

IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method of generating a monaural signal—~~(S)~~ comprising a combination of at least two input audio channels ~~(L, R)signals~~, said method comprising the steps of:
5

~~dividing said at least two input audio signals into a plurality of sequential segments;~~
~~summing, for each of a plurality of the sequential segments~~
~~(t(n)) of said audio channels (L, R)signals, summing (46)~~
~~corresponding frequency components from respective frequency~~
~~spectrum representations for each audio channel (L(k), R(k))signal~~
10

~~to provide form a set of summed frequency components (S(k)) for~~
~~each sequential segment;~~
~~calculating, for each of said plurality of the sequential segments,~~
~~calculating (45) a correction factor (m(i)) for each of a~~
~~plurality of frequency bands (i) as function of the energy of the~~
15

~~frequency components of the summed signal frequency components in~~
~~said band ($\sum_{k \in i} |S(k)|^2$) and the energy of said frequency components of~~
~~the input audio channels signals in said band ($\sum_{k \in i} (|L(k)|^2 + |R(k)|^2)$);~~
~~and~~
~~correcting (47) each summed frequency component as a~~
20

~~function of the correction factor (m(i)) for the frequency band of~~
~~said component; and~~

outputting said corrected summed frequency components as said monaural signal.

2. (Currently Amended) A-The method according toas claimed in
claim 1, wherein said method further comprising comprises the steps
of:

5 providing (42) a respective set of sampled signal values
for each of a plurality of sequential segments for each input audio
channelsignal; and

10 transforming, for each of said plurality of sequential
segments, transforming (44) each of said set of sampled signal
values into the frequency domain to provide said complex frequency
spectrum representations of each input audio channel
(L(k), R(k))signal.

3. (Currently Amended) A-The method according toas claimed in
claim 2, wherein the step of providing said sets of sampled signal
values comprises:

5 combining, for each input audio channelsignal, combining
overlapping segments (m1,m2) into respective time-domain signals
representing each channelinput audio signal for a time window
(t(n)).

4. (Currently Amended) A-The method according toas claimed in
claim 1, wherein said method further comprising comprises the step
of:

5 | converting, for each sequential segment, converting (48)
| said corrected frequency spectrum representation of said summed
signal (S'(k)) frequency components into the time domain.

5. (Currently Amended) A-The method according toas claimed in
claim 4, wherein said method further comprising comprises the step
of:

5 | applying overlap-add (50) to successive converted summed
signal representations to provide a final summed signal-(s1,s2).

6. (Currently Amended) A-The method according toas claimed in
claim 1 wherein two input audio channels-signals are summed, and
wherein said correction factors (m(i)) are determined according to
the function:

$$5 | m^2(i) = \frac{\sum_{k \in i} \{ |L(k)|^2 + |R(k)|^2 \}}{2 \sum_{k \in i} |S(k)|^2} = \frac{\sum_{k \in i} \{ |L(k)|^2 + |R(k)|^2 \}}{2 \sum_{k \in i} |L(k)+R(k)|^2}$$

7. (Currently Amended) A-The method according toas claimed in
claim 1, wherein two or more input audio channelssignals (X_n) are
summed according to the function:

$$S(k) = C(k) \sum_n w_n(k) X_n(k)$$

5 | wherein C(k) is the correction factor for each frequency component,
and wherein said correction factors (m(i)) for each frequency band
are determined according to the function:

$$m^2(i) = \frac{\sum_n \sum_{k \in i} |w_n(k)X_n(k)|^2}{n \sum_{k \in i} \left| \sum_n w_n(k)X_n(k) \right|^2}$$

wherein $w_n(k)$ comprises a frequency-dependent weighting factor for

10 each input ~~channel~~ audio signal.

8. (Currently Amended) ~~A-The method according to as claimed in~~
claim 7, wherein $w_n(k)=1$ for all input audio ~~channel~~ signals.

9. (Currently Amended) ~~A-The method according to as claimed in~~
claim 7, wherein $w_n(k) \neq 1$ for at least some of the input audio
~~channel~~ signals.

10. (Currently Amended) ~~A-The method according to as claimed in~~
claim 7, wherein the correction factor for each frequency component
 $\langle C(k) \rangle$ is derived from a linear interpolation of the correction
factors $\langle m(i) \rangle$ for at least one band.

11. (Currently Amended) ~~A-The method according to as claimed in~~
claim 1, wherein said method further comprising comprises the steps
of:

5 determining, for each of said plurality of frequency
bands, determining an indicator $\langle \alpha(i) \rangle$ of the phase difference
between frequency components of said audio ~~channel~~ signals in a
sequential segment; and

prior to summing corresponding frequency components,
transforming the frequency components of at least one of said audio
10 | ~~channels~~~~signals~~ as a function of said indicator for the frequency
band of said frequency components.

12. (Currently Amended) A—~~The method according to as claimed in~~
claim 11, wherein said transforming step comprises operating the
following functions on frequency components $(L(k), R(k))$ of left
and right input audio ~~channels~~~~signals~~:

5 $L'(k) = e^{j c \alpha(i)} L(k)$
 $R'(k) = e^{-j(1-c)\alpha(i)} R(k)$

wherein $0 < c < 1$ determines the distribution of phase alignment
between the said input ~~channels~~~~audio signals~~.

13. (Currently Amended) A—~~The method according to as claimed in~~
claim 1, wherein said correction factor is a function of a sum of
energy of the frequency components of the summed signal in said
band and a sum of the energy of said frequency components of the
5 | input audio ~~channels~~~~signals~~ in said band.

14. (Currently Amended) A—~~component (S8')~~~~An apparatus for~~
generating a monaural signal from a combination of at least two
input audio ~~channels~~~~signals~~ (L, R) , comprising:

5 a segmenter for dividing said at least two input audio
signals into a plurality of sequential segments;

10 a summer (46) arranged to sum for summing, for each of a plurality of the sequential segments ($t(n)$) of said audio channels (L, R) signals, corresponding frequency components from respective frequency spectrum representations for each audio channel ($L(k), R(k)$) signal to provide form a set of summed frequency components ($S(k)$) for each sequential segment;

15 means for calculating (45) a correction factor ($m(i)$) for each of a plurality of frequency bands (i) of each of said plurality of sequential segments as function of the energy of the frequency components of the summed signal frequency components in said band ($\sum_{k \in i} |S(k)|^2$) and the energy of said frequency components of the input audio channels signals in said band ($\sum_{k \in i} \{ |L(k)|^2 + |R(k)|^2 \}$);
and

20 a correction filter (47) for correcting each summed frequency component as a function of the correction factor ($m(i)$) for the frequency band of said component, said correction filter outputting the monaural signal.

15. (Currently Amended) An audio coder including the component of apparatus as claimed in claim 14.

16. (Currently Amended) ~~An audio system comprising an audio coder as claimed in claim 15, and a compatible audio player.~~