

Généralité sur le Modbus RTU

Introduction:

Le protocole Modbus est un protocole de dialogue basé sur une structure hiérarchisée entre un maître et plusieurs esclaves (stations). Il permet de lire et d'écrire certaines valeurs.

Adressage des esclaves

Ces adresses vont de 1 à 247 et ne doivent pas obligatoirement être attribuées de manière séquentielle. Deux stations esclaves ne peuvent pas avoir la même adresse.

Adressage des esclaves :

Echange maître vers 1 esclave : le maître envoie une demande et attend une réponse.

Echange Maître vers toutes les stations esclaves : le maître diffuse un message à tous les esclaves présents sur le réseau, ceux-ci exécutent l'ordre du message sans émettre une réponse.

Deux stations esclaves ne peuvent dialoguer ensemble.

Trame d'échange question/réponse :

La question:

Elle contient un code fonction indiquant à l'esclave adressé le type d'action demandé.

Les données contiennent des informations complémentaires dont l'esclave a besoin pour exécuter cette fonction.

Le mot de contrôle permet à l'esclave de s'assurer de l'intégralité du contenu de la question.

	N° station	Code fonction	Information spécifique	Mot de contrôle
	esclave	+ bit d'erreur	concernant la demande	
	1 octet	1 octet	n octets	2 octets
Exemple	01	03	1020 0001	8100

La réponse :

La réponse est toujours sous une forme identique à la question.

	N° station esclave	Code fonction + bit d'erreur	Données transmises	Mot de contrôle
	1 octet	1 octet	n octets	2 octets
Exemple	01	03	02 25 80	A3 74

La réponse si erreur :

Si une erreur apparaît, le code fonction est modifié pour indiquer que la réponse est une réponse d'exception (MSB*=0 : pas d'erreur ; MSB=1 : erreur). Les données contiennent alors un code (code d'exception) permettant de connaître le type d'erreur. Code d'exception :

- 01 Fonction illégale (erreur sur le code fonction)
- 02 Erreur sur l'adresse du registre ou du coil
- 08 Erreur de transmission (suite au contrôle du CRC ou du Timing)

*MBS: Most Significant Bit

N° station esclave	Code fonction + bit d'erreur	Code d'exception	Mot de contrôle
1 octet	1 octet	1 octet	2 octets

Forme générale d'une trame RTU :

Chaque octet composant une trame est codé sur 2 caractères hexadécimaux (2 fois 4 bits) La taille maximale des données est de 256 octets. L'ensemble des informations contenues dans le message est exprimé en hexadécimal.

	START	ADRESSE	FONCTION	DONNEES	CRC 16	END
	Silence	1 octet	1 octet	n octets	2 octets	Silence
Exemple		01	03	10 20 0001	81 00	

Le maître s'adresse à l'esclave. Le code fonction indique à l'esclave le type d'action à réaliser. Exemple : lecture de registre, code de fonction 03 hex. Le champ de données est codé sur n mots en hexadécimal de 00 à FF, soit sur n octets. Selon le code fonction, le champ de données contient diverses informations complémentaires permettant à l'esclave de décoder le message. Dans le cas du mode RTU, le champ contrôle d'erreur CRC (Cyclical Redundancy Check) sert à s'assurer de l'intégrité des données reçues. Le CRC contient une valeur codée sur 16 bits.

L'esclave renvoie sa réponse ; il place sa propre adresse dans le champ adresse afin que le maître puisse l'identifier. Pour une réponse normale, l'esclave reprend le même code fonction que celui du message envoyé par le maître. Le champ contrôle d'erreur contient une valeur codée sur 16 bits. Cette valeur est le résultat d'un CRC calculé à partir du message.

Support de transmission :

Chaque octet composant un message est transmis en mode RTU de la manière suivante :

Sans contrôle de la parité :

	START	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit /	STOP	STOP
Avec contrôle de la parité :											
	START	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Parité	STOP

Dans le cas d'un contrôle de parité, il vous est demandé de confirmer l'état du contrôle : paire ou impaire ('even' ou 'odd').

Avant et après chaque message (trame), il doit y avoir un silence minimum de 3,5 fois le temps de transmission d'un octet. L'ensemble du message doit être transmis de manière continue. Le temps maximum entre 2 octets doit être inférieur à 1,5 fois le temps de transmission d'un octet. Dans le cas contraire, il y a une erreur de transmission. Le protocole MODBUS ne définit que la structure des messages et leur mode d'échange.

On peut utiliser n'importe quel support de transmission RS 232, RS 422 ou RS 485, mais la liaison RS 485 est la plus répandue car elle autorise le « multipoints ».

Code fonction:

MODBUS offre 19 fonctions différentes. Elles se caractérisent par un code fonction sur un octet (en hexadécimal). Tous les équipements ne supportent pas tous les codes fonction.

