edgeR: differential expression analysis of digital gene expression data

User's Guide

Mark Robinson, Davis McCarthy, Yunshun Chen, Gordon K. Smyth

9 July 2011

Contents

1	Introduction	3					
2	How to get help						
3	Reading data	4					
4	Normalization issues for digital counts 4.1 General comments						
5	Negative binomial models						
6	Estimating dispersions 6.1 Two ways of estimating dispersions	8					
7		10 10 10 10					
8	What to do if you have no replicates	11					

9	Case	Case study: SAGE data							
	9.1	Introduction	12						
	9.2	Source of the data	12						
	9.3	Reading in the data and creating a DGEList object	12						
	9.4	Analysis using common dispersion	14						
		9.4.1 Estimating the common dispersion	14						
		9.4.2 Testing	16						
		9.4.3 Visualising DGE results	19						
	9.5	Analysing the data using moderated tagwise dispersions	20						
		9.5.1 Moderating the tagwise dispersion	20						
		9.5.2 Testing	22						
		9.5.3 Visualising DGE results	24						
	9.6	Setup	24						
10		e Study: deep-sequenced short tags	26						
		Introduction	26						
		Source of the data	26						
		Reading in the data and creating a DGEList object	27						
		Producing an MDS plot	29						
	10.5	Analysis using common dispersion	29						
		10.5.1 Estimating the common dispersion	29						
		10.5.2 Testing	31						
		10.5.3 Visualising DGE results	33						
	10.6	Analysis using moderated tagwise dispersions	33						
		10.6.1 Moderating the tagwise dispersion	33						
		10.6.2 Testing	36						
		10.6.3 Visualising DGE results	40						
	10.7	Setup	40						
11	Case	e Study: RNA-seq data	43						
11		Introduction	43						
		Source of the data	43						
		Reading in the data and creating a DGEList object	44						
		Producing an MDS plot	45						
		Analysis using common dispersion	46						
	11.0	11.5.1 Estimating the common dispersion	46						
		11.5.2 Testing	48						
		11.5.3 Visualising DGE results	50						
	11 6	Analysis using moderated tagwise dispersions	50						
	11.0	11.6.1 Moderating the tagwise dispersion	50						
		11.6.2 Testing	53						
		11,V,4 10001115,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

		11.6.3 Visualising DGE results	55
	11.7	Setup	56
	~		
12		e study: Oral carcinomas vs matched normal tissue	60
	12.1	Introduction	60
	12.2	Source of the data	60
	12.3	Reading in the data and creating a DGEList object	60
	12.4	Producing an MDS plot	64
	12.5	The design matrix	64
	12.6	Analysis using Cox-Reid common dispersion	66
		12.6.1 Estimating the Cox-Reid common dispersion	66
		12.6.2 Testing	67
	12.7	Cox-Reid dispersions with mean-dependent trend	69
	12.8	Analysis using Cox-Reid tagwise dispersion	70
		12.8.1 Estimating the Cox-Reid tagwise dispersion	70
		12.8.2 Testing	71
	12.9	Setup	72

1 Introduction

This document gives an introduction and overview of the R Bioconductor package edgeR [Robinson et al., 2010], which provides statistical routines for determining differential expression in digital gene expression data. The package implements methods developed by Robinson and Smyth [2007, 2008]. The methodology can be applied to RNA-Seq, SAGE-Seq or ChIP-Seq data arising from sequencing technologies that produce short reads such as IlluminaTM, 454 or ABI SOLiD.

2 How to get help

Most questions about edgeR will hopefully be answered by the documentation or references. Every function mentioned in this guide has its own help page. For example, a detailed description of the arguments and output of the exactTest function can be read by typing ?exactTest or help(exactTest) at the R prompt.

The authors of the package always appreciate receiving reports of bugs in the package functions or in the documentation. The same goes for well-considered suggestions for improvements. Other questions about how to use edgeR are best sent to the Bioconductor mailing list bioconductor@stat.math.ethz.ch. Often other users are likely to have experienced similar problems, and posting to the list allows everyone to gain from the answers. To subscribe to the mailing list, see https://stat.ethz.ch/mailman/listinfo/bioconductor. Please send requests for general assistance and advice to the mailing list rather than to the

individual authors. Users posting to the mailing list for the first time may find it helpful to read the posting guide at http://www.bioconductor.org/doc/postingGuide.html.

3 Reading data

edgeR requires three pieces of information:

- 1. counts: a matrix of counts where each row represents a gene/exon (or whatever genomic feature is being tracked) and each column is a different sample. The row names are transcript IDs.
- 2. group: a factor (with length equal to the number of columns of counts) denoting the experimental group.
- 3. lib.size: vector of the same length as group giving the total number of reads sequenced for each sample.

We assume that the counts are stored in one of two formats. Either there is a single file containing a table of counts with the first column containing the tag identifiers and the remaining columns containing the tag counts for each library sequenced, or there is an individual file for each library, each with first column for tag identifiers and second column for counts.

If the counts for all libraries are stored in a single file, then an appriopriate in-built R function (such as read.delim or read.csv) can be used to read the table of counts into R. The library sizes can be the column sums from the table of counts, and thus easily obtained, or the user can specify the the library sizes throught lib.size argument of the DGEList() constructor. See the help documentation (?DGEList or ?"DGEList-class") or the examples below for further details.

If the counts are stored in separate files, then, given a vector containing the filenames the edgeR function readDGE will read in the data from the individual files, collate the counts into a table and compute the library sizes and return a DGEList object. See the help documentation (?readDGE) or the examples below for further details.

4 Normalization issues for digital counts

4.1 General comments

The edgeR methodology needs to work with the original digital expression counts, so these should not be transformed in any way by users prior to analysis. edgeR automatically takes into account the total size (total read number) of each library in all calculations of fold-changes, concentration and statistical significance. For some datasets, no other normalization is required for evaluating differential expression.

It bears emphasizing that RPKM values should *not* be used for assessing differential expression of genes between samples in edgeR. We use the raw counts, because the methods implemented in edgeR are based on the negative binomial distribution, a discrete distribution. To be able to perform good inference on differential expression it is very important to model the mean-variance relationship in the data appropriately. There are good reasons why the NB model is appropriate for the raw count data, but transforming the data using RPKM (or FPKM or similar) renders our distributional assumptions invalid and we cannot guarantee that our methods will be reliable for such transformed data.

There are methods implemented in edgeR to normalize the counts for compositional bias in sequenced libraries and for differences between libraries in sequencing depth. These adjustments are offsets in the models used for testing DE and do not transform the counts in any way.

The reason we do not worry about gene length bias, GC bias and so on when conducting DE analysis of the same genes between samples is that we expect (and hope) that the biases will affect the same gene in the same way in different samples. This being the case, then it is OK to test for DE gene between samples because such biases in effect "cancel out" when making the comparison between samples. This reasoning does not hold for comparing the expression level of different genes in one sample—to do this you would probably need to account for gene length and other biases, but this is not what edgeR is designed to do.

4.2 Calculating normalization factors

Recently, Robinson and Oshlack [2010] described a method to account for a bias introduced by what they call RNA composition. In brief, there are occasions when comparing different DGE libraries where a small number of genes are very highly expressed in one sample, but not in another. Because these highly expressed genes consume a substantial proportion of the sequencing "real estate", the remaining genes in the library are undersampled. Similarly, this situation may occur when the two tissues being compared have transcriptomes of different sizes, i.e. when there are noticeably more transcripts expressed in one tissues than the other. Robinson and Oshlack [2010] show that in comparing kidney and liver RNA, there are a large number of genes expressed in kidney but not in liver, causing the remaining genes to be undersampled and skewing the differential expression calls. To account for this, the authors developed an empirical approach to estimate the bias and proposed to build that into the library size (or, an offset in a generalized linear model), making it an effective library size. We demonstrate this below on the Marioni et al. [2008] RNA-seq dataset.

Given a table counts or a DGEList object, one can calculate normalization factors using the calcNormFactors() function.

> head(D)

R1L1Kidney R1L2Liver R1L3Kidney R1L4Liver
10 0 0 0 0

```
7
15
            4
                       35
                                             32
17
            0
                       2
                                    0
                                              0
18
          110
                      177
                                 131
                                            135
                    9246
19
        12685
                               13204
                                           9312
22
                        1
                                              0
> g <- gsub("R[1-2]L[1-8]", "", colnames(D))
> d <- DGEList(counts = D, group = substr(colnames(D), 5, 30))</pre>
> d$samples
             group lib.size norm.factors
                    1804977
R1L1Kidney Kidney
                    1691734
R1L2Liver
            Liver
                                         1
R1L3Kidney Kidney
                    1855190
                                         1
R1L4Liver
                    1696308
            Liver
                                         1
> d <- calcNormFactors(d)</pre>
> d$samples
             group lib.size norm.factors
R1L1Kidney Kidney
                    1804977
                                     1.209
                                     0.821
R1L2Liver
            Liver
                    1691734
R1L3Kidney Kidney
                    1855190
                                     1.225
                    1696308
R1L4Liver
            Liver
                                     0.823
```

By default, calcNormFactors uses the TMM method and the sample whose 75%-ile (of library-scale-scaled counts) is closest to the mean of 75%-iles as the reference. Alternatively, the reference can be specified through the refColumn argument. Also, you can specify different levels of trimming on the log-ratios or log-concentrations, as well as a cutoff on the log-concentrations (See the help documentation for further details, including other specification of estimating the normalization factors).

To see the bias and normalization visually, consider a smear plot between the first (kidney) and second (liver) sample. In the left panel of Figure 1, we show a smear plot (X-axis: log-concentration, Y-axis: log fold-change of liver over kidney, those with 0 in either sample are shown in the smear on the left) of the raw data (Note: the argument normalize=TRUE only divides by the sum of counts in each sample and has nothing to do with the normalization factors mentioned above). One should notice a shift downward in the log-ratios, presumably caused by the genes highly expressed in liver that are taking away sequencing capacity from the remainder of the genes in the liver RNA sample. The red line signifies the estimated TMM (trimmed mean of M values) normalization factor, which in this case represents the adjustment applied to the library size to account for the compositional bias. The right panel of Figure 1 simply shows the M and A values after correction. Here, one should find that the bulk of the M-values are centred around 0.

```
> par(mfrow = c(1, 2))
> maPlot(d$counts[, 1], d$counts[, 2], normalize = TRUE, pch = 19,
```

```
+ cex = 0.4, ylim = c(-8, 8))
> grid(col = "blue")
> abline(h = log2(d$samples$norm.factors[2]/d$samples$norm.factors[1]),
+ col = "red", lwd = 4)
> eff.libsize <- d$samples$lib.size * d$samples$norm.factors
> maPlot(d$counts[, 1]/eff.libsize[1], d$counts[, 2]/eff.libsize[2],
+ normalize = FALSE, pch = 19, cex = 0.4, ylim = c(-8, 8))
> grid(col = "blue")
```


Figure 1: Smear plots before (left) and after (right) composition normalization.

5 Negative binomial models

The basic model we use for DGE data is based on the negative binomial distribution. The model is very flexible. For example, if Y is distributed as $NB(\mu, \phi)$, then the expected value of Y is μ and the variance is $\mu + \mu^2 \cdot \phi$, thus giving sufficient flexibility for many scenarios in observing count data.

The observed data can be denoted as Y_{gij} where g is the gene (tag, exon, etc.), i is the

experimental group and j is the index of the replicate. We can model the counts as

$$Y_{qij} \sim NB(M_j \cdot p_{qi}, \phi_q)$$

where p_{gi} represents the proportion of the sequenced sample for group i that is tag g and M_i represents the library size.

It is of interest to find genes where, for example, p_{g1} is significantly different from p_{g2} . The parameter ϕ_g is the overdispersion (relative to the Poisson) and represents the biological, or sample-to-sample variability. The methods we developed moderate the dispersion estimates towards a common dispersion, much like how the limma package moderates the variances in the analysis of microarray data. It is also possible to analyse DGE data using a common dispersion for each tag using edgeR.

6 Estimating dispersions

6.1 Two ways of estimating dispersions

When a negative binomial model is fitted, we need to estimate the dispersion(s) before we carry out the analysis. edgeR provides two ways of estimating the dispersion(s), the quantile-adjusted conditional maximum likelihood (qCML) method and the Cox-Reid profile-adjusted likelihood (CR) method. In general, we apply the qCML method to experiments with single factor and the CR method to experiments with multiple factors.

6.2 Experiment with single factor

Compared against several other estimators (e.g. maximum likelihood estimator, Quasi-likelihood estimator etc.) using an extensive simulation study, qCML is the most reliable in terms of bias on a wide range of conditions and specifically performs best in the situation of many small samples with a common dispersion, the model which is applicable to Next-Gen sequencing data. We have deliberately focused on very small samples due to the fact that DNA sequencing costs prevent large number of replicates for SAGE and RNA-seq experiments.

For a single tag with a small number of libraries, all estimators offer mediocre performance and here is no clear winner. As the number of tags used to estimate the common dispersion increases while holding the number of libraries at a small number, qCML is clearly the best estimator. With more libraries, CR method performs about as well as qCML.

The qCML method calculates the likelihood conditioning on the total counts for each tag, and uses pseudo counts after adjusted for library sizes. Given a table counts or a DGEList object, the qCML common dispersion can be calculated using the estimateCommonDisp() function, and the qCML tagwise dispersions can be calculated using the estimateTagwiseDisp() function.

However, the qCML method is only applicable on dataset with single factor design since it fails to take into account the effects from multiple factors in a more complicated experiment. Therefore, the qCML method (i.e. the estimateCommonDisp() and estimateTagwiseDisp() function) is recommended for a study with single factor. When experiment has more than one factor involved, we need to seek a new way of estimating dispersions.

For more detailed examples, see the case studies in section 9 (Zhang's data), section 10 ('t Hoen's data) and section 11 (Li's data)

6.3 Experiment with multiple factors

The CR method is derived to overcome the limitations of the qCML method as mentioned above. It takes care of multiple factors by fitting generalized linear models (GLM) with a design matrix.

The CR method is based on the idea of approximate conditional likelihood which reduces to residual maximum likelihood. Given a table counts or a DGEList object and the design matrix of the experiment, generalized linear models are fitted. This allows valid estimation of the dispersion, since all systematic sources of variation are accounted for. The CR common dispersion and tagwise dispersions can be calculated using the estimateCRDisp() function (for tagwise dispersions, set 'tagwise = TRUE' within the function), and it is strongly recommended in multi-factor experiment cases.

For more detailed examples, see the case study in section 12 (Tuch's data).

6.4 Tagwise dispersion or common dispersion

edgeR can estimate a common dispersion for all the tags or it can estimate separate dispersions for individual tags. As individual tags typically don't provide enough data to estimate the dispersion reliably, edgeR implements an empirical Bayes strategy for squeezing the tagwise dispersions towards the common dispersion. The amount of shrinkage is determined by the prior weight given to the common dispersion and the precision of the tagwise estimates. The prior can be thought of arising from a number of prior observations, equivalent to prior.n tags with common dispersion and the same number of libraries per tag as in the current experiment. The prior number of tags prior.n can be set by the user. The precision of the tagwise estimators is roughly proportion to the per-tag degrees of freedom, equal to the number of libraries minus the number of groups or the number of GLM coefficients. We generally recommend choosing prior.n so that the total degrees of freedom (prior.n*df) associated with the prior is about 50, subject to prior.n not going below 1. For example, if there are four libraries and two groups, the tagwise degrees of freedom are 2, so we would recommend prior.n=25. This is an empirical rule of thumb borne out of experience with a number of datasets.

