E2

Exercici 1. (0,25 punts)

Quin és el rang de valors representable en Ca2 i 7 bits?

[-64, 63] o $[-2^6, 2^6-1]$

Criteri: Binari (Bé o malament)

Exercici 2. (0,75 punts)

Donat el següent circuit CLC i els vectors de 8 bits d'entrada X i Y, completeu la següent taula.

X	Y	CLC	W	Wu	Ws	a	b	С	d
01110111	11111110	LTU (X _u <y<sub>u)</y<sub>	01110101	117	117	1	0	0	0
11111110	00111010	EQ (X=Y)	00111100	60	60	1	0	1	0
11111111	11010101	LT(X _s <y<sub>s)</y<sub>	11010110	214	-42	1	0	1	0

Criteri: Cada fila amb algun error resta 0,25.

Exercici 3. (1,5 punts)

Donat el següent circuit CLS especifiqueu un camí crític i el seu temps de propagació. Per identificar el camí, indiqueu el nom de cada senyal i bloc en l'ordre en que el camí es propaga pel circuit. Per cada bloc que el camí travessi indicar per quina entrada i sortida el camí passa. Calculeu el temps de cicle mínim tenint en compte els temps de propagació dels diferents elements del circuit.

Les entrades tarden 30ut en estabilitzar-se. Les sortides han d'estar estables 15ut abans no es produeixi el flanc ascendent del rellotge.

Camí Crític: FF0 – A_{c-e} – OR – FF1 T_{cicle} = 130ut (50ut + 60ut + 20ut) Criteri: Cami crític 1 punt (binari), Temps de cicle 0,5 (binari, sempre i quan el camí crític sigui correcte)

Exercici 4. (2,5 punts)

Donat el següent graf d'estats que descriu el funcionament d'un CLS, es demana:

1. Ompliu la porcions corresponents als estats 011 i 100 de la taula de transicions. Especifiqueu la taula de sortides. (1 punt)

q2	q1	q0	w1	w0
0	0	0	1	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	x	x
1	1	0	x	X
1	1	1	x	X

Criteri: Cada fila amb error resta 0,5. Dos o mes files amb errors, un zero.

q2	q1	q0	x1	x0	q2 ⁺	q1 ⁺	q0 ⁺
0	1	1	0	0	0	0	1
0	1	1	0	1	0	1	0
0	1	1	1	0	1	0	0
0	1	1	1	1	0	1	1
1	0	0	0	0	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1	0	0	1	1
1	0	0	1	1	0	0	1

 Ompliu el següent cronograma simplificat d'acord amb el comportament esperat pel CLS descrit en el graf d'estats. (0,5 punt)

Criteri: Cada error resta 0,25. Dos o mes errors, un zero.

Cicle	0	1	2	3	4	5	6	7	8
X ₁ X ₀	00	10	01	11	00	10	01	00	11
q ₂ q ₁ q ₀	000	100	011	010	100	011	100	001	011
W ₁ W ₀	11	11	00	01	11	00	11	10	00

3. Suposem ja feta una implementació del CLS segons el model de Moore i utilitzant una única ROM i un multiplexor de busos. Quants biestables son necessaris? Quantes paraules te la ROM i quants bits per paraula? Quant val k si el multiplexor de busos es un MUX-k-1? Quants bits te cada bus del multiplexor? (1 punt)

Criteri: Cada error resta 0,25. Quatre o mes errors, un zero.

#Biestables #Paraules ROM	#Bits/Paraula ROM	k	#Bits/Bus
---------------------------	-------------------	---	-----------

3 8 14 4 3

Exercici 5. (1 punt)

Dir si són cert (C) o fals (F) les següents afirmacions sobre el protocol Handshaking en el cas on l'emissor inicia la comunicació.

- a. Per poder posar el senyal de Req a 1 el senyal d'Ack ha d'estar a 0
- **b.** És impossible que tant Ack com Reg estiguin a 1 simultaneament
- c. És possible que Ack i Reg estiguin a 0 simultàniament
- **d.** La dada ha d'estar estable al bus abans de posar el senyal de Req = 1
- **e.** Ack = 1 vol dir que la dada està estable a l'emissor
- f. El temps que Req=1 és sempre major que el temps que Ack està a 1
- g. Un cop Req val 1, llavors cal enviar la dada

а	b	С	d	е	f	g
С	F	С	С	F	F	F

Criteri: Cada error o casella en blanc resta 0,5. Dos o més errors, un zero.

