Repairing solutions

Enrico Schumann

October 20, 2011

Abstract

A few ideas on how to repair solutions that violate constraints.

1 Introduction

There are several approaches for including constraints into heuristics, see Chapter 12 of Gilli et al. [2011]. The notes in this vignette give some examples for simple repair mechanisms. These can be called in DEopt, GAopt and PSopt through the repair function; in LSopt/TAopt, they could be included in the neighbourhood function.

```
> set.seed(112233)
> options(digits = 3)
```

2 Upper and lower limits

Suppose the solution x is to satisfy all(x >= lo) and all(x <= up), with lo and up being vectors of length(x).

2.1 Setting values to the boundaries

One strategy is to replace elements of x that violate a constraint with the boundary value. Such a repair function can be implemented very concisely. An example:

```
> up <- rep(1, 4L)
> lo <- rep(0, 4L)
> x <- rnorm(4L)
> x
[1] 2.127 -0.380 0.167 1.600
```

Three of the elements of x actually violate the constraints.

```
> repair1a <- function(x, up, lo) pmin(up, pmax(lo, x))
> x

[1] 2.127 -0.380  0.167  1.600
> repair1a(x, up, lo)

[1] 1.000  0.000  0.167  1.000
```

We see that indeed all values greater than 1 are replaced with 1, and those smaller than 0 become 0. Two other possibilities that achieve the same result:

```
> repair1b <- function(x, up, lo) {
+          ii <- x > up
+          x[ii] <- up[ii]
+          ii <- x < lo
+          x[ii] <- lo[ii]
+          x
+ }
> repair1c <- function(x, up, lo) {
+          xadjU <- x - up
+          xadjU <- xadjU + abs(xadjU)
+          xadjL <- lo - x
+          xadjL <- xadjL + abs(xadjL)
+          x - (xadjU - xadjL)/2
+ }</pre>
```

The function repair1b uses comparisons to replace only the relevant elements in x. The function repair1c uses the 'trick' that

$$\begin{aligned} & \operatorname{pmax}(\mathbf{x},\mathbf{y}) = \frac{x+y}{2} + \left| \frac{x-y}{2} \right|, \\ & \operatorname{pmin}(\mathbf{x},\mathbf{y}) = \frac{x+y}{2} - \left| \frac{x-y}{2} \right|. \end{aligned}$$

```
> repair1a(x, up, lo)
[1] 1.000 0.000 0.167 1.000
> repair1b(x, up, lo)
[1] 1.000 0.000 0.167 1.000
> repair1c(x, up, lo)
[1] 1.000 0.000 0.167 1.000
> trials <- 10000L
> strials <- seq_len(trials)</pre>
> system.time(for (i in strials) y1 <- repair1a(x, up, lo))
   user system elapsed
   0.33
           0.00
                   0.33
> system.time(for (i in strials) y2 <- repair1b(x, up, lo))
   user system elapsed
   0.08
           0.00
                   0.08
> system.time(for (i in strials) y3 <- repair1c(x, up, lo))
        system elapsed
   user
   0.06
           0.00
                   0.06
```

The third of these functions would also work on matrices if up or lo were scalars.

```
> X \leftarrow array(rnorm(25L), dim = c(5L, 5L))
> X
        [,1] [,2]
                     [,3]
                             [,4]
                                    [,5]
[1,] 0.1962 0.434 -2.155 -1.5881 -1.029
[2,] 0.2284 1.231 0.975 0.0682 1.818
[3,] -1.1492 0.580 -0.711 -0.4457 -1.315
[4,] -0.0712 0.246 0.628 1.4662 0.511
[5,] -0.5619 0.388 -0.136 -0.8412 1.337
> repair1c(X, up = 0.5, lo = -0.5)
        [,1] [,2]
                     [,3]
                             [,4] [,5]
[1,] 0.1962 0.434 -0.500 -0.5000 -0.5
[2,] 0.2284 0.500 0.500 0.0682 0.5
[3,] -0.5000 0.500 -0.500 -0.4457 -0.5
[4,] -0.0712 0.246 0.500 0.5000 0.5
[5,] -0.5000 0.388 -0.136 -0.5000 0.5
```

