

- Doğrusal Yineleme (Rekürans) Bağıntısı
- O Bir yinelemeli bağıntıda t_n , <u>dizinin önceki terimlerinin katlarının</u> toplamına eşitse doğrusal (lineer) dır. $(t_n \rightarrow T(n))$
 - $t_n = t_{n-1} + t_{n-2}$ doğrusal
 - $t_n = t_{n-1} + t_{n-2}^2$ doğrusal değildir, t_{n-2}^2 önceki terimin katı değildir.
- O Homojen Yineleme (Rekürans) Bağıntısı:
- t_n sadece önceki terimlerin katlarına bağlı ise homojen (türdeş) olarak adlandırılır.
 - $t_n = t_{n-1} + t_{n-2}$ homojen
 - $t_n = 2t_{n-1} + 1$ homojen değildir. "+1" terimi t_j katı değildir.

 Yinelemeli bağıntıdaki terimlerin katsayıları sabit ise; sabit katsayılı homojen doğrusal yineleme formu aşağıdaki gibidir.

$$c_0 t_n + c_1 t_{n-1} + \dots + c_k t_{n-k} = 0$$

- Burada,
 - t_i: özyinelemeli bağıntının değerlerini,
 - \circ c_i : sabit katsayılı terimlerini ifade eder.
 - \circ c_i , reel sayılardır ve $c_i \neq 0$.
 - k: ise özyinelemeli bağıntının derecesidir.

- Doğrusal özyinelemelerde t_{i+j} , t_i^2 şeklinde terimler bulunmaz.
- Öz yineleme homojendir, çünkü t_i nin doğrusal kombinasyonundan dolayı O (sıfır)' a eşittir.
- O Bu öz yinelemeler *k* başlangıç koşullarını içerir.

$$t_n = c_0$$
 $t_1 = c_1$... $t_k = c_k$

• Fibonacci dizisi için özyineleme

•
$$f_n = f_{n-1} + f_{n-2}$$
, $\rightarrow f_n - f_{n-1} - f_{n-2} = 0$,
burada **k=2**, $c_0 = 1$ ve $c_1 = c_2 = -1$ dir.

- Sabit katsayılı homojen doğrusal yineleme bağıntılarını çözmek için basit bir yöntem vardır. Bu yöntem;
 - k bir sabit olmak üzere, $t_k = x^k$;
 - $t_n = c_1 t_{n-1} + c_2 t_{n-2} + ... + c_k t_{n-k}$ ' nın bir çözümü kabul edilir ve bağıntıda yerine konulursa
 - o $x^n = c_1 x^{n-1} + c_2 x^{n-2} + ... + c_k x^{n-k}$ elde edilir. Burada, x bilinmeyen bir sabit ve $x \neq 0$ dır.
- Bu ifadenin her iki yanını x^{n-k} ile bölersek:
 - $x^k c_1 x^{k-1} c_2 x^{k-2} ... c_k = 0$ bulunur ve derecesi k olan ve genelde k adet kökü olan bu polinoma yineleme bağıntısının **karakteristik denklemi** (characteristic equation) adı verilir. Bu denklemin kökü birden fazla veya karmaşık olabilir.

İşlem Adımları

Adım 1

- $x^2 c_1 x c_2 = 0$ karakteristik denklemi için
- ullet İkinci dereceden bir denklem olduğundan karakteristik kökleri ${\bf r}_1$ ve ${\bf r}_2$ olup

$$x_{1,2} = \frac{c_1 \pm \sqrt{(c_1)^2 + 4c_2}}{2}$$

Adım 2

- Durum 1: Köklerin hiç biri aynı değilse
- \bullet $t_n = c_1 x_1^n + c_2 x_2^n$
- **Durum 2:** Köklerde aynı olan değer var ise $(x_1 = x_2)$

$$c_1 = c_1 x_0^n + c_2 x_1^n + c_3 n x_1^n$$

Adım 3

- O Bir önceki adımda elde edilen denklemlere ilk koşulları uygulayınız.
- Durum I: Kökler eşit değil

$$t_1 = c_1 x_1^{\ 1} + c_2 x_2^{\ 1} = c_1 x_1 + c_2 x_2^{\ 2}$$

• Durum 2: Kökler eşit $(x_2 = x_1 = x_0)$

$$\bullet$$
 $t_0 = c_1 x_0^0 + c_2 \cdot 0 \cdot x_0^0 = c_1$

•
$$t_1 = c_1 x_0^1 + c_2 \cdot 1 \cdot x_0^1 = (c_1 + c_2) x_0$$

Adım 4

 \circ c_1, c_2 'yi bulunuz

Adım 5

 t_n için genel çözümü yaz

- **Ornek:** İlk koşullar $t_0 = 2$ ve $t_1 = 7$ olarak verildiğine göre
- \bullet $t_n = t_{n-1} + 2t_{n-2}$ yinelemeli bağıntıyı çözünüz
- Karakteristik denklem: $x^2 x 2 = 0$
- Kökler $x_1=2$ ve $x_2=-1$, kökler eşit değil. Durum 1'i kullanılacak.

