Analisi Funzionale

Duale di uno spazio normato

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Funzionali lineari e spazio duale

Def. Sia X uno spazio vettoriale su \mathbb{F} . Un funzionale lineare su X è una mappa lineare $\varphi:X\to\mathbb{F}$. Lo spazio vettoriale $\mathcal{L}(X,\mathbb{F})$ dei funzionali lineari su X è detto duale algebrico di X.

Def. Sia X uno spazio normato su \mathbb{F} . Lo *spazio duale* (o *duale topologico*) di X è lo spazio $X' := \mathcal{B}(X, \mathbb{F})$ dei funzionali lineari continui su X.

Oss. Se X è uno spazio normato, il duale $X' = \mathcal{B}(X, \mathbb{F})$ è a sua volta uno spazio normato con la norma operatoriale: $\|\varphi\|_{X'} = \|\varphi\|_{op} = \inf\{C \in [0, \infty) : |\varphi(x)| \le C\|x\|_X\} \quad \forall \varphi \in X'.$

In effetti il duale
$$X'$$
 è uno spazio di Banach per ogni spazio normato X .

Oss. Se dim $X < \infty$, allora $\mathcal{L}(X, \mathbb{F}) = \mathcal{B}(X, \mathbb{F}) = X'$.

Oss. Se $X = \mathbb{F}^n$ con la norma euclidea, allora

- ightharpoonup gli elementi di X sono vettori colonna, cioè matrici $n \times 1$,
- ightharpoonup gli elementi di X' si rappresentano come matrici riga $1 \times n$;

in particolare X' si identifica con X mediante la mappa di trasposizione.

Esempi di funzionali lineari continui

- 1. Sia M uno spazio metrico compatto. Per ogni $p \in M$, l'operatore di valutazione $V_p : f \mapsto f(p)$ soddisfa $V_p \in C(M)'$ e $\|V_p\|_{C(M)'} = \|V_p\|_{op} = 1$.
- 2. Sia H uno spazio pre-hilbertiano. Per ogni $y \in H$, la mappa $\langle \cdot, y \rangle : H \to \mathbb{F}$ soddisfa $\langle \cdot, y \rangle \in H'$ e $\|\langle \cdot, y \rangle\|_{H'} = \|y\|_{H}$.
- 3. Siano $p,q\in[1,\infty]$ esponenti coniugati. Allora, per ogni $y\in\ell^q$, la mappa $\varphi_y:\ell^p\to\mathbb{F}$, definita da

$$\varphi_{\underline{y}}(\underline{x}) = \sum_{n=0} x_n y_n \qquad \forall \underline{x} \in \ell^p,$$

soddisfa $\varphi_y \in (\ell^p)'$ e $\|\varphi_y\|_{(\ell^p)'} \leq \|y\|_{\ell^q}$.

4. Più in generale, se $p,q\in[1,\infty]$ sono esponenti coniugati e (M,\mathcal{M},μ) è uno spazio di misura, per ogni $g\in L^q(M,\mathcal{M},\mu)$ la mappa $\varphi_g:L^p(M,\mathcal{M},\mu)\to\mathbb{F}$ data da $\varphi_g(f)=\int_M fg\,d\mu \qquad \forall f\in L^p(M,\mathcal{M},\mu)$

soddisfa
$$\varphi_g \in L^p(M, \mathcal{M}, \mu)'$$
 e $\|\varphi_g\|_{L^p(M, \mathcal{M}, \mu)'} \leq \|g\|_{L^q(M, \mathcal{M}, \mu)}$.

Duale di uno spazio di Hilbert

Teor. (di rappresentazione di Riesz-Frechet) Sia ${\cal H}$ uno spazio di

$$\Phi(y) = \langle \cdot, y \rangle \qquad \forall y \in H,$$

è una isometria antilineare suriettiva, cioè:

(c) $\Phi(H) = H'$

Hilbert su \mathbb{F} . Allora la mappa $\Phi: H \to H'$, definita da

(a)
$$\|\Phi(y)\|_{H'} = \|y\|_H \quad \forall y \in H$$
 (Φ è un'isometria);

(b)
$$\Phi(\alpha_1 y_1 + \alpha_2 y_2) = \overline{\alpha_1} \Phi(y_1) + \overline{\alpha_2} \Phi(y_2) \quad \forall y_1, y_2 \in H, \ \alpha_1, \alpha_2 \in \mathbb{F}$$
 (Φ è antilineare);

(Φ è suriettiva).

Oss. Se $\mathbb{F} = \mathbb{R}$, $\Phi : H \to H'$ è lineare, dunque un *isomorfismo isometrico*. Se $\mathbb{F} = \mathbb{C}$, invece, $\Phi : H \to H'$ <u>non è lineare</u>, ma antilineare; dunque Φ si dice un *anti-isomorfismo isometrico*.

Oss. Se $H = L^2(M, \mathcal{M}, \mu)$, si ha $\Phi(g)(f) = \langle f, g \rangle_{L^2} = \int_M f \, \overline{g} \, d\mu \, \forall f, g \in H$.

