

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

Aerodynamics Technical Memorandum 356

AN EXPERIMENTAL INVESTIGATION OF THE AERODYNAMIC EFFECTS OF FORMARD FACING WEDGES ON THE UPPER SURFACE AND LEADING EDGE OF AN AEROFOIL, WITH EMPHASIS AT HIGH ANGLES OF ATTACK

A.P. HROWN

Approved for Public Release

THE UNITED STATES NATIONAL TECHNICAL INFURMATION SERVICE IS AUTHORISED TO

REPRODUCE AND SELL THIS REPORT

(C) COMMONWEALTH OF AUSTRALIA 1983

AUGUST 1983

UNCLASSIFIED 002

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

Aerodynamics Technical Memorandum 356

AN EXPERIMENTAL INVESTIGATION OF THE AERODYNAMIC EFFECTS OF FORWARD FACING WEDGES ON THE UPPER SURFACE AND LEADING EDGE OF AN AEROFOIL, WITH EMPHASIS AT HIGH ANGLES OF ATTACK

bу

A.P. BROWN

SUMMARY

A NACA 64-106 aerofoil model has been wind tunnel tested with forward facing wedges at the leading edge and upper surface at the midchord position. Of particular interest is their effect on low speed, high incidence aerofoil aerodynamics. The majority of tests were conducted at Mach 0.2 (corresponding to a chord Reynolds number of 0.57 x 10^6) over the incidence range -10 to +20 degrees. The upper surface wedges increased drag by over 100% and reduced lift by only 10% at moderate lift coefficients, delayed the stall by about 2° and maintained C_{L} . The leading edge wedges with a 2% chord slot under them on the other hand increased C_{L} by between 11 and 17% (depending on wedge size and deflection), had little effect on C_{D} (for a wedge deflection from the aerofoil surface of zero degrees) and markedly reduced variations in pitching moment prior to and following stall.

COMMONWEALTH OF AUSTRALIA 1983

CONTENTS

			PAGE NO.
NOME	ENCLAT	TURE	
1.	INTR	ODUCTION	
2.	TEST	DETAILS	1
	2.1	Wind Tunnel	1
	2.2	Test Model	1
	2.3	Test Program	2
	2.4	Data Reduction	2
3.	RESU	ILTS AND DISCUSSION	2
	3.1	Upper Surface Wedges	2
	3.2	Leading Edge Wedges	3
		3.2.1 30 mm Leading edge wedges	3
		3.2.2 50 mm Leading edge wedges	4
	3.3	Surface Flow Visualisation	5
4.	CONC	CLUSIONS	5
TAI	BLES		
FIGU	JRES		
DIST	TRIBUT	TION LIST	
DOCU	MENT	CONTROL DATA	

A-1

NOMENCLATURE

b s	Slot	width
ā		

b Wedge base width

c Model chord

C, Lift coefficient

 $\mathbf{C}_{\mathbf{D}}$ Drag coefficient

C Pitching moment coefficient, about quarter chord point

C_{L...} Maximum lift coefficient

C_n Minimum drag coefficient

L/D Lift to drag ratio

Re Reynolds number, based on model chord

Model angle of attack

John Morred Usbesser Insertor Indones Erabbes (Berlebes Insertes Brasses) Interested Insertes Inser

Deflection of wedges from local aerofoil surface

 $\varepsilon_{\mathbf{s}}$ Wedge-aerofoil surface slot height

1. INTRODUCTION

Wind tunnel tests have been carried out to determine the effect on the longitudinal aerodynamic characteristics of a two-dimensional (2D) aerofoil fitted with descrete forward-facing wedges (base to aerofoil chord ratio 0.24 and 0.39) at the leading edge and on the upper surface of the aerofoil. The forward-facing wedges were conceived as a means of delaying stall and enhancing lift at high incidence. Thus they may be useful in low speed flight (approach and landing) where they would be extended from the clean wing surface along with the trailing edge flaps.

these

Tests were conducted at Mach numbers 0.2/0.3, over an incidence range of -10 to +20 degrees. Corresponding chord Reynolds numbers were 0.57 and 0.84 million (compared to an inflight value of 2.5 million for a wing of chord 1.25 metres and airspeed of 60 knots). The results at M=0.2 are more extensive than those at M=0.3.

The tests were conducted during January and February 1983.

2. TEST DETAILS

AND THE PARTY OF THE PROPERTY OF THE PARTY WASHINGTON TO THE PARTY OF THE PARTY OF

2.1 Wind Tunnel

The tests were carried out in the ARL transonic wind tunnel at atmospheric pressure. The test section was fitted with solid sidewalls and longitudinally-slotted top and bottom walls. The open area ratio of the slotted walls was 16.5% at the model location (segrigure 1).

The aerofoil model was supported by integrally machined end tongues in sidewall strain gauge balances which resolved aerodynamic loads into normal and axial forces and pitching moment. The balances were bolted to supporting frames which were in turn bolted to rotating frames in the sidewalls and were covered by sealing enclosures to prevent air leakage through the sidewall gaps surrounding the model end tongues.

2.2 Test Model

The 2D model consisted of a 127 mm chord aerofoil of section NACA 64-106 with a quarter chord plain trailing edge flap deflected 6°. This model was chosen because it was available. It is not representative of a typical aerofoil section (larger leading edge radius and thicker) used on lower speed aircraft. The aerofoil completely spanned the test section, giving an aspect ratio of 4.1.

The aerofoil was drilled and tapped for attaching the forward-facing wedges with flush mounting screws. The assortment of removable fixtures is shown in Figure 2, and consists of:

- (a) upper surface forward facing wedges: leading edge sweep 70°, base 30 mm (24% model chord), deflected 20°, to be attached at half chord; and
- (b) leading edge forward facing wedges:
 - (i) leading edge sweep 60°, base 30 mm (24% c), deflection 10°, 20°; and
 - (ii) leading edge sweep 60°, base 50 mm (39% c), deflection 0°, 10° and 30°.

Also, in each case the wedges were tested with various size slots between the wedges and aerofoil surface, obtained by using brass washers as spacers. The wedges were spaced one base width apart (see Figure 2) so that, in all, 8 of (a) and (b)(i) wedges were fitted over the aerofoil span (and 5 of (b)(ii) wedges).

Although test chord Reynolds number was about one-fifth that in flight, no transition-fixing strips were used on the aerofoil, as, with the wedges fitted, at moderate/high incidence much of the flow would be vortical in nature, and hence not greatly affected by transition fixing strips.

2.3 Test Program

The test program was as scheduled in Table 1. Nominal running conditions were atmospheric stagnation pressure, Mach number 0.2 and chord Reynolds number $0.57 \pm 0.03 \times 10^6$. Limited running was conducted at M0.3 to obtain the trend of aerodynamic behaviour with Reynolds number; above this Mach number compressibility effects may also begin to emerge. No corrections were applied to the data for wind tunnel wall interference.

2.4 Data Reduction

The strain gauge bridge signal for each of the 2 sides x 3 channels was amplified and analysed separately. The 6 digital outputs were then appropriately summed using the wind tunnel's PDP8I 6 component force reduction program with the balance calibration matrix suitably arranged, to give the three components of aerodynamic force on the aerofoil - lift, drag and pitching moment, referred to the quarter chord point.

3. RESULTS AND DISCUSSION

3.1 Upper Surface Wedges

Lift, drag and pitching moment curves for the upper surface wedges are shown in Figure 3. Over the limited chord Reynolds number range 0.57 to 0.84 million, Re effects on aerodynamic coefficients

are slight and for this reason test results are discussed for the one value of Re (0.57×10^6) only. It is seen from the lift curve that the addition of the upper surface wedges results in an incremental loss of lift (whilst maintaining the lift curve slope), a delay of about 1.5° to stall and a similar value of C_L . The C_D $^{\sim}$ α curve shows the minimum drag coefficient (0.0067 at $\alpha=-3^{\circ}$ for the clean aerofoil) is increased over six times (0.044 at $\alpha=-3.5^{\circ}$ for $\epsilon=0$), but close to and following stall, there is little difference between clean aerofoil drag and that with the wedges fitted. However, fitment of the upper surface wedges smooths the variation in pitching moment above $\alpha=0^{\circ}$ and attenuates the rate of increase of nose-down pitching moment at the stall. The slot size does not make significant changes to the aerodynamic behaviour of the aerofoil fitted with the wedges.

3.2 Leading Edge Wedges

3.2.1 30 mm Leading edge wedges

Comparative C_L , C_D and $C_m \sim \alpha$ curves are plotted in Figure 4 for $\delta_w = 10^\circ$ and 20° and $\epsilon_S = 0$. From the $C_L \sim \alpha$ curve it is seen that these wedges cause a slight incremental reduction in C_L up to stall, that the stall of the clean aerofoil is replaced by a gradual reduction in lift curve slope, and that C_L is increased 10% for $\delta_w = 10^\circ$ (i.e. $C_L = 0.976$ at $\alpha = 14^\circ$) and 8% for $\delta_w = 20^\circ$ ($C_L = 0.960$ at $\alpha = 14^\circ$ compared with $C_L = 0.887$ at $\alpha = 10^\circ$ for the clean aerofoil). $\delta_w < 0$ was briefly investigated. For $\delta_w = -20^\circ$ (data not presented) $C_L = 0.949$ at $\alpha = 13^\circ$, which is 3% less than for $\delta_w = 10^\circ$.

Fitment of the 30 mm leading edge wedges doubles $^{\rm C}$ (to 0.015 at α = -3°); between this incidence and stall, $^{\rm C}$ MIN is less than doubled. However, $^{\rm C}$ for $^{\rm C}$ w = 20° is significantly greater than for $^{\rm C}$ w = 10°. $^{\rm C}$ behaviour is significantly altered: by providing a lift increment well ahead of the clean aerofoil centre of pressure, $^{\rm C}$ is less negative over most of the unstalled incidence range, and $^{\rm B}$ C $^{\rm C}$ / $^{\rm B}$ at stall (both positive and negative) is attenuated from -0.0244 per degree for the clean aerofoil to about -0.0053 and -0.0043 per degree for $^{\rm C}$ $^{\rm C}$ and 20 degrees respectively.

Figure 5 shows the comparative effect of a slot ($\epsilon/c = 0.006$ with $\delta_{\rm c} = 10^{\circ}$) beneath the wedges. There is a very slight increase in C, over the range $\alpha = -10^{\circ}$ to $+5^{\circ}$. Stall behaviour is unchanged. The slot is formed by adding washers (9 mm outside diameter x 0.8 mm thick) to the mounting screws between the wedges and aerofoil surface. Thus blockage due to the washers is significant and for the 30 mm wedges, $b_{\rm c}/b_{\rm c} = 0.37$ only.

