Pipeline for *de novo* Targeted Capture

2	October (2014
4	October 6, 2014
6	Contributors: Sonal Singhal, Ke Bi, Tyler Linderoth
8	For questions or to report bugs, please contact Ke Bi (kebi@berkeley.edu)
10 12 14 16	 Reference: [1]. Singhal S. 2013. De novo transcriptomic analyses for non-model organisms: an evaluation o methods across a multi-species data set. Molecular Ecology Resources 13:403-416. [2]. Bi K, Linderoth T, Vanderpool D, Good JM, Nielsen R and Moritz C. 2013. Unlocking the vault next-generation museum population genomics. Molecular Ecology 22:6018-6032. [3]. Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C and Good JM. 2012. Transcriptome-base exon capture enables highly cost-effective comparative genomic data collection at modera evolutionary scales. BMC Genomics 13: e403.
18 20	The pipelines are deposited in https://github.com/MVZSEQ/denovoTargetCapture
22	Scripts included in this pipeline:
24	1-PreCleanup
26	<u>2-ScrubReads</u>
28	<u>3-GenerateAssemblies</u>
30	4-FinalAssembly
32	<u>5-FindTargets</u>
34	6-AssemblyEvaluation (optional)
36	7-Alignment
38	8-ExonCaptureEvaluation (optional)
40	9-preFiltering
42	<u>10-SNPcleaner</u>
14	Use "chmod +x script" to make each of these perl scripts executable.
46 48	- Exon/exome/sequence capture dataset Use 1->2->3->4->5->6->7->8 when no reference genome is available; Use 1->2->7->8 when a reference genome is available

50	- Genomic dataset (with a pre-existing genome or <i>de novo</i> genome scaffolds) Use 1->2->7
52	
54	- <i>de novo</i> transcriptome dataset Use 1->2->3->4->5->7
56	- Single RAD/GBS dataset Use 1->2->3->RAD/GBS Tag filtering->7
58	,
60	- ddRAD/ddGBS dataset Use 1->2->ddRAD pipelines->7
62	- UCE dataset Use 1->2->UCE pipelines->7
64	
66	*1-PreCleanup*: Reformats raw sequencing reads from Illumina HiSeq or MiSeq for 2-ScrubReads. Specifically, in this step we will remove reads that did not pass the
68	Illumina quality control filters and modify the sequence identifiers.
70	Dependencies: FastQC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
72	1 astQu. http://www.bioinformatics.bab/anamac.ak/projects/fastqe/
7 4	Input:
7476	Raw sequence data files are grouped and saved in folders named by their sample IDs. For instance, three libraries (CGRL_index1, CGRL_index15, CGRL_index40) are saved under "/home/ke/Desktop/SeqCap/data/rawdata/library/". Compressed
70	fastq sequence files are saved in each of these folders.
78	Fastq files use the following naming scheme:
80	<pre><sample name="">_<barcode sequence="">_L<lane (0-padded="" 3="" digits)="" to="">_R<read number="">_<set (0-padded="" 3="" digits)="" number="" to="">.fastq.gz</set></read></lane></barcode></sample></pre>
82	
	For example, in "CGRL_index15_CGACCTG_L006_R1_001.fastq.gz":
84	sample name: CGRL_index15 barcode sequence: CGACCTG
86	lane (0-padded to 3 digits): 006 read number: 1
88	set number (0-padded to 3 digits): 001
90	#Make a new folder called "raw" under "~/Desktop/SeqCap/data/rawdata/": ke@NGS:~/Desktop/SeqCap/data/rawdata\$ mkdir raw
92	#Copy all these compressed fastq files from each folder (CGRL_index1,

```
94
      CGRL index15, CGRL index40) to "raw":
       ke@NGS:~/Desktop/SeqCap/data/rawdata$ cp library/CGRL_index*/*.gz raw/
 96
       #Check data files in "raw":
 98
       ke@NGS:~/Desktop/SeqCap/data/rawdata$ ls raw/*
       CGRL index15 CGACCTG L006 R1 001.fastq.gz
       CGRL_index15_CGACCTG_L006_R2_001.fastq.gz
100
       CGRL_index1_TCGCAGG_L006_R1_001.fastq.gz
102
      CGRL_index1_TCGCAGG_L006_R2_001.fastq.gz
      CGRL index40 TTCGCAA L006 R1 001.fastq.gz
104
       CGRL_index40_TTCGCAA_L006_R2_001.fastq.gz
106
      Commands:
108
       #cd to the working directory:
       ke@NGS:~/Desktop/SeqCap/data/rawdata$ cd ..
110
       #run 1-PreCleanup with fastq evaluation
112
       ke@NGS:~/Desktop/SegCap/data$ 1-PreCleanup
       ~/Desktop/SegCap/data/rawdata/raw/fastgc
114
       Output:
116
       Three new folders will be created under "~/Desktop/SeqCap/data/rawdata/raw/":
       "pre-clean"
      "combined"
118
       "pre-clean/evaluation"
120
      - Folder "pre-clean" contains reformatted raw fastq reads.
122
       CGRL_index1_R1.fq
       CGRL index1 R2.fq
124
      CGRL index15 R1.fa
       CGRL_index15_R2.fq
126
      CGRL index40 R1.fq
       CGRL_index40_R2.fq
128
       - Folder "combined" contains merged, compressed, fastq data files (not used by the
130
       following pipeline).
      CGRL_index1_TCGCAGG_L006_R1.fastq.gz
132
      CGRL index1 TCGCAGG L006 R2.fastq.gz
       CGRL index15 CGACCTG L006 R1.fastq.gz
134
      CGRL_index15_CGACCTG_L006_R2.fastq.gz
      CGRL index40 TTCGCAA L006 R1.fastq.gz
       CGRL_index40_TTCGCAA_L006_R2.fastq.gz
136
138
       - Folder "evaluation" contains fastQC results for each data file.
       CGRL_index1_R1.fq_fastqc/
```