7 Testing for DE genes/tags

7.1 Two ways of testing for differential expression

For all the Next-Gen squencing data analyses we consider here, people are most interested in finding differentially expressed genes/tags between two (or more) groups.

Once negative binomial models are fitted and dispersion estimates are obtained, we can proceed with testing procedures for determing differential expression. edgeR provides two ways of testing differential expression, the exact test and the generalized linear model (GLM) likelihood ratio test.

7.2 Experiment with single factor

The exact test is based on the qCML methods. Knowing the conditional distribution for the sum of counts in a group, we can compute exact p-values by summing over all sums of counts that have a probability less than the probability under the null hypothesis of the observed sum of counts. The exact test for the negative binomial distribution has strong parallels with Fisher's exact test.

As we discussed in the previous section, the exact test is only applicable to experiments with a single factor. The testing can be done by using the function exactTest(), and the function allows both common dispersion and tagwise dispersion approaches.

For more detailed examples, see the case studies in section 9 (Zhang's data), section 10 ('t Hoen's data) and section 11 (Li's data).

7.3 Experiment with multiple factors

The GLM likelihood ratio test is based on the idea of fitting negative binomial GLMs with the Cox-Reid dispersion estimates. By doing this, it automatically takes all known sources of variations into account. Therefore, the GLM likelihood ratio test is recommended for experiment with multiple factors.

The testing can be done by using the functions glmFit() and glmLRT(). Given raw counts, a fixed value for the dispersion parameter and a design matrix, the function glmFit() fits the negative binomial GLM for each tag and produces an object of class DGEGLM with some new components.

Then this DGEGLM object can be passed to the function glmLRT() to carry out the likelihood ratio test. User can select coefficient(s) to drop from the full design matrix. This gives the null model against which the full model is compared with in the likelihood ratio test. Tags can then be ranked in order of evidence for differential expression, based on the p-value computed for each tag.

For more detailed examples, see the case study in section 12 (Tuch's data).

8 What to do if you have no replicates

edgeRis primarily intended for use with data including biological replication. Nevertheless, RNA-Seq and ChIP-Seq are still expensive technologies, so it sometimes happens that only one library can be created for each treatment condition. In these cases there are no replicate libraries from which to estimate biological variability. In this situation, the data analyst is faced with the following choices:

- 1. Be satisfied with an MDS plot and by looking at fold changes. Do not attempt a significance analysis.
- 2. Estimate the dispersion by removing one or both of your factors from the model. You could remove the factor with smallest fold changes for example. This will only be successful if the number DE genes is relatively small.
- 3. You could try

```
estimateGLMCommonDisp(method="deviance",robust=TRUE,subset=NULL)
```

This is our current best attempt at an automatic method to estimate dispersion without replicates. It will only give good results when the counts are not too small and the number of DE genes is not too large.

4. You could identify a number of transcripts that should not be DE, and estimate the dispersion from them:

```
d0 <- estimateCommonDisp(d[housekeeping,])</pre>
```

5. Simply pick a reasonable dispersion value (dispersion=0.3 say), based on your experience with similar data, and use that. Although subjective, this is much better and more defensible than assuming Poission variation.

9 Case study: SAGE data

9.1 Introduction

This section provides a detailed analysis of data from a SAGE experiment to illustrate the data analysis pipeline for edgeR. The data come from a very early study using SAGE technology to analyse gene expression profiles in human cancer cells [Zhang et al., 1997].

9.2 Source of the data

At the time that Zhang et al. [1997] published their paper, no comprehensive study of gene expression in cancer cells had been reported. Zhang et al. [1997] designed a study to address the following issues:

- 1. How many genes are expressed differentially in tumour versus normal cells?
- 2. Are the majority of those differences cell-autonomous rather than dependent on the tumour micro-environment?
- 3. Are most differences cell type-specific or tumour-specific?

They used normal and neoplastic gastro-intestinal tissue as a prototype and analysed global profiles of gene expression in human cancer cells. The researchers derived transcripts from human colorectal (CR) epithelium, CR cancers or pancreatic cancers. The data that we analyse in this case study are Zhang et al. [1997]'s SAGE results for the comparison of expression patterns between normal colon epithelium and primary colon cancer.

They report that the expression profiles revealed that most transcripts were expressed at similar levels, but that 289 transcripts were expressed at significantly different levels [P-value; 0.01] and that 181 of these 289 were decreased in colon tumours as compared with normal colon tissue. Zhang et al. [1997] used Monte Carlo simulation to determine statistical significance. In this case study we will use the edgeR package, based around the negative binomial model, to identify genes differentially expressed in the normal and cancer samples.

9.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into a DGEList object that the functions in the package can recognise. The library size is usually the total sum of all of the counts for a library, and that is how library size is defined in this analysis. The easiest way to construct an appropriate DGEList object for these data is described below.

In this case, the tag counts for the four individual libraries are stored in four separate plain text files, GSM728.txt, GSM729.txt, GSM755.txt and GSM756.txt. In each file, the tag IDs and counts for each tag are provided in a table. It is best to create a tab-delimited,

plain-text 'Targets' file, which, under the headings 'files', 'group' and 'description', gives the filename, the group and a brief description for each sample.

The targets object is produced when the 'Targets.txt' file is read into the R session. This object makes a convenient argument to the function readDGE which reads the tables of counts into our R session, calculates the sizes of the count libraries and produces a DGEList object for use by subsequent functions.

```
> library(edgeR)
> path <- getwd()
> setwd("/Users/dmccarthy/Documents/DGE/ZhangData")
> targets <- read.delim(file = "Targets.txt", stringsAsFactors = FALSE)
> targets
       files group
                                  description
1 GSM728.txt
                NC
                                 Normal colon
2 GSM729.txt
                NC
                                 Normal colon
3 GSM755.txt
                Tu Primary colonrectal tumour
4 GSM756.txt
                Tu Primary colonrectal tumour
> d <- readDGE(targets, skip = 5, comment.char = "!")</pre>
> dim(d)
[1] 57448
> d
An object of class "DGEList"
$samples
       files group
                                  description lib.size norm.factors
1 GSM728.txt
                NC
                                 Normal colon
                                                  50179
                                                                   1
2 GSM729.txt
                NC
                                                  49593
                                 Normal colon
                                                                   1
3 GSM755.txt
                Tu Primary colonrectal tumour
                                                  57686
                                                                   1
4 GSM756.txt
                Tu Primary colonrectal tumour
                                                  49064
                                                                   1
$counts
                        3
              1
                   2
CCCATCGTCC 1288 1380 1236
                            0
                 458
CCTCCAGCTA 719
                      148 142
CTAAGACTTC 559
                 558
                      248 199
GCCCAGGTCA 520
                       22 62
                 448
CACCTAATTG 469
                 472
                      763 421
57443 more rows ...
```

> setwd(path)

We will filter out very lowly expressed tags. Those which have fewer than 5 tags in total cannot possibly achieve statistical significance for DE, so we filter out these tags.

```
> d <- d[rowSums(d$counts) >= 5, ]
> dim(d)
[1] 5012
> d$samples$lib.size
[1] 50179 49593 57686 49064
> colSums(d$counts)
          2
                3
34970 35764 36940 30325
> d$samples$lib.size <- colSums(d$counts)</pre>
> d <- calcNormFactors(d)</pre>
> d$samples
       files group
                                    description lib.size norm.factors
1 GSM728.txt
                NC
                                   Normal colon
                                                    34970
                                                             0.9757300
2 GSM729.txt
                NC
                                   Normal colon
                                                    35764
                                                             0.9654074
3 GSM755.txt
                Tu Primary colonrectal tumour
                                                    36940
                                                             0.9706259
4 GSM756.txt
                Tu Primary colonrectal tumour
                                                    30325
                                                             1.0937243
```

We see that the vast majority of tags sequenced in this experiment are detected at very low levels. This filtering step reduces the dataset from over 50,000 tags to just over 5000. While this may seem drastic, there is simply no information for DE in the tags we have filtered out. Nevertheless, the filtering reduces the library sizes (total counts in each library) by about 30%.

In the output above we also show the application of TMM normalization to these data using the function calcNormFactors. The normalization factors here are all very close to one, which indicates that the four libraries are very similar in composition.

This DGEList is now ready to be passed to the functions that do the calculations to determine differential expression levels for the genes. Note that when we 'see' the DGEList object d, the counts for just the first five genes in the table are shown, as well as the library sizes and groups for the samples.

9.4 Analysis using common dispersion

9.4.1 Estimating the common dispersion

The first major step in the analysis of DGE data using the NB model is to estimate the dispersion parameter for each tag. The most straight-forward analysis of DGE data uses the common dispersion estimate as the dispersion for all tags. For many applications this will be adequate and it may not be necessary to estimate tagwise dispersions, i.e. estimate the dispersion parameter separately for each tag. Using the common dispersion allows the user

to obtain DE results very quickly and in few steps, and so makes a good place to start with any analysis of DGE data.

Estimating the common dispersion is done using the function estimateCommonDisp. In order to do this, the function first needs to generate the 'pseudocounts' under the alternative hypothesis (that there really is a difference in expression level between the groups). The conditional maximum likelihood method assumes that the library sizes are equal, which is certainly not true in general for DGE data.

The pseudocounts are calculated using a quantile-to-quantile method for the negative binomial distribution so that the library sizes for the pseudocounts are equal to the geometric mean of the original library sizes. These pseudocounts are then used as the count data for the common conditional negative binomial likelihood function, which is maximised over the dispersion parameter to obtain our estimate of the common dispersion.

The output of estimateCommonDisp is a DGEList object with several new elements. The element common.dispersion, as the name suggests, provides the estimate of the common dispersion, and pseudo.alt gives the pseudocounts calculated under the alternative hypothesis. The element genes contains the information about gene/tag identifiers. The element conc gives the estimates of the overall concentration of each tag across all of the original samples (conc\$conc.common) and the estimate of the concentration of each tag within each group (conc\$conc.group). The element common.lib.size gives the library size to which the original libraries have been adjusted in the pseudocounts.

We see in the output below that the total number of counts in each library of the pseudocounts agrees well with the common library size, as desired.

Under the negative binomial model, the square root of the common dispersion gives the coefficient of variation of biological variation. Here, as seen in the code below, the coefficient of variation of biological variation is found to be 0.44. We also note that a common dispersion estimate of 0.2 means that there is a lot more variability in the data that can be accounted for by the Poisson model—if a tag has just 200 counts on average in each library, then the estimate of the tag's variance under the NB model is over 40 times greater than it would be under the Poisson model.

```
> d$common.dispersion
[1] 0.1968823
> sqrt(d$common.dispersion)
[1] 0.4437142
```

9.4.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for determining differential expression. The edgeR package uses an exact test for the negative binomial distribution, which has strong parallels with Fisher's exact test, to compute exact p-values that can be used to assess differential expression. The function exactTest allows the user to conduct the NB exact test for pairwise comparisons of groups. Here there are only two groups, so the pair need not be specified—the function by default compares the two groups present.

```
> de.com <- exactTest(d)
Comparison of groups: Tu - NC
> names(de.com)
[1] "table" "comparison" "genes"
> names(de.com$table)
[1] "logConc" "logFC" "p.value"
```

The object produced by exactTest contains three elements: table, comparison and genes. The element de.com\$comparison contains a vector giving the names of the two groups compared. The tablede.com\$table contains the elements logConc, which gives the overall concentration for a tag across the two groups being compared, logFC, which gives the log-fold change difference for the counts between the groups and p.value gives the exact p-values computed.

The results of the NB exact test can be accessed conveniently using the topTags function applied to the object produced by exactTest. The user can specify the number, n, of tags for which they would like to see the differential expression information, ranked by p-value (default) or fold change. As the same test is conducted for many thousands of tags, adjusting the p-values for multiple testing is recommended. The desired adjustment method can be supplied by the user, with the default method being Benjamini and Hochberg's approach for controlling the false discovery rate (FDR) [Benjamini and Hochberg, 1995]. The table below shows the top 10 DE genes ranked by p-value.

The output below shows that the edgeR package identifies a good deal of differential expression between the normal colon cell group and the primary CR cancer cell group. The top DE genes are given very small p-values, even after adjusting for multiple testing. Furthermore, all of the top genes have a large fold change, indicating that these genes are more likely to be biologically meaningful. A Gene Ontology analysis could be carried out using the list of top genes and p-values provided by topTags in order to obtain more systematic and functional information about the differentially expressed genes.

```
> options(digits = 4)
> topTags(de.com)
Comparison of groups: Tu-NC
          logConc
                    logFC
                             PValue
                                          FDR
AGCTGTTCCC -27.95 44.129 7.653e-20 3.836e-16
CTTGGGTTTT -29.59 40.859 2.612e-10 6.545e-07
           -29.97
                   40.102 2.788e-08 4.530e-05
TACAAAATCG
CCCAACGCGC -12.20
                   -5.766 3.615e-08 4.530e-05
GCCACCCCCT -30.04
                  39.961 5.832e-08 5.846e-05
CCAGTCCGCC -30.14
                   39.761 1.972e-07 1.632e-04
GTCATCACCA
           -30.15 -39.732 2.280e-07 1.632e-04
CGCGTCACTA -11.70
                    4.732 4.842e-07 2.752e-04
           -10.54
TCACCGGTCA
                  -4.144 4.942e-07 2.752e-04
TAAATTGCAA
           -10.81
                  -4.170 6.750e-07 3.383e-04
```

The table below shows the raw counts for the genes that edgeR has identified as the most differentially expressed. For these genes there seems to be very large differences between the groups, suggesting that the DE genes identified are truly differentially expressed, and not false positives.

```
> detags.com <- rownames(topTags(de.com)$table)</pre>
> d$counts[detags.com, ]
                      3
AGCTGTTCCC
                 0 119 1011
CTTGGGTTTT
              0
                 0
                    21
                          97
                    14
                          56
TACAAAATCG
              0
                 0
CCCAACGCGC 106
                 1
                     2
                           0
GCCACCCCCT
                 0
                          58
```

```
CCAGTCCGCC
             0 0
                         49
GTCATCACCA
           35 20
                     0
                         0
CGCGTCACTA
             1 3
                   88
                         21
TCACCGGTCA 118 75
                    6
                         5
TAAATTGCAA 103 59
                     3
                          6
```

If we order the genes by fold change instead of p-value, as in the table below, we see that the genes with the largest fold changes have very small concentrations. This ranking is dominated by genes that have zero total counts in one group and is less informative than ranking by p-value.

```
> topTags(de.com, sort.by = "logFC")
Comparison of groups: Tu-NC
          logConc logFC
                            PValue
AGCTGTTCCC -27.95 44.13 7.653e-20 3.836e-16
CTTGGGTTTT -29.59 40.86 2.612e-10 6.545e-07
TACAAAATCG -29.97
                  40.10 2.788e-08 4.530e-05
GCCACCCCCT
           -30.04
                   39.96 5.832e-08 5.846e-05
CCAGTCCGCC -30.14 39.76 1.972e-07 1.632e-04
GTCATCACCA -30.15 -39.73 2.280e-07 1.632e-04
                   39.31 2.232e-06 7.458e-04
GTGCGCTGAG
           -30.36
GTGTGTTTGT
           -30.42
                   39.20 3.922e-06 1.035e-03
CTTGACATAC -30.42 -39.20 3.922e-06 1.035e-03
GGGGGGGGG -30.44 39.15 4.767e-06 1.138e-03
```

Zhang et al. [1997] identified 289 genes as significantly differentially expressed with p-values less than 0.01. We can look at the genes that are given an exact p-value less than 0.01 by edgeR before adjusting for multiple testing, and less than 0.05 after adjustment.

