Lesson 13: Using the Derivative I

Francisco Blanco-Silva

University of South Carolina

WHAT DO WE KNOW?

THE GENERAL PROGRAM

► Functions

- ightharpoonup x- and y-intercepts (f(x)=0,f(0))
- ► Change from x = a to x = b

$$\Delta y = f(b) - f(a)$$

 Average Rate of Change from x = a to x = b

$$ARC = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

▶ Relative Change from x = a to x = b

$$RC = \frac{\Delta y}{f(a)} = \frac{f(b) - f(a)}{f(a)}$$

► Instantaneous Rate of Change at x = a

Relative Rate of Change at x = a

$$\frac{f'(a)}{f(a)}$$

► Linear Functions:

$$f(x) = b + mx$$

- Exponential Functions $P_0a^t = P_0(1+r)^t = P_0e^{kt}$
- Power Functions kx^p
- Polynomials $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x).

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^2 - 3ex + 13$$

$$g(x) = \ln(3x^2 - 4)$$

$$h(x) = \left(x^5 - x^{1/3}\right)^2$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^2 - 3ex + 13$$
 $f'(x) = 2\pi x - 3e$

$$g(x) = \ln(3x^2 - 4)$$

$$h(x) = \left(x^5 - x^{1/3}\right)^2$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^2 - 3ex + 13$$
 $f'(x) = 2\pi x - 3e$
 $f''(x) = 2\pi$
 $g(x) = \ln(3x^2 - 4)$

$$h(x) = \left(x^5 - x^{1/3}\right)^2$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^{2} - 3ex + 13$$

$$f'(x) = 2\pi x - 3e$$

$$f''(x) = 2\pi$$

$$g(x) = \ln(3x^{2} - 4)$$

$$g'(x) = \frac{6x}{3x^{2} - 4}$$

$$h(x) = \left(x^5 - x^{1/3}\right)^2$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^{2} - 3ex + 13$$

$$f'(x) = 2\pi x - 3e$$

$$f''(x) = 2\pi$$

$$g(x) = \ln(3x^{2} - 4)$$

$$g'(x) = \frac{6x}{3x^{2} - 4}$$

$$g''(x) = \frac{6(3x^{2} - 4) - 6x \cdot 6x}{(3x^{2} - 4)^{2}}$$

$$h(x) = (x^{5} - x^{1/3})^{2}$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^{2} - 3ex + 13$$

$$f'(x) = 2\pi x - 3e$$

$$f''(x) = 2\pi$$

$$g(x) = \ln(3x^{2} - 4)$$

$$g'(x) = \frac{6x}{3x^{2} - 4}$$

$$g''(x) = \frac{6(3x^{2} - 4) - 6x \cdot 6x}{(3x^{2} - 4)^{2}}$$

$$h(x) = (x^{5} - x^{1/3})^{2}$$

$$h'(x) = 2(x^{5} - x^{1/3})(5x^{4} - \frac{1}{3}x^{-2/3})$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^{2} - 3ex + 13$$

$$f'(x) = 2\pi x - 3e$$

$$f''(x) = 2\pi$$

$$g(x) = \ln(3x^{2} - 4)$$

$$g'(x) = \frac{6x}{3x^{2} - 4}$$

$$g''(x) = \frac{6(3x^{2} - 4) - 6x \cdot 6x}{(3x^{2} - 4)^{2}}$$

$$h(x) = (x^{5} - x^{1/3})^{2}$$

$$h'(x) = 2(x^{5} - x^{1/3})(5x^{4} - \frac{1}{3}x^{-2/3})$$

$$= (2x^{5} - 2x^{1/3})(5x^{4} - \frac{1}{3}x^{-2/3})$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^{2} - 3ex + 13$$

$$f'(x) = 2\pi x - 3e$$

$$f''(x) = 2\pi$$

$$g(x) = \ln(3x^{2} - 4)$$

$$g'(x) = \frac{6x}{3x^{2} - 4}$$

$$g''(x) = \frac{6(3x^{2} - 4) - 6x \cdot 6x}{(3x^{2} - 4)^{2}}$$

$$h(x) = (x^{5} - x^{1/3})^{2}$$

$$h'(x) = 2(x^{5} - x^{1/3})(5x^{4} - \frac{1}{3}x^{-2/3})$$

$$= (2x^{5} - 2x^{1/3})(5x^{4} - \frac{1}{3}x^{-2/3})$$

$$= 10x^{9} - \frac{32}{3}x^{13/3} + \frac{2}{3}x^{-1/3}$$

Taking derivatives of a derivative yields what we call a second derivative. We denote them by f''(x). Let us compute some:

$$f(x) = \pi x^{2} - 3ex + 13$$

$$f'(x) = 2\pi x - 3e$$

$$f''(x) = 2\pi$$

$$g(x) = \ln(3x^{2} - 4)$$

$$g''(x) = \frac{6x}{3x^{2} - 4}$$

$$g''(x) = \frac{6(3x^{2} - 4) - 6x \cdot 6x}{(3x^{2} - 4)^{2}}$$

$$h(x) = (x^{5} - x^{1/3})^{2}$$

$$h'(x) = 2(x^{5} - x^{1/3})(5x^{4} - \frac{1}{3}x^{-2/3})$$

$$= (2x^{5} - 2x^{1/3})(5x^{4} - \frac{1}{3}x^{-2/3})$$

$$= 10x^{9} - \frac{32}{3}x^{13/3} + \frac{2}{3}x^{-1/3}$$

$$h''(x) = 90x^{8} - \frac{416}{9}x^{10/3} - \frac{2}{9}x^{-4/3}$$

HOW DOES THE SIGN OF DERIVATIVES AFFECT THE SHAPE OF A FUNCTION?

Because the derivative is linked to the values of slopes of tangent lines, we have the following results:

If the derivative is	then, the function is
f'(x) > 0	increasing at <i>x</i>
f'(x) < 0	decreasing at x
f'(x) = 0	stationary at x

HOW DOES THE SIGN OF DERIVATIVES AFFECT THE SHAPE OF A FUNCTION?

Because the derivative is linked to the values of slopes of tangent lines, we have the following results:

If the derivative is	then, the function is
f'(x) > 0	increasing at <i>x</i>
f'(x) < 0	decreasing at x
f'(x)=0	stationary at x

We say that f has a critical point at x if f'(x) = 0, or f'(x) is not defined.

HOW DOES THE SIGN OF DERIVATIVES AFFECT THE SHAPE OF A FUNCTION?

Because the derivative is linked to the values of slopes of tangent lines, we have the following results:

If the derivative is	then, the function is
f'(x) > 0	increasing at <i>x</i>
f'(x) < 0	decreasing at x
f'(x) = 0	stationary at x

We say that f has a critical point at x if f'(x) = 0, or f'(x) is not defined. The sign of the second derivative also offers a clear interpretation in terms of graph shape.

If the second derivative is	then, the function is
f''(x) > 0	concave upwards at $x(\smile)$
f''(x) < 0	concave downwards at $x()$
f''(x) = 0	the concavity might change at <i>x</i>

HOW DOES THE SIGN OF DERIVATIVES AFFECT THE SHAPE OF A FUNCTION?

Because the derivative is linked to the values of slopes of tangent lines, we have the following results:

If the derivative is	then, the function is
f'(x) > 0	increasing at <i>x</i>
f'(x) < 0	decreasing at x
f'(x) = 0	stationary at x

We say that f has a critical point at x if f'(x) = 0, or f'(x) is not defined. The sign of the second derivative also offers a clear interpretation in terms of graph shape.

If the second derivative is	then, the function is
f''(x) > 0	concave upwards at $x(\smile)$
f''(x) < 0	concave downwards at $x(\frown)$
f''(x) = 0	the concavity might change at <i>x</i>

We say that *f* has an inflection point at *x* if the concavity of *f* changes at *x*.

MAXIMA AND MINIMA

Definition

We say that a critical point x = a is

- ▶ a (local) minimum of f, if $f(a) \le f(x)$ for nearby values of x.
- ▶ a (local) maximum of f, if $f(a) \ge f(x)$ for nearby values of x.

MAXIMA AND MINIMA

Definition

We say that a critical point x = a is

- ▶ a (local) minimum of f, if $f(a) \le f(x)$ for nearby values of x.
- ▶ a (local) maximum of f, if $f(a) \ge f(x)$ for nearby values of x.

We have two tests to verify whether a critical point is a maximum or a minimum

MAXIMA AND MINIMA

Definition

We say that a critical point x = a is

- ▶ a (local) minimum of f, if $f(a) \le f(x)$ for nearby values of x.
- ► a (local) maximum of f, if $f(a) \ge f(x)$ for nearby values of x.

