

Reinforcement Learning: An Introduction

强化学习导论第二版习题解答

作者: 吕昀琏 组织: UESTC

时间: March 24, 2020

目录

1	介绍		1
	1.1	强化学习	1
	1.2	例子	1
	1.3	强化学习的要素	1
	1.4	局限和范围	1
	1.5	拓展例子: 井字游戏	1
	1.6	总结	2
	1.7	强化学习的早期历史	2
第	一部	分表格解决方法	3
2	多臂	赌博机	4
	2.1	k 臂赌博机问题	4
	2.2	动作值方法	4
	2.3	10 臂试验	4
	2.4	渐增实现	5
	2.5	非平稳问题	5
	2.6	乐观初始值	5
	2.7	置信上限动作选择	6
	2.8	梯度赌博机算法	6
	2.9	关联搜索(上下文赌博机)	7
	2.10	总结	7
3	有限	马尔可夫决策过程	8
	3.1	Agent-环境接口	8
	3.2	目标和奖励	9
	3.3	回报和 episode	9
	3.4	回合和连续任务的统一符号	10
	3.5	策略和值函数	10
	3.6	最优策略和最优值函数	13
	3.7	最优和近似	16
	3.8	总结	16

4	动态	规划	17
	4.1	策略评估	17
	4.2	策略改进	18
	4.3	策略迭代	18
	4.4	值迭代	19
	4.5	异步动态规划	20
	4.6	广义策略迭代	20
	4.7	动态规划效率	20
	4.8	总结	20
5	蒙特	卡罗方法	21
	5.1	蒙特卡洛预测	21
	5.2	动作值的蒙特卡洛估计	21
	5.3	蒙特卡洛控制	22
	5.4	无探索起点的蒙特卡洛控制	22
	5.5	重要性采样的 off-policy 预测	22
	5.6	渐增实现	23
	5.7	Off-policy 蒙特卡洛控制	24
	5.8	* 折扣的重要性采样	25
	5.9	* 每决策的重要性采样	25
	5.10	总结	25

∞∞∞∞

第一章 介绍

- 1.1 强化学习
- 1.2 例子
- 1.3 强化学习的要素
- 1.4 局限和范围
- 1.5 拓展例子: 井字游戏
- ▲ **练习 1.1**: *Self-Play* 假设上面描述的强化学习算法不是与随机对手对战,而是与自身对战,双方都在学习。你认为在这种情况下会发生什么?它会学习一个不同的策略来选择动作吗?

解 当与自身对战时:

- 比起固定的对手,与自身对战将学习不同的策略,因为在这种情况下,对手也会有 所变化。
- 由于对手也在不断变化,因此可能无法学习最佳策略。
- 可能卡在循环中。因为与自身博弈, 自身策略和对手策略都在优化。
- 策略可以保持静态, 因为就平均而言, 通过每次迭代它们处于平局。
- ▲ **练习 1.2**: Symmetries 许多井字游戏的位置看起来不同,但由于对称性实际上是一样的。我们如何修改上述学习过程来利用这一点?这种变化会在哪些方面改善学习过程?现在再想想。假设对手没有利用对称性。那样的话,我们应该吗?那么,对称相等的位置必然具有相同的值,这是真的吗?

解 我们可以将状态标记为对称的唯一状态,这样我们的搜索空间更小,这样我们就可以更好地估计最佳玩法。

如果我们面对的对手在比赛时没有考虑对称性,那么我们也不应将状态标记为相同。 因为对手也是环境的一部分,而环境给出的这些状态并不一致。

△ 练习 1.3: Greedy Play 假设强化学习玩家是贪婪的,也就是说,他总是做出让他达到最佳位置的移动。它会比不贪婪的玩家学得更好或更差吗?可能会发生什么问题? □ 解贪婪的玩家不会探索,因此通常会比非贪婪的玩家表现更差。

如果贪婪的玩家对状态的价值有一个完美的估计,那它将更好。

△ **练习 1.4**: Learning from Exploration 假设学习更新发生在所有移动之后,包括探索移动。 如果随时间逐步减小步长参数(而不是探索的趋势),则状态值将收敛到一组不同的概率。 当我们从或者不从探索性动作中学习时对应的两组概率是什么(概念上)? 假设我们

1.6 总结

确实在继续进行探索移动,那么哪一组概率可能更好学习?哪个会带来更多胜利? □ 解如果我们不从探索性动作中学习,那么所学到的状态概率将是随机的,因为我们不会更新在给定状态下采取给定动作时会发生的情况。

如果我们从探索性动作中进行学习,那么我们的极限概率应该是状态和动作选择的期望分布。

显然,由于玩家更好地理解了正在玩的"游戏",因此对概率密度的更全面的了解应该会带来更好的玩法。

▲ 练习 1.5: Other Improvements 你还能想出其他方法来提高强化学习玩家吗? 你能想出更好的办法来解决所提出的井字游戏问题吗?

解一种可能的方法是持有已保存的玩法库。例如,当在一组已知状态中,始终执行库中所对应的移动。这有点像国际象棋游戏,其中有很多"开场"位置被专家玩家认为是好的。这可以加快整个学习过程,或至少改善强化学习玩家的初期发挥。

由于井字游戏是如此简单,我们可以使用递归解决此问题,并计算所有可能的对手移动,并在每一步中选择能最大化我们获胜机会的移动。

1.6 总结

1.7 强化学习的早期历史

→∘⊘∞~

第一部分 表格解决方法

第二章 多臂赌博机

2.1 k 臂赌博机问题

2.2 动作值方法

练习 2.1 在 ε -greedy 动作选择中,对于两个动作和 ε = 0.5 的情况,选择贪婪动作的概率 是多少?

解 设动作集合中总共具有 n 个动作。在 ε-greedy 方法中,agent 有 ε 的概率机会从动作 集合中随机选择,有 1-ε 的概率机会选择贪婪动作。已知 ε=0.5 和 n=2,那么选择 贪婪动作的概率为:

$$\frac{1}{n} \times \varepsilon + (1 - \varepsilon) = \frac{1}{2} \times 0.5 + (1 - 0.5) = 0.75$$

2.3 10 臂试验

练习 2.2: Bandit example 考虑一个具有 k = 4 个动作的 k 臂赌博机问题,分别表示为 1、 2、3 和 4。考虑对该问题应用赌博机算法,该算法使用 ε -greedy 动作选择,样本平均动作值估计和对于所有 a, $Q_1(a) = 0$ 。假设动作和奖励的初始序列为 $A_1 = 1$, $R_1 = -1$, $A_2 = 2$, $R_2 = 1$, $A_3 = 2$, $R_3 = -2$, $A_4 = 2$, $R_4 = 2$, $R_5 = 3$, $R_5 = 0$ 。在某些时间步上, ε 情况可能已经发生,导致随机选择一个动作。这肯定发生在哪些时间步?在哪些时间步这可能已经发生?