140	CGRL_index1_R2.fq_fastqc/ CGRL_index15_R1.fq_fastqc/
142	CGRL_index15_R2.fq_fastqc/
	CGRL_index40_R1.fq_fastqc/
144	CGRL_index40_R2.fq_fastqc/
146	Questions:
	1. Check the sequence identifiers and the number of reads in fastq files before and
148	after running <u>1-PreCleanup</u> and compare the results. 2. Check the fastQC evaluation results for the raw data
150152	
132	*2-ScrubReads*: Clean up raw data, which includes trimming for quality, removing
154	adapters, merging overlapping reads, removing duplicates and reads sourced fron contamination
156	Dependencies:
158	cutadapt: http://code.google.com/p/cutadapt/ COPE: http://sourceforge.net/projects/coperead/
160	Bowtie2: http://sourceforge.net/projects/bowtie-bio/files/bowtie2/ FastQC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
162	FLASh-modified: modified version of FLASh by Filipe G. Vieira.
164	https://github.com/MVZSEQ/Exon-capture Trimmomatic: http://www.usadellab.org/cms/?page=trimmomatic
166	Input:
160	1. Reformatted fastq files created by <u>1-PreCleanup</u> : #Check the raw data files:
168	ke@NGS:~/Desktop/SeqCap/data/rawdata/raw/pre-clean\$ ls *.fq
170	CGRL_index1_R1.fq
	CGRL_index1_R2.fq
172	CGRL_index15_R1.fq
174	CGRL_index15_R2.fq CGRL_index40_R1.fq
1/1	CGRL_index40_R2.fq
176	
	2. A fasta file that contains adapter sequences:
178	#Check the format of adapter sequence file: ke@NGS:~/Desktop/SeqCap/denovoTargetCapture/associated_files \$ less -S
180	Adapters.fasta
182	>P7_index1 CAAGCAGAAGACGGCATACGAGATcctgcgaGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT >P7_index2
184	CAAGCAGAAGACGGCATACGAGATtgcagagGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
186	 >P5_index1

188 190	AATGATACGGCGACCACCGAGATCTACACcctgcgaACACTCTTTCCCTACACGACGCTCTTCCGATCT >P5_index2 AATGATACGGCGACCACCGAGATCTACACtgcagagACACTCTTTCCCTACACGACGCTCTTCCGATCT
192	Note: The header of each adapter sequence has to be named strictly as " P7_index N" or " P5_index N". N is the number of index. It is OK to put all adapters in this file but
194	your libraries only use a subset of them.
196	3. Library info file (Tab-delimited txt file): #Check the format of Library info file:
198	$ke@NGS: \sim /Desktop/SeqCap/denovoTargetCapture/associated_files \$ less -S \ libInfo.txt$
200	library P7 P5 CGRL_index1 1
202	CGRL_index15 15 CGRL_index40 40
204	leave the "P5" column blank if you only have indexes in P7 adapters in the libraries.
206	
208	4. Contaminant file: Escherichia coli (+ human + other genome resources if desired) genome in fasta format.
210	This file (e_coli_K12.fasta) is saved in
212	"~/Desktop/SeqCap/denovoTargetCapture/associated_files/ecoli/"
214	Commands:
216	#Make a new folder called "cleaned_data" in "~/Desktop/SeqCap/data/": ke@NGS:~/Desktop/SeqCap/data\$ mkdir cleaned_data
218	#Run <u>2-ScrubReads</u> : ka@NCSt. /Dockton /SoaCan /data\$ 2 SarubPoads f
220	ke@NGS:~/Desktop/SeqCap/data\$ 2-ScrubReads -f ~/Desktop/SeqCap/data/rawdata/raw/pre-clean/ -o ~/Desktop/SeqCap/data/cleaned_data/ -a
222	~/Desktop/SeqCap/denovoTargetCapture/associated_files/Adapters.fasta -b ~/Desktop/SeqCap/denovoTargetCapture/associated_files/libInfo.txt -t
224	/home/ke/Desktop/SeqCap/programs/Trimmomatic-0.32/trimmomatic-0.32.jar -c ~/Desktop/SeqCap/denovoTargetCapture/associated_files/ecoli/e_coli_K12.fasta -e
226	200 -m 15 -z
228	Note: I use default values for most of the arguments. Users should adjust these parameters when processing the real datasets.
230	
232	Output: 1. In "~/Desktop/SeqCap/data/cleaned_data/", six .txt files per library are produced:

234	For example for library CGRL_index1, the six files are: CGRL_index1_1_final.txt (left reads)
236	CGRL_index1_1_inial.txt (left reads) CGRL_index1_2_final.txt (right reads)
	CGRL_index1_u_final.txt (merged or unpaired reads)
238	CGRL_index1.contam.out (headers of reads aligned to bacteria)
240	CGRL_index1.duplicates.out (headers of duplicated reads) CGRL_index1.lowComplexity.out (headers of low complexity reads)
240	CGRL_maex1.low complexity.out (neaders of low complexity reads)
242	2. In "~/Desktop/SeqCap/data/cleaned_data/evaluation/", you can find fastQC results for cleaned reads from each library.
244	
246	Questions: 1. Check the %reads that are exact duplicates, %reads that are likely derived from
248	microbial genome and %reads that contain low complexity. 2. Check the fastQC evaluation results of cleaned reads and then compare them to those of raw reads. Is the quality improved?
250	
252	*3-GenerateAssemblies*: Assemble sequence capture data using ABySS.
254	We use a multiple-kmer approach to assemble our data. If there is even coverage
256	and even polymorphism levels across the assembled genome, there should (in theory) be one k-mer that best assembles the data. In reality, coverage and
	polymorphism vary across captured loci, and using multiple k-mers is a way to bet
258	hedge and get good assemblies for all loci. In assembling your data, it is important to consider which samples to use in your assembly. Ideally, you could assemble across
260	multiple individuals to increase your read depth, and thus, assembly contiguity and continuity. However, for many projects, more individuals can also mean increased
262	polymorphism. While we have found the assemblers are more robust to polymorphism than the program writers themselves often suggest, increased
264	polymorphism does lead to shorter contigs and increased misassemblies. With these sample data, we assembled across all in-group samples – this seemed like the best
266	balance between having enough data to power assembly while not introducing too much polymorphism.
268	
270	Dependencies: ABySS (compiled with OpenMPI and Google sparsehash): http://www.bcgsc.ca/platform/bioinfo/software/abyss
272	neepi, , www.neegoelea, placeerin, blomlo, boleware, abjob
	Input:
274	Concatenated cleaned reads from libraries that you would like to assemble together. The libraries to be assembled together have to be genetically similar: ideally,
276	samples from the same population. In this example we want to assemble CGRL_index1, CGRL_index15 and CGRL_index40 together.
278	

#Make a new folder called "raw_assembly" under "~/Desktop/SeqCap/data/":

280	ke@NGS:~/Desktop/SeqCap/data\$ mkdir raw_assembly
282	#Concatenate cleaned reads and save them in "raw_assembly": ke@NGS:~/Desktop/SeqCap/data\$ cat cleaned_data/CGRL_index*_1_final.txt >
284	raw_assembly/combined_1_final.txt ke@NGS:~/Desktop/SeqCap/data\$ cat cleaned_data/CGRL_index*_2_final.txt >
286	raw_assembly/combined_2_final.txt ke@NGS:~/Desktop/SeqCap/data\$ cat cleaned_data/CGRL_index*_u_final.txt >
288	raw_assembly/combined_u_final.txt
290	#Inside "raw_assemblies" make a new folder "results": ke@NGS:~/Desktop/SeqCap/data\$ mkdir raw_assembly/results
292	ke@NGS.~/Desktop/SeqCap/aata\$ mkan Taw_assembly/Tesuits
294	Commands:
296	#Run ABySS on two processors using kmer sizes of 21, 31, 41, 51, 61, and 71. ke@NGS:~/Desktop/SeqCap/data\$ 3-GenerateAssemblies abyss -reads (Desktop/SeaCap/data (range generally) / maj (year/hip (range) asyt)
298	~/Desktop/SeqCap/data/raw_assembly/ -mpi /usr/bin/mpirun -out ~/Desktop/SeqCap/data/raw_assembly/results/ -kmer 21 31 41 51 61 71 -np 2
300	Note: Your labtop will not be able to handle memory intensive ABySS assemblies.
302	Output:
304	There are a lot of intermediate files created in "~/Desktop/SeqCap/data/raw_assembly/results/combined/".
306	#To show the assemblies that we need for the next step:
308	ke@NGS:~/Desktop/SeqCap/data\$ cd raw_assembly/results/combined/ ke@NGS:~/Desktop/SeqCap/data/raw_assembly/results/combined\$ ls *-contigs.fa
310	combined_k21_cov_default-contigs.fa combined_k31_cov_default-contigs.fa
312	combined_k41_cov_default-contigs.fa combined_k51_cov_default-contigs.fa
314	combined_k61_cov_default-contigs.fa combined_k71_cov_default-contigs.fa
316	#Combine all the raw assemblies and write the result to a new file called
318	"all_assemblies.fasta": ke@NGS:~/Desktop/SeqCap/data/raw_assembly/results/combined\$ cat
320	combined_*_cov_default-contigs.fa > all_assemblies.fasta
322	#Make a new folder called "merge_assemblies" under "~/Desktop/SeqCap/data/": ke@NGS:~/Desktop/SeqCap/data \$ mkdir merge_assemblies
324	#Copy "all_assemblies.fasta" into "merge_assemblies/":

