

中等容量增强型,32位基于ARM核心的带128K字节闪存的微控制器 USB、CAN、7个定时器、2个 ADC、2个 DAC、9个通讯接口

功能

- 内核: ARM 32位Cortex^M-M3处理器内核
 - 最高108MHz工作频率
 - 单周期乘法和硬件除法
- 存储器
 - 1M字节的闪存程序存储器
 - 高达20K字节的SRAM
- 时钟、复位和电源管理
 - **-** 2.5∼5.5伏供电和I/O引脚
 - 上电/断电复位(POR/PDR)、可编程电压监测器(PVD)
 - 8~24MHz晶体振荡器
 - 内嵌经出厂调校的48MHz的RC振荡器
 - 内嵌带校准的40kHz的RC振荡器
 - 产生CPU时钟的PLL
 - 32.768kHz RTC振荡器
- 低功耗
 - 睡眠、停机和待机模式
 - V_{RAT}为RTC和后备寄存器供电
- 2个12位模数转换器,1μs转换时间(多达16个输入通道)
 - 转换范围: 0至5.5V
 - 温度传感器
- 2个12位数模转换器
- 2个电压比较器
- DMA:
 - 7通道DMA控制器
 - 支持的外设:定时器、ADC、SPI、I²C和UART
- 多达51个快速I/O端口:
 - 最多51个多功能双向5V兼容I/O口
 - 所有I/O口可以映像到16个外部中断

- 调试模式
 - 串行单线调试(SWD)和JTAG接口
- 多达7个定时器
 - 3个16位定时器,每个定时器有多达4个用于 输入捕获/输出比较/PWM或脉冲计数的通 道和增量编码器输入
 - 1个16位带死区控制和紧急刹车,用于电机 控制的PWM高级控制定时器
 - 2个看门狗定时器(独立的和窗口型的)
 - 系统时间定时器: 24位自减型计数器
- 多达9个通信接口
 - 多达2个I²C接口
 - 多达3个UART接口
 - 多达2个SPI接口
 - CAN接口
 - USB 2.0全速接口
- CRC计算单元,96位的芯片唯一代码
- LQFP 48/64封装

1. 介绍

本文给出了BLM32F103xB产品的订购信息和器件的机械特性。有关完整的BLM32F103xB产品的详细信息,请参考第2.2节。

有关Cortex™-M3核心的相关信息,请参考《Cortex™-M3技术参考手册》。

2. 规格说明

BLM32F103xB使用高性能的ARM® Cortex™-M3 32位的RISC内核,工作频率为108MHz,内置高速存储器,丰富的增强I/O端口和联接到两条APB总线的外设。所有型号的器件都包含2个12位的ADC、2个12位的DAC、2个电压比较器、3个通用16位定时器和1个 PWM定时器,还包含标准和先进的通信接口: 多达2个I²C接口和SPI接口、3个UART接口、一个 USB接口和一个CAN接口。

BLM32F103xB产品供电电压为2.5V至5.5V,包含-40℃至+85℃温度范围和 -40℃至+105℃的扩展温度范围。一系列的省电模式保证低功耗应用的要求。

BLM32F103xB产品提供包括从48脚至64脚的2种不同封装形式;根据不同的封装形式,器件中的外设配置不尽相同。下面给出了该系列产品中所有外设的基本介绍。

这些丰富的外设配置,使得BLM32F103xB产品微控制器适合于多种应用场合:

- 电机驱动和应用控制
- 医疗和手持设备
- PC游戏外设和GPS平台
- 工业应用:可编程控制器(PLC)、变频器、打印机和扫描仪
- 警报系统、视频对讲、和暖气通风空调系统等

2.1 概述

2.1.1 ARM®的Cortex™-M3核心并内嵌闪存和SRAM

ARM的Cortex™-M3处理器是最新一代的嵌入式ARM处理器,它为实现MCU的需要提供了低成本的平台、缩减的引脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。

ARM的Cortex™-M3是32位的RISC处理器,提供额外的代码效率,在通常8和16位系统的存储空间上发挥了ARM内核的高性能。

BLM32F103xB拥有内置的ARM核心,因此它与所有的ARM工具和软件兼容。

2.1.2 内置闪存存储器

128K字节的内置闪存存储器,用于存放程序和数据。

2.1.3 CRC(循环冗余校验)计算单元

CRC(循环冗余校验)计算单元使用一个固定的多项式发生器,从一个32位的数据字产生一个CRC码。在众多的应用中,基于CRC的技术被用于验证数据传输或存储的一致性。在EN/IEC 60335-1标准的范围内,它提供了一种检测闪存存储器错误的手段,CRC计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

2.1.4 内置SRAM

20K字节的内置SRAM。

2.1.5 嵌套的向量式中断控制器(NVIC)

BLM32F103xB产品内置嵌套的向量式中断控制器,能够处理多达68个可屏蔽中断通道(不包括 16个 Cortex™-M3的中断线)和16个可编程优先级。

- 紧耦合的NVIC能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入内核
- 紧耦合的NVIC接口
- 允许中断的早期处理
- 处理晚到的较高优先级中断

- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

2.1.6 外部中断/事件控制器(EXTI)

外部中断/事件控制器包含21个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。EXTI可以检测到脉冲宽度小于内部APB2的时钟周期。多达40个通用I/O口连接到16个外部中断线。

2.1.7 时钟和启动

系统时钟的选择是在启动时进行,复位时内部8MHz的RC振荡器被选为默认的CPU时钟,随后可以选择外部的、具失效监控的8~24MHz时钟;当检测到外部时钟失效时,它将被隔离,系统将自动地切换到内部的RC振荡器,如果使能了中断,软件可以接收到相应的中断。同样,在需要时可以采取对PLL时钟完全的中断管理(如当一个间接使用的外部振荡器失效时)。

多个预分频器用于配置AHB的频率、高速APB(APB2和APB1)区域。AHB和高速APB的最高频率是108MHz。参考图2的时钟驱动框图。

2.1.8 自举模式

在启动时,通过自举引脚可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部SRAM自举

自举加载程序(Bootloader)存放于系统存储器中,可以通过UART1对闪存重新编程。

2.1.9 供电方案

- VDD = 2.5~5.5V: VDD引脚为I/O引脚和内部调压器供电。
- VSSA, VDDA = 2.5~5.5V: 为ADC、复位模块、RC振荡器和PLL的模拟部分提供供电。VDDA和VSSA 必须分别连接到VDD和VSS。
- VBAT = 1.8~3.6V: 当关闭VDD时,(通过内部电源切换器)为RTC、外部32kHz振荡器和后备寄存器供电。

2.1.10 供电监控器

本产品内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过2.5V时工作;当VDD低于设定的阀值(VPOR/PDR)时,置器件于复位状态,而不必使用外部复位电路。器件中还有一个可编程电压监测器(PVD),它监视VDD/VDDA供电并与阀值VPVD比较,当VDD低于或高于阀值VPVD时产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。PVD功能需要通过程序开启。

2.1.11 电压调压器

调压器将外部电压转成内部数字逻辑工作的电压,该调压器在复位后始终处于工作状态。

2.1.12 低功耗模式

BLM32F103xB产品支持低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。

● 睡眠模式

在睡眠模式,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。

● 停机模式

在保持SRAM和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,停止所有内部1.8V部分的供电,PLL、HSI的RC振荡器和HSE晶体振荡器被关闭,调压器可以被置于普通模式或低功耗模式。

可以通过任一配置成EXTI的信号把微控制器从停机模式中唤醒,EXTI信号可以是16个外部I/O口之一、PVD的输出、RTC闹钟或USB的唤醒信号。

2.1.13 DMA

灵活的7路通用DMA可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输; DMA控制器 支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件DMA请求逻辑,同时可以由软件触发每个通道,传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA可以用于主要的外设: SPI、I2C、UART,通用、基本和高级控制定时器TIMx、ADC和DAC等。

