Лекция 7. Графы. Простейшие свойства графов. Пути и цепи. Циклы и связность. Удаление и добавление ребер в связных графах. Соотношение между числом вершин, числом ребер и числом компонент связности в графе. Орграфы.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Граф

(**Неориентированным**) графом G называется пара (V, E), где V — непустое конечное множество вершин; E — конечное множество ребер, причем каждому ребру $e \in E$ сопоставлена неупорядоченная пара вершин, т. е. e = (v, w), где $v, w \in V$.

Петли и кратные ребра

Ребро e=(v,v), где $v\in V$, называется петлей.

Ребра $e_1=(v,w)$ и $e_2=(v,w)$, где $v,w\in V$ и $e_1\neq e_2$, называются **кратными** ребрами.

Граф, в котором допускаются и петли, и кратные ребра иногда называется псевдографом.

Граф без петель, но, возможно, с кратными ребрами называется мультиграфом.

Граф без петель и кратных ребер называется простым, или обыкновенным графом.

Мы будем, как правило, рассматривать простые графы, т. е. графы без петель и кратных ребер.

Смежность

Говорят, что ребро e=(v,w) соединяет вершины v и w, или исходит из вершины v (и из вершины w), или вершина v (и вершина w) и ребро e — инцидентны.

При этом вершины v и w называются концами ребра e, или смежными (соседними) по ребру e.

Изображения графов

Для наглядности графы можно изображать: вершинам ставятся в соответствие **точки** (разным вершинам — различные точки); ребрам сопоставляются непрерывные **кривые**, соединяющие соответствующие вершины (точки) (разным ребрам — различные кривые).

Пусть
$$G=(V,E)$$
, где $V=\{1,2,3\}$, $E=\{e_1,e_2,e_3\}$, где $e_1=(1,2)$, $e_2=(1,2)$ и $e_3=(1,3)$:

Изоморфизм графов

Два графа без петель и кратных ребер

$$G_1 = (V_1, E_1)$$
 u $G_2 = (V_2, E_2)$

называются **изоморфными**, если найдется взаимно однозначное отображение $\varphi:V_1\to V_2$, сохраняющее ребра, т. е. для любых вершин $v,w\in V_1$ выполняется соотношение:

$$(v,w) \in E_1 \Leftrightarrow (\varphi(v),\varphi(w)) \in E_2.$$

Пример изоморфных графов

Пустые и полные графы

Пустым графом O_n называется граф с n вершинами, в котором нет ни одного ребра (т. е. с пустым множеством ребер), $n\geqslant 1$.

Полным графом K_n называется граф с n вершинами, в котором любые две различные вершины смежны, $n \geqslant 1$.

Полный граф K_3 называется также **треугольником**.

Графы K_1 , K_2 , K_3 , K_4

 $K_{1\bullet}$

Дополнительный граф

Дополнительным графом к графу G=(V,E) называется граф $\bar{G}=(V,\bar{E})$, где

$$\bar{E} = \{(v, w) \mid v, w \in V, v \neq w, (v, w) \notin E\}.$$

Т. е. дополнительный граф \bar{G} содержит те же вершины, что и граф G, и любые две различные вершины в нем смежны в том и только в том случае, когда эти вершины не смежны в графе G.

Другими словами, дополнительный граф \bar{G} содержит те же вершины, что и граф G, и в точности все те ребра, которые не содержит граф G.

Граф и его дополнение

Граф G и его дополнение \bar{G} :

Степень вершины

Степенью $d_G(v)$ вершины $v \in V$ в графе G = (V, E) называется число исходящих из нее ребер (причем петля вносит двойной вклад в степень вершины).

Степень $d_G(v)$ вершины $v \in V$ в графе без петель и кратных ребер G = (V, E) совпадает с числом смежных с ней вершин.

Если $d_G(v)=0$, то вершина v называется **изолированной** в графе G; если $d_G(v)=1$, то вершина v называется **висячей**, или **концевой** в графе G.

Обозначения: $\delta(G) = \min_{v \in V} d_G(v)$ и $\Delta(G) = \max_{v \in V} d_G(v)$ — соответственно, наименьшая и наибольшая степени вершин в графе G.

Степени вершин

$$d_G(1) = 2; d_G(3) = 1:$$

Формула Эйлера для степеней вершин

Предложение 7.1. Пусть G = (V, E) — граф без петель и кратных ребер. Тогда

- $1) \sum_{v \in V} d_G(v) = 2 \cdot |E|;$
- 2) в графе G число вершин, имеющих нечетную степень, четно.

Доказательство.

- 1. Рассмотрим сумму в левой части равенства. Т. к. любое ребро графа имеет ровно два конца, каждое ребро в этой сумме будет подсчитано ровно два раза. Получаем выражение в правой части равенства.
- 2. Свойство непосредственно следует из равенства п. 1.

