

ENERGY-SAVING SUPPORTING SYSTEM FOR MANUFACTURING FACILITY AND METHOD THEREOF

Patent Number:

JP2001004676

Publication date:

2001-01-12

Inventor(s):

OUCHI SADAMI; BABA TAKAO

Applicant(s):

MITSUBISHI ELECTRIC CORP

Requested Patent:

☐ JP2001004676

Application Number: JP19990170811 19990617

Priority Number(s):

IPC Classification:

G01R22/00

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To form an energy unit consumption characteristic graph representing a change in an energy unit consumption by performing approximation process on respective points plotted on an energy unit consumption characteristic graph and finding its approximate expression.

SOLUTION: First of all, an object name such as manufacturing facility 8 and a time frequency to be collected are inputted to an energy consumption amount collecting means 3. According to a starting command from the collecting means 3, an energy consumption amount measuring device 7 connects a power measuring sensor and the like to the manufacturing facility 8 and the like for measuring an energy consumption amount. Then, this amount is stored in the collecting means 3. A manufacture amount for a fixed term is also inputted. An energy unit consumption computing means 4 computes an energy unit consumption from these data, and an energy unit consumption graph forming means 5 forms a graph using a time statistic for the abscissa and using an energy unit consumption for the vertical. This graph is indicated on a display device 1 by an energy unit consumption statistic graph indicating means 6.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-4674 (P2001-4674A)

(43)公開日 平成13年1月12日(2001.1.12)

(51) Int.Cl.'
G 0 1 R 19/165

31/02

識別記号

FI G01R 19/165 テーマコード(参考)

31/02

2G014 2G035

審査請求 未請求 請求項の数5 OL (全 9 頁)

(21)出顧番号

特顯平11-170640

(22)出顧日

平成11年6月17日(1999.6.17)

(71)出職人 395011665

株式会社ハーネス統合技術研究所

愛知県名古屋市南区菊住1丁目7番10号

(71)出願人 000183406

住友電装株式会社

三重県四日市市西末広町1番14号

(71) 出願人 000002130

住友重気工業株式会社

大阪府大阪市中央区北浜四丁目5番33号

(74)代理人 100067828

最終頁に続く

(54) 【発明の名称】 過電流検知回路

(57)【要約】

【課題】 通電開始時に突入電流が生じたり、モータのロック電流のように通電途中で正常動作の一環として電流レベルが上昇するような負荷に対して、正常動作を過電流と誤検知することなく、通電流が生じたときのみ確実にこれを検知することが可能であって、しかもその検知を簡素な回路構成で行う。

【解決手段】 電流検出回路10は、シャント抵抗2に流れる負荷電流I、に比例する比例電流I、を出力部11から出力する。 積分回路20は、抵抗R1が電流検出回路10の出力部11とアースとの間に接続され、抵抗R2 およびコンデンサC1からなる直列回路が抵抗R1に並列に接続されて構成される。コンパレータ40により積分回路20からの出力電圧V。と基準電圧生成回路30からの基準電圧V。とが比較され、V。>V。になるとコンパレータ40から過電流信号としてローレベルの電圧信号が出力される。

【特許請求の範囲】

【請求項1】 電源部と負荷を接続する電線に設けられ たスイッチ手段をオンにすることにより上記電源部から 上記負荷への電流供給を行う電流供給回路での過電流を 検知する回路であって、

上記負荷に供給される負荷電流に対応するレベルの対応 信号を第1出力部から出力する電流検出手段と、

上記対応信号と時間との積に相当する積分信号を第2出 力部から出力する積分信号出力手段と、

予め設定されたレベルの基準信号を出力する基準信号出 10 力手段と、

上記積分信号と上記基準信号のレベルを比較して上記積 分信号が上記基準信号以上になると過電流信号を出力す る過電流信号出力手段とを備えたととを特徴とする過電 流検知回路。

【請求項2】 請求項1記載の過電流検知回路におい て、

上記電流検出手段は、上記負荷電流に比例するレベルの 電流信号を上記第1出力部から出力するもので、

間に接続された抵抗および当該抵抗に並列接続されたコ ンデンサを備え、上記抵抗の上記第1出力部側を上記第 2出力部とするもので、

上記基準信号出力手段は、上記基準信号として予め設定 されたレベルの基準電圧を上記電源部から出力される電 源電圧に基づいて生成する基準電圧生成回路を備えたも のであることを特徴とする過電流検知回路。

【請求項3】 請求項2記載の過電流検知回路におい て、上記積分信号出力手段は、上記コンデンサに直列接 続された第2抵抗をさらに備え、上記コンデンサおよび 30 流レベルが急上昇する突入電流を生じるものがあるが、 上記第2抵抗からなる直列回路が上記抵抗に並列接続さ れたものであることを特徴とする通電流検知回路。

