TABELLA DELLE PRINCIPALI COSTANTI FISICHE						
Grandezza fisica	Simbolo usuale	Valore	Unità di misura			
Velocità della luce nel vuoto	С	299 792 458	m·s ⁻¹			
Costante dielettrica del vuoto	ε_0	8,854 187 817 × 10 ⁻¹²	F·m ⁻¹			
Permeabilità del vuoto	μ_0	$4\pi \times 10^{-7}$	T·m·A ⁻¹			
Costante di gravitazione universale	G	6,672 59(85) × 10 ⁻¹¹	N·m ² ·kg ⁻²			
Costante di Planck	h	6,626 068 76(52) × 10 ⁻³⁴	J·s			
Carica dell'elettrone	е	1,602 176 462(63) × 10 ⁻¹⁹	С			
Massa a riposo dell'elettrone	m _e	9,109 381 88(72) × 10 ⁻³¹	kg			
Massa a riposo del protone	m_p	1,672 621 58(13) × 10 ⁻²⁷	kg			
Massa a riposo del neutrone	m_n	$1,67492716(13) \times 10^{-27}$	kg			
Unità di massa atomica	1 amu	1,660 538 73(13) × 10 ⁻²⁷	kg			
Numero di Avogadro	L oppure N _A	6,022 141 99(47) × 10 ²³	mol ⁻¹			
Costante di Boltzmann	k	1,380 6503(24) × 10 ⁻²³	J·K ⁻¹			
Costante di Faraday	F	9,648 534 15(39) × 10 ⁴	C·mol ⁻¹			
Costante dei gas	R	8,314 472(15)	J·K ⁻¹ ·mol ⁻¹			
Costante di struttura fine	α	$7,297\ 352\ 533(27) \times 10^{-3}$				
Raggio di Bohr	a_0	5,291 772 083(19) × 10 ⁻¹¹	m			
Costante di Rydberg	R_{∞}	1,097 373 156 8549(83) × 10 ⁷	m ⁻¹			
Magnetone di Bohr	μ_{B}	9,274 008 99(37) × 10 ⁻²⁴	J·T ⁻¹			
Volume molare per gas ideale a 1 bar, 0°C		22,710 981(40)	L·mol ⁻¹			
Energia di Hartree	È' _h	4,359 743 81(34) × 10 ⁻¹⁸	J			
Momento magnetico dell'elettrone	μ_{e}	-9,284 763 62(37) × 10 ⁻²⁴	J·T ⁻¹			
Momento magnetico del protone	μ_{p}	1,410 607 61(47) × 10 ⁻²⁶	J·T ⁻¹			
Magnetone nucleare	μ_{N}	5,050 786 6(17) × 10 ⁻²⁷	J·T ⁻¹			
Rapporto giromagnetico del protone	γ_{p}	2,675 221 28(81) × 10 ⁸	s ⁻¹ ·T ⁻¹			
Costante di Stefan-Boltzmann	σ	5,670 400(40) × 10 ⁻⁸	W·m ⁻² ·K ⁻⁴			
Prima costante di radiazione	c_1	3,741 774 9(22) × 10 ⁻¹⁶	W·m²			
Seconda costante di radiazione	c_2	1,438 769 (12) × 10 ⁻²	m⋅K			
Accelerazione di gravità (livello del mare)	g_{n}	9,80665	m·s ⁻²			

TABELLA DELLE PRINCIPALI COSTANTI MATEMATICHE					
Grandezza	Simbolo usuale	Valore			
Pi greco (costante di Archimede)	π	3,141 592 653 589 793			
Numero di Nepero	e	2,718 281 828 459 045			
Costante di Pitagora	$\sqrt{2}$	1,414 213 562 373 095			
Costante deliana	$\sqrt[3]{2}$	1,259 921 049 894 873			
Costante di Teodoro di Cirene	$\sqrt{3}$	1,732 050 807 568 877			

