

COMP9020

Foundations of Computer Science

Lecture 11: Algorithmic Analysis

Motivation

Standard Approach

Examples

Simplifying with Worst Case and Big-O

Recursive Examples

Feedback

1

Motivation

Standard Approach

Examples

Simplifying with Worst Case and Big-O

Recursive Examples

Feedback

Algorithmic analysis: motivation

Want to compare algorithms – particularly ones that can solve *arbitrarily large* instances.

We would like to be able to talk about the resources (running time, memory, energy consumption) required by a program/algorithm as a function f(n) of some parameter n (e.g. the size) of its input.

Example

How long does a given sorting algorithm take to run on a list of n elements?

Problems

- The exact resources required for an algorithm are difficult to pin down. Heavily dependent on:
 - Environment the program is run in (hardware, software, choice of language, external factors, etc)
 - Choice of inputs used
- Cost functions can be complex, e.g.

$$2n\log(n) + (n-100)\log(n)^2 + \frac{1}{2^n}\log(\log(n))$$

Need to identify the "important" aspects of the function.

4

Order of growth

Example

Consider two time-cost functions:

- $f_1(n) = \frac{1}{10}n^2$ milliseconds, and
- $f_2(n) = 10n \log n$ milliseconds

Input size	$f_1(n)$	$f_2(n)$
100	0.01s	2s
1000	1s	30s
10000	1m40s	6m40s
100000	2h47m	1h23m
1000000	11d14h	16h40h
10000000	3y3m	8d2h

5

Motivation

Standard Approach

Examples

Simplifying with Worst Case and Big-C

Recursive Examples

Feedback

Algorithmic analysis

Asymptotic analysis is about how costs **scale** as the input increases.

Standard (default) approach:

- Consider asymptotic growth of cost functions
- Consider worst-case (highest cost) inputs
- Consider running time cost: number of elementary operations

NB

Other common analyses include:

- Average-case analysis
- Space (memory) cost

Elementary operations

Informally: A single computational "step"; something that takes a constant number of computation cycles.

Examples:

- Arithmetic operations
- Comparison of two values
- Assignment of a value to a variable
- Accessing an element of an array
- Calling a function
- Returning a value
- Printing a single character

NB

Count operations up to a constant factor, O(1), rather than an exact number.

Motivation

Standard Approach

Examples

Simplifying with Worst Case and Big-C

Recursive Examples

Feedback

Examples

Running time vs Execution time

Previous example shows one difference between running time and execution time.

In general, running time only approximates execution time:

- Simplifying assumptions about elementary operations
- Hidden constants in big-O
- Big-O only looks at limiting performance as *n* gets large.

Examples

- Implementations of square(n) will take longer as n gets bigger
- A program that "solves chess" will run in O(1) time.

Examples

Example

Squaring a number (Second version):

```
\begin{array}{lll} \operatorname{square}(n): & & & & & & & & & \\ r:=0 & & & & & & & & & & \\ \operatorname{for} i=1 \text{ to } n: & & & & & & & & & \\ r:=r+n & & & & & & & & & & & \\ return r & & & & & & & & & & & \\ \end{array} \begin{array}{c|cccc} O(1) & & & & & & & & & & \\ n \text{ times} & & & & & & & & \\ O(n) & & & & & & & & & \\ O(1) & & & & & & & & & \\ \end{array}
```

Running time: O(1) + O(n) + O(1) = O(n)

Examples

Example

Cubing a number (using second squaring program):

Running time: $O(1) + O(n^2) + O(1) = O(n^2)$

Motivation

Standard Approach

Examples

Simplifying with Worst Case and Big-O

Recursive Examples

Feedback

Worst-case input assumption and big-O combine to *simplify* the analysis:

```
Example
Sum of squares (Using second squaring program):
                                                               sumOfSquares(n):
                                                                                                                         or i = 1 to n:
color i = 1 \text{ to } n:

                                                                                          r := 0
                                                                                                     for i = 1 to n:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    O(1)
                                                                                          return r
   Running time: O(1) + O(n^2) + O(1) = O(n^2)
```

15

Worst-case input assumption and big-O combine to *simplify* the analysis:

```
Example

Finding an element (x) in an array (L) of length n:

\begin{array}{c}
\text{find}(x,L):\\ \text{for } i=0 \text{ to } n-1: & O(1)\\ \text{if } L[i]==x: & O(1)\\ \text{return } i & O(1)
\end{array}
```

Running time: O(n) + O(1) = O(n)

Worst-case input assumption and big-O combine to *simplify* the analysis:

NB

Simplifications might lead to sub-optimal bounds, may have to do a better analysis to get best bounds:

- Finer-grained upper bound analysis
- Analyse specific cases to find a matching lower bound (big- Ω)

NB

Big- Ω is a **lower bound** analysis of the worst-case; NOT a "best-case" analysis.

