UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Fredag 26. mars 2010.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 8 sider.

Vedlegg: Ingen.

Tillatte hjelpemidler: Formelsamling, godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Husk å fylle inn kandidatnummer under.

Kandidatnr:	

Alle oppgavene teller 1 poeng hver. Den totale poengsummen er altså 20. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

Oppgave- og svarark

Oppgave 1. Sett

$$f(x, y, z) = x^2 + y^2 + 2z^2 - e^{-(x^2 + y^2)}$$
.

I punktet (x, y, z) = (1, -1, 1) vokser f raskest i retningen:

- $\checkmark (1 + e^{-2}, -1 e^{-2}, 2)$
- \Box (1, 1, 1)
- \Box $(2+e^{-2},0,0)$
- $\Box (e^2, e^2, 1)$
- \Box $(1,1,1/(2+e^{-2}))$

Oppgave 2. La f være som i forrige spørsmål. Origo, mao. (x, y, z) = (0, 0, 0), er:

- \checkmark et globalt minimum for f
- \square ikke et kritisk punkt for f,
- \square et lokalt maksimum for f
- \square et globalt maksimum for f
- $\hfill \hfill f$ er ikke deriverbar i origo

Oppgave 3. Lineæravbildningen $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$ er slik at

$$\mathbf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \text{ og } \mathbf{T} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}.$$

Da er matrisen til **T** gitt ved:

 $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$

 $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$

 $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Oppgave 4. En kurve er gitt ved

$$\mathbf{r}(t) = (t^2 \cos(t), t^2 \sin(t)), \quad t \in [0, 2\pi].$$

Kurven ser slik ut:

 \checkmark

Oppgave 5. La $\mathcal C$ være kurven i forrige spørsmål, lengden på kurvestykket fra t=0 til $t=\sqrt{5}$ er:

 \square ∞

□ 8/3

▼ 19/3

 $\Box \sqrt{2}$

 \Box π

Oppgave 6. Sett $\mathbf{F}=(y^2,x^2)$ og la $\mathcal C$ være kurven langs sidene til trekanten med hjørner $(0,0),\ (1,0)$ og (0,1), i positiv omløpsretning (mot klokka). Da er $\int_{\mathcal C} \mathbf{F} \cdot d\mathbf{r}$:

- \square 2π
- \square 2 + $\sqrt{2}$
- $\mathbf{V} = 0$
- \Box 4
- $\hfill \square$ Integralet fins ikke siden $\mathcal C$ ikke er deriverbar

Oppgave 7. Ligningen

$$4x^2 + 4x - 2y + y^2 - 14 = 0$$

beskriver:

- \square en rett linje
- \square en parabel
- ▼ en ellipse
- \square en hyperbel
- \square det fins ingen punkter (x, y) som oppfyller ligningen

Oppgave 8. Et konturplott av en funksjon f av to variable ser slik ut:

Da vet vi at

- $\hfill\Box$ fhar et lokalt minimum i P
- $\hfill \hfill f$ har et lokalt maksimum i P
- $\nabla f = 0 \text{ i } P$
- $\hfill\Box$ fhar et sadelpunkt i P
- $\hfill\Box \ f$ er ikke deriverbar i P

Oppgave 9. La

$$A = \{(x,y) \mid 1 \le x^2 + y^2 \le 4\}.$$

Da er $\iint_A xy^2 dxdy =$

- \Box $\pi/24$
- $\mathbf{\nabla} 0$
- \Box 5/4
- \Box -1
- \square 3/2

Oppgave 10. La A være gitt ved $\{(x,y,z) | 0 \le z \le 1 - \sqrt{x^2 + y^2} \}$. Da ser A slik ut:

 \checkmark

Oppgave 11. Volumet til A er

 \Box π

 \Box $\pi/6$

 $\square 2\pi/3$

 $\Box 3\pi/4$

 $\checkmark \pi/3$

Oppgave 12. En flate er gitt ved at $z = (x^2 + y^2)/2$, og begrenset ved at $x^2 + y^2 \le 1$ og x > 0, y > 0. Arealet til flaten er:

- \square $2\pi^2$
- $\Box \pi \sqrt{2}$
- $\pi (2\sqrt{2}-1)/6$
- \Box $\pi/4$
- $\Box 4\pi^2/3$

