

Programista

Tablica wypełniona liczbami

Fizyk

Obiekt opisywany za pomocą długości, kierunku i zwrotu.

Matematyk

Współrzędne punktu w przestrzeni.

Macierze

TROCHĘ TEORII

Macierz to, podobnie jak wektor, tablica liczb, tyle że dwuwymiarowa. Identyfikacja konkretnej liczby jest możliwa za pomocą dwóch indeksów określających położenie.

Macierze są zapisywane w postaci prostokątnej tablicy i są oznaczane zazwyczaj dużą literą alfabetu, co pokazano na przykładzie poniższej macierzy

 $\mathbf{A} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \ a_{21} & a_{22} & \dots & a_{2m} \ a_{31} & a_{32} & \dots & a_{3m} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$

Elementy aji nazywamy elementami macierzy. Przykładowo element al2 znajduje się w pierwszym wierszu i drugiej kolumnie macierzy, bowiem wiersze numerujemy "od góry", a kolumny – "od lewej strony". Prezentowana macierz ma wymiary m x n.

Macierz 2×3 (2 wiersze 3 kolumny)

Tworzenie macierzy za pomocą np.arange()

```
C = np.arange(2,8)
C
array([2, 3, 4, 5, 6, 7])
```

Przy uzyciu np.linspace(start, end, count) – (0,1,5) – 5 liczb od 0 do 1 w równych odległościach

```
D = np.linspace(0,1,5)
D
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
```

Tensor - przykład

Tensor - reprezentacja

Mnożenie macierzy

$$\mathbf{X} = \begin{bmatrix} [5 & 6 & 1 & 2] \\ [8 & 7 & 6 & 3] \\ [5 & 0 & 6 & 4] \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} [3 & 0 & 4 & 9] \\ [4 & 6 & 5 & 8] \\ [7 & 0 & 1 & 5] \end{bmatrix}$$

$$\mathbf{Z} = \mathbf{X} * \mathbf{Y} = \begin{bmatrix} [15 & 0 & 4 & 18] \\ [32 & 42 & 30 & 24] \\ [35 & 0 & 6 & 20] \end{bmatrix}$$

Każdy element macierzy X jest pomnożony przez odpowiadający mu element macierzy Y

$$x_{11} = 5$$
 $y_{11} = 3$ $z_{11} = x_{11} \times y_{11} = 15$
 $x_{12} = 6$ $y_{12} = 0$ $z_{12} = x_{12} \times y_{12} = 0$

$$X_{3 \times 4}$$

$$Y_{3\times4}$$

← Wymiar obu macierzy musi być taki sam

Mnożenie macierzy (algebraiczne)

$$X = \begin{bmatrix} [9 & 2 & 2] \\ [4 & 0 & 0] \\ [9 & 3 & 9] \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} [8 & 1 & 1] \\ 9 & 6 & 8] \\ [7 & 4 & 8] \end{bmatrix}$$

$$Z = X \cdot Y = \begin{bmatrix} 104 & 29 & 41 \end{bmatrix}$$

$$\begin{bmatrix} 162 & 63 & 105 \end{bmatrix}$$

 $z_{21} = x_{21} \times y_{11} + x_{22} \times y_{21} + x_{23} \times y_{31}$

$$z_{11} = x_{11} \times y_{11} + x_{12} \times y_{21} + x_{13} \times y_{31}$$
 $z_{12} = x_{11} \times y_{12} + x_{12} \times y_{22} + x_{13} \times y_{32}$

$$B_{m \times q}$$

← pierwszy wymiar macierzy A
 musi być taki sam jak drugi wymiar
 macierzy B

The Matrix is everywhere. It is all around us. Even now, in this very room.

Mnożenie macierzy (geometria regresji)

$$y = AX + b + e$$

$$\hat{y} = AX + b$$

 $zarobki = a \times doświdczenie + b$

b	dośwaidczenie	zarobki
1	4.057534	5.586908
1	2.750049	6.105262
1	2.964347	2.533063
1	3.410334	6.332447
1	1.828527	1.840721
1	0.548475	0.355877
1	0.876145	2.176086
1	4.729183	6.966537
1	1.834105	3.784180
1	2.904804	2.281207

$zarobki_1 = a \times doświdczenie_1 + b$
$zarobki_2 = a \times doświdczenie_2 + b$
$zarobki_3 = a \times doświdczenie_3 + b$
()

Mnożenie macierzy (reprezentacja regresji)

$$y = AX + b$$
, $b = 0$ $y = AX$

$\nu =$	opóźnienie
	0.601009
	3.031186
	4.160437
	1.326778
	3.453975
	1.106210
	0.091691

