Théorème de Thalès

$\hfill \square$ Calculer une longueur dans un triangle

Théorème 1.

On considère:

- un triangle ABC;
- un point *M* du segment [*AB*], distinct de *A*;
- un point N du segment [AC], distinct de A.

Si les droites (MN) et (BC) sont parallèles alors on a : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$.

Remarque

les dimensions du triangle AMN sont proportionnelles aux dimensions du triangle ABC. Le coefficient de proportionnalité est $\frac{AM}{AB}$ ou $\frac{AN}{AC}$ ou encore $\frac{MN}{BC}$.

- Exemple

Sur la figure ci-contre : (YT) est parallèle à (OJ); RT=3 cm; RO=5 cm; RY=4,5 cm. Calculons RJ. Je sais que :

$$--Y\in [RJ]\,;$$

$$- T \in [RO];$$

—
$$(YT)$$
 est parallèle à (OJ)

Donc, d'après le théorème de Thalès, je peux dire que : $\frac{RY}{RJ} = \frac{RT}{RO} = \frac{YT}{JO}$ (on écrit l'égalité des trois quotients).

Donc $\frac{4,5}{RJ} = \frac{3}{5} = \frac{YT}{JO}$ (on remplace les longueurs connues par leurs valeurs).

Comme $\frac{4,5}{RJ} = \frac{3}{5}$ (on ne conserve qu'une seule égalité), on déduit que $4,5 \times 5 = 3 \times RJ$ (on écrit l'égalité des « produits en croix ».

Finalement $RJ = \frac{4,5 \times 5}{3}$ (on « isole » la longueur cherchée) et donc RJ = 7,5 cm (on conclut).

Exercices sur le livre :

12 et 14 p 252 Représenter. Communiquer.

17 p 252 Calculer. Communiquer.

45 p 257 Représenter. Communiquer.

19 p 252 à la maison Représenter. Communiquer.

49 p 258 à la maison Calculer. Communiquer.

50 p 259 Calculer. Communiquer.

Agrandissement et Réduction

Définition 1.

Si deux figures ont la même forme et des longueurs proportionnelles, alors on dit que l'une est un agrandissement ou une réduction de l'autre.

Remarque

Le coefficient de proportionnalité est le rapport d'agrandissement ou de réduction.

- Exemple

DEF est un agrandissement de ABC de rapport 1,6. Calculons les longueurs de ses côtés.

$$DE = 1,6 \times AB = 1,6 \times 1,5 = 2,4 \text{ cm}$$

$$DF = 1,6 \times AC = 1,6 \times 2,5 = 4 \text{ cm}$$

$$EF = 1,6 \times BC = 1,6 \times 3,2 = 5,12 \text{ cm}$$

Remarque

- *ABC* est une réduction de *DEF* de rapport $\frac{1,5}{2,4} = \frac{2,5}{4} = \frac{3,2}{5,12} = 0,625$.
- Dans un agrandissement ou une réduction, les mesures des angles, la perpendicularité et le parallélisme sont conservés.