Geometria delle masse

L'objettivo delle mecanice nazionale è studiane le risperta dinamica di un sistema rigido ad une sofficiatazione esterno, exentualmente in presenza di vincoli. Per querto, tuttario, non è sufficiente coroscere le solecitazione esterno e la cinematica ele sistema (cioè la forma dei moti consentiti dai vincoli e le relazioni analitiche bre le grandezze utili per describre tali moti). E necessario coroscere anche alcune cerat teristiche intrinseche del sistema, che hanno a che fare in modo sintetico con la sua geometria e le rua distribuzione di massa. A parità di massa e di forze, l'effetto dipende da dove la la massa è stituata

Def. Un punto materiale é un pento geometrico $P \in \mathbb{R}^3$, eixé un ente princ di dimensioni, elatato di <u>massa</u>. Indicheremo le massa con il simbolo m, oppune con mp se scurá necessario specificare a quale punto ci riferiamo. La massa é una grandezza física non negativo, perció $m \ge 0$.

Baricentro

Un punto materiale immerco nel com po gravitazionale terrestre è soggetto au'a zione della forza pero:

$$P := -mgk \in \mathbb{R}^3$$
,

The $\dot{\epsilon}$ interso come une vetto re libero di modulo mg, essendo $g=9,81\,\text{m/s}^2$ l'accelerazione di gravitat alla superficie terrestre, diretto in verso opposto al versore verticale \underline{k} eli une sistema di riferimento $(\underline{i},\underline{j},\underline{k})$ in \mathbb{R}^3 . Il peso può anche essere intero come une vettore applicato $(-\text{ing }\underline{k},P)$, essendo il punto materiale P il suo punto di applicazione.

Consideriamo ore un sistema di punti materiali $\{P_i\}_{i=1}^N$ di masse rispettive $m_i > 0$ e il relativo sistema di vettori applicati dato dalle loro forze poso:

Si tretta evidentemente cli un sistema di vettori paralleli, del quale possiamo calcolore il risultante:

$$\mathbb{R} = \sum_{i=1}^{N} \left(-m_{i} g_{k} \right) = - \left(\sum_{i=1}^{N} m_{i} \right) g_{k} = - Mg_{k}$$

avendo definito $M:=\sum_{i=1}^{N}m_i$ de masse totale del sistema di punti. Sappiano ele il sistema originario è equivalente al solo risultante R applicato nol contro del sistema, che è il punto G individuato da:

Equivalente se ha stessa risultante e stesso momento risultante

$$G - O = \frac{1}{-Mq} \sum_{i=1}^{N} (-m_i g) (P_i - O)$$

$$= \frac{1}{M} \sum_{i=1}^{N} m_i (P_i - O) = \frac{1}{M} \sum_{i=1}^{N} m_i \underline{R}_i$$
e stesso momento

overelo denotato $\underline{z}_i = P_i - O$. Il punto G così determinato si chiama il <u>havicentro</u> (o centro di massa) del sistema eli punti materiali. Esso è, cli falto, le media perata delle posizioni dei punti del sistema esseudo i peri le masse chei vori punti.

In particolare, se le masse sous tutte aquali $(m_i = m \ \forall i = 1,...,N)$ ottenia = $m \in M = N m$ e quirdi

$$G-0 = \frac{1}{Nm} \sum_{i=1}^{N} m z_i = \frac{1}{N} \sum_{i=1}^{N} z_i$$

Chiaramente è una media: la posizione media

Distributione continua di massa

Nel caso in cui un corpo nigido sio un sistema esteso, ossio un sotto insieme di \mathbb{R}^3 di volume van nullo oppone un sotto insieme di \mathbb{R}^2 di avea von nulla oppone ancora un sotto insieme di \mathbb{R} di lumphezza non nulla, la massa si di estri buisce in tutto il sotto insieme accupato dal corpo. Allora van è più passibile pensane ai punti del corpo come punti materiali, ciancuno dotato di massa fini e ta, perchè essi sono in quantita infinita in ogni sotto-perzione del corpo. Si introduce quirdi il concetto di danità, che è una proprietà intensiva del corpo, olefinita come una funzione $p: B \to \mathbb{R}_+$, essendo $B \subseteq \mathbb{R}^n$ il sotto insigue che individua il corpo (n=1,2,3), tale che:

$$M = \int p(\underline{x}) d\underline{x}$$

sion le masso del corpo. Questo integrale sonà une integrale unidimensionale, di superficie o di volume a seconda della dimensione geometrica n del corpo. Il banissentro G sara albra definito come:

$$G-O = \frac{1}{M} \int_{B} x p(x) dx$$
, Generalizzazione del concetto di media aritmetica

essi le media delle posizioni \underline{x} dei punti di B perate ciascura eon le mosso infinitesimon" $p(\underline{x})d\underline{x}$ distribuite in un volumello $d\underline{x}$ centrato in \underline{x} . Osserviamo che se le densità è castante in B, cisè se $p(\underline{x}) = \overline{p} > 0$ $\forall \underline{x} \in B$, albora abbiamo $M = \overline{p}B$, dane con |B| inductions le mienre "geome trice" di B (ossia le lumphessa, l'ones o il usume a seconda delle d'image sione) e

$$G-0=\frac{1}{\overline{p|B|}}\int_{B}^{x}\overline{p}dx=\frac{1}{|B|}\int_{B}^{x}xdx$$

Oss. Se la distribuzione delle masse, sia discrete sia continue, è omogenea (cioè se mi=m ti=1,..., N eppure se p é eastante in B) allora se il sistema di punti /cospo B presenta priori o rette di simmetria il banicantro G si trova su quei prioni o su quelle rette. Se vi sono priù prioni o rette di simme=tria il banicantro si trova nella laro intersezione.

Oss. D'ora su avanti, per semplicità di rotazione, considereremo esplicitamente sistemi discrebi di punti materiali, limitardoci a dane le equivalenti formule per il caso di distribuzioni continue di massa.

Momenti di menzia

Def. Sia a $\subseteq \mathbb{R}^3$ une votta (asse). Doto un punto materiale P di mossa $m \ge 0$, chiamiamo momento di inorzia del punto P raspetto all'asse a il numero

$$I_{\alpha} = mr^2$$

essendo r 20 la distanza di Pda a.

Per sus sistema di punti materiali $\{P_i\}_{i=1}^N$ di masse rispettive m_i , i=1,...,N, chiamiamo momento di merzia (del sistema) rispetto all'asse a il numero:

$$T_{\alpha} = \sum_{i=1}^{N} m_i r_i^2$$

esserdo ri la distanza di Pi da a.

Oss. Il momento di inorzia di em sistema di punti materiali è un numero non nepativo.

Oss. Nel caso di un cospo continuo con deusità p auremo:

$$T_{\infty} = \int_{\mathcal{B}} d^2(x, \alpha) \, \rho(x) dx,$$

dove d(x,a) é la femzione elle esprime la distanza del punto x dall'asse a.

Def. Dato en sistema di punti materiali $\{P_i\}_{i=1}^N$ omogeneo, cisè tale che $m_i=m>0$ $\forall i$, chiamiamo momento di inerzia geometrico obel sistema rispetto ad un asse a il numero

$$j_a := \frac{J_a}{m} = \sum_{i=1}^{N} t_i^2,$$

esserdo r: 20 la distanza di Pi da a. Nel caso di un corp continuo con densità costante p>0 risulta:

$$i_{\omega} := \frac{J_{\alpha}}{P} = \int_{\mathcal{B}} d^2(x, \alpha) dx$$

Teorema (di Huygers-Steiner)

Sia a \mathbb{CR}^3 we assemblitario e ag \mathbb{CR}^3 l'asse parallelo ad a e passante per il centro di massa $G \in \mathbb{R}^3$ di sur corpo B. Allora:

dove M è la massa totale di B e d è la distauza tre a e aq.

