In [1]: import numpy as np
 import pandas as pd
 import matplotlib as plt
 import seaborn as sns

##Assignment 8 th september

- 1.Take car_crashes dataset from seaborn library
- 2.load the dataset
- 3.Perfrom Data Visualization
- 4.Inference is must for each and every graph
- 5. Submit it by wednesday in html/pdf format
- In [2]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
- In [3]: | dataset = sns.load_dataset("car_crashes")
- In [4]: dataset.head()

Out[4]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

In [5]: corr = dataset.corr()
corr

C:\Users\pbalu\AppData\Local\Temp\ipykernel_21476\897440734.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr = dataset.corr()

Out[5]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	1.000000

```
In [16]:
          dataset.head()
Out[16]:
              total speeding alcohol not_distracted no_previous ins_premium ins_losses abbrev
           0
              18.8
                      7.332
                              5.640
                                           18.048
                                                       15.040
                                                                   784.55
                                                                              145.08
                                                                                         ΑL
           1
              18.1
                      7.421
                                           16.290
                                                                   1053.48
                                                                                         ΑK
                              4.525
                                                       17.014
                                                                              133.93
           2
             18.6
                      6.510
                              5.208
                                           15.624
                                                                   899.47
                                                                                         ΑZ
                                                       17.856
                                                                              110.35
           3
              22.4
                      4.032
                              5.824
                                           21.056
                                                       21.280
                                                                   827.34
                                                                              142.39
                                                                                        AR
                      4.200
                                           10.920
                                                       10.680
                                                                              165.63
                                                                                        CA
              12.0
                              3.360
                                                                    878.41
          #for Outliers:
In [10]:
          df = plt.boxplot(dataset.alcohol)
          df
Out[10]: {'whiskers': [<matplotlib.lines.Line2D at 0x1b273e91300>,
            <matplotlib.lines.Line2D at 0x1b273e915a0>],
            'caps': [<matplotlib.lines.Line2D at 0x1b273e917b0>,
            <matplotlib.lines.Line2D at 0x1b273e91a50>],
           'boxes': [<matplotlib.lines.Line2D at 0x1b273e91060>],
           'medians': [<matplotlib.lines.Line2D at 0x1b273e91cf0>],
           'fliers': [<matplotlib.lines.Line2D at 0x1b273e91f90>],
           'means': []}
                                                   000
            10
             8
             6
```

Description

4

2

In [39]: | df = dataset.ins_premium.isnull()

The above graph shows that the outliers in the Alcohol cloumn which are 3values above the average between 9 and 10

1

boxplots are used to give the outliers in a given feature of dataset and it shows the flow of data direction with the horizontal line

Inference: I have used 'coolwarm' for the color of heatmap and it shows the correlations between each and every variable in the dataset

```
In [31]: dataset.hist()
```


In [33]: dataset.hist("speeding")

Out[33]: array([[<Axes: title={'center': 'speeding'}>]], dtype=object)

Description:

Histogram is looks like bargraph but it not like that it explains about the nature of the one variable in a particular dataset like the speeding feature in the car_crashes data got rised in between the 3.5 to 5.5 at it's maximum levels.

In [24]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	<pre>not_distracted</pre>	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

In [25]: sns.scatterplot(x="total",y="alcohol",data=dataset)

Out[25]: <Axes: xlabel='total', ylabel='alcohol'>

Description:

It shows that with the rate of increase of total the alcohol levels are also increasing totally it is a positive slope

In [26]: sns.scatterplot(x="speeding",y="alcohol",data=dataset)

Out[26]: <Axes: xlabel='speeding', ylabel='alcohol'>

Inference:

As like the past graph it showing positive relation between the two selected variables but the intensity is weak when it compared between the pairs total - alcohol and speeding - alcohol Here there exists some outliers in the above graph

In [30]: sns.lineplot(x="abbrev",y="total",data=dataset,errorbar=None)

Out[30]: <Axes: xlabel='abbrev', ylabel='total'>


```
In [40]: sns.barplot(data=dataset,x="speeding",y="total",hue="ins_premium")
Out[40]: <Axes: xlabel='speeding', ylabel='total'>
```



```
In [41]: sns.countplot(x="total",data=dataset)
```

Out[41]: <Axes: xlabel='total', ylabel='count'>

In [43]: sns.jointplot(x="alcohol",y="total",data=dataset)

Out[43]: <seaborn.axisgrid.JointGrid at 0x1b27e3609d0>

Infernece:

it shows the how two variables are interacting like total and alcohol with help of dot and hist model visualizations $\frac{1}{2}$

In [44]: sns.boxplot(data = dataset)

Out[44]: <Axes: >

Inference:

the lastone which is ins_perimum values are at high level in the sense of units so that's it it is at the top when we compared towards the other.

In []: