Homework 4 - Quantum Mechanics I

NAME:	SCORE:	
-------	--------	--

Deadline: Friday 6 December 2024 by 5pm

Credits: 20 points Number of problems: 5

Type of evaluation: Formative Evaluation

- This homework includes problems on unit 4 of the QM course programme.
- This assignment should be submitted individually by the deadline.
- If you work with classmates, please state their names and write your own reports.
- Please submit a professional homework report and clearly highlight all answers.
- All calculation steps should be justified to get full credits.
- Any code used should be attached to get full credits.

1. (4 points) Spherical harmonics

- (a) A quantum system is known to be in the (unnormalised) state described by the wave function $\psi(\theta, \phi) = 4Y_3^2 + 5Y_4^1 + 2Y_4^1$, where the $Y_\ell^m(\theta, \phi)$ are the spherical harmonics. What is the probability of finding the system in a state with quantum number m = 1?
- (b) Analytically construct all the possible spherical harmonics, $Y_{\ell}^{m}(\theta, \phi)$, for $\ell = 2$.
- (c) Using your favourite programming language, make 3D plots of all of them.
- (d) Choose two of the spherical harmonics constructed in part (b), and prove that they are normalised and orthogonal.

2. (4 points) Hydrogen atom

- (a) Construct all the possible spatial wave functions, $\psi_{nlm}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi)$, of the hydrogen atom for $(n,\ell,m) = (4,1,m)$.
- (b) Using your favourite programming language, make density plots of all of these states.
- (c) Calculate the energy level of these states in units of eV.
- (d) In terms of the Bohr radius, find $\langle r \rangle$, $\langle x \rangle$, $\langle r^2 \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of hydrogen.

3. (4 points) Angular momentum and Spin

- (a) Let L_x , L_y , and L_z be the components of the orbital angular momentum operator \vec{L} . Calculate the value of the commutator: $[L_x L_y, L_z]$.
- (b) Suppose we have a spin- $\frac{1}{2}$ particle, whose quantum state can be represented by the eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$ of the S_z operator. Using the Pauli matrix σ_x , calculate a normalised eigenstate of the S_x operator with an eigenvalue $+\frac{\hbar}{2}$.

- (c) Consider an electron in the spin state: $\chi = C\begin{bmatrix} 1+i\\2-i \end{bmatrix}$. Normalise χ , and find the expectation values of S_x , S_y , and S_z .
- (d) Find the uncertainties σ_{S_x} , σ_{S_y} , and σ_{S_z} for χ in (c). Are the results consistent with all three uncertainty principles?

4. (4 points) Radial wave function of atoms

The wave function of an electron in a hydrogenic atom with an atomic number Z=70 and mass number A=173.05 is given by:

$$\psi(r) = Be^{-r/a}$$

where $a = \frac{a_0}{Z}$ and $a_0 = 0.53$ Å is the Bohr radius. This (Ytterbium, Yb) atom contains only one electron with charge e. The charge and radius of its nucleus are eZ and $R = 1.2(A^{1/3})$ fm, respectively.

- (a) Normalise the wave function.
- (b) Calculate the probability that the electron is found in the nucleus.
- (c) What is the probability that the electron is in the region y < 0?
- (d) Using your favourite programming language, make high-quality 3D and density plots of $\psi(r)$. Label the plots appropriately.

5. (4 points) Electron in a Magnetic Field

Consider an electron (at rest) embedded in an oscillating magnetic field:

$$\vec{B} = B_0 \cos(\omega t) \, \vec{k},$$

where B_0 and ω are constants.

- (a) Construct the Hamiltonian matrix for this system. Is this Hamiltonian time-dependent or time-independent?
- (b) The electron starts out (at t = 0) in the spin-up state with respect to the x axis (i.e., $\chi(0) = \chi_+^{(x)}$). Determine $\chi(t)$ at any subsequent time by solving the Schrödinger equation.
- (c) Find the probability of getting $-\frac{\hbar}{2}$, if you measure S_x .
- (d) What is the minimum field strength (B_0) required to force a complete flip in S_x ?