#### $(AB)^2$ Simulation



Entwicklung eines graphischen Editors zur Modellierung von Systemen mit dynamischer Modellstruktur

Diplomanden: Andreas Bachmann, Andreas Butti

Dozierende: Prof. Dr. Stephan Scheidegger,

Dr. Rudolf Marcel Füchslin



#### Inhalt

- 1. Einleitung / Vorgaben
- 2. Modellierungseditor
- 3. Simulation / Mathematik
- 4. Technische Hintergründe
- 5. Demonstration

1

## Einleitung / Vorgaben

#### Biologische Prozesse (1)

Mit Differential-Gleichungen beschrieben

$$\frac{dN}{dt} = c(t) \cdot \alpha N - \beta N^{2}, N \ge 0$$

$$\frac{dc}{dt} = -\gamma N, c \ge 0$$

#### **Biologische Prozesse (2)**



#### Vorgaben

- Bereits existierende Tools
  - Berkeley Madonna
  - Simulink
- Benutzerführung
- Simulation im zweidimensionalen Raum
  - Zellen

# 2

### Modellierungseditor

# 2.1

## Flussdiagramm

#### **Features**

- Copy & Paste
- Expotieren als Vektorgrafik
- Undo / Redo
- Importieren bestehender Modelle
  - Berkeley Madonna
  - Dynasys



# 2.2

## XY-Diagramm

#### **Features**

- Dichten
  - Darstellung mit Gradientenpfeile
- Meso Kompartimente
  - Können gleiches Model beinhalten





# 2.3

### Generelle GUI-Elemente

#### Formeleditor

- Syntaxhilighting
- Autocomplete (für Lange Variablen)
- Menü mit Vorschlägen
- Library Browser
- Automatische Syntaxkontrolle









# 3

## Mathematik

#### Matlab (Markup Language)

- Vorteile:
  - Klare Schnittstelle nach aussen
  - Fertige Toolbox die Mathematik kapselt
- Nachteile:
  - Eigener Prozess
    - Nicht beeinflussbar
    - (Fehler-)Ausgabe schwer zu erhalten

#### Simulations Verfahren (1)

- Gewöhnliche Differentialgleichungen (Ordinary Differential Equation ODE)
- Differential Equation Solver
- Numerisch lösen



#### Simulations Verfahren (2)

- Matlab-Eigene Funktionen (ode45 u.ä.)
- Selbst Entwickelte Funktionen
  - Euler
  - Runge-Kutta
    - Klassisch
    - Dormand & Prince



#### Diffusionsgleichung (1)

- Gleichmässige Verteilung/Ausbreitung im Raum
- Harte Kanten verhindern



## Diffusionsgleichung (2)

#### Resultat



#### Diffusionsgleichung (3)

Verifikation: Dichtefunktion

$$G(\vec{r}, t) = \frac{1}{4\pi Dt} \cdot e^{-\frac{x^2 + y^2}{4Dt}}$$



#### Gradienten-Verfahren

- Verfahren des steilsten Abstiegs
- Wandert schrittweise zum lokalen Minimum/ Maximum





#### Gradienten-Verfahren

#### Resultat



4

## Technische Hintergründe

### Plattform unabhängig

- Java
- Setup für
  - Linux
  - Mac
  - Windows
- Portable Version





#### Modularität

- ~20 Projekte
- Erweiterbarkeit
- Keine Redundanzen
- Klare Grenzen / Schnittstellen

#### Plugins / Erweiterbarkeit

- Simpel (200 Zeilen Code)
- Importieren von Fremdformaten
- Simulation
- Weitere Schnittstellen denkbar

#### Fehlerhandling

- Alle erwarteten Fehler gehandelt
  - Meldung an Benutzer, ggf. mit Abhilfe
  - Datei nicht Schreibbar
  - Eingabe falsch etc.
- Alle unerwarteten Fehler / Eventloop Exceptions
  - Fehler Benutzer anzeigen / loggen
  - Programmierfehler
  - Manipulierte Daten etc.

#### Erweiterungen nach Abgabe

- Aussehen für Mac OS X angepasst
- Neue Legende für Dichte
- Dichte exportieren bei "Bild exportieren"
- Exportieren als Film
- Gradientenpfeile
- Raster für Flussdiagramm
- Nativer Filechooser für Mac, Linux, Win
- "Nur Selektion" für Bildexport
- Berkeley Madonna XML Files importieren
- Funktionen Library

# Fehlerkorrekturen nach Abgabe

- Copy & Paste bei Meso wird nun Formel für X und Y korrekt kopiert
- XYModell Autorparser funktioniert nun
- DensityContainer löschen funktioniert
- Div. Korrekturen am Buildystem
- Repaintproblem bei Flussverbindungen
- Aboutdialog mit Tabs / kleine Bildschirme
- Prüfung Modell verbessert
- Formeleditor zeigt "Initialw." im Titel etc.
- CSV Export mit NaN funktioniert
- Parser erweitert z.B. PULSE und STEP

# 5

#### Demonstration

# Ende

## Sind noch Fragen?