A Relaxed Symmetry-Constrained Non-negative Model for Large-Scale Undirected Weighted Network Representation: Supplementary File

Yurong Zhong, Xin Luo, Senior Member, IEEE, and Zidong Wang, Fellow, IEEE

This is the supplementary file for the paper entitled *A Relaxed Symmetry-Constrained Non-negative Model for Large-Scale Undirected Weighted Network Representation*. Some supplementary tables and figures illustrating the experimental results are put in this file and cited in the manuscript.

I. SUPPLEMENTARY TABLES

TABLE S1. All competitors' achieved hyper-parameter settings on D1-6.

No.	D1	D2	D3	D4	D5	D 6
M1	$\lambda=2^{-9}$	$\lambda=2^{-6}$	$\lambda=2^{-8}$	$\lambda = 2^{-11}$	$\lambda = 2^{-12}$	$\lambda = 2^{-13}$
M2	α =10, β =100, η =1	α =10, β =100, η =1	α =10, β =100, η =1,	$\alpha = 1, \beta = 1, \eta = 1$	$\alpha = 1, \beta = 1000, \eta = 1$	$\alpha = 1, \beta = 10, \eta = 2$
M3	$\lambda = 0.5, \eta = 2^{-4}, {}^{1}bs = 512$	λ =0.1, η =2 ⁻⁴ , ¹ bs=512	λ =0.1, η =2 ⁻⁴ , ¹ bs=512	$\lambda = 2^{-2}$, $\eta = 2^{-4}$, ¹ bs=128	$\lambda = 2^{-3}$, $\eta = 2^{-4}$, ¹ bs=256	$\lambda = 2^{-2}$, $\eta = 2^{-4}$, ¹ bs=256
M4	β =0.8	$\beta = 0.8$	$\beta = 0.6$	$\beta=2^{-5}$	$\beta = 0.5$	β =0.5
M 5	$\lambda=2^{-6}$	$\lambda=2^{-4}$	$\lambda=2^{-4}$	λ=1.2	λ =0.5	$\lambda=2^{-3}$
M6	$\lambda = 2^{-4}$, $\eta = 2^{-3}$, ${}^{1}bs = 2048$, ${}^{2}n = 3$	$\lambda = 2^{-4}$, $\eta = 2^{-4}$, 1^{-4} bs=1024, 2^{-4} n=3	$\lambda = 2^{-4}$, $\eta = 2^{-3}$, ${}^{1}bs = 2048$, ${}^{2}n = 3$	$\lambda = 2^{-4}$, $\eta = 2^{-3}$, 1 bs=2048, 2 n=3	$\lambda = 2^{-4}$, $\eta = 2^{-3}$, 1 bs=2048, 2 n=3	$\lambda = 2^{-6}$, $\eta = 2^{-3}$, ${}^{1}bs = 2048$, ${}^{2}n = 3$
M7	$\lambda = 1, \eta = 0.6, \theta = 2^{-6}$	$\lambda = 0.8, \eta = 1, \theta = 2^{-6}$	$\lambda = 1, \eta = 1, \theta = 2^{-6}$	$\lambda = 2^{-12}$, $\eta = 1.2$, $\theta = 2^{-6}$	$\lambda = 2^{-12}$, $\eta = 0.8$, $\theta = 2^{-8}$	$\lambda = 2^{-14}, \eta = 1, \theta = 2^{-8}$
M8	$\lambda_1=2^{-3}, \lambda_2=0.005, \eta=2^{-4}, \\ \tau=0.2, {}^{1}bs=2048, {}^{2}n=2$	$\lambda_1 = 2^{-3}, \lambda_2 = 0.005, \eta = 2^{-4}, \\ \tau = 0.2, ^{1}bs = 2048, ^{2}n = 2$	$\lambda_1 = 2^{-3}, \lambda_2 = 0.005, \eta = 2^{-4}, \\ \tau = 0.2, ^{1}bs = 2048, ^{2}n = 2$	$\lambda_1=2^{-4}$, $\lambda_2=0.005$, $\eta=2^{-3}$, $\tau=0.2$, 1 bs=2048, 2 n=3	$\lambda_1=2^{-4}, \lambda_2=0.005, \eta=2^{-3}, \\ \tau=0.2, ^{1}bs=2048, ^{2}n=3$	$\lambda_1=2^{-4}, \lambda_2=0.005, \eta=2^{-3}, \\ \tau=0.2, {}^{1}bs=2048, {}^{2}n=3$
M9	$\lambda = 2^{-4}, \eta = 2^{-3}, r = 0.75,$ 1 bs=2048, 2 n=3	$\lambda = 2^{-4}, \eta = 2^{-4}, r = 0.4,$ 1 bs=1024, 2 n=3	$\lambda = 2^{-4}, \eta = 2^{-3}, r = 0.75,$ 1 bs=2048, 2 n=3	$\lambda = 2^{-6}, \eta = 2^{-3}, r = 0.8,$ 1 bs=512, 2 n=3	$\lambda = 2^{-6}, \eta = 2^{-3}, r = 0.8,$ 1 bs=2048, 2 n=3	$\lambda = 2^{-6}, \eta = 2^{-3}, r = 0.8,$ 1 bs=128, 2 n=3

