Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Нации по применению атомной энергии в мирных целях

A/CONF/15/P/2088 UCDR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Еонференции

<u>ГАММА-ИЗЛУЧЕНИЕ ВНУТРИ И ВНЕ ПРОТУГЖЕННЫХ</u> ИСТОЧНИКОВ

Н.Г.Гусев, Е.Е.Ковалев, В.И. Попов

Введение

Для решения ряда практически важных задач необходимо знать мощность дозы, создаваемую гамма-излучением внутри и вне протяженных источников. Такие вопросы, как оценка радиоактивности руд по так называемому "гамма-методу", определение удельной активности воды непосредственно в водоемах, загрязненных радиоактивными веществами известного изотопного состава, расчет мощности дозы вблизи протяженных источников, необходимый в практике проектирования защиты, и другие вопросы непосредственно связаны с этой проблемой. В настоящей работе выводится зависимость между удельной активностью и мощностью дозы гамма-излучения внутри бесконечнопротяженной среды с учетом самопоглощения и многократного рассеяния и дартся аспекты применения этой закономерности к рыду практических задач. Рассматривается также задача о выходе гамма-излучения из цилиндрического источника в радиальном и торцовом направлениях. Приводятся табличные результаты расчетов на быстродействующей электронно-вычислительной машине и результаты экспериментов по выходу гамма-и элучения из больших цилиндрических источников, дающие расхождения с расчетными данными для мощности дозы в пределах IO - 20%.

I. Гамма-излучение внутри бесконечно-протяженных источников

І. Состояние проблемы

Бесконечно-протяженными принято называть такие объемные источ-25 YEAR RE-REVIEW

ゆかん

ники, размеры которых превосходят 5 - 6 свободных пробегов (релаксационных длин).

Впервые соотношение между удельной активностью и мощностью дозы гамма-излучения получено, по-видимому, Кингом /I/в 1912г. Для внутренних областей среды это соотношение имеет вид:

$$P = \frac{457 \text{ Kg}}{\mu} = \frac{457 \text{ RM}}{\mu} \quad P/40c, \qquad (11)$$

где

Р - мощность дозы в р/час;

 ψ и M - удельная активность в мкюри/г ψ гамма-эквивалент в мг-экв радия соответственно ψ

 μ - массовый коэффициент ослабления в см $^2/r$;

 $\kappa_{\rm g}$ - гамма-постоянная данного изотопа без начальной фильтрации /2/;

К - гамма-постоянная радия после начальной фильтрации 30,5 мм Pt.

Формула /I/ учитывает лишь самопоглощение гамма-лучей, по не учитывает их многократного рассеяния в источнике. Применительно к определению радиоактивности руд в естественном залегании с приближенным учетом многократного рассеяния этот метод разработал Г.В: Горшков (3, 4), причем, с того времени он стал называться гамма-методом.

В дальнейшем, на примере с раствором C_0^{60} в воде, Г.В.Горшков /5 пришел к внводу о том, что интенсивность внутри среды с учетом многократного рассеяния гамма-лучей в 2 раза превосходит интенсивность первичного излучения . Тогда вместо (I) должно быть:

$$P = \frac{851 \, \text{Kpp}}{\mu} = \frac{851 \, \text{KM}}{\mu} \, p/rac, \qquad |2|$$

Количественно к тем же результатам для C_0^{60} в воде приводит и метод Фауста-Джонсона (6), при использовании которого расчет производитсь по рорму ие:

$$D = u_{01} Q \underset{i=0}{\overset{n}{\sum}} \frac{K_{x}i}{u_{i}}, \qquad [3]$$

где и - число рассеяний.

При разработке экспресс-метода определения удельной активности воды в естественных водоемах один из авторов этого доклада (7) для расчета мощности дозы внутри водоема с учетом многократного рассеяния использовал дозовые факторы накопления $B(hv^2, \mu x, Z)$, рассчитанные гольдетейном и Вилкинсом(8) на основании метода моментов Спенсера и Фано (9). В этом случае мощность дозы внутри среды с учетом самопоглощения и многократного рассеяния может быть получена в результате численного интегрирования выражения:

$$P = \frac{4\pi K_8 \varphi}{\mu} \int_{0}^{\infty} e^{-\mu x} B(h v, \mu x, Z) d(\mu x). \tag{4}$$

Задача значительно упрощается, если использовать аналитическое представление факторов накопления, предложенное Тэйлором / 10^{\prime} .

' В этом случае мощность дозы внутри бесконечно протяженной среды запишется в виде:

$$P = \frac{457 \, \text{Ky} \, \text{P} \left[\frac{A_1}{1+\alpha_1} + \frac{A_2}{1+\alpha_2} \right]}{4 \, \text{P} \left[\frac{A_1}{1+\alpha_2} + \frac{A_2}{1+\alpha_2} \right]}, \qquad (5/4)$$

где
$$A_1, A_2, A_1 \bowtie A_2$$
 коэффициенты, не зависящие от $A_2, A_3 \bowtie A_4$ коэффициенты, не зависящие

Таковы основные существующие методы расчета мощности дозывнутри бесконечно-протаженной среды.

Таким образом можно отметить следующее:

- формула (I) не учитывает вклада многократно-рассеянного излучения;
- формула (2) не учитывает зависимости многократного рассеяния от атомного номера среды и энергии гамма-излучения;
- формула (3) получена на основании приближенного учета многократного рассеяния и фото-эффекта; при этом остается неопределенным выбор необходимого числа рассеяний;
- формулы (4) и (5) являются наиболее точными, но их применение ограничено сравнительно малым набором материалов, для которых рассчитаны факторы накопления $B(k\gamma,\mu\chi,Z)$ Важно отметить, что при сложном спектре первичного гамма-излучения и сложном химическом составе среды расчеты по формулам (3-5) становятся весьма громоздкими.

Ниже дается более простое решение задачи о мощности дозы гаммаизлучения внутри бесконечной среды с учетом многократного рассеяния.

Полученная формула позволяет легко определять мощность дозы гамма-излучения внутри протяженных сред с учетом многократного рассеяния с достаточной для практических целей точностью.

Вместе с тем, в этой формуле учитывается зависимость многократного рассеяния от энергии гамма-излучения и атомного номера среды.

2. Основы "гамма-метода"

Рассмотрим однородную бесконечно-протяженную среду с постоянной удельной активность ϕ и начальным монохроматическим излучетием с энергией квантов E_{∞} . Соотношение между удельной активностью и мощностью дозы внутри бесконечной среды с одновременным учетом самопоглощения и многократного рассеяния может быть получено на основании закона лучевого равновесия, состоящего в том, что в этом случае каждый грамм среды поглощает столько же энергии, сколько он ее и излучает.

Тогда, используя известное соотношение между энергией, поглощенной в грамме среды, и ионизацией в воздушной полости с воздухоэквивалентными стенками внутри этой среды, мы можем написать:

$$P = \int_{E_{\text{min}}}^{E_{o}} \frac{y(E)_{\log_{9}} W(E) dE}{y(E) W(E)_{\log_{9}}}$$
(6)

где \mathbb{P} - мощность дозы гамма-излучения; W(E) dE

- энергия гамма-лучей, поглощенная граммом среды в единицу времени, соответствующая компонентам рассеянного гамма-излучения в интервале энергий от E до E+dE; $W(E)_{\theta > 3}$
- энергетический эквивалент одного рентгена в воздухе; $\gamma(E)$, $\gamma(E)$ $_{6035}$
- массовые коэффициенты истинного поглощения гаммалучей в среде и воздуже в см²/г.

$$\frac{\chi(E)_{6039}}{\chi(E)} = \frac{\chi(E_{\circ})_{6039}}{\chi(E_{\circ})}.$$
 (7)

Тогда, вместо (6) будем иметь:

$$P = \frac{1}{W_{\text{bogg}}} \cdot \frac{\gamma(E_{\text{o}})_{\text{bogg}}}{\gamma(E_{\text{o}})} \int_{E_{\text{min}}}^{E_{\text{o}}} W(E) dE$$
(8)

Величина E_{min} соответствует той минимальной энергии квантов рассеянного гамма-излучения, которые дают еще заметный вклад в мощность дозы.

