Package 'STResamplingDSAA'

September 23, 2019

September 23, 2019
Version 0.5-1
Date 2015-01-01
Title Biased Resampling Strategies for Imbalanced Spatio-Temporal Forecasting
Description Code supporting the conference article: Oliveira M, Moniz N, Torgo L, Santos Costa V (2019). ``Biased Resampling Strategies for Imbalanced Spatio-Temporal Forecasting." In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA).
Depends R (>= $3.1.0$)
Imports assertthat (>= 0.2.0), dplyr (>= 0.7.5), DMwR2 (>= 0.0.2), foreach (>= 1.4.4), lubridate (>= 1.7.4), lwgeom (>= 0.1-3), sf (>= 0.6-0), stringr (>= 1.3.1), uba (>= 0.7.8), UBL (>= 0.0.6)
Suggests doParallel, earth (>= 4.6.3), ranger (>= 0.9.0), rpart (>= 4.1-13), scmamp, ggplot2
License GPL (>=2)
RoxygenNote 6.1.1
R topics documented:
add_ratios

2 add_ratios

	embed_series	5
	estimates	5
	evaluate	6
	eval_stats	7
	get_all_neib_vals	7
	get_full_indicators	9
	get_phi	10
	get_space_wts	10
		11
		11
		12
		14
		15
	get_time_wts	15
	· ·	16
	int_util_evaluate	17
	kf_xval	18
	norm_scale	19
		19
	RandOverRegress	21
	randOverRegress_ST	22
	RandUnderRegress	24
	randUnderRegress_ST	25
	responseValues	27
	sample_wts	27
	shuffle	28
	simple_workflow	29
	summarize_metrics	30
	Tall_SPrand	30
	Tblock_SPall	31
	Tblock_SPrand	31
	Trand_SPall	32
	Trand_SPrand	33
Index		34

 $\mathsf{add}_\mathsf{ratios}$

Add ratios between spatio-temporal neighborhood indicators

Description

Add ratios between spatio-temporal neighborhood indicators

Usage

```
add_ratios(df, var, indStat = "mean")
```

centralImputNAs 3

Arguments

df A data frame of spatio-temporal indicators. Column names should	ould be of type
--	-----------------

<variable name>_<indStat>_<radius>.

var A character string with the name of the variable with indicators to add ratios

indStat The name of the summarizing stat that was used to calculate the indicators

Value

A data frame including the original data of df and additional ratios between the indicators of subsequent radiuses.

See Also

```
get_st_indicators
```

 ${\tt centralImputNAs}$

Handling NAs in train and test

Description

Discard columns/rows with too many NAs and then impute with central value.

Usage

```
centralImputNAs(train, test, nORp)
```

Arguments

train training data set test testing data set

nORp minimum percentage of NA values in a row/column for that row/column to be

discarded from training set

Value

list with an entry for the training and test sets (in this order), both now with no NA values

df2site_sf

CV	fo.	lds

Cut into folds

Description

Assigns rows of a data frame into folds for cross-validation.

Usage

```
cv_folds(x, nfolds)
```

Arguments

x a data.frame nfolds number of folds

Value

a vector with the fold assignment of each row

df2site_sf

Create an sf object of available sites

Description

Extracts the location information from a data frame and transforms into a sf object.

Usage

```
df2site_sf(df, site_id, lon, lat, crs)
```

Arguments

df a data frame of the data set

site_id the name of the column containing location IDs

lon the name of the column containing the location's longitude the name of the column containing the location's latitude

crs the code for the Coordinate Reference System

Value

a sf object, containing the geographic information for each location in df

See Also

```
st_as_sf
```

embed_series 5

ρm	hed	series

Embed each time series in a spatio-temporal data set

Description

Embed each time series in a spatio-temporal data set

Usage

```
embed_series(df, var, k, time = "time", station_id = "station")
```

Arguments

df	data frame
var	a character string, the name of the variable to embed
k	a numeric, the embed size
time	a character string, the column name identifying the time of observation
station_id	a character string, the column name identifying the location of observation

Value

A data frame with extra columns var_Tm1, var_Tm2, ..., var_Tm\(k-1\)

est	i	ma	t e	2
COL	_	IIIa	LC	. 0

Estimate error using a chosen method

Description

Estimate error using a chosen method

Usage

```
estimates(data, form, estimator = "kf_xval", est.pars = list(nfolds =
10, fold.alloc.proc = "Trand_SPrand"), workflow = "simple_workflow",
wf.pars = NULL, evaluator = "evaluate", eval.pars = NULL,
seed = 1234)
```

6 evaluate

Arguments

data	a data frame
form	a formula for learning
estimator	the name of an error estimator function
est.pars	a named list of arguments to feed to estimator
workflow	the name of the workflow to use for making predictions
wf.pars	a named list of arguments to feed to workflow
evaluator	the name of the function to use to calculate evaluation results
eval.pars	a named list of arguments to feed to evaluator
seed	a seed to set before performing estimates

Value

The results of evaluator after applying estimator to the learning task

evaluate	Evalute the results of a predictive workflow
	· ·

Description

Calculate evaluation metrics from the raw results of a workflow

Usage

```
evaluate(wfRes, eval.function = get("regressionMetrics",
    asNamespace("performanceEstimation")), .keptTrain = TRUE, ...)
```

Arguments

wfRes	a data frame (or list of data frames) containing the results of a predictive work-flow with columns trues and preds containing the real and predicted values, respectively
eval.function	the function to be used to calculate error metrics from wfRes
.keptTrain	a Boolean indicating whether .keepTrain was set to TRUE in calls to estimation methods. Only useful if evaluation metrics need training data.
	parameters to pass to eval.function

Value

The results (or a list of results) of eval. function applied to the data frame (or list of data frames) in wfRes

eval_stats 7

eval_stats

Calculate regression evaluation metrics

Description

Calculate regression metrics for imbalanced domains.

