Berechenbarkeit

Vorlesung 9: Unentscheidbarkeit

19. Juni 2025

Termine — Modul Berechenbarkeit

ÜBUNGEN	Prüfung	Vorlesung	
17.6. Übung 5 A-Woche	18.6.	19.6. Unentscheidbarkeit (Übungsblatt 6)	
24.6. Übung 6 B-Woche	25.6.	26.6. Spez. Probleme	
1.7. Übung 6 A-Woche	2.7.	3.7. Klasse P	
8.7. Abschlussübung beide Wochen	9.7.	10.7. NP-Vollständigkeit	
15.7.	16.7. Prüfung ab 13:30 Uhr in AudiMax & Hs. 9	17.7.	

Definition (§8.2 Entscheidbarkeit; decidability)

Problem $L \subseteq \Sigma^*$ entscheidbar (decidable) falls χ_L berechenbar

$$\chi_L \colon \Sigma^* \to \{0,1\} \quad \text{mit} \quad \chi_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ 0 & \text{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

L unentscheidbar (undecidable) falls χ_L nicht berechenbar

Kodierung TM

$$M = (\{0,1,2,\ldots,n\},\{0,1\},\{0,1,2,\ldots,k\},\Delta,2,0,1,2)$$

 $\begin{array}{c} \bullet \ \ \mathsf{Kodierung} \ \ddot{\mathsf{U}}\mathsf{bergang} \ (q,\gamma) \to (q',\gamma',d) \in \Delta \\ \\ \mathsf{code} \big((q,\gamma) \to (q',\gamma',d) \big) = \mathsf{1}^q \mathsf{0} \mathsf{1}^\gamma \mathsf{0} \mathsf{1}^{q'} \mathsf{0} \mathsf{1}^{\gamma'} \mathsf{0} \mathsf{1}^{\mathsf{bin}'(d)} \mathsf{0} \\ \\ \mathsf{bin}'(d) = \begin{cases} 1 & \mathsf{falls} \ d = \land \\ 2 & \mathsf{falls} \ d = \lozenge \\ 3 & \mathsf{sonst} \end{cases}$

Kodierung TM

$$M = (\{0,1,2,\ldots,n\},\{0,1\},\{0,1,2,\ldots,k\},\Delta,2,0,1,2)$$

• Kodierung Übergang $(q, \gamma) \rightarrow (q', \gamma', d) \in \Delta$

$$\operatorname{code} \big((q,\gamma) \to (q',\gamma',d) \big) = \operatorname{l}^q \operatorname{0l}^\gamma \operatorname{0l}^{q'} \operatorname{0l}^{\gamma'} \operatorname{0l}^{\operatorname{bin}'(d)} \operatorname{0}$$

$$\operatorname{bin}'(d) = \begin{cases} 1 & \text{falls } d = \triangleleft \\ 2 & \text{falls } d = \lozenge \\ 3 & \text{sonst} \end{cases}$$

Kodierung TM

$$code(M) = \prod_{\delta \in \Lambda} code(\delta)$$

Beispiel

$$M = (\{q_0, q, q_a, q'_a, q_b, q'_b, q_+, q_-\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, q_+, q_-)$$

mit Übergängen Δ

$$(q_0,a)
ightarrow (q_a,\Box,
hd) \hspace{0.5cm} (q_0,b)
ightarrow (q_b,\Box,
hd) \hspace{0.5cm} (q_0,\Box)
ightarrow (q_+,\Box,\diamondsuit) \ (q_a,a)
ightarrow (q_a,b)
ightarrow (q_a,b,
hd) \hspace{0.5cm} (q_a,\Box)
ightarrow (q_a',\Box,\lhd) \ (q_b,a)
ightarrow (q_b,b)
ightarrow (q_b,b,
hd) \hspace{0.5cm} (q_b,\Box)
ightarrow (q_b',\Box,\lhd) \ (q_a',a)
ightarrow (q,\Box,\lhd) \hspace{0.5cm} (q,b)
ightarrow (q,b,\lhd) \hspace{0.5cm} (q,c)
ightarrow (q,c)
ightarrow (q,b)
ightarrow (q,b)
ightarrow (q,b)
ightarrow (q,b)
ightarrow (q,c)
ighta$$

Beispiel

$$M = (\{0,1,2,3,4,5,6,7\},\{0,1\},\{0,1,2\},\Delta,2,0,1,2)$$

mit Übergängen 🛆

$$\begin{array}{lll} (0,0) \to (3,2,\triangleright) & (0,1) \to (4,2,\triangleright) & (0,2) \to (1,2,\diamond) \\ (3,0) \to (3,0,\triangleright) & (3,1) \to (3,1,\triangleright) & (3,2) \to (5,2,\triangleleft) \end{array}$$

$$(4,0) \to (4,0,\triangleright)$$
 $(4,1) \to (4,1,\triangleright)$ $(4,2) \to (6,2,\triangleleft)$

$$(5,0) \to (7,2,4) \qquad (6,1) \to (7,2,4)$$

$$(7,0) \rightarrow (7,0,\triangleleft) \qquad (7,1) \rightarrow (7,1,\triangleleft) \qquad (7,2) \rightarrow (0,2,\triangleright)$$

Beispiel

$$M = (\{0,1,2,3,4,5,6,7\},\{0,1\},\{0,1,2\},\Delta,2,0,1,2)$$

mit Übergängen 🛆

$$\mathsf{code}(M) = \underbrace{001^301^201^30}_{(0,0)\to(3,2,\triangleright)} \underbrace{01^101^401^201^30}_{(0,1)\to(4,2,\triangleright)} \cdots$$

