

TEST REPORT

FCC PART 15.247

Report Reference No:	CTL1811027021-WF01	
Compiled by: (position+printed name+signature)	Happy Guo (File administrators)	Happy Guo
Tested by: (position+printed name+signature)	Nice Nong (Test Engineer)	Nice Nong
Approved by: (position+printed name+signature)	Ivan Xie (Manager)	from Nie
Product Name:	Portable Wireless IP PHONE	
Model/Type reference:	FIP16	
List Model(s):	N/A	
Trade Mark:	Flying \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
FCC ID:	2AL9D-FIP16	
Applicant's name:	Flyingvoice Network Technology	Co., Ltd
Address of applicant:	Rm 207-209, Unt B52, Zhong Chua District, Shenzhen, China	ang Industrial Park, Nanshan
Test Firm ::::::::::::::::::::::::::::::::::::	Shenzhen CTL Testing Technolog	gy Co., Ltd.
Address of Test Firm:	Floor 1-A, Baisha Technology P Nanshan District, Shenzhen, China	
Test specification:		
Standard:	FCC Part 15.247: Operation wit 2400-2483.5 MHz and 5725-5850	
TRF Originator:	Shenzhen CTL Testing Technology	Co., Ltd.
Master TRF:	Dated 2011-01	
Date of Receipt:	Nov. 02, 2018	
Date of Test Date:	Nov. 02, 2018–Dec. 19, 2018	
Data of Issue:	Jan. 18, 2019	
Result:	Pass	W.
OL L. OTL T. C. T.	O	

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Report No.: CTL181102702-WF01

Toot Poport No.	CTI 494402702 W/F04	Jan. 18, 2019
Test Report No. :	CTL181102702-WF01	Date of issue

Equipment under Test : Portable Wireless IP PHONE

Model /Type : FIP16

Listed Models : N/A

Applicant : Flyingvoice Network Technology Co., Ltd

Address : Rm 207-209, Unt B52, Zhong Chuang Industrial Park,

Nanshan District, Shenzhen, China

Manufacturer : Flyingvoice Network Technology Co., Ltd

Address : Rm 207-209, Unt B52, Zhong Chuang Industrial Park,

Nanshan District, Shenzhen, China

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Report No.: CTL181102702-WF01

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2019-01-18	CTL1811027021-WF01	Tracy Qi
		0	- 0	_
11 -1 -			1 10	
100			200	
		(C)(()		- 400
	0 0			(A) (B)
	100			J
	The state of the s			10 10

	lable of Contents	Page
1. SU	JMMARY	
1.1.	TEST STANDARDS	5
1.2.	TEST DESCRIPTION	
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GE	ENERAL INFORMATION	7
2.1.	ENVIRONMENTAL CONDITIONS	
2.2.	GENERAL DESCRIPTION OF EUT	
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.4.	EQUIPMENTS USED DURING THE TEST	8
2.5.	Special Accessories	
2.6.	RELATED SUBMITTAL(S) / GRANT (S)	
2.7.	Modifications	<u>S</u>
3. TE	ST CONDITIONS AND RESULTS	10
3.1.	CONDUCTED EMISSIONS TEST	10
3.2.	RADIATED EMISSIONS AND BAND EDGE	13
3.3.	MAXIMUM CONDUCTED OUTPUT POWER	20
3.4.	Power Spectral Density	21
3.5.	6dB Bandwidth	24
3.6.	OUT-OF-BAND EMISSIONS	27
3.7.	Antenna Requirement	
4. TE	ST SETUP PHOTOS OF THE EUT	37
. DL	AOTOS OE THE FIIT	20

V1.0 Page 5 of 42 Report No.: CTL181102702-WF01

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.2. Test Description

	TO	
FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

V1.0 Page 6 of 42 Report No.: CTL181102702-WF01

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 399832

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 7 of 42 Report No.: CTL181102702-WF01

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25℃
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Portable Wireless IP PHONE
Model/Type reference:	FIP16
Power supply:	5V/1A, Battery 3.8V 4400mAh
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40): 7
Channel separation:	5MHz
Antenna type:	FPC antenna
Antenna gain:	0dBi

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

There are 11 channels provided to the EUT and Channel 01/06/11 were selected for WIFI test.

