1 Supplementary Material

1.1 Details of Simulation Framework Cont.

This section contains the levels of each knob that are used for each of the black box and DIY data sets across the 77 settings, as detailed in Appendix A.1. The R package at https://github.com/vdorie/aciccomp/tree/master/2016 recreates the simulated data by setting parameters according to the following enumeration.

Table 1: Simulation Settings

#	Treatment Model	Trt %	Overlap	Response Model	Trt/Rsp Alignment	hetero- geneity	DIY #
1	linear	low	penalize	linear	high	high	10
2	polynomial	low	penalize	exponential	high	none	1
3	linear	low	penalize	linear	high	none	9
4	polynomial	low	full	exponential	high	high	4
5	linear	low	penalize	exponential	high	high	15
6	polynomial	low	penalize	linear	high	high	2
7	polynomial	low	penalize	exponential	high	high	5
8	polynomial	low	penalize	exponential	none	high	13
9	step	low	penalize	step	high	high	8
10	linear	low	penalize	exponential	low	high	14
11	polynomial	low	penalize	linear	low	high	19
12	polynomial	low	penalize	exponential	low	high	12
13	linear	high	penalize	exponential	high	high	18
14	polynomial	high	penalize	linear	high	high	20
15	polynomial	high	penalize	exponential	high	high	6
16	polynomial	high	penalize	exponential	none	high	17
17	step	high	penalize	step	high	high	7
18	linear	high	penalize	exponential	low	high	3
19	polynomial	high	penalize	linear	low	high	16
20	polynomial	high	penalize	exponential	low	high	11
21	polynomial	low	penalize	step	low	low	
22	polynomial	low	penalize	step	low	$_{ m high}$	
23	polynomial	low	penalize	step	high	low	
24	polynomial	low	penalize	step	high	$_{ m high}$	
25	polynomial	low	penalize	exponential	low	low	
26	polynomial	low	penalize	exponential	high	low	
27	polynomial	low	full	step	low	low	
28	polynomial	low	full	step	low	$_{ m high}$	
29	polynomial	low	full	step	high	low	
30	polynomial	low	full	step	high	high	
31	polynomial	low	full	exponential	low	low	
32	polynomial	low	full	exponential	low	high	
33	polynomial	low	full	exponential	high	low	
34	polynomial	high	penalize	step	low	low	
35	polynomial	high	penalize	step	low	high	
36	polynomial	$_{ m high}$	penalize	step	high	low	
37	polynomial	high	penalize	step	high	high	
38	polynomial	high	penalize	exponential	low	low	
39	polynomial	high	penalize	exponential	high	low	
40	polynomial	high	full	step	low	low	
41	polynomial	high	full	step	low	high	
42	polynomial	high	full	step	high	low	
43	polynomial	high	full	step	high	high	
44	polynomial	high	full	exponential	low	low	
45	polynomial	high	full	exponential	low	high	
46	polynomial	high	full	exponential	high	low	

47	polynomial	high	full	exponential	high	high
48	step	low	penalize	step	low	low
49	step	low	penalize	step	low	high
50	step	low	penalize	step	high	low
51	step	low	penalize	exponential	low	low
52	step	low	penalize	exponential	low	high
53	step	low	penalize	exponential	high	low
54	step	low	penalize	exponential	high	high
55	step	low	full	step	low	low
56	step	low	full	step	low	high
57	step	low	full	step	high	low
58	step	low	full	step	high	high
59	step	low	full	exponential	low	low
60	step	low	full	exponential	low	high
61	step	low	full	exponential	high	low
62	step	low	full	exponential	high	high
63	step	high	penalize	step	low	low
64	step	high	penalize	step	low	high
65	step	high	penalize	step	high	low
66	step	high	penalize	exponential	low	low
67	step	high	penalize	exponential	low	high
68	step	high	penalize	exponential	high	low
69	step	high	penalize	exponential	high	high
70	step	high	full	step	low	low
71	step	high	full	step	low	high
72	step	high	full	step	high	low
73	step	high	full	step	high	high
74	step	high	full	exponential	low	low
75	step	high	full	exponential	low	high
76	step	high	full	exponential	high	low
77	step	high	full	exponential	high	high

1.2 Full list of metrics used to describe experimental settings

List of metrics used to describe the experiments. We denote [oracle] those metrics which are not accessible to a researcher in an ordinary observational study, but are available to us as the creators of the competition data set. We further denote by [knob]the oracle metrics that correspond to the explicit experimental settings we created, as described in Subsection 4.3. After each non-knob metric we list in parentheses which aspect of the experiment are they meant to measure.

- \bullet [oracle][knob]Degree of outcome nonlinearity: 0, 1, 2 for linear, non-linear, step-function response surface.
- [oracle][knob]Degree of treatment assignment nonlinearity: 0, 1, 2 for linear, non-linear, step-function treatment assignment model.
- [oracle][knob]Percentage of treated: setting more treated or more control units. Note that despite being an oracle metric, this is in fact easily estimated from data, and is *included as a non-oracle measure in the discussion*.
- [oracle][knob]Overlap: binary, whether there was or was not considerable overlap between treated and control.
- [oracle][knob]Alignment: 0,1,2 for no, low, and high alignment between the confounders pertaining to treatment assignment and confounders pertaining to outcome.
- [oracle][knob]Treatment effect heterogeneity: 0, 1, 2 for no, low or high treatment effect heterogeneity.
- [oracle] Correlation between true propensity score and the outcome (alignment).

