

CHEMISTRY HIGHER LEVEL PAPER 1

Monday 7 November 2005 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

8805-6101 15 pages

1	7					•	The Po	eriodic	The Periodic Table	4 7		ю	4	w	9	7	•	
1 H 1.01			,	Atomic Number	Number												2 He 4.00	
3 Li 6.94	4 Be 9.01			Element Atomic Mass	nent : Mass							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
11 Na 22.99	12 Mg 24.31		•									13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95	
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30	
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)	
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)																
		:-	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 146.92	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97		
		**	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)		

1. The complete oxidation of propane produces carbon dioxide and water as shown below.

$$C_3H_8 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O$$

What is the total of the coefficients for the **products** in the balanced equation for 1 mole of propane?

- A. 6
- B. 7
- C. 12
- D. 13
- 2. The relative molecular mass (M_r) of a compound is 60. Which formulas are possible for this compound?
 - I. CH₃CH₂CH₂NH₂
 - II. CH₃CH₂CH₂OH
 - III. CH₃CH(OH)CH₃
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 3. Which aqueous solution contains the most hydrogen ions?
 - A. 20 cm³ of 2 mol dm⁻³ sulfuric acid
 - B. 10 cm³ of 4 mol dm⁻³ nitric acid
 - C. 80 cm³ of 0.5 mol dm⁻³ hydrochloric acid
 - D. 40 cm³ of 0.5 mol dm⁻³ sulfuric acid

4. Information is given about four different atoms:

atom	neutrons	protons
W	22	18
X	18	20
Y	22	16
Z	20	18

Which two atoms are isotopes?

- A. W and Y
- B. W and Z
- C. X and Z
- D. X and Y
- **5.** Which equation represents the third ionization energy of an element M?
 - A. $M^+(g) \to M^{4+}(g) + 3e^-$
 - B. $M^{2+}(g) \rightarrow M^{3+}(g) + e^{-}$
 - C. $M(g) \to M^{3+}(g) + 3e^{-}$
 - D. $M^{3+}(g) \to M^{4+}(g) + e^{-}$
- **6.** Which statement is correct about a line emission spectrum?
 - A. Electrons absorb energy as they move from low to high energy levels.
 - B. Electrons absorb energy as they move from high to low energy levels.
 - C. Electrons release energy as they move from low to high energy levels.
 - D. Electrons release energy as they move from high to low energy levels.

7.	Whi	ch factors lead to an element having a low value of first ionization energy?
		I. large atomic radius
		II. high number of occupied energy levels
		III. high nuclear charge
	A.	I and II only
	B.	I and III only
	C.	II and III only
	D.	I, II and III
8.	Whi	ch particles can act as ligands in complex ion formation?
		I. C1 ⁻
		II. NH ₃
		III. H_2O
	A.	I and II only
	B.	I and III only
	C.	II and III only
	D.	I, II and III
9.		en the following bond types are listed in decreasing order of strength (strongest first), what is the ect order?
	A.	covalent > hydrogen > van der Waals'
	B.	covalent > van der Waals' > hydrogen
	C.	hydrogen > covalent > van der Waals'
	D.	van der Waals' > hydrogen > covalent

	10.	What is the valence she	ll electron	pair repulsion	(VSEPR)	theory	v used to	predict
--	-----	-------------------------	-------------	----------------	---------	--------	-----------	---------

- A. the energy levels in an atom
- B. the shapes of molecules and ions
- C. the electronegativities of elements
- D. the type of bonding in compounds

11. Which statement about electronegativity is correct?

- A. Electronegativity decreases across a period.
- B. Electronegativity increases down a group.
- C. Metals generally have lower electronegativity values than non-metals.
- D. Noble gases have the highest electronegativity values.

12. Which statements correctly describe the NO_2^- ion?

- I. It can be represented by resonance structures.
- II. It has two lone pairs of electrons on the N atom.
- III. The N atom is sp² hybridized.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 13. Which substance is most similar in shape to NH₃?
 - A. GaI₃
 - B. BF_3
 - C. FeCl₃
 - D. PBr₃
- 14. Why does the temperature of boiling water remain constant even though heat is supplied at a constant rate?
 - A. Heat is lost to the surroundings.
 - B. The heat is used to break the covalent bonds in the water molecules.
 - C. Heat is also taken in by the container.
 - D. The heat is used to overcome the intermolecular forces of attraction between water molecules.
- 15. The following equation shows the formation of magnesium oxide from magnesium metal.