We see in the output below that 243 genes are significantly differentially expressed according to edgeR when using the common dispersion estimate. Of those genes, 101 are up-regulated in the cancer cells compared with the normal cells and 142 are down-regulated in the cancer cells compared with normal cells. These proportions of up- and down-regulated tags are very similar to those found by Zhang et al. [1997].

```
> sum(de.com$table$p.value < 0.01)
[1] 243
> top243 <- topTags(de.com, n = 243)
> sum(top243$table$logFC > 0)
[1] 101
> sum(top243$table$logFC < 0)
[1] 142</pre>
```

Furthermore, we see below that 99 tags (2% of the total number of genes after filtering) have a p-value of less than 0.05 after adjusting for multiple testing using the Benjamini and Hochberg [1995] method for controlling the FDR, which is strong evidence for differential expression.

```
> summary(decideTestsDGE(de.com, p.value = 0.05))
    [,1]
-1     57
0     4913
1     42
```

9.4.3 Visualising DGE results

The function plotSmear can be used to generate a plot of the log-fold change against the log-concentration for each tag (analogous to an MA-plot in the microarray context). We can easily identify the top DE tags and highlight them on the plot. The code for producing the default fold-change plot is shown below, and the result of this code is shown in Figure 2.

Figure 2 shows the default fold change-plot for these data—the 'smear plot'. Plotting DGE data poses some challenges, as when the total counts in one group are zero, the log-fold change is technically infinite, and the log-concentration is negative infinity. With the algorithm used by topTags, we see very high log-fold changes and very small values for log-concentration for such tags, but plotting these values directly causes problems with the scale of the graph. To get around this problem, edgeR produces a 'smear' of points at the left-most edge of the plot for tags which have zero counts in one of the groups. Although this is still slightly artificial, it has the advantage that the expression level of all tags can be visualised and interpreted simultaneously.

The 'lines' of points we see at smaller log-concentration values arise from the discrete nature of the count data. When the sum all of the counts in one of the groups is one, we see the lines of points furthest away from the main body of points, and other lines of points correspond to when the total sum of counts in one of the groups is 2, 3, 4 and so on.

In Figure 2, the 264 tags identified as differentially expressed (i.e. those identified as significant (p-value less than 0.01) by edgeR using the common dispersion) are outlined in red.

Figure 2: Plot of the log-fold change against the log-concentration for each tag. The 243 most differentially expressed tags as identified by edgeR using the common dispersion are outlined in red.

9.5 Analysing the data using moderated tagwise dispersions

9.5.1 Moderating the tagwise dispersion

An extension to simply using the common dispersion for each tag is to estimate the dispersion separately for each tag, while 'squeezing' these estimates towards the common dispersion estimate in order to improve inference by sharing information between tags. This type of analysis can also be carried out in few steps using the edgeR package.

As noted earlier, the dispersion parameter is the overdispersion relative to the Poisson, and represents the biological, or sample-to-sample variability. The methods we developed moderate the dispersion estimates towards a common dispersion, much like how the limma package moderates the variances in the analysis of microarray data.

The amount of moderation done is determined by the value of a weight parameter prior.n. The value for prior.n corresponds to the number of individual tags equivalent to the weight given to the common likelihood. Thus, the higher prior.n, the more strongly the individual dispersion estimates are moderated, or 'squeezed', towards the common value. To run the moderated analysis, we need to determine how much moderation is necessary.

How best to do this is still an open research question, but we currently recommend selecting a value for the weight parameter prior.n a priori and have found that very good results can be obtained this way.

In an experiment such as that we consider here, in which we have just four samples, two in each group, and thus two degrees of freedom for estimating the dispersion parameter. Standard tagwise dispersion estimates are likely to be unreliable, so we want to give a reasonable weight to the common likelihood. We need to choose a value for prior.n such that individual tagwise dispersion estimates are 'squeezed' quite strongly towards the common dispersion. Here, we choose a moderate amount of smoothing—we let prior.n be 10. This means that the common likelihood receives the weight of 10 individual tags, so there will be a reasonable degree of 'squeezing', but there is still ample scope to estimate an individual dispersion for each gene.

The function estimateTagwiseDisp produces a DGEList object that contains all of the elements present in the object produced by estimateCommonDisp, as well as the value for prior.n used (d\$prior.n) and the tagwise dispersion estimates (d\$tagwise.dispersion), as we see below.

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can see from the output below, the tagwise dispersion estimates range from a minimum of 0.09 to a maximum of 1.09. The range of dispersions is therefore large, but the tags in the middle two quartiles of the tagwise dispersion estimates have dispersion estimates close to the common dispersion estimate.

```
> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0944 0.1720 0.1850 0.1990 0.2070 1.0900

> d$common.dispersion

[1] 0.1969
```

9.5.2 Testing

The testing procedures when using tagwise dispersion estimates are carried out exactly as for the common dispersion, as described above, but we add the argument common.disp=FALSE to the call to exactTest. Here we carry out the testing using the tagwise dispersion estimates calculated using a prior.n value of ten.

```
> de.tgw <- exactTest(d, common.disp = FALSE)
Comparison of groups: Tu - NC</pre>
```

The output below shows that when using tagwise dispersions, the edgeR package still identifies a lot of differential expression between the normal colon cell group and the primary CR cancer cell group—indeed the p-values of the top tags are even smaller than the top tags based on the common dispersion. This arises because the moderated tagwise dispersions can be much smaller than the common dispersion, and tags with smaller dispersions will have smaller p-values than the same tags with p-values computed using a common dispersion. As with the analysis using the common dispersion, all of the top tags have a large fold change, indicating that these changes in expression are likely to be biologically meaningful. We note that the ranking is different, however, and not all of the top ten tags according to using the common dispersion are found to be among the top ten tags using tagwise dispersions.

> topTags(de.tgw)

```
Comparison of groups: Tu-NC
           logConc
                     logFC
                              PValue
                                           FDR
AGCTGTTCCC
           -27.95
                    44.129 1.571e-10 7.872e-07
TCACCGGTCA
           -10.54
                    -4.144 2.009e-08 5.033e-05
           -30.15 -39.732 1.439e-07 1.950e-04
GTCATCACCA
CTTGGGTTTT
           -29.59
                   40.860 1.557e-07 1.950e-04
TAAATTGCAA
           -10.81
                   -4.171 2.311e-07 2.317e-04
TAATTTTTGC
            -13.15
                     5.840 5.265e-07 4.398e-04
GTGCGCTGAG
            -30.36
                    39.306 7.671e-07 5.036e-04
           -13.16
                    -5.812 8.209e-07 5.036e-04
ATTTCAAGAT
CTTGACATAC
            -30.42 -39.197 9.042e-07 5.036e-04
TACAAAATCG
           -29.96
                    40.103 1.484e-06 7.440e-04
```

The table below shows the raw counts for the tags that edgeR has identified as the most differentially expressed using tagwise dispersions. For these genes there seems to be very large differences between the groups, suggesting that the DE genes identified are truly differentially expressed, and not false positives.

We note that in general, when using tagwise dispersions, the counts are more consistent within groups, as using tagwise dispersions instead of the common dispersion penalises tags which are highly variable within groups. The smaller the value selected for prior.n, the more highly variable tags will be penalised, as there is less 'squeezing' of the tagwise dispersions towards the common value. This effect is seen clearly in the table below (compare this with the corresponding table for the analysis using the common dispersion).

```
> detags.tgw <- rownames(topTags(de.tgw)$table)</pre>
> d$counts[detags.tgw, ]
             1 2
                    3
AGCTGTTCCC
             0 0 119 1011
TCACCGGTCA 118 75
GTCATCACCA 35 20
                          0
CTTGGGTTTT
            0 0
                   21
                        97
TAAATTGCAA 103 59
                         6
TAATTTTTGC
                   37
                         21
GTGCGCTGAG
             0 0
                   18
                         23
ATTTCAAGAT
           35 21
                    0
                          1
CTTGACATAC 18 20
                    0
                         0
TACAAAATCG
             0 0
                         56
```

Of course, we can sort the top table differently, as we did earlier.

We see in the output below that 225 genes are significantly differentially expressed according to edgeR when using the tagwise dispersion estimates (ten fewer than when using the common dispersion). Of those tags, 84 are up-regulated in the cancer cells compared with the normal cells and 141 are down-regulated in the cancer cells compared with normal cells. These proportions of up- and down-regulated tags are similar to those found using the common dispersion, but there is a slightly higher proportion of down-regulated tags in those identified as DE using tagwise dispersions.

```
> sum(de.tgw$table$p.value < 0.01)

[1] 225
> toptgw <- topTags(de.tgw, n = sum(de.tgw$table$p.value < 0.01))
> sum(toptgw$table$logFC > 0)

[1] 84
> sum(toptgw$table$logFC < 0)

[1] 141</pre>
```

Furthermore, we see below that 76 tags (1.5% of the total number) have a p-value of less than 0.05 after adjusting for multiple testing using the Benjamini and Hochberg [1995] method for controlling the FDR, which is strong evidence for differential expression.

```
> summary(decideTestsDGE(de.tgw, p.value = 0.05))
    [,1]
-1     47
0     4936
1     29
```

9.5.3 Visualising DGE results

Shown below is the code for producing the default fold-change plot using plotSmear with the DE tags as determined using tagwise dispersions highlighted, and the result of this code is shown in Figure 3.

In Figure 3, the 225 tags identified as differentially expressed (i.e. those identified as significant (p-value less than 0.01) by edgeR using the tagwise dispersions) are highlighted in red. We see that the pattern of differential expression using tagwise dispersions that we see in Figure 3 is very similar to that obtained using the common dispersion that we saw in Figure 2.

9.6 Setup

This analysis of Zhang et al. [1997]'s SAGE data was conducted on:

```
> sessionInfo()
R version 2.13.0 beta (2011-03-30 r55205)
Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:
[1] C/UTF-8/C/C/C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] edgeR_2.1.16

loaded via a namespace (and not attached):
[1] limma_3.7.26
```

and took 2–3 minutes to carry out on an Apple MacBook with a 2.8 Ghz Intel Core 2 Duo processor and 8 Gb of 1067 MHz DDR3 memory.

Figure 3: Plot of the log-fold change against the log-concentration for each tag. The 225 most differentially expressed tags as identified by edgeR are outlined in red.

10 Case Study: deep-sequenced short tags

10.1 Introduction

This section provides a detailed analysis of data from an experiment seeking to compare deep-sequenced tag-based expression profiling to the microarray platforms that had been previously used to conduct such studies ['t Hoen et al., 2008].

10.2 Source of the data

't Hoen et al. [2008] address both biological and technical questions in their study. The biological question addressed was the identification of transcripts differentially expressed in the hippocampus between wild-type mice and transgenic mice overexpressing a splice variant of the δ C-doublecortin-like kinase-1 (Dclk1) gene. The splice variant, DCLK-short, makes the kinase constitutively active and causes subtle behavioural phenotypes.

On the technical side, the researchers compare the robustness, resolution and interlab portability of Solexa/Illumina's DGE tag profiling approach and five microarray platforms ['t Hoen et al., 2008]. The tag-based gene expression technology in this experiment could be thought of as a hybrid between SAGE and RNA-seq—like SAGE it uses short sequence tags (~ 17 bp) to identify transcripts, but it uses the deep sequencing capabilities of Solexa/Illumina 1G Genome Analyzer to greatly increase the number of tags that can be sequenced. For our purposes we will concentrate solely on the DGE data generated in the experiment.

The RNA samples came from wild-type male C57/BL6j mice and transgenic mice over-expressing DCLK-short with a C57/BL6j background. Tissue samples were collected from four individuals in each of the two groups by dissecting out both hippocampi from each mouse. Total RNA was isolated and extracted from the hippocampus cells and sequence tags were prepared using Illumina's Digital Gene Expression Tag Profiling Kit according to the manufacturer's protocol.

Sequencing was done using Solexa/Illumina's Whole Genome Sequencer. RNA from each biological sample was supplied to an individual lane in one Illumina 1G flowcell. The instrument conducted 18 cycles of base incorporation, then image analysis and basecalling were performed using the Illumina Pipeline. Sorting and counting the unique tags followed, and the raw data (tag sequences and counts) are what we will analyze here. 't Hoen et al. [2008] went on to annotate the tags by mapping them back to the genome. In general, the mapping of tags is an important and highly non-trivial part of a DGE experiment, but we shall not deal with this task in this case study.

The researchers obtained ~ 2.4 million sequence tags per sample, with tag abundance spanning four orders of magnitude. They found the results to be highly reproducible, even across laboratories. Using a dedicated Bayesian model, they found 3179 transcripts to be differentially expressed with a FDR of 8.5%. This is a much higher figure than was found for

the microarrays. 't Hoen et al. [2008] conclude that deep-sequencing offers a major advance in robustness, comparability and richness of expression profiling data.

10.3 Reading in the data and creating a delist object

Our first task is to load the edgeR package, read the data into R and organise the data into an object that the functions in the package can recognise. In this case, the tag counts for the eight individual libraries are stored in eight separate plain text files, GSM272105.txt, GSM272106.txt, GSM272318.txt, GSM272319.txt, GSM272320.txt, GSM272321.txt, GSM272322.txt and GSM272323.txt.

In each file, the tag IDs and counts for each tag are provided in a table. It is best to create a tab-delimited, plain-text 'Targets' file, which, under the headings 'files', 'group' and 'description', gives the filename, the group and a brief description for each sample.

The targets object is produced when the 'Targets.txt' file is read into the R session. This object makes a convenient argument to the function readDGE which reads the tables of counts into our R session, calculates the sizes of the count libraries and produces a DGEList object for use by subsequent functions.

```
> path <- getwd()
> setwd("/Users/dmccarthy/Documents/DGE/Long_SAGE_Data")
> library(edgeR)
> targets <- read.delim(file = "targets.txt", stringsAsFactors = FALSE)</pre>
> targets
                                               description
          files group
1 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus
2 GSM272106.txt
                               wild-type mouse hippocampus
3 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus
4 GSM272319.txt
                WT
                               wild-type mouse hippocampus
5 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus
6 GSM272321.txt
                               wild-type mouse hippocampus
7 GSM272322.txt DCLK transgenic (Dclk1) mouse hippocampus
8 GSM272323.txt
                               wild-type mouse hippocampus
> d <- readDGE(targets, skip = 5, comment.char = "!")</pre>
An object of class "DGEList"
$samples
          files group
                                               description lib.size
1 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus
                                                            2685418
2 GSM272106.txt
                               wild-type mouse hippocampus
                                                            3517977
3 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus 3202246
4 GSM272319.txt WT
                               wild-type mouse hippocampus
5 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus 2460753
6 GSM272321.txt
                               wild-type mouse hippocampus
                                                             294909
```

```
7 GSM272322.txt
                 DCLK transgenic (Dclk1) mouse hippocampus
                                                               651172
8 GSM272323.txt
                                wild-type mouse hippocampus
                                                              3142280
 norm.factors
1
             1
             1
3
             1
4
             1
5
             1
6
             1
7
             1
             1
$counts
                  1 2 3 4 5 6 7 8
CATCGCCAGCGGCACC 1 0 0 0 0 0 0
AAGGTCGACTCTGAAGT 1 1 0 0 0 0 0 0
CCTTCCTGGCTCTATGG 1 0 0 0 0 0 0 0
TCTGCTGAGCGTCTGTT 1 0 0 0 0 0 0 0
CCCCAGAGCGAATCAGG 1 1 2 1 1 0 2 1
844311 more rows ...
> colnames(d) <- c("DCLK1", "WT1", "DCLK2", "WT2", "DCLK3", "WT3",
      "DCLK4", "WT4")
> setwd(path)
```

This DGEList is now ready to be passed to the functions that do the calculations to determine differential expression levels for the genes. Note that when we 'see' the DGEList object d, the counts for just the first five genes in the table are shown, as well as the samples element, which is a data frame constructed from the 'Targets.txt' file and provides the filenames, groups, descriptions and library sizes for the samples.

