## Задача 2. Магистратура (50 баллов)

На рисунке 1 схематично изображен волноводный светоделитель. Он представляет собой два волновода, связанных друг с другом в определенной области пространства, и описывается уравнениями

$$\frac{d\hat{a}_1}{dz} = -i(\beta_1 + K_{11}) \,\hat{a}_1 - iK_{12}\hat{a}_2, \qquad (1)$$

$$\frac{d\hat{a}_2}{dz} = -i(\beta_2 + K_{22}) \,\hat{a}_2 - iK_{21}\hat{a}_1, \qquad (2)$$

$$\frac{d\hat{a}_2}{dz} = -i(\beta_2 + K_{22})\,\hat{a}_2 - iK_{21}\hat{a}_1,\tag{2}$$

где  $\hat{a}_k$  — оператор уничтожения k-ой моды,  $\beta_k$  — константы распространения в волноводе k-ой моды,  $K_{km}$  — коэффициенты самовоздействия и кроссвоздействия (k, m = 1, 2), z — координата вдоль волновода, в направлении которой распространяется свет. В пределе слабой связи считаем, что коэффициенты связи не зависят от частоты излучения и являются константами.



Рис. 1: Схематичное изображение связанных волноводов с двумя входными портами и двумя выходными портами, где операторы уничтожения для мод 1 и 2 на входных портах представлены как  $\hat{a}_1$  и  $\hat{a}_2$  соответственно, а на выходных портах —  $\hat{b}_1$  и  $\hat{b}_2$  соответственно.

- 1. (8 баллов) Получите матрицу перехода между входным и выходным излучением в предположении, что потерь в системе нет. Покажите, что такая конфигурация связанных волноводов описывается как классический светоделитель.
- 2. (2 балла)Вычислите коэффициент пропускания и отражения при длине области связи zи константы взаимодействия  $\kappa = K_{12} = K_{21}$ . Получите численные значения при z=1 мм,  $\kappa = 500 \text{ m}^{-1}$ .
- 3. (а) (2 балла) Что будет на выходе светоделителя, если обе входные моды представляют собой когерентное состояние?
  - (b) (2 балла) Найдите, чему равна нормированная функция корелляции фотонов  $q^{(2)}$ на выходе светоделителя, если на один из входов светоделителя подали когерентое состояние, а на второй вакуумное состояние.
  - (с) (2 балла) Что будет на выходе светоделителя, если на один из входов подать одиночный фотон?
  - (d) (2 балла) На светоделитель подали в один вход фотонное фоковское состояние из 10 фотонов, а на второй вакуумное. Найти вероятность того, что на одном из выходов задетектируются два фотона и восемь фотонов на другом.
  - (е) (2 балла) На каждый вход светоделителя подают однофотонное состояние. При каких коэффициентах пропускания и отражения вероятность обнаружить на выходе аналогичное состояние будет минимальной?
  - (f) (2 балла) Что будет на выходе светоделителя, если на вход подали запутанное состояние  $\psi^+$  Белла.
- 4. (14 баллов) На один вход светоделителя подается сигнал, определяемый оператором  $\hat{a}$ , на второй — вакуумное состояние. Рассчитайте среднее значение поля выходного сигнала и его флуктуации в терминах коэффициента пропускания. Как изменится степень сжатия, если входное излучение обладало степенью сжатия  $\left<\Delta E_0^2\right>_{min} = \frac{1}{4}e^{-2r}$ .

- 5. На рисунке 2 изображена схема оптического Y-разветвителя, который рассматривается как система с тремя входами и тремя выходами. Потерь в системе нет.
  - (a) **(10 баллов)** В предположении что входной сигнал с первого порта распределяется только между 2 и 3, получите матрицу перехода между входным и выходным излучением.
  - (b) **(4 балла)** Сравните полученный результат с выражениями для симметричного светоделителя, которому на один из входов подается вакуумное состояние.



Рис. 2: Оптический Y-разветвитель.  $\hat{a}_1,\hat{a}_2,\hat{a}_3$  — входные сигналы 1, 2 и 3 портов соответственно,  $\hat{b}_1,\hat{b}_2,\hat{b}_3$  — выходные сигналы.

В качестве ответа в этом задании загрузите файл с подробным описанием хода решения всех подзадач 1–5 в формате pdf. (Задание с ручной проверкой.)