XC6206 Series

ETR0305_002

Low ESR Cap. Compatible Positive Voltage Regulators

GENERAL DESCRIPTION

The XC6206 series are highly precise, low power consumption, high voltage, positive voltage regulators manufactured using CMOS and laser trimming technologies. The series provides large currents with a significantly small dropout voltage.

The XC6206 consists of a current limiter circuit, a driver transistor, a precision reference voltage and an error correction circuit. The series is compatible with low ESR ceramic capacitors. The currrent limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

Output voltage can be set internally by laser trimming technologies. It is selectable in 0.1V increments within a range of 1.2V to 5.0V.

SOT-23, SOT-89, TO-92 and USP-6B packages are available.

APPLICATIONS

Battery powered equipment

Reference voltage sources

Cameras, video cameras

Portable AV systems

Mobile phones

Portable games

Cordless phones,

wireless communication equipment

FEATURES

CMOS

Maximum Output Current : 250mA (5.0V type)

Dropout Voltage : 250mV @ 100mA (3.0V type)

Maximum Operating Voltage : 6.0V

Output Voltage Range : $1.2V \sim 5.0V$ (0.1V increments) Highly Accurate : Fixed voltage accuracy $\pm 2\%$

> $(\pm 30 \text{mV} @ \text{Vout} < 1.5 \text{V})$ $(\pm 1\% @ \text{Vout} \ge 2.0 \text{V})$

Low Power Consumption: 1.0μA (TYP.)Operating Temperature Range: -40°C ~ 85°C

Low ESR Capacitor : -40°C ~ 85°C : Ceramic capacitor compatible

Current Limit Circuit Built-in

Ultra Small Package

: SOT-23 (250mW)

SOT-89 (500mW) TO-92 (300mW) USP-6B (100mW)

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

XC6206P302

PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the pin number 4 (V_{IN}).

PIN ASSIGNMENT

	PIN NUM	BER	PIN NAME	FUNCTIONS	
SOT-23	SOT-89/TO-92 (T)	USP-6B	TO-92 (L)	PIN NAIVIE	FUNCTIONS
1	1	2	2	Vss	Ground
3	2	4	1	VIN	Power Input
2	3	6	3	Vout	Output
-	-	1, 3, 5	-	NC	No Connection

PRODUCT CLASSIFICATION

Ordering Information

XC6206P

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
	Output Voltage	12~50	: e.g. Vouт: 3.0V =3, =0
	Accuracy	2	: Within ± 2% (within ±30mV when VouT<1.5V)
	Accuracy	1 *	: Within <u>+</u> 1%
		M	: SOT-23
	Packages	Р	: SOT-89
		D	: USP-6B
		Т	: TO-92 (T type)
		L	: TO-92 (L type) (Discontinued Product)
		R	: Embossed tape, standard feed
	Device Orientation	L	: Embossed tape, reverse feed
	Device Offeritation	Н	: Page type (TO-92)
		В	: Bag (TO-92)

^{*} $\pm 1\%$ accuracy can be set at Vout(T) ≥ 2.0 V.

BLOCK DIAGRAM

^{*}Diodes inside the circuit are an ESD protection diode and a parasitic diode.

ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETE	PARAMETER		RATINGS	UNITS
Input Voltag	е	Vin	7.0	V
Output Curre	ent	lout	500 *	mA
Output Voltag	ge	Vout	Vss - 0.3 ~ ViN + 0.3	V
	SOT-23		250	
Power Dissipation	SOT-89	Pd	500	mW
Power Dissipation	USP-6B		100	IIIVV
	TO-92		300	
Operating Temperature Range		Topr	- 40 ~ + 85	°C
Storage Temperatur	e Range	Tstg	- 55 ~ + 125	°C

^{*} IOUT=Pd / (VIN-VOUT)

