Laboratorium grafiki i multimediów Krzywe Béziera

Bartosz Ziemkiewicz

Wydział Matematyki i Informatyki UMK, Toruń

2 marca 2014

Parametryczna reprezentacja krzywej

- Nie każdą krzywą można łatwo określić za pomocą zwykłego równania funkcyjnego y=f(x). Na przykład dla okręgu konieczne są osobne równania dla górnej i dolnej połówki ($y=\sqrt{R^2-x^2}$ i $y=-\sqrt{R^2-x^2}$. W takich przypadkach często wygodniejsza jest reprezentacja parametryczna.
- W reprezentacji parametrycznej każda współrzędna krzywej jest pewną funkcją liczby rzeczywistej będącej wspomnianym parametrem.
- Aby określić krzywą na płaszczyźnie trzeba podać dwie funkcje (równania), a dla krzywej w przestrzeni trzy. Należy również podać zakres zmienności parametru

Parametryczna reprezentacja krzywej — przykłady

 Równanie parametryczne okręgu o środku (0,0) i promieniu R ma postać:

$$\begin{cases} x(t) = R\cos(t) \\ y(t) = R\sin(t) \end{cases}$$

gdzie $t \in [0, 2\pi)$.

• Równanie parametryczne krzywej śrubowej ma postać:

$$\begin{cases} x(t) = a\cos(t) \\ y(t) = a\sin(t) \\ z(t) = bt \end{cases}$$

 $\mathsf{gdzie}\ t \in \mathbb{R}.$

Krzywe w grafice komputerowej

- W grafice komputerowej do reprezentacji krzywych wykorzystujemy najczęściej wielomiany trzeciego stopnia lub funkcje wymierne będące ilorazami wielomianów trzeciego stopnia.
- Najczęściej stosowane krzywe to
 - krzywe Béziera,
 - jednorodne nieułamkowe krzywe B-sklejane (B-spline),
 - niejednorodne ułamkowe krzywe B-sklejane (krzywe NURBS).

Krzywe Béziera

- Opracowane na początku lat 60. XX w. niezależnie przez Pierre'a Béziera, francuskiego inżyniera firmy Renault, oraz Paula de Casteljau, pracującego dla firmy Citroën.
- Są powszechnie stosowana w programach do projektowania inżynierskiego CAD, projektowania grafiki komputerowej, animacji (jako tory ruchu obiektów), do reprezentowania kształtów znaków w czcionkach komputerowych i systemach przetwarzania grafiki.

Krzywe Béziera 1-go stopnia

- Krzywa Béziera 1-go stopnia określona przez punkty P_0 i P_1 to po prostu odcinek łączący te punkty
- Krzywa jest określona wzorem

$$B(t) = (1-t)P_0 + tP_1$$

 $\mathsf{gdzie}\ t \in [0,1].$

• Powyższe równanie należy rozumieć następująco. Jeżeli $P_0=(P_0^x,P_0^y)$, a $P_1=(P_1^x,P_1^y)$, to do krzywej należą punkty

$$B(t) = (B^{x}(t), B^{y}(t)) = ((1-t)P_{0}^{x} + tP_{1}^{x}, (1-t)P_{0}^{y} + tP_{1}^{y})$$

gdzie $t \in [0,1]$. Równania dla krzywych wyższego stopnia należy rozumieć analogicznie.

Krzywe Béziera 2-go stopnia

- Krzywa Béziera 2-go stopnia zadana przez punkty P₀, P₁ i P₂ to fragment paraboli określony wzorem
- Krzywa jest określona wzorem

$$B(t) = (1-t)^2 P_0 + 2(1-t)tP_1 + t^2 P_2$$

gdzie $t \in [0, 1]$.

• Krzywa zaczyna się w punkcie P_0 , kończy w P_2 i jest styczna do odcinków P_0P_1 i P_1P_2 .

Źrodło: www.e-cartouche.ch/content_reg/cartouche/graphics/en/html/Curves_learningObject2.html

Krzywe Béziera 3-go stopnia

- Krzywa Béziera 3-go stopnia zadana przez punkty P_0, P_1, P_2 i P_3 to krzywa 3-go stopnia określona wzorem
- Krzywa jest określona wzorem

$$B(t) = (1-t)^3 P_0 + 3(1-t)^2 t P_1 + 3(1-t)t^2 P_2 + t^3 P_3$$
gdzie $t \in [0, 1]$.

