

LINMA2380 Matrix Computation

Homework 2 Group 3

Okyay Kerem Rochet Robin Tahiri Ghali Quesnel Emeric

1 Exercise A: Krylov subspaces

1.1 A1

By Definition 1 and the assumption from A1 we can write:

$$\mathcal{K}_{r+1}(A,b) \subseteq \mathcal{K}_r(A,b)$$

$$span\{b, Ab, ..., A^rb\} \subseteq span\{b, Ab, ..., A^{r-1}b\}$$

As K_{r+1} is included in \mathcal{K}_r we can express A^rB as a linear combination of $b, Ab, ..., A^{r-1}b$. Then we can write that since the dimension of $\mathcal{K}_{r+1}(A,b)$ is equal to the dimension of $\mathcal{K}_r(A,b)$:

$$\mathcal{K}_{r+1}(A,b) = \mathcal{K}_r(A,b)$$

Knowing this, and by induction the same reasoning can be done with r+2, r+3, ... and for any $s \ge r$ and therefore :

$$\mathcal{K}_s(A,b) = \mathcal{K}_r(A,b)$$

1.2 A2

Induction:

- For r = 1 we have $\dim(\mathcal{K}_1(A, b)) = 1$ (since $b \neq 0$)
- For r=2 we have $\dim(\mathcal{K}_1(A,b))=\dim(\{b,Ab\})=2$

Since, the number of independent columns of $\mathcal{K}_n(A,b)$ is s, we will add a dimension for each r going from 1 to s. And from (A1) we saw that after this limit of Krylov subspace order s, Krylov subspace is invariant.

2 Exercise B: Arnoldi's iteration

2.1 B1

Each column i of $K_s(A, b)$ can be considered as a vector x_i . We know that $K_s(A, b)$ is a full rank matrix. Then, the set $X = \{x_1, ..., x_s\}$ forms a basis for $Im(K_s(A, b))$.

By the Graham-Schmidt procedure shown in Theorem 2.7 of the lecture notes, we can construct the columns y_i of a matrix Y such that A = YC, where:

$$c_{p,p} = 1$$

$$c_{j,p} = \frac{\langle x_p, y_j \rangle}{\langle y_j, y_j \rangle} \quad \forall j
$$c_{j,p} = 0 \quad \forall j > p$$$$

C is an upper triangle matrix with only ones on the main diagonal. Let's $N = diag\{n_1, ..., n_s\}$, $n_i = ||y_i||$. We get that $A = (YN^{-1})(NC) = Q_sR_s$. Then, R = NC which is an upper diagonal matrix with a positive diagonal.

2.2 B2

$$\mathcal{K}_{r+1}(A,b) = [b, AK_r(A,b)] = Q_{r+1}R_{r+1}$$

$$Q_{r+1}[1:r]R_{r+1}[1:r,1:r] = \begin{bmatrix} \vdots & \vdots & \dots & \vdots \\ q_1 & q_2 & \dots & q_r \\ \vdots & \vdots & \dots & \vdots \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1r} \\ r_{21} & r_{22} & \dots & r_{2r} \\ \dots & \vdots & \ddots & \vdots \\ r_{r1} & r_{r2} & \dots & r_{rr} \end{bmatrix} = \mathcal{K}_r(A,b)$$

Using the hint:

$$A\mathcal{K}_r(A, b) = [Q_{r+1}R_{r+1}][2:r+1]$$

The last r columns of $\mathcal{K}_{r+1}(A,b)$ is equal to $A\mathcal{K}_r(A,b)$. We can also write it as:

$$= Q_{r+1}[1:r+1]R_{r+1}[1:r+1,2:r+1]$$

Thus it holds that:

$$AQ_{r+1}[1:r]R_{r+1}[1:r,1:r] = Q_{r+1}[1:r+1]R_{r+1}[1:r+1,2:r+1]$$

And more generally we can replace r + 1 with s.

2.3 B3

From question (B2):

$$AQ_s[1:r]R_s[1:r,1:r] = Q_s[1:r']R_s[1:r',2:r']$$

Can be written as:

$$AQ_s[1:r] = Q_s[1:r']R_s[1:r',2:r']R_s^{-1}[1:r,1:r]$$

Now looking at the structure of $R_s[1:r',2:r']$:

$$R_s[1:r',2:r'] = \begin{bmatrix} r_{12} & r_{13} & \cdots & r_{1r'} \\ r_{22} & r_{23} & \cdots & r_{2r'} \\ 0 & r_{33} & \cdots & r_{3r'} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{r'r'} \end{bmatrix}$$

Which is a upper hessenberg matrix. Since the inverse of the upper triangular is another upper triangular, we can see that the product of $R_s[1:r',2:r']R_s^{-1}[1:r,1:r]$ is going to have zeros for i > j + 1. If we show the product as follows,

$$\begin{bmatrix} r_{12} & r_{13} & \cdots & r_{1r'} \\ r_{22} & r_{23} & \cdots & r_{2r'} \\ 0 & r_{33} & \cdots & r_{3r'} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{r'r'} \end{bmatrix} \begin{bmatrix} r'_{11} & r'_{12} & \cdots & r'_{1r} \\ 0 & r'_{22} & \cdots & r'_{2r} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r'_{rr} \end{bmatrix}$$

We can see that the result will be an upper hessenberg matrix. Thus the statement holds.

2.4 B4

Inductive proof:

For r = 1,

$$q_1 = \frac{b}{||b||}$$

For r=2,

$$q_1 = \frac{b}{||b||}$$

and q_2 calculated as follows:

$$w = Aq_1 - \frac{\langle q_1, Aq_1 \rangle}{||q_1||^2} q_1$$

Assuming $w \neq 0$

$$q_2 = \frac{w}{||w||}$$

So we can observe that:

$$Aq_1 = \frac{Ab}{||b||} \in \mathcal{K}_2(A, b) = \operatorname{span}\{b, Ab\}$$

Take r+1 (e.g, r=2), the orthonormal vector q_{r+1} will be generated as follows

$$w_{r+1} = Aq_r - \sum_{i=1}^r c_i q_i$$

For scalars c_i coming from the projections. Assuming $w_{r+1} \neq 0$

$$q_{r+1} = \frac{w}{||w||}$$

We can observe again:

$$Aq_r \in \mathcal{K}_{r+1}(A,b)$$

Since Aq_r is a linear combination of b, Ab, \ldots, A^rb , and the subtraction terms c_iq_i are in span $\{q_1, \ldots, q_r\} \subseteq \mathcal{K}_r(A, b)$.

So we can conclude span $\{q_1,\ldots,q_{r+1}\}\subseteq \mathcal{K}_{r+1}(A,b)$.

2.5 B5

In question (B4), when we were looking at r=2 we saw that $q_1=\frac{b}{||b||}$ and in the calculation for q_2 we first calculated w.

 $w = Aq_1 - \frac{\langle q_1, Aq_1 \rangle}{||q_1||^2} q_1$

We can see that Aq_1 is $\frac{Ab}{||b||}$, and the subtracted term is a scalar times the vector q_1 . So from here we can observe that span $\{q_1, q_2\} = \text{span}\{b, Ab\} = \mathcal{K}_2(A, b)$. And generalizing in the same way, we can write this for span $\{q_1, \ldots, q_r\} = \text{span}\{b, Ab, \ldots, A^{r-1}b\} = \mathcal{K}_r(A, b)$

2.6 B6

$$v = Aq_s$$

$$v' = \operatorname{Proj}_{\{q_1, \dots, q_s\}}(v) = \sum_{i=1}^s \frac{\langle Aq_s, q_i \rangle}{||q_i||^2} q_i$$

$$w = v - v'$$

Observing, $v \in \text{span}\{b, Ab, \dots, A^sb\}, q_s \in \text{span}\{b, Ab, \dots, A^{s-1}b\}$

We can conclude that if w = 0, we can represent v as a linear combination of q_1, \ldots, q_s . This means that $A^s b \in \text{span}\{b, Ab, \ldots, A^{s-1}b\}$. Therefore, when the algorithm terminates, we get $s = \dim(\mathcal{K}_n(A, b))$.

2.7 B7

From (B5), span $\{q_1, \ldots, q_s\} = \mathcal{K}_s(A, b) = \text{span}\{b, Ab, \ldots, A^{s-1}b\}$. We can see that $\mathcal{K}_s(A, b)$ is a full-rank matrix, so from Theorem 2.8 we can factorize it to $\mathcal{K}_s(A, b) = QR$.

To see the parallel between algorithm 1 and Gram-Schmidt procedure. Consider span $\{b, Ab, \dots, A^{s-1}b\}$ as the input to Theorem 2.7.

$$y_1 = b$$

$$y_p = A^{p-1}b - \sum_{i=1}^{p-1} \frac{\langle A^{p-1}b, y_i \rangle}{\langle y_i, y_i \rangle} y_i \qquad p = 2, \dots, s$$

Then, setting

$$q_i = \frac{y_i}{||y_i||}$$

We can observe it is the same procedure as the algorithm 1. So, $K_s(A, b) = Q_s R_s$ for some R_s upper triangular matrix.

