پاسخ تمرین سری اول

کات مهم

• در صورتی که بهدلیل مشکل و اشتباه تایپی موجود در نسخهٔ اولیهٔ سوالات موفق به رسیدن به پاسخ نهایی نشده باشید این موضوع در تصحیح لحاظ خواهد شد.

١ پاسخ سؤال اول

تابع داده شده f(t) ضابطهای است و به شکل زیر تعریف شده است:

$$f(t) = \begin{cases} \frac{24}{a^3}t, & 0 \le t \le \frac{a}{2} \\ -\frac{24}{a^3}t + \frac{24}{a^2}, & \frac{a}{2} \le t \le a \\ 0, & t > a \end{cases}$$

اكنون تبديل لاپلاس هر قسمت را محاسبه كرده و نتايج را جمع مىكنيم.

 $0 \leq t \leq rac{a}{2}$ مرحله ۱: تبدیل لاپلاس بخش اول

برای $t \leq 2$ تابع به شکل زیر است: $0 \leq t \leq \frac{a}{2}$

$$f(t) = \frac{24}{a^3}t$$

تبدیل لاپلاس تابع t به شکل زیر است:

$$\mathcal{L}\{t\} = \frac{1}{s^2}$$

بنابراین تبدیل لاپلاس $f(t)=rac{24}{a^3}t$ به شکل زیر خواهد بود:

$$F_1(s) = \frac{24}{a^3} \cdot \frac{1}{s^2}$$

از آنجا که این قسمت فقط برای $u(t)-u\left(t-rac{a}{2}
ight)$ تعریف شده است، آن را در تابع پله واحد $u(t)-u\left(t-rac{a}{2}
ight)$ ضرب میکنیم:

$$F_1(s) = \frac{24}{a^3} \cdot \frac{1}{s^2} \left(1 - e^{-\frac{as}{2}} \right)$$

 $\frac{a}{2} \leq t \leq a$ مرحله ۲: تبدیل لاپلاس بخش دوم

برای $a \leq t \leq a$ تابع به شکل زیر است:

$$f(t) = -\frac{24}{a^3}t + \frac{24}{a^2}$$

مى توان اين تابع را به دو بخش تقسيم كرد: $**:-\frac{24}{a^3}t$

$$\mathcal{L}\left\{-\frac{24}{a^3}t\right\} = -\frac{24}{a^3} \cdot \frac{1}{s^2}$$

**: $\frac{24}{a^2}$ لاپلاس **

$$\mathcal{L}\left\{\frac{24}{a^2}\right\} = \frac{24}{a^2} \cdot \frac{1}{s}$$

بنابراین تبدیل لاپلاس این بخش به شکل زیر خواهد بود:

$$F_2(s) = \left(-\frac{24}{a^3} \cdot \frac{1}{s^2} + \frac{24}{a^2} \cdot \frac{1}{s}\right) e^{-\frac{as}{2}}$$

مرحله ٣: تبديل لايلاس كلى

با جمع كردن نتايج هر دو بخش، به شكل زير دست خواهيم يافت:

$$F(s) = F_1(s) + F_2(s)$$

با جایگزینی عبارات، تبدیل لاپلاس کلی به شکل زیر خواهد بود:

$$F(s) = \frac{24}{a^3} \cdot \frac{1}{s^2} \left(1 - e^{-\frac{as}{2}} \right) + \left(-\frac{24}{a^3} \cdot \frac{1}{s^2} + \frac{24}{a^2} \cdot \frac{1}{s} \right) e^{-\frac{as}{2}}$$

این تبدیل لاپلاس تابع ضابطهای داده شده است.

۲ پاسخ سؤال دوم

١.٢ الف)

يكي :
$$V_{in}=R_1.I+\overbrace{\frac{1}{\frac{1}{Ls}+\frac{1}{R}+Cs}}^{A}$$
 . $I+V_{emf}$ (۱)

معادلات مکانیکی :
$$au_m = b.\omega + Js.\omega + rac{k}{s}.\omega + T_L$$

مىدانيم:

$$V_{emf} = K_v.\omega$$
 $au_m = K_m.I$ ($^{\circ}$)

حال مقادیر ۳ را در ۱ و ۲ جایگذاری میکنیم:

الكتريكى :
$$V_{in}=R_1.I+rac{1}{rac{1}{Ls}+rac{1}{R}+Cs}.I+K_v.\omega$$
 (۴)

معادلات مکانیکی :
$$K_m.I = b.\omega + Js.\omega + \frac{k}{s}.\omega + T_L$$
 (۵)

در این بخش برای مدلسازی از حوزه لاپلاس استفاده شد. اگر مدلسازی با استفاده از معادلات دیفرانسیل هم انجام شود، قابل پذیرش است.

