Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

21 января 2022 г.

Содержание

1	Лекция 1					
	1.1	λ -исчисление	į			
	1.2	Представление некоторых функций в λ-исчислении	4			
	1.3	Черчевские нумералы	5			
2	Лен	кция 2	-			
	2.1	Формализация λ -термов, классы α -эквивалентности термов	Ę			
	2.2	Нормальная форма, λ -выражения без нормальной формы,				
		комбинаторы K, I, Ω	6			
	2.3	β -редуцируемость	6			
	2.4	Ромбовидное свойство	6			
	2.5	Теорема Чёрча-Россера, следствие о единственности				
		нормальной формы	6			
	2.6	Нормальный и аппликативный порядок вычислений	Ĝ			
3	Лен	кция 3	ç			
	3.1	Y-комбинатор	Ć			
	3.2	Рекурсия	10			
	3.3	Парадокс Карри				
	3.4	Импликационный фрагмент интуиционистского исчисления				
		высказываний	12			
	3.5	Просто типизированное по Карри λ -исчисление	12			
	3.6	Отсутствие типа у Ү-комбинатора	13			
	3.7	Изоморфизм Карри-Ховарда	14			
4	Лен	кция 4	14			
	4.1	Расширение просто типизированного λ-исчисления				
		до изоморфного ИИВ	14			
	4.2	Изоморфизм Карри-Ховарда для расширения				
		просто типизированного λ -исчисления	18			
	4.3	Просто типизированное по Чёрчу λ -исчисление				
	4.4	Связь типизации по Чёрчу и по Карри	19			

5	Лекция 5						
	Изоморфизм Карри-Ховарда (завершение),						
	Унификация		18				
	5.1 Изоморфизм Карри-Ховарда		19				
	5.2 Уравнение в алгебраических термах $\Theta_1 = \Theta_2$						
	Система уравнений в алгебраических термах		21				
	5.3 Алгоритм Унификации. Определения		22				
	5.4 Алгоритм унификации		23				
6	Лекция 6						
	Реконструкция типов в просто типизированном λ -исчислении, комби						
	горы		26				
	6.1 Алгоритм вывода типов		26				
	6.2 Сильная и слабая нормализации		28				
	6.3 Выразимость комбинаторов		29				
7	Лекция 7	6	26				
	7.1 Импликационный фрагмент ИИП второго порядка		29				
	7.2 Теория Моделей		30				
	7.3 Система F		31				
8	Лекция 8	9	33				
	8.1 Ранг типа						
	8.2 Типовая схема		33				
	8.3 Экзистенциальные типы		34				
	8.4 Абстрактные типы		34				
	8.5 Типовая система Хиндли-Милнера		35				
9	Лекция 9	ę	36				
9	9.1 Хиндли-Милнер		37				
	9.2 Алгоритм вывода типов в системе Хиндли-Милнера W		38				
	9.3 Рекурсивные типы		36				
	9.3 Текурсивные типы						
	9.4.1 П-типы и Σ-типы						
	7.4.1 II IMIDI II Z IMIDI						
10	Лекция 10		4 3				
	10.1 Введение		43				
	10.2 Обобщенная типовая система		45				
	10.3 λ -куб		47				
	10.4 Свойства	4	48				
11	Лекция 13	4	49				
	11.1 Теорема Диаконеску		49				

1 Лекция 1

1.1 λ -исчисление

Определение 1.1 (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

$$\Phi ::= x | (\Phi) | \lambda x. \Phi | \Phi \Phi$$

Иногда для упрощения записи мы будем опускать скобки. В этом случае перед разбором выражения следует расставить все опущенные скобки. При их расставлении будем придерживаться правил:

- 1. В аппликации расставляем скобки слева направо: $A \ B \ C \implies (A \ B) \ C$.
- 2. Абстракции жадные поглощают скобками все, что могут, до конца строки: $\lambda a. \lambda b. a \ b \implies \lambda a. (\lambda b. (a \ b)).$

Пример.
$$\lambda x.(\lambda f.((fx)(fx)\lambda y.(yf)))$$

Договоримся, что:

- Переменные x, a, b, c.
- Термы (части λ -выражения) X, A, B, C.
- Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные из конца.

Есть понятия связанного и свободного вхождения переменной (аналогично исчислению предикатов).

Определение 1.2. Если вхождение x находится в области действия абстракции по x, то такое вхождение называется связанным, иначе вхождение называется свободным.

Определение 1.3. Терм Q называется свободным для подстановки в Φ вместо x, если после подстановки Q ни одно вхождение не станет связанным.

Пример. $\lambda x.A$ связывает все свободные вхождения x в A.

Определение 1.4. Функция V(A) — множество переменных, входящих в A.

Определение 1.5. Функция FV(A) — множество свободных переменных, входящих в A:

$$\mathrm{FV}(A) = \begin{cases} \{x\} & \text{если } A \equiv x \\ \mathrm{FV}(P) \cup \mathrm{FV}(Q) & \text{если } A \equiv PQ \\ \mathrm{FV}(P) \backslash \{x\} & \text{если } A \equiv \lambda x.P \end{cases}$$

 λ -выражение можно понимать как функцию. Абстракция — это функция с аргументом, аппликация — это передача аргумента.

Определение 1.6 (α -эквивалентность). $A =_{\alpha} B$, если имеет место одно из следующих условий:

1.
$$A \equiv x$$
, $B \equiv y \times x \equiv y$.

2.
$$A \equiv P_1Q_1, B \equiv P_2Q_2 \text{ if } P_1 =_{\alpha} P_2, Q_1 =_{\alpha} Q_2.$$

3.
$$A \equiv \lambda x. P_1, \ B \equiv \lambda y. P_2$$
 и $P_1[x \coloneqq t] =_{\alpha} P_2[y \coloneqq t]$, где t — новая переменная.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

- 1. $tz =_{\alpha} tz$ верно по второму условию.
- 2. Тогда получаем, что $\lambda y.ty =_{\alpha} \lambda x.tx$ по третьему условию, так как из предыдущего пункта следует $ty[y := z] =_{\alpha} tx[x := z].$
- 3. Из второго пункта получаем, что $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$ по третьему условию, так как $\lambda y.xy[x := t] =_{\alpha} \lambda x.yx[y := t].$

Определение 1.7 (β -редекс). β -редекс—выражение вида: ($\lambda x.A$) B

Определение 1.8 (β -редукция). $A \to_{\beta} B$, если имеет место одно из следующих условий:

1.
$$A\equiv P_1Q_1,\ B\equiv P_2Q_2$$
 и либо $P_1=_{\alpha}P_2,\ Q_1\to_{\beta}Q_2,$ либо $P_1\to_{\beta}P_2,\ Q_1=_{\alpha}Q_2$

- 2. $A \equiv (\lambda x.P)\,Q,\, B \equiv P[x \coloneqq Q]$ причем Q свободна для подстановки вместо x в P
- 3. $A \equiv \lambda x.P$, $B \equiv \lambda x.Q$ и $P \rightarrow_{\beta} Q$

Пример. $(\lambda x.x) y \rightarrow_{\beta} y$

Пример. $a((\lambda x.x)y) \rightarrow_{\beta} ay$

1.2 Представление некоторых функций в λ -исчислении

Логические значения легко представить в терминах λ -исчисления. В самом деле, положим:

- True $\equiv \lambda a \lambda b.a$
- False $\equiv \lambda a \lambda b.b$

Также мы можем выражать и более сложные функции

Определение 1.9. If $\equiv \lambda c.\lambda t.\lambda e.(ct)e$

Пример. If T $a \ b \rightarrow_{\beta} a$

Доказательство.

$$((\lambda c.\lambda t.\lambda e.(ct)e) \ \lambda a\lambda b.a) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda a\lambda b.a) \ t \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda b.t) \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.t) \ a \ b \rightarrow_{\beta} (\lambda e.a) \ b \rightarrow_{\beta} a$$

Как мы видим, If T действительно возвращает результат первой ветки. Другие логические операции:

Not =
$$\lambda a.a$$
 F T And = $\lambda a.\lambda b.a$ b F Or = $\lambda a.\lambda b.a$ T b

4

1.3 Черчевские нумералы

Определение 1.10 (черчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f(f^{n-1}x) & \text{при } n > 0 \\ x & \text{при } n = 0 \end{cases}$.

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Арифметические операции:

- 1. IsZero = $\lambda n.n(\lambda x. F) T$
- 2. Add = $\lambda a.\lambda b.\lambda f.\lambda x.a f(b f x)$
- 3. Pow = $\lambda a.\lambda b.b$ (Mul a) $\overline{1}$
- 4. IsEven = $\lambda n.n$ Not T
- 5. Mul = $\lambda a. \lambda b. a$ (Add b) $\overline{0}$

Для того, чтобы определить (-1), сначала определим пару:

$$\langle a, b \rangle = \lambda f. f \, a \, b$$
 First $= \lambda p. p \, T$ Second $= \lambda p. p \, F$

Затем n раз применим функцию $f(\langle a,b\rangle)=\langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \operatorname{First}(n(\lambda p. \langle (\operatorname{Second} p), (+1) (\operatorname{Second} p) \rangle) \langle \overline{0}, \overline{0} \rangle)$$

2 Лекция 2

2.1 Формализация λ -термов, классы α -эквивалентности термов

Определение 2.1 (λ -терм). Рассмотрим классы эквивалентности $[A]_{=_{\alpha}}$. Будем говорить, что $[A] \to_{\beta} [B]$, если существуют $A' \in [A]$ и $B' \in [B]$, что $A' \to_{\beta} B'$.

Лемма 2.1. $(=_{\alpha})$ — отношение эквивалентности.

Пусть в А есть β -редекс $(\lambda x.P)Q$, но Q не свободен для подстановки вместо x в P, тогда найдем $y \notin V[P], y \notin V[Q]$. Сделаем замену P[x := y]. Тогда замена P[x := y][y := Q] допустима. То есть, можно сказать, что мы просто переименовали переменную x в P и получили свободу для подстановки, тем самым получив возможность редукции.

Лемма 2.2. $P[x := Q] =_{\alpha} P[x := y][y := Q]$, если замена допустима.

2.2 Нормальная форма, λ -выражения без нормальной формы, комбинаторы $K,\,I,\,\Omega$

Определение 2.2. λ -выражение A находится в нормальной форме, если оно не содержит β -редексов.

Определение 2.3. A — нормальная форма B, если существует последовательность термов $A_1 \dots A_n$ такая, что $B =_{\alpha} A_1 \to_{\beta} A_2 \to_{\beta} \dots \to_{\beta} A_n =_{\alpha} A$ и A находится в нормальной форме.

Определение 2.4. Комбинатор — λ -выражение без свободных переменных.

Определение 2.5.

- $I \equiv \lambda x.x$ (Identitant)
- $K \equiv \lambda a.\lambda b.a$ (Konstanz)
- $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$

Лемма 2.3. Ω — не имеет нормальной формы.

Доказательство. Ω имеет единственный β -редекс, где $A \equiv xx$, $B \equiv (\lambda x.xx)$. Тогда единственный возможный путь редукции — подставить B вместо x в A. Но тогда мы получим Ω . Следовательно, у Ω нет нормальной формы, так как в полученном выражении у нас всегда будет β -редекс.

2.3 β -редуцируемость

Определение 2.6. Будем говорить, что $A \to_{\beta} B$, если \exists такие $X_1 \dots X_n$, что $A =_{\alpha} X_1 \to_{\beta} X_2 \to_{\beta} \dots \to_{\beta} X_{n-1} \to_{\beta} X_n =_{\alpha} B$.

 $(\twoheadrightarrow_{\beta})$ — рефлексивное и транзитивное замыкание $(\twoheadrightarrow_{\beta})$. $(\twoheadrightarrow_{\beta})$ не обязательно приводит к нормальной форме

Пример. $\Omega \rightarrow_{\beta} \Omega$

2.4 Ромбовидное свойство

Определение 2.7 (Ромбовидное свойство). Отношение R обладает ромбовидным свойством, если для любых a, b, c таких, что $aRb, aRc, b \neq c$, существует d, что bRd и cRd.

Пример. (\leq) на множестве натуральных чисел обладает ромбовидным свойством, (>) на множестве натуральных чисел не обладает ромбовидным свойством.

2.5 Теорема Чёрча-Россера, следствие о единственности нормальной формы

Теорема 2.4 (Черча-Россера). $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

Следствие 2.1. Если у A есть нормальная форма, то она единственная с точностью до $(=_{\alpha})$ (переименования переменных).

Доказательство. Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера $\exists D \colon B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} D \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма 2.5. Если B — нормальная форма, то не существует Q такой, что $B \to_{\beta} Q$. Значит если $B \to_{\beta} Q$, то количество шагов редукции равно 0.

Лемма 2.6. Если R — обладает ромбовидным свойством, то и R^* (транзитивное, рефлексивное замыкание R) им обладает.

Доказательство. Пусть $M_1R^*M_n$ и M_1RN_1 . Тогда существуют такие $M_2...M_{n-1}$, что $M_1RM_2...M_{n-1}RM_n$. Так как R обладает ромбовидным свойством, M_1RM_2 и M_1RN_1 , то существует такое N_2 , что N_1RN_2 и M_2RN_2 . Аналогично, существуют такие $N_3...N_n$, что $N_{i-1}RN_i$ и M_iRN_i . Мы получили такое N_n , что $N_1R^*N_n$ и $M_nR^*N_n$.

Пусть теперь $M_{1,1}R^*M_{1,n}$ и $M_{1,1}R^*M_{m,1}$, то есть имеются $M_{1,2}\dots M_{1,n-1}$ и $M_{2,1}\dots M_{m-1,1}$, что $M_{1,i-1}RM_{1,i}$ и $M_{i-1,1}RM_{i,1}$. Тогда существует такое $M_{2,n}$, что $M_{2,1}R^*M_{2,n}$ и $M_{1,n}R^*M_{2,n}$. Аналогично, существуют такие $M_{3,n}\dots M_{m,n}$, что $M_{i,1}R^*M_{i,n}$ и $M_{1,n}R^*M_{i,n}$. Тогда $M_{1,n}R^*M_{m,n}$ и $M_{m,1}R^*M_{m,n}$.

Лемма 2.7 (Грустная лемма). (\rightarrow_{β}) не обладает ромбовидным свойством.

