

ZB7412-00

SimpleLink™ Bluetooth® Low Energy Wireless MCU Module

TI CC2640R2F Solution

Datasheet

Revision 0.3

Prepared By	Reviewed By	Approved By

Constrict © IOD IIN TECLINOLOGIES INC. 2017

<u>Index</u>

1.	. OVERVIEW	3
	1.1. GENERAL FEATURES	3
	1.2. APPLICATIONS	
2.	. FUNCTIONAL FEATURES	5
	2.1. MODULE BLOCK DIAGRAM	5
	2.2. BLOCK FUNCTIONAL FEATURE	6
	Microcontroller	6
	Ultra-Low Power Sensor Controller	6
	Peripherals	6
	RF Section	7
3.	. MODULE OUTLINE	8
	3.1. SIGNAL LAYOUT (TOP VIEW)	8
	3.2. PIN DESCRIPTION	9
4.	. MODULE SPECIFICATIONS	11
	4.1. ABSOLUTE MAXIMUM RATINGS ⁽¹⁾⁽²⁾	11
	4.2. ESD RATINGS	11
	4.3. RECOMMENDED OPERATING CONDITIONS	12
	4.4. Power Consumption Summary	13
	4.5. GENERAL CHARACTERISTICS	14
	4.6. 125-кврѕ Содед (Вьиетоотн 5) — RX	14
	4.7. 125-кврѕ Содед (Вьиетоотн 5) — TX	15
	4.8. 500-кврѕ Соded (Bluetooth 5) — RX	16
	4.9. 500-кврѕ Содед (Вьиетоотн 5) $ TX$	17
	4.10. 1-MBPS GFSK (BLUETOOTH LOW ENERGY) – RX	
	4.11. 1-MBPS GFSK (BLUETOOTH LOW ENERGY) – TX	
	4.12. 2-MBPS GFSK (BLUETOOTH 5) — RX	
	4.13. 2-MBPS GFSK (BLUETOOTH 5) — TX	
	4.14. Internal 24-MHz Crystal Oscillator (XOSC_HF) ⁽¹⁾	
	4.15. 32.768-KHz Crystal Oscillator (XOSC_LF)	
	4.16. 48-MHz RC Oscillator (RCOSC_HF)	
	4.17. 32-KHz RC OSCILLATOR (RCOSC_LF)	
	4.18. ADC Characteristics ⁽¹⁾	
	4.19. Temperature Sensor	23

4.20. Battery Monitor	24
4.21. CONTINUOUS TIME COMPARATOR	24
4.22. LOW-POWER CLOCKED COMPARATOR	24
4.23. Programmable Current Source	25
4.24. DC CHARACTERISTICS	25
4.25. TIMING REQUIREMENTS	26
4.26. SWITCHING CHARACTERISTICS	27
4.27. Typical Characteristics	29
4.28. CHIP ANTENNA CHARACTERISTICS	30
5. DESIGN RECOMMENDATIONS	32
5.1. MODULE LAYOUT RECOMMENDATIONS	32
5.2. Reference Schematic	34
6. PACKAGE INFORMATION	35
6.1. MODULE MECHANICAL OUTLINE	35
6.2. Ordering Information	36
6.3. PACKAGE MARKING	37
7. SMT AND BAKING RECOMMENDATION	39
7.1. Baking Recommendation	39
7.2. SMT RECOMMENDATION	39
8. TAPE REEL INFROMATION	41
8.1. COVER / CARRIER TAPE DIMENSION	41
9. REGULATORY INFORMATION	42
9.1. United States	42
9.2. CANADA	43
9.3. Europe	44
9.4. Japan	44
9.5. Taiwan	45
9.6. Australia/New Zealand	46
10 HISTORY CHANGE	47

1. OVERVIEW

The certified ZB7412-00 module from JORJIN is a wireless MCU module targeting Bluetooth 4.2 and Bluetooth 5 low energy applications. This module is based on TI CC2640R2F wireless MCU QFN-32 package chip.

The module is a cost-effective, ultralow power, 2.4-GHz RF devices. Very low active RF and MCU current and low-power mode current consumption provide excellent battery lifetime and allow for operation on small coin cell batteries and in energy-harvesting applications.

1.1. General Features

- TI CC2640R2F, 24MHz & 32.768KHz crystals, DC2DC, and chip antenna on a single module.
- Built-in TI CC2640R2F 5x5mm RHB VQFN32 (15 GPIOs)
- LGA 25pins package.
- Dimension 16.9mm(L) x 11mm(W) x 2.45mm(H)
- Powerful ARM® Cortex®-M3 Microcontroller
- Ultra-Low Power Sensor Controller
- Efficient Code Size Architecture, Placing Drivers, TI-RTOS, and Bluetooth® Software in ROM to Make More Flash Available for the Application
- No external component required.
- Low Power and Wide Supply Voltage Range: 1.8 to 3.8V
 - Internal DC-DC converter built-in
- 2.4-GHz RF Transceiver and Integrated Antenna.
- Suitable for Systems Targeting Compliance With Worldwide Radio Frequency Regulations
 - ETSI EN 300 328 (Europe)
 - EN 300 440 Class 2 (Europe)
 - FCC CFR47 Part 15 (US)
 - ARIB STD-T66 (Japan)
- Tools and Development Environment from TI
 - Full-Feature and Low-Cost Development Kits
 - Packet Sniffer PC Software
 - Sensor Controller Studio
 - SmartRF™ Studio
 - SmartRF Flash Programmer 2
 - IAR Embedded Workbench® for ARM

- Code Composer Studio™

1.2. Applications

- Home and Building Automation
 - Connected Appliances
 - Lighting
 - Locks
 - Gateways
 - Security Systems
- Industrial
 - Logistics
 - Production and Manufacturing Automation
 - Asset Tracking and Management
 - HMI and Remote Display
 - Access Control
- Retail
 - Beacons
 - Advertising
 - ESL and Price Tags
 - Point of Sales and Payment Systems
- Health and Medical
 - Thermometers
 - Blood Glucose and Pressure Meters
 - Weight Scales
 - Hearing Aids
- Sports and Fitness
 - Activity Monitors and Fitness Trackers
 - Heart Rate Monitors
 - Running and Biking Sensors
 - Sports Watches
 - Gym Equipment
 - Team Sports Equipment
- HID
- Voice Remote Controls
- Gaming
- Keyboards and Mice

