ЛАБОРАТОРНАЯ РАБОТА №4

ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ЩЕЛОЧНЫХ ГАЛОИДОВ МЕТОДОМ ДЕБАЯ-ШЕРЕРА

Поляков Даниил, 19.Б23-фз

Цель работы: получить дифрактограммы шести порошкообразных образцов щелочных галоидов: CsCl, CsBr, CsI, KCl, KBr, KI; провести их структурный анализ.

Схема установки

- 1 рентгеновская трубка;
- 2 рентгеновские лучи;
- 3 гониометр;
- 4 держатель образца;

- 5 шаговый двигатель;
- 6 рентгеновский детектор;
- 7 блок управления.

Расчётные формулы

• Отношение квадратов синусов углов дифракции:

$$Q_n = \frac{\sin^2(\theta_n)}{\sin^2(\theta_1)}$$

 θ_n — угол дифракции n-го порядка; θ_1 — угол дифракции 1-го порядка.

• Связь угла дифракции на кристалле с индексами интерференции:

$$\sin(\theta) = \frac{\lambda}{2a} \sqrt{h^{*2} + k^{*2} + l^{*2}}$$

$$\updownarrow$$

$$heta$$
 — угол дифракции;

 λ — длина волны излучения;

a — параметр решётки;

 h^*, k^*, l^* — индексы интерференции.

$$y = cx$$

$$y \equiv \sin(\theta)$$

$$x \equiv \sqrt{h^{*2} + k^{*2} + l^{*2}}$$

$$\lambda \qquad \lambda$$

$$c \equiv \frac{\lambda}{2a} \Rightarrow a = \frac{\lambda}{2c}$$

 Связь ионных радиусов и параметра примитивной и объёмноцентрированной решёток:

$$R_+ + R_- = \frac{\sqrt{3}}{2}a$$

 R_+ , R_- — ионные радиусы; a — параметр решётки.

• Связь ионных радиусов и параметра гранецентрированной решётки:

$$R_+ + R_- = \frac{1}{2}a$$

 R_{+} , R_{-} — ионные радиусы; a — параметр решётки.

 Плотность упаковки ионов кристалла через ионные радиусы для примитивной и объёмноцентрированной решёток:

$$V^{-1} = \frac{3\sqrt{3}}{8(R_{+} + R_{-})^{3}}$$

 $R_{^{+}}$, $R_{^{-}}$ — ионные радиусы.

 Плотность упаковки ионов кристалла через ионные радиусы для гранецентрированной решётки:

$$V^{-1} = \frac{1}{2(R_+ + R_-)^3}$$

 R_{+} , R_{-} — ионные радиусы.

• Плотность упаковки ионов кристалла через его плотность:

$$V^{-1} = \frac{\rho}{m_{+} + m_{-}}$$

ho — плотность кристалла; m_+, m_- — массы ионов.

2

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\Delta_{f(x_1, x_2, ...)} = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta_{x_2}\right)^2 + ...}$$

$$\Delta_a = \left|\frac{\partial a}{\partial c} \cdot \Delta_c\right| = \left|a \cdot \frac{\Delta_c}{c}\right|$$

Порядок измерений

- 1. Устанавливаем порошок CsCl в держатель образца дифрактометра. Запускаем ПО для работы с дифрактометром и запускаем измерение спектра. Продолжаем накопление излучения в течение 1000 2000 секунд, пока не образуется дифрактограмма с чётко выраженными максимумами.
- 2. Проводим обработку спектра. Сначала выполняем автоматическую обработку с помощью ПО, а потом корректируем её, удаляя ошибочно выделенные спектральные линии и выделяя недостающие.
- 3. Сохраняем полученные дифрактограмму и параметры спектральных линий. Проводим аналогичные измерения для остальных кристаллов (CsBr, CsI, KCl, KBr, KI).

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности коэффициентов аппроксимации рассчитаны с доверительной вероятностью P=95%.

