Unidad 4: Buenas prácticas

BBDD01, Sesión 12:

Descomposición y Normalización de BBDD

INDICE

- Introducción
- o Descomposición.
- o Propiedades deseables de la descomposición.
- Primera Forma Normal
- Segunda Forma Normal
- o Tercera Forma Normal
- o Forma normal Boyce-Codd.
- Cuarta forma normal.
- Otras formas normales.
- o Proceso general del diseño de BD

Referencias: Silberschatz 4ª Ed. pp 161-189 Elmasri 3ª Ed. Pp 439-496

Introducción

- Las dependencias funcionales son la clave para poder realizar la normalización de la información de la BD.
- Mediante el uso de las operaciones vistas en la sesión anterior, se definirá cómo se puede segmentar una tabla.
- El uso cuidadoso de dependencias funcionales y reglas de descomposición permite la normalización

Recordando: Dependencias Funcionales

o Ejemplo: Dado el conjunto de DF para el esquema (A,B,C)

$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$ y $AB \rightarrow C$

- o Calcular el recubrimiento canónico de F.
- Hay dos DF con el mismo conjunto de atributos a la izquierda:

$$A \rightarrow BC$$

$$A \rightarrow B$$

- Se transforman en A→ BC
- \circ A es raro en AB → C porque F implica lógicamente a (F-{AB → C}) U {(B → C}
- \circ C es raro en A \rightarrow BC , ya que A \rightarrow BC está implicada lógicamente en A \rightarrow B y B \rightarrow C
- o El recubrimiento canónico es:

$$A \rightarrow B$$

$$B \rightarrow C$$

Descomposición

OEI mal diseño anterior sugiere descomponer el esquema en varios esquemas con menos atributos cada uno.

Ejemplo: Esquema-empréstito en

nombre-sucursal	ciudad- sucursal	activo	nombre- cliente
Centro	Arganzuela	9.000.000	Santos
Moralzarzal	La Granja	2.100.000	Gómez
Navacerrada	Aluche	1.700.000	López
Centro	Arganzuela	9.000.000	Sotoca
Becerril	Aluche	400.000	Santos
Collado Mediano	Aluche	8.000.000	Abril
Navas de la Asunción	Alcalá de Henares	300.000	Valdivieso
Segovia	Cerceda	3.700.000	López
Centro	Arganzuela	9.000.000	González
Navacerrada	Aluche	1.700.000	Rodríguez
Galapagar	Arganzuela	7.100.000	Amo

Esquema-sucursal-cliente = (nombre-sucursal, ciudad-sucursal, activo, nombre-cliente)

Esquema-cliente-préstamo = (nombre-cliente, número-préstamo, importe)

nombre-cliente	número-préstamo	importe
Santos	P-17	1.000
Gómez	P-23	2.000
López	P-15	1.500
Sotoca	P-14	1.500
Santos	P-93	500
Abril	P-11	900
Valdivieso	P-29	1.200
López	P-16	1.300
González	P-18	2.000
Rodríguez	P-25	2.500
Amo	P-10	2.200

Descomposición

OHay casos en los que hay que reconstruir la relación préstamo. Ejemplo: hallar todas las sucursales que tienen préstamos con importes inferiores a 1000€. Se podría realizar con:

sucursal-cliente ⋈ cliente-préstamo

nombre-sucursal	ciudad-sucursal	activo	nombre-cliente	número-préstamo	importe
Centro	Arganzuela	9.000.000	Santos	P-17	1.000
Centro	Arganzuela	9.000.000	Santos	P-93	500
Moralzarzal	La Granja	2.100.000	Gómez	P-23	2.000
Navacerrada	Aluche	1.700.000	López	P-15	1.500
Navacerrada	Aluche	1.700.000	López	P-16	1.300
Centro	Arganzuela	9.000.000	Sotoca	P-14	1.500
Becerril	Aluche	400.000	Santos	P-17	1.000
Becerril	Aluche	400.000	Santos	P-93	500
Collado Mediano	Aluche	8.000.000	Abril	P-11	900
Navas de la Asunción	Alcalá de Henares	300.000	Valdivieso	P-29	1.200
Segovia	Cerceda	3.700.000	López	P-15	1.500
Segovia	Cerceda	3.700.000	López	P-16	1.300
Centro	Arganzuela	9.000.000	González	P-18	2.000
Navacerrada	Aluche	1.700.000	Rodríguez	P-25	2.500
Galapagar	Arganzuela	7.100.000	Amo	P-10	2.200

