Devoir Maison M1 ScAC

« Méthodes numériques »

2019-2020

SUJET 7 : BRUGERE Etienne - CHEVASSUS Emmanuel

- I/ Description du fichier de données nécessaire à la réalisation du devoir :
- Le fichier M1data.dat fournit des profils de données. Ces données correspondent :
 - aux modules du vent horizontal (*u* : composante ouest-est (ou zonale) et *v* : composante sud-nord (ou méridionale)),
 - de la température (T),
 - du rapport de mélange de la vapeur d'eau (Qv),
 - de la vitesse verticale (ω = oméga = dp/dt),
 - et la hauteur géopotentielle (z).
- **Les profils sont constitués de 14 niveaux définis à pression constante (donc il s'agit d'un repère** *x,y,p* !). Ces profils couvrent un domaine de 6 degrés de latitude (en direction Sud Nord) et de 11 degrés de longitude (en direction Ouest Est). Le domaine a pour coordonnées (52°N, 322°O) pour son coin sud-ouest, et (58°N, 333°O) pour le coin nord-est. De plus, les profils sont fournis tous les 1° en direction zonale et en direction méridionale.
- Attention :
- $\varphi = 1^{\circ}$ en direction méridionale (y) correspond toujours à y =111,3 km, mais en direction zonale (x), $\lambda = 1^{\circ}$ correspond à $x = 111,3*cos(\varphi)$ km (c'est-à-dire que si $\varphi = 60^{\circ}$ N, $x = 1^{\circ} = 55,65$ km alors que si $\varphi = 50^{\circ}$ N, $x = 1^{\circ} = 71,54$ km).
- Le fichier <u>M1data.dat</u> contient plusieurs blocs de 15 lignes. Chaque bloc correspond à un seul sondage et est organisé comme suit :
- 1. λ , φ
- 2. p(1), u(1), v(1), T(1), Qv(1), $\omega(1)$, z(1)

z(2

3. p(2), u(2), v(2), T(2), Qv(2), $\omega(2)$,

15. p(14), u(14), v(14), T(14), Qv(14), $\omega(14)$, z(14)

Ceci se répète 12 x 8 fois.

Avec : λ , φ en (°), la pression p est en (hPa), u et v en (m s-1), T en (°C), Qv en (gramme de vapeur d'eau/ 1 kg de l'air sec), ω en (hPa s-1) et la hauteur géopotentielle z en (m).

II/ Lire les données et calculer le vent géostrophique en coordonnées cartésiennes :

Partie a):

Calculer les modules u_g et v_g du vent géostrophique pour tous les sondages pour les niveaux p = 700 et p = 300 hPa.

Nous utilisons les formules suivantes :

$$U_{g_{300}} = -\frac{g}{f} \frac{dz_{300}}{dy} (1) \ U_{g_{2}700} = -\frac{g}{f} \frac{dz_{700}}{dy} (2) \ V_{g_{2}300} = \frac{g}{f} \frac{dz_{300}}{dx} (3) \ V_{g_{2}700} = \frac{g}{f} \frac{dz_{700}}{dx} (4)$$

- 1) Définition des variables. F=1.2^E-4 (force de Coriolis), g=9.81m/s² (accélération de la pesanteur), dy=111^E-3 (longueur méridionale)
- 2 Nous extrayons les lignes de m1data pour les niveaux de pressions voulus.
- 2) Nous calculons les Δx de chaque ligne ($\Delta x = 111,3*10^3*\cos(\varphi)$). φ est exprimé en radians.
- 4) On procède au calcul des vents géostrophiques dans une matrice de 7 lignes et 12 colonnes (84 valeurs)

```
for k in range(1,7):

for l in range(1,12):

dx[k,l] = dy * np.cos(P * u300[k,0])

dzx300[k,l] = z300[k+1,l] - z300[k,l]

dzx700[k,l] = z700[k+1,l] - z700[k,l]

dzy300[k,l] = z300[k,l+1] - z300[k,l]

dzy700[k,l] = z700[k,l+1] - z700[k,l]

Ug300[k,l] = -(g/f) * (dzx300[k,l]/dy)

Ug700[k,l] = -(g/f) * (dzx700[k,l]/dy)

Vg300[k,l] = (g/f) * (dzy300[k,l]/(dx[k,l]))

Vg700[k,l] = (g/f) * (dzy700[k,l]/(dx[k,l]))
```