Отметим, что формула Эйлера для степеней вершин верна и для псевдографов.

Пути в графах

Путем (или маршрутом) в графе G=(V,E) из вершины v_0 в вершину v_m (или (v_0,v_m) -путем) называется последовательность вершин и ребер графа G

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{m-1}, e_m, v_m,$$

в которой $e_i = (v_{i-1}, v_i) \in E$ для каждого $i = 1, \dots, m, \ m \geqslant 0.$

При этом вершина v_0 называется **началом** пути, вершина v_m называется **концом** пути. Число m ребер пути называется его **длиной**.

Для графов без петель и кратных ребер **путь** однозначно определяется последовательностью вершин $v_0, v_1, v_2, \ldots, v_{m-1}, v_m$.

Цепь — путь без повторений ребер.

Простая цепь — цепь без повторений вершин.

Пути в графах

Путь P = 1, (1, 2), 2, (1, 2), 1, (1, 3), 3 из вершины 1 в вершину 3 в графе G:

Свойства путей и цепей

Предложение 7.2. Пусть G = (V, E) — граф без петель и кратных ребер. Тогда в графе G из любого пути можно выделить простую цепь, соединяющую те же вершины, что и этот путь.

Доказательство. Пусть P-(v,w)-путь в G, где $v,w\in V$. Покажем, что из пути P можно выделить простую (v,w)-цепь.

Свойства путей и цепей

Доказательство. Если в P никакая вершина, не повторяется, то он — искомая простая (v, w)-цепь.

Пусть некоторая вершина $u \in V$ в нем повторяется, т. е.

$$P = vP_1 uP_2 uP_3 w,$$

где vP_1u , uP_2u , uP_3w — пути, на которые разбивается путь P двумя повторами вершины u. При этом первый или третий из них может быть пустым (если u=v или u=w), но второй из них всегда содержит хотя бы одно ребро.

Тогда повторим эти рассуждения для (v, w)-пути $P' = vP_1uP_3w$, имеющего меньшую длину.

Через конечное число шагов получим искомую простую (v,w)-цепь.

Циклы в графах

Замкнутый путь — путь, в котором первая и последняя вершины совпадают.

Цикл — замкнутый путь без повторений ребер.

Простой цикл — цикл, в котором все вершины, кроме последней, различны.

Циклы в графах

Простой цикл C = 1, (1, 2), 2, (2, 3), 3, (1, 3), 1 в графе G:

Предложение 7.3. Пусть G = (V, E) — граф без петель и кратных ребер. Тогда

- 1) в графе G из любого замкнутого пути нечетной длины $m, m \geqslant 3$, можно выделить простой цикл нечетной длины;
- 2) в графе G найдутся
- a) простая цепь с длиной, не меньшей $\delta(G)$,
- б) при $\delta(G)\geqslant 2$ простой цикл с длиной, не меньшей $\delta(G)+1.$

Доказательство.

1. Рассмотрим замкнутый путь P нечетной длины $m, m \geqslant 3$. Если в нем никакая вершина, кроме последней, не повторяется, то он — искомый простой цикл нечетной длины. Пусть некоторая вершина $v \in V$ в нем повторяется, т. е.

$$P = vP_1vP_2v,$$

где vP_1v , vP_2v — непустые замкнутые пути, на которые вершина v разбивает путь P. Пусть m_1, m_2 — длины замкнутых путей P_1, P_2 , причем $m_1 < m$ и $m_2 < m$. Из того, что $m = m_1 + m_2$ и m — нечетное число, заключаем, что либо m_1 — нечетное число, либо m_2 — нечетное число. Повторим рассуждения для нового замкнутого пути $P' = vP_iv$ с меньшей нечетной длиной m_i . Через конечное число шагов получим искомый простой цикл нечетной длины.

Доказательство.

2. а) Рассмотрим произвольную вершину $v_0 \in V$. Положим $P_0 = v_0$ — простая цепь длины 0. Пусть мы уже построили простую цепь $P_i = v_0 v_1 \dots v_i$ длины i.

Если $i=\delta(G)$, то P_i — искомая простая цепь.

Пусть $i < \delta(G)$. Т. к. $d_G(v_i) \geqslant \delta(G)$, найдется такая вершина $v_{i+1} \in V$, не совпадающая ни с одной из вершин $v_0, v_1, \ldots, v_{i-1}$, что $(v_i, v_{i+1}) \in E$. Добавим эту вершину v_{i+1} к цепи P_i , т. е. построим простую цепь $P_{i+1} = v_0, v_1, \ldots, v_i, v_{i+1}$ длины (i+1).

Через $\delta(G)$ шагов мы получим искомую простую цепь.

Доказательство.

