

Fundamental Data Science (30104001)

Lecture 10 — Random variables and probability distributions

Jorge N. Tendeiro Hiroshima University

Which lottery to pick?

Which lottery gives you the best chance of winning a prize?

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

Lottery 2

	Price A	Price B	Price C
Price (yen)	1000	500	0
Number of prizes	2	2	6

	Price A	Price B	Price C
Price (yen)	1000	400	100
Number of prizes	2	1	7

Today

- Random variables
- Probability distributions
- Expected value and variance of a random variable

Random variables and distributions

Trial, sample space (review)

Trial:

Any type of experiment involving uncertainty.

Example:

Tossing a die once.

Sample space (Ω):

Set of all possible outcomes of a trial.

Example:

The sample space of the trial consisting of tossing a die once is given by

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

or, using words,

$$\Omega = \{ \text{getting } 1, \text{getting } 2, \cdots, \text{getting } 6 \}$$

Event (review)

Event:

Any subset of the sample space Ω .

Example:

Consider again the trial of tossing a die once.

Here are various possible events:

- Getting 1: $A = \{1\}$ or $\{getting 1\}$
- Getting 1 or 4: $B=\{1,4\}$ or $\{ getting \ 1, \ getting \ 4 \}$
- Not getting 1 or 5: $C = \{2, 3, 4, 6\}$ or $\{\text{getting 2, getting 3, getting 4, getting 6}\}$

Random variables

It is easier to deal with sample spaces and events written numerically than in words.

A random variable is a function that allows converting any type of event into numbers.

Here are two simple examples.

Tossing a die:

$$X = \begin{cases} 1, & \text{if face 1 lands up} \\ 2, & \text{if face 2 lands up} \\ 3, & \text{if face 3 lands up} \\ 4, & \text{if face 4 lands up} \\ 5, & \text{if face 5 lands up} \\ 6, & \text{if face 6 lands up} \end{cases}$$

Winning/losing a game:

$$Y = \left\{ egin{array}{ll} 1, & ext{in case of winning} \ -1, & ext{in case of losing} \end{array}
ight.$$

Here, 1 and -1 serve to distinguish between the two possible outcomes (*winning* or *losing*).

Choosing the values of a random variable wisely

Typically, we choose the values of a random variable that better reflect our research question.

Example.

Consider the trial consisting of throwing two coins at the same time. In this case, the sample space is

$$\Omega = \{(\text{heads}, \text{heads}), (\text{heads}, \text{tails}), (\text{tails}, \text{heads}), (\text{tails}, \text{tails})\}.$$

From the following three random variables X, Y, and Z,

Random variable	(heads, heads)	(heads, tails)	(tails, heads)	(tails, tails)
\overline{X}	4	3	2	1
Y	1	0	0	-1
Z	2	1	1	0

which random variable is the *most appropriate* in case you want to study how many coins landed heads up?

Clearly, the best random variable in this case is \mathbb{Z} .

Random variables and probabilities

Given a random variable, we may define probabilities for each possible event.

Example.

Consider the trial consisting of throwing two coins at the same time. Here is random variable $Z=\mathit{the}\;\mathit{total}\;\mathit{number}\;\mathit{of}\;\mathit{heads}$:

Random variable	(heads, heads)	(heads, tails)	(tails, heads)	(tails, tails)
\overline{Z}	2	1	1	0

We can define the probability of Z being equal to 0, 1, or 2.

Random variables and probabilities

$$\Omega = \{(\text{heads}, \text{heads}), (\text{heads}, \text{tails}), (\text{tails}, \text{heads}), (\text{tails}, \text{tails})\}$$

For example, if both coins are fair then (notation: #(x) = number of elements in set x):

•
$$P(Z=0)=P(0 ext{ heads})=rac{\#(\{(ext{tails,tails})\})}{\#(\Omega)}=rac{1}{4}$$

•
$$P(Z=1)=P(1 ext{ heads})=rac{\#(\{(ext{heads,tails}),(ext{tails,heads})\})}{\#(\Omega)}=rac{2}{4}=rac{1}{2}$$

