#### SYDNEY TECHNICAL HIGH SCHOOL

### MATHEMATICS EXTENSION 1

### HSC ASSESSMENT TASK 1 - 2008

| Students' | name: | Teacher's name: |  |
|-----------|-------|-----------------|--|
|           |       |                 |  |

| Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Total |
|----|----|----|----|----|----|-------|
|    |    |    |    |    |    |       |
|    |    |    |    |    |    | / 50  |

### Time allowed: 70 minutes

- Attempt all questions
- Show all necessary working.
- Marks may not be awarded for insufficient working or poorly set out solutions.

## START EACH QUESTION ON A NEW PAGE

### Question 1 (8 marks)

a) Find the value of x



b) Explain why angle PCA equals angle CBA.



2

1

- c) i. Insert 6 terms between -10 and 165 so that the series is arithmetic.
  - ii. If this pattern continues find the sum of the first 20 terms.
- d) Evaluate  $\sum_{n=3}^{7} n^3$

Question 2 (start a new page) (8 marks)

- a) Given  $S_n = 17n 3n^2$ , find an expression for the nth term.
- b) Which term of the series,  $100 + 20 + 4 + \dots$ , is the first term with a value of less than  $10^{-4}$
- c) Given QP is a tangent to a the circle centre O,
   Find, the size of angle ORS in terms of θ. Give reasons.



Question 3 (start a new page) (8 marks)

a) Given 
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$

Show that 
$$\sum_{n=1}^{K+1} \frac{1}{n(n+1)} = \frac{k+1}{k+2}$$

b) P( 2ap,  $ap^2$ ) is any point on the parabola  $x^2 = 4ay$ . The line *l* passes through the focus, S, and is parallel to the tangent at P. i. Find the equation of the line *l* 2 ii. The line l intersects the x – axis at Q. Write down the coordinates of Q. 1 iii. Find the equation of the locus of the midpoint of QS. 2 Question 4 (start a new page) (9 marks) a) Consider the series,  $x + 4x^2 + 16x^3 + \dots$ i. For what value of x does the series have a limiting sum 1 ii. Find the value of x given  $S_{\infty} = \frac{3}{2}$ 2 b) Tom borrows \$250 000 to buy a unit in Cronulla. The rates are 6% p.a. monthly reducible interest and equal monthly repayments of \$1900 are payable at the end of each month. i. How much does Tom owe immediately after the second 1 repayment. ii. Show that after *n* months Tom owes 2  $(380\ 000 - 130\ 000(1.005)^n)$ 1 iii. Find the balance owing at the end of 5 years iv. If after 5 years the interest rate increases to 7.2% p.a., find the minimum monthly repayment needed to repay the loan in a further 20 years. 2

### Question 5 (start a new page) (8 marks)

- a) Prove by mathematical induction that  $13 \times 6^n + 2$  is divisible by 5 for every positive integer n.
- b) In the diagram A, P and B are points on the circle. The chord PA is produced to C and BC is parallel to the tangent at P.



- i. Show that Angle PBA = Angle PCB
- ii. Deduce that  $PB^2 = PA \times PC$

2

## Question 6 (start a new page) (9 marks)



Two circles of equal radius and with centres at A and B respectively touch each other externally at E. BC and BD are tangents from B to the circle with centre A.

| i.   | Copy the diagram                                     | 1 |
|------|------------------------------------------------------|---|
| ii.  | Show that BCAD is a cyclic quadrilateral.            | 2 |
| iii. | Show that E is the centre of the circle which passes |   |
|      | through B, C, A and D.                               | 2 |
| iv.  | Show that angle CBA = angle DBA = $30^{\circ}$       | 2 |
|      |                                                      |   |
| ٧.   | Show that triangle BCD is equilateral                | 2 |

# Question 1.

a)  $12^{2} = x(x+7)$   $144 = x^{2} + 7x$   $0 = x^{2} + 7x - 144$  0 = (x+16)(x-9) x>0 : x=9.

b) The angle between a tangent and a chord is equal to the angle in the alternate segment.

11. 
$$S_{20} = \frac{20}{2} \left( -20 + 19 \times 25 \right)$$
  
= 4550

$$2 = 3^3 + 4^3 + 5^3 + 6^3 + 7^3$$
$$= 775.$$

# Question 2.

a)  $T_0 = S_0 - S_{0-1}$   $= 170 - 3n^2 - [17(n-1) - 3(n-1)^2]$   $= 170 - 3n^2 - [17n - 17 - 3n^2 + 6n - 3]$   $= 170 - 3n^2 - [-3n^2 + 17n + 6n - 20]$ = 20 - 6n b) 100 + 20 + 4 + ... a = 100  $C = \frac{1}{5}$   $ar^{n-1} < 10^{-4}$   $c = 10^$ 



LOQP=90° (radius to tangent is 90°)

Laos = 90-0 (angle sum DOQP)