2.1.14 RTC(实时时钟)和后备寄存器

RTC和后备寄存器通过一个开关供电,在VDD有效时该开关选择VDD供电,否则由VBAT引脚供电。后备寄存器(10个16位的寄存器)可以用于在关闭VDD时,保存20个字节的用户应用数据。RTC和后备寄存器不会被系统或电源复位源复位,当从待机模式唤醒时,也不会被复位。

实时时钟具有一组连续运行的计数器,可以通过适当的软件提供日历时钟功能,还具有闹钟中断和阶段性中断功能。RTC的驱动时钟可以是一个使用外部晶体的32.768kHz的振荡器、内部低功耗RC振荡器或高速的外部时钟经128分频。内部低功耗RC振荡器的典型频率为40kHz。为补偿天然晶体的偏差,可以通过输出一个512Hz的信号对RTC的时钟进行校准。RTC具有一个32位的可编程计数器,使用比较寄存器可以进行长时间的测量。有一个20位的预分频器用于时基时钟,默认情况下时钟为32.768kHz时,它将产生一个1秒长的时间基准。

2.1.15 定时器和看门狗

中等容量的BLM32F103xB产品包含1个高级控制定时器、3个普通定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。

下表比较了高级控制定时器、普通定时器和基本定时器的功能:

定时器功能比较

定时器	计数器分辩率	计数器类型	预分频系数	产生DMA请求	捕获/比较通道	互补输出
TIM1	16位	向上,向下, 向上/下	1~65536之间 的任意整数	可以	4	有
TIM2 TIM3 TIM4	16位	向上,向下, 向上/下	1~65536之间 的任意整数	可以	4	没有

高级控制定时器(TIM1)

高级控制定时器(TIM1)可以被看成是分配到6个通道的三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生PWM(边缘或中心对齐模式)
- 单脉冲输出

配置为16位标准定时器时,它与TIMx定时器具有相同的功能。配置为16位PWM发生器时,它具有全调制能力(0~100%)。

在调试模式下,计数器可以被冻结,同时PWM输出被禁止,从而切断由这些输出所控制的开关。

很多功能都与标准的TIM定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与TIM定时器协同操作,提供同步或事件链接功能。

通用定时器(TIMx)

BLM32F103xB产品中,内置了多达3个可同步运行的标准定时器(TIM2、TIM3和TIM4)。每个定时器都有

一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输入捕获、输出比较或PWM通道。

它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一标准定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求机制。这些定时器还能够处理增量编码器的信号,也能处理1至3个霍尔传感器的数字输出。

独立看门狗

独立的看门狗是基于一个12位的递减计数器和一个8位的预分频器,它由一个内部独立的40kHz的RC振荡器提供时钟,因为这个RC振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。系统时基定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24位的递减计数器
- 自动重加载功能
- 当计数器为0时能产生一个可屏蔽系统中断
- 可编程时钟源

2.1.16 I2C总线

多达2个I2C总线接口,能够工作于多主模式或从模式,支持标准和快速模式。 I2C接口支持7位或10位寻址,7位从模式时支持双从地址寻址。

2.1.17 通用同步/异步收发器(UART)

UART接口具有硬件的CTS和RTS信号管理。 所有UART接口都可以使用DMA操作。

2.1.18 串行外设接口(SPI)

多达2个SPI接口,在从或主模式下,全双工和半双工的通信速率可达18兆位/秒。3位的预分频器可产生8种主模式频率,可配置成每帧8位或16位。

所有的SPI接口都可以使用DMA操作。

2.1.19 控制器区域网络(CAN)