解 根据题意列出每一步的动作值,已选择的动作,和选择该动作的原因如下:

时间步	动作值	已选择的动作	选择原因	原因说明
1	0 0 0 0	1	贪婪或随机	所有动作值相等,都为0
2	-1 0 0 0	2	贪婪或随机	2、3、4的动作值相等
3	-1 1 0 0	2	贪婪	2的动作值最大
4	-1 -1/2 0 0	2	随机	2的动作值最小
5	-1 1/3 0 0	3	随机	2的动作值最大

由表可知, ε 情况肯定在 A_4 和 A_5 发生, 可能在 A_1 和 A_2 发生。

▲ 练习 2.3 在图 2.2 所示的比较中,就累积奖励和选择最佳动作的概率而言,哪种方法在长期内表现最好?它会好多少?量化地表达你的答案。

2.4 渐增实现 - 5-

 $\mathbf{m} \varepsilon = 0.01$ 将有更好的表现,因为在两种情况下,当 $t \to \infty$ 时,我们都有 $Q_t \to q_*$ 。因此,在这种情况下,总奖励和选择最佳行动的可能性将比 $\varepsilon = 0.1$ 大 10 倍。

2.4 渐增实现

2.5 非平稳问题

练习 2.4 如果步长参数 α_n 不恒定,则估计值 Q_n 是先前接收的奖励的加权平均值,其权重与 (2.6) 给出的权重不同。就步长参数的序列而言,对于一般情况,类似于 (2.6),每个先前奖励的权重是多少?

解 推导过程与 (2.6) 类似:

$$Q_{n+1} = Q_n + \alpha_n [R_n - Q_n]$$

$$= \alpha_n R_n + (1 - \alpha_n) Q_n$$

$$= \alpha_n R_n + (1 - \alpha_n) [\alpha_{n-1} R_{n-1} + (1 - \alpha_{n-1}) Q_{n-1}]$$

$$= \alpha_n R_n + (1 - \alpha_n) \alpha_{n-1} R_{n-1} + (1 - \alpha_n) (1 - \alpha_{n-1}) Q_{n-1}$$

$$= \alpha_n R_n + (1 - \alpha_n) \alpha_{n-1} R_{n-1} + (1 - \alpha_n) (1 - \alpha_{n-1}) \alpha_{n-2} R_{n-2} + \dots + (1 - \alpha_n) (1 - \alpha_{n-1}) (1 - \alpha_{n-2}) \dots (1 - \alpha_2) (1 - \alpha_1) Q_1$$

$$= \left(\prod_{i=1}^n (1 - \alpha_i) \right) Q_1 + \sum_{i=1}^n \alpha_i R_i \prod_{k=i+1}^n (1 - \alpha_k)$$

练习 2.5(编程)设计并进行实验,以证明样本平均方法对于解决非平稳问题的困难。使用 10 臂试验的修改版本,其中起初所有 $q_*(a)$ 均相等,然后进行独立的随机游走(比如在每一步对所有 $q_*(a)$ 加上均值为零且标准差为 0.01 的正态分布增量)。绘制类似图**??**所示的图,为使用样本平均值进行增量计算的动作值方法,和另一使用恒定步长参数 $\alpha=0.1$ 的动作值方法去准备图。使用 $\varepsilon=0.1$ 和更长的运行时间,比如 10,000 步。 \square **解** 见 exercise-programming/exercise2.5.py。

2.6 乐观初始值

△ 练习 2.6: Mysterious Spikes 图 2.3 中显示的结果应该是相当可靠的,因为它们是 2000 多个单独的、随机选择的 10 臂赌博机任务的平均值。那么,为什么乐观方法的曲线的早期部分会有振荡和尖峰呢?换句话说,是什么让这种方法在特定的早期步骤上表现得更好或更差呢?

解 在步骤 10 之后的某个时刻, agent 将找到最优值。然后它将贪婪地选择此值。小步长参数(相对于初始值5较小)意味着最优值的估计值将朝着其真实值缓慢收敛。

该真实值可能小于 5。这意味着,由于步长较小,其中一个次优动作的值仍接近 5。 因此,在某个时刻,agent 又开始次优动作。

▲ 练习 2.7: Unbiased Constant-Step-Size Trick 在本章的大部分内容中,我们使用样本平均来估计动作值,因为样本平均不会产生恒定步长所产生的初始偏差(参见导致(2.6)的

分析)。然而,样本平均并不是一个完全令人满意的解决方案,因为它们在非平稳问题上的表现可能很差。是否有可能避免固定步长的偏差,同时保持它们在非平稳问题上的优势?一种方法是使用步长为

$$\beta_n \doteq \alpha/\bar{o}_n,\tag{2.1}$$

来处理特定动作的第 n 次奖励,其中 $\alpha > 0$ 是常规的恒定步长,而 \bar{o}_n 是从 0 开始的跟踪:

$$\bar{o}_n \doteq \bar{o}_{n-1} + \alpha (1 - \bar{o}_{n-1}), \quad \forall \exists \exists n \geq 0, \quad \bar{o}_0 \doteq 0.$$
 (2.2)

进行类似(2.6)中的分析,表明Q值是没有初始偏差的指数近期加权平均。

解 考虑练习 2.4 的答案。由于 $\beta_1 = 1$,因此对于 k > 1, Q_k 与 Q_1 无关。现在有迹象表明,随着我们往前看,剩余总和中的权重会降低。即

$$\omega_i = \beta_i \prod_{k=i+1}^n (1 - \beta_k)$$

对于固定的n 随i 而增加。为此、观测到

$$\frac{\omega_{i+1}}{\omega_i} = \frac{\beta_{i+1}}{\beta_i (1 - \beta_{i+1})} = \frac{1}{1 - \alpha} > 1$$

如果假定 $\alpha < 1$ 时。如果 $\alpha = 1$, 那么对于 $\forall t$, $\beta_t = 1$ 。

2.7 置信上限动作选择

练习 2.8: *UCB Spikes* 在图 2.4 中,UCB 算法在第 11 步显示了明显的峰值性能。这是为什么?请注意,为了让你的答案完全令人满意,必须解释为什么奖励在第 11 步增加,为什么在随后的步减少。提示:如果 c=1,则尖峰不那么突出。 解 在前 10 个步中,agent 会循环执行所有动作,因为当 $N_t(a)=0$ 时,a 被认为是最大值。然后,在第 11 步,agent 通常会贪婪地选择。agent 将继续贪婪地选择,直到 $\ln t$ 超过 $N_t(a)$ 进行其他动作之一为止,在这种情况下,agent 将开始再次探索,从而减少了奖励。请注意,从长远来看, $N_t=O(t)$ 和 $\ln(t)/t\to 1$ 。因此,该 agent 是"渐近贪婪的"。

