LA2 1

KYB

Thrn, it's a Fact mathrnfact@gmail.com

September 17, 2020

Overview

Ch6. Orthogonality and best approximation

- 6.1 Norms and inner products
- 6.2 The adjoint of a linear operator
- The Dual Spaces
- 6.3 Orthogonal vectors ans bases
- 6.4 The projection theorem

Tutoring - Linear Algebra 2

- ► New tools 'norm' and 'inner product' (Ch6)
- ▶ Factorication of matrices (Ch6,7,8,9) $\rightarrow Ax = b$
- ► Vector analysis (Ch10)

In calculus, we define the size of points (vectors) by

$$||(x, y, z)|| = \sqrt{x^2 + y^2 + z^2}.$$

And we define two kinds of multiplication of two points, one is the dot product and the other is the cross product.

$$(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$(x_1, y_1, z_1) \times (x_2, y_2, z_2) = (x_2 y_3 - x_3 y_2, x_3 y_1 - x_1 y_3, x_1 y_2 - x_2 y_1)$$

Definition

Let V be a vectir space over $\mathbb R$. A <u>norm</u> on V is a function $\|\cdot\|:V\to\mathbb R$ that satisfies the following propeties:

- 1. $||u|| \ge 0$ for all $u \in V$, and ||u|| = 0 if and only if u = 0;
- 2. $\|\alpha u\| = |\alpha| \|u\|$ for all $\alpha \in \mathbb{R}$ and all $u \in V$;
- 3. $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$.

Example

For $V = \mathbb{R}^n$,

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$$

is called Euclidean norm. In general,

$$||x||_p = (x_1^p + \dots + x_n^p)^{1/p}$$

is called p-norm(or l_p -norm) for $p \ge 1$.

Definition

Let V be a vector space over $\mathbb R$. An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb R$ that satisfies the following properties:

$$\begin{split} \langle u,v\rangle &= \langle v,u\rangle \\ \langle \alpha u + \beta v,w\rangle &= \alpha \langle u,w\rangle + \beta \langle u,w\rangle \\ \langle u,u\rangle &\geq 0 \text{ and } \langle u,u\rangle = 0 \Leftrightarrow u = 0 \end{split}$$

Operators

 $ightharpoonup (F,+,\cdot)$: field

$$ightharpoonup (V,+,\cdot)/F$$
 : vector space

$$\begin{aligned} +, \cdot : F \times F \to F \\ +: V \times V \to V \\ \cdot : F \times V \to V \\ \langle \cdot, \cdot \rangle : V \times V \to F \end{aligned}$$

Lemma (267)

Let V be a vector space over \mathbb{R} , and let $\langle \cdot, \cdot \rangle$ be an inner product on V. If either u or v is the zero vector, then $\langle u, v \rangle = 0$.

Theorem (268, The Cauchy-Schwarz inequality)

Let V be a vector space over \mathbb{R} , and let $\langle \cdot, \cdot \rangle$ be an inner product on V. Then

$$|\langle u, v \rangle| \le \langle u, u \rangle^{1/2} \langle v, v \rangle^{1/2}.$$

Ch6. Orthogonality and best approximation

6.1 Norms and inner products

Theorem (269)

Let V be a vector space over \mathbb{R} , and let $\langle \cdot, \cdot \rangle$ be an inner product on V. Then

$$||u|| = \sqrt{\langle u, u \rangle}$$

defines a norm on V.

Example (l^p norms on \mathbb{R}^n)

For any $p \in [1, \infty]$, one can define a norm on \mathbb{R}^n by

$$\begin{aligned} \|x\|_p &= \left[\sum_{i=1}^n \left|x_i\right|^p\right]^{1/p} \text{ for } p < \infty \\ \|x\|_\infty &= \max\{\left|x_i\right|: i=1,\cdots,n\} \end{aligned}$$

Figure: the unit balls when n=2, $p=1,2,3,4,\infty$

Example (L^2 inner product and norm for functions)

On C[a,b],

$$\langle f, g \rangle_2 = \int_a^b f(x)g(x)dx$$

defines an inner product and it induces a norm

$$||f||_2 = \sqrt{\langle f, f \rangle_2} = \left(\int_a^b f(x)^2 dx \right)^{1/2}.$$

Example $(L^p \text{ norm})$

In general for $p \geq 1$,

$$\begin{split} \|f\|_p &= \left(\int_a^b f(x)^p dx\right)^{1/p} \\ \|f\|_\infty &= \max\{|f(x)|: a \leq x \leq b\}. \end{split}$$

is a norm.