Descomposición

OHay tuplas que no estaban en la original.

```
(Centro, Arganzuela, 9.000.000, Santos, P-93, 500)
(Navacerrada, Aluche, 1.700.000, López, P-16, 1.300)
(Becerril, Aluche, 400.000, Santos, P-17, 1.000)
(Segovia, Cerceda, 3.700.000, López, P-15, 1.500)
```

- La consulta hallar todas las sucursales que han concedido un préstamo por importe inferior a 1500€ produce:
 - 1º Tabla:{Becerril,Collado,Mediano}
 - 2º Tabla:{Becerril,Collado, Mediano,Centro}
- ODebido a que no se sabe qué préstamo pertenece a cada sucursal.
- Es una descomposición con pérdida (Mal diseño de la BD)
- O Necesitamos descomposiciones sin pérdida de información.

• Ejemplo sobre el esquema:

Esquema-empréstito = (nombre-sucursal, ciudad-sucursal, activo, nombre-cliente, número-préstamo, importe)

• Que se exige que cumpla las DF:

nombre-sucursal \rightarrow ciudad-sucursal activo n'umero-préstamo \rightarrow importe nombre-sucursal

- O Descomposición de reunión sin pérdida
- OSea R y sea F conjunto de DF de R. R se puede descomponer sin pérdida en R₁ y R₂ si al menos una de las siguientes dependencias se halla en F⁺
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$

Ejemplo: se descompone Esquema-empréstito en dos esquemas

Esquema-sucursal = (nombre-sucursal, ciudad-sucursal, activo) Esquema-info-préstamo = (nombre-sucursal, nombre-cliente, número-préstamo, importe)

- Dado que nombre-sucursal → ciudad-sucursal activo
- Outilizando aumentatividad:
- ○Nombre-sucursal → nombre-sucursal ciudad-sucursal activo
- oComo Esquema-sucursal ∩ Esquema-info-prestamo = {nombre-sucursal}, la reunión es sin pérdida.

OSe descompone Esquema-info-préstamo en

Esquema-préstamo = (número-préstamo, nombre-sucursal, importe) Esquema-prestatario = (nombre-cliente, número-préstamo)

○Es una descomposición de reunión sin pérdida ya que numero-préstamo es un atributo común y numero-préstamo → importe nombre-sucursal.

Conservación de las dependencias

- Hay que conservar las dependencias.
- Cuando se haga una actualización sobre la BD hay que cumplir todas las DF dadas.
- OComprobar de manera eficiente las actualizaciones sin calcular las reuniones.
- ○Sea F un conjunto de DF del esquema R y R₁,R₂,...R_n una descomposición de R.
- ○La restricción de F a R_i es el conjunto de todas las DF de F⁺ que sólo incluyen atributos de R_i.
- Puesto que todas las DF de una restricción únicamente implican atributos de un esquema de relación, es posible comprobar el cumplimiento de una dependencia verificando sólo una relación.

- \circ El conjunto de restricciones $F_1, F_2, ... F_n$ es el conjunto de dependencias que pueden comprobarse de manera eficiente.
- ○Sea F'=F₁UF₂U...UF_n un conjunto de DF del esquema de R.
- Las descomposiciones que tienen la propiedad de F'+=F+ son descomposiciones que conservan las dependencias.

```
calcular F^+;
for each esquema R_i de E do
begin

F_i :=  la restricción de F^+ a R_i;
end

F' := \emptyset
for each restricción F_i do
begin

F' = F' \cup F_i
end
calcular F'^+;
if (F'^+ = F^+) then return (true)
else return (false);
```

- OSe puede demostrar que la descomposición de Esquema-empréstito conserva las dependencias.
 - Esquema-sucursal(nombre-sucursal, ciudad-sucursal, activo) conserva la DF nombre-sucursal → ciudad-sucursal activo
 - Esquema-préstamo(nombre-sucursal, número-prestamo,importe) conserva la DF numeropréstamo → importe nombre-sucursal
- oSi puede comprobarse cada miembro de F en una relación de la descomposición ⇒ conserva las dependencias

Repetición de la información

- -No es deseable la repetición de la información en los diseños de la BD.
- -La descomposición de Esquema-empréstito no lo sufre.
- El grado hasta el que se puede conseguir la falta de redundancia viene representado por varias formas normales.
- -Teoría de Normalización.