2.8 梯度赌博机算法

▲ 练习 2.9 证明了在两种动作情况下,soft-max 分布与统计学和人工神经网络中常用的 logistic 函数或 sigmoid 函数的分布相同。

解令这两个动作分别用0和1表示。现在

$$\Pr\{A_t = 1\} = \frac{e^{H_t(1)}}{e^{H_t(0)} + e^{H_t(1)}} = \frac{1}{1 + e^{-x}}$$

其中 $x = H_t(1) - H_t(0)$ 是 1 相对于 0 的相对偏好。

2.9 关联搜索(上下文赌博机)

▲ 练习 2.10 假设你面对的是一个 2 臂赌博机任务,其真实动作值随时间步而随机变化。具体地说,假设对于任何时间步,动作 1 和 2 的真值分别为 0.1 和 0.2,概率为 0.5(情况 A),以及 0.9 和 0.8,概率为 0.5(情况 B)。如果你在任何一步都不能说出你面对的是哪一种情况,你能达到的最好的成功期望是什么,你应该如何行动来实现它?现在假设在每一步中都被告知您面对的是情况 A 还是情况 B(尽管您仍然不知道真实的动作值)。这是一个关联搜索任务。在这个任务中,你能达到的最好的成功期望是什么?你应该如何行动才能达到这个目标?

解 假定奖励平稳。应该选择具有最高期望奖励的动作。对于第一种情形,动作 1 和 2 的期望值都为 0.5,即 $0.5 \times (0.1+0.9) = 0.5$, $0.5 \times (0.2+0.8) = 0.5$ 。因此这两个动作可以随机进行选择。

针对第二种情形,应该对每种颜色分别运行正常的赌博机方法。在每种情况下确定最佳动作的期望奖励为 0.55, 即 $0.5 \times 0.2 + 0.5 \times 0.9 = 0.55$ 。

2.10 总结

练习 2.11 (编程) 对于练习 2.5 中概述的非平稳情况,制作类似于图 2.6 的图。包括 $\alpha = 0.1$ 的步长不变的 ε -greedy 算法。使用 200,000 步的运行,并作为每个算法和参数设置的性能度量,使用最近 100,000 步的平均奖励。

解见 exercise-programming/exercise2.11.py。

第三章 有限马尔可夫决策过程

3.1 Agent-环境接口

- △ 练习 3.1 设计三个符合 MDP 框架的您自己的示例任务,为每个任务确定状态、动作和奖励。尽可能使这三个例子各不相同。该框架是抽象且灵活的,可以以多种不同的方式应用。在你的至少一个例子中,以某种方式扩展它的限制。
 - 解(1)网格迷宫:状态为格子编号,动作为东西南北移动,奖励为到达出口;
 - (2) 棋类游戏: 状态为棋子在棋盘上的位置, 动作为棋子的移动, 奖励为游戏结果;
 - (3) 自动驾驶: 状态为周围环境、视觉、雷达等传感器信息,动作为转向、加速、刹车等,奖励为到达目的地、避免撞车;
- (4)Atari 游戏: 状态为屏幕像素输入,动作为键盘/鼠标移动,奖励为游戏增加分数。 **练习 3.2** MDP 框架是否足以有效地代表所有以目标为导向的学习任务? 你能想出任何明 确的例外吗? □
 - 解不足以。当我们没有足够的计算能力去定义状态和奖励时,例如围棋,必须通过深度学习框架来解决。还比如射击游戏,由于视线限制,agent 没有关于其他玩家的直接信息,但状态会受到队友和对手的影响,使 agent 无法确定先前的动作对当前情况的影响,这使得不是 MDP。
- ▲ 练习 3.3 考虑一下驾驶问题。您可以根据油门、方向盘和制动器来定义动作,即身体与机器接触的地方。或者您可以将它们定义为,例如橡胶与道路相接的地方,将您的动作视为轮胎扭矩。或者您还可以定义它们为,例如大脑与身体接触的地方,这些动作是肌肉抽搐来控制您的四肢。或者您可以提高到一个很高的层次,并说您的动作是您选择开车前往的地方。在 agent 与环境之间划清界限的正确层次和正确地方是什么?在什么基础上线路的一个位置优于另一个位置?有没有什么基本的理由让你更喜欢一个位置,或者这是一个自由的选择?
 - 解 这个问题是要求正确的线路来定义环境和 agent。正确的划分界限应该可以观察到 agent 的动作对状态的影响。
- **练习 3.4** 针对 p(s',r|s,a) 给出一个类似于例 3.3 中的表。它应该具有 s,a,s',r 和 p(s',r|s,a) 的列,以及 p(s',r|s,a)>0 的每个 4 元组的行。

解 表格如下:

3.2 目标和奖励 -9-

s	a	s'	r	p(s',r s,a)
high	search	high	r_{search}	α
high	search	low	r_{search}	$1-\alpha$
low	search	high	-3	$1-\beta$
low	search	low	r_{search}	β
high	wait	high	r_{wait}	1
high	wait	low	-	0
low	wait	high	-	0
low	wait	low	r_{wait}	1
low	recharge	high	0	1
low	recharge	low	-	0

3.2 目标和奖励

3.3 回报和 episode

▲ 练习 3.5 3.1 节中的方程式适用于连续的情况,需要进行修改(非常轻微)以适用于回合任务。通过给出(3.3)的修改版本,表明您知道所需的修改。 □ ■ ■ ■

 $\sum_{s' \in \mathcal{S}^+} \sum_{r \in \mathcal{R}} p(s', r | s, a) = 1, \quad \text{for all } s \in \mathcal{S}^+, a \in \mathcal{A}(s) \text{ and } \mathcal{S}^+ \doteq \{\text{all states plus terminal state}\}$

▲ 练习 3.6 假设您将杆子平衡视为回合任务,且使用折扣,除了失败奖励设为-1,所有其他 奖励设为 0。那么每个时间的回报是什么?这个回报与这个任务的折扣的、连续的形式有什么不同?

解 对于回合任务,回报为:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

使用折扣后,回报为:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$$

由于失败时奖励为-1, 其他情况奖励设置为0, 所以每个时间的回报为:

$$G_t = -\gamma^{T-t-1}$$

该回报实际上与折扣的、连续的情况下的回报 $-\gamma^K$ 相同,其中 K 是失败之前的时间步长。

▲ 练习 3.7 想象一下,您正在设计一个运行迷宫的机器人。您决定逃脱迷宫时给予它 +1 的 奖励,在其他所有时间给予零的奖励。这项任务似乎自然地分解为 episodes,即连续穿过 迷宫,因此您决定将其视为回合性任务,目标是最大化期望的总奖励(3.7)。在运行学习 agent 一段时间后,您发现它在逃离迷宫方面没有任何改善。这出了什么问题? 您是否已 有效地向 agent 传达了您想要实现的目标?

