BEST AVAILABLE COPY

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 1/21, 5/10, 9/10, 15/53, 15/54, 15/61, 15/63, C12P 23/00, C12Q 1/68

(11) International Publication Number:

WO 99/63055

A1

(43) International Publication Date:

9 December 1999 (09.12.99)

(21) International Application Number:

PCT/US99/12121

(22) International Filing Date:

2 June 1999 (02.06.99)

(30) Priority Data:

09/088,724

2 June 1998 (02.06.98)

us

09/088,725

2 June 1998 (02.06.98)

US

(71) Applicant (for all designated States except US): UNIVERSITY OF MARYLAND [US/US]; Office of Technology Liaison, 4312 Knox Road, College Park, MD 20742 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CUNNINGHAM, Francis, X., Jr. [US/US]; 2727 Washington Avenue, Chevy Chase, MD 20815 (US). SUN, Zairen [US/US]; 3405 Tulane Drive #22, Hyattsville, MD 20783 (US).

(74) Agents: GOLDHUSH, Douglas, H. et al.; Nikaido, Marmelstein, Murray & Oram LLP, Suite 330 - G Street Lobby, Metropolitan Square, 655 Fifteenth Street, N.W., Washington, DC 20005-5701 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

(54) Title: GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF

(57) Abstract

Nucleic acid sequences encoding ϵ -cyclase, isopentenyl pyrophosphate isomerase and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with the vectors. Methods for controlling the ratio of various carotenoids in a host and for the production of novel carotenoid pigments. The present invention also provides a method for screening for eukaryotic genes encoding carotenoid biosynthesis, and for modifying the disclosed enzymes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IIL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2.,	2020 W C
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

The present invention describes nucleic acid sequences for eukaryotic genes encoding ϵ lycopene ϵ -cyclase (also known as ϵ -cyclase and ϵ lycopene cyclase), isopentenyl pyrophosphate isomerase (IPP) and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with said vectors. The present invention also provides methods for augmenting the accumulation of carotenoids, changing the composition of the carotenoids, and producing novel and rare carotenoids. The present invention provides methods for controlling the ratio or relative amounts of various carotenoids in a host. The invention also relates to modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. Additionally, the present invention provides a method for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

15

20

25

Background of the Invention

Carotenoid pigments with cyclic endgroups are essential components of the photosynthetic apparatus in oxygenic photosynthetic organisms (e.g., cyanobacteria, algae and plants; Goodwin, 1980). The symmetrical bicyclic yellow carotenoid pigment βcarotene (or, in rare cases, the asymmetrical bicyclic \alpha-carotene) is intimately associated with the photosynthetic reaction centers and plays a vital role in protecting against potentially lethal photooxidative damage (Koyama, 1991). β-carotene and other carotenoids derived from it or from α -carotene also serve as light-harvesting pigments (Siefermann-Harms, 1987), are involved in the thermal dissipation of excess light energy captured by the lightharvesting antenna (Demmig-Adams & Adams, 1992), provide substrate for the biosynthesis of the plant growth regulator abscisic acid (Rock & Zeevaart, 1991; Parry & Horgan, 1991), and are precursors of vitamin A in human and animal diets (Krinsky, 1987). Plants also exploit carotenoids as coloring agents in flowers and fruits to attract pollinators and agents of seed dispersal (Goodwin, 1980). The color provided by carotenoids is also of agronomic value in a number of important crops. Carotenoids are currently harvested from a variety of organisms, including plants, algae, yeasts, cyanobacteria and bacteria, for use as pigments in food and feed.

30

The probable pathway for formation of cyclic carotenoids in plants, algae and cyanobacteria is illustrated in Figure 1. Two types of cyclic endgroups or rings are commonly found in higher plant carotenoids, these are referred to as the β (beta) and ϵ (epsilon) rings (Fig. 3). The precursor acyclic endgroup (no ring structure) is referred to as the Ψ (psi) endgroup. The β and ϵ endgroups differ only in the position of the double bond in the ring. Carotenoids with two β rings are ubiquitous, and those with one β and one ϵ ring are common, but carotenoids with two ϵ rings are uncommon. β -carotene (Fig. 1) has two β -endgroups and is a symmetrical compound that is the precursor of a number of other important plant carotenoids such as zeaxanthin and violaxanthin (Fig. 2).

10

15

20

25

5

Genes encoding enzymes of carotenoid biosynthesis have previously been isolated from a variety of sources including bacteria (Armstrong et al., 1989, Mol. Gen. Genet. 216, 254-268; Misawa et al., 1990, J. Bacteriol., 172, 6704-12), fungi (Schmidhauser et al., 1990, Mol. Cell. Biol. 10, 5064-70), cyanobacteria (Chamovitz et al., 1990, Z. Naturforsch, 45c, 482-86; Cunningham et al., 1994) and higher plants (Bartley et al., Proc. Natl. Acad. Sci USA 88, 6532-36; Martinez-Ferez & Vioque, 1992, Plant Mol. Biol. 18, 981-83). Many of the isolated enzymes show a great diversity in structure, function and inhibitory properties between sources. For example, phytoene desaturases from the cyanobacterium Synechococcus and from higher plants and green algae carry out a two-step desaturation to yield ζ-carotene as a reaction product. In plants and cyanobacteria a second enzyme (ζcarotene desaturase), similar in amino acid sequence to the phytoene desaturase, catalyzes two additional desaturations to yield lycopene. In contrast, a single desaturase enzyme from Erwinia herbicola and from other bacteria introduces all four double bonds required to form lycopene. The Erwinia and other bacterial desaturases bear little amino acid sequence similarity to the plant and cyanobacterial desaturase enzymes, and are thought to be of unrelated ancestry. Therefore, even with a gene in hand from one source, it may be difficult to identify a gene encoding an enzyme of similar function in another organism. In particular, the sequence similarity between certain of the prokaryotic and eukaryotic genes encoding enzymes of carotenoid biosynthesis is quite low.

30

Further, the mechanism of gene expression in prokaryotes and eukaryotes appears to differ sufficiently such that one cannot expect that an isolated eukaryotic gene will be properly expressed in a prokaryotic host.

The difficulties in isolating genes encoding enzymes with similar functions is exemplified by recent efforts to isolate the gene encoding the enzyme that catalyzes the formation of β -carotene from the acyclic precursor lycopene. Although a gene encoding an enzyme with this function had been isolated from a bacterium, it had not been isolated from any photosynthetic procaryote or from any eukaryotic organism. The isolation and characterization of the enzyme catalyzing formation of β -carotene in the cyanobacterium Synechococcus PCC7942 was described by the present inventors and others (Cunningham et al., 1993 and 1994). The amino acid sequence similarity of the cyanobacterial enzyme to the various bacterial lycopene β -cyclases is so low (ca. 18-25% overall; Cunningham et al., 1994) that there is much uncertainty as to whether they share a common ancestry or, instead, represent an example of convergent evolution.

The need remains for the isolation of eukaryotic and prokaryotic genes and cDNAs encoding polypeptides involved in the carotenoid biosynthetic pathway, including those encoding a lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. There remains a need for methods to enhance the production of carotenoids, to alter the composition of carotenoids, and to reduce or eliminate carotenoid production. There also remains a need in the art for methods for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

SUMMARY OF THE INVENTION

20

25

30

5

10

15

Accordingly, a first object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes involved in carotenoid biosynthesis; in particular, lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase.

A second object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes which produce novel or uncommon carotenoids.

A third object of the present invention is to provide vectors containing said genes.

A fourth object of the present invention is to provide hosts transformed with said vectors.

Another object of the present invention is to provide hosts which accumulate novel or uncommon carotenoids or which accumulate greater amounts of specific or total carotenoids.

Another object of the present invention is to provide hosts with inhibited and/or altered carotenoid production.

10

15

20

25

30

Another object of this invention is to secure the expression of eukaryotic carotenoidrelated genes in a recombinant prokaryotic host.

Yet another object of the present invention is to provide a method for screening for eukaryotic and prokaryotic genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

An additional object of the invention is to provide a method for manipulating carotenoid biosynthesis in photosynthetic organisms by inhibiting the synthesis of certain enzymatic products to cause accumulation of precursor compounds.

Another object of the invention is to provide modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase.

These and other objects of the present invention have been realized by the present inventors as described below.

A subject of the present invention is an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21 or 23-27.

The invention also includes vectors which comprise any of the nucleic acid sequences listed above, and host cells transformed with such vectors.

Another subject of the present invention is a method of producing or enhancing the production of a carotenoid in a host cell, comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

Yet another subject of the present invention is a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ε-cyclase, IPP isomerase or β-carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

10

15

20

25

30

The present invention also includes a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Also included is a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity in the host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Another subject of the present invention is a method for screening for genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

Figure 1 is a schematic representation of the putative pathway of β -carotene biosynthesis in cyanobacteria, algae and plants. The enzymes catalyzing various steps are indicated at the left. Target sites of the bleaching herbicides NFZ and MPTA are also indicated at the left. Abbreviations: DMAPP, dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; GPP, geranyl pyrophosphate; IPP, isopentenyl pyrophosphate; LCY, lycopene cyclase; MVA, mevalonic acid; MPTA, 2-(4-methylphenoxy)triethylamine hydrochloride; NFZ, norflurazon; PDS, phytoene desaturase; PSY, phytoene synthase; ZDS, ζ -carotene desaturase; PPPP, prephytoene pyrophosphate.

Figure 2 depicts possible routes of synthesis of cyclic carotenoids and common plant and algal xanthophylls (oxycarotenolds) from neurosporene. Demonstrated activities of the β - and ϵ -cyclase enzymes of A. thaliana are indicated by bold arrows labelled with β or ϵ respectively. A bar below the arrow leading to ϵ -carotene indicates that the enzymatic

10

15

20

25

30

activity was examined but no product was detected. The steps marked by an arrow with a dotted line have not been specifically examined. Conventional numbering of the carbon atoms is given for neurosporene and α -carotene. Inverted triangles (∇) mark positions of the double bonds introduced as a consequence of the desaturation reactions.

Figure 3 depicts the carotene endgroups which are found in plants.

Figure 4 is a DNA sequence and the predicted amino acid sequence of a lycopene ϵ -cyclase cDNA isolated from A. thaliana (SEQ ID NOS: 1 and 2). These sequences were deposited under Genbank accession number U50738. This cDNA is incorporated into the plasmid pATeps.

Figure 5 is a DNA sequence encoding the β -carotene hydroxylase isolated from A. thaliana (SEQ ID NO: 3). This cDNA is incorporated into the plasmid pATOHB.

Figure 6 is an alignment of the predicted amino acid sequences of A. thaliana β-carotene hydroxylase (SEQ ID NO: 4) with those of the bacterial β-carotene hydroxylase enzymes from Alicalgenes sp. (SEQ ID NO: 5) (Genbank D58422), Erwinia herbicola Eho10 (SEQ ID NO.: 6) (GenBank M872280), Erwinia uredovora (SEQ ID NO.: 7) (GenBank D90087) and Agrobacterium aurianticum (SEQ ID NO.: 8) (GenBank D58420). A consensus sequence is also shown. All five genes are identical where a capital letter appears in the consensus. A lowercase letter indicates that three of five, including A. thaliana, have the identical residue. TM; transmembrane.

Figure 7 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from A. thaliana (SEQ ID NO: 9). This cDNA is incorporated into the plasmid pATDP5.

Figure 8 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from A. thaliana (SEQ ID NO: 10). This cDNA is incorporated into the plasmid pATDP7.

Figure 9 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 11). This cDNA is incorporated into the plasmid pHP04.

Figure 10 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 12). This cDNA is incorporated into the plasmid pHP05.

Figure 11 is an alignment of the amino acid sequences predicted by IPP isomerase cDNAs isolated from A. thaliana (SEQ ID NO.: 16 and 18), H. pluvialis (SEQ ID NOS.: 14

WO 99/63055 PCT/US99/12121

and 15), Clarkia breweri (SEQ ID NO.: 17) (See, Blanc & Pichersky, Plant Physiol. (1995) 108:855; Genbank accession no. X82627) and Saccharomyces cerevisiae (SEQ ID NO.: 19) (Genbank accession no. J05090).

Figure 12 is a DNA sequence of the cDNA encoding an IPP isomerase isolated from *Tagetes erecta* (marigold; SEQ ID NO: 13). This cDNA is incorporated into the plasmid pPMDP1. xxx's denote a region not originally sequenced. Figure 21A shows the complete marigold sequence.

Figure 13 is an alignment of the consensus sequence of four plant β -cyclases (SEQ ID NO.: 20) with the A. thaliana lycopene ϵ -cyclase (SEQ ID NO.: 21). A capital letter in the plant β consensus is used where all four β -cyclase genes predict the same amino acid residue in this position. A small letter indicates that an identical residue was found in three of the four. Dashes indicate that the amino acid residue was not conserved and dots in the sequence denote a gap. A consensus for the aligned sequences is given, in capital letters below the alignment, where the β - and ϵ -cyclases have the same amino acid residue. Arrows indicate some of the conserved amino acids that will be used as junction sites for construction of chimeric cyclases with novel enzymatic activities. Several regions of interest including a sequence signature indicative of a dinucleotide-binding motif and two predicted transmembrane (TM) helical regions are indicated below the alignment and are underlined.

Figure 14 shows the nucleotide (SEQ ID NO:22) and amino acid sequences (SEQ ID NO:23) of the *Adonis palaestina* (pheasant's eye) ϵ -cyclase cDNA #5.

Figure 15A shows the nucleotide (SEQ ID NO:24) and amino acid sequences (SEQ ID NO:25) of a potato ϵ -cyclase cDNA. Figure 15B shows the amino acid sequence (SEQ ID NO:26) of a chimeric lettuce/potato lycopene ϵ -cyclase. Amino acids in lower case are from the lettuce cDNA and those in upper case are from the potato cDNA. The product of this chimeric cDNA has e-cyclase activity and converts lycopene to the monocyclic δ -carotene.

Figure 16 shows a comparison between the amino acid sequences of the *Arabidopsis* ϵ -cyclase (SEQ ID NO:27) and the potato ϵ -cyclase (SEQ ID NO:25).

Figure 17A shows the nucleotide sequence of the *Adonis palaestina* Ipi1 (SEQ ID NO:28) and Figure 17B shows the nucleotide sequence of the *Adonis palaestina* Ipi2 (SEQ ID NO: 29).

5

10

15

20

25

30

10

15

20

25

30

Figure 18A shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi1 (SEQ ID NO:11) and Figure 18B shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi2 (SEQ ID NO:30).

Figure 19A shows the nucleotide sequence of the *Lactuca sativa (romaine lettuce)* Ipi1 (SEQ ID NO:31) and Figure 19B shows the nucleotide sequence of the *Lactuca sativa* Ipi2 (SEQ ID NO: 32).

Figure 20 shows the nucleotide sequence of the *Chlamydomonas reinhardtii* Ipi1 (SEQ ID NO:33).

Figure 21A shows the nucleotide sequence of the *Tagetes erecta* (marigold) Ipi1 (SEQ ID NO:34) and Figure 21B shows the nucleotide sequence of the *Oryza sativa* (rice) Ipi1 (SEQ ID NO:35).

Figure 22 shows a amino acid sequence alignment of various plant and green algal isopentenyl isomerases (IPI) (SEQ ID NOS:16, 36-45).

Figure 23 shows a comparison between *Adonis palaestina* ϵ -cyclase cDNA #3 and cDNA #5 nucleotide sequences.

Figure 24 shows a comparison between *Adonis palaestina* ϵ -cyclase cDNA #3 and cDNA #5 predicted amino acid sequences.

Figure 25 shows a sequence alignment of various plant β - and ϵ -cyclases. Those sequences outlined in grey denote identical sequences among the ϵ -cyclases. Those sequences outlined in black denote identical sequences among both the β - and ϵ -cyclases.

Figure 26 shows a sequence alignment of the plant ϵ -cyclases from Figure 25. Those sequences outlined in black denote identical sequences among the ϵ -cyclases.

Figure 27 is a dendrogram or "tree" illustrating the degree of amino acid sequence similarity for various lycopene β - and ϵ -cyclases.

Figure 28 shows a comparison between Arabidopsis ϵ -cyclase and lettuce ϵ -cyclase predicted amino acid sequences.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention includes an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ε-cyclase, IPP isomerase or β-carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Nucleic acids encoding lycopene ε-cyclase, β-carotene hydroxylase and IPP

10

15

20

25

30

isomerases have been isolated from several genetically distant sources.

The present inventors have isolated nucleic acids encoding the enzyme IPP isomerase, which catalyzes the reversible conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP). IPP isomerase cDNAs were isolated from the plants A. thaliana, Tagetes erecta (marigold), Adonis palaestina (pheasant's eye), Lactuca sativa (romaine lettuce) and from the green algae H. pluvialis and Chlamydomonas reinhardtii.

Alignments of the amino acid sequences predicted by some of these cDNAs are shown in Figures 12 and 22. Plasmids containing some of these cDNAs were deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession numbers 98000 (pHP05 - H. pluvialis); 98001 (pMDP1 - marigold); 98002 (pATDP7 - A. thaliana) and 98004 (pHP04 - H. pluvialis).

The present inventors have also isolated nucleic acids encoding the enzyme β-carotene hydroxylase, which is responsible for hydroxylating the β-endgroup in carotenoids. The nucleic acid of the present invention is shown in SEQ ID NO: 3 and Figure 5. The full length cDNA product hydroxylates both end groups of β-carotene as do products of cDNAs which encode proteins truncated by up to 50 amino acids from the N-terminus. Products of genes which encode proteins truncated between about 60-110 amino acids from the N-terminus preferentially hydroxylate only one ring. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98003 (pATOHB - A. thaliana).

The present inventors have also isolated nucleic acids encoding the enzyme lycopene ϵ -cyclase, which is responsible for the formation of ϵ -endgroups in carotenoids. The A. thaliane ϵ -cyclase adds an ϵ ring to only one end of the symmetrical lycopene while the related β -cyclase adds a ring at both ends. The A. thaliana cDNA of the present invention is shown in Figure 4 and SEQ ID NO: 1. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98005 (pATeps - A. thaliana).

In addition, lycopene ϵ -cyclases have been identified in lettuce and in *Adonis* palaestina (cDNA #5) which encode enzymes that convert lycopene to the bicyclic ϵ -carotene (ϵ , ϵ -carotene). An additional cDNA from *Adonis palaestina* (cDNA #3) encodes a lycopene ϵ -cyclase which converts lycopene into δ -carotene (ϵ , ψ -carotene) and differs from the lycopene ϵ -cyclase which forms bicyclic ϵ -carotene (ϵ , ϵ -carotene) by only 5 amino acids.

One or more of these amino acids may be modified by alteration of the nucleotide sequence in the #5 cDNA to obtain an enzyme which forms the bicyclic ϵ, ϵ -carotene. The sequences of the *Adonis palaestina* and *Arabidopsis thaliana* ϵ -cyclases have about 70% nucleotide identity and about 72% amino acid identity.

10

15

20

5

Initial experiments by the inventors with chimeric genes indicated that the part of the ϵ -cyclase which is responsible for adding 2ϵ rings to form ϵ, ϵ -carotene is the carboxy terminal portion of the gene. The lettuce ϵ -cyclase adds two ϵ rings to form ϵ, ϵ -carotene. A DNA encoding a partial potato ϵ -cyclase (missing its amino terminal portion), when combined with an amino terminal region from the lettuce ϵ -cyclase gene, produces a monocyclic δ -carotene (ϵ, ψ -carotene). With the discovery of the differences between the Adonis palaestina clone #3 and clone #5, the specific amino acids responsible for the addition of an extra ϵ ring have been identified (Figure 24). Specifically, amino acid 55 is Thr in clone #3 and Ser in clone #5, amino acid 210 is Asn in clone #3 and Asp in clone #5, amino acid 231 is Asp in clone #3 and Glu in clone #5, amino acid 352 is Ile in clone #3 and Val in clone #5, and amino acid 524 is Lys in clone #3 and Arg in clone #5. It can be appreciated that these changes are quite conservative, as only one change, at amino acid 210, changes the charge of the protein.

Thus, it is clear that the nucleic acids of the invention encoding the enzymes as presently disclosed may be altered to increase a particularly desirable property of the enzyme, to change a property of the enzyme, or to diminish an undesirable property of the enzyme. Such modifications can be by deletion, substitution, or insertion of one or more amino acids, and can be performed by routine enzymatic manipulation of the nucleic acid encoding the enzyme (such as by restriction enzyme digestion, removal of nucleotides by mung bean nuclease or *Bal*31, insertion of nucleotides by Klenow fragment, and by religation of the ends), by site-directed mutagenesis, or may be accidental, such as by low fidelity PCR or those obtained through mutations in hosts that are producers of the enzymes. These techniques as well as other suitable techniques are well known in the art.

30

25

Mutations can be made in the nucleic acids of the invention such that a particular codon is changed to a codon which codes for a different amino acid. Such a mutation is generally made by making the fewest nucleotide changes possible. A substitution mutation of this sort can be made to change an amino acid in the resulting protein in a non-conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping

15

20

25

30

of amino acids having a particular size or characteristic to an amino acid belonging to another grouping) or in a conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to the same grouping). Such a conservative change generally leads to less change in the structure and function of the resulting protein. A non-conservative change is more likely to alter the structure, activity or function of the resulting protein. The present invention should be considered to include sequences containing conservative changes which do not significantly alter the activity or binding characteristics of the resulting protein.

The following is one example of various groupings of amino acids:

Amino acids with nonpolar R groups: Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Tryptophan and Methionine.

Amino acids with uncharged polar R groups: Glycine, Serine, Threonine, Cysteine, Tyrosine, Asparagine and Glutamine.

Amino acids with charged polar R groups (negatively charged at Ph 6.0): Aspartic acid and Glutamic acid.

Basic amino acids (positively charged at pH 6.0): Lysine, Arginine and Histidine.

Another grouping may be those amino acids with phenyl groups: Phenylalanine, Tryptophan and Tyrosine.

Another grouping may be according to molecular weight (i.e., size of R groups). Particularly preferred substitutions are:

- Lys for Arg and vice versa such that a positive charge may be maintained;
- Glu for Asp and vice versa such that a negative charge may be maintained;
- Ser for Thr such that a free -OH can be maintained; and
- Gln for Asn such that a free NH₂ can be maintained.

Amino acid substitutions may also be introduced to substitute an amino acid with a particularly preferable property. For example, a Cys may be introduced to provide a potential site for disulfide bridges with another Cys. A His may be introduced as a particularly "catalytic" site (i.e., His can act as an acid or base and is the most common amino acid in biochemical catalysis). Pro may be introduced because of its particularly planar structure, which induces β -turns in the protein's structure.

It is clear that certain modifications of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27 can take place without destroying the activity of the enzyme. It is noted especially that truncated

versions of the nucleic acids of the invention are functional. For example, several amino acids (from 1 to about 120) can be deleted from the N-terminus of the lycopene ε-cyclases of the invention, and a functional protein can still be produced. This fact is made especially clear from Figure 25, which shows a sequence alignment of several plant ε-cyclases. As can be seen from Figure 25, there is an enormous amount of sequence disparity between amino acid sequences 2 to about 50-70 (depending on the particular sequence, since gaps are present). There is less, but also a substantial amount of, sequence dissimilarity between about 50-70 to about 90-120 (depending on the particular sequence). Thereafter, the sequences are fairly conserved, except for small pockets of dissimilarity between about 275-295 to about 285-305 (depending on the particular sequence), and between about 395-415 to about 410-430 (depending on the particular sequence).

The present inventors have found that the amount of the 5' region present in the nucleic acids of the invention can alter the activity of the enzyme. Instead of diminishing activity, truncating the 5' region of the nucleic acids of the invention may result in an enzyme with a different specificity. Thus, the present invention relates to nucleic acids and enzymes encoded thereby which are truncated to within 0-50, preferably 0-25, codons of the 5' initiation codon of their prokaryotic counterparts as determined by alignment maps as discussed below.

For example, when the cDNA encoding A. thaliana β -carotene hydroxylase was truncated, the resulting enzyme catalyzed the formation of β -cryptoxanthin as the major product and zeaxanthin as minor product; in contrast to its normal production of zeaxanthin.

The present invention is intended to include those nucleic acid and amino acid sequences in which substitutions, deletions, additions or other modifications have taken place, as compared to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, without destroying the activity of the enzyme. Preferably, the substitutions, deletions, additions or other modifications take place at the 5' end, or any other of those positions which already show dissimilarity between any of the presently disclosed amino acid sequences (see also Figure 25) or other amino acid sequences which are known in the art and which encode the same enzyme (i.e., lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase).

In each case, nucleic acid and amino acid sequence similarity and identity is measured using sequence analysis software, for example, the Sequence Analysis, Gap, or BestFit software packages of the Genetics Computer Group (University of Wisconsin Biotechnology

5

10

15

20

25

30

Center, 1710 University Avenue, Madison, Wisconsin 53705), MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wisconsin 53715), or MacVector (Oxford Molecular Group, 2105 S. Bascom Avenue, Suite 200, Campbell, California 95008). Such software uses algorithms to match similar sequences by assigning degrees of identity to various substitutions, deletions, and other modifications, and includes detailed instructions as to useful parameters, etc., such that those of routine skill in the art can easily compare sequence similarities and identities. An example of a useful algorithm in this regard is the algorithm of Needleman and Wunsch, which is used in the Gap program discussed above. This program finds the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. Another useful algorithm is the algorithm of Smith and Waterman, which is used in the BestFit program discussed above. This program creates an optimal alignment of the best segment of similarity between two sequences. Optimal alignments are found by inserting gaps to maximize the number of matches using the local homology algorithm of Smith and Waterman.

15

10

5

Conservative (i.e. similar) substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine and leucine; aspartic acid, glutamic acid, asparagine and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine. Substitutions may also be made on the basis of conserved hydrophobicity or hydrophilicity (see Kyte and Doolittle, *J. Mol. Biol.* 157: 105-132 (1982)), or on the basis of the ability to assume similar polypeptide secondary structure (see Chou and Fasman, *Adv. Enzymol.* 47: 45-148 (1978)).

20

25

If comparison is made between nucleotide sequences, preferably the length of comparison sequences is at least 50 nucleotides, more preferably at least 60 nucleotides, at least 75 nucleotides or at least 100 nucleotides. It is most preferred if comparison is made between the nucleic acid sequences encoding the enzyme coding regions necessary for enzyme activity. If comparison is made between amino acid sequences, preferably the length of comparison is at least 20 amino acids, more preferably at least 30 amino acids, at least 40 amino acids or at least 50 amino acids. It is most preferred if comparison is made between the amino acid sequences in the enzyme coding regions necessary for enzyme activity.

30

It should be appreciated that also within the scope of the present invention are nucleic acid sequences encoding lycopene ε-cyclases, IPP isomerases and β-carotene hydroxylases

10

15

20

25

30

which code for enzymes having the same amino acid sequence as SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, but which are degenerate to the nucleic acids specifically disclosed herein.

The amino acid residues described herein are preferred to be in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property of immunoglobulin-binding is retained by the polypeptide.

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook et al, "Molecular Cloning: A Laboratory Manual" (1989); "Current Protocols in Molecular Biology" Volumes I-III [Ausubel, R. M., ed. (1994)]; "Cell Biology: A Laboratory Handbook" Volumes I-III [J. E. Celis, ed. (1994))]; "Current Protocols in Immunology" Volumes I-III [Coligan, J. E., ed. (1994)]; "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" [B.D. Hames & S.J. Higgins eds. (1985)]; "Transcription And Translation" [B.D. Hames & S.J. Higgins, eds. (1984)]; "Animal Cell Culture" [R.I. Freshney, ed. (1986)]; "Immobilized Cells And Enzymes" [IRL Press, (1986)]; B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

The present invention also includes vectors. Suitable vectors according to the present invention comprise a nucleic acid of the invention encoding an enzyme involved in carotenoid biosynthesis or metabolism and a suitable promoter for the host, and can be constructed using techniques well known in the art (for example Sambrook et al., Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York, 1991). Suitable vectors for eukaryotic expression in plants are described in Frey et al., Plant J. (1995) 8(5):693 and Misawa et al, 1994a; incorporated herein by reference. Suitable vectors for prokaryotic expression include pACYC184, pUC119, and pBR322 (available from New England BioLabs, Bevery, MA) and pTrcHis (Invitrogen) and pET28 (Novagen) and derivatives thereof. The vectors of the present invention can additionally contain regulatory elements such as promoters, repressors, selectable markers such as antibiotic resistance genes, etc.

The nucleic acids encoding the carotenoid enzymes as described above, when cloned into a suitable expression vector, can be used to overexpress these enzymes in a plant

10

15

20

25

30

expression system or to inhibit the expression of these enzymes. For example, a vector containing the gene encoding lycopene ϵ -cyclase can be used to increase the amount of α -carotene and carotenoids derived from α -carotene (such as lutein and α -cryptoxanthin) in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism.

Therefore, the present invention includes a method of producing or enhancing the production of a carotenoid in a host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

The present invention also includes a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

The term "modifying the production" means that the amount of carotenoids produced in the host cell can be enhanced, reduced, or left the same, as compared to the untransformed host cell. In accordance with one embodiment of the present invention, the make-up of the carotenoids (i.e., the specific carotenoids produced) is changed vis a vis each other, and this change in make-up may result in either a net gain, net loss, or no net change in the total amount of carotenoids produced in the cell. In accordance with another embodiment of the present invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) is enhanced by the insertion of an enzyme-encoding nucleic acid of the invention. In yet another embodiment of the invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) may be reduced or inhibited by a number of different approaches available to those skilled in the art, including but not limited to such methodologies or approaches as anti-sense (e.g.,

10

15

20

25

30

Gray et al (1992) Plant Mol. Biol. 19:69-87), ribozymes (e.g., Wegener et al (1994) Mol. Gen. Genet. 245:465-470), co-suppression (e.g., Fray and Grierson (1993) Plant Mol. Biol. 22:589-602), targeted disruption of the gene (e.g., Schaefer et al. (1997) Plant J. 11:1195-1206), intracellular antibodies (e.g., Rondon and Marasco (1997) Ann. Rev. Microbiol. 51:257-283) or whatever other approaches rely on the knowledge or availability of the nucleic acid or amino acid sequences of the invention and/or portions thereof, to thereby reduce accumulation of carotenoids with ϵ rings and compounds derived from them (for ϵ -cyclase inhibition), or carotenoids with hydroxylated β rings and compounds derived from them (for β -hydroxylase inhibition), or, in the case if IPP isomerase, accumulation of any isoprenoid compound.

Preferably, at least a portion of the nucleic acid sequences used in the methods, vectors and host cells of the invention codes for an enzyme having an amino acid sequence which is at least 85% identical, preferably at least 90%, at least 95% or completely identical to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Sequence identity is determined as noted above. Preferably, sequence additions, deletions or other modifications are made as indicated above, so as to not affect the function of the particular enzyme.

In a preferred embodiment, vectors are manufactured which contain a DNA encoding a eukaryotic IPP isomerase upstream of a DNA encoding a second eukaryotic carotenoid enzyme. The inventors have discovered that inclusion of an IPP isomerase gene increases the supply of substrate for the carotenoid pathway; thereby enhancing the production of carotenoid endproducts, as compared to a host cell which is not transformed with such a vector. This is apparent from the much deeper pigmentation in carotenoid-accumulating colonies of *E. coli* which also contain one of the aforementioned IPP isomerase genes when compared to colonies that lack this additional IPP isomerase gene. Similarly, a vector comprising an IPP isomerase gene can be used to enhance production of any secondary metabolite of dimethylallyl pyrophosphate and/or isopentenyl pyrophosphate (such as isoprenoids, steroids, carotenoids, etc.). The term "isoprenoid" is intended to mean any member of the class of naturally occurring compounds whose carbon skeletons are composed, in part or entirely, of isopentyl C₅ units. Preferably, the carbon skeleton is of an essential oil, a fragrance, a rubber, a carotenoid, or a therapeutic compound, such as paclitaxel.

A vector containing the cDNA encoding a lycopene ϵ -cyclase of the invention, preferably the lettuce lycopene ϵ -cyclase or Adonis ϵ -cyclase #5, can be used to increase the

10

15

20

25

30

amount of bicyclic ∈-carotene in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism. In addition, the transformed organism can be used in the formulation of therapeutic agents, for example in the treatment of cancer (see Mayne et al (1996) FASEB J. 10:690-701; Tsushima et al (1995) Biol. Pharm. Bull. 18:227-233).

An antisense strand of a nucleic acid of the invention can be inserted into a vector. For example, the lycopene ϵ -cyclase gene can be inserted into a vector and incorporated into the genomic DNA of a host, thereby inhibiting the synthesis of ϵ , β -carotenoids (lutein and α -carotene) and enhancing the synthesis of β , β -carotenoids (zeaxanthin and β -carotene).

The present invention also relates to novel enzymes which are encoded by the amino acid sequences of the invention, or portions thereof.

The present invention also relates to novel enzymes which can transform known carotenoids into novel or uncommon products. Currently ϵ -carotene (see Figure 2) and γ -carotene are commonly produced only in minor amounts. As described below, an enzyme can be produced which transforms lycopene to γ -carotene and lycopene to ϵ -carotene. With these products in hand, bulk synthesis of other carotenoids derived from them are possible. For example, ϵ -carotene can be hydroxylated to form lactucaxanthin, an isomer of lutein (one ϵ and one β ring) and zeaxanthin (two β rings) where both endgroups are, instead, ϵ rings.

In addition to novel enzymes produced by truncating the 5' region of known enzymes, as discussed above, novel enzymes which can participate in the formation of unusual carotenoids can be formed by replacing portions of one gene with an analogous sequence from a structurally related gene. For example, β -cyclase and ϵ -cyclase are structurally related (see Figure 13). By replacing a portion of β -lycopene cyclase with the analogous portion of ϵ -cyclase, an enzyme which produces γ -carotene will be produced (one β endgroup). Further, by replacing a portion of the lycopene ϵ -cyclase with the analogous portion of β -cyclase, an enzyme which produces ϵ -carotene will be produced (with some exceptions, such as the lettuce ϵ -cyclase, plant ϵ -cyclases normally produce a compound with one ϵ -endgroup, δ -carotene). Similarly, β -hydroxylase could be modified to produce enzymes of novel function by creation of hybrids with ϵ -hydroxylase.

Host systems according to the present invention can comprise any organism that already produces carotenoids or which has been genetically modified to produce carotenoids.

The IPP isomerase genes are more broadly applicable for enhancing production of any product dependent on DMAPP and/or IPP as a precursor.

Organisms which already produce carotenoids include plants, algae, some yeasts, fungi and cyanobacteria and other photosynthetic bacteria. Transformation of these hosts with vectors according to the present invention can be done using standard techniques such as those described in Misawa et al., (1990) supra; Hundle et al., (1993) supra; Hundle et al., (1991) supra; Misawa et al., (1991) supra; Sandmann et al., supra; and Schnurr et al., supra.

Transgenic organisms can be constructed which include the nucleic acid sequences of the present invention (Bird et al, 1991; Bramley et al, 1992; Misawa et al, 1994a; Misawa et al, 1994b; Cunningham et al, 1993). The incorporation of these sequences can allow the controlling of carotenoid biosynthesis, content, or composition in the host cell. These transgenic systems can be constructed to incorporate sequences which allow for the overexpression of the nucleic acids of the present invention. Transgenic systems can also be constructed containing antisense expression of the nucleic acid sequences of the present invention. Such antisense expression would result in the accumulation of the substrates of the substrates of the enzyme encoded by the sense strand.

A method for screening for eukaryotic genes which encode enzymes involved in carotenoid biosynthesis comprises transforming a prokaryotic host with a nucleic acid which may contain a eukaryotic or prokaryotic carotenoid biosynthetic gene; culturing said transformed host to obtain colonies; and screening for colonies exhibiting a different color than colonies of the untransformed host.

Suitable hosts include E. coli, cyanobacteria such as Synechococcus and Synechocystis, alga and plant cells. E. coli are preferred.

In a preferred embodiment, the above "color complementation" screening protocol can be enhanced by using mutants which are either (1) deficient in at least one carotenoid biosynthetic gene or (2) overexpress at least one carotenoid biosynthetic gene. In either case, such mutants will accumulate carotenoid precursors.

Prokaryotic and eukaryotic DNA or cDNA libraries can be screened in total for the presence of genes of carotenoid biosynthesis, metabolism and degradation. Preferred organisms to be screened include photosynthetic organisms.

5

10

15

20

25

30

10

15

20

25

30

E. coli can be transformed with these eukaryotic cDNA libraries using conventional methods such as those described in Sambrook et al, 1989 and according to protocols described by the vendors of the cloning vectors.

For example, the cDNA libraries in bacteriophage vectors such as lambdaZAP (Stratagene) or lambda ZIPLOX (Gibco BRL) can be excised en masse and used to transform *E.coli*.

Transformed *E. coli* can be cultured using conventional techniques. The culture broth preferably contains antibiotics to select and maintain plasmids. Suitable antibiotics include penicillin, ampicillin, chloramphenicol, etc. Culturing is typically conducted at 15-40°C, preferably at room temperature or slightly above (18-28°C), for 12 hours to 7 days.

Cultures are plated and the plates are screened visually for colonies with a different color than the colonies of the host $E.\ coli$ transformed with the empty plasmid cloning vector. For example, $E.\ coli$ transformed with the plasmid, pAC-BETA (described below), produce yellow colonies that accumulate β -carotene. After transformation with a cDNA library, colonies which contain a different hue than those formed by $E.\ coli/pAC$ -BETA would be expected to contain enzymes which modify the structure or accumulation of β -carotene. Similar $E.\ coli$ strains can be engineered which accumulate earlier products in carotenoid biosynthesis, such as lycopene, γ -carotene, etc.

Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.

EXAMPLE

I. <u>Isolation of β-carotene hydroxylase</u>

Plasmid Construction

An 8.6kb BgIII fragment containing the carotenoid biosynthetic genes of *Erwinia herbicola* was first cloned in the BamHI site of plasmid vector pACYC184 (chloramphenicol resistant), and then a 1.1kb BamHI fragment containing the *E. herbicola* β-carotene hydroxylase (*CrtZ*) was deleted. *E.coli* strains containing the resulting plasmid, pAC-BETA, accumulate β-carotene and form yellow colonies (Cunningham et al., 1994).

A full length cDNA encoding IPP isomerase of *Haematococcus pluvialis* (HP04) was first excised with *BamH*I and *Kpn*I from pBluescript SK-, and then ligated into the

corresponding sites of the pTrcHisA vector with high-level expression from the *trc* promoter (Invitrogen, Inc.). A fragment containing the IPP isomerase and *trc* promoter was subsequently excised with *EcoRV* and *KpnI*, treated with the Klenow fragment of DNA polymerase to produce blunt ends, and ligated in the Klenow-treated *HindIII* site of pAC-BETA. *E.coli* cells transformed with this new plasmid pAC-BETA-04 form orange colonies on LB plates (*vs.* yellow for those containing pAC-BETA) and cultures accumulate substantially more β-carotene (*ca.* two fold) than those that contain pAC-BETA.

Screening of an Arabidopsis cDNA Library

Several λ cDNA expression libraries of *Arabidopsis* were obtained from the *Arabidopsis* Biological Resource Center (Ohio State University, Columbus, OH) (Kieber et al., 1993). The λ cDNA libraries were excised *in vivo* using Stratagene's ExAssist SOLR system to produce a phagemid cDNA library wherein each phagemid contained also a gene conferring resistance to the antibiotic ampicillin.

E.coli strain DH10BZIP was chosen as the host cell for the screening and pigment production, although we have also used TOP10F' and XL1-Blue for this purpose. DH10B cells were transformed with plasmid pAC-BETA-04 and were plated on LB agar plates containing chloramphenicol at 50 µg/ml (from United States Biochemical Corporation). The phagemid Arabidopsis cDNA library was then introduced into DH10B cells already containing pAC-BETA-04. Transformed cells containing both pAC-BETA-04 and Arabidopsis cDNA library phagemids were selected on chloramphenicol plus ampicillin (150 µg/ml) agar plates. Maximum color development occurred after 3 to 7 days incubation at room temperature, and the rare bright yellow colonies were selected from a background of many thousands of orange colonies on each agar plate. Selected colonies were inoculated into 3 ml liquid LB medium containing ampicillin and chloramphenicol, and cultures were incubated at room temperature for 1-2 days, with shaking. Cells were then harvested by centrifugation and extracted with acetone in microfuge tubes. After centrifugation, the pigmented extract was spotted onto silica gel thin-layer chromatography (TLC) plates, and developed with a hexane:ether (1:1, by volume) mobile phases. B-carotene hydroxylaseencoding cDNAs were identified based on the appearance of a yellow pigment that comigrated with zeaxanthin on the TLC plates.

5

10

15

20

25

30

Subcloning and Sequencing

The plasmid containing the β-carotene hydroxylase cDNA was recovered and analyzed by standard procedures (Sambrook et al., 1989). The *Arabidopsis* β-carotene hydroxylase was sequenced completely on both strands on an automatic sequencer (Applied Biosystems, Model 373A, Version 2.0.1S). The cDNA insert of 0.95kb also was excised and ligated into the a pTrcHis vector. A *BgI*II restriction site within the cDNA was used to remove that portion of the cDNA that encodes the predicted polypeptide N terminal sequence region that is not also found in bacterial β-carotene hydroxylases (Figure 6). A BgIII-XhoI fragment was directionally cloned in BamHI-XhoI digested TrcHis vectors.

Pigment Analysis

5

10

15

20

25

30

A single colony was used to inoculate 50 ml of LB containing ampicillin and chloramphenicol in a 250-ml flask. Cultures were incubated at 28°C for 36 hours with gentle shaking, and then harvested at 5000 rpm in an SS-34 rotor. The cells were washed once with distilled H₂O and resuspended with 0.5 ml of water. The extraction procedures and HPLC were essentially as described previously (Cunningham et al, 1994).

II. Isolation and biochemical analysis of an Arabidopsis lycopene ϵ -cyclase Plasmid Construction

Construction of plasmids pAC-LYC, pAC-NEUR, and pAC-ZETA is described in Cunningham et al., (1994). In brief, the appropriate carotenoid biosynthetic genes from *Erwinia herbicola*, *Rhodobacter capsulatus*, and *Synechococcus* sp. strain PCC7942 were cloned in the plasmid vector pACYC184 (New England BioLabs, Beverly, MA). Cultures of *E. coli* containing the plasmids pAC-ZETA, pAC-NEUR, and pAC-LYC, accumulate ζ-carotene, neurosporene, and lycopene, respectively. The plasmid pAC-ZETA was constructed as follows: an 8.6-kb BgIII fragment containing the carotenoid biosynthetic genes of *E. herbicola* (GenBank M87280; Hundle et al., 1991) was obtained after partial digestion of plasmid pPL376 (Perry et al., 1986; Tuveson et al., 1986) and cloned in the BamHI site of pACYC184 to give the plasmid pAC-EHER. Deletion of adjacent 0.8- and 1.1-kb BamHI-BamHI fragments (deletion Z in Cunningham et al., 1994), and of a 1.1 kB Sall-Sall fragment (deletion X) served to remove most of the coding regions for the *E. herbicola* β-carotene hydroxylase (crtZ gene) and zeaxanthin glucosyltransferase (crtX gene), respectively. The

10

15

20

25

resulting plasmid, pAC-BETA, retains functional genes for geranylgeranyl pyrophosphate synthase (crtE), phytoene synthase (crtB), phytoene desaturase (crtI), and lycopene cyclase (crtY). Cells of E. coli containing this plasmid form yellow colonies and accumulate β -carotene. A plasmid containing both the lycopene ϵ - and β -cyclase cDNAs of A. thaliana was constructed by excising the ϵ -cyclase in clone y2 as a PvuI-PvuII fragment and ligating this piece in the SnaBI site of a plasmid (pSPORT 1 from GIBCO-BRL) that already contained the β -cyclase (Cunningham et al., 1996).

Organisms and Growth Conditions

E. coli strains TOP10 and TOP10 F' (obtained from Invitrogen Corporation, San Diego, CA) and XL1-Blue (Stratagene) were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 37°C in darkness on a platform shaker at 225 cycles per min. Media components were from Difco (yeast extract and tryptone) or Sigma (NaCl). Ampicillin at 150 μg/mL and/or chloramphenicol at 50 μg/mL (both from United States Biochemical Corporation) were used, as appropriate, for selection and maintenance of plasmids.

Mass Excision and Color Complementation Screening of an A. thaliana cDNA Library

A size-fractionated 1-2 kB cDNA library of A. thaliana in lambda ZAPII (Kieber et al., 1993) was obtained from the Arabidopsis Biological Resource Center at The Ohio State University (stock number CD4-14). Other size fractionated libraries were also obtained (stock numbers CD4-13, CD4-15, and CD4-16). An aliquot of each library was treated to cause a mass excision of the cDNAs and thereby produce a phagemid library according to the instructions provided by the supplier of the cloning vector (Stratagene; E. coli strain XL1-Blue and the helper phage R408 were used). The titre of the excised phagemid was determined and the library was introduced into a lycopene-accumulating strain of E. coli TOP10 F' (this strain contained the plasmid pAC-LYC) by incubation of the phagemid with the E. coli cells for 15 min at 37°C. Cells had been grown overnight at 30°C in LB medium supplemented with 2% (w/v) maltose and 10 mM MgSO₄ (final concentration), and harvested in 1.5 ml microfuge tubes at a setting of 3 on an Eppendorf microfuge (5415C) for 10 min. The pellets were resuspended in 10 mM MgSO₄ to a volume equal to one-half that of the

initial culture volume. Transformants were spread on large (150 mm diameter) LB agar petri plates containing antibiotics to provide for selection of cDNA clones (ampicillin) and maintenance of pAC-LYC (chloramphenicol). Approximately 10,000 colony forming units were spread on each plate. Petri plates were incubated at 37 C for 16 hr and then at room temperature for 2 to 7 days to allow maximum color development. Plates were screened visually with the aid of an illuminated 3x magnifier and a low power stage-dissecting microscope for the rare, pale pinkish-yellow to deep-yellow colonies that could be observed in the background of pink colonies. A colony color of yellow or pinkish-yellow was taken as presumptive evidence of a cyclization activity. These yellow colonies were collected with sterile toothpicks and used to inoculate 3ml of LB medium in culture tubes with overnight growth at 37°C and shaking at 225 cycles/min. Cultures were split into two aliquots in microfuge tubes and harvested by centrifugation at a setting of 5 in an Eppendorf 5415C microfuge. After discarding the liquid, one pellet was frozen for later purification of plasmid DNA. To the second pellet was added 1.5 ml EtOH, and the pellet was resuspended by vortex mixing, and extraction was allowed to proceed in the dark for 15-30 min with occasional remixing. Insoluble materials were pelleted by centrifugation at maximum speed for 10 min in a microfuge. Absorption spectra of the supernatant fluids were recorded from 350-550 nm with a Perkin Elmer lambda six spectrophotometer.

Analysis of isolated clones

20

5

10

15

Eight of the yellow colonies contained β -carotene indicating that a single gene product catalyzes both cyclizations required to form the two β endgroups of the symmetrical β -carotene from the symmetrical precursor lycopene. One of the yellow colonies contained a pigment with the spectrum characteristic of δ -carotene, a monocyclic carotenoid with a single ϵ endgroup. Unlike the β cyclase, this ϵ -cyclase appears unable to carry out a second cyclization at the other end of the molecule.

25

The observation that ϵ -cyclase is unable to form two cyclic ϵ -endgroups (e.g. the bicyclic ϵ -carotene) illuminates the mechanism by which plants can coordinate and control the flow of substrate into carotenoids derived from β -carotene versus those derived from α -carotene and also can prevent the formation of carotenoids with two ϵ endgroups.

30

The availability of the A. thaliana gene encoding the ϵ -cyclase enables the directed manipulation of plant and algal species for modification of carotenoid content and

composition. Through inactivation of the ϵ -cyclase, whether at the gene level by deletion of the gene or by insertional inactivation or by reduction of the amount of enzyme formed (by such as antisense technology), one may increase the formation of β -carotene and other pigments derived from it. Since vitamin A is derived only from carotenoids with β endgroups, an enhancement of the production of β -carotene versus α -carotene may enhance nutritional value of crop plants. Reduction of carotenoids with ϵ -endgroups may also be of value in modifying the color properties of crop plants and specific tissues of these plants. Alternatively, where production of α -carotene, or pigments such as lutein that are derived from α -carotene, is desirable, whether for the color properties, nutritional value or other reason, one may overexpress the ϵ -cyclase or express it in specific tissues. Wherever agronomic value of a crop is related to pigmentation provided by carotenoid pigments the directed manipulation of expression of the ϵ -cyclase gene and/or production of the enzyme may be of commercial value.

The predicted amino acid sequence of the A. thaliana ϵ -cyclase enzyme was determined. A comparison of the amino acid sequences of the β - and ϵ -cyclase enzymes of Arabidopsis thaliana (Fig. 13) as predicted by the DNA sequence of the respective cDNAs (Fig. 4 for the ϵ -cyclase cDNA sequence), indicates that these two enzymes have many regions of sequence similarity, but they are only about 37% identical overall at the amino acid level. The degree of sequence identity at the DNA base level, only about 50%, is sufficiently low such that we and others have been unable to detect this gene by hybridization using the β cyclase as a probe in DNA gel blot experiments.

REFERENCES

Each reference cited in this application and/or listed below is hereby incorporated by reference.

- 25 Bird et al, 1991 Biotechnology 9, 635-639.
 - Bishop et al., (1995) FEBS Lett. 367, 158-162.
 - Bramley, P.M. (1985) Adv. Lipid Res. 21, 243-279.
 - Bramley, P.M. (1992) Plant J. 2, 343-349.
- Britton, G. (1988). Biosynthesis of carotenoids. In Plant Pigments, T.W. Goodwin, ed. (London: Academic Press), pp. 133-182.

5

10

15

20

10

15

20

25

30

09/63055

Britton, G. (1979) Z. Naturforsch. Section C Biosci. 34, 979-985.

Britton, G. (1995) UV/Visible spectroscopy. In Carotenoids, Vol. IB: Spectroscopy,

G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 13-62.

Bouvier et al., (1994) Plant J. 6, 45-54.

Cunningham et al., (1985) Photochem. Photobiol. 42: 295-307.

Cunningham et al., (1993) FEBS Lett. 328, 130-138.

Cunningham et al., (1994) Plant Cell 6, 1107-1121.

Cunningham et al., (1996) Plant Cell 8, 1613-1626.

Davies, B.H. (1976). Carotenoids. In Chemistry and Biochemistry of Plant Pigments,

Vol. 2, T.W. Goodwin, ed (New York: Academic Press), pp. 38-165.

Del Sal et al., (1988). Nucl. Acids Res. 16, 9878.

Demmig-Adams & Adams, (1992) Ann. Rev. Plant Physiol. Mol. Biol. 43, 599-626.

Enzell & Back, (1995) Mass spectrometry. In Carotenoids, Vol. IB: Spectroscopy, G.

Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 261-320.

Frank & Cogdell (1993) Photochemistry and function of carotenoids in photosynthesis. In Carotenoids in Photosynthesis. A. Young and G. Britton, eds. (London: Chapman and Hall). pp. 253-326.

Goodwin, T.W. (1980). The Biochemistry of the Carotenoids. 2nd ed, Vol. 1 (London: Chapman and Hall.

Horvath et al., (1972) Phytochem. 11, 183-187.

Hugueney et al., (1995) Plant J. 8, 417-424.

Hundle et al., (1991) Photochem. Photobiol. 54, 89-93.

Jensen & Jensen, (1971) Methods Enzymol. 23, 586-602.

Kargl & Quackenbush, (1960) Archives Biochem. Biophys. 88, 59-63.

Kargl et al., (1960) Proc. Am. Hort. Soc. 75, 574-578.

Kieber et al., (1993) Cell 72, 427-441.

Koyama, Y. (1991) J. Photochem. Photobiol., B, 9, 265-80.

Krinsky, N.I. (1987) Medical uses of carotenoids. In Carotenoids, N.I. Krinsky, M.M. Mathews-Roth, and R.F. Taylor, eds. (New York: Plenum), pp. 195-206.

Kyte & Doolittle, (1982) J. Mol. Biol. 157, 105-132.

LaRossa & Schloss, (1984) J. Biol. Chem. 259, 8753-8757.

Misawa et al., (1994a) Plant J. 6, 481-489.

-

Misawa et al., (1994b) J. Biochem, Tokyo, 116, 980-985.

Norris et al., (1995) Plant Cell 7, 2139-2149.

Pecker et al., (1996) Submitted to Plant Mol. Biol.

Perry et al., (1986) J. Bacteriol. 168, 607-612.

Persson & Argos, (1994) J. Mol. Biol. 237, 182-192.

Plumley & Schmidt, (1987) Proc. Nat. Acad. Sci. USA 83, 146-150.

Plumley & Schmidt, (1995) Plant Cell 7, 689-704.

Rossmann et al., (1974) Nature 250, 194-199.

Rock & Zeevaart (1991) Proc. Nat. Acad. Sci. USA 88, 7496-7499.

10 Rost et al., (1995) Protein Science 4, 521-533.

Sambrook et al., (1989) Molecular Cloning: A Laboratory Manual, 2nd edition (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Sancar, A. (1994) Biochemistry 33, 2-9.

Sander & Schneider, (1991) Proteins 9, 56-68.

15 Sandmann, G. (1994) Eur. J. Biochem. 223, 7-24.

Scolnik & Bartley, (1995) Plant Physiol. 108, 1342.

Siefermann-Harms, D. (1987) Physiol. Plant. 69, 561-568.

Spurgeon & Porter, (1980). Biosynthesis of carotenoids. In Biochemistry of

Isoprenoid Compounds, J.W. Porter, and S.L. Spurgeon, eds. (New York: Wiley), pp. 1-122.

20 Tomes, M.L. (1963) Bot. Gaz. 124, 180-185.

Tomes, M.L. (1967) Genetics 56, 227-232.

Tuveson et al., (1986) J. Bacteriol. 170, 4675-4680.

Van Beeumen et al., (1991) J. Biol. Chem. 266, 12921-12931.

Weedon & Moss, (1995) Structure and Nomenclature. In Carotenoids, Vol. IB:

25 Spectroscopy, G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 27-70.

Wierenga et al., (1986) J. Mol. Biol. 187, 101-107.

Zechmeister, L. (1962) Cis-Trans Isomeric Carotenoids, Vitamins A and Arylpolyenes. Springer-Verlag, Vienna.

Having now fully described the invention, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention as set forth herein.

We claim:

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or 25-27.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- 5. The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
- 7. An isolated and/or purified protein having lycopene ε-cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or
 25-27.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.

AMENDED CLAIMS

[received by the International Bureau on 15 November 1999 (15.11.99); original claims 1,2,7 and 8 amended; remaining claims unchanged (1 page)]

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- 5. The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
- 7. An isolated and/or purified protein having lycopene ε-cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.

FIGURE 1

£.

FIGURE 2

Arabidopsis thaliana epsilon cyclase:

FIGURE 4

getettete etecteetet accgatttee gaeteegeet eccgaaatee ttatccggat teteteegte tettegattt aaacgetttt etgtetgtta 51 cgtcgtcgaa gaacggagac agaattctcc gattgagaac gatgagagac 101 eggagageae gageteeaea aacgetatag aegetgagta tetggegttg 151 cgtttggcgg agaaattgga gaggaagaaa tcggagaggt ccacttatct 201 aatcgctgct atgttgtcga gctttggtat cacttctatg gctgttatgg 251 ctgtttacta cagattetet tggcaaatgg agggaggtga gatetcaatg 301 ttggaaatgt ttggtacatt tgctctctct gttggtgctg ctgttggtat 351 ggaattotgg gcaagatggg otcatagage totgtggcac gottototat 401 ggaatatgca tgagtcacat cacaaaccaa gagaaggacc gtttgagcta 451 501 aacgatgttt ttgctatagt gaacgetggt ecagegattg gteteetete ttatggattc ttcaataaag gactcgttcc tggtctctgc tttggcgccg 551 ggttaggcat aacggtgttt ggaatcgcct acatgtttgt ccacgatggt 601 ctogtgcaca agogtttooc tgtaggtooc atogoogacg tooottacot 651 ccgaaaggte geogeogete accagetaca teacacagae aagtteaatg 701 gtgtaccata tggactgttt cttggaccca aggaattgga agaagttgga 751 ggaaatgaag agttagataa ggagattagt cggagaatca aatcatacaa 801 aaaggeeteg ggeteegggt egagttegag ttettgaett taaacaagtt 851 ttaaatccca aattcttttt ttgtcttctg tcattatgat catcttaaga 901 951 cggtct

FIGURE 5

<u>`</u>

A. chal.		884 6	SSTORLLLE	Kslegopspse	RIMAISVOTV	44) Spss sstopalald ksisgpspsu rphopsycy verropsps addresses stallalary.	ENDER LETS	49 TANGINALS
A. thal. Alical. A. auranc. E. berb. E. ured. Consensus	MALAETA EN	KKSERSTYLI	AMESSIGIT SHAWAYTA	SHAVPAVTTR	MOAS	SPGENFOTFA HTOFL HTNFL HG. HG.	LSVGAAVGHI IVVATVLVHI IVVATVLVHI IVILSVIAHI IVFVTVIGHI	LTAYSVORMI LTAYSVORMI LTAYSVORMI GLAFTFORYI VIALANITYI ANE
			Predicted TM helix	helix		Predic	Predicted TM helix	
A. chal. Alical.	WHASE, WROTH MHGPLGWOM		PELMOVPALV LEXMOLYGVV	Nagpaigles Favlatilet	YGPPHKOLVP VGAYNMPVLM	GLCFGAGLGI HIALCH	TVPGLATHEV TVPGLIYFIL	TLL HDGLVHXR.PP HDGLVHQR.MP
F. herb. F. ured. Consensus	HORGENCHAM HORGENCHAM HORGENCHAM HORGENCHAM HORGENCHAM	KSHRIEDOHA ESHRIPRKOV LSHRIPRKOA	LECHOLIGE PATATALTA FELHOLIAVY PACVALALIA FEVNOLYAVY PALSILLIY	PACATALIA	VGTAGVNPLQ LGSTGMNPLQ	WI GAGA	TWGLLYFW TWGLLYFW TAYGLLYFW	HDGLVHQRWP HDGLVHQRWP HDGLVHQRWP
			Pre	Predicted TM heix	,	Predicted TM helix	M helix	KUSLVN-R-P
A. thal. Alical. A. surant. S. berb. B. ured. Consensus	VGPLADVPTL FRYIPRGYT FRYIPRGYA FHWIPRRGYL FRYIPRKGYL	RECYGANGLH RELYGANGLH RELYGANGLH RELYGANGLH RELYVANGLH RELYVANGLH	HT. DKTMGV HAVEGROHCV HAVBGREDCV HAVRGREGCV HAVRGKEGCV	PYGLFLGPKE SPGFTYAPP. SPGFTYAR. SPGFTYAR.	LEFVOGNEEL VDICKOLICH VDICKOLICH PADICATIRE LSTICATIRE	DICEI SRRIKS SGVLRPQDER SGVLRAEAGE RHGRPPICEDA RHGARAGA	YXXASGSGSS PS* RT* AXDREDAASP ARDAGGGEDE	506 555° 55555PE*

7 / 30

ccacgggtcc gcctccccgt ttttttccga tccgatctcc ggtgccgagg 1 actcagctgt ttgttcgcgc tttctcagcc gtcaccatga ccgattctaa 51 101 cgatgctgga atggatgctg ttcagagacg actcatgttt gaagacgaat gcattctcgt tgatgaaaat aatcgtgtgg tgggacatga cactaagtat 151 201 aactgtcatc tgatggaaaa gattgaagct gagaatttac ttcacagagc tttcagtgtg tttttattca actccaagta tgagttgctt ctccagcaac 251 301 ggtcaaaaac aaaggttact ttcccacttg tgtggacaaa cacttgttgc 351 agccatcctc tttaccgtga atccgagctt attgaagaga atgtgcttgg 401 tgtaagaaat gccgcacaaa ggaagctttt cgatgagctc ggtattgtag 451 cagaagatgt accagtcgat gagttcactc ccttgggacg catgctttac 501 aaggcacett etgatgggaa atggggagag cacgaagttg actatetact 551 cttcatcgtg cgggatgtga agcttcaacc aaacccagat gaagtggctg 601 agatcaagta cgtgagcagg gaagagctta aggagctggt gaagaaagca 651 gatgctggcg atgaagctgt gaaactatct ccatggttca gattggtggt ggataatttc ttgatgaagt ggtgggatca tgttgagaaa ggaactatca 701 ctgaagctgc agacatgaaa accattcaca agctctgaac tttccataag 751 ttttggatct tccccttccc ataataaaat taagagatga gacttttatt 801 gattacagac aaaactggca acaaaatcta ttcctaggat ttttttttgc 851 tttttattta cttttgattc atctctagtt tagttttcat cttaaaaaaa 901 951 aaaa

CTCGGTAGCT GGCCACAATC GCTATTTGGA ACCTGGCCCG GCGGCAGTCC GATGCCGCGA TGCTTCGTTC GTTGCTCAGA GGCCTCACGC ATATCCCCCG CGTGAACTCC GCCCAGCAGC CCAGCTGTGC ACACGCGCGA CTCCAGTTTA 101 AGCTCAGGAG CATGCAGATG ACGCTCATGC AGCCCAGCAT CTCAGCCAAT 151 CTGTCGCGCG CCGAGGACCG CACAGACCAC ATGAGGGGTG CAAGCACCTG 201 251 GGCAGGCGGG CAGTCGCAGG ATGAGCTGAT GCTGAAGGAC GAGTGCATCT 301 TGGTGGATGT TGAGGACAAC ATCACAGGCC ATGCCAGCAA GCTGGAGTGT 351 CACAAGTTCC TACCACATCA GCCTGCAGGC CTGCTGCACC GGGCCTTCTC 401 TGTGTTCCTG TTTGACGATC AGGGGCGACT GCTGCTGCAA CAGCGTGCAC GCTCAAAAAT CACCTTCCCA AGTGTGTGGA CGAACACCTG CTGCAGCCAC 451 501 CCTTTACATG GGCAGACCCC AGATGAGGTG GACCAACTAA GCCAGGTGGC CGACGGAACA GTACCTGGCG CAAAGGCTGC TGCCATCCGC AAGTTGGAGC 551 ACGAGCTGGG GATACCAGCG CACCAGCTGC CGGCAAGCGC GTTTCGCTTC 601 CTCACGCGTT TGCACTACTG TGCCGCGGAC GTGCAGCCAG CTGCGACACA ATCAGCGCTC TGGGGCGAGC ACGAAATGGA CTACATCTTG TTCATCCGGG 701 CCAACGTCAC CTTGGCGCCC AACCCTGACG AGGTGGACGA AGTCAGGTAC 751 GTGACGCAAG AGGAGCTGCG GCAGATGATG CAGCCGGACA ACGGGCTGCA 801 ATGGTCGCCG TGGTTTCGCA TCATCGCCGC GCGCTTCCTT GAGCGTTGGT 851 GGGCTGACCT GGACGCGGCC CTAAACACTG ACAAACACGA GGATTGGGGA 901 ACGGTGCATC ACATCAACGA AGCGTGAAAG CAGAAGCTGC AGGATGTGAA 951 GACACGTCAT GGGGTGGAAT TGCGTACTTG GCAGCTTCGT ATCTCCTTTT 1001 TCTGAGACTG AACCTGCAGT CAGGTCCCAC AAGGTCAGGT AAAATGGCTC GATAAAATGT ACCGTCACTT TTTGTCGCGT ATACTGAACT CCAAGAGGTC 1101 ΑΑΑΑΑ ΑΑΑΑΑΑΑ 1151

HP04	1 MLRSLLRGLT	HTPRVNSAGO	 DECAMADI OR	VI Dayones	50
HP05	MLRSLLRGLT	HIPRVNSAQQ	PSCAHARLOF	KLRSMOMTLM	
ATDP7	MSVSSLFNLP	LIRLRSLA.	LSSSFSSFRF	KLRSMQLL AHRPLSSIS.	DDWID
c brew.	MS.SSMLNFT	.ASRIVSLPL	LSSPPSRVHL	PLCFFSPISL	PRKLPNFRAF
ATOPS	• • • • • • • • •	.TGPPPRFFP	IRSPVPRTOL	FVRAFSAV	TORFSAKLTF
S ceres.	MTADNNSM	PHGAVSSYAK	LVQNQTPEDI	LEEFPEIIPL	QQRPN TR
					22.00.002
	51				100
	AEDRTDHMRG SEDRTDHMRG	ASTWAGGQSQ	DELMLKDECI	LVDVEDNITG	HASKLECHKF
	SGTA.MTD	ASTWAGGQSQ TKDAGMDAVQ	DELMLKDECI	LVDVEDNITG	HASKLECHKF
	SSQATT.MGE	VVDAGMDAVQ	RRLMFEDECI RRLMFEDECI	LVDETDRVVG	HVSKYNCHLM
		SNDAGMDAVQ	RRLMFEDECI	LVDENDKVVG LVDENNRVVG	HESKYNCHLM
	SSETSNDESG		QIKLMNENCI	VLDWDDNAIG	
				ADMODRATG	AGIKKACHIM
	101				150
	LPHQPAGLLH	RAFSVFLFDD	QGRLLLQQRA	RSKITFPSVW	TNTCCSHPLH
	LPHQPAGLLH	RAFSVFLFDD	QGRLLLQQRA	RSKITFPSVW	TNTCCSHPLH
	ENIEAKNLLH	RAFSVFLFNS	KYELLLQQRS	NTKVTFPLVW	TNTCCSHPLY
	EKIESENLLH	RAFSVFLFNS	KYELLLQQRS	ATKVTFPLVW	TNTCCSHPLY
	EKIEAENLLH	RAFSVELENS	KYELLLQQRS	KTKVTFPLVW	TNTCCSHPLY
	LATE. NGLLIA	KWLZALTINE	QGELLLLQQRA	TEXITFPDLW	TNTCCSHPLC
	151				200
	GQTPDEVDQL	SQVADGTVPG	AKAAAIRKLE	HELGIPAHQL	PA SAFPEIT
	GQTPDEVDQL	SQVADGTVPG		HELGIPAHQL	PA.SAFRELT
	RE		VRNAAQRKLL	DELGIVAEDV	PV.DEFTPLG
	RE		VRNAAQRKLL	DELGIPAEDL	PV.DQFIPLS
	RE		VRNAAQRKLF	DELGIVAEDV	PV.DEFTPLG
	IDDELGL	KGKLDDKIKG	AITAAVRKLD	HELGIPEDET	KTRGKFHFLN
	201			1	
	RLHYCAADVQ	PAATQSALWG	EHEMDYILFI	RANVTL	250
	RLHYCAADVQ		EHEMDYILFI	RANVIL	
	RMLY	. KAPSDGKWG	EHELDYLLFI	VRDVKV	
	RILY	.KAPSDGKWG	EHELDYLLFI		DPNPDEVAEV
	RMLY	. Kapsdgkwg	EHEVDYLLFI	VRDVKL	
	RIHY	.MAPSNEPWG	EHEIDYILFY	KINAKENLTV	NPNVNEVRDF
	261				
	251	MMO DOM	CT ALICATION T		300
	RYVTOFFLEO	MMO PDN	GLQWSPWFRI	IAARFLERWW IAARFLERWW	ADLDAALNTD
	KYVSREELKE	LVKKADAGEE	GLUMSPALKT	VVDNFLMKWW	AULDAALNTD
	KYMNRDDLKE	LLRKADAEEE	GUKLSPWFRL	VVDNFLFKWW	DHVEKGILVE
	KYVSREELKE	LVKKADAGDE	AVKLSPWFRL	VVDNFLMKWW	DHVEKGTITE
	KWVSPNDLKT	MFADP	SYKFTPWFKI	ICENYLFNWW	EQLDDLSEVE
	301	T1777 :			
	KHEDWGTVHH				•
	KHEDWGTVHH A.IDMKTIHK				
	A. ADMKTIHK				
	A. ADMKTIHK			•	
	NDRQIHR		t ::		
			•		

-1

WO 99/63055

ccaaaaacaa ctcaaatctc ctccgtcgct cttactccgc catgggtgac gactccggca tggatgctgt tcagcgacgt ctcatgtttg acgatgaatg 51 cattttggtg gatgagtgtg acaatgtggt gggacatgat accaaataca 101 attgtcactt gatggagaag attgaaacag gtaaaatgct gcacagagca 151 201 ttcagcgttt ttctattcaa ttcaaaatac gagttacttc ttcagcaacg 251 gtctgcaacc aaggtgacat ttcctttagt atggaccaac acctgttgca 301 gecatecaet etacagagaa teegagettg tteeegaaac geetgagaga 351 401 451 501 551 601 651 xxxxxxxxx xxxxxxxx xxxxxxxxx tcatgtgcaa aagggtacac 701 tcactgaatg caatttgata tgaaaaccat acacaagctg atatagaaac acacecteaa eegaaaagea ageetaataa ttegggttgg gtegggteta 751 ccatcaattg ttttttttt ttaacaactt ttaatctcta tttgagcatg 801 851 ttgattcttg tcttttgtgt gtaagatttt gggtttcgtt tcagttgtaa taatgaacca ttgatggttt gcaatttcaa gttcctatcg acatgtagtg 901 951 atctaaaaaa

FIGURE 12

J- __

FIGURE 13

Adonis palaestina ε-cyclase cDNA #5 Length: 1898

1					
51	aaaggagtg			attettgea.	a cacttata
101	caaactcca		tctcttcaaa	acaacaaac	
151	gagtatctg		acttggtgtt	cgcaacctc	,-,-,-
201	ccctgtgtg	g acttttggaa	a caagaaacct		
251	ataacataca	ı togatatggt	tcttcttgta		
301	gctgatggtg		, tagaagttct	gttgcttata	J - 3 - 3 - 3
351	tgtggatgaa	gaggatttt	tcaaagctg	tggttctgag	
_	tccaaatgca	gcaaacaaac	, tctatggaga	aacaggccaa	
401	aagttgccac	caatacctt	tggagaatco	gtgatggact	
451	aggttgtgga	cctgctggtc	tttcactggc	tgcagaagct	
501	ggttgaaagt	tggccttatt	ggtcctgatc	ttccttttac	
551	ggtgtgtggg	aagacgagtt		ggacttgaac	
601	gcatgcttgg	aaggacacca			
651	ttattggtcg	tgcatatgga	cgagttagtc		
701	ttgctgaaaa	ggtgtgtgga	gtcaggtgta		7-33-9
751	ggaaaggatc	actgaagctg	gtgatggcca		
801	atgagatctt	tatecettge	aggettgeta		
851	tcagggaaac	ttttggagta	tgaagtaggt		
901	aaccgcttat	ggggtggagg	ttgaggtgga	ggccctcgtg	
951	acttaatggt	attcatggac	tacagagact		
1001	tgctcggaag	aagaatatcc	aacatttctC	atatgcaaca	
1051	aacaagactt	ttttttgagg	aaacctgttt		
1101	cattcgatct	actgaagaga	aaactgatgt	ggcctcaaaa	gatgccatgc
1151	atccaagtta	caaaagttta	tgaagaggaa	cacgattgaa	gactctgggt
1201	tggttcttta	ccaaacacag	agcaaaagaa	tggtcatata	ttcctgttgg
1251	caagcatggt	gcatccagca	acaggctatt	cctagcattt	ggtgctgcag
1301	gaagctccaa	aatatgcttc	tgtaattgca	cggttgtacg	gtcactgtca
1351	ctctgcgtat	gtggtttctg	gacaaagtag	aagattttga	agcaagataa
1401	aagcatggag	cagtctttgg	ccaaaggagc	tgcagtaaac	atttcaatgc
1451	tttctttttg	gattagaget	tattgtgcag	gaaaacgtca	aagagcatTc
1501	aacattcttt	agaaccttct	teegettgee	ctagatattg	aagcaaccag
1551	tccttgggtc	ttcactatca	tctttcgatc	aacttggatg	tggtggggtt
1601	atgtttgttt	tggcgccaaa	cagcatgagg	tcgtcttgtt	ttccatgtac
1651	gctttcagat	ccttctggtg	cagttatggt	atgtcacttg	tgagacattt
1701 .	agtctcatct	attattaaac	tctagtgttt	aagagcttac	ctcgaaaggt
1751	ttcgaatgtg	tatatgatca	tctctatgta	caccaaataa	atgaggatcc
1801	taaagtaaat	gccgggtttg		tatcctgtac	tctaatctca
1851	aaagtaaatt	tattgataca		gtcaaaccgg	ccaatgatat
	=	- 3 =04	9-04-66	ttttccttaa	aaaaaaa

Adonis palaestina ε-cyclase #5 predicted polypeptide TRANSLATE from: 113 to: 1702 Length: 529 amino acids

351 KVYEEEWSYI PVGGSLPNTE QKNLAFGAAA SMVHPATGYS VVRSLSEA 401 YASVIAKILK QDNSAYVVSG QSSAVNISMQ AWSSLWPKER KRQRAFFL 451 LELIVQLDIE ATRTFFRTFF RLPTWMWWGF LGSSLSSFDL VLFSMYMF 501 APNSMRMSLV RHLLSDPSGA VMVRAYLER*	201 251 301 351 401 451	CVESGVSYLD LEYEVGGPRV EYPTFLYVMP KVYEEEWSYI YASVIAKILK LELIVQLDIE	VVIGCGPAGL CIEHAWKDTI SKVERITEAG CVQTAYGVEV MSPTRLFFEE PVGGSLPNTE QDNSAYVVSG ATRTFFRTFF	DGHSLVVCEN EVENNPYDPN TCLASKDAMP QKNLAFGAAA QSSAVNISMQ RLPTWMWWGF	IGRAYGRVSR EIFIPCRLAT LMVFMDYRDY FDLLKRKLMS SMVHPATGYS AWSSLWPKER	PFTNNYGVW HLLHEELLK VASGAASGK MQQKLQCSE RLKTLGIQV VVRSLSEAP KRORAFFI E
--	--	--	--	--	--	--

301

351

DNA sequence of pot 3 cDNA (GenBank R27545) obtained from Nicholas J. Provart potato.seq Length: 1378 August 2, 1996 13:06 Type: N Check: 605 1 tageggnnnn naggatgagt teaaagatet tggtetteaa geetgeattg 51 aacatgtttg gcgggatacc attgtatatc ttgatgatga tgatcctatt 101 cttattggcc gtgcctatgg aagagttagt cgccatttac tgcacgagga 151 gttactcaaa aggtgtgtgg aggcaggtgt tttgtatcta aactcgaaag 201 tggataggat tgttgaggcc acaaatggcc acagtcttgt agagtgcgag 251 ggtgatgttg tgattccctg caggtttgtg actgttgcat cgggagcagc 301 ctcggggaaa ttcttgcagt atgagttggg aggtcctaga gtttctgttc 351 aaacagetta tggagtggaa gttgaggteg ataacaatee atttgaeeeg 401 ageetgatgg tttteatgga ttatagagae tatgteagae acgaegetea 451 atetttagaa getaaatate caacatttet etatgeeatg eccatgtete 501 caacacgagt ctttttcgag gaaacttgtt tggcttcaaa agatgcaatg 551 ccattcgatc tgttaaagaa aaaattgatg ttacgattga acaccetcgg
601 tgtaaagaatt aaagaaattt atgaggagga atggtcttac ataccagttg
651 gaggatcttt gccaaataca gaacaaaaaa cacttgcatt tggtgctgct 701 gctagcatgg ttcatccagc cacaggttat tcagtcgtca gatcactgtc 751 tgaagctcca aaatgcgcct tcgtgcttgc aaatatatta cgacaaaatc 801 atagcaagaa tatgcttact agttcaagta ccccgagtat ttcaactcaa 851 gettggaaca etetttggee acaagaacga aaacgacaaa gategttttt 901 cctatttgga ctggctctga tattgcagct ggatattgag gggataaggt 951 cattetecg egegteette egtgtgccaa aatggatgtg geagggattt 1001 ettggttcaa gtetteettn ageagacete atgttatttg cettetacat 1051 gtttattatt gcaccaaatg acatgagaag aggcttaatc agacatcttt 1101 tatctgatcc tactggtgca acattgataa gaacttatct tacattttag 1151 agtaaattcc tcctacaata gttgttgaan nagaggcctc attacttcag 1201 attcataaca gaaatcgcgg tctctcgagg ccttgtatat aacattttca 1251 ctaggttaat attgcttgaa taagttgcac agtttcagtt tttgtatctg 1301 cttcttttt gtccaagatc atgtattgan ccaatttata tacattgcca 1351 gratatataa attttataaa aaaaaaaa TRANSLATE from: 14 to: 1147 poteps.pep Length: 378 1 DEFKDLGLQA CIEHVWRDTI VYLDDDDPIL IGRAYGRVSR HLLHEELLKR CVEAGVLYLN SKVDRIVEAT NGHSLVECEG DVVIPCRFVT VASGAASGKF 51 LQYELGGPRV SVQTAYGVEV EVDNNPFDPS LMVFMDYRDY VRHDAQSLEA 101 151 KYPTFLYAMP MSPTRVFFEE TCLASKDAMP FDLLKKKIML RINTLGVRIK 201 EIYEEEWSYI PVGGSLPNTE QKTLAFGAAA SMVHPATGYS VVRSLSEAPK CAFVLANILR QNHSKNMLTS SSTPSISTQA WNTLWPQERK RQRSFFLFGL 251

FIGURE 15A

ALILQLDIEG IRSFFRAFFR VPKWMWQGFL GSSLSXADLM LFAFYMFIIA

PNDMRRGLIR HLLSDPTGAT LIRTYLTF*

Chimeric lettuce/potato lycopene ε-cyclase: converts lycopene to δ-carotene, the lettuce cDNA converts lycopene to ε-carotene and the potato cDNA does not produce an active enzyme

(amino acids in lower case are from lettuce and those in uppercase are from the potato cDNA; an AvaII site in common to the two cDNAs was used to construct the chimera)

```
1 mecfgarnmt atmavftcpr ftdcnirhkf sllkqrftn lsassslrqi
51 kcsaksdrcv vdkqqisvad eedyvkagqs
101 eklaqipiqn cildlvviqc qpaqlalaae saklqlnvql iqpdlpftnn
151 yqvwqdefiq lqleqciehs wkdtlvyldd adpiriqray qrvhrdllhe
201 ellrrcvesq vsylsskver iteapnqysl iecegnitip crlatvasqa
251 asqkfleyel qGPRVSVQTA YGVEVEVDNN PFDPSLMVFM DYRDYVRHDA
101 QSLEAKYPTF LYAMPMSPTR VFFEETCLAS KDAMPFDLLK KKLMLRLNTL
151 GVRIKEIYEE EWSYIPVGGS LPNTEQKTLA FGAAASMVHP ATGYSVVRSL
152 GVRIKEIYEE EWSYIPVGGS LPNTEQKTLA FGAAASMVHP PQERKRQRSF
153 GVRIKEIYEE EWSYIPVGGS LPNTEQKTLA FGAAASMVHP PQERKRQRSF
154 FLFGLALILQ LDIEGIRSFF RAFFRVPKWM WQGFLGSSLS XADLMLFAFY
150 MFIIAPNDMR RGLIRHLLSD PTGATLIRTY LTF*
```

FIGURE 15B

GAP comparison of Arabidopsis e-cyclase x potato e-cyclase (partial)
blosum62.cmp Gap Weight: 12 Average Match: 2.912 Length Weight: 4 Average Mismatch: -2.003 Quality: 1485 Ratio: 3.929 Percent Similarity: 79.893 Percent Identity: 76.139 Match display thresholds for the alignment(s): 1 Torongan
Quality: 1485 Length: 529 Ratio: 3.929 Gaps: 1
fatch display thresholds for the alignment(s): = IDENTITY : = 2 . = 1
151 EDEFNDLGLOKCIEHVWRETIVYLDDDKPITIGRAYGRVSRRLLHEELLR 200
201 RCVESGVSYLSSKVDSITEASDGLRLVACDDNNVIPCRLATVASGAASGK 250
251 LLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKVRSLE 300
THE TAX TO
301 AEYPTFLYAMPMTKSRLFFEETCLASKDVMPFDLLKTKLMLRLDTLGIRI 350
351 LKTYEEEWSYIPVGGSI PNTFOYNI A SCANA CHANGA
.
401 KYASVIAFILBETTYOI
446 LALIVOFDIEGIRSFERIEFRI PERPENDICE
496 SPNNLRKGLINHLISDPTGATMIKTYLKV 524
350 APNDMRRGLIRHLISDPTGATI IPTVITE 270

FIGURE 16

Adonis p	<i>alaes</i>	tina	Ipil
----------	--------------	------	------

_	-				
1.	attcatcttc	agcagcgctg	tcgtactctt	tctatatctt	cttccatcac
51	taacagtagt	cgccgacggt	tgaatcggct	attcgcctca	acgtcaacta
101		cactgatgct		ctgttcagaa	gcggctcatg
151		aatgtatttt		aatgacaagg	tegtegggea
201	tgattccaaa	tacaactgtc	atttgatgga	aaagatagag	
251	tgcttcacag	agccttcagt	attttcttat	tcaactcaaa	
301	cttcttcage	aacgatccgc	cacaaaggta	acattcccc	atatgaattg
351	aaacacatot	tgcagtcatc	ctctctttca	teatteear	tcgtatggac
401	aaaattatct	cggtgtacga	aacoctocac	aaaaaaaaa	ctcatagaag
451	Ctaggcattc	cagctgaaga	tataccaatt	gatgaatet.	tttagacgag
501	togcattorr	tacaaagctc	catctgacga	gatyaatta	
551	togactator	cctatttatt	caccegacgg,	Caaacgggga	gagcacgaat
601	Catcaacttc	cctatttatt	gracyayary	Lyaaatacga	
651	actgaageeg	ctgatgctaa	gtatgttaat	cgcgaggagt	tgagagagat
701	ttagattagt	gctgatgctg	gcgaagaggg	actcaagttg	
751	cagattygt	tgttgataac	tttttgttca	agtggtggga	tcatgtagag
801	ttaagaaaaa	ttaaggaagt	tgctgacatg	aaaactatcc	acaagttgac
851	ctaayaggac	ttctctcctc	tgttctacta	tttgttttt	gctacaataa
901	gragarage	ataagcagtt	tttctgtttt	ctttaattta	tggcttttga
951	atttgcctcg	atgttgaact	tgtaacatat	ttagacaaat	atgagacett
1001	gtaagttgaa	tttgaggctg	aatttatatt	tttgggaaca	taataatgtt
1 (11)	22				•

FIGURE 17A

Adonis palaestina Ipi2

 pa.	reescria ip	12			
1	ttttaaagct	ctttcgctcc	accaccatca	aagccagcca	aatttctctg
51	uncauaget.	aaaaacaccq	CTTTGGGGCTT	taacccctcc	34345555
101	ccttgtttac	gatacqcatc	taaaccagta	attetegett	ttaatttgtt
151	tcctaaatta	ggcccctttc	cogaatccc	30334434	cgtcgatcag
201	gattaatcct	ttatatagta	tettetees	Caccacacac	acattatcag
251	cttcqtqttc	ttctcccact	Ottcatcttc	Caccaccaaa	tegtactett
301	tctatttctt	Cttccatcac	taacagtcct	agcagegeeg	togtactett
351	gttcgcctca	acgtcgacta	tgggtgaagt	cyccgagggt	tgaatcggct
401	CCGtccagaa	acaacttata	ttccaccata	cyctgatget	ggtatggatg
451	aatgacaagg	tratragaca	ttcgacgatg	aatgtatttt	ggtggatgag
501	aaagatagag	acadaaaact	tgattccaaa	tacaactgtc	atttgatgga
551	tcaactcaaa	ataccactto	tgcttcacag	agcetteagt	gttttcttat
601	acatteres	tcatataga	cttcttcagc	aacgatctgc	aacgaaggta
651	tgattccga	ctcatagac	aaacacctgt	tgcagccatc	ccctcttccg
701	aaaccaacct	tttagagag	aaaattttct	cggggtacga	aacgctgcac
751	Gatgaatte	ctcagacgag	ctaggcattc	cagctgaaga	cgtaccagtt
801	aaaataaaa	ctcctcttgg	tcgcattctt	tacaaagctc	catctgacgg
851	accaraggga	yaycacgaac	tggactatct	tctatttatt	atcomeme
901	cyanacacya	tccaaaccca	gatgaagttg	ctgacgetaa	Otacottaat
951	cycyayyayı	cgaaagagat	actgagaaaa	gctgatgcag	Otossosoo
1001	aacaaageeg	teteettggt	ttagattggt	totogataac	****
1051	uguggugga	ccatgtagag	gaggggaaga	ttaaggacgt	CCCCCCCCC
1101	addactatcc	acaagttgac	ttaagagaaa	qtctcttaar.	ttctactatt
1151	ragicality	ttcaataagt	ggatggtgat	gagcagtttt	tatocttcct
1201	ccaaccccgg	Cttttcaatt	tgctttatgt	gttgaacttg	taacatattt
	agicaaatat	gagacetege	gagttgaatt	tgaggttata	tttatagttt
1251	EGGGAACAFA.				

