1 Алгоритм решения

Обозначим через V множество значений количества слитков у людей, где v_i — количество слитков у человека i, где $v_i \in [1, \bar{V}]$.

1. Инициализируем границы бинарного поиска:

$$left_ptr = 0$$
, $right_ptr = max\{v_i : v_i \in V\} + 1$

- 2. Повторяем, пока $right_ptr left_ptr > 1$:
 - Вычисляем $mid = \left| \frac{left_ptr + right_ptr}{2} \right|$;
 - Проверяем возможность перераспределения с ограничением не более чем mid слитков у одного человека;
 - Если возможно обновляем right_ptr, иначе left_ptr.
- 3. Ответ минимальное допустимое значение right_ptr.

2 Проверка перераспределения через поток

Построим сеть:

- Исток s соединяется со всеми вершинами (людьми) пропускная способность v_i ;
- Из каждой вершины:
 - 1. В другие вершины по графу доверия с пропускной способностью v_i ;
 - 2. В сток t-c пропускной способностью, равной mid.

Алгоритм поиска потока — Эдмондса-Карпа.

3 Корректность

Лемма 1. Функция проверки возможности перераспределения монотонна по тід.

Доказательство. При увеличении mid возрастает пропускная способность рёбер в сток, что увеличивает или сохраняет величину максимального потока. Следовательно, если перераспределение невозможно при k, то оно также невозможно при всех k' < k.

Теорема 1. Алгоритм бинарного поиска по ответу с использованием поиска потока корректен.

Доказательство. Следует из монотонности функции проверки и корректности алгоритма Эдмондса-Карпа для нахождения максимального потока. □

4 Временная сложность

- Бинарный поиск: $O(\log \bar{V})$;
- Поиск потока Эдмондса-Карпа: $O(VE^2)$;

Общая сложность: $O(\log \bar{V} \cdot VE^2)$.

5 Затраты по памяти

Хранение графа требует O(V+E) памяти. Остальные расходы пренебрежимо малы.