- **1** IKİ BOYUTTA HAREKET
 - 3.1 Konum ve Yerdeğiştirme Vektörleri
 - 3.2 Atış Hareketi
 - 3.3 Düzgün Dairesel Hareket
 - 3.4 Göreli Hareket

Daha iyi sonuç almak için, Adobe Reader programını **Tam Ekran** modunda çalıştırınız. **Sayfa çevirmek/Aşağısını görmek** için, farenin sol/sağ tuşlarını veya PageUp/PageDown tuşlarını kullanınız.

3.1 KONUM ve YERDEĞİŞTİRME VEKTÖRLERİ

Konum vektörü (\vec{r}): Orijinden cismin bulunduğu yere çizilen vektör.

$$\vec{r} = x\,\hat{\imath} + y\,\hat{\jmath}$$

3.1 KONUM ve YERDEĞİŞTİRME VEKTÖRLERİ

Konum vektörü (\vec{r}): Orijinden cismin bulunduğu yere çizilen vektör.

$$\vec{r} = x\,\hat{\imath} + y\,\hat{\jmath}$$

Yerdeğiştirme vektörü $(\Delta \vec{r})$: t_1 anında \vec{r}_1 konumunda bulunan bir cisim, daha sonraki bir t_2 anında \vec{r}_2 konumunda bulunuyorsa,

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = (x_2 - x_1) \hat{\imath} + (y_2 - y_1) \hat{\jmath}$$

Hız vektörü (\vec{v}) \implies Cismin birim zamanda yerdeğiştirme vektörü.

Hız vektörü (\vec{v}) \implies Cismin birim zamanda yerdeğiştirme vektörü. \vec{v}

Ortalama Hız vektörü (\vec{v}_{ort}): Cismin t_1 anındaki konumu \vec{r}_1 ve daha sonraki bir t_2 anındaki konumu \vec{r}_2 ise,

$$\vec{\mathbf{v}}_{\rm ort} = \frac{\Delta \vec{\mathbf{r}}}{\Delta t}$$

Hız vektörü (\vec{v}) \implies Cismin birim zamanda yerdeğiştirme vektörü. \vec{v}

Ortalama Hız vektörü (\vec{v}_{ort}): Cismin t_1 anındaki konumu \vec{r}_1 ve daha sonraki bir t_2 anındaki konumu \vec{r}_2 ise,

$$\vec{\mathbf{v}}_{\rm ort} = \frac{\Delta \vec{\mathbf{r}}}{\Delta t}$$

$$\vec{\mathbf{v}}_{\text{ort}} = \frac{\vec{\mathbf{r}}_2 - \vec{\mathbf{r}}_1}{t_2 - t_1} = \left(\frac{x_2 - x_1}{t_2 - t_1}\right)\hat{\mathbf{i}} + \left(\frac{y_2 - y_1}{t_2 - t_1}\right)\hat{\mathbf{j}} = \underbrace{\frac{\Delta x}{\Delta t}}_{v_{x,\text{ort}}} \hat{\mathbf{i}} + \underbrace{\frac{\Delta y}{\Delta t}}_{v_{y,\text{ort}}} \hat{\mathbf{j}}$$

Ani Hız vektörü (\vec{v}): Ortalama hız vektörünün limiti.

Ani Hız vektörü (v): Ortalama hız vektörünün limiti.

$$\vec{\mathbf{v}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

$$= \underbrace{\frac{dx}{dt}}_{v_x} \hat{\mathbf{i}} + \underbrace{\frac{dy}{dt}}_{v_y} \hat{\mathbf{j}} = v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}}$$

Ani Hız vektörü (\vec{v}): Ortalama hız vektörünün limiti.

$$\vec{\mathbf{v}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\mathbf{r}}}{\Delta t} = \frac{d\vec{\mathbf{r}}}{dt}$$

$$= \underbrace{\frac{dx}{dt}}_{v_x} \hat{\mathbf{i}} + \underbrace{\frac{dy}{dt}}_{v_y} \hat{\mathbf{j}} = v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}}$$

Hız vektörünün şiddeti ve yönü:

$$v = |\vec{v}| = \sqrt{v_x^2 + v_y^2}, \qquad \tan \theta = \frac{v_y}{v_x}$$

(a) Yerdeğiştirme vektörünün limit yönü, (b) \vec{v} hız vektörünün yönü.

