

Dimensional Modeling

CS 537- Big Data Analytics

Dr. Faisal Kamiran

Dimensional Modeling (DM)

- Introduced by Ralph Kimball in 1996 (The word "Kimball" is now considered synonymous with dimensional modeling.)
- Includes a set of methods and techniques to optimize data storage in a Data Warehouse
- Optimizes the database for faster retrieval
- Dimensional Models divide data into measurements (facts) and their descriptive contexts (dimensions)

Dimensional Modeling VS Relational Modeling

 Dimensional Models are used in data warehousing systems to answer business questions. They are designed to read, summarize and analyze numeric data.

 Relational Models are used in transaction systems where many transactions are executed. They are optimized for addition, updating and deletion of data in these systems.

Collaboration in Dimensional Modeling

Design should always be done in collaboration with business experts

Dimensional model should be developed via interactive workshops

between the data modeler and subject matter

Important: Collaboration is critical

Dimensional Modeling Process

Four key decisions made during the design of a dimensional model:

- Select the business process
- 2. Declare the grain
- 3. Identify the dimensions
- 4. Identify the facts

Gathering Business Requirements

- Data modeler needs to understand the needs of the business as well as their underlying data
- Requirements are uncovered via sessions with business representatives
- Includes understanding DM objectives, business issues, decisionmaking processes and required analytic needs
- The quality of the available data is also identified at this stage

Grain

- The Grain describes the level of detail for the business problem/solution.
- It involves identifying the lowest level of information for each table

Example

"A manager wants to find the sales of different products on a daily basis."

Here, the grain is product sales by day

Facts

- Measurements that result from a business process event
- Typically numeric

Dimensions

• The "who, what, where, when, why, and how" context surrounding a business process event.

Example

What is the average annual faculty salary of CS department?

Example

What is the average annual faculty salary of CS department?

Measurement (Fact)

Example

What is the average annual faculty salary of CS department?

Dimensional Information

Fact Tables

Fact tables consist of the measurements, metrics or facts of a business process.

- Fact tables are made up of facts (events that have actually happened).
- Fact tables can be aggregations of data and aren't meant to be updated at place.
- Fact tables normally have integers or numbers.
- Fact tables also typically have quantitative data. The quantity sold, the price per item, total price, and so on.

Dimension

A structure that categorizes facts and measures in order to enable users to answer business questions. Dimensions are people, products, place and time.

- A dimension table contains dimensions of a fact.
- They are joined to fact table via a foreign key.
- Dimension tables are denormalized tables.
- The Dimension Attributes are the various columns in a dimension table
- Dimensions offers descriptive characteristics of the facts with the help of their attributes

Fact or Dimension Dilemma

Fact tables

- Record business events, like an order, a phone call, a book review
- Fact tables columns record events recorded in quantifiable metrics like quantity of an item, duration of a call, a book rating.

Dimension tables

- Record the context of the business events, e.g., who, what, where, why, etc.
- Dimension tables columns contain attributes like the store at which an item is purchased, or the customer who made the call, etc.

Facts (Aggregations)

A data warehousing fact can be:

- Additive
 - An additive fact can be added under all circumstances e.g. sales amount
- Non-additive
 - Cannot be added
- Semi-additive
 - They can be added along some dimensions but not with others

Facts (Additive)

- OLAP queries involve retrieving many fact table rows and aggregating them e.g.
 - "Total university tuition fess collected in 2019"
 - Tuition Payment measure is additive so it can be aggregated in the result

Tuition_Payment	Student_Key	Date_Key
\$7,000.00	732017235	88085255
\$6,500.00	481011832	88085255
\$7,000.00	881838281	82324174
\$7,000.00	298191999	13216661
•••	•••	

Facts (Non-Additive)

Typical non-additive facts

- Ratios
- Percentages
- Calculated averages

With non-additive facts

- Store underlying components in fact tables
- Calculate aggregate averages from the totals of these underlying components at report time

Facts (Non-Additive)

Example of a non-additive fact (GPA)

LastName	FirstName	Year Fall 202	O GPA	
Jackson	Sally	FR	3.3	
Thompson	Richard	SO	3.2	
Williams	Greta	FR	2.8	
Young	Ted	FR	4.0	
			122	

Semi-additive facts

- Can be added sometimes (along some dimensions)
- But other times, they cannot be added (along the other dimensions)
 Balance_Fact

Customer_Key	Time_Key	Balance
618	201512141824	1500
618	201512141830	1400
700	201512141824	3000
700	201512141830	2800
701	201512141824	10000
701	201512141826	9800

Semi-additive facts

What is the total balance at time 201512141824?

1500 + 3000 + 10000

Balance_Fact

Customer_Key	Time_Key	Balance
618	201512141824	1500
618	201512141830	1400
700	201512141824	3000
700	201512141830	2800
701	201512141824	10000
701	201512141826	9800

Semi-additive facts

Cannot add along the time dimension

What is the total balance of customer 618?

