Network Flow - A study

Surya Raghav B

June 2024

1 The Problem

We have an abstraction of traffic flow in the form of flow networks. We have a source that generate traffic, a sink that absorb the traffic and edges with capacities that transmit the traffic.

1.1 Flow Networks

The traffic is referred to as the flow, an abstract entity. A flow network is a directed graph G = (V, E) with the following features.

- Each edge e has a capacity, a non-negative number c_e .
- Single source node $s \in V$
- Single sink node $t \in V$

Assumptions

- No edge enter the source and no edge leaves the sink.
- Atleast one edge is incident to each node.
- All capacities are integers.

1.2 Defining Flow

s-t flow is a function f, mapping each edge to a non-negative real number $f: E \to R^+$ satisfying the following.

- 1. (Capacity constraint) For each $e \in E$, $0 \le f(e) \le c_e$.
- 2. (Conservation constraint) For each node \boldsymbol{v} other than s and t

$$\sum_{e \ into \ v} f(e) = \sum_{e \ out \ of \ v} f(e)$$

The value of flow f is the flow generated at the source Notation : if $S\subseteq V$, then $f^{out}(S)=\sum_{e\ out\ of\ S}f(e)$ and $f^{in}(S)=\sum_{e\ into\ S}f(e)$

$$v(f) = f^{out}(s)$$