Machine Learning CSE427

Mahbub Majumdar Typeset by: Syeda Ramisa Fariha

> BRAC University 66 Mohakhali Dhaka, Bangladesh

July 30, 2018

Superhumungous Thanks

These slides were typeset by Syeda Ramisa Fariha.

Without her tremendous dedication, these slides would not exist.

Introduction

- Goal: Understand which ${\cal H}$ are PAC Learnable
- So far, we saw that,
- ▶ Finite H are Learnable.
- ▶ Class of all functions over an infinite size domains are not learnable.
- Examples where, infinite size classes are learnable:
- > aligned axis predictors
- ▷ circle predictors,...
- Thus, finiteness doesn't seem to be a necessary condition for learnability
- We want a better measure of learnability

Introduction

- in 1971, Vapnik and Chervonenkis in the context of statistics invented the "VC" dimension idea
- This was applied to PAC Learning theory by Blomer, etc., in 1989.

- Let's first show that infinite size classes can be learnable
- Simplest example: Threshold function
- Example: $\mathcal{H} = \{h_{\mathsf{a}} \mid \mathsf{a} \in \mathbb{R}\}$ where, $h_{\mathsf{a}} : \mathbb{R} \to \{0,1\}$ such that

$$h_a(\chi) = \underbrace{\mathbb{I}(\chi < a)}_{ ext{Indicator Function}}$$

• Since ∞ possible choices for a, $\mathcal H$ is infinite

• Let's show that ${\cal H}$ is PAC learnable with sample complexity

$$m_{\mathcal{H}} \leq \frac{\log \frac{2}{\epsilon}}{\epsilon}$$

• Let $a^* =$ threshold such that

$$h^*(\chi) = \mathbb{I}(\chi < a^*)$$

This is the true labeling function and $L_D(h^*) = 0$

• Now, how can you get an error $< \epsilon$?

 If the predicted value b_s falls in the region (a_o, a_{*}) or (a_{*}, a₁) then the error < ε.

• Let $b_0 < b_s < b_1$ be a similar ϵ sized region around b_s just as $a_0 < a^* < a_1$ is an ϵ sized region

- ullet The idea is a^* is associated to the sandwich region (a_0,a_1)
- b_s is associated to the sandwich region (b_0, b_1)
- If $b_s < a_0$ then error $> \epsilon$

8/8

• Similarly if $b_s > a_1$, then error $> \epsilon$

$$\underset{S \sim D^m}{\mathbb{P}} \Big[L_D(h_S) > \epsilon \Big] \leq \underset{S \sim D^m}{\mathbb{P}} \Big[b_s < a_0 \text{ or } b_s > a_1 \Big]$$

• Now, use the Union Bound,

$$\mathbb{P}_{S \sim D^m} \Big[b_s < a_0 \text{ or } b_s > a_1 \Big] \le \mathbb{P}_{S \sim D^m} \Big[b_s < a_0 \Big] + \mathbb{P}_{S \sim D^m} \Big[b_s > a_1 \Big] \\
= (1 - \epsilon)^m + (1 - \epsilon)^m \\
= 2(1 - \epsilon)^m \\
\le 2e^{-\epsilon m}$$

• Setting this equal to δ ,

$$2e^{-\epsilon m} = \delta$$

$$\Rightarrow m = \frac{1}{\epsilon} \ln \frac{2}{\delta}$$

Thus, if $m \geq \frac{1}{\epsilon} \ln \frac{2}{\delta}$ then \mathcal{H} is PAC Learnable.

¹⁰/83

VC Dimension

VC dimension of ${\mathcal H}$ correctly measures it's learnability

Motivation: No Free Lunch Theorem

$$\mathcal{H} = \{ \text{all possible functions from } C \subseteq X \text{ to } \{0,1\} \}$$

- If choose no more than $rac{|C|}{2}$ sample points ightarrow average error $\geq rac{1}{4}$
- There exists an h with zero error, since \mathcal{H} includes all possible functions from $C \to \{0,1\}$ in \mathcal{H} .
- In the special case $|C| = \infty$, we need ∞ samples for PAC Learnability
- Infinite sized ${\cal H}$ like this, where all possible hypotheses are included, are not PAC Learnable

VC Dimension

• If we consider distributions like this, that are concentrated on $C \subseteq X$, we should study how X behaves on C.

Definition: Restriction of \mathcal{H} to \mathcal{C}

Let \mathcal{H} be the class of functions from X to $\{0,1\}$. Let

$$C = \{C_1, C_2, \dots, C_n\} \subset X$$

The restriction of $\mathcal H$ to $\mathcal C$ is the set of functions from $\mathcal C$ to $\{0,1\}$ that can be derived from $\mathcal H$. That is,

$$\mathcal{H}_c = \{h(C_1), h(C_2), \dots, h(C_m) \mid h \in \mathcal{H}\}$$

where we can represent each function from $C \to \{0,1\}$ as a vector in $\{0,1\}^{|C|}$

• Example: Two Points

Suppose, $C = \{0,1\}$ is just two points,

$$\mathcal{H}_{C} = \{(0,0), (0,1), (1,0), (1,1)\}$$

where each set of 0's and 1's is a hypothesis.

