Monte Carlo simulation of coarse-grained model for Halloysite Nanotube

Hye-jeong Cheon

Department of Physics, NTNU, Trondheim

14. Sep. 2018

Monte Carlo simulation of coarse-grained system

Understanding molecules by computation

Monte Carlo simulation of coarse-grained system

Nanogel

Nanotube

Halloysite Nanotube

Halloysite Nanotube structure and modelling system

Halloysite structure and property

Sheet becomes tube : Inside(Al) and Outside (Si)

Soil and Water Chemistry: An Integrative Approach, Second Edition, Av Michael E. Essington, p86

System Coarse-grained model for Halloysite

Halloysite Nanotube

Simulation with different thickness and number of particles

	Number of atom		Nanotube structure		Radius of atom		Cylinder system structure		Dissociation constant			
	# Al	# Si	Thickness Al-Si [Å]	Inner radius [Å]	Length [Å]	Rad Al [Å]	Rad Si [Å]	Cylinder rad [Å]	Cylinder length [Å]	pK(AI)	pK(Si)	Remarks
Parameter	nppt(Al)	nppt(Si)	dcap	rcap	lcap	radat(AI)	radat(Si)	cylrad	cyllen	pK(1)	pK(3)	
	100	400	100	60	700	2.0	2.0	800	1200	9	4.2	
Same # atom,	100	400	180	60	700	2.0	2.0	800	1200	9	4.2	Standard
different thickness	100	400	240	60	700	2.0	2.0	800	1200	9	4.2	
	100	400	500	60	700	2.0	2.0	800	1200	9	4.2	
	100	267	100	60	700	2.0	2.0	800	1200	9	4.2	
Same charge, different thickness	100	500	240	60	700	2.0	2.0	800	1200	9	4.2	
	100	933	500	60	700	2.0	2.0	800	1200	9	4.2	
Comparing with	100	-	-	60	700	2.0	-	800	1200	9	-	
Al+Si NT and Al/Si NT	-	400	180	60	700	-	2.0	800	1200	-	4.2	

	Numbe		Nanotube structure			
	# AI	# Si	Thickness Al-Si [Å]	Inner radius [Å]	Length [Å]	Remarks
Parameter	nppt(AI)	nppt(Si)	dcap	rcap	lcap	
	100	400	100	60	700	
Same # atom,	100	400	180	60	700	Standard
different thickness	100	400	240	60	700	
	100	400	500	60	700	
	100	267	100	60	700	
Same charge, different thickness	100	500	240	60	700	
	100	933	500	60	700	
Comparing with		700				
Al+Si NT and Al/Si NT	-	400	180	60	700	

	Number	of atom	Na			
	# Al	# Si	Thickness Al-Si [Å]	Inner radius [Å]	Length [Å]	Remarks
Parameter	nppt(Al)	nppt(Si)	dcap	rcap	lcap	
	100	400	100	60	700	
Same # atom,	100	400	180	60	700	Standard
different thickness	100	400	240	60	700	
	100	400	500	60	700	
	100	267	100	60	700	
Same charge, different	100	500	240	60	700	
thickness	100	933	500	60	700	
Comparing with	100	-	-	60	700	
Al+Si NT and Al/Si NT	-	400	180	60	700	

	Number	of atom	Na			
	# Al	# Si	Thickness Al-Si [Å]	Inner radius [Å]	Length [Å]	Remarks
Parameter	nppt(AI)	nppt(Si)	dcap	rcap	lcap	
Same # atom, different thickness	100	400	100	60	700	
	100	400	180	60	700	Standard
	100	400	240	60	700	
	100	400	500	60	700	
	100	267	100	60	700	
Same charge, different thickness	100	500	240	60	700	
tnickness	100	933	500	60	700	
Comparing with	100	-	-	60	700	
Al+Si NT and Al/Si NT	-	400	180	60	700	

Result titration curve with increasing pH, Al only & Si Only separately

- ✓ Low pH : $HA + H_2O \rightarrow A^- + H_3O^+$
- ✓ High pH : $B + H_2O \rightarrow BH^+ + OH^-$
- ✓ For finding the most suitable dcap(thickness) without mutual interaction btw Al & Si

Result titration curve with increasing pH, same # of atoms

Result titration curve with increasing pH, same surface charge $(\sigma_{in} = \sigma_{out})$

Conclusion and future work

From Costanza

Titration of three systems with different thickness (dcap): 5 Å, 100 Å, 500 Å

By changing the thickness of nanotube is possible to see how the dcap influences the titration.

- Increasing the thickeness the interactions between Al and Si particles is weaker and the titration became more slow and easy.
- The titration curve of the 500 Å dcap system looks like the titration curve of the systems of Al and Si alone without mutual interections.

- ✓ Minimize charge effect of Al-Si itself within nanotube
 - → large dcap (thickness)
- ✓ Why are two cases above different?
- ✓ Implement nanotube with charged polymers

Result snapshots of 4 dcap lengths(100, 180, 240, 500)

Conclusion and future work

From Costanza

Titration of three systems with different thickness (dcap): 5 Å, 100 Å, 500 Å

By changing the thickness of nanotube is possible to see how the dcap influences the titration.

- Increasing the thickeness the interactions between Al and Si particles is weaker and the titration became more slow and easy.
- The titration curve of the 500 Å dcap system looks like the titration curve of the systems of Al and Si alone without mutual interections.

- → for larger dcap, not enough number of Si outside (lower charge density)
- ✓ Need more Si beads
 - → Maintain surface charge density(

Result titration curve with same surface charge ($\sigma_{in} = \sigma_{out}$), dcap240, debye length 10Å

- ✓ Debye length(adding more ions) : for lowering interference
- ✓ Al:ions

Reference titration curve with increasing pH, same # of atoms

1. Images

1-1. https://www.eng.ed.ac.uk/about/news/20160105/flagship-research-programme-awarded-epsrc-grant, sep 2018
1-2. https://www.sciencedirect.com/science/article/pii/S1387181115004904, sep 2018
1-3. Development of a coarse-grained model for calcium minerals, Computational and Theoretical Chemistry — Biomineralization, 'https://www.chemie.uni-konstanz.de/ag-peter/research/research-projects/material-science-related-topics/biomineralization/'

2. Papers

2-1. Properties and applications of halloysite nanotubes: recent research advances and future prospects, Peng Yuan a,d,, Daoyong Tan b, Faïza Annabi-Bergaya, Applied Clay Science, 2015
2-2. Thermodynamics of Proton Binding of Halloysite Nanotubes, Clemente Bretti, Salvatore Cataldo, Antonio Gianguzza, Gabriele Lando, Giuseppe Lazzara, Alberto Pettignano, and Silvio Sammartano, Jof Physical Chem. 2016
2-3. An assembly of organic-inorganic composites using halloysite clay nanotubes, Giuseppe Lazzara a, Gianguzza, Giuseppe Cavallaro a, Abhishek Panchal b, Rawil Fakhrullinc, Anna Stavitskaya d, Vladimir Vinokurov d, Rawil Lazzara a, Rawil Fakhrullinc, Anna Stavitskaya d, Vladimir Vinokurov d, Rawil Lazzara a, Carawilla and Lazzara a, Rawil Fakhrullinc, Anna Stavitskaya d, Vladimir Vinokurov d, Rawil Lazzara a, Carawilla and Lazzara a, Carawilla and C

- 3. Books
- 3-1. Soil and Water Chemistry: An Integrative Approach, Second Edition, Av Michael E. Essington, p86
- 4. Work from Constanza Tedesco
- 4-1. Powerpoint Presentation 'Halloysite Presentation', 2018

