Exercise 7 Answer Sheet — Logic Theory (2), 80424

May 24, 2025

Question 1

For any $\Gamma \subseteq \text{form}_{L_{\text{PA}}}$ let $I\Gamma$ be the induction scheme over Γ .

For $\varphi(z,y,t_0,\ldots,t_{n-1})\in \mathrm{form}_{L_{\mathrm{PA}}}$ we define

$$Coll(\varphi) = \forall z \forall t_0 \dots \forall t_{n-1} (\forall x \le z \exists y \varphi \leftrightarrow \exists w \forall x \le z \exists y \le w \varphi)$$

By the last exercise, $PA \vdash Coll(\varphi)$ for any such φ .

 $\text{Let Coll} = \{\text{Coll}(\varphi) \mid \varphi \in \text{form}_{L_{\text{PA}}}\}, Q \text{ be the first 9 axioms of PA, and PA}_0 = Q \cup I\Sigma_0 \cup \text{Coll}.$

We will show that $PA_0 \vdash PA$.

Proof. For $Q \subseteq \operatorname{PA}$ we assumed that $\operatorname{PA}_0 \vdash Q$, then it is sufficient to show that $\operatorname{PA}_0 \vdash \operatorname{Ind}(\varphi)$ for any $\varphi \in \operatorname{form}_{L_{\operatorname{PA}}}$. If $\varphi \in \Sigma_0$ then $\operatorname{PA}_0 \vdash \operatorname{Ind}(\varphi) \ni I\Sigma_0$.

In the previous exercises we have shown that for any φ there is n such that $\varphi \in \Sigma_n^0$, and that there is $\psi \in \Sigma_n$, for which, $\operatorname{PA} \vdash (\varphi \leftrightarrow \psi)$. We will prove in induction that $\operatorname{PA}_0 \vdash (\varphi \leftrightarrow \psi)$ as well, and that $\operatorname{PA}_0 \vdash \operatorname{Ind}(\varphi)$ in such case. The case of n=0 was proven in the last exercise.

Let us assume that $\varphi \in \Sigma_n(PA)$ and $\psi \in \Sigma_n$ such that $PA \vdash (\varphi \leftrightarrow \psi)$ and $\psi = \exists v \phi \text{ for } \phi \in \Pi_{n-1}$. By the induction hypothesis ψ fulfills the claim, meaning that $PA_0 \vdash Ind(\psi)$. We will show that $PA_0 \vdash (\varphi \leftrightarrow \psi)$ and that $PA_0 \vdash Ind(\varphi)$.

As for the first part, by $Coll(\phi)$ and negation we infer that $PA_0 \vdash (\varphi \leftrightarrow \psi)$ as intended, and it is left to show that $PA_0 \vdash Ind(\psi)$. The proof is the same as of question 1 of exercise 6.

Let $\mathcal{M} \models \mathrm{PA}_0$ be some model and we assume that $\exists x \phi(x, y, z)$ satisfies the induction condition, meaning that $\mathcal{M} \models \phi(x, 0, c)$ for some $c \in M$; as well,

$$\mathcal{M} \models \forall y (\exists x \varphi(x, y, c)) \rightarrow (\exists x \varphi(x, S(y), c))$$

We want to show that $\mathcal{M} \models \forall y \exists x \varphi(x, y, c)$.

Let $b \in M$ be some arbitrary element, we want to show that,

$$\mathcal{M} \models \exists x \varphi(x, b, c) \tag{1}$$

thus proving the last statement. By using $Coll \subseteq PA_0$ we infer that

$$\mathcal{M} \models \forall b' \le b \exists x \varphi(x, b', c) \tag{2}$$

if and only if exists $d \in M$ such that,

$$\mathcal{M} \models \forall b' \le b \,\exists x \le d \,\varphi(x, b', c) \tag{3}$$

In the set-theoretical sense, let $X = \{x \mid \mathcal{M} \models \exists b' \leq b, \ \varphi(x,b',c)\}$, this is a finite set as the order induced on M by $\leq^{\mathcal{M}}$ is a well-order. Let us select $d = \sup_{\leq \mathcal{M}} X$, this d fulfills (3), thus also proving (2), but as $b \in M$ is arbitrarily chosen, (1) holds as well, completing our proof.

Question 3

We will show that Sat_0 is primitive-recursive.

Proof. In the lectures we saw that Sat_0 is total recursive.