CAN接口兼容规范2.0A和2.0B(主动),位速率高达1兆位/秒。它可以接收和发送11位标识符的标准帧,也可以接收和发送29位标识符的扩展帧。

2.1.20 通用串行总线(USB)

BLM32F103xB产品,内嵌一个兼容全速USB的设备控制器,遵循全速USB设备(12兆位/秒)标准,端点可由软件配置,具有待机/唤醒功能。USB专用的48MHz时钟由内部主PLL直接产生(时钟源必须是一个HSE晶体振荡器)。

2.1.21 通用输入输出接口(GPIO)

每个GPIO引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。多数GPIO引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有的GPIO引脚都有大电流通过能力。

在需要的情况下,I/O引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入I/O寄存器。在APB2上的I/O脚可达18MHz的翻转速度。

2.1.22 ADC(模拟/数字转换器)

BLM32F103xB产品内嵌2个12位的模拟/数字转换器(ADC),每个ADC可用多达8个外部通道,可以实现单次或扫描转换。在扫描模式下,自动进行在选定的一组模拟输入上的转换。

ADC可以使用DMA操作。

模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。

由标准定时器(TIMx)和高级控制定时器(TIM1)产生的事件,可以分别内部级联到ADC的触发,应用程序能使AD转换与时钟同步。

2.1.23 DAC(数字/模拟转换)

数字/模拟转换模块(DAC)是12位数字输入,电压输出的数字/模拟转换器。DAC可以配置成8位或者12位模式,也可以与DMA控制器配合使用。DAC工作在12位模式时,数据可以设置成左对齐,也可以设置成右对齐。DAC有2个输出通道,每个通道都有单独的转换器,可以工作在双DAC模式。在此模式下,可以同步地更新2个通道的输出,这2个通道的转换可以同时进行,也可以分别进行。

DAC主要特征:

- 2个DAC转换器: 1个输出通道对应1个转换器
- 8位或者12位单调输出
- 12位模式下数据左对齐或者右对齐
- 同步更新功能
- 噪声波形生成
- 三角波形生成
- 双DAC通道同时或者分别转换
- 每个通道都有DMA功能
- 外部触发转换

2.1.24 温度传感器

温度传感器产生一个随温度线性变化的电压,转换范围在2.5V < VDDA < 5.5V之间。温度传感器在内部被连接到ADC1_IN9的输入通道上,用于将传感器的输出转换到数字数值。

2.1.25 串行单线JTAG调试口(SWJ-DP)

内嵌ARM的SWJ-DP接口,这是一个结合了JTAG和串行单线调试的接口,可以实现串行单线调试接口或JTAG接口的连接。JTAG的TMS和TCK信号分别与SWDIO和SWCLK共用引脚,TMS脚上的一个特殊的信号序列用于在JTAG-DP和SW-DP间切换。

2.1.26 比较器(COMP)

BLM32F103xB内嵌两个通用比较器COMP1和COMP2,可独立使用(适用所有终端上的I/O口),也可与定时器结合使用。它们可用于多种功能,包括:

- 由模拟信号触发低功耗模式唤醒事件
- 调节模拟信号
- 与 DAC 和定时器输出的PWM 相结合,组成逐周期的电流控制回路

比较器为通用的可编程电压比较器,可独立使用,适用所有终端上的I/O口。支持两个独立的比较器。 比较器主要特征:

- 轨对轨比较器
- 每个比较器有可选门限
 - 可复用的I/O引脚
 - DAC模拟输出
 - 内部参考电压和三个等分电压值(1/4, 1/2, 3/4)
- 可编程迟滞电压

- 可编程的速率和功耗
- 输出端可以重定向到一个I/O端口或多个定时器输入端,可以触发以下事件:
 - 捕获事件
 - OCref_clr事件(逐周期电流控制)
 - 为实现快速PWM 关断的刹车事件
- 两个比较器可以组合在一个窗口比较器中使用。
- 每个比较器都可产生中断,并支持把CPU从睡眠和停止模式唤醒(通过EXTI控制器)。