$$\bullet$$
 $t_0 = 2 = c_1 + c_2$, $t_1 = 7 = c_1 \cdot 2 + c_2 \cdot (-1)$

- $c_1 = 3$ ve $c_2 = -1$ olarak bulunur.
- Bu değerleri yerine yazarsak

•
$$t_n = 3.2^n + (-1) \cdot (-1)^n = 3.2^n - (-1)^n$$
 olarak bulunur.

$$\bullet$$
 $t_n \in \theta(2^n)$

- **Ornek:** İlk koşullar $t_0 = 0$ ve $t_1 = 1$ ve $n \ge 2$ olarak verildiğine göre
- $\mathbf{o} \ t_n 3t_{n-1} 4t_{n-2} = 0$ için yinelemeli bağıntıyı çözünüz
- Karakteristik denklem: $x^2 3x 4 = 0$
- Kökler $x_1=-1$ ve $x_2=4$, kökler eşit değil. Durum 1'i kullanılacak.

$$c_n = c_1(-1)^n + c_2 4^n$$

$$\bullet$$
 $t_0 = 0 = c_1 + c_2$, $t_1 = 1 = c_1 \cdot (-1) + 4c_2$

- $c_1 = -1/5 \text{ ve } c_2 = 1/5 \text{ olarak bulunur.}$
- Bu değerleri yerine yazarsak
- $t_n = 1/5[4^n (-1)^n]$ olarak bulunur.
- $t_n \in \theta(4^n)$

- Ornek: Fibonacci özyinelemeli bağıntı
- $t_0 = 0$ ve $t_1 = 1$ ve $n \ge 2$ olarak verildiğine göre
- $t_n t_{n-1} t_{n-2} = 0$ için yinelemeli bağıntıyı çözünüz
- Karakteristik denklem: x²-x-1=0
- Kökler $x_1 = \frac{1+\sqrt{5}}{2}$ ve $x_2 = \frac{1-\sqrt{5}}{2}$, kökler eşit değil. ($\frac{1+\sqrt{5}}{2}$, altın oran)
- Durum 1'i kullanılacak. $t_n=c_1(\frac{1+\sqrt{5}}{2})^n+c_2(\frac{1-\sqrt{5}}{2})^n$
- $t_n(0) = 0 = c_1 + c_2$, $t_1 = 1 = c_1 \cdot \frac{1 + \sqrt{5}}{2} + c_2 \cdot \frac{1 \sqrt{5}}{2}$
- $c_1 = 1/\sqrt{5}ve \ c_2 = -1/\sqrt{5}olarak$ bulunur.
- Bu değerleri yerine yazarsak
- $t_n = 1/\sqrt{5} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$ olarak bulunur ve sonuç olarak
- $t_n \in \theta(((1+\sqrt{5})/2)^n)$

- **Ornek:** $t_0 = 0$, $t_1 = 1$ ve $t_2 = 2$ ve $n \ge 3$ olarak verildiğine göre
- ullet $t_n = 5t_{n-1} 8t_{n-2} + 4t_{n-3}$ için yinelemeli bağıntıyı çözünüz
- Karakteristik denklem: $x^3 5x^2 + 8x 4 = 0$, veya $(x-1)(x-2)^2$
- Kökler $x_1 = 1$, ve $x_2 = x_3 = 2$, (iki kök eşit). Eşit kökler bulunduğundan Durum 2 kullanılacak
- $t_n = c_1(1)^n + c_2(2)^n + c_3n(2)^n$
- Başlangıç şartlarına göre;
- $c_1 + c_2 = 0; (n = 0),$
- $c_1 + 2c_2 + 2c_3 = 1$; (n = 1),
- $c_1 + 4c_2 + 8c_3 = 2$; (n = 2),
- $c_1 = -2$, $c_2 = 2$ ve $c_3 = -1/2$ olarak bulunur.
- Bu değerleri yerine yazarsak
- $t_n = 2^{n+1} n2^{n-1} 2$ olarak bulunur.