3.2.2 50 mm Leading edge wedges

 C_L , C_D and C_D curves are plotted in Figure 6 for the 50 mm leading edge wedges for various deflections with $\varepsilon_S=0$. Considering C_L ~ α , it is seen that over the range $\alpha=-8^\circ$ to $+3^\circ$, fitment of the wedges results in a small loss of C_L (5% at $C_L=0.4$, $\alpha=1^\circ$, for example). C_L ~ α curves for $\delta=0^\circ$ and 10° are nearly identical up to $\alpha=8^\circ$, above which C_L is slightly greater for $\delta=10^\circ$ than for $\delta=0^\circ$. C_L for $\delta=0^\circ$ and 10° over the incidence range tested are respectively 1.13 and 1.15 times C_L for the clean aerofoil. Again the relatively abrupt stall of the clean aerofoil is replaced by a gradual reduction in lift curve slope. For $\delta_W=30^\circ$, C_L ~ α behaviour is different in that $\partial C_L/\partial \alpha$ becomes noticeably less from about $\alpha=2^\circ$, clean aerofoil stall being at $\alpha=10^\circ$. The most likely explanation of this behaviour is breakdown of the wedge leading edge vortices, considering the local angle of attack of the wedges is considerably greater in this case.

For $\delta_{\rm W}=0^{\circ}$, $C_{\rm D}$ over the range $\alpha=0^{\circ}$ to 12° is little different from that for the clean aerofoil. $C_{\rm D}$ for $\delta_{\rm W}=10^{\circ}$ is on the other hand noticeably larger, indicating L/D at $C_{\rm L}$ is greater for $\delta_{\rm W}=0^{\circ}$ compared to $\delta_{\rm W}=10^{\circ}$.

As with the 30 mm wedges, the 50 mm wedges drastically reduce the drop in $C_{\rm m}$ at the stall (see Figure 6(c)).

Figure 7 shows C_L , C_D and C_m behaviour for the 50 mm leading edge wedges set δ_w = 10° with various slot depths ϵ_s/c (from 0 to 0.044). It is seen that for this value of δ_w , ϵ_s/c = 0.02 is about an optimum depth for maximising C_L . C_D over the whole range of incidence increases directly with ϵ_s . However, there appears to be a small drop in C_D for ϵ_s/c = 0.044 compared to ϵ_s/c = 0.019 or 0.031. Due to the slight lift augmentation effect the slots provide, C_D for $\epsilon_s>0$ is less negative than for $\epsilon_S=0$. Likewise $\partial C_D/\partial \alpha_S$ near and after stall is favourably affected by the existence of the slots, in that $\partial^2 C_D/\partial \epsilon_S \partial \alpha_S > 0$. Figure 8 presents a C_D comparison between the two sets of leading edge wedges. It is observed that over the tested incidence range the larger wedges are slightly more lift enhancing.

The 50 mm wedges have also been tested with 60° bevelled edges as compared to straight edges (see Figure 2), to determine whether such edges could assist the formation of more stable vortices. Also curved wedges of base deflection 30° and apex deflection 10° with bevelled edges were tested at the leading edge (see Figure 2) for the same reason. In both cases however, there was virtually no positive effect on C compared with the flat straight-edged wedges deflected 0-10°. As stowage of the latter in an actual wing leading edge is much more readily accomplished, no further results for these differing wedges are presented.

3.3 Surface Flow Visualisation

Surface flow visualisation studies were carried out using a mixture of titanium dioxide, silicon oil and oleic acid. Two cases were studied:

- (i) 30 mm leading edge wedges: $\delta_{w} = 10^{\circ}$, $\epsilon_{s} = 0$; and
- (ii) 50 mm leading edge wedges: $\delta_{\rm w} = 10^{\circ}$, $\varepsilon_{\rm s}/c = 0.031$.

Surface oil flow pattern photographs for $\alpha=10^\circ$ appear as Figures 9 and 10 respectively. In each case the three dimensional vortical nature of the flow over the aerofoil is apparent. The oil patterns are similar for the two wedge sizes, however vortex breakdown may be occurring further upstream of the aerofoil trailing edge in the case of the smaller wedges. Interference on the flow through the slots under the wedges (Figure 10) from the mounting screws and washers is quite significant and indicate further tests with less obtrusive slot-forming spacers (such as smaller diameter screw collars) are desirable.

4. CONCLUSIONS

For the aerofoil section tested, forward facing wedges of leading edge sweep 70°, base to aerofoil chord ratio 0.24 and deflection 20° fitted to the upper surface at the mid-chord position have the following effects on section aerodynamic behaviour:

- (i) C_{τ} is reduced somewhat 12% at $C_{\tau} = 0.6$;
- (ii) C_D is increased drastically = 125% at C_L = 0.6; and
- (iii) $\partial C_m/\partial \alpha$ is reduced slightly prior to and following stall.

Therefore such devices could be usefully employed as speed brakes or descent rate controllers, in that, unlike spoilers, they augment drag whilst reducing lift a relatively small amount and have little effect on pitch trim.

On the other hand forward facing wedges of 60° sweep, base to aerofoil chord ratios 0.24 and 0.39, deflection 0-10°, and with a 2% chord slot between base and aerofoil surface have the following effects:

- (i) stall onset is delayed by 2°;
- (ii) for both wedge sizes, the abrupt stall of the clean aerofoil is replaced by a gradual reduction of lift curve slope;
- (iii) C is increased by between 11 and 17% and occurs at 5 to 8° greater incidence;

- (iv) for the b_w/c = 0.39 wedges with δ_w = 0°, C_D is increased by about *10°; and
- (v) the slope of the pitching moment curve through stall is reduced drastically.

Therefore such devices could be used as low speed handling and control aids, in that they have little effect on aerodynamic performance at moderate incidence, whilst at high incidence they reduce significantly the nose-down pitching moment associated with stall and maintain and increase lift coefficient through the normal stall regime.

TABLE 1
TEST SCHEDULE

MODEL CONFIGURATION	MACH NO.	Re _{c6}	RESULTS
Clean	0.2/0.3	0.57/0.84	TABLE 2A
Upper Surface Wedges $\varepsilon_{S} = 0; \ \delta_{W} = 20^{\circ}$ $\varepsilon_{S} = 1.6 \text{ mm}; \ \delta_{S} = 20^{\circ}$	0.2/0.3	0.57/0.84	TABLE 2B-1
$\varepsilon_{\rm S} = 3.2 \text{ mm}; \ \delta_{\rm W} = 20^{\circ}$	11	91	TABLE 2B-3
30 mm Leading Edge Wedges			
$\epsilon_s = 0; \delta_w = 10^\circ$	0.2/0.3	0.57/0.84	TABLE 2C-1
$\varepsilon = 0; \delta = 20^{\circ}$	0.2	0.57	TABLE 2C-2
$\varepsilon_{\rm S} = 0.8 \text{ mm}; \ \delta_{\rm W} = 10^{\circ}$	0.2/0.3	0.57/0.84	TABLE 2C-3
50 mm Leading Edge Wedges			
$\varepsilon_s = 0; \ \delta_v = 0^\circ$	0.2	0.57	TABLE 2D-1
$\varepsilon_s = 0; \ \delta_w = 10^\circ$	11	••	TABLE 2D-2
$\varepsilon_s = 0; \ \delta_u = 30^\circ$	11	"	TABLE 2D-3
$\varepsilon_{\rm c} = 2.4 \rm mm; \delta_{\rm c} = 10^{\circ}$	31	**	TABLE 2D-4
$\epsilon_{\rm S} = 4.0 \text{mm}; \delta_{\rm U} = 10^{\circ}$	"	"	TABLE 2D-5
$\varepsilon_{\rm S}^{\rm S} = 5.6 \text{mm}; \delta_{\rm W}^{\rm W} = 10^{\circ}$	"	t•	TABLE 2D-6

TABLE 2

RESULTS

(SEE TABLE 1 FOR INDEX)

SEP TRICAR	несн.	эисэь	1111	е) тон.	DRAG	HORMAL	RXD AL.
007 0 575	ŭ 20 5	· 40 04	·· 0. 4754	0. 0054	0. 0926	0. 4841	~ (t. (t)(k)
00% 0 525	-			•	0. 0697		+0 0045
004 0, 575					0. 0443	0. 3172	·· 0. 0000
005 0,566					0.0262		~0. 000g
006-0, 568	0. 200	~ 06 -00	~0. 4388	- G 0721	0. 0125	D. 1359	0.0046
				~0.0728			~0.0043s
000-0,560				-0.0757			1. (1. (1094
	0.201			- 0. 0276			~0.0449 ~0.044
050 0, 575 053 0, 568				-0.0807 -0.0798			**0. 0541 **0. 0547
			V. 2040	(1 (71 .76)			
032 0.563				-0 0794			·· (0. 0430
013 0 568	-			0.0777		-0. 4049 -0. 4782	~0. 0400 ~0. 0057
- 034 (0, 568) - 035 (0, 568)			0.5421	~0.0770 ~0.0733		-0. 5429	0.0007
03.6 0, 568				~0. 0735		-0. 6171	0.0087
		(.d: f.e.	0. 4344	. nene	0.0448	-0 6760	0.0547
- 037 - 0, 573 - 039 - 0 - 568		- 05-00 - 06-00		~ (i. 0681 - (i. 0637		-0. 6780 -0. 7492	0.0466
039 0 573		(17. (16)		- 0. 0603		-0. 7996	0.0182
020 0 568				~(i. (i698		-0. B602	0. 0350
023 0 566			0. 8789	· (i. (1939	0. 1337	-0. 9872	0. 0055
022 0 568	0. 200	10 00	(1. 8674	(i. 1185	0. 1624	-0. 9022	-0.0056
025 0, 574		50.99		0.1309			-0.0430
024 0 523		32 00	0. 8497	· (i. 1348	0. 1989	-0. 9726	~0.0329
075 0.573	0.203	530,00	0. 8348	(i. 1365			0. 0254
026 0.568	0.200	43 99	0. 8186	~ (1. 1330	0. 2275	-0. 0497	-0. 022 8
027 0.568	0. 200	35 00	0. 8118	-(i. 1319			-0. 024£
026 0, 566	0.200	15, 99	0. 7941	~(i. 1359			~0. 0290
0099-0, 668				-0.1421			~0. 00.co
000 0, 568	-			-0.1467			0. 0042 0. 0042
004 0.568	(i zetiti	\$ 8 1. 99	0.8017	··(i. 1468			+0. 0352
-0092, 0, 573				·· (i. 1509			-0.0357
2003 0 600					0.0984		·· (I. (IS28)
- 00-4 (0-047 - 00-6 (0-047	-			(i. 0225 (i. 0590	0. 0770 0. 0510		0.0064 0.0037
- 036 0 845 - 036 0 845			~0. 2370		0. 0320		0.0030
0007 0, 647	-				0.0155		
0.000.0043				~(i 0736	0. 0124		0. 0065 0. 0320
009 0.848 040 0.848				~0 0762 ~0 0772	0.0111		··0 0449
045 0 847				-0.0789			-0.0369
042 0 843				~(i. 0775			- 0. 05 20 - 0. 05 20
045 0.845				-0 0796			0. 041.9
044 0 843				-a 020a			0.0529
045 0. 643	0.300	02/00	0. 4710	-a 0769	0. 0250	-0. 4717	-0.0086
046 0.845	0 299	03/00	0. 5491	-0 0760	0. 0303	-0. 5501	·0.0046
047 0.645				-0 0732			0. 0025
(148) (1, 814)			0. 6858	~() ()683			0. 0520
049 0 645				·· (i (1631		-0. 7479	
050 0 843	0 299	07 00	0. 7982	(i. 0610	0. 0931	-0. 9025	0. 0348
053 0 643			0. 8469	0.0723	0. 1085	-0. 8539	0. 04 03
0.67 0 84%			0. 8607	· 0. 0961	0. 1364	-0. 8715	0-0004
055 0 645				~0.1167			-0.0500
- 054-0, 647 - 055-0, 647				·· (i. 1286			**0.0572
· (1) (1) (1) (1)	ti sua	11 99	U. 83.60	·· (). 1331	u. 1957	~U. ₩370	~0. 0219
056 0.842				·0 1322			··0 0242
057 0, 643				0.4353			~0.0255
- (05-6) (0 - 64 s				0.1379			0.0270
- 009 0 865 - 060 0 665				~0 1501 ~0 1635			0-0347 0-0403
****** \$1 E-75,5	(1 ,500)	4 C 77	v 0209	"(i 1635	ひ、 だ世アア	-U. UD U7	o onug
063 0.649				-(i 1609			~0 059n
067 0 847				0.4592			
DCS D BAS	0.300	19 99	O BOOK	0.4497	U. 1307	-0. 9656	0 00 VO

SER	RESTR.	MOCH.	THEOD	LIFT	FOTCH.	DKHG	HORIIAL	AXIAL.
062	0. 573	0. 200	· 3 O. O3	~0. 4865	0 0433	0. 1272	0. 5011	"O. 0409
003		0. 205	·· 09. 01		-0.0417	0. 1090		·· (I. (IX68
(1(14	0.575			-0.3675		0. 0847		.0.0329
	0.575			~0. 2678	•	0, 0651		.0.0325
		•		-0. 1832	•	0. 0516		-0. 0323
								· ··•
007	0. 573	0.200	~ 05. OO	~0. 1091	-a. 0238	0. 0448	0. 1125	~0. 0352
			·· (14 - (15		~a. 0767	0. 0441		·· 0. 0419
		•		0. 0407	• • • • • • • • • • • • • • • • • • • •	0. 0444	-0. 0385	
				(1. 1112		0. 0459		"(I, (I498
011	0. 575	0. 203	·· 03 . 00	0. 1793	-(i. 0801	0. 0485	-0. 1785	·· (I. 0517
012	0. 573	0. 200	oo, oo	0. 2491	-(i. 0802	0. 0531	-0. 2493	~0. 0532
		0. 200	Off. OO		-0.0797		-0. 3208	
03.4	0. 573	0. 200	02.00	0. 3933	-0.0813	0. 0645	-0. 3954	(1. (15(18)
03.5	0. 575	0.202	OB. OO	0.4602	-0. 0801	0, 0702	-0.4633	"O. 0460
026	0. 573	0.200	03, 99	0. 5198	-0.0784	0. 0755	-0. 5239	~0. 0392
05.7	0. 573	0. 200	08. 00	0. 5889	-0. 0771	n ne36	-0. 5940	-0. 035.9
	0. 574	0. 200	06.00		-0.0746		-0. 6629	
		0. 200	07.00		-0. 0705		-0. 7480	
	0. 574	0. 200	OBI, OO		-0.0741		-0. 8098	
021	0. 573	0. 200	09. 00	0. 8509	-0.0835	0. 1403	-0. 8625	-0.0054
02/2	0.524	n. 200	4 (t. (t)(t	0.8622	-(i. 0931	0 1588	-0. 8822	a. 0052
			10.99		-0.1100		-0. 8806	
		0. 200	3 3 . 5151		-0. 1241		-0. 8920	
025	0.843	0. 299	· 4 (). ()4	-0. 4885	0. 0460	0. 1309	0. 5038	·· (I. (1442
026	0. 853	0.301	·· (19. (14	-0. 4583	-0.0074	0. 1131	0. 4703	·· (I. (14(15
027	0.847	n. 300	O&: OO	-0. 3899	-0.0453	0, 0909	0. 3986	~0. 0358
	0. 850	•		-0. 2916	•	0. 0699	0. 2979	
	0. 850			-0. 1981	-	0. 0551	0. 2027	
030	0.850	0.303	· 05. 01	-0. 1201	~0.0749	0. 0454	0. 1235	0. 0349
ORA	0.850	0.301	·· (14), (12)	-0. 0436	-0.0273	0. 0457	0. 0466	·· (I. 0427
6.05	ti sibre	0 302	·· 03. 03	0. በኛቃፋ	-0. 0788	n n460	-0. 0292	-0. 0478
			~ 02. 00		·· (i. (i807		-0. 1024	
			· 01. 00		-0.0819		-0. 1738	
					-0.0826		-0. 2463	
		0.300			~(i. 0821		-0. 3158	
0.62	0. 853	(1 '8(1)\$	02. 00	મહાર્થક ()	-0. 0822	በ ስረጃዋ	-0. 3907	00 050%
		0. 298			-0. 0817		-0. 4606	
		0.300	04.00		~(1. 0814		-0. 5385	
	0.853		(14, 99		· (i. (i805		-0. 6040	
(141	0. 847	g. 300	06.00	0. 6609	-0.0758	0. 0962	-0. 6674	0. 0267
		0. 300	07. 00	0. 7426	-0. 0717	0. 1081	-0. 7504	(i. (i.) 6.8
		0.300	CIEC CICI		~0. 0752	-	-0. 0090	
		0. 299	09, 00		-0.0845		-0. 8597	
045	0. 843	0. 299	5 O. OO	0. 8548	-0. 0967	0. 1587	-0. 8695	·· 0. 0079
(IAC	0 84%	0. 299	50 99	() 8552	-0. 1101	በ 178%	-0. 8741	a. hs 20
		0. 299			-(i. 1231 (i. 1231		-0. 8781	
4. 11	4. 4.4.	\$1.0 m 1.11		411 41414141	(1) A B P A	A-1	w. w. v.z	*** ****

St.R	REYR.	ивск.) HC) D	LJFT.	ез тон.	DRAG	KORIIAL	AXIAL.
filst:	0. 552	0.203	3 () - () 3	··(I, 48I4(I	0. 0129	0. 1290	0. 4989	-0. 043 <u>3</u>
	0. 552		·· 09. 03		-0.0512	0. 1141	0. 4727	·· (I. (J4()?
	0. 552		(16), (10)		~(i. 0491	0. 0885	0. 3020	0. 0358
	0.545				-a. 0685	0. 0684	0. 2774	·0. 0349
		0. 201	~ 06. 00		-(i. 0710	0. 0551	0. 1904	*0.0355
(16.2	(1, (1),12	(1. * (1.1	" (ie. (it)	"O. ADOL	-(i. 0) 1 u	0. 0551	U. 1907	·· (1, (1,5,17,1
063	0. 882	0. 203	~ 08. 00	-0. 1097	-0. 0719	0. 0478	0. 1133	-0. 0392
(16.4	0. 552	0. 203	·· (14. (15	-0. 0332	-0. 0756	0. 0474	0. 0363	~0. U451
065	0. 552	0. 203	·· (03), (10)	0. 0392	-0. 0706	0. 0484	-0. 0367	-0. 0505
066	0. 545		~02.00	0. 1080	-0.0797	0. 0501	-0. 106%	·0. 0539
		(1. 5.99		0. 1793	-0. 0802	0. 0532	-0. 1765	.0. 0564
		•	•		•			
		0. 5.99	OO, OO	0. 2509	-0. 0823	0. 0573	-0. 2510	0. 0524
06.9	0.545	(1. 5.99	Off. City	0. 3215	~0. 082 1	0. 0631	-0. 3227	·· 0. 0575
070	0. 545	0. 499	02.00	0.4027	-(i. 0847	0. 0692	-0. 4050	~0. 0554
074	0. 552	0. 202	03.00	0.4696	-0.0837	0. 0748	-0. 4729	-0. 0501
072	0. 552	0. 201	03, 99	0. 5539	-(i. 0858	0. 0832	-0. 5585	··(I. 0445
	0. 882		(१४, ५५		-0. 0841		-0. 6243	O. 0361
024	0. 545	0. 599	06, 00	0. 6748	-0. 0767	0. 0994	-0. 6816	O. 0284
075	0.552	0. 203	07.00	0. 7546	-0.0721	0. 1112	-0. 7597	·· (I. (1488)
076	0.545	(1. 1.99	07, 99	0.8152	~(i. 0747	0. 1245	-0. 8247	··(I, 0(199
077	0. 545	0 199	08, 99	0. 8522	-0.0826	0. 1407	-0. 8638	~0. 005e
		0. 599	a (i. Cici		~(i. 0937	0. 1611		"(I, 0074
	0. 545		4 O. 99		-(i. 1071	· ·	-0. 8913	O. U\$\$7
	0. 545		5 &. OO		-0. 1219	0, 2023	-0. 89 93	0. 0157
	0.552		53.00	0. 8589	-0. 1289	0. 2184	-0. 8862	(i. () 1.96
(16:2)	0. 552	0.203	530, 99	0. 8336	··(), 1299	0. 2300	-0. 8646	0. 0216
tie:>	0 562	(i. 299	·· 5 (). ()5	··0. 4954	0. 0135	0. 1337	0 8440	~0. 045P
	0.833	0.303	" 09. 04 " 09. 04	~0. 4669	-(i. (i060	0. 1327	0. 4794	~0. 0438 ~0. 0426
(16:4 (16:5)	0. 634	(i. 303		~0. 4663 ~0. 3944	-0.0442	0. 1170	0.4036	O. 0328
	0. 834	0.304	-	~0, 2950 ~0, 2950		0. 0729	0. 3016	
	0. 834	0.301		~0, 2300 ~0, 2005		0. 0582	0. 2054	
(ig. r	ti. tia 4	(1)(1.	" Ob. UZ	"U. 2000	"0. 0. 10	n' napr	0. 2004	"O. U.S. (U.S.)
(16:6:	0. 844	0. 303	e 05. Os	-0. 1208	-0. 0253	0. 0484	0. 1245	-0.0377
	0. 813.4	0.303	~04.02		-0.0776	0. 0484		·· 0. 0454
090	0. 854	0.303	- (13, (11		-(I. 0794	0. 0494		-0. 0512
	0. 854		· 02. 00		-0. 0814	0. 0507		.0. 0545
		0.301	·· 01. 00		-(i. (i807		-0. 1747	-0. 0570
-	•				-			
	0. 83.5	(i. 299			-(I. 0826		-0. 2483	
	0.834	0. 299	03.00		-(i. 0845		-0. 3240	-0. 057R
0.95	0.809	(i. 296		ા. જેકેશન	··(i. 0855	0.0697	-0.4009	-0.0559
(196	0.853	0.300	03.00	0. 4756	-(I. (I869	0. 0766	-0. 4791	·· 0. 0517
097	0. 855	0.300	04.00	0. 5515	-(i. 0867	0. 0834	-0. 5561	-0. 044B
	0. 855	0. 299	OS. GO		-(1. 0844	0. 0906	-0. 6263	~0. 0362
	0. 844	0. 299	(15, 99		-0.0762			·· 0. 0286
	0. 833	0.300	(17. (10)		-0.0714		-0. 7583	-0. 0189
	0 833	0.300	(17, 99		-(i. 0743			0. 05 5 5
		•		- •	- 			
5.02	0 855	0. 299			-0.0833		-0. 8687	
5 (0).	0.844	G. 300			- O. 09 5 1		-0. 8765	a. 0083
2 (14	0.855	0.300	44.00	0. 8644	-(). 1059		-0. 9830	
3 (15	0. 833	-0.0500			·· (). 1195			·· 0. 0460
2016	0, 844	0.300	43. QQ	(1. 8486	-(i 1258	0. 2140	-0. 9752	U. U185

