Supervised Learning

CSC 461: Machine Learning

Fall 2021

Prof. Marco Alvarez University of Rhode Island

Supervised Learning Setup

Spam filtering

- **▶** Problem
 - ✓ automatically tagging email messages as spam (1) or ham (0)
- ▶ Input Space
 - ✓ assume every email is represented as a fixed-length vector of 10 features
- Output Space?

Components of (supervised) learning

• Input space \mathscr{X}

• Output space

Data instance $x \in \mathcal{X}, y \in \mathcal{Y}$

 \checkmark is a pair (x,y)

• Data $\{(x_1, y_1), ..., (x_n, y_n)\}$

✓ is a set of data instances

Hypothesis $g: \mathcal{X} \mapsto \mathcal{Y}, g \in \mathcal{H}$

Data

 Samples are assumed to be independent and identically distributed from the same probability distribution (i.i.d)

$$\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}\$$

$$(x_i, y_i) \sim P$$

MNIST Dataset

00	0	0	0	O	O	0	0	0	0	0	0	0	0	う
1	1	1	1	/	/	(/	1	1	1	1	1	/	1
22	2	2	2	J	2	2	2	2	2	2	2	2	2	2
3 3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	3
4 4	Y	4	4	4	4	4	#	4	4	4	4	ч	4	4
5 5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
66	6	6	6	6	6	6	P	6	6	6	6	6	6	le
7	7	7	7	7	7	7	7	77	7	7	7	7	7	7
8 8	8	8	8	8	8	8	8	8	8	8	8	8	8	В
99	9	9	9	9	9	9	9	P	9	9	9	9	9	9

https://en.wikipedia.org/wiki/MNIST_databas

MNIST instance

[[0. 1. 5. 11. 15. 4. 0. 0.] [0. 8. 16. 13. 6. 2. 0. 0.] [0. 11. 7. 0. 0. 0. 0. 0. 0.] [0. 11. 16. 16. 11. 2. 0. 0.] [0. 0. 4. 4. 5. 12. 3. 0.] [0. 0. 0. 0. 0. 5. 11. 0.] [0. 0. 1. 6. 0. 10. 11. 0.] [0. 0. 2. 12. 16. 15. 2. 0.]

[0. 1. 5. 11. 15. 4. 0. 0. 0. 8. 16. 11. 0. 0. 0. 2. 12. 16. 15. 2. 0.]

