

SGM8959-1/SGM8959-2 Low V_{os}, Low Noise, High Precision Zero-Drift Operational Amplifiers

GENERAL DESCRIPTION

The single SGM8959-1 and dual SGM8959-2 are low power, high precision CMOS operational amplifiers. These devices can operate from 1.8V to 5.5V single supply or from $\pm 0.9V$ to $\pm 2.75V$ dual power supplies, and consume only $380\mu A$ quiescent current per amplifier. The SGM8959-1/2 support rail-to-rail input and output operation. The input common mode voltage range is from $(-V_S)$ - 0.1V to $(+V_S)$ + 0.1V, and the output range is from $(-V_S)$ + 0.005V to $(+V_S)$ - 0.005V.

The SGM8959-1/2 are designed to provide optimal performance in low voltage and low power systems. They have high impedance inputs and zero-drift $10\mu V$ (MAX) offset voltage. These specifications make SGM8959-1/2 appropriate for a wide range of applications requiring high precision, such as high linearity driver of high precision ADC.

The SGM8959-1 is available in Green SOT-23-5, SC70-5 and SOIC-8 packages. The SGM8959-2 is available in Green SOIC-8 and TDFN-3×3-8L packages. They are specified over -40°C to +125°C temperature range.

FEATURES

Low Input Offset Voltage: 10μV (MAX)
 Low Noise: 0.2μV_{P-P} at 0.1Hz to 10Hz

Input Voltage Noise: 8nV/√Hz
 Gain-Bandwidth Product: 3.9MHz

Slew Rate: 1.0V/µs
Integrated EMI Filter

• Rail-to-Rail Input and Output

Support Single or Dual Power Supplies:
 1.8V to 5.5V or ±0.9V to ±2.75V

• Quiescent Current: 380µA/Amplifier (TYP)

• -40°C to +125°C Operating Temperature Range

• Small Packaging:

SGM8959-1 Available in Green SOT-23-5, SC70-5 and SOIC-8 Packages

SGM8959-2 Available in Green SOIC-8 and TDFN-3×3-8L Packages

APPLICATIONS

Industrial Equipment
Battery-Powered Equipment
Sensor Signal Conditioning

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SOT-23-5	-40°C to +125°C	SGM8959-1XN5G/TR	GD4XX	Tape and Reel, 3000
SGM8959-1	SC70-5	-40°C to +125°C	SGM8959-1XC5G/TR	GCDXX	Tape and Reel, 3000
	SOIC-8	-40°C to +125°C	SGM8959-1XS8G/TR	SGM 89591XS8 XXXXX	Tape and Reel, 2500
SCM90F0 2	SOIC-8	-40°C to +125°C	SGM8959-2XS8G/TR	SGM 89592XS8 XXXXX	Tape and Reel, 2500
SGM8959-2	TDFN-3×3-8L	-40°C to +125°C	SGM8959-2XTDB8G/TR	SGM GD5DB XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XX = Date Code. XXXXX = Date Code and Vendor Code. SOIC-8/TDFN-3×3-8L

YYY X X

Date Code - Month

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

- Serial Number

Supply Voltage	6V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
MM	400V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Specified Voltage Range	1.8V to 5.5V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

SOIC-8

PIN CONFIGURATIONS

SGM8959-1 (TOP VIEW) **SGM8959-1 (TOP VIEW)** OUT 1 5 +V_s +IN 1 -V_S 2 -V_S 2 +IN 3 4 -IN 4 OUT -IN 3 SC70-5 SOT-23-5 **SGM8959-1 (TOP VIEW) SGM8959-2 (TOP VIEW)** OUTA NC NC +V_S 2 -INA OUTB -IN $+V_S$ OUT +IN 6 +INA -INB $-V_{\text{S}}$ 5 NC +INB

NOTE: For TDFN-3×3-8L package, exposed pad can be connected to -V_S or left floating.

NC = NO CONNECT

SOIC-8

ELECTRICAL CHARACTERISTICS

 $(V_S = 5V, V_{CM} = V_S/2, V_{OUT} = V_S/2, \text{ and } R_L = 10k\Omega \text{ to } V_S/2, \text{ Full } = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

