Importing Essential Libraries & Loading Dataset

```
In [1]:
          import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          df = pd.read csv("Iris.csv")
In [2]:
                sepal_length sepal_width petal_length petal_width
Out[2]:
                                                                       species
             0
                         5.1
                                      3.5
                                                    1.4
                                                                  0.2
                                                                        setosa
                                                                  0.2
                                                                        setosa
             2
                         4.7
                                       3.2
                                                                  0.2
                                                    1.3
                                                                        setosa
                         4.6
                                       3.1
                                                                  0.2
                                                                        setosa
                                                                  0.2
             4
                         5.0
                                       3.6
                                                    1.4
                                                                        setosa
                         6.7
                                       3.0
                                                    5.2
          145
                                                                      virginica
          146
                         6.3
                                       2.5
                                                    5.0
                                                                      virginica
                         6.5
          147
                                      3.0
                                                    5.2
                                                                      virginica
                         6.2
          148
                                       3.4
                                                    5.4
                                                                       virginica
          149
                         5.9
                                      3.0
                                                    5.1
                                                                      virginica
```

150 rows × 5 columns

Exploring the dataset

```
In [3]:
           df.head()
Out[3]:
              sepal_length
                            sepal_width petal_length
                                                          petal_width
                                                                        species
           0
                                      3.5
                        5.1
                                                     1.4
                                                                   0.2
                                                                         setosa
           1
                        4.9
                                      3.0
                                                     1.4
                                                                   0.2
                                                                         setosa
           2
                        4.7
                                      3.2
                                                     1.3
                                                                   0.2
                                                                         setosa
                        4.6
                                      3.1
                                                     1.5
                                                                   0.2
                                                                         setosa
                        5.0
                                      3.6
                                                     1.4
                                                                   0.2
                                                                         setosa
           df.tail()
In [4]:
```

out[4]:sepal_lengthsepal_widthpetal_lengthpetal_widthspecies1456.73.05.22.3virginica

```
virginica
        148
                    6.2
                               3.4
                                          5.4
                                                    2.3
                                                        virginica
        149
                    5.9
                               3.0
                                          5.1
                                                    1.8 virginica
        df.shape
In [5]:
        (150, 5)
Out[5]:
        df.size
In [6]:
        750
Out[6]:
        df.columns
In [7]:
        Index(['sepal length', 'sepal width', 'petal length', 'petal width',
Out[7]:
                'species'],
              dtype='object')
In [8]:
        df.values
        array([[5.1, 3.5, 1.4, 0.2, 'setosa'],
Out[8]:
               [4.9, 3.0, 1.4, 0.2, 'setosa'],
               [4.7, 3.2, 1.3, 0.2, 'setosa'],
               [4.6, 3.1, 1.5, 0.2, 'setosa'],
               [5.0, 3.6, 1.4, 0.2, 'setosa'],
               [5.4, 3.9, 1.7, 0.4, 'setosa'],
               [4.6, 3.4, 1.4, 0.3, 'setosa'],
               [5.0, 3.4, 1.5, 0.2, 'setosa'],
               [4.4, 2.9, 1.4, 0.2, 'setosa'],
               [4.9, 3.1, 1.5, 0.1, 'setosa'],
               [5.4, 3.7, 1.5, 0.2, 'setosa'],
               [4.8, 3.4, 1.6, 0.2, 'setosa'],
               [4.8, 3.0, 1.4, 0.1, 'setosa'],
               [4.3, 3.0, 1.1, 0.1, 'setosa'],
               [5.8, 4.0, 1.2, 0.2, 'setosa'],
               [5.7, 4.4, 1.5, 0.4, 'setosa'],
               [5.4, 3.9, 1.3, 0.4, 'setosa'],
               [5.1, 3.5, 1.4, 0.3, 'setosa'],
               [5.7, 3.8, 1.7, 0.3, 'setosa'],
               [5.1, 3.8, 1.5, 0.3, 'setosa'],
               [5.4, 3.4, 1.7, 0.2, 'setosa'],
               [5.1, 3.7, 1.5, 0.4, 'setosa'],
               [4.6, 3.6, 1.0, 0.2, 'setosa'],
               [5.1, 3.3, 1.7, 0.5, 'setosa'],
               [4.8, 3.4, 1.9, 0.2, 'setosa'],
               [5.0, 3.0, 1.6, 0.2, 'setosa'],
               [5.0, 3.4, 1.6, 0.4, 'setosa'],
               [5.2, 3.5, 1.5, 0.2, 'setosa'],
               [5.2, 3.4, 1.4, 0.2, 'setosa'],
               [4.7, 3.2, 1.6, 0.2, 'setosa'],
               [4.8, 3.1, 1.6, 0.2, 'setosa'],
               [5.4, 3.4, 1.5, 0.4, 'setosa'],
               [5.2, 4.1, 1.5, 0.1, 'setosa'],
               [5.5, 4.2, 1.4, 0.2, 'setosa'],
               [4.9, 3.1, 1.5, 0.2, 'setosa'],
               [5.0, 3.2, 1.2, 0.2, 'setosa'],
               [5.5, 3.5, 1.3, 0.2, 'setosa'],
               [4.9, 3.6, 1.4, 0.1, 'setosa'],
               [4.4, 3.0, 1.3, 0.2, 'setosa'],
               [5.1, 3.4, 1.5, 0.2, 'setosa'],
               [5.0, 3.5, 1.3, 0.3, 'setosa'],
```

