Системно програмиране за Линукс упражнения

Димитър Димитров

07.04.2021

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Съдържание І

- 1 Подготовка
- 2 Въведение
 - Запознаване с командния ред
 - Елементарни автоматизации с Unix Shell.
- 3 Първа Линукс програма
 - Компилатори. Фази на компилацията. ELF контейнери.
- 4 Проект
 - GNU Make. Системи за построяване на софтуер. Първи проект.
 - Системи за управление на версиите. GIT, github/gitlab.
- 5 Същински програми
 - Pthreads. Разпаралеляване на примерна задача (quicksort).

Съдържание II

- Pipes. Обмяна на съобщения между процеси или нишки.
- Мтар. Оптимизирано боравене с файлове.
- Strace. Syscalls, ioctl.

- 6 Вграден Линукс
 - GPIO, I2C drivers in userspace.

7 Допълнителни Материали

Подготовка

За курса ще са необходими:

- Добро владеене на езика С.
- Персонален компютър или лаптоп с инсталиран Линукс.
 - Възможно е стартиране на Линукс от USB флашка, без инсталация на основния диск.
 - https://ubuntu.com/tutorials/try-ubuntu-before-you-install
- Резервен вариант е да се ползва Линукс чрез локална или Web Browser виртуална машина.
 - https://ubuntu.com/appliance/vm
 - https:
 - //bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192
- Хъс.

Относно този документ

Най-новата версия може да намерите на: https://github.com/MM-Solutions/lsp-course.

Терминал, shell

- Дистрибуция що е то. Избор.
- Терминал.
- Команден ред.
 - Ctrl+D
 - Auto-complete
- Разходки из файловата система 1s, cd, pwd, tree.
- Текуща . и по-горна папка . .
- Разделител в пътя: /
- top, ps.
- su, sudo.
- root и останалите потребители

Отворете терминал и изпробвайте командите.

Текстов редактор

Пробвай и избери!

- vi ← Препоръчвам!
 - Има си самоучител: vimtutor
- gedit
- nano.
- emacs ← Любим редактор на множество хакери.
- Много, много други.

Изпълними файлове

■ UNIX permissions: chmod ugo+rwx MYFILE

```
drwxr-xr-x
\./\./\./
| '----Other
\.|.'----Group
'-----User_owner
```

- ELF.
- Shell/Python/... scripts.
- Shebang.

```
#!/bin/sh
```


Помощ!

- man
- man 1 kill или man 2 kill
 - man man
- apropos
- whatis
- help за вградени команди на shell

Създайте скрипт, който да:

- Разпечатва един ред с текущата директория.
- 2 След това разпечатва списък с файловете.
- 3 Списъкът да съдържа освен имената на файловете, и техните размери, собственици и права.

Съвет: Ползвайте pwd, man ls

Unix shell

- Променливи на обвивката (environment variables). printenv
- Променливи на средата (shell variables).
- echo
- PATH
- cat, echo, less
- cp, mv, mkdir
- ln soft and hard.

Направете мека и твърда връзка към скрипта от предишната задача.

- Какъв е резултата от 1s -1
- 2 Разпечатайте (cat) съдържанието на трите файла.
- 3 Изтрийте оригиналния файл. Има ли разлика в 1s -1?
- 4 Има ли валидно съдържание в двете връзки (cat)?

Съвет: Ползвайте pwd, man ls

Многозадачност с Unix Shell

- Задачи в обвивката (shell) и процеси в OS.
- bg, fg, &, wait
- Ctrl+Z vs Ctrl+C
- jobs
- kill

Задачи

- Изпробвайте приспиването на задачи, и поставянето им във фонов режим.
 - Съвет: Ако не се сещате за други опитни зайчета, ползвайте cat и top.
- Кой е номерът на задачата, и кой е номерът на процеса (PID)?
- Изпробвайте wait с помощта на няколко sleep 10 & задачи.
- Убийте един от вашите процеси. Как ще проверите дали е "мъртъв"?

Тръби

- Pipes.
- stderr, stdout, stdin.
- пренасочване чрез >, >>, 1>, 2>
- tee
- Филтри: grep, sort, wc, cut, xxd

Тръби - примери

```
Изпробвайте ги при вас!
```

```
$ echo "Hello, world"
$ echo "Hello, world 1" > test.log
$ echo "Hello, world 2" > test.log
$ echo "Hello. world 3" >> test.log
$ echo "Aloha!" >> test.log
$ cat test.log
$ cat test.log | sort
$ cat test.log | xxd
$ cat /bin/ls | xxd | head -10 | tee A.log
$ cat A. log | cut -f2- -d":"
```


Тръби - примери

```
Изпробвайте ги при вас!
```

```
$ ls /bin | grep sh
$ ls /bin | grep sh | sort
$ ls /bin | sort > listing
$ cat listing
$ ls /epa-nema-takava-direktoria | sort > listing
$ cat listing
$ ls /epa-nema-takava-direktoria 2> listing
$ cat listing
```


Всичко е файл!

■ /dev : Device filesystem.

■ /proc : Process filesystem.

■ /sys : System filesystem.

■ Даже и тръбите: mkfifo

- Разузнайте dev, /proc и /sys.
 - Съвет: Припомнете си командите от предното упражнение: ls, ls -l, cd, pwd
 - Съвет: За списък на всички файлове: find . -type f
 - Съвет: За търсене по част от име на файл: find /sys -name "*temp*"
 - Съвет: За търсене по име на файл: find /sys -name "temp"
- Дали cat работи с тези файлове?
- Какви са странните директории наименувани с числа в /proc ?

Задача - продължение

- cat /proc/interrupts
- cat /proc/cpuinfo
- cat /proc/version
- ls /proc/sys/kernel/
- cat /sys/class/backlight/*/brightness
- cat /sys/class/leds/*/brightness

Напишете скрипт, който да разпечатва броя процесори в системата.

Съвет: Ползвайте grep, wc -1

Shell scripts

- Входни параметри \$#, \$@, \$0, \$1, ...
- Unix SH е сложен език с много възможности които няма да разглеждаме на тези упражнения.
- За допълнително четене: https://linuxcommand.org/tlcl.php

Въвеление

□ Елементарни автоматизации с Unix Shell.

CRON

Изпълнение на наши задачи в указан час.

man crontab

Направете си система за мониторинг на потребителите, които ползват Вашата система. Нека всяка минута да се добавят записи в \$HOME/users.log с информация за датата, и кои потребители ползват системата.

- Съвет: Ползвайте w за списък на потребителите.
- Съвет: Ползвайте date за датата.
- За напреднали: Филтрирайте така, че имената на потребителите да се показват само по един път.

□ Първа Линукс програма

Компилатори

- GCC vs clang
- Крос компилатори host vs target.
- man gcc

- Първа Линукс програма

Фази

- Препроцесор.
 - Изход: С код
- С компилатор.
 - Изход: асемблерен код
- Асемблер.
 - Изход: обектен файл (ELF object).
- Свързващ редактор (linker).
 - Изход: ELF executable.

- Първа Линукс програма

GCC - опции

- -о OUTFILE : в кой файл да се запише изхода.
- -0s, -00, ... -03 : ниво на оптимизация.
- -с : да се компилира и асемблира, без свързване.
- -g : да се добави debug информация.
- -Wall -Wextra: да се предупреждава при съмнителен код.
- -Werror : да се излиза с грешка при съмнителен код.

Пример:

- \$ gcc -O2 -Wall -Wextra test.c -o test
- \$ file test

- Първа Линукс програма

- Напишете С програма за събиране на две числа, подадени от командния ред.
- Програмата да е разделена в два С файла за main() и calc_sum() функциите.
- Да има header с декларация на calc_sum()
- Напишете скрипт, който компилира програмата.
- За по-напредналите: objdump -d calc.elf | less
- За по-напредналите: file calc.elf защо е маркиран като dynamically linked? Ще се промени ли нещо, ако се ползва -static флаг на компилатора и свързващия редактор?

GNU Make

- GNU Make има множество алтернативи, но въпреки това е все още популярна.
- Позволява фин контрол върху процеса на построяване (build).
 - Това обаче може и да се окаже недостатък, защото писането на GNU Make правила изисква задълбочено познание за почти всяка стъпка от построяването.
 - По-съвременните системи за построяване обикновено включват голям набор готови правила.
- Правилно описани правила за построяване позволяват:
 - Автоматично разпаралелване.
 - Бързи и сигурни надстроявания (incremental builds).

└ GNU Make. Системи за построяване на софтуер. Първи проект.

GNU Make синтаксис

■ Запомнете:

This is a comment.

target: dependencies commands

- Haпишете Makefile за C програмата от предишното упражнение.
- За по-напредналите: Опитайте да направите своя Makefile по-универсален посредством променливи.
- За по-напредналите: Проследете exit code при успешно и при неуспешно построяване. Ползвайте специалната променлива на sh \$? .

GIT

- Най-популярната система за контрол на версиите.
- Масово използвана за софтуер.
- Но може да се ползва и за други цифрови проекти:
 - Документация (като тази презентация).
 - Проекти за електронни схеми и платки.
 - Проекти за механични изделия.
- Оптимизирана да работи с текст, но се справя и с двоични файлове.
- Други подобни системи: hg, svn, bazaar, cvs.

GIT сървъри

- GIT може пълноценно да работи без сървър, само с локален проект.
 - Всяко GIT дърво съдържа цялата история на проекта.
- Сървърът позволява обаче да споделяте кода си с други хора.
- Съществуват безплатни сървъри, на които да публикувате проектите си.

GIT - цели

- Управление на версиите.
- Проследяемост.
- Паралелна работа на множество разработчици.
- Пълноценност без свързаност към интернет.
- Гъвкавост при издаване (release flow).

GIT команди

```
$ mkdir my-empty-repo ; cd my-empty-repo ; git init
$ git clone https://github.com/MM-Solutions/lsp-course
$ git add *
$ git commit
$ git push
$ git log
$ gitk
```

- Регистрирайте се в github.com, или gitlab.com, или bitbucket.org, или подобен.
- Направете си публично ГИТ хранилище (GIT project, GIT repo) с име "c-hello-world".
- Добавете С задачата от предишното упражнение към новото ГИТ хранилище, и я публикувайте.
- Добавете README.md с кратко описание, и го публикувайте като отделен GIT commit.
- За по-напредналите: свалете голям проект (например https://github.com/torvalds/linux), и изследвайте историята Изпробвайте командата gitk.

Системно програмиране за Линукс

Същински програми

└─ Pthreads. Разпаралеляване на примерна задача (quicksort). Демонстриране на механизми за синхронизация.

PThreads

└ Pipes. Обмяна на съобщения между процеси или нишки.

Pipes


```
Системно програмиране за Линукс

— Същински програми

— Мтар. Оптимизирано боравене с файлове.
```

mmap

strace

Стандартни интерфейси към периферията

TODO.

Други курсове

- https://man7.org/training/download/Linux_System_ Programming-man7.org-mkerrisk-NDC-TechTown-2020.pdf
- https://bootlin.com/training/
- https://github.com/e-ale

