Definitions of the Soil Supergroups

Soil Supergroup	Definition
Wet or waterlogged soils	Soils seasonally wet within 80 cm of the surface for a major part of the year
Rocky or stony soils	Soils, generally shallow, with >50% of coarse fragments >20 mm in size (coarse gravels, cobbles, stones or boulders) throughout the profile. Include areas of rock outcrop (all lithologies).
Ironstone gravelly soils	Soils that have an ironstone gravel layer (>20% and >20 cm thick) or ferricrete/cemented gravels within the top 15 cm, and ironstone gravels a dominant feature of the profile.
Sandy duplexes	Soils with a sandy surface and a texture contrast or a permeability contrast (reticulite) at 3 to 80 cm.
Sandy earths	Soils with a sandy surface and grading to loam by 80 cm. May be clayey at depth.
Shallow sands	Sands ≤80 cm over rock, hardpan or other cemented layer.
Deep sands	Sands >80 cm deep.
Loamy duplexes	Soils with a loamy surface and a texture contrast at 3 to 80 cm.
Loamy earths	Soils with a loamy surface and either loamy throughout or grading to clay by 80 cm.
Shallow loams	Loams ≤80 cm over rock, hardpan or other cemented layer.
Cracking clays	Soils that have a clayey surface at least 30 cm thick and crack strongly when dry.
Non-cracking clays	Soils that have a clayey surface at least 30 cm thick and do not crack strongly when dry.
Miscellaneous soils	Other soils.

Properties of the Soil Supergroups Soil attributes (dominant values)¹

						II atti	IDUIC	3 (40	IIIIIII	nı vai	uc3)	
Soil Supergroup name	Water repellence	Soil structure decline	Subsurface acidification	Surface condition	Unrestricted rooting depth	Available water storage	Subsurface compaction	pH 0-10 cm	рН 50-80 ст	Soil permeability	Soil workability	Wind erodibility
Wet or waterlogged soils	L to M	L or na	L to H	va	XS to M	L to M	L or na	Ac to Ak	va	VS	va	L to M
Rocky or stony soils	L to na	L or na	L or na	va	VL to L	VL to L	L to M or na	N to Ak	va or na	va	VP to P	va
Ironstone gravelly soils	L to M	L	L to M	Lo to Fm	va	VL to M	L to M	N to Ac	N or na	M to MR	F to G	L to M
Sandy duplexes	L to H	L to M	L to M	va	Sh to M	L to M	L to M	N to Ac	va	S to M	F to G	M to H
Sandy earths	L to M	L	L to M	Lo to Fm	va	М	N to H	SA to N	va	M to MR	G	M to H
Shallow sands	L to H	L	L to M	So to Lo	Sh to M	VL to L	L to M	va	va	MR to VR	G	Τ
Deep sands	L to H	L	va	So to LO	D to VD	L to M	L to M	va	va	R to VR	G	Н
Loamy duplexes	L to H	M to H	L to H	Fm to Ha	S to M	L to M	L to M	va	va	M to S	va	L
Shallow loams	L	L to M	L	va	М	L	М	va	va	М	F	L
Loamy earths	L to va	L to M	L to M	va	M to D	M to H	L to M	va	va	М	F to G	va
Cracking clays	L	va	L	Fm Ha Sm	M	M	L	N	N to Ak	M to S	va	L to M
Non-cracking clays	L	M to H	L	Fm to Ha	M	L to M	L	N	N to Ac	MS to S	F to P	L
Miscellaneous soils	va	va	va	va	va	va	va	va	va	va	va	va

Legend for soil attribute values

Ac	Acid	На	Hardsetting	Р	Poor	va	Variable
Ak	Alkaline	L	Low	PA	Presently acid	VD	Very deep
С	Cracking	Lo	Loose	R	Rapid	VL	Verylow
D	Deep	M	Moderate	S	Slow	VP	Very poor
F	Fair	MR	Moderately rapid	SA	Strongly acid	VR	Very rapid
Fm	Firm	MS	Moderately slow	Sh	Shallow	VS	Veryslow
G	Good	N	Neutral	SM	Self-mulching	XS	Veryshallow
Н	High	na	Not applicable	So	Soft		=

¹See Appendix: Soil attributes for definitions of attributes and values

Saline wet soil

Soil Group 101

Distribution map p. 99 Colour picture p. 116

Seasonally waterlogged soils subject to secondary salinity

Characteristics

- Seasonally wet to within 80 cm for a major part of the year
- Sands, loams and clays
- Affected by moderate to extreme secondary salinity
- Commonly over clay or pan

Local names

Salt, Saltland

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

• Salic Hydrosol

Main occurrences in Western Australia

Areas of secondary salinity in the w heatbelt of the South-w est

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Firm
Unrestricted rooting depth	Very
	shallow
Available water storage	Low

Subsurface compaction	Low
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral
Soil permeability	Very slow
Soil workability	Poor
Wind erodibility	Low to moderate

- Waterlogging and high salinity severely limits growth of most plants, except halophytes
- These soils are frequently degraded by sheet, rill and wind erosion and may be devoid of vegetation

Salt lake soil

Soil Group 102

Distribution map p. 99 Colour picture p. 116

Variable, seasonally waterlogged, salt lake soils

Characteristics

- Seasonally wet to within 80 cm for a major part of the year
- Variable textures
- · Highly saline
- Often gypseous
- · Often calcareous
- Primary salinity areas of salt lake beds and adjacent flat saline areas with salt-tolerant vegetation (halophytes)

Local names

Salt lake soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

Hypersalic Hydrosol

Main occurrences in Western Australia

- Common in seasonally wet salt lakes in the South-west (central to eastern wheatbelt), Murchison, Goldfields and Arid Interior
- Also on the coastal plain north of Jurien, and Lake McLeod north of Carnarvon

Soil attributes (dominant values)

Water repellence	na
Soil structure decline	Low
Subsurface acidification	na
Surface condition	Variable
Unrestricted rooting depth	Very
	shallow
Available water storage	na

na
Neutral to
alkaline
Alkaline
Very slow
Very poor
Low to moderate

Land use considerations

• High salinity and seasonal waterlogging render this soil unsuitable for the growth of most plants, except halophytes (e.g. saltbush) in fringing areas

Semi-wet soil

Soil Group 103

Distribution map p. 99 Colour picture p. 116

Non-saline soils waterlogged to 30-80 cm for a major part of the year (Does not include soils that have a temporary perched watertable, e.g. wet surface or subsurface layer, such as an A_2 over a dry clay).

Characteristics

- Low er part of profile (30-80 cm) saturated for the major part of the year
- Often w ith dark grey, brown or black topsoil
- Sands, loams and clays
- Acid to neutral pH
- Variable subsoil, may contain bog iron. A texture contrast horizon (often clay) may occur below 80 cm
- Common in plains with elevated fresh watertables

Local names

Mungite soil, Coolup sand, Boyanup loam

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

• Redoxic or Oxyaquic Hydrosol

Aquic or Semiaguic Podosol

Kandosol

Rudosol

Sodosol

Tenosol

Main occurrences in Western Australia

- Seasonally wet areas in the South-west, including extensive areas of seasonally wet duplex soils on the coastal areas of the south-west of WA
- Especially the Sw an Coastal Plain, North Coastal Plain and Scott River Plain on the south coast, Margaret River Plateau, southern Darling Plateau
- · Scattered in other areas in depressions and valley floors

Soil attributes (dominant values)

Water repellence	Low to moderate
Soil structure decline	Low
Subsurface acidification	Moderate to high
Surface condition	Loose to firm
Unrestricted rooting depth	Moderate
Available water storage	Low to moderate

Subsurface compaction	Low
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to acid
Soil permeability	Very slow
Soil workability	Good
Wind erodibility	Low to moderate

- · Waterlogging and seasonal inundation moderately limit land use options
- Artificial drainage may sometimes be an option
- Often have good summer moisture for perennial pastures, summer cropping

Tidal soil

Soil Group 104

Distribution map p. 99 Colour picture p. 116

Soils subject to tidal inundation

Characteristics

• Variable saline soils subject to tidal inundation

Local names

Mangrove soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

• Intertidal, Supratidal or Extratidal Hydrosol

Main occurrences in Western Australia

- Coastal areas subject to tidal inundation
- Common in the north-west, especially parts of the Pilbara and Kimberley coastlines

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	na
Subsurface acidification	na
Surface condition	na
Unrestricted rooting depth	Very
	shallow
Available water storage	na

Subsurface compaction	na
pH 0-10 cm	Alkaline
pH 50-80 cm	Alkaline
Soil permeability	Very slow
Soil workability	Very poor
Wind erodibility	Low

Land use considerations

• High salinity and regular inundation by sea water severely limit plant growth to a few specialist species, e.g. mangroves and halophytes in fringing areas

Wet soil

Soil Group 105

Distribution map p. 100 Colour picture p. 116

Non-saline soils waterlogged to <30 cm for a major part of the year

Characteristics

- Most of the profile (to less than 30 cm) saturated for the major part of the year
- Dark grey, brown or black topsoil
- · Sands, loams and clays
- Acid pH
- May be organic in sw amps
- Variable subsoil, may contain bog iron or clay
- Commonly in sw amps but also areas with elevated fresh watertables

Local names

Sw amp soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Redoxic or Oxyaquic Hydrosol
- Organosol

Main occurrences in Western Australia

- Sw ampy areas in the South-west, including some areas of seasonally wet duplex soils on the coast.
- Most common, but never widespread, on the Sw an Coastal Plain, North Coastal Plain and Scott River Plain on the south coast
- Scattered in other areas

Soil attributes (dominant values)

Water repellence	Low to
	moderate
Soil structure decline	Low
Subsurface acidification	High
Surface condition	Loose to firm
Unrestricted rooting depth	Shallow to moderate
Available water storage	Low to moderate

Subsurface compaction	Low
pH 0-10 cm	Acid to strongly acid
pH 50-80 cm	Acid to strongly acid
Soil permeability	Very slow
Soil workability	Poor
Wind erodibility	Low to moderate

- · Waterlogging and seasonal inundation severely limit land use options
- · Artificial drainage may sometimes be an option

Bare rock

Soil Group 201

Distribution map p. 100 Colour picture p. 116

Rock outcrop

Characteristics

- Areas generally bare of soil on outcropping rock strata or bare rock surfaces
- Includes some areas with minimal soil development
- Excludes ferricrete/duricrust outcrop

Local names

Granite outcrop

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Not applicable
- Leptic Rudosol

Main occurrences in Western Australia

- Widespread, but rarely common.
- Most common in the Kimberley, Pilbara and parts of the South-west

Soil attributes (dominant values)

Water repellence	na
Soil structure decline	na
Subsurface acidification	na
Surface condition	na
Unrestricted rooting depth	na
Available water storage	na

Subsurface compaction	na
pH 0-10 cm	na
pH 50-80 cm	na
Soil permeability	na
Soil workability	na
Wind erodibility	na

- Soil development minimal in cracks/fractures in rock rendering it unsuitable for the growth of most plants
- Shedding of w ater may contribute to w ater erosion of adjacent areas or provide w ater supplies

Calcareous stony soil

Soil Group 202

Distribution map p. 100 Colour picture p. 116

Soils which are stony or rocky and calcareous throughout

Characteristics

- · Rocks and stones dominant throughout the profile
- · Soil depth varies greatly over short distances
- Calcareous throughout
- Alkaline pH
- · Usually very shallow, often over calcrete
- · Sandy, loamy, clayey or gravelly soil matrix

Local names

Typical Australian Soil Classification (ASC) (dominant ASC in italics)

- Calcic or Lithocalcic Calcarosol
- Lithosolic Clastic Rudosol

Main occurrences in Western Australia

- Rocky limestone areas in the Kimberley, Gascoyne (Cape Range north of Exmouth), Murchison, Goldfields and Nullarbor
- Rare on coastal limestone in the South-west

Soil attributes (dominant values)

	/
Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Firm
Unrestricted rooting depth	Shallow to moderate
Available water storage	Very low to moderate

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Alkaline
pH 50-80 cm	Alkaline or
	na
Soil permeability	Variable
Soil workability	Poor
Wind erodibility	Variable

- Water-holding capacity is low due to the shallow depth of the profile and the amount of stone or rock.
- The stoniness or rockiness severely limits most land uses

Stony soil

Soil Group 203

Distribution map p. 100 Colour picture p. 116

Soils which are coarse gravelly, stony or rocky throughout

Characteristics

- · Rocks and stones or coarse gravels dominant throughout the
- Usually very shallow
- · Sandy, loamy, clayey or gravelly soil matrix
- Neutral to acid pH

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Lithosolic Clastic Rudosol
- Leptic Rudosol
- Kandosol
- Dermosol

-50

Main occurrences in Western Australia

- Widespread throughout, but rarely common
- · Most common in the Kimberley and parts of the Pilbara

Soil attributes (dominant values)

\	
Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Variable
Surface condition	Firm to
	hardsetting
Unrestricted rooting depth	Very
	shallow to
	moderate
Available water storage	Low

