אנליזה מודרנית שמעון ברוקס מועד א' תשע"ט

רגב יחזקאל אימרה

January 25, 2025

.(באשר m^* היא מידה חיצונית ו m^* לכל מידה m^* לכל m^* לכל m^* ($A\cup B$) m^* ($A\cup B$) א) הוכח: m^* היא מידה חיצונית ו m^*

ב) תהי
$$\mu$$
 ב) μ (A) = $egin{cases} 0 & |A|=0 \\ \infty & |A|=\infty \end{cases}$ האם $\mu:P\left(\mathbb{R}
ight) o [0,\infty]$ ב) תהי ב

 $A \cup B$ -פתרון: א) תהי מדידה לבג, לכן נתבונן ב-B פתרון

$$m^* (A \cup B) = m^* ((A \cup B) \cap E) + m^* ((A \cup B) \cap E^c)$$

E = E = E לכל אבור ספציפית, ספציפית לכל

$$\begin{split} m^* \left(A \cup B \right) &= m^* \left((A \cup B) \cap E \right) + m^* \left((A \cup B) \cap E^c \right) \\ &= \underbrace{m^* \left((A \cup B) \cap A \right)}_{=m^*(A)} + \underbrace{m^* \left((A \cup B) \cap A^c \right)}_{=m^*(B)} \\ &= m^* \left(A \right) + m^* \left(B \right) \end{split}$$

כלומר

$$m^* (A \cup B) = m^* (A) + m^* (B)$$

 $.m^*\left(A\cup B
ight)=m^*\left(B
ight)$ לכן $m^*\left(A
ight)=0$ כעת (A)=0

 $.m^{st}\left(A
ight) =0$ לכן $m^{st}\left(A\cup B
ight) =m^{st}\left(B
ight)$ לכן אנתון

אבל $\mu\left(igoplus_{n=1}^{\infty}A_n
ight)=\sum\limits_{n=1}^{\infty}\mu\left(A_n
ight)$ ב) לא! נגדיר $A_n=\{n\}$ אם הייתה מידה היה מתקיים ב

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\mathbb{N}\right) = \infty$$
$$\sum_{n=1}^{\infty} \mu\left(A_n\right) = \sum_{n=1}^{\infty} \mu\left(\{n\}\right) = \sum_{n=1}^{\infty} 0 = 0$$

 $.0
eq \infty$ ואכן

מדידה לבג, $g\circ f$ מונוטונית, אזי ההרכבה $f:\mathbb{R} o\mathbb{R}$ מדידה לבג, לבג הוכך או הפרך: אם אם הוכך מדידה לבג, לבג מדידה לבג, או הוכך או הפרך: אם או מדידה לבג, או מדידה לבג, או הוכך או הפרך: אם מדידה לבג, או מדידה ל

ב) הוכך או הפרך: אם $g\circ f$ מדידה לבג, $g:\mathbb{R} o\mathbb{R}$ רציפה, אזי ההרכבה $f:\mathbb{R} o\mathbb{R}$ מדידה לבג.

פתרון: א) הוכחה: בה"כ נניח כי g עולה ממש $(a>b\Rightarrow g(a)>g(b)$ מדידה לכן לכל $a=g^{-1}(b)$ מתקיים $a\in\mathbb{R}$ מתקיים $a\in\mathbb{R}$ ועולה ממש $a=g^{-1}(b)$ מחר"ע) אז אם $a=g^{-1}(b)$ מתקיים $a=g^{-1}(b)$ מתקיים $a=g^{-1}(b)$ מתקיים $a=g^{-1}(b)$ מתקיים $a=g^{-1}(b)$ מתקיים $a=g^{-1}(b)$ מתקיים $a=g^{-1}(b)$ מחר"ע) אז מקרים: $a=g^{-1}(b)$ מון מיד אחרי $a=g^{-1}(b)$ מון מיד אחרי מיד אחרי $a=g^{-1}(b)$ מון מיד אחרי מיד אורי מיד אחרי מיד אחרי מיד אחרי מ

$$\left\{x\in\mathbb{R}:g\left(f(x)\right)>c\right\}=\left\{x\in\mathbb{R}:g\left(f(x)\right)>b\right\}\in\mathscr{S}$$

. ענדרש $\{x\in\mathbb{R}:q\left(f(x)\right)>c\}=\emptyset\in\mathscr{S}$ כנדרש אין c כנדרש.

ב) הוכחה: יהי $\{I_k\}_{k=1}^\infty$ ה אם כן: נסמן ב- $\{x\in\mathbb{R}:g\ (f(x))>a\}=\emptyset\in\mathscr{S}$ את כל הקטעים אם a ב הוכחה: יהי $a\in\mathbb{R}$ החלק למקרים: אם a לא בטווח של a אז a לא בטווח של a החלק למקרים: אם $\{a_k,b_k\}$

$$\forall c \in (a_k, b_k) : f(c) > a$$

עבור $I_{-1}=(-\infty,d)$ עבור $I_0=(c,\infty)$ במידה והפונקציה הייתה מ $I_0=(c,\infty)$ מתחת ל- $I_0=(c,\infty)$ עבור $I_0=(c,\infty)$ במידה והפונקציה הייתה מ $I_0=(c,\infty)$ מתחת ל- $I_0=(c,\infty)$ עבור $I_0=(c,\infty)$ במידה והפונקציה הייתה מ $I_0=(c,\infty)$ מתחת ל- $I_0=(c,\infty)$ עבור $I_0=(c,\infty)$ במידה והפונקציה הייתה מ $I_0=(c,\infty)$ מתחת ל- $I_0=(c,\infty)$ עבור $I_0=(c,\infty)$ במידה והפונקציה הייתה מ $I_0=(c,\infty)$ מתחת ל- $I_0=(c,\infty)$ עבור $I_0=(c,\infty)$ מתחת ל- $I_0=(c,\infty$

