컴퓨터 구조

2강. 컴퓨터구조의 발전과정

권오상 수

제2강 컴퓨터구조의 발전과정

2.1 컴퓨터구조의 발전과정

학습 목표

1. 컴퓨터 구조의 발전 과정에 대해 학습한다.

2.1 컴퓨터 구조의 발전 과정

2.1.1 주요 컴퓨터 부품들의 발전 과정

- □ 주요 부품들의 발전 과정
 - 릴레이(relay) → 진공관 → 트랜지스터 → 반도체 집적회로(IC)
 - 발전 과정에서 개선된 특성들:
 - o 처리속도 향상
 - ㅇ 저장용량 증가
 - o 크기 감소
 - o 가격 하락
 - 0 신뢰도 향상
- □ 초기 컴퓨터들의 근본적인 설계 개념과 동작 원리가 현대 의 컴퓨터들과 거의 같음

최초의 컴퓨터

- □ 1642년, Blaise Pascal(프랑스)
- ◘ 덧셈과 뺄셈을 수행하는 기계적 카운터
- □ 다이얼의 위치에 의하여 십진수를 표시하는 6개의 원형 판 세트들로 구성
- □ 각 원형판은 일시적으로 숫자를 기억하는 레지스터로 사용

Leibniz의 기계

- □ 1671년, Gottfried Leibniz(독일)
- ◘ 덧셈과 뺄셈 및 곱셈과 나눗셈도 할 수 있는 계산기
- □ Pascal의 계산기에 두 개의 원형판들을 추가하여 반복적 방법으로 곱셈과 나눗셈을 수행
- □ 이후 많은 기계들의 조상이 됨

Difference Engine

- □ 19세기 초, Charles Babbage(영국, 현대 컴퓨터의 할아 버지)
- □ 표에 있는 수들을 자동적으로 계산하고, 그 결과를 금속 천공기를 거쳐서 프린트
- □ 덧셈과 뺄셈만 수행 가능

Analytical Engine

- 🗅 19세기 초, Charles Babbage(영국)
- □ 주요 특징들
 - 어떤 수학 연산도 자동적으로 수행할 수 있는 일반목적용 계산 기계
 - 프로그래밍 가능 : 프로그램 언어 사용
 - 프로그램의 실행 순서 변경 가능
 - 수의 부호 검사를 이용한 조건 분기
 - ㅇ 제어카드 이용을 이용한 실행 순서 변경
- □ 문제점
 - 주요 부품들이 기계적인 장치들이었기 때문에 속도가 느렸고 신 뢰도가 낮음

Analytical Engine의 기본 구조

- □ 산술연산장치: MILL
- □ 기억장치:STORE
- □ 입력장치: 카드판독기
- □ 출력장치: 카드 천공기, 프린터

30p

ENIAC

- ☐ Electronic Numerical Integrator And Computer
- □ 1940년대 초, von Neumann(폰 노이만)이 개발
- □ 펜실바니아 대학에서 개발한 진공관을 사용한 최초의 전자식 컴퓨터
- □ 단점: 프로그램의 저장과 변경 불가능
- □ 폰 노이만의 설계 개념(Stored-program 개념) 발표
 - EDVAC(Electronic Discrete Variable Computer) 개발을 위하여 1945년에 발표
 - 프로그램과 데이터를 내부에 저장
 - 2진수 체계(binary number system) 사용

IAS 컴퓨터

- □ 1952년, 폰 노이만이 개발
- □ 'stored-program' 컴퓨터
- □ 폰 노이만의 설계 개념 이용
 - 2진수 체계를 사용한다
 - 프로그램과 데이터를 내부에 저장한다
- □ 주요 구성요소
 - 프로그램 제어 유니트(Program Control Unit): 명령어 인출/해독
 - 산술논리연산장치(ALU)
 - 주기억장치: 명령어와 데이터를 모두 저장
 - 입출력장치

IAS 컴퓨터의 구조

■ 폰 노이만 아키텍처(von Neumann Architecture):

프로그램 코드들을 기억장치에 저장된 순서대로 실행하며, 그 주소는 CPU의 내부 레지스터인 프로그램 카운터(program counter)에 의해 지정됨

