COURSE STRUCTURE OF B. TECH IN COMPUTER SCIENCE & ENGINEERING, HIT

Course Outcomes/Learning Outcomes:

Upon completion of their academic and internship requirements, graduates of Champlain College's undergraduate Computer Networking Program will:

- Describe and analyze the hardware, software, components of a network and the interrelations.
- Explain networking protocols and their hierarchical relationship hardware and software. Compare protocol models and select appropriate protocols for a particular design.
- Explain concepts and theories of networking and apply them to various situations, classifying networks, analyzing performance and implementing new technologies.
- Identify infrastructure components and the roles they serve, and design infrastructure including devices, topologies, protocols and security. Analyze performance of enterprise network systems.
- Use appropriate resources to stay abreast of the latest industry tools and techniques analyzing the impact on existing systems and applying to future situations.

Course Name: Software Engineering								
Course Code: CSEN3202								
Contact hrs per week:	L	Т	P	Total	Credit points			
_	3	1	0	4	3			

Module-1[10L]:

- 1. Introduction to Software Engineering (3L)
- Software Engineering objectives and definitions
- Software Life Cycle different phases
- Lifecycle Models Waterfall, Relaxed Waterfall, RAD, Prototyping, Incremental, Spiral, Agile
- 2. Requirements Phase (3L)
- Requirements Collection and Analysis
- Requirement Specifications General Structure of Software Requirement Specifications (SRS)
- Functional and Non-functional Requirements
- Representing Requirements as Use Cases with examples
- 3. Structured Analysis Modeling Techniques (4L)
- Process Model using Context Diagrams (CD) and Data Flow Diagram (DFD) with examples
- Data Dictionary, Decision Tree, Decision Table with examples
- Data Model using Entity Relationship Diagram (ERD) with examples

Module-2: [10L]

- 4. Design Phase (4L)
- Overview Comparison between Requirement Analysis and Design, Attributes of Good Design
- Define Approaches Functional and Object Oriented
- Design Aspects Top-Down and Bottom-Up
- Structured Design Module Design (or High Level Design), Detail Design (or Low Level Design)
- Functional Decomposition Abstraction, Cohesion, Coupling, Structure Chart, Structured English
- 5. Object Oriented Analysis and Design (6L)
- OOAD Basic Concepts
- Unified Modeling Language (UML) different types of diagrams for different views of system
- User View Use Case Diagram with examples
- Structural Views Class Diagram with examples
- Behavioral View Sequence, Collaboration, Activity and State Chart Diagrams with examples

Module-3: [10L]

- 6. Coding or Programming (2L)
- Programming Principles and Guidelines Structured Programming, Code Re-use, Coding Standards / Guidelines
- Coding Process Incremental Coding, Test Driven Development, Pair Programming / Extreme Programming

COURSE STRUCTURE OF B. TECH IN COMPUTER SCIENCE & ENGINEERING, HIT

- Source Code Version Control, Build, Code Refactoring
- 7. Review and Testing (8L)
- Self Review / Peer Review
- Testing Overview -- Objective, Definition, Static and Dynamic Testing, Functional vs. Non-functional Testing
- Testing Artifacts Test Cases and Test Suites, Traceability Matrix, Test Data, Stub and Driver
- Testing Process Test Case Design, Test Case Execution, Test Result, Defect Logging and Tracking
- Testing Methods -- White Box Testing with Test Coverage using Control Flow Graph (CFG) and Cyclomatic Complexity, Black Box Testing with Equivalence Class Partitioning and Boundary Value Analysis,
- Testing Level Unit Testing, Integration Testing, System Testing, (User) Acceptance Testing,
 Regression Testing, Performance Testing, Usability Testing, Non-functional Testing

Module-4:[10L]

- 8. Software Maintenance (2L)
- Types of Maintenance Corrective, Preventive, Adaptive Change Management and Maintenance Process Software Estimation (3L)
- 9. Software Estimation (3L)
- Overview of Software Estimation Size, Effort, Duration and Cost
- Size Estimation Methods Lines of Code (LOC) and Function Points (FP)
- Estimation of Effort and Duration based on Size and Productivity
- Constructive Cost Model (COCOMO) Basic COCOMO, Intermediate COCOMO (COCOMO 81), Detailed COCOMO (COCOMO II)
- 10. Project Management (3L)
- Project Management Overview -- Planning, Staffing, Execution, Monitoring and Control
- Responsibilities of Project Manager
- Project Scheduling Work Breakdown Structure (WBS) and Gantt Charts
- 11. Configuration Management (2L)
- Overview of Configuration Management Identification, Control, Status Accounting, Audits
- Concept of Baseline, Versioning of Configurable Items (CI)

