Cálculo 1

Límite de una función (versión intuitiva - Parte I)

LÍMITE DE UNA FUNCIÓN

Supongamos que f(x) está definida para todo x cerca del número a. Escribiremos

$$\lim_{x o a}f(x)=L$$

que se lee como "el límite de f(x), cuando x tiene a a, es igual a L" para decir que:

"si x se aproxima al número a, entonces f(x) se aproxima al número L".

En tal caso diremos que el **límite existe** y es igual a L.

Nota. La expresión "si x se aproxima al número a" quiere decir:

- $\mathbf{1}. x \neq a$
- **2.** a no necesita estar en el dominio de f,
- 3. x se aproxima tanto por izquierda como por derecha.

EJEMPLO. En la Applet de Geogebra se presenta la gráfica de una función f.

- **1.** Decida si los siguientes valores existen: f(1), f(2) y f(5). En caso de existir, deduzca su valor.
- 2. Movilice el deslizador y deduzca los valores de los siguientes límites.

(a)
$$\lim_{x \to 1} f(x)$$
 (b) $\lim_{x \to 2} f(x)$ (c) $\lim_{x \to 5} f(x)$

(b)
$$\lim_{x\to 2} f(x)$$

(c)
$$\lim_{x\to 5} f(x)$$

3. Respecto a los límites de la parte anterior, decida a cuál de los siguientes casos corresponde:

$$L = f(a)$$

II. L existe, pero f(a) no existe

III.
$$L \neq f(a)$$

EJEMPLO. A continuación se presenta la gráfica de

$$f(x)=rac{x^2-1}{x-1}$$

- **1.** Identifique el dominio de f.
- 2. Usando la herramientas de Precálculo, justifique la gráfica de f.
- 3. A partir de la gráfica de f , conjeture el valor de $\lim_{x o 1} f(x)$.
- 4. ¿A cuál de los tres casos corresponde este límite?

I.
$$L=$$
 II. L existe, $f(a)$ III. $L
eq$ $f(a)$. no existe. $f(a)$.

EJEMPLO. A continuación se presenta la gráfica de

$$f(x) = egin{cases} rac{x}{\sqrt{|x|}} & x
eq 0 \ 1 & x = 0 \end{cases}$$

- **1.** Identifique el dominio de f.
- 2. Usando la herramientas de Precálculo, justifique la gráfica de f.
- 3. A partir de la gráfica de f, conjeture el valor de $\lim_{x o 0} f(x)$.
- 4. ¿A cuál de los tres casos corresponde este límite?

I.
$$L=$$
 II. L existe, $f(a)$ III. $L
eq f(a)$. no existe. $f(a)$.

EJEMPLO. A continuación se presenta la gráfica de

$$f(x)=egin{cases} (x+2)^2+1 & x\leq -1\ x+3 & x>-1 \end{cases}$$

- **1.** Identifique el dominio de f.
- 2. Usando la herramientas de Precálculo, justifique la gráfica de f.
- 3. A partir de la gráfica de f , conjeture el valor de $\lim_{x o -1} f(x)$.
- 4. ¿A cuál de los tres casos corresponde este límite?

I.
$$L=$$
 II. L existe, $f(a)$ III. $L
eq f(a)$. no existe. $f(a)$.

LÍMITES LATERALES

Supongamos que f(x) está definida para todo x cerca y a la **izquierda** del número a. Escribiremos

$$\lim_{x o a^-}f(x)=L_-$$

que se lee como "el límite de f(x), cuando x tiene a a por la **izquierda**, es igual a L_- " para decir que:

"si x se aproxima por la **izquierda** al número a, entonces f(x) se aproxima al número L_- ".

En tal caso diremos que el **límite por la izquierda existe** y es igual a L_- .

Supongamos que f(x) está definida para todo x cerca y a la derecha del número a. Escribiremos

$$\lim_{x o a^+}f(x)=L_+$$

que se lee como "el límite de f(x), cuando x tiene a a por la derecha, es igual a L_+ " para decir que:

"si x se aproxima por la **derecha** al número a, entonces f(x) se aproxima al número L_+ ".

En tal caso diremos que el **límite por la derecha existe** y es igual a L_{+} .

TEOREMA

$$\lim_{x o a}f(x)=L\quad\Leftrightarrow\quad \lim_{x o a^-}f(x)=L=\lim_{x o a^+}f(x)$$

COROLARIO

Sean L_- y L_+ números reales tales que

$$L_- = \lim_{x o a^-} f(x) \qquad ext{y} \qquad L_+ = \lim_{x o a^+} f(x)$$

Si $L_-
eq L_+$, entonces $\lim_{x o a} f(x)$ no existe.

EJEMPLO. A continuación se muestra la gráfica de una función f. Determine, en caso se existir, los siguientes valores.

 $ullet \lim_{x o 2^-} f(x)$

 $ullet \lim_{x o 5^-} f(x)$

 $ullet \lim_{x o 2^+} f(x)$

 $ullet \lim_{x o 5^+} f(x)$

 $ullet \lim_{x o 2} f(x)$

 $ullet \lim_{x o 5}f(x)$

• f(2)

• f(5)