2.1.2 주요 컴퓨터 부품들의 특징

- □ 트랜지스터(transistor)
 - 초기(제1세대) 전자식 컴퓨터의 핵심 부품인 진공관을 대체한 전 자 부품
 - 진공관보다 작고 싸며 더 적은 열을 발산
 - 반도체 재료인 실리콘(Si)으로 만들어진 고체(solid-state) 장치
 - 제2세대 컴퓨터들의 부품 ← 제1세대 컴퓨터들의 부품은 진공관
 - 초기 컴퓨터들은 약 1000 개의 트랜지스터들로 구성
- □ 집적 회로(Integrated Circuit: IC)
 - 수만 개 이상의 트랜지스터들을 하나의 반도체 칩에 집적시킨 전
 자 부품
 - 제3세대 컴퓨터들의 부품

IC의 제조 과정

집적도에 따른 IC의 분류

- □ SSI(Small Scale IC)
 - 수십 개의 트랜지스터들이 집적되는 소규모 IC
 - 최근에는 주로 기본적인 디지털 게이트(digital gate)들을 포함하는 칩으로만 사용됨
- MSI(Medium Scale IC)
 - 수백 개의 트랜지스터들이 집적되는 IC
 - 카운터(counter), 해독기(decoder) 또는 시프트 레지스터(shift register)와 같은 조합 회로나 순차 회로를 포함하는 칩
- □ LSI(Large Scale IC)
 - 수천 개의 트랜지스터들이 집적되는 대규모 IC
 - 8-비트 마이크로프로세서 칩이나 소규모 반도체 기억장치 칩

<u>집적도에 따른 IC의 분류 (계속)</u>

- □ VLSI(Very Large Scale IC)
 - 수만 내지 수십만 개 이상의 트랜지스터들이 집적되는 초대규모
 IC
 - 제4세대 컴퓨터들의 부품
 - 마이크로프로세서 칩들과 대용량 반도체 기억장치 칩
- ULSI(Ultra Large Scale IC)
 - 수백만 개 이상의 트랜지스터들이 집적되는 32-비트급 이상 마이 크로프로세서 칩들과 수백 메가비트 이상의 반도체 기억장치 칩들 및 앞으로 출현할 고밀도 반도체 칩들을 지칭하기 위한 용어로서, VVLSI(Very Very Large Scale IC)라고도 불림

IC 사용에 따른 이점

- 전기적 통로가 짧아짐 → 동작 속도가 크게 상승
- □ 컴퓨터 크기의 감소
- 🔲 🇴 내부의 회로들간의 상호연결 → 부품들의 신뢰성 향상
- □ 전력 소모 감소 및 냉각 장치의 소형화
- □ 컴퓨터 가격 하락
- □ VLSI의 출현으로 개인용 컴퓨터(PC)가 개발됨

2.1.3 컴퓨터시스템의 분류와 발전 동향

1) 개인용 컴퓨터(PC)

- □ 특징
 - 소형, 저가
 - 성능 : 대형 메인프레임 컴퓨터의 성능을 능가
- □ 주요 발전 동향
 - 몇 년마다 성능이 개선된 새로운 마이크로프로세서가 등장하고, 그에 따라 새로운 PC 모델 출현
 - 주변 요소들(캐시, MMU, 산술보조프로세서 등)이 CPU 칩에 내장됨에 따라 속도 및 신뢰도가 향상
 - CPU 구조가 다수의 ALU들 혹은 명령어 실행 유니트들을 포함하는 슈퍼스칼라(superscalar) 구조, 듀얼-코어 및 쿼드-코어 구조로 발전

개인용 컴퓨터 (계속)

- 문자 이외의 다양한 정보들에 대한 입력과 출력, 저장 및 처리 능력을 보유하게 됨에 따라 멀티미디어 PC로 발전
- 보다 더 편리한 사용자 인터페이스를 제공해 주는 시스템 소프트 웨어들 출현 (Windows 95/98/ME/2000/XP/7/8 등)
- 고속 I/O 장치들의 인터페이스를 위한 새로운 버스 규격 제안
- 주기억장치와 보조저장장치의 용량이 크게 증가, 종류 다양화
- 초고속 이동통신 및 전화 기능 등을 포함한 복합형 기기로 발전

□ 유형

■ 데스크탑(desktop) PC, 노트북(notebook) PC, 넷북(netbook) PC, 태블릿(tablet) PC, 포켓(pocket) PC, 등

2) 임베디드 컴퓨터

- □ Embedded Computer (내장 컴퓨터라고도 함)
- □ 기계 장치나 전자 장치들의 내부에 포함되어, 그 장치들의 동작을 제어(control)하는 컴퓨터들

