FILTROS DIGITAIS PARA IMAGENS

VALMIR MACÁRIO FILHO

INTRODUÇÃO

Realce de imagens:

- Técnicas que conseguem acentuar algumas características relevantes na imagem para uma aplicação específica.
- Realce de imagens é subjetivo
 - Remoção de ruído; Nitidez das bordas da imagem; Busca por informações;
 - mudanças morfológicas: Efeito em que objetos na imagens ficam deformados

Suavização de imagens:

- Aplica efeitos digitais numa imagem tornando a imagem ligeiramente desfocada para uma aplicação específica.
- Suavização de imagens é subjetiva
- Remoção de ruído
- Indefinição (soft focus): efeito que desfoca alguma área da imagem.

Restauração de imagens:

- Busca reconstruir ou recuperar uma imagem que foi degradada usando informações a respeito do processo de degradação.
- Modelagem do processo de degradação e aplicação do processo inverso no sentido de recuperar a imagem original

OBS: A primeira condição para melhoria de imagem é que a informação que você deseja extrair, enfatizar ou restaurar deve existir na imagem.

FILTRAGEM DIGITAL

- Domínio Espacial
 - Operam diretamente sobre pixels

- Domínio da Frequência
 - Teorema da convolução

O produto de convolução f*h no pixel de coordenadas (m, n) é obtido colocando o centro da máscara acima do pixel (m,n), multiplicando os elementos correspondentes na máscara e na imagem e somando os resultados

Seja a máscara 3x3

W 1	W 2	W 3
W 4	W 5	W6
W 7	W 8	W 9

e sejam z1, z2, ..., z9 a cor dos pixels sob a máscara O novo tom do pixel central será dado por

• R = w1z1 + w2z2 + ... + w9z9

- Se o centro da máscara estiver numa posição (x,y) na imagem, o tom do pixel posicionado em (x,y) será substituído por R
- A máscara é então movida para a próxima posição de pixel na imagem e o processo se repete
- É prática criar uma nova imagem para armazenar os valores de R em vez de mudar os valores de pixel no lugar
 - Evita o uso de pixels que tenham sido alterados na operação anterior

	1	1	1
<u>1</u>	1	1	1
	1	1	1

0				

1	1	1
1	1	1
1	1	1

\sim	Γ	7
<i>[</i> _'	α	α
\ T	\mathcal{L} ,	III
	7	~

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	1	1	1
<u>1</u>	1	1	1
	1	1	1

	1	1	1
<u>1</u>	1	1	1
	1	1	1

	1	1	1
<u>1</u> 9	1	1	1
	1	1	1

4	1	Т	1
<u>1</u>	Т	τ-	τ-
	1	1	1

									_
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 								_
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

CORRELAÇÃO E CONVOLUÇÃO ESPACIAIS

Correlação é o processo de mover uma máscara de filtro sobre uma imagem e computar a soma de produtos em cada posição, exatamente como explicado anteriormente.

$$w(x, y) \circ f(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

A convolução difere da correlação pela rotação do filtro de 180°.

$$w(x, y) * f(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x-s, y-t)$$

OBSERVAÇÕES

- Usar operações de correlação ou convolução para a filtragem espacial é uma questão de preferência.
- O importante é escolher uma máscara com os coeficientes adequados para que o resultado esperado seja obtido.
- Para uma máscara com os valores de coeficientes simétricos os resultados da correlação e convolução coincidem (filtros isotrópicos, ou invariantes a rotação).
- Finalmente, é comum encontrar termos como filtro de convolução, máscara de convolução ou kernel de convolução na literatura de processamento de imagens, denotando um filtro espacial, sem necessariamente significar que o filtro seja usado para uma verdadeira convolução.
- A expressão "convolver uma máscara com uma imagem" é comumente usada para denotar um processo de correlação.

ASPECTOS COMPUTACIONAIS DA FILTRAGEM ESPACIAL

Cor não realizável: cor resultante fora do espaço de cor do dispositivo.