Ejemplo de descomposición

Ejemplo ERRONEO:

Se pierde una DF

Ejemplo de descomposición

Ejemplo CORRECTO:

Teoría de Normalización

- Dependencias funcionales dadas
- Cada relación una clave primaria
- ○Realizan condiciones para satisfacer formas normales ⇒ Proceso de normalización.
- Formas normales:

Teoría de Normalización

- OSerie de pruebas para ver si satisface una forma normal determinada (Codd 1972)
- Codd propuso tres formas normales: 1FN,2FN,3FN
- \circ Boyce-Codd \Rightarrow FNBC
- Estas 4 se basan en dependencias funcionales.
- ○Más adelante ⇒ 4FN (dependencias multivaluadas) y 5FN (dependencias de reunión)
- ○Normalización ⇒ análisis de los esquemas de relación en base a sus DF y claves primarias
 - Minimizar redundancia.
 - Minimizar anomalías de inserción, actualización y borrado.
- \circ Los esquemas que no superan las pruebas \Rightarrow se descomponen en esquemas más pequeños que si lo cumplen.

Teoría de Normalización

- ONo es necesario sólo comprobar por separado los esquemas de relación
- También se debe de cumplir:
 - Propiedad de descomposición sin pérdida (no tuplas espúreas)
 - Conservación de las dependencias.
- OSe suele normalizar hasta FNBC ó 4FN
- ○No es necesario normalizar hasta la forma normal más alta por problemas de rendimiento ⇒ desnormalización.
- Conceptos: clave, superclave, clave candidata y clave primaria
- \circ Atributo primo \Rightarrow miembro de alguna clave.

- OSe definió para prohibir atributos multivaluados, compuestos y combinaciones.
- Establece:
 - Dominio de un atributo debe de ser atómico (simple, indivisible)
 - Valor de cualquier atributo debe ser un valor individual de ese dominio
- Ejemplo:
 - Esquema relación departamento con PK numerod
 - Cada departamento puede tener varios lugares

DEPARTAMENTO

NOMBRED	NUMEROD	NSS_JEFED	LOCALIZACIONESD

DEPARTAMENTO

NOMBRED	NUMEROD	NSS_JEFED	LOCALIZACIONESD
Investigación	5	333445555	{Bellaire, Sugarland, Houston}
Administración	4	987654321	{Stafford}
Dirección	1	888665555	{Houston}

- \circ No está en 1FN \Rightarrow dominio es atómico, pero hay conjunto de valores.
- Cómo pasar a 1FN?

o Eliminar el atributo que viola 1FN y colocarlo en otra relación.

OAmpliar la PK

DEPARTAMENTO				
NOMBRED	NUMEROD	NSS_JEFED	LOCALIZACIONESD	
Investigación	5	333445555	Bellaire	
Investigación	5	333445555	Sugarland	
Investigación	5	333445555	Houston	
Administración	4	987654321	Stafford	
Dirección	1	888665555	Houston	

- Desventaja ⇒ redundancia de tuplas
- oSi se sabe máximo número de localizaciones ⇒ 3 campos: localizaciónd1, localizaciond2 y localizaciónd3

- Se prohíben atributos compuestos (son multivaluados)
- Se prohíben relaciones anidadas

