OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Features:

- Four output options available
- · High noise immunity
- Direct TTL/LSTTL interface
- TO-18 hermetically sealed package
- Sensors mechanically and spectrally matched to other Optek devices (see device descriptions detailed below)

Description:

All **OPL800**, **OPL801** and **OPL820** sensors consist of a photodiode, a linear amplifier and a Schmitt trigger on a single silicon chip (monolithic chip for **OPL820**). **OPL810**, **OPL811** and **OPL813** sensors also have a voltage regulator added to their photologic chips. Each device's photologic chip is mounted onto a standard TO-18 header and hermetically sealed in a lensed metal can.

All devices in the series feature TTL/LSTTL compatible logic level output, which can drive up to 8 TTL loads (**OPL800**, **OPL801**) or up to 10 TTL loads (**OPL810**, **OPL811**, **OPL813** and **OPL820**) without additional circuitry. On all these devices, the Schmitt trigger's hysteresis characteristics provide high immunity to noise on input and V_{CC}.

OPL800 series devices feature medium-speed data rates to 250 kBaud, with typical rise and fall times of 25 nanoseconds.

OPL800 and OPL801 devices are mechanically and spectrally matched to OP130 and OP231 series LEDs. OPL810, OPL811, OPL813 devices are mechanically and spectrally matched to OP130 and OP230 series devices. OPL820 devices are mechanically and spectrally matched to OP130 and OP231 series LEDs.

Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Pin #	OPL80_ or OPL81_	OPL82_
1	Ground	Ground
2	V _{cc}	Output
3	Output	V _{cc}

Mounted to TO-18 Base

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

	Ordering Information								
Part Number	Photologic®	V _{cc} (V) Min / Max	I _{OH} / I _{OL}	Lead Length					
OPL800	Totem-Pole								
OPL800-OC	Open-Collector	F0./600		0.10 / 12.0	0.50"				
OPL801	Inv-Totem-Pole	50 / 600		0.10 / 12.8					
OPL801-OC	Inv-Open-Collector								
OPL810	Totem-Pole			0.10 / 16.0					
OPL810-OC Obsolete	Open-Collector		4.5 / 16.0						
OPL811	Inv-Totem-Pole	5 / 100							
OPL811-OC	Inv-Open-Collector	5 / 100							
OPL812-OC Obsolete	Open-Collector								
OPL813-OC	Inv-Open-Collector								
OPL820	10K Pull-Up								
OPL820-OC	Open Collector	2 / 35	1						
OPL821-OC Obsolete	Inv. Open Collector	_, 55							

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820-OC

OPL800/810 Buffered Totem-Pole

OPL800-OC/820-OC Open-Collector

OPL801/811 Inverted Totem-Pole

OPL801-OC/811-OC/813-OC Inverted Open-Collector

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

OPL820

OPL820 10K Pull-Up

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted) **OPL800/801/810/811 and OPL800-OC Series**

Input Diode	
Operating Temperature Range	
OPL800, OPL801	-55° C to +11
OPL810, OPL811	-55° C to +10
OPL820	-40° C to +10
Storage Temperature Range	
OPL800, OPL801	-65° C to +15
OPL810, OPL811	-65° C to +12
OPL820	-55° C to +12
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron]	260
Input Infrared LED	•
Supply Voltage, V _{cc} (not to exceed 3 seconds)	
OPL800, OPL801	10 \
OPL810, OPL811, OPL820	18 \
Sourcing Current	
OPL810, OPL811	10 m/
Output Voltage (high state)	
OPL800, OPL801, OPL810, OPL811	35 \
OPL820	30 \
Output Current Sink (low state)	
OPL810, OPL811	50 m/
OPL820	16 m
Irradiance	
OPL800, OPL801	3 mW/cm
OPL810, OPL811, OPL811-OC	2 mW/cm
OPL813-OC	1 mW/cm

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted) OPL800/801/810/811/813 and OPL800-OC Series

Output Photologic®	
Voltage at Output Lead OPL800, OPL801, OPL810, OPL811 OPL820	35 V 30 V
Duration of Output Short to V _{CC}	1 second
Power Dissipation OPL800, OPL801 OPL810, OPL811 OPL820	120 mW ⁽²⁾ 250 mW ⁽²⁾ 200 mW ⁽²⁾

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. For OPL820, a maximum of 20 grams force may be applied to leads while at soldering temperatures.
- (2) Derate linearly 2.5 mW/° C above 25° C for OPL800, OPL801, OPL811. Derate linearly 5.7 mW/° C above 90° C for OPL820.
- (3) For OPL800, OPL801, OPL810, OPL811, light measurements are made with λi = 935 nm. For OPL820, light measurements are made with an LED source having a wavelength of 935 nm.

