NREL Bifacial Experimental Single-Axis Tracking Field

Site and data description by Silvana Ayala, Chris Deline

06/09/2020 updated 03/31/2021

The National Renewable Energy Laboratory, Bifacial Experimental Single-Axis Tracking Field (BEST field) is located at the NREL South Table Mountain Campus, in Golden CO (39.7398341° North, -105.1727827° West). Site characteristics are listed in Table 1.

Table 1 - Characteristics of BEST bifacial PV field test site

			EST DIJACIAI PV JIEIA TEST SITE
Information	Value	Unit	Comment
System size	75	kWp	10 rows of 20 modules; 5 rows are different bifacial technologies, the other 5 rows are the equivalent monofacial technology for comparison.
System type	Single-axis trackers		Nextracker trackers, with backtracking algorithm.
Site albedo	26	%	Yearly average. 1-min measurements available from 3 albedometers on site
Bifacial gain	8.9	%	Based on 1 min data from Jun 2019 to April 2020
Mounting height	1.5	m	Axis of rotation of modules
Array azimuth angle	180	deg	
Ground cover ratio	0.35		
Module bifaciality	73.14	%	5 different technologies, 4 PERC ranging 65-75% and one HJT at 90%
Array configuration	1up portrait		
Electrical info	Row DC Power, kWh, V _{DC} , I _{DC} , module's DC power		High-accuracy (0.5%) DC string monitoring. Module-level power electronics on each module (SolarEdge)
Further data	Rear Irradiance, Albedometers, Module temperature, weather data		Nine front and rear POA irradiance sensors throughout the field. 4 rear facing reference cells along collector width on row 3 module 4, and 2 rear-facing broadband irradiance meters (CM11 and Apogee Pyranometer) on row 3 module 10, East and West edges of the module respectively. Module temperature sensors throughout the field. Albedo measured on site with CM11, IMT reference cell and Apogee pyranometer. Highquality Weather Data available at <100m on SRRL. Time series available on Duramat.com with full data for two of the bifacial rows.

Figure 1 - 1-axis tracker testbed for the NREL bifacial module and system performance monitoring project

This array contains ten rows of single-axis NexTrackers, with tracker angle limit of 60 degrees (Figure 1). Five different bifacial technologies and their monofacial counterparts for comparison have been deployed in the field. Modules ($^{\sim}1m \times ^{\sim}2m$) are installed in 1-up portrait orientation, with 72-cell each. GCR is 0.35. Tracker hub-height is 1 m. Ground cover of the area is natural field, which is mowed and maintained. Various plane-of-array sensors in row 2 and row 3 measure front and rear irradiance. The location of the sensors is highlighted in Figure 6 and Figure 7.

Figure 2 - Schematic of the array showing row 2 and 3, and location of the front and rear irradiance sensors on row 3.

Row 3 (monofacial)

10 modules from North

4 modules from North

Figure 3 - The location of the front and rear irradiance sensors on row 3 $\,$

Weather data is available from the SRRL station, measured at less than 100 m from the array (39.742, -105.179, 1829 m elevation). Albedo data is measured in the array itself with three albedometers (Sunkitty 1-3), two of them broadband (CM22 and Apogee Pyranometer) and one IMT reference cell. The albedometers are recorded in the data as GRI and GHI measurements.

A custom module was installed in Row 2, position 5, referred to as "Hydra" (Figure 4). This module was designed and constructed to perform experiments on torque tube shading effects. The module has 12 strings of 5 cells each, tabbed out at each side along the horizontal axis, with a j-box or other connection at each row so they can be individually addressed. IV-curve data for the initial HYDRA module flashtest with the SPIRE meter is publicly available in the Duramat dataset.

Figure 4 - Custom module with 12 individually addressable strings. Mounted in the middle of NREL's bifacial PV field.

Figure 5 - (a) Diagram of the custom module with 12 individually addressable strings. (b) Cumulative irradiance distribution, normalized, for the month of December.

Collection for each of the strings data started on December 2019. Figure 5 shows the electrical diagram and preliminary results for December on cumulative irradiance distribution, normalized.

Data for the bifacial field, including bifacial rows 2 and row 9 performance data, all front and rear facing irradiance sensors, albedometers and SRRL weather data, and Hydra custom-module data has been made publicly available in Duramat's website for the period of June 2019 to April 2020. Summary of the data analysis, modeling and performance results have been presented in [1-3].

Data Description

A pickle and a .csv file has been included with the data described in Table 2.

Table 2 - Column headers, units and description of data provided.

