به نام خدا

على عطاءاللهي ٨١٠١٩٩۴۶١

علی هدائی ۸۱۰۱۹۹۵۱۳

تمرین کامپیوتری 3 معماری کامپیوتر

# R-type:

| opcode            | Rs      | Rt      | Rd       | Sh     | func   |  |  |  |  |  |
|-------------------|---------|---------|----------|--------|--------|--|--|--|--|--|
| [31:26]           | [25:21] | [20:16] | [15:11]  | [10:6] | [5:0]  |  |  |  |  |  |
| ddi:              |         |         | <u>'</u> |        | •      |  |  |  |  |  |
| opcode            |         | Rs      | Rt       |        | data   |  |  |  |  |  |
| [31:26]           |         | [25:21] | [20:16]  |        | [15:0] |  |  |  |  |  |
| lti:              |         |         |          |        |        |  |  |  |  |  |
| opcode            |         | Rs      | Rt       |        | data   |  |  |  |  |  |
| [31:26]           |         | [25:21] | [20:16]  |        | [15:0] |  |  |  |  |  |
| Memory_refrence ( | lw,sw): |         |          | ·      |        |  |  |  |  |  |
| opcode            |         | Rs      | Rt       |        | adr    |  |  |  |  |  |
| [31:26]           |         | [25:21] | [20:16]  |        | [15:0] |  |  |  |  |  |
| :                 | ·       |         |          | •      |        |  |  |  |  |  |
| opcode            |         |         | adr      |        |        |  |  |  |  |  |
| [31:26]           |         | [25:0]  |          |        |        |  |  |  |  |  |
| al:               |         |         |          |        |        |  |  |  |  |  |
| opcode            |         |         | adr      |        |        |  |  |  |  |  |
| [31:26]           |         | [25:0]  |          |        |        |  |  |  |  |  |
| r:                | •       |         |          |        |        |  |  |  |  |  |
| орс               | opcode  |         | Rs       | Х      |        |  |  |  |  |  |
| [31:              | 26]     | [25     | 5:21]    | [20:0] |        |  |  |  |  |  |
| peq:              |         |         |          |        |        |  |  |  |  |  |
| opcode            | opcode  |         | Rt       |        | L      |  |  |  |  |  |
| [31:26]           |         | [25:21] | [20:16]  |        | [15:0] |  |  |  |  |  |
|                   |         |         | i e      |        |        |  |  |  |  |  |

scheme:



Datapath without controller path:



#### datapath with controller:



### controller signals:

```
always @(opcode)
    begin
        {reg_dst, mem_to_reg, reg_write, alu_src, mem_read, mem_write, pc_src, alu_op,
Ifflush} = 13'd0;
        case (opcode)
            `R_type : {reg_dst, reg_write, alu_op} = {2'b01, 1'b1, 2'b10};
            `Lw : {alu_src, mem_to_reg, reg_write, mem_read} = {1'b1, 2'b01, 1'b1, 1'b1};
           `Sw : {alu_src, mem_write} = 2'b11;
           `Beq : {pc_src, IFflush} = {1'b0, operands_equal, operands_equal};
            `Addi : {reg_write, alu_src} = 2'b11;
           `J : {pc_src, IFflush} = {2'b10, 1'b1};
           `Jal : {reg_dst, mem_to_reg, pc_src} = {2'b10, 2'b10, 2'b10};
           `Jr: {pc_src} = {2'b11};
            `Slti: {alu_src, reg_dst, reg_write, alu_op, mem_to_reg} = {1'b1, 2'b00, 1'b1,
2'b11, 2'b00};
        endcase
```

alu controller:

```
always @(ALUop,func) begin
   op=3'b000;
   case (ALUop)
       2'b00: op=3'b010;//add
       2'b01: op=3'b110;//sub
       2'b10: begin
           op=3'b000;
           case (func)
                `Add: op=3'b010;
               `Sub: op=3'b110;
               `And: op=3'b000;
               `Or: op=3'b001;
                `Slt: op=3'b111;
               default: op=3'b110;
           endcase
        2'b11: op=3'b111;//Slt
       default: op=3'b110;
   endcase
```

### Pseudocode:

```
max = a[0]
maxIndex = 0
for (int i = 1; i < 20; i++)
{
    if (a[i] > max)
    {
       max = a[i]
       maxIndex = i
    }
}
```

## assembly code:

```
LW R4 , 1000 ( R0 )
        ADDi R5 , R0 , 0
        ADDi R1 , R0 , 1
        ADDi R2 , R0 , 20
        NOP
iLoop:
        Beq R1 , R2 , A_LOOP
        ADD R3 , R0 , R1
        ADD R3 , R3 , R3
        ADD R3 , R3 , R3
        LW R6 , 1000 ( R3 )
        SLT R10 , R4 , R6
        NOP
        NOP
        Beq R10 , R0 , E_Loop
        ADD R4 , R0 , R6
        ADD R5 , R0 , R1
E_Loop: ADDi R1 , R1 , 1
        NOP
        NOP
        J iLoop
A_Loop: SW R4 , 2000 ( R0 )
        SW R5 , 2004 ( R0 )
```

### array of random numbers table:

| index | 0  | 1    | 2  | 3  | 4  | 5  | 6  | 7      | 8    | 9  | 10  | 11 | 12  | 13 | 14 | 15 | 16  | 17 | 18  | 19 |
|-------|----|------|----|----|----|----|----|--------|------|----|-----|----|-----|----|----|----|-----|----|-----|----|
| value | 10 | 3000 | 12 | 15 | 31 | 29 | 50 | 600000 | 3500 | 90 | 120 | 5  | 400 | 35 | 16 | 17 | 670 | 97 | 330 | 11 |

screenshots:



