# Санкт-Петербургский Политехнический университет Петра Великого

# Отчет по лабораторным работам №1-6 по дисциплине "Математическая статистика"

Студент: Скворцов Владимир Сергеевич

Преподаватель: Баженов Александр Николаевич

Группа: 5030102/10201

Санкт-Петербург 2024

# Содержание

| 1  | Пос | Постановка задачи                                                         |    |  |  |  |  |  |  |  |
|----|-----|---------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
|    | 1.1 | Коэффициент корреляции                                                    | 2  |  |  |  |  |  |  |  |
|    | 1.2 | Простая линейная регрессия                                                | 2  |  |  |  |  |  |  |  |
| 2  | Teo | ретическое обоснование                                                    | 2  |  |  |  |  |  |  |  |
|    | 2.1 | Двумерное нормальное распределение                                        | 2  |  |  |  |  |  |  |  |
|    | 2.2 | Корреляционный момент (ковариация) и коэффициент корреляции               | 2  |  |  |  |  |  |  |  |
|    | 2.3 | Выборочный коэффициент корреляции Пирсона                                 |    |  |  |  |  |  |  |  |
|    | 2.4 | Выборочный квадрантный коэффициент корреляции                             | S  |  |  |  |  |  |  |  |
|    | 2.5 | Выборочный коэффициент ранговой корреляции Спирмена                       | 3  |  |  |  |  |  |  |  |
|    | 2.6 | Эллипсы рассеивания                                                       | 3  |  |  |  |  |  |  |  |
|    | 2.7 | Метод наименьших квадратов                                                | ç  |  |  |  |  |  |  |  |
|    | 2.8 | Метод наименьших модулей                                                  | 4  |  |  |  |  |  |  |  |
| 3  | Оп  | исание работы                                                             | 4  |  |  |  |  |  |  |  |
| 4  | Pos | ультаты                                                                   | /  |  |  |  |  |  |  |  |
| 4  | 4.1 | ультаты<br>Коэффициент корреляции                                         | 4  |  |  |  |  |  |  |  |
|    | 4.2 | Простая линейная регрессия                                                | 8  |  |  |  |  |  |  |  |
|    | 4.2 | простал липеинал регрессия                                                |    |  |  |  |  |  |  |  |
| 5  | Вы  | воды                                                                      | 13 |  |  |  |  |  |  |  |
| 6  | Пос | становка задачи                                                           | 13 |  |  |  |  |  |  |  |
|    | 6.1 | Проверка гипотезы о законе распреде- ления генеральной совокупности. Ме-  |    |  |  |  |  |  |  |  |
|    |     | тод хи-квадрат                                                            | 13 |  |  |  |  |  |  |  |
|    | 6.2 | Проверка гипотезы о равенстве дисперсий двух нормальных генеральных       |    |  |  |  |  |  |  |  |
|    |     | совокупностей                                                             | 13 |  |  |  |  |  |  |  |
| 7  | Teo | ретическое обоснование                                                    | 14 |  |  |  |  |  |  |  |
|    | 7.1 | Проверка гипотезы о законе распределения генеральной совокупности. Ме-    |    |  |  |  |  |  |  |  |
|    |     | тод хи-квадрат                                                            | 14 |  |  |  |  |  |  |  |
|    |     | 7.1.1 Правило проверки гипотезы о законе распределения по методу $\chi^2$ | 14 |  |  |  |  |  |  |  |
|    | 7.2 | Проверка гипотезы о равенстве дисперсий двух нормальных генеральных       |    |  |  |  |  |  |  |  |
|    |     | совокупностей                                                             | 14 |  |  |  |  |  |  |  |
|    |     | 7.2.1 Тест Фишера                                                         | 14 |  |  |  |  |  |  |  |
| 8  | Оп  | исание работы                                                             | 15 |  |  |  |  |  |  |  |
| 9  | Рез | ультаты                                                                   | 15 |  |  |  |  |  |  |  |
|    | 9.1 | Проверка гипотезы о законе распределения генеральной совокупности. Ме-    |    |  |  |  |  |  |  |  |
|    |     | тод хи-квадрат                                                            | 15 |  |  |  |  |  |  |  |
|    | 9.2 | Проверка гипотезы о равенстве дисперсий двух нормальных генеральных       |    |  |  |  |  |  |  |  |
|    |     | совокупностей                                                             | 17 |  |  |  |  |  |  |  |
| 10 | Brr | воль.                                                                     | 17 |  |  |  |  |  |  |  |