The considerable speedup comes at a price, of course, since there is no checking (eg, for NA values) in repair1b and repair1c. We could also define new functions pmin2 and pmax2.

```
> pmax2 <- function(x1, x2) ((x1 + x2) + abs(x1 - x2))/2
> pmin2 <- function(x1, x2) ((x1 + x2) - abs(x1 - x2))/2
A test follows.
> x1 <- rnorm(100L)
> x2 <- rnorm(100L)
> t1 <- system.time(for (i in strials) z1 <- pmax(x1, x2))
> t2 <- system.time(for (i in strials) z2 <- pmax2(x1, x2))
> t1[[3L]]/t2[[3L]]
[1] 4.5
> all.equal(z1, z2)
[1] TRUE
> t1 <- system.time(for (i in strials) z1 <- pmin(x1, x2))</pre>
> t2 <- system.time(for (i in strials) z2 <- pmin2(x1, x2))
> t1[[3L]]/t2[[3L]]
[1] 3.8
> all.equal(z1, z2)
[1] TRUE
```

One downside of this repair mechanism is that a solution may quickly become stuck at the boundaries (but of course, in some cases this is exactly what we want).

2.2 Reflecting values into the feasible range

The function repair2 reflects a value that is too large or too small around the boundary. It restricts the change in a variable x[i] to the range up[i] - lo[i].

```
> repair2 <- function(x, up, lo) {</pre>
      done <- TRUE
      e \leftarrow sum(x - up + abs(x - up) + lo - x + abs(lo - x))
      if (e > 1e-12)
           done <- FALSE
      r <- up - lo
      while (!done) {
           adiU \leftarrow x - up
           adjU \leftarrow adjU + abs(adjU)
           adjU \leftarrow adjU + r - abs(adjU - r)
           adjL \leftarrow 1o - x
           adjL <- adjL + abs(adjL)</pre>
           adjL \leftarrow adjL + r - abs(adjL - r)
           x \leftarrow x - (adjU - adjL)/2
           e \leftarrow sum(x - up + abs(x - up) + lo - x + abs(lo - x))
           if (e < 1e-12)
               done <- TRUE
      }
      X
+ }
> x
     2.127 -0.380 0.167 1.600
> repair2(x, up, 1o)
[1] 0.873 0.380 0.167 0.600
> system.time(for (i in strials) y4 <- repair2(x, up, lo))
   user system elapsed
   0.33
          0.00
                     0.33
```

2.3 Adjusting a cardinality limit

Let x be a logical vector.

```
> T <- 20L
> x <- logical(T)
> x[runif(T) < 0.4] <- TRUE
> x

[1] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE
```

Suppose we want to impose a minimum and maximum cardinality, kmin and kmax.

```
> kmax <- 5L
> kmin <- 3L</pre>
```

We could use an approach like the following (for the definition of resample, see ?sample):

```
> resample <- function(x, ...) x[sample.int(length(x), ...)]</pre>
> repairK <- function(x, kmax, kmin) {
     sx \leftarrow sum(x)
     if (sx > kmax) {
         i <- resample(which(x), sx - kmax)</pre>
         x[i] \leftarrow FALSE
     }
     else if (sx < kmin) {</pre>
+
         i <- resample(which(!x), kmin - sx)</pre>
         x[i] \leftarrow TRUE
     }
     \boldsymbol{x}
+ }
> printK <- function(x) cat(paste(ifelse(x, "o", "."), collapse = ""),
      "-- cardinality", sum(x), "\n")
For kmax:
> for (i in 1:10) {
     if (i == 1L)
         printK(x)
     x1 <- repairK(x, kmax, kmin)</pre>
     printK(x1)
+ }
.oo.oo.....oo..o -- cardinality 8
.oo.o.....oo..... -- cardinality 5
.o...o....oo....o -- cardinality 5
.o..o....o...o...o -- cardinality 5
..o.oo.....o -- cardinality 5
.o...o.....oo..o... -- cardinality 5
....oo.....oo..o... -- cardinality 5
.o..oo.....o -- cardinality 5
.oo..o.....oo..... -- cardinality 5
.oo..o....o... -- cardinality 5
For kmin:
> x \leftarrow logical(T)
> x[10L] <- TRUE
> for (i in 1:10) {
     if (i == 1L)
         printK(x)
     x1 <- repairK(x, kmax, kmin)</pre>
     printK(x1)
+ }
..... -- cardinality 1
o.....o....o.... -- cardinality 3
...o....o..o..... -- cardinality 3
```

```
.....o..o..o...o... -- cardinality 3
....o...oo.... -- cardinality 3
....o...oo... -- cardinality 3
....oo..oo... -- cardinality 3
....oo..oo... -- cardinality 3
....oo..oo... -- cardinality 3
....oo..oo... -- cardinality 3
....oo...oo... -- cardinality 3
```

References

Manfred Gilli, Dietmar Maringer, and Enrico Schumann. *Numerical Methods and Optimization in Finance*. Elsevier, 2011.