A =	współczynniki
	a_1
	a_2
	a_3

współczynniki			
	a_1		
	a_2		
	a_3		

 $opóźnienie = a_1 \times długość + \ a_2 \times szerokość + a_3 \times wysokość$

długość	szerokość	wysokość	opóźnienie
79.564798	139.113256	165.247195	0.601009
67.174099	47.367705	286.349772	3.031186
118.450682	10.869266	83.118642	4.160437
14.156648	25.846663	189.236549	1.326778
200.551913	95.144694	37.003291	3.453975
63.339889	99.574222	137.854002	1.106210
156.675029	204.190017	16.619945	0.091691

Metoda najmniejszych kwadratów

$$Y = \beta X + e$$

$$\widehat{Y} = \beta X$$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

$$\mathbf{X} = \begin{pmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,p-1} \\ x_{2,0} & x_{2,1} & \dots & x_{2,p-1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,0} & x_{n,1} & \dots & x_{n,p-1} \end{pmatrix}.$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Case study: Dopancerznie samolotów

https://en.wikipedia.org/wiki/Survivorship bias#In the military

The red dots indicate areas of combat damage received by surviving WWII bombers. Where would you add armor to increase survivability? The statistician Abraham Wald recommended reinforcing the areas without damage. Since these data came from surviving aircraft only, bombers hit in undotted areas were the ones that did not make it back.

Case study: Produkcja czołgów

An empirical Approach to Economic Intelligence in World War II, Journal of the American Statistical Association, Vol. 42, No. 237 (Mar., 1947), pp. 72–91.

https://en.wikipedia.org/wiki/German_tank_problem

Produkcja czołgów (dane historyczne):			
Miesiąc est. statystyków est. agentów dane pro			
Czerwiec 1940	169	1000	122
Czerwiec 1941	244	1550	271
Sierpień 1942	327	1550	342

Paradoks Simpsona

Przyjęci na studia (Univ. of California, Berkeley)

	Zgłoszeń	Przyjętych
Mężczyźni	2691	(1198) 45%
Kobiety	1835	(614) 33%

Przyjęci z podziałem na kierunki

Mężczyźni		Kobiety		
Κ.	Zgłoszeń	Przyjętych	Zgłoszeń	Przyjętych
Α	825	(512) 62%	108	(89) 82%
В	560	(353) 63%	25	(17) 68%
С	325	(120) 37%	593	(219) 37%
D	417	(138) 33%	375	(131) 35%
Е	191	(53) <mark>28%</mark>	393	(134) 34%
F	373	(22) 6%	341	(24) 7%

Wybieramy koszyk, z koszyka losujemy kulę, wygrywa zielona. Który koszyk wybrać?

A teraz?

$$\frac{6}{9} > \frac{9}{14}$$

A jak połączymy zawartość koszyków?

Wariancja

```
N1 = np.random.normal(loc=0.0, scale= 0.5, size=100_000)
    N2 = np.random.normal(loc=0.0, scale= 3.0, size=100_000)
    N3 = np.random.normal(loc=0.0, scale=10.0, size=100_000)
    plt.figure(figsize=(10, 5))
    plt.hist(N3, bins=50, alpha=0.3, color='blue')
    plt.hist(N2, bins=50, alpha=0.3, color='green')
    plt.hist(N1, bins=50, alpha=0.3, color='red')
    plt.show()
Г→
     7000
     6000
     5000
     4000
     3000
     2000
     1000
              -40
                              -20
                                                              20
                                                                               40
```

Podatawowe statystyki – wzory!

$$\mathbb{E} X = \sum_{i=1}^n x_i p_i$$

$$egin{aligned} ext{Var}(X) &= ext{E}ig[(X - ext{E}[X])^2ig] \ &= ext{E}ig[X^2 - 2X \, ext{E}[X] + ext{E}[X]^2ig] \ &= ext{E}ig[X^2ig] - 2 \, ext{E}[X] \, ext{E}[X] + ext{E}[X]^2 \ &= ext{E}ig[X^2ig] - ext{E}[X]^2 \end{aligned}$$

$$\sigma(X) = \sqrt{\mathrm{E}ig[(X - \mathrm{E}[X])^2ig]} \ = \sqrt{\mathrm{E}ig[X^2ig] - (\mathrm{E}[X])^2}$$

kowariancja:
$$\mathrm{cov}(X,Y) = \mathrm{E} ig[(X - \mathrm{E} X) \cdot (Y - \mathrm{E} Y) ig]$$
 .