2. FUNCTIONAL FEATURES

2.1. Module Block Diagram

2.2. Block Functional Feature

Microcontroller

- Powerful ARM® Cortex®-M3
- EEMBC CoreMark® score: 142
- Up to 48-MHz Clock Speed
- 275KB of Nonvolatile Memory Including 128KB of In-System Programmable Flash
- Up to 28KB of System SRAM, of Which 20KB is Ultra-Low Leakage SRAM
- 8-KB SRAM for Cache or System RAM Use
- 2-Pin cJTAG and JTAG Debugging
- Supports Over-The-Air Upgrade (OTA)

Ultra-Low Power Sensor Controller

- Can run autonomous from the rest of the system
- 16-Bit Architecture
- 2-KB Ultra-Low Leakage SRAM for Code and Data

Peripherals

- All Digital Peripheral Pins can be routed to any GPIO.
- 15 GPIOs
- 4 General-Purpose Timer Modules (Eight 16-Bit or Four 32-Bit Timer, PWM Each)
- 12-Bit ADC, 200-ksamples/s, 8-Channel Analog MUX
- Continuous Time Comparator
- Ultra-Low Power Analog Comparator
- Programmable Current Source
- UART
- 2x SSI (SPI, MICROWIRE, TI)
- 12C
- 12S
- Real-Time Clock (RTC)

- AES-128 Security Module
- True Random Number Generator (TRNG)
- Support for 8 Capacitive Sensing Buttons
- Integrated Temperature Sensor

RF Section

- 2.4 GHz RF Transceiver Compatible With Bluetooth Low Energy (BLE) 4.2 and 5 specifications
- Excellent Receiver Sensitivity (–96 dBm for BLE), Selectivity, and Blocking Performance
- Link budget of 101 dB for BLE.
- Programmable Output Power up to +5 dBm
- Integrated Antenna
- Pre-certified for Compliance With Worldwide Radio Frequency Regulations
 - ETSI (Europe)
 - IC (Canada)
 - FCC (USA)
 - ARIB STD-T66 (Japan)
 - NCC (Taiwan)
 - RCM (Australia and New Zealand)

3. MODULE OUTLINE

3.1. Signal Layout (Top View)

3.2. Pin Description

Table 3-1. Pin Description

Pin			Pili Description
No.	Pin Name	Туре	Description
1	GND	GND	GND
2	NC	NC	No connection. For internal test only.
3	GND	GND	GND
4	DIO_0	Digital I/O	GPIO, Sensor Controller
5	DIO_1	Digital I/O	GPIO, Sensor Controller
6	DIO_2	Digital I/O	GPIO, Sensor Controller, High drive capability
7	DIO_3	Digital I/O	GPIO, Sensor Controller, High drive capability
8	DIO_4	Digital I/O	GPIO, Sensor Controller, High drive capability
9	JTAG_TMSC	Digital I/O	JTAG_TMSC, High drive capability
10	JTAG_TCKC	Digital I/O	JTAG_TCKC
11	DIO_5	Digital I/O	GPIO, High drive capability, JTAG_TDO
12	DIO_6	Digital I/O	GPIO, High drive capability, JTAG_TDI
13	RESET_N	Digital Input	Reset, active-low. No internal pullup. Built-in 0.1uF capacitor to GND.
14	DIO_7	Digital/Analog I/O	GPIO, Sensor Controller, Analog
15	DIO_8	Digital/Analog I/O	GPIO, Sensor Controller, Analog
16	DIO_9	Digital/Analog I/O	GPIO, Sensor Controller, Analog. In -04 module, DIO_9 pin is connected to CS# pin of internal serial SPI Flash.
17	DIO_10	Digital/Analog I/O	GPIO, Sensor Controller, Analog. In -04 module, DIO_10 pin is connected to SCLK pin of internal serial SPI Flash.
18	DIO_11	Digital/Analog I/O	GPIO, Sensor Controller, Analog. In -04 module, DIO_11 pin is connected to SI pin of internal serial SPI Flash.
19	DIO_12	Digital/Analog I/O	GPIO, Sensor Controller, Analog. In -04 module, DIO_12 pin is connected to SO pin of internal Serial SPI Flash.
20	DIO_13	Digital/Analog I/O	GPIO, Sensor Controller, Analog

21	DIO_14	Digital/Analog I/O	GPIO, Sensor Controller, Analog
22	VDDS	Power	1.8 V to 3.8 V main chip and DC/DC supply
23	VDDS2	S2 Power 1.8 V to 3.8 V GPIO supply	
24	NC NC No connection.		No connection.
25	GND	GND	Ground
G1~G4	GND	GND	Ground

4. MODULE SPECIFICATIONS

4.1. Absolute Maximum Ratings (1)(2)

over operating free-air temperature range (unless otherwise noted)

Parameter	Conditions	MIN	MAX	Unit
Supply voltage, VDDS ⁽³⁾		-0.3	4.1	V
Voltage on any digital pin ⁽⁴⁾		-0.3	VDDS+0.3	V
			Max 4.1	
Voltage on ADC input (V _{in})	Voltage scaling enabled	-0.3	VDDS	V
	Internal reference, voltage scaling disabled	-0.3	1.49	V
	VDDS as reference, voltage scaling disabled	-0.3	VDDS/2.9	V
Input RF level			+5	dBm
Storage temperature range		-40	+85	°C

- (1) All voltage values are with respect to ground, unless otherwise noted.
- (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (3) VDDS2 must be at the same potential as VDDS.
- (4) Including analog capable DIO.

4.2. ESD Ratings

	Parameter			
Electrostatic	Human Body Model (HBM), per ANSI/ESDA/JEDEC	All pins	±2500	٧
discharge	JS001 ⁽¹⁾			
performance (V _{ESD})	Charged Device Model (CDM), per JESD22-C101 ⁽²⁾	RF pins	±750	٧
		Non-RF pins	±750	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3. Recommended Operating Conditions

Parameter	Conditions	MIN	MAX	Unit
Ambient temperature range		-40	85	°C
Operating supply voltage (VDDS)	For operation in battery-powered and	1.8	3.8	V
	3.3 V systems			

4.4. Power Consumption Summary

Tc = 25°C, VDDS = 3.0 V with internal DC-DC converter, unless otherwise noted.