Exercici 6. (1,5 punts)

Volem implementar un CLS amb una entrada d'un bit X i una sortida d'un bit W. El circuit ha de calcular el valor de la sortida w(c) = !x(c-2) per c=0, 1, 2 ... i amb x(-2)=0 x(-1)=0. La seguent taula correspon a un cronograma

simplificat del comportament del circuit :

Cicle	0	1	2	3	4	5
X	0	0	1	0	1	0
w	1	1	1	1	0	1

Completeu el seguent graf d'estats

Criteri: Cada node erroni resta 0,5. Un node es erroni si: falta aresta o aresta inexistent, error en etiqueta en aresta, error en sortida. Tres o mes errors, un zero.

Exercici 7. (2,5 punts)

Volem dissenyar un PPE que implementi un *decrementador* (bloc DEC). Es tracta d'un circuit com el de la figura. Els senyals d'entrada son *Ini* i *Dec*, i un bus de dades de n bits X. Els senyals de sortida son *Fi* i un bus de dades W de n bits. Sigui c el cicle on Ini(c)==1, llavors el valor en X es mostrarà pel bus de dades W en el cicle següent: W(c+1)=X(c). Quan en algun cicle posterior

Dec(c+k)==1, llavors W(c+k+2)=W(c+k+1)-1, altrament W(c+k+2)=W(c+k+1). Si en el cicle m la sortida W(m)==0, llavors el circuit activa el senyal Fi en el següent cicle m+1: Fi(m+1)=1. El PPE ignora el senyal Ini des del cicle c+1 fins el cicle m+1. El PPE ignora el senyal Dec en el cicle m+1 (m+1). Es a dir, el PPE ignora Dec en els cicles on no ignora Ini i viceversa.

El següent cronograma simplificat mostra el comportament del bloc DEC.

Cicle	0	1	2	3	4	5	6	7	8
Ini Dec	10	01	01	00	01	01	00	00	00
X	3	3	3	3	3	3	3	3	3
W		3	3	2	1	1	0	-1	-1
Fi	0	0	0	0	0	0	0	1	0

 B1
 REGwLd

 S1
 Mx

 B2
 Z

 S2
 Ld

 S3
 Clk

 B3
 -1

 S4
 Zero

a) Donat el següent esquema del circuit, identifiqueu cada senyal i bloc del circuit.

Senyals: Mx, Ld, Clk, Zero **Blocs:** REG, REGwLd, Z, -1 (CLC que resta 1). Contestar en la següent taula. (0,5 punts)

Criteri: Cada error o casella en blanc resta 0,25.

b) Completeu el graf d'estats de la UC del circuit DEC. (1,5 punts)

x,0,0

Estat	Fi	Mx	Ld
S _o	0	1	1
S ₁	0	х	0
S ₂	0	0	1
S ₃	1	1	1

B2

S4

S2

B1

В3

Criteri:

x,0,0

0,5 punts: Tractament correcte del senyal Ini: detecció i carrega del registre amb la X d'entrada (Mx=1 i Ld=1).

0,x,x

x,1,0

1,x,x

0,5 punts: Si detecten correctament el Dec i a partir d'aquesta detecció donen l'ordre correcta de decrementar el registre (Mx=0, Ld=1). Transicions entre estats E1 i E2 corectes.

0,5 punts: Tractament correcte del senyal z, transicions a E3 i sortides d'E3 correctes. Si z=1 transicio a estat amb Fi=1 (si també carreguen el nou X (Ld=1) millor però no ho exigim, s'accepta transició a E0 per qualsevol valor d'Ini.

Prova E2		IC 2012-2013 Q1
Coanoms:	Nom:	Grun'

c) Indiqueu quins senyals formen la paraula de control i quins la paralula de condició. Quants biestables fan falta per implementar aquest circuit en el model de Moore ? (0,5 punts) Criteri: Cada error o casella en blanc resta 0,25. Dos a mes errors, un zero.

Paraula de Control	Paraula de Condició	#Biestables
Mx, Ld	Zero	2