Subsurface compaction	Low
pH 0-10 cm	Neutral
pH 50-80 cm	na
Soil permeability	Variable
Soil workability	Very poor
Wind erodibility	Low

- Water-holding capacity is low due to the shallow depth of profile and amount of stone and rock
- The stoniness or rockiness severely limits most land uses

Deep sandy gravel

Soil Group 301

Distribution map p. 101 Colour picture p. 116

Ironstone gravel soil, with a predominantly sandy matrix, usually over clay, cemented gravels (ferricrete) or reticulite at >80 cm

Characteristics

- Yellow, brown and grey colours common
- · Neutral to acid pH
- High gravel content (>20%, but often much higher) throughout
- Usually over sandy loam to sandy clay loam (reticulite), sandy clay loam to clay, or cemented gravels (ferricrete) at >80 cm
- Native vegetation, especially proteaceous species, appears to have a role in the formation of these soils

Local names

Buckshot gravel, Forest gravel

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Ferric or Ferric-Petroferric Tenosol
- Ferric Kandosol
- Ferric Chromosol

Note: these soils may be genetically linked to Podosols

Main occurrences in Western Australia

- Common in the South-west between Busselton and Augusta
- Jarrah forests of the Darling Plateau
- · Scattered in other parts of South-west

Soil attributes (dominant values)

Water repellence	Moderate
Soil structure decline	Low
Subsurface acidification	Low to moderate
Surface condition	Soft to loose
Unrestricted rooting depth	Deep
Available water storage	Low

Low to
moderate
Neutral to
acid
Neutral
Moderately
rapid
Good
Low to
moderate

Land use considerations

High gravel content limits w ater-holding capacity of the soil

	cm
	-0
000000000000000	9.00
6 6 6 6 6 6 6	
00000000000000	
BY ON BARY ON BARA	
4 . 0 . 0 . 0 . 0 . 0 . 0	
04400000000000000	
0.0.0.0.0.0.0.0.0	
- PROPORTA PROPORO	
0.0.0.0.0.0.0.0	
000000000000000	
0 0 0 0 0 0 0 0	
000000000000000	
The same of the same of the same	
. 00.00.00.00.00.00.00.	
6 6 6 6 6 6 6 6	
. 60.00.00.00.00.00.00	
0 0 0 0 0 0 0 0	-80
, PEVE 40 20 PEVE 40 40	00
900000000000000000	
0 .0 .0 .0 .0 .0 040000	
-00000000000000000000000000000000000000	
O O O O O O O O O O O O O O O O O O O	
400000000000000000000000000000000000000	
Daile 4 - 500 90000	
4 6 7 - 10000008800	
.00000000000000000000000000000000000000	
	120

Duplex sandy gravel

Soil Group 302

Distribution map p. 101 Colour picture p. 116

Ironstone gravel soil, with a predominantly sandy matrix, over a permeability contrast layer at 30-80 cm. The permeability contrast layer may be either a texture contrast or reticulite (mottled sandy loam to sandy clay loam)

Characteristics

- Yellow, brown or grey in top 30 cm
- Neutral to acid pH
- Over clay loam to clay or reticulite (mottled sandy loam to sandy clay loam) at 30-80 cm
- High gravel content (>20%, but often much higher) above the texture or contrast layer
- Native vegetation, especially proteaceous species, appears to have a role in the formation of these soils

Local names

Buckshot gravel, Coarse gravel, Jarrah gravel, Sandy gravel, Gairdner gravelly duplex

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Ferric Chromosol
- Ferric Sodosol
- Ferric Kandosol

Note: these soils may be genetically linked to Podosols

Main occurrences in Western Australia

- Clayey subsoils are common in the South-west in Jarrah forests east of the Darling Scarp and West Midlands, and minor north-west of Esperance
- Reticulite subsoils are common throughout the southern part of the central w heatbelt and the Great Southern

Soil attributes (dominant values)

Water repellence	Moderate
Soil structure decline	Low
Subsurface acidification	Low to moderate
Surface condition	Soft to loose
Unrestricted rooting depth	Moderate
Available water storage	Low to moderate

Subsurface compaction	Low to
'	moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral
Soil permeability	Moderately
	rapid
Soil workability	Fair to Good
Wind erodibility	Low to
	moderate

- A seasonal perched watertable may overlie the texture or permeability contrast layer
- High gravel contents may limit water-holding capacity of the soil

Loamy gravel

Soil Group 303

Distribution map p. 101 Colour picture p. 117

Ironstone gravel soil, with a predominantly loamy matrix, often grading to clay at >30 cm

Characteristics

- Yellow, red or brown in top 30 cm
- Neutral to acid pH
- High gravel content (>20%, but often much higher) throughout
- Usually grading to clay by 30-80 cm but occasionally deeper

Local names

Loamy gravel, Forest grove gravel, Forest hill gravel, Pea gravel, Fine loamy type gravel, Jarrah gravel

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Ferric Kandosol
- Ferric Chromosol
- Ferric Dermosol

Main occurrences in Western Australia

- Mostly in the South-west agricultural area where they are common east of the Darling Scarp from Gingin to Bridgetown
- Also on the Donnybrook Sunklands and low hilly areas west of Denmark

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Low to
	moderate
Surface condition	Loose to
	firm
Unrestricted rooting depth	Moderate
	to deep
Available water storage	Moderate

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral
Soil permeability	Moderate
Soil workability	Fair to good
Wind erodibility	Low

Land use considerations

High gravel content may limit water-holding capacity

Shallow gravel

Soil Group 304

Distribution map p. 101 Colour picture p. 117

Ironstone gravel soil over cemented gravels (ferricrete), rock or other hard or permanently cemented layers at ≤80 cm.

Characteristics

- Yellow, brown, grey or sometimes red in top 30 cm
- Neutral to acid pH
- High gravel content (>20%, but often much higher) throughout
- Sandy, or less commonly loamy, matrix
- Overlies cemented gravels (ferricrete), rock or other hard or permanently cemented layers at <80 cm
- Native vegetation, especially proteaceous species, appears to have a role in the formation of these soils

Buckshot gravel, Ironstone cap, Shallow gravel

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Ferric-Petroferric Tenosol
- Ferric Petroferric Kandosol
- Ferric Petroferric Chromosol

Note: these soils may be genetically linked to Podosols

Main occurrences in Western Australia

- South-w est inland from the Darling Scarp
- Isolated lateritic remnants throughout the South-west, southern rangelands and Kimberley
- · Scattered throughout the arid interior

Soil attributes (dominant values)

Low to
Moderate
Low
Low to
moderate
Soft to firm
Shallow to
Moderate
Very low

Subsurface compaction	Low
•	
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral or
	na
Soil permeability	Moderate
Soil workability	Fair
-	
Wind erodibility	Low

- Water-holding capacity is generally low due to the shallow depth of the profile and high gravel content
- Gravel limits w orkability
- Deeper variants are suitable cropping soils in areas with higher rainfall
- High recharge hazard

Alkaline grey deep sandy duplex

Soil Group 401

Distribution map p. 102 Colour picture p. 117

Grey sand over alkaline sandy clay loam to clay at 30-80 cm

Characteristics

- Grey to brown surface, bleached grey subsurface, various colours in subsoil (mottling common)
- · Often calcareous subsoil
- Alkaline pH subsoil
- Subsoil often sodic

Local names

Mallee soil, Scaddan sand

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Calcic Grey, Yellow or Brown Sodosol
- Calcic Grey, Yellow or Brown Chromosol

Main occurrences in Western Australia

- Associated with, but usually much less common, than Alkaline grey shallow sandy duplex
- Widespread throughout the w heatbelt and mallee country north of Esperance
- Minor in other parts of the South-west, for example the North Stirlings

Soil attributes (dominant values)

Water repellence	Moderate
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Loose
Unrestricted rooting depth	Moderate
Available water storage	Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral
pH 50-80 cm	Alkaline
Soil permeability	Moderately
	slow
Soil workability	Good
Wind erodibility	High

Land use considerations

Seasonal w aterlogging over the clay may occur

	cm
	-0
*** ** * * * * * * * * * * * * * * * * *	U
14 4 14 4 14 4 14 4 14 4 14 4 14 4 14 4 14 4 14 4 1	
to a	
** * ** * ** * ** * ** * ** * ** * ** *	
** . ** . ** . ** . ** . ** . ** . ** . ** . ** . **	
74 . 74 . 74 . 74 . 74 . 74 . 74 . 74 .	
	-30
	30
to a	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
/	
100100000	
100000	
2	
/	-80
	00
/77777	
7 2 2 2 2 2 2 2 2 2	
	120
A STATE OF THE STA	120

Alkaline grey shallow sandy duplex

Soil Group 402

Distribution map p. 102 Colour picture p. 117

Grey sand over alkaline sandy clay loam to clay at <30 cm

Characteristics

- · Grey surface layers, various colours in subsoil
- · Often calcareous subsoil
- Alkaline pH subsoil
- Usually sodic subsoil
- May include sandy loams in the low er topsoil
- · Usually not hardsetting

Local names

Mallee soil, Scaddan sand, Moort soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Calcic Grey Yellow or Brown Sodosol
- Calcic Grey, Yellow or Brown Chromosol

Main occurrences in Western Australia

- Widespread in the South-w est throughout the w heatbelt and mallee country north of Esperance
- Minor occurrences in other parts of the South-west, for example the North Stirlings

Soil attributes (dominant values)

Low to
Moderate
Low to
moderate
Low
Loose to
firm
Shallow
Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral
pH 50-80 cm	Alkaline
Soil permeability	Slow
Soil workability	Fair to
-	good
Wind erodibility	Moderate

- Sandy topsoil may be seasonally waterlogged
- Subsoils are frequently dispersive

		cm
		-0
	7.77.77.7	
		-30
	800	
	000	
	/22	
	152772	
	2222	
	22222	
233 3	3,33,33	
2000		-80

Grey deep sandy duplex

Soil Group 403

Distribution map p.102 Colour picture p.117

Grey sand over non-alkaline sandy clay loam to clay at 30-80 cm

Characteristics

- Grey topsoil colour common
- Often with bleached grey subsurface and various colours in subsoil (mottling common)
- · Neutral to acid pH subsoil
- Ironstone gravel often present, especially on top of clay

Local names

Esperance sandplain, Sw amp road gravel, Fleming sand, Fleming gravelly sand, Sheoak soil, Sand over clay

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Grey, Yellow or Brown Sodosol
- Grey, Yellow or Brown Chromosol

Main occurrences in Western Australia

- Common in the South-west, especially in the Esperance sandplain and west to the Fitzgerald and Great Southern areas
- Widespread and scattered in other areas such as the Sw an Coastal Plain and the West Midlands

Soil attributes (dominant values)

Water repellence	High
Soil structure decline	Low
Subsurface acidification	Moderate
Surface condition	Loose
Unrestricted rooting depth	Moderate
Available water storage	Low to moderate

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Acid
pH 50-80 cm	Neutral to
	acid
Soil permeability	Moderately
	slow
Soil workability	Good
Wind erodibility	High

- Seasonal w aterlogging over the clay may occur
- · Prone to wind erosion in exposed situations if left bare of surface cover

Grey shallow sandy duplex

Soil Group 404

Distribution map p. 102 Colour picture p. 117

Grey sand over non-alkaline sandy clay loam to clay at <30 cm

Characteristics

- Grey surface layers
- Various colours in subsoil, and mottling is common
- · Neutral to acid pH subsoil
- Ironstone gravel common, especially above clay
- · Often in old drainage lines

Local names

Duplex soil, White gum soil, Spongeolite soil, Grey clay (where clay is near to surface)

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Grey, Yellow or Brown Sodosol
- Grey, Yellow or Brown Chromosol

-30 -30

Main occurrences in Western Australia

- Widespread in the South-west throughout the Zone of Rejuvenated Drainage from Moora south to Katanning and east to Jerramungup and Esperance. Usually less common than Grey deep sandy duplex
- · Scattered in other parts of the South-west

Soil attributes (dominant values)

Moderate
to high
Low
Moderate
Loose
Shallow
Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Acid
pH 50-80 cm	Neutral to
	acid
Soil permeability	Slow
Soil workability	Good
Wind erodibility	High

- Seasonal w aterlogging may occur above the clay
- Wind erosion

Red deep sandy duplex

Soil Group 405

Distribution map p. 103 Colour picture p. 117

Red sand over sandy clay loam to clay at 30-80 cm

Characteristics

- Red within top 30 cm
- · Usually hardsetting surface
- Neutral pH subsoil, may be calcareous in Goldfields
- · Sometimes with a saline subsoil
- · Occasionally with a stony surface mantle

Local names

Red soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Red Chromosol
- Red Sodosol

Main occurrences in Western Australia

- Infrequent but w idespread throughout the southern rangelands and Pilbara
- · Scattered elsew here in south-w est

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low to
	moderate
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Moderate
Available water storage	Low to
	moderate

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	alkaline
Soil permeability	Moderate
Soil workability	Good
Wind erodibility	Moderate

- Productive soils
- Prone to surface compaction and crusting or hardsetting

	cm
	-O
	U
*** *** *** *** *** *** *** *** *** *	
*** ** * ** * * * * * * * * * * * * * *	
to 3	
to a	
*** *** *** *** *** *** *** *** *	
*** *** *** *** *** *** *** *** *** *	-30

to ,	
1011011011111111111	
1.51.51.5/	
::::/	
2	
/	
(-80
	-
7 7	
/22/2/2	
72,22,22,2	
7333333333	120
	of the last

Red shallow sandy duplex

Soil Group 406

Distribution map p. 103 Colour picture p. 117

Red sand over sandy clay loam to clay at <30 cm

Characteristics

- Red within top 30 cm
- · Neutral to alkaline pH subsoil
- Subsoil may be calcareous (e.g. in Goldfields)
- Usually hardsetting surface
- Clays may be underlain by rock or hardpan
- Stony or gravelly surface mantle common
- May be saline

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Red Chromosol
- Red Sodosol

Main occurrences in Western Australia

• Common, but rarely dominant, throughout the rangelands, especially the southern Kimberley, Gascoyne and Murchison

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Shallow
Available water storage	Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	alkaline
Soil permeability	Moderately
	slow
Soil workability	Fair
Wind erodibility	Moderate

Reticulite deep sandy duplex

Soil Group 409

Distribution map p. 104 Colour picture p. 118

Grey to yellow or brown sandy surface layer over reticulite (mottled loamy sand to sandy clay loam) subsoil at 30-80 cm.