MNIST dataset

[[0. 0. 7. 16. 14. 13. 10. 0. 0. 0. 10. 12. 10. 16. 4. 0. 0. 0. 15. 5. 8. 13. 0. 0. 0. 1. 7. 1. 16. 3. 0. 0. 0. 2. 11. 13. 16. 12. 6. 0. 0. 4. 12. 15. 14. 11. 2. 0. 0. 0. 3. 16. 3. 0. 0. 0. 0. 0. 9. 13. 0. 0. 0. 0. 0.]
[[0. 0. 9. 16. 16. 16. 7. 0. 0. 3. 16. 11. 4. 4. 1. 0. 0. 6. 16. 1. 0. 0. 0. 0. 0. 0. 9. 16. 9. 4. 0. 0. 0. 0. 0. 6. 10. 16. 8. 0. 0. 0. 0. 2. 0. 8. 14. 0. 0. 0. 0. 0. 13. 7. 8. 14. 0. 0. 0. 0. 10. 16. 16. 4. 0. 0.] | 0. 13. 7. 8. 14. 0. 0. 0. 10. 16. 16. 4. 0. 0. |
| 0. 0. 4. 15. 16. 16. 5. 0. 0. 0. 0. 6. 9. 11. 16. 11. 0. 0. 0. 0. 0. 3. 16. 5. 0. |
| 0. 0. 4. 15. 16. 16. 5. 0. 0. 0. 6. 9. 11. 16. 11. 3. 0. 0. 0. 8. 15. 13. 0. 0. 0. |
| 0. 0. 5. 16. 7. 0. 0. 0. 0. 0. 7. 14. 2. 0. 0. 0. |
| 1 0. 1. 12. 16. 16. 16. 16. 12. 0. 0. 9. 16. 13. 6. 8. 5. 0. 0. 8. 16. 15. 3. 0. 0. 0. |
| 0. 0. 4. 14. 11. 0. 0. 0. 0. 0. 0. 12. 12. 2. 0. 0. 0. 0. 0. 12. 13. 0. 0. 0. 0. 0. |
| 0. 3. 15. 11. 0. 0. 0. 0. 0. 12. 13. 2. 0. 0. 0. |
| 0. 0. 16. 11. 0. 0. 0. 0. 0. 0. 12. 13. 2. 0. 0. 0. |
| 0. 0. 12. 15. 11. 5. 0. 0. 0. 0. 0. 16. 15. 12. 15. 11. 0. 0. 0. 12. 13. 0. 0. 16. 5. |
| 0. 0. 6. 15. 4. 11. 16. 4. 0. 0. 0. 0. 0. 11. 16. 14. 9. 0. |
| 0. 0. 15. 14. 11. 16. 4. 0. 0. 0. 0. 18. 16. 14. 9. 0. | 0. 0. 6. 15. 4. 11. 16. 4. 0. 0. 0. 13. 16. 14. 9. 0.]
[0. 0. 0. 12. 13. 5. 0. 0. 0. 0. 0. 11. 16. 9. 0. 0. 0. 0. 3. 15. 16. 6. 0. 0.
0. 7. 15. 16. 16. 2. 0. 0. 0. 0. 1. 16. 16. 3. 0. 0. 0. 0. 1. 16. 16. 6. 0. 0. 0. 1. 16. 16. 6. 0. 0. 0. 0. 0. 11. 16. 10. 0. 0.] 0. 1. 16. 16. 6. 0. 0. 0. 0. 0. 0. 11. 16. 10. 0. 0.]
[0. 0. 12. 10. 0. 0. 0. 0. 0. 0. 0. 14. 16. 16. 14. 0. 0. 0. 0. 0. 13. 16. 15. 10. 1.
0. 0. 0. 11. 16. 16. 7. 0. 0. 0. 0. 0. 0. 4. 7. 16. 7. 0. 0. 0. 0. 0. 0. 4. 16. 9. 0.
0. 0. 5. 4. 12. 16. 4. 0. 0. 0. 0. 9. 16. 16. 10. 0. 0.]
[0. 0. 9. 15. 14. 2. 0. 0. 0. 0. 0. 9. 3. 9. 8. 0. 0. 0. 0. 0. 0. 6. 10. 0. 0.
0. 0. 10. 15. 2. 0. 0. 0. 0. 2. 10. 11. 15. 2. 0. 0. 0. 0. 0. 0. 14. 4. 0. 0. 10
13. 7. 2. 12. 4. 0. 0. 0. 7. 14. 16. 10. 0. 0.]
[0. 0. 0. 9. 9. 0. 0. 0. 0. 0. 3. 15. 4. 0. 0. 0. 0. 10. 12. 0. 0. 0. 0. 0.
0. 12. 8. 4. 3. 0. 0. 0. 0. 14. 16. 12. 14. 5. 0. 0. 0. 0. 12. 10. 0. 4. 13. 0. 0. 0. 9. 11. 0. 6. 16. 1. 0. 0. 0. 8. 14. 15. 8. 0.] [0. 2. 15. 16. 15. 2. 0. 0. 0. 8. 14. 8. 14. 8. 0. 0. 0. 7. 5. 2. 16. 5. 0. 0. 0. 0. 0. 12. 13. 0. 0. 0. 0. 0. 8. 15. 1. 0. 0. 0. 0. 1. 15. 7. 0. 0. 4. 16. 9. 8. 8. 2. 0. 0. 2. 15. 16. 16. 16. 13. 0.]]

Supervised learning

Binary classification

$$\mathcal{Y} = \{0,1\}$$

 $\mathcal{Y} = \{-1, +1\}$

Multiclass classification $\mathcal{Y} = \{0,1,...,k-1\}$

$$\mathcal{Y} = \{0, 1, ..., k - 1\}$$

Regression

$$\mathcal{Y} = \mathbb{R}$$

Structure prediction

structured objects

Loss Functions

• 0/1 Loss
$$\mathscr{L}_{0/1}(h,\mathscr{D}) = \frac{1}{n} \sum_{(x_i,y_i) \in \mathscr{D}_{indicator function}} I(h(x_i) \neq y_i)$$

→ Squared Loss

Squared Loss
$$\mathcal{L}_{sq}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} (h(x_i) - y_i)^2$$
Absolute Loss
$$\mathcal{L}_{abs}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} |h(x_i) - y_i|$$

$$\mathcal{L}_{abs}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} |h(x_i) - y_i|$$

What is the goal of (supervised) learning?

• A function (classifier/regressor) that best approximates target function

For $g \in \mathcal{H}$ and $\forall (x_i, y_i) \sim P$, we want $g(x) \approx f(x)$

search and optimization (to minimize expected loss)

Expected Loss

$$\mathbb{E}[l(g,(x_i,y_i))]_{(x_i,y_i)\sim P}$$

We cannot calculate this term, but we can approximate it

Approximating the expected loss?

$$\mathbb{E}[l(g,(x_i,y_i))]_{(x_i,y_i)\sim P}$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} l(g, (x_i, y_i))$$

the law of large numbers states that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions approaches infinity

Law of large numbers

$$Pr\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n x_n = \mathbb{E}[x]\right) = 1$$

Example using MNIST

https://colab.research.google.com/drive/1m_h-c2sSC4fNhRRNR2q-Dfk2ji5V6ILQ?
usp=sharing