Intervals, Transformations, and Slope Solution (version 78)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(2,7) \cup (9,10)$
Negative	$(-5,2) \cup (7,9)$
Increasing	$(-4,4) \cup (8,10)$
Decreasing	$(-5, -4) \cup (4, 8)$
Domain	(-5, 10)
Range	(-9,3)

Intervals, Transformations, and Slope Solution (version 78)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=15$ and $x_2=30$. Express your answer as a reduced fraction.

$$\frac{g(30) - g(15)}{30 - 15} = \frac{68 - 95}{30 - 15} = \frac{-27}{15}$$

The greatest common factor of -27 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{5}$$

2