• If the restriction of $\mathcal H$ to C is the set of all functions from C to $\{0,1\}$, then we say, $\mathcal H$ shatters C

• Example: One Point

Suppose $C = \{C_0\}$. Take $\mathcal{H} = \textit{Class of all hypothesis functions}$.

Thus, C_0 gets assigned all possible values. We say that the class of threshold functions shatters $C = \{C_0\}$

Definition: Set Shattering

A hypothesis class $\mathcal H$ shatters a finite set $\mathcal C\subset X$, if the restriction of $\mathcal H$ to $\mathcal C$ is the set of all functions from $\mathcal C\to\{0,1\}$, i.e. $|\mathcal H_{\mathcal C}|=2^{|\mathcal C|}$.

Example: Two points

Let $C = \{C_1, C_2 \mid C_1 \leq C_2\}$. Let's look at the possible labelings with threshold functions in \mathcal{H} .

Shattering Examples

- \bullet Question: Can we get the labeling $\{0,1\}$?
- Is $C = \{C_1, C_2\}$ shattered by \mathcal{H} ?
- ullet Answer: Any labeling assigning 1 to C_2 will assign 1 to C_1 also
- \Rightarrow C is not shattered by ${\cal H}$

- Going back to the NFL Theorem:
- ightarrow Whenever some c is shattered by ${\cal H}$
- ightarrow the adversary is not restricted by ${\cal H}$
- $\rightarrow\,$ the adversary can choose a perfect labeling function and
- $\rightarrow\,$ the adversary can achieve zero loss

Shattered Sets and NFL Theorem

Corollary:

Let $\mathcal H$ be a hypothesis class of functions from X to $\{0,1\}$. Let m be the training set size. Assume there exists a set $C\subset X$ of size 2m that is shattered by $\mathcal H$. Then for any learning algorithm A, there exists a distribution D over $X\times\{0,1\}$ and a predictor $h\in\mathcal H$ such that $L_D(h)=0$, but with probability of at least $\frac17$ over the choice of $S\sim D^m$, we have

$$L_D(A(S)) \geq \frac{1}{8}$$

- Thus if \mathcal{H} shatters C, with C = |2m|,
- ightarrow then we can't learn ${\cal H}$ using \emph{m} samples.

Shattered Sets and NFL Theorem

- Intuitively, if C shatters H,
- \rightarrow a sample of less than half the instances of C, gives no information about the other half of C.
 - Any labeling of the rest of the instances in C can be explained by an $h \in \mathcal{H}$

VC Dimension

Definition: VC Dimension

The VC Dimension of $\mathcal H$ is the maximal size of a set $\mathcal C\subset X$ that can be shattered by $\mathcal H$. If $\mathcal H$ shatters sets of arbitrarily large size, then $\mathsf{VC}\text{-}\mathsf{dim}(\mathcal H)\equiv\infty.$

Theorem: Infinite VC Dimension

If VC-dim $(\mathcal{H}) = \infty$, then \mathcal{H} is not PAC Learnable

Proof: Every set of C of size 2m is shattered by \mathcal{H} , where m is the size of the training set. Now apply NFL to C.

Comments

- It turns out that if VC $\dim(\mathcal{H} < \infty)$, then \mathcal{H} is learnable.
- In order to find the VC-Dim of \mathcal{H} , we need to show that
 - a) There exists a C of size d, that is shattered by ${\cal H}$
 - b) Every set C of size d+1 is not shattered by ${\cal H}$

Example: Threshold Functions

- Let's calculate the VC-dim for Threshold Functions.
- $C = \{C_1\}$ is shattered VC-dim $(\mathcal{H}) \geq 1$
- $C = \{C_1, C_2\}$ is *not* shattered. Therefore, VC-dim $(\mathcal{H}) < 2$
- ullet Thus VC-dim $(\mathcal{H}_{\it threshold})=1$
- ullet Thus, it makes sense that the infinite class $\mathcal{H}_{threshold}$ is PAC Learnable

Example: Intervals

• Let's calculate the VC-dim of Intervals.

$$h_{ab}(x) = \begin{cases} 1 & \text{if } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

ullet $C=\{\mathit{C}_1\}$ is shattered by \mathcal{H}_{ab}

• $C = \{C_1, C_2\}$ is shattered

Example: Intervals

• Thus, VC-dim $(\mathcal{H}_{ab}) \geq 2$

Example: Intervals

•
$$C = \{C_1, C_2, C_3\}$$

- If $h(C_1) = 1$, $h(C_3) = 1 \Rightarrow h(C_2) = 1$
- If $h(C_1) = 1$, $h(C_3) = 1 \Rightarrow h(C_2) = 1$, thus (1, 0, 1) is not possible