Characteristics

- Grey to yellow or brown in top 30 cm
- Neutral to acid pH
- Reticulite at 30-80 cm
- Usually gravelly above the reticulite layer

Local names

Sandy gravel

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Reticulate Kandosol
- Reticulate Chromosol
- Tenosol

Main occurrences in Western Australia

 Common in the southern part of the central w heatbelt and the Great Southern, east of Narrogin

Soil attributes (dominant values)

Water repellence	Moderate
Soil structure decline	Low
Subsurface acidification	Low to
	moderate
Surface condition	Soft to
	loose
Unrestricted rooting depth	Moderate
Available water storage	Low to
	moderate

Subsurface compaction	Moderate
pH 0-10 cm	Acid
pH 50-80 cm	Neutral to acid
Soil permeability	Moderately rapid
Soil workability	Fair to Good
Wind erodibility	Moderate

Yellow/brown deep sandy duplex

Soil Group 407

Distribution map p. 103 Colour picture p. 117

Yellow/brown sand over sandy clay loam to clay at 30-80 cm

Characteristics

- Surface layers mainly yellow or brown.
- May have a paler subsurface and various colours in subsoil
- Neutral subsoil pH common, but may be acid to alkaline
- Ironstone gravel sometimes present, especially on top of clay

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Yellow or Brown Chromosol
- Yellow or Brown Sodosol

Main occurrences in Western Australia

• Occurs throughout the South-west, but rarely common

Soil attributes (dominant values)

,	
Water repellence	High
Soil structure decline	Low
Subsurface acidification	Moderate
Surface condition	Loose
Unrestricted rooting depth	Moderate
Available water storage	Low to moderate

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Acid
pH 50-80 cm	Neutral to
	acid
Soil permeability	Moderately
	slow
Soil workability	Good
Wind erodibility	High

Land use considerations

Prone to w ind erosion in exposed situations if left bare of surface cover

	cm
	-0
	7.

10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	
	-30
	30
1.	
1.51.51.57	
/	
7	
/	-80
[00
[/2/2]	
7 23 33 33 3	
	-120

Yellow/brown shallow sandy duplex

Soil Group 408

Distribution map p. 103 Colour picture p. 118

Yellow/brown sand over sandy clay loam to clay at <30 cm

Characteristics

- Yellow or brown surface layers
- Various colours in subsoil, and mottling is common
- Neutral pH subsoil most common, but may be acidic to alkaline
- Ironstone gravel may occur, especially above clay

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Yellow or Brown Chromosol
- Yellow or Brown Sodosol

30 -30

Main occurrences in Western Australia

- Occurs throughout the south-west, but rarely common
- Scattered in other parts, especially the Kimberley

Soil attributes (dominant values)

Water repellence	Moderate
	to high
Soil structure decline	Low
Subsurface acidification	Moderate
Surface condition	Loose
Unrestricted rooting depth	Shallow
Available water storage	Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Acid
pH 50-80 cm	Neutral to acid
Soil permeability	Slow
Soil workability	Good
Wind erodibility	High

Land use considerations

· Seasonal w aterlogging may occur above the clay

Calcareous shallow sand

Soil Group 421

Distribution map p. 104 Colour picture p. 118

Calcareous sand over rock, hardpan or other cemented layer at <80 cm

Characteristics

- Sandy throughout
- · Grey or occasionally black topsoil
- Calcareous throughout
- Alkaline pH throughout
- Sometimes over limestone or calcrete

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Shelly Rudosol
- Leptic Rudosol
- Calcareous Paralithic or Lithic Tenosol
- Shelly Calcarosol

-80

Main occurrences in Western Australia

 Calcareous shallow sands are widespread on coastal limestone, especially in the Southwest, but are never common

Soil attributes (dominant values)

con attributes (dominant variable)	
Water repellence	Moderate to high
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Loose
Unrestricted rooting depth	Shallow to moderate
Available water storage	Very low

Subsurface compaction	Low
- a	
pH 0-10 cm	Alkaline
pri e re em	, manno
pH 50-80 cm	Alkaline or
•	
	na
Soil permeability	Rapid to
con pointoubinty	rapia to
	very rapid
Soil workability	Good
Con Wondonky	0000
Wind erodibility	Hiah
villa cidalbility	1 11911

- · High pH may limit growth of some agricultural species
- · Shallow soil depth limits rooting depth and water-holding capacity

Pale shallow sand

Soil Group 422

Distribution map p. 104 Colour picture p. 118

White, grey or pale yellow sand over rock, hardpan or other cemented layer at <80 cm

Characteristics

- White, grey or pale yellow within top 30 cm
- · Neutral to acid pH
- Ironstone gravel may be present
- Often gritty sands over granite
- Often sand over cemented ironstone (ferricrete or bog iron) or other hardpan.

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Leptic Tenosol
- Paralithic or Lithic Bleached-Orthic Tenosol
- Leptic Rudosol

-80

Main occurrences in Western Australia

- Gritty forms are common on areas fringing granite outcrop, most common in the Yilgarn Craton of the South-west
- Overlaying coarse-textured rocks such as sandstone in the Kimberley or scattered in other areas

Soil attributes (dominant values)

Water repellence	Moderate to high
Soil structure decline	Low
Subsurface acidification	Low to moderate
Surface condition	Soft to loose
Unrestricted rooting depth	Shallow to moderate
Available water storage	Very low

Subsurface compaction	Low to moderate
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral or na
Soil permeability	Moderately rapid to very rapid
Soil workability	Good
Wind erodibility	High

- Water-holding capacity is low due to the shallow depth of the profile and coarse textures
- The soils are usually well drained, although the hard underlying layer may cause seasonally perched watertables

Red shallow sand

Soil Group 423

Distribution map p. 104 Colour picture p. 118

Red sand over rock, hardpan or other cemented layer at <80 cm

Characteristics

- Red sand over rock, hardpan or other cemented layer by 80 cm, and often
 <30 cm
- Surface mantle of stones is common
- Gravel (ironstone and non-ironstone) may be present.
- · Neutral to acid pH

Local names

Wyarri sand

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Leptic Tenosol
- Paralithic or Lithic Orthic Tenosol
- Leptic Rudosol

Main occurrences in Western Australia

- Southern rangelands (Murchison, Gascoyne, Goldfields) but rarely dominant
- Minor occurrences on limestone in the South-west, Pilbara and Arid Interior

Soil attributes (dominant values)

Water repellence	Low to
	moderate
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Loose
Unrestricted rooting depth	Shallow to moderate
Available water storage	Very low to low

Subsurface compaction	Low to moderate
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral or na
Soil permeability	Moderately rapid
	to very rapid
Soil workability	Good
Wind erodibility	Moderate

Land use considerations

• Water-holding capacity is low due to the shallow depth of the profile and coarse textures

Yellow/brown shallow sand

Soil Group 424

Distribution map p. 105 Colour picture p. 118

Yellow or brown sand over rock, hardpan or other cemented layer at <80 cm

Characteristics

- Yellow or brown within top 30 cm
- Neutral to acid pH
- Commonly over limestone in coastal areas
- May occur over bog iron on the coastal plains

Local names

Karrakatta sand (shallow phase), Spearwood sand (shallow phase)

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Leptic Tenosol
- Paralithic or Lithic Orthic Tenosol
- Leptic Rudosol

-80

Main occurrences in Western Australia

 Occasionally on limestone near the coast in the South-west, scattered elsewhere on a variety of materials

Soil attributes (dominant values)

Water repellence	Moderate to high
Soil structure decline	Low
Subsurface acidification	Low to moderate
Surface condition	Loose
Unrestricted rooting depth	Moderate
Available water storage	Very low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral or
	na
Soil permeability	Moderately
	rapid to
	very rapid
Soil workability	Good
Wind erodibility	High

- Water-holding capacity is low due to the shallow depth of the profile and coarse textures
- Usually rapidly drained
- Soil depth may vary greatly over short distances

com

Brown deep sand

Soil Group 441

Distribution map p. 105 Colour picture p. 118

Brown sand >80 cm deep

Characteristics

- Brown or rarely black topsoil
- Brown within top 30 cm
- Sandy throughout
- · May be humic
- Neutral to acid pH
- Usually of alluvial or lacustrine origin
- · May be over rock, clay or other unconsolidated materials

Local names

Alluvial sand, Alluvial brown sand

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Orthic Tenosol
- Aeric Podosol

Main occurrences in Western Australia

- Minor alluvial soils in the South-west
- · Coastal plains in South-west

Soil attributes (dominant values)

Water repellence	Low to
	moderate
Soil structure decline	Low
Subsurface acidification	Low to moderate or presently acid
Surface condition	Loose
Unrestricted rooting depth	Deep to very deep
Available water storage	Low to moderate

	/-80 /-
	150
npaction	Low to moderate

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral
Soil permeability	Moderately rapid
Soil workability	Good
Wind erodibility	High

Land use considerations

 These soils usually have good physical properties and are suitable for a variety of agricultural land uses

Calcareous deep sand

Soil Group 442

Distribution map p. 105 Colour picture p. 118

Calcareous sand >80 cm deep

Characteristics

- Sandy throughout
- White, grey, yellow or occasionally black
- Calcareous throughout, although occasionally noncalcareous in top 30 cm in older dunes
- Alkaline pH throughout
- Often very deep in dune deposits, or occasionally over limestone or calcareous hardpan

Local names

Beach dune sand, Calcareous sand

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Shelly Rudosol
- · Shelly Calcarosol

Main occurrences in Western Australia

- Commonly on coastal dunes from Exmouth to the South Australian border
- Rare on the Pilbara and Kimberley coasts

Soil attributes (dominant values)

Water repellence	Moderate
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Loose
Unrestricted rooting depth	Deep to Very deep
Available water storage	Low

Subsurface compaction	Low
pH 0-10 cm	Alkaline
pH 50-80 cm	Alkaline
Soil permeability	Rapid to very rapid
Soil workability	Good
Wind erodibility	High

- These soils frequently occur in exposed positions along the coast and are prone to wind erosion and high airborne salt loads
- High pH and low water-holding capacity may limit plant grow th

Gravelly pale deep sand

Soil Group 443

Distribution map p. 105 Colour picture p. 118

Sand >15 cm (and pale to at least 30 cm) over gravelly sand >80 cm deep. Gravels are a dominant feature of the profile

Characteristics

- Ironstone gravel is present and common (>20% and at least 20 cm thick) below 15 cm
- · Usually white, grey or pale yellow
- Neutral to acid pH
- Coffee rock, clay or ferricrete may be present at >80 cm
- The subsoil matrix of a coloured sand may be present at 30-80 cm

Gravelly sand, White sandy gravels

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

• Ferric Bleached-Orthic Tenosol

Main occurrences in Western Australia

- Common in the South-w est agricultural area on the Coastal Plain north and south of Perth
- Also in broad valleys in lateritic terrain throughout the South-w est, notably in the West Midlands north of Perth
- Scattered in other South-west areas

Soil attributes (dominant values)

,	
Water repellence	High
Soil structure decline	Low
Subsurface acidification	Low to moderate
Surface condition	Soft to Loose
Unrestricted rooting depth	Deep to very deep
Available water storage	Low

50 g 50 g 50 g	150
	100
Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	acid
Soil permeability	Very rapid
Soil workability	Good
Wind erodibility	High
	*

- Poor fertility and water-holding characteristics
- Nutrient leaching and groundwater recharge are significant issues
- Prone to w ind erosion in exposed positions
- Prone to water repellence, especially after legume cropping

	cm
	-0
	•
10, 11, 11, 11, 11, 11, 11, 11, 11, 11,	
10, 10, 10, 10, 10, 10, 10, 10, 10, 10	
7	
7	
200000000000000000000000000000000000000	
4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	
5.	
	-80
A	
10, 11, 11, 11, 11, 11, 11, 11, 11	
*** * ** * ** * ** * ** * * * * * * * *	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
A + + 1990	
1.	
11.11.11.11.11.11.11.11	
10, 10, 10, 10, 10, 4	
14 14 14 14 14 14 1900	
[15,15,15,15] - T + + 1888	
100 100 100 100 100 100 100 100 100 100	
	150

