Computational Physics (Introduction to) Solving Partial Differential Equations

Pat Scott

Department of Physics, Imperial College

November 20, 2018

Slides available from https://bb.imperial.ac.uk/

Goals

The point of this lecture is to teach you to

- Classify PDEs as elliptic, parabolic or hyperbolic
- Identify them as initial value or boundary-value type problems
- Identify and implement a few common boundary conditions
- Solve some elliptic boundary-value problems with finite difference methods
- Solve some initial value problems with with finite difference methods

Outline

- PDE Classification
- Solving elliptical PDEs: relaxation
- Solving hyperbolic/parabolic PDEs: marching methods

Outline

- PDE Classification

Typical PDEs in physics

Most interesting PDEs in physics are 2nd order linear PDEs:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + f\left(u, x, y, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = G(x, y) \quad (1)$$

We can classify according to A,B,C in analogy with conics:

$$Q \equiv B^2 - 4AC \tag{2}$$

Q < 0: Elliptic

Q > 0: Hyperbolic.

Q = 0: Parabolic,

Examples

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + f\left(u, x, y, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = G(x, y)$$

$$Q \equiv B^2 - 4AC$$

Poisson Equation (Elliptic):

$$\nabla^2 u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$
 (3)

If $\rho(x, y) = 0$ then it's the **Laplace Equation**.

$$A = 1$$
, $B = 0$, $C = 1$ hence $Q = -4 < 0$.

Examples

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + f\left(u, x, y, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = G(x, y)$$

$$Q \equiv B^2 - 4AC$$

Diffusion Equation (Parabolic):

B goes with $\partial^2 u/\partial t \partial x$ C goes with $\partial^2 u/\partial t^2$.

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right) \tag{4}$$

Here. A = D. B = C = 0 hence Q = 0.

Examples

$$A\frac{\partial^{2} u}{\partial x^{2}} + B\frac{\partial^{2} u}{\partial x \partial y} + C\frac{\partial^{2} u}{\partial y^{2}} + f\left(u, x, y, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = G(x, y)$$

$$Q \equiv B^{2} - 4AC$$

Wave Equation (Hyperbolic):

B goes with $\partial^2 u/\partial t \partial x$ C goes with $\partial^2 u/\partial t^2$.

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2} \tag{5}$$

$$A = v^2$$
, $B = 0$, $C = -1$ hence $Q = 4v^2 > 0$.

Do we really care about this conics stuff?

Not so much. What practically matters is whether it's more like an initial value problem (hyperbolic and parabolic PDEs) or a boundary value problem (elliptic PDEs).

Do we really care about this conics stuff?

Not so much. What practically matters is whether it's more like an initial value problem (hyperbolic and parabolic PDEs) or a boundary value problem (elliptic PDEs).

Do we really care about this conics stuff?

Not so much. What practically matters is whether it's more like an initial value problem (hyperbolic and parabolic PDEs) or a boundary value problem (elliptic PDEs).

Types of boundary conditions

u defined on boundaries : Dirichlet $\vec{\nabla} \mu$ defined on boundaries : Neumann both u and ∇u defined on boundaries : Cauchy u or ∇u applied on different : mixed parts of a boundary

$$u(x_r) = u(x_l + L) = u(x_l)$$
 : periodic (e.g. in x)
 $u(-x) = u(x)$: reflective
(e.g. about $x_l = 0$)

(e.g. about $x_l = 0$).

Outline

- PDE Classification
- Solving elliptical PDEs: relaxation
- 3 Solving hyperbolic/parabolic PDEs: marching methods

Dirichlet boundary conditions

Poisson Equation:

$$\nabla^2 u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$
 (6)

We need to use a finite difference rule over a grid in x and y:

where $u_{i,j} \equiv u(x_i, y_j)$, and the BCs are $u_{0,0} = C_{0,0}$, $u_{0,1} = C_{0,1}$, etc.

Dirichlet boundary conditions

We need a finite difference rule for the second derivatives:

$$\left. \frac{\partial^2 u}{\partial x^2} \right|_{i,j} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} \qquad \left\{ \mathcal{O}(h^2) \right\}, \tag{8}$$

$$\left. \frac{\partial^2 u}{\partial y^2} \right|_{i,j} = \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h^2} \qquad \left\{ \mathcal{O}(h^2) \right\}, \tag{9}$$

This gives us a finite difference approximation to the Laplacian:

$$\nabla^2 u_{i,j} = \frac{u_{i-1,j} + u_{i,j-1} + u_{i+1,j} + u_{i,j+1} - 4u_{i,j}}{h^2} \qquad \left\{ \mathcal{O}(h^2) \right\}. \tag{10}$$

