COPY AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-316179

(43) Date of publication of application: 13.11.2001

(51)Int.Cl.

CO4B 35/49 HO1L 41/187

(21)Application number: 2000-133066

(71)Applicant: TDK CORP

(22)Date of filing:

02.05.2000

(72)Inventor: KOSEKI KENJI

(54) PIEZOELECTRIC CERAMIC COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition having high piezoelectro striction constant, excellent in mechanical strength, especially suitable for a piezoelectric effect applied electric parts for an actuator.

SOLUTION: The piezoelectric ceramic composition is characterized in that the composition formula is represented by Pbx Bay Srz {(B3+1/2B5+1/2) a Tib Zrc}O3, $0.93 \le x \le 0.97$, $0.02 \le z \le 0.06$, $0.02 \le a \le 0.04$, $0.43 \le b \le 0.47$, 0.47, $0.5075 \le c \le 0.55$, (wherein a+b+c=1.00, $0.97 \le (x+y+z) \le 1.005$), the ingredient of B3+ is one kind of Sb, Bi, and La, and principal ingredient of B5+ is one kind of Nb, and Ta.

LEGAL STATUS

[Date of request for examination]

21.02.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(川)特許出銀公開番号 特開2001-316179 (P2001-316179A)

(43)公開日 平成13年11月13日(2001.11.13)

(51) Int.CL'		織別記号	FΙ		Ĩ,	-73-)*(参考)
C04B	35/49		C04B	35/49	K	4G031
					H	
					L	
H01L	41/187		HOIL	41/18	101E	

審査請求 未請求 請求項の数2 OL (全 6 頁)

(22)出版日 平成12年5月2日(2000.5.2) 東京都中央区日本村 (72)発明者 小関 健二 東京都中央区日本村 ーディーケイ株式会 (74)代理人 100083297 弁理士 山谷 臨緯	21)出顯番号	特顧2000-133066(P2000-133066)	(71)出庭人 000003067
(72)発明者 小関 健二 東京都中央区日本 ーディーケイ株式会 (74)代理人 100083297 弁理士 山谷 助数			ティーディーケイ株式会社
東京都中央区日本 ーディーケイ株式会 (74)代理人 10083297 	22)出題日	平成12年5月2日(2000.5.2)	東京都中央区日本橋1丁目13番1号
ーディーケイ株式会 (74)代理人 100083297			(72)
(74)代理人 100083297	,		東京都中央区日本橋一丁目13番1号 テ
弁理士 山谷 眺 鏡			ーディーケイ株式会社内
,, ==,			(74)代理人 100083297
ロター人(教文) ACM21 à&i5 áá			
[] - 22 (29-4) 1000 mile (2)			Fターム(参考) 4CO31 AAG5 AAG6 AAG9 AAI1 AA12
AAL4 AA			AA14 AA15 AA32 AA34 AA35
BA10			BA10

(54) 【発明の名称】 圧電磁器組成物

(57)【要約】

【課題】高い圧電歪定数を有し、機械的強度に優れ、特にアクチュエータ用圧電応用電子部品に好適な圧電磁器 組成物を提供すること。

【解決手段】圧電磁器組成物において、組成式がPbx・Bay・Srz ((B''_{1/2} · B''_{1/2}) a・T ! b・Zrc) O, で表され、0.93≦x≦0.97、0.02≦z≦0.06.0.02≦a≦0.04、0.43≦b≦0.47.0.5075≦c≦0.55(但しa+b+c=1.00で、0.97≦(x+y+z)<1.005)であり、B'*成分としてSb.Bi.しaのうち一種、B'*成分としてNb、Taのうち一種を主成分としたことを特徴とする。

【特許請求の範囲】

【請求項1】組成式がPbx·Bay·Srz〔(B'* ,,, ・B'',,,,)a・Tib・2 r c) O』で表され、 $0.93 \le x \le 0.97.0.02 \le z \le 0.06$ $0.02 \le a \le 0.04.0.43 \le b \le 0.47$ 0.5075≦c≦0.55(但しa+b+c=1.0 0°C. 0. 97≤ (x+y+2) <1. 005) °C a

