Using Surrogate Models to Accelerate Bayesian Inverse Uncertainty Quantification

James Rynn

with Simon Cotter, Catherine Powell (University of Manchester) & Louise Wright (National Physical Laboratory)

james.rynn@manchester.ac.uk

30/06/17

Overview

- Bayesian Inverse Problems
- 2 Motivating Example
- Standard FEM Approach
- 4 Stochastic Galerkin FEM Approach

Bayesian Inverse Problems

Find the unknown θ given n_{obs} observations z, satisfying

$$z = \mathcal{G}(\theta) + \eta, \quad \eta \sim \mathcal{N}(0, \Sigma),$$

where

- $z \in \mathbb{R}^{n_{\text{obs}}}$ is a given vector of **observations**,
- $\mathcal{G}: \Theta \to \mathbb{R}^{n_{\text{obs}}}$ is the **observation operator**,
- $\theta \in \Theta$ is the unknown,
- $\eta \in \mathbb{R}^{n_{\text{obs}}}$ is a vector of **observational noise**.

We treat this as a probabilistic problem and search for a posterior distribution for θ .

Bayesian Inverse Problems

In the finite-dimensional case, from Bayes' Theorem we have

$$\pi(\theta|z) \propto L(z|\theta) \; \pi_0(\theta)$$

$$\propto \exp\left(-\frac{1}{2}\|z - \mathcal{G}(\theta)\|_{\Sigma}^2\right) \; \pi_0(\theta).$$

Markov Chain Monte Carlo (MCMC) Methods

- We know $\pi(\theta|z)$ up to a constant of proportionality.
- Use MCMC algorithm to generates samples $\theta_1, \theta_2, \dots, \theta_M$ from the posterior distribution.
- Use these samples to construct Monte Carlo estimates of quantities of interest (means, variances and/or probabilities),
- e.g.

$$\mathbb{E}_{\pi}[\phi] = \int_{\Theta} \phi(\theta) \pi(\theta|z) d\theta pprox rac{1}{M} \sum_{i=1}^{M} \phi(\theta_i).$$

Motivation

Motivation

Motivation

Possible unknowns:

- λ thermal conductivity,
- I laser intensity,
- k boundary condition parameter,
- \bullet σ standard deviation of measurement noise.

Example

Consider the one-dimensional steady state heat equation,

$$-\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{\mathsf{d}u}{\mathsf{d}x}(x)\right) = 1, \quad x \in [0, H],$$

with homogeneous Dirichlet boundary conditions,

$$u(0)=u(H)=0,$$

where $\lambda = e^{\theta}$ is the unknown thermal conductivity.

We wish to find a posterior distribution for λ (equivalently θ), given observations of u(x) at $x_1, x_2, \ldots, x_{n_{obs}} \in [0, H]$.

Example

Here, our observation operator ${\cal G}$ is of the form

$$\mathcal{G}(\boldsymbol{\theta}) = (u(x_1; \boldsymbol{\theta}), u(x_2; \boldsymbol{\theta}), \dots, u(x_{n_{\text{obs}}}; \boldsymbol{\theta}))^{\mathsf{T}},$$

and approximated by \mathcal{G}_h given by

$$\mathcal{G}_h(\boldsymbol{\theta}) = (u_h(x_1; \boldsymbol{\theta}), u_h(x_2; \boldsymbol{\theta}), \dots, u_h(x_{n_{obs}}; \boldsymbol{\theta}))^T,$$

where u_h is the finite element solution to the ODE on a mesh of width h.

Note: For each value of θ , to evaluate \mathcal{G}_h we are required to compute a FEM solve.

Random Walk Metropolis Hastings Algorithm (FEM)

Algorithm 1: RWMH Algorithm

```
set initial state X^{(0)} = \theta_0

for m = 1, 2, ..., M do

draw proposal
evaluate likelihood by computing \mathcal{G}_h (expensive!)
compute acceptance probability \alpha
accept proposal with probability \alpha
output chain X = (\theta_0, \theta_1, ..., \theta_M)
```

Here $M \gg 10^5$.

Results

Figure: Approximate posterior density π_h with h = 1/16000 from 160 million samples.

Stochastic Galerkin Finite Element Method

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and consider the problem

$$-\frac{\mathsf{d}}{\mathsf{d}x}\left(\mathsf{e}^{\theta(\omega)}\frac{\mathsf{d}u}{\mathsf{d}x}(x,\omega)\right)=1,\quad x\in[0,H],\quad \omega\in\Omega,$$

with homogeneous Dirichlet boundary conditions,

$$u(0,\omega) = u(H,\omega) = 0, \quad \omega \in \Omega.$$

Assuming θ is of the form

$$\theta(\omega) = \theta(\xi(\omega)),$$

we can transform this into a parametric equation on $[0, H] \times \xi(\Omega)$.

Stochastic Galerkin Finite Element Method

Parametric form:

$$-\frac{\mathsf{d}}{\mathsf{d}x}\left(e^{\theta(y)}\frac{\mathsf{d}u}{\mathsf{d}x}(x,y)\right) = f(x), \quad x \in [0,H], \quad y \in \Gamma := \xi(\Omega),$$

with homogeneous Dirichlet boundary conditions,

$$u(0, \mathbf{y}) = u(H, \mathbf{y}) = 0, \quad \mathbf{y} \in \Gamma.$$

Construct a stochastic Galerkin FEM solution u_{hk} on a finite dimensional subspace of $L^2(\Gamma, H^1_g(D)) \cong L^2(\Gamma) \otimes H^1_0(D)$ of size $(k+1) \times N_h$.

$$\mathcal{G}_{hk}(\mathbf{y}) = (u_{hk}(\mathbf{x}_1, \mathbf{y}), u_{hk}(\mathbf{x}_2, \mathbf{y}), \dots, u_{hk}(\mathbf{x}_{n_{obs}}, \mathbf{y}))^T$$
.

Random Walk Metropolis Hastings Algorithm (SGFEM)

Algorithm 2: RWMH Algorithm with SGFEM Surrogate

```
compute SGFEM solution u_{hk} set initial state X^{(0)} = \theta_0 for m = 1, 2, \ldots, M do draw proposal evaluate likelihood by evaluating \mathcal{G}_{hk} (cheap!) compute acceptance probability \alpha accept proposal with probability \alpha output chain X = (\theta_0, \theta_1, \ldots, \theta_M)
```

Here $M \gg 10^5$.

Posterior Convergence in k (Polynomial Degree)

Figure: Approximate posterior densities π_{hk} with h=1/16000 from 160 million samples with various values of k along with corresponding π_h produced using standard FEM approach.

Posterior Convergence in M (Number of Samples)

Figure: Relative L^2 errors in the approximate posteriors π_{hk} (for various k) and π_h with h = 1/16000.

Time Saving

Time to compute **160 million MCMC samples** using MH algorithm on a (fine) mesh of width h = 1/16000:

Standard FEM approach: \approx **40 hours**,

SGFEM surrogate approach (k = 5): \approx **10 minutes**.

Example 2D: Forward Problem

Consider the steady state heat equation with mixed boundary conditions and discontinuous unknown coefficient λ :

$$egin{aligned} -
abla \cdot (\lambda(x)
abla u(x)) &= 1, & x \in D := (0,1) imes (0,1) \subset \mathbb{R}^2, \\ u(x) &= 0 & x \in \{0\} imes (0,1), \\ u(x) &= 1 & x \in \{1\} imes (0,1), \\
abla u(x) \cdot n(x) &= 0 & x \in \{0,1\} imes (0,1). \end{aligned}$$

Here, $\lambda: (0,1) \times (0,1) \to \mathbb{R}$ is given by

$$\lambda(x) = \begin{cases} \theta, & x \in D \setminus (0.25, 0.75) \times (0.25, 0.75), \\ \lambda_0, & x \in (0.25, 0.75) \times (0.25, 0.75), \end{cases}$$

where λ_0 is known.

Example 2D: Forward Problem

Figure: $\mathbb{E}[u_{hk}](x)$ and $Var[u_{hk}](x)$: $h = 2^{-7}$ and k = 4.

Example 2D: Inverse Problem

Figure: (L) Observation Points. (R) Approximate posterior densities with $h = 2^{-7}$ from 160 million samples for various values of k.

Time taken to produce 160 million samples is \approx 9 minutes.

James Rynn

Future Work

- More realistic forward problem:
 - time-dependent PDE
 - multiple random variables
- More sophisticated MCMC algorithm
- Error analysis

References

- I. Babuška, R. Tempone, and G. Zouraris, Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations, SIAM Journal on Numerical Analysis, 42 (2004), pp. 800–825.
- S. BROOKS, A. GELMAN, G. JONES, AND X.-L. MENG, Handbook of Markov Chain Monte Carlo, Chapman and Hall/CRC, 2011.
- A. Stuart, *Inverse Problems: A Bayesian Perspective*, Acta Numer., 19 (2010), pp. 451–559.
- L. WRIGHT, L. CHAPMAN, AND D. PARTRIDGE, Laser Flash Experiment on Layered Materials: Parameter Estimation and Uncertainty Evaluation.

 National Physical Laboratory (NPL), Internal Communication.