Dim. Introduciamo un sistemo di riferimento con origine nel bariccutro G di B e tale che gli assi ag, a siano paralleli all'asse z. Effettueremo la dimestrazione nel caso in cui B sia un sistema di punti materiali $\{P_i\}_{i=1}^N$ di masse rispetti: Ve m_i , i=1,...,N; l'estersione al caso di un corpo continuo seque le stesse idee.

In questo sistema di raferimento, la retta a ha equazione:

essendo $A = (x_A, y_A, 0)$ il punto in cui essa interseco il piano z = 0. Posto $P_i - 0 = x_i \underline{i} + y_i \underline{j} + z_i \underline{k}$ abbiamo:

$$r_i^2 = (x_i - x_A)^2 + (y_i - y_A)^2$$

e quirdi:

$$\begin{split} \text{I}_{\omega} &= \sum_{\bar{i}=1}^{N} \min \, r_{i}^{2} = \sum_{\bar{i}=1}^{N} \min \, \left[(x_{i} - x_{A})^{2} + (y_{i} - y_{A})^{2} \right] \\ &= \sum_{\bar{i}=1}^{N} \min \, \left[x_{i}^{2} - 2x_{A}x_{i} + x_{A}^{2} + y_{i}^{2} - 2y_{A}y_{i} + y_{A}^{2} \right] \\ &= \sum_{\bar{i}=1}^{N} \min \, \left[x_{i}^{2} + y_{i}^{2} \right] + \sum_{\bar{i}=1}^{N} \min \, \left[x_{A}^{2} + y_{A}^{2} \right] \\ &= 2 \left\{ x_{A} \sum_{\bar{i}=1}^{N} \min x_{i} + y_{A} \sum_{\bar{i}=1}^{N} \min y_{i} \right\} \\ &= \sum_{\bar{i}=1}^{N} \min \left[x_{i}^{2} + y_{i}^{2} \right] + \sum_{\bar{i}=1}^{N} \min \left[x_{A}^{2} + y_{A}^{2} \right] \\ &= 2 \left\{ x_{A} \sum_{\bar{i}=1}^{N} \min x_{i} + y_{A} \sum_{\bar{i}=1}^{N} \min y_{i} \right\} \end{split}$$

$$= \sum_{i=1}^{N} m_i (x_{i}^2 + y_{i}^2) + d^2 \sum_{i=1}^{N} m_i$$

$$= I_{a_G} + Md^2$$

averdo posto $M := \sum_{i=1}^{N} m_i$.

Ø

Oss. Dal teorema di Huygers-Steiner abbiano che

per ogni asse a parallelo ad a.C. Durque tra tulti gli assi aventi direzione fissato quello passaute per G è l'asse rispetto al quale il nomento di inerzia è <u>minimo</u>. Pensiamo una porta che ruota attorno ai suoi cardini e una girevole che ruota attorno un asse centrale

Grobbario Se $a_{1}, a_{2} \subset \mathbb{R}^{3}$ sous due assi paralleli distanti vispetti vamente $d_{1}, d_{2} > 0$ dal baricentro allore:

$$I_{a_2} = I_{a_1} + M(d_2^2 - d_1^2).$$

Dim. Dal teorema di Huygens - Steiner risulta:

$$\overline{L}_{\alpha_1} = \overline{L}_{\alpha_G} + M d_1^2,$$

$$\overline{L}_{\alpha_2} = \overline{L}_{\alpha_G} + M d_2^2,$$

perció la tesi segue sottraerolo membro a membro la seconda equazione dalla prima.

Matrice di inerzia

Considerians or il problema di determinare il nomento di inorzia di una corp (overo di una distribuzione di massa) rispetto ad un asse $u \in \mathbb{R}^3$ passante per un punto $0 \in \mathbb{R}^3$ fissato.

Prendiane a questo scopo un sistema di riferimento con origine in $0 \in assi$ \underline{i} , \underline{j} , \underline{k} e identifichiano l'asse u in questione con un versore $\underline{u} \in \mathbb{R}^3$ elle ne individua la direzione.

