

MA1012

2016-17 and 2017-18 candidates only

January Examinations 2018

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR	
Department	Mathematics
Module Code	MA1012
Module Title	Calculus and Analysis I
Exam Duration	Two hours
CHECK YOU HAVE THE CORRECT QUESTION PAPER	
Number of Pages	3
Number of Questions	4
Instructions to Candidates	Answer all questions.
	All marks gained will be counted.
	All questions carry equal weight.
FOR THIS EXAM YOU ARE ALLOWED TO USE THE FOLLOWING:	
Calculators	Approved calculators may be used.
Books/Statutes provided by the University	No
Are students permitted to bring their own Books/Statutes/Notes?	No
Additional Stationery	No

Version FINAL Page 1 of 3

MA1012

2016-17 and 2017-18 candidates only

- 1. (a) Let c be a real number, and let f be a real function defined on some open interval around c (except, possibly, at c itself.)
 - i. **[6 marks]** Give the ε, δ definition of the mathematical statement ' $\lim_{x \to c} f(x) = L$ '.
 - ii. **[7 marks]** Use the ε, δ definition to prove $\lim_{x \to 1} \sqrt{x} = 1$.
 - (b) i. [9 marks] Prove the Pinching Theorem for limits of real functions.
 - ii. [3 marks] Use the Pinching Theorem to find

$$\lim_{x \to 1} (x - 1) \cos \left(\frac{\pi}{x - 1} \right).$$

[25 marks]

2. (a) [7 marks] Consider two continuous functions

$$f,g:[a,b] \to \mathbb{R}$$
 such that $f(a) < g(a)$ and $g(b) < f(b)$.

Show that there exists $c \in (a,b)$ with f(c) = g(c).

Hint: consider the function h(x) = f(x) - g(x).

Bolzano's theorem may be assumed, as long as it is stated precisely.

- (b) **[11 marks]** State and prove the Extreme Value Theorem. You may assume that any continuous function $f:[a,b] \to \mathbb{R}$ is bounded.
- (c) [7 marks] Suppose $h:[a,b]\to\mathbb{R}$ is a differentiable function that intersects the line

y = x at least twice. Prove that h'(x) = 1 for some $c \in (a,b)$

Rolle's Theorem may be assumed, as long as it is stated precisely.

[25 marks]

Version FINAL Page 2 of 3

2016-17 and 2017-18 candidates only

3. (a) [9 marks]

- i. Define what it means for a function f to be *differentiable* at a point x = c.
- ii. Using this definition, differentiate $f(x) = x^n/n$ when n is a positive integer.
- (b) **[16 marks]** Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} x^3/6 & x \ge 0 \\ -x^3/6 & x < 0 \end{cases}$$

- i. Prove that f is differentiable everywhere and that its derivative $g(x) = \frac{df}{dx}$ is also differentiable everywhere.
- ii. Prove that the function $g(x)=\frac{df}{dx}$ is one-to-one and find the inverse function.
- iii. Sketch the function $h(x) = \frac{dg}{dx} = \frac{d^2f}{dx^2}$. Is it continuous at x = 0? Is it differentiable there?
- iv. State which of f,g,h are even, which are odd, and which are neither.

[25 marks]

- 4. (a) [8 marks] Prove that $n! \ge 2^{n-1}$ by induction for all positive integers n.
 - (b) i. [3 marks] State the Cauchy (or Extended) Mean Value Theorem (CMVT).
 - ii. **[6 marks]** Use the CMVT to prove the following for all $0 < x < 2\pi$:
 - $\sin(x) < x$
 - $\bullet \ 1 \cos(x) < \frac{1}{2}x^2$
 - (c) i. **[5 marks]** Find the Taylor polynomial $P_3(x)$ of degree 3, centred at the point c=1, for the function $f(x)=x^{-1}$.
 - ii. [3 marks] Find also the Lagrangian remainder term.

[25 marks]