

Rainbow and Mastumoto-Imai as Signature Schemes

Reporte de Estancia de Investigación
Pérez Ibarra Miguel Esteban 20th October 2020

Indice

- What are MPKC's
- 2 Rainbow as a signature scheme
 - Private Key
 - Public Key
 - The verification process
- 3 Matsumoto-Imai Signature Scheme
 - Private Key
 - Public Key
 - Signing with the Matsumoto-Imai Signature scheme
- 4 References

MPKC

■ Multivariate Cryptography is the study of PKC's where the public key is given by a set of quadratic polynomials.

MPKC

■ Multivariate Cryptography is the study of PKC's where the public key is given by a set of quadratic polynomials.

$$P = (p_1(w_1, ..., w_n), ..., p_m(w_1, ..., w_n))$$

MPKC

Multivariate Cryptography is the study of PKC's where the public key is given by a set of quadratic polynomials.

$$P = (p_1(w_1, \ldots, w_n), \ldots, p_m(w_1, \ldots, w_n))$$

■ These polynomials are defined on a finite field $\mathbb{K} = \mathbb{F}_q$.

Signature Scheme

Private Key for Rainbow

The maps

$$L_1: K^{n-\nu} \mapsto K^{n-\nu},$$

 $L_2: K^n \mapsto K^n,$ and
 $F: K^n \mapsto K^{n-\nu}.$

Signature Scheme

Public Key for Rainbow

The n-v polynomial components of F and the algebraic structure of K

Signing a Document

To sign a document an entity A must consider the next steps:

■ let m be a document, we first apply a hash function $h: M \mapsto K^{n-v}$ and get

$$\bar{m} = h(m)$$

Signing a Document

To sign a document an entity A must consider the next steps:

■ let m be a document, we first apply a hash function $h: M \mapsto K^{n-v}$ and get

$$\bar{m} = h(m)$$

lacktriangle apply the signing transformation S_A to \bar{m} to get a digital signature

$$s^* = S_A(\bar{m}) = L_1^{-1} \circ F^{-1} \circ L_2^{-1}(\bar{m})$$

Signing a Document

To sign a document an entity A must consider the next steps:

■ let m be a document, we first apply a hash function $h: M \mapsto K^{n-v}$ and get

$$\bar{m} = h(m)$$

lacksquare apply the signing transformation S_A to $ar{m}$ to get a digital signature

$$s^* = S_A(\bar{m}) = L_1^{-1} \circ F^{-1} \circ L_2^{-1}(\bar{m})$$

■ define the verification transformation $V_A : M_hS \mapsto \{true, false\}$

$$V_{A,h}(\bar{m}, s^*) = \begin{cases} true & \text{if } L_1 \circ F \circ L_2(s^*) := h(m) \\ false & \text{otherwise,} \end{cases}$$

Verifying the signature

Once entity A hands over the document m, s^* , and $V_{A,h}$

■ Entity B must evaluate $\bar{m} = h(m)$

Verifying the signature

Once entity A hands over the document m, s^* , and $V_{A,h}$

- Entity B must evaluate $\bar{m} = h(m)$
- given \bar{m} and s^* , compute $u = V_{A,h}(\bar{m}, s^*)$

Matsumoto-Imai Signature Scheme

$$\blacksquare$$
 $F(X) = X^{1+q^i}, \forall X \in K^n$

- $F(X) = X^{1+q^i}, \forall X \in K^n$
- $\blacksquare \ \tilde{F}(X) := \varphi \circ F \circ \varphi^{-1}(X)$

- \blacksquare $F(X) = X^{1+q^i}, \forall X \in K^n$
- $ilde{\mathsf{F}}(X) := \varphi \circ \mathsf{F} \circ \varphi^{-1}(X)$
- entity A must choose r < n linear maps z_1, \ldots, z_r

Properties

- $F(X) = X^{1+q^i}, \forall X \in K^n$
- $F(X) := \varphi \circ F \circ \varphi^{-1}(X)$
- entity A must choose r < n linear maps z_1, \ldots, z_r

Figure: The set of z's available for entity A

Properties

- \blacksquare $F(X) = X^{1+q^i}, \forall X \in K^n$
- $ilde{\mathsf{F}}(X) := \varphi \circ \mathsf{F} \circ \varphi^{-1}(X)$
- entity A must choose r < n linear maps z_1, \ldots, z_r

