

SCIENCE **PASSION**

UPLIFT: Parallelization Strategies for Feature Transformations in Machine Learning Workloads

<u>Arnab Phani¹</u>, Lukas Erlbacher¹, Matthias Boehm¹

¹ Graz University of Technology; Graz, Austria

Feature Transformations

Transform Raw Data into Numeric Representation

- Part of feature engineering
- Scales, modifies, or converts features
- Placed before or within (batch-wise) training pipeline

Common Feature Transformations

- Numerical: aggregations, scaling, binning
- Categorical: recoding, dummy coding, feature hashing

Modality-specific Feature Transformations

- Texts: Bag of words, embedding
- Images: cropping, rotating, adjusting contrast

Table 1: Common Multi-pass Transformations.

Transformation	Build Input	Build Output	Apply Output
Recoding	Nominal	Dictionaries	Integer
Feature Hashing	Nominal	None	Integer
Binning	Numeric*	Bin boundaries	Integer
Pass-through	Numeric*	None	Numeric
Dummy-coding	Integer	Offsets	Sparse vectors

Challenges of Feature Transformations

- Multi-pass Nature (Build, Apply)
- Many Distinct Items per Column
 - Columns with 10M to 20M distinct values
- Sparsity, Cardinality Skew (#distincts from tens to millions)
- Expensive String Processing (hashing and parsing)
- Ultra-sparse Outputs (e.g. one-hot encoding)
- Wide Diversity of Transformations
 - Feature engineering to find the best combination
 - Accuracy varies drastically with feature transformations
- Existing Approaches
 - Caching and reuse of pre-processing operations
 - Interleave element-wise transformations with data loading
 - Static parallelism (row-/column-wise)
 - Suboptimal for complex transformation workflows

[Criteo Al Lab. 2020. Criteo 1TB Click Logs dataset. https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/]

[Doris Xin et al: Production Machine Learning Pipelines: Empirical Analysis and Optimization Opportunities. **SIGMOD '21**]

This multi-pass nature and potentially many or large dictionaries make simple, dataparallel execution ineffective.

UPLIFT and FTBench

- Exploiting Available Parallelism
 - Construct fine-grained task-dependency graph (execution plan)
- Rule-based Optimizer
 - Rewrites according to data, hardware, and operation characteristics
 - Remove synchronization barriers
 - Increase fine-grained parallelism by row partitioning
- Cache-conscious Runtime Techniques
- FTBench, Feature Transformation Benchmark
 - Foster research on feature transformations
 - Use publicly available real and synthetic datasets
 - Covers different domains, modalities, transformations, data characteristics, and workload types
- Multiple Reference Implementations
 - Full Implementations: UPLIFT/SystemDS, scikit-learn
 - Partial Implementations: TensorFlow Keras, PySpark, Dask,

Integrated into Apache SystemDS

Table 2: Overview of FTBENCH Datasets and Use Cases.

ID	Dataset	Input Shape	Transformations	Significance	Output Shap
T1	Adult	32K × 15	Bin+DC (5), DC (9), PT (1)	Popular dataset	32K × 130
T2	KDD 98	95K × 469	Bin (334), DC (135), Scale (469)	Skewed #distinct: 50-900	$95K \times 6K$
T3	Criteo	10M × 39	DC (26)	Skewed & large #distinct: 10-1.4M	10M × 5.8M
T4	Criteo	$10M \times 39$	Bin (13), RC+Scale(26)	Scaled binning & #distinct	$10M \times 39$
T5	Santander	$200K \times 200$	Bin+DC (200)	Equi-height with small #bins	$200K \times 2K$
T6	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-width	$48M \times 10$
T7	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-height	$48M \times 10$
T8	HomeCredit	31K × 122	DC (16)	Popular use case	$31K \times 245$
T9	CatInDat	$3M \times 24$	FH+DC (24)	Feature hashing for large #rows	$3M \times 24K$
T10	Abstract	$281K \times 3$	Count Vectorizer	Bag-of-Words w/ large #distinct	$281K \times 25M$
T11	Abstract	$100K \times 1K$	Embedding (dim = 300)	Embedding large #words	$100K \times 300K$
T12	Synthetic	$100K \times 100$	Bin (50), RC (50)	Mini-batch transformation	100K × 100
T13	Synthetic	$10M \times 10$	RC (10)	Varying strlen: 25-500	$10M \times 10$
T14	Synthetic	100M × 4	RC (4)	Varying #distinct: 100K-1M	$100M \times 4$
T15	Criteo	$5M \times 39$	Various Combinations	End-to-end feature engineering	Scalar

