

EVALUASI AKHIR SEMESTER ANALISIS DERET WAKTU C – (KS184617)

ANALISIS INTERVENSI MODEL TIME SERIES DATA SAHAM PT. MITRA KELUARGA KARYA SEHAT DAN PT. BUMI SERPONG DAMAI PERIODE 15 NOVEMBER 2018 – 22 MEI 2020 DIPENGARUHI OLEH KASUS PERTAMA COVID-19 DI INDONESIA

Jovanka Alvira Wijaya NRP. 06211940000079

Dosen Pengampu M. Sjahid Akbar, S.Si, M.Si NIP. 19720705 199802 1 001

PROGRAM STUDI SARJANA
DEPARTEMEN STATISTIKA
FAKULTAS SAINS DAN ANALITIKA DATA
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA 2022

Abstrak

Covid-19 telah mengubah keseluruhan aspek kehidupan yang dijalani manusia. Dampaknya yang bergitu besar dan terutama pada bidang ekonomi Indonesia membuat banyak perusahaan yang mengalami keterpurukan dan kejatuhan setelah masuknya COVID-19 ke Indonesia tepatnya pada tanggal 2 Maret 2020. Salah satu saham yang terdampak adalah saham PT. Bumi Serpong Damai(BSDE.JK), perusahaan yang bergerak di bidang real estate dan hiburan dan PT.Mitra Keluarga Sehat(MIKA.JK) yang bergerak dalam pelayanan rumah sakit. Tujuan dari penelitian ini adalah memodelkan intervensi fungsi step untuk memperoleh model terbaik agar dapat meramalkan saham PT. Mitra Keluarga Karya Sehat dan PT.Bumi Serpong Damai pada periode berikutnya. Data yang digunakan adalah data harian close dari tanggal 15 November 2018 – 22 Mei 2020 dengan intervensi 2 Maret 2020. Berdasarkan penelitian diperoleh model intervensi fungsi step terbaik untuk saham BSDE.JK adalah ARIMA((2),1,0) dengan b = 7, s=5, dan r=1 dengan nilai AIC 516.7743 dan untuk saham MIKA.JK adalah ARIMA(1,1,1) dengan b = 5, s=3, dan r=1 dengan nilai AIC -5031.19.

Kata Kunci: ARIMA, Covid-19, fungsi step, intervensi.

BABI

PENDAHULUAN

Coronavirus-19 atau yang lebih sering disebut dengan COVID-19 telah mengubah keseluruhan aspek kehidupan yang dijalani manusia. Dampaknya yang bergitu besar dan terutama pada bidang ekonomi Indonesia membuat banyak perusahaan yang mengalami keterpurukan dan kejatuhan setelah masuknya COVID-19 ke Indonesia tepatnya pada tanggal 2 Maret 2020. Pada tanggal 31 Desember 2019, secara resmi WHO telah menerima laporan dari China mengenai awal kasus Covid-19 yang muncul pertama kali di Wuhan. Penyebaran virus tersebut sangat cepat ke berbagai negara termasuk Indonesia pada awal Maret 2020 (NEWS, 2020). Setelah banyak upaya yang dilakukan pemerintah sepertii penerapan PPKM, social distancing, penerapan protokol kesehatan yang ketat pun masih tidak cukup untuk menghindari pandemi COVID-19 yang melanda. Covid-19 tidak hanya berpengaruh pada kesehatan, namun pada harga saham sebagian besar perusahaan dari segala sektor yang mengalami penurunan secara drastis dan harga saham anjlok.

Kepanikan akibat Covid-19 yang melanda pasar keuangan Indonesia, dengan indikasi, bahwa selama periode penyebaran Corona Januari-13 April 2020 terjadi capital outflow yang jumlahnya mencapai Rp 159,3 triliun, sebagian besar merupakan surat berharga negara (SBN) Rp143,5 triliun (91%), saham Rp11,8 triliun (7,4%), SBI Rp3,3 triliun (2,1%), dan obligasi korporasi Rp0,6 triliun (0,4%)3). Capital outflowdari investor asing selalu menimbulkan volatilitas yang tinggi baik pada pergerakan kurs Rp/US\$ maupun pergerakan indeks saham saat krisis(Haryanto,2020). Salah satu saham yang terdampak adalah saham BSDE.JK atau saham PT. Bumi Serpong Damai, perusahaan yang bergerak di bidang real estate dan hiburan terkena dampak yang sangat besar karena banyak mall yang ditutup, pembelian real estate turun sevara drastis mengakibatkan ketidakstabilan harga saham perusahaan ini. Saham lain yang dinilai memiliki dampak akibat masuknya Covid-19 adalah perusahaan PT.Mitra Keluarga Sehat atai MIKA.JK yang bergerak dalam pelayanan rumah sakit.

Berdasarkan latar belakang yang telah disampaikan, maka peneliti ingin menganalisis lebih lanjut mengenai dampak masuknya Covid-19 ke Indonesia dengan analisis intervensi model time series data saham PT. Mitra Keluarga Karya Sehat dan PT.Bumi Serpong Damai periode 15 November 2018 – 22 Mei 2020. Tujuan dari penelitian ini adalah memodelkan intervensi fungsi step untuk memperoleh model terbaik agar dapat meramalkan saham PT. Mitra Keluarga Karya Sehat dan PT.Bumi Serpong Damai pada periode berikutnya.

BAB II

TINJAUAN PUSTAKA

2.1. SAHAM BSDE.JK

PT. Bumi Serpong Damai adalah perusahaan yang bergerak di bidang pengembangan real estate, dikembangkan sejak tahun 1984 perusahaan ini menjadi salah satu anak perusahaan Sinar Land company. Tidak hanya mengelola real estate, namun Bumi Serpong Damai atau yang lebih sering disebut dengan BSD merupakan pengembang edukasi dan hiburan. Menjadi salah satu planned city pertama di indonesia membuat BSD dapat *go public* dan memiliki saham yang beredar di Bursa Efek Indonesia.

2.2. SAHAM MIKA.JK

PT. Mitra Keluarga Karyasehat merupakan perusahaan yang menaungi bidang kesehatan (rumah sakit). Berada di bawah naungan PT. Griyainsani Cakradaya, PT ini telah melakukan *Initial Product Offering* pada tahun 2015 dan berhasil menjual sahamnya di Bursa Efek Indonesia. Bisnis utama MIKA adalah menjalankan usaha secara tidak langsung melalui anak usaha di bidang pelayanan kesehatan yaitu dengan memberikan jasa pelayanan medik dengan cara memiliki dan mengelola rumah sakit dengan nama Mitra Keluarga. MIKA memperoleh pernyataan efektif dari Otoritas Jasa Keuangan (OJK) untuk melakukan Penawaran Umum Perdana Saham MIKA (IPO) kepada masyarakat sebanyak 261.913.000 yang terdiri dari 72.753.600 saham baru dan 189.159.400 divestasi saham pendiri dengan nilai nominal Rp100,- per saham dengan harga penawaran Rp17.000,- per saham. Saham-saham tersebut dicatatkan pada Bursa Efek Indonesia (BEI) pada tanggal 24 Mar 2015.

2.3. ANALISIS TIME SERIES MODEL ARIMA(p,d,q)

Deret waktu (time series) adalah serangkaian pengamatan data pengamatan xt yang terjadinya berdasarkan urutan waktu. Pengamatan yang diamati merupakan barisan bernilai diskrit, yang diperoleh pada interval waktu yang sama, misalnya harian, mingguan, bulanan, dan sebagainya. Untuk mendapatkan model dari data yang diperoleh dari pengamatan tersebut diperlukan suatu permodelan time series (Brockwell, 2002).

Dalam membentuk model ARIMA, dapat melalui beberapa langkah yaitu yang pertama adalah pengecekkan stasioneritas data dalam varians dan dalam rata-rata dengan menggunakan transformasi box-cox dan melihat pola ACF dan PACF dari data yang digunakan. Jika orde autoregresive nya p, orde selisih/pembeda (differencing) d, dan orde moving average nya q, maka modelnya ditulis ARIMA (p,d,q) (Makridakis,1988).

$$\Phi_{p}(B) (1-B)_{d} Xt = \theta_{q}(B)_{at}$$

$$N_{t} = \frac{\theta_{q}(B)\theta_{Q}(B^{s})}{\phi_{p}(B)\Phi_{p}(B^{s})(1-B)^{d}(1-B^{s})^{d}}$$

Dimana p merupakan orde autoregressive model, d merupakan orde differencing yang dilakukan pada data, dan q merupakan orde model moving average pada data. Pada permodelan ARIMA dilakukan pula uji residual berdistribusi normal dan white noise dengan melakukan kolmogorov-smirnov test dan nilai Ljung box test pada residual.