【請求項4】 請求項3記載の過電流検知回路におい て、上記第2抵抗の抵抗値は、上記スイッチ手段に流れ る電流が当該スイッチ手段の安全動作領域限界に達する までに上記過電流信号出力手段から上記過電流信号が出 力されるように設定されていることを特徴とする過電流 檢知回路。

【請求項5】 請求項1~4のいずれかに記載の過電流 検知回路において、上記過電流僧号が出力されると上記 40 す回路は、ランプスイッチ101がオンにされると制御 スイッチ手段をオフにする回路遮断手段を備えたことを 特徴とする過電流検知回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電源部から負荷に 電流を供給する電流供給回路において過電流を精度良く 検知する過電流検知回路に関するものである。

[0002]

【従來の技術】従来、自動車に装備される電装品などの 負荷にバッテリから電流を供給する電流供給回路におい 50 オフにされて第1レベル電圧の印加が遮断され、コンデ

て、例えば自動車の衝突事故などで電線が車体の金属部 分に短絡すると電線に過電流が流れて発熱するなどの不 都合が生じるので、負荷や電線を保護するために電線に 流れる過電流を検知する必要があった。

【0003】一般に、電線は複数の素線が合成樹脂など により被覆されて形成されるが、自動車の電気回路に用 いられる電線における過電流検知を検討する場合には、 例えば衝突事故などの際に、電線を形成する素線全体が 完全に車体の金属部分に短絡した場合だけでなく、絶縁 被覆の一部が破れ、そとから電線の一部がほつれ出て金 **属部分と接触するような場合も検討する必要がある。**

【0004】上記のような被覆が破れた状態の場合に は、より少ない導線に電流が集中することになるため、 同レベルの過電流であっても導線の温度上昇は上記完全 な短絡状態の場合よりも大きくなるので、導線の発熱に よって、より短時間で被覆が過熱状態となり、被覆樹脂 の劣化が進行することになる。

【0005】最悪の状態は、電線を構成する素線1本が ほつれ出てアースと接触した状態である。図9に電線の 上記積分信号出力手段は、上記第1出力部とアースとの 20 劣化特性を示す。なお、劣化特性とは、ある電流値が電 線に流れているときに過熱により被覆樹脂の劣化が急激 に進み始める通電時間を示すものである。 図9に示すよ うに、素線 1本の短絡による劣化特性 A 1 は完全な短絡 による劣化特性A2よりも低電流側にシフトしている。 【0006】従来、過電流検知の方法として、所定レベ ルに設定された過電流判定レベルと負荷電流とを比較 し、負荷電流が過電流判定レベル以上になると過電流と 判定することが行われている。ところが、負荷のなかに はランプやモータなどのように通電開始時に一時的に電 この突入電流は異常電流ではないため、突入電流が流れ ても過電流と判定しないようにする必要があり、そのた めの手段として、過電流判定レベルを通電開始時には高 くしておき、時間の経過とともに低くする等の工夫を要 する.

> 【0007】従来、このような突入電流を生じる負荷に ついても素線 1 本の短絡による過電流のみを的確に検知 する回路として、図10に示すような回路が提案されて いる(特開平11-51983号公報参照)。同図に示 部102からの制御信号により駆動部103から駆動電 圧が印加されてFET104がオンにされることによ り、電源部105から負荷106に電流を供給する回路 である。この回路では、ランプスイッチ101がオンに されるまではトランジスタ107がオンにされており、 コンパレータ108で比較される過電流判定レベルとし て、突入電流に対応するレベルより高い第1レベルの電 圧が電源回路109から印加される。そして、ランプス イッチ101がオンにされると、トランジスタ107が

ンサおよび抵抗からなる充放電回路110の作用によっ て、基準電圧生成回路111により生成される第1レベ ルより低い第2レベルの電圧に向けて過電流判定レベル が徐々に低下するようになっている。この図10に示す 回路によって、図9の一点鎖線に示す過電流検知ライン A3を形成し、負荷電流A4の突入電流を通電流と誤検 知しないようにしている。

(0008)

【発明が解決しようとする課題】ところが、上記図10 に示す特開平11-51983号公報記載の過電流検知 10 回路では、突入電流を過電流と誤検知するのは防止でき るが、例えば自動車において、図11に示すように、パ ワーウィンドーが開閉終了したときや電動ミラーが端部 で停止したときにモータに流れるロック電流によって負 荷電流A4のレベルが過電流検知ラインA3より高くな った場合には、過電流と誤検知してしまうおそれがあ る.

【0009】また、図10の回路では、過電流判定レベ ルとして第1レベルの電圧および第2レベルの電圧を出 力する必要があるために電源回路109および基準電圧 20 生成回路111の2つの回路を備え、さらに負荷106 をオンにするランプスイッチ101に同期してトランジ スタ107をオンオフするための回路を備えており、と れによって回路構成が複雑化していた。このような駆動 信号の種類が多く、入出力の端子数が多い複雑な回路構 成では、集積回路(Integrated Circuit、以下「IC」 という。)化が困難であり、回路構成の簡素化が望まれ ている。

【0010】本発明は、上記問題を解決するもので、通 電開始時に突入電流が生じたり、モータのロック電流の 30 ように通電途中で正常動作の一環として電流レベルが上 昇するような負荷に対して、正常動作を過電流と誤検知 することなく、過電流が生じたときのみ確実にこれを検 知することが可能であって、しかもその検知を簡素な回 路構成で行うことができる過電流検知回路を提供すると とを目的とする。

[0011]

【課題を解決するための手段】本発明は、電源部と負荷 を接続する電線に設けられたスイッチ手段をオンにする 電流供給回路での過電流を検知する回路であって、上記 負荷に供給される負荷電流に対応するレベルの対応信号 を第1出力部から出力する電流検出手段と、上記対応信 号と時間との攅に相当する積分信号を第2出力部から出 力する積分信号出力手段と、予め設定されたレベルの基 準信号を出力する基準信号出力手段と、上記積分信号と 上記基準信号のレベルを比較して上記積分信号が上記基 準信号以上になると過電流信号を出力する過電流信号出 力手段とを備えたものである。

電流に対応するレベルの対応信号が電流検出手段の第1 出力部から出力され、この対応信号と時間との積に相当 する積分信号が積分信号出力手段の第2出力部から出力 される。一方、予め設定されたレベルの基準信号が基準 信号出力手段により出力されており、上記積分信号と上 記基準信号のレベルが比較され、上記積分信号が上記基 準信号以上になると過電流信号が出力される。このよう に、対応信号と時間との積に相当する積分信号を用いる ととにより、正常動作の一環として通電開始時に負荷電 流のレベルが上昇する突入電流や、通電途中にレベルが 上昇するモータのロック電流などのいずれの場合でも過 電流と誤検知することがなくなる。これによって、必要 とする基準信号が1つだけの簡素な構成で、過電流の適 正な検知が可能になる。

【0013】また、上記電流検出手段は、上記負荷電流 に比例するレベルの電流信号を上記第1出力部から出力 するもので、上記積分信号出力手段は、上記第1出力部 とアースとの間に接続された抵抗および当該抵抗に並列 接続されたコンデンサを備え、上記抵抗の上記第1出力 部側を上記第2出力部とするもので、上記基準信号出力 手段は、上記基準信号として予め設定されたレベルの基 準電圧を上記電源部から出力される電源電圧に基づいて 生成する基準電圧生成回路を備えたものであるとしても よい.

【0014】との構成によれば、負荷電流に比例するレ ベルの電流信号が抵抗を介してアースに流れるとともに コンデンサが充電されるので、第2出力部に電流信号と 時間との積に相当する積分信号として電圧信号が形成さ れ、との電圧信号と基準電圧とが比較されることとな る。とれによって、抵抗およびコンデンサを並列に配し ただけの簡素な回路構成で、過電流の適正な検知が行わ れることとなる。また、抵抗およびコンデンサのパラメ ータを変化させるととにより、所望の形状の積分信号を 形成することができ、これによって負荷や電線の特性に 応じて適正な過電流検知レベルの設定が可能になる。 【0015】また、上記積分信号出力手段は、上記コン デンサに直列接続された第2抵抗をさらに備え、上記コ ンデンサおよび上記第2抵抗からなる直列回路が上記抵 抗に並列接続されたものであるとすることにより、第2 ことにより上記電源部から上記負荷への電流供給を行う 40 抵抗の抵抗値を変化させることで積分信号の特性、すな わち時間経過に対するレベル変化の設定自由度を更に高 めることが可能になり、これによって過電流検知レベル

【0016】なお、この第2抵抗の抵抗値は、上記スイ ッチ手段に流れる電流が当該スイッチ手段の安全動作領 域限界に達するまでに上記過電流信号出力手段から上記 過電流信号が出力されるように設定されていることによ り、スイッチ手段の過電流に対する保護が好適に行える とととなる。とのスイッチ手段としては、バイボーラト 【0012】この構成によれば、負荷に供給される負荷 50 ランジスタ、FETや1GBTなどを用いることができ

の設定をさらに適正なものにすることができる。

【0017】また、上記過電流信号が出力されると上記 スイッチ手段をオフにする回路遮断手段を備えることに より、過電流が継続して負荷に流れるような状態が阻止 されることとなり、負荷や電線が保護される。

[0018]