Yerdeğiştirme vektörü olan $\Delta \vec{r} = \overrightarrow{P_1 P_2}$ kirişini gözönüne alalım.

(a) Terdegiştirine vektorunun inint yonu, (b) v inz vektorunun yonu

Yerdeğiştirme vektörü olan $\Delta \vec{r} = \overrightarrow{P_1 P_2}$ kirişini gözönüne alalım. •

• $\overrightarrow{P_1P_2}$ vektörü hareket yönündedir. •

Yerdeğiştirme vektörü olan $\Delta \vec{r} = \overrightarrow{P_1 P_2}$ kirişini gözönüne alalım. •

- $\overrightarrow{P_1P_2}$ vektörü hareket yönündedir. •
- $\Delta t \rightarrow 0$ olurken, P_2 noktası giderek P_1 noktasına yaklaşacak ve P_1P_2 kirişi sonunda teğet doğrultuya gelecektir.

(a) Teruegiştirine vektorunun inint yonu, (b) v inz vektorunun yonu

Yerdeğiştirme vektörü olan $\Delta \vec{r} = \overrightarrow{P_1 P_2}$ kirişini gözönüne alalım. •

- $\overrightarrow{P_1P_2}$ vektörü hareket yönündedir. •
- $\Delta t \rightarrow 0$ olurken, P_2 noktası giderek P_1 noktasına yaklaşacak ve P_1P_2 kirişi sonunda teğet doğrultuya gelecektir.

O halde, iki boyutlu harekette, **hız vektörü daima yörüngeye teğet ve** hareket yönündedir.

İvme vektörü(\vec{a}) \implies Hız vektörünün birim zamanda değişimi. \cdot

İvme vektörü $(\vec{a}) \implies \text{Hız vektörünün birim zamanda değişimi.}$

• Ortalama İvme vektörü (\vec{a}_{ort})

Cismin t_1 anındaki hızı $\vec{\boldsymbol{v}}_1$ ve daha sonraki bir t_2 anındaki hızı $\vec{\boldsymbol{v}}_2$ ise,

$$\vec{a}_{\mathrm{ort}} = rac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = rac{\Delta \vec{v}}{\Delta t}$$

İvme vektörü $(\vec{a}) \implies \text{Hız vektörünün birim zamanda değişimi.}$

• Ortalama İvme vektörü (\vec{a}_{ort})

Cismin t_1 anındaki hızı \vec{v}_1 ve daha sonraki bir t_2 anındaki hızı \vec{v}_2 ise,

$$\vec{a}_{\text{ort}} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

• Ani ivme vektörü (\vec{a}): Ortalama ivme vektörünün limiti. •

• Ani ivme vektörü (a): Ortalama ivme vektörünün limiti.

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$= \underbrace{\frac{dv_x}{dt}}_{a_x} \hat{i} + \underbrace{\frac{dv_y}{dt}}_{a_y} \hat{j} = a_x \hat{i} + a_y \hat{j}$$

• Ani ivme vektörü (a): Ortalama ivme vektörünün limiti.

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$= \underbrace{\frac{dv_x}{dt}}_{a_x} \hat{i} + \underbrace{\frac{dv_y}{dt}}_{a_y} \hat{j} = a_x \hat{i} + a_y \hat{j}$$

• Hız konumun türevi olduğu için, ivme de konumun ikinci türevi olur:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2}, \qquad \tan \theta = \frac{a_y}{a_x}$$

• Ani ivme vektörü (\vec{a}): Ortalama ivme vektörünün limiti.

