THERMAL STRESSES IN THIN SHALLOW SHELLS

BY RAM SAJIWAN

DEPARTMENT OF CIVIL ENGINEERING

THENDIAN INSTITUTE OF TECHNOLOGY KANPUR

OCTOBER, 1969

THERMAL STRESSES IN THIN SHALLOW SHELLS

A THESIS SUBMITTED

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF TECHNOLOGY

JUNE 75

332

POST GRADUATE OFFICE
This thesis has been approved
for the award of the Degree of
Master of Technology (M. Fech.)
in accordance with the
regulations of the Indian
Institute of Technology Sampur
Dated. 5/1/70

RAM SAJIWAN

Thesis

8 140t

ACC NO - 332

DEPARTMENT OF CIVIL REGINEERING INDIAN INSTITUTE OF TECHNOLOGY KANPUR

OCTOBER, 1969 RAM CE-1969-M-SAJ-THE

CERTIFICATE

Cortified that this work on "Thermal stresses in this shellow shells" by New Sajiwan, as a partial fulfilment towards the degree of Master of Tochnology in Civil Engineering, has been carried out under my supervision and that this has not been submitted else where for a degree.

Kunpur: October, 1969 (Y.C.Dus)

Professor

and chairman of Thesis Committee

POST GRADUATE OFFICE
This thesis has been approved
for the award of the Degree of
Master of Technology (M Techn)
in accordance with the
regulations of the Indian
Institute of Technology Ampur
Dated. 5/1/70

ACK DILEMENT

The suther expresses his deep sense of gratitude to Professor Y.C. Das for suggesting this problem, and giving valuable guidance and encouragement throughout the progress of this work. He is grateful to Mr. J. Venketa-remens for many helpful discussions. In addition, grateful appreciation is due to computer centre for their generous support.

SYNUPSIS

The present work involves the study of thermal stresses in thin shallow shalls. Chapter I gives the introduction about the thermal strasses and amount and type of work done in thin shallow shells. Chapter II deals with the veristion of total potential energy in deriving the basic equations for general this shells and possible boundary conditions in thin shells. Chapter III deals with the making of nonhomogeneous boundary conditions to homogeneous conditions by Mindlin and Coodman technique. This chapter gives the solutions for two parallel edges simply supported and two other edges supported in any member. Solutions have been given for (a) all four edges simply supported and (b) two parallel adges simply supported and remaining two edges clamped, where constants here been obtained with the help of Heang's Technique. An example illustrates the method.

A flow chart and a computer programme for (a) all edges simply supported and (b) two parallel edges simply supported and tomaining two edges clamped, are given in Appendix (B) and (C) respectively. Tables and graphs are presented for deflections and moments in terms of dimensionless parameters for a/b ratio from 1.0 to 2.0 at interval of 0.2 and for a2/hR₁ ratio from 5.0 to 20.0 at interval of 5.0 for elliptic paraboloids.

TABLE OF CONTENTS

		Paga
Title Page		1
Cortificate	•	11
Acknowledges	ents	111
Synopsis		iv
Notations		2
CHAPTER 1	INTRODUCTION	4
CHAPTER II	DERIVATION OF BASIC EQUATIONS	9
CHAPTER III	METHOD OF SOLUTIONS General Solutions for thermal stresses in thim Shallow Shells with two parallel edges simply supported and other two edges supported in any memor.	55
2.	other two edges are also simply supported	33
b.	other two edges are clamped.	34
c.	Example.	36
đ.	Conclusions	39
References		42
APPENDIX A	Characteristic roots of the Differential equation (47)	43
APPENDIX B	PLOW CHARTS	48
appendix c	COMPUTER PROGRAMME	51
APPENDIX D	Table operlection & moments)	67
APPENITY E	GRAPHS	84

HOT ATIONS

A1. F2	Lame's constants
e de la companya de l	epecific hest et constent deformation
į	d/dy (operator)
ú 1	flexural rigidity of shall 12(1-12)
చేస్త	Wodulus of electicity in tennion or compression
υ	Poisson's retio
À	Thermal conductivity of the solid
F1. F2. R42	Hending and twisting moments per unit distance
	in shell.
² q	as f 11/2 c.z. dz
A _T	all 5h/2 T. dz
41, 45, 4 ⁿ	Components of intensity of surface loading
49.	Temperature rise.
T1,12, 5	Normal and shearing forces per unit distance
	in middle surface of shell.
u. v. w.	Components of displacements at distance z from
	middle plane.
α	Coefficient of linear expansion
β4, β2, e	Curvilineer Coordinates
T1 + T2 + T3	Normal components of stress parallel to
	61. 62 and z-exia
M20 M30 Y23	
***	coordinates.

 ϵ_1 , ϵ_2 , ϵ_3 Unit elongations in ϵ_4 , ϵ_2 , and solitorstions.

Eq. eq Unit elong tions in party directions on the

middle surface.

112. 123. 13 Chesting etrain components in curvilinear coerdi-

netes.

O Stress function

P Mass density

Lame a constants

$$\sqrt{(-)} \left\{ \frac{1}{\sqrt{2}} \left\{ \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right] \right\}$$

$$\frac{1}{\lambda_1 \lambda_2} \left\{ \frac{1}{\pi_{11}} \left[\frac{1}{\lambda_2} \frac{\lambda_2}{\lambda_1} - \frac{\lambda_2}{\pi_{11}} \right] + \frac{\lambda_1}{\pi_{12}} \left[\frac{1}{\pi_{11}} \frac{\lambda_1}{\lambda_2} - \frac{\lambda_2}{\pi_{12}} \right] \right\}$$

CHAPTER I

INTROLUCTION

In modern design, there is a lot of attention towards the thermal stresses chiefly because of many engineering components which fail because of it. Thermal stresses play an important role in the design of gas or steam turbines, super sonic aircrafts, nuclear reactors, rocket engines, missiles, sirframe structures, high-temperature oilrefining plants and structures operating at elevated temperatures.

Thermal stresses are arising from temperature offects, when temperature gradient is applied to material of the body, the various fibers tend to expand different amounts. To enable the body to remain continuous, a systom of thormal strains and associated thormal strasses may be introduced which depend on the shape of the body and the temperature distribution sinside the body. Thormal stresses are also introduced in cases where no temperature gradient exists if the part consists of several meterials having different coefficient of expansions, or if free contraction or expansion is prevented by external constraints. As an exemple, a free plate having a temperature distribution varying with depth only will bend into a curved plate. Thermal stresses will be introduced in a free plate made of two materials, having different coefficient of expansions, with uniform temperature distribution. And thermal stresses are

also set in constrained edges plate having uniform temperature distribution.

The basic energy equation (1) derived from 'Law of conservation of energy' under the action of heat is given as

This boundary value problem has considerable methematical defficulty, since it combines the theories of heat conduction and elasticity under transion t conditions. But fortunately in most of engineering problems, it is possible to introduce cortain simplifying assumptions without significant error. The principal simplifying ussumption is omission of mechanical coupling term in energy equation and giving rise some form of Fourier heat conduction equation. which is independent of stresses and deformations. If veriations of strain in a body are produced by some external agency, these variations of strain are accompanied by veriations in temperature and consequently flow of best. This gives rise to am increuse of entropy and corresponding incrosse of emergy stored in a mechanically irrecoverable member and this is thermoelastic dissipution, which requires for its study the use of coupled heat equation. The deformations due to external loads are accompanied by only small changes in temperature. It is then reasonable to calculate those deformations without taking eccount of

**Numbers refer to entries in the list of references.

thermal expansion. Similarly, if strains are produced in a body by non-uniform temperature distribution, it is clear that influence of those strains on the temperature itself is not too large. Thus omission of mechanical coupling term in energy equation would be meaning less.

inertia term in an equation of motion. Duhamel had shown that the time rate of change of temperature is slow enough so that this term should not be significent. Danilovskeyn (2) and Boley have also showed that omission of imertia term is meaningless. The two simplifying assumptions give rise to uncompled quasi-static theory. This uncoupled quasi-static theory is divided into two distinct subjects, and known as theories of heat conduction and thermoelasticity. Solution of heat conduction approach gives the distribution of temperature divided the body.

In the present case, it is assumed that temperature distribution in side the thin shallow shall is known before hand. It is taken that temperature is entisymmetric about the middle plane of the thin shallow shall but otherwise arbitrary.

Due to clastic constants such as Young's Modulus.

The thermal stresses are related in a complicated manner to the temperature distribution. Mechanical and Metallurgical properties may be changed with the temperature. It is assumed that elastic constants do not depend upon the temperature and material behaves elastically at all times.

conly Gradouczyk (3) has tried to derive the governing equations for thin shallow shells. He has taken Mavier type solution for deflection of thin shallow shell. Navier type solution is possible only for all edges simply supported. But Mavier type solution is in terms of double trigenometric series which behaves poorly mear the end point of interval. Gradouczyk has not solved completly for any type of boundary conditions.

Stress function and deflection of thin shallow shell subjected to temperature must satisfy the following two equations.

$$D^{1} \triangle_{3} \triangle_{5} R-\Gamma(0)=d^{0}-\triangle_{5} \frac{(-1-2)}{\mu^{1}} \cdots (5)$$

$$\nabla^2 \nabla^2 \Theta + Rh L (W) = \nabla^2 N_T \qquad \dots (3)$$

Stress and deflection functions are separated into different equations. Solutions of these equations

are obtained as Lavy's type solutions which are in terms of hyperbolic and trigonometric functions. It gives better convergence near the end in comparison to Mavior type solutions which is in terms of double trigonometric series.

The boundary conditions considered ere:

- e. Two opposite odges of this shallow shell simply supported and remaining two edges supported in any measur.
- b. All four edges of this shallow shall simply supported.
- c. Two opposite edges of this shellow shell simply supported and remaining two edges clamped.

CHAPTER II

FORMULATION OF BASIC EQUATIONS

Following assumptions have been made in the derivation of basic equations:

- 1. The material is homogeneous, isotropic and obeys block's Laws.
- Planes perpendicular to middle surface before heading, remain plane and perpendicular to middle surface after bending and do not stratch in their length.

 1.6. 13 = 0, 23 = 0, 3 = 0
- 3. Normal stresses on planes parallel to middle surface are small in comparision to other stresses and these mermal stresses are neglected.

1.e.
$$\sigma_3 = 0$$

- d. Deflections are small compared to thickness and the effect of loads in the plane of shell is neglected and coordinates of a particle before and after deformation are the same.
- 5. The elastic constants E_{\bullet}) and the coefficient of thermal expansion are independent of temperature.
- 6. The thickness of the thin shell is very small in comperision with the least radius of curvature of the middle surface.
- 1.e. $1 \pm x/R_1 = 1$ and $1 \pm x/R_2 = 1$

7. Thickness of the shall in uniform.

Let \$4 and \$2 be the coordinate of point of the middle ourfloo of thin small and a be the distance measured along the out and normal to the aidals surface. The obsent of the thin shell acted by different forces is snown in fig.(1). Introduce approximations for the displacements (6) as follows.

$$u = u_0 (\nu_1, \nu_2) + v_0$$
 $v = v_0 (\nu_1, \nu_2) + v_0$
 $v = v_0 (\nu_1, \nu_2) + v_0$
 $v = v_0 (\nu_1, \nu_2)$

There n_0 and v_0 are the components of displacements at the stable surfaces ϕ and ψ are the charge of alones of the so-male to the siddle surface.

mains sollowing nerosa resultante using Love's

Mrst as roxia tion.

FIG. 1 ELEMENT OF SHELL AT EQUILIBRIUM

stress Strein relations are sudified to take into decount the attrine due to temperature and other basic equations of the exclusive are same as the ordinary thin shell through. (5)

$$\frac{1}{2} = \frac{1}{2} \cdot (6 + n + 1 + n$$

strain components of any points at a distance of from the middle carface of chell in terms of middle plans strain components and curvatures are given by

$$A_0^{15} = \frac{v^4}{c} = \frac{v^4}{c} = \frac{v^5}{c} = \frac{v^5}{v^4} = \frac{v^4}{c} = \frac{v$$

and characters are obtained as

shope force in terms of stress couples are given by

$$H_{1} = \frac{1}{4} \left(2 \frac{0 \text{ yr}_{13}}{0 \text{ yr}_{13}} + \frac{0 \text{ yr}_{13}}{0 \text{ yr}_{1}} + \frac{0 \text{ yr}_{1}}{0 \text{ yr}_{1}} + \frac{0 \text{ yr}_{2}}{0 \text{ yr}_{2}} + \frac{0$$

$$N_{2} = \frac{1}{4} \left(2 \frac{3}{3} \frac{3}{4} + \frac{3}{3} \frac{3}{4} \frac{2}{3} - \frac{3}{3} \frac{3}{4} \frac{3}{4} \right) - \frac{1}{4} \frac{3}{3} \frac{3}{4}$$
 (34)

Notice equilibrium equations and equilibrium equitions
for the leation of an electic thin shell have been derived by minimizing the total petential energy 'V' as
follows.

V = 1 1 (T = 2 T 2 + T 3 3 + Y 12 T 12 + Y 23 T 3

* Y 3 T13 A 1 2 du 1 du 2 dz - 11 (21 110 + 12 10

+ 95W) A1A2 60, 4 W2

by guidaling the values of Tes Tree Tree Yes and Yes

 $V = \frac{11}{2} + \frac{11}$

- 11 (a, 40 + 32 vo + an m) A, A2 &1 &2 (11)

By putting the values of 8, 42, and 12 in Mq. (11)

$$A = \frac{5(4-n_5)}{2} \text{ ln} \left\{ (e_0^4 + e_0^5)_5 - 5(4-n) \left(e_0^4 e_0^5 - \frac{4}{\lambda_0^{15}} \right) \right\}$$

*
$$= \frac{1}{2} \left\{ \left(\kappa^4 + \kappa^5 \right)_5 - 5 \left(1 - n \right) \left(\kappa^4 \kappa^5 - \frac{4}{\kappa_5^4 \pi^5} \right) \right\}$$

$$= \frac{1}{2} \{(\kappa^{4} + \kappa^{5})_{5} - 5(1-\kappa) (\kappa^{4} \kappa^{5} - \frac{1}{\kappa^{45}})\} \quad \sqrt{4} \kappa^{5} \text{ or } 4 \text{ or } 4$$

$$+ \frac{1}{2} \{(\kappa^{4} + \kappa^{5})_{5} - 5(1-\kappa) (\kappa^{4} \kappa^{5} - \frac{1}{\kappa^{45}})\}$$

$$= \frac{1}{2} \{(\kappa^{4} + \kappa^{5})_{5} - 5(1-\kappa) (\kappa^{4} \kappa^{5} - \frac{1}{\kappa^{45}})\}$$

$$= \frac{1}{2} \{(\kappa^{4} + \kappa^{5})_{5} - 5(1-\kappa) (\kappa^{4} \kappa^{5} - \frac{1}{\kappa^{45}})\}$$

- // (q140 + 42 Vo + qn w) A1A2 dd + dd 2(*3)
Minimizing the total potential energy 'V' by variational
primal/10, we get

Changes incurvature and twist caused by displacement components tangential to the siddle surface are very small and asslected in kgs kg and kgs.