2.4. ANALISIS INTERVENSI

Analisis intervensi merupakan metode yang digunakan untuk menjelaskan efek dari suatu intervensi yang dipengaruhi oleh faktor eksternal atau internal pada data time series. Bentuk model intervensi secara umum adalah sebagai berikut.

$$Yt = \frac{\omega_s(B)}{\delta_r(B)} B^b Xt$$

Dengan,

$$\omega_{\rm s}(B)$$
: $\omega_0 - \omega_1 B - \cdots - \omega_{\rm s} B^{\rm s}$

$$\delta_{\rm r}(B): 1-\delta_1 B-\cdots-\delta_r B r$$

Terdapat ada 2 macam analisis intervensi, yaitu analisis intervensi dengan fungsi step dan pulse. Analisis intervensi fungsi step adalah analisis intervensi yang terjadi dalam jangka waktu yang lama(tidak hanya dalam satu waktu) permodelan fungsi step dapat dituliskan sebagai berikut.

$$S_t = \begin{cases} 0, & t < T \\ 1, & t \ge T \end{cases}$$

Orde b,r,s pada model intervesi dapat diduga melalui grafik standarized residual melalui beberapa hal, yang bertama orde b merupakan penentuan kapan efek intervensi berpengaruh terhadap data, orde s merupakan pola yang dapat dilihat dari grafik, dan orde r merupakan time lag setelah b dan s (bisa dikatakan sebagai pola keseluruhan data yang dapat dilihat).

BAB III METODOLOGI PENELITIAN

3.1. Sumber Data

Data yang digunakan pada analisis intervensi kali ini adalah data penutupan saham setiap hari dari saham PT. Mitra Keluarga Karya Sehat Dan PT. Bumi Serpong Damai Periode 15 November 2018 – 22 Mei 2020 diperoleh dari laman *yahoo finance*. Data yang terkumpul sebanyak 387 data karena bursa saham hanya beroperasi pada Senin-Jum'at. Dari data yang digunakan, disepakati terjadi intervensi pada tanggal 2 Maret 2020 berkaitan dengan masuknya kasus pertama COVID-19 ke Indonesia dan data dibagi menjadi dua bagian yaitu data pre intervensi sebanyak 332 data dan data setelah intervensi sebanyak 54 data, serta terdapat satu data yang merupakan *missing value* sehingga dihapus.

3.3. Langkah Analisis

Metode dan tahapan analisis yang digunakan untuk mencapai tujuan penelitian adalah sebagai berikut.

- 1. Memisahkan data pre intervensi dan data setelah intervensi
- 2. Melakukan permodelan ARIMA pada data sebelum intervensi
 - Mengecek stasioneritas data dalam rata-rata dan varians
 - Melakukan transformasi dan differencing data jika diperlukan
 - Mengecek plot ACF dan PACF
 - Menduga dan mendapatkan model ARIMA yang terbaik
- 3. Membuat chart standarized residual
- 4. Menduga order intervensi
- 5. Mendapatkan model intervensi yang signifikan
- 6. Membuat model akhir
- 7. Menarik kesimpulan

BAB IV

HASIL DAN PEMBAHASAN

4.1. SAHAM BSDE.JK

Saham BSDE yang digunakan terdiri dari 387 data saham pada hari aktif yang diduga mengalami intervensi pada 02 Maret 2020 dan berikut ini adalah plot saham yang digunakan sejak tanggal 15 November 2018 sampai dengan 22 Mei 2020.

Gambar 1. Time series plot data BSDE.JK

4.1.1. PERMODELAN ARIMA

Sebelum dilakukanya analisis intervensi pada data, langkah pertama yang perlu dilakukan adalah dengan memodelkan data pre intervensi yaitu pada tanggal 15 November 2018 – 1 Mei 2020 dengan menggunakan ARIMA dan memperoleh model yang sesuai agar dapat digunakan untuk menduga model intervensi yang terjadi. Berikut ini adalah time series plot dari saham BSDE.JK pre intervensi.

Gambar 2. Time series plot data Pre intervensi BSDE.JK

Dapat dilihat pada plot diatas bahwa data saham tidak memiliki pola yang tetap namun telah terlihat adanya pola menurun mendekati waktu intervensi. Setelah itu, data perlu dicek apakah stasioner terhadap varian dengan menggunakan box-cox plot, berikut ini adalah hasilnya.

Gambar 3. Time series plot data Pre intervensi

Pada gambar ke 3 terlihat bahwa nilai rounded value lambda yang seharusnya 1 jika ia stasioner, menunjukkan angka 0.5 dan mengartikan bahwa data tidak stasioner dalam variansi dan harus dilakukan transformasi dengan mengubah data $y = \sqrt{y}$ agar dapat dikatakan stasioner. Setelah itu perlu dilakukan pengecekan stasioneritas data dalam rata-rata menggunakan plot ACF dan PACF berikut ini.

Gambar 4. ACF plot data Pre intervensi

Gambar 5. PACF plot data Pre intervensi

Mengacu pada gambar 4 dan 5, plot ACF menunjukkan pola dies down dan PACF menunjukkan pola cut off pada lag 1. Maka dari itu dilakukan percobaan permodelan menggunakan AR(1). Berikut ini adalah hasil output yang diperoleh menggunakan software minitab.

ARIMA Model: trans

```
Final Estimates of Parameters
Type
          Coef SE Coef
        0.9995
                 0.0006 1564.00 0.000
Number of observations: 332
              SS = 60.0463 (backforecasts excluded)
MS = 0.1814 DF = 331
Residuals:
Modified Box-Pierce
                     (Ljung-Box) Chi-Square statistic
                                    57.2
Chi-Square
              19.8
                     33.1
                             49.0
                               35
DF
                11
                       23
                                       47
                            0.059
                                   0.146
P-Value
            0.048
                    0.080
```

Gambar 6. Output AR(1)

Model AR(1) yang dihasilkan telah signifikan namun pada output ljung-box menunjukkan bahwa residual model tidak white noise dengan p-value yang dihasilkan pada lag 12 kurang dari 0.05 dan model dianggap tidak sesuai, setelah mencoba beberapa model berbeda tidak ditemukan model yang signifikan dan white noise maka dilakukan differencing pada lag 1 untuk melakukan permodelan jika ACF pada gambar ke- dianggap sebagai pola dying down extremely slowly.

Gambar 7. ACF plot data Pre intervensi setelah differencing

Gambar 8. PACF plot data Pre intervensi setelah differencing

Berdasarkan gambar ke 7 dan 8 dapat dilihat bahwa model yang dihasilkan bukan merupakan model white noise karena terdapat lag 2 yang keluar dari batas signifikan, maka dari itu dilakukan percobaan permodelan dengan menggunakan ARIMA subset ARIMA((2),1,0) dengan menggunakan software SAS dan hasilnya sebagai berikut.

Tabel 1. Estimasi parameter ARIMA

Conditional Least Squares Estimation							
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag		
AR1,1	-0.14820	0.05465	-2.71	0.0070	2		

Hasil pada tabel 1 menunjukkan bahwa model ARIMA((2),1,0) telah signifikan dengan p-value yang dihasilkan sebesar 0.007 dan pengecekkan hasil white noise sebagai berikut.

Tabel 2. Pengecekkan white noise residual

	Autocorrelation Check for White Noise								
To Lag	Chi-Square	re DF Pr > ChiSq Autocorrelations							
6	8.80	6	0.1853	-0.017	-0.147	0.036	-0.049	-0.019	0.014
12	19.93	12	0.0684	0.105	0.025	-0.045	0.060	-0.004	-0.123
18	26.77	18	0.0834	-0.030	0.054	-0.019	-0.084	-0.016	0.089
24	33.36	24	0.0966	-0.026	-0.010	0.033	-0.115	0.050	0.029

Dapat dilihat bahwa pada lag 6, 12, 18, dan 24 nilai p-value yang dihasilkan telah melebihi 0.05 dan dapat dikatakan residual memenuhi asumsi white noise. Selanjutnya adalah uji residual berdistribusi normal menggunakan SAS dengan H0 adalah residual tela berdistribusi normal.