ELECTRICAL CHARACTERISTICS

XC6206P series Ta=25 °C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*7)	VOUT(E) (*2)	IOUT=30mA	x 0.98	Vout(t) E-1	x 1.02	V	
Maximum Output Current	IOUTMAX	-	E-2	-	-	mA	
Load Regulation	Vоит	Vout(t)>1.8V: 1mA lout 100mA Vout(t)≤1.8V: 1mA lout 50mA	-	-	E-3	mV	
	Vdif1	Iout=30mA	-	E-	-4	mV	
Dropout Voltage	Vdif2	Vout(t)>1.8V: Iout=100mA Vout(t)≤1.8V: Iout=60mA	-	E-	·5	mV	
Supply Current	IDD	VCE=VIN	-	1.0	3.0	μΑ	
Line Regulation	Vout Vin• Vout	Vout(t)<4.5V:Vout(t)+1.0V Vin 6.0V Vout(t)≥4.5V:5.5V Vin 6.0V Iout=30mA	-	0.05	0.25	%/V	
Input Voltage	Vin	-	1.8	-	6.0	V	-
Output Voltage Temperature Characteristics	Vout Topr• Vout	IOUT=30mA -40 °C Topr 85 °C	-	<u>+</u> 100	-	ppm/ °C	
Short Circuit Current	Ishort	VIN=Vout+1.5V, Vout=Vss	-	E-6	-	mA	

NOTE:

- * 1 : Vout(T) = Specified output voltage
- * 2 : Vout(E) = Effective output voltage (le. The output voltage when "Vout(T)+1.0V" is provided at the VIN pin while maintaining a certain lout value.)
- * 3 : $Vdif = \{Vin 1^{(*5)} Vout 1^{(*4)}\}$
- *4: VOUT1 = A voltage equal to 98% of the output voltage whenever an amply stabilized IOUT (VOUT(T) + 1.0V) is input.
- * 5 : VIN1 = The input voltage when Vout1 appears as input voltage is gradually decreased.
- * 6 : Unless otherwise stated, VIN = VOUT(T) + 1.0V
- * 7 : When $Vout(T) \ge 1.5V$, accuracy is $\pm 2\%$.

When Vout(T)<1.5V, accuracy is MIN.:Vout(T) -30mV / MAX.:Vout(T) +30mV \pm 1% accuracy (MIN.: Vout(T) x 0.99 / MAX.:Vout(T) x 1.01) is set at Vout(T) \ge 2.0V

ELECTRICAL CHARACTERISTICS (Continued)

Electrical Characteristics Chart

	E-1		E-2	E-3	Е	-4	Е	- 5	E-6		
PARAMETER SETTING VOLTAGE	2° ACCU		1	E % RACY	MAX. OUTPUT CURRENT	LOAD REGULATION		POUT AGE 1		POUT AGE 2	SHORT CURRENT
	ACCU	RACY	ACCU	RACY	IOUTMAX	△Vout	Vc	dif1	Vc	lif2	Ishort
Vout(t)	Vout(E) (V)	Vout	(E) (V)	(mA)	(mV)		1V)		iV)	(mA)
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.
1.2	1.170	1.230					460	760	700	000	
1.3	1.270	1.330			60	40	400	650	700	960	180
1.4	1.370	1.430			60		350	590	580	860	
1.5	1.470	1.530	Not Av	ailable			300	510	300	000	
1.6	1.568	1.632	1400710	anabio			250	450	450	810	155
1.7	1.666	1.734			80	45	200	410	100	0.0	
1.8	1.764	1.836					150	390			
1.9	1.862	1.938	4 000							780	400
2.0	1.960	2.040	1.980	2.020							130
2.1	2.058	2.042 2.244	2.079	2.121	120	50					
2.2	2.156 2.254	2.244	2.178	2.323	120	50					
2.4	2.352	2.448	2.376	2.424			100	370	350		
2.5	2.450	2.550	2.475	2.525			100	010		710	
2.6	2.548	2.652	2.574	2.626							
2.7	2.646	2.754	2.673	2.727	150	55					
2.8	2.744	2.856	2.772	2.828							
2.9	2.842	2.958	2.871	2.929							
3.0	2.940	3.060	2.970	3.030							
3.1	3.038	3.162	3.069	3.131							
3.2	3.136	3.264	3.168	3.232		60					
3.3	3.234	3.366	3.267	3.333							
3.4	3.332	3.468	3.366	3.434	200		75	350	250	680	
3.5	3.430	3.570	3.465	3.535							
3.6	3.528	3.672	3.564	3.636		0.5					100
3.7	3.626	3.774	3.663	3.737		65					
3.8	3.724	3.876	3.762	3.838							
3.9 4.0	3.822 3.920	3.978 4.080	3.861 3.960	3.939 4.040							
4.1	4.018	4.182	4.059	4.141							
4.2	4.116	4.284	4.158	4.242		70					
4.3	4.214	4.386	4.257	4.343							
4.4	4.312	4.488	4.356	4.444				0.55	0.55	0.55	
4.5	4.410	4.590	4.455	4.545	250		60	320	200	630	
4.6	4.508	4.692	4.554	4.646							
4.7	4.606	4.794	4.653	4.747		75					
4.8	4.704	4.896	4.752	4.848							
4.9	4.802	4.998	4.851	4.949							
5.0	4.900	5.100	4.950	5.050		80	50	290	175	600	

