

UM EECS 270 F22 Introduction to Logic Design

5. Switching Functions

Switching Functions

- $f(x_1, x_2, ..., x_n)$ is a mapping from $B_2^n \to B_2$
- *f* can be specified by many equivalent expressions or by tables of combinations (truth tables)
- Elementary functions:
 - A minterm m_i is an AND term of n literals
 - A maxterm M_i is an OR term of n literals

Ex: 4 variables A, B, C, D

$$m_5(A, B, C, D) = A'BC'D$$
 (0101)

$$M_5(A, B, C, D) = A + B' + C + D'$$
 (0101)

- $m_i = 1$ for exactly one combination of variables, and 0 for all others
- $M_i = 0$ for exactly one combination of variables, and 1 for all others

•
$$m_i = M'_i$$

Canonical Forms

- Canonical Sum-of-Products (SOP)
 - Also known as Disjunctive Normal Form (DNF)
 - Sum of minterms (those for which f = 1)
 - Shorthand: $\sum (...)$
- Canonical Product-of-Sums (POS)
 - Also known as Conjunctive Normal Form (CNF)
 - Product of maxterms (those for which f = 0)
 - Shorthand: \prod (...)

Canonical Forms

- Canonical Sum-of-Products (SOP)
 - Also known as Disjunctive Normal Form (DNF)
 - Sum of minterms (those for which f = 1)
 - Shorthand: $\sum (...)$
- Canonical Product-of-Sums (POS)
 - Also known as Conjunctive Normal Form (CNF)
 - Product of maxterms (those for which f = 0)
 - Shorthand: $\prod(...)$

Decimal	xyz	f
0	000	1
1	001	0
2	010	1
3	011	1
4	100	0
5	101	0
6	110	1
7	111	1

$$f(x,y,z) = \sum_{x,y,z} (0,2,3,6,7)$$

$$f(x,y,z) = x'y'z' + x'yz' + x'yz + xyz' + xyz$$

$$f(x,y,z) = \prod_{x,y,z} (1,4,5)$$

$$f(x,y,z) = (x + y + z')(x' + y + z)(x' + y + z')$$

In-Class Exercise

Express f(a,b,c) = ab + ac + bc in canonical SOP and POS forms

$$f(a,b,c) = ab + ac + bc$$

$$= ab(c + c') + a(b + b')c + (a + a')bc$$

$$= abc + abc' + abc + ab'c + abc + a'bc$$

$$= a'bc + ab'c + abc' + abc$$

$$= \sum_{abc} (3,5,6,7)$$

$$= \prod_{abc} (0,1,2,4)$$

$$= (a + b + c)(a + b + c')(a + b' + c)(a' + b + c)$$

What are minterms???

Row Index	x	\overline{y}	m_0	$m_{_1}$	m_2	m_3
0	0	0				
1	0	1				
2	1	0				
3	1	1				

Symbolically:

Í	

Don't Cares

Decimal	xyz	f
0	000	1
1	001	0
2	010	d
3	011	1
4	100	0
5	101	d
6	110	1
7	111	1

$$f(x,y,z) = \sum_{x,y,z} (0,3,6,7) + d(2,5)$$

$$f(x, y, z) = \prod_{x,y,z} (1,4) \frac{d(2,5)}{d(2,5)}$$

On-Set =
$$\{0, 3, 6, 7\}$$

Off-Set = $\{1, 4\}$
Don't-Care-Set = $\{2, 5\}$

Code Word Representation of Product Terms

Variables: $u \ v \ w \ x \ y \ z$

Code Word	Product Term	#minterms "covered"
001101	u'v'wxy'z	$1\{m_{13}\}$
0-1-01	u'wy'z	$2^2 = 4 \{ m_9, m_{13}, m_{25}, m_{29} \}$

#minterms covered by code word = $2^{\text{#missing literals}}$

Boole's (Shannon's) Expansion Theorem

- Decomposition of a switching function of n variables into functions of n-1 variables
 - $f(x_1, x_2, ..., x_n) = x_1' f(0, x_2, ..., x_n) + x_1 f(1, x_2, ..., x_n)$
 - $f(x_1, x_2, ..., x_n) = [x_1 + f(0, x_2, ..., x_n)][x_1' + f(1, x_2, ..., x_n)]$
- Proof?

Boole's (Shannon's) Expansion Theorem

- Decomposition of a switching function of n variables into functions of n-1 variables
 - $f(x_1, x_2, ..., x_n) = x_1' f(0, x_2, ..., x_n) + x_1 f(1, x_2, ..., x_n)$
 - $f(x_1, x_2, ..., x_n) = [x_1' + f(1, x_2, ..., x_n)][x_1 + f(0, x_2, ..., x_n)]$
- The functions resulting from fixing x are referred to as co-factors
 - $f(0, x_2, ..., x_n)$ is the negative cofactor of f wrt x_1
 - $f(1, x_2, ..., x_n)$ is the positive cofactor of f wrt x_1
- Notation:
 - $f_{x_1'} = f(0, x_2, ..., x_n)$
 - $f_{x_1} = f(1, x_2, ..., x_n)$

Boole's (Shannon's) Expansion Theorem

• Decomposition of a switching function of n variables into functions of n-1 variables:

$$f(x_1, x_2, \dots, x_n) = x_1' f_{x_1'} + x_1 f_{x_1}$$

$$f(x_1, x_2, \dots, x_n) = [x_1' + f_{x_1}] \cdot [x_1 + f_{x_1'}]$$

• Repeated application yields canonical forms (ex: n = 2)

$$\begin{split} f(x,y) &= x' f(0,y) + x f(1,y) \\ f(x,y) &= x' [y' f(0,0) + y f(0,1)] + x [y' f(1,0) + y f(1,1)] \\ f(x,y) &= f(0,0) \cdot x' y' + f(0,1) \cdot x' y + f(1,0) \cdot x y' + f(1,1) \cdot x y \\ f(x,y) &= f_{x'y'} \cdot x' y' + f_{x'y} \cdot x' y + f_{xy'} \cdot x y' + f_{xy} \cdot x y \\ f(x,y) &= a_0 \cdot m_0 + a_1 \cdot m_1 + a_2 \cdot m_2 + a_3 \cdot m_3 \end{split}$$

Truth Table for Arbitrary2-Variable Function f(x, y)

Row Index	x	y	f
0	0	0	$a_{_0}$
1	0	1	a_{1}
2	1	0	a_2
3	1	1	a_3

Think of each a_i as a minterm selector

$$a_{i} = \begin{cases} 1, m_{i} \text{ is a minterm of } f \\ 0, m_{i} \text{ is not a minterm of } f \end{cases}$$

Algebraic v. Set View of Functions

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

= $a_0 x' y' + a_1 x' y + a_2 x y' + a_3 x y$

$$a_0 = a_2 = 1 \Rightarrow f(x,y) = m_0 + m_2$$

= $x'y' + xy'$
= $(x' + x)y'$
= y'

$$U = \{m_0, m_1, m_2, m_3\}$$

$$f(x, y) \subseteq U$$

$$f(x, y) = \{m_0, m_2\}$$

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
0001	x'y'	NOR	$x \downarrow y$	
1110	x + y	OR	$x + y = x \lor y$	
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
1101	x + y'	Implication	$y \rightarrow x$	
1110	x + y	OR	$x + y = x \lor y$	
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	x'	NOT		
1100	$\boldsymbol{\mathcal{X}}$	Transfer		
1101	x + y'	Implication	$y \to x$	
1110	x + y	OR	$x + y = x \lor y$	
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	χ'	NOT		
0100	xy'	Inhibition		
1011	x' + y	Implication	$x \rightarrow y$	
1100	χ	Transfer		
1101	x + y'	Implication	$y \to x$	
1110	x + y	OR	$x + y = x \lor y$	
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	χ'	NOT		
0100	xy'	Inhibition		
0101	y'	NOT		
1010	y	Transfer		
1011	x' + y	Implication	$x \rightarrow y$	
1100	χ	Transfer		
1101	x + y'	Implication	$y \to x$	
1110	x + y	OR	$x + y = x \lor y$	
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	χ'	NOT		
0100	xy'	Inhibition		
0101	y'	NOT		
0110	x'y + xy'	XOR	$x \oplus y$	
1001	xy + x'y'	XNOR / EQV	$x \odot y$	
1010	y	Transfer		
1011	x' + y	Implication	$x \rightarrow y$	
1100	χ	Transfer		
1101	x + y'	Implication	$y \to x$	
1110	x + y	OR	$x + y = x \lor y$	
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	χ'	NOT		
0100	xy'	Inhibition		
0101	y'	NOT		
0110	x'y + xy'	XOR	$x \oplus y$	
0111	x' + y'	NAND	$x \uparrow y$	
1000	xy	AND	$x \cdot y = x \land y = xy$	
1001	xy + x'y'	XNOR / EQV	$x \odot y$	
1010	y	Transfer		
1011	x' + y	Implication	$x \rightarrow y$	
1100	χ	Transfer		
1101	x + y'	Implication	$y \to x$	
1110	x + y	OR	$x + y = x \vee y$	
1111	1	Tautology		

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		#
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	χ'	NOT		
0100	xy'	Inhibition		
0101	y'	NOT		
0110	x'y + xy'	XOR	$x \oplus y$	#
0111	x' + y'	NAND	$x \uparrow y$	
1000	xy	AND	$x \cdot y = x \land y = xy$	#
1001	xy + x'y'	XNOR / EQV	$x \odot y$	
1010	у	Transfer		
1011	x' + y	Implication	$x \rightarrow y$	
1100	\boldsymbol{x}	Transfer		#
1101	x + y'	Implication	$y \rightarrow x$	
1110	x + y	OR	$x + y = x \lor y$	#
1111	1	Tautology		‡

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		‡
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	χ'	NOT		
0100	xy'	Inhibition		
0101	y'	NOT		
0110	x'y + xy'	XOR	$x \oplus y$	‡
0111	x' + y'	NAND	$x \uparrow y$	
1000	xy	AND	$x \cdot y = x \land y = xy$	‡
1001	xy + x'y'	XNOR / EQV	$x \odot y$	
1010	У	Transfer		
1011	x' + y	Implication	$x \rightarrow y$	
1100	$\boldsymbol{\chi}$	Transfer		#
1101	x + y'	Implication	$y \to x$	
1110	x + y	OR	$x + y = x \vee y$	#
1111	1	Tautology		‡

Functional Properties

- The canonical SOP (POS) form is unique, subject to commutativity
- Two functions are logically equivalent iff their canonical SOP (POS) form are identical
- The canonical SOP (POS) form contains 2^n coefficients each of which can be either 0 or 1. Thus, there are 2^{2^n} switching functions of n variables

Functional Properties

- The canonical SOP (POS) form is unique, subject to commutativity
- Two functions are logically equivalent iff their canonical SOP (POS) form are identical
- The canonical SOP (POS) form contains 2^n coefficients each of which can be either 0 or 1. Thus, there are 2^{2^n} switching functions of n variables

n	2^n	2^{2^n}	N_n
1	2	4	3
2	4	16	6
3	8	256	22
4	16	65,536	402
5	32	4,294,967,296	1,228,158
N_n = number of "types" of functions of <i>n</i> variables [Slepian 53] ^a			

^a Slepian, D., "On the Number of Symmetry Types of Boolean Functions of *n* Variables," Can. J. Math., 5(2):185–193, 1953.

Logic Gates

NOT
$$x \longrightarrow x'$$

AND
$$\frac{x}{y}$$
 \longrightarrow xy

OR
$$\frac{x}{y} = \sum x + y$$

$$XOR \quad \frac{x}{y} \Longrightarrow \sum x \oplus y = x'y + xy'$$

NAND
$$\frac{x}{y}$$
 $(xy)' = x' + y'$

NOR
$$\frac{x}{y}$$
 \longrightarrow $(x+y)' = x'y'$

$$XNOR \frac{x}{y} = x \odot y = x'y' + xy$$

Properties of XOR (modulo-2 Addition)

- Commutativity: $x \oplus y = y \oplus x$
- Associativity: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- Distributivity: $x(y \oplus z) = xy \oplus xz$
- Relationship to XNOR: $(x \oplus y)' = x \odot y$
 - XNOR is "equal"
 - XOR is "not equal"
- Conditional Complementation:

$$s \oplus x = \begin{cases} x & \text{if } s = 0 \\ x' & \text{if } s = 1 \end{cases}$$

- Parity: Value of $f = x_1 \oplus x_2 \oplus ... \oplus x_n$
 - Remains unchanged if an even number of variables are complemented
 - Is complemented if an odd number of variables are complemented
- Any identity f(X) = g(X) can be re-expressed as $f(X) \oplus g(X) = 0$

Functional Completeness

- A set of operations is functionally-complete (or universal) iff every switching function can be expressed entirely by means of operations from this set
- The following are functionally-complete operation sets
 - $\{+,\cdot,'\}$ (by definition)
 - {+,'} (by De Morgan's theorem)
 - {⋅,' } (by De Morgan's theorem)
 - {NAND}: $x \uparrow y = x' + y'$ Complement: $x \uparrow x = x' + x' = x'$ AND: $(x \uparrow y) \uparrow (x \uparrow y) = (x \uparrow y)' = (x' + y')' = xy$
 - {NOR}

Isomorphic Systems

- Two algebraic systems are isomorphic if there is a one-to-one correspondence between elements and operations from one system to the other
- Examples of algebraic systems which are isomorphic to Switching algebra:
 - Series-parallel switching circuits
 - Propositional calculus
 - Algebra of sets

	Switching Algebra	Algebra of Sets
Elements	0 1	Ø U
Unary Op	x'	U-x
Dinary Ona	$x \cdot y$	$x \cap y$
Binary Ops	x + y	$x \cup y$

"Big" Boolean Algebras: Duality

"Big" Boolean Algebras: Duality