Tabel 3. Uji normalitas residual

Tests for Normality					
Test	Statistic		p Valı	ue	
Shapiro-Wilk	W	0.989161	Pr < W	0.0146	
Kolmogorov-Smirnov	D	0.056448	Pr > D	0.0111	

Hasil pengujian berdistribusi normal pada tabel di atas adalah p-value < 0.05 yang artinya residual tidak berdistribusi normal pada taraf signifikansi 5%, namun dengan menggunakan taraf signifikansi 1% data residual telah memenuhi distribusi normal karena 0.0146 > 0.01.

Maka dari itu model ARIMA((2), 1, 0) merupakan model yang sesuai untuk memodelkan data pre intervensi dan modelnya dapat dituliskan sebagai berikut.

Tabel 4. Faktor AR pada model ARIMA((2),1,0)

Autoregressive Factors
Factor 1:
$$1 + 0.1482 \, \text{B}^{**}(2)$$

$$z_t = \frac{at}{(1 + 0.1482 B^2)(1 - B)}$$

Berikut ini adalah plot antara hasil fits dan forecasting ARIMA((2), 1, 0) dengan data aktual

Gambar 9. Plot aktual dan forecasting model ARIMA

4.1.2. PERHITUNGAN RESPONSE INTERVENSI

Dengan menggunakan standard residual chart, waktu mulai intervensi dapat diidentifikasi karena salah satu ciri-ciri terjadinya intervensi adalah perbedaan yang sangat besar pada residual dan hasil forecasting model melebihi batas lower dan upper limit. Residual chart juga digunakan sebagai penduga pola b,r,s pada intervensi yang terjadi dengan melihat pola yang dihasilkan.

Gambar 10. Grafik standarized residual

Berdasarkan gambar 10 dapat dilihat bahwa jelas terjadi intervens setelah tanggal 2 Maret 2020 yang ditandai oleh garis t pada grafik karena melebihi lower limit yaitu -3. Terdapat pula bar yang keluar batas atas namun terjadi sebelum adanya intervensi yang ditetapkan, hal ini dapat dianggal sebagai outlier karena pada penelitian kali ini hanya mengamati pengaruh intervensi berupa masuknya kasus pertama COVID-19 ke Indonesia. Untuk menentukan orde yang sesuai perlu dilakukan beberapa percobaan agar mendapatkan orde b,r,s yang sesuai dan terbaik untuk model yang dibangun. Setelah melalui tahap trial and error menggunakan software SAS dengan memasukkan data transformasi, terdapat dua orde b,r,s yang parameternya telah signifikan yaitu sebagai berikut.

Tabel 5. Dugaan orde b,r,s setelah intervensi

	C	Orde	AIC	Est Residual	
b	S	r		AIC	Error
	7	5	1	516.7743	0.481165
	5	0	1	525.0903	0.481837

Dengan menggunakan perbandingan AIC dan estimasi residual error, didapatkan bahwa model dengan orde b=7, s=5, dan r=1 merupakan model yang terbaik karena memiliki nilai AIC dan estimasi residual error yang lebih kecil dibandingkan model lainnya. Maka dari itu, model yang dihasilkan adalah sebagai berikut.

$$f(X_t) = \frac{\omega_s(B)}{\delta_r(B)} B^b X_t$$

$$\omega_s = \omega_5 = (\omega_{0-} \omega_5 B^5)$$

$$\delta_1(B) = 1 - \delta_1 B$$

$$B^b = B^7$$

$$f(X_t) = \frac{(\omega_{0-} \omega_5 B^5)}{1 - \delta_1 B} B^7 X_t$$

Karena intervensi yang terjadi berbentuk step, maka modelnya menjadi

$$f(S_t) = \frac{(\omega_{0-}\omega_5 B^5)}{1 - \delta_1 B} B^7 S_t$$
$$f(S_t) = \frac{(-1.10399 - 1.11855 B^5)}{1 - 0.61063 B} B^7 S_t$$

4.1.3. MODEL AKHIR

Model akhir dapat diperoleh dari model arima + model intervensi sebagai berikut.

$$Y_{t} = \frac{at}{(1+0.1482B^{2})(1-B)} + \frac{(-1.10399 - 1.11855B^{5})}{1-0.61063B}B^{7}S_{t}$$

$$Y_{t} = \frac{at}{(1+0.1482B^{2})(1-B)} + \frac{(-1.10399B^{7} - 1.11855B^{12})}{1-0.61063B}S_{t}$$

Kesimpulan:

Berdasarkan model di atas, dapat disimpulkan bahwa saham BSDE.JK turun sebanyak 1/(1-0.61063) atau sebanyak 2.6 satuan pada hari pertama sampai ke-6 dipengaruhi dengan kasus pertama COVID-19 di indonesia setelah tanggal 2 Maret 2020. Dapat disimpulkan juga bahwa saham BSDE.JK turun sebanyak 1.10399 satuan pada hari ke-7 sampai sampai hari ke-11 setelah terjadinya intervensi, dan nilai saham turun sebanyak 1.11855 satuan dari hari ke-12 sampai data terakhir yang diamati dipengaruhi dengan kasus pertama COVID-19 di indonesia.

4.2. SAHAM MIKA.JK

Saham MIKA yang digunakan terdiri dari 387 data saham pada hari aktif yang diduga mengalami intervensi pada 02 Maret 2020 dan berikut ini adalah plot saham yang digunakan sejak tanggal 15 November 2018 sampai dengan 22 Mei 2020.

Gambar 11. Time series plot data MIKA.JK

4.2.1. PERMODELAN ARIMA

Langkah pertama yang perlu dilakukan adalah dengan memodelkan data sebelum terjadinya intervensi yaitu pada tanggal 15 November 2018 – 1 Mei 2020 dengan menggunakan ARIMA dan memperoleh model yang sesuai agar dapat digunakan untuk menduga model intervensi yang terjadi. Berikut ini adalah time series plot dari saham MIKA.JK pre intervensi.

Gambar 12. Time series plot data Pre intervensi BSDE.JK

Pada gambar di atas terlihat adanya pola tren naik yang terjadi pada saham MIKA.JK sebelum terjadinya intevensi. Data ini yang akan dilakukan permodelan ARIMA, namun sebelum itu perlu terlebih dahulu dilakukan pengecekkan apakah data telah stasioner dalam varians melalui nilai lambda pada *box cox transformation*.

Gambar 13. Box-cox plot data pre intervensi

Hasil nilai lambda value pada data adalah sebesar -0.5 yang artinya agar data stasioner dalam varians perlu dilakukan transformasi $y = \frac{1}{\sqrt{y}}$. Setelah data telah dipastikan stasioner, maka dilakukan pengecekkan stasioneritas dalam rata-rata dengan melihat plot ACF dan PACF data berikut ini.

Gambar 14. ACF plot data Pre intervensi MIKA.JK

Gambar 15. PACF plot data Pre intervensi MIKA.JK

Berdasarkan hasil plot ACF yang memiliki pola dying down extremely slowly dan PACF memiliki pola cut off after lag 1, maka data tidak stasioner dalam rata-rata dan perlu dilakukan differencing pada lag 1 sebanyak satu kali setelah itu dicek kembali pola pada ACF dan PACF apakah telah memenuhi asumsi stasioner berikut ini.

Gambar 16. ACF plot data Pre intervensi MIKA.JK setelah differencing

Gambar 17. PACF plot data Pre intervensi MIKA.JK setelah differencing

Menurut gambar 16 dan 17, pola ACF dan PACF data telah menunjukkan bahwa data setelah di differencing telah memenuhi asumsi stasioner dalam rata-rata. Setelah itu, jika dilihat kembali untuk permodelan ARIMA, terdapat masing-masing pada lag 2 plot ACF dan PACF melewati batas lower limit, maka data dicobakan permodelan ARIMA(2,1,2) dengan hasil sebagai berikut.

ARIMA Model: Trans

```
Final Estimates of Parameters
                       0.2249
                                   1.68
                       0.2250
0.2465
                                  -2.29
1.31
AR
          -0.5152
                                            0.023
          -0.3414
                        0.2469
                                  -1.38
Differencing: 1 regular difference
Number of observations: Original series 332, after differencing 331
Residuals: SS = 0.0000186406 (backforecasts excluded)
MS = 0.0000000570 DF = 327
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
                          18.0
20
                                   26.3
32
                                             37.5
P-Value
                         0.588 0.748 0.744
```

Gambar 18. Output ARIMA(2,1,2)

Dapat dilihat bahwa dengan hasil permodelan menggunakan minitab diperoleh bahwa model ARIMA(2,1,2) tidak signifikan dengan beberapa parameter memiliki nilai p-value >0.05. Selanjutnya dicobakan untuk model ARIMA(1,1,1) dengan anggapan bahwa plot ACF PACF data setelah di differencing adalah white noise.