Sia $\underline{u} = u_1 \underline{i} + u_2 \underline{j} + u_3 \underline{k}$ con $u_i \in \mathbb{R}$, $\sum_{i=1}^{3} u_i^2 = 1$. Sia poi $P \in \mathbb{R}^3$ un generieo punto tale che $P-0 = x \underline{i} + y \underline{j} + z \underline{k}$. La distanza di P dall'asse $u \in \mathbb{R}$

essendo O l'augolo formato dai vettori P-O e u nel piano che essi generano. Alloro:

Applicando questo risultato ad un sistema di punti materiali $\{P_i\}_{i=1}^N$ potremo soiure:

$$T_{u} = \sum_{i=1}^{N} m_{i} |(P_{i}-0) \times \underline{u}|^{2}$$

$$= \sum_{i=1}^{N} m_{i} |(x_{i} \hat{\underline{\iota}} + y_{i} \hat{\underline{\jmath}} + z_{i} \underline{k}) \times (u_{1} \hat{\underline{\iota}} + u_{2} \hat{\underline{\jmath}} + u_{3} \underline{k})|^{2}$$

$$= \sum_{i=1}^{N} m_{i} |x_{i} u_{2} \underline{k} - x_{i} u_{3} \hat{\underline{\jmath}} - y_{i} u_{1} \underline{k} + y_{i} u_{3} \hat{\underline{\iota}} + z_{i} u_{1} \hat{\underline{\jmath}} - z_{i} u_{2} \hat{\underline{\iota}}|^{2}$$

$$= \sum_{i=1}^{N} m_{i} |(y_{i} u_{3} - z_{i} u_{2}) \hat{\underline{\iota}} + (z_{i} u_{1} - x_{i} u_{3}) \hat{\underline{\jmath}} + (x_{i} u_{2} - y_{i} u_{1}) \underline{k}|^{2}$$

$$\begin{split} &= \sum_{i=1}^{N} m_{i} \left[\left(y_{i} u_{3} - z_{i} u_{2} \right)^{2} + \left(z_{i} u_{4} - x_{i} u_{3} \right)^{3} + \left(x_{i} u_{2} - y_{i} u_{4} \right)^{2} \right] \\ &= \sum_{i=1}^{N} m_{i} \left[y_{i}^{2} u_{3}^{2} - 2y_{i} z_{i} u_{2} u_{3} + z_{i}^{2} u_{2}^{2} + z_{i}^{2} u_{4}^{2} - 2x_{i} z_{i} u_{4} u_{3} + x_{i}^{2} u_{3}^{2} \right. \\ &+ x_{i}^{2} u_{2}^{2} - 2x_{i} y_{i} u_{4} u_{2} + y_{i}^{2} u_{4}^{2} \right] \\ &= \left(\sum_{i=1}^{N} m_{i} \left(y_{i}^{2} + z_{i}^{2} \right) \right) u_{4}^{2} + \left(\sum_{i=1}^{N} m_{i} \left(x_{i}^{2} + z_{i}^{2} \right) \right) u_{2}^{2} + \left(\sum_{i=1}^{N} m_{i} \left(x_{i}^{2} + y_{i}^{2} \right) \right) u_{3}^{2} \\ &+ 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} y_{i} \right) u_{4} u_{2} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{3} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{4} + 2 \left(- \sum_{i=1}^{N} m_{i} x_{i} z_{i} \right) u_{4} u_{4} +$$

É facile redere che i termini en parentesi della prima riga sono i momenti di inerzia rispetto ai tre assi x, y, z del sistema di riferimento scelto:

$$I_{x} = \sum_{i=1}^{N} m_{i}(y_{i}^{2} + z_{i}^{2}), \quad I_{y} = \sum_{i=1}^{N} m_{i}(x_{i}^{2} + z_{i}^{2}), \quad I_{z} = \sum_{i=1}^{N} m_{i}(x_{i}^{2} + y_{i}^{2}).$$

Invece i tre termini in parantesi della seconda riga sono detti i prodotti di inerezia (a momenti centrifughi):

$$T_{xy} := -\sum_{i=1}^{N} m_i x_i y_i, \quad T_{xz} := -\sum_{i=1}^{N} m_i x_i z_i, \quad T_{yz} := -\sum_{i=1}^{N} m_i y_i z_i.$$

Essi, pur avendo le stesse dimensioni fisiche di un momento di inorzia (ossia massa. Lunghezza²) vou sono momenti di inerzia rispetto ad alcun asse.