 \mathbf{m} 如果您不使用 γ 来执行折扣,则无论 agent 花费多长时间,最大的回报始终为+1。与

agent 进行沟通的正确方法是在逃离前的每个时间步加-1 的惩罚或增加折扣。

练习 3.8 假设 $\gamma = 0.5$,以及收到 T = 5 的如下奖励序列, $R_1 = -1$, $R_2 = 2$, $R_3 = 6$, $R_4 = 3$, $R_5 = 2$ 。那么 G_0, G_1, \ldots, G_5 是什么?提示:向后工作。

$$G_5 = 0$$

$$G_4 = R_5 + \gamma G_5 = 2 + 0.5 \times 0 = 2$$

$$G_3 = R_4 + \gamma G_4 = 3 + 0.5 \times 2 = 4$$

$$G_2 = R_3 + \gamma G_3 = 6 + 0.5 \times 4 = 8$$

$$G_1 = R_2 + \gamma G_2 = 2 + 0.5 \times 8 = 6$$

$$G_0 = R_1 + \gamma G_1 = -1 + 0.5 \times 6 = 2$$

练习 3.9 假设 $\gamma = 0.9$,以及奖励序列为 $R_1 = 2$,然后是 7s 的无限序列。那么 G_1 和 G_0 是什么?

解

$$G_1 = 7 \times \sum_{k=0}^{\infty} \gamma^k R_{k+2} = 7 \times \frac{1}{1-\gamma} = 7 \times \frac{1}{1-0.9} = 70$$

$$G_0 = R_1 + \gamma \times 7 \times \sum_{k=1}^{\infty} \gamma^k R_{k+1} = 2 + 7 \times \frac{\gamma}{1-\gamma} = 2 + 7 \times \frac{0.9}{1-0.9} = 2 + 7 \times 90 = 65$$

$$G_0 = R_1 + \gamma G_1 = 2 + 0.9 \times 70 = 65$$

▲ 练习 3.10 证明 (3.10) 中的第二个等式。

解 因为奖励为不为 0 的常数,以及 $\gamma < 1$,则:

$$S_N \doteq \sum_{k=0}^{N} \gamma^k$$

$$\gamma S_N - S_N = \gamma^{N+1} - 1$$

$$S_N = \frac{1 - \gamma^{N+1}}{1 - \gamma}$$

$$G_t \doteq \lim_{N \to \infty} S_N = \frac{1}{1 - \gamma}$$

3.4 回合和连续任务的统一符号

3.5 策略和值函数

体 3.11 如果当前状态为 S_t ,并且根据随机策略 π 选择动作,那么根据 π 和四参数函数 p (3.2), R_{t+1} 的期望是什么?

$$\mathbb{E}_{\pi}[R_{t+1}|S_t = s] = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)r$$

体 练习 3.12 用 q_{π} 和 π 给出 v_{π} 的等式。

3.5 策略和值函数 - 11-

解

$$v_{\pi}(s) \doteq \sum_{a} \pi(a|s) q_{\pi}(s,a)$$

4 练习 3.13 用 v_{π} 和四个参数 p 给出 q_{π} 的等式。

解

$$q_{\pi}(s, a) \doteq \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$

练习 3.14 对于例 3.5 的图 3.2 (右) 中所示的值函数 v_{π} , 对于每个状态, Bellman 方程 (3.14) 必须成立。从数字上显示此方程适用于值为 +0.7 的中心状态,相对于它的四个相 邻状态,值分别为 +2.3、+0.4、-0.4 和 +0.7。(这些数字仅精确到小数点后一位。) \square 解 由題意知: $\pi(a|s) = \frac{1}{4}, p(s', r|s, a) = 1, r = 0, \gamma = 0.9$, 那么:

$$v_{\pi}(center) \doteq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$= \frac{1}{4} \times 0.9 \times [2.3 + 0.4 - 0.4 + 0.7]$$

$$= \frac{1}{4} \times 0.9 \times 3$$

$$= 0.675$$

$$\approx 0.7$$

练习 3.15 在 Gridworld 示例中,奖励对于目标为正,对于进入世界的边缘为负,其余时间为零。这些奖励的标记是否重要,或者只是它们之间的间隔重要? 使用(3.8)证明,将常数 c 添加到所有奖励中会为所有状态的值添加常数 v_c ,因此不会影响任何策略下任何状态的相对值。就 c 和 γ 而言, v_c 是什么?

 $解G_t$ 的定义如下:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

添加常数 c 后:

$$G_t^* \doteq (c + R_{t+1}) + \gamma(c + R_{t+2}) + \gamma^2(c + R_{t+3}) + \cdots$$

$$= G_t + \sum_{k=0}^{\infty} \gamma^k c$$

$$= G_t + \frac{c}{1 - \gamma}$$

$$v_{\pi}^*(s) = \mathbb{E}_{\pi}[G_t^*|S_t = s] = \mathbb{E}_{\pi} \left[G_t + \frac{c}{1 - \gamma} \middle| S_t = s \right] = \mathbb{E}_{\pi}[G_t|S_t = s] + \frac{c}{1 - \gamma}$$

所以添加常数后不会影响状态的相对值,另外, v_c 为:

$$v_c = \frac{c}{1 - \gamma}$$

△ **练习 3.16** 现在考虑将常数 c 添加到回合任务(例如迷宫赛跑)中的所有奖励中。这会产生影响吗,还是会像上面的连续任务中那样使任务保持不变?为什么或者为什么不?举个例子。

3.5 策略和值函数 - 12-

解 回合任务中 G_t 为:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$$

加入常数 c 后:

解

$$G_t^* = (c + R_{t+1}) + \gamma(c + R_{t+2}) + \gamma^2(c + R_{t+3}) + \dots + \gamma^{T-t-1}(c + R_T)$$

$$= G_t + \sum_{k=0}^{T-t-1} \gamma^k c$$

$$= G_t + c \frac{1 - \gamma^{T-t}}{1 - \gamma}$$

由上述等式可以看出,回合任务中加入常数会产生影响。它会增加v的值。

例如假设我们有一个回合任务,其只有一个状态 S 和两个动作 A_0 , A_1 。采取 A_0 动作会导致从 S 状态进入终止状态,此时得到的奖励为 +1。采取 A_1 动作会回到 S 状态,奖励为零。在这种情况下 agent 应采取动作 A_0 进入终止状态以最大化奖励。

如果我们给每个奖励加 +1,那么一直采取动作 A_1 获得的回报为 $\frac{1}{1-\gamma}$,当选择的折扣因子小于 $\frac{1}{2}$,那么获得的回报将大于 2。在这种情况下 agent 的最优策略是一直采取动作 A_1 。

练习 3.17 动作值,即 q_{π} 的 Bellman 方程是什么?它必须根据状态-动作对 (s,a) 的可能后继动作值 $q_{\pi}(s',a')$ 给出动作值 $q_{\pi}(s,a)$ 。提示:右边的备份图与此方程式相对应。展示类似于(3.14)的方程序列,但针对动作值。

$$G_{t} \stackrel{:}{=} \mathbb{E}_{\pi}[G_{t}|S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[R_{r+1} + \gamma G_{t+1}|S_{t} = s, A_{t} = a]$$

$$= \sum_{s', r} p(s', r|s, a) \left[r + \gamma \sum_{s'} \pi(a'|s') q_{\pi}(s', a')\right]$$