Gambar 19. Output ARIMA(1,1,1)

Dapat dilihat bahwa dengan hasil permodelan menggunakan minitab diperoleh bahwa model ARIMA(1,1,1) telah signifikan dengan beberapa parameter memiliki nilai p-value >0.05.

Maka dari itu model ARIMA((2), 1, 0) merupakan model yang sesuai untuk memodelkan data pre intervensi dan modelnya dapat dituliskan sebagai berikut.

$$z_t = \frac{(1 - 0.9119B)at}{(1 - 0.8297)(1 - B)}$$

Berikut ini adalah plot antara hasil fits dan forecasting ARIMA(1,1,1) dengan data aktual

Gambar 20. Plot aktual dan forecasting model ARIMA

4.2.2. PERHITUNGAN RESPONSE INTERVENSI

Standard residual chart dapat digunakan untuk mengidentifikasi waktu mulai intervensi karena salah satu ciri-ciri terjadinya intervensi adalah perbedaan yang sangat besar pada residual dan hasil forecasting model melebihi batas lower dan upper limit. Residual chart juga digunakan sebagai penduga pola b,r,s pada intervensi yang terjadi dengan melihat pola yang dihasilkan. Berikut ini adalah standarized residual chart yang dihasilkan dari data aktual dengan data hasil forecasting ARIMA(1,1,1).

Gambar 21. Grafik standarized residual

Berdasarkan gambar 21 dapat dilihat bahwa jelas terjadi intervensi setelah tanggal 2 Maret 2020 yang ditandai oleh garis t pada grafik karena melebihi lower limit yaitu -3. Terdapat pula outlier yang dapat dikatakan sebagai intervensi pulse sebelum terjadinya intervensi yang ditetapkan, maka dari itu intervensi pulse ini dianggap sebagai outlier karena peneliti hanya mengamati pengaruh masuknya kasus pertama COVID-19 ke Indonesia. Hal ini menyebabkan perlu dilakukan beberapa percobaan agar mendapatkan orde b,r,s yang signifikan dan terbaik untuk memodelkan intervensi yang terjadi setelah tanggal 2 Maret 2020. Setelah melalui tahap trial and error menggunakan software SAS dengan memasukkan data transformasi, terdapat satu model b,r,s yang signifikan yaitu dengan b=5, r=1, s=3 dengan estimasi parameter sebagai berikut.

Tabel 6. Hasil estimasi parameter b,r,s

Conditional Least Squares Estimation							
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag	Variable	Shift
MA1,1	0.15826	0.05118	3.09	0.0021	1	у	0
NUM1	0.0009663	0.0002705	3.57	0.0004	0	s	5
NUM1,1	-0.0011445	0.0003276	-3.49	0.0005	3	S	5
DEN1,1	0.41478	0.14844	2.79	0.0055	1	s	5

Maka dari itu, model yang dihasilkan adalah sebagai berikut.

$$f(X_t) = \frac{\omega_s(B)}{\delta_r(B)} B^b X_t$$

$$\omega_s = \omega_3 = (\omega_{0-} \omega_3 B^3)$$

$$\delta_1(B) = 1 - \delta_1 B$$

$$B^b = B^5$$

$$f(X_t) = \frac{(\omega_{0-} \omega_3 B^3)}{1 - \delta_1 B} B^5 X_t$$

Karena intervensi yang terjadi berbentuk step, maka modelnya menjadi

$$f(S_t) = \frac{(\omega_{0-}\omega_3 B^3)}{1 - \delta_1 B} B^5 S_t$$

$$f(S_t) = \frac{(0.00097 + 0.00114B^3)}{1 - 0.41478B}B^5 S_t$$

4.2.3. MODEL AKHIR

Model akhir dapat diperoleh dari model arima + model intervensi sebagai berikut.

$$Y_{t} = \frac{(1 - 0.9119B)at}{(1 - 0.8297)(1 - B)} + \frac{(0.00097 + 0.00114B^{3})}{1 - 0.41478B}B^{5}S_{t}$$

$$Y_{t} = \frac{(1 - 0.9119B)at}{(1 - 0.8297)(1 - B)} + \frac{(0.00097B^{5} + 0.00114B^{8})}{1 - 0.41478B}S_{t}$$

Kesimpulan:

Berdasarkan model di atas, dapat disimpulkan bahwa saham MIKA.JK turun sebanyak 1/(1-0.414) atau sebanyak 1.7 satuan pada hari pertama sampai ke-4 dipengaruhi dengan kasus pertama COVID-19 di indonesia setelah tanggal 2 Maret 2020. Dapat disimpulkan juga bahwa saham MIKA.JK turun sebanyak 0.00097 satuan pada hari ke-5 sampai sampai hari ke-7 setelah terjadinya intervensi, dan nilai saham turun sebanyak 0.00114 satuan dari hari ke-8 sampai data terakhir yang diamati dipengaruhi dengan kasus pertama COVID-19 di indonesia.

DAFTAR PUSTAKA

- Bank Indonesia, Bersatu, Bertahan, Pulihkan Ekonomi: Koordinasi Kebijakan Nasional untuk Mitigasi Covid-19, Leadership Overview, 17 April 2020
- Brockwell, P.J. dan Davis, R.A. 2002. Introduction to Time Series and Forecasting. Springer-Verlag. New York.
- Chrystine, A., Hoyyi, A., Safitri, D. 2014. "Analisis Intervensi Fungsi Step (Studi Kasus pada Jumlah Pengiriman Benda Pos ke Semarang pada Tahun 2006-2011)". Jurnal Gaussian, Vol. 3, No.3, hal. 293-302
- Ispriyanti, D. Pemodelan Statistika dengan Transformasi Box-Cox.2004;2(7):8-12.
- Makridakis, S., Wheelwright, S.C., McGee, V.E. 1988. Metode dan Aplikasi Peramalan, Jilid 1 Edisi Kedua. Ir. Untung Sus Andriyanto, penerjemah. Jakarta. Erlangga. Terjemahan dari: Forecasting, 2nd Edition.
- Sari, R.N., Mariani, S., Handikawati, P. 2016. "Analisis Intervensi Fungsi Step pada Harga Saham (Studi Kasus Saham PT. Fast Food Indonesia Tbk)". UNNES Journal of Mathematics 5(2)
- Wei, W.W.S., 2006. Time Series Analysis: Univariate and Multivariate 2nd Edition. New Jersey: Pearson Education.
- https://britama.com/index.php/2015/03/sejarah-dan-profil-singkat-mika/ diakses pada 8 Juni 2022
- https://www.bbc.com/indonesia/dunia-52977852 diakses pada 7 Juni 2022
- https://finance.yahoo.com/quote/BSDE.JK?p=BSDE.JK&.tsrc=fin-srch diakses pada 2 Juni 2022
- https://finance.yahoo.com/quote/MIKA.JK?p=MIKA.JK diakses pada 2 Juni 2022

LAMPIRAN

1. DATA PENGAMATAN

	Close	Close
Date	BSDE	MIKA
15/11/2018	1170	1450
16/11/2018	1190	1470
19/11/2018	1210	1455
20/11/2018	1210	1455
21/11/2018	1240	1460
22/11/2018	1320	1475
23/11/2018	1310	1450
26/11/2018	1270	1440
27/11/2018	1275	1430
28/11/2018	1270	1460
29/11/2018	1335	1510
30/11/2018	1350	1590
03/12/2018	1365	1575
04/12/2018	1350	1470
05/12/2018	1315	1500
06/12/2018	1300	1480
07/12/2018	1345	1495
10/12/2018	1310	1485
11/12/2018	1290	1500
12/12/2018	1285	1500
13/12/2018	1310	1505
14/12/2018	1320	1495
17/12/2018	1255	1480
18/12/2018	1240	1485
19/12/2018	1260	1500
20/12/2018	1250	1470
21/12/2018	1230	1470
24/12/2018	1230	1470
25/12/2018	1230	1470
26/12/2018	1210	1495
27/12/2018	1255	1560
28/12/2018	1255	1575
31/12/2018	1255	1575
01/01/2019	1255	1575
02/01/2019	1255	1590
03/01/2019	1320	1615
04/01/2019	1355	1600
07/01/2019	1405	1630
08/01/2019	1390	1660
09/01/2019	1410	1675
10/01/2019	1460	1720

