

# NASA TURBOFAN JET ENGINE FAILURE PREDICTION MODELING

AMII Machine Learning
Technician I - Capstone Project
Team 3
December 11, 2020

### Team



Uchenna Mgbaja from Enugu, Nigeria College Instructor at Reeves College, Edmonton. M.Sc. Petroleum Engineering



Ekin Atinc
from Istanbul, Turkey
Avid reader, hiker,
footballer
Amateur chess
player
Work in investment
management



Alejandro Coy from Bogota, Colombia Amateur Triathlete, M.Sc Chemical Engineer, future Data Scientist( I hope:)!) Work in Oil & Gas as Process Engineer at Rangeland Engineering.



Raihan Khan from Dhaka, Bangladesh FC Barcelona fan Hiker/backpacker/footballer Amateur photographer Work in oil & gas to pay bills MBA Finance, BCom & now Al/ML enthusiast

### Agenda

- Problem & framing
- Exploratory data analysis
- Data cleaning, preprocessing, feature engineering
- Model development, tuning, optimization, evaluation
- Deployment and value generation

## Problem & framing



### Business problem

- NASA wants a model that can accurately predict remaining useful life (RUL) of a class of turbofan jet engines
  - Have data on 3 settings and 20 sensors for 709 engines to run to failure under six different conditions
- A successful model could reduce maintenance costs
  - Switching to condition-based maintenance, or,
  - Extending current planned maintenance intervals
- NASA prefers to lean towards early failure prediction
  - From which we glean that consequence of failure is high



Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA)

Deployment & value

### Failure prediction is about modeling degradation



### Framing the hypothesis



**Q:** Will an engine fail in next X cycles?

A: Yes, or No

Action: if Yes, trigger maintenance

Value: Prevent

**Approach: Classification** 

### Performance criteria



Lack of upfront customer alignment on what a predictive model will deliver is the lead reason why many ML efforts fail

https://towardsdatascience.com/what-is-the-main-reason-most-ml-projects-fail-515d409a161f

#### **Customer agreement**

Current maintenance interval is 5 cycles.

If we can predict failures within 25 cycles to a RECALL of 98% NASA will stretch intervals to 10 cycles saving \$25M per year.

If a RECALL of 99.9% is achieved NASA might consider a pure condition-based approach and eliminate program maintenance. NASA saves \$100M, and we get a bonus.

### Limitations

- Not real failure data (from simulator)\*
- Simulating a business condition & customer agreement
- Not all ML algorithms tried (NN, XGBoost, SVM, etc)

https://www.mckinsey.com/business-functions/operations/our-insights/predictive-maintenance-the-wrong-solution-to-the-right-problem-in-chemicals#

<sup>\*</sup> High consequence of failures lead to many industries never allowing equipment to fail. With very few failures, it becomes incredibly difficult to build reliable predictive models.

# Data analysis and preparation

### Description of data

- Learning data is provided as 4 separate outputs ranging from training set 1 to 4 where each dataset correspond to measurement of engine performance under various 6 conditions.
- Learning data is generated from a simulated environment with 14 inputs that measure the health of the engine and consists of numerical data types comprised of floats and integers only.
- Engine's health is calculated by a "Health Index" which measures how far the engine is operating from various pre-defined operational limits.
- Operational limits are specified on the engine's 5 rotating components of , Fan, Low Pressure Compressor (LPC), High Pressure Compressor (HPC), High Pressure Turbine (HPT), and Low-Pressure Turbine (LPT). These parameters change as a function of conditions such as Exhaust Gas Temperature (EGT), Throttle resolver angle (TRA), and Altitude
- Features that help measuring the stress levels in the 5 main components are T2 (temp at fan inlet), T24 (temp at LPC outlet), T30 (temp at HPC outlet), T50 (temp at LPT outlet) and related variables to these components
- Identified few extreme values as any sensor value above and beyond 2 std.dev. but didn't remove them