【発明の実施の形態】図1は本発明に係る過電流検知回 路を備えた自動車の電流供給回路の一実施形態の回路図 である。この電流供給回路は、例えば車載バッテリから T3および負荷4が直列に接続されてなり、スイッチ5 がオンにされると、チャージポンプ回路6が動作してF ET3のゲートに駆動電圧が印加されてFET3がオン にされ、電流が電源部1から負荷4に供給されて、負荷 4が作動するようになっている。負荷4として、本実施 形態では、例えばヘッドランプなどの車載ランプや、バ ワーウインドーや電動ドアミラーを駆動するモータなど が用いられる。

【0019】シャント抵抗2は、抵抗値Rが既知の高精 度な低抵抗で、電源部1と負荷4の間に介設される電流 20 ..(Q1)はトランジスタQ1のベース-エミッタ間電 検出抵抗を構成する。電源部1と負荷4とを接続する電 線7は、複数の素線が被覆されて形成されている。ま た、スイッチ5は、電源部1から負荷4への電流供給の オンオフを指示する操作手段を構成し、FET3は、電 源部 1 から負荷4への電流供給をオンオフさせるスイッ チ手段を構成し、チャージポンプ回路6は、FET3を 駆動する駆動部を構成している。なお、FET3に代え て、バイポーラトランジスタや【GBTなどを用いても よい。

れる負荷電流1、に比例する比例電流(対応信号)1、を出力 部(第1出力部)11から出力するものである。この電流 検出回路10は、図1に示すように、PNPトランジス タからなるトランジスタQ1, Q2と、NPNトランジ スタからなるトランジスタQ3、Q4と、抵抗値がR、 の抵抗R11を備えている。

【0021】トランジスタQ1のエミッタは、抵抗R1 1を介してシャント抵抗2の電源部1側に接続され、ト ランジスタQ1のベースは、トランジスタQ2のベース スタQ3のコレクタに接続されている。トランジスタQ 2のエミッタは、シャント抵抗2の負荷4側に接続さ れ、トランジスタQ2のコレクタは、当該トランジスタ Q2のベース及びトランジスタQ4のコレクタに接続さ れている。

【0022】トランジスタQ3のベースは、当該トラン ジスタQ3のコレクタ及びトランジスタQ4のベースに 接続され、トランジスタQ3のエミッタは、抵抗R2を 介して接地されている。トランジスタQ4のエミッタ は、トランジスタQ3のエミッタに接続され、との接続 50 となる。従って、上記式(4)、式(9)より、

点が出力部11とされ、後述する抵抗R1を介して接地

【0023】なお、トランジスタQ1とトランジスタQ 2、トランジスタQ3とトランジスタQ4とは、それぞ れ、特性がほぼ同一のトランジスタを採用している。 【0024】ととで、負荷電流I、に比例する比例電流I、 を出力部11から出力する電流検出回路10の作用につ

【0025】まず、抵抗R11は、下記式(1)に示すよ なる電源部 1 とアースとの間に、シャント抵抗 2 、FE 10 うに、シャント抵抗 2 の抵抗値 R, のN倍の抵抗値 R, を有 するものを採用している。

> R. . = N.R. ...(1)

トランジスタQ1.Q2のベースとシャント抵抗2の電 源部1側との電位差について下記式(2)が得られる。 [0026]

 $I_1 \cdot R_1 + V_2 \cdot (Q1)$

いて説明する。

 $= (I_1, +I_1) \cdot R_1 + V_{1,1}(Q2)$...(2)

但し、図1に示すように、LutトランジスタQ2のエ ミッタ電流、IxxはトランジスタQ1のエミッタ電流、V 圧、V.(Q2)はトランジスタQ2のベースーエミッタ 間電圧である。

【0027】また、トランジスタQ1とトランジスタQ 2とは、上述したように、特性がほぼ同一のトランジス タを採用しているので、下記式(3)が得られる。

W.(Q1)=W.(Q2) ... (3)

上記式(1)、式(3)を上記式(2)に代入すると、下記式 (4)が得られる。

 $I_{11} = (I_{11} + I_{L})/N$...(4)

【0020】電流検出回路10は、シャント抵抗2に流 30 また、図1の回路において、トランジスタQ3,Q4 は、いわゆるカレントミラー回路を構成している。との カレントミラー回路では、共通のエミッタ抵抗R 1を介 して接地されており、かつ、上述したように特性がほぼ 同一のトランジスタを採用していることからベースーエ ミッタ間電圧が等しいので、下記式(5)が得られる。 L(Q3)=L(Q4)...(5)

> 但し、F(Q3)はトランジスタQ3のコレクタ電流、F (Q4)はトランジスタQ4のコレクタ電流である。

【0028】ととで、一般に、トランジスタのhぇ= に接続され、トランジスタQ1のコレクタは、トランジ 40 (コレクタ電流)/(ベース電流)は十分に大きいので、各 トランジスタのエミッタ電流とコレクタ電流は等しいと みなすことができ、下記式(6)、式(7)が得られる。

> $L(Q3) = I_{12}$...(6)

...(7) $L(Q4) = I_{11}$

さらに、下記式(8)が得られる。

L(Q3) = L(Q3)

L(Q4)=L(Q4)...(8)

従って、上記式(5)、式(6)、式(7)より

 $I_{12} = I_{11}$...(9)

 $I_{1,2} = I_{1,1} = I_{1} / (N-1)$... (10) となる。また、上記式(6)、式(8)より、

 $I_1, = I_2(Q3)$... (11)

となる。従って、上記式(10)、式(11)より、出力電流1, は、

 $I_s = 2 \cdot I_{11}$

 $= 2 \cdot I_L / (N-1)$... (12)

となる。従って、数値Nが既知であるので、負荷電流I、 に比例する比例電流」、が得られる。

[0029] 例えば、R₁ = 10(m Ω)、R₁ = 1(k Ω)とす 10 3をオフにする回路遮断手段を構成する。 ると、N=10 になるので、I = 3(A)のときはI = 0.06 (m A)となる。

【0030】図1に戻り、積分回路(積分信号出力手段) 20は、抵抗R1と、抵抗 (第2抵抗) R2と、コンデ ンサClとを備え、抵抗Rlが電流検出回路lOの出力 部11とアースとの間に接続され、抵抗R2およびコン デンサC 1 からなる直列回路が抵抗R 1 に並列に接続さ れて構成されており、抵抗R1の出力部11側が出力部 (第2出力部) 21 とされている。

力される電圧V。は、抵抗R1の抵抗値をR、抵抗R2の 抵抗値をR、コンデンサC 1の容量をGとすると、下記 式で表わされる。

 $V_0 = I_s \cdot R_s \cdot [1 - R_s / (R_s + R_s) \cdot \exp(-t / \tau)]$ ただし、tは経過時間で、モニ(R, +R,)・C, である。上記 式に示すように、積分回路20の出力部21から出力さ れる電圧V。は、電流検出回路10の出力部11から出力 される比例電流 I、と時間の積に相当する電圧(積分信号) なになっている。

【0032】基準電圧生成回路30は、電源電圧V.から 30 時間側にシフトさせるととができる。 基準電圧V、を生成して出力部31から出力するもので、 ツェナーダイオードおよびオペアンプからなる上記特開 平11-51983号公報に記載の回路や、半導体(例 えばシリコン)のエネルギーバンドギャップ電圧を利用 したバンドギャップリファレンス回路などの公知の回路 を採用することができる。

【0033】コンパレータ40の非反転入力端子は基準 電圧生成回路30の出力部31に接続され、反転入力端 子は積分回路20の出力部21に接続され、出力端子 は、抵抗41によりプルアップされるとともに、インバ 40 ータ42を介してNPNトランジスタ50のベースに接 続されている。トランジスタ50のコレクタはFET3 のゲートに接続され、エミッタは接地されている。この 構成により、通常はプルアップ抵抗41によるハイレベ ル信号がインバータ42により反転されたローレベル信 号が印加されて、トランジスタ50はオフになってい

【0034】そして、コンパレータ40により積分回路 20からの出力電圧%と基準電圧生成回路30からの基 準電圧V、とが比較され、V。>V、になるとローレベルの電 50 イドやモータなどの自動車に搭載される種々の負荷に適

圧信号(過電流信号)が出力され、インバータ42により 反転されたハイレベル電圧信号がトランジスタ50に印 加されてトランジスタ50がオンになり、トランジスタ 50のオンによりFET3のゲートが接地されて、FE T3がオフにされ、負荷4への電流供給が遮断されるよ うになっている。

【0035】コンパレータ40は、過電流信号を出力す る過電流信号出力手段を構成し、トランジスタ50は、 コンバレータ40から過電流信号が出力されるとFET

【0036】図2は、図1に示す積分回路20の抵抗R 1 およびコンデンサC1の値を変化させたときの過電流 検知ラインを示す図、図3は、抵抗R2の値を変化させ たときの過電流検知ラインを示す図である。

【0037】図2において、中央の実線P0は、抵抗値 R₄ = R₆、コンデンサ容量C₄ = C₄のときの過電流検知ライ ンを示している。との実線POの上下の一点鎖線P1, P2は、それぞれコンデンサ容量G=Gで、抵抗値B= 2·R. R. = R. / 2のときの過電流検知ラインを示してい 【0031】ことで、積分回路20の出力部21から出 20 る。同図に示すように、抵抗R1の抵抗値R。を低減する てとにより、定常 (時間的に長く、検知レベルが変化し ていない)領域において、過電流検知レベルの電流値を 低下させることができる。