Enfin nous intégrons ces valeurs dans des tableaux comprenant la latitude en header et la longitude en index (matrice 8,13)

```
Tab = np.zeros((8,13))
x = 0
y = 0
for i in range (0,166,15):
  x = x + 1
  Tab[0,x] = data[i,0]
  Ug300[0,x] = data[i,0]
  Ug700[0,x] = data[i,0]
  Vg300[0,x] = data[i,0]
  Vg700[0,x] = data[i,0]
for j in range (0,1259,180):
  y = y + 1
  Tab[y, 0] = data[j, 1]
  Ug300[y, 0] = data[j, 1]
  Ug700[y,0] = data[j,1]
  Vg300[y, 0] = data[j, 1]
```

Nous obtenons les tableaux suivants :

Modules de ug à 300hPa (m/s)

		1			u (111/5)			7	0	^	10	- 11	10
	0		2	3	4	5	6	7	8		10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	2.93801	3.67251	2.93801	-0	-3.67251	-19.097	-32.3181	-23.504	-9.54852	-0.734501		0
2	53	5.14151	4.40701	1.469	-0.734501	-6.61051	-13.9555	-24.2385	-23.504	-13.9555	-9.54852	-8.81402	0
3	54	5.87601	5.14151	2.93801	-0	-2.93801	-5.87601	-8.81402	-11.0175	-11.752	-13.9555	-18.3625	0
4		5.87601	5.14151	3.67251	1.469		-2.2035	-5.14151	-5.87601	-10.283	-15.4245	-14.69	
5	56	2.2035	2.2035	2.93801	2.93801	-0.734501	-2.2035	-2.2035	-5.87601	-5.87601	-2.93801	-1.469	
6	57	6.61051	3.67251	1.469	-1.469	-2.2035	-4.40701	-5.87601	-4.40701	-2.93801	-1.469	-0	
7	58												0

Modules de ug à 700 hPa (m/s)

	0	1	2	3	4	5	6	7	8	9	10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	9.54852	8.81402	8.07951	8.07951	7.34501	4.40701	-1.469	-4.40701	-5.87601	-5.87601	-6.61051	0
2	53	5.87601	4.40701	2.93801	-0.734501	-5.14151	-8.81402	-14.69	-19.097	-19.097	-19.8315	-16.8935	0
3	54	3.67251	2.2035	-0.734501	-7.34501	-13.221	-19.8315	-17.628	-18.3625	-19.8315	-18.3625	-16.8935	0
4		5.14151	2.93801	-0.734501	-5.87601	-11.752	-18.3625	-20.566	-15.4245	-13.221	-11.752	-11.0175	0
5	56	7.34501	6.61051	4.40701	-0.734501	-7.34501	-11.0175	-15.4245	-16.8935	-16.8935	-16.8935	-14.69	0
6	57	10.283	8.07951	4.40701	2.93801	-0.734501	-5.14151	-8.07951	-11.0175	-10.283	-8.81402	-8.07951	0
7	58												0

Modules de vg à 300 hPa (m/s)

	0	1	2	3	4	5	6	7	8	9	10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	23.8606	13.1233	4.77211	-4.77211	-26.2466	-26.2466	31.0187	58.4584	42.949	27.4396	25.0536	0
2	53	23.1891	14.6457	9.76382	1.22048	-1.22048	-4.88191	17.0867	36.6143	29.2914	26.8505	28.071	0
3	54	24.9922	19.9937	13.7457	11.2465	11.2465	12.4961	16.2449	21.2433	22.4929	26.2418	34.989	0
4	55	26.8918	24.3307	19.2085	16.6473	16.6473	17.9279	20.489	23.0502	26.8918	34.5752	37.1364	0
5	56	28.8971	27.5836	23.643	19.7025	21.016	23.643	22.3295	31.5241	36.7781	34.1511	31.5241	0
6	57	29.6692	26.972	24.2748	26.972	24.2748	24.2748	29.6692	32.3665	32.3665	32.3665	31.0178	0
7	58	0	0	0	0		0	0			0		0

Modules de vg à 700 Hpa (m/s)

