CHAP 4. Transistor bipolaire

4.1 Introduction

■ le Transistor = l'élément "clef" de l'électronique

BC547 Plastic leaded transistor

- il peut:
 - **↓** amplifier un signal
 - → amplificateur de tension, de courant, de puissance,...
 - **♦** être utilisé comme une **source de courant**
 - ↓ agir comme un interrupteur commandé (= mémoire binaire)

 ↑ essentiel pour l'électronique numérique
 - Ψ...

il existe:

- **♥** soit comme **composant discret**
- ♣ soit sous forme de **circuit intégré**, i.e. faisant partie d'un circuit plus complexe, allant de quelques unités (ex: AO) à quelques millions de transistors par circuit (microprocesseurs)

- on distingue le transisor **bipolaire** du transistor à effet de champ
- différents mécanismes physiques
- Ils agissent, en 1^{ière} approx., comme une source de courant commandé

source de courant commandée par un courant

A = "gain" en courant

source de courant commandée par une tension

G = transconductance.

4.2 Structure et fonctionnement d'un transistor bipolaire

■ Structure simplifiée

□ Deux « jonctions PN ou diodes » <u>couplées</u> ⇔ « effet transistor »

le courant dans l'une des diodes (généralement dans la jonction base/émetteur) détermine le courant dans la seconde

Symétrie NPN/PNP (Les transistors PNP et NPN ont un comportement analogue à condition d'inverser les polarités des tensions)

Effet transistor

Conditions normales de polarisation : Jonction EB : directe

Jonction BC : **inverse**

= **MODE ACTIF** du transistor

Dans ces conditions « L'effet transistor » apparaît

Exemple: Transisor NPN

Le courant I_E est déterminé par la tension V_{BE} (comme pour une diode simple);

Le courant I_C (au lieu d'être nul, comme dans le cas d'une diode bloquée) est égal, en première approximation, à I_E.

En d'autres termes, le courant collecteur est commandé par le courant émetteur.

L'origine physique de cet effet est le champ électrique intense qui apparaît dans la « zone de charge d'espace de la jonction BC). Ce champ « collecte les électrons qui sont injectés par l'émetteur dans la base.

En réalité le courant I_c est légèrement inférieur à I_E . Certains électrons ne parviennent pas jusqu'au collecteur (ils se « recombinent » avec les trous dans la base). Par ailleurs une petite fraction du courant I_E est porté par les trous qui diffusent de la base vers l'émetteur et qui de fait ne participent pas à l'effet transistor).

En vertu de la conservation de la charge électrique (ou de la loi des nœuds qui en découle en régime stationnaire), la différence des deux courants est égale au courant « de base » I_B .

Remarque: La jonction EB étant à dopage dissymétrique (le dopage côté émetteur est plus élevé que côté base), la part du courant I_E transportée par les électrons (cas du transistor NPN) est largement majoritaire.

EN RESUME

- Ψ si $V_{EE} > \sim 0.7 \text{V}$, jonction EB passante $\Rightarrow V_{BE} \sim 0.7 \text{V}$, $I_E >> 0$
- ↓ La jonction EB est dissymétrique (dopage plus élevé côté E)
 - **courant** porté essentiellement par les **électrons** (peu de trous circulent de B vers E)
- $\bigvee V_{CC} > 0$, jonction BC "bloquée" => champ électrique intense à l'interface Base/Collecteur
- **↓** La **majorité** des électrons injectés par l'émetteur dans la base sont **collectés** par le champ **→** $I_C \sim I_E$ et $I_B = I_E - I_C << I_E$
- lackloss En mode actif, I_C est contrôlé par I_E , et non vice versa...

- Premières différences entre le transistor bipolaire et la source commandée idéale...
- **♦** Contraintes de **polarisation**: $V_{BE} > \theta$ (~ 0.7V), $V_{BC} < \theta$ (- 0.5V)

Le transistor bipolaire n'est pas une source de courant commandée idéale. Il ne se comporte comme une source de courant commandée que s'il est en mode actif, c'est-à-dire que lorsque $V_{BE} > \sim 0.7 V$, $V_{CB} > \sim -0.5 V$ (pour un PNP il faudrait $V_{EB} > \sim 0.7 V$, $V_{BC} > \sim -0.5 V$

Symboles

 \bowtie I_E >0 en **mode actif**

Conventions des courants :

NPN

PNP

4.3 Caractéristiques du transistor NPN

Choix des paramètres :

- \boxtimes Les différentes grandeurs électriques (I_E , I_B , V_{BE} , V_{CE} ,...) sont **liées**:
- ↓ différentes repésentations équivalentes des caractéristiques électriques existent
- Configuration "Base Commune"(base = électrode commune)
- lackled Caractéristiques : $I_E(V_{BE}, V_{BC}), I_C(V_{BC}, I_E)$
- Configuration "Emetteur Commun"
 (émetteur= électrode commune)
- lackled Caractéristiques : $oldsymbol{I_B}(V_{BE}, V_{CE}), oldsymbol{I_C}(V_{CE}, I_B)$

■Caractéristiques en configuration BC : CAS DU TRANSISTOR NPN

$$I_E(V_{BE}, V_{CB})$$
: « caractéristique d'entrée »
hypothèse: diode BC bloquée (mode usuel)

$$I_E \cong I_s \left[\exp \left(\frac{V_{BE}}{V_T} \right) - 1 \right]$$

ightharpoonup très peu d'influence de I_C (resp. V_{CB})

Jonction BE bloqué Jonction BE passante $I_E \sim 0, \ V_{BE} < 0.5 \ V$ $I_E > 0, \ V_{BE} \approx 0.6 - 0.7 \ V = \ll V_o \gg$

tension seuil de la jonction BC

- **▶** pour $I_E = 0$, on a $I_C =$ **courant de saturation inverse** de la jonction $BC \sim 0$ **♂** Transistor en "mode bloqué"
- Ψ pour V_{CB} ≈ -0.7, la jonction BC est **passante**, I_C n'est **plus controlée** par I_E 7 Transistor en "mode saturé"

Ordre de grandeur : $\alpha_{\rm N}$ ~0.950 - 0.999 $\alpha_{\rm N}$ = "gain en courant continue en BC"

 α_{N} représente la fraction des électrons, issus de l'émetteur, qui atteignent le collecteur sans s'être recombinés avec les trous de la base.

■ Caractéristiques en configuration EC :

$$I_B(V_{BE}, V_{CE})$$
:

« caractéristique d'entrée »

hypothèse: diode BC bloquée (mode usuel)

 $V_{BE} > 0.6V$, jonction PN passante

 $\boxtimes I_B << I_E \leftrightarrow$ charges non collectées par le champ électrique de la jonction BC

$$I_B = (1 - \alpha_N)I_E$$

↓ Influence non-négligeable de V_{CE} sur α_N ↔ "Effet Early"

Rappel: Découvert en 1952, c'est l'effet de modulation du courant collecteur (I_B varie avec I_C) par tension collecteur-base.

10

 $I_C(V_{CE}, I_R)$:

▶ Mode actif : BE passant, BC bloquée $\rightarrow V_{BE} \approx 0.7 \text{V}$ et $V_{CB} > \sim -0.5 \text{ V}$

$$V_{CE} = V_{CB} + V_{BE} > -0.5 + 0.7 \sim 0.2 \text{ V}$$

$$I_C = \alpha_F I_E = \alpha_F (I_C + I_B) \Rightarrow I_C = \frac{\alpha_F}{1 - \alpha_F} I_B = "h_{FE}" I_B$$
 $h_{FE} = "gain \ en \ courant \ continue \ en \ EC" = "\beta_F"$

ordre de grandeur : $h_{\text{FE}} \sim 50 - 250$

- \square Grande <u>dispersion de fabrication</u> sur h_{FE} .
- ullet Effet Early: α_F tend vers 1 lorsque V_{CE} augmente $\rightarrow h_{FE}$ augmente avec V_{CE}
- **Mode saturé :** Diode BC passante -> I_C indépendant de I_B $\nearrow h_{FE}$ diminue lorsque $V_{CE} \rightarrow 0$

■ Modes actif / bloqué / saturé

Transistor NPN

Mode saturé : $V_{BE} \approx 0.8V$ $V_{CE} \approx 0.2V$ $I_C \neq h_{FE}I_B$

Transistor **PNP**

Configuration EC:

Mode actif : $V_{BE} \approx -0.7V \sim -0.3V < V_{CE} < V_{CC} \quad (< 0) \quad I_c \approx h_{FE}I_B$

Mode bloqué : $I_B \cong 0$ $V_{CE} \cong V_{CC}$ $I_C \approx 0$

Mode saturé $V_{BE} \approx -0.8V$ $V_{CE} \approx -0.2V$ $I_c \neq h_{FE}I_B$

Mode actif

Mode bloqué

Mode saturé

■ Valeurs limites des transistors

- ◆ Tensions inverses de claquage des jonctions PN (EB, BC)
- ◆ Puissance maximale dissipée : P_{max} =V_{CE} I_C
- **↓** Courants de saturations inverses :

fiches techniques:

■ Influence de la température

- ☑ La caractéristique d'une jonction PN dépend de la température
 - ◆ les courants inverses (mode bloqué) augmentent avec T
 - \mathbf{V}_{BE} , à $\mathbf{I}_{\mathrm{B,E}}$ constant, diminue avec T
 - ightharpoonup ou réciproquement : pour V_{BE} maintenue fixe, I_E (et donc I_C) augmente avec T
 - **♥** Risque d'emballement thermique :

$$Lorsque T \uparrow \Rightarrow I_C \uparrow \Rightarrow$$
 Puissance dissipée $\uparrow \Rightarrow$ $Hausse de T amplifié $\uparrow \cdots$$

4.4 Modes de fonctionnement du transistor dans un circuit : Utilisation en émetteur commun

↔ Point de fonctionnement

■ Droites de charges:

Le point de fonctionnement est déterminé par les **caractéristiques** du transistor **et** par les **lois de Kirchhoff** appliquées au circuit.

Exemple:

• Comment déterminer I_B , I_C , V_{BE} , V_{CE} ?

Droites de charges : deux équations linéaires

$$V_{th} = R_{th}I_B + V_{BE} \longrightarrow I_B = \frac{V_{th} - V_{BE}}{R_{th}}$$

$$V_{CC} = R_CI_C + V_{CE} \longrightarrow I_C = \frac{V_{CC} - V_{CE}}{R_C}$$

Permettent de localiser le point de fonctionnement sur les caractéristiques du transistor

■ Point de fonctionnement: détermination graphique

 V_{BEQ} ≈0.6-0.7V, dès que V_{th} > 0.7V (diode passante transistor actif ou saturé)

fixe le courant I_B à la valeur I_{BQ} et dans le réseau de courbes $I_C(V_{CE})$ c'est celle qui correspond à I_{BQ} qui est d'actualité l'intersection de la seconde droite de charge avec cette caractéristique détermine la valeur de I_{CQ} et de V_{CEQ} .

 $V_{CE_{sat}} \le V_{CE_Q} \le V_{CC}$

$$I_{CO} \le I_c \le \frac{V_{CC} - V_{CE_{sat}}}{R_c} \approx \frac{V_{CC}}{R_c}$$

Q fixe le **mode de fonctionnement** du transistor

Exemple: Calcul du point de fonctionnement: determination par calcul

$$\rightarrow I_{B_Q} = 10 \,\mu\text{A}$$

$$\rightarrow I_{CQ} = 1 m\text{A}$$

$$\rightarrow V_{CEQ} = 7V$$

Con a bien: $\sim 0.3 < V_{CEQ} < V_{CC}$

Résultat **cohérent** avec le **mode actif** du transistor.

• Remplacement de R_{th} par $3k\Omega$ (résistance R_{th} est réduite) :

$$\cdots \rightarrow I_{B_Q} = 100 \mu A$$

$$\cdots \rightarrow I_{CQ} = 10 mA$$

$$\cdots \rightarrow V_{CEQ} = -20 V !!$$

◆le modèle donne des valeurs erronnées

Conséquences:

En ayant augmenté I_{BQ} , (réduction de R_{th}) Q a atteint la limite de la zone correspondant au mode actif

$$\rightarrow V_{CEQ} \sim 0.3V$$

et
$$I_{C_O} = 3.2 mA$$

On peut en conclure que le transistor passe dans l'état saturé. Partant de cette constatation, on peut considérer que la tension V_{CE} est de l'ordre de 0.2 à 0.3V et on peut estimer les autres grandeurs électriques du montage.

Quelques circuits élémentaires :

1_ Transistor interrupteur commandé:

(interrupteur fermé)

La valeur minimale de I_B pour atteindre ce régime d'interrupteur fermé est donnée par I_{Bmin}

t>0: $V_{BE} > \sim 0.8 V$, telque $R_c I_c \sim V_{CC}$ $\rightarrow V_{CE} \sim qq$. 100mV

 $I_{R_C} = \frac{V_{CC} - 0.2}{R_C} \cong \frac{V_{CC}}{R_C}$

2_ Transistor source de courant :

$$\to I \approx \frac{V_{BB} - 0.7V}{R_E}$$

En d'autres termes, le courant dans la charge (R_c) ne dépend pas (en première approximation) de la valeur de la charge.