Learning Objectives/Course Outcomes:

- 1) Knowledge and Understanding of:
 - a) the system development lifecycle and associated models;
 - the software-development process, including requirements analysis, design, coding, testing and maintenance;
 - c) the basic principles of function-oriented and object-oriented software development with modular approach
 - d) the essentials of software estimation and project planning
 - e) the basics of software configuration management
 - f) the fundamentals of software project risk management.
- 2) Ability to:
 - a) prepare software requirement specifications as per IEEE guidelines
 - b) model function-oriented and object-oriented software systems using industry-standard techniques (e.g., DFD, ERD, UML);
 - c) approach testing of software systems in a methodical manner
 - d) estimate software size using industry-standard methods (e.g., FPA)
 - e) work out software project schedule and staffing plan
 - f) identify software project risks and their mitigation approach.

COURSE STRUCTURE OF B. TECH IN COMPUTER SCIENCE & ENGINEERING, HIT

List of Electives

OPTIONS FOR ELECTIVE I (Even Semester)

CSEN 3280 Computer Graphics & Multimedia

CSEN 3281 Artificial Intelligence

CSEN 3282 Web technologies

CSEN 3283 Advanced Java Programming

OPTIONS FOR ELECTIVE I Lab* (Even Semester)

CSEN 3285 Computer Graphics & Multimedia Lab

CSEN 3286 Artificial Intelligence Lab

CSEN 3287 Web technologies Lab

CSEN 3288 Advanced Java Programming Lab

Course Name: Computer graphics and multimedia								
Course Code: CSEN3280								
Contact hrs per week:	L	Т	P	Total	Credit points			
	3	0	0	3	3			

Module I:

Introduction to computer graphics & graphics systems [6L]: Overview of computer graphics, representing pictures, preparing, presenting & interacting with pictures for presentations; Visualization & image processing; RGB color model, direct coding, lookup table; storage tube graphics display, Raster scan display, 3D viewing devices, Plotters, printers, digitizers, Light pens etc.; Active & Passive graphics devices; Computer graphics software.

Scan conversion: [6L]: Points & lines, Line drawing algorithms; DDA algorithm, Bresenham's line algorithm, Circle generation algorithm; Ellipse generating algorithm; scan line polygon, fill algorithm, boundary fill algorithm, flood fill algorithm.

Module II:

2D transformation & viewing [8L]: Basic transformations: translation , rotation, scaling ; Matrix representations & homogeneous coordinates, transformations between coordinate systems; reflection shear; Transformation of points, lines , parallel lines, intersecting lines. Viewing pipeline, Window to viewport co-ordinate transformation, clipping operations, point clipping , line clipping, clipping circles , polygons & ellipse.

3D transformation & viewing [7L]: 3D transformations: translation, rotation, scaling & other transformations. rotation about an arbitrary axis in space, reflection through an arbitrary plane; general parallel projection transformation; clipping, viewport clipping, 3D viewing.

Module III:

Curves [3L]: Curve representation, surfaces, designs, Bezier curves, B-spline curves, end conditions for periodic B-spline curves, rational B-spline curves.

Hidden surfaces [3L]: Depth comparison, Z-buffer algorithm, Back face detection, BSP tree method, the Printer's algorithm, scan-line algorithm; Hidden line elimination, wire frame methods, fractal - geometry. Color & shading models [2L]: Light & color model; interpolative shading model; Texture.

Module IV:

Multimedia [10L]: Introduction to Multimedia: Concepts, uses of multimedia, hypertext and hypermedia.; Image, video and audio standards.

Audio: digital audio, MIDI, processing sound, sampling, compression.

Video: MPEG compression standards, compression through spatial and temporal redundancy, inter-frame and intra-frame compression.

Animation: types, techniques, key frame animation, utility, morphing. Virtual Reality concepts.