Принимая во внимание, что $\int_{E_{min}} W(E) dE$ есть полная энергия, погложенная граммой среды в единицу времени, и используя условие лучевого равновесия, можем написать

$$\int_{E_{min}}^{E_{o}} W(E) dF = Q 3,710^{2} \text{ n. E}_{o} 1,6 10^{-6} 3600 \frac{3pr}{2 \text{ vac}}, \qquad (9)$$

где n -число гамма-квантов с энергией $E_0 - M \ni B$ на I распад ядра;

$$\mathbb{Q}$$
 - удельная активность в $\frac{\mathtt{мкюри}}{\Gamma}$.

По определению гамма-постоянная любого изотопа в рентген/час равна:

$$\mathcal{V}_{g} = \frac{3,710^{7} \text{ n.E. } \gamma_{\text{6039}} 1,610^{-6} 3600}{4\pi W_{\text{8039}}}.$$
 (10)

Подставляя (9) и (10) ы (8), получим окончательное значение мощности дозы внутри бесконечно-протяженной среды с учетом самопоглощения и многократного рассеяния:

$$P = \frac{4\pi K_{\sigma}Q}{r} \qquad p/rac , \qquad (41)$$

или, используя соотношение M=0 $\frac{\kappa}{\kappa}$, получим:

$$D = \frac{4\pi K M}{N} \qquad p/rac \qquad (12)$$

Таким образом получены формулы (II), (I2), по виду аналогичные (I), но с той существенной разницей, что вместо коэфрициента ослабления в знаменателе стоят коэффициент истинного поглощения в . При этом если удельные активности (Q) и (M) вы ражены на единицу веса, то в следует брать в см²/г, если они даны на единицу объема, то в см^{-I}.

При сложном химическом составе среды и сложном спектре первичного гамма-излучения значение мощности дозы рассчитывается по тем же формулам (II), (I2) с использованием правила аддитивности. Возможность представить выражение для мощности дозы внутри бесконечной среды в простой аналитической форме (II), (I2) появилось в связи со слабой зависимостью отношения χ_{logg}/χ от энергии гамма-излучения для источников с малыми атомными номерами

($Z \le 20$). Например, для воды отношение $\chi_{eog}/\chi = 0.92$, причем отклонение от этой величины для широкого диапазона энергий (0,0I - 3,0 Мэв) не превышает + 5%.

В том случае, когда излучающая среда имеет большой атомный номер (Z > 20), χ_{6039}/χ начинает быстро падать с уменьшением энергии рассеянного излучения, что в свою очередь означает уменьшение отнусительного вклада в мощность дозы низкоэнергети – ческих многократно-рассеяных гамма-квантов.

Однако непостоянство отношения $\frac{0}{8}$ (E) не компенсируется уменьшением вклада низкоэнергетических гамма-квантов в мощность дозы, так что для высокоатомных сред (Z > 20) формулы (II), (I2) приводят к менее точным результатам.

Подтверждением того, что с практически допустимой погрешностью гамма-метод можно применять в широком диапазоне энергий для низкоатомных сред является, во-первых, удовлетворительное совпадение результатов расчетов по формуле (II) и по формуле (4), в которой используются факторы накопления Гольдштейна и Вилкинса (см. таблицу); во-вторых, сравнением с экспериментом.

Таблица І

Сравнительные результаты для поправок (\$) в мощности дозы, учитывающих роль многократного рассеяния внутри

$$S_1 = \int_{0}^{\infty} e^{-\mu x} B(h v, \mu x, x) d(\mu x),$$
 $S_2 = \frac{\mu}{v},$ $\Delta S = \left(\frac{S_2 - S_1}{S_2}\right) 100\%.$

Е, Мэв	\$	H ₂ 0	AB	Fle
I	2	3	4	5
0,5	Si si Si si A	3,04 2,93 -3,7	2,69 2,94 +8,5	2,09 2,86 +27,0

I	2	3	4	5
I,0	5,	2,34	2,16	2,06
	5,	2,28	2,28	2,28
	45	-2,6	+3,5	+9,6
2,0	5₁	I,89	I,8I	I,72
	52	I,89	I,90	I,92
	∆\$	O	+4,7	I0,4
3,0	51	I,89	I,67	I,59
	52	I,74	I,76	I,76
	45	-8,6	+5,I	+9,6
4,0	\$	I,7I	I,55	I,48
	\$	I,66	I,65	I,66
	\$	-3,0	+6,0	+I0,8

Как видно из табл. I, расхождение в результатах расчета, проведенного методом численного интегрирования, с использованием факторов накопления Гольдштейна-Вилкинса (S_4) и гамма-методом (S_2) лежат в пределах $\pm 10\%$, что сравнимо с погрешностью численного интегрирования и точностью, с которой известны факторы накопления. Исключением является случай с F_2 для E_0 =0,5Мэв, где расхождение достигает 27%.

Аналогичные расчеты для высокоатомных сред показали, что раскождения, напр., для свинца и урана в диапазоне энергий 0,5 - 4,0 Мэв не превышают 20-25%.

В эксперименте нами использовался водный раствор солей C_0^{60} в цилиндрической емкости диаметром IOO см и высотой IOOсм. Удельная активность раствора была $\mathbb{Q}_{0}=I$, $5\cdot IO^{-3}$ мкюри , т.е.

$$M = 2,32.10^{-3M} \frac{\Gamma - 3KB}{cM^3}$$

Мощность дозы, измеренная ионизационной камерой в центре емяссти, оказалась равной $P_{u3}=2210\,\frac{\rm kkp}{\rm cek}$, в то время как по формуле (II) $P_{\rm pacr}=2300\,\frac{\rm kkp}{\rm cek}$ (при этом в расчета было принято $\chi=0.0298\,{\rm cm}^{-1}$, $\chi=13.2\,{\rm p/vac}$).

Расхождение между расчетным и измеренным значением мощности дозы (4%) лежит в пределах погрешности эксперимента.

Таким образом, гамма-метод может быть использован при решении широкого круга практических задач, причем его применение отличается значительной простотой по сравнению с другими методами. Необходимо отметить, что в большинстве практических случаев приходится иметь дело с низкоатомними средами, когда точность расчетной мощности дозы не хуже 10%. В случае тяжелых сред погрешность в величине расчетной мощности дозы по гамма-методу не превышает 20-25%.

П. Практические аспекты применения гамма-метода

Как уже говорилось, гамма-метод применлется в геолого-разведочных работах (при поисках урановых руд). Очевидно, что предлагаемый здесь простой метод одновременного учета самопоглощения и многократного рассеяния гамма-лучей значительно облегчит задачу установления связи между удальной активностью радиоактивных руд и мощностью дозы гамма-излучения. Кроме уже упомянутого, ниже указаны другие возможные аспекты практического применения гамма-метода.

В некоторых случаях необходимо рассчитывать мощность дозы на поверхности протяженных источников (бесконечное полупространство). Тогда с точностью до так называемого "краевого эффекта" мощность дозы будет равна:

$$P = \frac{2\pi K_p Q}{y} \qquad p/rac. \tag{15}$$

"Краевой эффект" проявляется в нарушении условий лучевого равновесия на границе среда — воздух. Математически задача о величине "краевого эффекта" до сих пор не решена.