△ 练习 3.18 状态的价值取决于该状态下可能采取的动作的价值,以及取决于在当前策略下 采取每种动作的可能性。我们可以从植根于该状态的小备份图来考虑这一点,并考虑每 个可能的动作:

给定 $S_t=s$,根据期望叶节点的值 $q_\pi(s,a)$,给出与该直觉和示意图相对应的等式,以表示根节点的值 $v_\pi(s)$ 。这个等式包括以遵循策略 π 为条件的期望。然后给出第二个等式,其中用 $\pi(a|s)$ 明确写出期望值,使得等式中不出现期望值符号。

$$v_{\pi}(s) = \mathbb{E}_{\pi}[q_{\pi}(s, a)]$$
$$= \sum_{a} \pi(a|s)q_{\pi}(s, a)$$

练习 3.19 动作的值 $q_{\pi}(s,a)$ 取决于期望的下一个奖励和剩余奖励的期望总和。同样,我们可以用一个小的备份图来考虑这一点,该备份图扎根于一个动作(状态-动作对)并分支到可能的下一个状态:

给定 $S_t = s$ 和 $A_t = a$,根据期望的下一个奖励 R_{t+1} 和期望的下一个状态值 $v_{\pi}(S_{t+1})$,

给出与该直觉和示意图相对应的等式的动作值 $q_{\pi}(s,a)$ 。此等式应包括不应以遵循该策略为条件的期望。然后给出第二个方程,用(3.2)定义的 p(s',r|s,a) 显式写出期望值,这样方程中就不会出现期望值符号。

解

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

3.6 最优策略和最优值函数

- △ 练习 3.20 画出或描述 golf 示例中的最优状态值函数。
 - 解 最佳状态值函数在绿地外时根据发球杆给出值, 然后在绿地时根据推杆给出值。
- **练习 3.22** 考虑右图所示的连续 MDP。唯一要做出的决定是顶处状态,其左右有两个动作可用即 left 和 right,数字表示每次动作后确定收到的奖励。有两种确定性策略, π_{left} 和 π_{right} 。如果 $\gamma = 0$,哪种策略最优?如果 $\gamma = 0.9$ 呢?如果 $\gamma = 0.5$ 呢? Π 设顶部状态为 A,采取 left 和 right 动作后分别到达状态 B 和 C。由题意知: $R_{A,left,B} = +1$, $R_{B,left,A} = 0$, $R_{A,right,C} = 0$, $R_{C,right,A} = +2$,那么顶部状态的回报为:

$$G_{\pi_{left}} = R_{A,left,B} + \gamma R_{B,left,A} + \gamma^2 R_{A,left,B} + \gamma^3 R_{B,left,A} + \gamma^4 R_{A,left,B} + \cdots$$

$$= R_{A,left,B} + \gamma^2 R_{A,left,B} + \gamma^4 R_{A,left,B} + \cdots$$

$$= \sum_{k=0}^{\infty} \gamma^{2k}$$

$$= \frac{1}{1 - \gamma^2}$$

$$G_{\pi_{right}} = R_{A,right,C} + \gamma R_{C,right,A} + \gamma^2 R_{A,right,C} + \gamma^3 R_{C,right,A} + \gamma^4 R_{A,right,C} + \cdots$$

$$= \gamma R_{C,right,A} + \gamma^3 R_{C,right,A} + \gamma^5 R_{C,right,A} + \cdots$$

$$= \sum_{k=0}^{\infty} 2\gamma^{1+2k}$$

$$= \frac{2\gamma}{1-\gamma^2}$$

根据上述每种策略的回报公式, $\gamma=0.5$ 是临界点。如果 $\gamma>0.5$,则 right 为最优动作。如果 $\gamma<0.5$,则 left 为最优动作。如果 $\gamma=0.5$,则两者均为最优动作。

练习 3.23 给出 recycling robot 中 q_* 的 Bellman 方程。 $\qquad \square$ 解 q_* 的 Bellman 方程为:

$$q_* = \mathbb{E}[R +_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r | s, a) [r + \gamma \max_{a'} q_*(s', a')]$$
(3.1)

为了简洁,将两个状态 high、low 和三个动作 search、wait、recharge 分别表示为h, l, s, w, re, 那么 Bellman 方程为:

$$q_*(h,s) = p(h|h,s)[r_s + \gamma \max(q_*(h,s), q_*(h,w))] +$$

$$p(l|h,s)[r_s + \gamma \max(q_*(l,s), q_*(l,w), q_*(l,re))]$$

$$= \alpha[r_s + \gamma \max(q_*(h,s), q_*(h,w))] +$$

$$(1 - \alpha)[r_s + \gamma \max(q_*(l,s), q_*(l,w), q_*(l,re))]$$

$$\begin{aligned} q_*(l,s) &= p(h|l,s)[-3 + \gamma \max(q_*(h,s),q_*(h,w))] + \\ & p(l|l,s)[r_s + \gamma \max(q_*(l,s),q_*(l,w),q_*(l,re))] \\ &= (1-\beta)[-3 + \gamma \max(q_*(h,s),q_*(h,w))] + \\ & \beta[r_s + \gamma \max(q_*(l,s),q_*(l,w),q_*(l,re))] \end{aligned}$$

$$q_*(h, w) = p(h|h, w)[r_w + \gamma \max(q_*(h, s), q_*(h, w))]$$

= $r_w + \gamma \max(q_*(h, s), q_*(h, w))$

$$q_*(l, w) = p(l|l, w)[r_w + \gamma \max(q_*(l, s), q_*(l, w), q_*(l, re))]$$

= $r_w + \gamma \max(q_*(l, s), q_*(l, w), q_*(l, re))$

$$q_*(l, re) = p(h|l, re)[0 + \gamma \max(q_*(h, s), q_*(h, w))]$$

= $\gamma \max(q_*(h, s), q_*(h, w))$

练习 3.24 图 3.5 给出了 gridworld 最优状态的最优值为 24.4,保留了一位小数。使用您对最优策略的知识,并使用 (3.8) 以符号方式表示该值,然后将其计算到小数点后三位。 \square 解 v_* 的 Bellman 方程为:

$$v_*(s) = \max_{a} \mathbb{E}_{\pi_*}[G_t | S_t = s, A_t = a]$$

根据图 3.5 中的 v_* 和 π_* ,到达 A 后的最佳解决方案是移至 A 后快速返回 A。这需要 5 个时间步。所以我们将有

$$G_t^* = 10 + \gamma \times 0 + \gamma^2 \times 0 + \gamma^3 \times 0 + \gamma^4 \times 0 + \gamma^5 \times 10 + \gamma^6 \times 0 + \cdots$$

$$= 10 + \gamma^5 \times 10 + \cdots$$

$$= \sum_{k=0}^{\infty} 10\gamma^{5k}$$

$$= \frac{10}{1 - \gamma^5}$$
(3.2)