Доказательство. Пусть $A = (\lambda x. xx)(\mathcal{I}\mathcal{I})$. Покажем, что в таком случае не будет выполняться ромбовидное свойство:

Рис. 1: Нет такого D, что $B \rightarrow_{\beta} D$ и $C \rightarrow_{\beta} D$.

Определение 2.8 (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$, если

- 1. $A =_{\alpha} B$
- 2. $A \equiv P_1Q_1$, $B \equiv P_2Q_2$ if $P_1 \Rightarrow_{\beta} P_2$, $Q_1 \Rightarrow_{\beta} Q_2$
- 3. $A \equiv \lambda x.P_1$, $B \equiv \lambda x.P_2$ и $P_1 \rightrightarrows_{\beta} P_2$
- 4. $A =_{\alpha} (\lambda x. P_1)Q_1$, $B =_{\alpha} P_2[x \coloneqq Q_2]$ причем Q_2 свободна для подстановки вместо x в P_2 и $P_1 \rightrightarrows_{\beta} P_2$, $Q_1 \rightrightarrows_{\beta} Q_2$

Лемма 2.8. Если $P_1 \rightrightarrows_{\beta} P_2$ и $Q_1 \rightrightarrows_{\beta} Q_2$, то $P_1[x \coloneqq Q_1] \rightrightarrows_{\beta} P_2[x \coloneqq Q_2]$

Доказательство. Будем доказывать индукцией по определению $⇒_{β}$. Рассмотрим случаи:

- Пусть $P_1 =_{\alpha} P_2$. Тогда лемма легко доказывается индукцией по структуре выражения.
- Пусть $P_1 \equiv A_1B_1$, $P_2 \equiv A_2B_2$. По определению $(\rightrightarrows_{\beta})$ $A_1 \rightrightarrows_{\beta} A_2$ и $B_1 \rightrightarrows_{\beta} B_2$. Рассмотрим два случая:

- 1. $x \in FV(A_1)$. По индукционному предположению $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$. Тогда $A_1[x := Q_1]B_1 \rightrightarrows_{\beta} A_2[x := Q_2]B_2$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
- 2. $x \in FV(B_1)$. По индукционному предположению $B_1[x := Q_1] \Rightarrow_{\beta} B_2[x := Q_2]$. Тогда $A_1B_1[x := Q_1] \Rightarrow_{\beta} A_2B_2[x := Q_2]$.
- Пусть $P_1 \equiv \lambda y. A_1$, $P_2 \equiv \lambda y. A_2$. По определению $(\Rightarrow_{\beta}) A_1 \Rightarrow_{\beta} A_2$. Тогда по индукционному предположению $A_1[x \coloneqq Q_1] \Rightarrow_{\beta} A_2[x \coloneqq Q_2]$. Тогда $\lambda y. (A_1[x \coloneqq Q_1]) \Rightarrow_{\beta} \lambda y. (A_2[x \coloneqq Q_2])$ по определению (\Rightarrow_{β}) . Следовательно $\lambda y. A_1[x \coloneqq Q_1] \Rightarrow_{\beta} \lambda y. A_2[x \coloneqq Q_2]$ по определению подстановки.
- Пусть $P_1 =_{\alpha} (\lambda y. A_1) B_1$, $P_2 =_{\alpha} A_2[y \coloneqq B_2]$ и $A_1 \rightrightarrows_{\beta} A_2$, $B_1 \rightrightarrows_{\beta} B_2$. По индукционному предположению получаем, что $A_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]$, $B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} B_2[x \coloneqq Q_2]$. Следовательно, по определению $(\rightrightarrows_{\beta})$ получаем, что $(\lambda y. A_1[x \coloneqq Q_1]) B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[y \coloneqq B_2][x \coloneqq Q_2]$

Лемма 2.9. (\Rightarrow_{β}) обладает ромбовидным свойством.

Доказательство. Будем доказывать индукцией по определению $(\rightrightarrows_{\beta})$. Покажем, что если $M \rightrightarrows_{\beta} M_1$ и $M \rightrightarrows_{\beta} M_2$, то существует M_3 , что $M_1 \rightrightarrows_{\beta} M_3$ и $M_2 \rightrightarrows_{\beta} M_3$. Рассмотрим случаи:

- Если $M \equiv M_1$, то просто возьмем $M_3 \equiv M_2$.
- Если $M \equiv \lambda x.P$, $M_1 \equiv \lambda x.P_1$, $M_2 \equiv \lambda x.P_2$ и $P \Rightarrow_{\beta} P_1$, $P \Rightarrow_{\beta} P_2$, то по предположению индукции существует P_3 , что $P_1 \Rightarrow_{\beta} P_3$, $P_2 \Rightarrow_{\beta} P_3$, тогда возьмем $M_3 \equiv \lambda x.P_3$.
- Если $M \equiv PQ, M_1 \equiv P_1Q_1$ и по определению $(\Rightarrow_{\beta}) P \Rightarrow_{\beta} P_1, Q \Rightarrow_{\beta} Q_1$, то рассмотрим два случая:
 - 1. $M_2 \equiv P_2 Q_2$. Тогда по предположению индукции существует P_3 , что $P_1 \rightrightarrows_{\beta} P_3, P_2 \rightrightarrows_{\beta} P_3$. Аналогично для Q. Тогда возьмем $M_3 \equiv P_3 Q_3$.
 - 2. $P \equiv \lambda x. P'$ значит $P_1 \equiv \lambda x. P_1'$ и $P' \rightrightarrows_{\beta} P_1'$. Пусть тогда $M_2 \equiv P_2[x \coloneqq Q_2]$, по определению $(\rightrightarrows_{\beta}) P' \rightrightarrows_{\beta} P_2, Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует $M_3 \equiv P_3[x \coloneqq Q_3]$ такой, что $P_1' \rightrightarrows_{\beta} P_3, Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, Q_2 \rightrightarrows_{\beta} Q_3$.
- Если $M \equiv (\lambda x.P)Q, \, M_1 \equiv P_1[x \coloneqq Q_1]$ и $P \rightrightarrows_\beta P_1, \, Q \rightrightarrows_\beta Q_1,$ то рассмотрим случаи:
 - 1. $M_2 \equiv (\lambda x. P_2)Q_2$, $P \rightrightarrows_{\beta} P_2$, $Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует такой $M_3 \equiv P_3[x \coloneqq Q_3]$, что $P_1 \rightrightarrows_{\beta} P_3$, $Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3$, $Q_2 \rightrightarrows_{\beta} Q_3$.
 - 2. $M_2 \equiv P_2[x \coloneqq Q_2], \ P \rightrightarrows_{\beta} P_2, \ Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует такой $M_3 \equiv P_3[x \coloneqq Q_3],$ что $P_1 \rightrightarrows_{\beta} P_3, \ Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, \ Q_2 \rightrightarrows_{\beta} Q_3$.

Лемма 2.10.

- 1. $(\Rightarrow_{\beta})^* \subseteq (\rightarrow_{\beta})^*$
- $2. \ (\rightarrow_{\beta})^* \subseteq (\rightrightarrows_{\beta})^*$

Следствие 2.2. $(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$

Из приведенных выше лемм и следствия докажем теорему Черча-Россера.

Доказательство. $(→_{\beta})^* = (→_{\beta})$. Тогда $(→_{\beta}) = (⇒_{\beta})^*$. Значит из того, что $(⇒_{\beta})$ обладает ромбовидным свойством и леммы 2.6, следует, что $(→_{\beta})$ обладает ромбовидным свойством.

2.6 Нормальный и аппликативный порядок вычислений

Пример. Выражение $KI\Omega$ можно редуцировать двумя способами:

1.
$$\mathcal{K} \mathcal{I} \Omega =_{\alpha} ((\lambda a. \lambda b. a) \mathcal{I}) \Omega \to_{\beta} (\lambda b. \mathcal{I}) \Omega \to_{\beta} \mathcal{I}$$

2.
$$\mathcal{K}\mathcal{I}\Omega =_{\alpha} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x\ x)(\lambda x.x\ x)) \rightarrow_{\beta} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x\ x)(\lambda x.x\ x)) \rightarrow_{\beta} \mathcal{K}\mathcal{I}\Omega$$

Как мы видим, в первом случае мы достигли нормальной формы, в то время как во втором мы получили бесконечную редукцию. Разница двух этих способов в порядке редукции. Первый называется нормальный порядок, а второй аппликативный.

Определение 2.9 (нормальный порядок редукции). Редукция самого левого β -редекса.

Определение 2.10 (аппликативный порядок редукции). Редукция самого левого β -редекса из самых вложенных.

Теорема 2.11 (Приводится без доказательства). Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальный порядок хоть и приводит к нормальной форме, если она существует, но бывают ситуации, в которых аппликативный порядок вычисляется быстрее, чем нормальный.

Пример. Рассмотрим λ -выражение ($\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}$). Попробуем редуцировать его нормальным порядком:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \dots \to_{\beta} \mathcal{I}$$

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\lambda x.x \ x \ x)\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}$$

3 Лекция 3

3.1 Ү-комбинатор

Определение 3.1. Комбинатором называется λ -выражение, не имеющее свободных переменных

Определение 3.2. (Y-комбинатор)

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Очевидно, У-комбинатор является комбинатором.

Теорема 3.1. $Yf =_{\beta} f(Yf)$

Доказательство. β -редуцируем выражение Yf

$$=_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Так как при второй редукции мы получили, что $Yf =_{\beta} (\lambda x. f(xx))(\lambda x. f(xx))$

Следствием этого утверждения является теорема о неподвижной точке для бестипового λ -исчисления

Теорема 3.2. В λ -исчислении каждый терм f имеет неподвижную точку, то есть такое p, что f $p =_{\beta} p$

Доказательство. Возьмём в качестве p терм Yf. По предыдущей теореме, $f(Yf) =_{\beta} Yf$, то есть Yf является неподвижной точкой для f. Для любого терма f существует терм Yf, значит, у любого терма есть неподвижная точка.

3.2 Рекурсия

С помощью Y-комбинатора можно определять рекурсивные функции, например, функцию, вычисляющую факториал Чёрчевского нумерала. Для этого определим вспомогательную функцию

```
fact' \equiv \lambda f.\lambda n.isZero\ n\ \overline{1}(mul\ n\ f((-1)n))
Тогда fact \equiv Y\ fact'
```

Заметим, что fact $\overline{n} =_{\beta} fact'$ (Y fact') $\overline{n} =_{\beta} fact'$ fact \overline{n} , то есть в тело функции fact' вместо функции f будет подставлена fact (заметим, что это значит, что именно функция fact будет применена к $\overline{n-1}$, то есть это соответствует нашим представлениям о рекурсии).

Для понимания того, как это работает, посчитаем $fact \overline{2}$

```
fact \ \overline{2}
=_{\beta} Y fact' \ \overline{2}
=_{\beta} fact'(Y fact')\overline{2}
=_{\beta} (\lambda f.\lambda n.isZero n \ \overline{1}(mul \ n \ f((-1)n)))(Y fact')\overline{2}
=_{\beta} isZero \ \overline{2} \ \overline{1}(mul \ \overline{2} \ ((Y fact')((-1)\overline{2})))
=_{\beta} mul \ \overline{2} \ ((Y fact')((-1)\overline{2}))
=_{\beta} mul \ \overline{2} \ (Y fact' \ \overline{1})
=_{\beta} mul \ \overline{2} \ (fact' \ (Y fact' \ \overline{1}))
```

Раскрывая fact' $(Y \ fact' \ \overline{1})$ так же, как мы раскрывали fact' $(Y \ fact' \ \overline{2})$, получаем

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

Посчитаем $(Y fact' \overline{0})$

$$(Y \ fact' \ \overline{0})$$

$$=_{\beta} fact' \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} (\lambda f. \lambda n. is Zero \ n \ \overline{1}(mul \ n \ f((-1)n))) \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} is Zero \ \overline{0} \ \overline{1}(mul \ \overline{0} \ ((Y \ fact'))((-1)\overline{0})) =_{\beta} \overline{1}$$

Таким образом,

$$\begin{array}{c} fact \ \overline{2} \\ =_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0})) \\ =_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ \overline{1}) =_{\beta} mul \ \overline{2} \ \overline{1} =_{\beta} \overline{2} \end{array}$$

3.3 Парадокс Карри

Попробуем построить логику на основе λ -исчисления. Введём логический символ \rightarrow . Будем требовать от этого исчисления наличия следующих схем аксиом:

$$1. \vdash A \rightarrow A$$

$$2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

3.
$$\vdash A =_{\beta} B$$
, тогда $A \to B$

А также правила вывода МР:

$$\frac{\vdash A \to B, \vdash A}{\vdash B}$$

Не вводя дополнительные правила вывода и схемы аксиом, покажем, что данная логика является противоречивой. Для чего введём следующие условные обозначения:

$$F_{\alpha} \equiv \lambda x.(x \ x) \rightarrow \alpha$$

 $\Phi_{\alpha} \equiv F_{\alpha} \ F_{\alpha} \equiv (\lambda x.(x \ x) \rightarrow \alpha) \ (\lambda x.(x \ x) \rightarrow \alpha)$
Редуцируя Φ_{α} , получаем

$$\Phi_{\alpha}$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha)$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha) \to \alpha$$

$$=_{\beta} \Phi_{\alpha} \to \alpha$$

Теперь докажем противоречивость введённой логики. Для этого докажем, что в ней выводимо любое утверждение.

1)
$$\vdash \Phi_{\alpha} \to \Phi_{\alpha} \to \alpha$$
 Tak kak $\Phi_{\alpha} =_{\beta} \Phi_{\alpha} \to \alpha$
2) $\vdash (\Phi_{\alpha} \to \Phi_{\alpha} \to \alpha) \to (\Phi_{\alpha} \to \alpha)$ Tak kak $\vdash (A \to (A \to B)) \to (A \to B)$
3) $\vdash \Phi_{\alpha} \to \alpha$ MP 2, 3
4) $\vdash (\Phi_{\alpha} \to \alpha) \to \Phi_{\alpha}$ Tak kak $\vdash \Phi_{\alpha} \to \alpha =_{\beta} \Phi_{\alpha}$
5) $\vdash \Phi_{\alpha}$ MP 3, 4
6) $\vdash \alpha$ MP 3, 5

Таким образом, введённая логика оказывается противоречивой.