Variable	Category	Units	Description	
row2dcp	Bifacial	W	Row DC-Power	
Towzaep	Row	VV		
row2Gpoa front	Bifacial	W/m2	Plane of array irradiance, front-facing	
10,120,000_110,100	Row	VV/1112		
row2kWh	Bifacial	kWh	Row Energy	
TOWZKWII	Row	KVVII	Now Energy	
row2dcv	Bifacial	V	Row Voltage	
Towadov	Row			
row2dci	Bifacial	А	Row Current	
TOWZGCT	Row		Now Current	
row2tmod	Bifacial	С	Row module temperature	
10w2 cmod	Row			
Yf2	Bifacial		Row DC-power normalized by row	
112	Row		nameplate capacity measured on Spire	
PR2	Bifacial		Row Performance Ratio, calculated with	
11/2	Row		row 9 front POA irradiance	
row8dcp	Monofacial	V	Row DC-Power	
Towodep	Row		Now Be-rower	
row8Gpoa front	Monofacial	W/m2	Plane of array irradiance, front-facing	
	Row	VV/IIIZ	Figure of array irradiance, front-facility	
row8Gpoa rear	Monofacial	W/m2	Plane of array irradiance, rear-facing	
[TOWOGPOA_TEAT	Row	vv/IIIZ	riane or array irradiance, rear-racing	

	Monofacial	l	Row DC-power normalized by row	
Yf8	Row		nameplate capacity measured on Spire	
	Monofacial		Row Performance Ratio, calculated with	
PR8	Row		row 9 front POA irradiance	
	Bifacial			
row9dcp	Row	W	Row DC-Power	
00000	Bifacial	14// 2	51 6	
row9Gpoa_front	Row	W/m2	Plane of array irradiance, front-facing	
000000000000000000000000000000000000000	Bifacial	W/m2	Diana af aggarigan diana aggar facina	
row9Gpoa_rear	Row		Plane of array irradiance, rear-facing	
row9kWh	Bifacial	kWh	Row Energy	
LOWSKWII	Row	KVVII	Now Lifergy	
row9dcv	Bifacial	V	Row Voltage	
	Row		new tenage	
row9dci	Bifacial	Α	Row Current	
	Row			
row9tmod	Bifacial	С	Row module temperature	
	Row			
Yf9	Bifacial Row		Row DC-power normalized by row	
	Bifacial		nameplate capacity measured on Spire Row Performance Ratio, calculated with	
PR9				
	Row POA		row 9 front POA irradiance Row 3 Module 5 from North, front facing	
<pre>poa_irradiance_front_IMT</pre>	_	W/m2	_	
	Irradiances		IMT reference cell	
<pre>poa_irradiance_rear_IMT_West</pre>	POA	W/m2	Row 3 Module 5 from North, rear facing	
	Irradiances		IMT reference cell	
<pre>poa_irradiance_rear_IMT_CenterWest</pre>	POA	W/m2	Row 3 Module 5 from North, rear facing	
	Irradiances	W/m2	IMT reference cell	
<pre>poa_irradiance_rear_IMT_CenterEast</pre>	POA		Row 3 Module 5 from North, rear facing	
	Irradiances		IMT reference cell	
<pre>poa_irradiance_rear_IMT_East</pre>	POA	W/m2	Row 3 Module 5 from North, rear facing	
	Irradiances		IMT reference cell	
<pre>poa_irradiance_front_licor</pre>	POA Irradiances	W/m2	Row 3 Module 10 from North, front facing licor sensor	
	POA		Row 3 Module 10 from North, rear facing	
<pre>poa_irradiance_rear_licor</pre>	Irradiances	W/m2	licor sensor	
	POA		Row 3 Module 10 from North, front facing	
<pre>poa_irradiance_front_cm11</pre>	Irradiances	W/m2	CM11 sensor	
	POA		Row 3 Module 10 from North, rear facing	
poa_irradiance_rear_cm11	Irradiances	W/m2	CM11 sensor	
sunkitty_albedo_1	Albedo		Albedo measured by Sunkitty CM22	
			Ground Reflected Irradiance measured by	
sunkitty_GRI_CM22	Albedo	W/m2	CM22	
ounlitte CHI CMOO	A !!!	W/s 2	Ground Horizontal Irradiance measured by	
sunkitty_GHI_CM22	Albedo	W/m2	CM22	
auntitte albada 2	A lle e el e		Albedo measured by Sunkitty IMT	
sunkitty_albedo_2	Albedo		reference cell	
ounkitty CDT TMT	Albedo	W/m2	Ground Reflected Irradiance measured by	
sunkitty_GRI_IMT	Albedo	VV/IIIZ	IMT reference cell	
sunkitty_GHI_IMT	Albedo	W/m2	Ground Horizontal Irradiance measured by	
Sunkicey_Gni_ini	Albedo	VV/IIIZ	IMT reference cell	
sunkitty_albedo_3	Albodo		Albedo measured by Sunkitty Apogee Licor	
	Albedo		pyranometer	
sunkitty_GRI_AP	Albedo	W/m2	Ground Reflected Irradiance measured by	
	Albedo	vv/iiiZ	Apogee Licor pyranometer	
sunkitty CHT AP	- له ماله	14// 2	Ground Horizontal Irradiance measured by	
sunkitty_GHI_AP	Albedo	W/m2	Apogee Licor pyranometer	
Hudra current 1	Lludro	А	Custom Module measured short-circuit	
Hydra_current_1	Hydra		current	
Hydra_current_2	Hydra	Α	Custom Module measured short-circuit	