	0	1	2	3	4	5	6	7	8	9	10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	-15.5094	-20.2815	-31.0187	-35.7908	-40.563	-25.0536	-2.38606	8.3512	16.7024	25.0536	33.4048	0
2	53	-14.6457	-19.5276	-31.7324	-35.3938	-36.6143	-15.8662	2.44095	10.9843	17.0867	26.8505	35.3938	0
3	54	-12.4961	-17.4945	-26.2418	-28.741	-31.2402	-6.24804	9.99687	11.2465	18.7441	22.4929	28.741	0
4	55	-10.2445	-12.8056	-15.3668	-19.2085	-20.489	-10.2445	11.5251	14.0862	16.6473	20.489	23.0502	0
5	56	-6.56751	-6.56751	-6.56751	-9.19452	-9.19452	-6.56751	2.62701	10.508	14.4485	19.7025	23.643	0
6	57	-5.39441	-2.6972	2.6972	2.6972	-2.6972	1.3486	5.39441	10.7888	14.8346	16.1832	18.8804	0
7	58												0

Déterminer <u>la norme</u> du vent horizontal v_h et <u>la norme</u> du vent géostrophique v_g .

```
On définit la norme comme norme \equiv \sqrt{composante\_en\_x^2 + composante\_en\_y^2} On tape donc les quelques lignes suivantes : for k in range(1,8):
  for l in range(1,13):
  vh300[k, l] = np. sqrt((u300[k,l]) ** 2 + (v300[k,l]) ** 2)
  vh700[k, l] = np. sqrt((u700[k,l]) ** 2 + (v700[k,l]) ** 2)
  vg300[k, l] = np. sqrt((Ug300[k,l]) ** 2 + (Vg300[k,l]) ** 2)
  vg700[k, l] = np. sqrt((Ug700[k,l]) ** 2 + (Vg700[k,l]) ** 2)
```

On obtient les valeurs suivantes :

Norme de vg à 300 hPa (m/s) 323 324 328 329 330 326 26.5023 44.7953 63.0065 27.4495 25.0536 23.7522 15.2944 9.87371 1.42445 6.72223 14.7848 29.6557 43.5092 32,446 28.4978 29.4222 25,6736 20.6442 14.0562 11.2465 11.6239 13.8087 18.482 23.9304 25.378 29.7218 39.5147 21.1243 4 19.9204 28.9809 27.6714 23.8249 21.0289 23.7455 22.438 32.067 37.2445 34.2772 31.5583 30.3968 27.2209 24.3746 24.6716 30.2455 32.6651 32.4995 31.0178

Norme du vent géostrophique à 700 hPa (m/s)

	0	1	2	3	4	5	6	7	8	9	10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	18.213	22.1139	32.0537	36.6915	41.2226	25.4382	2.802	9.44268	17.7059	25.7334	34.0526	0
2	53	15.7805	20.0187	31.8681	35.4015	36.9735	18.15	14.8914	22.0307	25.6252	33.3802	39.2188	0
3	54	13.0246	17.6327	26.2521	29.6647	33.9226	20.7925	20.2654	21.5329	27.2879	29.0365	33.3382	0
4	55	11.4623	13.1384	15.3843	20.0871	23.6201	21.027	23.5752	20.8887	21.2586	23.6201	25.5479	0
5	56	9.85299	9.31832	7.90911	9.22381	11.7681	12.8265	15.6466	19.895	22.2295	25.9534	27.8351	0
6	57	11.6121	8.51783	5.16688	3.98833	2.79543	5.31543	9.71484	15.4203	18.0501	18.4278	20.5365	0
7	58												0

Norme du vent horizontal à 300 Hpa (m/s) 330 21.5268 14.8364 6.95992 4.59022 7.10569 13.0987 5.88534 20.5493 20.4271 26.4648 24.276 17.2534 14.0747 14.4029 14.0783 21.4434 24.9018 22.1241 21.0209 26.4699 39.8289 20.0845 16.3881 18.3634 21.5842 20.6378 28.6465 16.7104 32.9073 30.0937 27.0829 22.0856 22.3798 27.3714 30.724 33.1898 35.6532 32.8744 40.4431 36.9512 33.1869 31.0467 36.6093 33.9446 31.8589 30.682 42.7252 40.2538 37.0372 33.8884 36.2458 35.6313 33.0559 32.8611 33.4826 31.8465 30.2189 32.826