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
.,	Operating Supply Voltage OPL800/801 OPL810/811 OPL820	4.5 4.5 4.5		5.5 16 16	V V V	- - -
V _{cc}	Peak-to-Peak V _{CC} Ripple Necessary to Cause False Triggering of Output OPL800/801 OPL810/811		2 -	- 1	V V	f = DC to 50 MHz f = DC to 50 MHz
I _{cc}	Supply Current	-	-	15	mA	$E_e = 0 \text{ or } 1 \text{ mW/cm}^2$
E _{eT} ⁽⁺⁾	Positive-Going Threshold Irradiance ⁽³⁾ OPL800/801 OPL810/811 OPL820	0.050 0.015 0.002	0.180 0.060 0.015	0.600 0.200 0.035	mW/cm ² mW/cm ² mW/cm ²	$T_A = 25^{\circ} C$ $T_A = 25^{\circ} C$ See below ⁽³⁾
E _{eT} ⁽⁺⁾ /E _{eT} ⁽⁻⁾	Hysteresis Ratio OPL800/801 OPL810/811	1.5 1.2	2.0 1.5	2.5 2.0	-	- -
E _e ⁽⁺⁾ /E _e ⁽⁻⁾	Hysteresis Ratio OPL820	1.05	1.20	1.90	-	See below ⁽³⁾
I _{CCH}	High State Supply Current OPL820	-	5	12	mA	See below ⁽⁴⁾
I _{CCL}	Low State Supply Current OPL820	-	4	12	mA	See below ⁽⁵⁾

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V_{OH}	High Level Output Voltage OPL800 OPL801 OPL810	2.4 2.4 V _{CC} -2.1			V	I_{OH} = -800 μ A, E_e = 1 mW/cm ² I_{OH} = -800 μ A, E_e = 0 I_{OH} = -1 mA, E_e = 0.4 mW/cm ²
	OPL811 OPL820-OC	V _{CC} -2.1 V _{CC} -1.5	-	- V _{CC}	V	$I_{OH} = -1 \text{ mA}, E_e = 0$ $I_{OH} = -100 \mu A^{(4)}$

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. For OPL820, a maximum of 20 grams force may be applied to leads while at soldering temperatures.
- (2) Derate linearly 2.5 mW/° C above 25° C for OPL800, OPL801, OPL811. Derate linearly 5.7 mW/° C above 90° C for OPL820.
- (3) For OPL800, OPL801, OPL810, OPL811, light measurements are made with λi = 935 nm. For OPL820, light measurements are made with an LED source having a wavelength of 935 nm.
- (4) High output state limits are valid for $4.5 \text{ V} < \text{V}_{CC} < 16 \text{ V}$ and $E_e > 0.035 \text{ mW/cm}^2$ (OPL820, OPL820-OC).
- (5) Low output state limits are valid for $4.5 \text{ V} < \text{V}_{CC} < 16 \text{ V}$ and $E_e < 0.001 \text{ mW/cm}^2$ (OPL820, OPL820-OC).

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{он}	High Level Output Voltage OPL800 OPL801 OPL810 OPL811 OPL820-OC	2.4 2.4 V _{CC} -2.1 V _{CC} -2.1 V _{CC} -1.5		- - - - V _{CC}	V V V V	$\begin{split} I_{OH} &= -800~\mu\text{A, E}_e = 1~\text{mW/cm}^2\\ I_{OH} &= -800~\mu\text{A, E}_e = 0\\ I_{OH} &= -1~\text{mA, E}_e = 0.4~\text{mW/cm}^2\\ I_{OH} &= -1~\text{mA, E}_e = 0\\ I_{OH} &= -100~\mu\text{A}^{(4)} \end{split}$
V _{OL}	Low Level Output Voltage OPL800/800-OC OPL801/801-OC OPL810 OPL811/811-OC OPL813-OC OPL820	- - - -	- - - -	0.4 0.4 0.4 0.4 0.4	V V V V	$\begin{split} I_{OL} &= 12.8 \text{ mA, } E_e = 0 \\ I_{OL} &= 12.8 \text{ mA, } E_e = 1 \text{ mW/cm}^2 \\ I_{OL} &= 16 \text{ mA, } E_e = 0 \\ I_{OL} &= 16 \text{ mA, } E_e = 0.4 \text{ mW/cm}^2 \\ I_{OL} &= 16 \text{ mA, } E_e = 0.2 \text{ mW/cm}^2 \\ I_{OL} &= 16 \text{ mA} \end{split}$
Іон	High Level Output Current OPL800-OC OPL801-OC OPL811-OC OPL813-OC	- - -	- - -	100 100 100 100	μA μA	$V_{OH} = 30 \text{ V}, E_e = 2 \text{ mW/cm}^2$ $V_{OH} = 30 \text{ V}, E_e = 0$ $V_{OH} = 30 \text{ V}, E_e = 0$ $V_{OH} = 30 \text{ V}, E_e = 0$
I _{OS}	Short Circuit Output Current OPL800 OPL801	-20 -		- -100	mA mA	E _e = 1 mW/cm ² , Output = GND E _e = 0, Output = GND

