Standard Immunoassay Use

Determination of mass per unit volume (eg. ng/ml) or equivalent (eg. IU)

The effect of the use of a single large beam (in this case approx. 2mm) for reading the surface is the production of a single result representing the mass change effects of all binding events within the spot area.

Figure 1

Aggregate vs. Scanning Ellipsometry

Standard Immunoassay Use

Determination of mass per unit volume (eg. ng/ml) or equivalent (eg. IU)

The idealized model for this method is the optical averaging occuring over the entire read area (in this case represented by an approx. normal distribution of binding events over the spot area).

Figure 2

standard Immunoassay Use

Determination of mass per unit volume (eg. ng/ml) or equivalent (eg. IU)

In virtually all cases the binding distribution over the spot area is actually highly inhomogenious. The advantage of this method is that it inherently integrates all of the binding events within the spot area, without regard to their distribution.

F1941-13-1000

Standard Immunoassay Use

Determination of mass per unit volume (eg. ng/ml) or equivalent (eg. IU)

The disadvantage is that very small or very sparce binding events tend to be statistically reduced to insignificance when averaged over this relatively large spot area.

Figure 4 Of

Aggregate vs. Scanning Ellipsometry

New Microbiological Use

Determination of individual binding events or CFUs

A scanning ellipsometric method or scatterometric method or both, when used with a very small beam diameter (in this case 20um) can provide a vastly higher relative signal for discreet binding events (that is as averaged over a much smaller spot area).

Figure Small TI-MON

New Microbiological Use

Determination of individual binding events or CFUs

This approach allows for the surface to be present as a type of topology. It is, in fact, because the binding events are not integrated over the surface that this method can be used to approximate individual or discreet binding event identification (depending upon the diameter of the beam used).

Figure & J. MOST

Current OTER Laser Configuration

Determination of aggregate response over the beam spot area

 $pi \cdot r^2 = SA (in mm^2) = 3.14159 \times 1^2 = 3.14159 mm^2$

Figure 7 OF

Scanning Micro-Laser Configuration
Determination of individual cellular-scale readings

10,000 A = lum

1,000um = 1mm

Angstrom Unit = 3937x10^-9 inch, 1x10^-10 meters, 1x10^-4, microns, 0.1 milli-micron (micro-millimeter).

Micron = 3,937x10^-5 inch, 0.039370 mil, 1x10^-6 meter, 0.001 millimeter, 1x10^4 Angstrom units.

1 mm² = 1,000,000 um² Reaction zone SA = 3,141,590 um² Scanning beam reads 314.159 um²

Thus a 20um beam can make 10,000 discreet readings within the reaction zone

Figure 8 00 magni. 13- brown

Aggregate vs. Scanning Ellipsometry

How Big is Small?

In the case where a single organism (1 um³) is to be measured on a 2 mm² surface:

314,159,000,000,000 A² surface area of spot 78,500,000 A² surface area of organism

ratio of 4,000,000 A²:1 A²

10,000 A (height) / 4,000,000 =00250 A (height) contribution across the spot

 1×10^{2} cells / .02ml = 5×10^{3} cells / ml

25 A (height) contribution across the spot

 1×10^{3} cells / Ω ml = 5×10^{4} cells / ml

2.5 A (height) contribution across the spot 25 A (height) contribution across the spot

1 x 10⁴ cells / .02ml = 5 x 10⁵ cells / ml 1×10^5 cells / .02ml = 5×10^6 cells / ml

250 A (height) contribution across the spot

 1×10^6 cells / .02ml = 5×10^7 cells / ml

2500 A (height) contribution across the spot

With an amplification system that provided 2X mass, the system needs 2.5 x 10⁶ cells / ml With an amplification system that provided 5X mass, the system needs 1 x 10⁶ cells / ml With an amplification system that provided 10X mass, the system needs 5 x 10⁵ cells / ml

10.000 A = lum

1,000um * 1mm

Angstrom Unit = 3937x10^-9 inch, 1x10^-10 meters, 1x10^-4, microns, 0.1 milli-micron (micro-millimeter). Micron = 3.937x10^-5 inch, 0.039370 mil, 1x10^-6 meter, 0.001 millimeter, 1x10^4 Angstrom units.