Konvention

- Zustände nummeriert ab 0
- Initialzustand 0, akzeptierender Zustand 1, ablehnender Zustand 2
- Arbeitssymbole nummeriert ab 0; Eingabesymbole $\mathfrak{B} = \{0,1\}$
- Blanksymbol 2

Konvention

- Zustände nummeriert ab 0
- Initialzustand 0, akzeptierender Zustand 1, ablehnender Zustand 2
- Arbeitssymbole nummeriert ab 0; Eingabesymbole $\mathfrak{B} = \{0,1\}$
- Blanksymbol 2
- Betrachten bereinigte TM
 (jeder Zustand & jedes Symbol an mind. 1 Übergang beteiligt)
- Ausnahme Zustände & Symbole {0,1,2} immer vorhanden
- Sequenz # = 00000 kommt in keiner gültigen Kodierung vor

§9.1 Definition (Dekodierung; decoding)

Sei $\widehat{\mathcal{M}}$ beliebige bereinigte det. TM über \mathfrak{B} und decode: $\mathfrak{B}^* \to \{ \mathcal{M} \mid \mathcal{M} \text{ bereinigte det. TM über } \mathfrak{B} \}$ mit

$$\operatorname{decode}(w) = egin{cases} \mathcal{M} & \operatorname{falls} \ \operatorname{code}(\mathcal{M}) = w \\ \widehat{\mathcal{M}} & \operatorname{sonst} \end{cases}$$
 für alle $w \in \mathfrak{B}^*$

§9.1 Definition (Dekodierung; decoding)

Sei $\widehat{\mathcal{M}}$ beliebige bereinigte det. TM über \mathfrak{B} und decode: $\mathfrak{B}^* \to \{ \mathcal{M} \mid \mathcal{M} \text{ bereinigte det. TM über } \mathfrak{B} \}$ mit

$$\operatorname{decode}(w) = egin{cases} \mathcal{M} & \operatorname{falls} \ \operatorname{code}(\mathcal{M}) = w \\ \widehat{\mathcal{M}} & \operatorname{sonst} \end{cases}$$
 für alle $w \in \mathfrak{B}^*$

Notizen

- Invertierung Binärdarstellung
- Liefert Standard-TM für ungültige Binärdarstellungen

§9.2 Definition (Halteproblem; halting problem)

Halteproblem ist Sprache

$$(\# = 00000)$$

$$H = \left\{ c \# w \mid c \in \mathfrak{B}^* \setminus \mathfrak{B}^* \{ \# \} \mathfrak{B}^*, \, \mathsf{TM} \, \, \mathsf{decode}(c) \, \, \mathsf{h\"alt} \, \, \mathsf{auf} \, \, w \in \mathfrak{B}^*
ight\}$$

d.h. hält geg. bereinigte det. TM decode(c) auf Eingabe $w \in \mathfrak{B}^*$? (erreicht decode(c) mit Eingabe w Endzustand)

§9.2 Definition (Halteproblem; halting problem)

Halteproblem ist Sprache

$$(\# = 00000)$$

$$H = \left\{ c \# w \mid c \in \mathfrak{B}^* \setminus \mathfrak{B}^* \{ \# \} \mathfrak{B}^*, \, \mathsf{TM} \, \, \mathsf{decode}(c) \, \, \mathsf{h\"alt} \, \, \mathsf{auf} \, \, w \in \mathfrak{B}^*
ight\}$$

d.h. hält geg. bereinigte det. TM decode(c) auf Eingabe $w \in \mathfrak{B}^*$? (erreicht decode(c) mit Eingabe w Endzustand)

Charakteristische Funktion $\chi_H \colon \mathfrak{B}^* \to \mathfrak{B}$

$$\chi_H(v) = \begin{cases} 1 & \text{falls } v = c \# w \text{ mit } c \in \mathfrak{B}^* \setminus \mathfrak{B}^* \{\#\} \mathfrak{B}^*, \ w \in \mathfrak{B}^* \text{ und} \\ & \text{decode}(c) \text{ auf } w \text{ hält} \\ 0 & \text{sonst} \end{cases}$$

§9.3 Definition (spez. Halteproblem; special halting problem)

Spezielle Halteproblem ist Sprache

$$\underline{H} = \{ w \in \mathfrak{B}^* \mid \mathsf{TM} \; \mathsf{decode}(w) \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; \mathsf{Eingabe} \; w \}$$

d.h. hält geg. TM decode(w) auf (potentiell) eigener Kodierung w?

Charakteristische Funktion $\chi_H \colon \mathfrak{B}^* \to \mathfrak{B}$

$$\chi_{\underline{H}}(w) = \begin{cases} 1 & \text{falls TM decode}(w) \text{ auf } w \text{ hält} \\ 0 & \text{sonst} \end{cases}$$

§9.4 Theorem (universelle TM; universal Turing machine)

Det. TM U die bei Eingabe u#w det. TM decode(u) auf w simuliert

§9.4 Theorem (universelle TM; universal Turing machine)

Det. TM U die bei Eingabe u#w det. TM $\operatorname{decode}(v)$ auf w simuliert

Notizen

- ullet Universelle Turingmaschine U
- U hält auf u#w gdw. decode(u) auf w hält
- U produziert auf u#w gleiche Ausgabe wie decode(u) auf w

$$T(U) = \{(u\#w, v) \mid (w, v) \in T(\operatorname{decode}(u))\}$$

§9.5 Theorem

Spezielles Halteproblem \underline{H} unentscheidbar

§9.5 Theorem

Spezielles Halteproblem <u>H</u> unentscheidbar

Beweis (1/2)

Sei spezielles Halteproblem \underline{H} entscheidbar. Dann existiert det. TM M für charakteristische Funktion χ_H . Sei P äquivalentes While-Programm.

§9.5 Theorem

Spezielles Halteproblem <u>H</u> unentscheidbar

Beweis (1/2)

Sei spezielles Halteproblem \underline{H} entscheidbar. Dann existiert det. TM M für charakteristische Funktion $\chi_{\underline{H}}$. Sei P äquivalentes While-Programm. Betrachte Programm P'

```
\begin{array}{ll} P & \text{(berechne $\chi_{\underline{H}}$ von Eingabe)} \\ \textbf{IF}(x_1 \neq 0) \, \{ \dots \textit{Endlosschleife} \dots \} & \text{(falls decode}(x_1) \text{ auf } x_1 \text{ hält)} \\ \textbf{ELSE} \, \{x_1 = 1\} & \text{(liefere 1 falls decode}(x_1) \text{ auf } x_1 \text{ nicht hält)} \end{array}
```

§9.5 Theorem

Spezielles Halteproblem <u>H</u> unentscheidbar

Beweis (1/2)

Sei spezielles Halteproblem \underline{H} entscheidbar. Dann existiert det. TM M für charakteristische Funktion $\chi_{\underline{H}}$. Sei P äquivalentes While-Programm. Betrachte Programm P'

```
\begin{array}{ll} P & \text{(berechne $\chi_{\underline{H}}$ von Eingabe)} \\ \textbf{IF}(x_1 \neq 0) \, \{ \dots \textit{Endlosschleife} \dots \} & \text{(falls decode}(x_1) \text{ auf } x_1 \text{ hält)} \\ \textbf{ELSE} \, \{x_1 = 1\} & \text{(liefere 1 falls decode}(x_1) \text{ auf } x_1 \text{ nicht hält)} \end{array}
```

Programm P' berechnet

$$\rho_{\overline{\underline{H}}}(w) = \begin{cases} 1 & \text{falls } \chi_{\underline{\underline{H}}}(w) = 0 \\ \text{undef} & \text{sonst} \end{cases}$$

Beweis (2/2)

Sei M' äquivalente det. TM zu P'. Betrachte Eingabe $w' = \operatorname{code}(M')$

$$\mathcal{M}' = \operatorname{decode}(w') \text{ hält auf } w'$$
 $\iff \rho_{\overline{\underline{H}}}(w') = 1 \qquad \qquad (\operatorname{da} \mathcal{M}' \ \rho_{\overline{\underline{H}}} \text{ berechnet})$
 $\iff \chi_{\underline{\underline{H}}}(w') = 0 \qquad \qquad (\operatorname{Def.} \ \rho_{\overline{\underline{H}}})$
 $\iff w' \notin \underline{\underline{H}} \qquad \qquad (\operatorname{Def.} \ \chi_{\underline{\underline{H}}})$
 $\iff \operatorname{decode}(w') \text{ hält auf } w' \text{ nicht} \qquad (\operatorname{Def.} \ \underline{\underline{H}})$

Beweis (2/2)

Sei M' äquivalente det. TM zu P'. Betrachte Eingabe $w' = \operatorname{code}(M')$

$$\mathcal{M}' = \operatorname{decode}(w') \text{ hält auf } w'$$
 $\iff \rho_{\overline{\underline{H}}}(w') = 1 \qquad \qquad (\operatorname{da} \mathcal{M}' \ \rho_{\overline{\underline{H}}} \text{ berechnet})$
 $\iff \chi_{\underline{\underline{H}}}(w') = 0 \qquad \qquad (\operatorname{Def.} \ \rho_{\overline{\underline{H}}})$
 $\iff w' \notin \underline{\underline{H}} \qquad \qquad (\operatorname{Def.} \ \chi_{\underline{\underline{H}}})$
 $\iff \operatorname{decode}(w') \text{ hält auf } w' \text{ nicht} \qquad (\operatorname{Def.} \ \underline{\underline{H}})$

Widerspruch &

- Beweis nutzt Diagonalisierung
- Illustration Halteverhalten

$M \setminus w$	f(0)	f(1)	f(2)	f(3)		$w' = \operatorname{code}(M')$
decode(f(0))	X	X	✓	✓		✓
decode(f(1))	X	✓	✓	X		✓
decode(f(2))	X	X	✓	X		×
decode(f(3))	✓	✓	X	✓		✓
•••	• • •		• • •	• • •	• • •	• • •
M' = decode(w')	✓	X	X	X	• • •	3

M' hält auf $w \iff \operatorname{decode}(w)$ auf w nicht hält

Komposition oder Verkettung (§3.4)

• Komposition $f: \Sigma_1^* \dashrightarrow \Sigma_2^*$ und $g: \Sigma_2^* \dashrightarrow \Sigma_3^*$ ist $(f;g): \Sigma_1^* \dashrightarrow \Sigma_3^*$ $(f;g)(w) = g(f(w)) = \begin{cases} \text{undef} & \text{falls } f(w) = \text{undef} \\ g(f(w)) & \text{sonst} \end{cases}$

Komposition oder Verkettung (§3.4)

• Komposition $f: \Sigma_1^* \dashrightarrow \Sigma_2^*$ und $g: \Sigma_2^* \dashrightarrow \Sigma_3^*$ ist $(f;g): \Sigma_1^* \dashrightarrow \Sigma_3^*$

$$(f;g)(w)=g(f(w))=egin{cases} ext{undef} & ext{falls } f(w)= ext{undef} \ g(f(w)) & ext{sonst} \end{cases}$$

§9.6 Theorem

(f;g) berechenbar falls $f: \Sigma_1^* \dashrightarrow \Sigma_2^*$ und $g: \Sigma_2^* \dashrightarrow \Sigma_3^*$ berechenbar