TEST CIRCUITS

Circuit

Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(2) Current Limit

(3) Output Voltage vs. Input Voltage

(4) Dropout Voltage vs. Output Current

(5) Supply Current vs. Input Voltage

(6) Output Voltage vs. Ambient Temperature

(7) Output Voltage vs. Ambient Temperature

(8) Input Transient Response 1

(9) Input Transient Response 2

(10) Load Transient Response

(11) Ripple Rejection Rate

PACKAGING INFORMATION

SOT-23 SOT-89

USP-6B TO-92

PACKAGING INFORMATION (Continued)

USP-6B Reference Pattern Layout

USP-6B Reference Metal Mask Design

MARKING RULE

SOT-23, SOT-89

SOT-89 (TOP VIEW)

Represents product number

MARK	PRODUCT SERIES
6	XC6206P****

Represents 3 pins regulator

MA	PRODUCT SERIES		
VOLTAGE = 0.1 ~ 3.0V	VOLTAGE = 3.1 ~ 6.0V	PRODUCT SERIES	
5	6	XC6206P****	

Represents output voltage

MARK	VOLTAGE (V)			MARK	OUTPL	JT VOLTA	GE (V)
0	-	3.1	-	F	1.6	4.6	-
1	-	3.2	-	Н	1.7	4.7	-
2	-	3.3	-	K	1.8	4.8	-
3	-	3.4	-	L	1.9	4.9	-
4	-	3.5	-	M	2.0	5.0	1
5	-	3.6	-	N	2.1	-	1
6	-	3.7	-	Р	2.2	-	1
7	-	3.8	-	R	2.3	-	-
8	-	3.9	-	S	2.4	-	-
9	-	4.0	-	Т	2.5	-	1
Α		4.1	-	U	2.6	-	1
В	1.2	4.2	-	V	2.7	-	1
С	1.3	4.3	-	X	2.8	-	-
D	1.4	4.4	-	Υ	2.9	-	-
E	1.5	4.5	-	Z	3.0	-	-

Represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted)

*No character inversion used.

MARKING RULE (Continued)

USP-6B

Represents product number

	MA	PRODUCT SERIES		
			PRODUCT SERIES	
Ī	0	6	XC6206P***D*	

Represents 3 pins regulator

MARK	PRODUCT SERIES
Р	XC6206P***D*

Represents output voltage

MAI	RK	OUTPUT VOLTAGE(V)	PRODUCT SERIES
		OUTPUT VOLIAGE(V)	PRODUCT SERIES
3	3	3.3	XC6206P33*D*
5	0	5.0	XC6206P50*D*

Represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted)

*No character inversion used.

TO-92

Represents type of regulator

MARK	PRODUCT SERIES
Р	XC6206P****

Represents output voltage

MARK		VOLTAGE (V)	PRODUCT SERIES
		VOLIAGE (V)	I NODOGI SENIES
3	3	3.3	XC6206P33***
5	0	5	XC6206P50***

Represents detect voltage accuracy

MARK	DETECT VOLTAGE ACCURACY	PRODUCT SERIES
1	Within ± 1%	XC6206P**1**
2	Within ± 2%	XC6206P**2**

Represents least significant digit of the production year

MARK	PRODUCTION YEAR
3	2003
4	2004

Represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted)

*No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.