PROY
PHUI

		PROY	
NSS	NOMBREE	NUMEROP	HORAS

Normalizar a 1FN

EMP_PROY1

NSS NOMBREE

EMP_PROY2

	1	N / / / / / / / / / / / / / / / / / / /
NSS	NUMEROP	HORAS

EMP PROY

NSS	NOMBREE	NUMEROP	HORAS
123456789	Smith, John B.	1	32,5
		2	7,5
666884444	Narayan,Ramesh	K. 3	40,0
453453453	English,Joyce A.	1	20,0
		2	20,0
333445555	Wong,Franklin T.	2	10,0
		3	10,0
		10	10,0
		20	10,0
999887777	Zelaya, Alicia J.	30	30,0
		10	10,0
987987987	Jabbar, Ahmad V.	10	35,0
		30	5,0
987654321	Wallace, Jennifer S	S. 30	20,0
		20	15,0
888665555	Borg, James E.	20	nulo

Segunda Forma Normal (2FN)

- OSe basa en el concepto de dependencia funcional total.
- oDF total X→Y, si la eliminación de cualquier atributo A de X hace que la dependencia deje de ser válida.
- oDF parcial, si al eliminar A , (X-A)→Y es válida.
- ○NSS,NUMEROP → HORAS, es total
- ○NSS,NUMEROP → NOMBREE, es parcial
- o 2FN → Si está en 1FN y la verificación de DF cuyos atributos del lado izquierdo son parte de la PK
- \circ Si la PK contiene un solo atributo \Rightarrow está en 2FN.
- OR está en 2FN si todo atributo no primo A de R depende funcionalmente de manera total de la PK de R.

Segunda Forma Normal (2FN)

o Ejemplo: EMP_PROY NUMEROP HORAS NOMBREE NOMBREP LOCALIZACION DF1 NORMALIZACIÓN 2FN EP1 EP2 EP3 NUMEROP **HORAS** NOMBREE NOMBREP LOCALIZACIONP NSS NSS NUMEROP

○Normalización a 2FN ⇒ nuevos esquemas con DF totales para los atributos no primos.

Tercera Forma Normal (3FN)

- OSe basa en el concepto de DF transitiva
- Ouna dependencia X→Y de R es transitiva si existe un subconjunto de atributos Z que no sea un subconjunto de cualquier clave de R y se cumple que X→Z y Z→Y

- oNSS→NUMEROD
- ONUMEROD→NSS JEFED
- oPor lo que NSS→NSS_JEFED y además NUMEROD no es clave ni forma parte de alguna clave

Tercera Forma Normal (3FN)

OUn esquema R está en 3FN si lo está en 2FN y ningún atributo no primo de R depende transitivamente de la PK.

- o Los esquemas no deben de tener dependencias parciales ni transitivas ya que provocan anomalías de actualización.
- Hasta ahora se han visto sobre claves primarias
- Las definiciones generales de 2FN y 3Fn se hacen sobre cualquier campo que sea clave: primaria y candidata
- ○2FN ⇒ ningún atributo no primo de R depende parcialmente de alguna clave de R.

Normalización a 2FN

- ○3FN \Rightarrow siempre que en una DF no trivial X \rightarrow A se cumple en R, o bien (A) X es una superclave de R o (B) A es un atributo primo de R.
- oSi viola ambas condiciones ⇒ no está en 3FN
- o Ejemplo: parcelas2 esta en 3FN y Parcelas1 no.

- ODefinición alternativa 3FN:
- OUn esquema de relación R está en 3FN si todo atributo no primo de R es:
 - Dependiente funcionalmente de manera total de toda clave de R.
 - Dependiente de manera no transitiva de toda clave de R.

- OMás estricta que la 3FN.
- oFNBC debe de estar en 3FN.
- \circ FNBC \Rightarrow siempre que una DF no trivial X \rightarrow A es válida en R, entonces X es una superclave de R.
- ODiferencia con 3FN es que la condición (B) no está presente (atributo A primo)

o Ejemplo: Normalización a FNBC

- En la práctica casi todos los esquemas de relación que están en 3FN estarán en FNBC salvo :
 - Exista una dependencia $X \rightarrow A$ tal que X no es una superclave y A es un atributo primo.

- o Ejemplo:
- ○ESTUDIANTE,CURSO → PROFESOR
- oPROFESOR→CURSO

IMPARTE

ESTUDIANTE	CURSO	PROFESOR
Narayan	Base de datos	Mark
Smith	Base de datos	Navathe
Smith	Sistemas operativos	Ammar
Smith	Teoría	Schulman
Wallace	Base de datos	Mark
Wallace	Sistemas operativos	Ahamad
Wong	Base de datos	Omiecinski
Zelaya	Base de datos	Navathe

- 1. {ESTUDIANTE, PROFESOR} y {ESTUDIANTE, CURSO}.
- {CURSO, PROFESOR} y {CURSO, ESTUDIANTE}
- {PROFESOR, CURSO} y {PROFESOR, ESTUDIANTE}.

