Final Algorithm (Step-by-Step Logic)

Step 1: Preprocessing

- Input: Temperature data from Internal & Ambient sensors every 5 minutes.
- Tasks:
 - Interpolate missing timestamps.
 - Mark NaN or 0 internal values as Invalid.
 - \circ Ensure ΔIA = Internal Ambient is computed.

Step 2: Rolling Calculations

- Rolling window = 1 hour (12 readings).
- Compute:
 - ∘ Rolling_Mean of ∆IA
 - \circ Rolling_Std of Δ IA
 - Use this to estimate local variance and system stability.

Step 3: Adaptive Thresholds (IEEE-Based)

Use dynamic, self-correcting limits:

```
Upper_Threshold = Ambient + min(Rolling_\DeltaIA + Rolling_Std, 65)
Lower_Threshold = Ambient + max(Rolling_\DeltaIA - Rolling_Std, 0)
```

- Cap threshold at **Ambient + 65°C** as per **IEEE 980 standard**.
- Adjust thresholds if ambient or ΔIA trend increases.

Step 4: Derivative Calculation

- 1st Derivative (ΔT) = Instantaneous rate of temp change.
- 2nd Derivative ($\Delta^2 T$) = Acceleration (spike detection).
- Smooth (optional): apply rolling mean for stability.

Step 5: Long-Term Trend Watch

- Use **12-hour** and **24-hour** rolling mean of ΔIA:
 - o If increasing trend: flag potential system heating.
 - Trigger "Trend Warning" if average ΔIA slope > threshold.

Step 6: Classification Logic

Every new reading is classified into one of these:

Condition	Classification
NaN or 0	Invalid
ΔIA > 65	Critical Alarm
Temp > Upper_Threshold and $\Delta^2 T$ > average std	Spike Alarm
Temp > Upper_Threshold	Alarm

Temp > 90% of Upper_Threshold Warning

ΔIA trend ↑ for 12+ hours or weekly mean ↑

Temp < Lower_Threshold Sensor Drift / Cooling Surge

Otherwise Normal

Step 7: False Positive Filter

If a spike (Δ²T > threshold) is followed by 2 stable readings → don't raise alarm, just log incident.

Step 8: Logging

Log each event with timestamp and classification label:

plaintext

CopyEdit

2025-06-19 08:45 - Warning: Temperature approaching upper threshold.

Loop

• After each classification and log: proceed to **next reading** in real-time stream.