

SEQUENCE LISTING

<110> SHIBATA, Takashi
ICHIKAWA, Chiyo
MATSUURA, Mitsutaka
NOGUCHI, Yuji
SAITO, Yoshimasa
YAMASHITA, Michio
TAKATA, Yoko

<120> SORBITOL DEHYDROGENASE, GENE ENCODING THE SAME AND USE THEREOF
312

<130> 213930US0PCT

<140> 09/926,163

<141> 2001-09-17

<150> PCT/JP00/01608

<151> 2000-03-16

<150> JP11/72810

<151> 1999-03-17

<150> JP11/224679

<151> 1999-08-06

<160> 20

<170> PatentIn version 3.1

<210> 1

<211> 4115

<212> DNA

<213> Gluconobacter oxydans

Q12

<220>

<221> CDS

<222> (537) .. (1994)

<223>

<400> 1		
aagcttgcatttgcaggcgactctaga ggtatccggtt ttggcagcgc tcccttagatt		60
gatgcggcgt ctgttgaccg acatgatgct ggtggcacgt gccattgcga cggggcgtgc		120
gaccgggaac acaggcctgc tgcctttgta caaggggctg agtcatgcgc tgcgtggct		180
ggcacatagt tgcaagagc agttgcgcgc aaagcagaac cagcatgaac agcagtccga		240
agacgagggaa atccctcgccc tcctaccgcg attggaagag cagacccgtc ctgagatgcg		300
ttttgtgatg tccctgttcc gcgaggatct cgaacgggct gttgggggtgc tcatgcgttc		360
tgtatgcgagt gcccggaaaag gtctctgaac aggacgtccc gcggaggggca gtcagagggtc		420
gaaatggctc ctgttgaaac cgtcattcgg ttttacgtt gtttcggggc tatgatggca		480
catgccccgc cttgtcggtc cccgtcagcg accggcccga aaccacggag aattcc atg		539
Met		
1		
att acg cgc gaa acc ctt aag tct ctt cct gcc aat gtc cag gct ccc		587
Ile Thr Arg Glu Thr Leu Lys Ser Leu Pro Ala Asn Val Gln Ala Pro		
5	10	15
ccc tat gac atc gac ggg atc aag cct ggg atc gtg cat ttc ggt gta		635
Pro Tyr Asp Ile Asp Gly Ile Lys Pro Gly Ile Val His Phe Gly Val		

20

25

30

ggt aac ttt ttt cga gcc cat gag gcg ttc tac gtc gag cag att ctt			683
Gly Asn Phe Phe Arg Ala His Glu Ala Phe Tyr Val Glu Gln Ile Leu			
35	40	45	
gaa cac gct ccg gac tgg gcg att gtt ggt gtt ggc ctg acg ggc agt			731
Glu His Ala Pro Asp Trp Ala Ile Val Gly Val Gly Leu Thr Gly Ser			
50	55	60	65
gac cgt tca aag aaa aaa gcc gag gaa ttc aag gcc cag gac tgc ctg			779
Asp Arg Ser Lys Lys Lys Ala Glu Glu Phe Lys Ala Gln Asp Cys Leu			
70	75	80	
tat tcc ctg acc gag acg gct ccg tcc ggc aag agc acg gtg cgc gtc			827
Tyr Ser Leu Thr Glu Thr Ala Pro Ser Gly Lys Ser Thr Val Arg Val			
85	90	95	
<i>a12</i>			
atg ggc gcg ctg cgt gac tat ctg ctt gcc ccg gcc gat ccg gaa gcc			875
Met Gly Ala Leu Arg Asp Tyr Leu Leu Ala Pro Ala Asp Pro Glu Ala			
100	105	110	
gtg ctg aag cat ctt gtt gat ccg gcc atc cgc atc gtt tcc atg acg			923
Val Leu Lys His Leu Val Asp Pro Ala Ile Arg Ile Val Ser Met Thr			
115	120	125	
atc acg gaa ggc ggc tac aac atc aac gag acg acc ggt gcg ttc gat			971
Ile Thr Glu Gly Gly Tyr Asn Ile Asn Glu Thr Thr Gly Ala Phe Asp			
130	135	140	145
ctg gag aat gcg gca gta aag gcc gac ctc aag aac ccg gaa aag ccg			1019
Leu Glu Asn Ala Ala Val Lys Ala Asp Leu Lys Asn Pro Glu Lys Pro			
150	155	160	
tct acc gtt ttc ggt tac gtg gtc gag gcc ctg cgt cgt cgt tgg gat			1067
Ser Thr Val Phe Gly Tyr Val Val Glu Ala Leu Arg Arg Arg Trp Asp			
165	170	175	
gcc ggt ggt aag gca ttt acg gtc atg tcc tgt gat aac ctg cgt cat			1115
Ala Gly Gly Lys Ala Phe Thr Val Met Ser Cys Asp Asn Leu Arg His			
180	185	190	
aac ggc aat gtc gcc cgc aag gcc ttc ctc ggc tat gcg aag gcg cgc			1163
Asn Gly Asn Val Ala Arg Lys Ala Phe Leu Gly Tyr Ala Lys Ala Arg			
195	200	205	
gat ccg gag ttg gcg aag tgg att gag gaa aac gcg acc ttc ccg aac			1211
Asp Pro Glu Leu Ala Lys Trp Ile Glu Glu Asn Ala Thr Phe Pro Asn			
210	215	220	225
gga atg gtt gat cgc atc acc ccg acc gtt tcg gcg gaa atc gcc aag			1259
Gly Met Val Asp Arg Ile Thr Pro Thr Val Ser Ala Glu Ile Ala Lys			