Ex6.1.4

(a)
$$||x||_{\infty} \le ||x||_2 \le ||x||_1$$
.

(b)
$$||x||_1 \le \sqrt{n} ||x||_2$$
.

(c)
$$||x||_2 \le \sqrt{n} ||x||_{\infty}$$
.

6.1.6

Define a function $\|\cdot\|$ on \mathbb{R}^n by

$$||x|| = |x_1| + \dots + |x_{n-1}|.$$

Prove that $\|\cdot\|$ is not a norm on \mathbb{R}^n .

6.1.11

Suppose V is an inner product space and $\|\cdot\|$ is the norm defined by the inner product $\langle\cdot,\cdot\rangle$ on V. Prove that the parallelogram law holds:

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2.$$

Using this result, we can prove that neither the l^1 norm nor l^∞ norm on \mathbb{R}^n is defined by an inner product.

Ch6. Orthogonality and best approximation

6.1 Norms and inner products

Ex6.1.12

Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix. Prove that if $\|\cdot\|$ is a norm on \mathbb{R}^n , then $\|x\|_A = \|Ax\|$ is again norm on \mathbb{R}^n .

Ch6. Orthogonality and best approximation

6.1 Norms and inner products

Ex6.1.13

Let $\lambda_1, \dots, \lambda_n$ be positive real numbers. Prove that

$$\langle x, y \rangle = \sum_{i=1}^{n} \lambda_i x_i y_i$$

defines an inner product on \mathbb{R}^n .

Ex6.1.15,16

Let U and V be vector spaces over $\mathbb R$ with norms $\|\cdot\|_U$ and $\|\cdot\|_V$ respectively. Then each of the following is a norm on $U\times V$:

(a)
$$\|(u,v)\| = \|u\|_U + \|v\|_V$$

(b)
$$\|(u,v)\| = \sqrt{\|u\|_U^2 + \|v\|_V^2}$$

(c)
$$\|(u,v)\| = \max\{\|u\|_U, \|v\|_V\}$$

Moreover if $\langle\cdot,\cdot\rangle_U$ and $\langle\cdot,\cdot\rangle_V$ are inner products respectively, then

$$\langle (u,v),(w,z)\rangle = \langle u,w\rangle_U + \langle v,z\rangle_V$$

defines an inner product on $U \times V$.

6.2 The adjoint of a linear operator

Recall

For $A \in F^{m \times n}$ and $B \in F^{n \times p}$,

$$(A^{T})_{ij} = A_{ji}$$
$$(AB)^{T} = B^{T}A^{T}$$
$$(A+B)^{T} = A^{T} + B^{T}$$

Theorem (270)

Let $A \in \mathbb{R}^{m \times n}$. Then

$$(Ax) \cdot y = x \cdot (A^T y).$$

Theorem (271)

Let $A \in \mathbb{R}^{m \times n}$. If b is a nonzero vector in $\mathcal{N}(A^T)$, then

$$\mathcal{N}(A^T) \cap \operatorname{col}(A) = \{0\}.$$

cf.

In 5.1 Theorem 227,
$$F^n = \mathcal{N}(A) \oplus \operatorname{col}(A)$$
 if and only if $\mathcal{N}(A) \cap \operatorname{col}(A) = \{0\}$.

The adjoint of a linear operator

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear. We can find a linear map $S: \mathbb{R}^m \to \mathbb{R}^n$ such that

$$\langle T(x), y \rangle = \langle x, S(y) \rangle.$$

Definition (272)

Let V be an inner product space over \mathbb{R} , and $\{u_1, \dots, u_n\}$ be a basis for V. Then the matrix $G \in \mathbb{R}^{n \times n}$ defined by

$$G_{ij} = \langle u_j, u_i \rangle$$

is called the Gram matrix of the basis $\{u_1, \dots, u_n\}$.

Theorem (273)

Let V be an inner product space over \mathbb{R} , and $\{u_1, \dots, u_n\}$ be a basis for V, and let G be the Gram matrix for this basis. Then G is nonsingular.

6.2 The adjoint of a linear operator

Theorem (274)

Let V be an inner product space over \mathbb{R} , and let $x \in V$. Then $\langle x,y \rangle = 0$ for all $y \in V$ if and only if x = 0.