	Parameter	Test Conditions	Min	Тур	Max	Units
		Reset. RESET_N pin asserted or VDDS below		100		nA
		Power-on-Reset threshold				
		Shutdown. No clocks running, no retention		150		nA
		Standby. With RTC, CPU, RAM and (partial)		1.1		μΑ
		register retention. RCOSC_LF				
		Standby. With RTC, CPU, RAM and (partial)		1.3		μΑ
		register retention. XOSC_LF				
I_{core}	Core current	Standby. With Cache, RTC, CPU, RAM and		2.8		μΑ
	consumption	(partial) register retention. RCOSC_LF				
		Standby. With Cache, RTC, CPU, RAM and		3.0		μΑ
		(partial) register retention. XOSC_LF				
		Idle. Supply Systems and RAM powered.		550		μΑ
		Active. Core running CoreMark		1.45mA +		
				31uA/MHz		
		Radio RX		6.2		mA
		Radio TX, 0 dBm output power		6.8		
		Radio TX, 5 dBm output power		9.4		mA
	Peripheral Curre	ent Consumption (Adds to core current I_{core} for each	n periphera	al unit activated)	(1)	
	Peripheral	Delta current with domain enabled		20		μΑ
	power domain					
	Serial power	Delta current with domain enabled		13		μΑ
	domain					
	RF Core	Delta current with power domain enabled,		237		μΑ
I_{peri}		clock enabled, RF Core Idle				
	μ DMA	Delta current with clock enabled, module idle		130		μΑ
	Timers	Delta current with clock enabled, module idle		113		μΑ
	I2C	Delta current with clock enabled, module idle		12		μΑ
	12S	Delta current with clock enabled, module idle		36		μΑ
	SSI	Delta current with clock enabled, module idle		93		μΑ
	UART	Delta current with clock enabled, module idle		164		μА

⁽¹⁾ I_{peri} is not supported in standby or shutdown modes.

4.5. General Characteristics

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
FLASH MEMORY					
Supported flash erase cycles		100			K
before failure					Cycles
Flash page/sector erase current	Average delta current		12.6		mA
Flash page/sector erase time ⁽¹⁾			8		ms
Flash page/sector size			4		КВ
Flash write current	Average delta current, 4 bytes at a time		8.15		mA
Flash write time ⁽¹⁾	4 bytes at a time		8		μs
Flash page/sector erase time ⁽¹⁾			8		ms

⁽¹⁾ This number is dependent on Flash aging and will increase over time and erase cycles

4.6. 125-kbps Coded (Bluetooth 5) - RX

Parameter	Test Conditions	Min	Тур	Max	Units
Receiver sensitivity	BER = 10^{-3}		-102		dBm
Receiver saturation	BER = 10^{-3}		>5		dBm
Frequency error	Difference between the incoming carrier frequency	-260		310	kHz
tolerance	and the internally generated carrier frequency				
Data rate error	Difference between incoming data rate and the	-260		260	ppm
tolerance	internally generated data rate (37-byte packets)				
Data rate error	Difference between incoming data rate and the	-140		150	ppm
tolerance	internally generated data rate (255-byte packets)				
Co-channel rejection ⁽¹⁾	Wanted signal at –79 dBm, modulated interferer in		-3		dB
	channel, BER = 10 ⁻³				
Selectivity, ±1 MHz ⁽¹⁾	Wanted signal at –79 dBm, modulated interferer at		9 / 5 ⁽²⁾		dB
	±1 MHz, BER = 10 ⁻³				
Selectivity, ±2 MHz ⁽¹⁾	Wanted signal at –79 dBm, modulated interferer at		43/32 ⁽²⁾		dB
	±2 MHz, BER = 10 ⁻³				
Selectivity, ±3 MHz ⁽¹⁾	Wanted signal at –79 dBm, modulated interferer at		47/42 ⁽²⁾		dB
	±3 MHz, BER = 10 ⁻³				

Selectivity, ±4 MHz ⁽¹⁾	Wanted signal at –79 dBm, modulated interferer at	46/47 ⁽²⁾	dB
	±4 MHz, BER = 10 ⁻³		
Selectivity, ±6 MHz ⁽¹⁾	Wanted signal at –79 dBm, modulated interferer at	49/46 ⁽²⁾	dB
	±6 MHz, BER = 10 ⁻³		
Alternate channel	Wanted signal at –79 dBm, modulated interferer at	50/47 ⁽²⁾	dB
rejection, ±7 MHz ⁽¹⁾	$\geq \pm 7 \text{ MHz, BER} = 10^{-3}$		
Selectivity, Image	Wanted signal at -79 dBm, modulated interferer at	32	dB
frequency ⁽¹⁾	image frequency, BER = 10^{-3}		
Selectivity, Image	Note that Image frequency +1 MHz is the	5/32 ⁽²⁾	dB
frequency ±1 MHz ⁽¹⁾	Co-channel -1 MHz. Wanted signal at –79 dBm,		
	modulated interferer at ±1 MHz from image		
	frequency, BER = 10 ⁻³		
Blocker rejection, ±8	Wanted signal at -79 dBm, modulated interferer at	>46	
MHz and above ⁽¹⁾	± 8 MHz and above, BER = 10^{-3}		
Out-of-band blocking ⁽³⁾	30 MHz to 2000 MHz	-40	dBm
Out-of-band blocking	2003 MHz to 2399 MHz	-19	dBm
Out-of-band blocking	2484 MHz to 2997 MHz	-22	dBm
Intermodulation	Wanted signal at 2402 MHz, -76 dBm. Two	-42	dBm
	interferers at 2405 and 2408 MHz respectively, at		
	the given power level		

⁽¹⁾ Numbers given as I/C dB

4.7. 125-kbps Coded (Bluetooth 5) – TX

Parameter	Test Conditions	Min	Тур	Max	Units
Output power, highest setting	Delivered to a single-ended $50-\Omega$ load	3.2	4.8	5.6	dBm
Output power, lowest setting	Delivered to a single-ended $50-\Omega$ load		-21		dBm
Spurious emission conducted	f < 1 GHz, outside restricted bands		-43		dBm
measurement ⁽¹⁾	f < 1 GHz, restricted bands ETSI		-65		dBm
	f < 1 GHz, restricted bands FCC		-76		dBm
	f > 1 GHz, including harmonics		-46		dBm

⁽¹⁾ Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN

⁽²⁾ X / Y, where X is +N MHz and Y is -N MHz

⁽³⁾ Excluding one exception at F_{wanted} / 2, per Bluetooth Specification

300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).