230

235

240

aag	ctc	aac	gcf	gcc	agt	ggg	ctg	gat	gac	gac	ctg	ccg	ctg	gtg	gcc	1307
Lys	Leu	Asn	Ala	Ala	Ser	Gly	Leu	Asp	Asp	Asp	Leu	Pro	Leu	Val	Ala	
245							250					255				
gag	gat	ttc	cat	cag	tgg	gtg	ctg	gaa	gac	cag	ttt	gcf	gat	ggc	cgt	1355
Glu	Asp	Phe	His	Gln	Trp	Val	Leu	Glu	Asp	Gln	Phe	Ala	Asp	Gly	Arg	
260							265					270				
ccg	ccg	ctt	gaa	aaa	gcc	ggc	gtg	cag	atg	gtc	ggg	gac	gtg	acg	gac	1403
Pro	Pro	Leu	Glu	Lys	Ala	Gly	Val	Gln	Met	Val	Gly	Asp	Val	Thr	Asp	
275							280				285					
tgg	gag	tac	gtc	aag	atc	cga	atg	ctc	aat	gca	ggg	cat	gtc	atg	ctc	1451
Trp	Glu	Tyr	Val	Lys	Ile	Arg	Met	Leu	Asn	Ala	Gly	His	Val	Met	Leu	
290							295				300				305	
tgc	ttc	cca	ggc	att	ctg	gtc	ggc	tat	gag	aat	gtg	gat	gac	gcc	att	1499
Cys	Phe	Pro	Gly	Ile	Leu	Val	Gly	Tyr	Glu	Asn	Val	Asp	Asp	Ala	Ile	
310							315							320		
Q12																
gaa	gac	agc	gaa	ctc	ctt	ggc	aat	ctg	aag	aac	tat	ctc	aac	aag	gat	1547
Glu	Asp	Ser	Glu	Leu	Leu	Gly	Asn	Leu	Lys	Asn	Tyr	Leu	Asn	Lys	Asp	
325							330							335		
gtc	atc	ccg	acc	ctg	aag	gcf	cct	tca	ggc	atg	acg	ctc	gaa	ggc	tat	1595
Val	Ile	Pro	Thr	Leu	Lys	Ala	Pro	Ser	Gly	Met	Thr	Leu	Glu	Gly	Tyr	
340							345							350		
cgf	gac	agc	gtc	atc	agc	cgt	ttc	tcc	aac	aag	gcf	atg	tcg	gac	cag	1643
Arg	Asp	Ser	Val	Ile	Ser	Arg	Phe	Ser	Asn	Lys	Ala	Met	Ser	Asp	Gln	
355							360							365		
acg	ctc	cgf	att	gct	agc	gat	ggc	tgt	tcc	aag	gtt	cag	gtg	ttc	tgg	1691
Thr	Leu	Arg	Ile	Ala	Ser	Asp	Gly	Cys	Ser	Lys	Val	Gln	Val	Phe	Trp	
370							375				380				385	
acg	gaa	acc	gtg	cgt	cgf	gcf	atc	gaa	gac	aag	cgg	gac	ctg	tca	cgt	1739
Thr	Glu	Thr	Val	Arg	Arg	Ala	Ile	Glu	Asp	Lys	Arg	Asp	Leu	Ser	Arg	
390														400		
ata	gcf	ttc	gga	att	gca	tcc	tat	ctc	gaa	atg	ctg	cgt	ggt	cgc	gac	1787
Ile	Ala	Phe	Gly	Ile	Ala	Ser	Tyr	Leu	Glu	Met	Leu	Arg	Gly	Arg	Asp	
405								410						415		
gag	aag	ggc	ggg	acg	tat	gaa	tcg	tcc	gag	ccg	act	tat	ggc	gac	gcc	1835
Glu	Lys	Gly	Gly	Thr	Tyr	Glu	Ser	Ser	Glu	Pro	Thr	Tyr	Gly	Asp	Ala	
420														430		
gaa	tgg	aag	ttg	gcc	aag	gcf	gac	gac	ttc	gaa	agc	tct	ctg	aag	ctc	1883
Glu	Trp	Lys	Leu	Ala	Lys	Ala	Asp	Asp	Phe	Glu	Ser	Ser	Leu	Lys	Leu	

