PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12Q 1/68

A2

(11) International Publication Number: WO 99/14376

(43) International Publication Date: 25 March 1999 (25.03.99)

(21) International Application Number:

PCT/US98/19719

(22) International Filing Date:

21 September 1998 (21.09.98)

(30) Priority Data:

08/933,641

19 September 1997 (19.09.97) US

(71) Applicant: GENACO BIOMEDICAL PRODUCTS, INC. [US/US]; Suite 350, 2800 Milan Court, Birmingham, AL

35211 (US).

(72) Inventor: HAN, Jian; 2920 Panorama Trail, Birmingham, AL 35294 (US).

(74) Agents: MURDOCK, Douglas, C. et al.; Lyon & Lyon LLP, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US). (81) Designated States: CA, CN, JP, KR, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: DETECTION OF ANEUPLOIDY AND GENE DELETION BY PCR-BASED GENE-DOSE CO-AMPLIFICATION OF CHROMOSOME SPECIFIC SEQUENCES WITH SYNTHETIC INTERNAL CONTROLS

(57) Abstract

Disclosed is a method and composition of matter for PCR-based gene dosage analysis. The invention provides internal control DNA sequences that are the same length and same G-C content. The method does not require sized separation of the amplified products. Instead, the method utilizes hybridization and ELISA like colormetric screening. The invention further provides for tightly controlled internal standards for comparing gene dosage by placing one copy of various chromosome markers on one plasmid.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan .	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/14376 PCT/US98/19719

DESCRIPTION

Detection Of Aneuploidy And Gene Deletion By PCR-Based Gene-Dose Co-Amplification Of Chromosome Specific Sequences With Synthetic Internal Controls

5 Field Of The Invention

The present invention relates to a method for prenatal detection of fetal chromosome aneuploidy, including trisomy 21 (Down's syndrome), trisomy trisomy 18, and sex chromosome abnormalities as well as detection of microsome deletion syndromes, including Prader-Willi and Angelman syndrome, William syndrome, Smith-Magenis syndrome, DiGeorge syndrome, Miller-Dieker syndrome and other like disorders. More particularly, the present invention relates to a new method of detecting aneuploidy and microsome deletion using synthetic internal controls that provide advanced accuracy in determining chromosome copy number chromosome deletion mutations by strictly controlling the quantity of the internal control sequences relative rates of polymerase chain reaction (PCR) for test versus control DNA sequences.

Background Of The Invention

form of common chromosome mutation aneuploidy wherein the number of individual chromosomes present in a cell either increases or decreases from the present in a normal cell. The absence of one chromosome from the diploid complement is called "monosomy." presence of an extra chromosome is called "trisomy." Trisomy 21 is a condition wherein there exists an extra This trisomy is the most common form of chromosome 21. aneuploidy and gives rise to Down's syndrome which is the congenital manifestation of severe mental retardation.

10

15

20

25

Generally, the diagnosis of Down's syndrome and other aneuploidies requires obtaining fetal cells by amniocentesis or chorionic villus sampling. requires routine cytogenetic procedures which include the necessity of cell culture (up to 7-14 chromosome preparation and karyotyping. This process is lengthy, expensive and labor intensive. Recently, a cytogenetic technique for detecting molecular aneuploidy, namely, fluorescent in situ hybridization Although FISH is relatively (FISH) has been developed. fast and accurate, performance of the FISH highly trained technicians and requires expensive equipment and reagents.

In US patent number 5,213,961 by Bunn et al., is disclosed a method of quantitative PCR by competitive 15 invention, the parameters methodology. In that affecting DNA amplification and a mechanism to distinguish differences in template (both test and control) ratios and copy numbers are discussed. The Bunn disclosure addressed as a primary object of the 20 invention such parameters and their effect the amplification process. These parameters were believed to arise predominantly from the nature of DNA primers and their respective primer binding sites. The 25 invention disclosed that it is necessary primers and binding sites of the control and test DNA sequences to be functional equivalents of one another. Emphasis was placed on the fact that PCR amplification initiated utilizing identical primers for 30 control and test sequences. Moreover, that invention discussed the capacity to distinguish the test sequence from the control sequence by changing the size of the control sequence (by either deletion or insertion) as much as 100 to 200 base pairs. The Bunn invention also 35 discussed altering the control sequence such substitution of sequence by site specific mutagenesis

WO 99/14376 PCT/US98/19719

3

either creating or destroying a restriction enzyme cleavage site. It was reasoned that if the primers and binding sites were functional equivalents, then the amplification process could progress equivalently at similar rates (even if the control sequence was longer or shorter than the test sequence).

The invention disclosed in the Bunn patent further assumed that the described method would not be dependent upon variables which normally affect PCR amplification and that such method would therefore allow quantitation between template species (i.e., control and sequence) regardless of such usual variables as long as the reaction would give good amplification of template However, the Bunn invention overlooked critical elements in the relative amplification rates that are inherently introduced by altering control and test sequence primer site lengths, control template sequence lengths, and guanine (G) and cytosine (C) content of such sequences. Moreover, the detection methodology of that invention disclosed and discussed only such means as are compatible with identification of DNA species via ethydium bromide, radioactivity, or colorimetric technology in conjunction with gel electrophoresis techniques and the like. Thus, the reasoning contemplated for introducing point mutations control sequence was based solely on a desire to create restriction enzyme sites as a means by which amplified DNA segments could be distinguishable from one another based solely on size.

In another invention, PCT application WO 94/03638 by Mansfield, a method is disclosed whereby aneuploidy may be detected by utilization of short tandem repeat DNA sequences present in chromosome DNA. In that invention, PCR methodology was utilized to amplify the short tandem repeat sequences. There are, however, two limitations for this method. One drawback is that not

5

10

15

20

all Down's patients are heterozygous at the polymorphic About 25% of Down's patients are caused by meiosis II nondisjunction error wherein two of the tree chromosome 21s present in the cells are genetically 5 identical. Therefore, the homozygosity resulting from this error will render a significant portion of the patient population unidentifiable proposed method. The second limitation of the disclosed method is that it differentiates alleles based on the 10 size of the polymorphic PCR products. The problem here, as described above, is that the detection method must be capable of distinguishing size differences and also that because smaller fragments amplify more readily, errors can arise when calculating ratios. In some instances, 15 larger species may be over shadowed by the amplification of the smaller species. This is possible even where the same PCR primers are used to amplify DNA sequence from the same or from different alleles.

In yet another example, determination of gene-dosage by PCR was disclosed (Genomics 21, 304-310, 1994 Francesco, C. et al.) wherein internal control DNA sequence was designed as a deletion mutant of the wildtype sequence. Again, quantitative analysis was dependent upon gel electrophoresis and measuring radioactivity of the different sized products.

Each of the above examples fail to consider the significant effect of amplification rate differences that even a small change in molecule size or G and C content in DNA bases have on the ultimate quantity of DNA segments resulting from a plurality thermocycles. Moreover, each of the above methodologies requires detection of the amplified species by first electrophoresing the amplified DNA to separate the amplified species. Thus, there is still a need in the art of quantitative PCR as such technology relates to the detection of aneuploidy, and other chromosomal

20

25

30

10

15

20

25

30

35

5

anomalies, for a methodology which can accurately determine gene copy number without the occurrence of unreliable results derived from factors that inherently affect amplification of which template length, G and C content and ultimate detection methodology are primary components.

Summary Of The Invention

The current invention is directed to composition of matter and method for fast, accurate, and inexpensive detection of chromosome aneuploidy, including trisomy 21, trisomies 13 18, and and sex abnormalities. The current invention is also directed to composition of matter and methods for detection of chromosomal abnormalities such as microchromosome deletion syndromes including Prader-Willi and Angelman syndrome, William syndrome, Smith-Magenis DiGeorge syndrome, Miller-Dieker syndrome and other like Additionally, the current invention directed to compositions of matter and methods of detecting cancer related gene dosage alterations, such as loss of heterozygosity (LOH).

One preferred embodiment of the invention relates to DNA templates engineered for use as internal controls during PCR reactions for quantitative measurement of gene dosage. These DNA templates are designed so that amplification will occur at the same rate for the control templates as the "test" sample DNA templates. Moreover, these templates are detectable at equivalent efficiencies in an ELISA-like assay providing enhanced accuracy in quantitatively determining chromosome copy number.

A key feature of the internal control templates of the present invention is that they have the identical length as that of the test DNA templates. Moreover, another preferred embodiment of the invention is that the internal control templates also have the same G and C content as the test templates.

Another object of the present invention is to provide a method and materials which may be used for prenatal detection of Down's syndrome and other aneuploidies and chromosome disorders by quantitative PCR.

of the present invention Another object provide a method and materials for prenatal detection of Down's syndrome and other aneuploidies and chromosome disorders by quantitative PCR using specially engineered templates as internal controls. Α preferred embodiment of the invention contemplates designing control templates such that an internal section of the control DNA sequence comprises the same nucleotide base pair content (i.e., G, C, A and T) as the wildtype test sequence but such internal section having a DNA sequence that is either randomized or specifically arranged such that the resulting DNA sequence (the "mutant" section) is not homologous to the natural wildtype test sequence.

Yet another object of the present invention is to provide a method and materials for prenatal detection of Down's syndrome and other aneuploidies and chromosome disorders by comparing the quantity of chromosome specific PCR products amplified from the test samples and the internal controls in the same PCR reaction tube.

A further object of the present invention is to provide a method and materials for prenatal detection of Down's syndrome and other aneuploidies and chromosome disorders by comparing the quantity of chromosome specific PCR products amplified from wildtype internal control DNAs using ELISA format in microplate A preferred embodiment of the invention well arrays. contemplates attaching DNA sequences to microplates wherein the DNA in any one particular microplate includes homologous sequence to either

5

10

15

20

25

30

10

15

20

25

30

7

wildtype template or an internal control DNA's internal mutant section. These microwell attached sequences make up capture sequences that will hybridize to amplified test and control sequence (the capture sequence). another embodiment of the invention contemplates designing the annealing characteristics of the wildtype and its capture sequence and the internal control mutant section and its capture sequence so that hybridization and washing conditions can be normalized for all tests conducted on the same microtiter plate. In other words, melt temperature and stringency of conditions are the same.

