

Ayudantía 2 - Lógica Proposicional

23 de agosto de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

• ¿Qué es la lógica proposicional?:

Es un sistema que busca obtener conclusiones a partir de premisas. Los elementos más simples (letras 'p', 'q' u otras) representan proposiciones o enunciados. Los conectivas lógicas $(\neg, \land, \lor y \rightarrow)$, representan operaciones sobre proposiciones, capaces de formar otras proposiciones de mayor complejidad.

• Semántica:

Una valuación o asignación de verdad para las variables proposicionales en un conjunto P es una función $\sigma: P \to \{0,1\}$, donde '0' equivale a 'falso' y '1' a verdadero.

• Tablas de verdad:

Las fórmulas se pueden representar y analizar en una tabla de verdad.

		p	q	$p \rightarrow q$	p	q	$p \wedge q$
p	$\neg p$	0	0	1			0
0	1	0	1	1		1	
1	0	1	0	0	1	0	0
		1	1	1	1	1	1

p	q	$p \lor q$	p	q	$p \leftrightarrow q$
0	0	0	0	0	1
0	1	1	1	1	0
1	0	1	1	0	0
1	1	1	1	1	1

Equivalencia lógica ≡

Dos fórmulas son lógicamente equivalentes (denotado como $\alpha \equiv \beta$) si para toda valuación σ se tiene que $\sigma(\alpha) = \sigma(\beta)$

Leyes de equivalencia

1. Doble negación:
$$\neg(\neg \alpha) \equiv \alpha$$

2. De Morgan:
$$\neg(\alpha \land \beta) \equiv (\neg \alpha) \lor (\neg \beta)$$
$$\neg(\alpha \lor \beta) \equiv (\neg \alpha) \land (\neg \beta)$$

3. Conmutatividad:
$$\alpha \wedge \beta \equiv \beta \wedge \alpha$$
$$\alpha \vee \beta \equiv \beta \vee \alpha$$

4. Associatividad:

$$\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$$

$$\alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma$$

5. Distributividad:
$$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$$
$$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

6. Idempotencia:
$$\alpha \wedge \alpha \equiv \alpha$$
$$\alpha \vee \alpha \equiv \alpha$$

7. Absorción:
$$\alpha \wedge (\alpha \vee \beta) \equiv \alpha$$
$$\alpha \vee (\alpha \wedge \beta) \equiv \alpha$$

8. Implicancia:
$$\alpha \to \beta \equiv (\neg \alpha) \lor \beta$$

9. Doble implicancia: $\alpha \leftrightarrow \beta \equiv$ $(\alpha \to \beta) \land (\beta \to \alpha)$

Conectivos funcionalmente completos

Un conjunto de conectivos lógicos se dice funcionalmente completo si toda fórmula en L(P) es lógicamente equivalente a una fórmula que sólo usa esos conectivos.

Ejemplos:

1. Memes del día

Shakespeare:

To be or not to be Logicians:

2. Inducción Estructural

A. Lógica

Sea $\varphi \in \mathcal{L}(P)$ una fórmula construida usando los conectivos del conjunto $C = \{\neg, \land, \lor\}$. Llamamos φ' a la fórmula obtenida desde φ reemplazando todas las ocurrencias de \land por \lor , las de \lor por \land , y todas las variables proposicionales por sus negaciones.

Demuestre que φ' es lógicamente equivalente a $\neg \varphi$.

B. Funcionalidad completa

Demuestre que el conectivo ↑ (también conocido como NAND) es funcionalmente completo. Su tabla de verdad es la siguiente:

$$\begin{array}{c|cccc} p & q & p \uparrow q \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

3. Modelamiento

Considere el funcionamiento de un semáforo en instantes discretos de tiempo que llamaremos estados, tal que la cantidad de estados totales es finita.

1. Defina un conjunto P de variables proposicionales adecuadas que permitan definir un lenguaje $\mathcal{L}(P)$ de fórmulas proposicionalnes para modelar este escenario. Explique brevemente el significado de cada variable definida. Sugerencia: examine los incisos (2), (3) y (4) para determinar qué necesita incluir en su diseño.

Con el lenguaje definido en (1), proponga una fórmula proposicional φ para cada uno de los siguientes incisos. Su fórmula debe ser satisfacible si y solo si la propiedad descrita se cumple para un semáforo dado. Explique brevemente el significado de las partes de su fórmula. No necesida demostrar la correctitud de su fórmula.

- 2. La luz del semáforo en todo estado es, o verde, o roja, o amarilla.
- 3. Los únicos cambios de color de luz del semáforo ocurren entre estados sucesivos y pueden ocurrir de verde a amarilla, de amarilla a roja y de roja a verde.
- 4. La luz puede tener el mismo color en, a lo más, 3 estados sucesivos.

4. Tabla de verdad

El conectivo ternario EQ se define como:

$$\sigma(EQ(\varphi, \psi, \theta)) = \begin{cases} 1 & \text{si } 3 \cdot (\sigma(\psi) + \sigma(\theta)) - 5 \cdot \sigma(\varphi) \ge 0 \\ 0 & \text{en otro caso} \end{cases}$$

Determine la tabla de verdad de EQ.

5. Equivalencia Lógica

Demuestre que

$$(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$$