Lecture 7

- \Rightarrow VC dim(\mathcal{H}_{ab}) < 3
- \Rightarrow VC dim(\mathcal{H}_{ab}) = 2

 $^{'25}/_{81}$

Recall, that aligned-axis rectangles look like:

- Label the corner points as $\{z_1\},\{z_2\},\{z_3\},\{z_4\}$
- $\{z_1, z_2\}, \{z_2, z_3\}, \{z_3, z_4\}, \{z_2, z_4\}$ are all shattered

ullet But, $\{z_1,z_4\}$ and $\{z_2,z_3\}$ are not shattered

• Solution: rotate rectangle.

 $\bullet \ \ \mathsf{Now, see} \ \ \mathsf{VC\text{-}dim}(\mathcal{H}_{\textit{rect}}) \geq 4$

• But if $C = \{z_1, z_2, z_3, z_4, z_5\}$

- \bullet The point z_5 is always captured along with the rest of the points.
- $\Rightarrow \ \mathsf{VC\text{-}dim}(\mathcal{H}_{\textit{rect}}) < 5$
- \Rightarrow VC-dim $(\mathcal{H}_{rect}) = 4$

Remarks: Finite Classes

- Suppose ${\cal H}$ is finite.
- Suppose |C| = k. This means C has k points.
- Suppose, the labels are binary. Then $|\mathcal{H}| = 2^k$.
- Suppose VC-dim $(\mathcal{H}) = d$.
- The VC-dim of \mathcal{H} restricted to C, can be at most k.
- Thus, $d \leq k$.
- This means

$$|\mathcal{H}| \geq 2^d$$

• Or equivalently, taking logarithms

$$\log_2 |\mathcal{H}| \ge \mathsf{VC}\text{-dim}(\mathcal{H}) = d$$

Lecture 7

Remarks: Finite Classes

- C can't be shattered if $d < 2^{|C|}$
- Will prove that classes with finite VC dimension are learnable
- Example: Threshold functions: $\mathcal{H}_a = \{h_a \mid a \in \mathbb{R}\}$ is an infinite class. but it has finite VC-dim $(\mathcal{H}_a) = 1$
- ⇒ Threshold function class is *learnable*

32/83

VC Dimension and the Number of Parameters

- It looks like VC-dim = number of parameters, example: threshold functions parameter by $a \in \mathbb{R}$
- But not always true that number of parameters = VC dimension

The Fundamental Theorem of Statistical Learning

- We saw that infinite VC dimension class is not learnable.
- Opposite statement is also true. This gives rise to:

Theorem 6.7 (The Fundamental Theorem of Statistical Learning). Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are equivalent:

- 1. H has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for H.
- 3. H is agnostic PAC learnable.
- 4. H is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for H.
- 6. H has a finite VC-dimension.
- VC Dimension determines Learnability and Sample Complexity

The Fundamental Theorem of Statistical Learning - Quantitative Version

Theorem 6.8 (The Fundamental Theorem of Statistical Learning – Quantitative Version). Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0–1 loss. Assume that $VCdim(\mathcal{H}) = d < \infty$. Then, there are absolute constants C_1, C_2 such that

1. H has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2. H is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

3. H is PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

The proof of this theorem is given in Chapter 28.

Note: Lower bound and upper bound are determined by the VC Dimension=d

Proof of Theorem 6.7

Proof of Theorem 6.7 Proof:

- a) $1 \rightarrow 2$, We proved this in *Chapter 4*
- b) $2 \rightarrow$ 3, $3 \rightarrow$ 4, $2 \rightarrow$ 5 are clearly true
- c) $4 \rightarrow 6$, $5 \rightarrow 6$ follow from NFL Theorem
 - Difficult part is $1 \rightarrow 6$

Comments:

- Suppose $VC\ dim(\mathcal{H}) = d,\ C \subseteq \chi$
- Then effective size of \mathcal{H}_C is $|\mathcal{H}_C|$ $|\mathcal{H}_C| = \mathcal{O}(|C|^d)$
- For binary predictors, $|\mathcal{H}_C| = |C|^d$
- As $d = VC \ dim(\mathcal{H})$ grows, m increases

Lower Bound Analysis For Agnostic PAC Learning

- As $d = VC \dim(\mathcal{H})$ grows, m increases
- As $\epsilon \to 0$, $m \to 0$
- As $\delta \to 0$, $m \to 0$, but *logarithmically* only
- Look at (1) in Theorem 6.8, since
 ERM + Uniform Convergence = PAC Corollary 4.4, page 32, (1)
 says all you need is an ERM Learning Paradigm
- However, as we will see to apply ERM o need to minimize error over all $h \in \mathcal{H}$
- But then we have to worry about computational complexity
 - \Rightarrow How long will it take to calculate the error for every $h \in \mathcal{H}$
 - $\Rightarrow \infty$ time if $|\mathcal{H}| = \infty$

Lower Bound Analysis For Agnostic PAC Learning

• For agnostic PAC Learning,

$$\Rightarrow C_1 \frac{d + \log \frac{1}{\delta}}{\epsilon^2} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 \frac{d + \log \frac{1}{\delta}}{\epsilon^2}$$

While for PAC,

$$\Rightarrow C_1 \frac{d + \log \frac{1}{\delta}}{\epsilon} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 \frac{d \log \frac{1}{\epsilon} + \log \frac{1}{\delta}}{\epsilon}$$

- This is because for agnostic PAC, there is no guarantee that you will succeed
- o Therefore, we need more samples to get an accurate, reliable predictor

Lower Bound Analysis For Agnostic PAC Learning

- first consider lower bound
- NFL tells us that

$$\frac{d}{2} = \frac{|c|}{2} < m_{\mathcal{H}}(\epsilon, \delta)$$

- How does the ϵ dependence of the lower bound come in ?
- \mathcal{H} should work for any distribution on C. Choose the most difficult distribution to predict from.

Lower Bound Analysis For Agnostic PAC Learning

• choose the largest set C that is shattered by \mathcal{H} . It has dim = d

 This set will be very hard to learn from if you keep sampling the same point

Lower Bound Analysis For Agnostic PAC Learning

• Let the probability of sampling x_1 be ϵ , $P(x_1) = 1 - \epsilon$, $P(x_i = \frac{\epsilon}{d-1})$ $P(x \ outside \ C) = 0$

- Then to learn from x_2 x_d need to sample at least half the points, which is $\frac{d-1}{2}$
- Let m be number of points sample from x_2, \ldots, x_d
- ullet the expected number of points in the $\epsilon-$ region is :

 $m\epsilon$

Thus need

$$m\epsilon > \frac{d-1}{2}$$

 $^{41}/_{83}$

Lower Bound Analysis For Agnostic PAC Learning

$$\Rightarrow m > \frac{d-1}{2\epsilon}$$

$$m > \mathcal{O}(\frac{d}{\epsilon})$$

- ullet Thus we expect for the PAC case, the lower bound to be $\mathcal{O}(\frac{d}{\epsilon})$
- Can check this with a more complete derivation (Chapter 28)

Note: error for less than $\frac{d-1}{2}$ point is $\frac{1}{4} \times \epsilon = \frac{\epsilon}{4}$ Note: $\underset{S\sim}{\mathbb{E}}(L_D(A(S))) \geq \frac{\epsilon}{4}$ of $m \leq \frac{d-1}{2\epsilon}$ for any ϵ

 think about the points x₂.....x_d as the points where the classifier makes a mistake

Lower Bound Analysis For Agnostic PAC Learning

products choses this pt orly. It pts too small

Now give argument for Agnostic PAC that lower bound $\sim heta(\frac{1}{\epsilon^2})$

- Why are things harder in Agnostic case ?
- Recall, PAC case one h has zero error. Now no such assumption
- Consider a Binomial process
 - ightarrow like trying to figure out the probability of candidate A getting a vote instead of candidate B

Lower Bound Analysis For Agnostic PAC Learning

- 2 candidates Aand B
- want to predict probability of winning p
- want accuracy ε
 ⇒ thus, p̂ − ε ≤ p ≤ p̂ + ε
 ⇒ here p̂ is the estimate of p
- For binomial process

$$\mathsf{Var}(\mathsf{x}) = p(1-p)$$
 Average $\mathsf{Var} = rac{p(1-p)}{n}$ std-dev $= rac{\sqrt{p(1-p)}}{n}$

Lower Bound Analysis For Agnostic PAC Learning

• graph of p(1-p) =

• max of p(1-p) is at $p=\frac{1}{2}$

$$\sqrt{p(1-p)} = \sqrt{\frac{1}{2} \cdot \frac{1}{2}} = \frac{1}{2}$$

consider the 2 sigma range

Lower Bound Analysis For Agnostic PAC Learning 2σ range is

$$\hat{p} \pm \frac{2\sqrt{p(1-p)}}{\sqrt{n}}$$

$$\Rightarrow \hat{p} \pm \frac{1}{\sqrt{n}}$$

• accuracy = $\frac{1}{\sqrt{n}}$

$$\epsilon = \frac{1}{\sqrt{n}} \Rightarrow n = \frac{1}{\epsilon^2}$$

- \bullet Thus for more than $\frac{1}{\epsilon^2}$ points accuracy $\leq \epsilon$
- ullet That's why for Agnostic PAC lower bound $\sim rac{1}{\epsilon^2}$

