

CredX:

Acquisition and Operation Risk Analytics: Final Submission

PGDDS: December-2018

By: Pravin Pawar and Aashish Sharma

Problem Statement

- CredX is a leading credit card provider that gets thousands of credit card applications every year. But in the past few years, it has experienced an increase in credit loss.
- The CEO believes that the best strategy to mitigate credit risk is to 'acquire the right customers'.

Objective

- The objective is to help CredX identify the right customers using predictive models.
- To build an application scorecard and identify the cut-off score below which one would not grant credit cards to applicants.
- We need to determine the factors affecting credit risk and create strategies to mitigate the acquisition risk and assess the financial benefit of the project.

Methodology

Analytics Framework

CRISP-DM Framework

(Cross-industry standard process for data mining)

Objective

Identify Customer who could default?

Available Data

Customer Demographic Data and Customer Credit Bureau Data

Variable Identification **Techniques**

WOE and IV

(Weight Of Evidence and Information Values)

Models Tried

(Ensemble technique: multiple models tried to get the optimum results)

- Logistic Regression
- Random Forest
- **ADA Boost**
- **Light Gradient Boosting**
- **Gradient Boosting**

List of Variables

Customer's **Demographic** Data

Application ID
Age
Gender
Marital Status
No of dependents
Income
Education
Profession
Type of residence
No of months in current residence
No of months in current company
Performance Tag

Presence of open auto loan

Performance Tag

Customer's Data

Credit Bureau Application ID No of times 90 DPD or worse in last 6 months No of times 60 DPD or worse in last 6 months No of times 30 DPD or worse in last 6 months No of times 90 DPD or worse in last 12 months No of times 60 DPD or worse in last 12 months No of times 30 DPD or worse in last 12 months Avgas CC Utilization in last 12 months No of trades opened in last 6 months No of trades opened in last 12 months No of PL trades opened in last 6 months No of PL trades opened in last 12 months No of Inquiries in last 6 months (excluding home & auto loans) No of Inquiries in last 12 months (excluding home & auto loans) Presence of open home loan Outstanding Balance Total No of Trades

.....

Approach

Variables Considered for Analysis Basis WOE and Information Value

Demographic Data

	IV	
Feature	IV	
Months in Current Residence	0.182606	
Income	0.139102	
Months in Current Company	0.090508	
Income_Per_Dependent	0.068326	
No of dependents	0.039303	
Age	0.012360	
Profession	0.007569	
Type of residence	0.001889	
Education	0.001575	
Marital Status	0.000751	
Gender	0.000078	

Credit Bureau Data

Feature	IV
30 DPD in 12M	0.856121
30 DPD in 6M	0.855173
60 DPD in 12M	0.774534
60 DPD in 6M	0.760158
90 DPD in 12M	0.740845
90 DPD in 6M	0.586412
CC Utilization in 12M	0.561875
Trades Opened in 12M	0.536770
PL Trades Opened in 12M	0.470251
Outstanding Balance	0.444760
Total No of Trades	0.402015
PL Trades Opened in 6M	0.379986
Trades Opened in 6M	0.347077
Inquiries in 6M	0.339339
Inquiries in 12M	0.311907
Presence of open home loan	0.048302
Have_Secured_Loan	0.042299
Presence of open auto loan	0.001875

Correlation using Heatmap for Demographics Data

No high correlation within variables.

- 0.6

- 0.4

- 0.2

- 0.0

Demographic Model: Logistic Regression Performance

Iteration 1: Results

At threshold 49 we have 0.63 & 0.62 as Precision and recall respectively.

Threshold	Accuracy	Sensitivity	Specificity	AUC
45.0	0.62	0.71	0.53	0.62
46.0	0.62	0.69	0.56	0.62
47.0	0.62	0.67	0.58	0.62
48.0	0.62	0.64	0.60	0.62
49.0	0.63	0.62	0.63	0.63
50.0	0.62	0.60	0.65	0.62
51.0	0.62	0.57	0.67	0.62
52.0	0.62	0.55	0.70	0.62
53.0	0.62	0.53	0.72	0.62
54.0	0.62	0.50	0.74	0.62

Iteration 2 (Final Model): Results

At threshold 49 we have 0.63 & 0.62 as Precision and recall respectively.