Operation Frequency WIFI:

- p			
Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	1000	
6	2437	24 1	
7	2442	- W	

Note: The line display in grey were the channel selected for testing

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz& Radiated Emission 1GHz~10th Harmonic	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11n(40MHz)/OFDM	13.5Mbps	3/6/9
	11b/DSSS	1 Mbps	1/11
Rond Edge	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date recent	Calibration Due Date
LISN	R&S	ENV216	3560.6550.12	2018/06/01	2019/05/31
LISN	R&S	ESH2-Z5	860014/010	2018/06/01	2019/05/31
Power Meter	Agilent	U2531A	TW53323507	2018/06/01	2019/05/31
Power Sensor	Agilent	U2021XA	MY5365004	2018/05/20	2019/05/19
EMI Test Receiver	R&S	ESCI	103710	2018/06/01	2019/05/31
Spectrum Analyzer	Agilent	E4407B	MY41440676	2018/05/20	2019/05/19
Spectrum Analyzer	Agilent	N9020	US46220290	2018/01/16	2019/01/15
Controller	EM Electronics	Controller EM 1000	N/A	2018/05/20	2019/05/19
Active Loop Antenna	Daze	ZN30900A	N/A	2018/05/18	2019/05/17
Bilog Antenna	Schwarzbeck	VULB 9168	00824	2018/10/25	2019/10/24
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2018/05/18	2019/05/17
Horn Antenna	SCHWARZBACK	BBHA 9170	BBHA9170184	2018/05/18	2019/05/17
Amplifier	Agilent	8349B	3008A02306	2018/05/18	2019/05/17
Amplifier	Agilent	8447D	2944A10176	2018/05/18	2019/05/17
Temperature/Humidity Meter	Gangxing	CTH-608	02	2018/05/19	2019/05/18
High-Pass Filter	K&L	9SH10-2700/X12750-O/O	N/A	2018/05/19	2019/05/18
High-Pass Filter	K&L	41H10-1375/U12750-O/O	N/A	2018/05/19	2019/05/18
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2018/06/01	2019/05/31
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2018/06/01	2019/05/31
Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2018/06/01	2019/05/31
RF Cable	Megalon	RF-A303	N/A	2018/06/01	2019/05/31

V1.0 Page 9 of 42 Report No.: CTL181102702-WF01

EMI Test Software	R&S	ES-K1	V1.7.1	2018/06/01	2019/05/31
EMI Test Software	AUDIX	E3	V6.0	2018/06/01	2019/05/31

The calibration interval was one year

2.5. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
ASUS	Notebook PC	FL5900U	9014	FCC ID:PPD-QCNFA335
Delta	AC Adapter	S12B22-120A100-C4	00A99	SDOC

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 10 of 42 Report No.: CTL181102702-WF01

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

_	Limit (c	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark:

- 1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:
- 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

MEASUREMENT RESULT: "CTL181117232 fin"

2018-11-17 04	1:41??						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PΕ
0.150000	43.10	10.2	66	22.9	QP	L1	GND
0.158000	42.00	10.2	66	23.6	QP	L1	GND
0.170000	34.60	10.2	65	30.4	QP	L1	GND
0.500000	34.50	10.2	56	21.5	QP	L1	GND
0.554000	29.00	10.2	56	27.0	QP	L1	GND
1.316000	27.40	10.3	56	28.6	QP	L1	GND

MEASUREMENT RESULT: "CTL181117232_fin2"

2018-11-17	04:41??						
Frequenc MH	-	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.15400	0 29.90	10.2	56	25.9	AV	L1	GND
0.50000	0 27.00	10.2	46	19.0	AV	L1	GND
0.57200	0 23.50	10.2	46	22.5	AV	L1	GND
1.29200	0 22.30	10.3	46	23.7	AV	L1	GND
2.28800	0 17.30	10.4	46	28.7	AV	L1	GND
18.24200	0 18.90	10.9	50	31.1	AV	L1	GND

