华南农业大学期末考试试卷(A卷)

2009-2010 学年第 1 学期 考试类型: (闭卷)考试			考试科目:_	高等数学AI			_
			考试时间:	分钟			
学号		名	年级专业_				
			1				
题号	_	=	三	四	总	分	
得分							
评阅人							
(一) 捕突	斯 <i>(</i> 木大斯	土5 小駒 (每小题 3 分,	共 15 分	押欠安	:写在揣缉	} ⊢
						:一/正/供以	ٔ سال
1. 函数 y	$=\frac{\arcsin(1-x)}{\sqrt{x-1}}$	的定义域。	是		o		
о 2Л	k. 2r	回心 是 、补					
	\mathcal{A}	则常数 k=					
3. 己知 <i>f</i>	(x)在 $x=1$	可导且 f '(1)	$=1$, $\iiint \lim_{x\to 1}$	$\frac{f(x)-f(1)}{x^2}$	<u> </u> =		。
				л 1			
	$\lambda + 1$	_	送是			°	
$5.$ 设 \int_{-a}^{a} (x	$(x^2 \sin x + x^4)a$	$dx = \frac{2}{5}$, $\mathbb{M} a$	=	0			
			题,每小题 3 要求的,把所]个:
1. $\stackrel{\text{\tiny $\underline{4}$}}{=} x \rightarrow$	0时,下列	函数中是	无穷小量的	是		(
A. $\frac{\sin x}{x}$	В.	2x-1	C. $\frac{1}{x}\ln(1$	(1+x)	D.	$x^2 + \sin x$	x
2. 设函数	(f(x)在区	闰[a,b]上回	「导且 f '(x) >	> 0,如身	$\not\in f(a) <$	$0 \ \overrightarrow{\mathbb{m}} f(b)$	> 0
则 f(x) 在[[a,b]					(
A. 至少	>有两个零	点	В	. 有且位	又有一ク	个零点	
C. 没有	事零点		Г). 是否	有零点を	下能确定	1
3. 下列函	数中在区门	司[-1,1]上满		直定理条	件的是	(
A. $y=1$	n x I	3. $y = x^2 - 1$	С. у	$v = \frac{1}{r^2}$	D.	$y = e^{-x}$	

4. 下列广义积分收敛的是

()

A. $\int_{1}^{+\infty} x dx$

 $\mathbf{B.} \quad \int_{1}^{+\infty} \frac{1}{x} dx$

 $C. \int_1^{+\infty} \frac{1}{x^2} dx$

- $D. \int_{1}^{+\infty} \cos x dx$
- 5. 设 $y = xe^y$,则dy =

()

A. $\frac{e^y}{xe^y-1}dx$

 $B. \frac{e^{y}}{1-xe^{y}}dx$

- $C. \frac{1-xe^{y}}{e^{y}}dx$
- D. $\frac{xe^y-1}{e^y}dx$
- (三) 计算题(本大题共7小题,每小题7分,共49分)
- 1. 求极限 $\lim_{x\to 0} \frac{e^x + e^{-x} 2}{x^2}$ o

2. 设函数 $f(x) = \begin{cases} \frac{\sin x}{x} + a, & x < 0; \\ 2, & x = 0; \text{ 在 } x = 0 \text{处连续,求 } a = b \text{ 的值。} \\ x \sin \frac{1}{x} + b, & x > 0. \end{cases}$

3. 计算定积分 $\int_1^4 \frac{dx}{\sqrt{x(1+x)}}$ 。

4. 设y = y(x) 是由方程 $e^x - e^y = xy$ 所确定的隐函数,求 y'(0) 。

5. 设函数 y = y(x) 由参数方程 $\begin{cases} x = \cos t \\ y = \sin t - t \cos t \end{cases}$ 所确定,求 $\frac{d^2y}{dx^2}$ 。

6. 计算定积分 $\int_0^{\frac{\pi}{4}} \frac{x}{1+\cos 2x} dx$ 。

7. 求不定积分 $\int \frac{x^3}{\sqrt{1+x^2}} dx$ 。

(四)解答题(本大题共3小题,每小题7分,共21分)

1. 证明不等式: 当x > 1时, $\frac{\ln(1+x)}{\ln x} > \frac{x}{1+x}$ 。

2. 设函数 $F(x) = \int_0^{x^2} e^{-t^2} dt$, 求F(x)的单调区间和凹凸区间。

3. 设抛物线 $y = ax^2 + bx + c$ 过原点,当 $0 \le x \le 1$ 时 $y \ge 0$ 。又已知该抛物 线与 x 轴及直线 x = 1 所围图形的面积为 $\frac{1}{3}$,试确定 $a \times b \times c$,使此图 绕 x 轴旋转一周而成的旋转体的体积 V 最小。