- Homojen Olmayan Yineleme Bağıntıları
- - $t_n = t_{n-1} + t_{n-2}$ homojen
 - $t_n = 2t_{n-1} + 1$ homojen değildir. "+1" terimi t_j katı değildir.
- Yinelemeli bağıntıların genel formu $c_0t_n+c_1t_{n-1}+...+c_kt_{n-k}=f(n)$ şeklinde ifade edilir. f(n)=0 eşit ise homojen, sıfırdan farklı ise homojen olmayan yinelemeli bağıntıdır.
- $o f(n) = b^n p(n)$
- şeklinde ifade edilirse b sıfırdan farklı bir sabiti p(n) ise d. dereceden n nin bir polinomudur.

- o Örnek: Aşağıda verilen reküransı çözünüz
- t_n $2t_{n-1} = 3^n$ burada b=3, p(n)^d=1 ve polinom derecesi d=0' dır.
- İlk olarak her iki tarafı 3 ile çarpalım:

$$3t_n - 6t_{n-1} = 3^{n+1}$$

• Eğer n, n+1 ile yer değiştirirsek:

$$t_{n+1}$$
 - $2t_n = 3^{n+1}$

denklemini elde ederiz.

• Her iki denklemi bir birinden çıkarırsak yeni denklem

•
$$t_{n+1}$$
 - $5t_n$ + $6t_{n-1}$ = 0 olur.

- Homojen durumda olduğu gibi çözüm yaparsak karakteristik denklem
- $x^2-5x+6=0$, $\rightarrow (x-2)(x-3)=0$
- Dikkat edilecek olursa (x-2) değeri orijinal rekürans ta sol tarafı, x-3 ise sağ taraftaki polinomu ifade etmekte. Buna göre karakteristik denklemin basit genel formunu aşağıdaki şekilde ifade edebiliriz:
- \circ $(c_0 x^k + c_1 x^{k-1} + c_2 x^{k-2} + ... + c_k)(x-b)^{d+1} = 0,$
- burada *d,* p(n) polinomunun derecesidir. Bu denklem elde edildikten sonra homojen durumunda olduğu gibi çözüm yapılır.

- Ornek: Aşağıda verilen Hanoi Kulesi problemine ait reküransı çözünüz
- $t_n = 2t_{n-1} + 1$; $n \ge 1$ ve $t_0 = 0$;
- Burada b=1 p(n)=1 ve polinom derecesi 0 dır.
- Karakteristik denklem: (x-2)(x-1)=0 olur.

•
$$t_n = c_1 1^n + c_2 2^n$$
, $t_0 = c_1 + c_2 = 0$, $t_1 = 2t_0 + 1 = 1$ ise

•
$$t_1 = c_1 1 + 2c_2 = 1$$
 olur. $c_1 = -1$, $c_2 = 1$ bulunur

- $t_n = 2^n 1$ elde ederiz. Sonuç olarak ;
- $t_n \in \theta(2^n)$ olur.

- $c_0 t_n + c_1 t_{n-1} + ... + c_k t_{n-k} = b^n p(n)$ homojen olmayan denklemler için verilen basit genel formu daha da genelleştirirsek
- $c_0t_n+c_1t_{n-1}+...+c_kt_{n-k}=b_1^np_1(n)+b_2^np_2(n)+...$ formunu elde ederiz. Buna göre karakteristik denklem:

$$\circ$$
 $(c_0 x^k + c_1 x^{k-1} + c_2 x^{k-2} + ... + c_k)(x-b_1)^{d1+1} (x-b_2)^{d2+1} ... = 0,$

- **Örnek:** $n \ge 1$ ve $t_0 = 0$ başlangıç şartları için $t_n = 2t_{n-1} + n + 2^n$ problemine ait reküransı çözünüz
- t_n -2 t_{n-1} = $n+2^n$, burada b_1 =1, $p_1(n)$ =n, b_2 =2, $p_2(n)$ =1, d_1 =1, d_2 =0, n polinom derecesidir.
- Karakteristik denklem: $(x-2)(x-1)^2(x-2)=0$ olur. Kökler, 1, 1, 2, 2 dir.
- Buna göre genel çözüm $t_n = c_1 1^n + c_2 n 1^n + c_3 2^n + c_4 n 2^n$

•
$$t_1 = 0 + 1 + 2^1 = 3, t_2 = 12, t_3 = 35$$

•
$$n = 0$$
 için $c_1 + c_3 = 0$,

$$n = 1 i cin c_1 + c_2 + 2c_3 + 2c_4 = 3,$$

$$n = 2 i \varsigma i n c_1 + 2c_2 + 4c_3 + 8c_4 = 12,$$

$$n = 3 i cin c_1 + 3c_2 + 8c_3 + 24c_4 = 35,$$

•
$$t_n = -2 - n + 2^{n+1} + n2^n$$
 elde ederiz. Sonuç olarak ;

•
$$t_n \in \theta(n2^n)$$
 olur.