FIGURE 17B

Haematococcus pluvialis Ipil 1 ctcqqtaqct qqccaca

L	ctcggtagct	ggccacaatc	GCT at t t con		
51	gatgccgcga	tgcttcgttc	gttgeteaga		geggeagtee
101	cgtgaactcc	GCCCagcagc	ccagctgtgc	, adccccacac	atatecece
151	agctcaggag		ccayctytyc	acacgcgcga	Ctccagttta
201	ctgtcgcgcg		acgctcatgc	agcccagcat	Ctcagccaat
251	ggcaggcggg		cacagaccac	argagggtg	caagcacctg
301	tggtggatgt		atgagctgat	gctgaaggac	gagtgcatct
351			atcacaggcc	AFGCC3CC-	gctggagtgt
401	tatattatta	taccacatca	gcctgcaggc	CECCECCS	gggccttctc
451	catacasas	tttgacgatc	aggggcgact		
501	geteadade	caccttccca	agtgtgtgga		
551					
601					
651					
701					
75.1		CCCGGCGC	AACCCTTT364	3	
801	J-Jucyceau	ayyayctaca	GCAGATGATG.	C2	
851					
901					
951					
1001	gacacgtcat	ggggtggaat	tocotactta	cagaagetge	aggatgtgaa
1051	tctgagactg	aacctgcagt	Caccteces	gcagcttcgt	atctcctttt
1101	gataaaatgt		tttataaa	aaggtcaggt	aaaatggctc
1151	aaaaaaaa	aaaaa	cedede	atactgaact	ccaagaggtc

FIGURE 18A

Haematococcus pluvialis Ipi2

_					
1 51 101 151 201 251 301 351 401 451 501 551 601 751 801 851	tggaacctgg cagaggcctc gtgcacacgc gaggaccgca gtcgcaggat acgacaacat ccacatcagc tgacgaccag ccttcccaag cagaccccag acctggcgca taccagcgca cactactgtg	cagaccacat gagctgatgc cacaggccat ctgcaggcct gggcgactgc tgtgtggacg atgaggtgga aaagctgctg ccagctgccg. ccgcggacgt gagatggact ccctgacgag agatgatgca atcgccgcgc	cgcgcgtgaa tttaagctca gaggggtgca tgaaggacga gccagcaagc gctgcaccgg tgctgcaaca aacacctgct ccaactaagc ccatccgcaa gcaagcgcgt gcagccggct acatctatt gtggacgaag gccggacaac gcttccttga	ctecgeccag ggageatgea ageacetggg gtgeatetta tggagtgeca geettetetg gegtgeaege geageeaeee caggtggeeg gttggageae ttegetteet gegacaeaat cateegggee teaggtaegt gggttgeaat gggttgeaat	caggcgggca gtggatgctg caaattccta tgttcctgtt tcaaaaatca tctacatggg acggcacagt gagctgggga cacgcgtttg cagcgctctg aacgtcacct gacgcaagag ggtcgccgtg gctgacctgg
701 751 801	gggcgagcac tggcgcccaa gagctgcggc gtttcgcatc acgcggccct atcaacgaag ggtggaattg cctgcagagc	gagatgact ccctgacgag agatgatgca	acatettatt gtggacgaag geeggacaae getteettga aaacaegagg gaagetgeag agettegtat ggtgeateat	catecgggee teaggtaegt gggttgeaat gegttggtgg attggggaac gatgtgaaga eteetttte atteategte	aacgtcacct gacgcaagag ggtcgccgtg

FIGURE 18B

FIGURE 19A

Lactuca s	Lactuca sativa Ipi2							
1	tattcgcttc	aaaatctctt	ccattaacto	ctcaaatctc	caccttcgcc			
51	ggtcttaatc	tccgccggcg	cactttcacc	accataaccg	ccaccataga			
101	tgacgattcc	ggcatggacg	ctgtccagag	acotctcato	tttgatgatg			
151	aatgcatttt	ggttgatgaa	aatgacaatg	ttcttgggca	tgataccaaa			
. 201	tacaattgtc	acttgatgga	gaagattgag	aaagataatt	tocttcatao			
251	agcattcagt	gtattttat	tcaattcaaa	atacqaatta	ctccttcagc			
301	aaaggtcaga	aaccaaggtg	acatttcctt	tggtatggac	aaacacctgt			
351	tgcagccatc	cactatacag	agaatcggag	ttaattcccq	aaaatgccct			
401	tggggtcaga	aatgctgcac	agaggaagct	tctagatgaa	ctcggtatcc			
451	ctgctgaaga	tgttccagtt	gatgagttca	caactttagg	togcatgttg			
501	tacaaggctc	catctgatgg	aaaatggggt	gaacatgaag	ttgattacct			
551	actcttcctc	gtgcgtgacg	ttgccgtgaa	cccaaaccct	gatgaggtgg			
601	cggacattag	atacgtgaac	caagaagagt	taaaagagtt	actaaggaag			
651	gcggatgcgg	gtgaggaggg	tttgaaattg	tccccatggt	ttaggctagt			
701	ggtggacaac	ttcttgttca	aatggtggga	tcatqtccaa	aaggggacac			
751	tcaatgaagc	aattgacatg	aaaaccattc	ataagttgat	atgaaaaatg			
801		atggtggtgg						
851	tcqgtccttc	ttttttaac	gtttttttt	tttcttttat	tgggagtgtt			
901		ttgtaacgta						
951		cgttaattta						

FIGURE 19B

Chlamydomonas reinhardtii Ipil

(Note: the isomerase cDNA probably ends at ca. base 1103; the second half of the cDNA is similar to extensin and other hydroxyproline-rich structural proteins)

1	ggcacgagc	t cgagtttgt:	t ttaccatga	c atcgggaat	
51	aactacctca	attactcaa	taactcgcg		
101	cgctgttttc	: tctgctccad	ctaccgage		
151	gatgtcataa	actcccacti			. ,
201	ccagagcgca	acctgtctta			gagcccaagc
251	caaagccgtg	ctctcgttg			gegeetegeg
301	aggactttca	caggeteaaa			ggccgggagc
351	cctgggaagg	• •			agttcgtcaa
401	tgcttggtgg			, acttcatgca	gegggacgag
451	cgactgccac			J ctaggcacco	ccaacaagta
501	accgcgcctt			ccaqccctgc	ggccgcctgc
551	Caccacacac			ccgacggccg	actgctgctg
601	Cagcagcgcg			ccgggtatat	ggaccaacac
651	ctgctgctcg		cgggccagg	gccggacgag	gtggacctgc
701	cggcggcggt		caggtgccgg	gcatcaagge	ggcggcggtg
751	cgcaagctgc		ggggatacco	ccggagcagg	
801	ctccttctcc	3 -	gtctgcacta	ctgcgccgcc	
851	cgcacggccc		tggggcgagc	acgaggtgga	
901	ttcgtgcggc	cgcagcagcc	cgtcagcctg	cagcccaacc	ctacgtgctg
951	ggacgccacg	cgctacgtga	cgctgccgga	gcttcagtcc	cagacgaggt
	accccggcct	cagctggagc	ccctggttcc	gcatcctggc	atgatggcgg
1001	gccttcctgc	ccgcctggtg	gggcgacctg	aacccccggc	cacacagccc
1051	cggcagccga	ctgtcggact	ggggcaccat	aagcggcgct	ggcgcccggg
1101	aaaggggaag	caggggcggg	agcgggggat	ccaccgcgtc	atgtgaagaa
1151	ttgtgatgcg	gcgtgggatg	aggtctgaag	gaatgggaat	gtgaatgcga
1201	cgggcgtgag	cgtgtgtgta	cgtgagcgac	acagggggaa	aatcgggggg
1251	gcgatgggta	catgtgtgtg	cggagggtcg	aaagccggga	ggcggaccgc
1301	gcatagcgtg	ttgtgtgtgt	geggetgege	gtgggtcggt	cggttgcgcg
1351	acggaggaga	aggcacacgc	acctaccaca	gggtatgtgg	gcacccgggc
1401	ggcgggcctc	actcctggtc	aggtggcgcg	gaggtgtgtc	aggggccatg
1451	ggggctgcac	ccatatgage	gtgcccagtg	gtctcgtggg	cagagtggca
1501	tcacttggtg	aggtggggcg	ggcgcactgc	cgcgctgggc	taagtootta
1551	gaaggacacg	gtgtgtgagc	aggtggctgt	gggcggcggg	cgcagtggca
1601	ggcggatagc		ggtggagctc	tggccgtgcc	ggccgtgagg
1651	tgcaggccgc	gatatgacgt	tgtgcttggc	cgctgtaatg	cgggagaatg
1701	cgttggggag	gagaagcggg	cggtggcagg	aggccgcagg	ctgcagcacc
1751	gggcgcctga	gtgccgcctg	caggegegge	gccgggcggg	cctgagtaat
1801	ggacgagctg	gtagtggcgg	ccacaggagg	cgcaggaggc	agcagcagga
1851	gtggccatac	gagggacccg	ttggcaaccc		gtgtaacata
	3-39ccatac	aaaaaaaa	aaaa		

FIGURE 20

FIGURE 21A

Oryza .	ativa Ipil				
10 13 20 25 30 35 40 45 55 66 70 75	agcggctcat gttgttggcc atctgaaaat aatatgaact ctagtttgga gcttatacag tcttggatga tcttggatga tcccgaaccc ctgaaggagc gtctccctgg atcacgtcga cacaagctga aagactctgt gaagtcagaa	gttcgacgac atgaatcaaa ctacttcata cctactccag ccaacacttg gaaaactacc gctgggcacc gtcggatgct cttgactacc ggacgaagtg tcatccgcaa ttccggctgg gaaaggcacc agtaaggact tcttgtgctg gaagcttttg	gcgatgttgt ctgcatatta tatgtttctg	cgggatggac tggtggatga catctgatgg tgtattcctg caacaaaggt cctctgtacc aaatgctgct atgtgccagt ccatctgatg cgtccgcgac aatacgtgag ggagaggaag cttcctcatg ccgtggacat ggctggaaag ctcttaccag	gaggtccaga acaagacaat aaaaaatcga ttcaactcaa tacatttcct gtgagtctga cagaggaagc tgaccaattc gaaaatggg gtgaaggtag ccgtgagcag gcctgaagct ggctggtggg ggagaccatc aatgatcctg ggaagttgca
90 95 100	l gcaaacttct	tgactgagag atattataca		agagtgtcta	tgttaattta

FIGURE 21B

Plant and Green Algal Isopentenyl Pyrophosphate Isomerases (IPI) CDNAs that were isolated and identified by color complemtation in E.coli	60 61HGDDSGHDAVQR RLHFDDECILVDECD SA AHGDSS-HDAVQR RLHFDDECILVDEND TS THGEVADAGHDAVQR RLHFDDECILVDEND TS THGEVADAGHDAVQR RLHFDDECILVDEND TS THGEVADAGHDAVQR RLHFDDECILVDEND AGA AAAVEDAGHDEVQR RLHFDDECILVDEND AAAAVEDAGHDEVQR RLHFDDECILVDEND TS THTDFRDAGHDAVQR RLHFEDECILVDEND THTDFRDAGHDAVQR RLHFEDECILVDEND TH THRASTWAG-GQSQD ELHLKDECILVDEND THRASSTWAG-GQSQD ELHLKDECILVDEND THRASSSTWAG-GQSQD ELHLKDECILVDEND	CSHPLYRES	241 VAVNPNPDEVADIKY VGLDPNPDEVADIKY VGLDPNPDEVADIKY VKYDPNPDEVADAKY VKYOPNPDEVADAKY VKVOPNPDEVADAKY VKVOPNPDEVADAKY VKVOPNPDEVADAKY VKVOPNPDEVADKY VKVOPNPDEVADKY VKTLØPNPDEVADKY VKLØPNPDEVADKY	Tagetes erecta (marigold) Lactuca sativa (romaine lettuce) Lactuca sativa (romaine lattuce) Adonis palacatina (pheasant's eye) Adonis palacatina (pheasant's eye) Arabidopsis thaliana Atabidopsis thaliana
entenyl Pyropho and identified	PRECENTERS NSPRECLNELFAS NSPRECLNELFAS NSPRECLNELFAS SISANLSRAEDRIT SISANLSRAEDRIT WFGAGLSQAQSVAN	136 SATKUTFELUWTHTC SATKUTFELUWTHTC SETKUTFELUWTHTC SATKUTFELUWTHTC SATKUTFELUWTHTC SATKUTFELUWTHTC SHTKUTFELUWTHTC SKTKUTFELUWTHTC SKTKUTFELUWTHTC ARSKITFPSUWTHTC ARSKITFPSUWTHTC	226 EHELDYLLFIVAD EHELDYLLFIVAD EHELDYLLFIVAD EHELDYLLFIVAD EHELDYLLFIVAD EHELDYLLFIVAD EHELDYLLFIVAD EHELDYLLFIVAD EHELDYLLFIVAD EHEVDYLLFIVAD EHEWDYLLFIVAD EHEWDYLLFIVAD	316 HKLI 232 HKLT 290 HKLT 295 HKLT 295 HKLT 295 HKLT 296 HKLT 296
and Green Algal Isopentenyl Pyrophosphate that were isolated and identified by cold	11 45 LPRKSSFPPHPS LOORCRTLSISSSIT FAHRPLSSIS LOFKLRSHOLLS LOFKLRSHOMTLHOP LAOSRALVARVSSAL	121 VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR VELENSKYELLLOOR	211 225	301 315 316 317 317 317 317 317 317 317 317
nt of Plant and ted by CONAs tha	TTKTLSASCSSPAVH TTKTLSASCSSPAVH RESLALSSSFSSFR PRVNSAQQPSCAIAR PRVNSAQQPSCAIAR PRVNSAQQPSCAIAR PRVNSAQQPSCAIAR PRVNSAQQPSCAIAR	106 KIEFGHILHRAFS KIEKGHKLHRAFS KIEKONLLHRAFS KIEANLLHRAFS KIEASHLLHRAFS KIEASHLLHRAFS KIEASHLLHRAFS KIEASHLLHRAFS KIEASHLLHRAFS KIEASHLLHRAFS KIEASHLLHRAFS KIEQPAGLLHRAFS ANKGQPCGRLHRAFS ANKGQPCGRLHRAFS	210 COETPLERMIY- DEFTPLERMIY- DEFTPLERMIY- DETTPLERMIY- DETTPLERMIY- DOFTPLERMIY- DOFTPLERMIY- STRETPLERMIY- STRETPLERMIY- SARRETRUHYC SARRETRUHYC SSFSFLTRUHYC	286 286 286 286 286 286 286 286 286 286
iple Sequence Alignment of I sequences were predicted by	MSSIRINDLYSIEST MSSIRINDLYSIEST MSSIRINDLYSIEST MSSIRINDLYSIEST MSSIRINGLINI	105 NVCGHOTKYNCHLME KVCGHOTKYNCHLME KVCGHOTKYNCHLME KVCGHOSKYNCHLME KVVGHOSKYNCHLME KVVGHOSKYNCHLME KVVGHOSKYNCHLME NVCGHOSKYNCHLME NVCGHOSKYNCHLME NVCGHOSKYNCHLME NVTGHASKLECHKE NITGHASKLECHKE RLGTANKYDCHRE	195 ORKLLDELGT PAED VRKLENEGT PAHO IRKLENEGT PAHO IRKL	PECELKISPHERIN PECHKISPHERIN ECCIKISPHERIV E
Clustalw 1.7 Multiple These amino acid seque	T.erecta 1 L.sativa 1 L.sativa 2 A.palaestina 2 A.palaestina 1 A.thaliana 1 A.thaliana 2 H.pluvialis 1 H.pluvialis 2 C.reinhardtil 1	T.erecta 1 L.sativa 1 L.sativa 2 A.palaestina 2 A.palaestina 1 O.sativa 1 A.thaliana 1 A.thaliana 2 H.pluvialis 1 C.ceinhardtii 1	T.erecta 1 L.sativa 1 L.sativa 2 L.sativa 2 A.palaestina 2 O.sativa 1 A.thaliana 1 A.thaliana 3 H.pluvialis 2 R.pluvialis 2 C.reinhardtil 1	T. erecta 1 6 6 1 1 2 attiva 1 6 6 1 1 2 attiva 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
These	110087664			

```
Comparison using GAP program of the Genetics Computer Group
         Gap Weight:
                             50
                                      Average Match: 10.000
        Length Weight:
                                      Average Mismatch:
                                                              0.000
               Quality:
                            17392
                                                   Length:
                                                               1904
                 Ratio:
                            9.411
                                                     Gaps:
Percent Similarity: 95.331
                                    Percent Identity: 95.331
Match display thresholds for the alignment(s): | = IDENTITY
 Adonis palaestina E-cyclase #3 x Adonis palaestina E-cyclase #5
        1 gagagaaaaigagtgttatittaatgttactgtcgcattcttgcaacac: 49
1 .....aaaggagtgttctattaatgttactgtcgcattcttgcaacact 44
      99 tga.cggagiatctagctaiggaactactiggtgttcgcaacctcat
95 tgagcagagtatctggctatggaactacttggtgttcgcaacctcat
                tgccctgtctggacttttggaacaagaaaccttagtagttcaaaac 197
tgccctgtgtggacttttggaacaagaaaccttagtagttcaaaac 194
      148
      145
     248 gtgagggctgatggtggaagcgggagtagaacttctgttgcttataaaga 297
245 gtgagagctgatggtggaagcgggagtagaagttctgttgcttataaaga 294
     298 gggttttgtggatgaagaggattttatcaaagctggtggttctgagcttt
          tgtttgtccaaatgcagcaaacaaagtctatggagaaacaggccaagctc
     348
     345
          gccgataagttgccaccaataccttttggagaatccgtgatggacttggt 447
     398
     395
          tgtaataggttgtggacctgctggtctttcactggctgcagaagctgcta 497
     448
     445
     498 agctagggttgaaagttggccttattggtcctgatcttccttttacaaat
    548 aattatggtgtgtgggaagacgagttcaaagatcttggacttgaacgttg
          tatcqaqcatqcttqqaaqqacaccatcqtatatcttqacaatqatqctctatccgaqcatqcttggaaqqacaccatcqtatatcttgataatqatqctc
     598
     595
    648 ctgtccttattggtcgtgcatatggacgagttagccggcatttgctacat 697 645 ctgtccttattggtcgtgcatatggacgagttagtcgacatttgctacat 694
    698 qaaqaqttqctqaaaaqqtqtqtcqaqtcaqqtqtatcatatctqaattc
         taaagtggaaaggatcactgaagctggtgatggccatagccttgtagt
    798 grgaaaacgacarctttatcccttgcaggcttgctactgttgcatctgga 847
795 grgaaaatgagatctttatcccttgcaggcttgctactgttgcatctgga 844
```

FIGURE 23

VO 99/63055

FIGURE 23 (cont.)

84	8 gg	age	775	çaç	Jgg	aaa	ąçţ	Çţ	t q	ga	ata	ato	aaa	iat	ac	ia t	aa.	-:-					
84	5 ჭბ	:aģd	FFF	cad	399	aaa	lct	ff	få	ga	ďť.		ITI			֓֓֓֓֓֓֓֓֓֓֓֟֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	77	ŢŢŢ	֓֞֞֞֞֞֓֓֓֞֜֝֓֓֓֓֞֜֟֜֓֡֡֡֓֡֓֡֡֡֡֡֡֡֡	11		98	97
89	8 tg	1799	aa	ąçi	gç	ţţ;	Fg	gt	ġţ	gg	ago	a t	gá	ac	ito	iga	ga:	ica	a F	ge	itac itac	g B	94
89	5 tġ	tçç	àà	åċc	gċ	ff	ltģ	ģg	ġέ	gg.	agg	15	r l	ומס	ίξ	ΙďΑ	ĮΪ.	֓֞֞֞֞֓֞֓֓֓֞֟֓֓֓֓֓֟֓֓֓֟֡֓֓֓֓֡֓֡֓֡֡֡֡֡֓֡֓֡֡֡֡֡֡֓֡֓֡֡֡֡֡֓֡֓֡֡֡֡֡֡	וַנְ	֓֞֟֝֓֓֟֝֟֝֟֟֝֟֝֟֟֝֟֟֝֟֟֝֟֝֟֟֝֟֟֝֟֝֟֝֟֝֟֝		9	47
941	8 at	999	aa.	fff	aa	t gg	JF A	FF	ŧа	ţg:	gaç	- - -	çå	ga	ga	ct	ata	ita	ca	aci	2022	3 9	44 97
945	5 át	ĊĊĊ	aa	ctt	àà	tģģ	ıta	ff	cå	Łģι	gad	ta	da	ga	ga	ęξ	I []	ίξ	IJ	֓֞֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֡֓֓֡֓֡֓֡֓֡֓֡֓֡֓	gaa.	֓֞֞֞֜֞֓֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡	9 / 9 4
998		aca	950	766	çg	gaa	ga	ag	ġą	ţą	FFF	:aa	çạ	ţţ	FÇ	ţÇ	tat	ġt	ca	tac	igaa. CCa CCa	. J.	94 047
995	tt	àċā	ġt	ġċt	ċġ	ģáá	gá	άģ	åå	ta	FÇÇ	:dd	ca	ff	fc	fc	Łał	äξ	ĮΙ.		III	10) 4 4
1048	. <u>11</u>	599	Ça	rca	aga	PFF	FF	77	۴F	tga	799	raa	ąċ	۲ŧ	gţ	FF	399	Ċţ	ça	aaa	gato	10	97
1098	gt	cgc	caa	aca	aga	act	.tti	tt	tt.	tġa	àġġ	ää	άċ	ċŧ	ąŧ	ff	βġċ	çŧ	ζå	aaa	gate	10	94
1095	ĬĬ	֓֓֟֓֓֓֟֓֓֓֓֟֓֓֓֓֓֟֓֓֓֟֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓		ĪĪ	Ç	ΪŢ	II	֓֓֞֜֞֜֓֓֓֓֓֓֓֜֡֓֓֡֓֓֡֓֡֓֡֓֜֜֡֓֡֓֡֡֡֡֡֓֡֓֡֓֡֡֡֡֡֡	ga	aga	ga	aa	ą¢	ţa	ąţ	gta	FAC	ġą	FF	jąą	gato gact gact	11	47
1148	CE	aca	+ = +		cga	110	tac	Σ τ (gaa	aga	aga	àà	àĊ.	tg	àt	ġŧ	tac	ģå	έŁς	Jaa	gact	11	44
1145	II	קקק ממם	֡֓֓֓֟֟֞֟֓֓֓֟֟֓֓֓֓֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		֓֓֓֟֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓	[[]		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	֓֟֟֓֓֟֟֓֓֟֟֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֓֓֓֟֓֓֓֓		Ī	19	aa.	ga	99	aat	99	ŧ۴	2	ta	gace FFC EEC	11	.97
1198	ta	tta	aac	at	ter	, 	acc	- 2	a aq	300	:ta	tg 	aa -:	ga	ġġ.	äät	ġġ	tċ.	ata	ta	ffç	11	.94
1195	L Eg	ffå	gto		ſΪ	ΞĮ			֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	֓֓֓֓֟֟֓֓֟֟֓֓֟֟֓֓֓֟֟֓֓֟֝֟֓֓֟֓֓֟֝ <u>֚֚֚֟֝</u>	֝֟֓֓֟֟֓֓֟֟֓֓֓֟֟֓֓֓֟֟֓֓֓֓֟֝ <u>֚֚</u>	17	֓֟֝֟֓֓֟֟֓֟֓֓֓֟֟֓֓֓֓֟֓֓֟֓֓֓֟֓֓֓֓֓֟֓֓֓֟֓֓		ag:	aac	9	ago	rat	++	ttėć ggtg ggtg	12	47
1248	Çţ	gça	gça	aġ	çat	aa	tac	at	ico	ac	.ca	ay.	aàd	3 4	aga	aac	ict	ago	cat	tt	gġtġ	12	44
1245	çt	jċa:	gca	dg	<u>La l</u>	.gg		a		ao	ΙŢ	Ĭľ.			֓֓֓֓֓֟֓֓֓֓֟֟֓֓֓֓֓֓֟֟֓֓֓֟֟֓֓֓֓֓֓֓֓֓֟֓֓֓֟֓֓֓֓	בנו	79		IF	içg	ggtg atçå gtca	12	97
1298	Sta	a t ç	aga	ąġ	çţç	ça	aāa	ţ	itç	Çţ	tç	ta	tåa	3 C 1	ta:	caa	ag.	i L	- - -	cg	gtca agca agca		
1295	çtç	gt ċ.	àġå	aģ	ffc	:ca	aaa	£	fξ	ίς f	ξĻ	ξģι	Lad	15		aa	II.	֓֓֓֓֟֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		֓֟֓֓֓֓֟֟֓֓֓֟֟֓֓֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓		13 13	
1348	aga	ta.	PFF	cf	a ça	ta	fgf	gç	7 5 5	FF	F g	gad	;åą	aç	JC	gt	ac.	iat	aa:	ac	ayca arri	13	_
1345	aga	taa	ict	ċŧċ	ģċg	tai	tġt	ģģ	144	ŧċ	fģ	ģåd	al	lac	jt	ďξ	ge	i [II	II.	III	13	
1398 1395	Çaş	IEgo	aa T	9¢9	759	gag	7Ç4	90	95	FF	999	799	aåa	gç	jąç	çq	aaa	jąç	gţ	çaa	attt aga aga	14	
1448	caa	itgo	caa	gca	atġ	gaç	jċa	ġt	Ċt	tt	ġġ	-c	ààà	ιģģ	jåģ	ι¢ģ	aaa	lac	ġŁ	caa	laga	14	
1445	Y			M	11	Feg	Igg	Ħ	49	99	951	FA	۲ç	159	rça	96	tac	jąç	ąţ	t ga	agç	14	97
1498	aac	Cac	122	cåt	. t t	• • •	gga 	-:	ag	ag	cti	àt	:tġ	įtģ	ŗċá	ġċ	tad	ját	åŧ	Łġź	aga agç agç	149	94
1495	III	Cac	TA		ŢŢ	וון	ַקָּאָ	ŢŢ	Ï	II	[[]		79		99	ça	act	79	ga	F9 1	agc ggt	154	
1548	ggg	gtt	tc	ctt	aa	ato	tt:	cá	ct	200	cat		:gc	ככ	gc	ca	act	tġ	ġà	tġt	ġġt.	154	
1545	999	åff	ξÇ	fff	gg	ΪĘ	ΞĘ	IJ	ΪĪ	ĬĮ.	֓֞֟֞֟֓֓֟֟֓֟֓֟֟֓֟֓֟֓֟֓֟֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟	[נֻ]	11		Ţ	II		a	F9	777	FFF	159	
1598	arg	ţąç	aţ	ą į t	tg.	FFF	ţg	σċ	CÇ	Ca	aac	ao	ċa	ta	ac	ma:	tai	.C.	cg c+		:CCC	159	
1595	åtģ	táć	at	åff	ŧφ.	fff	:£ģ	ĝς	gċ	ca.	aad	:do	ca		I	ď			II.	III	gaġ gaġ	164 164	
1648	aca aca	FFF	gçi	FFF	ça	gat	ÇÇ	ţţ	ÇF	ggi	t g ç	:ag	Ėŧ	aţ	aa	tt	aaå	ac	tt:	acc	tcá	169	
1645	à¢á	ttt	ġċſ	ttt	Ċå	ģát	င်ငံ	ŧŧ	çŁ	ģģί	Fåç	:dg	ff	۵Ł	άđ	tai	aga	4C	fξ			169	
1698	444	995	aaı	řŶ٠	1	fgf	ידדי	ţġ	ţg	aaa	795	aç	ġg	¢9	ţc	ţç	att	ąą.	ata	aaa	tgå Ega	174	-
1695	aaa	ggt	àgt	tet	cai	tct	ati	tá	ŧt.	ààa	ict	ct	άģ	ŧģ	ŧτ	fç	acc	aa.	a Ła	lala	Ega	174	
1745 1745	gga gga	ĬĨ	FF	95	ata []	159	Fai	FÃ	59	ato	PPF	çţ	¢ţ.	ąţ	95	459	ţċ	Çţ.	aţa	a t ţ	çţġ	179	
1795	yyd atc	tc:	tar	-ga	ato	gtg		ca	tg.	ato	at	ĊĖ	ċŧ.	at	ġŧ	àta	tc	çŧ	gŁ	jcę	çfå	179	4
1795	III	ዮዮዋ	ትዋና	44	649	4 C C	gaa	aa	atı	ÇCa	3 C C	ga	ta	ga.	aa.	aaa	خده	aa.	223		a	184	
1845	aaa	a.				14 C	900	-g	33 1	בכנ	.ga	ta	t t	gt	tg	tgt	cà	áå	CC	3 90	caa	184	
1845	tga	tat	aaa	ıat	aaa		 tat	· ·	729	• • •	• • •	• •	••	• •	••	 	• • •	• •	• • •	• • •	• • •	184	_
	,			7					901	-40	.ad	a a	g۲	ag:	CC	ててり	:ct	CCI	Cta	aaa	aaa	189	4

WO 99/63055

GAP program of Genetics Computer Group blosum62.cmp Gap Weight: 12 Average Match: 2.912 Length Weight: 4 Average Mismatch: -2.003 Quality: 2728 Length: 530 5.147 Ratio: Gaps: 0 Percent Similarity: 99.623 Percent Identity: 99.057 Match display thresholds for the alignment(s): | = IDENTITY Adonis palaestina E-cyclase #3 x Adonis palaestina E-cyclase #5 1 MELLGVRNLISSCPVWTFGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGG 50 1 MELLGVRNLISSCPVWTFGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGG 50 51 SGSRTSVAYKEGFVDEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKLPP 100 51 SGSRSSVAYKEGFVDEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKLPP 100 101 IPFGESVMDLVVIGCGPAGLSLAAEAAKLGLKVGLIGPDLPFTNNYGVWE 150 101 IPFGESVMDLVVIGCGPAGLSLAAEAAKLGLKVGLIGPDLPFTNNYGVWE 150 151 DEFKDLGLERCIEHAWKDTIVYLDNDAPVLIGRAYGRVSRHLLHEELLKR 200 151 DEFKDLGLERCIEHAWKDTIVYLDNDAPVLIGRAYGRVSRHLLHEELLKR 200 201 CVESGVSYLNSKVERITEAGDGHSLVVCENDIFIPCRLATVASGAASGKL 250 201 CVESGVSYLDSKVERITEAGDGHSLVVCENEIFIPCRLATVASGAASGKL 250 251 LEYEVGGPRVCVQTAYGVEVEVENNPYDPNLMVFMDYRDYMQQKLQCSEE 300 251 LEYEVGGPRVCVQTAYGVEVEVENNPYDPNLMVFMDYRDYMQQKLQCSEE 300 301 EYPTFLYVMPMSPTRLFFEETCLASKDAMPFDLLKRKLMSRLKTLGIQVT 350 301 EYPTFLYVMPMSPTRLFFEETCLASKDAMPFDLLKRKLMSRLKTLGIQVT 350 351 KIYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAPK 400 351 KVYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAPK 400 401 YASVIAKILKQDNSAYVVSGQSSAVNISMQAWSSLWPKERKRQRAFFLFG 450 401 YASVIAKILKQDNSAYVVSGQSSAVNISMQAWSSLWPKERKRQRAFFLFG 450 451 LELIVQLDIEATRTFFRTFFRLPTWMWWGFLGSSLSSFDLVLFSMYMFVL 500 451 LELIVQLDIEATRTFFRTFFRLPTWMWWGFLGSSLSSFDLVLFSMYMFVL 500 501 APNSMRMSLVRHLLSDPSGAVMVKAYLER* 530 1111111111111111111111111111111111111 501 APNSMRMSLVRHLLSDPSGAVMVRAYLER* 530

ر د)	
7 1 2 1 2	5	
Ē	1	

	103 102 102 102 100 84 72 71 71 71	205 205 206 206 206 206 1181 1186 1186 1186 1186 1186 1186 11	161 312 311 311 311 316 316 289 289 289 289
	1 80 0, 0, 0, 10 0, 12 13 13 13 13 13 13		1101 1111 1111 1111 1111 1111 1111 111
	The state of the s	22 VERY COURS OF COU	
	GGGSSGSESCVAVREDF - ADBEDFYKAGGBEILFYÖHÖNKDHDEĞSKEVDKU ADGGSGSRSSVAYKEGF - VDBEDFIKAGGBEILFYÖHÖOTKSHEKÇAKİBAKL ADGGSGSRSSVAYKEGF - VDBEDFIKAGGBELLFYÖHÖOTKSHEKÇAKİBAKL CASAKSDR - CVVDKQGISVADBEDFYKAGGBELFYÖHÖOTKSHEKÇAKİBAKL COSAKSDR - CVVDKQGISVADBEDYYKAGGBELFYÖHÖOTKSHESÜSKL CONSSGGSBCVVDKEDF - ADBEDYYKAGGBELFYÖHÖOKKOHDOĞSKISEKL - RUCSNNPYHSRVRLQVKKRAİKIV SSVVSGSAALLDLVPETKKEN - AVKVSAFSSVKSQKFGAKKFCEGLG SRSVCVKGSSSALLELVPETKKEN - AVKASTFRSEKHHNFGSRKFCETL GRSVCVKGSSSALLELVPETKKEN - AVKASTFRSEKHHNFGSRKFCETL GRSVCVKGSSSALLELVPETKKEN NINNINQLNQSKSQPOPFRFGKKSQFKLGQKYCVKASSSALELUVPETKKEN - KRHFLSPSPNPQNPNFKFFSKKPYQKKCRNGYIGVSSNQLLDLVPETKKEH - KRHFLSPSPNPQNPNFKFFSKKPYQKKCRNGYIGVSSNQLLDLVPETKKEH	HEELLKEOVE HEELLKOVE HEELLKOVE HEELLKOVE HEELLKOVE HEELLKOVE HEELLKOVE HEELLKOVE KSKAMOKOLIN KSKAMOKOLIN KSKAMOKOLIN KSKAMOKOLIN KSKAMOKOLIN KSKAMOKOLIN KSKAMOKOLIN KSKAMOKOLIN	PTELY PTELY PTELY PTELY PTELY PTELY PTELY PTELY PTELY PTELY PTELY
100	TOTO TO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE THE TOTO THE T	HITTER XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	<u> </u>
	SAND SAND SAND SAND SAND SAND SAND SAND	SERLI SERLI SERLI SERLI SERLI SERLI SERLI SERCI SE SERCI SERCI SERCI SERCI SE SERCI SE SERCI SE SERCI SE SERCI SE SERCI SE SERCI SE SERCI SE SERCI SE SERCI SERCI SERCI	SLEANSERNS ERNNS E
	GOOT GOOT GOOT GOOT SSAL SSAL SSAL SSAL SSAL SSAL		320 Year Strain
•	TOO TOO TOO TOO TOO TOO TOO TOO TOO TOO		VR TN MQ MQ SK ER
	KAGGBELL KAGGBELL KAGGBELL KAGGBELL SSS PCRNGIN SSS SSS SSS SSS SSS SSS SSS SSS SSS SSS SSS SSS ST 	DDDEILIE DDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDEELLE DDDDDEELLE DDDDDEELLE DDDDDEELLE DDDDDEELLE DDDDDDDD	
80	KAGG KAGG KAGG KAGG KAGG C C C C C C C C C C C C C C C C C C		
	- ADĞEĞEYEĞ - VDĞEĞETİĞ - VDĞEĞETİĞ - ADĞEĞEYİĞ - ADĞEĞEYİĞ - ABĞEĞEYİĞ - KRAİKİV- KRAİKİV- KRÇEĞIĞ- SKKCEĞIĞ- SKÇCEĞIĞ- SKÇCEĞIĞ- SKÇCENIĞ- KIÇENIĞE		300 SLLWVE NLWVE SLLWVE SLLWVE SLLWVE SKWVE SKWVE SKWVE
	ADEEDFUVDEEDFUVDEEDFU- SVADEEDFUADEEDFUBEEDFUREEDFU	WRDII WRDII WRDII WRDII WRDII WRDII WRDII WSGAA WSGAA	
•	ADGGSSGSRSCVAVREDF ADEEDFVR ADGGSGSRSSVAYKEGF VDEEDFIK ADGGSGSRTSVAYKEGF VDEEDFIK CCSAKSDR CVVDKGGISVADEEDFYK CCNSSGGSDSCVVDKEDF ADEEDYYK CCNSSGGSDSCVVDKEDF ADEEDYYK RLCSNNDYHSRVRLGVKKRAIKIV KRQHLVSTSKLQNQVFRIASRNIH- VKASSFRSVKRHNFGSRKFCETL- VKASSFRSVKPHKFGSRKFCKTL- NLNNLNQLNQSKSQFQPKRFGPKKSQF	180 CIEHO CIEHO CIEHO CIETO CIDTO CIDAN CIDAN CIDAN CIDAN CIDAN	WENSE WENS WENS
	7AVRI 7AYKI 7AYKI 7AYKI 7VDKI 7VVKI 1SKUP		
09	SESC SESC SESC SESC SESC SESC SESC SESC	DEFROIG DEFROIG DEFROIG DEFROIG DEFROIG DEFRAND DEFRAND DEFRAND DEFRAND DEFRAND	AYGVE AYGVE AYGVE AYGILA AYGILA AYGILA AYGILA AYGILA AYGILA AYGILA
	SSSGS SGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGSGS SGS SGSGS SGS SGS SGSGS S SGS	OBE OBE OBE OBE OBE OBE OBE OBE OBE	
	CSVRASGGGSSGSRSCVANTEDFADEEDFYKAGGBILLE CRVDFQVRADGGSSRSSVANTEGFVDEEDFIKAGGBILLE CRVDFQVRADGGSSRTSVANTEGFVDEEDFIKAGGBILLE SSSLRQINCSAKSDRCVVDKQGISVADEEDYVKAGGBILFE RQYESIKCHSSGSDSCVVDKEDFADEEDYVKAGGBILFE IPQFHGFBRLCSNNPYHSRVRLGVKRRAIKIVSSV PTLHGFAEKQHLVSTSKLQNQVFRIASRNIHPCRNGTV HGFGAVKASTFRSKHHNFGSRKFCEGLGSRSVCV NPHHGPAVKASTFRSKHHNFGSRKFCEGLGGRSVCV HPWHGFSKQULVSTSKLQNGVFRIASRNIHPCRNGTV HPWHGFSAVKASTFRSKHHNFGSRKFCEGLGGRSVCV HPWHGFSKRHFLSPSPNPQNPNFKFFGRKGGKYCV	O MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM MINYGUM	
•	SSV-RAS RVDPQVP RVDFQVP SSSLRQIK QV-ESS PQFHGPB TLHGPAHGFG PHHGP PVHGFS		
	SCRV SCRV SCRV SCRV LPTL LPTL LPTL LHPY UHPS	ALIND KLIND KLIND KLIND KLIND KLIND KLIND	
40	RRFPVVRRYSTRNIRFGL-CSVRASGGGSSGSRSCVAVREDFADĒEĎFVKĀĞGBEILFVÖHĞOKRDHDBÖSKÍVDKI TRNISSSKLAYNIHRYGSSCRVDFQVRADGGSGSRSSVAYKEGFVDĒEĎFIKĀĞĞBILLFVÖHĞOKKHENDKIADKI TRNISSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKEGFVDĒEĎFIKĀĞĞBILLFVÖHĞOTKSHEKÖAKIADKI TRHKFBLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADĒEĎTVKĀĞĞBILFVÖHĞOTKSHEKÖK FWSGGELCQEKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADĒEĎTVKĀĞĞBILFVÖHĞOKKOHDOÖSKISEKI HDTLLKTPNKLDFFIPQFHGPERLCSNNPYHSRVRLGVKRAIKIVSSVVSGSAALLDLVPETKKEN HDTLLKTPNKLELPTLHGPAEKQHLVSTSKLONOVFRIASRNIHPCRNGTVKAGSSALLELVPETKKEN HDTLLKTPNKLEFLNPHGPAVVSAFSSVRSOKFGAKKFCEGLGSRSVCVKASSSALLELVPETKKEN HDTLLKTPNKLEFLHPVHGPSAVVASTFRSKHHNFGSRKFCETLGRSVCVKASSSALLELVPETKKEN HDTLLKTPNKLEFLHPVHGPSAVVASSFNSVRPHKFGSRKICENWGKGVCVKASSSALLELVPETKKEN HDTLLKTPNKLEFLHPVHGPSKASSFNSVRPHKFGSRKICENWGKGVCVKASSSALLELVPETKKEN HDTLLKTPNKLEFLHPVHGPSKASSFNSVRPHKFGSRKICENWGKGVCVKASSSALLELVPETKKEN HDTLLKTPNKLEFLHPVHGPSKRASSFNSVRPKFGFKRSOFKLGQKYCVKASSSALLELVPETKKEN 		
	YERNI YERNI YERFI YERFI YETPN KIPN KIPN KIPN	CSILIVATION OF STREET	
	SKLA SKLA SKLA SKLA CLEKQ DTEL DTEL DTEL DTEL		PECTAL PECTAL PECTAL PECTAL PECTAL PECTAL PECTAL PATAVLE PATAV
•	MA W W W W W W W W	140 AAESKE AAESK	
		LIANO VAOO CETS	WECEGEDON WECEGEDIN
20	SWS-VWT-VWT-VWT-RFTD	* CGBAGLAIL CGBA	TACEBER TACEBER TECEBE
7	HECVGARNP-AAMAVSTPESWB-CF HELLGVRNLISSCRWT-PG HELLGVRNLISSCRWT-PG HECVGVQNV-GAMAVITEPRIDGY HECVGVQNV-GAMAVITEPRIN HSWRAG-HHTATHAAFICERN		GVLTINSKUDRIVERTRÖHSIDEGEDOVVI GVSTISKUDSITERSDIRITARGEDINVI GVSTIDSKURRITERSDIRITARGEDINVI GVSTISKURRITERSDIRITARGESIVVERDITE GVSTISKURRITER PROGESIVE GEGOVVI GVSTISKURRITER PROGESIVE GEGOVVI GVSTISKURRITER PROGESIVE GEGOVVI GVSTISKURRITER PROGESIVE GEGOVVI GVKFHQARVIRVIH - BESKSHLIGNDGITH GVKFHQARVIRVIH - BESKSHLIGNDGITH GVKFHQARVIRVIH - BESKSHLIGNDGITH GVKFHQARVIRVIH - BESKSHLIGNDGITH GVKFHQARVIRVIH - BESKSHLIGNDGITH GVKFHQARVIRVIH - BESKSHLIGNDGITH GVKFHQARVIRVIH - BESKSHLIGNDGITH
	ANAV THAV ANAV THAA	120 IGBSVPDLVVIG FGBSVPDLVVIG IGBSVPDLVVIG IGGGDSNCILDLVVIG AGQTVLDLVVIG PLYDTSKSQVVDLALVV PAYDPSKGVVVDLAVV PHYDPSKGVVVDLAVV PHYDPSKGVVVDLAVV PHYDPSKGVVVDLAVV PHYDPSKGVVVDLAVV PHYDPSKGVVVDLAVV PHYDPSKGVVV	
+ ;	NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL	120 IGBOALDHVV FGESVAGLVV IGOTVLGLVV AGQTVLGLVV AGQTVLGLVV AGQTVLGLVV PLYDPSKGVVVDLAY PHYDPSKGVVVDLAV PHYDPSKGVVVDLAV PHYDPSKGLVVDLAV PHYDPSKGLVVDLAV PHYDPSKGLVVDLAV PHYDPSKGLVVDLAV PHYDPSKGLVVDLAV	AREA THE TENTE T
;	VGAR LGVR FGAR VGVQ	B B B GDSN GDSN GDSN PSKG PSKG PSKG	Thiskyor Therese Therese Therese Therese Therese Therese Therese Therese Therese Therese Therese Therese Therese Therese
;		FG IGG IGG IGG IGG IGGG	
•		00 00 00 00 00 00 00 00 00 00 00 00	
50	Arabidopsiss Adonissi Adonissi Lettucess Tomatos Arabidopsiss Adoniss Peppers Tomatos Tobaccos Marigolds	Potatos Arabidopsiss Adoniss1 Adoniss2 Lettucess Tomatos Arabidopsiss Adoniss Tobaccos Marigolds	Potatos Arabidopsiss Adonissi Adonissi Comatos Arabidopsiss Adoniss Peppers Poppers Comatos Comatos
PotatoB	Arabidops AdonisEl AdonisEZ LettuceEE TomatoB Arabidops AdonisB PepperB TomatoB TobaccoB MarigoldB	PotatoB Arabidops AdonisB1 AdonisB2 LettuceBB TomatoB Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops Arabidops DeffodilB	Potatos Arabidopsiss Adonissi Adonissi Tomatos Arabidopsiss Arabidopsiss Adoniss Peppers Tomatos Tobaccos
Po	Add Add Add Add Add Add Add Add Add Add	Pot Ado Ado Let Tom Adoi Pepi Tobe Hard Daff	Potatos Arabidopi Adonissi Adonissi Lettucessi Lettucessi Tomatosi Adonissi Peppersi Tomatosi Tobaccosi

$\overline{}$
u
cont
≍
2
U
$\overline{}$
25
N
ы
座
\Box
G
IGUR
بع

	27 / 30	# ¹ 2.
	2	8488888614880048
	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	378 5228 5229 5239 5239 5200 5000 5000 50110
9	% : 0 0 0 1 0 % : ! ! ! A !	*!!!!!!!
4	RONHSKNMLTSS REETTKOINS- KODNSATVVSGG KODNSATVVSGG RODGSKRMISLG ROHYSKNMLTS- GRUNSKQMLDHG GSPSSNS GSPSSNS GSPSSN GSPSSN GSPSSN GSPSSN GSPSSN GSPSSN GSPSSN GSPSSN GSPSSN GSPSSN	KLTF- CLOOK CLOOK CLOOK CLOOK CLOOK CLOOK CLOOK CLOOK CLOOK CLOOK
	KNY KOJ KRIA KRIA KRIA KRIA KRIA KRIA KRIA KRIA	40 ATLIRTKLTF ATMIKTKLKV AVMVRAKLER AVMVRAKLER ATMIKAKLT ATLIRTKLT ATLIRTKLT ATMINALUD VWMINNLUD VWMINNLUD VWMINNLUD VWMINNLUD VWMINNLUD VWMINNLUD VWMINNLUD VWMINNLUD VWMINNLUD
	RONHSK REETTK KODNSA RODNSA RODNSK GSPSSN GSPSSN GSERSH GSERSH GSERSH	ATLIRT ATMIKT AVMVKA ATMVKA ATLIRT GTMLKA AKMINN VNMENNI VNMINNI VNMINNI VNMINNI VNMINNI VNMINNI
٠.		FTGATLIRTKLTF PTGATMIKTKLKV PSGAVMVRAKLER PTGATMVKAKLTI PTGATLIRTKLT PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGGTMLKAKLTI PTGTMINNLQDKE P-LVHMINNLQDKE P-LVHMINNLQDKE P-LVHMINNLQDKE P-LVHMINNLQDTE
-	FYLLANT PRONHSK SYTA STATE TER SYTA STATE TO BE SYTA STATE TO BE SYTA STATE TO BE SYTA STATE TO BE SYTA STATE TO BE SYTA STATE TO STATE TO NA I I SY TO SERSH NA I I SY TONNEK SM KSI VQY TONNEK SM KSI VQY TONNEK SM KSI VQY TONNEK SM KSI VQY TONNEK SM	* 540 ** 520 ** 540 ** EALTHEILE BY THE TRILLE VLEALTHEILE BY THE TRILLE VLESHTE VLAR BENERKE IN HILLE BY THE TRILLE V VLESHTE VLAR BENERKE IN HILLE BY STANDAR LER VLESHTE VLAR BENERKE VRHILLE BY STANDAR LER I I SALTHE VLAR BY VRHILLE BY STANDAR LER I I SALTHE VLAR BY VRHILLE BY STANDAR LIT MLEARTHEILE BY STANDAR LER I I SALTHEILE STANDAR LER I I SALTHEILE STANDAR LER I I SALTHEILE STANDAR LER I I SALTHEILE STANDAR LER I I SALTHEILE STANDAR STEIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPGLEL SHASHTERIMIR I VPFGLET SHASHTERIMIR I VPF
,	NAI NAI NAI NAI NAI NAI NAI NAI NAI NAI	
01		+ HARERER AFTER A TERM
÷.		MIFARY PETTANDARRO INFILLED VI BALLY PETTANDARRO INFILLED VI BENTHANDARRO INFILLED VI BENTHAND VI BENT
1		11ABNDKRRGY VLABNDKRRGY VLABNSKRHSE VLABNSKRHSE VLABNSKRHSE VLABNSKRUS IIABNSKRE SHASNTSKLE SHASNTSKRE SHASNTSKRE GHASNTSKRE GHASNTSKRE
ı		S S N T T T S S N T T T T T T T T T T T
+ ! i	ວາກວານ ທະຫາຍ ທະຫານ ຊື່ ຊື່ ຊື່ ຊື່ ຊື່ ຊື່ ຊື່ ຊື່ ຊື່ ຊື່	SEO VIS VIS VIS VIS VIS VIS VIS VIS VIS VIS
1		
2	တီးထွားတိုးတိုးတိုးတိုးတိုးတိုးပြီး ဗို ဗို ဗို ဗို ဗို ဗို	
7		RAPA RAPA RAPA RAPA RAPA RAPA RAPA RAPA
ļ		
	ATTER KALLER KALLER KALLER KALLER RAVGI RAVGI RAVGI	
•		
i		
ì		SOLOPPEN STANDS OF THE STANDS
2		
ñ	3 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
į		
	O COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	
•	GVRIKEL GIRLLKT GIGUTKU GIGUTKI GIRLTRT GINVKRII GIKVKSII GIKVKSII GIKVKSII	480 TERM TERM TERM TERM TERM TERM TERM TERM
	GORIN GORINI GORINI GORINI GORINI GORINI GORINI GORINI	480 GHALTYOFDIBG GHELTYOFDIBG GHELTYOFDIBG GHELTYOFDIBG GHALTYOFDIBG GHALTYOFDIBG GHALTYOFDIBG CHALTYOFT CHALTY CHALTYOFT CHALTYOFT CHALTYOFT CHALTYOFT CHALTYOFT CHALTYOF
	DATE DATE TO THE CONTROL OF THE CONT	GGALTOL GGALTOL GGELTVOL GGELTVOL GGALTOL GGALTOL GGALTOL GGALTICOL GGALTICKI GGALTICKI GGALTICKI GGALTICKI
09	NET TO SEE TO SE	odatří odatří odatří odatří odatří odatří odatří
m		
_		
	SPTRV3FG34GTGRDAKEPDITERTING TKSRL3FG34GTGREDVEFDITERTING SPTRL3FG34GTGREDAKEPDITERTING SPTRL3FG34GTGREDAKEPDITERTING SPTRL3FG34GTGREDVEFDITERTING SPTRV3FG34GTGREDVEFREDTGREN SSRR13L3ASSVARPGLRREDTGREN SSRR13L3ASSVARPGLREDDGREN SSRR13L3ASSVARPGLREDDGREN SSRR13L3ASSSVARPGLREDDGREN SSRR13L3ASSSVARPGLREDDGREN SSRR13L3ASSVARPGLREDDGREN SSRR13L3ASSSVARPGLREDDGREN SSRR13L3ASSSVARPGLREDDGREN SSRR13L3ASSSVARPGLREDDGREN SSRR13L3ASSSVARPGLREN SSRR13LSASSSVARPGLREN 3LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSSVARP SSRR13LSASSVA	STPS-[STDANTIMPO SSAVNISHON SSAND SSAVNISHON SSAND KYT-NISHON SIMPI SSIPE STON WITHPO RYTINISHON STUPPI LEGDOLSAEV WEDLIND -SGUELSAEV WEDLIND -SGUELSAEV WEDLIND -LONELSAEV WEDLIND
340	SPTRVE SEED OF TREATMENT OF THE SEED OF THE SEED OF THE SEED OF THE SEED OF THE SEED OF THE SEED OF THE SEED SEED SEED SEED SEED SEED SEED SE	BTPS-ESTEANT SSAVNESSEAS SSAVNESSEAS SSAVNESSEAS KYT-NESSEAS KYT-NESSEAS ENGLESASVAN SGDELSASVAN SGDELSASVAN - SGNELSASVAN - SGNELSASVAN - LUNELSANVAN - LUNELSANVAN - SGNELSANVAN - SGNELSANVAN - SGNELSANVAN - SGNELSANVAN
m	· [24 · [24	BTPS-ESTER SSAVNESSER SSAVNESSER SSAVNESSER SSIPERSTER RYTINESSER - SGDELSAR - LONELSAR - LONELSAR - SGDELSAR - SGDELSAR - SGDELSAR - SGDELSAR - SGDELSAR - SGDELSAR
	SSONKI GEOLOGICAL	ANN AN AN AN AN AN AN AN AN AN AN AN AN
		BTPS-ESTER SSAVNESHER SSAVNESHER SSAVNESHER SKIT-NESKER RYTINESKER LRGDQLSAEV - SGDELSAAV - LGNELSAAV - LGNELSAAV - LGNELSAAV
	Potatos Arabidopsiss Adonissi Adonissi Tomatos Arabidopsiss Adoniss Peppers Tomatos Tomatos Adoniss	Potatos Arabidopsiss Adonissi Adonissi Tomatos Arabidopsiss Adoniss Tomatos Tomatos
	Potatos Arabidops Adonissi Adonissi Lettucess Tomatos Arabidops Adoniss Peppers Popacos Tomatos Tomatos Marigolds	Potatos Arabidops Adonissi Adonissi Lettucess Tomatos Arabidops Adoniss Tomatos Tomatos
	Potatos Arabidop Adonissi Lattuces Tomatos Arabidop Adoniss Peppers Poppers Tomatos Tomatos Marigold	PotatoB Arabidop Adonissi Iettucesi Tomatos Adoniss Tomatos Tomatos Tobaccos
	Are Are Too Too Too Too Too Too Too Too Too To	Pot Add Tob Tob Dar

FIGURE 26

	103 102 102 102 100 84	57 208 207 207 212 205 194	167 318 317 317 322 315	276 422 427 427 427 431 414	
•	SKTAVDKEPPIS : AKLADKEPPIP : AKLADKEPPIP : SKLSEKKAQIP : SKLSEKRAQIS : SKLSEKRAQIS :	220 RCVESCUVE RC	PUSPIRATE * PUSPIR	440 NI: GOSSAVN: GOSSAVN: GOSSAVN: B-SSIPS:	
100		•	320 Barypishya Berypishya Berypishya Barypishya Barypishya Barypishya	440 HREHTKQINSN HREDNSAYVSGQSSAVN HRODNSAYVSGQSSAVN HRODGSKENISLGKYT-N HRODGSKENISLGKYT-N HROHYSKNMLT8-SSIPSI	540 CATLIRTITI CATHIKUTIKO CACHVRATIER CACHVRATIER CATLIRTITI
•	BILEVOM BILEVOM BILEVOM BILEVOM QLVEVOM	200 TIDDDDP ILLIGRAYGRVSRHI TIDDDDR PILLIGRAYGRVSRHI TIDNDA PILLIGRAYGRVSRHI TIDNDA PILLIGRAYGRVSRHI TIDDDE PILLIGRAYGRVSRHE TIDDDE PILLIGRAYGRVSRHF		A 420 A 5 VI A B A 6 VI A B A 6 V	**************************************
80	SSO FI	###### ######	300 PSLAVFADYRDYVRHDAQSL PDQAVFADYRDYTVRKVRSL PNLAVFADYRDYMQQKLQCS PNLAVFADYRDYMQCKLQCS PNLAVFADYRDYMQKLQCS PSLAVFADYRFFKKKPESL PSLAVFADYRFKKRDAGSL PSLAVFADYRFKKRSQSL	* 400 *LAFGAAASWYHPATGYSVVRSLSEAPKCA %LAFGAAASWYHPATGYSVVRSLSEAPKYA %LAFGAAASWYHPATGYSVVRSLSEAPKYA %LAFGAAASWYHPATGYSVVRSLSEAPKYA %LAFGAAASWYHPATGYSVVRSLSEAPKYA 10AFGAAASWYHPATGYSVVRSLSEAPKCA	520 IIIABNDMBRGGI VISBNNIBRGGI VLABNSMBRSI VIABHSLENEDI VIABHSLENEDI IIABNDMRRGI
•	PPOVKRYSTRNIRFGL-CSV-RASGGGSGGRSCVAVREDFAD INLSSSKLAYNIHRYGSSCRVDPQVRADGGSGSRSSVAYKEGFAD INLSSSKLAYNIHRYGSSCRVDPQVRADGGSGSRTSVAYKEGFVD IHRFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVAD IMSGGELCQEKSIFLAY-EQYKSKCNSSSGSDSCVVDKEDFAD	0 2 2 4 4 0 2 5	EVEVDNAPFO EVEVENAPYD EVEVENAPYD EVEVENAPYD EVEVENAPYD EVEVENAPFO EVEVENAPFO	400 ASKWIPATG ASKWIPATG ASKWIPATG ASKWIPATG ASKWIPATG ASKWIPATG	BULSALYNE EVLSSEYNE EVLSSEYNE EVLSSEYNE EVLSSEYNE EVLSSEYNE EVLSS
60	GGGSSGGSS ADGGSGSRT ADGGSGSRT CSAKSDR CNSSSGSDS	- DEFADICION NEDEFADICION NEDEFADICIER NEDEFADICIER NEDEFADICION NEDEFADICION	280 CVQTAXGV CVQTAXGV CVQTAXGV CVQTAXGI SVQTAXGI		500 Gerigsslskadd Gerigsslskadd Wefigsslssed Wefigsslssed Wefigsslssed Wefigsslssed Wefigsslssed Wefigsslo
•	L-CSVRAS SSCRVDFQVH SSCRVDFQVH R-SSSLRQIK Y-BQYBSK	160	9 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* ** ** ** ** ** ** ** ** **	V PENNAN L PENNAN L PENNAN L PENNAN L PENNAN
40	PEPVYKRYSTRNIRFGL-CSVRASGGGSSGSESCVAVREDF INLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRSSVAYKEGF INLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKEGF HKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGI MSGGGLCQEKSIFLAY-EQYRSKCNSSSGSDSCVVDKEDF		260 TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI	1.GVRIKEIYEEEMSYIPVGGSLPNTEQKU 1.GIRLIKAYEEEMSYIPVGGSLPNTEQKU 1.GIQVAKAYEEEMSYIPVGGSLPNTEQKU 1.GIQVAKIYEEEMSYIPVGGSLPNTEQKU MGIRITRATYEEEMSYIPVGGSLPNTEQKU 1.GVRIKEIYEEEMSYIPVGGSLPNTEQKU	ALEST CONTROL OF CONTR
•		140 AGANESAKKGU SIRABAKKGU SIRABAKKGU AGANESAKKGU AGANESAKKGU AGANESAKKGU		360 RLMTLGVRIKEI RLDTLGIRILKT RLKTLGIQVTKY RLKTLGIQVTKI RLKANGIRITRT RLMTLGVRIKEI	ALITOPHOSE SELECTION OF SELECTI
20	AVSTEPSWS ISSOPWT ISSOPWT NVFTCPRFTD AVTTSPRIM	120 DGALDHYVIGGGPAGIA ESVYDLYVIGGGPAGIS NCILDHYVIGGGPAGIS OTVIDHYVIGGGPAGIA	240 IVENTROUS PROCEDUVI ITERATE SUVOENE IN ITERATE SUVOENDINI ITERATE SUVOENDINI ITERATE SUVOENDINI ITERATE SUVOENDINI ITERATE SUVOENDINI IVENTROSSI SUVOE	DULK KENE DULK K	460 RORSFELFGL RORAFFLFGL RORAFFLFGL RORAFFLFGL RORAFFLFGL RORAFFLFGL
•	WECUGARNF - AAMAUSTFIJSWS - CRRK WELLGURNL ISSCIVIT - FOTR WECFGARNHTATHAVFTCIRFTDCNIR WECVGYQNV - GAMAULTRIRLN R SHRAG - HHTATMAAFTCIRFW	120 IGBGALDHYVIGGGPAGLARANE FG	TANGERYDRIV BATACHSIN TESKYDRIV BATACHSIN TESKYDRIV BADDOCHSIN TESKYBRIT BADDOCHSIN TESKYBRIT BAPACHS BAPACHS BAPACHS BAPACHS BAPACHS BAPACHS BAPACHS BAPACHS BAPACHS BAPACHS BAPACHS BAPA	340 FEETCLASKDAMPED FEETCLASKDAMPED FEETCLASKDAMPED FEETCLASKDAMPED FEETCLASKDAMPED FEETCLASKDAMPED FEETCLASKBAMPED	460 STOAWNTUMPOERKRORSFELFGLALIUV SKOAWSTUMPERKRORAFFLFGLELIUV SKOAWSTUMPERKRORAFFLFGLELIUV SKOAWSTUMPERKRORAFFLFGLELIUV SROAWNTUMPOERKRORSFFLFGLALIUV STOAWNTUMPOERKRORSFFLFGLALIUV STOAWNTUMPOERKRORSFFLFGLALIUV
	Arabidopsiss : Adoniss1 : Adoniss2 : Lettucess : Tomatos : Marigolds :	Potatos Arabidopsiss: Adoniss: Adoniss: Lettucess: Tomatos: Marigolds:	Potatos Arabidopsiss : Adonissi : Adonissi : Lettucess : Tomatos :	Potatos : Arabidopsiss : Adonissi : Lettucess : Tomstos : Marigolds :	Potatos : Arabidopsiss : Adonissi : Adonissi : Lettucess : Tomatos : Marigolds :

FIGURE 28

GAP of: Arabidopsis epsilon cyclase to Lettuce epsilon cyclase

Gap Weight: 12 Average Match: 2.912
Length Weight: 4 Average Mismatch: -2.003

Quality: 1837 Ratio: 3.499 Length: 534

Percent Similarity: 76.381 Percent Identity: 69.905 Gaps:

Match display thresholds for the alignment(s):

= IDENTITY

: = 2

1

Arabidopsis x Lettuce

1 MECVGARNF.AAMAVSTFPSWSCRRKFPVVKRYSYRNIRFGLCSVRA 46
1 MECFGARNMTATMAVFTCPRFTDCNIRHKFSLLKQRRFTNLSASSSLRQI 50
47 SGGGSSGSESCVAVREDFADEEDFVKAGGSEILFVQMQQNKDMDEQSKLV 96
51 KCSAKSDRCVVDKQGISVADEEDYVKAGGSELFFVQMQRTKSMESQSKLS 100
97 DKLPPISIGDGALDHVVIGCGPAGLALAAESAKLGLKVGLIGPDLPFTNN 146
: .
147 YGVWEDEFNDLGLQKCIEHVWRETIVYLDDDKPITIGRAYGRVSRRLLHE 196
: : :: :
197 ELLRRCVESGVSYLSSKVDSITEASDGLPLVAGDDVRVIV
247 ASGKLLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKV 296
: .
297 RSLEAEYPTFLYAMPMTKSRLFFEETCLASKDVMPFDLLKTKLMLRLDTL 346 . :: . :: :: :: ::: :
350
347 GIRILKTYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSL 396 :
400
397 SEAPKYASVIAEILREETTKQINSNISRQAWDTLWPPERKRQRAF 441
442 FLFGLALIVQFDTEGIRSFFRTFFRLPKWMWQGFLGSTLTSGDLVLFALY 491
492 MFVISPNNLRKGLINHLISDPTGATMIKTYLKV* 525
. . : : : : 501 MFVIAPHSLRMELVRHLLSDPTGATMVKAYLTI* 534

SEQUENCE LISTING

<110>	CUNNII			, FF	ANCI	s x.									
<120>	GENES METHOI						THES	sis <i>p</i>	4 dna	/ETAF	BOLIS	IA M	ND		
<130>	8172-9	9023												•	
<140> <141>				ED .				٠						•	
<150> <151>									,						
<150> <151>															
<160>	61														
<170>	Patent	:In V	er.	2.0										•	
<210><211><211><212><213>	1860 DNA	dopsi	ls th	nalia	ına										
<220> <221> <222>		(16	580)										•		
<400> ACAAAA		raat <i>e</i>	TAG	AT TO	CTCI	rttci	r GCT	rtgct	ATA	CCTI	· 『GATA	AGA A	ACAAT	TATAAC	60
Aatggi	'GTAA (STCTI	CTC	SC TO	TAT	rcga <i>i</i>	A ATI	ratt1	rgga	GGAG	GAA.	Met		TGT Cys	117
GTT GG Val Gl	G GCT y Ala 5	AGG Arg	AAT Asn	TTC Phe	GCA Ala 10	GCA Ala	ATG Met	GCG Ala	GTT Val	TCA Ser 15	ACA Thr	TTT Phe	CCG Pro	TCA Ser	165
rgg Ag Frp Se 20	T TGT r Cys	CGA Arg	AGG Arg	AAA Lys 25	TTT Phe	CCA Pro	GTG Val	GTT Val	AAG Lys 30	AGA Arg	TAC Tyr	AGC Ser	TAT Tyr	AGG Arg 35	213
AAT AI Asn Il	T CGT e Arg	TTC	GGT Gly 40	TTG Leu	TGT Cys	AGT Ser	GTC Val	AGA Arg 45	GCT Ala	AGC Ser	GGC Gly	GGC Gly	GGA Gly 50	AGT Ser	261
TCC GG Ser Gl	T AGT y Ser	GAG Glu 55	AGT Ser	TGT Cys	GTA Val	GCG Ala	GTG Val 60	AGA Arg	GAA Glu	GAT Asp	TTC Phe	GCT Ala 65	GAC Asp	GAA Glu	309
GAA GA Glu As	T TTT p Phe 70	GTG Val	AAA Lys	GCT Ala	GGT Gly	GGT Gly 75	TCT Ser	GAG Glu	ATT Ile	CTA Leu	TTT Phe 80	GTT Val	CAA Gln	ATG Met	357
											00				

	W	99/6	3055													PCT/US99/12121
Gln	Gln 85	Asn	Lys	Asp	Met	Asp 90	Glu	Gln	Ser	Lys	Leu 95	Val	Asp	Lys	Leu	- * -
CCT Pro 100	Pro	ATA Ile	TCA Ser	ATT Ile	GGT Gly 105	GAT Asp	GGT Gly	GCT Ala	TTG Leu	GAT Asp 110	CAT His	GTG Val	GTT Val	ATT Ile	GGT Gly 115	453 .
TGT Cys	GGT Gly	CCT Pro	GCT Ala	GGT Gly 120	TTA Leu	GCC Ala	TTG Leu	GCT Ala	GCA Ala 125	GAA Glu	TCA Ser	GCT Ala	AAG Lys	CTT Leu 130	GGA Gly	501
TTA Leu	AAA Lys	GTT Val	GGA Gly 135	CTC Leu	ATT Ile	GGT Gly	CCA Pro	GAT Asp 140	CTT Leu	CCT Pro	TTT Phe	ACT Thr	AAC Asn 145	AAT Asn	TAC Tyr	549
GGT Gly	GTT Val	TGG Trp 150	GAA Glu	GAT Asp	GAA Glu	TTC Phe	AAT Asn 155	GAT Asp	CTT Leu	GGG Gly	CTG Leu	CAA Gln 160	AAA Lys	TGT Cys	ATT Ile	597
GAG Glu	CAT His 165	GTT Val	TGG Trp	AGA Arg	GAG Glu	ACT Thr 170	ATT Ile	GTG Val	TAT Tyr	CTG Leu	GAT Asp 175	GAT Asp	GAC Asp	AAG Lys	CCT Pro	645
ATT Ile 180	ACC Thr	ATT Ile	GGC Gly	CGT Arg	GCT Ala 185	TAT Tyr	GGA Gly	AGA Arg	GTT Val	AGT Ser 190	CGA Arg	CGT Arg	TTG Leu	CTC Leu	CAT His 195	693
GAG Glu	GAG Glu	CTT Leu	TTG Leu	AGG Arg 200	AGG Arg	TGT Cys	GTC Val	GAG Glu	TCA Ser 205	GGT Gly	GTC Val	TCG Ser	TAC Tyr	CTT Leu 210	AGC Ser	741
TCG Ser	AAA Lys	GTT Val	GAC Asp 215	AGC Ser	ATA Ile	ACA Thr	GAA Glu	GCT Ala 220	TCT Ser	GAT Asp	GGC Gly	CTT Leu	AGA Arg 225	CTT Leu	GTT Val	789
GCT Ala	TGT Cys	GAC Asp 230	GAC Asp	AAT Asn	AAC Asn	GTC Val	ATT Ile 235	CCC Pro	TGC Cys	AGG Arg	CTT Leu	GCC Ala 240	ACT Thr	GTT Val	GCT Ala	837
TCT Ser	GGA Gly 245	GCA Ala	GCT Ala	TCG Ser	GGA Gly	AAG Lys 250	CTC Leu	TTG Leu	CAA Gln	TAC Tyr	GAA Glu 255	GTT Val	GGT Gly	GGA Gly	CCT Pro	885
AGA Arg 260	GTC Val	TGT Cys	GTG Val	CAA Gln	ACT Thr 265	GCA Ala	TAC Tyr	GGC Gly	GTG Val	GAG Glu 270	GTT Val	GAG Glu	GTG Val	GAA Glu	AAT Asn 275	933
AGT Ser	CCA Pro	TAT Tyr	GAT Asp	CCA Pro 280	GAT Asp	CAA Gln	ATG Met	GTT Val	TTC Phe 285	ATG Met	GAT Asp	TAC Tyr	AGA Arg	GAT Asp 290	TAT Tyr	981
ACT Thr	AAC Asn	GAG Glu	AAA Lys 295	GTT Val	CGG Arg	AGC Ser	TTA Leu	GAA Glu 300	GCT Ala	GAG Glu	TAT Tyr	CCA Pro	ACG Thr 305	TTT Phe	CTG Leu	1029
TAC Tyr	GCC Ala	ATG Met 310	CCT Pro	ATG Met	ACA Thr	AAG Lys	TCA Ser 315	AGA Arg	CTC Leu	TTC Phe	TTC Phe	GAG Glu 320	GAG Glu	ACA Thr	TGT Cys	1077

1125

TTG GCC TCA AAA GAT GTC ATG CCC TTT GAT TTG CTA AAA ACG AAG CTC Leu Ala Ser Lys Asp Val Met Pro Phe Asp Leu Leu Lys Thr Lys Leu

PCT/US99/12121

÷ ...

