4-2-0--2--4--2-0 2 4

Figure 1: scatter plot of data

Figure 2: contour plots of logistic decision functions

Figure 3: Surface plot of logistic decision function

Print out accuracy for Beta array:

B = 1 with accuracy 0.609500

B = 2 with accuracy 0.714600

B = 3 with accuracy 0.919250

B = 4 with accuracy 0.996950

Question 2c:

As we can see, that when value of Beta is increasing, the accuracy of the classification is more accurate. By following reasons: since Beta increased, two centers of clusters would move further away from each other (because m0 and m1' x and y values have opposite sign). Then there is less overlap points occurred. That will significantly improve the accuracy.

Question 3:

Figure 4: random MNIST images of the digit 5

Question 3 D):

The training accuracy is 0.934067 The testing accuracy is 0.925200

Question 3 E):

Figure 6: some missclassified images.

Question 3 F):

Figure 7: images with the least confident predictions.

O	9	6	٩	2	8
4	5	2	5	\$	5
3	ತ	2	6	8	7
2	4	8	8	3	7
		6			
l	5	9	8	8	5

Question 4D:

The training accuracy score for 2s and 3s is 0.984449 The testing accuracy score for 2s and 3s is 0.969638