Figure 9 () Sucre - 13 - MONT

Heads their that's it acted to the street that the street that

1

An alternative to the small beam "Scanning" approach is the use of a CCD or diode array to read and "parce" the larger laser beam into smaller discreet signals.

Determination of small spot response within the large beam spot area

This effectively creates a "virtual" beam (defined by the path that the light intersecting the array at a specific dection point has taken).

The aggregate signal for all virtual beams equals the large beam signal, but each virtual beam references only a limited surface area. The virtual beam approach may be subject to greater error than the small beam approach, due in part to the potential for signal mixing across the array, however it allows for a major increase in sensitivity over the large beam approach.

The specific optical signal can be selected so as to provide the appropriate level of information, based upon the nature or the material to be detected, and the resolution desired.

A variety of optical signals may be used within this system.

The examples provided in this discussion use ellipsometry as the example optical method. However it is expected that a variety of optical methods will be substantially improved by adopting the general approach described here. In particular we have demonstrated that scattering methods will form the basis of one class of instruments that is distinct from ellipsometry. Other effects such as absorption, refractive index change, chiral effects, and diffraction may be used within an essentially similar ical configuration, and may provide particular and significant benefits.

Figure 11 D may - 13 - MIXT.

Principle	Label Type	Instrument	DDx Status	
Scatter	polymer beads/particles silica beads/particles magnetic beads/particle metal beads/particle metal coated bead	es scatterometry	demonstrated	
Optical absorption	colloidal gold magnetic beads	reflectometry photometry	scheduled	
Change in polarization state	polymer beads silica beads	ellipsometry (with compensator) polarimetry (wout compensator)	scheduled	
Change in refractive index	high refractive index or optically active materials	ellipsometry (with compensator) polarimetry (wout compensator)	scheduled	
Chiral effects	azio dyes chiral compounds		envisioned .	
Diffraction effects	patterned surface	interferometry	envisioned	
Spectroscopic effects	wavelength selective materials	spectrometer	envisioned	

Signal reception techniques might include:

single diode detector - e.g. scanning (small beam method) diode array detector - e.g. array (virtual beam method) CCD detector - e.g. array (virtual beam method)

Figure 12

Potential for Optical Enhancement

Fig

For either the Scanning (small beam) or the Array (virtual beam) approach, a substantial improvement in signal delectability may be possible by using unique characteristics of optically based mass detection systems.

Properties of the mass enhancement label may alter the optical signal due to a number of physical characteristics, including:

refractive index wavelength specific adsorption wints he difference between diffraction ely creating and a specific adsorption with the difference between the contraction and a specific adsorption with the difference between the contraction and a specific adsorption are a specific adsorption and a specific adsorption an

effectively creating an improved ability to discriminate the signal generated by the binding of the label to the complex from that created by surface background or in the absence of specific binding events. This may operate through the creation of an enhanced or attenuated "apparent" signal over that which would be created by "normal" materials.