Usage

```
eval_stats(trues, preds, y_train, cf = 1.5, thr = 0.9, beta = 1)
```

Arguments

trues a vector of true values

preds a vector of predicted values

y_train a vector of training values

cf phi.control coef

thr relevance threshold

beta beta in F-measure

Value

a named vector of metrics RMSE, relevance-aware RMSE, and utility-based precision, recall and F-measure

Author(s)

Nuno Moniz

get_all_neib_vals

Get the spatio-temporal neighbourhoods of all observations

Description

Get the spatio-temporal neighbourhoods of all observations

Usage

```
get_all_neib_vals(df, max_radius, t_dist_mat, s_dist_mat, alpha, vars,
    time_id, site_id, parallel = FALSE, nsplits = 4)
```

get_all_neib_vals

Arguments

df	a data frame of observations
max_radius	the maximum spatio-temporal distance allowed to be included in a neighbourhood
t_dist_mat	a matrix of normalized temporal distances between time-stamps (rownames and colnames should be a concatenation of "TIME_" and the time-stamp)
s_dist_mat	a matrix of normalized spatial distances between locations (rownames and colnames should be a concatenation of "SITE_" and the location IDs)
alpha	a weighting factor for the spatio-temporal distance
vars	Vector of character strings indicating the columns whose values should be retrieved
time_id	the name of the column containing time-stamps
site_id	the name of the column containing location IDs
parallel	Boolean indicating whether the code should run in parallel. Default is FALSE
nsplits	Number of subsets of rows to split the data frame into so they can be processed in parallel

Details

The spatio-temporal distance is defined as

$$D_{i,j} = d_{i,j}x\alpha + t_{i,j}x(1-\alpha)$$

where d_i , is the spatial distance between locations, t_i , is the temporal distance between time-stapms and α is a weighting factor. Note that the radius should always be a number between zero and min(alpha,alpha-1). Also note that if alpha is set to 1, then instead of a cone, the neighbourhood will have the shape of a cylinder.

Value

A data frame where each row describes a neighbour, with the first two columns containing the location ID and time-stamp of the central observation, followed by two columns with the neighbouring location ID and time-stamp, a column containing the spatio-temporal distance between the two, and a final column containing the values of the variables in df at the neighbouring time and location.

References

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.8742&rep=rep1&type= pdf

See Also

get_st_neighbours

get_full_indicators 9

get_full_indicators Get time series embeds and spatio-temporal indicators

Description

Get time series embeds and spatio-temporal indicators

Usage

```
get_full_indicators(df, stations, k, betas, alpha = 0.5, var = "value",
   stats = c("mean", "weighted.mean", "sd"), ratios2add = c(TRUE, TRUE,
   FALSE), neib_type = "cone", parallel = FALSE, nsplits = 1,
   time_id = "time", site_id = "station")
```

Arguments

df	A data frame containing spatio-temporal information
stations	An sf object containing geographical information on the location of df
k	A numeric indicating the temporal embed size \((number\))
betas	A vector of values defining the maximum spatio-temporal distance allowed for an observation to be considered within a spatio-temporal neighbourhood
alpha	a weighting factor for the spatio-temporal distance
var	The name of the variable to summarize into indicators
stats	A vector containing the names of functions that are to be used to calculate summarizing statistics
ratios2add	A vector of Boolean values indicating, for each statistic in stats whether ratios between neighbrhoods of subsequent sizes should be included as extra columns
neib_type	the type of neighborhood to consider. Can be
	• cone (default) - a cone with the center of its base at the observation (spatial radius growing with time)
	• reversed - a cone with its peak at the observation (spatial radius shrinking with time)
parallel	Boolean indicating whether the code should run in parallel. Default is FALSE
nsplits	Number of subsets of rows to split the data frame into so they can be processed in parallel
time_id	The name of the column containing time-stamps in df
site_id	The name of the column containing location IDs in df

Value

A data frame that contains extra columns <var>_Tm1, <var>_Tm2, ..., <var>_Tm<k-1> with previous observations for each location, summary statistics of the values of var found within the spatio-temporal neighbourhoods of the one or more radiuses of each pair (location ID, time-stamp) and ratios between them

10 get_space_wts

get_phi Calculate utility-based relevance	
---	--

Description

Calculate relevance of values given a parametrization of the relevance function. Most relevant: phi -> 1; less relevant: phi -> 0.

Usage

```
get_phi(y, phi.control)
```

Arguments

y vector of values to calculate relevance of
phi.control list of parameters as returned by function UBL::phi.control

See Also

```
phi, phi.control
```

get_space_wts Calculate spatially-biased re-sampling	g weights
--	-----------

Description

Calculate weights for re-sampling with a spatial bias. Observations have a distance that tends to 1 as they are farther away from the closest relevant case (besides itself) at time slice t (meaning they are more likely to be kept). Farthest away from relevant cases at time slice t: $d \rightarrow 1$.

