	QUANTU M	COMPILER
FRONT END	Parse Build a	program representation
Back	Instruction Register	allocation and qubit Swapping
	Peephole	Optimization

REHISTER ALLOCATION:

$$G_{1} : (V_{1}, \mathcal{E}_{1})$$
 and $G_{2} : (V_{2}, \mathcal{E}_{2})$

Source target

$$\exists \phi : V_1 \rightarrow V_2 \quad \forall i, j \in V_i :$$

(i , j \ \epsilon \varepsilon_i => \left(\phi(i) \, \phi(j)\right) \in \varepsilon_2 \, \text{?}

Without Suaps!

EXAMPLE:

Program
$$CZ(0,1)$$
; $CZ(1,2)$; $CZ(0,2)$
 $G_1 = \{\{0,1,2\}, \{\{0,1\}, \{1,2\}, \{0,2\}\}\}$

SUBLIRAPH ISOMORPHISM

NP- COMPLETE.

Instance: Two undirected graphs
$$G_1 = \{V_1, E_1\}$$

$$G_2 = \{V_2, E_2\}$$

$$\leq M[:]$$
 × 2x (length (shortest Path $G_2(\Phi(i), \Phi(j)) - 1) \leq K$ (i.j) $\in E_1$

length (Shortest path (\$(0),\$(2):2

PROBLET: DEPTH MINIMIZATION

INSTANCE: Two undirected graphs

b, = (v, , E)

62: W, E2)

and int k

QUELTEON: Can we generate swaps such that

time steps < k.

NP - COMPLETE!

ILP (Integer Linear Programming).

ABBREVIATION: target

Swaps ((i,j), (k,n))

 $\leq m(:,j) \times 2x \left(\text{length (shortest Path } _{6}(k,m)) - 1 \right)$ (i,j) $\in \mathcal{E}_{i}$

DEFENE AN INTENER LINEAR PROBREM:

Integer Variables: Xik, for each iEV, , keV,

Intuition: $\phi(i) = k \iff \psi(x_{ik}) = i$

Constraint: Xix >0

for each i eV, : & xik = 1

for each kev2: & xik & 1

Solution: 4

M; 1:01:26

\$\frac{\pm \text{Swaps}_{\mathbb{G}_2}((i,j),(k,n))}{\pm \text{Swaps}_{\mathbb{G}_2}((i,j),(k,n))}. \text{\$x_{\mathbb{c}k}\$. \$x_{\mathbb{c}m}\$\$}

6,
$$[(\{0,1,2\},\{(0,1),(0,2),(1,2)\}]$$

6, $[(\{0,1,2\},\{(0,1),(1,2)\}]$
M: $(0,1) \rightarrow 1$
 $(0,2) \rightarrow 2$
 $(1,2) \rightarrow 3$

Variables:
$$\times_{00}$$
, \times_{01} , \times_{02} , \times_{10} , \times_{11} , \times_{12} , \times_{10} , \times_{21} , \times_{22}

Constraints:
$$x_{00} \neq 0$$
, $x_{01} \neq 0$, ..., $x_{22} \neq 0$
 $x_{00} + x_{01} + x_{02} = 1$ $x_{00} + x_{10} + x_{20} \leq 1$
 $x_{10} + x_{11} + x_{12} = 1$ $x_{20} + x_{21} + x_{22} = 1$

$$\phi : 0 \rightarrow 1 \qquad M : [0,1] \rightarrow 1$$

$$1 \rightarrow 1 \qquad [0,2] \rightarrow 2$$

$$2 \rightarrow 2 \qquad [1,2] \rightarrow 3$$

Total # Swaps =

$$M(0,1)$$
 . # swaps $(0,1,0,1)$. 1.1 +

 $M(0,2)$. # swaps $(0,2,0,2)$.1.1 +

 $M(1,2)$. # swaps $(1,2,1,2)$.1.1

CIRCUIT:

JASON COND AND BOCHEN TAN:

BENCHMARK CONSTRUCTOR:

INPUT: Graph to ((onnectivity in the target)

int T (Target depth)

Durput: A circuit with optimal depth T

METHOD:

- 1. Backbone: Dependency chain of T gates
- 2. Sprinkling: Add gates randomly.
- 3. Scrambling: brenerate a random numbering of the qubits.

TARGET:

Target depth: 3

Backbone:

