

SÍLABO MECÁNICA DE FLUIDOS II ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VII SEMESTRE ACADÉMICO: 2018-II

I. CÓDIGO DEL CURSO : 09026907050

II. CREDITOS : 05

III.REQUISITOS : 09026506050 Mecánica de Fluidos I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de naturaleza teórica y práctica. Su propósito es brindar al estudiante los conceptos básicos del comportamiento de un flujo estático y en movimiento en sistemas de tuberías y canales, interactuando con sus estructuras de control de flujo que se requieren en el mismo.

La asignatura comprende las siguientes unidades de aprendizaje: I. Flujo interno y externo. II. Energía específica y flujo rápidamente variado en canales. III. Flujo uniforme en canales. IV. Flujo gradualmente variado y medición de flujos.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Cengel, Y., y Cimbala J. (2011). Fluid Mechanics Fundamentals and Applications. México: Mc Graw Hill.
- Mott, R. (2015). Mecánica De Fluidos Aplicada. México: Prentice Hall Hispanoamérica S.A
- Naudascher, E. (2003). Hidráulica de Canales. 3ª edición. Editorial Limus
- Potter, M., y Wiggert, D. (2012). Mecánica de Fluidos. México: Prentice Hall Hispanoamérica S. A.
- Villón, M. (2012). Hidráulica de Canales. 1ª edición. Editorial Villón. Costa Rica
- White, F. (2009). Fluid Mechanics. VI Edition. USA: Mc Graw Hill.

Electrónicas

 Santos, S. (2013). Mecánica de Fluidos II. Aula Virtual de Mecánica de Fluidos II. Perú: Facultad de Ingeniería y Arquitectura, Universidad de San Martín de Porres. http://campusvirtual.usmp.edu.pe/

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: FLUJO INTERNO Y EXTERNO

OBJETIVOS DE APRENDIZAJE:

- Elaborar una metodología de cálculo para los flujos externos e internos.
- Aplicar conocimientos matemáticos y analizar el movimiento del fluido en régimen turbulento y laminar a partir de la experimentación.

PRIMERA SEMANA

Primera sesión:

Definición de flujos externos e internos, flujo en conductos cerrados y abiertos, perfil de velocidad, concepto de capa límite, teoría de Prandtl, espesor de capa límite.

Segunda sesión:

Flujo Interno: flujo de entrada, flujo completamente desarrollado entre placas paralelas, flujo completamente desarrollado en un tubo, ecuación de Poiseuille. Presentación de Trabajo 1.

SEGUNDA SEMANA

Primera sesión:

Práctica dirigida Nº 1

Segunda sesión:

Flujos Internos: efecto de la edad en tuberías, presión mínima en tuberías. Inconvenientes de presiones bajas, golpe de ariete, aplicación a redes de tuberías. Práctica dirigida N° 2

TERCERA SEMANA

Primera sesión:

Flujo Externo: Fuerzas de Arrastre y Sustentación. Presión de arrastre. Coeficiente de arrastre. Fricción de arrastre sobre esferas, cilindros y otros cuerpos. Práctica dirigida Nº 2

UNIDAD II: ENERGÍA ESPECÍFICA Y FLUJO RAPIDAMENTE VARIADO EN CANALES

OBJETIVOS DE APRENDIZAJE:

Aplicar conceptos de energía y de flujo rápidamente variado en el diseño de canales

TERCERA SEMANA

Segunda sesión:

Clasificación de flujos en conductos abiertos, flujo uniforme y variado, número de Reynolds y número de Froude, sección transversal y elementos geométricos de un conducto.

CUARTA SEMANA

Primera sesión:

Práctica calificada Nº 1

Segunda sesión:

Ecuaciones básicas en conductos abiertos: continuidad, energía, coeficiente de Coriolis y momentum, coeficiente de Bousinesq, Práctica dirigida Nº 3

QUINTA SEMANA

Primera sesión:

Energía específica. Tipos de flujo: crítico, subcrítico, supercrítico, fuerza específica. Continuación Práctica dirigida Nº 3.

Segunda sesión:

Flujo rápidamente variado, caída hidráulica, caída libre, ecuación del resalto hidráulico en sección rectangular.

SEXTA SEMANA

Primera sesión:

Ecuación del resalto hidráulico en sección trapezoidal. Práctica dirigida Nº 4.

