar{b} \rangle^{\mathbf{B}} \vDash \varphi[\gamma(\bar{a})]$$

Por el Teorema 2 como $\langle \bar{a} \rangle^{\mathbf{A}}$ es subestructura de \mathbf{A} , $\langle \bar{b} \rangle^{\mathbf{B}}$ lo es de \mathbf{B} y φ es abierta

$$\mathbf{A} \vDash \varphi [\bar{a}] \Leftrightarrow \mathbf{B} \vDash \varphi [\gamma(\bar{a})]$$

$$\mathbf{A} \vDash \varphi \left[\bar{a} \right] \Leftrightarrow \mathbf{B} \vDash \varphi \left[\bar{b} \right]$$

Por lo tanto si α es abierta y $\mathbf{A} \models \alpha [\bar{a}]$ entonces $\mathbf{B} \models \alpha [\bar{b}]$ Finalmente, $\mathbf{B} \models \Delta_{\mathbf{A}\bar{a}} [\bar{b}]$

DEFINICIÓN 6. Dos fórmulas $\alpha(\bar{x})$ y $\beta(\bar{x})$ se dicen equivalentes sobre una familia de estructuras \mathcal{K} si para cada $\mathbf{A} \in \mathcal{K}$ y cada \bar{a} de A vale que

$$\mathbf{A} \vDash \alpha [\bar{a}] \iff \mathbf{A} \vDash \beta [\bar{a}].$$

TEOREMA 7 (Modulo equivalencia sobre una estructura finita, la cantidad de fórmulas en x_1, \ldots, x_n es finita). Sea \mathcal{K} una clase finita de estructuras finitas, y sean x_1, \ldots, x_n variables.

Hay un conjunto finito de fórmulas $\Sigma(\overline{x})$ tal que para toda fórmula $\varphi(\overline{x})$ hay $\sigma(\overline{x}) \in \Sigma(\overline{x})$ tal que $\varphi(\overline{x})$ y $\sigma(\overline{x})$ son equivalentes sobre K.

Demostración. Sea $\mathcal{K} = \{\mathbf{A}_1, \dots, \mathbf{A}_m\}$. Veamos primero que las fórmulas son finitas modulo equivalencia. Sea $\varphi(\bar{x})$ defino $T_{\varphi\mathcal{K}} = \{\bar{a} \in A_1^n | \mathbf{A}_1 \models \varphi[\bar{a}]\} \times \dots \times \{\bar{a} \in A_m^n | \mathbf{A}_m \models \varphi[\bar{a}]\}$ y supongamos φ equivalente ψ en \mathcal{K} , entonces

 $(\bar{a}_1,\ldots,\bar{a}_m)\in T_{\varphi\mathcal{K}}\Leftrightarrow (\bar{a}_1,\ldots,\bar{a}_m)\in T_{\psi\mathcal{K}}$ para cada $(\bar{a}_1,\ldots,\bar{a}_m)\in A_1^n\times\cdots\times A_m^n$ lo que significa que $T_{\varphi\mathcal{K}}=T_{\psi\mathcal{K}}$. Entonces basta con contar los subconjuntos de $A_1^n\times\cdots\times A_m^n$, como $|A_1^n\times\cdots\times A_m^n|=|A_1|^n\cdot\cdots\cdot|A_m|^n$ y cada A_i era finito, es claro que $A_1^n\times\cdots\times A_m^n$ es finito. Por lo tanto $\mathcal{P}(A^n)$ también lo es.

Ahora veamos que existe $\Sigma(\bar{x})$. Sean $T_1,\ldots,T_k\subseteq A_1^n\times\cdots\times A_m^n$ tales que existe $\varphi_i(\bar{x})$ tal que para cada $\mathbf{A}\in\mathcal{K},\,\mathbf{A}\vDash\varphi_i\left[T_i\right]$ y sea $\psi\left(\bar{x}\right)$, tomo $T_{\psi\mathcal{K}}$ y como T_1,\ldots,T_k es la sucesión de todos los subconjuntos que se definen con una fórmula, hay un j tal que $T_j=T_{\psi\mathcal{K}}$. Entonces, para cada $\mathbf{A}\in\mathcal{K},\,\mathbf{A}\vDash\psi\left[\bar{a}\right]\Leftrightarrow\mathbf{A}\vDash\varphi_j\left[\bar{a}\right].$

TEOREMA 8. Sean \mathbf{A}, \mathbf{B} estructuras finitas y $a_1, \ldots, a_n \in A$, entonces existe una fórmula abierta $\varphi(\bar{x})$ tal que para todo $\bar{b} \in B^n$ son equivalentes:

- 1. $\mathbf{B} \models \varphi \left[\bar{b} \right]$
- 2. Hay un isomorfismo γ de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$ tal que $\gamma(\bar{a}) = \bar{b}$

DEMOSTRACIÓN. Tomo $\varphi=\bigwedge_{\alpha\in\Delta_{\mathbf{A}\bar{a}}}\alpha\left(\bar{x}\right)$ que es una fórmula, por el Teorema 7.

Es claro que $\mathbf{B} \vDash \bigwedge_{\alpha \in \Delta_{\mathbf{A}\bar{a}}} \alpha(\bar{x}) [\bar{b}] \Leftrightarrow \mathbf{B} \vDash \Delta_{\mathbf{A}\bar{a}} [\bar{b}]$

Entonces por Teorema 5, hay un isomorfismo γ de $\langle \bar{a} \rangle^{\bf A}$ en $\langle \bar{b} \rangle^{\bf B}$ tal que $\gamma(\bar{a})=\bar{b}$

DEFINICIÓN 9. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden y $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Diremos que R es definible en una familia \mathcal{K} de \mathcal{L}' -estructuras cuando exista una \mathcal{L} -fórmula $\varphi(x_1,\ldots,x_n)$ tal que para todo $\mathbf{A} \in \mathcal{K}$ y todas $a_1,\ldots,a_n \in A$

$$(a_1,\ldots,a_n)\in R^{\mathbf{A}}\iff \varphi\left(a_1,\ldots,a_n\right)$$

Si $\mathcal{L} \subseteq \mathcal{L}'$ son lenguajes de primer orden, para una \mathcal{L}' -estructura \boldsymbol{A} , usaremos $\boldsymbol{A}_{\mathcal{L}}$ para indicar el reducto de \boldsymbol{A} al lenguaje \mathcal{L} . Si $\boldsymbol{A}, \boldsymbol{B}$ son \mathcal{L} -estructuras, usaremos $\boldsymbol{A} \leq \boldsymbol{B}$ para expresar que \boldsymbol{A} es subestructura de \boldsymbol{B} . Sean

$$At(\mathcal{L}) = \{\mathcal{L}\text{-fórmulas atómicas}\}\$$

$$\pm At(\mathcal{L}) = At(\mathcal{L}) \cup \{ \neg \alpha : \alpha \in At(\mathcal{L}) \}$$

$$Op(\mathcal{L}) = \{ \varphi : \varphi \text{ es una } \mathcal{L}\text{-fórmula abierta} \}$$

DEFINICIÓN 10. Dados A, B conjuntos, $R^A \subseteq A^n$, $R^B \subseteq B^n$, diremos que una función $\gamma: A \to B$ preserva R si para toda tupla $(a_1, \ldots, a_n) \in A_0$ tenemos que si $(a_1, \ldots, a_n) \in R^A$ implica que $(\sigma(a_1), \ldots, \sigma(a_n)) \in R^A$.

TEOREMA 11. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, sea $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Para una clase finita \mathcal{K} de \mathcal{L}' -estructuras, los siguientes son equivalentes:

- 1. Hay una fórmula en $Op(\mathcal{L})$ que define R en \mathcal{K} .
- 2. Para todas $A, B \in \mathcal{K}$, todas $A_0 \leq A_{\mathcal{L}}, B_0 \leq B_{\mathcal{L}}$, todo isomorfismo $\sigma : A_0 \to B_0$ preserva R.

Demostración. 1⇒2) Sea $\varphi(\bar{x})$ la fórmula que define R en \mathcal{K} , sean $\mathbf{A}, \mathbf{B} \in \mathcal{K}$ y sean $\mathbf{A}_0 \leq \mathbf{A}_{\mathcal{L}}$ y $\mathbf{B}_0 \leq \mathbf{B}_{\mathcal{L}}$ tales que $\sigma: \mathbf{A}_0 \to \mathbf{B}_0$ sea un isomorfismo. Sea $\bar{a} \in R^{\mathbf{A}_0} \cap A_0$ veamos que $\sigma(\bar{a}) \in R^{\mathbf{B}_0}$. Como $\bar{a} \in R^{\mathbf{A}_0} \Rightarrow \bar{a} \in R^{\mathbf{A}} \Leftrightarrow \mathbf{A} \models \varphi[\bar{a}]$, por Teorema 2, $A_0 \models \varphi[\bar{a}]$ y como \mathbf{A}_0 y \mathbf{B}_0 son isomorfos por σ , $\mathbf{B}_0 \models \varphi[\sigma(\bar{a})]$. Nuevamente por Teorema 2 $\mathbf{B} \models \varphi[\sigma(\bar{a})]$ y como por hipótesis φ define a R en \mathcal{K} , $\sigma(\bar{a}) \in R^{\mathbf{B}}$.