3 Exercise C: GMRES for linear system solution approximation

3.1 C1

Since Q forms a basis for the Krylov subspace, any vector $x \in \mathcal{K}_r(A, b)$ can be written as a linear combination of columns.

$$x = Qy$$

For some vector $y \in \mathbb{R}^r$.

$$\min_{y \in \mathbb{R}^r} ||AQy - b||$$

Using

$$\begin{split} AQ &= QH + \beta q e_{r,r}^{\top} \\ &= \min_{y \in \mathbb{R}^r} \ ||QHy + \beta q e_{r,r}^{\top} y - b|| \\ &= \min_{y \in \mathbb{R}^r} \ || \ [Q,q] \begin{bmatrix} H \\ \beta e_{r,r}^{\top} \end{bmatrix} y - b \ || \end{split}$$

Also, since $q_1 = \frac{b}{||b||}$ we can write

$$b = ||b|| [Q, q] e_{r+1,1}$$

Pluggin in,

$$= \min_{y \in \mathbb{R}^r} || [Q, q] \begin{bmatrix} H \\ \beta e_{r,r}^{\top} \end{bmatrix} y - ||b|| [Q, q] e_{r+1,1} ||$$

[Q,q] is an isometry, which means it preserves norm. So we can remove it from the optimization problem.

$$= \min_{y \in \mathbb{R}^r} \ || \ \begin{bmatrix} H \\ \beta e_{r,r}^\top \end{bmatrix} y - ||b|| \ e_{r+1,1} \ ||$$

Thus, if y^* minimizes the RHS, since we set x = Qy, Qy^* will minimize the LHS.

3.2 C2

Solving for (3) is easier due to following reasons:

- Possible that $b \notin \text{Im}(A)$, this makes Ax = b not solvable since it requires an exact solution.
- A needs to be square invertible for Ax = b
 - This is not always the case in real life. In overdetermined systems you have more equations than unknowns.
- Robust algorithms for solving (3), least squares is more flexible and handles numerical issues better. Thus, easier in practice.

$$\min_{y \in \mathbb{R}^r} \mid\mid \tilde{H}y - \mid\mid b\mid\mid e_{r+1,1}\mid\mid$$

Minimized when,

$$\tilde{H}^{\top}\tilde{H}y = \tilde{H}^{\top}||b||e_{r+1,1}$$

Decomposing $\tilde{H} = QR$

$$(QR)^{\top}(QR)y = \tilde{H}||b||e_{r+1,1}$$
$$R^{T}Ry = \tilde{H}||b||e_{r+1,1}$$

Cost of QR decomposition using Householder QR decomposition in section 2.4:

$$2(r+1)r^2 = 2r^3 + 2r^2$$

Cost of $R^{\top}R$

$$r * r * (2r - 1) = 2r^3 - r^2$$

Cost of $\tilde{H}||b||e_{r+1,1}$

$$r * 1 * (2r + 1) = 2r^2 + r$$

Cost of solving r equations with r unknowns:

$$\approx r^3$$

Therefore,

flops
$$= 5r^3 + 3r^2 + r$$

3.3 C3

Since $x \in \mathcal{K}_r(A, b)$, we can say that $x = A^n b$ with $n \in [0, r - 1]$. Thus,

$$b - Ax = b - AA^nb$$

= $b - A^{n+1}b$
= $(I - A^{n+1})b$ (I is the identity matrix of size $n \times n$)

Let's now prove that $(I - A^{n+1})$ is a polynomial p(A) with $p \in \mathcal{P}_r^0$. First, we will show that p(0) = 1. In our case, we are working with matrices so the equivalent of 1 in scalar is the identity matrix. For A = 0, we have :

$$p(0) = I - 0$$
$$= I$$

We have in fact that p(0) = I. Let's see now if p is in fact in the set of polynomials of degree at most r. We have $p(A) = I - A^{n+1}$. Previously, we said that $n \in [0, r-1]$. Thus, as we are taking the $(n+1)^{th}$ power of A, we can consider that we have a polynomial of degree at most r (r-1+1=r) considering that the identity matrix will not "change" the degree of the matrix A.