• Krzywa zaczyna się w punkcie P_0 , kończy w P_3 i jest styczna do odcinków P_0P_1 i P_2P_3 .

Źrodło: www.e-cartouche.ch/content_reg/cartouche/graphics/en/html/Curves_learningObject2.html

Krzywe Béziera stopnia *n*

- Krzywą Béziera stopnia n definiuje n+1 punktów kontrolnych P_0, P_1, \ldots, P_n .
- Krzywa jest określona wzorem

$$B(t) = \sum_{i=0}^{n} \binom{n}{i} t^{i} (1-t)^{n-i} P_{i} = \sum_{i=0}^{n} b_{i,n}(t) P_{i},$$

gdzie $t \in [0,1]$, a $b_{i,n}(t)$ są wielomianami Bernsteina określonymi wzorem

$$b_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

dla i = 0, 1, ..., n.

Własności krzywych Béziera

- Punkty P_0 i P_n określają początek i koniec krzywej. Pozostałe punkty zazwyczaj nie należą do krzywej.
- Łącząc kolejne punkty kontrolne od P₀ do P₁ otrzymujemy tzw. wielokąt Béziera.
- Początek krzywej jest styczny do pierwszego, a koniec do ostatniego boku wielokąta Béziera.
- ullet Krzywa leży w otoczce wypukłej punktów kontrolnych P_0,\ldots,P_n .
- Krzywą można podzielić w dowolnym punkcie na dwie części z których każda jest też krzywą Béziera.
- Za pomocą krzywych Béziera nie można reprezentować krzywych stożkowych np. okręgów elips.

Wyświetlanie (rasteryzacja) krzywej Béziera

- Problem: jak dla danych punktów kontrolnych P_0, \ldots, P_n wyznaczyć punkty należące do krzywej?
- Metoda najprostsza (ale mało efektywna) polega na obliczeniu wartości B(t) dla t należących do pewnego podzbioru odcinka [0,1] i wyświetleniu tych pikseli na ekranie (po zaokrągleniu). Jeżeli podzbiór będzie odpowiednio gęsty (tzn. krok zwiększający t odpowiednio mały), to otrzymamy dobre przybliżenie krzywej.
- Inna metoda polega na wyznaczeniu wartości B(t) dla pewnej liczby t i połączeniu otrzymanych punktów odcinkami. Przy odpowiednio dużej liczbie punktów otrzymamy dobre przybliżenie krzywej.
- Do obliczania wartości wielomianu można użyć standardowych metod takich jak schemat Hornera lub metody różnic skończonych. Można również użyć algorytmu de Casteljau przeznaczonego specjalnie do krzywych Bézeira.

Schemat Hornera

Problem. Obliczyć wartość wielomianu

$$p(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0,$$

gdzie $a_n \neq 0$ w punkcie t_0 wykonując możliwie najmniej działań.

Rozwiązanie. Korzystając z powyższej postaci wielomianu musimy wykonać 2n-1 mnożeń i n dodawań (sprawdzić!). Jeżeli jednak przedstawimy wielomian w równoważnej postaci

Schemat Hornera

$$p(t) = a_0 + t(a_1 + t(a_2 + t(a_3 + \cdots + t(a_{n-1} + a_n t) \cdots)))$$

to otrzymamy algorytm obliczania $p(t_0)$, którego koszt wynosi tylko n mnożeń i n dodawań. Algorytm ten nazywamy schematem Hornera.

Schemat Hornera — algorytm

- Dane: wielomian $p(t) = a_n t^n + \ldots + a_1 t + a_0$ i punkt t_0 .
- Wynik: $v = p(t_0)$

```
1  v = a[n];
2  for (k=n-1; k>=0; k--)
3  v = a[k] + t0 * v;
```