Длина волны излучения трубки:

$$\lambda = 1.54 \text{ Å}$$

1. Структурный анализ CsCl

График 1. Дифрактограмма CsCl

Таблица 1. Обработка дифрактограммы CsCl

n	2θ,°	Q	h*, k*, l*	$h^{*2} + k^{*2} + l^{*2}$
1	21.81	1.00	1, 0, 0	1
2	30.78	1.97	1, 1, 0	2
3	38.01	2.96	1, 1, 1	3
4	44.22	3.96	2, 0, 0	4
5	49.75	4.94	2, 1, 0	5
6	54.85	5.93	2, 1, 1	6
7	64.31	7.91	2, 2, 0	8
8	68.65	8.88	3, 0, 0	9
9	72.74	9.83	3, 1, 0	10

На полученном спектре выделяем 9 спектральных линий. По полученному набору чисел Q классифицируем кристалл CsCl как кристалл с примитивной решёткой.

$$a = 4.097 \pm 0.005 \text{ Å}$$

2. Структурный анализ CsBr

График 2. Дифрактограмма CsBr

Таблица 2. Обработка дифрактограммы CsBr

n	2θ,°	Q	h*, k*, l*	$h^{*2} + k^{*2} + l^{*2}$
1	20.70	1.00	1, 0, 0	1
2	29.50	2.01	1, 1, 0	2
3	36.44	3.03	1, 1, 1	3
4	42.31	4.04	2, 0, 0	4
5	47.69	5.06	2, 1, 0	5
6	52.49	6.06	2, 1, 1	6
7	61.48	8.09	2, 2, 0	8
8	65.70	9.12	3, 0, 0	9
9	69.54	10.08	3, 1, 0	10

На полученном спектре выделяем 9 спектральных линий. Интенсивности линий отличаются от случая кристалла CsCl. 1-ая и 8-ая линии оказались очень слабыми, но без них структура чисел Q не соответствует ни одному из типов решётки, поэтому они являются частью дифракционной картины и их необходимо выделить вручную. По полученному набору чисел Q классифицируем кристалл CsBr как кристалл c примитивной решёткой.

$$a = 4.265 \pm 0.005 \text{ Å}$$

3. Структурный анализ CsI

График 3. Дифрактограмма CsI

Таблица 3. Обработка дифрактограммы CsI

n	2θ,°	Q	h*, k*, l*	$h^{*2} + k^{*2} + l^{*2}$
1	27.46	1.00	1, 1, 0	2
2	39.36	2.01	2, 0, 0	4
3	48.79	3.03	2, 1, 1	6
4	56.99	4.04	2, 2, 0	8
5	64.55	5.06	3, 1, 0	10
6	71.43	6.05	2, 2, 2	12

На полученном спектре выделяем 6 спектральных линий, последняя из которых очень слабая. Полученный набор чисел Q соответствует как примитивной, так и объёмноцентрированной решётке, поэтому его недостаточно для классификации кристалла.

Сравним спектр данного кристалла со спектром кристалла CsCl, имеющего примитивную решётку. Спектр CsI получился сдвинутым в сторону меньших углов, а также с него исчезли 1-ая, 3-я, 5-ая и 8-ая линии. Для этих линий сумма индексов интерференции $h^* + k^* + l^*$ равна нечётному числу, а для остальных — чётному. Такое правило погасания характерно для объёмноцентрированной решётки. Исходя из этого относим кристалл CsI к кристаллам с объёмноцентрированной решёткой.

$$a = 4.567 \pm 0.007 \text{ Å}$$

4. Структурный анализ КСІ

График 4. Дифрактограмма KCl

Таблица 4. Обработка дифрактограммы KCl

n	2θ,°	Q	h*, k*, l*	$h^{*2} + k^{*2} + l^{*2}$
1	21.85	1.00	1, 1, 1	3
2	25.14	1.32	2, 0, 0	4
3	35.91	2.65	2, 2, 0	8
4	42.44	3.65	3, 1, 1	11
5	44.44	3.98	2, 2, 2	12
6	51.82	5.32	4, 0, 0	16
7	56.93	6.32	3, 3, 1	19
8	58.48	6.64	4, 2, 0	20
9	64.76	7.98	4, 2, 2	24
10	69.15	8.97	3, 3, 3	27

На полученном спектре выделяем 10 спектральных линий. По полученному набору чисел Q классифицируем кристалл KCl как кристалл с гранецентрированной решёткой.

$$a = 7.050 \pm 0.005 \text{ Å}$$

5. Структурный анализ КВг

График 5. Дифрактограмма КВг

Таблица 5. Обработка дифрактограммы KBr

n	2θ,°	Q	h*, k*, l*	$h^{*2} + k^{*2} + l^{*2}$
1	23.54	1.00	1, 1, 1	3
2	27.15	1.32	2, 0, 0	4
3	38.92	2.67	2, 2, 0	8
4	46.01	3.67	3, 1, 1	11
5	48.18	4.00	2, 2, 2	12
6	56.20	5.33	4, 0, 0	16
7	61.85	6.35	3, 3, 1	19
8	63.63	6.68	4, 2, 0	20
9	70.36	7.98	4, 2, 2	24