•
$$P(Z=2)=P(2 \text{ heads})=rac{\#(\{(\text{heads,heads})\})}{\#(\Omega)}=rac{1}{4}$$

Therefore, we have the so-called probability distribution associated to random variable Z:

Z	0	1	2	TOTAL
Probability	1/4	1/2	1/4	1

Probability distributions

The idea of associating probabilities to events of a random variable is quite common. In general, given a random variable X with possible values

$$x_1, x_2, \ldots, x_n,$$

we may define a probability distribution by choosing values

$$p_1, p_2, \ldots, p_n$$

such that

$$P(X = x_k) = p_k, \text{ for } k = 1, \dots, n.$$

X	x_1	x_2		x_n	TOTAL
$P(X=x_k)$	p_1	p_2	• • •	p_n	1

The values p_k are probabilities (i.e., non-negative real numbers that sum to 1).

The set of all probabilities of a random variable define the corresponding probability distribution. Conversely, a probability distribution determines the set of all probabilities of a random variable.

Probability distributions

X	x_1	x_2		x_n	TOTAL
$P(X=x_k)$	p_1	p_2	• • •	p_n	1

Probability distribution are **extremely important** to study uncertain phenomena! E.g.: Weather prediction, winner of an election, chance of malfunction, etc.

By knowing a probability distribution, we can understand how events occur, probabilistically.

Exercise (1)

Consider the following lottery:

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

This lottery includes 10 (=1+3+6) lots in total. Each lot offers either prize A, prize B, or prize C. Suppose you randomly pick one lot.

Denoting X = prize money in yen, what is the corresponding probability distribution? Fill in the table below.

X	1000	500	100	TOTAL
Probability				1

Exercise (1) — ANSWER

Consider the following lottery:

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

This lottery includes 10 (=1+3+6) lots in total. Each lot offers either prize A, prize B, or prize C. Suppose you randomly pick one lot.

Denoting X = prize money in yen, what is the corresponding probability distribution? Fill in the table below.

X	1000	500	100	TOTAL
Probability	1/10	3/10	6/10	1

Discrete versus continuous random variables

Classification of random variables

Random variables can be broadly classified as being either discrete or continuous.

Discrete random variables:

Random variables with values that are discrete.

This means that it is **not** always possible to conceive of an intermediate value between any two values.

Continuous random variables:

Random variables with values that are continuous. This means that it is always possible to conceive of an intermediate value between any two values.

Defining and computing probabilities works differently for discrete and continuous random variables.

Examples of discrete random variables

• W = result of tossing a die.

Then W = 1, 2, 3, 4, 5, 6.

W is a discrete random variable since its values are discrete (finite in this case). Also, we cannot conceive of an intermediate value between "1" and "2", for example.

• X=1 if winning a game, -1 if losing a game.

Then X=-1,1. Can you explain why X is a discrete random variable?

ullet Y= prize money from a lottery (1000 for Prize A, 500 for Prize B, 100 for Prize C).

Then Y=100,500,1000. Can you explain why Y is a discrete random variable?

ullet Z= number of traffic accidents in a year.

Then $Z=0,1,2,3,\ldots$ Can you explain why Z is a discrete random variable?

Discrete distributions

A discrete probability distribution, or simply a discrete distribution, is the probability distribution followed by a discrete random variable.

If random variable X can assume values x_1, x_2, \ldots , then a discrete distribution for X is given by a set of probabilities p_1, p_2, \ldots , such that

$$P(X = x_k) = p_k$$
, for $k = 1, 2, ...$

Note that $0 \leq p_k \leq 1$ for $k=1,2,\ldots$, and $\sum_k p_k = 1$.

X	x_1	x_2	• • •	TOTAL
$P(X=x_k)$	p_1	p_2	• • •	1

 $P(X=x_k)$ is called a probability mass function of X. It is often denoted as $f_X(x_k)$ or simply f_X .

$$f_X(x_k) = \left\{egin{array}{l} p_1, ext{ if } x = x_1 \ p_2, ext{ if } x = x_2 \ dots \end{array}
ight.$$

Probability mass function — Example

Probability mass function — Examples

W= result of tossing a fair die.