# 1 Постановка задачи

#### 1.1 Коэффициент корреляции

Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения  $N(x,y,0,0,1,1,\rho)$ . Коэффициент корреляции  $\rho$  взять равным 0, 0.5, 0.9. Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреля- ции Пирсона, Спирмена и квадрантного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9).$$

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

#### 1.2 Простая линейная регрессия

Найти оценки коэффициентов линейной регрессии  $y_i = a + bx_i + e_i$ , используя 20 точек на отрезке [-1.8;2] с равномерным шагом равным 0.2. Ошибку  $e_i$  считать нормально распределённой с параметрами (0,1). В качестве эталонной зависимости взять  $y_i = 2 + 2x_i + e_i$ . При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения  $y_1$  и  $y_{20}$  вносятся возмущения 10 и -10.

# 2 Теоретическое обоснование

# 2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределённой нормально (или просто нормальной), если её плотность вероятности определена формулой

$$N(x, y, \bar{x}, \bar{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[ \frac{(x-\bar{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\bar{x})(y-\bar{y})}{\sigma_x\sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2} \right] \right\}$$
(1)

Компоненты X, Y двумерной нормальной случайной величины также распределены нормально с математическими ожиданиями x, y и средними квадратическими отклонениями  $\sigma_x, \sigma_y$  соответственно.

Параметр  $\rho$  называется коэффициентом корреляции.

# 2.2 Корреляционный момент (ковариация) и коэффициент корреляции

Корреляционный момент, иначе ковариация, двух случайных величин X и Y:

$$K = \mathbf{cov}(X, Y) = \mathbf{M}[(X - \bar{x})(Y - \bar{y})]$$
(2)

Коэффициент корреляции  $\rho$  двух случайных величин X и Y:

$$\rho = \frac{K}{\sigma_x \sigma_y} \tag{3}$$

### 2.3 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2 \frac{1}{n} \sum (y_i - \bar{y})^2}} = \frac{K}{s_X s_Y},\tag{4}$$

где  $K, s_X^2, x_Y^2$  — выборочные ковариации и дисперсии случайных величин X и Y.

### 2.4 Выборочный квадрантный коэффициент корреляции

Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},\tag{5}$$

где  $n_1$ ,  $n_2$ ,  $n_3$ ,  $n_4$  — количество точек с координатами  $(x_i, y_i)$ , попавшими, соответственно, в I, II, IV квадранты декартовой системы с осями  $x' = x - \mathbf{med}x$ ,  $y' = y - \mathbf{med}y$ .

#### 2.5 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соотвествующие значениям переменной X, через u, а ранги, соотвествующие значениям переменной Y, — через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\frac{1}{n} \sum (u_i - \bar{u})^2 \frac{1}{n} \sum (v_i - \bar{v})^2}},$$
(6)

где  $\bar{u}=\bar{v}=\frac{1+2+\cdots+n}{n}=\frac{n+1}{2}$  — среднее значение рангов.

### 2.6 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\bar{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\bar{x})(y-\bar{y})}{\sigma_x \sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2} = \text{const.}$$
 (7)

Центр эллипса 8 находится в точке с координатами (x, y); оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$tg 2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}. (8)$$

### 2.7 Метод наименьших квадратов

При оценивании параметров регрессионной модели используют различные методы. Один из наиболее распрстранённых подходов заключается в следующем: вводится мера (критерий) рассогласования отклика и регрессионной функции, и оценки параметров регрессии определяются так, чтобы сделать это рассогласование наименьшим. Достаточно простые расчётные формулы для оценок получают при выборе критерия в виде суммы квадратов отклонений значений отклика от значений регрессионной функции (сумма квадратов остатков):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (9)

Задача минимизации квадратичного критерия (9) носит название задачи метода наименьших квадратов (МНК), а оценки  $\beta_0$ ,  $\beta_1$  параметров  $\beta_0$ ,  $\beta_1$ , реализующие минимум критерия (9), называют МНК-оценками.

