Course Syllabus BIOSTAT 719 Generalized Linear Models

Fall 2024 3 Units/Credits

Instruction Mode: In person

Course Hours and Location:	Tuesdays and Thursdays, 3:05 PM – 4:20 PM (ET)		
	@Hock 10089		
Instructor:	Hwanhee Hong, Ph.D.		
	Associate Professor		
	Department of Biostatistics & Bioinformatics		
Office:	Hock Plaza, Room 11041		
Email:	hwanhee.hong@duke.edu		
Office Hours:	Thursdays, 4:20pm - 5:00pm (ET) @Hock 11041		
Teaching Assistants and	nts and Annabel Settle, second year B&B PhD student		
TA office hours: annabel.settle@duke.edu			
	Tuesdays, 4:20pm - 5:00pm (ET) @Hock 10092		
	Qi Wang, first year B&B PhD student		
	qi.wang@duke.edu		
	Wednesdays, 9:00am - 9:40am (ET) @Hock 10092		

I. Course Overview

Medical research requires ability to relate explanatory variables to an outcome variable. This course will provide tools needed to analyze such relationships for various types of outcome variables within a unified framework of generalized linear models. Observations are not always independent, and the course will discuss methods used to account for correlations within clusters of observations.

Prerequisites: BIOSTAT 701, BIOSTAT 702, BIOSTAT 705, BIOSTAT 706/706A or permission of Director of Graduate Studies.

II. Course Objectives and Student Learning Outcomes (SLOs)

The primary objectives and their SLOs are as follows:

- **Objective 1:** To have students understand theory and develop practical skills to perform regression analyses relating outcome with explanatory variables for a variety of outcome types.
 - **SLO 1.1:** Students should understand the basic theory of exponential family and generalized linear models (GLM) and their use in real data applications with various outcome types.
 - **SLO 1.2:** Students should be able to perform practical GLM analyses using R and SAS, identify parameters of interest, and carry out model-fitting, estimation, testing, and interpretation.

Objective 2: To have students understand theory and develop practical skills to perform statistical analysis with correlated observations.

SLO 2.1: Students should recognize longitudinal/clustered data in which correlations within clusters are expected.

SLO 2.2: Students should understand the basic theory of generalized linear mixed models (GLMM) often used to account for correlations within data clusters and perform practical analyses of clustered data with GLMM using R and SAS.

III. Course Textbooks/Software:

- Required Textbook: An Introduction to Generalized Linear Models, Fourth Edition (Chapman & Hall/CRC Texts in Statistical Science), Annette J. Dobson and Adrian Barnett. 2018.
- Recommended/Future Reading: Foundations of Linear and Generalized Linear Models, First Edition (Wiley Series in Probability and Statistics), Alan Agresti. 2015.
- **Software:** R, SAS.

IV. Learning Outcome Assessment and Letter Grading Scale

Assessment Methods	Points
Attendance and pop quiz	5%
Homework	20%
Midterm Exam	25%
Final Exam	30%
Group Research project	20%
Total	100%

Letter Grade	Point Proportion
A+	97 – 100
А	95 – 97
A-	90 – 95
B+	85 – 90
В	80 – 85
С	70 – 80
D	50 – 70
F	< 49

V. Course Requirements and Expectations

- <u>Lectures</u> will be conducted *in person* at regularly scheduled class times.
- There will be 9 weekly <u>homework assignments</u>. Homework assignments will be posted in Canvas. Homework is due at the beginning of the class on the due day and submitted through Canvas. If you cannot upload your homework to Canvas on time (e.g., due to medical or family emergency), email your homework to the TAs and instructor.
- The midterm and final exams will be in-class and allow one or two-page cheat sheet only.
- The group research project will require analysis of a data set, final report, and final presentation.

• <u>Pop quizzes</u> will be given without prior notice for the purpose of checking attendance and key topics of lectures. They will be in a simple form, such as yes/no or multiple-choice questions that you can answer in one minute. If you miss a class due to medical or family emergency, please let your TAs and instructor know it then pop quiz will be given via email.

VI. Course Policies

- Microsoft Teams will be used as a communication tool.
- Co-operation between students and learning from each other is encouraged. However, homework assignments are to be prepared *independently* by each student.
- Midterm and final exams should NOT be discussed with anyone.
- Late assignments will receive 10% deduction. If one cannot make a deadline, please let the instructor know in advance. Late assignments should be sent to the TAs and instructor via email.
- Students are NOT permitted to share any video from the class outside of the class.
- Students are *NOT permitted to solicit* class materials in previous years. This violates Student Conduct.
- Early or late exams will only be allowed for medical or family emergency (e.g., funerals) and you will need to provide valid proof.

