AMENDMENTS TO THE CLAIMS

1. (Previously presented): A compound of formula (I):

 R^7, R^8, R^9, R^{10}

where A is an ortho-substituted ring selected from formulae (A1) to (A22);

(A1)

$$R^{11}, R^{12}$$
 R^{6}

(A2)

 R^{11}, R^{12}
 R^{6}

(A3)

 R^{11}, R^{12}
 R^{11}, R^{12}

$$(A16) \qquad (A17) \qquad (A17) \qquad (A17) \qquad (A18) \qquad (A19) \qquad (A20) \qquad (A22)$$

Q is a single or a double bond; X is O, N(R¹⁸), S or $CR^{19}R^{20}$)($CR^{21}R^{22}$)_m($CR^{22}R^{24}$)_m; R¹ is halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy or optionally substituted C_{2-4} alkynyl or optionally substituted $SO_2(C_{1-4})$ alkyl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C_{1-4} alkoxy); R² is C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy(C_{1-4})alkyl or C_{1-4} alkylthio(C_{1-4})alkyl or {optionally substituted aryl{ C_{1-4} } alkyl- or [optionally substituted aryl]oxy(C_{1-4}) alkyl- (where the optionally substituted aryl moieties may each have up to 3 substituents, each

independently selected from halogen and C_{1-4} alkoxy); R^3 is hydrogen, $CH_2C\equiv CR^4$, $CH_2CR^4=C(H)R^4$, $CH=C=CH_2$ or COR^5 or optionally substituted C_{1-4} alkyl, optionally substituted C_{1-4} alkyl, optionally substituted C_{1-4} alkyl, optionally substituted moieties may each have up to 3 substitutents, each independently selected from halogen, C_{1-4} alkoxy, C_{1-4} alkyl, C_{1-2} haloalkoxy, hydroxy, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, methylsulfonyl and ethylsulfonyl); each R^4 is, independently, hydrogen, halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy or C_{1-4} alkoxy(C_{1-4}) alkyl; R^5 is hydrogen or optionally substituted C_{1-4} alkoxy, optionally substituted C_{1-4} alkoxy, optionally substituted C_{1-4} alkyl or optionally substituted C_{1-4} alkylhio(C_{1-4}) alkyl or optionally substituted aryl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen, C_{1-6} alkoxy, C_{1-6} haloalkoxy, cyano, hydroxy, methoxycarbonyl and ethoxycarbonyl); R^6 is

- i) phenyl optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ haloalkylthio, C(H)=N-OH, C(H)=N-O(C₁₋₆ alkyl), C(C₁₋₆ alkyl) = N-OH, C(C₁₋₆ alkyl)=N-O-(C₁₋₆ alkyl), (Z)pC≡CR₂₅ and (Z)pCR₂₅=CR₂₆R₂₇:
- ii) a 5-6 membered heterocyclic ring in which the ring contains 1 to 3 heteroatoms (each independently chosen from oxygen, sulphur and nitrogen) and the ring is optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkoy, C₁₋₄ haloalkoy, C₁₋₄ haloalkoy, C₁₋₄ haloalkoy, C₁₋₄ alkyl) and C(C₁₋₆ alkyl) and C(C₁₋₆ alkyl) cyano, C₁₋₄ alkoy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-O+, =N-O-(C₁-4 alkyl), C₃₋₆ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoy, and C₁₋₄ haloalkoxy) and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkoy, and C₁₋₄ haloalkoxy);
- iii) C_{2-12} alkenyl optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C_{1-4} alkoxy, C_{1-4} thioalkyl, COO-(C_{1-4} alkyl), =N-O-(C_{1-4} alkyl), C_{3-8} cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy) and C_{4-8} cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy);
- iv) C₂₋₁₂ alkynyl optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =H-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl

(itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy), $Si(CH_3)_3$ and C_{4-8} cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy);