I. Определение удельной активности воды в естественных водоемах

В таких протяженных источниках воды, как моря, реки, овера, пруды, загрязненные радиоактивными веществами с известным изотопным составом, гамма-метод может быть применен, как экспресс-метод определения удельных активностей непосредственно в полевых условиях, без отбора пробы. Измерения могут вестись как с поверхности воды (т.е. с лодки, катера и т.д.), так и на больших глубинах. В последнем случае используются высокочувствительные глубинные (например карротажные) радиометры.

Примечательно, что в воде коэффициент истинного поглощения гамма-лучей почти постоянен в очень широком диапазоне энергий (0.06-2.0~Mэв) и с точностью $\pm 10-1.5\%$ может быть принят равным $\%=0.0295~\text{см}^{-1}$. Таким образом с точностью до упомянутой ошибки по измеренной в глубине (0.080~см) мощности дозы $P_{\text{из}}$ в мкр/сек в соответствии с формулой (I2) получим удельный гамма-эквивалент %:

$$M \left[\frac{\text{MKr-экв радия}}{J} \approx P \left[\frac{\text{MKp}}{\text{cek}} \right] .$$
(14)

Если из расчетов или измерений будет получен коэффициент (ω), равный

 $\frac{M}{G}$

то удельная активность (Q) может быть получена из расчета:

$$Q = \frac{M}{M} \frac{MKKDDM}{M}.$$
 (16)

Минимальная концентрация, измеряемая при помощи гамма-метода, зависит от чувствительности прибора, а также от концентрации у активных изотопов в источнике (в данном случае в воде). При благоприятных условиях метод дает возможность производить измерения удельного гамма-эквивалента до 10^{-10} г —экв радия

Подробно этот случай использования гамма-метода изложен в работе одного из авторов [7].

2. Предельно-допустимые концентрации благородных газов в атмосферном воздухе

Как известно, атомные реакторы могут являться источниками загрязнения атмосферного воздуха инертными газами (например Av⁴¹, а отдельных случаях криптоном и ксеноном). При определенных метеорологических условиях может оказаться, что эти газы сравнительно равномерно распределяются в приземных слоях атмосферы с радиусом "шапки" 3-5 свободных пробегов.

Предельно-допустимая концентрация газа в атмосферном воздухе населенных пунктов должна быть такой, которая создавала бы внешнее гамма-излучение, сравнимое с естественным фоном, т.е. не более 0,001 рентген за 24 часа.

Предельно-допустимая концентрация может быть рассчитана из формулы:

$$Q = \frac{10^{-3} \, \text{K}}{2 \, \text{K K}_{\text{X}} \, \text{t}} \frac{\text{Kippu}}{\text{J}} \tag{17}$$

Например, для
$$Ar^{44}$$
 $K_{\gamma} = 6.64$ р/час, $\gamma = 3.45.10^{-5}$ см^{-I} ($h = 1.29$ Мэв) получим:
$$Q = 3.5.10^{-11} \frac{\text{кюри}}{\pi}$$
.
$$Q = 4.4.10^{-11} \frac{\text{кюри}}{\pi}$$
, для χ_e^{455} ,
$$Q = 1.610^{-10} \frac{\text{кюри}}{\pi}$$
 и т.д.

Хотя внешнее гамма-излучение не единственный фактор, который нужно принимать во внимание при расчете предсльно-допустимых концентраций радиоактивных газов в атмосферном воздухе, тем не менее подобные оценки необходимы.

Ш. Выход гамма-излучения из цилиндрических источников

Проектирование защиты от гамма-излучения протяженных источников основывается на сведениях об их внешнем гамма-излучении.

Выход гамма-излучения из протяженных источников в общем случае определяется геометрией источника, самопоглощением и и многократным комптоновским рассеянием гамма-излучения внутри источника.

Ниже рассматривается влияние этих факторов на выход гаммаизлучееия из источников цилиндрической формы, наиболее распро страненных на практике.

I. Выход гамма-излучения из непоглощающего цилиндрического источника в общем случае

Проблема определения выхода гамма-излучения из непоглощающего цилинярического источника в общем случае, т.е. на произвольном расстоянии от цилиндра произвольных размеров, неоднократно обсуждалась в литературе [12 - 16] . Авторы этих работ указывают, что выражение для выхода гамма-излучения из сплошного цилиндрического источника, не обладающего самопоглощением, включает в себя интеграл, который может быть оценен только численными методами.

Учитывая важность решения этой проблемы, произведем расчет мощности дозы от непоглощающего цилиндра на произвольном расс. ..- нии от его образующей.

$$P = 2K_{y}Q \int_{0}^{h} \int_{0}^{R} \frac{dZ_{0}dQd\psi}{Z^{2} + Q^{2} + \beta^{2} - 2Q\beta\cos\psi}.$$

Выполнив элементарное интегрирование по ψ и ϕ и затем интегрируя по частям, получии следующее выражение:

$$P = \pi K_{p} Q \left\{ 2h \left(1 - \ln h \right) - h \ln 2 + h \ln \left[h^{2} + R^{2} - B^{2} + \frac{1}{\sqrt{h^{4} + 2h^{2}(R^{2} + B^{2}) + (B^{2} - R^{2})^{2}}} \right] - h - \left(B^{2} - R^{2} \right) \int_{0}^{h} \frac{dZ}{\sqrt{Z^{4} + 2Z^{2}(R^{2} + B^{2}) + (B^{2} - R^{2})^{2}}} - \int_{0}^{h} \frac{Z^{2} dZ}{\sqrt{Z^{4} + 2Z^{2}(R^{2} + B^{2}) + (B^{2} - R^{2})^{2}}} . \tag{18}$$

Далее рассмотрим интеграл

$$I_{1} = \int_{0}^{h} \frac{dZ}{\sqrt{Z^{4} + 2Z^{2}(R^{2} + R^{2}) + (R^{2} - R^{2})^{2}}}.$$

Хорошо известно, что интеграл этого типа можно свести к эллиптическому интегралу первого рода $F(\psi,k)$, если выполняется условие $Q^2 \le 1$. В нашем случае это условие выполняется для всех θ и Q ,поскольку $k=2\,Q\,\theta\,/(B+Q)$. Таким образом

$$I_{d} = \frac{1}{\beta + R} F(\varphi, k),$$

где

$$\varphi = \operatorname{arc} \operatorname{tg} \frac{h}{\beta - P}$$
.

Рассмотрим далее интеграл

$$I_{2} = \int_{0}^{h} \frac{Z^{2} dZ}{\sqrt{Z^{4} + 2Z^{2}(R^{2} + R^{2}) + (R^{2} - R^{2})^{2}}} = \int_{0}^{h} \sqrt{\frac{Z^{2} + (R - R)^{2}}{Z^{2} + (R + R)^{2}}} dZ - (R^{2} - R^{2})^{2} I_{1}.$$

Оставшийся интеграл в этом выражении

$$l_{5} = \int_{0}^{h} \sqrt{\frac{Z^{2} + (\beta - R)^{2}}{Z^{2} + (\beta + R)^{2}}} \, dZ$$

можно свести к эллиптическому интегралу третьего рода $\Pi(\psi, n, k) \ , \quad \text{если выполняется указанное выше условие } k^2 \leq 1.$

Таким образом

$$I_3 = \frac{(\beta - R)^2}{(\beta + R)} \Pi(\varphi, n, k),$$

где n = -I.