#### 2.8 Метод наименьших модулей

Робастность оценок коэффициентов линейной регрессии (т.е. их устойчивость по отношению к наличию в данных редких, но больших по величине выбросов) может быть обеспечена различными способами. Одним из них является использование метода наименьших модулей вместо метода наименьших квадратов:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}.$$
 (10)

# 3 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек numpy, pandas, matplotlib, seaborn были построены гистограммы распределений и посчитаны характеристики пложения.

Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

# 4 Результаты

# 4.1 Коэффициент корреляции

| 30 - 0                 |                                             |                                     |                                             |
|------------------------|---------------------------------------------|-------------------------------------|---------------------------------------------|
| $n = 20,  \rho = 0$    | (4)                                         | (c)                                 | (F)                                         |
|                        | r(4)                                        | $r_S$ (6)                           | $r_Q(5)$                                    |
| Среднее                | $8.051 \times 10^{-3}$                      | $8.633 \times 10^{-3}$              | $1.216 \times 10^{-2}$                      |
| Среднее квадратов      | $5.501 \times 10^{-2}$                      | $5.418 \times 10^{-2}$              | $1.033 \times 10^{-1}$                      |
| Дисперсия              | $5.495 \times 10^{-2}$                      | $5.410 \times 10^{-2}$              | $1.031 \times 10^{-1}$                      |
| $n = 20,  \rho = 0.5$  |                                             |                                     |                                             |
|                        | r (4)                                       | $r_S$ (6)                           | $r_Q$ (5)                                   |
| Среднее                | $4.933 \times 10^{-1}$                      | $4.674 \times 10^{-1}$              | $4.644 \times 10^{-1}$                      |
| Среднее квадратов      | $2.743 \times 10^{-1}$                      | $2.534 \times 10^{-1}$              | $3.139 \times 10^{-1}$                      |
| Дисперсия              | $3.093 \times 10^{-2}$                      | $3.496 \times 10^{-2}$              | $9.823 \times 10^{-2}$                      |
| $n = 20,  \rho = 0.9$  |                                             |                                     |                                             |
| 7 1                    | r(4)                                        | $r_S$ (6)                           | $r_O(5)$                                    |
| Среднее                | $8.938 \times 10^{-1}$                      | $8.646 \times 10^{-1}$              | $r_Q$ (5)<br>$9.837 \times 10^{-1}$         |
| Среднее квадратов      | $8.014 \times 10^{-1}$                      | $7.527 \times 10^{-1}$              | 1.026                                       |
| Дисперсия              | $2.454 \times 10^{-3}$                      | $5.209 \times 10^{-3}$              | $5.804 \times 10^{-2}$                      |
| $n = 60,  \rho = 0$    |                                             | 0.200 // 10                         | 0.0017110                                   |
| n = 00, p = 0          | r (4)                                       | $r_S$ (6)                           | $r_Q$ (5)                                   |
| Среднее                | $8.143 \times 10^{-3}$                      | $8.747 \times 10^{-3}$              | $8.485 \times 10^{-3}$                      |
| Среднее Квадратов      | $1.709 \times 10^{-2}$                      | $1.689 \times 10^{-2}$              | $3.111 \times 10^{-2}$                      |
|                        | $1.709 \times 10$<br>$1.703 \times 10^{-2}$ | $1.682 \times 10^{-2}$              | $3.111 \times 10$<br>$3.104 \times 10^{-2}$ |