¹bs denotes batch size; ²n denotes the count of layers;

TABLE S2. RMSE of M1-10 on D1-6.

No.	D1	D2	D3	D4	D5	D6	Win/Loss	Friedman Rank
M1	0.1319±3.8E-4	0.1290±9.4E-5	0.1431±1.5E-3	0.2301 ±8.6E-4	0.0756±3.6E-4	0.0423 ±7.7E-5	6/0	4.833
M2	0.1333±2.4E-4	0.1330±2.0E-4	0.1437 ±2.0E-4	0.2559±5.5E-4	0.0821±1.7E-5	0.0464±1.3E-5	6/0	6.333
М3	0.1334±2.6E-4	0.1285±1.9E-4	0.1413±3.0E-4	0.3147±1.3E-4	0.1477±1.3E-5	0.0853±2.5E-4	6/0	7.5
M4	0.1544±2.6E-4	0.1649 ±2.7E-4	0.1806±4.1E-4	0.2297±1.3E-4	0.0740±1.2E-5	0.0415 ±8.5E-5	6/0	5.833
M5	0.1574±1.2E-4	0.1813±1.6E-4	0.1972±1.4E-4	0.2369±6.8E-4	0.0764±8.1E-5	0.0430±5.3E-5	6/0	7.5
M6	0.1318±1.6E-4	0.1286±2.7E-4	0.1415±1.3E-4	0.3079±7.2E-4	0.1037 ±2.2E-4	0.0601 ±5.0E-4	6/0	6.833
M7	0.1289±2.4E-4	0.1272±1.0E-4	0.1399 ±2.3E-4	0.2269 ±2.2E-3	0.0735±3.7E-4	0.0412±8.1E-5	6/0	2.5
M8	0.1548±3.2E-4	0.1499±1.4E-4	0.1610±6.2E-4	0.3052±1.4E-4	0.0965±3.8E-5	0.0540±2.3E-4	6/0	8.167
M9	0.1286±9.7E-5	0.1266±1.7E-4	0.1392±1.6E-4	0.3007 ±7.4E-5	0.0928±8.8E-5	0.0519±3.0E-5	6/0	4.5
M10	0.1280±1.8E-4	0.1261±3.5E-4	0.1389 ±2.3E-4	0.2215±1.3E-4	0.0728±3.6E-4	0.0409±1.9E-4	-	1

TABLE S3. Converging Iteration Count of M1-10 on D1-6, where ② indicates M10 has more converging iteration count than the rival model.

No.	D1	D2	D3	D4	D5	D6	⊘ Win/Loss	Friedman Rank
M1	341 ±2.87	192±6.45	122±5.79	967±4.76	568±5.13	582±2.13	6/0	7.667
M2	187±4.0	311±5.20	284±3.24	40±2.49 ❖	251±1.22	227 ± 1.26	5/1	6.333
M3	772±11.16	578±14.84	743±20.49	93 ±2.35 ☆	31±1.48✿	15±4.24 ☆	3/3	5.667
M4	685±16.71	975±42.01	959±29.28	33±0.32❖	52±0.55❖	20±0.45❖	3/3	5.833
M5	1000	1000	674±4.28	69±0.89❖	103❖	357	4/2	8
M6	89±1.78 ❖	354±5.53	86±1.61 ♦	135 ±1.0❖	42±0.71❖	27±7.68 ₺	1/5	4.167
M7	87±15.87 ♦	93±14.46 €	95±11.99 ❖	39±4.42❖	44±4.48❖	91±1.67 ☎	1/5	3.333
M8	192±14.79	205±11.29	196±18.7	698±6.66	17±3.69 ♦	27 ±7.4 ◆	4/2	5.167
M9	72±2.86 ♡	55±2.79 €	75±2.77 ♥	358±8.77	57±23.38 ♦	27±3.74 ₺	1/5	3.5
M10	108±7.97	101±17.86	118±4.88	205±10.35	164±3.42	81±1.33	-	5.333

TABLE S4. Time Cost (Sec.) of M1-10 on D1-6, where 😂 indicates M10 has higher Time Cost than the rival model.

