```
In [1]:
        import pandas
        import matplotlib.pyplot as plt
        import numpy as np
In [2]: data = pandas.read csv('./data/gemeentedata merged.csv', sep=';')
        parties = list(data.columns[-37:])
In [3]:
In [4]:
        parties
        ['VVD',
Out[4]:
         'D66',
         'PVV',
         'CDA',
         'SP',
         'PvdA',
         'GROENLINKS',
         'FvD',
         'PvdD',
         'ChristenUnie',
         'Volt',
         'JA21',
         'SGP',
         'DENK'
         '50PLUS',
         'BBB',
         'BIJ1'
         'CODE ORANJE',
         'NIDA',
         'Splinter',
         'Piratenpartij',
         'JONG',
         'TROTS',
         'Lijst Henk Krol',
         'NLBeter',
         'Blanco',
         'LP',
         'OPRECHT',
         'JEZUS LEEFT',
         'DFP',
         'U-Buntu Connected Front',
         'Vrij en Sociaal Nederland',
         'PvdE',
         'Wij zijn Nederland',
         'PvdR',
         'Modern Nederland',
         'De Groenen']
In [5]: data['Percentage Opkomst'] = round(100 * data['Opkomst'] / data['Kiesgere
In [6]: data['Percentage geldigestemmen 50PLUS'] = round(100 * data['50PLUS'] / d
        data['Percentage geldigestemmen VVD'] = round(100 * data['VVD'] / data['G
        data['Percentage geldigestemmen SP'] = round(100 * data['SP'] / data['Gel
```

Verdeling stemmen

Van de landelijke Nederlandse verkiezingen in het jaar 2021

```
In [10]: election_results = pandas.Series([data[party].sum() for party in parties]
In [11]: plt.rcdefaults()
    fig, ax = plt.subplots()
    xaxis = np.arange(1, len(election_results[0:25])+1)

ax.barh(xaxis, list(reversed(election_results[0:25])), align='center')
ax.set_yticks(xaxis)
ax.set_yticklabels('{} {}'.format(parties[number], xaxis[number]) for num

plt.title('Verkiezingsuitslag 2021')
plt.xlabel('aantal stemmen (in miljoenen)')
plt.show()
```



```
In [12]: election_results_scaled = 100 * election_results / election_results.sum()
```

```
In [13]: election_results_scaled_cumulative = election_results_scaled.cumsum()

In [14]: xaxis = np.arange(1, len(election_results_scaled_cumulative)+1)
    plt.plot(xaxis, election_results_scaled_cumulative)
    plt.title('Verkiezingsuitslag cumulatief')
    plt.xlabel('aantal partijen (gesorteerd van groot naar klein)')
    plt.ylabel('percentage van het totaal aantal stemmen'); print()
```

Verkiezingsuitslag cumulatief percentage van het totaal aantal stemmen aantal partijen (gesorteerd van groot naar klein)

```
In [15]: (election_results_scaled_cumulative<= 80).isin([True]).sum()
Out[15]: 8</pre>
```

• Meer dan 80% van de stemmen ging naar slechts 8 partijen.

Opkomstpercentage per gemeente

```
In [16]: plt.scatter(data['Bevolking totaal'], data['Percentage Opkomst'])
    plt.xlabel('Aantal inwoners')
    plt.ylabel('Opkomstpercentage')
    plt.title('Opkomstpercentage per gemeente'); print()
```

Opkomstpercentage per gemeente


```
In [17]: round(data['Percentage Opkomst'].corr(data['Bevolking totaal']), 2)
Out[17]: -0.3
In [18]: round(data['Percentage Opkomst'].mean(), 2)
Out[18]: 81.01
```

- De negatieve correlatie toont aan dat in de grotere gemeenten het opkomstpercentage over het algemeen lager is dan in de kleinere gemeenten.
- Verder zien we dat het gemiddelde opkomstpercentage per gemeente hoger dan 80% is. Dit moet niet verward worden met het landelijk opkomst percentage.

```
In [19]: data2show = data[['Gemeente', 'Bevolking totaal', 'Percentage Opkomst']]
In [20]: data2show.sort_values(by=['Percentage Opkomst'], ascending=[True]).head(n
```

Out[20]:		Gemeente	Bevolking totaal	Percentage Opkomst
	114	Halderberge	30430	63.5
	245	Rotterdam	651631	67.7
	152	Kerkrade	45442	68.1
	124	Heerlen	86936	69.5
	247	Rucphen	23080	70.7
	228	Pekela	12176	70.9
	67	Den Haag	548320	71.2
	129	Helmond	92627	71.4
	9	Almere	214715	71.5
	250	Schiedam	79279	72.0

In [21]: data2show.sort_values(by=['Percentage Opkomst'], ascending=[False]).head(

\cap			г	\neg	7	п.	
U	u	L	L	_	Т	J	i

	Gemeente	Bevolking totaal	Percentage Opkomst
251	Schiermonnikoog	931	115.5
298	Vlieland	1194	104.7
13	Ameland	3746	98.6
271	Terschelling	4870	96.9
246	Rozendaal	1726	95.9
56	Castricum	36086	93.2
272	Texel	13656	92.2
263	Staphorst	17261	91.4
283	Urk	21227	91.3
301	Voorschoten	25650	89.9

Om e.e.a. concreet te maken:

- We zien dat in een grote stad als Rotterdam het opkomstpercentage erg laag is.
- Omgekeerd zien we dat in kleine gemeenten als de Waddeneilanden het opkomstpercentage erg hoog is.
- We zien verder dat de data van Schiermonnikoog en Vlieland niet helemaal correct is!

Populatie en geografie

We onderzoeken hier hoe de Nederlandse populatie verdeeld is over de verschillende gemeenten.

```
nr municipalities = len(population total)
         print(f'Aantal gemeenten in Nederland: {nr municipalities}')
         Aantal gemeenten in Nederland: 344
In [24]:
         population total cumsum = population total.cumsum()
         population size NL = population total cumsum.tail(n=1).iat[0, 0]
In [25]:
         print(f'Totale bevolking Nederland: {population size NL:,}')
         Totale bevolking Nederland: 17,475,415
         population total cumsum relative = 100 * population total cumsum / popula
In [26]:
         xaxis = np.arange(len(population total cumsum))
In [27]:
         plt.plot(xaxis, population total cumsum relative)
         plt.xlabel('aantal gemeenten (gesorteerd van groot naar klein)')
         plt.ylabel('percentage van de NLe bevolking')
         plt.title('Bevolkingsgrootte gemeente cumulatief')
         print()
```

Bevolkingsgrootte gemeente cumulatief


```
In [28]: sum_ = (population_total_cumsum_relative <= 50)['Bevolking totaal'].isin(
    print(f'Aantal gemeenten: {sum_}')

Aantal gemeenten: 58

In [29]: sum_ = (population_total_cumsum_relative <= 80)['Bevolking totaal'].isin(
    print(f'Aantal gemeenten: {sum_}')

Aantal gemeenten: 174</pre>
```

- De helft van de bevolking woont in de 58 grootste gemeenten
- 80% van de bevolking woont in ongeveer de helft van de (grootste) gemeenten in Nederland (174 gemeenten)

```
In [30]: bins = [0, 5000, 20000, 50000, 150000, 10000000]
         groups = ['heel kleine gemeenten',
                    'kleine gemeenten',
                   'middelgrote gemeenten',
                   'grote gemeenten',
                   'heel grote gemeenten'
         population total['type gemeente'] = pandas.cut(population total['Bevolkin
         total = 0
         total rel nr = 0
         for group in population total.groupby('type gemeente'):
             group size = len(group[1])
             rel nr municipalities = round(100 * group size / nr municipalities, 1
             total += group size
             total rel nr += rel nr municipalities
             print(f"{group[0]:<25} {group size:<10} {rel nr municipalities:>5} %"
         print()
         print(25 * " ", f"{total:<10} {int(total rel nr):>5} %")
                                   5
                                                1.5 %
         heel kleine gemeenten
         kleine gemeenten
                                   67
                                                19.5 %
         middelgrote gemeenten
                                   182
                                                52.9 %
                                   72
                                                20.9 %
         grote gemeenten
                                                5.2 %
         heel grote gemeenten
                                   18
                                   344
                                                100 %
```