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$= \underbrace{\frac{dv_x}{dt}}_{a_x} \hat{i} + \underbrace{\frac{dv_y}{dt}}_{a_y} \hat{j} = a_x \hat{i} + a_y \hat{j}$$

Hız konumun türevi olduğu için, ivme de konumun ikinci türevi olur:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2}, \qquad \tan \theta = \frac{a_y}{a_x}$$

• İvme vektörünün yönü: Herhangi bir yönde olabilir, yörüngeye teğet olmak zorunda değildir.

3.2 ATIŞ HAREKETİ

Şekilde seçilen koordinat sistemine göre: ${f \cdot}$

3.2 ATIŞ HAREKETİ

Şekilde seçilen koordinat sistemine göre: •

$$\begin{array}{c} a_x = 0 \\ a_y = -g \end{array} \} \longrightarrow \vec{\boldsymbol{a}} = -g\hat{\boldsymbol{j}}$$

3.2 ATIŞ HAREKETİ

Şekilde seçilen koordinat sistemine göre: •

$$\begin{array}{c} a_x = 0 \\ a_y = -g \end{array} \} \longrightarrow \vec{\boldsymbol{a}} = -g\hat{\boldsymbol{j}}$$

$$v_{0x} = v_0 \cos \theta \qquad v_{0y} = v_0 \sin \theta$$

• Sabit ivmeli hareket formüllerini hatırlayalım:

$$v = v_0 + at$$
 ve $x = x_0 + v_0 t + \frac{1}{2} a t^2$

• Sabit ivmeli hareket formüllerini hatırlayalım:

$$v = v_0 + at$$
 ve $x = x_0 + v_0 t + \frac{1}{2} at^2$

• Herbir bileşen için uygulanırsa ($a_x = 0$, $a_y = -g$),

$$v_x = v_0 \cos \theta$$
 $v_y = v_0 \sin \theta - gt$
 $x = v_0 \cos \theta t$ $y = v_0 \sin \theta t - \frac{1}{2}gt^2$ (atış hareketi)

$$y = (\tan \theta) x - \frac{g}{2v_0^2 \cos^2 \theta} x^2$$
 (Yörünge denklemi)

$$y = (\tan \theta) x - \frac{g}{2v_0^2 \cos^2 \theta} x^2$$
 (Yörünge denklemi)

• Problem çözümünde yararlı bağıntılar: •

$$y = (\tan \theta) x - \frac{g}{2v_0^2 \cos^2 \theta} x^2$$
 (Yörünge denklemi)

- Problem çözümünde yararlı bağıntılar:
 - Cisim orijinden başka bir yerden atılmışa, bu formüllere x_0 , y_0 koordinatları da eklenmelidir.

$$y = (\tan \theta) x - \frac{g}{2v_0^2 \cos^2 \theta} x^2$$
 (Yörünge denklemi)

- Problem çözümünde yararlı bağıntılar:
 - Cisim orijinden başka bir yerden atılmışa, bu formüllere x_0 , y_0 koordinatları da eklenmelidir.
 - Cisim yatay atılmışsa ($\theta = 0$) $v_{0x} = v_0$ ve $v_{0y} = 0$ olur.

$$y = (\tan \theta) x - \frac{g}{2v_0^2 \cos^2 \theta} x^2$$
 (Yörünge denklemi)

- Problem çözümünde yararlı bağıntılar:
 - Cisim orijinden başka bir yerden atılmışa, bu formüllere x_0 , y_0 koordinatları da eklenmelidir.
 - Cisim yatay atılmışsa ($\theta = 0$) $v_{0x} = v_0$ ve $v_{0y} = 0$ olur.
 - Maksimum yükseklikte $v_{0y} = 0$ olur. •

$$y = (\tan \theta) x - \frac{g}{2v_0^2 \cos^2 \theta} x^2$$
 (Yörünge denklemi)

- Problem çözümünde yararlı bağıntılar:
 - Cisim orijinden başka bir yerden atılmışa, bu formüllere x_0, y_0 koordinatları da eklenmelidir.
 - Cisim yatay atılmışsa ($\theta = 0$) $v_{0x} = v_0$ ve $v_{0y} = 0$ olur.
 - Maksimum yükseklikte $v_{0y} = 0$ olur. •
 - Cisim yatayın altında atılmışsa θ açısı negatif alınır.