Code	Nature de la fonction Modbus	INEPRO
01	Lecture de n bits de sortie consécutifs	
02	Lecture de n bits d'entrée consécutifs	
03	Lecture de n mots de sortie consécutifs	X
04	Lecture de n mots d'entrée consécutifs	
05	Ecriture de 1 bit de sortie	
06	Ecriture de 1 mot de sortie	X
07	Lecture du status d'exception	
08	Accès aux compteurs de diagnostic	
09	Téléchargt , télédéchargt et modes de marche	
0A	Demande de compte-rendu de fonctionnement	
0B	Lecture du compteur d'événements	
0C	Lecture des événements de connexion	
0D	Téléchargt , télédéchargt et modes de marche	
0E	Demande de compte-rendu de fonctionnement	
0F	Ecriture de n bits de sortie	
10	Ecriture de n mots de sortie	X
11	Lecture identification	
12	Téléchargt , télédéchargt et modes de marche	
13	Reset de l'esclave après erreur non recouverte	

Exemple d'utilisation du Modbus RTU

Dans cet exemple nous expliquerons comment communiquer avec les compteurs électriques Modbus de la gamme PROLINE (PRO380 et PRO1

Information générales :

Caractéristiques de l'interface Modbus de la gamme PROLINE :

Type de bus : RS485

Protocol: MODBUS RTU, 16 bit CRC Baud: 1200, 2400, 4800, 9600 (défaut)

Data bit: 8

Parité: Paire (even)

Stop bit:

Distance : 1200 mètre max Câble : JYSTY (nx2x0.8)
Nombre max d'esclave : 32 par bus

Adresses: 0-247 paramétrable

Outils pratiques:

 $Convertisseur\ Hexad\'{e}cimal/D\'{e}cimal\ : \ \underline{http://sebastienguillon.com/test/javascript/convertisseur.html}$

Convertisseur Hexadécimal/Float: http://gregstoll.dyndns.org/~gregstoll/floattohex/

Calcul du CRC16: http://educypedia.karadimov.info/library/crc16.swf

Premières étapes :

Alimenter le compteur (Au minimum phase neutre)

Vérifier les paramètres du compteur :

- Baud (9600 par défaut)
- Adresse (01 par défaut)
- Parité (Even par défaut)

Brancher un convertisseur USB/RS485. Vérifier le port COM sélectionner. Brancher le convertisseur au bornes 22 et 23. Attention il y a une polarité. Au cas où inverser.

Exemple de convertisseur

Lancer l'application COMMIT 1.4

Régler les paramètres comme indiqué :

Sélectionner le port COMM de votre convertisseur puis cliquez sur OPEN port.

Double cliquez sur CRC pour le paramétrer.

Exemple d'envoie d'une trame d'échange :

Exemple 1 : Lecture du nombre de Baude

Taper 01 03 1020 0001

Trame envoyée

	rrame envoyee				
	01	03	1020	0001	81 00
Ī	Adresse du	Commande de	Adresse en	Longueur du	CRC16 de la trame
	compteur	lecture de n mots	Hexadécimal du	registre	01 03 1020 0001
		de sortie	nombre de baud		que l'application
		consécutifs	(Voir la table		Commix ajoute
			Modbus)		automatiquement

Trame recue:

Traine regae i				
01	03	02	25 80	A3 74
Adresse du	Commande de	Nombre de registre	Valeur en Hex	CRC16 de la trame
compteur	lecture de n mots	qu'il faut lire 02	converti en	01 03 02 25 80
	de sortie	donc les 2	décimal : 9600	
	consécutifs	prochains blocs de	baud	
		2 digits		

Exemple 2 : Lecture paramètre **SO**

Taper 01 03 1066 0002

Trame envoyée

01	03	1066	0002	20 D4
Adresse du	Commande de	Adresse en	Longueur du	CRC16 de la trame
compteur	lecture de n mots	Hexadécimal	registre	01 03 1066 0002
	de sortie	paramétre SO (Voir		que l'application
	consécutifs	la table Modbus)		Commix ajoute
				automatiquement

Trame reçue:

01	03	04	44 7A 00 00	CF A1
Adresse du	Commande de	Nombre de registre	Valeur en Hex	CRC16 de la trame
compteur	lecture de n mots	qu'il faut lire 02	converti en Float :	01 03 04 44 7A 00
	de sortie	donc les 4	1000.000000	00
	consécutifs	prochains blocs de	imp/kwh	
		2 digits		

Exemple 3 : Modification adress Modbus

Taper 01 06 1018 00F6

Trame envoyée

_	Traine chivoyee				
Ī	01	06	1018	00F6	8D 4E
Ī	Adresse du	Commande	Adresse en	00F6=246 en	CRC16 de la trame
	compteur	d'écriture d'un mot	Hexadécimal de	hexadécimal	01 06 1018 00F6
		de sortie	l'adress Modbus		que l'application
			(Voir la table		Commix ajoute
			Modbus)		automatiquement

Trame recue:

Traine regae i				
F6	06	1018	00 F6	98 0C
Nouvelle adresse	Commande	Adresse en	Nouvelle adresse	CRC16 de la trame
du compteur	d'écriture d'un mot	Hexadécimal de	du compteur	F6 06 1018 00 F6
	de sortie	l'adress Modbus	00F6=246 en	
		(Voir la table	hexadécimal	
		Modbus)		