Komposition oder Verkettung (§3.4)

• Komposition $f: \Sigma_1^* \dashrightarrow \Sigma_2^*$ und $g: \Sigma_2^* \dashrightarrow \Sigma_3^*$ ist $(f;g): \Sigma_1^* \dashrightarrow \Sigma_3^*$

$$(f;g)(w) = g(f(w)) = \begin{cases} \text{undef} & \text{falls } f(w) = \text{undef} \\ g(f(w)) & \text{sonst} \end{cases}$$

§9.6 Theorem

(f;g) berechenbar falls $f: \Sigma_1^* \dashrightarrow \Sigma_2^*$ und $g: \Sigma_2^* \dashrightarrow \Sigma_3^*$ berechenbar

Beweis

Verkettung det. TM für f und g (Sequenz While-Programme)

§9.7 Theorem

Sei $f: \Sigma^* \to \Gamma^*$ total und berechenbar und $K \subseteq \Gamma^*$.

Falls K entscheidbar, dann $f^{-1}(K)$ entscheidbar

§9.7 Theorem

Sei $f \colon \Sigma^* \to \Gamma^*$ total und berechenbar und $K \subseteq \Gamma^*$. Falls K entscheidbar, dann $f^{-1}(K)$ entscheidbar

Beweis

Da K entscheidbar, ist $\chi_K \colon \Gamma^* \to \{0,1\}$ berechenbar. Gemäß Theorem §9.6 ist $(f; \chi_K) \colon \Sigma^* \to \{0,1\}$ berechenbar.

§9.7 Theorem

Sei $f \colon \Sigma^* \to \Gamma^*$ total und berechenbar und $K \subseteq \Gamma^*$. Falls K entscheidbar, dann $f^{-1}(K)$ entscheidbar

Beweis

Da K entscheidbar, ist $\chi_K \colon \Gamma^* \to \{0,1\}$ berechenbar. Gemäß Theorem §9.6 ist $(f; \chi_K) \colon \Sigma^* \to \{0,1\}$ berechenbar.

$$(f; \chi_K)(w) = \chi_K(f(w)) = \begin{cases} 1 & \text{falls } f(w) \in K \\ 0 & \text{sonst} \end{cases}$$
$$= \begin{cases} 1 & \text{falls } w \in f^{-1}(K) \\ 0 & \text{sonst} \end{cases} = \chi_{f^{-1}(K)}(w)$$

§9.7 Theorem

Sei $f \colon \Sigma^* \to \Gamma^*$ total und berechenbar und $K \subseteq \Gamma^*$. Falls K entscheidbar, dann $f^{-1}(K)$ entscheidbar

Beweis

Da K entscheidbar, ist $\chi_K \colon \Gamma^* \to \{0,1\}$ berechenbar. Gemäß Theorem §9.6 ist $(f;\chi_K) \colon \Sigma^* \to \{0,1\}$ berechenbar.

$$(f; \chi_K)(w) = \chi_K(f(w)) = \begin{cases} 1 & \text{falls } f(w) \in K \\ 0 & \text{sonst} \end{cases}$$
$$= \begin{cases} 1 & \text{falls } w \in f^{-1}(K) \\ 0 & \text{sonst} \end{cases} = \chi_{f^{-1}(K)}(w)$$

Also $f^{-1}(K)$ entscheidbar

Notizen

• Kontraposition von Theorem §9.7 ebenso interessant:

```
Sei f: \Sigma^* \to \Gamma^* total & berechenbar und K \subseteq \Gamma^*.
Falls f^{-1}(K) unentscheidbar, dann K unentscheidbar
```

Notizen

- Kontraposition von Theorem §9.7 ebenso interessant:
 - Sei $f: \Sigma^* \to \Gamma^*$ total & berechenbar und $K \subseteq \Gamma^*$. Falls $f^{-1}(K)$ unentscheidbar, dann K unentscheidbar
- Betrachte berechenbare totale Funktion f
 - Sprache K entscheidbar \rightarrow Urbild $f^{-1}(K)$ entscheidbar
 - Urbild $f^{-1}(K)$ unentscheidbar \rightarrow Sprache K unentscheidbar

§9.8 Definition (Reduktion; reduction)

Problem $L \subseteq \Sigma^*$ reduzierbar auf $K \subseteq \Gamma^*$, geschrieben $L \preceq K$, falls (totale) berechenbare Funktion $f : \Sigma^* \to \Gamma^*$ existiert mit $L = f^{-1}(K)$

§9.8 Definition (Reduktion; reduction)

Problem $L \subseteq \Sigma^*$ reduzierbar auf $K \subseteq \Gamma^*$, geschrieben $L \preceq K$, falls (totale) berechenbare Funktion $f : \Sigma^* \to \Gamma^*$ existiert mit $L = f^{-1}(K)$

Notizen

• $L = f^{-1}(K)$ entspricht Aussage

$$w \in L$$
 gdw. $f(w) \in K$ für alle $w \in \Sigma^*$

• f übersetzt Instanz Problem L in Instanz Problem K (Bestimmung " $w \in L$ " per Bestimmung " $f(w) \in K$ ")

§9.8 Definition (Reduktion; reduction)

Problem $L \subseteq \Sigma^*$ reduzierbar auf $K \subseteq \Gamma^*$, geschrieben $L \preceq K$, falls (totale) berechenbare Funktion $f : \Sigma^* \to \Gamma^*$ existiert mit $L = f^{-1}(K)$