> [0038]また、実線P0の左右の破線P3, P4 は、それぞれ抵抗値R、=R、で、コンデンサ容量C、=C./ 10. C = 10·C のときの過電流検知ラインを示してい る。同図に示すように、コンデンサC1の容量値C、を増 大することにより、過渡(時間が短く、検知ラインが変 化している) 領域での過電流検知ラインを時間軸上で長

> 【0039】また、図3に示すように、抵抗R2の抵抗 値R、を大きくすると、過渡(時間が短く、検知ラインが 変化している)領域において、過電流検知ラインの検知 電流を矢印P5の方向に低下させることができる。

> 【0040】図2、図3に示すように、積分回路20の 抵抗R1、R2の抵抗値R, R、コンデンサC1の容量 値C, を変更することによって、負荷4の特性に応じて適 正な過電流検知ラインを設定することができる。

> 【0041】とのように、本実施形態によれば、負荷電 流」、に比例する比例電流」、と時間の積に相当する電圧V。 を出力し、これと基準電圧V、とを比較するようにしたの で、図4に示すように、正常動作の一環として通電開始 時に負荷4に流れる電流レベルが上昇する突入電流や、 通電途中でレベルが上昇するロック電流が流れた場合で も、基準電圧V。より出力電圧V。が高くなることはないの で、過電流と誤検知するととがなく、適正な過電流検知 を行うことができる。この場合、必要とする基準電圧が 1つだけの簡素な回路構成であるので、回路のIC化を 容易に行うことができる。また、ランプ、抵抗、ソレノ

用することが可能な過電流検知回路を実現することがで きる。

【0042】なお、本発明は、上記実施形態に限られ ず、以下の変形形態を採用することができる。

【0043】(1)図5は電流検出回路10の変形形態 を示す回路図で、図1と同一構成要素には同一符号を付 している。図5の回路は、図1の回路においてトランジ スタQ1とトランジスタQ3の間にPNPトランジスタ Q5を介設するとともに、トランジスタQ2とトランジ スタQ4の間にPNPトランジスタQ6を介設したもの 10 である。図5の回路によれば、図1の回路に比べてカレ ントミラー回路の特性が向上し、これによって電源部1 の電源電圧V.の変動による影響が低減し、より精度良く I,1=I,1が成立し、負荷電流I、により高精度で比例する 比例電流I、を得ることができる。

【0044】(2)図1、図5の電流検出回路10にお いて、PNPトランジスタQ1、Q2からなるトランジ スタ群T1、NPNトランジスタQ3. Q4からなるト ランジスタ群T2およびPNPトランジスタQ5、Q6 ウェハ上の隣接トランジスタを利用することなどによ り、ベース-エミッタ間電圧V。の差がほとんど無視で きるような構成にすることができる。

【0045】例えば、ディスクリート部品で回路を構成 する場合には、隣接する2個のトランジスタを1つのバ ッケージに収容したものが市販されているので、それを 利用すればよい。また、JCを用いる場合には、半導体 ウェハ上でトランジスタQ1とトランジスタQ2を隣接 して配置し、トランジスタQ3とトランジスタQ4を隣 接して配置し、トランジスタQ5とトランジスタQ6を 30 隣接して配置することにより、それぞれベースーエミッ タ間電圧V.の差をほとんど無視できる程度のレベルに するととができる。

【0046】また、図1、図5の電流検出回路10は、 各抵抗および各トランジスタが半導体ウェハ上に形成さ れたICにより構成するようにしてもよい。

【0047】 ここで、 I C における素子の特性のばらつ きについて説明する。「Cは、半導体(一般にはシリコ ン)のインゴットから切り出された1枚のウェハ上に公 知の回路形成工程によって多数の同一回路を形成した後 40 に、回路(チップ)毎にダイシングしてモールドすると とによって製造される。

【0048】従って、【Cにおける素子の特性のばらつ きは、1枚のウェハ内部のチップ間で発生するばらつき と、ウェハ間のばらつきと、ウェハを切り出したインゴ ット間のばらつきとに分けることができる。

【0049】 1 Cにおける素子の特性のばらつきは、回 路形成工程におけるばらつき、すなわちエッチング工程 のばらつき、露光工程のばらつき、不純物拡散工程の拡 散度合いのばらつき、各工程における温度のばらつきな 50 する電流である。

どの要因によって生じる。

【0050】このうちで、上記ばらつき要因であるエッ チング、露光、不純物拡散の各工程はウェハ毎に行わ れ、同一ウェハでは各工程の温度も同一であるので、1 枚のウェハ内部のチップ間では、特性のばらつきが生じ にくい。特に、同一チップ内で近接して形成される素子 間におけるばらつきは、殆ど無視することができる。

