RICERCA OPERATIVA - PARTE I

ESERCIZIO 1. (8 punti) Sia dato il seguente problema di PL

$$\begin{aligned} \max & -x_1 - x_2 \\ -x_1 + 2x_2 + x_4 &= -2 \\ -x_2 + x_3 &= -2 \\ x_1, x_2, x_3, x_4 &\geq 0 \end{aligned}$$

Si eseguano i seguenti punti:

- si risolva il problema con l'algoritmo che si ritiene più opportuno;
- si trovi la soluzione ottima del duale del problema sia per via grafica sia applicando le condizioni di complementarità;
- si esegua l'analisi di sensitività sul termine noto del secondo vincolo del problema evidenziando graficamente che cosa succede agli estremi dell'intervallo per quanto riguarda il duale.

ESERCIZIO 2. (7 punti) Sia dato il seguente problema di PL

$$\max \quad (1 - \alpha)x_1 + \alpha x_2$$

$$x_1 + x_2 + x_3 = 1$$

$$x_1 - x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Lo si risolva spiegando come varia la soluzione al variare di α . Per quali valori di α il problema ha soluzioni ottime multiple?

ESERCIZIO 3. (8 punti) Si indichi la risposta corretta per ciascuna delle seguenti domande motivando la risposta.

- (1) Si considerino i problemi di PL in forma canonica. Quale delle seguenti affermazioni è vera:
 - **A:** Ammettono sempre almeno una soluzione ottima.
 - B: Possono ammettere un qualsiasi numero finito di soluzioni ottime.
 - C: Possono avere un numero infinito di raggi estremi.
 - D: Nessuna delle precedenti affermazioni è vera
- (2) Il coefficiente di costo ridotto di una variabile fuori base rappresenta
 - **A:** Il coefficiente della variabile fuori base nella rappresentazione in forma standard del problema.
 - **B:** La variazione del valore dell'obiettivo se il valore della variabile viene incrementato di un'unità.
 - C: Il rapporto tra il valore della variabile e il massimo dei valori delle variabili in base
 - D: Nessuna delle risposte precedenti.
- (3) Sia dato un problema di PL in forma standard e il suo duale. Quali delle seguenti affermazioni è falsa
 - A: Se il primale ha obiettivo illimitato, allora il duale ha regione ammissibile vuota.
 - B: Sulla regione ammissibile del duale i valori della funzione obiettivo sono sempre maggiori o uguali rispetto a quelli sulla regione ammissibile del primale.
 - C: Se la regione ammissibile di uno dei due problemi è un politopo, allora entrambi ammettono soluzione ottima.
 - **D:** Se il duale ha regione ammissibile vuota, allora il primale ha obiettivo illimitato.

1

(4) Si consideri il seguente problema di PL:

$$\begin{array}{ll} \max & 3x_1+5x_2\\ & x_1-x_2+x_3=4\\ & -x_1+2x_2+x_4=-1\\ & 2x_1-4x_2+x_5=-2\\ & x_1,x_2,x_3,x_4,x_5\geq 0. \end{array}$$

Nel formulare il problema di I fase, quali delle tre variabili s_1, s_2, s_3 necessario mettere nella sua definizione

- A: tutte e tre le variabili.
- **B:** Le variabili s_1, s_2 .
- C: Le variabili s_1, s_3 .
- **D:** Le variabili s_2, s_3 .
- (5) Si consideri un problema di PL in forma canonica. Quale delle seguenti affermazioni è corretta
 - A: Tutte le sue soluzioni ottime sono vertici della regione ammissibile.
 - B: Tutti i vertici della regione ammissibile sono soluzioni ottime.
 - C: Ci sono soluzioni ottime solo se la regione ammissibile è un politopo.
 - D: Nessuna delle precedenti.

ESERCIZIO 4. (6 punti) Si consideri un problema di PL

$$\begin{array}{ll}
\max & cx \\
a_i x = b_i & i = 1, \dots, m \\
x > 0,
\end{array}$$

e il relativo problema di I fase

$$\max \quad -\sum_{i=1}^{m} s_i \\ a_i x + s_i = b_i \quad i \ : \ b_i \ge 0 \\ a_i x - s_i = b_i \quad i \ : \ b_i < 0 \\ x, s \ge 0.$$

Sia 0 il valore ottimo del problema di I fase e B^* una sua base ottima. Per ciascuna delle seguenti affermazioni dire se è vera o falsa **motivando la risposta**:

- se B^* non contiene variabili s_i , $i=1,\ldots,m$, allora B^* è base ottima del problema di II fase;
- se B^* contiene delle variabili s_i , allora il problema di II fase ha dei vincoli ridondanti;
- se il problema di I fase ha soluzione ottima unica, allora il problema di II fase ha un'unica soluzione ammissibile e ottima.