We proved that b - Ax = p(A)b. Moreover, thanks to the invariant rule of the norm, we have that

$$||Ax - b|| = || - (Ax - b)|| = ||b - Ax||$$

Thus,

$$\min_{x \in K_r(A,b)} ||Ax - b|| = \min_{x \in K_r(A,b)} ||b - Ax|| = \min_{p \in \mathcal{P}_r^0} ||p(A)b||$$

3.4 C4

Since A is symmetric it has an eigenvalue decomposition $A = U\Lambda U^T$, where U is an orthonormal matrix (i.e. $UU^T = I$) and Λ is a diagonal matrix containing the eigenvalues of A. The spectral norm of A is defined as:

$$||A|| = \sup_{x=1} ||Ax||$$

Using the eigenvalue decomposition we can write $Ax = U\Lambda U^Tx$ and since U^T is orthogonal it preserves the norm, so :

$$||Ax|| = ||\Lambda U^T x||$$

Let $y = U^T x$, then ||y|| = ||x|| = 1 becaus U^T is orthogonal therefore,

$$||Ax|| = ||\Lambda y|| = \sqrt{\sum_{i=1}^{n} \lambda_i^2 y_i^2} \le \sqrt{\sum_{i=1}^{n} \max_{1 \le i \le n} \lambda_i^2 y_i^2} = \sqrt{\max_{1 \le i \le n} \lambda_i^2 \sum_{i=1}^{n} y_i^2} = \sqrt{\max_{1 \le i \le n} \lambda_i^2 ||y||^2} = \max_{1 \le i \le n} |\lambda_i| \cdot ||y||$$

Thus we have:

$$||Ax|| = ||\Lambda y|| \le \max_{1 \le i \le n} |\lambda_i| \cdot ||y||$$

Because Λ is a diagonal matrix. To show that the spectral norm is exactly $\max_{1 \leq i \leq n} |\lambda_i|$ consider an eigenvector ν_i corresponding to the eigenvalue λ_i with the largest absolute value. then,

$$A\nu_i = \lambda_i \nu_i$$
 and thus $||A\nu_i|| = |\lambda_i| \cdot ||\nu_i|| = |\lambda_i|$ since $||\nu_i|| = 1$

Since we have shown that $||Ax|| \leq \max_{1 \leq i \leq n} |\lambda_i|$, then for all unit vectors x, and there exists a specific vector ν_i for which

$$||A\nu_i|| = \max_{1 \le i \le n} |\lambda_i|$$

we can conclude that

$$||A|| = \max_{1 \le i \le n} |\lambda_i|$$

3.5 C5

As A is symmetric, we can do its eigenvalue decomposition. Thus,

$$A = U\Lambda U^T$$

where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix (i.e. $U^T U = I$), and Λ is a diagonal matrix which contains the eigenvalues of A. We saw in C3 that

$$\min_{x \in K_r(A,b)} ||Ax - b|| = \min_{p \in \mathcal{P}_r^0} ||p(A)b||$$

Then,

$$\begin{split} \min_{x \in K_r(A,b)} ||Ax - b|| &= \min_{p \in \mathcal{P}_r^0} ||p(A)b|| \\ &= \min_{p \in \mathcal{P}_r^0} ||Up(\Lambda)U^Tb|| \\ &= \min_{p \in \mathcal{P}_r^0} ||p(\Lambda)U^Tb|| \quad \text{(as U is orthogonal)} \\ &\leq ||U^Tb|| \min_{p \in \mathcal{P}_r^0} \max_{1 \leq i \leq n} |p(\lambda_i)| \quad \text{(by Cauchy-Schwartz)} \\ &= ||b|| \min_{p \in \mathcal{P}_r^0} \max_{1 \leq i \leq n} |p(\lambda_i)| \quad \text{(as U^T is orthogonal)} \end{split}$$

In conclusion, we have

$$\min_{x \in K_r(A,b)} ||Ax - b|| \le ||b|| \min_{p \in \mathcal{P}_v^0} \max_{1 \le i \le n} |p(\lambda_i)|$$

4 Exercise D: Arnoldi's method for eigenvalue approximation

4.1 D1

In the expression $||Ax - \lambda x||$ we can substitute x = Qy:

$$||AQy - \lambda Qy|| = |\beta e_r^T y|$$

Then by using the equality $AQ = QH + \beta q e_r^T$:

$$\begin{aligned} ||QHy + \beta q e_r^T y - \lambda Q y|| &= |\beta e_r^T y| \\ ||QHy - \lambda Q y + \beta q e_r^T y|| &= |\beta e_r^T y| \\ ||Q(Hy - \lambda y) + \beta q e_r^T y|| &= |\beta e_r^T y| \end{aligned}$$

As (λ, y) is an eigenpair of H, the term $Q(Hy - \lambda y) = 0$ and we end up with:

$$||\beta q e_r^T y|| = |\beta e_r^T y|$$

which is valid since q is a vector from an orthonormal basis (so it does not affect the norm) and ||y|| = 1.

5 Exercise E: Implementation

5.1 E1

Figure 1: Solution of (3) for r = 10,20,30,40,50

5.2 E2

Figure 2: Plot of the actual eigenvectors associated to the smallest 5 eigenvalues of A

Figure 3: Plot of the approximated eigenvectors for A associated to the smallest 5 eigenvalues of H