SER	REYR.	nece.) KC) b	LIFT.	PITCH.	DRHG	KORISAL	HX I HL.
5.05	0. 552	0. 200	+4 O. O3	·· (I. 4866	0. 0433	0. 1323	0. 5021	0. 0459
				-0.4533		0. 1140	0. 4655	(). ()418
3 3 3	0.548	0. 5.99	~ (IE) - (IC)	-0. 3760	-(). ()489	0. 0913	0. 3850	
112	0. 552	0.200	·· 07. 04	~0. 2742	-(i. 0708	0. 0714	0. 2807	~0.0375
113	0. 552	0. 203	~ 06. OO	·· 0. 4855	·· 0. 0730	0. 0572	0. 1904	· 0. 0376
334	0. 552	0. 201	~ 08, 00	~0. 1072	-0. 0744	0. 0502	0. 1110	(I. U4(IR
		0. 203			-0. 0769	0. 0498		-
		(i. 199			-a. 0795		-0. 0398	
	O. See S		·· 02. 00		-0.0806	0. 0517		0. 0556
118	0. 555	0. 203	Os. OO	0. 1922	~(i. 0831	0. 0557	-0. 1813	·· 0. 0590
119	0. 552	0. 200	oo, oo	0. 2529	~(i. 0833	0. 0603	-0. 2530	·· (I. U6(I4
120	0. 546	0. 199	00. 99	0. 3249	-0.0838	0. 0654	-0. 3261	·· (I. (1599
181	0. 548	0. 199	02.00	0. 4024	-0.0853	0. 0721	-0.4048	·· (I. (1580
122	0.548	0. 199	03.00	0. 4718	-(J. 0860	0. 0784	-0.4754	·· 0. 0536
123	0. 552	0.200	03. 99	0. 5437	-(i. 0854	0. 0847	-0. 5484	·· 0. 0467
124	0 552	0. 200	04, 99	0. 6196	~(i. (1860	0. 0928	-0. 6255	·· (), ()3.65
		0.200	05, 99		~(I. 0784		-0. 6888	
		0. 200	07. 00		-0.0719			.0. 0205
527	0. 552	0.200	(17, 99	0. 8076	-0.0745	0. 1267	-0. 8175	-0.0132
126	0. 552	0. 200	(19. (16)	0. 8519	-0. 0 850	0. 1443	-0. 8641	(1. 0095
129	0. 552	a. 200	a 0. 00	0. 8731	-(I. U948	0. 1638	-0. 8884	·· (I. (IO97
130	0. 552	0. 203	55.00	0. 8737	-0. 1041	0. 1822	-0. 3925	·· 0. 0522
134	0.552	0. 201	52.00	0. 8806	-0. 1201	0. 2032	-0. 9037	-0. 0157
4.82	0.552	0. 201	52. 99	0. 8709	~(i. 1284	0. 2207	-0. 8984	·· 0. 04.93
5 KK	0. 802	0. 299	# 5 O. OS	~0. 4850	0. 0155	0. 1346	0. 5010	·· (), ()4 ()4
134	0. 807	0. 299	·· 09. 03	-0. 4673	-a. 0057	0. 1196	0. 4802	0. 0451
13%	0. 833	0. 300	e (IEI, CIS	~0. 3957	-a. 0432	0. 0966	0. 4052	·· 0. 0406
	0. 611		~ 07. O3		~0. 0702	0. 0751	0. 3032	~0. 0386
			·· 06. 03		~0. 07 54	0. 0599	0. 2032	~0. 0 3.90
138	0. 804	0. 299	·· 05. 04	-0. 1193	-0. 0766	0. 0505	0. 1231	a. a.
1339	0. 807	0. 300	» (M. ()2	-0. 0401	~0. 0273	0. 0506	0. 0434	-0. 0478
			 (13), (10)		-0.0797		-0. 0333	
			·· (12), (10)		(i. (i806		-0. 1051	
	0. 844		·· 04. 00		-0.0829		-0. 1903	
143	0. 833	0. 304	CICE, CICE	0. 2538	-(). 0841	0. 0606	-0. 2539	·· (I. 0607
144	0. 833	a. 301	OS. OO	0. 3234	-0 0841	0. 0659	-0. 3246	·· 0. 0603
145	0. 607	0.300	02.00	0. 3978	-(i. (i857	0. 0721	-0. 4001	·· 0. 0583
146	(1, 8(14)	0. 299	OB. OO	0. 4757	-0.0864	0. 0793	-0.4793	~(I. (I544
147	0. 807	0.300	क्ष क्ष	0. 5507	-U. 0865	0. 0960	-0, 5554	·· 0. 0475
548	0. 803	0. 296	05. 00		-(i. 0 8 59			·· 0. 0390
		0.300	(1%, 99		-(i. 0780			-0. 0206
		0. 299	02, 00		-0.0724	0. 1138		-0. 0206
551	0.807	0.300	(17, 99		-0.0244			0. 0435
11:2	(1, 8)(17	0 300	08. 99	0. 8575	(I. UØ55	0. 1462	-0. 9699	·· (). ()\$ ()4
453	0, 804	0. 299	(19, 99	0. 8745	-(i (1950	0. 1653	-0. 8900	2220 .0
		(1 2:44			-(i. 1062	0. 1843	-0. 9993	-0. 0131

SER	CORESTR.	BGCE.) NC) D	1.11-3	ются.	DKAG	KORIIAL	AXIAL.
						DEMO	ROKIIAL.	177 J MI
100	0.552	0.499	~ 40.04	(1. 4882	-0. 0551	0. 0840		
4 0.3	i D. Sigiçi Landa B.B.A	(1, 6'()() ''' 4 44'	(19), (13) (16), (16)	~0. 4026 ~0. 3248	·· (1. 0616	0. 0626		
3.60	1 (), ()()() 1 () ()()()	- (G. 4222 - (G. 2464	- " OB. OO OZ. OS		~(). (1688 ~(). (1768	0. 0470 0. 0333	0. 3281	·· 0. 0015
464	0. 555	0. 201	06. 00	~0. 1505		0. 0333 0. 0217	0. 2417 0. 1519	"0. 0040 "0. 0060
	• • • • •	•		2,11,1	(1. (16.7.2	U. HEAT	0. 2023	o. Cocc
502	0. 552	0. 599	~ 05. GO	~0. U769	~a. arox	0. 0465	0. 0779	(). ()()()()
			·· (14), (13)		"(i. (1696	0. 0144		
			*03.00		-0.0702		-0. 0741	
			~0%, 00 ~04, 00		-0.0672 -0.0658		-0. 1440	
# 	(1. (1.))	(1. 644)	·· (14), (1()	v. ezuz	-0.0658	U. (13.73	-0. 2200	"0. 0210
3.67	0. 555	0. 200	00.00	0. 2929	-0.0639	0 0214	-0. 2930	0 0235
	-0.555		03.00		-0.0631		-0. 3727	
3 6.59		-	02, 00	0. 4529	-0.0631		-0. 4539	
	0, 555		03, 00	0. 5264			-0, 5281	
373	0. 555	a. zuu	04. 00	0. 6009	~0. 0582	0. 0544	-0. 6033	"O. O124
5.75	a. sess	n enti	05, 00	0. 6204	. 0. 0820	0.0404	0 (3(0	#
	0. 555		(15), 99	0. 8704			-0. 6740 -0. 7304	
	0. 558		07.00	0. 7764			-0. 7832	
	(0,500)		07, 99		-0.0503	-	-0. 8496	-0.0069
376	0.555	0. 205	(19. (13	0. 8762	-(i. 0490		-0. 9888	-0. 0066
4	0. 552		4 2 . 2.4					
	0. 552 - 0. 552		50.03 55.00		~(i. 0517		-0. 9280	
	0.552		32.00		~0. 0574 ~0. 0627	0. 1919	-0. 9599 -0. 9836	
	0. 552		43.00		-0.0700		-0. 9976	
1 8:1	0.552	0. 599	53, 99		-0.0739		-1.0100	
	0. 888				~0. 02 21	0. 2774	-1. 0065	
	0.552		45, 99 440, 02		-0.0786		-1. 0190	
	0. 823		~ (19), (12)	~0. 5003 ~0. 4199		0. 0872 0. 0662	0, 5078 0, 4250	
	0. 823		·· (18), (15	·0. 3385	-0.0682	0. 0490		-0.0002 -0.0046
						v. 0400	J. 2-120	
3817	0. 823	0.303		·· 0. 2497		0. 0347	0. 2520	"a. aaaa
				-0. 1647		0. 0232		-0.0059
				-0. 0846		0. 0463		· 0. (109(1
	0. 883			~0. 0032 - 0. 0738		0. 0140		·· (). ()5 kg
	*** **** 4	A. 10. 4.14	4160 KIKI	A. 01.20	- (i. tir #B	0. 0131	-0. 0731	"O. U2/0
			00 80 %	0. 1488	-0.0702	0, 0143	-0. 1483	·· (t, 03.96
193	0. 825	0.300	e 03 ; 00 ·	0. 2247	~0. 0675		-0. 2245	
	0. 875		00 00	0. 2997		0. 0213	-0. 2998	·· 0. 023.4
2.95	0. 824	0. 303	03.00	0.3763	·· (). ()643	0. 0275	-0. 3766	~0. 0250
	0. 824		02.00		-(i. (i634	0. 0352	-0. 4567	-0. 05.93
	0 024		03.00	0. 53336	-0.0612	0. 0439	-0, 5355	·· 0. 0460
	0. 823		(13 99	0.6105			-0. 6129	
	0.847	-	06 99 06 00	0.6758			-0.6794	
,	St. Call	Q. 6 22	00 00	0. 7352	…()、ひつ入む	U. 0857	-0. 7403	"0 0084
203	0. 854	(1. 255	07 00	0. 7882	(I. (I495	0. 1043	-0. 7951	(1, (1074
200	0. 854	0. 299	(iti (is	0.0374				"0. 0069
	0. 854		09 (()	0 0355	~O. 0498	0. 1453	-0. 9848	"O. OOZ4
	0 852		30 00	0.9119			-0. 9275	
/(U;)	U. 854	O SAA	55 05	0.9342	· (i. (1588	0. 1920	-0. 9538	·· 0. 03 02