146

147

6.3

6.5

2.5

3.0

5.0

5.2

1.9

2.0

virginica

```
[4.5, 2.3, 1.3, 0.3, 'setosa'],
[4.4, 3.2, 1.3, 0.2, 'setosa'],
[5.0, 3.5, 1.6, 0.6, 'setosa'],
[5.1, 3.8, 1.9, 0.4, 'setosa'],
[4.8, 3.0, 1.4, 0.3, 'setosa'],
[5.1, 3.8, 1.6, 0.2, 'setosa'],
[4.6, 3.2, 1.4, 0.2, 'setosa'],
[5.3, 3.7, 1.5, 0.2, 'setosa'],
[5.0, 3.3, 1.4, 0.2, 'setosa'],
[7.0, 3.2, 4.7, 1.4, 'versicolor'],
[6.4, 3.2, 4.5, 1.5, 'versicolor'],
[6.9, 3.1, 4.9, 1.5, 'versicolor'],
[5.5, 2.3, 4.0, 1.3, 'versicolor'],
[6.5, 2.8, 4.6, 1.5, 'versicolor'],
[5.7, 2.8, 4.5, 1.3, 'versicolor'],
[6.3, 3.3, 4.7, 1.6, 'versicolor'],
[4.9, 2.4, 3.3, 1.0, 'versicolor'],
[6.6, 2.9, 4.6, 1.3, 'versicolor'],
[5.2, 2.7, 3.9, 1.4, 'versicolor'],
[5.0, 2.0, 3.5, 1.0, 'versicolor'],
[5.9, 3.0, 4.2, 1.5, 'versicolor'],
[6.0, 2.2, 4.0, 1.0, 'versicolor'],
[6.1, 2.9, 4.7, 1.4, 'versicolor'],
[5.6, 2.9, 3.6, 1.3, 'versicolor'],
[6.7, 3.1, 4.4, 1.4, 'versicolor'],
[5.6, 3.0, 4.5, 1.5, 'versicolor'],
[5.8, 2.7, 4.1, 1.0, 'versicolor'],
[6.2, 2.2, 4.5, 1.5, 'versicolor'],
[5.6, 2.5, 3.9, 1.1, 'versicolor'],
[5.9, 3.2, 4.8, 1.8, 'versicolor'],
[6.1, 2.8, 4.0, 1.3, 'versicolor'],
[6.3, 2.5, 4.9, 1.5, 'versicolor'],
[6.1, 2.8, 4.7, 1.2, 'versicolor'],
[6.4, 2.9, 4.3, 1.3, 'versicolor'],
[6.6, 3.0, 4.4, 1.4, 'versicolor'],
[6.8, 2.8, 4.8, 1.4, 'versicolor'],
[6.7, 3.0, 5.0, 1.7, 'versicolor'],
[6.0, 2.9, 4.5, 1.5, 'versicolor'],
[5.7, 2.6, 3.5, 1.0, 'versicolor'],
[5.5, 2.4, 3.8, 1.1, 'versicolor'],
[5.5, 2.4, 3.7, 1.0, 'versicolor'],
[5.8, 2.7, 3.9, 1.2, 'versicolor'],
[6.0, 2.7, 5.1, 1.6, 'versicolor'],
[5.4, 3.0, 4.5, 1.5, 'versicolor'],
[6.0, 3.4, 4.5, 1.6, 'versicolor'],
[6.7, 3.1, 4.7, 1.5, 'versicolor'],
[6.3, 2.3, 4.4, 1.3, 'versicolor'],
[5.6, 3.0, 4.1, 1.3, 'versicolor'],
[5.5, 2.5, 4.0, 1.3, 'versicolor'],
[5.5, 2.6, 4.4, 1.2, 'versicolor'],
[6.1, 3.0, 4.6, 1.4, 'versicolor'],
[5.8, 2.6, 4.0, 1.2, 'versicolor'],
[5.0, 2.3, 3.3, 1.0, 'versicolor'],
[5.6, 2.7, 4.2, 1.3, 'versicolor'],
[5.7, 3.0, 4.2, 1.2, 'versicolor'],
[5.7, 2.9, 4.2, 1.3, 'versicolor'],
[6.2, 2.9, 4.3, 1.3, 'versicolor'],
[5.1, 2.5, 3.0, 1.1, 'versicolor'],
[5.7, 2.8, 4.1, 1.3, 'versicolor'],
[6.3, 3.3, 6.0, 2.5, 'virginica'],
[5.8, 2.7, 5.1, 1.9, 'virginica'],
[7.1, 3.0, 5.9, 2.1, 'virginica'],
[6.3, 2.9, 5.6, 1.8, 'virginica'],
[6.5, 3.0, 5.8, 2.2, 'virginica'],
[7.6, 3.0, 6.6, 2.1, 'virginica'],
```