B"成分としてSb、Bi、Laのうち一種、B"成分 としてNb、Taのうち一種を主成分としたことを特徴 19 とする圧電磁器組成物。

【請求項2】前記組成式において、前記(B"1/2 · B $"_{1/2}$) it, (Sb_{1/2} · Nb_{1/2}). (B_{11/2} · N $b_{1/2}$ }, {La, ... Nb, ... }. (Sb, ... Ta ,/2) のいずれかであり、Aサイト成分(X+y+2) と、Bサイト成分(a + b + c) の比 (A / B比) が 0.97~0.99の範囲にあることを特徴とする請求 項1記載の圧電磁器組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はチタン酸ジルコン酸 鉛を主成分とする圧電遊器組成物に係り、高い圧電歪定 数を有し、機械的強度に優れ、特にアクチュエータ用圧 電応用電子部品に好適な圧電磁器組成物に関するもので ある.

[0002]

【従来の技術】従来より、アクチュエータ用圧電応用電 子部品に用いられる圧電磁器組成物としては、PbT・ O, -Ph2rO。を主成分とした組成に、添加物とし て、例えばSb、O、、Nb、O、、WO、などを僅か 30 ることができる。 に添加したものが知られている。

【0003】またPbの一部をBa. Sr、Ca. La で置換したものや、第三成分としてPb(Nェル・N $b_{2/3} > O_2$. Pb $\{Mg_{1/2} - Nb_{2/2} \} O_3$ &&C 一部置換して複合ペロブスカイト化合物化したものが知 **ろれている。**

【①①①4】更に、現在知られている圧電磁器組成物の 結晶粒径が比較的大きく、2、5 μm~4、0 μmのも のが一般的に知られている。しかし、特にアクチュエー タ用途として結晶粒径が大きいと機械的強度が弱く、素 40 た。 子の振動で圧電応用電子部品の破損が発生することが知 られている (特願平11-264741号)。

[0005]

【発明が解決しようとする課題】ところで従来より知ら れている圧電磁器組成物は、結晶粒径を小さくするため に、原料粉の粒径を小さくし、更に、焼成温度を下げて 調整する方法が一般的に実施されているが、圧電歪特性 が低いという問題があった。またこの圧電歪特性の低い という問題を添加物の種類等で解決しようとする試みも されているが、添加物の作用で主粒子の表面に不要な結 50 【0014】そして得られた評価用素子をインビーダン

晶粒界成分が増加し、焼結体強度や弾性振動体性能を劣 化せしめ、製品の信頼性に問題が発生する。

【①006】そこで本発明の目的は、圧電歪特性や焼箱 性を損なうことなく、結晶粒径を小さくし、過酷な条件 で使用されても、高信頼性の、例えば圧電アクチュエー タの如き圧電歪応用製品を得ることができる圧電磁器組 成物を提供することである。

[0007]

【課題を解決するための手段】前記目的を達成するた め、本発明では、組成式がPbx・Bay・Srz [(B'',,, ·B'',,,)a·Tib·2rc]O, で 表され、0.93≦x≦0.97、0.02≦z≦0. $06, 0, 02 \le a \le 0, 04, 0, 43 \le b \le 0, 4$ 7. 0. 5075≦c≦0. 55 (但しa+b+c= 1. 00τ , 0. $97 \le (x+y+z) < 1$. 005) であり、B"成分としてSb、B! Laのうち一種、 B**成分としてNb、Taのうち一種を主成分とした圧 電磁器組成物である。

【0008】また、前記組成式において、(B''1/2 -20 B"12) & (Sb, 2 · Nb, 2), (Bi12 · Nb1/2), (La1/2 · Nb1/2). (Sb1/2 · T a,/2) のいずれかであり、Aサイト成分 (x+y+ 2) と、Bサイト成分 (a+b+c) の比 (A/B比) がり、97~0、99の範囲とするものである。 【0009】とれにより、圧電歪定数の大きい、結晶粒 径の小さい、素体の抗折強度の大きい圧電磁器組成物を 提供することができる。