Notizen

• $L = f^{-1}(K)$ entspricht Aussage

$$w \in L$$
 gdw. $f(w) \in K$ für alle $w \in \Sigma^*$

- f übersetzt Instanz Problem L in Instanz Problem K
 (Bestimmung "w ∈ L" per Bestimmung "f(w) ∈ K")
- L ≤ K bedeutet "L höchstens so schwer wie K" (aktuell 2 Schwierigkeiten: entscheidbar & unentscheidbar)
- Berechenbarkeit & Totalität von f essentiell

§9.9 Theorem

Seien $L \subseteq \Sigma^*$ und $K \subseteq \Gamma^*$ mit $L \preceq K$

 Falls K entscheidbar, dann L entscheidbar (entscheidbar falls leichter als entscheidbares Problem)

§9.9 Theorem

Seien $L \subseteq \Sigma^*$ und $K \subseteq \Gamma^*$ mit $L \preceq K$

- Falls K entscheidbar, dann L entscheidbar (entscheidbar falls leichter als entscheidbares Problem)
- Falls L unentscheidbar, dann K unentscheidbar (unentscheidbar falls schwerer als unentscheidbares Problem)

§9.10 Theorem

Allgemeines Halteproblem H unentscheidbar

§9.10 Theorem

Allgemeines Halteproblem *H* unentscheidbar

Beweis

Reduktion spezielles Halteproblem \underline{H} auf H

$$\underline{H} = \{ w \mid \mathsf{decode}(w) \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; w \} \quad H = \{ c \# w \mid \mathsf{decode}(c) \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; w \}$$

Benötigen berechenbare Funktion $f \colon \mathfrak{B}^* \to \mathfrak{B}^*$, die Elemente von \underline{H} in Elemente von H übersetzt.

§9.10 Theorem

Allgemeines Halteproblem *H* unentscheidbar

Beweis

Reduktion spezielles Halteproblem \underline{H} auf H

```
\underline{H} = \{ w \mid \mathsf{decode}(w) \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; w \} \quad H = \{ c \# w \mid \mathsf{decode}(c) \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; w \}
```

Benötigen berechenbare Funktion $f:\mathfrak{B}^*\to\mathfrak{B}^*$, die Elemente von \underline{H} in Elemente von H übersetzt. Sei f(w)=c#w für alle $w\in\mathfrak{B}^*$ mit c=w falls $w\in\mathfrak{B}^*\setminus\mathfrak{B}^*$ und $c=\operatorname{code}(\widehat{M})$ sonst (klar berechenbar).

§9.10 Theorem

Allgemeines Halteproblem *H* unentscheidbar

Beweis

Reduktion spezielles Halteproblem \underline{H} auf H

$$\underline{H} = \{ w \mid \mathsf{decode}(w) \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; w \} \quad H = \{ c \# w \mid \mathsf{decode}(c) \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; w \}$$

Benötigen berechenbare Funktion $f\colon \mathfrak{B}^* \to \mathfrak{B}^*$, die Elemente von \underline{H} in Elemente von H übersetzt. Sei f(w) = c# w für alle $w \in \mathfrak{B}^*$ mit c = w falls $w \in \mathfrak{B}^* \setminus \mathfrak{B}^* \{\#\} \mathfrak{B}^*$ und $c = \operatorname{code}(\widehat{M})$ sonst (klar berechenbar). Für alle $w \in \mathfrak{B}^*$ gelten $\operatorname{decode}(c) = \operatorname{decode}(w)$ und

$$w \in \underline{H} \iff \operatorname{decode}(w) \text{ h\"alt auf } w \iff c\#w = f(w) \in H$$

Damit $\underline{H} = f^{-1}(H)$, $\underline{H} \leq H$ und H unentscheidbar (Theorem §9.9)

§9.11 Theorem

Leerband-Halteproblem $\{c \mid \mathsf{decode}(c) \text{ hält auf } \varepsilon\}$ unentscheidbar

§9.11 Theorem

Leerband-Halteproblem $\{c \mid \mathsf{decode}(c) \text{ hält auf } \varepsilon\}$ unentscheidbar

Beweis

Wir reduzieren allgemeines Halteproblem H auf H_{ε} .

$$H = \{c \# w \mid \operatorname{decode}(c) \text{ hält auf } w\} \quad H_{\varepsilon} = \{c \mid \operatorname{decode}(c) \text{ hält auf } \varepsilon\}$$

§9.11 Theorem

Leerband-Halteproblem $\{c \mid \mathsf{decode}(c) \; \mathsf{hält} \; \mathsf{auf} \; \varepsilon\}$ unentscheidbar

Beweis

Wir reduzieren allgemeines Halteproblem H auf H_{ε} .

```
H = \{c \# w \mid \mathsf{decode}(c) \; \mathsf{h\"alt} \; \mathsf{auf} \; w\} \quad H_\varepsilon = \{c \mid \mathsf{decode}(c) \; \mathsf{h\"alt} \; \mathsf{auf} \; \varepsilon\}
```

Sei $f(c\#w) = \operatorname{code}(M'_{c,w})$ für alle $c \in \mathfrak{B}^* \setminus \mathfrak{B}^*\{\#\}\mathfrak{B}^*$ und $w \in \mathfrak{B}^*$, wobei $M'_{c,w}$ det. TM die w auf Band schreibt, zurückläuft und $\operatorname{decode}(c)$ simuliert. Sonst sei $f(v) = \operatorname{code}(M_{\perp})$ mit M_{\perp} det. TM die nie hält (es gilt $v \notin H$ und $f(v) \notin H_{\varepsilon}$).