LROS = 90+0 (angles on a straight line)

RD = 0s radii

: LORS = LOSR (equal angles opp)

LORS = 90-0

## Question 3

a)  $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(K+1)(K+2)}$ =  $\frac{K}{K+1} + \frac{1}{(K+1)(K+2)}$ =  $\frac{K(K+2) + 1}{(K+1)(K+2)}$ =  $\frac{K^2 + 2K + 1}{(K+1)(K+2)}$ =  $\frac{(K+1)^2}{(K+1)(K+2)}$ =  $\frac{K+1}{(K+1)(K+2)}$ =  $\frac{K+1}{(K+1)(K+2)}$ 

1. 
$$y = \frac{x^2}{4a}$$

$$y' = \frac{2x}{4a} \text{ at } x = 2ap$$

$$m_T = p$$
 as  $l$  is  $l$  to tengent  $m_2 = p$  thru  $(o, a)$ 

11. Q: 
$$y=0$$
  $0=px+a$ 

$$-\frac{a}{p}=x$$

III. Midpt 
$$\begin{bmatrix} -a/\rho + 0 & 0 + a \\ 2 & 2 & 2 \end{bmatrix}$$
 IV.  $0 = 204649.48 (1.006) - m \begin{bmatrix} 1.006 - 1 \\ 0.006 \end{bmatrix}$ 

## Question 4.

a) 
$$x + 4x^2 + 16x^3 + \dots$$

11. 
$$\frac{x}{1-4x} = \frac{3}{2}$$

$$2\pi = 3-12\pi$$

$$14x = 3$$

$$x = \frac{3}{14}$$

1. 
$$A_1 = 250\ 000\ (1.005) - 1900$$

$$A_2 = 250\ 000\ (1.005)^2 - 1900\ (1.005) - 1900$$
11.  $A_3 = 250\ 000\ (1.005)^3 - 1900\ [1.005^2 + 1.005 + 1]$ 

$$A_1 = 250\ 000\ (1.005)^3 - 1900\ [1.005^{3-1} + 1.005^{3-2} + 1]$$

$$A_1 = 250\ 000\ (1.005)^3 - 1900\ [1\ (1.005^3 - 1)\ 0.005\ ]$$

$$= 250\ 000\ (1.005)^3 - 380\ 000\ (1.005^3 - 1)$$

111. 
$$n = 5 \times 12 = 60$$
  
 $A_{60} = 380\ 000 - 130\ 000\ (1.005)^{60}$   
 $= 204649.48$ 

= 380 000 - 130 000 (1.005)

Midpt 
$$-\frac{a/\rho+0}{2}$$
,  $\frac{0+a}{2}$  | IV.  $0 = 204649.48(1.006) - m \left[\frac{240}{0.006} - \frac{1}{0.006}\right]$ 

Locus of midpt  $\Rightarrow y = \frac{1}{2}a$  |  $m \left[\frac{1.006^{240} - 1}{0.006}\right] = 204649.48(1.006)$ 
 $m = $1611.32$ .

## Question 5

a) Test n=1

$$13 \times 6^{1} + 2 = 80$$
  
= 5 × 16 : divisible  
by 5

Assume true for n=Kie  $13 \times 6^K + 2 = 5M$  where M is

a tree integer

Prove true for 
$$n=k+1$$

$$13\times 6^{k+1}+2$$

$$=30m-12+2$$

$$= 5[6m - 2]$$

which is + by 5 .: true n=K+1.

If true n=K also true n=K+1

As true n=1 also true n=2,3,4....

Hence by M. I true all positive

integer n.



.. LPBA = LPCB.

angle between a tangent

1. LPBA = LTPC (and a chord equals angle in alternate segment)

.BCP = LTPC (alternate angles PT11BC)

II. In Δ PBA and Δ PCB

LP is common

LPBA = LPCB (parti)

∴ Δ PBA III Δ PCB (equianquiar)

$$\frac{PB}{PC} = \frac{PA}{PB}$$
 (ratio of correspondes)  

$$PB^2 = PA \times PC$$

# Question 6



II. LACB = 90° (radius to tangent)

LADB = 90° (radius to tangent)

NOW LACB + LADB = 180°

and BCAD is cyclic (opposite angles

supplementary)

AB is a diameter (angle in particle)

AS AE = EB

radiu of equal circles

E is the midpoint of AB

and the centre of circle B,C,A,D.

IV. As E is the centre of circle

CE = EB = ED

AE = AD radii centre A.

.. AE=ED=AD

and LDAE = 60°

LADB = 90° (radii to target)

LDBA = 30° (angle sum DABD)

Likewise LABC = 30°

٧.

: LDBA = LABC = 30°

CB = DB tangents from external point equal

:. LBCD = LBDC (equal angles opposite equal sides

LCBD=60° (part N)

.. LBCD=LBDC=60° (angle sum
.. \DBCD is equilateral.