Docket No. 1999-0532 CON

<u>-WHAT IS CLAIMED IS:</u>

1

2

3

1	1. An optical device that compensates for polarization mode dispersion (PMD)
2	of an optical signal, comprising;
3	a first rotating device that rotates the polarization angle of the optical signal in a
4	frequency-dependent manner; and
5	a first-order PMD compensator that receives the rotated signal and compensates
6	for first-order PMD; and
7	a second rotating device that receives the compensated signal and rotates the
8	polarization angle of the compensated signal in a frequency-dependent manner to
9	compensate for higher-order PMD.
1	2. The optical device of claim 1, wherein the first rotating device and the second
2	rotating device use substantially the same components.
1	3. The optical device of claim 2, wherein the first rotating device performs a
2	transform $R(\omega K)$ and also performs a transform $R^{-1}(\omega K)$, wherein R is an operator whose
3	effect is equivalent to rotation in Stokes space, ω denotes the deviation from a central
4	angular frequency of the optical signal and K relates to a variable delay.
1	4. The optical device of claim 1, wherein the first rotating device performs a
2	transform $R(\omega K)$ and the second rotating device performs a transform $R^{-1}(\omega K)$, wherein
3	${\bf R}$ is an operator whose effect is equivalent to rotation in Stokes space, ω denotes the
4	deviation from a central angular frequency of the optical signal and ${\bf K}$ relates to a variable
5	delay.
1	5. The optical device of claim 1, wherein the first rotating device comprises a
2	second polarization rotator, an interferometer and a third polarization rotator.
1	6. The optical device of claim 1, wherein the optical device is adjusted such that
2	the polarization at the center frequency of the optical signal is substantially not changed.
1	7. The optical device of claim 1, wherein the optical device has two adjustable
2	delays.

8. The optical device of claim 1, wherein passing an optical signal through the

first rotation device in a forward direction causes a first transformation $R(\omega K)$ of the

optical signal and passing the optical signal in a backward direction causes a second

14

4

-transformation- $R^{-1}(\omega K)$, wherein ω denotes the deviation from a central angular 5 frequency of the optical signal and K relates to a variable delay. 1 The optical device of claim 1, wherein a transform is performed according to 2 the equation: $\mathbf{M}(\omega) = \mathbf{R}(\theta)\mathbf{R}(\omega\mathbf{K})\begin{bmatrix} \exp(i\omega\tau/2) & 0 \\ 0 & \exp(-i\omega\tau/2) \end{bmatrix} \mathbf{R}^{-1}(\omega\mathbf{K}),$ 3 wherein R is an operator whose effect is equivalent to rotation in Stokes space, its 4 5 argument (θ or ωK in the equation above) is a three-dimensional rotation vector whose direction is the axis of rotation in Stokes space and whose angle is the angle of rotation, ω 6 7 denotes the deviation from a central angular frequency of the optical signal, K (the 8 magnitude of K) and τ relate to adjustable delays. 1 10. In an optical device that compensates for polarization mode dispersion 2 (PMD), a method for adjusting the optical device, comprising: 3 adjusting a group delay device; and 4 adjusting a device that performs a frequency-dependent polarization rotation in 5 Stokes space. 1 11. The method of claim 10, wherein the group delay device is used to 2 substantially compensate for first-order PMD, and the device that performs 3 frequency-dependent polarization rotation is used to compensate for higher-order PMD. 1 12. The method of claim 10, wherein the group delay device includes at least a 2 first adjustable frequency-independent rotating device and a delay τ . 1 13. The method of claim 10, wherein the device that performs the first and last 2 frequency-dependent polarization rotation includes at least a second and third adjustable 3 frequency -independent rotating devices and a delay K. 1 14. The method of claim 10, wherein the optical device is adjusted such that the 2 polarization at a center frequency of an optical signal is substantially not changed. 1 15. A method for compensating for polarization mode dispersion (PMD) of an 2 optical signal, comprising; 3 first rotating a first polarization angle of the optical signal in a

frequency-independent manner to generate an intermediate optical signal; and

3

4

5 6

- - second rotating a second polarization angle of the intermediate optical signal in a frequency-dependent manner to compensate for higher-order PMD. 6 16. The method of claim 15, further comprising compensating the intermediate 1 optical signal for first-order PMD of the intermediate optical signal before second 2 3 rotating. 17. The method of claim 16, wherein compensating the intermediate optical 1 2 signal comprises: splitting the intermediate optical signal into a plurality of portions; 3 delaying at least one of the portions; and 4 combining the at least one delayed portion with at least a second portion of the 5 6 plurality of portions. 18. The method of claim 15, wherein first rotating and second rotating is 1 performed by a single polarization rotation device. 2 19. The method of claim 15, wherein first rotating causes a first transformation 1 2 $R(\omega K)$ of the optical signal and second rotating causes a second transformation $R^{-1}(\omega K)$, wherein ω denotes the deviation from a central angular frequency of the optical signal 3 and K relates to a variable delay. 4 5 20. The method of claim 15, wherein R is an operator whose effect is equivalent to rotation in Stokes space. 21. The method of claim 15, wherein performing the first rotating comprises at 1 least performing a polarization state rotation of an angle θ about the axis defined by the 2 frequency-independent polarization controllers, causing an interference of the optical 3 · signal and performing a second polarization state rotation by an angle $-\theta$ around the same 4 5 axis. 22. The method of claim 15, wherein a transform is performed according to the 1 2 equation: $\mathbf{M}(\omega) = \mathbf{R}(\theta)\mathbf{R}(\omega\mathbf{K})\begin{bmatrix} \exp(i\omega\tau/2) & 0 \\ 0 & \exp(-i\omega\tau/2) \end{bmatrix} \mathbf{R}^{-1}(\omega\mathbf{K}),$

wherein R is an operator whose effect is equivalent to rotation in Stokes space, its

argument (θ or $\omega \mathbf{K}$ in the equation above) is a three-dimensional rotation vector whose

direction is the axis of rotation in Stokes space and whose angle is the angle of rotation, ω

Docket No. 1999-0532 ∠o്

17

7 denotes the deviation from a central angular frequency of the optical signal, and K and τ

8 relate to adjustable delays.