Integrating Semantic Memory in Soar

Yongjia Wang John E. Laird

Outline

Background & Motivation

Implementations and Experiments

What is Semantic Memory

- Definition
 - 'Your memory for meanings and general (impersonal) facts.'[from WordNet]
- Episodic memory and Semantic memory distinction
 - Episodic memory
 - Tied to a specific learning episode or experience
 - What you remember
 - Semantic memory
 - General knowledge not tied to a learning experience
 - What you know

Memory Systems

Related Fields and Motivation

Architectures	Focus	Feature	Limitations
Cognitive Psychology (ACT-R)	To model human behavior	Long-term declarative memory and learning	Haven't been used to build functional agents
Al Agent Architectures (Soar)	To build intelligent agents	Efficient domain knowledge engineering	No long-term semantic memory, limited learning
Knowledge Representation Systems (Cyc)	To represent common sense semantic knowledge	Declarative knowledge representation	Representational model, not learning model
Our Approach (Soar + semantic memory)	To build intelligent agents	Efficient domain knowledge engineering and more learning capabilities	Constrained by Soar

Research Goals

- To improve general functionality of Soar by semantic memory
 - Explore new cognitive capabilities
 - Characterize computational functionalities
- To understand semantic memory in the context of a general cognitive architecture
 - How to use semantic memory in specific tasks?
 - How semantic memory interacts with other mechanisms in Soar?
 - What are the computational implications of semantic memory and episodic memory distinction?

Distinction Between Semantic Memory and Episodic Memory in Soar

	Semantic Memory	Episodic Memory
Storage & retrieval unit	Single level objects in working memory (declarative chunks)	Entire working memory snapshot (episode)
Temporal information	No architectural temporal information	Architectural temporal information (ex: next episode)
Main purpose	Store general knowledge Category learning	Store specific events Case-based reasoning

Outline

Background & Motivation

Implementations and Experiments
 Task: Cognitive Arithmetic

Overview of Experiment

Purpose:

- Integrate a declarative semantic memory component
- Demonstrate related functional advantage of declarative representation

Implementation:

- Semantic memory with declarative representation
- Deliberate and automatic semantic learning
- Task: Cognitive arithmetic

0 9 5 2

- Easy to understand
- Universally performed
- Multiple types of learning

1 0 1 5

Working Memory Representation of an Arithmetic Problem

Problem Space

Solving One Column

Transfer Learning Effect from Semantic Learning

Procedural Representation Cannot be Transferred


```
^sum 1
    ^digit2 6
    ^operation subtraction1

chunking

sub-state

Counting: 1,0,(-1)9,(-1)8,(-1)7,(-1)6, (-1)5
```

Counting twice and learn 2 rules

Comparison of Different learning Configurations

Decision Cycles Breakdown

Situations Decision Cycles Operators	All computations	With arithmetic facts	After chunking
operators in top-state	9	9	9
get-digits (from top-state)	3*3=9	9	0
write-result (to top-state)	3*1=3	3	0
retrieve	3*4=12	12	0
counting	39	0	0
Total	72	33	9

Summary

Nuggets

- Implemented a semantic memory with declarative representation
- Demonstrated the functional advantage of declarative representation over procedural representation
- Demonstrated transfer learning effect by semantic learning
- Demonstrated the functional Interaction between semantic learning and chunking

Coals

- Cognitive arithmetic is an internal mental task
- The task is completely deterministic

Thank You