cloudUtil: Cloud Utilization Visualizations

Christian Panse Ermir Qeli

December 10, 2013

Contents

1	Recent changes and updates	2
2	Introduction	2
3	Data preparation	2
4	Analysis	3

1 Recent changes and updates

'vignettes' directory has been migrated.

2 Introduction

cloudUtil is a package for creating comparison plots for

Cluster, Grid and Cloud utilization data. Under utilization data we understand collected accounting data measuring the job execution time in the above mentioned environments.

The idea behind this package is to create a single visualization of such data that has the following main features:

- gives an overview over the compute system utilization within a certain time frame
- allows the comparison of job lengths between different platforms giving thus hints on how well the respective job queues function e.g. how efficient the queue of Sun Grid Engine is performing
- allows the integration of replicates within the same visualization
- allows the comparison on both absolute and relative timescales

The functionality of cloudUtilPlot function was first used in [3].

3 Data preparation

The package includes sample accounting data for demonstration purposes. These data were collected by comparing the running times of several hundred compute jobs: each one of these jobs performs peptide-spectrum matching in proteomics (data published in [1]).

The fragment below shows a random extract from the dataset provided in the package:

- > library(cloudUtil)
- > data(cloudms2)
- > cloudms2[sort(sample(nrow(cloudms2),10)),c(1,5,6,15)]

	CLOUD	BEGIN_PREPROCESS	END_PREPROCESS	id
4207	FGCZ2	1263328012	1263328083	198
4745	EC2_2	1263539154	1263539185	128
5922	FGCZ2	1263424104	1263424122	901
6100	UZH1	1261645520	1261645527	1312
6172	FGCZ2	1263443902	1263443909	1107
7074	EC2_1	1263482689	1263482705	400
8293	UZH2	1263450305	1263450305	1828
9458	UZH2	1263413102	1263413112	697
10880	UZH1	1261610461	1261610475	95
10932	UZH1	1261610991	1261610994	125

The attributes of interest are CLOUD, BEGIN_PREPROCESS, END_PREPROCESS, and id. Additionally, it is also possible to use accounting data collected from other sources e.g. Sun Grid Engine accounting data [2].

4 Analysis

The code extract below creates a plot of the data shown in Section 3:

```
> hist(cloudms2$END_PREPROCESS - cloudms2$BEGIN_PREPROCESS,100)
> boxplot((cloudms2$END_PROCESS-cloudms2$BEGIN_PROCESS)/3600~cloudms2$CLOUD,
      main="process time",
      ylab="time [hours]")
> ##
> throughput<-cloudms2$MZXMLFILESIZE*10^-6/</pre>
+ (cloudms2$END_COPYINPUT-cloudms2$BEGIN_COPYINPUT)
> boxplot(throughput~cloudms2$CLOUD,
      main="copy input network throughput",
      ylab="MBytes/s")
> ##
>
> cloudUtilPlot(begin=cloudms2$BEGIN_PROCESS,
      end=cloudms2$END_PROCESS,
      id=cloudms2$id,
+
      group=cloudms2$CLOUD)
```

Transparency through alpha blending allows furthermore to compare several plots with each other. An example is given in the code fragment below:

```
> #green
> col.amazon<-rgb(0.1,0.8,0.1,alpha=0.2)</pre>
> col.amazon2<-rgb(0.1,0.8,0.1,alpha=0.2)</pre>
> #blue
> col.fgcz<-rgb(0.1,0.1,0.8,alpha=0.2)
> col.fgcz2<-rgb(0.1,0.1,0.5,alpha=0.2)</pre>
> #red
> col.uzh<-rgb(0.8,0.1,0.1,alpha=0.2)
> col.uzh2<-rgb(0.5,0.1,0.1,alpha=0.2)</pre>
> cm<-c(col.amazon, col.amazon2, col.fgcz, col.fgcz2, col.uzh, col.uzh2)
> jpeg("cloudms2Fig.jpg", 640, 640)
> op<-par(mfrow=c(2,1))
> cloudUtilPlot(begin=cloudms2$BEGIN_PROCESS,
+
      end=cloudms2$END_PROCESS,
      id=cloudms2$id,
      group=cloudms2$CLOUD,
      colormap=cm,
      normalize=FALSE,
      plotConcurrent=TRUE);
> cloudUtilPlot(begin=cloudms2$BEGIN_PROCESS,
      end=cloudms2$END_PROCESS,
      id=cloudms2$id,
      group=cloudms2$CLOUD,
```

normalized utilization plot

Figure 1: cloudUtilPlot visualization for the cloudms2 data set. On the graphics each horizontal line indicates the start and the end of one single job. Color is used for classifying the different groups. On the upper plot the time of each group was not normalized. The visualization on the bottom on the other side uses normalized time scales whichs help to compare the compute systems. Transparent colors were used to dial with the overplotting. The solid lines on the bottom plot show the total number of concurrently running jobs. The squares on the solid lines indicate the maxima on the respective system. The user can make use of all R graphic devices.

```
+ colormap=cm,
```

- + normalize=TRUE,
- + plotConcurrent=TRUE,
- + plotConcurrentMax=TRUE)
- > dev.off()

pdf 2

The output of the above listed R session is shown in Figure 1.

References

- [1] E. Brunner, C. H. Ahrens, S. Mohanty, H. Baetschmann, S. Loevenich, F. Potthast, E. W. Deutsch, C. Panse, U. de Lichtenberg, O. Rinner, H. Lee, P. G. Pedrioli, J. Malmstrom, K. Koehler, S. Schrimpf, J. Krijgsveld, F. Kregenow, A. J. Heck, E. Hafen, R. Schlapbach, and R. Aebersold. A high-quality catalog of the Drosophila melanogaster proteome. *Nat. Biotechnol.*, 25(5):576–583, May 2007. [DOI:10.1038/nbt1300] [PubMed:17450130].
- [2] Rayson Ho and Ron Chen. Open grid scheduler. https://sourceforge.net/projects/gridscheduler, 2013.
- [3] Aleksandar Markovic. Investigation of economical and practical aspects of commercial cloud computing for life sciences. Master's thesis, 2010.