Examen de seconde session - Vendredi 1er juillet 2022.

dur'ee: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits.

La qualité de la rédaction sera prise en compte dans la notation.

Le barème est donné à titre indicatif.

Dans tout le sujet $(\Omega, \mathcal{F}, \mathbf{P})$ désigne un espace de probabilité.

Exercice 1. (pts) Les deux questions suivantes sont indépendantes.

- 1. Quand dit on d'évènements $(A_i)_{i\in I}$ qu'ils sont indépendants (I désigne un ensemble quelconque pas nécessairement fini)?
- 2. Soit $c \in \mathbb{R}$ et X une variable aléatoire réelle telle que X = c p.s. Soit Y une variable aléatoire réelle. Montrer que X et Y sont indépendantes.

Correction.

- 1. Voir le cours.
- 2. Pour toutes fonctions boreliennes bornées f et q

$$E(f(X)g(Y)) = f(c)E(g(Y)) = E(f(X))E(g(Y)).$$

On en déduit que X et Y sont indépendantes.

Exercice 2. (pts) Soit X une variable aléatoire réelle de densité

$$f(x) = \frac{c}{x^3} 1_{[1,+\infty]}(x) \qquad x \in \mathbb{R},$$

où c désigne un certain réel.

- 1. Que vaut c? Dessiner sans justification le graphe de f.
- 2. Donner la fonction de répartition de X.
- 3. Justifier sans calcul que l'espérance de X soit bien défini et la calculer.
- 4. Que vaut $E(X^2)$?
- 5. On pose $Y = X^2$. Donner la fonction de répartition de Y et en déduire que Y admet une densité que l'on explicitera.

Correction.

1. Pour être une densité la fonction f doit vérifier $\int f(x) dx = 1$. Or $\int f(x) dx = \int_1^{+\infty} \frac{c}{x^3} dx = \frac{c}{2}$. On en déduit que c = 2.

2. Pour tout $u \in \mathbb{R}$,

$$F_X(u) = \int_{-\infty}^u f(x)dx = \begin{cases} 0 & \text{si } u \le 1\\ 1 - 1/u^2 & \text{si } u \ge 1. \end{cases}$$

3. La variable X est positive donc $\mathrm{E}(X)$ est bien défini. On calcule

$$E(X) = \int x f(x) dx = \int_{1}^{+\infty} \frac{2}{x^2} dx = 2.$$

4. La variable X^2 est positive donc $\mathrm{E}(X^2)$ est bien défini. On calcule

$$E(X^2) = \int x^2 f(x) dx = \int_1^{+\infty} \frac{2}{x} dx = +\infty.$$

5. Pour u < 0, on a bien sûr $F_Y(u) = 0$. Pour $u \ge 0$

$$F_Y(u) = P(-\sqrt{u} \le X \le \sqrt{u}) = F(\sqrt{u}) = \begin{cases} 0 & \text{si } u \le 1\\ 1 - 1/u & \text{si } u \ge 1. \end{cases}$$

On en déduit que Y admet pour densité la fonction $u \to \frac{1}{u^2} 1_{[1,+\infty]}(u)$.

Exercice 3. Soit λ et μ deux réels strictement positifs. On considère X et Y deux variables aléatoires indépendantes de lois respectives $\mathcal{E}xp(\lambda)$ et $\mathcal{E}xp(\mu)$.

- 1. Montrer que pour tout $a \in \mathbb{R}$, $\{M \le a\} \in \mathcal{F}$ et en déduire que $M = \min(X, Y)$ est une variable aléatoire.
- 2. Donner la fonction de répartition de M et en déduire la loi de M.
- 3. Justifier de l'existence de l'espérance de M et la calculer.

Correction.

- 1. On rappelle que $\mathcal{B}(\mathbb{R}) = \sigma(]-\infty,a], a \in \mathbb{R}$) et que pour montrer que M est une variable aléatoire il suffit donc de vérifier que pour tout $a \in \mathbb{R}$, $\{M \leq a\} \in \mathcal{F}$. Or $\{M \leq a\} = \{X \leq a\} \cup \{Y \leq a\}$ et comme X et Y sont deux v.a., les deux ensembles dans l'union sont dans \mathcal{F} . On conclut facilement puisque \mathcal{F} est stable par union dénombrable.
- 2. Pour tout $a \in \mathbb{R}$,

$$P(M \le a) = 1 - P(M > a) = 1 - P(X > a, Y > a).$$

Or X et Y sont indépendants donc $\mathrm{P}(X>a,Y>a)=\mathrm{P}(X>a)\mathrm{P}(Y>a).$ De plus

$$P(X > a) = \int_{a}^{+\infty} \lambda e^{-\lambda x} dx = e^{-\lambda a}.$$

On obtient donc $P(M \le a) = 1 - e^{-(\lambda + \mu)a}$. On en déduit que M suit une loi exponentielle de paramètre $\lambda + \mu$.