4.8. 500-kbps Coded (Bluetooth 5) - RX

Parameter	Test Conditions	Min	Тур	Max	Units
Receiver sensitivity	BER = 10 ⁻³		-101		dBm
Receiver saturation	BER = 10^{-3}		>5		dBm
Frequency error	Difference between the incoming carrier frequency	-240		240	kHz
tolerance	and the internally generated carrier frequency				
Data rate error	Difference between incoming data rate and the	-500		500	ppm
tolerance	internally generated data rate (37-byte packets)				
Data rate error	Difference between incoming data rate and the	-310		330	ppm
tolerance	internally generated data rate (255-byte packets)				
Co-channel rejection ⁽¹⁾	Wanted signal at -72 dBm, modulated interferer in		-5		dB
	channel, BER = 10^{-3}				
Selectivity, ±1 MHz ⁽¹⁾	Wanted signal at -72 dBm, modulated interferer at		9 / 5 ⁽²⁾		dB
	±1 MHz, BER = 10 ⁻³				
Selectivity, ±2 MHz ⁽¹⁾	Wanted signal at -72 dBm, modulated interferer at		41/31 ⁽²⁾		dB
	± 2 MHz, BER = 10^{-3}				
Selectivity, ±3 MHz ⁽¹⁾	Wanted signal at -72 dBm, modulated interferer at		44/41 ⁽²⁾		dB
	±3 MHz, BER = 10 ⁻³				
Selectivity, ±4 MHz ⁽¹⁾	Wanted signal at -72 dBm, modulated interferer at		44/44 ⁽²⁾		dB
	±4 MHz, BER = 10 ⁻³				
Selectivity, ±6 MHz ⁽¹⁾	Wanted signal at -72 dBm, modulated interferer at		44/44 ⁽²⁾		dB
	±6 MHz, BER = 10 ⁻³				
Alternate channel	Wanted signal at -72 dBm, modulated interferer at		44/44 ⁽²⁾		dB
rejection, ±7 MHz ⁽¹⁾	$\geq \pm 7 \text{ MHz, BER} = 10^{-3}$				
Selectivity, Image	Wanted signal at -72 dBm, modulated interferer at		31		dB
frequency ⁽¹⁾	image frequency, BER = 10^{-3}				
Selectivity, Image	Note that Image frequency +1 MHz is the		5/41 ⁽²⁾		dB
frequency ±1 MHz ⁽¹⁾	Co-channel -1 MHz. Wanted signal at -72 dBm,				
	modulated interferer at ±1 MHz from image				
	frequency, BER = 10^{-3}				
Blocker rejection, ±8	Wanted signal at -72 dBm, modulated interferer at		44		

MHz and above ⁽¹⁾	± 8 MHz and above, BER = 10^{-3}		
Out-of-band blocking ⁽³⁾	30 MHz to 2000 MHz	35	dBm
Out-of-band blocking	2003 MHz to 2399 MHz	-19	dBm
Out-of-band blocking	2484 MHz to 2997 MHz	-19	dBm
Intermodulation	Wanted signal at 2402 MHz, -69 dBm. Two	-37	dBm
	interferers at 2405 and 2408 MHz respectively, at		
	the given power level		

⁽¹⁾ Numbers given as I/C dB

- (2) X / Y, where X is +N MHz and Y is -N MHz
- (3) Excluding one exception at Fwanted / 2, per Bluetooth Specification

4.9. 500-kbps Coded (Bluetooth 5) - TX

RF performance is specified in a single ended 50 ohm reference plane at the antenna feeding point with Tc = 25° C, VDDS = 3.0 V, f_{RF} = 2440 MHz, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Output power, highest setting	Delivered to a single-ended 50-Ω load	3.2	4.8	5.6	dBm
Output power, lowest setting	Delivered to a single-ended $50-\Omega$ load		-21		dBm
Spurious emission conducted	f < 1 GHz, outside restricted bands		-43		dBm
measurement ⁽¹⁾	f < 1 GHz, restricted bands ETSI		-65		dBm
	f < 1 GHz, restricted bands FCC		-76		dBm
	f > 1 GHz, including harmonics		-46		dBm

⁽¹⁾ Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).

4.10. 1-Mbps GFSK (Bluetooth Low Energy) - RX

Parameter	Test Conditions	Min	Тур	Max	Units
Receiver sensitivity	BER = 10^{-3}		-96		dBm
Receiver saturation	BER = 10^{-3}		4		dBm
Frequency error	Difference between the incoming carrier frequency	-350		350	kHz
tolerance	and the internally generated carrier frequency				
Data rate error	Difference between incoming data rate and the	-750		750	ppm
tolerance	internally generated data rate				