Balance_Fact

Customer_Key	Time_Key	Balance
618	201512141824	1500
618	201512141830	1400
700	201512141824	3000
700	201512141830	2800
701	201512141824	10000
701	201512141826	9800

Semi-additive facts

However, we can perform other operations along the time dimension

Balance_Fact

(1500 + 1400) / 2

Customer_Key	Time_Key	Balance
618	201512141824	1500
618	201512141830	1400
700	201512141824	3000
700	201512141830	2800
701	201512141824	10000
701	201512141826	9800

Customer 618's average account balance is 1450

Primary Key

- A unique identifier for each row in a database table
- Natural Key
 - Transferred from the source system to the DWH
 - Has contextual or business meaning
 - E.g., PersonName
- Surrogate Key
 - Generated artificially
 - Does not have any business meaning
 - Generated while transferring data to the DWH
 - Usually sequentially assigned integers

- In dimension tables, use surrogate key as the primary key
 - Primary keys in dimension table are used as foreign keys in the fact table

Faculty_DIM Faculty_ID Faculty_Last_Name Faculty_First_Name Year_Joined Faculty_Rank

Primary Key in Fact Tables

Primary Key in Fact Tables

Dimension Types

Dimensions can consist of multiple hierarchies

Dimension

Dimensions can consist of multiple hierarchies

The product dimension will refer to the entire set of these objects

Implementing Different Schemas

Two of the most popular (because of their simplicity) data mart

schemas for data warehouses are:

- Star Schema
- Snowflake Schema

Star Schema

Star Schema is the simplest style of data mart schema.

• The star schema consists of one fact table referencing any number

of dimension tables.

Why "star" schema?

- Gets its name from the physical model resembling a star shape
- A fact table is at its center

Dimension table surrounds the fact table representing the star's

points.

Star Schema

Star Schema


```
Faculty Key
Faculty_ID
Faculty_Last_Name
Faculty_First_Name
Year_Joined
Faculty_Rank
Dept_ID
Dept_Name
Dept_Year_Founded
College_ID
College_Name
College_Year_Founded
Dean
```

Star Schema

Student Dimension Time Dimension PKStudent Key PK Time Key StudentID Date **Course Dimensions** Student Name Day of the Week **PK**Course Key Gender Month Course No. Contact Number Ouarter Course Name Guardian Name Academic Year Credit Hours Guardian Contact No Semester Email ID Course Time Lecturer Assigned Course Days **Faculty Dimension Education Fact Measure** Course Start Date **PK** Faculty Key Fact Key **Faculty Name** PK Course End Date FK1 Student Key Faculty Type Rank FK2Course Key FK3 Account Key Contact No. **Accounts Dimension** FK4 Faculty Key Email ID **PK**Account Key Room No. FK5 Department Staff Name Key **FK6** Time Key Start Date of Service **Shift Timings** No. of Enrollments End Date of Service Shift Days **Tuition Fees Amount** Department Name Staff Salary Hostel Fees Amount Staff Type Research Grants **Department Dimension** Location Alumni Contributions **PK**Department Key Branch Name **Donation Amount** Laboratory Name Department N ame No. of Courses Department Number No. of Faculty No. of Published Papers Head of Department No. of Rejected P apers

Benefits

Denormalized

Simplifies queries

Fast aggregations

Drawbacks

 Issues that come with denormalization

Data Integrity

Decrease query flexibility

Snowflake Schema

Logical arrangement of tables in a multidimensional database represented by centralized fact tables which are connected to

multiple dimensions

Why "snowflake" schema?

"A complex snowflake shape emerges when the dimensions of a snowflake schema are elaborated, having multiple levels of relationships, child tables having multiple parents."

Snowflake schema

Snowflake schema

Snowflake Schema PK-FK Rules

Every **non-terminal** dimension has:

- Primary/surrogate key
- The next-highest level's primary/surrogate key as a foreign key

Snowflake Schema PK-FK Rules

Every **terminal** dimension has:

- Primary/surrogate key
- No hierarchy-based foreign keys (because no higher level)

Snowflake hierarchy with branching

Snowflake hierarchy with branching

Snowflake vs Star

Star Schema	Snowflake Schema
All dimensions along a given hierarchy in one dimension table	Each dimension/dimensional level in its own table
One level away from fact table along each hierarchy	One or more levels away from fact table along each hierarchy
With one fact table usually resembles a star	With one fact table usually resembles a snowflake

Snowflake vs Star

Star Schema	Snowflake Schema
Overall fewer database joins for drilling up/down	Overall more database joins for drilling up/down
Database primary->foreign key relationships straightforward	Database primary->foreign key relationships more complex
Typically more database storage needed for dimensional data	Typically less database storage needed for dimensional data
Denormalized dimensional table data	Denormalization is less than in star schema

Thanks