Elementos de máquinas de vectores de soporte Clasificación binaria y funciones *kernel*

Julio Waissman Vilanova

Departamento de Matemáticas Universidad de Sonora

Seminario de Control y Sistemas Estocásticos 2010

Plan de la presentación

Clasificador lineal binario

Solución del problema de clasificación binaria

3 El truco de las funciones kernel

Aprendizaje supervisado

Se tiene un conjunto de aprendizaje $X_t = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$ donde

- $x_i \in X = A_1 \times A_2 \times \cdots \times A_n$ son los datos (objetos, patrones) de entrada
- A_i es el j-ésimo atributo de x_i .
- $y_i \in Y = \{0,1\}$ es la clase a la que pertenece el dato x_i

El aprendizaje supervisado consiste en estimar una regla de decisión $f: X \times \Theta \to Y$, donde Θ es el espacio de parámetros, tal que para un dato desconocido x, $f(x,\theta) = \hat{y}$ sea una estimación aceptable de y.

- ¿Que es una estimación aceptable?
- ¿Cual es la estructura de la regla de decisión?

Clasificador lineal binario

Si se asume que $X \subset \mathbb{R}^n$, un clasificador lineal es

$$\hat{y} = \operatorname{sign}(\omega^T x + b) = \operatorname{sign}(\langle \omega, x \rangle + b)$$

¿Cual es la mejor separación?

¿Cual es la mejor separación?

• Perceptron:

$$J(\omega_e) = \min_{\omega_e \in \mathbb{R}^{n+1}} \frac{1}{m} \sum_{i=1}^m (y_i - \hat{y}_i)^2$$

Discriminante lineal

$$J(\omega_e) = \max_{\omega \in \mathbb{R}^{n+1}} \frac{\omega_e^T S_B \omega_e}{\omega_e^T S_W \omega_e}$$

Maquinas de Vectores de Soporte (SVM):

Maximizar el margen de separación

Maximización del margen de separación

Maximización del margen de separación

- $\omega^T x^+ + b = 1$ para todo x^+
- \bullet $\omega^T x^- + b = -1$ para todo x^-
- Para cada x^- corresponde un x^+ tal que $x^+ = x^- + M \frac{\omega}{\|\omega\|}$

$$\omega^{T} x^{+} + b = 1$$

$$\omega^{T} (x^{-} + M \frac{\omega}{\|\omega\|}) + b = 1$$

$$\omega^{T} x^{-} + b + \frac{M}{\|\omega\|} \omega^{T} \omega = 1$$

$$M = \frac{2}{\sqrt{\omega^{T} \omega}}$$

Criterio de optimización para las SVM

Criterio de optimización

$$J(w,b) = \min_{\omega \in \mathbb{R}^n} \frac{1}{2} \omega^T \omega$$

bajo las restricciones:

$$(\omega^T x_i + b)y_i \ge 1$$
, para todo $i = 1, 2, \dots, m$

- El error de clasificación se incorpora al criterio como restricciones
- La constante b se calcula después de la optimización

4□ > 4□ > 4 = > 4 = > = 90

- Permitir errores en clasificación
- Compromiso entre el máximo margen de separación y los posibles errores de predicción
- Mejora la capacidad de generalización de las SVM
- Evita el sobreaprendizaje
- Uso de variables de holgura

Ejemplo de sobreaprendizaje

Planteamiento del problema de SVM

Criterio de optimización

$$J(w,b,\xi) = \min_{\omega \in \mathbb{R}^n} \frac{1}{2} \omega^T \omega + \frac{C}{m} \sum_{i=1}^m \xi_i$$
 (1)

bajo las restricciones:

$$(\omega^T x_i + b) y_i \ge 1 - \xi_i,$$

$$\xi_i \ge 0,$$

para todo $i = 1, 2, \ldots, m$.

- Variables de holgura $\xi = [\xi_1, \dots, \xi_m]$
- Es necesario establecer C
- Problema de optimización cuadrática con restricciones

Problema primal

Resolver el problema (1) equivale a encontrar para

$$L_{P} = \frac{1}{2}\omega^{T}\omega + \frac{C}{m}\sum_{i=1}^{m}\xi_{i} - \sum_{i=1}^{m}\left(\alpha_{i}(\omega^{T}x_{i} + b)y_{i} - 1 + \xi_{i}\right) + \beta_{i}\xi_{i}$$

los valores de $\bar{\omega}$, \bar{b} , $\bar{\xi}$, $\bar{\alpha}$ y $\bar{\beta}$ tal que para toda ω , b, ξ , α y β

$$L_P(\bar{\omega},\bar{b},\bar{\xi},\alpha,\beta) \leq L_P(\bar{\omega},\bar{b},\bar{\xi},\bar{\alpha},\bar{\beta}) \leq L_P(\omega,b,\xi,\bar{\alpha},\bar{\beta})$$

donde $\alpha_i \geq 0$, $\beta_i \geq 0$ son los multiplicadores de Lagrange.

