Barrel Clock Group 7

Ilan Felberg, Sawyer Bailey Paccione, James Staley

Mechanical Design

Original CAD

 Three "Barrels" one for hours, one for minutes and another for seconds.

Servo Stands

 Holds the servo in the middle of the barrel with screwable clips.

Barrel Design

• Two Lasercut ¼ inch circles glued together

Electronics Design

Servo Motors

- Servo HAT Allows for:
 - External libraries which simplifies communication with multiple servo motors without leaning on PWM
 - Simplifies control to i2c where we only need
 - Flexible Power Supply (Battery or Wall)
- Use of Smaller Servo Motors allows for more compact design

Getting The Time

- time.time()
 - Returns the number of seconds since EPOCH (1/1/1970)
- time.localtime(t)
 - Takes an input in seconds
 - Returns the Date and Time of that input as a struct containing hours, minutes, seconds, current month, year, and more
- Data converted to 12 hour clock format
- Time Multiplier:
 - Subtract current time and initial time, multiply by factor

Software Design

User (Top Level Script)

- Sets time multiplier
- Initializes and starts Clock

```
### MAIN ####
time_multiplier = 1. # how fast time should run
clock = Clock()

while (True):
    clock.run(time_multiplier)
    time.sleep(0.1)
```

Robot Control (Clock Class)

- Stores previous servo positions (prevent twitch)
- Holds Lookup Tables
- Sets servo positions based on processed system time

Open Source

Adafruit-circuitpython-servokit

- Setups register-level configuration of servos
- i2c comms
- PWM communication for position control
- Easy API to access / control servos

```
kit = ServoKit(channels=16)
kit.servo[0].angle = desired_angle
```

Thank You