IDEATION PHASE

LITERATURE SURVEY

Date	15 September 2022
Team ID	PNT2022TMID46445
Project Name	Al-powered Nutrition Analyzer for Fitness
	Enthusiasts
Maximum Marks	-

S.NO	AUTHOR	TITLE	YEAR	JOURNAL	FINDINGS	ADVANTAGES	DISADVANTAGES
1.	V. Ramkumar,	Android Based	2022	International	An algorithm	The proposed	Lack of
	S.Priyanga	Monitoring		Journal of	which they	system will use	appropriate
	Devi , K. Laxmi	System with		Engineering	used:	digitalized	regulations and
	Priya, M.	Diet and		Research &	Naïve bayes	application which	some political,
	Kavya	Calorie		Technology	classifier,	will be beneficial	ethical, and
	Dharshani	Tracker		(IJERT)	Logistic	for both embers	financial
					regression and	and admin	transformations
					Random forest		
2.	V Balaji	Food Calorie	2021	International	Convolutional	Tensorflow's Object	The model doesn't
	Kasyap,	Estimation		Conference	Neural	detection API to	experience the ill
	N.Jayapandian	using		on Signal	Network	detect food items	effects of revile of
		Convolutional		Processing	(CNN)	from image. Also	dimensionality
		Neural		and		along with that we	
		Network		Communicat		have also used	
				ion (ICPSC)		Random Forest and	
						SVM with CNN	
3.	Haoyu Hu,	Image Based	2020	International	SSD (Single	Through the SSD	It may not
	Zihao Zhang,	Food Calories		Conference on	Shot	algorithm, object	generate enough
	Yulin Song	Estimation		Mechanical,	Multi box	detection can	high level features
		Using Various		Control and	Detector)	effectively solve	to do prediction
		Models of		Computer		many	for small objects
		Machine		Engineering		of the above	
		Learning		(ICMCCE)		problems	
4.	Thamos	Al Nutrition	2019	The 12th	Food category	AI and its various	In order to make
	Theodoridis,	Recommender		pervasive	Recogniser,	subsets have been	recommendations,
	Vassilios	System		Technologies	Object Vision,	leveraged by these	the system needs
	Solachidis,			Related to	Convolutional	platforms to	to collect
	Kosmos			Assistive	Neural	identify the calorie	nutritional needs
	Dimitropoulos,			Environments	Network(CNN)	intake and also to	from users.
	Lazaros			Conference	and	make	
	Gymnopoulos				Computer	food	
	and Petros				Vision	recommendations	
	Daras					for a healthy diet	
5.	Ibrahim	Approximate	2017	International	Convolutional	Convolutional	Deep learning
	Berkan Aydilek	Estimation of		Conference on	Neural	Neural Networks	requires expensive
		the Nutrition		Computer	Network	(CNN), a deep	GUIs and
		of Consumed		Science and	(CNN),	learning approach	hundreds of
		Food by		Engineering	Artificial	that has been used	machines. This
		Deep Learning		(UBMK)	Intelligence,	successfully in	increases the cost
					Deep Neural	image recognition	to the users.

					Network and	and classification	
					Image	tasks, has been	
					Classification	trained with	
						nutrition image	
						training data.	
6.	R. Divya, S.	Diet	2021	International	Conversational	The diseases	By integrating AI
	Vithiya	Monitoring		Journal Of	Agent, VDMS	can be identified	with the user
	Lakshmi and	and Health		Advanced		accurately by the	data, map its
	Mrs S.L.	Analysis		Networking &		classifiers.Wearable	user's nutritional
	Jayalakshmi	Using		Applications		are used by the	patterns and
		Artificial		(IJANA)		user to keep track	needs fitness
		Intelligence				of the diet.Intake of	coach is an Al
						the food is taken	
						into count and	
						suggestions are	
						provided to	
						improve the health	
						of the user.	
7.	Teddy Surya	Food Intake	2018	International	Generalized	The optimum	Due to very
	Gunawan,	Calorie		Conference on	Regression	spread parameter	large variation
	Mira Kartiwi,	Prediction		Smart	Neural	was found to be	of the calorie
	Noreha Abd	using		Instrumentation,	Network,	0.46 when the 568	needs
	Malik, Nanang	Generalized		Measurement	Feature	images was	to be predicted,
	Ismail4	Regression		and Application	Extraction	distributed	GRNN has
		Neural		(ICSIMA)		randomly (80%	rather large
		Network				training and 20%	prediction error
						testing). Due to	
						very large variation	
						of the calorie needs	
						to be predicted,	
						GRNN has rather	
						large prediction	
						error	