X=1 if winning a game, -1 if losing a game.

Assume that *winning* is as likely as *losing*.

 $Z={\it number}$ of traffic accidents in a year.

Examples of continuous random variables

 $\quad \boldsymbol{Z} = \text{amount of sugar contained in cola bought} \\ \text{at a vending machine}$

Note that $Z \geq 0$.

Note that $Y \geq 0$.

Note that $0 \le X \le 1$.

Q: What is the probability of a randomly generated number between 0 and 1 being equal to, say, 0.5?

A: Strangely enough, the probability is... 0!

The problem is that, between 0 and 1, there is an infinite, *uncountable*, amount of numbers. It is **impossible** that each such number has a non-zero probability and still expect that the sum of all probabilities is equal to 1.

Hence, for continuous random variables, any specific value has probability equal to 0:

$$P(X = x) = 0$$
, for any value x.

Instead of thinking about the probability at a value, we consider the probability of a range of values.

$$P(a \le X \le b) = rac{[a,b] ext{ interval width}}{[0,1] ext{ interval width}} \ = rac{b-a}{1-0} \ = b-a.$$

So, for example:

•
$$P(0.3 \le X \le 0.8) = 0.8 - 0.3 = 0.5$$

•
$$P(X \ge 0.4) = 1 - 0.4 = 0.6$$

In general, for any continuous random variable X,

$$P(a \leq X \leq b) = ext{area under function } f_X.$$

Function f_X is known as the probability density function of continuous random variable X.

Technically, the probability of a continuous random variable X between a and b is given by

$$P(a \leq X \leq b) = ext{area under function } f_X = \int_a^b f_X(x) \, dx,$$

where f_X is the probability density function of X and \int_a^b denotes the integral of f_X in the interval (a,b). (In simple terms: 'integral' = 'area'.)

The probabilities $P(a \le X \le b)$ determine the probability density function f_X . Conversely, a probability density function f_X determines the set of all probabilities $P(a \le X \le b)$.

Note that

$$P(X=a)=P(a\leq X\leq a)=\int_a^a f_X(x)\,dx=0,$$

since the area of a line is equal to 0.

Probability density function — Example

Consider the following probability density function:

$$f_X(x) = 2$$
, for $0 \le x \le 0.5$

The probability of X between a and b is

$$P(a \leq X \leq b) = \int_a^b f_X \, dx = 2(b-a).$$

Discrete and continuous random variables — Summary

- Probability mass function $f_X(x_k)$
- $\bullet \ P(X=x_k)=f_X(x_k)$

• Probability density function $f_X(x)$

•
$$P(a \leq X \leq b) = \int_a^b f_X(x) \, dx$$

Expected value and variance of a discrete random variable

Descriptive statistics: Mean (*location*), variance (*spread*)

Individual	1	2	3	4	5
Weight (kg)	60	52	44	74	60

Mean (AKA average, expected value):

$$\overline{x} = \frac{60 + 52 + 44 + 74 + 60}{5} = 58$$

The mean is the data's center of mass:

Variance:

$$s_x^2 = rac{(60-58)^2 + (52-58)^2 + \dots + (60-58)^2}{5} \ = rac{2^2 + 6^2 + \dots + 2^2}{5} = 99.2$$

The variance describes the spread of the data around the mean.

We can also define the mean (average, expected value) and the variance of random variables.

Discrete random variable — Expected value

Definition

The expected value of discrete random variable X with probability mass function $f_X(x_k)=p_k$ for $k=1,2,\ldots$ is given by

$$\mathbb{E}[X] = \sum_k x_k p_k = x_1 p_1 + x_2 p_2 + \cdots$$

X	$P(X=x_k)$	Product
x_1	p_1	x_1p_1
x_2	p_2	x_2p_2
:	:	:
		$Sum = \mathbb{E}[X]$

Consider the following lottery:

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

Suppose you could *repeatedly* and *randomly* pick a lot. What is the expected prize money?

