

General Description

The MAX4677/MAX4678/MAX4679 guad analog switches feature 1.6Ω max on-resistance (RON) when operating from a dual ±5V supply. RON is matched between channels to 0.3Ω max and is flat $(0.4\Omega$ max) over the specified signal range. Each switch can handle Rail-to-Rail® analog signals. Off-leakage current is 0.1nA at +25°C. These switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automated test equipment. They have low power requirements, require less board space, and are more reliable than mechanical relays.

The MAX4677 has four normally closed (NC) switches, and the MAX4678 has four normally open (NO) switches. The MAX4679 has two NC and two NO switches and features guaranteed break-before-make switching.

The MAX4677/MAX4678/MAX4679 operate from either a single +2.7V to +11V or dual ±2.7V to ±5.5V supplies, making them ideal for use in digital card applications and single-ended 75 Ω systems.

These devices feature a separate logic supply input that operates from +2.7V to V+, allowing independent logic and analog supplies.

Applications

Reed Relay Replacement Avionics

Test Equipment

Audio Signal Routing

ADC Systems

Communications Systems Data-Acquisition Systems

PBX/PABX Systems

Features

- ♦ On-Resistance 1.6Ω max
- ♦ On-Resistance Flatness 0.4Ω max
- ♦ On-Resistance Matching 0.3Ω max
- ♦ Dual ±2.7V to ±5.5V or Single +2.7V to +11V **Supply Range**
- ◆ TTL/CMOS-Logic Compatible
- ♦ Crosstalk -84dB at 1MHz
- Off-Isolation -65dB at 1MHz
- -3dB Bandwidth: 66MHz
- ♦ Rail-to-Rail Signal Range

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4677EUE	-40°C to +85°C	16 TSSOP
MAX4677EPE	-40°C to +85°C	16 DIP
MAX4678EUE	-40°C to +85°C	16 TSSOP
MAX4678EPE	-40°C to +85°C	16 DIP
MAX4679EUE	-40°C to +85°C	16 TSSOP
MAX4679EPE	-40°C to +85°C	16 DIP

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Pin Configurations/Functional Diagrams/Truth Tables

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+ to GND	0.3V to +12V
V- to GND	+0.3V to -12V
V+ to V	+12V
V _L , IN_ to GND (Note 1)	0.3V to $(V + + 0.3V)$
VCOM, VNC, VNO (Note 1)	V- to V+
Current (any terminal)	±50mA
Continuous Current (COM_, NC_, NO_)	±100mA
Peak Current (COM_, NC_, NO_	
pulsed at 1ms 10% duty cycle)	±200mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
16-Pin Plastic DIP (derate 10.5mW/°C above +70°C)842mW
16-Pin TSSOP (derate 5.7mW/°C above +70°C)457mW
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature+150°C
Lead Temperature (soldering, 10s)+300°C

Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-Dual Supplies

 $(V+ = +5V \pm 10\%, V- = -5V \pm 10\%, V_L = +2.7V \text{ to } V+, \text{GND} = 0, V_{IH} = +2.4V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Input Voltage Range	V _{COM} , V _{NO} , V _{NC}			V-		V+	V	
On-Resistance	Ron		T _A = +25°C		1.2	1.6	Ω	
OII-nesistarice	HOM	ICOM_ = 50mA, V _{NO_} or V _{NC_} = ±3.3V	$T_A = T_{MIN}$ to T_{MAX}			2	52	
On-Resistance Match	A.D.o.	V+ = 4.5V, V- = -4.5V,	T _A = +25°C		0.2	0.3	0	
Between Channels (Note 3)	ΔR _{ON}	$I_{COM} = 50$ mA, V_{NO} or $V_{NC} = \pm 3.3$ V	TA = TMIN to TMAX			0.5	0.5	
On-Resistance Flatness	D	V+ = 4.5V, V- = -4.5V,	T _A = +25°C		0.2	0.4	Ω	
(Note 4)		I_{COM} = 50mA, V_{NO} or V_{NC} = ±3.3V, 0	$T_A = T_{MIN}$ to T_{MAX}			0.5		
NC_ or NO_ Off-Leakage Current (Note 5)	IN_(OFF)	V+ = +5.5V, V- = -5.5V, $V_{NO_}$ or $V_{NC_} = \pm 4.5V,$ $V_{COM_} = \mp 4.5V$	T _A = +25°C	-1	0.1	1		
			$T_A = T_{MIN}$ to T_{MAX}	-10		10	nA	
COM_ Off-Leakage		V+ = +5.5V, V- = -5.5V, V _{NO_} or V _{NC_} = ±4.5V, V _{COM_} = ∓4.5V	T _A = +25°C	-1	0.1	1	nA	
Current (Note 5)	ICOM_(OFF)		TA = TMIN to TMAX	-10		10		
COM_ On-Leakage	$V+ = +5.5V, V- = -0.000$ COM_ On-Leakage $V_{COM} = \pm 4.5V, V_{COM} = $		T _A = +25°C	-2	0.2	2	nA	
Current (Note 5)	ICOM_(ON)	V_{NO} or V_{NC} = ±4.5V or floating	$T_A = T_{MIN}$ to T_{MAX}	-25		25	IIA	
LOGIC INPUT								
Input Logic High	VIH	$V_L = V +$		2.4			V	
Input Logic Low	V _{IL}	$V_L = V +$				0.8	V	
Input Leakage Current	IIN	$V_L = V +$		-1	0.005	1	μΑ	

ELECTRICAL CHARACTERISTICS-Dual Supplies (continued)

 $(V+ = +5V \pm 10\%, V- = -5V \pm 10\%, V_L = +2.7V \text{ to } V+, \text{GND} = 0, V_{IH} = +2.4V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
POWER SUPPLY								
Positive Supply Voltage	V+			+2.7		+5.5	V	
Negative Supply Voltage	V-			-2.7		-5.5	V	
Logic Supply Voltage	VL			2.7		V+	V	
Positive Supply Current	l+	IN_ = GND or V _L			0.001	1	μА	
Negative Supply Current	l-	IN_ = GND or V _L				-1	μА	
Logic Supply Current	ΙL	IN_ = GND or V _L				1	μΑ	
Ground Current	IGND	$IN_{-} = 0 \text{ or } V+, V+ = 5.5V,$	V- = -5.5V			1	μΑ	
DYNAMIC								
Turn-On Time	ton	$V+ = +4.5V, V- = -4.5V, V_{NC_or} V_{NO_} = \pm 3.3V, V_{L} = V+, Figure 2$	T _A = +25°C		200	350	20	
Turn-On Time	_		$T_A = T_{MIN}$ to T_{MAX}			500	ns	
Turn-Off Time	V V		T _A = +25°C		110	150	20	
Turri-On Time	toff	V_{NC} or V_{NO} = ±3.3V, V_{L} = V+, Figure 2	TA = TMIN to TMAX			350	ns	
Break-Before-Make Delay	t _{BBM}	Figure 3, MAX4679 only, $R_L = 300\Omega$, $C_L = 35pF$		5			ns	
Charge Injection	Q	RGEN = 0, CL = 1nF, VGEN	= 0, Figure 4		85		рС	
Off-Isolation	V _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1N$	MHz, Figure 5a		-65		dB	
Crosstalk		$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 6a			-84		dB	
-3dB Bandwidth	BW	$R_S = 50\Omega$, $R_L = 50\Omega$, Figure 7a			66		MHz	
NC or NO Off- Capacitance	C _(N_OFF)	f = 1MHz, Figure 8			85		pF	
COM Off-Capacitance	C(COMOFF)	f = 1MHz, Figure 8			85		рF	
On-Capacitance	C _(ON)	f = 1MHz, Figure 8			350		pF	

ELECTRICAL CHARACTERISTICS-Single Supply

 $(V+ = +5V \pm 10\%, V- = 0, V_L = +2.7V \text{ to } V+, \text{GND} = 0, V_{\text{IH}} = +2.4V, V_{\text{IL}} = +0.8V, T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
ANALOG SWITCH		•						
Input Voltage Range	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V	
On-Resistance	R _{ON}	V+ = +4.5V, I _{COM} _ = 50mA, V _{NO} _ or V _{NC} _ = 3.3V	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to T_{MAX}		1.8	2.7 3.5	Ω	
On-Resistance Match Between Channels	ΔR _{ON}	V+ = +4.5V, I _{COM} _= 50mA, V _{NO} _ or V _{NC} _= 3.3V	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$		0.05	0.15	Ω	
(Note 3) On-Resistance Flatness (Note 4)	R _{FLAT}	V+ = +4.5V, I _{COM} _= 50mA, V _{NO} _ or V _{NC} _= 3.3V, 1.5V	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to T_{MAX}		0.15	0.25	Ω	
NC_ or NO_ Off- Leakage Current	IN_(OFF)	V+ = +5.5V; V _{NO} _ or V _{NC} _ = 4.5V, 1V;	T _A = +25°C	-1 -10	0.1	1 10	nA	
(Note 5) COM_ Off-Leakage	ICOM (OFF)	$V_{COM} = 1V, 4.5V$ $V_{+} = +5.5V;$ V_{NO} or $V_{NC} = 4.5V, 1V;$	$T_A = T_{MIN}$ to T_{MAX} $T_A = +25$ °C	-10	0.1	1	nA	
Current (Note 5)	.00W_(011)	V _{COM} _ = 1V, 4.5V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	ПА	
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$V + = +5.5V; V_{COM} = 1V,$ $4.5V; V_{NO} \text{ or } V_{NC} = 1V,$ $4.5V, \text{ or floating}$ $T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$		-2 -25	0.2	2 25	nA	
LOGIC INPUT		g					l .	
Input Low Voltage	V _{IL}	$V_L = V +$	$V_L = V +$			0.8	V	
Input High Voltage	VIH	$V_L = V +$		2.4			V	
Input Leakage Current	I _{IN}	$V_L = V +$		-1	0.005	1	μΑ	
POWER SUPPLY								
Positive Supply Voltage	V+			2.7		6	V	
Logic Supply Voltage	VL		1	2.7		V+	V	
Positive Supply Current	l+	V _{IN} _ = 0 or V _L , V _L = V+			1	1	μА	
Logic Supply Current	Ι <u>L</u>	$V_{IN} = 0 \text{ or } V_L, V_+ = 5.5V$				1	μΑ	
Ground Current	IGND	V _{IN} _ = 0 or V _L , V+ = 5.5V			1	10	μА	
DYNAMIC								
Turn-On Time	ton	$V_L = V_+, V_+ = +4.5V; V_{NC}$ or $V_{NO} = 3.3V, R_L = 300\Omega,$	T _A = +25°C		600	1000	ns	
		$C_L = 35pF$, Figure 2 $V_L = V_+, V_+ = +4.5V$; V_{NC}	$T_A = T_{MIN}$ to T_{MAX}		100	1400	_	
Turn-Off Time	toff	or $V_{NO} = 3.3V$, $R_L = 300\Omega$,	$T_A = +25^{\circ}C$		120	165 400		
		C _L = 35pF, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			400	<u> </u>	