-			

WO 99/63055

	325					330					335					
					ACA Thr 345											1173
					ATC Ile											1221
					TTT Phe											1269
					GTG Val											1317
					ATA Ile											1365
					CAA Gln 425										-	1413
					TTC Phe											1461
				Gly	ATT Ile											1509
			Met		CAA Gln								Thr		GGA Gly	1557
		Val			GCT Ala		Tyr					Ser			AAT Asn	1605
	Arg					Asn					Asp				GCA Ala 515	1653
					TAT Tyr					TTTA	CTT	ATCA	ACTC	TT		1700
AGG	TTTG	TGT	ATAT	TATAT	GT T	'GAT'I	TATC	T GA	ATAA	TCGA	TCA	AAGA	ATG	GTAT	GTGGGT	1760
TAC	TAGG	AAG	TTGG	SAAAC	AA A	CATO	TATA	G AA	TCTA	AGGA	GTO	SATCO	AAA	TGGA	GATGGA	1820
AAC	GAAA	AGA	AAAA	AATC	CAG I	CTTI	GTTI	T GI	GGTI	'AGTG	i					1860

<210> 2

<211> 524 <212> PRT

<213> Arabidopsis thaliana

PCT/US99/12121

480

	WU	99/03	0033	,												rC1/0	377/1	411
Glu	Thr	Cys	Leu	Ala 325	Ser	Lys	Asp	Val	Met 330	Pro	Phe	Asp	Leu	Leu 335	Lys			-
Thr	Lys	Leu	Met 340	Leu	Arg	Leu	Asp	Thr 345	Leu	Gly	Ile	Arg	Ile 350	Leu	Lys			
Thr	Tyr	Glu 355	Glu	Glu	Trp	Ser	Tyr 360	Ile	Pro	Val	Gly	Gly 365	Ser	Leu	Pro			
Asn	Thr 370	Glu	Gln	Lys	Asn	Leu 375	Ala	Phe	Gly	Ala	Ala 380	Ala	Ser	Met	Val			
His 385	Pro	Ala	Thr	Gly	Tyr 390	Ser	Val	Val	Arg	Ser 395	Leu	Ser	Glu	Ala	Pro 400			
Lys	Tyr	Ala	Ser	Val 405	Ile	Ala	Glu	Ile	Leu 410	Arg	Glu	Glu	Thr	Thr 415	Lys			
Gln	Ile	Asn	Ser 420	Asn	Ile	Ser	Arg	Gln 425	Ala	Trp	Asp	Thr	Leu 430	Trp	Pro			
Pro	Glu	Arg 435	Lys	Arg	Gln	Arg	Ala 440	Phe	Phe	Leu	Phe	Gly 445	Leu	Ala	Leu			
Ile	Val 450	Gln	Phe	Asp	Thr	Glu 455	Gly	Ile	Arg	Ser	Phe 460	Phe	Arg	Thr	Phe			
Phe 465	Arg	Leu	Pro	Lys	Trp 470	Met	Trp	Gln	Gly	Phe 475	Leu	Gly	Ser	Thr	Leu 480			
Thr	Ser	Gly	Asp	Leu 485	Val	Leu	Phe	Ala	Leu 490	Tyr	Met	Phe	Val	Ile 495				
Pro	Asn	Asn	Leu 500	Arg	Lys	Gly	Leu	11e 505	Asn	His	Leu	Ile	Ser 510	Asp	Pro			
Thr	Gly	Ala 515	Thr	Met	Ile	Lys	Thr 520	Tyr	Leu	Lys	Val							
<213	0> 3 1> 9: 2> Di 3> A:		dops	is t	hali	ana												
_	0> 3 C TTT (CTC (CTCC	TCCT	CT A	CCGA	TTTC	C GA	CTCC	GCCT	CCC	GAAA	TCC	TTAT	CCGG	ΑT	6	0
TCT	CTCC	GTC	TCTT	CGAT	TT A	AACG	CTTT	т ст	GTCT	GTTA	CGT	CGTC	GAA	GAAC	GGAG	AC	12	0
AGA	ATTC'	TCC	GATT	GAGA	AC G	ATGA	GAGA	c cg	GAGA	GCAC	GAG	СТСС	ACA	AACG	CTAT	AG	18	0
ACG	CTGA	GTA	TCTG	GCGT	TG C	GTTT	GGCG	G AG	TAAA	TGGA	GAG	GAAG	AAA	TCGG	AGAG	GT .	24	0
CCA	CTTA	TCT	AATC	GCTG	CT A	TGTT	GTCG	A GC	TTTG	GTAT	CAC	TTCT	ATG	GCTG	TTAT	GG	30	0
CTG	TTTA	CTA	CAGA	TTCT	CT T	GGCA	AATG	G AG	GGAG	GTGA	GAT	CTCA	ATG	TTGG.	TAAA	GT	36	0
TTG	GTAC	ATT	TGCT	CTCT	CT G	TTGG	TGCT	G CT	GTTG	GTAT	GGA	ATTC	TGG	GCAA	GATG	GG	42	0

CTCATAGAGC TCTGTGGCAC GCTTCTCTAT GGAATATGCA TGAGTCACAT CACAAACCAA

WO 99/63055

PCT/US99/12121

GAGAAGGACC GTTTGAGC	TA AACGATGTT	T TTGCTATAGT	GAACGCTGGT CCAGCGATTG							
GTCTCCTCTC TTATGGAT	тс ттсаатааа	G GACTCGTTCC	TGGTCTCTGC TTTGGCGCCG							
GGTTAGGCAT AACGGTGT	TT GGAATCGCC	T ACATGTTTGT	CCACGATGGT CTCGTGCACA							
AGCGTTTCCC TGTAGGTC	CC ATCGCCGAC	G TCCCTTACCT	CCGAAAGGTC GCCGCCGCTC							
ACCAGCTACA TCACACAG	AC AAGTTCAAT	G GTGTACCATA	TGGACTGTTT CTTGGACCCA							
AGGAATTGGA AGAAGTTG	GA GGAAATGAA	G AGTTAGATAA	GGAGATTAGT CGGAGAATCA							
AATCATACAA AAAGGCCT	CG GGCTCCGGG	T CGAGTTCGAG	TTCTTGACTT TAAACAAGTT							
TTAAATCCCA AATTCTTT	TT TTGTCTTCT	G TCATTATGAT	CATCTTAAGA CGGTCT							
TTAAATCCCA AATTCTTTT TTGTCTTCTG TCATTATGAT CATCTTAAGA CGGTCT <210> 4 <211> 294 <212> PRT <213> Arabidopsis thaliana										
<400> 4 Ser Phe Ser Ser Ser	Ser Thr Asn	Phe Arg Iou	Arg Leu Pro Lys Ser							
1 5	ber im Asp	10	15							
Leu Ser Gly Phe Ser 20	Pro Ser Leu	Arg Phe Lys 25	Arg Phe Ser Val Cys 30							
Tyr Val Val Glu Glu 35	Arg Arg Gln 40	Asn Ser Pro	Ile Glu Asn Asp Glu 45							
Arg Pro Glu Ser Thr 50	Ser Ser Thr 55	Asn Ala Ile	Asp Ala Glu Tyr Leu 60							
Ala Leu Arg Leu Ala 65	Glu Lys Leu 70	Glu Arg Lys 75	Lys Ser Glu Arg Ser 80							
Thr Tyr Leu Ile Ala 85	Ala Met Leu	Ser Ser Phe 90	Gly Ile Thr Ser Met 95							
Ala Val Met Ala Val 100	Tyr Tyr Arg	Phe Ser Trp 105	Gln Met Glu Gly Gly 110							
Glu Ile Ser Met Leu 115	Glu Met Phe 120	Gly Thr Phe	Ala Leu Ser Val Gly 125							
Ala Ala Val Gly Met 130	Glu Phe Trp 135	Ala Arg Trp	Ala His Arg Ala Leu 140							
Trp His Ala Ser Leu 145	Trp Met Asn 150	His Glu Ser 155	His His Lys Pro Arg 160							
Glu Gly Pro Phe Glu 165	Leu Asn Asp	Val Phe Ala 170	Ile Val Asn Ala Gly 175							
Pro Ala Ile Gly Leu 180	Leu Ser Tyr	Gly Phe Phe 185	Asn Lys Gly Leu Val 190							
Pro Gly Leu Cys Phe 195	Gly Ala Gly 200	Leu Gly Ile	Thr Val Phe Gly Ile 205							

WO 99/63055

Ala Tyr Met Phe Val His Asp Gly Leu Val His Lys Arg Phe Pro Val 210 215 220

Gly Pro Ile Ala Asp Val Pro Tyr Leu Arg Lys Val Ala Ala Ala His 225 230 235 240

Gln Leu His His Thr Asp Lys Phe Asn Gly Val Pro Tyr Gly Leu Phe 245 250 255

Leu Gly Pro Lys Glu Leu Glu Glu Val Gly Gly Asn Glu Glu Leu Asp 260 265 270

Lys Glu Ile Ser Arg Ile Lys Ser Tyr Lys Lys Ala Ser Gly Ser 275 280 285

Gly Ser Ser Ser Ser Ser 290

<210> 5

<211> 162

<212> PRT

<213> Alicalgenes sp.

<400> 5

Met Thr Gln Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15

Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30

Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45

Asn Asp Leu Tyr Gly Val Val Phe Ala Val Leu Ala Thr Ile Leu Phe 50 55 60

Thr Val Gly Ala Tyr Trp Trp Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80

Met Thr Val Tyr Gly Leu Ile Tyr Phe Ile Leu His Asp Gly Leu Val 85 90 95

His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Arg Gly Tyr Phe Arg 100 105 110

Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125

His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140

Lys Gln Asp Leu Lys Arg Ser Gly Val Leu Arg Pro Gln Asp Glu Arg 145 150 155 160

Pro Ser

<210> 6

<211> 175

<212> PRT

<213> Erwinia herbicola

<400> 6 Met Leu Asn Ser Leu Ile Val Ile Leu Ser Val Ile Ala Met Glu Gly Ile Ala Ala Phe Thr His Arg Tyr Ile Met His Gly Trp Gly Trp Arg Trp His Glu Ser His His Thr Pro Arg Lys Gly Val Phe Glu Leu Asn Asp Leu Phe Ala Val Val Phe Ala Gly Val Ala Ile Ala Leu Ile Ala Val Gly Thr Ala Gly Val Trp Pro Leu Gln Trp Ile Gly Cys Gly Met Thr Val Tyr Gly Leu Leu Tyr Phe Leu Val His Asp Gly Leu Val His Gln Arg Trp Pro Phe His Trp Ile Pro Arg Arg Gly Tyr Leu Lys Arg 105 Leu Tyr Val Ala His Arg Leu His His Ala Val Arg Gly Arg Glu Gly 120 Cys Val Ser Phe Gly Phe Ile Tyr Ala Arg Lys Pro Ala Asp Leu Gln 135 Ala Ile Leu Arg Glu Arg His Gly Arg Pro Pro Lys Arg Asp Ala Ala 155 Lys Asp Arg Pro Asp Ala Ala Ser Pro Ser Ser Ser Pro Glu <210> 7 <211> 175 <212> PRT <213> Erwinia uredovora <400> 7 Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 25 Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu

Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr

100

PCT/US99/12121

WO 99/63055

Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly
115 120 125

Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 135 140

Lys Leu Gln Ala Thr Leu Arg Glu Arg His Gly Ala Arg Ala Gly Ala 145 150 155 160

Ala Arg Asp Ala Gln Gly Gly Glu Asp Glu Pro Ala Ser Gly Lys 165 170 175

<210> 8

<211> 162

<212> PRT

<213> Agrobacterium aurianticum

<400> 8

Met Thr Asn Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15

Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp
20 25 30

Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45

Asn Asp Leu Tyr Gly Leu Val Phe Ala Val Ile Ala Thr Val Leu Phe 50 55 60

Thr Val Gly Trp Ile Trp Ala Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80

Met Thr Val Tyr Gly Leu Ile Tyr Phe Val Leu His Asp Gly Leu Val 85 90 95

His Trp Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr Ala Arg
100 105 110

Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125

His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140

Lys Gln Asp Leu Lys Met Ser Gly Val Leu Arg Ala Glu Ala Gln Glu 145 150 155 160

Arg Thr

<210> 9

<211> 954

<212> DNA

<213> Arabidopsis thaliana

<400> 9

CCACGGGTCC GCCTCCCCGT TTTTTTCCGA TCCGATCTCC GGTGCCGAGG ACTCAGCTGT

TTGTTCGCGC TTTCTCAGCC GTCACCATGA CCGATTCTAA CGATGCTGGA ATGGATGCTG

WO 99/63055	PCT/US99/12121

•						
TTCAGAGACG A	ACTCATGTTT	GAAGACGAAT	GCATTCTCGT	TGATGAAAAT	AATCGTGTGG	180
TGGGACATGA C	CACTAAGTAT	AACTGTCATC	TGATGGAAAA	GATTGAAGCT	GAGAATTTAC	240
TTCACAGAGC T	TTTCAGTGTG	TTTTTATTCA	ACTCCAAGTA	TGAGTTGCTT	CTCCAGCAAC	300
GGTCAAAAAC A	AAAGGTTACT	TTCCCACTTG	TGTGGACAAA	CACTTGTTGC	AGCCATCCTC	360
TTTACCGTGA A	ATCCGAGCTT	ATTGAAGAGA	ATGTGCTTGG	TGTAAGAAAT	GCCGCACAAA	420
GGAAGCTTTT (CGATGAGCTC	GGTATTGTAG	CAGAAGATGT	ACCAGTCGAT	GAGTTCACTC	480
CCTTGGGACG C	CATGCTTTAC	AAGGCACCTT	CTGATGGGAA	ATGGGGAGAG	CACGAAGTTG	540
ACTATCTACT C	CTTCATCGTG	CGGGATGTGA	AGCTTCAACC	AAACCCAGAT	GAAGTGGCTG	600
AGATCAAGTA C	CGTGAGCAGG	GAAGAGCTTA	AGGAGCTGGT	GAAGAAAGCA	GATGCTGGCG	660
ATGAAGCTGT C	GAAACTATCT	CCATGGTTCA	GATTGGTGGT	GGATAATTTC	TTGATGAAGT	720
GGTGGGATCA T	TGTTGAGAAA	GGAACTATCA	CTGAAGCTGC	AGACATGAAA	ACCATTCACA	780
AGCTCTGAAC T	TTTCCATAAG	TTTTGGATCT	TCCCCTTCCC	ТААТААТА	TAAGAGATGA	840
GACTTTTATT O	GATTACAGAC	AAAACTGGCA	ACAAAATCTA	TTCCTAGGAT	TTTTTTTGC	900
TTTTTATTTA C	CTTTTGATTC	ATCTCTAGTT	TAGTTTTCAT	СТТАААААА	AAAA	954
<210> 10 <211> 996 <212> DNA <213> Arabic	dopsis thal	iana				
<400> 10 CACCAATGTC T	TGTTTCTTCT	ТТАТТТААТС	TCCCATTGAT	TCGCCTCAGA	TCTCTCGCTC	60
TTTCGTCTTC T	TTTTTCTTCT	TTCCGATTTG	CCCATCGTCC	TCTGTCATCG	ATTTCACCGA	120
GAAAGTTACC G	SAATTTTCGT	GCTTTCTCTG	GTACCGCTAT	GACAGATACT	AAAGATGCTG	180
GTATGGATGC T	TGTTCAGAGA	CGTCTCATGT	TTGAGGATGA	ATGCATTCTT	GTTGATGAAA	240
CTGATCGTGT T	TGTGGGGCAT	GTCAGCAAGT	ATAATTGTCA	TCTGATGGAA	AATATTGAAG	300
CCAAGAATTT G	GCTGCACAGG	GCTTTTAGTG	TATTTTTATT	CAACTCGAAG	TATGAGTTGC	360
TTCTCCAGCA F	AAGGTCAAAC	ACAAAGGTTA	CGTTCCCTCT	AGTGTGGACT	AACACTTGTT	420
GCAGCCATCC T	CTTTACCGT	GAATCAGAGC	TTATCCAGGA	CAATGCACTA	GGTGTGAGGA	480
ATGCTGCACA A	AAGAAAGCTT	CTCGATGAGC	TTGGTATTGT	AGCTGAAGAT	GTACCAGTCG	540

ATGAGTTCAC TCCCTTGGGA CGTATGCTGT ACAAGGCTCC TTCTGATGGC AAATGGGGAG

AGCATGAACT TGATTACTTG CTCTTCATCG TGCGAGACGT GAAGGTTCAA CCAAACCCAG

ATGAAGTAGC TGAGATCAAG TATGTGAGCC GGGAAGAGCT GAAGGAGCTG GTGAAGAAAG

CAGATGCAGG TGAGGAAGGT TTGAAACTGT CACCATGGTT CAGATTGGTG GTGGACAATT

600

660

720

WO 99/63055

PCT/US99/12121

TCTTGATGAA	GTGGTGGGAT	CATGTTGAGA	AAGGAACTTT	GGTTGAAGCT	ATAGACATGA	840
AAACCATCCA	CAAACTCTGA	ACATCTTTTT	TTAAAGTTTT	TAAATCAATC	AACTTTCTCT	900
TCATCATTTT	TATCTTTTCG	ATGATAATAA	TTTGGGATAT	GTGAGACACT	TACAAAACTT	960
CCAAGCACCT	CAGGCAATAA	TAAAGTTTGC	GGCCGC	•		996

<210> 11	
----------	--

<213> Haematococcus pluvialis

<	Δ	n	n	>	1	1
•	7	v	v	_		_

<400> 11 CTCGGTAGCT GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC GTTGCTCAGA	GGCCTCACGC	ATATCCCCCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC ACACGCGCGA	CTCCAGTTTA	AGCTCAGGAG	CATGCAGATG	ACGCTCATGC	180
AGCCCAGCAT CTCAGCCAAT	CTGTCGCGCG	CCGAGGACCG	CACAGACCAC	ATGAGGGGTG	240
CAAGCACCTG GGCAGGCGGG	CAGTCGCAGG	ATGAGCTGAT	GCTGAAGGAC	GAGTGCATCT	300
TGGTGGATGT TGAGGACAAC	ATCACAGGCC	ATGCCAGCAA	GCTGGAGTGT	CACAAGTTCC	360
TACCACATCA GCCTGCAGGC	CTGCTGCACC	GGGCCTTCTC	TGTGTTCCTG	TTTGACGATC	420
AGGGGCGACT GCTGCTGCAA	CAGCGTGCAC	GCTCAAAAAT	CACCTTCCCA	AGTGTGTGGA	480
CGAACACCTG CTGCAGCCAC	CCTTTACATG	GGCAGACCCC	AGATGAGGTG	GACCAACTAA	540
GCCAGGTGGC CGACGGAACA	GTACCTGGCG	CAAAGGCTGC	TGCCATCCGC	AAGTTGGAGC	600
ACGAGCTGGG GATACCAGCG	CACCAGCTGC	CGGCAAGCGC	GTTTCGCTTC	CTCACGCGTT	660
TGCACTACTG TGCCGCGGAC	GTGCAGCCAG	CTGCGACACA	ATCAGCGCTC	TGGGGCGAGC	720
ACGAAATGGA CTACATCTTG	TTCATCCGGG	CCAACGTCAC	CTTGGCGCCC	AACCCTGACG	780
AGGTGGACGA AGTCAGGTAC	GTGACGCAAG	AGGAGCTGCG	GCAGATGATG	CAGCCGGACA	840
ACGGGCTGCA ATGGTCGCCG	TGGTTTCGCA	TCATCGCCGC	GCGCTTCCTT	GAGCGTTGGT	900
GGGCTGACCT GGACGCGGCC	CTAAACACTG	ACAAACACGA	GGATTGGGGA	ACGGTGCATC	960
ACATCAACGA AGCGTGAAAG	CAGAAGCTGC	AGGATGTGAA	GACACGTCAT	GGGGTGGAAT	1020
TGCGTACTTG GCAGCTTCGT	ATCTCCTTTT	TCTGAGACTG	AACCTGCAGT	CAGGTCCCAC	1080
AAGGTCAGGT AAAATGGCTC	GATAAAATGT	ACCGTCACTT	TTTGTCGCGT	ATACTGAACT	1140
CCAAGAGGTC AAAAAAAAA	AAAA				1165

<211> 1165 <212> DNA

<210> 12 <211> 1135 <212> DNA <213> Haematococcus pluvialis

-		×
1110	00163055	•
wu	99/63055	

<400> 12				Jan 12	
CTCGGTAGCT GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC GTTGCTCAGA	GGCCTCACGC	ATATCCCGCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC ACACGCGCGA	CTCCAGTTTA	AGCTCAGGAG	CATGCAGCTG	CTTTCCGAGG	180
ACCGCACAGA CCACATGAGG	GGTGCAAGCA	CCTGGGCAGG	CGGGCAGTCG	CAGGATGAGC	240
TGATGCTGAA GGACGAGTGC	ATCTTGGTAG	ATGTTGAGGA	CAACATCACA	GGCCATGCCA	300
GCAAGCTGGA GTGTCACAAG	TTCCTACCAC	ATCAGCCTGC	AGGCCTGCTG	CACCGGGCCT	360
TCTCTGTGTT CCTGTTTGAC	GATCAGGGGC	GACTGCTGCT	GCAACAGCGT	GCACGCTCAA	420
AAATCACCTT CCCAAGTGTG	TGGACGAACA	CCTGCTGCAG	CCACCCTTTA	CATGGGCAGA	480
CCCCAGATGA GGTGGACCAA	CTAAGCCAGG	TGGCCGACGG	AACAGTACCT	GGCGCAAAGG	540
CTGCTGCCAT CCGCAAGTTG	GAGCACGAGC	TGGGGATACC	AGCGCACCAG	CTGCCGGCAA	600
GCGCGTTTCG CTTCCTCACG	CGTTTGCACT	ACTGTGCCGC	GGACGTGCAG	CCAGCTGCGA	660
CACAATCAGC GCTCTGGGGC	GAGCACGAAA	TGGACTACAT	CTTGTTCATC	CGGGCCAACG	720
TCACCTTGGC GCCCAACCCT	GACGAGGTGG	ACGAAGTCAG	GTACGTGACG	CAAGAGGAGC	780
TGCGGCAGAT GATGCAGCCG	GACAACGGGC	TTCAATGGTC	GCCGTGGTTT	CGCATCATCG	840
CCGCGCGCTT CCTTGAGCGT	TGGTGGGCTG	ACCTGGACGC	GGCCCTAAAC	ACTGACAAAC	900
ACGAGGATTG GGGAACGGTG	CATCACATCA	ACGAAGCGTG	AAGGCAGAAG	CTGCAGGATG	960
TGAAGACACG TCATGGGGTG	GAATTGCGTA	CTTGGCAGCT	TCGTATCTCC	TTTTTCTGAG	1020
ACTGAACCTG CAGAGCTAGA	GTCAATGGTG	CATCATATTC	ATCGTCTCTC	TTTTGTTTTA	1080
GACTAATCTG TAGCTAGAGT	CACTGATGAA	TCCTTTACAA	CTTTCAAAAA	AAAAA '	1135
<210> 13 <211> 960 <212> DNA <213> Tagetes erecta <400> 13				·	
CCAAAAACAA CTCAAATCTC	CTCCGTCGCT	CTTACTCCGC	CATGGGTGAC	GACTCCGGCA	60
TGGATGCTGT TCAGCGACGT	CTCATGTTTG	ACGATGAATG	CATTTTGGTG	GATGAGTGTG	120
ACAATGTGGT GGGACATGAT	ACCAAATACA	ATTGTCACTT	GATGGAGAAG	ATTGAAACAG	180
GTAAAATGCT GCACAGAGCA	TTCAGCGTTT	TTCTATTCAA	ТТСААААТАС	GAGTTACTTC	240
TTCAGCAACG GTCTGCAACC	AAGGTGACAT	TTCCTTTAGT	ATGGACCAAC	ACCTGTTGCA	300
GCCATCCACT CTACAGAGAA	TCCGAGCTTG	TTCCCGAAAC	GCCTGAGAGA	ATGCTGCACA	360
GAGGANNNNN NNNNNNNNNN	иииииииии	иииииииии	иииииииии	NNNNNNNNN	420
инининини инининини	ииииииииии	ииииииииии	иииииииии	иииииииии	480

PCT/US99/12121

WO 99/63055

иииииииии	иииииииии	ииииииииии	иииииииии	иииииииии	иииииииии	540
ииииииииии	иииииииии	имимимими	ииийииииии	иииииииии	иииииииии	600
ииииииииии	иииииииии	ииииииииии	NNNNNNNNN	иииииииии	иииииииии	660
ииииииииии	ииииииииии	TCATGTGCAA	AAGGGTACAC	TCACTGAATG	CAATTTGATA	720
TGAAAACCAT	ACACAAGCTG	ATATAGAAAC	ACACCCTCAA	CCGAAAAGCA	AGCCTAATAA	780
TTCGGGTTGG	GTCGGGTCTA	CCATCAATTG	TTTTTTTTTT	TTAACAACTT	TTAATCTCTA	840
TTTGAGCATG	TTGATTCTTG	TCTTTTGTGT	GTAAGATTTT	GGGTTTCGTT	TCAGTTGTAA	900
TAATGAACCA	TTGATGGTTT	GCAATTTCAA	GTTCCTATCG	ACATGTAGTG	АТСТААААА	960

<210> 14

<211> 305

<212> PRT

<213> Haematococcus pluvialis

<400> 14

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu 35 40 45

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp 50 55 60

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile 65 70 75 80

Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala Ser Lys Leu Glu 85 90 95

Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu Leu His Arg Ala 100 105 110

Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu Leu Gln Gln 115 120 125

Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp Thr Asn Thr Cys 130 135 140

Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu Val Asp Gln Leu 145 150 155 160

Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys Ala Ala Ile 165 170 175

Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His Gln Leu Pro Ala 180 185 190

Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Val 195 200 205

- Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp 225 230 235 240
- Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met 245 250 255
- Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile 260 265 270
- Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu 275 280 285
- Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu 290 295 300

Ala 305

- <210> 15
- <211> 293
- <212> PRT
- <213> Haematococcus pluvialis
- <400> 15
- Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn
 1 5 10 15
- Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30
- Arg Ser Met Gln Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly
 35 40
- Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys 50 55 60
- Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75 80
- Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu 85 90 95
- Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110
- Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp 115 120 125
- Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140
- Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys
 145 150 155 160
- Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175
- Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys

180 185 1

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 215 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 230 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His
275 280 285

His Ile Asn Glu Ala 290

<210> 16

<211> 284

<212> PRT

<213> Arabidopsis thaliana

<400> 16

BNSDOCID: <WO 996305541 I

Met Ser Val Ser Ser Leu Phe Asn Leu Pro Leu Ile Arg Leu Arg Ser 1 5 10 15

Leu Ala Leu Ser Ser Ser Phe Ser Ser Phe Arg Phe Ala His Arg Pro 20 25 30

Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe Arg Ala Phe Ser 35 40 45

Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met Asp Ala Val Gln
50 55 60

Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Thr Asp 65 70 75 80

Arg Val Val Gly His Val Ser Lys Tyr Asn Cys His Leu Met Glu Asn 85 90 95

Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe 100 105 110

Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Asn Thr Lys Val 115 120 125

Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr 130 135 140

Arg Glu Ser Glu Leu Ile Gln Asp Asn Ala Leu Gly Val Arg Asn Ala 145 150 155 160

Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Val Ala Glu Asp Val 165 170 175

Pro Val Asp Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro 180 185 190

Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile 195 200 205

Val Arg Asp Val Lys Val Gln Pro Asn Pro Asp Glu Val Ala Glu Ile 210 215 220

Lys Tyr Val Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp 225 230 235 240

Ala Gly Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val 245 250 255

Asp Asn Phe Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Leu 260 265 270

Val Glu Ala Ile Asp Met Lys Thr Ile His Lys Leu 275 280

<210> 17

<211> 287

<212> PRT

<213> Clarkia breweri

<400> 17

Met Ser Ser Ser Met Leu Asn Phe Thr Ala Ser Arg Ile Val Ser Leu 1 5 10 15

Pro Leu Leu Ser Ser Pro Pro Ser Arg Val His Leu Pro Leu Cys Phe 20 25 30

Phe Ser Pro Ile Ser Leu Thr Gln Arg Phe Ser Ala Lys Leu Thr Phe 35 40 45

Ser Ser Gln Ala Thr Thr Met Gly Glu Val Val Asp Ala Gly Met Asp 50 55 60

Ala Val Gln Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp 65 70 75 80

Glu Asn Asp Lys Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu 85 90 95

Met Glu Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val 100 105 110

Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala 115 120 125

Thr Lys Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His 130 135 140

Pro Leu Tyr Arg Glu Ser Glu Leu Ile Asp Glu Asn Cys Leu Gly Val 145 150 155 160

Arg Asn Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala 165 170 175

Glu Asp Leu Pro Val Asp Gln Phe Ile Pro Leu Ser Arg Ile Leu Tyr

180 185 190

Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu 195 200 205

Leu Phe Ile Ile Arg Asp Val Asn Leu Asp Pro Asn Pro Asp Glu Val 210 215 220

Ala Glu Val Lys Tyr Met Asn Arg Asp Asp Leu Lys Glu Leu Leu Arg 225 230 235 240

Lys Ala Asp Ala Glu Glu Glu Gly Val Lys Leu Ser Pro Trp Phe Arg 245 250 255

Leu Val Val Asp Asn Phe Leu Phe Lys Trp Trp Asp His Val Glu Lys 260 265 270

Gly Ser Leu Lys Asp Ala Ala Asp Met Lys Thr Ile His Lys Leu 275 280 285

<210> 18

<211> 261

<212> PRT

<213> Arabidopsis thaliana

<400> 18

Thr Gly Pro Pro Pro Arg Phe Phe Pro Ile Arg Ser Pro Val Pro Arg
1 5 10 15

Thr Gln Leu Phe Val Arg Ala Phe Ser Ala Val Thr Met Thr Asp Ser 20 25 30

Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe Glu Asp 35 40 45

Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val Gly His Asp Thr
50 55 60

Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu Leu 65 70 75 80

His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu 85 90 95

Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro Leu Val Trp Thr
100 105 110

Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu Ile Glu 115 120 125

Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Phe Asp 130 135 140

Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp Glu Phe Thr Pro 145 150 155 160

Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu
165 170 175

His Glu Val Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Leu Gln 180 185 190 Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val Ser Arg Glu Glu 195 200 205

Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp Glu Ala Val Lys 210 220

Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Met Lys Trp 225 230 235 240

Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala Ala Asp Met Lys 245 250 255

Thr Ile His Lys Leu 260

<210> 19

<211> 288

<212> PRT

<213> Saccharomyces cerevisiae

<400> 19

Met Thr Ala Asp Asn Asn Ser Met Pro His Gly Ala Val Ser Ser Tyr 1 5 10 15

Ala Lys Leu Val Gl
n Asn Gl
n Thr Pro Glu Asp Ile Leu Glu Glu Phe 20
 25
 30

Pro Glu Ile Ile Pro Leu Gln Gln Arg Pro Asn Thr Arg Ser Ser Glu 35 40 45

Thr Ser Asn Asp Glu Ser Gly Glu Thr Cys Phe Ser Gly His Asp Glu
50 55 60

Glu Gln Ile Lys Leu Met Asn Glu Asn Cys Ile Val Leu Asp Trp Asp 65 70 75 80

Asp Asn Ala Ile Gly Ala Gly Thr Lys Lys Val Cys His Leu Met Glu 85 90 95

Asn Ile Glu Lys Gly Leu Leu His Arg Ala Phe Ser Val Phe Ile Phe 100 105 110

Asn Glu Gln Gly Glu Leu Leu Gln Gln Arg Ala Thr Glu Lys Ile 115 120 125

Thr Phe Pro Asp Leu Trp Thr Asn Thr Cys Cys Ser His Pro Leu Cys 130 135 140

Ile Asp Asp Glu Leu Gly Leu Lys Gly Lys Leu Asp Asp Lys Ile Lys 145 150 155 160

Gly Ala Ile Thr Ala Ala Val Arg Lys Leu Asp His Glu Leu Gly Ile 165 170 175

Pro Glu Asp Glu Thr Lys Thr Arg Gly Lys Phe His Phe Leu Asn Arg 180 185 190

Ile His Tyr Met Ala Pro Ser Asn Glu Pro Trp Gly Glu His Glu Ile 195 200 205

Asp Tyr Ile Leu Phe Tyr Lys Ile Asn Ala Lys Glu Asn Leu Thr Val

/63055

215 220

Asn Pro Asn Val Asn Glu Val Arg Asp Phe Lys Trp Val Ser Pro Asn 225 230 235 240

Asp Leu Lys Thr Met Phe Ala Asp Pro Ser Tyr Lys Phe Thr Pro Trp 245 250 255

Phe Lys Ile Ile Cys Glu Asn Tyr Leu Phe Asn Trp Trp Glu Gln Leu 260 (265 270

Asp Asp Leu Ser Glu Val Glu Asn Asp Arg Gln Ile His Arg Met Leu 275 280 285

<210> 20

<211> 456

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
 sequence of four plant B-cyclases

<400> 20

Met Asp Thr Leu Leu Lys Thr Pro Asn Leu Glu Phe Leu Pro His Gly
1 5 10 15

Phe Val Lys Ser Phe Ser Lys Phe Gly Lys Cys Glu Gly Val Cys Val 20 25 30

Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr Lys Lys Glu Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys Gly Val Val Asp
50 55 60

Leu Ala Val Val Gly Gly Pro Ala Gly Leu Ala Val Ala Gln Gln 65 70 75 80.

Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp Pro Pro Lys Leu 85 90 95

Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met 100 105 110

Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp Ser Gly Ala Val Tyr Ile 115 120 125

Asp Asp Thr Lys Asp Leu Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln 130 135 140

Leu Lys Ser Lys Met Met Gln Lys Cys Ile Asn Gly Val Lys Phe His 145 150 155 160

Gln Ala Lys Val Ile Lys Val Ile His Glu Glu Lys Ser Met Leu Ile 165 170 175

Cys Asn Asp Gly Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly 180 185 190

Phe Ser Arg Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln

195 200 205

Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Lys 210 215 220

Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Asn Glu Leu Lys 225 230 235 240

Glu Arg Asn Ser Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser 245 250 255

Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly Leu 260 265 270

Arg Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu His Leu Gly 275 280 285

Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys Val Ile Pro Met 290 295 300

Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val Gly Ile Gly Gly 305 310 315 320

Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr 325 330 335

Leu Ala Ala Pro Val Val Ala Asn Ala Ile Ile Tyr Leu Gly Ser 340 345 350

Glu Ser Ser Gly Glu Leu Ser Ala Glu Val Trp Lys Asp Leu Trp Pro 355 360 365

Ile Glu Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile 370 375 380

Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg Arg Phe Phe Asp Ala Phe 385 390 395 400

Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser Ser Arg Leu 405 410 415

Phe Leu Pro Glu Leu Ile Val Phe Gly Leu Ser Leu Phe Ser His Ala 420 425 430

Ser Asn Thr Ser Arg Glu Ile Met Thr Lys Gly Thr Pro Leu Val Met 435 440 445

Ile Asn Asn Leu Leu Gln Asp Glu 450 455

<210> 21

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 21

Met Glu Cys Val Gly Ala Arg Asn Phe Ala Ala Met Ala Val Ser Thr

Phe Pro Ser Trp Ser Cys Arg Arg Lys Phe Pro Val Val Lys Arg Tyr 20 25 30

Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro

WO 99/63055 PCT/US99/12121

•			i
355	360	365	æig
Asn Thr Glu Gln Lys Asn Lo	eu Ala Phe Gly Ala 75	Ala Ala Ser Met 380	Val
His Pro Ala Thr Gly Tyr Se 385 390	er Val Val Arg Ser 395	Leu Ser Glu Ala	Pro 400
Lys Tyr Ala Ser Val Ile A 405	la Glu Ile Leu Arg 410	Glu Glu Thr Thr 415	Lys
Gln Ile Asn Ser Asn Ile Se 420	er Arg Gln Ala Trp 425	Asp Thr Leu Trp 430	Pro ·
Pro Glu Arg Lys Arg Gln A: 435	rg Ala Phe Phe Leu 440	Phe Gly Leu Ala	Leu
Ile Val Gln Phe Asp Thr G 450	lu Gly Ile Arg Ser 55	Phe Phe Arg Thr 460	Phe
Phe Arg Leu Pro Lys Trp Me 465 470	et Trp Gln Gly Phe 475	Leu Gly Ser Thr	Leu 480
Thr Ser Gly Asp Leu Val Le	eu Phe Ala Leu Tyr 490	Met Phe Val Ile 495	Ser
Pro Asn Asn Leu Arg Lys G. 500	ly Leu Ile Asn His 505	Leu Ile Ser Asp 510	Pro
Thr Gly Ala Thr Met Ile Ly 515	ys Thr Tyr Leu Lys 520	Val	
<210> 22 <211> 1898 <212> DNA <213> Adonis palaestina			
<400> 22			
AAAGGAGTGT TCTATTAATG TTAG	CTGTCGC ATTCTTGCAA	CACTTATATT CAAAC	CTCCAT 60
TTTCTTCTTT TCTCTTCAAA ACAA	ACAAACT AATGTGAGCA	GAGTATCTGG CTATO	GGAACT 120
ACTTGGTGTT CGCAACCTCA TCTC	CTTCTTG CCCTGTGTGG	ACTTTTGGAA CAAGA	AAACCT 180
TAGTAGTTCA AAACTAGCTT ATAA	ACATACA TCGATATGGT	TCTTCTTGTA GAGTA	GATTT 240
TCAAGTGAGA GCTGATGGTG GAAG	GCGGGAG TAGAAGTTCT	GTTGCTTATA AAGAG	GGTTT 300
TGTGGATGAA GAGGATTTTA TCAA	AAGCTGG TGGTTCTGAG	CTTTTGTTTG TCCA	ATGCA 360
GCAAACAAAG TCTATGGAGA AACA	AGGCCAA GCTCGCCGAT	AAGTTGCCAC CAATA	ACCTTT 420
TGGAGAATCC GTGATGGACT TGG	TTGTAAT AGGTTGTGGA	CCTGCTGGTC TTTCF	ACTGGC 480
TGCAGAAGCT GCTAAGCTAG GGT	TGAAAGT TGGCCTTATT	GGTCCTGATC TTCCT	TTTTAC 540
AAATAATTAT GGTGTGTGGG AAGA	ACGAGTT CAAAGATCTT	GGACTTGAAC GTTG1	TATCGA 600

660

720

GCATGCTTGG AAGGACACCA TCGTATATCT TGATAATGAT GCTCCTGTCC TTATTGGTCG

TGCATATGGA CGAGTTAGTC GACATTTGCT ACATGAGGAG TTGCTGAAAA GGTGTGTGGA

BNSDOCID: <WO 996305541 (>

WO 99/63055

PC	ГЛ	JS99)/1	21	2

GTCAGGTGTA	TCATATCTTG	ATTCTAAAGT	GGAAAGGATC	ACTGAAGCTG	GTGATGGCCA	780
TAGCCTTGTA	GTTTGTGAAA	ATGAGATCTT	TATCCCTTGC	AGGCTTGCTA	CTGTTGCATC	840
TGGAGCAGCT	TCAGGGAAAC	TTTTGGAGTA	TGAAGTAGGT	GGCCCTCGTG	TTTGTGTCCA	. 900
AACCGCTTAT	GGGGTGGAGG	TTGAGGTGGA	GAACAATCCA	TACGATCCCA	ACTTAATGGT	960
ATTCATGGAC	TACAGAGACT	ATATGCAACA	GAAATTACAG	TGCTCGGAAG	AAGAATATCC	1020
AACATTTCTC	TATGTCATGC	CCATGTCGCC	AACAAGACTT	TTTTTTGAGG	AAACCTGTTT	1080
GGCCTCAAAA	GATGCCATGC	CATTCGATCT	ACTGAAGAGA	AAACTGATGT	CACGATTGAA	1140
GACTCTGGGT	ATCCAAGTTA	CAAAAGTTTA	TGAAGAGGAA	TGGTCATATA	TTCCTGTTGG	1200
TGGTTCTTTA	CCAAACACAG	AGCAAAAGAA	CCTAGCATTT	GGTGCTGCAG	CAAGCATGGT	1260
GCATCCAGCA	ACAGGCTATT	CGGTTGTACG	GTCACTGTCA	GAAGCTCCAA	AATATGCTTC	1320
TGTAATTGCA	AAGATTTTGA	AGCAAGATAA	CTCTGCGTAT	GTGGTTTCTG	GACAAAGTAG	1380
TGCAGTAAAC	ATTTCAATGC	AAGCATGGAG	CAGTCTTTGG	CCAAAGGAGC	GAAAACGTCA	1440
AAGAGCATTC	TTTCTTTTTG	GATTAGAGCT	TATTGTGCAG	CTAGATATTG	AAGCAACCAG	1500
AACATTCTTT	AGAACCTTCT	TCCGCTTGCC	AACTTGGATG	TGGTGGGGTT	TCCTTGGGTC	1560
TTCACTATCA	TCTTTCGATC	TCGTCTTGTT	TTCCATGTAC	ATGTTTGTTT	TGGCGCCAAA	1620
CAGCATGAGG	ATGTCACTTG	TGAGACATTT	GCTTTCAGAT	CCTTCTGGTG	CAGTTATGGT	1680
AAGAGCTTAC	CTCGAAAGGT	AGTCTCATCT	ATTATTAAAC	TCTAGTGTTT	CACCAAATAA	1740
ATGAGGATCC	TTCGAATGTG	TATATGATCA	TCTCTATGTA	TATCCTGTAC	TCTAATCTCA	1800
TAAAGTAAAT	GCCGGGTTTG	ATATTGTTGT	GTCAAACCGG	CCAATGATAT	AAAGTAAATT	1860
TATTGATACA	AAAGTAGTTT	TTTTCCTTAA	AAAAAAA		(1898

<210> 23

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 23

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp 1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val 50 55 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

405

410

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 435 440 445

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 455 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 475 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr 485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Arg

DRICHOCID- >WO GODDNEERT I -

<210> 24

<211> 1370

<212> DNA

<213> Potato

<400> 24

TAGCGGAGGA TGAGTTCAAA GATCTTGGTC TTCAAGCCTG CATTGAACAT GTTTGGCTGG 60 GATACCATTG TATATCTTGA TGATGATGAT CCTATTCTTA TTGGCCGTGC CTATGGAAGA 120 GTTAGTCGCC ATTTACTGCA CGAGGAGTTA CTCAAAAGGT GTGTGGAGGC AGGTGTTTTG 180 TATCTAAACT CGAAAGTGGA TAGGATTGTT GAGGCCACAA ATGGCCACAG TCTTGTAGAG 240 TGCGAGGGTG ATGTTGTGAT TCCCTGCAGG TTTGTGACTG TTGCATCGGG AGCAGCCTCG 300 GGGAAATTCT TGCAGTATGA GTTGGGAGGT CCTAGAGTTT CTGTTCAAAC AGCTTATGGA 360 GTGGAAGTTG AGGTCGATAA CAATCCATTT GACCCGAGCC TGATGGTTTT CATGGATTAT 420 AGAGACTATG TCAGACACGA CGCTCAATCT TTAGAAGCTA AATATCCAAC ATTTCTCTAT 480 GCCATGCCCA TGTCTCCAAC ACGAGTCTTT TTCGAGGAAA CTTGTTTGGC TTCAAAAGAT 540 GCAATGCCAT TCGATCTGTT AAAGAAAAA TTGATGTTAC GATTGAACAC CCTCGGTGTA 600 AGAATTAAAG AAATTTATGA GGAGGAATGG TCTTACATAC CAGTTGGAGG ATCTTTGCCA 660 AATACAGAAC AAAAAACACT TGCATTTGGT GCTGCTGCTA GCATGGTTCA TCCAGCCACA 720 GGTTATTCAG TCGTCAGATC ACTGTCTGAA GCTCCAAAAT GCGCCTTCGT GCTTGCAAAT 780 ATATTACGAC AAAATCATAG CAAGAATATG CTTACTAGTT CAAGTACCCC GAGTATTTCA 840 ACTCAAGCTT GGAACACTCT TTGGCCACAA GAACGAAAAC GACAAAGATC GTTTTTCCTA 900

'		
WO 99/63055		PCT/US99/12121

TTTGGACTGG CTCTGATATT GCAGCTGGAT ATTGAGGGGA TAAGGTCATT TTTCCGC	GCG								
TTCTTCCGTG TGCCAAAATG GATGTGGCAG GGATTTCTTG GTTCAAGTCT TTCTTAG	CAG								
ACCTCATGTT ATTTGCCTTC TACATGTTTA TTATTGCACC AAATGACATG AGAAGAG	GCT								
TAATCAGACA TCTTTTATCT GATCCTACTG GTGCAACATT GATAAGAACT TATCTTA	CAT								
TTTAGAGTAA ATTCCTCCTA CAATAGTTGT TGAAAGAGGC CTCATTACTT CAGATTC	ATA								
ACAGAAATCG CGGTCTCTCG AGGCCTTGTA TATAACATTT TCACTAGGTT AATATTG	CTT								
GAATAAGTTG CACAGTTTCA GTTTTTGTAT CTGCTTCTTT TTTGTCCAAG ATCATGT	ATT								
GACCAATTTA TATACATTGC CAGTATATAT AAATTTTATA AAAAAAAAA									
<210> 25 <211> 377 <212> PRT <213> Potato									
<400> 25 Asp Glu Pho Luc Asp Lou Clu Lou Cla Ala Gua Til Cu Luc Cla Asp Glu Pho Luc Asp Lou Cla Asp Glu Pho Luc Cla Asp Glu Pho Cla Til Cu Til									
Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile Glu His Val Tr 1 5 10 15	Þ								
Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Pro Ile Leu Ile Gl	У								
Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu 35 40 45	ט								
Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp 50 55 60	Ò								
Arg Ile Val Glu Ala Thr Asn Gly His Ser Leu Val Glu Cys Glu Gl 65 70 75 80									
Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala Ser Gly Ala Ala 85 90 95	a '								
Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Gly Pro Arg Val Ser Val 100 105 110	l								
Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp 115 120 125	Þ								
Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp 130	Þ								
Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro 145 150 155 166									
Met Ser Pro Thr Arg Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys 165 170 175	5								
Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Lys Leu Met Leu Arg Leu 180 185 190	1								

Asn Thr Leu Gly Val Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser 195 200 205

RNSOCIO -WO GORGOREAT I -

WO 99/63055

- Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu 210 220
- Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser 225 230 235 240
- Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala 245 250 255
- Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser 260 265 270
- Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu 275 280 285
- Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 290 295 300
- Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 305 310 315 320
- Val Pro Lys Met Met Trp Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala 325 330 335
- Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$
- Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala 355 360 365
- Thr Leu Ile Arg Thr Tyr Leu Thr Phe 370 375
- <210> 26
- <211> 533
- <212> PRT
- <213> Chimeric lettuce/potato
- <400> 26
- Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe 1 5 10 15
- Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu 20 25 30
- Leu Lys Gly Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg 35 40 45
- Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln 50 55 60
- Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser 65 70 75 80
- Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln 85 90 95
- Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile 100 105 110
- Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala

Ala Glu Ser Ala Lys Leu Gly Leu Asn Val Gly Leu Ile Gly Pro Asp 130 135 140

Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Gln Asp Glu Phe Ile Gly 145 150 155 160

Leu Gly Leu Glu Gly Cys Ile Glu His Ser Trp Lys Asp Thr Leu Val 165 170 175

Tyr Leu Asp Asp Ala Asp Pro Ile Arg Ile Gly Arg Ala Tyr Gly Arg 180 185 190

Val His Arg Asp Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu 195 200 205

Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Glu Arg Ile Thr Glu Ala 210 215 220

Pro Asn Gly Tyr Ser Leu Ile Glu Cys Glu Gly Asn Ile Thr Ile Pro 225 230 235 240

Cys Arg Leu Ala Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Phe Leu 245 250 255

Glu Tyr Glu Leu Gly Gly Pro Arg Val Ser Val Gln Thr Ala Tyr Gly 260 265 270

Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp Pro Ser Leu Met Val 275 280 285

Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp Ala Gln Ser Leu Glu 290 295 300

Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro Met Ser Pro Thr Arg 305 310 315 320

Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe 325 330 335

Asp Leu Leu Lys Lys Lys Leu Met Leu Arg Leu Asn Thr Leu Gly Val 340 345 350

Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly 355 360 365

Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu Ala Phe Gly Ala Ala 370 375 380

Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu 385 390 395 400

Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala Asn Ile Leu Arg Gln 405 410 415

Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser Thr Pro Ser Ile Ser 420 425 430

Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu Arg Lys Arg Gln Arg 435 440 445

WO 99/63055

Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu Gln Leu Asp Ile Glu 450 455 460

Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg Val Pro Lys Trp Met 465 470 475 480

Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala Asp Leu Met Leu 485 490 495

Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp Met Arg Arg Gly 500 505 510

Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala Thr Leu Ile Arg 515 520 525

Thr Tyr Leu Thr Phe 530

<210> 27

<211> 374

<212> PRT

<213> Arabidopsis thaliana

<400> 27

Glu Asp Glu Phe Asn Asp Leu Gly Leu Gln Lys Cys Ile Glu His Val
1 5 10 15

Trp Arg Glu Thr Ile Val Tyr Leu Asp Asp Lys Pro Ile Thr Ile
20 25 30

Gly Arg Ala Tyr Gly Arg Val Ser Arg Arg Leu Leu His Glu Glu Leu 35 40 45

Leu Arg Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Ser Ser Lys Val
50 60

Asp Ser Ile Thr Glu Ala Ser Asp Gly Leu Arg Leu Val Ala Cys Asp 65 70 75 80

Asp Asn Asn Val Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala 85 90 95

Ala Ser Gly Lys Leu Leu Gln Tyr Glu Val Gly Gly Pro Arg Val Cys 100 105 110

Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Ser Pro Tyr 115 120 125

Asp Pro Asp Gln Met Val Phe Met Asp Tyr Arg Asp Tyr Thr Asn Glu 130 135 140

Lys Val Arg Ser Leu Glu Ala Glu Tyr Pro Thr Phe Leu Tyr Ala Met 145 150 155 160

Pro Met Thr Lys Ser Arg Leu Phe Phe Glu Glu Thr Cys Leu Ala Ser 165 170 175

Lys Asp Val Met Pro Phe Asp Leu Leu Lys Thr Lys Leu Met Leu Arg 180 185 190

Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys Thr Tyr Glu Glu Glu Trp

540

600

195 200 205 Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn 210 215 Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr 235 Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys Tyr Ala Ser Val Ile 245 255 Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys Gln Ile Asn Ser Asn Ile 260 Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro Pro Glu Arg Lys Arg Gln 280 Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe Phe Arg Leu Pro Lys Trp 310 320 Met Trp Gln Gly Phe Leu Gly Ser Thr Leu Thr Ser Gly Asp Leu Val 325 Leu Phe Ala Leu Tyr Met Phe Val Ile Ser Pro Asn Asn Leu Arg Lys 345 Gly Leu Ile Asn His Leu Ile Ser Asp Pro Thr Gly Ala Thr Met Ile 355 Lys Thr Tyr Leu Lys Val 370 <210> 28 <211> 1002 <212> DNA <213> Adonis palaestina <400> 28 ATTCATCTTC AGCAGCGCTG TCGTACTCTT TCTATATCTT CTTCCATCAC TAACAGTAGT 60 CGCCGACGGT TGAATCGGCT ATTCGCCTCA ACGTCAACTA TGGGTGAAGT CACTGATGCT 120 GGAATGGATG CTGTTCAGAA GCGGCTCATG TTCGACGACG AATGTATTTT GGTGGATGAG 180 AATGACAAGG TCGTCGGGCA TGATTCCAAA TACAACTGTC ATTTGATGGA AAAGATAGAG 240 GCAGAAAATT TGCTTCACAG AGCCTTCAGT GTTTTCTTGT TCAACTCAAA ATATGAATTG 300 CTTCTTCAGC AACGATCCGC CACAAAGGTA ACATTCCCGC TCGTATGGAC AAACACATGT 360 TGCAGTCATC CTCTCTTTCG TGATTCCGAG CTCATAGAAG AAAATTATCT CGGTGTACGA 420 AACGCTGCAC AAAGAAAGCT TTTAGACGAG CTAGGCATTC CAGCTGAAGA TGTCCCAGTT

GATGAATTTA CTCCTCTTGG TCGCATTCTT TACAAAGCTC CATCTGACGG CAAATGGGGA

GAGCACGAAT TGGACTATCT CCTATTTATT GTCCGAGATG TGAAATACGA TCCAAACCCA

WO 99/63055 PCT/US99/12121

					**	170377/121
GATGAAGTT	G CTGATGCTAA	GTATGTTAA	r cgcgaggagi	TGAGAGAGA'	I ACTGAGAAAA	660
GCTGATGCT	G GTGAAGAGGG	ACTCAAGTTO	TCTCCTTGGT	TTAGATTGG	r tgttgataac	720
TTTTTGTTC	A AGTGGTGGGA	TCATGTAGAG	CAGGGTACGA	TTAAGGAAG	T TGCTGACATG	780
AAAACTATC	C ACAAGTTGAC	TTAAGAGGAC	TTCTCTCCTC	TGTTCTACTA	A TTTGTTTTT	840
GCTACAATA	A GTGGGTGGTG	ATAAGCAGTI	TTTCTGTTTT	CTTTAATTT	A TGGCTTTTGA	900
ATTTGCCTC	G ATGTTGAACT	TGTAACATAT	TTAGACAAAT	ATGAGACCTI	GTAAGTTGAA	960
TTTGAGGCT	AATTTATATT	TTTGGGAACA	TAATAATGTT	AA		1002
<210> 29 <211> 1271 <212> DNA <213> Ador	l nis palaesti	na				. *
<400> 29		•		•		
					TACAAAAGTT	60
					GATACGCATC	120
					CGGAATCCCG	180
And the second second second					CACCACTAAA	240
	CTTCGTGTTC					300
TTCTATTTCT	TCTTCCATCA	CTAACAGTCC	TCGCCGAGGG	TTGAATCGGC	TGTTCGCCTC	360
AACGTCGACT	ATGGGTGAAG	TCGCTGATGC	TGGTATGGAT	GCCGTCCAGA	AGCGGCTTAT	420
GTTCGACGAT	GAATGTATTT	TGGTGGATGA	GAATGACAAG	GTCGTCGGAC	ATGATTCCAA	480
ATACAACTGT	CATTTGATGG	AAAAGATAGA	GGCAGAAAAC	TTGCTTCACA	GAGCCTTCAG	540
TGTTTTCTTA	TTCAACTCAA	AATACGAGTT	GCTTCTTCAG	CAACGATCTG	CAACGAAGGT	600
AACATTCCCG	CTCGTATGGA	CAAACACCTG	TTGCAGCCAT	CCCCTCTTCC	GTGATTCCGA	660
ACTCATAGAA	GAAAATTTTC	TCGGGGTACG	ÄAACGCTGCA	CAAAGGAAGC	TTTTAGACGA	720
GCTAGGCATT	CCAGCTGAAG	ACGTACCAGT	TGATGAATTC	ACTCCTCTTG	GTCGCATTCT	780
TTACAAAGCT	CCATCTGACG	GAAAATGGGG	AGAGCACGAA	CTGGACTATC	TTCTGTTTAT	840
TGTCCGAGAT	GTGAAATACG	ATCCAAACCC	AGATGAAGTT	GCTGACGCTA	AGTACGTTAA	900
TCGCGAGGAG	TTGAAAGAGA	TACTGAGAAA	AGCTGATGCA	GGTGAAGAGG	GAATAAAGTT	960
GTCTCCTTGG	TTTAGATTGG	TTGTGGATAA	CTTTTTGTTC	AAGTGGTGGG	ATCATGTAGA	1020
GGAGGGGAAG	ATTAAGGACG	TCGCCGACAT	GAAAACTATC	CACAAGTTGA	CTTAAGAGAA	1080
					TGAGCAGTTT	1140
	TTTAATTTTG					1200
	TGAGACCTTG					1260
				-		1200

3NSDOCID: <WO___9963055A1_I_>

- -ΑΑΑΑΑΑΑΑ Α 1271 <210> 30 <211> 1109 <212> DNA <213> Haematococcus pluvialis <400> 30 TGGAACCTGG CCCGGCGGCA GTCCGATGCC GCGATGCTTC GTTCGTTGCT CAGAGGCCTC 60 ACGCATATCC CGCGCGTGAA CTCCGCCCAG CAGCCCAGCT GTGCACACGC GCGACTCCAG 120 TTTAAGCTCA GGAGCATGCA GCTGCTTGCC GAGGACCGCA CAGACCACAT GAGGGGTGCA 180 AGCACCTGGG CAGGCGGCA GTCGCAGGAT GAGCTGATGC TGAAGGACGA GTGCATCTTA 240 GTGGATGCTG ACGACAACAT CACAGGCCAT GCCAGCAAGC TGGAGTGCCA CAAATTCCTA 300 CCACATCAGC CTGCAGGCCT GCTGCACCGG GCCTTCTCTG TGTTCCTGTT TGACGACCAG 360 GGGCGACTGC TGCTGCAACA GCGTGCACGC TCAAAAATCA CCTTCCCAAG TGTGTGGACG 420 AACACCTGCT GCAGCCACCC TCTACATGGG CAGACCCCAG ATGAGGTGGA CCAACTAAGC 480 CAGGTGGCCG ACGGCACAGT ACCTGGCGCA AAAGCTGCTG CCATCCGCAA GTTGGAGCAC 540 GAGCTGGGGA TACCAGCGCA CCAGCTGCCG GCAAGCGCGT TTCGCTTCCT CACGCGTTTG 600 CACTACTGTG CCGCGGACGT GCAGCCGGCT GCGACACAAT CAGCGCTCTG GGGCGAGCAC 660 GAGATGGACT ACATCTTATT CATCCGGGCC AACGTCACCT TGGCGCCCAA CCCTGACGAG 720 GTGGACGAAG TCAGGTACGT GACGCAAGAG GAGCTGCGGC AGATGATGCA GCCGGACAAC 780 GGGTTGCAAT GGTCGCCGTG GTTTCGCATC ATCGCCGCGC GCTTCCTTGA GCGTTGGTGG 840 GCTGACCTGG ACGCGGCCCT AAACACTGAC AAACACGAGG ATTGGGGAAC GGTGCATCAC 900 ATCAACGAAG CGTGAAGGCA GAAGCTGCAG GATGTGAAGA CACGTCATGG GGTGGAATTG 960 CGTACTTGGC AGCTTCGTAT CTCCTTTTTC TGAGACTGAA CCTGCAGAGC TAGAGTCAAT 1020 GGTGCATCAT ATTCATCGTC TCTCTTTTGT TTTAGACTAA TCTGTAGCTA GAGTCACTGA 1080 TGAATCCTTT ACAACTTTCA AAAAAAAA 1109 <210> 31 <211> 985 <212> DNA <213> Lactuca sativa <400> 31 TGCCAAAATG TTGAAATTTC CCCCTTTTAA AACCATTGCT ACCATGATCT CTTCTCCATA 60 TTCTTCCTTC TTGCTGCCTC GGAAATCTTC TTTCCCTCCA ATGCCGTCTC TCGCAGCCGC 120 TAGTGTTTTC CTCCACCCTC TTTCGTCTGC CGCTATGGGC GATTCCAGCA TGGATGCTGT 180 CCAGCGACGT CTCATGTTCG ATGACGAATG CATTTTGGTG GATGAGAATG ACAAAGTGGT 240 TGGCCATGAT ACTAAATACA ATTGTCATTT GATGGAGAAG ATTGAAAAGG GAAATATGCT 300

PCT/US99/12121

WO 99/63055

1110	99/630	122
w	44/n.11	

PCT/US99/1212

	•	7,00					
	ACACAGAGCA	TTCAGTGTGT	TCTTGTTCAA	CTCGAAATAT	GAATTACTCC	TTCAGCAACG	360
	TTCTGCAACC	AAGGTGACTT	TCCCTTTGGT	ATGGACAAAC	ACGTGTTGCA	GCCATCCACT	420
	ATACAGGGAG	AGTGAGCTTA	TTGACGAAAA	CGCCCTTGGG	GTGAGGAATG	CTGCACAGAG	480
	GAAGCTCCTG	GATGAACTCG	GCATCCCTGG	AGCAGATGTT	CCGGTTGATG	AGTTCACTCC	540
	ATTGGGTCGC	ATTCTATACA	AGGCCGCATC	GGATGGAAAG	TGGGGAGAAC	ATGAACTTGA	600
	TTACCTGCTG	TTTATGGTAC	GTGATGTTGG	TTTGGATCCG	AACCCAGATG	AAGTGAAAGA	660
	TGTAAAATAT	GTGAACCGGG	AAGAGCTGAA	GGAATTGGTA	AGGAAGGCGG	ATGCTGGTGA	720
	AGAGGGTGTG	AAGCTGTCCC	CGTGGTTCAA	ATTGATTGTC	GATAATTTCT	TGTTTCAGTG	780
	GTGGGATCGA	CTCCATAAGG	GAACCCTAAC	CGAAGCTATT	GATATGAAAA	CAATCCACAA	840
	ACTCACATAA	AAACACTACA	CTAGTAGGAG	AGAGGATTAT	ATGAGATATT	TGTTATATGT	900
	GAAATTGAAA	TTCAGATGAA	TGCTTGTÄTT	TATTTCTATT	TGGACAAACT	TCAACTTCTT	960
	TTTGCTACCT	TATCAGAAAA	AAAAA	•			985
	<210> 32 <211> 988 <212> DNA		·				
,	<213> Lacti	ca sativa		•			
	<400> 32	AAAATCTCTT	ССАТТААСТС	СТСАЛАТСТС	CACCERECCC	CCMCMMAAMO	60
		CACTTTCACC		•			60
		ACGTCTCATG		,			120
		TGATACCAAA					180
		AGCATTCAGT					240
		AACCAAGGTG	1			•	300
				•			360
		AGAATCGGAG					420
						GATGAGTTCA	480
			•			GAACATGAAG	540
						GATGAGGTGG	600
						GCGGATGCGG	660
		•				TTCTTGTTCA	720
						AAAACCATTC	780
						ATAATTTGTG	840
		TCGGTCCTTC					900
	TATTGTGTAC	TTGTAACGTA	GGCCCTTTGG	TTACGCTTTA	AGAGTTTAAT	AAAGAACCAC	960

ССТТААТТТА АДАДАДАДА ДДАДАДАД	988
<210> 33 <211> 1874 <212> DNA <213> Chlamydomonas reinhardtii	·
<400> 33 GGCACGAGCT CGAGTTTGTT TTACCATGAC ATCGGGAATT TGGAAG	GCTTG AACTACCTCA 60
ATTACTCAAG TAACTCGCGG CAACACATTT CGCGCGCCAT CGCTGT	TTTTC TCTGCTCCAG 120
CTACCGAGCA GCATTGCTTT AGATCGCTTT GATGTCATAA ACTCCC	CACTT ATATGAGATC 180
CAGTTTCATC GAGCCCAAGC CCAGAGCGCA ACCTGTCTTA AGCCGC	CGGCA GGGCGTCCAT 240
GCGCCTCGCG CAAAGCCGTG CTCTCGTTGC GCGTGTCAGC TCCGCC	CCTGT GGCCGGGAGC 300
AGGACTTTCA CAGGCTCAAA GCGTTGCGGT GCGAATGGCG AGTTCG	STCAA CCTGGGAAGG 360
CACGGGCCTG AGCCAGGATG ACTTCATGCA GCGGGACGAG TGCTTG	GGTGG TGGACGAGCA 420
GGACCGGCTG CTAGGCACCG CCAACAAGTA CGACTGCCAC CGCTTC	CGAGG CGGCCAAGGG 480
CCAGCCCTGC GGCCGCCTGC ACCGCGCCTT CTCCGTGTTC CTGTTC	CAGCC CCGACGGCCG 540
ACTGCTGCTG CAGCAGCGC CAGCCAGCAA GGTGACGTTC CCGGGT	CGTGT GGACCAACAC 600
CTGCTGCTCG CACCCGCTGG CGGGCCAGGC GCCGGACGAG GTGGAC	CCTGC CGGCGGCGGT 660
AGCCTCGGGC CAGGTGCCGG GCATCAAGGC GGCGGCGGTG CGCAAG	GCTGC AGCACGAGCT 720
GGGGATACCG CCGGAGCAGG TTCCCGCCTC CTCCTTCTCC TTCCTC	CACGC GTCTGCACTA 780
CTGCGCCGCC GACACCGCCA CGCACGGCCC GGCGGCGGAG TGGGGC	CGAGC ACGAGGTGGA 840
CTACGTGCTG TTCGTGCGGC CGCAGCAGCC CGTCAGCCTG CAGCCC	CAACC CAGACGAGGT 900
GGACGCCACG CGCTACGTGA CGCTGCCGGA GCTTCAGTCC ATGATG	GGCGG ACCCCGGCCT 960
CAGCTGGAGC CCCTGGTTCC GCATCCTGGC CACACAGCCC GCCTTC	CCTGC CCGCCTGGTG 1020
GGGCGACCTG AAGCGGCGCT GGCGCCCGGG CGGCAGCCGA CTGTCG	GGACT GGGGCACCAT 1080
CCACCGCGTC ATGTGAAGAA AAAGGGGAAG CAGGGGCGGG AGCGGG	GGGAT GAATGGGAAT 1140
GTGAATGCGA TTGTGATGCG GCGTGGGATG AGGTCTGAAG ACAGGG	GGGAA AATCGGGGGG 1200
CGGGCGTGAG CGTGTGTGTA CGTGAGCGAC AAAGCCGGGA GGCGGA	ACCGC GCGATGGGTA 1260
CATGTGTGTG CGGAGGGTCG GTGGGTCGGT CGGTTGCGCG GCATAG	SCGTG TTGTGTGTGT 1320
GCGGCTGCAG GGGTATGTGG GCACCCGGGC ACGGAGGAGA AGGCAC	CACGC AGGTGGCGCG 1380
GAGGTGTGTC AGGGGCCATG GGCGGGCCTC ACTCCTGGTC GTGCCC	CAGTG GTCTCGTGGG 1440
CAGAGTGGCA GGGGCTGCAC CCATATGAGC GGCGCACTGC CGCGCT	RGGGC TAAGTCCTTA 1500
TCACTTGGTG AGGTGGGCG AGGTGGCTGT GGGCGGCGGG CGCAGT	TGGCA GAAGGACACG 1560
GTGTGTGAGC GGTGGAGCTC TGGCCGTGCC GGCCGTGAGG GGCGGA	ATAGC GATATGACGT 1620

WO 99/63055 PCT/US99/12121

•				•		
TGTGCTTGGC	CGCTGTAATG	CGGGAGAATG	TGCAGGCCGC	GAGAAGCGGG	CGGTGGCAGG	1680
AGGCCGCAGG	CTGCAGCACC	CGTTGGGGAG	GTGCCACCTG	CAGGCGCGGC	GCCGGGCGG	1740
CCTGAGTAAT	GGGCGCCTGA	GTAGTGGCGG	CCACAGGAGG	CGCAGGAGGC	AGCAGCAGGA	1800
GGACGAGCTG	GAGGGACCCG	TTGGCAACCC	AAGGTTGCGC	GTGTAACATA	GTGGCCATAC	1860
AAAAAAAA	AAAA					1874
<210> 34 <211> 954 <212> DNA <213> Taget	les erecta					
<400> 34 CCAAAAACAA	CTCAAATCTC	CTCCGTCGCT	CTTACTCCGC	CATGGGTGAC	GACTCCGGCA	60
TGGATGCTGT	TCAGCGACGT	CTCATGTTTG	ACGATGAATG	CATTTTGGTG	GATGAGTGTG	120
ACAATGTGGT	GGGACATGAT	ACCAAATACA	ATTGTCACTT	GATGGAGAAG	ATTGAAACAG	180
GTAAAATGCT	GCACAGAGCA	TTCAGCGTTT	TTCTATTCAA	TTCAAAATAC	GAGTTACTTC	240
TTCAGCAACG	GTCTGCAACC	AAGGTGACAT	TTCCTTTAGT	ATGGACCAAC	ACCTGTTGCA	300
GCCATCCACT	CTACAGAGAA	TCCGAGCTTG	TTCCCGAAAA	CGCCCTTGGA	GTAAGAAATG	360
CTGCACAGAG	GAAGCTGTTG	GATGAACTCG	GTATCCCTGC	TGAAGATGTT	CCCGTTGATC	420
AGTTTACTCC	TTTAGGTCGC	ATGCTCTACA	AGGCTCCATC	TGATGGAAAG	TGGGGAGAAC	480
ATGAACTTGA	CTACCTACTT	TTCATAGTGA	GAGACGTTGC	TGTAAACCCG	AACCCAGATG	540
AAGTGGCGGA	TATCAAATAT	GTGACCAGAA	GAGTTAAAGG	AGCTGCTAAG	GAAAGCAGAT	600
GCGGGGGAGG	AGGGTTTGAA	GCTGTCTCCA	TGGTTCAGGT	TAGTGGTTGA	TAACTTCTTG	660
TTCAAGTGGT	GGGATCATGT	GCAAAAGGGT	ACACTCACTG	AAGCAATTGA	TATGAAAACC	720
ATACACAAGC	TGATATAGAA	ACACACCCTC	AACCGAAAAG	TTCAAGCCTA	ATAATTCGGG	780
TTGGGTCGGG	TCTACCATCA	ATTGTTTTTT	TCTTTTAAGA	AGTTTTAATC	TCTATTTGAG	840
CATGTTGATT	CTTGTCTTTT	GTGTGTAAGA	TTTTGGGTTT	CGTTTCAGTT	GTAATAATGA	900
ACCATTGATG	GTTTGCAATT	TCAAGTTCCT	ATCGACATGT	AGTGATCTAA	AAAA	954
<210> 35 <211> 1031 <212> DNA <213> Oryza	a sativa					
<400> 35 CCTCCCTTTG	CCTCGCGCAG	AGGCGGCCGC	GCCTTCTCCG	CCGCGAGGAT	GCCGGCGCC	60
GCCGCCGCCG	TGGAGGACGC	CGGGATGGAC	GAGGTCCAGA	AGCGGCTCAT	GTTCGACGAC	120
GAATGCATTT	TGGTGGATGA	ACAAGACAAT	GTTGTTGGCC	ATGAATCAAA	ATATAACTGC	180
CATCTGATGG	AAAAAATCGA	ATCTGAAAAT	CTACTTCATA	GGGCTTTCAG	TGTATTCCTG	240

_						
TTCAACTCAA	AATATGAACT	CCTACTCCAG	CAACGATCTG	CAACAAAGGT	TACATTTCCT	300
CTAGTTTGGA	CCAACACTTG	CTGCAGCCAT	CCTCTGTACC	GTGAGTCTGA	GCTTATACAG	360
GAAAACTACC	TTGGTGTTAG	AAATGCTGCT	CAGAGGAAGC	TCTTGGATGA	GCTGGGCATC	420
CCAGCTGAAG	ATGTGCCAGT	TGACCAATTC	ACCCCTCTTG	GTCGGATGCT	TTACAAGGCC	480
CCATCTGATG	GAAAATGGGG	TGAACACGAG	CTTGACTACC	TGCTGTTCAT	CGTCCGCGAC	540
GTGAAGGTAG	TCCCGAACCC	GGACGAAGTG	GCCGATGTGA	AATACGTGAG	CCGTGAGCAG	600
CTGAAGGAGC	TCATCCGCAA	AGCGGACGCC	GGAGAGGAAG	GCCTGAAGCT	GTCTCCCTGG	660
TTCCGGCTGG	TTGTTGACAA	CTTCCTCATG	GGCTGGTGGG	ATCACGTCGA	GAAAGGCACC	720
CTCAACGAGG	CCGTGGACAT	GGAGACCATC	CACAAGCTGA	AGTAAGGACT	GCGATGTTGT	780
GGCTGGAAAG	AATGATCCTG	AAGACTCTGT	TCTTGTGCTG	CTGCATATTA	CTCTTACCAG	840
GGAAGTTGCA	GAAGTCAGAA	GAAGCTTTTG	TATGTTTCTG	GGTTTGGAGC	TTGGAAGTGT	900
TGGGCTCTGC	TGACTGAGAG	ATTCCCTTAT	AGAGTGTCTA	TGTTAATTTA	GCAAACTTCT	960
ATATTATACA	TGATTAGTTA	ATTGTTCGGT	GTCTGAATAA	AGAACAATAG	CATGTTCCAT	1020
GTTTATTTGC	T					1031
<210> 36						

<211> 232

<212> PRT

<213> Tagetes erecta

<400> 36

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe
1 10 15

Asp Asp Glu Cys Ile Leu Val Asp Glu Cys Asp Asn Val Val Gly His

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Thr Gly Lys
35 40 45

Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 50 55 60

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val
65 70 75 80

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 85 90 95

Val Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 100 105 110

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Gln Phe 115 120 125

Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp 130 135 140

Gly Glu 145	His	Glu	Asp 150	Leu	Leu	Phe	Ile 155	Val	Arg	Asp	Val	Ala 160

Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Lys Tyr Val Ser His 165 170 175

Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly 180 185 190

Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195 200 205

Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Thr Glu Ala Ile Asp 210 215 220

Met Lys Thr Ile His Lys Leu Ile 225 230

<210> 37

<211> 280

<212> PRT

<213> Lactuca Sativa

<400> 37

Met Leu Lys Phe Pro Pro Phe Lys Thr Ile Ala Thr Met Ile Ser Ser 1 5 10 15

Pro Tyr Ser Ser Phe Leu Leu Pro Arg Lys Ser Ser Phe Pro Pro Met 20 25 30

Pro Ser Leu Ala Ala Ser Val Phe Leu His Pro Leu Ser Ser Ala 35 40 45

Ala Met Gly Asp Ser Ser Met Asp Ala Val Gln Arg Arg Leu Met Phe 50 55 60

Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly His 65 70 75 80

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Gly Asn 85 90 95

Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 100 105 110

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val 115 120 125

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 130 135 140

Ile Asp Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 145 150 155 160

Leu Asp Glu Leu Gly Ile Pro Gly Ala Asp Val Pro Val Asp Glu Phe 165 170 175

Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Ala Ser Asp Gly Lys Trp
180 185 190

Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Met Val Arg Asp Val Gly

<u>.</u>.

195 200

Leu Asp Pro Asn Pro Asp Glu Val Lys Asp Val Lys Tyr Val Asn Arg 210 215 220

Glu Glu Leu Lys Glu Leu Val Arg Lys Ala Asp Ala Gly Glu Glu Gly 225 230 235 240

Val Lys Leu Ser Pro Trp Phe Lys Leu Ile Val Asp Asn Phe Leu Phe 245 250 255

Gln Trp Trp Asp Arg Leu His Lys Gly Thr Leu Thr Glu Ala Ile Asp 260 265 270

Met Lys Thr Ile His Lys Leu Thr 275 280

<210> 38

<211> 229

<212> PRT

<213> Lactuca Sativa

<400> 38

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe 1 5 10 15

Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Asn Val Leu Gly His 20 25 30

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Asp Asn 35 40 45

Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 50 55 60

Leu Leu Cln Gln Arg Ser Glu Thr Lys Val Thr Phe Pro Leu Val
65 70 75 80

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 85 90 95

Ile Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 100 105 110

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe 115 120 125

Thr Thr Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp 130 135 140

Gly Glu His Glu Val Asp Tyr Leu Leu Phe Leu Val Arg Asp Val Ala 145 150 155 160

Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Arg Tyr Val Asn Gln
165 170 175

Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Gly 180

Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195 200 205

Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Asn Glu Ala Ile Asp 210 220

Met Lys Thr Ile His 225

<210> 39

<211> 295

<212> PRT

<213> Adonis Palaestina

<400> 39

Met Ser Ser Ile Arg Ile Asn Pro Leu Tyr Ser Ile Phe Ser Thr Thr 1 5 10 15

Thr Lys Thr Leu Ser Ala Ser Cys Ser Ser Pro Ala Val His Leu Gln
20 25 30

Gln Arg Cys Arg Thr Leu Ser Ile Ser Ser Ser Ile Thr Asn Ser Pro 35 40 45

Arg Arg Gly Leu Asn Arg Leu Phe Ala Ser Thr Ser Thr Met Gly Glu
50 60

Val Ala Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu Met Phe Asp 65 70 75 80

Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly Tyr Asp 85 90 95

Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu 100 105 110

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu 115 120 125

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val Trp 130 135 140

Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser Glu Leu Ile 145 150 155 160

Glu Glu Asn Phe Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Leu 165 170 175

Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe Thr 180 185 190

Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly 195 200 205

Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Tyr 210 215 220

Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val Asn Arg Glu 225 230 235 240

Glu Leu Lys Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly Ile 245 250 . 255

Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe Lys

265

270

Trp Trp Asp His Val Glu Glu Gly Lys Ile Lys Asp Val Ala Asp Met 275 280 285

Lys Thr Ile His Lys Leu Thr 290 295

<210> 40

<211> 234

<212> PRT

<213> Adonis Palaestina

<400> 40

Met Gly Glu Val Thr Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu 1 5 10 15

Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val 20 25 30

Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys
50 55 60

Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro 65 70 75 80

Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser 85 90 95

Glu Leu Ile Glu Glu Asn Tyr Leú Gly Val Arg Asn Ala Ala Gln Arg 100 105 110

Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp 115 120 125

Glu Phe Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly 130 135 140

Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp 145 150 155 160

Val Lys Tyr Asp Pro Asp Pro Asp Glu Val Ala Asp Ala Lys Tyr Val 165 170 175

Asn Arg Glu Glu Leu Arg Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu 180 185 190

Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205

Leu Phe Lys Trp Trp Asp His Val Glu Gln Gly Thr Ile Lys Glu Val 210 215 220

Ala Asp Met Lys Thr Ile His Lys Leu Thr 225 230

<210> 41 <211> 238

<212> PRT <213> Oryza Sativa

<400> 41 Met Ala Gly Ala Ala Ala Val Glu Asp Ala Gly Met Asp Glu Val

Gln Lys Arg Leu Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Gln

Asp Asn Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu Met Glu

Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu

Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys 75

Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu

Tyr Arg Glu Ser Glu Leu Ile Gln Glu Asn Tyr Leu Gly Val Arg Asn 105

Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp 120

Val Pro Val Asp Gln Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala 130

Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe 150

Ile Val Arg Asp Val Lys Val Val Pro Asn Pro Asp Glu Val Ala Asp

Val Lys Tyr Val Ser Arg Glu Gln Leu Lys Glu Leu Ile Arg Lys Ala 180

Asp Ala Gly Glu Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val 200

Val Asp Asn Phe Leu Met Gly Trp Trp Asp His Val Glu Lys Gly Thr 210

Leu Asn Glu Ala Val Asp Met Glu Thr Ile His Lys Leu Lys

<210> 42

<211> 233

<212> PRT

<213> Arabidopsis thaliana

<400> 42

Met Thr Asp Ser Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu

Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val 20

Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys
50 55 60

Tyr Glu Leu Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro 65 70 75 80

Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser 85 90 95

Glu Leu Ile Glu Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110

Lys Leu Phe Asp Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp 115 120 125

Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly 130 135 140

Lys Trp Gly Glu His Glu Val Asp Tyr Leu Leu Phe Ile Val Arg Asp 145 150 155 160

Val Lys Leu Gln Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val 165 170 175

Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp 180 185 190

Glu Ala Val Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205

Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala 210 215 220

Ala Asp Met Lys Thr Ile His Lys Leu 225 230

<210> 43

<211> 293

<212> PRT

<213> Haematococcus pluvialis

<400> 43

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn
1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Leu Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly 35 40 45

Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys
50 55 60

Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75 80

Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110

Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp 115 120 125

Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140

Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys
145 150 155 160

Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175

Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys 180 185 190

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 225 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His 275 280 285

His Ile Asn Glu Ala 290

<210> 44

<211> 304

<212> PRT

<213> Haematococcus pluvialis

<400> 44

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn
1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu 35 40 45

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp 50 55 60

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile 65 70 75 80

Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp Glu 225 230 235 240

Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met Met 245 250 255

Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile Ala 260 265 270

Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu Asn 275 280 285

Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu Ala 290 295 300

<210> 45

<211> 307

<212> PRT

<213> Chlamydomonas reinhardtii

<400> 45

Met Arg Ser Ser Phe Ile Glu Pro Lys Pro Arg Ala Gln Pro Val Leu 1 5 10 15

Ser Arg Gly Arg Ala Ser Met Arg Leu Ala Gln Ser Arg Ala Leu Val 20 25 30

Ala Arg Val Ser Ser Ala Leu Trp Pro Gly Ala Gly Leu Ser Gln Ala 35 40 45

Gln Ser Val Ala Val Arg Met Ala Ser Ser Ser Thr Trp Glu Gly Thr

Gly Leu Ser Gln Asp Asp Phe Met Gln Arg Asp Glu Cys Leu Val Val

65

70

	· Control of the cont	
i		
1		

.75

Asp Glu Gln Asp Arg Leu Leu Gly Thr Ala Asn Lys Tyr Asp Cys His 95

Arg Phe Glu Ala Ala Lys Gly Gln Pro Cys Gly Arg Leu His Arg Ala 100

Phe Ser Val Phe Leu Phe Ser Pro Asp Gly Arg Leu Leu Cys Gly Gla

Phe Ser Val Phe Leu Phe Ser Pro Asp Gly Arg Leu Leu Gln Gln 115 120 125

Arg Ala Ala Ser Lys Val Thr Phe Pro Gly Val Trp Thr Asn Thr Cys 130 140

Cys Ser His Pro Leu Ala Gly Gln Ala Pro Asp Glu Val Asp Leu Pro 145 150 155 160

Ala Ala Val Ala Ser Gly Gln Val Pro Gly Ile Lys Ala Ala Ala Val 165 170 175

Arg Lys Leu Gln His Glu Leu Gly Ile Pro Pro Glu Gln Val Pro Ala 180 185 190

Ser Ser Phe Ser Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Thr 195 200 205

Ala Thr His Gly Pro Ala Ala Glu Trp Gly Glu His Glu Val Asp Tyr 210 215 220

Val Leu Phe Val Arg Pro Gln Gln Pro Val Ser Leu Gln Pro Asn Pro 225 230 235 240

Asp Glu Val Asp Ala Thr Arg Tyr Val Thr Leu Pro Glu Leu Gln Ser 245 250 255

Met Met Ala Asp Pro Gly Leu Ser Trp Ser Pro Trp Phe Arg Ile Leu 260 265 270

Ala Thr Gln Pro Ala Phe Leu Pro Ala Trp Trp Gly Asp Leu Lys Arg 275 280 285

Arg Trp Arg Pro Gly Gly Ser Arg Leu Ser Asp Trp Gly Thr Ile His 290 295 300

Arg Val Met 305

<210> 46

<211> 1848

<212> DNA

<213> Adonis palaestina

<400> 46

WO 99/63055

***************************************	05055					
TTTTCAAGTG	AGGGCTGATG	GTGGAAGCGG	GAGTAGAACT	TCTGTTGCTT	ATAAAGĀGGG	300
TTTTGTGGAC	GAGGAGGATT	TTATCAAAGC	TGGTGGTTCT	GAGCTTTTGT	TTGTCCAAAT	360
GCAGCAAACA	AAGTCTATGG	AGAAACAGGC	CAAGCTCGCC	GATAAGTTGC	CACCAATACC	420
TTTCGGAGAA	TCTGTGATGG	ACTTGGTTGT	AATAGGTTGT	GGACCTGCTG	GTCTTTCACT	480
GGCTGCAGAA	GCTGCTAAGC	TAGGCTTGAA	AGTTGGCCTT	ATTGGTCCTG	ATCTTCCTTT	540
TACAAATAAT	TATGGTGTGT	GGGAAGACGA	GTTCAAAGAT	CTTGGACTTG	AACGTTGTAT	600
CGAGCATGCT	TGGAAGGACA	CCATCGTATA	TCTTGACAAT	GATGCTCCTG	TCCTTATTGG	660
TCGTGCATAT	GGACGAGTTA	GCCGGCATTT	GCTGCATGAA	GAGTTGCTGA	AAAGGTGTGT	720
CGAGTCAGGT	GTATCATATC	TGAATTCTAA	AGTGGAAAGG	ATCACTGAAG	CTGGTGATGG	780
CCATAGTCTT	GTAGTTTGTG	AAAACGACAT	CTTTATCCCT	TGCAGGCTTG	CTACTGTTGC	840
ATCTGGAGCA	GCTTCAGGGA	AACTTTTGGA	GTATGAAGTA	GGTGGCCCTC	GTGTTTGTGT	900
CCAAACTGCT	TATGGTGTGG	AGGTTGAGGT	GGAGAACAAT	CCATACGATC	CCAACTTAAT	960
GGTATTTATG	GACTACAGAG	ACTATATGCA	ACAGAAATTA	CAGTGCTCGG	AAGAAGAATA	1020
TCCAACATTT	CTCTATGTCA	TGCCCATGTC	GCCAACAAGA	CTTTTTTTTG	AGGAAACCTG	1080
TTTGGCCTCA	AAAGATGCCA	TGCCTTTCGA	TCTACTGAAG	AGAAAACTAA	TGTCACGATT	1140
GAAGACTCTG	GGTATCCAAG	TTACAAAAAT	TTATGAAGAG	GAATGGTCTT	ATATTCCTGT	1200
TGGGGGTTCT	TTACCAAACA	CAGAGCAAAA	GAACCTAGCA	TTTGGTGCTG	CAGCAAGCAT	1260
GGTGCATCCA	GCAACAGGCT	ATTCGGTTGT	ACGATCACTA	TCAGAAGCTC	CAAAATATGC	1320
TTCTGTAATT	GCAAAGATTT	TGAAGCAAGA	TAACTCTGCA	TATGTGGTTT	CTGGACAAAG	1380
CAGTGCAGTA	AACATTTCAA	TGCAAGCATG	GAGCAGTCTT	TGGCCAAAGG	AGCGAAAACG	1440
TCAAAGAGCA	TTCTTTCTTT	TCGGGTTAGA	GCTTATTGTG	CAGCTAGATA	TTGAAGCAAC	1500
CAGAACGTTC	TTTAGAACCT	TCTTCCGCTT	GCCAACTTGG	ATGTGGTGGG	GTTTCCTTGG	1560
GTCTTCACTA	TCATCTTTCG	ATCTTGTATT	GTTTTCCATG	TACATGTTTG	TTTTGGCCCC	1620
GAACAGCATG	AGGATGTCAC	TTGTGAGACA	TTTGCTTTCA	GATCCTTCTG	GTGCAGTTAT	1680
GGTTAAAGCT	TACCTCGAAA	GGTAATCTGT	TTTATGAAAC	TATAGTGTCT	САТТАААТАА	1740
ATGAGGATCC	TTCGTATATG	TATATGATCA	TCTCTATGTA	TATCCTATAT	TCTAATCTCA	1800
TAAAGTAATC	GAAAATTCAT	TGATAGAAAA	АААААААА	AAAAAAA		1848

PCT/US99/12121

Met Glu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp

<210> 47

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 47

10 15 Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 105 Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg 155 Cys Ile Glu His Ala Trp Lys Asp Thr Ile Val Tyr Leu Asp Asn Asp Ala Pro Val Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu Lys Arg Cys Val Glu Ser Gly Val Ser Tyr 200 Leu Asp Ser Lys Val Glu Arg Ile Thr Glu Ala Gly Asp Gly His Ser Leu Val Val Cys Glu Asn Glu Ile Phe Ile Pro Cys Arg Leu Ala Thr 225 Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Glu Tyr Glu Val Gly 250 Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Asn Pro Tyr Asp Pro Asn Leu Met Val Phe Met Asp Tyr Arg 280 Asp Tyr Met Gln Gin Lys Leu Gln Cys Ser Glu Glu Glu Tyr Pro Thr 295 Phe Leu Tyr Val Met Pro Met Ser Pro Thr Arg Leu Phe Phe Glu Glu 315 Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Arg

330

Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Val 345 Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys 390 Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu

Arg

<210> 48

<211> 378

<212> PRT

<213> Potato

<400> 48

Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile Glu His Val Trp

Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Pro Ile Leu Ile Gly

Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu

Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp

Arg Ile Val Glu Ala Thr Asn Gly His Ser Leu Val Glu Cys Glu Gly

Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala Ser Gly Ala Ala

Ser G	ly I	ys	Phe	Leu	Gln	Tyr	Glu	Leu	Gly	Gly	Pro	Arg	Val	Ser	Val
			100					105					110		

Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp 115 120 125

Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp 130 135 140

Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro 145 150 155 160

Met Ser Pro Thr Arg Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys 165 170 175

Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Leu Met Leu Arg Leu 180 185 190

Asn Thr Leu Gly Val Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser 195 200 205

Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu 210 215 220

Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser 225 230 235 240

Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala 245 250 255

Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser 260 265 270

Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu 275 280 285

Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 290 295 300

Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 305 . 310 315 320

Val Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa 325 330 335

Ala Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn 340 345 350

Asp Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly 355 360 365

Ala Thr Leu Ile Arg Thr Tyr Leu Thr Phe 370

<210> 49

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 49

Met 1	Glu	Cys	Val	Gly 5	Ala	Arg	Asn	Phe	Ala 10	Ala	Met	Ala	Val	Ser 15	Thr
Phe	Pro	Ser	Trp 20	Ser	Cys	Arg	Arg	Lys 25	Phe	Pro	Val	Val	Lys 30	Arg	Tyr
Ser	Tyr	Arg 35	Asn	Ile	Arg	Phe	Gly 40	Leu	Cys	Ser	Val	Arg 45	Ala	Ser	Gly
Gly	Gly 50	Ser	Ser	Gly	Ser	Glu 55	Ser	Cys	Val	Ala	Val 60	Arg	Glu	Asp	Phe
Ala 65	Asp	Glu	Glu	Asp	Phe 70	Val	Lys	Ala	Gly	Gly 75	Ser	Glu	Ile	Leu	Phe 80
Val	Gln	Met	Gln	Gln 85	Asn	Lys	Asp	Met	Asp 90	Glu	Gln	Ser	Lys	Leu 95	Val
Asp	Lys	Leu	Pro 100	Pro	Ile	Ser	Ile	Gly 105	Asp	Gly	Ala	Leu	Asp 110	His	Val
Val	Ile	Gly 115	Cys	Gly	Pro	Ala	Gly 120	Leu	Ala	Leu	Ala	Ala 125	Glu	Ser	Ala
Lys	Leu 130	Gly	Leu	Lys	Val	Gly 135	Leu	Ile	Gly	Pro	Asp 140	Leu	Pro	Phe	Thr
Asn 145	Asn	Tyr	Gly	Val	Trp 150	Glu	Asp	Glu	Phe	Asn 155	Asp	Leu	Gly	Leu	Gln 160
Lys	Cys	Ile	Glu	His 165	Val	Trp	Arg	Glu	Thr 170	Ile	Val	Tyr	Leu	Asp 175	
Asp	Lys	Pro	Ile 180	Thr	Ile	Gly	Arg	Ala 185	Tyr	Gly	Arg	Val	Ser 190	Arg	Arg
Leu	Leu	His 195	Glu	Glu	Leu	Leu	Arg 200	Arg	Cys	Val	Glu	Ser 205	Gly	Val	Ser
Tyr	Leu 210	Ser	Ser	Lys	Val	Asp 215	Ser	Ile	Thr	Glu	Ala 220	Ser	Asp	Gly	Leu
Arg 225	Leu	Val	Ala	Cys	Asp 230	Asp	Asn	Asn	Val	Ile 235	Pro	Cys	Arg	Leu	Ala 240
Thr	Val	Ala	Ser	Gly 245	Ala	Ala	Ser	Gly	Lys 250	Leu	Leu	Gln	Tyr	Glu 255	Val
Gly	Gly	Pro	Arg 260	Val	Cys	Val	Gln	Thr 265	Ala	Tyr	Gly	Val	Glu 270	Val	Glu
Val	Glu	Asn 275	Ser	Pro	Tyr	Asp	Pro 280	qzA	Gln	Met	Val	Phe 285	Met	Asp	Tyr
Arg	Asp 290	Tyr	Thr	Asn	Glu	Lys 295	Val	Arg	Ser	Leu	Glu 300	Ala	Glu	Tyr	Pro
Thr 305	Phe	Leu	Tyr	Ala	Met 310	Pro	Met	Thr	Lys	Ser 315	Arg	Leu	Phe	Phe	Glu 320
Glu	Thr	Cys	Leu	Ala	Ser	Lys	Asp	Val	Met	Pro	Phe	Asp	Leu	Leu	Lys

325 330 335

Thr Lys Leu Met Leu Arg Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys 340 345 350

Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro 355 360 365

Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val 370 380

His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro 385 390 395 400

Lys Tyr Ala Ser Val Ile Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys
405 410 415

Gln Ile Asn Ser Asn Ile Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro
420 425 430

Pro Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu 435 440 445

Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe 450 455 460

Phe Arg Leu Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Thr Leu 465 470 475 480

Thr Ser Gly Asp Leu Val Leu Phe Ala Leu Tyr Met Phe Val Ile Ser 485 490 495

Pro Asn Asn Leu Arg Lys Gly Leu Ile Asn His Leu Ile Ser Asp Pro 500 505 510

Thr Gly Ala Thr Met Ile Lys Thr Tyr Leu Lys Val 515 520

<210> 50

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 50

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp
1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val 50 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp

95 Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 105 Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg. Cys Ile Glu His Ala Trp Lys Asp Thr Ile Val Tyr Leu Asp Asn Asp Ala Pro Val Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu Lys Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Asp Ser Lys Val Glu Arg Ile Thr Glu Ala Gly Asp Gly His Ser Leu Val Val Cys Glu Asn Glu Ile Phe Ile Pro Cys Arg Leu Ala Thr 235 Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Glu Tyr Glu Val Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val 260 Glu Asn Asn Pro Tyr Asp Pro Asn Leu Met Val Phe Met Asp Tyr Arg 280 Asp Tyr Met Gln Gln Lys Leu Gln Cys Ser Glu Glu Glu Tyr Pro Thr Phe Leu Tyr Val Met Pro Met Ser Pro Thr Arg Leu Phe Phe Glu Glu 315 Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Arg 330 Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Val Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His 375 Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys 395 Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr 410

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp
420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 435 440 445

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 475 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr
485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Arg

<210> 51

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 51

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp
1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile
20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Thr Ser Val Ala Tyr Lys Glu Gly Phe Val
50 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp 85 90 95

Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 100 105 110

Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys 115 120 125

Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn 130 135 140

Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg 145 150 155 160

Cys	Ile	Glu	His	Ala 165	Trp	Lys	Asp	Thr	Ile 170	Val	Туr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180	Ile	Gly	Arg	Ala	Tyr 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195	Glu	Leu	Leu	Lys	Arg 200	Суѕ	Val	Glu	Ser	Gly 205	Val	Ser	Tyr
Leu	Asn 210	Ser	Lys	Val	Glu	Arg 215	Ile	Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
Leu 225	Val	Val	Cys	Glu	Asn 230	Asp	Ile	Phe	Ile	Pro 235	Cys	Arg	Leu	Ala	Thr 240
Val	Ala	Ser	Gly	Ala 245	Ala	Ser	Gly	Lys	Leu 250	Leu	Glu	Tyr	Glu	Val 255	Gly
Gly	Pro	Arg	Val 260	Cys	Val	Gln	Thr	Ala 265	Tyr	Gly	Val	Glu	Val 270	Glu	Val
Glu	Asn	Asn 275	Pro	Tyr	Asp	Pro	Asn 280	Leu	Met	Val	Phe	Met 285	Asp	Tyr	Arg
Asp	Tyr 290	Met	Gln	Gln	Lys	Leu 295	Gln	Cys	Ser	Glu	Glu 300	Glu	Tyr	Pro	Thr
Phe 305	Leu	Tyr	Val	Met	Pro 310	Met	Ser	Pro	Thr	Arg 315	Leu	Phe	Phe	Glu	Glu 320
Thr	Cys	Leu	Ala	Ser 325	Lys	Asp	Ala	Met	Pro 330	Phe	Asp	Leu	Leu	Lys 335	Arg
Lys	Leu	Met	Ser 340	Arg	Leu	Lys	Thr	Leu 345	Gly	Ile	Gln	Val	Thr 350	Lys	Ile
Tyr	Glu	Glu 355	Glu	Trp	Ser	Tyr	11e 360	Pro	Val	Gly	Gly	Ser 365	Leu	Pro	Asn
Thr	Glu 370	Gln	Lys	Asn	Leu	Ala 375	Phe	Gly	Ala	Ala	Ala 380	Ser	Met	Val	His
Pro 385	Ala	Thr	Gly	Tyr	Ser 390	Val	Val	Arg	Ser	Leu 395	Ser	Glu	Ala	Pro	Lys 400
Tyr	Ala	Ser	Val	Ile 405	Ala	Lys	Ile	Leu	Lys 410	Gln	Asp	Asn	Ser	Ala 415	Tyr
Val	Val	Ser	Gly 420	Gln	Ser	Ser	Ala	Val 425	Asn	Ile	Ser	Met	Gln 430	Ala	Trp
Ser	Ser	Leu 435	Trp	Pro	Lys	Glu	Arg 440	Lys	Arg	Gln	Arg	Ala 445	Phe	Phe	Leu
Phe	Gly 450	Leu	Glu	Leu	Ile	Val 455	Gln	Leu	Asp	Ile	Glu 460	Ala	Thr	Arg	Thr
Phe 465	Phe	Arg	Thr	Phe	Phe 470	Arg	Leu	Pro	Thr	Trp 475	Met	Trp	Trp	.Gly	Phe 480
Leu	Gly	Ser	Ser	Leu	Ser	Ser	Phe	Asp	Leu	Val	Leu	Phe	Ser	Met	Tyr

490

495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Lys Ala Tyr Leu Glu 515 520 525

Arg

<210> 52

<211> 533

<212> PRT

<213> Lettuce

<400> 52

Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe
1 5 10 15

Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu 20 25 30

Leu Lys Gln Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg
35 40 45

Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln
50 60

Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser
65 70 75 80

Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln 85 90 95

Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile 100 105 110

Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala 115 120 125

Ala Glu Ser Ala Lys Leu Gly Leu Asn Val Gly Leu Ile Gly Pro Asp 130 135 140

Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Gln Asp Glu Phe Ile Gly
145 150 155 160

Leu Gly Leu Glu Gly Cys Ile Glu His Ser Trp Lys Asp Thr Leu Val 165 170 175

Tyr Leu Asp Asp Ala Asp Pro Ile Arg Ile Gly Arg Ala Tyr Gly Arg 180 185 190

Val His Arg Asp Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu 195 200 205

Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Glu Arg Ile Thr Glu Ala 210 215 220

Pro Asn Gly Tyr Ser Leu Ile Glu Cys Glu Gly Asn Ile Thr Ile Pro

WO 99/63055

225				-	230					235					240
Cys	Arg	Leu	Ala	Thr 245		Ala	Ser	Gly	Ala 250	Ala	Ser	Gly	Lys	Phe 255	Leu
Glu	Tyr	Glu	Leu 260	Gly	Gly	Pro	Arg	Val 265	Суѕ	Val	Gln	Thr	Ala 270	Tyr	Gly
Ile	Glu	Val 275	Glu	Val	Glu	Asn	Asn 280	Pro	Tyr	Asp	Pro	Asp 285	Leu	Met	Val
Phe	Met 290	Asp	Tyr	Arg	Asp	Phe 295	Ser	Lys	His	Lys	Pro 300	Glu	Ser	Leu	Glu.
Ala 305	Lys	Tyr	Pro	Thr	Phe 310	Leu	Tyr	Val	Met	Ala 315	Met	Ser	Pro	Thr	Lys 320
Ile	Phe	Phe	Glu	Glu 325	Thr	Суѕ	Leu	Ala	Ser 330	Arg	Glu	Ala	Met	Pro 335	Phe
Asn	Leu	Leu	Lys 340	Ser	Lys	Leu	Met	Ser 345	Arg	Leu	Lys	Ala	Met 350	Gly	Ile
Arg	Ile	Thr 355	Arg	Thr	Tyr	Glu	Glu 360	Glu	Trp	Ser	Tyr	Ile 365	Pro	Val	Gly
Gly	Ser 370	Leu	Pro	Asn	Thr	Glu 375	Gln	Lys	Asn	Leu	Ala 380	Phe	Gly	Ala	Ala
Ala 385	Ser	Met	Val	His	Pro 390	Ala	Thr	Gly	Tyr	Ser 395	Val	Val	Arg	Ser	Leu 400
Ser	Glu	Ala	Pro	Asn 405	Tyr	Ala	Ala	Val	Ile 410	Ala	Lys	Ile	Leu	Arg 415	Gln
Asp	Gln	Ser	Lys 420	Glu	Met	Ile	Ser	Leu 425	Gly	Lys	Tyr	Thr	Asn 430	Ile	Ser
Lys	Gln	Ala 435	Trp.	Glu	Thr	Leu	Trp 440	Pro	Leu	Glu	Arg	Lys 445	Arg	Gln	Arg
Ala	Phe 450	Phe	Leu	Phe	Gly	Leu 455	Ser	His	Ile	Val	Leu 460	Met	Asp	Leu	Glu
Gly 465	Thr	Arg	Thr	Phe	Phe 470	Arg	Thr	Phe	Phe	Arg 475	Leu	Pro	Lys	Trp	Met 480
Trp	Trp	Gly	Phe	Leu 485	Gly	Ser	Ser	Leu	Ser 490	Ser	Thr	Asp	Leu	Ile 495	Ile
Phe	Ala	Leu	Tyr 500	Met	Phe	Val	Ile	Ala 505	Pro	His	Ser	Leu	Arg 510	Met	Glu
Leu	Val	Arg 515	His	Leu	Leu	Ser	Asp 520	Pro	Thr	Gly	Ala	Thr 525	Met	Val	Lys
Ala	Tyr 530	Leu	Thr	Ile											

<210> 53

<213> Tomato

<40.0> 53

Met Glu Cys Val Gly Val Gln Asn Val Gly Ala Met Ala Val Leu Thr 1 5 10

Arg Pro Arg Leu Asn Arg Trp Ser Gly Glu Leu Cys Gln Glu Lys 20 25 30

Ser Ile Phe Leu Ala Tyr Glu Gln Tyr Glu Ser Lys Cys Asn Ser Ser 35 40 45

Ser Gly Ser Asp Ser Cys Val Val Asp Lys Glu Asp Phe Ala Asp Glu 50 55 60

Glu Asp Tyr Ile Lys Ala Gly Gly Ser Gln Leu Val Phe Val Gln Met 65 70 75 80

Gln Gln Lys Lys Asp Met Asp Gln Gln Ser Lys Leu Ser Asp Glu Leu 85 90 95

Arg Gln Ile Ser Ala Gly Gln Thr Val Leu Asp Leu Val Val Ile Gly
100 105 110

Cys Gly Pro Ala Gly Leu Ala Leu Ala Ala Glu Ser Ala Lys Leu Gly 115 120 125

Leu Asn Val Gly Leu Val Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr 130 135 140

Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile 145 150 155 160

Glu His Val Trp Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Glu Pro 165 170 175

Ile Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Phe Leu His 180 185 190

Glu Glu Leu Leu Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn 195 200 205

Ser Lys Val Asp Arg Ile Val Glu Ala Thr Asn Gly Gln Ser Leu Val 210 215 220

Glu Cys Glu Gly Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala 225 230 235 240

Ser Gly Ala Ala Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Ser Pro 245 250 255

Arg Val Ser Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn 260 265 270

Asn Pro Phe Asp Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr 275 280 285

Leu Arg His Asp Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu 290 295 300

Туг 305	Ala	Met	Pro	Met	Ser 310	Pro	Thr	Arg	Val	Phe 315	Phe	Glu	Glu	Thr	Cys 320
Leu	Ala	Ser	Lys	Asp 325	Ala	Met	Pro	Phe	Asp 330	Leu	Leu	Lys	Lys	Lys 335	Leu
Met	Leu	Arg	Leu 340	Asn	Thr	Leu	Gly	Val 345	Arg	Ile	Lys	Glu	Ile 350	Tyr	Glu
Glu	Glu	Trp 355	Ser	Tyr	Ile	Pro	Val 360	Gly	Gly	Ser	Leu	Pro 365	Asn	Thr	Glu
Gln	Lys 370	Thr	Leu	Ala	Phe	Gly 375	Ala	Ala	Ala	Ser	'Met 380	Val	His	Pro	Ala
Thr 385	Gly	Tyr	Ser	Val	Val 390	Arg	Ser	Leu	Ser	Glu 395	Ala	Pro	Lys	Cys	Ala 400
Ser	Val	Leu	Ala	Asn 405	Ile	Leu	Arg	Gln	His 410	Tyr	Ser	Lys	Asn	Met 415	Leu
Thr	Ser	Ser	Ser 420	Ile	Pro	Ser	Ile	Ser 425	Thr	Gln	Ala	Trp	Asn 430	Thr	Leu
Trp	Pro	Gln 435	Glu	Arg	Lys	Arg	Gln 440	Arg	Ser	Phe	Phe	Leu 445	Phe	Gly	Leu
Ala	Leu 450	Ile	Leu	Gln	Leu	Asp 455	Ile	Glu	Gly	Ile	Arg 460	Ser	Phe	Phe	Arg
Ala 465	Phe	Phe	Arg	Val	Pro 470	Lys	Trp	Met	Trp	Gln 475	Gly	Phe	Leu	Gly	Ser 480
Ser	Leu	Ser	Ser	Ala 485	Asp	Leu	Met	Leu	Phe 490	Ala	Phe	Tyr	Met	Phe 495	Ile
Ile	Ala	Pro	Asn 500	Asp	Met	Arg	Lys	Gly 505	Leu	Ile	Arg	His	Leu 510	Leu	Ser
Asp	Pro	Thr 515	Gly	Ala	Thr	Leu	Ile 520	Arg	Thr	Tyr	Leu	Thr 525	Phe		

<210> 54

<211> 516

<212> PRT

<213> Tagetes erecta

<400> 54

Met Ser Met Arg Ala Gly His Met Thr Ala Thr Met Ala Ala Phe Thr 1 5 10 15

Cys Pro Arg Phe Met Thr Ser Ile Arg Tyr Thr Lys Gln Ile Lys Cys 20 25 30

Asn Ala Ala Lys Ser Gln Leu Val Val Lys Gln Glu Ile Glu Glu Glu 35 40 45

Glu Asp Tyr Val Lys Ala Gly Gly Ser Glu Leu Leu Phe Val Gln Met 50 55 60

WO 99/63055

		-													
Gln 65	Gln	Asn	Lys	Ser	Met 70	Asp	Ala	Gln	Ser	Ser 75	Leu	Ser	Gln	Lys	Leu 80
Pro	Arg	Val	Pro	Ile 85	Gly	Gly	Gly	Gly	Asp 90	Ser	Asn	Cys	Ile	Leu 95	Asp
Leu	Val	Val	Ile 100	Gly	Cys	Gly	Pro	Ala 105	Gly	Leu	Ala	Leu	Ala 110	Gly	Glu
Ser	Ala	Lys 115	Leu	Gly	Leu	Asn	Val 120	Ala	Leu	Ile	Gly	Pro 125	Asp	Leu	Pro
Phe	Thr 130	Așn	Asn	Tyr	Gly	Val 135	Trp	Glu	Asp	Glu	Phe 140	Ile	Gly	Leu	Gly
Leu 145	Glu	Gly	Cys	Ile	Glu 150	His	Val	Trp	Arg	Asp 155	Thr	Val	Val	Tyr	Leu 160
Asp	Asp	Asn	Asp	Pro 165	Ile	Leu	Ile	Gly	'Arg 170	Ala	Tyr	Gly	Arg	Val 175	Ser
Arg	Asp	Leu	Leu 180	His	Glu	Glu	Leu	Leu 185	Thr	Arg	Cys	Met	Glu 190	Ser	Gly
Val	Ser	Tyr 195	Leu	Ser	Ser	Lys	Val 200	Glu	Arg	Ile	Thr	Glu 205	Ala	Pro	Asn
Gly	Leu 210	Ser	Leu	Ile	Glu	Cys 215	Glu	Gly	Asn	Ile	Thr 220	Ile	Pro	Cys	Arg
Leu 225	Ala	Thr	Val	Ala	Ser 230	Gly	Ala	Ala	Ser	Gly 235	_	Leu	Leu	Gln	Tyr 240
Glu	Leu	Gly	Gly	Pro 245	Arg	Val	Cys	Val	Gln 250	Thr	Ala	Tyr	Gly	Ile 255	Glu
Val	Glu	Val	Glu 260	Ser	Ile	Pro	Tyr	Asp 265	Pro	Ser	Leu	Met	Val 270	Phe	Met
Asp	Tyr	Arg 275	Asp	Tyr	Thr	Lys	His 280	Lys	Ser	Gln	Ser	Leu 285	Glu	Ala	Gln
Tyr	Pro 290	Thr	Phe	Leu	Tyr	Val 295		Pro	Met	Ser	Pro 300	Thr	Lys	Val	Phe
Phe 305	Glu	Glu	Thr	Cys	Leu 310	Ala	Ser	Lys	Glu	Ala 315	Met	Pro	Phe	Glu	Leu 320
Leu	Lys	Thr	Lys	Leu 325		Ser	Arg	Leu	Lys 330		Met	Gly	Ile	Arg 335	Ile
Thr	Lys	Thr	Tyr 340		Glu	Glu	Trp	Ser 345		Ile	Pro	Val	Gly 350	Gly	Ser
Leu	Pro	Asn 355		Glu	Gln	Lys	Asn 360		Ala	Phe	Gly	Ala 365		Ala	Ser
Met	Val 370		Pro	Ala	Thr	Gly 375		Ser	Val	Val	Arg 380		Leu	Ser	Glu

Ala Pro Asn Tyr Ala Ala Val Ile Ala Lys Ile Leu Gly Lys Gly Asn

400

395

Ser Lys Gln Met Leu Asp His Gly Arg Tyr Thr Thr Asn Ile Ser Lys 405 410 415

390

Gln Ala Trp Glu Thr Leu Trp Pro Leu Glu Arg Lys Arg Gln Arg Ala 420 425 430

Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Met Asp Ile Glu Gly 435 440 445

Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp 450 455 460

Trp Gly Phe Leu Gly Ser Ser Leu Ser Ser Thr Asp Leu Ile Ile Phe 465 470 475 480

Ala Phe Tyr Met Phe Ile Ile Ala Pro His Ser Leu Arg Met Gly Leu 485 490 495

Val Arg His Leu Leu Ser Asp Pro Thr Gly Gly Thr Met Leu Lys Ala 500 505 510

Tyr Leu Thr Ile 515

<210> 55

<211> 501

<212> PRT

<213> Arabidopsis thaliana

<400> 55

Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Asp Phe Phe Ile Pro 1 5 10 15

Gln Phe His Gly Phe Glu Arg Leu Cys Ser Asn Asn Pro Tyr His Ser 20 25 30

Arg Val Arg Leu Gly Val Lys Lys Arg Ala Ile Lys Ile Val Ser Ser 35 40 45

Val Val Ser Gly Ser Ala Ala Leu Leu Asp Leu Val Pro Glu Thr Lys
50 55 60

Lys Glu Asn Leu Asp Phe Glu Leu Pro Leu Tyr Asp Thr Ser Lys Ser 65 70 75 80

Gln Val Val Asp Leu Ala Ile Val Gly Gly Pro Ala Gly Leu Ala 85 90 95

Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp 100 105 110

Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp 115 120 125

Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr Thr Trp Ser 130 135 140

Gly Ala Val Val Tyr Val Asp Glu Gly Val Lys Lys Asp Leu Ser Arg

		-									•				
145					150					155					160
Pro	Tyŗ	Gly	Arg	Val 165	Asn	Arg	Lys	Gln	Leu 170	Lys	Ser	Lys	Met	Leu 175	Gln
Lys	Cys	Ile	Thr 180	Asn	Gly	Val	Lys	Phe 185	His	Gln	Ser	Lys	Val 190	Thr	Asn
Val	Val	His 195	Glu	Glu	Ala	Asn	Ser 200	Thr	Val	Val	Cys	Ser 205	Asp	Gly	Val
Lys	Ile 210	Gln	Ala	Ser	Val	Val 215	Leu	Asp	Ala	Thr	Gly 220	Phe	Ser	Arg	Cys
Leu 225	Val	Gln	Tyr	Asp	Lys 230	Pro	Tyr	Asn	Pro	Gly 235	Tyr	Gln	Val	Ala	Tyr 240
Gly	Ile	Val	Ala	Glu 245	Val	Asp	Gly		Pro 250	Phe	Asp	Val	Asp	Lys 255	Met
Val	Phe	Met	Asp 260	Trp	Arg	Asp	Lys	His 265	Leu	Asp	Ser	Tyr	Pro 270	Glu	Leu
Lys	Glu	Arg 275	Asn	Ser	Lys	Ile	Pro 280	Thr	Phe	Leu	Tyr	Ala 285	Met	Pro	Phe
Ser	Ser 290	Asn	Arg	Ile	Phe	Leu 295	Glu	Glu	Thr	Ser	Leu 300	Val	Ala	Arg	Pro
Gly 305	Leu	Arg	Met	Glu	Asp 310	Ile	Gln	Glu	Arg	Met 315	Ala	Ala	Arg	Leu	Lys 320
His	Leu	Gly	Ile	Asn 325	Val	Lys	Arg	Ile	Glu 330	Glű	Asp	Glu	Arg	Cys 335	Val
Ile	Pro	Met	Gly 340	Gly	Pro	Leu	Pro	Val 345	Leu	Pro	Gln	Arg	Val 350	Val	Gly
Ile	Gly	Gly 355	Thr	Ala	Gly	Met	Val 360	His	Pro	Ser	Thr	Gly 365	Tyr	Met	Val
Ala	Arg 370	Thr	Leu	Ala	Ala	Ala 375	Pro	Ile	Val	Ala	Asn 380	Ala	Ile	Val	Arg
Tyr 385	Leu	Gly	Ser	Pro	Ser 390	Ser	Asn	Ser	Leu	Arg 395	Gly	Asp	Gln	Leu	Ser 400
Ala	Glu	Val	Trp	Arg 405	Asp	Leu	Trp	Pro	Ile 410	Glu	Arg	Arg	Arg	Gln 415	Arg
Glu	Phe	Phe	Cys 420	Phe	Gly	Met	Asp	Ile 425	Leu	Leu	Lys	Leu	Asp 430	Leu	Asp
Ala	Thr	Arg 435	Arg	Phe	Phe	Asp	Ala 440	Phe	Phe	Asp	Leu	Gln 445	Pro	His	Tyr
Trp	His 450	Gly	Phe	Leu	Ser	Ser 455	Arg	Leu	Phe	Leu	Pro 460	Glu	Leu	Leu	Val
Phe 465	Gly	Leu	Ser	Leu	Phe 470	Ser	His	Ala	Ser	Asn 475	Thr	Ser	Arg	Leu	Glu 480

Ile Met Thr Lys Gly Thr Val Pro Leu Ala Lys Met Ile Asn Asn Leu 485 490 495

Val Gln Asp Arg Asp 500

<210> 56

<211> 502

<212> PRT

<213> Adonis palaestina

<400> 56

Met Asp Thr Leu Leu Arg Thr His Asn Lys Leu Glu Leu Leu Pro Thr 1 5 10 15

Leu His Gly Phe Ala Glu Lys Gln His Leu Val Ser Thr Ser Lys Leu
20 25 30

Gln Asn Gln Val Phe Arg Ile Ala Ser Arg Asn Ile His Pro Cys Arg 35 40 45

Asn Gly Thr Val Lys Ala Arg Gly Ser Ala Leu Leu Glu Leu Val Pro 50 55 60

Glu Thr Lys Lys Glu Asn Leu Glu Phe Asp Leu Pro Ala Tyr Asp Pro 65 70 75 80

Ser Arg Gly Ile Val Val Asp Leu Ala Val Val Gly Gly Pro Ala 85 90 95

Gly Leu Ala Ile Ala Gln Gln Val Ser Glu Ala Gly Leu Leu Val Cys 100 105 110

Ser Ile Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val 115 120 125

Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr 130 135 140

Thr Trp Ser Gly Ala Val Val Tyr Thr Asp Asp Asn Ser Lys Lys Tyr 145 150 155 160

Leu Asp Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys 165 170 175

Met Leu Gln Lys Cys Val Thr Asn Gly Val Lys Phe His Gln Ala Lys 180 185 190

Val Ile Lys Val Ile His Glu Glu Ser Lys Ser Leu Leu Ile Cys Asn 195 200 205

Asp Gly Ile Thr Ile Asn Ala Thr Val Val Leu Asp Ala Thr Gly Phe 210 215 220

Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln 225 230 235 240

Val Ala Tyr Gly Ile Met Ala Glu Val Glu Glu His Pro Phe Asp Leu 245 250 255

Asp Lys Met Leu Phe Met Asp Trp Arg Asp Ser His Leu Asn Glu Lys Leu Glu Leu Lys Asp Lys Asn Arg Lys Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser Thr Lys Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly Leu Arg Phe Glu Asp Ile Gln Glu Arg Met Val Ala Arg Leu Lys His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly 360 (Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Lys Ser

Ile Val Gln Tyr Leu Gly Ser Asp Arg Ser Leu Ser Gly Asn Glu Leu 390 395

Ser Ala Glu Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Arg Gln

Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu 420 425

Gln Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro His 440

Tyr Trp His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Leu 450

Phe Phe Gly Leu Ser Leu Phe Ser His Ala Ser Asn Ala Ser Arg Ile 475

Glu Ile Met Ala Lys Gly Thr Val Pro Leu Val Asn Met Met Asn Asn 490

Leu Ile Gln Asp Thr Asp 500

<210> 57

<211> 498

<212> PRT

<213> Pepper

<400> 57

Met Asp Thr Leu Leu Arg Thr Pro Asn Asn Leu Glu Phe Leu His Gly

Phe Gly Val Lys Val Ser Ala Phe Ser Ser Val Lys Ser Gln Lys Phe 25

Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys Gly Val

Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu Ala Val

Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp Pro

Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu 115

Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp Ser Gly 135

Ala Ala Val Tyr Ile Asp Asp Lys Thr Thr Lys Asp Leu Asn Arg Pro

Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met Gln Lys

Cys Ile Leu Asn Gly Val Lys Phe His Gln Ala Lys Val Ile Lys Val 185

Ile His Glu Glu Ser Lys Ser Met Leu Ile Cys Asn Asp Gly Ile Thr

Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg Ser Leu

Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala Tyr Gly 230 235

Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Val Asn Lys Met Val

Phe Met Asp Trp Arg Asp Ser His Leu Lys Asn Asn Val Glu Leu Lys

Glu Arg Asn Ser Arg Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser 280

Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly

Leu Gly Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu Ser His 310 315

Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys Val Ile 325

Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val Gly Ile 345

Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala

BNSDOCID: <WO

_9963055A1_I_>

355 360 365

Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile Gln Tyr 370 380

Leu Ser Ser Glu Arg Ser His Ser Gly Asp Glu Leu Ser Ala Ala Val 385 390 395 400

Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu Phe Phe
405 410 415

Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg
420 425 430

Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly 435 440 445

Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val Phe Gly Leu 450 460

Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Leu Glu Ile Met Thr 465 470 475 480

Lys Gly Thr Leu Pro Leu Val His Met Ile Asn Asn Leu Leu Gln Asp 485 490 495

Lys Glu

<210> 58

<211> 500

<212> PRT

<213> Tomato

<400> 58

Met Asp Thr Leu Leu Lys Thr Pro Asn Asn Leu Glu Phe Leu Asn Pro
1 5 10 15

His His Gly Phe Ala Val Lys Ala Ser Thr Phe Arg Ser Glu Lys His 20 25 30

His Asn Phe Gly Ser Arg Lys Phe Cys Glu Thr Leu Gly Arg Ser Val 35 40 45

Cys Val Lys Gly Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80

Gly Val Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile 100 105

Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp

	130					135					140				+ ∵
Ser 145	Gly	Ala	Ala	Val	Tyr .150	Ile	Asp	Asp	Asn	Thr 155	Ala	Lys	Asp	Leu	His 160
Arg	Pro	Tyr	Gly	Arg 165	Val	Asn	Arg	Lys	Gln 170	Leu	Lys	Ser	Lys	Met 175	Met
Gln	Lys	Cys	Ile 180	Met	Asn	Gly	Val	Lys 185	Phe	His	Gln	Ala	Lys 190	Val	Ile
Lys	Val	Ile 195	His	Glu	Glu	Ser	Lys 200	Ser	Met	Leu	Ile	Cys 205	Asn	Asp	Gly
Ile	Thr 210	Ile	Gln	Ala	Thr	Val 215	Val	Leu	Asp	Ala	Thr 220	Gly	Phe	Ser	Arg
Ser 225	Leu	Val	Gln	Tyr	Asp 230	Lys	Pro	Tyr	Asn	Pro 235	Gly	Tyr	Gln	Val	Ala 240
Tyr	Gly	Ile	Leu	Ala 245	Glu	Val	Glu	Glu	His 250	Pro	Phe	Asp	Val	Asn 255	Lys
Met	Val	Phe	Met 260	Asp	Trp	Arg	Asp	Ser 265	His	Leu	Lys	Asn	Asn 270	Thr	Asp
Leu	Lys	Glu 275	Arg	Asn	Ser	Arg	Ile 280	Pro	Thr	Phe	Leu	Tyr 285	Ala	Met	Pro
Phe	Ser 290	Ser	Asn	Arg	Ile	Phe 295	Leu	Glu	Glu	Thr	Ser 300	Leu	Val	Ala	Arg
Pro 305	Gly	Leu	Arg	Ile	Asp 310	Asp	Ile	Gln	Glu	Arg 315	Met	Val	Ala	Arg	Leu 320
Asn	His	Leu	Gly	11e 325	Lys	Val	Lys	Ser	11e 330	Glu	Glu	Asp	Glu	His 335	Cys
Leu	Ile	Pro	Met 340	Gly	Gly	Pro	Leu	Pro 345	Val	Leu	Pro	Gln	Arg 350	Val	Val
Gly	Ile	Gly 355	Gly	Thr	Ala	Gly	Met 360	Val	His	Р́го	Ser	Thr 365	Gly	Tyr	Met
Val	Ala 370	Arg	Thr	Leu	Ala	Ala 375	Ala	Pro	Val	Val	Ala 380	Asn	Ala	Ile	Ile
Gln 385	Tyr	Leu	Gly	Ser	Glu 390	Årg	Ser	His	Ser	Gly 395	Asn	Glu	Leu	Ser	Thr 400
Ala	Val	Trp	Lys	Asp 405	Leu	Trp	Pro	Ile	Glu 410	Arg	Arg	Arg	Gln	Arg 415	Glu
Phe	Phe	Cys	Phe 420	Gly	Met	Asp	Ile	Leu 425	Leu	Lys	Leu	Asp	Leu 430	Pro	Ala
Thr	Arg	Arg 435	Phe	Phe	Asp	Ala	Phe 440	Phe	Asp	Leu	Glu	Pro 445	Arg	Tyr	Trp
His	Gly 450	Phe	Leu	Ser	Ser	Arg 455		Phe	Leu	Pro	Glu 460	Leu	Ile	Val	Phe

Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Phe Glu Ile 465 470 475 480

Met Thr Lys Gly Thr Val Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495

Gln Asp Lys Glu 500

<210> 59

<211> 500

<212> PRT

<213> Tobacco

<400> 59

Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Glu Phe Leu His Pro 1 5 10 15

Val His Gly Phe Ser Val Lys Ala Ser Ser Phe Asn Ser Val Lys Pro 20 25 30

His Lys Phe Gly Ser Arg Lys Ile Cys Glu Asn Trp Gly Lys Gly Val 35 40 45

Cys Val Lys Ala Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80

Gly Leu Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Val Ser Ile 100 105 110

Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp 130 140

Ser Gly Thr Val Val Tyr Ile Asp Asp Asn Thr Thr Lys Asp Leu Asp 145 150 155 160

Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met 165 170 175

Gln Lys Cys Ile Leu Asn Gly Val Lys Phe His His Ala Lys Val Ile 180 185 190

Lys Val Ile His Glu Glu Ala Lys Ser Met Leu Ile Cys Asn Asp Gly 195 200 205

Val Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg 210 215 220

Cys Leu Val Gln Tyr Asp Lys Pro Tyr Lys Pro Gly Tyr Gln Val Ala 225 230 235 240

Tyr	Glv	Ile	Len	Ala	Glu	۷a۱	Glu	Glu	Hic	D~~	Dha	7\	m '-		Lys
				245					250					255	•
			Met 260					265					270		
Leu	Lys	Glu 275	Arg	Asn	Arg	Lys	Val 280	Pro	Thr	Phe	Leu	Tyr 285	Ala	Met	Pro
Phe	Ser 290	Ser	Asn	Lys	Ile	Phe 295	Leu	Glu	Glu	Thr	Ser 300	Leu	Val	Ala	Arg
Pro 305	Gly	Leu	Arg	Met	Asp 310	Asp	Ile	Gln	Glu	Arg 315	Met	Val	Ala	Arg	Leu 320
Asn	His	Leu	Gly	Ile 325	Lys	Val	Lys	Ser	Ile 330	Glu	Glu	Asp	Glu	His 335	Cys
Val	Ile	Pro	Met 340	Gly	Gly	Ser	Leu	Pro 345	Val	Ile	Pro	Gln	Arg 350	Val	Val
Gly	Thr	Gly 355	Gly	Thr	Ala	Gly	Leu 360	Val	His	Pro	Ser	Thr 365	Gly	Tyr	Met
Val	Ala 370	Arg	Thr	Leu	Ala	Ala 375	Ala	Pro	Val	Val	Ala 380	Asn	Ala	Ile	Ile
His 385	Tyr	Leu	Gly	Ser	Glu 390	Lys	Asp	Leu	Leu	Gly 395	Asn	Glu	Leu	Ser	Ala 400
Ala	Val	Trp	Lys	Asp 405	Leu	Trp	Pro	Ile	Glu 410	Arg	Arg	Arg	Gln	Arg 415	
Phe	Phe	Cys	Phe 420	Gly	Met	Asp	Ile	Leu 425	Leu	Lys	Leu	Asp	Leu 430	Pro	Ala
Thr	Arg	Arg 435	Phe	Phe	Asp	Ala	Phe 440	Phe	Asp	Leu	Glu	Pro 445	Arg	Tyr	Trp
His	Gly 450	Phe	Leu	Ser	Ser	Arg 455	Leu	Tyr	Leu	Pro	Glu 460	Leu	Ile	Phe	Phe
Gly 465	Leu	Ser	Leu	Phe	Ser 470	Arg	Ala	Ser	Asn	Thr 475	Ser	Arg	Ile	Glu	Ile 480
Met	Thr	Lys	Gly	Thr 485	Leu	Pro	Leu	Val	Asn 490	Met	Ile	Asn	Asn	Leu 495	Leu
Gln	Asp	Thr	Glu												

Gln Asp Thr Glu 500

<210> 60 <211> 511 <212> PRT <213> Tagetes erecta

<400> 60

Met Asp Thr Phe Leu Arg Thr Tyr Asn Ser Phe Glu Phe Val His Pro 1 10

				,,,,,,	-/									— .	
Ser	Asn	Lys	Phe 20	Àla	Gly	Asn	Leu	Asn 25	Asn	Leu	Asn	Gln	Leu 30	Asn	ĞÎn
Ser	Lys	Ser .35	Gln	Phe	Gln	Asp	Phe 40	.Arg	Phe	Gly	Pro	Lys 45	Lys	Ser	Gln
Phe	Lys 50	Leu	Gly	Gln	Lys	Tyr 55	Cys	Val	Lys	Ala	Ser 60	Ser	Ser	Ala	Leu
Leu 65	Glu	Leu	Val	Pro	Glu 70	Ile	Lys	Lys	Glu	Asn 75	Leu	Asp	Phe	Asp	Leu 80
Pro	Met	Tyr	Asp	Pro 85	Ser	Arg	Asn	Val	Val 90	Val	Asp	Leu	Val	Val 95	Val
Gly	Gly	Gly	Pro 100	Ser	Gly	Leu	Ala	Val 105	Ala	Gln	Gln	Val	Ser 110	Glu	Ala
Glý	Leu	Thr 115	Val	Cys	Ser	Ile	Asp 120	Pro	Ser	Pro	Lys	Leu 125	Ile	Trp	Pro
Asn	Asn 130	Tyr	Gly	Val	Trp	Val 135	Asp	Glu	Phe	Glu	Ala 140	Met	Asp	Leu	Leu
Asp 145	Cys	Leu	Asp	Thr	Thr 150	Trp	Ser	Ser	Ala	Val 155	Val	Tyr	Ile	Asp	Glu 160
Lys	Ser	Thr	Lys	Ser 165	Leu	Asn	Arg	Pro	Tyr 170	Ala	Arg	Val	Asn	Arg 175	Lys
Gln	Leu	Lys	Thr 180	Lys	Met	Leu	Gln	Lys 185	Cys	Ile	Ala	Asn	Gly 190	Val	Lys
Phe	His	Gln 195	Ala	Lys	Val	Ile	Lys 200	Val	Ile	His	Glu	Glu 205	Leu	Lys	Ser
Leu	Leu 210	Ile	Cys	Asn	Asp	Gly 215	Val	Thr	Ile	Gln	Ala 220	Thr	Leu	Val	Leu
Asp 225	Ala	Thr	Gly	Phe	Ser 230	Arg	·Ser	Leu	Val	Gln 235	Tyr	Asp	Lys	Pro	Tyr 240
Asn	Pro	Gly	Tyr	Gln 245	Val	Ala	Tyr	Gly	Ile 250	Leu	Ala	Glu	Val	Glu 255	Glu
His	Pro	Phe	Asp 260	Val	Asp	Lys	Met	Leu 265	Phe	Met	Asp	Trp	Arg 270	Asp	Ser
His	Leu	Asp 275	Gln	Asn	Leu	Glu	Ile 280	Lys	Ala	Arg	Asn	Ser 285	Arg	Ile	Pro
Thr	Phe 290	Leu	Tyr	Ala	Met	Pro 295	Phe	Ser	Ser	Thr	Arg 300	Ile	Phe	Leu	Glu
Glu 305	Thr	Ser	Leu	Val	Ala 310	Arg	Pro	Gly	Leu	Lys 315	Met	Glu	Asp	Ile	Gln 320
Glu	Arg	Met	Ala	Tyr 325	Arg	Leu	Lys	His	Leu 330	Gly	Ile ·	Lys	Val	Lys 335	
Ile	Glu	Glu	Asp	Glu	Arg	Cys	Val	Ile	Pro	Met	Gly	Gly	Pro	Leu	Pro

His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Pro 370 375 380

Ile Val Ala Lys Ser Ile Ile Arg Tyr Leu Asn Asn Glu Lys Ser Met 385 390 395 400

Val Ala Asp Val Thr Gly Asp Asp Leu Ala Ala Gly Ile Trp Arg Glu . 405 410 415

Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly
420 425 430

Met Asp Ile Leu Leu Lys Leu Asp Leu Glu Gly Thr Arg Arg Phe Phe 435 440 445

Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser 450 460

Ser Arg Leu Phe Leu Pro Glu Leu Val Thr Phe Gly Leu Ser Leu Phe 465 470 475 480

Gly His Ala Ser Asn Thr Cys Arg Val Glu Ile Met Ala Lys Gly Thr 485 490 495

Leu Pro Leu Ala Thr Met Ile Gly Asn Leu Val Arg Asp Arg Glu 500 505 510

<210> 61

<211> 503

<212> PRT

<213> Daffodil

<400> 61

Met Asp Thr Leu Leu Arg Thr His Asn Arg Leu Glu Leu Leu Tyr Pro

Leu His Glu Leu Ala Lys Arg His Phe Leu Ser Pro Ser Pro Asn Pro 20 25 30

Gln Asn Pro Asn Phe Lys Phe Phe Ser Arg Lys Pro Tyr Gln Lys Lys
35 40 45

Cys Arg Asn Gly Tyr Ile Gly Val Ser Ser Asn Gln Leu Leu Asp Leu
50 60

Val Pro Glu Ile Lys Lys Glu His Leu Glu Phe Asp Leu Pro Leu Tyr 65 70 75 80

Asp Pro Ser Lys Ala Leu Thr Leu Asp Leu Ala Val Val Gly Gly Gly 85 90 95

Pro Leu Ala Arg Ser Cys Ser Thr Ser Leu Gly Gly Gly Leu Ser Val

Val Ser Ile Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly

بن في 115 120 125 Val Trp Val Asp Glu Phe Glu Asp Met Asp Leu Leu Asp Cys Leu Asp 135 Ala Thr Trp Ser Gly Ala Ile Val Tyr Val Asp Asp Arg Ser Thr Lys 150 Asn Leu Ser Arg Pro Tyr Ala Arg Val Asn Arg Lys Asn Leu Lys Ser Lys Met Met Lys Lys Cys Val Ser Asn Gly Val Arg Phe His Gln Ala Thr Val Val Lys Ala Met His Glu Glu Glu Lys Ser Tyr Leu Ile Cys 200 Ser Asp Gly Val Thr Ile Asp Ala Arg Val Val Leu Asp Ala Thr Gly Phe Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Val Asp Lys Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Gly Lys Ala Glu Leu Asn Glu Arg Asn Ala Lys Ile Pro Thr Phe Leu Tyr 280 Ala Met Pro Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu 290 Val Ala Arg Pro Gly Leu Lys Met Glu Asp Ile Gln Glu Arg Met Val Ala Arg Leu Asn His Leu Gly Ile Arg Ile Lys Ser Ile Glu Glu Asp Glu Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Ile Pro Gln Arg Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro Ile Val Ala Asn Ser Ile Val Gln Tyr Leu Val Ser Asp Ser Gly Leu Ser Gly Asn Asp 395 Leu Ser Ala Asp Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg 410 Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp 425

Leu Glu Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro

Val Pro Phe Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Cys Lys 465 470 475 480

Leu Glu Ile Met Ala Lys Gly Thr Leu Pro Leu Val Asn Met Ile Asn 485 490 495

Asn Leu Val Gln Asp Arg Asp 500

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/12121

					•
li .	SSIFICATION OF SUBJECT MATTER	4			
	:Please See Extra Sheet. :435/189, 193, 233, 252.3, 320.1, 325; 536/23.2				•
According t	to International Patent Classification (IPC) or to both	national classifi	ication .	and IPC	
B. FIEL	DS SEARCHED				
Minimum d	ocumentation searched (classification system followed	by classificati	on sym	bols)	
U.S. :	435/189, 193, 233, 252.3, 320.1, 325; 536/23.2		•	·	
Documentat	tion searched other than minimum documentation to the	extent that suc	h docum	nents are included	in the fields searched
					
	lata base consulted during the international search (na e Extra Sheet.	me of data bas	e and,	where practicable,	, search terms used)
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the	e releva	int passages	Relevant to claim No.
X	WO 97/36998 A1 (UNIVERSITY O PARK) 09 October 1997, see entire d No:1.				1-8
	·				
				,	
				•	
					•
Furth	ner documents are listed in the continuation of Box C	. Se	e paten	t family annex.	
!	ecial categories of cited documents:				ernational filing date or priority
	cument defining the general state of the art which is not considered be of particular relevance			theory underlying the	
"E. ean	rlier document published on or after the international filing date				e claimed invention cannot be red to involve an inventive step
	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	when		ment is taken slone	
spe	ecial reason (as specified)				e claimed invention cannot be step when the document is
	ecument referring to an oral disclosure, use, exhibition or other eans			one or more other such to a person skilled in t	n documents, such combination the art
	cument published prior to the international filing date but later than e priority date claimed	.w. qocan	nent men	ber of the same patent	t family
Date of the	actual completion of the international search	Date of mailin	g of th	e international sea	irch report
02 AUGU	UST 1999	15 5	EP	1999	
	mailing address of the ISA.US	Authorized of	licer		
Box PCT	ner of Patents and Trademarks n. D.C. 2023 i	BRADLE	Y S. M.	AYHEW	
Facsimile N		Telephone No	. (7	03) 308-0196	YU C

	PCT/US99/12121
A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):	-
C12N 1/21, 5/10, 9/10, 15/53, 15/54, 15/61, 15/63; C12P 23/00; C12Q 1/68	
B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable term	os used):
Dialog and APS search terms: IPP, epsilon cyclase, lycopene cyclase, isopentenyl pyrophospha isomerase	te isomerase and isopentenyl diphosphate
	·
·	
·	

Form PCT:ISA 210 (extra sheet)(July 1992)*

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 1/21, 5/10, 9/10, 15/53, 15/54, 15/61, 15/63, C12P 23/00, C12Q 1/68 (11) International Publication Number:

WO 99/63055

(43) International Publication Date: 9 December 1999 (09.12.99)

(21) International Application Number:

PCT/US99/12121

A1

(22) International Filing Date:

2 June 1999 (02.06.99)

(30) Priority Data:

09/088,724 09/088,725

2 June 1998 (02.06.98) 2 June 1998 (02.06.98) 211 US

(71) Applicant (for all designated States except US): UNIVERSITY OF MARYLAND [US/US]; Office of Technology Liaison, 4312 Knox Road, College Park, MD 20742 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): CUNNINGHAM, Francis, X., Jr. [US/US]; 2727 Washington Avenue, Chevy Chase, MD 20815 (US). SUN, Zairen [US/US]; 3405 Tulane Drive #22, Hyattsville, MD 20783 (US).
- (74) Agents: GOLDHUSH, Douglas, H. et al.; Nikaido, Marmelstein, Murray & Oram LLP, Suite 330 G Street Lobby, Metropolitan Square, 655 Fifteenth Street, N.W., Washington, DC 20005-5701 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

(54) Title: GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF

(57) Abstract

Nucleic acid sequences encoding ϵ -cyclase, isopentenyl pyrophosphate isomerase and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with the vectors. Methods for controlling the ratio of various carotenoids in a host and for the production of novel carotenoid pigments. The present invention also provides a method for screening for eukaryotic genes encoding carotenoid biosynthesis, and for modifying the disclosed enzymes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/63055 PCT/US99/12121

GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

The present invention describes nucleic acid sequences for eukaryotic genes encoding ϵ lycopene ϵ -cyclase (also known as ϵ -cyclase and ϵ lycopene cyclase), isopentenyl pyrophosphate isomerase (IPP) and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with said vectors. The present invention also provides methods for augmenting the accumulation of carotenoids, changing the composition of the carotenoids, and producing novel and rare carotenoids. The present invention provides methods for controlling the ratio or relative amounts of various carotenoids in a host. The invention also relates to modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. Additionally, the present invention provides a method for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

15

20

25

30

Background of the Invention

Carotenoid pigments with cyclic endgroups are essential components of the photosynthetic apparatus in oxygenic photosynthetic organisms (e.g., cyanobacteria, algae and plants; Goodwin, 1980). The symmetrical bicyclic yellow carotenoid pigment βcarotene (or, in rare cases, the asymmetrical bicyclic α-carotene) is intimately associated with the photosynthetic reaction centers and plays a vital role in protecting against potentially lethal photooxidative damage (Koyama, 1991). β-carotene and other carotenoids derived from it or from α-carotene also serve as light-harvesting pigments (Siefermann-Harms, 1987), are involved in the thermal dissipation of excess light energy captured by the lightharvesting antenna (Demmig-Adams & Adams, 1992), provide substrate for the biosynthesis of the plant growth regulator abscisic acid (Rock & Zeevaart, 1991; Parry & Horgan, 1991), and are precursors of vitamin A in human and animal diets (Krinsky, 1987). Plants also exploit carotenoids as coloring agents in flowers and fruits to attract pollinators and agents of seed dispersal (Goodwin, 1980). The color provided by carotenoids is also of agronomic value in a number of important crops. Carotenoids are currently harvested from a variety of organisms, including plants, algae, yeasts, cyanobacteria and bacteria, for use as pigments in food and feed.

The probable pathway for formation of cyclic carotenoids in plants, algae and cyanobacteria is illustrated in Figure 1. Two types of cyclic endgroups or rings are commonly found in higher plant carotenoids, these are referred to as the β (beta) and ϵ (epsilon) rings (Fig. 3). The precursor acyclic endgroup (no ring structure) is referred to as the Ψ (psi) endgroup. The β and ϵ endgroups differ only in the position of the double bond in the ring. Carotenoids with two β rings are ubiquitous, and those with one β and one ϵ ring are common, but carotenoids with two ϵ rings are uncommon. β -carotene (Fig. 1) has two β -endgroups and is a symmetrical compound that is the precursor of a number of other important plant carotenoids such as zeaxanthin and violaxanthin (Fig. 2).

10

15

20

25

5

Genes encoding enzymes of carotenoid biosynthesis have previously been isolated from a variety of sources including bacteria (Armstrong et al., 1989, Mol. Gen. Genet. 216, 254-268; Misawa et al., 1990, J. Bacteriol., 172, 6704-12), fungi (Schmidhauser et al., 1990, Mol. Cell. Biol. 10, 5064-70), cyanobacteria (Chamovitz et al., 1990, Z. Naturforsch, 45c, 482-86; Cunningham et al., 1994) and higher plants (Bartley et al., Proc. Natl. Acad. Sci USA 88, 6532-36; Martinez-Ferez & Vioque, 1992, Plant Mol. Biol. 18, 981-83). Many of the isolated enzymes show a great diversity in structure, function and inhibitory properties between sources. For example, phytoene desaturases from the cyanobacterium Synechococcus and from higher plants and green algae carry out a two-step desaturation to yield ζ -carotene as a reaction product. In plants and cyanobacteria a second enzyme (ζ carotene desaturase), similar in amino acid sequence to the phytoene desaturase, catalyzes two additional desaturations to yield lycopene. In contrast, a single desaturase enzyme from Erwinia herbicola and from other bacteria introduces all four double bonds required to form lycopene. The Erwinia and other bacterial desaturases bear little amino acid sequence similarity to the plant and cyanobacterial desaturase enzymes, and are thought to be of unrelated ancestry. Therefore, even with a gene in hand from one source, it may be difficult to identify a gene encoding an enzyme of similar function in another organism. In particular, the sequence similarity between certain of the prokaryotic and eukaryotic genes encoding enzymes of carotenoid biosynthesis is quite low.

30

Further, the mechanism of gene expression in prokaryotes and eukaryotes appears to differ sufficiently such that one cannot expect that an isolated eukaryotic gene will be properly expressed in a prokaryotic host.

The difficulties in isolating genes encoding enzymes with similar functions is exemplified by recent efforts to isolate the gene encoding the enzyme that catalyzes the formation of β -carotene from the acyclic precursor lycopene. Although a gene encoding an enzyme with this function had been isolated from a bacterium, it had not been isolated from any photosynthetic procaryote or from any eukaryotic organism. The isolation and characterization of the enzyme catalyzing formation of β -carotene in the cyanobacterium Synechococcus PCC7942 was described by the present inventors and others (Cunningham et al., 1993 and 1994). The amino acid sequence similarity of the cyanobacterial enzyme to the various bacterial lycopene β -cyclases is so low (ca. 18-25% overall; Cunningham et al., 1994) that there is much uncertainty as to whether they share a common ancestry or, instead, represent an example of convergent evolution.

The need remains for the isolation of eukaryotic and prokaryotic genes and cDNAs encoding polypeptides involved in the carotenoid biosynthetic pathway, including those encoding a lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. There remains a need for methods to enhance the production of carotenoids, to alter the composition of carotenoids, and to reduce or eliminate carotenoid production. There also remains a need in the art for methods for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

SUMMARY OF THE INVENTION

20

5

10

15

Accordingly, a first object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes involved in carotenoid biosynthesis; in particular, lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase.

A second object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes which produce novel or uncommon carotenoids.

25

A third object of the present invention is to provide vectors containing said genes.

A fourth object of the present invention is to provide hosts transformed with said vectors.

Another object of the present invention is to provide hosts which accumulate novel or uncommon carotenoids or which accumulate greater amounts of specific or total carotenoids.

Another object of the present invention is to provide hosts with inhibited and/or altered carotenoid production.

PCT/US99/12121

WO 99/63055

5

10

15

20

25

30

Another object of this invention is to secure the expression of eukaryotic carotenoid-related genes in a recombinant prokaryotic host.

Yet another object of the present invention is to provide a method for screening for eukaryotic and prokaryotic genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

An additional object of the invention is to provide a method for manipulating carotenoid biosynthesis in photosynthetic organisms by inhibiting the synthesis of certain enzymatic products to cause accumulation of precursor compounds.

Another object of the invention is to provide modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase.

These and other objects of the present invention have been realized by the present inventors as described below.

A subject of the present invention is an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21 or 23-27.

The invention also includes vectors which comprise any of the nucleic acid sequences listed above, and host cells transformed with such vectors.

Another subject of the present invention is a method of producing or enhancing the production of a carotenoid in a host cell, comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

Yet another subject of the present invention is a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

10

15

20

25

30

The present invention also includes a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Also included is a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity in the host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Another subject of the present invention is a method for screening for genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

Figure 1 is a schematic representation of the putative pathway of β -carotene biosynthesis in cyanobacteria, algae and plants. The enzymes catalyzing various steps are indicated at the left. Target sites of the bleaching herbicides NFZ and MPTA are also indicated at the left. Abbreviations: DMAPP, dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; GPP, geranyl pyrophosphate; IPP, isopentenyl pyrophosphate; LCY, lycopene cyclase; MVA, mevalonic acid; MPTA, 2-(4-methylphenoxy)triethylamine hydrochloride; NFZ, norflurazon; PDS, phytoene desaturase; PSY, phytoene synthase; ZDS, ζ -carotene desaturase; PPPP, prephytoene pyrophosphate.

Figure 2 depicts possible routes of synthesis of cyclic carotenoids and common plant and algal xanthophylls (oxycarotenolds) from neurosporene. Demonstrated activities of the β - and ϵ -cyclase enzymes of A. thaliana are indicated by bold arrows labelled with β or ϵ respectively. A bar below the arrow leading to ϵ -carotene indicates that the enzymatic

WO 99/63055 PCT/US99/12121

activity was examined but no product was detected. The steps marked by an arrow with a dotted line have not been specifically examined. Conventional numbering of the carbon atoms is given for neurosporene and α -carotene. Inverted triangles (∇) mark positions of the double bonds introduced as a consequence of the desaturation reactions.

Figure 3 depicts the carotene endgroups which are found in plants.

Figure 4 is a DNA sequence and the predicted amino acid sequence of a lycopene ε-cyclase cDNA isolated from *A. thaliana* (SEQ ID NOS: 1 and 2). These sequences were deposited under Genbank accession number U50738. This cDNA is incorporated into the plasmid pATeps.

Figure 5 is a DNA sequence encoding the β -carotene hydroxylase isolated from A. thaliana (SEQ ID NO: 3). This cDNA is incorporated into the plasmid pATOHB.

Figure 6 is an alignment of the predicted amino acid sequences of A. thaliana β-carotene hydroxylase (SEQ ID NO: 4) with those of the bacterial β-carotene hydroxylase enzymes from Alicalgenes sp. (SEQ ID NO: 5) (Genbank D58422), Erwinia herbicola Eho10 (SEQ ID NO.: 6) (GenBank M872280), Erwinia uredovora (SEQ ID NO.: 7) (GenBank D90087) and Agrobacterium aurianticum (SEQ ID NO.: 8) (GenBank D58420). A consensus sequence is also shown. All five genes are identical where a capital letter appears in the consensus. A lowercase letter indicates that three of five, including A. thaliana, have the identical residue. TM; transmembrane.

Figure 7 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from A. thaliana (SEQ ID NO: 9). This cDNA is incorporated into the plasmid pATDP5.

Figure 8 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from A. thaliana (SEQ ID NO: 10). This cDNA is incorporated into the plasmid pATDP7.

Figure 9 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 11). This cDNA is incorporated into the plasmid pHP04.

Figure 10 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 12). This cDNA is incorporated into the plasmid pHP05.

Figure 11 is an alignment of the amino acid sequences predicted by IPP isomerase cDNAs isolated from A. thaliana (SEQ ID NO.: 16 and 18), H. pluvialis (SEQ ID NOS.: 14

5

10

15

20

25

30

10

15

20

25

30

and 15), Clarkia breweri (SEQ ID NO.: 17) (See, Blanc & Pichersky, Plant Physiol. (1995) 108:855; Genbank accession no. X82627) and Saccharomyces cerevisiae (SEQ ID NO.: 19) (Genbank accession no. J05090).

Figure 12 is a DNA sequence of the cDNA encoding an IPP isomerase isolated from *Tagetes erecta* (marigold; SEQ ID NO: 13). This cDNA is incorporated into the plasmid pPMDP1. xxx's denote a region not originally sequenced. Figure 21A shows the complete marigold sequence.

Figure 13 is an alignment of the consensus sequence of four plant β -cyclases (SEQ ID NO.: 20) with the A. thaliana lycopene ϵ -cyclase (SEQ ID NO.: 21). A capital letter in the plant β consensus is used where all four β -cyclase genes predict the same amino acid residue in this position. A small letter indicates that an identical residue was found in three of the four. Dashes indicate that the amino acid residue was not conserved and dots in the sequence denote a gap. A consensus for the aligned sequences is given, in capital letters below the alignment, where the β - and ϵ -cyclases have the same amino acid residue. Arrows indicate some of the conserved amino acids that will be used as junction sites for construction of chimeric cyclases with novel enzymatic activities. Several regions of interest including a sequence signature indicative of a dinucleotide-binding motif and two predicted transmembrane (TM) helical regions are indicated below the alignment and are underlined.

Figure 14 shows the nucleotide (SEQ ID NO:22) and amino acid sequences (SEQ ID NO:23) of the *Adonis palaestina* (pheasant's eye) ϵ -cyclase cDNA #5.

Figure 15A shows the nucleotide (SEQ ID NO:24) and amino acid sequences (SEQ ID NO:25) of a potato ε-cyclase cDNA. Figure 15B shows the amino acid sequence (SEQ ID NO:26) of a chimeric lettuce/potato lycopene ε-cyclase. Amino acids in lower case are from the lettuce cDNA and those in upper case are from the potato cDNA. The product of this chimeric cDNA has e-cyclase activity and converts lycopene to the monocyclic δ-carotene.

Figure 16 shows a comparison between the amino acid sequences of the *Arabidopsis* ϵ -cyclase (SEQ ID NO:27) and the potato ϵ -cyclase (SEQ ID NO:25).

Figure 17A shows the nucleotide sequence of the *Adonis palaestina* Ipi1 (SEQ ID NO:28) and Figure 17B shows the nucleotide sequence of the *Adonis palaestina* Ipi2 (SEQ ID NO: 29).

WO 99/63055 PCT/US99/12121

Figure 18A shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi1 (SEQ ID NO:11) and Figure 18B shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi2 (SEQ ID NO:30).

Figure 19A shows the nucleotide sequence of the Lactuca sativa (romaine lettuce)

Ipi1 (SEQ ID NO:31) and Figure 19B shows the nucleotide sequence of the Lactuca sativa

Ipi2 (SEQ ID NO: 32).

Figure 20 shows the nucleotide sequence of the *Chlamydomonas reinhardtii* Ipi1 (SEQ ID NO:33).

Figure 21A shows the nucleotide sequence of the *Tagetes erecta* (marigold) Ipi1 (SEQ ID NO:34) and Figure 21B shows the nucleotide sequence of the *Oryza sativa* (rice) Ipi1 (SEQ ID NO:35).

Figure 22 shows a amino acid sequence alignment of various plant and green algal isopentenyl isomerases (IPI) (SEQ ID NOS:16, 36-45).

Figure 23 shows a comparison between Adonis palaestina ϵ -cyclase cDNA #3 and cDNA #5 nucleotide sequences.

Figure 24 shows a comparison between *Adonis palaestina* ϵ -cyclase cDNA #3 and cDNA #5 predicted amino acid sequences.

Figure 25 shows a sequence alignment of various plant β - and ϵ -cyclases. Those sequences outlined in grey denote identical sequences among the ϵ -cyclases. Those sequences outlined in black denote identical sequences among both the β - and ϵ -cyclases.

Figure 26 shows a sequence alignment of the plant ϵ -cyclases from Figure 25. Those sequences outlined in black denote identical sequences among the ϵ -cyclases.

Figure 27 is a dendrogram or "tree" illustrating the degree of amino acid sequence similarity for various lycopene β - and ϵ -cyclases.

Figure 28 shows a comparison between Arabidopsis ϵ -cyclase and lettuce ϵ -cyclase predicted amino acid sequences.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention includes an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Nucleic acids encoding lycopene ϵ -cyclase, β -carotene hydroxylase and IPP

5

10

15

20

25

30

PCT/US99/12121

ون مر

WO 99/63055

5

10

15

20

25

30

isomerases have been isolated from several genetically distant sources.

The present inventors have isolated nucleic acids encoding the enzyme IPP isomerase, which catalyzes the reversible conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP). IPP isomerase cDNAs were isolated from the plants A. thaliana, Tagetes erecta (marigold), Adonis palaestina (pheasant's eye), Lactuca sativa (romaine lettuce) and from the green algae H. pluvialis and Chlamydomonas reinhardtii. Alignments of the amino acid sequences predicted by some of these cDNAs are shown in Figures 12 and 22. Plasmids containing some of these cDNAs were deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession numbers 98000 (pHP05 - H. pluvialis); 98001 (pMDP1 - marigold); 98002 (pATDP7 - A. thaliana) and 98004 (pHP04 - H. pluvialis).

The present inventors have also isolated nucleic acids encoding the enzyme β-carotene hydroxylase, which is responsible for hydroxylating the β-endgroup in carotenoids. The nucleic acid of the present invention is shown in SEQ ID NO: 3 and Figure 5. The full length cDNA product hydroxylates both end groups of β-carotene as do products of cDNAs which encode proteins truncated by up to 50 amino acids from the N-terminus. Products of genes which encode proteins truncated between about 60-110 amino acids from the N-terminus preferentially hydroxylate only one ring. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98003 (pATOHB - A. thaliana).

The present inventors have also isolated nucleic acids encoding the enzyme lycopene ϵ -cyclase, which is responsible for the formation of ϵ -endgroups in carotenoids. The A. thaliane ϵ -cyclase adds an ϵ ring to only one end of the symmetrical lycopene while the related β -cyclase adds a ring at both ends. The A. thaliana cDNA of the present invention is shown in Figure 4 and SEQ ID NO: 1. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98005 (pATeps - A. thaliana).

In addition, lycopene ϵ -cyclases have been identified in lettuce and in *Adonis* palaestina (cDNA #5) which encode enzymes that convert lycopene to the bicyclic ϵ -carotene (ϵ , ϵ -carotene). An additional cDNA from *Adonis palaestina* (cDNA #3) encodes a lycopene ϵ -cyclase which converts lycopene into δ -carotene (ϵ , ψ -carotene) and differs from the lycopene ϵ -cyclase which forms bicyclic ϵ -carotene (ϵ , ϵ -carotene) by only 5 amino acids.

10

15

20

25

30

One or more of these amino acids may be modified by alteration of the nucleotide sequence in the #5 cDNA to obtain an enzyme which forms the bicyclic ϵ,ϵ -carotene. The sequences of the *Adonis palaestina* and *Arabidopsis thaliana* ϵ -cyclases have about 70% nucleotide identity and about 72% amino acid identity.

Initial experiments by the inventors with chimeric genes indicated that the part of the ϵ -cyclase which is responsible for adding 2ϵ rings to form ϵ, ϵ -carotene is the carboxy terminal portion of the gene. The lettuce ϵ -cyclase adds two ϵ rings to form ϵ, ϵ -carotene. A DNA encoding a partial potato ϵ -cyclase (missing its amino terminal portion), when combined with an amino terminal region from the lettuce ϵ -cyclase gene, produces a monocyclic δ -carotene (ϵ, ψ -carotene). With the discovery of the differences between the Adonis palaestina clone #3 and clone #5, the specific amino acids responsible for the addition of an extra ϵ ring have been identified (Figure 24). Specifically, amino acid 55 is Thr in clone #3 and Ser in clone #5, amino acid 210 is Asn in clone #3 and Asp in clone #5, amino acid 231 is Asp in clone #3 and Glu in clone #5, amino acid 352 is Ile in clone #3 and Val in clone #5, and amino acid 524 is Lys in clone #3 and Arg in clone #5. It can be appreciated that these changes are quite conservative, as only one change, at amino acid 210, changes the charge of the protein.

Thus, it is clear that the nucleic acids of the invention encoding the enzymes as presently disclosed may be altered to increase a particularly desirable property of the enzyme, to change a property of the enzyme, or to diminish an undesirable property of the enzyme. Such modifications can be by deletion, substitution, or insertion of one or more amino acids, and can be performed by routine enzymatic manipulation of the nucleic acid encoding the enzyme (such as by restriction enzyme digestion, removal of nucleotides by mung bean nuclease or *Bal31*, insertion of nucleotides by Klenow fragment, and by religation of the ends), by site-directed mutagenesis, or may be accidental, such as by low fidelity PCR or those obtained through mutations in hosts that are producers of the enzymes. These techniques as well as other suitable techniques are well known in the art.

Mutations can be made in the nucleic acids of the invention such that a particular codon is changed to a codon which codes for a different amino acid. Such a mutation is generally made by making the fewest nucleotide changes possible. A substitution mutation of this sort can be made to change an amino acid in the resulting protein in a non-conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping

10

15

20

25

30

of amino acids having a particular size or characteristic to an amino acid belonging to another grouping) or in a conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to the same grouping). Such a conservative change generally leads to less change in the structure and function of the resulting protein. A non-conservative change is more likely to alter the structure, activity or function of the resulting protein. The present invention should be considered to include sequences containing conservative changes which do not significantly alter the activity or binding characteristics of the resulting protein.

The following is one example of various groupings of amino acids:

Amino acids with nonpolar R groups: Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Tryptophan and Methionine.

Amino acids with uncharged polar R groups: Glycine, Serine, Threonine, Cysteine, Tyrosine, Asparagine and Glutamine.

Amino acids with charged polar R groups (negatively charged at Ph 6.0): Aspartic acid and Glutamic acid.

Basic amino acids (positively charged at pH 6.0): Lysine, Arginine and Histidine.

Another grouping may be those amino acids with phenyl groups: Phenylalanine, Tryptophan and Tyrosine.

Another grouping may be according to molecular weight (i.e., size of R groups). Particularly preferred substitutions are:

- Lys for Arg and vice versa such that a positive charge may be maintained;
- Glu for Asp and vice versa such that a negative charge may be maintained;
- Ser for Thr such that a free -OH can be maintained; and
- Gln for Asn such that a free NH₂ can be maintained.

Amino acid substitutions may also be introduced to substitute an amino acid with a particularly preferable property. For example, a Cys may be introduced to provide a potential site for disulfide bridges with another Cys. A His may be introduced as a particularly "catalytic" site (i.e., His can act as an acid or base and is the most common amino acid in biochemical catalysis). Pro may be introduced because of its particularly planar structure, which induces β -turns in the protein's structure.

It is clear that certain modifications of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27 can take place without destroying the activity of the enzyme. It is noted especially that truncated

10

15

20

25

30

versions of the nucleic acids of the invention are functional. For example, several amino acids (from 1 to about 120) can be deleted from the N-terminus of the lycopene €-cyclases of the invention, and a functional protein can still be produced. This fact is made especially clear from Figure 25, which shows a sequence alignment of several plant €-cyclases. As can be seen from Figure 25, there is an enormous amount of sequence disparity between amino acid sequences 2 to about 50-70 (depending on the particular sequence, since gaps are present). There is less, but also a substantial amount of, sequence dissimilarity between about 50-70 to about 90-120 (depending on the particular sequence). Thereafter, the sequences are fairly conserved, except for small pockets of dissimilarity between about 275-295 to about 285-305 (depending on the particular sequence), and between about 395-415 to about 410-430 (depending on the particular sequence).

The present inventors have found that the amount of the 5' region present in the nucleic acids of the invention can alter the activity of the enzyme. Instead of diminishing activity, truncating the 5' region of the nucleic acids of the invention may result in an enzyme with a different specificity. Thus, the present invention relates to nucleic acids and enzymes encoded thereby which are truncated to within 0-50, preferably 0-25, codons of the 5' initiation codon of their prokaryotic counterparts as determined by alignment maps as discussed below.

For example, when the cDNA encoding A. thaliana β -carotene hydroxylase was truncated, the resulting enzyme catalyzed the formation of β -cryptoxanthin as the major product and zeaxanthin as minor product; in contrast to its normal production of zeaxanthin.

The present invention is intended to include those nucleic acid and amino acid sequences in which substitutions, deletions, additions or other modifications have taken place, as compared to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, without destroying the activity of the enzyme. Preferably, the substitutions, deletions, additions or other modifications take place at the 5' end, or any other of those positions which already show dissimilarity between any of the presently disclosed amino acid sequences (see also Figure 25) or other amino acid sequences which are known in the art and which encode the same enzyme (i.e., lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase).

In each case, nucleic acid and amino acid sequence similarity and identity is measured using sequence analysis software, for example, the Sequence Analysis, Gap, or BestFit software packages of the Genetics Computer Group (University of Wisconsin Biotechnology

Center, 1710 University Avenue, Madison, Wisconsin 53705), MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wisconsin 53715), or MacVector (Oxford Molecular Group, 2105 S. Bascom Avenue, Suite 200, Campbell, California 95008). Such software uses algorithms to match similar sequences by assigning degrees of identity to various substitutions, deletions, and other modifications, and includes detailed instructions as to useful parameters, etc., such that those of routine skill in the art can easily compare sequence similarities and identities. An example of a useful algorithm in this regard is the algorithm of Needleman and Wunsch, which is used in the Gap program discussed above. This program finds the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. Another useful algorithm is the algorithm of Smith and Waterman, which is used in the BestFit program discussed above. This program creates an optimal alignment of the best segment of similarity between two sequences. Optimal alignments are found by inserting gaps to maximize the number of matches using the local homology algorithm of Smith and Waterman.

15

10

5

Conservative (i.e. similar) substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine and leucine; aspartic acid, glutamic acid, asparagine and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine. Substitutions may also be made on the basis of conserved hydrophobicity or hydrophilicity (see Kyte and Doolittle, *J. Mol. Biol.* 157: 105-132 (1982)), or on the basis of the ability to assume similar polypeptide secondary structure (see Chou and Fasman, *Adv. Enzymol.* 47: 45-148 (1978)).

25

20

If comparison is made between nucleotide sequences, preferably the length of comparison sequences is at least 50 nucleotides, more preferably at least 60 nucleotides, at least 75 nucleotides or at least 100 nucleotides. It is most preferred if comparison is made between the nucleic acid sequences encoding the enzyme coding regions necessary for enzyme activity. If comparison is made between amino acid sequences, preferably the length of comparison is at least 20 amino acids, more preferably at least 30 amino acids, at least 40 amino acids or at least 50 amino acids. It is most preferred if comparison is made between the amino acid sequences in the enzyme coding regions necessary for enzyme activity.

30

It should be appreciated that also within the scope of the present invention are nucleic acid sequences encoding lycopene ϵ -cyclases, IPP isomerases and β -carotene hydroxylases

10

15

20

25

30

which code for enzymes having the same amino acid sequence as SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, but which are degenerate to the nucleic acids specifically disclosed herein.

The amino acid residues described herein are preferred to be in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property of immunoglobulin-binding is retained by the polypeptide.

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook et al, "Molecular Cloning: A Laboratory Manual" (1989); "Current Protocols in Molecular Biology" Volumes I-III [Ausubel, R. M., ed. (1994)]; "Cell Biology: A Laboratory Handbook" Volumes I-III [J. E. Celis, ed. (1994))]; "Current Protocols in Immunology" Volumes I-III [Coligan, J. E., ed. (1994)]; "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" [B.D. Hames & S.J. Higgins eds. (1985)]; "Transcription And Translation" [B.D. Hames & S.J. Higgins, eds. (1984)]; "Animal Cell Culture" [R.I. Freshney, ed. (1986)]; "Immobilized Cells And Enzymes" [IRL Press, (1986)]; B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

The present invention also includes vectors. Suitable vectors according to the present invention comprise a nucleic acid of the invention encoding an enzyme involved in carotenoid biosynthesis or metabolism and a suitable promoter for the host, and can be constructed using techniques well known in the art (for example Sambrook et al., Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York, 1991). Suitable vectors for eukaryotic expression in plants are described in Frey et al., Plant J. (1995) 8(5):693 and Misawa et al, 1994a; incorporated herein by reference. Suitable vectors for prokaryotic expression include pACYC184, pUC119, and pBR322 (available from New England BioLabs, Bevery, MA) and pTrcHis (Invitrogen) and pET28 (Novagen) and derivatives thereof. The vectors of the present invention can additionally contain regulatory elements such as promoters, repressors, selectable markers such as antibiotic resistance genes, etc.

The nucleic acids encoding the carotenoid enzymes as described above, when cloned into a suitable expression vector, can be used to overexpress these enzymes in a plant

10

15

20

25

30

expression system or to inhibit the expression of these enzymes. For example, a vector containing the gene encoding lycopene ϵ -cyclase can be used to increase the amount of α -carotene and carotenoids derived from α -carotene (such as lutein and α -cryptoxanthin) in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism.

Therefore, the present invention includes a method of producing or enhancing the production of a carotenoid in a host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

The present invention also includes a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

The term "modifying the production" means that the amount of carotenoids produced in the host cell can be enhanced, reduced, or left the same, as compared to the untransformed host cell. In accordance with one embodiment of the present invention, the make-up of the carotenoids (i.e., the specific carotenoids produced) is changed vis a vis each other, and this change in make-up may result in either a net gain, net loss, or no net change in the total amount of carotenoids produced in the cell. In accordance with another embodiment of the present invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) is enhanced by the insertion of an enzyme-encoding nucleic acid of the invention. In yet another embodiment of the invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) may be reduced or inhibited by a number of different approaches available to those skilled in the art, including but not limited to such methodologies or approaches as anti-sense (e.g.,

WO 99/63055 PCT/US99/12121

Gray et al (1992) Plant Mol. Biol. 19:69-87), ribozymes (e.g., Wegener et al (1994) Mol. Gen. Genet. 245:465-470), co-suppression (e.g., Fray and Grierson (1993) Plant Mol. Biol. 22:589-602), targeted disruption of the gene (e.g., Schaefer et al. (1997) Plant J. 11:1195-1206), intracellular antibodies (e.g., Rondon and Marasco (1997) Ann. Rev. Microbiol. 51:257-283) or whatever other approaches rely on the knowledge or availability of the nucleic acid or amino acid sequences of the invention and/or portions thereof, to thereby reduce accumulation of carotenoids with ϵ rings and compounds derived from them (for ϵ -cyclase inhibition), or carotenoids with hydroxylated β rings and compounds derived from them (for β -hydroxylase inhibition), or, in the case if IPP isomerase, accumulation of any isoprenoid compound.

Preferably, at least a portion of the nucleic acid sequences used in the methods, vectors and host cells of the invention codes for an enzyme having an amino acid sequence which is at least 85% identical, preferably at least 90%, at least 95% or completely identical to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Sequence identity is determined as noted above. Preferably, sequence additions, deletions or other modifications are made as indicated above, so as to not affect the function of the particular enzyme.

In a preferred embodiment, vectors are manufactured which contain a DNA encoding a eukaryotic IPP isomerase upstream of a DNA encoding a second eukaryotic carotenoid enzyme. The inventors have discovered that inclusion of an IPP isomerase gene increases the supply of substrate for the carotenoid pathway; thereby enhancing the production of carotenoid endproducts, as compared to a host cell which is not transformed with such a vector. This is apparent from the much deeper pigmentation in carotenoid-accumulating colonies of *E. coli* which also contain one of the aforementioned IPP isomerase genes when compared to colonies that lack this additional IPP isomerase gene. Similarly, a vector comprising an IPP isomerase gene can be used to enhance production of any secondary metabolite of dimethylallyl pyrophosphate and/or isopentenyl pyrophosphate (such as isoprenoids, steroids, carotenoids, etc.). The term "isoprenoid" is intended to mean any member of the class of naturally occurring compounds whose carbon skeletons are composed, in part or entirely, of isopentyl C₅ units. Preferably, the carbon skeleton is of an essential oil, a fragrance, a rubber, a carotenoid, or a therapeutic compound, such as paclitaxel.

A vector containing the cDNA encoding a lycopene ϵ -cyclase of the invention, preferably the lettuce lycopene ϵ -cyclase or Adonis ϵ -cyclase #5, can be used to increase the

5

10

15

20

25

30

10

15

20

25

30

amount of bicyclic €-carotene in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism. In addition, the transformed organism can be used in the formulation of therapeutic agents, for example in the treatment of cancer (see Mayne et al (1996) FASEB J. 10:690-701; Tsushima et al (1995) Biol. Pharm. Bull. 18:227-233).

An antisense strand of a nucleic acid of the invention can be inserted into a vector. For example, the lycopene ϵ -cyclase gene can be inserted into a vector and incorporated into the genomic DNA of a host, thereby inhibiting the synthesis of ϵ , β -carotenoids (lutein and α -carotene) and enhancing the synthesis of β , β -carotenoids (zeaxanthin and β -carotene).

The present invention also relates to novel enzymes which are encoded by the amino acid sequences of the invention, or portions thereof.

The present invention also relates to novel enzymes which can transform known carotenoids into novel or uncommon products. Currently ϵ -carotene (see Figure 2) and γ -carotene are commonly produced only in minor amounts. As described below, an enzyme can be produced which transforms lycopene to γ -carotene and lycopene to ϵ -carotene. With these products in hand, bulk synthesis of other carotenoids derived from them are possible. For example, ϵ -carotene can be hydroxylated to form lactucaxanthin, an isomer of lutein (one ϵ and one β ring) and zeaxanthin (two β rings) where both endgroups are, instead, ϵ rings.

In addition to novel enzymes produced by truncating the 5' region of known enzymes, as discussed above, novel enzymes which can participate in the formation of unusual carotenoids can be formed by replacing portions of one gene with an analogous sequence from a structurally related gene. For example, β -cyclase and ϵ -cyclase are structurally related (see Figure 13). By replacing a portion of β -lycopene cyclase with the analogous portion of ϵ -cyclase, an enzyme which produces γ -carotene will be produced (one β endgroup). Further, by replacing a portion of the lycopene ϵ -cyclase with the analogous portion of β -cyclase, an enzyme which produces ϵ -carotene will be produced (with some exceptions, such as the lettuce ϵ -cyclase, plant ϵ -cyclases normally produce a compound with one ϵ -endgroup, δ -carotene). Similarly, β -hydroxylase could be modified to produce enzymes of novel function by creation of hybrids with ϵ -hydroxylase.

Host systems according to the present invention can comprise any organism that already produces carotenoids or which has been genetically modified to produce carotenoids.

10

15

20

25

30

The IPP isomerase genes are more broadly applicable for enhancing production of any product dependent on DMAPP and/or IPP as a precursor.

Organisms which already produce carotenoids include plants, algae, some yeasts, fungi and cyanobacteria and other photosynthetic bacteria. Transformation of these hosts with vectors according to the present invention can be done using standard techniques such as those described in Misawa et al., (1990) supra; Hundle et al., (1993) supra; Hundle et al., (1991) supra; Misawa et al., (1991) supra; Sandmann et al., supra; and Schnurr et al., supra.

Transgenic organisms can be constructed which include the nucleic acid sequences of the present invention (Bird et al, 1991; Bramley et al, 1992; Misawa et al, 1994a; Misawa et al, 1994b; Cunningham et al, 1993). The incorporation of these sequences can allow the controlling of carotenoid biosynthesis, content, or composition in the host cell. These transgenic systems can be constructed to incorporate sequences which allow for the overexpression of the nucleic acids of the present invention. Transgenic systems can also be constructed containing antisense expression of the nucleic acid sequences of the present invention. Such antisense expression would result in the accumulation of the substrates of the substrates of the enzyme encoded by the sense strand.

A method for screening for eukaryotic genes which encode enzymes involved in carotenoid biosynthesis comprises transforming a prokaryotic host with a nucleic acid which may contain a eukaryotic or prokaryotic carotenoid biosynthetic gene; culturing said transformed host to obtain colonies; and screening for colonies exhibiting a different color than colonies of the untransformed host.

Suitable hosts include E. coli, cyanobacteria such as Synechococcus and Synechocystis, alga and plant cells. E. coli are preferred.

In a preferred embodiment, the above "color complementation" screening protocol can be enhanced by using mutants which are either (1) deficient in at least one carotenoid biosynthetic gene or (2) overexpress at least one carotenoid biosynthetic gene. In either case, such mutants will accumulate carotenoid precursors.

Prokaryotic and eukaryotic DNA or cDNA libraries can be screened in total for the presence of genes of carotenoid biosynthesis, metabolism and degradation. Preferred organisms to be screened include photosynthetic organisms.

10

15

20

25

30

E. coli can be transformed with these eukaryotic cDNA libraries using conventional methods such as those described in Sambrook et al, 1989 and according to protocols described by the vendors of the cloning vectors.

For example, the cDNA libraries in bacteriophage vectors such as lambdaZAP (Stratagene) or lambda ZIPLOX (Gibco BRL) can be excised en masse and used to transform *E.coli*.

Transformed E. coli can be cultured using conventional techniques. The culture broth preferably contains antibiotics to select and maintain plasmids. Suitable antibiotics include penicillin, ampicillin, chloramphenicol, etc. Culturing is typically conducted at 15-40°C, preferably at room temperature or slightly above (18-28°C), for 12 hours to 7 days.

Cultures are plated and the plates are screened visually for colonies with a different color than the colonies of the host $E.\ coli$ transformed with the empty plasmid cloning vector. For example, $E.\ coli$ transformed with the plasmid, pAC-BETA (described below), produce yellow colonies that accumulate β -carotene. After transformation with a cDNA library, colonies which contain a different hue than those formed by $E.\ coli/pAC$ -BETA would be expected to contain enzymes which modify the structure or accumulation of β -carotene. Similar $E.\ coli$ strains can be engineered which accumulate earlier products in carotenoid biosynthesis, such as lycopene, γ -carotene, etc.

Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.

EXAMPLE

I. <u>Isolation of β-carotene hydroxylase</u>

Plasmid Construction

An 8.6kb BgIII fragment containing the carotenoid biosynthetic genes of *Erwinia herbicola* was first cloned in the BamHI site of plasmid vector pACYC184 (chloramphenicol resistant), and then a 1.1kb BamHI fragment containing the *E. herbicola* β-carotene hydroxylase (*CrtZ*) was deleted. *E.coli* strains containing the resulting plasmid, pAC-BETA, accumulate β-carotene and form yellow colonies (Cunningham et al., 1994).

A full length cDNA encoding IPP isomerase of *Haematococcus pluvialis* (HP04) was first excised with *BamH*I and *Kpn*I from pBluescript SK-, and then ligated into the

WO 99/63055 PCT/US99/12121

corresponding sites of the pTrcHisA vector with high-level expression from the *trc* promoter (Invitrogen, Inc.). A fragment containing the IPP isomerase and *trc* promoter was subsequently excised with *EcoRV* and *KpnI*, treated with the Klenow fragment of DNA polymerase to produce blunt ends, and ligated in the Klenow-treated *HindIII* site of pAC-BETA. *E.coli* cells transformed with this new plasmid pAC-BETA-04 form orange colonies on LB plates (*vs.* yellow for those containing pAC-BETA) and cultures accumulate substantially more β-carotene (*ca.* two fold) than those that contain pAC-BETA.

Screening of an Arabidopsis cDNA Library

Several λ cDNA expression libraries of *Arabidopsis* were obtained from the *Arabidopsis* Biological Resource Center (Ohio State University, Columbus, OH) (Kieber et al., 1993). The λ cDNA libraries were excised *in vivo* using Stratagene's ExAssist SOLR system to produce a phagemid cDNA library wherein each phagemid contained also a gene conferring resistance to the antibiotic ampicillin.

E.coli strain DH10BZIP was chosen as the host cell for the screening and pigment production, although we have also used TOP10F' and XL1-Blue for this purpose. DH10B cells were transformed with plasmid pAC-BETA-04 and were plated on LB agar plates containing chloramphenicol at 50 µg/ml (from United States Biochemical Corporation). The phagemid Arabidopsis cDNA library was then introduced into DH10B cells already containing pAC-BETA-04. Transformed cells containing both pAC-BETA-04 and Arabidopsis cDNA library phagemids were selected on chloramphenicol plus ampicillin (150 µg/ml) agar plates. Maximum color development occurred after 3 to 7 days incubation at room temperature, and the rare bright yellow colonies were selected from a background of many thousands of orange colonies on each agar plate. Selected colonies were inoculated into 3 ml liquid LB medium containing ampicillin and chloramphenicol, and cultures were incubated at room temperature for 1-2 days, with shaking. Cells were then harvested by centrifugation and extracted with acetone in microfuge tubes. After centrifugation, the pigmented extract was spotted onto silica gel thin-layer chromatography (TLC) plates, and developed with a hexane:ether (1:1, by volume) mobile phases. B-carotene hydroxylaseencoding cDNAs were identified based on the appearance of a yellow pigment that comigrated with zeaxanthin on the TLC plates.

5

10

15

20

25

30

10

15

20

25

30

Subcloning and Sequencing

The plasmid containing the β-carotene hydroxylase cDNA was recovered and analyzed by standard procedures (Sambrook et al., 1989). The *Arabidopsis* β-carotene hydroxylase was sequenced completely on both strands on an automatic sequencer (Applied Biosystems, Model 373A, Version 2.0.1S). The cDNA insert of 0.95kb also was excised and ligated into the a pTrcHis vector. A *Bgl*II restriction site within the cDNA was used to remove that portion of the cDNA that encodes the predicted polypeptide N terminal sequence region that is not also found in bacterial β-carotene hydroxylases (Figure 6). A BglII-XhoI fragment was directionally cloned in BamHI-XhoI digested TrcHis vectors.

Pigment Analysis

A single colony was used to inoculate 50 ml of LB containing ampicillin and chloramphenicol in a 250-ml flask. Cultures were incubated at 28°C for 36 hours with gentle shaking, and then harvested at 5000 rpm in an SS-34 rotor. The cells were washed once with distilled H₂O and resuspended with 0.5 ml of water. The extraction procedures and HPLC were essentially as described previously (Cunningham et al, 1994).

II. Isolation and biochemical analysis of an Arabidopsis lycopene ϵ -cyclase Plasmid Construction

Construction of plasmids pAC-LYC, pAC-NEUR, and pAC-ZETA is described in Cunningham et al., (1994). In brief, the appropriate carotenoid biosynthetic genes from *Erwinia herbicola*, *Rhodobacter capsulatus*, and *Synechococcus* sp. strain PCC7942 were cloned in the plasmid vector pACYC184 (New England BioLabs, Beverly, MA). Cultures of *E. coli* containing the plasmids pAC-ZETA, pAC-NEUR, and pAC-LYC, accumulate ζ-carotene, neurosporene, and lycopene, respectively. The plasmid pAC-ZETA was constructed as follows: an 8.6-kb BgIII fragment containing the carotenoid biosynthetic genes of *E. herbicola* (GenBank M87280; Hundle et al., 1991) was obtained after partial digestion of plasmid pPL376 (Perry et al., 1986; Tuveson et al., 1986) and cloned in the BamHI site of pACYC184 to give the plasmid pAC-EHER. Deletion of adjacent 0.8- and 1.1-kb BamHI-BamHI fragments (deletion Z in Cunningham et al., 1994), and of a 1.1 kB SalI-SalI fragment (deletion X) served to remove most of the coding regions for the *E. herbicola* β-carotene hydroxylase (crtZ gene) and zeaxanthin glucosyltransferase (crtX gene), respectively. The

resulting plasmid, pAC-BETA, retains functional genes for geranylgeranyl pyrophosphate synthase (crtE), phytoene synthase (crtB), phytoene desaturase (crtI), and lycopene cyclase (crtY). Cells of *E. coli* containing this plasmid form yellow colonies and accumulate β -carotene. A plasmid containing both the lycopene ϵ - and β -cyclase cDNAs of *A. thaliana* was constructed by excising the ϵ -cyclase in clone y2 as a PvuI-PvuII fragment and ligating this piece in the SnaBI site of a plasmid (pSPORT 1 from GIBCO-BRL) that already contained the β -cyclase (Cunningham et al., 1996).

Organisms and Growth Conditions

E. coli strains TOP10 and TOP10 F' (obtained from Invitrogen Corporation, San Diego, CA) and XL1-Blue (Stratagene) were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 37°C in darkness on a platform shaker at 225 cycles per min. Media components were from Difco (yeast extract and tryptone) or Sigma (NaCl). Ampicillin at 150 μg/mL and/or chloramphenicol at 50 μg/mL (both from United States Biochemical Corporation) were used, as appropriate, for selection and maintenance of plasmids.

Mass Excision and Color Complementation Screening of an A. thaliana cDNA Library

A size-fractionated 1-2 kB cDNA library of A. thaliana in lambda ZAPII (Kieber et al., 1993) was obtained from the Arabidopsis Biological Resource Center at The Ohio State University (stock number CD4-14). Other size fractionated libraries were also obtained (stock numbers CD4-13, CD4-15, and CD4-16). An aliquot of each library was treated to cause a mass excision of the cDNAs and thereby produce a phagemid library according to the instructions provided by the supplier of the cloning vector (Stratagene; E. coli strain XL1-Blue and the helper phage R408 were used). The titre of the excised phagemid was determined and the library was introduced into a lycopene-accumulating strain of E. coli TOP10 F' (this strain contained the plasmid pAC-LYC) by incubation of the phagemid with the E. coli cells for 15 min at 37°C. Cells had been grown overnight at 30°C in LB medium supplemented with 2% (w/v) maltose and 10 mM MgSO₄ (final concentration), and harvested in 1.5 ml microfuge tubes at a setting of 3 on an Eppendorf microfuge (5415C) for 10 min. The pellets were resuspended in 10 mM MgSO₄ to a volume equal to one-half that of the

5

10

15

20

25

initial culture volume. Transformants were spread on large (150 mm diameter) LB agar petri plates containing antibiotics to provide for selection of cDNA clones (ampicillin) and maintenance of pAC-LYC (chloramphenicol). Approximately 10,000 colony forming units were spread on each plate. Petri plates were incubated at 37 C for 16 hr and then at room temperature for 2 to 7 days to allow maximum color development. Plates were screened visually with the aid of an illuminated 3x magnifier and a low power stage-dissecting microscope for the rare, pale pinkish-yellow to deep-yellow colonies that could be observed in the background of pink colonies. A colony color of yellow or pinkish-yellow was taken as presumptive evidence of a cyclization activity. These yellow colonies were collected with sterile toothpicks and used to inoculate 3ml of LB medium in culture tubes with overnight growth at 37°C and shaking at 225 cycles/min. Cultures were split into two aliquots in microfuge tubes and harvested by centrifugation at a setting of 5 in an Eppendorf 5415C microfuge. After discarding the liquid, one pellet was frozen for later purification of plasmid DNA. To the second pellet was added 1.5 ml EtOH, and the pellet was resuspended by vortex mixing, and extraction was allowed to proceed in the dark for 15-30 min with occasional remixing. Insoluble materials were pelleted by centrifugation at maximum speed for 10 min in a microfuge. Absorption spectra of the supernatant fluids were recorded from 350-550 nm with a Perkin Elmer lambda six spectrophotometer.

Analysis of isolated clones

20

5

10

15

Eight of the yellow colonies contained β -carotene indicating that a single gene product catalyzes both cyclizations required to form the two β endgroups of the symmetrical β -carotene from the symmetrical precursor lycopene. One of the yellow colonies contained a pigment with the spectrum characteristic of δ -carotene, a monocyclic carotenoid with a single ϵ endgroup. Unlike the β cyclase, this ϵ -cyclase appears unable to carry out a second cyclization at the other end of the molecule.

25

The observation that ϵ -cyclase is unable to form two cyclic ϵ -endgroups (e.g. the bicyclic ϵ -carotene) illuminates the mechanism by which plants can coordinate and control the flow of substrate into carotenoids derived from β -carotene versus those derived from α -carotene and also can prevent the formation of carotenoids with two ϵ endgroups.

30

The availability of the A. thaliana gene encoding the ϵ -cyclase enables the directed manipulation of plant and algal species for modification of carotenoid content and

composition. Through inactivation of the ϵ -cyclase, whether at the gene level by deletion of the gene or by insertional inactivation or by reduction of the amount of enzyme formed (by such as antisense technology), one may increase the formation of β -carotene and other pigments derived from it. Since vitamin A is derived only from carotenoids with β endgroups, an enhancement of the production of β -carotene versus α -carotene may enhance nutritional value of crop plants. Reduction of carotenoids with ϵ -endgroups may also be of value in modifying the color properties of crop plants and specific tissues of these plants. Alternatively, where production of α -carotene, or pigments such as lutein that are derived from α -carotene, is desirable, whether for the color properties, nutritional value or other reason, one may overexpress the ϵ -cyclase or express it in specific tissues. Wherever agronomic value of a crop is related to pigmentation provided by carotenoid pigments the directed manipulation of expression of the ϵ -cyclase gene and/or production of the enzyme may be of commercial value.

The predicted amino acid sequence of the A. thaliana ϵ -cyclase enzyme was determined. A comparison of the amino acid sequences of the β - and ϵ -cyclase enzymes of Arabidopsis thaliana (Fig. 13) as predicted by the DNA sequence of the respective cDNAs (Fig. 4 for the ϵ -cyclase cDNA sequence), indicates that these two enzymes have many regions of sequence similarity, but they are only about 37% identical overall at the amino acid level. The degree of sequence identity at the DNA base level, only about 50%, is sufficiently low such that we and others have been unable to detect this gene by hybridization using the β cyclase as a probe in DNA gel blot experiments.

REFERENCES

Each reference cited in this application and/or listed below is hereby incorporated by reference.

- 25 Bird et al, 1991 Biotechnology 9, 635-639.
 - Bishop et al., (1995) FEBS Lett. 367, 158-162.
 - Bramley, P.M. (1985) Adv. Lipid Res. 21, 243-279.
 - Bramley, P.M. (1992) Plant J. 2, 343-349.
 - Britton, G. (1988). Biosynthesis of carotenoids. In Plant Pigments, T.W. Goodwin, ed. (London: Academic Press), pp. 133-182.

30

5

10

15

20

15

25

Britton, G. (1979) Z. Naturforsch. Section C Biosci. 34, 979-985.

Britton, G. (1995) UV/Visible spectroscopy. In Carotenoids, Vol. IB: Spectroscopy,

G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 13-62.

Bouvier et al., (1994) Plant J. 6, 45-54.

Cunningham et al., (1985) Photochem. Photobiol. 42: 295-307.

Cunningham et al., (1993) FEBS Lett. 328, 130-138.

Cunningham et al., (1994) Plant Cell 6, 1107-1121.

Cunningham et al., (1996) Plant Cell 8, 1613-1626.

Davies, B.H. (1976). Carotenoids. In Chemistry and Biochemistry of Plant Pigments,

Vol. 2, T.W. Goodwin, ed (New York: Academic Press), pp. 38-165.

Del Sal et al., (1988). Nucl. Acids Res. 16, 9878.

Demmig-Adams & Adams, (1992) Ann. Rev. Plant Physiol. Mol. Biol. 43, 599-626.

Enzell & Back, (1995) Mass spectrometry. In Carotenoids, Vol. IB: Spectroscopy, G.

Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 261-320.

Frank & Cogdell (1993) Photochemistry and function of carotenoids in photosynthesis. In Carotenoids in Photosynthesis. A. Young and G. Britton, eds. (London: Chapman and Hall). pp. 253-326.

Goodwin, T.W. (1980). The Biochemistry of the Carotenoids. 2nd ed, Vol. 1 (London: Chapman and Hall.

20 Horvath et al., (1972) Phytochem. 11, 183-187.

Hugueney et al., (1995) Plant J. 8, 417-424.

Hundle et al., (1991) Photochem. Photobiol. 54, 89-93.

Jensen & Jensen, (1971) Methods Enzymol. 23, 586-602.

Kargl & Quackenbush, (1960) Archives Biochem. Biophys. 88, 59-63.

Kargl et al., (1960) Proc. Am. Hort. Soc. 75, 574-578.

Kieber et al., (1993) Cell 72, 427-441.

Koyama, Y. (1991) J. Photochem. Photobiol., B, 9, 265-80.

Krinsky, N.I. (1987) Medical uses of carotenoids. In Carotenoids, N.I. Krinsky, M.M. Mathews-Roth, and R.F. Taylor, eds. (New York: Plenum), pp. 195-206.

30 Kyte & Doolittle, (1982) J. Mol. Biol. 157, 105-132.

LaRossa & Schloss, (1984) J. Biol. Chem. 259, 8753-8757.

Misawa et al., (1994a) Plant J. 6, 481-489.

 $\#^{\Sigma}$

Misawa et al., (1994b) J. Biochem, Tokyo, 116, 980-985.

Norris et al., (1995) Plant Cell 7, 2139-2149.

Pecker et al., (1996) Submitted to Plant Mol. Biol.

Perry et al., (1986) J. Bacteriol. 168, 607-612.

Persson & Argos, (1994) J. Mol. Biol. 237, 182-192.

Plumley & Schmidt, (1987) Proc. Nat. Acad. Sci. USA 83, 146-150.

Plumley & Schmidt, (1995) Plant Cell 7, 689-704.

Rossmann et al., (1974) Nature 250, 194-199.

Rock & Zeevaart (1991) Proc. Nat. Acad. Sci. USA 88, 7496-7499.

Rost et al., (1995) Protein Science 4, 521-533.

Sambrook et al., (1989) Molecular Cloning: A Laboratory Manual, 2nd edition (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Sancar, A. (1994) Biochemistry 33, 2-9.

Sander & Schneider, (1991) Proteins 9, 56-68.

Sandmann, G. (1994) Eur. J. Biochem. 223, 7-24.

Scolnik & Bartley, (1995) Plant Physiol. 108, 1342.

Siefermann-Harms, D. (1987) Physiol. Plant. 69, 561-568.

Spurgeon & Porter, (1980). Biosynthesis of carotenoids. In Biochemistry of Isoprenoid Compounds, J.W. Porter, and S.L. Spurgeon, eds. (New York: Wiley), pp. 1-122.

Tomes, M.L. (1963) Bot. Gaz. 124, 180-185.

Tomes, M.L. (1967) Genetics 56, 227-232.

Tuveson et al., (1986) J. Bacteriol. 170, 4675-4680.

Van Beeumen et al., (1991) J. Biol. Chem. 266, 12921-12931.

Weedon & Moss, (1995) Structure and Nomenclature. In Carotenoids, Vol. IB:

Spectroscopy, G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 27-70.

Wierenga et al., (1986) J. Mol. Biol. 187, 101-107.

Zechmeister, L. (1962) Cis-Trans Isomeric Carotenoids, Vitamins A and Arylpolyenes. Springer-Verlag, Vienna.

Having now fully described the invention, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention as set forth herein.

5

15

20

30

We claim:

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or 25-27.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- 5. The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
- An isolated and/or purified protein having lycopene ε-cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or 25-27.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.

AMENDED CLAIMS

[received by the International Bureau on 15 November 1999 (15.11.99); original claims 1,2,7 and 8 amended; remaining claims unchanged (1 page)]

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
- An isolated and/or purified protein having lycopene ε-cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.

F I G. 1

3
$$3 \frac{2}{4} \frac{6}{5}$$

$$\beta \text{ cyclase}$$

$$3 \frac{6}{4} \frac{7}{5}$$

$$\beta \text{ endgroup}$$

$$\beta \text{ endgroup}$$

$$\epsilon \text{ endgroup}$$

±2 ±1

4/45

FIG.4A

FIG. 4B

FIG. 4

FIG. IIA

FIG.IIB

FIG. 11

FIG. 13A

FIG. 13B

FIG. 13

FIG.14A

FIG. 14B

FIG. 14

FIG. 22A

FIG. 22 B

FIG. 22

FIG. 4A

Arabidopsis thaliana epsilon cyclase:

					aca	aaa	gga	aat	aat	tag	att	.cct	ctt	tct	gct	tgc	tat	acc	ttg	aca	48
	gaa	caa	cat	aac	aat	ggt	gta	agt	ctt	ctç	gct	gta	ttc	gaa	att	att	tgg	agġ.	agga	aac	108
1	atg M	gag E	tgt:	gtt V	999 G	gct A	agg R	aat N	ttc F	gca A	gca A	atg M	gcg A	gtt V	tca S	aca T	ttt F	ccg P	tcat S	tgg W	168
21	agt S	tgt C	cga R	agg R	aaa K	ttt F	cca P	gtg V	gct V	aag K	aga R	tac Y	agc S	tat Y	agg R	aat N	att I	cgc R	ttc F	ggt G	228
41	ttg L	tgt. C	agt S	gtc V	aga R	gct A	agc S	ggc G	ggc G	gga G	agt .S	tcc S	ggt G	agt S	gag K	agt S	tgt C	gta V	gcg A	gtg V	288
61	aga R	gaa S	gat D	ttc F	gct A	gac D	gaa E	gaa E	gat D	ttt F	gcg V	iaaa E	gct A	ggc G	ggt G	tct S	gag R	att I	cta L	ttt F	348
81	gtt V	caa Q	atg M	cag Q	cag Q	aac M	aaa K	gat D	atg M	gat D	gaa S	.cag Q	tct S	aag K	ctt L	gtt V	gat D	aag K	ttg(L	ct P	408
101	cct P	ata I	tca S	act I	ggt G	gat D	ggt G	gct A	ttg L	gat D	cat K	gtg V	gtt V	act I	ggc G	tgt C	ggt G	cct P	gcto A	ggt G	468
121	tta L	gcc A	ttg L	gct A	gca A	gaa K	tca S	gct A	aag K	ctt L	gga G	tta L	aaa K	gtt V	gga G	ctc L	att I	ggt. G	ccag P	gat D	528
141	ctt L	cct P	ttt F	act T	aac M	aat M	tac Y	ggt G	gtt V	tgg M	gaa K	gat D	gaa K	ttc F	aat N	gat D	ctt L	9 9 9	ctg(caa G	588
161	aaa K	tgt C	att I	gag K	cat K	gtt V	tgg W	aga R	gag S	act T	att I	gcg V	cac Y	ctg L	gat D	gat D	gac D	aag K	ccta P	att I	648
181	acc T	att I	ggc G	cgt R	gct A	tat Y	gga G	aga R	gtt V	agt S	cga R	icgt R	ttg L	ctc L	cat X	gag E	gag E	ctt L	ttg: L	agg R	708
201	agg R	rtgt C	gtc V	gag K	rtca S	ggt G	gtc V	tcg S	tac Y	ctt L	ago S	tcg S	aaa K	gtt V	gac D	agc S	ata I	aca T	gaaq E	gct A	768
221	tgt S	gat D	.ggc G	ctt	aga X	ctt L	gtt V	gct A	tgt C	gac D	gac D	aat M	aac M	gtc V	att I	.ccc	tgc C	agg X	ctt	gcc A	828
241	act T	gtt V	gct A	tct S	.gga G	igca A	gct A	tcg S	gga G	aag K	cto L	ttg L	icaa Q	tac Y	gaa X	gtt V	ggt G	gga G	ccta P	aga R	888
	ata	tat	acc	ĸaa	act	:aca	tac	:aac	ata	ıdad	att	:aac	iaca	caa	aat	aat	cca	tat.	gata	сса	948

FIG. 4B

201	VC V Q I A I G V X V X N S P Y D P	
281	gatcaaatggttttcatggattacagagat tatactaacgagaaagttcggagcttagaa D Q M V P M D Y R D Y T M X X V R S L X	1008
301	gctgagtatccaacgtttctgtacgccatg cctatgacaaagtcaagactcttcttcgag A K Y P T F L Y A M P M T K S R L F F K	1068
321	gagacatgtttggcctcaaaagatgtcatg ccctttgatttgctaaaaacgaagctcatg K T C L A S K D V M P F D L L K T K L M	1128
341	ttaagattagacacactcggaattcgaatt ctaaagacttacgaagaggagtggtcctat I P V G G S L P N T X Q K N L A F G A A	1188
361	atcccagttggtggttccttgccaaacacc gaacaaaagaatctcgcctttggtgctgcc I P V G G S L P M T X Q K N L A F G A A	1248
381	gctagcatggtacatcccgcaacaggctat tcagttgtgagatctttgtctgaagctcca A S M V M P A T G Y S V V R S L S X A P	1308
401	aaacatgcatcagtcatcgcagagatacta agagaagaga	1368
421	aatatttcaagacaagcttaggatacttta tggccaccagaaaggaaaagacagagagca M I S R Q A W D T L W P P E R X R Q R A	1428
441	ttctttctctttggtcttgcactcagagtt caattcgataccgaaggcattagaagcttc F F L F G L A L I V Q F D T X G I R S F	1488
461	ttccgtactttcttccgccttccaaaatgg atgtggcaagggtttctaggatcaacatta FRTPFRLPKWMWQGFLGSTL	1548
481	acatcaggagatctcgttctctttgcttta tacatgttcgtcatttcaccaaacaatttg T S G D L V L F A L Y M P V I S P M M L	1608
501	agaaaaaggtctcattaatcatctcatctct gatccaaccggagcaaccatgataaaaacc R K G L I N W L I S D P T G A T M I K T	1668
521	tatctcaaagtatgatttacttaccaactc ttaggtttgtgtatatatatgccgatttat Y L K V	1728
		1700
	ctgaataatcgatcaaagaatggtatgtgg gttactaggaagttggaaacaaacacgtat	1788
	agaatctaaggagtgatcgaaatggagacg gaaacgaaaagaaaa	1848
	ccgtggctagtg	1868

FIG. 5

gctctttctc ctcctcct accgatttcc gactccgcct cccgaaatcc 51 ttatccggat tctctccgtc tcttcgattt aaacgctttt ctgtctgtta cgtcgtcgaa gaacggagac agaattctcc gattgagaac gatgagagac 101 cggagagcac gagctccaca aacgctatag acgctgagta tctggcgttg 151 201 cgtttggcgg agaaattgga gaggaagaaa tcggagaggt ccacttatct 251 aatcgctgct atgttgtcga gctttggtat cacttctatg gctgttatgg 301 ctgtttacta cagattctct tggcaaatgg agggaggtga gatctcaatg 351 ttggaaatgt ttggtacatt tgctctctct gttggtgctg ctgttggtat 401 ggaattctgg gcaagatggg ctcatagagc tctgtggcac gcttctctat 451 ggaatatgca tgagtcacat cacaaaccaa gagaaggacc gtttgagcta 501 aacgatgttt ttgctatagt gaacgctggt ccagcgattg gtctcctctc ttatggattc ttcaataaag gactcgttcc tggtctctgc tttggcgccg 551 601 ggttaggcat aacggtgttt ggaatcgcct acatgtttgt ccacgatggt 651 ctcgtgcaca agcgtttccc tgtaggtccc atcgccgacg tcccttacct 701 ccgaaaggtc gccgccgctc accagctaca tcacacagac aagttcaatg 751 gtgtaccata tggactgttt cttggaccca aggaattgga agaagttgga 801 ggaaatgaag agttagataa ggagattagt cggagaatca aatcatacaa aaaggcctcg ggctccgggt cgagttcgag ttcttgactt taaacaagtt 851 901 ttaaatccca aattctttt ttgtcttctg tcattatgat catcttaaga 951 cggtct

+2

8745

FIG. 7

ccacgggtcc gcctccccgt ttttttccga tccgatctcc ggtgccgagg 1 actcagctgt ttgttcgcgc tttctcagcc gtcaccatga ccgattctaa 51 cgatgctgga atggatgctg ttcagagacg actcatgttt gaagacgaat 101 151 gcattctcgt tgatgaaaat aatcgtgtgg tgggacatga cactaagtat 201 aactgtcatc tgatggaaaa gattgaagct gagaatttac ttcacagagc tttcagtgtg tttttattca actccaagta tgagttgctt ctccagcaac 251 ggtcaaaaac aaaggttact ttcccacttg tgtggacaaa cacttgttgc 301 agccatecte tttacegtga atecgagett attgaagaga atgtgettgg tgtaagaaat gccgcacaaa ggaagctttt cgatgagctc ggtattgtag 401 451 cagaagatgt accagtegat gagttcacte cettgggaeg catgetttae 501 aaggcacctt ctgatgggaa atggggagag cacgaagttg actatctact 551 cttcatcgtg cgggatgtga agcttcaacc aaacccagat gaagtggctg 601 agatcaagta cgtgagcagg gaagagctta aggagctggt gaagaaagca 651 gatgetggeg atgaagetgt gaaactatet ceatggttea gattggtggt 701 ggataatttc ttgatgaagt ggtgggatca tgttgagaaa ggaactatca 751 ctgaagctgc agacatgaaa accattcaca agctctgaac tttccataag 801 ttttggatct tccccttccc ataataaaat taagagatga gacttttatt 851 gattacagac aaaactggca acaaaatcta ttcctaggat ttttttttgc 901 tttttattta cttttgattc atctctagtt tagttttcat cttaaaaaaa 951 aaaa

FIG. 8

1 caccaatgte tgtttcttct ttatttaate teccattgat tegeeteaga 51 tototogoto titogtotto titttottot titocGATTTG CCCATCGTCC TCTGTCATCG ATTTCACCGA GAAAGTTACC GAATTTTCGT GCTTTCTCTG 101 GTACCGCTAT GACAGATACT AAAGATGCTG GTATGGATGC TGTTCAGAGA 151 201 CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATGAAA CTGATCGTGT 251 TGTGGGGCAT GTCAGCAAGT ATAATTGTCA TCTGATGGAA AATATTGAAG 301 CCAAGAATTT GCTGCACAGG GCTTTTAGTG TATTTTTATT CAACTCGAAG 351 TATGAGTTGC TTCTCCAGCA AAGGTCAAAC ACAAAGGTTA CGTTCCCTCT AGTGTGGACT AACACTTGTT GCAGCCATCC TCTTTACCGT GAATCAGAGC 401 451 TTATCCAGGA CAATGCACTA GGTGTGAGGA ATGCTGCACA AAGAAAGCTT 501 CTCGATGAGC TTGGTATTGT AGCTGAAGAT GTACCAGTCG ATGAGTTCAC 551 TCCCTTGGGA CGTATGCTGT ACAAGGCTCC TTCTGATGGC AAATGGGGAG 601 AGCATGAACT TGATTACTTG CTCTTCATCG TGCGAGACGT GAAGGTTCAA CCAAACCCAG ATGAAGTAGC TGAGATCAAG TATGTGAGCC GGGAAGAGCT 651 701 GAAGGAGCTG GTGAAGAAAG CAGATGCAGG TGAGGAAGGT TTGAAACTGT 751 CACCATGGTT CAGATTGGTG GTGGACAATT TCTTGATGAA GTGGTGGGAT CATGTTGAGA AAGGAACTTT GGTTGAAGCT ATAGACATGA AAACCATCCA 801 851 CAAACTCTGA ACATCTTTTT TTAAAGTTTT TAAATCAATC AACTTTCTCT TCATCATTTT TATCTTTTCG ATGATAATAA TTTGGGATAT GTGAGACACT 901 TACAAAACTT CCAAGCACCT CAGGCAATAA TAAAGTTTGC GGCCGC

FIG. 9

1	CTCGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC
51	GATGCCGCGA	TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCCC
101	CGTGAACTCC	GCCCAGCAGC	CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA
151	AGCTCAGGAG	CATGCAGATG	ACGCTCATGC	AGCCCAGCAT	CTCAGCCAAT
201	CTGTCGCGCG	CCGAGGACCG	CACAGACCAC	ATGAGGGGTG	CAAGCACCTG
251	GGCXGGCGGG	CAGTCGCAGG	ATGAGCTGAT	GCTGAAGGAC	GAGTGCATCT
301	TGGTGGATGT	TGAGGACAAC	ATCACAGGCC	ATGCCAGCAA	GCTGGXGTGT
351	CACAAGTTCC	TACCACATCA	GCCTGCAGGC	CTGCTGCACC	GGGCCTTCTC
401	TGTGTTCCTG	TTTGACGATC	AGGGGCGACT	GCTGCTGCAA	CAGCGTGCAC
451	GCTCAAAAAT	CACCTTCCCA	AGTGTGTGGA	CGAACACCTG	CTGCAGCCAC
501	CCTTTACATG	GGCXGXCCCC	AGATGAGGTG	GACCAACTAA	GCCAGGTGGC
551	CGACGGAACA	GTACCTGGCG	CAAAGGCTGC	TGCCATCCGC	AAGTTGGAGC
601	ACGAGCTGGG	GATACCAGCG	CACCAGCTGC	CGGCAAGCGC	GTTTCGCTTC
651	CTCACGCGTT	TGCACTACTG	TGCCGCGGAC	GTGCAGCCAG	CTGCGACACA
701	ATCAGCGCTC	TGGGGCGAGC	ACGAAATGGA	CTACATCTTG	TTCATCCGGG
751	CCAACGTCAC	CTTGGCGCCC	AACCCTGACG	AGGTGGACGA	AGTCAGGTAG
801	GTGACGCAAG	AGGAGCTGCG	GCAGATGATG	CAGCCGGACA	ACGGGCTGCA
851	ATGGTCGCCG	TGGTTTCGCA	TCATCGCCGC	GCGCTTCCTT	GAGCGTTGGT
901	GGGCTGACCT	GGACGCGGCC	CTAAACACTG	ACAAACACGA	GGATTGGGGA
951	ACGGTGCATC	ACATCAACGA	AGCGTGÄAAG	CAGAAGCTGC	AGGATGTGAA
1001	GACACGTCAT	GGGGTGGAAT	TGCGTACTTG	GCAGCTTCGT	ATCTCCTTTT
1051	TCTGAGACTG	AACCTGCAGT	CAGGTCCCAC	AAGGTCAGGT	AAAATGGCTC
1101	GATAAAATGT	ACCGTCACTT	TTTGTCGCGT	ATACTGAACT	CCAAGAGGT
1151	*********	****			

FIG. 10

1	CICGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC
51	GATGCCGCGA	TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCGCG
101	CGTGAACTCC	GCCCAGCAGC	CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA
151	AGCTCAGGAG	CATGCAGCTG	CTTTCCGAGG	ACCGCACAGA	CCACATGAGG
201	GGTGCAAGCA	CCTGGGCAGG	CGGGCAGTCG	CAGGATGAGC	TGATGCTGAA
251	GGACGAGTGC	ATCTTGGTAG	ATGTTGAGGA	CAACATCACA	GGCCATGCCA
301	GCAAGCTGGA	GTGTCACAAG	TTCCTACCAC	ATCAGCCTGC	AGGCCTGCTG
351	CACCGGGCCT	TCTCTGTGTT	CCTGTTTGAC	GATCAGGGGC	GACTGCTGCT
401	GCAACAGCGT	GCACGCTCAA	AAATCACCTT	CCCAAGTGTG	TGGACGAACA
451	CCTGCTGCAG	CCACCCTTTA	CATGGGCAGA	CCCCAGATGA	GGTGGACCAA
501	CTAAGCCAGG	TGGCCGACGG	AACAGTACCT	GGCGCAAAGG	CTGCTGCCAT
551	CCGCAAGTTG	GAGCACGAGC	TGGGGATACC	AGCGCACCAG	CTGCCGGCAA
601	GCGCGTTTCG	CTTCCTCACG	CGTTTGCACT	ACTGTGCCGC	GGACGTGCAG
651	CCAGCTGCGA	CACAATCAGC	GCTCTGGGGC	GAGCACGAAA	TGGACTACAT
701	CTTGTTCATC	CGGGCCAACG	TCACCTTGGC	GCCCAACCCT	GACGAGGTGG
751·	ACGAAGTCAG	GTACGTGACG	CAAGAGGAGC	TGCGGCAGAT	GATGCAGCCG
801	GACAACGGGC	TTCAATGGTC	GCCGTGGTTT	CGCATCATCG	CCGCGCGCTT
851	CCTTGAGCGT	TGGTGGGCTG	ACCTGGACGC	GGCCCTAAAC	ACTGACAAAC
901	ACGAGGATTG	GGGAACGGTG	CATCACATCA	ACGAAGCGTG	AAGGCAGAAG
951	CTGCAGGATG	TGAAGACACG	TCATGGGGTG	GAATTGCGTA	CTTGGCAGCT
1001	TCGTATCTCC	TTTTTCTGAG	ACTGAACCTG	CAGAGCTAGA	GTCAATGGTG
1051	CATCATATTC	ATCGTCTCTC	TTTTGTTTTA	GACTAATCTG	TAGCTAGAGT
1101	CACTGATGAA	TCCTTTACAA	CTTTCAAAAA		

FIG. IIA

HPO4 HPO5 ATDP7 C.brew. ATOP5 S.cerev.	MLRSLLRGLT MSVSSLFNLP MS.SSMLNFT	HIPRVNSAQQ HIPRVNSAQQ .LIRLRSLA. .ASRIVSLPL .TGPPPRFFP PHGAVSSYAK	PSCAHARLQF	AHRPLŠSIS. PLCFFSPISL	PRKLPNFRAF TQRFSAKLTF
	SEDRTDHMRG SGTA.MTD SSQATT.MGE T.MTD		DELMLKDECI RRLMFEDECI	LVDVEDNITG LVDETDRVVG LVDENDKVVG LVDENNRVVG	HASKLECHKF HVSKYNCHLM HESKYNCHLM
	LPHOPAGLLH ENIEAKNLLH ENIESENLLH EKIEAENLLH	RAFSVFLFDD RAFSVFLFNS RAFSVFLFNS	QGRLLLQQRA KYELLLQQRS KYELLLQQRS KYELLLQQRS	NTKVTFPLVW ATKVTFPLVW	TNTCCSHPLH TNTCCSHPLY
	RE RE	SELIQDNALG SELIDENCLG SELIEENVLG	VRNAAQRKLL VRNAAQRKLL VRNAAQRKLF	HELGIPAHOL HELGIPAHOL DELGIVAEDV DELGIPAEDL DELGIVAEDV HELGIPEDET	PV.DEFTPLG PV.DEFTPLG PV.DEFTPLG
	201 RLHYCAADVQ RLHYCAADVQ RMLY RILY RMLY	.KAPSDGKWG .KAPSDGKWG .KAPSDGKWG	EHEMDYILFI EHEMDYILFI EHELDYLLFI EHELDYLLFI EHEVDYLLFI EHEVDYLLFI EHEIDYILFY	RANVTLRANVTLVRDVKVIRDVNLVRDVKL KINAKENLTV	APNPDEVDEV QPNPDEVAEI DPNPDEVAEV QPNPDEVAEI

÷ :

14/45

FIG. IIB

300
RYVTQEELRQ MMQ...PDN GLQWSPWFRI IAARFLERWW ADLDAALNTD
RYVTQEELRQ MMQ...PDN GLQWSPWFRI IAARFLERWW ADLDAALNTD
KYVSREELKE LVKKADAGEE GLKLSPWFRL VVDNFLMKWW DHVEKGTLVE
KYMNRDDLKE LLRKADAEEE GVKLSPWFRL VVDNFLFKWW DHVEKGSLKD
KYVSREELKE LVKKADAGDE AVKLSPWFRL VVDNFLMKWW DHVEKGTITE
KWVSPNDLKT MF....ADP SYKFTPWFKI ICENYLFNWW EQLDDLSEVE

301
KHEDWGTVHH INEA*
KHEDWGTVHH INEA*
A.IDMKTIHK L*
A.ADMKTIHK L*
A.ADMKTIHK L*
A.ADMKTIHK L*
NDRQ...IHR ML*

F I G. 12

1	ccaaaaacaa	ctcaaatctc	ctccgtcgct	cttactccgc	catgggtgac
51			tcagcgacgt		
101			acaatgtggt		
151			attgaaacag		
201			ttcaaaatac		
251			ttcctttagt		
301			tccgagcttg		
351			×××××××××××××××××××××××××××××××××××××××		
401			×××××××××××××××××××××××××××××××××××××××		
451			xxxxxxxxx		
501			xxxxxxxxx		
551			xxxxxxxxx		
601					
651			xxxxxxxxxx		
701			xxxxxxxxx		
751			tgaaaaccat		
801			agcctaataa		
		•	ttaacaactt		
851			gtaagatttt		
901		ttgatggttt	gcaatttcaa	gttcctatcg	acatgtagtg
951	atctaaaaaa				

vkS-f-s- kfGK- csgvc LCSVRASGGG SSGSESCVAV REDFADEXDF	DLAVVGGGPA GLAVAQQVSE AGLSVCSIDP DHVVIGCGPA GLALAAESAK LGLKVGLIGP DV-G-GPA GLA-AGL-VI-P	Dinucleotide-binding signature	210 -t-KDL-RPY GRVNRKQLKS KMMOKCI-NG DKPITIGRAY GRVSRRLLHE ELLRRCVESG
1 MECVGARNFA AMAVSTFPSW SCRRKFPVVK RYSYRNÍRFG LCSVRASGGG SSGSESCVAV REDFADEXDF	Cyanobacterial enzyme begins————————————————————————————————————	Possible subunit interaction domain	141 -PKLIWPNN YGVWVDEFEA MDLLDCLDaT WSGa-VYiDd -t-KDL-RPY GRVNRKQLKS KMTOKCI-NG DLPFTNN YGVWEDEFND LGLQKCIEHV WRETIVYLDD DKPITIGRAY GRVSRRLLHE ELLRRCVESG PNN YGVW-DEFLC WVY-DDR-Y GRV-RL
Plant <i>beta</i> A.t.epsilon Consensus	Plant <i>beta</i> A.t.epsilon Consensus	ã.	Plant <i>beta</i> A.t.epsilon Consensus

Conserved region #1

F1G. 13 A

Predicted TM helix 13B Conserved region #3 Conserved region #4 Conserved region #5 Predicted TM helix Conserved region #2 品配合 Plant beta A.t.epsilon Consensus Plant beta A.t.epsilon Plant beta 4. t.epsilon Plant beta A.t.epsilon Consensus Consensus Consensus

FIG. 14A

Adonis palaestina ε-cyclase cDNA #5 Length: 1898

1	addinantat totattaata ttactataaa attat
51	
101	. Gadacecede ecocolocie (CECTICARA ACARCARACE SAFAFARACE
151	- 3 3
201	coolytyty dellelydda caagaaacet tagtagttea aaactagti
251	acadeataca tegatatudi ierrettata aantagattt teaactaaaa
301	9009009909 GARACHUMAN LANAANTTOT ATTACTTATA 3303000+++
351	cocadatyta ytaadtaadu (Claffinana aacaggeess getsssssi
401	addition caller in a second contract the con
451	agging agg conduction for an aggregation
501	- 99°°9°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
551	99'9'9'9'9'9 adddCddll Caaadatett ddaettdaac gttgtatar
601	ged by the general additional additional actions and actions and actions and actions are actions as the second actions and actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions are actions as the second actions as the second actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a second action actions are actions as a se
651	contributed by the contributed and the contrib
701	trace and the second of the se
751	gradagyate delyddycid gidaiggera fageettata atttataaaa
801	digagatett tateettige aggettaeta etattaeate tagagagaet
851	tedyyyada tittuydadta Idaadtadd doccotcoto +++o+o+o+o
901	dategettat yyddiddadd flaaddinna naacaateca tacgateeca
951	deridatyyi diildiddac Tacadadact atatocaaca gaaattacaa
1001	rycicyyddy ddyddidioc aacatttoti tatotcatoc coatgeogae
1051	adeadyacti tittilidadd adacetafff aaceteaaa gataceataa
1101	carregater arrivaddada adactratut carrattuaa gaetetagat
1151	diccadgita tadaddilla laaadaanaa tootcatata ttoototta
1201	- 19911CILLA CCADACACA ACCAAAAAAA CCTAGCA+++ GG+GC+GGA
1251	- caused user year ended design at a contract and at a contract and a contract an
1301	gaageteeda aatatuette tutaattuea aagatttaa agaaagaaa
1351	The contract of the contract o
1401	dayearyyay cayrerriga eeaaaaaaaaaaaaaaaaaaaaaaaaaa
1451	
1501	ducaticiti duddccttct tccacttace aacttaceta tactaceeti
1551	tooligyque iledelatea terrenate tentettatt ttacatata
1601	Arguilli LUUCUCCAAA CAGCATGAGG Atgtcactta taaaaaattt
1651	Secretary of the secretary and the secretary s
1701	agreedated accalidade letagraffi caccasatas atazagatas
1751	- conducting canalidated telegraphic tateetatae tetaataa
1801	Laddyladdi UCCUUUTTTA ATATTATTAT atcaaacca coost i
1851	aaagtaaatt tattgataca aaagtagttt ttttccttaa aaaaaaaa
	Jangua Coucocoda adadddd

FIG. 14B

Adonis palaestina E-cyclase #5 predicted polypeptide TRANSLATE from: 113 to: 1702 Length: 529 amino acids

MELLGVRNLI SSCPVWTFGT RNLSSSKLAY NIHRYGSSCR VDFQVRADGG SGSRSSVAYK EGFVDEEDFI KAGGSELLFV QMQQTKSMEK QAKLADKLPP 51 101 IPFGESVMDL VVIGCGPAGL SLAAEAAKLG LKVGLIGPDL PFTNNYGVWE DEFKDLGLER CIEHAWKDTI VYLDNDAPVL IGRAYGRVSR HLLHEELLKR 151 201 CVESGVSYLD SKVERITEAG DGHSLVVCEN EIFIPCRLAT VASGAASGKL LEYEVGGPRV CVQTAYGVEV EVENNPYDPN LMVFMDYRDY MQQKLQCSEE 251 301 EYPTFLYVMP MSPTRLFFEE TCLASKDAMP FDLLKRKLMS RLKTLGIOVT 351 KVYEEEWSYI PVGGSLPNTE QKNLAFGAAA SMVHPATGYS VVRSLSEAPK YASVIAKILK QDNSAYVVSG QSSAVNISMQ AWSSLWPKER KRQRAFFLFG 401 LELIVOLDIE ATRTÉFRTFF RLPTWMWGF LGSSLSSFDL VLFSMYMFVL 451 501 APNSMRMSLV RHLLSDPSGA VMVRAYLER*

+ 1

20/45

FIG. 15A

DNA sequence of potato cDNA (GenBank R27545) obtained from Nicholas J. Provart

```
potato.seq Length: 1378 August 2, 1996 13:06 Type: N Check: 605
     tagcggnnnn naggatgagt tcaaagatct tggtcttcaa gcctgcattg
     aacatgtttg gcgggatacc attgtatatc ttgatgatga tgatcctatt
  51
     cttattggcc gtgcctatgg aagagttagt cgccatttac tgcacgagga
 101
 151
     gttactcaaa aggtgtgtgg aggcaggtgt tttgtatcta aactcgaaag
     tggataggat tgttgaggcc acaaatggcc acagtcttgt agagtgcgag
 201
     ggtgatgttg tgattccctg caggtttgtg actgttgcat cgggagcagc
 251
 301
     ctcggggaaa ttcttgcagt atgagttggg aggtcctaga gtttctgttc
 351
     aaacagctta tggagtggaa gttgaggtcg ataacaatcc atttgacccg
 401
     agcctgatgg ttttcatgga ttatagagac tatgtcagac acgacgctca
     atctttagaa gctaaatatc caacatttct ctatgccatg cccatgtctc
 451
 501
     caacacgagt ctttttcgag gaaacttgtt tggcttcaaa agatgcaatg
 551
     ccattcgatc tgttaaagaa aaaattgatg ttacgattga acaccctcgg
     tgtaagaatt aaagaaattt atgaggagga atggtcttac ataccagttg
601
651<sup>-</sup>
     gaggatettt gecaaataea gaacaaaaaa eacttgeatt tggtgetget
 701
     gctagcatgg ttcatccagc cacaggttat tcagtcgtca gatcactgtc
 751
     tgaagctcca aaatgcgcct tcgtgcttgc aaatatatta cgacaaaatc
     atagcaagaa tatgcttact agttcaagta ccccgagtat ttcaactcaa
801
     gcttggaaca ctctttggcc acaagaacga aaacgacaaa gatcgttttt
851
901
     cctatttgga ctggctctga tattgcagct ggatattgag gggataaggt
     catttttccg cgcgttcttc cgtgtgccaa aatggatgtg gcagggattt
 951
     cttggttcaa gtctttcttn agcagacctc atgttatttg ccttctacat
1001
     gtttattatt gcaccaaatg acatgagaag aggcttaatc agacatcttt
1051
1101
     tatctgatcc tactggtgca acattgataa gaacttatct tacattttag
1151
     agtaaattcc tcctacaata gttgttgaan nagaggcctc attacttcag
1201
     attcataaca gaaatcgcgg tctctcgagg ccttgtatat aacattttca
1251
     ctaggttaat attgcttgaa taagttgcac agtttcagtt tttgtatctg
1301
     cttcttttt gtccaagatc atgtattgan ccaatttata tacattgcca
1351
     gtatatataa attttataaa aaaaaaaa
```

poteps.pep Length: 378 TRANSLATE from: 14 to: 1147

- 1 DEFKDLGLQA CIEHVWRDTI VYLDDDDPIL IGRAYGRVSR HLLHEELLKR 51 CVEAGVLYLN SKVDRIVEAT NGHSLVECEG DVVIPCRFVT VASGAASGKF 101 LQYELGGPRV SVQTAYGVEV EVDNNPFDPS LMVFMDYRDY VRHDAQSLEA
- 151 KYPTFLYAMP MSPTRVFFEE TCLASKDAMP FDLLKKKLML RLNTLGVRIK
- 201 EIYEEEWSYI PYGGSLPNTE QKTLAFGAAA SMVHPATGYS VVRSLSEAPK 251 CAFVLANILR QNHSKNMLTS SSTPSISTQA WNTLWPQERK RORSFFLFGL
- 301 ALILQLDIEG İRSFFRAFFR VPKWMWQGFL GSSLSXADLM LFAFYMFIIA
- 351 PNDMRRGLIR HLLSDPTGAT LIRTYLTF*

FIG. 15B

Chimeric lettuce/potato lycopene $\epsilon\text{-cyclase}$: converts lycopene to $\delta\text{-}$ carotene, the lettuce cDNA converts lycopene to $\epsilon\text{-carotene}$ and the potato cDNA does not produce an active enzyme

(amino acids in lower case are from lettuce and those in uppercase are from the potato cDNA; an $Ava\Pi$ site in common to the two cDNAs was used to construct the chimera)

1	mecfgarnmt	atmavftcpt	ftdcnirhkf	sllkqrrftn	lsassslrqi
51	kcsaksdrcv	vdkqgisvac	eedyvkaggs	elffvqmqrt	ksmesqskls
101	eklagipign	cildlvvigc	gpaglalaae	saklglnvgl	igpdlpftnn
151	ygvwqdefig	lglegciehs	wkdtlvyldd	adpirigray	grvhrdllhe
201	ellrrcvesg	vsylsskver	iteapngysl	iecegnitip	crlatvasga
251	asgkfleyel	gGPRVSVQTA	YGVEVEVDNN	PFDPSLMVFM	DYRDYVRHDA
301	QSLEAKYPTF	LYAMPMSPTR	VFFEETCLAS	KDAMPFDLLK	KKLMLRLNTL
351	GVRIKEIYEE	EWSYIPVGGS	LPNTEQKTLA	FGAAASMVHP	ATGYSVVRSL
401	SEAPKCAFVL	ANILRONHSK	NMLTSSSTPS	ISTQAWNTLW	PQERKRQRSF
451	FLFGLALILQ	LDIEGIRSFF	RAFFRVPKWM	WQGFLGSSLS	XADLMLFAFY
501	METTAPNOMR	RGI TRHLLSD	PTGATLIRTY	LTF*	

FIG. 16

blosi	mparison of Arabidopsis E-cyclase x potato E-cyclase (parti um62.cmp Gap Weight: 12 Average Match: 2, Length Weight: 4 Average Mismatch: -2, Quality: 1485 Length:	.912 .003
Match	Ratio: 3.929 Gaps: Percent Similarity: 79.893 Percent Identity: 76. display thresholds for the alignment(s): = IDENTITY := 2 . = 1	1 .139
151 1	EDEFNDLGLQKCIEHVWRETIVYLDDDKPITIGRAYGRVSRRLLHEELLR	
201	RCVESGVSYLSSKVDSITEASDGLRLVACDDNNVIPCRLATVASGAASGK	250
50	. . : .	99
251	LLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKVRSLE	300
100	.	149
301	AEYPTFLYAMPMTKSRLFFEETCLASKDVMPFDLLKTKLMLRLDTLGIRI	350
150		199
351	LKTYEEEWSYIPVGGSLPNTEOKNLAFGAAASMVHPATGYSVVRSLSEAP	400
200	KETYEEEWSYTPVGGSLPNTEQKTLAFGAAASMVHPATGYSVVRSLSEAP	249
401		445
250	: : .	299
446	LALIVOFDTEGIRSFFRTFFRLPKWMWQGFLGSTLTSGDLVLFALYMFVI	495
300	349
496		
350	. .: : : : : APNDMRRGLIRHLLSDPTGATLIRTYLTF 378	