3.4 Импликационный фрагмент интуиционистского исчисления высказываний

Рассмотрим подмножество ИИВ, со следующей грамматикой:

$$\Phi ::= x \mid \Phi \to \Phi \mid (\Phi)$$

То есть состоящее только из переменных и импликаций.

Добавим в него одну схему аксиом

$$\Gamma, \varphi \vdash \varphi$$

И два правила вывода

1. Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

2. Правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Пример. Докажем $\vdash \varphi \rightarrow \psi \rightarrow \varphi$

$$\frac{\varphi,\psi \vdash \varphi}{\varphi \vdash \psi \to \varphi} \text{ (Введение импликации)} \\ \frac{\varphi \vdash \psi \to \varphi}{\vdash \varphi \to (\psi \to \varphi)} \text{ (Введение импликации)}$$

Пример. Докажем $\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \gamma$

$$\frac{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha \to \beta \to \gamma \qquad \alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha}{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \beta \to \gamma} \qquad \qquad \alpha \to \beta \to \gamma, \alpha, \ \beta \vdash \beta \\ \hline \alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \gamma$$

3.5 Просто типизированное по Карри λ -исчисление

Определение 3.3. Тип в просто типизированном λ -исчислении по Карри — это либо маленькая греческая буква $(\alpha, \phi, \theta, \ldots)$, либо импликация $(\theta_1 \to \theta_2)$

Таким образом, $\Theta ::= \theta_i | \Theta \to \Theta | (\Theta)$

Импликация при этом считается правоассоциативной операцией.

Определение 3.4. Язык просто типизированного λ -исчисления — это язык бестипового λ -исчисления.

Определение 3.5. Контекст Γ — это список выражений вида A : θ , где A — λ -терм, а θ — тип.

Определение 3.6. Просто типизированное λ -исчисление по Карри.

Рассмотрим исчисление с единственной схемой аксиом:

$$\Gamma, x : \theta \vdash x : \theta$$
, если x не входит в Γ

И следующими правилами вывода

1. Правило типизации абстракции

$$\frac{\Gamma,x:\varphi \vdash P:\psi}{\Gamma \vdash (\lambda\;x.\;P):\varphi \to \psi} \text{ если } x \text{ не входит в } \Gamma$$

2. Правило типизации аппликации:

$$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$$

Если λ -выражение типизируется с использованием этих двух правил и одной схемы аксиом, то будем говорить, что оно типизируется по Карри.

Пример. Докажем $\vdash \lambda \ x. \ \lambda \ y. \ x: \alpha \to \beta \to \alpha$

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash\lambda\;y.\;x:\beta\to\alpha}\;\text{(Правило типизации абстракции)}\\ \frac{\vdash\lambda\;x.\;\lambda\;y.\;x:\alpha\to\beta\to\alpha}\;\text{(Правило типизации абстракции)}$$

Пример. Докажем $\vdash \lambda x. \lambda y. xy: (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$

$$\frac{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta \qquad x:\alpha \to \beta, y:\alpha \vdash y:\alpha}{\frac{x:\alpha \to \beta, y:\alpha \vdash x y:\beta}{x:\alpha \to \beta \vdash \lambda \ y. \ x \ y:\alpha \to \beta}}$$
$$\vdash \lambda \ x. \ \lambda \ y. \ x \ y:(\alpha \to \beta) \to \alpha \to \beta$$

3.6 Отсутствие типа у Ү-комбинатора

Теорема 3.3. Y-комбинатор не типизируется в просто типизированном по Карри λ -исчислении.

Неформальное доказательство $Y f =_{\beta} f (Y f)$, поэтому Y f и f (Y f) должны иметь одинаковые типы.

Пусть $Y f : \alpha$

Тогда $Y:\beta \to \alpha, f:\beta$

Из $f(Y f): \alpha$ получаем $f: a \rightarrow \alpha$ (так как $Y f: \alpha$)

Тогда $\beta = \alpha \to \alpha$, из этого получаем $Y : (\alpha \to \alpha) \to \alpha$

Можно доказать, что λ x. $x:\alpha\to\alpha$. Тогда Y λ x. $x:\alpha$, то есть любой тип является обитаемым. Так как это невозможно, Y-комбинатор не может иметь типа, так как тогда он сделает нашу логику противоречивой.

Формальное доказательство Докажем от противного. Пусть Y-комбинатор типизируем. Тогда в выводе его типа есть вывод типа выражения x x. Так как x x — абстракция, то и типизирована она может быть только по правилу абстракции. Значит, в выводе типа Y-комбинатора есть такой вывод:

$$\frac{\Gamma \vdash x : \varphi \to \psi \qquad \Gamma \vdash x : \varphi}{\Gamma \vdash xx : \psi}$$

Рассмотрим типизацию $\Gamma \vdash x : \varphi \to \psi$ и $\Gamma \vdash x : \varphi$. x это атомарная переменная, значит, она могла быть типизирована только по единственной схеме аксиом.

Следовательно, x типизируется следующим образом.

$$\frac{\Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi \to \psi \qquad \Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi}{\Gamma', x:\varphi \to \psi, x:\varphi \vdash xx:\psi}$$

Следовательно, в контексте Γ переменная x встречается два раза, что невозможно по схеме аксиом.

3.7 Изоморфизм Карри-Ховарда

Заметим, что аксиомы и правила вывода импликационного фрагмента ИИВ и просто типизированного по Карри λ -исчисления точно соответствуют друг другу.

Просто типизированное λ-исчисление	Импликативный фрагмент ИИВ
$\Gamma, x: \theta \vdash x: \theta$	$\Gamma, \varphi \vdash \varphi$
$\frac{\Gamma, x : \varphi \vdash P : \psi}{\Gamma \vdash (\lambda \ x. \ P) : \varphi \to \psi}$	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$
$\begin{array}{ c c c }\hline \Gamma \vdash P : \varphi \to \psi & \Gamma \vdash Q : \varphi \\\hline \Gamma \vdash PQ : \psi & \\\hline \end{array}$	$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$

Установим соответствие и между прочими сущностями ИИВ и просто типизированного по Карри λ -исчисления.

Просто типизированное λ-исчисление	Импликативный фрагмент ИИВ
Тип	Высказывание
Терм	Доказательство высказывания
Проверка того, что терм имеет заданный	Проверка доказательства на корректность
тип	
Обитаемый тип	Доказуемое высказывание
Проверка того, что существует терм, име-	Проверка того, что заданное высказыва-
ющий заданный тип	ние имеет доказательство

4 Лекция 4

4.1 Расширение просто типизированного λ -исчисления до изоморфного ИИВ

Заметим, что между просто типизированным по Карри λ -исчислением и импликационным фрагментом ИИВ существует изоморфизм, но при этом в просто типизированном λ -исчислении нет аналогов лжи, а также связок \vee и &.

Для установления полного изоморфизма между ИИВ и просто типизированным λ -исчислением введём три необходимые для установления этого изоморфизма сущности:

- 1. Тип "Ложь"(⊥)
- 2. Тип упорядоченной пары A&B, соответствующий логическому "И"
- 3. Алгебраический тип A|B, соответствующий логическому "ИЛИ"

Тип \bot Введём тип \bot , соответствующий лжи в ИИВ. Поскольку из лжи может следовать что угодно, добавим в исчисление новое правило вывода

$$\frac{\Gamma \vdash A : \bot}{\Gamma \vdash A : \tau}$$

То есть выражение, типизированное как \bot , может быть типизировано также любым другим типом.

В программировании аналогом этого типа может являться тип Nothing, который является подтипом любого другого типа.

Тип Nothing является необитаемым, им типизируется выражение, никогда не возвращающее свой результат (например, throw new Error() : Nothing).

Тот факт, что выражение, типизированное как Nothing, может быть типизировано любым другим типом, позволяет писать следующие функции:

```
def assertStringNotEmpty(s: String): String = {
  if (s.length != 0) {
    s
  } else {
    throw new Error("Empty string")
  }
}
```

так как throw new Error("Empty string"): Nothing, то throw new Error("Empty string"): String, поэтому функция может иметь тип String. Теперь, имея тип \bot , можно ввести связку "Отрицание". Обозначим $\neg A = A \to \bot$, то

Теперь, имея тип \bot , можно ввести связку "Отрицание". Обозначим $\neg A = A \to \bot$, то есть в программировании это будет соответствовать функции

```
def throwError(a: A): Nothing = throw new Error()
```

Упорядоченные пары Введём возможность запаковывать значения в пары. Функция *makePair* будет выглядеть следующим образом:

```
makePair \equiv \lambda \ first. \ \lambda \ second. \ \lambda \ f. \ f \ first \ second
```

Тогда

```
< first, second > \equiv makePair\ first\ second
```

Надо также написать функции, которые будут доставать из пары упакованные в неё значения. Назовём их Π_1 и Π_2 .

Пусть

$$\Pi_1 \equiv \lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)$$

$$\Pi_2 \equiv \lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ b)$$

Заметим, что

```
\Pi_{1} < A, B >
=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) (makePair \ A \ B)
=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) ((\lambda \ first. \ \lambda \ second. \ \lambda \ f. \ f \ first \ second) \ A \ B)
=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) (\lambda \ f. \ f \ A \ B)
=_{\beta} (\lambda \ f. \ f \ A \ B) \ (\lambda \ a.\lambda \ b. \ a) \ A \ B
=_{\beta} (\lambda \ b. \ A) \ B
=_{\beta} (\lambda \ b. \ A) \ B
=_{\beta} (\lambda \ b. \ A) \ B
```

Аналогично, $\Pi_2 < A, B > =_{\beta} B$

Таким образом, мы умеем запаковывать элементы в пары и доставать элементы из пар. Теперь, добавим к просто типизированному λ -исчислению правила вывода, позволяющие типизировать такие конструкции.

Добавим три новых правила вывода:

1. Правило типизации пары

$$\frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \psi}{\Gamma \vdash < A, B > : \varphi \& \psi}$$

2. Правило типизации первого проектора:

$$\frac{\Gamma \vdash < A, B >: \varphi \& \psi}{\Gamma \vdash \Pi_1 < A, B >: \varphi}$$

3. Правило типизации второго проектора:

$$\frac{\Gamma \vdash < A, B >: \varphi \& \psi}{\Gamma \vdash \Pi_2 < A, B >: \psi}$$

Алгебраические типы Добавим тип, который является аналогом union в C++, или алгебраического типа в любом функциональном языке. Это тип, который может содержать одну из двух альтернатив.

Hапример, тип OptionInt = None | Some of Int может содержать либо None, либо Some of Int, но не обе альтернативы разом, причём в каждый момент времени известно, какую альтернативу он содержит.

Заметим, что определение алгебраического типа похоже на определение дизъюнкции в ИИВ (в ИИВ если выполнено $\vdash a \lor b$, известно, что из $\vdash a \lor b$ выполнено).

Для реализации алгебраических типов в λ -исчислении напишем три функции:

- 1. in_1 , создающее экземпляр алгебраического типа из первой альтернативы, то есть запаковывающее первую альтернативу в алгебраический тип
- $2. in_2$, выполняющее аналогичные действия, но со второй альтернативой.
- 3. case, принимающую три параметра: экземпляр алгебраического типа, функцию, определяющую, что делать, если этот экземпляр был создан из первой альтернативы (то есть с использованием in_1), и функцию, определяющую, что делать, если этот экземпляр был создан из второй альтернативы (то есть с использованием in_2)

Аналогом *case* в программировании является конструкция, известная как pattern-matching, или сопоставление с образцом.

Функция in_1 будет выглядеть следующим образом:

$$in_1 \equiv \lambda x. \lambda f. \lambda g. f x$$

А in_2 - следующим:

$$in_2 \equiv \lambda x. \lambda f. \lambda g. g. x$$

То есть in_1 принимает две функции и применяет первую к x, а in_2 применяет вторую. Тогда case будет выглядеть следующим образом:

$$case \equiv \lambda \ algebraic. \ \lambda \ f. \ \lambda \ g. \ algebraic \ f \ g$$

Заметим, что

$$case \ (in_1A) \ F \ G$$

$$=_{\beta} (\lambda \ algebraic. \ \lambda \ f. \ \lambda \ g. \ algebraic \ f \ g) ((\lambda \ x. \ \lambda \ h. \ \lambda \ s. \ h \ x)A) \ F \ G$$

$$=_{\beta} (\lambda \ algebraic. \ \lambda \ f. \ \lambda \ g. \ algebraic \ f \ g) (\lambda \ h. \ \lambda \ s. \ h \ A) \ F \ G$$

$$=_{\beta} (\lambda \ f. \ \lambda \ g. \ (\lambda \ h. \ \lambda \ s. \ h \ A) \ F \ g) \ G$$

$$=_{\beta} (\lambda \ g. \ (\lambda \ h. \ \lambda \ s. \ h \ A) \ F \ G$$

$$=_{\beta} (\lambda \ s. \ F \ A) \ G$$

$$=_{\beta} F \ A$$

Аналогично, $case\ (in_2B)\ F\ G =_{\beta} G\ B.$

То есть $case, in_1$ и in_2 умеют применять нужную функцию к запакованной в экземпляр алгебраического типа одной из альтернатив.

Теперь добавим к просто типизированному λ -исчислению правила вывода, позволяющие типизировать эти конструкции.

Добавим три новых правила вывода:

1. Правило типизации левой инъекции

$$\frac{\Gamma \vdash A : \varphi}{\Gamma \vdash in_1 \ A : \varphi \lor \psi}$$

2. Правило типизации правой инъекции:

$$\frac{\Gamma \vdash B : \psi}{\Gamma \vdash in_2 \; B : \varphi \lor \psi}$$

3. Правило типизации case:

$$\frac{\Gamma \vdash L : \varphi \lor \psi, \quad \Gamma \vdash f : \varphi \to \tau, \quad \Gamma \vdash g : \psi \to \tau}{case \ L \ f \ g : \tau}$$

4.2 Изоморфизм Карри-Ховарда для расширения просто типизированного λ -исчисления

Заметим точное соответствие только что введённых конструкций аксиомам ИИВ.

