Chapter 5 단순 베이즈 분류

5.1 서론

단순 베이즈 분류 모형은 베이즈 정리에 기반한 방법으로. 사후 확률의 계산 시 조건부 독립을 가정하여 계산을 단순화한 방법이다.

사후 확률이 높은 집단으로 새로운 데이터를 분류하게 된다. 조건부 독립이라는 가정이 비현실적인 측면이 있지만, 계산이 간편하여 널리 사용

5.2 단순 베이즈 분류

단순 베이즈 분류기는 연속형 또는 이산형과 관계없이 임의의 크기의 예측변수를 다룰 수 있다.

일반적인 베이즈 분류에서는 사후 확률이 가장 큰 집단으로 개체의 대한 분류를 시작한다.

단순 베이즈 분류는 위의 사후 확률의 계산을 좀 더 편하게 할 수 있도록 예측 변수들 간의 독립을 가정

데이터가 $x = (x_1, x_2, ..., x_d)$ 으로 주어질때, 이데이터가 C_i 집단으로부터 나왔을 사후확률은 베이즈 정리로 부터 다음과 같다.

$$\begin{split} p(C_j|x) &= \frac{p(C_j)p(x|C_j)}{p(x)} = \frac{p(C_j)p(x|C_j)}{\displaystyle\sum_{j=1}^k p(C_j)p(x|C_j)} \;, j=1,2,\ldots,k \\ &= \frac{p(C_j)p(x_1|C_j)p(x_2|C_j)\ldots p(x_d|C_j)}{p(x)} \;, \; (계산을 편리하게 하기 위해 예측변수들 간의 독립을 가정) \\ &= \frac{p(C_j)p(x_1|C_j)p(x_2|C_j)\ldots p(x_d|C_j)}{\displaystyle\sum_{j=1}^k p(C_j)p(x|C_j)} \end{split}$$

####### 사례 1(이산형) #######

● 문서분류

문서번호	주요단어	문서분류
1	fun, couple, love, love	comedy
2	fast, furious, shoot	action
3	couple, fly, fast, fun, fun	comedy
4	furious, shoot, shoot, fun	action
5	fly, fast, shoot, love	action

사례 1-1

입력문서가 {fast, furious, fun}을 주요 단어로 가질 때, 이 문서는 어떤 문서로 분류될 것인가?

$$P(comedy|x) = \frac{P(comedy)P(x|comedy)}{P(x)}$$

$$P(action | x) = \frac{P(action)P(x|action)}{P(x)}$$

위에 두 사후 확률을 비교하는 것이므로 분자들의 계산 결과로 비교를 진행한다.

P(comedy | x) = P(comedy)P(x | comedy) = P(comedy)P(fast | comedy)P(furious | comedy)P(fun | comedy)

$$=\frac{2}{5}\times\frac{1}{9}\times\frac{0}{9}\times\frac{3}{9}=0$$

 $P(\mathit{action} \mid x) = P(\mathit{action})P(x \mid \mathit{action}) = P(\mathit{action})P(\mathit{fast} \mid \mathit{action})P(\mathit{furious} \mid \mathit{action})P(\mathit{fun} \mid \mathit{action})$

$$= \frac{3}{5} \times \frac{2}{11} \times \frac{2}{11} \times \frac{1}{11} = \frac{12}{5 \times 11^3} = 0.0018$$

P(comedy)P(x|comedy) < P(action)P(x|action)

사후 확률을 비교했을 때, action의 사후 확률이 더 높으므로 action으로 분류될 것이다.

단순 베이즈 분류에서 '낮은-빈도 문제'에 주의할 필요가 있다.

'낮은-빈도 문제' : 빈도가 0인 경우에 새로운 자료에 대한 사후 확률은 항상 0이 되는 문제점

문제점을 해결하기 위해 모든 속성값-군집 조합에 대한 빈도에 작은 수(아주 작은 수)를 더해주어 계산을 수행한다.

입력문서가 {fast, love, fun}을 주요 단어로 가질 때, 이 문서는 어떤 문서로 분류될 것인가?

$$P(comedy|x) = \frac{P(comedy)P(x|comedy)}{P(x)}$$

$$P(action | x) = \frac{P(action)P(x|action)}{P(x)}$$

위에 두 사후 확률을 비교하는 것이므로 분자들의 계산 결과로 비교를 진행한다.

P(comedy)P(x|comedy) = P(comedy)P(fast|comedy)P(love|comedy)P(fun|comedy)

$$=\frac{2}{5} \times \frac{1}{9} \times \frac{2}{9} \times \frac{3}{9} = \frac{12}{5 \times 9^3} = \frac{12}{3645} = 0.00329218$$

P(action)P(x|action) = P(action)P(fast|action)P(love|action)P(fun|action)

$$=\frac{3}{5}\times\frac{2}{11}\times\frac{1}{11}\times\frac{1}{11}=\frac{6}{5\times11^3}=\frac{6}{6658}=0.00090157$$

P(comedy)P(x|comedy) > P(action)P(x|action)

사후 확률을 비교했을 때, comedy의 사후 확률이 더 높으므로 comedy으로 분류될 것이다.