- v) $C_{3:8}$ cycloalkyl optionally substituted by up to 3 substituents, each independently selected from halogen, $C_{1:4}$ alkyl, $C_{1:4}$ haloalkyl, $C_{1:4}$ alkoxy, $C_{1:4}$ haloalkoxy, $C_{1:4}$ thioalkyl, $C_{3:6}$ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from $C_{1:4}$ alkyl, halogen, $C_{1:4}$ alkoxy and $C_{1:4}$ haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected halogen atoms):
- vi) C₄₋₈ cycloalkenyl optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl, C₃₋₆ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected halogen atoms);
- vii) C₆₋₁₂ bicycloalkyl optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl andC₁₋₄ haloalkyl; or
- viii) an aliphatic, saturated or unsaturated group in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms;
- R^7 , R^9 , R^9 , R^{10} , R^{11} and R^{12} are each, independently, hydrogen, halogen, cyano, nitro, $C_{1.4}$ alkyl, $C_{1.4}$ haloalkyl, $C_{1.4}$ haloalkoxy, $C_{1.4}$ thioalkyl or $C_{1.4}$ thiohaloalkyl; R^{13} , R^{14} , R^{15} , R^{16} and R^{17} are each, independently, hydrogen, halogen, $C_{1.4}$ alkyl, $C(O)CH_3$, $C_{1.4}$ haloalkyl, $C_{1.4}$ alkoxy, $C_{1.4}$ haloalkoxy, $C_{1.4}$ thioaloalkyl, hydroxymethyl or C_{1} . alkoxymethyl; R^{18} is hydrogen, $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy($C_{1.4}$)alkyl, formyl, $C(=O)C_{1.4}$ alkyl (optionally substituted by halogen or $C_{1.4}$ alkoxy) or $C(=O)C-C_{1.6}$ alkyl (optionally substituted by halogen, $C_{1.4}$ alkoxy or $C(=O)C_{1.6}$ alkyl (optionally substituted by halogen, $C_{1.4}$ alkoxy or $C(=C)C_{1.6}$ alkyl, $C_{1.6}$ alkyl, $C_{1.6}$ alkeyl (both optionally substituted by halogen, hydroxy, $C(=C)C_{1.4}$ alkoxy, $C(=C)C_{1.4}$ alkyl, $C_{1.6}$ alkyl, $C_{1.6}$ alkyl, $C_{1.6}$ alkoyl (both optionally substituted by up to three methyl groups), a 3-7 membered carbocyclic ring (optionally

substituted by up to three methyl groups and optionally containing one heteroatom selected from nitrogen and oxygen), hydrogen, halogen, hydroxy or C₁₋₄ alkoxy; or R¹⁹R²⁰ together with the carbon atom to which they are attached form a carbonyl-group, a 3-5 membered carbocyclic ring (optionally substituted by up to three methyl groups), C₁₋₆ alkylidene (optionally substituted by up to three methyl groups) or C₃₋₆ cycloalkylidene (optionally substituted by up to three methyl groups); R²⁵ is hydrogen, halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl; m is 0 or 1; n is 0 or 1; n is 0 or 1; and Z is C₁₋₄ alkylene.

Claim 2. (Previously presented): A compound of formula (I) according to claim 1, where A is selected from formulae (A1), (A2), (A3), (A16), (A17), (A18), (A19), (A20) and (A22).

Claim 3. (Previously presented): A compound of formula (I) according to claim 1, where R^1 is $C_{1.4}$ alkyl, $C_{1.4}$ haloalkyl, NO_2 , CN or OCF_3 .

Claim 4. (Previously presented): A compound of formula (I) according to claim 1, where R^2 is $C_{1:4}$ alkyl, $C_{1:4}$ haloalkyl, $C_{1:4}$ alkoxy($C_{1:4}$)alkyl or $C_{1:4}$ alkylthio($C_{1:4}$)alkyl.

Claim 5. (Previously presented): A compound of formula (I) according to claim 1, where R^3 is hydrogen, $CH_2C\equiv CR^4$, $CH_2CR^4=C(H)R^4$, $CH=C=CH_2$ or COR^5 .

Claim 6. (Canceled)

Claim 7. (Canceled)

Claim 8. (Previously presented): A composition comprising a compound of formula (I) according to claim 1, together with a suitable carrier.

Claim 9. (Currently amended): A method of controlling or preventing infestation of cultivated plants by <u>funqi</u> phytopathogenic microorganisms by application of a compound of formula (I) according to claim 1, to plants, to parts thereof or the locus thereof.