PROBLÈME I (extrait de CCP PC 2004)

Partie I

On considère la série $\sum_{n=1}^{+\infty} n^{-s} z^n$, où z est un nombre complexe et s un nombre réel donné.

- 1. Montrer que cette série converge pour tout z tel que |z| < 1.
- **2.** Dans toute cette question, $z = e^{i\theta}$ désigne un nombre complexe de module 1.
 - a) Étudiez la convergence de $\sum_{n=1}^{+\infty} n^{-s} z^n$ dans le cas où s>1 ainsi que dans le cas où $s\leqslant 0$.
 - **b)** Dans le cas où $0 < s \le 1$, étudier la convergence de $\sum_{n=1}^{+\infty} n^{-s} z^n$ pour z = 1.
 - c) Toujours dans le cas où $0 < s \le 1$, on suppose que $z \ne 1$. On pose $S_0 = 0$ et pour tout nombre entier $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n z^k$.
 - i) Calculer S_n en fonction de n et de θ , puis montrer que $|S_n| \leq M(\theta)$ pour tout $n \in \mathbb{N}$, avec $M(\theta) = \frac{1}{\left|\sin\frac{\theta}{2}\right|}$.
 - ii) En écrivant z^k sous la forme $S_k S_{k-1}$ pour tout nombre entier $k \in \mathbb{N}^*$, montrer que :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n k^{-s} z^k = \sum_{k=1}^{n-1} S_k \left[k^{-s} - (k+1)^{-s} \right] + S_n n^{-s}.$$

iii) Montrer que la série $\sum_{n=1}^{+\infty} S_n \left[n^{-s} - (n+1)^{-s} \right]$ est convergente et en déduire que la série $\sum_{n=1}^{+\infty} n^{-s} z^n$ est convergente.

Nous noterons dorénavant $\varphi(z,s)$ la somme $\sum_{n=1}^{+\infty} n^{-s} z^n$ pour tout couple $(z,s) \in \mathbb{C} \times \mathbb{R}$ pour lequel cette série est convergente.

- **3.** On note I l'intervalle ouvert]-1,1[de \mathbb{R} .
 - a) Montrer que pour tout $(x,s) \in I \times \mathbb{R}$ on a $\varphi(x,s+1) = \int_0^x \frac{\varphi(t,s)}{t} dt$.
 - b) Calculer $\varphi(x,0)$ et $\varphi(x,1)$ pour tout $x \in I$.
- 4. On suppose dans cette question que s > 1.
 - a) Soit f_n la fonction définie sur $[0; +\infty[$ pour tout $n \in \mathbb{N}^*$ par $f_n(t) = e^{-nt} t^{s-1}$. Montrer que f_n est intégrable sur $[0; +\infty[$ et exprimer $\int_0^{+\infty} f_n(t) dt$ à l'aide de n, s et de l'intégrale $\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} dt = \int_0^{+\infty} f_1(t) dt$.
 - b) Soit z un nombre complexe de module inférieur ou égal à 1. Montrer que la série $\sum_{n=1}^{+\infty} z^n f_n(t)$ de fonctions de la variable réelle t est intégrable terme à terme sur $]0, +\infty[$. En déduire que pour tout s>1 et pour tout $z\in\mathbb{C}$ tel que $|z|\leqslant 1$, on a

$$\varphi(z,s) = \frac{z}{\Gamma(s)} \int_0^{+\infty} \frac{t^{s-1}}{e^t - z} dt.$$
 (1)

Partie II

Dans cette partie, on notera g la fonction de la variable réelle x définie par :

(i)
$$g(x) = \left(\frac{\pi - x}{2}\right)^2$$
 pour tout $x \in [0; 2\pi[$

- (ii) g est périodique de période 2π .
- 1. θ désigne ici un réel de l'intervalle $]0,2\pi[$. On reprend les notations et les résultats de la question I.2, avec s=1.
 - a) En écrivant $e^{ik\theta} = S_k S_{k-1}$ pour $k \in \mathbb{N}^*$, montrer que pour tout entier n:

$$\left| \sum_{k=n+1}^{+\infty} \frac{e^{ik\theta}}{k} \right| \leqslant \frac{1}{\left| \sin \frac{\theta}{2} \right|} \cdot \frac{2}{n+1}$$

et en déduire que la convergence de la série de fonctions $\sum_{n\geqslant 1} \frac{\mathrm{e}^{\mathrm{i}n\theta}}{n}$ est uniforme sur tout segment inclus dans $]0,2\pi[$.