图1 BLM32F103xB模块框图

3. 引脚定义

图3 BLM32F103xB LQFP48引脚分布

图4 BLM32F103xB LQFP64引脚分布

表5 BLM32F103xB引脚定义

引脚编码		103xB引脚定》 _{引脚名称}	文 类型	I/O 电平	主功能	可选的复用功能	
LQFP48	LQFP64	3129-1-13	人工	1,70 10 1	1.71111	默认复用功能	重定义功能
1	1	V _{BAT}	S		V _{BAT}	动(风交/11分)配	至人人为能
2	2	PC13-TAMP	1/0		PC13	TAMPER-RTC	
2	2	ER-RTC	1/0		1013	TAIVIT LIN-INTC	
3	3	PC14-OSC32	I/O		PC14	OCC33 IN	
3	5		1/0		PC14	OSC32_IN	
4	4	_IN	1/0		DC1F	OCC22 OUT	
4	4	PC15-OSC32	1/0		PC15	OSC32_OUT	
	_	_OUT					
5	5	OSC_IN	1		OSC_IN		
6	6	OSC_OUT	0		OSC_OUT		
7	7	NRST	1/0		NRST		
-	8	PC0	1/0		PC0	ADC12_IN10	
-	9	PC1	1/0		PC1	ADC12_IN11	
-	10	PC2	1/0		PC2	ADC12_IN12	
-	11	PC3	1/0		PC3	ADC12_IN13	
8	12	V_{SSA}	S		V _{SSA}		
9	13	V_{DDA}	S		V_{DDA}		
10	14	PA0-WKUP	1/0		PA0	WKUP/UART2_CTS	
						ADC12_IN0/	
						TIM2_CH1_ETR	
11	15	PA1	1/0		PA1	UART2_RTS/	
						ADC12_IN1/TIM2_CH2	
12	16	PA2	1/0		PA2	UART2_TX/	
						ADC12_IN2/TIM2_CH3	
13	17	PA3	1/0		PA3	UART2_RX/	
						ADC12_IN3/TIM2_CH4	
-	18	V _{SS_4}	S		V _{SS_4}		
-	19	V _{DD_4}	S		V _{DD_4}		
14	20	PA4	1/0		PA4	SPI1_NSS/UART2_CK	
						/ADC12_IN4	
15	21	PA5	1/0		PA5	SPI1 SCK/ADC12 IN5	
16	22	PA6	1/0	1	PA6	SPI1_MISO/	TIM1_BKIN
						ADC12_IN6/TIM3_CH1	
17	23	PA7	I/O		PA7	SPI1_MOSI/	TIM1_CH1N
						ADC12_IN7/TIM3_CH2	
-	24	PC4	1/0		PC4	ADC12_IN14	
-	25	PC5	1/0		PC5	ADC12_IN15	
18	26	PB0	1/0		PB0	ADC12_IN8/TIM3_CH3	TIM1_CH2N
19	27	PB1	1/0		PB1	ADC12_IN9/TIM3_CH4	TIM1_CH3N
			-	FT		7.5012_1149/111410_0114	711V11_C1151V
			-		+	12C2 SCI/HART2 TV/COMBO IN	TIM2 CH2
20	28	PB2 PB10	I/O I/O	FT FT	PB2/BOOT1 PB10	I2C2_SCL/UART3_TX/COMP0_IN	TIM2_C

