CSE 491 Presentation

Namespace: Cowboys

Our Contributions

- GP agent Loop
- LGPAgent
- CGPAgent
- Scavenger Queuing for training
- GPAnalyzer
- Profilers
- Unit Tests
- ... and more

What the Heck is GP?

Here are some agents

Now let's create a lot of these variations

Health: 0

Damage done: 0

Score = -10

Score them

Using a fitness function

Health: 0

Damage done: 0

Score = -10

Health: 80

Damage done: 60

Score = 120

•

•

•

Our Design

CGPAgent

(Cartesian Genetic Programming)

The idea

Credit: Mitchell Spryn

Credit: Miragaia et al.

Function Set

Function	Description	Arity	Broadcasting	
Tunetion	Mathematica		Droudeusting	
ADD	(x+y)/2	2	Yes	
AMINUS	x-y /2	2	Yes	
MULT	xy	2	Yes	
CMULT	xp_n	1	Yes	
INV	1/x	1	Yes	
ABS	x	1	Yes	
SQRT	$\sqrt{ x }$	1	Yes	
CPOW	$ x ^{p_n+1}$	1	Yes	
YPOW	$ x ^{ y }$	2	Yes	
EXPX	$(e^x - 1)/(e^1 - 1)$	1	Yes	
SINX	sin x	1	Yes	
SQRTXY	$\sqrt{x^2 + y^2} / \sqrt{2}$	2	Yes	
ACOS	$(\arccos x)/\pi$	1	Yes	
ASIN	$2(\arcsin x)/\pi$	1	Yes	
ATAN	$4(\arctan x)/\pi$	1	Yes	
Statistical				
STDDEV	$std(\vec{x})$	1	No	
SKEW	$skewness(\vec{x})$	1	No	
KURTOSIS	$kurtosis(\vec{x})$	1	No	
MEAN	$mean(\vec{x})$	1	No	
RANGE	$max(\vec{x}) - min(\vec{x}) - 1$	1	No	
ROUND	$round(\vec{x})$	1	No	
CEIL	$ceil(\vec{x})$	1	No	
FLOOR	$floor(\vec{x})$	1	No	
MAX1	$max(\vec{x})$	1	No	
MIN1	$min(\vec{x})$	1	No	
Comparison				
LT	x < y	2	Yes	
GT	x > y	2	Yes	
MAX2	$\max(x, y)$	2	Yes	
MIN2	min(x, y)	2	Yes	

Credit: Evolving simple programs for playing Atari games by Wilson et al.

Function Set

Function	Description	Arity	Broadcasting	
Tunction	Mathematical		Droudeusting	
ADD	(x + y)/2	2	Yes	
AMINUS	x-y /2	2	Yes	
MULT	xy	2	Yes	
CMULT	xp_n	1	Yes	
INV	1/x	1	Yes	
ABS	x	1	Yes	
SQRT	$\sqrt{ x }$	1	Yes	
CPOW	$ x ^{p_n+1}$	1	Yes	
YPOW	$ x ^{ y }$	2	Yes	
EXPX	$(e^x - 1)/(e^1 - 1)$	1	Yes	
SINX	sin x	1	Yes	
SORTXY	$\sqrt{x^2 + y^2} / \sqrt{2}$	2	Yes	
ACOS	$(\arccos x)/\pi$	1	Yes	
ASIN	$2(\arcsin x)/\pi$	1	Yes	
ATAN	$4(\arctan x)/\pi$	1	Yes	
Statistical				
STDDEV	$std(\vec{x})$	1	No	
SKEW	$skewness(\vec{x})$	1	No	
KURTOSIS	$kurtosis(\vec{x})$	1	No	
MEAN	$mean(\vec{x})$	1	No	
RANGE	$max(\vec{x}) - min(\vec{x}) - 1$	1	No	
ROUND	$round(\vec{x})$	1	No	
CEIL	$ceil(\vec{x})$	1	No	
FLOOR	$floor(\vec{x})$	1	No	
MAX1	$max(\vec{x})$	1	No	
MIN1	$min(\vec{x})$	1	No	
Comparison				
LT	x < y	2	Yes	
GT	x > y	2	Yes	
MAX2	$\max(x, y)$	2	Yes	
MIN2	min(x, y)	2	Yes	

What we used:

- Sum
- Product
- Sin
- Cos
- Exp
- Max
- Min
- And many more

Credit: Evolving simple programs for playing Atari games by Wilson et al.

