Contents

Derivatives of inverse functions	3
Derivatives of inverse trigonometric functions	3
General expression for derivative of inverse sine trigonometric functions	3
General expression for derivative of any inverse of any function	3
Formulae for derivative of standard trigonometric functions	4
Inverse sine	4
Inverse cosine	4
Inverse tangent	4
Inverse cotangent	4
Inverse secant	5
Inverse cscant	5
Euler's number	5
Expression for euler's number in terms of $x \to 0 \ldots \ldots \ldots \ldots$	5
Expression for euler's number in terms of $n \to \infty$	5
Expression for euler's number in terms of binomial expansion	5
Identities in euler's number	6
Expression for hyperbolic sine	6
Expression for hyperbolic cosine	6
Expression for hyperbolic tangent	6
Expression for hyperbolic cotangent	6
Expression for hyperbolic secant	6
Expression for hyperbolic cscant	7
General relation of trigonometric identities and hyperbolic identities	7
Trigonometric identities	7
Expression for sine and cosine in terms of their square	7
Expression for tangent in terms of secant	7
Expression for cotangent in terms of cscant	7
Expression for $\cos 2 heta$ in terms of \sin and \cos	8
Expression for $\sin 2\theta$ in terms of \sin and \cos	8
Expression for $\cos 2 heta$ in terms of $ an$	8
Expression for $\sin 2\theta$ in terms of $ an$	8
Expression for $\tan 2\theta$ in terms of $\tan 2\theta$	8

Hyperbolic identities	9
Expression for hyperbolic sine and hyperbolic cosine in terms of their square	9
Expression for hyperbolic tangent in terms of secant	9
Expression for hyperbolic cotangent in terms of cscant	9
Expression for $cosh(2x)$ in terms of $cosh(x)$ and $sinh(x)$	9
Expression for $sinh(2x)$ in terms of $cosh(x)$ and $sinh(x)$	9
Expression for $cosh(2x)$ in terms of $tanh(x)$	10
Expression for $sinh(2x)$ in term of $tanh(x)$	10
Expression for $tanh(2x)$ in terms of $tanh(x)$	10

Derivatives of inverse functions

Derivatives of inverse trigonometric functions

Derivative of inverse sine

• The function $y = \sin^{-1}(x)$.

$$\frac{dx}{dx} = \frac{d\sin(y)}{dy}\frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$
 derivative of sine functiony

General expression for derivative of inverse sine trigonometric functions

The general expression for derivative of inverse sine trigonometric function is

.

$$\frac{d\sin^{-1}(x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

General expression for derivative of any inverse of any function

- A function is taken f(x).
- A function is taken f(y).

Condition for application The condition for application of the general expression in inverse of any function is

- The derivative of function f(x) be equal to g(x) .

.

$$\frac{d}{dx}f(x) = g(x)$$

General expression for inverse

- The function $y = f^{-1}(x)$ is taken.
- ullet The general expression for inverse of a function y is expressed as

 $\frac{d}{dx}f^{-1}(x) = \frac{1}{g(y)}$

Formulae for derivative of standard trigonometric functions

Inverse sine

The expression for derivative of inverse sine is

•

$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$

Inverse cosine

The expression for derivative of inverse sine is

•

$$\frac{d}{dx}\cos^{-1}(x) = \frac{-1}{\sqrt{1-x^2}}$$

Inverse tangent

The expression for derivative of inverse tangent is

.

$$\frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2}$$

Inverse cotangent

The expression for derivative of inverse cotangent is

•

$$\frac{d}{dx}\cot^{-1}(x) = \frac{-1}{1+x^2}$$

Inverse secant

The expression for derivative of inverse secant is

•

$$\frac{d}{dx}\sec^{-1}(x) = \frac{1}{x\sqrt{1-x^2}}$$

Inverse cscant

The expression for derivative of inverse cscant is

•

$$\frac{d}{dx}\csc^{-1}(x) = \frac{-1}{x\sqrt{1-x^2}}$$

Euler's number

Expression for euler's number in terms of $x \to 0$

The expression for euler's number in terms of $x \to 0$ is

•

$$e = \lim_{x \to 0} = (1+x)^{\frac{1}{x}}$$

Expression for euler's number in terms of $n \to \infty$

The expression for euler's number in terms of $n \to \infty$ is

.

$$e = \lim_{h \to \infty} = (1 + \frac{1}{x})^n$$

Expression for euler's number in terms of binomial expansion

The expression for euler's number in terms of binomial expansion is

.

$$e = 1 + \frac{1}{1!} + \frac{2}{2!} + \frac{1}{3!} + \ldots + \infty$$

Identities in euler's number

Expression for hyperbolic sine

The expression for hyperbolic sine is

•

$$sinh(x) = \frac{e^x - e^{-x}}{2}$$

Expression for hyperbolic cosine

The expression for hyperbolic cosine is

•

$$cosh(x) = \frac{e^x + e^{-x}}{2}$$

Expression for hyperbolic tangent

The expression tangent hyperbolic is

.

