

Klasterovanje

K-means

K-means

- Algoritam za klasterovanje koji uvodi pretpostavku:
 - *Score* = rastojanje od centra klastera (manje rastojanje je bolje)

K-means

Ulaz

- $T = \{x^{(i)}, i = 1, ..., N\}$ trening skup
- K − broj klastera Kako da odredimo K?

Postupak

- Na slučajan način inicijalizovati centroide μ_1, \dots, μ_K
- Dok ne dođe do konvergencije: Da li konvergira?
 - Za svaku opservaciju $x^{(i)}$ pronaći klaster sa najbližim centroidom (i dodeliti opservaciju tom klasteru): Šta znači $z^{(i)} \leftarrow \arg\min_{i} \left\| \mu_j - x^{(i)} \right\|_2^2$ "blizu"?
 - Ažurirati centroide klastera prema opservacijama koje su im dodeljene (*mean*)

$$\mu_j = \frac{1}{n_j} \sum_{i:z^{(i)}=j} x^{(i)}$$

 n_i - broj opservacija u klasteru j

Izlaz

 $(x^{(i)}, z^{(i)}), i = 1, ..., N$ Da li smo dobili kvalitetno rešenje?