- $2\Rightarrow 1$) Sea $\varphi = \bigvee_{\mathbf{A}\in\mathcal{K}} \left(\bigvee_{\bar{a}\in R^{\mathbf{A}}} \left(\bigwedge_{\alpha\in\Delta_{\mathbf{A}\bar{a}}} \alpha\left(\bar{x}\right)\right)\right)$, la cual es fórmula por el Teorema 7. Veamos que para cada $\mathbf{B}\in\mathcal{K}$, $\mathbf{B}\models\varphi\left[\bar{b}\right]$ sii $\bar{b}\in R^{\mathbf{B}}$. Sea $\mathbf{B}\in\mathcal{K}$:
- \Rightarrow) Supongamos $\mathbf{B} \vDash \varphi \left[\overline{b} \right]$, entonces en particular para algún $\mathbf{A} \in \mathcal{K}$ y $\overline{a} \in R^{\mathbf{A}}$, $\mathbf{B} \vDash \bigwedge_{\alpha \in \Delta_{\mathbf{A}\overline{a}}} \alpha \left(\overline{x} \right) \left[\overline{b} \right]$. Por Teorema 8, hay un isomorfismo $\gamma : \langle \overline{a} \rangle^{\mathbf{A}} \to \langle \overline{b} \rangle^{\mathbf{B}}$ tal que $\gamma \left(\overline{a} \right) = \overline{b}$. Entonces por hipótesis γ preserva R. Finalmente como $\overline{a} \in R^{\mathbf{A}}$, entonces $\gamma \left(\overline{a} \right) \in R^{\mathbf{B}}$ o sea que $\overline{b} \in R^{\mathbf{B}}$.
- $\Leftrightarrow \text{Supongamos } \bar{b} \in R^{\mathbf{B}}. \text{ Entonces } \varphi = \bigvee_{\mathbf{A} \in \mathcal{K}} \left(\bigvee_{\bar{a} \in R^{\mathbf{A}}} \left(\bigwedge_{\alpha \in \Delta_{\mathbf{A}\bar{a}}} \alpha\left(\bar{x}\right)\right)\right) = \cdots \vee \cdots \vee \left(\bigwedge_{\alpha \in \Delta_{\mathbf{B}\bar{b}}} \alpha\left(\bar{x}\right)\right), \text{ evidentemente } \mathbf{B} \vDash \Delta_{\mathbf{B}\bar{b}} \left[\bar{b}\right], \text{ entonces } \mathbf{B} \vDash \varphi\left[\bar{b}\right].$

2.2. Definibilidad por fórmulas abiertas positivas y conjunción de atómicas

Teorema 12. Sean \mathbf{A}, \mathbf{B} estructuras $y \ h : A \to B$ una función, son equivalentes:

- 1. h es un homomorfismo de A en B.
- 2. Para toda fórmula atómica $\varphi = \varphi(\bar{x})$ y para cada \bar{a} de A vale que

$$\mathbf{A} \vDash \varphi \left[\bar{a} \right] \Longrightarrow \mathbf{B} \vDash \varphi \left[h \left(\bar{a} \right) \right].$$

3. Para toda fórmula abierta positiva $\varphi = \varphi(\bar{x})$ y para cada \bar{a} de A vale que

$$\mathbf{A} \vDash \varphi \left[\bar{a} \right] \Longrightarrow \mathbf{B} \vDash \varphi \left[h \left(\bar{a} \right) \right].$$

Demostración. 1 \Rightarrow 2) Directo, ya que los homomorfismos preservan términos. 2 \Rightarrow 1) Supongamos $\mathbf{A} \vDash \varphi\left[\bar{a}\right] \Rightarrow \mathbf{B} \vDash \varphi\left[h\left(\bar{a}\right)\right]$ con φ atómica. Veamos que h es homomorfismo.

Sea $c \in \mathcal{C}$

$$\mathbf{A} \vDash (c \equiv x_1) \left[c^{\mathbf{A}} \right] \Rightarrow \mathbf{B} \vDash (c \equiv x_1) \left[h \left(c^{\mathbf{A}} \right) \right] \Leftrightarrow c^{\mathbf{B}} = h \left(c^{\mathbf{A}} \right)$$

Sea $f \in \mathcal{F}_n$

$$\mathbf{A} \models (f(x_1, \dots, x_n) \equiv x_{n+1}) [a_1, \dots, a_n, f^{\mathbf{A}}(\bar{a})]$$

$$\mathbf{B} \models (f(x_1, \dots, x_n) \equiv x_{n+1}) [h(a_1), \dots, h(\bar{a}_n), h(f^{\mathbf{A}}(\bar{a}))]$$

$$f^{\mathbf{B}}(h(\bar{a})) = h(f^{\mathbf{A}}(\bar{a}))$$

Sea $r \in \mathcal{R}_n$

$$\bar{a} \in r^{\mathbf{A}} \Rightarrow \mathbf{A} \models r(\bar{x})[\bar{a}] \Rightarrow \mathbf{B} \models r(\bar{x})[h(\bar{a})] \Rightarrow h(\bar{a}) \in r^{\mathbf{B}}$$

 $2 \Rightarrow 3$) Rutina.

3⇒2) Directo ya que toda atómica es abierta positiva.

DEFINICIÓN 13. Sea **A** una estructura y sean $a_1, \ldots, a_n \in A$. Definimos el diagrama atómico positivo de \bar{a} en **A** como

$$\Delta_{\mathbf{A}|\bar{a}}^+(x_1,\ldots,x_n) := \{\alpha \mid \alpha \text{ es atómica y } \mathbf{A} \vDash \alpha [\bar{a}] \}.$$

¹Una fórmulas es positiva si no tiene ocurrencias de \neg , \rightarrow , \leftrightarrow .

TEOREMA 14. Sean **B** una estructura y $b_1, \ldots, b_n \in B$, son equivalentes:

- 1. $\mathbf{B} \models \Delta_{\mathbf{A},\bar{a}}^+ [\bar{b}]$.
- 2. Hay un homomorfismo h de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$ tal que $h(\bar{a}) = \bar{b}$.

Demostración. 1 \Rightarrow 2) Defino $h: \langle \bar{a} \rangle^{\mathbf{A}} \to \langle \bar{b} \rangle^{\mathbf{B}}$, como $h\left(t^{\mathbf{A}}\left[\bar{a}\right]\right) = t^{\mathbf{B}}\left[\bar{b}\right]$

El cual es se ve fácilmente que es un homomorfismo que cumple $h(\bar{a}) = \bar{b}$.

 $2\Rightarrow 1$) Supongamos que hay un homomorfismo h de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$ tal que $h(\bar{a}) = \bar{b}$, entonces como $\mathbf{A} \models \Delta^{+}_{\mathbf{A},\bar{a}}[\bar{a}]$, por el Teorema 12 $\mathbf{B} \models \Delta^{+}_{\mathbf{A},\bar{a}}[h(\bar{a})]$, entonces $\mathbf{B} \models \Delta_{\mathbf{A},\bar{a}}^+ \left[\bar{b} \right]$

TEOREMA 15. Sean \mathbf{A}, \mathbf{B} estructuras finitas $y \ a_1, \dots, a_n an \in A$, entonces existe una fórmula abierta $\varphi(\bar{x})$ tal que para todo $\bar{b} \in B^n$ son equivalentes:

- 1. $\mathbf{B} \models \varphi \left[\overline{b} \right]$
- 2. Hay un homomorfismo h de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$ tal que $h(\bar{a}) = \bar{b}$

Demostración. Tomo $\varphi=\bigwedge_{\alpha\in\Delta_{\mathbf{A}\bar{a}}^{+}}\alpha\left(\bar{x}\right)$ que es una fórmula, por el Teorema

Es claro que $\mathbf{B} \vDash \varphi \left[\overline{b} \right] \Leftrightarrow \mathbf{B} \vDash \Delta_{\mathbf{A}\overline{a}}^{+} \left[\overline{b} \right]$

Entonces por Teorema 14, hay un homomorfismo h de $\langle \bar{a} \rangle^{\mathbf{A}}$ en $\langle \bar{b} \rangle^{\mathbf{B}}$ tal que $h(\bar{a}) = \bar{b}$

Teorema 16. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, sea $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Para una clase finita K de \mathcal{L}' -estructuras, los siguientes son equivalentes:

- 1. Hay una \mathcal{L} -fórmula abierta positiva que define R en \mathcal{K} .
- 2. Para todas $A,B\in\mathcal{K}$, todas $A_0\leq A_{\mathcal{L}},B_0\leq B_{\mathcal{L}}$, todo homomorfismo $h: \mathbf{A}_0 \to \mathbf{B}_0$ preserva R.

Demostración. Veamos 1⇒2:

Sea $\varphi(\bar{x})$ la fórmula abierta positiva que define R en \mathcal{K} , sean $\mathbf{A}, \mathbf{B} \in \mathcal{K}$ y sean $\mathbf{A_0} \leq \mathbf{A_L}$ y $\mathbf{B_0} \leq \mathbf{B_L}$ tales que $h: \mathbf{A_0} \to \mathbf{B_0}$ sea un homomorfismo. Sea $\bar{a} \in R^{\mathbf{A}_0} \cap A_0$ veamos que $h(\bar{a}) \in R^{\mathbf{B}_0}$:

 $\bar{a} \in R^{\mathbf{A}_0} \Rightarrow \bar{a} \in R^{\mathbf{A}} \Leftrightarrow \mathbf{A} \vDash \varphi[\bar{a}], \text{ por Teorema 2, } \mathbf{A}_0 \vDash \varphi[\bar{a}] \text{ y como } h \text{ es un}$ homomorfismo de \mathbf{A}_0 en \mathbf{B}_0 y φ es abierta positiva por Teorema 12, $\mathbf{B}_0 \models \varphi[h(\bar{a})]$. Nuevamente por Teorema 2 $\mathbf{B} \models \varphi[h(\bar{a})]$ y como por hipótesis φ define a R en \mathcal{K} , $h\left(\bar{a}\right) \in R^{\mathbf{B}}$.

