

Modelos de Machine Learning para la Predicción de Impago en el Sector Financiero

Máster en Big Data & Business Analytics

Maria Regina Meiners de Alba, Eva Meneses Soto y Ana María Quintero Estévez Madrid, 2025

Roadmap

O1 Default bancario

Dataset

02

04

Interés de estudio y objetivos

Descripción y variables

O3 Metodología

Pipeline de análisis, modelado y visualización

EDA y Preprocesamiento

Análisis Exploratorio de Datos Limpieza, transformación y preparación para el modelado **O5** Modelos

06

Proceso y selección de métricas

Evaluación e interpretabilidad

Comparación de métricas y selección del modelo

O7 Dashboards

Seguimiento de KPIs y monitoreo del modelo

O8 Conclusiones

Principales hallazgos y aportes del estudio

Default bancario

Interés de estudio y objetivos

¿Por qué predecir el impago?

- El default bancario afecta la salud financiera del sector y la economía.
- Predecir impagos a tiempo ayuda a reducir riesgos y optimizar decisiones.
- Necesidad de modelos explicables y precisos para la gestión crediticia.

Objetivo

Optimizar la gestión del riesgo crediticio mediante modelos de Machine Learning que anticipen e identifiquen el impago de forma más eficiente que los métodos tradicionales.

Nos centraremos en tres partes principales:

- Comparación de modelos predictivos lineales y no lineales
- Interpretabilidad de los modelos
- Dashboards de seguimiento y monitoreo

Dataset

Características y variables

Dataset

Metodología

Pipeline de análisis, modelado y visualización

Metodología

EDA

Preprocesamiento

Modelado

- Identificación valores erróneos
- Estadísticas descriptivas y visualizaciones iniciales

- Tratamiento de valores nulos y erróneos
- Recodificación de variables

- Entrenamiento de modelos lineales y no lineales
- Selección y ajuste de hiperparámetros

Visualización

Evaluación

- Cros
- Comparativa de modelos (Fmeas)
 Interpretabilidad (SHAP, análisis de variables clave)
- Creación de dashboards de
- Creación de dashboards de seguimiento y monitoreo

Mejora contínua

- Monitoreo de métricas clave en el dashboard
- Revisión periódica del modelo
- Propuesta de re-entrenamiento ante cambios en los datos

EDA y Preprocesamiento

Análisis Exploratorio de Datos Limpieza, transformación y preparación para el modelado

Análisis Exploratorio de Datos

Detección de prevalencia

Estado del crédito

DefaultNo default

Valores nulos

Historial de impago

63,6%

Tasa de interés

9,57%

Antigüedad laboral

2,75%

Valores erróneos

Edad

<18 años >100 años

Antigüedad laboral

> 45 años

Selección de variables

p-valor

< 0,05
*Sin customer id

Inclusión de todas las variables en el modelo:

- Asociación significativa con el objetivo
- Valor predictivo

Preprocesamiento

Limpieza de errores

Tratamiento de valores incoherentes para asegurar la calidad del dataset

Eliminación de registros

Registros sin antigüedad laboral o duplicados

Recodificación de variables

Conversión de variables como home_ownership, loan_intent, y loan_grade a string

Tratamiento de valores nulos

Elección de métodos de imputación adecuados para cada caso

Tratamiento de valores nulos

Historial de impago

Reemplazo de valores nulos por "No register"

Tasa de interés

Tratamiento en receta por mediana del grupo

Modelos

Proceso y selección de métricas

Modelos lineales

Ridge

- Capacidad para reducir el sobreajuste
- Manejar bien la multicolinealidad
- Manteniendo los predictores sin eliminar información relevante

Lasso

- Reducir el sobreajuste
- Selección de variables al eliminar las irrelevantes
- Mejora la interpretabilidad

Puede perder información útil

Elastic net

- Combina las ventajas de Ridge y Lasso
- Equilibra la reducción de sobreajuste y selección de variables

Solo se prefiere si mejora significativamente

Modelos no lineales

Árboles de decisión

Bagging

Se considera útil si todas las variables son importantes

Random Forest

Ofrece un buen equilibrio entre sesgo y varianza

KNN

Identificar si clientes con características similares han hecho default:

- Agrupa
- Clasifica

nuevos registros según la distancia entre datos

SVM

Es útil cuando hay una clara separación entre clases

Encuentra el hiperplano óptimo para clasificar entre quienes hacen y no hacen default

MARS

Combina la simplicidad de los modelos lineales con la flexibilidad de los no lineales

Modela relaciones complejas mediante funciones por tramos (splines)

Proceso

Selección de la métrica

Métrica: f-meas

Concepto: mide el equilibrio entre sensibilidad y precisión:

- Capacidad del modelo para identificar correctamente los positivos
- Proporción de positivos predichos que realmente lo son

Objetivo: equilibrar precisión y sensibilidad en contextos de riesgo

Evaluación e interpretabilidad

Comparación de métricas y selección del modelo

Comparación de métricas

	Lasso	Random forest
F-Measure	0,830	0,929
Especificidad	0,956	0,991
Sensibilidad	0,828	0,895
Curva ROC	0,978	0,993
Precisión	0,833	0,965
Detección prevalencia	0,207	0,193
Acuracidad	0,930	0,971

Interpretabilidad

SHAP values

- Contribución que cada una de las variables en la predicción
- Visión transparente del proceso de decisión del modelo

Importancia global de variables

Comparación de métricas

*Sin historial de impago	Lasso	Random forest
F-Measure	0,568	0,806
Especificidad	0,952	0,986
Sensibilidad	0,469	0,712
Curva ROC	0,853	0,933
Precisión	0,720	0,929
Detección prevalencia	0,135	0,159
Acuracidad	0,852	0,929

Interpretabilidad

SHAP values: Numéricas

Ingreso del cliente

Monto del crédito

Importancia global de variables

Interpretabilidad

SHAP values: Categóricas

Dashboards

Seguimiento de KPIs y monitoreo del modelo

Dashboard de negocio

Overview de créditos

Dashboard de negocio

Overview de clientes

Dashboard de monitoreo

Overview del modelo y el dataset

Conclusiones

Principales hallazgos y aportes del estudio

Conclusiones

01

Modelos

Los modelos no lineales se adaptan mejor en este escenario

02

Variables clave

Ingresos, calificación crediticia e historial de impago

03

Hallazgo relevante

Valores nulos no aleatorios en historial de impago

04

Transparencia

Priorizamos evitar sesgos sobre la precisión del modelo

05

Seguimiento de KPIs

Traducción de desempeño en indicadores de negocio

06

Monitoreo del modelo

Observar el comportamiento del modelo y cambios en el dataset

Limitaciones

- Uso de un dataset público
- Ausencia de variables externas reducen el alcance predictivo
- Almacenamiento

Líneas futuras

- Incluir datos macroeconómicos o comportamentales
- Evaluar el impacto en indicadores de negocio

Г

¡Gracias!

Espacio de preguntas