§9.11 Theorem

Leerband-Halteproblem $\{c \mid \mathsf{decode}(c) \; \mathsf{h\"alt} \; \mathsf{auf} \; \varepsilon\}$ unentscheidbar

Beweis

Wir reduzieren allgemeines Halteproblem H auf H_{ε} .

$$H = \{c \# w \mid \mathsf{decode}(c) \; \mathsf{h\"alt} \; \mathsf{auf} \; w\} \quad H_\varepsilon = \{c \mid \mathsf{decode}(c) \; \mathsf{h\"alt} \; \mathsf{auf} \; \varepsilon\}$$

Sei $f(c\#w)=\operatorname{code}(M'_{c,w})$ für alle $c\in\mathfrak{B}^*\setminus\mathfrak{B}^*\{\#\}\mathfrak{B}^*$ und $w\in\mathfrak{B}^*$, wobei $M'_{c,w}$ det. TM die w auf Band schreibt, zurückläuft und $\operatorname{decode}(c)$ simuliert. Sonst sei $f(v)=\operatorname{code}(M_\perp)$ mit M_\perp det. TM die nie hält (es gilt $v\notin H$ und $f(v)\notin H_\varepsilon$). Für alle $c\in\mathfrak{B}^*\setminus\mathfrak{B}^*\{\#\}\mathfrak{B}^*$ und $w\in\mathfrak{B}^*$

$$c\#w\in H\iff \operatorname{decode}(c) \text{ hält auf } w\iff \operatorname{code}(M'_{c,w})\in H_{\varepsilon}$$

Damit
$$H = f^{-1}(H_{\varepsilon})$$
, $H \leq H_{\varepsilon}$ und H_{ε} unentscheidbar (Thm. §9.9)

§9.12 Theorem (Satz von Rice)

Sei $\mathcal R$ Klasse aller berechenbaren partiellen Funktionen und $\mathcal F\subseteq\mathcal R$ mit $\emptyset\subseteq\mathcal F\subseteq\mathcal R$. Dann $\mathcal C(\mathcal F)$ unentscheidbar

$$C(\mathcal{F}) = \{ w \in \mathfrak{B}^* \mid T(\mathsf{decode}(w)) \in \mathcal{F} \}$$

(Kodierungen aller det. TM, die Funktionen in \mathcal{F} berechnen)

Henry Gordon Rice (* 1920; † 2003)

- Amer. Logiker & Mathematiker
- Bewies berühmten Satz in Dissertation
- Arbeitete zuletzt bei Computer Science Cooperation

Beweis (1/3)

Sei $\bot = \emptyset \in \mathcal{R}$ überall undefinierte partielle Funktion auf \mathfrak{B}^* , die berechenbar ist und entweder $\bot \in \mathcal{F}$ oder $\bot \notin \mathcal{F}$.

Beweis (1/3)

Sei $\bot = \emptyset \in \mathcal{R}$ überall undefinierte partielle Funktion auf \mathfrak{B}^* , die berechenbar ist und entweder $\bot \in \mathcal{F}$ oder $\bot \notin \mathcal{F}$.

Sei $\bot \in \mathcal{F}$. Da $\mathcal{F} \subsetneq \mathcal{R}$ existiert berechenbare partielle Funktion $g \in \mathcal{R} \setminus \mathcal{F}$. Sei M det. TM die g berechnet.

Beweis (1/3)

Sei $\bot = \emptyset \in \mathcal{R}$ überall undefinierte partielle Funktion auf \mathfrak{B}^* , die berechenbar ist und entweder $\bot \in \mathcal{F}$ oder $\bot \notin \mathcal{F}$.

Sei $\bot \in \mathcal{F}$. Da $\mathcal{F} \subsetneq \mathcal{R}$ existiert berechenbare partielle Funktion $g \in \mathcal{R} \setminus \mathcal{F}$. Sei M det. TM die g berechnet.

Wir reduzieren vom Komplement Halteproblem $\overline{H_{\varepsilon}}$ auf leerem Band. Sei $f: \mathfrak{B}^* \to \mathfrak{B}^*$ mit $f(w) = \operatorname{code}(M_w)$ für alle $w \in \mathfrak{B}^*$ und M_w det. 2-Band-TM die bei Eingabe $v \in \mathfrak{B}^*$

- 1. decode(w) auf leerem zweiten Band simuliert
- 2. Bei Akzeptanz danach TM M auf Eingabe v simuliert

Beweis (1/3)

Sei $\bot = \emptyset \in \mathcal{R}$ überall undefinierte partielle Funktion auf \mathfrak{B}^* , die berechenbar ist und entweder $\bot \in \mathcal{F}$ oder $\bot \notin \mathcal{F}$.

Sei $\bot \in \mathcal{F}$. Da $\mathcal{F} \subsetneq \mathcal{R}$ existiert berechenbare partielle Funktion $g \in \mathcal{R} \setminus \mathcal{F}$. Sei M det. TM die g berechnet.

Wir reduzieren vom Komplement Halteproblem $\overline{H_{\varepsilon}}$ auf leerem Band. Sei $f: \mathfrak{B}^* \to \mathfrak{B}^*$ mit $f(w) = \operatorname{code}(M_w)$ für alle $w \in \mathfrak{B}^*$ und M_w det. 2-Band-TM die bei Eingabe $v \in \mathfrak{B}^*$

- 1. decode(w) auf leerem zweiten Band simuliert
- 2. Bei Akzeptanz danach TM M auf Eingabe v simuliert

$$T(\mathcal{M}_w) = egin{cases} oldsymbol{oldsymbol{oldsymbol{\mathcal{M}}}} & ext{falls decode}(w) ext{ auf } arepsilon ext{ nicht hält (d.h. } w
otin H_arepsilon) \ & ext{g sonst (d.h. } w \in H_arepsilon) \end{cases}$$

Beweis (2/3)

Funktion f berechenbar. Wir zeigen $w \in \overline{H_{\varepsilon}}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

• Sei $w \notin \overline{H_{\varepsilon}}$. Dann $T(M_w) = g$ und $T(M_w) \notin \mathcal{F}$.