Usage

```
get_space_wts(df, phi, rel.thr, sites_sf = NULL, lon = NULL,
  lat = NULL, crs = NULL, site_id, time)
```

Arguments

df	a data frame
phi	a vector of the relevance values of df's target variable
rel.thr	a relevance threshold above which an observation is considered relevant
sites_sf	An sf obejct containing station and IDs and geometry points of the locations. As an alternative, provide lon, lat, and crs
lon	the name of the column containing the location's longitude
lat	the name of the column containing the location's latitude

get_spatial_dist_mat 11

crs	the code for the Coordinate Reference System
site_id	the name of the column containing location IDs

time the column name of the time-stamp

Value

A vector of spatially-biased re-sampling weights, scaled to fit within range [0,1].

```
{\tt get\_spatial\_dist\_mat} \quad \textit{Calculate spatial distance matrix}
```

Description

A function that calculates the geographical distance matrix between the locations of an sf object.

Usage

```
get_spatial_dist_mat(sites_sf, site_id)
```

Arguments

sites_sf an sf object with the geographic information of the locations (as returned by

df2site_sf)

site_id the column name of the location ID

Value

a matrix of distances. Row and column names are a concatenation of "SITE_" and the location IDs.

See Also

```
df2site_sf
```

Description

Calculate a spatio-temporal indicator of a certain variable within a spatio-temporal neighborhood of a certain radius.

Usage

```
get_st_indicator(all_neib_vals, stat, radius, ind_name, var,
    time_id = "time", site_id = "site")
```

12 get_st_indicators

Arguments

all_neib_vals	a data frame containing information on observations spatio-temporal distance to neighbours and variable values at the neighbouring locations and times.
stat	the name of a function that calculates a statistic (e.g., "mean"). If the stat is "weighted.mean" then the inverse of the spatio-temporal distance is used to weight the values of observations in the spatio-temporal neighbourhood
radius	a value defining the maximum spatio-temporal distance allowed for an observation to be considered within a spatio-temporal neighbourhood
ind_name	the name of the indicator column
var	the name of the variable to summarize into an indicator
time_id	the name of the column containing time-stamps
site_id	the name of the column containing location IDs

Details

The spatio-temporal distance is defined as

$$D_{i,j} = d_{i,j}x\alpha + t_{i,j}x(1-\alpha)$$

where d_i , is the spatial distance between locations, t_i , is the temporal distance between time-stapms and α is a weighting factor. Note that radius should always be a number between zero and min(alpha,alpha-1), so the border conditions apply. Also note that if alpha is set to 1, then instead of a cone, the neighbourhood will have the shape of a cylinder.

Value

A data frame that contains a summary statistic of the values found within the spatio-temporal neighbourhood of a certain radius of each pair (location ID, time-stamp) in all_neib_vals

References

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.8742&rep=rep1&type= pdf

<pre>get_st_indicators</pre>	Get spatio-temporal indicators from a data frame containing spatio-
	temporal information

Description

Calculate spatio-temporal indicators of one or more variables within a spatio-temporal neighborhood of one or more maximum radius (in terms of spatio-temporal distance).

get_st_indicators 13

Usage

```
get_st_indicators(df, stations_sf, radiuses = c(0.1), stats = c("mean",
    "sd"), alpha = 0.5, neib_type = "cone", time_id = "time",
    site_id = "site_id", vars = c("value"), parallel = FALSE,
    nsplits = 4)
```

Arguments

df	A data frame containing spatio-temporal information
stations_sf	An sf object containing geographical information on the location of df
radiuses	A vector of values defining the maximum spatio-temporal distance allowed for an observation to be considered within a spatio-temporal neighbourhood
stats	A vector containing the names of functions that are to be used to calculate summarizing statistics
alpha	a weighting factor for the spatio-temporal distance
neib_type	the type of neighborhood to consider. Can be
	• cone (default) - a cone with the center of its base at the observation (spatial radius growing with time)
	 reversed - a cone with its peak at the observation (spatial radius shrinking with time)
time_id	The name of the column containing time-stamps in df
site_id	The name of the column containing location IDs in df
vars	The name of the variables to summarize into indicators
parallel	Boolean indicating whether the code should run in parallel. Default is FALSE
nsplits	Number of subsets of rows to split the data frame into so they can be processed in parallel

Details

The spatio-temporal distance is defined as

$$D_{i,j} = d_{i,j}x\alpha + t_{i,j}x(1-\alpha)$$

where $d_{i,j}$ is the spatial distance between locations, $t_{i,j}$ is the temporal distance between time-stapms and α is a weighting factor.

Value

A data frame that contains summary statistics of the values of vars found within the spatio-temporal neighbourhoods of the one or more radiuses of each pair (location ID, time-stamp) in df

References

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.8742&rep=rep1&type= pdf 14 get_st_neighbours

get_st_neighbours	Get spatio-temporal neighbourhood

Description

A function that calculates the observations that are within a spatio-temporal neighbourhood of a certain radius of a time and location.

Usage

```
get_st_neighbours(site, time, radius, t_dist_mat, s_dist_mat, alpha,
   time_id = "time", site_id = "site_id")
```

Arguments

site	a location ID
time	a time-stamp
radius	a radius of spatio-temporal distance
t_dist_mat	a matrix of normalized temporal distances between time-stamps (rownames and colnames should be a concatenation of "TIME_" and the time-stamp)
s_dist_mat	a matrix of normalized spatial distances between locations (rownames and colnames should be a concatenation of "SITE_" and the location IDs)
alpha	a weighting factor for the spatio-temporal distance
time_id	the name to give to the column of time-stamps (Default: time)
site_id	the name to give to the column of location IDs (Default: site_id)

Details

The spatio-temporal distance is defined as

$$D_{i,j} = d_{i,j}x\alpha + t_{i,j}x(1-\alpha)$$

where d_i,j is the spatial distance between locations, t_i,j is the temporal distance between time-stapms and α is a weighting factor.