3.3 DÜZGÜN DAİRESEL HAREKET

r yarıçaplı bir çember üzerinde sabit v hızıyla dönmekte olan cismin t_1 anında bulunduğu P_1 konumlu yerdeki hız vektörü \vec{v}_1 , daha sonraki bir t_2 anındaki P_2 konumlu yerdeki hız vektörü de \vec{v}_2 olsun ($|\vec{v}_1| = |\vec{v}_2| = v$).

3.3 DÜZGÜN DAİRESEL HAREKET

r yarıçaplı bir çember üzerinde sabit v hızıyla dönmekte olan cismin t_1 anında bulunduğu P_1 konumlu yerdeki hız vektörü \vec{v}_1 , daha sonraki bir t_2 anındaki P_2 konumlu yerdeki hız vektörü de \vec{v}_2 olsun ($|\vec{v}_1| = |\vec{v}_2| = v$).

 \vec{v}_2 vektörünü kaydırıp \vec{v}_1 vektörü yanına getirelim ve $\Delta \vec{v} = \vec{v}_2 - \vec{v}_1$ farkını inşa edelim. Ortalama ivme formülünü hatırlayalım:

$$\vec{a}_{\text{ort}} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

3.3 DÜZGÜN DAİRESEL HAREKET

r yarıçaplı bir çember üzerinde sabit v hızıyla dönmekte olan cismin t_1 anında bulunduğu P_1 konumlu yerdeki hız vektörü \vec{v}_1 , daha sonraki bir t_2 anındaki P_2 konumlu yerdeki hız vektörü de \vec{v}_2 olsun ($|\vec{v}_1| = |\vec{v}_2| = v$).

 \vec{v}_2 vektörünü kaydırıp \vec{v}_1 vektörü yanına getirelim ve $\Delta \vec{v} = \vec{v}_2 - \vec{v}_1$ farkını inşa edelim. Ortalama ivme formülünü hatırlayalım:

$$\vec{a}_{\text{ort}} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

Herne kadar hız sabit olsa da, yönü değiştiği için vektörel olarak $\Delta \vec{v}$ sıfırdan farklıdır. Bu yüzden bir ivme oluşur!

Hızlar üçgenini hareket çemberindeki $\mathit{OP}_1\mathit{P}_2$ üçgeniyle karşılaştıralım. ullet

Hızlar üçgenini hareket çemberindeki OP_1P_2 üçgeniyle karşılaştıralım. ullet

$$\begin{array}{ccc} \bullet \text{ İkizkenar} \\ \bullet & \theta \text{ tepe açıları eşit} \end{array} \Longrightarrow & \text{Benzer üçgenler } \bullet$$

Hızlar üçgenini hareket çemberindeki OP_1P_2 üçgeniyle karşılaştıralım.

Benzer üçgenlerdeki kenar oranları eşit olur:

$$\frac{\Delta r}{r} = \frac{\Delta v}{v}$$

Hızlar üçgenini hareket çemberindeki OP_1P_2 üçgeniyle karşılaştıralım.

Benzer üçgenlerdeki kenar oranları eşit olur:

$$\frac{\Delta r}{r} = \frac{\Delta v}{v}$$

Yaklaşık olarak $\Delta r \approx \Delta s$ (yay uzunluğu) $\Longrightarrow \Delta v = \frac{v \Delta s}{r}$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v \, \Delta s}{r \, \Delta t} = \frac{v}{r} \lim_{\Delta t \to 0} \underbrace{\frac{\Delta s}{\Delta t}}_{t} = \frac{v^2}{r}$$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v \, \Delta s}{r \, \Delta t} = \frac{v}{r} \lim_{\Delta t \to 0} \underbrace{\frac{\Delta s}{\Delta t}}_{v} = \frac{v^2}{r}$$

İvmenin yönü: $\vec{v}_2 \rightarrow \vec{v}_1$ olurken $\Delta \vec{v}$ hıza dik ve merkeze yönelik olur.