[예] 가전제품, 컴퓨터 주변기기, 이동전화기, 비디오 게임기 등

- □ 8-비트 마이크로컨트롤러(micro-controller)를 이용한 초소형부터 32-비트 컴퓨터에 이르기까지 다양
- □ 최소의 비용으로, 필요한 만큼의 성능 제공
- □ 실시간 처리(real-time processing)
- □ 유비쿼터스 컴퓨팅 설비의 중심 요소로도 사용될 전망

3) 중형급 컴퓨터시스템

- □ 워크스테이션(workstation)
 - CPU: 64-비트 마이크로프로세서 사용
 - 고속 그래픽 처리 하드웨어 포함
 - 주요 응용 : 3차원 동영상처리, 시뮬레이션, 컴퓨터 이용 설계(CAD) 등
 - OS: UNIX, LINUX
- □ 슈퍼미니컴퓨터(Super-minicomputer)
 - 시스템 구조 : 다중프로세서(multiprocessor) 구조
 - CPU의 수: 20 ~ 30 개
 - 성능: VAX-11 미니컴퓨터 성능의 수십 배 이상
 - OS: UNIX
 - 서버(server)급 시스템의 다운사이징(downsizing) 주도
 - → 네트워크에 접속된 다수의 중형급 컴퓨터 시스템들을 응용(용도)별로 구분하여 사용하는 컴퓨팅 환경이 가능해지게 함

<u>다중프로세서 시스템의 구조</u>

4) 메인프레임 컴퓨터(mainframe computer)

- □ IBM 360 및 370 계열, 3081, 3090 등으로 계속 발전
- ◘ 대용량 저장장치 보유
- □ 다중 I/O 채널을 이용한 고속 I/O 처리 능력 보유
- □ 대규모 데이터베이스 저장 및 관리용으로 사용
- 최근 성능과 가격면에서 슈퍼미니급 컴퓨터들과 경쟁하고 있으며, 점차적으로 시장 점유율 하락 중

5) 슈퍼컴퓨터(supercomputer)

- □ 현존하는 컴퓨터들 중에서 처리 속도와 기억장치 용량이 다른 컴퓨터들에 비하여 상대적으로 월등한 컴퓨터 시스템
- □ 분류 기준:계속적으로 상승
 - 최초의 슈퍼컴퓨터인 CRAY-1의 속도는 100 MFLOPS
 - 최근의 슈퍼컴퓨터들의 속도는 수백 TFLOPS 이상
- □ 주요 응용 분야들
 - VLSI 회로 설계, 항공우주공학, 천문학(일기 예보), 구조 공학, 유전 탐사, 핵공학, 인공지능, 입체 영상처리 등과 같은 대규모 과학계산 및 시뮬레이션

슈퍼컴퓨터 종류

- □ 파이프라인 슈퍼컴퓨터(pipeline supercomputer)
 - 복잡한 초고속 연산 장치들이 포함한 CPU들을 이용하여 구성
 - 각 연산 장치는 고도의 파이프라인 구조를 이용하여 고
 속 벡터 계산 가능
 - 대표적인 시스템들: CRAY Y-MP, CRAY-2, Fujitsu VP2000, VPP500 등

슈퍼컴퓨터 종류(계속)

- □ 대규모 병렬컴퓨터(massively parallel computer: MPP)
 - 한 시스템 내에 상호 연결된 수백 혹은 수천 개 이상의
 일반적인 프로세서들을 포함
 - 프로세서들이 하나의 큰 작업을 나누어 동시에 처리하는 병렬처리(parallel processing) 기술 이용
 - 시스템 사례: IBM BlueGene/Q 슈퍼컴퓨터
 - o 2013년 TOP500 리스트(www.top500.org) 최상위 랭크
 - o 1,572,864개의 64-비트 PowerPC 프로세서들 탑재
 - o 96 캐비닛 x 512 노드 x 32 프로세서
 - o 1.57 PByte 기억장치 보유

IBM BlueGene/Q 슈퍼컴퓨터의 구성도

43p

슈퍼컴퓨터 종류(계속)

□ 클러스터 컴퓨터(Cluster Computer)

- 고속 LAN이나 네트워크 스위치에 의해 서로 연결된 PC 들 혹은 워크스테이션들의 집합체
- 노드(단위 컴퓨터)들에 포함된 모든 자원들을 단일 시 스템 이미지(Single System Image: SSI)로 통합
- 시스템 사례: NOW(Network of Workstations)
 - U.C. 버클리대학 전산학과에서 개발
 - o 105개의 워크스테이션들로 구성
 - 제8장에서 자세히 설명