4 ______ /N/XI/N

ELECTRICAL CHARACTERISTICS-Single Supply (continued)

 $(V+ = +5V \pm 10\%, V- = 0, V_L = +2.7V \text{ to } V+, \text{GND} = 0, V_{\text{IH}} = +2.4V, V_{\text{IL}} = +0.8V, T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.}) \text{ (Note 2)}$

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Break-Before- Make Delay	t _{BBM}	MAX4679 only, $R_L = 300\Omega$, $C_L = 35pF$, Figure 3				ns
Charge Injection	Q	R _{GEN} = 0, C _L = 1nF, V _{GEN} = 0, Figure 4		9		рС
Off-Isolation	V _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 5b		-65		dB
Crosstalk		$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 6b		-84		dB
-3dB Bandwidth	BW	$R_S = 50\Omega$, $R_L = 50\Omega$, Figure 7b		63		MHz
NC or NO Off- Capacitance	C _(N_OFF)	f = 1MHz, Figure 8		85		pF
COM Off-Capacitance	C(COMOFF)	f = 1MHz, Figure 8		85		pF
On-Capacitance	C _(ON)	f = 1MHz, Figure 8		350		pF

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$.

Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature and the highest supply voltage, and guaranteed by correlation at +25°C.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

	PIN			
MAX4677	MAX4678	MAX4679	NAME	FUNCTION
1, 8, 9, 16	1, 8, 9, 16	1, 8, 9, 16	IN1, IN2, IN3, IN4	Logic Inputs
2, 7, 10, 15	2, 7, 10, 15	2, 7, 10, 15	COM1, COM2, COM3, COM4	Analog Switch Common Terminals
3, 6, 11, 14	_	_	NC1, NC2, NC3, NC4	Analog Switch Normally Closed Terminals
_	3, 6, 11, 14	_	NO1, NO2, NO3, NO4	Analog Switch Normally Open Terminals
_	_	3, 6	NO1, NO4	Analog Switch Normally Open Terminals
_	_	11, 14	NC2, NC3	Analog Switch Normally Closed Terminals
4	4	4	V-	Negative Supply-Voltage Input. Connect to GND for single-supply operation.
5	5	5	GND	Ground
12	12	12	VL	Logic Supply Input
13	13	13	V+	Positive Supply Input

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, then VL followed by the logic inputs, NO_, NC_, or COM. If proper power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins, and a Schottky diode between V+ and VL for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 11V.

Power-supply bypassing improves noise margin and prevents switching noise from propagating from the V+ supply to other components. A 0.1µF capacitor connected from V+ to GND is adequate for most applications.

Figure 1. Overvoltage Protection Using External Blocking Diodes

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval (MAX4679 Only)

Figure 4. Charge Injection

Figure 5a. Off-Isolation Test Circuit, Dual Supplies

Figure 5b. Off-Isolation Test Circuit, Single Supply

Figure 6a. Crosstalk Test Circuit, Dual Supplies

Figure 6b. Crosstalk Test Circuit, Single Supply

Figure 7a. Insertion Loss Test Circuit, Dual Supplies

Figure 7b. Insertion Loss Test Circuit, Single Supply

Chip Information

TRANSISTOR COUNT: 240

PROCESS: CMOS

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600