Veamos $2 \Rightarrow 1$: Sea $\varphi = \bigvee_{\mathbf{A} \in \mathcal{K}} \left(\bigvee_{\bar{a} \in R^{\mathbf{A}}} \left(\bigwedge_{\alpha \in \Delta_{\mathbf{A}\bar{a}}^{+}} \alpha(\bar{x}) \right) \right)$, la cual es fórmula por el Teorema 7. Sea $\mathbf{B} \in \mathcal{K}$:

- \Rightarrow) Supongamos $\mathbf{B} \models \varphi[\bar{b}]$, entonces en particular para algún $\mathbf{A} \in \mathcal{K}$ y $\bar{a} \in R^{\mathbf{A}}$, $\mathbf{B} \models \Delta_{\mathbf{A}\bar{a}}^{+}[\bar{b}]$. Por Teorema 15, hay un homomorfismo $h: \langle \bar{a} \rangle^{\mathbf{A}} \to \langle \bar{b} \rangle^{\mathbf{B}}$ tal que $h(\bar{a}) = \bar{b}$. Entonces por hipótesis h preserva R. Finalmente como $\bar{a} \in R^{\mathbf{A}}$, entonces $h(\bar{a}) \in R^{\mathbf{B}}$ o sea que $\bar{b} \in R^{\mathbf{B}}$.
- \Leftarrow) Supongamos $\bar{b} \in R^{\mathbf{B}}$. Entonces $\varphi = \cdots \vee \cdots \vee \left(\bigwedge_{\alpha \in \Delta_{\mathbf{B}\bar{b}}^{+}} \alpha(\bar{x}) \right)$, evidentemente $\mathbf{B} \vDash \Delta_{\mathbf{B}\bar{b}}^{+} \left[\bar{b}\right]$, entonces $\mathbf{B} \vDash \varphi \left[\bar{b}\right]$.

DEFINICIÓN 17. Sean A_1,\ldots,A_m,B conjuntos, $R^{A_i}\subseteq A_i^n$ para cada $i\in[1,m]$, $R^B\subseteq B^n$ y $h:D\subseteq A_1\times\cdots\times A_m\to B$ una función. Diremos que h preserva R si dados

$$\bar{a}_1 = (a_{11}, \dots, a_{1m}), \dots, \bar{a}_n = (a_{n1}, \dots, a_{nm}) \in D$$

tales que

$$(a_{1i},\ldots,a_{ni})\in R^{A_i}$$
para cada i \in [1,m]

se tiene que $(h(\bar{a}_1), \ldots, h(\bar{a}_n)) \in R^B$.

LEMA 18. Sean $\mathbf{A}_1, \dots, \mathbf{A}_m$ estructuras $y \varphi = \exists \bar{y} \psi(\bar{x}, \bar{y})$ con ψ una conjunción de fórmulas atómicas. Entonces son equivalentes:

- 1. Para todo i = 1, ..., m se da que $\mathbf{A}_i \vDash \varphi[a_{1i}, ..., a_{ni}]$
- 2. $\mathbf{A}_1 \times \cdots \times \mathbf{A}_m \vDash \varphi[\bar{a}_1, \dots, \bar{a}_n], \ con \ \bar{a}_j = (a_{j1}, \dots, a_{jm})$

Demostración. Rutina.

TEOREMA 19. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, sea $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Para una clase finita \mathcal{K} de \mathcal{L}' -estructuras, los siguientes son equivalentes:

1. Para cada $m \geq 1$, para todas $\mathbf{A}_1, \dots, \mathbf{A}_m, \mathbf{B} \in \mathcal{K}$, para cada $\mathbf{S} \leq (\mathbf{A}_1 \times \dots \times \mathbf{A}_m)_{\mathcal{L}}$, todo homomorfismo $h : \mathbf{S} \to \mathbf{B}_{\mathcal{L}}$ preserva R.

2. Hay una conjunción finita de \mathcal{L} -fórmulas atómicas que define R en \mathcal{K} .

DEMOSTRACIÓN. $2\Rightarrow 1$) Sea $\varphi(\bar{x})$ conjunción de atómicas que define a R en \mathcal{K} . Sean $m\geq 1,\ \mathbf{A}_1,\ldots,\mathbf{A}_m, \mathbf{B}\in\mathcal{K},\ \mathbf{S}\leq (\mathbf{A}_1\times\cdots\times\mathbf{A}_m)_{\mathcal{L}},\ \mathrm{y}\ h:\mathbf{S}\to\mathbf{B}_{\mathcal{L}}$ un homomorfismo. Sean

$$\bar{s}_1 = (s_{11}, \dots, s_{1m}), \dots, \bar{s}_n = (s_{n1}, \dots, s_{nm}) \in S$$

tales que

$$(s_{1i}, ..., s_{ni}) \in R^{A_i}$$
 para cada $i \in \{1, ..., m\}$.

Veamos que $(h(\bar{s}_1), \ldots, h(\bar{s}_n)) \in R^B$. Como $(s_{1i}, \ldots, s_{ni}) \in R^{A_i}$ y φ define a R en \mathcal{K} , tenemos que

$$\mathbf{A}_i \vDash \varphi[s_1, \dots, s_{ni}] \text{ para } i \in \{1, \dots, m\}.$$

Luego, por el Lema 18,

$$\mathbf{A}_1 \times \cdots \times \mathbf{A}_m \vDash \varphi \left[\bar{s}_1, \dots, \bar{s}_n \right].$$

Como φ es abierta y $\mathbf{S} \leq (\mathbf{A}_1 \times \cdots \times \mathbf{A}_m)_{\mathcal{L}}$, el Teorema 2 implica que $\mathbf{S} \models \varphi [\bar{s}_1, \dots, \bar{s}_n]$, y aplicando el Teorema 12 obtenemos que $\mathbf{B} \models \varphi [h(\bar{s}_1), \dots, h(\bar{s}_n)]$. Finalmente, como φ define a R en \mathcal{K} y $\mathbf{B} \in \mathcal{K}$, concluimos que $(h(\bar{s}_1), \dots, h(\bar{s}_n)) \in R^{\mathbf{B}}$.

1⇒2) Supongamos $\mathcal{K} = \{\mathbf{A}_1, \dots, \mathbf{A}_m\}, R$ n-aria. Sean $\bar{x}_1, \dots, \bar{x}_n \in \mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}$ tales que $\bar{x}_i = \left(x_{i1}^1, \dots, x_{i|R^{\mathbf{A}_1}|}^1, \dots, x_{i1}^m, \dots, x_{i|R^{\mathbf{A}_m}|}^m\right)$ para cada $i \in \{1, \dots, m\}$ con $\bigcup R^{\mathbf{A}_j} = \left\{\left(x_{1i}^j, \dots, x_{ni}^j\right) \text{ con } i \in \{1, |R^{\mathbf{A}_j}|\}\right\}$ para cada $i \in \{1, \dots, m\}$. Sea

$$\varphi = \bigwedge_{\substack{\alpha \in \Delta^{+} \mid_{R^{\mathbf{A}_{1}} \mid_{\times \cdots \times \mathbf{A}_{m}}^{\mid R^{\mathbf{A}_{m}} \mid_{,(\bar{x}_{1},\dots,\bar{x}_{n})}}}} \alpha \left(\bar{x}\right)$$

. Supongamos $\mathbf{B} \models \varphi[b_1, \dots, b_n]$ y veamos que $(b_1, \dots, b_n) \in R^{\mathbf{B}}$. Como $\mathbf{B} \models \Delta^+_{\mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}, (\bar{x}_1, \dots, \bar{x}_n)}$ $[b_1, \dots, b_n]$, por Teorema 14 hay h homomorfismo de $\langle \bar{x}_1, \dots, \bar{x}_n \rangle^{\mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}}$ en $\langle b_1, \dots, b_n \rangle^{\mathbf{B}}$ tal que $h(\bar{x}_i) = b_i$. Como por hipótesis h preserva R, entonces como $(x_{1i}^j, \dots, x_{ni}^j) \in R^{\mathbf{A}_j}$, $(h(\bar{x}_1), \dots, h(\bar{x}_n)) \in R^{\mathbf{B}}$, que es exactamente $(b_1, \dots, b_n) \in R^{\mathbf{B}}$.

Ahora supongamos $(b_1,\ldots,b_n)\in R^{\mathbf{B}}$ y veamos que $\mathbf{B}\vDash \varphi[b_1,\ldots,b_n]$, entonces hay algún j tal que $\mathbf{A}_j=\mathbf{B}$ y hay algún k y algún j tal que

$$\left(x_{1k}^j, \dots, x_{nk}^j\right) = (b_1, \dots, b_n)$$

. Entonces como $\mathbf{A}_{1}^{\left|R^{\mathbf{A}_{1}}\right|} \times \cdots \mathbf{B}^{\left|R^{\mathbf{B}}\right|} \cdots \times \mathbf{A}_{m}^{\left|R^{\mathbf{A}_{m}}\right|} \vDash \varphi\left[\bar{x}_{1}, \dots, \bar{x}_{n}\right]$ por Teorema 18 $\mathbf{B} \vDash \varphi\left[x_{1k}^{j}, \dots, x_{nk}^{j}\right]$, por lo tanto $\mathbf{B} \vDash \varphi\left[b_{1}, \dots, b_{n}\right]$.

TEOREMA 20. Sea **A** una estructura finita y $a_1, \ldots, a_n \in A$. Entonces hay una fórmula existencial $\varphi(x_1, \ldots, x_n)$ tal que para toda estructura **B** y para todo $\bar{b} \in B^n$ los siguientes son equivalentes:

- 1. $\mathbf{B} \models \varphi \left[\overline{b} \right]$.
- 2. Hay un embedding $\gamma : \mathbf{A} \to \mathbf{B}$ tal que $\gamma(\bar{a}) = \bar{b}$

Demostración. Sean a_1',\ldots,a_m' tales que $\langle a_1,\ldots,a_n,a_1',\ldots,a_m' \rangle^{\mathbf{A}} = \mathbf{A}$ y sea

$$\varphi = \exists y_1, \dots, y_m \left(\bigwedge_{\alpha \in \Delta_{(\bar{x}, \bar{a'}), \mathbf{A}}} \alpha(\bar{x}, \bar{y}) \right)$$

que es fórmula por el Teorema 7.

Supongamos $\mathbf{B} \vDash \varphi\left[\bar{b}\right]$, entonces existen $b'_1, \dots, b'_m \in B$ tales que $\mathbf{B} \vDash \bigwedge_{\alpha \in \Delta_{(\bar{a}, \bar{a'}), \mathbf{A}}} \alpha\left(\bar{x}, \bar{y}\right) \left[\bar{b}, \bar{b'}\right]$ por Teorema 5 hay un isomorfismo $\gamma : \left\langle \bar{a}, \bar{a'} \right\rangle^{\mathbf{A}} \to \left\langle \bar{b}, \bar{b'} \right\rangle^{\mathbf{B}}$ tal que $\gamma\left(\bar{a}, \bar{a'}\right) = \left(\bar{b}, \bar{b'}\right)$, y como $\left\langle \bar{a}, \bar{a'} \right\rangle^{\mathbf{A}} = \mathbf{A}$ y $\left\langle \bar{b}, \bar{b'} \right\rangle^{\mathbf{B}} \leq \mathbf{B}$, γ es un embedding de \mathbf{A} en \mathbf{B} tal que $\gamma\left(\bar{a}\right) = \bar{b}$.

Supongamos que hay un embedding $\gamma: \mathbf{A} \to \mathbf{B}$ tal que $\gamma(\bar{a}) = \bar{b}$, por lo tanto $\gamma: \mathbf{A} \to \mathbf{S} \leq \mathbf{B}$ es un isomorfismo. Como $\mathbf{A} \vDash \varphi[\bar{a}]$, por ser γ un isomorfismo $\mathbf{S} \vDash \varphi[\gamma(\bar{a})]$ y entonces $\mathbf{S} \vDash \varphi[\bar{b}]$. Por lo tanto existe \bar{b} en $S \subseteq B$ tal que $\mathbf{S} \vDash \bigwedge_{\alpha \in \Delta_{(\bar{a},\bar{a}'),\mathbf{A}}} \alpha(\bar{x},\bar{y}) [\bar{b},\bar{b}']$. Como $\bigwedge_{\alpha \in \Delta_{(\bar{a},\bar{a}'),\mathbf{A}}} \alpha(\bar{x},\bar{y})$ es una fórmula abierta, por Teorema 2, $\mathbf{B} \vDash \bigwedge_{\alpha \in \Delta_{(\bar{a},\bar{a}'),\mathbf{A}}} \alpha(\bar{x},\bar{y}) [\bar{b},\bar{b}']$, entonces $\mathbf{B} \vDash \varphi[\bar{b}]$

TEOREMA 21. Sea **A** una estructura finita y $a_1, \ldots, a_n \in A$. Entonces hay una fórmula existencial positiva $\varphi(x_1, \ldots, x_n)$ tal que para toda estructura **B** y para todo $\bar{b} \in B^n$ los siguientes son equivalentes:

- 1. $\mathbf{B} \models \varphi \left[\overline{b} \right]$.
- 2. Hay un homomorfismo $h: \mathbf{A} \to \mathbf{B}$ tal que $h(\bar{a}) = \bar{b}$

Demostración. Sean a_1',\ldots,a_m' tales que $\langle a_1,\ldots,a_n,a_1',\ldots,a_m' \rangle^{\mathbf{A}} = \mathbf{A}$ y sea

$$\varphi = \exists y_1, \dots, y_m \left(\bigwedge_{\alpha \in \Delta^+_{(\bar{a}, \bar{a'}), \mathbf{A}}} \alpha(\bar{x}, \bar{y}) \right)$$

que es fórmula por el Teorema 7.

Supongamos $\mathbf{B} \vDash \varphi\left[\bar{b}\right]$, entonces existen $b'_1, \dots, b'_m \in B$ tales que $\mathbf{B} \vDash \bigwedge_{\alpha \in \Delta^+_{(\bar{a}, \bar{a'}), \mathbf{A}}} \alpha\left(\bar{x}, \bar{y}\right) \left[\bar{b}, \bar{b'}\right]$ por Teorema 14 hay un homomorfismo $h : \left\langle \bar{a}, \bar{a'} \right\rangle^{\mathbf{A}} \to \left\langle \bar{b}, \bar{b'} \right\rangle^{\mathbf{B}}$ tal que $h\left(\bar{a}, \bar{a'}\right) = \left(\bar{b}, \bar{b'}\right)$, y como $\left\langle \bar{a}, \bar{a'} \right\rangle^{\mathbf{A}} = \mathbf{A}$ y $\left\langle \bar{b}, \bar{b'} \right\rangle^{\mathbf{B}} \leq \mathbf{B}$, h es un homomorfismo de \mathbf{A} en \mathbf{B} tal que $h\left(\bar{a}\right) = \bar{b}$.

Supongamos que hay un homomorfismo $h: \mathbf{A} \to \mathbf{B}$ tal que $h(\bar{a}) = \bar{b}$. Como $\mathbf{A} \models \varphi[\bar{a}]$, entonces $\mathbf{A} \models \Delta^+_{\left(\bar{a},\bar{a'}\right),\mathbf{A}}\left[\bar{a},\bar{a'}\right]$ y por Teorema 12 $\mathbf{B} \models \Delta^+_{\left(\bar{a},\bar{a'}\right),\mathbf{A}}\left[h(\bar{a}),h(\bar{a'})\right]$. Entonces $\mathbf{B} \models \Delta^+_{\left(\bar{a},\bar{a'}\right),\mathbf{A}}\left[\bar{b},\bar{b'}\right]$, por lo que claramente $\mathbf{B} \models \varphi\left[\bar{b}\right]$.

TEOREMA 22. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, sea $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Para una clase finita \mathcal{K} de \mathcal{L}' -estructuras, los siguientes son equivalentes:

- 1. Hay una \mathcal{L} -fórmula que define R en \mathcal{K} .
- 2. Para todas $A, B \in \mathcal{K}$, todo $\gamma : A_{\mathcal{L}} \to B_{\mathcal{L}}$ preserva R.

Demostración. 1⇒2) Sea φ existencial que define a R en \mathcal{K} , y sea $\gamma: \mathbf{A} \to \mathbf{B}$ un isomorfismo. Supongamos $\mathbf{A} \vDash \varphi[\bar{a}]$ entonces $\mathbf{B} \vDash \varphi[\gamma(\bar{a})]$ y como φ define a R en \mathcal{K} , entonces $\gamma(\bar{a}) \in R^{\mathbf{B}}$.

2 \Rightarrow 1) Para cada $\mathbf{A} \in \mathcal{K}$, cada $\bar{a} \in R^{\mathbf{A}}$, tomo $\bar{a'}$ tal que $\langle \bar{a}, \bar{a'} \rangle^{\mathbf{A}} = \mathbf{A}$ y $\langle \bar{b}, \bar{b'} \rangle^{\mathbf{B}} = \mathbf{B}$. Ahora tomo $\delta_{\mathbf{A},(\bar{a},\bar{a'})}(\bar{x},\bar{y}) = \bigwedge_{\alpha \in \Delta_{(\bar{a},\bar{a'}),\mathbf{A}}} \alpha(\bar{x},\bar{y})$, que es fórmula por Teorema 7. Ahora tomo

$$\varphi = \bigvee_{\mathbf{A} \in \mathcal{K}} \left(\bigvee_{\bar{a} \in R^{\mathbf{A}}} \left(\exists \bar{y} \, \delta_{\mathbf{A}, (\bar{a}, \bar{a'})} \left(\bar{x}, \bar{y} \right) \right) \right)$$

Sea $(b_1, \ldots, b_n) \in R^{\mathbf{B}}$. Entonces como $\varphi = \cdots \vee \exists \bar{y} \ \delta_{\mathbf{B}, (\bar{b}, \bar{b}')} (\bar{x}, \bar{y}) \vee \ldots$, y como $\mathbf{B} \models \exists \bar{y} \ \delta_{\mathbf{B}, (\bar{b}, \bar{b}')} (\bar{x}, \bar{y}) [\bar{b}, \bar{b}'], \mathbf{B} \models \varphi [\bar{b}].$

Sea $\mathbf{B} \vDash \varphi[b_1, \dots, b_n]$. Entonces para algún $\mathbf{A} \in \mathcal{K}$, y algún $\bar{a} \in R^{\mathbf{A}}$ tales que $\mathbf{B} \vDash \exists \bar{y} \, \delta_{\mathbf{A},(\bar{a},\bar{a}')}(\bar{x},\bar{y}) \, [\bar{b}]$. Entonces hay un \bar{z} en \mathbf{B} tal que $\mathbf{B} \vDash \delta_{\mathbf{A},(\bar{a},\bar{a}')}(\bar{x},\bar{y}) \, [\bar{b},\bar{z}]$. Como $\mathbf{B} \vDash \Delta_{(\bar{a},\bar{a}'),\mathbf{A}}[\bar{b},\bar{z}]$, por Teorema 5 hay $\gamma : \langle \bar{a},\bar{a}' \rangle^{\mathbf{A}} \to \langle \bar{b},\bar{b}' \rangle^{\mathbf{B}}$ isomorfismo tal que $(\gamma(\bar{a}),\gamma(\bar{a}')) = (\bar{b},\bar{z})$ y como $\langle \bar{a},\bar{a}' \rangle^{\mathbf{A}} = \mathbf{A}$ y $\langle \bar{b},\bar{b}' \rangle^{\mathbf{B}} \leq \mathbf{B}$, γ es un embedding de \mathbf{A} en \mathbf{B} y como $\bar{a} \in R^{\mathbf{A}}$, $\gamma(\bar{a}) \in R^{\mathbf{B}}$, $\bar{b} \in R^{\mathbf{B}}$.

Como φ es disyunción de existenciales, por teorema puede ser convertida en una fórmula existencial.

TEOREMA 23. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, sea $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Para una clase finita \mathcal{K} de \mathcal{L}' -estructuras, los siguientes son equivalentes:

- 1. Hay una \mathcal{L} -fórmula existencial que define R en \mathcal{K} .
- 2. Para todas $A, B \in \mathcal{K}$, todo embedding $\gamma : A_{\mathcal{L}} \to B_{\mathcal{L}}$ preserva R.

Demostración. 1⇒2) Sea φ existencial que define a R en \mathcal{K} , y sea $\gamma: \mathbf{A} \to \mathbf{B}$ un embedding. Entonces $\gamma: \mathbf{A} \to \mathbf{S} \leq \mathbf{B}$ es un isomorfismo. Supongamos $\mathbf{A} \vDash \varphi [\bar{a}]$ entonces $\mathbf{S} \vDash \varphi [\gamma(\bar{a})]$. Como φ es de la forma $\varphi = \exists \bar{y} \psi(\bar{x}, \bar{y})$ con ψ abierta, existe un \bar{s} tal que $\mathbf{S} \vDash \psi [\gamma(\bar{a}), \bar{s}]$. Como ψ es abierta y $\mathbf{S} \leq \mathbf{B}$, por el Teorema 2 $\mathbf{B} \vDash \psi [\gamma(\bar{a}), \bar{s}]$. Entonces $\mathbf{B} \vDash \varphi [\gamma(\bar{a})]$ y como φ define a R en \mathcal{K} , entonces $\gamma(\bar{a}) \in R^{\mathbf{B}}$.

2⇒1) Para cada $\mathbf{A} \in \mathcal{K}$, cada $\bar{a} \in R^{\mathbf{A}}$, tomo $\bar{a'}$ tal que $\langle \bar{a}, \bar{a'} \rangle^{\mathbf{A}} = \mathbf{A}$. Ahora tomo $\delta_{\mathbf{A},(\bar{a},\bar{a'})}(\bar{x},\bar{y}) = \bigwedge_{\alpha \in \Delta_{(\bar{a},\bar{a'}),\mathbf{A}}} \alpha(\bar{x},\bar{y})$, que es fórmula por Teorema 7. Ahora tomo

$$\varphi = \bigvee_{\mathbf{A} \in \mathcal{K}} \left(\bigvee_{\bar{a} \in R^{\mathbf{A}}} \left(\exists \bar{y} \, \delta_{\mathbf{A}, (\bar{a}, \bar{a'})} \left(\bar{x}, \bar{y} \right) \right) \right)$$

Sea $(b_1, \ldots, b_n) \in R^{\mathbf{B}}$. Entonces como $\varphi = \cdots \vee \exists \bar{y} \, \delta_{\mathbf{B}, (\bar{b}, \bar{b'})} (\bar{x}, \bar{y}) \vee \ldots$, y como $\mathbf{B} \models \exists \bar{y} \, \delta_{\mathbf{B}, (\bar{b}, \bar{b'})} (\bar{x}, \bar{y}) [\bar{b}, \bar{b'}]$, $\mathbf{B} \models \varphi [\bar{b}]$.

Sea $\mathbf{B} \vDash \varphi[b_1, \dots, b_n]$. Entonces para algún $\mathbf{A} \in \mathcal{K}$, y algún $\bar{a} \in R^{\mathbf{A}}$ tales que $\mathbf{B} \vDash \exists \bar{y} \, \delta_{\mathbf{A}, (\bar{a}, \bar{a}')} \, (\bar{x}, \bar{y}) \, [\bar{b}]$. Entonces hay un \bar{z} en \mathbf{B} tal que $\mathbf{B} \vDash \delta_{\mathbf{A}, (\bar{a}, \bar{a}')} \, (\bar{x}, \bar{y}) \, [\bar{b}, \bar{z}]$. Como $\mathbf{B} \vDash \Delta_{(\bar{a}, \bar{a}'), \mathbf{A}} \, [\bar{b}, \bar{z}]$, por Teorema 5 hay $\gamma : \langle \bar{a}, \bar{a}' \rangle^{\mathbf{A}} \to \langle \bar{b}, \bar{b}' \rangle^{\mathbf{B}}$ isomorfismo tal que $(\gamma(\bar{a}), \gamma(\bar{a}')) = (\bar{b}, \bar{z})$ y como $\langle \bar{a}, \bar{a}' \rangle^{\mathbf{A}} = \mathbf{A}$ y $\langle \bar{b}, \bar{b}' \rangle^{\mathbf{B}} \leq \mathbf{B}$, γ es un embedding de \mathbf{A} en \mathbf{B} y como $\bar{a} \in R^{\mathbf{A}}$, $\gamma(\bar{a}) \in R^{\mathbf{B}}$, $\bar{b} \in R^{\mathbf{B}}$.

Como φ es disyunción de existenciales, por teorema puede ser convertida en una fórmula existencial.

Teorema 24. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, sea $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Para una clase finita K de \mathcal{L}' -estructuras, los siguientes son equivalentes:

- 1. Hay una \mathcal{L} -fórmula existencial positiva que define R en \mathcal{K} .
- 2. Para todas $A, B \in \mathcal{K}$, todo homomorfismo $\gamma : A_{\mathcal{L}} \to B_{\mathcal{L}}$ preserva R.

DEMOSTRACIÓN. Igual a la prueba del Teorema 23, tomando el diagrama abierto positivo.

TEOREMA 25. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, sea $R \in \mathcal{L}' - \mathcal{L}$ un símbolo de relación n-ario. Para una clase finita K de L'-estructuras, los siguientes son equivalentes:

- 1. Para cada $m \geq 1$, para todas $\mathbf{A}_1, \ldots, \mathbf{A}_m, \mathbf{B} \in \mathcal{K}$, todo homomorfismo $h: (\mathbf{A}_1 \times \cdots \times \mathbf{A}_m)_{\mathcal{L}} \to \mathbf{B}_{\mathcal{L}} \ preserva \ R.$ 2. Hay una \mathcal{L} -fórmula primitiva positiva que define R en \mathcal{K} .

Demostración. $2\Rightarrow 1$) Sea $\varphi = \exists \bar{y} \, \psi \, (\bar{x}, \bar{y})$ primitiva positiva que define a R en K. Sean $m \geq 1, \mathbf{A}_1, \ldots, \mathbf{A}_m, \mathbf{B} \in K$ y $h: (\mathbf{A}_1 \times \cdots \times \mathbf{A}_m)_{\mathcal{L}} \to \mathbf{B}_{\mathcal{L}}$ un homomorfismo. Sean

$$\bar{a}_1 = (a_{11}, \dots, a_{1m}), \dots, \bar{a}_n = (a_{n1}, \dots, a_{nm}) \in S$$

tales que

$$(a_{1i}, ..., a_{ni}) \in R^{A_i}$$
 para cada $i \in \{1, ..., m\}$.

Veamos que $(h(\bar{a}_1), \ldots, h(\bar{a}_n)) \in R^B$. Como $(a_{1i}, \ldots, a_{ni}) \in R^{A_i}$ y φ define a Ren \mathcal{K} , tenemos que

$$\mathbf{A}_i \vDash \varphi[a_1, \dots, a_{ni}] \text{ para } i \in \{1, \dots, m\}.$$

Luego, por el Lema 18,

$$\mathbf{A}_1 \times \cdots \times \mathbf{A}_m \vDash \varphi \left[\bar{a}_1, \dots, \bar{a}_n \right].$$

Entonces hay $b_1, \ldots, b_k \in A_1 \times \cdots \times A_m$, tales que

$$\mathbf{A}_1 \times \cdots \times \mathbf{A}_m \vDash \psi \left[\bar{a}_1, \dots, \bar{a}_n, b_1, \dots, b_k \right].$$

Como ψ es abierta positiva, aplicando el Teorema 12 obtenemos que $\mathbf{B} \models \varphi [h(\bar{a}_1), \dots, h(\bar{a}_n)].$ Finalmente, como φ define a R en \mathcal{K} y $\mathbf{B} \in \mathcal{K}$, concluimos que $(h(\bar{a}_1), \ldots, h(\bar{a}_n)) \in$ $R^{\mathbf{B}}$.

$$1 \Rightarrow 2) \text{Supongamos } \mathcal{K} = \{\mathbf{A}_1, \dots, \mathbf{A}_m\}, \ R \text{ n-aria. Sean } \bar{x}_1, \dots, \bar{x}_n \in \mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|} \text{ tales que } \bar{x}_i = \begin{pmatrix} x_{i1}^1, \dots, x_{i|R^{\mathbf{A}_1}|}^1, \dots, x_{i1}^m, \dots, x_{i|R^{\mathbf{A}_m}|}^m \end{pmatrix} \text{ para cada } i \in \{1, \dots, m\} \text{ con } \bigcup R^{\mathbf{A}_j} = \left\{ \begin{pmatrix} x_{1i}^j, \dots, x_{ni}^j \end{pmatrix} \text{ con } i \in \{1, |R^{\mathbf{A}_j}|\} \right\} \text{ para cada } i \in \{1, \dots, m\} \text{ . Sean } \bar{x'}_1, \dots, \bar{x'}_k \in \mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}, \text{ tales que } \langle \bar{x}_1, \dots, \bar{x}_n, \bar{x'}_1, \dots, \bar{x'}_k \rangle^{\mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}} = \mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}. \text{ Sean } \mathbf{A}_1^{|R^{\mathbf{A}_m}|} \text{ Sean } \mathbf{A}_1^{|R^{\mathbf{A}_m}|}. \text{ Sean } \mathbf{A}_1^{|R^{\mathbf{A}_m}|} \times \dots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}.$$

$$\varphi = \exists \bar{y} \qquad \bigwedge_{\substack{\alpha \in \Delta^{+} \mid_{\mathbf{A}^{\mathbf{A}_{1}} \mid \\ \mathbf{A}_{1}^{|R^{\mathbf{A}_{1}} \mid} \times \dots \times \mathbf{A}_{m}^{|R^{\mathbf{A}_{m}} \mid}, (\bar{x}_{1}, \dots, \bar{x}_{n}, \bar{x'}_{1}, \dots, \bar{x'}_{k})}$$

$$\mathbf{B} \vDash \varphi [b_{1}, \dots, b_{n}] \text{ y veamos que } (b_{1}, \dots, b_{n}) \in R^{\mathbf{B}}$$

