UDESC CCT – PPGEEL – Joinville – maio/2025 TECT - RAV: Realidade Aumentada e Virtual

# Video-Seethrough HMDs / Canetas

Breve análise

Luis Alfredo da Silva luisalfredodasilva@gmail.com

XR

Hoje analisaremos 2 categorias de produtos:

HMDs com video-see-through (VST);

"Canetas"

### HMD com video-see-through;

Dispositivo de *saída*\* para XR que **substitui** a visão de mundo do usuário, **contendo câmera**(s) que permitem **replicar** e **alterar** a visão do mundo real.

Não é translúcido.

\*Controles, etc. não serão analisados.

### Características analisadas – HMD

- Display
  - tecnologia/layout subpixel/PPD/Hz;
- Lentes:
  - FoV H/V; Ajuste de IPD;
- Câmera(s);
- Tipo (standalone / PC);
- Peso;
- Disponibilidade oficial no Brasil;

### História

- 1. Óculos VR qualquer com câmera *externa* acoplada;
- 2. HTC Vive (2016): passthrough preto-e-branco, 2D;
- 3. Lenovo Mirage SOLO (2018): custo reduzido;
- **4. Quest 3 (2023):** passthrough colorido, estéreo, 18 PPD;
- **5.** Varjo XR-4 Focal *(2024)*: 51 PPD, \$\$\$\$;

**34 PPD** 

**Pancake** 

"100~120°"?

58-75 mm

automático

2x 6.5MP RGB

Apple

visionOS

650g + bat.

Sim

R\$ 26000

**25 PPD** 

**Pancake** 

110° / 96°

58-71 mm

515g

Sim

R\$ 4999

2x 4MP RGB - 18 PPD

Meta Horizon

PC\*\*

\*\* com compressão *lossy* 

| Opçoes – HIVID Video-see-through |                                   |                                        |                                        |                                |                                |
|----------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|--------------------------------|--------------------------------|
|                                  | HTC<br><b>Vive</b>                | Lenovo<br><b>Mirage</b><br><b>Solo</b> | Apple<br><b>Vision Pro</b>             | Meta<br><b>Quest 3</b>         | Meta <b>Quest 3S</b>           |
| Lançamento                       | 2016                              | 2018                                   | 2023                                   | 2023                           | 2024                           |
| Display                          | 1080x1200<br>90Hz<br>PenTile OLED | 1280x1440<br>75Hz<br>RGB LCD           | <b>3660x3200</b><br>100Hz<br>RGB μOLED | <b>2064x2208 120Hz</b> RGB LCD | <b>1832x1920 120Hz</b> RGB LCD |

Fresnel

110° diag.

não

cinza

Google

Daydream

640g

\*

\* Obsoleto / descontinuado

Fresnel

108° / 97°

61-72 mm

1x cinza

PC /

SteamVR

567g

\*

Lentes

FoV H / V

ajuste IPD

Video

Passthrough:

Plataforma

Peso

Disponibilidade

no Brasil /

Preço mai/2025

**3S** XR-4 Focal

**20 PPD** 

Fresnel

97° / 93°

58-63-68 mm

514g

Sim

R\$ 2900

Varjo

2024

3840x3744 90Hz

**RGB** miniLED

**51** PPD

**Asférica** 

120° / 105°

56-72mm

automático

2x RGB - **51 PPD** 

**PC** / SteamVR

1,02kg

Sim?

"sob consulta"

US\$ 9990

Slide 6

### Canetas para XR

Classe de dispositivo de entrada que pode ser usada em XR.

Modelos podem operar **em 2D** ou **3D**.

### História:

- 1. Light Pen (1955): caneta ótica baseada em timings de CRT;
- 2. Touch resistivo (1974): pode ser operado por uma "caneta" passiva.
- **3. Wacom EMR (1987):** Sensível à *pressão* e *proximidade,* botões extras;
- **4. MiniScribe:** 3D, com *encoders*;
- 5. GeoMagic Phantom Omni (1994): 3D, com force feedback (háptico)

### Wacom EMR:





/revware.net/product/microscribe-i-plus-portable-cmm

Fonte: https:/

MicroScribe® Portable CMMs MicroScribe Accessories Software

Industries

Resources

Home / Portable CMMs / MicroScribe i+ Series Portable CMM



## MicroScribe i+ Series Portable CMM

\$11,995.00 - \$14,495.00 USD

Affordable. Portable. Precise. Revware's new MicroScribe *i+* Portable CMM is an elite desktop coordinate measurement machine that offers fast, flexible, and accurate 3D data collection solutions for a wide variety of applications and industries such as research, inspection, engineering, graphic arts, animation, healthcare, and many more.

Choose from two probe sets based on your data collection needs,  ${\bf Metrology}$  or  ${\bf Landmark}$ .

| Degrees of Freedom | 6 DoF              | ~ |
|--------------------|--------------------|---|
| Arm length         | 25-inch            | ~ |
| Probe set          | Landmark Probe Set | ~ |
|                    | Clear              |   |

The MicroScribe 6i+ desktop CMM has 6 degrees of freedom with a 25-inch reach and +/-0.0020" accuracy.