На полученном спектре выделяем 9 спектральных линий. По полученному набору чисел Q классифицируем кристалл KBr как кристалл с гранецентрированной решёткой.

$$a = 6.538 \pm 0.006 \text{ Å}$$

6. Структурный анализ KI

График 6. Дифрактограмма КІ

Таблица 6. Обработка дифрактограммы KI

n	2θ, °	Q	h*, k*, l*	$h^{*2} + k^{*2} + l^{*2}$
1	28.28	1.00	1, 1, 0	2
2	40.52	2.01	2, 0, 0	4
3	50.22	3.02	2, 1, 1	6
4	58.64	4.02	2, 2, 0	8
5	66.53	5.04	3, 1, 0	10
6	73.37	5.98	2, 2, 2	12

На полученном спектре выделяем 6 спектральных линий. Полученный набор чисел Q соответствует как примитивной, так и объёмноцентрированной решётке, поэтому его недостаточно для классификации кристалла.

Сравним спектр данного кристалла со спектром кристалла CsI, имеющего объёмноцентрированную решётку. Они совпадают ПО количеству И расположению линий, поэтому относим решётку кристалла ΚI К объёмноцентрированному типу.

$$a = 4.450 \pm 0.011 \text{ Å}$$

7. Оценка радиусов и плотности упаковки ионов

Исходя из найденных типов решёток составляем систему уравнений:

$$R_{\mathrm{Cs}} + R_{\mathrm{Cl}} = \frac{\sqrt{3}}{2} a_{\mathrm{CsCl}}$$
 Для решения системы фиксируем значения радиусов ионов калия и хлора: $R_{\mathrm{K}} = 1.33 \ \mathrm{\AA}$ $R_{\mathrm{Cs}} + R_{\mathrm{Br}} = \frac{\sqrt{3}}{2} a_{\mathrm{CsBr}}$ Находим радиусы остальных ионов: $R_{\mathrm{Br}} = 1.94 \ \mathrm{\AA}$ $R_{\mathrm{K}} + R_{\mathrm{Cl}} = \frac{1}{2} a_{\mathrm{KCl}}$ $R_{\mathrm{Cs}}(\mathrm{CsCl}) = 1.74 \ \mathrm{\AA}$ $R_{\mathrm{Cs}}(\mathrm{CsBr}) = 1.75 \ \mathrm{\AA}$ $R_{\mathrm{Cs}}(\mathrm{CsI}) = 1.43 \ \mathrm{\AA}$ Для цезия указаны значения из трёх уравнений.

Теперь рассчитаем плотность упаковки ионов исследованных кристаллов.

Таблица 7. *Массы и радиусы ионов*

Элемент	т, а. е. м.	R, Å
		1.74
Cs	132.91	1.75
		1.43
K	39.10	1.33
Cl	35.45	1.81
Br	79.90	1.94
I	126.90	2.52

Таблица 8.Плотность упаковки ионов в кристаллах

Кристалл	ρ, г/см ³	$V^{-1}(R_{+},R_{-}),$ Å ⁻³	$V^{-1}(oldsymbol{ ho})$, Å $^{-3}$
CsCl	3.97	0.0145	0.0142
CsBr	4.44	0.0129	0.0126
CsI	4.51	0.0105	0.0105
KCl	1.99	0.0162	0.0161
KBr	2.75	0.0143	0.0139
KI	3.12	0.0113	0.0113

Значения плотности упаковки ионов, вычисленные через ионные радиусы, совпадают со значениями, вычисленными через плотность кристаллов.

Выводы

Длина волны рентгеновского излучения по порядку величины совпадает с межатомным расстоянием в кристаллах, что позволяет использовать кристалл в качестве дифракционной решётки. По полученной дифрактограмме можно определить структурные свойства кристалла, такие как тип решётки, размер элементарной ячейки и ионные радиусы.

Приложение

График 7. Аппроксимация зависимости угла дифракции от индексов интерференции

Таблица 9. Коэффициенты аппроксимации

Кристалл	С
CsCl	0.1880(2)
CsBr	0.1806(2)
CsI	0.1686(3)
KCl	0.10922(9)
KBr	0.11777(11)
KI	0.1730(4)