데이터베이스 기초

16장 과제

<16장_연습1>

1. R에서 제공하는 cars 데이터셋을 이용해서 speed 와 dist 에 대한 산점도를 그리시오 (x축이 speed). speed 와 dist (제동거리)에 대한 상관관계를 설명해 보시오

```
speed <- cars$speed
dist <- cars$dist
plot(speed, dist,
    main = "Car speed-distance",
    xlab = "Car speed",
    ylab = "distance",
    col = "blue",
    pch = 15)</pre>
```

Car speed-distance

속도가 빠를수록 멈출 때까지의 제동거리가 길다는 것을 확인할 수 있다.

2. R에서 제공하는 pressure 데이터셋을 이용해서 temperature 와 pressure 에 대한 산점도를 그리시오 (x축이 temperature). 두 변수간 상관관계를 설명해 보시오

```
temperature <- pressure$pressure
pressure <- pressure$pressure
plot(temperature, pressure,
    main = "Temperature-Pressure",
    xlab = "Temperature",
    ylab = "Pressure",
    col = "red",
    pch = 19)</pre>
```


온도가 높아질수록 압력이 높아진다는 것이 완벽히 일치하는 것을 알 수 있다.

3. R에서 제공하는 state.x77 데이터셋에서 Population, Income, Illiteracy, Area 변수간산점도를 그려 상관관계를 관찰하시오 (pairs() 함수 이용)

country <- state.x77
target <- country[, c("Population", "Income", "Illiteracy", "Area")]
pairs(target, main = "Population Information")</pre>

Population Information

전체적으로 높은 상관 관계를 보이는 변수의 조합은 관찰이 되지 않으나 Illiteracy 가증가 하면 income 이 감소하는 현상이 보임

4. iris 데이터셋에서 Species 정보에 따른 Sepal.Length, Sepal.Width (꽃받침의 길이, 폭)의 분포를 알아보시오

```
iris.2 <- iris[, 1:2]
point <- as.numeric(iris$Species)
plot(iris.2,
    main = "Iris Sepal",
    pch = c(point),
    col = color[point])</pre>
```

4.5

5.0

5.5

6.0

Sepal.Length

6.5

7.0

7.5

8.0

〈16장_연습문제2〉

1. 다음은 10명의 수입과 교육받은 기간을 조사한 표이다. 수입과 교육기간 사이에 어느 정도 상관관계가 있는지 조사하시오 (산점도, 상관계수 구하기)

Income <- c(125000, 100000, 40000, 35000, 41000, 29000, 35000, 24000, 50000, 60000)

Years_of_Education $\langle -c(19, 20, 16, 16, 18, 12, 14, 12, 16, 17)$ table $\langle -data.frame(Income, Years_of_Education)$ plot(Income~Years_of_Education, data = table)

cor(Income, Years_of_Education) 상관계수: 0.7887259

2. 다음은 학생 10명의 성적과 TV 시청시간을 조사한 표이다. 성적과 TV시청시간 사이의 상관관계를 조사하시오. (산점도, 상관계수 구하기)

3. R에서 제공하는 mtcars 데이터셋에서 mpg 와 다른 변수들 간의 상관 계수를 구하시오. 어느 변수가 mpg 와 가장 상관성 이 높은지 산점도와 함께 제시하시오.

cor(mtcars[, 1:11])["mpg",]

wt 가 가장 높음

plot(mtcars\$mpg~mtcars\$wt)

〈16장_연습3〉

1. 다음은 2015년부터 2026년도까지의 예상 인구수 추계자료이다. 선그래프를 작성하시오.

```
year <- 2015:2026
population <- c(51014, 51245, 51446, 51635, 51811, 51973, 52123, 52261,
52388, 52504, 52609, 52704)
plot(year, population,
    main = "Estimated Population",
    type = "I",
    lty = 1,
    lwd = 1,
    xlab = "Year",
    ylab = "Population")</pre>
```

