

Matemática Discreta 1

Teoria dos Conjuntos

AULA 7

Professor:

Luiz Augusto Laranjeira

luiz.laranjeira@gmail.com

Conjunto:

Uma coleção não-ordenada de objetos que podem ou não ter uma propriedade comum ou lei de formação.

Como Identificar os Elementos de um Conjunto:

- 1) Listar os elementos do conjunto: $S = \{2, 4, 6, 8, ...\}$
- 2) Usar recursão para mostrar como os elementos são gerados:
 i) 2 ∈ S
 ii) Se n ∈ S, então (n+2) ∈ S
- 3) Descrever uma propriedade *P* que caracterize os elementos do conjunto:

 $S = \{ x \mid x \text{ \'e um inteiro positivo par } \}$

Descrição Formal de uma Propriedade *P* que Caracterize os Elementos de um Conjunto:

 $S = \{ x \mid P(x) \}$ onde P é um predicado unário

 $S = \{ x \mid P(x) \}$ é o mesmo que

$$(\forall x) [(x \in S \rightarrow P(x)) \cdot (P(x) \rightarrow x \in S)]$$

9/11/2019 Teoria dos Conjuntos

Relações entre Conjuntos

Subconjunto:

Diz-se que A é um subconjunto de B, ou que B contém A, denotado por $A \subseteq B$, se todo elemento de A é também elemento de B.

$$(\forall x) [(x \in A) \rightarrow (x \in B)]$$

A = subconjunto de B B = superconjunto de A se A \neq B, então A é um subconjunto próprio de B, ou A \subset B

Relações entre Conjuntos

Subconjunto (cont.):

 $\{\} \equiv \emptyset$ é chamado de conjunto vazio

Ø é subconjunto de qualquer conjunto

Igualdade:

Dados dois conjuntos A e B, diz-se que A = B, se

$$(\forall x) [(x \in A \rightarrow x \in B) \cdot (x \in B \rightarrow x \in A)]$$

Relações entre Conjuntos

Conjuntos Disjuntos:

A é *disjunto* de B se: $(A \cap B) = \emptyset$

Conjuntos de Conjuntos

Dado um conjunto S, podemos criar um novo conjunto cujos elementos sejam todos os subconjuntos de S. Este novo conjunto é chamado de **conjunto das partes** de S, $\mathscr{P}(S)$, e conterá pelo menos dois elementos, \varnothing e o próprio S, uma vez que $\varnothing \subseteq S$ e $S \subseteq S$ são sempre verdade.

Conjuntos de Conjuntos

Dado um conjunto S com n elementos pode-se mostrar que o conjunto das partes de S, $\mathcal{P}(S)$, terá 2^n elementos.

Notar que se $S = \emptyset$, o único subconjunto de \emptyset é \emptyset , isto é $\mathcal{P}(S) = {\emptyset}$. Neste caso n = 0 e $2^n = 1$.

Conjuntos de Conjuntos

Exemplo 1:

Para A = $\{1, 2, 3\}$, qual será $\mathcal{P}(A)$?

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Como o número de elementos de A é n = 3, então o número de elementos de $\mathcal{P}(A)$ será $2^3 = 8$.

Operações em Conjuntos

Operação Binária:

¤ é uma *operação binária* em um conjunto S se para cada par ordenado (x, y) de elementos de S, x ¤ y existe, é único, e é membro de S.

x ¤ y existe e é único → a operação binária ¤ é **bem definida** x ¤ y é membro de S → S é **fechado** com respeito à operação ¤

Operações em Conjuntos

Operação Unária:

é uma *operação unária* em um conjunto S se para cada $x \in S$, #x é bem definida e S é fechado com respeito a #.

Operações em Conjuntos

Dado um conjunto arbitrário S, chamado *conjunto universo*, denotado por U, e $\mathcal{P}(U)$ o *conjunto das partes* de U pode-se definir operações unárias e binárias em $\mathcal{P}(U)$.

Nas definições que se seguem os conjuntos A e B são subconjuntos de S, isto é A, B $\in \mathcal{P}(U)$.

Se $A \subset B$ e $B \subset C$, então $A \subset C$?

Se
$$(\forall x)$$
 [$(x \in A \rightarrow x \in B)$] e $(\forall x)$ [$(x \in B \rightarrow x \in C)$],

então

$$(\forall x) [(x \in A \rightarrow x \in C)]$$

Isto quer dizer que $A \subset C$.

Operações sobre Conjuntos

União: A∪B

 $x \in A \cup B$ se, e somente se, $x \in A$ ou $x \in B$

Interseção: A ∩ B

 $x \in A \cap B$ se, e somente se, $x \in A$ e $x \in B$

Diferença: A – B

 $x \in A - B$, se e somente se, $x \in A$ e $x \notin B$

Complemento: A' = U - A $A' = \{x \mid x \in U \in x \notin A\}$

Operações sobre Conjuntos

Não Confundir!!!