参考答案:

一、填空题(15分)

- 1. (1, 2] 2. $\frac{1}{2}$ 3. $\frac{1}{2}$ 4. y = -3 5. 1

二、单项选择题(15分)

- 1. D 2. B
- 3. B 4. C 5. B

三、计算题(49分)

1. 解: 原式=
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{2x}$$
 (3分)
$$= \lim_{x\to 0} \frac{e^x + e^{-x}}{2}$$
 (6分)
$$= 1$$
 (7分)

2.解: $f(0) = 2 \cdots (1分)$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (\frac{\sin x}{x} + a) = 1 + a = 2, \quad \forall a = 1 \quad \dots \quad (4 \implies 2)$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x \sin \frac{1}{x} + b) = b = 2, \quad \forall b = 2 \quad \dots \quad (7 \implies 2)$$

4. 解: 方程两边对x求导,

$$e^{x}-e^{y}\cdot y'=y+xy' \qquad \cdots \qquad (3 \%)$$

$$\therefore \quad y' = \frac{e^x - y}{e^y + x} \qquad \qquad (5 \, \cancel{f})$$

又将
$$x=0$$
代入原方程求出 $y=0$, ··············(6分)

所以
$$y'(0) = \frac{e^x - y}{e^y + x}|_{\substack{x=0 \ y=0}} = 1$$
 ·········(7分)

5. 解:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t - \cos t + t \sin t}{-\sin t} = -t \quad \dots \quad (3\%)$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{-1}{-\sin t} = \csc x \quad \dots (7\%)$$

6. 解:

$$\int_{0}^{\frac{\pi}{4}} \frac{x}{1+\cos 2x} dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{x}{\cos^{2} x} dx \cdot \dots \cdot (1/\pi)$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} x d \tan x \cdot \dots \cdot (3/\pi)$$

$$= \frac{1}{2} (x \tan x) \Big|_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} dx \cdot \dots \cdot (5/\pi)$$

$$= \frac{1}{2} (\frac{\pi}{4} + \ln \cos x) \Big|_{0}^{\frac{\pi}{4}} \cdot \dots \cdot (5/\pi)$$

$$= \frac{\pi}{8} - \frac{1}{4} \ln 2 \cdot \dots \cdot (7/\pi)$$

原式 =
$$\int \frac{\tan^3 t}{\sec t} \sec^2 t dt = \int \tan^3 t \sec t dt$$

= $\int \frac{\cos^2 t - 1}{\cos^4 t} d \cos t$ (5分)
= $\frac{1}{3} \cos^{-3} t - \cos^{-1} t + C$
= $\frac{1}{3} (1 + x^2)^{\frac{3}{2}} - \sqrt{1 + x^2} + C$ (7分)

四、解答题(21分)

$$f'(x) = \ln(1 + \frac{1}{x}) \qquad \cdots \qquad (3/\pi)$$

当
$$x > 1$$
时, $f'(x) > 0$ 且 $f(1) = 2 \ln 2 \cdots (5 \%)$

从而, 当
$$x > 1$$
时, $f(x)$ 单调增, 故 $f(x) > f(1) = 2 \ln 2 > 0$ ······(6分)

$$\mathbb{P}(1+x)\ln(1+x) - x\ln x > 0$$

亦即
$$\frac{\ln(1+x)}{\ln x} > \frac{x}{1+x}$$
 (7分)

2. 解:函数的定义域(-∞, +∞)

$$F''(x) = 2e^{-x^4}(1-4x^4)\cdots(3\%)$$

$$\Leftrightarrow F'(x) = \mathbf{0}$$
, 得 $x = \mathbf{0}$,(4分)

令
$$F''(x) = \mathbf{0}$$
, 得 $x = \pm \frac{1}{\sqrt{2}}$ 。(5分)

所以F(x)的单调递增区间为 $(0,+\infty)$,单调递减区间为 $(-\infty,0)$ 。……(6分)

$$F(x)$$
的凹区间为 $(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$, 凸区间为 $(-\infty,-\frac{1}{\sqrt{2}}),(\frac{1}{\sqrt{2}},+\infty)$ 。 …(7分)