[4.9, 2.5, 4.5, 1.7, 'virginica'],

```
[7.2, 3.6, 6.1, 2.5, 'virginica'],
               [6.5, 3.2, 5.1, 2.0, 'virginica'],
               [6.4, 2.7, 5.3, 1.9, 'virginica'],
               [6.8, 3.0, 5.5, 2.1, 'virginica'],
               [5.7, 2.5, 5.0, 2.0, 'virginica'],
               [5.8, 2.8, 5.1, 2.4, 'virginica'],
               [6.4, 3.2, 5.3, 2.3, 'virginica'],
               [6.5, 3.0, 5.5, 1.8, 'virginica'],
               [7.7, 3.8, 6.7, 2.2, 'virginica'],
               [7.7, 2.6, 6.9, 2.3, 'virginica'],
               [6.0, 2.2, 5.0, 1.5, 'virginica'],
               [6.9, 3.2, 5.7, 2.3, 'virginica'],
               [5.6, 2.8, 4.9, 2.0, 'virginica'],
               [7.7, 2.8, 6.7, 2.0, 'virginica'],
               [6.3, 2.7, 4.9, 1.8, 'virginica'],
               [6.7, 3.3, 5.7, 2.1, 'virginica'],
               [7.2, 3.2, 6.0, 1.8, 'virginica'],
               [6.2, 2.8, 4.8, 1.8, 'virginica'],
               [6.1, 3.0, 4.9, 1.8, 'virginica'],
               [6.4, 2.8, 5.6, 2.1, 'virginica'],
               [7.2, 3.0, 5.8, 1.6, 'virginica'],
               [7.4, 2.8, 6.1, 1.9, 'virginica'],
               [7.9, 3.8, 6.4, 2.0, 'virginica'],
               [6.4, 2.8, 5.6, 2.2, 'virginica'],
               [6.3, 2.8, 5.1, 1.5, 'virginica'],
               [6.1, 2.6, 5.6, 1.4, 'virginica'],
               [7.7, 3.0, 6.1, 2.3, 'virginica'],
               [6.3, 3.4, 5.6, 2.4, 'virginica'],
               [6.4, 3.1, 5.5, 1.8, 'virginica'],
               [6.0, 3.0, 4.8, 1.8, 'virginica'],
               [6.9, 3.1, 5.4, 2.1, 'virginica'],
               [6.7, 3.1, 5.6, 2.4, 'virginica'],
               [6.9, 3.1, 5.1, 2.3, 'virginica'],
               [5.8, 2.7, 5.1, 1.9, 'virginica'],
               [6.8, 3.2, 5.9, 2.3, 'virginica'],
               [6.7, 3.3, 5.7, 2.5, 'virginica'],
               [6.7, 3.0, 5.2, 2.3, 'virginica'],
               [6.3, 2.5, 5.0, 1.9, 'virginica'],
               [6.5, 3.0, 5.2, 2.0, 'virginica'],
               [6.2, 3.4, 5.4, 2.3, 'virginica'],
               [5.9, 3.0, 5.1, 1.8, 'virginica']], dtype=object)
In [9]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 5 columns):
           Column
                          Non-Null Count Dtype
           sepal length 150 non-null
                                           float64
           sepal width
                         150 non-null
                                          float64
             petal length 150 non-null
                                           float64
            petal width 150 non-null
                                           float64
             species
                           150 non-null
                                           object
        dtypes: float64(4), object(1)
        memory usage: 6.0+ KB
```

