## AIT 736 - Applied Machine Learning (Spring 2025)

Title: Handwritten Digit Recognition using Convolutional Neural Networks (CNN)

Under guidance of Dr. Lei Yang

#### **Project Presentation**

#### Presenters: Group 02

- Saivarun T.R. (G01475545)
- Mohammed Tareq (G01478697)
- Suraj Poldas (G01483726)
- · Mano Harsha Sappa (G01459796)

**Affiliation: George Mason University** 



**Date: April 28, 2025** 

## Introduction

- Handwritten digit recognition is a fundamental task in the field of computer vision and deep learning.
- The MNIST dataset serves as a standard benchmark for testing digit recognition algorithms.
- Convolutional Neural Networks (CNNs) have revolutionized pattern recognition by automatically learning features from images.
- Our project aims to build a deep learning model that can efficiently recognize handwritten digits, achieving high accuracy with real-world robustness.
- We also focus on analyzing model performance through confusion matrices, training-validation trends, and hyperparameter tuning.

### **Problem Statement**

Recognizing handwritten digits accurately is challenging due to:

- Variations in handwriting style
- Differences in size, thickness, orientation, and noise

Traditional machine learning models struggle to capture complex patterns in raw pixel data.

A deep learning approach is needed to automatically extract relevant features and ensure high generalization across diverse handwriting samples.

The goal is to design a robust CNN model that achieves high accuracy and can generalize well on unseen handwritten digits.

## **Dataset Description**

Dataset Name: MNIST Handwritten Digit Database

Number of Samples:

**60,000** training images **10,000** testing images

Classes: 10 classes (digits 0 through 9)

**Image Size**: 28 × 28 pixels, grayscale

Data Format: Each image is a 28x28 array; pixel values range from 0 to 255.

#### **Challenges Addressed:**

- Variations in handwriting style
- Class imbalance (minor differences)
- Real-world noise and distortions

# System Overview Diagram





# **Exploratory Data Analysis (EDA)**

- The dataset contains 60,000 training images and 10,000 testing images.
- Each image is 28 x 28 pixels, grayscale.
- Pixel intensity values range from 0 (black) to 255 (white).
- The dataset is balanced across 10 digit classes (0–9).
- Significant variation in writing styles, digit thickness, and orientation.



## Model Architecture (CNN)



# Model Training and Hyperparameter Tuning

#### **Training Strategy:**

- Dataset split into training and testing sets.
- Loss function: Categorical Crossentropy
- Optimizer: Adam (Adaptive Moment Estimation)
- Evaluation Metric: Accuracy

#### **Hyperparameter Tuning:**

- Batch Size: 32 → balanced speed and performance.
- Epochs:  $15 \rightarrow$  enough to achieve convergence without overfitting.
- Learning Rate: Default of Adam (0.001).

#### **Early Observations:**

- Rapid convergence within the first 5 epochs.
- Validation accuracy remained consistently high (~99%).

## Model Evaluation and Visualization

Performance Metrics – CNN Model (Adam Optimizer)



**Test Set Accuracy: 99%** 



| Classification | n Report: |        |          |         |
|----------------|-----------|--------|----------|---------|
|                | precision | recall | f1-score | support |
| 9              | 0.99      | 0.99   | 0.99     | 980     |
| 1              | 1.00      | 1.00   | 1.00     | 1135    |
| 2              | 0.99      | 0.99   | 0.99     | 1032    |
| 3              | 0.99      | 0.99   | 0.99     | 1010    |
| 4              | 1.00      | 0.99   | 1.00     | 982     |
| 5              | 0.98      | 0.99   | 0.99     | 892     |
| 6              | 1.00      | 0.99   | 0.99     | 958     |
| 7              | 0.98      | 1.00   | 0.99     | 1028    |
| 8              | 1.00      | 0.98   | 0.99     | 974     |
| 9              | 0.99      | 0.99   | 0.99     | 1009    |
|                |           |        |          |         |
| accuracy       |           |        | 0.99     | 10000   |
| macro avg      | 0.99      | 0.99   | 0.99     | 10000   |
| weighted avg   | 0.99      | 0.99   | 0.99     | 10000   |
|                |           |        |          |         |

## Model Evaluation and Visualization

#### Performance Metrics – CNN Model (SGD Optimizer)



**Test Set Accuracy: 97%** 



| Classificatio | n Report: |        |          |         |  |
|---------------|-----------|--------|----------|---------|--|
|               | precision | recall | f1-score | support |  |
| 0             | 0.98      | 0.99   | 0.98     | 980     |  |
| 1             | 0.98      | 0.99   | 0.99     | 1135    |  |
| 2             | 0.98      | 0.97   | 0.98     | 1032    |  |
| 3             | 0.98      | 0.98   | 0.98     | 1010    |  |
| 4             | 0.98      | 0.99   | 0.99     | 982     |  |
| 5             | 0.99      | 0.97   | 0.98     | 892     |  |
| 6             | 0.98      | 0.99   | 0.99     | 958     |  |
| 7             | 0.96      | 0.98   | 0.97     | 1028    |  |
| 8             | 0.98      | 0.98   | 0.98     | 974     |  |
| 9             | 0.99      | 0.96   | 0.98     | 1009    |  |
|               |           |        |          |         |  |
| accuracy      |           |        | 0.98     | 10000   |  |
| macro avg     | 0.98      | 0.98   | 0.98     | 10000   |  |
| weighted avg  | 0.98      | 0.98   | 0.98     | 10000   |  |
|               |           |        |          |         |  |

# Model Comparison: Adam vs SGD

| Criteria                  | Adam Optimizer     | SGD Optimizer     |
|---------------------------|--------------------|-------------------|
| Test Accuracy             | 99%                | 97%               |
| Validation Accuracy (Avg) | ~99%               | ~96–97%           |
| Training Stability        | Very stable        | Needs more epochs |
| Loss Reduction Speed      | Fast               | Slower            |
| Overfitting               | Minimal            | Minimal           |
| Final Recommendation      | Better performance | Good but slower   |

## **Conclusion and Future Work**

#### **Conclusion:**

- Successfully built and trained a CNN model to classify handwritten digits (MNIST dataset).
- Achieved 99% test accuracy using the Adam optimizer.
- Visualization through accuracy, loss curves, and confusion matrix confirmed strong model performance.
- Demonstrated effective generalization with minimal overfitting.

#### **Future Work:**

- Experiment with deeper architectures (e.g., adding more Conv layers).
- Try regularization techniques like Dropout or L2 Regularization.
- Implement data augmentation to improve generalization.
- Extend model to multi-digit recognition or custom handwritten datasets



# Thank you all for your time and attention