

Sa 28	Su 29	JAN W5 Mo 30	Tu 31	FEB We 1	Th 2	Fr 3	Sa 4	Su 5	FEB W6 Mo 6	Tu 7	We 8	Th g	Fr 10	So 11	Su 12	FEB W7 Mo 13	Tu 14	We +=	Th 16	Fr 17	Sa 18	Su 19	FEB W8 Mo 20	Tu 21
29 50	3u 29	1010 30	10 31	VVC 1	1112	F1 3	3a 4	20 2	IVIO 6	Tu /	vve o	ing	FT 10	3a 11	3u 12	IVIO 13	1 u 14	VVU 15	11110	F1:17	Od 10	ou ig	IVIO 20	10 21
						5																		
g of the ca	mera																							
a on rover	and confi	guring it																						
Control	the rover's	s movemen	nts via wel	Ь																				
Procure	the mater	ials																						
			Writing t	the code o	n the proc	cessor tha	t sends the	Sensor [Data to the	e web														
						-																		

FEB W8							FEB Wg		MAR					MAR W	10						MAR W	н		
Mo 20	Tu 21	We 22	Th 23	Fr 24	Sa 25	Su 26	Mo 27	Tu 28	We 1	Th 2	Fr 3	Sa 4	Su 5	Mo 6	Tu 7	We 8	Th g	Fr 10	Sa 11	Su 12	Mo 13	Tu 14	We 15	Th 16
the rover	's movem	nents via w	/eh																					
1110 10101	0111070111	ionio via v																						
the code	on the pr	ocessor th	nat sends	the Senso	r Data to t	he web																		
							Making th	he Robot	Arm															
							Procure t	the mater	rials							-			Making	the Robot	Arm			
								Website	that displ	ays senso	r data													
																					v .		er.	ete:
								Studying	g about we	eb develo	pment and	d creating	our websi	e that wil	l display d	ata it rece	eives from	the senso	rs on the	rover				
																			Making	the code (on the pro	cessor an	d using the	e require

Mo 27		We 29	Th 30	Fr 31	Sa t	Su 2	Mo 3		We 5	Th 6	Fr 7	Sa 8	Su 9	Mo 10		We 12	Th 13	Fr 14	Sa 15	Su 16
															1					
ules that v	will send t				ors to our w															
		Making t	the website		o that it car			in form o	of graphs											
,1																				

We intend to use 3 main components for our project- MULTIPURPOSE ROVER

1) Arduino 1 that help use to control our rover using the Wi-Fi using an ethernet shield that will be mounted above the Arduino. This consists of DC motors for the wheels and servos motors for the robot arm, which will be controlled by us using the internet capability. We use an H-Bridge here that helps us to effectively use DC motors in the circuit ensuring they do not get spolit. We also have a ultrasonic sensoe that could help us introduce the concept of obstacle avoidance in our rover . Here, we also have a bluetooth module that can also be used for receiving instructions in case the area doesn't have a Wi-fi connection.

fritzing

2) Arduino 2 that helps us receive sensor data that includes temperature, humidity, air quality monitoring of different gases etc. This Arduino also includes the Wi-Fi module that helps use send sensor data to website using the internet.

Even though the sensor and the Wi-Fi module will included in the same Arduino circuit but for better clarification we have showed them in different circuit diagrams.

fritzing

fritzing

3) A Raspberry pi that will enable us to stream live video using a Raspberry pi camera (5 MP) and also click images that will help us monitor and study the environment and control the rover.

Microprocessors used:

- 1) Raspberry Pie 3 Model B
- 2) Arduino Uno (*2)

Specifications of Equipment to be used:

- 1) Sensors:
 - a) Temperature and Humidity Sensor: DHT11 (3-5.5V DC)
 - b) Pressure Sensor: BMP180 (5V, I2C Device)
 - c) Gas Sensor: MQ135 (5V DC/AC)
 - d) Infrared Sensor: GP2Y0A21YK0F Proximity Sensor
 - e) Ultrasonic Sensor: HC-SR04 (5V DC, Working current: 15mA, Range: 2cm-4m)
 - f) Water Level Sensor: RKI-2350 (5V DC)
- 2) Bluetooth Module: HC-05 (80 dBm)
- 3) Wi-Fi Module: ESP8266 (5 V)
- 4) Ethernet Shield: W5100 Shield Network Extension Board
- 5) DC Motors: Gear motor Helical gear

Specifications of the motors:

- 150RPM 12V DC motors with Gearbox
- 4mm shaft diameter with internal hole
- 125gm weight
- 2kgcm torque
- No-load current = 60 mA(Max), Load current = 300 mA(Max)
- 6) H-Bridge: L293D (4.5 to 36V, provides bidirectional open currents up to 600mA)
- 7) Servo Motors: SG90 Mini Servo

Specifications of the servo motor:

• Weight: 9 g

• Dimension: 22.2 x 11.8 x 31 mm approx.

• Stall torque: 1.8 kgf·cm

• Operating speed: 0.1 s/60 degree

• Operating voltage: 4.8 V (~5V)

• Dead band width: 10 μs

• Temperature range: 0 °C – 55 °C