Describing the dataset

1

3

[7.3, 2.9, 6.3, 1.8, 'virginica'], [6.7, 2.5, 5.8, 1.8, 'virginica'],

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Exploratory Data Analysis

Checking for null values

Out[10]:

Out[15]:

```
In [11]:
         df.isnull().sum()
         sepal length
Out[11]:
         sepal width
         petal length
         petal width
         species
         dtype: int64
         Checking for duplicate values
         df.duplicated().sum()
In [12]:
Out[12]:
         Duplicated Value
         df[df.duplicated()]
In [13]:
              sepal_length sepal_width petal_length petal_width
Out[13]:
                                                             species
          142
                      5.8
                                  2.7
                                             5.1
                                                         1.9 virginica
         Dropping duplicated value
          df.drop duplicates(inplace = True)
In [14]:
          df.duplicated().sum()
In [15]:
```

Checking values under the species column

```
In [16]: df['species'].unique()
Out[16]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
```

Visualization using Seaborn

```
In [17]: ax = sns.barplot(x = "species", y = "sepal_length", data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [18]: ax = sns.barplot(x = "species", y = "sepal_width", data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [20]: ax = sns.barplot(x = "species", y = "petal_width", data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```


In [21]: sns.pairplot(df, hue = 'species')

 $\label{eq:out_21} {\tt Out[21]:} \\ {\tt <seaborn.axisgrid.PairGrid at 0x1e054747e10>} \\$

Mapping the values under the species column

```
In [24]: df.corr()
```

	sepal_length	sepal_width	petal_length	petal_width	species
sepal_length	1.000000	-0.118129	0.873738	0.820620	0.786971
sepal_width	-0.118129	1.000000	-0.426028	-0.362894	-0.422987
petal_length	0.873738	-0.426028	1.000000	0.962772	0.949402
petal_width	0.820620	-0.362894	0.962772	1.000000	0.956514
species	0.786971	-0.422987	0.949402	0.956514	1.000000

```
In [25]: sns.heatmap(df.corr(), annot = True)
```

Out[25]: <Axes: >

Out[24]:

Machine Learning Begins!!

3.0

3.2

4.9

4.7

2

0.2

0.2

1.4

1.3

3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
•••				
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

149 rows × 4 columns

```
In [28]: y
```

Out[28]: species

149 rows × 1 columns

In [29]: #train test split

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25)

In [30]: x_train

Out[30]:

	sepai_iengtn	sepai_widtn	petal_lengtn	petai_widtn
16	5.4	3.9	1.3	0.4
81	5.5	2.4	3.7	1.0
44	5.1	3.8	1.9	0.4
127	6.1	3.0	4.9	1.8
122	7.7	2.8	6.7	2.0
•••				
137	6.4	3.1	5.5	1.8

148	6.2	3.4	5.4	2.3
93	5.0	2.3	3.3	1.0
40	5.0	3.5	1.3	0.3
145	6.7	3.0	5.2	2.3

111 rows × 4 columns

In [31]: x_test

Out[31]:

_				
	sepal_length	sepal_width	petal_length	petal_width
5	5.4	3.9	1.7	0.4
25	5.0	3.0	1.6	0.2
144	6.7	3.3	5.7	2.5
90	5.5	2.6	4.4	1.2
133	6.3	2.8	5.1	1.5
77	6.7	3.0	5.0	1.7
116	6.5	3.0	5.5	1.8
65	6.7	3.1	4.4	1.4
30	4.8	3.1	1.6	0.2
119	6.0	2.2	5.0	1.5
111	6.4	2.7	5.3	1.9
64	5.6	2.9	3.6	1.3
37	4.9	3.6	1.4	0.1
128	6.4	2.8	5.6	2.1
98	5.1	2.5	3.0	1.1
114	5.8	2.8	5.1	2.4
126	6.2	2.8	4.8	1.8
94	5.6	2.7	4.2	1.3
54	6.5	2.8	4.6	1.5
140	6.7	3.1	5.6	2.4
32	5.2	4.1	1.5	0.1
7	5.0	3.4	1.5	0.2
135	7.7	3.0	6.1	2.3
10	5.4	3.7	1.5	0.2
22	4.6	3.6	1.0	0.2
84	5.4	3.0	4.5	1.5
85	6.0	3.4	4.5	1.6
9	4.9	3.1	1.5	0.1
6	4.6	3.4	1.4	0.3

91	6.1	3.0	4.6	1.4
99	5.7	2.8	4.1	1.3
108	6.7	2.5	5.8	1.8
97	6.2	2.9	4.3	1.3
59	5.2	2.7	3.9	1.4
106	4.9	2.5	4.5	1.7
79	5.7	2.6	3.5	1.0
1	4.9	3.0	1.4	0.2
36	5.5	3.5	1.3	0.2

In [32]: y_train

111 rows × 1 columns

In [33]: y_test