Note that radius should always be a number between zero and min(alpha,alpha-1). Also note that if alpha is set to 1, then instead of a cone, the neighbourhood will have the shape of a cylinder.

Value

A data frame where each row describes a neighbour, with the first two columns containing the location ID and time-stamp of the central observation, followed by two columns with the neighbouring location ID and time-stamp, and a final column containing the spatio-temporal distance between the two.

References

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.8742&rep=rep1&type= pdf get_time_dist_mat 15

get_time_dist_mat

Calculate temporal distance matrix

Description

A function that calculates a distance matrix of time-stamps

Usage

```
get_time_dist_mat(times, origin = min(times))
```

Arguments

times A vector of time-stamps

origin A date to use as origin for difftime

Value

a matrix of distances. Row and column names are a concatenation of "TIME_" and the time-stamp.

get_time_wts

Calculate temporally-biased re-sampling weights

Description

Calculate weights for re-sampling with a temporal bias. Most recent observations have weights that tend to 1, while the oldest observations have weights that tend to 0 (meaning they are less likely to be kept). Most recent observations: $w \rightarrow 1$; oldest: $w \rightarrow 0$.

Usage

```
get_time_wts(times, phi, rel.thr)
```

Arguments

times a vector of time-stamps

phi a vector of the relevance values of df's target variable

rel.thr a relevance threshold above which an observation is considered relevant

Value

A vector of temporally-biased re-sampling weights, scaled to fit within range [0,1].

Author(s)

Mariana Oliveira

16 internal_workflow

internal_workflow

A learning and prediction workflow with internal validation

Description

A learning and prediction workflow that may deal with NAs and use internal validation to parametrize a re-sampling technique to balance an imbalanced regression problem.

Usage

```
internal_workflow(train, test, form, model = "lm", resample = NULL,
  resample.pars = NULL, internal.est = NULL,
  internal.est.pars = NULL, internal.evaluator = NULL,
  internal.eval.pars = NULL, metrics = NULL, metrics.max = NULL,
  stat = "MED", resample.grid = NULL, handleNAs = NULL,
  min_train = 2, nORp = 0.2, time = "time", site_id = "site",
  .full_intRes = FALSE, ...)
```

Arguments

train	a data frame for training
test	a data frame for testing

form a formula describing the model to learn

model the name of the algorithm to use

re-sample re-sampling technique to be used. Default is NULL.

resample.pars parameters to be passed to re-sample function. Default is NULL. internal.est character string identifying the internal estimator function to use

internal.est.pars

named list of internal estimator parameters (e.g., tr.perc or nfolds)

internal.evaluator

character string indicating internal evaluation function

internal.eval.pars

named list of parameters to feed to internal evaluation function

metrics vector of names of two metrics to be used to determine the best parametrization

(the second metric is only used in case of ties)

metrics.max vector of Booleans indicating whether each metric in parameter metrics should

be maximized (TRUE) or minimized (FALsE) for best results

stat parameter indicating summary statistic that should be used to determine the best

internal evaluation metric: "MED" (for median) or "MEAN" (for mean)

resample.grid a data.frame with columns indicating resample.pars to test using internal.est

handleNAs string indicating how to deal with NAs. If "centralImput", training observations

with at least 80% of non-NA columns, will have their NAs substituted by the mean value and testing observatiosn will have their NAs filled in with mean

value regardless. Default is NULL.

int_util_evaluate 17

min_train	a minimum number of observations that must be left to train a model. If there are not enough observations, predictions will be NA. Default is 2.
n0Rp	a maximum number or fraction of columns/rows with missing values above which a row/column will be removed from train before learning the model. Only works if handleNAs was set to centralImputation. Default is 0.2.
time	the name of the column in train and test containing time-stamps
site_id	the name of the column in train and test containing location IDs
.full_intRes	a Boolean indicating whether the full results object for internal validation should be returned as well. Defaults to FALSE
	other parameters to feed to model

Value

a data frame containing time-stamps, location IDs, true values and predicted values

int_util_evaluate	Evalute the results of an internal predictive workflow	
-------------------	--	--

Description

Calculate evaluation metrics from the raw results of a workflow

Usage

```
int_util_evaluate(wfRes, eval.function = get("regressionMetrics",
    asNamespace("performanceEstimation")), y_train, ...)
```

Arguments

wfRes	a data frame (or list of data frames) containing the results of a predictive work-flow with columns trues and preds containing the real and predicted values, respectively
eval.function	the function to be used to calculate error metrics from wfRes
y_train	a vector of the whole training values
	parameters to pass to eval.function

Value

The results (or a list of results) of eval.function applied to the data frame (or list of data frames) in wfRes

18 kf_xval

kf_xval	Cross-validation	

Description

Performs a cross-validation experiment where folds can be allocated in different ways considering time and/or space

Usage

```
kf_xval(data, nfolds, FUN, form, fold.alloc.proc = "Trand_SPrand",
    alloc.pars = NULL, time = "time", site_id = "site",
    .keepTrain = TRUE, .parallel = TRUE, ...)
```

Arguments

data full dataset

nfolds number of folds for the data set to be separated into.

If you would like to set the number of time and space folds separately, nfolds should be set to NULL and t.nfolds and sp.nfolds should be fed as a list to alloc.pars (only available when using fold.alloc.proc set to Tblock_SPrand).