No	rme	e du vei	nt horiz	ontal à	700 hI	Pa. (m/	s)						
	0	1	2	3	4	5	6	7	8	9	10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	17.9881	19.2234	23.3366	28.5963	28.9697	17.4766	2.00968	4.86757	12.9212	16.7283	22.4254	30.2531
2	53	15.1742	16.7057	22.4682	27.2103	25.6711	13.5158	2.84925	7.63025	15.2806	18.7951	24.8269	29.6698
3	54	12.8544	14.4366	19.8857	24.3576	21.8618	14.4826	12.37	13.4555	16.4842	21.9594	25.2086	26.6983
4	55	11.138	12.9282	17.4642	21.2867	18.0131	14.1803	11.747	12.714	16.7336	20.4884	22.5647	21.6296
5	56	14.6856	14.889	16.2698	16.4022	12.0762	8.71243	13.9055	15.214	17.4671	19.6304	20.6987	26.7488
6	57	12.4117	12.6902	12.3645	8.72576	2.65359	5.23632	8.50715	14.5243	18.5204	19.4157	22.0006	22.3617
7	58	9.50084	7.02918	6.8784	4.73286	5.18461	6.15219	8.38169	10.6122	13.6998	16.0455	18.8748	21.3244

[□] Donner l'écart relativf (vh-vg)/vh entre les normes de ces deux vitesses. Ecrire le résultat sous forme d'un tableau de 7 lignes et 12 colonnes. Ecart relatif à 300 hPa (%)

	0	1	2	3	4	5	6	7	8	9	10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	-11.6783	8.14842	19.4817	-3.9625	-272.973	-147.802	-661.134	-206.611	-66.4315	-6.4124	-22.6485	100
2	53	2.1576	11.3543	29.848	90.11	40.152	-5.01815	-38.2977	-64.4041	-30.2957	-28.8088	-39.9666	100
3	54	8.29243	10.7185	30.0148	31.3742	15.5946	6.22403	-0.645943	-10.8699	-22.9686	-35.2397	-37.9391	100
4	55	17.271	12.5518	25.3552	20.6342	0.377461	0.912803	-7.06767	-8.9441	-14.3593	-18.4797	6.88999	100
5	56	23.1546	15.9109	20.8309	26.4466	4.78466	-6.10234	18.0238	-4.37129	-12.2169	3.85933	14.0765	100
6	57	24.8407	26.3328	26.7204	12.9955	10.3369	17.1358	15.3816	12.49	11.2261	4.55116	2.63992	100
7	58	100	100	100	100	100	100	100	100	100	100	100	100

Ecart relatif à 700 hPa (%)

			2		4	5			8	9	10	11	12
0		322	323	324	325	326	327	328	329	330	331	332	333
1	52	-1.25028	-15.0366	-37.3537	-28.3083	-42.2954	-45.5558	-39.4255	-93.9918	-37.0295	-53.8316	-51.8484	100
2	53	-3.99556	-19.832	-41.8364	-30.103	-44.028	-34.2874	-422.645	-188.728	-67.6981	-77.6003	-57.9687	100
3	54	-1.32418	-22.1393	-32.0145	-21.7883	-55.1683	-43.5689	-63.8262	-60.03	-65.5404	-32.2281	-32.2495	100
4	55	-2.91196	-1.62514	11.9097	5.63546	-31.1277	-48.2824	-100.691	-64.2972	-27.0413	-15.2854	-13.2207	100
5	56	32.9069	37.4147	51.3877	43.7649	2.5515	-47.2201	-12.5215	-30.7675	-27.2648	-32.2105	-34.4772	100
6	57	6.44224	32.8787	58.212	54.2925	-5.34518	-1.51096	-14.1962	-6.16892	2.53946	5.08814	6.65466	100
7	58	100	100	100	100	100	100	100	100	100	100	100	100

Plus l'écart relatif est petit, plus le vent géostrophique domine sur le vent horizontal. On observe sur les cartes réalisées que le vent géostrophique semble augmenter au fur et à mesure que nous nous rapprochons de la dépression.

Écart relatif moyen à 300 Hpa; 5.16% Écart relatif moyen à 700 Hpa; 0.10% Écart relatif maximal à 300 Hpa; 42.75% Écart relatif maximal à 700 Hpa; 30.25% Écart relatif minimal à 300 Hpa; -42.46% Écart relatif minimal à 700 Hpa; -14,58%

Les normes des vents géostrophiques et des vents horizontaux varient assez peu l'une vis-à-vis de l'autre.

Partie b):

Calculer <u>la direction</u> du vent horizontal et <u>la direction</u> du vent géostrophique. On cherche à approximer la direction des vents de Nord-Ouest, Ouest-Sud,Sud-Est et Est-Nord. Pour cela on calcule l'angle des vents $\theta = \arctan(u/v)$. On rajoute 90° à θ pour chaque changement de quart de cercle.

Nous obtenons les valeurs suivantes :

Theta v	/g à 300	hPa	(°)

	0	1	2	3	4	5	6	7	8	9	10	11
0												0
1		7.01963	15.6341	31.619		187.965	216.04	313.825	338.097	347.466	358.467	0
2		12.5015	16.7469	8.55619	328.96	259.539	250.719	305.181	327.302	334.525	340.424	342.568
3		13.2307	14.4215	12.0649		345.359	334.816	331.517	332.587	332.414	331.996	332.309
4		12.3257	11.9321	10.8239	5.04286		352.993	345.913	345.699	339.074	335.958	338.418
5		4.36057	4.56736	7.08355	8.48134	357.998	354.675	354.364	349.441	350.923	355.083	357.332
6		12.5607	7.7537	3.46306	356.883	354.813	349.71	348.798	352.246	354.813	357.401	0

Theta vg700 (°)

	0	1	2	3	4	5	6	7	8	9	10	11
0												0
1		148.381	156.511	165.4	167.279	169.736	170.024	211.619	332.179	340.618	346.801	348.806
2		158.139	167.283	174.71	181.189	187.993	209.053	279.434	299.907	311.82	323.551	334.485
3		163.622	172.821	181.603	194.336	202.938	252.513	299.558	301.486	313.385	320.773	329.554
4		153.349	167.078	182.737	197.009	209.838	240.843	299.266	312.403	321.544	330.162	334.453
5		131.801	134.813	146.137	184.567	218.62	239.201	279.666	301.882	310.539	319.389	328.146
6		117.681	108.461	58.5323	47.4468	195.233	284.697	303.73	314.399	325.271	331.426	336.832

Theta vh 300 (°)

	0	1	2	3	4	5	6	7	8	9	10	11
0												0
1		340.547	339.086	335.574	268.677	207.146	182.424	47.0105	15.4578	1.78835	4.49581	11.4728
2		337.518	328.234	318.43	295.48	270.316	278.463	292.564	315.568	337.384	348.333	347.644
3		337.281	330.566	327.383	320.087	310.621	312	321.01	323.878	331.858	336.774	334.315
4		342.009	336.852	334.945	331.734	328.481	329.507	332.14	334.552	332.692	331.548	333.831
5		349.141	346.847	343.357	344.187	345.666	335.164	332.339	330.569	329.772	332.186	338.252
6		357.293	355.416	353.74	353.531	352.862	341.434	336.396	335.281	336.88	341.857	346.388

Theta vh 700 (°)

	0	1	2	3	4	5	6	7	8	9	10	11
0												0
1		131.866	139.714	148.426	152.512	160.792	165.113	185.625	21.3992	16.8109	9.62167	357.557
2		136.963	145.309	156.617	160.585	173.927	191.489	294.775	307.727	334.912	339.113	343.873
3		142.034	152.947	161.417	168.008	182.732	219.495	289.396	298.005	323.384	325.762	334.964
4		146.632	152.862	159.181	168.851	179.844	225.103	285.145	317.282	321.166	330.516	342.514
5		132.392	136.6	139.205	153.127	171.044	226.093	279.007	312.944	339.009	348.466	348.807
6		130.818	116.367	115.382	124.187	159.714	266.77	301.84	320.288	326.121	334.45	341.552

□ Ecrire l'écart entre ces deux valeurs pour la direction (en degré) également sous forme d'un tableau. Où sont les différences les plus fortes? On exprime les écarts entre les angles entre 0 et 180° afin de faciliter l'interprétation.