UPLIFT System Architecture

(Task-graph Construction and Optimizations)

- Create General and Encoder-specific Tasks
- Adult dataset with 6 numerical and 9 categorical features

[X_enc, Meta] =
 transformencode(target=data, spec=jspec);

Bin: 6 num. cols RC: 9 cat. cols

Dummy Code: 15 cols

Build Tasks

- Column- oriented
- Create metadata. E.g. Distinct items, bin boundaries

- Create General and Encoder-specific Tasks
- Adult dataset with 6 numerical and 9 categorical features

[X_enc, Meta] =
 transformencode(target=data, spec=jspec);

Bin: 6 num. cols RC: 9 cat. cols

Dummy Code: 15 cols

- Determine upper bound of #non-zeros
- Pre-allocate output (dense/sparse) and metadata frame
- Allows concurrent writes and metadata collection
- For CSR, pre-fill row pointers

Input Frame

US
US
UK
US
IN

CSR Output Allocation

- Create General and Encoder-specific Tasks
- Adult dataset with 6 numerical and 9 categorical features

[X_enc, Meta] =
 transformencode(target=data, spec=jspec);

Bin: 6 num. cols RC: 9 cat. cols

- Column-oriented
- Encode the input using the metadata
- Produce continuous integer domains

- Create General and Encoder-specific Tasks
- Adult dataset with 6 numerical and 9 categorical features

[X_enc, Meta] =
 transformencode(target=data, spec=jspec);

Bin: 6 num. cols RC: 9 cat. cols

- Column-oriented
- Integer domains to sparse binary vectors
- Ultra-sparse output with large #columns

- Create General and Encoder-specific Tasks
- Adult dataset with 6 numerical and 9 categorical features

[X_enc, Meta] =
 transformencode(target=data, spec=jspec);

Compaction and **Build Tasks Allocation Tasks** RC and DC Apply Tasks metadata Tasks Build Apply Bin Bin Alloc Output Apply DC **Apply Build** Bin Compact Apply RC Apply DC Build Get RC Apply RC Apply DC Meta Alloc Meta Build RC Get Meta

Bin: 6 num. cols RC: 9 cat. cols

- Row-parallel
- Compacts sparse rows inplace by removing zeros
- Serializes metadata in column-wise manner

Optimizer Rewrites

- Remove Synchronization Bottlenecks
 - E.g. concurrent build and allocation tasks if output dimensions are known

Optimizer Rewrites

Row Partitioning

- Column-oriented tasks fails to fully utilize all cores if #features < #cores or skewed compute time
- Partition columns into row-ranges and assign a task to each block of rows

Number of Partitions

- Increasing #Partitions Increases Memory Overhead
- Estimate Memory Usage of Partial Tasks
 - Collect uniform sample of rows
 - Estimate #distinct items and average string size
- Derive Optimum Number of Partitions
 - Schedule more tasks than cores to mitigate skew.
 2 x #cores for build and 4 x #cores for apply tasks
 - Tune #partitions to **fit into memory budget**

We schedule a single recode buildtask per feature because the estimated total size of the partial maps exceeds memory constraint. [Peter J. Haas and Lynne Stokes: Estimating the Number of Classes in a Finite Population. **JASA 1998**]

Recode: C1, C2 Dummy Code: C1, C2

Optimized Task-graph for Adult

- Remove Dependency between Bin Build and Alloc Output
- Partition Build and Apply Tasks

Partial Compaction and **Partial Allocation Tasks** metadata Tasks **Build Tasks Apply Tasks PBuild** PApply DC PApply Bin Bin Alloc Merge Output PApply Bin PApply DC **PBuild** Com-Bin pact PApply RC PApply DC PBuild RC Get PApply DC PApply RC Meta Merge Alloc Meta **PBuild** Get RC Meta

Bin: 6 num. cols RC: 9 cat. cols

Feature Transformation Benchmark

(Datasets and Use Cases)

Table 2: Overview of FTBENCH Datasets and Use Cases.