Function Set

ADD AMINUS MULT CMULT INV ABS	Description Mathematical $(x + y)/2$ $ x - y /2$ xy xp_n $1/x$ $ x $	2 2 2 1	Yes Yes Yes Yes Yes	
AMINUS MULT CMULT INV	$(x+y)/2$ $ x-y /2$ xy xp_n $1/x$ $ x $	2 2 2 1	Yes Yes Yes	
AMINUS MULT CMULT INV	$ x - y /2$ xy xp_n $1/x$ $ x $	2 2 1 1	Yes Yes Yes	
MULT CMULT INV	$ \begin{array}{c} xy \\ xp_n \\ 1/x \\ x \end{array} $	2 1 1	Yes Yes	
CMULT INV	xp_n $1/x$ $ x $	1	Yes	
INV	1/x x	1		
	x	_	Yes	
ADC	· · · · · · · · · · · · · · · · · · ·		100	
ADS	/1 1	1	Yes	
SQRT	$\sqrt{ x }$	1	Yes	
CPOW	$ x ^{p_n+1}$	1	Yes	
YPOW	$ x ^{ y }$	2	Yes	
EXPX (e	$(x-1)/(e^1-1)$	1	Yes	
SINX	sin x	1	Yes	
SQRTXY	$\sqrt{x^2 + y^2} / \sqrt{2}$	2	Yes	
ACOS	$(\arccos x)/\pi$	1	Yes	
ASIN	$2(\arcsin x)/\pi$	1	Yes	
ATAN 4	$4(\arctan x)/\pi$	1	Yes	
Statistical				
STDDEV	$std(\vec{x})$	1	No	
SKEW	$skewness(\vec{x})$	1	No	
KURTOSIS	$kurtosis(\vec{x})$	1	No	
MEAN	$mean(\vec{x})$	1	No	
RANGE max	$r(\vec{x}) - min(\vec{x}) - 1$	1	No	
ROUND	$round(\vec{x})$	1	No	
CEIL	$ceil(\vec{x})$	1	No	
FLOOR	$floor(\vec{x})$	1	No	
MAX1	$max(\vec{x})$	1	No	
MIN1	$min(\vec{x})$	1	No	
Comparison				
LT	x < y	2	Yes	
GT	x > y	2	Yes	
MAX2	$\max(x, y)$	2	Yes	
MIN2	min(x, y)	2	Yes	

What we used:

- Sum
- Product
- Sin
- Cos
- Exp
- Max
- Min
- And many more

And sensors:

- Distance to nearest walls in each cardinal direction
- A* Distance

Credit: Evolving simple programs for playing Atari games by Wilson et al.

LGP Agent

(Linear Genetic Programming)

Three primary data structures:

- 1. Instruction list
- 2. Results list
- 3. Index of current instruction

Three primary data structures:

- 1. Instruction list
- 2. Results list
- 3. Index of current instruction

Three types of instructions:

- 1. Sensors
- 2. Operations
- 3. Actions

Three primary data structures:

- 1. Instruction list
- 2. Results list
- 3. Index of current instruction

Three types of instructions:

- 1. Sensors
- 2. Operations
- 3. Actions

Three primary data structures:

- 1. Instruction list
- 2. Results list
- 3. Index of current instruction

Three types of instructions:

- 1. Sensors
- 2. Operations
- 3. Actions

Mutating is very easy! Runs very quickly!

Downside?

Genetic Programing Loop

Tasks that GP Loop is responsible for

- Instantiation
- Scoring agents
- Mutating Agents
- Running Worlds

The power of multi threading

Multi Threading Design 2

Scavenger Queuing / Checkpointing

Demo

Is the program really evolving?

Yeah, trust us bro!

Metrics: Average Fitness

Metrics: Max Fitness

Metrics: Average Elite Score

Metrics: Best Agent Weighted Score

Metrics: Number Best Agents with max fitness

Let's have fun

Does our code work well?

Hell, Yeah it does

(at least on my computer)

Sanitizers

- Google Sanitizers
 - Address Sanitizer (ASan)
 - Leak Sanitizer (LSan)
 - Thread Sanitizer (TSan)
 - Undefined Behavior Sanitizer (UBSsan)
 - Memory Sanitizer (MSan)
- Valgrind

