|      | SANA GARG                                       |     |
|------|-------------------------------------------------|-----|
|      | CST SPL-2                                       |     |
| (63) | Caati                                           | hi) |
| 1    | De -/_/_                                        |     |
|      | Assignment                                      |     |
|      | DAA alogo privalganol alogo                     |     |
|      | Tutoxial - 2                                    |     |
|      | 0+(x10) T6 = (0)T                               |     |
| 1.   | What is the time complexity of below code and h | 009 |
|      | BUPCK BOXE                                      | H   |
|      | Void fon (Pntn)                                 | 170 |
|      | 76 21 55 81 29 7 363                            |     |
|      | int j= 1, i = 0; 8 8                            |     |
|      | where lickn Down                                |     |
|      | vasiable ist for                                |     |
|      | l' = l'tj's                                     |     |
|      | j++; (Jouig and Ci) A) exagnos                  |     |
|      | 3 Clouis => Cida) ai                            |     |
|      | 3                                               |     |
|      | i=0 j= (++)                                     |     |
|      | (CO) A 6001 [1] 1000 A [6]                      |     |
|      | 2 HOWING [1+3] AD 90002                         |     |
|      |                                                 |     |
|      | Compose A Col and 36 P 3                        |     |
|      | 10 5(38 = 5 3 7 3) 41                           |     |
|      | No. 00 10- 1 00 00 00                           |     |
|      | No of times doop is sunning be k.               |     |
|      | SK = 1+3+6+10++00-10TKA 300000                  |     |
|      | SK-1 = 1+3+6+. (2.8. > + TK-19)                 |     |
|      | Subtracting both 0=3                            |     |
|      | SK - SK9 = 1+2+3+4+2-2. (K-1)                   |     |
|      | TK = (K-1)K JA 9x0gmo)                          |     |
|      | 2                                               |     |
|      | Given that kth term is n.                       |     |
|      |                                                 |     |
|      | Page N                                          | lo  |
|      |                                                 |     |



Date \_\_\_\_ / \_\_\_\_ TK = 0  $K(K-1) = K^2 - K = 0$ 2 =)  $k^2 = 0$ =) K = 0Tins= O(Tn) d. Those Th write recovance relation for the recursive function that prints fibonacii Series. Solve the recorence relation to get time complexity of the program what will be the space complexity of this program and why. T(n) = T(n-1) + T(n-2) + O(1)for recevisive fibonacci Solution, Recursion Tree : n-1 n-2 N-2 n-3 n-3 n-4 n-3 n-4 n-4 n-5 n-6 n-5 n-6  $\wedge$   $\wedge$   $\wedge$   $\wedge$   $\wedge$   $\wedge$ 

\_\_\_\_\_ (Saathí)

No of times function is kunning will be sum OF the Series: S=1+2+4+ .... + 21 Time complexity T(n) = (0(2)) After removing constant 03) write programs which have (omplexity - nldogn), n^3, O(n dogn)-# include (iostxeam) int partition lint arr [] int Start, intend) int pivot = ar [start]; int wont = 0; Fox lint l= Start; ex=end ; i++) if lax[i] <= pivot) int pivot-int - Start + count;

Swap (asx [pivot\_ind], ax (stax t);

Page No.

înt l= Start, j= end; while Lex proteind & & j> pivot ind) while lass [i] <= pivot) while lass[j] > pivot) if (i< pivot\_ind && i> pivot\_ind) Swap [axx [i+t], axx [j--]); return pivot\_ind . void quick (intax[], int Start, intend) if (Staxt > = end) return; Int P= Pastition (ax saxt, end ); quick sox + (as, start, p-1); quick sort (ax, p+1, end );



ate \_\_\_\_ / \_\_\_\_ / \_\_\_\_\_

int main() 9nt axx[] = 26,8,5,2,13 int n = 5; quick 80x K (ax, 0, n=1); setorn D; O(H3)-Cii int main () 9nt A=10; for lint i=0; ikn; itt) Fox (int j=0; jen; j++) for (int k=0; K<n; K+) Points ( + \* 1). return O; Oldog ldogn)-(ii)int count Poimes linta) if luc 2) return 0; boolegn non prime - new boolean [n];

Page No.



| Date / /                                            | (Saathi)        |
|-----------------------------------------------------|-----------------|
|                                                     |                 |
| non prime [] = true;                                | ar ey e e e e e |
| înt num Mon prime =1:                               | :               |
| Fox lint i=2; ikn; i++)                             |                 |
| if (non Prime [i])                                  |                 |
| continue;                                           |                 |
| int j= (* 2;<br>while (j <n)< td=""><td></td></n)<> |                 |
| E (Jan)                                             |                 |
| if Unonprême [i])                                   |                 |
| non pogme [j] = toue                                | <i>e</i> .      |
| num Non prime ++;                                   | -               |
| j += i;                                             |                 |
| 3                                                   |                 |
| setusn (n-1) - num Mon Prim 1 3                     |                 |
| 3                                                   |                 |
|                                                     |                 |
|                                                     |                 |
| ;                                                   |                 |
|                                                     |                 |
|                                                     |                 |
|                                                     |                 |
|                                                     |                 |