326	ke@NGS:~/Desktop/SeqCap/data \$ cp raw_assembly/results/combined/all_assemblies.fasta merge_assemblies
328	
330	*4-FinalAssembly*: Combining assembled contigs across multiple k-mers to generate a final assembly introduces a lot of redundancy into the final assembly. To address
332	this, we use a lightweight assembler cap3 and other programs (blat, cd-hit-est) to merge contigs and to remove redundancies.
334	
336	Dependencies: CAP3: http://seq.cs.iastate.edu/cap3.html blat: http://users.soe.ucsc.edu/~kent/src/
338	cd-hit-est: https://code.google.com/p/cdhit/downloads/list
340	Input:
342	Concatenated raw assemblies "~/Desktop/SeqCap/data/merge_assemblies/all_assemblies.fasta" produced by 3- GenerateAssemblies
344	
346	Commands: ke@NGS:~/Desktop/SeqCap/data\$ 4-FinalAssembly -a ~/Desktop/SeqCap/data/merge_assemblies/ -c 1000
348	, besittop, bed sup, uata, merge_ussemblies, c 1000
350	Note: when analyzing real data, users should test these parameters (-d -e -b) for optimal results.
352	Output:
354	Several files are created in "~/Desktop/SeqCap/data/merge_assemblies/". The data file that we need for the next step is "all_assemblies.fasta.final".
356	# Rename "all_assemblies.fasta.final": ke@NGS:~/Desktop/SeqCap/data/merge_assemblies\$ mv all_assemblies.fasta.final
358	all_assemblies_final.fasta
360	
362	*5-FindTargets*: identify contigs that are stemmed from the targeted loci and use these contigs as a reference (aka. a pseudo-reference)
364	these contigs as a reference (axa. a pseudo reference)
366	Here, we suggest taking a very conservative approach to define the reference genome against which you will align your reads. You will likely get many multiples
368	more contigs than loci you targeted. Some of these might be junk; some might be real. Rather than try to identify which of the extraneous contigs are junk or real, we
	suggest using only those contigs which match to the original targets. To do so, we
370	implement a BLAST approach, which identifies which contig has the best-hit match

a - a	to one's targeted loci.
372	Dependencies:
374	blastn (BLAST+): ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/cd-hit-est: https://code.google.com/p/cdhit/downloads/list
376	
378	Input: 1. "~/Desktop/SeqCap/data/merge_assemblies/all_assemblies_final.fasta" produced by <u>4-FinalAssembly</u> .
380	2 Taylord diamifacta file
382	2. Targeted loci fasta file: "~/Desktop/SeqCap/denovoTargetCapture/original_target /targeted_loci.fasta" contains loci/genes/exons from which probes are designed.
384	Commands:
386	#Make a new folder called "in_target_assemblies": under "~/Desktop/SeqCap/data/":
388	ke@NGS:~/Desktop/SeqCap/data\$ mkdir in_target_assemblies
390	#Run <u>5-FindingTargets</u> in "~/Desktop/SeqCap/data/in_target_assemblies/": ke@NGS:~/Desktop/SeqCap/data/in_target_assemblies\$ 5-FindingTargets -t
392 394	~/Desktop/SeqCap/denovoTargetCapture/original_target/targeted_loci.fasta -a ~/Desktop/SeqCap/data/merge_assemblies/all_assemblies_final.fasta -o in_target.fasta -e in_target.captured
371	m_target.justa e m_target.eaptarea
396	Output:
398	Two files are created and stored in "~/Desktop/SeqCap/data/in_target_assemblies/":
400	1. "in_target.fasta": A fasta sequence file containing contigs that are stemmed from the targeted loci.
402	2 ":
404	2. "in_target.captured": A txt file containing percent captured for each target (tab-delimited).
406	
408	*6-AssemblyEvaluation* (Optional): function "BASIC" evaluates the quality of intarget assemblies by reporting basic stats: mean, median, total length, gc%, N50 etc.
410	It also generates a distribution of contigs by binned lengths.
412	In reality, "BASIC" can evaluates quality of any assemblies.
414	This script also assesses the quality of transcriptome/targeted capture assemblies form several other aspects. For example:

416 "COVERAGE" calculates error rate, average quality score of the aligned bases and its variance/std, and average base coverage. Users need to generate alignment first. "FIX" fixes assembly errors. Users need to generate alignment first. 418 For more details please execute "6-Assembly Evaluation" in a terminal window. 420 422 6-AssemblyEvaluation BASIC Input: 424 "~/Desktop/SeqCap/data/in_target_assemblies/in_target.fasta" produced by 5-FindTaraets. 426 **Commands:** 428 ke@NGS:~/Desktop/SegCap/data \$ 6-AssemblyEvaluation BASIC -a ~/Desktop/SeqCap/data/in_target_assemblies 430 **Output:** 432 Two files are created in "~/Desktop/SeqCap/data/in_target_assemblies/": 434 1. "in target.hist": distribution of contigs by binned lengths #Display first few lines of the file: 436 ke@NGS:~/Desktop/SegCap/data/in target assemblies\$ head in target.hist 200:299 1026 438 300:399 242 400:499 73 500:599 440 17 600:699 7 442 700:799 0 800:899 0 444 900:999 1 1000:1099 0 446 1100:1199 448 2. "basic evaluation.out": results of assembly evaluation #Display first few lines of the file: 450 ke@NGS:~/Desktop/SegCap/data/in target assemblies\$ head basic evaluation.out 452 Note: users might want to compare the metric between in_target assemblies to 454 original targeted loci and see how much flanking are captured and assembled. Under most circumstances, the mean, median, N50 etc should be much higher in 456 in_target assemblies than in original targeted loci. The example dataset that is used for the purpose of demonstration, however, should not show this pattern indicated above since it is assembled from a tiny fraction of 458

data.

