ПРАКТИЧЕСКАЯ РАБОТА № 2 НЕЛИНЕЙНЫЕ СТРУКТУРЫ ДАННЫХ

Цель работы — познакомиться с нелинейными структурами данных и некоторыми алгоритмами поиска, научиться решать задачи с использованием деревьев и графов, понять взаимосвязь алгоритма обработки структур данных с их внутренним представлением.

Задание 1. Решить задачи по теме «Обход бинарного дерева». Задание представлено в виде <u>теста на странице курса в ЭИОС (ПР 2 Задание</u> 1).

Задание 2. Решить задачу выбора представления и структуры хранения графа. Задание представлено в виде <u>теста на странице курса в ЭИОС (ПР_2</u> Задание 2)

Задание 3. Написать программу (программы) для решения задачи согласно номеру индивидуального варианта.

Задание может быть выполнено на одном из трех уровней сложности.

Низкий. Задачу достаточно решить для одного фиксированного набора данных. Граф представляется матрицей смежности (или матрицей весов), структура хранения – статический двумерный массив.

Средний. Граф представляется двумя способами (матрицей смежности или весов и списками смежности), для каждого представления требуется написать отдельную программу решения задачи. Для тестирования программ требуется создать файлы с описанием графов обоими способами.

Повышенный. Граф представляется двумя способами (матрицей смежности или весов и списками смежности), для тестирования программы требуется создать файлы с описанием графа одним способом (только матрицей или только списками), при считывании данных из файла заполнять параллельно обе структуры хранения (и реализующую представление матрицы смежности (весов), и реализующую представление списков смежных вершин). При выборе структур хранения руководствоваться требованием разумной экономии памяти.

Варианты заданий

- 1. В системе двусторонних дорог за проезд каждой дороги взимается некоторая пошлина. Найти путь из города A в город B с минимальной величиной S+P, где S сумма длин дорог пути, а P сумма пошлин проезжаемых дорог. A и B вводятся с клавиатуры. На среднем и повышенном уровнях сложности помимо найденного пути вывести отдельно S и P.
- 2. Найти диаметр графа, т.е. максимум расстояний между всеми парами его вершин.
 - 3. Найти все вершины орграфа, недостижимые от заданной его вершины
- 4. Определить, можно ли в заданной системе односторонних дорог проехать из города А в город В таким образом, чтобы посетить город С и не проезжать никакой дороги более одного раза.
- 5. Задана система односторонних дорог. Найти путь, соединяющий города А и В, и не проходящий через заданное множество городов. А, В и множество закрытых городов вводятся с клавиатуры.
- 6. Известно, что заданный граф не дерево. Проверить, можно ли удалить из него одну вершину (вместе с инцидентными ей ребрами), чтобы в результате получилось дерево.
 - 7. Из орграфа удалить все вершины, из которых недостижима заданная.
- 8. Заданы две системы двусторонних дорог с одним и тем же множеством городов (железные и шоссейные дороги). Найти минимальный по длине путь из города А в город В (который может проходить как по железным, так и по шоссейным дорогам), и места пересадок с одного вида транспорта на другой на этом пути. А и В вводятся с клавиатуры.
- 9. Найти медиану взвешенного графа, т.е. такую его вершину, что сумма расстояний от нее до остальных вершин минимальна.
 - 10. Найти центр взвешенного графа.
- 11. Имеются n городов, некоторые из них соединены дорогами. Определить, из каждого ли города можно попасть в остальные.

- 12. Задана система двусторонних дорог. N-периферией называется множество городов, расстояние от которых до выделенного города (столицы) больше N. Определить N-периферию для заданного N.
- 13. Имеются *п* городов. Некоторые из них соединены двусторонними дорогами известной длины. Определить, в каком из городов компании нужно построить склад, чтобы доставка товаров по городам осуществлялась с наименьшими транспортными расходами. Считать, что товары распределяются по городам равномерно и дорожные условия одинаковые.
- 14. В орграфе найти все стоки, то есть вершины, в которые только входят дуги, и истоки, т. е. вершины, из которых дуги только выходят. Обойти орграф методом поиска в глубину и определить минимально возможное количество деревьев в глубинном остовном лесу этого графа.
- 15. По системе односторонних дорог определить, есть ли в ней город, из которого можно добраться до каждого из остальных городов, проезжая не более 100 км.
- 16. Задана система двусторонних дорог, причем для любой пары городов можно указать соединяющий их путь. Найти такой город, для которого сумма расстояний до остальных городов минимальна.
- 17. Задан орграф с циклами. Проверить, можно ли удалить одну вершину так, чтобы в полученном орграфе не было циклов.
- 18. Найти все вершины графа, к которым существует путь заданной длины (не обязательно кратчайший) от вершины, номер которой вводится с клавиатуры.
- 19. Имеются n городов. Некоторые из них соединены дорогами известной длины. Хватит ли дальнобойщику, выезжающему из города A, топлива, чтобы доехать до города B, если в баке x л бензина, а расход y л на 100 км. A, B, x и y вводятся с клавиатуры.
- 20. Имеются *п* деревень. Некоторые из них соединены дорогами известной длины. Где нужно открыть фельдшерский пункт, чтобы машина

скорой помощи могла добраться в каждую деревню за минимальное время. Считать, что скорость передвижения по всем дорогам одинакова.

Контрольные вопросы

- 1. Что такое дерево? Из каких элементов оно состоит?
- 2. Как измерить высоту дерева?
- 3. Что такое лес?
- 4. Какое дерево называют бинарным?
- 5. Какие бинарные деревья называются полными, почти полными и неполными?
- 6. Какие деревья называют бинарными деревьями поиска?
- 7. Что такое пирамида?
- 8. Какие существуют способы реализации бинарных деревьев?
- 9. Какие существуют способы организации общих деревьев?
- 10. Какие методы применимы для работы с деревьями?
- 11. Что такое обход дерева?
- 12. Какие методы обхода бинарных деревьев Вы знаете?
- 13. Что понимают под сбалансированным и идеально сбалансированным бинарным деревом?
- 14. Что такое граф? Какие виды графов Вы знаете?
- 15. Что такое порядок графа?
- 16. Что понимают под степенью узла графа?
- 17. Что такое полустепень исхода и полустепень захода узла орграфа?
- 18. Какие существуют способы представления графов?
- 19. Какие структуры хранения используются при решении задач на графах, представленных матрицей смежных вершин?
- 20. Какие структуры хранения используются при решении задач на графах, представленных списками смежных вершин?
- 21. Для чего используется и в чем заключается алгоритм Флойда?
- 22. Для чего используется и в чем заключается алгоритм Дейкстры?
- 23. Как найти центр ориентированного графа?

- 24. Как найти медиану графа?
- 25. Для чего требуется транзитивное замыкание матрицы смежности?
- 26. Какие методы обхода графов Вы знаете?
- 27. Какие вспомогательные структура данных используются при обходах графа?
- 28. Что такое цикл? Как можно определить наличие в графе циклов?
- 29. Что такое остовное дерево графа?