\implies merkezcil ivme a_r

İvme:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v \, \Delta s}{r \, \Delta t} = \frac{v}{r} \lim_{\Delta t \to 0} \underbrace{\frac{\Delta s}{\Delta t}}_{v} = \frac{v^{2}}{r}$$

İvmenin yönü: $\vec{v}_2 \rightarrow \vec{v}_1$ olurken $\Delta \vec{v}$ hıza dik ve merkeze yönelik olur.

 \implies merkezcil ivme a_r

$$a_r = \frac{v^2}{r}$$
 (merkezcil ivme)

Heryerde merkeze yönelik bir ivme.

Teğetsel İvme (a_t):

Dairesel harekette hızın sadece yönü değil, büyüklüğü de değişiyorsa, merkezcil ivmeye ek olarak, bir de **teğetsel ivme** oluşur. •

Teğetsel İvme (a_t):

Dairesel harekette hızın sadece yönü değil, büyüklüğü de değişiyorsa, merkezcil ivmeye ek olarak, bir de **teğetsel ivme** oluşur.

Toplam \vec{a} ivmesi bu merkezcil ve teğetsel ivmelerin bileşkesi olur:

$$\vec{a} = \vec{a}_r + \vec{a}_t$$

Teğetsel İvme (a_t):

Dairesel harekette hızın sadece yönü değil, büyüklüğü de değişiyorsa, merkezcil ivmeye ek olarak, bir de **teğetsel ivme** oluşur. •

Toplam \vec{a} ivmesi bu merkezcil ve teğetsel ivmelerin bileşkesi olur:

$$\vec{a} = \vec{a}_r + \vec{a}_t$$

Teğetsel ivme daha sonra dönme hareketi içinde ele alınacaktır (Bölüm 7).

3.4 GÖRELİ HAREKET

Konum, hız, ivme gibi kavramlar hangi gözlemci tarafından ölçüldüğüne bağlıdır.

Fakat, iki gözlemcinin birbirine göre hızı biliniyorsa, bu farklı ölçümler arasındaki ilişki hesaplanabilir. $\mathbf v$

3.4 GÖRELİ HAREKET

Konum, hız, ivme gibi kavramlar hangi gözlemci tarafından ölçüldüğüne bağlıdır.

Fakat, iki gözlemcinin birbirine göre hızı biliniyorsa, bu farklı ölçümler arasındaki ilişki hesaplanabilir.

A, B noktalarında bulunan iki cismin O orijininde hareketsiz duran bir gözlemci tarafından incelendiğini kabul edelim.

Konumlar:

$$\vec{r}_A = \overrightarrow{OA}$$
$$\vec{r}_B = \overrightarrow{OB}$$

ve aralarındaki ilişki:

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

Bu ifadenin zamana göre türevini alalım.

$$\frac{d\overrightarrow{OB}}{dt} = \frac{d\overrightarrow{AB}}{dt} + \frac{d\overrightarrow{OA}}{dt}$$

Terimlerin anlamı:

$$\frac{d\overrightarrow{OB}}{dt} = \vec{\mathbf{v}}_{BO} = B \text{ cisminin yerdeki } O \text{ orijinine göre hızı}$$

$$\frac{d\overrightarrow{OA}}{dt} = \vec{\mathbf{v}}_{AO} = A \text{ cisminin yerdeki } O \text{ orijinine göre hızı}$$

$$\frac{d\overrightarrow{AB}}{dt} = \vec{\mathbf{v}}_{BA} = B \text{ cisminin hareketli } A \text{ cismine göre hızı}$$

$$\vec{\mathbf{v}}_{BO} = \vec{\mathbf{v}}_{BA} + \vec{\mathbf{v}}_{AO}$$
 (göreli hız toplama kuralı)

$$\vec{\boldsymbol{v}}_{BO} = \vec{\boldsymbol{v}}_{BA} + \vec{\boldsymbol{v}}_{AO}$$