Durque dal calcolo precedente possiamo scrivere:

$$I_u = I_x u_1^2 + I_y u_2^2 + I_z u_3^2 + 2 I_{xy} u_1 u_2 + 2 I_{xz} u_1 u_3 + 2 I_{yz} u_2 u_3$$

Notiamo che questos risulta essere una forma quadratica nelle varia bili uz, uz, uz, che sono le componenti del versore u rispetto alla base (i, j, k) fissata. la matrice associata a questa forma quadratica é:

rispetto alla base $(\underline{i},\underline{j},\underline{k})$ di \mathbb{R}^3 con origine in O. Se ora <u>identifichiamo u</u> con il vettore (u_1,u_2,u_3) delle sue componenti rispetto alla suddette base, possiamo scribere

$$\mathcal{I}_{\alpha} = \left(\underline{\pm}_{0} \underline{u}\right) \cdot \underline{u} = \underline{u}^{\mathsf{T}} \underline{\pm}_{0} \underline{u} . \tag{*}$$

la matrice \underline{I}_0 si chiama la <u>matrice</u> di invezia (della distribuzione di massa as = segnata) rispetto al punto $0 \in \mathbb{R}^3$ neva base (i,j,k).

Oss. Poiché in (*) la matrice Io e il vettore u sono pousati seritti in componenti rispetto ad una specifica base acadinata, quando si assegna la matrice di incrzia rispetto ad un punto é anche necessario precisare nispetto a quale base di R³ essa é scritta.

Se si cambia base ile \mathbb{R}^3 passardo ad essupio a (i', j', k') che supportemo surpre ortonormale e t.c. $k'=i'\times j'$, allo re esisterà una trasformazione lineare (ro=tazione) $\mathbb{R} \in \mathbb{R}^{3\times 3}$ t.c.

$$\tilde{L} = \tilde{R}\tilde{L}', \quad \tilde{J} = \tilde{R}\tilde{L}', \quad E = \tilde{R}\tilde{R}', \quad (**)$$

dos cui la relazione tra le componenti di u nella vecchia e nella nuova base:

Allora:

$$\underline{\mathbf{L}}_{\mathbf{u}} = (\underline{\mathbf{R}}\underline{\mathbf{u}})^{\mathsf{T}}\underline{\mathbf{I}}_{\mathbf{0}}(\underline{\mathbf{R}}\underline{\mathbf{u}}) = (\underline{\mathbf{u}})^{\mathsf{T}}(\underline{\mathbf{R}}^{\mathsf{T}}\underline{\mathbf{I}}_{\mathbf{0}}\underline{\mathbf{R}})\underline{\mathbf{u}}'$$

$$= (\underline{u}')^{\mathsf{T}} \underline{\mathbf{I}}' \underline{u}'$$

done $I_6:=\mathbb{R}^TI_0\mathbb{R}$ & la matrice di invasia rispetto al punto 0 nella nuova ba se $(\underline{i}',j',\underline{k}')$.

Si noti che, ovviamente, il valore T_u ran combia penchè nou è combiato l'asse $u \in \mathbb{R}^3$ nispetto a cui si calcolo il nomento di invezia. Cambia solo la base di \mathbb{R}^3 in cui è espresso il suo versore, ma:

Proprietà della matrice di inoczia

La mortrice di ineresia I o è simmetrica e, oroviamente, rimane tale a seguito di qualsiasi cambiamento riigido di base:

$$(\underline{\underline{\underline{\underline{L}}}})_{\perp} = (\underline{\underline{\underline{L}}}_{\perp}^{\perp}\underline{\underline{\underline{L}}}_{0}\underline{\underline{\underline{L}}}_{0})_{\perp} = \underline{\underline{\underline{L}}}_{\perp}^{\perp}\underline{\underline{\underline{L}}}_{0}\underline{\underline{L}}_{0}\underline{\underline{L}}_$$

Inothe essar é semi-definita positiva, in fatti

Se escludiamo il caso in cui tutta la distribuzione di massa sia concentrata lungo un asse passante per 0: per cui tutte le distanze dall'asse sono nulle

essa è definita positiva, ponche i momenti di invezia sovo in questo caso quantità

positive raispetto a qualsiasi asse:

$$\underline{u}^{\mathsf{T}}\underline{\mathbf{I}}_{0}\,\underline{u} = \underline{\mathbf{I}}_{u} > 0 \quad \forall \underline{u} \in \mathbb{R}^{3}, \, \underline{u} \neq \underline{0}.$$

Essendo simmetrica, essa é diagonalizzabile con autoralori neali. Inche, nell'ipstesi di distribuzione di massa non concentrata lungo una linea passau te per O, tutti i suoi autoralori sono positiri e gli autorettori associati ad autoralori diversi sono tra loro ortogonali. Esiste dunque un cambiamento di base ortonermale di R³ della formo (**) che diagonalizza Io, ossia tale per cui la matrice di inerzia si presenta nelle nuore base come:

$$\underline{\underline{T}}_{0}' = \begin{pmatrix}
I_{x'} & 0 & 0 \\
0 & I_{y'} & 0 \\
0 & 0 & I_{z'}
\end{pmatrix}.$$

I nuovi assi $x', y', z' \subset \mathbb{R}^3$ individuati dai versori della nuova base $(\underline{i}', \underline{j}', \underline{k}')$ si chiamano gli <u>assi principali di inversia</u> rispetto ad 0 della distribuzione di massa data. Gli autovalori di \underline{I}' sono i <u>momenti principali di inversia</u> $\underline{I}_{x'}$, $\underline{I}_{y'}$, $\underline{I}_{z'}$.

Def. Se 0=G allors la matrice di invesio I_G , gli assi e i momenti principali di invesia sono detti centrali:

Def. Un corpo (o unos distribuzione di massa) si dice un giroscopio quandi due dei suci tre momenti principali di invesia nispetto ad un dato punto O coincidono. In tal caso, il terzo asse principale di invesia è detto asse giro: scopico.

Sistemi joiani

Se tutta la distributione di massa giace in un piano, è conveniente fissare un sistema di coordinate tale che quel piano sia un piano coordinato, ad esempio il piano Oxy.

Avremo alloro Pi-O = xi i+yi j e quindi:

$$\begin{split}
T_{x} &= \sum_{i=1}^{N} m_{i} | (P_{i} - 0) \times \underline{i} |^{2} = \sum_{i=1}^{N} m_{i} y_{i}^{2} \\
T_{y} &= \sum_{i=1}^{N} m_{i} | (P_{i} - 0) \times \underline{j} |^{2} = \sum_{i=1}^{N} m_{i} \times \underline{i}^{2} \\
T_{z} &= \sum_{i=1}^{N} m_{i} | (P_{i} - 0) \times \underline{k} |^{2} = \sum_{i=1}^{N} m_{i} | \times \underline{i} \times \underline{k} + y_{i} \underline{j} \times \underline{k} |^{2} \\
&= \sum_{i=1}^{N} m_{i} | - \times \underline{i} \underline{j} + y_{i} \underline{i} |^{2} = \sum_{i=1}^{N} m_{i} (x_{i}^{2} + y_{i}^{2})
\end{split}$$

dos eui:

$$I_2 = I_x + I_y$$
.

Inother, essendo $Z_i = 0$ $\forall i = 1,...,N$, owners $I_{xz} = I_{yz} = 0$, penció la may trice di invezia rispetto sel punto 0 nella base (i, j, k) si presenta nella forma:

$$\underline{I}_0 = \begin{pmatrix}
I_x & I_{xy} & 0 \\
I_{xy} & I_y & 0 \\
0 & 0 & I_{x+}I_y
\end{pmatrix},$$

da cui vodiamo che l'asse z, cià l'asse ortogonale al piano dolla distribusio ne di massa, è un asse principale di invesio:

con momento principale di inerzia In+Iy.