blem-1+ +	hyper Sensitiu	ity opt	imal Cont	not problem.
Detomi	e x(t) {	u(t)	telo	144)
Mini mize	the Obje	cture for	inctional	
	J= 1/2 S	x ² (t) +	u ² (t) dt	7-
STC.	0			
	x = -x+u	1		
Boundare	y Conditions	7L(0)=	20 =1.	
		g (+ _f).	x _{f=1}	t _f = fixed

Sol'n Given:
$$J = \int_{0}^{t+1} x^{2}(t) + u^{2}(t) dt$$

STC $\dot{x} = -x+4$.

Boundary Conditions $x(0) = x_{0} = 1$
 $y(t_{1}) = x_{1} = 1$

Hamiltonians equation:

$$H = L + \lambda^{T} f \quad \text{where } L = \frac{1}{2}(x^{2} + u^{2}) \quad f = (-x+u)$$

$$= \frac{1}{2}(x^{2} + u^{2}) + \lambda^{T}(-x+u)$$
Shate Equation:
$$\dot{x} = -x+4$$

Co-state equation:
$$\dot{x} = -x+4$$

$$\Rightarrow \dot{x}(t) = -\frac{\partial H}{\partial x}(x^{2}(t), u^{*}(t), \lambda^{*}(t), t)$$

$$\Rightarrow \dot{x}(t) = -\frac{\partial H}{\partial x}(x^{2}(t), u^{*}(t), \lambda^{*}(t), t)$$

$$\dot{x}(t) = -x^{*}(t) + \lambda^{*}(t)$$

$$\dot{\lambda}^{*}(t) = -\chi^{*}(t) + \lambda^{*}(t)$$

$$\stackrel{\partial H}{\partial u} = 0 ; \qquad \Rightarrow \frac{\partial}{\partial u} \left(\frac{1}{2} \left(\chi^{2} + u^{2} \right) + \lambda^{*}(-\chi + u) \right)$$

 $= u + \lambda \implies u + \lambda = 0.$ Optimal Control $u^*(t) = -\lambda^*(t)$.

For solving this equations we have boundary conditions as $\chi(0) = \chi_0 = 1$; $\chi(t_f) = \chi_f = 1$; to fixed.

As all the values of
$$x_0, x_1, t_0, t_1$$
 are fixed so transversality conditions are not applied.

Solving for $x(t)$ & $\lambda(t)$ analytically.

$$\dot{x} = -x + y = -x - x$$

$$\dot{x} = -x + x$$
After Computing the Code for solving problems.

$$\dot{X} = -x + 4 \qquad ; \qquad \dot{q} = -x$$

$$U = x + x.$$

Coole is attached to the file.
Evaluated results for Problem-1:
·
λ(ty) = 0.4142.
x(tj) - 1;
<i>T</i>

Peroblem-2 + Minimize tx. Subjected to Constraints X = U Sino Y = V Coso V = 9 cms 0 $\chi(t_0) = \chi_0 = 0$ x(+x)=xx = 2 $Y(t_0) = Y_0 = 0$; Y(+x)= /4 = 2 V(to) = V0 = 0; V(+x) = tf = free. Hamiltonian ! H= Ar VSin0 + Ay VCos0 + Av 9 Cos0 =) H = 12 VSino + (2yv + 2y) Gs 0 for optimal Control: At = 0. $\frac{\partial H}{\partial \theta} = \lambda_{\mathcal{R}} V \cos \theta - (\lambda_{\mathcal{Y}} V + \lambda_{\mathcal{Y}} g) \sin \theta = 0$

$$\lambda_{\chi} = 0 = -\frac{\partial H}{\partial x}$$

$$\lambda y = 0 = \frac{-\partial H}{\partial y}$$

$$\dot{\lambda}_{V} = -\frac{\partial H}{\partial V} = -\lambda_{\pi} \sin \theta - \lambda_{y} \cos \theta$$

Matlab Godes for solving x(t), y(t), v(t)

for final time are calculated and. the results are as follows.

- (1) Minimized value of 4=0.8165 seconds.
- (2) /g =-0.1477',
- 3) Ny = -0.0[64;
 - $(9) \lambda_{V} = -0.1000;$