Лекция 5

(Бесконечная числовая) последовательность, ее геометрическое изображение

Определение. Числовой последовательностью называется функция натурального аргумента $f: \mathbb{N} \to \mathbb{R}$ (или $f: \mathbb{N} \to \mathbb{C}$).

Число $f(n), n \in \mathbb{N}$, называется n-м членом последовательности и обозначается символом x_n , а формула $x_n = f(n)$ называется формулой общего члена последовательности x_n .

Члены последовательности могут изображаться точками числовой прямой.

Примеры.

- 1. $x_n = b$, $b \in \mathbb{R}$ (постоянная последовательность).
- 2. $x_n = n$; $\{1, 2, ..., n, ...\}$.
- 3. $x_n = \frac{1}{n}$; $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$.
- 4. $x_n = (-1)^n$; $\{-1,1,-1,1,\ldots\}$.
- 5. $x_n = (-1)^n \frac{1}{n}$; $\left\{-1, \frac{1}{2}, -\frac{1}{3}, \dots, (-1)^n \frac{1}{n}, \dots\right\}$.

6.
$$x_n = (1 + (-1)^n)n$$
; $\{0, 2, 0, 4, 0, 6, \ldots\}$.

7.
$$x_n = \frac{1 + (-1)^n}{n}$$
; $\left\{0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, \dots\right\}$.

8.
$$x_n = \sqrt{n}$$
; $\{1, \sqrt{2}, ..., \sqrt{n}, ...\}$.

9.
$$x_1 = 3$$
, $x_2 = 1$, $x_3 = 4$, $x_4 = 1$, $x_5 = 5$, $x_6 = 9$, ...(десятичные знаки числа π)

Определение. Последовательность x_n называется *ограниченной*, если существуют два действительных числа m, M, такие, что для всех элементов последовательности выполняется неравенство $m \le x_n \le M \ \forall n \in \mathbb{N}$.

Примеры:
$$x_n = \frac{1}{n}$$
; $x_n = (-1)^n$; $x_n = (-1)^n \frac{1}{n}$; $x_n = \frac{1 + (-1)^n}{n}$.

Можно дать другое определение ограниченной последовательности, эквивалентное первоначальному определению.

Определение. Последовательность x_n называется *ограниченной*, если существует число $M \ge 0$ такое, что выполняется неравенство $|x_n| \le M$, $\forall n \in \mathbb{N}$

Определение. Последовательность x_n называется возрастающей (убывающей), если $x_{n+1} > x_n$ ($x_{n+1} < x_n$) для всех $n \in \mathbb{N}$.

Примеры:
$$x_n = n$$
; $x_n = \sqrt{n}$; $x_n = \frac{1}{n}$.

Определение. Последовательность x_n называется *неубывающей* (*невозрастающей*), если $x_{n+1} \ge x_n$ ($x_{n+1} \le x_n$) для всех $n \in \mathbb{N}$.

Всякая возрастающая (убывающая) последовательность является неубывающей (невозрастающей).

Определение. Неубывающая или невозрастающая последовательность называется *монотонной*.

Последовательность

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, ...,$$

общий член которой $a_n = \frac{(-1)^{n+1}}{n}$, изображена на рисунке.

Наблюдая за расположением точек последовательности, легко заметить, что они все ближе и ближе подходят к нулю, накапливаются около нуля.

Предел последовательности, сходящаяся последовательность

Определение. Число *b* называется *пределом* последовательности x_n при стремлении *n* к бесконечности, если для любого числа $\varepsilon > 0$ существует число $N = N(\varepsilon) > 0$ (зависящее от ε) такое, что при всех натуральных числах n > N выполняется неравенство $|x_n - b| < \varepsilon$.

Последовательность, имеющая конечный предел, называется сходящейся.

Говорят, что последовательность x_n стремится (сходится) к числу b.

Обозначения: $\lim_{n\to\infty} x_n = b$; $x_n \to b$ при $n \to \infty$.

С помощью кванторов утверждение, что $\lim_{n\to\infty} x_n = b$, можно записать так:

$$\lim_{n\to\infty} x_n = b \Leftrightarrow \forall \varepsilon > 0 \,\exists \, N = N(\varepsilon) > 0 : n > N \Longrightarrow |x_n - b| < \varepsilon.$$

Определение. Пусть $\varepsilon > 0$. ε -окрестностью действительного числа b называется интервал $(b-\varepsilon,b+\varepsilon)$.

Можно сказать, что все члены сходящейся последовательности x_n , за исключением конечного их числа, попадают в ε - окрестность числа b, причем размер ε этой окрестности может быть сколь угодно малым.

Определение. Последовательность называется *расходящейся*, если она не имеет конечного предела.

Примеры сходящихся последовательностей.

