SUEWS Documentation

Release 2018a.alpha

micromet@University of Reading, led by Prof Sue Grimmond

CONTENTS

1	Recent publications	3
2	Introduction	5
3	SUEWS and UMEP	7
4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 9 9 9 10 10 10 11
5	Preparing to run the model 5.1 Preparatory reading	13 13 13 13 14 14 18 18
7	Input files 6.1 RunControl.nml 6.2 SUEWS_SiteInfo.xlsm 6.3 Initial Conditions file 6.4 Meteorological Input File 6.5 CBL input files 6.6 ESTM-related files 6.7 SOLWEIG input files Output files 7.1 Runtime diagnostic information 7.2 Model output files	21 21 35 143 152 153 157 159 167 168
8	Troubleshooting 8.1 How to create a directory?	177 177

	8.2 8.3 8.4 8.5 8.6 8.7	How to unzip a file A text editor Command prompt Day of year [DOY] ESTM output First things to Check if the program seems to have problems	177 177 177 177 177 178
9	Ackno	owledgements	179
10	Notat	ion	181
11	Devel	opment, Suggestions and Support	183
12	Versio	on History	185
	12.1	New in SUEWS Version 2018a	185
	12.2	New in SUEWS Version 2017b (released 2 August 2017)	185
	12.3	New in SUEWS Version 2017a (Feb 2017)	185
	12.4	New in SUEWS Version 2016a (released 21 June 2016)	186
	12.5	New in SUEWS Version 2014b (released 8 October 2014)	187
	12.6	New in SUEWS Version 2014a.1 (released 26 February 2014)	187
	12.7	New in SUEWS Version 2014a (released 21 February 2014)	187
	12.8	New in SUEWS Version 2013a	188
	12.9	New in SUEWS Version 2012b	188
	12.10	New in SUEWS Version 2012a	189
	12.11	New in SUEWS Version2011b	189
13	Differ	ences between SUEWS, LUMPS and FRAISE	191
	13.1	FRAISE Flux Ratio – Active Index Surface Exchange	191
Ref	ference	3	193
Ind	lov		107

The current version of SUEWS is v2017b. The software can be downloaded by completing this form.

This documentation site is regularly updated with new developments. For what's new in this version, see New in SUEWS Version 2018a.

The latest formal release of SUEWS is v2017b (released 1 August 2017).

The manual for SUEWS v2017b can be accessed here and should be referenced as follows:

Ward HC, L Järvi, T Sun, S Onomura, F Lindberg, F Olofson, A Gabey, CSB Grimmond (2017). SUEWS Manual V2017b Department of Meteorology, University of Reading, Reading, UK

Please refer to Ward et al. (2017) for further details v2017a:

Ward HC, Yin San Tan, AM Gabey, S Kotthaus, WTJ Morrison, CSB Grimmond. Impact of temporal resolution of precipitation forcing data on modelled urban-atmosphere exchanges and surface conditions. International Journal of Climatology. doi: 10.1002/joc.5200

Note: See other publications in the next section (if you have papers that could be added, please send them through)

CONTENTS 1

2 CONTENTS

RECENT PUBLICATIONS

Note: If you have papers to add to this list please let us and others know via the email list.

• Järvi et al. (2017)

topic Application and evalution in cold climates. Implications of warming

citation Järvi L, S Grimmond, JP McFadden, A Christen, I Strachan, M Taka, L Warsta, M Heimann 2017: Warming effects on the urban hydrology in cold climate regions Scientific Reports 7: 5833

• Kokkonen et al. (2017)

topic Downscaling climate (rainfall) data to 1 h

citation Kokkonen T, CSB Grimmond, O Räty, HC Ward, A Christen, T Oke, S Kotthaus, L Järvi 2017: Sensitivity of Surface Urban Energy and Water Balance Scheme (SUEWS)

• Ward and Grimmond (2017)

topic for example applications:

citation Ward HC, S Grimmond 2017: Using biophysical modelling to assess the impact of various scenarios on summertime urban climate across Greater London Landscape and Urban Planning 165, 142–161

• Demuzere et al. 2017

topic evaluation in Singapore and comparison with other urban land surface models

citation Demuzere M, S Harshan, L Järvi, M Roth, CSB Grimmond, V Masson, KW Oleson, E Velasco H Wouters 2017: Impact of urban canopy models and external parameters on the modelled urban energy balance QJRMS, 143, Issue 704, Part A, 1581–1596