10

【0051】ととで、ICで構成された形態の電流検出 回路10において、トランジスタQ1とトランジスタQ 2の関係、トランジスタQ3とトランジスタQ4の関 係、トランジスタQ5とトランジスタQ6の関係は、ウ ェハ内部の同一チップにおいて近接して形成された素子 の関係に当たる。

【0052】従って、トランジスタQ1とトランジスタ Q2、トランジスタQ3とトランジスタQ4、トランジ スタQ5とトランジスタQ6の特性の相対的なばらつき は、それぞれ非常に低いレベルにすることができる。

【0053】とれによって、トランジスタQ1、Q2、 トランジスタQ3、Q4、トランジスタQ5、Q6の特 からなるトランジスタ群T3は、それぞれ、同一半導体 20 性を精度よく一致させることができ、極めて相対的なば らつきの小さい高精度の電流検出回路10を容易に得る ことができる。

> 【0054】一方、電流検出回路10をディスクリート の抵抗やトランジスタにより構成して同等の精度を得よ うとすると、各素子の選別を行って抵抗値などの特性を 揃える必要があるために、非常な手間を要することにな り、製造効率が低下することとなる。

> 【0055】 これに対して、電流検出回路 10を IC に より構成することによって、上述したように、負荷電流 に精度良く比例した電流を得ることが可能な電流検出回 路10を容易に実現できるとともに、回路を小型化する ことができる.

> 【0056】(3)図6は電流検出回路10の異なる変 形形態を示す回路図で、図1と同一構成要素には同一符 号を付している。図6の回路では、オペアンプOP1の 反転入力端子を抵抗R12を介してシャント抵抗R2の 電源部1側に接続し、非反転入力端子をシャント抵抗2 のFET3側に接続し、出力端子をPNPトランジスタ Q11のベースに接続している。さらに、オペアンプロ P1の反転入力端子をトランジスタQ11のエミッタに 接続し、トランジスタQ11のコレクタを出力部11と している。

> 【0057】図6の回路において、オペアンプOPIの 増幅率が十分に大きい場合には、オペアンプOP1の反 転入力端子と非反転入力端子の電位差は0とみなせる。 従って、I、:'R、:=(I、+I、)'R、≒I、'R、となる。但し、 R. は抵抗R12の抵抗値、R. はシャント抵抗2の抵抗 値、I、」はオペアンプOP I の反転入力端子に流入する 電流、1.1はオペアンプOPIの非反転入力端子に流入

【0058】上記式を変形すると、PNPトランジスタ Q11のエミッタ電流I、は、I、与I、·R、/R、となる。 とれによって、トランジスタQ11のエミッタ電流とコ レクタ電流はほぼ等しいことから、負荷電流工に比例し た電流を出力することができる。

11

【0059】(4)図7は電流検出回路10のさらに異 なる変形形態を示す回路図で、図1、図6と同一構成要 素には同一符号を付している。

【0060】FET(電界効果トランジスタ)は、一般 に、同一特性を示す最小単位のFETが多数集合して構 10 成されている。図7におけるセンスFET3aは、FE T内部で最小単位のFETの数がメイン部3bとセンス 部3 cとでN: 1に分割して構成されたものである。

【0061】最小単位のFETのオン抵抗をRとする と、メイン部3bの抵抗値はR/N、センス部3cの抵 抗値はRとなり、図6のシャント抵抗2がメイン部3 b に相当し、抵抗R12がセンス部3cに相当することと なる。これによって、図6の場合と同様に、負荷電流」、 に比例するコレクタ電流I、を得ることができる。

インの検討結果を示す図で、検討条件として、負荷4を 55W車載ヘッドランプとし、電線7をAVSSの0.85mmでと し、センスFET3aのN≒2,500とし、電源部1の電源 電圧V。=12Vとしている。また、図7では図示を省略し ている図1の積分回路20の抵抗R1の抵抗値R = 1.3 k Q、抵抗R 2 の抵抗値R。= 100Q、コンデンサC 1 の 容量値C₁ = 100 μ F 、基準電圧生成回路 3 0 から出力さ れる基準電圧V₄=2.5Vとしている。

【0063】図8において、ラインQ1は電線7の劣化 特性を示し、ラインQ2は電線7を構成する素線1本の 30 劣化特性を示し、ラインQ3はセンスFET3aの最大 定格を示し、ラインQ4は負荷電流」の最大電流を示 し、ライン群Q5は積分回路20の各業子のパラメータ を上記検討条件から変化させたときの過電流検知ライン を示している。

【0064】図8に示すように、積分回路20の各素子 のパラメータが適正な値のものを採用することにより、 過電流検知ラインを適正に設定するととができる。との 場合において、同図に示すように、素線1本の短絡を検 知するような過電流検知ラインを設定することも可能で 40 号が出力されるように設定されていることで、スイッチ

