

UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE FÍSICA GRADUÇÃO EM ENGENHARIA ELETRÔNICA E DE TELECOMUNICAÇÕES

LUIS MIGUEL ALVES BORGES (42011ETE011)
MATEUS BARROS LORÊDO (42011ETE022)
MATHEUS FELIPE LIMA (41921ETE006)
VINICIUS SANTOS RAMOS (41521ETE002)

RELATÓRIO TÉCNICO DE PRÁTICA LABORATORIAL 5: DETERMINAÇÃO DO CALOR ESPECÍFICO DA ÁGUA

LUIS MIGUEL ALVES BORGES (42011ETE011)
MATEUS BARROS LORÊDO (42011ETE022)
MATHEUS FELIPE LIMA (41921ETE006)
VINICIUS SANTOS RAMOS (41521ETE002)

RELATÓRIO TÉCNICO DE PRÁTICA LABORATORIAL 5: DETERMINAÇÃO DO CALOR ESPECÍFICO DA ÁGUA

O experimento prático se propõe a obter o calor específico da água dada certas circunstâncias.

Prof. Dr. Ricardo Ribeiro de Avila.

Patos de Minas - MG 16/02/2022

Sumário

	Pági	nas
1	Objetivo	4
2	Introdução	4
3	Metodologia	4
	3.1 Materiais Utilizados	4
	3.2 Procedimentos	4
4	Resultados e Discussões	5
5	Conclusão	7

1 Objetivo

■ Obter o calor específico da água.

2 Introdução

Calor específico é uma grandeza física intensiva que define a variação térmica de determinada substância ao receber determinada quantidade de calor. Também é chamado de capacidade térmica mássica. A unidade no SI é J/(kg.K) (joule por quilograma e por kelvin). Uma unidade usual bastante utilizada para calores específicos é cal/(g °C) (caloria por grama e por grau Celsius). (WIKIPéDIA, 2021)

3 Metodologia

3.1 Materiais Utilizados

- Calorímetro elétrico (com o resistor)
- **■** Fonte
- Cronômetro
- Termômetro

3.2 Procedimentos

Em um ambiente isolado foi colocado um recipiente com água onde inseriu-se um calorímetro elétrico conectado a um amperímetro juntamente com um agitador e um termômetro afim de medir a variação de temperatura com o tempo, como mostra a Figura 1.

Figura 1. Calorímetro elétrico

Sabendo que a corrente que passa por esse calorímetro é de 0.99 ± 0.01 A, a tensão de 3.0 ± 0.1 V e a massa da água de 136 ± 2 g, deseja-se calcular o calor específico da água.

4 Resultados e Discussões

A partir do vídeo disponibilizado pelo professor, chegamos nas medidas conforme a Tabela 1.

$\Delta T[\pm 0, 1^{\circ}C]$	$\Delta t[\pm 0, 5s]$
27	0
27,1	121
27,2	138
27,3	151
27,5	202
27,6	230
27,8	269
27,9	303
28	334
28,1	356
28,2	376
28,3	415
28,5	442
28,6	479
28,8	502
28,9	539
29	563
29,1	601
29,2	629
29,3	664
29,5	684
29,6	701
29,8	753
29,9	783
30	811
30,1	834
30,2	874
30,3	896
30,5	938
30,6	965
30,8	991
30,9	1024
31	1040
31,1	1059
-	1

Tabela 1. Dados retirados do vídeo

Foi feito um gráfico de ΔT vs Δt para estudarmos o comportamento do problema con-

forme a Figura 2.

Figura 2. $Gráfico \Delta T vs \Delta t$

Considerando a equação linear

$$T = T_0 + \frac{Vi}{mc} \Delta t$$
 (1)

podemos calcular o calor específico pela regressão linear obtida. Considerando todas as propagações de erros, tem-se o calor específico da água de $5353 \pm 78,97 \frac{J}{kg}$.

$$\boxed{\frac{Vi}{mc} = A \Leftrightarrow c = \frac{Vi}{mA}} \tag{2}$$

Percebe-se uma boa precisão para B, mas o valor obtido para A, usado para chegar no valor do calor específico da água, difere muito do real (4186 $\frac{J}{kg}$). Necessita-se então incluir um fator desprezado na Equação 1: a capacidade térmica do material do calorímetro.

Para essa análise, consideraremos a Equação 3, que inclui o fator mencionado e substituiremos o calor específico da água pelo valor correto.

$$T = T_0 + \frac{Vi}{mc + C_{calormetro}} \Delta t$$
(3)

Onde determinaremos a capacidade térmica material do calorífico através da mesma regressão linear.

$$\frac{Vi}{mc + C_{calormetro}} = A \Leftrightarrow C_{calormetro} = \frac{Vi}{A} - mc$$
 (4)

Por meio dos cálculos, considerando os erros sistemáticos, foi obtido um valor de $158,65\pm13,07\frac{J}{C^\circ}$ para $C_{calormetro}$.

5 Conclusão

A análise foi realizada de forma a considerar fatores externos que estariam influenciando a discordância do valor obtido para o calor específico da água com o real. Concluímos que o fator mais considerável que estaria afetando esse resultado seria a capacidade térmica do material do próprio calorímetro, o qual fizemos sua medição e constatamos um melhor resultado. A dissipação de energia não interferiu significativamente os resultados, considerando que o parâmetro B da Figura 2 bate com a temperatura inicial observada.

Referências

WIKIPÉDIA. **Calor específico — Wikipédia, a enciclopédia livre**. 2021. [Online; accessed 15-julho-2021]. Disponível em: https://pt.wikipedia.org/w/index.php?title=Calor_espec%C3%ADfico&oldid=61619901.