435

440

445

ccg gcg ttc gat ggg tgg cgc gat ctg gat acg tcc gaa ctg gat caa Pro Ala Phe Asp Gly Trp Arg Asp Leu Asp Thr Ser Glu Leu Asp Gln	1931
450 455 460 465	
aag gtc atc gtg ctg cg ^g aag atc atc cgc gaa aag ggc gta aaa gcc Lys Val Ile Val Leu Arg Lys Ile Arg Glu Lys Gly Val Lys Ala	1979
470 475 480	
gcc atc ccg gcc tga attcggcttt tagggtagcg actgaaaacag aaaaccgcgc Ala Ile Pro Ala	2034
485	
tctggaagga gcgcggttt ttttatgctc agatctgtcc catcaggaca aggatcacga cgaccacgat caggacaagt ccgctggagg gggagccccca tt ^c gaactg tacggccatg	2094
acggcagcgc accgagatca ggattacaag aaggatcagt cccatggcac atctctcttg ccggttgaga ctggtctgtt ttccgggtgt ctaaaaagtt tccgtagggg cg ^c gaaagat	2154
caaagctgtc gg ^c cgcc ^t aatccggtcc caagccgcat tgatgcggc cacccgg ^t cc tgtgcgcgtt tgcgc ^t ctgt ctctgacata ggttctggg ccagcacg ^t c cggatgatgt	2214
tcgcggatca ggg ^t gcgcca gcgcacgcgg atttctgtgt cagttgcgct g ^c gggtgatg ccgagaatac gataggc ^t atc cggctcg ^t tt ccgctggcgg cg ^c gattgtt gccgctttcg	2274
gcccgg ^t ccc atgctcctgg cggcaggcca aatgccccgt gaacgcgctg cagaaaatcg at ^t cccttcg ggtgaagctc gcggctgggg c ^t ggc ^t atcg ^t cacggggat acggAACAGT	2334
gccgtcatga ggttctcaag cggcgccgta ttatcg ^t cat agg ^t cttgc ^t c catttcgcgg gcatacatct cgaaatcg ^t c cgtccgg ^t cg cggcgcgat cgaacagcat gccgacttcc	2394
ttgg ^t gttat cgggggggaa ctggaagcag gtcttgaaag cgtt ^t atttc gtgtcggttc accggcccgt cgatcttcgc cagttcg ^t cg cacagg ^t caa caaggccgat ggcgtaaagc	2454
tgatctcg ^t t tgcccagg ^t gc cgcagcaatc ttggcagcgc cggaaaaaggc cgcgc ^t gttg ggatcg ^t ggac ggccattcg ^t c gggaaagcgc tcactccagc cggccgttga gggctt ^t gagt	2514
agcgaaccgt tatcg ^t ggc ^t gc atgccccagc gctgcgc ^t cc tcagtgc ^t cc gaaaggacca ccaaccgcga agcccgcgac accaccgaac atcttgc ^t cc agatagccat gtc ^t atcaacc	2574
tagcacgccc gctcacagcg gcaaatgaca gatcg ^t caggc taggtgttagg tgctgatgcq 3114	3174