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

Answer:

Denoting X = prize money in yen, we need to compute the expected value of X:

$$\mathbb{E}[X] = \sum_k x_k p_k = 1000 imes rac{1}{10} + 500 imes rac{3}{10} + 100 imes rac{6}{10} = 310.$$

X	1000	500	100	•
Probability	1/10	3/10	6/10	
Product	100	150	60	$\mathbb{E}[X] = 310$

Thus, in the long run, you expect to earn 310 yen per lot.

X	1000	500	100	TOTAL
Probability	1/10	3/10	6/10	1

The expected value of X, $\mathbb{E}[X]$, represents the center of gravity of the probability distribution.

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

Denoting X= prize money in yen, we learned that $\mathbb{E}[X]=310$ yen.

Suppose that the price of one lot is 400 yen. In the long run, is it profitable for me to buy one lot?

Answer:

Since

$$\mathbb{E}[X] = 310 < 400 = ext{price of one lot}$$

buying one lot does **not** seem to pay off. In the long run, we expect to **lose** 90 yen on average per lot.

Discrete random variable — Variance

Definition

The variance of discrete random variable X with probability mass function $f_X(x_k)=p_k$ for $k=1,2,\ldots$ is given by

$$egin{aligned} V[X] &= \mathbb{E}\left[(X - \mathbb{E}[X])^2
ight] \ &= \sum_k (x_k - \mathbb{E}[X])^2 p_k \ &= (x_1 - \mathbb{E}[X])^2 p_1 + (x_2 - \mathbb{E}[X])^2 p_2 + \cdots \end{aligned}$$

\overline{X}	$P(X = x_k)$		
x_1	p_1	x_1p_1	$(x_1 - \mathbb{E}[X])^2 p_1$
x_2	p_2	x_2p_2	$(x_2 - \mathbb{E}[X])^2 p_2$
:	:	•	:
		$\mathbb{E}[X]$	V[X]

Variance of discrete random variable — Example

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

Let X= prize money in yen. We learned before that $\mathbb{E}[X]=310$ yen.

The variance of X is then equal to

$$egin{align} V[X] &= \sum_k (x_k - \mathbb{E}[X])^2 p_k \ &= (1000 - 310)^2 imes rac{1}{10} + (500 - 310)^2 imes rac{3}{10} + (100 - 310)^2 imes rac{6}{10} \ &= 84900 \ \end{gathered}$$

The units of a variance are squared.

Thus, we can say that the variance of X is equal to 84900 squared yen.

Variance of discrete random variable — Example

The variance describes the scatter of the values of a random variable arounds its expected value:

- The smaller V[X], the closer the values of X are to $\mathbb{E}[X]$.
- The larger V[X], the further away the values of X are to $\mathbb{E}[X]$.

Sample mean and variance versus mean and variance of a random variable

Sample mean, sample variance:

$$\overline{x}=rac{x_1+\cdots+x_n}{n} \ s_x^2=rac{(x_1-\overline{x})^2+\cdots+(x_n-\overline{x})^2}{n}$$

The sample mean and sample variance...

- ... represent characteristics of a set of observed data (namely, its location and spread, respectively).
- ... do require observed data.

Mean and variance of random variable X:

$$egin{aligned} \mathbb{E}[X] &= \sum_k x_k p_k \ V[X] &= \sum_k (x_k - \mathbb{E}[X])^2 p_k \end{aligned}$$

The expected value and variance of a random variable...

- ... represent characteristics of the variable's probability distribution (namely, its location and spread, respectively).
- ... do not require observed data.
 But, a probability distribution is required.

Which lottery to pick?

Which lottery gives you the best chance of winning a prize?

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

Lottery 2

	Price A	Price B	Price C
Price (yen)	1000	500	0
Number of prizes	2	2	6

Lottery 3

	Price A	Price B	Price C
Price (yen)	1000	400	100
Number of prizes	2	1	7

Let's judge it by calculating the expected value and variance of the random variable 'prize money in yen' for the probability distribution corresponding to each lottery.

Which lottery to pick?