(1)		_		
Co-channel rejection ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer in	-6		dB
	channel, BER = 10 ⁻³			
Selectivity, ±1 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer at	7 / 3 ⁽²⁾		dB
	±1 MHz, BER = 10 ⁻³			
Selectivity, ±2 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer at	34/25 ⁽²⁾		dB
	±2 MHz, BER = 10 ⁻³			
Selectivity, ±3 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer at	38/26 ⁽²⁾		dB
	±3 MHz, BER = 10 ⁻³			
Selectivity, ±4 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer at	42/29 ⁽²⁾		dB
	±4 MHz, BER = 10 ⁻³			
Selectivity, ±5 MHz or	Wanted signal at –67 dBm, modulated interferer at	32		dB
more ⁽¹⁾	$\geq \pm 5 \text{ MHz, BER} = 10^{-3}$			
Selectivity, Image	Wanted signal at –67 dBm, modulated interferer at	25		dB
frequency ⁽¹⁾	image frequency, BER = 10^{-3}			
Selectivity, Image	Wanted signal at –67 dBm, modulated interferer at	3/26(2)		dB
frequency ±1 MHz ⁽¹⁾	± 1 MHz from image frequency, BER = 10^{-3}			
Out-of-band blocking ⁽³⁾	30 MHz to 2000 MHz	-20		dBm
Out-of-band blocking	2003 MHz to 2399 MHz	-5		dBm
Out-of-band blocking	2484 MHz to 2997 MHz	-8		dBm
Out-of-band blocking	3000 MHz to 12.75 GHz	-8		dBm
Intermodulation	Wanted signal at 2402 MHz, –64 dBm. Two	-34		dBm
	interferers at 2405 and 2408 MHz respectively, at			
	the given power level			
Spurious emissions,	Conducted measurement in a 50-Ω single-ended	-71		dBm
30 to 1000 MHz	load. Suitable for systems targeting compliance			
	with EN 300 328, EN 300 440 class 2, FCC CFR47,			
	Part 15 and ARIB STD-T-66			
Spurious emissions,	Conducted measurement in a 50-Ω single-ended	-62		dBm
1 to 12.75 GHz	load. Suitable for systems targeting compliance			
	with EN 300 328, EN 300 440 class 2, FCC CFR47,			
	Part 15 and ARIB STD-T-66			
RSSI dynamic range		70		dB
RSSI accuracy		±4		dB
	1	1	1	

⁽¹⁾ Numbers given as I/C dB

⁽²⁾ X/Y, where X is +N MHz and Y is -N MHz

⁽³⁾ Excluding one exception at F_{wanted} / 2, per Bluetooth Specification

4.11. 1-Mbps GFSK (Bluetooth Low Energy) - TX

RF performance is specified in a single ended 50 ohm reference plane at the antenna feeding point with Tc = 25° C, VDDS = 3.0 V, f_{RF} = 2440 MHz, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Output power, highest setting	Delivered to a single-ended $50-\Omega$ load	3.2	4.8	5.6	dBm
Output power, lowest setting	Delivered to a single-ended $50-\Omega$ load		-21		dBm
Spurious emission conducted	f < 1 GHz, outside restricted bands		-43		dBm
measurement ⁽¹⁾	f < 1 GHz, restricted bands ETSI		-65		dBm
	f < 1 GHz, restricted bands FCC		-76		dBm
	f > 1 GHz, including harmonics		-46		dBm

⁽¹⁾ Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).

4.12. 2-Mbps GFSK (Bluetooth 5) - RX

Parameter	Test Conditions	Min	Тур	Max	Units
Receiver sensitivity	BER = 10^{-3}		-92		dBm
Receiver saturation	BER = 10^{-3}		4		dBm
Frequency error	Difference between the incoming carrier frequency	-300		500	kHz
tolerance	and the internally generated carrier frequency				
Data rate error	Difference between incoming data rate and the	-1000		1000	ppm
tolerance	internally generated data rate				
Co-channel rejection ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer in		-7		dB
	channel, BER = 10 ⁻³				
Selectivity, ±2 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer at		8/4 ⁽²⁾		dB
	± 2 MHz, BER = 10^{-3}				
Selectivity, ±4 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer at		31/26 ⁽²⁾		dB
	±4 MHz, BER = 10 ⁻³				
Selectivity, ±6 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated interferer at		37/38 ⁽²⁾		dB
	±6 MHz, BER = 10 ⁻³				
Alternate channel	Wanted signal at –67 dBm, modulated interferer at		37/36 ⁽²⁾		dB
rejection, ±7 MHz ⁽¹⁾	$\geq \pm 7 \text{ MHz, BER} = 10^{-3}$				
Selectivity, Image	Wanted signal at –67 dBm, modulated interferer at		4		dB

frequency ⁽¹⁾	image frequency, BER = 10^{-3}			
Selectivity, Image	Note that Image frequency +2 MHz is the		3/26 ₍₂₎	dB
frequency ±2 MHz (1)	Co-channel. Wanted signal at -67 dBm, modulated	o-channel. Wanted signal at -67 dBm, modulated		
	interferer at ± 2 MHz from image frequency, BER =			
	10 ⁻³			
Out-of-band blocking ⁽³⁾	30 MHz to 2000 MHz		-33	dBm
Out-of-band blocking	2003 MHz to 2399 MHz		15	dBm
Out-of-band blocking	2484 MHz to 2997 MHz		-12	dBm
Out-of-band blocking	3000 MHz to 12.75 GHz		-10	dBm
Intermodulation	Wanted signal at 2402 MHz, –64 dBm. Two		-34	dBm
	interferers at 2405 and 2408 MHz respectively, at			
	the given power level			

⁽¹⁾ Numbers given as I/C dB

- (2) X/Y, where X is +N MHz and Y is -N MHz
- (3) Excluding one exception at F_{wanted} / 2, per Bluetooth Specification

4.13. 2-Mbps GFSK (Bluetooth 5) - TX

RF performance is specified in a single ended 50 ohm reference plane at the antenna feeding point with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Output power, highest setting	Delivered to a single-ended 50-Ω load	3.2	4.8	5.6	dBm
Output power, lowest setting	Delivered to a single-ended 50-Ω load		-21		dBm
Error vector magnitude	At maximum output power		2		%
Spurious emission conducted	f < 1 GHz, outside restricted bands		-43		dBm
measurement (1)	f < 1 GHz, restricted bands ETSI		-65		dBm
	f < 1 GHz, restricted bands FCC		-76		dBm
	f > 1 GHz, including harmonics		-46		dBm

⁽¹⁾ Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).

4.14. Internal 24-MHz Crystal Oscillator (XOSC_HF)⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

Parameter	Test Conditions	Min	Тур	Max	Units
Crystal frequency			24		MHz

Crystal frequency tolerance ⁽²⁾	-40		+40	ppm
Start-up time ⁽³⁾		150		μs

- (1) Probing or otherwise stopping the XTAL while the DC-DC converter is enabled may cause permanent damage to the device.
- (2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance. As per Bluetooth specification
- (3) Kick-started based on a temperature and aging compensated RCOSC_HF using precharge injection

4.15. 32.768-kHz Crystal Oscillator (XOSC_LF)

over operating free-air temperature range (unless otherwise noted)

Parameter	Test Conditions	Min	Тур	Max	Units
Crystal frequency			32.768		KHz
Initial crystal frequency tolerance, Bluetooth	Tc = 25°C	-20		20	ppm
low energy applications					
Crystal aging		-3		3	ppm/year

4.16. 48-MHz RC Oscillator (RCOSC_HF)

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Frequency			48		MHz
Uncalibrated frequency accuracy			±1		%
Calibrated frequency accuracy ⁽¹⁾			±0.25		%
Start-up time			5		μs

⁽¹⁾ Accuracy relatively to the calibration source (XOSC HF).

