1 2 3 2

1. Aufgabe

Ermitteln Sie die Lösungsmengen der Ungleichung:

$$\frac{2x+1}{2-3x} \le \frac{2x+3}{3x-4}$$

$$x\notin\{\frac{2}{3},\frac{4}{3}\}$$

$$I\left(x < \frac{2}{3} \land x < \frac{4}{3}\right)$$

$$\frac{2x+1}{2-3x} = \frac{2x+3}{3x-4} = \frac{2x+3}{3x-4$$

etie lugle chuy cuit

ether volch & !

$$-(2x+1)(3x-4) \le (2x+3)(2-3x)$$

$$-\frac{1}{2} \quad \frac{4}{3} \quad -\frac{3}{2} \quad \frac{2}{3}$$

$$-\frac{3}{6} \quad \frac{8}{6} \quad -\frac{9}{6} \quad \frac{4}{6}$$

$$\frac{8}{6} - (-\frac{3}{6}) = \frac{11}{6}$$

$$\frac{4}{6} - (-\frac{9}{6}) = \frac{13}{6}$$

$$x \in [-\frac{3}{6}, \frac{4}{6}[$$

$$(2x+1)(3x-4) \le (2x+3)(2-3x)$$

$$6x^2 - 8x + 3x - 4 \le -6x^2 + 4x - 6x + 6$$

$$12x^2 - 3x + 2 \le 0$$

$$x^2 - \frac{1}{4}x + \frac{1}{6} \le 0$$

(keine Lösung zu dieser Aufgabe gefunden)

Dos 180 en quadra tiske llugloiding!

2. Aufgabe

Beweisen oder widerlegen Sie mittels Wahrheitstafeln, dass die folgenden Junktoren dem Assoziativgesetz (A * B) * C \Leftrightarrow A * (B * C) gehorchen (* steht stellvertretend fur den jeweiligen Junktor).

- 1. Aquivalenz ↔
- 2. Implikation \rightarrow
- 3. Negation der Disjunktion (weder noch) ↓ (Peirce-Pfeil)

Die Aussagen sind jeweils wahr genau dann, wenn der Wert in der letzten Spalte immer 1 ist:

a)
$$(A \leftrightarrow B) \leftrightarrow C \Leftrightarrow A \leftrightarrow (B \leftrightarrow C)$$

A	В	C	$A \leftrightarrow B$	$\mathbf{B} \leftrightarrow \mathbf{C}$	$(A \leftrightarrow B) \leftrightarrow C$	$A \leftrightarrow (B \leftrightarrow C)$	$((A \leftrightarrow B) \leftrightarrow C) \leftrightarrow (A \leftrightarrow (B \leftrightarrow C))$
0	0	0	1	1	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	1	1	1
0	1	1	0	1	0	0	1
1	0	0	0	1	1	1	1
1	0	1	0	0	0	0	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

Konjunktive Normalform:

Formel	Entweder	(46 B) E>C	Umstellung
$A \leftrightarrow B \leftrightarrow C$ $\Leftrightarrow (A \to B)$ $\Leftrightarrow (\neg A \lor B)$	$(B \Rightarrow A) \land (B \Rightarrow C)$ $(A \Rightarrow A) \land (B \Rightarrow C)$ $(A \Rightarrow A) \land (B \Rightarrow C)$ $(A \Rightarrow A) \land (B \Rightarrow C)$	$ \begin{array}{c} (\S \leftarrow) \ C) \\ \land (C \rightarrow B) \\ C) \land (\neg C \lor B) \end{array} $	Darstellung als paarweise Implikation Implikation
6) · · (= · · · ·) / · (2 · ·		

b)
$$(A \rightarrow B) \rightarrow C \Leftrightarrow A \rightarrow (B \rightarrow C)$$

A	В	C	$A \rightarrow B$	$\mathbf{B} \to \mathbf{C}$	$(A \rightarrow B) \rightarrow C$	$A \rightarrow (B \rightarrow C)$	$((A \rightarrow B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$
0	0	0	1	1	0	1	0
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

Disjunktive Normalformen:

Formel	Umstellung
$(A \rightarrow B) \rightarrow C$ $\Leftrightarrow (\neg A \lor B) \rightarrow C$ $\Leftrightarrow \neg (\neg A \lor B) \lor C$ $\Leftrightarrow (A \land \neg B) \lor C$	Implikation in der Klammer Implikation De Morgansches Gesetz
$A \rightarrow (B \rightarrow C)$ $\Leftrightarrow A \rightarrow (\neg B \lor C)$ $\Leftrightarrow \neg A \lor \neg B \lor C$	Implikation in der Klammer Implikation

c) $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

A	В	C	$\mathbf{A} \downarrow \mathbf{B}$	$\mathbf{B} \downarrow \mathbf{C}$	$(A \downarrow B) \downarrow C$	$A \downarrow (B \downarrow C)$	$((A \downarrow B) \downarrow C) \leftrightarrow (A \downarrow (B \downarrow C))$
0	0	0	1	1	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1
0	1	1	0	0	0	1	0
1	0	0	0	1	1	0	0
1	0	1	0	0	0	0	1
1	1	0	0	0	1	0	0
1	1	1	0	0	0	0	1

Konjunktive Normalformen:

Konjunktive Normanormen.					
Formel	Umstellung				
$ \begin{array}{l} (A \downarrow B) \downarrow C \\ \Leftrightarrow \neg(\neg(A \lor B) \lor C) \\ \Leftrightarrow (A \lor B) \land \neg C \end{array} $	Darstellung als verschachteltes "Nicht oder" De Morgansches Gesetz				
$A \downarrow (B \downarrow C)$ $\Leftrightarrow \neg (A \lor \neg (B \lor C))$ $\Leftrightarrow \neg A \land (B \lor C)$	Darstellung als verschachteltes "Nicht oder" De Morgansches Gesetz				

3. Aufgabe

In Soho ist ein Mord geschehen. Als Tater kommen Patrick, Steven, Diana und Mary in Frage – möglicherweise waren auch mehrere von ihnen an der Tat beteiligt. Die polizeilichen Ermittlungen ergeben:

- 1. Wenn es Patrick war, so war Steven ein Mittater und Diana ist unschuldig.
- 2. Diana oder Steven waren an der Tat beteiligt, aber es kann ausgeschlossen werden, dass Steven ohne Patrick gemeuchelt hat.
- 3. Mary ist nur dann eine Taterin, wenn auch Steven und Diana dabei waren.
- 4. Wenn aber Diana an dem Mord beteiligt sein sollte, dann ist auf jeden Fall Steven ein Mittäter und Mary ist unschuldig.

Well, whodunit?

Person	Formel	Regel zur Umstellung	Erklärung
Diana	$(P \rightarrow S \land \neg D) \land \\ (D \lor S) \land \neg (S \land \neg P) \land \\ (\neg S \lor \neg D \rightarrow \neg M) \land \\ (D \rightarrow S \land \neg M)$ 1. u. 2. Umstellung: $(P \rightarrow S \land \neg D) \land \\ ((D \lor S) \land (S \rightarrow P)) \land \\ (\neg S \lor \neg D \rightarrow \neg M) \land \\ (D \rightarrow S \land \neg M)$ 3. Umstellung: $(D \lor S) \land (D \rightarrow S \land \neg M) \land \\ (S \rightarrow P) \land (P \rightarrow S \land \neg D) \land \\ (\neg S \lor \neg D \rightarrow \neg M)$	 De Morgansches Gesetz: ¬(S ∧¬P)⇔¬S ∨ P Implikation: ¬S ∨ P⇔S → P Assoziativgesetz 	Die gegebene Argumentation führt zu dem Kettenschluss, dass Dianas Beteiligung an dem Mord ein Widerspruch wäre.
Steven	$(P \rightarrow S \land \neg D) \land \\ (D \lor S) \land \neg (S \land \neg P) \land \\ (\neg S \lor \neg D \rightarrow \neg M) \land \\ (D \rightarrow S \land \neg M)$		"Diana oder Steven waren an der Tat beteiligt." Da Dianas Beteiligung bereits ausgeschlossen wurde, muss Steven ein Täter sein.
Patrick	$(P \rightarrow S \land \neg D) \land \\ (D \lor S) \land \neg (S \land \neg P) \land \\ (\neg S \lor \neg D \rightarrow \neg M) \land \\ (D \rightarrow S \land \neg M)$ 1. u. 2. Umstellung: $(P \rightarrow S \land \neg D) \land \\ ((D \lor S) \land (S \rightarrow P)) \land \\ (\neg S \lor \neg D \rightarrow \neg M) \land \\ (D \rightarrow S \land \neg M)$	(wie oben) 1. De Morgansches Gesetz: $\neg(S \land \neg P) \Leftrightarrow \neg S \lor P$ 2. Implikation: $\neg S \lor P \Leftrightarrow S \Rightarrow P$	Stevens Tatbeteiligung impliziert Patricks Mittäterschaft.
Mary	$ \begin{array}{c} (P \rightarrow S \wedge \neg D) \wedge \\ (D \vee S) \wedge \neg (S \wedge \neg P) \wedge \\ (\neg S \vee \neg D \rightarrow \neg M) \wedge \\ (D \rightarrow S \wedge \neg M) \end{array} $		Durch Dianas Nichtteilnahme an dem Mord ist Marys Teilnahme ausgeschlossen.

Formel	Identitäten
$ \begin{array}{c} (P \rightarrow S \land \neg D) \land \\ (D \lor S) \land \neg (S \land \neg P) \land \\ (\neg S \lor \neg D \rightarrow \neg M) \land \\ (D \rightarrow S \land \neg M) \end{array} $	Assoziativgesetz De Morgansches Gesetz, Implikation
$ \begin{array}{c} (D \lor S) \land (D \to S \land \neg M) \land \\ (S \to P) \land (P \to S \land \neg D) \land \\ (\neg S \lor \neg D \to \neg M) \end{array} $	Kettenschluss, Komplementarität
$(P \rightarrow S \land 1) \land (0 \lor S) \land \neg (S \land \neg P) \land (\neg S \lor 1 \rightarrow \neg M) \land (0 \rightarrow S \land \neg M)$	Implikation Neutralität, De Morgansches Gesetz Implikation, De Morgansches Gesetz Implikation
$ \begin{array}{c} (\neg P \lor S) \land \\ S \land (\neg S \lor P) \land \\ (S \land 0 \lor \neg M) \land \\ (1 \lor S \land \neg M) \end{array} $	Absorbtion Distributivgesetz, Komplementarität, Neutralität Permanenz, Neutralität Permanenz
$S \wedge P \wedge \neg M \wedge 1$	

Steven und Patrick sind die Mörder. Many vir drt, orber van mit forme

Spe madre die Sahe wel zu Coomplishet