### Description of data

Schematic View of the Inputs & Outputs



| Symbol        | Description                         | Units   |  |  |
|---------------|-------------------------------------|---------|--|--|
| Parameters av | ailable to participants as sensor d | ata     |  |  |
| T2            | Total temperature at fan inlet      | °R      |  |  |
| T24           | Total temperature at LPC outlet     | °R      |  |  |
| T30           | Total temperature at HPC outlet     | °R      |  |  |
| T50           | Total temperature at LPT outlet     | °R      |  |  |
| P2            | Pressure at fan inlet               | psia    |  |  |
| P15           | Total pressure in bypass-duct       | psia    |  |  |
| P30           | Total pressure at HPC outlet        | psia    |  |  |
| Nf            | Physical fan speed                  | rpm     |  |  |
| Nc            | Physical core speed                 | rpm     |  |  |
| epr           | Engine pressure ratio (P50/P2)      |         |  |  |
| Ps30          | Static pressure at HPC outlet       | psia    |  |  |
| phi           | Ratio of fuel flow to Ps30          | pps/psi |  |  |
| NRf           | Corrected fan speed                 | rpm     |  |  |
| NRc           | Corrected core speed                | rpm     |  |  |
| BPR           | Bypass Ratio                        |         |  |  |
| farB          | Burner fuel-air ratio               |         |  |  |
| htBleed       | Bleed Enthalpy                      |         |  |  |
| Nf_dmd        | Demanded fan speed                  | rpm     |  |  |
| PCNfR_dmd     | Demanded corrected fan speed        | rpm     |  |  |
| W31           | HPT coolant bleed                   | lbm/s   |  |  |
| W32           | LPT coolant bleed                   | lbm/s   |  |  |

### Distribution of max life cycles



The distribution is Gaussian ... but with wide range of values for maximum life achieved by engines

### Data preprocessing

- Step 1: Combine all four of the provided training datasets to create a 160,359 by 31 sample size. For each training set appended, add a new column called "condition"
  - We believe that the QuAM would be more robust on a dataset with engine information under various conditions

- **Step 2:** Derive the target "RUL" by
  - 1. Find the maximum time cycle of each unit
  - 2. Append to the dataframe by merging on unit number
  - 3. RUL = Max Cycle Time in Cycles

|       | Unit number | Time in cycles | Altitude | Mach number | TRA   | T2     | T4     | T30     | T50     | P2    |     | farB | htBleed | Nf_dmd | PCNfR_dmd | W31   | W32     | condition A |
|-------|-------------|----------------|----------|-------------|-------|--------|--------|---------|---------|-------|-----|------|---------|--------|-----------|-------|---------|-------------|
| 0     | 1           | 1              | -0.0007  | -0.0004     | 100.0 | 518.67 | 641.82 | 1589.70 | 1400.60 | 14.62 | ::: | 0.03 | 392     | 2388   | 100.0     | 39.06 | 23.4190 | 1           |
| 1     | 1           | 2              | 0.0019   | -0.0003     | 100.0 | 518.67 | 642.15 | 1591.82 | 1403.14 | 14.62 | 20  | 0.03 | 392     | 2388   | 100.0     | 39.00 | 23.4236 | 1           |
| 2     | 1           | 3              | -0.0043  | 0.0003      | 100.0 | 518.67 | 642.35 | 1587.99 | 1404.20 | 14.62 |     | 0.03 | 390     | 2388   | 100.0     | 38.95 | 23.3442 | 1           |
| 3     | 1           | 4              | 0.0007   | 0.0000      | 100.0 | 518.67 | 642.35 | 1582.79 | 1401.87 | 14.62 |     | 0.03 | 392     | 2388   | 100.0     | 38.88 | 23.3739 | 1           |
| 4     | 1           | 5              | -0.0019  | -0.0002     | 100.0 | 518.67 | 642.37 | 1582.85 | 1406.22 | 14.62 |     | 0.03 | 393     | 2388   | 100.0     | 38.90 | 23.4044 | 1           |
| ***   | 555         | 72             | 9555     | ***         | 575   |        | 575    |         | 5753    |       | 278 |      | 1000    |        | 550       |       | 2733    | 200         |
| 61244 | 249         | 251            | 9.9998   | 0.2500      | 100.0 | 489.05 | 605.33 | 1516.36 | 1315.28 | 10.52 |     | 0.03 | 372     | 2319   | 100.0     | 29.11 | 17.5234 | 4           |
| 61245 | 249         | 252            | 0.0028   | 0.0015      | 100.0 | 518.67 | 643.42 | 1598.92 | 1426.77 | 14.62 | 225 | 0.03 | 396     | 2388   | 100.0     | 39.38 | 23.7151 | 4           |
| 61246 | 249         | 253            | 0.0029   | 0.0000      | 100.0 | 518.67 | 643.68 | 1607.72 | 1430.56 | 14.62 |     | 0.03 | 395     | 2388   | 100.0     | 39.78 | 23.8270 | 4           |
| 61247 | 249         | 254            | 35.0046  | 0.8400      | 100.0 | 449.44 | 555.77 | 1381.29 | 1148.18 | 5.48  | 200 | 0.02 | 337     | 2223   | 100.0     | 15.26 | 9.0774  | 4           |
| 61248 | 249         | 255            | 42.0030  | 0.8400      | 100.0 | 445.00 | 549.85 | 1369.75 | 1147.45 | 3.91  | *** | 0.02 | 333     | 2212   | 100.0     | 10.66 | 6.4341  | 4           |