۲.۲ ب)

بلوک دیاگرام سیستم به صورت زیر میباشد:

شكل ۱: نمودار بلوكي موتور dc داده شده

٣.٢ ج)

در این قسمت باید از معادله α ، α محاسبه شود. (از آنجایی که خواسته سوال این است که θ بر حسب R_1 محاسبه شود، پس باید از تاثیر T_L صرف نظر کنیم.)

$$I = \frac{Js + b + \frac{1}{s}}{K_m} \cdot \omega \tag{9}$$

معادله ۶ را در معادله ۴ جایگذاری میکنیم.

$$V_{in} = \left((R_1 + A) \frac{Js + b + \frac{k}{s}}{K_m} + K_v \right) \omega \tag{Y}$$

سپس $s.\theta$ را جایگذاری میکنیم:

$$V_{in} = \left((R_1 + A) \frac{Js + b + \frac{k}{s}}{K_m} + K_v \right) s.\theta \tag{(A)}$$

در صورت سوال، ولتاژ ورودي را به صورت يک تابع پله فرض شده است:

$$\frac{1}{s} = \left((R_1 + A) \left(Js^2 + bs + k \right) \frac{1}{K_m} + K_v s \right) \theta \tag{4}$$

٣ پاسخ سؤال سوم

. در این سوال، باید نمودار جریان سیگنال (SFG) را رسم کنیم، و بهره و بهره را محاسبه کنیم.

مرحله ۱: رسم SFG

در این مرحله، شما باید نمودار جریان سیگنال (SFG) را رسم نمایید.

شكل ٢: نمودار جريان سيگنال

 $rac{C(s)}{R(s)}$ مرحله ۲: محاسبه بهره

اکنون بهره $\frac{C(s)}{R(s)}$ را با استفاده از فرمول میسون محاسبه میکنیم.

فرمول ميسون

فرمول میسون به شرح زیر است:

$$\frac{C(s)}{R(s)} = \frac{\sum P_k \Delta_k}{\Delta}$$

مرحله ٣: محاسبه مسيرها و حلقهها

یک مسیر رو به جلو P_1 داریم:

$$P_1 = G_1 G_2 G_3$$

دترمینان مسیر $\Delta_1=1$ است.

در مرحله بعد حلقهها را محاسبه میکنیم:

$$L_1 = 1 \cdot G_2 \cdot (-H_2) . \mathsf{1}$$

$$L_2 = G_1 \cdot 1 \cdot G_2 \cdot (-H_1) \cdot \Upsilon$$

$$L_3 = G_2 \cdot G_3 \cdot (-H_3) \cdot \Upsilon$$

$$L_4 = G_1 \cdot 1 \cdot G_2 \cdot G_3 \cdot (-1) \cdot \Upsilon$$

 Δ مرحله Φ : محاسبه

دترمینان کل Δ به شرح زیر است:

$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4)$$

با جایگذاری مقادیر حلقهها در فرمول:

$$\Delta = 1 - (-G_2H_2 - G_1G_2H_1 - G_2G_3H_3 - G_1G_2G_3)$$

F مرحله Δ : محاسبه بهره

با استفاده از فرمول میسون، بهره کلی F را محاسبه میکنیم:

$$F = \frac{P_1 \Delta_1}{\Delta} = \frac{G_1 G_2 G_3}{1 - (-G_2 H_2 - G_1 G_2 H_1 - G_2 G_3 H_3 - G_1 G_2 G_3)}$$

قسمت ٢: حذف اثر اعوجاج

برای حذف اثر اعوجاج در سیستم، ابتدا باید $\frac{C}{D}$ را پیدا کرده و سپس آن را صفر کنیم.

 $\frac{C}{D}$ مرحله 1: محاسبه

بهره $\frac{C}{D}$ با استفاده از همان فرمول میسون به شرح زیر است:

$$\frac{C}{D} = \frac{P_1 \Delta_1}{\Delta} = \frac{G_2 G_3}{1 - (-G_2 H_2 - G_1 G_2 H_1 - G_2 G_3 H_3 - G_1 G_2 G_3)}$$

 $G_2G_3=0$ مرحله ۲: قرار دادن

قرار دادن G_2 به معنای حذف اعوجاج است، اما این غیرممکن است زیرا اگر G_3 یا G_3 صفر شوند، تابع اصلی صفر خواهد شد:

T = 0

بنابراین، حذف اثر اعوجاج در این سیستم غیرممکن است.

۴ پاسخ سؤال چهارم

نمودار بلوکی داده شده نیاز به یافتن تابع انتقال $rac{Y_5}{Y_1}=rac{Y_5}{Y_1}$ دارد. پاسخ به صورت عبارت زیر است:

$$T = \frac{G_1G_2G_3 + G_4G_3}{1 + G_1H_1 + G_3H_2 + H_4 + G_1G_2G_3H_3 + G_1H_1G_3H_2 + G_1H_1H_4}$$

این سوال را می توان با ساده سازی نمودار بلوکی یا استفاده از روش میسون حل کرد.