- Dependencia funcional multivaluada (DMV)
- OSon una consecuencia de la 1FN
- ○Si tenemos 2 o más atributos multivaluados independientes en el mismo esquema de relación ⇒ repetir valores de cada valor de un atributo con cada valor del otro atributo. Dependencia multivaluada.
- Ejemplo:

OSiempre que en una relación se mezclan 2 relaciones 1:N independientes A:B y A:C puede surgir una DMV

- \circ DMV: X $\rightarrow \rightarrow$ Y sobre R, donde X e Y son subconjuntos en R:
- \circ Existen 2 tuplas t_1 y t_2 en r tales que $t_1[X]=t_2[X]$, entonces deberían de existir también dos tuplas t_3 y t_4 de r con las siguientes propiedades:

$$t_3[X]=t_4[X]=t_1[X]=t_2[X]$$

 $t_3[Y]=t_1[Y] y t_4[Y]=t_2[Y]$
 $t_3[Z]=t_2[Z] y t_4[Z]=t_1[Z]$

Donde Z=R-(XUY)

Entonces: $X \rightarrow Y$ y también $X \rightarrow Z$

NOMBREE →→NOMBREP

NOMBREE→→NOMBRED

EMP

NOMBREE	NOMBREP	NOMBRED
Smith	X	John
Smith	Y	Anna
Smith	X	Anna
Smith	Y	John

- \circ DMV Trivial: X \rightarrow Y si Y \subset X \circ X U Y=R. (Se cumple siempre)
- Existen reglas de inferencia para DMV.

- (RI1) (Regla reflexiva para DF): Si $X \subset Y$, entonces $X \to Y$.
- (RI2) (Regla de aumento para DF): $\{X \rightarrow Y\} \varnothing XZ \rightarrow YZ$.
- (RI3) (Regla transitiva para DF): $\{X \rightarrow Y, Y \rightarrow Z\} \varnothing X \rightarrow Z$.
- (RI4) (Regla de complemento para DMV): $\{X \rightarrow Y\} \emptyset \{X \rightarrow (R (X \cup Y))\}.$
- (RI5) (Regla de aumento para DMV): Si $X \rightarrow Y y W \subset Z$ entonces $WX \rightarrow YZ$.
- (RI6) (Regla transitiva para DMV): $\{X \rightarrow Y, Y \rightarrow Z\} \varnothing X \rightarrow (Z Y)$.
- (RI7) (Regla de réplica (DF a DMV)): $\{X \rightarrow Y\} \varnothing X \twoheadrightarrow Y$.
- (RI8) (Regla de combinación para DF y DMV): Si $X \twoheadrightarrow Y$ y existe W con las propiedades de que (a) $W \cap Y$ está vacío, (b) $W \rightarrow Z$ y (c) $Y \subset Z$, entonces $X \rightarrow Z$.
- \circ Donde X,Y,Z son un subconjunto de R(A₁,A₂,...,A_n)

- ○4FN ⇒ no cumple cuando hay DMV no deseables y que se utilizan para descomponer el esquema de relación.
- ○Está en 4FN respecto a un conjunto F de DF y DMV, si para cada DMV no trivial $X \rightarrow Y$ en F⁺, X es una superclave de R.