Yet a further object of the present inventioncontemplates incorporating one copy of each of severaldifferent internal control DNA sequences on a single Each such internal control is designed to a plasmid. different chromosome aneuploidy or chromosome disorder. preferred embodiment of this feature invention contemplates incorporation of at least restriction enzyme site located on either side of each internal control DNA sequence to allow one or more of such internal control sequences to be released from said The preferred embodiment of this feature of the invention contemplates incorporation of at least one restriction enzyme site located on either side of each internal control DNA sequence to allow one or more of such internal control sequences to be released from said The preferred embodiment of this further contemplates that having said multiple internal controls on one plasmid will allow substantial uniform quantitation of internal control DNA sequences relative to one another thereby making it possible to compare PCR quantitation results of control versus test template amplification.

Other objects and advantages of the present invention will become apparent in the following description of the invention.

Brief Description Of The Drawings

Figure 1 depicts PCR-based construction strategies for the internal control template for quantitative PCR.

Figure 2 shows a recombinant clone containing a tandem array of each chromosome specific internal control template.

10 Figure **3** shows a pictorial conception of the quantitative PCR hybridization detection protocol noting specific binding per well.

Figure 4 depicts a typical array format for testing a multiplicity of patients to an array of chromosomal markers according to the invention.

Figure **5** is a frequency array showing the expected ratios of test to control PCR products as detected by the hybridization methodology of the invention.

Figure 6 shows a PAGE of PCR products obtained for STRs using protocols similar to prior art methods.

Figures 7b and 7c show numerical results of the dot blot test of Fig. 7a using PCR reaction conditions of the current invention.

Detailed Description Of The Invention

25 Overview Of The Applications Of The Methodology

As stated generally above, one application of the current invention is detection of chromosome aneuploidy, including trisomy 21, 18, 13 and sex chromosome abnormalities. Such aneuploidies are gene dose abnormalities at the chromosome level.

Another application of the current invention relates to subchromosomal abnormalities such as subchromosomal deletion mutations of which one example is

30

15

of heterozygocity (LOH) in cancer cells, abnormality which indicates that a normal copy of a suppressor gene has been deleted. Another subchromosomal anomaly is the deletion of gene sequence that various syndromes called causes microdeletion syndromes. The current invention contemplates diagnosing such syndromes by selecting target sequences affected gene regions (i.e., the deletion regions) and comparing the gene dose of such deletions. 10 versus internal controls. Examples of chromosome microdeletion syndromes include: Prader-Willi Angelman's syndrome (deletion site 15q11-q13), William's syndrome (deletion site 7q11.23), Cri du chat syndrome (deletion site 5p), Langer-Giedion syndrome (deletion site 8q24.1), WAGR (deletion site 11p13), Retinoblastoma 15 (deletion site 13q14), Rubinstein-Taybi (deletion site 16q13.3), Smith-Magenis (deletion site 17q11.2), Miller-Dieker (deletion site 17q13.3), Alagille (deletion site 20p11.2-p12), DiGeorge's syndrome (deletion site 20 22q11.2), Duchenne's/Becker's syndrome (deletion site Xp21), Congenital adrenal hypoplasia (deletion site Xp21), Chronic Granulomatous disease (deletion site Xp21), Steroid sulfatase deficiency (deletion site Xp22), X-linked lymphorproliferative disease and (deletion site Xq26). 25

Overview Of Quantitative Pcr Methodology

To achieve these and other objects, according to the present invention, DNA is extracted from fetal cells by standard DNA extraction techniques well know in the art, having first been obtained by procedures such as amniocentesis or chorionic villus sampling. The extracted DNA is then measured for concentration and after appropriate dilution, an aliquot is added to the PCR reaction tube. Next, PCR reaction components are added to the tube including appropriate concentrations

30

10

15

20

of enzymes and buffers, biotinylated primers to chromosome loci desired to be examined, and control templates from an appropriate dilution of predigested control templated plasmid wherein the control template sequence segments have been released from the plasmid in equal ratios to one another.

The PCR is allowed to proceed for an appropriate number of cycles after which the PCR product denatured and added to microtiter wells for each chromosome to be examined. A preferred embodiment of the invention contemplates that the microtiter wells are coated with "capture" DNA oligomers having sequence complimentary to either the native chromosome sequence or the mutant sequence of the internal control. preferred embodiment further contemplates that the PCR products are added to such microtiter wells conditions which foster hybridization of PCR the products with the capture sequences.

Following hybridization, the microtiter wells are washed under appropriately stringent conditions and screened using colorimetric methodology to detect the level of captured PCR product.

Overview Of Internal Control Mutant Dna Sequence Design And Construction

25 The current invention provides for a significant over prior quantitative PCR technology recognition of the effects which minor variations in DNA template size and nucleotide content amplification rates. Moreover, due to the ability to utilize same size templates for both test and control 30 sequences, the current invention is not dependent upon seeking regions of the chromosome that may (or may not) STR have variability in length (e.g., regions). Moreover, the current invention is not dependent upon methodology requiring reasonable separation of amplified 35

10

15

20

25

30

35

. . .

9 4-+ par

species. Instead, the current invention is able to utilize chromosome regions of single copy per chromosome and is further able to use methodology capable of detection without prior separation of amplified species.

The preferred embodiment of the invention contemplates using PCR primers for amplifying test wildtype and control templates having identical primer binding sites. The preferred embodiment further contemplates the use of test and control templates of the same nucleotide length and G/C ratio content. A further preferred object of the invention contemplates mutation of a short segment within the control template such that the mutation results in DNA sequence that has the same nucleotide content (in terms of bases A, G, C, and T present) and hybridization characteristics as the wildtype but differs in that the mutation is a radically different linear DNA sequence than the wildtype. other words, the wildtype sequence in an section of the control template is scrambled either randomly or by specific design.

The preferred embodiment of such mutated sequence and its adjoining wildtype sequences external to the mutation contemplates that the control template retain the identical thermal dynamic properties of the wildtype test template. Moreover, the current invention does not intend to cover prior art such that it specifically excludes mutations in the internal control sequence that are intended to result in either the purposeful creation or destruction of restriction enzyme sites that might be designed for the purposes of separating the amplified internal controls from the wildtype test templates by electrophoretic methodology.

As illustrated in Fig. 1, the control template may be constructed by designing overlapping primer oligomers 11 and 12 having 5' DNA sequence that is a mutation of the wildtype target (i.e., test) sequence. Primers 11

and 12 have a 3' portion which is complementary to wildtype DNA. After initiating several cycles of PCR containing only primers 11 and 12 and a test template sequence 10, primers 13 and 14 containing 3' sequence that is complementary to wildtype sequence are added to 5 the PCR reaction tube for the appropriate number of cycles to generate internal control sequence 20. both internal control sequence 20 and a wildtype segment of the same size as segment 20 will be generated in the the desired species 20 is isolated 10 tube, Following separation, techniques. hybridization internal control sequence 20 may be amplified in pure 13 and 14 may be designed to Primers complimentary to any portion of a chromosome (or other such genomic or cDNA) such that a PCR product generated 15 may be of any length reasonably useful for detecting the amplified species by hybridization techniques. ends of primers 13 and 14 are designed so as to include at least one enzyme restriction site. The restriction site will allow the control sequence 20 to be ligated 20 into a plasmid with other control sequence templates.

Another method by which the internal control may be generated is to add primers 11 and 13 in one PCR tube and primer 12 and 14 in a separate tube such that species comprising one-half of the internal control are generated in each reaction tube. The amplified species may then be isolated and mixed together in a fresh reaction with primers 13 and 14 to generate the desired full length species. Since the mutant primers 11 and 12 are designed to overlap (i.e., is complementary) their 5' ends, the full length internal control species will be generated. This full length segment can then be control cloning into the internal isolated for containing plasmid.

In a preferred embodiment, DNA sequence marker for chromosome 21 specific sequence targets a 210 base pair

25

10

sequence from its base number 371 to base number 580 within the human PCP4 gene (GenBank access No. U53709). SEQ ID NO 1 and SEQ ID NO 2 denote sequence specific for the 5' and 3' ends of this sequence respectively. ends of each of these sequences includes base sequence for an Eco RI restriction site. These sequences may be used as primers for gene-dose PCR analysis but preferably are used to generate chromosome 21 specific internal control sequence to be cloned into the internal control plasmid.

SEQ ID NO 1 5'GGGAATTCACATGGATGCACCAGAGACAGAC3'
Eco RI

SEQ ID NO 2 5'GGGAATTCGCTATGCGTGTGTGTGTGT3'

The internal mutant sequence for chromosome 21 of the preferred embodiment using the PCP4 gene may be generated by sequences such as the sequences disclosed in SEQ ID NO 3 and NO 4.

SEQ ID NO 3 5'GAACCGTGACAGGCTACCCCTCCTA3'

SEQ ID NO 4 5'CTGTCACGGTTCACAACCCAGCCTTC3'

Sequence No. 3 is a plus strand sequence having 16 bases of 5' mutant sequence of which the 5' most 12 bases complement, or overlap the 5' end of Seq. No. 4, while the 10 bases at the 3' end represent wildtype 25 sequence. Likewise, Seq. No. 4 is a reverse strand sequence having 16 bases of 5' mutant sequence of which 12 bases compliment the 5' end of Seq. No. 3, while its 103' end bases represent wildtype sequence. Primer Seq. Nos. 1 and 4 may be used to generate the 5' half of the 30 internal control sequence while Seq. Nos. 3 and 2 may be used to generate the 3' half of the internal control sequence. The full length chromosome 21 control sequence generated from these primers will have

WO 99/14376 PCT/US98/19719

14

a mutant sequence 20 base pairs in length flanked on either side by 80 bases 5' and 110 bases 3' of wildtype sequence thereby resulting in an internal control sequence of the same length as the wildtype 210 base pair sequence plus additional base pairs of restriction site sequence.

In preferred embodiment DNA sequence chromosome 18 specific sequence targets 179 base pairs of the human myelin basic protein gene from its base number 562 to base number 740 within the myelin gene (GenBank access No: L18866). SEQ ID NO 5 and SEQ ID NO 6 denote sequence specific for the 5' and 3' ends of this gene sequence respectively. The 5' ends of each of these sequences includes base sequence for an Eco RI restriction site. These sequences may be used as primers for gene-dose PCR analysis but preferably are used to generate chromosome 18 specific internal control sequence to be cloned into the internal control plasmid.

20 SEQ ID NO 5 5'GGGAATTCCAAGAAGACAGTGCAGCCACCT3'
Eco RI

SEQ ID NO 6 5'GGGAATTCCCAAAGAAGCGCCCGATGGA3'

The internal mutant sequence for chromosome 18 of 25 the preferred embodiment using the myelin gene may be generated by sequences such as the sequences disclosed in SEQ ID NO 7 and NO 8.