MEASUREMENT RESULT: "CTL181117233_fin"

2	018-11-17 04	:43??						
	Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
	0.154000	42.60	10.2	66	23.2	QP	N	GND
	0.222000	34.60	10.2	63	28.1	QP	N	GND
	0.234000	34.10	10.2	62	28.2	QP	N	GND
	0.506000	34.00	10.2	56	22.0	OP	N	GND

MEASUREMENT RESULT: "CTL181117233 fin2"

2018-11-17 0	4:43??						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	29.90	10.2	56	26.1	AV	N	GND
0.500000	24.40	10.2	46	21.6	AV	N	GND
1.382000	18.50	10.3	46	27.5	AV	N	GND
2.168000	14.40	10.4	46	31.6	AV	N	GND
17.924000	17.10	10.8	50	32.9	AV	N	GND
17.996000	18.40	10.8	50	31.6	AV	N	GND

3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

	-	
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Antenna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Frequency Test Receiver/Spectrum Setting				
range		10			
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP			
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP			
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep	QP			
SUIVITZ-TGTZ	time=Auto	QF			
	Peak Value: RBW=1MHz/VBW=3MHz,				
1GHz-40GHz	Sweep time=Auto	Peak			
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak			
eth.	Sweep time=Auto				

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 3. All three channels (lowest/middle/highest) of each mode were measured above1GHz and recorded worst case at 802.11b mode.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Page 15 of 42 Report No.: CTL181102702-WF01

For 30MHz-1GHz

V1.0

Test mode: WIFI Polarization: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi , Field Strength Detector Meas. Stop Start IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Bandw. Time 200.0 ms 120 kHz VULB 9168 MaxPeak Level [dB礦/m] 80 r 70 60 50 40 30 20 10 0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x x MES CTL181203291_red MEASUREMENT RESULT: "CTL181203291 red" 2018-12-4 9:54 Level Transd Limit Margin Det. Height Azimuth Polarization Frequency dB礦/m dB dB礦/m deg MHz dB 40.0 37.760000 20.50 14.5 19.5 ---0.0 0.00 HORIZONTAL 12.1 ---4.7 ---134.760000 31.40 14.1 43.5 0.0 0.00 HORIZONTAL 192.960000 43.5 38.80 11.4 0.0 0.00 HORIZONTAL 13.6 ---198.780000 43.5 29.90 11.1 0.0 0.00 HORIZONTAL ---352.040000 29.20 15.3 46.0 16.8 0.0 0.00 HORIZONTAL 580.960000 40.10 19.7 46.0 5.9 0.0 0.00 HORIZONTAL Test mode: WIFI Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi , Field Strength Detector Meas. Start Stop IF Frequency Frequency

Transducer Time Bandw.

200.0 ms 120 kHz MaxPeak VULB 9168

MEASUREMENT RESULT: "CTL181203292 red"

2018-12-4 9:5 Frequency MHz	56 Level dB礦/m	Transd dB	Limit dB礦/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
37.760000	24.70	14.5	40.0	15.3		0.0	0.00	VERTICAL
119.240000	26.20	13.1	43.5	17.3		0.0	0.00	VERTICAL
192.960000	28.40	11.4	43.5	15.1		0.0	0.00	VERTICAL
487.840000	31.90	18.0	46.0	14.1		0.0	0.00	VERTICAL
580.960000	43.40	19.7	46.0	2.6		0.0	0.00	VERTICAL
967.020000	37.50	24.3	53.9	16.4		0.0	0.00	VERTICAL

For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Note: 802.11b/802.11g/802.11n (H20)/802.11n (H40) all have been tested, only worse case 802.11b is reported