Dirichlet boundary conditions

We can them build a matrix equation $\mathbf{A} \cdot \vec{u} = \vec{b}$ with all the unknown values of \vec{u} as the solution vector, and the BCs in \vec{b} :

$$\begin{pmatrix} -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ \hline \end{pmatrix} \begin{pmatrix} u_{1,1} \\ u_{1,2} \\ u_{1,3} \\ u_{2,1} \\ u_{2,2} \\ u_{2,3} \\ u_{3,1} \\ u_{3,2} \\ u_{3,3} \end{pmatrix} = - \begin{pmatrix} C_{0,1} + C_{1,0} \\ C_{0,2} \\ C_{0,3} + C_{1,4} \\ C_{2,0} \\ 0 \\ C_{2,4} \\ \hline C_{3,0} + C_{4,1} \\ C_{4,2} \\ C_{4,3} + C_{3,4} \end{pmatrix}$$

[&]quot;All" that remains to do is then solve the matrix equation for \vec{u} .

Neumann boundary conditions

What if we have derivatives at the boundaries $(C'_{i,i})$ instead of values ($C_{i,i}$)?

(This is what you have in Project 4, for example.)

Neumann boundary conditions

We need to introduce some extra fictitious points at the derivative boundaries:

We set the 'new' boundary conditions as Dirichlet beyond the fictitious points:

$$\frac{\partial u}{\partial y}\Big|_{i,0} = \frac{u_{i,1} - u_{i,-1}}{2h} = Q_{i,0}$$
 giving $u_{i,-1} = u_{i,1} - 2hQ_{i,0}$ (13)

(at y = 0, for example) and solve for the fictitious points along with the rest-

Neumann boundary conditions

We need to introduce some extra fictitious points at the derivative boundaries:

We set the 'new' boundary conditions as Dirichlet beyond the fictitious points:

$$\frac{\partial u}{\partial y}\Big|_{i,0} = \frac{u_{i,1} - u_{i,-1}}{2h} = Q_{i,0}$$
 giving $u_{i,-1} = u_{i,1} - 2hQ_{i,0}$ (13)

But now **A** in $\mathbf{A} \cdot \vec{u} = \vec{b}$ is an $[n_x \times (n_y + 2)]^2$ matrix instead of $[n_x n_y]^2$

Outline

- PDE Classification
- Solving elliptical PDEs: relaxation
- 3 Solving hyperbolic/parabolic PDEs: marching methods

Wave equation

Wave Equation:

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2} \tag{14}$$

Can try to solve it directly by using second order finite difference approximations in both the space and time derivatives.

→ end up with a multi-point method.

This is fine, but we can do better by using a bit of insight: the Wave Eqn splits into two uncoupled 1st order "advection" PDEs:

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0 \qquad , \qquad \frac{\partial g}{\partial t} - v \frac{\partial g}{\partial x} = 0, \tag{15}$$

They have solutions f(x, t) = F(x - vt) and g(x, t) = G(x + vt), such that

$$u(x,t) = F(x - vt) + G(x + vt)$$
(16)

So actually we only need to solve one of the 1st order PDEs in (15).

Upwind method

We take a finite difference approximation to $\partial u/\partial x$ in the *direction from which information propagates*. For $v_x > 0$, choose backwards difference scheme:

$$\frac{\partial u}{\partial x}\Big|_{i}^{j} = \frac{u_{i}^{j} - u_{i-1}^{j}}{h} \qquad \{\mathcal{O}(h)\}$$
 (17)

For *t* we choose the forward difference scheme:

$$\frac{\partial u}{\partial t}\Big|_{i}^{j} = \frac{u_{i}^{j+1} - u_{i}^{j}}{\Delta t} \qquad \{\mathcal{O}(\Delta t)\}$$
 (18)

The resulting FD scheme (for $v_x > 0$) is

$$u_{i}^{j+1} = u_{i}^{j} - |v_{x}| \Delta t / h \left(u_{i}^{j} - u_{i-1}^{j} \right)$$
(19)

Upwind method

The "advection number"

$$a = \frac{|v_x|\Delta t}{h} \tag{20}$$

determines stability.

 $a > 1 \implies \text{instability}$

 $a < 1 \implies$ stability, but smaller a introduces more numerical diffusion.

Let's look at an example...

Housekeeping

- This is my last lecture
- Upcoming:
 - Tues Nov 27: Anders Kvellestad (LHC Monte Carlo simulations)
 - Tues Dec 4: Eliel Camargo-Molina (advanced methods for high energy theory)
 - Tues Dec 11: Revision Lecture (Yoshi)