J. Waissman (UNISON)

Condiciones necesarias Karush-Kuhn-Tucker

Para que $\bar{\omega}$, \bar{b} , $\bar{\xi}$, $\bar{\alpha}$ y $\bar{\beta}$ sea una solución, es necesario que:

$$\bar{\alpha}_{i}(\bar{\omega}^{T}x_{i}+b)y_{i}-1+\xi_{i})=0, \quad \forall i=1,\ldots,m,$$

$$\bar{\beta}_{i}\bar{\xi}_{i}=0, \quad \forall i=1,\ldots,m,$$

$$\partial_{\omega}L_{P}(\bar{\omega},\bar{b},\bar{\xi},\bar{\alpha},\bar{\beta})=0$$

$$=\bar{\omega}-\sum_{i=1}^{m}\bar{\alpha}_{i}y_{i}x_{i}$$

$$\partial_{b}L_{P}(\bar{\omega},\bar{b},\bar{\xi},\bar{\alpha},\bar{\beta})=0$$

$$=-\sum_{i=1}^{m}\bar{\alpha}_{i}y_{i}$$

$$\partial_{\xi}L_{P}(\bar{\omega},\bar{b},\bar{\xi},\bar{\alpha},\bar{\beta})=0$$

$$=\frac{C}{m}-\sum_{i=1}^{m}(\bar{\alpha}_{i}+\bar{\beta}_{i})$$

Problema dual

De las condiciones KKT

$$\omega = \sum_{i=1}^{m} \alpha_i y_i x_i,$$

$$\frac{C}{m} = \alpha_i + \beta_i, \quad \text{de donde } \alpha_i \le \frac{C}{m},$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0,$$

se sustituyen en L_P para encontar el problema dual

$$L_D(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j x_i^T x_j,$$

el cual es únicamente un problema de maximización en α .

Reconocimiento

La regla de decisión del clasificador lineal es

$$\hat{y} = \operatorname{sign}(\omega^T x + b)$$

$$= \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i x_i^T x + b\right),$$

donde SV es el conjunto de índices tales que $\alpha_i > 0$.

Para calcular *b numéricamente estable*, se considera un promedio del valor de *b* los *vectores soporte* en los cuales $\xi_i = 0$, tal que,

$$(\omega^T x_i + b) y_i = 1.$$

Si $\xi_i > 0$, entonces $\beta_i = 0$ y por lo tanto $\alpha_i = \frac{C}{m}$. Por lo tanto:

$$b = \frac{1}{|SV^*|} (y_i - \sum_{i \in SV^*} y_i - \omega^T x_i),$$

donde SV* es el conjunto de índices tales que $0 < \alpha_i < C/m$.

Máquina de vectores de soporte

Entrenamiento

$$\max_{\alpha \in \mathbb{R}^m} L_D(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle,$$

bajo $0 \le \alpha_i \le \frac{C}{m}$, para $i = 1, \dots, m$.

Reconocimiento

$$\hat{y} = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i \langle x_i, x \rangle + b\right)$$

¡Tanto el aprendizaje como el reconocimiento dependen solamente en el producto interno entre vectores!

El truco del kernel: el problema de la Xor

El truco del kernel: el problema de la Xor

Clasificadores polinomiales

- Sea $C_d: \mathbb{R}^n \to \mathbb{R}^{N_C}$ donde las entrada de $C_d(x)$ son todos los posibles productos ordenados de grado d de x.
- Sea $\theta: \mathbb{R}^n \to \mathbb{R}^{N_\theta}$ los productos *no ordenados* de grado d, tal que $\langle C_d(x), C_d(x') \rangle = \langle \theta(x), \theta(x') \rangle$. Por ejemplo

$$C_2([x_1, x_2]^T) = [x_1^2, x_2^2, x_1x_2, x_2x_1]^T,$$

 $\theta([x_1, x_2]^T) = [x_1^2, x_2^2, \sqrt{2}x_1x_2]^T.$

- Un clasificador polinomial realiza una transformación del espacio de entrada a un *espacio de características* de mayor dimensión, esperando encontrar una separación lineal en el nuevo espacio.
- Se pueden aplicar otro tipo de transformaciones y utilizar un clasificador lineal en el espacio de características.