Upper Bound Analysis For Agnostic PAC Learning: Sauer-Shelah-Perles Lemma

- Lower bound analysis is less interesting because it doesn't tell you how many samples you need for machine learning
- It just says the number of samples is at least this many
- Lower bound analysis uses probability theory. Doesn't use the VC dimension. Only way we used VC dimension ⇒ number of points in a set that has all possible behaviours.
- Upper bounds depend on a very special property of VC dimension
 ⇒ Sauer Lemma

Upper Bound Analysis For Agnostic PAC Learning: Sauer-Shelah-Perles Lemma

Define the Growth function

$$\tau_{\mathcal{H}}(m) = \max_{C \subset X, |C| = m} \left(|\mathcal{H}_C| \right)$$

- $au_{\mathcal{H}}$ is the maximum number of different functions from C which has size m to $\{0,1\}$
- \mathcal{H}_C = class restricted to C
- If $VCdim(\mathcal{H}) = d$ then for any $m \le d$

$$\tau_{\mathcal{H}}(m)=2^m$$

Upper Bound Analysis For Agnostic PAC Learning: Sauer-Shelah-Perles Lemma

- ullet Then $\mathcal{H}_{\mathcal{C}}$ includes all possible function from $\mathcal{C} o \{0,1\}$
- ullet Sauer lemma tells us what happens when m>d

Sauer-Shelah-Perles Lemma

Sauer-Shelah-Perles Lemma

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) \leq d < \infty$. Then for all m

$$au_{\mathcal{H}}(m) \leq \sum_{i=0}^d \left(egin{array}{c} m \\ i \end{array}
ight)$$

In particular if m > d then

$$au_{\mathcal{H}}(m) \leq \left(\frac{em}{d}\right)^d \sim m^d$$

Proof of Sauer-Shelah-Perles Lemma

Proof:

- Let $C = \{c_1, c_m\}$
- ullet It's enough to prove for all ${\cal H}$

$$|\mathcal{H}_{\mathcal{C}}| \leq \left| \left\{ egin{array}{l} \textit{all the subsets B of } \mathcal{C}, \\ \textit{that are shattered by } \mathcal{H} \end{array}
ight\} \right|$$

more concisely,

$$|\mathcal{H}_C| \le |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}|$$

- This is sufficient to prove Sauer because if
 - a $VCdim(\mathcal{H}) \leq d$ then no set with size > d is shattered by \mathcal{H}

Proof of Sauer-Shelah-Perles Lemma

Therefore

$$|\mathcal{H}_C| \leq |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}|$$

 \leq number of subsets of size up to d of C, where

$$|C| = m$$

$$= \sum_{i=0}^{d} \binom{m}{i}$$

• when m > d then

$$\sum_{i=0}^{d} \binom{m}{i} \le \left(\frac{em}{d}\right)^d$$

(thus this is a technical algebraic fact \rightarrow Appendix: A-5)

Proof of Sauer-Shelah-Perles Lemma

- Now to prove $|\mathcal{H}_C| \le |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}|$, use induction
- $m=0 \rightarrow$ one point

$$|\mathcal{H}_C| = 1$$

$$|\mathcal{H}_{\mathcal{C}}| \leq |\left\{B \subseteq \mathcal{C} \mid \mathcal{H} \text{ shatters } B\right\}| = |\phi| = 1$$

- If start induction at m = 1 then $|\mathcal{H}_C = 2|$, $\{B \subseteq C \mid B \text{ shattered}\} = 2$
- Induction Step : Assume $|\mathcal{H}_C| \le |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}|$ holds for sets of size k < m
- Need to prove : $|\mathcal{H}_C| \le |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}| \text{ holds for sets of size } m$

Proof of Sauer-Shelah-Perles Lemma

- fix *H*
- $C = \{c_1....c_m\}$ $C' = \{c_2....c_m\}$

Let Y_0 be the set of the functions $\{c_2, c_m\}$

Proof of Sauer-Shelah-Perles Lemma

 $Y_0 = \{ \text{the functions in } \mathcal{H} \text{ restricted to } \mathcal{H}_{C'} \}$

= these are the functions which map

$$\{f:(c_2....c_m)\to\{0,1\}\}$$

• these functions are m-1 dimensional vectors

$$\begin{pmatrix} h(c_2) \\ h_(c_3) \\ \vdots \\ h(c_m) \end{pmatrix}$$

Proof of Sauer-Shelah-Perles Lemma

Now define

$$\begin{aligned} Y_1 &= \left\{ \begin{array}{l} \text{the set of all functions on } \mathcal{C}' \\ \text{that can be extended to } c_1 \end{array} \right\} \\ &= \left\{ (y_2, y_3....y_m) \mid \begin{array}{l} (0, y_2....y_m) \epsilon \mathcal{H}_{\mathcal{C}} \text{ and } \\ (1, y_2....y_m) \epsilon \mathcal{H}_{\mathcal{C}} \end{array} \right\} \end{aligned}$$

