Counter-example to multinomial dominating residual coalescence rate

Suzie Brown

4 April 2019

THIS DOCUMENT IS OBSOLETE. After all, it asserts one example which turns out to be incorrect. For a collection of other failed attempts, see resmn_roundup_210526.

We have conjectured that the expected coalescence rate should be higher for multinomial resampling than for residual resampling. This is definitely true asymptotically (equation 9 in the report), but here is a counter-example in the finite case.

Take the scenario with N=3 particles, and weights $w_t^{(1:3)}=(0.3,0.3,0.4)$. The possible outcomes of resampling are listed in the table below, along with their probabilities under multinomial and residual resampling.

Outcome	No. of cases	$\sum (v_t^{(i)})_2$	Probability (multinomial)	Probability (residual)
(3,0,0) or $(0,3,0)$	2	6	27/1000	0
(0, 0, 3)	1	6	64/1000	4/64
(2,1,0) or $(1,2,0)$	2	2	81/1000	0
(2,0,1) or $(0,2,1)$	2	2	108/1000	9/64
(1,0,2) or $(0,1,2)$	2	2	144/1000	12/64
(1, 1, 1)	1	0	216/1000	18/64

Actually not really, I just added it up wrong the first time.

$$\mathbb{E}[c_N^m(t)|\mathcal{F}_{t-1}] = 0.34$$

$$\mathbb{E}[c_N^r(t)|\mathcal{F}_{t-1}] = 18/64 \simeq 0.28$$

Suzie Brown 1