

Sémantique des Langages de Programmation (SemLP) TD nº 6 : Simulation

Exercice 1:LN:141

Prove the following properties:

- 1. \leq_C is a pre-order (reflexive and transitive).
- **2.** If $M \leq_C N$ then for all contexts C (not necessarily closing) $C[M] \leq_C C[N]$.
- **3.** $\lambda x.\lambda y.x \nleq_C \lambda x.\lambda y.y.$
- **4.** Find a pair of λ -terms M, N such that $M \approx_C N$ and $M \neq_{\beta} N$.

Exercice 2: (LN: 149)

Let \leq_{IO} be a relation on closed λ -terms defined by :

$$M \leq_{IO} N$$
 if $\forall P$ closed $MP \Downarrow$ implies $NP \Downarrow$

Show that \leq_{IO} is a pre-order and that it is *not* preserved by contexts.

Exercice 3: (LN: 153)

Show that:

- 1. The subsets of a set with the inclusion relation as partial order form a complete lattice.
- **2.** Every subset of a complete lattice has an *inf*.
- **3.** Every *finite* subset of a lattice has an *inf*.
- **4.** Every finite lattice is complete.

Exercice 4:(LN:156)

Let $(\mathbb{N} \cup \{\infty\}, \leq)$ be the set of natural numbers with an added maximum element ∞ , $0 < 1 < 2 < \ldots < \infty$. Show that every monotonic function f on this order has a fixed point.

Exercice 5: (LN:157) fixed points on finite lattices

Let (L, \leq) be a *finite* lattice and $f: L \to L$ be a monotonic function. Let $\bot (\top)$ be the least (greatest) element of L. If $x \in L$ then let $f^n(x)$ be the n-time iteration of f on x, where $f^0(x) = x$.

- **1.** Show that there is an $n \ge 0$ such that the least fixed point of f equals $f^n(\bot)$.
- 2. State and prove a dual property for the *greatest fixed point*.
- **3.** Show that these properties fail to hold if one removes the hypothesis that the lattice is *finite*.

Exercice 6: (LN: 158) fixed points of continuous functions

A subset X of a partial order is *directed* if

$$\forall x, y \in X, \exists z \in X, (x \leq z) \text{ and } (y \leq z)$$
.

A function on a complete lattice is *continuous* if it preserves the *sup* of *directed sets*:

$$f(sup(X)) = sup(f(X))$$
 (if X directed).

- 1. Show that a *continuous* function is *monotonic*.
- **2.** Give an example of a function on a complete lattice which is continuous but does *not* preserve the *sup* of a (non-directed) set.
- **3.** Show that the *least fixed point* of a continuous function f is expressed by :

$$\sup\{f^n(\bot) \mid n \geqslant 0\} \ .$$

Exercice 7:(LN:169)

Prove that:

- 1. If $M \not \Downarrow$ and $N \not \Downarrow$ then $M =_S N$.
- **2.** Let $\Omega_n = \lambda x_1 \dots \lambda x_n \Omega$. Then $\Omega_n <_S \Omega_{n+1}$ (strictly) and, for all M, $\Omega_0 \leqslant_S M$.
- **3.** Let $K^{\infty} \equiv YK$. Then for all $M, M \leq_S K^{\infty}$.
- **4.** $\lambda x.x \nleq_S \lambda x, y.xy$ (thus η -conversion is unsound).

Exercice 8 : (LN : 171)

Let us revise the pre-order considered in exercise 2 by defining a relation \leqslant_{IO^*} on closed λ -terms as :

$$M \leqslant_{IO^*} N$$
 if for all $n \geqslant 0, P_1, \dots, P_n$ closed, $MP_1 \cdots P_n \Downarrow$ implies $NP_1 \cdots P_n \Downarrow$.

Prove that \leq_{IO^*} coincides with \leq_S .