4D + 4B + 4B + B + 990

La maldición de la dimensionalidad

¿Cual es la dimensión del nuevo espacio de características?

$$N_{\theta} = \left(egin{array}{c} d+n-1 \ d \end{array}
ight) = rac{d+n-1}{d!(n-1)!)}$$

Ejemplo:

- Reconocimiento de caracteres escritos a mano, en forma de mapa de bits de 16×16 (256 atributos).
- Si se considera una transformación θ_5 , $N_{\theta} \approx 10^{10}$.
- ¡El problema no es tratable!

El truco de las funciones kernel

Para entrenar y utilizar un clasificado con SVM, solamente se requiere poder calcular el producto interno $\langle \theta_d(x), \theta_d x' \rangle$. Si se define $k : \mathbb{R}^n \to \mathbb{R}$ tal que

$$k(x, x') = \langle \theta_d(x), \theta_d x' \rangle = \langle C_d(x'), C_d x' \rangle$$

$$= \sum_{j_1=1}^n \cdots \sum_{j_d=1}^n x_{j_1} \dots x_{j_d} x'_{j_1} \dots x'_{j_d}$$

$$= \sum_{j_1=1}^n x_{j_1} x'_{j_1} \cdots \sum_{j_1=1}^n x_{j_d} x'_{j_d}$$

$$= \left(\sum_{j=1}^n x_j x'_j\right)^d = \langle x, x' \rangle^d$$

Funciones kernel

• Dada una función $k: X^2 \to \mathbb{R}$, y un conjunto $X_T = \{x_1, \dots, x_m\}$, $x_i \in X$, la matriz K de dimensión $m \times m$ con elementos:

$$K_{ij} = k(x_i, x_j)$$

se conoce como Matriz de Gram (o matriz de kernel) generada por k respecto a X_T .

• Sea X un conjunto no vacío, la función $k: X^2 \to \mathbb{R}$ la cual, para todo $m \in \mathbb{N}$ y para todo conjunto $X_T = \{x_1, \dots, x_m\}$ genera una matriz de Gram K simétrica definida positiva es llamado un kernel real definido positivo, o simplemente kernel.

Propiedades de las funciones kernel

- $k(x,x) \ge 0$ para todo $x \in X$
- k(x, x') = k(x', x)
- $|k(x,x')| \le k(x,x')k(x',x)$

Resultado interesante

Una función kernel $k: X^2 \to \mathbb{R}$ es un producto interno en al menos un espacio de características.

- Sea $\theta: X \to \{f: X \to \mathbb{R}\}$ tal que $\theta(x)(\cdot) = k(x, \cdot)$.
- Se genera un espacio vectorial con la imagen de θ :

$$f(\cdot) = \sum_{i=1}^{m} \alpha_i k(\cdot, x_i), \quad m \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in X,$$
$$g(\cdot) = \sum_{i=1}^{m'} \beta_j k(\cdot, x'_j), \quad m' \in \mathbb{N}, \beta_j \in \mathbb{R}, x'_j \in X,$$

Resultado interesante

Se define un producto interno:

$$\langle f, g \rangle := \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x_j)$$

• Para demostrar que $\langle f, g \rangle$ es un producto interno:

$$\langle f, g \rangle = \sum_{j=1}^{m'} \beta_j f(x'_j) = \sum_{i=1}^{m} \alpha_i g(x_i),$$

$$\langle f, g \rangle = \sum_{i,j=1}^{m} \alpha_i \alpha_j k(x_i, x_j) \ge 0,$$

$$f(x) = \langle f, k(\cdot, x) \rangle,$$

$$|f(x)|^2 = |\langle f, k(\cdot, x) \rangle|^2 \le \langle f, f \rangle k(x, x)$$

por lo que el producto interno es bilineal, simétrico, definido positivo y $\langle f, f \rangle$ implica f = 0.

Función kernel como producto interno

Por lo tanto:

$$k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle = \langle \theta(x), \theta(x') \rangle$$

Principales funciones kernel utilizadas:

- Polinomial: $k(x, x') = \langle x, x' \rangle^d$,
 - Polinomial no homogeneo: $k(x, x') = (\langle x, x' \rangle + c)^d$,
 - Gaussiano: $k(x, x') = \exp\left(-\frac{\|x x'\|^2}{2\sigma^2}\right)$,
 - Sigmoide: $k(x, x') = \tanh(\kappa \langle x, x' \rangle + \nu)$.

Ejemplo

Ejemplo

... y esto fue todo por hoy!

Muchas gracias por su atención