- [oracle]Mean Mahalanobis distance to nearest counterfactual neighbor in the "ground truth" design matrix (overlap).
- [oracle] Euclidean norm of distance between mean of control and mean of treated in "ground truth" design matrix (balance).
- [oracle] Wasserstein distance [Villani, 2008, Cuturi, 2013] between treated and control using the "ground truth" design matrix (balance).
- $[oracle]R^2$ of the logit of the true propensity score regressed on the observable design matrix (treatment assignment nonlinearity).
- $[oracle]R^2$ of the true treatment effect regressed on the observable design matrix.
- $[oracle]R^2$ of the outcome regressed on the "ground truth" design matrix (outcome nonlinearity).
- [oracle] The ratio of the R^2 of the outcome regressed on the observable design matrix divided by the R^2 of the outcome regressed on the "ground truth" design matrix (outcome nonlinearity).
- [oracle] R^2 of the true potential outcome function Y(0) on the control units (Z=0) in the observable design matrix (outcome nonlinearity).
- [oracle] R^2 of the true potential outcome function Y(0) on the control units (Z=0) in the "ground truth" design matrix (outcome nonlinearity).
- [oracle] R^2 of the true potential outcome function Y(1) on the treated units (Z=1) in the observable design matrix (outcome nonlinearity).
- [oracle] R^2 of the true potential outcome function Y(1) on the treated units (Z=1) in the "ground truth" design matrix (outcome nonlinearity).
- [oracle]Standard deviation of the ground truth treatment effect function $E[Y(1) Y(0) \mid X]$ (treatment effect heterogeneity).
- R^2 of the observed outcome Y on the observed design matrix (outcome nonlinearity).
- R^2 of fitting a propensity score model estimated with logistic regression on the observable design matrix (treatment assignment nonlinearity).
- R^2 between the estimated unit level treatment effect estimated by BART (E $[\hat{Y}(1) \hat{Y}(0) \mid X]$), and propensity scores estimated with logistic regression on the observable design matrix (alignment).
- Mean Mahalanobis distance to nearest counterfactual neighbor in the observable design matrix (overlap).
- Euclidean norm of distance between mean of control and mean of treated in the observable design matrix (balance).
- Wasserstein distance [Villani, 2008, Cuturi, 2013] between treated and control using the observable design matrix (balance).

2 Submissions and Acknowledgements

We would like to thank the following people for taking the time to submit. Affiliations are those of the first author at the time of submission and methods are in no particular order. Some methods were submitted as being representative in their fields and may not reflect their submitter's beliefs for best practices.

Do-It-Yourself Methods

Method	Author	Institution		
IPTW estimator	Chanmin Kim	Deptartment of Biostatistics, Harvard University		
MITSS	Liangyuan Hu and Chenyang Gu	Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai		
Bayes LM	Christoph Kurz	German Research Center for Environmental Health, Helmholtz Zentrum Mnchen		
Regression Trees	Dave Harris	Department of Wildlife Ecology and Conservation, University of Florida		
Calibrated IPW	Gi-Soo Kim	Department of Statistics, Seoul National University		
DR w/GBM + MDIA and Ad Hoc	John Lockwood	Educational Testing Service		
Weighted GP	Junfeng Wen and Russ Grenier	Department of Computing Science, University of Alberta		
LAS Gen GAM	Leonid Liu and Annie Wang	Analyst Institute		
GLM-Boost Manuel Huber		German Research Center for Environmental Health, Helmholtz Zentrum Mnchen		
Manual	Mao Hu	Acumen, LLC		
RBD TwoStepLM	Peng Ding	Department of Statistics, University of California Berkeley		
ProxMatch	Hui Fen Tan, David Miller, and James Sav- age	Department of Statistics, Cornell University		
VarSel NN	Zhipeng Hou and Bryan Keller	Teacher's College, Columbia University		

Black Box Methods

Method	Author	Institution	
MHE Algorithm	Peter Aronow	Department of Political Science, Yale University	
BART Douglas Gala and separately No Bohme Carnegie		Department of Math, University of Maryland and Zilber School of Pub- lic Health, University of Wisconsin- Milwaukee	
teffects methods	Seth Lirette	Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center	
LASSO+CBPS	James Pustejovsky	Department of Computer Science, Brandeis University	
calCause	Chen Yanover, Omer Weissbrod, Michal Ozery-Flato, Tal El- Hay, Assaf Gottlieb and Yishai Shimoni	IBM Research - Haifa	
BalanceBoost	Qingyuan Zhao	Department of Statistics, Stanford University	
Tree Strat and Adj. Tree Strat	Stefan Wager	Department of Statistics, Stanford Unversity	
h2o Ensemble	Hyunseung Kang	Graduate School of Business, Stanford University	
CBPS	Yongnam Kim	Department of Educational Psychology, University of Wisconsin Madison	
SL+TMLE	Susan Gruber and Mark van der Laan	T.H. Chan School of Public Health, Harvard University	

References

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *Advances in Neural Information Processing Systems*, pages 2292–2300, 2013.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.