Контрольная 3. Непрерывные СВ.

1. (3б) Вычислить интеграл

$$\int_0^\infty \frac{x^{2007} dx}{(1+x)^{2018}}$$

- 2. (36) На окружности равновероятно выбираются 3 точки, какова вероятность того, что центр окружности лежит внутри.
- 3. (36) На отрезке [0,1] равновероятно выбираются 2 числа. Найдите вероятность, что их сумма не больше 0,9, а произведение не меньше 0.15.
- 4. (3б) Острый угол прямоугольного треугольника с единичной гипотенузой распределен равномерно от 0 до $\frac{\pi}{2}$. Найти функцию распределения и плотность площади треугольника.
- 5. (3б)Случайная величина ξ имеет непрерывную функцию распределения $F_{\xi}(x)$. Найдите функцию распределения случайной величины $\eta = 2 \sqrt{\xi}$.
- 6. (3б) Пусть случайная величина ξ имеет стандартное распределение Коши. Найти плотности распределения следующих случайных величин:
 - (a) $\frac{1}{\xi}$
 - (b) $2\xi + 1$
 - (c) $\frac{1}{1+\xi^2}$
- 7. (3б) Найти коэффициент корреляции между ξ и $\eta = a\xi^2 + c$, если ξ имеет стандартное нормальное распределение N(0,1).
- 8. (3б) Случайные величины ξ и η независимы и имеют экспоненциальное распределение с параметром $\lambda > 0$. Найдите математическое ожидание и дисперсию случайной величины $|\xi \eta|$.
- 9. (3б) Совместное распределение случайных величин ξ и η имеет плотность $\rho=1-e^{-(x+y)}$ (x,y > 0). Найти условное матожидание $E(\xi|\eta)$.
 - (a) $(1)E_{\xi}, E_{\eta}$
 - (b) $(1)D_{\xi}, D_{\eta}$
 - (c) $(1)cov(\xi,\eta)$
- 10. (36) Найти $E(\xi|\eta)$, если совместная плотность случайного вектора (ξ,η) равна:

$$\rho_{\xi,\eta}(x,y) = \begin{cases} 2ye^{-x} + 2e^{-2x}, & 0 \le x, 0 \le y \le 1\\ 0, & otherwise \end{cases}$$