Diskretne strukture UNI: 2. računski izpit

3. februar 2023

Čas pisanja: 90 minut. Dovoljena je uporaba enega lista velikosti A4 z obrazci. Uporaba elektronskih pripomočkov ni dovoljena. Rezultati bodo objavljeni na ucilnica.fri.uni-lj.si. Vse odgovore dobro utemelji!

št	evi	lka	1	
30	CVI	iku	2	
			3	

1. naloga (25 točk)

Naj bo X = X(p,q) neznani izraz in naj bo $I = p \lor \neg q \lor X \Rightarrow p \land (q \Leftrightarrow X)$.

a) (10 točk) Ali je izraz *I* lahko protislovje?

	n	q	x	$p \vee \neg q \vee$	$\bigcap_{X} \overset{4}{\rightarrow} n$	3)
	р	4	^	P * 19 *	P	/ (9	→ <i>1</i> 1) -
∫.	0	0	(0)	4	(0)	0	1	
l _.	0	0	1	1	0	0	0	
5	0	1	0	0	1	0	0	
}	0	1	1	1	0	0	1	
{	1	0	0	1	1	1	1	
(1	0	1	1	0	٥	0	
}	1	1	<u>©</u>	1	0	0	0	
	1	1		1	1	1	1	
-				1.	†	3.	۵.	

(Ŧ	~0			
	р	q	×	Х1	X٤
•	0	0	0 ali 1	0	1
	0	1	1	1	1
•	1	0	1	1	1
•	1	1	0	0	0
•				1 ,	/

I je predislavje, če ma X eno od teh remienostrih tabel.

b) (**10 točk**) Ali je izraz *I* lahko tavtologija?

I	~ 1	7	
р	q	×	
0	0	???	Pri p~2~0 bo I~0 ne glide na viduost X, zato I ne
0	1	0	more biti tautologija.
1	0	0	00
1	1	1	

c) (5 točk) Poišči (do enakovrednosti izjavnih izrazov natančno) vse možne izraze X, za katere je I protislovje ali tavtologija, ter vsakega od njih zapiši z uporabo največ dveh izjavnih veznikov.

$$\begin{array}{c|c} X_1 & X_2 \\ \hline 0 & 1 \\ \hline 1 & 1 \\ \hline 0 & 0 \\ \end{array} \qquad \begin{array}{c} X_1 \sim \ 7 \ (p \Leftrightarrow 2) \sim \ p \lor 2 \\ X_2 \sim \ 7 \ (p \land 2) \sim \ p \land 2 \\ \end{array}$$

2. naloga (25 točk)

Na množici $\mathcal N$ vseh nizov iz črk A, B in C definiramo relacijo s predpisom

$$\alpha R\beta \Leftrightarrow \alpha \text{ in } \beta \text{ sta iste oblike,}$$

pri čemer pravimo, da sta niza iste oblike, če obstaja permutacija črk, s katero iz prvega niza dobimo drugega. Na primer, *ABBA* je iste oblike kot *ACCA* in *CBBC* (vsi so oblike 1221), nobeden od njih pa ni iste oblike kot *AABB* (oblike 1122). Nizi različnih dolžin niso nikoli iste oblike.

a) (5 točk) Naj bo $\alpha = ACC$. Naštej vse nize, ki so v relaciji $R \times \alpha$.

b) (5 točk) Naj bo $\mathcal{N}_2 \subset \mathcal{N}$ podmnožica vseh nizov dolžine 2. Nariši graf relacije R na \mathcal{N}_2 .

- c) (10 točk) Ali je relacija R na \mathcal{N} ekvivalenčna? Zakaj?
- · R je ruflirnima: Vd: dRd (Miz d je iste oblire Izot d)
- · R je simetnicina: ∀d,g: (dRg ⇒ gRd) (ce je d iste oblihe kot g, je tudi g iste oblihe hot d)
- R je transzitirma: $\forall d_1 d_1 x (dRd_1 AdRX \Rightarrow dRX)$ (če je d isk obliže Rot g in g isk obliže Rot Y, je tudi d isk obliže Rot Y)

Ker je R reflerrima, simetricina in tranzitima, je errivalencina.

d) (5 točk) Na koliko razredov razbije relacija R množico \mathcal{N}_3 ?