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Expression for hyperbolic cotangent

The expression for hyperbolic cotangent is

•

$$coth(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Expression for hyperbolic secant

The expression for hyperbolic secant is

.

$$sech(x) = \frac{2}{e^x + e^{-x}}$$

Expression for hyperbolic cscant

The expression for hyperbolic cscant is

•

$$csch(x) = \frac{2}{e^x - e^{-x}}$$

General relation of trigonometric identities and hyperbolic identities

- The sign of operators is interchanged.
- The sign of operators is interchanged among trigonometric and hyperbolic identites
- A expression of $a\cos(x) + b\sin(x)$ in hyperbolic functions is reverted to

acosh(x) - bsinh(x)

Trigonometric identities

Expression for sine and cosine in terms of their square

The expression for sine and cosine in terms of their square is

•

$$\cos^2\theta + \sin^2\theta = 1$$

Expression for tangent in terms of secant

The expression for tangent in terms of secant is

$$1 + \tan^2 \theta = \sec^2 \theta$$

Expression for cotangent in terms of cscant

The expression for cotangent in terms of cscant is

$$\cot^2 \theta + 1 = \csc^2 \theta$$

Expression for $\cos 2\theta$ in terms of \sin and \cos

The expression for $\cos 2\theta$ in terms of \sin and \cos is

$$\cos 2\theta = \cos^2 - \sin^2$$

Expression for $\sin 2\theta$ in terms of \sin and \cos

The expression for $\sin 2\theta$ in terms of \sin and \cos is

$$\sin 2\theta = 2\sin(\theta)\cos(\theta)$$

Expression for $\cos 2\theta$ in terms of \tan

The expression for $\cos 2\theta$ in terms of \tan is

$$\cos(2\theta) = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

Expression for $\sin 2\theta$ in terms of \tan

The expression for $\sin 2\theta$ in terms of \tan is

$$\sin(2\theta) = \frac{2\tan\theta}{1 + \tan^2\theta}$$

Expression for $\tan 2\theta$ in terms of \tan

The expression for $\tan 2\theta$ in terms of \tan is

$$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2\theta}$$

Hyperbolic identities

Expression for hyperbolic sine and hyperbolic cosine in terms of their square

The expression for hyperbolic sine and hyperbolic cosine in terms of their square is

$$\cosh^2(x) - \sinh^2(x) = 1$$

Expression for hyperbolic tangent in terms of secant

The expression for hyperbolic tangent in terms of secant is

$$1 - \tanh^2 x = \operatorname{sech}^2(x)$$

Expression for hyperbolic cotangent in terms of cscant

The expression for hyperbolic cotangent in terms of cscant is

$$\coth^2(x) - 1 = \operatorname{csch}^2(x)$$

Expression for cosh(2x) in terms of cosh(x) and sinh(x)

The expression for cosh(2x) in terms of cosh and sinh is

$$\cosh(2x) = \cosh^2(x) + \sinh^2(x)$$

Expression for sinh(2x) **in terms of** cosh(x) **and** sinh(x)

The expression for sinh(2x) in terms of cosh and sinh is

$$\sinh(2x) = 2\sinh(x)\cosh(x)$$

Expression for cosh(2x) **in terms of** tanh(x)

The expression for $\cosh(2x)$ in terms of $\tanh(x)$ is

$$cosh(2x) = \frac{1 + tanh^2x}{1 - tanh^2x}$$

Expression for sinh(2x) **in term of** tanh(x)

The expression for sinh(2x) in terms of tanh(X) is

$$sinh(2x) = \frac{2tanh(x)}{1 + tanh^2(x)}$$

Expression for tanh(2x) in terms of tanh(x)

The expression for tanh(2x) in terms of tanh(X) is

$$tanh(2x) = \frac{2tanh(x)}{1 + tanh^2(x)}$$