What is Machine Learning?

Deep Learning Course – 2021 E. Fatemizadeh

Machine Learning - Definition

> Machine learning (ML) is the scientific study of **algorithms** and **statistical models** that computer systems use to perform a specific task **without** using **explicit instructions**, relying on **patterns** and **inference** instead. (From Wiki, from ML Journal) → **learn from** data

> How?

- Build a *mathematical model* based on sample data, known as "*training data*",
- > Related Area (Subset or superset):
 - Artificial Intelligence, Data Mining, Pattern Recognition, Computational Intelligence, Computational Statistics, Statistical Learning, Expert System,

Two Major Tasks

- > Supervised Learning:
 - Learn Model from both **input**(s) and **output**(s) data
 - **Input**(s): Object Properties
 - Output(s): Discrete or "Limited Set" (e.g. Labels) or Continuous
- > Unsupervised Learning:
 - Not desired output!
 - Find structure of data/Clustering/Grouping/...
- > Related field:
 - Active learning, Reinforcement learning, Semi-Supervised Learning, Vector Quantization, ...

Supervised Learning

- > Classification:
 - Input(s) are objects: Electric Signals/Image/Speech/DNA sequences/Email/....
 - Output(s) are binary (mostly Labels): "benign"/"malignant" (Tumor), "Primary", "Social", "Promotion" (**G**mail),

Supervised Learning:

- > Regression:
 - Input(s) are objects: Electric Signals/Image/Speech/DNA sequences/Email/....

- Output(s) are Continuous: Temperature, Score, Fuel Consumption, ...

80

40

-40

-80

-120

-0.20

0.00

0.20

Unsupervised Learning

- > Clustering/Structure Finding:
 - Input(s) are objects:
 - > Electric Signals/Image/Speech/DNA sequences/Email/....
 - No Output data!

- > Artificial Neural Networks (Shallow):
 - Biologically inspired Algorithm

> Deep Artificial Neural Networks:

- > Decision Trees:
 - A Huge set of if-then rules in tree-line structure, which build systematically!

- > Support Vector Machines (SVM):
 - A margin based classifier/regressor:

- > K-NN (k-nearest neighbors algorithm):
 - An object is classified by a plurality vote of its neighbors

3-NN (Small Circle) 5-NN (Large Circle)

- > Bayes Classifier (Optimal):
- > For M-Classes with available posterior probabilities:

Assign
$$x$$
 to $\omega_i = \arg \max_{\omega_j} P(\omega_j | x), \quad j = 1, 2, \dots, M.$

$$P(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j)P(\omega_j)}{p(\mathbf{x})}, \quad j = 1, 2, \dots, M,$$

Assign
$$x$$
 to $\omega_i = \arg \max_{\omega_j} p(x|\omega_j) P(\omega_j), \quad j = 1, 2 \dots, M.$

- > Bayes Classifier (Optimal)
 - Illustration for equal probability cases (1D feature, M=2, $P(\omega_1)=P(\omega_2)=0.5$)

- > Bayes Classifier (Optimal):
 - Perquisites:
 - \rightarrow Conditional Probability: $P(x|\omega_k)$
 - Pdf estimation methods (Maximum Likelihood, Parzen windows,)
 - \rightarrow Prior Probability $P(\omega_k)$
 - Population Based: $P(\omega_k) \approx \frac{N_k}{N}$

 π

Supervised Learning Models

- > Others:
 - Bayesian Network,
 - Meta Heuristic (Genetic Algorithm,)

– ...

Machine Learning Applications

- > Computer Vision:
 - Object Detection/Recognition/....
- > Authentication:
 - Face/Voice/Finger-Print/Iris/Retina/Gesture/Handwriting/
 Recognition
 - > Identification
 - > Verification
- > Natural Language Processing/Understanding
- > Speech Processing
- > Search Engine/Social Media/....
- > CAD (Computer Aided Diagnosis)

> Classification System Anatomy (Classical but Still alive!)

- > Model Fitness:
- > Two major problem: Overfitting/Underfitting
- > Regression:

- > Model Fitness:
- > Two major problem: Overfitting/Underfitting
- > Classification:

- > Bias-Variance Dilemma:
 - Center: True Model
- > Too Simple Model:
 - High Bias-Low Variance
- > Too Complex Model:
 - Low Bias-High Variance

> Suppose:

$$y = f(x) + \varepsilon$$
, $\{x_i, y_i\}_{i=1}^N$, $\varepsilon \sim N(0, \sigma_e^2)$

> We estimate a model:

$$y = \hat{f}(x)$$

> Estimation Error:

$$Err(x) = E \left| (Y - \hat{f}(x))^2 \right|$$

$$Err(x) = \left(E[\hat{f}\left(x
ight)] - f(x)
ight)^2 + E\left[\left(\hat{f}\left(x
ight) - E[\hat{f}\left(x
ight)]
ight)^2
ight] + \sigma_e^2$$

$$Err(x) = Bias^2 + Variance + Irreducible Error$$

> Bias-Variance Dilemma:

- > Bias-Variance Dilemma:
 - 100 Run with 50 samples

> Bias-Variance Dilemma:

- #1: High Variance

- #2: High Bias

- > How to Use Labeled Data?
 - Training Set:
 - > Fit/Train the model
 - Validation Set:
 - > Estimate Error for Model Selection (Hyperparameter Selection: # of Layer)
 - > Model Sees this data, but never learn/tune with it
 - Test Set:
 - > Generalization Error of *finally* Selected Model

> Typical Performance:

K-Fold Cross Validation

- > Goal: More Accurate Estimate of Model Prediction Performance
 - 1. Data set is partitioned into, **K** (Typically 10), roughly equalsized parts
 - 2. Perform training K times
 - 3. In each training: One Part for test, (K-1) Part for Training

All data

K-Fold Cross Validation

- > K=N → Leave-one-Out (LOO) Cross Validation
- > Bootstrap:
 - Drawing random sample of size (~N/K), N times!

How to Enrich Classifier:

- Classifier Combination:
 - Majority Votes
 - Mathematical combination
 - Bagging
 - Boosting
 - **–**

- > Confusion Matrix:
 - Consider two-class binary classification
 - True/False-Positive/Negative Decision

	True Label		
Predicted Label		Positive	Negative
	Positive	TP	FP
	Negative	FN	TN

Machine Learning Evaluation (Repeated)

> Sensitivity, recall: $\frac{TP}{TP+FN}$

> Specificity:
$$\frac{TN}{TN+FP}$$

> Precision:
$$\frac{TP}{TP+FP}$$

> Accuracy:
$$\frac{TP+TN}{TP+TN+FP+FN}$$

$$\Rightarrow \text{Dice: } \frac{2TP}{2TP + FP + FN}$$

- > ROC and AUC
- > ROC (Receiver Operating Characteristic)

Performance Measurement for Two-Class Classification at Various Thresholds (One Dimensional Feature)

$$ext{TPR} = rac{ ext{TP}}{ ext{P}} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

$$ext{FPR} = rac{ ext{FP}}{ ext{N}} = rac{ ext{FP}}{ ext{FP} + ext{TN}}$$

> ROC is TPR against FPR

> AUC: Area Under Curve

 π

Machine Learning

> Question?