FIG. 17A

Adonis palaestina Ipil attcatcttc agcagcgctg tcgtactctt tctatatctt cttccatcac 51 taacagtagt cgccgacggt tgaatcggct attcgcctca acgtcaacta 101 tgggtgaagt cactgatgct ggaatggatg ctgttcagaa gcggctcatg ttcgacgacg aatgtatttt ggtggatgag aatgacaagg tcgtcgggca 151 201 tgattccaaa tacaactgtc atttgatgga aaagatagag gcagaaaatt 251 tgcttcacag agccttcagt gttttcttgt tcaactcaaa atatgaattg 301 cttcttcagc aacgatccgc cacaaaggta acattcccgc tcgtatggac 351 aaacacatgt tgcagtcatc ctctctttcg tgattccgag ctcatagaag 401 aaaattatct cggtgtacga aacgctgcac aaagaaagct tttagacgag 451 ctaggcattc cagctgaaga tgtcccagtt gatgaattta ctcctcttgg 501 tcqcattctt tacaaagctc catctgacgg caaatgggga gagcacgaat 551 tggactatct cctatttatt gtccgagatg tgaaatacga tccaaaccca 601 gatgaagttg ctgatgctaa gtatgttaat cgcgaggagt tgagagagat 651 actgagaaaa gctgatgctg gtgaagaggg actcaagttg tctccttggt ttagattggt tgttgataac tttttgttca agtggtggga tcatgtagag 701 751 cagggtacga ttaaggaagt tgctgacatg aaaactatcc acaagttgac ttaagaggac ttctctcctc tgttctacta tttgtttttt gctacaataa 801 gtgggtggtg ataagcagtt tttctgtttt ctttaattta tggcttttga 851 atttgcctcg atgttgaact tgtaacatat ttagacaaat atgagacctt 901 951 gtaagttgaa tttgaggctg aatttatatt tttgggaaca taataatgtt 1001 aa

- 1

24 / 45

FIG. 17B

Adonis palaestina Ipi2 ttttaaagct ctttcgctcc accaccatca aagccagcca aatttctctg tacaaaagtt aaaaacaccg ctttgggctt tggcccctcc atatcggaat 51 ccttgtttac gatacgcatc taaaccagta attctcggtt ttaatttgtt 101 tcctaaatta ggcccctttc cggaatcccg agaattatgt cgtcgatcag 151 gattaatcct ttatatagta tcttctccac caccactaaa acattatcag 201 cttcqtqttc ttctcccgct gttcatcttc agcagcgttg tcgtactctt 251 tctatttctt cttccatcac taacagtcct cgccgagggt tgaatcggct 301 gttcgcctca acgtcgacta tgggtgaagt cgctgatgct ggtatggatg 351 ccgtccagaa gcggcttatg ttcgacgatg aatgtatttt ggtggatgag 401 aatgacaagg tcgtcggaca tgattccaaa tacaactgtc atttgatgga 451 aaagatagag gcagaaaact tgcttcacag agccttcagt gttttcttat 501 tcaactcaaa atacgagttg cttcttcagc aacgatctgc aacgaaggta 551 acattecege tegtatggae aaacacetgt tgeageeate ecetetteeg 601 tgattccgaa ctcatagaag aaaattttct cggggtacga aacgctgcac 651 aaaggaagct tttagacgag ctaggcattc cagctgaaga cgtaccagtt 701 gatgaattca ctcctcttgg tcgcattctt tacaaagctc catctgacgg 751 aaaatgggga gagcacgaac tggactatct tctgtttatt gtccgagatg 801 tgaaatacga tccaaaccca gatgaagttg ctgacgctaa gtacgttaat 851 cgcgaggagt tgaaagagat actgagaaaa gctgatgcag gtgaagaggg 901 aataaagttg tctccttggt ttagattggt tgtggataac tttttgttca 951 agtggtggga tcatgtagag gaggggaaga ttaaggacgt cgccgacatg 1001 aaaactatcc acaagttgac ttaagagaaa gtctcttaag ttctactatt 1051 tggtttttgc ttcaataagt ggatggtgat gagcagtttt tatgcttcct 1101 ttaattttgg cttttcaatt tgctttatgt gttgaacttg taacatattt 1151 agtcaaatat gagaccttgt gagttgaatt tgaggttata tttatagttt 1201 tgggaacata aaaaaaaaa 1251

FIG. 18A

Haematococcus pluvialis Ipil 1 ctcggtagct ggccacaatc gctatttgga acctggcccg gcggcagtcc gatgccgcga tgcttcgttc gttgctcaga ggcctcacgc atatcccccg 51 cgtgaactcc gcccagcagc ccagctgtgc acacgcgcga ctccagttta 101 agctcaggag catgcagatg acgctcatgc agcccagcat ctcagccaat 151 ctgtcgcgcg ccgaggaccg cacagaccac atgaggggtg caagcacctg 201 ggcaggcggg cagtcgcagg atgagctgat gctgaaggac gagtgcatct 251 tggtggatgt tgaggacaac atcacaggcc atgccagcaa gctggagtgt 301 cacaagttcc taccacatca gcctgcaggc ctgctgcacc gggccttctc 351 tgtgttcctg tttgacgatc aggggcgact gctgctgcaa cagcgtgcac 401 gctcaaaaat caccttccca agtgtgtgga cgaacacctg ctgcagccac 451 cctttacatg ggcagacccc agatgaggtg gaccaactaa gccaggtggc 501 cgacggaaca gtacctggcg caaaggctgc tgccatccgc aagttggagc 551 acgagetggg gataccageg caccagetge eggeaagege gtttegette 601 ctcacgcgtt tgcactactg tgccgcggac gtgcagccag ctgcgacaca 651 atcagcgctc tggggcgagc acgaaatgga ctacatcttg ttcatccggg 701 ccaacgtcac cttggcgccc aaccctgacg aggtggacga agtcaggtac 751 gtgacgcaag aggagctgcg gcagatgatg cagccggaca acgggctgca 801 atggtcgccg tggtttcgca tcatcgccgc gcgcttcctt gagcgttggt 851 gggctgacct ggacgcggcc ctaaacactg acaaacacga ggattgggga 901 acggtgcatc acatcaacga agcgtgaaag cagaagctgc aggatgtgaa 951 gacacgtcat ggggtggaat tgcgtacttg gcagcttcgt atctcctttt 1001 tctgagactg aacctgcagt caggtcccac aaggtcaggt aaaatggctc 1051 gataaaatgt accgtcactt tttgtcgcgt atactgaact ccaagaggtc 1101 aaaaaaaaa aaaaa 1151

- 1

26/45

FIG. 18B

Haematococcus pluvialis Ipi2

```
tggaacctgg cccggcggca gtccgatgcc gcgatgcttc gttcgttgct
 51
     cagaggeete acgeatatee egegegtgaa eteegeecag cageecaget
101
     gtgcacacgc gcgactccag tttaagctca ggagcatgca gctgcttgcc
151
     gaggaccgca cagaccacat gaggggtgca agcacctggg caggcgggca
201
     gtcgcaggat gagctgatgc tgaaggacga gtgcatctta gtggatgctg
251
     acgacaacat cacaggccat gccagcaagc tggagtgcca caaattccta
301
     ccacatcage etgeaggeet getgeacegg geettetetg tgtteetgtt
351
     tgacgaccag gggcgactgc tgctgcaaca gcgtgcacgc tcaaaaatca
401
     ccttcccaag tgtgtggacg aacacctgct gcagccaccc tctacatggg
451
     cagaccccag atgaggtgga ccaactaagc caggtggccg acggcacagt
501
     acctggcgca aaagctgctg ccatccgcaa gttggagcac gagctgggga
551
     taccagcgca ccagctgccg gcaagcgcgt ttcgcttcct cacgcgtttg
601
     cactactgtg ccgcggacgt gcagccggct gcgacacaat cagcgctctg
651
      gggcgagcac gagatggact acatcttatt catccgggcc aacgtcacct
701
     tggcgcccaa ccctgacgag gtggacgaag tcaggtacgt gacgcaagag
751
      gagetgegge agatgatgea geeggacaae gggttgeaat ggtegeegtg
     gtttcgcatc atcgccgcgc gcttccttga gcgttggtgg gctgacctgg
801
851
      acgcggccct aaacactgac aaacacgagg attggggaac ggtgcatcac
     atcaacgaag cgtgaaggca gaagctgcag gatgtgaaga cacgtcatgg
901
 951
      ggtggaattg cgtacttggc agcttcgtat ctcctttttc tgagactgaa
1001
      cctgcagage tagagtcaat ggtgcatcat attcatcgte tetetttgt
1051
      tttagactaa tctgtagcta gagtcactga tgaatccttt acaactttca
1101
      aaaaaaaa
```

•

Lactuca sativa Ipil tgccaaaatg ttgaaatttc ccccttttaa aaccattgct accatgatct cttctccata ttcttccttc ttgctgcctc ggaaatcttc tttccctcca atgccgtctc tcgcagccgc tagtgttttc ctccaccctc tttcgtctgc 101 cgčtałgggc gałtccagca tggałgctgt ccagcgacgt ctcałgttcg 151 atgacgaatg cattitiggtg gatgagaatg acaaagtggt tggccatgat actaaataca attgtcattt gatggagaag attgaaaagg gaaatatgct 201 251 acacagagca ttcagtgtgt tcttgttcaa ctcgaaatat gaattactcc 301 ttcagcaacg ttctgcaacc aaggtgactt tccctttggt atggacaaac 351 acqtqttqca qccatccact atacagggag agtgagctta ttgacgaaaa 401 cgcccttggg gtgaggaatg ctgcacagag gaagctcctg gatgaactcg gcatcctgg agcagatgtt ccggttgatg agttcactcc attgggtcgc 451 501 551 attctataca aggccgcatc ggatggaaag tggggagaac atgaacttga ttacctgctg tftatggtac gfgafgttgg tffggafccg aacccagafg 601 aagtgaaaga tgtaaaatat gtgaaccggg aagagctgaa ggaattggta aggaaggcgg atgctggtga agagggtgtg aagctgtccc cgtggttcaa attgattgtc gataatttct tgtttcagtg gtgggatcga ctccataagg 651 701 751 801 gaaccctaac cgaagctatt gatatgaaaa caatccacaa actcacataa ăaacactaca ctagtaggag ăgaggăttat atgagatatt tgttatatgt 851 gaaattgaaa ttcăgatgaă tgcttgtatt tatttctatt tggacaaact 901 tcaacttctt tttgctacct tatcagaaaa aaaaa 951

FIG. 19B

Lactuca sativa Ipi2 tattcgcttc aaaatctctt ccattaactg ctcaaatctc caccttcgcc ggtctťaatc tccgccggcg cactttcacc accataaccg ccgccatggg tgacgattcc ggcatggacg ctgtccagag acgtctcatg tttgatgatg 101 aătgčatttt ğğttgătgaă aatgacaatg ttcttgggca tgataccaaa 151 tacăattgtc ăcttgatgga gaagattgag aaagatăătt tgcttcatag agcattcagt gtattttat tcaattcaaa atacgaatta ctccttcagc 201 251 aaaggtcaga aaccaaggtg acatttcctt tggtatggac aaacacctgt 30ī tgcăğccatc cactatăcağ agaatcggag ttaattcccg aaaatgccct tggggtcaga aatgctgcac agaggaagct tctagatgaa ctcggtatcc 351 401 ctgctgaaga tgttccagtt gatgagttca caactttagg tcgcatgttg 451 tačaaggctc catctgatgg aaaatggggt gaacatgaag ttgattacct actcttcctc gtgcgtgacg ttgccgtgaa cccaaaccct gatgaggtgg 501 551 cggacattag atacgtgaac caagaagagt taaaagagtt actaaggaag 601 651 ğgtggacaac ttcttgttca aatggtggga tcatgtccaa aaggggacac 701 tcaatgaagc aattgacatg aaaaccattc ataagttgat atgaaaaatg 751 gttaatattt atggtggtgg tttggagcta ataatttgtg tgttcaagtc tcggtccttc ttttttaac gtttttttt tttcttttat tgggagtgtt 801 851 tattgtgtac ttgtaacgta ggccctttgg ttacgcttta agagtttaat 901 aaagaaccac cgttaattta aaaaaaaaa aaaaaaaa

FIG. 20

Chlamydomonas reinhardtii Ipil

(Note: the isomerase cDNA probably ends at ca. base 1103; the second half of the cDNA is similar to extensin and other hydroxyproline-rich structural proteins)

FIG. 21A

Tagetes erecta Ipil ccaaaaacaa ctcaaatctc ctccgtcgct cttactccgc catgggtgac gactccggca tggatgctgt tcagcgacgt ctcatgtttg acgatgaatg 101 cattttggtg gatgagtgtg acaatgtggt gggacatgat accaaataca 151 attgtcactt gatggagaag attgaaacag gtaaaatgct gcacagagca ttcagcgttt ttctattcaa ttcaaaatac gagttacttc ttcagcaacg 201 251 gtctgcaacc aaggtgacat ttcctttagt atggaccaac acctgttgca ğccatccact ctăcağagaa tccgagcttg ttcccgaaaa cgcccttgga gtaagaaatg ctgcacagag gaagctgttg gatgaactcg gtatccctgc 301 351 tgaagatgtt cccgttgatc agtttactcc tttaggtcgc atgctctaca 401 aggetecate tgatggaaag tggggagaac atgaaettga etacetaett tteatagtga gagaegttge tgtaaaeceg aaceeagatg aagtggegga 451 501 551 tatcaaatat gtganccang aagagttaaa ggagctgcta aggaaagcag atgcggggga ggagggtttg aagctgtctc catggttcag gttagtggtt 601 gataactict tgttcaagtg gtgggatcat gtgcaaaagg gtacactcac 651 tgaagcaatt gatatgaaaa ccatacacaa gctgatatag aaacacaccc 701 tčaačcgaaa agttcaagcc taataattcg ggttgggtcg ggtctaccat caattgttt tttctttaa gaagttttaa tctctatttg agcatgttga 751 801 851 ttcttgtctt ttgtgtgtaa gattttgggt ttcgtttcag ttgtaataat gaaccattga tggtttgcaa tttcaagttc ctatcgacat gtagtgatct 901 951 aaaaaa

FIG. 21B

Oryza sative Ipil cctccctttg cctcgcgcag aggcggccgc gccttctccg ccgcgaggat ggccggcgcc gccgccgcg tggaggacgc cgggatggac gaggtccaga agcggctcat gttcgacgac gaatgcattt tggtggatga acaagacaat 101 gttgttggcc atgaatcaaa atataactgc catctgatgg aaaaaatcga 201 atctgaaaat ctacttcata gggctttcag tgtattcctg ttcaactcaa aatafgaact cctactccag caacgatctg caacaaaggt tacatttcct ctagtttgga ccaacacttg ctgcagccat cctctgtacc gtgagtctga 251 301 351 gcttatacag gaaaactacc ttggtgttag aaatgctgct cagaggaagc tcttggatga gctgggcatc ccagctgaag atgtgccagt tgaccaattc acccctcttg gtcggatgct ttacaaggcc ccatctgatg gaaaatgggg 401 451 501 tgaacacgag čttgactacc tgctgttcat cgtccgcgac gtgaaggtag tčccgaačcč ggačgaagtg gčcgatgtga aatacgtgag čcgtgagcag ctgaaggagc tcatccgcaa agcggacgcc ggagaggaag gcctgaagct 551 601 gtčtcččtgg ttccggčtgg tfgffgačaa čftčcfčatg ggctggtggg 651 atcacgtcga gaaaggcacc ctcaacgagg ccgtggacat ggagaccatc cacaagctga agtaaggact gcgatgttgt ggctggaaag aatgatcctg 701 751 aagactctgt tcttgtgctg ctgcatatta ctcttaccag ggaagttgca 801 gaagtcagaa gaagcttttg tatgtttctg ggtttggagc ttggaagtgt tgggctctgc tgactgagag attcccttat agagtgtcta tgttaattta 851 901 gčaaacttčt atattataca tgattagtta attgttcggt gtctgaataa 951 āgaacaatag catgttccat gtttatttgc t 1001

	ന	ء	ന		0	V	_	0	7	6	60			١,										
	88 5	530	88	52	19	19	241	<u>5</u>	24	529	259			_			(e)	(e)						
270	RKADA	KAUA A	RKADA	RKADA	RKADA	RKADA	KKADA	KKADA	d)	db	A				ttuce,	ttuce,	t's e	t's e						
	LKELL	LKELV	LKELL	LKEIL	LREIL	LKELI	LKELV	LKELV	LROW	LROM	LOSM		•	(plo	ne le	ne le	easau	easan				is	is	dtii
556	VSHEE	VNREE	VNQEE	VNREE	VNREE	VSREQ	VSREE	VSREE	VTQEE	VTQEE	VTLPE			Tagetes erecta (marigold)	Lactuca sativa (romaine lettuce)	Lactuca sativa (romaine lettuce,	Adonis palaestina (pheasant's eye)	Adonis palaestina (pheasant's eye)	ce)	iana	iana	Haematococcus pluvialis	Haematococcus pluvialis	Chlamydomonas reinhardtii
255 256	DIKY	OVKY	NDIRY	DAKY	IDAKY	IDVKY	LEIKY	\E1KY)EVRY	EVRY)ATRY			scta (iva (iva (restir	restir	Oryza sativa (rice)	Arabidopsis thaliana	Arabidopsis thaliana	ld sno	ld sno	nas re
	4PDEV#	PDEV	PDEV/	IPDEV	IPDEV	IPDEV	PDEV	(PDEV	IPDEV	IPDEV	NPDEVI		٠.	es ere	sa sal	sa sal	s palc	s palc	sativ	sisdop	sisdop	tococ	tococ	лдошол
241	KAPSDGKWG EHELDYLLFIVRD VAVNPNPDEVADIKY VSHEELKELLRKADA	KAASDGKWG EHELDYLLFMVRD VGLDPNPDEVKDVKY VNREELKELVRKADA	KAPSDGKWG EHEVDYLLFLVRD VAVNPNPDEVADIRY VNQEELKELLRKADA	VKYDPNPDEVADAKY VNREELKEILRKADA	VKYDPNPDEVADAKY VNREELREILRKADA	VKVVPNPDEVADVKY VSREQLKELIRKADA	VKVQPNPDEVAEIKY VSREELKELVKKADA	VKLQPNPDEVAEIKY VSREELKELVKKADA	VTLAPNPDEVDEVRY VTQEELRQMMQP	VTLAPNPDEVDEVRY VTQEELROMMQP-	VPASSFSFLTRLHYC AADTATHG-PAAEWG EHEVDYVLFVRPQQP VSLQPNPDEVDATRY VTLPELQSMMA-			Taget	Lactu	Lactua	Adoni:	Adoni	Oryza	Arabi	Arabia	Наета	Наета	Chlam
240 241	Q	8 9	RD	8-	Q	8-					900			232	280	529	562	34	238	58 4	233	.93	202	307
	LLFIV	LLFMV	LLFLV	LLFIV	LLFIV	LLFIV	LLFIV	LLFIV	/ILFIR	/ILFIR	NLFVR								-					
526	EHELDY	EHELD	EHEVDY	KAPSDGKWG EHELDYLLFIVRD	KAPSDGKWG EHELDYLLFIVRD	KAPSDGKWG EHELDYLLFIVRD	KAPSDGKWG EHELDYLLFIVRD	KAPSDGKWG EHEVDYLLFIVRD	LPASAFRFLTRLHYC AADVOPAATQSALWG EHEMDYILFIRAN	I PASAFREI TRI HYC. AADVOPAATOSALWG EHEMDYILFIRAN	EHEVD		316	DNFLFKMADHVQK GTLTEAIDMKTI HKLI	HKLT	HH	HKLT	黑LT	HKLK	形	₩	ARFLERWADLDA ALNTDKHEDWGTV HHINEA	ARFLERWADLDA ALNTDKHEDWGTV HHINEA	TQPAFLPAWWGDLKR RWRPGGSRLSDWGTI HRVM
225 226	-KK	-KMC	-KMG	-886	-KMG	-KFG	-KWG	-KMG	ALWG	ALWG	AEMG		315 316	MKT1								WGTV	₩CTV	WGT!
	90	26	9G	90	2	9	90	90	PAATOS	AATOS	HG-PA			TEAID	TEATO	NEAID	KDVAD.	KEVAD.	NEAVD	·VEATO	·TEAD	TOKHED	DKHED	SSRLSD
11	KAPS	KAAS	KAPS	KAPS	KAPS	KAPS	KAPS	KAPS	ADVOF	VADVOF	WOTA		301	31	DNFLFQWWDRLHK GTLTEAIDMKTI	DNFLFKWWDHVQK GTLNEAIDMKTI	DNFLFKWWDHVEE GKIKDVADMKTI	DNFLFKWWDHVEQ GIIKEVADMKTI	DNFLMGWWDHVEK GTLNEAVDMETI	DNFLMKWWDHVEK GTLVEAIDMKTI	DNFLMKAWDHVEK GTITEAADMKTI	ALN	ALN	RWRPG
210 211	, . }							-γ.,	LHYC /	HYC	HYC		300 301	HVQK (REK (HVQK (HVEE (HVEQ (HVEK (HVEK (HVEK (DLDA /	DLDA /	DLKR
	TPLGR	TPLGR	TTIGR	TPI GR	TPIGR	TPLGR	TPLGR	TPLGR	RFLTRI	RFI TRI	SFLTR			FKWD	FOWND	FKWD	FKWD	FKWD	MGWMD	MKMD	MKWD	ERWMA	ERWMA	PAWWG
196	VPVDQFTPLGRMLY-	VPVDEFTPLGRILY-	VPVDFFTTI GRALY-	VPVDFFTPI GRILY-	VPVDFFTPI GRILY-	VPVDOFTPLGRMLY-	VPVDEFTPLGRMLY-	VPVDEFTPLGRMLY-	PASAF	PASAF	PASSF		286	NFL	NF	NFL	NF	NF	NF	NF	NF	RFL	IRFL	TOPAFL
195 1	-	-		-									285 2											_
	ELGIF	ELGIF)FI G1F	FIGIE	F161F	ELGIF)ELG1\	ELGIV	4F1 G1	11.014	ELG19			SPWF	SPWF	SPWFI	SPWFI	LSPWFI	LSPAFI	SPWFI	LSPAFI	ASPWF	ISPWF	WSPWF
	AGRKLLDELGIPAED	AORKL LDELGIPGAD	AORKI I DFI GIPAFD	AOBKI I DEI GIPAED	AORKI I DFI GIPAFD	AORKI LDELGIPAED	AORKLLDELG1VAED	AORKI FDELGIVAED	A I RKI FHEI G I PAHO	A TRKI FHEI GIPAHO	AVRKLQHELG1PPEQ	•	71	GEEGLKLSPWFRLVV	GEEGVKLSPWFKLIV	GEEGLKLSPWFRLVV	GEEGIKLSPWFRLVV	GEEGLKLSPWFRLVV	GEEGLKLSPWFRLVV	GEEGLKLSPWFRLVV	GDEAVKLSPWFRLVV	-DNGLQWSPWFRI1A	-DNGLQWSPWFRIIA	-DPGLSWSPWFRILA
~	; ₩	¥	₹	ν 2									.7	ច	5	5	_	_	_	_	_	•	•	·
		_	٠ ،	5	ting	}	na 1	2 00	115.1	11:00	rts 2 rrdtii				,	2	tina	ting	_	ing 1	ing 2	lis 1	ilis 2	ırdtii
	1 T.erecta	Sativa	2 l cativa 2	A A nalaestina	2010	מדומ	halia	halia	luvia	7	einho			recta	ativa	3 L.sativa 2	alaes	alaes	ativa	hal ia	halia:	luvia	luvia	reinha
	1 7.6		יי היי	 	י עיר עיר	200	7 A. thaliana 1	A A	0 11 0	10 u nluvialis 2	10 n.piuviuiis 2 11 C.reinhardtii			1 T.e	2 L.sativa 1	3 6.5	4 A.D	5 A.D	6 <i>0.</i> s	7 A.thaliana 1	8 A.t	9 H.E	10 H.pluvialis 2	11 C.reinhardtii 1
										_		•												-

F16.22B

+5 =

32 / 45

FIG. 24 A FIG. 23A FIG. 23 FIG. 24B FIG. 23B FIG. 24 F1G.23C FIG. 25A FIG.23D FIG. 25 FIG. 25B FIG. 25C

FIG.28A

FIG.28B

FIG. 28

10. 20

FIG. 26A

FIG. 26B

FIG. 26

Comparison using GAP program of the Genetics Computer Group Gap Weight: 50 Average match: 10.000 Length Weight: 3 Average Mismatch: 0.000 Quality: 17392 Length: 1904 Ratio: 9.411 Gaps: 3 Percent Similarity: 95.331 Percent Identity: 95.331 Match display thresholds for the alignment(s): = IDENTITY := 5 . = 1
Adonis palaestina ϵ -cyclase #3 x Adonis palaestina ϵ -cyclase #5
1 gagagaaaaagagtgttatattaatgttactgtcgcattcttgcaacac. 49
1aaaggagtgttctattaatgttactgtcgcattcttgcaacact 44
50 .atattcagactccattttcttgttttctcttcaaaacaacaactaatg 98
45 tatattcaaactccattttcttcttttctcttcaaaacaac
99 tga.cggagtatctagctatggaactacttggtgttcgcaacctcatctc 147
95 tgagcagagtatétggétatggaactacttggtgttégéaacétéatété 144
148 ttcttgccctgtctggacttttggaacaagaaaccttagtagttcaaaac 197
145 ttettgeeetgtgtggaettttggaacaagaaacettagtagtteaaaac 194
198 tagcttataacatacatcgatatggttcttcttgtagagtagattttcaa 247
195 tágéttátáácátácátégátátágáttéttéttágtágágtág
248 gtgagggctgatggtggaagcgggagtagaacttctgttgcttataaaga 297
245 gtgágagótgátgátgádágóggágtágáágttótgítgóttátádágá 294
298 gggttttgtggacgaggaggattttatcaaagctggtggttctgagcttt 347
295 gggttttgtggatgaagaggattttatcaaagctggtggttctgagcttt 344
348 tgtttgtccaaatgcagcaaacaaagtctatggagaaacaggccaagctc 397
345 tgtttgtccaaatgcagcaaacaaagtctatggagaaacaggccaagctc 394

FIG. 23B

398	gccgataagttgccaccaatacctttcggagaatctgtgatggacttggt	447
	gccgataagttgccaccaataccttttggagaatccgtgatggacttggt	
448	tgtaataggttgtggacctgctggtctttcactggctgcagaagctgcta	497
445	tgtaataggttgtggacctgctggtctttcactggctgcagaagctgcta	494
498	agctaggcttgaaagttggccttattggtcctgatcttccttttacaaat	547
495	agctagggttgaaagttggccttattggtcctgatcttccttttacaaat	544
548	aattatggtgtgtgggaagacgagttcaaagatcttggacttgaacgttg	597
545	aattatggtgtgtgggaagacgagttcaaagatcttggacttgaacgttg	594
	tatcgagcatgcttggaaggacaccatcgtatatcttgacaatgatgctc	
	tatcgagcatgcttggaaggacaccatcgtatatcttgataatgatgctc	
	ctgtccttattggtcgtgcatatggacgagttagccggcatttgctgcat	697
	ctgtccttattggtcgtgcatatggacgagttagtcgacatttgctacat	694
	gaagagttgctgaaaaggtgtgtcgagtcaggtgtatcatatctgaattc	747
	gaggagttgctgaaaaggtgtgtggagtcaggtgtatcatatctggattc	
745	taaagtggaaaggatcactgaagctggtgatggccatagtcttgtagttt	
	taaagtggaaaggatcactgaagctggtgatggccatagccttgtagttt gtgaaaacgacatctttatcccttgcaggcttgctactgttgcatctgga	794
	gcagcttcagggaaacttttggagtatgaagtaggtggccctcgtgtttg	
	tgtccaaactgcttatggtgtggaggttgaggtggagaacaatccatacg	
895	tgtccaaaccgcttatggggtggaggttgaggtggagaacaatccatacg	

FIG. 23C

948 a	atcccaacttaatggtatttatggactacagagactatatgcaacagaaa	997
945 a	atcccaacttaatggtattcatggactacagagactatatgcaacagaaa	994
998 t	tacagtgctcggaagaagaatatccaacatttctctatgtcatgcccat	1047
995 t	ttacagtgctcggaagaagaatatccaacatttctctatgtcatgcccat	1044
1048 (gtcgccaacaagacttttttttgaggaaacctgtttggcctcaaaagatg	1097
	gtcgccaacaagactttttttgaggaaacctgtttggcctcaaaagatg	1094
	ccatgcctttcgatctactgaagagaaaactaatgtcacgattgaagact	1147
	ccatgccattcgatctactgaagagaaaactgatgtcacgattgaagact	1144 1197
	ctgggtatccaagttacaaaaatttatgaagaggaatggtcttatattcc 	1197
	tgttgggggttctttaccaaacacagagcaaaagaacctagcatttggtg	1247
	tgttggtggttctttaccaaacacagagcaaaagaacctagcatttggtg	1244
1248	ctgcagcaagcatggtgcatccagcaacaggctattcggttgtacgatca	1297
1245	ctgcagcaagcatggtgcatccagcaacaggctattcggttgtacggtca	1294
1298	ctatcagaagctccaaaatatgcttctgtaattgcaaagattttgaagca	1347
	ctgtcagaagctccaaaatatgcttctgtaattgcaaagattttgaagca	
1348	agataactctgcatatgtggtttctggacaaagcagtgcagtaaacattt	
	agataactctgcgtatgtggtttctggacaaagtagtgcagtaaacattt	_
	caatgcaagcatggagcagtctttggccaaaggagcgaaaacgtcaaaga	
	caatgcaagcatggagcagtctttggccaaaggagcgaaaacgtcaaaga	٠
	gcattctttcttttcgggttagagcttattgtgcagctagatattgaagc	
1445	gcattettettttggattagagettattgtgeagetagatattgaage	. ITJ

1498	aaccagaacgttctttagaaccttcttccgcttgccaacttggatgtggt	1547
1495	aaccagaacattctttagaaccttcttccgcttgccaacttggatgtggt	1544
1548	ggggtttccttgggtcttcactatcatctttcgatcttgtattgtttcc	1597
1545	ggggtttccttgggtcttcactatcatctttcgatctcgtcttgttttcc	1594
1598	atgtacatgtttgttttggccccgaacagcatgaggatgtcacttgtgag	1647
1595	atgtacatgtttgttttggcgccaaacagcatgaggatgtcacttgtgag	1644
1648	acatttgctttcagatccttctggtgcagttatggttaaagcttacctcg	1697
1645	acatttgctttcagatccttctggtgcagttatggtaagagcttacctcg	1694
	aaaggtaatctgttttatgaaactatagtgtctcattaaataaatga	1744
	aaaggtagteteatetattattaaaetetagtgttteaceaaataaatga	1744
	<pre>ggatccttcgtatatgtatatgatcatctctatgtatatcctatattcta </pre>	1794
	ggatccttcgaatgtgtatatgatcatctctatgtatatcctgtactcta	1794
	atctcataaagtaatcgaaaattcattgatagaaaaaaaa	1844
	àtctcataaagtaaatgccgggtttgatattgttgtgtcaaaccggccaa	
	aaaa	1848
1845	tgatataaagtaaatttattgatacaaaagtagtttttttt	1894

FIG. 23D

•			-		
GAP program blosum62.cm	of Genetics p	Computer	Group	FIG.	24 A
Ga Lengt Percent Si	p Weight: h Weight: Quality:	,147 ,623 s for the	Percent Ide alignment(smatch: Length: Gaps: entity: (s):	2.912 -2.003 530 0 99.057
Adonis pala	estina ε-cyc	lase #3	x Adonis pa	laestina &	E-cyclase #5
	RNLİSSCPVWTF(
	VAYKEGFVDEEDI VAYKEGFVDEEDI	11111			
	VMDLVVIGCGPA VMDLVVIGCGPA				
	.GLERCIEHAWKD GLERCIEHAWKD		APVLIGRAYGRV APVLIGRAYGRV		 200
	SYLNSKVERITE . SYLDSKVERITE				
	GPRVCVQTAYGV GPRVCVQTAYGV				
	YVMPMSPTRLFF				Ì

351	KIYEEEWSY]	IPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAPK	400
351	KVYEEEWSY]		400
401	YASVIAKILK	KQDNSAYVVSGQSSAVNISMQAWSSLWPKERKRQRAFFLFG	450
401	YASVIAKILK		450
451	LELIVOLDIE	EATRTFFRTFRLPTWMWWGFLGSSLSSFDLVLFSMYMFVL !	500
451	LELIVOLDIE	ATRTFFRTFFRLPTWMWWGFLGSSLSSFDLVLFSMYMFVL	500
501	APNSMRMSLV	/RHLLSDPSGAVMVKAYLER* 530	
501	APNSMRMSLV		

FIG. 24B

	103 102 102 107 107 108 72 73 73 73	54 205 204 204 209 202 202 191 181 182 182 182 185
14		
	GPP GPP GPP GPP GPP GPP GPP GPP GPP GPP	220 220 220 220 220 220 220 220
	T. L. L. L. L. L. L. L. L. L. L. L. L. L.	PLLK PARCHO PARC
100	EGSK KQAK KQAK KQAK KQAK KQAK KPET VPET VPET	
	LECTOR COMP	SS SS HE SS SS SS SS SS SS SS SS SS SS SS SS SS
	TOON TOON TOON TOON TOON TOON TOON TOON	YGRV YGRV YGRV YGRV YGRV ARV
	FVQ FVQ FVQ FVQ VVSG VVKA VVKA VVKA VVKA VVKA VVKA VVKA	200 16ka 16ka 16ka 16ka 16ka 16ka 16ka 16ka
	SSELI SSELI	DP1L KP1T KP1T APVL APVL DP1R PP1L TKO TKO TKO
8	KAGG KAGG KAGG KAGG IPC KAGG	POPULATION AND THE POPULATION AN
	EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU EEDFU	TILLY TILLY AVENTY TILLY
•	401 401 401 6	160 * 180 * 200 *
	KEGF KEGF (CGF) (CDF) (C	180 AGIEHA AGIEH
	CVAV SVAY SVAY SVAY CVVDI CVVDI TSKL(SVKSV SVKSV SVKSV SVKSV SVKPP	
90	GSES GSRS GSRT GSRT SNNP SNNP SNNP SNNP SSFN ASTEI ASTEI ASTEI ASTEI ASTEI ASTEI ASTEI ASTEI ASTEI ASTEI ASTEI ASTEI	
	GGSS GGSS DGGS DGGS DGGS SAKSI NSSS NSSS -EKQI -VKV	
*	PASG QVRA QVRA QVRC GFE FG FG FG FG	NYGV NYGV NYGV NYGV NYGV
	SV RVDF RVDF RVDF RVDF RVDF PHHG PHHG PNHG PNHG	NEW NAME OF THE NA
	FPVVKRYSYRNIRFGL-CSVRASGGGSSGSESCVAVREDFADEEDFVKAGGSE1LFVQMQQNKDMDEQSKLVDKIJPPIS NLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRSSVAYKEGFVDEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKIJPPIP HKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQISVADEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKIJPPIP HKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKIJPPIP #SGGELCQEKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADEEDYIKAGGSELFVQMQQTKSMEKQAKLSDEIRQIS #SGGELCQEKSIFLAY-EQYEKQKONSSGSDSCVVDKEDFADEEDYIKAGGSQLVFVQMQQTKSMESQSKLSDEIRQISMOTLLKTPNKLDFFIPQFHGFERLCSNNPYHSRVRLGVKKRAIKIVSSVVSGSALLELVPETKKENIJDFELMOTLLRTPNNLEFLLPHHGFAEKQHLVSTSKLQNQVFRIASRNIHPCRNGTVKASSSALLELVPETKKENIJDFELMOTLLKTPNNLEFLHPVHGFSVKVSAFSSVVSGFGAKKFCEGLGSRSVCVKASSSALLELVPETKKENIJDFELMOTLLKTPNNLEFLHPVHGFSVKASSFNSVKPHKFGSRKICENWGKGVCVKAKSSALLELVPETKKENIJDFELMOTLLKTPNNLEFLLYPLHELAKRHFLSPSPNPQNPNFKFFSRKPPYQKKCRNGYIGVSSNQLLDLVPETKKENIJDFELMOTLLRTHNRLELLYPLHELAKRHFLSPSPNPQNPNFKFFSRKPPYQKKCRNGYIGVSSNQLLDLVPETKKENIJDFEL	180 * 160 * 150 * 150 * 180 * 200
40	WIRE ITHRY I	*
	CLAYN CGERRY CLERT CLEAT CLEAT CLEAT CLEAT CLEAT CLEAT	40 SAKLGLKVGLLGPUP-AAKLGLKVGLLGPUP-SAKLGLKVGLLGPUP-SAKLGLKVGLLGPUP-SAKLGLKVGLLGPUP-SAKLGLKVGLVGPUP-VSEAGLSVCSTOPN-PKVSEAGLSVCSTOPN-PKVSEAGLSVVSTOPS-PKVSTOPS
*	SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS	40 SAKLG AAKLG AAKLG SAKLG SAKLG SAKLG VSEAG VSEAG
	STRNI STRNI STRNI STRNI	14 AAES AAES AAES AAES AQQV AQQV AQQV AQQV
	\$ 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MGLAL MGLSL MGLSL GLAL GLAV GLAV GLAV GLAV GLAV
20	SCPW SCPW TCPR TCPR	* 25555555555555
	MAVS - 1S: MAVE WARF	120 * 140 * 160 * 160 * 160 * 180 * 200 *
*	F-AW 11ATI 11ATI	SOUVO DE LA COMPANION DE LA CO
	SARN SVRN SVRN SARN AG-H	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A	**MECVGARNF-AAMAVSTFPSWS-CRRKFPVVKRYSYRNIRFGL-CSVRASGGGSSGSSCVAVREDFADEEDFVKAGGSELLFVQYQQTKSMECYGKLADKEPPIP **MELLGVRNLISSCPWIT-FGTRNLSSSKLAYNIHRYGSSCRVDFQVRAGGGSGRTSVAAYKEGFVDEEDFIKAGGSELLFVQYQQTKSMEKQAKLADKEPPIP **MELLGVRNLISSCPWIT-FGTRNLSSSKLAYNIHRYGSSCRVDFQVRAGGGSGRTSVAAYKEGFVDEEDFIKAGGSELLFVQYQQTKSMEKQAKLADKEPPIP **MECFGARNMTATMAVFTCPRFTDCNIRHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADEEDFYKAGGSELFVQAQTKSMEXGRESQSKLSEKÄAQIP **MECFGARNMTATMAVFTCPRFTDCNIRHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADEEDFYKAGGSELLFVQAQTKKDMDQQSKLSDELRQIS **MECFGARNMTATMAVFTCPRFM	120 * 140 * 160 * 160 * 180 * 180 * 200 *
25		** ** ** ** ** ** ** ** ** ** ** **
	PS is position of the position	psisl 1 2 2 3 3 5 8 8 8
F16. 25A	ArabidopsisE ArabidopsisE AdonisE1 AdonisE2 TomatoE ArabidopsisB AdonisB PepperB TomatoB TomatoB MarigoldB	PotatoE ArabidopsisE AdonisE1 AdonisE2 LettuceEE TomatoE ArabidopsisB AdonisB PepperB TomatoB TomatoB OmatoB MarigoldB
غ بنا	Are Adc Adc Let Tom Mar Adc Pep Pep Tom Mar Daf	Pot Ara Ado Ado Iom Mar Pepi Tom Tom Mari

÷ ':

	4	10/45
: 161 : 312 : 313 : 311 : 316 : 316 : 288 : 298 : 289 : 289	88,88	. 271
* 280 * 300 * 320	GWKFHQAKÜIKVIH-EELKSLLICNDGVTIQATLVLDATG-FSRSLVQYD-KPYNPGYQVAYGILDEVEEHPFDVDKALFMDWRDSHLDQNLEIKARNSREPTFLYAMPF GWRFHQATÜVKAMH-EEEKSYLICSDGVTIDARVVLDATG-FSRCLVQYD-KPYNPGYQVAYGILDEVEEHPFDVDKAVFMDWRDSHLNGKAELNERNAKIPTFLYAMPF	340 * 360 * 380 * 400 * 400 * 440 *
3. -VRHDAQSLI -TNEKVRSLI -MQKLQCSI -MQKLQCSI -NGKLQCSI -SKHKPESLE	NNMELKERN QNLEIKARN GKAELNERN	O CÁFVLANŢÜ
MOYROY MOYROY MOYROY MOYROY MOYROY MOYROY MOYROY MOYROSHLK MOWROSHLK MOWROSHLK	MUWRUSHLG MUWRUSHLD MUWRUSHLN	VRSISEAPK
* 280 * 300 WYPPCRFVTVASGAASGKFLOYELGGPRVSVQTAYGVEVEVDNWIPEDPSLIW FINDYRDY INVEPCRLATVASGAASGKLLEYEVGGPRVCVQTAYGVEVEVENBYDPDQAYFINDYRDY IFIPCRLATVASGAASGKLLEYEVGGPRVCVQTAYGVEVEVENBYDPDLWAFINDYRDY IFIPCRLATVASGAASGKFLEYELGGPRVCVQTAYGVEVEVENBYDPDLWAFINDYRDY ITIPCRLATVASGAASGKFLEYELGGPRVCVQTAYGVEVEVENBYDPDLWAFINDYRDY ITIPCRLATVASGAASGKFLEYELGGPRVCVQTAYGVEVEVENBYDPDLWAFINDYRDY ITIPCRLATVASGAASGKFLQYELGGPRVCVQTAYGVEVEVEVENBYDPDLWAFINDYRDY ITIPCRLATVASGAASGKFLQYELGGPRVCVQTAYGTEVEVESTPYDPSLWFWINDWRDKHLI ITIPATVVLDATG-FSRCLVQYD-KPYNPGYQVAYGTWEVEHPFDVNKWYFMDWRDSHLN ITITQATVVLDATG-FSRSLVQYD-KPYNPGYQVAYGTLAEVEEHPFDVNKWYFMDWRDSHLN	PFDVDKYLF PFDVDKYLF PFDVDKYVF	* VHPATGÝSV
* *** *** *** *** *** *** *** *** ***		400 LAFGAGASM
280 SPRVSVQTA SPRVCVQTA SPRVCVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQTA SPRVSVQVA SVRPGVQVA SVRPQVA SVRPQVQVA SVRPQVA	YNPGYQVAY YNPGYQVAY	* SERNTEOKT
GKFLQ [*] ELG GKLLQ [*] ELG GKLLQ [*] EVG GKLLEVEVG GKLLEVEVG GKLLQ [*] CLG GKLVQ [*] D-KF SCLVQ [*] D-KF SCLVQ [*] D-KF	SLVQYD-KP	380 Ewsyi HV&G
260 ATVASGAASI ATVASGA	1081G-F3R	* WRIKEIYEE
* 240 * 300	NDGVTÍDATLV SDGVTÍDARVV	360 KLMLŘÚNTEG
* 240 GVLYLNSKÝDRIVEATNGHSLVEČEGD GVSYLSSKÝDS ITEASDGLRLVAČDDN GVSYLDSKÝERITEAGDGHSLVVČENE GVSYLNSKÝERITEAPNGYSLIEČEGN GVLYLNSKÝPRITEAPNGYSLIEČEGN GVKFHQSKÝTNVH-EEANSTVÝČSDGY GVKFHQAKÝTKVIH-EESKSLLIČNDGI GVKFHQAKÝTKVIH-EESKSMLIČNDGI GVKFHQAKÝTKVIH-EESKSMLIČNDGI GVKFHQAKÝTKVIH-EESKSMLIČNDGI GVKFHQAKÝTKVIH-EESKSMLIČNDGI GVKFHQAKÝTKVIH-EESKSMLIČNDGI	EELKSLLIĞ EEEKSYLIĞ	* DAMPFDLLKK
* VSKÝDRIVE SSKÝDSITE SSKÝERITE SSKÝERITE SSKÝERITE SSKÝTIVVH- AKVIKVIH- AKVIKVIH- AKVIKVIH- AKVIKVIH-	AKŲ IKVIH- ATŲ VKAMH-	340 FEETCLASKI
	SVKFHQ SVRFHQ	SPTRVE
PotatoE ArabidopsisE AdonisE1 AdonisE2 LettuceEE TomatoE MarigoldE ArabidopsisB AdonisB TomatoB	MarigoldB DaffodilB	340 * PotatoE : SPTRVFFEETGIASKDAMPFDLLKKKLM

418 408 393 395 391 393 393 SLSEAPKCAFVLANŢĽRONHSKNMLTSS TKSRLFFEETICLASKOVMPFDLLKTKLMURUDTUGIRILKTYEEFJJSYIPYGGSLPNTEOKNLAFGAAASYVHPATGYSYYPRSLSEARKYASVIAEILREETTKQINS--SPTRUFFEETCLASKDAMPFDLLKRKLMSRLIKTLIGIQVTKVYFEEMSYIPVGGSLPNTEQKNLAFGAASMVHPATGYSVVRSLSEAPKYASVTAKTLKQDNSAYVVSGQ SPTRUFFEETCLASKDAMPFDLLKRKLMSRLIKTLIGIQVTKTYFEEMSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAPKYASVTAKTLKQDNSAYVVSGQ SPTKI FFEETCI JASREAMPFNLLKSKLMSRLIKAMGI RITRTYEEFJASYI PVGGSL PNTECKNLAFGAAASMVHPATGYSVVRSLSEAPNYAAVI AKTLRQDQSKEMI SLG SPTKVFFFETICI JASKEAMPFELLKTKLMSRLIKTMGIRITKTVEEFIASYI PVGGSL PINTEOKNLAFGAAJASMVHPATGYSVVRSI SEAPINYAAVIAK ILGKGNSKOMLDHG SPTRVFFEETCLASKDAMPFDLLKKKLMLRLINTLIGVRIKEIVEEELSYIHVGGSLANTEOKTLAFGAAASNVHPATGYSVVRSLSEAPKCASVLANILROHYSKNMLTS-SSNRIFILEETISI VARPGLRMEDIQERMAARIKHIGINVKRIGEDERCVII PYGGFLPVLPORVVGIGGTAGAVHPSTGYAVARTILAGAPIVANAIVRYLGSPSSN----S SSNRIFLEETSLVARPGLRIDDIQERMVÄRLINHLGIKVKSIEEDEHCLI PMGGPLPVLRORVGGGGTAGMVHPSTGYMÄRTLAAARVVANAI IQYLGSERSH-----SSNRIFLEETSLVARPGLRMDDIQERMVARLINHLGIKVKSIEEDEHCVI PMGGSLPVI PORVVGTGGTAGLVHPSTGYMVARTLAAARVVANAI IHYLGSEKOL-----SSTRIFLEETSLVARPGLKMEDIQERMAVRLKHLGIKVKSIEEDERCVI PMGGPLPVLRORVLGIGGTAGWVHPSTGYMVARTLAAARIVAKSI IRYLNNEKSM---VAD SSNRIFILETISLIVARPGLOMDDIQERAVARISHLIGIKVKSIEEDEHOVIPINGOPLAVLAQAVVGIGGIAGAVHASTGYAVARITLAAARIVVANAIIQYLSSERSH----SSTKIFLEETSLYARPGLRFEDIQERMARLKHLIGIKVKSI GEÖERCYI PYGGPL PVL PQRVVG IGGTAGYVHPSTGYMVARTILAAARVVAKSI VQYLGSDRSL SSNRIFIEETSLVARPGLIMEDIQEMVARLINHIGIRIKSIEFDERCVIPYGEPLEVIPORVOGIGGTAGMVHPSTGYMVA **SPTRVPPEETCJASKDAMPFOLLKKKLMĮRŲNTŪČVRIKE**TY ArabidopsisE **ArabidopsisB** MarigoldE ettuceEE Marigold8 Daffodi 1B AdonisE2 Adonis E1 FobaccoB AdonisB Pepper8 PotatoE TómatoB **Comato**E

FIG. 25B

	# <u>`</u>	•	-
41/45	•		
378 378 378 378 378 378 378 378	 3 a	: 50 : 208 : 207 : 207 : 212	: 205 : 194
* 'LER 'LER 'LER 'LER 'LER 'LOOKE	EPRVP EPRVP 220	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sov
TLIRTY WWYRAY WWYKAY WWYKAY WWYKAY WWYKAY WWYKAY WWYKAY WWYKAY WWINNL WI	SISOK		TRO S
540 SUPTGATI	* * *		
* INHLI: INHLI: VRHLL: VRHLL: WAK-G MAK-G MAK-G WAK-G		GRVSR GRVSR	GRVSRH
IDMRRGU ISMRASI ISMRASI ISLRAGU ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI ITSRIEI	SELL FVC	HIGRAY TIGRAY UIGRAY UIGRAY RIGRAY	LIGRAY
520 FILIAPN FI	TIKCNAAKSQLVVKQEIEEEEDYVKAGGSELLFVQVQQNKSYDAQSSISQKLPRVP	DODOKPI DNDAPV DNDAPV DDAUPI	DDOEP I
TEGES LA VACED STANDARD AND EED STANDARD	EEED		TE LIVYLI JIVVYLI
SSADLY SSECTION * FLPELLY KEGF- * KEG	LVVKQEI 180	TEHAWKI TEHAWK	
PLESSEL FLESSE	[V		01000
SOO KANAGERI TANAGERI KANAGERI KANAGERI KANAGERI KANAGERI PRYAGERI PRYAGERI PRYAGERI PRYAGERI PRYAGERI PRYAGERI SOGSSSSS	CNAAKSC		
* AFFRLP	KQIKCNAAKSQLVVKQEIEEEEDYVKAGGSELLFVQVQQNKSYDAQSSISQKLPRVP 160 * 180 * 220	NNYGVH NNYGVH NNYGVH NNYGVH	NNYGVW
TRAFED TO SERVICE TO S	1	OLPFT OUPFT OUPFT	POLPFTI POLPFTI
STO STORY AND THE REPORT FOR THE TOTAL LUGIDIES FRAFER PROMAGE LESS IS SADIANT FOR THAN PRIBER AND STEPS LIST OF THE TOTAL PROPERTY OF THE TOTAL LUGIDIES FROM THE PROMAGE LESS IS SADIANT FOR THE TOTAL PROPERTY OF THE TOTAL LUGIDIES FROM THE PROMAGE LESS IS STORY THE TOTAL PROMAGE LIST FROM THE PROMAGE LESS IS STORY THE TOTAL PROMAGE LESS IS STORY THE PROMAGE LINE LESS CANNORANT LESS AND THE PROMAGE LINE LESS CANNORANT LESS AND THE PROMAGE LINE LESS CANNORANT LESS CANNORANT LINE LINE LINE LINE LINE LINE LINE LINE	TSIRYT	LGUKVGLIGPDLPFTNNYGVWEDE FKULGLQMCIEHYWRETIJYYLDDDKPITIGRAYGRYSRHLLHEELLKKYVFFSAYS LGUKVGLIGPDLPFTNNYGVWEDE FKOLGLERCIEHAWKOTIJYYLDNDAPVLIGRAYGRYSRHLLHEELLKRCVESGYS LGUKVGLIGPDLPFTNNYGVWEDE FKOLGLERCIEHAWKOTIJYYLDNDAPVLIGRAYGRYSRHLLHEELLKRCVESGYS LGUKVGLIGPDLPFTNNYGVWQDE FKOLGLERCIEHSWKOTIJYYLDDADPIRIGRAYGRYSRHLLHEELLKRCVESGYS	NGQTVI.DI.JVVIGCGPAGLALIARESAKI.GUNVGLVGPDLPFTNNYGVWEDEFKOLGUCACIEHVWROTI.IVVLDDOEPILIIGRAYGRVSRHFLHEELUKRCVENGV IGGGODSNCTIJDLVVIGCGPAGLALIAGESAKI.GUNVALIIGPDLPFTNNYGVWEDEFIGLGUEGCIEHVWROTIVVYLDDNOPILIIGRAYGRVSRDLLHEELUTROFESGVS
FEGLALIL FEG	8 !	SAKLGU	SAKLGU
Service of the servic		SLAME SLAME SLAME MANE	8 5 8 5 8 5 8 5 8 5 8 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
STPS-ISTQAWITLWPGERGQRSFFLFGLA SSAVNISRQAWITLWPGERGQRSFFLFGLE SSAVNISRQAWFTLWPGERGQRSFFLFGLE SSAVNISRQAWFTLWPGERGQRSFFLFGLE KYT-NISRQAWFTLWPGERGQRSFFLFGLE RYTTNISRQAWFTLWPGERGQRSFFLFGLA RYTTNISRQAWFTLWPGERGQRSFFLFGLA SSIPSISTQAWNTLWPGERGAGRSFFLFGLA -SGNELSAEVWKDLWPTERRAGREFFCFGWD -SGNELSAEVWKDLWPTERRAGREFFCFGWD -SGNELSAAWWKDLWPTERRAGREFFCFGWD -SGNDLSAAWWKDLWPTERRAGREFFCFGWD	MSMRAG-HMTATMAAFTCPRFM-	IGDGALIDHVV IGCGPAGLALAAESAKI GESWICHVV IGCGPAGLSLAAEGAAKI GESWICHVV IGCGPAGLSLAAEGAKI IGNCTLICHVV IGCGPAGLALAAESAKI	QTVI:DI.VVIGCGPAGIALAGESAKI DSNC11:DI.VVIGCGPAGIALAGESAKI
ANTLWP SSSLWP COLW	TIMAF		
* ISTOAN IISTO	(G-HMT)		DSNC11
FIG. 25C Potatoe : STPS- Adonise1 : SSAW Adonise1 : SSAW Adonise1 : SSAW Adonise1 : SSAW Arabidopsise : LRGD Arabidopsise : -SGNE FIG. 26A FIG. 26A FIG. 26A Arabidopsise : MECVE Arabidopsise : MECVE Arabidopsise : MECVE Arabidopsise : MECVE Arabidopsise : MECVE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE Adonise2 : MELLE	MSMRA	4444	A
	• ••		••
FG.2 Potatoe Arabidopsise Adonise1 Adonise1 Adonise Arabidopsise Arabidopsise Marigolde Marigolde Marigolde Marigolde Arabidopsise Adonise Potatoe Arabidopsise Adonise1 Adonise1 Adonise2 CettuceE	MarigoldE	Potatok ArabidopsisE AdonisE1 AdonisE2 LettuceEE	TomatoE MarigoldE
PCACOB Arabidopo AdonisE1 AdonisE1 CettuceEI TomatoE AdonisB AdonisB PepperB TomatoB TobaccoB MarigoldI Daffodill Daffodill Arabidopo AdonisE1 AdonisE2 LettuceEI TomatoF TomatoF	Maric	Potatoe Arabidop AdonisE1 AdonisE2 LettuceE	TomatoE Marigolo

F16. 26B

43/45

FIG. 28A

Gap Weight: 12 Average Match: 2.912 Length Weight: 4 Average Mismatch: -2.003 Quality: 1837 Length: 534 Ratio: 3.499 Gaps: 3 Percent Similarity: 76.381 Percent Identity: 69.905 Match display thresholds for the alignment(s): = IDENTITY := 2 . = 1
Arabidopsis x Lettuce
1 MECVGARNF.AAMAVSTFPSWSCRRKFPVVKRYSYRNIRFGLCSVRA 46
47 SGGGSSGSESCVAVREDFADEEDFVKAGGSEILFVQMQQNKDMDEQSKLV 96
97 DKLPPISIGDGALDHVVIGCGPAGLALAAESAKLGLKVGLIGPDLPFTNN 146
: .
147 YGVWEDEFNDLGLQKCIEHVWRETIVYLDDDKPITIGRAYGRVSRRLLHE 196
: : ::::
197 ELLRRCVESGVSYLSSKVDSITEASDGLRLVACDDNNAIPCRLATVASGA 246
201 ELLRRCVESGVSYLSSKVERITEAPNGYSLIECEGNITIPCRLATVASGA 250
247 ASGKLLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKV 296
251 ASGKFLEYELGGPRVCVQTAYGIEVEVENNPYDPDLMVFMDYRDFSKHKP 300
297 RSLEAEYPTFLYAMPMTKSRLFFEETCLASKDVMPFDLLKTKLMLRLDTL 346
. : :: :: . . : 301 ESLEAKYPTFLYVMAMSPTKIFFEETCLASREAMPFNLLKSKLMSRLKAM 350

FIG. 28B

	• • • • • • • • • • • • • • • • • • • •	
347	GIRILKTYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSL	396
351	:	400
397	SEAPKYASVÍAEILREETTKQINSNISRQAWDTLWPPERKRQRAF	441
401	. . :: . :. : : SEAPNYAAVIAKILRQDQSKEMISLGKYTNISKQAWETLWPLERKRQRAF	450
442	FLFGLALIVOFDTEGIRSFFRTFFRLPKWMWQGFLGSTLTSGDLVLFALY	491
451	.	500
492	MFVISPNNLRKGLINHLISDPTGATMIKTYLKV* 525	
501	. : : : : MFVIAPHSLRMELVRHLLSDPTGATMVKAYLTI* 534	

SEQUENCE LISTING

<110>	CUNN:	INGHA ZAIF	AM JE REN	Ŗ., F	RANC	:IS }	۲.								
<120>	GENE:	S OF ODS C	CARC F US	TENC	ID E	SIOSY F	NTHE	ESIS	AND	META	ABOLI	ISM A	AND		
<130>	8172-	-9023	3												
<140> <141>	NOT 1	YET A	\SSIG	NED											
<150> <151>	09/08 1998-	38,72 -06-0	2												
<150> <151>	09/08 1998-	88,72 -06-0	5												
<160>	61														
<170>	Pater	tIn	Ver.	2.0											
<210><211><211><212><213>	1860 DNA	dops	is t	hali	ana										
<220> <221> <222>		(1	680)												
<400> ACAAAA	_	ATAA	TTAG.	AT T	CCTC'	TTTC	T GC	TTGC	ТАТА	ССТ	TGAT	AGA .	ACAA	ТАТААС	60
AATGGT	'GTAA	GTCT	TCTC	GC T	GTAT'	TCGA	А АТ'	TATT	TGGA	GGA	GGAA	Me		G TGT u Cys	117
GTT GG Val Gl	G GCT y Ala 5	AGG Arg	AAT Asn	TTC Phe	GCA Ala 10	GCA Ala	ATG Met	GCG Ala	GTT Val	TCA Ser 15	ACA Thr	TTT Phe	CCG Pro	TCA Ser	165
TGG AG Trp Se 20	T TGT r Cys	CGA Arg	AGG Arg	AAA Lys 25	TTT Phe	CCA Pro	GTG Val	GTT Val	AAG Lys 30	AGA Arg	TAC Tyr	AGC Ser	TAT Tyr	AGG Arg 35	213
AAT AT Asn Il	T CGT e Arg	TTC Phe	GGT Gly 40	TTG Leu	TGT Cys	AGT Ser	GTC Val	AGA Arg 45	GCT Ala	AGC Ser	GGC Gly	GGC Gly	GGA Gly 50	AGT Ser	261
TCC GG Ser Gl	T AGT y Ser	GAG Glu 55	AGT Ser	TGT Cys	GTA Val	GCG Ala	GTG Val 60	AGA Arg	GAA Glu	GAT Asp	TTC Phe	GCT Ala 65	GAC Asp	GAA Glu	309
GAA GA Glu As	T TTT p Phe 70	GTG Val	AAA Lys	GCT Ala	GGT Gly	GGT Gly 75	TCT Ser	GAG Glu	ATT Ile	CTA Leu	TTT Phe 80	GTT Val	CAA Gln	ATG Met	357
CAG CA	G AAC	AAA	GAT	ATG	GAT	GAA	CAG	TCT	AAG	CTT	GTT	GAT	AAC	ም ምር	405

PCT/US99/12121

Gln	Gln 85	Asn	Lys	Asp	Met	Asp 90	Glu	Gln	Ser	Lys	Leu 95	Val	Asp	Lys	Leu	
CCT Pro 100	CCT Pro	ATA Ile	TCA Ser	ATT Ile	GGT Gly 105	GAT Asp	GGT Gly	GCT Ala	TTG Leu	GAT Asp 110	CAT	GTG Val	GTT Val	ATT Ile	GGT Gly 115	453
TGT Cys	GGT Gly	CCT Pro	GCT Ala	GGT Gly 120	Leu	GCC Ala	TTG Leu	GCT Ala	GCA Ala 125	GAA Glu	TCA Ser	GCT Ala	AAG Lys	CTT Leu 130	GGA Gly	501
TTA Leu	AAA Lys	GTT Val	GGA Gly 135	CTC Leu	ATT Ile	GGT Gly	CCA Pro	GAT Asp 140	CTT Leu	CCT Pro	TTT Phe	ACT Thr	AAC Asn 145	AAT Asn	TAC Tyr	549
GGT Gly	GTT Val	TGG Trp 150	GAA Glu	GAT Asp	GAA Glu	TTC Phe	AAT Asn 155	GAT Asp	CTT Leu	GGG Gly	CTG Leu	CAA Gln 160	AAA Lys	TGT Cys	ATT Ile	597
GAG Glu	CAT His 165	GTT Val	TGG Trp	AGA Arg	GAG Glu	ACT Thr 170	ATT Ile	GTG Val	TAT Tyr	CTG Leu	GAT Asp 175	GAT Asp	GAC Asp	AAG Lys	CCT Pro	645
													TTG Leu			693
													TAC Tyr			741
TCG Ser	AAA Lys	GTT .Val	GAC Asp 215	AGC Ser	ATA Ile	ACA Thr	GAA Glu	GCT Ala 220	TCT Ser	GAT Asp	GGC Gly	CTT Leu	AGA Arg 225	CTT Leu	GTT Val	789
													ACT Thr			837
													GGT Gly			885
													GTG Val			933
AGT Ser	CCA Pro	TAT Tyr	GAT Asp	CCA Pro 280	GAT Asp	CAA Gln	ATG Met	GTT Val	TTC Phe 285	ATG Met	GAT Asp	TAC Tyr	AGA Arg	GAT Asp 290	TAT Tyr	981
													ACG Thr 305			1029
													GAG Glu			1077
													ACG Thr			1125

WO	99/63055	,

PCT/US99/12121

325	. 33	0	335	e j	
ATG TTA AGA T Met Leu Arg Lo 340	TA GAT ACA CTO eu Asp Thr Le 345	C GGA ATT CGA u Gly Ile Arg	ATT CTA AAG A Ile Leu Lys T 350	CT TAC GAA hr Tyr Glu 355	1173
GAG GAG TGG TG Glu Glu Trp Se	CC TAT ATC CC er Tyr Ile Pro 360	A GTT GGT GGT > Val Gly Gly 365	TCC TTG CCA A Ser Leu Pro A	AC ACC GAA sn Thr Glu 370	1221
Gin Lys Asn Le	rc GCC TTT GG eu Ala Phe Gl 75	r GCT GCC GCT y Ala Ala Ala 380	AGC ATG GTA CASER Met Val H.	AT CCC GCA is Pro Ala 85	1269
ACA GGC TAT TO Thr Gly Tyr Se 390	CA GTT GTG AGA er Val Val Arc	A TCT TTG TCT g Ser Leu Ser 395	GAA GCT CCA AG Glu Ala Pro L 400	AA TAT GCA ys Tyr Ala	1317
TCA GTC ATC GG Ser Val Ile AI 405	CA GAG ATA CTA La Glu Ile Lev 410	ı Arg Glu Glu	ACT ACC AAA CA Thr Thr Lys GO 415	AG ATC AAC ln Ile Asn	1365
AGT AAT ATT TO Ser Asn Ile Se 420	CA AGA CAA GC er Arg Gln Ala 425	T TGG GAT ACT Trp Asp Thr	TTA TGG CCA CC Leu Trp Pro Pr 430	CA GAA AGG ro Glu Arg 435	1413
AAA AGA CAG AG Lys Arg Gln Ar	GA GCA TTC TT rg Ala Phe Phe 440	CTC TTT GGT Leu Phe Gly 445	CTT GCA CTC AT Leu Ala Leu II	FA GTT CAA le Val Gln 450	1461
TTC GAT ACC GAT Phe Asp Thr G1	lu Gly Ile Arq	A AGC TTC TTC g Ser Phe Phe 460	Arg Thr Phe Ph	TC CGC CTT ne Arg Leu 65	1509
CCA AAA TGG AT Pro Lys Trp Me 470	CG TGG CAA GGG	G TTT CTA GGA 7 Phe Leu Gly 475	TCA ACA TTA AC Ser Thr Leu Th 480	CA TCA GGA or Ser Gly	1557
GAT CTC GTT CT Asp Leu Val Le 485	CC TTT GCT TTA eu Phe Ala Leu 490	Tyr Met Phe	GTC ATT TCA CO Val Ile Ser Pr 495	CA AAC AAT	1605
TTG AGA AAA GG Leu Arg Lys Gl 500	GT CTC ATC AAT y Leu Ile Asr 505	His Leu Ile	TCT GAT CCA AC Ser Asp Pro Th 510	CC GGA GCA or Gly Ala 515	1653
ACC ATG ATA AF Thr Met Ile Ly	AA ACC TAT CTO s Thr Tyr Leu 520	C AAA GTA TGAT 1 Lys Val	TTACTT ATCAACT	TCTT :	1700
AGGTTTGTGT ATA	TATATGT TGAT	TTATCT GAATAAT	CGA TCAAAGAATO	G GTATGTGGGT	1760
TACTAGGAAG TTG	GAAACAA ACATO	STATAG AATCTAA	AGGA GTGATCGAAA	A TGGAGATGGA	1820
AACGAAAAGA AAA	AAATCAG TCTT	GTTTT GTGGTTA	AGTG	:	1860

<210> 2 <211> 524 <212> PRT <213> Arabidopsis thaliana

<400> 2 Met Glu Cys Val Gly Ala Arg Asn Phe Ala Ala Met Ala Val Ser Thr Phe Pro Ser Trp Ser Cys Arg Arg Lys Phe Pro Val Val Lys Arg Tyr Ser Tyr Arg Asn Ile Arg Phe Gly Leu Cys Ser Val Arg Ala Ser Gly Gly Gly Ser Ser Gly Ser Glu Ser Cys Val Ala Val Arg Glu Asp Phe Ala Asp Glu Glu Asp Phe Val Lys Ala Gly Gly Ser Glu Ile Leu Phe Val Gln Met Gln Gln Asn Lys Asp Met Asp Glu Gln Ser Lys Leu Val Asp Lys Leu Pro Pro Ile Ser Ile Gly Asp Gly Ala Leu Asp His Val 100 Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala Ala Glu Ser Ala Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Asn Asp Leu Gly Leu Gln Lys Cys Ile Glu His Val Trp Arg Glu Thr Ile Val Tyr Leu Asp Asp Asp Lys Pro Ile Thr Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg Arg Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu Ser Gly Val Ser 200 Tyr Leu Ser Ser Lys Val Asp Ser Ile Thr Glu Ala Ser Asp Gly Leu Arg Leu Val Ala Cys Asp Asp Asn Asn Val Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Gln Tyr Glu Val Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Ser Pro Tyr Asp Pro Asp Gln Met Val Phe Met Asp Tyr 280 Arg Asp Tyr Thr Asn Glu Lys Val Arg Ser Leu Glu Ala Glu Tyr Pro Thr Phe Leu Tyr Ala Met Pro Met Thr Lys Ser Arg Leu Phe Phe Glu 315

WO 99/63055

360

420

480

Glu	Thr	Cys	Leu	Ala 325	Ser	Lys	Asp	Val	Met 330	Pro	Phe	Asp	Leu	Leu 335	Lys	
Thr	Lys	Leu	Met 340	Leu	Arg	Leu	Asp	Thr 345	Leu	Gly	Ile	Arg	Ile 350	Leu	Lys	
Thr	Tyr	Glu 355	Glu	Glu	Trp	Ser	Tyr 360	Ile	Pro	Val	Gly	Gly 365	Ser	Leu	Pro	
Asn	Thr 370	Glu	Gln	Lys	Asn	Leu 375	Ala	Phe	Gly	Ala	Ala 380	Ala	Ser	Met	Val	
His 385	Pro	Ala	Thr	Gly	Tyr 390	Ser	Val	Val	Arg	Ser 395	Leu	Ser	Glu	Ala	Pro 400	
Lys	Tyr	Ala	Ser	Val 405	Ile	Ala	Glu	Ile	Leu 410	Arg	Glu	Glu	Thr	Thr 415	Lys	
Gln	Ile	Asn	Ser 420	Asn	Ile	Ser	Arg	Gln 425	Ala	Trp	Asp	Thr	Leu 430	Trp	Pro	
Pro	Glu	Arg 435	Lys	Arg	Gln	Arg	Ala 440	Phe	Phe	Leu	Phe	Gly 445	Leu	Ala	Leu	
Ile	Val 450	Gln	Phe	Asp	Thr	Glu 455	Gly	Ile	Arg	Ser	Phe 460	Phe	Arg	Thr	Phe	
Phe 465	Arg	Leu	Pro	Lys	Trp 470	Met	Trp	Gln	Gly	Phe 475	Leu	Gly	Ser	Thr	Leu 480	
Thr	Ser	Gly	Asp	Leu 485	Val	Leu	Phe	Ala	Leu 490	Tyr	Met	Phe	Val	Ile 495	Ser	
Pro	Asn	Asn	Leu 500	Arg	Lys	Gly	Leu	Ile 505	Asn	His	Leu	Ile	Ser 510	Asp	Pro	
Thr	Gly	Ala 515	Thr	Met	Ile	Lys	Thr 520	Tyr	Leu	Lys	Val					
<212	l > 95 2 > DN	ΙA	dopsi	is th	nalia	na										
)> 3 C T TTC	CTC (CTCCI	CCT	CT AC	CCGAT	TTTC	C GAC	CTCCC	SCCT	CCC	TAAA	rcc 1	TATO	CCGGAT	60
															GAGAC	120
															CTATAG	180
															AGAGGT	240
															TATGG	300

CTGTTTACTA CAGATTCTCT TGGCAAATGG AGGGAGGTGA GATCTCAATG TTGGAAATGT

TTGGTACATT TGCTCTCTC GTTGGTGCTG CTGTTGGTAT GGAATTCTGG GCAAGATGGG

CTCATAGAGC TCTGTGGCAC GCTTCTCTAT GGAATATGCA TGAGTCACAT CACAAACCAA

WO 99/63055

\			
•			
•			

PCT/US99/12121

	<i>'</i>	-									
GAGAAGGACC	GTTTGAGC	TA AACGA	TGTT	r ttc	SCTAT	TAGT	GAA	CGCT	GGT (CCAG	CGATTG
GTCTCCTCTC	TTATGGAT	тс ттсаа	TAAAC	G GAC	CTCGT	TCC	TGG'	rctc:	rgc '	TTTG	GCGCC ['] G
GGTTAGGCAT	AACGGTGT'	TT GGAAT	CGCCI	r aca	ATGTT	TGT	CCA	CGAT	GGT (CTCG'	rgcaca
AGCGTTTCCC	TGTAGGTC	CC ATCGC	CGAC	G TCC	CTTA	ACCT	ÇCG	AAAG	STC (GCCG	CCGCTC
ACCAGCTACA	TCACACAG	AC AAGTT	CAATO	G GTC	STACC	CATA	TGG	ACTG	TTT (CTTG	GACCCA
AGGAATTGGA	AGAAGTTG	GA GGAAA	TGAAC	G AGT	TAGA	AATA	GGA	SATTA	AGT (CGGA	SAATCA
AATCATACAA	AAAGGCCT	CG GGCTC	CGGGT	r CGA	AGTTC	CGAG	TTC	TGAG	CTT)AAA1	CAAGTT
TTAAATCCCA	AATTCTTT'	TT TTGTC	TTCT	TCF	LATTA	GAT	CATO	CTTA	AGA (CGGT	CT
<210> 4 <211> 294 <212> PRT <213> Arabi	dopsis t	naliana									
<400> 4 Ser Phe Ser	Ser Ser	Ser Thr	Asp	Phe	Ara	Leu	Ara	Len	Pro	Lus	Ser
1 .	5				10					15	
Leu Ser Gly	Phe Ser 20	Pro Ser	Leu	Arg 25	Phe	Lys	Arg	Phe	Ser 30	Val	Cys
Tyr Val Val 35	Glu Glu	Arg Arg	Gln 40	Asn	Ser	Pro	Ile	Glu 45	Asn	Asp	Glu
Arg Pro Glu 50	Ser Thr	Ser Ser 55	Thr	Asn	Ala	Ile	Asp 60	Ala	Glu	Tyr	Leu
Ala Leu Arg 65	Leu Ala	Glu Lys 70	Leu	Glu	Arg	Lys 75	Lys	Ser	Glu	Arg	Ser 80
Thr Tyr Leu	Ile Ala 85	Ala Met	Leu	Ser	Ser 90	Phe	Gly	Ile	Thr	Ser 95	Met.
Ala Val Met	Ala Val 100	Tyr Tyr	Arg	Phe 105	Ser	Trp	Gln	Met	Glu 110	Gly	Gly
Glu Ile Ser 115	Met Leu	Glu Met	Phe 120	Gly	Thr	Phe	Ala	Leu 125	Ser	Val	Gly
Ala Ala Val 130	Gly Met	Glu Phe 135	Trp	Ala	Arg	Trp	Ala 140	His	Arg	Ala	Leu
Trp His Ala 145	Ser Leu	Trp Met 150	Asn	His	Glu	Ser 155	His	His	Lys	Pro	Arg 160
Glu Gly Pro	Phe Glu 165	Leu Asn	Asp	Val	Phe 170	Ala	Ile	Val	Asn	Ala 175	Gly
Pro Ala Ile	Gly Leu 180	Leu Ser	Tyr	Gly 185	Phe	Phe	Asn	Lys	Gly 190	Leu	Val
Pro Gly Leu 195	Cys Phe	Gly Ala	Gly 200	Leu	Gly	Ile	Thr	Val 205	Phe	Gly	Ile

- Ala Tyr Met Phe Val His Asp Gly Leu Val His Lys Arg Phe Pro Val 210 220
- Gly Pro Ile Ala Asp Val Pro Tyr Leu Arg Lys Val Ala Ala Ala His 225 230 235 240
- Gln Leu His His Thr Asp Lys Phe Asn Gly Val Pro Tyr Gly Leu Phe 245 250 255
- Leu Gly Pro Lys Glu Leu Glu Glu Val Gly Gly Asn Glu Glu Leu Asp 260 265 270
- Lys Glu Ile Ser Arg Arg Ile Lys Ser Tyr Lys Lys Ala Ser Gly Ser 275 280 285
- Gly Ser Ser Ser Ser Ser 290
- <210> 5
- <211> 162
- <212> PRT
- <213> Alicalgenes sp.
- <400> 5
- Met Thr Gln Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15
- Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30
- Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys
 35 40 45
- Asn Asp Leu Tyr Gly Val Val Phe Ala Val Leu Ala Thr Ile Leu Phe 50 55 60
- Thr Val Gly Ala Tyr Trp Trp Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80
- Met Thr Val Tyr Gly Leu Ile Tyr Phe Ile Leu His Asp Gly Leu Val 85 90 95
- His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Arg Gly Tyr Phe Arg 100 105 110
- Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125
- His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140
- Lys Gln Asp Leu Lys Arg Ser Gly Val Leu Arg Pro Gln Asp Glu Arg 145 150 155 160
- Pro Ser
- <210> 6
- <211> 175
- <212> PRT
- <213> Erwinia herbicola