- We kunnen een onderverdeling maken in (heel) grote en (heel) klein gemeenten.
 - Een kleine gemeente is tussen de 5000 en 20000 inwoners groot.
 - Een middelgrote gemeente tussen de 20000 en 50000 inwoners.
 - Een grote gemeente tussen de 50000 inwoners en 150000 inwoners groot.

Bevolkingsdichtheid

```
In [31]: data[['Gemeente', 'Bevolkingsdichtheid']].sort_values(by=['Bevolkingsdich
```

Out[31]:		Gemeente	Bevolkingsdichtheid
	67	Den Haag	6650
	163	Leiden	5664
	112	Haarlem	5572

163	Leiden	5664
112	Haarlem	5572
16	Amsterdam	5177
55	Capelle aan den IJssel	4761
66	Delft	4573
108	Gouda	4466
250	Schiedam	4449
178	Maassluis	3958
241	Rijswijk	3956

 De top 10 gemeenten met de grootste bevolkingsdichtheid zijn allemaal terug te vinden in de Randstad

```
In [32]: data2plot = data.sort_values(by=['Bevolking totaal'], ascending=[True])[[
   plt.scatter(data2plot['Bevolking totaal'], data2plot['Bevolkingsdichtheid
   plt.xlabel('aantal gemeente inwoners')
   plt.ylabel('bevolkingsdichtheid')
   plt.title('bevolkingsdichtheid gemeente in relatie tot aantal inwoners')
   print()
```


 Er is een sterke correlatie tussen bevolkingsdichtheid van een gemeente en het totaal aantal inwoners van een gemeente.
 In het algemeen geldt dus: hoe groter een gemeente (qua inwoners) hoe groter de bevolkingsdichtheid.

We onderzoeken nu outlyers

In [34]:	data[(data['Bevolkingsdichtheid'] > 3000) & (data['Bevolking totaal							
Out[34]:		Gemeente	Bevolkingsdichtheid	Bevolking totaal				
	121	Heemstede	3001	27545				
	154	Krimpen aan den IJssel	3824	29410				
	178	Maassluis	3958	33567				
	207	Oegstgeest	3429	25064				
	226	Papendrecht	3419	32171				

- Gemeenten met de bevolkingsdichtheid van een grote gemeente, maar het bevolkingsaantal van een middelgrote gemeente
 - Krimpen aan den IJssel stad gelegen naast een grote stad, grenst ook aan polder, maar deze polder hoort bij andere gemeenten.
 - Maassluis kleine stad met weinig polder, ook al is het omgeven door polder. Deze polder hoort bij andere gemeenten.

```
In [35]: data[(data['Bevolkingsdichtheid'] < 1000) & (data['Bevolking totaal'] > 1
```

		Gemeente	Bevolkingsdichtheid	Bevolking totaal
7		Alkmaar	995	109896
	10	Alphen aan den Rijn	892	112587
	17	Apeldoorn	485	164781
	70	Deventer	775	101236
	85	Ede	373	118530
	92	Emmen	319	107024
	113	Haarlemmermeer	799	157789
	162	Leeuwarden	523	124481
294		Venlo	821	101988

Out[35]:

- Gemeenten met de bevolkingsdichtheid van een kleine gemeente, maar het bevolkingsaantal van een (heel) grote gemeente
 - Alkmaar grote stad met veel laagbouw
 - Alphen aan den Rijn een gemeente die naast stad, ook relatief veel polder heeft.
 - Apeldoorn
 Stad met veel laagbouw, en relatief veel parken

Stemgedrag in relatie tot grootte van een gemeente

```
In [36]: round(data['Bevolking totaal'].corr(data['Percentage geldigestemmen chr p
Out[36]: -0.21
```

 We zien een negatieve correlatie tussen de grootte van de populatie van een gemeente en het percentage stemmen dat naar christelijke partijen ging. Over het algemeen wordt op het platteland meer op christelijke partijen gestemd dan in de grote stad.