Then

$$|\mathcal{H}_C| = |Y_0| + |Y_1|$$

Here,

 Y_0 = the number of functions living only in C'

 Y_1 = the number of functions in C'that can be extended to c_1

Proof of Sauer-Shelah-Perles Lemma

Now using the induction step

$$|Y_0| = |\mathcal{H}_C| \le |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}|$$

= $|\{B \subseteq C' \mid c_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}|$

• Now define $\mathcal{H}'\subseteq\mathcal{H}$ to be the pairs of functions that agree on C' but differ on c_1

$$\mathcal{H}' = \{h, h' \in \mathcal{H} \text{ such that}$$

$$(1 - h'(c_1), h'(c_2)...h'(c_m))$$

$$= (h(c_1), h(c_2)....h(c_m))$$

$$(h(c_1), h(c_2), ...h(c_m))\}$$

Proof of Sauer-Shelah-Perles Lemma

- Therefore, \Rightarrow if \mathcal{H}' shatters $B\subseteq \mathcal{C}$, then it also shatters $\{c_1\}\cup B$ and *vice versa*
- Now

$$Y_1 = \mathcal{H'}_{C'}$$

• Therefore :

$$\begin{aligned} |Y_1| &= |\mathcal{H'}_{C'}| \leq |\left\{B \subseteq C' \mid \mathcal{H} \text{ shatters } B\right\}| \\ &= |\left\{B \subseteq C' \mid \mathcal{H} \text{ shatters } B \cup \{c_1\}\right\}| \\ &= |\left\{B \subseteq C \mid c_1 \in B \text{ and } \mathcal{H'} \text{ shatters } B\right\}| \\ &\leq |\left\{B \subseteq C \mid c_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\right\}| \end{aligned}$$

Proof of Sauer-Shelah-Perles Lemma

Putting everything together

$$\begin{aligned} |\mathcal{H}_C| &= |Y_0| + |Y_1| \\ &\leq |\left\{B \subseteq C \mid c_1 \not\in B \text{ and } \mathcal{H} \text{ shatters } B\right\}| \\ &\leq |\left\{B \subseteq C \mid c_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\right\}| \\ &= |\left\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\right\}| \end{aligned}$$

This is what we wanted to prove!

Proof of Sauer-Shelah-Perles Lemma

- What are the consequences of this?
 - $au_{\mathcal{H}}(m)=\max_{|\mathcal{C}|=m}|\mathcal{H}_{\mathcal{C}}|$ The max is taken over all sets $\mathcal{C}\subseteq\chi$ such that $|\mathcal{C}|=m$
- Note different C with |C| = m may have different $|\mathcal{H}_C|$ Example: $\mathcal{H} = a ligned \ axis \ rectangle$

Proof of Sauer-Shelah-Perles Lemma

- If $au_{\mathcal{H}}(m) \sim m^d$ for m > d, then
 - $D^m(S|L_{D,f}(h)>\epsilon)leq|\mathcal{H}_B|e^{-\epsilon m}$ where $|\mathcal{H}_B|e^{-\epsilon m}=$ number of bad hypothesis

(1)

Proof of Sauer-Shelah-Perles Lemma

• Recall that, $|\mathcal{H}_B| =$

- number of bad hypothesis generated by sampling from misleading training sets
- How do you choose a training set?
 - \Rightarrow Select a |C| = m subset of χ
 - \Rightarrow Therefore, the number of ways to choose a bad hypothesis is $|\mathcal{H}_B| \leq |\mathcal{H}|_C$, where C = S

 $\frac{52}{8}$

Proof of Sauer-Shelah-Perles Lemma

•

$$\max_{\substack{S \subseteq \chi \\ |S| = m}} |\mathcal{H}_B| \leq \max_{\substack{S \subseteq \chi \\ |S| = m}} |\mathcal{H}|_S = \tau(m)$$

Therefore equation (1) becomes,

$$D^{m}(S|L_{D,f}(h) > \epsilon) leq \tau(m) e^{-m\epsilon}$$

Thus we see that, if

$$au(m) \sim polynomial$$

Then

$$\tau(m)e^{-m\epsilon} \Rightarrow 0$$

as
$$m \Rightarrow \infty$$

Uniform Convergence for Classes of Small Effective Size Now lets go back to proving $1 \to 6$ in **Theorem 6.7**

