Algorithms and Satisfiability

Lecture 3 Computational Geometry Algorithms: Sweeping

DAT6 spring 2023 Simonas Šaltenis

Computational geometry

- Main goals of the lecture:
 - to understand how the basic geometric operations are performed;
 - to understand the basic idea of the sweeping algorithm design technique;
 - to understand the concept of output-sensitive algorithms;
 - to understand and be able to analyze Graham's scan, Jarvis's march, and the sweeping-line algorithm to determine whether any pair of line segments intersect.

Computational geometry

- Computational geometry:
 - Algorithmic basis for many scientific and engineering disciplines:
 - Geographic Information Systems (GIS)
 - Robotics
 - Computer graphics
 - Computer vision
 - Computer Aided Design/Manufacturing (CAD/CAM),
 - VLSI design, etc.
 - The term first appeared in the 70's.
 - We will deal with points and line segments in 2D space.

Basic problems: Orientation

- How to find "orientation" of two line segments?
 - Three points: $p_1(x_1, y_1)$, $p_2(x_2, y_2)$, $p_3(x_3, y_3)$
 - Is segment (p_1, p_3) clockwise or counterclockwise from (p_1, p_2) ?
 - Equivalent to: Going from segment (p_1, p_2) to (p_2, p_3) do we make a **right** or a **left** turn?

Computing the orientation

- Orientation the standard way:
 - slope of segment (p_1, p_2) : $\sigma = (y_2-y_1)/(x_2-x_1)$
 - slope of segment (p_2, p_3) : $\tau = (y_3 y_2)/(x_3 x_2)$

- How do you compute then the orientation?
 - counterclockwise (left turn): σ < τ</p>
 - clockwise (right turn): $\sigma > \tau$
 - collinear (no turn): $\sigma = \tau$

Cross product

- Finding orientation without division (to avoid numerical problems)
 - $(y_2-y_1)(x_3-x_2)-(y_3-y_2)(x_2-x_1)=?$
 - Positive clockwise / right turn
 - Negative counterclockwise / left turn
 - Zero collinear
 - This is (almost) a cross product of two vectors

$$(x_2-x_1, y_2-y_1)\times(x_3-x_2, y_3-y_2)=\det\begin{pmatrix} x_2-x_1 & x_3-x_2 \\ y_2-y_1 & y_3-y_2 \end{pmatrix}$$

Intersection of two segments

- How do we test whether two line segments intersect?
 - What would be the standard way?
 - What are the problems?

Intersection and orientation

- We can use just cross products to check for intersection!
 - Two segments (p₁,q₁) and (p₂,q₂) intersect if and only if one of the two is satisfied:
 - General case:
 - (p₁,q₁,p₂) and (p₁,q₁,q₂) have different orientations and
 - (p₂,q₂,p₁) and (p₂,q₂,q₁) have different orientations
 - Special case
 - (p₁,q₁,p₂), (p₁,q₁,q₂), (p₂,q₂,p₁), and (p₂,q₂,q₁) are all collinear and
 - the x-projections of (p₁,q₁) and (p₂,q₂) intersect
 - the y-projections of (p_1,q_1) and (p_2,q_2) intersect

Orientation examples

- General case:
 - (p_1,q_1,p_2) and (p_1,q_1,q_2) have different orientations and
 - (p_2,q_2,p_1) and (p_2,q_2,q_1) have different orientations

Orientation examples (2)

- General case:
 - (p_1,q_1,p_2) and (p_1,q_1,q_2) have different orientations and
 - (p_2,q_2,p_1) and (p_2,q_2,q_1) have different orientations

Orientation examples (3)

- Special case
 - (p_1,q_1,p_2) , (p_1,q_1,q_2) , (p_2,q_2,p_1) , and (p_2,q_2,q_1) are all collinear **and**
 - the x-projections of (p_1,q_1) and (p_2,q_2) intersect
 - the y-projections of (p_1,q_1) and (p_2,q_2) intersect

Determining intersections

- Given a set of n segments, determine whether any two line segments intersect
 - Note: not asking to report all intersections, just true or false.
 - Usefull as a building block: e.g., check intersection of arbitrary polygons.
 - What would be the brute force algorithm and what is its worst-case complexity?

Observations

- Helpful observation:
 - Two segments definitely do not intersect if their projections to the x axis do not intersect
 - In other words: If segments intersect, there is some x_L such that line $x = x_L$ intersects both segments

Sweeping technique

- A powerful algorithm design technique: sweeping.
 - Two sets of data are maintained:
 - **sweep-line status**: the set of segments intersecting the sweep line *L*
 - event-point schedule: where updates to L are required

Plane-sweeping algorithm

- Skeleton of the algorithm:
 - Each segment end point is an event point
 - At an event point, update the status of the sweep line and perform intersection tests
 - left end point: a new segment is added to the status of L and it is tested for intersection against the other segments in the status
 - right end point: it is deleted from the status of L
- Analysis:
 - What is the worst-case complexity?
 - Worst-case example?

Improving the algorithm

- More useful observations:
 - For a specific position of the sweep line, there is an order of segments in the y-axis;
 - If segments intersect there is a position of the sweep-line such that two segments are adjacent in this order;
 - Order does not change in-between event points;
 - True only to the left of the leftmost intersection point. If the algorithm does not return before, this intersection is detected!
 - Main idea: check only all new pairs of neighbors in the order!

Sweep-line status DS

- Sweep-line status data structure:
 - Operations:
 - Insert
 - Delete
 - Below (Predecessor)
 - Above (Successor)
 - Balanced binary search tree T (e.g., Red-Black)
 - The bottom-to-top order of segments on the line $L \Leftrightarrow$ the left-to-right order of in-order traversal of T
 - How do you do comparison?

Algorithm

AnySegmentsIntersect(S)

```
01 T ← Ø
02 sort the left and right endpoints of the segments in
  S from left to right, breaking ties by putting left
  endpoints first
03 for each point p in the sorted list of endpoints do
04
      if p is the left endpoint of a segment s then
05
         Insert(T,s)
06
         if (Above(T,s) exists and intersects s) or
             (Below(T,s)) exists and intersects s) then
07
               return TRUE
08
      if p is the right endpoint of a segment s then
09
          if both Above(T,s) and Below(T,s) exist and
            Above (T,s) intersects Below(T,s) then
10
               return TRUE
11
            Delete(T,s)
12 return FALSE
```

Let's run it


```
AnySegmentsIntersect(S)
```

```
01 T ← Ø
02 sort the left and right endpoints of the segments in S from
       to right, breaking ties by putting left endpoints
  left
  first
03 for each point p in the sorted list of endpoints do
04
      if p is the left endpoint of a segment s then
05
         Insert(T,s)
06
         if (Above(T,s) exists and intersects s) or
         (Below(T,s)) exists and intersects s) then
07
               return TRUE
0.8
      if p is the right endpoint of a segment s then
09
          if both Above(T,s) and Below(T,s) exist and
             Above (T,s) intersects Below(T,s) then
10
               return TRUE
11
            Delete(T,s)
12 return FALSE
```


Example

- Which intersection checks are done in each step?
- At which event an intersection is discovered?
- Go to <u>Socrative</u> and write in your answer:
 - E.g., "3, 4" means 3 intersection checks, at the 4th event.
- What if sweeping is from right to left?

Analysis, Special cases

- Running time:
 - Sorting the segment endpoints: $\Theta(n \lg n)$
 - The loop is executed once for every end point (2n) taking each time $\Theta(\lg n)$ (at most three red-black tree operations)
 - The total running time is $\Theta(n \lg n)$
- Special cases (correctness not obvious, have to prove separately):
 - More than two segments intersect at one point
 - Can be shown to work just fine
 - There are some vertical segments
 - Can be proven to work correctly if bottom endpoints are treated as left endpoint (processed first in the event sequence)

Sweeping technique principles

- Principles of the sweeping technique:
 - Define events and their order
 - If all the events can be determined in advance sort the events
 - Else use a priority queue to manage the events
 - See which operations have to be performed with the sweepline status at each event point
 - Choose a data-structure for the sweep-line status to efficiently support those operations

Convex hull problem

- Convex hull problem:
 - Let S be a set of n points in the plane. Compute the convex hull of these points.
 - Intuition: rubber band stretched around the pegs
 - Formal definition: the convex hull of S is the smallest convex polygon that contains all the points of S

What is convex

- A polygon P is said to be convex if:
 - P is simple (non-intersecting); and
 - for any two points p and q on the boundary of P, segment (p,q) lies entirely inside P

Many applications, many algs

- In motion planning for robots, often there is a need to compute convex hulls.
- Convex hulls are often useful as a starting point in comp. geometry
 - For example, furthest-pair problem.

Graham Scan

- Graham Scan algorithm.
 - Phase 1: Solve the problem of finding the simple (noncrossing) closed path visiting all points

Finding non-crossing path

- How do we find such a non-crossing path:
 - Pick the bottommost point a as the anchor point
 - For each point p, compute the angle $\theta(p)$ of the segment (a,p) with respect to the x-axis.
 - Traversing the points by increasing angle yields a simple closed path

Sorting by angle

- How do we sort by increasing angle?
 - Observation: We do not need to compute the actual angle!
 - We just need to compare them for sorting

$$\theta(p) < \theta(q)$$

 \Leftrightarrow orientation(a,p,q) = counterclockwise

Rotational sweeping

- Phase 2 of Graham Scan:
 Rotational sweeping
 - The anchor point and the first point in the polar-angle order have to be in the hull
 - Traverse points in the sorted order:
 - Before including the next point n check if the new added segment makes a left turn
 - If not, keep discarding the previous point (c) until a left turn is made

Implementation

- Implementation:
 - Stack to store the vertices of the convex hull

Analysis

- Analysis:
 - Phase 1: Θ(n log n)
 - the anchor point is found: $\Theta(n)$
 - points are sorted by the angle around the anchor
 - Phase 2: Θ(n)
 - each point is pushed into the stack once
 - each point is removed from the stack at most once
 - Total time complexity Θ(n log n)

Size of the output

- In computational geometry, the size of an algorithm's output may differ/depend on the input.
 - Line-intersection problem vs. convex-hull problem
 - Observation: Graham's scan running time depends only on the size of the input – it is independent of the size of the output

Gift wrapping

- Would be nice to have an algorithm that runs fast if the convex hull is small
 - Idea: gift wrapping (a.k.a Jarvis's march)
 - 1. Start with the lowest point a.
 - 2. The next point in the convex hull has to be in the clockwise direction with respect to all the remaining points looking from the current point on the convex hull
 - 3. Repeat 2. until a is reached. Include a in the convex hull

Jarvis's march

How many cross products are computed for this example?

- The running time of Jarvis's march:
 - Find lowest point: *O*(*n*)
 - For each vertex in the convex hull: *n*–2 cross-product computations
 - Total: O(nh), where h is the number of vertices in the convex hull

Output-sensitive algorithms

- Output-sensitive algorithm: its running time depends on the size of the output.
 - When should we use Jarvi's march instead of the Graham's scan?
 - The asymptotically optimal output-sensitive algorithm of Kirkpatrick and Seidel runs in O(n lg h)