- \circ Çözüm yolu: Gaus yok etme yöntemi , bilinmeyenlerin ileriye doğru elenmesi. İlk adım ilk bilinmeyeni (c_1), 2. denklemden n. Denkleme kadar elemektir.
- 2.denklem
- $a_{21}^{-}(a_{21}/a_{11})^*a_{11} + a_{22}^{-}(a_{21}/a_{11})^*a_{12} + ... + a_{2n}^{-}(a_{21}/a_{11})^*a_{1n} = c_2^{-}(a_{21}/a_{11})^*c_1$
- 3. denklem
- a_{31} - (a_{31}/a_{11}) * a_{11} + a_{32} - (a_{31}/a_{11}) * a_{12} +...+ a_{3n} - (a_{31}/a_{11}) * a_{1n} = c_3 - (a_{31}/a_{11}) * c_1
- n.denklem
- a_{n1} - (a_{n1}/a_{11}) * a_{11} + a_{n2} - (a_{n1}/a_{11}) * a_{12} +..+ a_{nn} - (a_{n1}/a_{11}) * a_{1n} = c_n - (a_{n1}/a_{11}) * c_1
- Buna göre ilk durumda matrisimiz

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 8 & 24 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 12 \\ 35 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 3 & 8 \\ 0 & 3 & 7 & 24 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 12 \\ 35 \end{bmatrix}$$

- İkinci adım ikinci bilinmeyeni (c₂), 3. denklemden n. denkleme kadar elemektir.
- 3.denklem

•
$$a_{32}$$
- $(a_{32}/a_{22})*a_{22} + a_{33}$ - $(a_{32}/a_{22})*a_{23} + ... + a_{3n}$ - $(a_{32}/a_{22})*a_{2n} = c_3$ - $(a_{32}/a_{22})*c_2$

n.denklem

•
$$a_{n2}$$
- $(a_{n2}/a_{22})*a_{22} + a_{n3}$ - $(a_{n2}/a_{22})*a_{23} + ... + a_{nn}$ - $(a_{n2}/a_{22})*a_{2n} = c_n$ - $(a_{n2}/a_{22})*c_2$

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 3 & 8 \\ 0 & 3 & 7 & 24 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 12 \\ 35 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 4 & 18 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \\ 26 \end{bmatrix}$$

Diğer adımlarda benzer şekilde yapılır.

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 4 & 18 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \\ 26 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \\ 2 \end{bmatrix}$$

$$c_4 = 1, c_3 = 2, c_2 = -1, c_1 = -2$$
 olur.

•
$$T(n) = -2 - n + 2^{n+2} + n2^n$$

•
$$T(n) \in \theta(n2^n)$$

- Değişkenlerin Değişimi:
- T(n) şeklinde verilen bir yinelemeyi değişkenlerin değişimi ile t_k şeklinde yeni bir yineleme yazılabilir.
- Örnek: 2 nin kuvveti şeklinde verilen n için aşağıda verilen yinelemeyi çözünüz.
- T(n)=4T(n/2)+n, n>1
- o n, değerini 2^k (burada k=log n dir) ile yer değiştirirsek $T(2^k)=4T(2^{k-1})+2^k$, elde ederiz.
- Eğer $t_k = T(2^k) = T(n)$ ise bunu , $t_k = 4t_{k-1} + 2^k$ şeklinde yazabiliriz. Yeni yinelemeyi çözersek (x-4)(x-2)=0 karakteristik denklemini elde ederiz.
- $t_k = c_1 4^k + c_2 2^k$
- k yerine n değerini yazarsak,
- $T(n) = c_1 n^2 + c_2 n$ buluruz. $T(n) \in O(n^2)$

- **Örnek:** 2 nin kuvveti şeklinde verilen n için aşağıda verilen yinelemeyi çözünüz. T(n)= 2T(n/2)+nlogn, n>1
- o n, değerini 2^k (burada k=logn dir) ile yer değiştirirsek $T(2^k)=2T(2^{k-1})+k2^k$, elde ederiz.
- Eğer t_k =T(2^k) =T(n) ise bunu , t_k =2 t_{k-1} + $k2^k$ şeklinde yazabiliriz. Yeni yinelemeyi çözersek: (t_k -2 t_{k-1} = $k2^k$, burada b=2, p(k)=k ve d=1 olduğundan)
- (x-2)3=0 karakteristik denklemini elde ederiz ve
- $t_k = c_1 2^k + c_2 k 2^k + c_3 k^2 2^k$
- k yerine n değerini yazarsak,
- $T(n) = c_1 n + c_2 n \log n + c_3 n \log^2 n$ buluruz.
- $T(n) \in O(nlog^2n)$

- **Örnek:** 2 nin kuvveti şeklinde verilen n için aşağıda verilen yinelemeyi çözünüz. T(n)=3T(n/2)+cn (c bir sabittir ve $n=2^k>1$
- n, değerini 2^k (burada k=logn' dir) ile yer değiştirirsek $T(2^k)=3T(2^{k-1})+c2^k$, elde ederiz.
- Eğer $t_k = T(2^k) = T(n)$ ise bunu , $t_k = 3t_{k-1} + c2^k$ şeklinde yazabiliriz. Yeni yinelemeyi çözersek: $(t_k 3t_{k-1} = c2^k)$, burada b=2, p(k)=c ve d=0 olduğundan) (x-3)(x-2)=0 karakteristik denklemini elde ederiz ve
- $t_k = c_1 3^k + c_2 2^k$
- k yerine n değerini yazarsak,
- $T(n) = c_1 3^{logn} + c_2 n$, $(a^{logb} = b^{loga} olduğundan)$
- $T(n) = c_1 n^{\log 3} + c_2 n \text{ buluruz.}$
- \bullet $T(n) \in O(n^{log3})$

- Aralık dönüşümleri (Range Transformations): Yinelemelerin çözümünde değişkenlerin değişimi yerine bazen aralık dönüşümü kullanmak daha faydalı olabilir.
- Örnek: $T(n) = nT(n/2)^2$, n>1, T(1)=6
- o n, değerini 2^k (burada k=logn dir) ile yer değiştirirsek $T(2^k)=2^kT(2^{k-1})^2$, elde ederiz.
- $t_k = T(2^k) = T(n)$ ise, $t_k = 2^k t_{k-1}^2$, k>0 için $t_0 = 6$
- İlk bakışta gördüğümüz tekniklerin hiç biri bu yineleme için uygulanamaz çünkü hem doğrusal değil, hem de katsayılardan biri sabit değildir.
- Aralık dönüşümü yapmak için $V_k = \log t_k$ koyarak yeni bir yineleme oluşturulur.

- V_k = k+2 V_{k-1} , k>0 için başlangıç şartları V_o = log6 = log2*3 = 1 + log3
- $V_k = k+2V_{k-1}$ için karakteristik denklem (x-2)(x-1)²=0 ve
- $V_k = c_1 2^k + c_2 1^k + c_3 k 1^k$
- V_k =k+2 V_{k-1} denkleminden V_0 =1+log3, V_1 =3+2log3, V_2 =8+4log3 bulunur ve V_k = $c_1 2^k + c_2 1^k + c_3 k 1^k$
- $V_0 = 1 + log 3 = c_1 + c_2$
- $V_1 = 3 + 2log3 = 2c_1 + c_2 + c_3$
- $V_2 = 8 + 4log3 = 4c_1 + c_2 + 4c_3$
- $c_1 = 3 + log3, c_2 = -2, c_3 = -1$
- $V_k = (3 + log 3)2^k k 2$

Sonunda $t_k = 2^{Vk}$

$$2^{Vk} = 2^{(3+log3)*2^k-k-2} \rightarrow t_k = 2^{(3+log3)*2^k-k-2}$$

• k yerine n değerini yazarsak,

•
$$T(n) = 2^{(3+\log 3)*n-\log n-2} \to T(n) = 2^{3n+n\log 3}/(2^{\log n}*2^2)$$

•
$$T(n) = 2^{3n-2} * \frac{3^{n\log 2}}{n} = 2^{3n-2} * \frac{3^n}{n}$$

•
$$T(n) = (2^{3n-2}3^n)/n$$

•
$$T(n) \in O(2^{3n}3^n)$$

Böl-ve-Fethet (Divide & Conquer)
Tasarım Yöntemi

Böl-ve-Fethet (Divide & Conquer)

- Böl ve fethet tekniğiyle algoritma tasarımı:
 - Problem kendisine benzer küçük boyutlu alt problemlere bölünür. Alt problemler çözülür ve bulunan çözümler birleştirilir.
 - Divide: Problem iki veya daha fazla alt problemlere bölünür.
 - Conquer: Alt problemleri özyinelemeli olarak çözüp, onları fethet.
 - Combine: Alt problem çözümlerini birleştir.

Merge Sort (Birleştirme sıralaması) Algoritması

- O 1. Böl: Eğer S en az iki elemana sahipse (S sıfır veya bir elemana sahipse hiçbir işlem yapılmaz), bütün elemanlar S 'e n alınır ve S₁ ve S₂ adlı iki alana yerleştirilir, her biri S dizisinin yarısına sahiptir, (örn. S₁ ilk n/2 elemana ve S₂ ise ikinci n/2 elemana sahiptir).
- 2. Fethet: S₁ ve S₂ Merge Sort kullanılarak sıralanır.
- 3. Birleştir: S_1 and S_2 içindeki sıralı elemanlar tekrar S içerisine tek bir sıralı dizi oluşturacak şekilde aktarılır.

Birleştirme sıralaması

- 1. Bölmek: Kolay.
- 2. Hükmetmek: 2 alt dizilimi özyinelemeli sıralama.
- 3. Birleştirmek: Doğrusal-zamanda birleştirme.

Master teoremi (hatırlatma)

$$T(n) = a T(n/b) + f(n)$$

DURUM 1:
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, sabit $\varepsilon > 0$
 $\Rightarrow T(n) = \Theta(n^{\log_b a})$.

DURUM 2:
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
, sabit $k \ge 0$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

DURUM 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$, sabit $\varepsilon > 0$, ve düzenleyici koşul (regularity condition).

$$\Rightarrow T(n) = \Theta(f(n))$$
.

Birleştirme sıralaması:
$$a = 2$$
, $b = 2 \Rightarrow n^{\log_b a} = n^{\log_2 2} = n$
 \Rightarrow Durum 2 $(k = 0) \Rightarrow T(n) = \Theta(n \lg n)$.

İkili arama (Binary Search)

Sıralı dizilimin bir elemanını bulma:

```
INPUT: A[1..n] - sıralı (azalmayan) integer sayı dizisi, s - aranan integer sayı.
OUTPUT: j bulunan sayının indeksi A[j] = s. N/L, if \forall j (1 \le j \le n): A[j] \neq s
Binary-search (A, p, r, s):
    if p = r then
        if A[p] = s then return p
        else return NIL
        q\leftarrow \[ (p+r)/2 \]
    ret \leftarrow Binary-search (A, p, q, s)
    if ret = NIL then
        return Binary-search (A, q+1, r, s)
    else return ret
```

- 1. Böl: Orta elemanı belirle.
- 2. Hükmet: 1 alt dizilimde özyinelemeli arama yap.
- 3. Birleştir: Kolay.
- o Örnek: 9' u bul.

3 5 7 8 9 12 15

İkili arama (Binary Search)

3	5	7	8	9	12	15
3	5	7	8	9	12	15
3	5	7	8	9	12	15
3	5	7	8	9	12	15
3	5	7	8	9	12	15

İkili arama için yineleme

$$T(n) = 1$$
 $T(n/2) + \Theta(1)$
 $altproblem \ sayısı$ $b\"{o}lme \ ve$
 $birleştime \ işi$

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \Rightarrow \text{DURUM 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(\lg n)$.

Bir sayının üstellenmesi

OProblem: a^n 'yi $n \in \mathbb{N}$ iken hesaplama.

OSaf (Naive) algorithm: $\Theta(n)$.

O Böl-ve-fethet algoritması:

Algorithm Power(x, n):

Input: x sayısı ve n tamsayısı, n >= 0

Output: xn değeri
 if n = 0 then
 return 1
 if n is odd then

$$y = Power(x, (n-1)/2)$$
 return $x \cdot y \cdot y$
 else
 $y = Power(x, n/2)$
 return $y \cdot y$

Burada ara sonucu y
 değişkeni ile göstermemiz
 önemli; şayet metod
 cağırma yazarsak metod 2
 defa cağrılmış olur.

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a \end{cases}$$

n çift sayıysa;

n tek sayıysa.

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\lg n)$$
.

Fibonacci sayıları

Özyinelemeli tanım:

$$F_n = \begin{cases} 0 & \text{eğer } n = 0; \\ 1 & \text{eğer } n = 1; \\ F_{n-1} + F_{n-2} & \text{eğer } n \ge 2 \text{ ise.} \end{cases}$$

Saf özyinelemeli algoritma: $\Omega(\phi^n)$ (üstel zaman), buradaki $\phi = (1 + \sqrt{5})/2$

altın oran'dır (*golden ratio*).
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.6180339887\cdots$$
 $\psi = \frac{1-\sqrt{5}}{2} = 1-\varphi = -\frac{1}{\varphi} \approx -0.6180339887$

Fibonacci sayılarını hesaplama
$$F_n = F(n) = \begin{cases} 0 & n = 0; \\ 1 & n = 1; \\ F(n-1) + F(n-2) & n > 1. \end{cases}$$

$$n = 0; \\ n = 1; = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}} = \frac{\varphi^n - \left(\varphi - \sqrt{5}\right)^n}{\sqrt{5}}$$

- Aşağıdan yukarıya algortiması:
 - F₀, F₁, F₂, ..., F_n'i sırayla, her sayı iki öncekinin toplamı olacak şekilde hesaplayın.
 - Yürütüm süresi: Θ(n).
- Saf özyinelemeli kare alma (Naive recursive squaring) algortiması:
- $\circ F_n = \varphi^n/\sqrt{5}$ yakın tamsayı yuvarlaması.
- o Özyinelemeli kare alma algortiması: Θ(lg n) zamanı.
- Bu yöntem güvenilir değildir, çünkü yüzer-nokta aritmetiği yuvarlama hatalarına gebedir.