VII. Artificial Intelligence Policies

- Students are allowed to use advanced automated tools (artificial intelligence or machine learning tools such as ChatGPT) on assignments in this course if that use is properly documented and credited.
- Students using AI should be transparent about their use. AI use must be acknowledged if you use it to assist with your homework or writing beyond spell-check or grammar suggestions. state it clearly.
- For example, text generated using ChatGPT-3 should include a citation such as: "Chat-GPT-3.
 (YYYY, Month DD of query). "Text of your query." Generated using OpenAI.
 https://chat.openai.com/" Material generated using other tools should follow a similar citation convention. See other examples here.
- Students using AI should conduct fact-checking and provide proper sources (e.g., academic papers) about AI-generated contents.
- Al-generated contents without proper acknowledgements or references will be treated as plagiarism.

VIII. Academic Integrity and Misconduct Statement

- Academic Integrity Statement
 - https://gradschool.duke.edu/policies-forms/standards-conduct/
 - https://studentaffairs.duke.edu/conduct/about-us/duke-community-standard
- Harassment, Sexual Misconduct, and Discrimination (Duke Office for Institutional Equity)
 - o https://oie.duke.edu/
 - o https://students.duke.edu/get-assistance/
- ASA Ethical Guidelines for Statistical Practice
 - o https://www.amstat.org/ASA/Your-Career/Ethical-Guidelines-for-Statistical-Practice.aspx

IX. Accommodation of Student Needs

Links to additional Information about Duke policies, updates related to COVID-19 and wellness resources:

- https://coronavirus.duke.edu/
- https://students.duke.edu/wellness/

X. Class and Department Emergency Checklist

Duke has developed guidelines for how to respond to dangerous incidents, including while teaching in a classroom or working in a laboratory.

- Class and Department Emergency Checklist
- <u>Duke's Emergency Management Website</u>

X. Course Schedule

(T=Tuesday; Th=Thursday; LN=Lecture Note; H=Homework)

Class No.	Date	Topics	Readings	Assignments
1	Aug 27 T	Introduction	LNO	
2	Aug 29 Th	Review of Linear Models	Chapter 1 LN1	H1
3	Sep 3 T	Exponential Family	Chapters 2 & 3 LN2	
4	Sep 5 Th	Exponential Family properties Generalized Linear Model (GLM)	Chapter 3 LN2, LN3	H1 due H2
5	Sep 10 T	Newton-Raphson algorithm and Method of Scoring	Chapter 4 LN3	
6	Sep 12 Th	GLM estimation	Chapter 5 LN3	H2 due H3
7	Sep 17 T	GLM estimation/inference	Chapter 5 LN3	
8	Sep 19 Th	Deviance and hypothesis testing	Chapter 5 LN3	H3 due H4
9	Sep 24 T	Deviance and hypothesis testing	Chapter 5 LN3	
10	Sep 26 Th	Logistic regression	Chapter 7 LN4	H4 due H5, H6*
11	Oct 1 T	Logistic regression	Chapter 7 LN4	
12	Oct 3 Th	Logistic regression further topics	Chapter 7 LN4	H5 due
13	Oct 8 T	Logistic regression further topics	Chapter 7 LN4	
14	Oct 10 Th	Poisson regression; Dispersion	Chapter 9 LN6	H6 due Practice Midterm, H7*
Fall br	eak Oct 14 - :	15		
	(Thursday) M – 4:20PM	Midterm Exam (in-class with	n one doble-sided	page of cheat sheet)

16	Oct 22	Midterm review		Group project out
	T	Group Research project overview		
17	Oct 24	Poisson regression; Dispersion	Chapter 9	
	Th		LN6	
18	Oct 29	Multilevel/Hierarchical/Mixed	Chapter 11	
	Т	effects models	LN7	
19	Oct 31	Multilevel/Hierarchical/Mixed	Chapter 11	H7 due
	Th	effects models	LN7	H8
20	Nov 5	Multilevel/Hierarchical/Mixed	Chapter 11	
	Т	effects models	LN7	
21	Nov 7	Multilevel/Hierarchical/Mixed	Chapter 11	H9*
	Th	effects models	LN7	
22	Nov 12	Nominal logistic regression	Chapter 8	
	Т		LN5	
23	Nov 14	Ordinal logistic regression	Chapter 8	H8 due
	Th		LN5	Group project report and
				slides due Nov 17
24	Nov 19	Research project presentations		
	Т			
25	Nov 21	Research project presentations		H9 due
	Th			
26	Nov 26	NO CLASS		
	Т			
Pading paried Nav 27 Dec 10				

Reading period Nov 27 – Dec 10

Two TA sessions will be offered During the reading period. Time and location TBD.

Dec 15 (Sunday)	Final Exam (in-class with two doble-sided pages of cheat sheet)
2 PM – 5 PM	https://registrar.duke.edu/student-resources/exam-schedules/

*This homework is long.