Neural Networks 301

Deep Learning for Natural Language Processing Vladislav Lialin, Text Machine Lab

Administrative

- Python Code style quiz is due now
- Homework 3 is due Thursday before the class

What you should remember after this lecture

- Don't worry about activations too much
 - But don't use sigmoid unless you have reasons to
 - o ReLU is the default choice
- Weight initialization matters
- ADAM optimizer
- Batch Normalization
- Dropout
- Neural networks are hard to train

Activation functions

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes numbers to range [0, 1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems

 Saturated neurons "kill" gradients, which does not allow to update network parameters

What happens when x = -10? What happens when x = 0? What happens when x = 10?

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes numbers to range [0, 1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

- Saturated neurons "kill" gradients, which does not allow to update network parameters
- Not zero-centered training converges slower

Not a proof, but hand-waving some of the intuition

- Imagine you have a fully-connected network with sigmoid layers
- The output of the first layer will only have positive numbers
- Let's look at a single neuron of the second layer
 - What happens with the gradient for the weights w?

Not a proof, but hand-waving some of the intuition

- Imagine you have a fully-connected network with sigmoid layers
- The output of the first layer will only have positive numbers
- Let's look at a single neuron of the second layer
 - What happens with the gradient for the weights w?

$$\frac{dL}{dw} = \sigma(\sum_{i} x_{i}w_{i} + b)(1 - \sigma(\sum_{i} x_{i}w_{i} + b)) \cdot x \cdot upstream_grad$$

Not a proof, but hand-waving some of the intuition

- Imagine you have a fully-connected network with sigmoid layers
- The output of the first layer will only have positive numbers
- Let's look at a single neuron of the second layer
 - What happens with the gradient for the weights w?

Always positive

$$\frac{dL}{dw} = \sigma(\sum_{i} x_{i}w_{i} + b)(1 - \sigma(\sum_{i} x_{i}w_{i} + b)) \cdot x \cdot upstream_grad$$

Not a proof, but hand-waving some of the intuition

- Imagine you have a fully-connected network with sigmoid layers
- The output of the first layer will only have positive numbers
- Let's look at a single neuron of the second layer
 - What happens with the gradient for the weights w?

Always positive

Positive because x is the output of the previous sigmoid layer

$$\frac{dL}{dw} = \sigma(\sum_{i} x_{i}w_{i} + b)(1 - \sigma(\sum_{i} x_{i}w_{i} + b)) \cdot x \cdot upstream_grad$$

Not a proof, but hand-waving some of the intuition

- Imagine you have a fully-connected network with sigmoid layers
- The output of the first layer will only have positive numbers
- Let's look at a single neuron of the second layer
 - What happens with the gradient for the weights w?

Always positive

Positive because x is the output of the previous sigmoid layer

$$\frac{dL}{dw} = \sigma(\sum_{i} x_{i}w_{i} + b)(1 - \sigma(\sum_{i} x_{i}w_{i} + b)) \cdot x \cdot upstream_grad$$

Same sign for all of the w of this layer

- Gradients for all w for a given neuron will have the same sign
- However, if you consider computing gradients over multiple examples (as usually done on practice), it is not a big problem

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes numbers to range [0, 1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

- Saturated neurons "kill" gradients, which does not allow to update network parameters
- Not zero-centered training converges slower
- exp() is a bit expensive to compute

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes numbers to range [0, 1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

- Saturated neurons "kill" gradients, which does not allow to update network parameters
- Not zero-centered training converges slower
- exp() is a bit expensive to compute

Tanh

- Just a sigmoid times 2 minus one
- Squashes numbers to range [-1, 1]
- Zero-centered

- Saturated neurons "kill" gradients, which does not allow to update network parameters
- exp() is a bit expensive to compute

Rectified Linear Unit (ReLU)

$ReLU(x) = \max(x, 0)$

- Does not saturate
 - Converges much faster than sigmoid tanh on practice
- Very computationally efficient

- Non zero-centered output
- "Dead neurons"

ReLU: Dead Neurons

What happens when x = -10? What happens when x = 0? What happens when x = 10?

ReLU: Dead Neurons

ReLU: Dead Neurons

to mitigate this.

