Hashmaps Assignment

1) Recurrence:

We are given the recurrence relation:

$$T(n)=3T(n/4)+4n$$

We can then expand it by repeated substitution.

Substitute T(n/4):

$$T(n/4) = 3T(n/16)+4(n/4)$$

$$T(n)=3(3T(n/16)+4(n/4))+4n$$

Now we will expand it:

$$=9T(n/16)+3\cdot4(n/4)+4n$$

$$=9T(n/16)+12(n/4)+4n$$

$$=9T(n/16)+3n+4n$$

$$=9T(n/16)+7n$$

We will then substitute T(n/16):

$$T(n/16)=3T(n/64)+4(n/16)$$

$$T(n)=9(3T(n/64)+4(n/16))+7n$$

$$=27T(n/64)+9\cdot4(n/16)+7n$$

$$=27T(n/64)+9n/4+7n$$

From the expansions, we can observe the pattern:

$$T(n) = 3^{k}T(n/4^{k}) + \sum_{i=0}^{k-1} 4n(3^{i}/4^{i})$$

The summation term simplifies to a geometric series:

$$S_k = \sum 4n(3/4)^i$$

$$i = 0$$

The sum of a geometric series with ratio r = 3/4:

$$S_k = 4n (1 - (3/4)^k / (1 - (3/4)) = 16n(1 - (3/4)^k)$$

Now, when setting the base case $T(1)=\Theta(1)$, we will solve for k when $n/4^k=1$:

$$n = 4^k$$

$$k = log_4 n$$

Thus, substituting k:

$$T(n) = 3^{\log_4 n} T(1) + 16n(1 - (3/4)^{\log_4 n})$$

Approximating:

$$3^{\log_4 n} = n^{\log_4 3}$$

Since $(3/4)^{\log_4 n}$ approaches 0 as n gets larger, we get:

$$T(n) = \theta(n^{\log_4 3}) + 16n$$

Since $n^{\log_4 3}$ grows faster than 16n, the final result is:

$$T(n) = \theta(n^{\log_4 3})$$

For solving with the master theorem,

The recurrence has the form:

$$T(n)=aT(n/b)+f(n)$$

where:

• a=3,

- b=4.
- f(n)=4n

We will then calculate for:

$$log_b a = log_4 3$$

Comparing f(n) and $n^{\log_4 3}$

- $f(n) = 4n = \theta(n^1)$
- $log_4^3 \approx 0.792$

Since $f(n)=\theta(n^1)$ and 1 > $\log_4 3$, this falls under **Case 2** of the Master Theorem, where f(n)dominates.

We can then check the regularity condition:

f(n)=4n is polynomially larger than $n^{\log_4 3}$, so the final bound is determined by f(n), giving:

$$T(n)=\Theta(n)$$

In conclusion, our answers:

- By repeated substitution: $T(n)=\Theta(n^{\log_4 3})$.
- By the Master Theorem: $T(n)=\Theta(n)$.

Since the Master Theorem gives the tighter bound, we can conclude:

$$T(n)=\Theta(n)$$

2) Master Theorem:

- a) $T(n) = 3T(n/5) + n^2$

 - i) A = 3, b = 5, f(n) = n^2 ii) We can then compute $log_5 3 \approx 0.68$
 - Compare with $f(n) = n^2$: since 2 > 0.68, f(n) dominates. iii)
 - After checking the regularity condition: f(n) is polynomially larger, so Case 3 iv) applies.
 - v) Solution: $T(n) = \theta(n^2)$
- b) T(n) = 4T(n/3) + 7n
 - i) a = 4, b = 3, f(n) = 7n