روش ميسون

برای حل این سوال از روش میسون داریم:

مسيرهاي پيشرو

این سیستم دو مسیر پیشرو دارد:

 $P_1 = G_1 G_2 G_3$

 $P_2 = G_4 G_3$

حلقه ها

این سیستم چهار حلقه مستقل دارد:

 $L_1 = -G_1 H_1$

 $L_2 = -G_3 H_2$

 $L_3 = -H_4$

 $L_4 = -G_1 G_2 G_3 H_3$

حلقه های دو به دو مستقل

دو حلقه دو به دو مستقل وجود دارد:

 $L_1 L_2 = G_1 H_1 H_2 G_3$

 $L_1L_3 = H_1G_1H_4$

 Δ_i محاسبه

با حذف مسیرهای پیشرو و حلقه های باقی مانده :

 $\Delta_1 = 1$

 $\Delta_2 = 1$

 Δ : محاسبه نهایی

$$\Delta = 1 + G_1H_1 + G_3H_2 + H_4 + G_1G_2G_3H_3 + G_1H_1G_3H_2 + G_1H_1H_4$$

تابع تبديل نهايي

تابع تبدیل نهایی T بر اساس فرمول میسون :

$$T = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta}$$

$$T = \frac{G_1 G_2 G_3 + G_4 G_3}{1 + G_1 H_1 + G_3 H_2 + H_4 + G_1 G_2 G_3 H_3 + G_1 H_1 G_3 H_2 + G_1 H_1 H_4}$$

پس از ساده سازی بلوک دیارگرام و یا روش میسون با توجه به دستورات متلب تابع تبدیل را ساده سازی میکنیم و مقادیر خواسته شده را بدست می آوریم:

دستورات MATLAB

```
% Define the symbolic variable 's'
s = tf('s');

% Define each transfer function
G1 = 1/s;
G2 = 2*s + 1;
G3 = 1/(s^2 + 1);
G4 = s/(s + 1);

H1 = 3/s;
H2 = (s - 1)/(s + 3);
H3 = s/s(s^2 + 3*s + 1);
H4 = 1/(s + 2);

% Define the numerator and denominator of the transfer function
numerator = G1 * G2 * G3 + G4 * G3;
denominator = 1 + G1 * H1 + G3 * H2 + H4 + G1 * G2 * G3 * H3 + (-H1 * G1)*(-H2 * G2) + (-H1 * G1)*(-H4);

% Calculate the overall transfer functioncx
T = numerator / denominator;

% Display the overall transfer function
disp('overall Transfer Function:');
T

% Calculate and display the poles
poles = pole(T);
disp('poles of the Transfer Function:');
disp('poles of the Transfer Function:');
disp('zeros of the Tran
```

شکل ۳: MATLAB CODES

T تابع انتقال

پس از حل نمودار بلوکی و اجرای آن ،MATLAB تابع انتقال T به شکل زیر بدست می آید: صورت T:

$$3s^{21} + 42s^{20} + 253s^{19} + 886s^{18} + 2111s^{17} + 3850s^{16} + 5710s^{15} + 6930s^{14} + 6985s^{13} + 5920s^{12} + 4073s^{11} + 2272s^{10} + 973s^{9} + 276s^{8} + 36s^{7}$$
(\cdot\cdot\cdot)

:Tمخرج

$$s^{23} + 21s^{22} + 164s^{21} + 699s^{20} + 2006s^{19} + 4494s^{18} + 8316s^{17} + 12822s^{16} + 17032s^{15} + 19659s^{14} + 19484s^{13} + 17067s^{12} + 12746s^{11} + 8148s^{10} + 4484s^{9} + 1860s^{8} + 663s^{7} + 126s^{6}$$
 (11)

قطبهاي تابع انتقال

قطبهای تابع انتقال T به صورت زیر است:

$$0,0,0,0,0,0,-9.8700,-3.0000,-2.6328,-2.1672,-2.0000,-1.0000,-0.0212+\\ 1.1912i,-0.0212-1.1912i,0+1.0000i,0-1.0000i,-0+1.0000i,-0-1.0000i,0+\\ 1.0000i,0-1.0000i,0.0486+0.8248i,0.0486-0.8248i,-0.3848$$

صفرهاي تابع انتقال

صفرهای تابع انتقال T به صورت زیر است:

$$0,0,0,0,0,0,0,-3.0000,-3.0000,-2.6180,-2.0000,-2.0000,\\ 0+1.0000i,0-1.0000i,-0+1.0000i,-0-1.0000i,\\ 0+1.0000i,0-1.0000i,-0.5000+0.2887i,-0.5000-0.2887i,-0.3820$$