However, for this dataset, there were over 800 000 unique tags sequenced, most of which have a very small number of counts in total across all libraries. Since it is not possible to achieve statistical significance with fewer than six counts in total for a tag, we filter out tags which have fewer than one count per million in five or more libraries. This reduces our chances of finding spurious DE (that is, DE driven by large counts in only a handful of libraries) and also helps to speed up the calculations we need to perform. The subsetting capability of DGEList objects makes such filtering very easy to carry out.

```
> d <- d[rowSums(1e+06 * d$counts/expandAsMatrix(d$samples$lib.size,
+ dim(d)) > 1) >= 3, ]
> dim(d)
[1] 53842 8
```

Now the dataset is ready to be analysed for differential expression, with just over 53000 tags remaining with sufficient expression for meaningful DE analysis.

10.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to produce a plot showing the sample relations based on multidimensional scaling. The function plotMDS.dge produces an MDS plot for the samples when provided with the DGEList object and other usual graphical parameters as arguments, as shown below.

```
> pdf(file = "edgeR_case_study_longSAGE_MDSplot.pdf", height = 6,
+ width = 6)
> plotMDS.dge(d, main = "MDS Plot for 't Hoen Data", xlim = c(-2,
+ 1))

Using grid search to estimate tagwise dispersion.
> dev.off()

null device
1
```

This function is a variation on the usual multdimensional scaling (or principle coordinate) plot, in that a distance measure particularly appropriate for the digital gene expression (DGE) context is used. The distance between each pair of samples (columns) is the square root of the common dispersion for the top n (default is n = 500) genes which best distinguish that pair of samples. These top n genes are selected according to the tagwise dispersion of all the samples. The resulting plot for the 't Hoen data is shown in 4.

10.5 Analysis using common dispersion

10.5.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the NB model is to estimate the dispersion parameter for each tag. Like in the earlier case study, we begin by estimating the common dispersion using the function estimateCommonDisp.

We see in the output below that the total counts in each library of the pseudocounts agrees well with the common library size, as desired.

MDS Plot for 't Hoen Data

Figure 4: Multidimensional scaling (MDS) plot for the 't Hoen data, showing the relations between the samples in two dimensions. Dimension 1 separates the DCLK and WT samples quite nicely.

- > d\$samples\$lib.size
- [1] 2685418 3517977 3202246 3558260 2460753 294909 651172 3142280
- > d\$common.lib.size
- [1] 1885653
- > colSums(d\$pseudo.alt)

DCLK1 WT1 DCLK2 WT2 DCLK3 WT3 DCLK4 WT4 1730559 1730394 1722869 1717904 1724596 1736061 1758558 1730391

Here the coefficient of variation of biological variation (square root of the common dispersion) is found to be 0.40. We also note that a common dispersion estimate of 0.16 means that there is a lot more variability in the data that can be accounted for by the Poisson model—if a tag has just 200 counts in total (average of 25 counts per sample), then the estimate of the tag's variance under the NB model is over 10 times greater than it would be under the Poisson model.

```
> d$common.dispersion
[1] 0.161519
> sqrt(d$common.dispersion)
```

[1] 0.4018942

10.5.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for determining differential expression. As for the SAGE data, there are only two groups here, so the pair need not be specified in the call to exactTest.

```
> system.time(de.common <- exactTest(d))
Comparison of groups: WT - DCLK
  user system elapsed
26.713 7.991 34.932</pre>
```

The results of the NB exact test can be accessed conveniently using the topTags function applied to the object produced by exactTest. The table below shows the top 10 DE genes ranked by p-value.

The table in the output from topTags shows that the edgeR package identifies a good deal of differential expression between the wild-type and the DCLK-transgenic groups. The top DE tags are given very small p-values, even after adjusting for multiple testing. Furthermore, all of the top tags have a large fold change, indicating that these tags are likely to be biologically meaningful. As suggested in the SAGE case study, a Gene Ontology analysis could be carried out using the list of top tags and p-values provided by topTags in order to obtain more systematic and functional information about the differentially expressed genes.

> topTags(de.common)

```
Comparison of groups: WT-DCLK
                   logConc
                                logFC
                                            PValue
AATTTCTTCCTCTTCCT -17.29940 11.605637 3.740474e-43 2.013946e-38
CCGTCTTCTGCTTGTCG -10.57557
                            5.566736 1.246162e-28 3.354793e-24
TCTGTACGCAGTCAGGC -18.46446 -9.732358 8.588672e-26 1.232375e-21
CCGTCTTCTGCTTGTAA -14.44493 5.425811 9.155493e-26 1.232375e-21
CCGTCTTCTGCTTGTCA -15.46499 5.469611 1.008337e-23 1.085818e-19
AAGACTCAGGACTCATC -32.26560 35.500911 1.338780e-22 1.201377e-18
CCGTCTTCTGCTTGTAG -15.58127
                             4.761123 6.560131e-20 5.045866e-16
AGTGTGACGTGACCGGG -19.05893
                             8.075424 2.546566e-19 1.713903e-15
AAATTCTTCCTCTTCCT -19.14120
                             7.922030 2.439687e-18 1.459529e-14
CATAAGTCACAGAGTCG -32.76212 -34.507864 1.573506e-15 8.472070e-12
```

The table below shows the raw counts for the tags that edgeR has identified as the most differentially expressed. For these tags there seem to be very large differences between the groups, suggesting that the DE genes identified are truly differentially expressed, and not false positives. We do see, however, that when a common dispersion value is used, tags which have just one large count in one sample can appear as highly DE. If we wish to give less significance to such tags then we can use tagwise dispersion estimates as described below.

- > detags.com <- rownames(topTags(de.common)\$table)</pre>
- > d\$counts[detags.com, order(d\$samples\$group)]

	DCLK1	DCLK2	DCLK3	DCLK4	WT1	WT2	WT3	WT4
AATTTCTTCCTCTTCCT	1	0	0	0	44	1	76	3487
$\tt CCGTCTTCTGCTTGTCG$	106	268	601	5	1485	420	5156	242
TCTGTACGCAGTCAGGC	160	101	440	33	0	1	0	0
$\tt CCGTCTTCTGCTTGTAA$	12	21	31	1	87	28	352	14
$\tt CCGTCTTCTGCTTGTCA$	2	8	19	1	42	17	183	17
AAGACTCAGGACTCATC	0	0	0	0	6	2	4	461
$\tt CCGTCTTCTGCTTGTAG$	9	11	17	0	61	20	133	9
${\tt AGTGTGACGTGACCGGG}$	0	0	1	0	249	2	5	85
AAATTCTTCCTCTTCCT	1	0	0	0	6	0	2	288
CATAAGTCACAGAGTCG	67	77	58	7	0	0	0	0

If we order the tags by fold change instead of p-value, as in the table below, we see that the genes with the largest fold changes have very small concentrations, and in general the p-values are not as small as when ranked by p-value (not surprisingly). This ranking is dominated by genes that have zero total counts in one group and is less informative than ranking by p-value.

> topTags(de.common, sort.by = "logFC")

Using their dedicated Bayesian model, 't Hoen et al. [2008] found 3179 transcripts to be differentially expressed with a FDR of 8.5%. We can compare 't Hoen et al. [2008]'s results with the results from edgeR by applying the topTags function to help look at the tags

that have a FDR of less than 0.085 after adjusting for multiple testing using Benjamini and Hochberg [1995]'s method for controlling the FDR.

We see in the output below that 2270 tags (4.2% of the total number analysed) are significantly differentially expressed according to edgeR using the common dispersion estimate. Of those tags, 783 (34% of the DE tags) are up-regulated in the wild-type compared with the transgenic samples and 1487 (66%) are down-regulated in the wild-type compared with transgenic mice.

```
> summary(decideTestsDGE(de.common, p.value = 0.085))
    [,1]
-1    1487
0    51572
1    783
```

10.5.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags high-lighted in red, is shown below, and the result of this code is shown in Figure 5. In Figure 5, we see that the 500 tags identified as most differentially expressed have large fold changes—almost all of the 500 tags in red fall outside the blue lines at $\log FC = -2$ and $\log FC = 2$. This means that most of these tags show at least a 4-fold change in expression level between the samples. This plot suggests strongly that the tags identified by edgeR as differentially expressed are truly differentially expressed, and, given the large changes in expression level, are likely to be biologically meaningful.

```
> detags500.com <- rownames(topTags(de.common, n = 500)$table)
> png(file = "edgeR_case_study_longSAGE-015.png", height = 600,
+ width = 600)
> plotSmear(de.common, de.tags = detags500.com, main = "FC plot using common dispersion",
+ cex = 0.6)
> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)
> dev.off()
null device
1
```

10.6 Analysis using moderated tagwise dispersions

10.6.1 Moderating the tagwise dispersion

An extension to simply using the common dispersion for each tag is to estimate the dispersion separately for each tag, while 'squeezing' these estimates towards the common dispersion estimate in order to improve inference by sharing information between tags. This type of analysis can also be carried out in few steps using the edgeR package.

FC plot using common dispersion

Figure 5: Plot of the log-fold change against the log-concentration for each tag. The 500 most differentially expressed tags as identified by edgeR using the common dispersion are outlined in red.

logCond

To run the moderated analysis, we need to determine how much moderation is necessary. As discussed in the SAGE case study, above, we currently recommend choosing a value for prior.n a priori that will provide an appropriate balance between the common and tagwise dispersion values. This moderation can improve the analysis by giving higher levels of significance to tags which have more consistent counts within groups (and therefore lower within-group variance) and reducing the significance of tags which have one extremely large count in one library, which can otherwise dominate the statistical assessment of differential expression.

In an experiment such as that we consider here, in which we have eight samples and thus six degrees of freedom for estimating the dispersion parameter, setting the prior.n to be ten should be appropriate. This means that the common likelihood receives the weight of ten individual tags, so there will be a reasonable degree of 'squeezing' towards the common dispersion estimate, but there is still enough scope to estimate an individual dispersion for each tag.

The function estimateTagwiseDisp produces a DGEList object that contains all of the elements present in the object produced by estimateCommonDisp, as well as the value for

prior.n used (d\$prior.n) and the tagwise dispersion estimates (d\$tagwise.dispersion), as we see below. By setting the argument trend=TRUE in the call to estimateTagwiseDisp below we can also add an expression-dependent trend to the "common" dispersion values to which we squeeze the tagwise dispersions, by including only tags with a similar expression level in the common likelihood for the estimation of each tagwise dispersion.

```
> system.time(d <- estimateTagwiseDisp(d, prior.n = 8, prop.used = 0.3,
      trend = TRUE, grid.length = 500))
Using grid search to estimate tagwise dispersion.
   user system elapsed
 75.149 18.466 95.544
> names(d)
 [1] "samples"
                          "common.dispersion"
                                               "prior.n"
 [4] "tagwise.dispersion" "counts"
                                               "pseudo.alt"
 [7] "genes"
                          "all.zeros"
                                               "conc"
[10] "common.lib.size"
> d$prior.n
[1] 8
> head(d$tagwise.dispersion)
[1] 0.2062726 0.2180268 0.1947431 0.2642225 0.1248594 0.2033694
```

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can see from the output below, the tagwise dispersion estimates range from a minimum of 0.09 to a maximum of 0.68, and the common dispersion estimate lies in between the median and mean values for the tagwise dispersion estimates. Figure 6 shows the relationship between the estimated tagwise dispersions and tag abundance (log-concentration) for this dataset.

Figure 6: Plot of the tagwise dispersions against tag abundance (log-concentration).

10.6.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise dispersions, we can proceed with testing procedures for determining differential expression using exactTest. Here we carry out the testing using the tagwise dispersion estimates calculated using a prior.n value of ten.

By default, exactTest uses the common dispersion, but by adding the argument common.disp=FALSE, tagwise dispersion estimates will be used instead.

```
> de.tagwise <- exactTest(d, common.disp = FALSE)
Comparison of groups: WT - DCLK</pre>
```

Just as we saw earlier, the object produced by exactTest contains two elements. The first is a data frame (table) that contains the elements logConc, logFC and p.value and the second is a vector (comparison) that lists the names of the groups being compared.

The output below shows that when using tagwise dispersions, the edgeR package still identifies a lot of differential expression between the wild-type group and the DCLK-transgenic group. The top DE tags are given very small p-values, even after adjusting for multiple

testing. However, We see immediately that the p-values for the top tags are many orders of magnitude greater than those for the top tags identified using the common dispersion.

As with the analysis using the common dispersion, all of the top tags have a large fold change, indicating that these changes in expression are likely to be biologically meaningful, although interestingly we see more tags (7 out of 10) that are down-regulated in the wild-type group compared with the DCLK group, which contrasts with using the common dispersion. We note that the ranking of the tags is different, too, and only three of the top ten tags according to using the common dispersion are found to be among the top ten tags using tagwise dispersions.

> topTags(de.tagwise)

```
Comparison of groups: WT-DCLK
                    logConc
                                             PValue
                                 logFC
TCTGTACGCAGTCAGGC -18.46414
                             -9.732521 9.086167e-27 4.892174e-22
AATTTCTTCCTCTTCCT -17.30162
                             11.604816 3.581428e-20 9.641562e-16
CATAAGTCACAGAGTCG -32.75991 -34.512294 5.033695e-16 9.034140e-12
GCTAATAAATGGCAGAT -14.90218
                             -3.275617 1.446410e-15 1.946941e-11
ATACTGACATTTCGTAT -16.76738
                              4.163641 2.654657e-15 2.858640e-11
TCTGTATGTTCTCGTAT -16.12021
                              4.106937 3.934108e-15 3.530338e-11
AGTGTGACGTGACCGGG -19.06518
                              8.058516 6.122453e-15 4.709216e-11
CCTATTTTCTCTCGTA -14.63299
                             -3.188797 3.485921e-14 2.346112e-10
TATTTTGTTTTGTCGTA -17.03685
                              3.883049 1.427754e-13 8.541459e-10
AAGACTCAGGACTCATC -32.28255
                             35.467000 1.666800e-13 8.974385e-10
```

The tables below shows the raw counts for the genes that edgeR has identified as the most differentially expressed, using the common dispersion and tagwise dispersions. For these tags, using both methods, there seem to be very large differences between the groups, suggesting that the DE genes identified are truly differentially expressed, and not false positives.