- ii) Compute $log_3 4 \approx 1.26$
- iii) Compare with f(n) = O(n): since 1.26 > 1, $O(n^{\log_b a})$ dominates.
- iv) Apply Case 1.
- v) Solution: $T(n) = \theta(n^{\log_3 4}) = \theta(n^{1.26})$
- c) T(n) = 5T(n/4)+10
 - i) a = 5, b = 4, f(n) = O(1)
 - ii) Compute $log_4 5 \approx 1.16$
 - iii) Compare with f(n): Since O(1) grows slower than $O(n^{1.16})$, apply Case 1.
 - iv) Solution T(n) = $\theta(n^{\log_4 5}) = \theta(n^{1.16})$
- d) $T(n) = 9T(n/3) + n^4$
 - i) $a = 9, b = 3, f(n) = n^4$
 - ii) Compute $log_3 9 = 2$
 - iii) Compare with $f(n) = n^4$: since 4 > 2, f(n) dominates.
 - iv) After checking the regularity condition: f(n) is polynomially larger, so apply Case 3.
 - v) Solution: $T(n) = \theta(n^4)$
- e) $T(n) = 6T(n/8) + n^3$
 - i) $a = 6, b = 8, f(n) = n^3$
 - ii) Compute $log_86 \approx 0.87$
 - iii) Compare with $f(n) = n^3$: since 3 > 0.87, f(n) dominates.
 - iv) After checking the regularity condition: f(n) is polynomially larger, so apply Case 3.
 - v) Solution: $T(n) = \theta(n^3)$

3) Radix Sort:

Given List:

CAP, COL, USD, SUN, JPY, VEE, ROW, JOB, COX, LOL, RAT, WOW, DOD, CAR, FIG, PIG, VIS, LOW, LOX, VEA, CAD, DOG, TSL

- Step 1: Sort by the last letter.

Sort based on the third character:

 $A \rightarrow CAD$, VEA

 $B \rightarrow JOB$

 $D \rightarrow DOD$, USD, DOG

 $G \rightarrow FIG$, PIG

```
L \rightarrow COL, LOL, TSL
```

 $N \rightarrow SUN$

 $O \rightarrow COX$, LOX

 $P \rightarrow CAP$

 $R \rightarrow CAR$

 $S \rightarrow VIS$

 $T \rightarrow RAT$

 $W \rightarrow ROW$, LOW, WOW

 $Y \rightarrow JPY$

Sorted by last letter:

CAD, VEA, JOB, DOD, USD, DOG, FIG, PIG, COL, LOL, TSL, SUN, COX, LOX, CAP, CAR, VIS, RAT, ROW, LOW, WOW, JPY

- Step 2: Sort by the second letter (middle)

Sort based on the second character:

A → CAD, CAP, CAR, RAT

 $O \rightarrow COL$, COX, JOB, LOL, LOW, LOX, ROW, WOW

 $I \rightarrow FIG$, PIG, VIS

 $U \rightarrow SUN, USD$

 $E \rightarrow VEA, VEE$

 $S \rightarrow TSL$

 $P \rightarrow JPY$

 $D \rightarrow DOD$, DOG

Sorted by second letter:

CAD, CAP, CAR, RAT, COL, COX, JOB, LOL, LOW, LOX, ROW, WOW, FIG, PIG, VIS, SUN, USD, VEA, VEE, TSL, JPY, DOD, DOG

- Step 3: Sort by the first letter (leftmost)

Sort based on the first character:

 $C \rightarrow CAD$, CAP, CAR, COL, COX

 $D \rightarrow DOD$, DOG

 $F \rightarrow FIG$

 $J \rightarrow JOB, JPY$

 $L \rightarrow LOL$, LOW, LOX

 $P \rightarrow PIG$

 $R \rightarrow RAT$, ROW

 $S \rightarrow SUN$

 $T \rightarrow TSL$

 $U \rightarrow USD$

V → VEA, VEE, VIS

 $W \rightarrow WOW$

Final Sorted Order: CAD, CAP, CAR, COL, COX, DOD, DOG, FIG, JOB, JPY, LOL, LOW, LOX, PIG, RAT, ROW, SUN, TSL, USD, VEA, VEE, VIS, WOW