Question Number	Answer		Mark
3 (a)	Any TWO from		
	Handle the source using long tongs	(1)	
	Keep the source in a lead-lined box when not in use	(1)	
	Maintain a distance from the source when in use	(1)	
	Use the source for as short a time as possible	(1)	2
	Do not accept answers relating to PPE		
3 (b)	Background count rate should be subtracted from measured count rate	(1)	
	Background radiation adds a constant amount to the overall count rate		
	Or It is a systematic error	(1)	2
3 (c)		` ´	
	The gradient of the graph is $-\lambda$	(1)	
	As $\ln C = \ln C_0 - \lambda t$ is in the form $y = c + mx$		
	As $\ln C = -\lambda t + \ln C_0$ is in the form $y = mx + c$	(1)	2
	[Accept alternative letters for m and c]		
3 (d)(i)	ln C values correct to 2 d.p. Accept 3 d.p.	(1)	
	Axes labelled: y as $\ln(C/s^{-1})$ and x as t hours	(1)	
	Most appropriate scales for both axes	(1)	
	Plots accurate to ± 1mm	(1)	
	Straight best fit line with even spread of plots in region $t \ge 4$ hours	(1)	5
3 (d)(ii)	Correct calculation of gradient using large triangle shown	(1)	
	Value of λ in range 0.064 to 0.072 (h ⁻¹)	(1)	
	Value of λ given as positive, to 2 or 3 s.f.	(1)	3
	Example of calculation		
	gradient = $((5.38 - 4.54) / (0 - 12.4) = -0.84 / 12.4 = -0.068$		
	$\lambda = 0.068 \text{ hr}^{-1}$		
3 (d)(iii)	Use of $t_{1/2} = \ln 2 / \lambda$	(1)	
	Value of $t_{\frac{1}{2}}$ given 2 or 3 s.f., with correct unit ecf from (d)(ii)	(1)	2
	Example of calculation		
	$t_{1/2} = \ln 2 / \lambda = \ln 2 / 0.068 = 10.2 \text{ hours}$		
	Total for question		16