Figure: The set of z's available for entity A

 \blacksquare $z_i(x_1,\ldots,x_n) := \sum_{j=1}^n \alpha_{ji}x_j + \beta_i$

Properties

■ Entity A must also define a random map $f: K^r \mapsto K^n$ given by

$$f(z_1,...,z_r) := (f_1(z_1,...,z_r),...,f_n(z_1,...,z_r))$$

Properties

■ Entity A must also define a random map $f: K^r \mapsto K^n$ given by

$$f(z_1,...,z_r) := (f_1(z_1,...,z_r),...,f_n(z_1,...,z_r))$$

Figure: Image of all the z's in K^r

Properties

■ Entity A defines the set P of all the pairs (λ, μ) such that

- Entity A defines the set P of all the pairs (λ, μ) such that

- Entity A defines the set P of all the pairs (λ, μ) such that

 - $\blacksquare \mu := f(\lambda)$

Properties

- Entity A defines the set P of all the pairs (λ, μ) such that

 - $\mu := f(\lambda)$

Figure: Perturbation points

Properties

The final property is are the linear maps:

$$L_1, L_2: K^n \mapsto K^n$$

Public key

Properties

■ The *n* multivariate polynomial components of *F*

Public key

- The *n* multivariate polynomial components of *F*
- the algebraic structure of *K*

Signing process

Generating a signature s^* for an entity A goes as follows:

■ given a message $m \in M$ apply the hash function $h : M \mapsto K^n$ $\tilde{m} := h(m)$

Signing process

Generating a signature s^* for an entity A goes as follows:

■ given a message $m \in M$ apply the hash function $h : M \mapsto K^n$

$$\tilde{m} := h(m)$$

lacksquare define the map $\overline{\tilde{F}}:=\widetilde{F}+f(\lambda)$

Signing process

Generating a signature s^* for an entity A goes as follows:

■ given a message $m \in M$ apply the hash function $h : M \mapsto K^n$

$$\tilde{m} := h(m)$$

- define the map $\bar{\bar{F}} := \tilde{F} + f(\lambda)$
- finally we encapsulate $\hat{F} := L_1 \circ \overline{\bar{F}} \circ L_2$

Signing process

Generating a signature s^* for an entity A goes as follows:

■ given a message $m \in M$ apply the hash function $h: M \mapsto K^n$

$$\tilde{m} := h(m)$$

- define the map $\bar{\bar{F}} := \tilde{F} + f(\lambda)$
- finally we encapsulate $\hat{F} := L_1 \circ \overline{\bar{F}} \circ L_2$
- our digital signature is then

$$s^* := \hat{F}(\bar{m})$$

Verification

Given m, and s^* , entity B must follow the steps:

■ Compute $\bar{y} := L_1^{-1}(s^*)$

Verification

Given m, and s^* , entity B must follow the steps:

- Compute $\bar{y} := L_1^{-1}(s^*)$
- For any $(\lambda_0, \mu_0) \in P$ we compute

$$y_{\lambda_0} := \varphi^{-1} \circ F^{-1}(\bar{y} + \lambda_0)$$

Verification

Given m, and s^* , entity B must follow the steps:

- Compute $\bar{y} := L_1^{-1}(s^*)$
- For any $(\lambda_0, \mu_0) \in P$ we compute

$$y_{\lambda_0} := \varphi^{-1} \circ F^{-1}(\bar{y} + \lambda_0)$$

■ If $Z(y_{\lambda_0}) := \mu_0$ go to the next step

Verification

Given m, and s^* , entity B must follow the steps:

- Compute $\bar{y} := L_1^{-1}(s^*)$
- For any $(\lambda_0, \mu_0) \in P$ we compute

$$y_{\lambda_0} := \varphi^{-1} \circ F^{-1}(\bar{y} + \lambda_0)$$

- If $Z(y_{\lambda_0}) := \mu_0$ go to the next step
- Finally if $\bar{m}_0 := L_2^{-1}(y_{\lambda})$ is such that $\bar{m}_0 = h(m)$, we are done.

References I

N. Gilbert.

Modern Algebra With Applications.

Wiley-Interscience, 2004.

D. Bernstein.

Post-Quantum Cryptography.

Springer, 2009.

J. Ding.

A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation.

PKC 2004, LNC 2947, pp.305-318 2004

Rainbow and Mastumoto-Imai as Signature Schemes

Reporte de Estancia de Investigación