Maximum Likelihood Learning

Volodymyr Kuleshov

Cornell Tech

Lecture 4

Announcements

- Assignment 1 was released on Monday and is due on 2/13.
 - Please submit the assignment on Gradescope.
 - You can submit in teams of 1-2.
- The project proposal will be due on 2/22.
- I will release next week a sign-up sheet for student presentations.

The Task of Generative Modeling

Suppose we are given a training set of examples, e.g., images of dogs

Recall: A generative modeling algorithm has three components:

- **Model Family:** How do we parameterize a probability distribution over the data? What is the set of distributions we want to try to learn?
- Learning Objective: How do we quantify if a particular model in our family is a good fit?
- Optimization: How do we optimize the objective?
- Step 1: How to represent p(x) (last lecture). Step 2: how to learn it (today).

Lecture Outline

- Learning via Maximum Likelihood
 - The Learning Problem
 - The KL-Divergence as a Learning Objective
 - From KL-Divergence to Maximum Likelihood
- Maximizing the Likelihood from Data
 - Monte Carlo Estimation
 - Gradient Descent
- Statistical Issues and the Bias/Variance Tradeoff

Running Example: A Generative Model for MNIST

Suppose we are given a dataset $\mathcal D$ of handwritten digits (binarized MNIST)

- Each image has $n = 28 \times 28 = 784$ pixels. Each pixel can either be black (0) or white (1).
- Our Goal: Learn a probability distribution $p(x) = p(x_1, \dots, x_{784})$ over $x \in \{0, 1\}^{784}$ such that when $x \sim p(x)$, x looks like a digit
- Two step process:
 - **1** Parameterize a model family $\{p_{\theta}(x), \theta \in \Theta\}$ [This lecture]
 - **②** Search for model parameters θ based on training data \mathcal{D} [Next lecture]

Formalizing Assumptions on the Data

We start by making some standard assumptions on the data.

- ullet We assume that the data comes from a probability distribution $P_{
 m data}$
- ullet Our dataset ${\cal D}$ consists of \emph{m} samples from P_{data}
 - Each sample is an assignment of values to (a subset of) the variables, e.g., $(X_{\rm bank}=1,X_{\rm dollar}=0,...,Y=1)$ or pixel intensities.

$$x_i \sim P_{\text{data}}$$

 $i = 1, 2, \dots, n$

 $\theta \in M$

Model family

Formalizing the Task of Learning

Next, we want to define what "learning" means:

- We are also given a family of models \mathcal{M} , and our task is to learn some "good" model $P_{\theta} \in \mathcal{M}$ (i.e., in this family) that defines a distribution P_{θ}
 - For example, all Bayes nets with a given graph structure, for all possible choices of the CPD tables
 - For example, a FVSBN for all possible choices of the logistic regression parameters. $\mathcal{M}=\{P_{\theta},\theta\in\Theta\},\ \theta=$ concatenation of all logistic regression coefficients
- ullet The goal of learning is to return a model $P_{ heta}$ that precisely captures the distribution $P_{
 m data}$ from which our data was sampled

Model family

What Defines a Good Model?

We may be interested in multiple tasks:

- **Density Estimation**: we are interested in the full distribution (for anomaly detection, missing value imputation, etc.)
- 2 Prediction: we are using the distribution for supervised learning
 - Is this email spam or not?
 - Predict next frame in a video
- Structure discovery: we are interested in the model itself
 - How do some genes interact with each other?
 - What causes cancer?
- Generation: sample new data points that look "good".

Our strategy will be to define an objective that balances among all these tasks.

Choosing a Learning Objective

We want to learn the full distribution so that later we can answer any probabilistic inference query

- In this setting we formulate a learning problem inspired by density estimation
- ullet We want to construct $P_{ heta}$ as "close" as possible to P_{data} (recall we assume we are given a dataset \mathcal{D} of samples from P_{data})

Model family

• Our goal is to choose an objective $d(P_{\text{data}}, P_{\theta})$ that captures "closeness" between $P_{\text{data}}, P_{\theta}$

A Learning Objective Based on the KL-Divergence

How should we measure "closeness" between distributions $P_{\text{data}}, P_{\theta}$?