Carrying out the indigration by parts, \$9.(14) gives the expression!

$$\delta = 11 \left[\left\{ \frac{\partial A_2}{\partial \beta_1} T_2 - \frac{\partial}{\partial \beta_1} (A_2 T_1) - \frac{\partial A_1}{\partial \beta_2} S - \frac{\partial}{\partial \beta_2} (A_1 S) - A_1 A_2 G_1 \right\} \partial S_2 \right]$$

$$\begin{split} + \left\{ \frac{\partial A_{1}}{\partial \beta_{2}} \right\} & T_{1} - \frac{\partial}{\partial \beta_{2}} \left(A_{1} T_{2} \right) - \frac{\partial A_{2}}{\partial \beta_{1}} \right\} - \frac{\partial}{\partial \beta_{1}} \left(A_{2} S \right) - A_{1} A_{2} \left(q_{2} \right) \right\} \delta V_{0} \\ + \left\{ D_{1} \nabla^{2} \nabla^{2} \right\} & W + \frac{T_{1}}{A_{1}} + \frac{T_{2}}{A_{2}} + \nabla^{2} \frac{M_{2}}{(1 - \nu)} - q_{1} \right\} \delta W \right\} d\beta_{1} d\beta_{2} \\ + \int \left[A_{1} \left\{ T_{2} \delta V_{0} + S \delta u_{0} - \frac{M_{2}}{A_{2}} \right\} \frac{\partial \delta}{\partial \beta_{2}} + \left(H_{2} + \frac{1}{A_{1}} \right) \frac{\partial M_{2}}{\partial \beta_{1}} \right] \delta W \right\} d\beta_{1} \\ + \int \left[A_{2} \left\{ T_{1} \delta u_{0} + S V_{0} - \frac{M_{1}}{A_{1}} \right\} \frac{\partial \delta W}{\partial \beta_{1}} + \left(H_{1} + \frac{1}{A_{2}} \right) \frac{\partial M_{2}}{\partial \beta_{2}} \right] \delta W \right\} d\beta_{2} \\ - 2 \left[M_{1} \left\{ \delta W \right\}_{0}^{\beta_{1} \beta_{2}} \right] \end{split}$$

In the above expression, equating the coefficients of ω_0 , δv_0 and δw equal to zero, gives the equilibrium equations.

$$\delta u_0$$
: $\frac{\partial}{\partial \beta_1} (A_2 u_1) - \frac{\partial A_2}{\partial \beta_1} u_2 + \frac{\partial A_1}{\partial \beta_2} u_3 + \frac{\partial}{\partial \beta_2} (A_1 u_3) + A_1 A_2 u_1 = 0$

$$\delta v_0 : \frac{\partial}{\partial \beta_2} (A_1 T_2) - \frac{\partial A_1}{\partial \beta_2} T_1 + \frac{\partial A_2}{\partial \beta_1} S + \frac{\partial}{\partial \beta_1} (A_2 S) + A_1 A_2 Q_2 = 0$$

δw:
$$D_4 \nabla^2 \nabla^2 w + \frac{T}{R_4} + \frac{T^2}{R_2} = qn - \nabla^2 \frac{M_2}{(1-μ)}$$

where.

$$\nabla^2 (...) = \frac{1}{\Lambda_1 \Lambda_2} \left\{ \frac{\partial}{\partial \beta_1} \left[\frac{\Lambda_2}{\Lambda_1} \frac{\partial (y_1, y_2)}{\partial \beta_2} \right] + \frac{\partial}{\partial \beta_2} \left[\frac{\Lambda_1}{\Lambda_2} \frac{\partial (y_1, y_2)}{\partial \beta_2} \right] \right\}$$

venishing of surface integral terms in equation (15) give the appropriate boundry conditions considering the surface integrals, to get the conditions along $\beta_1 = 0$ and $\beta_1 = \beta_1$, the surface integral must venish.

$$\int A_{2} \left\{ T_{1} \delta u_{0} + S \delta v_{0} - \frac{N_{1}}{A_{1}} \frac{\partial \delta w}{\partial \beta_{1}} + (N_{1} + \frac{1}{A_{2}} \frac{\partial M_{12}}{\partial \beta_{2}}) \delta w \right\} d\beta_{2} = 0 \quad (19-a)$$

2 This can be done by choosing

$$\Sigma_1 S u_0 = 0$$
; $\Sigma_1 S v_0 = 0$ (19-b)
 $M_1 \frac{\partial S w}{\partial \beta_1} = 0$; $(N_1 + \frac{1}{\Lambda_2} \frac{\partial M_1 Z}{\partial \beta_2}) \delta w = 0$

where $N_1 + \frac{1}{A_2} = \frac{\partial M_{12}}{\partial B_2}$ is called Kirchhoff's shear.

This physically means that the virtual work done by forces and moments along the boundries $\beta_1=0$ and $\beta_1=\beta_1$ must be zero. This can be done in three ways, firstly by making all forces and moments to be zero along the boundry or secondly by choosing the displacements and slopes along the boundry to be zero, or thirdly by choosing partly forces and moments to be zero and partly displacements and slopes to be zero along the boundry.

Similarly vanishing of surface integral for $\beta_2 = 0$ and $\beta_2 = \beta_2$ is given

$$\int A_1 \left\{ T_2 \delta v_0 + S \delta u_0 - \frac{M_2}{A_2} \frac{\partial \Omega v}{\partial P_2} + \frac{\partial M_1 v}{\partial P_4} \right\} \delta w \left\{ d\rho_1 = 0 \right\}$$
(20-a)

Boundary conditions along $\beta_2 = 0$ and $\beta_2 = \beta_2$ can be obtained as

$$M_2 = 0$$
 $M_2 = 0$
 M_2

At the four corners,

$$2E_{12} \times V = 0$$
 (20-c)

Consider a stress function '0' which is related to the inplane forces as follows:

$$\hat{T}_{1} = -\frac{1}{A_{0}} \frac{\partial}{\partial \beta_{2}} \left(\frac{1}{A_{2}} \frac{\partial \theta}{\partial \beta_{2}} \right) - \frac{1}{A_{0}} \frac{\partial A_{2}}{\partial \beta_{1}} \frac{\partial \theta}{\partial \beta_{1}} \frac{\partial \theta}{\partial \beta_{1}}$$
 (21-a)

$$s_2 = -\frac{1}{\Lambda_1} \frac{\partial}{\partial \beta_1} \left(\frac{1}{\Lambda_1} \frac{\partial \theta}{\partial \beta_1} \right) - \frac{1}{\Lambda_2^2} \frac{\partial \Lambda_1}{\Lambda_1} \frac{\partial \theta}{\partial \beta_2} \frac{\partial \theta}{\partial \beta_2}$$
 (21-b)

$$S = \frac{1}{\Lambda_1 \Lambda_2} \left(\frac{\partial^2 \theta}{\partial \beta_1} - \frac{1}{\Lambda_1} \frac{\partial \Lambda_1}{\partial \beta_2} \frac{\partial \theta}{\partial \beta_1} - \frac{1}{\Lambda_2} \frac{\partial \Lambda_2}{\partial \beta_1} \frac{\partial \theta}{\partial \beta_2} \right) \quad (21-0)$$

Putting the values of T_1 , T_2 and S into sque. (16), (17) and (18) and simplifying by using the Gauss-Codessi relations (5).

$$\frac{1}{R_1 R_2} \frac{1}{A_1} \frac{\delta \theta}{\theta \beta_1} = q_1 \tag{22}$$

$$\frac{1}{R_1 R_2} \frac{1}{A_2} \frac{\partial \theta}{\partial \beta_2} = q_2 \tag{25}$$

$$D_{1} \quad \nabla^{2} \quad \nabla^{2}_{W} - D(2) = q_{1} - \nabla^{2} \frac{R_{1}}{(1-u)}$$

$$L(...) = \frac{1}{R_{1}R_{2}} \left\{ \frac{1}{6\beta_{1}} \left[\frac{1}{R_{2}} \frac{A_{2}}{A_{1}} \frac{\delta(u_{1})}{\delta(l_{1})} \right] + \frac{3}{6\beta_{2}} \left[\frac{1}{R_{1}} \frac{A_{1}}{A_{2}} \frac{\delta(u_{2})}{\delta(l_{2})} \right] \right\}$$

$$(24)$$

In absence of forces in β_1 and β_2 directions, Eqns. (22) and (23) will be automatically satisfied for shell of sero Gaussian curvature, for shell of non zero Gaussian curvature, the above equations are approximately satisfied for shellow shells. In order to obtain, the unknown stress function '0', now we have to consider the compatibility conditions.

Compatibility Equation is given by

By substituting the values of k_1 , k_2 , ϵ_1^0 , ϵ_2^0 , ϵ_{12}^0 in Eqn. (25).

EhL(w)
$$+\nabla^{2}\nabla^{2}\theta + \frac{(1+u)}{A_{1}A_{2}} \left[\frac{8}{6\beta_{1}} \left(\frac{A_{2}}{R_{1}A_{4}} \frac{\partial\theta}{R_{2}\partial\beta_{1}} \right) + \frac{\theta}{\beta_{2}} \left(\frac{1}{R_{1}R_{2}} \frac{A_{1}}{A_{2}} \frac{\partial\theta}{\theta\beta_{2}} \right) \right] = \nabla^{2} H_{2}$$
 (26)

for sero Gaussian ourveture (1/R₁B₂ = 0)

$$EhL(w) + \nabla^2 \nabla^2 \theta = \nabla^2 H_{\overline{Y}}$$
 (27)

These equations hold good for

- 1. shells of zero Grussian curvature such as cylindrical shells and cones.
- 2. good for shallow shalls
- 5. approximate for non-zero Saussiam curvature.

These equations are coupled and requires the simultaneous solution of deflection 'w' and stress for ction '0'. of If there is no external loading, for constant thickness equation (24) reduces to the form,

$$D_1 \quad \nabla^2 \quad \nabla^2 w - \Gamma \quad (0) = - \quad \Delta_3 \quad \frac{1}{(4-n)}$$
 (58)

Superposition of deflections due to transverse load alone and deflection due to temperature distribution alone is possible. Solution of deflection due to temperature distribution alone has been utilised in the present case.

CHAPTER III

MEN HOD OF JOLUTIONS

In this chapter, solutions to obtain thermal stresses in this shallow shalls with two edges simply and other two edges supported in any manner are developed. The equations governing, the transverse diffection of electic this shalls subjected to a temperature distribution which is anti-symmetric about the middle plane and otherwise exhitrary are:

$$D_1 \triangle_{S \triangle_{S}} = P(\Theta) + \triangle_{S} \frac{(1-\Lambda)}{(1-\Lambda)} = 0$$
 (53)

$$\mathbb{E}\mathrm{HP}(M) + \Delta_{S} \Delta_{S} \Theta - \Delta_{S} M^{L} = 0 \tag{30}$$

Deflection function 'w' and struct function '0' may be separated out as

$$D_{\downarrow} \nabla^{8} \theta + EhL^{2}(\theta) = D_{\downarrow} \nabla^{6} R_{T} + Eh \nabla^{2} L \left(\frac{R_{T}}{(1-V)} \right)$$
 (31)

$$D_1 \triangle_{\mathbf{S}^{M}} + Epr_5(M) = -\triangle_{\mathbf{G}} \frac{1-1}{M^{M}} + \triangle_5 r (M^2)$$
 (35)

Both functions w and s . have the same homogeneous solutions but differing in constants of integrations.

Doubly curved thin shells may be reduced to thin shellow shells, when it is satisfying the following conditions

Thin shellow shell has been shown in fig. (2) with coordinate system. The value of h_4 and r_2 for shellow shell may be epproximated as

 $A_1 = A_2 = 1$. B_1 and B_2 are constant.

stress couples and stress resultants for thin shallow shell in terms of deflection 'w' and stress function 0 may be expressed as

$$E_{\rm x} = -D_1 \quad (\frac{8x^2}{8x^2} + v) \frac{8^2y}{(8y^2)} - (1-v)$$
 (33)

$$V_y = + D_1 \left(\frac{\partial^2 y}{\partial x^2} + \nu \frac{\partial^2 y}{\partial x^2} \right) - \frac{V_T}{(1-\nu)}$$
 (34)

$$M_{xy} = \lambda D_1(1-7) \frac{\partial^2 w}{\partial x \partial y}$$
 (35)

$$T_1 = -\frac{\delta^2 \theta}{\delta x^2}$$
, $T_2 = -\frac{\delta^2 \theta}{\delta x^2}$, $S = \frac{\delta^2 \theta}{\delta x^2 y}$ (%-m-c)

The middle plane strains in terms of stress resultants may be expressed as,

Doubly ourwed thin shallow shell is simply supported slong x = 0 and x = a and saking conditions such that

$$T_1 \begin{pmatrix} 0 \\ a \end{pmatrix} = 0$$
 and $C_2^0 \begin{pmatrix} 0 \\ a \end{pmatrix} = 0$ (using tie red)

$$T_1 \begin{pmatrix} 0 & y \end{pmatrix} = -\frac{8^2}{8y^2} \cdot 3 \begin{pmatrix} 0 & y \end{pmatrix} = 0$$

FIG.2 SHALLOW SHELL WITH COORDINATES

or

$$\theta(_{n}^{0}, y) = 0 (39)$$

Distribution of temperature in entisymmetric about the middle plane so that $\frac{1}{2} \binom{0}{n} = 0$

$$e_{0}^{0}(e,y) = \frac{e^{2}e}{e^{x}} | x = 0.6$$

or

$$\frac{\partial^2}{\partial x^2} \theta \left(\frac{\partial}{\partial x} , y \right) = 0 \tag{39}$$

$$w = 0; M_{\pi} = 0 \text{ when } x = 0. a$$
 (40)

Boundary conditions (40) imply that

$$w = 0: \frac{e^{2}w}{e^{2}x^{2}} = -\frac{a_{T}(0,y)/D_{1}(1-v)}{e\log x} = 0$$

$$w = 0: \frac{e^{2}w}{e^{2}x^{2}} = -\frac{a_{T}(a,y)/D_{1}(1-v)}{e\log x} = 0$$

The boundary conditions are non-homogeneous. The non-homogeneity is removed by taking the function 'w' into two forms $^{(6,7,6)}$ as follows

$$w(x, y) = U(x, y) + \left\{ \frac{1}{2} (0, y) \right\} \left\{ \frac{1}{2} (x) + \frac{1}{2} (x, y) \right\} \left\{ \frac{1}{2} (x) \right\}$$
 (41)

where $H_o(x)$ and $H_a(x)$ are the unknown functions of x only. Applying the boundary conditions into the equation (41)

$$U(0, y) = -\left[\frac{M_{T}(0, y)}{(1-\nu)} + \frac{M_{T}(0, y)}{(1-\nu)} + \frac{A^{2}}{dx^{2}} H_{0}(0) \right] - \frac{A^{2}}{(1-\nu)} H_{0}(0)$$

$$\frac{\delta^{2}}{\delta x^{2}} U(0, y) = -M_{T}(0, y) \left[\frac{1}{D_{1}} + \frac{A^{2}}{dx^{2}} H_{0}(0) \right] - \frac{M_{T}(0, y) \frac{d^{2}}{dx^{2}}}{(1-\nu)} H_{0}(0)$$

$$\frac{\partial^{2}}{\partial x^{2}} U(0, y) = -M_{T}(0, y) \left[\frac{1}{D_{1}} + \frac{A^{2}}{dx^{2}} H_{0}(0) \right] - \frac{M_{T}(0, y) \frac{d^{2}}{dx^{2}}}{(1-\nu)} H_{0}(0)$$

$$\frac{\partial^{2}}{\partial x^{2}} U(0, y) = -M_{T}(0, y) \left[\frac{1}{D_{1}} + \frac{A^{2}}{dx^{2}} H_{0}(0) \right] - \frac{M_{T}(0, y) \frac{d^{2}}{dx^{2}}}{(1-\nu)} H_{0}(0)$$

$$\frac{\partial^{2}}{\partial x^{2}} U(0, y) = -M_{T}(0, y) \left[\frac{1}{D_{1}} + \frac{A^{2}}{dx^{2}} H_{0}(0) \right] - \frac{M_{T}(0, y) \frac{d^{2}}{dx^{2}}}{(1-\nu)} H_{0}(0)$$

$$U(0,y) = -\left[\lim_{x \to \infty} (0,y) H_0(a) + \lim_{x \to \infty} (a,y) H_0(a) \right]$$

$$\frac{e^2}{6x^2} U(a,y) = -\frac{H_1(0,y)}{(1-y)} \frac{d^2}{dx^2} H_0(a) - \frac{H_2(a,y)}{(1-y)} \left[\frac{1}{11} + \frac{d^2}{dx^2} H_0(a) \right]$$

$$\frac{e^2}{(1-y)} U(a,y) = -\frac{H_2(0,y)}{(1-y)} \frac{d^2}{dx^2} H_0(a) - \frac{H_2(a,y)}{(1-y)} \left[\frac{1}{11} + \frac{d^2}{dx^2} H_0(a) \right]$$

$$\frac{e^2}{(1-y)} U(a,y) = -\frac{H_2(0,y)}{(1-y)} \frac{d^2}{dx^2} H_0(a) + \frac{H_2(a,y)}{(1-y)} \left[\frac{1}{11} + \frac{d^2}{dx^2} H_0(a) \right]$$

$$\frac{e^2}{(1-y)} U(a,y) = -\frac{H_2(0,y)}{(1-y)} \frac{d^2}{dx^2} H_0(a) + \frac{H_2(a,y)}{(1-y)} \left[\frac{1}{11} + \frac{d^2}{dx^2} H_0(a) \right]$$

$$\frac{e^2}{(1-y)} U(a,y) = -\frac{H_2(0,y)}{(1-y)} \frac{d^2}{dx^2} H_0(a) + \frac{H_2(a,y)}{(1-y)} \left[\frac{1}{11} + \frac{d^2}{dx^2} H_0(a) \right]$$

Functions $H_{\mathbf{o}}(\mathbf{x})$ and $H_{\mathbf{g}}(\mathbf{x})$ are chosen in the following manner in order to rake the equation (42) homogeneous.

$$H_0(0) = 0$$
 $H_0(0) = 0$
 $H_0(0) = -1/D_1$
 $H_0(0) = 0$
 $H_0(0) = 0$

The functions $H_{Q}(x)$ and $H_{Q}(x)$ are taken as polynomials with four constants which are determined with above conditions on $H_{Q}(x)$ and $H_{Q}(x)$. They are of the form

$$H_{0}(x) = \frac{a^{2}}{b_{1}^{2}} \left[\frac{1}{3} \frac{x}{a} - \frac{1}{2} \frac{x^{2}}{6x^{2}} + \frac{1}{6} \frac{x^{3}}{3} \right]$$

$$H_{0}(x) = \frac{a^{2}}{6b_{0}^{2}} \left[\frac{x}{a} - \frac{x^{3}}{3} \right]$$

$$(44-b)$$

The boundary conditions on U(x, y) become,

$$U=0, \quad \frac{\partial^2 U}{\partial x^2} = 0 \quad \text{elong } x=0 \text{ end } x=0.$$

Now substituting the eqn. (41) an eqn. (32)

where
$$F(x,y) = -\nabla^6 \frac{H_0}{(1-\nu)} + \nabla^2 \lfloor (H_0) - \nabla^6 \lceil H_0(0,y)H_0(x) - (1-\nu) \rceil + H_0(x,y) H_0(x) - (1-\nu) - (1-\nu) + H_0(x,y) H_0(x) - (1-\nu) - (1-\nu) - (1-\nu)$$

Solution of eqn. (45-a) may be taken as

$$U(x,y) = \sum_{m=1}^{\infty} Y_m(y) \sin \frac{m\pi x}{6}$$
 (46)

This form of solution will satisfy the boundary conditions along x = 0 and x = 0.