Interseção: A∩B

 $x \in A \cap B$ se, e somente se, $x \in A$ e $x \in B$

Produto Cartesiano: A x B

 $(x, y) \in A \times B$, se e somente se, $x \in A$ e $y \in B$

9/11/2019 Teoria dos Conjuntos 16

Operações sobre Conjuntos Propriedades

Elemento Neutro (da União e Interseção):

$$\emptyset \cup A = A$$

$$U \cap A = A$$

Idempotência (da União e Interseção):

$$A \cup A = A$$

$$A \cap A = A$$

Complemento:

$$A \cup A' = U$$

$$A \cap A' = \emptyset$$

Operações sobre Conjuntos Propriedades

Propriedades Comutativas:

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

$$A \cap B = B \cap A$$

Propriedades Associativas:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Propriedades Distributivas:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Operações sobre Conjuntos Propriedades

Outras Propriedades:

 $A \subset B$ se, e somente se, $B' \subset A'$

$$[(x \in A) \to (x \in B)] \equiv [(x \in B') \to (x \in A')]$$
$$\equiv [(x \notin B) \to (x \notin A)]$$

 $(A \cup B)' = A' \cap B'$ (De Morgan)

 $(A \cap B)' = A' \cup B'$ (De Morgan)

Operações sobre Conjuntos Propriedades

Outras Propriedades:

$$A - B = A \cap B'$$

$$(A')' = A$$

$$\emptyset' = U$$

Exercício 1

Prove que se A U B = A - B, então $B = \emptyset$.

(Dica: provar que a contraposição é verdadeira)

Exercício 1

Prove que se $A \cup B = A - B$, então $B = \emptyset$.

(Dica: provar que a contraposição é verdadeira)

Solução 1:

O exercício pede que provemos a seguinte condicional:

$$(A \cup B) = (A - B) \rightarrow B = \emptyset$$
, ou seja, provar $P \rightarrow Q$

Onde as proposições P e Q são: $P \equiv ((A \cup B) = (A - B))$ e $Q \equiv (B = \emptyset)$

isto equivale a provar a contraposição ~Q → ~P

onde $\sim Q \equiv (B \neq \emptyset)$, isto é, B não é vazio, é o mesmo que $\exists y \in B$

Exercício 1 – Solução 1 (cont.)

Investiguemos agora as proposições P e ~P:

De P e da definição da igualdade entre dois conjuntos vem

$$P \equiv [(x \in AUB) \rightarrow (x \in A-B)] \cdot [(x \in A-B) \rightarrow (x \in AUB)] \equiv P_1 \cdot P_2$$

$$P_1 \equiv (x \in AUB) \rightarrow (x \in A-B)$$
 e $P_2 \equiv (x \in A-B) \rightarrow (x \in AUB)$

$$\sim P \equiv \sim (P_1 \cdot P_2) \equiv \sim P_1 + \sim P_2$$

i.e., para se ter $P \equiv F$ basta se ter $P_1 \equiv F$ ou $P_2 \equiv F$

Assim, para se provar que $\sim Q \rightarrow \sim P_1$ basta provar que $\sim Q \rightarrow \sim P_1$

Exercício 1 - Solução 1 (cont.)

De P₁ e das definições da união e subtração de dois conjuntos vem

$$P_1 \equiv (x \in A \cup B) \rightarrow (x \in A - B)$$
 e, da definição da condicional:

$$P_1 \equiv ((x \in A) + (x \in B)) \rightarrow ((x \in A) \cdot (x \notin B))$$

Como $\sim Q \equiv \exists y \in B$, fazendo x = y e substituindo em P_1 vem

$$P_1 \equiv ((y \in A) + (y \in B)) \rightarrow ((y \in A) \cdot (y \notin B))$$

$$P_1 \equiv ((y \in A) + V)) \rightarrow ((y \in A) \cdot F) \equiv V \rightarrow F$$

Da tabela verdade da condicional $V \to F \equiv F$, logo $P_1 \equiv F \in P \equiv F$.

Em outras palavras, provamos que ~Q → ~P CQD

Exercício 1

Prove que se $A \cup B = A - B$, então $B = \emptyset$.

(Dica: provar a validade do argumento $(A \cup B) = (A - B) \longmapsto B = \emptyset$)

Solução 2:

Vamos provar o seguinte argumento:

$$(A \cup B) = (A - B)$$
 \longrightarrow $B = \emptyset$, ou seja, provar $P \longmapsto G$

Para provar por contradição consideremos que $\sim Q \equiv V$ e mostremos que se chega a uma contradição. Isto é: $P \cdot \sim Q \rightarrow contradição$.

onde $\sim Q \equiv (B \neq \emptyset)$, isto é, B não é vazio, é o mesmo que $\sim Q \equiv \exists y \in B$

Exercício 1 – Solução 2 (cont.)

Temos que: $P \equiv ((A \cup B) = (A - B))$

Usando a notação que descreve as propriedades dos elementos:

$$P \equiv [(x \in AUB) \rightarrow (x \in A-B)] \cdot [(x \in A-B) \rightarrow (x \in AUB)] \equiv P_1 \cdot P_2$$

Das definições da união e subtração de dois conjuntos vem

$$P_1 \equiv (x \in A \cup B) \rightarrow (x \in A - B)$$
 e, da definição da condicional:

$$P_1 \equiv ((x \in A) + (x \in B)) \rightarrow ((x \in A) \cdot (x \notin B))$$

Como \sim Q \equiv \exists y \in B, fazendo x = y e substituindo em P₁ vem

$$P_1 \equiv ((y \in A) + (y \in B)) \rightarrow ((y \in A) \cdot (y \notin B))$$

$$P_1 \equiv ((y \in A) + V)) \rightarrow ((y \in A) \cdot F) \equiv V \rightarrow F$$

Exercício 1 – Solução 2 (cont.)

Havíamos obtido que

$$P_1 \equiv ((y \in A) + V)) \rightarrow ((y \in A) \cdot F) \equiv V \rightarrow F$$

Da tabela verdade da condicional temos que $V \rightarrow F \equiv F$,

logo $P_1 \equiv F$ e, consequentemente, $P \equiv P_1 \cdot P_2 \equiv F$

Mas, a premissa do argumento era que $P \equiv V$,

logo, chegamos a uma contradição (P ≡ F) • (P ≡ V).

Assim, provamos o argumento P ← Q por contradição. CQD