####### 사례 2(연속형 자료일 때) #######

3개의 변수(키, 몸무게, 발 크기)로서 데이터가 형성되었을 때, 세 변수 모두 독립이며, 정규분포를 따른다고 가정 # 데이터

성별	ヺ (feet)	몸무게 (lbs)	발크기 (inches)	성별	ヺ (feet)	몸무게 (lbs)	발크기 (inches)
남성	6	180	12	여자	5	100	6
남성	5.92	190	11	여자	5.5	150	8
남성	5.58	170	12	여자	5.42	130	7
남성	5.92	165	10	여자	5.75	150	9

성별	7]		몸	-무게	발 크기		
	평균	분산	평균	분산	평균	분산	
남	5.855	3.5033e-02	176.26	1.2292e+02	11.25	9.1667e-01	
여	5.4175	9.7225e-02	132.5	5.5833e+02	7.5	1.6667e+00	

남성과 여성 그룹에 속한 사전확률을 P(남성)=P(여성)=0.5 이라고 하자. 주어진 자료(키:6 , 몸무게:130 , 발크기:8)의 성별은 무엇인지 분류해보자.

$$P(남성|x) = \frac{P(남성)P(x|남성)}{P(x)}$$

$$P($$
여성 $|x) = \frac{P($ 여성 $)P(x|$ 여성 $)}{P(x)}$

따라서 분자끼리 비교를 통해 사후 확률을 분류한다.

P(남성)P(x|남성) = P(남성)P(5|남성)P(8+7|남성)P(5|1|남성)

$$=\frac{1}{2}\times \textit{N}(6, 5.855, \sqrt{0.035}\;)\times \textit{N}(130, 176.26, \sqrt{122.92}\;)\times \textit{N}(8, 11, 25, \sqrt{0.91667}\;)$$

$$=\frac{1}{2}\times 1.578886\times 5.965584e - 6\times 0.001311246$$

$$= 6.175299 \times 10^{-9}$$

 $P(\phi d)P(x|\phi d) = P(\phi d)P(\eta|\phi d)P(몸무게|\phi d)P(발크기|\phi d)$

$$=\frac{1}{2}\times \textit{N}(6, 5.4175, \sqrt{0.097225}\,)\times \textit{N}(130, 132.5, \sqrt{558.33}\,)\times \textit{N}(8, 7.5, \sqrt{1.6667}\,)$$

$$=\frac{1}{2}\times 0.2234587\times 0.01678935\times 0.2866883$$

≒ 0.0005377879

P(남성)P(x|남성) < P(여성)P(x|여성)

사후 확률을 비교했을 때, 여성의 사후 확률이 더 높으므로 여성으로 분류될 것이다.

남성일 경우의 사후확률

height1 <- dnorm(6, mean=5.855, sd=sqrt(0.035033)) # 1.578886

weight1 <- dnorm(130, mean=176.26, sd=sqrt(122.92)) # 5.965584e-06

feet1 <- dnorm(8, mean=11.25, sd=sqrt(0.91667)) # 0.001311246

height1; weight1; feet1

B_m.x <- 0.5*height1*weight1*feet1

B_m.x # 6.175299e-09

여성일 경우의 사후확률

height2 <- dnorm(6, mean=5.4175, sd=sqrt(0.097225)) # 0.2234587

weight2 <- dnorm(130, mean=132.5, sd=sqrt(558.33)) # 0.01678935

feet2 <- dnorm(8, mean=7.5, sd=sqrt(1.6667)) # 0.2866883

height2; weight2; feet2

 $B_f.x \leftarrow 0.5 * height2 * weight2 * feet2$

B_f.x # 0.0005377879

결과적으로 여자인 경우의 사후 확률이 더 높으므로 주어진 자료는 여성으로 예측된다.

B_m.x # 6.175299e-09

B_f.x # 0.0005377879

예제 1번

단순 베이즈 분석을 위해 iris자료를 사용한다.

data(iris) # 데이터 선언

head(iris) # 해드 데이터 출력

{e1071} 패키지의 naiveBayes()함수를 이용하여 단순 베이즈를 수행한다.

library(e1071)

m <- naiveBayes(Species ~ ., data = iris)

m # 단순 베이지 분류를 실행한 결과 대입

predict()함수를 이용하여 단순베이즈분류를 한 기준을 가지고 iris 데이터에 대해 예측을 새로 실시, 정오분류표를 작성한다. table(predict(m, iris), iris[,5])