SEQ ID NO 7 5'AGCCACCGACAGGATATGCCAGGCAT3'

SEQ ID NO 8 5'CTGTCGGTGGCTGATTGGCCAGGTAC3'

Sequence No. 7 is a plus strand sequence having 16 bases of 5' mutant sequence of which the 5' most 12 bases complement, or overlap the 5' end of Seq. No. 8, while the 10 bases at the 3' end represent wildtype sequence. Likewise, Seq. No. 8 is a reverse strand

35

10

sequence having 16 5' end bases of mutant sequence of which 12 bases compliment the 5' end of Seq. No. 7, while its 10 3' end bases represent wildtype sequence. Primer Seq. Nos. 5 and 8 may be used to generate the 5' half of the internal control sequence while Seq. Nos. 7 and 6 may be used to generate the 3' half of the internal control sequence. The full length chromosome internal control sequence generated from primers will have a mutant sequence 20 base pairs in 10 length flanked on either side by 90 bases 5' and 69 bases 3' of wildtype sequence thereby resulting in an internal control sequence of the same length as the wildtype 179 base pair sequence plus additional base pairs of restriction site sequence.

15 In preferred embodiment DNA sequence for chromosome 13 specific sequence targets 226 base pairs of the human endothelin-b receptor gene from its base number 1176 to base number 1401 within the endothelin-b receptor gene (GenBank access No: D13162). SEQ ID NO 9 20 and SEQ ID NO 10 denote sequence specific for the 5' and 3' ends of this gene sequence respectively. The 5' ends of each of these sequences includes base sequence for an Eco RI restriction site. These sequences may be used as primers for gene-dose PCR analysis but preferably are 25 used to generate chromosome 13 specific internal control sequence to be cloned into the internal control plasmid.

SEQ ID NO 9 5'GGGAATTCGTGTCTTCCTTCCTCTGC3'
Eco RI

30 SEQ ID NO 10 5'GGGAATTCGCGTCATTATCTCTGCGGTTTG3'

The internal mutant sequence for chromosome 13 of the preferred embodiment using the endothelin-b receptor gene may be generated by sequences such as the sequences disclosed in SEQ ID NO 11 and NO 12.

SEQ ID NO 11 5'GGCTCCGGTGCTGGTTTGCGGCCTGT3'

SEQ ID NO 12 5'AGCACCGGAGCCAAGAGGGCGCGTCC3'

Sequence No. 11 is a plus strand sequence having 16 bases of 5' mutant sequence of which the 5' most 12 5 bases complement, or overlap with the 5' end of Seq. No. 12, while the 10 bases at the 3' end represent wildtype Likewise, Seq. No. 12 is a reverse strand sequence having 16 5' end bases of mutant sequence of which 12 bases compliment the 5' end of Seq. No. 11 10 while its 10 3' end bases represent wildtype sequence. Primer Seq. Nos. 9 and 12 may be used to generate the 5' half of the internal control sequence while Seq. Nos. 11 and 10 may be used to generate the 3' half of the internal control sequence. The full length chromosome 15 13 internal control sequence generated from primers will have a mutant sequence 20 base pairs in length flanked on either side by 118 bases 5' and 88 bases 3' of wildtype sequence thereby resulting in an internal control sequence of the same length as the 20 wildtype 226 base pair sequence plus additional base pairs of restriction site sequence.

In preferred embodiment DNA sequence chromosome X specific sequence targets 160 base pairs of the human iduronate-2-sulphatase gene from its number 2150 to base number 2309 within the iduronate-2-sulphatase gene (GenBank access No: L36845). SEQ ID NO 13 and SEQ ID NO 14 denote sequence specific the 5 ' and 3' ends of this gene respectively. The 5' ends of each of these sequences includes base sequence for an Eco RI restriction site. These sequences may be used as primers for gene-dose PCR analysis but preferably are used to generate chromosome X specific internal control sequence to be cloned into the internal control plasmid.

30

SEQ ID NO 13 5'GGGAATTCGCTCTAGGTGAACATGGAGAATGG3'
Eco RI

SEQ ID NO 14 5'GGGAATTCTCAACTGTGAGGCGGAATCAAAAG3'

The internal mutant sequence for chromosome X of the preferred embodiment using the iduronate-2sulphatase gene may be generated by sequences such as the sequences disclosed in SEQ ID NO 15 and NO 16.

10 SEQ ID NO 15 5'CAGGGTTGCACAGGTTGCTTCACTTC3'
SEQ ID NO 16 5'TGTGCAACCCTGGAATATATCAGGGG3'

Sequence No. 15 is a plus strand sequence having 16 bases of 5' mutant sequence of which the 5' most 12 15 bases complement, or overlap with the 5' end of Seq. No. 16, while the 10 bases at the 3' end represent wildtype sequence. Likewise, Seq. No. 16 is a reverse strand sequence having 16 5' end bases of mutant sequence of which 12 bases compliment the 5' end of Seq. 20 while its 10 3' end bases represent wildtype sequence. Primer Seq. Nos. 13 and 16 may be used to generate the 5' half of the internal control sequence while Seq. Nos. 15 and 14 may be used to generate the 3' half of the internal control sequence. The full length chromosome X 25 internal control sequence generated from these primers will have a mutant sequence 20 base pairs in length flanked on either side by 70 bases 5' and 70 bases 3' of wildtype sequence thereby resulting in an control sequence of the same length as the wildtype 160 30 base pair sequence plus additional base pairs of restriction site sequence.

A further issue concerning the amplification of several target species simultaneously is the problem of preferential amplification due to, among other things, variability in primer G and C content, primer length, and primer hairpin and cross reaction with non-targeted

species sequences. The current invention has provided for the avoidance of preferential amplification by designing primers to the different targeted sequences such that the primers are generally of the same length, G and C content, and hybridization melting temperatures.

Overview Of Control Template Plasmid Construct

current invention contemplates use of plasmid which can carry stable inserts of up to at least 4,000 base pairs. As shown in Fig. 2, a preferred embodiment of the current invention contemplates cloning 10 internal control segments coding for various chromosomal markers into the Eco RI or other restriction site of plasmid puc 18 or other common plasmid vector. object of the invention that the particular restriction 15 sites chosen, either for the plasmid cloning site or the internal control cloning restriction sites, is present within the test sequences and internal control's wildtype and mutant sequences. The internal control segments, after amplification in pure form are digested 20 with the appropriate enzyme to make available their respective sticky or blunt ends, as the case may be, and then ligated into the aforementioned plasmid cloning site. The plasmid containing the desired internal control segments is then screened by restriction 25 analysis to ensure that only one copy of each internal control segment is present. As indicated in Fig. 2, each internal control has sequence on its respective 5' and 3' ends complimentary to oligo primers specific for that chromosomal market (indicated by arrows).

30 Overview Of Capture Sequence Construction

In a preferred embodiment of the invention of the 5' ends of capture oligonucleotides are synthesized using a primary amine allowing the oligomers to be covalently linked to specially treated microplates

(Corning Costar Corp., Kennebunk ME). The first ten nucleotides of the capture oligomers are designed to allow spacing between the plate surface and capture sequence. Generally, the specific sequences for capturing test and internal control PCR amplification products are designed to compliment the full mutant sequence length of the internal control or a corresponding region the wildtype sequence on the test sequence PCR product. In a preferred embodiment of the current invention, the sequences for capturing will comprise enough nucleotides to allow hybridization moderately stringent hybridization conditions. The current invention contemplates capture sequences generally 10 to 100 nucleotides in length, usually 15 to nucleotides in length and preferably 18 to 2.5 nucleotides in length.

For chromosome 21, the preferred capture probe for the test wildtype sequence targets at least one strand of the wildtype sequence PCR product comprising the twenty bases from base number 451 to base number 460 of the aforementioned 210 base pair sequence from human PCP4 gene. One such strand sequence is disclosed in SEQ ID NO 17. For the chromosome 21 capture sequence for the mutant region of the internal control, the preferred sequence is complementary to the twenty bases of mutant sequence such that the capture sequence spans the twenty bases of at least one strand of the mutant sequence PCR product (derived from SEQ ID Nos. 3 and 4). One such mutant capture sequence is disclosed in SEQ ID No 18.

30

25

10

15

20

SEQ ID NO 17 5'AAATATTAAT CTCAGTCCTAGTGGGAGGA3'
anchor leader capture specific
sequence
SEQ ID NO 18 5'AAATATTAAT TGTGAACCGTGACAGGCTA3'

WO 99/14376 PCT/US98/19719

20

For chromosome 18, the preferred capture probe for the test wildtype sequence targets at least one strand the wildtype sequence PCR product comprising the twenty bases from base number 652 to base number 671 of the aforementioned 179 base pair sequence from human myelin basic protein gene. One such strand sequence is disclosed in SEQ ID NO 19. For the chromosome capture sequence for the mutant region of the internal control, the preferred sequence is complementary to the twenty bases of mutant sequence such that the capture sequence spans the twenty bases of at least one strand of the mutant sequence PCR product (derived from SEQ ID NOs. 7 and 8). One such mutant capture sequence is disclosed in SEQ ID NO 20.

15

10

•

SEQ ID NO 19 5'AAATATTAAA CAGCAAGTACCATGGACCA3'
anchor leader capture specific
sequence
SEQ ID NO 20 5'AAATATTAAA ATCAGCCACCGACAGGATA3'

20

25

For chromosome 13, the preferred capture probe for the test wildtype sequence targets at least one strand of the wildtype sequence PCR product comprising the twenty bases from base number 1294 to base number 1313 of the aforementioned 226 base pair sequence from human endothelin-b receptor gene. One such strand sequence is disclosed in SEQ ID NO 21. For the chromosome 13 capture sequence for the mutant region of the internal control, the preferred sequence is complementary to the twenty bases of mutant sequence such that the capture sequence spans the twenty bases of at least one strand of the mutant sequence PCR product (derived from SEQ ID Nos. 11 and 12). One such mutant capture sequence is disclosed in SEQ ID NO 22.

SEQ ID NO 21 5'AAATATTAAT GGTTGCGCTGGTTCTTGCC3'
anchor leader capture specific sequence

SEQ ID NO 22 5'AAATATTAAT

CTTGGCTCCGGTGCTGGTT3'

5

For chromosome X, the preferred capture probe for the test wildtype sequence targets at least one strand of the wildtype sequence PCR product comprising the twenty bases from base number 2220 to base number 2239 of the aforementioned 160 base pair sequence from human 10 iduronate-2-sulphatase gene. One such strand sequence is disclosed in SEQ ID NO 23. For the chromosome X capture sequence for the mutant region of the internal control, the preferred sequence is complementary to the 15 twenty bases of mutant sequence such that the capture sequence spans the twenty bases of at least one strand of the mutant sequence PCR product (derived from SEQ ID NOs. 15 and 16). One such mutant capture sequence is disclosed in SEQ ID NO 24.

20

SEQ ID NO 23 5'AAATATTAAT CTATGTTCCTGGAAGGACG3'
anchor leader capture specific
sequence
SEQ ID NO 24 5'AAATATTAAA TTCCAGGGTTGCACAGGTT3'

25

30

35

In a preferred embodiment, the capture oligomers are synthesized using a 5' terminal primary amine. oligos are anchored to N-oxysuccinimide amine binding microtiter plates (Corning Costar Corp., Cambridge, Mass.). Each well contains a separate oligo for either a wildtype or an internal control sequence. The oligos are diluted so as to place from about 100ng to lug of oligomer capture sequence into each Attachment of the oligos to each well is carried out by adding the DNA to the wells in the presence of PBS at pH9, followed by incubation for 1 hour at room temperature

15

20

25

30

(25°C). The wells are then washed with 2mM Imidizole buffered saline, 0.02% Tween 20. Unreacted attachment sites of the wells are blocked with Stabilcoat (BSI Corp., Eden Prairie, Minn.) for 30 minutes at room temperature followed by drying the wells of the attachment protocol solutions.

Pcr Protocol And Detection Methodology

As schematically indicated in Figs. 3 and 4, PCR amplification products obtained for various chromosome markers and their corresponding internal controls, all of which have been amplified in a single reaction tube, are added to capture oligo containing microplate wells. In a preferred embodiment it is contemplated that the conditions for treating amplification products in the reaction mixture during hybridization will vary from environments appropriate for PCR amplification. Thus, following PCR amplification the reaction mixtures are diluted in hybridization solution the conditions of which will promote denaturation and reannealing of the PCR products either to their complimentary strands or to the capture probes.

As shown in Fig. 3, the array of chromosome markers in parallel. The detection process delineated for chromosome 21. Primers 13 14 specific for the chromosome 21 anomaly detection are used to amplify both the wildtype test sequence (TS) 21 and the internal control (IC) 22. Following PCR, aliquots of the PCR are hybridized to capture sequences 23 and 24 which are in the microtiter wells. Fig. 3 example, capture sequence 23 is specific for wildtype sequence 21 and capture sequence 24 is specific for internal control 22.

Fig. 4 depicts a schematic of a microtiter plate and results typically expected for any given series of tests. Each patient may be tested for a series of

chromosomal anomalies. Fig. 4 shows testing for chromosome anomalies of chromosome 21, 18, 13, and X. Each chromosome tested has two microtiter wells corresponding to either the wildtype capture well or the internal control capture well for that specific chromosome. Chromosome 21 has wildtype well "a" and internal control well "b." Each chromosome tested has two such wells also, one corresponding to wildtype and the other to mutant capture sequence. Referring to Fig. 5, in each of the ratio examples, letters in the denominator (b,d,f,h) denote internal controls while letters in the numerator (a, c, e, and g) denote wildtype.

Since testing in an array generates simultaneous amplification of several genetic markers, ratios between each 15 the amplified species compared to develop a profile for each test subject. Fig. 4 depicts the variability that will naturally exist between different test samples of a single patient as variability that will the exist 20 different patients. As suggested in Fig. 4, it is possible for two individuals to have different yields at a particular locus due to differences in the concentration of wildtype templates (compare well 31 to It is also possible for an individual to have 25 variable amplification rates from one chromosome locus to another (e.g., patient number 2 chromosome wildtype 32 compared with chromosome 18 well **35**, comparison of internal control wells 34 and 36). variation within a single patient are due to differences 30 in PCR target size and the fact that different primer sets may have different amplification efficiency. variability in rates of amplification and efficiency is not material to the present invention as detection of any chromosomal anomaly is found by taking the ratio of 35 the amplification found. For example, even though chromosome marker 18 may amplify more efficiently than

5

15

20

25

30

35

- -

chromosome 21, the ratio between the wildtype and the internal control for chromosome 21 and that for chromosome 18 should remain constant if no chromosome anomaly exists, i.e., the ratio should be 1:1. Since the rate is comparable between chromosome loci, it is possible to calculate gene dosage.

As shown in Figure 5, the gene dosage and related chromosome ratio for each chromosome of interest can be As is easily calculated by one of ordinary calculated. Fig. 5 shows the calculation in the art, expected ratios for each of various chromosomal condi-The wildtype is compared to its internal control The value resulting is then compared to like values of each of the other marker sequences tested chromosome 21, 18, 13, X, or other genetic disorder). As shown in Fig. 5, normal female ratios are distinguishable from trisomies 13, 18, and 21 In another example, using the set of chromosome markers listed in Fig. 5 will not differentiate Kleinfelter's syndrome from normal female, but by adding chromosome specific amplicon, including both wildtype and mutant controls, Kleinfelter's syndrome patients can be differentiated from normal females because the ratio of the Y mutant and wildtype may be compared.

At least one of each primer pair used to create the amplified sequences are labeled at the 5' end with biotin. The biotin will allow colorimetric analysis for detecting whether the target or internal control has been captured. Although the same primers that were used to construct the 5' and 3' ends of the internal controls could also be labeled with biotin and used for gene-dose PCR, the preferred embodiment contemplates using primers that have only wildtype sequence as opposed to foreign sequence such as restriction site sequence. The primary concern for preferably using only wildtype sequence is

that the test sequence should contain only the exact G and C content and length of the internal control. Although both species may be amplified using a primer having extra linker/restriction site sequences, if such sequences are present, the initial annealing behavior of such a primer in the first few PCR cycles may vary enough between test sequence and internal control to cause inaccuracies to become manifest in the ratios ultimately realized between amplified species.

Examples of primers that could be used for chromosome 21 aneuploidy are shown in SEQ ID NOs. 25 and 26 directed to the 5' and 3' ends, respectively, of the aforementioned 210 base pairs of the human PCP4 gene.

SEQ ID NO 25 5'ACATGGATGCACCAGAGACAGAC3'
SEQ ID NO 26 5'GCTATGCGTGTGTGTGTGTGT3'

Examples of primers that could be used to detect chromosome 18 are shown in SEQ ID NOs. 27 and 28 directed to the 5' and 3' ends, respectively, of the aforementioned 179 base pairs of the human myelin basic protein gene.

SEQ ID NO 27 5'CAAGAAGACAGTGCAGCCACCT3'

SEQ ID NO 28 5'CCAAAGAAGCGCCCGATGGA3'

Examples of primers that could be used to detect chromosome 13 are shown in SEQ ID NOs. 29 and 30 directed to the 5' and 3' ends, respectively, of the aforementioned 226 base pairs of the human endothelin-b receptor gene.

SEQ ID NO 29 5'GTGTCCTGTCTTCCTCTGC3' SEQ ID NO 30 5'GCGTCATTATCTCTGCGGTTTG3'

WO 99/14376 PCT/US98/19719

26

Examples of primers that could be used to detect chromosome X are shown in SEQ ID NOs. 31 and 32 directed to the 5' and 3' ends, respectively, of the aforementioned 160 base pairs of the human iduronate-2-sulphatase gene.

SEQ ID NO 31 5'GCTCTAGGTGAACATGGAGAATGG3'
SEQ ID NO 32 5'TCAACTGTGAGGCGGAATCAAAAG3'

In a preferred embodiment, PCR amplification reaction mixtures utilize Perkin Elmer model number 480 thermocycler. The denaturing cycle is 1 minute at 94 °C. The amplification cycles are allowed to proceed at 61 degrees for 45 seconds for annealing and 72 degrees and 45 seconds for extension.

After amplification, the PCR mixture is diluted and aliquots are dispensed into microwells for each chromosome or genetic marker to be tested. An aliquot of the PCR amplification will be added to the well containing test capture oligomers and to the well containing internal control capture oligomers for each tested anomaly. The preferred hybridization conditions contemplate methodology well known in the art.

Specifically, in one example, following amplification the PCR product is diluted in 25ul of PBS, pH 7.25 then mixed with 25ul of denaturing solution (0.8N Na OH) and then added to the probe containing microtiter wells and allowed to incubate for 10 minutes at room temperature. Next, 25ul of 4X hybridization solution (pH 7.25, PBS, 8% BSA) and 25ul of neutralizing (4M ammonium acetate) is added microtiter wells and allowed to incubate 5 minutes at room temperature, followed by incubation at 55°C for 45 Next, the microtiter wells are washed with 1M tris-buffered saline pH 7.5 and 1% Tween 20 at room temperature.

5

20

25

30

After hybridization, colorimetric detection may be by addition of streptavidin-horseradish peroxidase conjugate which specifically recognizes and binds to the biotin label in the captured PCR products. Presence of the bound conjugate may be determined after addition of o-phenylenediamine solution by measuring absorbance of each well spectrophotometrically at 492nm. The procedure for such analysis is well documented in the art such as that methodology found in U.S. patent 10 number 5,612,473 herein incorporated by reference. Gene-dosage is determined by scanning the microplate after color development. In a similar method, the hybridized products of the PCR may also be detectable as bound species to the capture probes by adding 100 ul of streptavidin-alkaline phosphatase conjugate (SPA, Milan, 15 Italy) for 30 minutes at 37°C. After incubation of the conjugate, the wells are washed with wash buffer (1M tris-buffered saline pH 7.5, 1% Tween 20), followed by incubation at 37°C for 30 minutes in 100ul of p-NPP 20 solution (1mg/ml p-nitrophenyl phosphate in 0.5 M Tris, ph 9.5). The color reaction is terminated by adding 1.5N NaOH and absorbance values are determined using a 492nm light source.

Overview Of Experimental Data

25 Example 1

Fig. 6 shows typical results obtained from prior art methodologies wherein detection of aneuploidy is based on determining size of PCR products and/or quantitation of different sized PCR products. In the figure, the samples are double loaded in the lanes for clarity such that lanes 2 and 3 are identical and lanes 4 and 5 are identical. Lane 1 is a molecular weight market indicating the size of PCR products. Lanes 2 through 5 show PCR products of an amplified region of

fragile X mental retardation gene locus. primers used for each reaction were identical and were designed according to sequence in GenBank (Accession number X61378) such that they flanked a polymorphic CGG repeat that is expanded in patients expressing Fragile X 5 syndrome. Normal individuals exhibits from 6 to 54 repeats and have further ranged in size to more than 200 In contrast Fragile X patients exhibit more than 230 repeats. Lanes 2 and 3 show results from a 10 normal patient with allelic bands of 24 and 29 repeats. Lanes 4 and 5 show PCR amplifications wherein another normal patient shows allelic bands having 18 and repeats. This experiment demonstrates that even though the same PCR primers were used, there measurable difference in the amplification of different 15 sized targets notwithstanding the fact that the four alleles (with 29, 28, 24, and 18 repeats respectively) were amplified under the same PCR conditions and using the same primers. This example demonstrates the need 20 for internal controls where quantitative PCR analysis is contemplated. Such quantitative PCR cannot yield useful data where amplified products of different sizes should be 1:1 ratios but result in vastly different ratios because the smaller PCR products are preferentially As can be observed in Fig. 6, there is added 25 amplified. danger if observation of additional bands is necessary because the over amplified smaller bands may mask the presence of such additional bands.

The PCR reaction of Fig. 6 was designed following 30 Levinson G. et al., American Journal of The PCR mixture con-51(4):527-34, 1994. tained 100ng of genomic DNA, 200um dNTP (75% deaza dGTP, 25% regular dGTP), 3 pmol of each primer, alpha³²P dCTP (3000Ci/mmol), PCR buffer, water, and Taq 35 polymerase. The reaction was allowed to amplify 25 cycles wherein denature cycle was 95°C at 90 seconds,

annealing cycle at 65°C at 60 seconds, and amplification cycle 72°C for 120 seconds with a final extension at 72°C for 7 min. The PCR products were run on a 5% denaturing polyacrylamide gel and exposed to X-ray film.

5 Example 2

Figs. 7a, b, and c show results typical of the current invention. This example presents the quantitative results in dot blot form as the accuracy of the present invention is more easily understandable. dot blots represent conditions that would exist in a 10 microtiter well of a microtiter plate. On each dot, lug of capture oligomer (18w and 21W=chromosome 18 and 21 wildtype respectively, 18M and 21M=chromosome 18 and 21 internal control mutant sequences respectively), was 15 annealed to nylon paper. The lug amount was chosen so that the capture sequences specific for the amplified PCR products would not reach saturation when hybridized to PCR product.

The PCR amplifications depicted in Figs. 7a, b, and 20 c were carried out using 1fg of mutant plasmid template and 100ng of genomic DNA from test patients. Four PCRs carried out amplified to generate products containing (1) Down's patient wildtype and internal control, (2) normal individual wildtype and internal control, (3) normal wildtype, and (4) internal control. 25 The normal alone wildtype (3) and internal control alone (4) were prepared for the purpose of showing that the capture probes are specific to each of the chromosome 18 and 21 wildtype and their respective internal controls.

As shown in Figs. **7a**, **b**, and **c** the Down's patient and normal individual wildtype and internal control blots were analyzed for density. Ratios were calculated per the embodiments of the invention such that the Down's patient ratios of the chromosome 18 and 21 yielded a ratio near the expected 1.5, and the normal patient ratio yielded a value near the expected 1.0.

Conditions for PCR used in mixtures to generate reactions for the Down's, normal patient, normal, and internal control include 200uM dNTPs, 50ng each of the four wildtype primers specific for chromosome 21 and 18, (SEQ ID Nos. 25 through 28) of which primers SEQ ID Nos. 26, and 28 were biotin labeled, 1fg internal control template (EcoRI digested internal control plasmid wherein mutant templates for chromosome 18 and 21 had the same copy number), water, reaction buffer, and Taq polymerase.

Hybridization was carried out in buffer containing deionized formamide, 2mM EDTA, 0.9M NaCl, 18mM Na2HP04, 0.1% Ficoll 400, Polyvinylpyrrolidone, 5% Dextran Sulfate, and 1% SDS. 15 The PCR mixture was heat denatured in hybridization buffer and hybridization was allowed to proceed 3 hours at The blots were washed twice temperature with 1X SSC, 1% SDS for 5 minutes each followed by two washes in 0.5 X SSC, 0.1% SDS at 42°C 20 for 5 minutes. Non-radioactive detection was carried out with a kit from Schleicher & Schuell (Cat # 78030). Intensity of the dots, reflecting PCR yields were analyzed with NIH Image software. PCR yield determined by measuring the intensity of each dot (as 25 represented by the areas below the dots). identified patient was to have an inter-loci wildtype/mutant ratio of about 1.5 (1.41), while the normal individual exhibited a ratio of about 1 (0.94).

Similar to ratios for trisomies, ratios for microdeletions are easily determined. Whereas trisomies result in increased ratios (derived from increased DNA content), microdeletions result in test samples having less DNA for PCR amplification. Thus, ratios between wildtype and mutant sequence for any specific locus will be decreased from a normal of 1:1 to 1:0.5.

30

35

10

20

Brief Description Of The Sequence Listing

SEQ ID NO 1 and SEQ ID NO 2 are Eco RI containing primers for amplifying a 210 base pair segment of the human PCP4 gene.

SEQ ID NO 3 and SEQ ID NO 4 are primers that anneal to internal sections of the 210 base pair segment of the PCP4 gene and further include mutant sequence.

SEQ ID NO 5 and SEQ ID NO 6 are Eco RI containing primers for amplifying a 179 base pair segment of a human myelin basic protein gene.

SEQ ID NO 7 and SEQ ID NO 8 are primers that anneal to internal sections of the 179 base pair segment of the myelin gene and further include mutant sequence.

SEQ ID NO 9 and SEQ ID NO 10 are Eco RI containing primers for amplifying a 226 base pair segment of the human endothelin-b receptor gene.

SEQ ID NO 11 and SEQ ID NO 12 are primers that anneal to internal sections of the 226 base pair segment of the endothelin-b receptor gene and further include mutant sequence.

SEQ ID NO 13 and SEQ ID NO 14 are Eco RI containing primers for amplifying a 160 base pair segment of the human iduronate-2-sulphatase gene.

SEQ ID NO 15 and SEQ ID NO 16 are primers that anneal to internal sections of the 160 base pair segment of the iduronate-2-sulphatase gene and further include mutant sequence.

SEQ ID NO 17 through SEQ ID NO 24 are capture oligomers having a 5' end designed to attach to microwell plates and a 3' region capable of hybridizing to either wildtype or mutant sequence for each of the PCP4 gene (SEQ ID Nos. 17 and 18), the myelin gene (SEQ ID Nos. 19 and 20), the endothelin-b gene (SEQ ID Nos. 21 and 22), and the iduronate-2-sulphatase gene (SEQ ID Nos. 35 Nos. 23 and 24).

SEQ ID NO 25 and SEQ ID 26 are wildtype primers for the PCP4 gene.

SEQ ID NO 27 and SEQ ID 28 are wildtype primers for the myelin gene.

5 SEQ ID NO 29 and SEQ ID 30 are wildtype primers for the endothelin-b gene.

SEQ ID NO 31 and SEQ ID 32 are wildtype primers for the iduronate-2-sulphatase gene.

Modifications and other embodiments of the invention will be apparent to those skilled in the art to which this invention relates having the benefit of the foregoing teachings, descriptions, and associated drawings. The present invention is therefore not to be limited to the specific embodiments disclosed but is to include modifications and other embodiments which are within the scope of the appended claims. All references are herein incorporated by reference.

Claims

- 1. A kit to detect gene dosage having components comprising:
- least one pair of DNA oligonucleotides wherein one of said pair of DNA oligonucleotides is complimentary to a 5' nucleotide sequence of a targeted genomic DNA sequence and the oligonucleotide of said pair of DNA oligonucleotides is 3' nucleotide complimentary to a sequence of targeted segment of genomic DNA sequence, at least one of said pair of DNA oligonucleotides further having a colormetric sensitive moiety covalently linked to a 5' nucleotide, said pair of DNA oligonucleotides further. being capable of acting as primers in a polymerase chain reaction for amplifying the targeted segment of genomic DNA sequence;
- (b) DNA segments comprising internal control DNA sequences complimentary to the length of said targeted segment of genomic DNA sequences except for a central portion of said internal control DNA sequences which comprise non-natural synthetic DNA sequence, non-natural synthetic DNA sequence representing mutation of a corresponding same length portion of said targeted segment in said internal control DNA, internal control DNA sequences further having a total base length and nucleotide base content equivalent to said targeted genomic DNA sequence, such internal control DNA segment length defined by annealing positions onto said internal control DNA of said DNA oligonucleotides of (a);
- (c) microwell plates having connected in each well of said plates at least one DNA oligonucleotide the sequence of which comprises a spacer DNA sequence and a DNA sequence complimentary to DNAs selected from the group consisting of (1) genomic DNA sequence, (2) a stable chromosome gene, (3) a single copy gene on a

chromosome, (4) a non-natural mutant DNA sequence, and (5) a mammalian gene; and

- (d) buffers and enzymes for carrying out (1) a polymerase chain reaction, (2) DNA-DNA hybridization and washing, and (3) colormetric quantatation.
- 2. A kit according to Claim 1 wherein the targeted segments of genomic DNA sequence are selected from the group consisting of (1) human PCP4, (2) human myelin basic protein gene, (3) human endothelin-b receptor gene, and (4) human iduronate-2-sulphatase gene.
- wherein 3. kit according to Claim 1 targeted segments of genomic DNA sequence are associated with microdeletions of chromosomal DNA selected from the group consisting of (1) deletion site 15q11-q13 Prader-Willi and Angelman's syndrome, (2) deletion site 7q11.23 of William's syndrome, (3) deletion site 5p of Cri du chat syndrome, (4) deletion site 8q24.1 Langer-Giedion syndrome, (5) deletion site 11p13 (6) deletion site 13q14 of Retinoblastoma, (7) deletion site 16p13.3 of Rubinstein-Taybi, deletion site 17p11.2 of Smith-Magenis, (9) deletion 17p13.3 of Miller-Dieker, (10) deletion 20p11.2-p12 of Alagille, (11) deletion site 22q11.2 of DiGeorge's syndrome, (12) deletion site Xp21 Duchenne's/Becker's syndrome, (13) deletion site Xp21 of Congenital adrenal hypoplasia, (14) deletion site Xp21 of Chronic Granulomatous disease, (15) deletion Xp22 of Steroid sulfatase deficiency, and (16) deletion site Xq26 of X-linked lymphorproliferative disease.
- 4. A kit according to Claim 1 for determining gene dosage for the purpose of detecting chromosome anomalies selected from the group consisting of

_ * + ++-

- (1) trisomy 13, (2) trisomy 18, (3) trisomy 21, and
- (4) X-chromosome anomalies.
- 5. A kit according to Claim 1 wherein a multiplicity of said DNA segments comprising internal control sequences exist on a single plasmid, said plasmid having a single copy of each of said internal control segments.
- 6. A kit according to Claim 1 wherein said DNA segments comprising internal control sequences have a total base pair length of between 55 and 2000 nucleotides.
- 7. A kit according to Claim 1 wherein said non-natural synthetic DNA sequences have a total DNA sequence length of between 10 and 100 bases.
- 8. A kit according to Claim 1 wherein said targeted segment of genomic DNA has a total targeted DNA sequence length of about 55 to 2000 nucleotides.
- 9. A kit to detect gene dosage having components comprising:
- (a) at least one pair of DNA oligonucleotides wherein one of said pair of DNA oligonucleotides is complimentary to a 5' nucleotide sequence of a targeted segment of mammalian genomic DNA sequence and the other oligonucleotide of said pair of DNA oligonucleotides is complimentary to a 3' nucleotide sequence of said targeted segment of mammalian genomic DNA sequence, at least one of said pair of DNA oligonucleotides further having a colormetric sensitive moiety covalently linked to a 5' nucleotide, said pair of DNA oligonucleotides further being capable of acting as primers in a

polymerase chain reaction for amplifying the targeted segment of mammalian genomic DNA sequence;

- DNA segments comprising internal control DNA sequences complimentary to the length of said targeted segment of mammalian genomic DNA sequences except for a central portion of said internal control DNA sequences which comprise non-natural synthetic DNA sequence, said non-natural synthetic DNA sequence representing mutation of a corresponding same length portion of said targeted segment in said internal control DNA, internal control DNA sequences further having a total base length and nucleotide base content equivalent to said targeted mammalian genomic DNA sequence, such internal control DNA segment length defined by annealing positions onto said internal control DNA of said DNA oligonucleotides of (a);
- (c) microwell plates having connected in each well of said plates at least one DNA oligonucleotide the sequence of which comprises a spacer DNA sequence and a DNA sequence complimentary to DNAs selected from the group consisting of (1) genomic DNA sequence, (2) a stable chromosome gene, (3) a single copy gene on a chromosome, (4) a non-natural mutant DNA sequence, and (5) a mammalian gene; and
- (d) buffers and enzymes for carrying out (1) a polymerase chain reaction, (2) DNA-DNA hybridization and washing, and (3) colormetric quantitation.
- 10. kit according to Claim 9 wherein targeted segments of mammalian genomic DNA sequence are selected from the group consisting of (1) human PCP4, (2) human myelin basic protein gene, endothelin-b and receptor gene, (4) human iduronate-2-sulphatase gene.

BNSDOCID: <WO_____9914376A2_I_>

...

- kit according to Claim 9 wherein targeted segments of mammalian genomic DNA sequence are with microdeletions of associated chromosomal selected from the group consisting of (1) deletion site 15a11-a13 of Prader-Willi and Angelman's syndrome, (2) deletion site 7g11.23 of William's syndrome, (3) deletion site 5p of Cri du chat syndrome, 8q24.1 of Langer-Giedion deletion site syndrome, (5) deletion site 11p13 of WAGR, (6) deletion site 13q14 Retinoblastoma, (7) deletion site 16p13.3 Rubinstein-Taybi, (8) deletion site 17p11.2 of Smith-Magenis, (9) deletion site 17p13.3 of Miller-Dieker, (10) deletion site 20p11.2-p12 of (11) deletion site 22q11.2 of DiGeorge's syndrome, (12) deletion site Xp21 of Duchenne's/Becker's syndrome, (13) deletion site Xp21 of Congenital adrenal hypoplasia, (14) deletion site Xp21 of Chronic Granulomatous disease, (15) deletion site Xp22 Steroid sulfatase deficiency, and (16) deletion site Xq26 of X-linked lymphorproliferative disease.
- 12. A kit according to Claim 9 for determining gene dosage for purposes of detecting chromosome anomalies selected from the group consisting of (1) trisomy 13, (2) trisomy 18, (3) trisomy 21, and (4) X-chromosome anomalies.
- 13. A kit according to Claim 9 wherein a multiplicity of said DNA segments comprising internal control sequences exist on a single plasmid, said plasmid having a single copy of each of said internal control segments.
- 14. A kit according to Claim 9 wherein said DNA segments comprising internal control sequences have a

_ . .-

total base pair length of between 55 and 2000 nucleotides.

- 15. A kit according to Claim 9 wherein said non-natural synthetic DNA sequences have a total DNA sequence length of between 10 and 100 bases.
- 16. A kit according to Claim 9 wherein said targeted segment of mammalian genomic DNA has a total targeted DNA sequence length of about 55 to 2000 nucleotides.
- 17. A method for detecting gene dosage differences comprising:
- PCR reaction mixture making a by mixing (a) components for a PCR in a single tube, said components comprising (1) genomic DNA, (2) at least one pair of DNA primer oligonucleotides wherein one of said pair complimentary to a 5' sequence and the other of said pair is complimentary to a 3' sequence of a section of said genomic DNA, said length of said section of genomic DNA having between 55 and 2000 nucleotides, (3) internal control DNAs, said internal control DNAs having DNA sequence that is homologous to said genomic DNA, said internal control DNAs further having non-natural sequence, said internal control synthetic DNA DNAs further having an overall nucleotide base length and nucleotide content equivalent to said section of said genomic DNA as such section of genomic DNA is defined its 5' to 3' termini by any of said pair of DNA primer oligonucleotides, and (4)PCR buffers and enzymes necessary to carry out a polymerase chain reaction;
- (b) conducting a PCR of (a) for between 2 and 30 temperature cycles to create amplified PCR products;
- (c) dispensing portions of said PCR of b) into microwells which have been coated with at least one DNA

oligonucleotide having a nucleotide sequence complementary to a nucleotide sequence selected from the group consisting of (1) a section of said genomic DNA, and (2) a non-natural synthetic DNA;

- (d) hybridizing said DNA oligonucleotide of said microwells with amplified PCR products of said PCR of (b); and
- (e) detecting the presence and relative quantity of the amplified products.
- 18. A method according to Claim 17 wherein a multiplicity of said internal control DNAs exist on a single plasmid, said plasmid having a single copy of each of said internal control DNAs.
- 19. A method according to Claim 17 wherein the method is directed to detecting gene dosage differences to chromosome anomalies selected from the group consisting of (1) trisomy 13, (2) trisomy 18, (3) trisomy 21, and (4) X-chromosome anomalies.
- 20. A method according to claim 17 wherein the method is directed to detecting gene dosage differences to chromosome microdeletion anomalies selected from the group consisting of (1) deletion site 15q11-q13 of Prader-Willi and Angelman's syndrome, (2) deletion site 7q11.23 of William's syndrome, (3) deletion site 5p of du chat syndrome, (4) deletion site 8q24.1 of Langer-Giedion syndrome, (5) deletion site 11p13 WAGR, (6) deletion site 13q14 of Retinoblastoma, (7) deletion site 6p13.3 of Rubinstein-Taybi, (8) deletion site 17p11.2 of Smith-Magenis, (9) deletion site 17p13.3 of Miller-Dieker, deletion site 20p11.2-p12 of (10)Alagille, (11) deletion site 22q11.2 of DiGeorge's syndrome, (12) deletion site Xp21 of Duchenne's/Becker's syndrome, (13) deletion site Xp21 of Congenital adrenal

hypoplasia, (14) deletion site Xp21 of Chronic Granulomatous disease, (15) deletion site Xp22 of Steroid sulfatase deficiency, and (16) deletion site Xq26 of X-linked lymphorproliferative disease.

- 21. A method of detecting gene dosage differences comprising:
- making а PCR reaction mixture by mixing (a) components for a PCR in a single tube, said components comprising (1) DNA selected from the group consisting of procaryotic DNA and eukaryotic DNA, (2) at least one pair of DNA primer oligonucleotides wherein one of said pair is complimentary to a 5' sequence and the other of said pair is complimentary to a 3' sequence of a section of said prokaryotic or eukaryotic DNA, said length of said section of procaryotic or eukaryotic DNA having between 55 and 2000 nucleotides, (3) internal control DNAs, said internal control DNAs having DNA sequence that is homologous to said procaryotic or eukaryotic DNA, said internal control DNAs further having nonnatural synthetic DNA sequence, said internal control DNAs further having an overall nucleotide base length and nucleotide content equivalent to said section of said procaryotic or eukaryotic DNA as such section of procaryotic or eukaryotic DNA is defined at its 5' and 3 ' termini said pair of DNA by any of oligonucleotides, and (4) PCR buffers and enzymes necessary to carry out a polymerase chain reaction;
- (b) conducting a PCR of (a) for between 2 and 30 temperature cycles to create amplified PCR products;
- (c) dispensing portions of said PCR of b) into microwells which have been coated with at least one DNA oligonucleotide having a nucleotide sequence complementary to a nucleotide sequence selected from the group consisting of (1) a section of said procaryotic or eukaryotic DNA, and (2) a non-natural synthetic DNA;

- (d) hybridizing said DNA oligonucleotide of said microwells with amplified PCR products of said PCR of (b); and
- (e) detecting the presence and relative quantity of the amplified products by colormetric means.
- 22. A method according to Claim 21 wherein a multiplicity of said internal control DNAs exist on a single plasmid, said plasmid having a single copy of each of said internal control DNAs.
- 23. A method according to Claim 21 wherein the method is directed to detecting gene dosage differences to chromosome anomalies selected from the group consisting of (1) trisomy 13, (2) trisomy 18, (3) trisomy 21, and (4) X-chromosome anomalies.
- A method according to Claim 21 wherein the method is directed to detecting gene dosage differences to chromosome microdeletion anomalies selected from the group consisting of (1) deletion site 115q11-q13 of Prader-Willi and Angelman's syndrome, (2) deletion site 7q11.23 of William's syndrome, (3) deletion site 5p of Cri du chat syndrome, (4) deletion site 8q24.1 of Langer-Giedion syndrome, (5) deletion site 11p13 of (6) deletion site 13q14 of Retinoblastoma, (7) deletion site 16p13.3 of Rubinstein-Taybi, (8) deletion site 17p11.2 of Smith-Magenis, (9) deletion site 17p13.3 of Miller-Dieker, (10) deletion site 20p11.2-p12 of Alagille, (11)deletion site 22q11.2 of DiGeorge's syndrome, (12) deletion site Xp21 of Duchenne's/Becker's syndrome, (13) deletion site Xp21 of Congenital adrenal hypoplasia, (14)Xp21 deletion site of Chronic Granulomatous disease, (15) deletion site Xp22 Steroid sulfatase deficiency, and (16) deletion site Xq26 of X-linked lymphorproliferative disease.