ccaaccgccc gggcttgcgg tgtggtagaa gctaggagtt acgaacttat cgctgtctca 3234
 tgctttgag gcgcaggttc ttctgttcgt ttcatgacgg atattttat gcccacctg 3294
 atccagactg ctacttcgat cccttccgc tctgatgacg aactgatgga tctttgatc 3354
 aagcgtctgc caatgtggct gcagaaaagtg ctgaactggt tgcggaaagc ggatcataaa 3414
 tgggttcgga ttccggcggg cgtgctgttc atgctggcg gcgttctgtc catcctgcct 3474
 gttctgggtc tgtggatgct gccggtcggc gtgatgttgc ttgcgcagga tattccgttc 3534
 ttccgtcgcc ttcagggccg cctcttgcbc tggatcgaac gtcaacatcc ggattggctg 3594
 ggccttccgg cgaaaagcgg cagaagctaa ccgttcgtct ggacgtgtt ctgaagatgt 3654
 gtcagtgctg caacccgcag ggctgaagcc agtggcgct ctggtggtcg cgccgcacatcg 3714
 Q12 agagaagcca ccagagacgc aaagctctgc tggggactg cggccatcgc gtccagtata 3774
 gcccagaact cgggttccag tgccacggac gtccgggtgc ctgacagaga caggctgcgt 3834
 ttgacgagat cactcattcc ggttgttct caaggcgctt caaagccat tgtgcggttt 3894
 cgaaaaacatc agggtccgga tcactcagca gctccgcgc agaagatata agcgacggat 3954
 cggccgagtt gccgatcgcg atcaggacag ttacgtacga accgggtgcg tccaatccgt 4014
 ttgaccggag agccagaaaa aaacgtccgg aatgtcgcat tatccagccg caccagttcg 4074
 tcgagtttg gtgcaatcag ctccggcgg gcctgaagct t 4115

<210> 2

<211> 485

<212> PRT

<213> Gluconobacter oxydans

<400> 2

Met	Ile	Thr	Arg	Glu	Thr	Leu	Lys	Ser	Leu	Pro	Ala	Asn	Val	Gln	Ala
1					5				10					15	

Pro	Pro	Tyr	Asp	Ile	Asp	Gly	Ile	Lys	Pro	Gly	Ile	Val	His	Phe	Gly
								25					30		

Val Gly Asn Phe Phe Arg Ala His Glu Ala Phe Tyr Val Glu Gln Ile
 35 40 45

Leu Glu His Ala Pro Asp Trp Ala Ile Val Gly Val Gly Leu Thr Gly
 50 55 60

Ser Asp Arg Ser Lys Lys Ala Glu Glu Phe Lys Ala Gln Asp Cys
 65 70 75 80

Leu Tyr Ser Leu Thr Glu Thr Ala Pro Ser Gly Lys Ser Thr Val Arg
 85 90 95

Val Met Gly Ala Leu Arg Asp Tyr Leu Leu Ala Pro Ala Asp Pro Glu
 100 105 110

Q12
 Ala Val Leu Lys His Leu Val Asp Pro Ala Ile Arg Ile Val Ser Met
 115 120 125