Se
$$\Psi: L^2(M) \to L^2(M)'$$
 è data da $\Psi(g) = \Phi(\overline{g})$, cioè
$$\Psi(g)(f) = \int_M f \, g \, d\mu \qquad \forall f, g \in L^2(M, \mathcal{M}, \mu),$$

allora Ψ è un isomorfismo isometrico. Dunque

allora
$$\Psi$$
 e un isomornismo isometrico. Dunque $L^2(M, \mathcal{M}, \mu)' \cong L^2(M, \mathcal{M}, \mu), \qquad (\ell^2)' \cong \ell^2.$ isom.

Duale degli spazi ℓ^p

Teor. Siano $p, q \in [1, \infty]$ esponenti coniugati (1/p + 1/q = 1). Sia $\Psi : \ell^q \to (\ell^p)'$ definita da

$$\Psi(\underline{y})(\underline{x}) = \varphi_{\underline{y}}(\underline{x}) = \sum_{k=0}^{\infty} x_k y_k \qquad \forall \underline{y} \in \ell^q, \ \underline{x} \in \ell^p.$$

Allora:

- (i) $\Psi: \ell^q \to (\ell^p)'$ è un'isometria lineare.
- (ii) Se $p \neq \infty$, allora $\Psi : \ell^q \to (\ell^p)'$ è un isomorfismo isometrico.

Oss. Nel caso $p=\infty$, sappiamo solo che $\Psi(\ell^1)$ è un sottospazio vettoriale chiuso di $(\ell^\infty)'$. Vedremo in seguito che $\Psi(\ell^1) \neq (\ell^\infty)'$.

Teor. La mappa $\Psi:\ell^1 o (c_0)'$, definita da

$$\Psi(\underline{y})(\underline{x}) = \varphi_{\underline{y}}|_{c_0}(\underline{x}) = \sum_{k=0} x_k y_k \qquad \forall \underline{y} \in \ell^1, \ \underline{x} \in c_0,$$

è un isomorfismo isometrico da ℓ^1 a $(c_0)'$.

Oss. Informalmente diciamo che

- "il duale di ℓ^p è ℓ^q " (dove q è esponente coniugato di $p < \infty$),
- "il duale di c_0 è ℓ^1 ".

Duale degli spazi L^p

Teor. Siano $p, q \in [1, \infty]$ esponenti coniugati (1/p + 1/q = 1). Sia (M, \mathcal{M}, μ) uno spazio di misura σ -finito.

Sia $\Psi: L^q(M) \to L^p(M)'$ definita da

$$\Psi(g)(f) = \varphi_g(f) = \int_M f g d\mu \qquad \forall g \in L^q(M), \ f \in L^p(M).$$

Allora $\Psi: L^q(M) \to L^p(M)'$ è un'isometria lineare; se poi $p < \infty$, allora Ψ è un isomorfismo isometrico.

Oss. Informalmente diciamo che

"il duale di $L^p(M)$ è $L^q(M)$ " se $p < \infty$ e (M, \mathcal{M}, μ) è σ -finito.

Coroll. Siano $p, q \in [1, \infty]$ esponenti coniugati. Sia (M, \mathcal{M}, μ) uno spazio di misura σ -finito. Allora, per ogni $f \in L^p(M)$,

$$||f||_{L^{p}(M)} = \sup \left\{ \left| \int_{M} f g d\mu \right| : g \in L^{q}(M), ||g||_{L^{q}(M)} \le 1 \right\}$$
$$= \sup_{g \in L^{q}(M) \setminus \{0\}} \frac{\left| \int_{M} f g d\mu \right|}{||g||_{L^{q}(M)}}.$$

Forme sesquilineari continue

Def. Siano X, Y spazi vettoriali su \mathbb{F} .

Una mappa $F: X \times Y \to \mathbb{F}$ è detta forma sesquilineare se:

- (a) $F(\cdot,y): X \to \mathbb{F}$ è lineare per ogni $y \in Y$, cioè $F(\alpha x + \alpha' x', y) = \alpha F(x, y) + \alpha' F(x', y) \quad \forall x, x' \in X \ \forall y \in Y \ \forall \alpha, \alpha' \in \mathbb{F}.$
- (b) $F(x,\cdot): Y \to \mathbb{F}$ è antilineare per ogni $x \in X$, cioè $F(x,\alpha y + \alpha' y') = \overline{\alpha}F(x,y) + \overline{\alpha'}F(x,y') \quad \forall x \in X \ \forall y,y' \in Y \ \forall \alpha,\alpha' \in \mathbb{F}.$

Nel caso X = Y, diciamo F una forma sesquilineare $su\ X$.

Oss. Se $\mathbb{F} = \mathbb{R}$, sarebbe più appropriato parlare di *forma bilineare*.

