EAD THIS

THE UNIVERSITY OF BRITISH COLUMBIA

Department of Electrical and Computer Engineering

ELEC 401 – Analog CMOS Integrated Circuit Design Take-Home Midterm Exam

Due: Monday, October 18th, 2021 at 11:59 pm

This is an open book take-home exam and calculators are allowed. Please attempt to answer all problems. A blank sheet will not receive any marks! Please do not consult and/or discuss the questions and/or your solutions with anyone. Your solutions/answers should be based on your individual effort! Please also note that each question has its own transistor parameters.

Good luck!

This exam consists of 6 - 6/6 (= 5) questions and including the cover page has 6+6(=12) pages. Please check that you have a complete copy.

Shanks	Cole
Surname	First name
54950860	
Student Number	

#	MAX	GRADE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

➤ IMPORTANT NOTE:

Candidates guilty of any of the following, or similar, dishonest practices shall be liable to disciplinary action:

Speaking or communicating with other candidates or non-candidates regarding the exam questions. Purposely exposing their solution to the view of other candidates.

The plea of accident or forgetfulness shall not be received.

- 1. In the following circuit assume that the bulks of the two NMOS transistors are connected to ground, and furthermore assume that the current source is ideal with I_{bias} =4 mA, and for both transistors we have $\lambda = 0$, $\gamma = 1$ V $^{1/2}$, $2\Phi_F$ =0.64 V, V_{TH0} = 0.4 V, $\mu_n C_{ox}$ = 500 μ A/V 2 , and (W/L) = 100.
- a) Find the voltage of node X? [8 marks]
- b) Find the voltage of node Y? [10 marks]
- c) If we were to implement the current source with a single PMOS transistor which would had a effective voltage of 0.5 (i.e., V_{SG} - $|V_{THP}| = 0.5 \text{ V}$), then, what was the minimum required V_{DD} for the circuit to operate properly? [2 marks]

Voltage of Node X: 0.8V, Voltage of Node Y: 1.2VMinimum required $V_{DD} = 0.5V$

2. In the following circuit, assume that $V_{DD} = 3V$ and the total dc power consumption of the circuit is 2.25mW, and the dc level of the output is 1.5 V. Furthermore, assume that M₁ is operating in saturation region, and for transistors we have $\lambda = 0$, $V_{TH0(NMOS)} = 0.5V$, $V_{TH0(PMOS)} = -$ 0.5V, $\mu_n C_{ox} = 200 \ \mu A/V^2$, $\mu_p C_{ox} = 100 \ \mu A/V^2$, and $(W/L)_1 = 80$.

- a) Find the required V_{bias} for which the dc bias current of M₁ is 0.5 mA. [4 marks]
- b) Find $(W/L)_2$. [4 marks]
- c) Find R_L. [4 marks]
- d) What is the small-signal gain of the circuit? [4 marks]
- e) Is the assumption that M1 is operating in saturation correct. If so, why? [2 marks]
- f) What is the maximum peak-to-peak symmetric signal swing of the output? [2 marks]

Regions of Operation (M, M2):

$$N_{1}$$
: $V_{GS_{1}} = V_{biaS}$
 $V_{GS_{1}} = V_{GS_{1}} - V_{H_{1}} = V_{biaS} - 0.5V$
 $I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{I_{1}} (V_{GS} - V_{TH})^{2}$

$$2.25mW = 3.0.5mA + 3.TD2$$

$$\downarrow \rightarrow TD2 = 0.5mA$$

$$0.5 \text{mA} = \frac{1}{2}.200 \text{N} \cdot 80 \cdot (\text{V bias} - 0.5)^2$$

 $\rightarrow \text{V bias} = 0.75 \text{V}$

$$\frac{M_{2}:}{V_{SG_{2}}} = 3 - 1.5 = 1.5V$$

$$Veff_{2} = 1.5 - 0.5 = 1V$$

$$VSD_{2} = 1.5V$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

For your convenience the circuit and its parameters are duplicated below:

 $V_{DD}=3V$ and the total dc power consumption of the circuit is 2.25mW, and the dc level of the output is 1.5 V. Furthermore, $\lambda=0,~V_{TH0(NMOS)}=0.5V,~V_{TH0(PMOS)}=-0.5V,~\mu_nC_{ox}=200~\mu\text{A}/V^2,~\mu_pC_{ox}=100~\mu\text{A}/V^2,~\text{and}~(W/L)_{NMOS}=80.$

$V_{\text{bias}} = 0.75V$.	$(W/L)_2 =, R_L$	=
small-signal gain	, region of operation of M_1 =	Saturation

output symmetric peak-to-peak signal swing=

3. In the following circuit, assuming that the transistor is biased properly so that it is not operating in the cut-off region, show that in the small-signal domain, even when $\lambda > 0$ and $\gamma > 0$ (i.e., in the presence of channel length modulation and body effect), V_{out1} and V_{out2} are related by: $V_{out1}/V_{out2} = -R_D/R_{S.}$ [20 marks].

Small Signal Model:

6

- 4. Design the following two-stage amplifier with the schematic shown below and these design specifications:
 - $V_{DD}=1.8 \text{ V}$
 - Total power consumption of the amplifier is 1.8 mW
 - V_{bias1} and the level of V_{out1} and V_{out2} are all 0.9 V
 - L=0.25 μm for both transistors
 - The output impedance of the circuit, that is the impedance seen at V_{out2} is 1.8 k Ω

Assume the following technology parameters:

 $\lambda = 0$, $V_{DD} = 1.8V$, $V_{TH(NMOS)} = 0.4V$, $V_{TH(PMOS)} = -0.4V$, $\mu_n C_{ox} = 500 \mu A/V^2$, $\mu_p C_{ox} = 250 \mu A/V^2$. Furthermore, assume that V_{in} is a small-signal source.

- a) Find R_1 , R_2 , W_1 and W_2 . [12 marks]
- b) What is the overall gain of the system, i.e., V_{out2}/V_{in} . [3 marks]
- $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{I!} (V_{GS} V_{TH})^2$
- c) What is the maximum symmetric peak-to-peak output swing. [3 marks]
- d) If the input V_{in} is a small-signal sinusoid, what would be the maximum amplitude of the input signal for which the circuit operates as expected. [2 marks]

$$V_{2}$$
 $V_{60_{2}} = 0.9 - 0 = 0.9 V$

$$V_{DS_2} = 0.9 - 0 = 0.9V$$

The output impedance of the circuit, that is the impedance seen at
$$V_{\text{out2}}\, is \, 1.8 \; k\Omega$$

$$V_{SG_1} = 1.8 + 0.9 - 1.8 = 0.9V$$

$$V_{SG_1} = 1.8 + 0.9 - 0.9 = 0.9V$$

$$V_{SG_1} = 1.8 - 0.9 = 0.9V$$

$$V_{SG_2} = 1.8 - 0.9 = 0.9V$$

$$V_{SG_3} = 1.8 - 0.9 = 0.9V$$

$$V_{SG_4} = 1.8 - 0.9 = 0.9V$$

$$V_{SG_4} = 1.8 - 0.9 = 0.9V$$

$$V_{SG_4} = 0.9 - 0 = 0.9V$$

$$V_{SG_5} = 0.9 - 0 = 0.9V$$

$$V_{SG_6} = 0.9 - 0 = 0.9V$$

$$R_1 = \underbrace{0.9 \, V}_{0.5 \, mA} = 1.8 \, k\Omega$$

$$1.8mW = Vob \cdot (I_{01} + I_{02})$$
$$= 1.8 (I_{01} + I_{02})$$

$$R_2 = \frac{1.8 - 0.9}{0.5 \text{mA}} = 1.8 \text{k}\Omega$$

b)
$$(-gm_1Ro_1)(-gm_2Ro_2)$$

= $\left[\frac{-2\cdot 0.5mA}{0.5}.1.8k\Omega\right].\left[\frac{-2\cdot 0.5mA}{0.5}.1.8k\Omega\right]$
= 12.96%

$$W_1 = \underbrace{\hspace{0.5cm} \boldsymbol{\mu} m, \quad W_2 = \hspace{0.5cm} \boldsymbol{2} \quad \boldsymbol{\mu} m, \quad R_1 = \hspace{0.5cm} \boldsymbol{1.8} \quad \boldsymbol{k} \Omega, \quad R_2 = \hspace{0.5cm} \boldsymbol{1.8} \quad \boldsymbol{k} \Omega, \\ V_{out2}/V_{in} = \underbrace{\hspace{0.5cm} \boldsymbol{12.96}}_{\hspace{0.5cm} V/V}, \quad Maximum \text{ pea-to-peak symmetric output swing} = \hspace{0.5cm} \boldsymbol{V} \\ Maximum \text{ amplitude of the small-signal input sinusoid} = \hspace{0.5cm} \boldsymbol{m} \boldsymbol{V} \\ \end{array}$$

5. Consider the following circuit:

$$V_{in}(t)$$
 $V_{in}(t)$
 V_{blas}
 $v_{out}(t)$
 v_{out}

The technology parameters are:

$$\lambda_{(NMOS)} = 0 \text{ V}^{-1}, \gamma = 0, V_{DD} = 3.3 \text{ V}, V_{TH(NMOS)} = 0.5 \text{ V}, \mu_n C_{ox} = 0.1 \text{ mA/V}^2, \text{ and } C_{ox} = 5 \text{ fF/}\mu\text{m}^2.$$

Assume $C_1 = 2 \text{ pF}$ and for the transistor we have: $L_1 = 0.5 \mu \text{m}$ and $W_1 = 5 \mu \text{m}$.

- a) If V_{bias}=0.8 V, what is the region of operation of the transistor and why? [6 marks]
- b) If the input signal, $V_{in}(t)$, is a step function with a small magnitude of 10 mV (i.e., V_{in} abruptly changes from 0 V to 10 mV at time t = 0), what is $V_{out}(t)$ for $t \ge 0$? [6 marks]
- c) Repeat parts (a) and (b) for V_{bias}=1.8V. [8 marks]

Region of Operation:

$$V_{GS} = 3.3 - 0.8 = 2.5 V > V + h$$

C) Region of Operation:

For V_{bias}=0.8V: Region of operation of M₁: Deep Triode, V_{out}(t)=_____

For $V_{bias}=1.8V$: Region of operation of M_1 : Deep Triode, $V_{out}(t)=$

This is intentionally left blank.