Bevolkingssamenstelling naar leeftijd

```
In [37]: max_age = data['Gemiddelde leeftijd bevolking'].max()
    print(f"Hoogst gemeten gemiddelde leeftijd: {max_age}")

Hoogst gemeten gemiddelde leeftijd: 50.2

In [38]: min_age = data['Gemiddelde leeftijd bevolking'].min()
    print(f"Laagst gemeten gemiddelde leeftijd: {min_age}")

Laagst gemeten gemiddelde leeftijd: 32.4
```

 We zien een aanzienlijke spreiding in de gemiddelde leeftijd van de bevolking van gemeenten

Top 10 jongste gemeenten

n [39]:	data	a.sort_valu	ues(by='Gem	iddelde leeftijd bevo	<pre>lking').head(n=)</pre>	10)[['Geme
out[39]:		Gemeente	Gemiddelde leeftijd bevolking	Werkloosheidspercentage	Percentage geldigestemmen chr partijen	Percentage Opkomst
	283	Urk	32.4	2.7	71.7	91.3
	284	Utrecht	36.1	4.5	6.7	81.7
	263	Staphorst	37.7	2.9	58.9	91.4
	235	Renswoude	37.8	2.7	43.9	87.9
	9	Almere	38.4	5.7	7.4	71.5
	24	Barneveld	38.5	3.2	48.3	86.1
	109	Groningen	38.5	6.0	10.0	81.7
	16	Amsterdam	38.8	6.5	4.2	75.9
	193	Neder- Betuwe	39.0	3.0	46.0	83.1
	71	Diemen	39.1	5.0	6.6	73.5

 We zien een groot aantal christelijke gemeenten, en daarnaast 3 bekende studentensteden in de top 10

Gemiddelde leeftijd van de Nederlandse bevolking

Correlatie tussen gemiddelde leeftijd bevolking en gemiddelde vraagprijs aangeboden woningen

```
In [42]: plt.scatter(data['Gemiddelde leeftijd bevolking'], data['Gemiddelde vraag
    plt.xlabel('gemiddelde leeftijd')
    plt.ylabel('gemiddelde vraagprijs woning')
    plt.title(''); print()
```


• Er blijkt een lichte correlatie te zijn

Correlatie tussen gemiddelde leeftijd bevolking (van een gemeente) en percentage opkomst verkiezingen

```
In [44]: plt.scatter(data['Gemiddelde leeftijd bevolking'], data['Percentage Opkom
    plt.xlabel('gemiddelde leeftijd')
    plt.ylabel('percentage opkomst')
    plt.title('')
    print()
```



```
In [45]: round(data['Gemiddelde leeftijd bevolking'].corr(data['Percentage Opkomst
Out[45]: -0.01
```

• Er blijkt nauwelijks een correlatie te zijn

Correlatie aantal stemmen 50plus en gemiddelde leeftijd bevolking (van een gemeente)

```
In [46]: round(data['Gemiddelde leeftijd bevolking'].corr(data['Percentage geldige
Out[46]: 0.38
```

• Zoals te verwachten is er een significante correlatie

Rijk versus arm

Analyses m.b.t. werkloosheid

```
In [47]: plt.scatter(data['Werkloosheidspercentage'], data['Percentage Opkomst'])
    plt.ylabel('Opkomstpercentage')
    plt.xlabel('Werkloosheidspercentage')
    plt.title('')
    print()
```



```
In [48]: round(data['Werkloosheidspercentage'].corr(data['Percentage Opkomst']), 2
Out[48]: -0.5
```

 Gemeenten met veel werkloosheid hebben vaak een laag opkomstpercentage voor de verkiezingen

Analyses m.b.t. inkomen en woningprijs

```
In [49]: round(data['Gemiddelde vraagprijs aangeboden woningen'].corr(data['Bestee
Out[49]: 0.78
```

- We zien een heel sterke correlatie tussen:
 - Gemiddelde vraagprijs aangeboden woningen
 - Besteedbaar inkomen per huishouden|2019
- We kunnen deze grootheden gebruiken om rijke gemeenten van arme gemeenten te onderscheiden.