therwise noted.)						X	
PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristics					1		
Invest Officet Voltage		V _S = 5V	+25°C		2.5	10	
Input Offset Voltage	Vos	V _S = 5V	Full			28	μV
Input Offset Voltage Drift	ΔV _{OS} /ΔΤ		Full		0.032		μV/°C
Input Bias Current	I _B		+25°C		350		pА
Input Offset Current	Ios		+25°C		700		pА
Input Common Mode Voltage Range	V _{CM}		+25°C	(-V _S) - 0.1		(+V _S) + 0.1	V
Common Mode Deiestien Datie	CMDD	+	+25°C	107	123		40
Common Mode Rejection Ratio	CMRR	$-V_S < V_{CM} < V_S$	Full	105			dB
Open-Loop Voltage Gain	A _{OL}	$(-V_S) + 0.1V < V_{OUT} < (+V_S) - 0.1V,$ $R_L = 10k\Omega$	+25°C	110	127		dB
Output Characteristics							
Output Voltage Swing from Rail		$R_L = 10k\Omega$	+25°C		5	10	mV
Short-Circuit Current	I _{sc}		+25°C	25	42		mA
Capacitive Load Drive			+25°C	See Typic	al Perform	ance Chara	cteristics
Power Supply			•				
Specified Voltage Range	Vs		Full	1.8		5.5	V
Davida Comple Daia stica Datia	DCDD	V = 4.0V/+- 5.5V V = 20.0V	+25°C		1	4	μV/V
Power Supply Rejection Ratio	PSRR	$V_S = 1.8V \text{ to } 5.5V, V_{CM} = 0.2V$	Full			5	
Outcoant Current/Amplifier		- 00	+25°C		380	560	
Quiescent Current/Amplifier	lα	I _{OUT} = 0A	Full			665	μA
Turn-On Time		$G = +1, V_{IN} = 0.1V, R_L = 10k\Omega, C_L = 30pF$	+25°C		33		μs
Dynamic Performance			•				
Gain-Bandwidth Product	GBP	C _L = 30pF	+25°C		4		MHz
Slew Rate	SR	G = +1, V _{OUT} = 2V _{P-P} , C _L = 30pF	+25°C		1		V/µs
Noise	•	•	•	•		•	
Input Voltage Noise		f = 0.1Hz to 10Hz	+25°C		0.2		μV _{P-P}
Input Voltage Noise Density	e _n	f = 1kHz	+25°C		8		nV/√Hz
Input Current Noise Density	i _n	f = 1kHz	+25°C		3		pA/√Hz
	1	I		1			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = 1.8V, V_{CM} = V_S/2, V_{OUT} = V_S/2, \text{ and } R_L = 10k\Omega \text{ to } V_S/2, \text{ Full } = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Input Characteristics					1	100		
	.,		+25°C		3.0	10		
Input Offset Voltage	V _{os}	V _S = 1.8V	Full			29	μV	
Input Offset Voltage Drift	ΔV _{OS} /ΔΤ		Full		0.035		μV/°C	
Input Bias Current	I _B		+25°C		350		pА	
Input Offset Current	Ios		+25°C		700		pА	
Input Common Mode Voltage Range	V_{CM}		+25°C	(-V _S) - 0.1		(+V _S) + 0.1	V	
Ossesson Martin Data effect Data	OMPD	V	+25°C	104	122		-ID	
Common Mode Rejection Ratio	CMRR	-V _S < V _{CM} < V _S	Full	69			dB	
Open-Loop Voltage Gain	A _{OL}	$(-V_S) + 0.1V < V_{OUT} < (+V_S) - 0.1V,$ $R_L = 10k\Omega$	+25°C	109	127		dB	
Output Characteristics								
Output Voltage Swing from Rail		$R_L = 10k\Omega$	+25°C		3	6	mV	
Short-Circuit Current	I _{sc}		+25°C	7.5	12		mA	
Capacitive Load Drive			+25°C	See Typic	al Perform	ance Chara	cteristics	
Power Supply								
Specified Voltage Range	Vs		Full	1.8		5.5	V	
Davier Commbi Dairation Datio	D0DD	V 4044 55V V 700V	+25°C		1	4	///	
Power Supply Rejection Ratio	PSRR	$V_S = 1.8V \text{ to } 5.5V, V_{CM} = 0.2V$	Full			5	μV/V	
Ouisesent Current/Amplifier		- 00	+25°C		560	780		
Quiescent Current/Amplifier	lα	I _{OUT} = 0A	Full			950	μA	
Turn-On Time		$G = +1$, $V_{IN} = 0.1V$, $R_L = 10kΩ$, $C_L = 30pF$	+25°C		63		μs	
Dynamic Performance								
Gain-Bandwidth Product	GBP	C _L = 30pF	+25°C		3.5		MHz	
Slew Rate	SR	G = +1, V _{OUT} = 1V _{P-P} , C _L = 30pF	+25°C		0.6		V/µs	
Noise								
Input Voltage Noise		f = 0.1Hz to 10Hz	+25°C		0.3		μV _{P-P}	
Input Voltage Noise Density	e _n	f = 1kHz	+25°C		14		nV/√Hz	
Input Current Noise Density	in	f = 1kHz	+25°C		2		pA/√Hz	
	•					•		

TYPICAL PERFORMANCE CHARACTERISTICS

At $T_A = +25^{\circ}C$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25$ °C, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25$ °C, unless otherwise noted.

APPLICATION INFORMATION

Rail-to-Rail Input

When SGM8959-1/2 work at the power supply between 1.8V and 5.5V, the input common mode voltage range is from $(-V_S)$ - 0.1V to $(+V_S)$ + 0.1V. In Figure 1, the ESD diodes between the inputs and the power supply rails will clamp the input voltage not to exceed the rails.

Figure 1. Input Equivalent Circuit

Input Current-Limit Protection

For ESD diode clamping protection, when the current flowing through ESD diode exceeds the maximum rating value, the ESD diode and amplifier will be damaged, so current-limit protection will be added in some applications. One resistor is selected to limit the current not to exceed the maximum rating value. In Figure 2, a series input resistor is used to limit the input current to less than 10mA, but the drawback of this current-limit resistor is that it contributes thermal noise at the amplifier input. If this resistor must be added, its value must be selected as small as possible.

Figure 2. Input Current-Limit Protection

Rail-to-Rail Output

The SGM8959-1/2 support rail-to-rail output operation. In single power supply application, for example, when $+V_S=5V$, $-V_S=GND$, $10k\Omega$ load resistor is tied from OUT pin to $V_S/2$, the typical output swing range is from 0.005V to 4.995V.

Driving Capacitive Loads

The SGM8959-1/2 are designed for driving the 1nF capacitive load with unity-gain stable. If greater capacitive load must be driven in application, the circuit in Figure 3 can be used. In this circuit, the IR drop voltage generated by $R_{\rm ISO}$ is compensated by feedback loop.

Figure 3. Circuit to Drive Heavy Capacitive Load

Power Supply Decoupling and Layout

A clean and low noise power supply is very important in amplifier circuit design, besides of input signal noise, the power supply is one of important source of noise to the amplifiers through $+V_S$ and $-V_S$ pins. Power supply bypassing is an effective method to clear up the noise at power supply, and the low impedance path to ground of decoupling capacitor will bypass the noise to GND. In application, $10\mu F$ ceramic capacitor paralleled with $0.1\mu F$ or $0.01\mu F$ ceramic capacitor is used in Figure 4. The ceramic capacitors should be placed as close as possible to $+V_S$ and $-V_S$ power supply pins.

Figure 4. Amplifier Power Supply Bypassing

APPLICATION INFORMATION (continued)

Grounding

In low speed application, one node grounding technique is the simplest and most effective method to eliminate the noise generated by grounding. In high speed application, the general method to eliminate noise is to use a complete ground plane technique, and the whole ground plane will help distribute heat and reduce EMI noise pickup.

Reduce Input-to-Output Coupling

To reduce the input-to-output coupling, the input traces must be placed as far away from the power supply or output traces as possible. The sensitive trace must not be placed in parallel with the noisy trace in same layer. They must be placed perpendicularly in different layers to reduce the crosstalk. These PCB layout techniques will help to reduce unwanted positive feedback and noise.

Typical Application Circuits

Difference Amplifier

The circuit in Figure 5 is a design example of classical difference amplifier. If $R_4/R_3 = R_2/R_1$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

Figure 5. Difference Amplifier

High Input Impedance Difference Amplifier

The circuit in Figure 6 is a design example of high input impedance difference amplifier, the added amplifiers at

the input are used to increase the input impedance and eliminate drawback of low input impedance in Figure 5.

Figure 6. High Input Impedance Difference Amplifier

Active Low-Pass Filter

The circuit in Figure 7 is a design example of active low-pass filter, the DC gain is equal to $-R_2/R_1$ and the -3dB corner frequency is equal to $1/2\pi R_2C$. In this design, the filter bandwidth must be less than the bandwidth of the amplifier, the resistor values must be selected as low as possible to reduce ringing or oscillation generated by the parasitic parameters in PCB layout.

Figure 7. Active Low-Pass Filter

Low V_{os}, Low Noise, High Precision Zero-Drift Operational Amplifiers

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JULY 2023 - REV.A.1 to REV.A.2		Page
Updated Electrical Characteristics section	10	4, 5
Updated Typical Performance Characteristics section		
Updated Package Outline Dimensions section		13
MARCH 2022 – REV.A to REV.A.1		Page
Updated Typical Performance Characteristics section		7
Changes from Original (DECEMBER 2016) to REV.A		Page
Changed from product preview to production data		All

SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037 BSC		
e1	1.900	BSC	C 0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

NOTES:

- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.

SC70-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimer In In	nsions ches	
	MIN	MAX	MIN	MAX	
А	0.800	1.100	0.031	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.800	1.000	0.031	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.220	0.003	0.009	
D	2.000	2.200	0.079	0.087	
Е	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.65	TYP	0.026	TYP	
恒 e1	1.300	BSC	0.051 BSC		
L	0.525	REF	0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0° 8°		

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	7 BSC 0.050 BS		BSC	
少 L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

TDFN-3×3-8L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008 REF		
D	2.900	3.100	0.114	0.122	
D1	2.200	2.400	0.087	0.094	
E	2.900	3.100	0.114	0.122	
E 1	1.400	1.600	0.055	0.063	
k	0.200 MIN		0.008 MIN		
b	0.180	0.300	0.007	0.012	
е	0.650) TYP	0.026 TYP		
L	0.375	0.575	0.015	0.023	

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SC70-5	7"	9.5	2.40	2.50	1.20	4.0	4.0	2.0	8.0	Q3
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-8L	13"	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

芯查查

CARTON BOX DIMENSIONS

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5

