Formulario di Dispositivi

Contents

1 Valvole cardiache	
1.1 Effective Orifice Area (EOA)	2
1.2 Discharge Coefficient (DC)	
1.3 Performance Index (PI)	
1.4 Reverse Flow (RF%)	
1.5 Numero di Reynolds (Re)	

1 Valvole cardiache

1.1 Effective Orifice Area (EOA)

$$EOA = \frac{10^4}{516} \frac{Q}{\sqrt{\Delta p}} \to cm^2$$

- Q \rightarrow Litri/secondo
- $\cdot \Delta p \to \text{mmHg}$

1.2 Discharge Coefficient (DC)

$$DC = \frac{EOA}{A_{int}} \rightarrow [adim.]$$

- EOA \rightarrow cm²
- $A_{\rm interna} \rightarrow {\rm cm}^2$

1.3 Performance Index (PI)

$$\mathrm{PI} = rac{\mathrm{EOA}}{A_{\mathrm{est}}}
ightarrow [\,\mathrm{adim.}]$$

- EOA \rightarrow cm²
- $A_{\rm esterna} \rightarrow {\rm cm}^2$

1.4 Reverse Flow (RF%)

$$ext{RF\%} = rac{V_{ ext{rigurgitato}}}{V_{ ext{eiettato}}} \cdot 100$$

- $V_{
 m rigurgitato}$ — È l'area negativa del grafico Portata-Tempo nel ventri sinistro.(Left-Ventricle)
- $V_{
 m eiettato}$ — È l'area positiva del grafico Portata-Tempo nel ventricol sinistro (Left-Ventricle).

1.5 Numero di Reynolds (Re)

$$Re = \frac{\rho \cdot v \cdot d}{\mu}$$

- ρ : densità sangue 1 $\frac{g}{\text{cm}^3}$
- v: velocità del sangue $\frac{cm}{s}$
- d: diametro del condotto cm
- μ : viscosità del sangue 0.03 Poise = 0.03 $\frac{g \cdot \text{cm}}{s}$

Nota: Numero di Reynold

- Re < 2000 \rightarrow flusso laminare
- 2000 < Re < 4000 \rightarrow Regime di transizione
- Re > 4000 \rightarrow Regime turbolento