FILTRO BUTTERWORTH PASA-ALTAS

1. Pasa-Altas orden 7 (Método de normalización por capacitores iguales)

$$Ap = 3 dB$$
 $fp = 100 Hz$ $As = 75 dB$ $fs = 25 Hz$

Cálculos:

$$n = \frac{\log \left(\frac{\epsilon_2}{\epsilon_I}\right)}{\log \left(\frac{f_p}{f_s}\right)} = \frac{\log \left(\frac{5623.41}{0.99}\right)}{\log \left(\frac{100 \text{ Hz}}{25 \text{ Hz}}\right)} = 6.23 \approx 7$$

$$\epsilon_1 = \sqrt{10^{0.1*A_p} - 1} = \sqrt{10^{0.1*(3dB)} - 1} = 0.99$$

$$\epsilon_2 = \sqrt{10^{0.1*A_s} - 1} = \sqrt{10^{0.1*(75dB)} - 1} = 5623.41$$

Se propone el valor de los capacitores iguales, C = 15 nF

$$R_n = \frac{1}{2\pi C f_p} = \frac{1}{2\pi (15 \text{ nF})(100 \text{ Hz})}$$

$$R_n = 106 \text{ k}\Omega$$

Tabla 13.2 Valores para pasa-bajas activo Butterworth.*

Orden n	C1=C o R=R1	C2=C o R=R2	C3=C o R=R3
2	1.414	0.7071	
3	3.546	1.392	0.2024
4	1.082 2.613	0.9241 0.3825	
5	1.753 3.235	1.354 0.3090	0.4214
6	1.035 1.414 3.863	0.9660 0.7071 0.2588	
7	1.531 1.604 4.493	1.336 0.6235 0.2225	0.4885
8	1.020 1.202 1.800 5.125	0.9809 0.8313 0.5557 0.1950	
9	1.455 1.305 2.000 5.758	1.327 0.7661 0.5000 0.1736	0.5170
10	1.012 1.122 1.414 2.202 6.390	0.9874 0.8908 0.7071 0.4540 0.1563	

Tabla 1

"Valores Butterworth"

$$R_{1} = rac{R_{n}}{1.531} = 69.23 \ k\Omega$$
 $R_{2} = rac{R_{n}}{1.336} = 79.34 \ k\Omega$
 $R_{3} = rac{R_{n}}{0.4885} = 216.99 \ k\Omega$
 $R_{4} = rac{R_{n}}{1.604} = 66.08 \ k\Omega$
 $R_{5} = rac{R_{n}}{0.6235} = 170 \ k\Omega$
 $R_{6} = rac{R_{n}}{4.493} = 23.59 \ k\Omega$
 $R_{7} = rac{R_{n}}{0.2225} = 476.4 \ k\Omega$

Simulación:

Fig. 1 "Circuito filtro Pasa-Altas orden 7"

Analisis de Voltaje en función de la frecuencia:

Canal 1 (Amarillo): Señal de entrada, Canal 2 (Azul): Señal de salida

Fig. 2 "Señal Entrada/Salida a 10 Hz (Antes de fc)"

Fig. 3 "Señal Entrada/Salida a 100 Hz (fc)"

Fig. 4 "Señal Entrada/Salida a 1 kHz (Después de fc)"

Fig. 5 "Diagrama de Bode"

2. Pasa-Altas orden 2 (Componentes diferentes)

$$C = 4.7 \, nF$$
 $R_2 = 12 \, k\Omega$ $R_1 = 24 \, k\Omega \, A_v = 1$

Cálculos:

$$Q = 0.5\sqrt{\frac{R_I}{R_2}} = 0.5\sqrt{\frac{24 \text{ k}\Omega}{12 \text{ k}\Omega}} = 0.707 \quad (Filtro \, Butterworth)$$

$$f_p = \frac{1}{2\pi C\sqrt{R_1 R_2}} = \frac{1}{2\pi\sqrt{(24 \text{ k}\Omega)(12 \text{ k}\Omega)}} = 1.99 \text{ kHz}$$