- **1.** Постоянная последовательность $x_n = b$ сходится к b.
- **2.** $x_n = \frac{1}{n}$. Покажем, что $\lim_{n \to \infty} \frac{1}{n} = 0$, т.е. b = 0. Возьмем $\varepsilon > 0$. Неравенство $|x_n b| < \varepsilon$ принимает вид $|x_n| < \varepsilon$, или $\frac{1}{n} < \varepsilon$. Решая его, находим, что $n > \frac{1}{\varepsilon}$. Таким образом, в данном случае можно положить $N = N(\varepsilon) = \frac{1}{\varepsilon}$.
- **3.** $x_n = (-1)^n \frac{1}{n}$. Такие же рассуждения показывают, что $\lim_{n \to \infty} (-1)^n \frac{1}{n} = 0$.

4.
$$x_n = \frac{1 + (-1)^n}{n}$$
, $\lim_{n \to \infty} \frac{1 + (-1)^n}{n} = 0$.

Теорема. Если последовательность имеет конечный предел, то только один.

Теорема(о пределе суммы, разности, произведения и частного двух сходящихся последовательностей). Если последовательности x_n и y_n сходятся, то сходятся и последовательности $x_n \pm y_n$, $x_n y_n$, а при условии $y_n \neq 0$, $\lim_{n\to\infty} y_n \neq 0$ сходится и последовательность x_n/y_n , причем:

- 1) $\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n;$
- 2) $\lim_{n\to\infty} (x_n y_n) = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n;$
- 3) $\lim_{n\to\infty} (x_n/y_n) = \lim_{n\to\infty} x_n / \lim_{n\to\infty} y_n.$

Замечание. Все пределы в формулировке теоремы являются конечными!

Пример. Найти
$$\lim_{n\to\infty} \frac{3n^2 - 5n + 1}{2n^2 + 4n - 3}$$
.

Сначала проведем тождественные преобразования выражения, стоящего под знаком предела, чтобы сделать возможным применение теоремы 2:

$$\lim_{n\to\infty} \frac{3n^2 - 5n + 1}{2n^2 + 4n - 3} = \lim_{n\to\infty} \frac{n^2 \left(3 - 5/n + 1/n^2\right)}{n^2 \left(2 + 4/n - 3/n^2\right)} = \lim_{n\to\infty} \frac{3 - 5/n + 1/n^2}{2 + 4/n - 3/n^2} = \frac{\lim_{n\to\infty} \left(3 - 5/n + 1/n^2\right)}{\lim_{n\to\infty} \left(2 + 4/n - 3/n^2\right)} = \lim_{n\to\infty} \frac{3n^2 - 5n + 1}{2n^2 + 4n - 3} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 4/n - 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 3/n^2} = \lim_{n\to\infty} \frac{3n^2 - 5/n + 1/n^2}{2n^2 + 3/n^2}$$

$$= \frac{\lim_{n\to\infty} 3 - \lim_{n\to\infty} (5/n) + \lim_{n\to\infty} (1/n^2)}{\lim_{n\to\infty} 2 + \lim_{n\to\infty} (4/n) - \lim_{n\to\infty} (3/n^2)} = \frac{3}{2}.$$

Пример. Найти $\lim_{n\to\infty} \left(\sqrt{n^2+3n-2}-n\right)$.

Выполняем тождественные преобразования:

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3n - 2} - n \right) = \lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 3n - 2} + n \right) \left(\sqrt{n^2 + 3n - 2} - n \right)}{\sqrt{n^2 + 3n - 2} + n} = \lim_{n \to \infty} \frac{n^2 + 3n - 2 - n^2}{\sqrt{n^2 + 3n - 2} + n} = \lim_{n \to \infty} \frac{3n - 2}{n\sqrt{1 + 3/n - 2/n^2} + n} = \lim_{n \to \infty} \frac{n(3 - 2/n)}{n\left(\sqrt{1 + 3/n - 2/n^2} + 1\right)} = \lim_{n \to \infty} \frac{3 - 2/n}{\sqrt{1 + 3/n - 2/n^2} + 1} = \frac{3}{2}$$

Бесконечный предел. бесконечно большая последовательность

Определение. Говорят, что предел последовательности x_n равен ∞ , если для любого числа M>0 существует число N=N(M)>0 (зависящее от M) такое, что для всех номеров n>N выполняется неравенство $|x_n|>M$.

Обозначение: $\lim_{n\to\infty} x_n = \infty$.

Геометрический смысл: все члены последовательности x_n , за исключением конечного их числа, располагаются вне интервала (-M,M), т.е. либо левее точки -M, либо правее точки M. Здесь число M может быть сколь угодно большим.

Определение. Говорят, что предел последовательности x_n равен $+\infty$, если для любого числа M>0 существует число $N=N\left(M\right)>0$ (зависящее от M) такое, что для всех номеров n>N выполняется неравенство $x_n>M$.

Обозначение: $\lim_{n\to\infty} x_n = +\infty$.