50.40	REYR.	rece.) RC) ()	LAFT.	PATCH.	DRAG	HORHAL	AXIAL.
002	0. 523	0.599	~50.02	-0. 50 4 9	~(i. (i497	0. 0824	0. 5115	
00%	0. 575	0. 203	~ 09. 03	-0.4118	~(i. (i600	0. 0599	0, 4161	
(1(14	0. 575	0. 201	(1 6) - (1()	~0. 3256	~a. 0657	0. 0429	0, 3283	
		0. 203		~0.2392	· (i. (i670	0. 0296	0. 2410	~0. 0000
	0. 573	0.200	*06.00	~0. 1562	~0 0672 	0. 0487	0. 1573	(1. 0024
002	0. 573	0. 3.99	- OS. O3	-0. 0757	-0 0677	0. 0446	0. 0766	
			·· (14. (15	0. 0016	~a. 0672	0. 0441	-0.0007	0. 0442
			· 03. 00	0. 0730	-(i. (i645	0. 0437	-0.0723	·· 0. 03.26
			~03.00	0. 0775	·· (i. (1674	0.0443	-0. 0767	·· 0. 0485
044	0. 575	0. 203	~ (12), (10)	0. 1514	~0. 0671	0. 0464	-0. 1508	0. 0218
03.2	0. 573	0. 499	+ 0a , 00	0. 2276	-a. 0637	0. 0498	-0. 2274	~0. 023 8
	0. 573	0. 200	OO, OO	0. 2983	~a. 0609	0. 0252	-0. 2984	~0. 0253
	0. 573	0. 200	03.00	0. 3811	~0.0607	0. 0325	-0.3817	·· 0. 0259
	0. 585	0. 200	02.00	0. 4609	-a. a598	0. 0412	-0.4622	~0. 025 <u>4</u>
	0. 573	0. 200	03, 00	0. 5379	(i. 0584	0. 0516	-0. 5400	·· 0. 0254
047	0. 575	G. 205	03, 99	0. 6045	~(i. (i542	0. 0633	-0, 6075	
		0.499	04, 99	0. 6636	~0. 0521	0. 0786	-0. 6680	-0. 0205
		0. 499	OG. OO	0. 7273	-(i. 0497	0. 0968	-0. 7335	· 0. 0205
	0. 523	0.200	07, 00	0. 7734	-(i. 0469	0. 1157		~0. 0205
023	0.523	0 499	07, 99	0. 8301	··(i. (1484	0. 1386	-0. 8414	~0. 025B
022	0. 573	0. 499	08, 99	0. 8725	~a. 0504		-0. 8871	-0. 0229
	0. 573	0.200	50.03	0. 9020	~0. 0510	0. 1836	-0. 9203	·· (I. (1241
	0. 573	0. 200	44.00	0. 9342	-0. 0556	0. 2084	-0. 9569	·· 0. 0264
	0. 573	0. 200	3 k. 00	0. 9548	~0. 0574	0. 2317	-0. 9822	~0. 0282
		0. 203	\$3, 00	0. 9567	~0. 0635	0. 2520	-0. 9890	~a. axax
027	0. 575	0. 201	13, 99	0. 9602	-0. 0677	0. 2720		-0. 0317
	0.525		45, 00	0. 9568	-(i. 0719	0. 2910		·· 0. 0333
	0, 575		45, 99	0. 9478	~O. 0798	0. R0 81	-0. 9962	-0. 0351

54 R	RE	YR.	116	WE.) 11 (10	1. 1	FT	þ.	тсн.	ι)RHG	н	DRIIAL	(1)	Энь.
206	()	925	£L.	203	- 4 O.	66	·- (1.	46.814	(1.	0579	Ć.	0785	٥.	4748	ĆI.	((()4()
209		568	-	200	·· (151)			3923				0597		3967		0028
250				205	·· (181,			3076				0424		3063		0002
23.3		573	-	203	(17.			2181		0759		0294		2199		0027
232			-	201	·· (16.			1397	-			0187		1408		0041
	•	• • •	•			• •			•							
243	O.	568	(E	200	OS.	(i(i	·· (I,	0649	·- (1.	0726	O.	0439	0.	0628	·· (1,	0086
214	(IL	568	(ı.	200	(14)	0.1	(I,	0141	-(1.	0720	0.	0119	-0.	0134	·· (I,	0529
215	(i,	573	(I.	203	•• (1 <u>%</u> ,	OO	(i,	0891	··· (1.	0726	0.	0116	-0.	0885	(1,	0364
256	Ü.	568	Ü	200	·· ()1.	5151		1612		0716		0132		1607	·· (1,	0289
237	(ı,	567	Ţī.	1,99	። 01.	(I(I	(I,	2363	·· ().	0697	0.	0167	-0,	2361	·· (t.	0209
		300		800	ÇIÇI.			3095				0219				0220
25.9				202	(11)			3005				0284		3810		0578
		573		203	08.			4632				0370		4644		0208
275		573	-	203	(i)X.			5400	-			0466		5419		0183
2.2.2	Ü.	573	(1.	203	03.	99	(I,	6018	·- (I.	0617	0.	0569	-0.	6044	·· (1.	0149
											_		_			
223		568		200	05.			6636	-			0708		6674		0327
884		567		3,99	(iff.			3308				0874		7361		03.05
225		567	•	3 999	(ነን.			7905	-	-		1066		7977		(10194
226		568	-	200	(17.			9228				1261		B434		UURS
887	(I.	670	Çŧ.	3 333	(154,	CiCi	Çi.	1978	·- ().	(1533	O.	1481	-0.	8906	(1.	UUHY
2/2/8:	f i	520	ć,	1 44	3 0.	cici	ń	9193	~ (1	0549	n	1717	N	9757	·· (1	(1(194
		570			33.			9474				1946				0102
		570			1 %.			9665				2176		9908		0118
2.33					3 .k.			9707	-		-			9999		0354
		570			5 %.			9621	-	0732	-			9961		0182
2.88	O.	088	ij.	3.99	35.	CICI	(I.	9728	•• (I.	0754	0.	2804	-1.	0123	·· (I.	03.90
23.4	Ð,	3333	Ţ١.	200	15.		U.	9739	·- {I.	0709	0.	2999	-1.	0189		0200
235		6 134	-	300				4979				0880		5055		10013
236		8 134		300	·· (154,			4238				0685		4292		0009
237	Ü,	837	(1.	304	(1 6),	(i)K	·· (1.	3377	·- (I.	(1674	O.	0495	0.	3412	·· (I.	0020
			_	••. • . •	4.9%			4. 4.4.4	_	4.35.4.4					٠.	.
								2489				0345		2511		
		8187		304				1650				0229		1664		
		837 837						0056				0445		0065		
		833 C	-	303	… ()な. … ()な.			1458	-					1449		
K 17 K	U.	(143 a	Ų.	.50.4	" (18°.	(1(1	V.	1400	(1	uere	U.	0730	- U .	1403	(1,	0201
24%	ſı	8347	i i	303	» (I(I)	60	(1	2976	·- (1	0644	ń	0233	-0	2977	·· (1	0233
		8 (4)			· (12)			4550				0207				0.68
		6.4			· (14)			607%				0031		6057		(1452
246			-		02.			5241	•			(1418		5254		0235
												0588				0467
		\$1.52 \$1.54		305	(13).			0203				0888				0327
246		€1.5 4 €1.5 (+			ाह. सह			7230 0224	•	0478		1264				0120
		8350 8354			30.			9084								0272
		63.4			36.			9428						9672		
f ' .A	Ψ.	· · · · · ·	ζ.		of ₹		•••	~ ~ £ Ø	.,	JU07	v.		•		•••	- 14 CA
252	O.	634	Çi.	300	34	(i(i	Ø.	9300	(1	(1683	D.	2538	-0.	9676	·· (I)	0207

SER	RESH.	nece.) KC) b	CAFT.	нэ тон.	DKHG	HORIIAL	BETHE.
563	0. 523	0.599	+ 3 O. O2	0. 4661	~ (i. (i663	0. 0890	0. 4744	-0.0067
				0. 3983	•	0. 0702		0. 0070
				-0. 3234		0. 0533		O. OOP8
					~(i. (i804	0. 0373		0. 0087
				-0. 1520	~(i. (i805	0. 0246		-0. 0087
308	0. 568	(i. 199	- 05, 03	0. 0761	-0.0793	0. 0470	0. 0772	·· (I. (IS (I4
469	0.575	0. 203	·· 04. 03	0. 0046	90.0270	0. 0430	-0. 0008	~0.0432
170	0. 575	0. 201	±03, 04	0. 0776	-0.0745	0. 0400	-0. 0770	·· 0. 0450
3 7 3	0. 525	0. 203	· 02. 05	-0.4537	~0. 0756	0. 0106	-0.1533	-0.0464
172	0. 575	0.204	~ 00, 99	0. 2276	(i. 0706	0. (1116	-0. 2275	0. 0356
473	0.568	0. 599	CICI, CICI	0. 3039	~a. 0683	0. 0444	-0. 3040	0. 0545
574	0. 568	(1. 4.99	04.00		~0.0653	0. 04 89	-0. 3829	~0.0422
	0.568		02, 00		~0. 0652	0. 0246	-0. 4568	
	0.568	-	03.00	0.5312	~0. 05 8 ⊋	0. 0310	-0. 5322	
177	0. 560	0 599	03. 99	0. 6037	~O. 0548	0. 0401	-0. 6052	0. 0020
				_				
	0.568		05, 00		~(i. 0495	0. 0530		0. 0088
	0. 568		06.00		~0. 0465	0. 0681	-0. 7364	0. 0089
	0. 568		07.00		~(i. 0436	0. 0862	-0. 7916	0. 0404
	0. 568		OEL OO		-(1. (1456		-0. 8423	0. បន្ទប់ម
2 6:2.	0. 575	0. 205	09. 03	0. 8684	··(I. (1484	0. 1283	-0. 8779	0. 0092
	4 1: 1: 1:			4. 4.4.4				4. 4.4 4.5
	0. 575		30.00		-(i. (1571		-0. 9150	
	0. 575		50, 99	0. 9247	~0.0682		-0.9417	0. 0023
	0. 575	-	55.99	0.9417	-0.0735		-0.9629	~0.0002
	0. 578		43, 00	0. 9560	~0.0702		-0. 9816	·· 0. 0023
3 67	0. 575	0 803	13, 99	0. 9628	· (i. (i825	0. 2452	-0. 9936	~0.0051
	CA 1. 15 E	1. 1.0.0	6 11. 6.6.	11 11/11		0 446	4 0004	() (1.00.b) s.
	0.575	-	35,00	0. 9664	~0.0020		-1.0021	
	0.568		15. 99	0. 9863	·· (i. (1854		-1. 0276	·0. 0060
	0.578	-	47.00	0. 9982	~(i. (i850		-1.0459	~(). ()O64
	0.578		38.00	0. 9956	-(i. (1858		-1.0492	· 0. 0069
1 75 67	0. 568	(i . 1.3.3	58 , 99	0. 9887	~(). ()873	U. 3483	-1.0483	~0. 0075
5.930	0. 578	0. 205	20.00	1. 0095	~(i. (i902	0. 3770	-1. 0777	~(I. (IOR9

