4. The learner receives reward $Y_t \sim \text{Bernoulli}(r(X_t))$, where $r: \{0,1\}^N \to [0,1]$ is unknown and arbitrary. $P(Y|do(X_i = j)) = P(Y|X_i = j)$

 $=P(Y|do(X_a=1), X_i=j)q_a + P(Y|do(X_a=0), X_i=j)(1-q_a)$

1. The learner chooses an $I_t \in \{0, ..., N\}$ and $J_t \in \{0, 1\}$, setting $X_{I_t, t} = J_t$. Selecting $I_t = 0$ corresponds to

Let $q \in [0,1]^N$ be a fixed vector where $q_i = P(X_i = 1)$. In each time-step t upto a known end point T:

taking the nothing action do() and just observing.

At each timestep, observing will reveal the reward for half the arms.

2. For $i \neq I_t$, $X_{i,t} \sim Bernoulli(q_i)$

The causal structure gives us:

3. The learner observes $X_t = [X_{1\ t}...X_{N\ t}]$