Algorithm Lab

Week 5: Longest Increasing Subsequence

For a sequence $S = (a_1, a_2, ..., a_n)$, we can make a subsequence of it by removing arbitrary elements. E.g., for a sequence S = (a, b, c), we have 8 subsequences: (), (a), (b), (c), (a, b), (a, c), (b, c), and (a, b, c). Note that, elements should have the same order, thus (b, a) is not a subsequence of (a, b, c). We say a sequence is in increasing order if every element is bigger than or equal to previous one. We can define the longest increasing subsequence problem as followed:

Instance: A sequence S

Result: The longest increasing subsequence (or at least, its length)

Description

For convenient, we note a leading subsequence of sequence $S = (a_1, a_2, ..., a_n)$, by one integer, i.e., $S_i = (a_1, a_2, ..., a_i)$.

To construct a specific subsequence, we have 2 kind of elements: be removed and be kept. We can define 3 functions to help us to find longest increasing subsequence.

- f(i): Length of longest subsequence of S_i .
- g(i): Length of longest subsequence of S_i that kept a_i .
- h(i): specific j that can maximize g(j) where j < i and $a_j \le a_i$.

For f(i), if a_i is kept, then answer is g(i). If not, answer will be f(i-1).

For g(i), g(i) = g(h(i)) + 1.

Questions

- Design an algorithm to find h(i). Can your algorithm work in $O(\log_2 i)$ time?
- 2 Design an algorithm to find f(i).
- 3 Design an algorithm to reconstruct the subsequence that length is f(i).
- 4 Analyze space complexity and time complexity of algorithms in $1\sim3$.
- 5 Solve ALG04B on http://oj.csie.ndhu.edu.tw/