NOW(Network of Workstations)의 구성도

44p

학습 정리

- □ 초기 컴퓨터들의 근본적인 설계 개념과 동작 원리가 현대 컴퓨터들과 거의 같습니다.
- □ 컴퓨터 부품들의 발전 과정은 릴레이, 진공관, 트랜지스터를 거쳐 반도체 집적회로로 이어지고 있으며, 그 특성들을 살펴보면 처리속도 향상, 저장용량 증가, 크기 감소, 가격 하락, 신뢰도 향상 등입니다.
- □ 최초의 컴퓨터는 1642년 파스칼에 의해 개발된 컴퓨터입니다.
- □ 1671년 라이프니츠에 의해 곱셈과 나눗셈을 하는 컴퓨터가 개 발되었습니다.
- □ 19세기에는 현대 컴퓨터의 할아버지라고 불리는 <mark>배비지</mark>에 의해 현대적인 개념의 컴퓨터가 개발되었습니다.

학습 정리(계속)

- □ 1940년대 초에는 폰노이만에 의해 진공관을 사용한 최초의 전자식 컴퓨터 ENIAC 이 개발되었으며, 1952년에는 폰노이만에 의해 'stored-program' 개념을 탑재한 IAS 컴퓨터가 개발되었습니다.
- □ IC를 사용함에 따라 컴퓨터의 성능이 많이 향상되었으며, IC는 집적도에 따라 SSI, MSI, LSI, VLSI, ULSI로 분류할 수 있습니다.
- □ 컴퓨터 시스템은 소형이며 저가격인 개인용 컴퓨터, 워크스테이션과 슈퍼미니컴퓨터 등의 중형급 컴퓨터, 대규모 데이터베이스및 관리용인 메인프레임 컴퓨터, 가장 월등한 성능을 가진 슈퍼컴퓨터 등으로 분류됩니다.

참고 문헌

컴퓨터구조론, 김종현 저, 생능출판사, 2014.

컴퓨터 구조

2강. 컴퓨터구조의 발전과정

권오상 수

제2강 컴퓨터구조의 발전과정

2.1 컴퓨터구조의 발전과정

학습 목표

1. 컴퓨터 구조의 발전 과정에 대해 학습한다.

2.1 컴퓨터 구조의 발전 과정

2.1.1 주요 컴퓨터 부품들의 발전 과정

- □ 주요 부품들의 발전 과정
 - 릴레이(relay) → 진공관 → 트랜지스터 → 반도체 집적회로(IC)
 - 발전 과정에서 개선된 특성들:
 - o 처리속도 향상
 - O 저장용량 증가
 - o 크기 감소
 - ㅇ 가격 하락
 - 0 신뢰도 향상
- □ 초기 컴퓨터들의 근본적인 설계 개념과 동작 원리가 현대 의 컴퓨터들과 거의 같음

최초의 컴퓨터

- □ 1642년, Blaise Pascal(프랑스)
- ◘ 덧셈과 뺄셈을 수행하는 기계적 카운터
- □ 다이얼의 위치에 의하여 십진수를 표시하는 6개의 원형 판 세트들로 구성
- □ 각 원형판은 일시적으로 숫자를 기억하는 레지스터로 사용

Leibniz의 기계

- □ 1671년, Gottfried Leibniz(독일)
- ◘ 덧셈과 뺄셈 및 곱셈과 나눗셈도 할 수 있는 계산기
- □ Pascal의 계산기에 두 개의 원형판들을 추가하여 반복적 방법으로 곱셈과 나눗셈을 수행
- □ 이후 많은 기계들의 조상이 됨

Difference Engine

- □ 19세기 초, Charles Babbage(영국, 현대 컴퓨터의 할아 버지)
- □ 표에 있는 수들을 자동적으로 계산하고, 그 결과를 금속 천공기를 거쳐서 프린트
- □ 덧셈과 뺄셈만 수행 가능

Analytical Engine

- 🗅 19세기 초, Charles Babbage(영국)
- □ 주요 특징들
 - 어떤 수학 연산도 자동적으로 수행할 수 있는 일반목적용 계산 기계
 - 프로그래밍 가능 : 프로그램 언어 사용
 - 프로그램의 실행 순서 변경 가능
 - 수의 부호 검사를 이용한 조건 분기
 - ㅇ 제어카드 이용을 이용한 실행 순서 변경
- □ 문제점
 - 주요 부품들이 기계적인 장치들이었기 때문에 속도가 느렸고 신 뢰도가 낮음