ID	Dataset	Input Shape	Transformations	Significance	Output Shape
T1	Adult	32K × 15	Bin+DC (5), DC (9), PT (1)	Popular dataset	32K × 130
T2	KDD 98	$95K \times 469$	Bin (334), DC (135), Scale (469)	Skewed #distinct: 50-900	$95K \times 6K$
T3	Criteo	10M × 39	DC (26)	Skewed & large #distinct: 10-1.4M	$10M \times 5.8M$
T4	Criteo	$10M \times 39$	Bin (13), RC+Scale(26)	Scaled binning & #distinct	$10M \times 39$
T5	Santander	$200K \times 200$	Bin+DC (200)	Equi-height with small #bins	$200K \times 2K$
T6	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-width	$48M \times 10$
T7	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-height	$48M \times 10$
T8	HomeCredit	$31K \times 122$	DC (16)	Popular use case	$31K \times 245$
T9	CatInDat	$3M \times 24$	FH+DC (24)	Feature hashing for large #rows	$3M \times 24K$
T10	Abstract	$281K \times 3$	Count Vectorizer	Bag-of-Words w/ large #distinct	$281K \times 25M$
T11	Abstract	$100K \times 1K$	Embedding (dim = 300)	Embedding large #words	$100K \times 300K$
T12	Synthetic	$100K \times 100$	Bin (50), RC (50)	Mini-batch transformation	$100K \times 100$
T13	Synthetic	$10M \times 10$	RC (10)	Varying strlen: 25-500	$10M \times 10$
T14	Synthetic	$100M \times 4$	RC (4)	Varying #distinct: 100K-1M	$100M \times 4$
T15	Criteo	$5M \times 39$	Various Combinations	End-to-end feature engineering	Scalar

FTBench – Feature Transformation Benchmark

Foster Research on Feature Transformations

Datasets

- Publicly available and synthetic datasets
- Sources: UCI, Kaggle, AMiner
- Datasets to capture choke points (previously reported challenges)

Use Cases

- Domains and modalities (numerical, categorical, text, and time series)
- Data and transformation characteristics (#distincts, distribution of distinct values, #bins, string lengths, and sparsity)
- Workload types (batch and mini-batch)
- Scale factors for selected use cases

FTBench – Feature Transformation Benchmark

ID	Dataset	Input Shape	Transformations	Significance	Output Shape
T1	Adult	32K x 15	Bin+DC (5), DC (9), PT (1)	Popular dataset	32K x 130
T2	KDD 98	95K x 469	Bin (334), DC (135), Scale (469)	Skewed #distinct: 50-900	95K x 6K
Т3	Criteo	10M x 39	DC (26)	Skewed & large #distinct: 10-1.4M	10M x 5.8M
T4	Criteo	10M x 39	Bin (13) RC+Scale (26)	Scaled binning & #distincts	10M x 39
T5	Santander	200K x 200	Bin+DC (200)	Equi-height with small #bins	200K x 2K
Т6	Crypto	48M x 10	Bin (10)	Large #bins (100K), equi-width	48M x 10
Т7	Crypto	48M x 10	Bin (10)	Large #bins (100K), equi-height	48M x 10
Т8	HomeCredit	31K x 122	DC (16)	Popular use case	31K x 245
Т9	CatInDat	3M x 24	FH+DC (24)	Feature hashing for large #rows	3M x 24K
T10	Abstract	281K x 3	Count Vectorizer	Bag-of-Words w/ large #distincts	281K x 25M
T11	Abstract	100K x 1K	Embedding (dim = 300)	Embedding large #words	100K x 300K
T12	Synthetic	100K x 100	Bin (50), RC (50)	Mini-batch transformation	100K x 100
T13	Synthetic	10M x 10	RC (10)	Varying strlen: 25-500	10M x 10
T14	Synthetic	100M x 4	RC (4)	Varying #distinct: 100K-1M	100M x 4
T15	Criteo	5M x 39	Various Combinations	End-to-end feature engineering	Scalar

