Math 415 - Lecture 13

Basis and Dimension

Wednesday September 23rd 2015

Textbook reading: Chapter 2.3

Suggested practice exercises: Chapter 2.3 Exercise 1, 2, 3, 5, 6, 9, 11, 16, 19, 20, 22, 27.

Khan Academy video: Introduction to Linear Independence, More on linear independence, Span and Linear Independence Example, Basis of a Subspace

Strang lecture: Independence, Basis, and Dimension

1 Review

 $\bullet \ \operatorname{Vectors} \ v_1, \ldots, v_p \ \operatorname{are} \ \mathit{linearly} \ \mathit{\bf Dependent} \ \mathrm{if}$

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \dots + x_p\mathbf{v_p} = \mathbf{0},$$

and not all the coefficients are zero.

- The columns of A are linearly **IN**dependent \iff each column of A contains a pivot \iff there are no free variables for $A\mathbf{x} = \mathbf{0}$.
- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

 \bullet Any set of 11 vectors in \mathbb{R}^{10} is linearly dependent. Why?

Definition 1. In a list of vectors $(\mathbf{v_1}, \dots, \mathbf{v_p})$ in a vector space V we call $\mathbf{v_k}$ redundant if v_k is a linear combination of the previous vectors. In this case $\mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_{k-1}}, \mathbf{v_k}) = \mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_{k-1}})$, i.e., you can delete the redundant vector and get the same span.

Example 2. Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$. Are there redunant vectors?

Solution.

2 A Basis of a Vector Space

Definition. A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a **basis** of V if

- $V = \operatorname{Span} \{ \mathbf{v_1}, \dots, \mathbf{v_p} \}$, and
- ullet the vectors $\mathbf{v_1}, \dots, \mathbf{v_p}$ are linearly independent.

Fact: $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a basis of V if and only if every vector \mathbf{w} in V can be uniquely expressed as $\mathbf{w} = c_1\mathbf{v_1} + \dots + c_p\mathbf{v_p}$.

Fact: A basis is a *minimal spanning set*: the elements of the basis span V but you cannot delete any of these elements and still get all of V. There are no redundant vectors.

Example 3. Let $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a basis of
\mathbb{R}^3 . (It is called the standard basis .)
Solution.
Definition. V is said to have dimension p if it has a basis consisting of p vectors.
This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors. Why?

(Challenge: can you think of an argument that is more "rigorous"?)

Example 4. \mathbb{R}^3 has dimension 3. Indeed, the standard basis

$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

has three elements. Likewise, \mathbb{R}^n has dimension n.

Example 5. Not all vectors spaces have a finite basis. For instance, the vector space of all polynomials has *infinite dimension*. Its standard basis is $1, t, t^2, t^3, \ldots$ Why?

Solution.		

Theorem 1. Suppose that V has dimension d.

- ullet A set of d vectors in V are a basis if they span V.
- ullet A set of d vectors in V are a basis if they are linearly independent.

Why?

Solution.			

Example 6. Are the following sets a basis for \mathbb{R}^3 ? (a) $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix} \right\}$

Solution.			

Example 7. (c) $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$. Is this a basis?

Solution.

Example 8. Let P_2 be the space of polynomials of degree at most 2. • What is the dimension of P_2 ? • Is $\{t, 1-t, 1+t-t^2\}$ a basis of P_2 ? Solution.

3 Shrinking and Exanding Sets of Vectors

We can find a basis for $V = \text{Span}\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ by discarding, if necessary, some of the vectors in the spanning set.

Example 9. Produce a basis of \mathbb{R}^2 from the vectors

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.
Example 10. Produce a basis of \mathbb{R}^2 from the vector
$\mathbf{v_1} = egin{bmatrix} 1 \\ 2 \end{bmatrix}$
Solution.

4 Checking Our Understanding

Example 11. Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, or 3.

- The only 0-dimensional subspace is $\{0\}$.
- A 1-dimensional subspace is of the form Span $\{v\}$ where $v \neq 0$. These subspaces are lines through the origin.
- ullet A 2-dimensional subspace is of the form Span $\{\mathbf{v}, \mathbf{w}\}$ where \mathbf{v} and \mathbf{w} are not multiples of each other. These subspaces are planes through the origin.
- The only 3-dimensional subspace is \mathbb{R}^3 itself.

rue or false?
Suppose that V has dimension n . Then any set in V containing more than n vectors must be linearly dependent.
The space P_n of polynomials of degree at most n has dimension $n+1$.
The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional.
Consider $V = \text{Span}\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$. If one of the vectors, say $\mathbf{v_k}$, in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V .