Devoir facultatif n° 3

Dans tout ce problème, on notera les suites réelles comme des fonctions. Ainsi, une suite u définie sur \mathbb{N} sera écrite comme une fonction $u: \mathbb{N} \to \mathbb{R}$ et son terme général sera noté u(n), et non u_n .

Partie 1: Puissances factorielles descendantes.

Pour tout $x \in \mathbb{N}$, $m \in \mathbb{N}^*$, on pose

$$x^{\underline{0}} = 1$$
 et $x^{\underline{m}} = x(x-1) \times \cdots \times (x-m+1) = \prod_{k=0}^{m-1} (x-k)$.

Dans cette partie, m désigne un entier naturel.

- 1) Soit $x \in \mathbb{N}$. Si $x \ge m$, écrire $x^{\underline{m}}$ comme un rapport de deux factorielles. Que vaut $x^{\underline{m}}$ si x < m?
- 2) Soit $x \in \mathbb{N}$, exprimer x^{m+1} en fonction de x^m .
- 3) Soit $a, b \in \mathbb{N}$. Démontrer la formule du binôme :

$$(a+b)^{\underline{m}} = \sum_{k=0}^{m} \binom{m}{k} a^{\underline{k}} b^{\underline{m-k}}.$$

Partie 2 : Dérivation discrète.

Pour chaque fonction $f: \mathbb{N} \to \mathbb{R}$, on définit la fonction $\Delta(f): \mathbb{N} \to \mathbb{R}$, $x \mapsto f(x+1) - f(x)$, que l'on appelle fonction $d\acute{e}riv\acute{e}e$ de f.

Pour chaque fonction $f: \mathbb{N} \to \mathbb{R}$, on définit la fonction $\tau(f): \mathbb{N} \to \mathbb{R}$, $x \mapsto f(x+1)$. Pour chaque $m \in \mathbb{N}$, on note $f_m: \mathbb{N} \to \mathbb{R}$, $x \mapsto x^{\underline{m}}$.

- 4) Soit $g: \mathbb{N} \to \mathbb{R}$ une fonction constante. Déterminer $\Delta(g)$. Que vaut donc $\Delta(f_0)$?
- 5) Soit $m \in \mathbb{N}^*$. Montrer que $\Delta(f_m) = m f_{m-1}$.
- **6)** Soit $k \in \mathbb{N}$ et $b_k : \mathbb{N} \to \mathbb{R}$, $x \mapsto \begin{pmatrix} x \\ k \end{pmatrix}$. Déterminer $\Delta(b_k)$.
- 7) Soit $f, g : \mathbb{N} \to \mathbb{R}$ deux fonctions, soit $\lambda, \mu \in \mathbb{R}$. Exprimer $\Delta(\lambda f + \mu g)$ ainsi que $\Delta(fg)$ en fonction notamment de $\Delta(f)$, $\Delta(g)$, $\tau(f)$ et $\tau(g)$.

Partie 3 : Primitivation et intégration discrètes.

Pour deux fonctions $f, F : \mathbb{N} \to \mathbb{R}$, on dit que F est une primitive de f si f est la fonction dérivée de F, i.e. $\Delta(F) = f$.

Pour chaque fonction $f: \mathbb{N} \to \mathbb{R}$, on définit la fonction

$$I(f): \mathbb{N} \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ \sum_{k=0}^{x-1} f(k) & \text{si } x > 0 \end{cases}.$$

- 8) Montrer qu'il existe une unique fonction $e: \mathbb{N} \to \mathbb{R}$ vérifiant e(0) = 1 et $\Delta(e) = e$.
- 9) Soit $f: \mathbb{N} \to \mathbb{R}$. Exprimer $\Delta(I(f))$.
- 10) Soit $f: \mathbb{N} \to \mathbb{R}$. Exprimer $I(\Delta(f))$.
- 11) Montrer que toute fonction $f: \mathbb{N} \to \mathbb{R}$ possède une unique primitive s'annulant en 0 et donner l'ensemble des primitives de f.
- 12) Soit $m \in \mathbb{N}$. Déterminer l'ensemble des primitives de $f_m : x \mapsto x^{\underline{m}}$.
- 13) Soit $m, n \in \mathbb{N}$.
 - a) Déterminer $\sum_{k=0}^{n-1} k^{\underline{m}}$.
 - **b)** En déduire la valeur de $\sum_{k=0}^{n-1} k$ puis celle de $\sum_{k=0}^{n-1} k^2$.

Partie 4 : Nombres de Stirling de seconde espèce.

On définit les nombres de Stirling de seconde espèce de la manière suivante :

- pour tout $n \in \mathbb{N}$, on définit $\begin{Bmatrix} n \\ n \end{Bmatrix} = 1$;
- pour tout $n \in \mathbb{N}^*$, on définit $\begin{Bmatrix} n \\ 1 \end{Bmatrix} = 1$;
- pour tout $n, k \in \mathbb{N}^*$ vérifiant $1 \le k < n$, on définit $\begin{Bmatrix} n \\ k \end{Bmatrix} = \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix} + k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}$.
- **14)** Montrer que, pour tout $n \in \mathbb{N}^*$, $\begin{Bmatrix} n \\ 0 \end{Bmatrix} = 0$.
- **15)** Calculer $\begin{cases} 5 \\ 2 \end{cases}$.
- **16)** Soit $m \in \mathbb{N}$. Montrer que

$$\forall x \in \mathbb{N}, \ x^m = \sum_{k=0}^m \begin{Bmatrix} m \\ k \end{Bmatrix} x^{\underline{k}}.$$

17) En déduire une formule donnant pour tout $n, m \in \mathbb{N}^*$ les valeurs des sommes $\sum_{k=0}^{n-1} k^m$, en fonction des nombres de Stirling de seconde espèce.