Many algorithms to solve it optimally = O(N+M)

1) Rabin - Kaop =

2) Z- algosithm

etc

1) Poetry of a stoing. $S \Rightarrow \text{"abcda"}$ Prelix => a, ab, abc, abcd and abcda # Substaining from oth index. 2) Suffix of a stoing. $S = ^{01} abcda''$ Soffin = a, da, eda, beda, abeda. Suffix is a substoring which ends 3) LPS of a stoing => longert poetix of a stoing which is also a suffix. longest poetix Poetix S & abcab ab cab X abc LPS (s) \$ 2 abca beal X

abcah

a Deab X

Ex S= aaaaa	۸	
	Partix	Soff
	a	a c
LDS (S) = 4	aa	aq _
	aaa	aga co
	$a_{a_{-}}aa$	aaaa U
	aaaa	aaaaa

Note: To calculate the LPS we don't consider the Pull stoing.

Boote Porce to find	lps of a so	torney !
$S = Q_1 Q_2 Q_3 Q_4$ $A A$ $I \neq 2$ P_1 P_2	Paelix alaz	239y
[], N-I]	9,9293	92 94

Pseudo (ode Lps => [1, n-1]
int als-lps => 0;
for (int lps => 1; lps < n; lps ++) &
1nt p1 =>0; int p2 => 0 - lps;
While (Piclos) ?
if $(SCP_1] = = SCP_2$) $P_1++, p_2++, P_1(P_1=-l_{ps})$
ans. lps
borak; = lps
3

01234			-
S = 'abcab'	lps	poelau	Soffen
P P	1	a	Ь
Pi Pz	2	ab	abu
	3	abc	@ cab
·	4	abca	bcab
	·		

SP aaaa PP aa SI P + S aaaaa 0 | 1 | 2 | 3 | 4 | 5 S 7 P + # + S aa + aaaa0 1 0 1 1 2 1 2 1 2 1 2

Oz Given a string s and a partieon, find the number time padlern occubred in Ex: S= ab ababaa ab P= ab SP P+ (#) +S S' Pab # ab ab a a a ab 0001212112111112 Tc: 0 (n+m) Sc: 0 (n+m)

STSTS abababab \$ It has all cyclic rotations => Subataings of length. afthe original 1) $S[0-3] \neq abab$ 2) $S[1-4] \neq baba$ 3) $S[2-5] \neq abab$ 9) $S[3-6] \neq abab$ 3) $S[4-7] \neq abab$ # S = S + S - Jos. Character SFabababa S" => S+ "#"+S abab # abababa 00123456789101

Q Given a stoing s. Calculate the min
no of characters to add in the beginning to S to make it a palindsome
Exy deabacd
Ext ed aabaadef.
Ex3 ed abbade
L = length of the longest Poelix palindrome.
ars = N - L
Prefix palindrum = Prefix which is equal to 1tis reverse

labacd # dcaba

3

Ex ababa

ababa # ababa

* 5

a, a2 a3 au a3 # a5 a4 a3 a2 a1

$$Q_1 = Q_4$$

$$Q_2 = Q_3$$

$$Q_3 = Q_2$$

$$Q_1 = Q_1$$