```
111
           2
 64
           1
 37
           0
128
           2
 98
           1
114
           2
           2
126
 94
           1
 54
           1
140
           2
 32
           0
  7
           0
135
           2
 10
           0
 22
           0
 84
 85
           1
  9
           0
  6
           0
 91
 99
           1
           2
108
 97
           1
 59
           1
106
           2
 79
           1
  1
           0
 36
           0
```

```
In [34]: from sklearn.ensemble import RandomForestClassifier
    rf = RandomForestClassifier(random_state = 42)
    rf
```

```
Out[34]: 

RandomForestClassifier

RandomForestClassifier(random_state=42)
```

```
import time
from sklearn.model_selection import GridSearchCV

np.random.seed(42)
start = time.time()

param_dict = {'max_depth': [2,3,4,5],
```

```
'max features': ['auto', 'sqrt', 'log2', None],
                       'criterion': ['gini', 'entropy']}
         cv rf = GridSearchCV(rf, cv = 10, param grid = param dict, n jobs = 3)
        cv rf.fit(x train, y train)
        print("Best Parameters: ", cv_rf.best_params_)
         end = time.time()
        print('Time taken: %0.2f'%(end-start))
        Best Parameters: {'bootstrap': True, 'criterion': 'gini', 'max depth': 3, 'max feature
        s': 'auto'}
        Time taken: 47.09
        C:\Users\Administrator\anaconda3\Lib\site-packages\sklearn\model selection\ search.py:90
        9: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Ple
        ase change the shape of y to (n samples,), for example using ravel().
          self.best estimator .fit(X, y, **fit params)
        C:\Users\Administrator\anaconda3\Lib\site-packages\sklearn\ensemble\ forest.py:424: Futu
        reWarning: `max features='auto'` has been deprecated in 1.1 and will be removed in 1.3.
        To keep the past behaviour, explicitly set `max features='sqrt'` or remove this paramete
        r as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
In [36]: rf.set params(criterion = 'gini', max features = 'log2', max depth = 2)
Out[36]:
                                 RandomForestClassifier
        RandomForestClassifier(max_depth=2, max_features='log2', random_state=42)
In [37]: rf.fit(x train, y train)
        C:\Users\Administrator\AppData\Local\Temp\ipykernel 1088\3512478466.py:1: DataConversion
        Warning: A column-vector y was passed when a 1d array was expected. Please change the sh
        ape of y to (n samples,), for example using ravel().
          rf.fit(x train, y train)
Out[37]:
                                 RandomForestClassifier
        RandomForestClassifier(max_depth=2, max_features='log2', random_state=42)
In [38]: y pred = rf.predict(x test)
        y_pred
        array([0, 0, 2, 1, 2, 2, 2, 1, 0, 1, 2, 1, 0, 2, 1, 2, 2, 1, 1, 2, 0, 0,
Out[38]:
               2, 0, 0, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0], dtype=int64)
In [39]: from sklearn.metrics import classification report, accuracy score, confusion matrix
         accuracy rf = accuracy score(y pred, y test)
         accuracy rf
        0.9210526315789473
Out[39]:
In [40]: print(classification report(y pred, y test))
                      precision recall f1-score
                                                     support
                                          1.00
                           1.00
                                    1.00
                                                           12
                   1
                           0.93
                                    0.87
                                               0.90
                                                           15
                          0.83
                                     0.91
                                              0.87
                                                           11
                                                           38
            accuracy
                                              0.92
           macro avg
                         0.92 0.93
                                              0.92
                                                           38
```

'bootstrap': [True, False],

```
weighted avg 0.92 0.92 0.92 38
```

Out[42]: <Axes: >