Fig.15

\$ 1 /1 0600 2011 000 102412000 1024 10 1

Fig. 17

F		U	ţ	м	1	∢
APPROVED						60031 2332
MIT.		R R	TOP SIDE	BASE -25		100 10 10 10 10 10 10 1
	STIVE	ATE ER 10LD		H - H - H - H - H - H - H - H - H - H -	PLATE	1. 1251 1
REVISIONS	OBJECTIVE CAMERA CAMERA PLATE		R SUP PIECE PIECE	MM-4M-F-25 X-Y PLATE		Ciritille Hool W. 534 M. Secondary CO 697-2859 DDX ILLUMINATOR SYSTEM ASSEMBLY DRAWING MACH LX Common
REVIS	CAM	LASE	LASER TEST P	TEST MM-	BASE Parts List	DIX ILI ASSIGNACH ASSIGNACH
					2 4	
		,		- 2	0ty	0-TY-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
3 - 200KE	4 2 2	10 6	2 / 0		Item Q	AND MAND OF THE PROPERTY OF TH
					= =	
	<u>o</u> (<u>o</u> (3		360		UNIESS ORGENISE SPECIFIED 1. DI MIT SOLE DANDAG. 2. PRISERES PER ANII STANDAGIS 3. PRISERES PER ANII STANDAGIS 3. PRISERES PER ANII STANDAGIS 3. PRISERES 4. PRISERES 5. PRISER
		80		(*) /		UNLESS CHERVISE SPECIFICATION OF THE SALE TRANSMAN BENESSES FPER ANTS TRANSMAN BENESSES FPER ANTS TRANSMAN BENESSES FPER ANTS TRANSMAN FREIGHT SALE ANTS TRANSMAN BENESSES FPER ANTS TRANSMAN BENESSES FPER ANTS TRANSMAN ACCOUNTY OF THE SALE
		Ì	Q.	<i>/</i>	41	HANDER X XX
 -	40%	2/1				THE DEPOSITE MAY STATEDENT IN THE DEPOSITE MAY WEIGHT WAS AND THE PROJECTION
	" / /	22/	/-	+ >	— (-)	ROPRIETARY OCHORAN OCHORAN OCHORAN OFFICER OF
vr.	Las V	72/2			3	PROPERTY IN THE PROPERTY IN TH
(2)	## ## ## ## ## ## ## ## ## ## ## ## ##	368		46 /6	XV (E)	0
				14	12	220
1 / m	() () () () () () () () () ()	3000			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
128		\$ 7 \s	HILL	326	4	1
				m	(=)	
SPEC 5	3 5/1	///tg.)		4		
ERVISE	N			1 0		
S OTHE			22		8	
NOTES: UNLESS OTHERVISE SPECIFIED		/ /	232		1.53	
DTES: U	29		207	· .		GNETBENTIAL
Z	ž. • • • • • • • • • • • • • • • • • • •	- (. •			III.

工工 3E NEEDED SO THE BE MACHINED NOW SCREW THE LENS CELL HAS LIGHT RAYS ARE AT THE NOMINAL SAME MANNER AS BE NEEDED SO RETENTION RENDERING. THE TEST PEICE. FROM 4.5-34.5. AT A SET T IN THE JODELED IN THIS ASER IS SHOWN DPTICAL BENCH. NTO NEEDED, SUCH UTURE IT MAY SCREW WII i 3.5° FROM 1 ADJUSTABLE PEICE ADJUSTABILIT ASER AND SHOWN MACHINED

Fig. 20

Write Profile.vi D:\Data\Projects\Accelr8 DDx Optest\Programming\QuanDx10-28-01.llb\Write Profile.vi Last modified on 10/29/2001 at 12:59 PM Printed on 11/15/2001 at 1:09 AM

Front Panel

Controls and Indicators

MAG

2X MAG

COLUMN

Boolean

4X MAG

Row 1

Boolean

Row 2

Boolean

Row 3

Boolean

Row 4

Boolean

10X MAG

Row 1

Fig. 21

ImagProc.vi
D:\Data\Projects\Accelr8 DDx Optest\Programming\QuanDx10-28-01.llb\ImagProc.vi
Last modified on 10/29/2001 at 12:59 PM
Printed on 11/15/2001 at 1:08 AM

Front Panel

Controls and Indicators

Operator

Operator specifies the remapping procedure used.

X Value

X Value is a value used only for the operators Power X and Power 1/X.

Equalize

Operation

Operation specifies the type of morphological transformation procedure to use.

Lookup

error in

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event of errors from other VIs.

The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

INSTRUMENT SETUP

Fig. 🗇

IMAGE PROCESSING

Fig.

IMAGE ANALYSIS

ļ