Substituting the velue of U(x, y) in the equation 45(a)simplifying and

$$(\frac{d^{2}}{dy^{2}} Y_{m}(y) - \frac{m^{2} x^{2}}{e^{2}} Y_{m}(y))^{4}$$

$$+ \frac{Eh}{D_{1}} (\frac{1}{H_{q}} \frac{d^{2}}{dy^{2}} Y_{m}(y) - \frac{1}{H_{2}} \frac{m^{2} x^{2}}{e^{2}} Y_{m}(y))^{2} = K_{m}(y) (47-e)$$
where $K_{m}(y) = \frac{1}{D_{1}} \frac{2}{e^{2}} \int_{0}^{x} f(x,y) \sin m\pi x/e dx$
or $A_{1m} \frac{d^{2}}{dy^{2}} Y_{m}(y) + A_{2m} \frac{d^{6}}{dy^{6}} Y_{m}(y) + A_{3m} \frac{d^{4}}{dy^{4}} Y_{m}(y)$

$$A_{4m} \frac{d^{2}}{dy^{2}} Y_{m}(y) + A_{5m} Y_{m}(y) = K_{m}(y)$$

$$(47-b)$$

Solution of homogeneous equation:

$$A_{1m} \frac{d^{8}}{dy^{8}} Y_{m}(y) + A_{2m} \frac{d^{6}}{dy^{6}} Y_{m}(y) + A_{3m} \frac{d^{4}}{dy^{4}} Y_{m}(y)$$

$$A_{4m} \frac{d^{2}}{dy^{2}} Y_{m}(y) + A_{5m} Y_{m}(y) = 0 \qquad (47-e)$$

Assume $Y_m(y)$ in the form:

Substituting value of $Y_m(y)$ into the equation (47-a). gives,

$$B_{1m} S_{mm}^{8} + B_{2m} S_{m}^{6} + B_{3m} S_{m}^{4} + B_{4m} S_{m}^{2} + B_{5m} = 0$$
 (47-a)

where
$$B_{1m} = 1$$
 $A_{2m} = B_{1m}$
 $B_{2m} = -4 m^2 n^2$ $A_{2m} = B_{2m}/e^2$
 $B_{3m} = (6 m^4 n^4 + T)$ $A_{3m} = B_{3m}/e^4$
 $B_{4m} = -2m^2 n^2 (2m^4 n^4 + TR)$ $A_{4m} = B_{4m}/e^6$ (49-b)

 $B_{5m} = m^4 n^4 (m^4 n^4 + R^2 T)$ $A_{5m} = B_{5m}/e^6$
 $T = 12(1-y)^2 \frac{n^4}{n^2 R_4^2}$, $R = R_4/R_2$

Roots of the equation (49) may obtained by changing this equation into fourth order equation and solving by the method given in Ref. (9).

Depending upon nevalues of A_{1m} to A_{5m} , eqn. (47-c) has different set of roots and different type of function $Y_m(y)$ as given in the Appendix (A).

The homogeneous solution (10) of eqn. (44) may be expressed as

$$Y_m(y) = C_{1m} y_{1m} + C_{2m} y_{2m} + \dots + C_{8m} y_{8m}$$
 (50)

where y_{1m} through y_{8m} are the basis of solutions (Appendix A) and c_{1m} through c_{8m} are arbitrary constants to be evaluated from the boundary conditions of the edges of thin shallow shell

along y = 0 and y = b.

Writing the equation (50) in the metrix forms ap Ym(y) = [c] [Yn (y)] (51-1)

The superscript 'I' denotes the transpose of the matrix end

$$\begin{bmatrix} c_{1m} \\ c_{2m} \\ c_{3m} \\ c_{3m} \\ c_{5m} \\ c_{6m} \\ c_{7m} \\ c_{8m} \end{bmatrix} \begin{bmatrix} y_{1m}(y) \\ y_{2m}(y) \\ y_{3m}(y) \\ y_{4m}(y) \\ y_{5m}(y) \\ y_{5m}(y) \\ y_{6m}(y) \\ y_{7m}(y) \\ y_{8m}(y) \end{bmatrix}$$
(51-b-c)

The differential equation of $[y_R(y)]$ can be expressed as

$$\frac{d^{n}}{dy^{n}} \begin{bmatrix} \mathbf{Y}_{R}(y) \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{R} \end{bmatrix}^{n} \begin{bmatrix} \mathbf{Y}_{R}(y) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{H}_{R} \end{bmatrix}^{n} = \begin{bmatrix} \mathbf{H}_{R} \end{bmatrix} \begin{bmatrix} \mathbf{H}_{R} \end{bmatrix} \dots \dots \qquad \text{Times}$$
(52)

$$[N_R]^n = [N_R][N_R].....n Times (52)$$

where [Nn] is a matrix depending on the characteristic roots of the differential equation (47) and is given in Appendix A.

$$\frac{d^{n}}{dy^{n}} Y_{m}(y) = [C]^{T} [N_{R}]^{n} [Y_{R}(y)]$$
 (53)

From equation (31) it is clear that function 8 has the identical homogeneous solution to the diflection function 'w' except integration constants.

For homogeneous boundary conditions at x = 0, and x = a

$$O(x,y) = \sum_{m=1,3}^{\infty} P_m'(y) \text{ sin } m = 1/2$$

$$F_m(y) = \left[\mathcal{F}_{R}(y) \right]$$

$$\left[Y_{R}(y) \right]$$
(55)

$$\mathbf{F}_{\mathbf{m}}(\mathbf{y}) = \left[\mathbf{y} \right]^{\mathbf{x}} \left[\mathbf{y}_{\mathbf{x}}(\mathbf{y}) \right] \tag{55}$$

There are sixteen unknowns, eight in deflection 'w' and eight in stress function '0'. But possible number of boundary conditions are eight along the edges y = 0 and y = b. Eight unknowns can be expressed in terms of other eight unknowns as given in reference (11).

Substitute the value of $\theta(x,y)$ and homogeneous boundary condition part of w(x,y) in the equation (30)

$$\operatorname{En} \left\{ -\frac{1}{R_{2}^{2}} + \frac{1}{R_{1}^{2}} \left[u_{R} \right]^{2} \right\} \left[0 \right]^{T} \left[v_{R}(y) \right] + \left[\frac{M^{4} \pi^{4}}{R^{4}} + \left[u_{R} \right]^{4} - \frac{M^{2} \pi^{2}}{R^{2}} \left[u_{R} \right]^{2} \right] \left[u_{R}(y) \right] = 0$$

$$(56)$$

To satisfy this equation, equal coefficient of y_{1m} through y_{2m} equal to zero. This gives eight equations relating the constants C_{1m} , C_{2m} , C_{3m} , C_{4m} , C_{5m} , C_{6m} , C_{7m} , C_{6m} to D_{4m} , D_{2m} D_{3m} , D_{4m} , D_{5m} , D_{6m} , D_{6m

bolution of non-homogeneous equation by operators

Equation (47-b) cen be written as

$$(D-a_1 (D-a_2) \dots (D-a_8) = E(y)$$
where a_1, a_2 are the roots of the auxielly equation
$$Put \quad u_1 = (D-a_2) (D-a_3) \dots (D-a_8) T_m(y)$$

So that equation (57) becomes

$$(D-a_1)$$
 $u_1 = K(y)$

This is a first-order linear equation in the unknown u_q , for which a particular integral is readly found. Next put

$$u_2 = (D-a_3)(D-a_4) ... (D-a_9) X_m(y)$$

and write

$$(D-a_2) u_2 = u_1$$

where u_1 is known function of y, and solve this first order equation for u_2 continuing in this way, a sequence of linear first order equations are obtained.

$$(D-a_1) u_1 = u_{1-1}$$
 (1 = 1,2, ...8) (59)

where

$$u_0 = K(y)$$
, $u_0 = Y_m(y)$, $v_1 = (D-c_{1+1})(D-c_{1+2})$
....(D-c₀) $Y_m(y)$ (1 = 1,2, ...7)

end where, for each value of i, w_{i-1} is known function of y.

After seven such steps, obtain the first order differential equation of the sequence (58), nearly

$$(3-\epsilon_8) Y_m(y) = u_7$$

a solution of which is a particular integral of (57). The sequential integration of the equation (58) is obviously a routine process. Each such equation has the integrating factor ely and the solution

$$u_1 = e^{a_1 y} \int e^{-a_1 y} u_{1-1}(y) dy \quad (i = 1, ...8)$$

The unknown constants C_{1m} through C_{2m} may be obtained by applying the suitable eight initial parameters, displacements, alopes, forces, and moments in terms of $Y_m(y)$, $Y_m^{\dagger}(y)$, $Y_m^{\dagger\dagger}(y)$, $Y_m(y)$, $Y_m^{\dagger}(y)$ and $Y_m^{\dagger\dagger}(y)$ along the edges y=0 and y=6, depending upon the boundary conditions at y=0 and y=6.

This may be expressed in matrix form as

$$[I_{pm}] = [A] [C]$$
 (59)

$$[c] = [A]^{-1} [I_{pm}]$$
 (60)

The value of I_{pm} matrix depends upon the boundary conditions. Values of I_{pm} matrix have been given for simply supported along y=0 and y=b and clamped along y=0 and y=5.

Metrix [A] is given as

Velue of Matrix [A] depends upon $[Y_p(y)]$ and type of boundary conditions along y = 0 and y = 5.

Values of elements of Matrix [A] have been given in example for simply supported along y = 0 and y = b.

For the sake of simplicity, take temperature distribution independent of x and y Eqn. (47-b) reduces to homogeneous form. So deflection function may be given by

$$w(x, y) = \sum_{m=1}^{\infty} [Y_m(y) : 4 \frac{n^2}{n^4(1-y)n^3\pi^3}]$$
 sin max/s

(a) Simply supported along the edges y = 0 and y = b:

The boundary conditions are,

$$w(x, \frac{a}{b}) = 0$$
. This gives $Y_m(0) = Y_m(b) = -\frac{4N_m a^2}{D(1-V)m^2 a^2}$

for modd only

$$Y_y(x, \frac{0}{b}) = 0$$

Ship cives $\frac{d^2}{dy^2} Y_y(0) = \frac{d^2}{dy^2} Y_y(0) = \frac{d^2}{dy^2} (1-y) D_y(0)$

for modd oaly

$$T_2(x, \frac{0}{b}) = 0$$
 this gives $F_m(\frac{0}{b}) = 0$
 $U(x, \frac{0}{b}) = 0$ This gives $\frac{d^2}{dy^2} F_m(\frac{0}{b}) = 0$.

(b) Fixed along the edges y = 0 and y = b

Boundary conditions ere

This gives
$$Y_m(0) = Y_m(b) = \frac{4 N_m a^2}{(1-v) Da^3 a^3}$$
 for modd only

$$E_{xy} = + D_1(1-y) \times \frac{m\pi}{8} [0]^{\frac{m\pi}{8}} [X_{R}(y)] \cos m\pi x/e$$
 (64)

(e) Fremple:

In order to allustrate the method, on example with $e^2/4R_4=5$ $\nu=.3$, and $R_4/R_2=0.5$ has been worked out below.

Roots of the equation (49-a) have the form as $\pm n_1$, $\pm n_2$ $\pm (n_3 \pm in_4)$

 $Y_{R}(y) \stackrel{T}{=} \{ \cosh n_{1}y/\epsilon, \ \sin n_{1}y/\epsilon, \ \cosh n_{2}y/\epsilon, \ \sinh n_{2}y/\epsilon, \ \cosh n_{3}y/\epsilon, \ \cos n_{4}y/\epsilon, \ \sinh n_{3}y/\epsilon, \ \cos n_{4}y/\epsilon, \$

cosh ngy/e sin ngy/e, sinh ngy/e sin ngy/e }

Fquating the coefficients of elements of latrix $[Y_R(y)]^T$ in equation (56) to zero, constants T_{im} to T_{im} are obtained interest of T_{im} to T_{im} as

where

$$P_{1} = -R_{4}/R_{2} m^{2}\pi^{2} + n_{3}^{2} - n_{4}^{2}$$

$$P_{2} = 2 n_{3} n_{4}$$

$$P_{3} = n^{4}\pi^{4} + n_{3}^{4} + n_{4}^{4} - 6n_{3}^{2} - m^{2}\pi^{2} (n_{3}^{2} - n_{4}^{2})$$

$$P_{4} = 4n_{3}^{3} n_{4} - 4n_{4}^{3} n_{3} - 2m^{2}\pi^{2} n_{3}n_{4}$$

Matrix [A] has different values for different types of boundary conditions.

Simply supported along y = 0 and y = b

Solution of the matrix equation (60), by putting the values of constants, of matrix $[I_{pm}]$ and matrix [A], gives the values of constants, C_{1m} through C_{8m} . Deflection and moments may be obtained by substitution of C_{1m} through C_{8m} in Eqn. (61), (62, (63) and (64). Values of elements of the matrix [A], for shallow shall with two edges simply supported and remaining two edges clamped, have been given in computer programme in Appendix C.

(d) Conclusions:

The method developed is more general then Aphertsuryen's method. It does not require to define deflection in term of any other functions such as $w = \nabla^4 \psi_0$ where ψ_0 is any arbitrary function. Stress function '0' and deflection function 'w' are replaced in term of ψ_0 function in Fa. (29) in Ambertsuryen's method.

The solution of differential quation which is in term of ψ_0 function, is obtained with the help of boundary conditions. Then stress function and deflection 'w' are obtained from ψ_0 function. But the solution of differential equation which is in term of ψ_0 function is mathematically difficult or most probably impossible for cases where $\nabla^2 R_1$ is not zero. Method developed in preceeding sections may be applied for cases where $\nabla^2 R_1$ is not zero.

Present method can be used for any type of temperature distribution in their shellow shell. In such cases, the same method holds good except for addition of particular integral term in Eq. (50).

Parameter e²/h R, and b/a ratio play an important role in magnitude and direction of deflection of thin shellow shell for fixed value of b/a ratio, dimensionless quantity for diffection of the shell decreases from upward direction to down-ward direction as values of the parameter e²/h R, increases as shown in Appendix 'E', for all edges simply supported and

two edges simply supported and remaining two edges clarged. Limitarly, for fixed value of parameter of h Ran dimensionless quantity for diffection of the shallow shell despenses from upward direction to down ward direction as values of the b/a ratio increases as shown in Appendix " for all edges simply supported and two edges simply supported and remaining two edges clauped. Values of dimensionless quantities for $U_{\mathbf{x}}$ and $V_{\mathbf{y}}$ decreases in magnitude with incressing the perspeter e2/h P. and b/a ratio. But change in magnitude due to porsmater a2/hn. and b/a ratio of dimensionless quantitles of moments M, and M, is small in comparison to the change in magnitude and direction of dimensionless quantity for deflection. Magnitude and direction of the dimensionless quantity for moment & sto change with change of parameter a2/h R4 and b/a ratio as shown in Appendix E. For all cases numerical values and graphs have been presented for deflection and moments (N_x and N_y) at x = a/2 and $E_4/R_2 = 0.5$ for vari various values of parameter a2/hR, and b/a ratio. This has been done for peremeter a2/bR, renging from 5.0 to 20.0 et intervals of 5.0, and b/a ratio wranging from 1.0 to 2.0 at interval of 0.2. The deflection and moments have been presented by the dimensionless perameters wh/dra2 . W_/Eath2. W_/Eath2 and M__/Eath2. Dimensionless Parameter m_{xy} /SoTh² has been presented along x = 0. Only magnitude of dimensionless paremeters W_/Each2, W_/Fach2 have been presented in Appendix E and direction is given in Table Appendix D. Since the variation of wh/cla2, M_/RoTh2, M_/Earli along x-exis is in simple sine form, the values of these wentities at any point can be easily calculated.

The results obtained in precedian sections, may be used in design of shellow shell's roofs where outside the building, atmospheric temperature is different from inside temperature of the building. The method developed in preceding sections may be used in finding out the stresses in end caps of boilers and sirwings where temperature gradient exists, due to temperature difference of inside and outside surfaces.

HE PERFINCES

- 1. Boley B.A. and Wainer J.H., 'Whenry of Thermal Stresses' pp. 31, John Wiley and Lone, New York, (1960).
- V.I. Banilovekeys, 'Thermal Streams in an Electic Helf Lpace Arising After a Ludden scating of its Boundary,' Frikl. Met. Meth. Vol. 14, Pay-June 1950, pp.316-318, and 'On a Dynamical Problem of Hermoelnoticity'. Prikl. Met. Mekh., Vol. 16, No. 3, May-June 1952, pp. 341-344.
- 3. Gredowczyk, M.H. 'On Thermal Atresses in Thin Shellow Shells', Non-Classical Shell Aroblems, Froc. Symposium-Warsaw Sept. 1963, pp. 139.
- 4. Lur'E. A.I.. A Study in the Theory of this Shells, 1937.
- 5. Novoshilov, V.V., 'Thin Shell Theory', F. Moordhoff L.T.D. Groningen, The Netherlands, pp. 14.
- 6. Des. Y.C. and Haveratna D.H., 'Thermal Bending of Rectangular plates', Journal of Aero Space Letendes, Vol. 29, pp. 1398 No. 11, Nov. 1962.
- 7. Mindlin R.D. and Goodman L.E., 'Beem Vibrations with time Dependent Boundary Conditions,' Journal of Applied Mechanics, Vol. 17, pp. 377-380, Dec. 1950.
- 8. Des. Y.C. and Venketaramana, J., 'Thermal Stresses in Rectangular Plates', Research Peport: 2-68, IIT Kenpur(India) June 1968.
- 9. C. Presad, 'Text Book on Algebra', Pothishele (Pvt.) Ltd., Allehabed (Indie).
- 10. Reo. M.S.V.K.. 'Verietional Approach to Beams and Plates on Electic Foundations', IIT Kanpur (India), March 1969.
- Haung, T.C., 'Effect of Rotatory Inertia and of Shear Deformation on the frequency and Horsel mode Equations uniforms became with simple and conditions.' Trans. ASME, Series E. our. of App. Mech. Vol. 28, No. 4, Dec. 1961, pp. 577-584.
- 12. MACA, TM 1425, Ambertaumyan, S.A., 'On Calculation of Shellow Shella'.

A MUNICIPAL A

CHARACTERISTIC ROCKE OF THE EXPERSENTIAL PROPERTY (47)

4.1 lbs homogeneous part of the diffescatiel escation (47-b) can be written as

$$A_{1m} \frac{d^{2}}{dy^{6}} Y_{m}(y) - A_{2m} \frac{d^{5}}{dy^{6}} + A_{3m} \frac{d^{2}}{dy^{4}} Y_{m}(y) - A_{4m} \frac{d^{2}}{dy^{2}} Y_{m}(y)$$

$$+ A_{5m} Y_{m}(y) = 0 \qquad (A-1)$$

where

A_{1m} to A_{5m} are given by eqn. (40-b)

The nature of the eight cheresteristic roots of Eq. (A-1) depends on the value of A_{1m} to A_{5m} and can be classified under the following cases.

Case 2
$$\pm n_1$$
, $\pm n_2$, $\pm n_3$, $\pm in_4$

Case 9
$$\pm$$
 (n₁ \pm in₂), \pm (n₅ \pm in₄)

where n₁, n₂, n₃ and n₄ are the components of the characteristic roots.

1.2 Reals of Colutions:

The basis of solutions $[Y_n(y)]$, (5). (51-2)) is given below as a row matrix $[Y_n(y)]^T$, absolute the matrix $[N_n]$. (Eq. (52)), for verticus cases listed in Tons. (3-2)

Case 1

$$\left[Y_{N}(y)\right]^{\frac{n}{2}} = \left\{ \cosh n_{1}y , \sinh n_{4}y , \cosh n_{2}y, \sinh n_{2}y \right\}$$

$$\cosh n_{3}y , \sinh n_{3}y , \cosh n_{4}y , \sinh n_{4}y \right\} (A-3a)$$

where d₁ = d₂ = d₃ = d₄ = 1

Cage 2

[NE] is given by Eq. (A-3b) with

$$d_1 = d_2 = d_3 = 1$$
 and $d_4 = -1$ (4-4b)

Case 3

[Ng] is given by Eq. (1-3b) with $a_1 = a_2 = 1$, and $a_3 = a_4 = -1$ (1-5b)

CEST 4

$$\left[x_{S}(y) \right]^{T} = \left\{ \begin{array}{c} \cosh n_{1}y , & \sinh n_{4}y , & \cosh n_{2}y , \\ \cosh n_{3}y , & \sinh n_{3}y , & \cosh n_{4}y , & \sinh n_{4}y \end{array} \right\}$$

[
$$a_{p}$$
] is given by: Eq. (A-3b) with $a_{1} = 1$, and $a_{2} = a_{3} = a_{4} = -1$ (A-6b)

Case 5

$$[Y_{R}(y)]^{T} = \{\cos n_{1}y \cdot \sin n_{4}y \cdot \cos n_{2}y \cdot \sin n_{4}y \}$$
 (A-7a)

[
$$n_{H}$$
] to given by Eq. (A-3b) with $d_{1} = d_{2} = d_{3} = d_{4} = -1$ (A-7b)

Case 6

whore

Cape 7

Cese S

[
$$H_R$$
] is given by Eq. (A-8b) with
$$d_1 = d_2 = -1 \qquad (A-10b)$$

Case 9
$$\begin{bmatrix} Y_R(y) \end{bmatrix}^T = \begin{cases} \cosh n_1 y & \cos n_2 y, & \sinh n_1 y & \cos n_2 y, \\ \cosh n_2 y & \sin n_2 y, & \sinh n_2 y & \sin n_2 y, \\ \cosh n_3 y & \cos n_6 y, & \sinh n_3 y & \cos n_6 y, \\ \cosh n_3 y & \sin n_6 y, & \sinh n_3 y & \sin n_6 y \end{cases}$$

$$(A-11a)$$

$$\begin{bmatrix} 0 & a_1 & 0 & -a_2 & 0 & 0 & 0 & 0 \\ a_1 & 0 & -a_2 & 0 & 0 & 0 & 0 \\ a_1 & 0 & -a_2 & 0 & 0 & 0 & 0 \\ 0 & a_2 & 0 & a_1 & 0 & 0 & 0 & 0 \\ 0 & a_2 & 0 & a_1 & 0 & 0 & 0 & 0 \\ 0 & a_2 & 0 & a_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_3 & 0 & -a_6 \\ 0 & 0 & 0 & 0 & a_3 & 0 & -a_6 & 0 \\ 0 & 0 & 0 & 0 & a_4 & 0 & a_3 & 0 \\ 0 & 0 & 0 & 0 & a_4 & 0 & a_3 & 0 \end{cases}$$

$$(A-11b)$$

APPENDIX B

FLOW CHARTS

^{*}Expressions are given in computer programme.

_APPENDIX _C

ALL EDGES SIMPLY SUPPORTEDECRIRAN SOURCE LIST

```
STRETC
                 REDECK
       DIFESTOR 5(5), RT(4), AQ(4), RO(4), XI(4), AC(4), XR(4)
       RIMET STOW
                        THETA(4), RP(4), RR(4), FR(4,2), FI(4,2), PP(4)
       SIMPUSICO IPINOT(8),A(8,8),8(8,1),INDEX(8,2),PINOT(8)
       PIMER SICH P(10):4(9):7(8):XM(5):0(4):XM(7)
0
       F=3/A
       P = 1 . C
       PRINTS
       F02057(191)
  3
  1.
       段=/)。写
       X=0.0
  2
       F = 1 \cdot 0
       011=3.1416
  72
       FACTH=PII #PM
       V=0.3
       L=12.4(1.0-V**2)*X**2
       0(1)=1.0
       C(2)=-4.0%(FACTR ) ##2
       C(3)=6.0*(FACTR )**4+U
       C(4)=-2.*(FACTR ) **2*((2.*FACTR) **4+U*R)
       C(5) = (FACTR ) **4*((FACTR ) **4+R**2*U)
       A3 = C(2)/C(1)
       A2=0(3)/0(1)
       A1=0(4)/0(1)
       AC=C(5)/C(1)
       AT=33/2.
       AC(1)=1.
       AC(-2)=-A2
       AC(-3)=A1*A3-4.*AC
       \Delta C(4) = \Delta C \times (4. \times \Delta 2 - \Delta 3 \times \times 2) - \Delta 1 \times \times 2
       CALL CUBIC (AC, RT, RTI)
       IF(RTI)20,10,20
   10 IF(RT(1)-RT(2))11,12,12
   11
      3T(1)=RT(2)
      IF (RT(1)-KT(3))13,20,20
   13 RT(1)=RT(3)
   20. C=RT(1)/2.
       IF (0**2-40)22,22,24
   22 D=C.
       CA=SGRT (AT**2+2.*C-A2)
        GC TC 25
   24 E=SCRT (0**2-A0)
       CA = -\{A1/2 - AT \neq C\}/C
   25 AC(1)=1.
       AQ(2)=AT-CA
        AQ(3)=0-D
       CALL GUAD(AQ, XR(1), XR(2), XI(1))
      BQ(1)=1.
       BQ(2)=AT+CA
      BO(3)=D+D
       CALL CUAD(BG, XR(3), XR(4), XI(3))
       XI(2) = -XI(1)
       XI(4) = -XI(3)
       PRINT77,X
       FORMAT(1X, F7.2)
```

FORTRAM SCURCE LIST

SHIPEF STATEMENT

A(3,1)=Q(1)**2 A(3,2)=0.0 A(3,3)=Q(2)**2 A(3,4)=0.0

A(3,6)=0.0A(3,7)=0.0

4(3,5)=Q(3)**2-Q(4)**2

ſ,

```
PRINTY, PM
 FORMAT(IX, F7.2)
 001 1=1,4
 (I) SXX(I) IX=(I) 44
 THETA(I)=ATAN(PP(I))
 PI=4. AATAN(1.)
 98(1)=SORT(XR(1)##2+X1(1)##2)
 RR(I)=SURT(RP(I))
 FR(1,1)≈3R(1)*COS(P1+0.5*THETA(1))
 FI(1,2)=RR(I)#SIN(2.#PI+0.5#THETA(I))
 FR(1,2)=40((1)*CGS(2.*PI+0.5*THETA(I))
 PRINTS, ((FR(I,J), I=1,6), J=1,2)
 PRIMIES, ((FI(I,J), I=1,4), J=1,2)
 FORMAT(1X,PE14.4)
 INITIALIZATION
 0(1) = Ex(1,2)
 t(2)=FR(2,2)
 0(3)=FR(4,2)
 0(4) = F1(4,2)
 6=3.1416
 P(1) = -R + (PM \times G) \times \times 2 + O(3) \times \times 2 + O(4) \times \times 2
 P(2)=2**0(3)*0(4)
 P(3)=(PP*G)**4+0(3)**4+Q(4)**4-6.*(Q(3)*Q(4))**2-(Q(3)**2-Q(4)**2)
2# ( PM#G ) ##2
 P(4)=4.*0(3)**3*0(4)-4.*0(4)**3*0(3)-2.*Q(4)*0(3)*(PM*G)**2
 PK=P(3)**2+P(4)**2
 P(5) = (P(4) * P(1) - P(3) * P(2))/PK
 P(A)={P(2)*P(4)+P(1)*P(3)}/PK
 P(7) = (P(1)*P(3)+P(2)*P(4))/PK
 P(9) = (P(2) * P(3) - P(1) * P(4)) / PK
 D(9)=(-R *(DY*G)**2+0(1)**2)/((PM*G)**4+Q(1)**4-(PM*G*Q(1))**2)
 P(10)=(-R *(PM*G)**2+t(2)**2)/((PM*G)**4+t(2)**4-(PM*G*Q(2))**2)
 \Delta(1,1)=1.0
 A(1,2)=0.0
 \Delta(1,3)=1.0
 \Delta(1,4)=0.0
 A(1.5)=1.6
 A(1,6)=0.0
 \Delta(1,7)=0.0
 A(1,8)=C.0.
 A(2,1)=CDSH(Q(1)*F)
 A(2,2)=SINH(Q(1)*F)
 A(2,31=COSH(Q(2)*F)
 A(2,4) = SINH \{C(2) *F\}
 \Delta(2.5)=COSH(Q(3)*F)*CCS(Q(4)*F)
 A(2.6) = SINH (C(3) *F) *CCS(C(4) *F)
 \Delta(2,7)=COSH(C(3)*F)*SIN(O(4)*F)
 A(2,8)=SINH(Q(3)*F)*SIN(Q(4)*F)
```

FORTRAN SCURCE LIST

SCHROT STATEMENT

```
4(3,8)=2.00(3)00(4)
   A(4,1)=C(1)**2*A(2,1)
   A(4,2)=U(1)**2*A(2,2)
   5(4,3)=4(2)**2*A(2,3)
   A(4,4)=0(2)**2*A(2,4)
   A(4,5)=A(3,5)*A(2,5)-F(2)*A(2,8)
   \Lambda(4,6)=\Lambda(3,5)*\Lambda(2,6)-P(2)*\Lambda(2,7)
   \Delta(4,7)=(A(3,5)*A(2,7)*P(2)*A(2,6))
   \Lambda(4,8) = (\Lambda(3,5) * \Lambda(2,8) + P(2) * \Lambda(2,5))
   A(5,1)=P(3)
   4(5,2)=0.0
   \Lambda(5,3)=P(10)
   115,41=0.0
   4(5,5)=2(7)
   4(5,8)=0.0
   4(5,7)=0.0
   A(5,8)=P(8)
   4(6,1)=9(9)*4(2,1)
   A(6,2)=P(9)*A(2,2)
   A(6,3)=P(10)*A(2,3)
   A(6,4)=P(10)*A(2,4)
   A(6,5)=P(7)*A(2,5)+P(5)*A(2,8)
   A(6,6)=P(7)*A(2,6)+P(5)*A(2,7)
   A(6,7)=P(8)*A(2,6)+P(6)*A(2,7)
   \Delta(6,8)=P(8)*A(2,5)+P(6)*A(2,8)
   \Delta(7,1) = C(1) **2*P(9)
   \Lambda(7,2)=6.0
   A(7,3)=C(2)**2*P(10)
   \Delta(7,4)=0.0
   A(7,5)=P(7)*A(3,5)+P(2)*P(5)
   A(7,6)=0.0
   A(7,7)=0.0
   \Delta(7,8)=P(8)*A(3,5)+P(2)*P(6)
   \Delta(8,1) = \Delta(4,1) *P(9)
   A(8,2)=A(4,2)*P(9)
   A(8,3)=A(4,3)*P(10)
   A(8,4)=A(4,4)*P(10)
   A(8,5)=P(7)*A(4,5)+P(5)*A(4,8)
   \Delta(8,6)=P(7)*A(4,6)+P(5)*A(4,7)
   \Delta(8,7)=P(8)*A(4,6)+P(6)*A(4,7)
   A(8,8)=P(8)*A(4,5)+P(6)*A(4,8)
   B(1,1)=-1.0
   B(2,1) = -1.0
   8(3,1)=-(PM#G)##2
   B(4,1) = -(PM * G) * * 2
   8(5,1)=0.0
   8(6.1)=0.0
   B(7,1)=0.0
   8(8,1)=0.0.
   N≃8
   M = 1
   CETERM=0.0
15 DO 21 J=1,N
```

IPIVOT(J)=0

30 DD 55C I=1.N

```
SCURCE STATEMENT
```

C

ſ, C

C C

C

```
SHARCH FOR PIVOT FLERRINT
C,
C.
   46 6457=6.
   45 00 105 J=1.0
   50 IF (IPIVOT(J)-1)60,105,60
   60 00 100 K=1,N
   70 IF(IPIVOT(K)-1)80,100,740
   30 [F(ARS(AMAX)-ABS(A(J,K)))85,100,100
   85
      IRCH=1
   90 ICCLUMEK
   99 AMAK=A(J,R)
  100 CONTIAUE
  105 CONTINUE
f,
C,
      INTERCHANGE ROWS TO PUT PIVOT FLEMENT ON DIDGNAL
r,
  110 IPIVET(ICOLUM)=IPIVET(ICOLUM)+1
  130 [F([RCW-[CCLUM]]]40,260,140
  140 DETERMENDETERM
  150 DO 200 L=1.N
  160 SWAP=A(IRCW, L)
  170 A(IROW, L)=A(ICOLUM, L)
  200 A(ICOLUM,L)=SWAP
  205 IF(M)260,260,210
  210 DO 250 L=1.M
  220 SWAP=B(IROW,L)
  230 B(IROW, L) = B(ICOLUM, L)
  250 B(ICCLUM, L) = SWAP
  260 IMDEX(I,1)=IROW
  270 INDEX(I,2)=ICOLUM
  310 PIVET(I)=A(ICOLUM, ICOLUM)
  320 DETERM=DETERM*PIVCT(I)
      CIVIDE PIVOT ROW BY PIVOT ELEMENT
  330 A([CCLUM, ECDLUM)=1.
  340 TO 350 L=1.N
  350 A(ICCLUM, L)=A(ICOLUM, L)/PIVOT(I)
  355 IF(M)380,380,360
  360 CC 370 L=1.M
  370 B(ICCLUM,L)=B(ICCLUM,L)/PIVOT(I)
      REDUCE NON-PIVOT ROWS
 380 DG 550 L1=1.N
 390 IF(L1-ICOLUM1400,550,400
      TA=A(L1,ICOLUM)
 420 A(L1, ICOLUM) = 0.
 430 DD 450 L=1.N
 450 A(LI,L)=A(LI,L)-A(ICOLUM,L)*TA
 455 IF(M)550,550,460
 460 DO 50C L=1, M
```

