## **Amendments to the Claims:**

This listing of claims will replace all prior versions, and listings, of claims in the application:

## **Listing of Claims:**

1. (Currently Amended) A compound Compounds of the general formula (I)

wherein

- A represents an aryl or heteroaryl ring,
- $R^1$ ,  $R^2$  and  $R^3$  independently from each other represent hydrogen, halogen, nitro, cyano,  $C_1$ - $C_6$ -alkyl, hydroxy or  $C_1$ - $C_6$ -alkoxy, wherein  $C_1$ - $C_6$ -alkyl and  $C_1$ - $C_6$ -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and  $C_1$ - $C_4$ -alkoxy,
- $R^4$  represents trifluoromethylcarbonyl,  $C_1$ - $C_6$ -alkylcarbonyl,  $C_1$ - $C_6$ -alkoxycarbonyl,  $C_1$ - $C_6$ -alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di- $C_1$ - $C_4$ -alkylaminocarbonyl,  $C_6$ - $C_{10}$ -arylaminocarbonyl, arylcarbonyl, heteroarylcarbonyl,

heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein  $C_1$ - $C_6$ -alkylcarbonyl,  $C_1$ - $C_6$ -alkoxycarbonyl, mono- and di- $C_1$ - $C_4$ -alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of  $C_3$ - $C_8$ -cycloalkyl, hydroxy,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di- $C_1$ - $C_4$ -alkylaminocarbonyl,  $C_1$ - $C_4$ -alkylcarbonylamino, ( $C_1$ - $C_4$ -alkylcarbonyl)- $C_1$ - $C_4$ -alkylamino, cyano, amino, mono- and di- $C_1$ - $C_4$ -alkylamino, heteroaryl, heterocyclyl and tri-( $C_1$ - $C_6$ -alkyl)-silyl, and wherein heteroarylcarbonyl, heterocyclylcarbonyl, heteroaryl and heterocyclyl can be further substituted with  $C_1$ - $C_4$ -alkyl,

R<sup>5</sup> represents C<sub>1</sub>-C<sub>4</sub>-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, amino, mono- and di-C<sub>1</sub>-C<sub>6</sub>-alkylamino, arylamino, hydroxycarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl and the radical -O-C<sub>1</sub>-C<sub>4</sub>-alkyl-O-C<sub>1</sub>-C<sub>4</sub>-alkyl,

or

R<sup>5</sup> represents amino,

R<sup>6</sup> represents hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, formyl, aminocarbonyl, mono- or di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, N-(C<sub>1</sub>-C<sub>4</sub>-alkylsulfonyl)-aminocarbonyl, N-(C<sub>1</sub>-C<sub>4</sub>-alkylsulfonyl)-N-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-aminocarbonyl, heteroaryl, heteroaryl, heteroarylcarbonyl or heterocyclylcarbonyl, wherein C<sub>1</sub>-C<sub>6</sub>-alkyl, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, heteroaryl and heterocyclyl can be substituted with one to three identical or different radicals selected from the group consisting of aryl, heteroaryl, hydroxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy, hydroxycarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, aminocarbonyl, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, amino,

mono- and di- $C_1$ - $C_4$ -alkylamino,  $C_1$ - $C_4$ -alkylamino, tri- $(C_1$ - $C_6$ -alkyl)-silyl, cyano, mono- and di- $C_1$ - $C_4$ -alkylamino- $C_1$ - $C_4$ -alkylaminocarbonyl,  $C_1$ - $C_4$ -alkylaminocarbonyl and halogen,

or

R<sup>6</sup> represents a moiety of the formula

$$^{\star}$$
  $^{\downarrow}$   $^{\downarrow}$ 

wherein

 $R^{6A}$  is selected from the group consisting of hydrogen and  $C_1$ - $C_6$ -alkyl, and

n represents an integer of 1 or 2,

R<sup>7</sup> represents halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, hydroxy or C<sub>1</sub>-C<sub>6</sub>-alkoxy, wherein C<sub>1</sub>-C<sub>6</sub>-alkyl and C<sub>1</sub>-C<sub>6</sub>-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C<sub>1</sub>-C<sub>4</sub>-alkoxy,

and

Y<sup>1</sup>, Y<sup>2</sup>, Y<sup>3</sup>, Y<sup>4</sup> and Y<sup>5</sup> independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms,

and their salts, hydrates and/or solvates and their tautomeric forms or a pharmaceutically acceptable salt thereof.

- 2. (Currently Amended) <u>The compound</u> Compounds of general formula (I) according to Claim 1, wherein
  - A represents an aryl or heteroaryl ring,
  - R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> independently from each other represent hydrogen, halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, hydroxy or C<sub>1</sub>-C<sub>6</sub>-alkoxy, wherein C<sub>1</sub>-C<sub>6</sub>-alkyl and C<sub>1</sub>-C<sub>6</sub>-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C<sub>1</sub>-C<sub>4</sub>-alkoxy,
  - R<sup>4</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>6</sub>-C<sub>10</sub>-arylaminocarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, hydroxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>1</sub>-C<sub>4</sub>-alkylcarbonylamino, amino, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylamino, heteroaryl, heterocyclyl and tri-(C<sub>1</sub>-C<sub>6</sub>-alkyl)-silyl,
  - R<sup>5</sup> represents C<sub>1</sub>-C<sub>4</sub>-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, amino, mono- and di-C<sub>1</sub>-C<sub>6</sub>-alkylamino, arylamino, hydroxycarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl and the radical -O-C<sub>1</sub>-C<sub>4</sub>-alkyl-O-C<sub>1</sub>-C<sub>4</sub>-alkyl,

- R<sup>5</sup> represents amino,
- represents hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, formyl, aminocarbonyl, mono- or di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, N-(C<sub>1</sub>-C<sub>4</sub>-alkylsulfonyl)-aminocarbonyl, N-(C<sub>1</sub>-C<sub>4</sub>-alkylsulfonyl)-N-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-aminocarbonyl, heteroaryl, heteroaryl, heteroarylcarbonyl or heterocyclylcarbonyl, wherein C<sub>1</sub>-C<sub>6</sub>-alkyl, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, heteroaryl and heterocyclyl can be substituted with one to three identical or different radicals selected from the group consisting of aryl, heteroaryl, hydroxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy, hydroxycarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, aminocarbonyl, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, amino, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylamino, C<sub>1</sub>-C<sub>4</sub>-alkylamino-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl and halogen,

or

R<sup>6</sup> represents a moiety of the formula

$$^{\star}$$
  $^{\circ}$   $^{\circ}$ 

wherein

R<sup>6A</sup> is selected from the group consisting of hydrogen and C<sub>1</sub>-C<sub>6</sub>-alkyl, and

n represents an integer of 1 or 2,

R<sup>7</sup> represents halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, hydroxy or C<sub>1</sub>-C<sub>6</sub>-alkoxy, wherein C<sub>1</sub>-C<sub>6</sub>-alkyl and C<sub>1</sub>-C<sub>6</sub>-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C<sub>1</sub>-C<sub>4</sub>-alkoxy,

and

- Y<sup>1</sup>, Y<sup>2</sup>, Y<sup>3</sup>, Y<sup>4</sup> and Y<sup>5</sup> independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.
- 3. (Currently Amended) <u>The compound</u> Compounds of general formula (I) according to Claim 1 or 2, wherein
  - A represents a phenyl, naphthyl or pyridyl ring,
  - R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> independently from each other represent hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl or trifluoromethoxy,
  - R<sup>4</sup> represents C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl or cyano, wherein C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl and mono-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, hydroxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl, amino, mono- or di-C<sub>1</sub>-C<sub>4</sub>-alkylamino, heteroaryl and heterocyclyl,
  - R<sup>5</sup> represents methyl or ethyl,
  - R<sup>6</sup> represents hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, mono- or di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylaminocarbonyl, C<sub>1</sub>-C<sub>6</sub>-alkylaminocarbonyl, wherein C<sub>1</sub>-C<sub>6</sub>-alkyl