160359 rows × 30 columns

|       | Unit number | Time in cycles | Altitude | Mach number | TRA   | T2     | T4     | T30     | T50     | P2    |      | BPR    | farB | htBleed | Nf_dmd | PCNfR_dmd | W31   | W32     | condition | Max cycles | target |
|-------|-------------|----------------|----------|-------------|-------|--------|--------|---------|---------|-------|------|--------|------|---------|--------|-----------|-------|---------|-----------|------------|--------|
| 0     | 1           | 1              | -0.0007  | -0.0004     | 100.0 | 518.67 | 641.82 | 1589.70 | 1400.60 | 14.62 |      | 8.4195 | 0.03 | 392     | 2388   | 100.0     | 39.06 | 23.4190 | 1         | 192        | 191    |
| 1     | 1           | 2              | 0.0019   | -0.0003     | 100.0 | 518.67 | 642.15 | 1591.82 | 1403.14 | 14.62 | ***  | 8.4318 | 0.03 | 392     | 2388   | 100.0     | 39.00 | 23.4236 | 1         | 192        | 190    |
| 2     | 1           | 3              | -0.0043  | 0.0003      | 100.0 | 518.67 | 642.35 | 1587.99 | 1404.20 | 14.62 |      | 8.4178 | 0.03 | 390     | 2388   | 100.0     | 38.95 | 23.3442 | 1         | 192        | 189    |
| 3     | 1           | 4              | 0.0007   | 0.0000      | 100.0 | 518.67 | 642.35 | 1582.79 | 1401.87 | 14.62 |      | 8.3682 | 0.03 | 392     | 2388   | 100.0     | 38.88 | 23.3739 | 1         | 192        | 188    |
| 4     | 1           | 5              | -0.0019  | -0.0002     | 100.0 | 518.67 | 642.37 | 1582.85 | 1406.22 | 14.62 | ***  | 8.4294 | 0.03 | 393     | 2388   | 100.0     | 38.90 | 23.4044 | 1         | 192        | 187    |
|       |             | ***            |          | ***         | 20    |        | a.c    | 111     |         |       | ***  |        |      | 200     |        |           |       |         | ***       | ***        | 12.0   |
| 61244 | 249         | 251            | 9.9998   | 0.2500      | 100.0 | 489.05 | 605.33 | 1516.36 | 1315.28 | 10.52 |      | 8.4541 | 0.03 | 372     | 2319   | 100.0     | 29.11 | 17.5234 | 4         | 255        | 4      |
| 61245 | 249         | 252            | 0.0028   | 0.0015      | 100.0 | 518.67 | 643.42 | 1598.92 | 1426.77 | 14.62 | 1944 | 8.2221 | 0.03 | 396     | 2388   | 100.0     | 39.38 | 23.7151 | 4         | 255        | 3      |
| 61246 | 249         | 253            | 0.0029   | 0.0000      | 100.0 | 518.67 | 643.68 | 1607.72 | 1430.56 | 14.62 |      | 8.2525 | 0.03 | 395     | 2388   | 100.0     | 39.78 | 23.8270 | 4         | 255        | 2      |
| 61247 | 249         | 254            | 35.0046  | 0.8400      | 100.0 | 449.44 | 555.77 | 1381.29 | 1148.18 | 5.48  | 955  | 9.0515 | 0.02 | 337     | 2223   | 100.0     | 15.26 | 9.0774  | 4         | 255        | 1      |
| 61248 | 249         | 255            | 42.0030  | 0.8400      | 100.0 | 445.00 | 549.85 | 1369.75 | 1147.45 | 3.91  | ***  | 9.1207 | 0.02 | 333     | 2212   | 100.0     | 10.66 | 6.4341  | 4         | 255        | 0      |
|       |             |                |          |             |       |        |        |         |         |       |      |        |      |         |        |           |       |         |           |            |        |