Beweis (2/3)

Funktion f berechenbar. Wir zeigen $w \in \overline{H_{\varepsilon}}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

• Sei $w \notin \overline{H_{\varepsilon}}$. Dann $T(M_w) = g$ und $T(M_w) \notin \mathcal{F}$. Also $code(M_w) \notin \mathcal{C}(\mathcal{F})$, womit $f(w) \notin \mathcal{C}(\mathcal{F})$.

Beweis (2/3)

Funktion f berechenbar. Wir zeigen $w \in \overline{H_{\varepsilon}}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei $w \notin \overline{H_{\varepsilon}}$. Dann $T(M_w) = g$ und $T(M_w) \notin \mathcal{F}$. Also $code(M_w) \notin \mathcal{C}(\mathcal{F})$, womit $f(w) \notin \mathcal{C}(\mathcal{F})$.
- Sei $w \in \overline{H_{\varepsilon}}$. Dann $T(M_w) = \bot$ und $T(M_w) \in \mathcal{F}$.

Beweis (2/3)

Funktion f berechenbar. Wir zeigen $w \in \overline{H_{\varepsilon}}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei $w \notin \overline{H_{\varepsilon}}$. Dann $T(M_w) = g$ und $T(M_w) \notin \mathcal{F}$. Also $code(M_w) \notin \mathcal{C}(\mathcal{F})$, womit $f(w) \notin \mathcal{C}(\mathcal{F})$.
- Sei $w \in \overline{H_{\varepsilon}}$. Dann $T(M_w) = \bot$ und $T(M_w) \in \mathcal{F}$. Also $\operatorname{code}(M_w) \in \mathcal{C}(\mathcal{F})$, womit $f(w) \in \mathcal{C}(\mathcal{F})$.

Beweis (2/3)

Funktion f berechenbar. Wir zeigen $w \in \overline{H_{\varepsilon}}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei $w \notin \overline{H_{\varepsilon}}$. Dann $T(M_w) = g$ und $T(M_w) \notin \mathcal{F}$. Also $code(M_w) \notin \mathcal{C}(\mathcal{F})$, womit $f(w) \notin \mathcal{C}(\mathcal{F})$.
- Sei $w \in \overline{H_{\varepsilon}}$. Dann $T(M_w) = \bot$ und $T(M_w) \in \mathcal{F}$. Also $code(M_w) \in \mathcal{C}(\mathcal{F})$, womit $f(w) \in \mathcal{C}(\mathcal{F})$.

Also gilt Hilfsaussage, $\overline{H_{\varepsilon}} \preceq \mathcal{C}(\mathcal{F})$ und $\mathcal{C}(\mathcal{F})$ unentscheidbar da $\overline{H_{\varepsilon}}$ unentscheidbar (wäre $\overline{H_{\varepsilon}}$ entscheidbar, so wäre H_{ε} entscheidbar per Theorem §8.6; dies widerspricht Theorem §9.11)

Beweis (3/3)

Sei $\bot \notin \mathcal{F}$. Da $\emptyset \subsetneq \mathcal{F}$ existiert partielle Funktion $g \in \mathcal{F}$. Sei M det. TM die g berechnet.

Beweis (3/3)

Sei $\bot \notin \mathcal{F}$. Da $\emptyset \subsetneq \mathcal{F}$ existiert partielle Funktion $g \in \mathcal{F}$. Sei M det. TM die g berechnet.

Wir reduzieren vom Halteproblem H_{ε} auf leerem Band und verwenden gleiche Funktion f wie vorher. Wir zeigen $w \in H_{\varepsilon}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

• Sei $w \in H_{\varepsilon}$. Dann $T(M_w) = g$ und $T(M_w) \in \mathcal{F}$.

Beweis (3/3)

Sei $\bot \notin \mathcal{F}$. Da $\emptyset \subsetneq \mathcal{F}$ existiert partielle Funktion $g \in \mathcal{F}$. Sei M det. TM die g berechnet.

Wir reduzieren vom Halteproblem H_{ε} auf leerem Band und verwenden gleiche Funktion f wie vorher. Wir zeigen $w \in H_{\varepsilon}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

• Sei $w \in H_{\varepsilon}$. Dann $T(M_w) = g$ und $T(M_w) \in \mathcal{F}$. Also $code(M_w) \in \mathcal{C}(\mathcal{F})$, womit $f(w) \in \mathcal{C}(\mathcal{F})$.

Beweis (3/3)

Sei $\bot \notin \mathcal{F}$. Da $\emptyset \subsetneq \mathcal{F}$ existiert partielle Funktion $g \in \mathcal{F}$. Sei M det. TM die g berechnet.

Wir reduzieren vom Halteproblem H_{ε} auf leerem Band und verwenden gleiche Funktion f wie vorher. Wir zeigen $w \in H_{\varepsilon}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei w ∈ H_ε. Dann T(M_w) = g und T(M_w) ∈ F.
 Also code(M_w) ∈ C(F), womit f(w) ∈ C(F).
- Sei $w \notin H_{\varepsilon}$. Dann $T(M_w) = \bot$ und $T(M_w) \notin \mathcal{F}$.

Beweis (3/3)

Sei $\bot \notin \mathcal{F}$. Da $\emptyset \subsetneq \mathcal{F}$ existiert partielle Funktion $g \in \mathcal{F}$. Sei M det. TM die g berechnet.