Threshold	Accuracy	Sensitivity	Specificity	AUC
45.0	0.55	0.71	0.54	0.62
46.0	0.57	0.68	0.56	0.62
47.0	0.59	0.66	0.59	0.62
48.0	0.61	0.64	0.61	0.62
49.0	0.63	0.62	0.63	0.63
50.0	0.65	0.60	0.66	0.63
51.0	0.67	0.57	0.68	0.63
52.0	0.69	0.55	0.70	0.63
53.0	0.70	0.53	0.72	0.63
54.0	0.72	0.52	0.74	0.63

Train and Test Scores

Training Data Score

******* 49 *******

Accuracy: 0.63

Sensitivity / Recall: 0.62

Specificity: 0.63

ROC - AUC: 0.63

Test Data Score

******* 49 *******

Accuracy: 0.63

Sensitivity / Recall: 0.62

Specificity: 0.63

Demographic Model: Random Forest Performance

Results

Sensitivity & Specificity of model using demographic data is not good which is 0.63

Threshold	Accuracy	Sensitivity	Specificity	AUC
0.0	0.06	1.00	0.00	0.50
5.0	0.06	1.00	0.00	0.50
10.0	0.06	1.00	0.00	0.50
15.0	0.06	1.00	0.00	0.50
20.0	0.06	1.00	0.00	0.50
25.0	0.08	1.00	0.02	0.51
30.0	0.19	0.97	0.14	0.56
35.0	0.35	0.90	0.31	0.60
40.0	0.49	0.79	0.47	0.63
45.0	0.62	0.67	0.61	0.64
50.0	0.72	0.56	0.73	0.65
55.0	0.80	0.45	0.82	0.63
60.0	0.86	0.32	0.90	0.61
65.0	0.90	0.21	0.95	0.58
70.0	0.93	0.12	0.98	0.55
75.0	0.94	0.06	0.99	0.52
80.0	0.94	0.02	1.00	0.51
85.0	0.94	0.00	1.00	0.50
90.0	0.94	0.00	1.00	0.50

Correlation using Heatmap for Combined Data

- High collinearity between independent variables in data set.
- Will drop variable with more than 80% collinear to each other.

- 0.50

- 0.25

- 0.00

- -0.25

Feature Selection: RFE (List of features selected post RFE)

Features	VIF
Age	1.07
Marital Status	1.05
No of dependents	1.03
Income	1.17
Education	1.00
Profession	1.01
Type of residence	1.00
Months in Current Company	1.09
30 DPD in 12M	1.73
CC Utilization in 12M	2.09
PL Trades Opened in 6M	1.72
Inquiries in 6M	1.56
Presence of open auto loan	1.28
Have_Secured_Loan	1.35

- RFE (Recursive Feature Elimination) technique to select most important features.
- 13 features out of 23 features considered post multiple iteration of model evaluation variable selection

Model Results and Insights: Logistic Regression

- **SMOTE** (**Synthetic Minority Over-sampling Technique**): SMOTE is an oversampling technique that generates synthetic samples from the minority class. It is used to obtain a synthetically class-balanced or nearly class-balanced training set, which is then used to train the classifier.
- Model Output:

Train and Test Scores

Training Data Score

****** 49 *******

Accuracy: 0.69

Sensitivity / Recall: 0.71

Specificity: 0.69

ROC - AUC: 0.7

Test Data Score

******* 49 *******

Accuracy: 0.69

Sensitivity / Recall: 0.69

Specificity: 0.69

Model Results and Insights: Random Forest

Train and Test Scores

Training Data Score

******** 48 *******

Accuracy: 0.71

Sensitivity / Recall: 0.7

Specificity: 0.71

ROC - AUC: 0.71

Test Data Score

******* 48 *******

Accuracy: 0.71

Sensitivity / Recall: 0.67

Specificity: 0.72

Threshold	Accuracy	Sensitivity	Specificity	AUC
45.0	0.67	0.76	0.66	0.71
46.0	0.68	0.75	0.68	0.71
47.0	0.70	0.74	0.69	0.72
48.0	0.71	0.72	0.71	0.72
49.0	0.73	0.71	0.73	0.72
50.0	0.74	0.69	0.75	0.72
51.0	0.76	0.68	0.76	0.72
52.0	0.77	0.66	0.78	0.72
53.0	0.78	0.65	0.79	0.72
54.0	0.78	0.63	0.80	0.72

Model Results and Insights: AdaBoost Classifier

Train and Test Scores

Training Data Score

******* 49 *******

Accuracy: 0.67

Sensitivity / Recall: 0.73

Specificity: 0.67

ROC - AUC: 0.7

Test Data Score

******* 49 *******

Accuracy: 0.68

Sensitivity / Recall: 0.71

Specificity: 0.67

Threshold	Accuracy	Sensitivity	Specificity	AUC
45.0	0.36	0.93	0.33	0.63
46.0	0.43	0.90	0.40	0.65
47.0	0.52	0.85	0.50	0.68
48.0	0.59	0.80	0.58	0.69
49.0	0.67	0.73	0.67	0.70
50.0	0.75	0.66	0.75	0.71
51.0	0.79	0.60	0.81	0.70
52.0	0.84	0.53	0.85	0.69

