SIN – Inteligentní systémy Implementace meteostanice s autonomním řízením

Bc. Petr Stehlík <xstehl14@stud.fit.vutbr.cz>

Bc. Matej Vido <xvidom00@stud.fit.vutbr.cz>

1 Úvod

Cílem projektu je navrhnout a implementovat meteostanici využívající MQTT protokol pro zasílání naměřených hodnot serveru. Server implementuje databázi a webové grafické uživatelské rozhraní (GUI), analyzuje historické hodnoty a na jejich základě řídí akce aktuátorů.

Meteostanice měří teplotu, vlhkost a tlak vzduchu; vlhkost v květináči a světelnou intenzitu. Navržené aktuátory jsou ovládání žaluzií, klimatizace, topení a zavlažování rostlin. Vše je autonomně ovládáno na základě předem stanovených pravidel.

GUI zobrazuje aktuální a historické naměřené hodnoty jednotlivých senzorů, trendy a naposledy vykonané akce aktuátorů společně s krátkodobou předpovědí počasí získanou z volně dostupných zdrojů.

2 Nástroje pro monitoring a řízení

Na trhu je velké množství dostupných nástrojů pro monitoring a řízení a to i na poli chytrých domácností. Je zde mnoho komerčních a uzavřených systémů pro automatizaci domácnosti. V současnosti nejznámější a pravděpodobně i nejrozšířenější je Apple Home¹, který využívá protokolu Homekit také od společnosti Apple. Na trhu existuje pro Apple Home velké množství produktů a neustále se jejich počet zvyšuje. Existuje ale i mnoho open-source nástrojů pro řízení domácnosti. Jejich nejrozšířenější zastupitele jsou zde v krátkosti popsány.

2.1 Grafana

Grafana² je vizualizační a analytický nástroj pro data zachycená v čase. Grafana samotná není primárně určena pro monitoring a řízení chytrých domácností, ale je natolik upravitelná, že existují konfigurace, které toto užití zpřístupňují. Je dostupná s mnoha rozšířeními a zdroji dat. Uživatel si vytvoří dashboard, který si následně nakonfiguruje a seskládá z dostupných modulů. Tyto moduly mimo dalších funkcionalit umožňují zobrazit čárový graf, jednotlivé hodnoty, trendy hodnot a s pomocí modulů i různé přepínače.

2.2 Domoticz

Domoticz³ je kompletním open-source systémem pro domácí automatizaci. Tento nástroj dovoluje monitorovat, řídit a konfigurovat mnoho různých zařízení od různých výrobců. Disponuje i automatickým učením senzorů a aktuátorů. Rozhraní pro uživatele je vytvořeno jako webová stránka dostupná na stroji s lokální instalací Domoticz.

2.3 OpenHAB

OpenHAB⁴ je dalším velmi známým zástupcem open-source nástrojem pro domácí automatizaci. Podporuje velké množství platforem, výrobců a zařízení. Dokáže integrovat mnoho systémů do jednoho

¹https://www.apple.com/lae/ios/home/

²https://grafana.com/

³https://domoticz.com/

⁴https://www.openhab.org/

centrálního řešení, které lze ovládat mobilní aplikací, webových rozhraním nebo nativní desktopovou aplikací. Pro automatizaci disponuje rozsáhlým systémem pro tvorbu komplexních pravidel.

2.4 Home Assistant

Home Assistant⁵ je primárně navrhován pro užívání na Raspberry Pi. Jako předchozí nástroje také podporuje široké množství výrobců a zařízení. Také disponuje konfigurovatelným webových rozhraním s přehledy zařízení a kontrolou aktuátorů.

2.5 BeeeOn

BeeeOn⁶ je systém pro domácí automatizaci vyvíjený na FIT VUT v Brně. Tento systém je primárně vyvíjen jako bezpečná domácí brána pro různé IoT zařízení. Oproti předchozím systémům je nutno pro plnou funkcionalitu systému vlastnit domácí bránu, kterou lze propojit s několika výrobci a jejich zařízeními. BeeeOn disponuje Android mobilní aplikací pro ovládání domácnosti a prototypem webového rozhraní.

2.6 Vlastní řešení

Okrem uvedených kompletných riešení pre monitoring a analýzu riadiachich systémov je možné poskladať vlastné riešenie z dostupných open-source knižníc, frameworkov a nástrojov.

Rozšíreným frameworkom pre tvorbu klientskej časti webových aplikácií je Angular⁷. Angular napísaný v jazyku TypeScript umožňuje jednoduchú integráciu rôznych knižníc pre zobrazovanie grafov a tvorbu dashboardov.

K implementácii serverovej časti webovej aplikácie je možné použiť framework Flask⁸ v jazyku Python. Flask umožňuje rýchlu a jednoduchú tvorbu REST API na prepojenie serverovej a klientskej časti webovej aplikácie. Výhodou použitia jazyku Python pre tvorbu serverovej časti aplikácie je, že obsahuje moduly pre obsluhu databázového systému a zabezpečenie sieťovej komunikácie s ďalšími prvkami celého riadiaceho systému.

Mosquitto⁹ je voľne dostupný broker pre MQTT protokol používaný v prostredí systémov IoT podporujúci rôzne platformy.

3 Architektura a implementace

V tejto sekcii je popísaná architektúra a implementácia vytvorenej meteostanice s autonómnym riadením. Meteostanica obsahuje reálne senzory, z ktorých sú dáta prenášané na server. Server dáta ukladá do databázy, riadi činnosť aktuátorov podľa pravidiel, ktoré sú taktiež uložené v databáze, a obsluhuje webovú aplikáciu, ktorá poskytuje grafické užívateľské rozhranie k celému systému. Činnosť aktuátorov je simulovaná. Pre účely testovania bol taktiež zostrojený modul pre simulovanie činnosti senzorov. V časti 3.1 je popísaný hardvér a spôsob jeho zapojenia. V nasledujúcej časti 3.2 je popísaná implementácia softvérových modulov systému.

3.1 Hardware

Základem pro hardware byly zvoleny Raspberry Pi 2 jako server a Raspberry Pi Zero W jako samotná meteostanice. Server realizován jako Raspberry Pi 2 zpřístupňuje uživateli minimalistické webové rozhraní a slouží jako MQTT broker pro meteostanici. Také jsou zde ukládány všechny naměřené hodnoty do SQLite3 databáze.

K Raspberry Pi Zero W jsou připojeny následující senzory:

⁵https://home-assistant.io/

⁶https://beeeon.org/wiki/Main_Page

⁷https://angular.io/

⁸http://flask.pocoo.org/

⁹https://mosquitto.org/

- DHT11 digitální senzor pro měření teploty a vlhkosti vzduchu
- BMP180 digitální senzor pro měření barometrického tlaku, teploty a nadmořské výšky
- TEMT6000 analogový senzor pro měření intenzity okolního světla
- YL-69 společně s YL-38 analogový senzor pro měření vlhkosti půdy

Pro konverzi analogových senzorů je použit AD převodník MCP3008.

Figure 1: This is a figure.

schéma HW zapojení (rpis)
aktuátory

3.2 SW

aktuátory m
qtt (co to je, jak se pouziva) + mosquitto + topic schemes zapojení dashboardu (fe, be, db, rest api) popis technologii (angular, flask, sqlite)

- 4 Výsledky
- 5 Závěr