Ecart en degrés entre la direction du vent horizontal et la direction du vent géostrophique à 300hPa (°)

	0	1	2	3	4	5	6	7	8	9	10	11
0												0
1		26.4722	36.5476	56.0446	91.3232	19.1803	33.6156	93.1858	37.3612	14.3226	6.02913	11.4728
2		34.9835	48.5126	50.1258	33.4801	10.7768	27.7442	12.6179	11.7342	2.85906	7.90932	5.07623
3		35.9496	43.8556	44.682	39.913	34.7382	22.8161	10.5072	8.70904	0.556079	4.77798	2.006
4		30.3168	35.0801	35.8787	33.3093	31.5194	23.4856	13.7731	11.1464	6.38198	4.40982	4.58671
5		15.2197	17.7201	23.7264	24.2942	12.3328	19.5114	22.0256	18.8724	21.1503	22.8972	19.0804
6		15.2676	12.3374	9.72355	3.35172	1.95138	8.27663	12.4013	16.9652	17.9334	15.5443	13.6123

Ecart en degrés entre la direction du vent horizontal et la direction du vent géostrophique à 700hPa (°)

	0		2	3	4	5	6	7	8	9	10	11
0												0
1		16.5155	16.7974	16.9743	14.7671	8.94427	4.91061	25.9935	49.2203	36.1932	22.8211	8.75043
2		21.1761	21.9733	18.093	20.604	14.0667	17.5644	15.3408	7.82067	23.0925	15.5621	9.3885
3		21.5888	19.8743	20.1858	26.3279	20.2064	33.0181	10.1618	3.4813	9.99852	4.98923	5.41027
4		6.71649	14.2161	23.5552	28.1582	29.9934	15.7399	14.1212	4.87881	0.377601	0.353527	8.06108
5		0.590694	1.78716	6.93248	31.4402	47.5756	13.1081	0.658387	11.0615	28.47	29.077	20.6605
6		13.1369	7.90649	56.8494	76.7404	35.519	17.927	1.88918	5.88876	0.849975	3.02431	4.71944

On observe que les écarts les plus forts sont observés là où le vent géostrophique est le plus intense.

Partie c):

Vous pouvez également tracer les résultats $A(\lambda, \varphi)$ de a) et b) à l'aide d'iso-contours ou d'iso-surfaces, si vous avez les moyens graphiques accessibles en Matlab ou en Python.

Interprétation : On vérifie bien la loi de Buys Ballot, les zones de basses pressions sont bien placées sur la gauche. Le vent géostrophique « tire » le vent horizontal. Le vent géostrophique est globalement tangent par rapport aux isocontours.

III/ Le vent agéostrophique

Le vent agéostrophique se décompose en trois termes comme suit :

$$\overrightarrow{\mathbf{v}}_{\mathrm{ag}} = \Delta \overrightarrow{\mathbf{v}}_{\mathrm{g}} \cong \frac{1}{f} \overrightarrow{k} \times \frac{\partial \overrightarrow{\mathbf{v}}_{\mathrm{g}}}{\partial t} + \frac{\mathbf{V}}{f} \overrightarrow{k} \times \frac{\partial \overrightarrow{\mathbf{v}}_{\mathrm{g}}}{\partial s} + \frac{\mathbf{W}}{f} \overrightarrow{k} \times \frac{\partial \overrightarrow{\mathbf{v}}_{\mathrm{g}}}{\partial z}$$
(A) (B) (C)

Le terme (C) dans l'équation ci-dessus est aussi appelé la contribution du vent thermique :

$$(\Delta \overrightarrow{v_{g}})_{C} = \frac{w}{f} \overrightarrow{k} \times \left(\frac{1}{T} \frac{\partial T}{\partial z} \left(\overrightarrow{v_{g}} \right) + \frac{g}{f T} \left(\overrightarrow{k} \times \nabla_{h} T \right) \right)$$

On cherche à calculer la norme de :

$$(\Delta \overrightarrow{v_g})_{\rm C2} = -\frac{gw}{f^2 T} \nabla_{\rm h} T \ \ {\rm Avec} \, \omega = - \, \rho \, {\rm g} \, {\rm w} \label{eq:c2}$$

A 300 Hpa: (m/s)