4.17. 32-kHz RC Oscillator (RCOSC_LF)

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Calibrated frequency			32.8		KHz
Temperature coefficient			50		ppm/°C

4.18. ADC Characteristics⁽¹⁾

Tc = 25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Input voltage range		0		V _{DDS}	V
Resolution			12		Bits
Sample rate				200	ksps
Offset	Internal 4.3-V equivalent reference ⁽²⁾		2		LSB
Gain error	Internal 4.3-V equivalent reference ⁽²⁾		2.4		LSB
DNL ⁽³⁾ -			>-1		LSB
Differential nonlinearity					
INL -			±3		LSB
Integral nonlinearity					
ENOB -	Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksps,		9.8		Bits
Effective number of bits	9.6-kHz input tone				
	VDDS as reference, 200 ksps, 9.6-kHz input tone		10		Bits
	Internal 1.44-V reference, voltage scaling disabled,		11.1		Bits
	32 samples average, 200 ksps, 300-Hz input tone				
THD -	Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksps,		-65		dB
Total harmonic	9.6-kHz input tone				
distortion	VDDS as reference, 200 ksps, 9.6-kHz input tone		-69		dB
	Internal 1.44-V reference, voltage scaling disabled,		-71		dB
	32 samples average, 200 ksps, 300-Hz input tone				
SINAD / SNDR -	Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksps,		60		dB
Signal-to-noise and	9.6-kHz input tone				
distortion ratio	VDDS as reference, 200 ksps, 9.6-kHz input tone		63		dB
	Internal 1.44-V reference, voltage scaling disabled,		69		dB
	32 samples average, 200 ksps, 300-Hz input tone				
SFDR -	Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksps,		67		dB
Spurious-free dynamic	9.6-kHz input tone				
range	VDDS as reference, 200 ksps, 9.6-kHz input tone		72		dB
	Internal 1.44-V reference, voltage scaling disabled,		73		dB
	32 samples average, 200 ksps, 300-Hz input tone				
Conversion time	Serial conversion, time-to-output, 24-MHz clock		50		Clock
					cycles
Current consumption	Internal 4.3-V equivalent reference ⁽²⁾		0.66		mA

Current consumption	VDDS as reference	0.75	mA
Reference voltage	Equivalent fixed internal reference (input voltage	4.3	٧
	scaling enabled). For best accuracy, the ADC	(2)(4)	
	conversion should be initiated through the		
	TI-RTOS™ API to include the gain or offset		
	compensation factors stored in FCFG1.		
Reference voltage	Fixed internal reference (input voltage scaling	1.48	V
	disabled). For best accuracy, the ADC conversion		
	should be initiated through the TI-RTOS API to		
	include the gain or offset compensation factors		
	stored in FCFG1. This value is derived from the		
	scaled value (4.3 V) as follows: Vref = 4.3 V × 1408		
	/ 4095		
Reference voltage	VDDS as reference (Also known as RELATIVE) (input	VDDS	٧
	voltage scaling enabled)		
Reference voltage	VDDS as reference (Also known as RELATIVE) (input	VDDS/	٧
	voltage scaling disabled)	2.82 ⁽⁴⁾	
Input Impedance	200 ksps, voltage scaling enabled. Capacitive input,	>1	МΩ
	Input impedance depends on sampling frequency		
	and sampling time		

- (1) Using IEEE Std 1241™-2010 for terminology and test methods.
- (2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V.
- (3) No missing codes. Positive DNL typically varies from +0.3 to +3.5, depending on device
- (4) Applied voltage must be within absolute maximum ratings (Section 4.1) at all times.

4.19. Temperature Sensor

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Resolution			4		°C
Range		-40		+85	°C
Accuracy			±5		°C
Supply voltage coefficient ⁽¹⁾			3.2		°C/V

(1) Automatically compensated when using supplied driver libraries.

4.20. Battery Monitor

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Resolution			50		mV
Range		1.8		3.8	٧
Accuracy			13		mV

4.21. Continuous Time Comparator

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Input voltage range		0		V_{DDS}	V
External reference voltage		0		V_{DDS}	V
Internal reference voltage	DCOUPL as reference		1.27		V
Offset			3		mV
Hysteresis			<2		mV
Decision time	Step from –10 mV to +10 mV		0.72		μs
Current consumption when enabled ⁽¹⁾			8.6		μΑ

⁽¹⁾ Additionally the bias module needs to be enabled when running in standby mode.

4.22. Low-Power Clocked Comparator

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Input voltage range		0		V_{DDS}	V
Clock frequency			32		kHz
Internal reference voltage, VDDS / 2			1.49-1.51		V
Internal reference voltage, VDDS / 3			1.01-1.03		V
Internal reference voltage, VDDS / 4			0.78-0.79		V
Internal reference voltage, DCOUPL / 1			1.25-1.28		V
Internal reference voltage, DCOUPL / 2			0.63-0.65		V
Internal reference voltage, DCOUPL / 3			0.42-0.44		V
Internal reference voltage, DCOUPL / 4			0.33-0.34		V
Offset			<2		mV

Hysteresis		<5	mV
Decision time	Step from –50 mV to +50 mV	<1	clock cycle
Current consumption when enabled		362	nA

4.23. Programmable Current Source

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
Current source programmable output range			0.25-20		μΑ
Resolution			0.25		μΑ
Current consumption ⁽¹⁾	Including current source at		23		μΑ
	maximum programmable output				

⁽¹⁾ Additionally, the bias module must be enabled when running in standby mode.

