Doing IPEDS Analysis the Easy Way

Michael J. Smith, Portland State University

Custom Data Files

Final Release Data (Change)

Enter either an institution name or UnitID (or a comma separated list of UnitIDs) in the text box below. As you begin typing, a list of matching institutions will appear. You can select a single institution by clicking on it from the list, or, if you want all institutions on the list, click "Select".

Institution Name						
	Select					

The flat files

The Access databases

Documentation for IPEDS Access Databases: All IPEDS Access Databases contain metadata tables that describe each data table and provide a list of the variables. The same metadata tables are placed in a WinZip Excel workbook to serve as a standalone reference without having to download an entire database.

Download an IPEDS Access Database:

Database Name	Documentation	Release Type	Release Date	
2017-18 Access zip (74.7mb) decompressed (526mb)	2017-18 Excel (IPEDS201718Tablesdoc.xlsx, 1365kb)	Provisional	January 2019	
2016-17 Access zip (64.2mb) decompressed (553mb)	2016-17 Excel (IPEDS201617Tablesdoc.xlsx, 1384kb)	Final	January 2019	
2015-16 Access zip (72.9mb) decompressed (519mb)	2015-16 Excel (IPEDS201516Tablesdoc.xlsx, 1322kb)	Final	August 2018	
2014-15 Access	2014-15 Excel	<u> </u>	212222	

However...

FRIENDS DON'T LET FRIENDS USE ACCESS

(for anything)

The *ipeds* package

Credit: <u>Jason Bryer, Ph.D., Excelsior College</u>;

https://github.com/jbryer

Available on CRAN, but recommend getting the latest version from Github instead.

How ipeds works

- 1. Downloads the Access database from the NCES web site
- 2. Extracts all the tables from the Access database and saves them as a compressed R data file
- 3. Provides tools for extracting collection results from the file

However...

The current version of ipeds depends on <u>mdbtools</u>, which is not available on Windows platforms.

Options:

- Install Linux!
- Get hold of the R data files from elsewhere
- Use functions from ipeds that don't require mdbtools
- Wait...

"Hey, Michael: Can you make me a chart of PSU's graduation trends, compared to our peer institutions?"

Hard to do the regular way: requires multiple databases or CSV files.

Easy to do the easy way: script the downloads,

Caveat: some variables change name or location over time

Foundations: Pull the most recent IC collection to get institution names and IDs

```
directory <- ipeds_survey(table = 'HD', year = 2018, dir=dir)
names(directory) <- tolower(names(directory))

getinstnm <- directory$instnm
names(getinstnm) <- directory$unitid</pre>
```

Next, grab the 150% graduation rates:

```
grad_rate_get <- function(year) {
   gradrates <- (ipeds_survey(table='GR',year=year, dir=dir))
   names(gradrates) <- tolower(names(gradrates))
   theRates <- dcast(gradrates, unitid ~ grtype, value.var = 'grtotlt')
   names(theRates) <- c('unitid','adjusted_cohort','completers')
   theRates$rate <- theRates$completers/theRates$adjusted_cohort
   theRates$year <- year

   return(theRates[, c('unitid','year','adjusted_cohort','completers','rate')])
}</pre>
```

Next, grab the 150% graduation rates:

```
years <- (2012:2018)

for (i in seq_along(years)) {
    if (i==1) {grad_rate <- grad_rate_get(years[i])}
    else {grad_rate <- rbind(grad_rate, grad_rate_get(years[i]))}
}</pre>
```

20					
-	unitid	year	adjusted_cohort	completers	rate
1	100654	2012	1088	345	0.31709559
2	100663	2012	1515	676	0.44620462
3	100690	2012	4	1	0.25000000
4	100706	2012	626	284	0.45367412
5	100724	2012	1198	314	0.26210351
6	100751	2012	3642	2396	0.65788029
7	100760	2012	NA	NA	NA
8	100830	2012	520	173	0.33269231
9	100858	2012	4179	2770	0.66283800
10	100937	2012	316	199	0.62974684
11	101028	2012	NA	NA	NA
12	101073	2012	233	12	0.05150215
13	101116	2012	46	5	0.10869565
14	101143	2012	NA	NA	NA
15	101161	2012	NA	NA	NA

```
grad_rate %>%
  filter(unitid %in% the_colleges) %>%
  ggplot(aes(year, rate)) +
  theme_economist() +
  geom_line(aes(colour=factor(getinstnm[as.character(unitid)]) )) +
  ggtitle('Grad rates by year')
```


"Hey, Michael! All else being equal, do quarter schools and semester schools have different graduation rates?"

