Лабораторная работа №4. Оценка качества моделей машинного обучения.

Часть 1. Задача бинарной классификации.

Используемый набор данных: <u>Breast Cancer Wisconsin (Diagnostic)</u>
(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
import os
import requests

%matplotlib inline

pd.options.display.max_columns = None
```

In [2]:

```
def downloadFile(url, filePath):
    if not os.path.exists(filePath):
        req = requests.get(url)
        f = open(filePath, "wb")
        f.write(req.content)
        f.close

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/"
downloadFile(url + "/wdbc.data", "dataset/wdbc.data")
downloadFile(url + "/wdbc.names", "dataset/wdbc.names")
```

In [3]:

Out[3]:

	ID	Diagnosis	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compactness Mean	C
388	903011	В	11.270	15.50	73.38	392.0	0.08365	0.11140	_
184	873885	М	15.280	22.41	98.92	710.6	0.09057	0.10520	
116	864726	В	8.950	15.76	58.74	245.2	0.09462	0.12430	
73	859983	М	13.800	15.79	90.43	584.1	0.10070	0.12800	
39	855138	М	13.480	20.82	88.40	559.2	0.10160	0.12550	
12	846226	М	19.170	24.80	132.40	1123.0	0.09740	0.24580	
332	897132	В	11.220	19.86	71.94	387.3	0.10540	0.06779	
494	914102	В	13.160	20.54	84.06	538.7	0.07335	0.05275	
103	862980	В	9.876	19.40	63.95	298.3	0.10050	0.09697	
260	887549	М	20.310	27.06	132.90	1288.0	0.10000	0.10880	
16	848406	М	14.680	20.13	94.74	684.5	0.09867	0.07200	
277	8911670	М	18.810	19.98	120.90	1102.0	0.08923	0.05884	
356	9010259	В	13.050	18.59	85.09	512.0	0.10820	0.13040	
513	915940	В	14.580	13.66	94.29	658.8	0.09832	0.08918	
444	9110127	М	18.030	16.85	117.50	990.0	0.08947	0.12320	
473	9113846	В	12.270	29.97	77.42	465.4	0.07699	0.03398	
186	874217	М	18.310	18.58	118.60	1041.0	0.08588	0.08468	
142	869218	В	11.430	17.31	73.66	398.0	0.10920	0.09486	
313	893988	В	11.540	10.72	73.73	409.1	0.08597	0.05969	
181	873593	М	21.090	26.57	142.70	1311.0	0.11410	0.28320	
242	883852	В	11.300	18.19	73.93	389.4	0.09592	0.13250	
471	9113816	В	12.040	28.14	76.85	449.9	0.08752	0.06000	
159	871149	В	10.900	12.96	68.69	366.8	0.07515	0.03718	
561	925311	В	11.200	29.37	70.67	386.0	0.07449	0.03558	
61	858981	В	8.598	20.98	54.66	221.8	0.12430	0.08963	
341	898143	В	9.606	16.84	61.64	280.5	0.08481	0.09228	
520	917092	В	9.295	13.90	59.96	257.8	0.13710	0.12250	
25	852631	М	17.140	16.40	116.00	912.7	0.11860	0.22760	
139	868871	В	11.280	13.39	73.00	384.8	0.11640	0.11360	
543	922296	В	13.210	28.06	84.88	538.4	0.08671	0.06877	
542	921644	В	14.740	25.42	94.70	668.6	0.08275	0.07214	
322	894855	В	12.860	13.32	82.82	504.8	0.11340	0.08834	
68	859471	В	9.029	17.33	58.79	250.5	0.10660	0.14130	
135	868202	М	12.770	22.47	81.72	506.3	0.09055	0.05761	
507	91544002	В	11.060	17.12	71.25	366.5	0.11940	0.10710	
180	873592	M	27.220	21.87	182.10	2250.0	0.10940	0.19140	

	ID	Diagnosis	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compactness Mean	C
427	90745	В	10.800	21.98	68.79	359.9	0.08801	0.05743	
179	873586	В	12.810	13.06	81.29	508.8	0.08739	0.03774	
91	861799	М	15.370	22.76	100.20	728.2	0.09200	0.10360	
525	91805	В	8.571	13.10	54.53	221.3	0.10360	0.07632	
4									>

In [4]:

data.isna().sum()

Out[4]:

ID	0
Diagnosis	0
Radius Mean	0
Texture Mean	0
Perimeter Mean	0
Area Mean	0
Smoothness Mean	0
Compactness Mean	0
Concavity Mean	0
Concave points Mean	0
Symmetry Mean	0
Fractal dimension Mean	0
Radius SE	0
Texture SE	0
Perimeter SE	0
Area SE	0
Smoothness SE	0
Compactness SE	0
Concavity SE	0
Concave points SE	0
Symmetry SE	0
Fractal dimension SE	0
Radius Worst	0
Texture Worst	0
Perimeter Worst	0
Area Worst	0
Smoothness Worst	0
Compactness Worst	0
Concavity Worst	0
Concave points Worst	0
Symmetry Worst	0
Fractal dimension Worst	0
dtype: int64	

Пропусков в данных нет.

Подготовим данные для классификации: выберем признаки и метки и сформируем тренировочные и тестовые наборы.

In [5]:

```
X = data.drop(columns=["ID", "Diagnosis"]).copy()
y = data["Diagnosis"].copy().cat.codes

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2
7)
```

Создадим классификатор, обучим его, а затем выполним классификацию.

In [6]:

```
dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
y_pred = dtc.predict(X_test)
```

Оценим получившуюся классификацию.

In [7]:

	p. cc2520		500. 0	зарро. с
0	0.92	0.96	0.94	69
1	0.93	0.87	0.90	45
accuracy			0.92	114
macro avg	0.92	0.91	0.92	114
weighted avg	0.92	0.92	0.92	114

In [8]:

```
fpr, tpr, _ = roc_curve(y_test, y_pred)
auc = roc_auc_score(y_test, y_pred)
```

In [9]:

```
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = "AUC = %0.2f"%auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Высокое значение AUC говорит о качественной классификации.