$$f_p = f_c$$

Q	K ₀	K _e	K ₃	$A_p(dB)$
0,577	_	0,786	1	_
0,707	_	1	1	_
0,75	0,333	0,471	1,057	0,054
0,8	0.467	0,661	1,115	0,213
0,9	0,620	0.874	1,206	0.688
1	0,708	1,000	1,272	1,25
2	0.935	1,322	1,485	6,3
3	0.972	1,374	1,523	9,66
4	0.984	1,391	1,537	12,1
5	0.990	1,400	1,543	14
6	0,992	1,402	1,546	15,6
7	0,994	1,404	1,548	16,9
8	0,995	1,406	1,549	18
8	0.997	1,408	1,550	19
10	0,998	1,410	1,551	20
100	1,000	1,414	1,554	40

Tabla 2 "Valores de Q"

Simulación:

Fig. 6 "Circuito filtro Pasa-Altas orden 2 (Componentes iguales)"

Analisis de Voltaje en función de la frecuencia:

Canal 1 (Amarillo): Señal de entrada, Canal 2 (Azul): Señal de salida

Fig. 6 "Señal Entrada/Salida a 199 Hz (Antes de fc)"

Fig. 7 "Señal Entrada/Salida a 1.99 kHz (fc)"

Fig. 8 "Señal Entrada/Salida a 19.9 kHz (Después de fc)"

Fig. 9 "Diagrama de Bode"

3. Pasa-Altas (Componentes iguales)

Filtro Butterworth

$$Q = 0.707$$

$$f_p = 1.5 \ k\Omega$$

Cálculos:

$$Q = \frac{1}{3 - A_v} \implies A_v = 3 - \frac{1}{Q} = 3 - \frac{1}{0.707} = 1.58$$

Se propone $R_1 = 10 \text{ k}\Omega$

$$A_v = \frac{R_2}{R_I} + 1 \implies R_2 = (A_v - 1)R_I = (1.58 - 1)(10 \text{ k}\Omega) = 5.8 \text{ k}\Omega$$

Se propone $R = 270 \text{ k}\Omega$

$$f_p = \frac{1}{2\pi RC} \implies C = \frac{1}{2\pi Rf_p} = \frac{1}{2\pi (270 \text{ k}\Omega)(1.5 \text{ kHz})} = 0.39 \text{ nF}$$

Se vuelve a calcular f_p con la R propuesta y la C calculada

$$f_p = \frac{1}{2\pi RC} = \frac{1}{2\pi (270 \text{ k}\Omega)(0.39 \text{ nF})} = 1511.44 \text{ Hz}$$

Q	K ₀	K,	K ₃	$A_p(dB)$
0,577	_	0,786	1	_
0.707	_	1	1	_
0,75	0,333	0,471	1,057	0,054
0,8	0.467	0,661	1,115	0,213
0,9	0,620	0.874	1,206	0.688
1	0,708	1,000	1,272	1,25
2	0.935	1,322	1,485	6,3
3	0,972	1,374	1,523	9,66
4	0.984	1,391	1,537	12,1
5	0.990	1,400	1,543	14
6	0,992	1,402	1,546	15,6
7	0,994	1,404	1,548	16,9
8	0.995	1,406	1,549	18
8	0.997	1,408	1,550	19
10	0,998	1,410	1,551	20
100	1,000	1,414	1,554	40

Tabla 3 "Valores de Q"

Simulación:

Fig. 10 "Circuito filtro Pasa-Altas orden 2 (Componentes diferentes)"

Analisis de Voltaje en función de la frecuencia:

Canal 1 (Amarillo): Señal de entrada, Canal 2 (Azul): Señal de salida

Fig. 11 "Señal Entrada/Salida a 151.1 Hz (Antes de fc)"

Fig. 12 "Señal Entrada/Salida a 1.51 kHz (fc)"

Fig. 13 "Señal Entrada/Salida a 15.1 kHz (Después de fc)"

Fig. 14 "Diagrama de Bode"