Frequer	Frequency(MHz):		241	2412 Polarity:		HORIZONTAL			
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4824.00	55.47	PK	74	18.53	50.92	33.52	6.92	35.89	4.55
4824.00	48.66	AV	54	5.34	44.11	33.52	6.92	35.89	4.55
6811.00	46.91	PK	74	27.09	37.08	36.01	8.81	34.99	9.83
6811.00		AV	54	10					1
7236.00	47.50	PK	74	26.50	36.23	37.10	9.19	35.02	11.27
7236.00	-	AV	54	1				16	0 7

Frequer	ncy(MHz):	2412			Polarity:		VERTI	CAL
Frequency (MHz)	Emiss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4824.00	55.10	PK	74	18.90	50.55	33.52	6.92	35.89	4.55
4824.00	47.59	AV	54	6.41	43.04	33.52	6.92	35.89	4.55
5702.00	48.06	PK	74	25.94	40.33	34.79	7.42	34.48	7.73
5702.00	-	AV	54	-		9 2 1	\ \ \	-	
7236.00	45.70	PK	74	28.30	34.43	37.10	9.19	35.02	11.27
7236.00	1	AV	54	ŀ			-	-	

Frequer	ncy(MHz):		2437			Polarity:		HORIZO	NTAL
Frequency (MHz)	Emiss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4874.00	55.51	PK	74	18.49	50.87	33.59	6.95	35.90	4.64
4874.00	48.46	AV	54	5.54	43.82	33.59	6.95	35.90	4.64
6207.00	46.85	PK	74	27.15	38.44	35.19	7.91	34.69	8.41
6207.00	-	AV	54	-				-	
7311.00	47.30	PK	74	26.70	35.64	37.44	9.22	35.00	11.66
7311.00		AV	54						

Frequer	ncy(MHz):	243	37		Polarity:		VERTICAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4874.00	54.68	PK	74	19.32	50.04	33.59	6.95	35.90	4.64
4874.00	46.78	AV	54	7.22	42.14	33.59	6.95	35.90	4.64
6038.00	47.39	PK	74	26.61	39.20	35.15	7.65	34.61	8.19
6038.00		AV	54						
7311.00	45.12	PK	74	28.88	33.46	37.44	9.22	35.00	11.66
7311.00		AV	54	€					

Frequer	ncy(MHz):	246	62 Polarity:		HORIZONTAL			
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4924.00	54.85	PK	74	19.15	50.07	33.71	6.98	35.91	4.78
4924.00	47.20	AV	54	6.80	42.42	33.71	6.98	35.91	4.78
6930.00	44.98	PK	74	29.02	34.87	36.16	9.00	35.05	10.11
6930.00		AV	54						
7386.00	46.15	PK	74	27.85	34.27	37.61	9.25	34.98	11.88
7386.00		AV	54	- C					53

Frequer	Frequency(MHz):			2462		Polarity:		VERTICAL	
Frequency (MHz)	Emiss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4924.00	55.08	PK	74	18.92	50.30	33.71	6.98	35.91	4.78
4924.00	47.10	AV	54	6.90	42.32	33.71	6.98	35.91	4.78
5359.00	45.53	PK	74	28.47	37.95	34.70	7.24	34.36	7.58
5359.00		AV	54						
7386.00	47.49	PK	74	26.51	35.61	37.61	9.25	34.98	11.88
7386.00	11000	AV	54			- e- V		Total	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20)/802.11n (H40) all have been tested, only worse case 802.11b is reported

Frequer	ncy(MHz):	2412		Polarity:			HORIZONTAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2412.00	101.98	PK			68.56	28.80	4.62	0.00	33.42
2412.00	92.15	AV			58.73	28.80	4.62	0.00	33.42
2373.00	44.83	PK	74	29.17	11.64	28.61	4.58	0.00	33.19
2373.00		AV	54	101-			-		
2390.00	46.57	PK	74	27.43	13.25	28.72	4.60	0.00	33.32
2390.00		AV	54	7			-		a 1
2400.00	55.69	PK	74	18.31	22.30	28.78	4.61	0.00	33.39
2400.00	48.46	AV	54	5.54	15.07	28.78	4.61	0.00	33.39

Freque	ncy(MHz):	241	2	Polarity:			VERTICAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2412.00	101.09	PK			67.67	28.80	4.62	0.00	33.42
2412.00	91.59	AV		-	58.17	28.80	4.62	0.00	33.42
2373.00	43.70	PK	74	30.30	10.51	28.61	4.58	0.00	33.19
2373.00		AV	54						
2390.00	45.54	PK	74	28.46	12.22	28.72	4.60	0.00	33.32
2390.00		AV	54	1				-	
2400.00	54.08	PK	74	19.92	20.69	28.78	4.61	0.00	33.39
2400.00	46.36	AV	54	7.64	12.97	28.78	4.61	0.00	33.39

Frequei	ncy(MHz):	246	2		Polarity:		HORIZO	NTAL			
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)			
2462.00	100.58	PK			67.01	28.89	4.68	0.00	33.57			
2462.00	92.16	AV			58.59	28.89	4.68	0.00	33.57			
2483.50	54.27	PK	74	19.73	20.64	28.93	4.70	0.00	33.63			
2483.50	47.65	AV	54	6.35	14.02	28.93	4.70	0.00	33.63			
2492.00	46.51	PK	74	27.49	12.85	28.95	4.71	0.00	33.66			
2492.00		AV	54			4 G A	V V					
2500.00	42.12	PK	74	31.88	8.44	28.96	4.72	0.00	33.68			
2500.00		AV	54			1-3						

Frequei	ncy(MHz):	2462			Polarity:		VERTI	CAL
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2462.00	100.06	PK			66.49	28.89	4.68	0.00	33.57
2462.00	91.58	AV			58.01	28.89	4.68	0.00	33.57
2483.50	54.02	PK	74	19.98	20.39	28.93	4.70	0.00	33.63
2483.50	46.67	AV	54	7.33	13.04	28.93	4.70	0.00	33.63
2492.00	44.32	PK	74	29.68	10.66	28.95	4.71	0.00	33.66
2492.00		AV	54	101-					
2500.00	41.87	PK	74	32.13	8.19	28.96	4.72	0.00	33.68
2500.00		AV	54	12				10	- 10

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

3.3. Maximum Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

WIFI

Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result	
- 10	01	9.43	100		
802.11b	06	9.39	30.00	Pass	
0 1 100	11	9.03			
No. of the last	01	9.21	0		
802.11g	06	06 8.79		Pass	
	11	8.36			
	01	8.90			
802.11n(HT20)	06	8.49	30.00	Pass	
	11	8.08		4.0	
	03	7.93			
802.11n(HT40)	06	8.35	30.00	Pass	
	09	8.16		AND TO	

Note: 1.The test results including the cable lose.

V1.0 Page 21 of 42 Report No.: CTL181102702-WF01

3.4. Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

WIFI

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
	01	-19.961			
802.11b	06	-20.128	8.00	Pass	
	11	-21.461			
	01	-27.551		Made .	
802.11g	06	-28.557	8.00	Pass	
	11	-29.038		=3	
	01	-28.577			
802.11n(HT20)	06	-27.839	8.00	Pass	
	11	-28.974			
5.00	03	-33.158	1530		
802.11n(HT40)	06	-32.436	8.00	Pass	
- 6	09	-33.077	The March		

Test plot as follows:

V1.0 Page 24 of 42 Report No.: CTL181102702-WF01

3.5. 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

WIFI

	WIFI										
Type	Channel	6dB Bandwidth (MHz)	99% OBW (MHz)	Limit (KHz)	Result						
B Ba	01	10.23	14.350	la Silve							
802.11b	06	10.23	14.406		Pass						
and -	11	10.23	14.405								
	01	16.41	16.390								
802.11g	06	16.41	16.387	≥500	Pass						
	11	16.40	16.380								
	01	17.16	17.493								
802.11n(HT20)	06	17.14	17.478	≥500	Pass						
	11	17.20	17.498		1						
	03	36.00	35.966		W. 0						
802.11n(HT40)	06	35.64	35.998 ≥500		Pass						
	09	35.99	36.057		1000						

Test plot as follows:

