PRÁCTICA 2

Conjuntos. Parte I

Sean $A=\{x\in\mathbb{Z}:x\text{ es múltiplo de }3\},\,B=\{x\in\mathbb{Z}:x\text{ es múltiplo de }7\}$ y $C=\{x\in\mathbb{Z}:x\text{ es múltiplo de }21\}.$ Probar que:

- 1. $C \subset A y A \neq C$
- 2. $C \subset B \ y \ B \neq C$
- 3. $C \subset A \cap B$.

 $Demostraci\'on. \ \ \text{Recordemos que un n\'umero} \ a \in \mathbb{Z} \ \text{es m\'ultiplo de} \ b \in \mathbb{Z} \ \text{si existe} \ k \in \mathbb{Z} \ \text{tal que} \ a = b.k \ .$

1. Sea $x \in C$ entonces $\exists k \in \mathbb{Z}$ tal que

$$x = 21 \cdot k \Rightarrow x = 3 \cdot 7k = 3(7k) = 3 \cdot t$$
, con $t \in \mathbb{Z}$

entonces $x \in A$.

Si queremos probar que los conjuntos no son iguales $(C \not\subset A)$ debemos encontrar un elemento de C que NO esté en A. Así, por ejemplo 3 es múltiplo de 3 $(3 \in C)$ pero no de 21 $(3 \notin A)$.

2. Sea $x \in C$ entonces $\exists q \in \mathbb{Z}$ tal que

$$x = 21 \cdot q \Rightarrow x = 7 \cdot 3q = 7(3q) = 7d$$
, con $d \in \mathbb{Z}$

entonces $x \in B$. Contraejemplo: 14 es múltiplo de 7 pero no de 21.

3. Sea $x \in C$ entonces $\exists k \in \mathbb{Z}$ tal que

$$x = 21 \cdot k \Rightarrow x = 3 \cdot 7k = 3(7k) = 3t$$
, con $t \in \mathbb{Z}$

y $\exists q \in \mathbb{Z} \text{ tal que}$

$$x = 21 \cdot q \Rightarrow x = 7 \cdot 3q = 7(3q) = 7d$$
, con $d \in \mathbb{Z}$

entonces $x \in A$ y $x \in B$. Luego $x \in A \cap B$.