| Дисперсия              | 1.705 × 10                                  | 1.062 × 10                          | 3.104 × 10                                  |
| $n = 60,  \rho = 0.5$  | (4)                                         | (0)                                 | (=)                                         |
|                        | r(4)                                        | $r_S$ (6)                           | $r_Q$ (5)                                   |
| Среднее                | $4.985 \times 10^{-1}$                      | $4.757 \times 10^{-1}$              | $4.668 \times 10^{-1}$                      |
| Среднее квадратов      | $2.585 \times 10^{-1}$                      | $2.373 \times 10^{-1}$              | $2.504 \times 10^{-1}$                      |
| Дисперсия              | $1.000 \times 10^{-2}$                      | $1.094 \times 10^{-2}$              | $3.256 \times 10^{-2}$                      |
| $n = 60,  \rho = 0.9$  |                                             |                                     |                                             |
|                        | r (4)                                       | $r_S$ (6)                           | $r_Q$ (5)                                   |
| Среднее                | $8.979 \times 10^{-1}$                      | $8.810 \times 10^{-1}$              | $9.937 \times 10^{-1}$                      |
| Среднее квадратов      | $8.069 \times 10^{-1}$                      | $7.774 \times 10^{-1}$              | 1.004                                       |
| Дисперсия              | $7.297 \times 10^{-4}$                      | $1.202 \times 10^{-3}$              | $1.700 \times 10^{-2}$                      |
| $n = 100,  \rho = 0$   |                                             |                                     |                                             |
| 7 1                    | r (4)                                       | $r_S$ (6)                           | $r_Q$ (5)                                   |
| Среднее                | $1.396 \times 10^{-3}$                      | $8.326 \times 10^{-5}$              | $1.584 \times 10^{-3}$                      |
| Среднее квадратов      | $9.856 \times 10^{-3}$                      | $9.848 \times 10^{-3}$              | $1.972 \times 10^{-2}$                      |
| Дисперсия              | $9.854 \times 10^{-3}$                      | $9.848 \times 10^{-3}$              | $1.972 \times 10^{-2}$                      |
| $n = 100,  \rho = 0.5$ | 0.001 × 10                                  | 0.010 / 10                          | 1.012 / 10                                  |
| n = 100, p = 0.5       | m (4)                                       | m (6)                               | m (5)                                       |
| C                      | r (4)<br>$5.013 \times 10^{-1}$             | $r_S$ (6)<br>$4.812 \times 10^{-1}$ | $r_Q$ (5)<br>$4.723 \times 10^{-1}$         |
| Среднее                |                                             |                                     |                                             |
| Среднее квадратов      | $2.568 \times 10^{-1}$                      | $2.375 \times 10^{-1}$              | $2.407 \times 10^{-1}$                      |
| Дисперсия              | $5.481 \times 10^{-3}$                      | $6.013 \times 10^{-3}$              | $1.762 \times 10^{-2}$                      |
| $n = 100,  \rho = 0.9$ |                                             | 7.5                                 |                                             |
|                        | r (4)                                       | $r_S$ (6)                           | $r_Q$ (5)                                   |
| Среднее                | $8.999 \times 10^{-1}$                      | $8.866 \times 10^{-1}$              | 1.003                                       |
| Среднее квадратов      | $8.103 \times 10^{-1}$                      | $7.868 \times 10^{-1}$              | 1.017                                       |
| Дисперсия              | $4.017 \times 10^{-4}$                      | $6.665 \times 10^{-4}$              | $1.049 \times 10^{-2}$                      |