500 B(L1.L)=B(L1.L)-B(ICOLUM,L)*TA

550 CONTINUE.

ľ,

```
INTERCHARGE CHEUMNS
 600 OF 710 I=1.0
 610 L=U+1-I
 620 IF (INCEX(L,1)-INDEX(L,2))630,710,630
 630 JRDR=1405X(L.1)
    -JCCLUP≖I*(DEX(L,2)
 854B
 660 EU 705 K=1.0
 660 SHAP=A(K+JROW)
 670 A(K, JRDW) = A(K, JCOLUM)
    A(K, JOOLUM) = SWAP
 760
 705 CORTINGE
 710 CORTINGE
 740 CONTINUE
     PRIMIAZO, (6(I,1),1=1,6)
820
     FORMAI(1X, RE15,4)
     Y = 0.0
     T(1)=COSH(i)(3)*F*Y
1900
     T(2)=SINH (0(3)*F*Y)
     T(3)=CCS (0(4)*F*Y)
     T(4)=SIN(Q(4)*F*Y)
     T(5) = CDSH(O(1)*F*Y)
     T(6) = SIRH \{Q(I) * F * Y\}
     T(7) = COSH(Q(2)*F*Y)
     T(8)=51NH (0(2)#F#Y)
     %(1)=8(1,1)*T(5)
     h(2)=8(2,1)*T(6)
     W(3)=8(3,1)*T(7)
     Ы(4)=P(4,1)*T(8)
     6(5)=8(5,1)*T(1)*T(3)
     W(6)=5(6,1)*T(2)*T(3)
     W(7)=B(7,1)#T(1)#T(4)
     N(8) = P(8, 1) *T(2) *T(4)
     W(9)=N(1)+W(2)+W(3)+W(4)+W(5)+W(6)+W(7)+W(8)+1.0
     XY(1) = -W(9)
     XM(2)=Q(1)**2*(B(1,1)*T(5)+B(2,1)*T(6))
     XM(3)=Q(2)**2*(B(3,1)*T(7)*B(4,1)*T(8))
     WK = W(5) + W(6) + W(7) + W(8)
     XM(4) = (U(3) \times \times 2 - C(4) \times \times 2) \times WK
     XM(5)=2.*a(3)*a(4)*(-P(5,1)*T(2)*T(4)-B(6,1)*T(1)*T(4)+B(7,1)*T(2)
    2*[(3)+B(8,1)*[(1)*[(3))
     ZM=(XM(2)+XM(3)+XM(4)+XM(5))/(PM*G)**2
     XMM = -(XM(1) + .3 \times ZM + 1 \cdot 0) / (2.1 \times PM \times G)
     YMM=-(ZM+.3*XM(1)+1.)/(2.1*PM*G)
     XYP(1)=Q(1)*(B(1,1)*T(6)+B(2,1)*T(5))
     XYM(2)=Q(2)*(B(3,1)*T(8)+B(4,1)*T(7))
     XYM(3)=Q(3)*(B(5,1)*T(2)*T(3)+B(6,1)*T(1)*T(1)*T(3))
     XYM(4)=([3]*( B(7,1)*T(2)*T(4)+B(8,1)*T(1)*T(4))
     XYM(5)=C(4)*(-B(5,1)*T(1)*T(4)-B(6,1)*T(2)*T(4))
     XYM(5)=C(4)*(-B(5,1)*T(1)*T(4)-B(6,1)*T(2)*T(4))
     XYM(6)=Q(4)*(B(7,1)*T(1)*T(3)+B(8,1)*T(2)*T(3))
     XYM(7)=XYM(1)+XYM(2)+XYM(3)+XYM(4)+XYM(5)+XYM(6)
     XKM=-XYM(7)/(3.0*(PM+G)**2)
```

FORTRAN SHURCE LIST

```
SOURCE STATEMENT

PRINTPOCO,Y, WW, XMM, YMM, XMM

3 2000 FORMAT(1X, 5E15.4)

Y=Y+.1

IF(Y-1.0)1900,1900,2100

5 2100 F=F+.2

IF(F-2.)78.78,2200

2200 X=X+5.0

IF(X-50.0 )2,2,6

PM=PM+2.0

IF(PM-7.)4.6,9

SICP
END
```

IBMAP ASSEMBLY

ESSAGES FOR ABOVE ASSEMBLY

IBMAP ASSEMBLY CUBIC

```
SCURCE STATEMENT
N
 STRETC CUPIC
                   MODECK
0
         SUBROLTIME CURIC(A, XR, XI)
1
        DIMENSION A(4), XR(3), AQ(3)
2
3
          IPATH=2
        FX=1./3.
   1050 FORMAT(5F14.2)
         [8(4(4))1006,1004,1006
6
7
   1004 \times 2(1) = 0.
        GO TC 1034
   1006 A2=A(1)**2
1
        Q=(27.*A2*A(4)-9.*A(1)*A(2)*A(3)+2.*A(2)**3)/(54.*A2*A(1))
         IF(0)1010,1008,1014
3
   1009 Z=0.
4
        GO TC 1632
ς
   1010 C=-0
¢;
7
         IPATH=1
   1014 P= (3. *A(1) *A(3)-A(2) **2)/(9. *A2)
ŋ
        ARG=P**3+0**2
1
2
         IF (ARG) 1016, 1018, 1020
3
   1016 Z=-2.*SORT(-P)*COS(ATAN(SQRT(-ARG)/Q)/3.)
        GO TC 1028
5
   1018 Z=-2.*Q**EX
        GG TC 1028
7
   1020 SARG=SORT(ARG)
0
         IF(P)1022,1024,1026
   1022 Z=-(C+SARG)**EX-(C+SARG)**EX
1
        GC TC 1028
?
3
   1024 Z=-(2.*Q) **FX
        GO TO 1028
4
   1026 Z=(SARG-O)**EX-(SARG+G)**EX
5
   1028 GC TC(1030,1032), IPATH
6
7
   1030
        1=-1
()
   1032
        XK(1) = (3.*A(1)*Z-A(2))/(3.*A(1))
1
        \Delta Q(1) = \Lambda(1)
2
         A((2)=A(2)+XR(1)+A(1)
3
        AO(3) = A(3) + XR(1) * AQ(2)
        CALL CUAD(AQ, XR(2), XR(3), XI)
4
S
        RETURN
```

END

ESSAGES FOR ABOVE ASSEMBLY

6

```
SOURCE STATEMENT

$18FTC QUAD MODECK
```

IBFTC OUAD NODECK

SUBROUTINE QUAD(A,XR1,XR2,K1)

DIMENSION A(3)

26 FORMAT(5F14.3)

X1=-A(2)/(2.*A(1))

DISC=X1**2-A(3)/A(1)

IF(DISC)27,28,28

27 X2=SQRT(-DISC)

XR1=X1

XR2=X1

XI=X2

GO TO 29

28 X2=SQRT(DISC)

XR1=X1+X2

XR2=X1-X2

IBMAP ASSEMBLY GUAD

SSAGES FOR ABOVE ASSEMBLY

XI=0. 29 RETURN END

IBLDR -- JOB 000000

IS BEING ENTERED INTO STORAGE.

FORFAXI SCURCE LIST

SOURCE STATEMENT

14

```
O WIBELC
                   MODECK
        01MC((810) C(5), 4T(4), AG(4), AG(4), XI(4), AG(4), XF(4)
Ĺ
         DIMPRSION [HOTA(4), RP(4), PR(A), F-(4,2), FI(4,1), PP(4)
         DIMENSION [PIVOT(8],A(3,2],E(6,1],IMOEX(5,2),PIVOT(8)
5
         DIMEDSION P(10), W(9), I(3), XK(5), O(4), XYM(7)
         F=0/A
  C
         皇民主義を与
         PRINTS
         FORFAT(1H1)
7
         魚無り。5
0
         7=1) = 0
1
         F=1.0
    2
2
         011=3:1616
3
         FACTR=PII*PM
         V=0 a 3
5
         U=12=*(1=0-V**2)*X**2
6
         C(1)=1a()
7
         C(2)=-4.0*(FACTR )**2
ņ
         C(8)=6,0*(FACTR )**4+1
1
         C(4)=-2.*(FACTR ) **2*((2.*FACTR) **4+U*R)
2
         C(5)=(FACTR ) ** 4* ((FACTR ) ** 4+R** 2*U)
3
         A3=C(2)/C(1)
4
5
         A2=C(2)/C(1)
         \Delta 1 = C(4)/C(1)
6
         A0=C(5)/C(1)
7
         AT=A3/2.
9 1
         AC(1)=1.
1
         AC( 2)=-A2
2
         AC( 3)=A1+A3-4.*AD
3
         AC(4)=AO*(4.*A2-A3**2)-A1**2
4
         CALL CUBIC (AC, RT, RTI)
5.
         1F(RTI)20,10,20
5.
    10 IF(RT(1)-RT(2))11,12,12
      11 RT(1)=RT(2)
 ).
      12 IF (RT (1)-RT (3)) 13,20,20
     13 RT(1)=RT(3)
20 O=RT(1)/2
      1F(0**2-AU)22,22,24
22 D=0.
   CA=SCRT (AT++2+2.+6-A2)
    GG TO 25
24 D=SORT (0**2-A0)
         C4=-(@1/2.-A[#G]/D
      Se vo(1)=1"
         AQ(2)=AT-CA
   CALL QUAD(AQ, XR(1)

EQ(1)=1.

EQ(2)=AT+CA

EQ(3)=1.40

CALC QUAD(EQ XT+2)
         CALL QUAD(AQ, XR(1), XR(2), X1(1))
 CALL CUAD(EG. XR(3), XR(4), XI(3))

XI(2)=-XI(I)

XI(4)=-XI(I)

PRINTTY, X

FURNATULX, F1.21
```

FORTAGE SELECT

```
SOUNCE STATEMENT
          PRIATY, PE
 7
         FORMAT(1X,F7.2)
         001 J=1,4
         29(I)=XI(I)/XR(I)
         THEFA(I)=AFAN(PP(I))
 2
3
         PI=4, *ATAN(1,)
         RP(I)=SORT(XX(I)**2+XI(I)**2)
         RR(I)=SORT(RP(I))
         FR(I,1)=RR(I)*COS(PI+0.5*THETA(I))
         FI(I, ?)=RA(I)*SIN(PI+G.5*THETA(I))
         FI(I, 2)=RR(I)*SIR(2,*PI+0,5*TH5TA(I))
         FR(I,2)=RR(I)*COS(2,*PI+0,5*THETA(I))
 1
         PRIMIE: ((FR(I,J), I=1,4), J=1,2)
 Ą
         PKINTS, ((FI(I,J), I=1,4), J=1,2)
         FURMAT(1X,8814,4)
5
  C
         INITIALIZATION
         Q(1) = FR(1,2)
7
         Q(2)=FR(2,2)
Û
         Q(3) = FR(4,2)
1
         Q(4) = FI(4,2)...
2
         G=3,1416
3
         P(1)=-=5*(PM*G)**2+ Q(3)**2- Q(4)**2
         P(2) = 2 * P(3) * Q(4)
         P(3)=(PM*G)**4+Q(3)**4+Q(4)**4-6**(Q(3)*Q(4))**2-(Q(3)**2-Q(4)**2)
       2* (PM&G) ##2
         P(4)=4==Q(3)*+3+Q(4)-4=+Q(4)=+3+Q(3)-2=+Q(4)+Q(3)+(PM+G)++2
7.
         PK=P(3)**2+P(4)**2
         P(5) = (P(4)*P(1)-P(3)*P(2))/PK
O
1
        P(6) = (P(2)*P(4)+P(1)*P(3))/PK
2
        P(7)=(P(1)*P(3)+P(2)*P(4))/PK
3
        P(8) = (P(2) * P(3) - P(1) * P(4)) / PK
4
        P(9)=(-.5*(PM*G)**2+Q(1)**2)/((PM*G)**4+Q(1)**4-(PM*G*Q(1))**2)
5
        P(10)=(-.5*(PM*G)**2+Q(2)**2)/((PM*G)**4+Q(2)**4-(PM*G*Q(2))**2)
5
        A(1,1)=1.0
7
        A(1,2)=0.0
0
        A(1,3)=1.0
1
        A(1,4)=0.0
2
        A(1,5)=1.0
3
        A(1,6)=0.0
        A(1,7)=0.0
        4(1,8)=C.O
5
        A(2,1)=COSH(Q(1)*F)
7
        A(2,2)=SINH(Q(1)*F)
)
        A(2,3)=COSH(Q(2)*F)
ļ
        A(2;4)=5FBH (Q(2)+F)
        A(2,5)=COSH(Q(3)*F)*CCS(Q(4)*F)
3
        A(2*6) = SIMH((Q(3)*F)*COS(Q(4)*F)
'n
        A(2,7)=COSH(@(3) #F]#SIN(@(4)#F)
        A(Z-8)=SINH (@(3+*F)*SIN(@(4)*F)
٤,
        4(3,1)=0.0
        A(3,2)=Q(1)
        A(3,2)=0.0
        A13,47=0(2)
        A13,5)=0.0
        A13,6)=Q(3)
```

?

FURTRALL SOURCE LIST

```
SOUT OF STATEMENT
        A(5,7)=C(4)
        A ( ) ; ? ) = ( , , !)
        A(4,3)=0(1)*A(2,2)
        A(4,2)=U(2)*A(2,1)
        4(4,8)=0(2)*4(2,4)
        A(A,A)=O(2)*A(2,3)
        Λ(4,5)=0(3)*A(2,6)-Q(4)*A(2,7)
2
        4(4,6)=0(5)*4(2,5)-0(4)*4(2,4)
        ^(4,7)=C(3)*A(2,8)+C(4)*A(2,5)
G
        \Lambda(4,8)=0(3)*\Lambda(2,7)+0(4)*\Lambda(2,6)
        A(5,1)=P(9)
        A(5,2)=0.0
        A(S,3)=P(10)
1
        A(5,4)=0.0
        A(S,5)=P(7)
        4(3,5)=0.0
3
        A(5,7)=0,0
4
5
        A(5,8)=P(8)
        A(\epsilon, 1) = P(9) * A(2, 1)
6
        A(6,2)=P(9)*A(2,2)
7
        A(6,3)=P(10)*A(2,3)
()
        A(6,4)=P(10)*A(2,4)
1
        A(6,5)=P(7)*A(2,5)+P(5)*A(2,8)
2
        A(6,6)=P(7)*A(2,6)+P(5)*A(2,7)
3
        A(6,7)=P(8)*A(2,6)+P(6)*A(2,7)
Ĺ,
5
        A(6,8)=P(8)*A(2,5)+P(6)*A(2,8)
        P(11)=0(3)**2-Q(4)**2
6
7
        P(12) = Q(1) * *2 * A(2,1)
0
        P(13)=Q(1)**2*A(2,2)
1
        P(14)=0(2)**2*A(2,3)
2
        P(15) = Q(2) * *2 * A(2,4)
        P(16)=P(11)*A(2,5)-P(2)*A(2,8)
3
4
        P(17)=P(11)*A(2,6)-P(2)*A(2,7)
5
        P(18)=P(11)*A(2,7)+P(2)*A(2,6)
   P(19)=P(11) *A(2,-...
A(7,1)=G(1)**2*P(9)
A(7,2)=0.6
     P(18)=P(11)*A(2,8)+P(2)*A(2,5)
6
7
0
     A(7,3)=0(2)**2*P(10)
1
2
     A(7,4)=0.0
3 A(7,5)=P(7)*P(11) +P(2)*P(5)
4 A(7,6)=0.0
5 A(7,7)=0.0
        \Delta(7,2)=P(8)*P(12)+P(2)*P(6)
6
        A(8,1)=P(12) *P(9)
7
        A(8,2)=P(13) @P(9)
        A(8,3)=P(14) *P(19)
       · A(8,4)=P(15) *P(10) ...
2
     - A(8, 5)=P(7)*P(16) +P(5)*P(19)
        A(8,6)=P(7)*P(17) +P(5)*P(18)
6
       A(3,71=P(8)*P(17) +P(6)*P(16)
       A(8,8)=0(8)*P(16) +P(6)*P(19)
   9(1,1)=-1.0

A(2,1)=-1.0

B(3,1)=0.0

A(4,1)=0.0
Ç.
1
```