Pale deep sand

Soil Group 444

Distribution map p. 106 Colour picture p. 119

Sand >80 cm deep with white, grey or pale yellow topsoil

Characteristics

- White, grey or pale yellow (Munsell value 7 or higher) within top 30 cm
- Neutral to acid pH
- Ironstone gravel may be present, but not in large quantities
- Coffee rock, clay or ferricrete may occur at >80 cm
- A weak coffee rock layer may occur within 80 cm
- A coloured sand may be present at 30-80 cm

Local names

Spillw ay sand, Gutless sand, Silver loam, Tincurrin/Harrismith sand, Christmas tree and Banksia sand, Deep mallee sand, Mungie sand, Siliceous sand

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Bleached-Orthic Tenosol
- Aeric Podosol

Main occurrences in Western Australia

- Common in the South-w est agricultural area on the Sw an Coastal Plain, the Scott River Plain and Cape Arid east of Esperance
- Also in broad valleys in lateritic terrain throughout the South-west, notably in the West Midlands north of Perth
- · Scattered in other South-west areas

Soil attributes (dominant values)

Water repellence	High
Soil structure decline	Low
Subsurface acidification	Low to moderate
Surface condition	Soft to Loose
Unrestricted rooting depth	Deep to very deep
Available water storage	Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	acid
Soil permeability	Very rapid
Soil workability	Good
Wind erodibility	High

- Poor fertility and water-holding characteristics
- · Nutrient leaching and groundw ater recharge are significant issues
- Prone to w ind erosion in exposed positions
- Prone to water repellence, especially after legume cropping

	cm
COMPANY DESIGNATION OF THE PARTY OF THE PART	-0

ELECTION CONTRACTOR	
11111111111111111111111111	
p. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	
. 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10	
	00
	-80
111111111111111111111111111111111111111	
111111111111111111111111111111111111111	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1000	
1000	
100 miles 100 mi	
	150
CANTO CONTRACTOR	130

Red deep sand

Soil Group 445

Distribution map p. 106 Colour picture p. 119

Red sands greater than 80 cm deep.

Characteristics

- · Red in top 30 cm
- Neutral to acid pH
- · Gravel (including ironstone) may be present in subsoil

Local names

Wandarrie sand, Siliceous sand

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

Orthic Tenosol

Main occurrences in Western Australia

- The dominant soil of the Arid Interior, extending from north of the Nullarbor Plain to the Kimberley
- Common near the coast from Kalbarri to Exmouth
- Isolated in the South-west, especially in the Geraldton and Dandaragan area
- Minor in the East Kimberley

Water repellence	Low to moderate
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Loose
Unrestricted rooting depth	Deep to
	very deep
Available water storage	Low to
	moderate

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to acid
Soil permeability	Rapid
Soil workability	Good
Wind erodibility	Moderate to high

- Moderate low fertility and water-holding characteristics
- Prone to w ind erosion in exposed positions

Yellow deep sand

Soil Group 446

Distribution map p. 106 Colour picture p. 119

Yellow sands greater than 80 cm deep

Characteristics

- Yellow within top 30 cm
- Neutral to acid pH
- Ironstone gravel may be present throughout, sometimes common (>20%) below 15 cm
- Limestone or ferricrete may be present at >80 cm

Local names

Pear and pine sand, Sandplain, Spearw ood sand, Eradu sandplain, Sands on limestone, Karrakatta sand, Siliceous sand

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

Orthic Tenosol

Main occurrences in Western Australia

- Common on coastal limestone on the coastal plain from Augusta to Geraldton in the South-west
- Sandplain remnants in the northern and eastern w heatbelt of the South-w est, extending north to Kalbarri and southern rangelands, although soils tend to be more loamy in inland areas (see sandy earths)
- Isolated occurrences throughout the remainder of South-west and widespread on sandstones in the Kimberley

Soil attributes (dominant values)

Water repellence	Low to moderate
Soil structure decline	Low
Subsurface acidification	Variable
Surface condition	Soft to
	loose
Unrestricted rooting depth	Deep to
	very deep
Available water storage	Low to
	moderate

Subsurface compaction	Moderate to high
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to acid
Soil permeability	Rapid to very rapid
Soil workability	Good
Wind erodibility	High

- Prone to w ind erosion in exposed positions
- · Some have poor fertility and water-holding characteristics
- Moderate recharge hazard under annual agriculture

Acid yellow sandy earth

Soil Group 461

Distribution map p. 106 Colour picture p. 119

Strongly acid yellow sand grading to loam by 80 cm

Characteristics

- Yellow throughout, may be grey at the surface
- · Strongly acid pH, especially in subsurface and subsoil
- Ironstone gravel may be present
- · May be clayey at depth

Local names

Wodjil sand/soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Acidic Yellow Kandosol
- Acidic Orthic Tenosol

Main occurrences in Western Australia

 Occasionally on sandy uplands in the central, eastern and northern w heatbelt areas of the South-west, extending into the southern rangelands. Associated with Yellow sandy earths

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low
Subsurface acidification	High to presently acid
Surface condition	Loose to firm
Unrestricted rooting depth	Shallow to moderate
Available water storage	Moderate

Subsurface compaction	Moderate
pH 0-10 cm	Acid to
	strongly
	acid
pH 50-80 cm	Strongly
	acid
Soil permeability	Moderate
	to
	moderately
	rapid
Soil workability	Good
Wind erodibility	Moderate
	to high

Land use considerations

• Low subsoil pH and high concentrations of aluminum severely limit root growth into the subsoil and reduces yields of agricultural plants

Brown sandy earth

Soil Group 462

Distribution map p. 107 Colour picture p. 119

Brown sand grading to loam by 80 cm

Characteristics

- Brow n topsoil
- Sands grading to loams by 80 cm
- Neutral to acid pH
- Usually alluvial
- May be clayey at depth

Local names

Alluvial brown sand/soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Brown Kandosol
- Orthic Tenosol

Main occurrences in Western Australia

• Minor alluvial soil in the South-west

Soil attributes (dominant values)

Water repellence	Low to
	Moderate
Soil structure decline	Low
Subsurface acidification	Moderate
Surface condition	Firm
Unrestricted rooting depth	Deep
Available water storage	Moderate

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to acid
Soil permeability	Moderate
Soil workability	Good
Wind erodibility	Moderate

Land use considerations

• Good physical characteristics for plant growth (e.g. horticulture)

Pale sandy earth

Soil Group 465

Distribution map p. 107 Colour picture p. 119

Pale sand grading to loam by 80 cm

Characteristics

- White, grey or Munsell value of 7 or greater (pale yellow) within top 30 cm.
- · Neutral to acid pH
- Gravels (mainly ironstone) may be present
- May be clayey at depth
- · Usually massive or poorly structured
- Usually porous (sometimes called earthy fabric)

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Grey Kandosol
- Bleached-Orthic Tenosol

-30

Main occurrences in Western Australia

Scattered through the south-west and the Kimberley

Soil attributes (dominant values)

Water repellence	Low to
	Moderate
Soil structure decline	Low
Subsurface acidification	Moderate to
	high or
	presently acid
Surface condition	Loose to firm
Unrestricted rooting depth	Deep to very
	deep
Available water storage	Moderate

Subsurface compaction	High
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to acid
Soil permeability	Moderate to
	moderately
	rapid
Soil workability	Good
Wind erodibility	Moderate

- Good physical characteristics for plant grow th (e.g. horticulture)
- May be prone to subsurface acidification

Red sandy earth

Soil Group 463

Distribution map p. 107 Colour picture p. 119

Red sand grading to loam by 80 cm

Characteristics

- · Red throughout
- · Usually massive or poorly structured
- Usually porous (sometimes called earthy fabric)
- Neutral to acid pH, but occasionally alkaline and calcareous at depth
- May have a red-brown hardpan at depth
- · May be clayey at depth

Local names

Typical Australian Soil Classification (ASC) (dominant ASC in italics)

- Red Kandosol
- Orthic Tenosol

-30 -30

Main occurrences in Western Australia

• Widespread in the southern rangelands (Murchison, Goldfields and Gascoyne) extending into the northern w heatbelt, often in association w ith red loamy earths

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Moderate to high
Surface condition	Firm
Unrestricted rooting depth	Deep
Available water storage	Moderate

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	alkaline
Soil permeability	Moderate
Soil workability	Good
Wind erodibility	Moderate

Land use considerations

• Good physical characteristics for plant growth (e.g. horticulture)

Yellow sandy earth

Soil Group 464

Distribution map p. 107 Colour picture p. 119

Yellow sand grading to loam by 80 cm

Characteristics

- Yellow to within 30 cm
- Neutral to acid pH
- Gravels (mainly ironstone) may be present
- May be clayey at depth
- Usually massive or poorly structured
- Usually porous (sometimes called earthy fabric)

Local names

Tammar soil, Good sandplain soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Yellow Kandosol
- Orthic Tenosol

Main occurrences in Western Australia

 Widespread on sandy uplands in the South-w est (central, eastern and northern w heatbelt), extending into the southern rangelands (Murchison and Goldfields)

Soil attributes (dominant values)

Water repellence	Low to
	Moderate
Soil structure decline	Low
Subsurface acidification	Moderate to high
	or presently acid
Surface condition	Loose to firm
Unrestricted rooting depth	Deep to very deep
Available water storage	Moderate

Subsurface compaction	High
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to acid
Soil permeability	Moderate to
	moderately
	rapid
Soil workability	Good
Wind erodibility	Moderate

Land use considerations

- Good physical characteristics for plant growth (e.g. horticulture)
- May be prone to subsurface acidification

	cm
	T-0
2 74 2 74 2 74 2 74 2 74 2 74 2 74 2 74	1 "
	-1
a to	-1
, to	3
	4
///	4
	-30
/ / //	100
	4
////////	4
1//////	4
/////////	4
/////////	
11/1/1/1/	4
111111111111111111111111111111111111111	4
///////////////////////////////////////	4
	al .
- 11111111111111	4
11/1/1/1/1/1/	
11111111111111	
//////////////	-80
/////////////////	
/////////////	
/////////	
/////////	3
/////////	3
///////	
///////	
((((((
//////	
(((()))	
////	120

Acid shallow duplex

Soil Group 501

Distribution map p. 108 Colour picture p. 119

Loam or sand over strongly acid clay at <30 cm

Characteristics

- Thin loam or occasionally loamy sand over pink, grey or brown clay
- · Strongly acid pH in subsoil
- Often sodic
- Commonly below breakaways

Local names

Pink clay, Mallet soil, Grey mallee clay

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

• Red, Yellow, Grey, or Brown Kurosol

Main occurrences in Western Australia

 Minor areas below breakaways in the South-west (mainly the wheatbelt) and infrequent in the Goldfields

Soil attributes (dominant values)

Water repellence	High
Soil structure decline	Moderate
Subsurface acidification	High
Surface condition	Firm
Unrestricted rooting depth	Shallow
Available water storage	Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Acid to strongly
	acid
pH 50-80 cm	Acid to strongly
	acid
Soil permeability	Slow
Soil workability	Fair
Wind erodibility	Low

Land use considerations

- Very poor soils for agricultural purposes
- Surface has a tendency to set hard and can also be water repellent
- Root grow th is restricted in the subsurface and subsoil by salinity, sodicity and acidity

Alkaline grey shallow loamy duplex

Soil Group 502

Distribution map p. 108 Colour picture p. 119

Grey loam over alkaline clay at <30 cm

Characteristics

- Grey or brown topsoil
- Usually calcareous subsoil
- Alkaline pH subsoil
- · Hardsetting surface

Local names

Moort soil, Grey clay

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Calcic Grey Sodosol
- Calcic Grey Chromosol

Main occurrences in Western Australia

- · Great southern region
- Eastern w heatbelt and mallee
- North-w est of Esperance/Ravensthorpe

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	High
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Shallow
Available water storage	Low

Subsurface compaction	Low to moderate
pH 0-10 cm	Neutral
pH 50-80 cm	Alkaline
Soil permeability	Slow
Soil workability	Fair
Wind erodibility	Low

Land use considerations

Undesirable to mix subsoil w hich is sodic and alkaline w ith topsoil w hen cultivating

	0
	-30
	50
	???? ???? ????