Corollary (275)

 $\langle x,v\rangle = \langle y,v\rangle \ \text{for all} \ v\in V \ \text{if and only if} \ x=y.$

6.2 The adjoint of a linear operator

Theorem (276)

Let X and U be finite-dimensional inner product spaces over \mathbb{R} , and let $T:X\to U$ be linear. There exists a unique linear operator $S:U\to X$ satisfying

$$\langle T(x), u \rangle_U = \langle x, S(u) \rangle.$$

Denote $S = T^*$.

Step 1

Fix two basis $\mathcal{X} = \{x_1, \cdots, x_n\}$ and $\mathcal{U} = \{u_1, \cdots, u_m\}$.

$$\begin{array}{ccc}
F^n & \xrightarrow{A} & F^m \\
\uparrow & & \uparrow \\
X & \xrightarrow{T} & U
\end{array}$$

$$F^n \stackrel{B}{\longleftarrow} F^m$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$X \stackrel{S}{\longleftarrow} U$$

Thus it suffices to find some matrix B.

Step 2

Write
$$\alpha = [x]_{\mathcal{X}}$$
 and $\beta = [u]_{\mathcal{X}}$, or

$$x = \sum_{i=1}^{n} \alpha_i x_i, \quad u = \sum_{j=1}^{m} \beta_j u_j.$$

$$\langle T(x), u \rangle_U = \left\langle T(\sum_i \alpha_i x_i), \sum_j \beta_j u_j \right\rangle_U$$
$$= \sum_i \sum_j \left\langle T(x_i), u_j \right\rangle_U \alpha_i \beta_j = \alpha \cdot M\beta,$$

where
$$M_{ij} = \langle T(x_i), u_j \rangle_U$$
.

Step 3

Similarly, for given S,

$$\langle x, S(u) \rangle_X = \sum_i \alpha_i \left(\sum_k \langle x_i, x_k \rangle_X (B\beta)_k \right).$$

Since
$$G = (\langle x_i, x_k \rangle_X)$$
, $\langle x, S(u) \rangle_X = \alpha \cdot (GB\beta) = \alpha \cdot (GB)\beta$.

Step 4

Finally,
$$\langle T(x),u\rangle_U=\langle x,S(u)\rangle_X$$
 iff $\alpha\cdot M\beta=\alpha\cdot (GB)\beta.$ Hence $M=GB$, or $B=G^{-1}M.$

Theorem (278)

Let X,U,W be finite-dimensional vector spaces over \mathbb{R} , and let $T:X\to U$ and $S:U\to W$ be linear operators.

- 1. $(T^*)^* = T$;
- 2. $(ST)^* = T^*S^*$.

Theorem

Let X and U be finite-dimensional inner product spaces over $\mathbb R$ and assume that $T:X\to U$ is an invertible linear operator. Then T^* is also invertible and

$$(T^*)^{-1} = (T^{-1})^*.$$

Ex6.2.6

If $A, B \in \mathbb{R}^{m \times n}$ and

$$y \cdot Ax = y \cdot Bx \text{ for } x \in \mathbb{R}^n, y \in \mathbb{R}^m,$$

then A = B.

Ch6. Orthogonality and best approximation

6.2 The adjoint of a linear operator

Ex6.2.9

Let $M: \mathcal{P}_2 \to \mathcal{P}_3$ be defined by M(p) = q, where q(x) = xp(x). Find M^* , assuming that the $L^2(0,1)$ inner product is imposed on both \mathcal{P}_2 and \mathcal{P}_3 .

Ch6. Orthogonality and best approximation

6.2 The adjoint of a linear operator

Ex6.2.10

Suppose $A \in \mathbb{R}^{n \times n}$ has the following properties: $A^T = A$ and

$$x \cdot Ax > 0$$
 for all $x \in \mathbb{R}^n, x \neq 0$.

Prove that $\langle x,y\rangle_A=x\cdot Ay$ for all $x,y\in\mathbb{R}^n$ defines an inner product on \mathbb{R}^n .

6.2 The adjoint of a linear operator

Ex6.2.11

Let X and U be finite-dimensional inner product spaces over \mathbb{R} , and suppose $T:X\to U$ is linear. Defines $S:\mathcal{R}(T^*)\to\mathcal{R}(T)$ by S(x)=T(x).

- (a) Prove that S is injective.
- (b) The fact that S is injective implies that $\dim(\mathcal{R}(T)) \geq \dim(\mathcal{R}(T^*))$. Prove that $\dim(\mathcal{R}(T)) = \dim(\mathcal{R}(T^*))$.
- (c) Then ${\cal S}$ is surjective, and hence an isomorphism.