FUN function with arguments

- · train training set
- test testing set
- time column name of time-stamps
- site_id column name of location identifiers
- form a formula for model learning
- ... other arguments

form

a formula for model learning

fold.alloc.proc

name of fold allocation function. Should be one of

- Trand_SPrand each fold contains completely random observations. The default
- Tall_SPrand each fold includes all time and random locations in space
- Tblock_SPall each fold includes a block of contiguous time for all locations
- Trand_SPall each fold includes random time-snapshots of of all locations
- Tblock_SPrand each fold includes a block of contiguous time for a randomly assigned part of space

alloc.pars parameters to pass onto fold.alloc.proc
time column name of time-stamp in data. Default is "time"
site_id column name of location identifier in data. Default is "site_id"

norm_scale 19

.keepTrain	if TRUE (default), instead of the results of FUN being directly returned, a list is
	created with both the results and a data. frame with the time and site identifiers
	of the observations used in the training step.
.parallel	Boolean indicating whether each fold should be run in parallel
	other arguments to FUN

Value

The results of FUN. Usually, a data.frame with location identifier site_id, time-stamp time, true values trues and the workflow's predictions preds.

norm_scale

Feature scaling

Description

Normalize values to be within the range between [0,1].

Usage

```
norm_scale(x)
```

Arguments

Х

a vector of values

Value

a scaled vector

prequential_eval

Prequential evaluation

Description

Performs an evaluation procedure where training and test sets can be allocated in different ways, while always respecting the ordering provided by time (models are trained in the past and tested in the relative future).

Usage

```
prequential_eval(data, nfolds, FUN, form, window = "growing",
  fold.alloc.proc = "Tblock_SPall", alloc.pars = NULL,
  removeSP = FALSE, init_fold = 2, time = "time", site_id = "site",
  .keepTrain = TRUE, .parallel = TRUE, ...)
```

20 prequential_eval

Arguments

data full dataset

nfolds number of folds for the data set to be separated into. If you would like to set the

number of time and space folds separately, nfolds should be set to NULL and t.nfolds and sp.nfolds should be fed as a list to alloc.pars (only available

when using fold.alloc.proc Tblock_SPrand)

FUN function with arguments

train training set test testing set

- time column name of time-stamps
- site_id column name of location identifiers
- form a formula for model learning
- ... other arguments

form a formula for model learning

window type of blocked-time window ordering considered. Should be one of

- growing for each time block being tested, all previous time blocks are used for training
- sliding for each time block being tested, the immediately previous time blocks are used for training

fold.alloc.proc

name of fold allocation function. Should be one of

- Tblock_SPall each fold includes a block of contiguous time for all locations
- Tblock_SPrand each fold includes a block of contiguous time for a randomly assigned part of space

alloc.pars parameters to pass onto fold.alloc.proc

removeSP argument that determines whether spatio-temporal blocks including the space

being used for testing should be removed from the training set. Default is

FALSE, meaning the information is not removed

init_fold first temporal fold to use for testing. Default is 2.

time column name of time-stamp in data. Default is "time"

site_id column name of location identifier in data. Default is "site_id"

.keepTrain if TRUE (default), instead of the results of FUN being directly returned, a list is

created with both the results and a data. frame with the time and site identifiers

of the observations used in the training step.

parallel Boolean indicating whether each block should be run in parallel

... other arguments to FUN

Value

The results of FUN. Usually, a data.frame with location identifier site_id, time-stamp time, true values trues and the workflow's predictions preds.

RandOverRegress 21

RandOverRegress Random over-sampling for imbalanced regression problems	
---	--

Description

This function is identical to the function of the same name available on the R package UBL. The only difference is in the requirements imposed on the argument C.perc.

This function performs a random over-sampling strategy for imbalanced regression problems. Basically a percentage of cases of the "class(es)" (bumps above a relevance threshold defined) selected by the user are randomly over-sampled. Alternatively, it can either balance all the existing "classes" (the default) or it can "smoothly invert" the frequency of the examples in each class.

Usage

```
RandOverRegress(form, dat, rel = "auto", thr.rel = 0.5,
   C.perc = "balance", repl = TRUE)
```

Arguments

form	A formula describing the prediction	nroblem
1 01 111	A formula describing the prediction	problem.

dat A data frame containing the original imbalanced data set.

rel The relevance function which can be automatically ("auto") determined (the de-

fault) or may be provided by the user through a matrix with the interpolating

points.

thr.rel A number indicating the relevance threshold above which a case is considered

as belonging to the rare "class".

C.perc A vector containing the over-sampling percentage/s to apply to all/each "class"

(bump) obtained with the relevance threshold. Replicas of the examples are are randomly added in each "class". If only one percentage is provided this value is reused in all the "classes" that have values above the relevance threshold. A different percentage can be provided to each "class". In this case, the percentages should be provided in ascending order of target variable value. The over-sampling percentage(s), should be numbers above 0, meaning that the important cases (cases above the threshold) are over-sampled by the corresponding percentage. If the number 1 is provided then the number of extreme examples will be doubled. Alternatively, C.perc parameter may be set to "balance" or "extreme", cases where the over-sampling percentages are automatically estimated to either balance or invert the frequencies of the examples in the "classes"

(bumps).

repl A boolean value controlling the possibility of having repetition of examples when choosing the examples to repeat in the over-sampled data set. Defaults to

TRUE because this is a necessary condition if the selected percentage is greater than 2. This parameter is only important when the over-sampling percentage is between 1 and 2. In this case, it controls if all the new examples selected from a

given "class" can be repeated or not.

Details

The only difference between this function and the original function is in the requirements imposed on the argument C.perc.

This function performs a random over-sampling strategy for dealing with imbalanced regression problems. The new examples included in the new data set are randomly selected replicas of the examples already present in the original data set.