Ile Ala Ala Phe Thr His Arg Tyr Ile Met His Gly Trp Gly Trp Arg
20 .25 30

Trp His Glu Ser His His Thr Pro Arg Lys Gly Val Phe Glu Leu Asn 35 40 45

Asp Leu Phe Ala Val Val Phe Ala Gly Val Ala Ile Ala Leu Ile Ala 50 55 60

Val Gly Thr Ala Gly Val Trp Pro Leu Gln Trp Ile Gly Cys Gly Met 65 70 75 80

Thr Val Tyr Gly Leu Leu Tyr Phe Leu Val His Asp Gly Leu Val His 85 90 95

Gln Arg Trp Pro Phe His Trp Ile Pro Arg Arg Gly Tyr Leu Lys Arg 100 105 110

Leu Tyr Val Ala His Arg Leu His His Ala Val Arg Gly Arg Glu Gly 115 120 125

Cys Val Ser Phe Gly Phe Ile Tyr Ala Arg Lys Pro Ala Asp Leu Gln 130 135 140

Ala Ile Leu Arg Glu Arg His Gly Arg Pro Pro Lys Arg Asp Ala Ala 145 150 155 160

Lys Asp Arg Pro Asp Ala Ala Ser Pro Ser Ser Ser Pro Glu 165 170 175

<210> 7

<211> 175

<212> PRT

<213> Erwinia uredovora

<400> 7

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly
1 5 10 15

Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 25 30

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu 50 55 60

Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly 65 70 75 80

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110

WO 99/63055

PCT/US99/12121

													-			
Leu	Lys	Arg 115	Leu	Tyr	Met	Ala	His 120	Arg	Met	His	His	Ala 125	Val	Arg	Gly	
Lys	Glu 130	Gly	Cys	Val	Ser	Phe 135	Gly	Phe	Leu	Tyr	Ala 140	Pro	Pro	Leu	Ser	
Lys 145	Leu	Gln	Ala	Thr	Leu 150	Arg	Glu	Arg	His	Gly 155	Ala	Arg	Ala	Gly	Ala 160	
Ala	Arg	Asp	Ala	Gln 165	Gly	Gly	Glu	Asp	Glu 170	Pro	Ala	Ser	Gly	Lys 175		
<210> 8 <211> 162 <212> PRT <213> Agrobacterium aurianticum																
	0> 8 Thr	Asn	Phe	Leu 5	Ile	Val	Val	Ala	Thr 10	Val	Leu	Val	Met	Glu 15	Leu	
Thr	Ala	Tyr	Ser 20	Val	His	Arg	Trp	Ile 25	Met	His	Gly	Pro	Leu 30	Gly	Trp	
Gly	Trp	His 35	Lys	Ser	His	His	Glu 40	Glu	His	Asp	His	Ala 45	Leu	Glu	Lys	
Asn	Asp 50	Leu	Tyr	Gly	Leu	Val 55	Phe	Ala	Val	Ile	Ala 60	Thr	Val	Leu	Phe	
Thr 65	Val	Gly	Trp	Ile	Trp 70	Ala	Pro	Val	Leu	Trp 75	Trp	Ile	Ala	Leu	Gly 80	
Met	Thr	Val	Tyr	Gly 85	Leu	Ile	Tyr	Phe	Val 90	Leu	His	Asp	Gly	Leu 95	Val	
His	Trp	Arg	Trp 100	Pro	Phe	Arg	Tyr	Ile 105	Pro	Arg	Lys	Gly	Tyr 110	Ala	Arg	
Arg	Leu	Tyr 115	Gln	Ala	His	Arg	Leu 120	His	His	Ala	Val	Glu 125	Gly	Arg	Asp	
His	Cys 130	Val	Ser	Phe	Gly	Phe 135	Ile	Tyr	Ala	Pro	Pro 140	Val	Asp	Lys	Leu	
Lys 145	Gln	Asp	Leu	Lys	Met 150	Ser	Gly	Val	Leu	Arg 155	Ala	Glu	Ala	Gln	Glu 160	
Arg	Thr															
<210> 9 <211> 954 <212> DNA <213> Arabidopsis thaliana																
<400> 9 CCACGGGTCC GCCTCCCCGT TTTTTTCCGA TCCGATCTCC GGTGCCGAGG ACTCAGCTGT 60																
TTGT	TCGC	GC 1	TTCI	CAGO	CC G1	CAC	CATGA	A CCC	SATTO	TAA	CGAT	rgcto	GA A	ATGGA	ATGCTG	120

WO 99/63055 PCT/US99/12121

TTCAGAGACG ACTCATGTTT GAAGACGAAT GCATTCTCGT TGATGAAAAT AATCGTG	TGG 180
TGGGACATGA CACTAAGTAT AACTGTCATC TGATGGAAAA GATTGAAGCT GAGAATT	TAC 240
TTCACAGAGC TTTCAGTGTG TTTTTATTCA ACTCCAAGTA TGAGTTGCTT CTCCAGC	AAC 300
GGTCAAAAAC AAAGGTTACT TTCCCACTTG TGTGGACAAA CACTTGTTGC AGCCATC	CTC 360
TTTACCGTGA ATCCGAGCTT ATTGAAGAGA ATGTGCTTGG TGTAAGAAAT GCCGCACA	AAA 420
GGAAGCTTTT CGATGAGCTC GGTATTGTAG CAGAAGATGT ACCAGTCGAT GAGTTCA	CTC 480
CCTTGGGACG CATGCTTTAC AAGGCACCTT CTGATGGGAA ATGGGGAGAG CACGAAG	TTG 540
ACTATCTACT CTTCATCGTG CGGGATGTGA AGCTTCAACC AAACCCAGAT GAAGTGG	CTG 600
AGATCAAGTA CGTGAGCAGG GAAGAGCTTA AGGAGCTGGT GAAGAAAGCA GATGCTG	GCG . 660
ATGAAGCTGT GAAACTATCT CCATGGTTCA GATTGGTGGT GGATAATTTC TTGATGA	AGT 720
GGTGGGATCA TGTTGAGAAA GGAACTATCA CTGAAGCTGC AGACATGAAA ACCATTC	ACA 780
AGCTCTGAAC TTTCCATAAG TTTTGGATCT TCCCCTTCCC ATAATAAAAT TAAGAGA	TGA 840
GACTTTTATT GATTACAGAC AAAACTGGCA ACAAAATCTA TTCCTAGGAT TTTTTTT	TGC 900
TTTTTATTTA CTTTTGATTC ATCTCTAGTT TAGTTTTCAT CTTAAAAAAA AAAA	954
<210> 10 <211> 996 <212> DNA <213> Arabidopsis thaliana	
<211> 996 <212> DNA	CTC 60
<211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10	
<211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG	ÇGA 120
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCAC</pre>	CGA 120 CTG 180
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCAC GAAAGTTACC GAATTTTCGT GCTTTCTCTG GTACCGCTAT GACAGATACT AAAGATG</pre>	CGA 120 CTG 180 AAA 240
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCAC GAAAGTTACC GAATTTTCGT GCTTTCTCTG GTACCGCTAT GACAGATACT AAAGATG GTATGGATGC TGTTCAGAGA CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATG</pre>	CGA 120 CTG 180 AAA 240 AAG 300
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCAC GAAAGTTACC GAATTTTCGT GCTTTCTCTG GTACCGCTAT GACAGATACT AAAGATG GTATGGATGC TGTTCAGAGA CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATG CTGATCGTGT TGTGGGGCAT GTCAGCAAGT ATAATTGTCA TCTGATGGAA AATATTG</pre>	CGA 120 CTG 180 AAA 240 AAG 300 TGC 360
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCAC GAAAGTTACC GAATTTTCGT GCTTTCTCTG GTACCGCTAT GACAGATACT AAAGATG GTATGGATGC TGTTCAGAGA CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATG CTGATCGTGT TGTGGGGCAT GTCAGCAAGT ATAATTGTCA TCTGATGGAA AATATTG CCAAGAATTT GCTGCACAGG GCTTTTAGTG TATTTTTATT CAACTCGAAG TATGAGT</pre>	CGA 120 CTG 180 AAA 240 AAG 300 TGC 360 GTT 420
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCACC GAAAGTTACC GAATTTTCGT GCTTTCTCTG GTACCGCTAT GACAGATACT AAAGATG GTATGGATGC TGTTCAGAGA CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATG CTGATCGTGT TGTGGGGCAT GTCAGCAAGT ATAATTGTCA TCTGATGGAA AATATTG CCAAGAATTT GCTGCACAGG GCTTTTAGTG TATTTTTATT CAACTCGAAG TATGAGT TTCTCCAGCA AAGGTCAAAC ACAAAGGTTA CGTTCCCTCT AGTGTGGACT AACACTT</pre>	CGA 120 CTG 180 AAA 240 AAG 300 TGC 360 GTT 420 GGA 480
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana </pre> <pre><400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCAC GAAAGTTACC GAATTTTCGT GCTTTCTCTG GTACCGCTAT GACAGATACT AAAGATG GTATGGATGC TGTTCAGAGA CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATG CTGATCGTGT TGTGGGGCAT GTCAGCAAGT ATAATTGTCA TCTGATGGAA AATATTG CCAAGAATTT GCTGCACAGG GCTTTTAGTG TATTTTTATT CAACTCGAAG TATGAGT TTCTCCAGCA AAGGTCAAAC ACAAAGGTTA CGTTCCCTCT AGTGTGGACT AACACTT GCAGCCATCC TCTTTACCGT GAATCAGAGC TTATCCAGGA CAATGCACTA GGTGTGA</pre>	CGA 120 CTG 180 AAA 240 AAG 300 TGC 360 GTT 420 GGA 480 TCG 540
<pre><211> 996 <212> DNA <213> Arabidopsis thaliana <400> 10 CACCAATGTC TGTTTCTTCT TTATTTAATC TCCCATTGAT TCGCCTCAGA TCTCTCG TTTCGTCTTC TTTTTCTTCT TTCCGATTTG CCCATCGTCC TCTGTCATCG ATTTCAC GAAAGTTACC GAATTTCGT GCTTCTCTG GTACCGCTAT GACAGATACT AAAGATG GTATGGATGC TGTTCAGAGA CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATG CTGATCGTGT TGTGGGGCAT GTCAGCAAGT ATAATTGTCA TCTGATGGAA AATATTG CCAAGAATTT GCTGCACAGG GCTTTTAGTG TATTTTTATT CAACTCGAAG TATGAGT TTCTCCAGCA AAGGTCAAAC ACAAAGGTTA CGTTCCCTCT AGTGTGGACT AACACTT GCAGCCATCC TCTTTACCGT GAATCAGAGC TTATCCAGGA CAATGCACTA GGTGTGA ATGCTGCACA AAGAAAGCTT CTCGATGAGC TTGGTATTGT AGCTGAAGAT GTACCAGG</pre>	CGA 120 CTG 180 AAA 240 AAG 300 TGC 360 GTT 420 AGGA 480 GTCG 540 GGAG 600

780

CAGATGCAGG TGAGGAAGGT TTGAAACTGT CACCATGGTT CAGATTGGTG GTGGACAATT

WO 99/63055	

					•	
TCTTGATGAA	GTGGTGGGAT	CATGTTGAGA	AAGGAACTTT	GGTTGAAGCT	ATAGACATGA	840
AAACCATCCA	CAAACTCTGA	ACATCTTTTT	TTAAAGTTTT	ТАААТСААТС	AACTTTCTCT	900
TCATCATTTT	TATCTTTTCG	ATGATAATAA	TTTGGGATAT	GTGAGACACT	TACAAAACTT	960
CCAAGCACCT	CAGGCAATAA	TAAAGTTTGC	GGCCGC			996
<210> 11 <211> 1165 <212> DNA <213> Haem	atococcus p	luvialis				
<400> 11 CTCGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCCCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA	AGCTCAGGAG	CATGCAGATG	ACGCTCATGC	180
AGCCCAGCAT	CTCAGCCAAT	CTGTCGCGCG	CCGAGGACCG	CACAGACCAC	ATGAGGGGTG	240
CAAGCACCTG	GGCAGGCGGG	CAGTCGCAGG	ATGAGCTGAT	GCTGAAGGAC	GAGTGCATCT	300
TGGTGGATGT	TGAGGACAAC	ATCACAGGCC	ATGCCAGCAA	GCTGGAGTGT	CACAAGTTCC	360
TACCACATCA	GCCTGCAGGC	CTGCTGCACC	GGGCCTTCTC	TGTGTTCCTG	TTTGACGATC	420
AGGGGCGACT	GCTGCTGCAA	CAGCGTGCAC	GCTCAAAAAT	CACCTTCCCA	AGTGTGTGGA	480
CGAACACCTG	CTGCAGCCAC	CCTTTACATG	GGCAGACCCC	AGATGAGGTG	GACCAACTAA	540
GCCAGGTGGC	CGACGGAACA	GTACCTGGCG	CAAAGGCTGC	TGCCATCCGC	AAGTTGGAGC	600
ACGAGCTGGG	GATACCAGCG	CACCAGCTGC	CGGCAAGCGC	GTTTCGCTTC	CTCACGCGTT	660
TGCACTACTG	TGCCGCGGAC	GTGCAGCCAG	CTGCGACACA	ATCAGCGCTC	TGGGGCGAGC	720
ACGAAATGGA	CTACATCTTG	TTCATCCGGG	CCAACGTCAC	CTTGGCGCCC	AACCCTGACG	780
AGGTGGACGA	AGTCAGGTAC	GTGACGCAAG	AGGAGCTGCG	GCAGATGATG	CAGCCGGACA	840
ACGGGCTGCA	ATGGTCGCCG	TGGTTTCGCA	TCATCGCCGC	GCGCTTCCTT	GAGCGTTGGT	900
GGGCTGACCT	GGACGCGGCC	CTAAACACTG	ACAAACACGA	GGATTGGGGA	ACGGTGCATC	960
ACATCAACGA	AGCGTGAAAG	CAGAAGCTGC	AGGATGTGAA	GACACGTCAT	GGGGTGGAAT	1020
TGCGTACTTG	GCAGCTTCGT	ATCTCCTTTT	TCTGAGACTG	AACCTGCAGT	CAGGTCCCAC	1080
AAGGTCAGGT	AAAATGGCTC	GATAAAATGT	ACCGTCACTT	TTTGTCGCGT	ATACTGAACT	1140
CCAAGAGGTC	AAAAAAAA	AAAAA				1165

<210> 12 <211> 1135 <212> DNA

<213> Haematococcus pluvialis

WO 99/63055	

<400> 12 CTCGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCGCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA.	AGCTCAGGAG	CATGCAGCTG	CTTTCCGAGG	180
ACCGCACAGA	CCACATGAGG	GGTGCAAGCA	CCTGGGCAGG	CGGGCAGTCG	CAGGATGAGC	240
TGATGCTGAA	GGACGAGTGC	ATCTTGGTAG	ATGTTGAGGA	CAACATCACA	GGCCATGCCA	300
GCAAGCTGGA	GTGTCACAAG	TTCCTACCAC	ATCAGCCTGC	AGGCCTGCTG	CACCGGGCCT	360
TCTCTGTGTT	CCTGTTTGAC	GATCAGGGGC	GACTGCTGCT	GCAACAGCGT	GCACGCTCAA	420
AAATCACCTT	CCCAAGTGTG	TGGACGAACA	CCTGCTGCAG	CCACCCTTTA	CATGGGCAGA	480
CCCCAGATGA	GGTGGACCAA	CTAAGCCAGG	TGGCCGACGG	AACAGTACCT	GGCGCAAAGG	540
CTGCTGCCAT	CCGCAAGTTG	GAGCACGAGC	TGGGGATACC	AGCGCACCAG	CTGCCGGCAA	600
GCGCGTTTCG	CTTCCTCACG	CGTTTGCACT	ACTGTGCCGC	GGACGTGCAG	CCAGCTGCGA	660
CACAATCAGC	GCTCTGGGGC	GAGCACGAAA	TGGACTACAT	CTTGTTCATC	CGGGCCAACG	720
TCACCTTGGC	GCCCAACCCT	GACGAGGTGG	ACGAAGTCAG	GTACGTGACG	CAAGAGGAGC	780
TGCGGCAGAT	GATGCAGCCG	GACAACGGGC	TTCAATGGTC	GCCGTGGTTT	CGCATCATCG	840
CCGCGCGCTT	CCTTGAGCGT	TGGTGGGCTG	ACCTGGACGC	GGCCCTAAAC	ACTGACAAAC	900
ACGAGGATTG	GGGAACGGTG	CATCACATCA	ACGAAGCGTG	AAGGCAGAAG	CTGCAGGATG	960
TGAAGACACG	TCATGGGGTG	GAATTGCGTA	CTTGGCAGCT	TCGTATCTCC	TTTTTCTGAG	1020
ACTGAACCTG	CAGAGCTAGA	GTCAATGGTG	CATCATATTC	ATCGTCTCTC	TTTTGTTTTA	1080
GACTAATCTG	TAGCTAGAGT	CACTGATGAA	TCCTTTACAA	CTTTCAAAAA	AAAAA	1135
<210> 13 <211> 960 <212> DNA <213> Taget	tes erecta		·			
<400> 13						
	CTCAAATCTC	•		•		60
	TCAGCGACGT					120
	GGGACATGAT					180
	GCACAGAGCA					240
	GTCTGCAACC					300
*	CTACAGAGAA					360
	NNNNNNNNN				-	420
иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	NNNNNNNNN	480

					-	
иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	540
имимимими	имимимими	имимимими	имимимими	иииииииии	имимимими	600
ииииииииии	иииииииии	ииииииииии	имимимими	ииииииииии	ииииииииии	660
ииииииииии	иииииииии	TCATGTGCAA	AAGGGTACAC	TCACTGAATG	CAATTTGATA	720
TGAAAACCAT	ACACAAGCTG	ATATAGAAAC	ACACCCTCAA	CCGAAAAGCA	AGCCTAATAA	780
TTCGGGTTGG	GTCGGGTCTA	CCATCAATTG	TTTTTTTTTT	TTAACAACTT	TTAATCTCTA	840
TTTGAGCATG	TTGATTCTTG	TCTTTTGTGT	GTAAGATTTT	GGGTTTCGTT	TCAGTTGTAA	900
TAATGAACCA	TTGATGGTTT	GCAATTTCAA	GTTCCTATCG	ACATGTAGTG	АТСТАААААА	960

<210> 14

<211> 305

<212> PRT

<213> Haematococcus pluvialis

<400> 14

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn
1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu 35 40 45

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp 50 55 60

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile 65 70 75 80

Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala Ser Lys Leu Glu 85 90 95

Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu Leu His Arg Ala 100 105 110

Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu Leu Gln Gln 115 120 125

Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp Thr Asn Thr Cys 130 135 140

Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu Val Asp Gln Leu 145 150 155 160

Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys Ala Ala Ile 165 170 175

Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His Gln Leu Pro Ala 180 185 190

Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Val 195 200 205

Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu His Glu Met Asp 210 215 220

Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp 225 230 235 240

Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met 245 250 255

Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile 260 265 270

Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu 275 280 285

Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu 290 295 300

Ala 305

<210> 15

<211> 293

<212> PRT

<213> Haematococcus pluvialis

<400> 15

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Leu Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly
35 40 45

Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys
50 55 60

Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75 80

Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu 85 90 95

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110

Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp

Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140

Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys
145 150 155 160

Ala Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175

Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys

180 185 190

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 215 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 230 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His 275 280 285

His Ile Asn Glu Ala 290

<210> 16

<211> 284

<212> PRT

<213> Arabidopsis thaliana

<400> 16

Met Ser Val Ser Ser Leu Phe Asn Leu Pro Leu Ile Arg Leu Arg Ser 1 5 10 15

Leu Ala Leu Ser Ser Ser Phe Ser Ser Phe Arg Phe Ala His Arg Pro
20 25 30

Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe Arg Ala Phe Ser 35 40 45

Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met Asp Ala Val Gln 50 60

Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Thr Asp 65 70 75 80

Arg Val Val Gly His Val Ser Lys Tyr Asn Cys His Leu Met Glu Asn 85 90 95

Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe 100 105 110

Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Asn Thr Lys Val 115 120 125

Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr 130 135 140

Arg Glu Ser Glu Leu Ile Gln Asp Asn Ala Leu Gly Val Arg Asn Ala 145 150 . 155 160

Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Val Ala Glu Asp Val 165 170 175

Pro Val Asp Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro 180 185 190

Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile 195 200 205

Val Arg Asp Val Lys Val Gln Pro Asn Pro Asp Glu Val Ala Glu Ile 210 215 220

Lys Tyr Val Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp 225 230 235 240

Ala Gly Glu Glu Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val 245 250 255

Asp Asn Phe Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Leu 260 265 270

Val Glu Ala Ile Asp Met Lys Thr Ile His Lys Leu 275 280

<210> 17

<211> 287

<212> PRT

<213> Clarkia breweri

<400> 17

Met Ser Ser Ser Met Leu Asn Phe Thr Ala Ser Arg Ile Val Ser Leu
1 5 10 15

Pro Leu Eur Ser Pro Pro Ser Arg Val His Leu Pro Leu Cys Phe 20 25 30

Phe Ser Pro Ile Ser Leu Thr Gln Arg Phe Ser Ala Lys Leu Thr Phe 35 40 45

Ser Ser Gln Ala Thr Thr Met Gly Glu Val Val Asp Ala Gly Met Asp 50 55 60

Ala Val Gln Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp 65 70 75 80

Glu Asn Asp Lys Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu 85 90 95

Met Glu Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val 100 105 110

Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala 115 120 125

Thr Lys Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His 130 135 140

Pro Leu Tyr Arg Glu Ser Glu Leu Ile Asp Glu Asn Cys Leu Gly Val 145 150 155 160

Arg Asn Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala 165 170 175

Glu Asp Leu Pro Val Asp Gln Phe Ile Pro Leu Ser Arg Ile Leu Tyr

190

180 185

Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu 195 200 205

Leu Phe Ile Ile Arg Asp Val Asn Leu Asp Pro Asn Pro Asp Glu Val 210 215 220

Ala Glu Val Lys Tyr Met Asn Arg Asp Asp Leu Lys Glu Leu Leu Arg 225 230 235 240

Lys Ala Asp Ala Glu Glu Glu Gly Val Lys Leu Ser Pro Trp Phe Arg 245 250 255

Leu Val Val Asp Asn Phe Leu Phe Lys Trp Trp Asp His Val Glu Lys 260 265 270

Gly Ser Leu Lys Asp Ala Ala Asp Met Lys Thr Ile His Lys Leu 275 280 285

<210> 18

<211> 261

<212> PRT

<213> Arabidopsis thaliana

<400> 18

Thr Gly Pro Pro Pro Arg Phe Phe Pro Ile Arg Ser Pro Val Pro Arg
1 5 10 15

Thr Gln Leu Phe Val Arg Ala Phe Ser Ala Val Thr Met Thr Asp Ser 20 25 30

Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe Glu Asp 35 40 45

Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val Gly His Asp Thr 50 55 60

Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu Leu 65 70 75 80

His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu 85 90 95

Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro Leu Val Trp Thr 100 105 110

Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu Ile Glu 115 120 125

Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Phe Asp 130 135 140

Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp Glu Phe Thr Pro 145 150 155 160

Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu
165

His Glu Val Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Leu Gln 180 185 190

Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val Ser Arg Glu Glu 195 200 205

Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp Glu Ala Val Lys 210 220

Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Met Lys Trp 225 230 235 240

Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala Ala Asp Met Lys 245 250 255

Thr Ile His Lys Leu 260

<210> 19

<211> 288

<212> PRT

<213> Saccharomyces cerevisiae

<400> 19

Met Thr Ala Asp Asn Asn Ser Met Pro His Gly Ala Val Ser Ser Tyr 1 5 10 15

Ala Lys Leu Val Gln Asn Gln Thr Pro Glu Asp Ile Leu Glu Glu Phe 20 25 30

Pro Glu Ile Ile Pro Leu Gln Gln Arg Pro Asn Thr Arg Ser Ser Glu 35 40 45

Thr Ser Asn Asp Glu Ser Gly Glu Thr Cys Phe Ser Gly His Asp Glu 50 55 60

Glu Gln Ile Lys Leu Met Asn Glu Asn Cys Ile Val Leu Asp Trp Asp 65 70 75 80

Asp Asn Ala Ile Gly Ala Gly Thr Lys Lys Val Cys His Leu Met Glu 85 90 95

Asn Ile Glu Lys Gly Leu Leu His Arg Ala Phe Ser Val Phe Ile Phe 100 105 110

Asn Glu Gln Gly Glu Leu Leu Gln Gln Arg Ala Thr Glu Lys Ile 115 120 125

Thr Phe Pro Asp Leu Trp Thr Asn Thr Cys Cys Ser His Pro Leu Cys 130 135 140

Ile Asp Asp Glu Leu Gly Leu Lys Gly Lys Leu Asp Asp Lys Ile Lys 145 150 155 160

Gly Ala Ile Thr Ala Ala Val Arg Lys Leu Asp His Glu Leu Gly Ile 165 170 175

Pro Glu Asp Glu Thr Lys Thr Arg Gly Lys Phe His Phe Leu Asn Arg 180 185 190

Ile His Tyr Met Ala Pro Ser Asn Glu Pro Trp Gly Glu His Glu Ile 195 200 205

Asp Tyr Ile Leu Phe Tyr Lys Ile Asn Ala Lys Glu Asn Leu Thr Val

210 215 220

Asn Pro Asn Val Asn Glu Val Arg Asp Phe Lys Trp Val Ser Pro Asn 225 235 240

Asp Leu Lys Thr Met Phe Ala Asp Pro Ser Tyr Lys Phe Thr Pro Trp 245 250 255

Phe Lys Ile Ile Cys Glu Asn Tyr Leu Phe Asn Trp Trp Glu Gln Leu 260 265 270

Asp Asp Leu Ser Glu Val Glu Asn Asp Arg Gln Ile His Arg Met Leu 275 280 285

<210> 20

<211> 456

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
 sequence of four plant B-cyclases

<400> 20

Met Asp Thr Leu Leu Lys Thr Pro Asn Leu Glu Phe Leu Pro His Gly
1 5 10 15

Phe Val Lys Ser Phe Ser Lys Phe Gly Lys Cys Glu Gly Val Cys Val 20 25 30

Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr Lys Lys Glu Asn 35 40 45

Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys Gly Val Val Asp
50 55 60

Leu Ala Val Val Gly Gly Pro Ala Gly Leu Ala Val Ala Gln Gln 65 70 75 80'

Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp Pro Pro Lys Leu 85 90 95

Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met 100 105 110

Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp Ser Gly Ala Val Tyr Ile 115 120 125

Asp Asp Thr Lys Asp Leu Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln 130 135 140

Leu Lys Ser Lys Met Met Gln Lys Cys Ile Asn Gly Val Lys Phe His 145 150 155 160

Gln Ala Lys Val Ile Lys Val Ile His Glu Glu Lys Ser Met Leu Ile 165 170 175

Cys Asn Asp Gly Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly 180 185 190

Phe Ser Arg Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln

, ·

195

200 205

Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Lys 210 215 220

Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Asn Glu Leu Lys 235 240

Glu Arg Asn Ser Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser 245 250 255

Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly Leu 260 265 270

Arg Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu His Leu Gly 275 280 285

Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys Val Ile Pro Met 290 295 300

Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val Gly Ile Gly Gly 305 310 315 320

Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr 325 330 335

Leu Ala Ala Pro Val Val Ala As
n Ala Ile Ile Tyr Leu Gly Ser 340 345 350

Glu Ser Ser Gly Glu Leu Ser Ala Glu Val Trp Lys Asp Leu Trp Pro 355 360 365

Ile Glu Arg Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile 370 375 380

Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg Arg Phe Phe Asp Ala Phe 385 390 395 400

Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser Ser Arg Leu 405 410 415

Phe Leu Pro Glu Leu Ile Val Phe Gly Leu Ser Leu Phe Ser His Ala 420 425 430

Ser Asn Thr Ser Arg Glu Ile Met Thr Lys Gly Thr Pro Leu Val Met 435 440 445

Ile Asn Asn Leu Leu Gln Asp Glu 450 455

<210> 21

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 21

Met Glu Cys Val Gly Ala Arg Asn Phe Ala Ala Met Ala Val Ser Thr 1 5 10 15

Phe Pro Ser Trp Ser Cys Arg Arg Lys Phe Pro Val Val Lys Arg Tyr 20 25 30

WO 99/63055

Ser Tyr Arg Asn Ile Arg Phe Gly Leu Cys Ser Val Arg Ala Ser Gly 40 Gly Gly Ser Ser Gly Ser Glu Ser Cys Val Ala Val Arg Glu Asp Phe Ala Asp Glu Glu Asp Phe Val Lys Ala Gly Gly Ser Glu Ile Leu Phe Val Gln Met Gln Gln Asn Lys Asp Met Asp Glu Gln Ser Lys Leu Val Asp Lys Leu Pro Pro Ile Ser Ile Gly Asp Gly Ala Leu Asp His Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala Ala Glu Ser Ala 120 Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Asn Asp Leu Gly Leu Gln Lys Cys Ile Glu His Val Trp Arg Glu Thr Ile Val Tyr Leu Asp Asp 170 Asp Lys Pro Ile Thr Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg Arg Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Asp Ser Ile Thr Glu Ala Ser Asp Gly Leu Arg Leu Val Ala Cys Asp Asp Asn Asn Val Ile Pro Cys Arg Leu Ala 235 Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Gln Tyr Glu Val Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Ser Pro Tyr Asp Pro Asp Gln Met Val Phe Met Asp Tyr Arg Asp Tyr Thr Asn Glu Lys Val Arg Ser Leu Glu Ala Glu Tyr Pro Thr Phe Leu Tyr Ala Met Pro Met Thr Lys Ser Arg Leu Phe Phe Glu 310 315 Glu Thr Cys Leu Ala Ser Lys Asp Val Met Pro Phe Asp Leu Leu Lys 330 Thr Lys Leu Met Leu Arg Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys 345 Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro

		355					360					505			
Asn	Thr 370	Glu	Gln	Lys	Asn	Leu 375	Ala	Phe	Gly.	Ala	Ala 380	Ala	Ser	Met	Val

265

His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro 385 390 395 400

Lys Tyr Ala Ser Val Ile Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys 405 410 415

Gln Ile Asn Ser Asn Ile Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro 420 425 430

Pro Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu 435 440 445

Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe 450 455 460

Phe Arg Leu Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Thr Leu 465 470 475 480

Thr Ser Gly Asp Leu Val Leu Phe Ala Leu Tyr Met Phe Val Ile Ser 485 490 495

Pro Asn Asn Leu Arg Lys Gly Leu Ile Asn His Leu Ile Ser Asp Pro 500 505 510

Thr Gly Ala Thr Met Ile Lys Thr Tyr Leu Lys Val 515 520

<210> 22

<211> 1898

<212> DNA

<213> Adonis palaestina

<400> 22 AAAGGAGTGT TCTATTAATG TTACTGTCGC ATTCTTGCAA CACTTATATT CAAACTCCAT 60 TTTCTTCTTT TCTCTTCAAA ACAACAAACT AATGTGAGCA GAGTATCTGG CTATGGAACT 120 ACTTGGTGTT CGCAACCTCA TCTCTTCTTG CCCTGTGTGG ACTTTTGGAA CAAGAAACCT 180 TAGTAGTTCA AAACTAGCTT ATAACATACA TCGATATGGT TCTTCTTGTA GAGTAGATTT 240 TCAAGTGAGA GCTGATGGTG GAAGCGGGAG TAGAAGTTCT GTTGCTTATA AAGAGGGTTT 300 TGTGGATGAA GAGGATTTTA TCAAAGCTGG TGGTTCTGAG CTTTTGTTTG TCCAAATGCA 360 GCAAACAAAG TCTATGGAGA AACAGGCCAA GCTCGCCGAT AAGTTGCCAC CAATACCTTT 420 TGGAGAATCC GTGATGGACT TGGTTGTAAT AGGTTGTGGA CCTGCTGGTC TTTCACTGGC 480 TGCAGAAGCT GCTAAGCTAG GGTTGAAAGT TGGCCTTATT GGTCCTGATC TTCCTTTTAC 540 AAATAATTAT GGTGTGGGG AAGACGAGTT CAAAGATCTT GGACTTGAAC GTTGTATCGA 600 GCATGCTTGG AAGGACACCA TCGTATATCT TGATAATGAT GCTCCTGTCC TTATTGGTCG 660 TGCATATGGA CGAGTTAGTC GACATTTGCT ACATGAGGAG TTGCTGAAAA GGTGTGTGGA 720

WO 99/63055 PCT/US99/12121

					÷ '•	
GTCAGGTGTA	TCATATCTTG	ATTCTAAAGT	GGAAAGGATC	ACTGAAGCTG	GTGATGGCCA	780
TAGCCTTGTA	GTTTGTGAAA	ATGAGATCTT	TATCCCTTGC	AGGCTTGCTA	CTGTTGCATC	840
TGGAGCAGCT	TCAGGGAAAC	TTTTGGAGTA	TGAAGTAGGT	GGCCCTCGTG	TTTGTGTCCA	900
AACCGCTTAT	GGGGTGGAGG	TTGAGGTGGA	GAACAATCCA	TACGATCCCA	ACTTAATGGT	960
ATTCATGGAC	TACAGAGACT	ATATGCAACA	GAAATTACAG	TGCTCGGAAG	AAGAATATCC	1020
AACATTTCTC	TATGTCATGC	CCATGTCGCC	AACAAGACTT	TTTTTTGAGG	AAACCTGTTT	1080
GGCCTCAAAA	GATGCCATGC	CATTCGATCT	ACTGAAGAGA	AAACTGATGT	CACGATTGAA	1140
GACTCTGGGT	ATCCAAGTTA	CAAAAGTTTA	TGAAGAGGAA	TGGTCATATA	TTCCTGTTGG	1200
TGGTTCTTTA	CCAAACACAG	AGCAAAAGAA	CCTAGCATTT	GGTGCTGCAG	CAAGCATGGT	1260
GCATCCAGCA	ACAGGCTATT	CGGTTGTACG	GTCACTGTCA	GAAGCTCCAA	AATATGCTTC	1320
TGTAATTGCA	AAGATTTTGA	AGCAAGATAA	CTCTGCGTAT	GTGGTTTCTG	GACAAAGTAG	1380
TGCAGTAAAC	ATTTCAATGC	AAGCATGGAG	CAGTCTTTGG	CCAAAGGAGC	GAAAACGTCA	1440
AAGAGCATTC	TTTCTTTTTG	GATTAGAGCT	TATTGTGCAG	CTAGATATTG	AAGCAACCAG	1500
AACATTCTTT	AGAACCTTCT	TCCGCTTGCC	AACTTGGATG	TGGTGGGGTT	TCCTTGGGTC	1560
TTCACTATCA	TCTTTCGATC	TCGTCTTGTT	TTCCATGTAC	ATGTTTGTTT	TGGCGCCAAA	1620
CAGCATGAGG	ATGTCACTTG	TGAGACATTT	GCTTTCAGAT	CCTTCTGGTG	CAGTTATGGT	1680
AAGAGCTTAC	CTCGAAAGGT	AGTCTCATCT	ATTATTAAAC	TCTAGTGTTT	CACCAAATAA	1740
ATGAGGATCC	TTCGAATGTG	TATATGATCA	TCTCTATGTA	TATCCTGTAC	TCTAATCTCA	1800
TAAAGTAAAT	GCCGGGTTTG	ATATTGTTGT	GTCAAACCGG	CCAATGATAT	AAAGTAAATT	1860
TATTGATACA	AAAGTAGTTT	TTTTCCTTAA	AAAAAAA			1898

<210> 23

<400> 23

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp 1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val 50 55 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

<211> 529

<212> PRT

<213> Adonis palaestina

									~						
Gln	Met	Gln	Gln	Thr 85	Lys	Ser	Met	Glu	Lys 90	Gln	Ala	Lys	Leu	Ala 95	Asp
Lys	Leu	Pro	Pro 100	Ile	Pro	Phe	Gly	Glu 105	Ser	«Val	Met	Asp	Leu 110	Val	Val
Ile	Gly	Cys 115	Gly	Pro	Ala	Gly	Leu 120	Ser	Leu	Ala	Ala	Glu 125	Ala	Ala	Lys
Leu	Gly 130	Leu	Lys	Val	Gly	Leu 135	Ile	Gly	Pro	Asp	Leu 140	Pro	Phe	Thr	Asn
Asn 145	Tyr	Gly	Val	Trp	Glu 150	Asp	Glu	Phe	Lys	Asp 155	Leu	Gly	Leu	Glu	Arg 160
Cys	Ile	Glu	His	Ala 165	Trp	Lys	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180	Ile	Gly	Arg	Ala	Tyr 1	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195	Glu	Leu	Leu	Lys	Arg 200	Cys	Val,	Glu	Ser	Gly 205	Val	Ser	Tyr
Leu	Asp 210	Ser	Lys	Val	Glu	Arg 215	Ile	Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
Leu 225	Val	Val	Cys	Glu	Asn 230	Glu	Ile	Phe	Ile	Pro 235	Cys	Arg	Leu	Ala	Thr 240
Val	Ala	Ser	Gly	Ala 245	Ala	Ser	Gly	Lys	Leu 250	Leu	Glu	Tyr	Glu	Val 255	Gly
Gly	Pro	Arg	Val 260	Cys	Val	Gln	Thr	Ala 265	Tyr	Gly	Val	Glu	Val 270	Glu	Val
Glu	Asn	Asn 275	Pro	Tyr	Asp	Pro	Asn 280	Leu	Met	Val	Phe	Met 285	Asp	Tyr	Arg
Asp	Tyr 290	Met	Gln	Gln	Lys	Leu 295	Gln	Cys	Ser	Glu	Glu 300	Glu	Tyr	Pro	Thr
Phe 305	Leu	Tyr	Val	Met	Pro 310	Met	Ser	Pro	Thr	Arg 315	Leu	Phe	Phe	Glu	Glu 320
Thr	Cys	Leu	Ala	Ser 325	Lys	Asp	Ala	Met	Pro 330	Phe	Asp	Leu	Leu	Lys 335	Arg
Lys	Leu	Met	Ser 340	Arg	Leu	Lys	Thr	Leu 345	Gly	Ile	Gln	Val	Thr 350	Lys	Val
Tyr	Glu	Glu 355	Glu	Trp	Ser	Tyr	Ile 360	Pro	Val	Gly	Gly	Ser 365	Leu	Pro	Asn
Thr	Glu 370	Gln	Lys	Asn	Leu	Ala 375	Phe	Gly	Ala	Ala	Ala 380	Ser	Met	Val	His
Pro 385	Ala	Thr	Gly	Tyr	Ser 390	Val	Val	Arg	Ser	Leu 395	Ser	Glu	Ala	Pro	Lys 400
Tyr	Ala	Ser	Val	Ile	Ala	Lys	Ile	Leu	Lys	Gln	Asp	Asn	Ser	Ala	Tyr

WO 99/63055	

415

405 410

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 455

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 520 525

Arg

<210> 24

<211> 1370

<212> DNA

<213> Potato

<400> 24

TAGCGGAGGA TGAGTTCAAA GATCTTGGTC TTCAAGCCTG CATTGAACAT GTTTGGCTGG 60 GATACCATTG TATATCTTGA TGATGATGAT CCTATTCTTA TTGGCCGTGC CTATGGAAGA 120 GTTAGTCGCC ATTTACTGCA CGAGGAGTTA CTCAAAAGGT GTGTGGAGGC AGGTGTTTTG 180 TATCTAAACT CGAAAGTGGA TAGGATTGTT GAGGCCACAA ATGGCCACAG TCTTGTAGAG 240 TGCGAGGGTG ATGTTGTGAT TCCCTGCAGG TTTGTGACTG TTGCATCGGG AGCAGCCTCG 300 GGGAAATTCT TGCAGTATGA GTTGGGAGGT CCTAGAGTTT CTGTTCAAAC AGCTTATGGA 360 GTGGAAGTTG AGGTCGATAA CAATCCATTT GACCCGAGCC TGATGGTTTT CATGGATTAT 420 AGAGACTATG TCAGACACGA CGCTCAATCT TTAGAAGCTA AATATCCAAC ATTTCTCTAT 480 GCCATGCCCA TGTCTCCAAC ACGAGTCTTT TTCGAGGAAA CTTGTTTGGC TTCAAAAGAT 540 GCAATGCCAT TCGATCTGTT AAAGAAAAA TTGATGTTAC GATTGAACAC CCTCGGTGTA 600 AGAATTAAAG AAATTTATGA GGAGGAATGG TCTTACATAC CAGTTGGAGG ATCTTTGCCA 660 AATACAGAAC AAAAAACACT TGCATTTGGT GCTGCTGCTA GCATGGTTCA TCCAGCCACA 720 GGTTATTCAG TCGTCAGATC ACTGTCTGAA GCTCCAAAAT GCGCCTTCGT GCTTGCAAAT 780 ATATTACGAC AAAATCATAG CAAGAATATG CTTACTAGTT CAAGTACCCC GAGTATTTCA 840 ACTCAAGCTT GGAACACTCT TTGGCCACAA GAACGAAAAC GACAAAGATC GTTTTTCCTA 900

WO 99/63055

TTTGGACTGG	CTCTGATATT	GCAGCTGGAT	ATTGAGGGGA	TAAGGTCATT	TTTCCGCGCG	960
TTCTTCCGTG	TGCCAAAATG	GATGTGGCAG	GGATTTCTTG	GTTCAAGTCT	TTCTTAGCAG	1020
ACCTCATGTT	ATTTGCCTTC	TACATGTTTA	TTATTGCACC	AAATGACATG	AGAAGAGGCT	1080
TAATCAGACA	TCTTTTATCT	GATCCTACTG	GTGCAACATT	GATAAGAACT	TATCTTACAT	1140
TTTAGAGTAA	ATTCCTCCTA	CAATAGTTGT	TGAAAGAGGC	CTCATTACTT	CAGATTCATA	1200
ACAGAAATCG	CGGTCTCTCG	AGGCCTTGTA	TATAACATTT	TCACTAGGTT	AATATTGCTT	1260
GAATAAGTTG	CACAGTTTCA	GTTTTTGTAT	CTGCTTCTTT	TTTGTCCAAG	ATCATGTATT	1320
GACCAATTTA	TATACATTGC	CAGTATATAT	AAATTTTATA	AAAAAAAA		1370
<210> 25 <211> 377 <212> PRT <213> Potat	.0		•			
- 400 · 00						

<400> 25

Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile Glu His Val Trp

Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Pro Ile Leu Ile Gly

Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu

Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp

Arg Ile Val Glu Ala Thr Asn Gly His Ser Leu Val Glu Cys Glu Gly

Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala Ser Gly Ala Ala

Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Gly Pro Arg Val Ser Val 100

Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp 120

Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp 135

Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro 150 155

Met Ser Pro Thr Arg Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys 170

Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Leu Met Leu Arg Leu 180

Asn Thr Leu Gly Val Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser 200

- WO 99/63055 Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu 215 Ala Phe Gly Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 295 Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 315 Val Pro Lys Met Met Trp Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp 345 Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala 360 Thr Leu Ile Arg Thr Tyr Leu Thr Phe <210> 26
- <211> 533
- <212> PRT
- <213> Chimeric lettuce/potato
- Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe 10
- Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu
- Leu Lys Gly Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg
- Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln
- Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser
- Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln
- Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile
- Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala

		115					120				-	125			La Ĉiji
Ala	Glu 130	Ser	Ala	Lys	Leu	Gly 135	Leu	Asn	Val	Glý	Leu 140	Ile	Gly.	Pro	Asp'
Leu 145	Pro	Phe	Thr	Asn	Asn 150	Tyr	Gly	Val	Trp	Gln 155	Asp	Glu	Phe	Ile	Gly 160
Leu	Gly	Leu	Glu	Gly 165	Cys	Ile	Glu	His	Ser 170	Trp	Lys	Asp	Thr	Leu 175	Val
Tyr	Leu	Asp	Asp 180	Ala	Asp	Pro	Ile	Arg 185	Ile	Gly	Arg	Ala	Tyr 190	Gly	Arg
Val	His	Arg 195	Asp	Leu	Leu	His	Glu 200	Glu	Leu	Leu	Arg	Arg 205	Cys	Val	Glu
Ser	Gly 210	Val	Ser	Tyr	Leu	Ser 215	Ser	Lys	Val	Glu	Arg 220	Ile	Thr	Glu	Ala
Pro 225	Asn	Gly	Tyr	Ser	Leu 230	Ile	Glu	Cys	Glu	Gly 235	Asn	Ile	Thr	Ile	Pro 240
Cys	Arg	Leu	Ala	Thr 245	Val	Ala	Ser	Gly	Ala 250	Ala	Ser	Gly	Lys	Phe 255	Leu
Glu	Tyr	Glu	Leu 260	Gly	Gly	Pro	Arg	Val 265	Ser	Val	Gln	Thr	Ala 270	Tyr	Gly
Val	Glu	Val 275	Glu	Val	Asp	Asn	Asn 280	Pro	Phe	Asp	Pro	Ser 285	Leu	Met	Val
Phe	Met 290	Asp	Tyr	Arg	Asp	Tyr 295	Val	Arg	His	Asp	Ala 300	Gln	Ser	Leu	Glu
Ala 305	Lys	Tyr	Pro	Thr	Phe 310	Leu	Tyr	Ala	Met	Pro 315	Met	Ser	Pro	Thr	Arg 320
Val	Phe	Phe	Glu	Glu 325	Thr	Cys	Leu	Ala	Ser 330	Lys	Asp	Ala	Met	Pro 335	Phe
Asp	Leu	Leu	Lys 340	Lys	Lys	Leu	Met	Leu 345	Arg	Leu	Asn	Thr	Leu 350	Gly	Val
Arg	Ile	Lys 355	Glu	Ile	Tyr	Glu	Glu 360	Glu	Trp	Ser	Tyr	Ile 365	Pro	Val	Gly
Gly	Ser 370	Leu	Pro	Asn	Thr	Glu 375	Gln	Lys	Thr	Leu	Ala 380	Phe	Gly	Ala	Ala
Ala 385	Ser	Met	Val	His	Pro 390	Ala	Thr	Gly	Tyr	Ser 395	Val	Val	Arg	Ser	Leu 400
Ser	Glu	Ala	Pro	Lys 405	Cys	Ala	Phe	Val	Leu 410	Ala	Asn	Ile	Leu	Arg 415	Gln

Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser Thr Pro Ser Ile Ser 420 425 430

Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu Arg Lys Arg Gln Arg

445

- Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu Gln Leu Asp Ile Glu
- Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg Val Pro Lys Trp Met 465 470 475 480

455

- Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala Asp Leu Met Leu 485 490 495
- Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp Met Arg Arg Gly 500 505 510
- Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala Thr Leu Ile Arg 515 520 525
- Thr Tyr Leu Thr Phe 530
- <210> 27
- <211> 374
- <212> PRT
- <213> Arabidopsis thaliana
- <400> 27
- Glu Asp Glu Phe Asn Asp Leu Gly Leu Gln Lys Cys Ile Glu His Val 1 5 10 15
- Trp Arg Glu Thr Ile Val Tyr Leu Asp Asp Lys Pro Ile Thr Ile 20 25 30
- Gly Arg Ala Tyr Gly Arg Val Ser Arg Arg Leu Leu His Glu Glu Leu 35 40 45
- Leu Arg Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Ser Ser Lys Val 50 60
- Asp Ser Ile Thr Glu Ala Ser Asp Gly Leu Arg Leu Val Ala Cys Asp 65 70 75 80
- Asp Asn Asn Val Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala 85 90 95
- Ala Ser Gly Lys Leu Leu Gln Tyr Glu Val Gly Gly Pro Arg Val Cys 100 105 110
- Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Ser Pro Tyr 115 120 125
- Asp Pro Asp Gln Met Val Phe Met Asp Tyr Arg Asp Tyr Thr Asn Glu 130 135 140
- Lys Val Arg Ser Leu Glu Ala Glu Tyr Pro Thr Phe Leu Tyr Ala Met 145 150 155 160
- Pro Met Thr Lys Ser Arg Leu Phe Phe Glu Glu Thr Cys Leu Ala Ser
- Lys Asp Val Met Pro Phe Asp Leu Leu Lys Thr Lys Leu Met Leu Arg
- Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys Thr Tyr Glu Glu Glu Trp

wo	99/63055	8
** 0	77103033	

		195				200				205		
C	m	- 1 .	5	 - 1	- 1	_	_	_	_	 		

Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn 210 215 220

Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr 225 230 235 240

Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys Tyr Ala Ser Val Ile 245 250 255

Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys Gln Ile Asn Ser Asn Ile 260 265 270

Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro Pro Glu Arg Lys Arg Gln 275 280 285

Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Phe Asp Thr 290 295 300

Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe Phe Arg Leu Pro Lys Trp 305 310 315 320

Met Trp Gln Gly Phe Leu Gly Ser Thr Leu Thr Ser Gly Asp Leu Val
325 330 335

Leu Phe Ala Leu Tyr Met Phe Val Ile Ser Pro Asn Asn Leu Arg Lys 340 345 350

Gly Leu Ile Asn His Leu Ile Ser Asp Pro Thr Gly Ala Thr Met Ile 355 360 365

Lys Thr Tyr Leu Lys Val 370

<210> 28

<211> 1002

<212> DNA

<213> Adonis palaestina

<400> 28

ATTCATCTTC AGCAGCGCTG TCGTACTCTT TCTATATCTT CTTCCATCAC TAACAGTAGT 60 CGCCGACGGT TGAATCGGCT ATTCGCCTCA ACGTCAACTA TGGGTGAAGT CACTGATGCT 120 GGAATGGATG CTGTTCAGAA GCGGCTCATG TTCGACGACG AATGTATTTT GGTGGATGAG 180 AATGACAAGG TCGTCGGGCA TGATTCCAAA TACAACTGTC ATTTGATGGA AAAGATAGAG 240 GCAGAAAATT TGCTTCACAG AGCCTTCAGT GTTTTCTTGT TCAACTCAAA ATATGAATTG 300 CTTCTTCAGC AACGATCCGC CACAAAGGTA ACATTCCCGC TCGTATGGAC AAACACATGT 360 TGCAGTCATC CTCTCTTCG TGATTCCGAG CTCATAGAAG AAAATTATCT CGGTGTACGA 420 AACGCTGCAC AAAGAAAGCT TTTAGACGAG CTAGGCATTC CAGCTGAAGA TGTCCCAGTT 480 GATGAATTTA CTCCTCTTGG TCGCATTCTT TACAAAGCTC CATCTGACGG CAAATGGGGA 540 GAGCACGAAT TGGACTATCT CCTATTTATT GTCCGAGATG TGAAATACGA TCCAAACCCA 600 WO 99/63055 PCT/US99/12121

GCTGATGCTG GTGAAGAGGG ACTCAAGTTG TCTCCTTGGT TTAGATTGGT TGTTGATAAC TTTTTTGTTCA AGTGGTGGGA TCATGTAGAG CAGGGTACGA TTAAGGAAGT TGCTGACATG AAAACTATCC ACAAGTTGAC TTAAGAGGAC TTCTCTCCTC TGTTCTACTA TTTGTTTTTT GCTACAATAA GTGGGTGGT ATAAGCAGTT TTTCTGTTTT CTTTAATTTA TGGCTTTTGA ATTTGCCTCC ATGTTGAACT TGTAACATAT TTAGACAAAT ATGAGACCTT GTAAGTTGAA TTTGAGGCTG AATTTATATT TTTGGGAACA TAATAATGTT AA <210> 29 <211> 1271							
TTTTTGTTCA AGTGGTGGA TCATGTAGAG CAGGGTACGA TTAAGGAAGT TGCTGACATG AAAACTATCC ACAAGTTGAC TTAAGAGGAC TTCTCTCTC TGTTCTACTA TTTGTTTTTT GCTACAATAA GTGGGTGGTG ATAAGCAGTT TTTCTGTTTT CTTTAATTTA TGGCTTTTGA ATTTGCCTCG ATGTGAACT TGTAACATAT TTAGACAAAT ATGAGACCTT GTAAGTTGAA ATTTGCCTCG ATGTGAACT TGTAACATAT TTAGACAAAAT ATGAGACCTT GTAAGTTGAA **C210	GATGAAGTTG	CTGATGCTAA	GTATGTTAAT	CGCGAGGAGT	TGAGAGAGAT	ACTGAGAAAA	660
AAAACTATCC ACAAGTTGAC TTAAGAGGAC TTCTCTCCTC TGTTCTACTA TTTGTTTTTT GCTACAATAA GTGGGTGGTG ATAAGCAGTT TTTCTGTTTT CTTTAATTTA TGGCTTTTGA ATTTGCCTCG ATGTTGAACT TGTAACATAT TTAGACAAAT ATGAGACCTT GTAAGTTGAA ATTTGAGGCTG AATTTATATT TTTGGGAACA TAATAATGTT AA 10 210> 29	GCTGATGCTG	GTGAAGAGGG	ACTCAAGTTG	TCTCCTTGGT	TTAGATTGGT	TGTTGATAAC	720
ATTTGCCTCG ATGTGGACT TGTAACATAT TTAGACAAAT ATGAGACCTT GTAAGTTGAA ATTTGCCTCG ATGTTGAACT TGTAACATAT TTAGACAAAT ATGAGACCTT GTAAGTTGAA TTTGAGGGCTG AATTTATATT TTTGGGAACA TAATAATGTT AA (210> 29 (211> 1271 (212> DNA (213> Adonis palaestina (400> 29 TTTTAAAGCT CTTTCGCTCC ACCACCATCA AAGCCAGCCA AATTTCTCTG TACAAAAGTT TAAACCAGTA ATTCTCGGTT TGGCCCCTCC ATATCGGAAT CCTTGTTTAC GATACGCATC AAAAACACCG CTTTGGGCTT TGCCCCCCCC ATATCGGAAT CCTTGTTTAC GATACGCATC TAAACCAGTA ATTCTCGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTC CGGAATCCCG AGAATTATCG CTTCGTGTC TTCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTC TGGCCAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGA GCCGTCCAGA AGCGGTTAT ATACAACTGT CATTTGATGG AAAAGATCAG GGCAGAAAAC TTGCTTCACA GAGCCTTCAG ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG ACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCCTCTCC GTGATTCCGA ACCATCAGAAA GAAAATTTC TCGGGGTACG AAACACCTG TGGACCATC CCCCCTCTCC GTGATTCCGA ACCATCAGAAA GAAAATTTC TCGGGGTACG AAACCCTG TAGAGAACC TTTTAGACGA ACCATCATAGAA GAAAATTTC TCGGGGTACG AAACCCTG TGAGACCAT CCCCCTCTTC GTGATTCCGA ACCATCATAGAA GAAAATTTC TCGGGGTACG AAACCCTG CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACCCTG TGAGACCAT CCCCCTCTTC GTGATTCCGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACCCTG CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACCCTG CCCCCTCTC GTGATTCCGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACCCTG CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACCCTG CCCCCTCTTC GTCGCATTCT TTACAAAGCT CCACCTGAAGA ACCTACAACCC AGATGAAGTT GCTGGACCTA AGTACCTTAA TGCCGAGGAA TTAGAATACG ATCCAAACCC AGATGAAGTT GCTGGACCTA AGTACCTTAA CGCGAGGGAA ATTAAGGACA TACTGAGAAA AGCTGACCA GGTGAAGAGG GAATAAAGTT TCGCCGAGGAA ATTAAGGAC TCCCCACAT GAAAACCTAC CACAAGTTGA CTTAAGAGAA AGCTCCTTAA GTTCACATT TTGGTTTTTG CTTCAATAG TGGATGGAA TGAACCATTT TTATAGCTTCC TTTAATTTTG GCTTTCAAT TTGGTTTTTG TTGTTTTATG TGTTGAACTT TTAAACATATT 112	TTTTTGTTCA	AGTGGTGGGA	TCATGTAGAG	CAGGGTACGA	TTAAGGAAGT	TGCTGACATG	780
ATTTGCCTCG ATGTTGAACT TGTAACATAT TTAGACAAAT ATGAGACCTT GTAAGTTGAA TTTGAGGCTG AATTTATATT TTTGGGAACA TAATAATGTT AA 210 > 29 <211 > 1271 <212 > DNA <213 > Adonis palaestina <400 > 29 TTTTAAAGCT CTTTGGCTCC ACCACCATCA AAGCCAGCCA AATTTCTCTG TACAAAAGTT AAAAACACCG CTTTGGGCTT TGGCCCCTCC ATATCGGAAT CCTTGTTTAC GATACGCATC TAAACCAGTA ATTCTCGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTC CGGAATCCCG AGAATTATGT CGTCGATCAG GATTAATCCT TTATATAGTA TCTTCCCAC CACCACTAAA ACATTATCAG CTTCGTGTC TTCTCCCGCT GTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TGGCTAGGAT GCCGTCCAGA AGCGGCTTAT AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT ATACAACTG CATTTGATG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG ATTCTAATTCTA TTCAACTCAA AATACGAGTT GCTTCTTCACA GACCACTCAG ACACTTCCCG CTCGTATGGA CAAACACCTG TTGCAGCAAAC CCCCTCTTCC GTGATTCCGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACACCTG TTGCAGCCAC CAACAGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACACCTG TGCAGCACA CTCCCTCTTCC GTGATTCCGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACACCTG TGAGAACAC TTGCTTCACA GACCTTCTC TTACAAAAGCT CCACCTGAAG ACGTACCAGT TGATGAATTC ACCCCTCTTC GTCGCATTCT TTACAAAGCT CCACCTGAAG ACGTACCAGT TGATGAATTC ACCCCTCTTC GTCGCATTCT TTACAAAGCT CCACCTGAAG ACGTACCAGT TGATGAATTC ACCCCTCTTC GTCGCATTCT TTACAAAGCT CCACCTGAAG ACGTACCAGT TGATGAACTT GCTGACCTTA AGTACGTTAA TCGCCGAGGAG TTGAAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAACGAG CTGGACTTAT TCGCCGAGGAG TTGAAAAGAG TACTGAGAAA AGCTGATGCA GGTGAACACGT AGTACGTTAA TCGCCGAGGAG TTGAAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAACGAG GAATAAAGGTT TCGCCGAGGAG TTGAAAAGAGA TACTGAGAAA AGCTGATGC AAAGCTGAG GAAAAACATT TCGCCGAGGAA ATTAAGGAC TCGCCCCACAT GAAACCTC CACAAGTTG CTTAAGAGAA TCGCCGAGGAG TTGAAAAGAGA TACTGAGAAA AGCTGATGC GAAAACTTC CACAAGTTG CTTAAGAGAA TTATCCTTC TTTAATTTG GCTTTCAAT TTGGTTTTG CTTCAATAAG TGGTGAGCTT TAAGAGAATT TTATCCTTC TTTAATTTTG GCTTTCAAT TTGGTTTTAG TTTTCAATTTTG TTTAAAAACTTT TTGGTTTTAG	AAAACTATCC	ACAAGTTGAC	TTAAGAGGAC	TTCTCTCCTC	TGTTCTACTA	TTTGTTTTT	840
210> 29 **211> 1271 **212> DNA **213> Adonis palaestina *400> 29 **TTTTAAAGCT CTTTCGCTCC ACCACCATCA AAGCCAGCCA AATTTCTCTG TACAAAAGTT ***TAAAACACCG CTTTGGGCTT TGGCCCCTCC ATATCGGAAT CCTTGTTTAC GATACGCATC ***TAAAACACCG CTTTGGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTC CGGAATCCCG ***AGAATTATGT CGTCGATCA GATTAATCCT TTATATAGTA TCTTCTCAC CACCACTAAA ***ACACTTATCAG CTTCGTGTC TTCTCCCGCT GTTCATCTTC AGCAGCGTT TACGTACTCT ***TCTATTTCT TCTTCCATCA CTAACAGTC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC ***AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGCTTAT ***GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ***ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG ***AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCAT CCCCTCTTCC GTGATTCCGA ***AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ***ACCATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCTG ***TTTACAAAGCT CCACCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT ***TTACAAAGCT CCACCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT ***TTCCCGCGAGGA TTGAAAGAGA TACTGAGAAA AGCTGATCC AAAGGAAGG GAATAAAGTT ***TTCCCGCGAGAG TTGAAAGAGA TACTGAGAAA AGCTGATCC CACAAGTTGA CTTAAGAGAA ***GTCTCCTTGG TTTAAGTTGG TTGTGGATAA CTTTTTTGTC AAGTGGTGG ATCATGTAGA ***GGGGGGAAGA ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA ***GTCTCTTAA GTTCAATT TTGGTTTTTG CTTCAATAAG TGGATGGTG TGAGCAGTTT ***TTATCTCCTC TTTAATTTTG GCTTTTCAAT TTGGTTTTAG TGTTGAACTT GTAACATATT TTGTTTTAATTTTG GTTTTTAGT TTTTTATTTTTTTT	GCTACAATAA	GTGGGTGGTG	ATAAGCAGTT	TTTCTGTTTT	СТТТААТТТА	TGGCTTTTGA	900
<pre><210> 29 <211> 1271 <212> DNA <213> Adonis palaestina </pre> <pre><400> 29 TTTTAAAGCT CTTTCGCTCC ACCACCATCA AAGCCAGCCA AATTTCTCTG TACAAAAGTT AAAAACACCG CTTTGGGCTT TGGCCCCTCC ATATCGGAAT CCTTGTTTAC GATACGCATC TAAACCAGTA ATTCTCGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTTC CGGAATCCCG AGAATTATGT CGTCGATCAG GATTAATCCT TTATATAGTA TCTTCTCCAC CACCACTAAA ACATTATCAG CTTCGTGTC TTCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACCGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGAGA AGCGCTTCAG ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTTCAG CAACGAAGGT GACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACCTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACCTCATAGAA GAAAATTTC TCGGGGTACG AGAGCCCGA CTGGACTATC TTCTGTTTAT TGCCCGAGGAG GTGAAATACG ATCCAAACCC AGATGAAGT GCTGACGCTA AGTACGTTAA TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATCA GCTGACGCTA AGTACGTTAA TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA ACCTTGTTCTC CACAAGTTGA CTTAAGAGAA AGCTCCTTAG GTGAAATACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGCTCCTTAG GTGAAATACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGCTCCTTAA GTTCAACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTA TCAAACCATT TTATGCTTCC TTTAATTTTG GCTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 12</pre>	ATTTGCCTCG	ATGTTGAACT	TGTAACATAT	TTAGACAAAT	ATGAGACCTT	GTAAGTTGAA	960
<pre><211> 1271 <212> DNA <213> Adonis palaestina </pre> <pre><400> 29 TTTTAAAGCT CTTTCGCTCC ACCACCATCA AAGCCAGCCA AATTTCTCTG TACAAAAGTT AAAAACACCG CTTTGGGCTT TGGCCCCTCC ATATCGGAAT CCTTGTTTAC GATACGCATC TAAACCAGTA ATTCTCGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTTC CGGAATCCCG AGAATTATGT CGTCGATCAG GATTAATCCT TTATATAGTA TCTTCTCCAC CACCACTAAA ACATTATCAG CTTCGTGTTC TCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACCGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACCTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA ACTCCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTTAGACGA ACTCCATAGAA GAAAATTTC TCGGGGTACG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGCCCGAGGAG TTGAAAACACC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCCGAGGAG TTGAAAAACC ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA ACCTTGTTCTC AAGTACGTGA AGTACGTTAA TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA ACCTTGTTCTC AAGTACGAG GAATAAAGTT GGCGGGGGAAG ATTAAAGGAC TCGCCGACAT GAAACCTTC CACAAGTTGA CTTAAGAGAA AGTCCCTTAA GTTCAACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAACCATTT TTATGCTTCC TTTAAATTTTG CCTTTCAAT TTGCTTTATG TGTTGAACCTT GTAACATATT 12</pre>	TTTGAGGCTG	AATTTATATT	TTTGGGAACA	TAATAATGTT	AA		1002
AAAAACACCG CTTTGGCTCC ACCACCATCA AAGCCAGCCA AATTTCTCTG TACAAAAGTT AAAAACACCG CTTTGGGCTT TGGCCCCTCC ATATCGGAAT CCTTGTTTAC GATACGCATC TAAAACCAGTA ATTCTCGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTTC CGGAATCCCG AGAATTATGT CGTCGATCAG GATTAATCCT TTATATAGTA TCTTCTCCAC CACCACTAAA ACCATTATCAG CTTCGTGTTC TTCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTAGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTTCAG CAACGAATCT CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTC TCGGGGTACG AAACCCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGAC GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGGAT GTGAAAATACG ATCCAAACCC AGATGAAGTT GCTGACCTAT TTCTGTTTAT TGTCCGAGGA TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT TCGCCGAGGA TTGAAAGAGA TACTGAGAAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT TCGCCGAGGA TTGAAAGAGA TACTGAGAAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT TCGCCGAGGA TTTAGAATAG TTGTGGATAA ACTTCTTTGTTC AAGTGGGG ATCATGTAGA GGAGGGGAAG ATTAAGGAC TCCCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTG TGAACACTATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGGTTGAACTT GTATAACTTT TAGACCTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAACACTATT TTATAGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGGTTGAACTT GTAACACTATT TTATAGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGGTTGAACTT GTAACATATT TTATAGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGGTTGAACTT GTAACATATT TTATAGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGGTTGAACTT GTAACATATT TTATAGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT	<211> 1271 <212> DNA	is palaestir	na				
AAAAACACCG CTTTGGGCTT TGGCCCCTCC ATATCGGAAT CCTTGTTTAC GATACGCATC TAAACCAGTA ATTCTCGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTTC CGGAATCCCG AGAATTATGT CGTCGATCAG GATTAATCCT TTATATAGTA TCTTCTCCAC CACCACTAAA ACATTATCAG CTTCGTGTTC TTCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCCGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTTCAG CAACGAAGGT CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGAC GAAAATGGGG AGGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACCATA AGTACGTTAA TCGCGAGGGG TTGAAAAGAG TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GCCGCAGGAG TTGAAAAGAG TACTGAGAAA AGCTGATGCA GGTGAACAGG GAATAAAGTT GCCGCAGGAG TTTAGATTGG TTGTGGATAA AGCTGATGCA GAAGGAGG GAATAAAGTT GCCGCAGGAG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGGAGA ACCTCCTTTGG GGAGGGGAAG ATTAAGGACG TCGCCCACAT GAAACCTAC CACAAGTTGA CTTAAGAGAA AGTCCCTTAA GTTCACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATAGCTTCC TTTAATTTTG GCTTTTTAGATTG TTGCTTTATT GTGTATAATT CACAAGTTGA CTTAAGAGAA AGTCCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATAGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGGTAGACTT GTAACATATT		CTTTCGCTCC	מרימרנמיינים	AACCCACCCA	እ አ ምምም ርምርምር	MACAAAAC	60
TARACCAGTA ATTCTCGGTT TTAATTTGTT TCCTAAATTA GGCCCCTTTC CGGAATCCCG AGAATTATGT CGTCGATCAG GATTAATCCT TTATATAGTA TCTTCTCCAC CACCACTAAA ACATTATCAG CTTCGTGTTC TTCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG ACCATTCCAA AATACGAGTT GCTTCTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCCGAGGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACCGTTAA TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT TCGCCGAGGAG TTGAAAGAGA TACTGAGAAAA AGCTGATCC AGAGGAGGG GAATAAAGTT TCGCGAGGGGAAG ATTAAAGGAC TCGCCGACAT GAAAACTAC CACAAGTTGA CTTAAGAGGAA AGCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGG ATCATGTAGA AGTCTCCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTG TGAACATATT 11 TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACCTT GTAACATATT 11 TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTAT TGGTTTTATG TGTTGAACATTT 11 TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT 11 TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT 11 TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT 11							60
AGAATTATGT CGTCGATCAG GATTAATCCT TTATATAGTA TCTTCTCCAC CACCACTAAA ACATTATCAG CTTCGTGTTC TTCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGAACTAC TTCTGTTTAT TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCCCGAGGAG TTGAAAGAGA TACTGAGAAA CTTTTTTGTTC AAGTGGTGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT							120
ACATTATCAG CTTCGTGTTC TTCTCCCGCT GTTCATCTTC AGCAGCGTTG TACGTACTCT TTCTATTTCT TCTTCCATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTCAG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GAGGGGGGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTG TGAACCATTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACCTT GTAAACATTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACCTT GTAAACATTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACCTT GTAAACATTT							180
ACCOTCATA TOTACATCA CTAACAGTCC TCGCCGAGGG TTGAATCGGC TGTTCGCCTC AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGG ATCATGTAGA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT TTATGCTTCC TTTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT TTATGCTTCC TTTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT							240
AACGTCGACT ATGGGTGAAG TCGCTGATGC TGGTATGGAT GCCGTCCAGA AGCGGCTTAT GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACCTT GTAACATATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACCTT GTAACATATT							300
GTTCGACGAT GAATGTATTT TGGTGGATGA GAATGACAAG GTCGTCGGAC ATGATTCCAA ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGA ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT							360
ATACAACTGT CATTTGATGG AAAAGATAGA GGCAGAAAAC TTGCTTCACA GAGCCTTCAG TGTTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGG ATCATGTAGA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATTG TGTTGAACTT GTAACATATT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTTATG TGTTGAACTT GTAACATATT							420
TGTTTCTTA TTCAACTCAA AATACGAGTT GCTTCTCAG CAACGATCTG CAACGAAGGT AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACCTT GTAACATATT 12							480
AACATTCCCG CTCGTATGGA CAAACACCTG TTGCAGCCAT CCCCTCTTCC GTGATTCCGA ACTCATAGAA GAAAATTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT						,	540
ACTCATAGAA GAAAATTTC TCGGGGTACG AAACGCTGCA CAAAGGAAGC TTTTAGACGA GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT							600
GCTAGGCATT CCAGCTGAAG ACGTACCAGT TGATGAATTC ACTCCTCTTG GTCGCATTCT TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT							660
TTACAAAGCT CCATCTGACG GAAAATGGGG AGAGCACGAA CTGGACTATC TTCTGTTTAT TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT							720
TGTCCGAGAT GTGAAATACG ATCCAAACCC AGATGAAGTT GCTGACGCTA AGTACGTTAA TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAGG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT				*			780
TCGCGAGGAG TTGAAAGAGA TACTGAGAAA AGCTGATGCA GGTGAAGAG GAATAAAGTT GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGG ATCATGTAGA GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT					,		840
GTCTCCTTGG TTTAGATTGG TTGTGGATAA CTTTTTGTTC AAGTGGTGGG ATCATGTAGA 100 GGAGGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA 100 AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT 110 ATTATGCTTCC TTTAATTTTG GCTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTCC TTTAATTTTG GCTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTCAAT AGTCTCTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 120 AGTCTCTCAATATT 120 AGTCTCTCAATATT 120 AGTCTCTCAATATATATG TGTTGAACTT GTAACATATT 120 AGTCTCTCAATATATG TGTTGAACTT GTAACATATT 120 AGTCTCTCAATATG TGTTGAACTT GTAACATATT 120 AGTCTCTCAATATG TGTTGAACTT GTAACATATT 120 AGTCTCTCAATATG TGTTGAACTT GTAACATATT 120 AGTCTCTCAATATG TGTTGAACATATT 120 AGTCTCAATATG TGTTGAACATATT 120 AGTCTCAATATG TGTTGAACATATT 120 AGTCTCAATATG TGTTGAACATATT 120 AGTCTCAATATG TGTTGAACATATT 120 AGTCTCAATATG AGTCAATATG AGTCAATA							900
GGAGGGAAG ATTAAGGACG TCGCCGACAT GAAAACTATC CACAAGTTGA CTTAAGAGAA AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 12							960
AGTCTCTTAA GTTCTACTAT TTGGTTTTTG CTTCAATAAG TGGATGGTGA TGAGCAGTTT TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 12							1020
TTATGCTTCC TTTAATTTTG GCTTTTCAAT TTGCTTTATG TGTTGAACTT GTAACATATT 12							1080
							1140
TAGTCAAATA TGAGACCTTG TGAGTTGAAT TTGAGGTTAT ATTTATAGTT TTGGGAACAT 12							1200
	TAGTCAAATA	TGAGACCTTG	TGAGTTGAAT	TTGAGGTTAT	ATTTATAGTT	TTGGGAACAT	1260

A AAAAAAA	er ¹ 2.	1271
<210> 30 <211> 1109 <212> DNA <213> Haematococcus pluvialis		
<400> 30		
TGGAACCTGG CCCGGCGGCA GTCCGATGCC GCGATGCTTC GTTCGTTGCT		60
ACGCATATCC CGCGCGTGAA CTCCGCCCAG CAGCCCAGCT GTGCACACGC		120
TTTAAGCTCA GGAGCATGCA GCTGCTTGCC GAGGACCGCA CAGACCACAT	GAGGGGTGCA	180
AGCACCTGGG CAGGCGGCA GTCGCAGGAT GAGCTGATGC TGAAGGACGA	GTGCATCTTA	240
GTGGATGCTG ACGACAACAT CACAGGCCAT GCCAGCAAGC TGGAGTGCCA	CAAATTCCTA	300
CCACATCAGC CTGCAGGCCT GCTGCACCGG GCCTTCTCTG TGTTCCTGTT	TGACGACCAG	360
GGGCGACTGC TGCTGCAACA GCGTGCACGC TCAAAAATCA CCTTCCCAAG	TGTGTGGACG	420
AACACCTGCT GCAGCCACCC TCTACATGGG CAGACCCCAG ATGAGGTGGA	CCAACTAAGC	480
CAGGTGGCCG ACGGCACAGT ACCTGGCGCA AAAGCTGCTG CCATCCGCAA	GTTGGAGCAC	540
GAGCTGGGGA TACCAGCGCA CCAGCTGCCG GCAAGCGCGT TTCGCTTCCT	CACGCGTTTG	600
CACTACTGTG CCGCGGACGT GCAGCCGGCT GCGACACAAT CAGCGCTCTG	GGGCGAGCAC	660.
GAGATGGACT ACATCTTATT CATCCGGGCC AACGTCACCT TGGCGCCCAA	CCCTGACGAG	720
GTGGACGAAG TCAGGTACGT GACGCAAGAG GAGCTGCGGC AGATGATGCA	GCCGGACAAC	780
GGGTTGCAAT GGTCGCCGTG GTTTCGCATC ATCGCCGCGC GCTTCCTTGA	GCGTTGGTGG	840
GCTGACCTGG ACGCGGCCCT AAACACTGAC AAACACGAGG ATTGGGGAAC	GGTGCATCAC	900
ATCAACGAAG CGTGAAGGCA GAAGCTGCAG GATGTGAAGA CACGTCATGG	GGTGGAATTG	960
CGTACTTGGC AGCTTCGTAT CTCCTTTTTC TGAGACTGAA CCTGCAGAGC	TAGAGTCAAT	1020
GGTGCATCAT ATTCATCGTC TCTCTTTTGT TTTAGACTAA TCTGTAGCTA	GAGTCACTGA	1080
TGAATCCTTT ACAACTTTCA AAAAAAAAA		1109
<210> 31 <211> 985 <212> DNA <213> Lactuca sativa		
<400> 31 TGCCAAAATG TTGAAATTTC CCCCTTTTAA AACCATTGCT ACCATGATCT	CERCE CO. T.	
		60
TTCTTCCTTC TTGCTGCCTC GGAAATCTTC TTTCCCTCCA ATGCCGTCTC		120
TAGTGTTTTC CTCCACCCTC TTTCGTCTGC CGCTATGGGC GATTCCAGCA		180
CCAGCGACGT CTCATGTTCG ATGACGAATG CATTTTGGTG GATGAGAATG		240
TGGCCATGAT ACTAAATACA ATTGTCATTT GATGGAGAAG ATTGAAAAGG	GAAATATGCT	300