460

462	*7-Alignment*: aligning cleaned reads against the pseudo-reference using Novoalign
464	Novoalign "is an aligner for single-ended and paired-end reads from the Illumina. Novoalign finds global optimum alignments using full Needleman-Wunsch
466	algorithm with affine gap penalties."
468	"Question: How does Novoalign compare to programs like BWA, Bowtie, ELAND and BFAST?
470	Answer: Novoalign was designed to be an accurate short read aligner that combines fast K-
472	mer index searching with dynamic programming. In terms of speed Novoalign will be slower than Burrows-Wheeler transform aligners e.g. BWA, Bowtie and in some
474	cases faster than BFAST. In terms of accuracy Novoalign is in most cases more sensitive than these tools because it uses full dynamic programming to find the best
476	alignment of a short read to a genome sequence."
478	According to Heng Li, author of SAMTools & MAQ, Novoalign "is the most accurate aligner to date".
480	Denondensies
482	Dependencies: Novoalign: http://www.novocraft.com/main/downloadpage.php SAMTools: http://sourceforge.net/projects/samtools/files/samtools/
484	
486	Input:
400	1. A pseudo-reference genome, "~/Desktop/SeqCap/data/
488	in_target_assemblies/in_target.fasta", generated by <u>5-FindTargets</u> : #make a new directory called "reference" under "~/Desktop/SeqCap/data/":
490	ke@NGS:~/Desktop/SeqCap/data\$ mkdir reference
492	#Copy "in_target.fasta" to "~/Desktop/SeqCap/data/reference/": ke@NGS:~/Desktop/SeqCap/data\$ cp in_target_assemblies/in_target.fasta reference/
494	
496	2. Cleaned reads generated by <u>2-ScrubReads:</u> Cleaned reads are saved in "~/Desktop/SeqCap/data/cleaned_data/".
	#Take a look at these reads:
498	ke@NGS:~/Desktop/SeqCap/data/cleaned_data\$ ls *.txt CGRL_index1_1_final.txt
500	CGRL_index1_1_jinal.txt CGRL_index1_2_final.txt
	CGRL_index1_u_final.txt
502	CGRL_index15_1_final.txt
- 0.4	CGRL_index15_2_final.txt
504	CGRL_index15_u_final.txt
T0/	CGRL_index40_1_final.txt
506	CGRL_index40_2_final.txt CGRL_index40_u_final.txt
	GUNL HUGATU U HHULKK

508	
Г 10	Commands:
510512	#Make a new folder called "alignment" under "~/Desktop/SeqCap/data/": ke@NGS:~/Desktop/SeqCap/data\$ mkdir alignment
514	#Run <u>7-Alignment:</u>
516	ke@NGS:~/Desktop/SeqCap/data\$ 7-Alignment -f ~/Desktop/SeqCap/data/reference/in_target.fasta -r ~/Desktop/SeqCap/data/cleaned_data/ -o ~/Desktop/SeqCap/data/alignment/ -i
518	200 -v 20 -t 90
520	Note: do not set t for alignment of very divergent genomes.
522	Output: BAMS and indexed bam files.
524	#Take a look at these files: <u>ke@NGS</u>:~/Desktop/SeqCap/data/alignment\$ ls
526	CGRL_index1_sorted.bam CGRL_index1_sorted.bam.bai
528	CGRL_index15_sorted.bam CGRL_index15_sorted.bam.bai
530	CGRL_index40_sorted.bam CGRL_index40_sorted.bam.bai
532	
534	*8-ExonCaptureEvaluation* (Optional): Function "Evaluation" provides evaluation for capture efficiency: %reads mapped, %target captured, average sequence depth,
536	etc.
538	Note: %reads mapped (specificity), %target captured (sensitivity), and average sequence depth are typically reported in papers.
540	Donandangiage
542	Dependencies: SAMTools: http://sourceforge.net/projects/samtools/files/samtools/ BEDTools: http://bedtools.readthedocs.org/en/latest/content/installation.html
544	8-ExonCaptureEvaluation Evaluation
546	Input:
548	1. A pseudo-reference "in_target.fasta" generated by <u>5-FindTargets</u> : You can find this file in "~/Desktop/SeqCap/data/reference/".
550	2. Cleaned reads generated by <u>2-ScrubReads</u> : These reads are legated in " . (Declare) (See Cap (data (sleeped data ("))).
552	These reads are located in "~/Desktop/SeqCap/data/cleaned_data/": CGRL_index1_1_final.txt CGRL_index1_2_final.txt

