Урок №47

Дипломная работа Требования, чек-лист.

Практика

Пайплайны подготовки данных, решение задач

Вопросы

Варианты

- 1. Любая задача взятая из интернета по стандартному ML
- 2. Собственная задача

Оформление:

репозиторий на GitHub содержащий файл README.md содержащий файл с **теоретической частью** содержаший ссылки на источники данных или непосредственно источники данных разработанные скрипты в отдельных папках списки зависимостей

репозиторий должен клонироваться и запускаться локально либо в Collab.

Пример репозитория Француа Шолле

https://github.com/keras-team/keras

Теоретическая часть

- 1. Постановка задачи
- 2. Ваш подход к решению
- 3. Описание применяемых алгоритмов и методик оценки качества моделей.
- 4. Интерпретация результатов
- 5. Выводы

Задачи на выбор

- 1. ГРЗ привести в порядок репозиторий
- 2. Генеративная текстовая сеть (сделать из той что была на прошлом уроке)
- 3. Разобраться со сложной моделью CV и реализовать подсчет людей/предметов в кадре)
- 4. Любая задача классического ML

Где брать данные

https://tproger.ru/translations/the-best-datasets-for-machine-learning-and-data-science/

kaggle

Трансформер

Пишем собственный простейший трансформер

```
class some transformer (BaseEstimator, TransformerMixin):
   def __init__(self, remove_origin):
        self.remove origin = remove origin
   def fit(self, X, y = None):
        return self
   def transform(self, X, y = None):
        # Transformation
        if self.remove_origin:
            # Remove original fields
        return X
```

Трансформер

Пишем трансформаторы для всех переменных.

Объединяем трансформеры в пайплайн.

Выносим код в модуль подготовки данных.

Практика

Пишем проект диплома на примере простой задачи классификации.

Датасет удовлетворенность клиентов авиакомпании

Применяемые модели

Логистическая регрессия Дерево SVM (разные ядра) Случайый лес Градиентный бустинг Адаптивный бустинг

Выбираем лучшие модели - тюним параметры.

К стати как будем понимать какая модель лучше?

#