Расширенное просто типизированное	ИИВ
λ-исчисление	
$\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \psi$	
$\Gamma \vdash < A, B >: \varphi \& \psi$	$\vdash \varphi \to \psi \to \varphi \& \psi$
$\Gamma \vdash : \varphi \& \psi$	
$\Gamma \vdash \Pi_1 < A, B >: \varphi$	$\vdash \varphi \& \psi \to \varphi$
$\Gamma \vdash < A, B >: \varphi \& \psi$	
$\frac{\Gamma \vdash \langle A, B \rangle}{\Gamma \vdash \Pi_2 < A, B >: \psi}$	$\vdash \varphi \& \psi \to \psi$
$1 \vdash \Pi_2 \setminus A, D \geq \psi$	$\vdash \varphi \& \psi \rightarrow \psi$
$\Gamma \vdash A : \varphi$	
$\Gamma \vdash in_1 A : \varphi \lor \psi$	$\vdash \varphi \to \varphi \lor \psi$
$\Gamma \vdash B : \psi$	
$\Gamma \vdash in_2 \ B : \varphi \lor \psi$	$\vdash \psi \rightarrow \varphi \lor \psi$
$\Gamma \vdash L : \varphi \lor \psi, \Gamma \vdash f : \varphi \to \tau, \Gamma \vdash g : \psi \to \tau$	
$case\ L\ f\ g: au$	$\vdash (\varphi \to \tau) \to (\psi \to \tau) \to (\varphi \lor \psi) \to \tau$

4.3 Просто типизированное по Чёрчу λ -исчисление

Определение 4.1. Тип в просто типизированном по Чёрчу λ -исчислении — это то же самое, что тип в просто типизированном по Карри λ -исчислении

Определение 4.2. Язык просто типизированного по Чёрчу λ -исчисления удовлетворяет следующей грамматике

$$\Lambda_{\mathbf{q}} ::= x \mid \Lambda_{\mathbf{q}} \Lambda_{\mathbf{q}} \mid \lambda \ x^{\tau}. \ \Lambda_{\mathbf{q}} \mid (\Lambda_{\mathbf{q}})$$

Замечание 4.1. Иногда абстракция записывается не как λ x^{τ} . $\Lambda_{\mathbf{q}}$, а как λ x: τ . $\Lambda_{\mathbf{q}}$

Определение 4.3. Просто типизированное по Чёрчу λ-исчисление.

Рассмотрим исчисление с единственной схемой аксиом:

$$\Gamma, x : \theta \vdash x : \theta$$
, если x не входит в Γ

И следующими правилами вывода

1. Правило типизации абстракции

$$\frac{\Gamma,x:\varphi \vdash P:\psi}{\Gamma \vdash (\lambda\;x:\varphi.\;P):\varphi \to \psi} \text{ если } x \text{ не входит в } \Gamma$$

2. Правило типизации аппликации:

$$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$$

Если λ -выражение типизируется с использованием этих двух правил и одной схемы аксиом, то будем говорить, что оно типизируется по Чёрчу.

В исчислении по Чёрчу остаются верными все предыдущие теоремы (в том числе теорема Чёрча-Россера), но правило строгой типизации абстракций позволяет доказать ещё одну теорему:

Теорема 4.1 (Уникальность типов в исчислении по Чёрчу).

- 1. Если $\Gamma \vdash_{\neg} M : \theta$ и $\Gamma \vdash_{\neg} M : \tau$, то $\theta = \tau$
- 2. Если $\Gamma \vdash_{\P} M : \theta$ и $\Gamma \vdash_{\P} N : \tau$, и $M =_{\beta} N$ то $\theta = \tau$

4.4 Связь типизации по Чёрчу и по Карри

Определение 4.4 (Стирание). Функцией стирания называется следующая функция: $|\cdot|:\Lambda_{\mathtt{q}}\to\Lambda_{\mathtt{k}}$:

$$|A| = \begin{cases} x & A \equiv x \\ |M| |N| & A \equiv M |N| \\ \lambda x. |P| & A \equiv \lambda |x| : \tau. |P| \end{cases}$$

Лемма 4.2. Пусть $M,N\in\Lambda_{\mathbf{q}},M\to_{\beta}N,$ тогда $|M|\to_{\beta}|N|$

Лемма 4.3. Если $\Gamma \vdash_{\mathbf{q}} M : \tau$, тогда $\Gamma' \vdash_{\kappa} |M| : \tau$, где Γ' получается из Γ применением функции стирания к каждому терму из Γ

Теорема 4.4 (Теорема о поднятии).

- 1. Пусть $M,N\in\Lambda_{\mathbf{k}},P\in\Lambda_{\mathbf{q}},|P|=M,M\to_{\beta}N.$ Тогда найдётся такое $Q\in\Lambda_{\mathbf{q}},$ что |Q|=N, и $P\to_{\beta}Q$
- 2. Пусть $M \in \Lambda_{\kappa}, \Gamma \vdash_{\kappa} M : \tau$. Тогда существует $P \in \Lambda_{\mathfrak{q}}$, что |P| = M, и $\Gamma \vdash_{\mathfrak{q}} P : \tau$

5 Лекция 5

Изоморфизм Карри-Ховарда (завершение), Унификация

5.1 Изоморфизм Карри-Ховарда

Определение 5.1. Изоморфизм Карри-Ховарда

- 1. $\Gamma \vdash M : \sigma$ влечет $|\Gamma| \vdash \sigma$ т.е. $|\{x_1 : \Theta_1 \ldots x_n : \Theta_n\}| = \{\Theta_1 \ldots \Theta_n\}$
- 2. Если $\Gamma \vdash \sigma$, то существует M и существует Δ , такое что $|\Delta| = \Gamma$, что $\Delta \vdash M : \sigma$, где $\Delta = \{x_\sigma : \sigma \mid \sigma \in \Gamma\}$

Пример. $\{f: \alpha \to \beta, x: \beta\} \vdash fx: \beta$ Применив изоморфизм Карри-Ховарда, получим: $\{\alpha \to \beta, \beta\} \vdash \beta$

Доказательство. П.1 доказывается индукцией по длине выражения

1.
$$\Gamma, x: \Theta \vdash x: \Theta \implies_{KH} |\Gamma|, \Theta \vdash \Theta$$

2.
$$\frac{\Gamma, \ x : \tau_1 \vdash P : \tau_2}{\Gamma \vdash \lambda x. \ P : \tau_1 \to \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma|, \tau_1 \vdash \tau_2}{|\Gamma| \vdash \tau_1 \to \tau_2}$$

3.
$$\frac{\Gamma \vdash P : \tau_1 \to \tau_2 \qquad \Gamma \vdash Q : \tau_1}{\Gamma \vdash P \ Q : \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma| \vdash \tau_1 \to \tau_2 \qquad |\Gamma| \vdash \tau_1}{|\Gamma| \vdash \tau_2}$$

П.2 доказывается аналогичным способом, но действия обратные.

Т.е. отношения между типами в системе типов могут рассматриваться как образ отношений между высказываниями в логической системе, и наоборот.

Определение 5.2. Расширенный полином:

$$E(p, q) = \begin{cases} C, & \text{if } p = q = 0\\ p_1(p), & \text{if } q = 0\\ p_2(q), & \text{if } p = 0\\ p_3(p, q), & \text{if } p, q \neq 0 \end{cases}$$

где C — константа, p_1, p_2, p_3 — выражения, составленные из *, +, p, q и констант.

Пусть $v=(\alpha \to \alpha) \to (\alpha \to \alpha)$, где α -произвольный тип и пусть $F \in \Lambda$, что $\overline{F}: v \to v \to v$, то существует расширенный полином E, такой что $\forall a, b \in \mathbb{N}$ $F(\overline{a}, \overline{b}) =_{\beta} \overline{E(a, b)}$, где \overline{a} -черчевский нумерал.

Теорема 5.1. У каждого терма в просто типизируемом λ исчислении существует расширенный полином.

Утверждение 5.1. Типы черчевских нумералов

1.
$$0: \lambda f \lambda x. x: a \rightarrow b \rightarrow b$$

2.
$$1: \lambda f \lambda x. f x: (a \rightarrow b) \rightarrow a \rightarrow b$$

3.
$$2: \lambda f \lambda x. f(f x): (a \rightarrow a) \rightarrow a \rightarrow a$$

4.
$$\forall i, i \geq 2$$
 $\lambda f \lambda x. f(\dots(f x)) : (a \rightarrow a) \rightarrow a \rightarrow a$

Доказательство. Пункты 1, 2, 3— очевидно. Рассмотрим более подробно пункт 4:

Разберем нумерал и рассмотрим два последних шага —

$$\begin{array}{c|c}
f: a \rightarrow b \vdash x : a & \{1\} \\
\hline
f: a \rightarrow b \vdash f x : b & \{2\} \\
\hline
\lambda f \lambda x. f(... (f x)) & \{3\}
\end{array}$$

на шаге 3 становится понятно, что $f: a \to a$ и x: a (\bot в данном контексте означает, что такой терм не типизируем в данном предположении)

Утверждение 5.2. Основные задачи типизации λ-исчисления

1. Проверка типа—выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ , терма M и типа σ (для проверки типа обычно опускают σ и рассматривают п.2).

- 2. Реконструкция типа—можно ли подставить вместо ? и $?_1$ в $?_1 \vdash M$: ? конкретный тип σ в ? и контекст Γ в $?_1$.
- 3. *Обитаемость типа*—пытается подобрать, такой терм M и контекст Γ , чтобы было выполнено $\Gamma \vdash M : \sigma$.

Определение 5.3. Алгебраический терм

$$\Theta ::= a \mid (f \Theta_1 \ldots \Theta_n)$$

где a-переменная, $(f \Theta_1 \dots \Theta_n)$ -применение функции

5.2 Уравнение в алгебраических термах $\Theta_1 = \Theta_2$ Система уравнений в алгебраических термах

Определение 5.4. Система уравнений в алгебраических термах

$$\left\{egin{aligned} \Theta_1 &= \sigma_1 \ dots \ \Theta_n &= \sigma_n \end{aligned}
ight.$$
где Θ_i и σ_i — термы

Определение 5.5. $\{a_i\} = A$ -множество переменных, $\{\Theta_i\} = T$ -множество термов.

Определение 5.6. Подстановка—отображение вида: $S_0: A \to T$, которое является решением в алгебраических термах.

 $S_0(a)$ может быть либо $S_0(a) = \Theta_i$, либо $S_0(a) = a$.

Sто же, что и много if'ов, либо mapстрок. Доопределим $S:T\to T,$ где

- 1. $S(a) = S_0(a)$
- 2. $S(f(\Theta_1 \dots \Theta_k)) = f(S(\Theta_1) \dots S(\Theta_k))$

Определение 5.7. Решить уравнение в алгебраических термах—найти такое S, что $S(\Theta_1) = S(\Theta_2)$

Пример.

Заранее обозначим: a, b — переменные f, g, h — функции

- 1. f(a(gb)) = f(he)d имеет решение S(a) = he и S(d) = gb
 - (a) S(f a (q b)) = f (h e) (q b)
 - (b) S(f(he)d) = f(he)(qb)
 - (c) f(he)(qb) = f(he)(qb)
- 2. f a = q b-решений не имеет

Таким образом, чтобы существовало решение, необходимо равенство строк полученной подстановки.

5.3 Алгоритм Унификации. Определения

- 1. Система уравнений E_1 эквивалентна E_2 , если они имеют одинаковые решения(унификаторы).
- 2. Любая система E эквивалентна некоторому уравнению $\Sigma_1 = \Sigma_2$.

Доказательство. Возьмем функциональный символ f, не использующийся в E,

$$E = \begin{cases} \Theta_1 = \sigma_1 \\ \vdots \\ \Theta_n = \sigma_n \end{cases}$$

это же уравнение можно записать как $-f\Theta_1\ldots\Theta_n=f\sigma_1\ldots\sigma_n$

Если существует подстановка S такая, что

$$S(\Theta_i) = S(\sigma_i) \ \forall i, \text{ TO } S(f \Theta_1 \dots \Theta_n) = f S(\sigma_1) \dots S(\sigma_n)$$

Обратное аналогично.

- 3. Рассмотрим операции
 - (а) Редукция терма

Заменим уравнение вида $-f_1$ $\Theta_1 \dots \Theta_n = f_1 \ \sigma_1 \dots \sigma_n$ на систему уравнений

$$\Theta_1 = \sigma_1$$

:

$$\Theta_n = \sigma_n$$

(b) Устранение переменной

Пусть есть уравнение $x = \Theta$, заменим во всех остальных уравнениях переменную x на терм Θ .

Утверждение 5.3. Эти операции не изменяют множества решений.

Доказательство. Пункт a — доказан выше, докажем теперь пункт b :

Пусть есть решение вида $T = \begin{cases} a = \Theta_a \\ \vdots \end{cases}$ и уравнение вида $f \ a \ \dots \ z = \ \Theta_c$, тогда,

 $T(f\ a\ \dots\ z)=f\ T(a)\ \dots\ T(z),$ которое в свою очередь является $f\ \Theta_a\ \dots\ T(z)$

Определение 5.8. Система уравнений в разрешенной форме, если

- 1. Все уравнения имеют вид $a_i = \Theta_i$
- 2. Каждый из a_i входит в систему уравнений только один раз

Определение 5.9. Система несовместна, если

- 1. существует уравнение вида $f \Theta_1 \dots \Theta_n = g \sigma_1 \dots \sigma_n$, где $f \neq g$
- 2. существует уравнение вида $a=f\ \Theta_1\dots\Theta_n$, причем a входит в какой-то из Θ_i

22

5.4 Алгоритм унификации

- 1. Пройдемся по системе, выберем такое уравнение, что оно удовлетворяет одному из условий:
 - (a) Если $\Theta_i=a_i$, то перепишем, как $a_i=\Theta_i$, Θ_i —не переменная
 - (b) $a_i = a_i$ удалим
 - (c) $f \Theta_1 \dots \Theta_n = f \sigma_1 \dots \sigma_n$ применим редукцию термов
 - (d) $a_i = \Theta_i$ -Применим подстановку переменной подставим во все остальные уравнения Θ_i вместо a_i (Если a_i встречается в системе где-то еще)
- 2. Проверим разрешима ли система, совместна ли система (два пункта несовместимости)
- 3. Повторим пункт 1

Утверждение 5.4. Алгоритм не изменяет множества решений

Утверждение 5.5. Несовместная система не имеет решений

Утверждение 5.6. Если система имеет решение, то его разрешенная форма единственна

Утверждение 5.7. Система в разрешенной форме имеет решение:

$$\begin{cases} a_1 = \Theta_1 \\ \vdots \\ a_n = \Theta_n \end{cases}$$
 имеет решение –
$$\begin{cases} S_0(a_1) = \Theta_1 \\ \vdots \\ S_0(a_n) = \Theta_n \end{cases}$$

Утверждение 5.8. Алгоритм всегда заканчивается

Доказательство. По индукции, выберем три числа $\langle x \, y \, z \rangle$, где

x-количество переменных, которые встречаются строго больше одного раза в левой части некоторого уравнения (b не повлияет на x, а a повлияет в уравнении $f(a(ga)b) = \Theta)$,

у- количество функциональных символов в системе,

z-количество уравнений типа a=a и $\Theta=b$, где Θ не переменная.