 $v_*(A) = G_t^*$,状态 A 的理论值是 $10/(1-\gamma^5)$ 。通过用 python 写一个小函数(循环 100 次就足够了)或使用计算器,我们得到的答案是 24.419428096993954。保留三位小数为 24.419。

▲ 练习 3.25 给出用 q* 表示的 v* 方程。解

$$v_*(s) = \max_a(q_*(s, a))$$

体 练习 3.26 给出用 v_* 和四参数 p 表示的 q_* 方程。

解

$$q_*(s, a) = \sum_{s', r} p(s', r|s, a)[r + \gamma v_*(s')]$$

练习 3.27 给出用 q_* 表示的 π_* 方程。

解

$$\pi_*(s) = \operatorname*{arg\,max}_a q_*(s, a)$$

4 练习 3.28 给出用 v_* 和四参数 p 表示的 π_* 方程。

解

$$\pi_*(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

练习 3.29 根据三参数函数 p (3.4) 和两参数函数 r (3.5) 重写四个值函数 ($v_{\pi}, v_{*}, q_{\pi}, q_{*}$) 的四个 Bellman 方程。

解

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

= $\sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a)[r(s,a) + \gamma v_{\pi}(s')]$

$$v_*(s) = \max_{a} \mathbb{E}_{\pi_*}[G_t|S_t = s, A_t = a]$$

= $\max_{a} \sum_{s'} p(s'|s, a)[r(s, a) + \gamma v_*(s')]$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

$$= \sum_{s'} p(s'|s, a)[r(s, a) + \gamma \sum_{a'} \pi(a'|s')q_{\pi}(s', a')]$$

3.7 最优和近似 - 16 -

$$q_*(s,a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$
$$= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma \max_{a'} q_*(s', a')]$$

- 3.7 最优和近似
- 3.8 总结

第四章 动态规划

4.1 策略评估

练习 4.1 在例 4.1 中,如果 π 是等概率随机策略,那么 $q_{\pi}(11, \text{down})$ 是什么? $q_{\pi}(7, \text{down})$ 是什么?

解 已知用 v_{π} 表示 q_{π} 为:

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$

根据题意,已知 $p(s',r|s,a)=1, \gamma=1$,根据公式可得:

$$q_{\pi}(11, \text{down}) = -1 + v_{\pi}(T) = -1 + 0 = -1$$

$$q_{\pi}(7, \text{down}) = -1 + v_{\pi}(11) = -1 - 14 = -15$$

练习 4.2 在例 4.1 中,假设在状态 13 下方的网格世界中添加了一个新状态 15,并且其动作(left,up,right,down)分别使该 agent 进入状态 12、13、14 和 15。假设从原始状态的转移未更改。那么,等概率随机策略的 $v_{\pi}(15)$ 是什么?现在假设状态 13 的动态也发生了变化,以至于从状态 13 向下执行的动作将使 agent 到达新的状态 15。在这种情况下,等概率随机策略的 $v_{\pi}(15)$ 是什么?

解 已知 v_{π} 的 Bellman 方程为:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

由题意知 $\pi(a|s)=1/4=0.25, p(s',r|s,a)=1, \gamma=1$, 那么 $v_{\pi}(15)$ 的值为:

$$v_{\pi}(15) = 0.25 \times [-1 + v_{\pi}(12)] + 0.25 \times [-1 + v_{\pi}(13)] + 0.25 \times [-1 + v_{\pi}(14)]$$

$$+0.25 \times [-1 + v_{\pi}(15)]$$

$$= -1 + 0.25 \times [v_{\pi}(12) + v_{\pi}(13) + v_{\pi}(14)] + 0.25 \times v_{\pi}(15)$$

$$= -1 + 0.25 \times [-22 - 20 - 14] + 0.25 \times v_{\pi}(15)$$

$$= -15 + 0.25 \times v_{\pi}(15)$$

解得: $v_{\pi}(15) = -15/0.75 = -20$

改变动态不会导致整个游戏的重新计算:状态 15 与状态 13 完全相同。因此,它们

4.2 策略改进 - 18-

的状态值都相同且仍为-20。

练习 4.3 对于动作值函数 q_{π} 及其通过序列函数 q_0, q_1, q_2, \dots 进行的逐次逼近,类似于 (4.3),(4.4) 和 (4.5) 的方程是什么?

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma \sum_{a'} q_{\pi}(S_{t+1}, a')|S_{t} = s, A_{t} = a]$$

$$= \sum_{s',r} p(s', r|s, a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s', a') \right]$$

$$q_{k+1}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma \sum_{a'} q_{\pi}(S_{t+1}, a')|S_{t} = s, A_{t} = a]$$

$$= \sum_{s',r} p(s', r|s, a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{k}(s', a') \right]$$

4.2 策略改进

4.3 策略迭代

- △ 练习 4.4 第 80 页上的策略迭代算法有一个细微的错误:如果策略在两个或两个以上同样良好的策略之间连续切换,它可能永远不会终止。这可以用于教学,但不适用于实际使用。修改伪代码,以确保收敛。
 - 解 将第 3 步策略改进中如果 old- $action \neq \pi(s)$ 改为,如果 old- $action \notin \{a_i\}$,其为所有 $\pi(s)$ 下的等价最优解。
- **练习 4.5** 如何为动作值定义策略迭代?给出用于计算 q_* 的完整算法,类似于第 80 页的计算 v_* 的算法。请特别注意此练习,因为所涉及的思想将在本书的其余部分中使用。 \square 解

Policy Iteration for estimating $q \approx q_*$

1. 初始化

对于所有 $s \in \mathcal{S}, a \in \mathcal{A}$, 任意选取 $Q(s,a) \in \mathbb{R}$ 和 $\pi(s) \in \mathcal{A}(s)$

2. 策略评估

循环:

$$\Delta \leftarrow 0$$

对于每个 $s \in S$ 和 $a \in A$ 循环:

q = Q(s, a)

$$Q(s, a) \leftarrow \sum_{s', r} p(s', r|s, a) [r + \gamma \sum_{a'} \pi(a'|s') Q(s', a')]$$

4.4 值迭代 ——19—

 $\Delta \leftarrow \max(\Delta, |q - Q(s, a)|)$ 直到 $\Delta < \theta$ (决定估计精度的一个小的正数)

3. 策略改进

policy-stable $\leftarrow true$

对于每个 $s \in S$ 和 $a \in A$

old-action $\leftarrow \pi(s)$

 $\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma \sum_{a'} \pi(a'|s') Q(s',a') \right]$

如果 old-action \notin {a_i}, 其为 π (s) 下的等价最优解集合,

那么 policy- $stable \leftarrow false$

如果 policy-stable, 那么停止并返回 $Q \approx q_*$ 和 $\pi \approx \pi_*$; 否则转到 2

练习 4.6 假设您只考虑仅使用 ε -soft 的策略,这意味着在每个状态 s 中选择每个动作的概率至少为 $\varepsilon/|\mathcal{A}(s)|$ 。请定性地描述第 80 页上针对 v_* 的策略迭代算法在步骤 3、2 和 1 的每个步骤中所需的更改。