Again, hard to do the regular way.

We might want all sorts of different variables ("all else being equal")

We probably need to join lots of different collections to get them

We're also going to have to put it into R (or an equivalent) to do the analysis anyway, so why not start there, too?

We'll use these IVs in our analysis:

- Size of graduation cohort
- Selectivity of the institution
- Tuition \$
- Control (public/private)
- Locale (city/town/suburb/rural)
- Calendar system (semester/quarter)

For this, we need (deep breath) the IC header, the IC itself, Admissions, Graduation Rates, and Fall Enrollment.

```
directory <- ipeds survey(table='HD', year=2017, dir=dir)
names(directory) <- tolower(names(directory))
charges <- ipeds survey('IC AY', year=2017, dir=dir)
names (charges) <- tolower (names (charges))
charges = charges[,c('unitid',
 'tuition1', 'fee1', 'hrchg1', #In-district average tuition for full-time undergraduates
 'tuition2', 'fee2', 'hrchg2', #In-state average tuition for full-time undergraduates
 'tuition3', 'fee3', 'hrchg3', #Out-of-state average tuition for full-time undergraduates
 'tuition5', 'fee5', 'hrchg5', #In-district average tuition full-time graduates
 'tuition6', 'fee6', 'hrchg6', #In-state average tuition full-time graduates
 'tuition7', 'fee7', 'hrchg7')] #Out-of-state average tuition full-time graduates
dirCharges = merge(charges, directory, by='unitid', all.x=TRUE)
ic <- ipeds survey(table='IC', year=2017, dir=dir)
names(ic) <- tolower(names(ic))
dirCharges <- merge(dirCharges, ic, by='unitid', all.x=TRUE)
```

plot(density(d1[which(!is.na(d1\$select)),]\$select), main="Admit %")

Student:faculty ratio


```
table (d1$calsvs, d1$control)
 ## Semester 625 802 52
 ## Ouarter 50 29 84
##recode locale
 d1$locale2 <- substr(d1$locale,1,1)
 d1$locale2 <- as.factor(d1$locale2)
 levels(d1$locale2) <- c('City', 'Town', 'Suburb', 'Rural')</pre>
 table(d1$locale2, d1$locale)
 ##
    City
     Town
      Suburb 0 0
      Rural
```

summary(theLM)

```
##
## Call:
## lm(formula = rate ~ calsys + as.integer(tuition1) + control +
      select + locale2 + adjusted cohort, data = d1, family = gaussian)
##
## Residuals:
##
       Min
               1Q Median 3Q Max
*# -0.47957 -0.07582 0.00375 0.07103 0.51447
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                  4.820e-01 2.017e-02 23.902 < 2e-16 ***
## (Intercept)
                      5.639e-02 1.609e-02 3.506 0.00047 ***
## calsysQuarter
## as.integer(tuition1) 1.035e-05 3.408e-07 30.362 < 2e-16 ***
                      -9.204e-02 9.529e-03 -9.659 < 2e-16 ***
## control
                      -1.113e-01 1.779e-02 -6.257 5.27e-10 ***
## select
## locale2Town
                      3.395e-02 8.293e-03 4.093 4.51e-05 ***
                      1.171e-02 8.919e-03 1.313 0.18946
## locale2Suburb
## locale2Rural
               -2.622e-02 1.541e-02 -1.702 0.08906 .
                     5.625e-05 3.346e-06 16.810 < 2e-16 ***
## adjusted cohort
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1207 on 1327 degrees of freedom
## (306 observations deleted due to missingness)
## Multiple R-squared: 0.5617, Adjusted R-squared: 0.5591
## F-statistic: 212.6 on 8 and 1327 DF, p-value: < 2.2e-16
```

- Email me: mjs26@pdx.edu
- Github: https://github.com/mikesmith2468/pnairp_ipeds_presentation
 - These slides
 - Installation instructions for ipeds
 - Code for all the analyses
 - Downloadable R data files for IPEDS back to 2011-12, plus their documentation