Определим отношение < между двумя кортежами, как $\langle x_1 \ y_1 \ z_1 \rangle < \langle x_2 \ y_2 \ z_2 \rangle$, если верно одно из следующих условий:

- 1. $x_1 < x_2$
- 2. $x_1 = x_2 \& y_1 < y_2$
- 3. $x_1 = x_2 \& y_1 = y_2 \& z_1 < z_2$

Заметим, что операции (a) и (b) всегда уменьшают z и иногда уменьшают x.

Операция (c) всегда уменьшает y иногда x и, возможно, увеличивает z.

Операция (d) всегда уменьшает x, и иногда увеличивает y.

В случае если у системы нет решений, алгоритм определит это на одном из шагов и завершится.

Иначе с каждой операцией a-d данная тройка будет уменьшаться, а так как $x,y,z\geqslant 0$, данный алгоритм завершится за конечное время.

Пример.

Исходная система

$$E = \left\{ \begin{array}{c} g(x_2) = x_1 \\ f(x_1, h(x_1), x_2) = f(g(x_3), x_4, x_3) \end{array} \right\}$$

Применим пункт (c) ко второму уравнению верхней системы получим:

$$E = \left\{ \begin{array}{l} g(x_2) = x_1 \\ x_1 = g(x_3) \\ h(x_1) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (d) ко второму уравнению верхней системы (оно изменит 10е уравнение) получим:

$$E = \left\{ \begin{array}{l} g(x_2) = g(x_3) \\ x_1 = g(x_3) \\ h(g(x_3)) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (c) ко первому ур-ию и пункт (a) к третьему уравнению верхней системы

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (d) для первого уравнения к последнему уравнению, удалим последнее уравнение и получим систему в разрешенной форме

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \end{array} \right\}$$

Решение системы:

$$S = \left\{ \begin{array}{c} (x_1 = g(x_3)) \\ (x_2 = x_3) \\ (x_4 = h(g(x_3)))) \end{array} \right\}$$

Утверждение 5.9. Если система имеет решение, алгоритм унификации приводит систему в разрешенную форму

Доказательство. От противного.

Пусть алгоритм завершился и получившаяся система не в разрешенной форме. Тогда верно одно из следующих утверждений:

- 1. Одно из уравнений имеет вид отличный от $a_i = \Theta_i$, где a_i переменная, то есть имеет следующий вид:
 - (a) $f_i \ \sigma_1...\sigma_n = f_i \ \Theta_1...\Theta_n$ должна быть применена редукция термов \Rightarrow алгоритм не завершился противоречие.

(b) $f_i \sigma_1...\sigma_n = a_i$ – должно быть применено правило разворота равенства – противоречие.

2. Все уравнения имеют вид $a_i = \Theta_i$, где a_i – переменная, но a_i встречается в системе больше одного раза.

В таком случае должно быть применено правило подстановки – противоречие.

Определение 5.10. $S \circ T$ -композиция подстановок, если $S \circ T = S(T(a))$

Определение 5.11. S—наиболее общий унификатор, если любое решение (R) системы X может быть получено уточнением: $\exists \ T: R = T \circ S$

Утверждение 5.10. Алгоритм дает наиболее общий унификатор системы, если у нее есть решения.

Доказательство. Пусть S — решение, полученное алгоритмом унификации R — произвольное решение системы $S_0,\,R_0$ — их сужения на множество переменных соответственно

$$E = \begin{cases} \dots \\ a_i = \Theta_i \\ \dots \end{cases}$$

где Е — разрешенная форма исходной системы

Согласно утверждению 6.9, алгоритм унификации приведет систему в разрешенную форму, и полученное решение S будет иметь сужение S_0 , имеющее следующий вид:

- 1. $S_0(a_l) = \Theta_l$, если a_l входит в левую часть E
- 2. $S_0(a_r) = a_r$, если a_r входит в правую часть E

Рассмотрим, какой вид может иметь R. Для этого достаточно рассмотреть R_0 . Заметим, что R является решением E, так как E эквивалентна исходной системе. Следовательно, R_0 имеет следующий вид:

- 1. $R_0(a_r) = \Theta$, где Θ произвольный терм, если a_r входит в правую часть E
- 2. $R_0(a_l) = \Theta_l[a_{r_1} := R_0(a_{r_1}), ..., a_{r_m} := R_0(a_{r_m})]$, где a_{r_k} переменная из правой части E, если a_l входит в левую часть E

Построим $T: R = T \circ S$. Зададим его через сужение T_0 :

- 1. $T_0(a_r) = R_0(a_r)$, если a_r входит в правую часть E
- 2. $T_0 = id$, иначе

Покажем, что $R=T\circ S$. Для этого достаточно доказать, что $R_0=T\circ S_0$ Рассмотрим 2 случая:

- 1. a_r переменная из правой части E, тогда $(T \circ S_0)(a_r) = T(a_r) = T_0(a_r) = R_0(a_r)$
- 2. a_l переменная из левой части E, тогда $(T\circ S_0)(a_l)=T(\Theta_l)=\Theta_l[a_{r_1}:=R_0(a_{r_1}),...,a_{r_m}:=R_0(a_{r_m})]=R_0(a_l)$

Таким образом, мы для любого решения R предъявили подстановку $T: R = T \circ S$, что является определением того, что S — наиболее общий унификатор. \square

6 Лекция 6

Реконструкция типов в просто типизированном λ -исчислении комбинаторы

6.1 Алгоритм вывода типов

Пусть есть: ? $\vdash A$: ?, хотим найти пару \langle контекст, тип \rangle

Алгоритм:

1. Рекурсия по структуре формулы

Построить по формуле A пару $\langle E, \tau \rangle$, где

E-система уравнений, τ -тип A

2. Решение уравнения, получение подстановки S и из решения E и S (τ) получение ответа

Т.е. необходимо свести вывод типа к алгоритму унификации.

Пункт 6.1. Рассмотрим 3 случая

Обозначение -> - алгебраический тип

- 1. $A \equiv x \implies \langle \{\}, \alpha_A \rangle$, где $\{\}$ -пустой контекст, α_A -новая переменная, нигде не встречавшаяся до этого в формуле
- 2. $A \equiv P \ Q \implies \langle E_P \cup E_Q \cup \{\tau_P = \to \ (\tau_Q \ \alpha_A)\}, \alpha_A \rangle$, где α_A -новая переменная
- 3. $A \equiv \lambda x.P \implies \langle E_P, \alpha_x \rightarrow \tau_P \rangle$

Пункт 6.2. Алгоритм унификации

Рассмотрим E—систему уравнений, запишем все уравнения в алгебраическом виде, т.е. $\alpha \to \beta \Leftrightarrow \to \alpha \beta$, затем применяем алгоритм унификации.

Лемма 6.1. Рассмотрим терм M и пару $\langle E_M, \tau_M \rangle$, Если $\Gamma \vdash M : \rho$, то существует:

- 1. S—решение E_M тогда $\Gamma = \{x: S(\alpha_x) \mid x \in FV(M)\}$, FV—множество свободных переменных в терме M, α_x переменная, полученная при разборе терма M $\rho = S(\tau_M)$
- 2. Если S— решение E_M , то $\Gamma \vdash M : \rho$,

Доказательство. индукция по структуре терма M

- (a) Если $M \equiv x$, то так как решение существует, то существует и $S(\alpha_x)$, что: $\Gamma, x: S(\alpha_x) \vdash x: S(\alpha_x)$
- (b) Если $M \equiv \lambda x. P$, то по индукции уже известен тип P, контекст Γ и тип x, тогда:

$$\frac{\Gamma, x : S(\alpha_x) \vdash P : S(\alpha_P)}{\Gamma \vdash \lambda x. P : S(\alpha_x) \to S(\alpha_P)}$$

(c) Если $M \equiv P Q$, то по индукции:

$$\frac{\Gamma \vdash P : S(\alpha_P) \equiv \tau_1 \to \tau_2 \qquad \Gamma \vdash Q : S(\alpha_Q) \equiv \tau_1}{\Gamma \vdash P Q : \tau_2}$$

 $\left\langle \Gamma, \rho \right\rangle$ — основная пара для терма M, если

- 1. $\Gamma \vdash M : \tau$
- 2. Если $\Gamma' \vdash M : \tau'$, то существует $S : S(\Gamma) \subset \Gamma'$

Пример.

Рассмотрим терм: $\lambda f \ \lambda x. \ f(f(x))$, построим и пронумеруем его дерево разбора:

1.
$$\langle E_1, \tau_1 \rangle = \langle \{\}, \alpha_x \rangle$$

2.
$$\langle E_2, \tau_2 \rangle = \langle \{\}, \alpha_f \rangle$$

3.
$$\langle E_3, \tau_3 \rangle = \langle \{\}, \alpha_f \rangle$$

4.
$$\langle E_4, \tau_4 \rangle = \langle \{\alpha_f = \rightarrow (\alpha_x \alpha_1)\}, \alpha_1 \rangle$$

5.
$$\langle E_5, \tau_5 \rangle = \left\langle \begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}, \, \alpha_2 \right\rangle$$

6.
$$\langle E_6, \tau_6 \rangle = \langle \begin{cases} \alpha_f = \rightarrow (\alpha_x \, \alpha_1) \\ \alpha_f = \rightarrow (\alpha_1 \, \alpha_2) \end{cases}, \, \alpha_x \rightarrow \alpha_2 \rangle$$

7.
$$\langle E_7, \tau_7 \rangle = \left\langle \begin{cases} \alpha_f = \to (\alpha_x \alpha_1) \\ \alpha_f = \to (\alpha_1 \alpha_2) \end{cases}, \ \alpha_f \to (\alpha_x \to \alpha_2) \right\rangle$$

$$E = \left\{ egin{aligned} & lpha_f = & \rightarrow & (lpha_x & lpha_1) \\ & lpha_f = & \rightarrow & (lpha_1 & lpha_2) \end{aligned}
ight\}$$
, решим полученную систему:

1. Решим систему:

(a)
$$\begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}$$
(b)
$$\begin{cases} \to (\alpha_1 \, \alpha_2) = \to (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_1 \end{cases}$$

(d)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

2. Получим

$$S = \begin{cases} \alpha_f = \rightarrow (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

- 3. $\Gamma = \{\}$, так как в заданной формуле нет свободных переменных
- 4. Тип терма $\lambda f \lambda x. f(f(x))$ является результатом подстановки $S(\to \alpha_f (\alpha_x \to \alpha_2)),$ получаем $\tau = (\alpha_x \to \alpha_x) \to (\alpha_x \to \alpha_x)$

6.2 Сильная и слабая нормализации

Определение 6.1. Если существует последовательность редукций, приводящая терм M в нормальную форму, то M—слабо нормализуем. (Т.е. при редуцировании терма M мы можем не прийти в н.ф.)

Определение 6.2. Если не существует бесконечной последовательности редукций терма M, то терм M- сильно нормализуем.

Утверждение 6.1.

1. $KI\Omega$ — слабо нормализуема

Пример.

Перепишем $KI\Omega$ как $((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$, очевидно, что этот терм можно средуцировать двумя разными способами:

- (а) Сначала редуцируем красную скобку
 - i. $((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$
 - ii. $((\lambda y. (\lambda x. x)))(((\lambda x. x x)(\lambda x. x x)))$
 - iii. $(\lambda x. x)$

Видно, что в этом случае количество шагов конечно.

- (b) Редуцируем синюю скобку. Очевидно, что комбинатор Ω не имеет нормальной формы, тогда понятно, что в этом случае терм $KI\Omega$ никогда не средуцируется в нормальную форму.
- 2. Ω не нормализуема
- 3. *II* сильно нормализуема

Лемма 6.2. Сильная нормализация влечет слабую.

6.3 Выразимость комбинаторов

Утверждение 6.2. Для любого λ -выражения без свободных переменных существует β -эквивалентное ему выражение, записываемое только с помощью комбинаторов S и K, где

$$S = \lambda x \, \lambda y \, \lambda z. \, (x \, z) \, (y \, z) : (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$
$$K = \lambda x \, \lambda y. \, x : a \rightarrow b \rightarrow a$$

Утверждение 6.3. Комбинаторы S и K являются аксиомами в ИИВ

Утверждение 6.4. Соотношение комбинаторов с λ исчислением:

- 1. T(x) = x
- 2. T(PQ) = T(P)T(Q)
- 3. $T(\lambda x.P) = K(T(P)), x \notin FV(P)$
- 4. $T(\lambda x.x) = I$
- 5. $T(\lambda x \lambda y.P) = T(\lambda x. T(\lambda y.P))$
- 6. $T(\lambda x.P Q) = S T(\lambda x.P) T(\lambda x.Q)$

Утверждение 6.5. Альтернативный базис:

- 1. $B = \lambda x \lambda y \lambda z. x (y z) : (a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b$
- 2. $C = \lambda x \lambda y \lambda z. ((x z) y) : (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$
- 3. $W = \lambda x \lambda y. ((x y) y) : (a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b$

7 Лекция 7

7.1 Импликационный фрагмент ИИП второго порядка

Определение 7.1. Назовем *грамматикой ИИП второго порядка* конструкцию вида:

$$\mathbf{A} ::= (\mathbf{A}) \mid \mathbf{p} \mid \mathbf{A} \to \mathbf{A} \mid \forall \mathbf{p}.\mathbf{A}$$

В этой системе все остальные связки могут быть выражены через основные 4, представленные выше. Например, \bot представима в следующем виде

$$\forall \mathbf{p.p}$$

Также добавим два новых правила вывода для квантора существования и два для квантора всеобщности к уже существующим в ИИВ:

Для квантора всеобщности:

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \forall p.\phi} \ (p \notin FV(\Gamma)) \qquad \qquad \frac{\Gamma \vdash \forall p.\phi}{\Gamma \vdash \phi[p := \Theta]}$$

И два для квантора существования:

$$\frac{\Gamma \vdash \phi[p := \psi]}{\Gamma \vdash \exists p.\phi} \qquad \frac{\Gamma \vdash \exists p.\phi \qquad \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi} \ (p \notin FV(\Gamma, \psi))$$

Определение 7.2. Грамматику ИИП второго порядка с приведенными выше правилами вывода назовем Импликационным фрагментом ИИВ второго порядка

С помощью этих правил вывода можно доказать, что $\bot = \forall p.p$ Действительно, воспользовавшись вторым правилом вывода квантора всеобщности для этого выражения, мы можем вывести любое другое выражение.

