$p_z = \sqrt{p^2 - p_x^2 - p_y^2} \ . \eqno(82)$ Suppose a particles traverses a section (1, 2) of an accelerator component, then the orientation changes from q_1 to q_2 . The bending angle ϕ and the radius of curvature ρ_r are approximated, assuming a uniform

 $\sin |\phi| = |\boldsymbol{q}_2 \times \boldsymbol{q}_1|$,

 $\rho_{\rm r} = \frac{{\sf L}_{12} - z_2 + z_1}{|\phi|},$

where L_{12} is the nominal length of the component between 1 and 2, and $z_{1,2}$ are the values of longitudinal

 $q = \left(\frac{p_x}{p}, \frac{p_y}{p}, \frac{p_z}{p}\right) ,$

(81)

(83)

(84)

The evaluation of synchrotron radiation in SAD is done using based on "kinematical method":

Let q denote the orientation vector of the momentum of a particle:

coordinate $z \equiv -v(t-t_0)$ at the locations 1 and 2.

bending, by:

 ρ ϕ

Figure 1: The kinematical method for synchrotron radiation.

By knowing ϕ and ρ_r as well as the momentum of the particle, we can derive all information about the emission of synchrotron radiation (if we can use a classical formula with uniform bending)

- emission of synchrotron radiation (if we can use a classical formula with uniform bending).
 Thus the synchrotron radiation can be handled by a single routine for any type of component, such as
 - multipoles, solenoid, fringe field, even including electric field, without knowing the details of the field.

 A component is sliced so that $N_{\gamma} \lesssim 1$.
 - Not only the radiation itself, its derivatives by phase space coordinates can be obtained kinematically using the transfer matrix. These derivatives are used to evaluate the damping and excitation matrices.
 - In the region where the field is not uniform, such as the F1 region of a BEND, a special treatment for ρ_r is applied.

• This method may be applied for a *spin motion* if the longitudinal filed is taken care properly.