• The **Kullback-Leibler divergence** (KL-divergence) between two distributions *p* and *q* is defined as

$$D(p||q) = \sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}.$$

• $D(p \parallel q) \ge 0$ for all p, q, with equality if and only if p = q. Proof:

$$\mathbf{E}_{\mathbf{x} \sim p} \left[-\log \frac{q(\mathbf{x})}{p(\mathbf{x})} \right] \ge -\log \left(\mathbf{E}_{\mathbf{x} \sim p} \left[\frac{q(\mathbf{x})}{p(\mathbf{x})} \right] \right) = -\log \left(\sum_{\mathbf{x}} p(\mathbf{x}) \frac{q(\mathbf{x})}{p(\mathbf{x})} \right) = 0$$

- Hence, this is a sensible metric to quantify similarity of p and q
- Notice that KL-divergence is **asymmetric**, i.e., $D(p||q) \neq D(q||p)$

Learning as KL-Divergence Minimization

We are going to use the KL-Divergence to estimate the similarity between the distributions $P_{\rm data}, P_{\theta}$

Model family

• The **KL-divergence** between $P_{\text{data}}, P_{\theta}$ is:

$$\mathbf{D}(P_{\text{data}}||P_{\theta}) = \mathbf{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log \left(\frac{P_{\text{data}}(\mathbf{x})}{P_{\theta}(\mathbf{x})} \right) \right] = \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \log \frac{P_{\text{data}}(\mathbf{x})}{P_{\theta}(\mathbf{x})}$$

• $\mathbf{D}(P_{\text{data}}||P_{\theta}) = 0$ iff the two distributions are the same.

From KL-Divergence to Log-Likelihood

• We can simplify this somewhat:

$$\begin{aligned} \mathbf{D}(P_{\text{data}}||P_{\theta}) &= & \mathbf{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log \left(\frac{P_{\text{data}}(\mathbf{x})}{P_{\theta}(\mathbf{x})} \right) \right] \\ &= & \mathbf{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log P_{\text{data}}(\mathbf{x}) \right] - \mathbf{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log P_{\theta}(\mathbf{x}) \right] \end{aligned}$$

- The first term does not depend on P_{θ} .
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood

$$\arg\min_{P_{\theta}} \mathsf{D}(P_{\text{data}}||P_{\theta}) = \arg\min_{P_{\theta}} -\mathsf{E}_{\mathsf{x} \sim P_{\text{data}}} \left[\log P_{\theta}(\mathsf{x})\right] = \arg\max_{P_{\theta}} \mathsf{E}_{\mathsf{x} \sim P_{\text{data}}} \left[\log P_{\theta}(\mathsf{x})\right]$$

- Asks that P_{θ} assign high probability to instances sampled from P_{data} , so as to reflect the true distribution
- Because of log, samples ${\bf x}$ where $P_{\theta}({\bf x}) \approx 0$ weigh heavily in objective
- Although we can now compare models, since we are ignoring $\mathbf{H}(P_{\mathrm{data}})$, we don't know how close we are to the optimum
- Problem: In general we do not know $P_{\rm data}$.

Lecture Outline

- Learning via Maximum Likelihood
 - The Learning Problem
 - The KL-Divergence as a Learning Objective
 - From KL-Divergence to Maximum Likelihood
- Maximizing the Likelihood from Data
 - Monte Carlo Estimation
 - Gradient Descent
- Statistical Issues and the Bias/Variance Tradeoff

Monte Carlo Estimation

To derive a learning objective, we will use *Monte Carlo estimation*:

• Express the quantity of interest as the expected value of a random variable.

$$E_{x \sim P}[g(x)] = \sum_{x} g(x)P(x)$$

- **②** Generate T samples $\mathbf{x}^1, \dots, \mathbf{x}^T$ from the distribution P with respect to which the expectation was taken.
- 3 Estimate the expected value from the samples using:

$$\hat{g}(\mathbf{x}^1, \cdots, \mathbf{x}^T) \triangleq \frac{1}{T} \sum_{t=1}^T g(\mathbf{x}^t)$$

where $\mathbf{x}^1, \dots, \mathbf{x}^T$ are independent samples from P. Note: \hat{g} is a an estimator and a random variable.

Properties of the Monte Carlo Estimator

• Unbiased:

$$E_P[\hat{g}] = E_P[g(x)]$$

• Convergence: By law of large numbers

$$\hat{g} = rac{1}{T} \sum_{t=1}^{T} g(x^t)
ightarrow E_P[g(x)] ext{ for } T
ightarrow \infty$$

Variance:

$$V_P[\hat{g}] = V_P\left[\frac{1}{T}\sum_{t=1}^T g(x^t)\right] = \frac{V_P[g(x)]}{T}$$

Thus, variance of the estimator can be reduced by increasing the number of samples.

Empirical Maximum Likelihood

We can now use Monte Carlo to derive a practical learning objective:

We approximate the expected log-likelihood

$$\mathbf{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log P_{\theta}(\mathbf{x}) \right]$$

with the empirical log-likelihood:

$$\mathbf{E}_{\mathcal{D}}\left[\log P_{\theta}(\mathbf{x})\right] = rac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log P_{\theta}(\mathbf{x})$$

• Maximum likelihood learning is then:

$$\max_{P_{\theta}} \ \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log P_{\theta}(\mathbf{x})$$

• Equivalently, we maximize probability of the data under model $P_{\theta}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}) = \prod_{\mathbf{x} \in \mathcal{D}} P_{\theta}(\mathbf{x})$

An Example: Flipping a Biased Coin

Let's start with a simple example: flipping a biased coin

- Two outcomes: heads (H) and tails (T)
- Data set: Tosses of the biased coin, e.g., $\mathcal{D} = \{H, H, T, H, T\}$
- Assumption: the process is controlled by a probability distribution $P_{\text{data}}(x)$ where $x \in \{H, T\}$
- Class of models \mathcal{M} : Bernoulli distributions over $x \in \{H, T\}$.
- Example learning task: How should we choose $P_{\theta}(x)$ from \mathcal{M} if 60 out of 100 tosses are heads in \mathcal{D} ?

Maximum Likelihood Estimation for the Biased Coin

We represent our model: $P_{\theta}(x = H) = \theta$ and $P_{\theta}(x = T) = 1 - \theta$

- Example data: $\mathcal{D} = \{H, H, T, H, T\}$
- Likelihood of data = $\prod_i P_{\theta}(x_i) = \theta \cdot \theta \cdot (1-\theta) \cdot \theta \cdot (1-\theta)$

• Optimize for θ which makes $\mathcal D$ most likely. What is the solution in this case?

MLE for the Coin Example: Analytical Derivation

Distribution:
$$P_{\theta}(x = H) = \theta$$
 and $P_{\theta}(x = T) = 1 - \theta$

More generally, log-likelihood function

$$\begin{array}{lcl} \textit{L}(\theta) & = & \theta^{\# \textit{heads}} \cdot (1 - \theta)^{\# \textit{tails}} \\ \log \textit{L}(\theta) & = & \log(\theta^{\# \textit{heads}} \cdot (1 - \theta)^{\# \textit{tails}}) \\ & = & \# \textit{heads} \cdot \log(\theta) + \# \textit{tails} \cdot \log(1 - \theta) \end{array}$$

- MLE Goal: Find $\theta^* \in [0,1]$ such that $\log L(\theta^*)$ is maximum.
- Differentiate the log-likelihood function with respect to θ and set the derivative to zero. We get:

$$\theta^* = \frac{\#\textit{heads}}{\#\textit{heads} + \#\textit{tails}}$$

Extending the MLE Principle to a Bayesian Network

Given an autoregressive model with n variables and factorization

$$P_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|pa(x_i);\theta_i)$$

Training data $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\}$. Maximum likelihood estimate of the parameters?

Decomposition of Likelihood function

$$L(\theta, D) = \sum_{j=1}^{m} \log P_{\theta}(\mathbf{x}^{(j)}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log p(x_{i}^{(j)} | pa(x_{i})^{(j)}; \theta_{i})$$

- Goal : maximize $\arg\max_{\theta} L(\theta, \mathcal{D}) = \arg\max_{\theta} \log L(\theta, \mathcal{D})$
- Each term is a normal conditional log-likelihood and can be optimized independently.
- For classical Bayes Net, conditionals are exponential families and have closed form solutions.

Extending the MLE Principle to a Neural Model

Given an autoregressive model with n variables and factorization

$$P_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\text{neural}}(x_i|pa(x_i);\theta_i)$$

Training data $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}\}$. Maximum likelihood estimate of the parameters?

Decomposition of Likelihood function

$$L(\theta, \mathcal{D}) = \prod_{j=1}^{m} P_{\theta}(\mathbf{x}^{(j)}) = \prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text{neural}}(x_{i}^{(j)} | pa(x_{i})^{(j)}; \theta_{i})$$

- Goal : maximize $\arg\max_{\theta} L(\theta, \mathcal{D}) = \arg\max_{\theta} \log L(\theta, \mathcal{D})$
- We no longer have a closed form solution!

