Ordered and Disordered Contributions to Lattice Thermal Conductivity

Jason Larkin

Nanoscale Transport Phenomena Laboratory Carnegie Mellon Department of Mechanical Engineering

> http://ntpl.me.cmu.edu/ 07/12/2012

Thermal Transport in Disordered Materials

Phonon picture valid with perturbations.

- Phonon picture only valid for very long wavelengths.
- **Localized** vibrations (diffusons) become important.

$$k_{vib} = k_{AF} + k_{ph}$$
 (disorder) (order)

Thermal Transport in Disordered Materials: Applications

$$ZT = \frac{S^2 \sigma T}{k_{thermal}}$$

Theoretical Models

$$k_{vib} = k_{AF} + k_{ph}$$

Phonons (ordered): Interacting Phonon Gas

$$k_{ph} = \sum_{\kappa} \sum_{\nu} c_{ph} \binom{\kappa}{\nu} v_{g,\mathbf{n}}^2 \binom{\kappa}{\nu} \tau \binom{\kappa}{\nu} \Lambda \binom{\kappa}{\nu} = |\mathbf{v}_g| \tau \binom{\kappa}{\nu}$$

 phonon-phonon (anharmonicity), defects (dilute), boundaries, (phonon-diffuson?)

<u>Diffusons (disordered): Allen-Feldman Theory</u>

$$k_{AF} = \sum_{i} C(\omega_i) D_{AF}(\omega_i) \qquad \Lambda = ?$$

diffuson-diffuson, (boundaries, diffuson-phonon?)

$$C(\omega_i) = k_B \quad c_{ph}(^{\kappa}_{\nu}) = k_B$$

Modeling Tools

	Predicted quantities	Computational cost	Code availability
Green-Kubo (GK) w/ Molecular Dynamics (MD)	Thermal conductivity	Classical	Several
Harmonic Lattice Dynamics (HLD)	Vibrational frequencies, eigenvectors, group velocities, diffuson properties (Allen- Feldman (AF))	Classical/Ab- Initio	Several
Normal Mode Decomposition (NMD) w/ HLD and MD	Thermal conductivity, Vibrational frequencies, lifetimes	Classical	None

Thermal Conductivity: System-Level

Green-Kubo

$$\kappa = \frac{V}{3k_B T^2} \int_0^\infty \langle \mathbf{J}(0) \cdot \mathbf{J}(t) \rangle \, dt$$

- Heat current J has all effects of MD (anharmonicity, defects, etc.)
- Heat current J has KE and PE parts.
- J is difficult to define using ab-initio calculations.

Normal Mode Decomposition (NMD)

$$q(_{\nu}^{\kappa};t) = \sum_{\alpha,b,l}^{3,n,N} \sqrt{\frac{m_b}{N}} u_{\alpha}(_b^l;t) e^{*(_{\nu}^{\kappa} _{\alpha}^{b})} \exp[i\kappa \cdot \mathbf{r}_0(_0^l)]$$

NMD: Frequency-Domain

NMD: Time-Domain

Normal Mode Decomposition (NMD)

Virtual Crystal

$$\tau(^{\kappa}_{\nu})$$

Gamma point

$$\tau(\omega^{\kappa=0})$$

Carrier-Level

Virtual Crystal approximation and phonon scaling relations work well!

Anharmonic Lattice Dynamics + Defect scaling =

PHYSICAL REVIEW B 85, 184303 (2012)

PRL 106, 045901 (2011)

Ordered and Disordered Vibrations

Ioffe-Regel Limit:

$$\tau(\omega) = 2\pi/\omega$$

Cahill-Pohl Model:

$$\tau(\omega) = 2\pi/\omega$$

$$v_{\rm s} \longrightarrow k_{vib}$$

Solid State Communications 70 (1989) 927-930.

Ordered and Disordered Vibrations

Dynamic Structure Factor:

Low-frequency modes can identify a wavelength, not possible in general:

PHIL. MAG. B 79, 1715-1731 (1999)

PHIL. MAG. B 79, 1747-1754 (1999)

$$\Lambda = 1$$

$$v_{AF}^{2}(\omega)=D_{AF}(\omega)/\tau(\omega)$$

 ω (LJ units)

$$v(\omega) > v_{\rm s}$$

$$\Lambda = v_{\rm s} \tau(\omega)$$

Phonon

$$v(\omega) < v(\omega)$$

$$\Lambda = (D_{AF}(\omega) \tau(\omega))^{1/2}$$

Predicted Thermal Conductivity

$$k_{vib} = k_{AF} + k_{ph}$$

Cumulative Thermal Conductivity

Boundary Scattering: Cumulative Thermal Conductivity

Large c alloys and amorphous vibrations have decreased MFP

Boundary scattering less effective for >10 nm

Bulk Thermoelectrics

For Bulk thermoelectrics, systems are "soft" (small group velocities, small lifetimes)

MFPs are typically < 100 nm, boundary scattering not effective

Alloying can still be effective

PHYSICAL REVIEW B 85, 184303 (2012)

Amorphous Silicon

In a-Si, thermal conductivity displays clear film thickness dependance

Indicates a phonon-like boundary scattering dependance

Ordered/Disordered analysis could measure the MFP spectrum in a-Si

APPLIED PHYSICS LETTERS 98, 144101 2011

Green-Kubo

$$\kappa = \frac{V}{3k_B T^2} \int_0^\infty \langle \mathbf{J}(0) \cdot \mathbf{J}(t) \rangle \, dt$$

- Heat current J has all effects of MD (anharmonicity, defects, etc.)
- Heat current J has KE and PE parts.
- J is difficult to define using *ab-initio* calculations.

Perfect system: vibrations are phonons with an

allowed wavevector

 $au({}^{m{\kappa}}_{
u})$

<u>Perturbed system</u>: vibrations are phonons with an allowed wavevector (dilute alloy). Virtual Crystal (VC) approximation.

<u>Disordered system</u>: vibrations are phonons/diffusons. Vibrations analyzed at Gamma point.

$$\tau(\omega^{\kappa=0})$$