22	30	PB11	I/O	FT	PB11	I2C2_SDA/UART3_RX/COMP1_IN	TIM2_CH4
23	31	VSS_1	S		VSS_1		
24	32	VDD_1	S		VDD_1		
25	33	PB12	1/0	FT	PB12	SPI2_NSS/I2C2_SMBAI/	
						UART3_CK/TIM1_BKIN/OP0_INP	
26	34	PB13	I/O	FT	PB13	SPI2_SCK/UART3_CTS/	
						TIM1_CH1N/OP0_INM	
27	35	PB14	1/0	FT	PB14	SPI2_MISO/UART3_RTS	
						TIM1_CH2N/OP1_INP	
28	36	PB15	I/O	FT	PB15	SPI2_MOSI/TIM1_CH3N/OP1_IN M	
_	37	PC6	1/0	FT	PC6		TIM3_CH1
_	38	PC7	1/0	FT	PC7		TIM3_CH2
_	39	PC8	1/0	FT	PC8		TIM3_CH3
-	40	PC9	1/0	FT	PC9		TIM3_CH4
29	41	PA8	1/0	FT	PA8	UART1_CK	
						TIM1_CH1/MCO/OP2_INP	
30	42	PA9	1/0	FT	PA9	UART1_TX	
						TIM1_CH2/OP2_INM	
31	43	PA10	1/0	FT	PA10	UART1_RX/	
						TIM1_CH3/OP3_INP	_
32	44	PA11	1/0	FT	PA11	UART1_CTS/USBDM	
						CAN_RX/TIM1_CH4/OP3_INM	
33	45	PA12	I/O	FT	PA12	UART1_RTS/USBDP/	
						CAN_TX/TIM1_ETR	
34	46	PA13	1/0	FT	JTMS/SWDIO		PA13
35	47	V _{SS_2}	S		V _{SS_2}		
36	48	V _{DD_2}	S		V _{DD_2}		
37	49	PA14	1/0	FT	JTCK/SWCLK		PA14
38	50	PA15	I/O	FT	JTDI		TIM2_CH1_ETR
							PA15/SPI1_NSS
-	51	PC10	1/0	FT	PC10		UART3_TX
-	52	PC11	1/0	FT	PC11		UART3_RX
-	53	PC12	1/0	FT	PC12		UART3_CK
-	54	PD2	1/0	FT	PD2	TIM3_ETR	
39	55	PB3	1/0	FT	JTDO		PB3/TRACESW
							0

							TIM2_CH2/
							SPI1_SCK
40	56	PB4	1/0	FT	NJTRST		PB4/TIM3_CH1
							/
							SPI1_MISO
41	57	PB5	1/0		PB5	I2C1_SMBAI	TIM3_CH2/
							SPI1_MOSI
42	58	PB6	1/0	FT	PB6	I2C1_SCL/TIM4_CH1	UART1_TX
43	59	PB7	1/0	FT	PB7	I2C1_SDA/TIM4_CH2	UART1_RX
44	60	воото	ı		воото		
45	61	PB8	1/0	FT	PB8	TIM4_CH3/COMP0_OUT	I2C1_SCL/
							CAN_RX
46	62	PB9	1/0	FT	PB9	TIM4_CH4/COMP1_OUT	I2C1_SDA/
							CAN_TX
47	63	V _{SS_3}	S		V _{SS_3}		
48	64	V _{DD_3}	S		V _{DD_3}		

