17. Recursion

Recursive Tiling
Random Mondrian
Recursive Evaluation of n!
Tracking a Recursive Function Call

What is Recursion?

A function is recursive if it calls itself.

A pattern is recursive if it is defined in terms of itself.

The Concept of Recursion Is Hard But VERY Important

Teaching Plan:

Develop a recursive triangle-tiling procedure informally.

Fully implement (in Python) a recursive rectangle-tiling procedure.

Fully implement a recursive function for n!

Fully implement a recursive function for sorting (in a later lecture).

Recursive Graphics

We will develop a graphics procedure that draws this:

We are tiling a triangle with increasingly smaller triangles.

The procedure will call itself.

Tiling a Triangle

We start with one big triangle:

Tiling a Triangle

And are to end up with this:

Requires Repetition

Given a yellow triangle

Define the inner triangle and the 3 corner triangles

Color the inner triangle and repeat the process on the 3 corner triangles

"Repeat the Process"

Visit every yellow triangle and replace it with this

We Get This...

"Repeat the Process"

Visit every yellow triangle and replace it with

We Get This...

"Repeat the Process"

Visit every yellow triangle and replace it with

We Get This...

Etc.

The Notion of Level

A 0-level tiling

A 1-level tiling

A 2-level tiling

A 3-level tiling

The Connection Between Levels

A 3-level tiling

A 2-level tiling

To display a 3-level tiling you do this:

- display the inner triangle TO
- display a 2-level tiling of corner triangles T1, T2, and T3

The Connection Between Levels

To display an N-level tiling you do this:

- display the inner triangle TO
- display an (N-1)-level tiling of triangles T1, T2, and T3

A Recursive Procedure

```
def Tile(T,level):
    # PreC: T a triangle
    if Level ==0:
                                   This is the "base case".
                                   A 0-level tiling just draws the
      Draw T (yellow)
                                   input triangle
   else:
      # Let TO be the inner triangle and
      # T1, T2, and T3 be the corner triangles
      Draw TO (magenta)
      Tile (T1, level-1)
                                  These are the recursive
                                  procedure calls.
      Tile (T2, level-1)
                                  The procedure Tile calls itself
                                  three times.
      Tile (T3, level-1)
```

A Note on Chopping up a Region into Triangles...

It is Important!

Step One in simulating flow around an airfoil is to generate a triangular mesh and (say) estimate the velocity at each little triangle using physics and math.

Another Example: Random Mondrians

Using Python:

Random Mondrian

Given This:

Random Mondrian

Draw This:

The Subdivide Process Applies to a Rectangle

Given a rectangle specified by its length, width, and center, either randomly color it or randomly subdivide it.

Subdivision Starts with a Random Dart Throw

This Defines 4 Smaller Rectangles

Repeat the process on each of the 4 smaller rectangles...

This Defines 4 Smaller Rectangles

We can again repeat the process on each of the 16 smaller rectangles. Etc.

The Notion of Level

A 1-level Partitioning

A 2-level Partitioning

Pseudocode

```
def Mondrian(x,y,L,W,level):
   if level ==0:
       c = RandomColor())
      DrawRect(x,y,L,W,FillColor=c)
   else:
     # Subdivide into 4 smaller rectangles
      Mondrian (upper left rectangle info, level-1)
      Mondrian (upper right rectangle info, level-1)
      Mondrian (lower left rectangle info, level-1)
      Mondrian (lower right rectangle info, level-1)
```

How to Generate Random Colors

We need some new technology to organize the selection random colors.

We need lists whose entries are lists.

Lists with Entries that Are Lists

An Example:

```
cyan = [0.0,1.0,1.0]
magenta = [1.0,0.0,1.0]
yellow = [1.0,1.0,0.0]
colorList = [cyan,magenta,yellow]
```

Pick a Color at Random

```
cyan = [0.0,1.0,1.0]
magenta = [1.0,0.0,1.0]
yellow = [1.0,1.0,0.0]
colorList = [cyan,magenta,yellow]
r = randi(0,2)
randomColor = colorList[r]
```

Package the Idea...

```
from simpleGraphics import *
from random import randint as randi
def RandomColor():
       Returns a randomly selected
   rgb list."""
   c = [RED, GREEN, BLUE, ORANGE, CYAN]
   i = randi(0, len(c)-1)
   return c[i]
```

How to Randomly Subdivide a Rectangle

The Math Behind the Little Rectangles

The upper right rectangle is typical:

Length: L1 = (x+L/2)-xcWidth: W1 = (y+W/2)-ycCenter: (xc+L1/2,yc+W1/2)

The Procedure Mondrian

A couple of features to make the design more interesting:

- (1) The dart throw that determines the subdivision can't land too near the edge. No super skinny tiles!
- (2) Randomly decide whether or not to subdivide. This creates a nice diversity in size.

Next Up

A Non-Graphics Example of Recursion: The Factorial Function

Recursive Evaluation of Factorial

Recall the factorial function:

```
def F(n):
    x = 1
    for k in range(1,n+1):
        x = x*k
    return x
```

Recursive Evaluation of Factorial

Q. How would you compute 6! given that you have computed 5! = 120?

A. $6! = 120 \times 6$

Recursive Evaluation of Factorial

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```

```
m = 3 

x = F(m)

print x
```



```
m = 3
x = F(m) •
print
```

```
def F(n): •
   if n<=1:
      return 1
   else:
      a = F(n-1)
      return n*a</pre>
```



```
m = 3
x = F(m) •
print x
```



```
m = 3
x = F(m) 
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```

```
def F(n): •
   if n<=1:
      return 1
   else:
      a = F(n-1)
      return n*a</pre>
```



```
m = 3
x = F(m) 
print x
```

```
def F(n):
   if n<=1:
     return 1
   else:
     a = F(n-1)
   return n*a</pre>
```

```
def F(n):
   if n<=1:
     return 1
   else:
     a = F(n-1)
     return n*a</pre>
```



```
m = 3
x = F(m) •
print x
```

```
def F(n):
   if n<=1:
     return 1
   else:
     a = F(n-1)
     return n*a</pre>
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```



```
m = 3
x = F(m) •
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```



```
m --> 3
x -->
```



```
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```


The value is sent back to the caller.

```
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```



```
m --> 3
x -->
```



```
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```

```
def F(n):
   if n<=1:
     return 1
   else:
     a = F(n-1)
     return n*a</pre>
```



```
m = 3

x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```



```
m = 3
x = F(m) •
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
    return n*a</pre>
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```


The value is returned to the caller.

```
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```

```
m --> 3
x -->
```

```
m = 3
x = F(m) 
print x
```

```
def F(n):
   if n<=1:
     return 1
   else:
     a = F(n-1)
     return n*a</pre>
```



```
m = 3

x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```



```
m = 3
x = F(m) if n<=1:
print x

return 1
else:
a = F(n-1)
return n*a</pre>
```


The value is returned to the caller.

```
m = 3
x = F(m) 
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a</pre>
```

```
m = 3
x = F(m) •
print x
```

Output: 6

Overall Conclusions

Recursion is sometimes the simplest way to organize a computation.

It would be next to impossible to do the triangle tiling problem any other way.

On the other hand, factorial computation is easier via for-loop iteration.

Overall Conclusions

Infinite recursion (like infinite loops) can happen so careful reasoning is required.

Will we reach the "base case"?

Graphics examples: We will reach Level==0 Factorial: We will reach n==1