191220154 张涵之 第1章作业

5. 实现 z=(x-y)*y 功能的程序在主存部分单元中的初始内容如图:

主存地址	主存单元内容	内容说明(I _i 表示第i条指令)	指令的符号表示
0	1110 0111	I ₁ : R[0] ← M[7]; op=1110: 取数操作	load r0, 7#
1	0000 0100	I ₂ : R[1] ← R[0]; op=0000; 传送操作	mov r1, r0
2	1110 0110	I ₃ : R[0] ← M[6]; op=1110: 取数操作	load r0, 6#
3	0010 0001	I ₄ : R[0] ← R[0]-R[1]; op=0010; 减操作	sub r0, r1
4	0011 0001	I ₅ : R[0] ← R[0] *R[1]; op=0011; 乘操作	mul r0, r1
5	1111 1000	I ₆ : M[8] ← R[0]; op=1111: 存数操作	store 8#, r0
6	0001 0000	操作数 x, 值为 16	
7	0010 0001	操作数 y, 值为 33	
8	0000 0000	结果 z, 初始值为 0	

- 8. 设程序 P 有 N 条指令,用户 CPU 时间 = CPI * 程序总指令条数 * 时钟周期在 M₁ 上运行用户 CPU 时间为 4 * N * 0.8 = 3.2N ns 在 M₂ 上运行时用户 CPU 时间为 2 * N * 1.2 = 2.4N ns 则 M₁ 和 M₂ 运行程序 P 的性能之比为 2.4 : 3.2 = 3:4 对于程序 P 来说,机器 M₂ 的执行速度更快,是机器 M₁ 的 4/3 倍
- 10. S_1 有 5+2+2+1=10 条指令,CPI 为(5*1+2*2+2*3+1*4) / 10=1.9 所含时钟周期数为 19,执行时间为 19 / 500MHz = 38ns S_2 有 1+1+1+5=8 条指令,CPI 为(1*1+1*2+1*3+5*4) / 8=3.25 所含时钟周期数为 26,执行时间为 26 / 500MHz = 52ns
- 11. P'的执行时间为 12s / 1.2 = 10s, 设有 n 条乘法指令被替换成了左移指令,则有 12s n*5 / 1.2GHz + n*2 / 1.2GHz = 10s,解得 n = $0.8*10^9$ 则 P 中有 $8*10^8$ 条乘法指令被替换成了左移指令
- 12. 程序 P 的原执行时间为(500*2 + 4000*1 + 3000*4 + 1000*1) * 10^6 / 2.5 GHz = 7.2s 设浮点数指令的 CPI 改进为 x,使程序 P 的执行时间减少一半 有(500*x + 4000*1 + 3000*4 + 1000*1) * 10^6 / 2.5 GHz = 3.6s, x < 0 无法仅通过改进浮点数指令的 CPI 使程序 P 的执行时间减半 设访存指令的 CPI 改进为 y,使程序 P 的执行时间减少一半 有(500*2 + 4000*1 + 3000*y + 1000*1) * 10^6 / 2.5 GHz = 3.6s, y = 1 改进后访存指令的 CPI 为 1 若浮点数指令和整数指令的 CPI 减少 20%,访存指令和分支指令的 CPI 减少 40% [(500*2 + 4000*1) * (1-20%) + (3000*4 + 1000*1) * (1-40%)] * 10^6 / 2.5 GHz = 4.72s 则程序 P 的执行时间会减少 7.2-4.72=2.48s