Tiny Video Networks on UCF50 dataset

Постановка задачи

- Воспроизвести одну из сетей, описанный в статье Tiny Video Networks, AJ Piergiovanni Anelia Angelova Michael Ryoo
- Обучить её на датасете UCF50
- Сравнить с известными результатами

О статье

3: Example Tiny Video Networks found using architecture evolution showing several blocks with different configurations. A Tiny Video Net has multiple blocks, each repeated R times. Each block has a different configuration with spatial and temporal convolution, pooling, non-local layers, context gating and squeeze-excitation layers. It can select the image resolution and frame rate. From top to bottom: TVN-2, TVN-3, TVN-4. TVN-1 is shown in Figure 1.

Method	Runtime	Runtime	GFlops	Acc.
	CPU(ms)	GPU(ms)		(%)
ResNet-18	2120	105	38	21.1
ResNet-34	2256	110	50	24.2
ResNet-50	3022	125	124	28.1
ResNet-101	3750	140	245	30.2
TSN [47]	-	-	-	24.1
2DResNet50 [26]	-	-	-	27.1
bLVNet-TAM [7]	-	-	-	31.4
TVN-1	37	10	13	23.1
TVN-2	65	13	17	24.2
TVN-3	85	16	69	25.9
TVN-4	402	19	106	28.0
TVN-5	86	16	52	29.8
TVN-6	142	18	93	30.7

Table 3. Results on the MiT dataset comparing different Tiny Networks to baselines and state-of-the-art (which are all RGB-only). TVN models perform competitively and are also much faster. No runtime was reported in prior work.

О датасете UCF50

О реализации

Figure 1: An example of a highly efficient 'Tiny Video Network', working on a video snippet. TVN-1 is shown. It takes 37 ms (CPU), 10ms (GPU).

- Архитектура TVN1
- Входной размер 200х200
- Нет аугментации при обучении
- Нет предобучения

- Соотношение train/test: 85/15
- Берём каждый 10ый кадр из видео
- Всего берём 8 кадров (из 80)
- Если кадров не хватает повторяем последний

Обучение

Сравнение с другими моделями

Action Recognition on UCF101

SMART на данный момент является SOTA для аналогичной задачи на UCF101

Method	Backbone	UCF101	HMDB51
Two-stream	VGG	92.5	62.4
I3D	Inc v3	98.0	80.7
DynaMotion + I3D	Inc v3	98.4	84.2
TSN	BN-Inc	94.2	69.9
KI-Net	Res-152	97.8	78.2
AAS	TSN	94.6	71.2
SMART	TSN	95.8	74.6
AAS	TSN+Kinetics	96.8	77.3
SMART	TSN+Kinetics	98.6	84.3

Table 5: Extending SMART to other approaches

Method	UCF101	HMDB51
ISTPAN	95.5	70.7
ISTPAN + SMART	96.4	72.1
I3D	98.0	80.0
I3D + Smart	98.2	81.1
STM-Resnet	94.2	68.9
STM-Resnet + SMART	94.9	69.7

Проблемы

- Сравнительно маленикий датасет UCF50, который входит в датасет побольше.
- Для работы с видео требуется значительно больше параметров
- Из-за отсутствия аугментаций модели не хватает информации, чтобы что-либо выучить