FORTRAM SUMBOL LIST

```
SCHOOL STATEMENT
        日(コ・1)=日。い
        1: (6, 1)=5,0
        0(7,1)=100
        3 ( F , 1 ) = 0 a ()
        #=1
        bettar#=0.co
7
       DF 23 J=1,8
13
        IPIVET(J)=0
15
     30 DU 556 I=1,0
  C
        SCAPOR FOR PIVOT ELEMENT
1
     4C などんメニC。
7
     45 BG 1Co J=1,8
     57
Ö
       IF(IPIVOT(J)-1)60,105,60
1
     60 DO 100 K=1,N
2
     70 IF(IPIVOT(K)-1)80,100,740
3
     88 IF (ABS(AMAX)-AHS(A(J,K)))85,100,100
4
     U=WONI 38
)5
    .90 ICULUM=K-
6
     95 AMAX=A(J,K)
7
    100 CONTINUE
1
    105 CONTINUE
  C
        INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIOGNAL
  C
    110 IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
3
    130 IF(IRCW-ICCLUM)140,260,140
4
. 5
    140 DETERM -- DETERM
6
    150 DO 200 L=1,N
.7.
   160 SWAP=A(IROW, L)
    170 A(IRDW,L)=A(ICQLUM,L)
1.
    200 A(ICCLUM, L)=SWAP
   205 IF(M)260,260,210
3
    210 DO 250 L=1,M
220 SWAP=B(IROW,L)
5
   230 B(IROW, L) = B(ICOLUM, L)
6
   250 B(ICCLUM.L)=SWAP
7
   260 INDEX (1,1)=1909
12 :
   270 INDEX(1,2) + ICOLUM
2
   310 PIVOT(1)=A(1)COLUM, (GOLUM)
3
4 320 DETERMEDETERMEPTVOTTE
        DIVIDE PIVOT SOW BY PIVOT ELERENT
  C
    33C A(ICCLUM, ICCLUM)=1.
Ó
    340 DG 350 L=1.9
    350 ACTOCLUM, LISACICOLUM, E)/PIVCT(I)
η.
 355 JF(#)340,380,360
Ĭ,
7
    270 BCICOLUM, LI#BCICOLUM, LIPPIVOT (T)
C PEDUCE NON-PIVOT PONS
                               Č.
```

FORTPAN SAUPSE LIST

```
SULF OF STATEMENT
    330 UC 550 Ll=1.46
35
   200 IF(LI-ICOLDE)400,550,400
1
7
   ASO TA=A(LL, ICCLUM)
77
    420 A(LI, ICCLUM)=0a
1
    431 Dr. 457 L=1,82
    ASU a(E], L) = A(L1, L) - A(ICOLUM, L) * FA
8
4
    435 IF (M) 550,550,460
    460 DO SOC LalyM
1
iŧ.
    SGS H(Li,L)=B(Ll,L)-B(ICCLUM,L)*TA
: 6
    ラッド CONTINUE
        INTERCHANGE COLUMNS
    600 BU 710 I=1,N
3
    616 L=N+1-I
, L
5
    620 IF(INCEX(L,1)-INDEX(L,2))630,710,630
    680 JROW=INDEX(L,))
:6
    640 JCCLUM=INDEX(L,2)
7
0
    650 DO 705 K=1,N
1
    660 SWAP=A(K, JROW)
12
    670 \text{ A(K,JROW)} = \text{A(K,JCOLUM)}
    700 A(K, JCGLUM) = SWAP
13
14
    705 CONTINUE
6
    71G CONTINUE
Ç
    740 CONTINUE
1
        PRINT820, (8(I,1), I=1,8)
6
   820
        FORMAT(1X,8E15,4)
7
        Y=0 ... 0
   1900 T(1)=COSH(Q(3)*F*Y)
O.
1
        T(2) = SINH \{Q(3) * F * Y\}
. 2
        T(3) = COS (Q(4) * F * Y)
3
        T(4)=SIN(Q(4)*F*Y)
4
        T(5) = COSH(Q(1)*F*Y)
5
        T(6) = SINH (Q(1) *F*Y)
        T(7) = COSH(Q(2)*F*Y)
     T(7)=COSH(4(2)*F*Y)
T(8)=SINH (G(2)*F*Y)
.6
.7
   W(1)=E(1,1)*T(5)
W(2)=B(2,1)*T(6)
W(3)=E(3,1)*T(7)
W(4)=E(4,1)*T(8)
W(5)=E(5,1)*T(1)*T(3)
W(6)=E(6,1)*T(2)*T(3)
C
1
2
3
7
6
        W(7) = E(7, 2) + T(2) + T(4)
7
        N(2) = N(1) + N(2) + N(3) + N(4) + N(5) + N(6) + N(7) + N(8) + 1.0
Ç.
        福州中华。2年版(9)人(皇阿泰安) 卷卷等
1
        XM[]]=-M(3)
2
        XM(2)=0(1)*42*(6(1)1)*T(5)+6(2,1)*T(6))
3
     XM(3)=Q(2)**2*(8(3,2)*T(7)+6(4,1)*T(8))
4
WK=W(5)+W(6)+W(7)+W(8)
1 XMM=-(XM(1)+.3*Z#+1.01/12.1*PM*G)
```

FRATRATE SCHREET LIST

```
YHH=--(XM+,3*XM(1)+1,)/(2,1*PM*6)
íş Z
          XYX(!)=C(1)*(!(1,1)*T(6)+!(2,1)*T(5))
43
          XYM(2)=6(2)*(8(3,1)*T(6)+8(4,:)*T(7))
44
          YYU(R)=Q(B)*(R(G,1)*T(2)*T(B)+R(S,1)*T(1)*T(E))
45
44
          ZYS(A)=G(5)*(-B(7,1)*T(2)*T(4)+B(5,1)*T(1)*T(4))
          YYM(%)=Q(4)*(~0(5,1)*f(1)*f(4)~k(1,1)*f(2)*f(4))
47
          \chi_{YM}(S) = \mathbb{Q}(4) \times (-n(5,1) \times \mathbb{T}(1) \times \mathbb{T}(4) + n(6,1) \times \mathbb{T}(2) \times \mathbb{T}(4))
50
          XYM(6)=0(4)*(8(7,1)*T(1)*T(2)*B(8,1)*7(2)*T(6))
4
          XYX(7)=XYX(1)+XYX(2)+XYX(3)+XYX(4)+XYX(5)+XYX(6)
Eż
          XKM=-XYV(7)/(%,0*(PM*6)**?)
53
          PRINT2000, Y, WW, XMM, YMF, XKM
54
ē s
    2000 FORMAT(1X, TE15.4)
5 %
          Y = Y + n
          IF(Y-110)1900,1900,2100
57
    2100 F=F+a2
60
          IF(F-2,)78,78,2200
61.
    2200 X=X+5.0
62
          IF(X-50.0 )2,2,5
€3
          PM=PM+2.0
64
          IF (PM-7, )4,4,9
65
          SIGP
66
```

IBMAP ASSEMBLY

MESSAGES FOR ABOVE ASSEMBLY

END

67

SHIP OF STATEMENT

FORTERN SCHACE LIST

```
SOUTH STATEMENT
  ,IBAIC CUBIC
                 HODECK
         SUMPRETI'ME CUEIC (A, XR, XI)
         DISERCION A(A), XP(B), AO(E)
ď.
         I ? A T F = 2
         EX=1./3.
5
   1050 FORMAT(EF14,2)
         TE(A(4))1000,1004,1004
7
   1004 XB(1)=0c
0
        GD 41. 1034
1
   1006 AZ=A(1)**2
         C=(27,*42*1(4)-9,*4(1)*1(2)*1(2)+2,*5(2)*25)/(54,*1(2))
12
3
         IF(U)1010,1000,1014
   1008 Z=0.
        GC TC 1032 -
ĹЪ
   1010 0=+0
£
7
        IPATH=1
25
   1014 P=(Ba*A(1)*A(3)-A(2)**2)/(9,*A2)
3.
        68G=P**3+Q**2
22
        IF(ARG)1016,1018,1020
13
   1016 Z=-2.*SQRT(-P)*COS(ATAN(SQRT(-ARG)/Q)/3.)
24
        GG TO 1028
15
   1018 Z=-2.*Q**EX
26
        GG TD 1028
7
   1020 SARG=SQRT(ARG)
0.5
        IF(P)1022,1024,1026
   1022 Z=-(G+SARG)**EX-(G-SARG)**EX
1
        GO TO 1025
32
   1024 Z=-(2.*Q)**EX
13
        GO TO 1028
} Z<sub>1</sub>
15
   1026 Z=(SARG-Q)**EX-(SARG+&)**EX
36
   1028 GD: TC(1030,1032), IPATH
37
   1030 Z = -Z
   1032 XR(1) = (3.*A(1)*Z-A(2))/(3.*A(1))
0
1
   1034 AQ(1)=A(1)
        AO(2) = A(2) + XR(1) * A(1)
12
        AQ(3)=A(3)+XR(1)*AQ(2)
3
4
        CALL GUAD (AG, XR(2), XR(3), XI)
5
        RETURN.
        END
```

IBMAP ASSEMBLY CUBIC

IESSAGES FOR ABOVE ASSEMBLY

FORTHALL SERVICE LIST

```
of SIBSIC SULED RODECK
         SURFECTION OURD(A, XRI, XRE, XRE, XI)
         CIMPASION A(R)
      Se FLAMAT(5F14.3)
         X1=-0(2)/(2,04(1))
         013C=X1**2-A(3)/A(1)
-
        IF(0150)27,28,28
7
    27 X2=SQUI(-0150)
10
         Zr l=xl
         X \cap S = X \mathbf{1}
11
12
         XI = XI
        60 TO 29
15
    22 X2=SGRT(D1SC)
7 Lg
15
        X : 1 = X : 1 + X : 2
1.5
         XR2=X1-X2
        /I=0.
17
     29 RETURA
20
        END
21
```

IBMAP ASSEMBLY QUAD

MESSAGES FOR ABOVE ASSEMBLY

50 SHUPOR STATOMORT

18LDR -- JOE 000000

M IS BEING ENTERED INTO STORAGE.

APPENDIX 'U'

Tabulation of Coffection and Moments for different Values of Feremeter a Value and by a ratio

o 1/hR1 = 0.5. by a =1.0		1/0 00.5	ale o.6	
Y/b	103 WAYLTOP	10 MM STAPS	1034/Etth2	10 ³ May/elthe
0.0	OD, 80	-10.61	0.0	- 47.61
0. 1	27.33	-18.97	- 20.35	-55.39
0.2	51, 16	-00.40	-23.34	-39.04
0.3	65.91	-23.65	-24.07	-21.01
0.4	72.95	-23,11	-21,65	- 8,33
0.5	74.92	-22.98	-20.60	0.00
0.6	72.96	-23.11	-21.65	8.33
0.7	66.91	-23.25	-24.07	21.01
0.8	51.16	-2R, 42	-25,34	39.04
0.9	27.33	-16.97	-20.36	65, 39
1.0	0.00	-10.61	0.00	47.61
a2/hR1=0.5.0	We=1.2	×400.5	nyn24 0.5	
Y/b	103MATTO2	10.JM/87148	TOSMA/ETTPS	103 MAY ELTH
0.0	0.00	-10.61	Ø00.00	-30.48
0.1	27.23	-19.62	-22,24	-43.63
0.2	46,94	-21.93	-24.88	-21.71
0.3	56, 16	-21.37	-21,02	-04.33
0.4	54.44	-20,20	-17.04	1.68
0.8	63,75	-19.68	-15.40	0.00
0.6	54.44	-20.20	-17.40	- 1.62
0.7	84.16	-21.37	-21.02	4.55
0.8	46.94	- 21.93	-94.65	21.71
0.9	27. 23	-19.53	-02.24	43.63
1.0	00,00	-10.61	00,00	38.48

a2/hit1=0 8.	o by a=104	x/1=0.5	R1/R2=0.8	
Y/b	103 M/TI95	10 mm/ STIPS	10 say/elth2	102MM/ETTh2
0.0	0.0	-10.61	0.00	-34.73
0.1	28.63	-20.15	-23.96	-36.06
0.2	44.02	-21.55	-24.41	- 8.35
0.3	43.06	-19.83	-18.91	6. 56
0.4	36.34	-17.89	-14.32	8.80
		-17.13	-12.67	- 6,61
0.6	33.00			
0.6	36.34	-17.93	-14.32	- 8.26
0.7	43.07	-19.63	-10.91	8.35
0.8	44.03	-21.55	-24.41	36.07
0.9	28.64	-20.15	-83.96	34.78
1.0	0.00	-10.61	0.00	34 .75
48/bR1=8.0	b/a=1.6	x/e=0.5	R1/R2=0.5	
X/p	103ml/lTa2	10 Blay Elith	10° by/Elth?	10 EMM/ETThe
ő.ő	0.0	- 10.61	0.00	-33.33
Ö, I	30.76	-20.70	±25.19	-30.34
0.2		A 10	-23.67	# 1.88
	61.54	-21.10		16.89
0.3	32.76	-18.47	-17.23	
0.4	20.12	-16.13	-12.89	12.00
0.8	14.72	-15,27	-11.48	0.00
0.6	20.12	-15.13	-12.09	-12.88
0.7	32.76	-18.47	-17.23	-16.89
0.8	41.54	-21,10	-23,57	- 1.00
0.9	30.76	-20.70	-25.19	30.36
1,0	0.00	-10.61	0.00	33.40
e2/hR1=6.0	b/a=1.8	x/e=0.5	R1/R2=0.5	
Y/b	103 mb/LTe2	10°Mm/Elth2		10 Jan / Ettpe
0.0	0.00	-10.61	0.00	-32.48
0.1	32.73	-21.07	-25.90	-25.06
0.2	36.37	- 20.46	-22,32	9.72
0.3	22.70	-17.82	-15.80	21.10
		-14.80	-19.28	18. 14
0. 4	6.13	-13.97	-11.33	0.00
	0.69		-12.28	-16.14
0.6	6.13	-14.80		
0.7	22.70	-17.23	-15.80	-91.11
0.8	38, 39	-20.46	-22.32	- 9.72
0.9	32.74	-81.08	~25.91	25.06
4.0	0.00	-10,62	0.00	32,68

68/hA1=5.0	b/e=3.0	x/a=0.5	R1/R5=0.5	
Y/b	103m/1702	10 MX/ELIPS		108 may/Elth ²
0.0	0.06	-10.61	0.00	- 31.56
0.1	34.08		26.18	-19.71
0.2	33.97		-20.62	15.71
0.3	12.84	at 46 at 141	-14.60	£2.69
	- 5.76		-12.15	13.30
	-12.51		-11.70	0.00
	- 8.77		.12.15	-13.36
0.7	12.62		-14.60	-22,68
0.8	33.95		-20.62	-15.67
0.9	34.08		26.20	19.94
1.0	0.00	-10.64	00.00	32.60
		4 m m	Ava	
a /hR1=10.0			R1/R2=0.5	
Y/b	103個人工48	10 MAYETTHE	105/M/812P5	10gray/Ellys
0.0	0.00	-10.61	0.00	-20.96
0.1	14.37	417.36	-16.54	-30.38
0.2	26.80		-62.13	- 18.53
0.3	32.89		-20.08	- 6.81
0.4	34.62		-17.36	- 1.16
0.5	34.80		16.24	0.00
0.6	34.62		17.36	1.15
0.7	32.69		-90.08	6.61
0.8	26,80		22.13	10 .55
0.9	14.37		10.54	30.38
1.0	0.00	-10.61	0.00	20,96

a2/hR1=10.0	W#1.8	m/a=0.8	R1/R2-0.8	
Y/b	103kM/TTe2	10 SHAN ETTA	5 10-ph/etime	10 yan/ Stup 5
0.0	0.00	-10.61	0.00	- 34.05
0.1	13.10		-20.30	-21.34
0.2	21.04	-18.67	-21.77	- 4.84
0.3	20.12	-17.59 -	-17.75	6.13
0.4	15.91	-16.13 .	-14.04	6.60
0.5	13.83	-15.55	.12.66	0.00
0.6	15.91	-16.13	- 14. 04	- 6.40
0.7	20.12		-17.75	- 6.13
0.8	21.04		-21.77	6.84
0.9	13.10		20.20	21.34
1.0	0,00	-10.61	0.00	14.05
→ ▼ / □	and Marian and			-

a2/hR1=10	b/a=1.4	x/e=0.5	#1/Rg=0.5	
Y/b	103 MM/1 To 2	10°Mx/Elth	10 ² /y/ £11b ²	10 ³ May/ElTh ²
0.0	0.00	-10.61	0.00	-10.72
0.1	12.66	-18.15	-21.66	-15.10
0.2	15.85	-18, 25	-21.13	5. 47
0.3	7.83	-16.06	-16.02	15.02
0. 4	- 1.85	-14.14	-12.27	11.08
0.6	- 5.91	-13.43	-11.02	0.00
0.6	- 1.86	-14.14	-12,72	-11,08
0.7	7.83	-16.06	-16.02	-15.02
0.8	15.85	- 18. 28	-21, 13	- 5. 67
0.9	18.66	-18.18	-21,66	15.10
1.0	0.00	-10.61	0.00	10.72
ØhR ₁ ≈10	b/s=1.6	×/a=0.5	R ₁ /R ₂ =0.5	
•	10 ³ wh/17e ²		TOSMA/ETIPE	3
Y/b	TO MATE.	TO, MM C+18.	TO-MALETIA	103mm/SLTh2
0.0	0.00	-10.61	0.00	- 8.75
0.1	12.37	-18.38	-2r.50	- 9.94
0.2	10.46	-17.89	-20.07	13. 17
0.3	- 3.94	-14.67	-14.61	20.09
0.4	-17.72	-12,60	~11.49	12.98
0.5	-23.08	-11.90	-10.60	0.00
0.6	-17.72	-12,60	-11.49	-12.98
0.7	- 3.94	-14.67	-14.61	-20.09
0.8	10.46	-17.49	-20.07	-13.07
0.9	12, 37	-18.38	-22,50	9.94
1.0	0.00	-10.61	0.00	8.75
a2/hn1=10	Wa=1.8	x/e=0.5	R1/F2=0.5	
Y/b	103mb/LTac	10 an etta 8		103Mey/Elth2
0.0	0.00	-10.61	0.00	- 7.17
0.1	11.76	- 10.44	-22.89	- 5.07
0, 2	4.33	-16.69	-18.74	18.65
0.3	-15.41	- 13, 36	-13.46	22.16
0.4	-31.65	-11.39	-11.25	19.82
0, 5	-37.36	-10.78	-10.82	0,00
0.6	-31.55	-11.39	-11.00	~12.62
0.7	-15.41	-13.38	-13.46	-22.16
0.8	4.33	-18.59	-10.74	-18.65
0.9	11.75	-18.45	- 22,89	5.09
1.0	0.00	-10.61	0.00	7. 24

