Analog data, analog signals

Radhika Sukapuram

September 23, 2020

Radhika Sukapuram Lecture 9 September 23, 2020 1 / 17

Question

The process of combining an input signal m(t) and a carrier at frequency f_c to produce a signal s(t) whose bandwidth is (usually) centered on f_c is:

- (A) multiplexing
- (B) modulation
- (C) sampling
- (D) companding

Analog data, analog signals

- When only analog transmission facilities are available, modulation is required to convert digital data to analog form
- Voice signals are transmitted over telephone lines at their original spectrum (referred to as baseband transmission)
- Why must analog data be modulated?
 - A higher frequency may be needed for effective transmission (low frequency transmission requires long antennas)
 - 2 Modulation permits frequency-division multiplexing
- Principal modulation techniques: amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM)

An example: radio

- The government assigns a narrow bandwidth to each radio station
- The analog signal produced by a radio station is a low-pass signal, each in the same range
- To be able to listen to different stations, the low-pass signals need to be shifted, each to a different range

$$s(t) = [1 + n_a x(t)] \cos 2\pi f_c t$$

 $\cos 2\pi f_c t$: the carrier, x(t): the input signal carrying data, both normalized to an amplitude of 1. Modulation index $n_a=$ amplitude of the input signal / amplitude of the carrier.

$$m(t) = n_a x(t)$$

This scheme: double sideband transmitted carrier (DSBTC).

Radhika Sukapuram Lecture 9 September 23, 2020 5 /

$$s(t) = [1 + n_a x(t)] \cos 2\pi f_c t$$

Suppose the modulating signal $x(t) = \cos 2\pi f_m t$

$$s(t) = [1 + n_a \cos 2\pi f_m t] \cos 2\pi f_c t$$

$$s(t) = \cos 2\pi f_c t + n_a \cos 2\pi f_m t \cos 2\pi f_c t$$

$$s(t) = \cos 2\pi f_c t + \frac{n_a}{2} \cos 2\pi (f_c - f_m) t + \frac{n_a}{2} \cos 2\pi (f_c + f_m) t$$

- a component at the original carrier frequency
- ullet plus a pair of components each spaced f_m Hz from the carrier.
- AM involves the multiplication of the input signal by the carrier
- The envelope of the resulting signal is $[1 + n_a x(t)]$

Radhika Sukapuram Lecture 9 September 23, 2020 6 / 17

Both the upper and lower sidebands are replicas of the original spectrum $M(\ f\)$, with the lower sideband being frequency reversed

- voice signal with a bandwidth that extends from 300 to 3000 Hz
- being modulated on a 60-kHz carrier
- s(t): upper side band: 60.3 to 63 kHz, lower side band: 57 to 59.7 kHz, and the 60-kHz carrier
- Amplitude of carrier: 50 V, amplitude of signal: 20 V
- $n_a = 20/50 = 0.4$

Radhika Sukapuram Lecture 9 September 23, 2020 7 / 17

- s(t) contains unnecessary components, because each of the sidebands contains the complete spectrum of m(t)
- single sideband (SSB): sends only one sideband
 - Only half the bandwidth is required, $B_T = B$, where B is the bandwidth of the original signal. (For DSBTC, $B_t = 2B$)
 - Less power is required because no power is used to transmit the carrier or the other sideband

Double Sideband Suppressed Carrier (DSBSC):filters out the carrier frequency and sends both sidebands.

This saves some power but uses as much bandwidth as DSBTC

Vestigial Side Band

The carrier can be used for synchronization

- Suppose the original analog signal is an ASK waveform encoding
 data
- The receiver needs to know the starting point of each bit time to interpret the data correctly.
- compromise: vestigial sideband (VSB), which uses one sideband and a reduced- power carrier

10 / 17

Question

The bandwidth of an audio signal (speech and music): 5kHz Therefore an AM radio station (using DSBTC) needs a bandwidth of _____

- (A) 5KHz
- (B) 10kHz
- (C) 3.4 kHz

AM Radio

- Carrier frequencies: between 530 and 1700kHz
- Carrier frequencies of each station is separated by 10 kHz
- Being phased out in many parts of the world (overtaken by digital broadcasting, radio over the internet etc.). Useful in disaster situations
- Another use of AM!: https://www.mattblaze.org/blog/neinnines/

Angle Modulation

FM and PM are special cases of angle modulation

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

- For phase modulation, $\phi(t) = n_p m(t)$, where n_p is the modulation index
- For Frequency Modulation (FM), the instantaneous frequency of the carrier wave deviates from f_c in proportion to the amplitude of the modulating signal.
- Equivalently, for FM, $\phi'(t) = n_f m(t)$ where n_f is the frequency modulation index and $\phi'(t)$ is the derivative of $\phi(t)$.
- The peak deviation of frequency from f_c

$$\Delta F = \frac{1}{2\pi} n_f A_m$$

 A_m is the maximum value of m(t)

(ロ) (個) (E) (E) (E) のQで

13 / 17

Radhika Sukapuram Lecture 9 September 23, 2020

Angle Modulation

FM:Observations

ullet The peak deviation of frequency from f_c

$$\Delta F = \frac{1}{2\pi} n_f A_m$$

 A_m is the maximum value of m(t)

- An increase in magnitude of m(t) will increase the peak deviation of frequency, which increases B_T
- This will not increase the average power level of the FM signal, which is $A_c^2/2$ (A_c : peak amplitude of the carrier signal)
- But in AM, the level of modulation affects the power in the AM signal but does not affect its bandwidth.

Observations

- Angle modulation causes a wide range of frequencies
- s(t) will contain components at $f_c + f_m$, $f_c + 2f_m$ and so on for a modulating sinusoid of frequency f_m
- Therefore for the most general analog signal, infinite bandwith is required
- Carson's rule for angle modulation: $B_T = 2(\beta + 1)B$ where
 - $\beta = n_p A_m$ for PM and
 - $\beta = \frac{\Delta F}{B} = \frac{n_f A_m}{2\pi B}$ for FM.

 A_m is the maximum value of m(t).B is the bandwidth of the original signal (modulating signal)

- We can re-write the formula for FM as $B_T = 2(\frac{\Delta F}{B} + 1)B = 2\Delta F + 2B$
- Thus FM and PM require more bandwidth than AM

◆□▶ ◆御▶ ◆恵▶ ◆恵▶ ・恵・釣९@

16 / 17

FM Radio

- Audio signal: bandlimited at 15kHz
- Carrier frequencies: between 88 and 108 MHz
- The carrier frequency of each station is separated by at least 200 kHz
- Popular for short range broadcasts