Estimated Population

2. 다음은 2014년 4분기부터 2017년 3분기까지 남,녀의 경제활동참가율 통계이다. 선그래프를 작성하시오 (남,녀를 각각 다른 선으로 표시) (2014년 4분기는 20144, 2015년1분기는 20151 과 같이 입력한다)

```
time <- c(20144, 20151:20154, 20161:20164, 20171:20173)
men <- c(73.9, 73.1, 74.4, 74.2, 73.5, 73.0, 74.2, 74.5, 73.8, 73.1, 74.5,
74.2)
women <- c(51.4, 50.5, 52.4, 52.4, 51.9, 50.9, 52.6, 52.7, 52.2, 51.5, 53.2,
53.1)
women <- (women + 22)
plot(time, men,
    main = "Labor Force Participation Rate",
   type = b,
   Ity = 1,
   col = "blue",
   xlab = "Time",
   ylab = "Gender")
lines(time, women,
    type = "b",
    col = "red")
```


※ 수업시간에 배우지 않은 방법

```
plot(time, men,
    main = "Labor Force Participation Rate",
    type = "b",
    lty = 1,
    col = "blue",
    xlab = "Time",
    ylab = "Gender",
    ylim=c(50,75))

lines(time, women,
    type = "b",
    col = "red")
```

Labor Force Participation Rate

〈16장_연습4〉

- R 에서 MySQL에 접속후 다음 문제를 해결하시오
- 1. Emp 테이블에서 연봉을 1500 이상 받는 사원들의 모든 정보를 가져와 emp.high 데이터프레임에 저장하시오. emp.high의 내용을 보이시오

result $\langle -dbSendQuery (mydb, "select * from emp where sal <math>\rangle = 1500")$ emp.high $\langle -fetch(result, n=-1) \rangle$ emp.high

	EMPNO	ENAME	JOB	MGR	HIREDATE	SAL	COMM	DEPTNO
1	7499	ALLEN	SALESMAN	7698	1981-02-20	1600	300	30
2	7566	JONES	MANAGER	7839	1981-04-02	2975	NA	20
3	7698	BLAKE	MANAGER	7839	1981-05-01	2850	NA	30
4	7782	CLARK	MANAGER	7839	1981-06-09	2450	NA	10
5	7788	SCOTT	ANALYST	7566	1982-12-09	3000	NA	20
6	7839	KING	PRESIDENT	NA	1981-11-17	5000	NA	10
7	7844	TURNER	SALESMAN	7698	1981-08-08	1500	0	30
8	7902	FORD	ANALYST	7566	1981-12-03	3000	NA	20

2. 모든 사원의 사원번호, 이름, 급여, 입사일, 부서명, 부서위치를 emp.info 데이터프레임에 저장하시오. emp.info 의 내용을 보이시오

dbClearResult (result)
result <- dbSendQuery (mydb, "select empno, ename, sal, hiredate, dname, loc
from emp, dept where emp.deptno = dept.deptno")
emp.info <- fetch(result, n=-1)
emp.info

```
empno
         ename sal
                      hiredate
                                     dname
1
         CLARK 2450 1981-06-09 ACCOUNTING NEW YORK
    7782
    7839
           KING 5000 1981-11-17 ACCOUNTING NEW YORK
    7934 MILLER 1300 1982-01-23 ACCOUNTING NEW YORK
         SMITH 800 1980-12-17
    7369
                                 RESEARCH
                                            DALLAS
5
   7566
          JONES 2975 1981-04-02
                                 RESEARCH
                                            DALLAS
6
    7788
         SCOTT 3000 1982-12-09
                                 RESEARCH
                                            DALLAS
          ADAMS 1100 1983-01-12
    7876
                                 RESEARCH
                                            DALLAS
8
    7902
          FORD 3000 1981-12-03
                                 RESEARCH
                                            DALLAS
9
    7499
         ALLEN 1600 1981-02-20
                                    SALES
                                           CHICAGO
10 7521
          WARD 1250 1981-02-22
                                    SALES
                                           CHICAGO
   7654 MARTIN 1250 1981-08-28
11
                                    SALES CHICAGO
   7698 BLAKE 2850 1981-05-01
12
                                    SALES CHICAGO
   7844 TURNER 1500 1981-08-08
13
                                    SALES CHICAGO
14 7900 JAMES 950 1981-12-03
                                    SALES CHICAGO
```

3. Dept 테이블에 아래와 같이 2개의 부서를 추가하시오. Workbench 를 통해 2개의 부서가 추가되었는지 확인하시오.

dbSendQuery (mydb, "insert into dept values(50, 'Management', 'Paris')") dbSendQuery (mydb, "insert into dept values(60, 'Production', 'London')")

	DEPTNO	DNAME	LOC
•	10	ACCOUNTING	NEW YORK
	20	RESEARCH	DALLAS
	30	SALES	CHICAGO
	40	OPERATIONS	BOSTON
	50	Management	Paris
	60	Production	London
	NULL	NULL	NULL

4. emp 테이블의 모든 정보를 가져와 emp 데이터프레임에 저장하시오. emp 데이터프레임에 대해 다음 작업을 R 로 수행하고 그 결과를 보이시오

result <- dbSendQuery (mydb, "select * from emp") emp <- data.frame(result)</pre>

(1) 모든 사원의 이름, 입사일자를 보이시오

emp[, c("ENAME", "HIREDATE")]

ENAME HIREDATE SMITH 1980-12-17 ALLEN 1981-02-20 3 WARD 1981-02-22 JONES 1981-04-02 5 MARTIN 1981-08-28 6 BLAKE 1981-05-01 CLARK 1981-06-09 8 SCOTT 1982-12-09 KING 1981-11-17 10 TURNER 1981-08-08 11 ADAMS 1983-01-12 12 JAMES 1981-12-03

FORD 1981-12-03 14 MILLER 1982-01-23

13

(2) 모든 사원의 급여합계를 보이시오

sum(emp[, "SAL"])

결과: 29025

(3) 모든 사원의 급여를10% 올리려면 얼마의 비용이 추가로 필요한지 보이 시오

sum(emp[, "SAL"])*0.1

결과: 2902.5

(4) 모든 사원의 이름, 급여, 10%올린 급여를 보이시오(힌트. cbind이용)

increase <- emp[,"SAL"]*1.1
cbind(emp[, c("ENAME", "SAL")], increase)</pre>

ENAME SAL increase 1 SMITH 800 880.0 2 **ALLEN 1600** 1760.0 WARD 1250 3 1375.0 **JONES 2975** 3272.5 5 MARTIN 1250 1375.0 BLAKE 2850 6 3135.0

- 7 CLARK 2450 2695.0 8 SCOTT 3000 3300.0
- 9 KING 5000 5500.0 10 TURNER 1500 1650.0
- 11 ADAMS 1100 1210.0 12 JAMES 950 1045.0
- 13 FORD 3000 3300.0
- 14 MILLER 1300 1430.0

(5) 급여를 2000 이상 받는 사원의 이름, 급여, 담당업무를 보이시오

```
subset(emp[ , c("ENAME", "SAL", "JOB")], SAL \geq= 2000) 
 \stackrel{\leftarrow}{\Sigma} 
 subset(emp, SAL \geq= 2000)[ , c("ENAME", "SAL", "JOB")]
```

```
ENAME SAL JOB
4 JONES 2975 MANAGER
6 BLAKE 2850 MANAGER
7 CLARK 2450 MANAGER
8 SCOTT 3000 ANALYST
9 KING 5000 PRESIDENT
13 FORD 3000 ANALYST
```

(6) 급여를 2000 이상 받고 부서번호가 20 인 사원의 이름, 급여, 입사일자를 보이시오

subset(emp[, c("ENAME", "SAL", "HIREDATE", "DEPTNO")], SAL>=2000 & DEPTNO==20)

```
ENAME SAL HIREDATE DEPTNO
4 JONES 2975 1981-04-02 20
8 SCOTT 3000 1982-12-09 20
13 FORD 3000 1981-12-03 20
```