• Hatırda tutmak kolay: (*O*, *A*, *B*) indislerinden herhangi iki tanesinin arasına üçüncü bir indis katıp iki terime açarız:

$$\vec{v}_{OA} = \vec{v}_{OB} + \vec{v}_{BA}$$

$$\vec{v}_{AB} = \vec{v}_{AO} + \vec{v}_{OB}$$

$$\vec{\boldsymbol{v}}_{BO} = \vec{\boldsymbol{v}}_{BA} + \vec{\boldsymbol{v}}_{AO}$$

 Hatırda tutmak kolay: (O, A, B) indislerinden herhangi iki tanesinin arasına üçüncü bir indis katıp iki terime açarız:

$$\vec{\boldsymbol{v}}_{OA} = \vec{\boldsymbol{v}}_{OB} + \vec{\boldsymbol{v}}_{BA}$$

$$\vec{\boldsymbol{v}}_{AB} = \vec{\boldsymbol{v}}_{AO} + \vec{\boldsymbol{v}}_{OB} \cdot \vec{\boldsymbol{v}}$$

• İndisleri ters sırada olan vektörler eksi yönde olurlar:

$$\vec{\boldsymbol{v}}_{BA} = -\vec{\boldsymbol{v}}_{AB}$$
 veya $\vec{\boldsymbol{v}}_{AO} = -\vec{\boldsymbol{v}}_{OA}$... gibi.

$$\vec{\boldsymbol{v}}_{BO} = \vec{\boldsymbol{v}}_{BA} + \vec{\boldsymbol{v}}_{AO}$$

• Hatırda tutmak kolay: (*O*, *A*, *B*) indislerinden herhangi iki tanesinin arasına üçüncü bir indis katıp iki terime açarız:

$$\vec{\boldsymbol{v}}_{OA} = \vec{\boldsymbol{v}}_{OB} + \vec{\boldsymbol{v}}_{BA}$$

$$\vec{\boldsymbol{v}}_{AB} = \vec{\boldsymbol{v}}_{AO} + \vec{\boldsymbol{v}}_{OB}$$

• İndisleri ters sırada olan vektörler eksi yönde olurlar:

$$\vec{\boldsymbol{v}}_{BA} = -\vec{\boldsymbol{v}}_{AB}$$
 veya $\vec{\boldsymbol{v}}_{AO} = -\vec{\boldsymbol{v}}_{OA}$... gibi.

• Bu hız toplama kuralı sadece klasik fizikte geçerlidir. Çok yüksek hızlarda (ışık hızına yakın) yanlış sonuç verir. Bunun yerine Einstein'ın *Görelilik Teorisi* ile geliştirdiği formüller kullanılır.

Bağıl İvme

Hızlar arasındaki ilişkiyi veren $\vec{v}_{BO} = \vec{v}_{BA} + \vec{v}_{AO}$ denkleminin türevi alınır:

$$\vec{a}_{BO} = \vec{a}_{BA} + \vec{a}_{AO}$$

Bağıl İvme

Hızlar arasındaki ilişkiyi veren $\vec{v}_{BO} = \vec{v}_{BA} + \vec{v}_{AO}$ denkleminin türevi alınır:

$$\vec{a}_{BO} = \vec{a}_{BA} + \vec{a}_{AO}$$

A cismi orijine göre düzgün doğrusal hareket yapıyorsa,

$$\vec{a}_{AO} = 0 \implies \vec{a}_{BO} = \vec{a}_{BA}$$

Birbirine göre düzgün doğrusal hareket yapan gözlemciler aynı ivmeyi ölçerler.

Daha sonra görüleceği üzere,

Dinamik yasaları birbirine göre hareketsiz veya düzgün doğrusal hareket yapan gözlemciler için geçerli olurlar.