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$
 $\Delta H^{\Theta} = -1204kJ$

Which statement is correct for this reaction?

- A. 1204kJ of energy are released for every mol of magnesium reacted.
- B. 602kJ of energy are absorbed for every mol of magnesium oxide formed.
- C. 602kJ of energy are released for every mol of oxygen gas reacted.
- D. 1204kJ of energy are released for every two mol of magnesium oxide formed.

The following equations show the oxidation of carbon and carbon monoxide to carbon dioxide. **16.**

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\ominus} = -x \text{ kJ mol}^{-1}$

$$\Delta H^{\ominus} = -x \, \mathrm{kJ} \, \mathrm{mol}^{-1}$$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\ominus} = -y \text{ kJ mol}^{-1}$

$$\Delta H^{\ominus} = -y \text{ kJ mol}^{-1}$$

What is the enthalpy change, in kJ mol⁻¹, for the oxidation of carbon to carbon monoxide?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. x + y
- B. -x-y
- C. y-x
- D. x-y

For the reaction **17.**

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

the bond enthalpies (in kJ mol⁻¹) are

Н–Н	x
O=O	У
О–Н	Z

Which calculation will give the value, in kJ mol⁻¹, of ΔH^{\oplus} for the reaction?

- 2x + y 2zA.
- B. 4z-2x-y
- C. 2x+y-4z
- D. 2z-2x-y

18. For the reaction,

$$2\text{CaO}(s) \rightarrow 2\text{Ca}(s) + \text{O}_2(g)$$

at 1 atmosphere the values of ΔH^{\oplus} and ΔS^{\oplus} are both positive. Which statement is correct?

- A. ΔG^{\ominus} is temperature dependent.
- B. The change in entropy is the driving force of the reaction.
- C. At high temperatures ΔG is positive.
- D. The reverse reaction is endothermic.
- 19. Which statement is correct for a collision between reactant particles leading to a reaction?
 - A. Colliding particles must have different energy.
 - B. All reactant particles must have the same energy.
 - C. Colliding particles must have a kinetic energy higher than the activation energy.
 - D. Colliding particles must have the same velocity.
- **20.** The reaction $2X(g) + Y(g) \rightarrow 3Z(g)$ has the rate expression

$$rate = k[X]^2[Y]^0$$

The concentration of X is increased by a factor of three and the concentration of Y is increased by a factor of two. By what factor will the reaction rate increase?

- A. 6
- B. 9
- C. 12
- D. 18
- **21.** To what does A refer in the Arrhenius equation $k = Ae^{-Ea/RT}$?
 - A. activation energy
 - B. rate constant
 - C. gas constant
 - D. collision geometry

$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$

-10-

- I. adding a catalyst
- II. decreasing the oxygen concentration
- III. increasing the volume of the container
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

23. Hydrogen and carbon dioxide react as shown in the equation below.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

For this reaction the values of K_c with different temperatures are

Temperature/K	$K_{\rm c}$
500	7.76×10^{-3}
700	1.23×10^{-1}
900	6.01×10^{-1}

Which statement for the reaction is correct?

- A. The forward reaction is endothermic.
- B. $H_2O(g)$ and CO(g) are more stable than $H_2(g)$ and $CO_2(g)$.
- C. The reaction goes almost to completion at high temperatures.
- D. The reverse reaction is favoured by high temperatures.

- **24.** When the following 1.0 mol dm⁻³ solutions are listed in increasing order of pH (lowest first), what is the correct order?
 - A. $HNO_3 < H_2CO_3 < NH_3 < Ba(OH)_2$
 - B. $NH_3 < Ba(OH)_2 < H_2CO_3 < HNO_3$
 - C. $Ba(OH)_2 < H_2CO_3 < NH_3 < HNO_3$
 - D. $HNO_3 < H_2CO_3 < Ba(OH)_2 < NH_3$
- **25.** Which compound will dissolve in water to give a solution with a pH greater than 7?
 - A. sodium chloride
 - B. potassium carbonate
 - C. ammonium nitrate
 - D. lithium sulfate
- **26.** An aqueous solution has a pH of 10. Which concentrations are correct for the ions below?

 $[H^+(aq)] \text{ mol dm}^{-3}$ $[OH^-(aq)] \text{ mol dm}^{-3}$

A.	10^4	10^{-10}
B.	10^{-4}	10^{-10}
C.	10^{-10}	10^{-4}
D.	10^{-10}	10 ⁴

В

27. Which graph shows how the pH changes when a weak base is added to a strong acid?

28. When the following acids are listed in decreasing order of acid strength (strongest first), what is the correct order?

	$K_{\rm a}$
benzoic	6.31×10^{-5}
chloroethanoic	1.38×10^{-3}
ethanoic	1.74×10^{-5}

- A. chloroethanoic > benzoic > ethanoic
- B. benzoic > ethanoic > chloroethanoic
- C. chloroethanoic > ethanoic > benzoic
- D. ethanoic > benzoic > chloroethanoic
- **29.** Which equation represents a redox reaction?

A.
$$KOH(aq) + HC1(aq) \rightarrow KC1(aq) + H_2O(1)$$

B.
$$Mg(s) + 2HC1(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

C.
$$CuO(s) + 2HC1(aq) \rightarrow CuC1_2(aq) + H_2O(l)$$

D.
$$ZnCO_3(s) + 2HC1(aq) \rightarrow ZnC1_2(aq) + CO_2(g) + H_2O(1)$$

30. The following information is given about reactions involving the metals X, Y and Z and solutions of their sulfates.

$$X(s) + YSO_4(aq) \rightarrow \text{ no reaction}$$

 $Z(s) + YSO_4(aq) \rightarrow Y(s) + ZSO_4(aq)$

When the metals are listed in decreasing order of reactivity (most reactive first), what is the correct order?

- Z > Y > XA.
- B. X > Y > Z
- C. Y > X > Z
- Y > Z > XD.
- 31. What is the total of **all** the coefficients in the balanced equation for the reduction of 1 mol of MnO₄⁻?

$$\underline{\hspace{0.5cm}}$$
 MnO $_{4}^{-}$ + $\underline{\hspace{0.5cm}}$ H $^{+}$ + $\underline{\hspace{0.5cm}}$ e $^{-}$ \rightarrow $\underline{\hspace{0.5cm}}$ Mn $^{2+}$ + $\underline{\hspace{0.5cm}}$ H $_{2}$ O

- A. 5
- B. 9
- C. 17
- 19 D.
- From the given standard electrode potentials which statement is correct? 32.

$$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$$
 $E^{\ominus} = -2.87V$
 $Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$ $E^{\ominus} = -0.23V$
 $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$ $E^{\ominus} = +0.77V$

$$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$$
 $E^{\Theta} = -0.23V$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\Theta} = +0.77V$

- A. Ca²⁺(aq) can oxidize Ni(s)
- В. Ni²⁺(aq) can reduce Ca²⁺(aq)
- Fe³⁺(aq) can oxidize Ni(s) C.
- Fe³⁺ (aq) can reduce Ca²⁺ (aq) D.

33.	Whi	ch statement is correct about the electrolysis of copper(II) sulfate solution using graphite electrodes
	A.	A colourless gas is produced at the negative electrode.
	B.	The electrolyte does not change colour.
	C.	The negative electrode decreases in mass.
	D.	A colourless gas is produced at the positive electrode.
34.	How	many structural isomers are possible with the molecular formula C_6H_{14} ?
	A.	4
	B.	5
	C.	6
	D.	7
35.	Whi	ch compound can exist as optical isomers?
	A.	CH ₃ CHBrCH ₃
	B.	CH ₂ ClCH(OH)CH ₂ Cl
	C.	CH ₃ CHBrCOOH
	D.	CH ₃ CCl ₂ CH ₂ OH
36.	Whi	ch type of compound can be made in one step from a secondary alcohol?
	A.	an aldehyde
	B.	an alkane
	C.	a carboxylic acid
	D.	a ketone

- How many peaks are there in the ¹H NMR spectrum of ethanol? 37.
 - 2 A.
 - В. 3
 - C. 5
 - D. 6
- 38. Which formula represents a tertiary alcohol?
- CH₃—CH—CH₂—CH₃ B. CH₃—CH—CH₂—CH₂—OH
 CH₂OH
 CH₃
 - C.
 - CH₃ D. CH₃ | CH₃
- **39.** Which reaction type is typical for halogenoalkanes?
 - A. nucleophilic substitution
 - B. electrophilic substitution
 - C. electrophilic addition
 - D. nucleophilic addition
- 40. Which substance is **not** readily oxidized by acidified potassium dichromate(VI) solution?
 - A. propan-1-ol
 - B. propan-2-ol
 - C. propanal
 - D. propanone