SLR	RESIR	RECH.	a CORC	LIFT.	вэтсн.	DRAG	HORIIAL	ARTAL.
097	0.565	0. 499	+30, 03	-0. 4920	- (i. 0557	0. 0871	0. 4995	-0. 0002
	0.574			~0. 4120		0, 0666	0. 4173	0. 0014
099	0.565	0.200	(IEI, (ICI	~0. 3257	~a. azas	0.0487	0. 3293	~0. 00K
200	0. 565	0.200	~ (17, CIC)	~0. 2413	-0.0729	0. 0344	0. 2436	0. 0049
2 () 7	0. 573	0. 201	·· (16., (10)	·· 0. 1559	-0.0722	0. 0226	0. 1573	~0. QD63
502	0. 573	0. 203	» 05. 00	-0. 0737	-a. 0716	0. 0462	0. 0747	··(I. (1099
\$ (I)C	0. 575	0. 202	·· (14), (15	0.0043	~ 0. 0693	0. 0142	-0.0034	0. 0546
5 (14	0. 574	0. 201	·· 03. 04	0. 0782	~ (i. 0657	0. 0328	-0. 0775	·· 0. 0469
4.0%	0.568	0.200	~ 01. 99	0. 1544	-0.0663	0. 0137	-0. 1540	·· 0. 03.92
206	0. 573	0. 2/03	·· 03 . 00	0. 2308	~0.0639	0. 0168	-0. 2306	-0. 0209
107	0. 574	0. 204	CICI, CICI	0. 3061	-a. a6a2	0. 0212	-0. 3062	-0. 0253
	0. 568		03.00	0. 3039	·· 0. 0574	0. 0273	-0. 3844	~0. 0207
5 (15)	0.568	0.200	02.00	0. 4593	~0. 0546	0. 0347	-0.4603	·· 0. 0587
5.50	0.568	0.200	OB. OO		~ (i. 0534	0.0438	-0. 5364	0. 0350
111	0. 568	0. 200	03, 99	0. 6062	~0.0489	0. 0548	~0. 6096	·· 0. 0425
	0. 568	-	(ાન, છુછ	0. 6714		0. 0699	-0. 6750	-0. 0543
	0. 566	•	क्षतः वरा	0. 7302	-	0. 0876	-0. 7435	(1. (1099
	0.560		07. 03	0. 7912	(i. (i409	0. 1067	-0. 7984	·· (I. (J(194
	0. 573	-	CIEC CICI		-(i. (i410	0. 1284	-0. 8531	-0.0099
116	0. 568	0. 200	09. 00	0. 8841	~0. 0399	0. 1512	-0. 8970	0. 0511
	0. 568		50.00	0. 9090	•			~0. 0327
	0.568		33.00		~(i. 0492		-0. 9614	~0. 0452
	0. 566		52.00	0. 9591	-0. 0532		-0. 9843	~0. 0175
	0. 568		13.00	0. 9806			-1.0112	-0.0205
3 23	0, 568	0.200	13. 99	0. 9823	~0. 0658	0. 2687	-1. 0180	~0. 0232
	0. 568		15.00		~0.0697		-1.0313	-0. 0250
	0. 573	0.201	15, 99		-0.0794		-1. 0425	·· (). ()267
	0, 575	0.204	\$6, 99		~(). ()883	-	-1.0691	~0. 028%
	0. 573	0. 201	\$8.00		-0.0930		-1.0834	~0. 0500
126	0. 573	0.201	38 , 99	4. 0225	-0. 0932	0. 3844	-1. 0920	~0. O207
377	0. 573	0. 203	20, 00	0. 9946	-0.0911	0. 3949	-1. 0697	-0. 0308

SER RESIG	ивсн.	TROTO.	LIFT.	FITCH.	DRAG	HORHAL	AND AL.
430 0, 868	0. 200	~50, 02	-0. 4673	~0. 0490	0. 0894	0. 4757	-0.0069
434 0.565	0.200	~ 09, 02	~0.3937	0. 0361	0. 0679	0. 3994	-0.0055
332 0.573	•		-0.3097	-	0, 0520	0. 3130	
437 0.575		~07. 02		0.0496	0, 0398	0. 2245	~0.0526
334 0.575	0. 203	~ (16. (13		~0. 0485	0. 0315	0. 1484	·· 0. 0464
485 0.565	0. 200	- 05. 03	(1684	~(i. (i485	0. 0297	0. 0706	+0. 0288
136 0, 560	0. 205	· (14, (15	0. 0052	-(i. 0466	0. 0303	-0. 0031	~0.0002
337 0. 565	0. 200	· 03. 03	0. 0803	-0.0460	0. 0331	-0. 0783	-0.0374
330 0, 565			0. 1500	-0.0441	0. 0387	-0.1486	"(I. (I44(I
139 0, 568	-		0. 2224	-0. 0431	0. 0466	-0. 5516	-0. 0506
340 0.565	0. 200	on, on	0, 2939	~(i. 0410	0. 0579	-0. 2940	-0. 0580
141 0, 565	(i. 200	05.00	0. 3696	-0. 0396	0. 0714	-0. 3709	O. 0650
342 0. 573	0. 203	02.00	0.4432	(i. 0395	0. 0871	-0. 4461	0. 0716
\$48 0, 574	0. 201	03.00	0. 4977	-0.0376	0. 1008	-0. 5024	·· 0. 0746
344 0, 565	0. 200	04. 00	0. 5702	-a. 0378	0. 1195	-0. 5773	-0. 0794
345 0, 573	0. 203	04, 99	0. 6207				
346 0, 573	0. 204	06, 00	0. 6714	-0.0372		-0. 6841	·· 0. 0838
347 0, 573	0. 201	07. 00	0.7119	-0. 0302	0. 1730	-0. 7278	·· (), ()849
348 0, 573	6. 201	CIEL CIS	0. 7562	-0. 0378	0. 1914		·· (I. (1847)
148 0.565	0. 200	09. 01	0. 8209	-0.0425	0, 2125	-0. 844 2	··(I. 0814
450 0.524	0. 201	\$0.03		-(i. (i486		-0. 8726	-0. 0758
454 0.573	0. 201	3 (1, 55		a. 0570	0. 2437		··(I, (1749
452 0, 565	0.200	55.99		(i. 0653		-0. 9142	O. 0744
453 0, 574	0. 204	\$3.00		~a. 0793		-D. 999D	·· 0. 0765
354 0.573	0. 201	\$3, 99	0. 8170	-0. 0890	0. 2829	-0. 9613	-0. 0770
355 0, 565		35, 00	0. 7918	-(i. 0900		-0. 8405	-0.0771
456 0, 565		55, 99	0. 7920	-(i. 0917	0. 3079	-0. 9463	-0. 077 8
357 0, 565	-	\$7,00	0. 7909	-0.0938	0. 3229	-0. 8509	-a. 0775
356 0.568		5 Et. (IC)	0. 8054	-0.0976	0. 3443	-0. 8722	O. 0786
459 0, 665	0. 200	19 00	0. 8017	(i. 0.984	0. 3585	-0. 8749	-0. 0779
360 0, 668	0. 496	20, 00	0. 8153	-0. 1022	0. 3011	-0. 9966	-0. 0793

SUR	REYR.	песн.) RC) p.	LIFT.	Р1ТСН.	DRAG	HORITAL	AXIAL.
196	0. 578	0. 200	- 30. 03	-0. 5021	~0. 0306	0. 0893	0. 5099	-0. 0009
397	0. 576	0. 599	~ 09. 03	-0. 4149		0. 0652	0. 4199	0. 0004
3.516:	0. 573	0. 599	·· (16), (15	-0. 3246	-(i. 0650	0. 0452	0. 3277	0. 0003
389	0. 578	0. 201	·· 07. 03	-0. 2365	· (i. 0692	0. 0306	0. 2384	~0.0046
200	0. 578	0. 201	·· ()6. ()1	-0. 1528	-0.0669	0. 0194	0. 1539	-0.0034
203	0. 578	0. 201	·· 0%. 03	-0. 0736	-0.0660	0. 0156	0. 0746	-0.0092
202	0. 563	0. 203	·· (14, (15	0. 0043	-0.0638		-0.0033	~0.0453
		0. 499	· 03. 03		-0.0639	0. 0159	-0. 0816	~0. 0203
	0. 573		-03.99		-0.0624	0. 0186	-0. 1553	~(I. U241
	0. 575		·· 03 . 00	0. 2312	-0.0596	0. 0230	-0. 2309	.0. 0271
206	0. 578	0. 201	00.00	0. 3052	·· (i. 0561	0, 0285	-0. 3053	-0. 0285
	0. 578		01.00		-0.0537	0. 0362	-0. 3829	.0. 0296
208	0. 578	0. 203	02, 00	0. 4567	-(i. 0501	0. 0448	-0. 4581	~0. 0280
	0. 578		03.00		-0.0487	0. 0550	-0. 5352	~0. 0274
	0. 578	-	03, 99	0. 6079	-a. 0456	0. 0676	-0. 6112	~0. 0252
24.1	0. 578	0. 201	05. 00	0. 6773	~0. 0433	0. 0833	-0. 6821	·· 0. 0239
212	0. 578	0. 205	CIG. CICI	0. 7430	·· (I. (1404	0. 1015	-0. 7497	-0. 0232
253	0. 570	0. 205	07. 03	0. 7994	-0. 03 02	0. 1218	-O. BD81	·· (). ()235
234	-0.078	0 203	OEL OX	-0.8512	-a. 0364	0. 1439	-0. 9631	~0. 02 39
24.5	0. 576	0. 203	09. 01	0. 8975	-0. 0354	0. 1682	-0. 9128	~0. 0256
216	0. 570	0. 201	50.03	0. 9386	-0. 0362	0. 1937	-0. 9501	~0. 0277
217	0. 578	0. 201	33.00	0. 9627	-0.0305	0. 2172	-0. 986€	~0. 0295
238	0.578	0. 205	42.00	0. 9851	(i. (i416	0. 2416	-1.0139	·· 0. 0346
23.9	0.578	0 203	430.04	1. 0078	~O. 0459	0. 2672	-1.0422	0. OES6
220	0. 578	0. 203	\$4.00	1.0160	-0.0510	0. 2898	-1. 0561	-0. 0354
	0. 573		\$5. 03		-0. 0602		-1. 0564	
	(0,575)	•	55, 99	1.0005	-a. 0704	· · · — —	-1.0607	
	0. 573		37 00		(i. (1766		-1.0510	~0. 0420
	0. 574	(1. 5.99	\$ EL CICI	0. 9981	•		-1. 0633	·· 0. 0422
225	0. 573	(i. 3.94)	5 Et. 99	1. 0039	-(i. 0871	0. 3922	-1. 0770	··(I, (1442
226	0. 578	0. 201	20.00	0. 9731	(J. 0864	0. 4007	-1. 0516	·· (), ()437