Lottery 1

	Price A	Price B	Price C
Price (yen)	1000	500	100
Number of prizes	1	3	6

Lottery 2

	Price A	Price B	Price C
Price (yen)	1000	500	0
Number of prizes	2	2	6

Lottery 3

	Price A	Price B	Price C
Price (yen)	1000	400	100
Number of prizes	2	1	7

Lottery 1

X	1000	500	100	TOTAL
Probability	1/10	3/10	6/10	1

$$\mathbb{E}[X] = 310, \quad V[X] = 84900$$

Lottery 2

Y	1000	500	0	TOTAL
Probability	2/10	2/10	6⁄10	1

$$\mathbb{E}[Y] = ??, \quad V[Y] = ??$$

Z	1000	400	100	TOTAL
Probability	2/10	1/10	7/10	1

$$\mathbb{E}[Z] = ??, \quad V[Z] = ??$$

Which lottery to pick? — Consider the expected values

$$\mathbb{E}[Y] = 1000 imes rac{2}{10} + 500 imes rac{2}{10} + 0 imes rac{6}{10} = 300$$

$$\mathbb{E}[Z] = 1000 imes rac{2}{10} + 400 imes rac{1}{10} + 100 imes rac{7}{10} = 310$$

Lottery 1

X	1000	500	100	TOTAL
Probability	1/10	3/10	6/10	1

$$\mathbb{E}[X] = \frac{310}{10}, \quad V[X] = 84900$$

Lottery 2

\overline{Y}	1000	500	0	TOTAL
Probability	2/10	2/10	6/10	1

$$\mathbb{E}[Y] = 300, \quad V[Y] = ??$$

\overline{Z}	1000	400	100	TOTAL
Probability	2/10	1/10	7/10	1

$$\mathbb{E}[Z] = 310, \quad V[Z] = ??$$

Which lottery to pick? — Consider the variances

$$V[Y] = (1000 - 300)^2 imes rac{2}{10} + \dots + (0 - 300)^2 imes rac{6}{10} = 106000$$

$$V[Z] = (1000 - 310)^2 imes rac{2}{10} + \dots + (100 - 310)^2 imes rac{7}{10} = 126900$$

Lottery 1

X	1000	500	100	TOTAL
Probability	1/10	3/10	6/10	1

$$\mathbb{E}[X] = 310, \quad V[X] = 84900$$

Lottery 2

\overline{Y}	1000	500	0	TOTAL
Probability	2/10	2/10	6/10	1

$$\mathbb{E}[Y] = 300, \quad V[Y] = 106000$$

Z	1000	400	100	TOTAL
Probability	2/10	1/10	7/10	1

$$\mathbb{E}[Z] = 310, \quad V[Z] = 126900$$

Which lottery to pick? — Conclusion

Lottery	$\mathbb{E}[X]$	V[X]
1	310	84900
2	300	106000
3	310	126900

- If you want to risk to win a large prize (largest V[X]):
 - Lottery 3
- If you want to play safe and aim for a more stable prize amount (smallest V[X]):
 - Lottery 1
- Between lotteries 1 and 3, lottery 3 is riskier.

Continuous random variable — Expected value, variance

Expected value:

The expected value (mean) of a continuous random variable X with probability density function $f_X(x)$ is

$$\mathbb{E}[X] = \int x f_X(x) \, dx.$$

Variance:

The variance of a continuous random variable X with probability density function $f_X(x)$ is

$$V[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2
ight] = \int (x - \mathbb{E}[X])^2 f_X(x) \, dx.$$

These formulas are the 'integral-analogues' of the formulas for discrete random variables. This is for your information only; we will not be using these formulas in this course. *But do keep in mind:* The computation of expected values and variances differs between discrete and continuous random variables.

Summary

- Random variable:
 - Function that allows converting any type of event into a number.
- Discrete versus continuous random variable:
 Determined by the type of values that the random variable can assume.
- Probability distribution:
 Correspondence between the values of a random variable and their probabilities.
 - A probability distribution is a tool to understand uncertain phenomena.
- Expected value and variance of a random variable:
 Quantities representing characteristics of the random variable's probability distribution.

 This is different from the sample mean and sample variance from observed data.