2. б) Пусть мы построили простую цепь $P_m = v_0, v_1, \ldots, v_m$ длины $m = \delta(G)$. Если найдется такая вершина v_{m+1} , не совпадающая с вершинами v_0, v_1, \ldots, v_m , что $(v_m, v_{m+1}) \in E$, то добавим эту вершину v_{m+1} к цепи P_m , т. е. построим простую цепь $P_{m+1} = v_0, v_1, \ldots, v_m, v_{m+1}$ длины (m+1).

Так будем действовать до тех пор, пока не получим такую простую цепь $P_{m'}=v_0,v_1,\ldots,v_m,\ldots,v_{m'}$ длины $m',\ m'\geqslant m,$ что все вершины, с которыми связана вершина $v_{m'}$, лежат на цепи $P_{m'}$.

Пусть v_{i_0} , $i_0 < m'$, — вершина с наименьшим номером на цепи $P_{m'}$, с которой связана вершина $v_{m'}$. Тогда искомый простой цикл $C = v_{i_0}, \ldots, v_{m'}, v_{i_0}$.

Подграф

Граф H=(V',E') называется **подграфом** графа G=(V,E), если $V'\subseteq V,\ E'\subseteq E.$

Подграф H=(V,E') графа G=(V,E), т. е. подграф, содержащий все вершины графа G, называется его остовным подграфом.

Операции над графами

Операции над графами.

Граф
$$G-e$$
, где $e\in E$: $G-e=(V,E\setminus\{e\})$.

Граф G-v, где $v\in V$, — граф с множеством вершин $V\setminus \{v\}$ и с множеством ребер E без всех ребер с концами в вершине v.

Граф
$$G+e$$
, где $e=(v,w)$, $e\notin E$: $G+e=(V\cup\{v,w\},E\cup\{e\}).$

Связность

Граф G=(V,E) называется **связным**, если для каждой пары вершин графа G найдется путь, соединяющий эти вершины (а значит, и простая цепь, соединяющая эти вершины).

Максимальный (по включению) связный подграф графа *G* называется его **компонентой связности**.

Если G — связный граф, то у графа G ровно одна компонента связности.

Связность

Пусть G=(V,E) — граф. На множестве его вершин V рассмотрим двуместное отношение R: vRw, где $v,w\in V$, если в G найдется (v,w)-путь.

Тогда R — рефлексивно, симметрично и транзитивно, т. е. R — отношение эквивалентности на множестве V.

Пусть $V_1, \ldots, V_s \subseteq V$ — все классы эквивалентности по отношению R.

Тогда G_1,\ldots,G_s , где $G_i=(V_i,E_i)$, где $E_i\subseteq E$ — все ребра, оба конца которых принадлежат множеству $V_i,\ i=1,\ldots,s$, — все компоненты связности графа G.

Компоненты связности графа

Свойства связных графов

Предложение 7.4.

- 1. Если к связному графу добавить ребро, соединяющее его несмежные верны, то в полученном графе найдется цикл.
- 2. Если из связного графа удалить ребро, принадлежащее некоторому циклу, то останется связный граф.

Свойства связных графов

Доказательство. 1. Пусть G = (V, E) — связный граф и e = (v, w), где $v, w \in V$, $e \notin E$.

Граф G — связный, поэтому в нем найдется (v,w)-путь, а значит, и простая (v,w)-цепь P. В графе G+e простая цепь P также содержится. Тогда C=vPw(w,v)v — искомый цикл в графе G+e.

Свойства связных графов

Доказательство. 2. Пусть G = (V, E) — связный граф и ребро e принадлежит циклу C графа G.

Рассмотрим две произвольные вершины u_1, u_2 графа G-e. Эти же вершины принадлежат графу G. Граф G — связный, поэтому в графе G найдется (u_1, u_2) -путь P. Если путь P не проходит через ребро e, то он содержится и в графе G-e. Если же путь P проходит через ребро e, то заменим в нем это ребро ребрами, принадлежащими оставшейся части цикла C. Получим (u_1, u_2) -путь в графе G-e.

Число компонет связности

Теорема 7.1. Пусть G = (V, E) — граф без петель и кратных ребер с р вершинами, q ребрами и s компонентами связности. Тогда

- 1) $s \ge p q$;
- 2) если в графе G отсутствуют циклы, то s=p-q.

Число компонет связности

Доказательство.

1. Рассмотрим переход от графа $G_i = (V, E_i)$ к графу $G_{i+1} = G_i + e$, где $E_i \subseteq E$, $e \in E \setminus E_i$. Пусть в графах G_i , G_{i+1} соответственно s_i, s_{i+1} компонет связности. Тогда если ребро e соединяет вершины из одной компоненты связности графа G_i , то $s_{i+1} = s_i$; и если ребро e соединяет вершины из разных компонент связности графа G_i , то $s_{i+1} = s_i - 1$. Поэтому

$$s_{i+1} \geqslant s_i - 1$$
.