514:	k	LVR	1;	6CB) 14	OÞ	1	r 10	1.	тен		DR AG	н	DRIIAL	Pi)	C1 81L
1.5.5	()	tics	į,	5.99	- 69	44	(ı	. 5083	(ı	0265	O	. 0935	o	5160	·· (ı	0040
1.22	Ü	36.3	Ü	なけな	· (19	03	·· (I	4236	·· (1	0487		0693		4291		
353	Ü	574	(i	202	- (i (;	(I(I	·- (1	CCC	(1	. 0622	ø	0493	0	3370	·· (1,	0026
										. (1643)		. 0355		2469		-
										(1644		. 4233		1619		
										7 230		. 0196				
		1.75	-		~ ()4 ~ ()\$/.					0598		. 0179		0036		
					(13				•	0610		. 0121 . 0179		0724 0702		
			-		- (iz.					ดรยร		0206				
					01.	(12	(i	2226	~ (I.	0573	0	0248	-0.	5553	·· (I.	0288
				207		03				0538		. 0307				
				207 207		. (1() . (1()		3699				0394				
				207		Cici		. 4496 . 5248				. 0474 . 0573				
506	()	565	()	207	03	5151	ti.	5960	(I	(1446	0	0692	-0.	6003	·· (1,	0275
31.7	0.	565	Ü	206	(14	99				0413	0	0849	-0.	6772	· (t.	0261
				206		01		7367				1030				
			-	200		(15				0369		1232				
				206		CICI				e ££0)		1485				
				206		(15				0337		1682				
		576		- 204 - 206		Citi Citi				0348		1942				
		576	-			03		. 9592 . 9805	-			2166				
				203		03		0053				2666				
346	Œ.	571	()	203	14.	(11	1.	0236	~ O.	(1481	n	2917	-1	0640	(I	O'esic
		574				03		0224				3122				
348	(i,	576	(ı.	204	56.	CICI		0204				3312				
		:.76	-			(I(I		0000				3689				
		576	-			(1(1		0271	·· (1.	0707	0.	3618	-1.	0001	·· (1,	0456
				2(14		((()		04.65				3745				
		585				5454		9910				3640				
		565				(it) fix		9992 5496				4086		5289		0074
								4479				0768		4543		0056
33.6	5.	3 03	(1	400	(if:	03	(I,	3594	- O.	0612	O.	0551	۵.	3634	·· (1.	()(144
34.7	á	097	Ü	399	· 07.	(i)k	 (۱ ,	2665	- 0	0696		0309		2692		
41.41	3 .	5 (14	()	4(15	·· (16.	(12	·· ().	1765	(1	0705		0259		1782		
(459								ពមលម				0187				
260								8500			Ú.	0170	O.	0089	·· (1,	ひないな
364				4 (15	·· (13)			0725 1543			U.	0196	- n	1536	()	025.6
300					~ 02. • 03.			2345			n.	0244	-0.	2341	ti.	0286
		3 (13			()()			3113	•		Ō.	0307	-0.	3114	·· ().	0306
5.63	á	097	ü	399	(15)	(i(i	ÇI.	3905	 { 1.	0570	O.	0389	-D .	3912	·· ().	0322
366	1	(194	(1	396	02.		O.	4694	·· ().	(1543)	Ø.	0482	-0.	4709	. (1	0040
267	5	097	(1	3.99	030			5534			0.	0596	-0.	5556	- (1	0006
368 369	<u>:</u> د	(197 (197	() ()	344	(1 <u>)</u> s (1 4			6272 7035			0.	0720	-0.	7007	a.	0272
		3 () 3			GG.	(1(1	Çi.	7625	O.	0412	O.	1073	-0.	7696	Ç E,	0275
		(197			07			8236			0.	1200	-0.	8333	 (1,	0273
3.74	í	3 (02	()	4(1(1	(16:			8754			O.	1515	-0.	8901	· (I	0285
		507			(19			9356	-		0.	1747	~Q.	7517	"(l,	UZYZ OSOB
37.4			•	399	5 (1			9475	-							
		(197			3.5			97 CC			0	5530	-0.	7781	. (1	- 5,6,3 () - 100 € 4
		097				(1(1		9963			0.	2476	-1.	0.56	CI.	1 (4) 1 (4)
		3 04 3 07			5 4	(1)	1 1	0045	-	0494	n	5832	-1	0448	(1	0.0
2019	1	057	(1	344	15		1		-	0591	ŏ	3120	-1	0670	0	0378
. 5:61	•	100	(1	4813	5.6	(10	1	03630	ſı	0636	O.	3310	-1.	0683	. (1	2050
3-63	i	(14)	(1	(94		44				0694	0	1506	- 1	0700	·· (I	(1):44
587	4	101	Ó	400		99		0092			U	3704	-1.	0744	·· ()	0405

CERTAL CONTROL OF THE TOTAL POSSESSES AND THE CONTROL OF THE CONTR

STR RESPO	HBCB.	d CBr C	1317	10 T CH	DRAG	HORIIAL	METAL.
3.65 0 658					0. 0940		0. 0050
7.65 0 678					0. 0711		O. 0046
264 0. 523					0.0526		a. aaks
265 0, 573					0. 0383		~0. 0080
266 0, 576	0. 204	~ 06-00	× 0. 4566	· (i (i649	0. 0260	0. 1505	·· (I. (IS (I4
983 0 636	0 203	· 0% 03	~ O. OEQT	· (i - (1637	0. (1219	0.0840	~0.0540
260-0, 574	(0. 5.99	~ 04 - 03	···O. 0044	· (i -0623	0. 0202		0. 01.99
269 0 574	0.499	· (i)((i)	0.0747	~0.0607	0. 0202	-0.0706	··· (I) (1244
270 0 334	(i. 499	~ 02 00	0. 4464	-0.0590	0. 0229	-0. 1453	0. 0280
274 0.574	0. 199	~ 03 . OO	0.2226	~0. 0568	0. 0269	-0. 2222	-0.0309
872 0.568	0. 599	00-00	0.2971	·· (i. 0545	0. 0326	-0. 2972	~0.0327
277 0.573	(0. 199	03.00	-0.3735	·· (t. 0544	0.0400	-0.3743	~0. 03K5
274 0 550	0 196	02 00	0. 4544	0.0504	0.0493	-0. 456U	~0. 0b/s4
275 0.568	(t. 199	00 00	0. 5236	~(). ()480	0. 0590	-0. 5263	~0.0345
276 0 568			0. 6032	-0.0454		-0. 6048	
	•				0. 0		
277 0, 568	0. 199	04 99	0.6222	· (i. 0417	0.0854	-0. 6772	0 0266
278 0 568				0.0397		-0. 7442	
279 0, 566	-			-0.0375		-0. 8030	
260 0 525				0.0354		-0.8570	
285 0.568	-			~0.0342		-0. 9074	
v via ti, vive	V 4	ver vel	THE COURT OF	O WATE	U. 1017	U. 3014	ATT STREET
262 0 566	0.396	30 03	0.6565	~0.0349	0.4638	-0. 9555	
76% 0.576				~0.0345		-0. 9821	
	•						
264 0.568	-			~ (1, 0403		-1. 0152	
265 0.568				~0.0426		-1.0374	
266-0, 566	u. aee	14 ((()	4. 0244	-(i. (1456	O. SBAT	-1. 0540	"0 U342
****** *** *** ***	4. 4.4.	4 1 4 4				4 0=00	
767 0 568	-			0 0508		-1. 0592	
266 0, 566				-0.0562		-1. 0780	
289 0.568				-0 0616		-1. 0837	
790 0 56E				(i. 0675		-1.0099	
295 0.568	0 735	3.60, 99	1 0242	-(1-0737	0. 3946	-1. 0970	·· (1. (13)48
			_				
297 O. GGB	-			(i - (i85 8	0.4124	-1.0859	
793-4-094					0.1009		~0. 009£
294 5 086					0. 07 90		(I. Q() BA
295 5 004	(ii. 403	5 (). (1):	·· 0. 8182	·· (i. 0179	0. 1011	0. 5253	(I. (I(199
296 3 084	0.402	- OE OS	~0. 360 0	· (r 0591	0. 0599	0, 3646	O. 00#2
797 5 005					0. 0490		O 0548
290 3, 075					0.0421		~0. V097
299 5 025	() 4()()	~ 06 Os	~0. 17k4	· (i (i693	0. 0200	0. 1754	O. D. O. O. O. G.
200 3 065	0.403	× 05 - 03	~0. 0880	- () 0679	0, 0218	0. 0895	~0.0142
503 3 084	(1.402	· (14 - 63/	~0. aasa	-0 0667	0.0494	0.0072	~0. 05 9G
307 5.065				-0 0647		-0. 0740	
000 4 076				-0 0632		-0. 1539	
204 3 084	-			-0 0613		-0. 2343	
	0.400			· (r 0586		-0. 3127	
eve a tru	(1 -1 (1))	444 (44	50 24 E	(1 6286	U. U3E3	U. 3127	. U329
200 3 025	(i Atifi	(13 (16)	(1 2400	0.0559	0 0404	-0.3910	0.6 6896
200 4 025				· (i - 0539		-0.3310	
206 3 075 209 1 075				~(i 0509 ~(i 0470		-0.8855 -0.6311	
•							
23.0 3 025	0.399	05 00	0.0973	· (i 0442	い、いきする	-0. 7025	"U. U&/&
e e a decado		111 110	11 3444		0 44.55	-0 3554	
3 4 025				· (i ()414		-0. 7726	
157 4 675				(1 0396		-0. 9394	
33 3 075				· (i 0306	-	-0. 0932	
234 3 025			0. 9244	0.0384	-	-0. 9374	
335 3 023	0.399	3 () ()3	0 9575	0.0396	0 5003	-0. 9779	-0 030 6
256 \$ 07b	-					-1.0093	
237 5 07	(i Ann		1 0036			-1 0336	
23.6 2 052	0.400	53 01	1 0047	· (i 0491	U 2694	-1 0396	~0. U363