(a)

_		-	
-	М.	_	
_	W		

NOMBREE	NOMBREPR	NOMBRED
Silva	X	Juan
Silva	Y	Ana
Silva	X	Ana
Silva	Υ	Juan
Bravo	W	Jaime
Bravo	X	Jaime
Bravo	Υ	Jaime
Bravo	Z	Jaime
Bravo	w	Juana
Bravo	X	Juana
Bravo	Y	Juana
Bravo	Z	Juana
Bravo	w	Beto
Bravo	X	Beto
Bravo	Ÿ	Beto
Bravo	ż	Beto

(b) PROYECTOS_EMP

NOMBREE		NOMBREPE	
	Silva	×	
	Silva	Ŷ	
	Silva	w	
	Bravo	X	
	Bravo	Y	
	Bravo	· Z	

DEPENDIENTES_EMP

NOMBREE	NOMBRED
Silva	Ana
Silva	Juan
Bravo	Jaime
Bravo	Juana
Bravo	Beto

- O Necesario que la descomposición sea sin pérdida:
- $\circ R_1 = (X \cup Y) y R_2 = (R Y) para una DMV X \rightarrow Y$

- Basada en la Dependencia de Reunión DR, DR(R₁,R₂,...,R_n)
- Especifica una restricción sobre los estados r de R
- o Todo estado permitido de r de R debe de tener una descomposición de reunión sin pérdida para dar R₁,R₂,..,Rₙ

*
$$(\pi_{}(r), \pi_{}(r), ..., \pi_{}(r)) = r$$

- Ouna DMV es un caso especial de una DR donde n=2
- \circ DR(R₁,R₂) implica una DMV :
 - $-(R_1 \cap R_2) \rightarrow \rightarrow (R_1 R_2)$
 - $-(R_1 \cap R_2) \rightarrow (R_2 R_1)$
- Ouna DR es trivial si un esquema Ri en DR(R₁,R₂,...,R_n) es igual a R

○5FN \Rightarrow Un esquema R está en 5FN respecto a un conjunto F de DF, DMV y DR si para cada dependencia de reunión no trivial DR($R_1, R_2, ..., R_n$) en F⁺ toda R_i es una superclave de R

o Ejemplo:

SUMINISTRAR

NOMPROV	NOMBRECOMP	NOMPROY
Smith	Perno	ProyX
Smith	Tuerca	ProyY
Adamsky	Perno	ProyY
Walton	Tuerca	ProyZ
Adamsky	Clavo	ProyX
Adamsky	Perno	ProyX
Smith	Perno	ProyY

Sólo tiene claves

- Restricción adicional:
 - Proveedor v suministra un componente c
 - Proyecto p utiliza el componente c
 - Proveedor v suministra al menos un componente al proyecto p
 - Proveedor v suministra el componente c al proyecto p
- Esta restricción especifica una DR(R₁,R₂,R₃) , entre tres proyecciones de SUMINISTRAR
 - R₁(NOMPROV, NOMBRECOMP)
 - R₂(NOMPROV, NOMPROY)
 - R₃(NOMBRECOMP,NOMPROY)

SUMINISTRAR

NOMPROV	NOMBRECOMP	NOMPROY ProyX	
Smith	Perno		
Smith	Tuerca	ProyY	
Adamsky	Perno	ProyY	
Walton	Tuerca	ProyZ	
Adamsky	Clavo	ProyX	
Adamsky	Perno	ProyX	
Smith	Perno	ProyY	

R1		R2		R3	
NOMPROV	NOMBRECOMP	NOMPROV	NOMPROY	NOMBRECOMP	NOMPROY
Smith	Perno	Smith	ProyX	Perno	ProyX
Smith	Tuerca	Smith	ProyY	Tuerca	ProyY
Adamsky	Perno	Adamsky	ProyY	Perno	ProyY
Walton	Tuerca	Walton	ProyZ	Tuerca	ProyZ
Adamsky	Clavo	Adamsky	ProyX	Clavo	ProyX

o Difícil deducir DR. En la práctica se utiliza poco.

Proceso General Diseño Bases de Datos

OVarios modos de obtener un esquema R:

- 1. R puede haberse generado al convertir un diagrama E-R en un conjunto de tablas.
- 2. R puede haber sido una sola relación que contuviera todos los atributos que resultan de interés. El proceso de normalización divide a R en relaciones más pequeñas.
- **3.** *R* puede haber sido el resultado de algún diseño ad hoc de relaciones, que hay que comprobar para verificar que satisface la forma normal deseada.
- ○Proceso desnormalización ⇒ esquema normalizado y hacerlo no normalizado para mejorar rendimiento.
- Duplicación de información + más cuidado en actualizaciones
- Ejemplo: nombre titular + importe préstamo

