Finally, in Section 5 we show that $(T(t))_{t \ge 0}$ is a lattice semigroup (i.e., |T(t)f| = T(t)|f| for all $t \ge 0$, $f \in E$) if and only if A satisfies Kato's equality. This parallels the case when $E = C_O(X)$, but if E has order continuous norm the strong form of Kato's equality can be considered (in particular, $f \in D(A)$ implies $|f| \in D(A)$ if A is the generator of such a semigroup).

1. POSITIVE CONTRACTION SEMIGROUPS AND BOUNDED GENERATORS

In this section we first characterize generators of positive contraction semigroups on a real Banach lattice E .

For that we use the results developed in A-II, Section 2 for the canonical half-norm N^+ : E $\rightarrow \mathbb{R}$ given by

(1.1)
$$N^+(f) = ||f^+||$$
 (f \in E).

Remark. It is easy to see that $N^+(f) = \inf \{ ||f+g|| : g \in E_{\perp} \} =$ dist $(-f,E_{\perp})$ (cf. A-II, Rem.2.8).

It is obvious that N^+ is a strict half-norm (see A-II, (2.12)). The subdifferential of N^+ is given by

(1.2)
$$dN^+(f) = \{ \phi \in E_+^! : ||\phi|| \le 1, \langle f, \phi \rangle = ||f^+|| \}$$

(this follows from the definition, see A-II, (2.5)).

b) Let $E = L^{p}(X, \Sigma, \mu)$, where (X, Σ, μ) is a σ -finite measure space and $1 . Let <math>f \in E$ satisfy $f^+ \neq 0$. Let

$$\phi(x) = \begin{cases} c \cdot f(x)^{p-1} & \text{if } f(x) > 0 \\ 0 & \text{if } f(x) \le 0 \end{cases}$$

where c > 0 is such that $\int f(x) \phi(x) dx = ||f^{+}||$. Then $dN^+(f) = \{\phi\}$.

c) Let $E = L^{1}(X, \Sigma, \mu)$, where (X, Σ, μ) is a σ -finite measure space, and f \in E . Let $\phi \in L^{\infty}(X,\Sigma,\mu)_{+}$. Then $\phi \in dN^{+}(f)$ if and only if if f(x) > 0, $\phi(\mathbf{x}) = 1$

$$0 \le \phi(x) \le 1$$
 if $f(x) = 0$ and $\phi(x) = 0$ if $f(x) < 0$.

$$\phi(x) = 0 \qquad \text{if } f(x) < 0.$$