and  $C_1$ - $C_6$ -alkoxycarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of heteroaryl, hydroxy,  $C_1$ - $C_4$ -alkoxy, hydroxycarbonyl,  $C_1$ - $C_6$ -alkoxycarbonyl, aminocarbonyl, mono- and di- $C_1$ - $C_4$ -alkylaminocarbonyl, cyano, amino, mono- and di- $C_1$ - $C_4$ -alkylamino,

or

R<sup>6</sup> represents a moiety of the formula

wherein

 $R^{6A}$  is selected from the group consisting of hydrogen and  $C_1$ - $C_4$ -alkyl, and

- n represents an integer of 1 or 2,
- R<sup>7</sup> represents halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, methyl or ethyl,

and

 $Y^1$ ,  $Y^2$ ,  $Y^3$ ,  $Y^4$  and  $Y^5$  each represent CH.

- 4. (Currently Amended) <u>The compounds</u> of general formula (I) according to Claim 1, 2 or 3, wherein
  - A represents a phenyl or a pyridyl ring,

R<sup>1</sup> and R<sup>3</sup> each represent hydrogen,

- R<sup>2</sup> represents fluoro, chloro, bromo, nitro or cyano,
- $R^4$  represents cyano,  $C_1$ - $C_4$ -alkylcarbonyl or  $C_1$ - $C_4$ -alkoxycarbonyl, wherein  $C_1$ - $C_4$ -alkoxycarbonyl can be substituted with a radical selected from the group consisting of hydroxy,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -alkoxycarbonyl, mono- and di- $C_1$ - $C_4$ -alkylamino, heteroaryl and heterocyclyl,
- R<sup>5</sup> represents methyl,
- R<sup>6</sup> represents hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, mono- or di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, C<sub>1</sub>-C<sub>4</sub>-alkylcarbonyl or C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl, wherein C<sub>1</sub>-C<sub>4</sub>-alkyl and C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl can be substituted with a radical selected from the group consisting of heteroaryl, hydroxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy, hydroxycarbonyl, aminocarbonyl, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylaminocarbonyl, amino, mono- and di-C<sub>1</sub>-C<sub>4</sub>-alkylamino,

or

R<sup>6</sup> represents a moiety of the formula

wherein

R<sup>6A</sup> is selected from the group consisting of hydrogen and methyl,

R<sup>7</sup> represents trifluoromethyl or nitro,

and

Y<sup>1</sup>, Y<sup>2</sup>, Y<sup>3</sup>, Y<sup>4</sup> and Y<sup>5</sup> each represent CH.

- 5. (Currently Amended) <u>The compound</u> <u>Compounds</u> of general formula (I) according to <u>claim 1</u> at least one of <u>Claims 1 to 4</u>, wherein A is phenyl or pyridyl.
- 6. (Currently Amended) <u>The compound</u> <u>Compounds</u> of general formula (I) according to <u>claim 1</u> at least one of <u>Claims 1 to 5</u>, wherein R<sup>1</sup> is hydrogen.
- 7. (Currently Amended) <u>The compound</u> <u>Compounds</u> of general formula (I) according to <u>claim 1</u> at least one of <u>Claims 1-to 6</u>, wherein R<sup>2</sup> is cyano.
- 8. (Currently Amended) <u>The compound</u> <u>Compounds</u> of general formula (I) according to <u>claim 1</u> at least one of <u>Claims 1 to 7</u>, wherein R<sup>3</sup> is hydrogen.
- 9. (Currently Amended) The compound Compounds of general formula (I) according to claim 1 at least one of Claims 1 to 8, wherein R<sup>4</sup> is C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl optionally substituted by hydroxy or wherein R<sup>4</sup> is C<sub>1</sub>-C<sub>4</sub>-alkylcarbonyl.
- 10. (Currently Amended) The compound Compounds of general formula (I) according to claim 1 at least one of Claims 1 to 9, wherein  $\mathbb{R}^5$  is methyl.
- 11. (Currently Amended) <u>The compound</u> Compounds of general formula (I) according to <u>claim 1</u> at least one of Claims 1 to 10, wherein R<sup>6</sup> is hydrogen.
- 12. (Currently Amended) <u>The compound</u> <u>Compounds</u> of general formula (I) according to <u>claim 1</u> at least one of <u>Claims 1 to 11</u>, wherein R<sup>7</sup> is trifluoromethyl or nitro.