Oblihe mixor dobříne 3? 111 112 121 211 123
$$\Rightarrow \underline{S}$$
 ehrivolenčníh rozredov

samo 1 črha 2 nazliční 3 nazliční črhe mpn. ABC, ACB, BAC, ...

AAA, BBB, CCC črhi

mpn. AAB, AAC, BBA, ... $\Rightarrow [AAB]$ [ABC]

ABA, ACA, BAB, ... $\Rightarrow [ABA]$

ABB, ACC, ... $\Rightarrow [ABB]$

3. naloga (25 točk)

Dani sta permutaciji

a) (5 točk) Zapiši α in β kot produkt disjunktnih ciklov in za vsako določi njene ciklično strukturo, red in parnost.

$$d = (1)(2468)(3579)(10) \qquad \text{ci2. stn.}: 1+1+4+4 \qquad \text{red}: lcm(1,1,1,1,1) = 4 \qquad \text{parmost: soda}$$

$$(upn. 6 \text{ tramp.})$$

$$d = (18732)(491065) \qquad \qquad 5+5 \qquad lcm(5,5) = 5 \qquad \text{soda}$$

$$(upn. 8 \text{ tn.})$$

b) (10 točk) Poišči vse možne ciklične strukture permutacije π , ki reši enačbo

$$\alpha * \pi^{10} * \alpha^{-1} = \alpha * \beta.$$

$$\pi^{40} * \alpha^{-1} = \beta / * \alpha$$

$$\pi^{40} = \beta * \alpha$$

$$\int_{0}^{4} d = (1 \ 8 \ 7 \ 3 \ 2)(4 \ 9 \ 10 \ 6 \ 5) + (2 \ 4 \ 6 \ 8)(3 \ 5 \ 7 \ 9) = (1 \ 2)(3 \ 4)(5 \ 6 \ 7)(8 \ 9 \ 10)$$

$$= (1 \ 2)(3 \ 4)(5 \ 6 \ 7)(8 \ 9 \ 10)$$

$$= (1 \ 2)(3 \ 4)(5 \ 6 \ 7)(8 \ 9 \ 10)$$

$$= (2 + 2 + 3 + 3)$$

$$= (2 + 2 + 3 + 3)^{40} = (2 + 2 + 3 + 3)$$

c) (10 točk) Za vsako ciklično strukturo iz (b) poišči vsaj eno rešitev dane enačbe.

i)
$$\pi$$
: 4+3+3 $\pi = (abcd)(efg)(hij)$

$$\pi^{10} = (abcd)^2 (efg)^1 (hij)^1 = (ac)(bd)(efg)(hij) = 5*d$$

$$1 2 3 4 5 6 7 8 9 10$$

$$\underline{\pi} = (1324)(567)(8910)$$

4. naloga (25 točk)

Dana sta grafa na sliki.

a) (5 točk) Določi kromatično število G_1 . Ali je G_1 dvodelen? Ali vsebuje G_1 kakšen 4-cikel?

246810 12 14

G1 voolouje cital like dolzine $(C_7) \Rightarrow \chi(G_1) \ge 3$ na volitei je barvanje s 3 barvanni $\Rightarrow \chi(G_1) \le 3$ $\chi(G_1) = 3$

 G_1 mi dvodelen, Xen $X(G_1) \neq 2$

G1 vschuje 4-cirle (mpn. 1234)

b) (5 točk) Ali je G_2 Eulerjev? Zakaj (ne)?

G2 je Eulejev, den so vsa vozlišča sode stopuje

c) (5 točk) V grafu G_2 poišči vsaj po en 4-cikel, 6-cikel, 7-cikel in 8-cikel.

d) (10 točk) Sta grafa G_1 in G_2 Hamiltonova?

Oba sta Hamiltonova, her vockuje ta H. cirel (= cirel, hi vockuje voa vochisãa).