Segunda sesión:

Longitud de resalto hidráulico, tipos de resalto hidráulico, estabilidad del resalto hidráulico.

SÉPTIMA SEMANA

Primera sesión:

Continuación Práctica dirigida Nº 4.

Segunda sesión:

Práctica calificada Nº 2

OCTAVA SEMANA

Examen Parcial

UNIDAD III: FLUJO UNIFORME EN CANALES

OBJETIVOS DE APRENDIZAJE:

• Evaluar las condiciones de flujo uniforme para el cálculo en canales

NOVENA SEMANA

Primera sesión:

Flujo uniforme. Fórmulas de Chezy y Manning, coeficiente de rugosidad, distribución de velocidades, factor de sección para flujo uniforme, conductos cerrados.

Segunda sesión:

Práctica dirigida Nº 5

DÉCIMA SEMANA

Primera sesión:

Diseño de canales no erosionables, condición del lecho, velocidad permisible, fuerza tractiva crítica.

Segunda sesión:

Sección de máxima eficiencia hidráulica, máxima eficiencia hidráulica en conductos abovedados, detalles de diseño. Práctica Dirigida Nº 6.

UNDÉCIMA SEMANA

Primera sesión:

Secciones de mínima infiltración, canales con rugosidad compuesta, canales con sección compuesta. Continuación Práctica dirigida N° 6.

Segunda sesión:

Práctica calificada Nº 3

UNIDAD IV: FLUJO GRADUALMENTE VARIADO Y MEDICIÓN DE FLUJO

OBJETIVOS DE APRENDIZAJE:

- Elaborar metodologías de cálculo considerando un movimiento gradualmente variado del agua a través de un canal.
- Aplicar las hipótesis formuladas para el movimiento gradualmente variado en canales y estructuras hidráulicas complementarias usando métodos analíticos y numéricos.
- Aplicar las metodologías de la medición de caudales utilizando estructuras diseñadas y calibradas en el laboratorio previamente.

DUODÉCIMA SEMANA

Primera sesión:

Flujo gradualmente variado, ecuación dinámica del FGV

Teoría y análisis, perfiles de flujo, curvas de remanso. Práctica dirigida Nº 7.

Segunda sesión:

Métodos de cálculo de los perfiles de flujo gradualmente variado: método de integración gráfica y de tramos fijos, software HCanales.

DECIMOTERCERA SEMANA

Primera sesión:

Continuación Práctica dirigida Nº 7.

Segunda sesión:

Introducción, medición de flujo en conductos abiertos, sistemas de control de flujo

DECIMOCUARTA SEMANA

Primera sesión:

Orificios, compuertas. Práctica dirigida Nº 8

Segunda sesión:

Vertederos, fórmulas para vertederos de sección: rectangular, triangular, trapezoidal. con flujo modular y ahogado, medidor Parshall, otros métodos de medición. Práctica dirigida Nº 9.

DECIMOQUINTA SEMANA

Primera sesión:

Medición de flujo en conducto cerrado, medidor de orificio, medidor Venturi. Práctica dirigida Nº 10. Exposiciones de proyectos de investigación.

Segunda sesión:

Práctica calificada Nº 4

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
5
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y los alumnos, ecran, proyector de multimedia y una impresora

Materiales: Manual universitario, programa HCanales, aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene con la siguiente fórmula:

PF= (2*PE+EP+EF)/4

PE= ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3

PL = (Lb1 + Lb2 + Lb3 + Lb4)/4

PF=Promedio Final

EP=Examen parcial

EF=Examen Final

PE =Promedio de evaluaciones

P1 = Práctica Calificada 1

P2 = Práctica Calificada 2

P3 = Práctica Calificada 3

P4 = Práctica Calificada 4

MN= Menor nota de prácticas calificadas

W1 = Trabaio 1

PL = Promedio de laboratorio

Lb1...Lb4: Notas de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería		
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas		
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería		
(f)	Comprensión de lo que es la responsabilidad ética y profesional		
(g)	Habilidad para comunicarse con efectividad		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida		
(j)	Conocimiento de los principales temas contemporáneos		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería		

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
4	0	2

b) Sesiones por semana: Dos sesiones.c) Duración: 6 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Gonzalo Fano Miranda

XV. FECHA

La Molina, julio de 2018.