Analytical Engine의 기본 구조

- □ 산술연산장치: MILL
- □ 기억장치:STORE
- □ 입력장치: 카드판독기
- □ 출력장치: 카드 천공기, 프린터

30p

ENIAC

- ☐ Electronic Numerical Integrator And Computer
- □ 1940년대 초, von Neumann(폰 노이만)이 개발
- □ 펜실바니아 대학에서 개발한 진공관을 사용한 최초의 전자식 컴퓨터
- □ 단점: 프로그램의 저장과 변경 불가능
- □ 폰 노이만의 설계 개념(Stored-program 개념) 발표
 - EDVAC(Electronic Discrete Variable Computer) 개발을 위하여 1945년에 발표
 - 프로그램과 데이터를 내부에 저장
 - 2진수 체계(binary number system) 사용

IAS 컴퓨터

- □ 1952년, 폰 노이만이 개발
- □ 'stored-program' 컴퓨터
- □ 폰 노이만의 설계 개념 이용
 - 2진수 체계를 사용한다
 - 프로그램과 데이터를 내부에 저장한다
- □ 주요 구성요소
 - 프로그램 제어 유니트(Program Control Unit): 명령어 인출/해독
 - 산술논리연산장치(ALU)
 - 주기억장치: 명령어와 데이터를 모두 저장
 - 입출력장치

IAS 컴퓨터의 구조

폰 노이만 아키텍처(von Neumann Architecture):

프로그램 코드들을 기억장치에 저장된 순서대로 실행하며, 그 주소는 CPU의 내부 레지스터인 프로그램 카운터(program counter)에 의해 지정됨

2.1.2 주요 컴퓨터 부품들의 특징

- □ 트랜지스터(transistor)
 - 초기(제1세대) 전자식 컴퓨터의 핵심 부품인 진공관을 대체한 전 자 부품
 - 진공관보다 작고 싸며 더 적은 열을 발산
 - 반도체 재료인 실리콘(Si)으로 만들어진 고체(solid-state) 장치
 - 제2세대 컴퓨터들의 부품 ← 제1세대 컴퓨터들의 부품은 진공관
 - 초기 컴퓨터들은 약 1000 개의 트랜지스터들로 구성
- □ 집적 회로(Integrated Circuit: IC)
 - 수만 개 이상의 트랜지스터들을 하나의 반도체 칩에 집적시킨 전
 자 부품
 - 제3세대 컴퓨터들의 부품

IC의 제조 과정

집적도에 따른 IC의 분류

- □ SSI(Small Scale IC)
 - 수십 개의 트랜지스터들이 집적되는 소규모 IC
 - 최근에는 주로 기본적인 디지털 게이트(digital gate)들을 포함하는 칩으로만 사용됨
- MSI(Medium Scale IC)
 - 수백 개의 트랜지스터들이 집적되는 IC
 - 카운터(counter), 해독기(decoder) 또는 시프트 레지스터(shift register)와 같은 조합 회로나 순차 회로를 포함하는 칩
- □ LSI(Large Scale IC)
 - 수천 개의 트랜지스터들이 집적되는 대규모 IC
 - 8-비트 마이크로프로세서 칩이나 소규모 반도체 기억장치 칩

<u>집적도에 따른 IC의 분류 (계속)</u>

- □ VLSI(Very Large Scale IC)
 - 수만 내지 수십만 개 이상의 트랜지스터들이 집적되는 초대규모
 IC
 - 제4세대 컴퓨터들의 부품
 - 마이크로프로세서 칩들과 대용량 반도체 기억장치 칩
- ULSI(Ultra Large Scale IC)
 - 수백만 개 이상의 트랜지스터들이 집적되는 32-비트급 이상 마이 크로프로세서 칩들과 수백 메가비트 이상의 반도체 기억장치 칩들 및 앞으로 출현할 고밀도 반도체 칩들을 지칭하기 위한 용어로서, VVLSI(Very Very Large Scale IC)라고도 불림