554	CGRL_index1_u_final.txt CGRL_index15_1_final.txt
556	CGRL_index15_1_inial.txt CGRL_index15_2_final.txt
	CGRL_index15_u_final.txt
558	CGRL_index40_1_final.txt
	CGRL_index40_2_final.txt
560	CGRL_index40_u_final.txt
562	3. Raw reads generated by <u>1-PreCleanup</u> :
	These data are located in "~/Desktop/SeqCap/data/rawdata/raw/pre-clean/":
564	CGRL_index1_R1.fq
-	CGRL_index1_R2.fq
566	CGRL_index15_R1.fq
568	CGRL_index15_R2.fq CGRL_index40_R1.fq
300	CGRL_index40_R1.iq CGRL_index40_R2.fq
570	GGRE_macx 10_R2.iq
	4. All bam (alignment) files generated by <u>7-Alignment</u> :
572	The bams (sorted and indexed) are located in
	"~/Desktop/SeqCap/data/alignment/":
574	CGRL_index1_sorted.bam
	CGRL_index1_sorted.bam.bai
576	CGRL_index15_sorted.bam
578	CGRL_index15_sorted.bam.bai CGRL_index40_sorted.bam
370	CGRL_index40_sorted.bam.bai
580	GGRE_macx 10_501 tea.bam.bar
	5. A .bed file generated by <u>9-preFiltering</u> (optional)
582	A BED file (.bed) is a tab-delimited text file that defines a feature track of each locus.
	In this case, this file defines targeted region in each assembled contig.
584	
5 0.6	For example if the length of contig125 is 1000bp, but the targeted region starts from
586	position 120 and ends by 350, then the correct expression is:
588	Contig125 119 350 (note: in bed the start position is one less than it's actual value)
500	Former details of DED formet along to
590	For more details of BED format please go to: http://www.broadinstitute.org/igv/BED
592	http://www.broaumstitute.org/igv/bEb
0 / _	Commands:
594	#Make a new folder called "ExonCapEval" under "~/Desktop/SeqCap/data/":
	ke@NGS:~/Desktop/SeqCap/data\$ mkdir ExonCapEval
596	
500	#Run <u>8-ExonCaptureEvaluation</u> :
598	ke@NGS:~/Desktop/SeqCap/data\$ 8-ExonCaptureEvaluation Evaluation -genome
	~/Desktop/SeqCap/data/reference/in_target.fasta -cleanDir

600	~/Desktop/SeqCap/data/cleaned_data/ -rawDir ~/Desktop/SeqCap/data/rawdata/raw/pre-clean/ -bamDir
602	~/Desktop/SeqCap/data/alignment/ -InstrID HS -resDir ~/Desktop/SeqCap/data/ExonCapEval/ -readlen 100
604	
606	Note: If you just evaluate how targeted regions worked, you should provide a bed file (generated by 9-preFiltering) while running 8-ExonCaptureEvaluation Evaluation.
608	Lvaiuation.
610	Output: "data_metrics.txt" under "~/Desktop/SeqCap/data/ExonCapEval/" You can use "less" to check the results reported in this file.
612	•
614	
616	*9-preFiltering*: "9-preFiltering bed" generates a bed for exonic region(s) from each contig in in-target assemblies (aka. the reference) and a bed for all assembled contigs (start position is 0 and the end position is the length of the contig); "9-
618	<u>preFiltering</u> percentile" produces a list of contigs that fall outside the desired coverage percentiles; "9-preFiltering percentile" also produces base coverage values
620	at different level of percentile.
622	Dependencies: Tie-Array-Packed-0.13: http://search.cpan.org/~salva/Tie-Array-Packed-
624	0.13/lib/Tie/Array/Packed.pm
626	9-preFiltering bed:
620	Input:
628	1.Targeted loci: "~/Desktop/SeqCap/denovoTargetCapture/original_target/targeted_loci.fasta";
630	2 " /Dealston /SeaCan /data /reference /in target feats" generated by F. FindTargets
632	2. "~/Desktop/SeqCap/data/reference/in_target.fasta" generated by <u>5-FindTargets</u> .
(24	Commands:
634	#Make a new folder called "bed_files" under "~/Desktop/SeqCap/data/": ke@NGS:~/Desktop/SeqCap/data\$ mkdir bed_files
636	
638	#cd to this folder: ke@NGS:~/Desktop/SeqCap/data\$ cd bed_files
640	#Run <u>9-preFiltering</u> bed: ke@NGS:~/Desktop/SeqCap/data/bed_files\$ 9-preFiltering bed
642	~/Desktop/SeqCap/denovoTargetCapture/original_target/targeted_loci.fasta ~/Desktop/SeqCap/data/reference/in_target.fasta
644	, 2 controp, coquap, auta, i of one of in_var good auta