UNITA' DI MISURA FONDAMENTALI DEL SISTEMA INTERNAZIONALE						
Grandezza fisica	Simbolo	Nome dell'unità	Simb. unità	Descrizione		
Intensità di corrente	I, i	ampere	А	E' l'intensità della corrente elettrica che, fluendo tra due sottili conduttori rettilinei, di lunghezza infinita, posti parallelamente nel vuoto alla distanza di 1 m, produce una forza di 2·10 ⁻⁷ newton per metro di lunghezza di conduttore		
Intensità Iuminosa	Iv	candela	cd	E' l'intensità luminosa emessa da un corpo nero alla temperatura di fusione del platino (2047 °K) in direzione perpendicolare al foro di uscita di area pari a 1/600000 m ²		
Lunghezza	l	metro	m	E' la lunghezza percorsa dalla luce nel vuoto in un tempo pari a 1/299792458 di secondo.		
Massa	m	chilogrammo	kg	E' la massa di un blocco di platino-iridio conservato nell'Ufficio Internazionale di Pesi e Misure di Sèvres (Francia)		
Quantità di sostanza	n	mole	mol	E' la quantità di sostanza di un sistema che contiene tante unità elementari quanti sono gli atomi contenuti in 0,012 kg dell'isotopo ¹² C		
Temperatura termodinamica	Т	kelvin	К	E' pari a 1/273,165 della temperatura termodinamica del punto triplo dell'acqua		
Tempo	t	secondo	S	E' la durata di 9192631770 periodi della radiazione corrispondente alla transizione tra due livelli iperfini dello stato fondamentale dell'isotopo ¹³³ Cs		

	PREFISSI DEL SISTEMA INTERNAZIONALE						
10 ⁿ	Prefisso	Simbolo	Nome	Equivalente decimale			
10 ²⁴	yotta	Y	Quadrilione	1 000 000 000 000 000 000 000 000			
10 ²¹	zetta	Z	Triliardo	1 000 000 000 000 000 000 000			
10 ¹⁸	exa	Ε	Trilione	1 000 000 000 000 000 000			
10 ¹⁵	peta	P	Biliardo	1 000 000 000 000 000			
10 ¹²	tera	T	Bilione	1 000 000 000 000			
10 ⁹	giga	G	Miliardo	1 000 000 000			
10 ⁶	mega	М	Milione	1 000 000			
10 ³	kilo o chilo	k	Mille	1 000			
10 ²	etto	h	Cento	100			
10	deca	da	Dieci	10			
10 ⁻¹	deci	d	Decimo	0,1			
10 ⁻²	centi	С	Centesimo	0,01			
10 ⁻³	milli	m	Millesimo	0,001			
10 ⁻⁶	micro	μ	Milionesimo	0,000 001			
10 ⁻⁹	nano	n	Miliardesimo	0,000 000 001			
10 ⁻¹²	pico	p	Bilionesimo	0,000 000 000 001			
10 ⁻¹⁵	femto	f	Biliardesimo	0,000 000 000 000 001			
10 ⁻¹⁸	atto	а	Trilionesimo	0,000 000 000 000 000 001			
10 ⁻²¹	zepto	Z	Triliardesimo	0,000 000 000 000 000 001			
10 ⁻²⁴	yocto	у	Quadrilionesimo	0,000 000 000 000 000 000 001			