. Supongamos $\mathbf{B} \models \varphi[b_1,\ldots,b_n]$ y veamos que $(b_1,\ldots,b_n) \in R^{\mathbf{B}}$. Entonces hay b'_1,\ldots,b'_k tal que $\mathbf{B} \models \Delta^+_{\mathbf{A}_1^{|R^{\mathbf{A}_1}|} \times \cdots \times \mathbf{A}_m^{|R^{\mathbf{A}_m}|}, (\bar{x}_1,\ldots,\bar{x}_n,\bar{x'}_1,\ldots,\bar{x'}_k)}[b_1,\ldots,b_n,b'_1,\ldots,b'_k],$

por Teorema 14 hay h homomorfismo de $\langle \bar{x}_1, \dots, \bar{x}_n, \bar{x'}_1, \dots, \bar{x'}_k \rangle^{\mathbf{A}_1^{|_{R}\mathbf{A}_1}|_{\times \dots \times \mathbf{A}_m^{|_{R}\mathbf{A}_m}|}$ en $\langle b_1, \dots, b_n, b'_1, \dots, b'_k \rangle^{\mathbf{B}}$ tal que $h(\bar{x}_i) = b_i$ y $h(\bar{x'}_i) = b'_i$, claramente h es un homomorfismo de $\mathbf{A}_1^{|_{R}\mathbf{A}_1|} \times \dots \times \mathbf{A}_m^{|_{R}\mathbf{A}_m|}$ en \mathbf{B} . Como por hipótesis h preserva R, entonces como $\left(x_{1i}^j, \dots, x_{ni}^j\right) \in R^{\mathbf{A}_j}, (h(\bar{x}_1), \dots, h(\bar{x}_n)) \in R^{\mathbf{B}}$, que es exactamente $(b_1, \dots, b_n) \in R^{\mathbf{B}}$.

Ahora supongamos $(b_1, \ldots, b_n) \in R^{\mathbf{B}}$ y veamos que $\mathbf{B} \models \varphi[b_1, \ldots, b_n]$, entonces hay algún j tal que $\mathbf{A}_j = \mathbf{B}$ y hay algún k y algún j tal que

$$\left(x_{1k}^j, \dots, x_{nk}^j\right) = (b_1, \dots, b_n)$$

. Entonces como $\mathbf{A}_{1}^{\left|R^{\mathbf{A}_{1}}\right|} \times \cdots \times \mathbf{B}^{\left|R^{\mathbf{B}}\right|} \times \cdots \times \mathbf{A}_{m}^{\left|R^{\mathbf{A}_{m}}\right|} \vDash \varphi\left[\bar{x}_{1}, \dots, \bar{x}_{n}\right]$ por Teorema 18 $\mathbf{B} \vDash \varphi\left[x_{1k}^{j}, \dots, x_{nk}^{j}\right]$, por lo tanto $\mathbf{B} \vDash \varphi\left[b_{1}, \dots, b_{n}\right]$.

Algoritmo de la Constelación

Una clase \mathcal{K} de estructuras será disjunta si dadas $\mathbf{A}, \mathbf{B} \in \mathcal{K}$ se tiene que $A \cap B \neq \emptyset$ si y solo si $\mathbf{A} = \mathbf{B}$. La clase \mathcal{K} será normal si es disjunta y es un conjunto finito de estructuras finitas.

3.1. Preprocesamiento

Lema 26. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden, \mathcal{K} una clase finita de \mathcal{L}' estructuras finitas y $\mathbf{A}, \tilde{\mathbf{A}} \in \mathcal{K}$, con $\mathbf{A} \neq \tilde{\mathbf{A}}$, tales que hay un \mathcal{L} -isomorfismo γ : $A \to \tilde{A}$. Entonces para toda $R \in \mathcal{L}' - \mathcal{L}$ y toda \mathcal{L} -fórmula φ son equivalentes:

```
1. \varphi define a R en K.

2. \gamma es un \mathcal{L} \cup \{R\}-isomorfismo y \varphi define a R en K - \{\tilde{\mathbf{A}}\}.

Demostración. 1\Rightarrow 2) Trivial.

2\Rightarrow 1) \tilde{\mathbf{A}} \vDash R[\bar{a}] \sin \mathbf{A} \vDash R[\gamma^{-1}(\bar{a})] \sin \mathbf{A} \vDash \varphi[\gamma^{-1}(\bar{a})] \sin \tilde{\mathbf{A}} \vDash \varphi[\bar{a}].
```

Independientemente del tipo de definibilidad que uno quiera chequear el Lema 26 sugiere que uno puede comenzar por reducir \mathcal{K} eliminando copias de estructuras $\mathcal{L} \cup \{R\}$ -isomorfas.

Algorithm 1 Preprocesamiento

```
1: for A \in \mathcal{K} do
           for \mathbf{B} \in \mathcal{K} - \{\mathbf{A}\}\ \mathbf{do}
 2:
                 if hay \gamma: \mathbf{A} \to \mathbf{B} \mathcal{L}-isomorfismo then
 3:
                       if \gamma es un \mathcal{L} \cup \{R\}-isomorfismo then
 4:
                            \mathcal{K} = \mathcal{K} - \{\mathbf{B}\}\
 5:
                       else
 6.
                                                                     \triangleright R no es definible y \gamma es contraejemplo
 7:
                            return \gamma
                       end if
 8:
                 end if
 9:
           end for
10:
11: end for
12: return K
                                                                                    \triangleright \mathcal{K} sin estructuras \mathcal{L}-isomorfas
```

Notar que los isomorfismos revisados por este algoritmo deben ser necesariamente revisados para comprobar definibilidad en cualquiera de los formatos. La ventaja de chequear estos en primer lugar es que podría reducirse la clase \mathcal{K} en el proceso.

Se obtiene una pequeña ganancia al chequear por \mathcal{L} -isomorfismos y recién descubierto uno de estos comprobar si es un $\mathcal{L} \cup \{R\}$ -isomorfismo. Observar además que, para poder aplicar los teoremas de definibilidad de las secciones 2.1 y 2.2, habría que verificar que cada uno de los \mathcal{L} -isomorfismos entre estructuras de \mathcal{K} preserven R y vemos que basta con chequear sólo uno.

Definibilidad abierta

Dados \mathcal{F}_0 y \mathcal{F} dos conjuntos de funciones, diremos que \mathcal{F}_0 genera a \mathcal{F} si $\mathcal{F}_0 \subseteq \mathcal{F}$ y para toda $f \in \mathcal{F}$ hay $f_1, \dots, f_n \in \mathcal{F}_0$ (quizás repetidas) tales que $f = f_1 \circ \dots \circ f_n$. Dado un conjunto \mathcal{K} de estructuras definimos los siguientes conjuntos:

iso
$$(\mathcal{K}) = \{ \gamma : \gamma \text{ isomorfismo de } \mathbf{A} \text{ en } \mathbf{B} \text{ con } \mathbf{A}, \mathbf{B} \in \mathcal{K} \}$$

sub iso $(\mathcal{K}) = \{ \gamma : \gamma \text{ isomorfismo de } \mathbf{A}_0 \text{ en } \mathbf{B}_0 \text{ con } \mathbf{A}_0, \mathbf{B}_0 \in \mathbb{S}(\mathcal{K}) \}$

 $hom(\mathcal{K}) = \{ \gamma : \gamma \text{ homomorfismo de } \mathbf{A} \text{ en } \mathbf{B} \text{ con } \mathbf{A}, \mathbf{B} \in \mathcal{K} \}$

sub hom $(\mathcal{K}) = \{ \gamma : \gamma \text{ homomorfismo de } \mathbf{A}_0 \text{ en } \mathbf{B}_0 \text{ con } \mathbf{A}_0, \mathbf{B}_0 \in \mathbb{S}(\mathcal{K}) \}$

LEMA 27. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden tales que $R \in \mathcal{L}' - \mathcal{L}$ es un símbolo de relación n-ario y K un conjunto normal de \mathcal{L}' -estructuras. Entonces si $cada \ \gamma \in sub \ iso (\mathcal{K}_{\mathcal{L}}) \ preserva \ R, \ R \ es \ definible \ por \ una \ \mathcal{L}$ -fórmula abierta en \mathcal{K} .

Demostración. Directo del Teorema 11.

Teorema 28. Sea K un conjunto normal de L-estructuras donde no hay estructuras isomorfas. Sea $\mathcal{S}\subseteq\mathbb{S}\left(\mathcal{K}
ight)$ tal que contiene exactamente un representante por cada tipo de isomorfismo en $S(\mathcal{K})$. Sea $\mathcal{F} \subseteq \mathrm{sub}\,\mathrm{iso}\,(\mathcal{K})$ tal que:

- para cada $\mathbf{S} \in \mathcal{S}$ se tiene que aut $(\mathbf{S}) \subseteq \mathcal{F}$,
 para cada $\mathbf{A} \in S(\mathcal{K}) \mathcal{S}$ hay $\gamma, \gamma^{-1} \in \mathcal{F}$ para algún isomorfismo γ de \mathbf{A} en el representante del tipo de isomorfismo de A en S.

Entonces \mathcal{F} genera sub iso (\mathcal{K}) .

Demostración. Sea $\gamma \in \text{sub iso } (\mathcal{K})$, entonces $\gamma : \mathbf{A}_0 \leq \mathbf{A} \to \mathbf{B}_0 \leq \mathbf{B}$ isomorfismo, con $\mathbf{A}, \mathbf{B} \in \mathcal{K}$.

Si $A_0, B_0 \in \mathcal{S}$, como no hay estructuras isomorfas en $\mathcal{S}, A_0 = B_0$, por lo tanto $\gamma \in \operatorname{aut}(\mathbf{A}_0) \subseteq \mathcal{F}$.

Si $\mathbf{A}_0 \in \mathcal{S}$ pero $\mathbf{B}_0 \notin \mathcal{S}$, entonces \mathbf{A}_0 es el representante de \mathbf{B}_0 en \mathcal{S} , y por lo tanto hay un isomorfismo $\delta: \mathbf{B}_0 \to \mathbf{A}_0$ tal que $\delta, \delta^{-1} \in \mathcal{F}$. Claramente $\delta \gamma = \lambda \in \operatorname{aut}(\mathbf{A}_0) \subseteq \mathcal{F}$, por lo tanto $\gamma = \delta^{-1} \lambda$.

 $\lambda \in \operatorname{aut}(\mathbf{C}_0) \subseteq \mathcal{F}$, por lo tanto $\gamma = \delta'^{-1} \lambda \delta$.

COROLARIO 29. Sean $\mathcal{L} \subseteq \mathcal{L}'$ lenguajes de primer orden tales que $R \in \mathcal{L}' - \mathcal{L}$ es un símbolo de relación n-ario y K un conjunto finito de \mathcal{L}' -estructuras finitas y sea \mathcal{F} construido sobre $\mathcal{K}_{\mathcal{L}}$ como en el Teorema 28. Entonces si cada $\gamma \in \mathcal{F}$ preserva R, R es definible por una \mathcal{L} -fórmula abierta en \mathcal{K} .

DEMOSTRACIÓN. Directa ya que composición de funciones que preservan, preserva y Lema 27.

El Teorema 28 sugiere un subconjunto de isomorfismos que bastan para revisar definibilidad abierta a través del Corolario 29.

En el Algoritmo 2 vamos recorriendo \mathcal{F} , para esto recorremos las estructuras en \mathcal{K} y buscamos isomorfismos con los representantes en \mathcal{S} y los revisamos por preservación. Si no encontramos un representante lo agregamos a \mathcal{S} y también revisamos por preservación sus automorfismos, luego hacemos lo mismo con sus subestructuras y luego continuamos con la siguiente estructura en \mathcal{K} .

Notese en las lineas 10 y 22 que no se necesita revisar si los automorfismos son $\mathcal{L} \cup \{R\}$ -automorfismos ya que, como se recorren todos su inversa también es revisada por preservación.

Algorithm 2 Constelación abierta

```
1: S = \emptyset
 2: for A \in \mathcal{K}, desde la mayor a la menor cardinalidad do
          if hay un \gamma: \mathbf{S} \to \mathbf{A} \mathcal{L}-isomorfismo, con \mathbf{S} \in \mathcal{S} then
               if \gamma no es un \mathcal{L} \cup \{R\}-isomorfismo then
 4:
                   return \gamma
                                                 \triangleright R no es abierta-definible y \gamma es contraejemplo
 5:
               end if
 6:
          else
 7:
               S = S \cup \{A\}
 8:
               for \alpha \in Aut_{\mathcal{L}}(\mathbf{A}) do
 9:
                    if \alpha no preserva R then
10:
                         return \alpha
                                                \triangleright R no es abierta-definible y \alpha es contraejemplo
11:
                    end if
12:
               end for
13:
               for \mathbf{B} \in S_{\mathcal{L}}(\mathbf{A}) - \{\mathbf{A}\}, desde la menor a la mayor cardinalidad do
14:
                    if hay un \gamma: \mathbf{S} \to \mathbf{B} \mathcal{L}-isomorfismo, con \mathbf{S} \in \mathcal{S} then
15:
                         if \gamma no es un \mathcal{L} \cup \{R\}-isomorfismo then
16:
                                                \triangleright R no es abierta-definible y \gamma es contraejemplo
17:
                             return \gamma
18:
                         end if
                   else
19:
                         S = S \cup \{B\}
20:
                         for \alpha \in Aut_{\mathcal{L}}(\mathbf{B}) do
21:
                             if \alpha no preserva R then
22:
                                   return \alpha \triangleright R no es abierta-definible y \alpha es contraejemplo
23:
                              end if
24:
                         end for
25:
                    end if
26:
               end for
27.
          end if
28:
29: end for
30: return S
                                                                                     \triangleright R es abierta-definible
```

3.3. Definibilidad de primer orden

Luego de haber aplicado el Algoritmo 1 para preprocesamiento, solo basta con revisar los automorfimos para $A \in \mathcal{K}$.

3.4. Definibilidad existencial-positiva

Por el Teorema 24, luego de aplicar el Algoritmo1 de preprocesamiento, solo basta con revisar los homomorfismos entre $\mathbf{A}, \mathbf{B} \in \mathcal{K}$.

3.5. Definibilidad abierta-positiva

TEOREMA 30. Sea K un conjunto normal de \mathcal{L} -estructuras donde no hay estructuras isomorfas. Sea $S \subseteq S(K)$ tal que contiene exactamente un representante por cada tipo de isomorfismo en S(K). Sea $\mathcal{H} \subseteq \mathrm{sub}\,\mathrm{hom}\,(K)$ tal que:

■ $\mathcal{F} \subseteq \mathcal{H}$ con \mathcal{F} construido sobre \mathcal{K} como en el Teorema 28.

Algorithm 3 Constelación para primer orden

```
1: \mathcal{K}_0 = \emptyset
 2: for A \in \mathcal{K} do
           \mathcal{K}_0 = \mathcal{K}_0 \cup \{\mathbf{A}\}
           \mathcal{K} = \mathcal{K} - \{\mathbf{A}\}
 4:
           for \alpha \in Aut_{\mathcal{L}}(\mathbf{A}) do
                 if \alpha no es un \mathcal{L} \cup \{R\}-automorfismo then
 6:
                      return \alpha > R no es definible en primer orden y \alpha es contraejemplo
 7:
                end if
 8:
           end for
10: end for
                                                                                \triangleright R es definible en primer orden
11: return \mathcal{K}_0
```

Algorithm 4 Constelación existencial-positiva

```
1: for A \in \mathcal{K} do
         for \mathbf{B} \in \mathcal{K} do
 2:
             if hav un h: \mathbf{A} \to \mathbf{B} \mathcal{L}-homomorfismo then
 3:
 4:
                  if h no preserva R then
                      return h
                                                \triangleright R no es existencial-positiva definible y h es
    contraejemplo
                  end if
 6:
             end if
 7:
         end for
 8:
 9: end for
10: return K
                                                              \triangleright R es existencial positiva definible
```

■ para cada $A, B \in S$ todo $h : A \to B$ homomorfismo sobreyectivo esta en \mathcal{H}

Entonces \mathcal{H} genera sub hom (\mathcal{K}) .

Demostración. Sea $h \in \text{subhom}(\mathcal{K})$, entonces $h : \mathbf{A}_0 \leq \mathbf{A} \to \mathbf{B}_0 \leq \mathbf{B}$ homomorfismo, con $\mathbf{A}, \mathbf{B} \in \mathcal{K}$.

Notar que $h(\mathbf{A}_0) < \mathbf{B_0}$, por lo tanto $h(\mathbf{A}_0) \in \mathbb{S}(\mathcal{K})$.

Si $\mathbf{A}_0, h(\mathbf{A}_0) \in \mathcal{S}$, h es homomorfismo sobreyectivo entre estructuras de \mathcal{S} , por lo que $h \in \mathcal{H}$.

Si $\mathbf{A}_0 \in \mathcal{S}$ pero $h(\mathbf{A}_0) \notin \mathcal{S}$, hay \mathbf{S} representante de $h(\mathbf{A}_0)$ en \mathcal{S} y un isomorfismo $\delta : h(\mathbf{A}_0) \to \mathbf{S}$ tal que $\delta, \delta^{-1} \in \mathcal{F} \subseteq \mathcal{H}$. Luego $\delta^{-1}h = f$ donde f es un homomorfismo claramente sobreyectivo de \mathbf{A}_0 en \mathbf{S} , por lo que $f \in \mathcal{H}$. Finalmente $h = \delta f$.

Si $\mathbf{A}_0, h(\mathbf{A}_0) \notin \mathcal{S}$, hay respectivos $\mathbf{S}, \mathbf{S}' \in \mathcal{S}$ representantes de \mathbf{A}_0 y $h(\mathbf{A}_0)$. Luego hay $\delta : \mathbf{A}_0 \to \mathbf{S}$ y $\delta' : h(\mathbf{A}_0) \to \mathbf{S}'$ tales que $\delta, \delta^{-1}, \delta', \delta'^{-1} \in \mathcal{F} \subseteq \mathcal{H}$. Luego $\delta' h \delta^{-1} = f$ donde f es un homomorfismo claramente sobreyectivo de \mathbf{S} en \mathbf{S}' , por lo que $f \in \mathcal{H}$. Finalmente $h = \delta'^{-1} f \delta$.

TEOREMA 31 (Las estructuras finitas cumplen la propiedad de Cantor-Bernstein). Dadas \mathbf{A} y \mathbf{B} estructuras finitas, si hay $f:A\to B$ y $g:B\to A$ homomorfismos inyectivos entonces hay un $\gamma:\mathbf{A}\to\mathbf{B}$ isomorfismo.