С помощью правил вывода также можно доказать, что

$$\phi \& \psi \equiv \forall a ((\phi \to \psi \to a) \to a)$$
$$\phi \lor \psi \equiv \forall a ((\phi \to a) \to (\psi \to a) \to a)$$

Докажем например, что

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \phi}$$

Воспользуемся вторым правилом вывода для квантора всеобщности

$$\frac{\Gamma \vdash \forall \alpha. \alpha}{\Gamma \vdash \alpha[\alpha := \phi]}$$

7.2 Теория Моделей

Добавим к нашему исчислению модель. Напомню, что модель это функция которая сопоставляет некому терму элемент из множества истинностных значений. В нашем случае мы будем сопоставлять высказываниям элементы из множества [**И**,**Л**] по следующим правилам:

$$[p] = p$$
, т. е. $[p]^{p=x} = x$

$$\llbracket p \to Q \rrbracket = \begin{cases} \Pi, \llbracket p \rrbracket = \Pi, \llbracket Q \rrbracket = \Pi \\ \Pi, \text{иначе} \end{cases}$$

$$\llbracket \forall p.Q \rrbracket = \begin{cases} \mathbf{H}, \llbracket Q \rrbracket^{p=\mathrm{H}, \; \mathrm{H}} = \mathbf{H} \\ \mathbf{\Pi}, \text{ иначе} \end{cases}$$

Эта модель корректна, но не полна.

7.3 Система F

Определение 7.3. Под типом в системе F будем понимать следующее

$$\tau = \begin{cases} \alpha, \beta, \gamma... & \text{(атомарные типы)} \\ \tau \to \tau & \\ \forall \alpha. \tau & \text{(α - переменная)} \end{cases}$$

Определение 7.4. Введем определение грамматики в системе F:

$$\Lambda ::= \mathbf{x} \mid \lambda x^{\tau} . \Lambda \mid \Lambda \Lambda \mid (\Lambda) \mid \Lambda \alpha . \Lambda \mid \Lambda \tau$$

где $\Lambda \alpha.\Lambda$ — типовая абстракция, явное указание того, что вместо каких-то типов мы можем подставить любые выражения, а $\Lambda \tau$ — это применение типа.

Так, пример типовой абстракции это:

```
template<typename T>
class W {
    T x;
}
```

Типовая аппликация— это объявление переменной класса с каким-то типом

W<int> w_test;

Теорема 7.1. Изоморфизм Карри - Ховарда:

$$\Gamma \vdash_F M : \tau \Leftrightarrow |\Gamma| \vdash_{\forall,\rightarrow} \tau$$

В системе F определены следующие правила вывода:

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma, x : \tau \vdash x : \tau}$$

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x^{\tau}, M : \tau \to \sigma} \quad (x \notin FV(\Gamma))$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha. M : \forall \alpha. \sigma} \quad (\alpha \notin FV(\Gamma)) \qquad \frac{\Gamma \vdash M : \forall \alpha. \sigma}{\Gamma \vdash M : \sigma[\alpha := \tau]}$$

Приведем пример. Покажем как выглядит в системе F левая проекция. В просто типизированном λ - исчислении π_1 имеет тип $\alpha\&\beta\to\alpha$. В системе F явно указывается, что элементы пары могут быть любыми и пишется соответственно $\forall \alpha. \forall \beta. \alpha\&\beta\to\alpha$. Само выражение для проекции также изменится и будет иметь вид $\pi_1=\Lambda\alpha.\Lambda\beta.\lambda p^{\alpha\&\beta}.p\alpha$ Т

Давайте определим еще несколько понятий из простого λ -исчисления. $Haчнем\ c\ \beta$ -редукции:

1. Типовая β -редукция: $(\Lambda \alpha. M^{\sigma})\tau \to_{\beta} M[\alpha := \tau] : \sigma[\alpha := \tau]$ 2. Классическая β -редукция: $(\lambda x^{\sigma}. M)^{\sigma \to \tau} X \to_{\beta} M[x := X] : \tau$

Выразим еще несколько функций

- 1. Не бывает М:⊥
- 2. Рассмотрим пару <P, Q> ::= $\Lambda \alpha.\lambda z^{\tau \to \sigma \to \alpha}.zPQ$

Проекторы мы рассмотрели ранее.

3.
$$in_L(M^{\tau}) ::= \Lambda \alpha. \lambda u^{\tau \to \alpha}. \lambda \omega^{\sigma \to \alpha}. uM$$

 $in_R(M^{\sigma}) ::= \Lambda \alpha. \lambda u^{\tau \to \alpha}. \lambda \omega^{\sigma \to \alpha}. uM$

- (1) Теорема Чёрча-Россера и прочие теоремы, доказуемые в строго-типизированном лямбда-исчислении, доказуемы и в системе F
- (2) $\lambda_{(\forall,\rightarrow)}$ Система F сильно нормализуема
- (3) Ү комбинатор не типизируем
- (4) Исчисление неразрешимое, но не противоречивое

8 Лекция 8

8.1 Ранг типа

Определение 8.1. Введем определение. Под рангом типа мы будем понимать число, получаемое по следующим правилам:

Rn(x) — множество всех типов x

Rn(0) — все типы без кванторов

$$Rn(x+1) = Rn(x) \mid Rn(x) \rightarrow Rn(x+1) \mid \forall \alpha.Rn(x+1)$$

Примеры 1. $\alpha \in \text{Rn}(0)$

- 2. $\forall \alpha.\alpha \in \text{Rn}(1)$
- 3. $(\forall \alpha.\alpha) \to (\forall \beta.\beta) \in \text{Rn}(2)$, так как каждый тип вида $\forall \alpha.\alpha \in \text{Rn}(1)$, то по третьему правилу весь тип $\in \text{Rn}(2)$

Определение 8.2. Тип с поверхностными кванторами — это любой тип вида $\forall \alpha.\tau$, где в τ отсутствуют кванторы. Очевидно, что любой такой тип $\in \text{Rn}(1)$. Действительно, тип внутри квантора точно имеет ранг 0. Навешивание одного или нескольких кванторов всеобщности увеличит его ранг на единицу.

8.2 Типовая схема

Возьмем только типы с поверхностными кванторами(из Rn(1)).

Также можно превратить любую формулу из Rn(1) в формулу с поверхностными кванторами.

Например:

$$\beta \to \forall \alpha. \alpha \equiv \forall \alpha. (\beta \to \alpha)$$

Определение 8.3. Типовой схемой назовем выражение вида:

$$\sigma \equiv \forall \alpha_1. \forall \alpha_2..... \forall \alpha_n. t$$
 где $t \in \text{Rn}(0)$

Также будем считать, что $\sigma_1 <= \sigma_2$ (σ_1 является спецификацией σ_2) если:

$$\sigma_2 \equiv \forall \alpha_1 ... \forall \alpha. \tau_1$$
 $\sigma_1 \equiv \forall \beta_1 ... \beta_n. \tau_1 [\alpha_1 := \Theta_1] ... [\alpha_n := \Theta_n]$
Например:

$$\forall \beta_1. \forall \beta_2. (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$$

является спецификацией $\forall \alpha.\alpha \rightarrow \alpha$

8.3 Экзистенциальные типы

1)
$$\frac{\Gamma \vdash \phi[\alpha := \theta]}{\Gamma \vdash \exists \alpha. \phi}$$
2)
$$\frac{\Gamma \vdash \exists \alpha. \phi \qquad \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi}$$

Экзистенциальные типы это способ инкапсуляции данных. Предположим, что у нас есть стек с хранилищем типа α , у которого определены следующие операции:

empty: α push: $\alpha \& \nu \to \alpha$ pop: $\alpha \to \alpha \& \nu$

Тогда очевидно, что тип stack $\alpha \& (\alpha \& \nu \to \alpha) \& (\alpha \to \alpha \& \nu)$. Но что если мы реализовали хранилище как-то по-особенному, не меняя типов операций. Мы хотим скрыть данные о реализации, в частности о типе α . Вместо деталей просто скажем, что существует интерфейс, удовлетворяющий такому типу: $\exists \alpha.\alpha\& (\alpha\&\nu \to \alpha)\& (\alpha\to\alpha\&\nu)$

8.4 Абстрактные типы

Предположим, что мы захотим создать стек, в котором лежат целые числа. Рассмотрим, как тогда будет выглядеть тип созданного стека:

$$\operatorname{stack} \equiv \forall \nu. \exists \alpha. \alpha \& (\alpha \& \nu \to \alpha) \& (\alpha \to \alpha \& \nu)$$

По аналогии с правилом удаления квантора существования, можно определить правила вывода для выражений абстрактных типов:

$$\frac{\Gamma \vdash M : \varphi[\alpha := \theta]}{\Gamma \vdash (\operatorname{pack} M, \theta \text{ to } \exists \alpha. \varphi) : \exists \alpha. \varphi}$$

Это правило вывода позволяет скрыть реализацию стека, так как если α — это тип стека, то $\alpha[\nu:=\theta]$ — его конкретная реализация, например ArrayStack, LinkedListStack и подобные

$$\frac{\Gamma \vdash M : \exists \alpha. \varphi \qquad \Gamma, x : \varphi \vdash N : \psi}{\Gamma \vdash \text{abstype } \alpha \text{ with } x : \varphi \text{ in } M \text{ is } N : \psi} (\alpha \notin FV(\Gamma, \psi))$$

Это правило вывода соответствует виртуальному вызову стека какой-то реализации, например:

. . .

}

Поскольку выводимые формулы выглядят слишком громоздко, перепишем их, вспомнив, что:

$$\exists \alpha. \beta \equiv \forall \beta. (\forall \alpha. \sigma \to \beta) \to \beta$$

Тогда:

pack
$$M, \theta$$
 to $\exists \alpha. \varphi = \Lambda \beta. \lambda x^{\forall \alpha. \varphi \to \beta}. x \theta M$
abstype α with $x : \varphi$ in M is $N : \psi = M \psi(\Lambda \alpha. \lambda x^{\varphi}. N)$

8.5 Типовая система Хиндли-Милнера

Начнем с определения типа. Тип в системе Хиндли-Милнера:

Монотип — выражение в грамматике вида $\tau ::= \alpha | \tau \to \tau | (\tau)$ Политип — выражение в грамматике вида $\sigma ::= \tau | \forall \alpha. \sigma$

Поэтому типы вида $\alpha \to \forall \beta.\beta$ - некорректны в системе XM

Грамматика в системе Хиндли-Милнера имеет вид:

$$\Lambda ::= x |\lambda x.\Lambda| \Lambda \Lambda |(\Lambda)| \text{let } \mathbf{x} = \Lambda \text{ in } \Lambda$$

Обозначим контекст Γ без типа х как Γ_x В новой системе получаем следующие правила вывода:

- 1. Тавтология $\frac{1}{\Gamma \vdash x.\phi}$
- 2. Уточнение $\frac{\Gamma \vdash e : \sigma \qquad \sigma' <= \sigma}{\Gamma \vdash e : \sigma'}$
- 3. Обобщение $\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \forall \alpha. \sigma}$
- 4. Абстракция $\frac{\Gamma_x, x: \tau' \vdash e: \tau}{\Gamma \vdash \lambda x.e: \tau' \to \tau}$
- 5. Применение $\frac{\Gamma \vdash e : \tau' \to \tau \qquad \Gamma \vdash e' : \tau'}{\Gamma e e' : \tau}$
- 6. Let $\frac{\Gamma \vdash e : \sigma \qquad \Gamma_x, x : \sigma \vdash e' : \tau}{\Gamma \vdash \text{ let } x = e \text{ in } e' : \tau}$

Хотя в системе Хиндли-Милнера (как и во всех рассматриваемых нами типовых системах) нельзя типизировать \mathcal{Y} -комбинатор, можно добавить его, расширив язык. Давайте определим его как $\mathcal{Y}f = f(\mathcal{Y}f)$. Какой у него должен быть тип? Пусть \mathcal{Y} принимает f типа α , и возвращает нечто типа β , то есть $\mathcal{Y}: \alpha \to \beta$. Функция f должна принимать то же, что возвращает \mathcal{Y} , так как результат \mathcal{Y} передаётся в f, и возвращать она должна то же, что возвращает \mathcal{Y} , так как тип выражений с обеих сторон равенства должен быть одинаковый, то есть $f: \beta \to \beta$ Кроме того, α и тип f это одно и то же, $\alpha = \beta \to \beta$. После подстановки и заключения свободной переменной под квантор получаем $\mathcal{Y}: \forall \beta. (\beta \to \beta) \to \beta$.

Через такой ${\mathcal Y}$ можно определять рекурсивные функции, и они будут типизироваться.

9 Лекция 9

Определение 9.1 (Ранг типа). R(x) — все типы ранга x.

- R(0) все типы без кванторов
- $R(x+1) = R(x) \mid R(x) \rightarrow R(x+1) \mid \forall \alpha . R(x+1)$

Например:

- $\alpha \in R(0)$
- $\forall \alpha. \alpha \in R(1)$
- $(\forall \alpha.\alpha) \rightarrow (\forall b.b) \in R(2)$
- $\bullet \ ((\forall \alpha.\alpha) \to (\forall b.b)) \to b \in R(3)$

Тут видно, если выражение слева от знака импликации имеет ранг n, то все выражение будет иметь ранг $\geq (n+1)$.

Утверждение: Пусть x — выражение только с поверхностными кванторами, тогда $x \in R(1)$.