FIG. 1 DETAILS OF SLOTTED WORKING SECTION

FIG. 2(a) AEROFOIL MODEL WITH UPPER SURFACE WEDGES (dimensions in mm)

FIG. 2(b) AEROFOIL MODEL WITH 30mm LEADING EDGE WEDGES

FIG. 2(c) AEROFOIL MODEL WITH 40mm LEADING EDGE WEDGES

(i) Standard wedge configuration

(ii) Alternate configurations

FIG. 2(c) Continued

FIG. 3 (a) UPPER SURFACE WEDGES DEFLECTED 20 DECREES EFFECT ON LIFT - VARIOUS SLOT SIZES REC=570000 · M-0.2 ·

FIG.3 (b) UPPER SURFACE WEDGES DEFLECTED 20 DECREES EFFECT ON DRAG OF VARIOUS SLOT SIZES REC=570000, M=0.2.

| SYMBOL | M | CLERN RINFOIL | X | 28 | NO SLOT | + | 28 | 1.3 PC CHOPO SL | 4 | 26 | 2.5 PC CHOPO SL | ₹ | 28

FIG. 3 (c) UPPER SURFACE WEDGES DEFLECTED 20 DECREES EFFECT ON PITCHING MOMENT - VARIOUS SLOT SIZES REC=570000, M=0.2,

FIG. 4 (a) 30MM LEADING EDGE WEDGES - NO SLOT EFFECT ON LIFT - VARIOUS DEFLECTIONS REC=570000, M=0.2,

STAND ALCOHOLD REPORTED TO THE PROPERTY OF THE

FIG. 4 (b) 30MM LEADING EDGE WEDGES - NO SLOT EFFECT ON DRAG - VARIOUS DEFLECTIONS REC=570000, M=0.2,

The second of th

FIG.4(c) 30MM LEADING EDGE WEDGES - NO SLOT EFFECT ON PITCHING MOMENT - VARIOUS DEFLECTIONS REC=570000, M=0.2,

FIG.5 30MM LEADING EDGE WEDGES DEFLECTED 10 DEGREES EFFECT ON LIFT OF A SLOT REC≈570000, M=0.2,

FIG.6 (a) 50MM LEADING EDGE WEDGES - NO SLOT EFFECT ON LIFT - VARIOUS DEFLECTIONS REC≈570000; M=0.2;

FIG.6(b) 50MM LEADING EDGE WEDGES - NO SLOT EFFECT ON DRAG - VARIOUS DEFLECTIONS REC=570000, M=0.2.

FIG.6 (c) 50MM LEADING EDGE WEDGES - NO SLOT EFFECT ON PITCHING MOMENT - VARIOUS DEFLECTIONS BEC=570000; M=0.2;

FIG. 7 (a) SØMM LEADING EDGE WEDGES - DEFLECTION 10 DEGREES EFFECT ON LIFT - VARIOUS SLOT SIZES REC=570000, M=0.2,

	M	
CLERN RIRFDIL	. ×	. 20
NO SLOT	+	. 20
1.9 PC CHORD	5L 4	. 20
3.1 PC CHORD	% *	. 20
4.4 PC CHORD	SL . •	. 20

FIG.7 (b) 50MM LEADING EDGE WEDGES - DEFLECTION 10 DEGREES EFFECT ON DRAG - VARIOUS SLOT SIZES ERC=570000. M=0.2.

FIG.7(c) 50MM LEADING EDGE WEDGES - DEFLECTION 10 DEGREES EFFECT ON PITCHING MOMENT - VARIOUS SLOT SIZES REC=570000, M=0.2,

FIG.8 COMPARISON - 30MM & 50MM LEADING EDGE WEDGES

DEFLECTED 10 DEGREES: NO SLOT

EFFECT ON LIFT

REC=570000: M=0.2:

FIG. 9 (Continued) LEADING EDGE CLOSE UP

FIG. 9 (Continued) LEADING EDGE CLOSE UP

OIL FLOW PATTERN-MODEL UPPER SURFACE 50m LEADING EDGE WEDGES WITH $\delta_{\rm W}=10^{\rm o};~\epsilon_{\rm S/c}=0.031$ FIG. 10

FIG. 10 (Continued) CLOSE-UP VIEW OF CENTRAL WEDGE

DISTRIBUTION

AUSTRALIA

Department of Defence

Central Office

Chief Defence Scientist

Deputy Chief Defence Scientist

Superintendent, Science and Technology Programmes

Controller, Projects and Analytical Studies

Defence Science Representative (U.K.) (Doc Data sheet only)

Counsellor, Defence Science (U.S.A.) (Doc Data sheet only)

Defence Central Library

Document Exchange Centre, D.I.S.B. (17 copies)

Joint Intelligence Organisation

Librarian H Block, Victoria Barracks, Melbourne

Director General - Army Development (NSO) (4 copies)

Aeronautical Research Laboratories

Director
Library
Superintendent - Aerodynamics
Divisional File - Aerodynamics
Author: A.P. Brown
Wind Tunnel Research Group (6 copies)

Materials Research Laboratories

Director/Library

Defence Research Centre

Library

Navy Office

Navy Scientific Adviser
RAN Aircraft Maintenance and Flight Trials Unit
Directorate of Naval Aircraft Engineering
Directorate of Naval Aviation Policy
Superintendent, Aircraft Maintenance and Repair

Army Office

Army Scientific Adviser Engineering Development Establishment, Library Royal Military College Library US Army Research, Development and Standardisation Group

DISTRIBUTION (CONTD.)

Air Force Office

Air Force Scientific Adviser
Aircraft Research and Development Unit
Scientific Flight Group
Library
Technical Division Library
Director General Aircraft Engineering - Air Force
RAAF Academy, Point Cook

Central Studies Establishment

Information Centre

Department of Defence Support

Government Aircraft Factories

Manager Library

Department of Science and Technology

Bureau of Meteorology, Library

Department of Aviation

Library
Flying Operations and Airworthiness Division

Statutory and State Authorities and Industry

Trans-Australia Airlines, Library
Qantas Airways Limited
SEC of Vic., Herman Research Laboratory, Library
Ansett Airlines of Australia, Library
B.H.P., Melbourne Research Laboratories
Commonwealth Aircraft Corporation, Library
Hawker de Havilland Aust. Pty Ltd, Bankstown, Library
Rolls Royce of Australia Pty Ltd, Mr C.G.A. Bailey

Universities and Colleges

Adelaide Barr Smith Library

Professor of Mechanical Engineering

Flinders Library

Latrobe Library

Melbourne Engineering Library

DISTRIBUTION (CONTD.)

Universities and Colleges (contd.)

Monash Hargrave Library

Newcastle Library

Engineering Library Sydney

N.S.W. Physical Sciences Library

> Professor R.A.A. Bryant, Mechanical Engineering

Queensland Library

Tasmania Engineering Library

Professor A.R. Oliver, Mechanical Engineering

Western Australia Library

> Associate Professor J.A. Cole, Mechanical Engineering

R.M.I.T. Library

Dr H. Kowalski, Mech. & Production Engineering

UNITED KINGDOM

Royal Aircraft Establishment Bedford, Library Farnborough, Library

UNITED STATES OF AMERICA

NASA Scientific and Technical Information Facility NASA Langley Research Center, Library NASA Ames Research Center, Library

SPARES (10 copies)

TOTAL (99 copies)

Department of D. fence

DOCUMENT CONTROL DATA

11. 6. AH NO	1 b Establishment No	2 Document Date	3 Task No	
AR-002-976	ARL-AERO-TECH-MEMO-356	August 1983	DST 82/028	
AERODYNAMIC EFFI WEDGES ON THE UI	ENTAL INVESTIGATION OF THE ECTS OF FORWARD FACING PPER SURFACE & LEADING EDGE WITH EMPHASIS AT HIGH	5. Security a. document UNCLASSIFIE b title c abstra U U 8. Downgrading lines	ot 7 No Refs	
10 Corporate Author and	A did-ess	11 Authority (as app	•	
Aeronautical Research Laboratories, P.O. Box 4331, MELBOURNE, VIC. 3001		c Downgeding to Approved		
12. Secondary Distribution (of this document)				
Approved for Public Release.				
Overses enquirers outside stated limitations should be referred through ASDIS. Defence Information Services Branch, Department of Defence, Campbell Park, CANBERRA, ACT 2601				
13 a This document may be ANNOUNCED in datalogues and awareness services available to No limitations				
13. b. Citation for other p	urposs (is casus) announcement) may be ign	MEDI/ unrestricted Medic	udexisks	
14. Descriptors			15. COSATI Group	
Wedges Aerodynamic conf Airfoils Angle of attack	igurations		0101	
A NACA 64-106 aerofoil model has been wind tunnel tested with forward facing wedges at the leading edge and upper surface at the midchord position. Of particular interest is their effect on low speed, high incidence aerofoil aerodynamics. The majority of tests were conducted at Mach 0.2 (corresponding to a chord Reynolds number of 0.57 x 106) over the incidence range -10 to +20 degrees. The upper surface wedges increased drag by over 100% and reduced lift by only 10% at moderate lift coefficients, delayed the stall by about 2° and maintained C _L . The leading edge wedges with a 2% chord slot under them on the other hand increased C _L by between 11 and 17% (depending on wedge size and deflection), had little effect on C _D (for				

This page is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS data base unless specifically requested.

16 Abstract (Contd)				
a wedge deflection from the aerofoil surface of zero degrees) and markedly reduced variations in pitching moment prior to and following stall.				
503111				
17 Impont				
•				
Aeronautical Research Labora	tories, Melbour	ne.		
18 Document Series and Number	19, Cost Code	20 Type of Report and Pariod Covered		
Aerodynamics Technical	53 7700			
Memorandum 356				
	1			
21. Computer Programs Used				
22 Establishment File Ref(s)				

7-84

AND MARKET (1)