Module LU2IN003 Graphes orientés 9

Exercice 1 – Terminologie de base

Dans cet exercice, on considère le graphe orienté $G_0 = (V_0, A_0)$, avec $V_0 = \{1, 2, 3, 4, 5, 6, 7\}$ et $A_0 = \{(1, 2), (2, 3), (3, 1), (2, 4), (3, 4), (2, 5), (3, 5), (4, 5), (5, 4), (6, 7)\}$. On pose $n_0 = |V_0|$ et $m_0 = |A_0|$.

Question 1

Dessiner le graphe G_0 . Que valent n_0 et m_0 ?

Ouestion 2

Pour chaque sommet x de G_0 , donner l'ensemble des successeurs de x, l'ensemble de ses prédecesseurs, son demidegré sortant et son demi-degré entrant. Que vaut la somme des demi-degrés sortants ? des demi-degrés entrants ?

Question 3

Donner un chemin élémentaire de G_0 et un circuit élémentaire de G_0 , ainsi que leurs longueurs (en nombre d'arcs) respectives.

Question 4

Représenter le graphe non orienté G'_0 associé à G_0 en enlevant l'orientation des arcs. Le graphe G_0 est-il connexe? Justifier la réponse.

Ouestion 5

Le graphe G_0 est-il fortement connexe? Donner ses composantes fortement connexes.

Exercice 2 - Propriétés autour des degrés pour un graphe orienté

Soit G = (V, A) un graphe orienté. On pose n = |V| et m = |A|.

Question 1

Montrer que
$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = m.$$

Question 2

Exprimer le nombre maximum d'arcs de G en fonction de n:

- si G est sans boucle
- si G est avec boucles.

Question 3

- 1. On suppose n > 2 et on pose $V = \{v_1, v_2, \dots, v_n\}$.
 - Calculer $d^+(x)$ et $d^-(x)$ pour tout $x \in V$ dans chacun des cas suivants :
 - (a) G est composé uniquement d'un chemin élémentaire (v_1, v_2, \dots, v_n) passant par tous les sommets
 - (b) G est composé uniquement d'un circuit élémentaire $(v_1, v_2, \dots, v_n, v_1)$ passant par tous les sommets
 - (c) G est composé uniquement d'un chemin $(v_1, v_2, \dots, v_n, v_j)$, avec $2 \le j < n$ passant par tous les sommets.

2. Caractériser, sans preuve, les graphes orientés G=(V,A) tels que $d^+(x)=d^-(x)=1$ pour tout $x\in V$. Facultatif: prouver le résultat trouvé.

Exercice 3 – Graphe tournoi et roi

On appelle graphe tournoi un graphe orienté sans boucle tel que, entre deux sommets, il y a toujours exactement un arc. On dit qu'un sommet x d'un graphe tournoi G domine un sommet y de G si l'arc (x,y) existe. On dit qu'un sommet x est un roi si, pour tout autre sommet y, alors

- ou bien x domine y;
- ou bien il existe un sommet z tel que x domine z et z domine y.

Question 1

Soit $G_1 = (V_1, A_1)$ avec $V_1 = \{1, 2, 3, 4, 5\}$ et $A_1 = \{(1, 3), (1, 4), (2, 1), (3, 4), (4, 2), (3, 2), (2, 5), (3, 5), (5, 1), (4, 5)\}$. G_1 est-il un graphe tournoi?

Question 2

Soit $G_2 = (V_2, A_2)$ avec $V_2 = \{1, 2, 3\}$ et $A_2 = \{(1, 2), (1, 3), (2, 1), (2, 3)\}$. G_2 est-il un graphe tournoi?

Question 3

Soit $G_1 = (V_3, A_3)$ avec $V_3 = \{1, 2, 3, 4, 5, 6\}$ et $A_3 = \{(1, 2), (2, 3), (3, 4), (1, 5), (4, 5), (3, 6)\}$. G_3 est-il un graphe tournoi?

Question 4

- 1. Quel est le nombre d'arcs d'un graphe tournoi ayant n sommets?
- 2. Un graphe tournoi est-il toujours connexe? fortement connexe?

Ouestion 5

Démontrer que, dans un graphe tournoi, tout sommet de degré sortant maximum est un roi.

Exercice 4 - Représentation d'un graphe orienté

Question 1

Complétez le tableau suivant. Les graphes considérés sont des graphes orientés sans arc double ni boucle.

© 1er avril 2020

Définition ensembliste	Matrice sommet-sommet	Matrice sommet-arc	Liste d'adjacence
$V = \{1, 2, 3, 4\}$			
$E = \{(1,2), (2,3),$			
(3,1),(2,4),(3,4)			
	(0 1 0 0)		
		$\begin{pmatrix} 1 & 1 & -1 & 0 & 0 & -1 \end{pmatrix}$	
		$\begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\begin{bmatrix} 0 & -1 & 0 & 1 & 1 & 0 \end{bmatrix}$	
		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$	
		,	$-1 \rightarrow [4,5]$
			$-2 \rightarrow [3]$
			$-3 \rightarrow [2]$
			$-4 \rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
			$-5 \rightarrow []$

Question 2

Que doit vérifier une matrice carrée M pour être la matrice sommet-sommet d'un graphe orienté? Même question pour une matrice R sommet-arc ou une liste d'adjacence L.