解第3步改变: 我们只会在不探索策略的情况下,判断 policy-stable 为 false。

第 2 步改变: θ 的设置不应超过任何 ε -soft 的限制。

第1步改变: π 应该很好地定义为 ε -soft 方法。应该给予 ϵ 。

▲ **练习 4.7** (programming) 编写用于策略迭代的程序,并通过以下更改重新解决杰克的租车问题。杰克在第一地点的一名员工每晚晚上乘汽车回家,且住在第二地点附近。她很乐意免费将一辆汽车送往第二个地点。每辆额外的汽车仍需花费 2 美元,所有朝另一方向行驶的汽车也是如此。另外,杰克在每个位置都有有限的停车位。如果在一个地点过夜的汽车停放了十辆以上(在任何车辆移动之后),则使用第二个停车场(与那里停放的汽车数量无关)必须产生 4 美元的额外费用。这些类型的非线性和任意动态通常发生在实际问题中,除动态规划外,其他优化方法无法轻松解决。要检查您的程序,请首先复制针对原始问题给出的结果。

解见 exercise-programming/exercise4.7.py。

4.4 值迭代

▲ 练习 4.8 为什么赌徒问题的最优策略会有如此奇怪的形式?特别是,对于 50 的资本,它将全部的赌注都押注在一个翻转上,而对于 51 的资本,则并非如此。为什么这是个好策略?

解赌徒的问题具有最优策略的奇特形式,因为资产为50,您可能以0.4的概率突然获胜。 因此,当资产为50时,最好的策略将其全押。

可以将51的资本当作50加1。当然,当我们拥有51时,我们可以全部下注,但是最好的策略是看看我们是否可以从这额外的1美元中赚取更多。如果此带来的回报为正数,我们可以说我们会有多余的钱,然后再次下注直至75,直到突然获胜的机会来临。这意

4.5 异步动态规划 - 20-

味着, 我们有从75 中获胜的额外机会。相反, 如果我们在51 的资产中首先下注50, 我们的获胜机会仅为0.4, 而且我们会失去达到75 的机会。相反, 如果我们输了赌注, 我们必须尽力以1美元达到25, 这是一个更糟糕的情况。

结论: 最优策略表明了更多的获胜机会,并保证了赌徒在输时会更好。

练习 4.9 (programming) 为赌徒的问题实施值迭代,并针对 ph = 0.25 和 ph = 0.55 进行求解。在编程中,您可能会发现引入与终止相对应的两个虚拟状态会很方便,其资本分别为 0 和 100,分别赋予它们 0 和 1 的值。以图形方式显示结果,如图 4.3 所示。当 $\theta \to 0$ 时,您的结果稳定吗?

解 当 ph < 0.5 时,结果是稳定的。

见 exercise-programming/exercise4.9.py。

练习 4.10 什么是动作值 $q_{k+1}(s,a)$ 的值迭代更新(4.10)的类似物? $\qquad \qquad \square$

$$q_{k+1}(s, a) \doteq \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_k(s', a') | S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r | s, a) [r + \gamma \max_{a'} q_k(s', a')]$$

- 4.5 异步动态规划
- 4.6 广义策略迭代
- 4.7 动态规划效率
- 4.8 总结

第五章 蒙特卡罗方法

5.1 蒙特卡洛预测

▲ 练习 5.1 考虑图 5.1 右侧的图。为什么估计值函数在后面的最后两行跳起来?为什么它在左侧的整个最后一行掉落?为什么在上方的图中最前面的值比在下方的图中高? □ 解 这是由于这种策略,玩家直到满足 20 或 21 时才会停止。这表明玩家将面临命中失败的风险,这将导致在 20 和 21 点之前的低值部分。然而,在 20 和 21 点时,玩家会停下来,并且有很高的获胜机会,尤其是当发牌者将停在 17 点或更高的时候。

左图最后一行下降,是因为如果庄家显示王牌,当它计数为11 时,它比玩家有很高的概率得到更高的分数。因此,发牌者的A值包含了庄家使其可用或不可用的赢率。其他的纸牌没有这样的条件,因此A很特殊并产生了差距。

在上图中,最前面的值较高,因为A表示在上图中用作1和11的对偶值。它使玩家更好,并且与最左边的行下降的情况类似。

▲ 练习 5.2 假设在 21 点任务中使用了每次访问 MC 而不是首次访问 MC。您期望结果会有很大不同吗?为什么或者为什么不? □ 解 不会。在任何回合中,21 点都不包含两个重复的状态,因此首次访问和每次访问方法本质上是相同的。

5.2 动作值的蒙特卡洛估计

练习 5.3 蒙特卡洛估计 q_{π} 的备份图是什么?

5.3 蒙特卡洛控制 - 22 -

5.3 蒙特卡洛控制

▲ 练习 5.4 蒙特卡洛 ES 的伪代码是无效的,因为对于每个状态-动作对,它都会维护所有回报的列表,并反复计算其均值。使用与第 2.4 节中介绍的技术类似的技术来使得更有效,以便仅维护均值和计数(针对每个状态-行为对)并增量地更新它们。描述如何更改伪代码以实现此目的。

解 蒙特卡洛 ES 的伪代码应该以以下方式更新:

$$Q_{n}(S_{t}, A_{t}) = \frac{1}{n} \sum_{i=1}^{n} G_{i}(S_{t}, A_{t})$$

$$= \frac{1}{n} \left(G_{n}(S_{t}, A_{t}) + \sum_{i=1}^{n-1} G_{i}(S_{t}, A_{t}) \right)$$

$$= \frac{1}{n} \left(G_{n}(S_{t}, A_{t}) + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} G_{i}(S_{t}, A_{t}) \right)$$

$$= \frac{1}{n} \left(G_{n}(S_{t}, A_{t}) + (n-1) Q_{n-1}(S_{t}, A_{t}) \right)$$

$$= \frac{1}{n} \left(G_{n}(S_{t}, A_{t}) + n Q_{n-1}(S_{t}, A_{t}) - Q_{n-1}(S_{t}, A_{t}) \right)$$

$$= Q_{n-1}(S_{t}, A_{t}) + \frac{1}{n} \left(G_{n}(S_{t}, A_{t}) - Q_{n-1}(S_{t}, A_{t}) \right)$$

5.4 无探索起点的蒙特卡洛控制

5.5 重要性采样的 off-policy 预测

练习 5.5 考虑具有单个非终止状态和单个动作的 MDP,该动作以概率 p 转移回非终止状态,并以概率 1-p 转移到终止状态。设所有转移的奖励为 +1,设 $\gamma=1$ 。假设您观察到一个持续 10 步,回报为 10 的回合,那么非终止状态值的首次访问和每次访问估计量是什么?