Определение 9.2 (Типовая схема).

$$\sigma ::= \forall \alpha_1, \forall \alpha_2, \dots, \forall \alpha_n, \tau$$
, где $\tau \in R(0)$ и, следовательно, $\sigma \in R(1)$.

Определение 9.3 (Частный случай (специализация) типовой схемы).

 σ_1, σ_2 — типовые схемы

 σ_2 — частный случай σ_1 (обознается как $\sigma_1 \sqsubseteq \sigma_2$), если

- 1. $\sigma_1 = \forall \alpha_1. \forall \alpha_2.... \forall \alpha_n. \tau_1$
- 2. $\sigma_2 = \forall \beta_1. \forall \beta_2... \forall \beta_m. \tau_1 [\alpha_i := S(\alpha_i)]$
- 3. $\forall i.\beta_i \in FV(\tau_1)$

Пример.

$$\forall \alpha. \alpha \to \alpha \sqsubseteq \forall \beta_1. \forall \beta_2 : (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$$

Вполне возможно, что в ходе замены, все типы будут уточнены (α уточнится как $\beta_1 \to \beta_2$).

9.1 Хиндли-Милнер

- 1. Все типы только с поверхностными кванторами (R(1))
- 2. $\overline{HM} ::= p \mid \overline{HM} \ \overline{HM} \mid \lambda p. \overline{HM} \mid let = \overline{HM} \ in \ \overline{HM}$
- $\exists p. \phi = \forall b. (\forall p. (\phi \to b)) \to b$
- $\phi \to \bot \equiv \forall b. (\phi \to b)$

$$\bullet \frac{\Gamma, \forall p. (\phi \to b) \vdash \forall p. (\phi \to b)}{\Gamma, \forall p. (\phi \to b) \vdash \phi [p := \Theta] \to b}$$

$$\Gamma, \forall p. (\phi \to b) \vdash b$$

$$\frac{\Gamma, \forall p.(\phi \to b) \vdash b}{\Gamma \vdash (\forall p.(\phi \to b)) \to b}$$

$$\frac{\Gamma, \forall p.(\phi \to b) \vdash b}{\Gamma \vdash (\forall p.(\phi \to b)) \to b}$$

Соглашение:

- σ типовая схема
- τ простой тип
- 1. $\overline{\Gamma, x : \sigma \vdash x : \sigma}$
- 2. $\frac{\Gamma \vdash e_0 : \tau \to \tau' \qquad \Gamma \vdash e_1 : \tau}{\Gamma \vdash e_0 e_1 : \tau'}$
- 3. $\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x.e : \tau \to \tau'}$
- 4. $\frac{\Gamma \vdash e_0 : \sigma \qquad \Gamma, x : \sigma \vdash e_1 : \tau}{\Gamma \vdash let \ x = e_0 \ in \ e_1 : \tau} \ , \ let \ x = a \ in \ b \equiv (\lambda x.b) \ a$
- 5. $\frac{\Gamma \vdash e : \sigma' \qquad \sigma' \sqsubseteq \sigma}{\Gamma \vdash e : \sigma}$
- 6. $\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \forall \alpha. \sigma} \ \alpha \notin FV(\Gamma)$

9.2 Алгоритм вывода типов в системе Хиндли-Милнера W

На вход подаются Γ , M, на выходе наиболее общая пара (S, τ)

- 1. $M = x, x : \tau \in \Gamma$ (иначе ошибка)
 - ullet Выбросить все кванторы из au
 - Переименовать все свободные переменные в свежие Например: $\forall \alpha_1. \phi \Rightarrow \phi [\alpha_1 := \beta_1]$, где β_1 — свежая переменная

$$(\emptyset, \Gamma(x))$$

- 2. $M = \lambda n.e$
 - τ новая типовая переменная
 - $\Gamma' = \Gamma \backslash \{n : _\}$ (т.е. Γ без переменной n)
 - $\Gamma'' = \Gamma' \cup n : \tau$
 - $(S', \tau') = W(\Gamma'', e)$

$$(S', S'(\tau) \to \tau')$$

- 3. M = P Q
 - $(S_1, \tau_1) = W(\Gamma, P)$
 - $(S_2, \tau_2) = W(S_1(\Gamma), Q)$
 - S_3 Унификация $(S_2(\tau_1), \tau_2 \to \tau)$

$$(S_3 \circ S_2 \circ S_1, S_3(\tau))$$

- 4. let x = P in Q
 - $(S_1, \tau_1) = W(\Gamma, P)$
 - $\Gamma' = \Gamma$ без x
 - $\Gamma'' = \Gamma' \cup \{x : \forall \alpha_1 \dots \alpha_k.\tau_1\}$, где $\alpha_1 \dots \alpha_k$ все свободные переменные в τ_1
 - $(S_2, \tau_2) = W(S_1(\Gamma''), Q)$

$$(S_2 \circ S_1), \tau_2)$$

Надеемся, что логика второго порядка противоречива.

9.3 Рекурсивные типы

Ранее мы уже рассматривали Y-комбинатор, но не могли типизировать его и отказывались. Однако в программировании хотелось бы использовать рекурсию, поэтому тут мы введем его аксиоматически.

```
Yf =_{\beta} f(Y \ f)
Y : \forall \alpha.(\alpha \to \alpha) \to \alpha — аксиома
```

И теперь, когда мы хотим написать какую-то рекурсивную функцию, скажем, на языке Ocaml, то интерпретировать ее можно будет следующим образом:

Рекурсивными могут быть не только функции, но и типы. Как, например, список из целых чисел:

```
type intList = Nil | Cons of int * intList;;
```

На нем мы можем вызывать рекурсивные функции, например, ниже представлен фрагмент кода, позволяющий найти длину списка.

```
let rec length 1 = match 1 with

| Nil -> 0

| Cons (x, s) -> 1 + length s;;

let my_list = Cons(1, Cons (2, Cons (3, Nil)));;

print_int (length my_list);; (* output: 3 *)

Рассмотрим, что из себя представляет тип списка выше:

Nil = inLeft O = \( \lambda a. \lambda b.a \) O
```

```
Cons = inRight \ p = \lambda a.\lambda b.b \ p
\lambda a.\lambda b.a \ O : \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma
\lambda a.\lambda b.b \ p : \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma
\delta = \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma
\lambda a.\lambda b.b \ (\lambda a.\lambda b.a \ O) : \forall \alpha.(\alpha \to \gamma) \to (\delta \to \gamma) \to \gamma
```

Научимся задавать рекурсивные типы, а именно рассмотрим два способа решения:

1. Эквирекурсивный

```
list = Nil | Cons a * list
```

 $\alpha = f(\alpha)$ — уравнение с неподвижной точкой. Пусть $\mu \alpha . f(\alpha) = f(\mu \alpha . f(\alpha))$. Используем это в типах, а именно f — это и тип список. То есть мы по сути использовали У комбинатор, который для выражений, а для типов ввели аналогичный ν .

На практике такой подход используется и в языке программирования Java:

```
class Enum <extends Enum <E>>
```

Также приведем пример вывода типа $\lambda x.x$ x (можно вспомнить, что именно этот терм помешал нам типизировать У-комбинатор в просто типизированном λ -исчислении):

Пусть $\tau = \mu \alpha. \alpha \rightarrow \beta$. Если мы $\frac{x : \tau \vdash x : \tau \rightarrow \beta}{x : \tau \vdash x : \tau} \frac{x : \tau \vdash x : \tau}{}$ раскроем τ один раз, то получим $\frac{x : \tau \vdash x : \tau \rightarrow \beta}{} \vdash \lambda x. x : \tau \rightarrow \beta$ $\tau = \tau \rightarrow \beta$. Если раскроем еще раз, то получим $\tau = (\tau \rightarrow \beta) \rightarrow$

$$\begin{array}{ccc}
x : \tau \vdash x : \tau \to \beta & x : \tau \vdash x : \tau \\
\hline
x : \tau \vdash x : x : \beta \\
\vdash \lambda x . x : \tau \to \beta
\end{array}$$

Ранее мы ввели Y-комбинатор аксиоматически, а можем ли мы его типизировать используя рекурсивные типы? Ответ: Да, можем. Напомним, что $Y = \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x)).$

$$\frac{\lambda f:\beta \to \beta, \ x:\tau \vdash f:\beta \to \beta \quad f:\beta \to \beta, \ x:\tau \vdash x \ x:\beta}{\frac{f:\beta \to \beta, x:\tau \vdash f \ (x \ x)}{f:\beta \to \beta \vdash \lambda x.f \ (x \ x):\tau}} \underbrace{\frac{f:\beta \to \beta \vdash \lambda x.f \ (x \ x):\tau}{\lambda f:\beta \to \beta \vdash \lambda x.f \ (x \ x):\tau}}_{\frac{f:\beta \to \beta \vdash (\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)):\beta}{\vdash \lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)):\forall \beta.(\beta \to \beta) \to \beta}}_{\frac{f:\beta \to \beta \vdash (\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)):\forall \beta.(\beta \to \beta) \to \beta}{\vdash \lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)):\forall \beta.(\beta \to \beta) \to \beta}}$$

Загадочка: А можно ли типизировать, скажем $\lambda x : Nat.x(Sx)$?

2. Изорекурсивный

В отличие от эквирекурсивных типов будем считать, что $\mu \alpha. f(\alpha)$ изоморфно $f(\mu\alpha.f(\alpha))$. Такой подход используется в языке программирования С.

```
struct list {
    list* x;
    int a;
}
(*x).(*x).(*x).a
// или, что эквивалентно
x->x->xa
```

Можно заметить, что выше для работы со списком мы использовали специальную операцию: $*: list* \rightarrow list$ — разыменование

В изорекурсивных типах введены специальные операции для работы с этими типами, и оператор * из С как раз был примером одной из них (в частности roll):

- $Roll: Nil|Cons(a*list) \rightarrow list$
- $Unroll: list \rightarrow Nil|Cons(a*list)$

В более общем виде (введение в типовую систему):

- $roll: f(\alpha) \to \alpha$
- $unroll : \alpha \to f(\alpha)$

Можно привести еще примеры из языка С:

- $\bullet * : T* \rightarrow T$
- $\&: T \to T*$
- $T = \alpha$
- $T* = f(\alpha)$

9.4 Зависимые типы

Рассмотрим функцию sprintf из языка C:

```
sprintf: string \rightarrow smth \rightarrow string

sprintf"\%d": int \rightarrow string

sprintf"\%f": float \rightarrow string
```

Легко видеть, что тип sprintf определяется первым аргументом. То есть тип этой функции зависит от терма — именно такой тип и называется зависимым (ancase extraprox extra extraprox extraprox extraprox extraprox extra extraprox extra extra

Рассмотрим несколько иной пример, а именно список. Предположим, что мы хотим скалярно перемножить два списка:

Было бы очень здорово уметь отлавливать эту ошибку не в рантайме, а во время компиляции программы и зависимые типы могут в этом помочь. Например в языке Idris можно использовать Vect:

Если подойти к типу функции dot ближе с точки зрения теории типов, то мы бы записали это так (о * речь пойдет в следующей главе [стоит ее воспринимать как тип типа]):

```
Nat:*, Integer:*, Vect : Nat -> Integer -> * \vdash \Pi n:Nat . Vect n Integer -> Vect n Integer -> Integer
```

9.4.1 П-типы и Σ -типы

- $\Pi x: \alpha.P(x)$ эту запись можно читать как (в каком-то смысле в интуиционистском понимании): "У меня есть метод для конструирования объекта типа P(x), использующий любой предоставленный x типа α ". Если же смотреть на эту запись с точки зрения классической логики, то ее можно понимать как бесконечную конъюнкцию $P(x_1)\&P(x_2)\&...$. Данная конъюнкция соответствует декартовому произведению, отсюда и название Π -типа (иногда в англоязычной литературе можно встретить dependent function type).
- $\Sigma x: \alpha.P(x)$. Аналогично предыдущему пункту рассмотрим значение с интуиционистской точки зрения: "У меня есть объект x типа α , но больше ничего про него не знаю кроме того, что он обладает свойством P(x)". Это как раз в стиле интуиционизма, что нам приходится знать и объект x и его свойство P(x). Это можно представить как пару, а пара бинарное произведение. С точки же зрения классической логики, мы можем принимать эту формулу как бесконечную дизъюнкцию $P(x_1) \vee$

 $P(x_2) \lor ...$, которая соответствует алгебраическим типам данных. (иногда в англоязычной литературе можно встретить $dependent\ sum$).

Ранее обсуждалось, что тип может быть сопоставлен множеству его значений, как например тип uint32_t в C++ может быть сопоставлен множеству $\{0,1,...,2^{32}-1\}$. Рассмотрим $\Pi x:\alpha.P(x)$: этому Π -типу можно сопоставить прямое произведение B^A (где A — множество, сопоставленное типу α , а B(a) — множество, сопоставленное типу P(a)), которое следует воспринимать, как $B^A = \prod_{a \in A} B(a) = \{f: A \to \bigcup_{a \in A} B(a) \mid f(a) \in B(a), a \in A\}$. Можно отметить, что если B(a) = C = const, то на любой вход $f(a) \in C$, т.е. тип значения f(a) не меняется, собственно поэтому этот тип в таком случае записывают как $A \to P$. Рассмотрим $\Sigma x: \alpha.P(x)$: этому Σ -типу можно сопоставить дизъюнктное объединение $\sqcup_{a \in A} B(a) = \bigcup_{a \in A} \{(a,x)|x \in B(a)\}$, где A — множество, сопоставленное типу P(a). Тут также можно отметить, что если P(a) = C = const, то результатом дизъюнктивного объединения будет прямое произведение $A \times B$. В языке программирования Idris примером Σ -типа является зависимая пара:

```
data DPair : (a : Type) -> (P : a -> Type) -> Type where
   MkDPair : {P : a -> Type} -> (x : a) -> P x -> DPair a P
```

Также есть некоторый синтаксический сахар (a : A ** P), который обозначает зависимую пару типа DPair A P, где P может содержать в себе имя a.

