Домашнее задание №3 по курсу «Машинное обучение»: основы машинного обучения

Скавыш Максим

Задание 1

Вычислите VCdim(H), если H- семейство линейных бинарных классификаторов в d-мерном пространстве.

Решение

Зафиксируем некоторое n — произвольная размерность пространства. Будем рассматривать семейство линейных бинарных классификаторов вида (bias можно внести в w):

$$H = sign \circ h_w, h_w = sign(\langle w, x \rangle)$$
, где $w \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}$

Докажем существование множества $C \in X$ размерности n, которое можно раскрасить. Пусть $C = \{c_i = e_i, i = 1, ..., n\}$, где $e_i = (0, ..., 0, 1, 0, ..., 0)$ — единичные вектора с i-м ненулевым элементом. Такое множество C можно раскрасить подбирая w так, что $\langle w, e_i \rangle = y_i$. Тоесть существует множество размерности n которое можно раскрасить.

Докажем что невозможно раскрасить любое n + 1 множество

Пусть $C=\{c_i,\ i=1,\dots,n+1\}$. Так как размерность пространства $n:c_i\in R^n$, то как минимум один элемент из множества C линейно выражается через остальные элементы. Для определенности считаем что это $c_{n+1}=\sum_{i=1}^n \alpha_i c_i$. Тогда и y_i одназначно определяется из линейной зависимости \Rightarrow мы не можем раскрасить произвольное множество C из n+1 элемента. $VCdim(H_w)=n$

Задание 3

. Пусть X — булев гиперкуб размерности n. Для множества $I \in \{1, 2, \dots, n\}$ и объекта $x \in X$, $x = (x_1, x_2, \dots, x_n)$ зададим функцию $h_I(x) = (\sum_{i \in I} x_i) \mod 2$. Чему равна VCdim таких множества всех таких функций?

Решение

Зафиксируем некоторое произвольное n. Тогда размер множества $|X|=2^n$. Известно: $VCdim(H) \leq \log_2 |H| = n$

Докажем что существует множество из п элементов которое можно разукрасить:

$$C = \{x^i = (x_1^i, ..., x_n^i), i = 1, ..., n\}$$

Возьмем элемент $x^i \in C$ $i \in [1,n]$ таким что все его элементы кроме i-го нулевые: $x^i = \left(x_1^i,...,x_i^i\,...,x_n^i\right) = (0,...,1,...,0)$ тогда добавляя в множество I те i для которых мы хотим получить $y_i = 1$ а для остальных беря $I = \emptyset$. Мы всегда можем разукрасить множество размерности n. Получили $VCdim(H_I) = n$

Задание 4

Объясните, как согласуются:

- ullet ERM-алгоритм над конечным классом H PAC-learnable в случае гипотезы реализуемости и No Free Lunch theorem?
- ERM-алгоритм над конечным классом H agnostic PAC-learnable и No Free Lunch theorem?

Решение

При NFL теореме мы заранее фиксируем некоторое значение $m \leq \frac{|X|}{2}$ и говорим что при выборке размера m существует такое распределние D что выполянются условия .