

IAME SOLUTION

On the first statistics exam, we looked at data regarding HRV, or Heart Rate Variability, in milliseconds for Joe Tritschler's esteemed colleague who had a "breakthrough" case of Covid-19 a couple months ago. Here is the data, for which we already computed sample parameters of $\bar{x} = 39.64$ ms and $s^2 = 66.55$ (ms)².

Day	Date	HRV	Notes
W	7/28	33	
R	7/29	43	
F	7/30	43	
S	7/31	39	
U	8/1	23	Low number likely reflects excessive alcohol consumption the previous night
М	8/2	47	
Т	8/3	31	
W	8/4	37	Presentation of COVID symptoms
R	8/5	40	Confirmed positive COVID test
F	8/6	31	
S	8/7	39	
U	8/8	52	Reported feeling "loads better"
М	8/9	48	
Т	8/10	49	

Said colleague says her "normal" baseline value of HRV is 36 ms. Test the following hypotheses on the mean value of HRV using the fixed- α approach at α = 0.05. Sketch the appropriate distribution showing critical values, critical regions, and the test statistic.

to=1.670 2.160

Test the following hypotheses on the standard deviation of HRV using the p-value approach. Sketch the appropriate distribution showing the test statistic and region corresponding to the p-value. State your final conclusion with respect to a significance level of α = 0.05.

 H_0 : $\sigma = 10 \text{ ms}$

 H_0 : $\sigma \ge 10 \text{ ms}$

from table

$$\chi^{2}$$
 χ^{2}
 χ^{2}
 χ^{3}
 χ^{2}
 χ^{2}
 χ^{3}
 χ^{2}
 χ^{3}
 χ^{3}
 χ^{2}
 χ^{3}
 χ^{3

or
$$0.52$$
 p-value < 0.9 $+2$

P $\neq x = 0.05$ $+1$

Mussively fail to reject $+1$. $+1$