Runtime Errors

```
Threads & Variables Console
                               LLDB Memory View C □ □ □ □ □ △ ↓ ↑ ○ Ø :
✓ Thread-1-<com.apple.main-thread> (6570830)
                                                                                                     Evaluate expression (↵) or add a watch (⇧κ↵)
std::__do_deallocate_handle_size[abi:v160006]<...>(void *, unsigned long) new:319
                                                                                                       Signal = SIGABRT (signal SIGABRT)
std::_libcpp_deallocate[abi:v160006](void *, unsigned long, unsigned long) new:335
                                                                                                     > 	≡ this = {cowboys::GPTrainingLoop<cowboys::LGPAgent, cse491::MazeWorld> *} 0x16bb72c
std::allocator::deallocate[abi:v160006](cse491::GridPosition *, unsigned long) allocator.h:131
std::allocator_traits::deallocate[abi:v160006](std::allocator<...> &, cse491::GridPosition *, unsigned long) allocator_
std::vector::_destroy_vector::operator()[abi:v160006]() vector:447
std::vector::~vector[abi:v160006]() vector:456
std::vector::~vector[abi:v160006]() vector:456
                                                                                                                void MemGOBYE() {
std::__destroy_at[abi:v160006]<...>(std::vector<...> *) construct_at.h:66
std::destroy_at[abi:v160006]<...>(std::vector<...>*) construct_at.h:101
std::allocator_traits::destroy[abi:v160006]<...>(std::allocator<...> &, std::vector<...> *) allocator_traits.h:323
std::vector::_base_destruct_at_end[abi:v160006](std::vector<...> *) vector:836
                                                                                                                    TEMPinitialAgentPositions.clear();
std::vector::_clear[abi:v160006]() vector:830
std::vector::clear[abi:v160006]() vector:643
                                                                                                                    TEMPAgentFitness.clear();
cowboys::GPTrainingLoop::MemGOBYE() GPTrainingLoop.hpp:615
cowboys::GPTrainingLoop::Run(unsigned long, unsigned long, unsigned long) GPTrainingLoop.hpp:259
                                                                                                                    environments.clear();
main gp_train_main.cpp:29
                                                                                                                    agents.clear();
start 0x000000018259d0e0
                                                                                                                    sortedAgents.clear();
```

```
if (currentInstructionIndex != 0)
    resultsList[currentInstructionIndex - 1] = action_result;
else
    resultsList[LISTSIZE - 1] = action_result;
while (i < LISTSIZE * 2 && action.empty())</pre>
    if (std::find(actionsList.begin(), actionsList.end(), std::get<0>(instruction)) != actionsList.end())
        action = std::get<0>(instruction);
    else if (std::find(sensorsNamesList.begin(), sensorsNamesList.end(), std::get<0>(instruction)) != sensorsNamesList.end())
        // the instruction is in the sensor list (getLeft, getRight, getUp, getDown)
        sensor = std::get<0>(instruction);
        SensorDirection direction = Sensors::getSensorDirectionEnum(sensor);
        int distance = Sensors::wallDistance(grid, *this, direction);
        resultsList[currentInstructionIndex - 1] = distance;
    }
    else
        // the instruction is an operation (lessthan, greaterthan, equals)
        operation = std::get<0>(instruction);
        if (operation == "lessthan")
            if (std::get<1>(instruction) < std::get<2>(instruction))
                resultsList[currentInstructionIndex] = 1;
            else
                resultsList[currentInstructionIndex] = 0;
                ++currentInstructionIndex;
```

Fixed a UB!


```
else if (std::find( first: sensorsNamesList.begin(), last: sensorsNamesList.end(), value: std::get<0>
    // the instruction is in the sensor list (getLeft, getRight, getUp, getDown)
    sensor = std::get<0>( &: instruction);
    SensorDirection direction = Sensors::getSensorDirectionEnum( direction: sensor);
    int distance = Sensors::wallDistance(grid, agent: *this, direction);
    resultsList[currentInstructionIndex] = distance;
```

```
resultsList[currentInstructionIndex - 1] = distance; distance: 1 You, Nome
[5] {size_t} 0
}
```

We profiled to make things efficient

Coverage Checks

> make-build-relwithdebinfo > indocs > project_specs > n savedata ✓ □ source 72% files, 55% lines covered ✓ □ Agents 77% files, 69% lines covered → □ GP 77% files, 69% lines covered **⊞** CGPAgent.hpp 87% lines covered **H** GPAgent.hpp ⊞ GPAgent_.hpp 53% lines covered ■ GPAgentsRegisters.hpp **III** GPAgentTest.hpp ⊞ GPTrainingLoop.hpp 97% lines covered **⊞** Graph.hpp 88% lines covered M↓ Group7_GPA.md H AgentLibary.hpp H AStarAgent.hpp

Unit Tests

✓ test-unit-agents-gp-CGPAgent	110 ms
✓ test-unit-agents-gp-CGPGenotype	270 ms
✓ test-unit-agents-gp-Graph	100 ms
✓ test-unit-agents-gp-GraphBuilder	190 ms
✓ test-unit-agents-gp-GraphNode	220 ms
✓ test-unit-agents-gp-LGPAgent	100 ms
✓ test-unit-agents-gp-agent	90 ms
✓ test-unit-agents-gp-registers	80 ms
✓ test-unit-agents-gp-sensors	180 ms
✓ test-unit-xmlformater-XML_format	110 ms
✓ test-unit-xmlformater-XML_readfromfile	190 ms
test-unit-xmlformater-XML_serialization	80 ms

Problems that we might face

- Restart seeding
 - Seeding Determinism
- Agents Getting stuck at local minimum

Potential Future Improvements

- Better/different fitness functions for more specialized behaviors
- Deploy in HPCC
- Integration Testing?

Who to blame if things don't work

