Website Traffic Analysis

Michael Freyberger and Michael Chang

ELE 298 Advisor: Professor Prateek Mittal

Princeton University | Electrical Engineering | Class of 2016

Motivation

- Anonymity networks are becoming increasingly important
 - Free network access in oppressed countries is desirable
 - Prevent marketers from tracking web activity
- Current anonymity networks are vulnerable

Basic Communication

Characteristics of Communication

- Information can be readily encrypted
- Data transfer is broken down into packets
 - Packets have a direction and length
 - Packets have a maximum length called the Maximum Transmission Unit (MTU)
 - A typical size for the MTU is 1500 bytes

Client Request to Server

Server Sends Data to Client

Scenario 1: Possible Attack

Scenario 2: Possible Attack with Proxies

Current Secure Systems

- Cryptographic Security
 - SSL
 - HTTPS
- Onion Routing Systems
 - Tor
 - JonDonym

www.torproject.org

Tor Project

- 2 Million Users
- Pads all data cell units to 512 bytes
- Randomly generates 3 proxies

www.torproject.org

Traffic Analysis Attacks

- Single Attacker
- Exploit metadata of the communication

- Total Number of Bytes
- Packet Lengths and Direction
- Packet Bursts

Panchenko et al. [1]

- Combined packet and burst level approach
- Support Vector Machine
 - Many features utilized, but primary ones:
 - Total Transmitted Bytes
 - Number of packets per burst
 - Count of each packet size
 - Percentage incoming packets
- Achieved accuracy of 47.36% on closed world data set

Cai et al. [2]

- Damareau-Levenshtein Edit Distances
 - Considers natural re-ordering of the packets during information exchange
 - Features considered
 - Packet Sizes
 - Direction of Packets
- Classification using SVM (support vector machines)

Dyer et al.[3]

- Coarse features contain a lot of information
 - Total Time
 - Total Bandwidth
 - Bursts
- Coarse features are difficult to hide
 - BufLo
 - High Overhead

Recreating Tests and Running our own

- Recreating Cai's Classifier
 - Potential Improvements
 - Damereau-Levenshtein Distance transformation penalties
 - Burst-level calculations
- Recreating Dyer's Data set
 - Successful
 - Data Set Setting retrieved from Tor Nodes
 - 8510 websites collected at a rate of 85/hour
 - Linux client machine
 - Browser: Firefox 2.0

Accuracy and Overhead Calculations

- $Accuracy = {}^{c}/_{Tk}$
 - C: the number of correctly classified test traces
 - K: is our privacy set size
 - T: is the number of test traces per site.

• Overhead =
$$\frac{Bytes\ in\ Pre-Countermeasure\ Trace}{Bytes\ in\ Post-Countermeasure\ Trace}$$

Previously Explored Countermeasures

- Packet Padding Level Padding
 - Pad to MTU
 - Random Padding
 - Exponential Padding
- Sending Dummy Packets
 - BuFLO Send fixed length packets at fixed time intervals

Pad to MTU

No Countermeasure:

148 100 516

Countermeasure Applied:

1500 1500 1500

Session Random 255

No Countermeasure:

148 100 516

Countermeasure Applied:

236 188 604

Exponential Padding

No Countermeasure:

148 100 516

Countermeasure Applied:

256 128 1024

Packet Level Countermeasures

 Ineffective - cannot decrease accuracy when classification uses top performing classifiers

High Overhead - Cannot decrease accuracy even with maximal overhead

• Solution: Must apply countermeasures at the burst level

Novel Countermeasures

- Burst Level Padding strategically placed Dummy Packets
- Burst Level Padding in addition to Packet Level Padding
- Random Burst Level Padding
- Bursts defined by number of packets or number of bytes
- Sending Dummy Packets in one direction Client to Server

Communication Legend

Encrypted Packet from Client to Server

Encrypted Packet from Server to Client

Encrypted Burst of Packets from Server to Client. Burst Length defined by number of **packets** in the Burst

Encrypted Burst of Packets from Server to Client. Burst Length defined by number of **bytes** in the Burst

Burst Fixed Max Length of 6 Packets

No Countermeasure: 148 100 516 14 484

Countermeasure Applied: 148 100 516 6 638 6 638 2 484

Burst Max Length of 6 Packets with Session Random Packet Level Padding

Burst Session Random Fixed Max Length

Burst Fixed Max Length

Advantages	Disadvantages
 Low Overhead Effectively mask the bursts when randomness is added Decreases accuracy of VGN++ from 20.3% 	 Ineffective without packet level padding as well Does not increase effectiveness of Session Random 255 with Panchenko classifier

Fixed Burst Lengths at Packet Level

No Countermeasure: 148 100 516 9

Parameters: P = 128 B = 5

Countermeasure Applied:

 276
 5
 644
 5
 638
 5

Fixed Burst Lengths at Byte Level

No Countermeasure:

Parameters:

P = 144

G = 9118

Countermeasure Applied:

 292
 9118
 660
 9118
 638
 9118

Burst Fixed Length

Advantages	Disadvantages
 Both implementations achieve low accuracy against VNG++ Packet level implementation achieves low accuracy against Panchenko • 	 High Byte Overhead- takes more than twice as long for a web page to download Potential for high latency overhead

Client to Server Dummy Packets

Parameters: No Countermeasure: P = 80B = 4C = 3Countermeasure Applied:

Client to Server Dummy Packets

Advantages	Disadvantages
 Low byte level overhead Possibly take advantage of asymmetric bandwidth • 	 Cannot achieve accuracy results as strong as Server to Client Dummy Packets Potential for high latency overhead

Summary: Accuracy vs. Overhead Tradeoff

Conclusion

- Introduced Strategic Dummy Packet Placement- Burst Level Padding
- Decrease accuracy of most effective countermeasure, Session Random 255, from 16.6% to 6.4% with Burst Fixed Max Length
 - Slight overhead increase from 6.6% to 11.1%
- **Decrease accuracy** of most effective countermeasure, Session Random 255, from **16.6% to 1.3%** with Fixed Burst Lengths at Byte Level
 - Large overhead increase from 6.6% to 137%

Opportunities for Future Research

- Common Characteristics of a Trace: Application of countermeasure on select parts of trace
 - Taking advantage of "anatomy of a trace"
- Taking advantage of User Habits: Eliminating "open-world concerns" and increasing false positives

Acknowledgements

- Our advisor, Professor Prateek Mittal
- Kevin Dyer, for access to his code base and support in experiment recreations
- Xiang Cai, for access to his code base and support in experiment recreations

Citations

[1] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website Fingerprinting in Onion Routing based Anonymization Networks. In Proceedings of the Workshop on Privacy in the Electronic Society, pages 103-114, October 2011.

[2] Xiang Cai, Xincheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a distance: website fingerprinting attacks and defenses. In ACM CCS, 2012

[3] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-boo, i still see you: Why e fficient traff c analysis countermeasures fail. In Proceedings of the 33rd Annual IEEE Symposium on Security and Privacy, 2012.