MLE Learning: Gradient Descent

$$L(\theta, \mathcal{D}) = \prod_{j=1}^{m} P_{\theta}(\mathbf{x}^{(j)}) = \prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text{neural}}(x_i^{(j)} | pa(x_i)^{(j)}; \theta_i)$$

Goal : maximize $\arg\max_{\theta} L(\theta, \mathcal{D}) = \arg\max_{\theta} \log L(\theta, \mathcal{D})$

$$\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text{neural}}(x_i^{(j)} | pa(x_i)^{(j)}; \theta_i)$$

- Initialize θ^0 at random
- **2** Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
- $\theta^{t+1} = \theta^t + \alpha_t \nabla_{\theta} \ell(\theta)$

Non-convex optimization problem, but often works well in practice

MLE Learning: Stochastic Gradient Descent

$$\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{i=1}^{m} \sum_{i=1}^{n} \log p_{\text{neural}}(x_i^{(j)} | pa(x_i)^{(j)}; \theta_i)$$

- **1** Initialize θ^0 at random
- ② Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
- $\theta^{t+1} = \theta^t + \alpha_t \nabla_\theta \ell(\theta)$

$$abla_{ heta}\ell(heta) = \sum_{j=1}^{m} \sum_{i=1}^{n}
abla_{ heta} \log p_{ ext{neural}}(x_i^{(j)}| ext{ extit{pa}}(x_i)^{(j)}; heta_i)$$

What if $m = |\mathcal{D}|$ is huge?

$$\nabla_{\theta} \ell(\theta) = m \sum_{j=1}^{m} \frac{1}{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)} | pa(x_{i})^{(j)}; \theta_{i})$$

$$= m E_{x^{(j)} \sim \mathcal{D}} \left[\sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)} | pa(x_{i})^{(j)}; \theta_{i}) \right]$$

Monte Carlo: Sample $x^{(j)} \sim \mathcal{D}; \nabla_{\theta} \ell(\theta) \approx m \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)} | pa(x_{i})^{(j)}; \theta_{i})$

Parallelization in Autoregressive Models

Our objective function is:

$$\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text{neural}}(x_i^{(j)} | pa(x_i)^{(j)}; \theta_i)$$

If we use a recurrent neural network model, each term has the form

$$P(x_t \mid x_{1:t-1}) = P(x_t \mid h_{t-1}, x_{t-1})$$
 $h_t = f(h_{t-1}, x_{t-1}).$

Before we can evaluate and/or compute gradient, we need to process each term sequentially.

This is why we want feed-forward models like NADE, MADE, or WaveNet:

$$P(x_t \mid x_{1:t-1}) = P(x_t \mid x_{\text{neighborhood}}) = \text{conv}(x_{\text{neighborhood}})$$

Recall: WaveNet (Oord et al., 2016)

WaveNet is a state of the art model for speech:

WaveNet uses convolutions to parameterize a MADE-like masked autoencoder model mapping inputs x to model parameters \hat{x}_i .

Lecture Outline

- Learning via Maximum Likelihood
 - The Learning Problem
 - The KL-Divergence as a Learning Objective
 - From KL-Divergence to Maximum Likelihood
- Maximizing the Likelihood from Data
 - Monte Carlo Estimation
 - Gradient Descent
- Statistical Issues and the Bias/Variance Tradeoff

Bias-Variance Trade-Off

- If the hypothesis space is very limited, it might not be able to represent $P_{\rm data}$, even with unlimited data
 - This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data
 - When we have small amount of data, multiple models can fit well, or even better than the true model. Moreover, small perturbations on \mathcal{D} will result in very different estimates
 - This limitation is call the variance.

Bias-Variance Trade-Off

- There is an inherent bias-variance trade off when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
 - Does it fit well? Underfits
- Hypothesis space: high degree polynomial
 - Overfits
- Hypothesis space: low degree polynomial
 - Right tradeoff

How to Avoid Overfitting?

- Hard constraints, e.g. by selecting a less expressive hypothesis class:
 - Bayesian networks with at most d parents
 - Smaller neural networks with less parameters
 - Weight sharing
- Soft preference for "simpler" models: Occam Razor.
- Augment the objective function with regularization:

$$objective(\mathbf{x}, \mathcal{M}) = loss(\mathbf{x}, \mathcal{M}) + R(\mathcal{M})$$

Evaluate generalization performance on a held-out validation set.
 Log-likelihood should be similar on both training and validation set if there is no overfitting (as in discriminative modeling!)

Conditional Generative Models

- Suppose we want to generate a set of variables Y given some others
 X, e.g., text to speech
- We concentrate on modeling p(Y|X), and use a **conditional** loss function

$$-\log P_{\theta}(\mathbf{y} \mid \mathbf{x}).$$

• Since the loss function only depends on $P_{\theta}(\mathbf{y} \mid \mathbf{x})$, suffices to estimate the conditional distribution, not the joint

Recap

- ullet For autoregressive models, it is easy to compute $p_{ heta}(x)$
 - Ideally, evaluate in parallel each conditional $\log p_{\text{neural}}(x_i^{(j)}|pa(x_i)^{(j)};\theta_i)$. Not like RNNs.
- Natural to train them via maximum likelihood
- Higher log-likelihood doesn't necessarily mean better looking samples
- Other ways of measuring similarity are possible (Generative Adversarial Networks, GANs)