2/7

FIG. 2.

Wildtype Loci

Mutant Loci

SUBSTITUTE SHEET (RULE 26)

FIG. 4.

FIG. 5.

PHENOTYPE	CHROMOSOME loci 21 18 13 X	EXPECTED RATIO
NORMAL FEMALE:	$\frac{a}{b} : \frac{c}{d} : \frac{e}{f} : \frac{g}{h}$	=1:1:1:1
NORMAL MALE:	$\frac{a}{b}:\frac{c}{d}:\frac{e}{f}:\frac{g}{h}$	=1:1:1:0.5
FEMALE TRISOMY 21:	$\frac{a}{b}:\frac{c}{d}:\frac{e}{f}:\frac{g}{h}$	=1.5:1:1:1
MALE TRISOMY 21:	$\frac{a}{b} : \frac{c}{d} : \frac{e}{f} : \frac{g}{h}$	=1.5:1:1:0.5
FEMALE TRISOMY 18:	$\frac{a}{b} : \frac{c}{d} : \frac{e}{f} : \frac{g}{h}$	=1:1.5:1:1
MALE TRISOMY 18:	$\frac{a}{b}:\frac{c}{d}:\frac{e}{f}:\frac{g}{h}$	=1:1.5:1:0.5
FEMALE TRISOMY 13:	$\frac{a}{b} : \frac{c}{d} : \frac{e}{f} : \frac{g}{h}$	=1:1:1.5:1
MALE TRISOMY 13:	$\frac{a}{b}:\frac{c}{d}:\frac{e}{f}:\frac{g}{h}$	=1:1:1.5:0.5
TURNER'S (XO):	$\frac{a}{b} : \frac{c}{d} : \frac{e}{f} : \frac{g}{h}$	=1:1:1:0.5
KLEINFELTER'S (XXY):	$\frac{a}{b} : \frac{c}{d} : \frac{e}{f} : \frac{g}{h}$	=1:1:1:1
TRIPLE X SYNDROME:	$\frac{a}{b}:\frac{c}{d}:\frac{e}{f}:\frac{g}{h}$	=1:1:1:1.5

FIG. 6.

7/7

FIG. 7A.

Capture Oligos

21W 21M

18W 18M

Templates for PCR

Down's (TS+IC)

Normal (TS+IC)

Normal (18)

Mutant (IC)

FIG. 7B.

FIG. 7C.

DOWN'S (TS+IC) a/b:c/d=5154/2304:2043/1291=2.24:1.58=1.41

NORMAL (TS+IC) a/b:c/d=5329/3737:2208/1453=1.43:1.52=0.94

1

SEQUENCE LISTING

<110>	Han, Jian	
Ampli	Detection of Aneuploidy by PCR-Based Gene-Dose Co- fication of Chromosome Specific Sequences with Synthetic rnal Controls	:
<130>	Genaco	
	> 235-210 > 1997-09-19	
<160>	> 32	
<170>	PatentIn Ver. 2.0	
<210> <211> <212> <213>	> 32	
<400> gggaa	> 1 attcac atggatgcac cagagacaga ac	32
<210><211><211><212><213>	> 32	
<400> gggaa	> 2 attcgc tatgcgtgtg tggattgtgt gt	32
<210><211><211><212><213>	> 26	
<400> gaacc	> 3 cgtgac aggctacccc ctccta	26
<210><211><211><212><213>	> 26	
<400> ctgtc	> .4 cacggt tcacaaccca gccttc	26
<400> gggaa	> 5 attcca agaagacagt gcagccacct	30

BNSDOCID: <WO_____9914376A2_I_>

WO 99/14376 PCT/US98/19719

2

<210> 6 <211> 28 <212> DNA <213> Human	
<400> 6 gggaattccc aaagaagcgc ccgatgga	28
<210> 7 <211> 26 <212> DNA <213> Human/Synthetic	
<400> 7 agccaccgac aggatatgcc aggcat	26
<210> 8 <211> 26 <212> DNA <213> Human/Synthetic	
<400> 8 ctgtcggtgg ctgattggcc aggtac	26
<210> 9 <211> 31 <212> DNA <213> Human	
<400> 9 gggaattcgt gtcctgtctt ccttcctctg c	31
<210> 10 <211> 30 <212> DNA <213> Human	
<400> 10 gggaattcgc gtcattatct ctgcggtttg	30
<210> 11 <211> 26 <212> DNA <213> Human/Synthetic	
<400> 11 ggctccggtg ctggtttgcg gcctgt	26
<210> 12 <211> 26 <212> DNA <213> Human/Synthetic	
<400> 12 agcaccggag ccaagagggc gcgtcc	26

BNSDOCID: <WO_____9914376A2_I_>

WO 99/14376 PCT/US98/19719

3

<210> 13 <211> 32 <212> DNA <213> Human	
<400> 13 gggaattcgc tctaggtgaa catggagaat gg	32
<210> 14 <211> 32 <212> DNA <213> Human	
<400> 14 gggaattete aactgtgagg eggaateaaa ag	32
<210> 15 <211> 26 <212> DNA	
<213> Human/Synthetic <400> 15	
cagggttgca caggttgctt cactte	26
<210> 16 <211> 26 <212> DNA <213> Human/Synthetic	
<400> 16 tgtgcaaccc tggaatatat cagggg	26
<210> 17 <211> 29 <212> DNA	
<213> Human/Synthetic <400> 17	
aaatattaat ctcagtccta gtgggagaa	29
<210> 18 <211> 29 <212> DNA <213> Synthetic	
<400> 18 aaatattaat tgtgaaccgt gacaggcta	29
<210> 19 <211> 29 <212> DNA	-
<213> Human/Synthetic	
<400> 19 aaatattaaa cagcaagtac catggacca	29
<210> 20	

4

<211> 29 <212> DNA <213> Synthetic	
<400> 20	
aaatattaaa atcagccacc gacaggata	29
<210> 21 <211> 29	
<212> DNA	
<213> Human/Synthetic	
<400> 21	
aaatattaat ggttgcgctg gttcttgcc	29
<210> 22	
<211> 30 <212> DNA	
<213> Synthetic	
<400> 22	
aaattattaa tottggotoo ggtgotggtt	30
<210> 23	
<211> 29	
<212> DNA	
<213> Human/Synthetic	
<400> 23	
aaatattaat ctatgttcct ggaaggacg	29
<210> 24	
<211> 29	
<212> DNA	
<213> Synthetic	
<400> 24	
aaatattaaa ttccagggtt gcacaggtt	29
<210> 25	
<211> 24	
<212> DNA	
<213> Human	
<400> 25	
acatggatgc accagagaca gaac	24
<210> 26	
<211> 24	
<212> DNA	
<213> Human	
<400> 26	
gctatgcgtg tgtggattgt gtgt	24
<210> 27	
<211> 22	

WO 99/14376 PCT/US98/19719

5

<212> DNA <213> Human	
<400> 27 caagaagaca gtgcagccac ct	22
<210> 28 <211> 20 <212> DNA	
<213> Human	
<400> 28 ccaaagaagc gcccgatgga	20
<210> 29 <211> 23 <212> DNA <213> Human	
<400> 29 gtgtcctgtc ttccttcctc tgc	23
<210> 30 <211> 22 <212> DNA <213> Human	
<400> 30	0.0
<pre>gcgtcattat ctctgcggtt tg <210> 31 <211> 24 <212> DNA <213> Human</pre>	22
<400> 31 gctctaggtg aacatggaga atgg	24
<210> 32 <211> 24 <212> DNA <213> Human	
<400> 32 tcaactgtga ggcggaatca aaag	24

BNSDOCID: <WO_____9914376A2_I_>

THIS PAGE BLANK (USPTO)

PCT/US 98/19719

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC~6~C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS	CONSIDERED TO	BE RELEVANT
--------------	----------------------	-------------

1,5-9, 13-18, 21,22
2,10
1
1,5-9, 13-18, 21,22
2,10
1,5-9, 13-18, 21,22
2,10

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
22 February 1999	1 1. 06. 1999
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Hagenmaier, S

Form PCT/ISA/210 (second sheet) (July 1992)

1

Inte Tional Application No
PCT/US 98/19719

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	RAVAGGI A ET AL: "QUANTIFICATION OF HEPATITIS C VIRUS RNA BY COMPETITIVE AMPLIFICATION OF RNA FROM DENATURED SERUM AND HYBRIDIZATION ON MICROTITER PLATES" JOURNAL OF CLINICAL MICROBIOLOGY, vol. 33, no. 2, February 1995, pages 265-269, XP000614691	1,5-9, 13-18, 21,22
•	see the whole document	2,10
X	REISCHL U ET AL: "QUANTITATIVE PCR A SURVEY OF THE PRESENT TECHNOLOGY" MOLECULAR BIOTECHNOLOGY, vol. 3, 1995,	1,5-9, 13-18, 21,22
Y	pages 55-71, XP000600241 see the whole document	2,10
X Y	EP 0 714 987 A (IMMUNO AG) 5 June 1996 see the whole document	1,5-9, 13-18, 21,22 2,10
Y	CABIN ET AL.: "MOLECULAR GENETIC CHARACTERIZATION AND COMPARATIVE MAPPING OF THE HUMAN PCP4 GENE" SOMATIC CELL AND MOL. GENETICS, vol. 22, no. 3, 1996, pages 167-75, XP002094293 see the whole document	2,10
	HILL J M ET AL: "QUANTITATIVE ANALYSIS OF POLYMERASE CHAIN REACTION PRODUCTS BY DOT BLOT" ANALYTICAL BIOCHEMISTRY, vol. 235, no. 1, 1 March 1996, pages 44-48, XP000552019 see the whole document	1,5-9, 13-18, 21,22
A	DIVIACCO S ET AL: "A NOVEL PROCEDURE FOR QUANTITATIVE POLYMERASE CHAIN REACTION BY COMPLIFICATION OF COMPETITIVE TEMPLATES" GENE, vol. 122, no. 2, 1 January 1992, pages 313-320, XP000471613 see the whole document	1,5-9, 13-18, 21,22
A	WO 94 04706 A (AKZO NV ;KIEVITS TIM (NL); LENS PETER FRANKLIN (NL)) 3 March 1994 see the whole document	1,5-9, 13-18, 21,22

