

Fundamentos de Imagens Digitais

Visão Computacional

Professor: Dr. Anderson Brilhador E-mail: brilhador@utfpr.edu.br

Definição: o histograma de uma imagem corresponde à distribuição dos níveis de cinza da imagem, o qual pode ser representado por um gráfico que mostra frequência de intensidade de pixels em uma imagem.

Imagem em Escala de Cinza

- Não contém informações sobre a disposição espacial dos pixels na imagem;
- Portanto, não é possível reconstruir uma imagem usando somente seu histograma;
- Diferentes imagens podem ter o mesmo histograma como:

Histograma: algoritmo

```
para i = 0 até 255 faça

H[i] ←0

para x = 0 até largura - 1 faça

para y = 0 até altura -1 faça

intensidade = f(x, y)

H[intensidade] ← H[intensidade] + 1
```

- Várias medidas estatísticas podem ser obtidas a partir do histograma de uma imagem tais como valores mínimo e máximo, valor médio, variância e desvio padrão dos níveis de cinza da imagem
- Além disso, o histograma pode mostrar alguns **problemas** originados durante a etapa de aquisição e resultados de processos aplicados sobre a imagem.
- Ex: iluminação ruim (sub ou superexposição);

Conceito	Descrição	Efeito na imagem	Histograma
Contraste	Diferença de intensidade entre os pixels mais claros e escuros.	Destaca bordas e formas. Alto contraste realça detalhes, baixo contraste "apaga" a imagem.	Histogramas estreitos → baixo contraste; histogramas espalhados → alto contraste.
Brilho	Nível geral de luminosidade da imagem (intensidade média dos pixels).	Imagem mais clara ou mais escura como um todo.	Histograma deslocado para a direita → imagem clara; à esquerda → imagem escura.
Exposição	Quantidade de luz captada na formação da imagem (na captura).	Subexposição escurece a imagem; Superexposição "estoura" áreas claras.	Cortes no histograma à esquerda → subexposição; à direita → superexposição.
Saturação	Intensidade das cores (quão vivas elas são).	Cores vibrantes (alta saturação) ou lavadas (baixa saturação).	Histogramas de canais RGB sobrepostos → baixa saturação; separados → alta saturação.
Nitidez	Clareza dos detalhes, associada à definição das bordas.	Alta nitidez torna detalhes mais visíveis; baixa nitidez gera imagem "embaçada".	Histogramas com variações bruscas e maior dispersão → imagem mais nítida.
Ruído	Variação aleatória de intensidade (geralmente indesejada).	Adiciona granulação e pode prejudicar a percepção dos detalhes.	Histogramas com flutuações irregulares, especialmente em áreas uniformes.

Interpretação do Histograma

Interpretação do Histograma

EXPOSURE

CONTRAST

Interpretação do Histograma

Histograma normalizado

- Representa a frequência relativa de intensidade, ou seja, a proporção de pixels para cada nível de cinza.
- H_{norm} = h(i) / total_de_pixels

$$h_{\text{norm}}(i) = \frac{h(i)}{N}$$

- Aplicação:
 - Facilita comparações entre histograma de imagens de tamanho diferentes;
 - Utilizado para calcular a CDF (histograma acumulado);
 - Também utilizado na equalização de histograma;

Histograma acumulado (CDF)

- O histograma acumulado é a soma cumulativa das frequências (ou frequências normalizadas) até cada nível de intensidade;
- Para cada valor de cinza no histograma normalizado H_{norm} teremos a soma de todos os valores H_{norm}(j) já percorridos (ou seja menor j >= i);

$$CDF(i) = \sum_{j=0}^{i} h_{norm}(j)$$

Histograma acumulado (CDF)

Histograma original

Histograma acumulado

Equalização de histograma

Método que modifica o histograma da imagem original **f** de forma que a imagem transformada **g** possua uma distribuição mais uniforme dos seus níveis de cinza:

output
$$(i) = \left\lfloor \frac{\text{CDF}(i) - \text{CDF}_{\min}}{1 - \text{CDF}_{\min}} \times (L - 1) \right\rfloor$$

- CDF(i): valor da CDF no nível i;
- CDF_{min}: menor valor da CDF; L: número de níveis de intensidade (geralmente 256);
- L· J função piso (arredondamento para baixo) 20000

Histograma de imagens coloridas

 O histograma é calculado para cada canal (R, G, B);

Aplicação:

- Identificar tonalidade dominantes (paisagens, objetos);
 Ex: Uma imagem com predominância de céu pode ter o canal azul (B) com histograma mais elevado.
- Você pode ajustar brilho/contraste separadamente para cada canal com base no histograma.
 - Ex: Equalizar apenas o canal vermelho para realçar tons de pele.
- Correção de Cores.
- Segmentação Baseada em Cor.
- Comparação entre imagens.

Exemplos: aplicações reais

- Imagens médicas: Equalização de histograma para melhorar o contraste das imagens.
- Imagens de satélites: Equalização pode ser usada para ajustar contraste e brilho de imagens multiespectrais.
- Monitoramento: Detecção de movimento baseada na variação abruptas do histograma.
- Industrial: Histograma pode ser usado para detectar falhas de uniformidade (Ex: produtos com pintura ou brilho irregulares).
- Reconhecimento facial: pré-processamento para melhorar a qualidade da imagem.
- OCR: pré-processamento para destacar as letras do fundo.
- Recuperação de imagens: Histograma é usado como um descritor.

Exercícios de fixação

Entregar no moodle (Arquivo único com a solução e explicação)

- 1. Baixe a imagem vela.jpg e redimensione em duas escalas diferentes: a) 50% do tamanho original, b) 200% do tamanho original. Em seguida calcule e compare o histograma em tons de cinza da imagem original e das imagens redimensionadas. A transformação de escala alterou a distribuição de intensidades? Justifique com base nos histogramas gerados.
- 2. A imagem vela.jpg é predominantemente escura. Calcule e aplique a equalização do histograma. Compare os histogramas antes e depois da equalização. Quais mudanças ocorreram?
- **3.** Aplique uma translação de 150 pixels para a direita e 150 pixels para baixo na imagem vela.jpg e preencha com pixels pretos os pixels deslocados. Exiba a imagem transformada ao lado da original e compare os histogramas. A translação afetou a distribuição de intensidades da imagem? Justifique sua resposta.
- **4.** Calcule os seguintes valores estatísticos do histograma de tons de cinza da imagem vela.jpg: "Média" e "Desvio Padrão". Interprete os resultados obtidos. O que esses valores revelam sobre a imagem?
- **5.** Calcule e plote os histogramas dos canais R (vermelho), G (verde) e B (azul) separadamente. Interprete o resultado. Qual canal possui maior concentração de pixels com intensidade baixa (próxima de zero), indicando predominância no fundo escuro?