Współczynnik
korelacji Pearsona :
$$r_{XY} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

statystyka:

Wariancja populacji:

$$s^2=rac{1}{n}\sum_{i=1}^n{(x_i-\overline{x})^2}$$

Wariancja próbki:

$$s^2=rac{1}{n-1}\sum_{i=1}^n\left(x_i-\overline{x}
ight)^2.$$

Wariancja-znana średnia:

$$s^2 = rac{1}{n} \sum_{i=1}^n \left(x_i - \mu
ight)^2.$$

$$\bar{x}$$
 – średnia μ – wartość oczekiwana

Współczynnik korelacji Pearsona

współczynnik określający poziom zależności liniowej między zmiennymi losowymi

Prawdopodobieństwo

$$P(A) = \frac{|A|}{|\Omega|}$$

$$\mathbb{P}(\varnothing) = 0,$$

$$A \subset B \to \mathbb{P}(A) \le \mathbb{P}(B),$$

$$0 \le \mathbb{P}(A) \le 1,$$

$$\mathbb{P}(A^C) = 1 - \mathbb{P}(A),$$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Prawdopodobieństwo warunkowe

Prawdopodobieństwo całkowite

$$P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + P(A|B3)P(B3) + P(A|B4)P(B4) + P(A|B5)P(B5) + P(A|B6)P(B6)$$

$$P(\Omega) = P(B1) + P(B2) + P(B3) + P(B4) + P(B5) + P(B6)$$

Twierdzenie Bayesa

przykład praktyczny (prawdopodobieństwo choroby)

Dany jest test o wrażliwości 80%, co oznacza, że jeśli choroba występuje to test będzie pozytywny z prawdopodobieństwem 0.8. Prawdopodobieństwo wystąpienia choroby to 0.004.

Test zwraca 10% fałszywie pozytywnych wyników.

$$P(test_{pozytywny}|pacjent_{chory}) = 0.8$$

$$P(pacjent_{chory}) = 0.004$$

$$P(test_{pozytywny}|pacjent_{zdrowy}) = 0.1$$

$$P(test_{pozytywny}|pacjent_{zdrowy}) = 0.1$$

$$P(pacjent_{chory}|test_{pozytywny}) = \frac{P(test_{pozytywny}|pacjent_{chory})P(pacjent_{chory})}{P(test_{pozytywny})}$$

$$= \frac{P(test_{pozytywny}|pacjent_{chory})P(pacjent_{chory})P(pacjent_{chory})}{P(test_{pozytywny}|pacjent_{chory})P(pacjent_{chory}) + P(test_{pozytywny}|pacjent_{zdrowy})P(pacjent_{zdrowy})}$$

$$= \frac{0.8 \times 0.004}{0.8 \times 0.004 + 0.1 \times 0.996} = 0.031$$

Twierdzenie Bayesa

przykład praktyczny (Naïve Bayes)

$$P(dom|x) = \frac{P(x|dom)P(dom)}{P(x)}$$

$$P(mieszkanie|x) = \frac{P(x|mieszkanie)P(mieszkanie)}{P(x)}$$

$$P(dom) = \frac{|dom|}{|obserwacje|} = \frac{20}{30}$$

$$P(x|dom) = \frac{|dom\ w\ otoczeniu|}{|dom|} = \frac{1}{20}$$

$$P(x) = P(x|dom)P(dom)$$

$$+P(x|mieszkanie)P(mieszknie)$$

$$= \frac{1}{20} \frac{20}{30} + \frac{4}{10} \frac{10}{30} = \frac{4}{30}$$

$$P(dom|x) = 0.25$$

Zmienna Losowa

Zmienna losowa to funkcja:

$$X: \Omega \longrightarrow E \subset \mathbb{R}$$

$$\Omega = \{$$

Funkcja Prawdopodobieństwa

Probability density function (PDF)

$$f_X(x) = P(X = x)$$

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$P(X = 1) = \frac{1}{6}$$
 $P(X = 2) = \frac{1}{6}$ $P(X = 3) = \frac{1}{6}$ (...)

np. rozkład normalny

Dystrybuanta

Cumulative distribution function (CDF)

$$F_X(x) = P(X \le x)$$

Każda dystrybuanta F(x) jest funkcją

- niemalejącą,
- · dążącą do 1 dla $x \to +\infty$,
- · dążącą do 0 dla $x \to -\infty$,
- prawostronnie ciągłą,
- posiadającą lewostronne granice,
- różniczkowalną prawie wszędzie.

Dystrybuanta

Cumulative distribution function (CDF)

$$F_X(x) = P(X \le x)$$

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$P(X = 1) = \frac{1}{6}$$
 $P(X = 2) = \frac{1}{6}$ $P(X = 3) = \frac{1}{6}$ (...)

$$P(X \le 1) = P(X = 1) = \frac{1}{6}$$

$$P(X \le 2) = P(X = 1) + P(X = 2) = \frac{2}{6}$$

$$P(X \le 3) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{3}{6}$$

$$P(X \le 3.42) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{3}{6}$$
 (...)

Rozkład normalny – reguła trzech sigm