3. La v.a. M est positive donc on peut considérer son espérance. De plus

$$\begin{split} \mathbf{E}(M) &= \int x(\lambda + \mu) e^{-(\lambda + \mu)x} \mathbf{1}_{[0, +\infty[}(x) \ dx \\ &\stackrel{IPP}{=} \left[x e^{-(\lambda + \mu)x} \right]_{+\infty}^0 + \int_0^{+\infty} e^{-(\lambda + \mu)x} \ dx \\ &= \frac{1}{\lambda + \mu}. \end{split}$$

Exercice 4. Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires indépendantes telles que pour tout $i\geq 1$, la loi de X_i est une Bernoulli de paramètre 1/2. On note pour tout $n\geq 1$

$$Y_n = \sum_{i=1}^n \frac{X_i}{2^i}.$$

- 1. Montrer que la suite de variable $(Y_n)_{n\geq 1}$ converge p.s. en croissant vers une variable que l'on notera Y et qui vérifie $Y\in [0,1]$ p.s.
- 2. Montrez par récurrence que pour tout $n \ge 1$, Y_n suit une loi uniforme sur $\{k/2^n, k = 0, \dots, 2^n 1\}$.
- 3. Calculer, pour tout $n \geq 1$, la fonction de répartition F_n de Y_n et montrer qu'elle converge vers une fonction F.
- 4. Montrer que F est la fonction de répartition de Y et en déduire la loi de Y.

Correction.

- 1. Comme $0 \le \frac{X_i}{2^i} \le \frac{1}{2^i}$ presque sûrement la série de terme général $\frac{X_i}{2^i}$ converge p.s. Sa limite $Y \in [0,1]$ p.s. puisque le terme général est positif et $\sum_{i \ge 1} \frac{1}{2^i} = 1$.
- 2. Montrons par récurrence que pour tout $n \geq 1$, Y_n suit une loi uniforme sur $\{k/2^n, k=0,\cdots,2^n-1\}$. C'est clair pour n=1. Soit $n\geq 1$. Supposons que l'hypothèse de récurrence est vraie pour n. Pour tout $k\in\{0,\cdots,2^{n+1}-1\}$,

$$\begin{split} \mathbf{P}(Y_{n+1} = \frac{k}{2^{n+1}}) &= \mathbf{P}(X_{n+1} = 1, Y_n = \frac{k-1}{2^{n+1}}) + \mathbf{P}(X_{n+1} = 0, Y_n = \frac{k}{2^{n+1}}) \\ &= \mathbf{P}(X_{n+1} = 1)\mathbf{P}(Y_n = \frac{k-1}{2^{n+1}}) + \mathbf{P}(X_{n+1} = 0)\mathbf{P}(Y_n = \frac{k}{2^{n+1}}) \\ &= \frac{1}{2}\mathbf{P}(Y_n = \frac{k-1}{2^{n+1}}) + \frac{1}{2}\mathbf{P}(Y_n = \frac{k}{2^{n+1}}), \end{split}$$

où on a utilisé l'indépendance pour passer de la première à la deuxième ligne. Par hypothèse de récurrence, si k est impair seul le premier terme dans la somme ci-dessus est strictement positif et on obtient

$$P(Y_{n+1} = \frac{k}{2^{n+1}}) = \frac{1}{2} \frac{1}{2^n} = \frac{1}{2^{n+1}}.$$

Si k est pair, seul le second terme est strictement positif et on obtient le même résultat.

- 3. On en déduit que pour tout u < 0, $F_n(u) = 0$; pour tout $u \ge 1$, $F_n(u) = 1$ et enfin que pour tout $k = 0, \dots, 2^n 1$, F_n est constante sur $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$ égale à $(k+1)/2^n$. On en déduit que F_n converge simplement vers F définie par F(u) = 0 si $u \le 0$, u si $0 \le u \le 1$ et 1 si $u \ge 1$.
- 4. Pour tout $n \geq 1$, $F_n(u) = \mathrm{E}(1_{Y_n \leq u})$. Or la suite $1_{Y_n \leq u}$ converge p.s. vers $1_{Y \leq u}$ car la suite Y_n converge p.s. en croissant vers Y. Comme les Y_n , $n \geq 1$ sont dominées par 1 qui est intégrable, on peut appliquer le théorème de convergence dominée et on obtient que $(F_n(u))_{n\geq 1}$ converge vers $\mathrm{P}(Y \leq u)$. On en déduit que F est la fonction de répartition de Y. On reconnait la fonction de répartition d'une uniforme sur [0,1].