Oppgave 13. La F være gitt ved

$$\mathbf{F}(x,y) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

og \mathcal{C} kurven gitt ved $\mathbf{r}(t) = (\cos(t), \sin(t)), t \in [0, a]$. Da blir

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} =$$

- \checkmark 0
- \Box a
- \square 2a
- $\Box \sqrt{a}$
- \square $2\pi a$

Oppgave 14. La B være enthetskula i \mathbb{R}^3 , dvs.

$$B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}.$$

For hvilke positive reelle tall p vil integralet

$$\iiint_B \frac{1}{(x^2 + y^2 + z^2)^p} \, dx \, dy \, dz$$

konvergere?

- $p \le 3/2$
- \square p > 3/2
- \square $p \le 1$
- $\square p \leq \pi/2$

Oppgave 15. La b_1 , b_2 og b_3 være reelle tall. Ligningssystemet

$$2x - y + z = b_1$$
$$-x + 3y + 2z = b_2$$
$$3x - 4y - z = b_3$$

- \square har mange løsninger for alle b_1 , b_2 og b_3 .
- \square har nøyaktig én løsning hvis $b_3 = b_1 b_2$.
- \triangle har mange løsninger hvis $b_3 = b_1 b_2$.
- \square har nøyaktig én løsning for alle b_1 , b_2 og b_3 .
- $\hfill \square$ har ingen løsninger uansett hva $b_1,\,b_2$ og b_3 er.

(Fortsettes på side 7.)

Oppgave 16. La A være matrisen

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

Da er den inverse til A; A^{-1} lik

 \checkmark

$$\frac{1}{2} \begin{pmatrix} 1 & -1 & 1\\ 1 & 1 & -1\\ -1 & 1 & 1 \end{pmatrix}$$

 \Box A

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 \square A er ikke inverterbar

Oppgave 17. Sett

$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \text{ og } \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Da gjelder at

 \mathbf{v} $\mathbf{b} = 3/2\mathbf{u} - \mathbf{v} + 1/2\mathbf{w}$

 \Box **b** = 4/3**u** - 2/3**v** + 1/3**w**

 \square b lar seg ikke skrive som en lineærkombinasjon av \mathbf{u} , \mathbf{v} og \mathbf{w}

 \Box **b** = 3/4**u** + 3/2**v** + 3**w**

 \Box b = u - w

Oppgave 18. Hvilket utsagn under er galt?

 \Box Hvis Aer en $m\times n$ matrise og $\mathbf{x}\in\mathbb{R}^n,$ så er $T(\mathbf{x})=A\mathbf{x}$ en lineæravbildning.

 $\mathbf{\nabla}$ Hvis $T: \mathbb{R}^n \to \mathbb{R}^m$ er en lineæravbildning så er $T(|\mathbf{x}|\mathbf{y}) = T(\mathbf{x}|\mathbf{y})$.

 \square Hvis $T: \mathbb{R}^n \to \mathbb{R}^m$ er en lineæravbildning så er $T(\mathbf{0}) = \mathbf{0}$.

 \square Hvis $T: \mathbb{R}^3 \to \mathbb{R}^2$ er en lineæravbildning så er $T(-\mathbf{x}) = -T(\mathbf{x})$.

 \square Hvis $T: \mathbb{R}^2 \to \mathbb{R}^2$ er en lineæravbildning så er $T(\mathbf{x}) + T(\mathbf{x}) = 2T(\mathbf{x})$.

Oppgave 19. La \mathcal{C} være den parametriserte kurven $\mathbf{r}(t) = (t\cos(t), t\sin(t)),$ $0 \le t \le 1$, og la $\mathbf{F}(x,y) = (2x,2y)$. Da er

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} =$$

- \Box 0
- \checkmark 1
- \Box e
- \square π
- \Box $i (= \sqrt{-1})$

Oppgave 20. La A være området begrenset av kurvene $y=x^2,\,y=\sqrt{x},\,x=0$ og x=1. Da er

$$\iint_A xy \, dx dy =$$

- \square 1/2
- \Box 0
- \Box 1/24
- \square 3/16
- $\sqrt{1/12}$

SLUTT