In [1]: #importing libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

C:\Users\CODEINE\AppData\Local\Temp\ipykernel_7964\4288724001.py:2: DeprecationWa
rning:

Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),

(to allow more performant data types, such as the Arrow string type, and better i nteroperability with other libraries)

but was not found to be installed on your system.

If this would cause problems for you,

please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466

import pandas as pd

In [2]: #Loading data
df = pd.read_csv("Flyzy Flight Cancellation.csv")

In [3]: df.head()

ut[3]:		Flight ID	Airline	Flight_Distance	Origin_Airport	Destination_Airport	Scheduled_Dep
	0	7319483	Airline D	475	Airport 3	Airport 2	
	1	4791965	Airline E	538	Airport 5	Airport 4	
	2	2991718	Airline C	565	Airport 1	Airport 2	
	3	4220106	Airline E	658	Airport 5	Airport 3	
	4	2263008	Airline E	566	Airport 2	Airport 2	
	4						•

In [4]: df.tail()

Out[4]:		Fligh II	Airiine	Flight_Distance	ce Origin_Airpo	rt Destination_Airpor	t Scheduled_I			
	2995	126578	1 Airline D	39	95 Airport	: 2 Airport	3			
	2996	5440150) Airline E	54	17 Airport	: 1 Airport	4			
	2997	779080) Airline C	Δr	51 Airport	: 1 Airport	3			
	2998	404443	1 Airline B	Δr	64 Airport	: 3 Airport	3			
	2999	2806578	Airline A	31	59 Airport	: 1 Airport	2			
	4						>			
In [5]:	df.shape									
Out[5]:	(3000, 14)									
In [6]:	df.columns									
Out[6]:	'Destination_Airport', 'Scheduled_Departure_Time', 'Day_of_Week', 'Month', 'Airplane_Type', 'Weather_Score', 'Previous_Flight_Delay_Minutes', 'Airline_Rating', 'Passenger_Load', 'Flight_Cancelled'], dtype='object') Observation: Most of the column names consist of multiple words seperated by underscores,but 'Flight ID' does not follow this format, therefore we need to change it to									
In [7]:	keep consistancy. n [7]: #Changing column name									
	<pre>df.rename(columns={'Flight ID' : 'Flight_ID'}, inplace =True)</pre>									
In [8]:	df.hea	ad(2)								
Out[8]:	Fli	ght_ID	Airline F	light_Distance	Origin_Airport	Destination_Airport	Scheduled_De			
	0 73	319483	Airline D	475	Airport 3	Airport 2				
	1 47	791965	Airline E	538	Airport 5	Airport 4				
	4						•			
	CHEC	KING DA	ATA TYPE	S OF EACH CO	LUMN					
In [9]:	df.in	fo()								

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3000 entries, 0 to 2999 Data columns (total 14 columns): Column Non-Null Count Dtype --- -----_____ 0 Flight ID 3000 non-null int64 1 Airline 3000 non-null object Flight_Distance 3000 non-null int64 3 Origin_Airport 3000 non-null object 4 Destination_Airport 3000 non-null object 5 Scheduled_Departure_Time 3000 non-null int64 6 Day of Week 3000 non-null int64 7 3000 non-null int64 Month 8 Airplane_Type 3000 non-null object 9 Weather_Score 3000 non-null float64 10 Previous_Flight_Delay_Minutes 3000 non-null float64 11 Airline_Rating 3000 non-null float64 12 Passenger_Load 3000 non-null float64 13 Flight Cancelled 3000 non-null int64 dtypes: float64(4), int64(6), object(4) memory usage: 328.3+ KB

Observation: This results indicate that all columns have the correct data types according to the data they contain

```
In [10]: #Checking for duplicates entries
duplicates = df[df.duplicated()]
In [11]: duplicates
Out[11]: Flight_ID Airline Flight_Distance Origin_Airport Destination_Airport Scheduled_Depate
```

