PHY302: Quantum mechanics Tutorial-5

Instructor: Dr. Manabendra Nath Bera

17 September 2020

Que.1 Prove <u, T v> = <T † u, v> for any linear operator T acting on a complex vector space V and u,v \in V.

Que.2 Translation operators

Consider the coordinate-space and momentum-space translation operators

$$T_x = exp\left(-\frac{i\hat{p}x}{\hbar}\right), \quad \tilde{T}_p = exp\left(-\frac{ip\hat{x}}{\hbar}\right).$$

(a) Verify that the above are translation operators by calculation of

$$T_x^{\dagger} \hat{x} T_x$$
 and $\tilde{T}_p^{\dagger} \hat{p} \tilde{T}_p$

(b) Since \hat{x} and \hat{p} do not commute, the translation operators T_x and \tilde{T}_p do not generally commute. But they sometimes do! Compute the commutator

$$\left[T_x, \tilde{T}_p\right] = \dots \tag{1}$$

You should find the CBH formula useful. What is the condition satisfied by x and p that guarantees that T_x and \tilde{T}_p commute?

Que.3 Projectors and the $P^2 = P$ condition

Consider a vector space V and a linear operator P that satisfies equation $P^2 = P$.

(a) Show that $V = \text{null } P \oplus \text{range } P$.

The condition $P^2 = P$, however, is not enough to show that P is an orthogonal projectors. One must additionally prove that any vector in the first summand is orthogonal to any vector in the second summand.

- (b) Show that any of the two conditions below guarantees that orthogonality:
- (1) P is Hermitian.

(2) $|Pv| \leq |v|$ for any $v \in V$.

Case (2) is harder than case (1). You may find if useful to prove first the following result: Let $u, v \in V$. Then $\langle u, v \rangle = 0$ if and only if $|u| \leq |u + av|$ for any $a \in \mathbb{F}$.

(c) Invent a two-by-two matrix P that satisfies $P^2 = P$ but fails to be a projector because (as you will demonstrate) violates both conditions (1) and (2) of part (b).

Que. 4 Exercise with matrices.

Consider two hermitian matrices A_1 and A_2 that commute:

$$A_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

The matrix A_1 has eigenvalue and orthonormal eigenvectors

$$\lambda_1 = 2, |u_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}; \quad \lambda_2 = 0, |u_2\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\1 \end{bmatrix} \quad \lambda_3 = 0, |u_3\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$

In the basis $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ the matrix A_2 takes the form

$$\begin{bmatrix} 3 & * & * \\ 0 & * & -\sqrt{2} \\ 0 & * & * \end{bmatrix}.$$

Determine the missing entries (denoted by *) in the above matrix. Use your result to find the eigenvalues of A_2 .

Que. 5 Minimum uncertainty

We showed in class that for two hermitian operators A and B the uncertainty in equality

$$(\Delta A)^2 (\Delta B)^2 \ge \left(\langle \Psi | \frac{1}{2i} [A, B] | \Psi \rangle \right)^2$$

is saturated on a state $|\Psi\rangle$ that satisfies

$$(B - \langle B \rangle) |\Psi\rangle = i\gamma (A - \langle A \rangle) |\Psi\rangle, \quad with \quad \gamma = \pm \frac{\Delta B}{\Delta A}.$$

Verify explicitly this claim for the Gaussian states

$$\psi(x) = Ne^{i\langle p\rangle x/\hbar} e^{-x^2/(2\Delta^2)}$$

that saturate the uncertainty inequality for the product of \hat{x} and \hat{p} uncertainties.