IC 사용에 따른 이점

- 전기적 통로가 짧아짐 → 동작 속도가 크게 상승
- □ 컴퓨터 크기의 감소
- □ 칩 내부의 회로들간의 상호연결 → 부품들의 신뢰성 향상
- □ 전력 소모 감소 및 냉각 장치의 소형화
- □ 컴퓨터 가격 하락
- □ VLSI의 출현으로 개인용 컴퓨터(PC)가 개발됨

2.1.3 컴퓨터시스템의 분류와 발전 동향

1) 개인용 컴퓨터(PC)

- □ 특징
 - 소형, 저가
 - 성능 : 대형 메인프레임 컴퓨터의 성능을 능가
- □ 주요 발전 동향
 - 몇 년마다 성능이 개선된 새로운 마이크로프로세서가 등장하고, 그에 따라 새로운 PC 모델 출현
 - 주변 요소들(캐시, MMU, 산술보조프로세서 등)이 CPU 칩에 내장됨에 따라
 라 속도 및 신뢰도가 향상
 - CPU 구조가 다수의 ALU들 혹은 명령어 실행 유니트들을 포함하는 슈퍼스칼라(superscalar) 구조, 듀얼-코어 및 쿼드-코어 구조로 발전

개인용 컴퓨터 (계속)

- 문자 이외의 다양한 정보들에 대한 입력과 출력, 저장 및 처리 능력을 보유하게 됨에 따라 멀티미디어 PC로 발전
- 보다 더 편리한 사용자 인터페이스를 제공해 주는 시스템 소프트 웨어들 출현 (Windows 95/98/ME/2000/XP/7/8 등)
- 고속 I/O 장치들의 인터페이스를 위한 새로운 버스 규격 제안
- 주기억장치와 보조저장장치의 용량이 크게 증가, 종류 다양화
- 초고속 이동통신 및 전화 기능 등을 포함한 복합형 기기로 발전

□ 유형

■ 데스크탑(desktop) PC, 노트북(notebook) PC, 넷북(netbook) PC, 태블릿(tablet) PC, 포켓(pocket) PC, 등

2) 임베디드 컴퓨터

- □ Embedded Computer (내장 컴퓨터라고도 함)
- □ 기계 장치나 전자 장치들의 내부에 포함되어, 그 장치들의 동작을 제어(control)하는 컴퓨터들

[예] 가전제품, 컴퓨터 주변기기, 이동전화기, 비디오 게임기 등

- □ 8-비트 마이크로컨트롤러(micro-controller)를 이용한 초소형부터 32-비트 컴퓨터에 이르기까지 다양
- □ 최소의 비용으로, 필요한 만큼의 성능 제공
- □ 실시간 처리(real-time processing)
- □ 유비쿼터스 컴퓨팅 설비의 중심 요소로도 사용될 전망

3) 중형급 컴퓨터시스템

- □ 워크스테이션(workstation)
 - CPU: 64-비트 마이크로프로세서 사용
 - 고속 그래픽 처리 하드웨어 포함
 - 주요 응용: 3차원 동영상처리, 시뮬레이션, 컴퓨터 이용 설계(CAD) 등
 - OS: UNIX, LINUX
- □ 슈퍼미니컴퓨터(Super-minicomputer)
 - 시스템 구조 : 다중프로세서(multiprocessor) 구조
 - CPU의 수: 20 ~ 30 개
 - 성능: VAX-11 미니컴퓨터 성능의 수십 배 이상
 - OS : UNIX
 - 서버(server)급 시스템의 다운사이징(downsizing) 주도
 - → 네트워크에 접속된 다수의 중형급 컴퓨터 시스템들을 응용(용도)별로 구분하여 사용하는 컴퓨팅 환경이 가능해지게 함

<u>다중프로세서 시스템의 구조</u>

4) 메인프레임 컴퓨터(mainframe computer)

- □ IBM 360 및 370 계열, 3081, 3090 등으로 계속 발전
- □ 대용량 저장장치 보유
- □ 다중 I/O 채널을 이용한 고속 I/O 처리 능력 보유
- □ 대규모 데이터베이스 저장 및 관리용으로 사용
- 최근 성능과 가격면에서 슈퍼미니급 컴퓨터들과 경쟁하고 있으며, 점차적으로 시장 점유율 하락 중

5) 슈퍼컴퓨터(supercomputer)