FTBench – Feature Transformation Benchmark

ID	Dataset	Input Shape	Transformations	Significance	Output Shape
T1	Adult	32K x 15	Bin+DC (5), DC (9), PT (1)	Popular dataset	32K x 130
T2	KDD 98	95K x 469	Bin (334), DC (135), Scale (469)	Skewed #distinct: 50-900	95K x 6K
T3	Criteo	10M x 39	DC (26)	Skewed & large #distinct: 10-1.4M	10M x 5.8M
T4	Criteo	10M x 39	Bin (13), RC+Scale (26)	Scaled binning & #distincts	10M x 39
T5	Santander	200K x 200	Bin+DC (200)	Equi-height with small #bins	200K x 2K
T6	Crypto	48M x 10	Bin (10)	Large #bins (100K), equi-width	48M x 10
Т7	Crypto	48M x 10	Bin (10)	Large #bins (100K), equi-height	48M x 10
Т8	HomeCredit	31K x 122	DC (16)	Popular use case	31K x 245
Т9	CatInDat	3M x 24	FH+DC (24)	Feature hashing for large #rows	3M x 24K
T10	Abstract	281K x 3	Count Vectorizer	Bag-of-Words w/ large #distincts	281K x 25M
T11	Abstract	100K x 1K	Embedding (dim = 300)	Embedding large #words	100K x 300K
T12	Synthetic	100K x 100	Bin (50), RC (50)	Mini-batch transformation	100K x 100
T13	Synthetic	10M x 10	RC (10)	Varying strlen: 25-500	10M x 10
T14	Synthetic	100M x 4	RC (4)	Varying #distinct: 100K-1M	100M x 4
T15	Criteo	5M x 39	Various Combinations	End-to-end feature engineering	Scalar

Experiments

(Micro Benchmarks and FTBench)

Experimental Setting

Baselines

Datasets and Workloads

All use cases of **FTBench** benchmark. Two full reference implementations and a few partial implementations.

Hardware

Single node having a single AMD EPYC 7302 CPUs (16/32 cores) and 128 GB DDR4 RAM

Micro Benchmarks

Speedup of UPLIFT with increasing #threads

Dataset: 5M x 100 (100K #distinct each)

Transformations:

#1 RC = Recoding

#2 DC = Dummy coding

#3 FH = Feature hash (k = 10K)

- RC improves up to 10x at 16 physical cores
- DC produces 10M columns (ultra-sparse)
- FH is memory-bandwidth bound

Micro Benchmarks

Impact of #partitions (tasks)

Dataset: 100M x 4 (1M #distinct each)
Transformations:
#1 RC = Recoding
#2 DC = Dummy coding
#3 BinW = Equi-width binning (10)
#4 BinH = Equi-height binning (10)
#5 FH = Feature Hash

- Performance improves up to 8/16
- FH is robust to partitioning (no metadata)
- UPLIFT optimizer also picks 8/16

FTBench Implementations

Use Case T1 (Adult Dataset)

Baselines:

- #2 Base = SystemDS default config
 #6 KerasNp = Keras build w/ Numpy.unique
- #7 Keras = Keras build w/ adapt
- Base, SKlearn are 32x/52x faster than Keras
- UPLIFT further improves by 6x
- Dask, Spark's static parallelization schemes are ineffective for smaller datasets
- UPLIFT is 10x faster than Spark.ml

FTBench Implementations

Datasets with Structured Attributes

- UPLIFT is consistently faster than Base and Sklearn
- On Criteo(T3) Spark is 2.5x faster than Sklearn
- For T3, UPLIFT is 3x faster than Spark
- Dynamic parallelization schemes significantly improve across different data characteristics

Baselines:

- #1 SKlearn = Scikit-learn
- #2 Base = SystemDS default config
- #3 Spark = spark.ml
- #4 Spark1T = single-threaded spark.ml
- #5 Dask = Dask

FTBench Implementations

Varying Data Characteristics

Varying String Length

Baselines:

#1 Base = SystemDS default config

#2 SKlearn = Scikit-learn

Varying #Distinct Items

Conclusions

Summary

- Parallel feature transformation
- Fine-grained task scheduling and cache-conscious runtime
- Optimization with regard to data, workload and hardware characteristics
- FTBench for evaluating feature transformation frameworks

The reference implementations are available at

https://github.com/damslab/re producibility/tree/master/vldb 2022-UPLIFT-p2528

Conclusions

- Feature transformations are an incredibly common part of ML dev
- Increasing multi-modality makes transformations more challenging
- UPLIFT's parallelization strategies proved effective and foster future research

Future Work

- Extend to distributed, data-parallel operations, federated backends and hardware accelerators
- Cost-based optimizer, scan sharing and fusion among transformations
- More reference implementations of FTBench