Удобно далее выразить эллиптический интеграл Ш рода через эллиптические интегралы первого и второго рода, используя соотношение:

$$\Pi(\varphi, n, k) = \frac{1}{4 - k^2} \left[t_9 \varphi \sqrt{1 - k^2 \sin^2 \varphi} - E(\varphi, k) + (1 - k^2) f(\varphi, k) \right]. \tag{19}$$

В этом выражении $\mathcal{N}=-1$; $\mathbb{E}(\phi,k)$ — эллиптический интеграл П рода. Используя (19) и подставляя интегралы \mathbb{I}_4 и \mathbb{I}_2 в (18), получим формулу для мощности дозы гамма-излучения в заданной точке, расположенной в радиальном направлении от цилиндра:

$$P = \pi K_{8}Qh \left\{ 1 + \ln \frac{R^{2} + h^{2} - B^{2} + \sqrt{h^{4} + 2h^{2}(R^{2} + B^{2}) + (B^{2} - R^{2})^{2}}}{2h^{2}} - \frac{1}{2h^{2}} \right\}$$

$$-\frac{6-R}{h}F'(\varphi,k)-\frac{6+R}{h}\left[tg\varphi V_{1-k}^{2}\sin^{2}\varphi-E(\varphi,k)\right]. \tag{20}$$

Отметим, что полученное выражение (20) для выхода гамма-излучения из цилиндрического источника в радиальном направлении включает в себя табулированные функции, что позволяет избежать

применяемого в таких случаях численного интегрирования.

Здесь мы не будем рассматривать частных случаев $\delta = R$ (заданная точка находится на образующей цилиндра) и $\delta = 0$ (заданная точка находится на оси цилиндра), поскольку возможность получения в этих случаях аналитических выражений для выхода гамма-излучения отмечалось рядом авторов [12, 13].

Вполне очевидно, что хотя выражение (20) получено нами для случая, показанного на рис. I, тем не менее на основании закона аддитивности это соотношение может быть использовано также в случае произвольного расположения заданной точки относительно плоскости основания цилиндра.

2. Выход гамма-излучения из цилиндрического источника с учетом геометрии и самопоглощения

Выход гамма-излучения из протяженных источников в большой степени зависит от поглощения гамма-излучения внутри самого источника, или самопоглощения.

Существующие литературные данные по вопросу о самопоглощении гамма-изг/чения в цилиндрических источниках являются ограниченными. В работах [II, I4] приводятся данные по самопоглощению в цилиндрических источниках, но эти данные справедливы лишь на достаточно больших расстояниях от исчтоника. Результаты работы [I7] поэволяют определить самопоглощение, когда заданная точка находится на поверхности источника. Существенным недостатком этих данных является то, что они получены для интенсивности, а не для мощности дозы и, кроме того, строго говоря, они применимы лишь для бесконечных по высоте цилиндрических источников. Табличные ланные по самопоглощению, приводимые в работе [18], также получены для случая, когда заданная точка находится на поверхности цилиндрического источника. Однако выход рассматривается уже по мощности дозы, и результаты относятся к конечным по высоте цилиндрическим источникам.

Наиболее полные данные по выходу и ослаблению в защите гамма-излучения протяженных источников приводятся в работе [19]. Однако для цилиндрических источников в отношении выхода излучения в радиальном направлении эти данные являются приближенными и по-лучены путем аппроксимации результатов точных вычислений. При

этом, как указывают авторы, ошибка при определении потока в радиальном направлении может достигать 40%. Известно какое важное значение в практике имеет знание мощности дозы (или потока) гамма-лучей в торцовом направлении цилиндрического источника. Для точек, лежащих на продолжении оси цилиндра, в работе [19] предлагается заменить цилиндр усеченным конусом, что несомненно является грубым приближением. Приводимые в этом случае формулы для определения потока известны еще из работы [4]. Случаи расположения заданной точки на продолжении образующей цилиндра в данной работе вообще не рассматриваются.

Определим распределение мощности дозы в трех основных направлениях: а) в радиальном направлении, б) в точках, лежащих на продолжении оси цилиндра, в) в точках, лежащих на продолжении образующей цилиндра. Очевидно, знание выхода излучения из цилиндрического источника конечных размеров в этих трех направлениях полностью определяет его поле излучения. Частным с лучаем общего решения для цилиндра являются диск (H/R << I) и линия (H/R >> I).

При решении этой задачи предположим, что: I) активное вещество распределено равномерно по всему объему источника; 2) излучение источника является моноэнергетическим; 3) поглощение гамма-излучения в веществе источника происходит по экспоненциальному закону.

Первое допущение оправдывается тем, что в ряде практических случаев равномерное распределение является наиболее характерным или легко достигается. Второе допущение не является ограничивающим, так как в случае сложного спектра мощность дозы представляет собой сумму вкладов отдельных линий. Третье допущение означает пренебрежение многократным комптоновским рассеянием. Этот вопрос будет рассмотрен в разделе 3.

а) Определим мощность дозы в точке A, лежащей в плоскости основания цилиндра высотой h и радиусом R на расстоянии β от его оси (рис. 2). В цилиндрической системе координат мощность дозы в этой точке определяется следующим выражением:

$$P = 2 \times_{\mathcal{R}} Q \int \int \frac{\varphi d\varphi d\psi d\chi}{Z^2 + \mathbb{J}^2} e^{-\mu \frac{\varphi^2 - \varphi b \cos \psi + \sqrt{R^2 \mathbb{J}^2 - \varphi^2 B^2 \sin^2 \psi}}{\mathbb{J}^2} \sqrt{Z^2 + \mathbb{J}^2}}, \tag{21}$$

где K_{g} - гамма-постоянная изотопа; Q - удельная активность;

— коэффициент ослабления гамма-излучения вещества источника;

$$\mathcal{J}^2 = \rho^2 + \beta^2 - 2\rho \cos \varphi.$$

Нетрудно убедиться, что, выражая цилиндрические координаты \emptyset , $\mathbb Z$, высоту цилиндра h и расстояние \emptyset в долях радиуса, формулу (21) можно записать в следующем виде:

формулу (2I) можно записать в следующем виде:
$$P = 2K_{\delta}QR \int \int \int \frac{k}{n^2 + M^2} \frac{-\mu R^{\frac{m^2 - mp \omega s \phi + \sqrt{M^2 + m^2 \rho^2 s i n^2 \phi}}}{M^2} \sqrt{n^2 + M^2}$$
 3десь $m = \frac{S}{R}$, $n = \frac{Z}{R}$, $k = \frac{h}{R}$, $p = \frac{6}{R}$

$$M^2 = m^2 + \rho^2 - 2 m \rho \cos \psi$$
.

Обо значая
$$\beta_{I}(k, p, \mu R) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{m \, dm \, d\phi \, dn}{n^{2} + M^{2}} e^{-\mu R} \frac{mZ - mpcos\phi + \sqrt{M^{2} + m^{2}p^{2} sin^{2}\phi}}{M^{2}} \sqrt{n^{2} + M^{2}}, \tag{23}$$

окончательно запишем:

$$P = 2K_{y}QRB_{1}(k, p, \mu R).$$
(24)

Выражение (23) элементарно не интегрируется. Для решения необходимо использовать численные методы.

Определение мощности дозы от цилиндра в радиальном направлении в точках, лежащих в плоскости основания цилиндра, не ограничивает общности рассмотрения, но удобно для практического пользования. Действительно, если необходимо найти распределение мощности дозы в плоскости центрального сечения для цилиндра высотой $H = 2 \frac{1}{V}$, то такое распределение находится простым удвоением

мощности дозы в плоскости основания для цилиндра высотой Используя свойство аддитивности дозы, по формуле (24) можно получить значение мощности дозы в любой точке, лежащей в пределах высоты цилиндра на произвольном расстоянии от его оси. Однако аддитивность дозы уже не будет выполняться для точек, лежаших вне высоты цилиндра, так как в этом случае будет иметь место экранировка одних частей цилиндра другими.