Таблица 1: Характеристики нормального двумерного распределения

| n=20              |                         |                         |                         |
|-------------------|-------------------------|-------------------------|-------------------------|
|                   | r(4)                    | $r_S$ (6)               | $r_Q$ (5)               |
| Среднее           | $-7.987 \times 10^{-2}$ | $-7.020 \times 10^{-2}$ | $-6.336 \times 10^{-2}$ |
| Среднее квадратов | $5.968 \times 10^{-2}$  | $5.944 \times 10^{-2}$  | $1.112 \times 10^{-1}$  |
| Дисперсия         | $5.330 \times 10^{-2}$  | $5.451 \times 10^{-2}$  | $1.072 \times 10^{-1}$  |
| n = 60            |                         |                         |                         |
|                   | r(4)                    | $r_S$ (6)               | $r_Q$ (5)               |
| Среднее           | $9.290 \times 10^{-2}$  | $-8.988 \times 10^{-2}$ | $-8.730 \times 10^{-2}$ |
| Среднее квадратов | $2.606 \times 10^{-2}$  | $2.553 \times 10^{-2}$  | $4.290 \times 10^{-2}$  |
| Дисперсия         | $1.743 \times 10^{-2}$  | $1.745 \times 10^{-2}$  | $3.528 \times 10^{-2}$  |
| n = 100           |                         |                         |                         |
|                   | r (4)                   | $r_S$ (6)               | $r_Q$ (5)               |
| Среднее           | $-1.013 \times 10^{-1}$ | $-9.639 \times 10^{-2}$ | $-9.011 \times 10^{-2}$ |
| Среднее квадратов | $2.047 \times 10^{-2}$  | $1.984 \times 10^{-2}$  | $2.968 \times 10^{-2}$  |
| Дисперсия         | $1.021 \times 10^{-2}$  | $1.054 \times 10^{-2}$  | $2.156 \times 10^{-2}$  |

Таблица 2: Характеристики смеси нормальных распределений



Рис. 1: Смесь нормальных распределений и эллипсы равновероятности ( n=20 )



Рис. 2: Смесь нормальных распределений и эллипсы равновероятности ( n=60 )



Рис. 3: Смесь нормальных распределений и эллипсы равновероятности ( n=100 )

# 4.2 Простая линейная регрессия



Рис. 4: Метод наименьших квадратов



Рис. 5: Метод наименьших модулей



Рис. 6: Метод наименьших квадратов с возмущениями



Рис. 7: Метод наименьших модулей с возмущениями

|     | a      | a'     | b      | <i>b'</i> | $\Delta a$ | $\Delta b$ |
|-----|--------|--------|--------|-----------|------------|------------|
| MHK | 1.9976 | 0.5690 | 2.1836 | 2.3265    | 0.7151     | 0.0654     |
| MHM | 2.0839 | 1.9764 | 2.0480 | 2.2058    | 0.0516     | 0.0770     |

Таблица 3: Таблица коэффициентов

#### Здесь:

- $\bullet \ y = ax + b$  уравнение линейной регресси для методов МНК и МНМ без выбросов
- $\bullet \ y = a'x + b'$  уравнение линейной регресси для методов МНК и МНМ с выбросами
- $\Delta a = \frac{|a-a'|}{a}$
- $\Delta b = \frac{|b-b'|}{b}$

### 5 Выводы

На основе полученных характеристик (включая среднее значение, среднее значение квадрата и дисперсию) для различных коэффициентов корреляции и размеров выборки, можно сделать следующие наблюдения:

- 1. При увеличении размера выборки повышается точность оценок, что видно по уменьшению дисперсий коэффициентов корреляции. Это соответствует принципам центральной предельной теоремы и закона больших чисел.
- 2. При увеличении коэффициента корреляции  $\rho$ , средние значения коэффициентов Пирсона, Спирмена и квадратичного коэффициента корреляции тоже увеличиваются. Это указывает на прямую связь между  $\rho$  и другими коэффициентами корреляции.

Из результатов оценок коэффициентов линейной регрессии при использовании двух критериев (критерий наименьших квадратов и критерий наименьших модулей) можно сделать следующие выводы:

- 1. Метод наименьших квадратов показал себя эффективно в случае, когда нет значительных выбросов в данных, в то время как метод наименьших модулей проявил себя лучше в присутствии значительных возмущений.
- 2. Важно выбирать метод, исходя из особенностей данных. Если в данных присутствуют выбросы, метод наименьших модулей будет предпочтительнее из-за его устойчивости к выбросам.

