

# Credit Card Usage Prediction Tamas Veress, 2016 Sep

## Introduction

The objective of this challenge was to develop models that describe potential credit card users' behavior to support credit card upselling campaigns

### Tasks

- Predict the users' preferred bank branch
- Predict which users are more likely to apply for credit card

#### Data sets

- User data: age and income group, gender, credit card ownership and application history, address geo info with type of settlement
  - Activity time series: credit and debit card transactions with amount, time, location and market category, shop and user IDs
- Bank branch geo info

# Method

# Branch Visit Prediction

- reatures
- Distance related: distance from home and median shopping location, rank of distances, cross product of rank and distance
- Location specific: city/town/village
- User specific: gender, age, income group
- Local popularity: how frequently the branch is chosen by users at the same geo location where geo X and Y are rounded to kilometers
- Global popularity: mean prediction error for each branch gathered from a separate training set

## Modelling

- · Simplify the task to a binary classification problem
- Reduced the user/branch space with selecting only the 5 closest branches the home address and 5 closest to the median card transaction location
- Used XGBoost with area under the curve as evaluation metric for both tasks

#### **Upselling Prediction**

#### New features

- · Frequency of transactions made online and via POS terminal
- Amount of transactions made: transformed small, medium, high to 1, 10 and 100 respectively
- Expanded credit card ownership features with separating those who just obtained credit card from those who has one for at least 6 months

# Results

## Branch Visit Prediction

Figure 1 shows the progress of the branch visit model performance. We separated 50% of the training data on which we measured AUC, Pearson correlation and cosine – evaluation metrics of Task 1

- Models presented:
- Model 1: only distances and rank of distances
- Model 2: added cross product of rank and distance
- Model 3: added settlement type of user address
- Model 4: added user age and gender
- Model 5: added local popularity
- Model 6: added global popularity

Figure 2 presents the feature importance of Model 6.

On Figure 3 we can see the relative importance of features of the blended model. EXCESS denotes the global popularity feature while FREQ, TOP, RAND represent the local popularity variables.



## **Upselling Prediction**

The progress of the upselling models are shown on Figure 4. All scores measured on the entire training user set but data is shifted with 6 months: 2014 H2 features and 2015 H1 card application as target variable

We benchmarked the following model versions to see the added value of processing the transaction data:

- Model 1 includes only features derived from user table: gender, age, income, type of settlement, credit card
- Model 2 only included transaction related features: spending amount and frequency
- Model 3 combined features of Model 1 and 2

Figure 5 displays the feature importance of Model 3









# Conclusion

## Branch Visit Model

- Distance from home and card usage location strongly impact the choice of bank branch visited. Home distance is more important when only distance features used
- Rank is stronger feature compared to distance similar to previous studies on geographical choice as it captures the competitive nature of the choice
- Type of settlement (capital/city/village) and user specific features (gender, age) provide further marginal improvements in the prediction accuracy
- Local popularity features add significant gains to our scores while global popularity has relatively little value
- Scores on our local test set suggested that the optimal 'nround' for cosine score is higher than the one for AUC thus using AUC in XGBoost might result underfitting

## **Upselling Model**

- Income group and credit card ownership features are the most important variables gathered from the user data
- Spending amount and frequency features derived from the activity data set significantly improve our prediction
- User gender, age and location type has little impact on credit card application

# References

- XGBoost package: <a href="https://github.com/dmlc/xgboost">https://github.com/dmlc/xgboost</a>
- Tuning XGBoost :

https://www.analyticsvidhya.com/blog/2016/01/xgboost-algorithmeasy-steps/

- Bank Card Usage Challenge homepage: <a href="https://dms.sztaki.hu/ecml-pkkd-2016/#/app/home">https://dms.sztaki.hu/ecml-pkkd-2016/#/app/home</a>
- R. Kumar, M. Mahdian, B. Pang, A. Tomkins, S Vassilvitskii: Driven by Food: Modeling Geographic Choice. Google. (2015)