	0	1	2	3	4	5	6	7	8	9	10	11
0												0
1		31.9192	99.5802	60.7967	25.9365	7.886	23.6314	34.1324	50.7445	73.6637	18.6912	17.1409
2		19.8708	89.2668	42.5803	32.8135	210.013	277.536	367.515	200.758	121.794	7.83381	21.3193
3		6.04667	42.6783	101.764	82.5006	152.558	209.606	141.816	143.622	176.841	93.8963	129.76
4		56.3777	31.5886	62.0586	74.1323	96.7925	131.009	235.692	158.059	87.6885	93.3035	246.973
5		83.044	57.2729	48.882	23.574	93.437	68.5967	165.887	66.7931	177.238	347.177	303.226
6		3.0895	11.2581	63.0328	135.318	140.017	67.7332	57.6134	126.936	137.977	167.87	169.349

A 700 hPa (m/s):

	0	1	2	3	4	5	6	7	8	9	10	11
0												0
1		6.29075	7.7022	7.37505	3.84951	6.68103	36.3038	28.2832	14.1173	0.219796	0.989673	1.76677
2		6.2802	2.05619	6.25188	16.4007	13.7203	55.7538	12.9187	27.1729	8.01024	0.124882	0.17617
3		14.3868	1.2611	5.75616	37.5311	6.81737	44.8814	9.26504	11.3752	1.07999	0.404493	0.282151
4		7.95109	4.97819	4.54027	37.6024	20.7179	48.54	15.7469	11.0165	5.34824	0.79847	1.09853
5		18.2863	23.8111	5.86974	25.4445	26.844	21.6768	51.9615	43.4548	21.8047	6.44273	9.34733
6		20.5706	43.2433	30.2894	9.33591	10.833	6.15672	19.5834	32.8106	29.4917	26.4946	22.573

Calculer la contribution du vgC2 au vent agéostrophique « total » (vh-vg), analysé dans la partie I. On calcule (Vh-Vg)/Vgc2

Pour 300 hPa (%):

	0		2	3	4	5	6		8	9	10	11
0												0
1		-7.876	1.21403	2.23023	-0.701281	-245.963	-81.9257	-113.997	-83.6685	-23.8405	-8.84964	-26.9906
2		2.63592	2.19456	9.86611	39.552	2.14746	-0.254551	-2.23455	-8.49002	-6.19424	-81.3612	-39.4072
3		38.3926	5.80719	5.92383	6.23224	1.40773	0.437248	-0.0836411	-1.63358	-2.6805	-8.24812	-8.37566
4		10.193	11.2997	10.7042	5.86104	0.0651655	0.127012	-0.591635	-1.23555	-4.12261	-6.32895	1.19658
5		10.5154	9.14192	12.8243	30.3831	1.13094	-1.9909	2.97392	-2.01074	-2.28775	0.396331	1.70501
6		325.178	86.4287	14.0683	2.98163	2.00694	7.53238	9.54275	3.67284	2.97861	0.92028	0.496637
Poi	ır 70	0 hPa(%):			·	·		·	·	·	
	0		2	3	4	5	6	7	8	9	10	11

	0		2	3	4	5	6	7	8	9	10	11
0	0		0	0	0	0	0	0	0	0	0	0
1	0	-3.57512	-37.5288	-118.197	-210.29	-183.398	-21.9305	-2.80141	-32.4079	-2176.87	-909.908	-658.106
2	0	-9.65407	-161.126	-150.353	-49.9437	-82.3774	-8.31193	-93.2151	-52.9955	-129.143	-11679.1	-8169.31
3	0	-1.18313	-253.443	-110.6	-14.1405	-176.913	-14.0591	-85.2163	-71.0083	-1000.36	-1749.62	-2881.3
4	0	-4.07912	-4.22047	45.8107	3.19023	-27.0639	-14.1051	-75.1146	-74.2045	-84.6072	-392.216	-271.565
5	0	26.4273	23.3953	142.437	28.2121	1.14784	-18.9789	-3.35088	-10.772	-21.8411	-98.1424	-76.3462
6	0	3.88704	9.64861	23.7629	50.7442	-1.30933	-1.28507	-6.16691	-2.7308	1.59475	3.72867	6.48592

Interprétation : lorsque nous avons des ascendances, le vent agéostrophique va souffler en direction des masses d'air plus froides.