4.24. DC Characteristics

Parameter	Test Conditions	Min	Тур	Max	Units		
TA = 25°C, VDDS = 1.8 V							
GPIO VOH at 8-mA load	IOCURR = 2, high drive GPIOs only	1.32	1.54		V		
GPIO VOL at 8-mA load	IOCURR = 2, high drive GPIOs only		0.26	0.32	V		
GPIO VOH at 4-mA load	IOCURR = 1	1.32	1.58		٧		
GPIO VOL at 4-mA load	IOCURR = 1		0.21	0.32	٧		
GPIO pullup current	Input mode, pullup enabled, Vpad=0V		71.7		μΑ		
GPIO pulldown current	Input mode, pulldown enabled, Vpad=VDDS		21.1		μΑ		
GPIO high/low input	IH = 0, transition between reading 0 and reading 1		0.88		V		
transition, no hysteresis							
GPIO low-to-high input	IH = 1, transition voltage for input read as 0→1		1.07		V		
transition, with hysteresis							
GPIO high-to-low input	IH = 1, transition voltage for input read as 1→0		0.74		V		
transition, with hysteresis							
GPIO input hysteresis	IH = 1, difference between $0\rightarrow1$ and $1\rightarrow0$ points		0.33		V		
	TA = 25°C, VDDS = 3.0 V						
GPIO VOH at 8-mA load	IOCURR = 2, high drive GPIOs only		2.68		٧		
GPIO VOL at 8-mA load	IOCURR = 2, high drive GPIOs only		0.33		٧		
GPIO VOH at 4-mA load	IOCURR = 1		2.72		V		
GPIO VOL at 4-mA load	IOCURR = 1		0.28		V		

TA = 25°C, VDDS = 3.8 V							
GPIO pullup current	Input mode, pullup enabled, Vpad = 0 V		277		μΑ		
GPIO pulldown current	Input mode, pulldown enabled, Vpad = VDDS		113		μΑ		
GPIO high/low input	IH = 0, transition between reading 0 and reading 1		1.67		V		
transition, no hysteresis							
GPIO low-to-high input	IH = 1, transition voltage for input read as 0→1		1.94		V		
transition, with hysteresis							
GPIO high-to-low input	IH = 1, transition voltage for input read as 1→0		1.54		٧		
transition, with hysteresis							
GPIO input hysteresis	IH = 1, difference between 0→1 and 1→0 points		0.4		٧		
TA = 25°C							
VIH	Lowest GPIO input voltage reliably interpreted as a			0.8	VDDS		
	"High"						
VIL	Highest GPIO input voltage reliably interpreted as	0.2			VDDS		
	a "Low"						

4.25. Timing Requirements

			Min	Тур	Max	Units
Rising supply-voltage slew rate			0		100	mV/μs
Falling supply-voltage slew rate			0		20	mV/μs
Falling supply-voltage slew rate, with low-power flash settings ⁽¹⁾					3	mV/μs
Positive temperature	No limitation for negative temperature				5	°C/s
gradient in standby ⁽²⁾	gradient, or outside standby mode					
CONTROL INPUT AC CHARACTERISTICS ⁽³⁾						
RESET_N low duration			1			μs
SYNCHRONOUS SERIAL INTERFACE (SSI) (4)						
S1 (SLAVE) (5)	T _{clk_per}	SSICIk period	12		65024	system clock
S2 ⁽⁵⁾	t _{clk_high}	SSICIk high time		0.5		T _{clk_per}
S3 ⁽⁵⁾	t _{clk_low}	SSICIk low time		0.5		T _{clk_per}

- (1) For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a $22-\mu F$ VDD input capacitor must be used to ensure compliance with this slew rate.
- (2) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature.
- (3) $T_A = -40$ °C to 85°C, VDDS = 1.8 V to 3.8 V, unless otherwise noted.
- (4) $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted. Device operating as SLAVE. For SSI MASTER operation, see Section

4.22.

(5) Refer to SSI timing diagrams Figure 4-1, Figure 4-2, and Figure 4-3.

4.26. Switching Characteristics

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Units
WAKEUP AND TIMING					
Idle → Active			14		μs
Standby → Active			151		μs
Shutdown → Active			1015		μs
SYNCHRONOUS SERIAL INTERFACE (SSI) (1)					
S1 (TX only) ⁽²⁾ t _{clk_per} (SSIClk period)	One-way communication to SLAVE	4		65024	system
S1(TX and RX) ⁽²⁾ t _{clk_per} (SSIClk period)	Normal duplex operation	8		65024	clocks
S2 (2) t _{clk_high} (SSIClk high time)			0.5		t _{clk_per}
S3 (2) tclk_low(SSIClk low time)			0.5		t _{clk_per}

- (1) Device operating as MASTER. For SSI SLAVE operation, see Section 4.21.
- (2) Refer to SSI timing diagrams Figure 4-1, Figure 4-2, and Figure 4-3.

Figure 4-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement

Figure 4-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer

Figure 4-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1

4.27. Typical Characteristics

There are some typical performance plots measured on the CC2640R2FRHB device in the CC2640R2F data sheet, and the plots relevant for the ZB7412-00 module. Please visit TI web site http://www.ti.com/lit/gpn/cc2640r2f, and see Section 5.29

4.28. Chip Antenna Characteristics

Measured on the Jorjin ZB7412E00 EM board with TA = 25°C

Parameter	2400MHz	2442MHz	2484MHz
Efficiency%	57.6 %	59.1 %	58.9 %
Peak Gain	2.0 dBi	2.2 dBi	2.3 dBi

Figure 4-4. Efficiency vs. Frequency

Figure 4-5. DUT 3D Pattern

5. DESIGN RECOMMENDATIONS

5.1. Module Layout Recommendations

Follow these module layout recommendations:

Antenna

For a module with on board chip antenna, to eliminate the influence from other components or ground, recommended that the module is placed in the corner of main PCB, and define a clearance area around the antenna, where no grounding or signal trace are contained. The clearance area applies to all layers of the main PCB. The recommended dimensions of the main PCB keep out area are shown in bellow.

RF test point

There are RF test points in the bottom side of this module. It is only for module production used. Do not connect any signal to these test points (leave no connection) in the module. And do not design test point in the main board. Please reserve a clearance in the top-side copper plane underneath the RF test pads. Do not route any signal or place via in this keep out area.

Device and Documentation Support
 For a complete device and tool documents for the CC2640R2F platform, visit the Texas
 Instruments website at http://www.ti.com.

5.2. Reference Schematic

- No external decoupling is required.
- The reset line should have an external pullup resistor unless the line is actively driven. Placement of this component is not critical.
- All Digital Peripheral Pins can be routed to any GPIO.