Intermediate Inter

ON DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages PORCHER ET AL.: "A SIMPLIFIED METHOD FOR DETERMINATION OF SPECIFIC DNA OR RNA COPY NUMBER USING QUANTITATIVE PCR AND AN	1,5-9, 13-18,
PORCHER ET AL.: "A SIMPLIFIED METHOD FOR DETERMINATION OF SPECIFIC DNA OR RNA COPY NUMBER USING QUANTITATIVE PCR AND AN	1,5-9, 13-18,
DETERMINATION OF SPECIFIC DNA OR RNA COPY NUMBER USING QUANTITATIVE PCR AND AN	13-18,
AUTOMATIC DNA SEQUENCER" BIOTECHNIQUES, vol. 13, no. 1, 1992, pages 106-114, XP002094298 see the whole document	21,22
HO S N ET AL: "SITE-DIRECTED MUTAGENESIS BY OVERLAP EXTENSION USING THE POLYMERASE CHAIN REACTION" GENE, vol. 77, no. 1, 1 January 1989, pages 51-59, XP000272761 see the whole document	1,5-9, 13-18, 21,22
WO 93 23566 A (ISIS INNOVATION ;STICKLAND JULIA ELIZABETH (GB); RAMSHAW ANNA LOUI) 25 November 1993 see the whole document	1,5-9, 13-18, 21,22
US 5 496 699 A (SORENSON GEORGE D) 5 March 1996	1,5-9, 13-18, 21,22
COTTREZ F ET AL: "QUANTITATIVE PCR: VALIDATION OF THE USE OF A MULTISPECIFIC INTERNAL CONTROL" NUCLEIC ACIDS RESEARCH, vol. 22, no. 13, 11 July 1994, page 2712/2713 XP000749833 see the whole document	1,5-9, 13-18, 21,22
HUBERT AND KORENBERG: "PCP4 MAPS BETWEEN D21S345 AND P31P10SP6 ON CHROMOSOME 21q22.2->q22.3" CYTOGENET. CELL GENET., vol. 78, 1997, pages 44-45, XP002094295 see the whole document	2,10
	vol. 13, no. 1, 1992, pages 106-114, XP002094298 see the whole document HO S N ET AL: "SITE-DIRECTED MUTAGENESIS BY OVERLAP EXTENSION USING THE POLYMERASE CHAIN REACTION" GENE, vol. 77, no. 1, 1 January 1989, pages 51-59, XP000272761 see the whole document WO 93 23566 A (ISIS INNOVATION ;STICKLAND JULIA ELIZABETH (GB); RAMSHAW ANNA LOUI) 25 November 1993 see the whole document US 5 496 699 A (SORENSON GEORGE D) 5 March 1996 see the whole document COTTREZ F ET AL: "QUANTITATIVE PCR: VALIDATION OF THE USE OF A MULTISPECIFIC INTERNAL CONTROL" NUCLEIC ACIDS RESEARCH, vol. 22, no. 13, 11 July 1994, page 2712/2713 XP000749833 see the whole document HUBERT AND KORENBERG: "PCP4 MAPS BETWEEN D21S345 AND P31P10SP6 ON CHROMOSOME 21q22.2->q22.3" CYTOGENET. CELL GENET., vol. 78, 1997, pages 44-45, XP002094295

lissanational application No.

PCT/US 98/19719

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inter	national Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
L I	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Claims Nos. : because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a),
• • • •	riser, desire where a local in avention, is acting coordination of tem. The image:
Ims Inter	national Cearaning Authority found multiple inventions in this international application, as collows:
see	FURTHER INFORMATION sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: see FURTHER INFORMATION sheet, subject 1.
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1,2,5-10,13-18,21,22 (all partially)

Invention 1:

The use of methods and kits for the quantitation of human PCP4 based on competitive PCR using an internal control sequence complementary to the length of the target PCP4 DNA sequence except for a central portion comprising a non-natural synthetic DNA sequence representing a mutation of a corresponding same length portion of the targeted segment in the internal control DNA wherein the control sequences are amplified with the same primer as the human PCP4 DNA with at least one oligonucleotide of the used primer pair further having a colorimetric sensitive moiety covalently linked to a 5' nucleotide and wherein the amplified products are colorimetrically quantitated using sequence specific hybridization with oligonucleotides immobilized on microwell plates.

2. Claims: 1,2,5-10,13-18,21,22 (all partially)

Invention 2:

The use of methods and kits for the quantitation of human myelin basic protein gene based on competitive PCR using an internal control sequence complementary to the length of the target human myelin basic protein gene sequence except for a central portion comprising a non-natural synthetic DNA sequence representing a mutation of a corresponding same length portion of the targeted segment in the internal control DNA wherein the control sequences are amplified with the same primer as the human myelin basic protein gene with at least one oligonucleotide of the used primer pair further having a colorimetric sensitive moiety covalently linked to a 5' nucleotide and wherein the amplified products are colorimetrically quantitated using sequence specific hybridization with oligonucleotides immobilized on microwell plates.

3. Claims: 1,2,5-10,13-18,21,22 (all partially)

Invention 3:

The use of methods and kits for the quantitation of human endothelin-b-receptor gene based on competitive PCR using an internal control sequence complementary to the length of the target human endothelin-b-receptor gene sequence except for a central portion comprising a non-natural synthetic DNA sequence representing a mutation of a corresponding same length portion of the targeted segment in the internal control DNA wherein the control sequences are amplified with the same primer as the human endothelin-b-receptor gene with at least one oligonucleotide of the used primer pair

further having a colorimetric sensitive moiety covalently linked to a 5' nucleotide and wherein the amplified products are colorimetrically quantitated using sequence specific hybridization with oligonucleotides immobilized on microwell plates.

4. Claims: 1,2,5-10,13-18,21,22 (all partially)

Invention 4:

The use of methods and kits for the quantitation of human iduronate-2-sulphatase gene based on competitive PCR using an internal control sequence complementary to the length of the target human iduronate-2-sulphatase gene sequence except for a central portion comprising a non-natural synthetic DNA sequence representing a mutation of a corresponding same length portion of the targeted segment in the internal control DNA wherein the control sequences are amplified with the same primer as the human iduronate-2-sulphatase gene with at least one oligonucleotide of the used primer pair further having a colorimetric sensitive moiety covalently linked to a 5' nucleotide and wherein the amplified products are colorimetrically quantitated using sequence specific hybridization with oligonucleotides immobilized on microwell plates.

5. Claims: 1,3,11,20,24 (all partially)

Inventions 5-20:

The use of methods and kits for the quantitation of chromosomal DNA of deletion site 15q11-q13 of Prader-Willi and Angelman's syndrome based on competitive PCR using an internal control sequence complementary to the length of the target chromosomal DNA of deletion site 15q11-q13 of Prader-Willi and Angelman's syndrome except for a central portion comprising a non-natural synthetic DNA sequence representing a mutation of a corresponding same length portion of the targeted segment in the internal control DNA wherein the control sequences are amplified with the same primer as the chromosomal DNA of deletion site 15q11-q13 of Prader-Willi and Angelman's syndrome with at least one oligonucleotide of the used primer pair further having a colorimetric sensitive moiety covalently linked to a 5' nucleotide and wherein the amplified products are colorimetrically quantitated using sequence specific hybridization with oligonucleotides immobilized on microwell plates.

- ...ibidem for
- -chromosomal DNA of deletion site 7q11.23 of William's syndrome
- -chromosomal DNA of deletion site 5p of Cri du chat syndrome -chromosomal DNA of deletion site 8q24.1 of Langer-Giedon syndrome

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

- -chromosomal DNA of deletion site 11p13 of WAGR -chromosomal DNA of deletion site 13q14 of Retinoblastoma -chromosomal DNA of deletion site 16p13.3 of Rubinstein-Taybi -chromosomal DNA of deletion site 17p11.2 of Smith-Magenis -chromosomal DNA of deletion site 17p13.3 of Miller-Dieker -chromosomal DNA of deletion site 20p11.2-p12 of Alagille -chromosomal DNA of deletion site 22q11.2 of DiGeorge's syndrome -chromosomal DNA of deletion site Xp21 of Duchenne's/Becker's syndrome -chromosomal DNA of deletion site Xp21 of Congenital adrenal hypoplasia -chromosomal DNA of deletion site Xp21 of Chronic Granulomatous disease -chromosomal DNA of deletion site Xp22 of Steroid sulfatase deficiency -chromosomal DNA of deletion site Xq26 of X-linked lymphorproliferative disease
- 6. Claims: 1,4,12,19, 23 (all partially)

Inventions 21-24:

The use of methods and kits for the quantitation of trisomy 13 chromosome anomalies based on competitive PCR using an internal control sequence complementary to the length of the target trisomy 13 chromosome anomalies except for a central portion comprising a non-natural synthetic DNA sequence representing a mutation of a corresponding same length portion of the targeted segment in the internal control DNA wherein the control sequences are amplified with the same primer as the trisomy 13 chromosome anomalies with at least

one oligonucleotide of the used primer pair further having a colorimetric sensitive moiety covalently linked to a 5' nucleotide and wherein the amplified products are colorimetrically quantitated using sequence specific hybridization with oligonucleotides immobilized on microwell plates.

- ...ibidem for
- -trisomy 18 chromosome anomalies
- -trisomy 21 chromosome anomalies
- -X-chromosome anomalies

Information on patent family members

Inte onal Application No PCT/US 98/19719

Patent document cited in search report		Publication date	Patent fan member(Publication date
WO 9409156	A	28-04-1994	AU 529 EP 067	8393 A 2187 A 7251 A	09-05-1994 20-09-1995 05-05-1998
WO 9609407	A	28-03-1996	NONE		
EP 0714987	A	05-06-1996	AT 18 CA 215 JP 810	1270 B 3094 A 9043 A 95887 A 8658 A	25-07-1996 15-12-1995 27-03-1996 23-04-1996 12-01-1999
WO 9404706	A	03-03-1994	AU 68 AU 495 CA 214 DE 6931 DE 6931 EP 065 ES 211 FI 95 GR 302 JP 850 US 577	52226 T 53396 B 51393 A 53202 A 6372 D 6372 T 56955 A 64066 T 50836 A 26631 T 70360 A 70360 A	15-01-1998 22-01-1998 15-03-1994 03-03-1994 19-02-1998 27-08-1998 14-06-1995 16-05-1998 23-02-1995 31-07-1998 30-01-1996 23-06-1998 10-03-1994
WO 9323566	A	25-11-1993	NONE		
US 5496699	A	05-03-1996	EP 06	34552 A 55090 A 22456 A	11-11-1993 31-05-1995 11-11-1993