	Output:
646	Two file under "~/Desktop/SeqCap/data/bed_files/": 1. "final.bed" is used as input for <u>9-preFiltering</u> percentile and <u>8-</u>
648	ExonCaptureEvaluation Evaluation
650	2. "All_contig.bed" is used as input for <u>10-SNPcleaner</u> .
652	9-preFiltering percentile:
654	Input: 1. Make a new folder called "pre-filtering" under "~/Desktop/SeqCap/data/" and cd
656	to this folder: ke@NGS:~/Desktop/SeqCap/data\$ mkdir pre-filtering ke@NGS:~/Desktop/SeqCap/data\$ cd pre-filtering
658	2. In "~/Desktop/SeqCap/data/pre-filtering/", generate a merged, sorted bam for
660	all samples:
662	ke@NGS:~/Desktop/SeqCap/data/pre-filtering\$ samtools merge merge.bam ~/Desktop/SeqCap/data/alignment/*.bam
664	ke@NGS:~/Desktop/SeqCap/data/pre-filtering\$ samtools sort merge.bam merge_sorted
666	"~/Desktop/SeqCap/data/pre-filtering/merge_sorted.bam" is the input bam.
668	3. A bed file: "~/Desktop/SeqCap/data/bed_files/final.bed" is generated by <u>9-preFiltering</u> bed
670	
672	Commands: # Run <u>9-preFiltering</u> percentile under "~/Desktop/SeqCap/data/pre-filtering/": ke@NGS:~/Desktop/SeqCap/data/pre-filtering\$ 9-preFiltering percentile -b
674	~/Desktop/SeqCap/data/pre-filtering/merge_sorted.bam -o CGRL -B ~/Desktop/SeqCap/data/bed_files/final.bed
676	, I, I, I, , <u>-</u> , , ,
	Output:
678	In the folder "~/Desktop/SeqCap/data/pre-filtering/" there are a couple of files created:
680	1. "CGRL_gene_outside_percentile.txt" shows a list of contigs having coverage <x%< td=""></x%<>
682	or >Y% percentiles of the data. X and Y are defined by users. This file will be used in <u>10-SNPcleaner</u> .
684	2. "CGRL_site_depth_percentile.txt" shows base coverage at different level of percentiles. The information in this file will be used by <u>10-SNPcleaner</u>.3. "CGRL_gene_depth_percentile.txt" shows average base coverage at different level
686	of percentiles.
688	4. "CGRL_gene_depth.txt" shows average coverage of each contig. If you want to know more about empirical coverage distribution of your data then you take the coverage value from this file and use R to plot it.

sense of empirical distribution of base coverage. 692 6. "CGRL_gene_outside_sd_filter.txt": shows a list of contigs all outside N standard deviation of the mean. Users set N when running the command. 694 696 Note: users might want to perform filtering based on other criteria such as 3 standard deviations of the mean. However, this method usually requires a normal 698 distribution of the data. In reality per-base depth of exon capture data rarely follows a normal distribution. 700 *10-SNPcleaner*: Raw variant filtering and generates a "keep" file for the following 702 SNP/genotype calling by ANGSD. This script is mainly for filtering data at contig and 704 site levels. Users need to perform individual-level filtering before running this script. See below for more details. 706 Before we call SNPs /genotypes and estimate allele frequencies using ANGSD, we usually employ three levels of filtering on the data sets in a hierarchical order: 708 individual level, contig level and site level. The filters in each step of the hierarchy 710 are applied only to the subset of data that pass the quality control thresholds at all previous levels. The first filters applied are the individual-level filters to remove 712 entire individuals deviating excessively from the average across-individual coverage and error rate. Contig-level filters, followed by site-level filters, are then applied to 714 remove entire contigs and sites, respectively, that appeared to be quality outliers. All individual specimens, contigs and sites should be filtered on multiple aspects of 716 quality (e.g. potential cross-sample DNA contamination, sequencing errors, paralogy). 718 1. Filtering at individual level 720 a. Remove individuals having extremely low or high coverage. Individual coverage can be estimated using <u>8-ExonCaptureEvaluation</u> Evaluation. The file you want to 722 examine is "~/Desktop/SeqCap/data/ExonCapEval/data_metrics.txt" 724 ke@NGS:~/Desktop/SegCap/data\$ less -S ExonCapEval/data metrics.txt 726 b. Remove individuals with excessively high sequencing error rates measured as the percentage of mismatched bases out of the total number of aligned bases in the 728 mitochondrial genome. Empirical error can be estimated using 6-AssemblyEvaluation COVERAGE 730 To run 6-AssemblyEvaluation COVERAGE you need first to generate pileup files for mitochondrial locus for each sample. 732 734 ke@NGS:~/Desktop/SeqCap/data\$ 6-AssemblyEvaluation COVERAGE

5. "CGRL site depth.txt" shows per-base coverage of the data. You can plot it to get a