 Solução: recorte para a cor mais próxima ou mudança de coordenada no espaço de cor.

Eficiência Computacional.

Solução: dependente do problema.

Extensão do Domínio da Imagem:

Solução:

Extensões na Imagem

Extensões na Imagem

Preta

Fixa

Periódica

Refletida

Tipos de Filtros

- Filtro Passa-Baixa
- Filtro Passa-Alta
- Filtro Passa-Faixa

Filtro Passa-Baixa (Low-Pass Filter)

Permite passar as baixas frequências de uma imagem e atenua as altas

LPF ideal (não-realizável)

Filtro Passa-Baixa Real

Filtro Passa-Alta (High-Pass Filter)

HPF ideal (não-realizável)

Filtro Passa-Alta Real

Filtro Passa-Faixa (Band-Pass Filter)

- Permite passar faixas específicas de uma imagem
- •Removem regiões selecionadas
- Usados em restauração de imagens

BPF ideal (não-realizável)

Filtro Passa-Baixa Real

FILTRO PASSA-BAIXA

Filtro Passa-Baixa

- Componentes de alta frequência caracterizam bordas ou outros detalhes finos de uma imagem
- O efeito resultante de um LPF é o borramento da imagem
- Borrar uma imagem para obter uma representação mais geral do objeto de interesse:
 - Intensidade dos objetos menores se confundem com o fundo
 - Objetos maiores se tornam borrões
 - O tamanho da máscara define o tamanho relativo dos objetos que serão mesclados ao fundo.

FILTROS DIGITAIS PASSA-BAIXA

Lineares

- Utiliza a média dos pixels contidos na vizinhança da máscara de filtragem.
 - Exemplo: média, média ponderada

Não Lineares

- Filtros que utilizam operações não lineares
 - Exemplo: moda, mediana

FILTROS LINEARES

EXEMPLO DE FILTROS LINEARES

Análise no contínuo e no discreto

Filtros:

- Box (média)
- Média Ponderada
- Bartlett

•

FILTRO BOX

Média aritmética dos pixels na vizinhança de um dado pixel

Atenua as altas frequências da imagem No caso bidimensional:

Filtro box discreto (3 × 3) ⇒ 2=9

FILTRO BOX

FILTRO BOX

Transformada de Fourier do filtro Box em 2D

FILTRO DE BARTLETT

Filtro Triangular

FILTRO DE BARTLETT

Atenua as altas frequências

$$h(t) = box(t)*box(t)$$

* = convolução

 $h(x,y) = h(x).h(y) \longrightarrow sample (x,y)$

Atenuação mais acentuada que o Box

Chamado de *Interpolação Bilinear* quando usado para reconstrução de imagens

	1	2	3	2	1
1	2	4	6	4	2
81	3	6	9	6	3
	2	4	6	4	2
	1	2	3	2	1

Filtro Bartlett 5x5: Cálculo

- Convolução de 2 filtros Box 3x3
 - Convolução de sinais não de imagens!!!

	1	1	1
<u>1</u> 9	1	1	1
	1	1	1

4	1	1	1
<u>1</u> 9	1	1	1
	1	1	1

Filtro Bartlett 5x5: Cálculo

4	1	1	1
<u>1</u> 81	1	1	1
	1	1	1

1	1	1	
1	1	1	=
1	1	1	

1	1	1		
1	1	1		
1	1	1	1	1
		1	1	1
		1	1	1

$$= \frac{1}{81}$$

Filtro Bartlett 5x5: Cálculo

1	1	1	
1	1	1	
1	1	1	1
	1	1	1
	1	1	1

$$= \underbrace{\frac{1}{81}} \begin{array}{|c|c|} \hline 1 & 2 \\ \hline \end{array}$$

Filtro Bartlett 5x5: Cálculo

1	1	1
1	1	1
1	1	1
1	1	1
1	1	1

 $= \frac{1}{81} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

Filtro Bartlett 5x5: Cálculo

	1	1	1					
	1	1	1			r	r	
1	1	1	1	= ,	1	2	3	2
1	1	1		81				
1	1	1						

Filtro Bartlett 5x5: Cálculo

		1	1	1
		1	1	1
1	1	1	1	1

ı	
ı	<u>1</u>
	8

1	2	3	2	1
---	---	---	---	---

Filtro Bartlett 5x5: Cálculo

	1	7	1		
1	1	1	1	1	1
<u>1</u> 81	1	1	1	1	1
·			1	1	1

=	4	1	2	3	2	1
	<u>1</u> 81	2				

Filtro Bartlett 5x5: Cálculo

<u>1</u> 81

1	1	1	
1	1	1	1
1	1	1	1
	1	1	1

_		
	<u>1</u>	
	81	

1	2	3	2	1
2	4			

1	1	1
1	1	1
1	1	1
1	1	1

1	2	3	2	1
2	4	6		

Filtro Bartlett 5x5: Cálculo

<u>1</u> 81

	1	1	1
1	1	1	1
1	1	1	1
1	1	1	

_	
	<u>1</u>
	81

~	2	3	2	1	
2	4	6	4		

<u>1</u> 81

		1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1		

1	2	3	2	1
2	4	6	4	2

E assim por diante....

Função de Transferência Bidimensional do Filtro Triangular

FILTROS ESTATÍSTICOS (NÃO-LINEARES)

FILTRO ESTATÍSTICO DA MEDIANA

Dada uma matriz de pixels (imagem), o filtro da mediana de ordem n varre a imagem com uma máscara de tamanho nxn.

Os pixels sob a máscara terão os seus valores organizados em ordem crescente de intensidade para calcular a mediana, o valor encontrado no centro da distribuição.

O pixel sob a máscara será substituído pelo valor da mediana.

O filtro da mediana elimina valores discrepantes, suavizando a imagem.

Filtro Estatístico da Mediana

Admitamos ter um filtro de mediana de ordem 3.

Vamos analisar 9 pixels numa máscara 3x3.

Se os valores dos pixels encontrados é:

685290264

A ordenação dos valores em ordem crescente é:

0 2 2 4 5 6 6 8 9

A mediana da distribuição acima é 5.

O pixel sob a máscara passará a ter o valor da mediana, ou seja, 5.

Exemplo de Filtragem

Exemplo de Filtragem: Mediana

Filtro passa-baixa

FILTRO ESTATÍSTICO DA MODA

Dada uma matriz de pixels (imagem) o filtro da moda de ordem n varre a imagem com uma máscara de tamanho nxn.

Os pixels sob a máscara terão os seus valores lidos e sua moda é o valor do pixel que mais se repete.

O pixel sob a máscara será substituído pelo valor da moda.

O filtro da moda elimina valores discrepantes, suavizando a imagem.

Os filtros da Mediana e da Moda são locais e lineares

OUTROS FILTROS ESTATÍSTICOS

- Embora a mediana seja um filtro mais usado em processamento de imagens, existem outros filtros, como o filtro do máximo, e o filtro do mínimo.
- O filtro do máximo (max filter) encontra o ponto mais brilhante. A resposta de um filtro 3x3 é dada por

$$R = max\{z_k \mid k = 1, 2, ..., 9\}$$

O filtro do mínimo (min filter) é oposto ao máximo.

OUTROS FILTROS ESTATÍSTICOS

Filtro Max

Filtro Min

$$G_{\sigma}(x,y) = 1 \quad \text{Exp}[-x^2 + y^2/2\sigma^2]$$

$$\sigma\sqrt{2\pi}$$

Média = π Variância = σ

Para gerar uma máscara 3x3 dessa função, fazemos a amostragem dessa função em torno do centro. Assim, $w_1=G(-1,-1)$, $w_2=G(-1,0)$,..., $w_9=G(1,1)$.

Filtro Passa-Baixa

 $h(x)=box (x)*box (x)*...*box (x) \longrightarrow filtro gaussiano$

$$\begin{array}{c|ccccc}
 1 & 2 & 1 \\
\hline
 16 & 2 & 4 & 2 \\
\hline
 1 & 2 & 1
\end{array}$$

Máscara Binomial

Função Gaussiana de Média 0 e Variância 2

FILTRO PASSA-ALTA

FILTRAGEM

Filtro Passa-Alta

- Redução de características que variam lentamente em uma imagem como o contraste e a intensidade média
- Efeito de intensificação das bordas e de detalhes finos na imagem

- Realça transições em intensidades;
 - Filtros de derivadas de primeira ordem;
 - Filtros de derivadas de segunda ordem.

FILTROS POR DERIVADAS

a primeira derivada deve ser:

- zero em áreas de intensidade constante;
- não-zero no começo de um degrau de intensidade ou de rampa; e
- não-zero em rampas.

a segunda derivada deve ser:

- zero em áreas constantes;
- não-zero no início e fim de um degrau de intensidade ou de rampas; e
- zero ao longo de rampas de inclinação constante.

FILTROS POR DERIVADAS

Primeira Derivada

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Segunda Derivada

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

FILTROS POR DERIVADAS

DETECÇÃO DE BORDAS

Gradiente

 O gradiente tem direção sempre perpendicular à tangente da borda

O Gradiente de uma imagem:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

O gradiente aponta na direção da mudança mais rápida de intensidade

$$abla f = \left[rac{\partial f}{\partial x}, \mathbf{0}
ight]$$

$$abla f = \left[0, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \qquad \nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix} \qquad \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$

Como implementar isso num filtro?

A direção do gradiente é dado por:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

A *força* da borda é dado pela magnitude do gradiente:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradiente Discreto

- Como podemos calcular a derivada de uma imagem f(x, y)
 - Opção 1: reconstruir uma imagem contínua e então tomar o gradiente
 - Opção 2: tomar a derivada discreta (diferença finita)

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

- Uma mudança de intensidade pode ser detectada pela diferença entre os valores de pixels adjacentes
- Bordas verticais podem ser detectadas pela diferença horizontal entre pontos, enquanto bordas horizontais podem ser detectadas pela diferença vertical entre pontos adjacentes da imagem

GRADIENTE DISCRETO

f(x-1,y-1)	f(x-1,y)	f(x-1,y+1)
f(x,y-1)	f(x,y)	f(x,y+1)
f(x+1,y-1)	f(x+1,y)	f(x+1,y+1)

 Uma outra abordagem é o cálculo aproximado do gradiente por diferenças cruzadas:

$$\nabla f \approx \sqrt{[f(x,y) - f(x+1,y+1)]^2 + [f(x+1,y) - f(x,y+1)]^2}$$

GRADIENTE DISCRETO

- Essa aproximação por valores absolutos pode ser implementada por máscaras
- Toma-se o valor absoluto das duas máscaras e soma-se os resultados:

$$Gx = \begin{array}{c|c} 1 & 0 \\ \hline 0 & -1 \end{array}$$

OPERADOR SOBEL

Na prática utiliza-se:

$$g_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Orientação:
$$\Theta = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

OPERADOR SOBEL

 Aproxima a magnitude do gradiente como a diferença de valores ponderados dos níveis de cinza como:

•
$$Gx = [f(x-1, y+1) + 2f(x, y+1) + f(x+1,y+1)] - [f(x-1, y-1) + 2f(x, y-1) + f(x+1, y-1)]$$

- Gy = [f(x + 1, y 1) + 2f(x + 1, y) + f(x + 1, y + 1)] [f(x 1, y 1) + 2f(x 1, y) + f(x 1, y + 1)]
- Pela velocidade computacional, a magnitude g é a proximada para apenas a soma dos valores absolutos de |Gx| e |Gy|

