EPFL

MAN

Mise à niveau

Physique Prepa-033

Student: Arnaud FAUCONNET

Professor: Sylvain BRÉCHET

Printemps - 2019

Chapter 4

Énergie

4.1 Conservation de l'énergie

L'énergie E est une grandeur physique scalaire et extensive qui est définie à une constante près.

1. Si l'objet est **isolé** l'énergie est conservée et ainsi la variation d'énergie ΔE ou cours du temps est nulle:

$$\Delta E = E(t_2) - E(t_1) = 0, \quad \forall t_2 > t_1$$
 (4.1)

2. Si l'objet n'est **pas isolé**, il peut y avoir un échange d'énergie entre l'objet et l'environnement. Ainsi, l'énergie n'est pas conservée:

$$\Delta E = E(t_2) - E(t_1) \neq 0 \tag{4.2}$$

• $\Delta E > 0$: l'objet gagne de l'énergie

• $\Delta E < 0$: l'objet perd de l'énergie

Formes d'énergie: cinétique, potentielle de gravitation, potentielle élastique, nucléaire, électromagnétique (lumineuse), thermique, chimique, ...

L'énergie d'un objet peut changer de forme de forme au cours d'une évolution.

4.1.1 Pendule simple

Pour un pendule simple, l'énergie potentielle de gravitation se transforme en énergie cinétique et vice-versa.

- Lorsque la masse se trouve à un extrémité, l'énergie potentielle est maximale et l'énergie cinétique est nulle
- Lorsque la masse passe par la verticale, l'énergie potentielle est minimale et l'énergie cinétique minimale.

4.1.2 Choc élastique et choc cinétique

• Une balle lâchée à vitesse nulle rebondit sur le sol

• Lors de la chute, l'énergie potentielle gravitationnelle est transformé en énergie cinétique.

Types de chocs

- 1. Le choc est **élastique** si l'énergie cinétique est conservée lors du choc.
- 2. Le choc est **inélastique** si une partie ou toute l'énergie cinétique est convertie est convertie en énergie thermique (chaleur) ou en énergie mécanique de déformation.

4.2 Énergie cinétique et travail

On considère un objet en mouvement. L'évolution du CM de cet objet est régie par la 2^e de Newton:

$$m \cdot \overrightarrow{a_{\text{CM}}} = \overrightarrow{F}^{\text{ext}}$$
 (4.3)

Le produit scalaire du (4.3) avec $\overrightarrow{V_{CM}}$ s'écrit:

$$m \cdot \overrightarrow{V_{CM}} \cdot \overrightarrow{a_{CM}} = \overrightarrow{F}^{\text{ext}} \cdot \overrightarrow{V_{CM}}$$
 (4.4)

où

$$\overrightarrow{V_{CM}} \cdot \overrightarrow{a_{cm}} = \overrightarrow{V_{CM}} \cdot \frac{d\overrightarrow{V_{CM}}}{dt} = \frac{1}{2} \frac{d}{dt} \cdot \left(\overrightarrow{V_{CM}} \cdot \overrightarrow{V_{CM}} \right) = \frac{1}{2} \frac{d}{dt} V_{CM}^2$$
(4.5)

Ainsi, sila masse m est constante (i.e. $\frac{dm}{dt} = 0$):

$$\frac{d}{dt}\left(\frac{1}{2} \cdot m \cdot V_{CM}^2\right) = \overrightarrow{F}^{\text{ext}} \cdot \overrightarrow{V_{CM}}$$
(4.6)

La grandeur $\frac{1}{2}m \cdot V_{CM}^2$ est l'intégrale du mouvement appelée l'énergie cinétique et notée $E_{cin,CM}$ (définie à un constante près)

4.2.1 Énergie cinétique

L'énergie cinétique $E_{cin,CM}$ du centre de masse est définie comme,

$$E_{cin,CM} = \frac{1}{2} \cdot m \cdot V_{CM}^2 \tag{4.7}$$

C'est l'énergie liée au mouvement du CM.

Unité physique de l'énergie (SI): Joule $[J] = \left[\frac{kg \cdot m^2}{s^2}\right] = [N \cdot m]$

Ainsi, la relation (4.6) devient:

$$\frac{dE_{cin,CM}}{dt} = \overrightarrow{F}^{\text{ext}} \cdot \frac{d\overrightarrow{V_{CM}}}{dt}$$
 (4.8)

où

$$\overrightarrow{V_{CM}} = \frac{d\overrightarrow{r_{CM}}}{dt}$$

On multiplie la relation (4.8) pas l'intervalle de temps infinitésimal dt:

$$dE_{cin,CM} = \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}} \tag{4.9}$$

La variation de l'énergie cinétique est due aux forces extérieures.

4.2.2 Travail

Le **travail infinitésimal** des forces extérieures sur le CM pour un déplacement infinitésimal $\overrightarrow{dV_{CM}}$ est défini comme:

$$photo \ alessio \ fig \ 1 \quad \delta \omega^{\text{ext}} = \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}} = \|\overrightarrow{F}^{\text{ext}}\| \cdot \|d\overrightarrow{r_{CM}}\| \cdot \cos(\theta) \ \ (4.10)$$

Le **travail** des forces extérieures sur le CM pour le déplacement d'une position initiale $\overrightarrow{r_1} = \overrightarrow{r'}(t_1)$ à une position finale $\overrightarrow{r_2} = \overrightarrow{r'}(t_2)$ est la somme des travaux infinitésimaux:

$$\omega_{1\to 2}^{\text{ext}} = \int_{1}^{2} \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}}$$
 (4.11)

Remarque: Une somme continue est une intégrale. Cette intégrale est calculée par rapport à la position qui est fonction du temps