Ch6. Orthogonality and best approximation

6.2 The adjoint of a linear operator

Ex6.2.14

Let $f:X\to\mathbb{R}$ be linear, where X is a finite-dimensional inner product space over $\mathbb{R}.$ Prove that there exists a unique $u\in X$ such that

$$f(x) = \langle x, u \rangle$$
 for all $x \in X$.

Dual Spaces

There are two definitions of the dual space of V/F,

- 1. $V_1^* = \mathcal{L}(V, F)$.
- 2. $V_2^* = \{ f \in \mathcal{L}(V, F) \mid f \text{ is continuous} \}$. (Ch 10.3)

If V is finite dimensional, $V_1^\ast=V_2^\ast,$ but if V is infinite dimensional, they are different.

Observation

From now on, assume V is a finite dimensional vector space over F. Fix a basis $\mathcal{B}=\{v_1,\cdots,v_n\}$ and define $\overline{f_i:V o F}$ by $f_i(v_j)=\delta_{ij}$. Then f_i 's are linear maps.

Lemma

 $\{f_1, \cdots, f_n\}$ is linearly indepent.

Lemma

 $\{f_1, \cdots, f_n\}$ spans $\mathcal{L}(V, F)$, and hence it is a basis.

Observation

Now denote $\mathcal{L}(V,F)=V^*.$ Define $\langle\cdot,\cdot\rangle:V\times V^*\to F$ by

$$\langle v, f \rangle = f(v).$$

We call this map $\langle \cdot, \cdot \rangle$ the evaluation map.

Lemma

The evaluation map is a bilinear map.

Fix $v \in V$ and define $f_v = \langle v, \cdot \rangle : V^* \to F$. This map is linear, and thus $f_v \in (V^*)^*$.

$$V \to (V^*)^*$$
$$v \mapsto f_v$$

Hence the dual of the dual space of V is isomorphic to V when V is finite dimensional.

Infinite case

Consider $\mathcal{P}(\mathbb{R})$ the set of all polynomials of \mathbb{R} . We know that $\{x^n\}_{n=0}^{\infty}$ is a basis. If we write the dual of x^n by f_n , $\{f_n\}_{n=1}^{\infty}$ is linearly indepent. However, it can not span \mathcal{P}^* .

For example, let $f: \mathcal{P} \to \mathbb{R}$ by $f(x^n) = 1$. If $f = \sum_{i=1}^k \alpha_i f_{n_i}$, for $n \neq n_i$ for all $i, f(x^n) = \sum \alpha_i f_{n_i}(x^n) = 0$ which contradicts $f(x^n) = 1$.

The Dual Spaces

Infinite case

Moreover $\dim V \lneq \dim V^*$, and V is not isomorphic with $(V^*)^*$. Every linear map $f: \mathcal{P} \to \mathbb{R}$ is completely determined by $f(x^n)$ for $n=0,1,2,\cdots$. For each $r \in \mathbb{R}$, define $f_r: \mathcal{P} \to \mathbb{R}$ by $f_r(x^n) = r^n$. Suppose $\sum_{i=0}^n \alpha_i f_{r_i} = 0$, $r_i \neq 0$ and $r_i \neq r_j$. Then $\sum_{i=0}^n \alpha_i (r_i)^k = 0$. for all k. Then

$$\begin{bmatrix} 1 & r_0 & r_0^2 & \cdots & r_0^n \\ 1 & r_1 & r_1^2 & \cdots & r_1^n \\ \vdots & \vdots & \ddots & & \vdots \\ 1 & r_n & r_n^2 & \cdots & r_n^n \end{bmatrix}$$

is the Vandermonde matrix (see Exercise 4.3.11) whose determinant is $\prod_j \prod_{i>j} (r_i-r_j) \neq 0$. Thus it is invertible and $\alpha_i=0$ for all i, or $\{f_r \mid r \in \mathbb{R} - \{0\}\}$ is linearly indepent, and this implies $\dim \mathcal{P}$ is uncountable.

6.3 Orthogonal vectors and bases

Pythagorean theorem

If
$$x \cdot y = 0$$
, or $\theta = \frac{\pi}{2}$, then

$$||x \pm y||_2^2 = ||x||_2^2 + ||y||_2^2$$

Theorem (280)

Let V be an inner product space over \mathbb{R} , and let x,y be vectors in V. If $\langle\cdot,\cdot\rangle$ is the inner product on V and $\|\cdot\|$ is the corresponding norm, then

$$||x \pm y||^2 = ||x||^2 + ||y||^2 \iff \langle x, y \rangle = 0.$$

Definition

Let V be an inner product space over \mathbb{R} .

