SUPPLEMENTARY MATERIAL FOR "AUTOENCODER BASED IMAGE COMPRESSION: CAN THE LEARNING BE QUANTIZATION INDEPENDENT?"

Thierry Dumas, Aline Roumy, Christine Guillemot

INRIA Rennes Bretagne-Atlantique

thierry.dumas@inria.fr, aline.roumy@inria.fr, christine.guillemot@inria.fr

1. INTRODUCTION

In [1], Section 2.2, it is said that, $\forall i \in [|1, m|]$, \tilde{p}_i can be replaced by a function \tilde{f}_i , parametrized by $\psi^{(i)}$, and $\psi^{(i)}$ is learned such that \tilde{f}_i fits \tilde{p}_i . This supplementary material provides details on \tilde{f}_i .

2. DEFINITION OF THE PARAMETRIZED FUNCTIONS

This section explains why \tilde{f}_i is a piecewise linear function and defines \tilde{f}_i .

During the autoencoder training, and especially at the beginning of the training, \tilde{p}_i may have unpredictable shapes. \tilde{f}_i can fit \tilde{p}_i at any time during the training if \tilde{f}_i does not require any assumption regarding \tilde{p}_i . That is why, as in [2], \tilde{f}_i is a piecewise linear function.

To define \tilde{f}_i , we first sample an axis uniformly and symmetrically with respect to 0. The number of sampling points is $2\rho d+1$, where $d\in\mathbb{N}^*$ is the number of sampling points per unit interval and $\rho\in\mathbb{N}^*$ is the number of unit intervals in the positive half of the axis. Then, we define the parameters $\psi^{(i)}\in\mathbb{R}^{2\rho d+1}$ of \tilde{f}_i as the values of \tilde{f}_i at the sampling points $\mathbf{u}\in\mathbb{R}^{2\rho d+1}$, see Figure 1.

3. USE OF THE PARAMETRIZED FUNCTIONS

Given $\tilde{y} \in [\mathbf{u}_0, \mathbf{u}_{2\rho d}[$, this section explains how $\tilde{f}_i\left(\tilde{y}; \boldsymbol{\psi}^{(i)}\right)$ is computed.

For $k \in [|0,2\rho d-1|]$, we call k the index of the linear piece between $\psi_k^{(i)}$ and $\psi_{k+1}^{(i)}$. To compute $\tilde{f}_i\left(\tilde{y};\psi^{(i)}\right)$, the 1^{st} step is to find the index $k_{\tilde{y}}$ of the linear piece that contains $\tilde{f}_i\left(\tilde{y};\psi^{(i)}\right)$, see Figure 1. This is done at low computational cost via (1).

$$k_{\tilde{\nu}} = |d\tilde{\nu}| + \rho d \tag{1}$$

[.] denotes the floor function. The function "index_linear_piece" in the file "ko-dak_tensorflow_0.11.0/tf_utils/tf_utils.py" implements (1).

Then, given $k_{\tilde{y}}$, the 2^{nd} step to compute $\tilde{f}_i\left(\tilde{y}; \boldsymbol{\psi}^{(i)}\right)$ is (2).

$$\tilde{f}_i\left(\tilde{y}; \boldsymbol{\psi}^{(i)}\right) = \left(\boldsymbol{\psi}_{k_{\tilde{y}}+1}^{(i)} - \boldsymbol{\psi}_{k_{\tilde{y}}}^{(i)}\right) \left(\tilde{y} - \boldsymbol{u}_{k_{\tilde{y}}}\right) d + \boldsymbol{\psi}_{k_{\tilde{y}}}^{(i)} \quad (2)$$

The function "approximate_probability" in the file "ko-dak_tensorflow_0.11.0/tf_utils/tf_utils.py" implements (2).

4. FITTING THE PARAMETRIZED FUNCTIONS

This section describes the learning of $\psi^{(i)}$ for fitting \tilde{f}_i to \tilde{p}_i . For $i \in [|1, m|]$, the target is to minimize the integrated squared error I_i between \tilde{f}_i and \tilde{p}_i .

$$I_{i} = \int_{\mathbf{u}_{0}}^{\mathbf{u}_{2\rho d}} \left(\tilde{f}_{i} \left(x; \boldsymbol{\psi}^{(i)} \right) - \tilde{p}_{i} \left(x \right) \right)^{2} dx$$

$$= \int_{\mathbf{u}_{0}}^{\mathbf{u}_{2\rho d}} \tilde{f}_{i}^{2} \left(x; \boldsymbol{\psi}^{(i)} \right) dx + \int_{\mathbf{u}_{0}}^{\mathbf{u}_{2\rho d}} \tilde{p}_{i}^{2} \left(x \right) dx$$

$$- 2 \int_{\mathbf{u}_{0}}^{\mathbf{u}_{2\rho d}} \tilde{p}_{i} \left(x \right) \tilde{f}_{i} \left(x; \boldsymbol{\psi}^{(i)} \right) dx \tag{3}$$

