GO Enrichment Analysis (DAVID)

The **D**atabase for **A**nnotation, **V**isualization and **I**ntegrated **D**iscovery (**DAVID**) is a website providing a comprehensive set of functional annotation tools for investigators to understand biological meaning behind large list of genes [15]. We are going to use this tool to discover enriched gene functions.

Prepare and Upload Gene Lists

From the output file ("DiffMod.csv") generated from exomePeak2, we remove duplicated values in "geneID" column and copy all the unique IDs to a txt file ("geneID_diff.txt").

Upload txt files to DAVID website with Identifier as "ENTREZ_GENE_ID", species as "Homo sapiens", and "Gene List" selected. Submit all lists and wait for results.

Analyze Results

Open "Functional Annotation Chart" and click on "Download File" to download the txt file containing results.

Import txt file into R, analyze results and display in figures.

```
library(readr)
library(dplyr)
chart = read_tsv("chart_diff.txt")

# generate a figure for differential expressed genes
generateFigure = function(chart, num, term = "GOTERM_BP_DIRECT"){

p = selectPvalue(chart)
```

```
frame = as.data.frame(chart %>%
    filter(Category == term) %>%
    select(c("Term", "%", "PValue")) %>%
    rename("Ratio"=`%`) %>%
    mutate(Term = as.factor(gsub("^.*?~", "",Term)),
           Ratio = Ratio / 100))[1:30,] # make sure no less than 30 terms in
total
  fig2 = frame %>%
    ggplot(aes(x=reorder(Term, -PValue),y=-log(PValue),fill = Ratio)) +
    geom_bar(stat="identity") +
    coord_flip() +
    xlab("Gene Ontology: Biological Process")
  return(fig2)
}
generateFigure(chart, 30, term)
# generate a figure for hyper/hypo genes
chartp = read_tsv("pos_david_mm.txt")
chartn = read_tsv("neg_david_mm.txt")
chartp = chartp %>% mutate(Effect = "hyper")
chartn = chartn %>% mutate(Effect = "hypo")
charts = rbind(chartp, chartn)
generateFigure_hyper_hypo = function(charts, term = "GOTERM_BP_DIRECT"){
  print(charts %>%
          filter(Category == term & Effect == 'hyper') %>%
          select(c("Term", "%", "PValue", "Effect")) %>%
          rename("Ratio"=`%`) %>%
          mutate(Term = as.factor(gsub("^.*?~", "",Term)),
                 Ratio = Ratio / 100) %>% nrow())
  frame_p = as.data.frame(charts %>%
    filter(Category == term & Effect == 'hyper') %>%
    select(c("Term", "%", "PValue", "Effect")) %>%
    rename("Ratio"=`%`) %>%
    mutate(Term = as.factor(gsub("^.*?~", "",Term)),
           Ratio = Ratio / 100) [1:29,]
  print(charts %>%
          filter(Category == term & Effect == 'hypo') %>%
          select(c("Term", "%", "PValue", "Effect")) %>%
          rename("Ratio"=`%`) %>%
          mutate(Term = as.factor(gsub("^.*?~", "",Term)),
                 Ratio = Ratio / 100) %>% nrow())
  frame_n = as.data.frame(charts %>%
     filter(Category == term & Effect == 'hypo') %>%
     select(c("Term", "%", "PValue", "Effect")) %>%
     rename("Ratio"=`%`) %>%
     mutate(Term = as.factor(gsub("^.*?~", "",Term)),
            Ratio = Ratio / 100))[1,]
  frame = rbind(frame_p,frame_n)
```

```
fig2 = frame %>%
    ggplot(aes(x=reorder(Term, -PValue),y=-log(PValue),fill = Effect)) +
    geom_bar(stat="identity") +
    coord_flip() +
    xlab("Gene Ontology: Biological Process")

return(fig2)
}
generateFigure_hyper_hypo(charts)
```

Enriched biological processes regulated by differential methylated genes on hg19 genome.

Enriched biological processes regulated by differential methylated genes on mm10 genome.

