Projet à rendre Probabilités

Université de Thiès, UFR SES Département de Management des Organisations Master 1 Sciences de Données et Applications

Année universitaire 2019-2020 Fatou Néné Diop

1 Loi faible des grands nombres et simulations sous Python

Théorème 1.1 (Loi faible des grands nombres ou théorème de Khintchine) Soient des variables aléatoires Y_1, \dots, Y_n indépendantes telles que $\mathbf{E}(Y_i) = m$ et $\mathbf{V}(Y_i) = \sigma^2$, $\forall i = 1, \dots, n$. La moyenne empirique de ces variables converge en probabilité vers l'espérance m:

$$\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow{\mathbf{P}} \mathbf{E}(Y_i) = m.$$
 (1)

Exercice 1:

On considère n variables aléatoires discrètes Z_1, \dots, Z_n indépendantes et identiquement distribuées (i.i.d.) telles que $Z_i \sim \mathcal{P}(\lambda)$. D'après les propriétés de la loi de Poisson, on sait que $\mathbf{E}(Z_i) = \lambda$. Par conséquent, d'après le théorème de Khintchine, on a :

$$\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i \xrightarrow{\mathbf{P}} \lambda \tag{2}$$

Afin d'illustrer cette propriété, menons l'expérience suivante. On considère des variables aléatoires indépendantes et identiquement distribuées selon une loi uniforme $Y_i \sim U_{[0,10]}$, $\forall 1 = 1, \ldots, n$, avec $\mathbf{E}(Y_i) = 5$.

On applique la procédure suivante :

- 1. Grâce au logiciel Python, on tire des réalisations $\{y_1, ..., y_n\}$ des n variables $\{Y_1, \cdots, Y_n\}$.
- 2. On calcule une réalisation de la moyenne empirique \overline{Y}_n . Cette réalisation est notée $\bar{y}_n = n^{-1} \sum_{i=1}^n y_i$.
- 3. On répète 5 000 fois les étapes 1 et 2. On obtient ainsi 5 000 réalisations de la variable \overline{Y}_n .
- 4. On construit l'histogramme de ces 5 000 réalisations.
- 5. On répète l'expérience pour différentes valeurs de la dimension n (taille d'échantillon). Prendre les valeurs n = 10, n = 100, n = 1000 et n = 10000. Il convient de ne pas confondre ici la taille d'échantillon n (par exemple 3) et le nombre de réplications (5 000).

Tracer les histogrammes des 10000 réalisations \bar{y}_n obtenues pour quatre valeurs de n, à savoir n = 10, n = 100, n = 1000 et n = 10000.

Commenter les résultats obtenus.

2 Théorème central limite et simulations sous Python

Théorème 2.1 (Théorème central limite, Lindeberg-Levy) Soit Y_1, \dots, Y_n une séquence de variables aléatoires indépendantes et identiquement distribuées (i.i.d.) avec une espérance finie $E(Y_i) = m$ et une variance finie $\mathbf{V}(Y_i) = \sigma^2$, $\forall i = 1, \dots, n$. Alors la moyenne empirique $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$ vérifie :

$$\sqrt{n} \left(\frac{\overline{Y}_n - m}{\sigma} \right) \xrightarrow{Loi} \mathcal{N} (0, 1).$$
(3)

Exercice 2:

On considère des variables aléatoires indépendantes et identiquement distribuées selon une loi du khi-deux $Y_i \sim \chi^2(2)$, $\forall i = 1, ..., n$, avec $\mathbf{E}(Y_i) = 2$ et $\mathbf{V}(Y_i) = 4$. On applique la procédure suivante :

- 1. Grâce au logiciel Python, on tire des réalisations $\{y_1, \ldots, y_n\}$ des n variables $\{Y_1, \ldots, Y_n\}$.
- 2. On calcule une réalisation de la moyenne empirique \overline{Y}_n . Cette réalisation est notée $\bar{y}_n = n^{-1} \sum_{i=1}^n y_i$.
- 3. On considère la variable aléatoire transformée :

$$Z_n = \sqrt{n} \left(\frac{\overline{Y}_n - \mathbf{E}(Y_i)}{\sqrt{\mathbf{V}(Y_i)}} \right) = \sqrt{n} \left(\frac{\overline{Y}_n - 2}{2} \right)$$
 (4)

À partir de la réalisation de la moyenne empirique \bar{y}_n , on calcule une réalisation decette variable transformée comme $z_n = \sqrt{n} (\bar{y}_n - 2)/2$.

- 4. On répéte cette procédure 5 000 fois (étapes 1 à 3). On obtient alors 5 000 réalisations de la variable z_n .
- 5. On construit un histogramme de ces 5 000 réalisations et l'on compare cet histogramme à la densité d'une loi normale centrée réduite $\mathcal{N}(0,1)$.

Exercice 3: Théorème cental limite appliqué au traitement de texte

Le texte "LesMiserables1" est disponible sur le site (web www.gutenberg.org).

- Télécharger https://r-stat-sc-donnees.github.io/LesMiserables1.txt.
- Supprimer la ponctuation, les majuscules / minuscules et divisez le texte en jetons individuels (mots).
- Pour les mots (un, et, le, il, est) calcule leurs nombres respectifs au fur et à mesure que le livre progresse, exemple

$$n_{le}[i] = \sum_{j=1}^{i} \{w_j = le\}.$$

- Tracer les proportions $n_{mot}[i]/i$ sur le document dans un seul graphique.
- Pourquoi ne pouvons-nous pas appliquer le théorème central limite (TCL) directement?
- Que devons-nous faire sur le texte pour appliquer le TCL?

```
import string
import urllib.request
x = urllib.request.urlopen('https://r-stat-sc-donnees.github.io/LesMiserables1.txt')
livre=str(x.read())
print(livre)
```

#Ajouter vos codes ici

Définition 2.1 Soit X un vecteur aléatoire sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ à valeurs dans \mathbb{R}^d . La loi image $\mathbf{P}X^{-1}$ est appellée distribution de la v.a. X, et est notée \mathbf{P}_X .

On appelle fonction caractéristique de X la fonction $\Phi_X : \mathbb{R}^n \to \mathbb{C}$ définie par

$$\Phi_X(u) = \mathbf{E} \left[e^{i\langle u, X \rangle} \right] \quad pour \ tout \ u \in \mathbb{R}^d.$$

La fonction caractéristique dépend uniquement de la loi de X:

$$\Phi_X(u) = \int_{\mathbb{R}^n} e^{i\langle u, X \rangle} d\mathbf{P}_X(x),$$

et n'est rien d'autre que la transformée de Fourier de \mathbf{P}_X au point $-u/2\pi$.

Exercice 4: Fonction caractéristique

1. Pour un vecteur gaussien X de moyenne b et de matrice de variance V, montrer que

$$\Phi_X(u) = e^{\langle u, b \rangle - \frac{1}{2} \langle u, Vu \rangle}.$$

- 2. Si \mathbf{P}_X est symétrique par rapport à l'origine, i.e. $\mathbf{P}_X = \mathbf{P}_{-X}$, montrer que Φ_X est à valeurs réelles.
- 3. Pour une v.a. réelle, supposons que $\mathbf{E}[|X|^p]<\infty$ pour un certain entier $p\geqslant 1$. Montrer que Φ_X est p fois dérivable et

$$\Phi_X^{(k)}(0) = i^k \mathbf{E} \left[X^k \right], \quad \text{pour } k = 1, \dots, p.$$