Analyse specific cases to find a matching lower bound (big- Ω)

Example

Let L_n be an *n*-element array of 0's.

Finding an element (x) in an array (L) of length n:

Running time of find(1, L_n): $\Omega(n)$

Therefore, running time of find(x, L): $\Theta(n)$

Motivation

Standard Approach

Examples

Simplifying with Worst Case and Big-C

Recursive Examples

Feedback

Example

Factorial:

```
fact(n):

if n == 0:

return 1

else:

return n * fact(n-1)

O(1) + T(n-1)
```

Running time for fact(n): T(n), where:

$$T(0) \in O(1) + O(1) = O(1)$$

 $T(n) = T(n-1) + O(1)$
 $\in O(n)$

Running time: $T(n) \in O(n)$

Example

Summing elements of a linked list (length n):

```
\begin{array}{lll} & \text{sum}(\texttt{L}): \\ & \text{if } \texttt{L.isEmpty}(\texttt{)}: & \textit{O}(\texttt{1}) \\ & \text{return } \texttt{0} & \textit{O}(\texttt{1}) \\ & \text{else}: \\ & \text{return } \texttt{L.data} + \text{sum}(\texttt{L.next}) & \textit{O}(\texttt{1}) + \textit{T}(\textit{n}-\texttt{1}) \end{array}
```

Running time for sum(L): T(n), where:

$$T(0) \in O(1) + O(1) = O(1)$$

 $T(n) = T(n-1) + O(1)$
 $\in O(n)$

Example

Insertion sort (L has n elements):

Running time for sort(L): T(n), where:

$$T(0) \in O(1) + O(1) = O(1)$$

 $T(n) = T(n-1) + O(n) + O(1)$
 $\in O(n^2)$

Example

Euclidean algorithm for gcd(m, n) (N = m + n):

```
\gcd(m,n):

if m > n:

return \gcd(m-n,n)

else if n > m:

return \gcd(m,n-m)

else:

return m

O(1)

\leq T(N-1)

\leq T(N-1)
```

Running time for gcd(m, n): T(N), where:

$$T(1) \in O(1)$$

 $T(N) \leq T(N-1) + O(1)$
 $\in O(N)$

Example

Euclidean algorithm for gcd(m, n) (N = m + n):

Running time: O(N)

NB

N is not the input size. Input size is $\log(m) + \log(n)$

Example

Faster Euclidean algorithm for gcd(m, n) (N = m + n):

Running time for gcd(m, n): T(N), where:

$$T(1) \in O(1)$$

$$T(N) \leq T(N/1.5) + O(1)$$

$$\in O(\log N)$$

Example

Faster Euclidean algorithm for gcd(m, n) (N = m + n):

What about lower bounds?

- Can show algorithm takes k steps to compute $gcd(F_k, F_{k-1})$ where F_k is the k-th Fibonacci number
- Can show $1.5^k \le F_k \le 2^k$, so $k \in \Theta(\log F_k)$
- Therefore $gcd(F_k, F_{k-1}) \in \Omega(\log(F_k + F_{k-1}))$

Exercise

Exercise

RW: 4.3.22 The following algorithm raises a number a to a power n.

$$\exp(a, n)$$
:
 $p = 1$
 $i = n$
while $i > 0$:
 $p = p * a$
 $i = i - 1$
return p

Determine the running time of this algorithm.

Exercise

Exercise

RW: 4.3.21 The following algorithm gives a fast method for raising a number a to a power n.

```
fast-exp(a, n):

p = 1

q = a

i = n

while i > 0:

if i is odd:

p = p * q

q = q * q

i = \left\lfloor \frac{i}{2} \right\rfloor

return p
```

Determine the running time of this algorithm.

Motivation

Standard Approach

Examples

Simplifying with Worst Case and Big-O

Recursive Examples

Feedback

Weekly Feedback

I would appreciate any comments/suggestions/requests you have on this week's lectures.

https://forms.office.com/r/xKKrxYMRn9