【0065】なお、積分回路20の抵抗R2として抵抗 値R、が所定レベル以上のものを採用することで、図3、 図8から分かるように、特に、過渡領域における過電流 検知ラインをFET3,3aの安全動作領域限界を超え ないようにすることができ、これによってFET3,3 aを確実に保護することができる。

【0066】(5)積分回路20は、抵抗R2を備えず に抵抗R 1 およびコンデンサC 1 のみで構成するように

1 およびコンデンサC1のパラメータを変更すること で、所望の過電流検知ラインを設定することができる。 [0067]

【発明の効果】以上説明したように、本発明によれば、 負荷に供給される負荷電流に対応するレベルの対応信号 を電流検出手段の第1出力部から出力し、上記対応信号 と時間との積に相当する積分信号を積分信号出力手段の 第2出力部から出力し、予め設定されたレベルの基準信 号と上記積分信号のレベルを比較して上記積分信号が上 記基準信号以上になると過電流信号を出力するようにし たので、正常動作の一環として負荷電流のレベルが上昇 する突入電流やモータのロック電流などのような場合 に、過電流と誤検知することがなくなり、過電流の適正 な検知を行うととができる。

【0068】また、電流検出手段は、負荷電流に比例す るレベルの電流信号を出力するもので、積分信号出力手 段は、電流検出手段の第1出力部とアースとの間に接続 された抵抗および当該抵抗に並列接続されたコンデンサ を備え、上記抵抗の第1出力部側を第2出力部とするも 【0062】図8は、図7の回路における遺電流検知ラ 20 ので、基準信号出力手段は、上記基準信号として予め設 定されたレベルの基準電圧を上記電源部に基づき生成す る基準電圧生成回路を備えたものであるとすることによ り、抵抗およびコンデンサの簡素な回路構成で、過電流 の適正な検知を行うことができる。また、抵抗およびコ ンデンサのパラメータを変化させることにより、所望の 形状の積分信号を形成することができ、これによって負 荷や電線の特性に応じて適正な過電流検知のレベルを設 定するととができる。

> 【0069】また、上記積分信号出力手段は、上記コン デンサに直列接続された第2抵抗をさらに備え、上記コ ンデンサおよび上記第2抵抗からなる直列回路が上記抵 抗に並列接続されたものであるとすることにより、さら に第2抵抗の抵抗値を変化させることで、積分信号を更 に容易に所望の形状にすることができ、これによって負 荷や電線の特性に応じて更に適正な過電流検知のレベル を容易に設定することができる。

【0070】さらに、第2抵抗の抵抗値をスイッチ手段 に流れる電流が当該スイッチ手段の安全動作領域限界に 建するまでに上記過電流信号出力手段から上記過電流信 手段を過電流に対して適正に保護するととができる。

【0071】また、上記過電流信号が出力されると上記 スイッチ手段をオフにする回路遮断手段を備えることに より、過電流が枢続して負荷に流れるような状態を阻止 することができ、負荷や電線を保護することができる。 【図面の簡単な説明】

【図1】本発明に係る過電流検知回路を備えた自動車の 電流供給回路の一実施形態の回路図である。

【図2】図1に示す積分回路の抵抗R1およびコンデン してもよい。この場合でも、図2に示すように、抵抗R 50 サC1の値を変化させたときの過電流検知ラインを示す 図である。

【図3】抵抗R2の値を変化させたときの過電流検知ラインを示す図である。

13

【図4】本実施形態による負荷電流および出力電圧の変化を示す図である。

【図5】電流検出回路の変形形態を示す回路図である。

【図 6】電流検出回路の異なる変形形態を示す回路図である。

【図7】電流検出回路のさらに異なる変形形態を示す回路図である。

【図8】図7の回路における過電流検知ラインの検討結果を示す図である。

【図9】電線の劣化特性を示す図である。

【図10】従来の過電流検知回路の回路図である。

* (図11)従来の課題を説明する図である。 【符号の説明】

2 シャント抵抗

3 FET (スイッチ手段)

3a センスFET (スイッチ手段)

10 電流検出回路(電流検出手段)

20 積分回路(積分信号出力手段)

30 基準電圧生成回路(基準信号出力手段)

40 コンパレータ(通電流信号出力手段)

50 トランジスタ(回路遮断手段)

R1 抵抗

R2 抵抗(第2抵抗)

C1 コンデンサ

(図1)

[図2]

[図3]

発育を定している。

[図4]

フロントページの続き

(72)発明者 星野 孝志 愛知県名古屋市南区菊住 1 丁目 7 番10号 株式会社ハーネス総合技術研究所内

F ターム(参考) 2G014 AA04 AB24 AB38 AC18 2G035 AA15 AD02 AD03 AD10 AD16 AD23