In (3), the 1st integral can be approximated by the left Riemann sum of \tilde{f}_i^2 over $[\mathbf{u}_0, \mathbf{u}_{2\rho d}]$ with partition $\{[\mathbf{u}_0, \mathbf{u}_1], [\mathbf{u}_1, \mathbf{u}_2], ..., [\mathbf{u}_{2\rho d-1}, \mathbf{u}_{2\rho d}]\}$. The 2nd integral does not depend on $\psi^{(i)}$. The 3rd integral can be estimated via samples $\{\tilde{y}_{ij}\}_{j=1...n}$ from \tilde{p}_i . Using the previous remarks, the minimization is (4).

$$\mathcal{L}^{(i)}\left(\boldsymbol{\psi}^{(i)}\right) = \frac{1}{d} \sum_{l=0}^{2\rho d-1} \boldsymbol{\psi}_{l}^{(i)^{2}} - \frac{2}{n} \sum_{j=1}^{n} \tilde{f}_{i}\left(\tilde{y}_{ij}; \boldsymbol{\psi}^{(i)}\right)$$

$$\mathcal{L}\left(\boldsymbol{\psi}^{(1)}, ..., \boldsymbol{\psi}^{(m)}\right) = \sum_{i=1}^{m} \mathcal{L}^{(i)}\left(\boldsymbol{\psi}^{(i)}\right)$$

$$\min_{\boldsymbol{\psi}^{(1)}, ..., \boldsymbol{\psi}^{(m)}} \mathcal{L}\left(\boldsymbol{\psi}^{(1)}, ..., \boldsymbol{\psi}^{(m)}\right)$$
(4)

The use of the left Riemann sum induces a constraint on $\{\psi_l^{(i)}\}_{l=0...2\rho d-1}$, but no constraint on $\psi_{2\rho d}^{(i)}$. This generates fitting errors at the right edge of \tilde{f}_i when running minimiza-

Fig. 1. Illustration of \tilde{f}_i . Here, $k_{\tilde{y}} = \rho d - 1$.

tion (4) 1 . To correct this, ${\psi_{2\rho d}^{(i)}}^2/d$ is added to $\mathcal{L}^{(i)}\left(\psi^{(i)}\right)$, slightly overestimating the integral of \tilde{f}_i^2 . Note that ${\psi_{2\rho d}^{(i)}}^2/d$ is very small as the two tails of probability density functions are near 0. Including the correction, minimization (4) becomes (5).

$$\overline{\mathcal{L}}^{(i)}\left(\boldsymbol{\psi}^{(i)}\right) = \frac{1}{d} \sum_{l=0}^{2\rho d} \boldsymbol{\psi}_l^{(i)^2} - \frac{2}{n} \sum_{j=1}^n \tilde{f}_i\left(\tilde{y}_{ij}; \boldsymbol{\psi}^{(i)}\right)$$

$$\overline{\mathcal{L}}\left(\boldsymbol{\psi}^{(1)}, ..., \boldsymbol{\psi}^{(m)}\right) = \sum_{i=1}^m \overline{\mathcal{L}}^{(i)}\left(\boldsymbol{\psi}^{(i)}\right)$$

$$\min_{\boldsymbol{\psi}^{(1)}, ..., \boldsymbol{\psi}^{(m)}} \overline{\mathcal{L}}\left(\boldsymbol{\psi}^{(1)}, ..., \boldsymbol{\psi}^{(m)}\right) \tag{5}$$

The function "loss_density_approximation" in the file "kodak_tensorflow_0.11.0/tf_utils.py" computes $\overline{\mathcal{L}}\left(\psi^{(1)},...,\psi^{(m)}\right)$.

Stochastic gradient descent solves minimization (5) and each parameter in the set $\{\psi_l^{(i)}\}_{l=0\dots2\rho d}^{i=1\dots m}$ is projected onto $[10^{-6},+\infty[$ after each gradient step.

5. REFERENCES

- [1] Thierry Dumas, Aline Roumy, and Christine Guillemot, "Autoencoder based image compression: can the learning be quantization independent?," in *ICASSP*, 2018.
- [2] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli, "End-to-end optimized image compression," in *ICLR*, 2017.

¹Changing the Riemann sum does not help solve this kind of issue. For instance, if the middle Riemann sum is used, $\psi_0^{(i)}$ and $\psi_{2\rho d}^{(i)}$ are less contrained than $\{\psi_l^{(i)}\}_{l=1...2\rho d-1}$. This causes fitting errors at the two edges of \tilde{f}_i when running minimization (4).