Page No. [



Out Solve the following secusiance relation

T(n) = T(n14) + T(n12) + Cn

using Maxers theorem

Date \_\_\_ / \_\_\_ / \_\_\_\_

the can assume T(n12) >= T(n14)

Equation can be rewritten as

 $T(n) < = a T(n | 2) + n^2$ 

 $T(n) < 2 O(n^2)$   $T(n) = O(n^2)$ 

I(n) = O(n-)

Also  $T(n) > = n^2$  $T(n) > = O(n^2)$ 

T(n) = -2 (n2)

 $T(n) = O(n^2)$  and  $T(n) = \Omega(n^2)$ 

Project contraction of the second

T(n) = 0 (n2)





what should be the time complexity of 06-) for (int i= a; i <n; i=powli,k) 11 Some O(1) expression or Statements where k is a constant. Por lint l= 2; (<=n; Pow (i, K) A863 11 with iterations take values Fox 18t iteration -> 2 FOR 3rd (texation -) &K

FOR 3rd (texation -) (2K)K for n îlieration -> 2 k dogk (dog (n)) .: dast term must be dess than on equal to n. 2k dog (log(n)) = 2 dogn = n Pach iteration takes constant time · · · Total iteration = dog (dog (n)) Time complexity = O (dog (abg (n)) As.



|     | Date / /                                           |  |  |  |  |
|-----|----------------------------------------------------|--|--|--|--|
|     |                                                    |  |  |  |  |
| 07) | wifte a seccurance relation when quick Sort        |  |  |  |  |
|     | repeatedly devides the array in to two parts       |  |  |  |  |
|     | of 199010 and 1010. Desive the time comple         |  |  |  |  |
|     | xity in this case. Show the secussion tree while   |  |  |  |  |
|     | dealing time complexity and find the dif           |  |  |  |  |
|     | in heights of both the extreme parts.              |  |  |  |  |
| 1 2 | what is you understand by this analysis.           |  |  |  |  |
|     |                                                    |  |  |  |  |
|     |                                                    |  |  |  |  |
|     | Los esta comparis of the second contraction of the |  |  |  |  |
|     |                                                    |  |  |  |  |
| ,   | 1/10 n 9/10 n -> n                                 |  |  |  |  |
|     |                                                    |  |  |  |  |
|     | 100 9/100n 9/100n 81 n >n                          |  |  |  |  |
|     | , 100                                              |  |  |  |  |
| •   | · · · · · · · · · · · · · · · · · · ·              |  |  |  |  |
|     | 14 14 14 14 14 14 14 14 14 14 14 14 14 1           |  |  |  |  |
|     | 1000                                               |  |  |  |  |
|     |                                                    |  |  |  |  |
|     | It we split in this manner                         |  |  |  |  |
|     |                                                    |  |  |  |  |
|     | Recoverage Relation - T(n) = T(91/10) +T(1/10) +   |  |  |  |  |
|     | 0 (n)                                              |  |  |  |  |
|     |                                                    |  |  |  |  |
|     |                                                    |  |  |  |  |
|     |                                                    |  |  |  |  |
|     |                                                    |  |  |  |  |
|     |                                                    |  |  |  |  |



|     | Date / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 083 | Assange the following in incresing Oxdex of rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | OF growth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a)  | n, n, dogn, dogdogn, root (n), dog (n), ndogn, dog d d (n), 2^n n), 4^n, n^2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (9) | 100 < dog (dogn) < dogn < (dogn)2 < In /n < n (dogn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 100 < dog (dogn) < dogn < (dogn)2 < In / n < n (dogn) < dogn < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n < 2 n |
| (d  | 2(2 <sup>n</sup> ), 4n, 2n, 1 dog (n), 20g (dog(n)), Tdog (n), 20g 2n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2(2 <sup>1</sup> n), 4n, 2n, 1, dog (n), dog (n), dog (n), dog (n), dog (n), dog (n), n2, ndog (n).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 1 < 200 (200 n) < ) 200 (200 < 200 < 200 c 2(200 n) < 2 n < 400 (200 c 2(200 n) ) < 2 n < 400 (200 n) < 200 (200 n |
|     | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $\langle n_1 \rangle \langle n_2 \rangle \langle n_3 \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (۲  | $9^{n}(2n)$ dog (D) $n dege(n)$ $n deg z(n)$ , $deg (n)$ $n deg z(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 8 <sup>n</sup> (2n), dog 2 (n), ndage(n), n dog 2 (n), dog (n:), ni, doge(n), en 96, 8n <sup>2</sup> , 7n 3, 8n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 96 < dog n < dog 2n < 5n < n (dog n) < n ( |
|     | 2 dog (n1) 2 8 n2 (2 7 n 3 < n1 < 0 8 m2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page No.