- 1. x, y are orthogonal if and only if $\langle x, y \rangle = 0$.
- 2. $\{u_1, \dots, u_k\}$ is an <u>orthogonal set</u> if u_i is nonzero vector and $\langle u_i, u_j \rangle = 0$ for all $i \neq j$.

perpendicular, orthogonal, normal

Theorem (282)

Let V be an inner product space over \mathbb{R} , and let $\{u_1, \dots, u_k\}$ be an orthogonal subset of V. Then $\{u_1, \dots, u_k\}$ is linearly independent.

Corollary (283)

Let V be an n-dimensional inner product space over \mathbb{R} . Then any orthogonal set of n vectors in V is a basis for V.

Theorem (284)

Let V be an inner product spave over $\mathbb R$ and let $\{u_1, \cdots, u_n\}$ be an orthogonal basis for V. Then any $v \in V$ can be written

$$v = \sum \alpha_j u_j$$

where

$$\alpha_j = \frac{\langle v, u_j \rangle}{\langle u_j, u_j \rangle}.$$

Since u_j 's are not nonzero vector, we may assume $\langle u_j, u_j \rangle = 1$. Then

$$v = \sum \langle v, u_j \rangle u_j.$$

Definition

Let V be an inner product space over \mathbb{R} . We say that a subset $\{u_1, \dots, u_k\}$ of V is an orthonormal set if it is orthogonal and $||u_j|| = 1$ for each j.

Ch6. Orthogonality and best approximation

6.3 Orthogonal vectors ans bases

Ex6.3.4

Show that $\{1/2,\sin(\pi nx/L),\cos(\pi nx/L):n\in\mathbb{Z}_+\}$ is an orthogonal set of $L^2(-L/2,L/2).$

Ex6.3.12

Let $\{x_1,\cdots,x_n\}$ be an orthonormal set in \mathbb{R}^n , and define $X=[x_1|\cdots|x_n]$. Compute X^TX and XX^T .

6.3 Orthogonal vectors ans bases

Ex6.3.13

Let V be an inner product space over \mathbb{R} , and let $\{u_1, \dots, u_K\}$ be an orthogonal subset of V. Prove that, for all $v \in V$,

$$v \in \operatorname{span}\{u_1, \cdots, u_k\} \iff v = \sum_{j=1}^k \frac{\langle v, u_j \rangle}{\langle u_j, u_j \rangle} u_j.$$

6.3 Orthogonal vectors ans bases

Ex6.3.14

Let $\{u_1, \dots, u_k\}$ be an orthogonal subset of V, and define $S = \operatorname{span}\{u_1, \dots, u_k\}$.

- (a) Prove that, for all $v \in V S$, $v \sum_{j=1}^k \frac{\langle v, u_j \rangle}{\langle u_j, u_j \rangle} u_j$ is orthogonal to every vector in S.
- (b) If $v \in V S$, then $\|v\| > \left\| \sum_{j=1}^k \frac{\langle v, u_j \rangle}{\langle u_j, u_j \rangle} u_j \right\|$.

6.4 The projection theorem

6.4 The projection theorem

Best approximation

Given $v \in V$, and a subspace S of V, we want to find the vector $w \in S$ closest to v, in the sense that

$$w \in S, \|v - w\| \le \|v - z\|$$
 for all $z \in S$.

Theorem (289, The projection theorem)

Let V be an inner product space over \mathbb{R} , and let S be a finite-dimensional subspace of V.

1. For any $v \in V$, there is a unique $w \in S$ satisfying

$$||v - w|| = \min\{||v - z|| : z \in S\}.$$

In this case, we denote $w = \operatorname{proj}_S v$.

- 2. $w \in S$ is the best approximation to v from S if and only if $\langle v w, z \rangle = 0$ for all $z \in S$.
- 3. If $\{u_1, \dots, u_n\}$ is a basis for S, then

$$\operatorname{proj}_S v = \sum_{i=1}^n x_i u_i,$$

where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ is the unique solution to the equation Gx = b. G is the Gram matrix for the basis and $b_i = \langle v, u_i \rangle$.

Proof of Proj Thm

 $w \in S$ is the best approximation to v form S iff $\langle v - w, z \rangle = 0$ for all $z \in S$. Fix $w \in S$.