Alkaline red shallow loamy duplex

Soil Group 503

Distribution map p. 108 Colour picture p. 120

Red loam over alkaline clay at <30 cm

Characteristics

- Red topsoil
- Alkaline pH subsoil
- · Usually calcareous subsoil
- Often hardsetting surface

Local names

Salmon gum soil, York gum soil, Red-brown earth

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Calcic Red Sodosol
- Calcic Red Chromosol

Main occurrences in Western Australia

- Common in the South-west in the eastern and northern wheatbelt, and scattered in areas
 of rejuvenated drainage
- Minor in the Gnow angerup to Jerramungup areas

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Shallow
Available water storage	Low to
	moderate

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral
pH 50-80 cm	Alkaline
Soil permeability	Moderately
	slow
Soil workability	Fair
Wind erodibility	Low

Land use considerations

· The surface is prone to hardsetting

Brown deep loamy duplex

Soil Group 505

Distribution map p. 109 Colour picture p. 120

Brown loam over clay at 30-80 cm

Characteristics

- Brown the dominant colour of the surface layer/s
- Surface may be grey or black
- Neutral pH
- · Firm to hardsetting surface
- · Non-alkaline clay subsoil
- Non-sodic subsoil more common than sodic

Local names

Deep yate loam

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Yellow or Brown Chromosol
- Yellow or Brown Sodosol

Main occurrences in Western Australia

 Scattered throughout the state, especially in alluvial situations in the south-west

Soil attributes (dominant values)

	/
Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Low
Surface condition	Firm to
	hardsetting
Unrestricted rooting depth	Moderate
Available water storage	Moderate

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral
Soil permeability	Moderately
	slow
Soil workability	Good
Wind erodibility	Low

Land use considerations

• A valuable soil for agricultural purposes

Grey shallow loamy duplex

Soil Group 504

Distribution map p. 108 Colour picture p. 120

Grey loam over non-alkaline clay at <30 cm

Characteristics

- Grey topsoil
- Neutral pH
- Firm to hardsetting surface
- Non-alkaline clay subsoil

Local names

Grey clay

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Grey or Yellow Chromosol
- Grey or Yellow Sodosol

Main occurrences in Western Australia

• Sw an Coastal Plain in the South-west, and parts of the Kimberley

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Moderate
Surface condition	Hardsetting
Unrestricted rooting depth	Shallow
Available water storage	Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral
Soil permeability	Moderately
	slow
Soil workability	Fair to
	poor
Wind erodibility	Low

Land use considerations

• The hardsetting surface may respond to gypsum

Red deep loamy duplex

Soil Group 506

Distribution map p. 109 Colour picture p. 120

Red loam over clay at 30-80 cm

Characteristics

- Red or brown topsoil, red within 30 cm
- Neutral to alkaline pH subsoil
- Subsoil may be calcareous
- Firm to hardsetting surface

Local names

Deep yate loam

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Red Chromosol
- Red Sodosol

Main occurrences in Western Australia

- · Scattered throughout the southern rangelands
- Common in the Pilbara and Goldfields but rarely dominant
- Minor in South-w est

lan rar

-80

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Low
Surface condition	Firm to hard- setting
Unrestricted rooting depth	Moderate
Available water storage	Moderate

Subsurface compaction	Low to moderate
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to alkaline
Soil permeability	Moderate
Soil workability	Good
Wind erodibility	Low

Red shallow loamy duplex

Soil Group 507

Distribution map p. 109 Colour picture p. 120

Red loam over non-calcareous clay at <30 cm

Characteristics

- Red within top 30 cm
- Neutral pH subsoil
- Firm to hardsetting surface

Local names

Jam soil, York gum soil, Chapman Valley loam, Avon Valley loam, Red soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Red Chromosol
- Red Sodosol
- Red Dermosol

-30 -7272777 -7272777

Main occurrences in Western Australia

 Widespread, but rarely common, in areas of rejuvenated drainage on granite, between Moora and Bridgetow n.

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Moderate
Surface condition	Firm to
	hardsetting
Unrestricted rooting depth	Shallow
Available water storage	Low

Low to
moderate
Neutral to
acid
Neutral
Moderate
Fair to poor
Low

Land use considerations

• A generally fertile soil that needs to be managed carefully to prevent water erosion

Yellow/brown shallow loamy duplex

Soil Group 508

Distribution map p. 109 Colour picture p. 120

Yellow/brown loam over clay at <30 cm

Characteristics

- Yellow or brown topsoil
- Neutral pH subsoil common, although rarely acid or alkaline
- · Firm to hardsetting surface

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Yellow or Brown Chromosol
- Yellow or Brown Sodosol

Main occurrences in Western Australia

• Scattered in the South-west and parts of the Kimberley

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Moderate
Surface condition	Hardsetting
Unrestricted rooting depth	Shallow
Available water storage	Low

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral
Soil permeability	Moderately
	slow
Soil workability	Fair to poor
Wind erodibility	Low

Calcareous shallow loam

Soil Group 521

Distribution map p. 110 Colour picture p. 120

Calcareous loam over rock or hardpan at <80 cm

Characteristics

- Loamy throughout, although may grade to clay above the hard layer
- Brown, grey or red topsoil
- Calcareous throughout (or at least by 30 cm)
- Alkaline pH throughout
- Usually over limestone or calcrete

Local names

Typical Australian Soil Classification (ASC) (dominant ASC in italics)

Paralithic or Lithic Calcic Calcarosol

Main occurrences in Western Australia

- The dominant soil of the Nullarbor Plain
- Also in the Gascoyne at Cape Range near Exmouth, and scattered throughout the Arid Interior and southern rangelands

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Firm
Unrestricted rooting depth	Moderate
Available water storage	Low

Subsurface compaction	Moderate
pH 0-10 cm	Alkaline
pH 50-80 cm	Alkaline or na
Soil permeability	Moderate
Soil workability	Fair
Wind erodibility	Low

Land use considerations

- High pH may limit the growth of some agricultural species
- Shallow soil depth limits rooting depth and water-holding capacity

Red shallow loam

Soil Group 522

Distribution map p. 110 Colour picture p. 120

Red loam less than 80 cm deep over rock or hardpan

Characteristics

- Red loam over rock, hardpan or other cemented layer by 80 cm, and often <30 cm
- A surface mantle of stones may be common
- Gravel may be present
- · Usually neutral to acid pH

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

Red Kandosol

Main occurrences in Western Australia

- Widespread in southern Kimberley
- Scattered throughout the Pilbara, Gascoyne, Murchison, Goldfields and South-west

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Moderate
Available water storage	Low

Subsurface compaction	on Moderate	
pH 0-10 cm	Neutral to	
	acid	
pH 50-80 cm	Neutral to	
	acid	
Soil permeability	Moderate	
Soil workability	Fair	
Wind erodibility	Low	

Land use considerations

Shallow soil depth limits rooting depth and water-holding capacity

Red-brown hardpan shallow loam

Soil Group 523

Distribution map p. 110 Colour picture p. 120

Red loam over red-brown hardpan at <50 cm

Characteristics

- Red w ithin top 30 cm
- Red-brown hardpan by 50 cm
- Often with stony surface mantle

Local names

Murchison cement loam, Red-brown hardpan soil

Typical Australian Soil Classification (ASC) (dominant ASC in italics)

Duric Red Kandosol

Main occurrences in Western Australia

• Very common in the southern rangelands (Murchison, Gascoyne and Goldfields) and northern areas of the South-west, stretching from Mullew a to the Pilbara, and eastwards to the northern Goldfields and the edge of the Arid Interior

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Shallow to moderate
Available water storage	Low

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral
Soil permeability	Moderate
Soil workability	Fair
,	
Wind erodibility	Low

Land use considerations

Shallow soil depth limits rooting depth and water-holding capacity

Brown loamy earth

Soil Group 541

Distribution map p. 110 Colour picture p. 121

Brown loam (may be clayey at depth)

Characteristics

- Brown or grey topsoil
- Loam throughout, or grading to clay with depth
- Neutral to acid pH, may be calcareous at depth
- · Gravels may be present in subsoil
- · Phases with a grey topsoil are often mottled
- Often formed in recent alluvium

Local names

Alluvial brown loam, Yate loam

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Brown Kandosol
- Brown Dermosol

Main occurrences in Western Australia

- Common on alluvial flats between Perth and Dunsborough in the South-west
- Scattered elsew here in south-west, usually in valley floors/lower positions in landscape
- Gravelly variants may occur in the wheatbelt

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Low
Surface condition	Firm
Unrestricted rooting depth	Deep
Available water storage	High

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	acid
Soil permeability	Moderate
Soil workability	Good
Wind erodibility	Low

Land use considerations

• Usually a good agricultural soil

Calcareous loamy earth

Soil Group 542

Distribution map p. 111 Colour picture p. 121

Calcareous loam, may grade to calcareous clay

Characteristics

- · Loam throughout, or may grade to clay
- Calcareous throughout, although may be noncalcareous in top 30 cm
- Usually red or brown topsoil but may be grey
- May have limestone or calcrete at depth
- Calcareous gravel often present in profile
- · Hardsetting or fluffy surface
- Sometimes saline
- Hard or soft carbonate segregations commonly occur in profile

Local names

Morrel soil, Salmon gum-gimlet, Lake bank soil, Merredin sandy loam, Calcrete soil, Kopi soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Calcic Calcarosol
- Calcic Red Sodosol

-30

Main occurrences in Western Australia

- Western and northern Nullarbor
- Scattered in the South-west in the central and eastern wheatbelt, often near salt lakes, and the mallee north of Esperance
- In the Gascoyne at Cape Range near Exmouth

Soil attributes (dominant values)

Water repellence	Variable
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Variable
Unrestricted rooting depth	Moderate
Available water storage	Moderate

Subsurface compaction	Low to	
	moderate	
pH 0-10 cm	Alkaline	
pH 50-80 cm	Alkaline	
Soil permeability	Moderately	
	slow	
Soil workability	Fair	
Wind erodibility	Low to high	

Land use considerations

- High lime content may inhibit some agricultural crops
- May have high salt contents in subsoil

Friable red/brown loamy earth

Soil Group 543

Distribution map p. 111 Colour picture p. 121

Red/brown loam, may grade to clay, very friable and porous

Characteristics

- Red or brown within top 30 cm
- Neutral to acid pH
- Friable topsoil
- · Porous throughout
- Gravel (ironstone and non-ironstone) may be present

Local names

Karri loam

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Red or Brown Dermosol
- Red or Brown Kandosol
- Red or Brown Ferrosol

Main occurrences in Western Australia

- Common in higher rainfall areas in the South-west, e.g. Pemberton. Commonly carried Karri forest
- · Chittering area near Perth
- Minor in the Pilbara on basaltic parent materials

Subsurface compaction	Low to
	moderate
pH 0-10 cm	Neutral to acid
pH 50-80 cm	Neutral to acid
Soil permeability	Moderate
Soil workability	Good
Wind erodibility	Low

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Soft to firm
Unrestricted rooting depth	Deep
Available water storage	High

Land use considerations

- · Water erosion a risk on steeper slopes
- Highly productive soil w ith good physical properties
- If cropped can develop a hardsetting surface

				cm
7777	11111	,,,,	///	-O
1111	11111	1111	111	
11/11	11111	1111	11/3	
355			555	
1111	11111	1111	115	
11/11	11111	1111	111	
335		1111	4-]	-30
1111	11111	1111	1-	30
1111	11111	1111	7-1-	
11.60	11/11	1111		
1111		1111-		
1111	11111	VII-	3-3	
1111	11111	115-		
11/1	111111	9		
1111	1111	# <u></u>		
1111	11111			
11/1	1111		E-1	
11111	1111			
1111	1111			
1111	111-			
333	<i></i>			
1111	71		-	
1111	/L			
	1			
11/1				
111				120
				120

Red loamy earth

Soil Group 544

Distribution map p. 111 Colour picture p. 121

Red loam, may grade to clay, may have a red-brown hardpan below 50 cm

Characteristics

- Red top 30 cm
- · Usually massive or poorly structured
- Usually porous (sometimes called earthy fabric)
- Neutral to acid pH, or sometimes calcareous at depth
- Hardsetting or crusting
- Sometimes with red-brown hardpan at >50 cm
- Gravels (usually non-ironstone) may be present

Local names

Mulga loam, Yate loam

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Red Kandosol
- Red Dermosol

Main occurrences in Western Australia

 Widespread and common throughout the rangelands, except the Nullarbor where calcareous soils dominate and the Great Sandy Desert where red sands are dominant

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low to
	moderate
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Moderate
Available water storage	Moderate

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	alkaline
Soil permeability	Moderate
Soil workability	Fair to good
Wind erodibility	Low

Land use considerations

Potentially highly productive soil with good physical properties

Yellow loamy earth

Soil Group 545

Distribution map p. 111 Colour picture p. 121

Yellow loam, may grade to clay

Characteristics

- Yellow within top 30 cm
- Neutral to acid pH
- · Gravels may be present in subsoil
- Usually porous with an earthy fabric
- · Usually massive or weakly structured

Local names

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

Yellow Kandosol

Main occurrences in Western Australia

- Widespread in the Kimberley
- Also occurs in the South-west in the central and northeastern wheatbelt extending into the southern rangelands (Murchison and Goldfields)

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low to
	moderate
Subsurface acidification	Low to
	moderate
Surface condition	Firm to
	hardsetting
Unrestricted rooting depth	deep
Available water storage	High

Subsurface compaction	Moderate
pH 0-10 cm	Neutral to
	acid
pH 50-80 cm	Neutral to
	acid
Soil permeability	Moderate
Soil workability	Good
Wind erodibility	Low

