

Amendments to the Claims:

Claims 2 to 10 are amended and claim 11 is added as set forth hereinafter.

Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Previously Presented) A hydro bushing for radially supporting a motor, the hydro bushing comprising:
 - a sleeve-shaped outer body;
 - an inner support body spaced radially from said outer body;
 - 5 a spring body having two legs and being disposed between said outer body and said support body;
 - a volume-changeable work chamber disposed between said legs of said spring body and filled with a low-viscous hydraulic fluid;
 - 10 said volume-changeable work chamber having a clear distance between said inner support body and said sleeve-shaped outer body;
 - at least one compensating chamber disposed laterally of and directly next to said work chamber;
 - 15 said compensation chamber and said work chamber having a common lateral surface therebetween;
 - a transfer channel interconnecting said work chamber and said compensating chamber and being delimited by said common

lateral surface;

20 said work chamber having an effective cross-sectional area (A_1) and said spring body having a dynamic swell stiffness; said transfer channel having a length (L) and a cross-sectional area (A_2); and,

25 said cross-sectional area (A_1), said dynamic swell stiffness, said length (L) and said cross-sectional area (A_2) all being so selected that said hydro bushing has a natural or resonant frequency of approximately 130 Hz.

2. (Currently Amended) ~~The hydro bushing of claim 1, wherein~~
A hydro bushing for radially supporting a motor, the hydro
bushing comprising:

5 a sleeve-shaped outer body;
an inner support body spaced radially from said outer body;
a spring body having two legs and being disposed between
said outer body and said support body;
a volume-changeable work chamber disposed between said legs
of said spring body and filled with a low-viscous hydraulic

10 fluid;
said volume-changeable work chamber having a clear distance
between said inner support body and said sleeve-shaped outer
body;

15 at least one compensating chamber disposed laterally of and
directly next to said work chamber;

said compensation chamber and said work chamber having a
common lateral surface therebetween;

a transfer channel interconnecting said work chamber and

20 said compensating chamber and being delimited by said common lateral surface;

said work chamber having an effective cross-sectional area (A₁) and said spring body having a dynamic swell stiffness;

said transfer channel having a length (L) and a cross-sectional area (A₂);

25 said cross-sectional area (A₁), said dynamic swell stiffness, said length (L) and said cross-sectional area (A₂) all being so selected that said hydro bushing has a natural or resonant frequency of approximately 130 Hz;

said transfer channel [[is]] being a first transfer channel;

30 said compensating chamber [[is]] being a first compensating chamber on one side of said work chamber; chamber and said hydro bushing further comprises

a second compensating chamber on the other side of said work chamber;

35 a connecting channel connecting said compensating channels to each other; and,

a second transfer channel interconnecting said work chamber and said second compensating chamber.

3. (Currently Amended) The hydro bushing of ~~claim 1~~ claim 2, wherein the ratio of the effective cross-sectional area (A₁) of said work chamber to the cross-sectional area (A₂) of said transfer channel lies in a range of 0.1 to 10.

4. (Currently Amended) The hydro bushing of ~~claim 1~~ claim 2, wherein the ratio (A₁:A₂) of said cross-sectional areas (A₁

and A₂) is approximately 2.2.

5. (Currently Amended) The hydro bushing of ~~claim 1~~ + claim 2, wherein the ratio of said length (L) of said transfer channel to said cross-sectional area (A₂) of said transfer channel lies in a range of 0.1 to 4.0.

6. (Currently Amended) The hydro bushing of ~~claim 1~~ + claim 2, wherein the ratio of said length (L) of said transfer channel to said cross-sectional area (A₂) of said transfer channel is approximately 1.5.

7. (Currently Amended) The hydro bushing of claim 1, wherein A hydro bushing for radially supporting a motor, the hydro bushing comprising:

5 a sleeve-shaped outer body;
 an inner support body spaced radially from said outer body;
 a spring body having two legs and being disposed between
 said outer body and said support body;
 a volume-changeable work chamber disposed between said legs
 of said spring body and filled with a low-viscous hydraulic
 fluid;
 said volume-changeable work chamber having a clear distance
 between said inner support body and said sleeve-shaped outer
 body;
 at least one compensating chamber disposed laterally of and
 directly next to said work chamber;
 said compensation chamber and said work chamber having a

20

common lateral surface therebetween;

a transfer channel interconnecting said work chamber and
said compensating chamber and being delimited by said common
lateral surface;

said work chamber having an effective cross-sectional
area (A_1) and said spring body having a dynamic swell stiffness;
said transfer channel having a length (L) and a
cross-sectional area (A_2);

25

said cross-sectional area (A_1), said dynamic swell
stiffness, said length (L) and said cross-sectional area (A_2) all
being so selected that said hydro bushing has a natural or
resonant frequency of approximately 130 Hz; and,

30

said cross-sectional area (A_1) of said work chamber includes
including a constriction.

8. (Currently Amended) The hydro bushing of claim 1 or claim 2,
wherein the volume of said work chamber and the volume of said
transfer channel define a ratio of 0.1 to 4.0.

9. (Currently Amended) The hydro bushing of claim 1 or claim 2,
wherein the volume ratio of said work chamber and said transfer
channel is between 1.0 and 3.0.

10. (Currently Amended) The hydro bushing of claim 1, wherein
A hydro bushing for radially supporting a motor, the hydro
bushing comprising:

5

a sleeve-shaped outer body;

an inner support body spaced radially from said outer body;

a spring body having two legs and being disposed between said outer body and said support body;

a volume-changeable work chamber disposed between said legs of said spring body and filled with a low-viscous hydraulic fluid;

said volume-changeable work chamber having a clear distance between said inner support body and said sleeve-shaped outer body;

at least one compensating chamber disposed laterally of and directly next to said work chamber;

said compensation chamber and said work chamber having a common lateral surface therebetween;

a transfer channel interconnecting said work chamber and said compensating chamber and being delimited by said common lateral surface;

said work chamber having an effective cross-sectional area (A_1) and said spring body having a dynamic swell stiffness;

said transfer channel having a length (L) and a cross-sectional area (A_2);

said cross-sectional area (A_1), said dynamic swell stiffness, said length (L) and said cross-sectional area (A_2) all being so selected that said hydro bushing has a natural or resonant frequency of approximately 130 Hz; and,

one of said legs separates separating said work chamber from said compensation chamber and ends ending in spaced relationship to said sleeve-shaped outer body so as to define said common lateral surface.

11. The hydro bushing of claim 2, wherein said cross-sectional area (A_1) of said work chamber includes a constriction.