- 1. Найдите SVD-разложение матрицы $\begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.
- 2. В каких границах могут лежать диагональные элементы матрицы-шляпницы H? Чему равно их среднее значение?
- 3. Найдите дифференциал $d \frac{r^T A r}{r^T r}$, где $A^T = A -$ это матрица констант.
- 4. Постройте регрессию вектора $y=(4,2,-2)^T$ на вектора $x=(1,0,-1)^T$ и $z=(0,1,2)^T$ без константы. Найдите RSS,TSS,ESS. Верно ли в данной регрессии, что TSS=ESS+RSS и почему?
- 5. Известно, что y=x+2z. Храбрый исследователь Василий построил парные регрессии y на x и x на y. Нам частично известны результаты этих регрессий, $\hat{y}_i=\hat{\alpha}_1+16x_i, \hat{x}_i=\hat{\beta}_1+0.01y_i.$ Найдите коэффициент $\hat{\gamma}_2$ в регрессии $\hat{x}_i=\hat{\gamma}_1+\hat{\gamma}_2z_i.$
- 6. Докажите, что в методе главных компонент с масштабированием переменных средняя величина \mathbb{R}^2 по всем парным регрессиям исходных переменных на первую главную компоненту равна наибольшему сингулярному значению матрицы исходных переменных.
- 7. Поделим выборку на обучающую (X,y) и тестовую (X_{test},y_{test}) . Регрессоры X и X_{test} будем считать нестохастическими, а предпосылки теоремы Гаусса-Маркова выполненными на всей исходной выборке.

Найдите $Var(\hat{y}_{test})$, $Cov(\hat{\beta}, \hat{y}_{test})$.