Распределенное обучение нейросетей

Артем Малько, БПМИ 213

План доклада

- Как мы можем распараллелить нейросеть?
- Способы и что они нам дают:
 - Data Parallel
 - Model Parallel
 - Tensor Parallel
- Примеры использования

Основные шаги в backprop

Backward Pass: weight gradients

$$\begin{array}{ccc} dY & X^{\mathsf{T}} & dW \\ & & & \end{array}$$

Backward Pass: activation gradients

$$\mathbf{x}^{\mathsf{T}} = \mathbf{x}^{\mathsf{T}}$$

Weight update:

я жду, пока обучится нейронка...

Формальная постановка задачи

- Будем использовать датасет ImageNET
- Также возьмем SGD:

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t).$$

- Делаем Warmup Learning Rate сначала маленький, постепенно увеличивается
- Learning Rate меняем по правилу ниже

Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning rate by k.

Стартовые значения

ResNet-50 c minibatch size = 256 images обучается 29 часов на 8 Tesla
P100 GPU

Спойлер: научимся обучать на 256 видеокартах за 1 час без потери качества

А если у нас >1 видеокарты?

- Нода машина с видеокартой
- Пусть каждая видеокарта установлена на своей ноде
- Хотим ускорить процесс обучения

А давайте попробуем параллелить нагрузку?

Самый простой подход – разделить batch на небольшие куски, каждый кусок дать своей ноде, а потом посчитать среднее от градиентов

Data Parallel подход

Каждая нода:

- Хранит полную копию нейросети
- Отвечает за свой кусок minibatch'a

Forward Pass:

- Считает значения для своего minibatch'a
- о Коммуникация между нодами не нужна

Backward Pass:

- Считает градиенты для своего куска
- о Считает вклад в общий градиент, основываясь на своем куске

• Обновление весов:

- Каждая нода обновляет веса
- Есть сервер, считающий итоговый градиенты

Data Parallel: Forward Pass

Data Parallel: Backward Pass

Не обязательно нужен "сервер"

Как теперь обновлять веса?

$$\hat{w}_{t+1} = w_t - \hat{\eta} \frac{1}{k} \sum_{j < k} \nabla L(\mathcal{B}_j, w_t).$$

Где:

- *B_j* кусок minibatch
- L функция потерь
- k количество нод
- n learning rate, деленный на k

Эксперименты

Почему падает при batch size > 16k?

- **Шум в градиентах**, застреваем в локальных градиентах. При маленьких batch-size шум помогает найти лучший минимум функции потерь
- **Генерализация**: модель слишком хорошо оптимизируется под тренировочные данные, переобучается

Scaling Efficiency 90%!

Data Parallel: выводы

- Смогли ускорить обучение в 30 раз почти без потери качества
- Использовали в 32 раза больше GPU (256) с эффективностью 90%
- Принципиально ускоряющий метод в DL

Model-parallel подход

- У нас теперь другая задача: пусть есть **очень** большая нейросеть, которая не может поместить все свои данные в память
- Примитивный подход: подсчитываем несколько слоев, перекладываем данные в медленную память, загружаем новые слои и так далее.

Model-parallel подход (Inter-Layer)

А давайте разделим слои по нодам? Каждый будет считать свои слои и передавать дальше

Model-Parallel (Intra-Layer)

Model-parallel подход

Стартовые значения

- Датасет Large Scale Visual Recognition Challenge 2012
- Модель ResNet-50

Примитивный подход

PipeLine без простоев

Сравнение времени обучения

(a) VGG16

BSP – Data Parallel подход

Главная проблема

 Нужно пересылать данные между машинами. Если она одна, это достаточно быстро – но если кластер разбит по датацентрам, задержки быстро суммируются.

Tensor-Parallel подход

Задача все та же, но попробуем другой подход:

Будем делить не слои по разным нодам, а сами операции, которые мы можем исполнять параллельно.

Простой пример: умножение матриц

Первая итерация. Вычисление диагональных элементов.

Применим в обучении нейросети

GeLU - нелинейная функция активации

Результаты экспериментов

Выводы

- С помощью Data Parallel подхода мы можем ускорять обучение на порядок, почти не теряя в качестве
- Без Model (Tensor) Parallel подхода не получилось бы обучать большие модели, такие как GPT-3 (то есть ChatGPT) или они обучались бы на порядок медленнее