Quotient (Division) Operation (II)

- ☐ At the data level
 - Simplified definition
 - Simplified assumptions: r > s, $S \neq \emptyset$, $A_r = B_s$, $A_{r-1} = B_{s-1}$, $A_{r-s+1} = B_1$, result relation has schema $(A_1, ..., A_{r-s})$
 - Result relation of the quotient:

$$R \div S = \{(a_1, ..., a_{r-s}) \mid \forall (b_1, ..., b_s) \in S : (a_1, ..., a_{r-s}, b_1, ..., b_s) \in R\}$$

- General definition
 - $\blacksquare R \div S = \pi_{R-S}(R) \pi_{R-S}((\pi_{R-S}(R) \times S) R)$
 - $\pi_{R-S}(R)$ projects on all attributes that are not in S, that is, it denotes all "prefixes" from R
 - $\pi_{R-S}(R) \times S$ creates all tuples that can be obtained by connecting the prefixes of R with all tuples of S; the schema of these tuples is R
 - $(\pi_{R-S}(R) \times S) R$ finds out which tuples from the previous step are not in R; as a side effect, if a prefix is in R with all tuples in S, it will not appear in the result any more, otherwise, this prefix will "survive"

Quotient (Division) Operation (III)

- ☐ At the data level (*continued*)
 - General definition (continued)
 - $\pi_{R-S}((\pi_{R-S}(R) \times S) R)$ determines the prefixes that do *not* appear in R with all tuples in S
 - $\pi_{R-S}(R) \pi_{R-S}((\pi_{R-S}(R) \times S) R)$ determines the prefixes that appear in R with all tuples in S

Natural Join Operation

Common attributes are a prerequisite

	R				S	
Α	В	C	\bowtie	C	D	Ε
a ₁	b ₁	<u>C1</u>		CT	d ₁	e ₁
a ₂	b ₂	c ₂		C_3	d ₂	e ₂

R⋈S				
Α	В	С	D	E
a ₁	b ₁	ট্	d ₁	e

Equal values of common attributes decide about the concatenation of two tuples

- ☐ At the schema level
 - Assumptions: R has m + k attributes $A_1, ..., A_m, B_1, ..., B_k$, and S has n + k attributes $B_1, ..., B_k, C_1, ..., C_n$
 - $R\bowtie S$ has the arity m+n+k
 - $\star k \in \mathbb{N}, \ \forall \ 1 \leq i \leq k : dom(R.B_i) = dom(S.B_i)$
 - ❖ \forall 1 ≤ i ≤ m \forall 1 ≤ j ≤ n : $A_i \neq C_i$
- □ At the data level

Theta Join Operation

- ☐ At the schema level
 - \Leftrightarrow Given: relations $R(A_1, ..., A_r), S(B_1, ..., B_s)$
 - Result schema has the r + s attributes $A_1, ..., A_r, B_1, ..., B_s$
- At the data level
 - $R\bowtie_F S = \sigma_F(R \times S)$
 - ❖ F is a Boolean predicate that consists of
 - attribute names from R and S (equal attributes from different schemas are qualified by the name of the relation schema, e.g., R.A, S.A, S.B)
 - comparison operators =, ≠, <, >, ≤, ≥
 - logical operators ∧ and ∨
 - constants (e.g., 5, "Smith")
 - ❖ A theta join of the form $R \bowtie_{R.A_i = S.B_j} S$ is denoted as an equi-join
- □ A theta join is more general than a natural join (see definition of a natural join, subsequent projection needed)

Outer Join Operations (I)

- ☐ Joins introduced so far are also called inner joins: the result only contains those tuples that found a matching partner in the other relation
- Outer joins are an extension of the natural join and *additionally* consider *partnerless* tuples of a relation that do *not* find a matching tuple in the other relation; the result tuples are "filled" with *null* (\perp) values
- Example of a left outer join

- ☐ Tuples from R are "rescued" by all means (green ellipses)
- ☐ Tuples from R that cannot find a matching partner in S are filled up with null values (blue ellipse)

Outer Join Operations (II)

- Outer joins between two relations R and S
 - \diamond Left outer join (\bowtie): The tuples of R are preserved in any case
 - ❖ Right outer join (⋈): The tuples of S are preserved in any case
 - \diamond (Full) outer join (\bowtie): The tuples of R and S are preserved in any case
- ☐ Example of a full outer join

	R	
Α	В	С
a ₁	b ₁	C ₁
a ₂	b ₂	c ₂

	F	₹ №	S	
Α	В	С	D	Е
a ₁	b ₁	c ₁	d ₁	e ₁
a ₂	b ₂	c ₂	1	10-20
	<u> </u>	С3	d ₂	e ₂

Outer Join Operations (III)

