Law of Sines and Law of Cosines

Objectives

Solve triangles using the Law of Sines

2 Solve triangles using the Law of Cosines

Law of Sines

An oblique triangle is one that does not contain a right angle.

To solve oblique, as well as right triangles, you can use either the Law of Sines or the Law of Cosines.

$$\sin A = \frac{y}{b}$$

$$\sin A = \frac{y}{h}$$

$$b \sin A = y$$

$$\sin A = \frac{y}{b}$$

$$b \sin A = y$$

$$\sin B = \frac{3}{2}$$

$$\sin A = \frac{y}{b}$$

$$b \sin A = y$$

$$\sin B = \frac{y}{a}$$

$$a \sin B = y$$

$$\sin A = \frac{y}{b}$$

$$b \sin A = y$$

$$\sin B = \frac{y}{a}$$

$$a \sin B = y$$

$$b \sin A = a \sin B$$

 $b \sin A = a \sin B$

$$b \sin A = a \sin B$$

$$\frac{b\sin A}{ab} = \frac{a\sin B}{ab}$$

$$b \sin A = a \sin B$$

$$\frac{b \sin A}{ab} = \frac{a \sin B}{ab}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

$$b \sin A = a \sin B$$

$$\frac{b \sin A}{ab} = \frac{a \sin B}{ab}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Solve the triangle given $m\angle A=120^\circ,\ a=7,\ m\angle B=45^\circ.$ Round your answers to 1 decimal place.

Solve the triangle given $m\angle A=120^\circ$, a=7, $m\angle B=45^\circ$. Round your answers to 1 decimal place.

$$m \angle C = 180^{\circ} - 120^{\circ} - 45^{\circ}$$

Solve the triangle given $m\angle A=120^\circ$, a=7, $m\angle B=45^\circ$. Round your answers to 1 decimal place.

$$m \angle C = 180^{\circ} - 120^{\circ} - 45^{\circ}$$

$$m \angle C = 15^{\circ}$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 45^{\circ}}{b}$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 45^{\circ}}{b}$$

$$b\sin 120^\circ = 7\sin 45^\circ$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 45^{\circ}}{b}$$

$$b \sin 120^\circ = 7 \sin 45^\circ$$

$$b = \frac{7\sin 45^{\circ}}{\sin 120^{\circ}}$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 45^{\circ}}{b}$$

$$b \sin 120^{\circ} = 7 \sin 45^{\circ}$$

$$b = \frac{7 \sin 45^{\circ}}{\sin 120^{\circ}}$$

$$b \approx 5.7$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 15^{\circ}}{c}$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 15^{\circ}}{c}$$

$$c\sin 120^\circ = 7\sin 15^\circ$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 15^{\circ}}{c}$$

$$c \sin 120^{\circ} = 7 \sin 15^{\circ}$$

$$c = \frac{7 \sin 15^{\circ}}{1200^{\circ}}$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 15^{\circ}}{c}$$

$$c \sin 120^{\circ} = 7 \sin 15^{\circ}$$

$$c = \frac{7 \sin 15^{\circ}}{\sin 120^{\circ}}$$

$$c \approx 2.1$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 15^{\circ}}{c}$$

$$c \sin 120^{\circ} = 7 \sin 15^{\circ}$$

$$c = \frac{7 \sin 15^{\circ}}{\sin 120^{\circ}}$$

$$c \approx 2.1$$

$$\frac{\sin 120^{\circ}}{7} = \frac{\sin 15^{\circ}}{c}$$

$$c \sin 120^{\circ} = 7 \sin 15^{\circ}$$

$$c = \frac{7 \sin 15^{\circ}}{\sin 120^{\circ}}$$

$$c \approx 2.1$$

$$m \angle C = 15^{\circ}$$
, $b \approx 5.7$, $c \approx 2.1$

Solve the triangle given $m\angle A = 85^{\circ}$, $m\angle B = 30^{\circ}$, c = 5.25

Solve the triangle given $m\angle A=85^{\circ},\ m\angle B=30^{\circ},\ c=5.25$

Solve the triangle given $m\angle A=85^{\circ},\ m\angle B=30^{\circ},\ c=5.25$

$$m \angle C = 180^{\circ} - 30^{\circ} - 85^{\circ}$$

Solve the triangle given $m\angle A = 85^{\circ}$, $m\angle B = 30^{\circ}$, c = 5.25

$$m \angle C = 180^{\circ} - 30^{\circ} - 85^{\circ}$$
$$m \angle C = 65^{\circ}$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 85^{\circ}}{a}$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 85^{\circ}}{a}$$

$$a \cdot \sin 65^\circ = 5.25 \sin 85^\circ$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 85^{\circ}}{a}$$

$$a \cdot \sin 65^\circ = 5.25 \sin 85^\circ$$

$$a = \frac{5.25 \sin 85^{\circ}}{\sin 65^{\circ}}$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 85^{\circ}}{a}$$

$$a \cdot \sin 65^\circ = 5.25 \sin 85^\circ$$

$$a = \frac{5.25 \sin 85^{\circ}}{\sin 65^{\circ}}$$

$$a \approx 5.8$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 30^{\circ}}{b}$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 30^{\circ}}{b}$$

$$b \cdot \sin 65^{\circ} = 5.25 \sin 30^{\circ}$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 30^{\circ}}{b}$$

$$b \cdot \sin 65^{\circ} = 5.25 \sin 30^{\circ}$$

$$b = \frac{5.25\sin 30^{\circ}}{\sin 65^{\circ}}$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 30^{\circ}}{b}$$

$$b \cdot \sin 65^{\circ} = 5.25 \sin 30^{\circ}$$

$$b = \frac{5.25 \sin 30^{\circ}}{\sin 65^{\circ}}$$

$$b \approx 2.9$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 30^{\circ}}{b}$$

$$b \cdot \sin 65^\circ = 5.25 \sin 30^\circ$$

$$b = \frac{5.25 \sin 30^{\circ}}{\sin 65^{\circ}}$$

$$b \approx 2.9$$

$$\frac{\sin 65^{\circ}}{5.25} = \frac{\sin 30^{\circ}}{b}$$

$$b \cdot \sin 65^\circ = 5.25 \sin 30^\circ$$

$$b = \frac{5.25 \sin 30^{\circ}}{\sin 65^{\circ}}$$

$$b \approx 2.9$$

$$m \angle C = 65^{\circ}$$
, $a \approx 5.8$, $b \approx 2.9$

Objectives

Solve triangles using the Law of Sines

Solve triangles using the Law of Cosines

$$x^2 + y^2 = b^2$$
 $(c - x)^2 + y^2 = a^2$

$$x^{2} + y^{2} = b^{2}$$
 $(c - x)^{2} + y^{2} = a^{2}$
 $y^{2} = b^{2} - x^{2}$ $c^{2} - 2cx + x^{2} + y^{2} = a^{2}$

$$x^{2} + y^{2} = b^{2} (c - x)^{2} + y^{2} = a^{2}$$

$$y^{2} = b^{2} - x^{2} c^{2} - 2cx + x^{2} + y^{2} = a^{2}$$

$$c^{2} - 2cx + x^{2} + b^{2} - x^{2} = a^{2}$$

$$x^{2} + y^{2} = b^{2} (c - x)^{2} + y^{2} = a^{2}$$

$$y^{2} = b^{2} - x^{2} c^{2} - 2cx + x^{2} + y^{2} = a^{2}$$

$$c^{2} - 2cx + x^{2} + b^{2} - x^{2} = a^{2}$$

$$b^{2} + c^{2} - 2cx = a^{2}$$

$$a^2 = b^2 + c^2 - 2cx$$

$$a^2 = b^2 + c^2 - 2cx$$

$$\cos A = \frac{x}{b}$$

$$a^{2} = b^{2} + c^{2} - 2cx$$

$$\cos A = \frac{x}{b}$$

$$x = b \cos A$$

$$a^{2} = b^{2} + c^{2} - 2cx$$

$$\cos A = \frac{x}{b}$$

$$x = b\cos A$$

$$a^{2} = b^{2} + c^{2} - 2c(b\cos A)$$

Law of Cosines

$$a^{2} = b^{2} + c^{2} - 2bc(\cos A)$$

 $b^{2} = a^{2} + c^{2} - 2ac(\cos B)$
 $c^{2} = a^{2} + b^{2} - 2ab(\cos C)$

Law of Cosines

By solving each of the previous equations for the cosine of the angle, we get the following:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Then take the inverse cosine to get the angle measure.

$$m\angle A = 60^{\circ}, b = 20, c = 30$$

$$m\angle A = 60^{\circ}, b = 20, c = 30$$

$$a^2 = 20^2 + 30^2 - 2(20)(30)\cos 60^\circ$$

$$m\angle A = 60^{\circ}, b = 20, c = 30$$

$$a^2 = 20^2 + 30^2 - 2(20)(30)\cos 60^\circ$$

$$a^2 = 700$$

$$m\angle A = 60^{\circ}, b = 20, c = 30$$

$$a^2 = 20^2 + 30^2 - 2(20)(30)\cos 60^\circ$$

$$a^2 = 700$$

$$a \approx 26.5$$

$$\cos B = \frac{26.5^2 + 30^2 - 20^2}{2(26.5)(30)}$$

$$\cos B = \frac{26.5^2 + 30^2 - 20^2}{2(26.5)(30)}$$

$$\cos B \approx 0.7561$$

$$\cos B = \frac{26.5^2 + 30^2 - 20^2}{2(26.5)(30)}$$

$$\cos B \approx 0.7561$$

$$B\approx 40.9^{\circ}$$

$$m \angle C \approx 180^{\circ} - 60^{\circ} - 40.9^{\circ}$$

$$m\angle C \approx 180^{\circ} - 60^{\circ} - 40.9^{\circ}$$

$$m \angle C \approx 79.1^{\circ}$$

$$m\angle C \approx 180^{\circ} - 60^{\circ} - 40.9^{\circ}$$

$$m \angle C \approx 79.1^{\circ}$$

$$a = 6, b = 9, c = 4$$

$$a = 6, b = 9, c = 4$$

$$\cos A = \frac{9^2 + 4^2 - 6^2}{2(9)(4)}$$

$$a = 6, b = 9, c = 4$$

$$\cos A = \frac{9^2 + 4^2 - 6^2}{2(9)(4)}$$

$$\cos A = \frac{61}{72}$$

$$a = 6, b = 9, c = 4$$

$$\cos A = \frac{9^2 + 4^2 - 6^2}{2(9)(4)}$$

$$\cos A = \frac{61}{72}$$

$$A \approx 32.1^{\circ}$$

$$\cos B = \frac{6^2 + 4^2 - 9^2}{2(6)(4)}$$

$$\cos B = \frac{6^2 + 4^2 - 9^2}{2(6)(4)}$$

$$\cos B = -\frac{29}{48}$$

$$\cos B = \frac{6^2 + 4^2 - 9^2}{2(6)(4)}$$

$$\cos B = -\frac{29}{48}$$

$$B \approx 127.2^{\circ}$$

$$\textit{m} \angle \textit{C} \approx 180^{\circ} - 127.2^{\circ} - 32.1^{\circ}$$

$$m \angle C \approx 180^{\circ} - 127.2^{\circ} - 32.1^{\circ}$$

 $m \angle C \approx 20.7^{\circ}$

