CNNS 2

Lab 5 2/20/25

BEFORE WE STAR!

Get everything ready

- 1) Follow this link to the <u>dataset</u>
- 2) Login or create a Kaggle account
- 3) Download the dataset
- 4) Run your sbatch jupyter.scr on Greene
- 5) Copy the data over to Greene
- 6) Unzip in data

CNN Considerations

Layers

- !) Determine the number of layers and hidden layers
- 2) Decide if layers should be convolution of pooling layers
- 3) Determine if layers should be followed by activations or normalization

Convolution Layers

- 1) Number of filters and their bias
- 2) Kernel size
- 3) Padding
- 4) Stride

Other Considerations

- 1) Learning rate
- 2) Momentum parameters
- 3) Addition of noise

NIH Chest X-ray Dataset

30,805 unique patients

112,120 X-ray images

Random Sample of NIH Chest X-ray Dataset

5,606 images and labels

BATCH NORMALIZATION

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

BATCH NORMALIZATION

Any questions?