【①①】①】また過酷な条件で使用しても、高信頼性 の、圧電アクチュエータの如き圧電歪応用製品を提供す

[0011]

【発明の実施の形態】本発明の実施例について説明す る。出発原料として高純度 (99.5%以上) なPb O. T.O. . ZrO. . CoO. Nb. O. . Ta. O, Sb, O, Bi, O, La, O, WO, BaCO, 、SrCO。を用い、焼成後の成分が表1に 示す所定の組成になるように秤畳し、ボールミルにて湿 式混合を行った。それから混合粉を空気中にて850℃ の温度で仮焼成した後に、ボールミルにて湿式紛砕し

【①①12】次に、このようにして得られた粉末に有機 バインダーを加え造粒を行い、3000kg/cm*の 圧力で直径16.5mmの円板に成形した。そしてこの 成形体を空気雰囲気中で1150℃の温度で焼成した。 【0013】とのようにして得られた鏡稿体を厚さ0. 6 mmに研磨した後、得られた素子の両面に銀の焼付電 極を形成後、直径14.3mmに外周加工した。そして との試料に120℃の絶縁油中で、電圧3kv/mm、 30分の条件で分極処理を行った。

特闘2001-316179

(3)

スアナライザーにより素子静電容置(C)、共振周波数 (fr)、反共振国波数(fa)を測定した。この測定 結果をもとに電気機械結合係数(kr)、比誘電率(E s)、圧電歪定数(D₃₁)を日本電子材料工業会標準規*

3

*格(EMAS-6100) に進鍵して計算より求めた。 【0015】得られた結果を表1に示す。

[0016]

【表1】

•					• •	- 1 1																		
100	EURSONS.	统阶级来《6000》)	8.7	8.5	10.3	10. g	30.5	10.2	0.0	121	13.7	†¥1	10.8	10.3	10.4	10.3	10.7	10.3	10.1	14.8	11.2	141.6	10.1	16.3
		(on) EMBR	12	8.8	8'1	1,3	1.8	87	1.0	8'9	0.7	77	1.8	1.3	7.7	1.8	71	1.3	£1	1.1	1.3	6 7	1.5	1.8
***************************************	न अधिकार्या	(4/13,1_062)140	200.4	2.8.2	। স্থা	8 VST	800. 4	200.3	6 '28i	173.8	136.1	111.7	i vai	९ च्या	0.331	ક માર	\$ tuz	82.1	21A 8	S VOI	(53.2	185.4	146.3	158.4
		Kr©	39	80	豁	8	Đ.	£	п	23	33	ಕ	23	23	8	29	E	38	8	23	22	£	83	63
		A/B	1.000	0.550	089 m	0,000	Q 590	0 390	G. DEKE	0.883	Q. 003	Q. 83 3	068 70	Q. 939	Q 933	0.000	0.833	OF 090	Q. 920	0.070	0.320	0.93G	0.830	1.00
	数位の数と曲	(w1%)	William Cont	41	ない	นะ	าะ	าน	45	าะ	at	าน	ない	なし	าน	าน	つき	าซ	なし	12.	おし	72	#r	. 7\$
	270.E	٥	0.3680	থ জ্বত	0.5275	0. BZ75	A 5875	0, 8200	0, 63,60	Q. 5075	g errs	Q. 5880	Q. 5800	0, 5100	0, 5000	Q. 4950	0.5275	Q. 5700	0.5275	0.5309	0.5725	0.5300	0.323	6 5250
	T10,#	Q	0.009	0.4559s	(ES)	0.6825	0.4555	0.4000	a. areo	8,4525	6.4883	6. 4250	B. 6800	G. CTOO	£. 4200	0.680	0.4555	0.40%	0.4065	0, 4500	a esto	6. \$500	0.4550	0.533
is sy (mol)	(3481 CT , 28 CT . 58)	rs.	Ce/8:0.01	\$376.0 OI	Sala-0, 02	क्षा का का	58/8-0.02	\$5.0°0.00	SEAD: 0. 92	58 (b. 0, 0;	BO 1019195	\$6.45.40.0g	क्र फःवप्रमड	Sake of oc	S9KB-0.02	20 TO: 9X93	\$573:0.02	ZD 10:10H93	20 TO:10K0S	SO TOPOUSES	20 D:437	क्षा ४:५४४६	26 TO: QCAS	SPAP: CL CC
	Z	2	2	f. 52	0.89	6.0I	G, èd	9	0.41	o ex	a de	16 O	10 O	0.08	M 0	क्र अ	O. OM	10,00	D 04	0.64	PO 73	3) C	ঠক	9.6
	Ī	Y	٥	٥	0	٥	0	0	0	0	0	0	0	0	0	D	0	-	0.91	•	•		•	•
	2	×	88 6	3819	ል ወ፤	83 W	95 V	88.6	৫ ৪ চ	. a 25	850	0.05	0,0E	\$ \$	4.35	96'Q	860	0.05	16 0	0.83	ខារ	0.07	16 0	0.955
	英		* 1 (紅米別)	(1883013) 2 1	(IADIAT) 8 =	((6数3)) * *	S (SERIFF)	6 (92,849)	1 (3638/91)	(ASASA) 8	OEXEST) 6 •	10 CLEXCED	11 (3006/40)	12 (1938)	ा तिस्त्रका	ार तहरहरूक	15 (NEXEST)	()(६००) व्या	OVERNOON TO	014695K) 88	18 (X:150)D	(36/9/36) #F	# 21 (HORRIND	1 22 (UKE)10