- to prove this we need to show that finite VCdim leads to uniform convergence
- Recall that if a class $\mathcal H$ is uniformly convergent if for every distribution D, there is a $m_{\mathcal H}(\epsilon,\delta)$ such that S is ϵ -representative
- And recall that S is ϵ -representative if for every $h\epsilon\mathcal{H}$

$$|L_S(h) - L_D(h)| \le \epsilon$$

Uniform Convergence for Classes of Small Effective Size

• Since $|L_S(h) - L_D(h)| \le \epsilon$ should hold for every $h \in \mathcal{H}$, choose the h fro which

$$|L_S(h)-L_D(h)|$$

is largest

Formally, this is

$$\sup_{h\in\mathcal{H}}\lvert L_S(h)-L_D(h)\rvert$$

Lecture 7

 $SUP \equiv least upper hand$

Uniform Convergence for Classes of Small Effective Size The expected max of $|L_S(h) - L_D(h)|$ is

$$\mathbb{E}_{S \sim D^m} \left[\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)| \right]$$

- One thing we have been doing up to this point is
- · We constructed our prediction after seeing the data
- This is generally an illegal move in statistics

Uniform Convergence for Classes of Small Effective Size

- For example
 - a Suppose I construct predictors

 $f_0 = \text{all zero}$

 $f_1 = all one$

Then I evaluate the error by evaluating it over the data

Then we evaluate the true error

Uniform Convergence for Classes of Small Effective Size

 b Suppose, instead we look at the data first and the construct select our predictors. Then we might select

- The predictor that is selected will then look overfitted and the true error will not really be zero, even if it appears so.
- One way to select the predictor after seeing the data is to evaluate the predictor's true error $L_D(h)$ on a data set disjoint/independent from the data set S

This is call the double-sampling trick

Uniform Convergence for Classes of Small Effective Size

• Evaluate h on a set S'

$$L_D(h) = \mathop{\mathbb{E}}_{S' \sim D^m}(L_{S'}(h))$$

then

$$\mathbb{E}_{S \sim D^m} \left[\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)| \right]$$

$$\mathbb{E}_{S \sim D^m} \left[\sup_{h \in \mathcal{H}} \left| \mathbb{E}_{S' \sim D^m} (L_{S'}(h)) - L_S(h) \right| \right]$$

$$\leq \mathbb{E}_{S \sim D^m} \sup_{h \in \mathcal{H}} \mathbb{E}_{S' \sim D^m} |(L_{S'}(h)) - L_S(h)|$$
(using triangle inequality $|x + y + z| \leq |x| + |y| + |z|$)

Uniform Convergence for Classes of Small Effective Size

$$\leq \underset{S \sim D^m S' \sim D^m}{\mathbb{E}} \underset{h \in \mathcal{H}}{\mathbb{E}} ||(L_{S'}(h)) - L_{S}(h)|$$

$$(\text{using SUP } \mathbb{E} \leq \mathbb{E} \text{ SUP})$$

- we have reduced this to a double sample over S and S'
- Since $L_{S'}(h)$ and $L_S(h)$ are empirical errors

$$\mathbb{E}_{S \sim D^m} \left(\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)| \right)$$

$$\leq \mathbb{E}_{S', S \sim D^m} \left(\sup_{h \in \mathcal{H}} |L_{S'}(h) - L_S(h)| \right)$$

$$= \mathbb{E}_{S', S \sim D^m} \left(\sup \frac{1}{m} |\sum_{i=1}^m \ell(h, z_i') - \ell(h, z_i) \right) \dots (1)$$

70/8

Uniform Convergence for Classes of Small Effective Size

• the sample S

$$\{z'_1 = (x'_1, y'_1), \ z'_2 = (x'_2, y'_2)....., z'_m\}$$

and

$${z_1 = (x_1, y_1), z_m = (x_m, y_m)}$$

are 2m vectors

Uniform Convergence for Classes of Small Effective Size

• Our answer is symmetric in z_i and z'_i if we replace

$$z_i \leftrightarrow z'_i$$

then,

$$I(h,z_i') - I(h,z_i) \leftrightarrow -(I(h,z_i') - I(h,z_i)$$

We can write equation (1) as

$$\underset{S \in D^m}{\mathbb{E}} \sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)|$$

$$\leq \underset{S,S' \sim D^{m}}{\mathbb{E}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \delta_{i} (I(h,z_{i}') - I(h,z_{i}))$$

Uniform Convergence for Classes of Small Effective Size

Here, $\delta_i = \pm 1$ $I(h, z_i) - I(h, z_i) = positive$ Here, The sign is isolated in $\delta_i = \{+1, -1\}$

