Monday modeling

Show your work. For graphs, use a pencil and straight edge.

1. Graph the line $y = \frac{1}{3}x + 1$ after filling in the values in the blanks.

y-intercept = _____

Slope = _____

In the following two problems, solve for the value of x.

2.
$$7 = 2x - x$$

$$3. \ \frac{1}{2}(2-4x) = 6$$

Graphing quadratic functions

4. Given the quadratic function $f(x) = x^2 + 1$, find the row differences.

x	f(x)	
-3	10	
-2	5	
-1	2	
0	1	
1	2	
2	5	
3	10	

Graph the function as a line over the domain $-3 \le x \le 3$.

Rate of change

5. Find the slope of the function from the ratio of the line differences.

(a)	x	f(x)
	-2	-1
	-1	1
	0	3
	1	5
	2	7

$$\begin{array}{c|cccc}
 & x & f(x) \\
 & -4 & 7 \\
 & -2 & 4 \\
\hline
 & 0 & 1 \\
 & 2 & -2 \\
\hline
 & 4 & -5 \\
\end{array}$$

Change in $y = \underline{\hspace{1cm}}$

Change in y =

Change in x =

Change in $x = \underline{\hspace{1cm}}$

Slope = _____

Slope = _____

6. Find the slope of the function. If the rate of change is not constant, write, "Non-linear. The rate of change is not constant."

(a)	x	f(x)
	-3	0
	-1	2
	0	3
	1	4
	3	6

$$\begin{array}{c|cccc}
 & x & f(x) \\
 & -4 & -9 \\
 & -2 & -3 \\
\hline
 & 0 & +1 \\
 & 2 & -3 \\
\hline
 & 4 & -9 \\
\end{array}$$

Slope = _____

Slope = _____

Name:

7. Fill in the T-chart, plot the points, and draw the line.

Write down the slope and y-intercept of the line.

$$m =$$

$$b =$$

Circle the row for the y-intercept.

Simplify each expression ("Collect like terms")

8.
$$x^2 - 3x - 4 + 2x^2 + 2x + 4$$

9.
$$5(a^2 - 3a + 1) - 2(a^2 + 2a - 3)$$