

Term End Examination - November 2013

Course : MAT101 - Multivariable Calculus and Differential Slot: D1+TD1

Equations

Class NBR : 2206\ 2219\ 2237 \2240 \2246 \2254 \2303 \2336 \2355 \2372 \2375 \2387 \2853 \5499

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer ALL Questions

1. If u = f(x, y), where $x = r \cos \theta$ and $y = r \sin \theta$, find $\left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2$.

- 2. If x = u(1 v), y = uv, find $\frac{\partial(u,v)}{\partial(x,y)}$.
- 3. Evaluate $\int_0^a \int_y^a \frac{x^2}{(x^2+y^2)^{3/2}} dxdy$ using polar coordinates.
- 4. Find the value of $\int_0^\infty \frac{x^3(1-x^6)}{(1+x)^{14}} dx$, using Beta function
- 5. Obtain the directional derivative of $\varphi = 2xy + z^2$ at the point (1, -1, 3) in the direction of $\hat{i} + 2\hat{j} + 2\hat{k}$.
- 6. If S is the surface of the sphere $x^2 + y^2 + z^2 = 1$, evaluate $\iint_S (x\hat{\imath} + 2y\hat{\jmath} + 3z\hat{k}) \cdot d\vec{S}$ using Gauss divergence theorem.
- 7. Find the particular integral of $(D^2 + D + 1)y = \sin 2x$.
- 8. Solve $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 4y = 0$.
- 9. Evaluate $\int_0^\infty te^{-2t} sint dt$, using Laplace transform.
- 10. Find the inverse Laplace transform of $\log \left(\frac{s^2 + a^2}{s^2 b^2} \right)$.

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- 11. (a) Using Taylor's series, expand $e^x \log (1 + y)$ in powers of x and y up to third degree [7] terms.
 - (b) Examine $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$ for extreme values. [7]

- 12. (a) By changing the order of integration, evaluate $\int_0^1 \int_x^1 \frac{x}{x^2 + y^2} dy dx$. [7]
 - (b) Find the area of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, using Gamma function. [7]
- 13. (a) Prove that $\vec{F} = (z^2 + 2x + 3y)\hat{\imath} + (3x + 2y + z)\hat{\jmath} + (y + 2xz)\hat{k}$ is irrotational vector. Hence find its scalar potential φ .
 - (b) Using Green's theorem, find the area between $y^2 = 4x$ and $x^2 = 4y$. [7]
- 14. (a) Solve $\frac{d^2y}{dx^2} + y = x$ by the method of variation of parameters. [7]
 - (b) Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x^2$ by the method of undetermined coefficients. [7]
- 15. (a) Using convolution theorem, find the inverse Laplace transform of $\frac{s}{(s^2+a^2)^2}$. [7]
 - (b) Using Laplace transform determine 'y' which satisfies the equation $\frac{dy}{dt} + 2y + \int_0^t y \, dt = 2\cos t \, , y(0) = 1 \, .$
- 16. (a) Evaluate $\iint \int \frac{dx \, dy \, dz}{x^2 + y^2 + z^2}$, taken throughout the volume of the sphere $x^2 + y^2 + z^2 = a^2$. [7]
 - (b) Verify Stoke's theorem when $\vec{F} = (x^2 y^2)\hat{\imath} + 2xy\hat{\jmath}$ and C is the boundary of the rectangular region in the *xoy* plane bounded by the lines x = 0, x = a, y = 0 and y = b.
- 17. (a) Solve the differential equation $x^2 \frac{d^2y}{d^2x} + 4x \frac{dy}{dx} + 2y = x \log x$. [7]
 - (b) Find the Laplace transform of periodic function $f(t) = \begin{cases} t & \text{in } 0 < t < \frac{\pi}{2} \\ \pi t & \text{in } \frac{\pi}{2} \le t \le \pi \end{cases}$ [7] given that $f(t + \pi) = f(t)$.

 $\Leftrightarrow\Leftrightarrow\Leftrightarrow$