# 6 Постановка задачи

# 6.1 Проверка гипотезы о законе распреде- ления генеральной совокупности. Метод хи-квадрат

Создать распределения согласно нормальному, распределению Стьюдента и равномерному распределению с мощностями выборки n=20,100.

Провести исследование по методу  $\chi^2$ .

# 6.2 Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей

Мощность нормального распределения N = 100.

- 1. Выбрать две выборки мощностью 20 и 40
- 2. Выбрать две выборки мощностью 20 и 100

Провести исследование по методу теста Фишера для случаев 1 и 2.

# 7 Теоретическое обоснование

# 7.1 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

# 7.1.1 Правило проверки гипотезы о законе распределения по методу $\chi^2$

- 1. Выбираем уровень значимости  $\alpha$ ,
- 2. По таблице находим квантиль  $\chi^2_{1-\alpha}(k-1)$  распределения хи-квадрат с k-1 степенями свободы порядка  $1-\alpha$ ,
- 3. С помощью гипотетической функции распределения F(x) вычисляем вероятности  $p_i = P(X \in \Delta_i), i \in \overline{1,k},$
- 4. Находим частоты  $n_i$  попадания элементов выборки в подмножества  $\Delta_i$ ,  $i \in \overline{1,k}$ .
- 5. Вычисляем выборочное значение статистики критерия  $\chi^2$ :

$$x_B^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

- 6. Сравниваем  $\chi_B^2$  и квантиль  $\chi_{1-\alpha}^2(k-1)$ .
  - (a) Если  $\chi_B^2 < \chi_{1-\alpha}^2(k-1),$  то гипотеза  $H_0$  на данном этапе проверки принимается.
  - (b) Если  $\chi_B^2 \geqslant \chi_{1-\alpha}^2(k-1)$ , то гипотеза  $H_0$  отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

# 7.2 Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей

Несмещенные оценки дисперсий:

$$s_X^2 = \frac{1}{m-1} \sum_{i=1}^m (x_i - \bar{x})^2; \ s_Y^2 = \frac{1}{n-1} \sum_{i=1}^m (y_i - \bar{y})^2; \tag{11}$$

Статистика критерия Фишера:

$$F = s_X^2 / s_Y^2 \tag{12}$$

#### 7.2.1 Тест Фишера

- 1. Вычисляем несмещенные оценки дисперсий (11),
- 2. Выбираем статистику критерия (12),
- 3. Выбираем уровень значимости  $\alpha$ ,
- 4. По таблице квантиль  $F_{1-\frac{\alpha}{2}}(k_1,k_2)$  распределения Фишера.
- 5. Вычисляем выборочное значение  $F_V$  статистики критерия.
- 6. Сравниваем  $F_B$  и  $F_{1-\frac{\alpha}{2}}(k_1,k_2)$ . Если  $F_B < F_{1-\frac{\alpha}{2}}(k_1,k_2)$ , то гипотеза  $H_0$  на выбранном уровне значимости  $\alpha$  принимается. В противном случае отвергается.

# 8 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек numpy, pandas, matplotlib, seaborn были построены гистограммы распределений и посчитаны характеристики пложения.

Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

# 9 Результаты

# 9.1 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

| Пределы            | $n_i$ | $p_i$  | $np_i$ | $n_i - np_i$ | $\frac{(n_i - np_i)^2}{np_i}$ |
|--------------------|-------|--------|--------|--------------|-------------------------------|
| (-2.5687, -1.5801) | 3     | 0.0519 | 1.0385 | 1.9614       | 3.7044                        |
| (-1.5801, -0.5916) | 7     | 0.2200 | 4.4002 | 2.5997       | 1.5359                        |
| (-0.5916, 0.3969)  | 4     | 0.3772 | 7.5447 | -3.5447      | 1.6654                        |
| (0.3969, 1.3854)   | 5     | 0.2627 | 5.2552 | -0.2552      | 0.0123                        |
| (1.3854, 2.3740)   | 1     | 0.0741 | 1.4831 | -0.4831      | 0.1573                        |