b) En remarquant que, pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} = \int_0^1 t^{n-1} dt$, prouver que, pour tout entier $N \in \mathbb{N}^*$

$$\sum_{n=1}^{N} \frac{e^{in\theta}}{n} = e^{i\theta} \int_{0}^{1} \frac{1 - t^{N} e^{iN\theta}}{1 - t e^{i\theta}} dt$$

et en déduire

$$\sum_{n=1}^{+\infty} \frac{\mathrm{e}^{\mathrm{i} n \theta}}{n} = \int_0^1 \frac{\mathrm{e}^{\mathrm{i} \theta}}{1 - t \mathrm{e}^{\mathrm{i} \theta}} \, \mathrm{d}t \,.$$

c) Montrer que, pour $0 < \theta < \pi$:

$$\int_0^1 \frac{e^{i\theta}}{1 - te^{i\theta}} dt = -\ln\left(2\sin\frac{\theta}{2}\right) + i\frac{\pi - \theta}{2}$$

puis montrer que cette égalité reste valable pour tout $\theta \in]0, 2\pi[$.

d) En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{\sin n\theta}{n}$ puis l'égalité

$$\forall \theta \in [0, 2\pi] , \sum_{n=1}^{+\infty} \frac{1 - \cos n\theta}{n^2} = \frac{\theta}{2} \left(\pi - \frac{\theta}{2}\right).$$

e) En écrivant la relation précédente pour $\theta=\pi$, calculer la valeur de $\sum_{n=1}^{+\infty}\frac{1}{n^2}$.

En déduire la relation

$$\forall \theta \in [0, 2\pi] \ , \ \left(\frac{\pi - \theta}{2}\right)^2 = \frac{\pi^2}{12} + \sum_{n=1}^{+\infty} \frac{\cos n\theta}{n^2} \ .$$

- 2. Soit θ un nombre réel. On note $R\varphi(\theta)$ la partie réelle de $\varphi(e^{i\theta},2)$ où φ est la fonction définie à la question **I.2**.
 - a) Exprimez $R\varphi(\theta)$ à l'aide de $g(\theta)$.

b) En déduire que pour tout $\theta \in \mathbb{R}$ on a :

$$\int_0^{+\infty} \frac{t(e^t \cos \theta - 1)}{e^{2t} - 2e^t \cos \theta + 1} dt = g(\theta) - \frac{\pi^2}{12}.$$

c) Déduire de ce qui précède la valeur des intégrales :

$$I_1 = \int_0^{+\infty} \frac{t}{e^t - 1} dt$$
 $I_2 = \int_0^{+\infty} \frac{t}{e^t + 1} dt$ $I_3 = \int_0^{+\infty} \frac{t}{\sinh t} dt$

- **3.** Soit s un nombre réel strictement positif.
 - a) Montrer que pour tout $\theta \in \mathbb{R}$ on a les égalités :

$$\int_0^{+\infty} \frac{t^s(e^t \cos \theta - 1)}{e^{2t} - 2e^t \cos \theta + 1} dt = \Gamma(s+1) \sum_{n=1}^{+\infty} n^{-(s+1)} \cos n\theta,$$

$$\int_0^{+\infty} \frac{t^s e^t \sin \theta}{e^{2t} - 2e^t \cos \theta + 1} dt = \Gamma(s+1) \sum_{n=1}^{+\infty} n^{-(s+1)} \sin n\theta.$$

b) En déduire des expressions des intégrales :

$$I(s) = \int_0^{+\infty} \frac{t^s}{\operatorname{ch} t} dt, \qquad J(s) = \int_0^{+\infty} \frac{t^s}{\operatorname{sh} t} dt,$$

en fonction des sommes $S_1(s) = \sum_{k=0}^{+\infty} (2k+1)^{-(s+1)}$, $S_2(s) = \sum_{k=0}^{+\infty} (-1)^k (2k+1)^{-(s+1)}$ et de $\Gamma(s+1)$.