11/01/2010	1 400	1720
11/01/2019	1480	1720
14/01/2019	1475	1710
15/01/2019	1510	1660
16/01/2019	1480	1630
17/01/2019	1400	1580
18/01/2019	1400	1555
21/01/2019	1330	1580
22/01/2019	1400	1590
23/01/2019	1440	1590
24/01/2019	1395	1595
25/01/2019	1450	1615
28/01/2019	1385	1590
29/01/2019	1375	1515
30/01/2019	1325	1515
31/01/2019	1330	1510
01/02/2019	1385	1525
04/02/2019	1365	1530
05/02/2019	1365	1530
06/02/2019	1430	1530
07/02/2019	1410	1515
08/02/2019	1400	1535
11/02/2019	1360	1800
12/02/2019	1335	1860
13/02/2019	1320	1810
14/02/2019	1345	1755
15/02/2019	1320	1760
18/02/2019	1300	1870
19/02/2019	1310	1880
20/02/2019	1330	1870
21/02/2019	1315	1900
22/02/2019	1310	1890
25/02/2019	1325	1900
26/02/2019	1335	1905
27/02/2019	1365	1900
28/02/2019	1355	1940
01/03/2019	1355	1905
04/03/2019	1365	1935
05/03/2019	1330	1910
06/03/2019	1360	1905
07/03/2019	1360	1905
08/03/2019	1320	1900
11/03/2019	1325	1905
12/03/2019	1350	1915
13/03/2019	1355	1925
14/03/2019	1350	1930
15/03/2019	1355	1960
13/03/2017	1333	1700

19/02/2010	1200	1065
18/03/2019	1390	1965
19/03/2019	1420	1960
20/03/2019	1400	1945
21/03/2019	1450	1965
22/03/2019	1455	1970
25/03/2019	1405	1910
26/03/2019	1480	1945
27/03/2019	1485	1925
28/03/2019	1415	1930
29/03/2019	1420	1930
01/04/2019	1455	1970
02/04/2019	1425	1980
03/04/2019	1425	1980
04/04/2019	1465	1995
05/04/2019	1470	1975
08/04/2019	1450	1975
09/04/2019	1465	1960
10/04/2019	1410	1995
11/04/2019	1420	2030
12/04/2019	1425	2040
15/04/2019	1390	2010
16/04/2019	1410	2000
17/04/2019	1410	2000
18/04/2019	1445	1995
19/04/2019	1445	1995
22/04/2019	1450	2000
23/04/2019	1460	1995
24/04/2019	1470	2030
25/04/2019	1395	2010
26/04/2019	1415	2030
29/04/2019	1425	2180
30/04/2019	1435	2160
01/05/2019	1435	2160
02/05/2019	1390	2150
03/05/2019	1325	2190
06/05/2019	1265	2150
07/05/2019	1290	2140
08/05/2019	1280	2090
09/05/2019	1265	2080
10/05/2019	1250	2100
13/05/2019	1205	2090
14/05/2019	1215	2080
15/05/2019	1210	2050
16/05/2019	1185	2100
17/05/2019	1150	2090
20/05/2019	1185	2030
20/03/2019	1100	2030

21/05/2019	1210	1975
22/05/2019	1215	2000
23/05/2019	1275	1960
24/05/2019	1275	1910
27/05/2019	1300	1900
28/05/2019	1275	1855
29/05/2019	1310	1895
30/05/2019	1310	1895
31/05/2019	1350	1840
03/06/2019	1350	1840
04/06/2019	1350	1840
05/06/2019	1350	1840
06/06/2019	1350	1840
07/06/2019	1350	1840
10/06/2019	1425	1840
11/06/2019	1380	1950
12/06/2019	1355	1955
13/06/2019	1400	1945
14/06/2019	1390	1950
17/06/2019	1350	1915
18/06/2019	1420	1965
20/06/2019	1545	1965
21/06/2019	1535	1900
24/06/2019	1520	1900
25/06/2019	1460	1875
26/06/2019	1515	1895
27/06/2019	1535	1900
28/06/2019	1535	1895
01/07/2019	1535	1900
02/07/2019	1520	1900
03/07/2019	1515	1950
04/07/2019	1545	1920
05/07/2019	1525	1950
08/07/2019	1465	1910
09/07/2019	1465	1920
10/07/2019	1480	1955
11/07/2019	1500	1950
12/07/2019	1500	1925
15/07/2019	1500	1940
16/07/2019	1500	1945
17/07/2019	1485	1915
18/07/2019	1485	1920
19/07/2019	1495	1940
22/07/2019	1455	1950
23/07/2019	1460	1940
24/07/2019	1410	1950

25/07/2019	1400	2060
26/07/2019	1340	2110
29/07/2019	1375	2040
30/07/2019	1450	2040
31/07/2019	1420	2030
01/08/2019	1385	2070
02/08/2019	1335	2170
05/08/2019	1300	2080
06/08/2019	1305	2050
07/08/2019	1295	2190
08/08/2019	1395	2200
09/08/2019	1370	2210
12/08/2019	1320	2200
13/08/2019	1340	2200
14/08/2019	1370	2180
15/08/2019	1345	2210
16/08/2019	1350	2230
19/08/2019	1360	2220
20/08/2019	1330	2360
21/08/2019	1325	2480
22/08/2019	1350	2400
23/08/2019	1400	2340
26/08/2019	1375	2370
27/08/2019	1425	2470
28/08/2019	1380	2470
29/08/2019	1350	2500
30/08/2019	1350	2550
02/09/2019	1345	2520
03/09/2019	1345	2450
04/09/2019	1325	2420
05/09/2019	1340	2390
06/09/2019	1325	2420
09/09/2019	1320	2450
10/09/2019	1320	2380
11/09/2019	1355	2370
12/09/2019	1370	2370
13/09/2019	1350	2310
16/09/2019	1370	2370
17/09/2019	1385	2380
18/09/2019	1405	2420
19/09/2019	1405	2500
20/09/2019	1415	2430
23/09/2019	1385	2450
24/09/2019	1350	2430
25/09/2019	1355	2540
26/09/2019	1390	2650
•		

27/09/2019	1360	2640
30/09/2019	1390	2710
01/10/2019	1395	2790
02/10/2019	1350	2790
03/10/2019	1320	2820
04/10/2019	1320	2930
07/10/2019	1295	2900
08/10/2019	1325	2800
09/10/2019	1355	2780
10/10/2019	1410	2730
11/10/2019	1415	2780
14/10/2019	1390	2720
15/10/2019	1390	2670
16/10/2019	1410	2660
17/10/2019	1410	2660
18/10/2019	1410	2850
21/10/2019	1415	2790
22/10/2019	1420	2720
23/10/2019	1415	2690
24/10/2019	1450	2700
25/10/2019	1430	2580
28/10/2019	1410	2680
29/10/2019	1475	2640
30/10/2019	1460	2640
31/10/2019	1415	2600
01/11/2019	1415	2650
04/11/2019	1385	2660
05/11/2019	1375	2660
06/11/2019	1415	2690
07/11/2019	1410	2660
08/11/2019	1405	2710
11/11/2019	1380	2630
12/11/2019	1395	2670
13/11/2019	1385	2670
14/11/2019	1380	2660
15/11/2019	1350	2660
18/11/2019	1370	2690
19/11/2019	1390	2720
20/11/2019	1370	2780
21/11/2019	1350	2750
22/11/2019	1360	2660
25/11/2019	1320	2650
26/11/2019	1340	2710
27/11/2019	1300	2650
28/11/2019	1300	2670
29/11/2019	1250	2670
27/11/2017	1230	2010

02/12/2019	1250	2690
03/12/2019	1245	2590
04/12/2019	1220	2500
05/12/2019	1225	2520
06/12/2019	1255	2570
09/12/2019	1280	2640
10/12/2019	1280	2670
11/12/2019	1275	2670
12/12/2019	1265	2670
13/12/2019	1255	2680
16/12/2019	1245	2680
17/12/2019	1240	2660
18/12/2019	1260	2660
19/12/2019	1265	2670
20/12/2019	1280	2690
23/12/2019	1270	2660
26/12/2019	1270	2650
27/12/2019	1275	2660
30/12/2019	1275	2670
	1233	
02/01/2020 03/01/2020	1270	2740 2670
06/01/2020	1290	
		2690
07/01/2020	1250 1220	2630 2530
08/01/2020	1235	2610
09/01/2020 10/01/2020	1235	2640
13/01/2020	1225	2500
14/01/2020	1290	2430
15/01/2020	1265	2460
16/01/2020	1203	2470
17/01/2020	1275	2430
20/01/2020	1265	2410
21/01/2020	1200	2500
22/01/2020	1170	2560
23/01/2020	1210	2530
24/01/2020	1185	2520
27/01/2020	1135	2480
28/01/2020	1180	2570
29/01/2020	1165	2610
30/01/2020	1135	2610
31/01/2020	1115	2600
03/02/2020	1113	2550
04/02/2020	1150	2550
05/02/2020	1160	2550
06/02/2020	1100	2620
07/02/2020	1195	2570
01/02/2020	1173	2310