б) Выражение для мощности дозы в точке A (рис.3) на продолжении оси конечного цилиндра с высотой H и радиусом R на произвольном относительном расстоянии $Q = \frac{6}{R}$ имеет следующий вид:

$$P = 2\pi K_{R} Q R \int_{0}^{4} \int_{0}^{k} \frac{\text{molm d} n}{(n+p)^{2}+m^{2}} e^{-\mu R} \frac{n \sqrt{(n+p)^{2}+m^{2}}}{n+p},$$

$$\text{The } k = \frac{H}{R}, \quad p = \frac{b}{R}, \quad m = \frac{Q}{R}, \quad n = \frac{Z}{R}$$
(25)

Вводя обозначение

$$B_{I}(k, p, \mu R) = \int_{0}^{4} \int_{0}^{k} \frac{m \, dm \, dn}{(n+p)^{2} + m^{2}} e^{-\mu R} \frac{n \sqrt{(n+p)^{2} + m^{2}}}{n+p}$$

можно записать

$$P = 2\pi K_{\mathcal{S}} Q R \cdot B_{\underline{u}}(k, p, \mu R). \tag{26}$$

в) Значение мощности дозы в точках, лежащих на продолжении образующей цилиндра, дается следующим выражением (рис. 4):

$$P = 2K_{K}QRB_{ii}(k,p,\mu R) , \qquad (27)$$

LTG

$$B_{\frac{1}{10}}(k,p,\mu R) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{m \, dm \, d\psi \, dn}{(n+p)^{2} + m^{2} + 1 - 2m \cos \psi} e^{-\mu R} \frac{n\sqrt{(n+p)^{2} + m^{2} + 1 - 2m \cos \psi}}{n+p}$$

$$k = \frac{H}{R}$$
, $\rho = \frac{B}{R}$, $m = \frac{Q}{R}$, $n = \frac{Z}{R}$.

Расчет выхода гамма-излучения для всех рассмотренных выше случаев был произведен на электронной вычислительной машине "Стрема" в Вычислительном центре Академии наук СССР.

Вычисления были произведены для широкого интервала входящих в формулы (24), (26), (27) значений параметров k, p и μR . Часть результатов машинных вычислений приводится в табл. I-I0 приложения к настоящему докладу.

З. Учет многократного рассеяния

Выше отмечалось, что при определении выхода гамма-излучения из протяженных источников наряду с геометрией и самопоглощением излучения внутри источника необходимо учитывать также многократное комптоновское рассеяние гамма-излучения в материале источника.

Учет многократного рассеяния может быть произведен следующими методами.

Первый из них основан на использовании аналитического представления факторов накопления [10] .Мощность дозы с учетом много-кратного расселния для цилиндрического источника в радиальном направлении может быть записана в следующем виде:

$$P = 2K_{R}QR[A_{1}B_{I}(k, p, \mu R) + A_{2}B_{I}(k, p, \mu R)]$$
,

где
$$\mu' R = (1 + cl_1) \mu R$$
, $\mu'' R = (1 + cl_2) \mu R$

и $\beta_{\tilde{1}}$ находятся из таблиц для значений $\mu' R$ и $\mu'' R$ соответственно.

Второй метод заключается в замене непрерывного энергетического распределения рассеяных гамма-квантов набором групп энергий [6] и последующем использовании табличных данных по выходу гамма-излучения с учетом геометрии и самопоглощения.

Наконец, третьим весьма простым методом, дающим наилучшее согласие с экспериментом, является описанный выше "гамма-метод". Использование гамма-метода для учета многократного рассеяния в расчетах по выходу излучения из протяженных источников является одним из аспектов его применения. В применении к решаемой задаче этот метод заключается в замене входного параметра до таблиц по самопоглощению на параметр $\chi \chi$, где $\chi \chi$ — коэффициент истинного поглощения гамма-излучения в веществе источника. Эта замена основывается на рассуждениях, приведенных выше в разделе I для обоснования гамма-метода.

Отметим, что все разработанные к настоящему времени методы учета многократного рассеяния связаны с пренебрежением краевым эффектом.

4. Экспериментальное определение выхода гамма-излучения

Эксперименты по выходу гамма-излучения были проведены с большими цилиндрическими источниками следующих размеров: диаметр источников соответственно равнялся 100 и 175 см, высота - 100 см. Цилиндры со стенками толщиной 2 мм были изготовлены из нержавеющей стали и заполнены водным раствором солей ${\rm Co}^{60}$.

Измерялось поле гамма-излучения (по мощности дозы) в четырек направлениях: с торца цилиндра в точках на продолжении оси и
на продолжении образующей, в плоскости основания и в плоскости
центрального сечения каждого цилиндрического источника. Вклад в
измеренную мощность дозы рассеянного от пола и стен гамма-излучения был определен экспериментально и в результаты измерений были
внесены соответствудщие поправки.

Сравнение результатов расчета выхода гамма-излучения из цилиндрических источников с результатами экспериментов показало, что при учете многократного рассеяния по гамма-методу (путем замены μR на κR) расхождение не превышает во всех случаях 20%. При этом, как и следовало ожидать в связи с пренебрежением краевым эффектом, расчетное значение мощности дозы выше измеренной мощности дозы. Учет многократного рассеяния по методу аналитического представления факторов накопления дает большее расхождение с экспериментом и достигает 40-45% также в сторону завышения расчетной мощности дозы.

В качестве иллюмтриции на рис. 5 приведены кривые распределения мощности дозы в радиальном направлении в плоскости центрального сечения для цилиндрического источника диаметром 100 см и высотой 100 см с удельной активностью раствора Q=0,0015 мкюри/см³. На этом рисунке по оси ординат отложена величина мощности дозы в микрорентгенах в секунду по оси абсцисс — относительное расстояние $\rho = \frac{1}{R}$, где D — расстояние от оси цилиндра до заданной точки. Верхняя кривая — расчетная (многократное рассеяние учтено по гамма-методу), нижняя — экспериментальная. Как видно из рисунка, расхождение расчетных величин мощности дозы и измеренных всех относительных расстояний не превышает 20%.

Заключение

В настоящей работе исследовано поле гамма-излучения внутри и вне протяженных источников. При этом решение задачи о гамма-из-лучении внутри бесконечной среды (раздел I) основывается на законе лучевого равновесия ("гамма-метод"). В разделе П описываются некоторые из возможных аспектов применения гамма-метода.

Задача о выходе гамма-излучения из протяженных цилиндрических источников (раздел $\mathbb I$) решена с учетом геометрии и само поглощения в общем случае, т.е. на произвольном расстоянии от
торца и образующей цилиндра. Для учета многократного рассеяния
предлагается метод, основанный на замене параметра $\mathcal M$ в
таблицах самопоглощения на $\mathcal R$. Сравнение вычисленных значений мощности дозы с измеренными значениями, полученными в экспериментах с большими цилиндрическими источни жми, заполненными водными растворами солей $\mathbf Co^{60}$, иллюстрирует возможность использова ния этого метода для учета многократного рассеяния.

Представленные в настоящей работе результаты могут быть использованы при решении ряда практических задач, связанных с определением гамма-излучения внутри и вне протяженных источников.