- 1) $y \in S$ iff y = w + tz for some $t \in \mathbb{R}$ and $z \in S$.
- 2) Consider $||v (w + tz)||^2$.

$$\begin{aligned} \|v - (w + tz)\|^2 &= \langle v - w - tz, v - w - tz \rangle \\ &= \langle v - w, v - w \rangle - 2t \langle v - w, z \rangle + t^2 \langle z, z \rangle \\ &= \|v - w\|^2 - 2t \langle v - w, z \rangle + t^2 \|z\|^2. \end{aligned}$$

For all $z \in S$ and $t \in \mathbb{R}$,

$$||v - (w + tz)||^2 \ge ||v - w||^2 \iff t^2 ||z||^2 - 2t\langle v - w, z\rangle \ge 0.$$

Fix z and define $\phi(t)=t^2\|z\|^2-2t\langle v-w,z\rangle.$ $\phi(t)\geq 0$ for all $t\in\mathbb{R}$ iff $\langle v-w,z\rangle=0.$

Proof of Proj Thm

$$\operatorname{proj}_{S} v = \sum_{i=1}^{n} x_{i} u_{i},$$

$$\langle v - w, u_i \rangle = 0 \iff \left\langle v - \sum_{j=1}^n x_j u_j, u_i \right\rangle = 0$$

$$\iff \langle v, u_i \rangle - \sum_{j=1}^n x_j \langle u_j, u_i \rangle = 0$$

$$\iff \sum_{j=1}^n x_j \langle u_j, u_i \rangle = \langle v, u_i \rangle$$

if and only if x satisfies Gx = b where G is the Gram matrix and $b_i = \langle v, u_i \rangle$.

└─6.4 The projection theorem

If
$$\{u_1, \cdots, u_n\}$$
 is a orthonormal basis for S ,

$$\operatorname{proj}_{S} v = \sum_{i=1}^{n} \langle v, u_i \rangle u_i.$$

Overdetermined linear systems

Consider a linear system Ax=y, where $A\in\mathbb{R}^{m\times n}$, $y\in\mathbb{R}^m$, and m>n. By FTLA, $\operatorname{col}(A)$ is a proper subspace of \mathbb{R}^m . Therefore, if $y\notin\operatorname{col}(A)$, the system has no solution. Nevertheless, we need to solve Ax=y in the sense of finding an approximation soultion.

Least-square solution

We wand to find a solution to Ax=y in the sense $\|Ax-y\|_2^2=\min\{\|Az-y\|_2^2\}$. In this case, we say x is a least-square solution to Ax=y.

$$(y - Ax) \cdot w = 0$$
 for all $w \in col(A)$.

Since $w \in \operatorname{col}(A)$,

$$(y - Ax) \cdot Az = 0$$
 for all $z \in \mathbb{R}^n$.
 $A^T(y - Ax) \cdot z = 0$ for all $z \in \mathbb{R}^n$.

6.4 The projection theorem

Continue

Thus we get a equation $A^T(y - Ax) = 0$, or

$$A^T A x = A^T y.$$

We call this equation the normal equation of Ax = y.

Theorem (291)

Let $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ be given. Then $x \in \mathbb{R}^n$ solves

$$\min\{\|Az - y\|_2 : z \in \mathbb{R}^n\} \iff A^T A x = A^T y.$$

Example (Linear regression)

Suppose two variables y and t are thought to be related by the equation $y=c_0+c_1t$, whrer c_0,c_1 are unknown constants. Given data $(t_1,y_1),\cdots,(t_m,y_m)$ we can find the equation

$$c_0 + c_1 t_1 = y_1$$

$$c_0 + c_1 t_2 = y_2$$

$$\vdots \qquad \vdots$$

$$c_0 + c_1 t_m = y_m$$

or Ac = y where

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}, c = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}.$$

Code

```
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(15)
# y = 2x+1에대한 linear regression
n = 10
x = np.random.uniform(low = 0.0, high = 5.0, size = n)
error = np.random.normal(size = n) # N(0,1) 정규분포
y = 2*x+1 + error
A = np.array([[1, x[i]]for i in range(n)])
c = np.linalg.solve(A.T@A,A.T@y)
plt.plot(x,y,"o")
X = np.linspace(0.0, 5.0, 100)
Y = c[0]+c[1]*X
plt.plot(X,Y,"r")
plt.plot(X,2*X+1,"g")
plt.show()
print(c[0],c[1])
```

6.4 The projection theorem

Result

The End