10/02/2020	1140	2500
10/02/2020	1140	2590
11/02/2020	1135	2650
12/02/2020	1115	2580
13/02/2020	1100	2590
14/02/2020	1065	2590
17/02/2020	1095	2600
18/02/2020	1155	2600
19/02/2020	1155	2590
20/02/2020	1140	2590
21/02/2020	1100	2580
24/02/2020	1085	2520
25/02/2020	1085	2530
26/02/2020	1060	2430
27/02/2020	1030	2500
28/02/2020	1000	2480
02/03/2020	965	2350
03/03/2020	1050	2400
04/03/2020	1115	2430
05/03/2020	1100	2430
06/03/2020	1015	2420
09/03/2020	940	2160
10/03/2020	940	2150
11/03/2020	900	2140
12/03/2020	855	1935
13/03/2020	815	1855
16/03/2020	760	1735
17/03/2020	800	1700
18/03/2020	745	1810
19/03/2020	695	1685
20/03/2020	675	2000
23/03/2020	630	1860
24/03/2020	595	1730
26/03/2020	600	1895
27/03/2020	740	1835
30/03/2020	690	1895
31/03/2020	670	2150
01/04/2020	650	2000
02/04/2020	645	2000
03/04/2020	710	2060
06/04/2020	830	2100
07/04/2020	855	1990
08/04/2020	800	1930
09/04/2020	845	1910
13/04/2020	820	1980
14/04/2020	840	1950
15/04/2020	845	1850
13/01/2020	013	1050

16/04/2020	790	1885
17/04/2020	795	1830
20/04/2020	745	1850
21/04/2020	695	1870
22/04/2020	685	1950
23/04/2020	685	1940
24/04/2020	660	1940
27/04/2020	690	1910
28/04/2020	690	1940
29/04/2020	690	1915
30/04/2020	705	1945
04/05/2020	680	1830
05/05/2020	675	1910
06/05/2020	670	1920
08/05/2020	665	1990
11/05/2020	665	2030
12/05/2020	625	2200
13/05/2020	605	2200
14/05/2020	625	2250
15/05/2020	605	2390
18/05/2020	605	2450
19/05/2020	625	2320
20/05/2020	605	2320

2. SYNTAX SAS ARIMA SUBSET PRE INTERVENSI BSDE.JK

2. STITTAX SAS ARIMA SUDSETTRE INTERVENSI DSDE.SI
data saham;
input y;
datalines;
34.21
34.50
34.79
34.79
35.21
36.33
36.19
35.64
35.71
35.64
36.54
36.74
36.95
36.74
36.26
36.06
36.67
36.19
35.92
35.85
36.19
36.33
35.43
35.21
35.50
35.36
35.07

34.79

35.43

35.43

35.43

35.43

35.43

36.33

36.81

37.48

37.28

37.55

38.21

38.47

38.41

38.86

38.47

37.42

37.42

36.47

37.42

37.95

37.35

38.08

37.22

37.08

36.40

36.47 37.22

36.95

36.95

37.42

36.88

36.54

36.33

36.67

36.33

36.06

36.19

36.47

36.26

36.19

36.40

36.54

36.95

36.81

36.81

36.95

36.47

36.88

36.88

36.33

36.40

36.74

36.81

36.74

36.81

37.28

37.68

37.42

38.08

38.47

38.54

37.62

37.68

38.14

37.75

37.75

38.28

38.34

38.08

38.28

37.55

37.68

37.75

37.28

37.55

37.55

38.01

38.01

38.08

38.21

38.34

37.35

37.62

37.75

37.88

37.88

37.28

36.40

35.57

35.57

35.36

34.71

34.86

34.79

34.42

33.91

34.42

34.79

34.86

35.71

35.71

36.06

35.71

36.19

36.19

36.74

36.74

36.74

36.74

36.74

36.74

37.75

37.15

36.81

37.42

37.28

36.74

37.68

39.31

38.21

38.92

39.18

39.18

39.18

38.99

38.92

39.31

39.05

38.28

38.28

38.47

38.73

38.73

38.73

38.73

38.54

38.54

38.67

38.14

38.21

37.55

37.42

36.61

37.08

38.08

37.68

37.22

36.54

36.06

37.35

37.01

36.33

36.61

37.01

36.67

36.74

36.88

36.47

36.40

36.74

37.42

37.08

37.75

37.15

36.74

36.74

36.67

36.67

36.40

36.61

36.40

36.33

36.33

36.81

37.01

36.74

37.01

37.22

37.48

37.22

36.74

36.81

37.28

36.88

37.28

37.35

36.74

36.33

36.33

35.99

36.40

36.81

37.55

37.62

37.28

37.28

37.55

37.55

37.55

37.62

37.68

37.62

38.08

37.82

37.55

38.41

38.21

37.62

37.75

37.62

37.55

37.48

37.15

37.35

37.22

37.15

36.74

37.01

37.28

37.01

36.74

36.88

36.33

36.61

36.06

36.06

35.36

35.36

35.28

34.93

35.00

35.43

35.78

35.78

35.71

35.57

35.43

35.28

35.21

35.50

35.78

35.64

35.85

35.71

35.43

35.64

35.92

35.78

35.36

34.93

35.14

35.00

35.43

35.92

35.57

35.71

35.71

35.57

34.64

34.21

34.79

34.42

33.69

34.35

JT.JJ

34.13

33.69

33.39

33.17

33.91

34.06

34.57

```
34.57
33.76
33.69
33.39
33.17
32.63
33.09
33.99
33.99
33.76
33.17
32.94
32.94
32.56
32.09
31.62
;
proc arima data=saham;
identify var=y(1);
estimate p=(2) noconstant;
run;
forecast lead=10 out=ramalan printall
proc univariate data=ramalan normal;
var residual;
run;
proc print data=ramalan;
run;
```

3. SYNTAX SAS INTERVENSI BSDE.JK

3. SYN	•
data saham;	
input y s;	
datalines;	
34.21 0	
34.5 0	
34.79 0	
34.79 0	
35.21 0	
36.33 0	
36.19 0	
35.64 0	
35.71 0	
35.64 0	
36.54 0	
36.74 0	
36.95 0	
36.74 0	
36.26 0	
36.06 0	
36.67 0	
36.19 0	
35.92 0	
35.85 0	
36.19 0	
36.33 0	
35.43 0	
35.21 0	
35.5 0	
35.36 0	
35.07 0	
35.07 0	

35.07 0

34.79 0

35.43 0

35.43 0

35.43 0

35.43 0

35.43 0

36.33 0

36.81 0

37.48 0

37.28 0

37.55 0

38.21 0

38.47 0

38.41 0

38.860

38.47 0

37.42 0

37.42 0

36.47 0

37.42 0

37.95 0

37.35 0

38.08 0

37.22 0

37.08 0

36.40

36.47 0

37.22 0

36.95 0

36.95 0

37.82 0

37.55 0

37.42 0

36.88 0

36.54 0

36.33 0

36.67 0

36.33 0

36.060

36.19 0

36.47 0

36.26 0

36.190

36.40

36.54 0

36.95 0

36.81 0

36.81 0

36.95 0

36.47 0

36.88 0

36.88 0

36.33 0

36.40

36.74 0

36.81 0

36.74 0

36.81 0

37.28 0

37.68 0

37.42 0

38.080

38.14 0

- 37.480
- 38.47 0
- 38.54 0
- 37.62 0
- 37.68 0
- 38.14 0
- 37.75 0
- 37.75 0
- 38.28 0
- 38.34 0
- 38.08 0
- 38.28 0
- 37.55 0
- 37.68 0
- 37.75 0
- 37.280
- 37.55 0
- 37.55 0
- 38.01 0
- 38.01 0
- 38.080
- 38.21 0
- 38.34 0
- 37.35 0
- 37.62 0
- 37.75 0
- 37.88 0
- 37.88 0
- 37.28 0
- 36.40
- 35.57 0
- 35.92 0