. כנדרש $\{x\in\mathbb{R}:q\left(f(x)
ight)>a\}=I\in\mathscr{S}$

ולכל x אזיי לכל $f_n(x) \leq g(x)$ המקיימת $g \in L^1(X,\mu)$ ותהי חיוביות חיוביות פונקציות מדידות $\{f_n\}_{n=1}^\infty$ לכל $\{f_n\}_{n=1}^\infty$ לכל אזיינה מאטו ההפוכה מחיינה למת פאטו ההפוכה פונקציות מדידות היינות מדידות חיוביות מדידות חיובית מדידות מדי

$$\limsup_{n \to \infty} \int_X f_n d\mu \le \int_X \limsup_{n \to \infty} f_n d\mu$$

: נגדיר אזי לפי אזי $h_n:=g-f_n\geq 0$ הוכחה נגדיר

$$\int\limits_{X} \liminf_{n \to \infty} h_n d\mu \leq \liminf_{n \to \infty} \int\limits_{X} h_n d\mu$$

: כעת

$$\int\limits_X \liminf_{n \to \infty} h_n d\mu = \int\limits_X \liminf_{n \to \infty} g - f_n d\mu = \int\limits_X \liminf_{n \to \infty} g d\mu + \int\limits_X \liminf_{n \to \infty} -f_n d\mu = \int\limits_X g d\mu - \int\limits_X \limsup_{n \to \infty} f_n d\mu$$

:מצד שני

$$\lim_{n \to \infty} \inf_{X} \int_{X} h_n d\mu = \lim_{n \to \infty} \inf_{X} \int_{X} g - f_n d\mu = \lim_{n \to \infty} \inf_{X} \left(\int_{X} g d\mu + \int_{X} - f_n d\mu \right) = \int_{X} g d\mu + \lim_{n \to \infty} \inf_{X} \int_{X} - f_n d\mu$$

$$= \int_{X} g d\mu - \lim_{n \to \infty} \sup_{X} \int_{X} f_n d\mu$$

כלומר ביחד

$$\int\limits_{Y} g d\mu - \int\limits_{Y} \limsup_{n \to \infty} f_n d\mu \leq \int\limits_{Y} g d\mu - \limsup_{n \to \infty} \int\limits_{Y} f_n d\mu$$

. ננדרש. $\limsup_{n \to \infty} \int\limits_X f_n d\mu \leq \int\limits_X \limsup_{n \to \infty} f_n d\mu$ ולכן

שאלה 4) הוכח שאם $F:[a,b] o \mathbb{R}$ רציפה בהחלט והנגזרת $F'\leq 0$ כמעט בכל מקום, אזי הוכח שאם $F:[a,b] o \mathbb{R}$ האם הטענה זו נכונה אם $F:[a,b] o \mathbb{R}$ בהחלט אך מניחים שהיא רצי]ה ובעלת השתנות חסומה?

 $F(b)-F(a)\leq 0$ פתרון: מהכללת המשפט היסודי חלק ב' מתקיים ב' מתקיים $\int\limits_a^b F'dm=F(b)-F(a)$ וכיוון שהנגזרת אי חיובית אזי $\int\limits_a^b F'dm=F(b)-F(a)$ כלומר $f(a)=F'(a)\leq 0$ אזי $f(a)=F'(a)\leq 0$ אזי אזי $f(a)=F'(a)\leq 0$ אזי f(a)=F(a) המוגדרת על ידי בעלת השתנות חסומה: ניקח f(a)=F'(a) המוגדרת על ידי f(a)=F(a) אזי f(a)=F(a) ולכן f(a)=F(a) בב"מ אבל f(a)=F(a) המוגדרת על ידי f(a)=F(a) בב"מ אבל f(a)=F(a) בב"מ אבל f(a)=F(a)

 $.\int\limits_{\mathbb{R}}hdm=m\left(A
ight)m\left(B
ight)$ קבוצות מדידה ומתקיים $h(x)=m\left((A-x)\cap B
ight)$ שאלה 5) יהיו $A,B\subset\mathbb{R}$ יהיו

$$\int\limits_{\mathbb{R}}hdm=\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}\mathbb{I}_{A}(x+y)\mathbb{I}_{B}(y)dydx=\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}\mathbb{I}_{A}(x+y)\mathbb{I}_{B}(y)dxdy=\int\limits_{\mathbb{R}}\mathbb{I}_{B}(y)\int\limits_{\mathbb{R}}\mathbb{I}_{A}(x+y)dxdy=\int\limits_{\mathbb{R}}\mathbb{I}_{B}(y)m\left(A\right)dy=m\left(A\right)m\left(B\right)$$

כנדרש.