- ☐ At the schema level
 - The assumptions are the same as for the natural join
 - The result schema is the same as for the natural join
- At the data level
 - \bullet Let \mathcal{R} be the schema of relation \mathcal{R} and \mathcal{S} be the schema of relation \mathcal{S}
 - **\Let** Let $\mathcal{R} \cap \mathcal{S} \neq \emptyset$ (prerequisite of the natural join operation)
 - ❖ Let the relation *U* have the schema S R. We define $U = \{(\bot, ..., \bot)\}$, that is, *U* is a relation with a *single* tuple and |S R| attributes, and all attribute values of this single tuple are *null*.
 - ❖ Correspondingly, let the relation V have the schema R S. We define $V = \{(\bot, ..., \bot)\}$.
 - $R \bowtie S = (R \bowtie S) \cup ((R \pi_{\mathcal{R}}(R \bowtie S)) \times U)$
 - $R\bowtie S = (R\bowtie S) \cup (V\times (S-\pi_S(R\bowtie S)))$
 - $R\bowtie S = (R\bowtie S) \cup ((R-\pi_{\mathcal{R}}(R\bowtie S))\times U) \cup (V\times (S-\pi_{\mathcal{S}}(R\bowtie S)))$

Semijoin Operation

- □ A semijoin of R with S ($R \ltimes S$, $S \rtimes R$, $R \ltimes_F S$, $S \rtimes_F R$) returns all tuples of R that have a potential partner in S
- Example of a semi-natural join

	R	
Α	В	С
a ₁	b ₁	c ₁
a ₂	b ₂	c ₂

1	R × 5	S
Α	В	С
a ₁	b ₁	c ₁

- At the schema level
 - ❖ The assumptions are the same as for the natural join and theta join resp.
 - \diamond The result schema is \mathcal{R} as the schema of relation \mathcal{R}
- ☐ At the data level

$$R \bowtie S = \pi_R(R \bowtie S) = S \rtimes R$$

semi-natural join

$$R \bowtie_F S = \pi_{\mathcal{R}}(R \bowtie_F S) = S \bowtie_F R$$

semi-theta join

Antijoin Operation

- An antijoin of R with S ($R \triangleright S$, $R \triangleright_F S$) is the complement of the semijoin and returns all tuples of R that do *not* have a potential partner in S
- □ At the schema level
 - The assumptions are the same as for the natural join and theta join resp.
 - \diamond The result schema is \mathcal{R} as the schema of relation \mathcal{R}
- □ At the data level
 - $R \triangleright S = R R \ltimes S$ anti-natural join
 - ❖ $R \triangleright_F S = R R \bowtie_F S$ anti-theta join

Example Queries (I)

- ☐ Query 1: Which students attend which lectures?
- □ RA expression: students ⋈ attends ⋈ lectures

students ⋈ attends ⋈ lectures						
reg-id	name	sem	id	title	credits	held_by
26120	Fichte	10	5001	foundations	4	2137
27550	Schopen.	12	5001	foundations	4	2137
27550	Schopen.	6	4052	logic	4	2125

- Query 2: Which lectures are held by which professors?
- □ RA expression: lectures $\bowtie \rho_{\mathsf{held_by}\leftarrow\mathsf{pers-id}}(\mathsf{professors})$
- Schema of the result relation (not shown) is (id, title, credits, held_by, name, room, rank)

Example Queries (II)

- Query 3: Find the personnel ids of all C4 professors who held at least one lecture, and assign the name *R* to the result relation.
- ☐ RA expression:

	R
	pers-id
ŀ	2125
ŀ	2126
ŀ	2137

- ☐ Query 4: Find the registration ids of those students who have attended *all* lectures with four credits.
- \square RA expression: attends $\div \pi_{id}(\sigma_{credits=4}(lectures))$
- ☐ The result schema has only the attribute "reg-id"; the result relation is empty

Relational Algebra Query Examples (I)

- ☐ The following examples demonstrate how colloquial queries can be translated into Relational Algebra expressions (queries)
- □ The examples also show the possible large complexity of Relational Algebra expressions
- We assume the following database schema

Flights(flightNumber, from, to, distance)

Aircraft(planeID, planeName, range)

Pilots(employeeID, planeID)

Employees(employeeID, employeeName, salary)

All attributes are of type *string* except for the attributes *distance*, *range*, and *salary* that are of type *integer*

Relational Algebra Query Examples (II)