- 35.78 0
- 35.57 0
- 35.36 0
- 34.71 0
- 34.860
- 34.79 0
- 34.42 0
- 33.91 0
- 34.42 0
- 34.79 0
- 34.86 0
- 35.71 0
- 35.71 0
- 55.71 0
- 36.06 0
- 35.71 0
- 36.190
- 36.19 0
- 36.74 0
- 36.74 0
- 36.74 0
- 36.74 0
- 36.74 0
- 36.74 0
- 37.75 0
- 37.15 0
- 36.81 0
- 37.42 0
- 37.28 0
- 36.74 0
- 37.68 0
- 39.31 0
- 39.18 0

38.21 0

38.92 0

39.180

39.18 0

39.180

38.99 0

38.92 0

39.31 0

39.05 0

38.28 0

38.28 0

38.47 0

38.73 0

38.73 0

38.73 0

38.73 0

38.54 0

38.540

38.67 0

38.14 0

38.21 0

37.55 0

37.42 0

36.61 0

37.08 0

38.08 0

37.68 0

37.22 0

36.54 0

36.060

36.120

35.99 0

37.35 0

37.01 0

36.33 0

36.61 0

37.01 0

36.67 0

36.74 0

36.88 0

36.47 0

36.40

36.74 0

37.42 0

37.08 0

37.75 0

37.15 0

36.74 0

36.74 0

36.67 0

36.67 0

36.40

36.61 0

36.40

36.33 0

36.33 0

36.81 0

37.01 0

36.74 0

37.01 0

37.22 0

37.48 0

37.48 0

- 37.62 0
- 37.22 0
- 36.74 0
- 36.81 0
- 37.28 0
- 36.88 0
- 37.28 0
- 37.35 0
- 36.74 0
- 36.33 0
- 36.33 0
- 35.99 0
- 36.40
- 36.81 0
- 37.55 0
- 37.62 0
- 37.28 0
- 37.28 0
- 37.55 0
- 37.55 0
- 37.55 0
- 37.62 0
- 37.68 0
- 37.62 0
- 38.08 0
- 37.82 0
- 37.55 0
- 38.41 0
- 38.21 0
- 37.62 0
- 37.75 0
- 37.22 0

37.62 0

37.55 0

37.48 0

37.15 0

37.35 0

37.22 0

37.15 0

36.74 0

37.01 0

37.28 0

37.01 0

36.74 0

36.88 0

36.33 0

36.61 0

36.060

36.06 0

35.36 0

35.36 0

35.28 0

34.93 0

35 0

35.43 0

35.78 0

35.78 0

35.71 0

35.57 0

35.43 0

35.28 0

35.21 0

35.5 0

- 35.57 0
- 35.78 0
- 35.64 0
- 35.85 0
- 35.71 0
- 35.43 0
- 35.64 0
- 35.92 0
- 35.78 0
- 35.36 0
- 34.93 0
- 35.14 0
- 35 0
- 35.43 0
- 35.92 0
- 35.57 0
- 35.71 0
- 35.71 0
- 35.57 0
- 34.64 0
- 34.21 0
- 34.79 0
- 34.42 0
- 33.69 0
- 34.35 0
- 34.13 0
- 33.69 0
- 33.39 0
- 33.17 0
- 00.17 0
- 33.91 0
- 34.060
- 34.57 0

- 34.57 0
- 33.76 0
- 33.69 0
- 33.39 0
- 33.17 0
- 32.63 0
- 33.09 0
- 33.99 0
- 33.99 0
- 33.76 0
- 33.17 0
- 32.94 0
- 32.94 0
- 32.560
- 32.09 0
- 31.62 0
- 31.06 1
- 32.4 1
- 33.39 1
- 33.17 1
- 31.86 1
- 30.66 1
- 30.66 1
- 30 1
- 29.24 1
- 28.55 1
- 27.57 1
- 28.28 1
- 27.29 1
- 26.36 1
- 25.98 1
- 25.1 1

- 24.39 1
- 24.49 1
- 27.2 1
- 26.27 1
- 25.88 1
- 25.5 1
- 25.4 1
- 26.65 1
- 28.81 1
- 29.24 1
- 28.28 1
- 29.07 1
- 28.64 1
- 28.98 1
- 29.07 1
- 28.11 1
- 28.2 1
- 27.29 1
- 26.36 1
- 26.17 1
- 26.17 1
- 25.69 1
- 26.27 1
- 26.27 1
- 26.27 1
- 26.55 1
- 26.08 1
- 25.98 1
- 25.88 1
- 25.79 1
- 25.79 1
- 25 1

```
24.6 1
25 1
24.6 1
24.6 1
25 1
24.6 1
proc arima data=saham;
identify var=y(1) crosscorr=s(1);
estimate p=(2) input=(7$(5)/(1) s) noconstant method=cls;
run;
forecast lead=10 out=ramalan printall;
proc univariate data=ramalan normal;
var residual;
run;
proc print data=ramalan;
run;
```

4. SYNTAX INTERVENSI MIKA.JK

4. SIMIAXIME
data saham;
input y s;
datalines;
0.0262612865719445 0
0.0260820265478651 0
0.0262161252546538 0
0.0262161252546538 0
0.0261711961295107 0
0.0260377821961648 0
0.0262612865719445 0
0.0263523138347365 0
0.0264442942673973 0
0.0261711961295107 0
0.0257342506327489 0
0.025078493128776 0
0.0251976315339485 0
0.0260820265478651 0
0.0258198889747161 0
0.0259937622455018 0
0.0258630300055936 0
0.0259499648053841 0
0.0258198889747161 0
0.0258198889747161 0
0.0257769631113233 0
0.0258630300055936 0
0.0259937622455018 0
0.0259499648053841 0
0.0258198889747161 0
0.0260820265478651 0
0.0260820265478651 0
0.0260820265478651 0

- 0.0260820265478651 0
- 0.0258630300055936 0
- 0.0253184841770917 0
- 0.0251976315339485 0
- 0.0251976315339485 0
- 0.0251976315339485 0
- 0.025078493128776 0
- 0.024883630089672 0
- 0.025 0
- 0.0247688702309035 0
- 0.0245440346836908 0
- 0.024433888871261 0
- 0.02411214110852060
- 0.02411214110852060
- 0.0241825416703337 0
- 0.0245440346836908 0
- 0.0247688702309035 0
- 0.02515773027133140
- 0.0253591564670487 0
- 0.02515773027133140
- 0.0250784931287760
- 0.0250784931287760
- 0.0250391542918067 0
- 0.024883630089672 0
- 0.025078493128776 0
- 0.0256917497769354 0
- 0.0256917497769354 0
- 0.0257342506327489 0
- $0.0256073759865792\ 0$
- 0.0255654996282457 0
- 0.0255654996282457 0
- 0.0255654996282457 0

- 0.0256917497769354 0
- 0.0255238280445078 0
- 0.02357022603955160
- 0.0231869447880084 0
- 0.0235050247361134 0
- 0.0238704958013144 0
- 0.0238365647311398 0
- 0.023124864503144 0
- 0.0230632802007221 0
- 0.023124864503144 0
- 0.0229415733870562 0
- 0.02300218531141180
- 0.0229415733870562 0
- 0.0229114465541157 0
- 0.0229415733870562 0
- 0.022703830459325 0
- 0.0229114465541157 0
- 0.02273314464901580
- 0.0228814380978138 0
- 0.0229114465541157 0
- 0.0229114465541157 0
- 0.0229415733870562 0
- 0.0229114465541157 0
- 0.0228515472449515 0
- 0.02279211529192760
- 0.0227625726802993 0
- 0.0225876975726313 0
- 0.0225589417397471 0
- 0.0225876975726313 0
- 0.0226746293791259 0
- 0.0225589417397471 0
- 0.0225302954529666 0

- 0.0228814380978138 0
- 0.0226746293791259 0
- 0.02279211529192760
- 0.0227625726802993 0
- 0.0227625726802993 0
- 0.0225302954529666 0
- 0.0224733287487747 0
- 0.0224733287487747 0
- 0.02238868314198230
- 0.0225017580185205 0
- 0.0225017580185205 0
- 0.0225876975726313 0
- 0.0223886831419823 0
- 0.0221948380809238 0
- 0.0221403721385024 0
- 0.0223049868372735 0
- 0.0223606797749979 0
- 0.0223606797749979 0
- 0.0223886831419823 0
- 0.0223886831419823 0
- 0.0223606797749979 0
- 0.0223886831419823 0
- 0.0221948380809238 0
- 0.0223049868372735 0
- $0.0221948380809238\ 0$
- 0.0214176468439060
- 0.0215165741455968 0
- 0.0215165741455968 0
- 0.02156655464068770
- 0.0213686921585344 0
- 0.0215665546406877 0
- 0.0216168850583558 0