Value

The function returns a data frame with the new data set resulting from the application of the random over-sampling strategy.

References

Paula Branco, Rita P. Ribeiro, Luis Torgo (2016)., UBL: an R Package for Utility-Based Learning, CoRR abs/1604.08079 [cs.MS], URL: http://arxiv.org/abs/1604.08079

See Also

RandOverRegress, RandUnderRegress

randOverRegress_ST Biased over-sampling for imbalanced regression spatio-temporal problems

Description

Based on randOverRegress (R package UBL). This function performs a random over-sampling strategy for imbalanced regression problems with a bias based on spatio-temporal contextual information. Basically a percentage of cases of the "class(es)" (bumps above a relevance threshold defined) selected by the user are randomly over-sampled with a sampling bias based on a spatio-temporal weight. Alternatively, it can either balance all the existing "classes" (the default) or it can "smoothly invert" the frequency of the examples in each class.

Usage

```
randOverRegress_ST(form, dat, alpha = 0.5, beta = 0.9, rel = "auto",
  thr.rel = 0.5, epsilon = 1e-04, C.perc = "balance", repl = TRUE,
  type = "add", site_id = "site_id", time = "time",
  sites_sf = NULL, lon = NULL, lat = NULL, crs = NULL)
```

Arguments

form a model formula
dat the original training set (with the unbalanced distribution)
alpha weighting parameter for temporal and spatial re-sampling probabilities. Default
0.5

beta	weighting parameter for spatiotemporal weight and phi for re-sampling probabilities. Default 0.9
rel	relevance determined automatically (default) with uba package or provided by the user
thr.rel	relevance threshold above which a case is considered as belonging to the rare "class"
epsilon	minimum weight to be added to all observations. Default 1E-4
C.perc	A vector containing the over-sampling percentage/s to apply to all/each "class" (bump) obtained with the relevance threshold. Replicas of the examples are are randomly added in each "class". If only one percentage is provided this value is reused in all the "classes" that have values above the relevance threshold. A different percentage can be provided to each "class". In this case, the percentages should be provided in ascending order of target variable value. The over-sampling percentage(s), should be numbers above 0, meaning that the important cases (cases above the threshold) are over-sampled by the corresponding percentage. If the number 1 is provided then the number of extreme examples will be doubled. Alternatively, C.perc parameter may be set to "balance" or "extreme", cases where the over-sampling percentages are automatically estimated to either balance or invert the frequencies of the examples in the "classes" (bumps).
repl	allowed to perform sampling with replacement
type	character string indicating the type of bias used. Default is "add". More types to be added in future work
site_id	the name of the column containing location IDs
time	the column name of the time-stamp
sites_sf	An sf obejct containing station and IDs and geometry points of the locations. As an alternative, provide lon, lat, and crs
lon	the name of the column containing the location's longitude
lat	the name of the column containing the location's latitude
crs	the code for the Coordinate Reference System

Value

The function returns a data frame with the new data set resulting from the application of the spatio-temporally biased over-sampling strategy.

References

Paula Branco, Rita P. Ribeiro, Luis Torgo (2016)., UBL: an R Package for Utility-Based Learning, CoRR abs/1604.08079 [cs.MS], URL: http://arxiv.org/abs/1604.08079

See Also

RandOverRegress, sample_wts

24 RandUnderRegress

RandUnderRegress

Random under-sampling for imbalanced regression problems

Description

This function is identical to the function of the same name available on the R package UBL. The function performs a random under-sampling strategy for imbalanced regression problems. Essentially, a percentage of cases of the "class(es)" (bumps below a relevance threshold defined) selected by the user are randomly removed. Alternatively, the strategy can be applied to either balance all the existing "classes" or to "smoothly invert" the frequency of the examples in each "class".

Usage

```
RandUnderRegress(form, dat, rel = "auto", thr.rel = 0.5,
   C.perc = "balance", repl = FALSE)
```

Arguments

thr.rel

torm	A formula describing the prediction problem.
dat	A data frame containing the original imbalanced data set.

The relevance function which can be automatically ("auto") determined (the de-

fault) or may be provided by the user through a matrix with interpolating points.

A number indicating the relevance threshold below which a case is considered

as belonging to the normal "class".

C.perc A vector containing the under-sampling percentage/s to apply to all/each "class"

(bump) obtained with the relevance threshold. Examples are randomly removed from the "class(es)". If only one percentage is provided this value is reused in all the "classes" that have values below the relevance threshold. A different percentage can be provided to each "class". In this case, the percentages should be provided in ascending order of target variable value. The under-sampling percentage(s), should be a number below 1, meaning that the normal cases (cases below the threshold) are under-sampled by the corresponding percentage. If the number 1 is provided then those examples are not changed. Alternatively, C.perc parameter may be set to "balance" or "extreme", cases where the undersampling percentages are automatically estimated to either balance or invert the

frequencies of the examples in the "classes" (bumps).

repl A boolean value controlling the possibility of having repetition of examples in

the under-sampled data set. Defaults to FALSE.

Details

The only difference between this function and the original function is in the requirements imposed on the argument C.perc.

This function performs a random under-sampling strategy for dealing with imbalanced regression problems. The examples removed are randomly selected among the examples belonging to the normal "class(es)" (bump of relevance below the threshold defined). The user can chose one or more bumps to be under-sampled.

Value

The function returns a data frame with the new data set resulting from the application of the random under-sampling strategy.