160359 rows × 29 columns

### Data preprocessing

- **Step 3:** Discretize the target variable to [0,1]
  - IF target value < 25 then 1
  - Else 0

|        | Unit number     | Time in cycles | Altitude | Mach number | TRA   | T2     | T4     | T30     | T50     | P2    |     | farB | htBleed | Nf_dmd | PCNfR_dmd | W31   | W32     | condition | Max cycles | target | label_target |
|--------|-----------------|----------------|----------|-------------|-------|--------|--------|---------|---------|-------|-----|------|---------|--------|-----------|-------|---------|-----------|------------|--------|--------------|
| 0      | 1               | 1              | -0.0007  | -0.0004     | 100.0 | 518.67 | 641.82 | 1589.70 | 1400.60 | 14.62 |     | 0.03 | 392     | 2388   | 100.0     | 39.06 | 23.4190 | 1         | 192        | 191    | 0            |
| 1      | 1               | 2              | 0.0019   | -0.0003     | 100.0 | 518.67 | 642.15 | 1591.82 | 1403.14 | 14.62 |     | 0.03 | 392     | 2388   | 100.0     | 39.00 | 23.4236 | 1         | 192        | 190    | 0            |
| 2      | 1               | 3              | -0.0043  | 0.0003      | 100.0 | 518.67 | 642.35 | 1587.99 | 1404.20 | 14.62 | *** | 0.03 | 390     | 2388   | 100.0     | 38.95 | 23.3442 | 1         | 192        | 189    | 0            |
| 3      | 1               | 4              | 0.0007   | 0.0000      | 100.0 | 518.67 | 642.35 | 1582.79 | 1401.87 | 14.62 | (1) | 0.03 | 392     | 2388   | 100.0     | 38.88 | 23.3739 | 1         | 192        | 188    | 0            |
| 4      | 1               | 5              | -0.0019  | -0.0002     | 100.0 | 518.67 | 642.37 | 1582.85 | 1406.22 | 14.62 |     | 0.03 | 393     | 2388   | 100.0     | 38.90 | 23.4044 | 1         | 192        | 187    | 0            |
|        | ***             | ***            | ***      |             | ***   | 1779   | )****  |         |         |       | 555 |      | 1.00    |        |           |       |         | ***       |            | ***    | ***          |
| 61244  | 249             | 251            | 9.9998   | 0.2500      | 100.0 | 489.05 | 605.33 | 1516.36 | 1315.28 | 10.52 |     | 0.03 | 372     | 2319   | 100.0     | 29.11 | 17.5234 | 4         | 255        | 4      | 1            |
| 61245  | 249             | 252            | 0.0028   | 0.0015      | 100.0 | 518.67 | 643.42 | 1598.92 | 1426.77 | 14.62 | 770 | 0.03 | 396     | 2388   | 100.0     | 39.38 | 23.7151 | 4         | 255        | 3      | 1            |
| 61246  | 249             | 253            | 0.0029   | 0.0000      | 100.0 | 518.67 | 643.68 | 1607.72 | 1430.56 | 14.62 |     | 0.03 | 395     | 2388   | 100.0     | 39.78 | 23.8270 | 4         | 255        | 2      | 1            |
| 61247  | 249             | 254            | 35.0046  | 0.8400      | 100.0 | 449.44 | 555.77 | 1381.29 | 1148.18 | 5.48  | 22  | 0.02 | 337     | 2223   | 100.0     | 15.26 | 9.0774  | 4         | 255        | 1      | 1            |
| 61248  | 249             | 255            | 42.0030  | 0.8400      | 100.0 | 445.00 | 549.85 | 1369.75 | 1147.45 | 3.91  | *** | 0.02 | 333     | 2212   | 100.0     | 10.66 | 6.4341  | 4         | 255        | 0      | 1            |
| 160359 | rows × 30 colum | ns             |          |             |       |        |        |         |         |       |     |      |         |        |           |       |         |           |            |        |              |

- Step 4: Drop the added features that aren't in the original output except for the label\_target
  - Max cycles
  - Condition
  - Unit number
  - Target

|          | Time in cycles    | Altitude | Mach number | TRA   | T2     | T4     | T30     | T50     | P2    | P15   |      | NRf     | NRc     | BPR    | farB | htBleed | Nf_dmd | PCNfR_dmd | W31   | W32     | label_target |
|----------|-------------------|----------|-------------|-------|--------|--------|---------|---------|-------|-------|------|---------|---------|--------|------|---------|--------|-----------|-------|---------|--------------|
| 0        | 1                 | -0.0007  | -0.0004     | 100.0 | 518.67 | 641.82 | 1589.70 | 1400.60 | 14.62 | 21.61 | ***  | 2388.02 | 8138.62 | 8.4195 | 0.03 | 392     | 2388   | 100.0     | 39.06 | 23.4190 | 0            |
| 1        | 2                 | 0.0019   | -0.0003     | 100.0 | 518.67 | 642.15 | 1591.82 | 1403.14 | 14.62 | 21.61 |      | 2388.07 | 8131.49 | 8.4318 | 0.03 | 392     | 2388   | 100.0     | 39.00 | 23.4236 | 0            |
| 2        | 3                 | -0.0043  | 0.0003      | 100.0 | 518.67 | 642.35 | 1587.99 | 1404.20 | 14.62 | 21.61 |      | 2388.03 | 8133.23 | 8.4178 | 0.03 | 390     | 2388   | 100.0     | 38.95 | 23.3442 | 0            |
| 3        | 4                 | 0.0007   | 0.0000      | 100.0 | 518.67 | 642.35 | 1582.79 | 1401.87 | 14.62 | 21.61 | ***  | 2388.08 | 8133.83 | 8.3682 | 0.03 | 392     | 2388   | 100.0     | 38.88 | 23.3739 | 0            |
| 4        | 5                 | -0.0019  | -0.0002     | 100.0 | 518.67 | 642.37 | 1582.85 | 1406.22 | 14.62 | 21.61 |      | 2388.04 | 8133.80 | 8.4294 | 0.03 | 393     | 2388   | 100.0     | 38.90 | 23.4044 | 0            |
|          | 977               | ***      | (275)       | 775   |        | 97     | 575     |         | (575) |       | ***  | 177     |         |        | 177  | 57%     |        | 955       |       | 177     | 985          |
| 61244    | 251               | 9.9998   | 0.2500      | 100.0 | 489.05 | 605.33 | 1516.36 | 1315.28 | 10.52 | 15.46 | ***  | 2388.73 | 8185.69 | 8.4541 | 0.03 | 372     | 2319   | 100.0     | 29.11 | 17.5234 | 1            |
| 61245    | 252               | 0.0028   | 0.0015      | 100.0 | 518.67 | 643.42 | 1598.92 | 1426.77 | 14.62 | 21.57 | 1117 | 2388.46 | 8185.47 | 8.2221 | 0.03 | 396     | 2388   | 100.0     | 39.38 | 23.7151 | 1            |
| 61246    | 253               | 0.0029   | 0.0000      | 100.0 | 518.67 | 643.68 | 1607.72 | 1430.56 | 14.62 | 21.57 | ***  | 2388.48 | 8193.94 | 8.2525 | 0.03 | 395     | 2388   | 100.0     | 39.78 | 23.8270 | 1            |
| 61247    | 254               | 35.0046  | 0.8400      | 100.0 | 449.44 | 555.77 | 1381.29 | 1148.18 | 5.48  | 7.96  |      | 2388.83 | 8125.64 | 9.0515 | 0.02 | 337     | 2223   | 100.0     | 15.26 | 9.0774  | 1            |
| 61248    | 255               | 42.0030  | 0.8400      | 100.0 | 445.00 | 549.85 | 1369.75 | 1147.45 | 3.91  | 5.69  |      | 2388.66 | 8144.33 | 9.1207 | 0.02 | 333     | 2212   | 100.0     | 10.66 | 6.4341  | 1            |
| 160359 r | rows × 26 columns |          |             |       |        |        |         |         |       |       |      |         |         |        |      |         |        |           |       |         |              |

