

STM32WBA Workshop GPDMA

Agenda

Overview

Structure of example

ADC+UART+TIM with LLI controlled GPDMA

Conclusion

What's next

Theory

Hands-on

DMA overview

DMA overview

- A new DMA module
 - 2 hardware instances
 - GPDMA with symmetric configuration
 - Dual port DMA with dedicated path to APB
 - Integrated DMAMUX features
 - Linked-list based programming
 - Flexible intra-channel and inter-channel input/output control
 - Run-time isolation features

Application benefit

 Off-load CPU for data transfers from a memory-mapped source to a memory-mapped destination

STM32F4x9

STM32WBA GPDMA integration

GPDMA key features 1/2

- Bidirectional AHB master port(s): GPDMA1: 2 ports
- Memory-mapped data transfers from a source to a destination
 - Peripheral-to-memory
 - Memory-to-peripheral
 - Memory-to-memory
 - Peripheral-to-peripheral
- Autonomous data transfers during Sleep mode
- 8 Concurrent DMA channels for each controller
- Transfers arbitration is based on a 4-grade priority policy
 - One reserved highest priority queue for time-sensitive traffic
 - Three lower priority queues with weighted round robin allocation

GPDMA key features 2/2

GPDMA data handling

- Byte-based reordering
- packing/unpacking

- padding/truncation
- sign extension

left / right alignment

Linear addressing mode

- Fixed addressing (typically for peripheral data register)
- Contiguously-incremented addressing (typically for memory access)
- Blocks up to 64kB (16-bit BNDT)

• 2D addressing mode (ch6..7), additional

- Repeated block mode: programmable repeated block counter (11-bit BRC, up to 2k blocks)
- Programmable source/destination signed burst address offset (2x 14bit, up to +/-8kB)
 - Non-contiguous incremented/decremented addressing after each burst
- Programmable source/destination signed block address offset (2x 17bit, up to +/-64kB)
 - Non-contiguous incremented/decremented addressing after each block

GPDMA linked-list register file

The GPDMA will use nodes for those registers

- TR1 Transfer register 1
- TR2 Transfer register 2
- BR1 Block register 1
- SAR Source address register
- DAR Destination address register
- TR3 Transfer register 3 ... SA & DA offsets incremet for 2D
- BR2 Block register 2 ... block repeated SA & DA offsets for 2D
- LLR Linker list register ... link to next LL node & update parameters

In our case each linked list node will update this GPDMA registers after previous GPDMA node is finished. This is automatically reconfiguring the GPDMA channel.

DMA block diagram

DMA specific implementation & user guidelines

Feature	GPDMA
Number of channels	8
Master port(s)	 2x (32-bit) AHB Port#0 should be typically allocated for transfers to/from peripherals There is a direct hardware datapath to APB peripherals, outside the AHB matrix Port#1 should be typically allocated for transfers to/from memory In any case, any GPDMA target can be addressed from any port
DMA transfers	Single and bursts
DMA scheduler	FIFO-based bursts (dual issue)
Channel FIFO size	 Ch 0-3: 8 bytes (2 words) These channels should be typically allocated for transfers from/to an APB/AHB peripheral and SRAM Ch 4-7: 32 bytes (8 words) These channels may be also used for transfers from/to a data-demanding AHB peripheral and SRAM. 4-word burst should be privileged when applicable for faster performances (faster back-to-back transfers, lower bus utilization)
Channel addressing mode	linear
DMA request from	ADC4, SPI1,3, I2C1,3, USART1,2, LPUART1, TIM1,2,3,16,17, AES, SAES, HASH, LPTIM1,2
Trigger from	EXTI, TAMP, LPTIM1,2, RTC, GPDMA, TIM2, ADC4

Structure of example

ADC and UART with LLI controlled GPDMA transfer triggered by TIMER

- Use NUCLEO-WBA52 board and STM32CubeIDE
- Setup ADC to
 - convert 4 channels in circle channels 0, 2, 6, 13
 - generate DMA requests
- Setup USART to
 - transmit obtained data
- Setup TIM to
 - generate a 1 second trigger
- Set GPDMA with linked list
 - to get data from ADC and transfer them to buffer after trigger
 - to get data from buffer and transfer them to UART3

- If ADC and UART work in loop without a trigger, it may cause a crash of terminal due to high baud rate.
- We can slow down the GPDMA by adding trigger.
- As trigger source in our case, we will use a timer TIM15 with period of 1s.
- Then the GPDMA transfer will be conditioned by this trigger event.

Hands-on

Please open STM32CubeIDE

Conclusion

Conclusion

- GPDMA implementation on WBA
- GPDMA key features
- Autonomous data manipulation with no CPU load
- Standard request x Linked list based programing

What's next

/\VNET SILICA

life.auamented

ADC + UART + TIM + 2D - LLI GPDMA

Name : data2[0]