^{1.}I= 输入, O= 输出, S= 电源, HiZ= 高阻

4. 存储器映像

图9 存储器图

	子馆器图 	1. 1	AL YII	
总线	编址范围	大小	外设	外设寄存器映像
AHB	0x4002 3400 - 0x4002 43FF	4 KB	Reserved	
	0x4002 3000 - 0x4002 33FF	1 KB	CRC	
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved	
	0x4002 2000 - 0x4002 23FF	1 KB	FLASH 接口	
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved	
	0x4002 1000 - 0x4002 13FF	1 KB	复位和时钟控制(RCC)	
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved	
	0x4002 0000 - 0x4002 03FF	1 KB	DMA	
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved	
APB2	0x4001 4C00 - 0x4001 7FFF	13 KB	Reserved	
	0x4001 4800 - 0x4001 4BFF	1 KB	12S2	
	0x4001 4400 - 0x4001 47FF	1 KB	12S1	
	0x4001 4000 - 0x4001 43FF	1 KB	Reserved	
	0x4001 3C00 - 0x4001 3FFF	1 KB	比较器(Comparator)	
	0x4001 3800 - 0x4001 3BFF	1 KB	UART1	
	0x4001 3400 - 0x4001 37FF	1 KB	运算放大器(OPAMP)	
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1	
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1	
	0x4001 2800 - 0x4001 2BFF	1 KB	ADC2	
	0x4001 2400 - 0x4001 27FF	1 KB	ADC1	
	0x4001 1C00 - 0x4001 23FF	2 KB	Reserved	
	0x4001 1800 - 0x4001 1BFF	1 KB	GPIO 端口 E	
	0x4001 1400 - 0x4001 17FF	1 KB	GPIO 端口 D	
	0x4001 1000 - 0x4001 13FF	1 KB	GPIO 端口 C	
	0x4001 0C00 - 0x4001 0FFF	1 KB	GPIO 端口 B	
	0x4001 0800 - 0x4001 0BFF	1 KB	GPIO 端口 A	
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI	
	0x4001 0000 - 0x4001 03FF	1 KB	AFIO	
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved	
APB1	0x4000 7800 - 0x4000 7FFF	2 KB	Reserved	
	0x4000 7400 - 0x4000 77FF	1 KB	DAC	
	0x4000 7000 - 0x4000 73FF	1 KB	电源控制(PWR)	
	0x4000 6C00 - 0x4000 7FFF	1 KB	后备寄存器(BKP)	
	0x4000 6800 - 0x4000 6BFF	1 KB	Reserved	
	0x4000 6400 - 0x4000 67FF	1 KB	CAN	
	0x4000 6000 - 0x4000 63FF	1 KB	Reserved	
	0x4000 5C00 - 0x4000 5FFF	1 KB	USB	
	0x4000 5800 - 0x4000 5BFF	1 KB	12C2	
	0x4000 5400 - 0x4000 57FF	1 KB	12C1	
	0x4000 4C00 - 0x4000 53FF	2 KB	Reserved	

0x4000 4800 - 0x4000 4BFF	1 KB	UART3	
0x4000 4400 - 0x4000 47FF	1 KB	UART2	
0x4000 3C00 - 0x4000 43FF	2 KB	Reserved	
0x4000 3800 - 0x4000 3BFF	1 KB	SPI2	
0x4000 3400 - 0x4000 37FF	1 KB	Reserved	
0x4000 3000 - 0x4000 33FF	1 KB	IWWDG	
0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG	
0x4000 2800 - 0x4000 2BFF	1 KB	RTC	
0x4000 0C00 - 0x4000 27FF	7 KB	Reserved	
0x4000 0800 - 0x4000 0BFF	1 KB	TIM4	
0x4000 0400 - 0x4000 07FF	1 KB	TIM3	
0x4000 0000 - 0x4000 03FF	1 KB	TIM2	
0x2000 A000 - 0x3FFF FFFF	~512 MB	Reserved	
0x2000 0000 - 0x2000 9FFF	40 KB	SRAM	
0x1FFF FC00 - 0x1FFF FFFF	1 KB	Reserved	
0x1FFF F800 - 0x1FFF FBFF	1 KB	Option bytes	
0x1FFF F400 - 0x1FFF F7FF	1 KB	System memory	
0x1000 2000 - 0x1FFF F3FF	~256 MB	Reserved	
0x1000 0000 - 0x1000 1FFF	8KB	CCM RAM	
0x0810 0000 - 0x0FFF FFFF	~128 MB	Reserved	
0x0800 0000 - 0x080F FFFF	1 MB	Main Flash memory	
0x0004 0000 - 0x07FF FFFF	~128 MB	Reserved	
0x0000 0000 - 0x0003 FFFF	256 KB	主闪存存储器 , 系统存	
		储器或 是 SRAM,有赖于	
		BOOT 的配置	