References

Paula Branco, Rita P. Ribeiro, Luis Torgo (2016)., UBL: an R Package for Utility-Based Learning, CoRR abs/1604.08079 [cs.MS], URL: http://arxiv.org/abs/1604.08079

See Also

RandUnderRegress, RandOverRegress

 ${\it rand Under Regress_ST} \qquad {\it Biased under-sampling for imbalanced regression spatio-temporal problems}$

Description

Based on randUnderRegress (R package UBL). The function performs a random under-sampling strategy for imbalanced regression problems with a bias based on spatio-temporal contextual information. Essentially, a percentage of cases of the "class(es)" (bumps below a relevance threshold defined) selected by the user are randomly removed with a sampling bias based on a spatio-temporal weight. Alternatively, the strategy can be applied to either balance all the existing "classes"" or to "smoothly invert" the frequency of the examples in each "class".

Usage

```
randUnderRegress_ST(form, dat, alpha = 0.5, beta = 0.9, rel = "auto",
  thr.rel = 0.5, epsilon = 1e-04, C.perc = "balance", repl = FALSE,
  type = "add", site_id = "site_id", time = "time",
  sites_sf = NULL, lon = NULL, lat = NULL, crs = NULL)
```

Arguments

form	a model formula
dat	the original training set (with the unbalanced distribution)
alpha	weighting parameter for temporal and spatial re-sampling probabilities. Default 0.5
beta	weighting parameter for spatiotemporal weight and phi for re-sampling probabilities. Default 0.9
rel	relevance determined automatically (default) with uba package or provided by the user
thr.rel	relevance threshold above which a case is considered as belonging to the rare "class"

epsilon minimum weight to be added to all observations. Default 1E-4

C.perc A vector containing the over-sampling percentage/s to apply to all/each "class"

(bump) obtained with the relevance threshold. Replicas of the examples are are randomly added in each "class". If only one percentage is provided this value is reused in all the "classes" that have values above the relevance threshold. A different percentage can be provided to each "class". In this case, the percentages should be provided in ascending order of target variable value. The over-sampling percentage(s), should be numbers above 0, meaning that the important cases (cases above the threshold) are over-sampled by the corresponding percentage. If the number 1 is provided then the number of extreme examples will be doubled. Alternatively, C.perc parameter may be set to "balance" or "extreme", cases where the over-sampling percentages are automatically estimated to either balance or invert the frequencies of the examples in the "classes"

(bumps).

repl allowed to perform sampling with replacement

type character string indicating the type of bias used. Default is "add". More types to

be added in future work

site_id the name of the column containing location IDs

time the column name of the time-stamp

sites_sf An sf obejet containing station and IDs and geometry points of the locations. As

an alternative, provide lon, lat, and crs

lon the name of the column containing the location's longitude

lat the name of the column containing the location's latitude

crs the code for the Coordinate Reference System

Value

The function returns a data frame with the new data set resulting from the application of the spatiotemporally biased under-sampling strategy.

References

Paula Branco, Rita P. Ribeiro, Luis Torgo (2016)., UBL: an R Package for Utility-Based Learning, CoRR abs/1604.08079 [cs.MS], URL: http://arxiv.org/abs/1604.08079

See Also

RandUnderRegress, sample_wts

response Values 27

responseValues	Get response values of a dataset from a formula
----------------	---

Description

Get response values of a dataset from a formula

Usage

```
responseValues(formula, data, na = NULL)
```

Arguments

formula learning formula

data data set to get the target values from

na what action to perform if NAs are present. Default is na.fail

Value

A vector of the target values.

sample_wts	Get spatio-temporal re-sampling weights

Description

A function that calculates different weights for re-sampling that is temporally and/or spatially biased.

Usage

```
sample_wts(form, df, phi.control, alpha = 0.5, beta = 0.9,
rel.thr = 0.9, epsilon = 1e-04, site_id = "site_id",
time = "time", sites_sf = NULL, lon = NULL, lat = NULL,
crs = NULL)
```

Arguments

form a formula describing the learning task

df a data frame

phi.control list of parameters as returned by function UBL::phi.control

alpha weighting parameter for temporal and spatial re-sampling probabilities. Default

0.5

28 shuffle

beta	weighting parameter for spatiotemporal weight and phi for re-sampling probabilities. Default 0.9
rel.thr	a relevance threshold above which an observation is considered relevant
epsilon	minimum weight to be added to all observations. Default 1E-4
site_id	the name of the column containing location IDs
time	the column name of the time-stamp
sites_sf	An sf obejct containing station and IDs and geometry points of the locations. As an alternative, provide lon, lat, and crs
lon	the name of the column containing the location's longitude
lat	the name of the column containing the location's latitude
crs	the code for the Coordinate Reference System

Details

phi gives the target variable's relevance (higher relevance: phi -> 1; lower relevance: phi -> 0); time_wts gives the observation's temporally biased re-sampling weight (most recent observations: $w \rightarrow 1$; oldest: $w \rightarrow 0$.); space_wts gives the observation's spatially biased re-sampling weight (farthest away from other relevant cases at time slice: $d \rightarrow 1$.). High time_wts or space_wts means the observation is more likely to be kept.

Value

a data.frame with relevance phi, temporally biased weights time_wts, and spatially biased weights space_wts for each row in df.

See Also

```
get_phi, get_time_wts, get_space_wts.
```

shuffle Shuffle values/rows

Description

Shuffle the values or rows of a vector or data frame

Usage

shuffle(x)

Arguments

x a vector or data frame

Value

a vector or data frame

simple_workflow 29

simple_workflow A simple learning and prediction workflow	
---	--

Description

A simple learning and prediction workflow that may deal with NAs and use re-sampling techniques to balance an imbalanced regression problem.