Таблица 4: Результаты проверки гипотезы нормального распределения n=20

$$\chi_B^2=7.0756,\,\chi_{1-\alpha}^2(k-1)=9.4877,$$
 гипотеза принята.

| Пределы            | $n_i$ | $p_i$  | $np_i$  | $n_i - np_i$ | $\frac{(n_i - np_i)^2}{np_i}$ |
|--------------------|-------|--------|---------|--------------|-------------------------------|
| (-2.6787, -1.8684) | 5     | 0.0271 | 2.7153  | 2.2846       | 1.9222                        |
| (-1.8684, -1.0582) | 12    | 0.1141 | 11.4130 | 0.5869       | 0.0301                        |
| (-1.0582, -0.2479) | 22    | 0.2571 | 25.7101 | -3.7101      | 0.5353                        |
| (-0.2479, 0.5622)  | 27    | 0.3109 | 31.0957 | -4.0957      | 0.5394                        |
| (0.5622, 1.3725)   | 25    | 0.2020 | 20.2012 | 4.7987       | 1.1399                        |
| (1.3725, 2.1827)   | 8     | 0.0704 | 7.0423  | 0.9576       | 0.1302                        |
| (2.1827, 2.9930)   | 0     | 0.0131 | 1.3145  | -1.3145      | 1.3145                        |
| (2.9930, 3.8032)   | 1     | 0.0013 | 0.1309  | 0.8690       | 5.7660                        |

Таблица 5: Результаты проверки гипотезы нормального распределения n=100

$$\chi_B^2=11.3779,\,\chi_{1-lpha}^2(k-1)=14.0671,$$
 гипотеза принята.

| Пределы            | $n_i$ | $p_i$  | $np_i$ | $n_i - np_i$ | $\frac{(n_i - np_i)^2}{np_i}$ |
|--------------------|-------|--------|--------|--------------|-------------------------------|
| (-2.3720, -1.5223) | 2     | 0.0598 | 1.1975 | 0.8024       | 0.5377                        |
| (-1.5223, -0.6726) | 3     | 0.1787 | 3.5750 | -0.5750      | 0.0924                        |
| (-0.6726, 0.1770)  | 11    | 0.3102 | 6.2056 | 4.7943       | 3.7039                        |
| (0.1770, 1.0266)   | 2     | 0.2671 | 5.3427 | -3.3427      | 2.0914                        |
| (1.0266, 1.8763)   | 2     | 0.1193 | 2.3869 | -0.3869      | 0.0627                        |

Таблица 6: Результаты проверки гипотезы распределения Стьюдента n=20  $\chi_B^2=6.4882,\,\chi_{1-\alpha}^2(k-1)=9.4877,\,$  гипотеза принята.

| Пределы            | $n_i$ | $p_i$  | $np_i$  | $n_i - np_i$ | $ \frac{(n_i - np_i)^2}{np_i} $ |
|--------------------|-------|--------|---------|--------------|---------------------------------|
| (-3.7782, -2.8816) | 1     | 0.0063 | 0.6363  | 0.3636       | 0.2078                          |
| (-2.8816, -1.9850) | 1     | 0.0294 | 2.9447  | -1.9447      | 1.2843                          |
| (-1.9850, -1.0885) | 7     | 0.1133 | 11.3338 | -4.3338      | 1.6571                          |
| (-1.0885, -0.1919) | 31    | 0.2748 | 27.4867 | 3.5132       | 0.4490                          |
| (-0.1919, 0.7046)  | 26    | 0.3256 | 32.5625 | -6.5625      | 1.3225                          |
| (0.7046, 1.6012)   | 24    | 0.1783 | 17.8349 | 6.1650       | 2.1311                          |
| (1.6012, 2.4978)   | 9     | 0.0544 | 5.4420  | 3.5579       | 2.3260                          |
| (2.4978, 3.3944)   | 1     | 0.0123 | 1.2364  | -0.2364      | 0.0452                          |