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
	Output Rise Time, Fall Time OPL800/801	-	70	1	ns	$T_A = 25^{\circ} \text{ C, } E_e = 0 \text{ or } 1 \text{ mW/cm}^2,$
	OPL800-OC/801-OC	-	70	-	ns	$R_L = 8 \text{ TTL loads, } f = 10 \text{ kHz, D.C.} = 50 \%$ $T_A = 25^{\circ} \text{ C, E}_e = 0 \text{ or } 1 \text{ mW/cm}^2,$ $R_L = 360 \Omega, f = 10 \text{ kHz, D.C.} = 50 \%$
t _r , t _f	OPL810/811	-	70	-	ns	$T_A = 25^{\circ}$ C, $E_e = 0$ or 0.4 mW/cm ² , $R_L = 10$ TTL loads, $f = 10$ kHz, D.C. = 50 %
	OPL811-OC/813-OC	-	100	-	ns	$T_A = 25^{\circ} \text{ C}, E_e = 0 \text{ or } 1 \text{ mW/cm}^2,$ $R_1 = 300 \Omega, f = 10 \text{ kHz}, D.C. = 50 \%$
	OPL820	-	60	i	ns	$R_L = 390 \Omega$
	Propagation Delay Low/High - High/Low					
	OPL800/801	-	5	-	μs	$T_A = 25^{\circ} \text{ C}, E_e = 0 \text{ or } 1 \text{ mW/cm}^2, R_L = 8 \text{ TTL loads, f} = 10 \text{ kHz, D.C.} = 50 \%$
	OPL800-OC/801-OC	-	5	-	μs	$T_A = 25^{\circ} \text{ C}, E_e = 0 \text{ or } 1 \text{ mW/cm}^2, R_L = 8 \text{ TTL loads, f} = 10 \text{ kHz, D.C.} = 50 \%$
t _{PLH} , t _{PHL}	OPL810/811	-	5	-	μs	$T_A = 25^{\circ}$ C, $E_e = 0$ or 0.4 mW/cm ² , $R_L = 10$ TTL loads, $f = 10$ kHz, D.C. = 50 %
	OPL811-OC/813-OC	-	5	-	μs	$T_A = 25^{\circ} \text{ C}, E_e = 0 \text{ or } 1 \text{ mW/cm}^2,$ $R_L = 300 \Omega, f = 10 \text{ kHz}, D.C. = 50 \%$
	OPL820 (to high state)	_	1	-	μs	$E_e = 0.1 \text{ mW/cm}^2$, $R_L = 390 \Omega$
	OPL820 (to low state)	-	2.1	-	μs	$E_e = 01 \text{ mW/cm}^2$, $R_L = 390 \Omega$
Data Rate	Data Rate Using NRZ Format	-	100	-	kHz	$E_e = 01 \text{ mW/cm}^2$, $R_L = 390 \Omega$

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. For OPL820, a maximum of 20 grams force may be applied to leads while at soldering temperatures.
- (2) Derate linearly 2.5 mW/° C above 25° C for OPL800, OPL801, OPL811. Derate linearly 5.7 mW/° C above 90° C for OPL820.
- (3) For OPL800, OPL801, OPL810, OPL811, light measurements are made with λi = 935 nm. For OPL820, light measurements are made with an LED source having a wavelength of 935 nm.
- (4) High output state limits are valid for 4.5 V < V_{CC} < 16 V and E_e > 0.035 mW/cm² (OPL820, OPL820-OC).
- (5) Low output state limits are valid for 4.5 V < V_{CC} < 16 V and E_e < 0.001 mW/cm² (OPL820, OPL820-OC).

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Performance OPL800, OPL801

OPL800-OC, OPL801-OC

Rise Time and Fall Time vs. Ambient Temperature To VCC = 5 V Output Load: 360 ohm pullup resistor Light Source: 1 mW/cm² GaAs (935 nm) To VCC = 5 V Output Load: 360 ohm pullup resistor Light Source: 1 mW/cm² GaAs (935 nm)

OPL800, OPL800-OC

OPL801, OPL801-OC

-55 -35 -15 5 25 45 65 85 105 125

TA - AMBIENT TEMPERATURE - OC

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Performance

OPL800, OPL801 Series

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Performance

OPL810, OPL811 Series

Normalized Threshold Irradiance vs. Amb. Temp.

Normalized Spectral Response

OPL813 Series

Angular Displacement from Package Mechanical Axis

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Performance

OPL813 Series

Switching Test Curves

Switching Test Curve for Inverters

Switching Test Curve for Buffers

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Performance

OPL800, OPL800-OC, OPL801, OPL801-OC, OPL810, OPL811, OPL811-OC, OPL813-OC, OPL820, OPL820-OC

Obsolete (OPL810-OC, OPL812-OC, OPL821-OC)

Performance

OPL820 Series