- □ 현존하는 컴퓨터들 중에서 처리 속도와 기억장치 용량이 다른 컴퓨터들에 비하여 상대적으로 월등한 컴퓨터 시스템
- □ 분류 기준:계속적으로 상승
 - 최초의 슈퍼컴퓨터인 CRAY-1의 속도는 100 MFLOPS
 - 최근의 슈퍼컴퓨터들의 속도는 수백 TFLOPS 이상
- □ 주요 응용 분야들
 - VLSI 회로 설계, 항공우주공학, 천문학(일기 예보), 구조 공학, 유전 탐사, 핵공학, 인공지능, 입체 영상처리 등과 같은 대규모 과학계산 및 시뮬레이션

슈퍼컴퓨터 종류

- □ 파이프라인 슈퍼컴퓨터(pipeline supercomputer)
 - 복잡한 초고속 연산 장치들이 포함한 CPU들을 이용하여 구성
 - 각 연산 장치는 고도의 파이프라인 구조를 이용하여 고
 속 벡터 계산 가능
 - 대표적인 시스템들: CRAY Y-MP, CRAY-2, Fujitsu VP2000, VPP500 등

슈퍼컴퓨터 종류(계속)

- □ 대규모 병렬컴퓨터(massively parallel computer: MPP)
 - 한 시스템 내에 상호 연결된 수백 혹은 수천 개 이상의
 일반적인 프로세서들을 포함
 - 프로세서들이 하나의 큰 작업을 나누어 동시에 처리하는 병렬처리(parallel processing) 기술 이용
 - 시스템 사례: IBM BlueGene/Q 슈퍼컴퓨터
 - o 2013년 TOP500 리스트(www.top500.org) 최상위 랭크
 - o 1,572,864개의 64-비트 PowerPC 프로세서들 탑재
 - o 96 캐비닛 x 512 노드 x 32 프로세서
 - o 1.57 PByte 기억장치 보유

IBM BlueGene/Q 슈퍼컴퓨터의 구성도

43p

슈퍼컴퓨터 종류(계속)

□ 클러스터 컴퓨터(Cluster Computer)

- 고속 LAN이나 네트워크 스위치에 의해 서로 연결된 PC 들 혹은 워크스테이션들의 집합체
- 노드(단위 컴퓨터)들에 포함된 모든 자원들을 단일 시 스템 이미지(Single System Image: SSI)로 통합
- 시스템 사례: NOW(Network of Workstations)
 - U.C. 버클리대학 전산학과에서 개발
 - o 105개의 워크스테이션들로 구성
 - 제8장에서 자세히 설명

NOW(Network of Workstations)의 구성도

44p

학습 정리

- □ 초기 컴퓨터들의 근본적인 설계 개념과 동작 원리가 현대 컴퓨터들과 거의 같습니다.
- □ 컴퓨터 부품들의 발전 과정은 릴레이, 진공관, 트랜지스터를 거쳐 반도체 집적회로로 이어지고 있으며, 그 특성들을 살펴보면 처리속도 향상, 저장용량 증가, 크기 감소, 가격 하락, 신뢰도 향상 등입니다.
- □ 최초의 컴퓨터는 1642년 파스칼에 의해 개발된 컴퓨터입니다.
- □ 1671년 라이프니츠에 의해 곱셈과 나눗셈을 하는 컴퓨터가 개 발되었습니다.
- □ 19세기에는 현대 컴퓨터의 할아버지라고 불리는 <mark>배비지</mark>에 의해 현대적인 개념의 컴퓨터가 개발되었습니다.

학습 정리(계속)

- □ 1940년대 초에는 폰노이만에 의해 진공관을 사용한 최초의 전자식 컴퓨터 ENIAC 이 개발되었으며, 1952년에는 폰노이만에 의해 'stored-program' 개념을 탑재한 IAS 컴퓨터가 개발되었습니다.
- □ IC를 사용함에 따라 컴퓨터의 성능이 많이 향상되었으며, IC는 집적도에 따라 SSI, MSI, LSI, VLSI, ULSI로 분류할 수 있습니다.
- □ 컴퓨터 시스템은 소형이며 저가격인 개인용 컴퓨터, 워크스테이션과 슈퍼미니컴퓨터 등의 중형급 컴퓨터, 대규모 데이터베이스및 관리용인 메인프레임 컴퓨터, 가장 월등한 성능을 가진 슈퍼컴퓨터 등으로 분류됩니다.

참고 문헌

컴퓨터구조론, 김종현 저, 생능출판사, 2014.

고려대학교 안암캠퍼스내

www.cuk.edu

T.02-6361-2000

F.02-6361-1800