Biomedical Imaging S. Kozerke

Biomedical Imaging

Exercise NUC #2 - Quantitative PET Data Analysis

The purpose of the exercise is to implement and study kinetic modeling and data fitting for quantitative PET data analysis of ¹⁸F-FDG tracer experiments.

Task 2.1

Upon injection, ¹⁸F-FDG is taken up by tissue via glucose transporter and converted to ¹⁸F-FDG-6-phosphate (¹⁸F-FDG-6-P) as shown schematically in the figure below. For the analysis of rate constants (k_2 , k_3 , k_4) we consider the two tissue compartments (c_e , c_m) and treat the blood/plasma compartment (c_p) separately, i.e. we solve the equations for an ideal delta input function (impulse response) and convolve the results with the actual input signals.

• Derive and write down the differential equations for the concentrations of extracellular $(c_e(t))$ and metabolized ¹⁸F-FDG $(c_m(t))$; assume that the input from the blood plasma is a delta function, i.e. $c_e(0) = k_1$ and $c_m(0) = 0$, also assume k_4 =0.

Task 2.2

- Download the *.zip file for NUC_EXERCISE2 from https://moodle-app2.let.ethz.ch and unpack it on your computer.
- Learn about solving differential equations in Matlab using dsolve (type <u>help dsolve</u> on Matlab prompt) and implement the differential equations derived above to obtain the impulse response functions of the extracellular compartment $c_e(t)$ and the metabolized compartment $c_m(t)$.
- Now implement convolution of the impulse response functions with the blood plasma input curve $c_p(t)$.
- Inspect the tissue concentration-time curves for $c_e(t)$ and $c_m(t)$ using the following values: k_1 =0.1 min⁻¹, k_2 =0.3 min⁻¹, k_3 =0.5 min⁻¹
- Rate constant k₄ was assumed to be zero justify why such an assumption is valid by considering the process of
 ¹⁸F-FDG tracer uptake and metabolization.

Task 2.3

In a real-word experiment, blood plasma concentration $c_p(t)$ is measured in a blood vessel near the tissue of interest $\left(c_e(t)+c_m(t)\right)$ and both measurements are input to a fitting procedure to obtain the kinetic rate constants (k_1, k_2, k_3) .

- Inspect the blood plasma concentration-time curve $c_{\text{p}}(t)$ as available in the code.
- Add Poisson noise to $c_p(t)$ and $c_t(t)$ by converting concentrations into photon counts such as to obtain a peak SNR of 100 of the blood plasma signal; inspect the resulting concentration-time curves.
- Implement the fit function to determine the rate constants (k₁, k₂, k₃) from noisy c_p(t) and c_t(t) input.
- Determine mean and standard deviation of the fitted rate constants (k₁, k₂, k₃) for multiple repetitions of adding noise and fitting the noisy data.

Biomedical Imaging S. Kozerke

• Reduce the SNR by a factor 10 and repeat the experiments above; how do mean and standard deviation of fitted rate constants change? Which conclusion do you draw in terms of required signal-to-noise ratio of the input PET data?

Questions?

Gloria Wolkerstorfer (wolkerstorfer@biomed.ee.ethz.ch)
Charles McGrath (mcgrath@biomed.ee.ethz.ch)
Sebastian Kozerke (kozerke@biomed.ee.ethz.ch)