Граф G можно получить из графа $G_0=(V,\emptyset)$ с p компонентами связности последовательным добавлением всех ребер множества E. Поэтому $s\geqslant p-q$.

2. Если же в графе G нет циклов, то в предыдущих рассуждениях верно $s_{i+1}=s_i-1$. Поэтому s=p-q.

k-связность

Пусть $k \geqslant 1$.

Граф G=(V,E) называется k-связным, если он содержит не менее k вершин и при удалениии из него не более (k-1) любых вершин остается связный граф.

Двусвязный граф называется также **неразделимым** графом, или **блоком**.

Граф G=(V,E) называется **реберно** k-связным, если при удалениии из него не более (k-1) любых ребер остается связный граф.

Орграф

Ориентированным графом (**орграфом**) G называется пара (V,E), где V — непустое конечное множество вершин; E — конечное множество дуг (направленных ребер), причем каждой дуге $e \in E$ сопоставлена **упорядоченная** пара вершин, т. е. e = (v,w), где $v,w \in V$.

Орграфы

По-прежнему, дуга e=(v,v), где $v\in V$, называется петлей; дуги $e_1=(v,w)$ и $e_2=(v,w)$, где $v,w\in V$ и $e_1\neq e_2$, называются кратными.

По-прежнему, орграф, в котором допускаются и петли, и кратные дуги, называется **псевдографом**; орграф, в котором не допускаются петли, но могут быть кратные дуги, называется **мультиграфом**.

Орграф без петель и кратных дуг называется **простым орграфом**.

Направления дуг

Говорят, что дуга e = (v, w) исходит из вершины v и входит в вершину w.

При этом вершина v называются началом, а вершина w — концом дуги e.

Дуги $e_1=(v,w)\in E$ и $e_2=(w,v)\in E$, где $v,w\in V$, — различны в орграфе G=(V,E), т. к. у них разные направления.

При изображении орграфов направления дуг указывают стрелочками.

Пример орграфа

Изоморфизм орграфов

Два орграфа без петель и кратных дуг

$$G_1 = (V_1, E_1)$$
 u $G_2 = (V_2, E_2)$

называются **изоморфными**, если найдется взаимно однозначное отображение $\varphi:V_1\to V_2$, сохраняющее дуги, т. е. для любых вершин $v,w\in V_1$ выполняется соотношение:

$$(v,w) \in E_1 \Leftrightarrow (\varphi(v),\varphi(w)) \in E_2.$$

Полустепени исхода и захода вершины

Полустепенью захода $d_G^-(v)$ вершины $v \in V$ в орграфе G = (V, E) называется число входящих в нее дуг. Если $d_G^-(v) = 0$, то вершина v называется источником в орграфе G.

Полустепенью исхода $d_G^+(v)$ вершины $v \in V$ в орграфе G = (V, E) называется число исходящих из нее дуг. Если $d_G^+(v) = 0$, то вершина v называется стоком в орграфе G.

Степенью $d_G(v)$ вершины $v \in V$ в орграфе G = (V, E) называется величина

$$d_G(v) = d_G^-(v) + d_G^+(v).$$

Если $d_G(v) = 0$, то вершина v называется **изолированной** в орграфе G.

Полустепени исхода и захода вершины

$$d_G^-(1) = 0$$
, $d_G^+(1) = 3$; $d_G^-(3) = 1$, $d_G^+(3) = 2$:

Пути и циклы в орграфах

(**Неориентированным**) путем в орграфе G=(V,E) из вершины v_0 в вершину v_m (или (v_0,v_m) -путем) называется последовательность вершин и ребер графа G

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{m-1}, e_m, v_m,$$

в которой либо $e_i=(v_{i-1},v_i)\in E$, либо $e_i=(v_i,v_{i-1})\in E$ для каждого $i=1,\ldots,m,\ m\geqslant 0$.

Путь называется ориентированным (или направленным), если $e_i = (v_{i-1}, v_i) \in E$ для каждого $i = 1, \ldots, m$.

Понятия цепи, простой цепи, замкнутого пути, цикла и простого цикла в орграфах вводятся аналогично.

Направленный простой цикл в орграфе называется также контуром.

Пути и циклы в орграфах

Контур C = 1, (1, 2), 2, (2, 4), 4, (4, 1), 1 в орграфе G:

Задачи для самостоятельного решения

- 1. Определите понятие изоморфизма для псевдографов.
- 2. Проверьте, верны ли предложения 1-4
- 1) для мультиграфов;
- 2) для псевдографов?

Если верны, то обоснуйте их; если не верны, то укажите, как нужно изменить формулировки, чтобы они стали верными.

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра М, 2012. С. 26–29.
- 2. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009. С. 9–11, 17, 22–25, 26–27.