解 对于首次访问估计, 仅考虑状态的首次访问:

$$V(s) = G(S_0) = 10$$

对于每次访问估计,每个状态都被考虑:

$$V(s) = \frac{1}{10}[G(S_0) + G(S_1) + \dots + G(S_{10})]$$

= $\frac{1}{10}(10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1) = 5.5$

练习 5.6 同样给定使用 b 生成的回报,对于动作值 Q(s,a) 而不是状态值 V(s),类似于 (5.6) 的方程是什么?

5.6 渐增实现

解

$$Q(s, a) \doteq \frac{\sum_{t \in \mathfrak{T}(s, a)} \rho_{t+1:T(t)-1} G_t}{\sum_{t \in \mathfrak{T}(s, a)} \rho_{t+1:T(t)-1}}$$

-23 -

▲ **练习 5.7** 在如图 **5.3** 所示的学习曲线中,误差通常随训练而减少,这确实是普通重要性采样方法所发生的。但是对于加权重要性采样方法,误差首先增加然后减少。您认为为什么发生这种事?

解 加权平均算法将需要几个回合来减少其偏差。特别是当 $\rho_{t:T(t)-1}$ 很大时,通过这些数据加权平均算法将发生偏移。当获得足够多的回合时,平均值开始稳定并减少偏差。

▲ 练习 5.8 例 5.5 的结果如图 5.4 所示,使用了首次访问 MC 方法。假设在同一问题上使用了每次访问 MC 方法。估计量的方差是否仍然是无限的?为什么或者为什么不? □ 解 对于每次访问:

$$\left[\left(\frac{1}{T-1} \sum_{k=1}^{T-1} \prod_{t=0}^{k} \frac{\pi(A_t, S_t)}{b(A_t, S_t)} G_t \right)^2 \right]$$

$$= 0.5 \cdot \left(\frac{1}{0.5} \right)^2$$
(回合长度为 1)
$$+ \frac{1}{2} \left[0.5 \cdot 0.9 \cdot 0.5 \cdot 0.1 \cdot \left(\frac{1}{0.5} \frac{1}{0.5} \right)^2 + 0.5 \cdot 0.1 \left(\frac{1}{0.5} \right)^2 \right]$$
(回合长度为 2)
$$+ \frac{1}{3} \left[0.5 \cdot 0.9 \cdot 0.5 \cdot 0.9 \cdot 0.5 \cdot 0.1 \left(\frac{1}{0.5} \frac{1}{0.5} \frac{1}{0.5} \right)^2 + 0.5 \cdot 0.9 \cdot 0.5 \cdot 0.1 \cdot \left(\frac{1}{0.5} \frac{1}{0.5} \right)^2 \right]$$
(回合长度为 3)
$$+ \cdots$$

$$= 0.1 \sum_{k=1}^{\infty} \frac{1}{k} \sum_{l=0}^{k-1} 0.9^l \cdot 2^l \cdot 2$$

$$= 0.2 \sum_{l=1}^{\infty} \frac{1}{k} \sum_{l=0}^{k-1} 1.8^l = \infty$$

5.6 渐增实现

▲ 练习 5.9 修改首次访问 MC 策略评估的算法 (第 5.1 节),以对第 2.4 节中描述的样本平均值使用渐增实现。

解

$$V_n(S_t) = \frac{1}{n} \sum_{i=1}^n G_i(t)$$
$$= V_{n-1}(S_t) + \frac{1}{n} (G_n(t) - V_{n-1}(S_t))$$

▲ 练习 5.10 从(5.7) 推导加权平均更新规则(5.8)。遵循未加权规则(2.3)的推导模式。□

解

$$\begin{split} V_{n+1} & \doteq \frac{\sum_{k=1}^{n} W_k G_k}{\sum_{k=1}^{n} W_k} \\ & = \frac{W_n G_n + \sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k G_k} \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n} W_k G_k} \\ & = \left[\frac{W_n G_n}{C_{n-1}} + V_n \right] \frac{C_{n-1}}{C_n} \\ & = \frac{W_n G_n}{C_n} + \frac{V_n C_{n-1}}{C_n} \\ & = V_n + \frac{W_n G_n}{C_n} + \frac{V_n C_{n-1}}{C_n} - V_n \\ & = V_n + \frac{W_n G_n}{C_n} + \frac{V_n C_{n-1} - V_n C_n}{C_n} \\ & = V_n + \frac{W_n G_n}{C_n} - \frac{V_n W_n}{C_n} \\ & = V_n + \frac{W_n G_n}{G_n} - V_n \right] \end{split}$$

5.7 Off-policy 蒙特卡洛控制

- **练习 5.11** 在用于 off-policy 的 MC 控制的方框中的算法中,您可能已经期望 W 更新涉及 重要性采样率 $\frac{\pi(A_t,S_t)}{b(A_t,S_t)}$,但是涉及 b。为什么这是正确的? \square 解 如果 $A_t = \pi(S_t)$,则仅允许 A_t 改变 W。由于 π 是确定性的,因此可以肯定地说在更新 W 期间 $\pi(A_t|S_t) = 1$ 。
- 本 5.12: Racetrack (programming) 考虑如图 5.5 所示的驾驶赛车转弯。您想跑得尽可能快,但又不能跑得太快,以免冲出跑道。在我们简化的赛道中,赛车位于一组离散的网格位置之一,即图中的单元格中。速度也是离散的,每个时间步长有许多网格单元在水平和垂直方向上移动。动作是速度分量的增量。在每一步中,每个动作可以更改+1、1或0,总共执行九(3Œ3)个动作。两个速度分量均被限制为非负且小于5,并且除了起始线外,它们都不能均为零。每个回合都以某个随机选择的起始状态开始,其两个速度分量均为零,并在赛车越过终点线时结束。直到汽车越过终点线,每一步的奖励都是-1。如果汽车撞到了轨道边界,则会将其移回到起跑线上的随机位置,两个速度分量都减小为零,并且回合继续。在每个时间步更新赛车的位置之前,请检查赛车的投影路径是否与轨道边界相交。如果与终点线相交,则回合结束;如果它与其他任何地方相交,则认为该汽车已撞到赛道边界,并被送回到起跑线。为了使任务更具挑战性,每步的概率为0.1、速度增量均为零,与预期的增量无关。将蒙特卡洛控制方法应用于此任务,以从每个起始状态计算最优策略。展示遵循最优策略的几条轨迹(但是将这些轨迹的噪声调低)。□解见 exercise-programming/exercise5.12.py。

5.8 * 折扣的重要性采样

5.9 *每决策的重要性采样

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y],$

使用 5.13 代入 5.12, 确实会有 5.14。

△ 练习 5.14 修改 off-policy 蒙特卡洛控制的算法(第 111 页),以使用截断的加权平均估计(5.10)的思想。请注意,您首先需要将此方程式转换为动作值。 解 content...

5.10 总结