Introductie wealth score

```
In [50]: gva_mean = data['Gemiddelde vraagprijs aangeboden woningen'].mean()
In [51]: bi_mean = data['Besteedbaar inkomen per huishouden|2019'].mean()
```

Top 10 rijkste gemeenten op basis van de wealth score

Out[53]:		Gemeente	wealth_score	Gemiddelde vraagprijs aangeboden woningen	Besteedbaar inkomen per huishouden 2019	Werkloosheidspercentage	P€ All
	39	Blaricum	5.313321	1492794	102.3	3.4	
	309	Wassenaar	4.969672	1583386	77.0	4.1	
	161	Laren	4.467723	1375610	74.0	3.7	
	40	Bloemendaal	4.210397	1187580	80.6	3.6	
	323	Wijdemeren	3.343692	1018327	56.5	3.4	
	31	Bergen (NH.)	3.315524	1009989	56.0	3.1	
	305	Waalre	3.243623	943870	59.2	3.3	
	320	Westvoorne	3.210850	928342	59.2	3.0	
	22	Baarn	3.133434	938739	54.5	3.4	
	121	Heemstede	3.033133	794057	64.2	3.4	

In de top 10 staan gemeenten die bekend staan als rijk

Analyses wealth score

In relatie tot werkloosheid

```
In [54]: round(data['wealth_score'].corr(data['Werkloosheidspercentage']), 2)
Out[54]: -0.24
```

 We zien een negatieve correlatie tussen de wealth score en het werkloosheidspercentage.

In relatie tot niet-Westerse allochtonen

```
In [55]: round(data['wealth_score'].corr(data['Percentage Allochtonen Niet Westers
Out[55]: -0.06
```

```
In [56]: average = round(data['Percentage Allochtonen Niet Westers'].sum() / len(d
    print(f"Gemiddeld percentage niet-Westerse allochtonen per gemeente: {ave
```

Gemiddeld percentage niet-Westerse allochtonen per gemeente: 8.0 %

• We zien nauwelijks een correlatie tussen de gedefinieerde wealth score en het percentage niet-Westerse allochtonen in een gemeente.

Dat valt in de bovengenoemde top 10 inderdaad na te gaan.

In relatie tot stemgedrag

```
In [57]: plt.scatter(data['wealth_score'], 100 * data['Percentage geldigestemmen V
    plt.xlabel('wealth score')
    plt.ylabel('Percentage VVD stemmers')
    plt.title('')
    print()
```



```
In [58]: round(data['wealth_score'].corr(data['Percentage geldigestemmen VVD']), 2
Out[58]: 0.59
In [59]: round(data['wealth_score'].corr(data['Percentage geldigestemmen SP']), 2)
Out[59]: -0.46
```

- We zien duidelijke correlaties tussen de wealth score en de voorkeur voor partijen als VVD en SP:
 - In rijke gemeenten wordt veel VVD gestemd
 - In gemeenten met meer armoede en lagere inkomens wordt veel SP gestemd

In relatie tot criminaliteit

```
In [60]: round(data['wealth_score'].corr(data['Diefstal/inbraak pp']), 2)
Out[60]: 0.3
In [61]: round(data['wealth_score'].corr(data['Misdrijven totaal'] / data['Bevolki
Out[61]: -0.12
```

- Voor diefstal zien we een positieve correlatie met de welvaart in een gemeente.
- We zien een lichte negatieve correlatie tussen het aantal misdrijven per hoofd van de gemeentelijke bevolking en de welvaart in een gemeente.