SIFT - Detector and Descriptor

Laxminarayen

Recognize the following objects

Here?

What is the problem?

- 1. Orientation?
- 2. Scale?
- 3. Occlusion?
- 4. Lighting?
- 5. Rotation?

CAN Edges? Corners? Thresholding help?

What is the problem?

- 1. Orientation?
- 2. Scale?
- 3. Occlusion?
- 4. Lighting?
- 5. Rotation?

CAN Edges? Corners? Thresholding help?

NEED MORE INTERESTING POINTS or FEATURES

SOLUTION

SIFT - SCALE INVARIANT FEATURE TRANSFORM

- 1. Image Alignment and Stitching
- 2. 2D Object Recognition

What is an Interest Point

- 1. Area in CV research
 - a. In Research from 1970
 - b. What are interesting points for robot vision?

Interest point

Different Size, Orientation, Lighting, Brightness, etc.,

Interest point

Different Size, Orientation, Lighting, Brightness, etc.,

Interest point

- 1. Has rich image content
- 2. Has well-defined representation
- 3. Has well-defined position in the image
- 4. Should be invariant to image rotation and scale

Are Lines / Edges Interesting?

Are Blobs interesting?

- Def yes have unique signatures per region
- 2. Has fixed position
- 3. And has definite size

How to handle blobs?

- 1. Locate the Blob
- 2. Determine its size
- 3. Determine its orientation
- 4. Formulate a description or signature that is independent of its size and orientation

Step 1

Increasing the scale smoothens features

DOGs

Difference of Gaussians - DOGs

Difference of Gaussians - DOGs

Find Extremes

Extracting interest points

SIFT Detection - Code

Rotation Info

Use the histogram of gradient directions

Image gradient directions

$$\theta = \tan^{-1}\left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x}\right)$$

Descriptors

Signature

Signature

Essentially comparing two arrays of data.

Let $H_1(k)$ and $H_2(k)$ be two arrays of data of length N.

L2 Distance:

$$d(H_1, H_2) = \sqrt{\sum_{k} (H_1(k) - H_2(k))^2}$$

Smaller the distance metric, better the match.

Perfect match when $d(H_1, H_2) = 0$

