Name: Arul Kumar ARK

Roll No.: 225229103

Lab: 7

Sentiment Analysis on Movie Reviews

Exercise-1

In [6]: ► df.head(10)

Out[6]:

	Phraseld	Sentenceld	Phrase	Sentiment
0	1	1	A series of escapades demonstrating the adage	1
1	2	1	A series of escapades demonstrating the adage	2
2	3	1	A series	2
3	4	1	Α	2
4	5	1	series	2
5	6	1	of escapades demonstrating the adage that what	2
6	7	1	of	2
7	8	1	escapades demonstrating the adage that what is	2
8	9	1	escapades	2
9	10	1	demonstrating the adage that what is good for	2

```
In [7]: ► df.shape
```

Out[7]: (156060, 4)

```
In [8]:
              df.describe()
     Out[8]:
                          Phraseld
                                      Sentenceld
                                                    Sentiment
               count 156060,000000 156060,000000
                                                 156060.000000
                      78030.500000
                                     4079.732744
                                                     2.063578
               mean
                 std
                      45050.785842
                                     2502.764394
                                                     0.893832
                          1.000000
                                        1.000000
                                                     0.000000
                min
                25%
                      39015.750000
                                     1861.750000
                                                     2.000000
                50%
                      78030.500000
                                     4017.000000
                                                     2.000000
                75%
                    117045.250000
                                     6244.000000
                                                     3.000000
                max 156060.000000
                                     8544.000000
                                                     4.000000
 In [9]:
              df.columns
     Out[9]: Index(['PhraseId', 'SentenceId', 'Phrase', 'Sentiment'], dtype='object')
              df['Sentiment'].value_counts()
In [10]:
    Out[10]:
              2
                    79582
              3
                    32927
              1
                    27273
              4
                     9206
                     7072
              Name: Sentiment, dtype: int64
In [11]:
              zero = df.loc[df.Sentiment == 0]
              one = df.loc[df.Sentiment == 1]
              two = df.loc[df.Sentiment == 2]
              three = df.loc[df.Sentiment == 3]
              four = df.loc[df.Sentiment == 4]
              small_rotten_train = pd.concat([zero[:200],one[:200],two[:200],three[:200]
In [12]:
          Exercise-3
```

1.open the file. "small_rotten_train.csv"

```
In [13]: ▶ small_rotten_train.to_csv("small_rotten_train.csv")
```

2. The reivew text are stored in "Phrase"

```
In [14]: ► X = small_rotten_train.Phrase
```

3. The "Sentiment" columns is your target, say "y"

4. Pre-processing

5. Apply the above function to X

```
In [25]:
          f =[]
            import nltk
In [26]:
            nltk.download('omw-1.4')
             [nltk data] Downloading package omw-1.4 to
                            C:\Users\arulk\AppData\Roaming\nltk data...
             [nltk data]
            [nltk_data]
                          Package omw-1.4 is already up-to-date!
   Out[26]: True
In [27]:
          | for i in t:
                f.append(clean_review(i))
            n = pd.Series(f)
```

6. Split X and Y for Trainig and testing (Use 20% for testing)

7.Create tfidfVectorizer as below and perform vectorization on X_train using fit perform() method

Out[29]: TfidfVectorizer(min_df=3, ngram_range=(1, 2), use_idf=1)

8. Create MultinomialNB model and perform training using X_train_lemmatizered and y_train.

Out[33]: MultinomialNB()

9. Validation on X test lemmatized and predict output

10.Classification_report and Accuracy_score

```
In [35]: ▶ from sklearn.metrics import accuracy_score,classification_report
```

```
In [36]:  acc = accuracy_score(y_test,y_pred_NB)
print("Accuracy score :",acc)
```

Accuracy score : 0.67

In [37]:	M	<pre>print("Classification Report :\n",classification_report(y_test,y_pred_NB))</pre>						
		Classification	Report : precision	recall	f1-score	support		
		0	0.71	0.76	0.74	33		
		1	0.70	0.67	0.68	48		
		2	0.62	0.57	0.59	37		
		3	0.60	0.66	0.62	38		
		4	0.72	0.70	0.71	44		
		accuracy			0.67	200		
		macro avg	0.67	0.67	0.67	200		
		weighted avg	0.67	0.67	0.67	200		

Exercise-4

1.open "rotten_tomato_test.tsv" file into Dataframe

```
df1 = pd.read_csv("test.tsv",sep='\t')
In [38]:
                df1.head()
In [39]:
    Out[39]:
                     Phraseld
                               Sentenceld
                                                                              Phrase
                 0
                      156061
                                     8545
                                            An intermittently pleasing but mostly routine ...
                  1
                      156062
                                     8545
                                            An intermittently pleasing but mostly routine ...
                 2
                      156063
                                     8545
                                                                                  An
                  3
                      156064
                                            intermittently pleasing but mostly routine effort
                                     8545
                      156065
                                     8545
                                                 intermittently pleasing but mostly routine
In [40]:
             M X2 = df1["Phrase"]
            2. Clean this test data, using the function clean_review(), as before
```

```
In [41]: ► X2 = X2.apply(lambda X2: clean_review(X2))
```

3. build TFIDF values using transform() method

```
In [42]: ► X2_test = cv.transform(X2)
```

4. Perform using predict() method