- 0.0218739319629904 0
- 0.0219264504826757 0
- 0.0218217890235992 0
- 0.02187393196299040
- 0.0219264504826757 0
- 0.0220863052149693 0
- 0.0218217890235992 0
- 0.0218739319629904 0
- 0.02219483808092380
- 0.0225017580185205 0
- 0.0223606797749979 0
- 0.0225876975726313 0
- 0.0228814380978138 0
- 0.0229415733870562 0
- 0.0232181730106286 0
- 0.0229718193769698 0
- 0.0229718193769698 0
- 0.0233126202060078 0
- 0.0233126202060078 0
- 0.0233126202060078 0 0.0233126202060078 0
- 0.0233126202060078 0
- 0.0233126202060078 0
- 0.0233126202060078 0
- $0.0226455406828919\ 0$
- 0.022616563651595 0
- 0.02267462937912590
- 0.0226455406828919 0
- 0.02285154724495150
- 0.0225589417397471 0
- 0.0225589417397471 0
- 0.0229415733870562 0

- 0.0229415733870562 0
- 0.023094010767585 0
- 0.02297181937696980
- 0.0229415733870562 0
- 0.02297181937696980
- 0.0229415733870562 0
- 0.0229415733870562 0
- 0.0226455406828919 0
- 0.02282177322938190
- 0.0226455406828919 0
- 0.0228814380978138 0
- 0.02282177322938190
- 0.022616563651595 0
- 0.0226455406828919 0
- 0.0227921152919276 0
- 0.022703830459325 0
- 0.0226746293791259 0
- 0.0228515472449515 0
- 0.0228217732293819 0
- 0.022703830459325 0
- 0.02264554068289190
- 0.022703830459325 0
- 0.0226455406828919 0
- 0.0220326324619616 0
- $0.0217700172092054\ 0$
- 0.02214037213850240
- 0.02214037213850240
- 0.0221948380809238 0
- 0.02197934911319290
- $0.0214669395370546\ 0$
- 0.0219264504826757 0
- 0.0220863052149693 0

- 0.0213686921585344 0
- 0.021320071635561 0
- 0.02127178149057590
- 0.021320071635561 0
- 0.021320071635561 0
- 0.021417646843906 0
- 0.0212717814905759 0
- 0.02117617749438130
- 0.0212238179989004 0
- 0.0205846742398155 0
- 0.0200804832225625 0
- 0.0204124145231932 0
- 0.0206724557648681 0
- 0.020541200750444 0
- 0.0201210909146383 0
- 0.0201210909146383 0
- 0.020
- 0.0198029508595335 0
- 0.0199204768222399 0
- 0.0202030508910442 0
- 0.02032789070454350
- 0.0204550737432307 0
- 0.0203278907045435 0
- 0.0202030508910442 0
- 0.0204980015422697 0
- 0.020541200750444 0
- 0.020541200750444 0
- 0.020806259464412 0
- 0.020541200750444 0
- 0.0204980015422697 0
- 0.0203278907045435 0
- 0.020

- 0.0202860206483395 0
- 0.0202030508910442 0
- 0.0202860206483395 0
- 0.01984189475331360
- 0.0194257172471453 0
- 0.0194624736040381 0
- 0.0192094687598825 0
- 0.01893206114156880
- 0.01893206114156880
- 0.0188310894288677 0
- 0.0184742233484292 0
- 0.01856953381770520
- 0.0188982236504614 0
- 0.018966081045272 0
- 0.0191389750587738 0
- 0.018966081045272 0
- 0.01917412472118430
- 0.0193528249929046 0
- 0.019389168358237 0
- 0.019389168358237 0
- 0.01873171623163390
- 0.01893206114156880
- 0.0191741247211843 0
- 0.0192807471819925 0
- 0.0192450089729875 0
- 0.0196874807739539 0
- 0.0193166852321564 0
- 0.0194624736040381 0
- $0.0194624736040381\ 0$
- 0.01961161351381840
- 0.0194257172471453 0
- 0.019389168358237 0

- 0.019389168358237 0
- 0.0192807471819925 0
- 0.019389168358237 0
- 0.0192094687598825 0
- 0.0194994393991758 0
- 0.0193528249929046 0
- 0.0193528249929046 0
- 0.019389168358237 0
- 0.019389168358237 0
- 0.0192807471819925 0
- 0.0191741247211843 0
- 0.018966081045272 0
- 0.0190692517849118 0
- 0.019389168358237 0
- 0.0194257172471453 0
- 0.0192094687598825 0
- 0.0194257172471453 0
- 0.0193528249929046 0
- 0.0193528249929046 0
- 0.0192807471819925 0
- 0.0196494372972965 0
- 0.020
- 0.0199204768222399 0
- 0.0197257460788118 0
- 0.0194624736040381 0
- 0.01935282499290460
- 0.0193528249929046 0
- 0.0193528249929046 0
- 0.01931668523215640
- $0.0193166852321564\ 0$
- 0.019389168358237 0
- 0.019389168358237 0

- 0.0193528249929046 0
- 0.0192807471819925 0
- 0.019389168358237 0
- 0.0194257172471453 0
- 0.019389168358237 0
- 0.0193528249929046 0
- 0.0191040179975218 0
- 0.0193528249929046 0
- 0.0192807471819925 0
- 0.0194994393991758 0
- 0.0198810693121886 0
- 0.0195740073171568 0
- $0.0194624736040381\ 0$
- 0.020
- 0.0202860206483395 0
- 0.0201619459636378 0
- 0.0201210909146383 0
- 0.02028602064833950
- 0.0203700210931678 0
- 0.020
- 0.0197642353760524 0
- 0.01988106931218860
- 0.0199204768222399 0
- 0.0200804832225625 0
- 0.01972574607881180
- 0.01957400731715680
- $0.0195740073171568\ 0$
- 0.01961161351381840
- 0.01980295085953350
- $0.0198029508595335\ 0$
- 0.0198029508595335 0
- 0.0195366166291141 0

- 0.0197257460788118 0
- 0.0196494372972965 0
- 0.0194257172471453 0
- 0.0196874807739539 0
- 0.0196494372972965 0
- 0.0196494372972965 0
- 0.01961161351381840
- 0.01961161351381840
- 0.0196494372972965 0
- 0.0196494372972965 0
- 0.0196874807739539 0
- 0.0199204768222399 0
- 0.01988106931218860
- 0.0202860206483395 0
- 0.020
- 0.0200804832225625 0
- 0.0206284249251759 1
- 0.0204124145231932 1
- 0.0202860206483395 1
- 0.0202860206483395 1
- 0.0203278907045435 1
- 0.0215165741455968 1
- 0.0215665546406877 1
- 0.0216168850583558 1
- 0.0227331446490158 1
- 0.0232181730106286 1
- 0.0240076836883672 1
- 0.0242535625036333 1
- 0.0235050247361134 1
- 0.0243612768567048 1
- 0.0223606797749979 1
- 0.0231869447880084 1

- 0.0240423518417172 1
- 0.0229718193769698 1
- 0.0233443596627835 1
- 0.0229718193769698 1
- 0.0215665546406877 1
- 0.0223606797749979 1
- 0.0223606797749979 1
- 0.0220326324619616 1
- 0.0218217890235992 1
- 0.022416791983111 1
- 0.0227625726802993 1
- 0.0228814380978138 1
- 0.0224733287487747 1
- 0.0226455406828919 1
- 0.0232495277487639 1
- 0.0230326719852439 1
- 0.0233762291106092 1
- 0.0232495277487639 1
- 0.023124864503144 1
- 0.0226455406828919 1
- 0.022703830459325 1
- 0.022703830459325 1
- 0.0228814380978138 1
- 0.022703830459325 1
- 0.0228515472449515 1
- 0.0226746293791259 1
- 0.0233762291106092 1
- 0.0228814380978138 1
- 0.0228217732293819 1
- 0.022416791983111 1
- 0.0221948380809238 1
- 0.021320071635561 1

```
0.021320071635561 1
0.0210818510677892 1
0.0204550737432307 1
0.0202030508910442\ 1
0.020761369963435 1
0.020761369963435 1
;
proc arima data=saham;
identify var=y(1) crosscorr=s(1);
estimate q=1 input=(5$(3)/(1) s) noconstant method=cls;
run;
forecast lead=10 out=ramalan printall;
proc univariate data=ramalan normal;
var residual;
run;
proc print data=ramalan;
run;
```

5. OUTPUT SAS(ARIMA PRE INTERVENSI, INTERVENSI BSDE.JK, INTERVENSI MIKA.JK)