Exercice 5 – Forte connexité, relation d'équivalence et graphe réduit

Soit G = (V, A) un graphe orienté. On définit la relation \mathcal{R}_{FC} sur V par : pour tout couple de sommets $(u, v) \in V^2$, $u\mathcal{R}_C v$ si il existe un chemin dans G entre u et v et un chemin de v à u.

Question 1

On considère dans cette question le graphe orienté G=(V,A) représenté par la figure suivante :

- 1. Donnez les composantes fortement connexes de G.
- 2. Que vaut \mathcal{R}_{FC} pour cet exemple. \mathcal{R}_{FC} peut être représentée par la matrice carrée R_{FC} tel que $R_{FC}[u,v]=1$ si $u\mathcal{R}_{FC}v$, 0 sinon.
- 3. Vérifiez sur la matrice R_{FC} que \mathcal{R}_{FC} est une relation d'équivalence
- 4. Représentez \mathcal{R}_{FC} par un graphe non orienté G_R ? A quoi correspondent les composantes connexes de G_R ?

Question 2

On souhaite démontrer que les composantes fortement connexes de G coincident avec les composantes connexes de G_R . On rappelle que les composantes fortement connexes de G_R correspondent aux classes d'équivalence de la relation R_{FC} .

1. Démontrez que si x et y sont dans une même composante fortement connexe de G, alors ils sont dans une même composante connexe de G_R .

© 1er avril 2020

2. Démontrez ensuite la réciproque.

Question 3

A tout graphe orienté G = (V, A), on peut associer un graphe réduit $H_R = (V_H, A_H)$ qui est un graphe orienté défini de la manière suivante :

- Les sommets V_H sont les composantes fortement connexes de G;
- A tout arc $(x,y) \in A$ avec x et y dans des composantes fortement connexes C(x) et C(y) différentes, on associe un arc (C(x), C(y)) dans A_H .
- 1. Construire le graphe réduit associé au graphe de la question 1.
- 2. Démontrez par l'absurde que, dans le cas général, H_R est un graphe sans circuit.

Exercice 6 – Connexité et relation d'équivalence

On suppose dans cet exercice que G = (V, E) est un graphe non orienté. On définit la relation \mathcal{R}_C sur V par : pour tout couple de sommets $(u, v) \in V^2$, $u\mathcal{R}_C v$ si il existe une chaîne dans G entre u et v.

Question 1

Soit le graphe G = (V, E) représenté par la figure suivante :

- 1. Que vaut \mathcal{R}_C pour cet exemple. \mathcal{R}_C peut être représentée par la matrice carrée R_C tel que $R_C[u,v]=1$ si $u\mathcal{R}_Cv$, 0 sinon.
- 2. Est-ce-que pour l'exemple, on peut construire un graphe non orienté associé à R_C ? Justifiez votre réponse.

Question 2

On suppose que G = (V, E) est un graphe non orienté quelconque.

- 1. Démontrez que \mathcal{R}_C est une relation d'équivalence.
- 2. Que peut-on en déduire sur la structure de la matrice R_C associée? Est-ce-que on peut toujours associer un graphe non orienté G_R à R_C ?

Question 3

Pour tout graphe G = (V, E) non orienté, on définie les composantes connexes de G comme les classes d'équivalence de la relation \mathcal{R}_C .

- 1. Quelles sont les composantes connexes du graphe de la question 1?
- 2. Dans le cas général, comment caractérise t'on les composantes connexes de G en fonction de la matrice R_C ?

Exercice 7 – Tri topologique

Dans cet exercice, on considère le graphe orienté $G_5=(V_5,A_5)$ suivant :

© 1^{er} avril 2020

Question 1

Calculer (x) pour tout $x \in V_5$.

Question 2

En déduire un tri topologique de G_5 .

Question 3

Un tri topologique est-il nécessairement rangé en ordre croissant des rangs?

On rappelle l'algorithme de calcul d'un tri topologique d'un graphe orienté sans circuit.

Algorithm 1 Calcul d'un tri topologique pour un graphe orienté sans circuit

```
Require: Un graphe orienté sans circuit G=(V,A) Ensure: Un ordre topologique L L:=(),T:=V,\Delta(u):=d^-(u), \forall u\in V while T\neq\emptyset do Choisir un sommet u\in T tel que \Delta(u)=0 L:=L+(u),T:=T-\{u\} \forall v\in\Gamma^+(u),\Delta(v):=\Delta(v)-1 end while
```

Question 4

Appliquer cet algorithme au graphe G_5 . Pour cela, vous préciserez à la fin de chaque itération les valeurs de u, L, T et Δ . Quand plusieurs sommets sont possibles pour u, vous sélectionnerez le sommet de numéro minimal.

Question 5

En supposant que les listes sont représentées par des listes circulaires doublement chaînées, calculer la complexité de cet algorithme lorsque les graphes sont représentés par :

- (a) des matrices sommets-arcs
- (b) des matrices sommets-sommets
- (c) des listes de successeurs.

© 1er avril 2020