On sliding gradient

Giulio Galvan

2 ottobre 2015

From Lipschitz continuity we get:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|x - y\|^2,$$
 (1)

which choosing $x = x_k$ and $y = x_{k+1} = x_k + t_k d_k$ becomes:

$$f(x_{k+1}) - f(x_k) \le t_k \nabla f(x_k)^T d_k + t_k^2 \frac{L}{2} \|d_k\|^2.$$
 (2)

The previous inequality can be rewritten as:

$$f(x_k) - f(x_{k+1}) \ge -t_k \nabla f(x_k)^T d_k \cdot \left(1 + t_k \frac{L}{2} \frac{\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\|^2 \cos^2 \theta_k}\right)$$
 (3)

where

$$cos\theta_k = \frac{\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\| \|d_k\|}$$
(4)

In a backtracking setting, as defined in algorithm 1, we search for a value of t_k such that:

$$f(x_k) - f(x_{k+1}) \ge \alpha t_k \nabla f(x_k)^T d_k.$$
 (5)

When backtracking we have two possibilities: either $t_k = s$ satisfy inequality (5) or not. In the latter case it must hold:

$$f(x_k) - f(x_k + \frac{t_k}{\beta} d_k) < \alpha \frac{t_k}{\beta} \nabla f(x_k)^T d_k$$
 (6)

Combining the latter with inequality 3 written for $t_k = \frac{t_k}{\beta}$ yields:

$$\alpha \frac{t_k}{\beta} \nabla f(x_k)^T d_k > -\frac{t_k}{\beta} \nabla f(x_k)^T d_k \cdot \left(1 + \frac{t_k}{\beta} \frac{L}{2} \frac{\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\|^2 \cos^2 \theta_k} \right), \quad (7)$$

which in turn, being $\nabla f(x_k)^T d_k < 0$ since d_k is a descent direction, and $t_k, \beta > 0$, leads to:

$$t_k > \frac{2(\alpha+1)\beta}{L} \frac{\|\nabla f(x_k)\|^2 \cos^2 \theta_k}{\nabla f(x_k)^T d_k}$$
(8)

$$= \frac{2(\alpha+1)\beta}{L} \frac{\nabla f(x_k)^T d_k}{\|d_k\|^2} \tag{9}$$

If we impose

$$s \ge \gamma \frac{\nabla f(x_k)^T d_k}{\|d_k\|^2} \tag{10}$$

where γ is some positive constant, we can use 8 in 5 and get:

$$f(x_k) - f(x_{k+1}) > \alpha \cdot \min\left(\gamma, \frac{2(\alpha+1)\beta}{L}\right) \|\nabla f(x_k)\|^2 \cos^2 \theta_k.$$
 (11)

Summing over k, if f is bounded below, say by f^* , and θ_k bounded away from 90 degrees we get:

$$f(x_0) - f^* \ge \sum_{k=0}^{N} f(x_k) - f(x_{k+1}) = f(x_0) - f(x_N) > C \sum_{k=0}^{N} \|\nabla f(x_k)\|^2$$
. (12)

Hence we have convergence at the same rate as gradient descent.

We have made the following assumptions along the way:

- $f(\cdot)$ is bounded below
- d_k is a descent direction bounded away from 90 degrees w.r.t $\nabla f(x_k)$
- the initial guess of the backtracking algorithm $s \geq \gamma \frac{\nabla f(x_k)^T d_k}{\|d_k\|^2}$ for some positive constant γ

Algorithm 1: Backtracking algorithm.

Data:

s > 0 initial step guess

$$\alpha, \beta \in (0,1)$$

1 $t_k \leftarrow s$

2 while
$$f(x_k) - f(x_{k+1}) < \alpha t_k \nabla f(x_k)^T d_k$$
 do

- 3 $t_k \leftarrow t_k t_k$
- 4 end
- 5 return t_k