Prop. Siano X,Y spazi normati e $F:X\times Y\to \mathbb{F}$ una forma sesquilineare. Sono equivalenti:

- (i) $F: X \times Y \to \mathbb{F}$ è continua;
- (ii) $||F|| := \sup\{|F(x,y)| : x \in X, y \in Y, ||x||_X \le 1, ||y||_Y \le 1\} < \infty.$

In tal caso si ha anche

$$|F(x,y)| \le ||F|| \, ||x||_X ||y||_Y \qquad \forall x \in X, \ y \in Y.$$

Forme sesquilineari e operatori lineari

Prop. Siano X uno spazio normato e H uno spazio pre-hilbertiano. Per ogni $A \in \mathcal{L}(X, H)$ definiamo $F_A : X \times H \to \mathbb{F}$ ponendo

$$F_A(x,y) = \langle Ax, y \rangle_H \quad \forall x \in X, \ y \in H.$$
 (†)

Allora $F_A: X \times H \to \mathbb{F}$ è una forma sesquilineare e

$$||F_A|| = ||A||_{op}.$$

In particolare F_A è continua se e solo A è limitato.

Def. Siano X uno spazio normato e H uno spazio pre-hilbertiano. La forma $F_A: X \times H \to \mathbb{F}$ definita in (†) è detta *forma* sesquilineare associata all'operatore $A \in \mathcal{L}(X, H)$.

Prop. Siano X uno spazio normato e H uno spazio di Hilbert. Per ogni forma sesquilineare continua $F: X \times H \to \mathbb{F}$, esiste un unico operatore $A \in \mathcal{B}(X,H)$ tale che $F = F_A$.

Il teorema di Lax–Milgram

Def. Sia X uno spazio normato. Una forma sesquilineare $F: X \times X \to \mathbb{F}$ si dice *coerciva* se esiste $m \in (0, \infty)$ tale che $F(x,x) \ge m\|x\|_X^2 \qquad \forall x \in X.$

Prop. Sia H uno spazio di Hilbert e $A \in \mathcal{B}(H)$. Se la forma sesquilineare $F_A: H \times H \to \mathbb{F}$ associata ad A è coerciva, allora A è un isomorfismo.

Teor. (Lax–Milgram) Sia H uno spazio di Hilbert su \mathbb{F} . Sia $F: H \times H \to \mathbb{F}$ una forma sesquilineare continua e coerciva. Allora, per ogni $\varphi \in H'$, esiste un unico $y \in H$ tale che $\varphi = F(\cdot, y)$.

Estensione di funzionali: il teorema di Hahn-Banach

Teor. (Hahn–Banach) Sia X uno spazio normato. Sia V un sottospazio vettoriale di X; dotiamo V della norma indotta da X. Sia $\varphi \in V'$. Allora esiste $\widetilde{\varphi} \in X'$ tale che $\widetilde{\varphi}|_{V} = \varphi$ e $\|\widetilde{\varphi}\|_{X'} = \|\varphi\|_{V'}$

Coroll. Sia X uno spazio normato.

- (i) Per ogni $x \in X \setminus \{0\}$, esiste $\varphi \in X'$ tale che $\|\varphi\|_{X'} = 1$ e $\varphi(x) = \|x\|_X$.
- (ii) Per ogni $x \in X$,

$$||x||_X = \max\{|\varphi(x)| : \varphi \in X', \, ||\varphi||_{X'} \le 1\}$$

e, se $X \neq \{0\}$, si ha anche

$$||x||_X = \max\{|\varphi(x)| : \varphi \in X', ||\varphi||_{X'} = 1\}.$$

- (iii) Se $x_1, x_2 \in X$ e $x_1 \neq x_2$, allora esiste $\varphi \in X'$ tale che $\varphi(x_1) \neq \varphi(x_2)$; in altre parole, i funzionali $\varphi \in X'$ separano i punti di X. (iv) Se $X \neq \{0\}$, allora $X' \neq \{0\}$.
- Oss. Il punto (ii) va confrontato con la caratterizzazione

$$\|\varphi\|_{X'} = \sup\{|\varphi(x)| : x \in X, \ \|x\|_X \le 1\}$$

della norma operatoriale.

Conseguenze del teorema di Hahn-Banach

Coroll. Sia X uno spazio normato. Sia V un sottospazio vettoriale di X.

- (i) Per ogni $x \in X$ tale che d(x, V) > 0, esiste $\varphi \in X'$ tale che $\|\varphi\|_{X'} = 1$, $\varphi|_{V} = 0$ e $\varphi(x) = d(x, V)$.
- (ii) Se V è un sottospazio vettoriale chiuso proprio di X, esiste $\varphi \in X'$ con $\|\varphi\|_{X'} = 1$ e $\varphi|_{V} = 0$.

Coroll. Sia X uno spazio normato.

Se X' è separabile, allora anche X è separabile.

- Prop. (i) ℓ^{∞} non è separabile.
- (ii) Se $p \in [1, \infty)$, ℓ^p è separabile. (iii) c_0 è separabile.
- **Coroll.** Il duale di ℓ^{∞} non è isomorfo a ℓ^{1} .
- **Oss.** Analoghi risultati valgono per $L^p(M)$ per opportuni spazi (M, \mathcal{M}, μ) .
- Ad esempio, se $I \subseteq \mathbb{R}$ è un intervallo di misura di Lebesgue positiva, allora:
 - ▶ $L^p(I)$ è separabile se e solo se $p < \infty$; ightharpoonup il duale di $L^{\infty}(I)$ non è isomorfo a $L^{1}(I)$.