\$13,995.00 USD

In stock

\$13,995.00 USD

In stock



Fonte: <a href="https://www.youtube.com/watch?v=fd6gptOZMuQ">https://www.youtube.com/watch?v=fd6gptOZMuQ</a>

|                      | MicroScribe i+                          |                              |  |
|----------------------|-----------------------------------------|------------------------------|--|
| Model                | i+                                      | iL+                          |  |
| Reach                | 25 in (.63m)                            | 33 in (.84m)                 |  |
| Work Sphere Diameter | 50 in (1.27m)                           | 66 in (1.67m)                |  |
| Degrees of Freedom   | 5                                       | 5                            |  |
| Accuracy             | +/-0.0020 in<br>(0.0508 mm)             | +/-0.0025 in*<br>(0.0635 mm) |  |
| Weight               | 8.3 lb (3.8 kg)  Most lightweight model | 9.1 lb (4.1 kg)              |  |
|                      | VIEW BROCHURE →                         |                              |  |

Fonte: <a href="https://revware.net/product/microscribe-i-plus-portable-cmm/">https://revware.net/product/microscribe-i-plus-portable-cmm/</a>

### GeoMagic Phantom Omni (3DSystems Touch)



Fonte: <a href="https://www.3dsystems.com/haptics-devices/openhaptics">https://www.3dsystems.com/haptics-devices/openhaptics</a>

| GeoMagic Phantom Omni (3DSystems Touch) |                                 |                            |  |  |  |
|-----------------------------------------|---------------------------------|----------------------------|--|--|--|
|                                         | Touch                           | Touch X                    |  |  |  |
| Force Feedback Workspace                | > 431 W x 348 H x 165 D mm      | > 355 W x 228 H x 180 D mm |  |  |  |
| Footprint                               | ~ 168 W x 203 D mm              | ~ 168 W x 184 D mm         |  |  |  |
| Weight (device only)                    | ~1.42 kg                        | ~3.257 kg                  |  |  |  |
| Range of Motion                         | Hand movement pivoting at wrist |                            |  |  |  |

 $\sim 0.055 \, \text{mm}$ 

< 0.26 N

3.3 N

> .88 N

1.26 N/ mm, 2.31 N/mm, 1.02 N/mm

~ 45 g

Pitch, roll, yaw

(± 5% linearity potentiometers)

USB 2.0 / 3.0 port.

1 KHz refresh rate

Fonte: <a href="https://www.3dsystems.com/haptics-devices/touch-x">https://www.3dsystems.com/haptics-devices/touch-x</a>

Nominal Position Resolution

Maximum Exertable Force

Continuous Exertable Force

Stiffness (X / Y / Z, minimum)

Inertia (apparent mass at tip)

**Backdrive Friction** 

Force Feedback

**Position Sensing** 

Stylus gimbal

Interface

~0.023 mm

< 0.06 N

7.9 N

> 1.75 N

1.86 N/mm, 2.35 N/mm, 1.48 N/mm

~ 35 g

Pitch, roll, yaw

(Magnetic absolute position sensor, 14-bit)

USB 2.0 / 3.0 port.

Up to 4 KHz refresh rate

- Slide 15

X, Y, Z

X, Y, Z (digital encoders)

### Efficacy of AR Haptic Simulation for Nursing Student **Education**

**Publisher: IEEE** Cite This



Meldin Bektic; Adam Tischler; Nathaniel Fahey; Kwangtaek Kim; Lisa Onesko All Authors

2 Cites in

**Papers** 

235 Full

**Text Views** 











**Document** Sections

- I. Introduction
- II. Methods
- III. Experiment
- IV. Results
- V. Conclusion

**Abstract:** 

In this study we examine the effectiveness of using AR haptic simulation as a tool for nursing students to learn physical attributes related to diseases, as well as testing with the simulation rather than pen & paper. We utilize edema, a medical condition that causes swelling in the body's tissues, as an example the students can learn and be tested on. The simulation takes advantage of the Magic Leap and Geomagic Touch as the AR headset and haptic device of choice. Students use these technologies to see different examples of legs that have varying degrees of edema in a 3D space and use the Geomagic Touch to feel the virtual leg. When pressing upon the leg, the object has deformation capabilities which allow the user to see and feel the impressions made upon the skin. We tested this under four different conditions, a desktop 2D version

with haptics disabled and enabled, and an AR 3D version with haptics disabled

**Authors** 



### Referências

VR-Compare: <a href="https://vr-compare.com/">https://vr-compare.com/</a>

### MicroScribe:

- https://gomeasure3d.com/microscribe/
- https://revware.net/product/microscribe-i-plus-portable-cmm/

### Phantom Omni / 3DSystems Touch:

- https://www.3dsystems.com/haptics-devices/touch
- https://delfthapticslab.nl/device/phantom-omni/