Particularly noteworthy, however, is how much more consistent the counts within groups are for the top tags identified using tagwise dispersions compared with those identified using the common dispersion. This is to be expected, as allowing tagwise dispersions penalises highly variable tags, so those that have greater variability within groups (especially one or two libraries with extremely high counts) will appear far lower in the ranking using tagwise dispersions than they would using the common dispersion. This difference in the rankings provided by the two approaches to the dispersion parameter could yield valuable information.

In the table below we see one tag, "AATTTCTTCCTTTCCT" which is dominated by one very large count. We see that the dispersion estimate (the last column in the table) is 0.43 for this tag, much higher than the common dispersion value of 0.16. Accordingly, the p-value for DE is larger than when using the common dispersion. Even with larger dispersion value the tag still appears as highly DE, but we do conclude that the tag has less evidence for DE than we did using the common dispersion. We see a similar story for the tag "AAGACTCAGGACTCATC".

- > detags.tgw <- rownames(topTags(de.tagwise)\$table)</pre>
- > detags.com <- rownames(topTags(de.common)\$table)</pre>
- > tgw.disp <- d\$tagwise.dispersion
- > names(tgw.disp) <- rownames(d)</pre>
- > cbind(d\$counts[detags.tgw, order(d\$samples\$group)], tgw.disp[detags.tgw])

	DCLK1	DCLK2	DCLK3	DCLK4	WT1	WT2	WT3	WT4	
TCTGTACGCAGTCAGGC	160	101	440	33	0	1	0	0	0.1534025
AATTTCTTCCTCTTCCT	1	0	0	0	44	1	76	3487	0.4265335
CATAAGTCACAGAGTCG	67	77	58	7	0	0	0	0	0.1402509
GCTAATAAATGGCAGAT	387	321	132	71	45	32	1	38	0.1198208
ATACTGACATTTCGTAT	5	5	8	1	113	228	4	104	0.1350738
TCTGTATGTTCTCGTAT	8	12	7	3	94	427	6	177	0.1507480
AGTGTGACGTGACCGGG	0	0	1	0	249	2	5	85	0.2453300
CCTATTTTTCTCTCGTA	225	463	472	33	55	55	1	37	0.1325028
TATTTTGTTTTTGTCGTA	10	5	3	0	88	171	4	67	0.1428571
AAGACTCAGGACTCATC	0	0	0	0	6	2	4	461	0.3793103

> d\$counts[detags.com, order(d\$samples\$group)]

	DCLK1	DCLK2	DCLK3	DCLK4	WT1	WT2	WT3	WT4
AATTTCTTCCTCTTCCT	1	0	0	0	44	1	76	3487
$\tt CCGTCTTCTGCTTGTCG$	106	268	601	5	1485	420	5156	242
TCTGTACGCAGTCAGGC	160	101	440	33	0	1	0	0
$\tt CCGTCTTCTGCTTGTAA$	12	21	31	1	87	28	352	14
$\tt CCGTCTTCTGCTTGTCA$	2	8	19	1	42	17	183	17
AAGACTCAGGACTCATC	0	0	0	0	6	2	4	461
$\tt CCGTCTTCTGCTTGTAG$	9	11	17	0	61	20	133	9
AGTGTGACGTGACCGGG	0	0	1	0	249	2	5	85
AAATTCTTCCTCTTCCT	1	0	0	0	6	0	2	288
CATAAGTCACAGAGTCG	67	77	58	7	0	0	0	0

> topTags(de.common)

Comparison of groups: WT-DCLK

```
logConc
                                            PValue
                                logFC
AATTTCTTCCTCTTCCT -17.29940 11.605637 3.740474e-43 2.013946e-38
CCGTCTTCTGCTTGTCG -10.57557 5.566736 1.246162e-28 3.354793e-24
TCTGTACGCAGTCAGGC -18.46446 -9.732358 8.588672e-26 1.232375e-21
CCGTCTTCTGCTTGTAA -14.44493 5.425811 9.155493e-26 1.232375e-21
CCGTCTTCTGCTTGTCA -15.46499
                            5.469611 1.008337e-23 1.085818e-19
AAGACTCAGGACTCATC -32.26560 35.500911 1.338780e-22 1.201377e-18
CCGTCTTCTGCTTGTAG -15.58127
                             4.761123 6.560131e-20 5.045866e-16
AGTGTGACGTGACCGGG -19.05893
                             8.075424 2.546566e-19 1.713903e-15
AAATTCTTCCTCTTCCT -19.14120
                             7.922030 2.439687e-18 1.459529e-14
CATAAGTCACAGAGTCG -32.76212 -34.507864 1.573506e-15 8.472070e-12
```

We might also be interested in comparing the top-ranking genes as identified by edgeR using the common dispersion and tagwise dispersions. The output below shows, firstly, that

there are three tags that appear in the top ten most DE tags using both common and tagwise dispersions. Secondly, we see that of the top 1000 most DE tags as identified using tagwise dispersions, 79% of these tags are also in the list of the 1000 most DE tags as identified using the common dispersion. This shows that although we do get quite different results depending on which method we use, there is still a great deal of agreement as to which tags are DE.

```
> sum(rownames(topTags(de.tagwise)$table) %in% rownames(topTags(de.common)$table))
[1] 5
> sum(rownames(topTags(de.tagwise, n = 1000)$table) %in% rownames(topTags(de.common, n = 1000)$table))/1000 * 100
[1] 78.5
```

Using their dedicated Bayesian model, 't Hoen et al. [2008] found 3179 transcripts to be differentially expressed with a FDR of 8.5%. The output below shows that using Benjamini and Hochberg [1995]'s approach for controlling the FDR at 8.5%, edgeR identifies 2270 tags as DE using common dispersion and 1929 tags as DE using tagwise dispersions. This means that we determine 4.2% and 3.6% of tags to be DE using common and tagwise dispersions, respectively. The decideTestsDGE function provides a useful way to summarize DE results after testing, as shown below.

Of the 1929 tags identified as DE using tagwise dispersions, 694 (36%) are up-regulated in wild-type and 1235 (64%) are up-regulated in the transgenic mice. The proportions of up-and down-regulated genes identified using the two approaches to modeling the dispersion are similar, but using the common dispersion identifies slightly more tags down-regulated in wild-type mice as DE.

10.6.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold change against the log-concentration for each tag (analogous to an MA-plot in the microarray context). We identify the top 500 most DE tags using both common dispersion and tagwise dispersions so we can highlight them on the plots and compare what we see. The code for producing the fold-change plots is shown below, and the result of this code is shown in Figure 7.

```
> detags500.com <- rownames(topTags(de.common, n = 500)$table)
> detags500.tgw <- rownames(topTags(de.tagwise, n = 500)$table)
> png(file = "edgeR_case_study_longSAGE-30.png", height = 800,
+ width = 600)
> par(mfcol = c(2, 1))
> plotSmear(de.common, de.tags = detags500.com, main = "Using common dispersion")
> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)
> plotSmear(de.tagwise, de.tags = detags500.tgw, main = "Using tagwise dispersions")
> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)
> dev.off()
null device
```

In Figure 7, the top 500 most differentially expressed tags (those identified as significant by edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are highlighted in red. Looking at Figure 7, we see that, generally speaking, the pattern of differential expression looks similar using the two different methods, and the tags identified as DE have convincingly large fold changes.

10.7 Setup

```
This analysis of 't Hoen et al. [2008]'s tag-based DGE data was conducted on:
```

```
> sessionInfo()
R version 2.13.0 beta (2011-03-30 r55205)
Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:
[1] C/UTF-8/C/C/C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] edgeR_2.1.16

loaded via a namespace (and not attached):
[1] limma_3.7.26
```

and took roughly 8 minutes to carry out on an Apple MacBook with a $2.8~\mathrm{Ghz}$ Intel Core $2~\mathrm{Duo}$ processor and $8~\mathrm{Gb}$ of $1067~\mathrm{MHz}$ DDR3 memory.

10 -5 0 5 10

-20

Using tagwise dispersions

Figure 7: Plots of the log-fold change against the log-concentration for each tag, using the common dispersion (upper), and tagwise dispersions (lower). Tags with positive fold-change here are up-regulated in wild-type compared with transgenic mice. The 500 most differentially expressed tags according to each method are highlighted in red on both plots.

-15

logConc

-10

11 Case Study: RNA-seq data

11.1 Introduction

This section provides a detailed analysis of data from a study by Li et al. [2008] designed to address a range of practical issues in RNA-seq experiments:

- 1. How many annotated genes are detected in a single cell type?
- 2. What is the number of tags that is necessary for the analysis of differentially regulated genes under different experimental conditions?
- 3. To what extent can different mRNA isoforms be detected?
- 4. How can one quantify alternative splicing by using a single or combination of existing technologies?

Li et al. [2008] attempt to address all of these issues on an androgen-sensitive prostate cancer cell model. We are interested primarily in the second question, and the challenge of identifying differentially regulated genes under different experimental conditions. We will demonstrate the use of the edgeR package for analyzing RNA-seq data for differential gene expression.

11.2 Source of the data

Li et al. [2008] sequenced poly(A)⁺ RNA from mock-treated or androgen sensitive LNCaP cells (a cell line of human cells commonly used in the field of oncology) on the Illumina 1G Genome Analyzer. The researchers used a double-random priming approach that was capable of generating strand-specific information, although this is not of relevance to our analysis here. The raw RNA-seq data provided by Li et al. consists of 7 'lanes' of 35bp reads. ¹ Approximately 10 million sequence tags were generated from both control and hormone-treated cells (treated with DHT), and Li et al. [2008]'s analysis suggests that this tag density is sufficient for quantitative analysis of gene expression.

The 10 million sequenced tags arise from four libraries from control cells and three libraries for hormone-treated cells, giving a total of seven libraries to analyse. From Li et al. [2008] and its companion paper [Li et al., 2006] it is unclear as to whether the treatments are independent or not. The following analysis shows how a quantitative analysis of gene expression, focusing on identifying differentially expressed genes, can be conducted for these seven libraries using edgeR.

¹The Illumina instrument requires samples to be placed in a 'flow cell' which contains eight 'lanes'—each lane has a sample of cDNA and generates a library of sequence counts for that sample.

11.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package and read the data into R. In this case, the tag counts for the libraries are stored in a single table in a plain text file pnas_expression.txt, in which the rows of the table represent tags and the columns represent the different libraries.

To turn the raw RNA-seq data into a table of counts, reads were mapped to the NCBI36 build of the human genome using bowtie, allowing up to two mismatches. Reads which did not map uniquely were discarded. The number of mapped reads that overlapped ENSEMBL gene annotations (version 53) was then counted. In counting reads associated with genes, reads which mapped to non-coding gene regions, such as introns, were included in the count.

Unlike in the other datasets we have look at, counts here are aggregated at the gene, not at the tag, level.

The files object provides the name of the data file, and makes a convenient argument to the function read.delim which reads the table of counts into our R session.

```
> path <- getwd()
> setwd("/Users/dmccarthy/Documents/DGE/LiData")
> library(edgeR)
> raw.data <- read.delim("pnas_expression.txt")
> names(raw.data)

[1] "ensembl_ID" "lane1" "lane2" "lane3" "lane4"
[6] "lane5" "lane6" "lane8" "len"
> setwd(path)
```

The raw data is stored in a table with columns representing the gene names, the counts for the seven libraries and a column giving the length of each gene. The gene length is not currently used by edgeR, but this information could be used in future versions of the package. In the code below, we assign the counts matrix to an object d with the appropriate rownames, define the groups to which the samples belong, and then pass these arguments to DGEList, which calculates the library sizes and constructs a DGEList containing all of the data we require for the analysis. We filter out lowly expressed tags and those which are only expressed in a small number of samples. We keep only those tags that have at least one count per million in at least three samples.

```
An object of class "DGEList"
$samples
        group lib.size norm.factors
lane1 Control
                978576
                           1.0296636
lane2 Control 1156844
                           1.0372521
lane3 Control 1442169
                           1.0362662
lane4 Control 1485604
                           1.0378383
lane5
          DHT
               1823460
                           0.9537095
lane6
          DHT 1834335
                           0.9525624
          DHT
lane8
                681743
                           0.9583181
$counts
                lane1 lane2 lane3 lane4 lane5 lane6 lane8
ENSG00000124208
                  478
                         619
                               628
                                     744
                                            483
                                                  716
                                                        240
ENSG00000182463
                   27
                          20
                                27
                                      26
                                                   55
                                                         24
                                             48
ENSG00000124201
                  180
                         218
                               293
                                     275
                                            373
                                                  301
                                                         88
                   76
                          80
                                85
                                                         37
ENSG00000124207
                                      97
                                             80
                                                   81
ENSG00000125835
                  132
                         200
                               200
                                     228
                                            280
                                                  204
                                                         52
16489 more rows ...
$all.zeros
ENSG00000124208 ENSG00000182463 ENSG00000124201 ENSG00000124207 ENSG00000125835
          FALSE
                           FALSE
                                           FALSE
                                                            FALSE
                                                                             FALSE
16489 more elements ...
```

This DGEList is now ready to be passed to the functions that do the calculations to determine differential expression levels for the genes.

11.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to produce a plot showing the sample relations based on multidimensional scaling, as demonstrated for the Tag-seq data above. We can produce an MDS plot for the Li Data using the command below.

The resulting plot for the Li data is shown in 8. In this plot, Dimension 1 clearly separates the Control from the DHT-treated samples. This shows that the replicates are reasonably similar to each other and that we can expect to find lots of DE genes. Having now investigated some of the relationships between the samples we can proceed to the DE analysis of the data.

Figure 8: Multidimensional scaling (MDS) plot for the Li data, showing the degree of similarity between the samples in two dimensions. We see that Dimension 1 strongly separates the Control from the DHT-treated samples. There are no outliers on this plot.

11.5 Analysis using common dispersion

11.5.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the NB model is to estimate the dispersion parameter for each tag. Like in the earlier case study, we begin by estimating the common dispersion using the function estimateCommonDisp, and analysing the data using the common dispersion.

- > d <- estimateCommonDisp(d)</pre>
- > names(d)

```
[1] "samples" "common.dispersion" "counts"
[4] "pseudo.alt" "genes" "all.zeros"
[7] "conc" "common.lib.size"
```

The output of estimateCommonDisp is a DGEList object with several new elements. The element common.dispersion, as the name suggests, provides the estimate of the common dispersion. The pseudocounts calculated under the alternative hypothesis are given by pseudo.alt. The element conc gives the estimates of the overall concentration of each tag across all of the original samples (conc\$conc.common) and the estimate of the concentration of each tag within each group (conc\$conc.group). The element common.lib.size gives the library size to which the original libraries have been adjusted in the pseudocounts.

We see in the output below that the total counts in each library of the pseudocounts agrees well with the common library size, as desired.

```
> d$samples$lib.size
[1] 978576 1156844 1442169 1485604 1823460 1834335 681743
> d$common.lib.size
[1] 1276768
> colSums(d$pseudo.alt)
    lane1 lane2 lane3 lane4 lane5 lane6 lane8
1237867 1228722 1229837 1227950 1336999 1338589 1332297
```

Here the coefficient of variation of biological variation (square root of the common dispersion) is found to be 0.142. We also note that although a common dispersion estimate of 0.02 may seem 'small', if a tag has just an average of just 200 counts per sample, then the estimate of the tag's variance is 5 times greater than it would be under the Poisson model.

```
> d$common.dispersion
[1] 0.0199892
> sqrt(d$common.dispersion)
[1] 0.1413832
```

11.5.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for determining differential expression. As for the SAGE data, there are only two groups here, so the pair need not be specified in the call to exactTest.

```
> de.com <- exactTest(d)
Comparison of groups: DHT - Control
> names(de.com)
[1] "table" "comparison" "genes"
```

The results of the NB exact test can be accessed conveniently using the topTags function applied to the object produced by exactTest. The table below shows the top 10 DE genes ranked by p-value.

The table in the output from topTags shows that the edgeR package identifies a great deal of differential expression, and gives the top genes extremely small p-values, even after adjusting for multiple testing. Furthermore, all of the top genes have a very large fold change (indicating that these tags are likely to be biologically meaningful), and all are up-regulated in the DHT-treatment group compared to the control group.

Of course, for many applications the ranking for differential expression is more important than the p-value, and topTags provides such a ranking. As suggested in the SAGE case study, a Gene Ontology analysis could be carried out using the list of top gene and p-values provided by topTags in order to obtain more systematic and functional information about the differentially expressed genes.

> topTags(de.com)

```
Comparison of groups: DHT-Control
                  logConc
                             logFC
                                          PValue
ENSG00000151503 -11.93976 5.822268 6.514565e-193 1.074512e-188
ENSG00000096060 -11.32470 5.010054 1.234621e-162 1.018192e-158
ENSG00000127954 -15.62463 8.236128 2.431779e-153 1.336992e-149
ENSG00000166451 -12.27934 4.687187 1.046604e-134 4.315670e-131
ENSG00000131016 -14.42053 5.307517 4.117750e-110 1.358363e-106
ENSG00000113594 -12.82529 4.117312 5.314184e-102
ENSG00000116285 -13.55908 4.205334 4.633316e-93
ENSG00000123983 -12.08741 3.661336 1.192773e-92
                                                  2.459200e-89
ENSG00000166086 -15.23730 5.508111 1.912744e-90
                                                  3.505422e-87
ENSG00000162772 -10.80873 3.318935 7.148502e-86
                                                 1.179074e-82
```

The table below shows the raw counts for the genes that edgeR has identified as the most differentially expressed. For these genes there seems to be very large differences between the groups, suggesting that the DE genes identified are truly differentially expressed.

```
> detags.com <- rownames(topTags(de.com)$table)
> d$counts[detags.com, ]
```

	lane1	lane2	lane3	lane4	lane5	lane6	lane8
ENSG00000151503	35	35	49	59	3307	3439	1224
ENSG00000096060	65	79	105	113	3975	3727	1451
ENSG00000127954	0	0	3	3	607	602	220
ENSG00000166451	41	52	57	57	1750	1654	728
ENSG00000131016	9	5	18	6	564	377	213
ENSG00000113594	37	36	57	43	936	959	418
ENSG00000116285	18	28	23	32	645	630	218
ENSG00000123983	62	76	94	108	1354	1258	628
ENSG00000166086	9	2	3	6	296	298	121
ENSG00000162772	172	204	250	304	2972	3269	1112

If we order the genes by fold change instead of p-value, we see that the genes with the largest fold changes have very small concentrations. This ranking is dominated by genes that have zero total counts in one group and is less informative than ranking by p-value.

```
> topTags(de.com, n = 10, sort.by = "logFC")
```

We can see how many genes are identified as differentially expressed between the control group (untreated LNCaP cells) and the DHT-treated LNCaP cells, for a given threshold for the exact p-value or for the adjusted p-value.

As the output below shows, edgeR detects a huge number of differentially expressed genes in this dataset. Over 3000 genes are given a p-value less than 0.01.

```
> summary(decideTestsDGE(de.com, p.value = 0.01))
```

```
[,1]
-1 1620
0 13110
1 1764
```

The output below shows that 4936 genes are given an adjusted p-value of less than 0.05. This means that if we set our control the FDR for differential expression at 5%, then edgeR identifies 30% of all the genes in the dataset as differentially expressed.

```
> summary(decideTestsDGE(de.com, p.value = 0.05))
    [,1]
-1 2463
0 11558
1 2473
```

Of the genes identified as DE above, 2463 (49.9% of the DE genes) are up-regulated in DHT-treated compared with control cells, and 2473 (50.1%) are up-regulated in the control cells compared with DHT-treated cells. It is interesting to note that although we detect far more genes as DE that are up-regulated in the control group, all of the top ten genes were up-regulated in the DHT-treated group.

11.5.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags high-lighted in red, is shown below, and the result of this code is shown in Figure 9. In Figure 9, we see that the 500 tags identified as most differentially expressed have large fold changes—almost all of the 500 tags in red fall outside the blue lines at $\log FC = -2$ and $\log FC = 2$. This means that most of these tags show at least a 4-fold change in expression level between the samples. This plot suggests strongly that the tags identified by edgeR as differentially expressed are truly differentially expressed, and, given the large changes in expression level, are likely to be biologically meaningful.

```
> detags500.com <- rownames(topTags(de.com, n = 500)$table)
> png(file = "edgeR_case_study_Li-017.png", height = 600, width = 600)
> plotSmear(de.com, de.tags = detags500.com, main = "FC plot using common dispersion")
> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)
> dev.off()

null device
```

11.6 Analysis using moderated tagwise dispersions

11.6.1 Moderating the tagwise dispersion

As discussed in the previous case studies, an extension to simply using the common dispersion for each tag is to estimate the dispersion separately for each tag, while 'squeezing' these estimates towards the common dispersion estimate. The goal of this moderation of the

FC plot using common dispersion

Figure 9: Plot of the log-fold change against the log-concentration for each tag. The 500 most differentially expressed tags as identified by edgeR using the common dispersion are outlined in red.

dispersion estimates is to improve inference by sharing information between tags. This type of analysis can be carried out in few steps using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary. As discussed above, we currently prefer to choose a sensible value for the smoothing parameter *a priori*, although we do have an algorithm developed by Robinson and Smyth [2007] for estimating the smoothing parameter as an approximate eBayes rule.

As we only have seven libraries, a small sample size, we should not be too confident about the accuracy of the tagwise dispersions. Therefore it is recommended to use a larger value for prior.n, which can be selected a priori, instead of being estimated. In an experiment such as this, the seven samples mean that we have five degrees of freedom for estimating the dispersion parameter. Thus, setting the prior.n to be ten (as we have done previously) should be appropriate. This means that the common likelihood receives the weight of ten individual tags. Therefore, there will be a reasonable degree of 'squeezing' towards the common dispersion estimate, but still enough scope to allow flexibility when estimating the individual dispersion for each gene.

The function estimateTagwiseDisp produces a DGEList object that contains all of the

elements present in the object produced by estimateCommonDisp, as well as the value for prior.n used (d\$prior.n) and the tagwise dispersion estimates (d\$tagwise.dispersion), as we see below. Here we set grid.length=500 for greater precision in the tagwise dispersion estimates.

```
> system.time(d <- estimateTagwiseDisp(d, prior.n = 10, trend = TRUE,
     prop.used = 0.3, grid.length = 500))
Using grid search to estimate tagwise dispersion.
   user system elapsed
 18.796 4.798 23.795
> names(d)
 [1] "samples"
                          "common.dispersion"
                                               "prior.n"
 [4] "tagwise.dispersion" "counts"
                                               "pseudo.alt"
 [7] "genes"
                                               "conc"
                          "all.zeros"
[10] "common.lib.size"
> d$prior.n
[1] 10
> head(d$tagwise.dispersion)
[1] 0.01317123 0.02774923 0.01317123 0.01729400 0.01729400 0.01936799
```

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can see from the output below, the tagwise dispersion estimates range from a minimum of 0.005 to a maximum of 0.236, and the common dispersion estimate lies in between the median and mean values for the tagwise dispersion estimates. Here we have also allowed for a mean-dependent trend on the tagwise dispersion values, which can be inspected in Figure 10.

11.6.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise dispersions, we can proceed with testing procedures for determining differential expression using exactTest. Here we carry out the testing using the tagwise dispersion estimates calculated using a prior.n value of ten.

By default, exactTest uses the common dispersion, but by adding the argument common.disp=FALSE, tagwise dispersion estimates will be used instead.

```
> de.tgw <- exactTest(d, common.disp = FALSE)
Comparison of groups: DHT - Control</pre>
```

The output below shows that when using tagwise dispersions, the edgeR package still identifies a huge amount of differential expression between the control group and the DHT-treated group. The top DE tags are given even smaller p-values than using the common dispersion—many, many orders of magnitude smaller.

As with the analysis using the common dispersion, all of the top genes have large fold changes, indicating that these changes in expression are likely to be biologically meaningful. Again, all of the top genes are up-regulated in the DHT-treated group compared with the control group. We note that the ranking of the tags is similar, with seven of the top ten genes using the common dispersion to be found among the top ten genes using tagwise dispersions.

> topTags(de.tgw)

Of course, we can also rank the top tags using the fold change instead of the p-value, as described above.

The tables below shows the quantile-adjusted counts (i.e. counts for equalised library sizes) for the genes that edgeR has identified as the most differentially expressed, using the common dispersion and tagwise dispersions. For these tags, using both methods, there seem to be very large differences between the groups, suggesting that the DE genes identified are truly differentially expressed, and not false positives.

We saw for 't Hoen et al. [2008]'s data how much more consistent the counts within groups are for the top tags identified using tagwise dispersions compared with those identified using the common dispersion. This effect is not nearly as pronounced here, as the differences between groups for the top ten tags are so profound (these are after all not true biological replicate samples), but we do note that there is a great deal of consistency in the counts within groups for these top tags.

```
> detags.tgw <- rownames(topTags(de.tgw)$table)
> detags.com <- rownames(topTags(de.com)$table)
> round(d$pseudo.alt[detags.tgw, ])
```

	lane1	lane2	lane3	lane4	lane5	lane6	lane8
ENSG00000151503	44	37	42	49	2428	2513	2393
ENSG00000096060	83	84	90	94	2919	2723	2836
ENSG00000166451	52	55	49	47	1285	1208	1421
ENSG00000127954	0	0	3	3	446	440	430
ENSG00000113594	47	38	49	35	687	700	814
ENSG00000162772	218	217	213	252	2182	2389	2174
ENSG00000123983	79	81	80	90	994	918	1223
ENSG00000116133	123	114	132	118	1198	1177	1086
ENSG00000115648	1191	1153	1125	1114	7144	7265	6396
ENSG00000116285	23	30	19	27	474	460	427

> round(d\$pseudo.alt[detags.com,])

	lane1	lane2	lane3	lane4	lane5	lane6	lane8
ENSG00000151503	44	37	42	49	2428	2513	2393
ENSG00000096060	83	84	90	94	2919	2723	2836
ENSG00000127954	0	0	3	3	446	440	430
ENSG00000166451	52	55	49	47	1285	1208	1421
ENSG00000131016	11	5	16	5	415	274	414
ENSG00000113594	47	38	49	35	687	700	814
ENSG00000116285	23	30	19	27	474	460	427
ENSG00000123983	79	81	80	90	994	918	1223
ENSG00000166086	11	2	2	5	217	218	235
ENSG00000162772	218	217	213	252	2182	2389	2174

We might also be interested in comparing the top-ranking genes as identified by edgeR using the common dispersion and tagwise dispersions. We see in the output below that of the top 1000 most DE tags as identified using tagwise dispersions, 86% of these tags are also in the list of the 1000 most DE tags as identified using the common dispersion. This shows that for this dataset there is a great deal of agreement between the common and tagwise dispersion approaches as to which tags are DE.

```
> sum(rownames(topTags(de.tgw, n = 1000)$table) %in% rownames(topTags(de.com,
+ n = 1000)$table))/1000 * 100
[1] 85.9
```

Using the common dispersion we found that 4936 genes (30% of the total number) are given an adjusted p-value of less than 0.05. In the output below, we see that using tagwise dispersions we obtain slightly fewer DE genes, namely 4438, or 27% of all of the genes in the (filtered) dataset.

```
> summary(decideTestsDGE(de.tgw, p.value = 0.05))
    [,1]
-1 2120
0 12056
1 2318
```

Of the 4438 tags identified as DE using tagwise dispersions, 2318 (52%) are up-regulated in DHT-treated cells and 2120 (48%) are up-regulated in the control cells. The proportions of up- and down-regulated genes identified using the two approaches to modeling the dispersion are practically equal.

11.6.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold change against the log-concentration for each tag. We identify the top 500 most DE tags using both common dispersion and tagwise dispersions so we can highlight them on the plots and compare what we see. The code for producing the fold-change plots (in the one frame for purposes of comparison) is shown below, and the result of this code is shown in Figure 11.

```
> detags500.com <- rownames(topTags(de.com, n = 500)$table)
> detags500.tgw <- rownames(topTags(de.tgw, n = 500)$table)
> png(file = "edgeR_case_study_Li-032.png", height = 800, width = 600)
> par(mfcol = c(2, 1))
> plotSmear(d, de.tags = detags500.com, main = "Using common dispersion")
> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)
> plotSmear(d, de.tags = detags500.tgw, main = "Using tagwise dispersions")
> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)
> dev.off()

null device
1
```

In Figure 11, the top 500 most differentially expressed genes (those identified as significant by edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are highlighted in red. Looking at Figure 11, we see that, generally speaking, the pattern of differential expression looks similar using the two different methods, and the genes identified as DE have convincingly large fold changes.

We can also look at how well we are modeling the variance in the data by looking at a mean-variance plot. Figure 12 shows the mean-variance plot produced by the plot below.

```
> png(file = "edgeR_case_study_Li-meanvarplot.png", height = 600,
+ width = 600)
> mv <- plotMeanVar(d, show.raw.vars = TRUE, show.tagwise.vars = TRUE,
+ dispersion.method = "qcml", NBline = TRUE)
> dev.off()
null device
1
```

11.7 Setup

This analysis of Li et al. [2008]'s RNA-seq data was conducted on:

```
> sessionInfo()
R version 2.13.0 beta (2011-03-30 r55205)
Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:
[1] C/UTF-8/C/C/C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] edgeR_2.1.16

loaded via a namespace (and not attached):
[1] limma_3.7.26
```

and took 2–3 minutes to carry out on an Apple MacBook with a 2.8 Ghz Intel Core 2 Duo processor and 8 Gb of 1067 MHz DDR3 memory.

Figure 10: Plot of the tagwise dispersion estimates against abundance (overall expression, here expressed log-concentration).

Figure 11: Plots of the log-fold change against the log-concentration for each tag, using the common dispersion (top), and tagwise dispersions (bottom). Tags with positive fold-change here are up-regulated in DHT-treated cells compared with control cells. The 500 most differentially expressed tags according to each method are highlighted in red on both plots.

-14

logConc

-12

-10

-8

-16

-22

-20

-18

Figure 12: Mean-variance plot showing the 39w tagwise variances (grey dots) against tag abundance. The red crosses show the average of raw variance for tags grouped into 100 bins based on overall abundance (averaging is done on the square-root scale to avoid upward bias when these are displayed on the log scale). The light blue dots show the estimated variance for each gene, computed from the tagwise dispersion values. The solid blue line shows the estimated variance using the common dispersion. Overall, the tagwise dispersion estimates look to do a good job of capturing the mean-variance relationship for these data. The black line shows the Poisson variance (variance equals mean). Even for these samples, which are

12 Case study: Oral carcinomas vs matched normal tissue

12.1 Introduction

This section provides a detailed analysis of data from a paired design RNA-seq experiment, featuring oral squamous cell carcinomas and matched normal tissue from three patients [Tuch et al., 2010]. For a paired design, as we discussed before, we have to apply the Cox-Reid (CR) method in estimating dispersions and the GLM method in detecting DE tags.