6. PACKAGE INFORMATION

6.1. Module Mechanical Outline

Top View

Note:

1> Pad tolerance as ±30um

2> Unit: mm

Top and Side View

Note:

A: Typical: 2.45mm, Maximum: 2.69mm B: Typical: 2.00mm, Maximum: 2.20mm

Unit: mm

6.2. Ordering Information

Order Number	Package
ZB7412-00	LGA-25

6.3. Package Marking

Marking	Description
JORJIN	Brand name
ZB7412-00	Model name
YYWWSSFX	Lot Trace Code: YYWWSSFX
	YY= Digit of the year, ex: 2016=16
	WW= Week (01~52)
	SS= Serial number from 01~98 match to MFG's lot number, or 99
	to repair control code
	F= Reverse for internal use
	X = A for Module version
WS2-ZB7412	FCC ID
10462A-ZB7412	Canada IC ID

€	TELEC compliance mark, and ID
C€	CE compliance mark
W	NCC compliance mark, and ID

7. SMT AND BAKING RECOMMENDATION

7.1. Baking Recommendation

- Baking condition :
 - Follow MSL Level 4 to do baking process.
 - After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - a) Mounted within 72 hours of factory conditions <30°C/60% RH, or
 - b) Stored at <10% RH.
 - Devices require bake, before mounting, if Humidity Indicator Card reads >10%
 - If baking is required, Devices may be baked for 8 hrs. at 125 °C.

7.2. SMT Recommendation

Recommended Reflow profile :

No.	Item	Temperature (°C)	Time (sec)
1	Pre-heat	D1: 140 ~ D2: 200	T1: 80 ~ 120
2	Soldering	D2: = 220	T2: 60 +/- 10
3	Peak-Temp.	D3: 250 °C max	

Note: (1) Reflow soldering is recommended two times maximum.

(2) Add Nitrogen while Reflow process: SMT solder ability will be better.

• Stencil thickness: 0.1~ 0.13 mm (Recommended)

• Soldering paste (without Pb): Recommended SENJU N705-GRN3360-K2-V can get better soldering effects.

8. TAPE REEL INFROMATION

8.1. Cover / Carrier Tape Dimension

Packing Qty	Dry Bag	Inner Box	Outer Box
1200 EA / Reel	1 Reel	1 Dry Bag	4 Inner Box
	(1200 EA)	(1200 EA)	(4800 EA)

Inner Box Size: 352mm x 352mm x 56mm Outer Box Size: 354mm x 362mm x 250mm

9. REGULATORY INFORMATION

This section outlines the regulatory information for the following countries:

- United States
- Canada
- Europe
- Japan
- Taiwan
- Australia/New Zealand

9.1. United States

Federal Communications Commission Statement

15.21. You are cautioned that changes or modifications not expressly approved by the part responsible for compliance could void the user's authority to operate the equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference and
- (2) This device must accept any interference received, including interference that may cause undesired operation of the device.

FCC RF Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure limits. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

End Product Labeling:

This module is designed to comply with the FCC statement, FCC ID: WS2-ZB7412. The host system using this module must display a visible label indicating the following text:

"Contains FCC ID: WS2-ZB7412"

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this

module.

The end user manual shall include all required regulatory information/warning as shown in this manual.

9.2. Canada

This device complies with Industry Canada's licence-exempt RSS standard(s).

Operation is subject to the following two conditions:

- (1) this device may not cause interference, and
- (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence

L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

RF Radiation Exposure Statement:

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 10mm between the radiator & your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 10mm de distance entre la source de rayonnement et votre corps.

End Product Labeling:

This module is designed to comply with the IC statement, IC: 10462A-ZB7. The host system using this module must display a visible label indicating the following text:

"Contains IC: 10462A-ZB7412"

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as shown in this manual.

9.3. Europe

Hereby, Jorjin Technologies Inc. declares that the radio equipment type RF module is in compliance with Directive 2014/53/EU

The full text of the EU declaration of conformity is available at the following internet address: http://www.jorjin.com/upload/14XXXXXXXXX.pdf

The compliance has been verified in the operating frequency band of 2400 MHz to 2483.5 MHz. Developers and integrators that incorporate the ZB7412-00 RF Module in any end products are responsible for obtaining applicable regulatory approvals for such end product.

The ZB7412-00 has been tested in the 2400-GHz to 2483.5-GHz ISM frequency band at 3.3 V with a maximum peak power of 7.1 dBm EIRP across the temperature range –40°C to +85°C and tolerance.

Labeling and User Information Requirements

As a result of the conformity assessment procedure described in Annex III of the Directive 2014/53/EC, the end-customer equipment should be labeled as follows:

9.4. Japan

The ZB7412-00 is certified as a module with type certification number XXX-XXXXXX. End products that integrate this module do not need additional MIC Japan certification for the end product.

End product can display the certification label of the embedded module.

9.5. Taiwan

The ZB7412-00 is certified as a module with type certification number CCAXXXXXXXXXXX. End products that integrate this module do not need additional NCC Taiwan certification for the end product.

End product can display the certification label of the embedded module.

The user's manual should contain following warning (for RF device) in traditional Chinese:

注意

本產品符合低功率電波輻射性電機管理辦法:

第十二條

經形式認證合格之低功率射頻電機,非經許可,公司、商號或使用者均不得擅自變更頻率、加 大功率或變更原設計之特性及功能。

第十四條

低功率射頻電機之使用不得影響飛航安全及干擾合法通信;經發現有干擾現象時,應立即停 用,並改善至無干擾時方的繼續使用。

前項合法通信,指依電信規定作業之無線電信。低功率射頻電機須忍受合法通信或工業、科學 及醫療用電波輻射性電機設備之干擾。

9.6. Australia/New Zealand

This module is conformity with the following standards

• AS/NZS 4268: 2012 Amdt 1-2013

10. HISTORY CHANGE

Revision	Date	Description
R 0.1	2017/03/16	1. Official Released.
R 0.2	2017/03/22	1. Specification for Bluetooth 5 is to be added in near
		future
R 0.3	2017/07/31	1. Add Bluetooth 5
		2. Modify model number in this document.
		3. Update marking information
		4. Update regulatory information