

Chapter 6: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Multiple-Processor Scheduling
- Real-Time Scheduling
- Thread Scheduling
- Operating Systems Examples
- Java Thread Scheduling
- Algorithm Evaluation

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU–I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst distribution

Alternating Sequence of CPU And I/O Bursts

Histogram of CPU-burst Times

CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive
- All other scheduling is preemptive

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, **not** output (for time-sharing environment)

Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time			
P_1	24			
P_2	3			
P_3	3			

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$, $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process

Shortest-Job-First (SJR) Scheduling

- Associate with each process the length of its next CPU burst.
 Use these lengths to schedule the process with the shortest time
- Two schemes:
 - nonpreemptive once CPU given to the process it cannot be preempted until completes its CPU burst
 - preemptive if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF)
- SJF is optimal gives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF

<u>Process</u>	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Preemptive SJF

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 - 3

Determining Length of Next CPU Burst

- Can only estimate the length
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. $t_n = \text{actual lenght of } n^{th} \text{ CPU burst}$
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define: $\tau_{n=1} = \alpha t_n + (1-\alpha)\tau_n$.

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

- $\alpha = 0$
 - \bullet $\tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\bullet \quad \tau_{n+1} = t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha) \alpha t_n - 1 + \dots$$

$$+ (1 - \alpha)^j \alpha t_n - 1 + \dots$$

$$+ (1 - \alpha)^{n+1} t_n \tau_0$$

Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)
 - Preemptive
 - nonpreemptive
- SJF is a priority scheduling where priority is the predicted next
 CPU burst time
- Problem = Starvation low priority processes may never execute
- Solution ≡ Aging as time progresses increase the priority of the process

Round Robin (RR)

- Each process gets a small unit of CPU time (*time quantum*), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once. No process waits more than (*n*-1)*q* time units.
- Performance
 - q large \Rightarrow FIFO
 - $q \text{ small} \Rightarrow q \text{ must be large with respect to context switch, otherwise overhead is too high}$

Example of RR with Time Quantum = 20

<u>Process</u>	Burst Time
P_1	53
P_2	17
P_3	68
P_4	24

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue

- Ready queue is partitioned into separate queues: foreground (interactive) background (batch)
- Each queue has its own scheduling algorithm
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

- Q_0 time quantum 8 milliseconds
- Q₁ time quantum 16 milliseconds
- Q₂ FCFS

Scheduling

- A new job enters queue Q_0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1 .
- At Q₁ job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q₂.

Multilevel Feedback Queues

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Load sharing
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing

Real-Time Scheduling

- Hard real-time systems required to complete a critical task within a guaranteed amount of time
- Soft real-time computing requires that critical processes receive priority over less fortunate ones

Dispatch Latency

Algorithm Evaluation

- Deterministic modeling takes a particular predetermined workload and defines the performance of each algorithm for that workload
- Queueing models
- Implementation

Evaluation of CPU Schedulers by Simulation

Solaris 2 Scheduling

Windows XP Priorities

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

Linux Scheduling

- Two algorithms: time-sharing and real-time
- Time-sharing
 - Prioritized credit-based process with most credits is scheduled next
 - Credit subtracted when timer interrupt occurs
 - When credit = 0, another process chosen
 - When all processes have credit = 0, recrediting occurs
 - Based on factors including priority and history
- Real-time
 - Soft real-time
 - Posix.1b compliant two classes
 - ▶ FCFS and RR
 - Highest priority process always runs first

Thread Scheduling

- Local Scheduling How the threads library decides which thread to put onto an available LWP
- Global Scheduling How the kernel decides which kernel thread to run next

Pthread Scheduling API

```
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
    int i:
   pthread t tid[NUM THREADS];
   pthread attr t attr;
   /* get the default attributes */
   pthread attr init(&attr);
   /* set the scheduling algorithm to PROCESS or SYSTEM */
   pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
   /* set the scheduling policy - FIFO, RT, or OTHER */
   pthread attr setschedpolicy(&attr, SCHED OTHER);
   /* create the threads */
   for (i = 0; i < NUM THREADS; i++)
          pthread create(&tid[i],&attr,runner,NULL);
```


Pthread Scheduling API

```
/* now join on each thread */
   for (i = 0; i < NUM THREADS; i++)
         pthread join(tid[i], NULL);
/* Each thread will begin control in this function */
void *runner(void *param)
   printf("I am a thread\n");
   pthread exit(0);
```


Java Thread Scheduling

JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

■ FIFO Queue is Used if There Are Multiple Threads With the Same Priority

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

- The Currently Running Thread Exits the Runnable State
- 2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

Time-Slicing

Since the JVM Doesn't Ensure Time-Slicing, the yield() Method May Be Used:

```
while (true) {
    // perform CPU-intensive task
    . . .
    Thread.yield();
}
```

This Yields Control to Another Thread of Equal Priority

Thread Priorities

Thread.MIN PRIORITY Minimu

Thread.MAX PRIORITY

Thread.NORM_PRIORITY

Comment

Minimum Thread Priority

Maximum Thread Priority

Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