Thr Ile Thr Glu Gly Gly Tyr Asn Ile Asn Glu Thr Thr Gly Ala Phe
 130 135 140

Asp Leu Glu Asn Ala Ala Val Lys Ala Asp Leu Lys Asn Pro Glu Lys
 145 150 155 160

Pro Ser Thr Val Phe Gly Tyr Val Val Glu Ala Leu Arg Arg Arg Trp
 165 170 175

Asp Ala Gly Gly Lys Ala Phe Thr Val Met Ser Cys Asp Asn Leu Arg
 180 185 190

His Asn Gly Asn Val Ala Arg Lys Ala Phe Leu Gly Tyr Ala Lys Ala
 195 200 205

Arg Asp Pro Glu Leu Ala Lys Trp Ile Glu Glu Asn Ala Thr Phe Pro
 210 215 220

Asn Gly Met Val Asp Arg Ile Thr Pro Thr Val Ser Ala Glu Ile Ala
 225 230 235 240

Lys Lys Leu Asn Ala Ala Ser Gly Leu Asp Asp Asp Leu Pro Leu Val
245 250 255

Ala Glu Asp Phe His Gln Trp Val Leu Glu Asp Gln Phe Ala Asp Gly
260 265 270

- Arg Pro Pro Leu Glu Lys Ala Gly Val Gln Met Val Gly Asp Val Thr
275 280 285

Asp Trp Glu Tyr Val Lys Ile Arg Met Leu Asn Ala Gly His Val Met
290 295 300

Leu Cys Phe Pro Gly Ile Leu Val Gly Tyr Glu Asn Val Asp Asp Ala
305 310 315 320

α12
Ile Glu Asp Ser Glu Leu Leu Gly Asn Leu Lys Asn Tyr Leu Asn Lys
325 330 335

Asp Val Ile Pro Thr Leu Lys Ala Pro Ser Gly Met Thr Leu Glu Gly
340 345 350

Tyr Arg Asp Ser Val Ile Ser Arg Phe Ser Asn Lys Ala Met Ser Asp
355 360 365

Gln Thr Leu Arg Ile Ala Ser Asp Gly Cys Ser Lys Val Gln Val Phe
370 375 380

Trp Thr Glu Thr Val Arg Arg Ala Ile Glu Asp Lys Arg Asp Leu Ser
385 390 395 400

Arg Ile Ala Phe Gly Ile Ala Ser Tyr Leu Glu Met Leu Arg Gly Arg
405 410 415

Asp Glu Lys Gly Gly Thr Tyr Glu Ser Ser Glu Pro Thr Tyr Gly Asp
420 425 430

Ala Glu Trp Lys Leu Ala Lys Ala Asp Asp Phe Glu Ser Ser Leu Lys
435 440 445

Leu Pro Ala Phe Asp Gly Trp Arg Asp Leu Asp Thr Ser Glu Leu Asp
 450 455 460

Gln Lys Val Ile Val Leu Arg Lys Ile Ile Arg Glu Lys Gly Val Lys
 465 470 475 480

Ala Ala Ile Pro Ala
 485

<210> 3

<211> 16

<212> DNA

<213> Artificial Sequence

a,2

<220>

<223> synthetic DNA

<400> 3

gctgctgagt gatccg

16

<210> 4

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 4

gactgctact tcgatcc

17

<210> 5

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 5

cctacaccta gcctgc

16

<210> 6

<211> 16

<212> DNA

<213> Artificial Sequence

Q12

<220>

<223> synthetic DNA

<400> 6

cagtgccgtc atgagg

16

<210> 7

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 7

tcctgatctc ggtgcg

16

<210> 8

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 8

gatgcttcag cacggc

16

<210> 9

<211> 16

<212> DNA

<213> Artificial Sequence

212

<220>

<223> synthetic DNA

<400> 9

gacgatcacg gaaggc

16

<210> 10

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 10

ggttacgtgg tcgacg

16

<210> 11
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 11
ctataacctga caggtcc

17

<210> 12
<211> 16
<212> DNA
<213> Artificial Sequence

012

<220>

<223> synthetic DNA

<400> 12
gcgcgatctg gatacg

16

<210> 13
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic DNA

<400> 13
cgaggatctc gaacgg

16

<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic DNA
<400> 14
cggattgcta gcgatggc 18

<210> 15
<211> 47
<212> DNA
<213> Artificial Sequence

Q12

<220>
<223> synthetic DNA
<400> 15
atcgaggatc ctcaatgatg atgatgatga tggccggga tggcggc 47

<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic DNA
<400> 16

atcgaggatc cattcggctt ttagggtagc

30

<210> 17

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 17

tagctgagct catggacacag atctgagc

28

QI2

<210> 18

<211> 10

<212> PRT

<213> Gluconobacter oxydans

<400> 18

Met Ile Thr Arg Glu Thr Leu Lys Ser Leu
1 5 10

<210> 19

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 19

taggaatatt tctcatgatt acgcgcgaaa ccc

33

<210> 20

<211> 16

<212> DNA

<213> Artificial Sequence

Q12

<220>

<223> synthetic DNA

<400> 20

gatgcttcag cacggc

16