ECS230

Summary 6

Eigenvalue Problems

The Power Method $A \in \mathbb{C}^{n \times n}$ non-defective (i.e. diagonalizable)

There are *n* eigenpairs (λ_i, x_i) $i = 1, \ldots, n$

We assume that eigenvalues are ordered by magnitude and

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$$

 λ_1 is the dominant eigenvalue.

The eigenvectors x_i are linearly independent.

Any non-zero vector $u_0 \in \mathbb{C}^n$ can be written as a linear combination of the x_i :

$$u_0 = \gamma_1 x_1 + \gamma_2 x_2 + \ldots + \gamma_n x_n$$

The power method consists in computing $A^k u_0$.

$$A^k u_0 = \gamma_1 \lambda_1^k x_1 + \gamma_2 \lambda_2^k x_2 + \ldots + \gamma_n \lambda_n^k x_n$$

 $\lim_{k\to\infty} A^k u_0 = \lambda_1^k \gamma_1 x_1$

Algorithm 1 Power Method

- 1: k = 0
- 2: while not converged do
- $3: u_{k+1} = Au_k$
- 4: k := k + 1
- 5: end while

Algorithm 1 can lead to exponential growth (or decrease) of the norm of u_k , resulting in overflow (or underflow). Algorithm 2 solves this problem by normalizing u_k at each iteration.

Algorithm 2 Power Method

```
1: k = 0

2: while not converged do

3: u_{k+1} = Au_k

4: u_{k+1} := u_{k+1}/||u_{k+1}||

5: k := k+1

6: end while
```

Convergence:

The residual vector is $r_k = Au_k - \mu_k u_k$ where μ_k is an approximation of the eigenvalue λ_1 . Convergence criterion: stop when $||r_k||$ is "small". Rayleigh quotient For a given $u \neq 0$ and a given μ , define the residual as $r(\mu) = Au - \mu u$. The residual $r(\mu)$ is minimum if

$$\mu = \frac{u^H A u}{u^H u}$$
 (Rayleigh quotient)

Algorithm 3 Power Method with convergence criterion

```
1: x = u_0/||u_0||
2: while not converged do
3:
       y = Ax
       \mu = x^H A x
4:
       r = y - \mu x
5:
       x = y/||y||
6:
       if ||r|| < \epsilon then
 7:
8:
           converged = true, done
9:
       end if
10: end while
```

Convergence rate:

At iteration k, the error $u_k - x_1$ is dominated by a term proportional to $|\lambda_2/\lambda_1|^k$, i.e. at each iteration the error is reduced by a factor $|\lambda_2/\lambda_1|$. The convergence rate is $|\lambda_2/\lambda_1|$.

Shifted power method

Use $A - \sigma I$ instead of A.

 $A - \sigma I$ has eigenpairs $(\lambda_1 - \sigma, x_1), (\lambda_2 - \sigma, x_2), \ldots$ i.e. eigenvectors of A are also eigenvectors of $A - \sigma I$. Choosing the shift σ carefully can improve the

convergence rate of the power iteration.

Example 1: A has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -0.99$. The convergence rate of the power method (without shift) is |0.99/1.0| = 0.99, i.e. convergence is slow. Using a shift $\sigma = -1/2$, the eigenvalues of $A - \sigma I$ are $\lambda_1 - \sigma = 1.5$ and $\lambda_2 - \sigma = -0.49$. The convergence rate of the (shifted) power iteration is

$$\frac{|\lambda_2 - \sigma|}{|\lambda_1 - \sigma|} = |-0.49/1.5| \approx 0.33$$

and convergence is faster.

Example 2: A has eigenvalues $\lambda_1 = 1$ $\lambda_2 = -0.99$ and $\lambda_3 = 0$. The convergence rate of the power method (without shift) is |0.99/1.0| = 0.99, i.e. convergence is slow. Using a shift $\sigma = -1/2$, the eigenvalues of $A - \sigma I$ are $\lambda_1 - \sigma = 1.5$, $\lambda_2 - \sigma = -0.49$ and $\lambda_3 - \sigma = 0.50$. The convergence rate of the (shifted) power iteration is

$$\frac{|\lambda_3 - \sigma|}{|\lambda_1 - \sigma|} = |0.50/1.5| \simeq 0.33$$

and convergence is faster. Note that with this shift, the convergence rate is determined by λ_3 and not λ_2 .