### Data preprocessing

- Step 5: Partition the dataset into train\_test\_split. Parameters for split are:
  - X is feature set except for the target
  - y is the label\_target column
  - Test size = 0.33
  - Stratify = y
    - splits the dataset in a way that the proportion of values in the sample produced will be the same as the proportion of values provided to parameter stratify.
    - For our dataset, there are 11% of ones and 89% of zeroes
  - Partitioned dataset has the following shapes:
    - X train shape(107440, 25)
    - X test shape(52919, 25)
    - y train shape(107440,)
    - y test shape(52919,)

### Mitigating sensor noise



# QuAM development

### QuAM development



### Design and development

#### **Decision Tree**



#### • Pros:

- Categorical Target Variable
- Interest in Significance of Features
- Quick Benchmark

#### Cons:

 Not suitable for Complex , Novel Problems

#### Hyperparameters of interest

- N\_estimators (Width of the Model)
- Max\_depth (Depth of the Model)
- min\_samples\_leaf criterion(most significant feature)
- splitter(best, random)
- min\_sample\_split

### Design and development

#### **Decision Tree**



#### • Pros:

- Categorical Target Variable
- Interest in Significance of Features
- Quick Benchmark

#### • Cons:

 Not suitable for Complex , Novel Problems

#### Hyperparameters of interest

- N\_estimators (Width of the Model)
- Max depth (Depth of the Model)
- min\_samples\_leaf criterion(most significant feature)
- splitter(best, random)
- · min sample split

#### **kNN**



#### • Pros:

- Versatile: Categorical /Continuous Target Variable
- · Intuitive, Easy to implement
- · Relatively High Accuracy

#### • Cons:

- Computationally expensive because the algorithm stores all of the training data
- · High memory requirement
- Prediction stage might be slow (with big N)
- Sensitive to irrelevant features and the scale of the data

#### Hyperparameters of interest

- N\_neighbours
- Weights('uniform','distance')

### Design and development

#### **Decision Tree**



#### • Pros:

- Categorical Target Variable
- Interest in Significance of Features
- Quick Benchmark

#### · Cons:

 Not suitable for Complex , Novel Problems

#### Hyperparameters of interest

- N\_estimators (Width of the Model)
- Max\_depth (Depth of the Model)
- min\_samples\_leaf criterion(most significant feature)
- splitter(best, random)
- · min sample split

#### **kNN**



#### Pros:

- Versatile: Categorical /Continuous Target Variable
- o Intuitive, Easy to implement
- Relatively High Accuracy

#### • Cons:

- Computationally expensive because the algorithm stores all of the training data
- High memory requirement
- Prediction stage might be slow (with big N)
- Sensitive to irrelevant features and the scale of the data

#### Hyperparameters of interest

- N neighbours
- Weights('uniform','distance')

#### **Linear Regression**



#### • Pros:

- Versatile: Categorical /Continuous Target Variable
- Easy to implement & interpret

#### Cons:

- assumes a linear relationship between dependent and independent variables.
- outliers can have huge effects on the regression and boundaries are linear in this technique.

#### • Hyperparameters of interest

(Fit\_intercept, normalize)

### Hyperparameter tuning



### Hyperparameters tuning



### DT hyperparameters tuning

```
#Fitting the Model and Evaluating
dtree = tree.DecisionTreeClassifier()
parameters = {
    'min samples leaf': [1,5,10,15,20],
    # to test 1,5,10,15,20 leaves
    'max depth': [2,4,8,16,32,None],
    'min samples split': [5,10,15,20],
    'criterion': ['gini', 'entropy'],
    'splitter': ['best', 'random']
    # to test various depths including No limitiation on the depth i.e. None
#using GridSearchCV to loop through predefined hyperparameters and fit your estimator (model) on your training set
cv = GridSearchCV(dtree, parameters, cv = 5)
#cv = 5 meaning it will run 5-fold validation for each hyperparameter combination
cv.fit(tr features,tr labels.values.ravel())
# we use ravel for the labels to convert it to an array, since the label is usually just one column and the algorithm expects an array
print results(cv)
0.968 (+/-0.003) for {'criterion': 'entropy', 'max_depth': 32, 'min_samples_leaf': 10, 'min_samples split': 15, 'splitter': 'random'}
0.975 (+/-0.003) for {'criterion': 'entropy', 'max depth': 32, 'min samples leaf': 10, 'min samples split': 20, 'splitter': 'best'}
0.968 (+/-0.003) for {'criterion': 'entropy', 'max_depth': 32, 'min_samples_leaf': 10, 'min_samples_split': 20, 'splitter': 'random'}
0.973 (+/-0.003) for {'criterion': 'entropy', 'max_depth': 32, 'min_samples_leaf': 15, 'min_samples_split': 5, 'splitter': 'best'}
0.964 (+/-0.003) for {'criterion': 'entropy', 'max_depth': 32, 'min_samples_leaf': 15, 'min_samples_split': 5, 'splitter': 'random'}
```

# Metrics Comparison - Decision Trees

|           | Decision Tree base model |                |
|-----------|--------------------------|----------------|
|           | Training Set             | Validation Set |
| Accuracy  | 0.972617275              | 0.958880553    |
| Precision | 0.941620422              | 0.840508977    |
| Recall    | 0.967268418              | 0.79270097     |
| F1 Score  | 0.954272116              | 0.815905245    |

|           | Decision Tree with Tuning |                |
|-----------|---------------------------|----------------|
|           | Training Set              | Validation Set |
| Accuracy  | 0.999311175               | 0.985235558    |
| Precision | 0.999589634               | 0.98443895     |
| Recall    | 0.999032496               | 0.986057436    |
| F1 Score  | 0.999310987               | 0.985247528    |

### Evaluation and selection

- Which model to deploy? By Occam's razor principle, the simpler model, Decision Tree, because it generalizes well enough for all conditions
- We've been able to predict engine failure within 25 cycles within the NASA's expectations

Recall >98% and F1\_Score 99%

- Current model should allow NASA to move maintenance interval from 5 to 10 cycles
- Model would be evaluated and re-trained as necessary
- So how can NASA deploy this?

## Q&A

| Detecting Overfitting (High Variance)                                                                                                                                       | Detecting Underfitting (High Bias)                                                                              | Strategies used to combat Overfitting & Underfitting                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If "Accuracy" (measured against the training set) is very good and "Validation Accuracy" (measured against a validation set) is not as good, then the model is overfitting. | If Accuracy and Validation<br>Accuracy are similar but<br>are both poor, then the<br>model may be underfitting. | Overfitting - reduced the complexity of the model by reducing the number of trainable parameters – We used a correlation Matrix to identify features with high level of correlation (ex. P2 and T2 sensors had 100% correlation) |
| Apply Occam's Razor test - If two models have comparable performance, pick the simpler one.                                                                                 |                                                                                                                 | 5-fold Cross Validation- Cross-validation allows you to tune hyperparameters with only your original training set. This allows you to keep your test set as a truly unseen dataset for selecting your final model.               |
|                                                                                                                                                                             |                                                                                                                 | Regularization (Ideal hyperparameters for each model – ex. For DT model – Prune the trees using max depth                                                                                                                        |
|                                                                                                                                                                             |                                                                                                                 | SMOTE Oversampling Method was applied.                                                                                                                                                                                           |
|                                                                                                                                                                             |                                                                                                                 | Others - Ensemble model- ex Random Forest as an ensemble for DT model<br>Ensembles are ML methods for combining predictions from multiple separate models.                                                                       |