- Algorytm ten pozwala na rekurencyjne wyznaczenie punktów B(t) leżących na krzywej Béziera dla $t \in [0,1]$.
- Algorytm dzieli w stosunku t: 1-t każdy z odcinków $P_i P_{i+1}$ wyznaczonych przez punkty kontrolne krzywej. W wyniku otrzymujemy n nowych punktów. Dzielimy w takim samym stosunku odcinki wyznaczone przez te punkty i otrzymujemy n-1 kolejnych punktów. Postępowanie to powtarzamy n razy, aż otrzymamy n punkt, który jest szukaną wartością n

$$P_0^{(0)}, P_1^{(0)}, P_2^{(0)}, P_3^{(0)}, \dots, P_{n-1}^{(0)}, P_n^{(0)}$$

$$P_0^{(1)}, P_1^{(1)}, P_2^{(1)}, \dots, P_{n-1}^{(1)}$$

$$\vdots$$

$$P_0^{(n-1)}, P_1^{(n-1)}$$

$$P_0^{(n)}$$

- Algorytm de Casteljau wyznacza również podział krzywej Béziera (w punkcie $P_0^{(n)}$) na dwie krzywe Béziera.
- Punkty kontrolne tych krzywych to $P_0^{(0)}, P_0^{(1)}, \ldots, P_0^{(n)}$ oraz $P_n^{(0)}, P_{n-1}^{(1)}, \ldots, P_0^{(n)}$. Leżą one na brzegach trójkąta punktów (patrz poprzedni slajd).

Źródło: http://pl.wikipedia.org/wiki/Algorytm_de_Casteljau

- Dane: Tablica n+1 punktów kontrolnych P[0],...,P[n] oraz punkt $t \in [0,1]$.
- Wynik: Punkt krzywej B(t).

```
for (i=0; i<=n; i++)
Q[i] = P[i];
for (k=1; k<=n; k++)
for (i=0 i<=n-k; i++)
Q[i] = (1 - t) * Q[i] + t * Q[i + 1];

return Q[0];</pre>
```

Łączenie segmentów krzywej

- Przy łączeniu krzywych najczęściej będziemy wymagać tzw. ciągłości parmetrycznej.
- O ciągłości parametrycznej Cⁿ mówimy gdy pochodne rzędu n (i niższych) w punkcie połączenia obu kawałków krzywej są równe.
- W szczególności ciągłość C⁰ oznacza, że krzywe się łączą (koniec pierwszej jest początkiem drugiej).
- Ciągłość C¹ oznacza, że połączenie jest gładkie, tzn. wektory styczne do obu krzywych w punkcie połączenia, mają ten sam kierunek i taką samą wartość.
- ullet Ciągłość C^2 oznacza, że dodatkowo ich krzywizna jest taka sama.

Łączenie segmentów krzywej

- Ciągłość parametryczna jest szczególnie istotna gdy krzywe wykorzystujemy jako tory ruchu obiektów. Ponieważ pierwsza i druga pochodna to odpowiednio prędkość i przyspieszenie, brak ciągłości parametrycznej powodowałby gwałtowne zmiany tych parametrów.
- Czasem rozważa się słabsze pojęcie ciągłości geometrycznej (wizualnej). Na przykład ciągłość G^0 oznacza, że krzywe łączą się ze sobą, a ciągłość G^1 , że ich wektory styczne mają taki sam kierunek, ale niekoniecznie tą sama wartość.
- W przypadku dwóch krzywych Béziera 3-go stopnia określonych przez punkty P_0, P_1, P_2, P_3 i Q_0, Q_1, Q_2, Q_3 , dla ciągłości G^0 i C^0 wystarczy aby $P_3 = Q_0$. Dla ciągłości G^1 punkty $P_2, P_3 = Q_0, Q_1$ muszą być współliniowe, a dla ciągłości C^1 dodatkowo odległość między P_2 i P_3 musi być równa odległości między Q_0 i Q_1 .

Łączenie segmentów krzywej

Reparametryzacja krzywej

- Przy łączeniu segmentów krzywej wygodnie jest czasem zmienić jej parametryzację, tak aby parametr t nie zerował się przy przechodzeniu do nowego segmentu.
- Aby parametr przebiegał po odcinku $[t_0,t_1]$ (zamiast [0,1]) tak aby $B(t_0)=P_0$ i $B(t_1)=P_n$ wystarczy zmodyfikować nieco równanie krzywej Béziera

$$B(t) = \sum_{i=0}^{n} \binom{n}{i} \left(\frac{t - t_0}{t_1 - t_0} \right)^i \left(\frac{t_1 - t}{t_1 - t_0} \right)^{n-i} P_i.$$

Literatura

J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips, Wprowadzenie do grafiki komputerowej, WNT 1995