690

736	Usage 6-AssemblyEvaluation COVERAGE [options]		
738	Options: -p DIR	folder containing all pileup	
740	P 2	files generated by "samtools mpileup -f ref.fa sample1.bam	
742	-c INT	> sample1.pileup" coverage cutoff [5]	
744	-q INT	base quality cutoff [13]	
746	2 Filtoring	at contig lavel	
748	a. Remove c	at contig level ontigs that show extremely low or high coverage based on the empirical stribution across all contigs. <u>9-preFiltering</u> percentile can be used to	
750 752	generate a li example: 1%	ist of contigs that show extreme coverage based on percentile values (for 6 and 99%; 5% and 95% etc.). This list can then be used as one of input NPcleaner for the purpose of filtering.	
754		contigs with at least one SNP having allele frequencies highly deviating	
756	is a very str	-Weinberg equilibrium expectations. Done by <u>10-SNPcleaner</u> . Note this ingent filter even for exon capture dataset and not suitable at all for taset. To use this filter you need to provide	
758	0	/SeqCap/data/bed_files/All_contig.bed" generated by <u>9-preFiltering</u> bed.	
760	3. Filtering a a. Remove s	at site level ites with excessively low or high coverage based on the empirical	
762	coverage dis	stribution. To determine high (e.g. 99% or 95%) and low (e.g. 1% or 5%) of base coverage you need run <u>9-preFiltering</u> percentile to get	
764	CGRL_SITE_	depth_percentile.txt".	
766		ites having allele frequencies highly deviating from Hardy–Weinberg expectations (exact test). Done by <u>10-SNPcleaner</u> . This filter can be	
768	combined w	rith the contig HWE filter (2.b).	
770		ites with biases associated with reference and alternative allele Phred oping quality and distance of alleles from the ends of reads. Also remove	
772	sites that sh	now a bias towards SNPs coming from the forward or reverse strand.	
774		as: Tests if variant bases tend to come from one strand.	
776	-> End Dista	as: Tests if variant bases tend to come from one strand. ance Bias: Tests if variant bases tend to occur at a fixed distance from the s, which is usually an indication of misalignment.	
778		lity Bias: Tests if variant bases tend to occur with a Phred-scale quality	
780		Quality Bias: Tests if variant bases tend to occur with a mapping quality	

782			
784	d. Remove sites for which there are not at least M of the individuals sequenced at N coverage each. This makes sure that the remaining data matrix does not contain too much missing data. This will be done by <u>10-SNPcleaner</u> .		
786			
788	e. Remove sites with a root mean square (RMS) mapping quality for SNPs across all samples below a certain threshold. It is a measure of the variance of quality scores. This will be done by <i>10-SNPcleaner</i> .		
790			
792	f. (optional) For historic samples, characterize the pattern of base mis-incorporation first. Sometimes it is necessary to remove C to T and G to A SNPs from the dataset. This can be done by <u>10-SNPcleaner</u> .		
794			
796	Before running <u>10-SNPcleaner</u> make sure that individual-level filtering is finished.		
798	Input : 1. "~/Desktop/SeqCap/data/pre-filtering/CGRL_gene_outside_percentile.txt" by <u>9-preFiltering</u> percentile.		
800			
802	2. "~/Desktop/SeqCap/data/bed_files/All_contig.bed" generated by <u>9-preFiltering</u> bed.		
804	3. "~/Desktop/SeqCap/data/pre-filtering/CGRL_site_depth_percentile.txt" by <u>9-preFiltering</u> percentile is ready and will be used to guide the site-level coverage		
806	filtering.		
808	4. Create a new folder "SNPcleaning" under "~/Desktop/SeqCap/data/" and inside this folder generate a raw vcf that contains all sites from all individual samples that		
810	pass individual-level filters: ke@NGS:~/Desktop/SeqCap/data\$ mkdir SNPcleaning		
812	ke@NGS:~/Desktop/SeqCap/data\$ cd SNPcleaning/		
814	ke@NGS:~/Desktop/SeqCap/data/SNPcleaning\$ samtools mpileup -B -D -I -S -uf ~/Desktop/SeqCap/data/reference/in_target.fasta		
016	~/Desktop/SeqCap/data/alignment/*sorted.bam bcftools view -cg - > raw.vcf		
816	-D output per-sample DP in BCF		
818	-B disable BAQ computation		
010	-I do not perform indel calling		
820	-S output per-sample strand bias P-value in BCF		
822	Commands:		
	#Run <u>10-SNPcleaner</u> under "~/Desktop/SeqCap/data/SNPcleaning/":		
824	ke@NGS:~/Desktop/SeqCap/data/SNPcleaning\$ 10-SNPcleaner -d 2 -D 7 -k 2 -u 1 -a 0 -B CGRL.bed -p CGRL_filtered -r ~/Desktop/SeqCap/data/pre-		
826	filtering/CGRL_gene_outside_percentile.txt -X		
	~/Desktop/SeqCap/data/bed_files/All_contig.bed -g -v raw.vcf> out.vcf		

828	
830	Note: for "-D 7", 7 is the 99% percentile of the base coverage. We get this number from "~/Desktop/SeqCap/data/pre-filtering/CGRL_site_depth_percentile.txt".
832	Output: In "~/Desktop/SeqCap/data/SNPcleaning/", several files are created:
834	m / 2 concept cod capt among our croaming, the contract and created.
836	1. "CGRL.bed" contains sites (potentially variable and non-variable) passing all filters.
838	#To generate a keep file for ANGSD: ke@NGS:~/Desktop/SeqCap/data/SNPcleaning\$ cut -f1,2 CGRL.bed > CGRL.keep
840	
842	2. "CGRL_filtered" (dumped with option -p) contains all sites that failed to pass certain filters. Characters in front of filtered sites indicate filters that the site failed to pass
844	to pass.
011	#To view this file:
846	ke@NGS:~/Desktop/SeqCap/data/SNPcleaning\$ bunzip2 -c CGRL_filtered less -S
848	3. "out.vcf" is the resulting vcf that contains sites (both variable and non-variable) passed all filters
850	P
	Questions:
852	 Check how many sites are present before and after filtering? Check why some sites are filtered out by examining "CGRL_filtered".
854	2. Glicek willy some sites are intered out by examining "GGRL_intered".