Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claim 1. (currently amended) A digital wallet, secured with a user's access code, for reproducing a confidential datum for said user, said digital wallet comprising:

- (a) a computer-implemented input for receiving an input access code;
- a seed derivation module operatively connected to said input, for deriving a seed usable to generate at least a portion of said confidential datum;
 - (c) a seed-based data generation module
 - implementing a predetermined data generation protocol that was previously used by a seed-based initialization of said confidential datum of said user.
 - (ii) containing a representation of a seed-access code relationship,
 - (iii) configured to generate an output datum by digitally processing said derived seed in accordance with said seed-access code relationship, wherein the output datum is a function of the input access code, and
 - (iv) said output datum <u>having an appearance and</u> reproducing said at least a portion of said user's confidential datum <u>if when</u> said input access code equals said user's access code; and
- (d) said generation of said output datum occurring without dependence on any storage of any form of said at least a portion of said confidential datum,
- (e) wherein for at least one input access code not equaling said user's access code, said output datum has the characteristic appearance of said at least a portion of said confidential datum said seed-based data generation module generates an invalid output datum having said appearance of said user's confidential datum.

Claims 2.-3. (canceled)

- Claim 4. (original) The wallet of claim 1 where said access code is a PIN, and said confidential datum includes an asymmetric cryptographic key.
- Claim 5. (original) The wallet of claim 4 where said output datum has the characteristic appearance of an asymmetric cryptographic key.
- Claim 6. (original) The wallet of claim 1 where said access code is a PIN, and said confidential datum includes a symmetric cryptographic key.
- Claim 7. (previously presented) The wallet of claim 1 where said seed-access code relationship is an identity relationship, so that said derived seed equals said input access code.
- Claim 8. (original) The wallet of claim 1 where said seed-access code relationship represents said derived seed as a padded version of said input access code.
- Claim 9. (original) The wallet of claim 1 where said seed-access code relationship includes a version of said initial seed masked by user's access code.

Claim 10. (original) The wallet of claim 9 where:

- said masked version of said initial seed includes an XOR of said initial seed with said user's access code; and
- (ii) said processing of said derived seed in accordance with said seedaccess code relationship includes XORing said masked version of said initial seed with said derived seed
- Claim 11. (original) The wallet of claim 10 further comprising program code for updating an user's old access code with a user's new access code by replacing said stored masked version of said initial seed with its value XORed with said user's old access code XORed with said user's new access code.

Claim 12. (original) The wallet of claim 1 where:

- said seed-access code relationship includes a truncated version of said initial seed capable of being concatenated with said input access code to form said derived seed; and
- said processing of said derived seed in accordance with said seedaccess code relationship includes concatenating said truncated version of said initial seed with said input access code.

Claim 13. (original) The wallet of claim 1 where:

- said seed-access code relationship includes values of, and associations between, a plurality of possible values of said input access code and a corresponding plurality of possible values of said derived seed: and
- (ii) said processing of said derived seed in accordance with said seedaccess code relationship includes looking up and outputting said possible value of said derived seed corresponding to said input access code.

Claim 14. (original) The wallet of claim 13 where:

- (1) said seed derivation module is merged with said data generation module;
- (2) said output datum includes said derived seed.

Claim 15. (original) The wallet of claim 5 where said confidential datum includes a private key of said user, and said output datum has the characteristic appearance of a private key.

Claim 16. (original) The wallet of claim 5 where said user's public key corresponding to said user's private key is pseudo-public.

Claim 17. (original) The wallet of claim 16 further comprising a digital certificate containing said pseudo-public key.

Claim 18. (original) The wallet of claim 17 where said digital certificate includes an encrypted version of said user's pseudo-public key encrypted under a certifier's key which is not verifiable except by authorized verifiers.

Claim 19. (original) The wallet of claim 1 configured to be remotely accessible to a roaming user across a network.

Claim 20. (currently amended) A computer-implemented method for securely storing and reproducing a confidential datum for said user, comprising:

- (a) receiving an input access code;
- (b) deriving a seed usable to generate at least a portion of said confidential datum by using said received input access code;
 - (c) obtaining a representation of a seed-access code relationship;
 - (d) digitally processing said derived seed
 - (i) in accordance with said seed-access code relationship,
 - by executing a predetermined data generation protocol that was previously used by a seed-based initialization of said confidential datum of said user,
 - (iii) thereby producing an output datum reproducing said at least a portion of said user's confidential datum if when said input access code equals said user's access code, wherein the output datum is a function of the input access code and comprises an appearance;
- (e) said generation of said output datum occurring without dependence on any storage of any form of said at least a portion of said confidential datum,

(f) wherein for at least one input access code not equaling said user's access code, producing an output datum that has the characteristic appearance of said-at-least a portion of said-confidential-datum generating an invalid output datum having said appearance of said user's confidential datum.

Claims 21.- 22. (Canceled)

Claim 23. (original) The method of claim 20 where said access code is a PIN, and said confidential datum includes an asymmetric cryptographic key.

Claim 24. (original) The method of claim 20 where said seed-access code relationship is a identity relationship, so that said derived seed equals said input access code.

Claim 25. (original) The method of claim 20 where said seed-access code relationship represents said derived seed as a padded version of said input access code.

Claim 26. (original) The method of claim 20 where said seed-access code relationship includes a version of said initial seed masked by user's access code.

Claim 27. (original) The method of claim 26 where:

- said masked version of said initial seed includes an XOR of said initial seed with said user's access code; and
- said processing of said derived seed in accordance with said seedaccess code relationship includes XORing said masked version of said initial seed with said derived seed.

Claim 28. (original) The method of claim 20 where:

 said seed-access code relationship includes a truncated version of said initial seed capable of being concatenated with said input access code to form said derived seed; and (ii) said processing of said derived seed in accordance with said seedaccess code relationship includes concatenating said truncated version of said initial seed with said input access code.

Claim 29. (original) The method of claim 20 where:

- said seed-access code relationship includes values of, and associations between, a plurality of possible values of said input access code and a corresponding plurality of possible values of said derived seed: and
- said processing of said derived seed in accordance with said seedaccess code relationship includes looking up and outputting said possible value of said derived seed corresponding to said input access code.

Claim 30. (original) The method of claim 29 where:

- (1) said deriving said seed and said executing said predetermined data generation protocol are merged into a common operation; and
 - (2) said output datum includes said derived seed.

Claim 31. (currently amended) A computer-readable medium having stored thereon a program executable on a computer to securely store and reproduce a confidential datum for said user, the program comprising computer logic instructions for:

- (a) receiving an input access code;
- (b) deriving a seed usable to generate at least a portion of said confidential datum by using said received input access code;
 - (c) obtaining a representation of a seed-access code relationship;
 - (d) digitally processing said derived seed
 - (i) in accordance with said seed-access code relationship,

- by executing a predetermined data generation protocol that was previously used by a seed-based initialization of said at least a portion of said confidential datum of said user,
- (iii) thereby producing an output datum reproducing said at least a portion of said user's confidential datum if said input access code equals said user's access code, wherein the output datum is a function of the <u>said</u> input access code <u>and comprises an</u> appearance; and
- (e) said generation of said output datum occurring without dependence on any storage of any form of said at least a portion of said confidential datum.
- (f) wherein for at least one input access code not equaling said user's access code, said-output datum has the characteristic appearance of said at least a portion of said confidential datum generating an invalid output datum having said appearance of said user's confidential datum.

Claims 32.-33. (canceled)

Claim 34. (original) The computer-readable medium of claim 31 where said access code is a PIN, said confidential datum includes an asymmetric cryptographic key.

Claim 35. (original) The computer-readable medium of claim 31 where said seed-access code felationship is a identity relationship, so that said derived seed equals said input access code.

Claim 36. (original) The computer-readable medium of claim 31 where said seed-access code relationship represents said derived seed as a padded version of said input access code.

Claim 37. (original) The computer-readable medium of claim 31 where said seed-access code relationship includes a version of said initial seed masked by user's access code.

Claim 38. (original) The computer-readable medium of claim 37 where:

- said masked version of said initial seed includes an XOR of said initial seed with said user's access code; and
- said processing of said derived seed in accordance with said seedaccess code relationship includes XORing said masked version of said initial seed with said derived seed.

Claim 39. (original) The computer-readable medium of claim 31 where:

- said seed-access code relationship includes a truncated version of said initial seed capable of being concatenated with said input access code to form said derived seed; and
- said processing of said derived seed in accordance with said seedaccess code relationship includes concatenating said truncated version of said initial seed with said input access code.

Claim 40. (original) The computer-readable medium of claim 31 where:

- said seed-access code relationship includes values of, and associations between, a plurality of possible values of said input access code and a corresponding plurality of possible values of said derived seed; and
- said processing of said derived seed in accordance with said seedaccess code relationship includes looking up and outputting said possible value of said derived seed corresponding to said input access code

Claim 41. (original) The computer-readable medium of claim 40 where:

- said deriving said seed and said executing said predetermined data generation protocol are merged into a common operation; and
 - (2) said output datum includes said derived seed.

Claim 42. (currently amended) A method for camouflaging a user's generationcamouflaged access-controlled datum under said user's access code, comprising:

- (a) initializing a user's access-controlled datum by using a generation protocol in accordance with a generation indicia;
- (b) storing in a memory in a digital wallet a predetermined relationship between said generation indicia and said user's access code;
 - (c) camouflaging at least a portion of said access-controlled datum
 - such as to be reproducible by an authorized user thereof but nonreproducible by an unauthorized user thereof,
 - (ii) said camouflaging including storing said predetermined relationship between said generation indicia and said user's access code;
 - (iii) thereby allowing subsequent accessing of said at least a portion of said access-controlled datum via computer-based processing of an inputted access code, in accordance with said stored generation indicia-access code relationship wherein said access-controlled datum comprises an appearance;
 - (iv) without dependence on any storage of any form of said at least a portion of said access-controlled datum;
 - (v) wherein for at least one inputted access code not equaling said user's access code, generating an output datum that has the <u>said</u> eharacteristic appearance of said at least a portion of said accesscontrolled datum, wherein the output datum is a function of the <u>said</u> input access code; and
 - (d) providing said digital wallet to said user.

Claim 43. (currently amended) A method for camouflaging a user's generationcamouflaged access-controlled datum under said user's access code, comprising:

- (a) initializing a user's access-controlled datum by using a generation protocol in accordance with a generation indicia;
- (b) generation-camouflaging at least a portion of said access-controlled datum such as to be reproducible by an authorized user thereof but non-reproducible by an unauthorized user thereof, wherein said access-controlled datum comprises an appearance, wherein when an incorrect datum is entered reproducing an invalid generation-camouflaged datum such that the reproduced datum has a characteristic comprising said appearance of the user's access-controlled datum, wherein the said output datum is a function of the input access code;
- (c) storing said generation-camouflaged at least a portion of said accesscontrolled datum in a digital wallet; and
 - (d) providing said digital wallet to said user.