We have two tests to verify whether a critical point is a maximum or a minimum

The First Derivative Test

- ► If f'(c) = 0, f'(x) < 0 for x < c, and f'(x) > 0 for x > c, then x = c is a local minimum.
- ► If f'(c) = 0, f'(x) > 0 for x < c, and f'(x) < 0 for x > c, then x = c is a local maximum.

MAXIMA AND MINIMA

Definition

We say that a critical point x = a is

- ▶ a (local) minimum of f, if $f(a) \le f(x)$ for nearby values of x.
- ► a (local) maximum of f, if $f(a) \ge f(x)$ for nearby values of x.

We have two tests to verify whether a critical point is a maximum or a minimum

The First Derivative Test

- ► If f'(c) = 0, f'(x) < 0 for x < c, and f'(x) > 0 for x > c, then x = c is a local minimum.
- ► If f'(c) = 0, f'(x) > 0 for x < c, and f'(x) < 0 for x > c, then x = c is a local maximum.

The Second Derivative Test

- ▶ If f'(c) = 0, and f''(c) > 0, then x = c is a local minimum.
- ▶ If f'(c) = 0, and f''(c) < 0, then x = c is a local maximum.

EXAMPLES

EXAMPLES

EXAMPLES

EXAMPLES

Example

The figure below is a graph of f'(x). Find the x-values that are critical points of the function f itself. Are they local maxima, local minima, or neither?

EXAMPLES

Example

The figure below is a graph of f'(x). Find the x-values that are critical points of the function f itself. Are they local maxima, local minima, or neither?

We have two critical points (f'(x) = 0):

EXAMPLES

Example

The figure below is a graph of f'(x). Find the x-values that are critical points of the function f itself. Are they local maxima, local minima, or neither?

We have two critical points (f'(x) = 0):

► One at c = -1.5. Note how f'(x) < 0 for x < -1.5 and f'(x) > 0 for x > -1.5. It must be a minimum at c = -1.5.

EXAMPLES

Example

The figure below is a graph of f'(x). Find the x-values that are critical points of the function f itself. Are they local maxima, local minima, or neither?

We have two critical points (f'(x) = 0):

- ▶ One at c = -1.5. Note how f'(x) < 0 for x < -1.5 and f'(x) > 0 for x > -1.5. It must be a minimum at c = -1.5.
- ▶ Another at c = 1. Note how f'(x) > 0 both before and after c = 1. This point is neither maximum nor minimum.

EXAMPLES

Example

The function $f(x) = x^4 - 7x^3 + 17x$ has a critical point at x = 1. Use the second derivative test to identify it as a local maximum or local minimum.

EXAMPLES

Example

The function $f(x) = x^4 - 7x^3 + 17x$ has a critical point at x = 1. Use the second derivative test to identify it as a local maximum or local minimum.

EXAMPLES

Example

The function $f(x) = x^4 - 7x^3 + 17x$ has a critical point at x = 1. Use the second derivative test to identify it as a local maximum or local minimum.

$$f'(x) = 4x^3 - 21x^2 + 17$$

EXAMPLES

Example

The function $f(x) = x^4 - 7x^3 + 17x$ has a critical point at x = 1. Use the second derivative test to identify it as a local maximum or local minimum.

$$f'(x) = 4x^3 - 21x^2 + 17$$
$$f''(x) = 12x^2 - 42x$$

EXAMPLES

Example

The function $f(x) = x^4 - 7x^3 + 17x$ has a critical point at x = 1. Use the second derivative test to identify it as a local maximum or local minimum.

$$f'(x) = 4x^3 - 21x^2 + 17$$

$$f''(x) = 12x^2 - 42x$$

$$f''(1) = 12 - 42 = -30 < 0$$

EXAMPLES

Example

The function $f(x) = x^4 - 7x^3 + 17x$ has a critical point at x = 1. Use the second derivative test to identify it as a local maximum or local minimum.

We need to evaluate f''(1).

$$f'(x) = 4x^3 - 21x^2 + 17$$

$$f''(x) = 12x^2 - 42x$$

$$f''(1) = 12 - 42 = -30 < 0$$

Therefore, x = 1 is a local maximum of f.