Since we are looking for the *expected* value, we can overage over δ_i Let the distribution for δ_i be u_{\pm} . Then we have equivalently,

$$\mathbb{E}_{\delta \sim u_{\pm}^{m}} \mathbb{E}_{S,S' \in D^{m}} SUP \frac{1}{m} | \sum_{i=1}^{m} \delta_{i} (I(h, z_{i}' - I(h, z_{i}))) |$$

$$\mathbb{E}_{S,S' \in D^{m}} \mathbb{E}_{\delta \sim u_{\pm}^{m}} SUP \frac{1}{m} | \sum_{i=1}^{m} \delta_{i} (I(h, z_{i}' - I(h, z_{i}))) |$$

Uniform Convergence for Classes of Small Effective Size

Now fix S and S. Let C be the set of S and S

- |C| = 2m
- ullet Take the supremum over $h \epsilon {\cal H}_C$

Example of Supremum

$$G = \{\frac{1}{n} | n \in N\}$$

SUP G = max value of the set G
= max G

Uniform Convergence for Classes of Small Effective Size

Sometimes the supremum of G isn't in the set G
 For example for,

$$G = \{X \mid X \in \mathbb{R} \text{ and } X < 1\}$$

then SUP G = 1, but $1 \notin G$

- when the SUP of G is in G then SUP $G = \max G$
- therefore

$$\mathbb{E}_{\delta \sim u_{\pm}^{m}} \left(\sup_{h \in \mathcal{H}} \frac{1}{m} \left| \sum_{j} \right| \right)$$

$$\mathbb{E}_{\delta \sim u_{\pm}^{m}} \left(\max_{h \in \mathcal{H}_{C}} \frac{1}{m} \left| \sum_{i} \right| \right)$$

Uniform Convergence for Classes of Small Effective Size

• now pick h in \mathcal{H}_C and define

$$\theta_n = \frac{1}{m} \sum_{i=1}^m \sigma_i (\ell(h, z_i') - \ell(h, z_i))$$

Since

$$\mathbb{E}(\theta_n)=0$$

- θ_n is an average of variables
- range of $\theta_n \in [-1, +1]$
- we can then use Hoeffding's inequality for e>0

$$\mathbb{P}[|\theta_n| > e] \le 2e^{-2m\rho^2}$$

Uniform Convergence for Classes of Small Effective Size

• Apply the union bound

$$\mathbb{P}\left(\max_{h\in\mathcal{H}_C}|\theta_n|\geq\rho\right)\leq 2|\mathcal{H}_C|e^{-2m\rho^2}$$

• use Appendix A.4 if

$$\mathbb{P}(|X-X_0|>t)\leq 2be^{rac{-t^2}{a^2}}$$
 (Here, $X_0\in\mathbb{R}, t\geq 0, a>0$) $\mathbb{E}(|X-X_0|)\leq a\;(2+\sqrt{\log b})$ (Here, $b\geq e$)

then

Uniform Convergence for Classes of Small Effective Size

•

$$\mathop{\mathbb{E}}_{S \sim D^m} \left(\sup_{h \in \mathcal{H}} \lvert L_D(h) - L_S(h) \rvert \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2m))}}{\sqrt{2m}} \right)$$

Implications for m
 ⇒ for m > d

$$au_{\mathcal{H}}(2m) \leq \left(\frac{2em}{d}\right)^d$$

•

$$\mathbb{E}(SUP|L_S(h)-L_D(h)|)$$

ightarrow = (probability of large $|L_S-L_D|$) imes $|L_S-L_D|$

⁷⁸/81

Uniform Convergence for Classes of Small Effective Size

•

$$|\delta|L_S(h) - L_D(h)| \leq \frac{4 + \sqrt{d \log\left(\frac{2em}{d}\right)}}{\sqrt{2m}}$$

•

$$|L_S(h) - L_D(h)| \le \frac{4 + \sqrt{d \log\left(\frac{2em}{d}\right)}}{\delta\sqrt{2m}}$$

•

Assume
$$\sqrt{d \log \left(\frac{2em}{d}\right)} \ge 4$$

$$\Rightarrow |L_S(h) - L_D(h)| \leq \frac{1}{\delta} \sqrt{\frac{2d \log \left(\frac{2em}{d}\right)}{m}}$$

Uniform Convergence for Classes of Small Effective Size

If

$$|L_S(h) - L_D(h)| \le \epsilon$$

then

$$\frac{1}{\delta} \sqrt{\frac{2d \log \left(\frac{2em}{d}\right)}{m}} \leq \epsilon$$

$$\Rightarrow \frac{1}{\delta^2} \frac{2d \log \frac{2em}{d}}{\epsilon^2} \le m$$

Uniform Convergence for Classes of Small Effective Size

• do some Algebra (lemma A.2)

$$m \ge 4 \frac{2d}{(\epsilon \delta)^2} \log \frac{2d}{(\epsilon \delta)^2} + \frac{4d \log \frac{2e}{d}}{(\epsilon \delta)^2}$$

• Thus if $\mathsf{VCdim}(\mathcal{H}) = d < \infty$ then there is an m to give PAC learning