WO 99/63055		

					•	
ACACAGAGCA	TTCAGTGTGT	TCTTGTTCAA	CTCGAAATAT	GAATTACTCC	TTCAGCAACG	360
TTCTGCAACC	AAGGTGACTT	TCCCTTTGGT	ATGGACAAAC	ACGTGTTGCA	GCCATCCACT	420
ATACAGGGAG	AGTGAGCTTA	TTGACGAAAA	CGCCCTTGGG	GTGAGGAATG	CTGCACAGAG	480
GAAGCTCCTG	GATGAACTCG	GCATCCCTGG	AGCAGATGTT	CCGGTTGATG	AGTTCACTCC	540
ATTGGGTCGC	ATTCTATACA	AGGCCGCATC	GGATGGAAAG	TGGGGAGAAC	ATGAACTTGA	600
TTACCTGCTG	TTTATGGTAC	GTGATGTTGG	TTTGGATCCG	AACCCAGATG	AAGTGAAAGA	660
TGTAAAATAT	GTGAACCGGG	AAGAGCTGAA	GGAATTGGTA	AGGAAGGCGG	ATGCTGGTGA	720
AGAGGGTGTG	AAGCTGTCCC	CGTGGTTCAA	ATTGATTGTC	GATAATTTCT	TGTTTCAGTG	780
GTGGGATCGA	CTCCATAAGG	GAACCCTAAC	CGAAGCTATT	GATATGAAAA	CAATCCACAA	840
ACTCACATAA	AAACACTACA	CTAGTAGGAG	AGAGGATTAT	ATGAGATATT	TGTTATATGT	900
GAAATTGAAA	TTCAGATGAA	TGCTTGTATT	TATTTCTATT	TGGACAAACT	TCAACTTCTT	960
TTTGCTACCT	TATCAGAAAA	AAAAA				985
<210> 32 <211> 988 <212> DNA <213> Lact	uca sativa					
<400> 32	7 7 7 7 M CM CM CM M		CMC N N M C M C			
	AAAATCTCTT					60
	CACTTTCACC					120
	ACGTCTCATG					180
	TGATACCAAA					240
	AGCATTCAGT					300
	AACCAAGGTG					360
	AGAATCGGAG					420
					GATGAGTTCA	480
					GAACATGAAG	540
					GATGAGGTGG	600
					GCGGATGCGG	660
					TTCTTGTTCA	720
	TCATGTCCAA					780
					ATAATTTGTG	840
					TGGGAGTGTT	900
TATTGTGTAC	TTGTAACGTA	GGCCCTTTGG	TTACGCTTTA	AGAGTTTAAT	AAAGAACCAC	960

1440

1500

1560

1620

ССТТААТТТА ААААААААА ААААААА 988 <210> 33 <211> 1874 <212> DNA <213> Chlamydomonas reinhardtii GGCACGAGCT CGAGTTTGTT TTACCATGAC ATCGGGAATT TGGAAGCTTG AACTACCTCA 60 ATTACTCAAG TAACTCGCGG CAACACATTT CGCGCGCCAT CGCTGTTTTC TCTGCTCCAG 120 CTACCGAGCA GCATTGCTTT AGATCGCTTT GATGTCATAA ACTCCCACTT ATATGAGATC 180 CAGTTTCATC GAGCCCAAGC CCAGAGCGCA ACCTGTCTTA AGCCGCGGCA GGGCGTCCAT 240 GCGCCTCGCG CAAAGCCGTG CTCTCGTTGC GCGTGTCAGC TCCGCCCTGT GGCCGGGAGC 300 AGGACTTTCA CAGGCTCAAA GCGTTGCGGT GCGAATGGCG AGTTCGTCAA CCTGGGAAGG 360 CACGGGCCTG AGCCAGGATG ACTTCATGCA GCGGGACGAG TGCTTGGTGG TGGACGAGCA 420 GGACCGGCTG CTAGGCACCG CCAACAAGTA CGACTGCCAC CGCTTCGAGG CGGCCAAGGG 480 CCAGCCCTGC GGCCGCCTGC ACCGCGCCTT CTCCGTGTTC CTGTTCAGCC CCGACGGCCG 540 ACTGCTGCTG CAGCAGCGC CAGCCAGCAA GGTGACGTTC CCGGGTGTGT GGACCAACAC 600 CTGCTGCTCG CACCCGCTGG CGGGCCAGGC GCCGGACGAG GTGGACCTGC CGGCGGCGGT 660 AGCCTCGGGC CAGGTGCCGG GCATCAAGGC GGCGGCGGTG CGCAAGCTGC AGCACGAGCT 720 GGGGATACCG CCGGAGCAGG TTCCCGCCTC CTCCTTCTCC TTCCTCACGC GTCTGCACTA 780 CTGCGCCGCC GACACCGCCA CGCACGGCCC GGCGGCGGAG TGGGGCGAGC ACGAGGTGGA 840 CTACGTGCTG TTCGTGCGGC CGCAGCAGCC CGTCAGCCTG CAGCCCAACC CAGACGAGGT 900 GGACGCCACG CGCTACGTGA CGCTGCCGGA GCTTCAGTCC ATGATGGCGG ACCCCGGCCT 960 CAGCTGGAGC CCCTGGTTCC GCATCCTGGC CACACAGCCC GCCTTCCTGC CCGCCTGGTG 1020 GGGCGACCTG AAGCGGCGCT GGCGCCCGGG CGGCAGCCGA CTGTCGGACT GGGGCACCAT 1080 CCACCGCGTC ATGTGAAGAA AAAGGGGAAG CAGGGGGGGG AGCGGGGGAT GAATGGGAAT 1140 GTGAATGCGA TTGTGATGCG GCGTGGGATG AGGTCTGAAG ACAGGGGGAA AATCGGGGGG 1200 CGGGCGTGAG CGTGTGTGTA CGTGAGCGAC AAAGCCGGGA GGCGGACCGC GCGATGGGTA 1260 CATGTGTGTG CGGAGGGTCG GTGGGTCGGT CGGTTGCGCG GCATAGCGTG TTGTGTGTGT 1320 GCGGCTGCAG GGGTATGTGG GCACCCGGGC ACGGAGGAGA AGGCACACGC AGGTGGCGCG 1380

GAGGTGTGTC AGGGGCCCATG GGCGGGCCTC ACTCCTGGTC GTGCCCAGTG GTCTCGTGGG

CAGAGTGGCA GGGGCTGCAC CCATATGAGC GGCGCACTGC CGCGCTGGGC TAAGTCCTTA

TCACTTGGTG AGGTGGGCG AGGTGGCTGT GGGCGGCGGG CGCAGTGGCA GAAGGACACG

GTGTGTGAGC GGTGGAGCTC TGGCCGTGCC GGCCGTGAGG GGCGGATAGC GATATGACGT

WO 99/63055		PCT/US99/12121

TGTGCTTGGC CGCTGTAATG	CGGGAGAATG	TGCAGGCCGC	GAGAAGCGGG	CGGTGGCAGG	1680
AGGCCGCAGG CTGCAGCACC	CGTTĠGGGAG	GTGCCACCTG	CAGGCGCGGC	GCCGGGCGGG	1740
CCTGAGTAAT GGGCGCCTGA	GTAGTGGCGG	CCACAGGAGG	CGCAGGAGGC	AGCAGCAGGA	1800
GGACGAGCTG GAGGGACCCG	TTGGCAACCC	AAGGTTGCGC	GTGTAACATA	GTGGCCATAC	1860
AAAAAAAAAA					1874
<210> 34 <211> 954 <212> DNA <213> Tagetes erecta				•	·
<400> 34 CCAAAAACAA CTCAAATCTC	СТСССТСССТ	CTTACTCCC	CARCCCRCAC	Ch Cmccccc	
TGGATGCTGT TCAGCGACGT					60
					120
ACAATGTGGT GGGACATGAT					180
GTAAAATGCT GCACAGAGCA					240
TTCAGCAACG GTCTGCAACC					300
GCCATCCACT CTACAGAGAA	TCCGAGCTTG	TTCCCGAAAA	CGCCCTTGGA	GTAAGAAATG	360
CTGCACAGAG GAAGCTGTTG	GATGAACTCG	GTATCCCTGC	TGAAGATGTT	CCCGTTGATC	420
AGTTTACTCC TTTAGGTCGC	ATGCTCTACA	AGGCTCCATC	TGATGGAAAG	TGGGGAGAAC	480
ATGAACTTGA CTACCTACTT	TTCATAGTGA	GAGACGTTGC	TGTAAACCCG	AACCCAGATG	540
AAGTGGCGGA TATCAAATAT	GTGACCAGAA	GAGTTAAAGG	AGCTGCTAAG	GAAAGCAGAT	600
GCGGGGGAGG AGGGTTTGAA	GCTGTCTCCA	TGGTTCAGGT	TAGTGGTTGA	TAACTTCTTG	660
TTCAAGTGGT GGGATCATGT	GCAAAAGGGT	ACACTCACTG	AAGCAATTGA	TATGAAAACC	720
ATACACAAGC TGATATAGAA	ACACACCCTC	AACCGAAAAG	TTCAAGCCTA	ATAATTCGGG	780
TTGGGTCGGG TCTACCATCA	ATTGTTTTTT	TCTTTTAAGA	AGTTTTAATC	TCTATTTGAG	840
CATGTTGATT CTTGTCTTTT	GTGTGTAAGA	TTTTGGGTTT	CGTTTCAGTT	GTAATAATGA	900
ACCATTGATG GTTTGCAATT	TCAAGTTCCT	ATCGACATGT	AGTGATCTAA	AAAA	954
<210> 35 <211> 1031 <212> DNA <213> Oryza sativa					
<400> 35	20005				
CCTCCCTTTG CCTCGCGCAG					60
GCCGCCGCCG TGGAGGACGC					120
GAATGCATTT TGGTGGATGA	ACAAGACAAT	GTTGTTGGCC	ATGAATCAAA	ATATAACTGC	180
CATCTGATGG AAAAAATCGA	ATCTGAAAAT	CTACTTCATA	GGGCTTTCAG	TGTATTCCTG	240

WO 99/63055

PCT/US99/12121

					·	
TTCAACTCAA	AATATGAACT	CCTACTCCAG	CAACGATCTG	CAACAAAGGT	TACATTTCCT	300
CTAGTTTGGA	CCAACACTTG	CTGCAGCCAT	CCTCTGTACC	GTGAGTCTGA	GCTTATACAG	360
GAAAACTACC	TTGGTGTTAG	AAATGCTGCT	CAGAGGAAGC	TCTTGGATGA	GCTGGGCATC	420
CCAGCTGAAG	ATGTGCCAGT	TGACCAATTC	ACCCCTCTTG	GTCGGATGCT	TTACAAGGCC	480
CCATCTGATG	GAAAATGGGG	TGAACACGAG	CTTGACTACC	TGCTGTTCAT	CGTCCGCGAC	540
GTGAAGGTAG	TCCCGAACCC	GGACGAAGTG	GCCGATGTGA	AATACGTGAG	CCGTGAGCAG	600
CTGAAGGAGC	TCATCCGCAA	AGCGGACGCC	GGAGAGGAAG	GCCTGAAGCT	GTCTCCCTGG	660
TTCCGGCTGG	TTGTTGACAA	CTTCCTCATG	GGCTGGTGGG	ATCACGTCGA	GAAAGGCACC	720
CTCAACGAGG	CCGTGGACAT	GGAGACCATC	CACAAGCTGA	AGTAAGGACT	GCGATGTTGT	780
GGCTGGAAAG	AATGATCCTG	AAGACTCTGT	тсттстсстс	CTGCATATTA	CTCTTACCAG	840
GGAAGTTGCA	GAAGTCAGAA	GAAGCTTTTG	TATGTTTCTG	GGTTTGGAGC	TTGGAAGTGT	900
TGGGCTCTGC	TGACTGAGAG	ATTCCCTTAT	AGAGTGTCTA	TGTTAATTTA	GCAAACTTCT	960
ATATTATACA	TGATTAGTTA	ATTGTTCGGT	GTCTGAATAA	AGAACAATAG	CATGTTCCAT	1020
GTTTATTTGC	Т					1031
				•		

<210> 36

<211> 232

<212> PRT

<213> Tagetes erecta

<400> 36

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe 1 5 10 15

Asp Asp Glu Cys Ile Leu Val Asp Glu Cys Asp Asn Val Val Gly His 20 25 30

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Thr Gly Lys 35 40 45

Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu
50 55 60

Leu Leu Cln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val
65 70 75 80

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 85 90 95

Val Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 100 105 110

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Gln Phe
115 120 125

Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp 130 135 140

- Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Ala 145 150 155 160
- Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Lys Tyr Val Ser His 165 170 175
- Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly 180 185 190
- Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195 200 205
- Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Thr Glu Ala Ile Asp 210 215 220
- Met Lys Thr Ile His Lys Leu Ile 225 230
- <210> 37
- <211> 280
- <212> PRT
- <213> Lactuca Sativa
- <400> 37
- Met Leu Lys Phe Pro Pro Phe Lys Thr Ile Ala Thr Met Ile Ser Ser 1 5 10 15
- Pro Tyr Ser Ser Phe Leu Leu Pro Arg Lys Ser Ser Phe Pro Pro Met 20 25 30
- Pro Ser Leu Ala Ala Ser Val Phe Leu His Pro Leu Ser Ser Ala 35 40 45
- Ala Met Gly Asp Ser Ser Met Asp Ala Val Gln Arg Arg Leu Met Phe 50 55 60
- Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly His 65 70 75 80
- Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Gly Asn 85 90 95
- Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 100 105 110
- Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val 115 120 125
- Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 130 135 140
- Ile Asp Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 145 150 155 160
- Leu Asp Glu Leu Gly Ile Pro Gly Ala Asp Val Pro Val Asp Glu Phe
 165 170 175
- Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Ala Ser Asp Gly Lys Trp 180 185 190
- Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Met Val Arg Asp Val Gly

 $\sigma^{i_{1}}$

195 200 205

Leu Asp Pro Asn Pro Asp Glu Val Lys Asp Val Lys Tyr Val Asn Arg

Glu Glu Leu Lys Glu Leu Val Arg Lys Ala Asp Ala Gly Glu Gly

Val Lys Leu Ser Pro Trp Phe Lys Leu Ile Val Asp Asn Phe Leu Phe

Gln Trp Trp Asp Arg Leu His Lys Gly Thr Leu Thr Glu Ala Ile Asp 260 265

Met Lys Thr Ile His Lys Leu Thr

<210> 38

<211> 229

<212> PRT

<213> Lactuca Sativa

<400> 38

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe

Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Asn Val Leu Gly His

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Asp Asn

Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu

Leu Leu Leu Gln Gln Arg Ser Glu Thr Lys Val Thr Phe Pro Leu Val

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu

Ile Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe

Thr Thr Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp

Gly Glu His Glu Val Asp Tyr Leu Leu Phe Leu Val Arg Asp Val Ala 150

Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Arg Tyr Val Asn Gln

Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly

Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195

Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Asn Glu Ala Ile Asp 210 225 220

Met Lys Thr Ile His

<210> 39

<211> 295

<212> PRT

<213> Adonis Palaestina

<400> 39

BNSDOCID: <WO_

9963055A1 IA>

Met Ser Ser Ile Arg Ile Asn Pro Leu Tyr Ser Ile Phe Ser Thr Thr 1 5 10 15

Thr Lys Thr Leu Ser Ala Ser Cys Ser Ser Pro Ala Val His Leu Gln 20 25 30

Gln Arg Cys Arg Thr Leu Ser Ile Ser Ser Ser Ile Thr Asn Ser Pro 35 40 45

Arg Arg Gly Leu Asn Arg Leu Phe Ala Ser Thr Ser Thr Met Gly Glu 50 60

Val Ala Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu Met Phe Asp 65 70 75 80

Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly Tyr Asp 85 90 95

Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu 100 105 110

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu 115 120 125

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val Trp 130 135 140

Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser Glu Leu Ile 145 150 155 160

Glu Glu Asn Phe Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Leu 165 170 175

Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe Thr 180 185 190

Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly 195 200 205

Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Tyr 210 215 220

Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val Asn Arg Glu 225 230 235 240

Glu Leu Lys Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly Ile 245 250 255

Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe Lys

260

265

270

Trp Trp Asp His Val Glu Glu Gly Lys Ile Lys Asp Val Ala Asp Met 275 280 285

Lys Thr lle His Lys Leu Thr 290 295

<210> 40

<211> 234

<212> PRT

<213> Adonis Palaestina

<400> 40

Met Gly Glu Val Thr Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val 20 25 30

Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala 35 40 45

Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys
50 55 60

Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro 65 70 75 80

Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser 85 90 95

Glu Leu Ile Glu Glu Asn Tyr Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110

Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp 115 120 125

Glu Phe Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly 130 135

Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp 145 150 155 160

Val Lys Tyr Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val 165 170 175

Asn Arg Glu Glu Leu Arg Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu 180 185 190

Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205

Leu Phe Lys Trp Trp Asp His Val Glu Gln Gly Thr Ile Lys Glu Val 210 215 220

Ala Asp Met Lys Thr Ile His Lys Leu Thr 225 230

<210> 41 <211> 238

<212> PRT <213> Oryza Sativa

Gln Lys Arg Leu Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Gln 20 25 30

Asp Asn Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu Met Glu 35 40 45

Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu 50 55 60

Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys 65 70 75 80

Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu 85 90 95

Tyr Arg Glu Ser Glu Leu Ile Gln Glu Asn Tyr Leu Gly Val Arg Asn 100 105 110

Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp 115 120 125

Val Pro Val Asp Gln Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala 130 135 140

Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe 145 150 155 160

Ile Val Arg Asp Val Lys Val Val Pro Asn Pro Asp Glu Val Ala Asp 165 170 175

Val Lys Tyr Val Ser Arg Glu Gln Leu Lys Glu Leu Ile Arg Lys Ala 180 - 185 190

Asp Ala Gly Glu Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val 195 200 205

Val Asp Asn Phe Leu Met Gly Trp Trp Asp His Val Glu Lys Gly Thr 210 215 220

Leu Asn Glu Ala Val Asp Met Glu Thr Ile His Lys Leu Lys 225 230 235

<210> 42

<211> 233

<212> PRT

<213> Arabidopsis thaliana

<400> 42

Met Thr Asp Ser Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu
1 5 10 15

Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val 20 25 30

Gly His Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala 35 40 45

Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys 50 55 60

Tyr Glu Leu Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro 65 70 75 80

Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser 85 90 95

Glu Leu Ile Glu Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110

Lys Leu Phe Asp Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp 115 120 125

Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly 130 135 140

Lys Trp Gly Glu His Glu Val Asp Tyr Leu Leu Phe Ile Val Asp 145 155 160

Val Lys Leu Gln Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val 165 170 175

Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp 180 185 190

Glu Ala Val Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205

Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala 210 215 220

Ala Asp Met Lys Thr Ile His Lys Leu 225 230

<210> 43

<211> 293

<212> PRT

<213> Haematococcus pluvialis

<400> 43

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Leu Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly
35 40 45

Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys
50 55 60

Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75 80

Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu

. 85

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110

Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp 115 120 125

Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140

Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys 145 150 155 160

Ala Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175

Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys 180 185 190

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 215 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 230 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His

His Ile Asn Glu Ala 290

<210> 44

<211> 304

<212> PRT

<213> Haematococcus pluvialis

<400> 44

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu 35 40 45

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp 50 55 60

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile 65 70 75 80

WO 99/63055

Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala Ser Lys Leu Glu 85 90 95

Cys His Lys Phe Leu Pro His Pro Ala Gly Leu Leu His Arg Ala Phe 100 105 110

Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu Leu Gln Gln Arg 115 120 125

Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp Thr Asn Thr Cys Cys 130 135 140

Ser His Pro Leu His Gly Gln Thr Pro Asp Glu Val Asp Gln Leu Ser 145 150 155 160

Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys Ala Ala Ala Ile Arg 165 170 175

Lys Leu Glu His Glu Leu Gly Ile Pro Ala His Gln Leu Pro Ala Ser 180 185 190

Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Val Gln
195 200 205

Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu His Glu Met Asp Tyr 210 215 220

Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp Glu 225 230 235 240

Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met Met
245 250 255

Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile Ala 260 265 270

Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu Asn 275 280 285

Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu Ala 290 295 300

<210> 45

<211> 307

<212> PRT

<213> Chlamydomonas reinhardtii

<400> 45

Met Arg Ser Ser Phe Ile Glu Pro Lys Pro Arg Ala Gln Pro Val Leu 1 15

Ser Arg Gly Arg Ala Ser Met Arg Leu Ala Gln Ser Arg Ala Leu Val 20 25 30

Ala Arg Val Ser Ser Ala Leu Trp Pro Gly Ala Gly Leu Ser Gln Ala 35 40 45

Gln Ser Val Ala Val Arg Met Ala Ser Ser Ser Thr Trp Glu Gly Thr
50 55 60

Gly Leu Ser Gln Asp Asp Phe Met Gln Arg Asp Glu Cys Leu Val Val

70 75 Asp Glu Gln Asp Arg Leu Leu Gly Thr Ala Asn Lys Tyr Asp Cys His Arg Phe Glu Ala Ala Lys Gly Gln Pro Cys Gly Arg Leu His Arg Ala 105 Phe Ser Val Phe Leu Phe Ser Pro Asp Gly Arg Leu Leu Gln Gln Arg Ala Ala Ser Lys Val Thr Phe Pro Gly Val Trp Thr Asn Thr Cys 135 Cys Ser His Pro Leu Ala Gly Gln Ala Pro Asp Glu Val Asp Leu Pro Ala Ala Val Ala Ser Gly Gln Val Pro Gly Ile Lys Ala Ala Ala Val Arg Lys Leu Gln His Glu Leu Gly Ile Pro Pro Glu Gln Val Pro Ala Ser Ser Phe Ser Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Thr 200 Ala Thr His Gly Pro Ala Ala Glu Trp Gly Glu His Glu Val Asp Tyr Val Leu Phe Val Arg Pro Gln Gln Pro Val Ser Leu Gln Pro Asn Pro 235 Asp Glu Val Asp Ala Thr Arg Tyr Val Thr Leu Pro Glu Leu Gln Ser 250 Met Met Ala Asp Pro Gly Leu Ser Trp Ser Pro Trp Phe Arg Ile Leu Ala Thr Gln Pro Ala Phe Leu Pro Ala Trp Trp Gly Asp Leu Lys Arg Arg Trp Arg Pro Gly Gly Ser Arg Leu Ser Asp Trp Gly Thr Ile His 300 295 Arg Val Met 305 <210> 46 <211> 1848 <212> DNA <213> Adonis palaestina <400> 46 GAGAGAAAA GAGTGTTATA TTAATGTTAC TGTCGCATTC TTGCAACACA TATTCAGACT 60 CCATTTTCTT GTTTTCTCTT CAAAACAACA AACTAATGTG ACGGAGTATC TAGCTATGGA 120 ACTACTTGGT GTTCGCAACC TCATCTCTTC TTGCCCTGTC TGGACTTTTG GAACAAGAAA 180 240

WO 99/63055

TTTTCAAGTG	AGGGCTGATG	GTGGAAGCGG	GAGTAGAACT	TCTGTTGCTT	ATAAAGAGGG	300
TTTTGTGGAC	GAGGAGGATT	TTATCAAAGC	TGGTGGTTCT	GAGCTTTTGT	TTGTCCAAAT	360
GCAGCAAACA	AAGTCTATGG	AGAAACAGGC	CAAGCTCGCC	GATAAGTTGC	CACCAATACC	420
TTTCGGAGAA	TCTGTGATGG	ACTTGGTTGT	AATAGGTTGT	GGACCTGCTG	GTCTTTCACT	480
GGCTGCAGAA	GCTGCTAAGC	TAGGCTTGAA	AGTTGGCCTT	ATTGGTCCTG	ATCTTCCTTT	540
TACAAATAAT	TATGGTGTGT	GGGAAGACGA	GTTCAAAGAT	CTTGGACTTG	AACGTTGTAT	600.
CGAGCATGCT	TGGAAGGACA	CCATCGTATA	TCTTGACAAT	GATGCTCCTG	TCCTTATTGG	660
TCGTGCATAT	GGACGAGTTA	GCCGGCATTT	GCTGCATGAA	GAGTTGCTGA	AAAGGTGTGT	720
CGAGTCAGGT	GTATCATATC	TGAATTCTAA	AGTGGAAAGG	ATCACTGAAG	CTGGTGATGG	780
CCATAGTCTT	GTAGTTTGTG	AAAACGACAT	CTTTATCCCT	TGCAGGCTTG	CTACTGTTGC	840
ATCTGGAGCA	GCTTCAGGGA	AACTTTTGGA	GTATGAAGTA	GGTGGCCCTC	GTGTTTGTGT	900
CCAAACTGCT	TATGGTGTGG	AGGTTGAGGT	GGAGAACAAT	CCATACGATC	CCAACTTAAT	960
GGTATTTATG	GACTACAGAG	ACTATATGCA	ACAGAAATTA	CAGTGCTCGG	AAGAAGAATA	1020
TCCAACATTT	CTCTATGTCA	TGCCCATGTC	GCCAACAAGA	CTTTTTTTTG	AGGAAACCTG	1080
TTTGGCCTCA	AAAGATGCCA	TGCCTTTCGA	TCTACTGAAG	AGAAAACTAA	TGTCACGATT	1140
GAAGACTCT	GGTATCCAAC	TTACAAAAAT	TTATGAAGAG	GAATGGTCTT	ATATTCCTGT	1200
TGGGGGTTCT	TTACCAAAC	A CAGAGCAAAA	GAACCTAGCA	TTTGGTGCTG	CAGCAAGCAT	1260
GGTGCATCC	GCAACAGGC	r ATTCGGTTGI	ACGATCACTA	TCAGAAGCT	CAAAATATGC	1320
TTCTGTAAT	GCAAAGATT	r TGAAGCAAGA	A TAACTCTGCA	A TATGTGGTT	CTGGACAAAG	1380
CAGTGCAGT	A AACATTTCA	A TGCAAGCATO	G GAGCAGTCTT	TGGCCAAAG	S AGCGAAAACG	1440
TCAAAGAGC	A TTCTTTCTT	T TCGGGTTAGA	A GCTTATTGTO	CAGCTAGAT	A TTGAAGCAAC	1500
CAGAACGTT	C TTTAGAACC	T TCTTCCGCT	r GCCAACTTGO	ATGTGGTGG	GGTTTCCTTGG	1560
GTCTTCACT.	A TCATCTTTC	G ATCTTGTAT	T GTTTTCCAT(G TACATGTÍT	G TTTTGGCCCC	1620
GAACAGCAT	g AGGATGTCA	C TTGTGAGAC	A TTTGCTTTC	A GATCCTTCT	G GTGCAGTTAT	1680
GGTTAAAGC	T TACCTCGAA	A GGTAATCTG	T TTTATGAAA	C TATAGTGTC	т саттааатаа	1740
ATGAGGATC	C TTCGTATAT	G TATATGATC	A TCTCTATGT	А ТАТССТАТА	т тстаатстса	1800
TAAAGTAAT	C GAAAATTCA	T TGATAGAAA	AAAAAAA A	AAAAAAA A	•	1848

<210> 47

Met Glu Leu Cly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp

<211> 529

<212> PRT

^{. &}lt;213> Adonis palaestina

<400> 47

#2

1				5					10					15	
Thr	Phe	Gly	Thr 20	Arg	Asn :	Leu	Ser	Ser 25	Ser	Lys	Leu	Ala	Tyr 30	Asn	Ile
His.	Arg	Tyr 35	Gly	Ser	Ser	Cys	Arg 40	Val	Asp	Phe	Gln	Val 45	Arg	Ala	Asp
Gly	Gly 50	Ser	Gly	Ser	Arg	Ser 55	Ser	Val	Ala	Tyr	Lys 60	Glu	Gly	Phe	Val
Asp 65	Glu	Glu	Asp	Phe	Ile 70	Lys	Ala	Gly	Gly	Ser 75	Glu	Leu	Leu	Phe	Val 80
Gln	Met	Gln	Gln	Thr 85	Lys	Ser	Met	Glu	Lys 90	Gln	Ala	Lys	Leu	Ala 95	Asp
Lys	Leu	Pro	Pro 100	Ile	Pro	Phe	Gly	Glu 105	Ser	Val	Met	Asp	Leu 110	Val	Val
Ile	Gly	Cys 115	Gly	Pro	Ala	Gly	Leu 120	Ser	Leu	Ala	Ala	Glu 125	Ala	Ala	Lys
Leu	Gly 130	Leu	Lys	Val	Gly	Leu 135	Ile	Gly	Pro	Asp	Leu 140	Pro	Phe	Thr	Asn
Asn 145	Tyr	Gly	Val	Trp	Glu 150	Asp	Glu	Phe	Lys	Asp 155	Leu	Gly	Leu	Glu	Arg 160
Cys	Ile	Glu	His	Ala 165	Trp	Lys	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180		Gly	Arg	Ala	Tyr 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195		Leu	Leu	Lys	Arg 200		Val	Glu	Ser	Gly 205	Val	Ser	Tyr
Leu	Asp 210		Lys	: Val	Glu	Arg 215		Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
Leu 225		Val	. Cys	s Glu	Asn 230		ılle	Phe	e Ile	235	Cys	s Arg	g Leu	Ala	Thr 240
Val	Ala	Ser	Gly	/ Ala 245	a Ala	Ser	Gly	, Lys	250	ı Let	ı Glu	тул туп	Glu	val 255	Gly
Gly	Pro	Arg	y Val 260		s Val	. Glr	n Thr	265	а Туз 5	r Gly	y Vai	l Glı	u Val 270	l Glu	ı Val
Glu	Ası	n Ası 27!		э Туі	r Asp	Pro	280		u Met	t Vai	l Ph	e Met 28:	t As _f 5	э Туі	r Ar
Asp	ту: 290	_	t Gli	n Gli	n Lys	29		n Cy:	s Se	r Gl	u Gl 30	u Gl: 0	и Ту:	r Pro	o Th
Phe 305		и Ту	r Va	l Me	t Pro 310		t Se	r Pr	o Th	r Ar 31	g Le 5	u Ph	e Ph	e Gl	u G1 32
Th	c Cy	s Le	u Al	a Se 32	r Ly: 5	s As	p Al	a Me	t Pr 33	o Ph O	e As	p Le	u Le	u Ly 33	s Ar 5

Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Val 340 345 350

Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn 355 360 365

Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His $370 \hspace{1.5cm} 375 \hspace{1.5cm} 380$

Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys 385 390 395 400

Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr 405 410 415

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 435 440 445

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 455 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 475 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr 485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Ara

<210> 48

<211> 378

<212> PRT

<213> Potato

<400> 48

Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile Glu His Val Trp
1 5 10 15

Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Pro Ile Leu Ile Gly
20 25 30

Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu 35 40 45

Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp 50 55 60

Arg Ile Val Glu Ala Thr Asn Gly His Ser Leu Val Glu Cys Glu Gly 65 70 75 80

Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala Ser Gly Ala Ala 85 90 95

Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Gly Pro Arg Val Ser Val 100 105 110

Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp 115 120 125

Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp 130 135 140

Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro 145 150 155 160

Met Ser Pro Thr Arg Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys 165 170 175

Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Lys Leu Met Leu Arg Leu 180 185 190

Asn Thr Leu Gly Val Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser 195 200 205

Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu 210 215 220

Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser 225 230 235 240

Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala 245 250 255

Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser 260 265 270

Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu 275 280 285

Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 290 295 300

Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 305 310 315 320

Val Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa 325 330 335

Ala Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn 340 345 350

Asp Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly 355 360 365

Ala Thr Leu Ile Arg Thr Tyr Leu Thr Phe 370 375

<210> 49

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 49

Glu Thr Cys Leu Ala Ser Lys Asp Val Met Pro Phe Asp Leu Leu Lys

325 330 335

Thr Lys Leu Met Leu Arg Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys 340 345 350

Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro 355 360 365

Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val $370 \hspace{1.5cm} 375 \hspace{1.5cm} 380$

His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro 385 390 395 400

Lys Tyr Ala Ser Val Ile Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys
405
410
415

Gln Ile Asn Ser Asn Ile Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro 420 425 430

Pro Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu 435 440 445

Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe 450 455 460

Phe Arg Leu Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Thr Leu 465 470 475 480

Thr Ser Gly Asp Leu Val Leu Phe Ala Leu Tyr Met Phe Val Ile Ser 485 490 495

Pro Asn Asn Leu Arg Lys Gly Leu Ile Asn His Leu Ile Ser Asp Pro 500 505 510

Thr Gly Ala Thr Met Ile Lys Thr Tyr Leu Lys Val 515 520

<210> 50

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 50

Met Glu Leu Cly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp

1 5 . 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val
50 55 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp

BNSDOCID- -WO GOSSOESA LIA-

85

90 95

Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 105 Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg 150 Cys Ile Glu His Ala Trp Lys Asp Thr Ile Val Tyr Leu Asp Asn Asp 170 Ala Pro Val Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu Lys Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Asp Ser Lys Val Glu Arg Ile Thr Glu Ala Gly Asp Gly His Ser Leu Val Val Cys Glu Asn Glu Ile Phe Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Glu Tyr Glu Val Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val 265 Glu Asn Asn Pro Tyr Asp Pro Asn Leu Met Val Phe Met Asp Tyr Arg 280 Asp Tyr Met Gln Gln Lys Leu Gln Cys Ser Glu Glu Glu Tyr Pro Thr Phe Leu Tyr Val Met Pro Met Ser Pro Thr Arg Leu Phe Phe Glu Glu 310 315 Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Arg Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Val 345 Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn 360 Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys 390 395 Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 435 440 445

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 455 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr 485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Arg

<210> 51

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 51

RNSDOCID: WO GORGOSSA1 IAS

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp
1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Thr Ser Val Ala Tyr Lys Glu Gly Phe Val
50 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp 85 90 95

Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 100 105 110

Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys 115 120 125

Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn 130 135 140

Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg 145 150 155 160

	Cys	Ile	Glu	His	Ala 165	Trp	Lys	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	
. 7	Ala	Pro	Val	Leu 180	Ile	Gly	Arg	Ala	Tyr 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
]	Leu	His	Glu 195	Glu	Leu	Leu	Lys	Arg 200	Cys	Val	Glu	Ser	Gly 205	Val	Ser	Tyr
]	Leu	Asn 210	Ser	Lys	Val	Glu	Arg 215	Ile	Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
1	Leu 225	Val	Val	Cys	Glu	Asn 230	Asp	Ile	Phe	Ile	Pro 235	Cys	Arg	Leu	Ala	Thr 240
7	/al	Ala	Ser	Gly	Ala 245	Ala	Ser	Gly	Lys	Leu 250	Leu	Glu	Tyr	Glu	Val 255	Gly
(Sly	Pro	Arg	Val 260	Cys	Val	Gln	Thr	Ala 265	Tyr	Gly	Val	Glu	Val 270	Glu	Val
(Glu	Asn	Asn 275	Pro	Tyr	Asp	Pro	Asn 280	Leu	Met	Val	Phe	Met 285	Asp	Tyr	Arg
7	qz	Tyr 290	Met	Gln	Gln	Lys	Leu 295	Gln	Cys	Ser	Glu	Glu 300	Glu	Tyr	Pro	Thr
3	Phe 305	Leu	Tyr	Val	Met	Pro 310	Met	Ser	Pro	Thr	Arg 315	Leu	Phe	Phe	Glu	Glu 320
7	Thr	Cys	Leu	Ala	Ser 325	Lys	Asp	Ala	Met	Pro 330	Phe	Asp	Leu	Leu	Lys 335	Arg
Ι	-ys	Leu	Met	Ser 340	Arg	Leu	Lys	Thr	Leu 345	Gly	Ile	Gln	Val	Thr 350	Lys	Ile
7	ſyr	Glu	Glu 355	Glu	Trp	Ser	Tyr	Ile 360	Pro	Val	Gly	Gly	Ser 365	Leu	Pro	Asn
7	ľhr	Glu 370	Gln	Lys	Asn	Leu	Ala 375	Phe	Gly	Ala	Ala	Ala 380	Ser	Met	Val	His
3	Pro 385	Ala	Thr	Gly	Tyr	Ser 390	Val	Val	Arg	Ser	Leu 395	Ser	Glu	Ala	Pro	Lys 400
7	ſyr	Ala	Ser	Val	Ile 405	Ala	Lys	Ile	Leu	Lys 410	Gln	Asp	Asn	Ser	Ala 415	Tyr
7	/al	Val	Ser	Gly 420	Gln	Ser	Ser	Ala	Val 425	Asn	Ile	Ser	Met	Gln 430	Ala	Trp
5	Ser	Ser	Leu 435	Trp	Pro	Lys	Glu	Arg 440	Lys	Arg	Gln	Arg	Ala 445	Phe	Phe	Leu
I	Phe	Gly 450	Leu	Glu	Leu	Ile	Val 455	Gln	Leu	Asp	Ile	Glu 460	Ala	Thr	Arg	Thr
1	Phe 165	Phe	Arg	Thr	Phe	Phe 470	Arg	Leu	Pro	Thr	Trp 475	Met	Trp	Trp	Gly	Phe 480
]	Leu	Gly	Ser	Ser	Leu	Ser	Ser	Phe	Asp	Leu	Val	Leu	Phe	Ser	Met	Tyr

485

490

495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Lys Ala Tyr Leu Glu 515 520 525

Arg

<210> 52

<211> 533

<212> PRT

<213> Lettuce

<400> 52

Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe 1 5 10 15

Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu 20 25 30

Leu Lys Gln Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg 35 40 45

Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln 50 55 60

Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser 65 70 75 80

Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln 85 90 95

Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile 100 105 110

Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala 115 120 125

Ala Glu Ser Ala Lys Leu Gly Leu Asn Val Gly Leu Ile Gly Pro Asp 130 135 140

Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Gln Asp Glu Phe Ile Gly 145 150 155 160

Leu Gly Leu Glu Gly Cys Ile Glu His Ser Trp Lys Asp Thr Leu Val 165 170 175

Tyr Leu Asp Asp Ala Asp Pro Ile Arg Ile Gly Arg Ala Tyr Gly Arg 180 185 190

Val His Arg Asp Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu 195 200 205

Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Glu Arg Ile Thr Glu Ala 210 215 220

Pro Asn Gly Tyr Ser Leu Ile Glu Cys Glu Gly Asn Ile Thr Ile Pro

	W) 99/6	3055	Ų	7										
22	25				230					235					240
C7	's Ar	j Leu	Ala	Thr 245	Val	Ala	Ser	Gly	Ala 250	Ala	Ser	Gly	Lys	Phe 255	Leu
G]	и Туі	Glu	Leu 260	Gly	Gly	Pro	Arg	Val 265	Cys	Val	Gln	Thr	Ala 270	Tyr	Gly
13	e Glu	Val 275	Glu	Val	Glu	Asn	Asn 280	Pro	Tyr	Asp	Pro	Asp 285	Leu	Met	Val
Ph	e Met 290	Asp	Tyr	Arg	Asp	Phe 295	Ser	Lys	His	Lys	Pro 300	Glu	Ser	Leu	Glu.
A1 30	a Lys	Tyr	Pro	Thr	Phe 310	Leu	Tyr	Val	Met	Ala 315	Met	Ser	Pro	Thr	Lys 320
11	e Phe	Phe	Glu	Glu 325	Thr	Cys	Leu	Ala	Ser 330	Arg	Glu	Ala	Met	Pro 335	Phe
As	n Leu	Leu	Lys 340	Ser	Lys	Leu	Met	Ser 345	Arg	Leu	Lys	Ala	Met 350	Gly	Ile
Ar	g Ile	Thr 355	Arg	Thr	Tyr	Glu	Glu 360	Glu	Trp	Ser	Туr	Ile 365	Pro	Val	Gly
Gl	y Ser 370	Leu	Pro	Asn	Thr	Glu 375	Gln	Lys	Asn	Leu	Ala 380	Phe	Ģly	Ala	Ala
A1 38	a Ser 5	Met	Val	His	Pro 390	Ala	Thr	Gly	Tyr	Ser 395	Val	Val	Arg	Ser	Leu 400
Se	r Glu	Ala	Pro	Asn 405	Tyr	Ala	Ala	Val	Ile 410	Ala	Lys	Ile	Leu	Arg 415	Gln
As	p Gln	Ser	Lys 420	Glu	Met	Ile	Ser	Leu 425	Gly	Lys	Tyr	Thr	Asn 430	Ile	Ser
Ly	s Gln	Ala 435	Trp	Glu	Thr	Leu	Trp 440	Pro	Leu	Glu	Arg	Lys 445	Arg	Gln	Arg
Al	a Phe 450	Phe	Leu	Phe	Gly	Leu 455	Ser	His	Ile	Val	Leu 460	Met	Asp	Leu	Glu
G1 46	y Thr 5	Arg	Thr	Phe	Phe 470	Arg	Thr	Phe	Phe	Arg 475	Leu	Pro	Lys	Trp	Met 480
Tr	p Trp	Gly	Phe	Leu 485	Gly	Ser	Ser	Leu	Ser 490	Ser	Thr	Asp	Leu	Ile 495	Ile
Ph	e Ala	Leu	Tyr 500	Met	Phe	Val	Ile	Ala 505	Pro	His	Ser	Leu	Arg 510	Met	Glu
Le	u Val	Arg 515	His	Leu	Leu	Ser	Asp 520	Pro	Thr	Gly	Ala	Thr 525	Met	Val	Lys

<210> 53

Ala Tyr Leu Thr Ile 530

<211> 526 <212> PRT

<213> Tomato

<400> 53 Met Glu Cys Val Gly Val Gln Asn Val Gly Ala Met Ala Val Leu Thr Arg Pro Arg Leu Asn Arg Trp Ser Gly Gly Glu Leu Cys Gln Glu Lys Ser Ile Phe Leu Ala Tyr Glu Gln Tyr Glu Ser Lys Cys Asn Ser Ser Ser Gly Ser Asp Ser Cys Val Val Asp Lys Glu Asp Phe Ala Asp Glu Glu Asp Tyr Ile Lys Ala Gly Gly Ser Gln Leu Val Phe Val Gln Met Gln Gln Lys Lys Asp Met Asp Gln Gln Ser Lys Leu Ser Asp Glu Leu Arg Gln Ile Ser Ala Gly Gln Thr Val Leu Asp Leu Val Val Ile Gly 105 Cys Gly Pro Ala Gly Leu Ala Leu Ala Ala Glu Ser Ala Lys Leu Gly Leu Asn Val Gly Leu Val Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile 150 Glu His Val Trp Arg Asp Thr Ile Val Tyr Leu Asp Asp Glu Pro Ile Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Phe Leu His Glu Glu Leu Leu Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp Arg Ile Val Glu Ala Thr Asn Gly Gln Ser Leu Val Glu Cys Glu Gly Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala 235 Ser Gly Ala Ala Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Ser Pro 245 Arg Val Ser Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn 265 Asn Pro Phe Asp Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr

280

295

Leu Arg His Asp Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu

															er 12.
Tyr 305	Ala	Met	Pro	Met	Ser 310	Pro	Thr	Arg	Val	Phe 315	Phe	Glu	Glu	Thr	Cys 320
Leu	Ala	Ser	Lys	Asp 325	Ala	Met	Pro	Phe	Asp 330	Leu	Leu	Lys	Lys	Lys 335	Leu
Met	Leu	Ārg	Leu 340	Asn	Thr	Leu	Gly	Val 345	Arg	Ile	Lys	Glu	Ile 350	Tyr	Glu
Glu	Glu	Trp 355	Ser	Tyr	Ile	Pro	Val 360	Gly	Gly	Ser	Leu	Pro 365	Asn	Thr	Glu
Gln	Lys 370	Thr	Leu	Ala	Phe	Gly 375	Ala	Ala	Ala	Ser	Met 380	Val	His	Pro	Ala
Thr 385	Gly	Tyr	Ser	Val	Val 390	Arg	Ser	Leu	Ser	Glu 395	Ala	Pro	Lys	Cys	Ala 400
Ser	Val	Leu	Ala	Asn 405	Ile	Leu	Arg	Gln	His 410	Tyr	Ser	Lys	Asn	Met 415	Leu
Thr	Ser	Ser	Ser 420	Ile	Pro	Ser	Ile	Ser 425	Thr	Gln	Ala	Trp	Asn 430	Thr	Leu
Trp	Pro	Gln 435	Glu	Arg	Lys	Arg	Gln 440	Arg	Ser	Phe	Phe	Leu 445	Phe	Gly	Leu
Ala	Leu 450	Ile	Leu	Gln	Leu	Asp 455	Ile	Glu	Gly	lle	Arg 460	Ser	Phe	Phe	Arg
Ala 465	Phe	Phe	Arg	Val	Pro 470	Lys	Trp	Met	Trp	Gln 475	Gly	Phe	Leu		Ser 480
Ser	Leu	Ser	Ser	Ala 485	Asp	Leu	Met	Leu	Phe 490	Ala	Phe	Tyr	Met	Phe 495	Ile
Ile	Ala	Pro	Asn 500	Asp	Met	Arg	Lys	Gly 505	Leu	Ile	Arg	His	Leu 510	Leu	Ser
Asp	Pro	Thr 515	Gly	Ala	Thr	Leu	Ile 520	Arg	Thr	Tyr	Leu	Thr 525	Phe		

<210> 54

<211> 516

<212> PRT

<213> Tagetes erecta

<400> 54

Met Ser Met Arg Ala Gly His Met Thr Ala Thr Met Ala Ala Phe Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Pro Arg Phe Met Thr Ser Ile Arg Tyr Thr Lys Gln Ile Lys Cys 20 25 30

Asn Ala Ala Lys Ser Gln Leu Val Val Lys Gln Glu Ile Glu Glu Glu 35 40 45

Glu Asp Tyr Val Lys Ala Gly Gly Ser Glu Leu Leu Phe Val Gln Met 50 55 60

BNSDOCID: -WO GORGOERA 1 IA-

Gln 65	Gln	Asn	Lys	Ser	Met 70	Asp	Ala	Gln	Ser	Ser 75	Leu	Ser	Gln	Lys	Leu 80
Pro	Arg	Val	Pro	Ile 85	Gly	Gly	Gly	Gly	Asp 90	Ser	Asn	Cys	Ile	Leu 95	Asp
Leu	Val	Val	Ile 100	Gly	Cys	Gly	Pro	Ala 105	Gly	Leu	Ala	Leu	Ala 110	Gly	Glu
Ser	Ala	Lys 115	Leu	Gly	Leu	Asn	Val 120	Ala	Leu	Ile	Gly	Pro 125	Asp	Leu	Pro
Phe	Thr 130	Așn	Asn	Tyr	Gly	Val 135	Trp	Glu	Asp	Glu	Phe 140	Ile	Gly	Leu	Gly
Leu 145	Glu	Gly	Cys	Ile	Glu 150	His	Val	Trp	Arg	Asp 155	Thr	Val	Val	Tyr	Leu 160
Asp	Asp	Asn	Asp	Pro 165	Ile	Leu	Ile	Gly	Arg 170	Ala	Tyr	Gly	Arg	Val 175	Ser
Arg	Asp	Leu	Leu 180	His	Glu	Glu	Leu	Leu 185	Thr	Arg	Cys	Met	Glu 190	Ser	Gly
Val	Ser	Tyr 195	Leu	Ser	Ser	Lys	Val 200	Glu	Arg	Ile	Thr	Glu 205	Ala	Pro	Asn
Gly	Leu 210	Ser	Leu	Ile	Glu	Cys 215	Glu	Gly	Asn	Ile	Thr 220	Ile	Pro	Cys	Arg
Leu 225	Ala	Thr	Val	Ala	Ser 230	Gly	Ala	Ala	Ser	Gly 235	Lys	Leu	Leu	Gln	Tyr 240
Glu	Leu	Gly	Gly	Pro 245	Arg	Val	Cys	Val	Gln 250	Thr	Ala	Tyr	Gly	Ile 255	Glu
Val	Glu	Val	Glu 260	Ser	Ile	Pro	Tyr	Asp 265	Pro	Ser	Leu	Met	Val 270	Phe	Met
Asp	Tyr	Arg 275	Asp	Tyr	Thr	Lys	His 280	Lys	Ser	Gln	Ser	Leu 285	Glu	Ala	Gln
Tyr	Pro 290	Thr	Phe	Leu	Tyr	Val 295	Met	Pro	Met	Ser	Pro 300	Thr	Lys	Val	Phe
Phe 305	Glu	Glu	Thr	Cys	Leu 310	Ala	Ser	Lys	Glu	Ala 315	Met	Pro	Phe	Glu	Leu 320
Leu	Lys	Thr	Lys	Leu 325	Met	Ser	Arg	Leu	Lys 330	Thr	Met	Gly	Ile	Arg 335	Ile
Thr	Lys	Thr	Tyr 340	Glu	Glu	Glu	Trp	Ser 345	Tyr	Ile	Pro	Val	Gly 350	Gly	Ser
Leu	Pro	Asn 355	Thr	Glu	Gln	Lys	Asn 360	Leu	Ala	Phe	Gly	Ala 365	Ala	Ala	Ser
Met	Val 370	His	Pro	Ala	Thr	Gly 375	Tyr	Ser	Val	Val	Arg 380	Ser	Leu	Ser	Glu
Ala	Pro	Asn	Tyr	Ala	Ala	Val	Ile	Ala	Lys	Ile	Leu	Gly	Lys	Gly	Asn

PCT/US99/12121

390 395 Ser Lys Gln Met Leu Asp His Gly Arg Tyr Thr Thr Asn Ile Ser Lys 405 410 Gln Ala Trp Glu Thr Leu Trp Pro Leu Glu Arg Lys Arg Gln Arg Ala 425 Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Met Asp Ile Glu Gly Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp 455 Trp Gly Phe Leu Gly Ser Ser Leu Ser Ser Thr Asp Leu Ile Ile Phe 475 Ala Phe Tyr Met Phe Ile Ile Ala Pro His Ser Leu Arg Met Gly Leu Val Arg His Leu Leu Ser Asp Pro Thr Gly Gly Thr Met Leu Lys Ala 500 505 Tyr Leu Thr Ile 515 <210> 55 <211> 501 <212> PRT <213> Arabidopsis thaliana <400> 55 Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Asp Phe Phe Ile Pro Gln Phe His Gly Phe Glu Arg Leu Cys Ser Asn Asn Pro Tyr His Ser Arg Val Arg Leu Gly Val Lys Lys Arg Ala Ile Lys Ile Val Ser Ser Val Val Ser Gly Ser Ala Ala Leu Leu Asp Leu Val Pro Glu Thr Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Leu Tyr Asp Thr Ser Lys Ser Gln Val Val Asp Leu Ala Ile Val Gly Gly Pro Ala Gly Leu Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp 105 Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr Thr Trp Ser

135

Gly Ala Val Val Tyr Val Asp Glu Gly Val Lys Lys Asp Leu Ser Arg

145					150					155					160
Pro	Tyr	Gly	Arg	Val 165	Asn	Ārg	Lys	Gln	Leu 170	Lys	Ser	Lys	Met	Leu 175	Gln
Lys	Cys	Ile	Thr 180	Asn	Gly	Val	Lys	Phe 185	His	Gln	Ser	Lys	Val 190		Asn
Val	Val	His 195	Glu	Glu	Ala	Asn	Ser 200	Thr	Val	Val	Cys	Ser 205		Gly	Val
Lys	Ile 210	Gln	Ala	Ser	Val	Val 215	Leu	Asp	Ala	Thr	Gly 220	Phe	Ser	Arg	Cys
Leu 225	Val	Gln	Tyr	Asp	Lys 230	Pro	Tyr	Asn	Pro	Gly 235	Tyr	Gln	Val	Ala	Tyr 240
Gly	Ile	Val	Ala	Glu 245	Val	Asp	Gly	His	Pro 250	Phe	Asp	Val	Asp	Lys 255	Met
Val	Phe	Met	Asp 260	Trp	Arg	Asp	Lys	His 265	Leu	Asp	Ser	Tyr	Pro 270	Glu	Leu
Lys	Glu	Arg 275	Asn	Ser	Lys	Ile	Pro 280	Thr	Phe	Leu	Tyr	Ala 285	Met	Pro	Phe
Ser	Ser 290	Asn	Arg	Ile	Phe	Leu 295	Glu	Glu	Thr	Ser	Leu 300	Val	Ala	Arg	Pro
Gly 305	Leu	Arg	Met	Glu	Asp 310	Ile	Gln	Glu	Arg	Met 315	Ala	Ala	Arg	Leu	Lys 320
His	Leu	Gly	Ile	Asn 325	Val	Lys	Arg	Ile	Glu 330	Glu	Asp	Glu	Arg	Cys 335	Val
Ile	Pro	Met	Gly 340	Gly	Pro	Leu	Pro	Val 345	Leu	Pro	Gln	Arg	Val 350	Val	Gly
Ile	Gly	Gly 355	Thr	Ala	Gly	Met	Val 360	His	Pro	Ser	Thr	Gly 365	Tyr	Met	Val
Ala	Arg 370	Thr	Leu	Ala	Ala	Ala 375	Pro	Ile	Val	Ala	Asn 380	Ala	Ile	Val	Arg
Tyr 385	Leu	Gly	Ser	Pro	Ser 390	Ser	Asn	Ser	Leu	Arg 395	Gly	Asp	Gln	Leu	Ser 400
Ala	Glu	Val	Trp	Arg 405	Asp	Leu	Trp	Pro	Ile 410	Glu	Arg	Arg	Arg	Gln 415	Arg
Glu	Phe	Phe	Cys 420	Phe	Gly	Met	Asp	Ile 425	Leu	Leu	Lys	Leu	Asp 430	Leu	Asp
Ala	Thr	Arg 435	Arg	Phe	Phe	Asp	Ala 440	Phe	Phe	Asp	Leu	Gln 445	Pro	His	Tyr
Trp	His 450	Gly	Phe	Leu	Ser	Ser 455	Arg	Leu	Phe	Leu	Pro 460	Glu	Leu	Leu	Val
Phe 465	Gly	Leu	Ser	Leu	Phe 470	Ser	His	Ala	Ser	Asn 475	Thr	Ser	Arg	Leu	Glu 480

Ile Met Thr Lys Gly Thr Val Pro Leu Ala Lys Met Ile Asn Asn Leu 485 490 495

Val Gln Asp Arg Asp 500

<210> 56

<211> 502

<212> PRT

<213> Adonis palaestina

<400> 56

Met Asp Thr Leu Leu Arg Thr His Asn Lys Leu Glu Leu Leu Pro Thr 1 5 10 15

Leu His Gly Phe Ala Glu Lys Gln His Leu Val Ser Thr Ser Lys Leu 20 25. 30

Gln Asn Gln Val Phe Arg Ile Ala Ser Arg Asn Ile His Pro Cys Arg 35 40 45

Asn Gly Thr Val Lys Ala Arg Gly Ser Ala Leu Leu Glu Leu Val Pro 50 55 60

Glu Thr Lys Lys Glu Asn Leu Glu Phe Asp Leu Pro Ala Tyr Asp Pro 65 70 . 75 80

Ser Arg Gly Ile Val Val Asp Leu Ala Val Val Gly Gly Pro Ala 85 90 95

Gly Leu Ala Ile Ala Gln Gln Val Ser Glu Ala Gly Leu Leu Val Cys 100 105 110

Ser Ile Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val 115 120 125

Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr 130 135 140

Thr Trp Ser Gly Ala Val Val Tyr Thr Asp Asp Asn Ser Lys Lys Tyr 145 150 155 160

Leu Asp Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys 165 170 175

Met Leu Gln Lys Cys Val Thr Asn Gly Val Lys Phe His Gln Ala Lys 180 185 190

Val Ile Lys Val Ile His Glu Glu Ser Lys Ser Leu Leu Ile Cys Asn 195 200 205

Asp Gly Ile Thr Ile Asn Ala Thr Val Val Leu Asp Ala Thr Gly Phe 210 215 220

Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln 225 230 235 240

Val Ala Tyr Gly Ile Met Ala Glu Val Glu Glu His Pro Phe Asp Leu 245 250 255

- Asp Lys Met Leu Phe Met Asp Trp Arg Asp Ser His Leu Asn Glu Lys 260 265 270
- Leu Glu Leu Lys Asp. Lys Asn Arg Lys Ile Pro Thr Phe Leu Tyr Ala 275 280 285
- Met Pro Phe Ser Ser Thr Lys Ile Phe Leu Glu Glu Thr Ser Leu Val 290 295 300
- Ala Arg Pro Gly Leu Arg Phe Glu Asp Ile Gln Glu Arg Met Val Ala 305 310 315 320
- Arg Leu Lys His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu 325
- Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg 340 345 350
- Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly 355 360 365
- Tyr Met Val Ala Arg Thr Leu Ala Ala Pro Val Val Ala Lys Ser 370 375 380
- Ile Val Gln Tyr Leu Gly Ser Asp Arg Ser Leu Ser Gly Asn Glu Leu 385 390 395 400
- Ser Ala Glu Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Gln 405 410 415
- Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu 420 425 430
- Gln Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro His 435 440 445
- Tyr Trp His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Leu 450 460
- Phe Phe Gly Leu Ser Leu Phe Ser His Ala Ser Asn Ala Ser Arg Ile 465 470 475 480
- Glu Ile Met Ala Lys Gly Thr Val Pro Leu Val Asn Met Met Asn Asn 485
- Leu Ile Gln Asp Thr Asp 500
- <210> 57
- <211> 498
- <212> PRT
- <213> Pepper
- <400> 57
- Met Asp Thr Leu Leu Arg Thr Pro Asn Asn Leu Glu Phe Leu His Gly
 1 5 10 15
- Phe Gly Val Lys Val Ser Ala Phe Ser Ser Val Lys Ser Gln Lys Phe 20 25 30

Gly	Ala	Lys 35	Lys	Phe	Cys	Glu	Gly 40	Leu	Gly	Ser	Arg	Ser 45	Val	Cys	Val
Lys	Ala 50	Ser	Ser	Ser	Ala	Leu 55	Leu	Glu	Leu	Val	Pro 60	Glu	Thr	Lys	Lys
Glu 65	Asn	Leu	Asp	Phe	Glu 70	Leu	Pro	Met	Туr	Asp 75	Pro	Ser	Lys	Gly ·	Val 80
Val	Val	Asp	Leu	Ala 85	Val	Val	Gly	Gly	Gly 90	Pro	Ala	Gly	Leu	Ala 95	Val
Ala	Gln	Gln	Val 100	Ser	Glu	Ala	Gly	Leu 105	Ser	Val	Cys	Ser	Ile 110	Asp	Pro
Asn	Pro	Lys 115	Leu	Ile	Trp	Pro	Asn 120	Asn	Tyr	Gly	Val	Trp 125	Val	Asp	Glu
Phe	Glu 130	Ala	Met	Asp	Leu	Leu 135	Asp	Cys	Leu	Asp	Ala 140	Thr	Trp	Ser	Gly
Ala 145	Ala	Val	Tyr	Ile	Asp 150	Asp	Lys	Thr	Thr	Lys 155	Asp	Leu	Asn	Arg	Pro 160
Tyr	Gly	Arg	Val	Asn 165	Arg	Lys	Gln	Leu	Lys 170	Ser	Lys	Met	Met	Gln 175	Lys
Cys	Ile	Leu	Asn 180	Gly	Val	Lys	Phe	His 185	Gln	Ala	Lys	Val	Ile 190	Lys	Val
Ile	His	Glu 195	Glu	Ser	Lys	Ser	Met 200	Leu	Ile	Cys	Asn	Asp 205	Gly	Ile	Thr
Ile	Gln 210	Ala	Thr	Val	Val	Leu 215	Asp	Ala	Thr	Gly	Phe 220	Ser	Arg	Ser	Leu
Val 225	Gln	Tyr	Asp	Lys	Pro 230	Tyr	Asn	Pro	Gly	Tyr 235	Gln	Val	Ala	Tyr	Gly 240
Ile	Leu	Ala	Glu	Val 245	·Glu	Glu	His	Prọ	Phe 250	Asp	Val	Asn	Lys	Met 255	Val
Phe	Met	Asp	Trp 260	Arg	Asp	Ser	His	Leu 265	Lys	Asn	Asn	Val	Glu 270	Leu	Lys
Glu	Arg	Asn 275	Ser	Arg	Ile	Pro	Thr 280	Phe	Leu	Tyr	Ala	Met 285	Pro	Phe	Ser
Ser	Asn 290	Arg	Ile	Phe	Leu	Glu 295	Glu	Thr	Ser	Leu	Val 300	Ala	Arg	Pro	Gly
Leu 305	Gly	Met	Asp	Asp	Ile 310	Gln	Glu	Arg	Met	Val 315		Arg	Ļeu	Ser	His 320
Leu	Gly	Ile	Lys	Val 325		Ser	Ile	Glu	Glu 330	Asp	Glu	His	Cys	Val 335	Ile
Pro	Met	Gly	Gly 340		Leu	Pro	Val	Leu 345	Pro	Gln	Arg	Val	Val 350	Gly	Ile
Gly	Gly	Thr	Ala	Gly	Met	Val	His	Pro	Ser	Thr	Gly	Tyr	Met	Val	Ala

÷ ::

355 360 365

Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile Gln Tyr 370 375 380

Leu Ser Ser Glu Arg Ser His Ser Gly Asp Glu Leu Ser Ala Ala Val 385 390 395 400

Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Arg Gln Arg Glu Phe Phe
405 410 415

Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg. 420 425 430

Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly 435 440 445

Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val Phe Gly Leu 450 455 460

Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Leu Glu Ile Met Thr 465 470 475 480

Lys Gly Thr Leu Pro Leu Val His Met Ile Asn Asn Leu Leu Gln Asp 485 490 495

Lys Glu

<210> 58

<211> 500

<212> PRT

<213> Tomato

<400> 58

Met Asp Thr Leu Leu Lys Thr Pro Asn Asn Leu Glu Phe Leu Asn Pro 1 5 10 15

His His Gly Phe Ala Val Lys Ala Ser Thr Phe Arg Ser Glu Lys His 20 25 30

His Asn Phe Gly Ser Arg Lys Phe Cys Glu Thr Leu Gly Arg Ser Val 35 40 45

Cys Val Lys Gly Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr
50 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys
65 70 75 80

Gly Val Val Val Asp Leu Ala Val Val Gly Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile 100 105 110

Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp

	130			•		135					140				ar Es
Ser 145	Gly	Ala	Ala	Val	Tyr 150	Ile	Asp	Asp	Asn	Thr 155	Ala	Lys	Asp	Leu	His 160
Arg	Pro	Tyr	Gly	Arg 165	Val	Asn	Arg	Lys	Gln 170	Leu	Lys	Ser	Lys	Met 175	Met
Gln	Lys	Cys	Ile 180	Met	Asn	Gly	Val	Lys 185	Phe	His	Gln	Ala	Lys 190	Val	Ile
Lys	Val	Ile 195	His	Glu	Glu	Ser	Lys 200	Ser	Met	Leu	Ile	Cys 205	Asn	Asp	Gly
Ile	Thr 210	Ile	Gln	Ala	Thr	Val 215	Val	Leu	Asp	Ala	Thr 220	Gly	Phe	Ser	Arg
Ser 225	Leu	Val	Gln	Tyr	Asp 230	Lys	Pro	Tyr	Asn	Pro 235	Gly	Tyr	Gln	Val	Ala 240
Tyr	Gly	Ile	Leu	Ala 245	Glu	Val	Glu	Glu	His 250	Pro	Phe	Asp	Val	Asn 255	Lys
Met	Val	Phe	Met 260	Asp	Trp	Arg	Asp	Ser 265	His	Leu	Lys	Asn	Asn 270	Thr	Asp
Leu	Lys	Glu 275	Arg	Asn	Ser	Arg	Ile 280	Pro	Thr	Phe	Leu	Tyr 285	Ala	Met	Pro
Phe	Ser 290	Ser	Asn	Arg	Ile	Phe 295	Leu	Glu	Glu	Thr	Ser 300	Leu	Val	Ala	Arg
Pro 305	Gly	Leu	Arg	Ile	Asp 310	Asp	Ile	Gln	Glu	Arg 315	Met	Val	Ala	Arg	Leu 320
Asn	His	Leu	Gly	Ile 325	Lys	Val	Lys	Ser	Ile 330	Glu	Glu	Asp	Glu	His 335	Cys
Leu	Ile	Pro	Met 340	Gly	Gly	Pro	Leu	Pro 345	Val	Leu	Pro	Gln	Arg 350	Val	Val
Gly	Ile	Gly 355	Gly	Thr	Ala	Gly	Met 360	Val	His	Pro	Ser	Thr 365	Gly	Tyr	Met
Val	Ala 370	Arg	Thr	Leu	Ala	Ala 375	Ala	Pro	Val	Val	Ala 380	Asn	Ala	Ile	Ile
Gln 385	Tyr	Leu	Gly	Ser	Glu 390	Arg	Ser	His	Ser	Gly 395	Asn	Glu	Leu	Ser	Thr 400
Ala	Val	Trp	Lys	Asp 405	Leu	Trp	Pro	Ile	Glu 410	Arg	Arg	Arg	Gln	Arg 415	Glu
Phe	Phe	Cys	Phe 420	Gly	Met	Asp	Ile	Leu 425	Leu	Lys	Leu	Asp	Leu 430	Pro	Ala
Thr	Arg	Arg 435	Phe	Phe	Asp	Ala	Phe 440	Phe	Asp	Leu	Glu	Pro 445	Arg	Tyr	Trp
His	Gly 450	Phe	Leu	Ser	Ser	Arg 455	Leu	Phe	Leu	Pro	Glu 460	Leu	Ile	Val	Phe

Lį

Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Phe Glu Ile

Met Thr Lys Gly Thr Val Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495

Gln Asp Lys Glu 500

<210> 59

<211> 500

<212> PRT

<213> Tobacco

<400> 59

BNSDOCID: < WO

006305541 145

Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Glu Phe Leu His Pro 1 5 10

Val His Gly Phe Ser Val Lys Ala Ser Ser Phe Asn Ser Val Lys Pro 20 25 30

His Lys Phe Gly Ser Arg Lys Ile Cys Glu Asn Trp Gly Lys Gly Val 35 40 45

Cys Val Lys Ala Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80

Gly Leu Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu
85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Val Ser Ile 100 105 110

Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp 130 135

Ser Gly Thr Val Val Tyr Ile Asp Asp Asn Thr Thr Lys Asp Leu Asp 145 150 155 160

Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met 165 170 175

Gln Lys Cys Ile Leu Asn Gly Val Lys Phe His His Ala Lys Val Ile 180 185 190

Lys Val Ile His Glu Glu Ala Lys Ser Met Leu Ile Cys Asn Asp Gly
195 200 205

Val Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg 210 215 220

Cys Leu Val Gln Tyr Asp Lys Pro Tyr Lys Pro Gly Tyr Gln Val Ala 225 230 235 240

Tyr Gly Ile Leu Ala Glu Val Glu Glu His 250 Pro Phe Asp Thr Ser Lys 255

Met Val Leu Met 260 Asp Trp Arg Asp Ser His Leu Gly Asn Asn Met Glu Leu Lys Glu Arg Asn Arg Lys Val Pro Thr Phe Leu Tyr Ala Met Pro

Phe Ser Ser Asn Lys Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg 290 295 300

Pro Gly Leu Arg Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu 305 310 315 320

Asn His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys 325 330 335

Val Ile Pro Met Gly Gly Ser Leu Pro Val Ile Pro Gln Arg Val Val 340 345 350

Gly Thr Gly Gly Thr Ala Gly Leu Val His Pro Ser Thr Gly Tyr Met 355 360 365

Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile 370 375 380

His Tyr Leu Gly Ser Glu Lys Asp Leu Leu Gly Asn Glu Leu Ser Ala 385 390 395 400

Ala Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Arg Gln Arg Glu 415

Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala 420 425 430

Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp 435 440 445

His Gly Phe Leu Ser Ser Arg Leu Tyr Leu Pro Glu Leu Ile Phe Phe 450 455 460

Gly Leu Ser Leu Phe Ser Arg Ala Ser Asn Thr Ser Arg Ile Glu Ile 465 470 475 480

Met Thr Lys Gly Thr Leu Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495

Gln Asp Thr Glu . 500

<210> 60

<211> 511

<212> PRT

<213> Tagetes erecta

<400> 60

Met Asp Thr Phe Leu Arg Thr Tyr Asn Ser Phe Glu Phe Val His Pro 1 5 10 15

Brighton Smo

Ser Asn Lys Phe Ala Gly Asn Leu Asn Asn Leu Asn Gln Leu Asn Gln 20 25 30

Ser Lys Ser Gln Phe Gln Asp Phe Arg Phe Gly Pro Lys Lys Ser Gln 35 40 45

Phe Lys Leu Gly Gln Lys Tyr Cys Val Lys Ala Ser Ser Ser Ala Leu 50 60

Leu Glu Leu Val Pro Glu Ile Lys Lys Glu Asn Leu Asp Phe Asp Leu 65 70 75 80

Pro Met Tyr Asp Pro Ser Arg Asn Val Val Val Asp Leu Val Val Val Val 95

Gly Gly Gly Pro Ser Gly Leu Ala Val Ala Gln Gln Val Ser Glu Ala 100 105 110

Gly Leu Thr Val Cys Ser Ile Asp Pro Ser Pro Lys Leu Ile Trp Pro 115 120 125

Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu 130 135 140

Asp Cys Leu Asp Thr Thr Trp Ser Ser Ala Val Val Tyr Ile Asp Glu 145 150 155 160

Lys Ser Thr Lys Ser Leu Asn Arg Pro Tyr Ala Arg Val Asn Arg Lys 165 170 175

Gln Leu Lys Thr Lys Met Leu Gln Lys Cys Ile Ala Asn Gly Val Lys 180 185 190

Phe His Gln Ala Lys Val Ile Lys Val Ile His Glu Glu Leu Lys Ser 195 200 205

Leu Leu Ile Cys Asn Asp Gly Val Thr Ile Gln Ala Thr Leu Val Leu 210 215 220

Asp Ala Thr Gly Phe Ser Arg Ser Leu Val Gln Tyr Asp Lys Pro Tyr 225 230 235 240

Asn Pro Gly Tyr Gln Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu 245 250 255

His Pro Phe Asp Val Asp Lys Met Leu Phe Met Asp Trp Arg Asp Ser 260 265 270

His Leu Asp Gln Asn Leu Glu Ile Lys Ala Arg Asn Ser Arg Ile Pro 275 280 285

Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser Thr Arg Ile Phe Leu Glu 290 295 300

Glu Thr Ser Leu Val Ala Arg Pro Gly Leu Lys Met Glu Asp Ile Gln 305 310 315 320

Glu Arg Met Ala Tyr Arg Leu Lys His Leu Gly Ile Lys Val Lys Ser 325 330 335

Ile Glu Glu Asp Glu Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro

Val Leu Pro Gln Arg Val Leu Gly Ile Gly Gly Thr Ala Gly Met Val 355

His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro 370

Val Ala Lys Ser Ile Ile Arg Tyr Leu Asn Asn Glu Lys Ser Met 390

Val Ala Asp Val Thr Gly Asp Asp Leu Ala Ala Gly Ile Trp Arg Glu 415

Leu Trp Pro Ile Glu Arg Arg Arg Glo Arg Glu Phe Phe Cys Phe Cly

Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly 420 425 430

Met Asp Ile Leu Leu Lys Leu Asp Leu Glu Gly Thr Arg Arg Phe Phe 435 440 445

Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser 450 460

Ser Arg Leu Phe Leu Pro Glu Leu Val Thr Phe Gly Leu Ser Leu Phe 465 470 475 480

Gly His Ala Ser Asn Thr Cys Arg Val Glu Ile Met Ala Lys Gly Thr 485 490 495

Leu Pro Leu Ala Thr Met Ile Gly Asn Leu Val Arg Asp Arg Glu 500 505 510

<210> 61

<211> 503

<212> PRT

<213> Daffodil

<400> 61

Met Asp Thr Leu Leu Arg Thr His Asn Arg Leu Glu Leu Leu Tyr Pro 1 5 10 15

Leu His Glu Leu Ala Lys Arg His Phe Leu Ser Pro Ser Pro Asn Pro 20 25 30

Gln Asn Pro Asn Phe Lys Phe Phe Ser Arg Lys Pro Tyr Gln Lys Lys 35 40 45

Cys Arg Asn Gly Tyr Ile Gly Val Ser Ser Asn Gln Leu Leu Asp Leu 50 55 60

Val Pro Glu Ile Lys Lys Glu His Leu Glu Phe Asp Leu Pro Leu Tyr 65 70 75 80

Asp Pro Ser Lys Ala Leu Thr Leu Asp Leu Ala Val Gly Gly Gly 85 90 95

Pro Leu Ala Arg Ser Cys Ser Thr Ser Leu Gly Gly Gly Leu Ser Val

Val Ser Ile Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly

BNSDOCID: < WO

115 120 Val Trp Val Asp Glu Phe Glu Asp Met Asp Leu Leu Asp Cys Leu Asp 135 Ala Thr Trp Ser Gly Ala Ile Val Tyr Val Asp Asp Arg Ser Thr Lys Asn Leu Ser Arg Pro Tyr Ala Arg Val Asn Arg Lys Asn Leu Lys Ser Lys Met Met Lys Lys Cys Val Ser Asn Gly Val Arg Phe His Gln Ala Thr Val Val Lys Ala Met His Glu Glu Glu Lys Ser Tyr Leu Ile Cys 200 Ser Asp Gly Val Thr Ile Asp Ala Arg Val Val Leu Asp Ala Thr Gly Phe Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp 245 Val Asp Lys Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Gly 265 Lys Ala Glu Leu Asn Glu Arg Asn Ala Lys Ile Pro Thr Phe Leu Tyr 280 Ala Met Pro Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu 295 Val Ala Arg Pro Gly Leu Lys Met Glu Asp Ile Gln Glu Arg Met Val 315 Ala Arg Leu Asn His Leu Gly Ile Arg Ile Lys Ser Ile Glu Glu Asp Glu Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Ile Pro Gln 345 Arg Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro Ile Val Ala Asn 375 Ser Ile Val Gln Tyr Leu Val Ser Asp Ser Gly Leu Ser Gly Asn Asp Leu Ser Ala Asp Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg 410 Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp 425 Leu Glu Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro 440

Leu Glu Ile Met Ala Lys Gly Thr Leu Pro Leu Val Asn Met Ile Asn 485 490 495

475

Asn Leu Val Gln Asp Arg Asp 500

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/12121

	FCI70S	73/12121
A. CLASSIFICATION OF SUBJECT MATTER IPC(6): Please See Extra Sheet. US CL: 435/189, 193, 233, 252.3, 320.1, 325; 536/23.2 According to International Patent Classification (IPC) or to both	national classification and IPC	
B. FIELDS SEARCHED	national classification and IFC	
Minimum documentation searched (classification system follower	d by classification symbols)	
U.S. : 435/189, 193, 233, 252.3, 320.1, 325; 536/23.2	- c,,	
Documentation searched other than minimum documentation to th	e extent that such documents are in	cluded in the fields searched
Electronic data base consulted during the international search (n Please See Extra Sheet.	ame of data base and, where prac	ticable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
WO 97/36998 A1 (UNIVERSITY OF PARK) 09 October 1997, see entire of No:1.	F MARYLAND COLLE	EGE 1-8 9 ID
Further documents are listed in the continuation of Box C	See patent family ann	ex.
 Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance 	*T* later document published after date and not in conflict with the principle or theory underly	the international filing date or priority the application but cited to understand ying the invention
E carlier document published on or after the international filing date	"X" document of particular releva	nce; the claimed invention cannot be
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	when the document is taken a	considered to involve an inventive step lone nee; the claimed invention cannot be
O document referring to an oral disclosure, use, exhibition or other means	considered to involve an in-	ventive step when the document is the such documents, such combination
P document published prior to the international filing date but later than the priority date claimed	*& document member of the same	
Date of the actual completion of the international search 02 AUGUST 1999	Date of mailing of the internation 15 SEP 1999	al search report
Name and mailing address of the ISA.US Commissioner of Patents and Trademarks Box PCT	Authorized officer	as I
Washington, D.C. 20231 Facsimile No. (703) 305-3230	BRADLEÝ S. MAYHEW Telephone No. (703) 368-0196	6 Huc

BNSDOSID WO COSSESSED 210 (second sheet)(July 1992)*

International application No. PCT/US99/12121

A. CLASSIFICATION	OF	SUBJECT	MATTER:
IPC (6):			

C12N 1/21, 5/10, 9/10, 15/53, 15/54, 15/61, 15/63; C12P 23/00; C12Q 1/68

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

Dialog and APS

search terms: 1PP, epsilon cyclase, lycopene cyclase, isopentenyl pyrophosphate isomerase and isopentenyl diphosphate isomerase

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items chec	ked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	\
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)