Land use considerations

Potentially highly productive soil with good physical properties

Hard cracking clay

Soil Group 601

Distribution map p. 112 Colour picture p. 121

Cracking clay without a self-mulching surface

Characteristics

- Red, brown, yellow or grey within top 30 cm
- Deep cracks when dry
- · Clay textures throughout profile
- Surface not self-mulching
- Variable pH
- Massive or pedal
- May have a crusting surface

Local names

Roebourne clay, Tablelands soil, Cracking clay, Crabhole depression soil

Typical Australian Soil Classification (ASC) (dominant ASC in italics)

Epipedal, Crusty or Massive Vertosol

-50

Main occurrences in Western Australia

- Kimberley and Pilbara on basaltic parent materials.
- Common on the Roebourne Plain
- Isolated in the South-west, especially on doleritic dykes

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification Low	
Surface condition	Firm
Unrestricted rooting depth Modera	
Available water storage	Moderate

Subsurface compaction	Low
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral to
	alkaline
Soil permeability	Moderate
Soil workability	Fair
Wind erodibility	Low

Land use considerations

• Low plant available water capacity in dry seasons limits yield potential

Self-mulching cracking clay

Soil Group 602

Distribution map p. 112 Colour picture p. 121

Cracking clay with a self-mulching surface

Characteristics

- Often grey, but also yellow, brown and red within top 30 cm
- Deep cracks when dry
- · Clay textures throughout profile
- Self-mulching surface
- May have a stony surface mantle, especially red variants in Pilbara

Local names

Cununurra clay, Black soil, Crabhole mound soil, Tablelands soil, Dolerite dyke soil, Cracking clay

Typical Australian Soil Classification (ASC) (dominant ASC in italics)

• Self-mulching Vertosol

-50

Main occurrences in Western Australia

- Grey/brown/black variants common in the Kimberley on the floodplains of major rivers e.g. Ord and Fitzroy
- Isolated in the South-west (e.g. Ravensthorpe) and on dolerite dykes
- Red/brown variants occur on basalts in the Pilbara

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Low
Subsurface acidification	Low
Surface condition	Self-mulching
Unrestricted rooting depth	Moderate
Available water storage	Moderate to
	high

Subsurface compaction	Low
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral to
	alkaline
Soil permeability	Variable
Soil workability	Good
Wind erodibility	Low to
	moderate

Land use considerations

Potentially suitable for irrigated agriculture

Grey non-cracking clay

Soil Group 621

Distribution map p. 112 Colour picture p. 121

Grey non-cracking clay

Characteristics

- Often grey, sometimes yellow or brown or rarely black within top 30 cm
- · Often calcareous in subsoil
- Often alkaline pH in subsoil
- · Clay textures throughout profile
- Does not seasonally crack
- Often with a hardsetting surface

Local names

Moort soil, Crabhole mound soil

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Grey or Yellow Dermosol
- · Grey or Yellow Kandosol

-50

Main occurrences in Western Australia

• Minor occurrences throughout the South-west

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate to
	high
Subsurface acidification	Low
Surface condition	Hardsetting
Unrestricted rooting depth	Moderate
Available water storage	Low to
	moderate

Subsurface compaction	Low
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral to alkaline
Soil permeability	Slow
Soil workability	Poor
Wind erodibility	Low

Land use considerations

• Low plant available water capacity in dry seasons

Red/brown non-cracking clay

Soil Group 622

Distribution map p. 112 Colour picture p. 121

Red or brown non-cracking clay, usually with a moderately to strongly developed structure

Characteristics

- Red or brown within top 30 cm
- Usually structured and friable
- · Clay textures throughout profile
- Often hardsetting
- Sometimes with a calcareous subsoil

Local names

Dolerite dyke soil, York gum/Jam country

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

- Red or Brown Dermosol
- · Red or Brown Kandosol

-50

Main occurrences in Western Australia

- Widespread, but rarely common, throughout most areas of the State
- Most common in the Pilbara, and on greenstone ranges stretching from Ravensthorpe in the South-west to the Goldfields
- Frequent in isolated areas on dolerite dykes in the South-west

Soil attributes (dominant values)

Water repellence	Low
Soil structure decline	Moderate
Subsurface acidification	Low
Surface condition	Firm to hardsetting
Surface condition Unrestricted rooting depth	

Subsurface compaction	Low
pH 0-10 cm	Neutral
pH 50-80 cm	Neutral to
	alkaline
Soil permeability	Moderately
	slow
Soil workability	Fair
Wind erodibility	Low

Land use considerations

• This soil is subject to structure decline

Disturbed land

Soil Group 701

No distribution map or colour picture

Areas which are highly disturbed, e.g. mine sites

Areas of land which are highly disturbed by human activities. This could include mine sites, quarries etc. where major soil upheaval, mixing or removal has occurred.

Typical Australian Soil Classification (ASC)

(dominant ASC in italics)

Anthroposol

Water

Soil Group 702

No distribution map or colour picture

Areas of permanent or semi-permanent water

No suitable Group

Soil Group 703

No distribution map or colour picture

Other minor soils not described within the main Soil Groups or Supergroups

This Group covers soils of limited extent which do not easily fit within the main Soil Groups.

Examples of soils which have been encountered in Western Australia that fit within this Group include:

Soil

Shelly sands Dry river beds (sands, gravels etc.) Layered alluvial soils (this list is not exhaustive)

Location

Isolated in coastal areas Scattered throughout State Anyw here in alluvial positions

Undifferentiated soils Soil Group 704

No distribution map or colour picture

Other soils which are not differentiated to the level of Soil Group

This category covers situations where the soils are, for whatever reason, not divided to the level of Soil Groups.

An example could be in areas of rocky terrain where the mapping may not examine all soils in detail, and provision is required to communicate this fact.

Soil attributes

For each of the soil attributes included in the descriptions of Soil Groups, the reference and range of values is provided below. Most are based on the land qualities as defined by van Gool and Moore (1999). A third edition of this publication by van Gool, Moore and Tille is in preparation (2002).

Surface condition is from the definitions of McDonald *et al.* (1990). The soil permeability is that of the surface layers based on the classes listed in Purdie (1993b). The pH attributes use the ranges in Purdie (1993a) that has few er classes than those used in van Gool and Moore (1999).

Some of the land qualities of van Gool and Moore (1999) can be related directly to soil properties (e.g. Water repellence and Soil structure decline). How ever, some land qualities are influenced by the position in the landscape (e.g. Unrestricted rooting depth, Available water storage). In these cases, the values provided for Soil Groups assume that there is no shallow watertable, fresh or saline within 1.5 m. The soil attribute Wind erodibility is related to the land quality Wind erosion of van Gool and Moore. If the Soil Group is in a particularly exposed position, the risk of wind erosion will be higher than indicated. Likewise if it is in a sheltered area it will be low er.

In cases where the expected value of an attribute includes any of the available range, the value *variable* is used.

In cases where it is not possible to assign a value to an attribute (e.g. available water storage for Bare rock), the value *not applicable* is used.

Attribute	Based on	Range of values
Water repellence	van Gool & Moore (1999)	Low, Moderate, High
Soil structure decline	van Gool & Moore (1999)	Low, Moderate, High
Subsurface acidification	van Gool & Moore (1999)	Low, Moderate, High, Presently Acid
Surface condition	McDonald <i>et al.</i> (1990, p142)	Cracking, Self-mulching, Loose, Soft, Firm, Hardsetting, (and others)
Unrestricted rooting depth	van Gool & Moore (1999)	Very shallow, Shallow, Moderate, Deep, Very deep
Available water storage	van Gool & Moore (1999)	Very Iow, Low, Moderate, High
Subsurface compaction	van Gool & Moore (1999)	Low, Moderate, High
pH 0-10 cm	Purdie (1993a)	Strongly acid, Acid, Neutral, Alkaline
pH 50-80 cm	Purdie (1993a)	Strongly acid, Acid, Neutral, Alkaline
Soil permeability	Purdie (1993b, p14)	Very slow, Slow, Moderately slow, Moderate, Moderately rapid, Rapid, Very rapid
Soil workability	van Gool & Moore (1999)	Good, Fair, Poor, Very poor
Wind erodibility	van Gool & Moore (1999)	Low, Moderate, High, Extreme

Soil Group qualifiers

Each Soil Group includes a range of soil properties. In many circumstances the Soil Group alone may not convey all the information necessary to distinguish local soils or soil properties relevant to land management. An appended qualifier gives flexibility needed in these situations while retaining standardised names.

The extra information provided by Soil Group qualifiers falls into five main categories: texture, structure, subsurface, subsoil and substrate related

Soil Group qualifiers can be used in two main ways:

Ad hoc for adding some descriptive information to a Soil Group In this option free text can be added to a Soil Group to help describe particular characteristics of a soil. For example Pale deep sand (over mottled clay by 1.5 m)

2 Structured to determine land units

The Department of Agriculture, Western Australia uses a standard set of Soil Group qualifiers which are applied to individual Soil Groups or combinations of Soil Groups for the purpose of defining land units in combination with landscape position. The methodology for determining land units for the purpose of assigning attributes for land management decision making is described on page 89.

Table 1 describes in detail the standard set of Soil Group qualifiers used by the Department of Agriculture, and the Soil Groups to which they apply. Note that some appear similar but have different meanings and different Soil Group applicabilities.

Table 2 describes how the qualifiers are assigned to individual Soil Groups or Soil Supergroups. The qualifiers are applied to each Soil Group in a specific order. For a given Soil Group start at the top of the list of qualifiers and, working down the list, select the <u>first</u> applicable qualifier, even if other qualifiers down the list are also applicable. The qualifiers are listed in decreasing order of importance for land use, hence it is important that the first, and most important, qualifier is selected.

Table 1 Standard list of Soil Group qualifiers for describing land units (ordered by code)

Code	Qualifier name and summary description	Relevant soil
Code	Quantier frame and Summary description	groups
ACD	Good acid subsoil: clay loam to clay subsoil above 80 cm is acidic	404, 405, 407, 501,
	(pH _w <6.0) and non-sodic and well structured or permeable	505, 506, 508, 541,
	" ,	543, 544, 545
ACD	Good acid subsoil: subsoil above 80 cm is acidic (pH _w <6.0) and non-sodic	461, 462, 463, 464,
	and well structured or permeable	465
ALK	Good alkaline subsoil: clay loam to clay subsoil above 80 cm is alkaline	402, 405, 406, 407,
/		408, 502, 503, 505,
	(pH _w >8.0) and non-sodic and well structured or permeable	506, 507, 508, 541,
		542, 543, 544, 545
ALK		462, 463, 464, 465
ALK	Good alkaline subsoil: subsoil above 80 cm is alkaline (pH _w >8.0) and non-	402, 403, 404, 403
0.40	sodic <i>and</i> well structured or permeable	000 000 004 000
CAC	Acid subsoil: clay loam to clay subsoil above 80 cm is acidic (pH _w <6.0)	302, 303, 601, 602,
		621, 622
CLK	Alkaline subsoil: clay loam to clay subsoil above 80 cm is alkaline	601, 602, 621, 622
	(pH _w >8.0) above 80 cm	
CLM	Clayey matrix: stones or gravel are surrounded by a predominantly clay	202, 203, 304
	loam to clay matrix	
CLY	Clay topsoil: topsoil texture ranges from a clay loam to a clay	101, 103, 105
CNE	Neutral subsoil: clay loam to clay subsoil above 80 cm is neutral (pHw 6.0-	302, 303, 601, 602,
	8.0) (may be alkaline in 303)	621, 622
DNR	Differentiation not required: no further differentiation is required for this	102, 104, 201, 701,
	soil group	702, 703, 704
DSA	Deep sand: profile is non-alkaline and has sand to clay ey sand texture to a	101, 103, 105
	depth of at least 80 cm	, ,
DSD	Deep sandy duplex: profile has a sandy topsoil and a texture contrast	101, 103, 105
	lay er present at 30-80 cm	,,
DSK	Calcareous or alkaline sands: profile is alkaline and has sand to clay ey	101, 103, 105
	sand texture to a depth of at least 80 cm	, , , , , , , , , , , , , , , , , , , ,
EDX	Effective duplex: barrier to drainage (e.g. clay layer, solid rock or hardpan)	440
	is present at 80-150 cm	
FSE	Fair sand, effective duplex: fine sand to 80 cm or sand increasing to	441, 445, 446
. •=	clay ey or loamy sand below 30 cm and a clay loam or clay lay er (but no	111, 110, 110
	solid rock or hardpan) is present at 80-150 cm	
FSR	Fair sand, rock substrate: fine sand to 80 cm or sand increasing to clay ey	441, 445, 446
. •	or loamy sand below 30 cm and a hardpan or solid rock is present at 80-	111, 110, 110
	150 cm	
FSV	Fair sand, very deep: fine sand throughout or sand increasing to clayey or	441, 445, 446
	loamy sand below 30 cm and no hardpan, solid rock or clay layer present	
	within the top 150 cm	
GRG	Gravelly subsurface, good subsoil: ironstone gravel (>20%) present below	409
	15 cm and clay loam to clay subsoil above 80 cm is non-sodic and well	
	structured or permeable	
GRI	Coarse gritty sand: sand is coarse or gritty and solid rock is present at 30-	422
	80 cm	144
GRP	Gravelly subsurface, poor subsoil: ironstone gravel (>20%) present below	409
Sixi	15 cm <i>and</i> clay loam to clay subsoil above 80 cm is poorly structured	700
CD1/	(typically sodic)	404 400 405
GRV	Gravelly: ironstone gravel (>20%) present in the top 15 cm	101, 103, 105
GSA	Good sand topsoil, good acid subsoil: topsoil is a clayey, loamy or fine	403
	sand and clay loam to clay subsoil above 80 cm is acidic (pH _w <6.0) and	
	well structured or permeable	

