Notes on Numerical Integration

Chris Conlon

Grad IO

September 19, 2019

Numerical Integration

We are interested in lots of problems that require computing difficult integrals (e.g.: evaluating expectations)

- 1. Midpoint/Trapezoid Rules
- 2. Simpson's Rule
- 3. Gaussian Rules
- 4. Higher-Dimensional Rules

Quadrature Rules

Basic idea of quadrature is to approximate complicated functions with something easier to integrate, and then integrate that exactly.

- ▶ Constant f(x) at midpoint of [a,b] aUQVb for box.
- ightharpoonup Linear: Trapezoid aPRb
- ▶ Parabola through f(x) at a,b and $\frac{a+b}{2}$ for aPQRb

Simpsons Rule (Newton-Cotes)

Piecewise Quadratic Approximation at some $\xi \in [a,b]$

$$\int_{a}^{b} f(x)dx \approx \left(\frac{b-a}{6}\right) \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)\right] - \frac{(b-a)^{5}}{2880} f^{(4)}(\xi)$$

With approximation error

$$\frac{1}{90} \left(\frac{b-a}{2} \right)^5 |f^{(4)}(\xi)|$$

Works well when quadratic approximation is good $f^{(4)}$ is small or interval is small.

Gaussian Quadrature

Formulas of the form

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} w_{i} f(x_{i})$$

for some quadrature nodes $x_i \in [a, b]$ and weights w_i .

- Let \mathcal{F}_k be the space of degree k polynomials
- ▶ Quadrature formulas are exact of degree k if it correctly integrates each function in \mathcal{F}_k
- ▶ Gaussian quadrature formulas use n points and are exact of degree 2n-1.

Approximation Error

$$(f,g) = \int_{a}^{b} w(x)f(x)dx - \sum_{i=1}^{n} w_{i}f(x_{i}) = \frac{f^{(2n)}(\xi)}{(2n)!}(p_{n}, p_{n})$$

Gaussian Quadrature

```
Legendre Domain: [-1,1],\ w(x)=1 Chebyshev Domain: [-1,1],\ w(x)=\frac{1}{\sqrt{1-x^2}} Laguerre Domain: [0,\infty],\ w(x)=\exp[-x] (useful for present value) Hermite Domain: [-\infty,\infty],\ w(x)=\exp[-x^2] (useful for normal) Helpful if function is C^\infty or analytic.
```

Gauss Herrmite

Let $Y \sim N(\mu, \sigma^2)$ and apply COV $x = (y - \mu)/\sqrt{2}\sigma$

$$E[f(Y)] = (2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} f(y) \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right] dy$$
$$\int_{-\infty}^{\infty} f(y) \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right] dy = \int_{-\infty}^{\infty} f(\sqrt{2}\sigma x + \mu) e^{-x^2} \sqrt{2}\sigma dx$$

Gives the quadrature formula using Gauss Hermite (x_i, w_i) .

$$E[f(Y)] = \frac{1}{\sqrt{\pi}} \sum_{i=1}^{n} w_i f(\sqrt{2}\sigma x_i + \mu)$$

Higher Dimensional Integration

- ▶ In higher dimension we can use product rules of 1-D integrals.
- This grows exponentially in dimension D (Curse of Dimensionality)
- ▶ Monte Carlo is not cused but slow to converge $\frac{1}{\sqrt{n}}$ vs $\frac{1}{2n!}f^{(2n)}$
- Some monomial rules (Judd), (Skrainka and Judd) aren't cursed
- Sparse Grids show how to combine 1-D rules more efficiently (www.sparse-grids.de)