of High	b/a=2.0	x/e=0.5	R1/R2=0.5	
Y/b	103:WYTE	1004Aetans	10°My/Elth2	10 ³ Hay/Slth ²
0.0	0.00	-10.61	0.00	~ 5.73
0.1	10.56	-18.37	-22.98	- 0.32
0, 2	-2 .62	-15.59	-17.33	22.49
0.3	-26.56	-12,19	- 12,56	22, 21
0.4	-43.86	-10.42	-11.31	11.46
0.8	-49.22	- 9.93	-11.26	0.00
0.5	-83.56	-10.42	-11.31	-11.48
0.7	-26.56	-12.19	-12.56	-22,21
0.8	- 2.63	-15.69	-17.33	- 24, 29
	10.67	-18.37	-2c.95	0.30
0.9	0.00	-10.61	0.00	5,85
1.0	0.10	TO O T	0.00	0100
es/hele12	bya=1.c	W0=0.5	E2/89=0.5	
Y/b	103m/17a2	10gmx/stubs	10 MAY ELTE	10°may/2 lib2
0.0	0.00	-10.51	0.00	2, 20
O. E	3.11	mid, iy	- 16.75	- 5.61
0. 8	5.94	-16.93	-19.14	- 1.39
0.3	4.01		- 15,03	4.61
0.8	2.31		-13.39	4.63
Ö. E	1.10		-12.32	0.00
0.6	2.31		-13,89	- 4.43
0.7	4.91	-15.99	-16.63	- 4.61
c.	8.80	-16.03	-19.24	1.59
0.9	3.11		-15.76	8.61
	0.00	-10.61	0.00	- 2.49
1.0	U A L W	Service W	V 4 4 7 7	
42/hR1=15	b/6=1.5	Marc. 5	ny/repo.e	
X/b	103#4/17a2	26112\K#201	10 JAN/EYIPS	103mm/21Th2
0.0	0.00	-20.61	0.00	7.60
0,1	0.56		-18.26	- 1.84
0, 2	- 1.49	** * * * * * * * * * * * * * * * * * * *	-15.74	A. 92
0.3	- 8.75		-14.89	11.90
0.4	-16.00		-11.79	9.50
0.6	-19.04		-10.71	0.00
0,6	-16.08	-12.09	-11.79	- 4.50
0.7	- 8.90	-14.35	-14.09	-11.90
0.8	- 1.69		-19.74	- 8.92
0.9	0.86		-18,26	1.85
1.0	0.00	-10.61	0.00	- 7.80
44.50	* # * *	चित्र हा चित्र		

o / hH	15 b/a=1.4	w e=0.5	11/11g=0.5	
Y/b	103 hp/l las	10 can etup	10 My/ELTh	103May/ELINE
0.0	0.00	-10.61		
0.1	- 1.66	-16.53	0,00	9.3 646
0.2	- 8.74	-18.26	-19.24	11.05
0.3	-21.63	-10,88	-17.91	3, 29
0.4	-33.04	-11.15	-13.5d	16.36
0.5	-37,28	-10, B7	- 10.86	19.18
0.6	- 53.04	-11.15	-10.08	11.86 0.00
0.7	-81.63	-19.60	-10.06	-11.06
0.8	- 8.75	~15.26	-13.64	-19.18
0.9	- 1.66	-16.24	-17.91	-16.36
1.0	0.60	-10.61	-19,24	- 3.09
			0.00	-11.66
of ham	16 b/ == 1.6	x/e=0.5	R1/R2=0.5	
Y/b	102MP/11#5	102mm/stup	10. JANUAR LAND	103mxy/SLTh?
0.0	0.00	-10.61	0.00	. *
0.1	- 3,98	-16.21	-19.75	13.38
0.0	-16.32	-14.30	-16.78	7.72
0.3	-34.34	-11983	-19.47	21.61
0.4	-48.01	- 9.84	-10.60	P1.48
0.8	-52.89	- 9.32	-10.21	12.09 0.00
0.6	-48.01	- 9.84	-10,60	-15.09
0.7	~ 34. 33	-11.53	-12,47	-21.48
0.8	-16,30	-14.30	-16.78	-21.60
0.9	- 3.98	-16.21	-19.75	- 7.71
1.C	0.00	-10.61	0.00	-13, 38
oc/har	15 b/a=1.8	x/e=0.5	Ry/Re=G.5	
Y/b	103ml/ltes	10gm/Shung	10.3M/Stap 5	10 ³ May/Elth [©]
0.0	0.00	-10-61	0.00	15.25
0.1	- 6.54	-16.04	-19,90	11.78
0.2	-24.30	-13,27	-15.54	26.17
0.3	-46. 22	-10.31	-11.67	71.71
0.4	-61.05	- 6.78	-10.65	11, 10
0.5	-68.98	- 8,36	-10.60	0.00
0.6	-61,05	- 6.78	-10.65	-11,10
0.7	-46 .22	-10.31	-11.67	-21.70
0.0	-24.31	-13.27	-15.54	- 25.16
0.9	- 6.85	-16.06	-19.90	-11.79
1.0	0.00	-10.61	0.00	-15.31

e /hH	=16 b/e=1.0	x/e=(1.5	R1/Rc=0.5	
Y/b	103#4/KIB	10 ENN € YIPE	10: M/STUP.	10 ³ May/exth ^e
0.0	0.00	-10.61		
0.1			0.00	16.79
0.2	32,56	-15.76	-19.80	16.53
0.3		-12,24	-14.37	67.40
0.4	-57.37	- 9.23	-11.14	20.73
0.5	-72.41	- 7.89	-10.81	9.68
0.6	-77.10	- 7.86	-10.98	0,00
0.7	-72.4)	- 7.89	-10,81	- 9.65
0.8	-57.37	- 9.23	-11, 10	-20.72
0.9	-32.56	-12.24	-14.37	- 17.39
1.0	- 9.38	-15.76	-19.81	-15.51
4.0	0.00	-10.61	0.00	-16.69
o MR	=20 b/e=1.0	x/e=0.5	81/R2=0.5	
Y/b	103 MYLTER	10° alx/2.4Th	10 SHA/ETTHS	103may/e lth s
0.0	0.00	-10,61		
0.1	- 4.69		.0. <u>0</u> 0	18.47
0. 2	- 8.49	-14.62	-16.33	5.98
0.3	-16.07	-14.97	-16.88	9.87
0.4		-15,73	-10.50	11.66
0.5	-19.09	-15.86	-11.73	7.67
0.6	-21.08	-12.12	-10.80	0.00
0.7	-19.09	-19.56	-11.73	- 7.67
0.8	-14.07	-13.73	-14.54	-11.66
0.9	- 8.49	-14.97	-16.88	- 9.87
1.0	- 4.69	-14.82	-15, 33	
	0.00	-10.61	0.00	-15, 98 -16, 47
e2/hF1	=20 b/#=1.2	x/e=0.5	Ny/82=0.5	
Y/b	103MV/Ta2	10 gm/etm2	10°M/EITE	103mg/exte
0.0	0.00	-10.61	0.00	23.45
0.1	- 8.34	-14.89	-16.55	11.72
0.2	-17.13	-16.11	-16.36	17.73
0.3	-26, 19	-12.16	-12.90	17.94
0.4	-37.05	-10.71	-10.50	10.83
0.8	-40.36	-10.21	- 9.75	0.00
0.6	-37.05	-10.71	-10.50	-10,83
0.7	-26, 19	- 12-16	-12,90	-17.96
0.8	-17.16	-14.11	-16.36	-17.73
0.9	- 8, 33	-14.89	-16.55	-12.72
1.0	0.00	-10.61	0.00	-23.45
***	****			

a2/hft2	=20 b/a=1.4	w/a=0.5	K1/6g=0.5	
Y/b	103mb/ltos	10 cha/ eath?	10° by/sain2	103May/Elth ²
0.0	0.00	-10.61	** ***	
0.1	-11.91	-14.81	0.00	26.77
0.2	-25.83	-13.12	-17.25	16.13
0.3	-41.69	-10.74	-15.45	23.07
0.4	-53.36	- 9.27	-11.86	20.91
0.5	-57.36	- 8.61	-10.13	11,65
0.6	-63, 26	- 9,27	- 9.72	0.00
0.7	-41.69	-10.74	-10.13	-11.65
0.8	-26.83	-13,12	~11.86	-20.91
0.9	-11.91	-14.60	-15.45	-23,07
1.0	0.00		-17.55	
	V. V.	-10.61	0.00	-18:18
a Maria	=20 b/a=1.6	x/e=0.5	81/Romo. 5	
Y/b	103Wh/ltac	10 pm/etm	10° MYEATH?	103mg/slth2
0.0	0.00	-10.61	0.00	29.23
0.1	-15.55	-14.60	-17.55	
0.2	-34.66	-12.07	- 14.37	19.86
0.3	-54.38	- 9.47	-11.11	26.52
0.4	-67.44	- 8.11	-10.17	21.52
0.5	-71.81	- 7.73	-10.10	
0.6	-67.44	- 8.11	-10.17	0.00
0.7	-64.38	- 9.47	-11.11	-11.04 -21.52
0.8	-34.66	-12.07	a14.37	-26.51
0.9	-15.55	-14.59	-17.54	
1,0	0.00	+10.61	0.00	-19.85 -39.26
	0,00	~ 4 M 4 V 4	0 100	- 1 3 W
a ² /ani	-20 b/a=1.8	w/a=0.6	Ry/Rg=0.6	
Y/b	103 M/1 Ta2	10 Say Sting	***	103mmy/Elth?
0.0	0.00	-10.61	0.00	51.11
0, 1	- 19. 39	-14.29	-17.86	23.08
0, 2	-43.49	-11.03	-13,33	28.50
0.3	-66.10	- 8,36	-10.64	20.76
0.4	-79.74	- 7.15	-10.35	9.82
0.5	-84.05	- 6.84	-10,49	0.00
0.6	-79.73	- 7.15	-10.35	- 9.83
0.7	-66.09	- 8,36	-10,64	-20.77
0.8	-43,46	-11.04	-13,36	- 28. 49
0.9	-19, 30	-14.30	-17.50	-23.08
1,0	0.00	-10.60	0.00	-30.94

nc/hlim	20 b/a=2.0	word.6	Ry/Rg=0.8	
Y/b	103MVIIa2	105WA STIME	TO JAN STANS	10 May/Elth?
0.0	0.00	-10,61	0,00	32.56
0, 1	- 23. 11	-13.92	-17.36	25.87
0. 2	-52, 15	-10.02	-19,62	29.34
0.3	-76.77	- 7.14	-10.41	19.30
0.4	-90.39	- 6.34	-10.55	8.83
0.5	-94.51	- 6.06	-10.77	0.00
0.6	-90.39	- 6.34	-10.55	- 8.53
0.7	-76.75	- 7.41	-10,40	-19.32
0.8	-52.09	-10.04	-12,41	-29.40
0.9	-22,96	-13,94	-17.40	-55.92
1.0	0,00	-10,68	0.00	-31.89

Two Edges comply supported and two edges clamped

o2/bRime	b/a=1.0	x/a=0.5	R ₁ /R ₂ =0.5	
Y/b	10gm/TLec	102my eath 2	10°M/ELTh ²	103 May/Elth B
0.0	0.00	- 4.27	21.12	0.00
0. 1	+13.02	-14.67	- 9.61	-41.43
0.2	34.24	-19.71	-20.96	-40.14
0.3	50.92	-21.60	-23,33	-26.37
0,4	60.42	-22,40	-22.74	-12.23
0.8	63,40	-23,49	-22,23	0,00
0.6	60.42	-22.40	-22,74	12, 23
0.7	60.92	-21.00	-23,33	20, 37
C. 8	34, 24	-19.71	-20,96	40.14
0.9	13,02	-14.57	- 9.61	41.43
1.0	0.00	- 6.27	21.12	0.00
a ² /bn ₁ =5	b/o=1.2	x/e=0.5	R /Rg=0.6	
Y/b	103mb/LTe ²	10gap/etlbs	105M/87.145	103 May/Elth 2
0.0	0.00	-5.80	17.03	0.00
0.1	14.74	-16.21	-14.64	-38,91
0.2	33.98	-20.12	-22.37	-25.62
0. 3	44.64	-20.88	-21.03	-10.26
0,4	47.72	-19.96	-18.09	- 2.00
6.8	48.17	-19.68	-16.81	0.00
0.6	47.72	-19.96	-18.09	2.08
0.7	44.44	-20.58	-21.03	10. 26
0.8	43,98	-20, 12	- 22, 37	25.62
0.0	14.74	-16.91	-14.64	35.91
* *	A 66	_ K KO	17.03	0.00

or/harms	bye=1.4	N 0=0.5	AyAgro.5	
X/b	103 M/L Ta2	10°Mx/Elth?	10°M/EITh2	103may/slths
0.0	0.00	- 6.04	15.21	0,00
0.1	16.70	-17.41	-18.08	-31.54
0.2	30,98	-20,21	-52.98	-13.19
0.3	35.87	-19.32	-19.21	2.87
0.4	32, 13	-17.79	-15.14	5.80
0.5	29.88	-17.14	-13.58	0.00
0.6	32.14	-17.80	-16.14	- 5.60
0.7	35,87	-19.32	-19.21	- 9,89
0.0	32.99	-20.21	-22.96	13.19
0.9	16.70	-17.41	-18.08	33.04
1.0	0.00	- 6.04	15.21	0.00
o2/hRi=	5 b/e=1.6	×/#0.5	Ry/Rg=0.8	
Y/b	103 89/ 1102	10 SAN ELTE	and the same of th	103stry/ElTh D
0.0	0.00	- 6.28	14.51	0.00
0.1	18.90	-18.28	-20.40	-27.97
0.2	31.70	-20.06	-22.80	- 3,28
0.3	27.01	-18.13	-17.67	12.08
0.4	17.04	-16.05	-13.46	10.70
0.5	12.48	-18,24	-12.02	0.00
0.6	17.30	-16.05	-13,66	-10.70
0.7	27.00	-18.13	-17.67	-12.08
0.8	31.69	-20,05	-22,79	3, 97
0.9	18.89	-18.23	-20, 39	27.96
1,0	0.00	- 6,25	14.54	0.00
e2/bRim	5 b/e=1.8 103Hb/lTe2	10 m/ 211pc	R ₁ /R ₂ =0.8 10-Ny/E/Th ²	10 may/eith?
Y/b				
0.0	0.00	- 6.37	14.11	0.00
0.1	20.99	-16.93	-21.97	-24.42
0.3	29.66	-19.66	-22.03	4.61
0.8	18.0	-16.98	-16.26	17.63
0.4	3.83	-16.69	-12.64	12.60
0.0	- 2, 44	-13,88	-11.67	0.00
0.6	3.52	-14.69	-12.64	-12.78
0. 7	18.08	-16.98	-16.29	17, 59
0.8	29. 59	-19.65	-22.03	- 4.56
0.9	20.92	-18,91	-21.92	24.41
1.0	0.00	- 6.34	14,28	0,00

;.