13. (Currently Amended) A compound Compounds of general formula (IA)

$$R^{1}$$
 $R^{4}$ 
 $R^{4}$ 
 $R^{6}$ 
 $R^{3}$ 
 $CF_{3}$ 

wherein

Z represents CH or N, and

 $R^1$ ,  $R^3$ ,  $R^4$  and  $R^6$  have the meaning indicated in claim 1 Claims 1 to 12.

14. (Currently Amended) A process Process for synthesizing the compounds of general formula (I) or (IA), respectively, as defined in claim 1 Claims 1 to 13 by condensing compounds of general formula (II)

$$R^{1}$$
 $A$ 
 $CHO$ 
(II),

wherein

A,  $R^1$  and  $R^2$  have the meaning indicated in claim 1 Claims 1 to 13 ,

with compounds of general formula (III)

wherein

 $R^4$  and  $R^5$  have the meaning indicated in claim 1 Claims 1 to 13,

and compounds of general formula (IV)

$$\begin{array}{c}
NH_2\\
HN O\\
Y_1^1 Y_2^5\\
Y_2^2 Y_3^3 Y_4^7
\end{array}$$
(IV)

wherein

 $R^3$ ,  $R^7$ , and  $Y^1$  to  $Y^5$  have the meaning indicated in <u>claim 1</u> Claims 1 to 13,

in the presence of an acid either in a three-component / one-step reaction or sequentially to give compounds of the general formula (IB)

$$R^{1}$$
 $A$ 
 $R^{4}$ 
 $NH$ 
 $R^{5}$ 
 $N$ 
 $Y^{1}$ 
 $Y^{5}$ 
 $Y^{3}$ 
 $Y^{4}$ 
 $X^{7}$ 

wherein

A,  $R^1$  to  $R^5$ ,  $R^7$ , and  $Y^1$  to  $Y^5$  have the meaning indicated in claim 1 Claims 1 to 13,

optionally followed by reaction of the compounds of general formula (IB) with compounds of the general formula (V)

$$R^{6*}-X \qquad (V),$$

wherein

- $R^{6*}$  has the meaning of  $R^6$  as indicated in <u>claim 1</u> Claims 1 to 13, but does not represent hydrogen, and
- X represents a leaving group, such as halogen, tosylate, mesylate or sulfate,

in the presence of a base.

15. (Currently Amended) A The composition containing at least one compound of general formula

(I) or (IA) as defined in claim 1 Claims 1 to 13 and a pharmacologically acceptable diluent.

- 16. (Cancelled)
- 17. (Currently Amended) A The process for the preparation of compositions according to Claim 15 and 16 characterized in that the compounds of general formula (I) or (IA) as defined in claim 1 Claims 1 to 13 together with customary auxiliaries are brought into a suitable application form.
- 18. (Cancelled)
- 19. (Currently Amended) A method of treating Use according to Claim 18 for the preparation of medicaments for the treatment of acute and chronic inflammatory, ischaemic and/ or remodelling processes, comprising administering a therapeutically effective amount of a compound of a compound of claim 1.
- 20. (Currently Amended) The method of Use according to Claim 19, wherein the process is chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction or development of heart failure.
- 21. (Currently Amended) The method of claim 19, wherein Process for controlling chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction or development of heart failure in humans and animals by administration of a neutrophil elastase inhibitory amount is administered of at least one compound according to any of Claims 1 to 13.