В документации Idris'а есть хороший пример использования: мы хотим отфильтровать вектор (Vect) по какому-то предикату - мы не можем знать заранее длину результирующего вектора, поэтому зависимая пара выручает:

10 Лекция 10

10.1 Введение

Прежде мы разбирали просто типизированное лямбда-исчисление, в котором термы зависели от термов, например, терм $(F\ M)$ зависит от терма M. После

того, как было замечено, что, скажем, I может иметь разные типы, которые по сути различаются лишь аннотацией, например, $\lambda x.x: \alpha \to \alpha, \lambda x.x: (\alpha \to \alpha) \to (\alpha \to \alpha)$, была введена типовая абстракция, то есть термы теперь могли зависеть от типов и такая типовая система была названа System F и можно было писать $\Lambda \alpha.\lambda x: \alpha.x: \forall \alpha.\alpha \to \alpha$. То есть это было своего рода изобретением шаблонов в языке C++. Но на этом все не ограничено. System F_w , в которой типы могут зависеть от типов, как, например, список алгебраический тип данных, у которого есть две альтернативы $Nil: \forall \alpha.List\alpha$ и $Cons: \forall \alpha.\alpha \to List\alpha \to \alpha$ (рекурсивные типы смотри выше). Для лучшего понимания различия системы F и F_w ниже представлены грамматики для типов:

```
• T_{\rightarrow} ::= \alpha \mid (T_{\rightarrow}) \mid T_{\rightarrow} \rightarrow T_{\rightarrow}
```

•
$$T_F ::= \alpha \mid \forall \alpha. T_F \mid (T_F) \mid T_F \rightarrow T_F$$

•
$$T_{F_w} ::= \alpha \mid \lambda \alpha. T_{F_w} \mid (T_{F_w}) \mid T_{F_w} \rightarrow T_{F_w} \mid T_{F_w} \mid T_{F_w}$$

Ничего не мешает рассматривать типовую систему, в которой тип может зависеть от терма, как это было сделано раньше. Пусть для всех $a:\alpha$ мы можем определить тип β_{α} и пусть существует $b_{\alpha}:\beta_{\alpha}$. Тогда вполне обоснована запись функции $\lambda\alpha:b_{\alpha}$. Тип данного выражения принято записывать как $\Pi a:\alpha.\beta_{\alpha}$ (стоит сделать замечание, что если β_{α} не зависит от α [то есть функция константа], то вместо $\Pi a:\alpha.\beta_{\alpha}$ пишут $\alpha\to\beta$). Примером может быть тип вектора, длина которого зависит от натурального числа и типа (пример из языка Idris):

```
data Vect : (len : Nat) -> (elem : Type) -> Type where
  Nil : Vect Z elem
  (::) : (x : elem) -> (xs : Vect len elem) -> Vect (S len) elem
```

Теперь наша грамматика стала обширной и появилась необходимость более формально говорить о типах, т.е. ввести их в систему. Для этого был придуман род (anen: kind), который обозначают *. Используя * можно задавать типы типовых конструкторов.

Рассмотрим пару примеров, как используется род:

```
• \lambda m : \alpha . F \ m : (\alpha \to \beta) : *
```

• $\lambda \alpha : *.I_{\alpha} : (\Pi \alpha : *.\alpha \rightarrow \alpha) : *$

• $\lambda n : Nat.A^n \to B : Nat \to *$

• $\lambda a : *.a \rightarrow a : * \rightarrow *$

Попробуем разобраться, что же написано в примерах.

- Первый пример это типизация привычной нам абстракции. Утверждение $a \to b$: * значит $a \to b$ это тип.
- Во втором примере мы рассматриваем лямбда-выражение, которое принимает на вход тип и возвращает терм I_{α} . Таким образом мы собираемся типизировать терм, зависящий от типа. Для этого как сказано выше мы вводим символ Π , а вот в известной нам системе F тип выражения $\lambda \alpha : *.I_{\alpha}$ был бы $\forall \alpha.(\alpha \to \alpha)$.
- В третьем пункте мы хотим сформировать утверждения для типа, зависящего от терма. Интуитивно понятно, что у такого выражения будет род $Nat \to *$. И заселять его будут конструкторы типов, которые принимают на вход число и возвращают тип, например $\lambda x : Nat.int[x]$ это терм, который заселяет род $Nat \to *$
- В четвертом пункте мы типизируем конструктор типа, который принимает на вход тип. Действительно, его родом будет $* \to *$.

Возникает желание каким-то образом объединить все роды, и это необходимо для дальнейшей формализации происходящего. $* \to *:$?. Что можно поставить на место вопросика? Это не тип, так как иначе бы могли записать $* \to *: *$, однако понятно, что это не так. В частности, для этого вводится понятие сорта (*англ. sort*), которое можно воспринимать как тип рода и тогда $* \to *: \square$ и $*: \square$. Для любого выражения вида $A \to *$, где $A \to *$ это что угодно, верно, что оно типизируется \square . Например,

 $* \to * \to * : \Box$ - этот род очень похож на $* \to *$, и действительно, единственное отличие заключается в количестве аргументов нашего типового конструктора. В частности, этот род заселяет конструктор map, $\lambda keyType$: $*.(\lambda valueType.map < keyType, valueType >)$

Теперь мы ознакомились со всеми необходимыми обозначениями и неформальными определениями. Обобщая все вышесказанное, построим обобщенную типовую систему.

10.2 Обобщенная типовая система

- Copta: {*, □}
 - Выражение "A : *"означает, что A тип. И тогда, если на метаязыке мы хотим сказать "Если A тип, то и $A \to A$ тоже тип то формально это выглядит как A : * \vdash ($A \to A$) : *
 - $-\Box$ это абстракция над сортом для типов.
 - Например:

* $5:int:*:\Box$

*
$$[]:* \rightarrow *: \Box$$

* $\Lambda M. List < M >: * \rightarrow *: \Box$

- $\bullet \ T ::= x \mid c \mid T \ T \mid \lambda x : T. \ T \mid \Pi x : T. \ T$
- Аксиома:

• Правила вывода:

1.
$$\frac{\Gamma \vdash A : S}{\Gamma, x : A \vdash x : A} \ x \notin \Gamma$$

2.
$$\frac{\Gamma \vdash A:B}{\Gamma,x:C \vdash A:B} -$$
 правило ослабления (примерно как $\alpha \to \beta \to \alpha$ в

3.
$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : S \qquad B =_{\beta} B'}{\Gamma \vdash A : B'} - \text{правило конверсии}$$

4.
$$\frac{\Gamma \vdash F : (\Pi x : A.B) \qquad \Gamma \vdash a : A}{\Gamma \vdash (F \ a) : B[x := a]} -$$
 правило применения

• Семейства правила (generic-правила)

Пусть
$$(s_1, s_2) \in S \subseteq \{*, \square\}^2$$
.

1. П-правило:
$$\frac{\Gamma \vdash A: s_1 \qquad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\Pi x: A.B): s_2}$$

2.
$$\lambda$$
-правило: $\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash b : B \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\lambda x : A.b) : (\Pi x : A.B)}$

В одном из примеров мы рассмотрели утверждение $\lambda\alpha:*.I_\alpha:(\Pi\alpha:*.\alpha\to\alpha):*.$ Теперь мы можем до конца понять, почему $(\Pi\alpha:*.\alpha\to\alpha):*$ и что такое $\Pi.$ Неформально говоря, Π -правило говорит нам о том, что выражение $(\Pi x:A.B)$ типизируется либо *, либо \square , а именно тем, чем является B. То есть, $(\Pi x:A.B)$ — это либо тип конструктора типа, либо тип конструктора терма. В приведенном примере мы принимаем на вход любой тип α и возвращаем терм, а значит $(\Pi\alpha:*.\alpha\to\alpha):*.$

Еще пару слов про П. Этот символ является обобщением \rightarrow , поэтому, во всех рассмотренных ранее родах, согласно нашей обобщенной типовой системе, можно заменить \rightarrow на П, согласно замечанию выше. Например, $*\to *=\Pi a:*.*$. Важно понимать, что подразумевается под зависимостью тела от аргумента и не путать понятия терм и тип. В $\Pi a:*.*$ тело не зависит от аргумента, потому что тело — это просто звездочка, то есть $\Pi a:*.*$ говорит нам просто о том, что наше выражение принимает тип и выдает тип. В то время как термы, населяющие $\Pi a:*.*$, разумеется, могут иметь тело, зависящее от аргумента, как, например, $\lambda a:*.a\to a$

10.3 λ -куб

В обобщенных типовых системах есть generic-правила, которые зависят от выбора s_1 и s_2 из множества сортов. Этот выбор можно проиллюстрировать в виде куба.

Выбор правил означает следующее:

- \bullet (*, *) позволяет записывать термы, которые зависят от термов
- \bullet (\square , *) позволяет записывать термы, которые зависят от типов
- ullet (*, \Box) позволяет записывать типы, которые зависят от термов
- \bullet (\Box , \Box) позволяет записывать типы, которые зависят от типов

На самом деле в данной формулировке под типом понимается не только привычный тип. Потому что для привычного типа верно τ : *. Здесь же τ может типизироваться чем угодно, кроме \square . В частности * \rightarrow *, это значит, что например std::vector<T> тоже подходит.

Также на этом кубике можно расположить языки программирования, например:

- ullet Haskell будет располагаться на левой грани куба, недалеко от λw
- \bullet Idris и Coq, очевидно, будет находиться в λC
- C++ очень ограниченно приближается к λC (мысли вслух):
 - 1. (*, *) без этого не может обойтись ни один язык программирования
 - 2. (\square , *) например, sizeof(type)
 - 3. (*, \square) например, std::array<int, 19> тут есть ограничение на то, значение каких типов можно подставлять.
 - 4. (\square , \square) например, std::vector<int>, int*

10.4 Свойства

Для систем в λ -кубе верны следующие утверждения:

• **Th. SN** лизуема

Обобщенная типовая система сильно норма-

- 1. Для любых трёх элементов A, B и C, таких, A B и A C верно, что существует D, что B D и C D
- Тh. Черча-Россера
- 2. Для любых двух элементов A, B, для которых верно $A=_{\beta}B,$ существует C, что $A \twoheadrightarrow C$ и $B \twoheadrightarrow C$
- Th. Subject reduction

$$\Gamma \vdash A : T$$
 и $A \twoheadrightarrow B$, тогда $\Gamma \vdash B : T$

• Th. Unicity of types

$$\Gamma \vdash A : T$$
 и $\Gamma \vdash A : T'$ тогда $T =_{\beta} T'$

Примеры:

• $\lambda\omega$:

$$\vdash (\lambda \alpha : *.\alpha \rightarrow \alpha) : (* \rightarrow *) : \square$$

Notes:

- $(\lambda x.x):(A \to A)$ implicit typing (Curry style)
- $I_A = \lambda x : A.x$ explicit typing (Church style)

Рассмотрим еще примеры для улучшения понимания лямбда-куба и обобщенной типовой системы:

• В системе F $(\lambda 2)$ выводимо:

1.
$$\vdash (\lambda \alpha : *.\lambda a : \alpha.a) : (\Pi \alpha : *.(\alpha \rightarrow \alpha)) : *$$

2.
$$A : * \vdash (\lambda \alpha : *.\lambda a : \alpha.a)A : (A \rightarrow A)$$

3.
$$A: *, b: A \vdash (\lambda \alpha: *.\lambda a: \alpha.a)Ab: A$$

Разумеется, здесь имеет место редукция: $(\lambda \alpha : *.\lambda a : \alpha.a)Ab \rightarrow_{\beta} b.$

- В λw выполняется
 - $1. \vdash (\lambda \alpha : *.\alpha \rightarrow \alpha) : * \rightarrow *: \square$
 - 2. $\beta : * \vdash (\lambda \alpha : *.\alpha \rightarrow \alpha)\beta : *$
 - 3. $\beta: *, x: \beta \vdash (\lambda y: \beta.x): (\lambda \alpha: *.\alpha \rightarrow \alpha)\beta$
 - 4. $a:*, f:* \to * \vdash f(fa):*$
 - 5. $a : * \vdash (\lambda f : * \to *.f(fa)) : (* \to *) \to *$
- В λP верно:
 - 1. $A : * \vdash (A \to *) : \Box$
 - 2. Рассмотрим тип A как множество значений типизируемых таким образом и введем $P:A \to *$ Тогда $A:*,P:A \to *,a:A \vdash Pa:*$ Можно рассматривать в таком контексте P как предикат на A. Если для a он возвращает населенный тип, то будем считать это за true, иначе за false. Это теоретико-множественный смысл зависимых типов.

Можно строить утверждения вида ($\Pi a:A.Pa$) - для любого a верен предикат P.

• В λw можно задать конъюнкцию, как мы делали еще в системе F. $a\&b = \Pi \gamma : *.(a \to b \to \gamma) \to \gamma$

Тогда
$$AND=\lambda a:*.\lambda b:*.a\&b\ K=\lambda a:*.\lambda b:*.\lambda x:a.\lambda y:b.x$$

$$\vdash AND: * \rightarrow * \rightarrow *$$

$$\vdash K: (\Pi a: *.\Pi b: *.a \to b \to a)$$

Тогда получается доказательство того, что из конъюнкции следует первый аргумент!

$$a:*,b:* \vdash (\lambda x:AND\ ab.xa(Kab)):(AND\ ab \rightarrow a):*$$

11 Лекция 13

11.1 Теорема Диаконеску

Теорема 11.1 (Диаконеску). В аксиомах ZF аксиома выбора влечет закон исключенного третьего.

Доказательство. По аксиоме выделения для любого утверждения P мы можем построить два множества из множества $\{0, 1\}$:

$$A = \{x \in \{0, 1\} \mid (x = 0) \lor P\} \qquad B = \{x \in \{0, 1\} \mid (x = 1) \lor P\}$$

По аксиоме выбора мы знаем, что их декартово произведение непусто. Иначе говоря, существует функция $f:\{A,B\} \to \{0,1\}$, что

$$f(A) \in A\&f(B) \in B$$

Это, по определению двух множеств, эквивалентно

$$(f(A) = 0 \lor P) \& (f(B) = 1 \lor P)$$

Из этого следует, что

$$(f(A) \neq f(B)) \vee P \tag{*}$$

Однако, по принципу объёмности $P \to (A = B)$. Значит, $P \to (f(A) = f(B))$. Значит,

$$(f(A) \neq f(B)) \to \neg P \tag{**}$$

Из * и ** можно вывести $P \vee \neg P$.

Важным следствием данной теоремы является то, что мы не можем воспринимать типы как множества, так как системы типов изоморфны интуиционистской логике в которой нет закона исключенного третьего.