a=/bR1=8	b/ a=2.0	N 6-0.5	R1/R2=0.8	
Y/b	103% / Te2	10 Pary Elth?	10 ² 47/8/11 h ²	103may/elth2
0.0	0.00	- 6.49	13.72	0,00
0.1	22,68	-19.38	-23,00 -	20.48
0.2	26.43	-19.05	-20.88	10.93
0.3	8.98	-15.87		20.24
	6.20	-13.64	-12.33	19.74
	14.68	-12.98	-11.74	0.00
	8.23	-13.64	-12.35 -	12.70
0.7	8.87	-15.66	-15.08 -	20.11
0.8	26.17	-19.03	-20.68 -	10.71
0, 9	22,30	-19.31	-22.87	20.57
1,0	0.00	- 6,3 8	14. 26	0.00
a ² /hR ₁ =10	b/e=2.0	x/e=0.5	Ry/R ₂ =0. B	
Y/b	103m//Ta2	105 MA EY LIPS	10°M/E/m²	10 ³ May/S/Th ²
0.0	0.00	- 7.56	10.16	0.00
0.1	8.40	-18.40	-13.64	-25.31
0.2	20. 24	-18,39	-20.37	-20,08
0.3	27.61	-18.88		-09.82
0.4	30.64	-18.54	-18.03	- 3,14
0.5	31.33	-18.32	-17.12	0.00
0.6	30.64	-18.54	-18.08	3.14
0.7	27.61	-18.88	-19.99	9.82
0.6	20, 24	-10, 39	-20, 37	20.08
0.9	8.40	-15.40	-13.64	26.31
1.0	0.00	- 7.56	10.16	0.00
e 7/hR1=10	b/a=1.2	x/e=0.8	R1/R2=0.5	
Y/b	10 ³ // Te ²	102mm/stra2	1024/ETUPS	10 ³ mmy/Elth®
0.0	0.00	- 8.58	6.75	0.00
0.1	8.80	~ 16.59	-17.51	-19.19
0. 8	16.93	-10.31	-21.02	- 6.71
0.3	17.38	-17.40	-17.87	8.87
0.4	14. 23	-16.12	-14.46	5.09
0.5	12.85	-15.58	-13.14	0.00
0.6	14, 23	-16.12	-14.46	- 5,09
0.7	17.35	-17.40	-17.87	- 3.87
0.8	16.93	-18.31	-81.08	6.71
0.9	8.80	- 16.59	-17.51	19. 19
1.0	0.00	- 8.58	6.78	0.00

a2/hR1=10	b/a=1.4	m/a=0.5	Ry/82=0.6	
Y/b	103m/4Tap	102MX/ETTH3	10 ^M y/Sith ³	10 ³ May/elth ²
0.0	0.00	- 9.07	5.11	0.00
0.1	9.73	-17.33	- 19.66	-14,00
0.2	12,96	-17.92	-20.82	3.70
0.3	6.15	-18.97	-16.19	13.47
	- \$.72	-14.14	-12.81	10.31
	- 6.81	-13.45		
	- 2.72	-14.14	-11.25	0.00
			-18.81	-10.31
0.7	6.15	-15.97	-16.19	-13.47
0.8	12.96	-17.92	-20.62	- 3,78
0.9	9.23	-17.33	-19.68	14.22
1.0	0.00	- 9.07	5.11	0.00
92/8R1=10	b/e=1.6	x/e=0.5	R/Rp=0.6	
Y/b	103 MVLTa2	TOBMY/ETTPB	1054/ETIPS	103 may/elth?
9.0	0.00	- 9.36	4.16	0.00
0.1	9.52	-17.78	-21,30	- 9.74
0.2	B. 35	-17.29	-19.99	11.74
0.3	- 8.04	-14.63	-14.77	19.09
0.4	-18.27	-12.59	-11.61	12.50
0.5	-23,45	-11.89	-10.69	0.00
0.6	-18, 27	-12,59	-11.61	-12,58
0, 7	- 5.03	-16.63	-14.77	-19.09
0.8	8.35	-17.29	-19.99	-11.74
0.9	9.53	-17.78	-21.30	9.73
1.0	ó.cc	- 9.36	4. 16	0.00
1.0	Vent		40	9,00
e2/bR1=10	b/a=1.8	n/ 000.5	Ryageo. 8	
Y/b	103 Ma/1Ta2	108MARTING	1024/Elth	10gma/Ettps
0.0	0.00	- 9.88	3.41	0.00
0, 1	9.42	-18.01	-22,09	- 6.27
0.2	2.82	-16.47	-18,77	17.72
0.3	-16.13	-13,36	- 13, 59	21.57
0.4	-31.96	-11.38	-11.32	12.66
0.5	-37.70	-10.76	-10.84	0.00
0.6	-31.96	-11.38	-11.32	-12.65
0.7	-16.13	-13, 35	- 13.59	-21,57
0.8	2.81	- 16.47	-18.77	-17.71
0.9	9.40	-18.01	-22.08	8.28
1.0	0.00	- 9.58	3.43	0.00
- ·				

4				
#2/hH1=10	B/#2.0	x/e=0.5	R1/R2=0.5	
x/b	103 HEVATOS	10°Ma/eith2	10° by/exthe	103MM/ETUB
0.0	0.00	- 9.79	2.73	0.00
0.1	8.62	-18.07	-22.44	- 0.73
0.2	- 3,65	-16,63	-17.40	22,12
0.3	-27.02	-10,18	-12.68	21.90
0.4	-43,88	-10,40	-11.33	11.45
0.6	-49.53 -43.68	- 9.91 -10.40	-11.25 -11.33	0.00
0.7	-27.03	-10,10	-12.68	-21.90
0.8	- 3.68	-15.53	-17.40	-22,12
0.9	6.83	-10.06	-02.41	0.71
1.0	0.00	- 9.78	8,79	0.00
o hH1=15	b/a=1.0	w/e=0.5	Ry/Re-0.6	
Y/6	102MATES	10 HAVE LTh2	102 M/SITH	103 May/exth ²
0.0	0.00	-10.98	- 1.92	0.00
0.1	3, 72	-16.11	-17.31	- 9.25
0.2	6.45	-10.43	-19.30	- 1.12
0.3	8.24	-16.03	-16.61	4.98
0.4	9.60	-14.97	-13.81	4.68
0.5	1.34	-14.54	-12.72	0.00
0.6	0.60 5.24	-14.97 -16.03	-13.81 -16.61	- 4.65 - 4.98
0.7	6.46	-16.93	-19,30	1.10
0.9	3,72	-16.11	-17.31	9, 23
1.0	0.00	-10.99	- 1.23	0,00
e ² /hi . = 15	b/a=1.2	×/0-0.5	81/RC=0.8	
**	10 ³ %b/lTa ²	105 PPA ETINE	10 Pay/cling	10 Juny/Eline
Y/b				
0.0	0.00	-11.86	- 6.13	0.00
0.1	2.76	- 16.TY	-19.79 -19.03	- 2.63
0.2	0.41 - 7.63	-16.35 -14.41	-14.74	10. 16 15.00
0,4	-18.51	-12.60	-11.86	10,13
0.5	-16.66	-12,22	-10.48	0.00
0.6	-18.51	-12,60	+11.56	-10.13
0.7	- 7.63	-14.41	-14.74	-18.00
0.8	0.41	-16.36	-19.03	-10.16
0.9	2,76	-16,77	-19.79	8.63
1.0	0.00	-11,88	- 4.13	0.00
₹ .	♥ ¯ ♥			•
		:		•
	•			
	and the second			
				-

.

a2/hk1=16	b/o=1.4	×/a=0.5	nyne=0.5	
Y/b	103mh/1 Ta2	icax/elth?	1024/STIMB	103MXA\ETLP5
0.0	0.00	-12,36	- 5.84	0.00
0.1	1.54	-17.03	-20.99	£.98
Ŏ. Ŷ	- 6.36	-15.50	-10.04	18.23
0.3	-20.62	-10,90	-13.50	20.83
0.4	-32.48	-11.14	-10.66	15.42
0.8	-36.90	-10.68	- 9.92	0.00
0.6	- 32.48	-11.14	-10.66	-19.42
0.7	-20.62	~15.90	-13.29	-20.82
		-18.03	-18.04	-18,23
0.8	- 6.36		-20.99	2.98
0.9	1.54	-17.03		0.00
1.0	0.00	-12,56	- 5.84	0400
o2/hR1=18	b/e=1.6	x/6=0.5	P1/R9-0.8	
Y/b	103m/17a2	103/METTP2	10 SM/STLP5	10 ³ May/Elth ⁹
0.0	0.00	-12.73	- 7.07	0.00
0.1	- 0.10	-17.08	-21.43	8.13
0.2	- 13,66	-14.40	~15.69	23.79
0.3	-33,23	-11.53	-12.18	22,62
0.4	-47.48	- 9.85	-10.47	12.41
0.5	-52.42	- 9.36	- 10. 16	0.00
0.6	-47.45	- 9.85	-10.47	-12,41
0.7	-33.23	-11.53	-12.18	-52.62
0.6	-13.86	-14.48	-14.69	-23,79
	- C, 09	-17.03	-21.43	- 8, 13
0.9	0.00	~12.73	- 7.07	0.00
1.0	CIOO	- Are 4 %	- 1,001	******
aB/AR1=15	W#1.8	×/0=0.6	Ryraeo.6	
Y/b	103 M/LTa2	10° My ELTh	10 SW/ELTh2	103mm/STU15
0.0	0.00	-13.06	- 8.06	0.00
0.1	- B. 21	- 10.85	-21.40	18.95
0.2	-21.90	- 13.39	-15.29	27.43
0.3	-45, 27	~10.31	-11.40	22.53
0.4	-60.44	- 8.81	-10.59	11.90
0.6	-65.40	- 8.42	-10.62	0.00
0.6	-60.44	- 6.82	-10.59	-11.20
0.7	-45.26	-10.31	#11.39	-22,53
ŏ. B	-21.99	-13,39	-15.29	-27.43
0.9	- 2,20	- 16.85	-21.40	-12,96
1.0	0.00	-13.08	- 8,09	0.00
₩ € 34	ALENSE.			10.0

a ² /hR1=16	b/e=2.0	x/6=0.5	R ₃ /R ₂ =0.6	- 3. (a)
Y/b	103 Wh/LTe?	10 May etch 5	1094/ElThe	10 ³ Nxy/211
0.0	0.00	-13.28	- 8.89	0.00
). 1	- 4.76	-16.53	-21.04	17.41
0. 2	-30,49	-12,30	-14.00	29.55
0.3	-56.56	- 9.23	-10.91	21.23
0.4	-71.70	- 7.95	-10.80	9.60
0.5	-76.38	- 7.63	-11.03	0.00
0.6	-71.75	- 7.95	-10.80	- 9.60
ŏ. 7	-56.57	- 9.23	-10,91	-21,23
	-30.51	-12.30	-14.00	-29.53
0.8	- 4.80	-16.53	-21.05	-17.39
0.9			- 8.88	0.00
1.0	0,00	-13, 27	# D.OU	0,00
95/HR1=50	b/a=1.0	n/e=0.5	Ry/Rg=0.8	
Y/b	103m/17a2	102MR/SATP	TOUNALETTHE	10 ³ May/Elti
0.0	0.00	-13.86	-10.63	0.00
0.1	- 0.08	-16.53	-19.76	3.51
0. 2	- 4.27	-15.63	-17.91	12.66
0.3	-11.43	-13.84	-13,91	14.75
	-17.67	-12.46	-11.09	9.39
0.4	-20.09	-11.97	-10.03	0.00
0.8		-12.46	-11.03	- 9.39
0.6	-17.67	-13.84	-13.91	-14.75
0.7	-11, 43	-18.63	-17.91	-12.66
0.8	- 6.27	-16.63	-19.76	- 3.61
0.9	- 0.08		-10.83	0.00
1.0	0,00	-13.66	- 1010a	0,00
a2/BR1=20	b/a=1,2	x/s=0.5	R /Rg=0.5	٠.
	103 m// Te2	10 SPACETANS	10 SM/STAPS	10 May/ELT
Y/b				
0.0	0.00	-14.71	-13.66	0.00
0.1	- 2.24	- 16.73	-81.68	10.00
0.2	-12.43	-14.63	~ 16.61	81.70
0.3	-25.77	-13, 18	-12.30	21.17
0.4	-36.01	-10.62	- 9.91	12, 27
0.5	- 39, 75	-10.12	- 9.84	0.00
	-36.01	-10.62	- 9.91	-12.27
0.6	-26.77	-12, 16	-12.30	-21.17
0.7	-12.43	-14.63	-16.61	-21.78
0.8	2. 24	-16.73	-91.02	-10,60
0.9		-16.71	- 13.66	0.00
1.0	0.00	-446 44	The second second	- ■ ■
			•	•

02/hH1=30	b/a=1.4	m/a=0.8	Ry/Ag=0.8	
Y/b	103mb/lies	102mx/etthe	10° by/ Elth?	103may/Elth2
0.0	0.00	-15.28	-16.68	0.00
0.1	- 4.90	-16.57	-21,21	16.71
0.2	-21.32	- 13, 48	-15.31	27.62
0.3	-39.72	-10,70	- 11, 16	23.46
0.4	-52.39	- 9.23	-9.77	12.45
0.5	-86.73	- 8.81	- 9.55	0.00
0.6	-82, 39	- 9.23	- 9.78	-12.45
0.7	-39.72	-10.70	-11.18	-23.46
0,8	-21.32	-13.45	-15,31	-27.63
0.9	- 4.90	-16.57	-21.21	-16.71
1.0	0.00	-15.29	-15.58	0.00
02/PU1=50	b/o=1.6	×/ 0=0.5	Ry/Rg=0.6	
Y/b	103ml/LTa2	10 MAYETTHE	103/A/Stlp3	103 May/ELTH
0.0	0.00	-15.72	-17.02	0.00
0.1	- 8.05	-16, 19	-20.82	22.00
0.2	-30.68	-12, 23	-13,80	31.02
0.3	-52,85	- 9.41	-10,48	23, 22
0.4	-66.87	- 8, 16	-10.01	11.27
0.8	-70.99	- 7.80	-10,00	0.00
0.6	-66.57	- 8.14	-10.01	-11.27
0.7	-52.85	·· 9. 60	-10,48	-23, 22
0.8	-30.68	-12.23	-13.81	-31.02
0.9	- 8.06	-16.20	-20,63	-22.06
1.0	0.00	-15.72	-17.03	0.00
6 ² /hR1=20	b/e=1.8	x/a=0.8	R ₁ /R ₂ =0.5	
Y/b	103Wa//Ta2	108m/E/Th2	10° M/ELTh ²	103 may/21 Th 2
0.0	0.00	- 16.05	-18,14	0.00
0.1	-11.63	-15,68	-20,10	26.71
0.2	-40.18	-11.06	-12.52	32,58
0.8	-64.92	- 8.32	-10.15	21.71
0.4	-78.80	- 7.22	-10.39	9.73
0.5	-03.04	· 6.98	-10.58	0.00
0.6	-76,60	- 7.25	-10.32	- 9.73
0. 7	-64.93	- 8.32	-10, 15	-21.70
0.8	-40.19	-11.06	-12.51	-32.67
0.9	-11.64	-15.67	-20.07	-26.75
1.0	0.00	-16.03	18.04	0.00

02/hR1=20	b/e=2.0	w/ e=0.5	Ry/Re=0.5	
Y/b	103WW/LTa2	10-3m/etme	10 Pay/Elth?	103May/ELTHP
0.0	0.00	-16.31	~19.00	0.00
0.1	-15.54	-15.09	-19.19	30.58
0.2	-49.49	- 9.99	-11.52	39.78
0.3	-75.79	- 7.40	-10.08	19.71
0.4	-89.38	- 6.43	-10.50	8.33
0.5	-93.37	- 6.20	-10,86	0.00
0.6	-89.37	- 6.43	-10.58	- 6.34
0.7	-78.76	- 7.40	-10.00	-19.72
0.8	-49.47	-10.00	-11.54	-32.76
0.9	- 15.57	-15.08	-19.16	-30, 47
1.0	0.00	- 16,22	-18.66	0.00

Tabulation of Deflection and Moments for various values of a2/hR1 and b/s ratio constant.

All edges simply supported.

b/#m1.0	y/h=0.8	x/e=0.5	R1/82*0. 5
e2/4R1	103 WAY Ta2	10 gan stage	10 ² 4/1474 ²
8	53.75	-19.68	-18.48
10	34.60	-18.36	- 16.24
18	1.19	-14.88	-12.82
20	-21.08	-12.12	-10.80
25	· 35.06	+10.64	- 9.72
30	-44.01	- 9.74	- 9.17
35	-49.91	- 9.17	. 8.91
40	-53, 95	- 8.81	- 6.79
45	~56.00	- 8.54	- 8.74
50	-58.88	- 0.30	- 8.74

Two Edges simply supported and two edges classed

W#1.0	y/h=0.5	x/a=0.5	R/R2=0.8
a2/681	103 MAY LT 12	10gm/etug	1034A\EY1.P5
5	63.40	-22.49	-29, 23
10	31.33	-18.32	-17.19
15	1.34	-14.54	-12.72
20	-20.09	-11.97	-10.03
25	-34.96	-10.40	- 8,68
30	-43.51	- 9.48	- 0.16
35	-49.64	- 8.95	- 8.07
40	-83.79	· 0.66	- 6.19
48	-86.68	- 8.46	- 8.38
80	-58.76	- 8.35	- 6.56

APPENCIX

าต์ พระสะสะ เอ็พรุศมสร้าง ------เอ็พรุศเสร้าง ------

ALL EDGES SIMPLY CUPICPTED

ALL EDGES SMALLY SUPPORTED

OF MARKET OF THE STATE OF THE S

ALL EDGES SIMPLY SUPPORTED

TO MAKE WE BY THE TAKE THE PROPERTY OF AMERICAL PROPERTY OF THE PROPERTY OF TH

TWO EDGES CLAMPED

TWO EDGES SIMPLY

SUPPORTED

TO WHIRE TO THE TO MY/EATH TO THE TENTE OF T

TWO EDGES SIMPLY STRAGGETTS.
TWO EDGES STANDERS.

O While to more to My / BOTH TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOT

TWO EDGES CLAMPLE
TWO EDGES SIMPLY SUPPORTED

8

-6

У/Б

CE-1969-M-SAJ-THE