Uma Implementação do Cálculo Lambda não Tipado em Elixir

Christian S. Lima¹, Adolfo Neto¹

¹Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Brasil

christiansantoslima21@gmail.com, adolfo@utfpr.edu.br

Abstract.

Resumo. Nesse artigo vamos fazer uma revisão bibliográfica sobre o cálculo lambda não tipado e apresentar uma implementação em Elixir.

1. Introdução

2. Linguagem

Definição 1. O alfabeto do cálculo lambda é dado pelos seguintes símbolos:

• um conjunto de variáveis:

$$Var = \{x_i : i \in \mathbb{N}\};$$

- um abstrator: λ ;
- três delimitadores: "(", ":", ")".

Definição 2. Os λ -termos são definidos de forma indutiva pelas regras:

- 1. todas as variáveis são λ -termos;
- 2. se M e N são λ -termos, então (MN) é um λ -termo (chamado de aplicação);
- 3. Se M é um λ -termo e x uma variável, então $(\lambda x.M)$ é um λ -termo (chamado abstração).

Definição 3. Definimos recursivamente o conjunto das variáveis que ocorrem livres em um λ -termo M pelas regras:

- 1. $FV[x] = \{x\};$
- 2. $FV[NP] = FV[N] \cup FV[P]$;
- 3. $FV[\lambda x.N] = FV[N] \{x\}.$

Definição 4. Definimos recursivamente a substituição de todas as ocorrências livres de x por N pelas regras:

- 1. x[x := N] = N;
- 2. y[x := N] = y, se $x \neq y$;
- 3. (PQ)[x := N] = P[x := N]Q[x := N];

- 4. $(\lambda x.P)[x := N] = \lambda x.P;$
- 5. $(\lambda y.P)[x := N] = \lambda y.P \text{ se } x \notin FV[P];$
- 6. $(\lambda y.P)[x := N] = \lambda y.P[x := N]$ se $x \in FV[P]$ e $y \notin FV[N]$;
- 7. $(\lambda y.P)[x := N] = \lambda z.P[y := z][x := N]$ se $x \in FV[P]$ e $y \in FV[N]$.

Definição 5. (α -conversão) Seja um termo P e que contém uma abstração $\lambda x.M$ como subtermo e seja $y \notin \mathrm{FV}[M]$. Uma α -conversão de P é um termo Q obtido a partir de P substituindo uma ou mais ocorrências do subtermo $\lambda x.M$ por $\lambda y.M[x:=y]$.

3. β-redução

Definição 6. Seja um termo P e que contém um subtermo da forma $(\lambda x.M)N$. Uma β -contração de P é um termo Q obtida a partir de P substituindo uma ocorrência do subtermo $(\lambda x.M)N$ por M[x:=N]. Denotamos essa relação por $P \to_{1\beta} Q$.

Definição 7. Seja um termo P. Uma β -redução de P é um termo Q obtido a partir de P por uma sequência da forma:

$$P \equiv_{\alpha} P' \rightarrow_{1\beta} P_1 \equiv_{\alpha} P'_1 \rightarrow_{1\beta} \dots \rightarrow_{1\beta} P_n \equiv_{\alpha} Q$$

4. Referências

Referências

Barendregt, H. P. (1984). *The Lambda Calculus: Its Syntax and Semantics*. Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., New York, N.Y.

Hindley, J. R. (1997). *Basic simple type theory*. Number 42. Cambridge University Press.

Hindley, J. R. and Seldin, J. P. (2008). *Lambda-calculus and combinators: an introduction*. Cambridge University Press.

Sørensen, M. H. and Urzyczyn, P. (2006). *Lectures on the Curry-Howard isomorphism*. Elsevier.