Hydra current 3	Hydra	А	Custom Module measured short-circuit
Inyara_carrene_5	Tiyura		current
Hydra current 4	Hydra	А	Custom Module measured short-circuit
Inydia_cullent_4			current
Hydra current 5	Lludro	А	Custom Module measured short-circuit
Inydra_current_5	Hydra		current
Hydra current 6	Hydra	А	Custom Module measured short-circuit
			current
Hydra current 7	Lludra	Α	Custom Module measured short-circuit
nydra_currenc_/	Hydra	А	current
Hydra current 8	Hydra	Α	Custom Module measured short-circuit
	пуша	A	current
Hydra current 9	Lludra		Custom Module measured short-circuit
hydra_current_9	Hydra	Α	current
Hydra current 10	Hydra	А	Custom Module measured short-circuit
			current
Hydra current 11	Hydra	А	Custom Module measured short-circuit
Inydra_edriene_ii			current
Hydra current 12	Hydra	А	Custom Module measured short-circuit
	пуша		current
temp_ambient	Weather	С	Ambient tempterature
wind_direction	Weather		Wind direction
wind_speed	Weather	m/s	Wind speed
SRRL Tower Dry Bulb Temp [deg C]	SRRL	С	SRRL ambient temperature
SRRL Avg Wind Speed @ 6ft [m/s]	SRRL	m/s	SRRL wind speed
SRRL Direct CHP1-1 [W/m^2]	SRRL	W/m2	SRRL DNI
SRRL Diffuse 8-48 (vent) [W/m^2]	SRRL	W/m2	SRRL DHI
SRRL Global CMP22 (vent/cor)	SRRL	W/m2	SRRL GHI
[W/m^2]			SKKL GIII
SRRL Albedo (CMP11)]	SRRL		SRRL Albedo

Other Values of Interest are included included in Table 3.

Table 3 - Other values of interest of the bifacial field

Bifaciality Factor

Row 2: 0.694

Row 8: 0.0 (monofacial row)

Row 9: 0.87

Nameplate Row Pmp:

Row 2: 6840 W (19 modules, custom module not contributing

(Hydra))

Row 8: 7159 W (20 modules 360 W monofacial PERC, half-cell

modules)

Row 9: 7701 W (20 modules)

Nameplate measured by SPIRE:

Row2: 6721 (19 modules, custom module not contributing (Hydra))

Row 8: 7239 (20 modules) Row 9: 7701 (20 modules)

TABLE I. MEASUREMENT AND STD DEVIATION FOR ROW 2

CODE	Measurement Front Avg	StD	Measurement Back	StD
Isc [A]	9.50	0.03	6.56	0.11
Voc [V]	48.0	0.23	47.3	0.25
Imp [A]	9.0	0.02	6.2	0.11
Vmp [V]w	39.2	0.2	39.5	0.22
Pmp [W]	354	2.7	246	4.4
FF [%]	77.5	0.2	79.1	0.7

Solar Edge Data

Hourly data for each module in rows 2 and 9 are included for the months of January 2020 to May 2020. Modules are labeled such that Module 1 is the northmost module. Row 2, module 5 corresponds to the Hydra module location, hence that row is 0 for all the dataset.

References

- [1] Ayala Pelaez, S., Delince C., "Ultimate Bifacial Showdown: 75kW Field Results", 7th bifiPV Workshop 2020 (virtual). Proceedings available on:

 https://www.nrel.gov/docs/fy20osti/77486.pdf and recording of presentation on https://www.bifipv-workshop.com/2020-virtualbifipv-proceedings
- [2] Ayala Pelaez, S., Deline C., Marion, B., Sekulic, B., McDanold, B., Parker, J., Stein, J. S. "Field-Array Benchmark of Commercial Bifacial PV Technologies with Publicly Available Data", in proceedings of 46th IEEE PVSC, 2020, virtual. D.O.i: 10.1109/PVSC45281.2020.9300379
- [3] Deline, C., Ayala Pelaez, S, Marion, B. et al "Understanding bifacial PV's potential: field performance", as part of Taiyang News Webinar "Bifacial solar's True Potential", Dec. 3rd. Slides: https://www.nrel.gov/docs/fy20osti/75532.pdf. Youtube: https://www.youtube.com/watch?v=uRvxol7Y-Hg&feature=youtu.be