Таблица 7: Результаты проверки гипотезы распределения Стьюдента n=100  $\chi_B^2=9.4234,\,\chi_{1-\alpha}^2(k-1)=14.0671,\,$  гипотеза принята.

| Пределы          | $n_i$ | $p_i$  | $np_i$ | $n_i - np_i$ | $\frac{(n_i - np_i)^2}{np_i}$ |
|------------------|-------|--------|--------|--------------|-------------------------------|
| (0.0029, 0.1950) | 5     | 0.1920 | 3.8416 | 1.1583       | 0.3492                        |
| (0.1950, 0.3871) | 1     | 0.1920 | 3.8416 | -2.8416      | 2.1019                        |
| (0.3871, 0.5791) | 0     | 0.1920 | 3.8416 | -3.8416      | 3.8416                        |
| (0.5791, 0.7712) | 6     | 0.1920 | 3.8416 | 2.1583       | 1.2125                        |
| (0.7712, 0.9633) | 8     | 0.1920 | 3.8416 | 4.1583       | 4.5010                        |

Таблица 8: Результаты проверки гипотезы равномерного распределения n=20

 $\chi_B^2=12.0065,\,\chi_{1-lpha}^2(k-1)=9.4877,$  гипотеза отвергнута.

| Пределы          | $n_i$ | $p_i$  | $np_i$  | $n_i - np_i$ | $\frac{(n_i - np_i)^2}{np_i}$ |
|------------------|-------|--------|---------|--------------|-------------------------------|
| (0.0101, 0.1331) | 13    | 0.1230 | 12.3026 | 0.6973       | 0.0395                        |
| (0.1331, 0.2561) | 9     | 0.1230 | 12.3026 | -3.3026      | 0.8865                        |
| (0.2561, 0.3792) | 14    | 0.1230 | 12.3026 | 1.6973       | 0.2341                        |
| (0.3792, 0.5022) | 12    | 0.1230 | 12.3026 | -0.3026      | 0.0074                        |
| (0.5022, 0.6252) | 9     | 0.1230 | 12.3026 | -3.3026      | 0.8865                        |
| (0.6252, 0.7482) | 17    | 0.1230 | 12.3026 | 4.6973       | 1.7935                        |
| (0.7482, 0.8713) | 12    | 0.1230 | 12.3026 | -0.3026      | 0.0074                        |
| (0.8713, 0.9943) | 14    | 0.1230 | 12.3026 | 1.6973       | 0.2341                        |

Таблица 9: Результаты проверки гипотезы равномерного распределения n=100

 $\chi_B^2=4.0895,\,\chi_{1-lpha}^2(k-1)=14.0671,$  гипотеза принята.

# 9.2 Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей

|          | $s_X^2$ | $s_Y^2$ | $F_B$  | $F_{1-\frac{\alpha}{2}}(k_1,k_2)$ | Результат   |
|----------|---------|---------|--------|-----------------------------------|-------------|
| 20 и 40  | 1.1089  | 1.1037  | 1.0047 | 2.096                             | Принимается |
| 20 и 100 | 1.1089  | 0.8928  | 1.2420 | 1.8696                            | Принимается |

Таблица 10: Результаты теста Фишера

# 10 Выводы

В разделе, посвященном проверке гипотезы о законе распределения генеральной совокупности с использованием метода хи-квадрат, принимаются гипотезы о нормализации распределения при объеме выборки n=20, о распределении Стьюдента при n=20, а также о равномерном распределении для выборок с n=20 и n=100. Однако гипотезы о нормализации и распределении Стьюдента при n=100 отклоняются.

При проверке гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей наблюдается наблюдается следующая ситуация. Гипотезы о равенстве дисперсий для выборок мощностью 20 и 40, а также 20 и 100 принимаются по результатам теста Фишера. Это свидетельствует о том, что различия в дисперсиях этих выборок не являются статистически значимыми, следовательно, можно предположить, что эти выборки могут исходить из одной и той же генеральной совокупности.