AWS PROJECT

CREATE PUBLIC AND PRIVATE INSTANCES and ACCESS INTERNET FROM PRIVATE INSTANCE

FREDERIC TWAHIRWA May 2018

TABLE OF CONTENTS

DIAGRA	AM	2
CONFIC	GURATION	2
•	CREATE A VPC AND SUBNETS	2
•	CREATE SECURITY GROUPS	4
	CREATE AN ELASTIC IP	5
	INTERNET GATEWAY AND NAT GATEWAY	6
	ROUTE TABLES	
•	SUBNETS AND ROUTE TABLES	
RESULT	TS	10
CONCL	LUSION	11
	TABLE OF FIGURES	
	TABLE OF FIGURES	
FIGURE	1: VPC WITH PUBLIC AND PRIVATE SUBNETS	2
FIGURE	2: PUBLIC INSTANCE CONFIGURATION	3
FIGURE	3: PRIVATE INSTANCE CONFIGURATION	3
FIGURE	4: BASTION SECURITY GROUP CONFIGURATION	4
FIGURE	5: BASTION SECURITY GROUP CONFIGURATION (OUTBOUND)	4
FIGURE	6: PRIVATE WEBSERVER SECURITY GROUP CONFIGURATION (INBOUND)	5
FIGURE	7: PRIVATE WEBSERVER SECURITY GROUP CONFIGURATION (OUTBOUND)	5
FIGURE	8: EIP CONFIGURATION	5
FIGURE	9: KEY PAIR CONFIGURATION	6
FIGURE	10: IGW CONFIGURATION	6
FIGURE	11: NAT GATEWAY CONFIGURATION	7
FIGURE	12: ROUTE TABLE (IGW) -ROUTES CONFIGURATION	7
	13: ROUTE TABLE (IGW) -SUBNET ASSOCIATIONS CONFIGURATION	
FIGURE	14: ROUTE TABLE (NAT GATEWAY) -ROUTES CONFIGURATION	8
FIGURE	15: PUBLIC SUBNET CONFIGURATION -SUMMARY	9
FIGURE	16: PUBLIC SUBNET CONFIGURATION -ROUTE TABLE	9
FIGURE	17: PRIVATE SUBNET CONFIGURATION -SUMMARY	10
FIGURE	18: PRIVATE SUBNET CONFIGURATION -ROUTE TABLE	10
FIGURE	19: SSH THE PRIVATE INSTANCE	11
FIGURE	20: PING GOOGLE.COM FROM THE PRIVATE INSTANCE	11

OBJECTIF

The objectif of this project is to set up a configuration within aws with a private instance addressable to internet.

To achieve this, we should have a NAT gateway configured in the public subnet and the private subnet traffic should be routed through this NAT gateway for internet access.

DIAGRAM

FIGURE 1: VPC WITH PUBLIC AND PRIVATE SUBNETS

CONFIGURATION

CREATE A VPC AND SUBNETS

- ✓ Create a VPC
- ✓ Create a public subnet
 - Create an EC2 in the public subnet which will serves as a BASTION (this was created with a Linux t2.micro)
- ✓ Create a private subnet
 - ✓ Create an EC2 in the private subnet (this was created with a Linux t2.micro)

✓

The 2 subnets were created in differents Availability Zones (eu_west_1b and eu_west_1c)

Below the screenshoots of the 2 instances

Public EC2 (with the IPv4 Public: 54.246.156.111 and Private IP: 10.0.1.113)

FIGURE 2: PUBLIC INSTANCE CONFIGURATION

Private EC2 (withouth an IPv4 public, the Private IP is 10.0.2.11)

FIGURE 3: PRIVATE INSTANCE CONFIGURATION

CREATE SECURITY GROUPS

- ✓ A security group which allow HTTP, HTTPS and SSH inbound traffic (and all traffic outbound) was created, this will be used by the Bastion (the name in this project is TWF_WEBSERVERS_SG)
- ✓ Another security group which allow SSH, HTTPand HTTPS inbound traffic only from the BASTION(and all traffic outbound) was created, this will be used by the Private Instance(the name in this project is TWF_WEBSERV_LINUX_PV

Below the screenshoots of the 2 security Groups

NAT/BASTION Security Groups:

FIGURE 4: BASTION SECURITY GROUP CONFIGURATION

FIGURE 5: BASTION SECURITY GROUP CONFIGURATION (OUTBOUND)

PRIVATE SG

FIGURE 6: PRIVATE WEBSERVER SECURITY GROUP CONFIGURATION (INBOUND)

FIGURE 7: PRIVATE WEBSERVER SECURITY GROUP CONFIGURATION (OUTBOUND)

CREATE AN ELASTIC IP

Create an Elastic IP address with any instance which will be associated to our VPC

FIGURE 8: EIP CONFIGURATION

KEY PAIR was generated

FIGURE 9: KEY PAIR CONFIGURATION

INTERNET GATEWAY AND NAT GATEWAY

Internet gateway and nat gateway were created
Internet Gateway is the interface between the VPC and the internet
NAT Gateway will enable the private subnet to access the internet

FIGURE 10: IGW CONFIGURATION

NAT GATEWAY

FIGURE 11: NAT GATEWAY CONFIGURATION

ROUTE TABLES

Set up rules (Routes) that will direct network traffic flowing in and out the subnet

2 Routes tables were created, one with target the internet gateway and the second one with target the NAT

The public subnet will through Internet gateway

The public subnet will access internet through NAT

Below the screenshoots of the route tables and theirs routes and subnet associations

Route table to Internet gateway

FIGURE 12: ROUTE TABLE (IGW) -ROUTES CONFIGURATION

FIGURE 13: ROUTE TABLE (IGW) -SUBNET ASSOCIATIONS CONFIGURATION

Route table to NAT (wich will be used by the private instance)

FIGURE 14: ROUTE TABLE (NAT GATEWAY) - ROUTES CONFIGURATION

SUBNETS AND ROUTE TABLES

PUBLIC subnet

FIGURE 15: PUBLIC SUBNET CONFIGURATION -SUMMARY

subnet-040eadef575b8bc44 | 10.0.1.0_EU_WEST_1B_TWF_PUB

FIGURE 16: PUBLIC SUBNET CONFIGURATION -ROUTE TABLE

FIGURE 17: PRIVATE SUBNET CONFIGURATION -SUMMARY

FIGURE 18: PRIVATE SUBNET CONFIGURATION -ROUTE TABLE

RESULTS

Now we ssh the machine's residing on private subnet by using an instance from public subnet, which we can connect using internet

- ✓ Putty was used to ssh the public machine (the bastion)
- ✓ We ssh the private machine by the command \$ ssh ec2-user@10.0.2.11
- ✓ On Private machine ping google.com

CONNECT SSH THROUGH

```
[ec2-user@ip-10-0-1-113 ~]$ ssh ec2-user@10.0.2.11

The authenticity of host '10.0.2.11 (10.0.2.11)' can't be established.

ECDSA key fingerprint is SHA256:VwjQQZLFgBd1hxiOq8iDJijaHINsA/toOKvTJ9LmwgA.

ECDSA key fingerprint is MD5:c7:d4:ad:c7:1c:50:7b:e6:cf:b1:02:a5:0a:3c:b5:73.

Are you sure you want to continue connecting (yes/no)? y

Please type 'yes' or 'no': yes

Warning: Permanently added '10.0.2.11' (ECDSA) to the list of known hosts.

___| __| __| __|
__| __| __| __|

https://aws.amazon.com/amazon-linux-ami/2018.03-release-notes/

6 package(s) needed for security, out of 7 available

Run "sudo yum update" to apply all updates.
```

FIGURE 19: SSH THE PRIVATE INSTANCE

```
[ec2-user@ip-10-0-2-11 ~]$ ping google.com
PING google.com (216.58.198.78) 56(84) bytes of data.
64 bytes from dub08s02-in-f78.1e100.net (216.58.198.78): icmp_seq=1 ttl=48 time=
1.65 ms
64 bytes from dub08s02-in-f14.1e100.net (216.58.198.78): icmp_seq=2 ttl=48 time=
1.28 ms
64 bytes from dub08s02-in-f78.1e100.net (216.58.198.78): icmp_seq=3 ttl=48 time=
1.33 ms
64 bytes from dub08s02-in-f14.1e100.net (216.58.198.78): icmp_seq=4 ttl=48 time=
1.31 ms
64 bytes from dub08s02-in-f78.1e100.net (216.58.198.78): icmp_seq=5 ttl=48 time=
1.31 ms
^C
--- google.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4006ms
rtt min/avg/max/mdev = 1.284/1.379/1.653/0.143 ms
[ec2-user@ip-10-0-2-11 ~]$
```

FIGURE 20: PING GOOGLE.COM FROM THE PRIVATE INSTANCE

CONCLUSION

This project has highlighted how to:

- ✓ set up a VPC and subnets in different availability zones
- ✓ Create the Linux instances in both subnets (private and public subnet)
- ✓ Create and configure the internet gateways and security groups
- ✓ Configure putty to access public and private machine