PRINCIPALI UNITA' DI MISURA DERIVATE DEL SISTEMA INTERNAZIONALE						
Grandezza fisica	Simb.	Nome dell'unità	Simb. unità	Equivalenza in termini di unità fondamentali SI		
frequenza	f, ν	hertz	Hz	s ⁻¹		
forza	F	newton	N	$kg \cdot m \cdot s^{-2}$		
pressione, sollecitazione,	р	pascal	Pa	$N \cdot m^{-2}$	$= kg \cdot m^{-1} \cdot s^{-2}$	
energia, lavoro, calore	Е, Q	joule	J	N⋅m	$= kg \cdot m^2 \cdot s^{-2}$	
potenza, flusso radiante	P, W	watt	W	J·s ⁻¹	$= kg \cdot m^2 \cdot s^{-3}$	
carica elettrica	q	coulomb	С	A · s		
potenziale elettrico, forza	V, E	volt	V	J · C ⁻¹	$= m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$	
resistenza elettrica	R	ohm	Ω	$V \cdot A^{-1}$	$= m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$	
conduttanza elettrica	G	siemens	S	$A \cdot V^{-1}$	$= s^3 \cdot A^2 \cdot m^{-2} \cdot kg^{-1}$	
capacità elettrica	С	farad	F	$C \cdot V^{-1}$	$= s^4 \cdot A^2 \cdot m^{-2} \cdot kg^{-1}$	
densità flusso magnetico	В	tesla	Т	$V \cdot s \cdot m^{-2}$	$= kg \cdot s^{-2} \cdot A^{-1}$	
flusso magnetico	Φ(B)	weber	Wb	V·s	$= m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$	
induttanza	L	henry	Н	$V \cdot s \cdot A^{-1}$	$= m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$	
temperatura	T	grado Celsius	°C	°K	-	
angolo piano	φ, θ	radiante	rad	1	$= \mathbf{m} \cdot \mathbf{m}^{-1}$	
angolo solido	Ω	steradiante	sr	1	$= m^2 \cdot m^{-2}$	
flusso luminoso		lumen	lm	cd · sr		
illuminamento		lux	lx	$cd \cdot sr \cdot m^{-2}$		
rifrazione	D	diottria	D	m^{-1}		
attività di un radionuclide	A	becquerel	Bq	s ⁻¹		
dose assorbita	D	gray	Gy	J·kg ⁻¹	$= m^2 \cdot s^{-2}$	
dose equivalente	Н	sievert	Sv	J·kg ⁻¹	$= m^2 \cdot s^{-2}$	
dose efficace	Е	sievert	Sv	J·kg ⁻¹	$= m^2 \cdot s^{-2}$	
attività catalitica		katal	kat	$mol \cdot s^{-1}$		
		Altre grandezze	fisiche	<u>I</u>		
area	A	metro quadro	m²	m ²		
volume	V	metro cubo	m³	m ³		
velocità	ν	metro al	m/s	$m \cdot s^{-1}$		
1 11				s ⁻¹		
velocità angolare	ω			rad · s ^{−1}		
accelerazione	а			$m \cdot s^{-2}$		
momento torcente				N · m	$= m^2 \cdot kg \cdot s^{-2}$	
numero d'onda	n			m ⁻¹		
densità	ρ	chilogrammo al	kg/m³	$kg \cdot m^{-3}$		
volume specifico				$m^3 \cdot kg^{-1}$		
molarità SI				mol · dm ⁻³		
volume molare	V _m			$m^3 \cdot mol^{-1}$		
capacità termica, entropia	<i>C, S</i>			J · K ⁻¹	$= m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$	
calore molare,	$C_{\rm m}$, $S_{\rm m}$			$J \cdot K^{-1} \cdot mol^{-1}$	$= m^2 \cdot kg \cdot s^{-2} \cdot K^{-1} \cdot mol^{-1}$	
calore specifico,	c, s			$J \cdot K^{-1} \cdot kg^{-1}$	$= m^2 \cdot s^{-2} \cdot K^{-1}$	

	1		<u> </u>	
energia molare	E _m		J·mol ⁻¹	$= m^2 \cdot kg \cdot s^{-2} \cdot mol^{-1}$
energia specifica	e		J⋅kg ⁻¹	$= m^2 \cdot s^{-2}$
densità di energia	U		J⋅m ⁻³	$= m^{-1} \cdot kg \cdot s^{-2}$
tensione superficiale	σ		N · m ^{−1}	= J · m ⁻²
				$= kg \cdot s^{-2}$
densità di flusso calorico,	σ		$W \cdot m^{-2}$	$= kg \cdot s^{-3}$
conduttività termica			$W \cdot m^{-1} \cdot K^{-1}$	$= m \cdot kg \cdot s^{-3} \cdot K^{-1}$
viscosità cinematica,	η		$m^2 \cdot s^{-1}$	
viscosità dinamica			$N \cdot s \cdot m^{-2}$	= Pa⋅s
viscosita dilialilica	ρ		M · S · III	$= m^{-1} \cdot kg \cdot s^{-1}$
densità di carica elettrica			$C \cdot m^{-3}$	$= m^{-3} \cdot s \cdot A$
densità di corrente elettrica	j		$A \cdot m^{-2}$	
conduttività elettrica	ρ		$S \cdot m^{-1}$	$= m^{-3} \cdot kg^{-1} \cdot s^3 \cdot A^2$
conduttività molare	ρ		$S \cdot m^2 \cdot mol^{-1}$	$= kg^{-1} \cdot mol^{-1} \cdot s^3 \cdot A^2$
permittività elettrica	ε		$F \cdot m^{-1}$	$= m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$
permeabilità magnetica	μ		$H \cdot m^{-1}$	$= m \cdot kg \cdot s^{-2} \cdot A^{-2}$
(intensità) di campo elettrico	F, E		$V \cdot m^{-1}$	$= m \cdot kg \cdot s^{-3} \cdot A^{-1}$
(intensità) di campo magnetico	Н		$A \cdot m^{-1}$	
magnetizzazione	М		$A \cdot m^{-1}$	
luminanza			cd ⋅ m ⁻²	
esposizione (raggi X e gamma)			C ⋅ kg ⁻¹	$= kg^{-1} \cdot s \cdot A$
tasso di dose assorbita			Gy⋅s ⁻¹	$= m^2 \cdot s^{-3}$