No.	D1	D2	D3	D4	D5	D6	⊘ Win/Loss	Friedman Rank
M1	64±2.01 ©	53 ±4.05 ♦	40±9.7 ♥	19±2.51 ♦	41 ±7.21 €	74±6.61	2/4	2.167
M2	349±17.29	2272±38.06	1103 ±74.94	109 ± 7.98	5879±46.83	18171±115.57	6/0	7.333
M3	65±5.98 ℃	130±14.2	67 ±7.37 ❖	20±2.11	20±1.57 ❖	27±1.84 ©	2/4	2.5
M4	1043±30.48	5759±504.90	2101±247.69	80±1.91	872±26.98	1074±26.41	6/0	7.333
M5	2287±18.82	9542±980.55	2477±131.54	215±3.78	2631±6.11	30074±128.59	6/0	9.167
M6	819±36.38	6998±328.87	1048±79.63	28±0.42	61 ±2.03	1436±405.71	6/0	6.5
M7	67±13.89 ♦	94±16.25 ♥	120±29.15 ❖	2±0.31♥	19±0.99♥	44±2.92	1/5	2.167
M8	3267 ±494.54	4994±876.94	4254±608.28	$388\pm\!20.72$	107±23.03	448±104.92	6/0	8.167
M9	652±28.65	555±167.95	822±75.48	227±19.85	68±25.6	1480±235.71	6/0	6.5
M10	88±6.55	112±19.04	178±14.04	11±1.02	48±1.26	42±1.44	-	3.167

TABLE S5. Results of Wilcoxon Signed-Ranks Test.

C	RMSE			Co	onverging Itera	Time C	Time Cost		
Comparison	R +	R-	<i>p</i> -value	R +	R-	<i>p</i> -value	R +	R-	<i>p</i> -value
M1 vs. M10	21	0	0.0156	21	0	0.0156	15	6	0.2188
M2 vs. M10	21	0	0.0156	17	4	0.1094	21	0	0.0156
M3 vs. M10	21	0	0.0156	15	6	0.2188	17	4	0.1094
M4 vs. M10	21	0	0.0156	15	6	0.2188	21	0	0.0156
M5 vs. M10	21	0	0.0156	18	3	0.0781	21	0	0.0156
M6 vs. M10	21	0	0.0156	15	6	0.2188	21	0	0.0156
M7 vs. M10	21	0	0.0156	19	2	0.0469	20	1	0.0313
M8 vs. M10	21	0	0.0156	15	6	0.2188	21	0	0.0156
M9 vs. M10	21	0	0.0156	15	6	0.2188	21	0	0.0156

Fig. S1. Sensitive experiments of λ in RSCN with fixed θ and η . (a)-(c) $\theta = 2^{-5}$, $\eta = 0.2$, (d) $\theta = 2^{-4}$, $\eta = 0.6$, (e) $\theta = 2^{-5}$, $\eta = 0.2$, and (f) $\theta = 2^{-7}$, $\eta = 0.2$.

Fig. S2. Sensitive experiments of θ in RSCN with fixed λ and η . (a)-(c) $\lambda = 2^{-7}$, $\eta = 0.2$, (d) $\lambda = 2^{-20}$, $\eta = 0.6$, (e) $\lambda = 2^{-20}$, $\eta = 0.2$, and (f) $\lambda = 2^{-18}$, $\eta = 0.2$.

Fig. S3. Sensitive experiments of η in RSCN with fixed λ and θ . (a)-(c) $\lambda = 2^{-7}$, $\theta = 2^{-5}$, (d) $\lambda = 2^{-20}$, $\theta = 2^{-4}$, (e) $\lambda = 2^{-20}$, $\theta = 2^{-5}$, and (f) $\lambda = 2^{-18}$, $\theta = 2^{-7}$.

Fig. S4. RSCN's Performance on D3 and D6 as data density varies.

Fig. S5. Symmetric representation of M1-10 on D1.