Ozyineleme ile kare alma (Recursive squaring)

Teorem:
$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n.$$

Algoritma:Özyineleme ile kare alma.

Süre =
$$\Theta(\lg n)$$
.

Teoremin ispatı. (*n* 'de tümevarım)

Taban
$$(n = 1)$$
:
$$\begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^1$$

Özyineleme ile kare alma (Recursive squaring)

Tümevarım adımı $(n \ge 2)$:

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

Matrislerde çarpma

Girdi:
$$= [a_{ij}], B = [b_{ij}].$$
 Çıktı: $C = [c_{ij}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Matrislerde çarpma Standart algoritma

Koşma süresi = $\Theta(n^3)$

Böl-ve-fethet algoritması

Fikir:

 $n \times n$ matris = $(n/2) \times (n/2)$ altmatrisin 2×2 matrisi:

$$\begin{bmatrix} r \mid s \\ -+- \\ t \mid u \end{bmatrix} = \begin{bmatrix} a \mid b \\ -+- \\ c \mid d \end{bmatrix} \cdot \begin{bmatrix} e \mid f \\ --- \\ g \mid h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dh$
 $u = cf + dg$
 $recursive$ (özyinelemeli)
8 çarpma $(n/2) \times (n/2)$ altmatriste,
4 toplama $(n/2) \times (n/2)$ altmatriste.

recursive (özyinelemeli)

Böl-ve-Fethet algoritmasının çözümlemesi

$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{DURUM } 1 \implies T(n) = \Theta(n^3)$$

Sıradan algoritmadan daha iyi değil.

Strassen'in fikri

• 2×2 matrisleri yalnız 7 özyinelemeli çarpmayla çöz.

$$P_1 = a \cdot (f - h)$$

 $P_2 = (a + b) \cdot h$
 $P_3 = (c + d) \cdot e$
 $P_4 = d \cdot (g - e)$
 $P_5 = (a + d) \cdot (e + h)$
 $P_6 = (b - d) \cdot (g + h)$
 $P_7 = (a - c) \cdot (e + f)$

$$r = P_5 + P_4 - P_2 + P_6$$

$$s = P_1 + P_2$$

$$t = P_3 + P_4$$

$$u = P_5 + P_1 - P_3 - P_7$$

7 çarp., 18 topl. /çıkar. Not: Çarpma işleminde sırabağımsızlık yok!

Strassen'in fikri

• 2×2 matrisleri yalnız 7 özyinelemeli çarpmayla çöz.

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$r = P_5 + P_4 - P_2 + P_6$$

$$= (a + d)(e + h)$$

$$+ d(g - e) - (a + b)h$$

$$+ (b - d)(g + h)$$

$$= ae + ah + de + dh$$

$$+ dg - de - ah - bh$$

$$+ bg + bh - dg - dh$$

$$= ae + bg$$

Strassen'in algoritması

- **o 1. Böl:** A ve B'yi $(n/2)\times(n/2)$ altmatrislere böl. + ve kullanarak çarpılabilecek terimler oluştur. $(\Theta(n^2))$
- o 2. Fethet: $(n/2)\times(n/2)$ altmatrislerde özyinelemeli 7 çarpma yap $(P_1, P_2, P_3, ...P_7)$
- o 3. Birleştir: $+ \text{ ve } \text{ kullanarak } (n/2) \times (n/2)$ altmatrislerde C 'yi oluştur. $(\Theta(n^2))$

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

Strassen'in algoritması

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{DURUM } 1 \implies T(n) = \Theta(n^{\log_2 7})$$

• 2.81 değeri 3' den çok küçük görünmeyebilir ama, fark üstelde olduğu için, yürütüm süresine etkisi kayda değerdir. Aslında, n ≥ 32 değerlerinde Strassen'in algoritması günün makinelerinde normal algoritmadan daha hızlı çalışır. Bugünün en iyi değeri (teorik merak açısından): ⊙(n².376...)

Böl ve Fethet VLSI (Very Large Scale Integration) yerleşimi (Çok Büyük Çapta Tümleşim)

ALGORITHMS

- Bilgisayar çipleri yada yongaları bildiğiniz gibi çok büyük çapta tümleşim kullanırlar.
- Elimizde bir devre olduğunu düşünelim ve bu devrenin de bir ikili ağaç olduğunu kabul edelim.
 Ama şimdilik bu devrenin bir kısmını ele alalım ama siz bunu tüm devre kabul edin.
- Problem: n yaprağı olan tam bir ikili ağacı en az alan kullanarak bir ızgaraya gömmek.