3686

Литература

- I. King L., Phil. Mag., 1912, 23, 242
- 2. Гусев Н.Г., Машкович В.П., Обвинцев Г.В. Гамма-излучение радиоактивных изотопов, Изд. физико-математической литературы, Москва, 1958
- 3. Горшков Г.В., Лятковская Н.М. Геофизика, 1934, № 4, 70
- 4. Горшков Г.В. Гамма-метод, глава из книги "Радиоактивные геофизические методы в приложении к геологии", ОНТИ, 1934
- 5. Горшков Г.В. Гамма-излучение радиоактивных тел, Изд. ЛГУ, 1956
- 6. Faust W., and Johnson M. Phys. Rev., 1949, 75, 467
- 7. Гусев Н.Г. Экспресс-метод определения удельных активностей воды в больших водоемах. Труды Всесоюзного совещания по применению изотопов в медицине и биологии, Медгид, 1957
- 8. Goldstein H., Wilkins J. Calculation the penetration of gamma-rays, NDA, 15 C-41. Nucl. Devel. Ass., Inc. White Plains, New York, 1951
- 9. Spenser L., Fano U., Penetration and diffusion of x-rays.
 J. Res. NBS, 1951, 46, 446
- 10. Taylor J., Application of y-ray Build of Data to Shield Design, Ward, 1954, RM-217
- 11. Dixon #. Nucleonics, 1951, 8, 68
- 12. Radiam Dosage, The Manchester System, Livingstone, Edinburg, 1947
- 13. Plesch R. Strahlentheropie, 1955, 97, 277
- 14. Evans R.D., Evans R.O. Revs. Mod. Phys., 1948, 20, 305
- 15. Mayneord W., Brit. J. Radiol., Suppl., 1950, 2, 150
- 16. Mayneord W., Sinclair W. Advences Biol. and Med. Physics, 1953, 3, 1
- 17. Field E. Nucleonics, 1953, 11, N=9, 66
- 18. Гусев Н.Г. Справочник по радиоактивным излучениям и защите, медгиз, 1956
- 19. Reactor Shielding. ed. T. Rockwell, N-Y., 1956

Приложение

Рабочие таблицы для расчета выхода гамма-излучения из цилиндрических источников

В табл. І—4 приведены значения $B_{\rm I}$ (k, ρ , $\mu \rho$), входящие в формулу расчета мощности дозы от цилиндрического источника в радиальном направлении в плоскости его основания (см. рис.2):

$$\mathcal{P}_{\underline{I}} = 2 \, K_{g} \, Q \, R \, B_{\underline{I}} \, (k, p, \mu \, R)$$
где K_{g} — гамма—постоянная данного изотопа в $\frac{\text{мкр.см}^{2}}{\text{сек.мкрри}}$;

 \mathbb{Q} - удельная активность в $\frac{\text{мкюри}}{\text{см}^3}$;

Р – радиус цилиндра в см.

В табл. 5-8 приведеем значения B_{Π} $(k,\rho,\mu R)$, входящие в формулу расчета мощности дозы от цилинлрического источника в точках на продолжении его осм (см. рис.3):

$$P_{\pi} = 2\pi K_{R}QR \cdot B_{\pi}(k, p, \mu R)$$
.

В табл. 9 - IO приведены значения B_{\parallel} (k, ρ , μ), входящие в формулу расчета мощности дозы от цилиндрического источника в точках на продолжении образующей цилиндра (см. рис. 4)

$$P_{\underline{m}} = 2 K_{\delta} Q R \cdot B_{\underline{m}} (k, p, \mu R)$$
.

Таблица I

במסייתום ד	I5	6,262.10 ⁻² 3.421.10 ⁻² 1,648.10 ⁻² 1,824.10 ⁻³ 4,047.10 ⁻⁴
	01	8,024.10 ⁻² 4,585.10 ⁻² 2,188.10 ⁻² 2,487.10 ⁻³ 5.627.10 ⁻⁴ 1.374.10 ⁻⁴
	8,0	
,R)	4,0	I,630.10 ^{-I} 9,447.10 ⁻² 9,748.10 ⁻² 5.492.10 ⁻² 4,629.10 ⁻² 2.608.10 ⁻² 5.632.10 ⁻³ 3,011.10 ⁻³ 1,314.10 ⁻³ 6,878.10 ⁻⁴ 3,206.10 ⁻⁴ 1,679.10 ⁻⁴
Значения $B_{\underline{I}}(k, \rho, \mu R)$	2,0	2,692.IO ^{-I} I,634.IO ^{-I} 7,904.IO ⁻² I,020.IO ⁻² 2,425.IO ⁻³ 5,940.IO ⁻⁴
k = 0,5. Значения	8,0	
文 』	ρ μκ 0,4	I,25 5,324.10 ^{-I} 4,326.10 ^{-I} I,5 3,32I.10 ^{-I} 2,674.10 ^{-I} 2,0 I,676.10 ^{-I} I,33I.10 ^{-I} 5,0 2,37I.10 ⁻² I,832.10 ⁻² 10,0 5,798.10 ⁻³ 4,440.10 ⁻³ 20,0 I,438.10 ⁻³ I,097.10 ⁻³

0888

Значения $\theta_{1}(k, p, \mu R)$

I5	7,935·10 ⁻²	4,916.10-2	2,807.IO ⁻²	3,583·10 ⁻³	8.062.IO-4	I,962.10-4
IO	6,436·10-1 3,705·10-1 2,100·10-1 1,179·10-1 1,004.10-1 7,935·10-2	$4,387.10^{-1}$ $2,541.10^{-1}$ $1,442.10^{-1}$ $7,860.10^{-2}$ $6,541.10^{-2}$ $4,916.10^{-2}$	$2,405.10^{-1}$ 1,391.10 ⁻¹ 7,961.10 ⁻² 4,422.10 ⁻² 3,706.10 ⁻² 2,807.10 ⁻²	$3,614\cdot10^{-2}$ 2,008·10 ⁻² 1,106.10 ⁻² 5,910·10 ⁻³ 4,881.10 ⁻³ 3,583·10 ⁻³	1,120.10-3	2,744.10-4
8,0	I-01.671,1	7,860·IO ⁻²	4,422.10-2	5,910.10-3	1,369.10-3	3,355.10-4
4,0	2,100·10 ^{-I}	I,442.IO-I	7,961.10-2	1,106.10-2	1,6I8·10 ⁻³	6,405.10-4
2,0	3,705.10 ^{-I}	2,54I.IO-I	I-01.166,1	2,008.10-2	4,832.IO ⁻³	I,186.10 ⁻³
0,8	6,436.IO ^{-I}	4,387.10 ⁻¹	2,405.10-I	3,614.10-2	8,851.10-3	2,191.10-3
0,4	I,25 8,198.10 ⁻¹	5,578.IO-I	3,065.IO-I	4,685.IO-2	1,156.10-2	2,874·IO ⁻³
d d	I,25	I,5	2,0	5,0	10,0	20,02