"quelque soit" R_c ...

tant que le transistor est en mode actif

Domaine de fonctionnement : $(V_{BB} > 0.7V)$

$$\approx 0 < V_{CE} = V_{CC} - (R_C + R_E)I_C < V_{CC}$$

Le circuit remplit sa fonction de source de courant tant que $R_c + R_E < V_{cc}/I$ ou encore $R_c < V_{cc}/I - R_E$ (à quelques 100 mV près).

$$R_{c_{\max}} \cong \frac{V_{cc}}{I} - R_E$$

pour R_c supérieure à $R_{cmax} \rightarrow transitor$ passe en mode **saturé** et ne joue plus le rôle de source de courant.

$$R_{c_{\min}} = 0$$

Transistor, amplificateur de tension:

Amplification

de l'amplitude

du signal v_B

hypothèses:

• Point de fonctionnement "au repos":

Transistor en **mode actif** lorsque $v_R = 0$ (amplificateur "classe A")

Amplitude du signal v_B suffisamment faible pour que le transistor soit à chaque instant actif

 $||v_s|| = |A_v|x ||v_B|| \text{ avec } |A_v| > 1$ $V_{Sortie} -$ En négligeant la variation de $V_{BE}: \rightarrow i_C \approx \frac{v_B}{R_E}$

Enfin:
$$V_{Sortie} = V_{cc} - R_c I_C = V_S + v_s$$
 avec $V_S = V_{cc} - R \cdot \bar{I}_C$

 $de \ V_{\text{sortie}}$

« signal de sortie » $v_{\rm s}$

correspond à la composante

variable (ou « dynamique »)

et
$$v_s = -R_c i_c = -\frac{R_c}{R_E} v_b$$

 $\left|v_S = -R_C i_C = -\frac{R_C}{R_E} v_b\right|$ Le "signal" v_B est amplifié par le facteur $\left|A_V = -\frac{R_C}{R_E}\right|$

$$A_{\mathcal{V}} = -\frac{R_{\mathcal{C}}}{R_{E}}$$

- $\boxtimes A_{\nu} = \infty$ pour $R_{E} = 0$?? voir plus loin pour la réponse...
- ☑ Comment fixer le point de fonctionnement au repos de manière optimale?

4.5 Circuits de polarisation du transistor

- Le circuit de polarisation fixe le **point de repos** (ou point de fonctionnement statique) du transistor
- Le choix du point de repos dépend de l'application du circuit.
- Il doit être à l'intérieur du domaine de **fonctionnement** du transisor ($I_{C(B)} < I_{max}$, $V_{CE (BE)} < V_{max}$,....)
- Les principales caractéristiques d'un circuit de polarisation sont :
 - \nearrow sensibilité par rapport à la dispersion de fabrication du transistor (incertitude sur h_{FE} ,...)
 - ✓ stabilité thermique.

 (coefficient de température des différents paramètres du transistor $:V_{BE}, h_{FE}, ...$).

Circuit de polarisation de base (à courant I_B constant)

$$I_B = \frac{V_{cc} - V_{BE}}{R_B} \cong \frac{V_{cc} - 0.7}{R_B}$$

$$Q: I_c = h_{FE}I_B$$
 et $V_{CE} = V_{cc} - R_cI_c$

Conséquence : $\Delta h_{FE} \Rightarrow \Delta I_c \Rightarrow \Delta V_{CE}$

- \rightarrow Le point de repos **dépend fortement de** h_{FE} = inconvénient majeur
- → Circuit de polarisation **peu utilisé**.

Exemple: Transistor en mode saturé $\leftrightarrow R_B$ tel que $I_B > I_{B_{sat}} \approx \frac{V_{cc}}{R_s h_{EE}}$ en prenant pour h_{FE} la valeur minimale garantie par le constructeur.

Polarisation par réaction de collecteur

$$\rightarrow I_C \approx \frac{V_{CC} - 0.7}{R_C + \frac{R_B}{h_{FE}}}$$

Le point de fonctionnement reste sensible à $h_{\rm FE}$

Propriété intéressante du montage :

Le transistor ne peut rentrer en saturation puisque $V_{\it CE}$ ne peut être inférieur à $0.7{\rm V}$

Cas particulier:
$$R_B=0 \rightarrow I_C \approx \frac{V_{CC}-0.7}{R_C}$$
 $V_{CE}=0.7V$

■ Polarisation par diviseur de tension - « polarisation à courant (émetteur) constant »

- ightharpoonup Peu sensible à h_{FE} : si $\frac{R_{th}}{h_{FE}} << R_E
 ightharpoonup I_C pprox \frac{V_{th} V_o}{R_E}$
- **▶** Bonne stabilité **thermique** de I_C à condition que $V_{th}>>V_o$ <~> $V_B>>V_o$

Règles « d'or » pour la conception du montage :

- $R_{th}/R_E \le 0.1 \ h_{FE}^{min}$ ou encore $R_2 < 0.1 \ h_{FE}^{min} R_E \iff I_{R2} \approx 10 \ I_b$
- $V_E \sim V_{CC}/3$

Une façon de comprendre la stabilité du montage :

R_E introduit une **contre-réaction**

