Nome: Marcus Vinicius Oliveira Nunes Assunto: Relatório do projeto final

RA:2554100

1 - Objetivo do Trabalho

Treinar e comparar modelos de aprendizado de máquina capazes de distinguir as tomografías torácicas de cânceres pulmonares e uma tomografía torácica normal.

2 - Base de dados

A base de dados utilizada para o desenvolvimento do trabalho foi a "Chest CT-Scan images Dataset" que é basicamente uma base de dados com imagens de tomografía computadorizada do tórax. As imagens são divididas em 3 classificações de câncer no pulmão e outra classificação de sem câncer. Os tipos de classes são:

• Adenocarcinoma: 338 imagens

• Carcinoma de células grandes: 187 imagens

• **Normal:** 215 imagens

• Carcinoma de células escamosas: 260 imagens

- Adenocarcinoma

Adenocarcinoma

- Large cell carcinoma

Carcinoma de células grandes

- Normal

Normal

- Squamous cell carcinoma

Carcinoma de células escamosas

Do total de 1000 imagens foram pré divididas em 70% para treinamento, 20% para teste e 10% para validação.

2.1 - Data augmentation ou aumento de dados

Com o intuito de aumentar a capacitação do modelo no reconhecimento das imagens foi aplicado o "Data Augmentation" que é o aumento dos dados durante o treinamento aplicando mudanças nos dados que já existem na base de dados. Um exemplo de mudança é virar a imagem de cabeça para baixo, mudar a imagem de lado, aplicar zoom, mudar o eixo etc. As mudanças aplicadas neste trabalho estão abaixo:

exceto pela "preprocessing_function" e pela "dytpe" as outras funções aplicam mudanças com o intuito de aumentar o número de imagens.

2.2 - Pré-processamento de dados

Com o intuito de otimizar o processamento e a qualidade da generalização do modelo foram aplicadas duas funções de pré-processamento.

2.2.1 - "preprocess_input" e "dtype"

Essa função normaliza os valores dos pixels, que normalmente estão na escala de [0,255], de cada imagem para [-1, 1]. A seguinte normalização diminui a complexidade dos pixels das imagens para uma escala menor, melhorando a otimização do processamento. A função foi importada da seguinte forma:

from tensorflow.keras.applications.resnet import preprocess_input

Além do "preprocess_input" outra função de pré -processamento foi utilizada, a "dtype" que garante que cada tensor de cada imagem gerada seja convertida para float32, também ajudando na otimização além de outros benefícios.

3 - Modelos

Durante a realização desse projeto foram usados dois modelos prontos de redes convolucionais: a rede Inception-V3 e a VGG16, as quais são usadas justamente para classificação de imagens. O objetivo de testar dois modelos diferentes foi testar um modelo que já utilizado e testado por outra pessoa na base de dados utilizada nesse projeto, no caso o VGG16 e comparar com outro modelo da minha escolha, que no caso acabou sendo o Inception-V3.

Arquitetura da rede Inception-V3

Arquitetura da rede VGG16

4 - Treinamentos, resultados e validação cruzada

Com a finalidade de capacitar os modelos a fazerem classificações acuradas, foram efetuados treinamentos dos mesmos. Após os treinamentos, para garantir que os modelos estavam capacitados foram submetidos aos dados de teste. Ademais, os modelos foram submetidos à validação cruzada com o objetivo de medir a capacidade de generalização dos modelos.

4.1 - VGG16

Para o treinamento do VGG16 foi escolhido um total de 100 épocas com um early stopper com 10 épocas de paciência, o qual tem a função de parar o treinamento se não houver melhora na perda, monitorando cada época do treinamento.

```
epochs = 100
history = model.fit(
    training_data,
    validation_data=validation_data,
    epochs=epochs,
    callbacks = earlystopper,
    verbose=1
)
```

Parâmetros do treinamento

O treino acabou durando 26 épocas devido a falta de melhora durante as 10 épocas anteriores. O treino finalizou com os seguintes resultados:

• Perda: 0.2398

• Acurácia: 0.9021

• Perda de validação: 0.4698

• Acurácia de validação: 0.8889

Acurácia durante treinamento

Perda durante o treinamento

Na hora de avaliar com os dados de teste se obteve uma acurácia de 86% e perda de 41%. Além destes, outros resultados como precisão, recall, f1-score e matriz de confusão podem ser observados seguintes abaixo:

5/5	5 [======] - 6s 1s/step					
		precision	recall	f1-score	support	
	0	0.87	0.85	0.86	120	
	1	0.68	0.98	0.81	51	
	2	1.00	0.94	0.97	54	
	3	0.93	0.77	0.84	90	
	accuracy			0.86	315	
n	nacro avg	0.87	0.89	0.87	315	
weig	hted avg	0.88	0.86	0.87	315	

Resultados

Matriz de confusão dos resultados

Após a avaliação com os dados de teste foi realizada uma validação cruzada para medir a capacidade de generalização do modelo. Foi escolhida uma quantidade de 100 épocas com um early-stopper de paciência de 10 épocas. Foram necessárias apenas 68 épocas. Os resultados foram os seguintes:

• Média da perda de validação: 0.0760248675942421

• Média da acurácia: 0.9918032884597778

4.2 - Inception-V3

Para o Inception-V3 foram escolhidas 200 épocas de treinamento com um early stopper com paciência de 10 épocas. O Treinamento acabou com o total de 58 épocas, com 32 épocas a mais do que o VGG16. Os resultados depois do treinamento foram:

• Perda: 0.3615

• Acurácia categorial: 0.8418

• Perda de validação: 0.5531

• Acurácia categorial de validação: 0.7500

Acurácia durante o treinamento

Perda durante o treinamento

Com os dados de teste a acurácia foi de 77% e a perda de 56%. Outros resultados podem ser vistos abaixo:

5/5 [========							
	precision	recall	f1-score	support			
0	0.78	0.73	0.76	120			
1	0.66	0.76	0.71	51			
2	0.96	0.94	0.95	54			
3	0.73	0.73	0.73	90			
accuracy			0.77	315			
macro avg	0.78	0.79	0.79	315			
weighted avg	0.78	0.77	0.78	315			

Resultados

Matriz de confusão dos resultados

Na validação cruzada foram decididas 100 épocas também com um early stopper com 5 épocas de paciência, 70 épocas foram efetuadas e os seguintes resultados se mostraram:

• Média da perda de validação: 0.4710097014904022

Média da acurácia: 0.8360655903816223

LINK PARA O DATASET:

 $\underline{https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images}$