Таблица 3

k = I,5. Значения $B_{1}(k, \rho, \mu R)$

	15,0	8,674.10 ⁻² 5,575.10 ⁻² 3,518.10 ⁻² 5,226.10 ⁻³ 1,201.10 ⁻³ 2,939.10 ⁻⁴
	10,0	2,240·IO ^{-I} I,257·IO ^{-I} I,077·IO ^{-I} 8,674·IO ⁻² I,634·IO ^{-I} 8,788·IO ⁻² 7,329·IO ⁻² 5,575·IO ⁻² 9,976·IO ⁻² 5,488·IO ⁻³ 4,605·IO ⁻² 3,5I8·IO ⁻² I,6I3·IO ⁻² 8,606·IO ⁻³ 7,109·IO ⁻³ 5,226·IO ⁻³ 3,90I·IO ⁻³ 2,04I·IO ⁻³ I,670·IO ⁻³ 2,939·IO ⁻⁴ 2,939·IO ⁻⁴
	8,0	1,257.10 ⁻¹ 8,788.10 ⁻² 5,488.10 ⁻³ 8,606.10 ⁻³ 2,041.10 ⁻³ 5,025.10 ⁻⁴
	4,0	2,240·10-1 1,634·10-1 9,976·10-2 1,613·10-2 3,901·10-3
	2,0	4,073.10 ⁻¹ 2,973.10 ⁻¹ 1,782.10 ⁻¹ 2,936.10 ⁻² 7,203.10 ⁻³ 1,778.10 ⁻³
	8,0	7,455·10 ⁻¹ 5,370·10 ⁻¹ 3,714·10 ⁻¹ 5,306.10 ⁻² 1,321·10 ⁻² 3,283·10 ⁻³
	0,4	9,759.IO ^{-I} 6.982.IO ^{-I} 4,IO3.IO ^{-I} 6,894.IO ⁻³ I,726.IO ⁻² 4,306.IO ⁻³
C	0	I,25 I,5 2,0 5,0 IO,0

0
O
Q:
(o

Таблица

	*	k = 3,0 Значени	Значения $B_{\underline{1}}(k, \rho, \mu R)$	mR)			
D O	0,4	8,0	2,0	4,0	8,0	10,0	15,0
1,25 1,5 2,0 5,0 10,0	1,155 8,835.10 ⁻¹ 5,784.10 ⁻¹ 1,258.10 ⁻¹ 3,366.10 ⁻²	8,407.10 ⁻¹ 6,493.10 ⁻¹ 4,310.10 ⁻¹ 9,584.10 ⁻² 2,569.10 ⁻²	4,297.10 ⁻¹ 2,315.10 ⁻¹ 1,312.10 ⁻¹ 1,132.10 ⁻¹ 9,260.10 ⁻² 3,349.10 ⁻¹ 1,784.10 ⁻¹ 9,626.10 ⁻² 8,099.10 ⁻² 6,297.10 ⁻² 2,270.10 ⁻¹ 1,228.10 ⁻¹ 6,750.10 ⁻² 5,718:10 ⁻² 4,476.10 ⁻² 5,207.10 ⁻³ 1,504.10 ⁻³ 1,244.10 ⁻³ 3,225.10 ⁻³ 2,324:10 ⁻³ 1,395.10 ⁻³ 1,902.10 ⁻³ 9,963.10 ⁻⁴ 8,151.10 ⁻⁴ 5,829.10 ⁻⁴	4,297.10 ⁻¹ 2,315.10 ⁻¹ 1,312.10 ⁻¹ 3,349.10 ⁻¹ 1,784.10 ⁻¹ 9,626.10 ⁻² 2,270.10 ⁻¹ 1,228.10 ⁻¹ 6,750.10 ⁻² 5,207.10 ⁻² 2,828.10 ⁻² 1,504.10 ⁻² 1,395.10 ⁻² 7,537.10 ⁻³ 3,940.10 ⁻³	1,312.10 ⁻¹ 9,626.10 ⁻² 6,750.10 ⁻² 1,504.10 ⁻² 3,940.10 ⁻³	1,132·10 ⁻¹ 8,099·10 ⁻² 5,718·10 ⁻² 1,244·10 ⁻² 3,225·10 ⁻³ 8,151·10 ⁻⁴	4,297.10 ⁻¹ 2,315.10 ⁻¹ 1,312.10 ⁻¹ 1,132.10 ⁻¹ 9,260.10 ⁻² 3,349.10 ⁻¹ 1,784.10 ⁻¹ 9,626.10 ⁻² 8,099.10 ⁻² 6,297.10 ⁻² 2,270.10 ⁻¹ 1,228.10 ⁻¹ 6,750.10 ⁻² 5,718:10 ⁻² 4,476.10 ⁻² 5,207.10 ⁻² 2,828.10 ⁻² 1,504.10 ⁻³ 1,244.10 ⁻³ 9,203.10 ⁻³ 1,395.10 ⁻² 7,537.10 ⁻³ 3,940.10 ⁻³ 3,225.10 ⁻⁴ 5,829.10 ⁻⁴ 5,829.10 ⁻⁴

,	_
Ċ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-	ر ح أ
c	ည
	чения

Таблица 5

	15,0	5 699.10-2	0,000 FO	OT	2_0I.888.10	3.300.10-3	P_07.409	T 465, TO-4
	10,0	7.964.10-2 5.492.10-2	5 TOP. TO 2 10-2	OT. C. C. T. C.	2,687.IO-4 1,555.IO-2	4.833.10-3 3.500.10-3	1.312.10-3 8.804.10-4	2,173.10-4
	8,0	9.748.10-2	6 343.TO-2	0.4 OF0 00	3,27I·IO-	5,912.10-3	I,6II.10 ⁻³	6,816·10 ⁻⁴ 4.683·10 ⁻⁴ 2.678·10 ⁻⁴ 2.173·10 ⁻⁴ 1.465.10 ⁻⁴
	4,0	2,693.10 ⁻¹ 1,747.10 ⁻¹ 9,748.10 ⁻²	I.623.IO ⁻¹ T.TOT.TO ⁻¹ 6.343.TO ⁻²	2 TOT 1	8,034.10 - 5,570.10 - 3,271.10 -	$1,459\cdot10^{-2}$ $ 1,014\cdot10^{-2}$ $ 5,912\cdot10^{-3}$	4 043.IO ⁻³ 2,793.IO ⁻³ I,6II.IO ⁻³	4,683.IO-4
	2,0	2,693.IO-I	I_623.10_I	2-2-100	8,034.10 ~	$1,459.10^{-2}$	4 043·I0 ⁻³	6,816.10 ⁻⁴
	8 . 0	3,724.10-I	2,153.10-I	H-0,0 +	_ 0T.84061	I,885·I0 ⁻²	5,238·IO ⁻³	8,861.10-4
Juk D.	p 0,4	0,2 4,201·10 ⁻¹ [3,724·10 ⁻¹	0,5 2,387.IO ^{-I} 2,153.IO ^{-I}	I-01 010 1 I-01. 411 I O I	01./4767 067	3,0 2,065.10-6 1,885.10-2	6,0 5,746.10 ⁻³ 5,238.10 ⁻³	15,0 9,734·10 ⁻⁴ 8,861·10 ⁻⁴

Таблица 6

 $k = I_{,0}$ Значения $B_{\underline{I}}(k, \rho, \mu R)$

d MK	0,4	8,0	2,0	4,0	8,0	10,0	15,0
0,2	5,560·IO-I	0,2 5,560.10-I 4,689.10-I 3,054.10-I 1,843.10-I 1,042.10-I 8,812.10-2 6,683.10-2	3,054.IO-I	I,843.IO-I	I,042.IO-I	8,812.10-2	6,683.10-2
0,5	0,5 3,300.10-I	2,814.10-I	2,814.10-1 1,880.10-1 1,160.10-1 6,492.10-2 5,377.10-2 3,933.10-2	I,160.10-I	6,492.10-2	5,377.10-2	3,933.10-2
0,1	I,0 I,672.10-I		I,429.IO ^{-I} 9,598.IO ⁻² 5,945.IO ⁻² 3,319.IO ⁻² 2,732.IO ⁻² I,943.IO ⁻²	5,945.10-2	3,319.10 ⁻²	2,732.10-2	1,943.10-2
0,8	3,0 3,345.10 ⁻²		2,834.10 ⁻² 1,859.10 ⁻² 1,114.10 ⁻² 6,005.10 ⁻³ 4,887.10 ⁻³ 3,386.10 ⁻³	I,II4·I0 ⁻²	6,005·10 ⁻³	4,887·10 ⁻³	3,386.10-3
6,0	6,0 9,784.10-3	8,246.IO ⁻³	8,246.10 ⁻³ 5,312.10 ⁻³ 3,114.10 ⁻³ 1,640.10 ⁻³ 1,326.10 ⁻³ 9,098.10 ⁻⁴	3,114.10-3	I,640.I0 ⁻³	1,326.10-3	9,098.10-4
15,0	1,720,10-3		9,164.10-4	5,277.10-4	2,729.10-4	2,197.10-4	1,497-10-4

