Travail et énergie cinétique

I-Energie cinétique :

1)Energie cinétique d'un corps solide en translation :

L'énergie cinétique d'un corps solide de masse m et de vitesse v en mouvement de translation est donné par la relation suivante:

$$E_e = \frac{1}{2}.mv^2$$

E_c: énergie cinétique en (J) m: masse du corps en (kg) v: vitesse du corps en (m/s)

2)Energie cinétique d'un corps solide en rotation :

On considère un corps solide en rotation autour d'un axe fixe avec une vitesse angulaire a , donc tous ses points sont en rotation avec la même vitesse angulaire et chaque point a sa vitesse linéaire $v_i = r_i . \omega_i$.

L'énergie cinétique de l'ensemble de tous les points matériel du corps est donnée par la relation suivante:

$$Ec = \Sigma Eci$$
.... = $Ec_1 + Ec_2 + Ec_3 + \dots + Ec_n$
.... = $\frac{1}{2} .m_1 v_1^2 + \frac{1}{2} .m_2 v_2^2 + \frac{1}{2} .m_3 v_3^2 + \dots + \frac{1}{2} .m_n v_n^2$
.... = $\frac{1}{2} .m_1 (r_1 .\omega)^2 + \frac{1}{2} .m_2 (r_2 .\omega)^2 + \frac{1}{2} .m_3 (r_3 .\omega)^2 + \dots + \frac{1}{2} .m_n (r_n .\omega)^2$
= $\frac{1}{2} .\omega^2 \left[m_1 .r_1^2 + .m_2 .r^2 + m_3 .r_3 .^2 + \dots + .m_n .r_n^2 \right]$
= $\frac{1}{2} .\omega^2 \sum_{i=n}^{i=n} m_i .r_i^2$

En posant : $J_{\Delta} = \sum m_i x_i^2$ en (kg.m²)

 J_{\star} : Moment d'inertie du corps solide par rapport à l'axe Δ

Par conséquence : l'énergie cinétique d'un corps solide en rotation autour d'un axe Δ est donnée par la relation:

E_c: énergie cinétique d'un corps en mvt de rotation en (J).

J_A: moment d'inertie du corps solide.en (kg.m²)

a: vitesse angulaire en (rad/s)

Moment d'inertie de quelques corps solide:

le cylindre l'anneau le disque $J_{\triangle} = \frac{1}{2}mr^2$

II-Théorème de l'énergie cinétique :

1) Activité expérimentale:

On libère un autoporteur de masse m=700g du haut d'une table à coussin d'air inclinée d'un angle $\alpha = 10^{\circ}$ par rapport à l'horizontale sans vitesse initiale ,il glisse sans frottement .On enregistre pendant des intervalles de temps successifs et égaux les positions de son centre d'inertie G et on obtient l'enregistrement suivant:

- 1) Donner le bilan des forces qui s'exercent sur l'autoporteur puis représenter les (sans échelle).
- 2) Donner l'expression du travail de chacune des forces qui s'exerce sur l'autoporteur entre G₁ et G₅ puis calculer la la somme des travaux des forces entre ces deux points.
- 3) Calculer l'énergie cinétique de l'autoporteur dans chacune des positions G₃ et G₅.
- 4) Calculer la variation de l'énergie cinétique : $\Delta E_c = E_{c5} E_{c3}$
- 5) Comparer la somme des travaux des forces, quelle est votre conclusion? On prend g=9.8N/kg.réponses.....

$$\begin{pmatrix} 1 \end{pmatrix} \qquad \stackrel{\vec{P}}{\vec{R}}$$

2)
$$W\vec{R} = 0$$

 $W\vec{P} = m.g.G_3G_5 \sin \alpha = 0.7 \times 9.8 \times 48 \times 10^{-3} \sin 10 = 0.057J$ \Longrightarrow $\Sigma W\vec{F}_{G_3 \to G_5} = W\vec{P} + W\vec{R} = 0.057J$

3)
$$v_5 = \frac{G_4 G_6}{2\tau} = \frac{60.10^{-3}}{2 \times 60 \times 10^{-3}} = 0.5 m/s \implies Ec_5 = \frac{1}{2} m. v_5^2 = \frac{1}{2} \times 0.7 \times 0.5^2 = 0.0875 J$$

$$v_3 = \frac{G_2 G_4}{2\tau} = \frac{36.10^{-3}}{2 \times 60 \times 10^{-3}} = 0.3 m/s \implies Ec_3 = \frac{1}{2} .m. v_3^2 = \frac{1}{2} \times 0.7 \times 0.3^2 = 0.0315 J$$

$$\Delta Ec = E_4 - E_5 = 0.0875 - 0.0315 = 0.056 J$$

4)
$$\Delta Ec = E_{c5} - E_{c3} = 0.0875 - 0.0315 = 0.056 J$$

5
$$\Delta Ec \approx \Sigma W \vec{F}$$

1) Enoncé du théorème de l'énergie cinétique:

Dans un repère Galiléen, la variation de l'énergie cinétique d'un corps solide (en mouvement translation ou en mouvement de rotation autour d'un axe fixe), entre deux instants, est égale à la somme des travaux des forces qui s'exercent sur ce corps entre ces deux instants.

$$\Delta E_c = \Sigma W \vec{F}$$

$$\Delta E_c = E c_f - E c_i$$
 Pour les mouvements de translation :
$$\Delta E_c = \frac{1}{2} .m. {v_f}^2 - \frac{1}{2} .m. {v_i}^2$$

$$\Delta E_e = \frac{1}{2} . m. v_f^2 - \frac{1}{2} m. v_i^2$$

Pour les mouvements de rotation :
$$\Delta E_c = \frac{1}{2} J_{\Delta} \omega_f^2 - \frac{1}{2} J_{\Delta} \omega_i^2$$

2) Activité expérimentale:

(vérification de la relation $\Delta E_c = \Sigma W \vec{F}$)

On lâche une bille, sans vitesse initiale, d'un point O situé à une altitude H devant un capteur qui permet de calculer la vitesse de la bille au moment de son passage devant le capteur durant la chute.

On fait varier à des instants différents la position du capteur H et on mesure la vitesse V en considérant l'instant de départ de la bille du point O comme origine des temps.

Le tableau suivant représente les résultats obtenus:

(m²/s² V²	vitesse V (m/s)	l'instant t en (s)	altitude H en (m)
	1,40	142,85	0,1
	1,98	202,04	0,2
	2,80	285,71	0,4
	3,43	350,00	0,6
	3,96	404,08	0,8
	4,42	451,02	1 .

- 1) Compléter le remplissage du tableau.
- 2) Tracer la courbe qui représente la variation de V² en fonction de H. puis déterminer graphiquement la valeur du coefficient directeur de la droite qui représente V²=f(H), quelle est son unité.? Faites votre conclusion.

On donne : g=9.8N/kg.

- 3) a)Donner l'expression du travail du poids de la bille lors de sa chute de l'altitude H.
 - b) calculer sa valeur sachant que la masse de la bille est m=100g et H=0,1m.
- 4) Comparer le résultat de 3)b) avec la valeur de : $\frac{1}{2}$. mV^2 , donner votre conclusion.

-----réponses-----

1)		
1)	$(m^2/s^2 V^2)$	الارتفاع (m) H
	1,96	0,1
	3,9	0,2
	7,84	0,4
	11,76	0,6
	15.69	0.0

19,53

	V ² (m ² /s ²)		
20			
20	' - 	*	
15	5 – 1 1 B		
10	4		
5		ı I	
	A	H (m)	
	0,1 0,2 0,3 0,4 0,5		
	$k = \frac{\Delta V^2}{\Delta H} = \frac{(V^2)_B - (V^2)_B - (V^2)_B}{(H^2)_B - (V^2)_B}$	$\frac{(V^2)_A}{(H)_A} = \frac{11,76-1,96}{0,6-0,1} = 19,6 = 2 \times g$	(g = 9,8)

L'unité de k est : $(N/kg) \Rightarrow$

$$V^2 = 2.g.H$$

En multipliant les deux membres de cette égalité par $\frac{m}{2}$, elle devient: $\frac{1}{2}mV^2 = m.g.H$

Le 1^{er} membre représente la variation de l'énergie cinétique et le 2^{ème} membre représente la somme des travaux des forces appliquées sur la bille.

$$\Delta E_c = \Sigma W \vec{F}$$

3)
$$W\vec{P} = m.g.H = 0.1 \times 9.8 \times 0.1 = 0.098J$$
 $\frac{1}{2}m.V^2 = \frac{1}{2} \times 0.1 \times 1.96 = 0.098J$ \Rightarrow $\frac{1}{2}.m.V^2 = m.g.H$ d'où $\Delta E_c = \Sigma W\vec{F}$

..... SBIRO Abdelkrim