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

We have $f'(x) = 6x^2 + 6x - 180$; therefore, the critical points are

$$x = \frac{-6 \pm \sqrt{36 - 4 \cdot 6 \cdot (-180)}}{12} = \{-6, 5\}$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

We have $f'(x) = 6x^2 + 6x - 180$; therefore, the critical points are

$$x = \frac{-6 \pm \sqrt{36 - 4 \cdot 6 \cdot (-180)}}{12} = \{-6, 5\}$$

To decide whether they are local max or min, we will make use of a sign chart:

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

We have $f'(x) = 6x^2 + 6x - 180$; therefore, the critical points are

$$x = \frac{-6 \pm \sqrt{36 - 4 \cdot 6 \cdot (-180)}}{12} = \{-6, 5\}$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

We have $f'(x) = 6x^2 + 6x - 180$; therefore, the critical points are

$$x = \frac{-6 \pm \sqrt{36 - 4 \cdot 6 \cdot (-180)}}{12} = \{-6, 5\}$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

We have $f'(x) = 6x^2 + 6x - 180$; therefore, the critical points are

$$x = \frac{-6 \pm \sqrt{36 - 4 \cdot 6 \cdot (-180)}}{12} = \{-6, 5\}$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

We have $f'(x) = 6x^2 + 6x - 180$; therefore, the critical points are

$$x = \frac{-6 \pm \sqrt{36 - 4 \cdot 6 \cdot (-180)}}{12} = \{-6, 5\}$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

We have $f'(x) = 6x^2 + 6x - 180$; therefore, the critical points are

$$x = \frac{-6 \pm \sqrt{36 - 4 \cdot 6 \cdot (-180)}}{12} = \{-6, 5\}$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$, $f''(x) = 12x + 6$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$, $f''(x) = 12x + 6$

The inflection points are among the zeros of the second derivative:

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$, $f''(x) = 12x + 6$

The inflection points are among the zeros of the second derivative:

$$f''(x) = 0$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$, $f''(x) = 12x + 6$

The inflection points are among the zeros of the second derivative:

$$f''(x) = 0, 12x + 6 = 0$$

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$, $f''(x) = 12x + 6$

The inflection points are among the zeros of the second derivative:

$$f''(x) = 0,$$
 $12x + 6 = 0,$ $x = \frac{-6}{12} = -0.5$

To decide whether this is an actual inflection point, we need another sign chart!

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$, $f''(x) = 12x + 6$

The inflection points are among the zeros of the second derivative:

$$f''(x) = 0,$$
 $12x + 6 = 0,$ $x = \frac{-6}{12} = -0.5$

To decide whether this is an actual inflection point, we need another sign chart!

EXAMPLES

Example

Use the first derivative to find all critical points, and use the second derivative to find all inflection points of the function

$$f(x) = 2x^3 + 3x^2 - 180x + 3.$$

Identify each critical point as a local maximum, a local minimum, or neither.

To look for inflection points, we need to compute the second derivative:

$$f(x) = 2x^3 + 3x^2 - 180x + 3$$
, $f'(x) = 6x^2 + 6x - 180$, $f''(x) = 12x + 6$

The inflection points are among the zeros of the second derivative:

$$f''(x) = 0,$$
 $12x + 6 = 0,$ $x = \frac{-6}{12} = -0.5$

To decide whether this is an actual inflection point, we need another sign chart!

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

If the point (6,2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2$$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

If the point (6,2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2, 6^2 + 6a + b = 2$$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

EXAMPLES

Example

Find constant *a* and *b* so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6, 2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

EXAMPLES

Example

Find constant *a* and *b* so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6, 2).

If the point (6,2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

$$f'(x) = 2x + a$$

EXAMPLES

Example

Find constant *a* and *b* so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6, 2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

$$f'(x) = 2x + a$$

 $f'(6) = 0,$ $2 \cdot 6 + a = 0$

EXAMPLES

Example

Find constant *a* and *b* so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6, 2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

$$f'(x) = 2x + a$$

 $f'(6) = 0,$ $2 \cdot 6 + a = 0,$ $a = -12$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

If the point (6,2) is to be a minimum, in particular it must be a critical point: this gives a second condition on a and b: f'(6) = 0

$$f'(x) = 2x + a$$

 $f'(6) = 0,$ $2 \cdot 6 + a = 0,$ $a = -12$

Two conditions are enough to find the value of two unknowns:

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

If the point (6,2) is to be a minimum, in particular it must be a critical point: this gives a second condition on a and b: f'(6) = 0

$$f'(x) = 2x + a$$

 $f'(6) = 0,$ $2 \cdot 6 + a = 0,$ $a = -12$

Two conditions are enough to find the value of two unknowns:

$$\begin{cases} 6a + b = -34 \\ a = -12 \end{cases}$$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

If the point (6, 2) is in the graph of f, it must be f(6) = 2. This gives us a first condition on the unknown parameters a and b:

$$f(6) = 2,$$
 $6^2 + 6a + b = 2,$ $6a + b = -34$

If the point (6,2) is to be a minimum, in particular it must be a critical point: this gives a second condition on a and b: f'(6) = 0

$$f'(x) = 2x + a$$

 $f'(6) = 0,$ $2 \cdot 6 + a = 0,$ $a = -12$

Two conditions are enough to find the value of two unknowns:

$$\begin{cases} 6a + b = -34 \\ a = -12 \end{cases} \begin{cases} a = -12 \\ b = -34 + 6 \cdot 12 = 38 \end{cases}$$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

$$f(x) = x^2 - 12x + 38$$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

$$f(x) = x^2 - 12x + 38,$$
 $f'(x) = 2x - 12$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

$$f(x) = x^2 - 12x + 38,$$
 $f'(x) = 2x - 12,$ $f''(x) = 2$

EXAMPLES

Example

Find constant a and b so that the minimum of the parabola $f(x) = x^2 + ax + b$ is at the point (6,2).

The equation of the parabola is then $f(x) = x^2 - 12x + 38$. It is easy to check that (6, 2) is indeed a minimum (just in case!)

$$f(x) = x^2 - 12x + 38,$$
 $f'(x) = 2x - 12,$ $f''(x) = 2$

If (6,2) is to be a minimum, it should be f''(6) > 0. This is obviously satisfied. We are good.

EXAMPLES

Example

For what values of *a* and *b* does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8$$

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

$$f'(x) = a\left(1 - \frac{b}{x}\right)$$

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

$$f'(x) = a\left(1 - \frac{b}{x}\right), \qquad f'(5) = 0$$

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

$$f'(x) = a\left(1 - \frac{b}{x}\right),$$
 $f'(5) = 0,$ $a\left(1 - \frac{b}{5}\right) = 0$

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

The second comes from the fact that (5,8) is a critical point: f'(5) = 0

$$f'(x) = a\left(1 - \frac{b}{x}\right),$$
 $f'(5) = 0,$ $a\left(1 - \frac{b}{5}\right) = 0.$

Let us solve for a and b. The second condition looks easier: it can only be a = 0 or b = 5

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

The second comes from the fact that (5,8) is a critical point: f'(5) = 0

$$f'(x) = a\left(1 - \frac{b}{x}\right),$$
 $f'(5) = 0,$ $a\left(1 - \frac{b}{5}\right) = 0$

Let us solve for a and b. The second condition looks easier: it can only be a = 0 or b = 5

▶ If *a* = 0, then the first condition is not satisfied, so we need to disregard this option.

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

The second comes from the fact that (5,8) is a critical point: f'(5) = 0

$$f'(x) = a\left(1 - \frac{b}{x}\right),$$
 $f'(5) = 0,$ $a\left(1 - \frac{b}{5}\right) = 0$

Let us solve for a and b. The second condition looks easier: it can only be a = 0 or b = 5

- ► If *a* = 0, then the first condition is not satisfied, so we need to disregard this option.
- ▶ If b = 5, the first condition turns into

$$a(5-5\ln 5)=8$$

EXAMPLES

Example

For what values of a and b does $f(x) = a(x - b \ln x)$ have a local extremum at the point (5,8)?

We need two conditions, because we have two unknowns. The first comes from the fact that the point (5,8) is in the graph of f:

$$f(5) = 8,$$
 $a(5 - b \ln 5) = 8$

The second comes from the fact that (5,8) is a critical point: f'(5) = 0

$$f'(x) = a\left(1 - \frac{b}{x}\right),$$
 $f'(5) = 0,$ $a\left(1 - \frac{b}{5}\right) = 0$

Let us solve for a and b. The second condition looks easier: it can only be a = 0 or b = 5

- ► If *a* = 0, then the first condition is not satisfied, so we need to disregard this option.
- ▶ If b = 5, the first condition turns into

$$a(5-5\ln 5) = 8,$$
 $a = \frac{8}{5-5\ln 5} \approx -2.625369982$