MAC323 DESAFIO 1

PERFIL DE COMPONENTES DE UM GRAFO ALEATÓRIO GEOMÉTRICO

Y. KOHAYAKAWA

Data de entrega: em aberto

Introdução. Este desafio é baseado em um exemplo geométrico discutido em sala (veja os programas 3.8 e 3.20 de Sedgewick). Lembre que definimos um certo grafo geometricamente naquele exemplo. Queremos descobrir o 'perfil de componentes' daqueles grafos: dado um grafo G, denotemos aqui por c(G) o número de componentes conexos em G. Seja G_1, \ldots, G_c uma ordenação dos componentes de G em ordem decrescente de número de vértices (isto é, $|V(G_1)| \ge \cdots \ge |V(G_c)|$). Ademais, seja $L_i(G) = |V(G_i)|$ para todo i. O perfil de componentes de G é o vetor

$$perf(G) = (L_1(G), \dots, L_c(G)), \tag{1}$$

onde c = c(G). Será também conveniente considerar o perfil normalizado de G, definido como

$$\widetilde{\operatorname{perf}}(G) = \frac{1}{N}(L_1(G), \dots, L_c(G)), \tag{2}$$

onde N = |V(G)|.

Descrição do problema. Suponha dados N e $0 \le d \le 1$. Suponha ainda que $x_1, \ldots, x_N \in [0,1]^2$ são n pontos no quadrado unitário. Definimos um grafo G=(V,E) com $V=[N]=\{1,\ldots,N\}$ e

$$E = \{\{i, j\} : ||x_i - x_j|| < d\}.$$
(3)

Estamos interessados em perf(G), quando os x_i são pontos aleatórios de $[0,1]^2$, distribuídos uniforme e independentemente. Estamos particularmente interessados no caso em que $N \to \infty$, mas d^2N não é 'nem muito pequeno e nem muito grande'.

Seu programa. Em sua versão mais simples, seu programa deve receber N e d como entrada (opções de linha de comando $-\mathbb{N}$ e -d). Ele deve então gerar os x_i $(1 \le i \le N)$, computar o grafo G, e imprimir c(G), perf(G) e $\widetilde{perf}(G)$.

O usuário deve também poder fornecer N e r (opção $\neg r$), com os quais seu programa deve determinar d, definido pela relação

$$r = \pi d^2 N. (4)$$

Seu programa deve também aceitar uma semente para rand(), através da opção -s.

Execuções típicas de seu programa seriam como segue:

prompt\$ d1 -N1000 -d0.02

prompt\$ d1 -N1000 -d0.02 -s31415

prompt\$ d1 -N1000 -d0.03

e

Versão (preliminar) de 8 de março de 2012, 15:16.

```
prompt$ d1 -N1000 -r0.5
prompt$ d1 -N1000 -r1.0
prompt$ d1 -N1000 -r2.0
prompt$ d1 -N1000 -r2.5
prompt$ d1 -N1000 -r3.0
```

Experimentos. Experimente executar seu programa para valores grandes de N e r variando de valores pequenos (digamos, 0.01) até valores grandes (digamos, 100).

Observações

- 1. Comparem entre vocês o desempenho de seus programas.
- 2. Não deixem de incluir um relatório em suas soluções.
- 3. Entreguem suas soluções no Paca.

Observação final. Enviem dúvidas para a lista de discussão da disciplina.

Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508–090 São Paulo, SP

 $Endere ço\ eletr \^onico : \verb"yoshi@ime.usp.br"$