NCHC Open Hackathon Final Day

Smile Lab

Smile Lab

Leader: Pau-Choo Chung (NCKU)

Mentors: Ko

Ken Liao

Yang-Hsien Lin

Team Members:

Yu-Ping Gao (NCKU)

Jia-Xian Jian (NCKU)

Chin-Hua Liu (NCKU)

Yu-Cheng Chang (NCKU)

Kai-Xiang Liu (NCKU)

Yen-Jung Chiu (MCU)

Po-Hao Hsu (NCHC)

Chao-Chun Chuang (NCHC)

Federated Learning for pathology

Method Architecture

One Round Time Cost

One Round Time Cost

One Round Time Cost

Primary Time Overhead of the Algorithm

Training Batch Processing Issue

Data Process

PKL V.S. Feather

PKL file format

0, 0, white_background 512, 0, white_background 1024, 0, white_background 1536, 0, white_background 2048, 0, white_background

Feather file format

	key	label	coordinat	es
0	white_background	100B	[0,	0]
1	white background	100B	[512,	0]
2	white background	100B	[1024,	0]
3	white background	100B	[1536,	0]
4	white_background	100B	[2048,	0]
				٠.
9387	partial_tissue	100B	[53760, 3225	6]
9388	partial tissue	100B	[52736, 3276	8]
9389	partial tissue	100B	[53760, 3276	8]
9390	partial tissue	100B	[66048, 3328	0]
9391	partial_tissue	100B	[66560, 3328	0]

Numpy V.S. CuPy

```
class DINOLoss(nn.Module):
    def __init__(self, out_dim, ncrops, warmup_teacher_temp, teacher_temp,
                warmup teacher temp epochs, nepochs, student temp=0.1,
                center momentum=0.9, tnum=1):
        super(). init ()
        self.student temp = student temp
        self.center_momentum = center_momentum
        self.ncrops = ncrops
        self.register_buffer("center", torch.zeros(tnum, 1, out_dim))
        # we apply a warm up for the teacher temperature because
        # a too high temperature makes the training instable at the beginning
        self.teacher temp schedule = np.concatenate((
    np.linspace(warmup teacher temp, teacher temp, warmup teacher temp epochs),
    np.ones(nepochs - warmup teacher temp epochs) * teacher temp
))
```

```
import cupy as np # 使用cupy替代numpy
from PIL import Image
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torchvision import models as torchvision_models
```

1.1811x

CuCIM Cache

Pyvips V.S CuCIM Cache

is read four times!

4.69x

Results and Final Profile

Open File		Coord Fetch			Speedup
Pyvips	CuCIM	pkl	Feather	CuPy	
V		V			-
V			V		1.0613x
V		V		V	1.0449x
V			V	V	1.1811x
	V	V			4.691x
	V		V	V	5.534x

Theoretically

Problems

Problems

Special Thanks

Mentors:

Ken Liao (Nvidia)

Yang-Hsien Lin (Nvidia)

Members:

Yen-Jung Chiu (MCU)

Po-Hao Hsu (NCHC)

Chao-Chun Chuang (NCHC)

跨院數據協作的最佳解方——聯邦學習

醫療影像在AI領域上的蓬勃發展,預示著我們即 將進入醫療影像智能化的時代。在這個過程中,聯邦 學習技術成為一個關鍵工具,它在模型開發中扮演著 重要的角色,特別是在處理隱私保護和提升模型準確 度方面。由於病人隱私的問題,傳統的影像共享方式 受到限制,使得聯邦學習技術在構建多樣化數據集時 變得不可或缺。這一技術在當前數據隱私需求較高的 時代尤為重要。然而,在分布式環境中執行聯邦式學 習對於需要大規模數據整合的問題而言,會遇到訓練 速度較慢的挑戰。為了解決這一問題,團隊運用了 GPU 加速來提升模型訓練和數據處理的速度,並結合 Feather 和 CuPy 來優化數據處理過程,提高了數據提 取和計算的效率。此外,使用 CuCIM 來驗證和優化影 像在GPU上的高效提取,特別是利用 CuCIM 進行 cache 優化。通過這些技術的整合,詹寶珠教授帶領的 Smile Lab 團隊成功實現了聯邦學習四倍的加速效果, 顯著提升了整體模型訓練的效率和準確度。

Open File		Coord Fetch			Speedup
Pyvips	CuCIM	pkl	Feather	CuPy	
V		V			-
V			V		1.0613x
V		V		V	1.0449x
V			V	V	1.1811x
	V	V			4.691x
	V		V	V	5.534x

Theoretically