INF5620 Project Extended Navier-Stokes solver for Platelet Aggregation

Jarle Sogn
Institutt for matematikk
Universitetet i Oslo
jarlesog@math.no

November 23, 2012

Abstract

The aim of the project is to solve an extended set of Navier-Stokes equations by the finite element method and *fenics*. The model I'm using is a simplification of model found in Aaron L. Fogelson article: Continuum models of platelet aggregation: Formulation and mechanical properties. I will focus mainly on equation 1 - 3 in this article. My solver is an extantion of *fenics* Navier-Stoke demo.

The Model

I focus on equation 1 - 3 from the article, witch are:

$$\rho\left(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \Delta \mathbf{u} + \mathbf{f}^g \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = C\Delta \phi - R(c) \phi \tag{3}$$

The first two equation are Navier-Stokes equations for incompressible fluid. $\mathbf{u}(t, \mathbf{x})$ is the fluid velocity field, $p(t, \mathbf{x})$ is the pressure, ρ is the fluid's mass density(I'll sett this equal to 1, for simplicity.) and μ is the fluids viscosity(assumed to be constant). $\epsilon^{-3}\phi$ is the concentration of non-activated

platelet(ϵ^{-3} is a scaling constant). C is a diffusion constant¹. The term $R(c) \phi$ is the rate in which the non-activated platelets are converted to active platelets. This depends on the ADP concentration c, which vary. Since I'm not using the equation for c, I will have to manufacture a suitable function $c(\mathbf{x},t)^2$.

Solving Navier-Stokes equation

Now I'm in detail going to talk about one way of solving the Navier-Stokes equations (1 and 2) with *fenics* and the finite element method. I will use Chorin's projection method. The idea is first to compute a tentative velocity (\mathbf{u}^*) by ignoring the pressure in equation 1 and then project the velocity onto the space of divergence free vector fields. Equation 1 then becomes:

$$\frac{\partial}{\partial t}\mathbf{u}^{\star} + \mathbf{u} \cdot \nabla \mathbf{u} - \mu \Delta \mathbf{u}^{\star} = \mathbf{f}^{g}$$

Let $V = H_0^1(\Omega)$ be a Sobolev space and Ω the domain. I want to write the equation above as a weak formulation. I multiply with the function $\mathbf{v}(\mathbf{x})$ and integrate the space.

$$\int_{\Omega} \frac{\partial \mathbf{u}^{\star}}{\partial t} \cdot \mathbf{v} + (\mathbf{u} \cdot \nabla \mathbf{u}) \cdot \mathbf{v} - \mu \Delta \mathbf{u}^{\star} \cdot \mathbf{v} d\mathbf{x} = \int_{\Omega} \mathbf{f}^{g} \cdot \mathbf{v} d\mathbf{x} \quad \forall \mathbf{v} \in V$$

Now if I integrate by parts the lest term in the left hand side (or use Green's formula), I obtain:

$$\int_{\Omega} \frac{\partial \mathbf{u}^{\star}}{\partial t} \cdot \mathbf{v} + (\mathbf{u} \cdot \nabla \mathbf{u}) \cdot \mathbf{v} + \mu \nabla \mathbf{u}^{\star} \cdot \nabla \mathbf{v} d\mathbf{x} = \int_{\Omega} \mathbf{f}^{g} \cdot \mathbf{v} d\mathbf{x} \quad \forall \mathbf{v} \in V$$

Finely I discretesize the time(n) and space(h), $V_h \subset V$. Then **u** becomes \mathbf{u}_h^n . I define $\langle \cdot, \cdot \rangle$ as the $L^2(\Omega)$ norm. The above equation can be written as:

$$\langle D_t^n \mathbf{u}_h^{\star}, \mathbf{v} \rangle + \langle \mathbf{u}_h^{n-1} \cdot \nabla \mathbf{u}_h^{n-1}, \mathbf{v} \rangle + \langle \mu \nabla \mathbf{u}_h^{\star}, \nabla \mathbf{v} \rangle = \langle \mathbf{f}^{g,n}, \mathbf{v} \rangle \quad \forall \mathbf{v} \in V_h$$
 (4)

The projection give us these two equation:

$$\frac{\mathbf{u}_h^n - \mathbf{u}_h^*}{k_n} + \nabla p_h^n = 0 \tag{5}$$

¹Fogelson article uses D_n and ϕ_n for C and ϕ .

²To understand the equations and symbols better, I advise you to take a look at the first few first pages of Fogelson article

$$\nabla \cdot \mathbf{u}_h^n = 0 \tag{6}$$

where k_h is the size of the local time step. I now multiply 5 with ∇q where $q \in Q_h \subset L^2(\Omega)$ and integrate.

$$\frac{1}{k_n} \int_{\Omega} \mathbf{u}_h^n \cdot \nabla q - \mathbf{u}_h^{\star} \cdot \nabla q + k_n \nabla p_h^n \cdot \nabla q dx = 0 \quad \forall q \in Q_h$$

I integrate by parts the first two terms. The first term becomes zero from equation 6 and $\mathbf{u}|_{d\Omega} = 0$.

$$\int_{\Omega} (\nabla \cdot \mathbf{u}_h^{\star}) \, q/k_n + (\nabla p_h^n \cdot \nabla q) \, dx = 0 \quad \forall q \in Q_h$$

This can be written as:

$$\langle \nabla p_h^n, \nabla q \rangle = -\langle \nabla \cdot \mathbf{u}_h^{\star}, q \rangle / k_n \quad \forall q \in Q_h$$
 (7)

Finally I multiply equation 5 with $\mathbf{v} \in V_h$ and integrate. I obtain:

$$\langle \mathbf{u}_h^n, v \rangle = \langle \mathbf{u}_h^{\star}, v \rangle - k_n \langle \nabla p_h^n, v \rangle \quad \forall v \in V_h$$
 (8)

The three equation 4, 7 and 8 is the Chorin's projection method scheme for solving Navier-Stokes equation. First solve for \mathbf{u}_h^{\star} in equation 4, the solve the pressure p_h^n in equation 7 and finally find the velocity \mathbf{u}_h^n in equation 8. Repeat this for each time-step.

Stability

The extension

As mention earlier I have extended an already existing program. Making it also solve equation 3. In order to do this I have to rewrite 3 to variation form. I multiply the test function $\phi \in \Psi \subset H_0^1(\Omega)$ and integrate.

$$\int_{\Omega} (D_t \phi) \psi + \mathbf{u} \cdot (\nabla \phi) \psi - C(\Delta \phi) \psi dx = -\int_{\Omega} R(\mathbf{x}, t) \phi \psi dx$$

after integrating by part and using backward euler as D_t , I obtain:

$$\int_{\Omega} \left(\frac{\phi^{n} - \phi^{n-1}}{k_{n}} \right) \psi + \mathbf{u} \cdot (\nabla \phi^{n}) \psi + C \left(\nabla \phi^{n} \cdot \nabla \psi \right) + R \left(\mathbf{x}, t^{n} \right) \phi^{n} \psi dx = 0$$

I end up with the scheme:

$$\langle \phi^n - \phi^{n-1}, \psi \rangle \frac{1}{k_n} + \langle \psi \nabla \phi^n, \mathbf{u}^n \rangle + C \langle \nabla \phi^n, \nabla \psi \rangle + \langle R \phi^n, \psi \rangle = 0$$
 (9)