```
Team ID: PNT2022TMID11538
```

```
In []:
IN[]:import pandas as pd
     import numpy as np
     from matplotlib import pyplot as plt
      import seaborn as sns
     from sklearn.linear model import LinearRegression
2. LOAD THE DATASET INTO COLLAB
                                                                                         In []:
IN[]: df=pd.read csv("/content/abalone.csv")
                                                                                         In []:
       df['age'] = df['Rings']+1.5
       df = df.drop('Rings', axis = 1)
   3. UNIVARIATE ANALYSIS
                                                                                         In [ ]:
IN[]:df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 30)
                                                                                        Out[]:
OUT[]:array([[,
         ],
         ]],
       dtype=object)
                Length
                                     Diameter
                                                                              Whole weight
                                                          Height
                                                 1400
        350
                             300
                                                 1200
        300
                             250
                                                 1000
                                                                       200
        250
                             200
                                                  800
        200
```



IN[]:df.groupby('Sex')[['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',

'Viscera weight', 'Shell weight', 'age']].mean().sort\_values('age')

### OUT[]:

|     | Length   | Diameter | Height   | Whole weight | Shucked weight | Viscera weight | Shell weight | age       |
|-----|----------|----------|----------|--------------|----------------|----------------|--------------|-----------|
| Sex |          |          |          |              |                |                |              |           |
| - 1 | 0.427746 | 0.326494 | 0.107996 | 0.431363     | 0.191035       | 0.092010       | 0.128182     | 9.390462  |
| M   | 0.561391 | 0.439287 | 0.151381 | 0.991459     | 0.432946       | 0.215545       | 0.281969     | 12.205497 |
| F   | 0.579093 | 0.454732 | 0.158011 | 1.046532     | 0.446188       | 0.230689       | 0.302010     | 12.629304 |

### 3. BIVARIATE ANALYSIS & MULTIVARIATE ANALYSIS



# 4. Descriptive statistics

## IN[]:df.describe()

| Out[ ]: |       | Length      | Diameter    | Height      | Whole weight | Shucked weight | Viscera weight | Shell weight | age         |
|---------|-------|-------------|-------------|-------------|--------------|----------------|----------------|--------------|-------------|
|         | count | 4177.000000 | 4177.000000 | 4177.000000 | 4177.000000  | 4177.000000    | 4177.000000    | 4177.000000  | 4177.000000 |
|         | mean  | 0.523992    | 0.407881    | 0.139516    | 0.828742     | 0.359367       | 0.180594       | 0.238831     | 11.433684   |
|         | std   | 0.120093    | 0.099240    | 0.041827    | 0.490389     | 0.221963       | 0.109614       | 0.139203     | 3.224169    |
|         | min   | 0.075000    | 0.055000    | 0.000000    | 0.002000     | 0.001000       | 0.000500       | 0.001500     | 2.500000    |
|         | 25%   | 0.450000    | 0.350000    | 0.115000    | 0.441500     | 0.186000       | 0.093500       | 0.130000     | 9.500000    |
|         | 50%   | 0.545000    | 0.425000    | 0.140000    | 0.799500     | 0.336000       | 0.171000       | 0.234000     | 10.500000   |
|         | 75%   | 0.615000    | 0.480000    | 0.165000    | 1.153000     | 0.502000       | 0.253000       | 0.329000     | 12.500000   |
|         | max   | 0.815000    | 0.650000    | 1.130000    | 2.825500     | 1.488000       | 0.760000       | 1.005000     | 30.500000   |

#### 5. Check for Missing Values

```
IN[]:df.isnull().sum()
```

```
OUT[]:Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
age 0
dtype: int64
```

#### 6. OUTLIER HANDLING





IN[]:var = 'Shucked weight'

```
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)

#Outlier removal
df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)
```





```
df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter']>=0.6) & (
df['age'] < 25)].index, inplace = True)</pre>
```







#### 7. Categorical columns

```
IN[]:numerical features = df.select dtypes(include = [np.number]).columns
    categorical features = df.select dtypes(include = [np.object]).columns
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:2:
    DeprecationWarning: `np.object` is a deprecated alias for the builtin
    `object`. To silence this warning, use `object` by itself. Doing this
    will not modify any behavior and is safe.
    Deprecated in NumPy 1.20; for more details and guidance:
    https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    numerical features
OUT[]:Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked
weight',
       'Viscera weight', 'Shell weight', 'age', 'Sex F', 'Sex I', 'Sex M'],
      dtype='object')
categorical features
OUT[]:Index([], dtype='object')
ENCODING
IN[]:from sklearn.preprocessing import LabelEncoder
```

```
IN[]:from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    print(df.Length.value_counts())
```

```
0.575 93
0.625 91
0.580 89
0.550 89
0.620 83
...
0.220 2
0.150 1
0.755 1
0.135 1
0.760 1
Name: Length, Length: 126, dtype: int64
```

### 8. Split the dependent and independent variables

IN[]: x=df.iloc[:,:5]
 X

| Out[ ]: |      | Length | Diameter | Height | Whole weight | Shucked weight |
|---------|------|--------|----------|--------|--------------|----------------|
|         | 0    | 0.455  | 0.365    | 0.095  | 0.5140       | 0.2245         |
|         | 1    | 0.350  | 0.265    | 0.090  | 0.2255       | 0.0995         |
|         | 2    | 0.530  | 0.420    | 0.135  | 0.6770       | 0.2565         |
|         | 3    | 0.440  | 0.365    | 0.125  | 0.5160       | 0.2155         |
|         | 4    | 0.330  | 0.255    | 0.080  | 0.2050       | 0.0895         |
|         |      |        |          |        |              |                |
|         | 4172 | 0.565  | 0.450    | 0.165  | 0.8870       | 0.3700         |
|         | 4173 | 0.590  | 0.440    | 0.135  | 0.9660       | 0.4390         |
|         | 4174 | 0.600  | 0.475    | 0.205  | 1.1760       | 0.5255         |
|         | 4175 | 0.625  | 0.485    | 0.150  | 1.0945       | 0.5310         |
|         | 4176 | 0.710  | 0.555    | 0.195  | 1.9485       | 0.9455         |

3995 rows × 5 columns

| Out[ ]: |      | Viscera weight | Shell weight | age  | Sex_F | Sex_I | Sex_M |
|---------|------|----------------|--------------|------|-------|-------|-------|
|         | 0    | 0.1010         | 0.1500       | 16.5 | 0     | 0     | 1     |
|         | 1    | 0.0485         | 0.0700       | 8.5  | 0     | 0     | 1     |
|         | 2    | 0.1415         | 0.2100       | 10.5 | 1     | 0     | 0     |
|         | 3    | 0.1140         | 0.1550       | 11.5 | 0     | 0     | 1     |
|         | 4    | 0.0395         | 0.0550       | 8.5  | 0     | 1     | 0     |
|         |      |                |              |      |       |       |       |
|         | 4172 | 0.2390         | 0.2490       | 12.5 | 1     | 0     | 0     |
|         | 4173 | 0.2145         | 0.2605       | 11.5 | 0     | 0     | 1     |
|         | 4174 | 0.2875         | 0.3080       | 10.5 | 0     | 0     | 1     |
|         | 4175 | 0.2610         | 0.2960       | 11.5 | 1     | 0     | 0     |
|         | 4176 | 0.3765         | 0.4950       | 13.5 | 0     | 0     | 1     |

3995 rows × 6 columns

# 9. Feature Scaling

```
IN[]:from sklearn.preprocessing import StandardScaler
    ss=StandardScaler()
    x_train=ss.fit_transform(x_train)
IN[]:mlrpred=mlr.predict(x_test[0:9])
```

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:444: UserWarning: X has feature names, but LinearRegression was fitted without feature names f"X has feature names, but {self.\_\_class\_\_.\_\_name\_\_} was fitted without" IN[]:mlrpred

```
Out[]: array([[ 0.25266353, 0.33293777, 12.99980629, 0.45331697, 0.15997557,
                 0.38670746],
               [ 0.22269491, 0.29580088, 12.50296353, 0.40992272, 0.2184876 ,
                 0.37158968],
               [ 0.2954312 , 0.38943677, 13.87652761, 0.52585772, 0.05888862,
                 0.41525367],
               [ 0.19116188, 0.25219948, 11.69052796, 0.35006723, 0.29516606,
                 0.35476671],
               [ 0.1936893 , 0.25603657, 11.78385456, 0.35588184, 0.28913869,
                0.35497946],
               [ 0.25756843, 0.34076783, 13.16353177, 0.46579012, 0.14151722,
                0.39269266],
               [ 0.26157058, 0.34794991, 13.35940037, 0.4777299 , 0.12876141,
                 0.39350869],
               [ 0.38081427, 0.49279771, 15.0011063 , 0.64284894, -0.12246301,
                 0.47961407],
               [ 0.22155768, 0.2924775 , 12.35115407, 0.40222358, 0.22687261,
                 0.3709038 ]])
```

### 10. Train, Test, Split

```
IN[]:from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

### 11. Model building

```
IN[]:from sklearn.linear_model import LinearRegression
    mlr=LinearRegression()
    mlr.fit(x_train,y_train)
LinearRegression()
12 & 13. Train and Test the model
IN[]:x_test[0:5]
```

| Out[ ]: |      | Length | Diameter | Height | Whole weight | Shucked weight |
|---------|------|--------|----------|--------|--------------|----------------|
|         | 3043 | 0.575  | 0.445    | 0.140  | 0.7370       | 0.3250         |
|         | 3316 | 0.440  | 0.350    | 0.140  | 0.4510       | 0.1710         |
|         | 3057 | 0.615  | 0.490    | 0.170  | 1.1450       | 0.4915         |
|         | 136  | 0.305  | 0.230    | 0.080  | 0.1560       | 0.0675         |
|         | 3856 | 0.335  | 0.255    | 0.085  | 0.1785       | 0.0710         |

| In [ ]: | y_test[0:5]                                       |
|---------|---------------------------------------------------|
| Out[ ]: | Viscera weight Shell weight age Sex_F Sex_I Sex_M |

| 1 |      | viscera weight | Silen weight | age  | 3CX_F | SCX_I | SCX_IVI |
|---|------|----------------|--------------|------|-------|-------|---------|
|   | 3043 | 0.1405         | 0.237        | 11.5 | 0     | 0     | 1       |
|   | 3316 | 0.0705         | 0.184        | 17.5 | 0     | 0     | 1       |
|   | 3057 | 0.2080         | 0.343        | 14.5 | 0     | 0     | 1       |
|   | 136  | 0.0345         | 0.048        | 8.5  | 1     | 0     | 0       |
|   | 3856 | 0.0405         | 0.055        | 10.5 | 0     | 1     | 0       |

# 14. Measure the performance using metrics