OPERADOR SOBEL

Original

Magnitude

Orientação

OPERADORES DE PRIMEIRA ORDEM

Roberts

Prewitt

Sobel

0	-1
1	0

X derivative

1	0	-1
1	0	-1
1	0	-1

1 0 -1 2 0 -2 1 0 -1

-1	0
0	1

Y derivative

1	1	1
0	0	0
-1	-1	-1

1	2	1
0	0	0
-1	-2	-1

FILTROS DE DERIVADA FILTRO DE PREWITT - BPF

```
h =
-1 -1 -1
0 0 0
1 1 1
```

FILTROS DE DERIVADA FILTRO DE PREWITT2 - BPF

h =

-1 0 1 -1 0 1

FILTROS DE DERIVADA FILTRO DE SOBEL1 - BPF

```
h =
```

```
-1 -2 -1
0 0 0
1 2 1
```


FILTROS DE DERIVADA FILTRO DE SOBEL2 - BPF

h =

-1 0 1 -2 0 2 -1 0 1

OUTROS OPERADORES DE PRIMEIRA ORDEM

- O operador de Roberts é rápido mas é muito sensível a ruído
- As mâscaras de Prewitt/Sobel são geralmente preferidos em relação à abordagem de Roberts porque o gradiente não é desviado por metade de um pixel em ambas as direções e possui extensão maior (para filtro maiores que 3x3) que não é facilmente possível com operadores de Roberts
- A principal diferença entre o Sobel e Prewitt é que o operador de Sobel implementa a diferenciação em uma direção e a média da Gaussiana (aproximada) na outra.
- A vantagem do operador de Sobel é a suavização na região de borda, reduzindo a probabilidade de que pixels ruidosos ou isolados irão dominar a resposta do filtro

OUTROS OPERADORES DE PRIMEIRA ORDEM

Original Image

Prewitt Filter Edges

Roberts Filter Edges

Sobel Filter Edges

Função de Transferência do Filtro Laplaciano

• Laplaciano
$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

0	-1	0
-1	4	-1
0	-1	0

$$\nabla^2 f = f(x+1,y) + f(x-1,y) - 4f(x,y) + f(x,y+1) + f(x,y-1)$$

O Laplaciano é um operador derivativo isotrópico, que para uma função de duas dimensões f(x,y) é definido como

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Como derivadas de qualquer ordem são operações lineares, o Laplaciano é um operador linear.

De forma discreta usamos a equação com duas variáveis:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$
$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Portanto o Laplaciano é dado por:

$$\nabla^2 f(x, y) = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

- Espera-se que a aplicação do filtro laplaciano, por ser uma derivada de segunda ordem, tenha resultados melhores em locais onde mudanças ocorram mais rapidamente
- A propriedade da derivada de segunda ordem permite que o Laplaciano produza uma resposta para borda fina correspondente a uma mudança no gradiente, em vez de uma resposta menos isolada, produzida por filtros de primeira ordem, isto torna-o adequado como o primeiro estágio de aperfeiçoamento de borda digitais

- Uma das deficiências potenciais de aplicar a máscara na forma dada pela figura do slide anterior é a relativa insensibilidade às características em direções aproximadamente diagonal em relação ao eixos da imagem
- Se imaginarmos rotação do eixo x de 45º, e sobrepondo a rotação do Laplaciano original, então podemos construir um filtro que é invariante sob múltiplas rotações de 45º

Original Image

x-derivative (Sobel) Laplacian

y-derivative (Sobel) Laplacian (rotated+added kernel)

 0
 1
 0

 1
 -4
 1

 0
 1
 0

Máscara 3x3

0	1	1	0
1	-2		1
1	-2	-2	1
0	1	1	0

Atenua as Baixas Frequências Acentua as Altas Frequências

#