Usage

```
simple_workflow(train, test, form, model = "lm", resample = NULL,
resample.pars = NULL, handleNAs = NULL, min_train = 2,
nORp = 0.2, time = "time", site_id = "site", ...)
```

Arguments

train	a data frame for training
test	a data frame for testing
form	a formula describing the model to learn
model	the name of the algorithm to use
resample	re-sampling technique to be used. Default is NULL.
resample.pars	parameters to be passed to re-sample function. Default is NULL.
handleNAs	string indicating how to deal with NAs. If "centralImput", training observations with at least 80% of non-NA columns, will have their NAs substituted by the mean value and testing observatiosn will have their NAs filled in with mean value regardless. Default is NULL.
min_train	a minimum number of observations that must be left to train a model. If there are not enough observations, predictions will be NA. Default is 2.
nORp	a maximum number or fraction of columns/rows with missing values above which a row/column will be removed from train before learning the model. Only works if handleNAs was set to centralImputation. Default is 0.2.
time	the name of the column in train and test containing time-stamps
site_id	the name of the column in train and test containing location IDs
	other parameters to feed to model

Value

a data frame containing time-stamps, location IDs, true values and predicted values

Tall_SPrand

summarize_metrics

Summarize metrics

Description

Used for internal validation

Usage

```
summarize_metrics(int.res, metrics)
```

Arguments

int.res A list with results obtained by running estimates metrics a list of metrics that should be summarized

Value

a named vector with median, IQR, mean, standard-deviation, and number of non-NA values of each metric

Tall_SPrand

Spatial CV

Description

Fold allocation of k-fold CV using:

- all time
- shuffled individual locations

Usage

```
Tall_SPrand(data, nfolds, time = "time", site_id = "site")
```

Arguments

data full dataset nfolds number of folds

time column name of time-stamp in data. Default is "time" site_id column name of location identifier in data. Default is "site"

Value

A list with slots:

- data, possibly re-ordered
- f, a vector with the fold numbers (from 1 to nfolds) of each row in data

Tblock_SPall 31

_	1 7		SPal ⁻	1

Temporally blocked CV

Description

Fold allocation of k-fold CV using:

- · blocked time
- all locations

Usage

```
Tblock_SPall(data, nfolds, time = "time", site_id = "site")
```

Arguments

data	full dataset
nfolds	number of folds
time	column name of time-stamp in data. Default is "time"
site id	column name of location identifier in data. Default is "site"

Value

A list with slots:

- data, possibly re-ordered
- f, a vector with the fold numbers (from 1 to nfolds) of each row in data

Tblock_SPrand

Temporal blocked and randomly assigned spatial CV

Description

Fold allocation of k-fold CV using:

- blocked time
- randomly assigned locations

Usage

```
Tblock_SPrand(data, nfolds, t.nfolds = round(sqrt(nfolds)),
   sp.nfolds = round(sqrt(nfolds)), time = "time", site_id = "site")
```

32 Trand_SPall

Arguments

data full dataset

nfolds number of folds

t.nfolds number of folds across time. Default is sqrt(nfolds)

sp.nfolds number of folds across space. Default is sqrt(nfolds)

time column name of time-stamp in data. Default is "time"

site_id column name of location identifier in data. Default is "site"

Value

A list with slots:

- data, possibly re-ordered
- f, a vector with the fold numbers (from 1 to nfolds) of each row in data

Trand_SPall Temporal CV

Description

Fold allocation of k-fold CV using:

- shuffled time
- · all locations

Usage

```
Trand_SPall(data, nfolds, time = "time", site_id = "site")
```

Arguments

data full dataset

nfolds number of folds

time column name of time-stamp in data. Default is "time"

site_id column name of location identifier in data. Default is "site"

Value

A list with slots:

- data, possibly re-ordered
- f, a vector with the fold numbers (from 1 to nfolds) of each row in data

Trand_SPrand 33

|--|--|

Description

Fold allocation of classic k-fold CV:

- shuffled time
- shuffled locations

Usage

```
Trand_SPrand(data, nfolds, time = "time", site_id = "site")
```

Arguments

data	full dataset
nfolds	number of folds
time	column name of time-stamp in data. Default is "time"
site_id	column name of location identifier in data. Default is "site"

Value

A list with slots:

- data, possibly re-ordered
- f, a vector with the fold numbers (from 1 to nfolds) of each row in data

Index

```
shuffle, 28
add_ratios, 2
                                                 simple_workflow, 29
centralImputNAs, 3
                                                 st_as_sf, 4
cv_folds, 4
                                                 summarize_metrics, 30
df2site_sf, 4, 11
                                                 Tall_SPrand, 30
                                                 Tblock_SPall, 31
embed_series, 5
                                                 Tblock_SPrand, 31
estimates, 5
                                                 Trand_SPall, 32
eval_stats, 7
                                                 Trand_SPrand, 33
evaluate, 6
get_all_neib_vals, 7
{\tt get\_full\_indicators}, 9
get_phi, 10, 28
get\_space\_wts, 10, 28
get_spatial_dist_mat, 11
get_st_indicator, 11
get_st_indicators, 3, 12
get_st_neighbours, 8, 14
get_time_dist_mat, 15
get_time_wts, 15, 28
int_util_evaluate, 17
internal_workflow, 16
kf_xval, 18
norm_scale, 19
phi, 10
phi.control, 10
prequential_eval, 19
RandOverRegress, 21, 22, 23, 25
randOverRegress_ST, 22
RandUnderRegress, 22, 24, 25, 26
randUnderRegress_ST, 25
responseValues, 27
sample_wts, 23, 26, 27
```