Рага	СОП	verter 2610 kHz em 145 kHz, é necessário:
a)	πw	transformador de 18/1
P)	បញ	oscilador de Z465 kHz
c)	um	amplificador sintonizado em 2610 kHz
a)	um	desmodulador de 145 kHz
No	ta:	Por batimento subtraem-se as duas frequências
		2610 - 2465 = 145 kHz
3, 4, 3	. 3. 1	
Num (ODV	ersor de frequência de 144 MHz para 10 MHz, aplica-se à entrada
		dora modulada em frequência com + 5 kHz de desvio; na saída,
o des		
a)	dim	inui
ъ)	aum	senta
c)	mai	atém-se
đ)	fica	instavel
Not	ta:	Admitamos que o desvio é de 🛨 5 kHz. A frequência mais baixa
		será: 144000 kHz = 5 kHz = 143995 kHz e a frequência mais
		alta será: 144000 kHz + 5 kHz = 144005 kHz.
		Se se fizer o batimento, por exemplo, com 154 MHz, virá:
		154000 kHz = 143995 kHz = 10005 kHz = 10,005 MHz e
		154000 kHz = 144005 kHz = 9995 kHz = 9,995 MHz. Ve-se
		que há um desvio de ± 5 kHz em relação a 10 MHz. Portanto.
		o desvio mantém-se.

3, 4, 3, 2, 1