- ☐ Flights(flightNumber, from, to, distance)
 - Aircraft(planeID, planeName, range)
 - Pilots(employeeID, planeID)
 - Employees(employeeID, employeeName, salary)
- ☐ Query 1: Find the employee identifiers of pilots who can operate the aircrafts of types "Boeing 747" and "Boeing 777".
- ☐ RA expression:

```
\pi_{\text{employeeID}}(\sigma_{\text{planeName}} = \text{`Boeing 747'}(\text{Aircraft} \bowtie \text{Pilots}))
```

 \bigcap

 $\pi_{employeeID}(\sigma_{planeName = 'Boeing 777'}(Aircraft \bowtie Pilots))$

Relational Algebra Query Examples (III)

- ☐ Flights(flightNumber, from, to, distance)
 - Aircraft(planeID, planeName, range)
 - Pilots(employeeID, planeID)
 - Employees(employeeID, employeeName, salary)
- Query 2: Find the identifiers of the pilot(s) with the highest salary.
- ☐ RA expression:

```
\rho_{AllPilots}(\pi_{employeeID}(Pilots) \bowtie Employees)
```

$$(\pi_{employeeID}(AllPilots) -$$

 $\pi_{P2.employeeID}(\sigma_{P1.salary} > P2.salary(\rho_{P1}(AllPilots) \times \rho_{P2}(AllPilots))))$

Relational Algebra Query Examples (IV)

- ☐ Flights(flightNumber, from, to, distance)
 - Aircraft(planeID, planeName, range)
 - Pilots(employeeID, planeID)
 - Employees(employeeID, employeeName, salary)
- ☐ Query 3: Find the airplane identifiers of aircrafts that cannot fly non-stop from ATL to JFK.
- ☐ RA expression:

```
\pi_{\text{planeID}}(\sigma_{\text{range} < \text{distance}}(\text{Aircraft} \times \sigma_{\text{from = 'ATL'} \land \text{to = 'JFK'}}(\text{Flights})))
```

Relational Algebra Query Examples (V)

- ☐ Flights(flightNumber, from, to, distance)
 Aircraft(planeID, planeName, range)
 Pilots(employeeID, planeID)
 Employees(employeeID, employeeName, salary)
- ☐ Query 4: Find the names of pilots who can operate planes with a range greater than or equal to 1,500 miles but cannot operate "Boeing 747" and "Boeing 777" aircrafts.
- ☐ RA expression:

```
\begin{split} \pi_{\text{employeeName}}(\text{Employees} \bowtie \\ & (\pi_{\text{employeeID}}(\sigma_{\text{range}} >= 1500(\text{Aircraft} \bowtie \text{Pilots})) \\ & - \\ & (\pi_{\text{employeeID}}(\sigma_{\text{planeName}} = \text{`Boeing } 747\text{'}(\text{Aircraft} \bowtie \text{Pilots}))) \\ & \cap \\ & \pi_{\text{employeeID}}(\sigma_{\text{planeName}} = \text{`Boeing } 777\text{'}(\text{Aircraft} \bowtie \text{Pilots})))))) \end{split}
```

Relational Algebra Query Examples (VI)

☐ Flights(flightNumber, from, to, distance)

Aircraft(planeID, planeName, range)

Pilots(employeeID, planeID)

Employees(employeeID, employeeName, salary)

- Query 5: Find the flight numbers of flights that can be piloted by every pilot whose salary is under \$100,000.
- ☐ RA expression:

```
\pi_{\text{flightNumber, planeID}}(\sigma_{\text{distance}} \leftarrow \text{range}(\text{Flights} \times \text{Aircraft})) \div \\ \pi_{\text{planeID}}(\sigma_{\text{salary}} \leftarrow 100000}(\text{Pilots} \bowtie \text{Employees})))
```

Relational Algebra Query Examples (VII)

- ☐ Flights(flightNumber, from, to, distance)
 - Aircraft(planeID, planeName, range)
 - Pilots(employeeID, planeID)
 - Employees(employeeID, employeeName, salary)
- Query 6: Find the identifiers of the pilots that fly all aircrafts.
- ☐ RA expression:
 - $\mathsf{Pilots} \div \pi_{\mathsf{planeID}}(\mathsf{Aircraft})$

Relational Algebra Query Examples (VIII)

- ☐ Flights(flightNumber, from, to, distance)
 - Aircraft(planeID, planeName, range)
 - Pilots(employeeID, planeID)
 - Employees(employeeID, employeeName, salary)
- Query 7: Find the names of all employees who are not pilots.
- ☐ RA expression:

 $\pi_{\text{employeeName}}(\text{Employee} \bowtie (\pi_{\text{employeeID}}(\text{Employee}) - \pi_{\text{employeeID}}(\text{Pilot})))$