Таблица 7

-	15,0	I,684·10 ⁻¹ 8,519·10 ⁻² 8,519·10 ⁻² 8,797·10 ⁻² 6,105·10 ⁻³ 1,699·10 ⁻³ 1,424·10 ⁻³ 2,651·10 ⁻⁴ 2,312·10 ⁻⁴
Thursday, and the second	10,0	I,684.IO-I 8,519.IO-2 3,797.IO-2 6,105.IO-3 I,699.IO-3 2,651.IO-4
	8,0	1,746.10 ⁻¹ 9,030.10 ⁻² 4,120.10 ⁻² 6,844.10 ⁻³ 1,836.10 ⁻³ 3,028.10 ⁻⁴
Значения $B_{\overline{I}}$ ($k, \rho, \mu R$)	4,0	2,257.10-I 1,276.10-I 6,255.10-2 1,146.10-2 3,198.10-3 5,423.10-4
	2,0	3,363.10 ⁻¹ 2,257.10 ⁻¹ 1,997.10 ⁻¹ 1,276.10 ⁻¹ 1,017.10 ⁻¹ 6,255.10 ⁻² 2,024.10 ⁻² 1,146.10 ⁻² 5,908.10 ⁻³ 3,198.10 ⁻³ 1,039.10 ⁻³ 5,423.10 ⁻⁴
K=3.	0,8	5,361.10-I 3,264.10-I I,726.10-I 3,832.10-2 I,198.10-2 2,342.10-3
	0,4	6,737.10 ^{-I} 5,361.10 ^{-I} 4,154.10 ^{-I} 3,264.10 ^{-I} 2,247.10 ^{-I} 1,726.10 ^{-I} 5,312.10 ⁻² 3,832.10 ⁻² 1,727.10 ⁻² 1,198.10 ⁻² 3,344.10 ⁻³ 2,342.10 ⁻³
	D WR	0,2 0,5 1,0 3,0 6,0

-31-

Таблица 8

Значения $B_{\underline{I}}(k, p, \mu R)$

K = 5

D MR	0,4	8,0	2,0	4,0	8,0	10,0	15,0
0,2	1-01·170,7	5,672·10 ⁻¹	3,853·10 ⁻¹	3,010.10 ⁻¹	2,744·10 ⁻¹	2,727.10 ⁻¹	2,727.10 ⁻¹ 2,720.10 ⁻¹
0,5	4,312.10-I	3,362.10-I	2,152.10 ^{-I}	I,568.IO-I	I,363.10-I		I,348.IO ^{-I} I,342.IO ^{-I}
1,0	2,345.IO-I	I,762.10-I	I-01.650.1	7,214.10-2	5,933.10-2	5,829.10-2	5,829.10 ⁻² 5,780.10 ⁻²
3,0	5,754.10-2	3,936.10-2	2,052.10-2	1,239.10-2	9,226.10-3		8,940.10-3 8,792.10-3
0,9	1,940.10-2	1,246.10-2	5,961.10-3	3,402.10-3	3,402.10-3	2,334.10-3	2,287.10-3
15,0	3,926.10-3	2,371.10-3	1,047.10 ⁻³	5,715.10-4	3,950.10-4	3,789.10-4	3,789.10-4 3,703.10-4

Таблица 9

^k =0,5. Значения В_™ (k, p, μR)

		+					
A C	0,4	0,8	2,0	4,0	0,8	10,0	15,0
0,2	0,2 7,147·10 ⁻¹ 6,154	6,154·10-I	4,192.10 ^{-I}	2,598.IO-I	2,598.IO ^{-I} I,419.IO ^{-I} I,180.IO ^{-I} 8,209.IO ⁻²	I-01.081,1	8,209.IO ⁻²
0,5	0,5 4,623·10-I 4,078·10-I	4,078.10 ^{-I}	2,92I.10 ^{-I}	I,884.10-I	I,884.IO ^{-I} 1,046.IO ^{-I} 8,516.IO ⁻² 5,863.IO ⁻²	8,516.10 ⁻²	5,863.10-2
0,1	I,0 2,6IO·IO-I	2,340.IO-I	I-01.887.1	I-01.861,I	I,198.10 ⁻¹ 6,551.10 ⁻² 5,337.10 ⁻² 3,647.10 ⁻²	5,337.10-2	3,647.10-2
3,0	3,0 5,964·IO ⁻² 5,420·IO ⁻²	5,420.10-2	4,156.10-2	2,854.10-2	2,854.10 ⁻² 1,645.10 ⁻² 1,341.10 ⁻² 9,132.10 ⁻³	1,341.10-2	9,132.10 ⁻³
0,9	6,0 I,760·10 ⁻² I,602·10 ⁻²	1,602.10-2	1,233.10-2	8,489.10-3	8,489.10 ⁻³ 4,881.10 ⁻³ 3,971.10 ⁻³ 2,690.10 ⁻³	3,971.10-3	2,690.10 ⁻³
15,0	15,0 3,044.10-3 2,771.10-3		2,130.10 ⁻³	1,463·10 ⁻³ 8,359·10 ⁻⁴ 6,783·10 ⁻⁴ 4,574·10 ⁻⁴	8,359.10-4	6,783.IO-4	4,574.IO-4

CX CX CX CX

_	
)
1	1
σ	į
E	•
2	•
£	

		K = I,0		Значения $\beta_{\overline{m}}(k,\rho,\mu R)$	o, mR)	T	таолица 10
dm	0,4	8,0	2,0	4,0	8,0	0,01	15,0
0,2	0,2 9,859·10 ⁻¹	7,974·10-I	4,796.10-I	4,796.10-I 2,760.10-I 1,559.10-I	I,559.IO-I	I,332.10 ^{-I} 1,065.10 ^{-I}	I_01.650.I
0,5	0,5 6,633·IO-I	5,468·10-I	3,404.IO-I	I-01.986.I	I_084.10-I	9,003.10-2	6.735.10-2
0,1	I,0 3,908.IO-I		2,083·10-I	I,232.10-I	6,667.10-2	5,466.10 ⁻²	3.914.10-2
0,8	3,0 9,701.10-2		5,283.10-2	3,127.10-2	1,670.10-2	I,357.10 ⁻²	9.410.10 ⁻³
6,0	2,998.10-2		1,617.10-2	9,449·IO ⁻³	4,965.10-3		2,755.10-3
15,0	15,0 5,381.10 ⁻³		2,863.10-3	I,647·10 ⁻³ 8,519·10 ⁻⁴	8,519.10-4	6,859.10-4 4,673.10-4	4.673.IO-4

Рис.1. Выход излучения из непоглощающего цилиндра

Рис.2. Факторы геометрии и самопоглодения в направлении образующей цилиндра

Рис.3. Факторы геометрии и самопоглощения в торцовом направлении цилиндра

Рис.4. Факторы геометрии и самопоглощения в направлении продолжения образующей цилиндра

Рис.5. Выход излучения из цилиндра в радиальном направлении. Верхняя кривая— расчетная, нижняя— экспериментальная