

Lesson 12: Searching and optimization

G Stefanescu — University of Bucharest

Parallel & Concurrent Programming Fall, 2014

Generalities

Combinatorial search and optimization techniques:

- find a solution for a problem with many potential solutions often exhaustive search is infeasible
- examples: traveling salesperson problem, 0/1 knapsack problem, *n*-queens problem, 15-tiles puzzle, etc.
- many "serious" applications in commerce, banking, industry; e.g., financial forecasting, airline fleet/crew assignment, VLSI chip layout, etc.
- basic techniques: branch-and-bound search, dynamic programming, hill climbing, simulated annealing, genetic algorithms
- parallel methods may be used for all these basic techniques

Branch-and-bound search

Branch-and-bound search:

- the state space of this problem is a (*static/dynamic*) *tree*:
 - —a divide-and-conquer approach is used
 - —at each level one choice between a finite number of choices
 - C_0, \ldots, C_{n-1} is selected
 - —the leaves represents possible solutions to the problem
- the space tree may be explored in various ways:
 - —depth-first first downward, then left-to-right
 - —breadth-first first left-to-right, then downward
 - —best-first select the branch most likely leading to the best solution
 - —selective (pruning some parts of the tree using bounding or *cut-off* functions)

..Branch-and-bound search

A few details regarding a sequential implementation:

- a node
 - —is *live* if it was already reached but not all its children have been explored
 - —is *E-node* if its children are currently explored
 - —is *dead* if all its children have been explored
- in branch-and-bound search all children of an E-node becomes live nodes
- the live nodes are usually stored in a queue (this is a *priority queue* for best-first search strategy)

Backtracking is usually considered a distinct approach: when a search cannot proceed downward the search continues with a next alternative on the upper level; an appropriate data structure for this method is a stack (lifo queue).

Parallel branch-and-bound search

Parallel branch-and-bound

- a partitioning strategy may be used: separate processes may independently search different parts of the space tree
- even if each process uses a "pure" (e.g., depth-first search) on its own part, the resulting *parallel search* may be a sort of mixture as the order of parallel processing is difficult to predict
- the method is by far *less efficient* as one initially may *expect*:

 —the current "best solution" may be known by all processes in order to act properly on their part, for instance to prune certain irrelevant parts; hence, a lot of communication is to be used, decreasing the efficiency of the parallel approach
 - —good load balancing is difficult to achieve

..Parallel branch-and-bound

- various strategies have been developed
- in a *shared-memory* model one may use a shared queue, but the serialization of the queue access limits the speedup to

$$S(n) \le \frac{t_{queue} + t_{comp}}{t_{queue}}$$

where: t_{queue} is the mean time to access the queue and t_{comp} the mean time of process computation (this comes from Amdahl's law)

• for best-first strategies priority queues have to be used; they may be efficiently implemented using a *heap* data structure; furthermore, concurrent versions to handle the heap have been suggested (Rao and Kumar '88)

..Parallel branch-and-bound

Anomalies: with *n* processes one normally expect to reach the solution *n* times faster; but:

- *acceleration anomaly* parallel speedup may be grater than *n* or "super-linear":
 - —in the parallel version a good solution may be found very early cutting down the time more than expected (n times)
- *deceleration anomaly* parallel speedup is less than *n*, but more than 1:
 - —this appears when the position of a feasible solution in the tree cannot be reached n times faster than with 1 process
- detrimental anomaly parallel speedup less than 1:
 —total time with n processes is worse than using a single process

Genetic algorithms: generalities

Natural evolution:

- the basic information of living beings is contained into their *chromosomes*
- natural evolution works at this chromosome level:
 - —when individuals reproduce, portions of parents' genetic informations are combined to generate the offspring' chromosomes
 - —the combination is based on a *crossing over* mechanism
 - —in addition, sometimes (random) *mutations* may appear
 - —the environment selects the "most fit" individuals
 - —most mutations *degrade* the individuals, but sometimes *fa-vorables changes* may appear

..Genetic algorithms: generalities

Genetic algorithms: a genetic algorithm describes a computational method to solve a problem using ideas abstracted from this biological process of evolution:

- the algorithm starts with an *initial population* of solutions (individuals); *next generations* are iteratively created
- the individuals are evaluated using a set of *fitness* criteria
- a *subset* of population is selected, tending to favor the "most fit" individuals; this subset is used to produce a new generation of *offspring* (the "crossing over" mechanism is used here)
- finally, a small number of individuals of a new generation are subject to random *mutations*

Sequential genetic algorithms (sketch):

```
generation_no = 0;
initialize Population (generation_no);
evaluate Population (generation_no);
termination_condition = False
while (!termination_condition) {
  generation_no++;
  select Parents (generation_no) from
         Population (generation_no-1);
  apply crossing_over to Parents(generation_no) to get
         Offspring (generation_no);
  apply mutation to Offspring (generation_no) to get
         Population (generation_no);
  evaluate Population (generation_no);
```


An example: a numerical computation problem

find the maximum of a function

Initial population:

• suppose the goal is to find the maximum of

$$f(x, y, z) = -x^2 + 10^6 x - y^2 - 4 \cdot 10^4 y - z^2$$

for integer x, y, z between -10^6 and 10^6 (actually, maximum value is for $x = 5 \cdot 10^5, y = -2 \cdot 10^4, z = 0$)

• initial population: $(2 \cdot 10^6 + 1)^3$ individuals (all combinations of values for x, y, z in the given range)

Data representation:

- we need "strings" (as in the case of chromosomes)
- - $-\overline{7}_{10} \rightarrow 1000000000000000111;$
- concatenating all these bits, we get the representation of a potential solution by a string with 63 bits

$$(36, -7, -1024) \rightarrow$$

Fitness function:

• for each (x, y, z) computes f(x, y, z) (larger value, better fit)

Constraints:

• not all 63 bit strings represent valid combinations: the values outside $[-10^6, 10^6]$ should be deleted (or "surgically repaired")

Number of individuals:

- small number ⇒ slow convergence;
 large number ⇒ heavy computation
- usually 20 to 1000 pseudo-random generated strings

Parents' election:

- more fit individuals have grater chance to be selected:
 - —best fit individuals may be selected to produce offspring,
 - —but choosing only the "best fit" individuals may lead to a fast convergence to a local optimum, totally missing the global one
- *tournament selection* is a solution to avoid the stick into a local optimum:
 - —a set of k individuals are randomly selected to enter into a tournament; the most fit individual is selected as a parent for the next generation;
 - —the tournament is repeated n times (if n parents have to be selected)

Offspring production:

- *single-point crossing over:*
 - —given two parents $A = a_1 \dots a_n$ and $B = b_1 \dots b_n$, randomly choose a cut point say, this is between p-th and p + 1-th bits —create 2 children:
 - child $1 = a_1 \dots a_p b_{p+1} \dots b_n$ and child $2 = b_1 \dots b_p a_{p+1} \dots a_n$
- other alternatives may be used (multi-point crossing over, uniform crossing over, gene sharing, etc.)

Mutation:

- randomly select and modify one or more bits of an individual (sometimes this may have huge effect e.g., in our example, the 1st bit represents the sign; the last bit is less important)
- mutation should be kept at a small rate (for convergence)

Variations:

- —carry over a few well fit individuals to the next generation
- —randomly create a few new individuals
- —let the population size to vary from a generation to the next

Termination:

- —either apply the basic step to generate an a-priori given number of generations
- —or use other criteria (like the difference between the value of the optimum at a generation and at the next one; or the degree of similarity of the individuals within a generation, etc.)

Parallel genetic algorithms (PGA)

Parallel genetic algorithms: two quite different possible use of parallel processing are

- 1. *isolated subpopulations*: each processor operates independently on an isolated subpopulation; their communication is through *migration* of individuals
- 2. *common population*: in this approach there is a common population; each processor does a portion of the selection-crossover-mutation work

.. (PGA) Isolated subpopulations

Isolated subpopulations:

- each processor handles an isolated subpopulation of individuals (it does the evaluation of fitness, selection, crossing over, mutation)
- periodically, say after *k* generations, the processors exchange certain individuals a so called "migration" process takes place

..(PGA) Isolated subpopulations

Migration operator:

- migration requires a few activities: selecting the emigrants; sending the emigrants; receiving the immigrants; integrating the immigrants
- a selection criterion may be to send the best individuals to a particular processor; the convergence is then faster, but there is a risk of sticking into a local optimum
- sending/receiving the emigrants/immigrants may be easily done in a message-passing model
- migration introduces a communication overhead, hence both the frequency and the volume of communication should be carefully considered

..(PGA) Isolated subpopulations

Migration models:

- *the island model:* individuals are allowed to be sent to any other subpopulation
- *the stepping stone model:* individuals are allowed to be sent only to the neighboring subpopulations
- the island model allows more freedom, but also more communication overhead is introduced

..(PGA) Isolated subpopulations

Parallel genetic algorithms (sketch of slave code):

```
generation_no = 0;
initialize Population (generation_no);
evaluate Population (generation_no);
termination_condition = False
while (!termination_condition) {
  generation_no++;
  select Parents (generation_no) from
         Population (generation_no-1);
  apply crossing_over to Parents(generation_no) to get
         Offspring (generation_no);
  apply mutation to Offspring (generation_no) to get
         Population (generation_no);
  apply migration to Population (generation_no);
  evaluate Population (generation_no);
```


..(PGA) Parallelizing a common population

Parallelizing a common population:

- in this approach general techniques to parallelize the sequential algorithm are used
- for instance, if processors have access to the required information, then parallel selection may be used (e.g., each processor does separate tournaments),
- also crossover and mutation for different individuals may be done by different processors
- as with many other parallel programs, the approach is useful when the computational effort is large enough to hide the time spent on communication

Successive refinement

Successive refinement:

- this is another iterative approach on searching algorithms based on a series of successive refinements of the solution space
- start with a coarse "cube" of solution space; e.g., for the given example (slide 12.11) test every ten-thousandth point
- the best *k* points are retained and new finer, but smaller, cubes centered in these points are evaluated
- finer and finer grids are introduced and evaluated till a good solution is obtained
- this method may be easily parallelized

Hill climbing

Hill climbing:

- hill climbing is another common approach to searching and optimization
- based on the strategy of improving the result at any step (keep moving toward the pick in the "hill climbing" metaphor)
- the problem with this approach is that one may reach a local pick and never go down to a little valley to climb up a higher pick on the other side
- a solution is to use more starting points then the chance of reaching a global optimum is increasing

..Hill climbing

Parallel versions may be easy to implement:

- the starting points may be chosen in a random way (Monte-Carlo method)
- each processor may independently handle different starting points
- depending on the problem, either a static or a dynamic work pool may be used to allocate points to processes

Slide 12.25

.. Hill climbing

A banking application:

• Problem:

how to distribute "lock-boxes" across a country to optimize the receiving of payments for a given company?

- the optimization function is in terms of *float_days* (a "*float*" is the delay between customer's payment mailing date and the firm's collection date, multiplied by the amount of payment)
- —the firm has to pay for the lock-boxes, hence not too many are to be used;
 - —their optimal distribution depends on the mailing time, but also on the distribution of the money the firm is expecting to collect from various places

.. Hill climbing

Sequential code (sketch):

```
set Float_days to 1000;
for (i=1; i < MaxLockBoxes; i++) {
  for (all possible placements of i lockboxes) {
    compute CurrentFloat_days;
    if (Float_days > CurrentFloat_days) {
      Float_days = CurrentFloat_days;
      save i and lockbox placement pattern;
    }
}
```

Computational effort: to select k lock-box places among n places requires to check $\frac{n!}{k!(n-k)!}$ combinations;

```
[for (n,k) = (200,6), approx. 8 \cdot 10^{10} combinations]
```

Slide 12.27

CS-41xx / Parallel & Concurrent Programming / G Stefanescu

.. Hill climbing

Parallel version:

- use hill climbing to avoid searching into such a huge space of possible placements
- incrementally change a lock-box location to another one that produces the greatest reduction of float_days
- eventually a location realizing a local minimum of float_days is reached
- one may randomly generate a number of initial starting locations to increase the chance of reaching a global minimum
- parallelization techniques (described when hill climbing method was introduced) may be used