UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9709 MATHEMATICS

9709/32

Paper 32, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4				us Pape	r
		GCE AS/A LEVEL	_ – May/June 2010 9709	32	
1	EITHER: Attempt to solve for 2^x Obtain $2^x = 6/4$, or equivalent Use correct method for solving an equation of the form $2^x = a$, where $a > 0$ Obtain answer $x = 0.585$ OR: State an appropriate iterative formula, e.g. $x_{n+1} = \ln((2^{x_n} + 6) / 5) / \ln 2$		M1 A1 M1 A1 B1		
		Use the iterative formula correctly Obtain answer $x = 0.585$ Show that the equation has no other	er root but 0.585	M1 A1 A1	[4]
		[For the solution 0.585 with no rebe the only root.]	levant working, award B1 and a further B	11 11 0.585 is sho	wn to
2		by parts and reach $\pm x^2 \cos x \pm \int 2^{-3} x^2 \cos x = \int 2^{-3} x^2 \cos x =$		M1	
	Obtain -	$x^2 \cos x + \int 2x \cos x dx$, or equiva	lent	A1	
	Substitu	the integration, obtaining $-x^2$ coelimits correctly, having integrated e given answer correctly	as $x + 2x \sin x + 2 \cos x$, or equivalent d twice	A1 M1 A1	[5]
3	(i)	State or imply $\sin a = 4/5$ Use $\sin(A - B)$ formula and substi	tute for $\cos a$ and $\sin a$	B1 M1	
		Obtain answer $\frac{1}{10}(4\sqrt{3}-3)$, or ex	xact eqivalent	A1	[3]
	(ii)	substitute sin a and cos a, and div		lae,	
		Obtain $\tan 2a = -\frac{24}{7}$, or equivale	ent	A1	
			2a, $B = a$ and substitute for a and a	n <i>a</i> M1	
		Obtain $\tan 3a = -\frac{44}{117}$		A1	[4]
4	(i)	Use correct quotient or product ru Obtain correct derivative in any for Equate derivative to zero and solv Obtain the given answer correctly	orm e for x	M1 A1 M1 A1	[4]
	(ii)	Use the iterative formula correctly Obtain final answer 4.49		M1 A1	
		Show sufficient iterations to at leasthere is a sign change in the interv	ast 4 d.p. to justify its accuracy to 2 d.p., or ral (4.485, 4.495)	show that A1	[3]
5	(i)	-	and obtain a correct equation, e.g.	D1	
		$-\frac{1}{4} + \frac{5}{4} - \frac{1}{2}a + b = 0$ Substitute $x = -2$ and equate to 9		B1 M1	
		Obtain a correct equation, e.g1	6 + 20 - 2a + b = 9	A1	
		Solve for a or for b Obtain $a = -4$ and $b = -3$		M1	[5]
		Obtain $a = -4$ and $b = -3$		A1	[5]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	32

(ii) Attempt division by
$$2x + 1$$
 reaching a partial quotient of $x^2 + kx$ M1

Obtain quadratic factor $x^2 + 2x - 3$ A1

Obtain factorisation $(2x+1)(x+3)(x-1)$ A1 [3]

[The M1 is earned if inspection has an unknown factor of $x^2 + ex + f$ and an equation in e and/or f, or if two coefficients with the correct moduli are stated without working.]

[If linear factors are found by the factor theorem, give B1 + B1 for (x - 1) and (x + 3), and then B1 for the complete factorisation.]

6 (i) EITHER: State or imply
$$\frac{1}{y} \frac{dy}{dx}$$
 as derivative of $\ln y$

State correct derivative of LHS, e.g.
$$\ln y + \frac{x}{y} \frac{dy}{dx}$$
 B1

Differentiate RHS and obtain an expression for
$$\frac{dy}{dx}$$
 M1

OR 1: State
$$\ln y = \frac{2x+1}{x}$$
, or equivalent, and differentiate both sides M1

State correct derivative of LHS, e.g.
$$\frac{1}{y} \frac{dy}{dx}$$
 B1

State correct derivative of RHS, e.g.
$$-1/x^2$$
 B1
Rearrange and obtain given answer A1

Rearrange and obtain given answer

State
$$y = \exp(2 + 1/r)$$
 or equivalent, and attempt differentiation by chain

OR 2: State
$$y = \exp(2+1/x)$$
, or equivalent, and attempt differentiation by chain rule

rule M1
State correct derivative of RHS, e.g.
$$-\exp(2+1/x)/x^2$$
 B1 + B1

[The B marks are for the exponential term and its multiplier.]

