1. Task

conv /	Image 0 0 0 0 0 0 0 1 2 1 0 0 1 2 1 0 0 0 0 0 0		Kerrel	2		Co
Z		101+101	1.0+1.0 2.141.0	2 2	2 0 2 2 2	3
Conv	0 0 0 0 0	9	Rernel 0 0 -1 0 0 0 -1 0 0			
Z	(-1)·0·(-1)·0 (-1)·0·(-1)·0 (-1)·0·(-1)·0	(-1)·0+(- (-1)·0+(-	1)-1 (-1)0	+(-1).0	Z 0 0 0	0 0 0

2. Task

receptive field = 35×35

3. Task

Посчитаем итоговый размер изображения по формуле:

$$n_{res} = \lfloor rac{n_{img} + 2p - d(n_{kern} - 1) - 1}{s}
floor + 1$$
, где n_{res} — размер итогового изображения, n_{img} — размер входного изображения, n_{kern} — размер ядра, p — размер паддинга, d — размер $dilation$, s — размер $stride$.

Найдем итоговый размер изображения:

1)
$$n_{res} = 224 \times 224$$
, $conv \ 7 \times 7$ ($p = 3$, $s = 2$, $d = 1$): $n_{res} = \lfloor \frac{224 + 2 \cdot 3 - 1 \cdot (7 - 1) - 1}{2} \rfloor + 1 = 112$

2) $n_{res} = 112 \times 112$, $conv \ 3 \times 3$ ($p = 1$, $s = 1$, $d = 1$): $n_{res} = \lfloor \frac{112 + 2 \cdot 1 - 1 \cdot (3 - 1) - 1}{1} \rfloor + 1 = 112$

3) $n_{res} = 112 \times 112$, $maxpool \ 2 \times 2$ ($p = 0$, $s = 2$): $n_{res} = \lfloor \frac{112 + 2 \cdot 0 - 1 \cdot (2 - 1) - 1}{2} \rfloor + 1 = 56$

4) $n_{res} = 56 \times 56$, $conv \ 3 \times 3$ ($p = 1$, $s = 2$, $d = 3$): $n_{res} = \lfloor \frac{56 + 2 \cdot 1 - 3 \cdot (3 - 1) - 1}{2} \rfloor + 1 = 26$

Ответ: итоговый размер изображения $= 26 \times 26$.

4. Task

функция Dropout выглядит как: $f = \frac{a \cdot mask}{p-1}$, где:

a -входные значения,

mask- бинарная маска, по которой деактивируются нейроны с вероятностью p, p- вероятность деактивации нейрона.

Посчитаем производную по a:

$$\frac{\partial f}{\partial a} = \frac{\partial (\frac{a \cdot mask}{p-1})}{\partial a} = \frac{mask}{p-1}$$

5. Task

функция Batchnorm1d выглядит как: $f_i = \frac{x_i - EX}{\sqrt{DX + \varepsilon}} \cdot \gamma + \beta$, где:

 x_i — входное значение,

EX - выборочное среднее от входных значений,

DX — выборочная дисперсия от входных значений,

ε – значение, добавляемое к знаменателю, чтобы избежать деления на 0,

γ, β – гиперпараметры, для обучения модели

Посчитаем производную по x_i :

$$\frac{\partial f_{i}}{\partial x_{i}} = \frac{\partial (\frac{x_{i} - EX}{\sqrt{DX + \varepsilon}} \cdot \gamma + \beta)}{\partial x_{i}} = \gamma \cdot \frac{\partial (\frac{x_{i} - EX}{\sqrt{DX + \varepsilon}})}{\partial x_{i}} =$$

$$= \gamma \cdot \frac{\frac{\partial (x_{i} - EX)}{\partial x_{i}} \cdot \sqrt{DX + \varepsilon} - \frac{x_{i} - EX}{2\sqrt{DX + \varepsilon}} \cdot \frac{\partial (DX + \varepsilon)}{\partial x_{i}}}{DX + \varepsilon}}{DX + \varepsilon} =$$

$$= \gamma \cdot \frac{\frac{n-1}{n} \cdot \sqrt{DX + \varepsilon} - \frac{x_{i} - EX}{2\sqrt{DX + \varepsilon}} \cdot \frac{\partial (DX + \varepsilon)}{\partial x_{i}}}{DX + \varepsilon}}{DX + \varepsilon} =$$

$$= \gamma \cdot \frac{\frac{n-1}{n} \cdot \sqrt{DX + \varepsilon} - \frac{x_{i} - EX}{2\sqrt{DX + \varepsilon}} \cdot \frac{2(x_{i} - EX)}{n}}{DX + \varepsilon}}{DX + \varepsilon} =$$

$$= \gamma \cdot \frac{\frac{n-1}{n} \cdot \sqrt{DX + \varepsilon} - \frac{(x_{i} - EX)^{2}}{n\sqrt{DX + \varepsilon}}}{DX + \varepsilon} = \gamma \cdot (\frac{n-1}{n\sqrt{DX + \varepsilon}} - \frac{(n-1) \cdot (x_{i} - EX)^{2}}{n^{2}(DX + \varepsilon)^{\frac{3}{2}}})$$