Slide credit: Stanford CS231n Image credit: Stanford CS231n

Leaky ReLU

LeakyReLU(x) = max(0.01x, x)

- Does not saturate
 - Converges much faster than sigmoid tanh in practice
- Very computationally efficient
- Should not kill neurons

- Non zero-centered output
- Performs on-par with ReLU in practice 2

Parametric Leaky ReLU

$LeakyReLU(\alpha, x) = \max(\alpha x, x), \ \alpha \in \mathbb{R}$

- Does not saturate
 - Converges much faster than sigmoid tanh in practice
- Very computationally efficient
- Should not kill neurons
- When tuned for alpha, performs better than ReLU

- Non zero-centered output
- Requires expensive hparam tuning for alpha

Exponential Linear Unit (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

- Computation requires exp()

Exponential Linear Unit (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

Not a problem anymore if you use CUDA cores

Computation requires exp()

Scaled Exponential Linear Unit (SELU)

$$f(x) = egin{cases} \lambda x & ext{if } x > 0 \ \lambda lpha(e^x - 1) & ext{otherwise} \end{cases}$$

- Scaled version of ELU that works better for deep networks
- "Self-normalizing" property;
- Can train deep SELU networks without BatchNorm
 - (will discuss more later)

Gaussian Error Linear Unit

Figure 1: The GELU (
$$\mu=0,\sigma=1$$
), ReLU, and ELU ($\alpha=1$).

$$GELU(x) = x \cdot \frac{1}{2} \left[1 + erf(\frac{x}{\sqrt{2}}) \right] \approx x\sigma(1.702x)$$

- Usually works better than ReLU for large networks (>10 layers)
- Non-monotoric both negative and positive values of the gradient

- Non zero-centered output
- Expensive to compute

TL;DR

- ReLU is a good default choice
- Explore GELU, Parametric Leaky ReLU, SeLU, Swish, ...
- Do not use sigmoid/tanh unless you want probabilities

Activation functions is an active area of research. You can experiment with implementing your own activation function.

Weight initialization

- Q: what happens when W=constant init is used?

Q: what happens when W=constant init is used?

$$y_{1} = xW_{1} + b_{1}$$

$$y_{2} = y_{1}W_{2} + b_{2}$$

$$l = l(y_{2}, y_{target})$$

$$\frac{dl}{dW_{2}^{i,j}} = \frac{dl}{dy_{2}^{j}} \cdot \frac{dy_{2}^{j}}{dW_{2}^{i,j}}$$

hidden layer

If all Wij are the same, then gradients will be **different** for Wij across **i**-dimension, but **exactly the same** across **j**-dimension — hidden dimension.

So effectively hidden dimension is 1 and every **hidden neuron acts exactly the same**.

First idea: Small random numbers

Works well for small networks, requires tuning the range for large networks

Activation statistics

```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

What happens to the activations of the first layer?

Activation statistics

```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?

Vanishing gradients

Activation statistics

```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?

A: Zero gradients, no learning

Activation statistics

All activations saturate

Q: What do the gradients look like?

Vanishing gradients

Activation statistics

All activations saturate

Q: What do the gradients look like?

A: Zero local gradients, no learning

Xavier Initialization

"Just right": Activations are nicely scaled for all layers!

Slide credit: Stanford CS231n Image credit: Stanford CS231n petworks: Glorot and Bengio, 2010

Xavier Initialization

Derivation:

$$y = Wx$$

 $h = f(y)$

```
Var(y_i) = Din * Var(x_i w_i)
= Din * (E[x_i^2]E[w_i^2] - E[x_i]^2 E[w_i]^2)
= Din * Var(x_i) * Var(w_i)
```

If
$$Var(w_i) = 1/Din then $Var(y_i) = Var(x_i)$$$

[Assume x, w are iid]
[Assume x, w independant]
[Assume x, w are zero-mean]

Xavier Initialization with ReLU

Xavier assumes zero centered activation function

Activations collapse to zero again, no learning =(

Kaiming initialization

```
dims = [4096] * 7
hs = []

x = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):

W = np.random.randn(Din, Dout) * np.sqrt(2/Din)

x = np.maximum(0, x.dot(W))
hs.append(x)
```

"Just right": Activations are nicely scaled for all layers!

Practical tips

- Initialization matters
- Large init is bad
- Small init is bad
- Xavier and Kaiming provide a good heuristic to get "just right" init range
- For very large networks (> 100M parameters) normal distribution produces too many outliers (very large numbers) which can heart convergence
 - Using uniform distribution instead of normal helps

$$\textit{XavierNormal}(d_{in}) = \sqrt{\frac{1}{d_{in}}}N(0,1) \qquad \textit{XavierUniform}(d_{in}) = \sqrt{\frac{6}{d_{in}}}U(0,1)$$

$$KaimingNormal(d_{in}) = \sqrt{\frac{2}{d_{in}}}N(0,1)$$
 $KaimingUniform(d_{in}) = \sqrt{\frac{3}{d_{in}}}N(0,1)$