(ii) State or imply
$$x = -\frac{1}{2}$$
 when $y = 1$

Substitute and obtain gradient of
$$-4$$
 B1 $\sqrt{$

Obtain final answer
$$y + 4x + 1 = 0$$
, or equivalent A1 [4]

7 (i) Separate variables correctly and attempt integration of both sides

Obtain term
$$\tan x$$
 B1
Obtain term $-\frac{1}{2}e^{-2t}$ B1

Evaluate a constant or use limits
$$x = 0$$
, $t = 0$ in a solution containing terms $a \tan x$ and

$$be^{-2t}$$
 M1

Obtain correct solution in any form, e.g.
$$\tan x = \frac{1}{2} - \frac{1}{2}e^{-2t}$$
 A1

Rearrange as $x = \tan^{-1}(\frac{1}{2} - \frac{1}{2}e^{-2t})$, or equivalent A1 [6]

(ii) State that x approaches
$$\tan^{-1}(\frac{1}{2})$$
 B1 [1]

(iii) State that
$$1 - e^{-2t}$$
 increases and so does the inverse tangent, or state that $e^{-2t} \cos^2 x$ is positive

B1 [1]

	Page 6	;	Mark Scheme: Teachers' version Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010 9709	32	
8	(i)	EITHER:	State a correct expression for $ z $ or $ z ^2$, e.g. $(1+\cos 2\theta)^2 + (\sin 2\theta)^2$	2 B1	
•	(i)	EIITIEK.			
			Use double angle formulae throughout or Pythagoras	M1	
			Obtain given answer 2cos θ correctly State a correct expression for tangent of argument, e.g. $(\sin 2\theta / (1 + \cos \theta))$	$\begin{array}{c} A1 \\ \cos 2\theta) & B1 \end{array}$	
				•	
			Use double angle formulae to express it in terms of $\cos \theta$ and $\sin \theta$	M1 A1	
		OR:	Obtain tan θ and state that the argument is θ Use double angle formulae to express z in terms of cos θ and sin θ	M1	
		OR.	Obtain a correct expression, e.g. $1 + \cos^2 \theta - \sin^2 \theta + 2i \sin \theta \cos \theta$	A1	
			Convert the expression to polar form	M1	
			Obtain $2\cos\theta(\cos\theta + i\sin\theta)$	A1	
			State that the modulus is $2 \cos \theta$	A1	
			State that the argument is θ	A1	[6]
			· ·		L . J
	(ii)		for z and multiply numerator and denominator by the conjugate of z, c	or M1	
		equivalen	rrect real denominator in any form	A1	
			nd obtain real part equal to $\frac{1}{2}$	A1	[3]
		identify a	nd obtain real part equal to 2	Al	
	(3)	Ctata an in		ı.l. Di	
	(i)		inply a correct normal vector to either plane, e.g. $3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ or $a\mathbf{i} + \mathbf{j} - 4\mathbf{k}$ alar product of normals to zero and obtain an equation in a , e.g.	+ k B1	
		3a + 2 + 4	· · · · · · · · · · · · · · · · · · ·	M1	
		Obtain $a =$		A1	[3]
	(**)	Г	1	D1	
	(ii)		eneral point of the line in component form, e.g. $(\lambda, 1+2\lambda, -1+2\lambda)$	B1	
			estitute components in the equation of p and solve for λ , or substitute at and the value of a in the equation of q and solve for λ	M1*	
		_	= 1 for point A	A1	
			= 2 for point B	A1	
			M1(dep*)		
		Obtain answer $AB = 3$		Aĺ	[6]
	[The second M mark is dependent on both values of λ being found by correct methods.]		ethods.]		
0	(i)	ETTHER:	Divide by denominator and obtain quadratic remainder	M1	
			Obtain $A = 1$ Use any relevant method to obtain B , C or D	A1 M1	
			Obtain one correct answer	A1	
			Obtain $B = 2$, $C = 1$ and $D = -3$	A1	
		OR:	Reduce RHS to a single fraction and equate numerators, or equivalen		
			Obtain $A = 1$	A1	
			Use any relevant method to obtain B , C or D	M1	
			Obtain one correct answer	A1	r.e.a
			Obtain $B = 2$, $C = 1$ and $D = -3$ [SR: If $A = 1$ stated without working give B1.]	A1	[5]
			1 3	_ 1	
	(ii)	Integrate a	and obtain $x + 2 \ln x - \frac{1}{x} - \frac{3}{2} \ln(2x - 1)$, or equivalent	ВЗ√	
	(ii)	Integrate a	and obtain $x + 2 \ln x - \frac{1}{x} - \frac{3}{2} \ln(2x - 1)$, or equivalent s on A, B, C, D . Give B2 $$ if only one error in integration; B1 $$ if two.)		
	(ii)	(The f.t. is	and obtain $x + 2 \ln x - \frac{1}{x} - \frac{3}{2} \ln(2x - 1)$, or equivalent s on A , B , C , D . Give B2 $$ if only one error in integration; B1 $$ if two.) limits correctly in the complete integral		