Big Data Analytics

Dr Sirintra Vaiwsri | Email: sirintra.v@itm.kmutnb.ac.th

Databases

Relational Database Management System

(Holmes, 2017; Staragile, 2023)

- The major problem with using RDBMS for Big Data is scalability.
- RDBMS was designed to be used on one server which can be improved but still has its limits, called vertical scaling.
- RDBMS has ACID properties which are :
 - Atomicity the incomplete transaction cannot update the database.
 - Consistency data is consistent before and after a transaction.
 - Isolation each transaction does not interfere with others.
 - Durability a database must be updated to ensure data will not be lost if the system fails.

Not only SQL (NoSQL) (Holmes, 2017)

- Non-relational database
- NoSQL has BASE properties which are :
 - Basically Available the system is always available even when a network failure occurs.
 - Soft state means it has flexibility with consistent requirements.
 - Eventually consistent the system eventually becomes consistent.
- NoSQL is horizontal scaling which allows more data to be inserted into the database.
- Working with NoSQL must concern the CAP theorem.

RDBMS VS NoSQL (Edward and Sabharwal, 2015)

	RDBMS	NoSQL
Schema flexibility	Inflexible, often ends up creating new tables	Column-oriented which allows adding more columns. It also supports semi-structured data.
Complex query	Often uses complex JOIN queries which are difficult to implement and maintain	It does not support relationships and foreign keys, thus, no complex query
Data update	If the system does not allow for updating multiple nodes at the same time, there is a risk of node failure	Synchronisation across nodes is challenging. However, NoSQL solutions offer synchronisation options.
Scalability	Low speed for large amounts of data	Provide great scalability

NoSQL

Key-Value Databases

(Bahga and Madisetti, 2019; DEV, 2023; KDnuggets, 2023; Janev et al., 2020)

- It is the simplest NoSQL database.
- It stores data in the form of key-value pairs.
- A key is unique for each data.
- Key is usually a string or an integer.
- A value contains data which can be in the form of attributes or collections.
- Value can be any type of data.

Key-Value Databases (DEV, 2023; KDnuggets, 2023)

Advantages:

- Scalability it is horizontal scaling through partitioning and replication. It also has low overhead.
- Mobility it is easy to move from one to another system without changing in code/architecture required.

Disadvantages:

- All joins must be done in code.
- No complex query filters.

- It is similar to key-value databases in that each document has a unique key (ID).
- Each document can store any type of data.
- Its query is JSON-like documents.
- Therefore, it requires a data format that a database can understand.

Document Databases (DEV, 2023)

- Advantages:
 - It collects data from RAM which is fast to access.
 - It is horizontal scaling.
- Disadvantages:
 - Selecting data from multiple collections requires multiple queries.
 - Data duplication can occur which makes it difficult to handle.

Column-Oriented Databases

(Bahga and Madisetti, 2019; DEV, 2023; KDnuggets, 2023; Janev et al., 2020)

- It stores data in the form of columns.
- Column it contains name, value, and timestamp.
- Row it contains one or more columns where different rows are not necessary to contain the same number of columns. It has row-key as a unique key (ID).
- Column family it contains multiple rows where each row can contain multiple column families.
- Keyspace it contains multiple column families.

Column-Oriented Databases (DEV, 2023)

- Advantages:
 - It is scalable and flexible.
 - Load and aggregation times are very fast.
- Disadvantages:
 - It is slow when deleting rows.
 - It can be slow when querying data using a join query.

Graph Databases (Bahga and Madisetti, 2019; DEV, 2023)

- It stores data that has a graph structure.
- It shows a relationship between data.
- Nodes have a set of attributes.
- Edges (links) also have a set of attributes.

Graph Databases (DEV, 2023)

- Advantages:
 - It is easy to understand data and has descriptive queries.
 - It is flexible.
- Disadvantages:
 - It is difficult to scale.
 - It does not have a standard language.

MongoDB

Download MongoDB from here.

Dr Sirintra Vaiwsri

Dr Sirintra Vaiwsri

MongoDB.

MongoDB Compass is being installed.

It will launch once it is done.

Dr Sirintra Vaiwsri

Create Database

Create Database

Import Data

Select All

SQL: select * from

MQL: { }

Select Where

SQL: select * from where <column> = <value> MQL: {<column>:<value>}

• • • • • •

28

Select Where And

SQL: select * from where <column1> = <value1> and <column2> = <value2>

MQL: {<column1>:<value1>, <column2>:<value2>}

Dr Sirintra Vaiwsri

Select Where Or

SQL: select * from where <column1> = <value1> or <column2> = <value2>

```
MQL: {$or: [ {<column1>:<value1>}, {<column2>:<value2>} ] }
```


Dr Sirintra Vaiwsri

Select Where And Or

```
SQL: select * from  where (<column1> = <value1>) and (<column2> = <value2> or <column3> = <value3>)
```

```
MQL: {{<column1>:<value1>}, $or: [ {<column2>:<value2>},{<column3>:<value3>} ] }
```

Assignment (1 point)

 Please select all records that have a number of likes equal to 500 and also have a number of reactions greater than 3,000 or a number of comments greater than 10

```
_id: ObjectId('668e4c01f5b615d3c9216f5b')
status_id: "246675545449582_515902548526879"
status_type: "video"
status_published: "3/6/2014 5:29"
num_reactions: 500
num_comments: 16
num_shares: 0
num_likes: 500
num_loves: 0
num_loves: 0
num_ments: 0
num_ments: 0
num_ments: 0
num_ments: 0
```


References

- Holmes, D. E. (2017). Big data: a very short introduction. Oxford University Press.
- Staragile. A Brief comparison between ACID vs BASE database model. https://staragile.com. Accessed: 2023-08-05.
- Edward, S. G., & Sabharwal, N. (2015). *Practical MongoDB: Architecting, Developing, and Administering MongoDB.* Apress.
- Bahga, A., & Madisetti, V. (2019). Big Data analytics: A hands-on approach.
- DEV. Intro to 4 types of NoSQL databases. https://dev.to. Accessed: 2023-08-14.
- Janev, V., Graux, D., Jabeen, H., & Sallinger, E. (2020). Knowledge graphs and big data processing (p. 209). Springer Nature.
- KDNuggets. https://www.kdnuggets.com/. Accessed: 2023-08-14.