Model Results and Insights: Gradient Boosting Classifier

Train and Test Scores

Training Data Score

******** 9 ********

Accuracy: 0.72

Sensitivity / Recall: 0.69

Specificity: 0.73

ROC - AUC: 0.71

Test Data Score

******* 9 *******

Accuracy: 0.73

Sensitivity / Recall: 0.66

Specificity: 0.73

Threshold	Accuracy	Sensitivity	Specificity	AUC
5.0	0.25	0.98	0.18	0.58
6.0	0.47	0.91	0.42	0.67
7.0	0.56	0.85	0.53	0.69
8.0	0.66	0.80	0.64	0.72
9.0	0.73	0.73	0.73	0.73
10.0	0.78	0.67	0.79	0.73
11.0	0.82	0.61	0.84	0.72
12.0	0.84	0.56	0.87	0.71
13.0	0.86	0.52	0.89	0.71
14.0	0.87	0.49	0.91	0.70

Model Results and Insights: Light GBM

Train and Test Scores

Training Data Score

******* 43 *******

Accuracy: 0.69

Sensitivity / Recall: 0.71

Specificity: 0.69

ROC - AUC : 0.7

Test Data Score

******* 49 *******

Accuracy: 0.69

Sensitivity / Recall: 0.69

Specificity: 0.69

Feature Importance as per Random Forest Model

Top 3 features most important used to predict defaulters:

- 30 DPD in 12 Months
- CC utilization in 12 Months
- PL Trades Opened in 6 Months

Best Model Selection

Max Score

309.0

325.0

335.0

342.0

349.0

357.0

364.0

372.0

377.0

391.0

Application Score Card

■ The give Points Double Over is 20, Base Score is 400 and Odds is 10

Score =
$$\sum_{i=1}^{n} (-(woei * \beta_i + \frac{a}{n}) * factor + offset/n)$$

Factor = points to double/Ln(2)

Offset = score
$$-(factor * ln(odds))$$

- Threshold score is 335. Score Lower than this would mean beyond this score the customers probability of default would increase to 70%
- $\hbox{\bf Implementing this scorecard means 70% of the default customer will not be given credit cards below the threshold }$
- Total customers rejected basis the scorecard: 21,345
- Correctly defaulter customer identified by the model: 70%

Odds	Score
10	400
20	420
40	440

Credit Score Card:

Max Score for the Defaulter

in 3rd Decile is 335 hence we

have considered it as the

threshold

Score <= 335 : High Risk Customer (1 - 3 Decile)

Decile

1

2

3

4

5

6

8

9

10

Score Between 336 - 363 : Medium Risk Customer (4 - 7 Decile)

Total

7115

7115

7115

7115

7115

7115

7115

7115

7115

7115

Defaulter

1744.0

738.0

500.0

338.0

320.0

231.0

200.0

124.0

93.0

79.0

Min Score

270.0

309.0

325.0

335.0

342.0

349.0

357.0

364.0

372.0

377.0

■ Score >= 364 : Low Risk Customer (8 - 10 Decile)

Credit Loss: Impact Analysis of the Score Card

There could be incremental saving in the acquisition cost by targeting the right set of customer

Assuming Current Acquisition Cost is: 100%

Post Implementing Scorecard Acquisition Cost would Reduce to: 70%

Net Saving of: 30%

Post Score Card Implementation Acquisition Cost

Credit Loss: Impact Analysis of the Model

- Current rate of default customer is at 6%
- Post model implementation of the Model the default rate is suppose to drop to 2.6%

Current Credit Loss at Risk: \$ 5,189 Mn. (6% of total Outstanding)

(total outstanding balance of the customer who are marked as defaulter)

- Post model implementation 70% default customer would not be granted credit card.
- Since there is a decrease of 30% in the over all population the amount of credit loss would be \$ 1,625 Mn. (2.6% of \$61,945 Mn.)
- If similar profile of another 30% customers are acquired then the Credit Loss would be \$2,594 Mn.

Net Savings in Credit Loss: \$ 2,594 Mn. (2.6% of total Outstanding)

(total outstanding balance of the customer who are marked as defaulter)