GSE	Good sand, effective duplex: clayey or loamy sand dominates	301, 441, 445, 446
GSE	the profile and occurs within the top 30 cm and a clay loam or	001, 441, 440, 440
	clay layer (but no solid rock or hardpan) is present at 80-150 cm	
GSE	Good sand, effective duplex: clayey, loamy or fine sand	443, 444
GSL	dominates the profile below 30 cm <i>and</i> a clay loam to clay layer	110, 111
	or soft coffee rock (but no solid rock or hardpan) is present at 80-	
	150 cm	
GSN	Good sand topsoil, good neutral subsoil: topsoil is a clayey,	403
GSIN	loamy or fine sand and the clay loam to clay subsoil above 80 cm	400
	is neutral (pH _w 6.0-8.0) and non-sodic and well structured or	
	permeable	
GSP	Good sand topsoil, poor subsoil: topsoil is predominantly a	401, 403
GSF		1401, 403
	clayey, loamy or fine sand and clay loam to clay subsoil above	
CCD	80 cm is poorly structured (typically sodic)	301, 441, 442, 445,
GSR	Good sand, deep rock substrate: clayey or loamy sand	446
	(typically a dark colour in 442) dominates the profile and occurs	
	w ithin the top 30 cm and a hardpan, cemented layer or solid rock	
CCD	is present at 80-150 cm	443, 444
GSR	Good sand, deep rock substrate: clayey, loamy or fine sand	443, 444
	dominates the profile (below 30 cm) and a hardpan, cemented	
000	layer or solid rock is present at 80-150 cm	421, 422, 423, 424
GSR	Good sand, rock substrate: sand is predominantly fine	421, 422, 423, 424
	grained, loamy or clayey (typically a dark colour for 421, may	
	contain some gravels for 422-424) and a hardpan, cemented	
2017	layer or solid rock is present at 30-80 cm	204
GSV	Good sand, very deep: clayey or loamy sand dominates the	301
	profile (may grade into a clay below 80 cm) and no hardpan or	
00)/	solid rock is present within the top 150 cm	444 440 445 446
GSV	Good sand, very deep: clayey or loamy sand (typically a dark	441, 442, 445, 446
	colour in 442) dominates the profile and occurs within the top	
	30 cm and no hardpan, clay layer or solid rock is present within	
CCV	the top 150 cm	443, 444
GSV	Good sand, very deep: clayey, loamy or fine sand dominates	443, 444
	the profile below 30 cm and no hardpan, clay layer, reticulite or	
CCV	solid rock is present within the top 150 cm	301
GSX	Good sand, permeable substrate: clayey or loamy sand	301
	dominates and a permeable layer of reticulite or clay is present at	
OTD	80-150 cm	443, 444
GTR	Gritty sand, rock substrate: gritty or coarse sand (typically	1 77 3, 777
0)/D	bleached) <i>and</i> solid rock is present at 80-150 cm	421
GVR	Good sand, very shallow rock substrate: dark loamy sand	
	dominates the profile and solid rock or a cemented layer is	
CVA/I	present at <30 cm	401
GWK	Good sand, good alkaline subsoil: topsoil is a clayey, loamy	1 4 01
	or fine sand and clay loam to clay subsoil above 80 cm is alkaline	
104	(pH _w >8.0) and non-sodic and well structured or permeable	101 103 105
LCA	Loamy-calcareous: soil is predominantly loamy <i>and</i> calcareous	101, 103, 105 101, 103, 105
LDP	Loamy duplex: profile has a loamy topsoil and a texture	101, 103, 105
	contrast layer present at 30-80 cm	

LMM	Loamy matrix: stones or gravel are surrounded by a predominantly	202, 203, 304
LMR	sandy loam, loam, silty loam or sandy clay loam matrix Loam, rock substrate: solid rock or hardpan is present at 30-80 cm	520, 522, 523
LMY	Loam topsoil: soil is a deep loam or a loam grading into a clay (i.e. a	101, 103, 105
LIVIT	loamy earth)	101, 103, 103
LVR	Loam, very shallow rock substrate: solid rock, a cemented layer or	523
	hardpan is present at <30 cm	
NEU	Good neutral subsoil: clayey subsoil above 80 cm is neutral	404, 405, 406, 407, 408,
	(pH _w 6.0-8.0) and non-sodic and well structured or permeable	504, 505, 506, 507, 508,
NEU	Cood nautral cubacile subsoil above 90 cm is nautral (pH 6.0.9.0)	541, 543, 544, 545 462, 463, 464, 465
NEU	Good neutral subsoil: subsoil above 80 cm is neutral (pH _w 6.0-8.0) and non-sodic and well structured or permeable	402, 403, 404, 403
NSA	Non-saline: non-saline (ECe is <400 mS/m) above 80 cm	521
PEA	Peaty: soil (which is typically sandy) is dominated by organic matter	105
POE	Poor sand, effective duplex: gravel is surrounded by a predominantly a sand or loamy sand matrix in the top 80 cm and a clay loam to clay	301
	lay er which provides an impediment to water movement is present at	
	80-150 cm	
PPS	Poor sand, poor subsoil: topsoil is predominantly a coarse or	401, 403
	medium grained sand and the clay subsoil is poorly structured (typically	
	sodic)	
PSE	Poor sand, effective duplex: coarse or medium sand is dominant and	441, 443, 444, 445, 446
	a clay loam to clay layer or soft coffee rock (but no solid rock or	
	hardpan) is present at 80-150 cm	
PSR	Poor sand, deep rock substrate: sand is predominantly coarse or	301, 441, 442, 443, 444,
	medium grained (and pale coloured for 442, can also be a loamy sand for	445, 446
	301) and a hardpan, cemented layer or solid rock is present at 80- 150 cm	
PSR	Poor sand, rock substrate: sand is predominantly coarse or medium	421, 422, 423, 424
'	grained (and pale for 421) and a hardpan, cemented layer or solid rock	721, 722, 720, 727
	present at 30-80 cm	
PSS	Poor subsoil: poorly structured (typically sodic) clay or clay loam	302, 303, 400, 402, 404,
	subsoil above 80 cm which provides an impediment to water movement	405, 406, 407, 408, 409,
	and root growth	460, 461, 462, 463, 464,
		465, 500, 501, 502, 503,
		504, 505, 506, 507, 508,
		540, 541, 542, 543, 544,
PSV	Poor sand, very deep: sand is predominantly coarse or medium	545
PSV	grained (and pale coloured for 442, can also be a loamy sand for 301)	301, 441, 442, 443, 444, 445, 446
	and no hardpan, solid rock or clay layer is present within the top 150 cm	443, 440
PSX	Poor sand, permeable substrate: gravel is surrounded by a	301
	predominantly sand or loamy sand matrix in the top 80 cm and a	
	reticulite or permeable clay layer is present at 80-150 cm	
PVR	Poor sand, very shallow rock substrate: sand is coarse to fine	421
	grained with low organic matter content (i.e. pale coloured) and a solid	
	rock or cemented layer is present at <30 cm	
PWA	Poor sand, good acid subsoil: sandy topsoil is coarse or medium	403
	grained and clay loam to clay subsoil above 80 cm is acid (pH _w <6.0)	
	and non-sodic and well structured or permeable	

PWK	Poor sand, good alkaline subsoil: sandy topsoil is coarse or medium	401
	grained and clay loam to clay subsoil above 80 cm is alkaline (pH _w >8.0)	
PWN	and non-sodic and well structured or permeablePoor sand, good neutral subsoil: sandy topsoil is coarse or medium	403
PWIN	grained <i>and</i> clay loam to clay subsoil above 80 cm is neutral (pH _w 6.0-	403
	8.0) and non-sodic and well structured or permeable	
RET	Reticulite: a reticulite layer is present at 30-80 cm	302, 303
RKD	Deep rock substrate: solid rock, hardpan or a cemented layer is present	301, 302
2	at 80-150 cm	30., 302
RKM	Rock substrate: solid rock, hardpan or a cemented layer is present at	401, 402, 403, 404, 405,
	30-80 cm	406, 407, 408, 409, 460,
		461, 462, 463, 464, 465,
		501, 502, 503, 504, 505,
		506, 507, 508, 541, 544,
		545
RST	Rocky or stony: soil has >20% rock or stones (>20 mm) throughout	101, 103, 105
SAC	Acid sand: sand is strongly acid (pH _w <5.6) within the top 30 cm	422, 423, 424, 441, 443,
SAL	Calina, asil is spling /FCo. 400 mS/m) within the ten. 20 am	444, 445, 446
SAL	Saline: soil is saline (ECe>400 mS/m) within the top <30 cm	202, 304, 421, 422, 423, 424, 442, 520, 521, 522,
		601, 602, 621, 622
SAM	Sandy matrix: stones or gravel are surrounded by a predominantly	202, 203, 304
0,	coarse to clay ey sand sandy matrix	202, 200, 001
DLM	Deep loam: the texture of the matrix surrounding the gravel ranges from	303
	a sandy loam to sandy clay loam in the top 80 cm (i.e. no clay loam or	
	clay layer)	
SEA	Sandy earth: sandy topsoil grading to loam by 80 cm	101, 103, 105
SHL	Shallow loam: soil is a loam or a clay and solid rock, hardpan or a	101, 103, 105
	cemented layer is present at 30-80 cm	
SHS	Shallow sand: soil is a sand and solid rock, hardpan or a cemented	101, 103, 105
000	lay er is present at 30-80 cm	404 402 405
SSD	Shallow sandy duplex : profile has a sandy topsoil and a texture contrast layer present at <30 cm	101, 103, 105
SSS	Saline subsoil: subsoil is saline (ECe>400 mS/m) and occurs above	203, 301, 302, 303, 400,
	80 cm	401, 402, 403, 404, 405,
		406, 407, 408, 409, 460,
		461, 462, 463, 464, 465,
		500, 501, 502, 503, 504,
		505, 506, 507, 508, 540,
		541, 542, 543, 544, 545
TYP	Typical: typical qualifier for this soil group in this zone	All
UDF	Undifferentiated: soil has not yet been differentiated	All
VDE	Very deep: no solid rock, clay, hardpan or reticulite is present in the top 150 cm	440
VGR	Very gravelly: ironstone gravel content is predominantly >60% within the	301, 302, 303, 304
VOIX	top 80 cm	301, 302, 303, 304
VSH	Very shallow rock substrate: solid rock, hardpan or a cemented layer is	101, 103, 105, 202, 203,
	present at <30 cm	304, 420, 422, 423, 424,
		520, 522
wss	Good subsoil: clay loam to clay subsoil above 80 cm is non-sodic and	400, 409, 460, 500, 540
	well structured or permeable	

Table 2 Order of applicable Soil Group qualifiers

For a given Soil Group or Soil Supergroup (listed by code order) start at the top of the list of qualifiers, and working down the list select the *first* applicable qualifier

	- ··
101	Saline wet soil
	VSH: very shallow rock substrate
	RST: rocky or stony
	CLY: clay topsoil
	LCA: loamy-calcareous
	SHL: shallow loam
	LDP: loamy duplex
	LMY: loam topsoil
	GRV: gravelly
	SHS: shallow sand
	SSD: shallow sandy duplex
	DSD: deep sandy duplex
	SEA: sandy earth
	DSK: calcareous or alkaline sands
	DSA: deep sand
102	Salt lake soil
	DNR: differentiation not required
103	Semi-wet soil
	VSH: very shallow rock substrate
	RST: rocky or stony
	CLY: clay topsoil
	LCA: loamy-calcareous
	SHL: shallow loam
	LDP: loamy duplex
	LMY: loam topsoil
	GRV: gravelly
	SHS: shallow sand
	SSD: shallow sandy duplex
	DSD: deep sandy duplex
	SEA: sandy earth
	DSK: calcareous or alkaline sands
101	DSA: deep sand
104	Tidal soil DNR: differentiation not required
405	·
105	Wet soil VSH: very shallow rock substrate
	RST: rocky or stony
	CLY: clay topsoil
	PEA: peaty
	LCA: loamy-calcareous
	SHL: shallow loam
	LDP: loamy duplex
	GRV: gravelly
	SHS: shallow sand
	SSD: shallow sandy duplex
	DSD: deep sandy duplex
	SEA: sandy earth
	DSK: calcareous or alkaline sands
	DSA: deep sand
201	Bare rock
	DNR: differentiation not required
202	Calcareous stony soil
	VSH: very shallow rock substrate
	SAL: saline
	l
	SAM: sandy matrix

LMM: loamy matrix
CLM: clay ey matrix

203	Stony soil
	VSH: v ery shallow rock substrate
	SSS: saline subsoil
	SAM: sandy matrix
	LMM: loamy matrix
	CLM: clayey matrix
301	Deep sandy gravel
	SSS: saline subsoil
	VGR: very gravelly
	POE: poor sand, effective duplex
	GSE: good sand, effective duplex
	PSX: poor sand, permeable
	substrate
	GSX: good sand, permeable
	substrate
	PSR: poor sand, deep rock
	substrate
	GSR: good sand, deep rock
	substrate
	PSV: poor sand, very deep
	GSV: good sand, very deep
302	Duplex sandy gravel
	SSS: saline subsoil
	RKD: deep rock substrate
	VGR: very gravelly RET: reticulite
	PSS: poor subsoil CAC: acid subsoil
	CNE: neutral subsoil
303	Loamy gravel
303	SSS: saline subsoil
	RET: reticulite
	VGR: very gravelly
	DLM: no clay loam in top 80cm
	PSS: poor subsoil
	CAC: acid subsoil
	CNE: neutral subsoil
304	Shallow gravel
	VSH: very shallow rock substrate
	SAL: saline
	VGR: very gravelly
	SAM: sandy matrix
	LMM: loamy matrix
	CLM: clay ey matrix
400	SANDY DUPLEXES Supergroup
	SSS: saline subsoil
	PSS: poor subsoil
	WSS: good subsoil
401	Alkaline grey deep sandy duplex
	SSS: saline subsoil
	RKM: rock substrate
	PPS: poor sand, poor subsoil

	T
	GSP: good sand topsoil, poor subsoil
	PWK: poor sand, good alkaline
	subsoil
	GWK: good sand, good alkaline
	subsoil
402	Alkaline grey shallow sandy
	duplex SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
403	
403	Grey deep sandy duplex SSS: saline subsoil
	RKM: rock substrate
	PPS: poor sand, poor subsoil
	GSP: good sand topsoil, poor subsoil
	GSN: good sand topsoil, good
	neutral subsoil
	GSA: good sand topsoil, good acid
	subsoil
	PWN: poor sand, good neutral
	subsoil
	PWA: poor sand, good acid subsoil
404	Grey shallow sandy duplex
104	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	NEU: good neutral subsoil
	ACD: good acid subsoil
405	Red deep sandy duplex
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
406	Red shallow sandy duplex
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	NEU: good neutral subsoil
407	Yellow/brown deep sandy duplex
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
408	Yellow/brown shallow sandy
	duplex SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
409	NEU: good neutral subsoil
409	Reticulite deep sandy duplex SSS: saline subsoil
	RKM: rock substrate
	GRP: gravelly subsurface, poor
	Oiti . graveny subsurface, pour

	subsoil
	PSS: poor subsoil
	GRG: gravelly subsurface, good
	subsoil
	WSS: good subsoil
420	SHALLOW SANDS Supergroup
	VSH: very shallow rock substrate
421	Calcareous shallow sand
	SAL: saline
	PVR: poor sand, very shallow rock
	substrate
	GVR: good sand, very shallow rock
	substrate
	PSR: poor sand, deep rock
	substrate
	GSR: good sand, deep rock
	substrate
422	Pale shallow sand
	SAL: saline
	VSH: very shallow rock substrate
	SAC: acid sand
	GRI: coarse gritty sand
	PSR: poor sand, deep rock
	substrate
	GSR: good sand, deep rock
423	substrate Red shallow sand
423	SAL: saline
	VSH: very shallow rock substrate
	SAC: acid sand
	PSR: poor sand, deep rock
	substrate
	GSR: good sand, deep rock
	substrate
424	Yellow/brown shallow sand
	SAL: saline
	VSH: very shallow rock substrate
	SAC: acid sand
	PSR: poor sand, deep rock
	substrate
	GSR: good sand, deep rock
	substrate
440	DEEP SANDS Supergroup
	EDX: effective duplex
	VDE: very deep
441	Brown deep sand
	SAC: acid sand
	PSR: poor sand, deep rock
	substrate
	PSV: poor sand, very deep
	PSE: poor sand, effective duplex
	FSR: fair sand, rock substrate
	FSE: fair sand, effective duplex
	FSV: fair sand, very deep
	GSR: good sand, deep rock
	substrate
	GSE: good sand, effective duplex
4.5	GSV: good sand, very deep
442	Calcareous deep sand
	SAL: saline

PSR: poor sand, deep rock
substrate
PSV: poor sand, very deep
PSV: poor sand, very deep GSR: good sand, deep rock
substrate

	WSS: good subsoil
461	Acid yellow sandy earth
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ACD: good acid subsoil

443	Gravelly pale deep sand SAC: acid sand GTR: gritty sand, rock substrate PSR: poor sand, deep rock substrate PSE: poor sand, effective duplex PSV: poor sand, very deep GSR: good sand, deep rock substrate GSE: good sand, effective duplex
	GSV: good sand, very deep
444	Pale deep sand SAC: acid sand GTR: gritty sand, rock substrate PSR: poor sand, deep rock substrate PSE: poor sand, effective duplex PSV: poor sand, very deep GSR: good sand, deep rock substrate GSE: good sand, effective duplex
	GSV: good sand, very deep
445	Red deep sand SAC: acid sand PSR: poor sand, deep rock substrate PSV: poor sand, very deep PSE: poor sand, effective duplex FSR: fair sand, rock substrate FSE: fair sand, effective duplex FSV: fair sand, very deep GSR: good sand, deep rock substrate GSE: good sand, effective duplex GSV: good sand, very deep
446	Yellow deep sand SAC: acid sand PSR: poor sand, deep rock substrate PSE: poor sand, effective duplex PSV: poor sand, very deep FSR: fair sand, rock substrate FSE: fair sand, effective duplex FSV: fair sand, very deep GSR: good sand, deep rock substrate GSE: good sand, effective duplex GSV: good sand, very deep
460	SANDY EARTHS Supergroup
	SSS: saline subsoil RKM: rock substrate PSS: poor subsoil

462	Brown sandy earth
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
463	Red sandy earth
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
464	Yellow sandy earth
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
465	Pale sandy earth
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
500	LOAMY DUPLEXES Supergroup
	SSS: saline subsoil
	PSS: poor subsoil
	WSS: good subsoil
501	Acid shallow duplex
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ACD: good acid subsoil
502	Akaline grey shallow loamy
	duplex SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
503	Akaline red shallow loamy
303	duplex
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	TELL GOOD GIRGING SUDSOII

504	Grey shallow loamy duplex
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	NEU: good neutral subsoil
505	Brown deep loamy duplex
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil

SSE: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil ACD: good acid subsoil NEU: good neutral subsoil RKM: rock substrate PSS: saline subsoil NEU: good neutral subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil RKM: rock substrate PSS: poor subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil NEU: good neutral subsoil S20 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate S21 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil 541 Brown loamy earth		
RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil ACD: good acid subsoil NEU: good neutral subsoil SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil SSS: saline subsoil RKM: rock substrate PSS: poor subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil SOB SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate SOB SAL: saline VSH: very shallow loam SAL: saline NSA: non-saline SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate SOB	506	Red deep loamy duplex
PSS: poor subsoil ALK: good alkaline subsoil ACD: good acid subsoil NEU: good neutral subsoil NEU: good neutral subsoil Red shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil RKM: rock substrate PSS: poor subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil NEU: good neutral subsoil S20 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
ALK: good alkaline subsoil ACD: good acid subsoil NEU: good neutral subsoil 8		RKM: rock substrate
ACD: good acid subsoil NEU: good neutral subsoil Red shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil RKM: rock substrate PSS: poor subsoil RKM: rock substrate PSS: poor subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		PSS: poor subsoil
NEU: good neutral subsoil Red shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil 7 Yellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil ALK: good neutral subsoil NEU: good neutral subsoil NEU: good neutral subsoil S20 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		ALK: good alkaline subsoil
507 Red shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 508 Yellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate EMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		ACD: good acid subsoil
SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 508 Yellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		NEU: good neutral subsoil
SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 508 Yellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	507	Red shallow loamy duplex
PSS: poor subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 508 Yellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
ALK: good alkaline subsoil NEU: good neutral subsoil 7ellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		RKM: rock substrate
ALK: good alkaline subsoil NEU: good neutral subsoil 7ellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		PSS: poor subsoil
NEU: good neutral subsoil Yellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
508 Yellow/brown shallow loamy duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
duplex SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	508	-
SSS: saline subsoil RKM: rock substrate PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		•
PSS: poor subsoil ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		RKM: rock substrate
ACD: good acid subsoil ALK: good alkaline subsoil NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
ALK: good alkaline subsoil NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		•
NEU: good neutral subsoil 520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
520 SHALLOW LOAMS Supergroup SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		•
SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, very shallow rock substrate LMR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	520	
VSH: very shallow rock substrate LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate LMR: loam, very shallow rock substrate LMR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	320	
LMR: loam, rock substrate 521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
521 Calcareous shallow loam SAL: saline NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		•
SAL: saline NSA: non-saline Fraction 1	F24	
NSA: non-saline 522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	321	
522 Red shallow loam SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
SAL: saline VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	500	
VSH: very shallow rock substrate LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	522	
LMR: loam, rock substrate 523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
523 Red-brown hardpan shallow loam LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		=
LVR: loam, very shallow rock substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
substrate LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil	523	<u>-</u>
LMR: loam, rock substrate 540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
540 LOAMY EARTHS Supergroup SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		
SSS: saline subsoil PSS: poor subsoil WSS: good subsoil		·
PSS: poor subsoil WSS: good subsoil	540	
WSS: good subsoil		
541 Brown Ioamy earth		
	541	
SSS: saline subsoil		
RKM: rock substrate		
PSS: poor subsoil		·
ALK: good alkaline subsoil		<u> </u>
ACD: good acid subsoil		-
NEU: good neutral subsoil		NEU: good neutral subsoil

542	Calcareous loamy earth
	SSS: saline subsoil
	PSS: poor subsoil
	ALK: good alkaline subsoil

543	Friable red/brown loamy earth
	SSS: saline subsoil
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
544	Red loamy earth
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
545	Yellow loamy earth
	SSS: saline subsoil
	RKM: rock substrate
	PSS: poor subsoil
	ALK: good alkaline subsoil
	ACD: good acid subsoil
	NEU: good neutral subsoil
601	Hard cracking clay
	SAL: saline
	CAC: acid subsoil
	CLK: alkaline subsoil
	CNE: neutral subsoil
602	Self-mulching cracking clay
	SAL: saline
	CAC: acid subsoil
	CLK: alkaline subsoil
	CNE: neutral subsoil
621	Grey non-cracking clay
	SAL: saline
	CAC: acid subsoil CLK: alkaline subsoil
600	CNE: neutral subsoil
622	Red/brown non-cracking clay SAL: saline
	CAC: acid subsoil
	CLK: alkaline subsoil
	CNE: neutral subsoil
701	Disturbed land
'01	DNR: differentiation not required
702	Water
	DNR: differentiation not required
703	No suitable group
	DNR: differentiation not required
704	Undifferentiated soils
	DNR: differentiation not required

Land units

Land units are combinations of soil and landform that repeatedly occur at similar points in the landscape (van Gool and Moore 1999). They have a defined set of properties relevant to land management. They are similar in concept to the land management units (LMUs) that are often used in catchment or farm planning. The key difference is that land units are more tightly defined than land management units, and often provide more information or detail than is required to partition the landscape for management purposes. Land management units are groups of land units that perform similarly under a specified land use.

In the soil-landscape mapping available for south-western Australia, the land units are typically made up of three components:

- 1 Soil Group
- 2 Soil Group qualifier (additional information about soil group relevant to land management)
- Landform.

An example of a land unit from the Busselton-Margaret River area is:

Soil Group: Brown loamy earth (code: 541)

Soil Group qualifier: **Good neutral subsoil**: clayey subsoil above 80 cm is neutral (pH_w 6.0-8.0) and non-sodic and well structured or permeable neutral pH and well structured or permeable non-sodic subsoil (code NEU)

Landform: well drained flat (code FWD)

Each land unit is then given values for a range of land qualities based on soil, landform and soil-landform characteristics.

In the soil-landscape mapping for south-western Australia conducted by the Department of Agriculture there are at present about 9,000 land units. These can be grouped into about 100 main land management units for the agricultural area. Within any regional area it is possible to aggregate these to about 20 or 30 land management units which are relevant to land management.

More information on the soil-landscape mapping program and land units can be obtained from Department of Agriculture, Western Australia's external website: www.agric.wa.gov.au/progserv/natural/assess/Index.htm, or for Department of Agriculture staff from the internal website: agweb/progserv/natural/assess/Index.htm

Enquiries about qualifiers, land units and other information held in the map unit database should be directed to Noel Schoknecht (contact details on page 4).