12.2 Source of the data

The dataset is obtained from the NCBI's Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). It was produced using the Applied Biosystems (AB) SOLiD System 3.0, and is described in Tuch et al. [2010]. The raw reads had been mapped by Tuch et al. [2010] to the UCSC hg18 reference genome. The raw counts, summarised at the level of refSeq transcripts were made available as a supplementary table in their paper. In order to analyse these data in R it is necessary to manipulate the data a little further.

The table that Tuch et al. [2010] provide contains approximately 15000 refSeq transcripts. Many transcripts can map to the same gene, which is not ideal for our analysis in edgeR. It may upset the modeling of the mean-variance relationship for these data if we have several entries for each gene. To get around this problem we have used only the transcipt with the greatest number of exons for each gene, the idea being that this will provide a reasonable summary of the overall expression level for the gene. If the counts were summarised at the exon level, then there are other methods that could be used to find genes with differential isoform expression (or splice variants) from the data.

12.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into a DGEList object that the functions in the package can recognise. The library size is usually the total sum of all of the counts for a library, and that is how library size is defined in this analysis. One way to construct an appropriate DGEList object for these data is described below. In this case, the tag counts for the six individual libraries are stored in one table, which is a trimmed version (some irrelevant columns dropped) of the supplementary table from Tuch et al. [2010].

It is usually straight-forward to produce a DGEList object from a table of counts, but the task is complicated here because we have many transcripts mapping to the same gene and also the gene symbols provided in the table do not all match exactly to official gene symbols. The commands below show how to ensure that all genes have the official gene symbol (using

alias2SymbolTable from the limma package) and that we use only the transcript with the greatest number of exons to represent each gene.

Furthermore, not all of the refSeq IDs provided match the refSeq IDs currently in use—a result of the original study being undertaken several years ago. To avoid potential problems in downstream analysis (particularly in GO or gene set analysis) we retain in our dataset only those transcripts that match to refSeq IDs in the current Entrez database, which is provided by the org.HS.eg.db package from Bioconductor.

The output below shows the commands for manipulating the dataset to produce a neat DGEList object for use by subsequent functions for the DE analysis. We also compute the TMM normalization factors for these libraries in the third last command below.

```
> path <- getwd()
> library(edgeR)
> library(limma)
> setwd("/Users/dmccarthy/Documents/DGE/TuchData")
> rawdata <- read.csv(file = "tuch_counts.csv", stringsAsFactors = FALSE)</pre>
> head(rawdata)
          Х
                    X.1
                                   X.2
                                           X8N
                                                  T8X
                                                         X33N
                                                                 X33T
                                                                        X51N
                                                                                X51T
1
                                        counts counts counts counts counts
   idRefSeq nameOfGene numberOfExons
                                           sum
                                                   sum
                                                          sum
                                                                         sum
                                                                  sum
                                                                                 sum
3 NM_182502
             TMPRSS11B
                                     10
                                          2592
                                                     3
                                                         7805
                                                                  321
                                                                        3372
                                                                                   9
4 NM_003280
                  TNNC1
                                     6
                                          1684
                                                     0
                                                         1787
                                                                    7
                                                                        4894
                                                                                 559
                                                                                7181
5 NM_152381
                  XIRP2
                                    10
                                                                       23309
                                          9915
                                                    15
                                                        10396
                                                                   48
6 NM_022438
                    MAL
                                     3
                                          2496
                                                     2
                                                         3585
                                                                  239
                                                                        1596
                                                                                   7
> library(org.Hs.eg.db)
 rawtable <- rawdata[-c(1, 2), ]
> refseqid <- as.character(rawtable[, 1])</pre>
> head(refseqid)
[1] "NM_182502"
                    "NM_003280"
                                     "NM_152381"
                                                     "NM_022438"
                                                                     "NM_001100112"
[6] "NM_017534"
> idfound <- refseqid %in% mappedRkeys(org.Hs.egREFSEQ)
> table(idfound)
idfound
FALSE TRUE
  313 15355
> rawtable <- rawtable[idfound, ]</pre>
> head(rawtable)
              Х
                      X.1 X.2 X8N X8T
                                          X33N X33T
                                                     X51N X51T
3
     NM_182502 TMPRSS11B
                           10 2592
                                      3
                                          7805
                                                321
                                                      3372
4
     NM_003280
                    TNNC1
                             6 1684
                                          1787
                                                  7
                                                      4894
                                                            559
                                      0
5
     NM_{-}152381
                    XIRP2
                            10 9915
                                     15 10396
                                                 48 23309 7181
                                      2
                                          3585
6
     NM_022438
                      MAL
                             3 2496
                                                239
                                                      1596
                     MYH2
7 NM_001100112
                            40 4389
                                      7
                                          7944
                                                 16
                                                      9262 1818
     NM_017534
                     MYH2
                            40 4402
                                      7
                                          7943
                                                  16
                                                     9244 1815
```

```
> dim(rawtable)
[1] 15355
> genes <- rawtable[, 2]</pre>
> genes.sym <- alias2SymbolTable(genes, species = "Hs")</pre>
> genes <- genes.sym[!is.na(genes.sym)]</pre>
> head(genes)
[1] "TMPRSS11B" "TNNC1"
                             "XIRP2"
                                         "MAL"
                                                      "MYH2"
                                                                  "MYH2"
> length(genes)
[1] 15317
> nexons <- as.numeric(rawtable[!is.na(genes.sym), 3])</pre>
> head(nexons)
[1] 10 6 10 3 40 40
> length(nexons)
[1] 15317
> counts <- matrix(as.numeric(unlist(rawtable[!is.na(genes.sym),
      -c(1, 2, 3)])), nrow = sum(!is.na(genes.sym)), ncol = 6)
> rownames(counts) <- rawtable[!is.na(genes.sym), 1]</pre>
> colnames(counts) <- c("N8", "T8", "N33", "T33", "N51", "T51")
> head(counts)
               N8 T8
                       N33 T33
                                  N51
                                      T51
NM_182502
             2592 3 7805 321 3372
NM_003280
             1684 0 1787
                            7 4894 559
NM_152381
             9915 15 10396 48 23309 7181
NM_022438
             2496 2 3585 239 1596
NM_001100112 4389 7 7944 16 9262 1818
NM_017534
             4402 7 7943 16 9244 1815
> dim(counts)
[1] 15317
              6
> o <- order(nexons, decreasing = TRUE)
> counts.ord <- counts[o, ]</pre>
> genes.ord <- genes[o]
> keep <- !duplicated(genes.ord)
> sum(keep)
```

[1] 10464

```
> counts.uniq <- counts.ord[keep, ]
> genes.uniq <- genes.ord[keep]
> o2 <- order(genes.uniq)</pre>
> d.tuch <- DGEList(counts.uniq[o2, ], group = rep(c("normal",</pre>
      "tumour"), 3), genes = genes.uniq[o2])
> d.tuch <- calcNormFactors(d.tuch)</pre>
> d.tuch
An object of class "DGEList"
$samples
     group lib.size norm.factors
N8 normal 7795290
                        1.1570441
T8 tumour 7205310
                        1.0908009
N33 normal 15761188
                        0.6618443
T33 tumour 14070267
                        0.9575164
N51 normal 21083214
                        1.0386291
T51 tumour 14819300
                        1.2037661
$counts
             N8 T8
                       N33
                            T33
                                  N51
                                       T51
NM_000014 2242 261
                      2285
                            597 15121 1991
NM_144670 11731 912 13308 3071
NM_017436
            162 296
                       111
                            362
                                  751
                                        182
NM_015665
            199 81
                       215
                            344
                                  512
                                        342
NM_023928
            470 710
                       573 1112
                                  690
                                       728
10459 more rows ...
$genes
             "A2ML1" "A4GALT" "AAAS"
[1] "A2M"
                                          "AACS"
10459 more rows ...
$all.zeros
NM_000014 NM_144670 NM_017436 NM_015665 NM_023928
    FALSE
              FALSE
                         FALSE
                                   FALSE
                                              FALSE
10459 more elements ...
> setwd(path)
```

This DGEList is now ready to be passed to the functions that do the calculations to determine differential expression levels for the genes. Note that when we 'see' the DGEList object d.tuch, the counts for just the first five genes in the table are shown, as well as the samples element, which is a data frame containing information about groups, descriptions and library sizes for the samples.

For this dataset (after our tweaking of it), there are over 10 000 unique tags (genes) sequenced, some of which may have a very small number of counts in total across all libraries. It is not possible to achieve statistical significance with fewer than ten counts in total for a tag, and we also do not want to waste effort finding spurious DE (such as when a gene is only expressed in one library), so we filter out tags with fewer than 1 count per million

in four or more libraries—this also helps to speed up the calculations we need to perform. The subsetting capability of DGEList objects makes such filtering very easy to carry out (as shown below). Interestingly, no genes are filtered out for this dataset, indicating that some filtering of low expression transcripts may have been done by Tuch et al. [2010] in producing the table of counts that we have used here.

```
> d.tuch <- d.tuch[rowSums(1e+06 * d.tuch$counts/expandAsMatrix(d.tuch$samples$lib.size,
+ dim(d.tuch)) > 1) >= 2, ]
> nrow(d.tuch)
[1] 10464
```

Now the dataset is ready to be analysed for differential expression.

12.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to produce a plot showing the sample relations based on multidimensional scaling. The function plotMDS.dge produces an MDS plot for the samples when provided with the DGEList object, as shown in Figure 13.

From the MDS plot, it can be seen that the libraries T33 and T8 (tumour samples from patients 33 and 8 respectively) are most different from the other samples, but we will not remove them from the analysis as we will just be demonstrating the use of edgeR.

12.5 The design matrix

Before we fit negative binomial GLMs, we need to define our design matrix based on the experimental design. Here we want to test for differential expressions between tumour and normal tissues within patients, i.e. adjusting for differences between patients. In statistical terms, this is an additive linear model with patient as the blocking factor. So the full design matrix can be created as follows.

MDS Plot for Tuch Data

Figure 13: Multidimensional scaling (MDS) plot for the Tuch data, showing the relations between the samples in two dimensions. From this plot, the samples T33 and T8 can be identified easily as outliers—there is a large distance between these two samples and the others.

```
> patient <- factor(c(8, 8, 33, 33, 51, 51))
> design <- model.matrix(~patient + d.tuch$samples$group)</pre>
> rownames(design) <- rownames(d.tuch$samples)</pre>
> colnames(design)[4] <- "tumour"</pre>
> design
    (Intercept) patient33 patient51 tumour
N8
               1
                          0
                                             0
T8
               1
                          0
                                     0
                                             1
                                     0
N33
               1
                          1
                                             0
T33
               1
                                     0
                          1
                                             1
N51
                          0
                                     1
                                             0
T51
                          0
                                     1
                                             1
attr(,"assign")
[1] 0 1 1 2
attr(,"contrasts")
attr(,"contrasts")$patient
[1] "contr.treatment"
```

```
attr(,"contrasts")$'d.tuch$samples$group'
[1] "contr.treatment"
```

This is the design matrix under the alternative hypothesis (i.e. the difference between the normal tissue and the tumour tissue does exist), and the design matrix under the null hypothesis is just the above matrix without the last column.

12.6 Analysis using Cox-Reid common dispersion

12.6.1 Estimating the Cox-Reid common dispersion

The first major step in the analysis of DGE data using the NB model is to estimate the dispersion parameter for each tag. Note that this is a paired design experiment, so the dispersion has to be estimated in a different way such that both the cell-type and the patient factors are taken into account.

Like the qCML method (i.e.,the estimateCommonDisp() and the estimateTagwiseDisp() function) we used in previous case studies, the CR method also calculates both the common dispersion and tagwise dispersions. The most straight-forward analysis for a paired design experiment uses the CR common dispersion estimate as the dispersion for all tags. For many applications this will be adequate and it may not be necessary to estimate the CR tagwise dispersions, i.e. estimate the CR dispersion separately for each tag.

Estimating the CR common dispersion is done using the function estimateGLMCommonDisp(). Once we have the design matrix, we pass it to the estimateGLMCommonDisp() function, together with the DGEList object 'd.tuch'.

The output of estimateCRDisp is a DGEList object with several new elements. The element common.dispersion, as the name suggests, provides the estimate of the Cox-Reid common dispersion, and design gives the design matrix as we defined at the start.

Under the negative binomial model, the square root of the common dispersion gives the coefficient of variation of biological variation. Here the common dispersion is found to be 0.161, so the coefficient of biological variation is around 0.401.

```
> d.tuch$common.dispersion
[1] 0.160527
> sqrt(d.tuch$common.dispersion)
[1] 0.4006582
```

12.6.2 Testing

Once we have an estimate of the CR common dispersion, we can proceed with testing procedures for determining differential expression. Since this is a paired design experiment, we have to use the new testing method, the GLM method, rather than the exact test (the one we demonstrated in the previous case studies).

The GLM method fits a negative binomial generalized linear model for each gene/tag with the unadjusted counts provided, a value for the dispersion parameter and, optionally, offsets and weights for different libraries or transcripts. This is done using the funtion glmFit() and glmLRT().

The function glmFit() calls the in-built function glm.fit() to fit the NB GLM for each tag and produces an object of class DGEGLM. Once we have a fit for a given design matrix, glmLRT() can be run with a given coefficient or contrast specified and evidence for differential expression can be assessed using a likelihood ratio test. The glmLRT function produces an object of class DGELRT with a table containing the abundance of each tag (log-concentration, log-Conc), the log-fold change of expression between conditions/contrasts being tested (logFC), the likelihood ratio statistic (LR.statistic) and the p-value from the LR test (p.value), for each tag in the dataset. Then tags can be ranked in order of evidence for differential expression, based on either the p-value or the log-fold change of expression computed for each tag.

The results of the NB GLM likelihood ratio test can be accessed conveniently using the topTags function applied to the object produced by glmLRT. The user can specify the number, n, of tags for which they would like to see the differential expression information, ranked by p-value (default) or fold change. As the same test is conducted for many thousands of tags, adjusting the p-values for multiple testing is recommended. The desired adjustment method can be supplied by the user, with the default method being Benjamini and Hochberg's approach for controlling the false discovery rate (FDR) [Benjamini and Hochberg, 1995]. The table below shows the top 10 DE genes ranked by p-value.

```
> glmfit.tuch <- glmFit(d.tuch, design, dispersion = d.tuch$common.dispersion)
> lrt.tuch <- glmLRT(d.tuch, glmfit.tuch, coef = 4)
> options(digits = 4)
> topTags(lrt.tuch)
Coefficient:
                 genes logConc logFC
                                          LR
                                               P. Value
                                                              FDR
NM_182502
             TMPRSS11B
                        -8.506 -7.322 121.55 2.892e-28 3.026e-24
NM_016190
                  CRNN
                        -6.987 -7.256 107.46 3.538e-25 1.851e-21
NM_002371
                        -8.952 -6.810 106.38 6.089e-25 2.124e-21
                   MAL
NM_002465
                MYBPC1
                        -8.157 -7.019
                                       99.75 1.727e-23 4.518e-20
NM_014440
                 IL1F6 -10.060 -6.148 96.06 1.114e-22 2.332e-19
NM_002272
                  KRT4
                        -5.621 -7.133 92.79 5.800e-22 9.311e-19
NM_001010909
                 MUC21
                        -8.797 -6.724 92.65 6.229e-22 9.311e-19
NM_001100
                 ACTA1
                       -8.390 -6.281 92.08 8.329e-22 1.089e-18
```

```
NM_003280 TNNC1 -9.188 -6.958 91.38 1.186e-21 1.379e-18
NM_006063 KBTBD10 -8.232 -6.215 89.07 3.813e-21 3.990e-18
```

The output shows that the edgeR package identifies a good deal of differential expression between the normal tissue group and the tumour tissue group. The top DE tags are given very small p-values, even after adjusting for multiple testing. Furthermore, all of the top tags have a large fold change, indicating that these tags are more likely to be biologically meaningful.