晶粒子径(Gs)を定査型顕微鏡により計測した写真を 赤す。

【()()18】図1は衰1における試料番号No. 1の従 条例を示し、図2は同じく試料No. 2の比較例を示 し、図3は同じく試料No.5の本発明の実施を示し、 図4は同じく試料No. 7の本発明の実施例を示し、図 . 5は同じく試料No. 8の本発明の実施例を示す。表1 の各試料についてその結晶粒径を測定した。

【0019】本発明の圧電磁器組成物では、更に日本工 柔規格JiS 1601-1981によった3点曲け強 50 させるものであって、積層アクチュエータ用素材として

【0017】又 図1~図5により、圧電磁器素体の結 40 度試験により機械的強度の評価を行った。すなわち図6 に示す如く、長さL=15mm、幅W=5mm. 厚さt = 1. 5 mmの試験片1を作成し、これをスパン [= 1 Ommの支点上に置き、この支点間の中心に荷重を徐々 に連続的に増加して、試験片1が破壊したときの最大荷 重をP(k g f)とすると、その抗折強度σを次式 $\sigma = 3P!/2wt' (kgf/mm')$ により算出し、表上に示す値を得た。 【0020】本発明では、圧電歪定数D.1の値を高いレ ベルとし、結晶粒径を小さくし、素体の抗折強度を向上

の圧電歪定数D,,が160×10-11 m/v以上であ り、更に抗折強度が10.0kg/mm'以上を確保し ないと、綺層型圧電アクチュエータ電子部品としては十 分な変位が得られなかったり、製造上、あるいは動作中 に割れ・欠け等が発生し、信頼性に問題が発生するこ と、また電気機械結合係数 k c が7 0 %未満であると十 分な値の圧電歪定数Daaを確保することができないこ と、等を解決する。

【0021】表1より明らかなように、試料番号No. いはaが()。()2モル未満の場合は、抗折強度が弱い。 しかしaが()。()2モル以上の場合は試料No. 5、N o. 6に示す如く、抗折強度が10.0kg/mm*以 上と大きいことがわかる。

【()()22】aが()、()4そルを超えると、試縛No. 9に示す如く、電気機械結合係数kr及び圧電歪定数D ,,がそれぞれ?0%未満。160×10⁻¹⁴ m/v (以 下16()という)未満と小さいことがわかる。

【()()23】bが(). 43モル未満の場合、試料No. D.,がそれぞれ?0%、160未満と小さいことがわか

【①024】bが0.47モルを超えると、試料No. 13に示す如く、電気機械結合係数kr及び圧電歪定数 D., がそれぞれ?0%、160未満と小さい値である。 【0025】cが0.5075モル未満の場合. 試料N o. 13に示す如く、電気機械結合係数 k r 及び圧電歪 定数D...がそれぞれ70%、160未満と小さいことが わかる。