Геометрический смысл: все члены последовательности x_n , за исключением конечного их числа, располагаются правее точки M. Здесь число M может быть сколь угодно большим.

Определение. Говорят, что предел последовательности x_n равен $-\infty$, если для любого числа M>0 существует число $N=N\left(M\right)>0$ (зависящее от M) такое, что для всех номеров n>N выполняется неравенство $x_n<-M$.

Обозначение: $\lim_{n\to\infty} x_n = -\infty$.

Геометрический смысл: все члены последовательности x_n , за исключением конечного их числа, располагаются левее точки -M. Здесь число M может быть сколь угодно большим.

Определение. Если $\lim_{n\to\infty} x_n = \infty(-\infty, +\infty)$, то последовательность x_n называется бесконечно большой (б.б.).

Примеры бесконечно больших последовательностей.

1.
$$x_n = n$$
; $\lim_{n \to \infty} n = +\infty$.

2.
$$x_n = \sqrt{n}$$
; $\lim_{n \to \infty} \sqrt{n} = +\infty$.

Действительно, пусть M>0 — любое. Чтобы найти $N=N\left(M\right)>0$ решаем неравенство $\sqrt{n}>M$. Получаем, что $n>M^2$, и можно взять $N=M^2$.

3.
$$x_n = (-1)^n n$$
; $\lim_{n \to \infty} (-1)^n n = \infty$.

Действительно, пусть M>0 — любое. Чтобы найти $N=N\left(M\right)>0$ решаем неравенство $\left|\left(-1\right)^n n\right|>M$. Получаем, что n>M , и можно взять N=M .

Последовательность $x_n = (1 + (-1)^n)n$ не является бесконечно большой, потому что существуют члены последовательности со сколь угодно большими номерами, равные нулю.

Теорема о сходимости монотонной последовательности

Теорема. Всякая сходящаяся последовательность является ограниченной.

Доказательство. Пусть $\lim_{n\to\infty}x_n=b, b\in\mathbb{R}$. Это означает, что

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) > 0: \ n > N \Longrightarrow |x_n - b| < \varepsilon.$$

Возьмем $\varepsilon=1$ и N=N(1)>0. Тогда $\left|x_n-b\right|<1$ при n>N, т.е. $b-1< x_n < b+1$ при $n=n_0,n_0+1,\ldots$ Рассмотрим $M=\max\left\{\left|x_1\right|,\left|x_2\right|,\ldots,\left|x_{n_0-1}\right|,\left|b-1\right|,\left|b+1\right|\right\}$. Тогда $\left|x_n\right|< M \ \forall n\in\mathbb{N}$. Следовательно, последовательность x_n является ограниченной.

Обратное теореме 1 утверждение, очевидно, неверно. Существуют ограниченные последовательности, не имеющие предела. Например, $x_n = (-1)^n$.

Теорема Вейерштрасса (достаточное условие сходимости последовательности). Всякая монотонная и ограниченная последовательность сходится.

Возможны две ситуации.

1. Пусть x_n — неубывающая последовательность и ограничена сверху числом M : $x_n \leq M$. Тогда существует $\lim_{n \to \infty} x_n = b \leq M$.

2. Пусть x_n — невозрастающая последовательность и ограничена снизу числом m: $x_n \ge m$. Тогда существует $\lim_{n \to \infty} x_n = b \ge m$.

Замечание. Если последовательность x_n — неубывающая и неограниченная, то $\lim_{n\to\infty} x_n = +\infty$. Если последовательность x_n — невозрастающая и неограниченная, то $\lim_{n\to\infty} x_n = -\infty$.

Число е. натуральные логарифмы

Теорема. Последовательность

$$x_n = \left(1 + \frac{1}{n}\right)^n$$
 является монотонной и

ограниченной: $2 \le x_n < 3$.

Следствие. По теореме Вейерштрасса существует конечный предел последовательности $\left(1+\frac{1}{n}\right)^n$, обозначаемый буквой e.

Итак, по определению

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Число e приближенно равно 2,7182818284... и является иррациональным.

Логарифм $\log_e x$ числа x > 0 по основанию числа e называется натуральным и обозначается $\ln x$.

Функции $y = e^x$ и $y = \ln x$ являются монотонно возрастающими и взаимно обратными.

Примеры:

1)
$$\lim_{n\to\infty}\frac{2^{2n+1}+3^{n+2}}{4^{n+2}+5};$$

2)
$$\lim_{n \to \infty} \frac{n^2 + 3n\sqrt{n} - 2}{5n^2 - 7\sqrt[3]{n} + 1};$$

3)
$$\lim_{n\to\infty} (\sqrt{n^4 + 2n^2 + n + 1} - \sqrt{n^4 - 3n^2 + 5});$$

$$4)\lim_{n\to\infty}\left(1-\frac{2}{n}\right)^n.$$