苏州大学 <u>物理化学下(一)</u>课程期中试卷 共6页

考试形式 闭 卷 2015年5月(2012级应化、师范、化学专业)

院系: 材料与化学化工学部	年级:	专业:	
姓名:	学号:		
一、选择题 (共10题 20分)			
1. 2分 用 0.1 A 的电流,从 200 ml ¾	校度为 0.1 mol • dm ⁻³	的 AoNO。溶液中分离 Ao	5. 从溶液中分离出一 ³
银所需时间为:	Wighty our more dim	H111811031H1X 1 71 1-1118	
(A) 10 min		160min	
(C) 100 min	(D)	16 min	
2. 2分			
在 Hittorff 法测迁移数的实验	· ·	0	
$AgNO_3$ 的浓度增加了 x mol,而串则 Ag^+ 离子迁移数为:	联在电路中的 Ag A	译仑计上有 y mol 的 Ag	析出, ()
(A) x/y	(B) <i>y/x</i>		,
(C) $(y-x)/x$	(D) $(x-)$	y)/y	
3. 2 分	,的动心由 甘豆心 <i>և</i>	比田目不难:	∃ '小 宁 工
在界面移动法测定离子迁移数 (A)外加电压的大小	.的头独中,	ī未定首任佣,取大姓的 ^汉	是决定士: ()
(B)界面移动的清晰程度			
(C)正负离子价数是否相同 (D)正负离子运动速度是否相同	司		
	•		
4. 2分 298 K时, 无限稀释的	NH ₄ Cl 水溶液中	正离子迁移数 t= 0:	491。 已知
$\Lambda_{\mathrm{m}}^{\infty} (\mathrm{NH_4Cl}) = 0.0150 \mathrm{S} \cdot \mathrm{m}^2 \cdot \mathrm{mol}^{-1}$		正国了是沙奴 4-0.	
71 _m (1 v 114C1) = 0.0130 S · III · III01	,火切:		()
(A) $\lambda_{\rm m}^{\infty}$ (Cl ⁻) = 0.00764 S •	$m^2 \cdot mol^{-1}$		
(B) $\lambda_{\rm m}^{\infty} (NH_4^+) = 0.00764 {\rm S}$	• m ² • mol ⁻¹		
(C) $U_{NH_4^+}^{\infty} = 737 \text{ m}^2 \cdot \text{ s}^{-1}$	• V ⁻¹		
(D) $U_{\text{Cl}}^{\infty} = 7.92 \times 10^{-8} \text{m}^2$	s -1 • V-1		

5. 2分

在 298 K 时离子强度为 0.015 mol·kg-1 的 ZnCl₂ 的溶液中,其平均活度系数是: ()

(A) 0.7793

(B) 1.133

(C) 0.7504

(D) 1.283

6. 2分

铅蓄电池工作时发生的电池反应为:

()

- (A) $Pb(s)+SO_4^{2-} \rightarrow PbSO_4(s)+2e^{-1}$
- (B) $2PbSO_4(s)+2H_2O(1) \rightarrow Pb(s)+PbO_2(s)+2H_2SO_4(aq)$
- (C) $PbO_2(s)+SO_4^{2-}(aq)+4H^++2e^- \rightarrow PbSO_4(s)+2H_2O(1)$
- (D) $Pb(s)+PbO_2(s)+2H_2SO_4(aq) = 2PbSO_4(s)+2H_2O(1)$
- 7. 2分

298 K 时,应用盐桥将反应 $H^+ + OH^- = H_2O(1)$ 设计成的电池是:

- (A) $Pt,H_2|H^+||OH^-|H_2,Pt$ (B) $Pt,O_2|H^+||OH^-|O_2,Pt$
- (C) $Pt,H_2|OH^-||H^+|H_2,Pt$ (D) $Pt,H_2|H^+||OH^-|O_2,Pt$

8. 2分

下列示意图描述了原电池和电解池中电极的极化规律, 其中表示电解池阳极的是:

)

(A) 曲线 1

(B) 曲线 2

(C) 曲线 3

(D) 曲线 4

9. 2分

反应 2A → P 为一级反应, 其半衰期:

)

- (A) 与 [A]₀ 无关
- (B) 与 [A]₀成正比
- (C) 与 [A]₀成反比
- (D) 与 [A] 成反比

[A]₀为反应物 A 的起始浓度。

10. 2分

某二级反应, 反应物消耗 1/3 需时间 10 min, 若消耗 2/3 所需时间为: (

- (A) 10 min
- (B) 20 min
- (C) 30 min
- (D) 40 min

11. 4分	
测得电池 $Pt,H_2(p^{\ominus}) HCl(0.1 \text{ mol·kg}^{-1}) AgCl(s) Ag(s)$ 在 298 K 时的 $E=0.3524$ V,又已知:	
$E^{\ominus}(\text{AgCl} \mid \text{Ag}) = 0.2223 \text{ V}$,则该 HCl 溶液的 a_{\pm} =	1
12. 2 分 (4685)	
已知 $\phi^{\ominus}(Zn^{2+},Zn) = -0.763 \text{ V}$, $\phi^{\ominus}(Fe^{2+},Fe) = -0.440 \text{ V}$ 。这两电极排成自发电池时, E^{\ominus}	
=	
13. 2 分 酸性介质的氢-氧燃料电池, 其正极反应为, 负极反应为。	
14. 2 分 电池放电时,随电流密度增加正极变,负极变。	
15. 2分 采用三电极装置研究超电势时,一般采用鲁金毛细管,其作用为, 采用搅拌其作用为。	
16. 2 分 反应 $A + B \rightarrow C$ 的速率方程为: $-dc_A/dt = k_A c_A c_B/c_C$,则该反应的总级数是 级。 若浓度为 mol·dm ⁻³ ,时间以 s 为单位,则速率常数 k_A 的单位是。	
17. 1 分 反应分子数一般不会大于。	
三、计算题 (共 5 题 45 分) 18. 10 分 298K 下,电导池用 0.01 mol·dm ⁻³ 标准 KCl 溶液标定时,其电阻为 189Ω,用 0.01 mol·dm ⁻³ 的氨水溶液测其电阻值为 2460 Ω。计算氨水的解离常数。已知 0.01 mol·dm ⁻³ 标准 KCl 溶液 λ _m (KCl) = 149.9×10 ⁻⁴ S·m ² ·mol ⁻¹ ,	
$\lambda_m^{\infty}(NH_4^+) = 73.4 \times 10^{-4} s \cdot m^2 \cdot mol^{-1} \lambda_m^{\infty}(Cl^-) = 196.6 \times 10^{-4} s \cdot m^2 \cdot mol^{-1}$	

二、填空题 (共7题 15分)

19.10 分

25 °C 时,TICl 在纯水中的溶解度为 1.607×10^{-2} mol • dm⁻³,在 0.100 mol • dm⁻³ NaCl 溶液中的溶解度是 3.95×10^{-3} mol • dm⁻³,TICl 的活度积是 2.022×10^{-4} ,试求在不含 NaCl 和含有 0.1000 mol • dm⁻³ NaCl 的 TICl 饱和溶液中离子平均活度系数。

20.10 分

298 K 时,下述电池的电动势 $E^{\ominus} = 0.268V$:

 $Pt,H_2(g)|HCl(aq)|Hg_2Cl_2(s)|Hg(l)$

- (1) 写出电极反应和电池反应;
- (2) 计算 $\mathrm{Hg_2Cl_2}(s)$ 的 $\Delta_f G_m^{\ominus}$,已知 $\Delta_f G_m^{\ominus}[\mathrm{Cl}^-(\mathrm{aq})] = -131.26 \,\mathrm{kJ \cdot mol^{-1}};$

21. 5分

298 K 时,用 Pb 为电极来电解 H_2SO_4 溶液(0.10 mol • kg^{-1} , % =0.265),若在电解过程中,把 Pb 阴极与另一摩尔甘汞电极相连组成原电池,测得其电动势 $E=1.0685~\rm V$ 。试求 H_2 在 Pb 阴极上的超电势。(H_2SO_4 只考虑一级电离)已知 $\phi_{\rm fr}=0.2802~\rm V$ 。

22.10 分

- (1) 反应级数
- (2) 计算速率常数
- (3) 当起始压力是 101325 Pa 时, 求 2 h 后容器中的总压力。

四、问答题 (共2题 10分)

23. 10分

某电池的标准电动势为 E^{\ominus} ,当反应中电子的传输数为1 mol时,与温度的关系式为:

$$E^{\ominus} = \frac{A + BT + CT^2}{F}$$

式中 F 为法拉第常数, A , B , C 为与 T 无关的常数,求 $\Delta_{\mathbf{r}} H_{\mathbf{m}}^{\ominus}$ 与 T 的关系式 。

24. 10 分

某温度时 ,A 的分解反应 A \rightarrow 2B + C 为一级反应。该温度下,A,B,C 均为低压气体,反应在恒温恒容条件下进行, 反应开始时各物质浓度分别为 a,b,c ,气体总压力为 p_0 ,经 t 时间及当 A 完全分解时的总压力分别为 p_t 和 p_∞ ,试推证该分解反

应的速率常数:
$$k = \frac{1}{t} \ln \frac{p_{\infty} - p_0}{p_{\infty} - p_t}$$