

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta086

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

* Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

Se consideră dreapta (d): 3x + 2y - 1 = 0 și punctele A(1,-1), B(-1,1), C(-1,2).

- (4p) a) Să se precizeze care dintre punctele A, B, C nu sunt situate pe dreapta (d).
- (4p) b) Să se calculeze aria triunghiului *ABC*.
- (4p) $| c \rangle$ Să se calculeze perimetrul triunghiului ABC.
- (4p) d) Să se calculeze distanța de la punctul B la dreapta 3x + 2y 1 = 0.
- (2p) e) Să se calculeze produsul scalar al vectorilor $\overrightarrow{AB} = -2\overrightarrow{i} + 2\overrightarrow{j}$ şi $\overrightarrow{AC} = -2\overrightarrow{i} + 3\overrightarrow{j}$.
- (2p) f) Să se determine $m, n \in \mathbb{R}$ astfel încât dreapta y = mx + n să treacă prin punctul B și să fie perpendiculară pe dreapta d.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze probabilitatea ca un element al mulțimii $\{-\sqrt{2}, -1, 0, 1, \sqrt{2}\}$ să fie situat în intervalul (-1,1).
- (3p) b) Să se rezolve în \mathbb{Z}_4 ecuația $\hat{x}^2 + \hat{3}\hat{x} + \hat{2} = \hat{0}$.
- (3p) c) Să se calculeze determinantul matricei $A = \begin{pmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{pmatrix}$, pentru $x \in \mathbf{R}$.
- (3p) d) Știind că $\ln 3 = a$ și $\ln 2 = b$, să se arate că $\log_2 3 = \frac{a}{b}$.
- (3p) e) Să se arate că numărul z=1-i verifică egalitatea $z^3=2(z^2-z)$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + 2^{-x}$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}.$
- (3p) e) Să se calculeze $\int_0^1 \frac{x^2}{x^3 + 13} dx.$

SUBIECTUL III (20p)

Se consideră matricele I_3 , O_3 , A, $B \in M_3(C)$, unde $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

$$A = \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 și funcția $f: \mathbb{C} \to \mathbb{C}$, cu $f(x) = \det(B - xI_3)$, având forma algebrică

$$f(x) = ax^3 + bx^2 + cx + d$$
 (cu a, b, c, d \in \mathbf{C}).

Considerăm cunoscut că $f(B) = aB^3 + bB^2 + cB + dI_3 = O_3$.

- (4p) a) Să se determine matricea A^2 .
- (4p) b) Să se arate că pentru orice $z \in \mathbb{C}$, determinantul matricei $X(z) = I_3 + zA$ este egal cu 1.
- (4p) c) Să se demonstreze că $I_3 = (I_3 + A)(I_3 A + A^2)$.
- (2p) d) Să se arate că matricea $X(1) = I_3 + A$ este inversabilă și să se precizeze inversa sa.
- (2p) e) Să se determine o matrice $B \neq O_3$ pentru care $AB = O_3$.
- (2p) f) Să se arate că matricea $X = I_3 + nzA + \frac{n(n-1)}{2}z^2A^2$ este inversabilă $\forall n \in \mathbb{N}^*, \forall z \in \mathbb{C}$.
- (2p) g) Să se arate că, dacă $B \in M_3(\mathbb{C})$ și $\det(I_3 + zB) = 1$ pentru orice $z \in \mathbb{C}$, atunci $B^3 = O_3$.

SUBIECTUL IV (20p)

Se consideră funcțiile $f: \mathbf{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $f(x) = \operatorname{arctg} x$, $g: \mathbf{R} \to \mathbf{R}$,

 $g(x) = f(x+1) - f(x) - f\left(\frac{1}{1+x+x^2}\right)$ și șirul $(a_n)_{n\geq 1}$ cu termenul general

$$a_n = \operatorname{arctg} \frac{1}{1+1+1^2} + \operatorname{arctg} \frac{1}{1+2+2^2} + \dots + \operatorname{arctg} \frac{1}{1+n+n^2}, \quad n \in \mathbb{N}^*.$$

- (4p) a) Să se determine f'(x), $x \in \mathbb{R}$.
- (4p) b) Să se arate că g'(x) = 0, $\forall x \in \mathbb{R}$.
- (4p) c) Să se arate că g(x) = 0, $\forall x \in \mathbb{R}$.
- (2p) d) Să se arate că $\int_{x}^{x+1} \frac{1}{t^2 + 1} dt = \operatorname{arctg} \frac{1}{1 + x + x^2}$, oricare ar fi $x \in \mathbb{R}$.
- (2p) e) Să se calculeze $\lim_{x\to\infty} (\arctan(x+1) \arctan x)$.
- (2p) **f**) Să se arate că $a_n = \arctan(n+1) \frac{\pi}{4}, n \in \mathbb{N}^*$.
- (2p) g) Să se calculeze $\lim_{n\to\infty} \left(\arctan \frac{1}{1+1+1^2} + \arctan \frac{1}{1+2+2^2} + \dots + \arctan \frac{1}{1+n+n^2} \right)$.