ABE 201 Biological Thermodynamics 1

Module 15

Enthalpies of Reaction

(Combining Chemical Reactions with 1st Law Energy Balances)

Review

- Expanded definition of enthalpy:
 - Sensible changes due to temperature changes
 - Latent changes due to phase changes
 - Changes due to <u>chemical reactions</u>
- Hess's Law allows us to calculate enthalpies of reactions from balanced stoichiometry using tabulated enthalpies of formation

1st Law Energy Balances

$$\Delta H + \Delta E_k + \Delta E_p \rightarrow Q - W_s$$

Finding Enthalpy Changes

$$\Delta \dot{H} = \Delta \hat{H}_{sensible} \dot{m} + \Delta \hat{H}_{latent} \dot{m} + \Delta \hat{H}_{reaction} \xi$$

Pay attention to units!

Enthalpies of reaction are usually made specific by dividing by moles not kg (i.e. no need to convert ξ to mass/time)

Heats of Reaction

- Definition: Enthalpy change where <u>stoichiometic</u> quantities of reactants react <u>completely</u> in a single reaction to form products at <u>same</u> T & P
- Heat of Reaction $\equiv \Delta \hat{H}_r$ (T,P)
- Dependent upon temperature and pressure
- At low pressures (near 1atm), ideal gas law is true, thus $\Delta \hat{H}_r$ (T) and P can be ignored

Exothermic and Endothermic

1st Law Balance
$$\Delta \hat{H}_r$$
 (T,P) = Q

$$\Delta \hat{H}_r$$
 (T,P) < 0, Q < 0 Heat must be removed, to maintain constant T:
Exothermic

$$\Delta \hat{H}_r$$
 (T,P) > 0, Q > 0 Heat must be added, to maintain constant T: Endothermic

Enthalpies of Formation

Compound	$\Delta H_f^{'o}(kJ/mol)$
ATP	-3616.92
ADP	-2627.24
Citrate	-1513.66
Isocitrate	-1224.7
Ethanol	-290.76
Glucose	-1267.12
Lactate	-688.28
NAD+	-10.26
NADH	-41.38
CO ₂ (gas)	-393.50
H ₂ O (I)	-286.65
Pi	-1299.36

What is an Enthalpy of Formation?

 For organic molecules, estimated using the Benson group additivity method of group

contribution

What is an Enthalpy of Formation?

Also can be determined experimentally

 NIST Chemistry WebBook http://webbook.nist.gov/chemistry/

A Note About "Standard" Enthalpies of Formation

- Standard enthalpies of formation (ΔH_f°) is standardized at standard pressure (1 atm), temperature = 25 C, and pH = 0
- Pressure, temperature and pH <u>all</u> affect this value!
- For convenience in biochemical systems, standard enthalpies of formation ($\Delta H_f^{\circ\prime}$) is at standard P and T, but pH = 7
- Note the apostrophe! The two enthalpies are <u>not</u> equivalent!

Estimate Enthalpy of Reaction Using Hess's Law

$$\Delta H_{reaction} = \sum v \Delta H_{formation}^{'0}$$

Where v is the stoichiometric coefficient from the balanced reaction equation

Remember: products have v > 0 and reactants have v < 0

Oxidation of Glucose

What is the standard enthalpy of reaction for the complete oxidation of glucose to carbon dioxide and water (liquid)?

1 glucose + 6
$$O_2$$
 -> 6 CO_2 + 6 H_2O

$$\Delta H_{rxn} = -1(-1267.12 + 0) + (6*-393.50 + 6*-286.65)$$

= -2813.78 kJ/mol

Fermentation of Glucose to Ethanol

Glucose is anaerobically fermented to ethanol. What is the enthalpy of reaction? Is this an endo- or exothermic reaction?

1 glucose -> 2 ethanol + 2 CO₂

$$\Delta H_{rxn} = -1(-1267.12 + 0) + (2*-290.76 + 2*-393.50)$$

= -101.4 kJ/mol

Exothermic reaction!