CHECKING FOR MISSING VALUES

No duplicates on the dataset

There are no missing values

```
In [12]:
         df.isnull().sum()
Out[12]: Flight ID
                                            0
          Airline
                                            0
          Flight Distance
                                            0
                                            0
          Origin_Airport
          Destination Airport
                                            0
          Scheduled_Departure_Time
                                            0
          Day_of_Week
                                            0
          Month
                                            0
          Airplane_Type
          Weather_Score
                                            0
          Previous_Flight_Delay_Minutes
                                            0
                                            0
          Airline_Rating
          Passenger_Load
                                            0
                                            0
          Flight Cancelled
          dtype: int64
```

CHECKING FOR OUTLIERS

```
#Used boxplot to visually check outliers
In [13]:
In [14]:
            columns_to_check =['Flight_Distance',
                           'Scheduled_Departure_Time',
                           'Weather_Score',
                           'Previous_Flight_Delay_Minutes',
                           'Airline_Rating', 'Passenger_Load',
                           'Flight_Cancelled'
                         1
            plt.figure(figsize =(15,10))
In [15]:
             for i, col in enumerate(columns_to_check, 1):
                  plt.subplot(3,3, i)
                  sns.boxplot(x=df[col])
                  plt.title(f'Box Plot of {col}')
             plt.tight_layout()
             plt.show()
                    Box Plot of Flight_Distance
                                                      Box Plot of Scheduled_Departure_Time
                                                                                                Box Plot of Weather_Score
                       400 500 600
Flight_Distance
                                                           10 15
Scheduled_Departure_Time
               Box Plot of Previous_Flight_Delay_Minutes
                                                           Box Plot of Airline Rating
                                                                                                Box Plot of Passenger_Load
                    100 150 2
Previous_Flight_Delay_Minutes
                                          250
                    Box Plot of Flight_Cancelled
                  0.2
                        Flight_Cancelled
```

This plots shows that the following columns have outliers and have to be handled

- 1. Flight_Distance
- 2. Previous_Flight_Delay_Minutes
- 1. Handling outliers for Flight_Distance column using Capping method Because it reduces the impact of extreme outliers, which can distort the analysis.

```
cap_min =df['Flight_Distance'].quantile(0.05)
#Apply capping
df['Capped_Flight_Distance'] = np.clip(df['Flight_Distance'], cap_min, cap_max)

In [17]: #Plotting transformed column
plt.figure(figsize =(8,6))
sns.boxplot(x=df['Capped_Flight_Distance'])
plt.title('Box plot of Capped_Flight_Distance')
plt.show()
```

Box plot of Capped_Flight_Distance

The results shows no more outliers for Flight_Distance

2. Handling Outliers for Previous_Flight_Delay_Minutes Using Log Transformation because data is skewed, compressing the range of delay times, reducing the impact of extreme values.

Box plot of Log_Previous_Flight_Delay_Minutes

Now the outliers were handled and not showing on the plot

In [20]:	df.head(2)						
Out[20]:		Flight_ID	Airline	Flight_Distance	Origin_Airport	Destination_Airport	Scheduled_De _l
	0	7319483	Airline D	475	Airport 3	Airport 2	
	1	4791965	Airline E	538	Airport 5	Airport 4	
	4						+
In [21]:	df.shape						
Out[21]:	(3000, 16)						
	EXPLORATORY DATA ANALYSIS DESCRIPTIVE STATISTICS						

In [22]: df.describe()

Out[22]:

Flight_ID Flight_Distance Scheduled_Departure_Time Day_of_Week Mc **count** 3.000000e+03 3000.000000 3000.000000 3000.000000 3000.000 mean 4.997429e+06 498.909333 6.381 11.435000 3.963000 **std** 2.868139e+06 2.016346 3.473 98.892266 6.899298 min 3.681000e+03 138.000000 0.000000 1.000000 1.000 **25%** 2.520313e+06 2.000000 3.000 431.000000 6.000000 **50%** 5.073096e+06 497.000000 12.000000 4.000000 6.000 9.000 **75%** 7.462026e+06 566.000000 17.000000 6.000000 max 9.999011e+06 864.000000 23.000000 7.000000 12.000

The above shows statistical analysis for various features.

Examples, We can see the longest flight delay of 250 minutes from the previous flight delay minutes and also highest and lowest Airline ratings amongst other observations

DATA DISTRIBUTION

Numerical Columns

```
In [23]:
        df.columns
Out[23]: Index(['Flight_ID', 'Airline', 'Flight_Distance', 'Origin_Airport',
                 'Destination_Airport', 'Scheduled_Departure_Time', 'Day_of_Week',
                 'Month', 'Airplane_Type', 'Weather_Score',
                 'Previous_Flight_Delay_Minutes', 'Airline_Rating', 'Passenger_Load',
                 'Flight_Cancelled', 'Capped_Flight_Distance',
                 'Log_Previous_Flight_Delay_Minutes'],
                dtype='object')
In [24]: #Selecting relevant numerical columns
         numerical columns = [
              'Flight_Distance', 'Weather_Score', 'Previous_Flight_Delay_Minutes',
              'Airline_Rating', 'Passenger_Load', 'Capped_Flight_Distance',
             'Log_Previous_Flight_Delay_Minutes'
         ]
In [25]: # Plotting the distribution for each numerical column
         for col in numerical_columns:
             plt.figure(figsize=(8, 4))
             sns.histplot(df[col], kde=True, bins=30) #
             plt.title(f'Distribution of {col}')
             plt.xlabel(col)
             plt.ylabel('Frequency')
             plt.show()
```


From this, we can see various distribution of the numerical columns

Now checking categorial columns

```
import warnings
warnings.filterwarnings("ignore")
#selecting columns to check
categorical_columns = ['Airline','Day_of_Week', 'Month', 'Airplane_Type','Origin

# Plotting the distribution for each categorical column
for col in categorical_columns:
    plt.figure(figsize=(8, 4))
    sns.countplot(x=df[col], palette='coolwarm') # Countplot to show the freque
    plt.title(f'Distribution of {col}')
    plt.xlabel(col)
    plt.ylabel('Count')
    plt.xticks(rotation=45) # Rotate x labels if needed for readability
    plt.show()
```


Data from Flight_Cancelled target column is highly imbalanced, we have more occurances of cancelled flights than non cancelled.

There is also a noticeable high occurance of:

TypeA flight than other flights

AirlineA than other airlines

Airport1 than other airports

Month and day of the week: there is slight difference between various months and various days of the week

RELATIONSHIP BETWEEN FEATURES:

In [28]: #Correlation matrix to understand the relationships better
 df.select_dtypes(include ="number").corr()

Out[28]:

	Flight_ID	Flight_Distance	Scheduled_Departure_Time
Flight_ID	1.000000	-0.007541	0.006207
Flight_Distance	-0.007541	1.000000	0.039727
Scheduled_Departure_Time	0.006207	0.039727	1.000000
Day_of_Week	-0.012384	0.024455	-0.011834
Month	-0.025743	0.019573	0.018319
Weather_Score	-0.002007	0.010139	-0.023682
Previous_Flight_Delay_Minutes	0.006172	0.018413	-0.036318
Airline_Rating	0.043170	0.042128	0.040739
Passenger_Load	0.009312	-0.018627	0.046556
Flight_Cancelled	-0.009101	-0.277471	-0.043733
Capped_Flight_Distance	-0.007407	0.988170	0.033209
Log_Previous_Flight_Delay_Minutes	0.011250	0.008974	-0.032594
4			>

In [29]: #Visualising the relationships using Heatmap
plt.figure(figsize =(12,10))
sns.heatmap(df.select_dtypes(include ="number").corr(), annot = True)

Out[29]: <Axes: >

Relationship Insights:

Flight_Distance & Capped_Flight_Distance are strongly correlated since "Capped_Flight_Distance" is derived from "Flight_Distance" while managing outliers.

Similarly for Previous_Flight_Delay_Minutes & Log_Previous_Flight_Delay_Minutes (0.827)

Flight_Cancelled & Weather_Score (0.306): There's a moderate positive correlation indicating that poor weather may be associated with more cancellations.

Flight_Cancelled & Previous_Flight_Delay_Minutes (0.303): A moderate positive correlation suggesting that flights with previous delays might have a higher chance of being cancelled.

Scheduled_Departure_Time & Passenger_Load (0.047): Slight positive correlation but not strong.

Flight_Distance & Passenger_Load (-0.0186): A weak negative correlation

Airline_Rating & Previous_Flight_Delay_Minutes (-0.0360): A weak negative correlation, indicating that higher delays are not strongly related to airline ratings.

Airline_Rating & Flight_Cancelled (-0.314): A moderate negative correlation, indicating that lower airline ratings might be associated with higher chances of cancellation.

Day_of_Week, Month: weak correlations with other variables, indicating that the day of the week and month might not have strong impacts on flight cancellations.

In []:

RELATIONSHIP BETWEEN FEATURES AND TARGET COLUMN

Based on the investigations from the Correlation matrix and Heatmap above, below are the observations:

Flight_Distance - there is a moderate negative correlation between Flight_Distance and Flight_Cancelled, suggesting flight distance might not be highly influencial

Scheduled_Departure_Time, correlation is very close to zero indicating weak correlation with Flight_Cancelled, therefore might not be a significant predictor for flight cancellations

Day_of_Week and Month, also shows weak correlation with the target column , suggesting not much impact on flight cancellations

Weather_Score, shows moderate postive correlation with target column indicating worse weather conditions can influence flight cancellations, this is very important for predicting cancellations

Previous_Flight_Minutes_Minutes, there is moderate postive correlation suggesting previous delays could influence cancellations

Airline_Rating, shows moderate negative correlation with the target, it indicate flights with lower airline rating are likely to be cancelled

Passenger_Load, weak correlation indicating number of passengers not impacting flight cancellations

Capped_Flight_Distance, similar to original Flight_Distance, moderate negative correlation

Log_Transformed_Delay_Minutes, also similar to the original Previous_Flight_Delay_Minutes although slitly lower than original but it still indicates delays are positively associated with cancellations.

TASK 3: DATA PRE-PROCESSING AND MODEL BUILDING

##Dealing cyclical data

```
In [30]: #Cyclical data Month and Day of Week

df['Day_of_Week_sin'] =np.sin(2*np.pi *df['Day_of_Week']/7)

df['Day_of_Week_cos'] =np.cos(2*np.pi *df['Day_of_Week']/7)

df['Months_sin'] = np.sin(2*np.pi*df['Month'] /12)

df['Months_cos'] = np.cos(2*np.pi*df['Month'] /12)
```

df.drop(['Day_of_Week','Month'], axis =1).head() Out[30]: Flight_ID Airline Flight_Distance Origin_Airport Destination_Airport Scheduled_Del Airline 7319483 475 Airport 3 Airport 2 Airline 1 4791965 538 Airport 5 Airport 4 Ε Airline 2991718 2 565 Airport 1 Airport 2 C Airline 4220106 3 658 Airport 5 Airport 3 Airline 2263008 566 Airport 2 Airport 2 Ε ##Encoding categorical variables: #One hot encoding for categorial variables In [31]: categorical_columns =['Airline', 'Origin_Airport', 'Destination_Airport', 'Airpl' df_encoded =pd.get_dummies(df, columns =categorical_columns, drop_first =True) In [50]: df_encoded.head() Out[50]: Flight_ID Flight_Distance Scheduled_Departure_Time Day_of_Week Month Weat 0 7319483 -0.241812 -1.077826 1.010411 -1.549203 1 4791965 0.395351 0.081906 -1.469735 -0.109691 2 2991718 0.668421 0.806738 -0.477676 0.754016 3 4220106 1.608995 -1.512725 -1.469735 0.466114 2263008 0.678535 1.096671 1.506441 1.617723 5 rows × 31 columns

##Feature Scaling:

```
In [37]:
         #Numerical columns to scale
          numerical_features = [ 'Weather_Score', 'Scheduled_Departure_Time', 'Airline_Rati
                 'Passenger_Load', 'Capped_Flight_Distance',
                 'Log_Previous_Flight_Delay_Minutes','Flight_Distance','Previous_Flight_De
          #apply standard scaler
          from sklearn.preprocessing import StandardScaler
          #initialise standard scaler
          scaler =StandardScaler()
          #apply scaler
          df_encoded[numerical_features] = scaler.fit_transform(df_encoded[numerical_featur
In [38]:
         df_encoded.head()
Out[38]:
             Flight_ID Flight_Distance Scheduled_Departure_Time Day_of_Week
                                                                                Month Weat
             7319483
                                                      -1.077826
          0
                            -0.241812
                                                                    1.010411 -1.549203
             4791965
                                                                    -1.469735 -0.109691
                             0.395351
                                                      0.081906
          2
             2991718
                            0.668421
                                                      0.806738
                                                                   -0.477676
                                                                              0.754016
          3
             4220106
                             1.608995
                                                      -1.512725
                                                                    -1.469735
                                                                              0.466114
             2263008
                            0.678535
                                                      1.096671
                                                                    1.506441
                                                                              1.617723
         5 rows × 31 columns
          ##Model Building:
In [40]:
         #splitting the data
          from sklearn.model_selection import train_test_split
          #Dropping original columns (to use only the transformed ones) and also target co
          X =df_encoded.drop(['Flight_Cancelled', 'Flight_ID','Flight_Distance',"Month","D
```

```
#Target variable
y = df_encoded['Flight_Cancelled']
#Splitting the data
X_train, X_test, y_train,y_test = train_test_split(X,y,test_size =0.2, random_st
```

In [41]: X.head(3)

```
Out[41]:
             Scheduled_Departure_Time Weather_Score Airline_Rating Passenger_Load Capped_F
          0
                             -1.077826
                                           -1.028402
                                                          -0.115698
                                                                          -0.130868
          1
                             0.081906
                                            -1.595333
                                                          -0.501109
                                                                          -1.204954
          2
                             0.806738
                                           -1.479818
                                                           1.460975
                                                                          -0.876504
         3 rows × 25 columns
In [51]: #Training the Logistic Regression Model
         from sklearn.linear_model import LogisticRegression
         #initialize the model
         model = LogisticRegression()
         #Train the model
         model.fit(X_train,y_train)
Out[51]:
              LogisticRegression
         LogisticRegression()
In [43]: #making predictions on test set
         y_pred = model.predict(X_test)
         y_proba = model.predict_proba(X_test)[:, 1]
         ##Model Evaluation
In [52]:
         #Evaluate the model
         from sklearn.metrics import accuracy_score,precision_score,recall_score, confusi
         #Accuracy
         accuracy = accuracy score(y test,y pred)
         print(f'Accuracy: {accuracy: 2f}')
         #precision,Recall, F1-score
         print(classification_report(y_test,y_pred))
         #confusion matrix
         conf_matrix = confusion_matrix(y_test,y_pred)
          print('Confusion Matrix: ')
         print(conf_matrix)
        Accuracy: 0.766667
                                    recall f1-score
                       precision
                                                        support
                   0
                            0.65
                                      0.55
                                                0.59
                                                            187
                            0.81
                                      0.87
                                                0.84
                                                            413
                                                0.77
                                                            600
            accuracy
           macro avg
                            0.73
                                      0.71
                                                0.71
                                                            600
        weighted avg
                            0.76
                                      0.77
                                                0.76
                                                            600
        Confusion Matrix:
        [[102 85]
         [ 55 358]]
```

```
import sklearn.metrics as metrics
 fpr, tpr, threshold = metrics.roc_curve(y_test, y_pred)
 print(fpr)
 print(tpr)
 print(threshold)
 roc_auc = metrics.auc(fpr, tpr)
 print(roc_auc)
 # method I: plt
 plt.title('Receiver Operating Characteristic for Logistic Regression')
 plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
 plt.legend(loc = 'lower right')
 plt.plot([0, 1], [0, 1], 'r--')
 plt.xlim([0, 1])
 plt.ylim([0, 1])
 plt.ylabel('True Positive Rate')
 plt.xlabel('False Positive Rate')
 plt.show()
[0.
            0.45454545 1.
                                 ]
[0.
            0.86682809 1.
```

[inf 1. 0.] 0.7061413163108079

Our model achived an accuracy of 77%, we can try other classification methods to see how they perform

```
In [ ]:
In [ ]:
```