결과

##		setosa	versicolor	virginica
##	setosa	50	0	0
##	versicolor	0	47	3
##	virginica	0	3	47

```
### 예제 2 {klaR} 패키지 사용
## 데이터 불러오기, 스팸 데이터 사용
# {klaR} 패키지의 NaiveBayes()함수를 이용하여 단순 베이즈 분류를 수행한다. (대문자)
# {klaR} 패키지는 분류 및 시각화를 위한 다양한 함수를 제공한다.
install.packages("https://cran.r-project.org/src/contrib/Archive/ElemStatLearn/ElemStatLearn_2015.6.26.tar.gz", repos = NULL, type = "source")
library(ElemStatLearn)
install.packages("klaR")
library(klaR)
data(spam) # spam데이터자료, 4061개 메일 중 1813개가 스팸메일이며 58개의 변수로 구성
str(spam) # 58번째 변수가 스팸메일의 여부(1: spam, 0: non-spam)이며, 전체의 39.4% 1813개가 스팸메일이다.
## 전체 자료의 2/3를 훈련용 자료로 하여 분석을 진행
train.ind <- sample(1:nrow(spam), ceiling(nrow(spam)*2/3), replace=FALSE)
## {klaR}패키지의 NaiveBayes()함수를 이용하여 단순 베이즈 분류를 수행, (대문자)
nb.res <- NaiveBayes(spam ~ . , data=spam[train.ind,])
par(mfrow=c(2,3))
plot(nb.res) # 그림으로 표시
## predict()함수를 이용하여 예측을 실시, 전체 자료의 1/3인 검증용 자료를 이용하여 모형의 정확도를 측정
nb.pred <- predict(nb.res, spam[-train.ind,])</pre>
confusion.mat <- table(nb.pred$class, spam[-train.ind,"spam"])</pre>
confusion.mat
# 결과
##
       email spam
   email 536 29
        393 575
##
   spam
# 정분류율은 0.7247228%로 나타난다. (536+575)/(536+29+575+393)=0.7247228
sum(diag(confusion.mat))/sum(confusion.mat) # 0.7247228
### 예제 2_1번 {kernlab} 사용하기
# 스팸 이메일
install.packages("kernlab")
library(kernlab)
library(klaR)
data(spam) # spam데이터자료, 4061개 메일 중 1813개가 스팸메일이며 58개의 변수로 구성
str(spam) # 58번째 변수가 스팸메일의 여부이며, 전체의 39.4%가 스팸메일이다.
## 전체 데이터의 2/3만 훈련용 데이터 셋 설정
train.ind <- sample(1:nrow(spam), ceiling(nrow(spam)*2/3), replace=FALSE)
## {klaR}패키지의 NaiveBayes()함수를 이용하여 단순 베이즈 분류를 수행, (대문자)
nb.res <- NaiveBayes(type ~ ., data=spam[train.ind,])
par(mfrow=c(2,3))
plot(nb.res)
## 분석에서 제외된 검증용 자료를 이용하여 모형의 정확도 탐색
nb.pred <- predict(nb.res, spam[-train.ind,])</pre>
confusion.mat <- table(nb.pred$class, spam[-train.ind,"type"])</pre>
confusion.mat
##
        nonspam spam
##
   nonspam
            521 45
           415 552
##
   spam
## 정분류율은 0.6999348%로 나타난다.
sum(diag(confusion.mat))/sum(confusion.mat) # 0.6999348
## 단순 베이즈 분류는 결측값을 포함하는 자료를 다음과 같이 처리한다.
```

훈련단계(구축단계) : 속성값-군집 조합에 대한 빈도 계산 시 결측값을 포함하는 케이스가 제외됨

분류단계 : 결측인 속성이 계산과정에서 생략됨

예제 3번

결측값이 있는 데이터 사용. 16개 안건에 대한 의원들의 의견 데이터

단순 베이즈 분류에서 결측값에 대한 처리가 매우 유연하게 이루어진다.

모형구축에서는 결측값을 포함하는 케이스를 제외하며 분류과정에서는 결측 속성에 대한 확률만 계산에서 제외되므로 수행과정에 문제가 없다.

install.packages("mlbench")

library(mlbench)

data (HouseVotes84) # 데이터 선언

head(HouseVotes84) # 데이터 해드 확인

summary(HouseVotes84) # 데이터 요약, 17개 변수(class, v1(결측 12개), v2(결측 48개) 등등)

{e1071} 패키지의 naiveBayes()함수를 이용하여 단순 베이즈분석 실시

library (e1071)

model <- naiveBayes(Class ~ . , data = HouseVotes84) # 단순 베이즈분석을 실시하여 분류 모델 생성

predict를 사용하여 새로운 데이터에 대해 예측을 진행한다. (공화 민주 둘 중 하나 예측)

pred <- predict(model, HouseVotes84[,-1]) # class(첫번째 열)를 뺀 원본 데이터로 베이즈분류 모델로 분류를 시행 tab <- table(pred, HouseVotes84\$Class) # 분석 결과를 table로 정리하여 대입, class는 공화 민주 둘 중 하나로 나타난다.

tab # 결과

pred democrat republican
democrat 238 13
republican 29 155

정분류율 : (2389+155) / (238+13+29+155) = 0.90344 = 90.3%정도 잘 분류 하더라

sum(tab[row(tab) == col(tab)])/sum(tab)