Problem K. K

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

We have 4 cards with an integer 1 written on it, 4 cards with $2, \ldots, 4$ cards with N, for a total of 4N cards.

Takahashi shuffled these cards, removed one of them, and gave you a pile of the remaining 4N-1 cards. The i-th card $(1 \le i \le 4N-1)$ of the pile has an integer A_i written on it.

Find the integer written on the card removed by Takahashi.

Constraints

- $1 \le N \le 10^5$
- $1 \le A_i \le N \ (1 \le i \le 4N 1)$
- For each k $(1 \le k \le N)$, there are at most 4 indices i such that $A_i = k$.
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

Output

Print the answer.

Sample 1

Input	Output
3 1 3 2 3 3 2 2 1 1 1 2	3

Takahashi removed a card with 3 written on it.

Sample 2

Input	Output
1	1
1 1 1	

Sample 3

Input	Output
4 3 2 1 1 2 4 4 4 4 3 1 3 2 1 3	2