QDCS: Digrammatic Calculus and Error Correction

Renaud Vilmart

TD5

1 Small CSS Codes

Question 1. For the following pairs of X and Z parity check matrices, give the CSS code that they define, if it exists:

1.
$$H_Z = (1)$$
, $H_X = (0)$

2.
$$H_Z = (0)$$
, $H_X = (1)$

3.
$$H_Z = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad H_X = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

4.
$$H_Z = \begin{pmatrix} 1 & 1 \end{pmatrix}, \quad H_X = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

5.
$$H_Z = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \quad H_X = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

6.
$$H_Z = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \quad H_X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

7.
$$H_Z = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \quad H_X = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Question 2. For the above codes, what are their length, dimension and minimal distance?

Question 3. For the above CSS codes, build the state as a ZX-diagram if it is maximal, otherwise complete the parity check matrices as you see fit, then build the encoder as a ZX-diagram.

2 CSS Code States

Let H_X and H_Z be two parity check matrices, for codes C_X and C_Z respectively. Let $\left|z+C_X^\perp\right\rangle:=\frac{1}{\sqrt{\left|C_X^\perp\right|}}\sum_{x\in C_X^\perp}\left|z+x\right\rangle$ for $z\in C_Z$.

Question 1. Let $u \in C_X^{\perp}$. Show that $X^u | z + C_X^{\perp} \rangle = | z + C_X^{\perp} \rangle$.

Question 2. Let $u \in C_Z^{\perp}$. Show that $Z^u | z + C_X^{\perp} \rangle = | z + C_X^{\perp} \rangle$.

3 The Steane Code

The Steane code is defined as the CSS code with:

$$H_X = H_Z = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Question 1. Check that this indeed defines a CSS code.

Question 2. How many logical qubits does it encode?

Question 3. What is its minimal distance?

Hint: See if you can't conclude from the respective minimal distances of the image and the kernel of these matrices.

Question 4. Complete H_X and H_Z to get a maximal CSS code (as you see fit)

Question 5. Build the encoder for the Steane code

4 Surface Code

Consider the 3×3 surface code from the course.

Question 1. Complete the CSS code into a maximal CSS code.

Question 2. Provide a ZX-diagram implementing the obtained code. Deduce an encoder of the surface code.