VLSI (Very Large Scale Integration) yerleşimi (Çok Büyük Çapta Tümleşim)

• Problem: n yaprağı olan tam bir ikili ağacı en az alan kullanarak bir ızgaraya gömmek.

H-ağacını gömme

$$L(n) = 2L(n/4) + \Theta(1)$$
$$= \Theta(\sqrt{n})$$

Alan =
$$\Theta(n)$$

Sonuç

- Böl ve Fethet algoritma tasarımının güçlü tekniklerinden sadece biridir.
- Böl ve Fethet algoritmaları yinelemeler ve Ana (Master) metot kullanarak çözümlenebilir.
- Böl ve Fethet stratejisi genellikle verimli algoritmalara götürür.

ALGORITHMS

Ortak Reküranslar

Rekürans İlişkisi	Kapalı Form	Örnek
c(1) = a		
c(n) = b + c(n-1)	c(n) = O(n)	Linear search
c(n) = b*n + c(n-1)	$c(n) = O(n^2)$	Quicksort
c(n) = b + c(n/2)	$c(n) = O(\log(n)$	Binary search
c(n) = b*n + c(n/2)	c(n) = O(n)	
c(n) = b + kc(n/k)	c(n) = O(n)	
c(n) = b*n + 2c(n/2)	c(n) = O(nlog(n))	Mergesort
c(n) = b*n + kc(n/k)	c(n) = O(nlog(n)	
c(2) = b c(n) = c(n-1) + c(n-2) + d	$c(n) = O(2^n)$	Fibonacci

Sorular

- 1.T(n)=3T($\sqrt{2n}$)+2 tekrarlı bağıntısını çözünüz.
- 2. T(n)=3T(⌊n/5⌋)+n tekrarlı bağıntısının çözümünü iteratif yolla gerçekleştiriniz. Bu bağıntının Özyineleme ağacı nedir?
- O 3. Özyineleme ağacını kullanarak T(n)=T(n/3)+T(2n/3)+n bağıntısının çözümünü elde ediniz.
- 4. b≥1 bir sabit olmak üzere T(n)=T(n/b)+T(b)+n tekrarlı bağıntısının Özyineleme ağacını elde ediniz ve bu bağıntının çözümü nedir?
- 5. 0<a<1 sabit olmak üzere T(n)=T(an)+T((1-a)n)+n tekrarlı bağıntısının Özdevinim ağacını elde ediniz ve asimptotik davranışı hakkında bilgi veriniz.
 </p>

ALGORITHMS

Sorular

- **o** 6.
 - a) $T(n) = \sqrt{n}T(\sqrt{n}) + n$ çalışma zamanı mertesbesininin O(nloglogn) olduğunu iterasyon veya öz yineleme ağacı ile bulunuz.
 - b) $T(n) = \sqrt{n}T(n/2) + n$
- 7. Master yöntemini kullanarak aşağıdaki tekrarlı bağıntıları çözünüz.
 - a) T(n)=3T(n/3)+n

b) $T(n)=3T(n/3)+n^2$

- c) $T(n)=3T(n/3)+n^3$
- d) T(n)=3T(n/3)+n^k
- 8. Aşağıdaki tekrarlı bağıntı verilmiş olsun.
 - T(n)=2T(n/3)+lg(n)
 - a) İteratif yöntem ile bu bağıntının mertebesini (çalışma zamanını) elde ediniz.
 - b) Master yöntemi ile bu bağıntının mertebesini (çalışma zamanını) elde ediniz.

Sorular

- 9. Aşağıdaki tekrarlı bağıntıları karakteristik denklem ve üreten fonksiyon yöntemleri ile çözünüz.
 - a) $a_n = 5a_{n-1} 6a_{n-2}$, $a_1 = 36$ ve $a_0 = 0$
 - b) $a_n = 3a_{n-1} 2a_{n-2} + 2^{n-1} + 2.3^n$, $a_1 = 29$ ve $a_0 = 9$
 - \circ c) $a_n = a_{n-2} + 4n$, $a_1 = 4$ ve $a_0 = 1$
 - d) $a_n = 3a_{n-1} 2a_{n-2} + 3.2^{2n-1}$, $a_1 = 12$ ve $a_0 = 0$
- 10. Master teoremini kullanarak aşağıdaki bağıntının mertebesini (çalışma zamanını) elde ediniz.
 - $T(n)=16T(n/4)+O(n^2)$

6.Hafta

Sıralama Algoritmaları Çabuk Sıralama, Rastgele Algoritmalar