Consulting Project of Soil Moisture: Final Report

Client: Department of Soil Science Advisor: Dr. Ana-Maria Staicu Zhou LI, Yingzi XU

> Department of Statistics North Carolina State University

April 24, 2013

Data description

For year=2008 and depth=10cm:

- M_{ij}: Soil moisture of subject i at time t_j (t_j is different from year to year and for 2008 t_j ranges from Jun 13 to Dec 19);
- g: Tillage group indicator for each subject i,
 g = 1, 2, ..., 6;
- t_j: Time point when soil moisture is measured;
- p_j : Precipitation (cm) at time t_j .

where $i = 1, 2, \dots, 24, j = 1, 2, \dots, 25$.

Data description

Main Goals

- How the trend profiles vary over time in each treatment group?
- Whether the trend is different across tillage treatments?

Generalized additive models (GAM)

$$g(\mu) = \beta_0 + f_1(x_1) + \cdots + f_m(x_m)$$
 (1)

The functions $f_i(x_i)$ in (1) may be fit using parametric or non-parametric means, thus providing the potential for better fits to data than other methods.

Remove Seasonality

Assume

$$M_{ij} = \mu_{ij} + S_{ij} + \epsilon_{ij} \tag{2}$$

- $lacktriangledown \mu_{ij}$: trend; ϵ_{ij} : noise; $m{\mathcal{S}}_{ij} = m{\mathcal{S}}_{i,j-d}$
- d = 12 denotes the (approximate) number of weeks during the period
- Treat fall and winter have the same seasonal component

Remove Seasonality

(a) Original data

(b) Deseasoned data

Figure: Soil moisture after removing seasonality for year 2008 and depth=10 cm

Determine covariance structure

Simple model

$$\mathbf{Y}_{i}^{g} = \beta_{0} + \mu_{g} + \epsilon_{i} \tag{3}$$

Model 1

$$\mathbf{Y}_{i}^{g} = \beta_{0} + \mu_{1} + \sum_{g'=2}^{6} \alpha_{g'} \mathbb{1}\{g = g'\} + \epsilon_{i}$$
 (4)

where $\epsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

7/19

Determine covariance structure

Hypothesis Testing

 H_0 : No difference between any treatment is equivalent to H_0 : $\alpha_2 = \cdots = \alpha_6 = 0$.

Comments for Model 1

- Assumption is too strong;
- Still helpful for us to determine a better covariance structure.

Figure: Level plot of correlation matrix for residuals of model 1

We assume that each element of ϵ_i is actually the sum of two random terms, i.e.

$$oldsymbol{\epsilon}_{ij} = oldsymbol{b}_i + oldsymbol{e}_{ij}$$
 $oldsymbol{\Sigma}_2 = oldsymbol{Var}(oldsymbol{\epsilon}_i) = \sigma^2 egin{pmatrix} 1 &
ho & \cdots &
ho \
ho & 1 & \cdots &
ho \ dots & dots & \ddots & dots \
ho &
ho & \cdots & 1 \end{pmatrix}$

Model 2

$$\mathbf{Y}_{i}^{g^*} = \boldsymbol{\beta}_{0}^* + \boldsymbol{\mu}_{1}^* + \sum_{g'=2}^{6} \alpha_{g'}^* \mathbb{1}\{g = g'\} + \epsilon_{i}^*$$
 (5)

where
$$\mathbf{Y}_{i}^{g^*} = \mathbf{\Sigma}_{2}^{-\frac{1}{2}} \mathbf{Y}_{i}^{g}, \boldsymbol{\beta}_{0}^* = \mathbf{\Sigma}_{2}^{-\frac{1}{2}} \boldsymbol{\beta}_{0}, \boldsymbol{\mu}_{1}^* = \mathbf{\Sigma}_{2}^{-\frac{1}{2}} \boldsymbol{\mu}_{1}, \boldsymbol{\alpha}_{g'}^* = \mathbf{\Sigma}_{2}^{-\frac{1}{2}} \boldsymbol{\alpha}_{g'}, \boldsymbol{\epsilon}_{i}^* = \mathbf{\Sigma}_{2}^{-\frac{1}{2}} \boldsymbol{\epsilon}_{i}.$$

In model 2, $\epsilon_{ij}^* \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0,1)$

Figure: Level plot of correlation matrix for residuals of model 2

	edf	Ref.df	F	p-value
$\overline{oldsymbol{\mu}_{1}^*}$	7.95	8.51	61.33	0.00
$lpha_2^*$	7.53	8.60	1.52	0.14
$lpha_3^{ar{st}}$	7.53	8.60	0.62	0.78
α_4^*	7.53	8.60	2.65	0.01
$lpha_5^*$	7.53	8.60	1.42	0.18
$lpha_6^*$	7.53	8.60	2.93	0.00

Table: Approximate significance of smooth terms

We can also restore the original trend estimate by setting

$$egin{array}{lll} \hat{m{eta}}_0 & = & \hat{m{\Sigma}}^{rac{1}{2}} \hat{m{eta}}_0^* \ \hat{m{\mu}}_1 & = & \hat{m{\Sigma}}^{rac{1}{2}} \hat{m{\mu}}_1^* \ \hat{m{lpha}}_{g'} & = & \hat{m{\Sigma}}^{rac{1}{2}} \hat{m{lpha}}_{g'}^* \end{array}$$

Figure: Estimated mean trend for different tillage groups

© 2013 by Zhou LI, Yingzi XU

Model 3

$$\mathbf{Y}_{i}^{g} = \boldsymbol{\beta}_{0} + \boldsymbol{\mu}_{1} + \sum_{g'=2}^{6} \alpha_{g'} \mathbb{1}\{g = g'\} + \mathbf{B}_{b(i)} + \epsilon_{i}$$
 (6)

where B_1 , B_2 , B_3 , $B_4 \stackrel{\text{iid}}{\sim} N(0, \sigma_B^2)$, $Var(\epsilon_i)$ follows Markov Structure.

Sad results.

Conclusions

- Treatment 1 (disk) does not differ significantly on soil moisture from treatment 2 (no.till), treatment 3 (rip) and treatment 5 (spr.chsl.disk);
- Treatment 1 is different from treatment 4 (spr.chsl) and treatment 6 (spr.mbp), which lead to lower soil moisture;
- Similarly we can test the difference between any tillage groups by changing the baseline trend in (4).

Conclusions

Trt	VS	Trt	Trt	VS	Trt	Trt	VS	Trt
2	\approx	1	4	<	1	6	<	1
2	=	2	4	<	2	6	<	2
2	\approx	3	4	\approx	3	6	\approx	3
2	>	4	4	=	4	6	\approx	4
2	>	5	4	\approx	5	6	\approx	5
2	>	6	4	\approx	6	6	=	6

Table: Pairwise comparison between different treatments

Thank you!