Wir reduzieren vom Halteproblem H_{ε} auf leerem Band und verwenden gleiche Funktion f wie vorher. Wir zeigen $w \in H_{\varepsilon}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei w ∈ H_ε. Dann T(M_w) = g und T(M_w) ∈ F.
 Also code(M_w) ∈ C(F), womit f(w) ∈ C(F).
- Sei $w \notin H_{\varepsilon}$. Dann $T(M_w) = \bot$ und $T(M_w) \notin \mathcal{F}$. Also $code(M_w) \notin \mathcal{C}(\mathcal{F})$, womit $f(w) \notin \mathcal{C}(\mathcal{F})$.

Beweis (3/3)

Sei $\bot \notin \mathcal{F}$. Da $\emptyset \subsetneq \mathcal{F}$ existiert partielle Funktion $g \in \mathcal{F}$. Sei M det. TM die g berechnet.

Wir reduzieren vom Halteproblem H_{ε} auf leerem Band und verwenden gleiche Funktion f wie vorher. Wir zeigen $w \in H_{\varepsilon}$ adw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei w ∈ H_ε. Dann T(M_w) = g und T(M_w) ∈ F.
 Also code(M_w) ∈ C(F), womit f(w) ∈ C(F).
- Sei $w \notin H_{\varepsilon}$. Dann $T(M_w) = \bot$ und $T(M_w) \notin \mathcal{F}$. Also $code(M_w) \notin \mathcal{C}(\mathcal{F})$, womit $f(w) \notin \mathcal{C}(\mathcal{F})$.

Damit gilt Hilfsaussage, $H_{\varepsilon} \leq \mathcal{C}(\mathcal{F})$ und $\mathcal{C}(\mathcal{F})$ unentscheidbar da H_{ε} unentscheidbar (nach Theorem §9.11)

Notizen

- F (nicht-triviale) Eigenschaft partieller Funktionen (z.B. total, surjektiv; nicht Eigenschaft der TM)
- ullet Unentscheidbar, ob geg. TM Funktion mit Eigenschaft ${\mathcal F}$ berechnet

Notizen

- F (nicht-triviale) Eigenschaft partieller Funktionen (z.B. total, surjektiv; nicht Eigenschaft der TM)
- ullet Unentscheidbar, ob geg. TM Funktion mit Eigenschaft ${\mathcal F}$ berechnet
- Sehr mächtige Aussage
- Kein Programm kann Korrektheit (Äquivalenz) oder Termination (Reduktion von Akzeptanz) beliebiger Programme entscheiden

§9.13 Theorem (Konsequenzen Satz von Rice)

Folgende Probleme unentscheidbar

Universell akzeptierend { w | T(decode(w)) total}
 (Berechnet decode(w) Funktion?)

§9.13 Theorem (Konsequenzen Satz von Rice)

- Universell akzeptierend { w | T(decode(w)) total}
 (Berechnet decode(w) Funktion?)
- Singulär akzeptierend $\{w \mid T(\text{decode}(w)) \neq \emptyset\}$ (Liefert decode(w) mind. 1 Ausgabe?)

§9.13 Theorem (Konsequenzen Satz von Rice)

- Universell akzeptierend { w | T(decode(w)) total}
 (Berechnet decode(w) Funktion?)
- Singulär akzeptierend $\{w \mid T(\text{decode}(w)) \neq \emptyset\}$ (Liefert decode(w) mind. 1 Ausgabe?)
- f-äquivalent $\{w \mid T(\text{decode}(w)) = f\}$ für berechenbares f (Berechnet decode(w) genau partielle Funktion f?)

§9.13 Theorem (Konsequenzen Satz von Rice)

- Universell akzeptierend { w | T(decode(w)) total}
 (Berechnet decode(w) Funktion?)
- Singulär akzeptierend $\{w \mid T(\text{decode}(w)) \neq \emptyset\}$ (Liefert decode(w) mind. 1 Ausgabe?)
- f-äquivalent $\{w \mid T(\text{decode}(w)) = f\}$ für berechenbares f (Berechnet decode(w) genau partielle Funktion f?)
- Konstant $\{w \mid \exists v \colon T(\operatorname{decode}(w))(\{0,1\}^*) = \{v\}\}$ (Berechnet $\operatorname{decode}(w)$ konstante partielle Funktion?)

§9.13 Theorem (Konsequenzen Satz von Rice)

- Universell akzeptierend { w | T(decode(w)) total}
 (Berechnet decode(w) Funktion?)
- Singulär akzeptierend $\{w \mid T(\text{decode}(w)) \neq \emptyset\}$ (Liefert decode(w) mind. 1 Ausgabe?)
- f-äquivalent $\{w \mid T(\text{decode}(w)) = f\}$ für berechenbares f (Berechnet decode(w) genau partielle Funktion f?)
- Konstant $\{w \mid \exists u \colon T(\operatorname{decode}(w))(\{0,1\}^*) = \{u\}\}$ (Berechnet $\operatorname{decode}(w)$ konstante partielle Funktion?)
- Nicht verkürzend $\{w \mid \forall v \forall u \in T(\text{decode}(w))(\{v\}) \colon |u| \geq |v|\}$ (Ist Ausgabe immer mind. so lang wie Eingabe?)

Notizen

- Problem L = {w | T(decode(w)) = f} für nicht berechenbares f ist entscheidbar denn L = ∅
 (keine det. TM berechnet nicht berechenbare Funktion)
- Fall wäre $\mathcal{F} = \{f\}$, aber $\mathcal{F} \not\subseteq \mathcal{R}$

Zusammenfassung

- Unentscheidbarkeit spezielles Halteproblem
- Problem-Reduktion
- Satz von Rice

Sechste Übungsserie bereits im Moodle