Demostración. Sean \mathbf{A}, \mathbf{B} estructuras finitas y $f: A \to B$ y $g: B \to A$ homomorfismos inyectivos. Notar que gf es una permutación de \mathbf{A} , y como \mathbf{A} es finito hay $k \geq 1$ tal que $(gf)^k = Id$. Luego como $g^{-1} = f(gf)^{k-1}$ vemos que g^{-1} es homomorfismo.

Por el Teorema 16, luego de aplicar el Algoritmo1 de preprocesamiento y el Algoritmo 2 de definibilidad abierta.

Algorithm 5 Constelación abierta-positiva

```
1: \mathcal{S} = \emptyset
 2: for A \in \mathcal{K}, desde la mayor a la menor cardinalidad do
          if hay un \gamma: \mathbf{S} \to \mathbf{A} \mathcal{L}-isomorfismo, con \mathbf{S} \in \mathcal{S} then
 3:
              if \gamma no es un \mathcal{L} \cup \{R\}-isomorfismo then
 4:
                                                \triangleright R no es abierta-definible y \gamma es contraejemplo
 5:
                   return \gamma
 6:
               end if
         else
 7:
              S = S \cup \{A\}
 8:
              for \alpha \in Aut_{\mathcal{L}}(\mathbf{A}) do
 9:
                   if \alpha no preserva R then
10:
                        return \alpha
                                                \triangleright R no es abierta-definible y \alpha es contraejemplo
11:
                   end if
12:
               end for
13:
               for \mathbf{B} \in S_{\mathcal{L}}(\mathbf{A}) - \{\mathbf{A}\}, desde la menor a la mayor cardinalidad do
14:
                   if hay un \gamma: \mathbf{S} \to \mathbf{B} \mathcal{L}-isomorfismo, con \mathbf{S} \in \mathcal{S} then
15:
16:
                        if \gamma no es un \mathcal{L} \cup \{R\}-isomorfismo then
                                                \triangleright R no es abierta-definible y \gamma es contraejemplo
17:
                        end if
18:
                   else
19:
                        S = S \cup \{B\}
20:
21:
                        for \alpha \in Aut_{\mathcal{L}}(\mathbf{B}) do
                             if \alpha no preserva R then
22:
                                  return \alpha \triangleright R no es abierta-definible y \alpha es contraejemplo
23:
                             end if
24:
25:
                        end for
                   end if
26:
              end for
27:
          end if
28:
29: end for
30: for A \in \mathcal{S} do
          for B \in \mathcal{S} do
31:
              if hay un h: \mathbf{A} \to \mathbf{B} \mathcal{L}-homomorfismo sobreyectivo then
32:
                   if h no preserva R then
33:
                        return h
                                                         \triangleright R no es abierta-positiva definible y h es
34:
     contraejemplo
35:
                   end if
               end if
36:
37:
          end for
38: end for
39: return \mathcal{K}_0
                                                                        \triangleright R es abierta positiva definible
```

3.6. Detección de homomorfismos

Como aparece en [2], un CSP (constraint satisfaction problem) es definido como la terna $\langle X, D, C \rangle$, donde

```
X=\{X_1,\dots,X_n\} \text{ es un conjunto de variables} D=\{D_1,\dots,D_n\} \text{ es un conjunto con los respectivos dominios de los valores}
```

 $C = \{C_1, \ldots, C_m\}$ es un conjunto de restricciones

Cada variable X_i se mueve en los valores del respectivo dominio no vacío D_i . Cada restricción $C_j \in C$ es un par $\langle t_j, R_j \rangle$, donde t_j es una k-upla de variables y R_j es una relación k-aria en el correspondiente dominio de cada variable. Una valuación sobre las variables es una función desde un subconjunto de las variables a un particular conjunto de valores en los correspondientes dominios de valores. Una valuación v satisface la restricción $\langle t_j, R_j \rangle$ si los valores asignados a las variables t_j satisfacen la relación R_j .

Una valuación es consistente si no viola ninguna de las restricciones. Una valuación es completa si incluye todas las variables. Una valuación es solución si es consistente y completa. En ese caso diremos que la valuación resuelve el CSP.

Lema 32. Sea $\bf A$ una estructura finita, entonces todo endomorfismo inyectivo de $\bf A$ es un automorfismo de $\bf A$.

Demostración. Sea γ un endomorfismo inyectivo de **A**. Como A es finito tenemos que γ es sobre y además $\gamma^{-1} = \gamma^k$ para algún $k \ge 1$.

3.7. Generación de subestructuras

Álgebras de Lindenbaum

4.1. Definiciones e ideas básicas

Llamaremos álgebra de Lindenbaum para un fragmento de primer orden dado sobre una \mathcal{L} -estructura \mathbf{A} a las clases de equivalencia en las sentencias de ese fragmento del lenguaje \mathcal{L} . Es decir el cociente bajo la relación de equivalencia definida en 6.

Las operaciones en un álgebra de Lindenbaum tienen una correspondencia natural sobre las fórmulas. La unión y la intersección se comportan respectivamente como la disyunción y la conjunción, mientras que el complemento se comporta como la negación.

TEOREMA 33 (Teorema de representación de Stone). Toda álgebra de Boole \mathbf{A} es isomorfa al álgebra definida por $\mathcal{P}(At)$ donde $At \subseteq A$ es el conjunto de átomos en \mathbf{A} .

TEOREMA 34 (Teorema de representación de Birkhoff). Todo reticulado distributivo finito L es isomorfo al reticulado de conjuntos descendientes del poset de elementos join-irreducibles en L.

4.2. Preorden y algoritmo

4.3. Algoritmos para calcular álgebras

4.4. Ejemplos y aplicación

Lema 35. Sea L un reticulado y R una relación binaria no vacía sobre L preservada por endomorfismos en L. Entonces vale que $\Delta^L \subseteq R$.

Demostración. Esto es una consecuencia directa de que para cada $a \in L$ la función de L en L que vale constantemente a es un endomorfismo. \square

TEOREMA 36 (Teorema del filtro primo). Sea $\langle L, \vee, \wedge \rangle$ un reticulado distributivo y F un filtro. Supongamos $x \in L - F$. Entonces hay un filtro primo P tal que $x \notin P$ y $F \subseteq P$.

Lema 37. Sea **L** un reticulado distributivo y R una relación binaria no vacía sobre L preservada por endomorfismos en **L**. Si hay $(a,b) \in R$ tal que $a \nleq b$ (respectivamente $b \nleq a$), entonces $\{(x,y) : x \geq y\} \subseteq R$ (respectivamente $\{(x,y) : x \leq y\} \subseteq R$).

DEMOSTRACIÓN. Fijamos $(a,b) \in R$ tal que $a \nleq b$, y sean $c,d \in L$ tales que $c \geq d$. Veremos que $(c,d) \in R$. Por el Teorema 36 hay un filtro primo P que contiene al filtro generado por a y además $b \notin P$. Definimos $h: L \to L$ por

$$h(x) = \begin{cases} c & \text{si } x \in P, \\ d & \text{si } x \notin P. \end{cases}$$

Es fácil ver que h es un endomorfismo. Finalmente como $(a,b) \in R$ y h preserva R, $(h(a),h(b))=(c,d)\in R$.

19

Teorema 38. Sea $\mathbf L$ un reticulado distributivo y R una relación binaria sobre L definible por un fórmula existencial positiva en $\mathbf L$. Se da una de las siguientes:

- $R = \Delta$
- $R = \{(x, y) : x \le y\},$
- $R = \{(x, y) : x \ge y\},$
- $R = \{(x,y) : x \le y\} \cup \{(x,y) : x \ge y\},$
- \blacksquare $R = L \times L$.

Demostración. Si $R \subseteq \Delta$, por el Lema 35 $R = \Delta$.

Si $R \subseteq \{(x,y) : x \le y\}$, pero $R \not\subseteq \Delta$, hay $(a,b) \in R$ tales que a < b, entonces $a \not\geq b$ y por el Lema 37 $R = \{(x,y) : x \le y\}$. Análogo para $R \subseteq \{(x,y) : x \ge y\}$.

Si $R \nsubseteq \{(x,y): x \leq y\}$ y $R \nsubseteq \{(x,y): x \geq y\}$, aplicando dos veces el Lema 37 $\{(x,y): x \leq y\} \cup \{(x,y): x \geq y\} \subseteq R$. Si además $(a,b) \in R$ pero $a \nleq b$ y $a \ngeq b$, tomo $(c,d) \in R$, si son comparables ya esta están en R por lo anterior. Si son incomparables aplico dos veces el Teorema 36 y tomo dos filtros primos P y Q tales que $a \in P$ pero $b \notin P$ y $b \in Q$ pero $a \notin Q$. Ahora definimos la siguiente función

$$h\left(x\right) = \begin{cases} c \lor d & \text{si } x \in P \cup Q \\ c & \text{si } x \in P - Q \\ d & \text{si } x \in Q - P \\ c \land d & \text{si } x \notin P \text{ y } x \notin Q \end{cases}$$

que fácilmente puede verse que es un endomorfismo. Por lo tanto como $(a,b) \in R$ y h preserva R, $(h(a),h(b))=(c,d)\in R$. Por lo tanto $R=L\times L$.

Conclusiones y trabajo futuro

Bibliografía

- $[1] \ \ Campercholi, \ Miguel \ y \ Diego \ Vaggione: \ Semantical \ conditions \ for \ the \ definability \ of \ functions \ and \ relations, \ 2015. \ http://www.arxiv.org/abs/1506.07501.$
- [2] Wikipedia: Constraint satisfaction problem Wikipedia, The Free Encyclopedia, 2016. http://en.wikipedia.org/w/index.php?title=Constraint%20satisfaction%20problem&oldid=695651340, [En línea, visitado el 11 de Enero de 2016].