The table below shows the raw counts for the tags that edgeR has identified as the most differentially expressed. For these tags there seems to be very large differences between the groups, suggesting that the DE tags identified are truly differentially expressed, and not false positives.

```
> top <- rownames(topTags(lrt.tuch)$table)
> d.tuch$counts[top, order(d.tuch$samples$group)]
```

	N8	N33	N51	T8	T33	T51
NM_182502	2592	7805	3372	3	321	9
NM_016190	24146	22026	12480	49	2353	26
NM_002371	2697	3941	1750	3	265	8
NM_002465	4809	4146	15623	10	14	1311
NM_014440	367	1824	802	10	45	1
NM_002272	76461	99082	47411	353	20651	31
NM_001010909	4160	3425	1720	7	516	5
NM_001100	3334	3198	13643	8	32	1063
NM_003280	1684	1787	4894	0	7	559
NM_006063	4325	3115	16007	24	17	1461

Note that the 2nd tag ('CKM') and the 7th tag ('MYBPC1') have much larger counts in patient 55 than in the other two patients, which shows that the effect from the patients does exist and the GLM method can pick that up.

If we order the genes by fold change instead of p-value, as in the table below, we see that the tags with the largest fold changes have very small concentrations. This ranking is dominated by genes that have zero counts in one group and is less informative than ranking by p-value.

```
> topTags(lrt.tuch, sort.by = "logFC")
```

```
Coefficient: tumour
                genes logConc logFC
                                         LR
                                              P. Value
NM_001100112
                 MYH2 -8.126 -7.347 86.96 1.107e-20 1.053e-17
NM_182502
            TMPRSS11B -8.506 -7.322 121.55 2.892e-28 3.026e-24
NM_016190
                 CRNN -6.987 -7.256 107.46 3.538e-25 1.851e-21
NM_002272
                 KRT4
                       -5.621 -7.133 92.79 5.800e-22 9.311e-19
NM_002465
               MYBPC1 -8.157 -7.019 99.75 1.727e-23 4.518e-20
NM 003280
                TNNC1 -9.188 -6.958 91.38 1.186e-21 1.379e-18
```

```
NM_152381
                 XIRP2 -7.427 -6.927 75.86 3.049e-18 9.969e-16
NM_002371
                       -8.952 -6.810 106.38 6.089e-25 2.124e-21
                   MAL
NM_001010909
                 MUC21
                        -8.797 -6.724 92.65 6.229e-22 9.311e-19
NM_198060
                  NRAP
                        -8.451 -6.441 82.70 9.543e-20 5.548e-17
> top <- rownames(topTags(lrt.tuch, sort.by = "logFC")$table)
> d.tuch$counts[top, order(d.tuch$samples$group)]
                N8
                     N33
                           N51
                                 T8
                    7944
                                  7
                                       16 1818
NM_001100112 4389
                          9262
NM_182502
              2592
                    7805
                          3372
                                  3
                                      321
                                             9
NM_016190
                                     2353
                                            26
             24146 22026 12480
                                49
NM_002272
             76461 99082 47411 353 20651
                                            31
NM_002465
              4809
                                10
                    4146 15623
                                       14 1311
NM_003280
              1684
                    1787
                          4894
                                  0
                                        7
                                           559
              9915 10396 23309
                                       48 7181
NM_152381
                                 15
NM_002371
              2697
                    3941
                          1750
                                  3
                                      265
                                             8
                                  7
                                             5
NM_001010909
                    3425
                          1720
              4160
                                      516
NM 198060
              3741
                    1990 12531
                                       17 1829
```

We see in the output below that over 1200 tags are significantly differentially expressed according to edgeR when using the CR common dispersion estimate and GLM likelihood ratio test. Of those tags, 297 are up-regulated in the tumour tissues compared with the normal tissues and 975 are down-regulated in the tumour tissues compared with normal tissues.

```
> summary(decideTestsDGE(lrt.tuch))
    [,1]
-1 975
0 9192
1 297
```

12.7 Cox-Reid dispersions with mean-dependent trend

The function estimateGLMTrendedDisp estimates dispersion values that depend on the overall expression level of the genes. Often, lowly expressed genes have a higher value for the dispersion parameter than more highly expressed genes. There are a number of possible options for the type of trend that is to be fit for the dispersion parameters. These options are detailed in the help file for estimateGLMTrendedDisp.

```
> d.tuch <- estimateGLMTrendedDisp(d.tuch, design)
> summary(d.tuch$trended.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.124 0.129 0.150 0.162 0.172 0.558
```

An analysis could be carried out just as for the common dispersion above, but is not shown here.

12.8 Analysis using Cox-Reid tagwise dispersion

12.8.1 Estimating the Cox-Reid tagwise dispersion

An extension to simply using the CR common dispersion for each tag is to estimate the CR dispersion separately for each tag, while 'squeezing' these estimates towards the CR common dispersion estimate in order to improve inference by sharing information between tags. This type of analysis can also be carried out in few steps using the edgeR package.

As noted earlier, the dispersion parameter is the overdispersion relative to the Poisson, and represents the biological, or sample-to-sample variability. The methods we have developed moderate the dispersion estimates towards a common dispersion, much like how the limma package moderates the variances in the analysis of microarray data.

The amount of moderation done is determined by the value of a weight parameter prior.n. The value for prior.n corresponds to the number of individual tags equivalent to the weight given to the common likelihood. Thus, the higher prior.n, the more strongly the individual dispersion estimates are moderated, or 'squeezed', towards the common value. To run the moderated analysis, we need to determine how much moderation is necessary. How best to do this is still an open research question, but we currently recommend selecting a value for the weight parameter prior.n a priori and have found that very good results can be obtained this way.

In an experiment such as that we consider here, in which we have just six samples, with two groups (group factor) and three patients (blocking factor), and thus two degrees of freedom for estimating the dispersion parameter. Standard tagwise dispersion estimates are likely to be unreliable, so we want to give a reasonable weight to the common likelihood. We need to choose a value for prior.n such that individual tagwise dispersion estimates are 'squeezed' quite strongly towards the common dispersion. Here, we choose a moderate amount of smoothing—we let prior.n be 8. This means that the common likelihood receives the weight of 8 individual tags, so there will be a reasonable degree of 'squeezing', but there is still ample scope to estimate an individual dispersion for each tag.

The function estimateGLMTagwiseDisp adds the CR tagwise dispersion estimates to the DGEList object provided as an argument.

```
> d.tuch <- estimateGLMTagwiseDisp(d.tuch, design, prior.n = 8)
> names(d.tuch)
 [1] "samples"
                           "counts"
                                                 "genes"
 [4] "all.zeros"
                           "common.dispersion"
                                                "trended.dispersion"
 [7] "abundance"
                           "bin.dispersion"
                                                 "bin.abundance"
[10] "tagwise.dispersion"
> head(d.tuch$tagwise.dispersion)
NM_000014 NM_144670 NM_017436 NM_015665 NM_023928 NM_024666
   0.1933
             0.2415
                       0.2051
                                  0.1528
                                            0.1157
                                                       0.1246
```

It is interesting to consider the distribution of the CR tagwise dispersion estimates. As we can see from the output below, the CR tagwise dispersion estimates range from a minimum of 0.11 to a maximum of 0.69. The range of dispersions is therefore large, but the tags in the middle two quartiles of the CR tagwise dispersion estimates have dispersion estimates close to the CR common dispersion estimate.

```
> summary(d.tuch$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.110 0.125 0.148 0.161 0.172 0.686
```

12.8.2 Testing

The testing procedures when using CR tagwise dispersion estimates are carried out exactly as for the CR common dispersion, as described above. Here we carry out the testing using the CR tagwise dispersion estimates calculated using a prior.n value of eight. The GLM fit and the likelihood ratio test are done using the same functions as before (i.e. glmFit() and glmLRT()), the only difference is that we use CR tagwise dispersions as the dispersion in the glmFit() function.

```
> glmfit.tuch.tgw <- glmFit(d.tuch, design, dispersion = d.tuch$tagwise.dispersion)
> lrt.tuch.tgw <- glmLRT(d.tuch, glmfit.tuch.tgw)</pre>
```

The output below shows that when using CR tagwise dispersions, the edgeR package still identifies a lot of differential expression between the normal tissue group and the tumour tissue group. This arises because the moderated tagwise dispersions can be much smaller than the common dispersion, and tags with smaller dispersions will have smaller p-values than the same tags with p-values computed using a common dispersion. As with the analysis using the common dispersion, all of the top tags have a large fold change, indicating that these changes in expression are likely to be biologically meaningful. We note that the ranking is different, however, and not all of the top ten tags according to using the common dispersion are found to be among the top ten tags using tagwise dispersions.

```
> options(digits = 4)
> topTags(lrt.tuch.tgw)
```

Coefficient: genes logConc logFC LR P. Value FDR. NM_014440 IL1F6 -10.060 -6.142 100.20 1.374e-23 1.438e-19 NM_001039585 PTGFR -10.519 -5.193 95.02 1.883e-22 9.854e-19 NM_005609 PYGM -9.653 -5.476 89.85 2.567e-21 8.955e-18 TMPRSS11B -8.506 -7.412 87.33 9.182e-21 2.402e-17 NM_182502 NM_004533 MYBPC2 -9.299 -5.458 82.56 1.027e-19 2.150e-16 NM_004320 ATP2A1 -9.669 -4.622 78.52 7.920e-19 1.381e-15 NM_002371 MAL -8.952 -6.902 76.58 2.117e-18 2.961e-15 NM_057088 KRT3 -9.301 -5.838 76.45 2.264e-18 2.961e-15 NM_001111283 IGF1 -9.841 -3.992 75.10 4.464e-18 5.191e-15 -9.423 -5.179 73.12 1.218e-17 1.275e-14 NM_001976 EN03

The table below shows the raw counts for the tags that edgeR has identified as the most differentially expressed using CR tagwise dispersions. For these tags there seems to be very large differences between the groups, suggesting that the DE tags identified are truly differentially expressed, and not false positives.

```
> top.tgw <- rownames(topTags(lrt.tuch.tgw)$table)</pre>
> d.tuch$counts[top.tgw, order(d.tuch$samples$group)]
               N8 N33 N51 T8 T33 T51
NM_014440
              367 1824 802 10
                                45
NM_001039585 455
                  287 1736 7
                                12
                                    46
NM_005609
             1399 1267 2171 22 16 103
NM_182502
             2592 7805 3372 3 321
NM_004533
              966 486 8045 11
                                 6 457
NM_004320
              988 1558 2285 25
                                52 161
NM_002371
             2697 3941 1750 3 265
NM_057088
             1069 3774
                        885
                            7 358
NM_001111283 460 343 4703 25
                                26 257
NM_001976
             1092 1292 4841
                                74 223
```

We see in the output below that 1272 tags are significantly differentially expressed according to edgeR when using the CR tagwise dispersion estimate and GLM likelihood ratio test. It is slightly less the total number of DE tags under the CR common dispersion method. Of those 1272 tags, 313 are up-regulated in the tumour tissues compared with normal tissues and 959 are down-regulated in the tumour tissues compared with normal tissues.

```
> summary(decideTestsDGE(lrt.tuch.tgw))
    [,1]
-1 959
0 9192
1 313
```

12.9 Setup

This analysis of Tuch et al. [2010]'s RNA-seq data was conducted on:

```
> sessionInfo()

R version 2.13.0 beta (2011-03-30 r55205)
Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:
[1] C/UTF-8/C/C/C/C

attached base packages:
[1] splines stats graphics grDevices utils datasets methods
[8] base
```

other attached packages:

[1] org.Hs.eg.db_2.5.0 RSQLite_0.9-4 DBI_0.2-5

[4] AnnotationDbi_1.13.18 Biobase_2.11.10

limma_3.7.26

[7] edgeR_2.1.17

loaded via a namespace (and not attached):

[1] tools_2.13.0

References

- Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society: Series B*, 57:289–300, 1995.
- H. R Li, J. Wang-Rodriguez, T. M Nair, J. M Yeakley, Y. S Kwon, M. Bibikova, C. Zheng, L. Zhou, K. Zhang, and T. Downs. Two-dimensional transcriptome profiling: identification of messenger RNA isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens. Cancer Research, 66(8):4079–4088, 2006.
- H. R Li, M. T Lovci, Y-S. Kwon, M. G Rosenfeld, X-D. Fua, and G. W Yeo. Determination of tag density required for digital transcriptome analysis: Application to an androgensensitive prostate cancer model. *Proceedings of the National Academy of Sciences of the* USA, 105(51):20179–20184, 2008.
- John C Marioni, Christopher E Mason, Shrikant M Mane, Matthew Stephens, and Yoav Gilad. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. *Genome Res*, 18:1509–1517, Jun 2008. doi: 10.1101/gr.079558.108.
- M. D Robinson and G. K Smyth. Moderated statistical tests for assessing differences in tag abundance. *Bioinformatics*, 23(21):2881–2887, 2007.
- M. D Robinson and G. K Smyth. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. *Biostatistics*, 9(2):321–332, 2008.
- Mark D Robinson and Alicia Oshlack. A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biology*, 11(3):R25, Mar 2010. doi: 10.1186/gb-2010-11-3-r25. URL http://genomebiology.com/2010/11/3/R25.
- Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1): 139–40, Jan 2010. doi: 10.1093/bioinformatics/btp616. URL http://bioinformatics.oxfordjournals.org/cgi/content/full/26/1/139.
- P. A. C't Hoen, Y. Ariyurek, H. H Thygesen, E. Vreugdenhil, R. H. A. M Vossen, R. X De Menezes, J. M Boer, G-J. B Van Ommen, and J. T Den Dunnen. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. *Nucleic Acids Research*, 36(21):e141, 2008.
- Brian B Tuch, Rebecca R Laborde, Xing Xu, Jian Gu, Christina B Chung, Cinna K Monighetti, Sarah J Stanley, Kerry D Olsen, Jan L Kasperbauer, Eric J Moore, Adam J Broomer, Ruoying Tan, Pius M Brzoska, Matthew W Muller, Asim S Siddiqui, Yan W Asmann, Yongming Sun, Scott Kuersten, Melissa A Barker, Francisco M

De La Vega, and David I Smith. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. *PLoS ONE*, 5(2):e9317, Jan 2010. doi: 10.1371/journal.pone.0009317. URL http://www.plosone.org/article/info%253Adoi%252F10.1371%252Fjournal.pone.0009317.

L. Zhang, W. Zhou, V. E Velculescu, S. E Kern, R. H Hruban, S. R Hamilton, B. Vogelstein, and K. W Kinzler. Gene expression profiles in normal and cancer cells. *Science*, 276(5316): 1268–1272, May 1997.