【0026】cが0.55モルを超えると、試縛No. 10に示す如く、電気機械結合係数 k r 及び圧電歪定数 D.,がそれぞれ70%、160未満と小さいことがわか る。

【0027】xが0.93モル未満の場合、試料No. 3に示す如く、電気機械結合係数 k r 及び圧電歪定数 D .,がそれぞれ70%、160未満と小さいことがわか

【0028】xが0、97モルを超えると、試終No. 4に示す如く、電気機械結合係数 k r 及び圧電歪定数 D 」がそれぞれ70%、160未満と小さいことがわか る。

【0029】zが0、02モル未満の場合、試料No. 4に示す如く、電気機械結合係数 k r 及び圧電歪定数 D a,がそれぞれ7.0%、1.6.0未満と小さいことがわか る.

【①①30】2が0.06モルを超えると、試斜No. 3に示す如く、電気機械結合係数 k r 及び圧電歪定数 D 」、がそれぞれ70%、160未満と小さいことがわか る.

【0031】そしてA/Bが0.97モル未満の場合、

試料No. 21に示す如く、電気機械結合係数kr及び 圧電歪定数D,がそれぞれ70%、160未満と小さい ことがわかる。

【0032】A/Bが0、99モルを超えると、試料N o. 22に示す如く、電気機械結合係数 k r 及び圧電歪 定数D...がそれぞれ70%、160未満と小さいことが わかる。

【0033】(B'',,, ・B'',,,) において、B''を Bi又はLaで置換しても、試料No. 18、No. 1 1の従来例及びNo. 2に示す如く、従来例の場合ある 10 9に示す如く、電気機械結合係数 k r 及び圧電歪定数 D .,が70%、160以上と大きく、統新強度が10.0 kg/mm^{*}以上の大きな、十分な特性のものが得られ

> 【() () 3.4 】更にB**をTaに置換しても、試終No. 15に示す如く、電気機械結合係数 k r 及び圧電歪定数 D., が70%。160以上と大きく、抗折強度が10. Okg/mm[®] 以上の大きな、十分な特性のものが得ら

【0035】とのように、本発明により、過酷な条件で 16に示す如く、電気機械結合係数kr及び圧電歪定数 20 使用しても、例えば圧電アクチュエータのような、高信 賴性の圧電歪応用製品を製造することができる。しかも 本発明により、圧電磁器素体用として大きく変位するア クチュエータや、薄小小型である積層型圧電磁器素体と して破損や欠けなどの発生しない圧電電子部品が製品化 でき小型で高信頼性で低コストの圧電部品が提供でき る。

[0036]

【発明の効果】本発明により下記の効果を奏することが できる。

【 () () 3 7 】電気機械結合係数 K r や圧電歪定数 D ... 等 の圧電歪特性の良好な、結晶粒径の小さい、素体の抗折 強度の大きい圧電磁器組成物を提供することができる。 【①①38】過酷な条件で使用しても高信頼性の圧電歪 応用製品を製造提供することができる。圧電磁器素体用 として大きく変位するアクチュエータや、薄小小型であ る積層型圧電磁器素体として破損・欠けなどの発生しな い圧電電子部品が製品化でき、小型で高信頼性、低コス トの圧電部品を提供できる。

【図面の簡単な説明】

46 【図1】従来例の圧電磁器素体の電子顕微鏡写真であ

【図2】試料No.2の圧電磁器素体の電子顕微鏡写真

【図3】試料No.5の圧電磁器素体の電子顕微鏡写真 である。

【図4】試料No. 7の圧電磁器素体の電子顕微鏡写真 である。

【図5】試料No. 8の圧電磁器素体の電子顕微鏡写真 である。

50 【図6】3点曲け強度試験説明図である。

(6) 特闘2001-316179 【図6】 試験庁の実す磁 試験片が破壊したときの最大荷草をP(Ecf) とすると

京新強度 o=3P(/27)* 程g(/mm⁴)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
· O

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.