• Ward et al. (2016)

topic Evaluation of SUEWS model

citation Ward HC, Kotthaus S, Järvi L and Grimmond CSB (2016) Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites. Urban Climate

• Ao et al. (2016)

topic Evaluation of radiation in Shanghai

citation Ao XY, CSB Grimmond, DW Liu, ZH Han, P Hu, YD Wang, XR Zhen, JG Tan 2016: Radiation fluxes in a business district of Shanghai JAMC, 55, 2451-2468

• Onomura et al. (2015)

topic Boundary layer modelling

citation Onomura S, Grimmond CSB, Lindberg F, Holmer B & Thorsson S (2015) Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme Urban Climate, 11, 1-23

• Järvi et al. (2014)

topic Snow melt model development

citation Järvi L, Grimmond CSB, Taka M, Nordbo A, Setälä H & Strachan IB 2014: Development of the Surface Urban Energy and Water balance Scheme (SUEWS) for cold climate cities Geosci. Model Dev. 7, 1691-1711

Other papers

INTRODUCTION

Fig. 2.1: Overview of SUEWS

Surface Urban Energy and Water Balance Scheme (**SUEWS**) (Järvi et al. 2011 [J11], Ward et al. 2016 [W16]) is able to simulate the urban radiation, energy and water balances using only commonly measured meteorological variables and information about the surface cover. SUEWS utilizes an evaporation-interception approach (Grimmond et al. 1991 [G91]), similar to that used in forests, to model evaporation from urban surfaces.

Fig. 2.2: The seven surface types considered in SUEWS

The model uses seven surface types: paved, buildings, evergreen trees/shrubs, deciduous trees/shrubs, grass, bare soil and water. The surface state for each surface type at each time step is calculated from the running water balance of the canopy where the evaporation is calculated from the Penman-Monteith equation. The soil moisture below each surface type (excluding water) is taken into account.

Horizontal movement of water above and below ground level is allowed. The user can specify the model time-step, but 5 min is strongly recommended. The main output file is provided at a resolution of 60 min by default. The model provides the radiation and energy balance components, surface and soil wetness, surface and soil runoff and the drainage for each surface. Timestamps refer to the end of the averaging period.

Model applicability: SUEWS is a neighbourhood-scale or local-scale model.

SUEWS AND UMEP

SUEWS can be run as a standalone model but also can be used within UMEP. There are numerous tools included within UMEP to help a user get started. The SUEWS simple within UMEP is a fast way to start using SUEWS.

The version of SUEWS within UMEP is the complete model. Thus all options that are listed in this manual are available to the user. In the UMEP SUEWS simple runs all options are set to values to allow intial exploration of the model behaviour.

The version of SUEWS within UMEP is a more recent release of the model than the independent SUEWS release.

• Pre-Processor

- Meteorological Data

- * Prepare Existing Data Transforms meteorological data into UMEP format
- * Download data (WATCH) Prepare meteorological dataset from WATCH

- Spatial Data

* Spatial Data Downloader Plugin for retrieving geodata from online services suitable for various UMEP related tools - LCZ Converter Conversion from Local Climate Zones (LCZs) in the WUDAPT database into SUEWS input data

- Urban land cover

- * Land Cover Reclassifier Reclassifies a grid into UMEP format land cover grid. Land surface models
- * Land Cover Fraction (Point) Land cover fractions estimates from a land cover grid based on a specific point in space
- * Land Cover Fraction (Grid) Land cover fractions estimates from a land cover grid based on a polygon grid

- Urban Morphology

- * Morphometric Calculator (Point) Morphometric parameters from a DSM based on a specific point in space
- * Morphometric Calculator (Grid) Morphometric parameters estimated from a DSM based on a polygon grid
- * Source Area Model (Point) Source area calculated from a DSM based on a specific point in space.

- SUEWS input data

* SUEWS Prepare Preprocessing and preparing input data for the SUEWS model

• Processor

- Anthropogenic Heat (Q_F)
 - \ast LQF Spatial variations anthropogenic heat release for urban areas
 - * \mathbf{GQF} Anthropogenic Heat (Q_F) .
- Urban Energy Balance
 - * SUEWS (Simple) Urban Energy and Water Balance.
 - * SUEWS (Advanced) Urban Energy and Water Balance.

• Post-Processor

- Urban Energy Balance
 - * SUEWS analyser Plugin for plotting and statistical analysis of model results from SUEWS simple and SUEWS advanced
- Benchmark
 - * Benchmark System For statistical analysis of model results, such as SUEWS

PARAMETERISATIONS AND SUB-MODELS WITHIN SUEWS

4.1 Net all-wave radiation, Q*

There are several options for modelling or using observed radiation components depending on the data available. As a minimum, SUEWS requires incoming shortwave radiation to be provided.

- 1. Observed net all-wave radiation can be provided as input instead of being calculated by the model.
- 2. Observed incoming shortwave and incoming longwave components can be provided as input, instead of incoming longwave being calculated by the model.
- 3. Other data can be provided as input, such as cloud fraction (see options in RunControl.nml).
- 4. NARP (Net All-wave Radiation Parameterization, Offerle et al. 2003 [O2003], Loridan et al. 2011 [L2011]) scheme calculates outgoing shortwave and incoming and outgoing longwave radiation components based on incoming shortwave radiation, temperature, relative humidity and surface characteristics (albedo, emissivity).

4.2 Anthropogenic heat flux, Q_F

- 1. Two simple anthropogenic heat flux sub-models exist within SUEWS:
 - Järvi et al. (2011) [J11] approach, based on heating and cooling degree days and population density (allows distinction between weekdays and weekends).
 - Loridan et al. (2011) [L2011] approach, based on a linear piece-wise relation with air temperature.
- 2. Pre-calculated values can be supplied with the meteorological forcing data, either derived from knowledge of the study site, or obtained from other models, for example:
 - **LUCY** (Allen et al. 2011 [lucy], Lindberg et al. 2013 [lucy2]). A new version has been now included in UMEP. To distinguish it is referred to as **LQF**
 - GreaterQF (Iamarino et al. 2011 [111]). A new version has been now included in UMEP. To distinguish it is referred to as **GQF**

4.3 Storage heat flux, ΔQ_S

- 1. Three sub-models are available to estimate the storage heat flux:
 - **OHM** (Objective Hysteresis Model, Grimmond et al. 1991 [G910HM], Grimmond & Oke 1999a [G099QS], 2002 [G02002]). Storage heat heat flux is calculated using empirically-fitted relations with net all-wave radiation and the rate of change in net all-wave radiation.

- **AnOHM** (Analytical Objective Hysteresis Model, Sun et al. 2017 [AnOHM17]). OHM approach using analytically-derived coefficients. (Not recommended in v2017b)
- **ESTM** (Element Surface Temperature Method, Offerle et al. 2005 [Oaf2005]). Heat transfer through urban facets (roof, wall, road, interior) is calculated from surface temperature measurements and knowledge of material properties. (**Not recommended in v2017b**)
- 2. Alternatively, 'observed' storage heat flux can be supplied with the meteorological forcing data.

4.4 Turbulent heat fluxes, QH and QE

- 1. **LUMPS** (Local-scale Urban Meteorological Parameterization Scheme, Grimmond & Oke 2002 [GO2002]) provides a simple means of estimating sensible and latent heat fluxes based on the proportion of vegetation in the study area.
- 2. **SUEWS** adopts a more biophysical approach to calculate the latent heat flux; the sensible heat flux is then calculated as the residual of the energy balance. The initial estimate of stability is based on the LUMPS calculations of sensible and latent heat flux. Future versions will have alternative sensible heat and storage heat flux options.

Sensible and latent heat fluxes from both LUMPS and SUEWS are provided in the *Output files*. Whether the turbulent heat fluxes are calculated using LUMPS or SUEWS can have a major impact on the results. For SUEWS, an appropriate surface conductance parameterisation is also critical [J11] [W16]. For more details see *Differences between SUEWS*, LUMPS and FRAISE.

4.5 Water balance

The running water balance at each time step is based on the urban water balance model of Grimmond et al. (1986) [G86] and urban evaporation-interception scheme of Grimmond and Oke (1991) [G91].

- Precipitation is a required variable in the meteorological forcing file.
- Irrigation can be modelled [J11] or observed values can be provided if data are available.
- Drainage equations and coefficients to use must be specified in the input files.
- Soil moisture can be calculated by the model (Use of observed soil moisture is not possible in v2017b).
- Runoff is permitted:
 - between surface types within each model grid
 - between model grids (Not implemented in v2017b)
 - to deep soil
 - to pipes.

4.6 Snowmelt

The snowmelt model within SUEWS is described in Järvi et al. (2014) [Leena2014]. Due to changes in the new model version (since v2016a) when compared to the older versions, the snow calculation has slightly changed. The main difference is that previously all surface state could freeze in 1-h time step but now the

amount of freezing surface state is calculated similar way as melt water can freeze within the snow pack. Also the snowmelt-related coefficients have slightly changed (see SUEWS_Snow.txt).

4.7 Convective boundary layer

A convective boundary layer (CBL) slab model (Cleugh and Grimmond 2001 [CG2001]) calculates the CBL height, temperature and humidity during daytime (Onomura et al. 2015 [Shiho2015]).

4.8 Thermal comfort

SOLWEIG (Solar and longwave environmental irradiance geometry model, Lindberg et al. 2008 [FL2008], Lindberg and Grimmond 2011 [FL2011]) is a 2D radiation model to estimate mean radiant temperature.

Fig. 4.1: Overview of scales. Source: Onomura et al. (2015) [Shiho2015]

PREPARING TO RUN THE MODEL

The following is to help with the model setup. Note that there is a version of SUEWS in UMEP and there are some starting tutorials for that. The version there is the same (i.e. the executable) as the standalone version so you can swap to that later once you have some familiarity.

5.1 Preparatory reading

Read the manual and relevant papers (and references therein):

- Järvi L, Grimmond CSB & Christen A (2011) The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol. 411, 219-237. doi:10.1016/j.jhydrol.2011.10.00
- Järvi L, Grimmond CSB, Taka M, Nordbo A, Setälä H & Strachan IB (2014) Development of the Surface Urban Energy and Water balance Scheme (SUEWS) for cold climate cities. Geosci. Model Dev. 7, 1691-1711. doi:10.5194/gmd-7-1691-2014
- Ward HC, Kotthaus S, Järvi L and Grimmond CSB (2016) Surface Urban Energy and Water Balance Scheme (SUEWS): development and evaluation at two UK sites. Urban Climate 18, 1-32. doi:10.1016/j.uclim.2016.05.001

See other publications with example applications

5.2 Decide what type of model run you are interested in

	Available in this release
LUMPS	Yes – not standalone
SUEWS at a point or for an individual area	Yes
SUEWS for multiple grids or areas	Yes
SUEWS with Boundary Layer (BL)	Yes
SUEWS with snow	Yes
SUEWS with SOLWEIG	No
SUEWS with SOLWEIG and BL	No

5.3 Download the program and example data files

Visit the website to receive a link to download the program and example data files. Select the appropriate compiled version of the model to download. For windows there is an installation version which will put the

programs and all the files into the appropriate place. There is also a version linked to QGIS: **UMEP**.

Note, as the definition of long double precision varies between computers (e.g. Mac vs Windows) slightly different results may occur in the output files.

Test/example files are given for the London KCL site, 2011 data (denoted Kc11)

In the following SS is the site code (e.g. Kc), so the grid ID, YYYY the year and tt the time interval.

Filename	Description	Input/output
SSss_data.txt	Meteorological input	Input file (60-min)
SSss_YYYY_data_5.txt	Meteorological input	Input file (5-min)
InitialConditionsSSss	Initial conditions	InputYYYY.nml(+) file
SUEWS_SiteInfo_SSss.x	Spreadsheet	Input lsm containing all other in-
		put information
RunControl.nml	Sets model run	Input (located in options main di-
		rectory)
SS_Filechoices.txt	Summary of model run	Output options
SSss_YYYY_5.txt	(Optional) 5-min	Output resolution output file
SSss_YYYY_60.txt	60-min resolution	Output output file
SSss_DailyState.txt	Daily state variables	Output (all years in one file)

(+) There is a second file InitialConditionsSSss_YYYY_EndOfRun.nml or InitialConditionsSSss_YYYY+1.nml in the input directory. At the end of the run, and at the end of each year of the run, these files are written out so that this information could be used to initialize further model runs.

5.4 Run the model for example data

Before running the model for your own data it is good to make certain that you can run the test data and get the same results as in the example files provided. It is recommended that you make a copy of the example output files and put them somewhere else so you can compare the results. When you run the program it will write over the supplied files.

To run the model you can use **Command Prompt** (in the directory where the programme is located type the model name) or just double click the executable file.

Please see *Troubleshooting* if you have problems running the model.

5.5 Preparation of data

This section describes the information required to run SUEWS for your site. The input data can be summarised as follows:

- 1. Continuous meteorological forcing data for the entire period to be modelled. Note you can not have gaps in the meteorological data. If you need help with preparing the data you may want to use some of the tools in UMEP.
- 2. Knowledge of the surface and soil conditions immediately before the start of the run (if these initial conditions are not known, it is usually possible to determine suitable values by running the model and using the output at the end of the run to infer the conditions at the start of the run).
- 3. The location of the site (latitude, longitude, altitude).

- 4. Information about the *characteristics of the surface*, including land cover, heights of buildings and trees, radiative characteristics (e.g. albedo, emissivity), drainage characteristics, soil characteristics, snow characteristics, phenological characteristics (e.g. seasonal cycle of LAI).
- 5. Information about *human behaviour*, including energy use and water use (e.g. for irrigation or street cleaning) and snow clearing (if applicable). The anthropogenic energy use and water use may be provided as a time series in the meteorological forcing file if these data are available or modelled based on parameters provided to the model, including population density, hourly and weekly profiles of energy and water use, information about the proportion of properties using irrigation and the type of irrigation (automatic or manual).

It is particularly important to ensure the following input information is appropriate and representative of the site:

- Fractions of different land cover types and (less so) heights of buildings [W16]
- Accurate meteorological forcing data, particularly precipitation and incoming shortwave radiation [Ko17]
- Initial soil moisture conditions [Best2014]
- Anthropogenic heat flux parameters, particularly if there are considerable energy emissions from transport, buildings, metabolism, etc [W16]
- External water use (if irrigation or street cleaning occurs)
- Snow clearing (if running the snow option)
- Surface conductance parameterisation [J11] [W16]

SUEWS can be run either for an individual area or for multiple areas. There is no requirement for the areas to be of any particular shape but here we refer to them as model 'grids'.

5.5.1 Preparation of site characteristics and model parameters

The area to be modelled is described by a set of characteristics that are specified in the SUEWS_SiteSelect.txt file. Each row corresponds to one model grid for one year (i.e. running a single grid over three years would require three rows; running two grids over two years would require four rows). Characteristics are often selected by a code for a particular set of conditions. For example, a specific soil type (links to SUEWS_Soil.txt) or characteristics of deciduous trees in a particular region (links to SUEWS_Veg.txt). The intent is to build a library of characteristics for different types of urban areas. The codes are specified by the user, must be integer values and must be unique within the first column of each input file, otherwise the model will return an error. (Note in SUEWS_SiteSelect.txt the first column is labelled 'Grid' and can contain repeat values for different years.) See Input files for details. Note UMEP maybe helpful for components of this.

Land cover

For each grid, the land cover must be classified using the following surface types:

Classification	Surface type	File where characteristics are specified
Non-vegetated	Paved surfaces	$SUEWS_NonVeg.txt$
	Building	$SUEWS_NonVeg.txt$
	Bare soil	SUEWS_NonVeg.txt
Vegetation	Evergreen trees	SUEWS_Veg.txt
	Deciduous trees	SUEWS_Veg.txt
	Grass	SUEWS_Veg.txt
Water	Water	SUEWS_Water.txt
Snow	Snow	SUEWS_Snow.txt

The surface cover fractions (i.e. proportion of the grid taken up by each surface) must be specified in $SUEWS_SiteSelect.txt$. The surface cover fractions are **critical**, so make certain that the different surface cover fractions are appropriate for your site.

For some locations, land cover information may be already available (e.g. from various remote sensing resources). If not, websites like Bing Maps and Google Maps allow you to see aerial images of your site and can be used to estimate the relative proportion of each land cover type. If detailed spatial datasets are available, UMEP allows for a direct link to a GIS environment using QGIS.

Anthropogenic heat flux (Q F)

You can either model Q_F within SUEWS or provide it as an input.

- To model it population density is needed as an input for LUMPS and SUEWS to calculate Q_F.
- If you have no information about the population of the site we recommend that you use the LUCY model [lucy] [lucy2] to estimate the anthropogenic heat flux which can then be provided as input SUEWS along with the meteorological forcing data. The LUCY model can be downloaded from here.

Alternatively, you can use the updated version of LUCY called LQF, which is included in UMEP.

Other information

The surface cover fractions and population density can have a major impact on the model output. However, it is important to consider the suitability of all parameters for your site. Using inappropriate parameters may result in the model returning an error or, worse, generating output that is simply not representative of your site. Please read the section on *Input files*. Recommended or reasonable ranges of values are suggested for some parameters, along with important considerations for how to select appropriate values for your site.

Data Entry

To create the series of input text files describing the characteristics of your site, there are three options:

- 1. Data can be entered directly into the input text files. The example (.txt) files provide a template to create your own files which can be edited with a *text editor* directly.
- 2. Data can be entered into the spreadsheet **SUEWS_SiteInfo.xlsm** and the input text files generated by running the macro.
- 3. Use [http://urban-climate.net/umep/UMEP] UMEP].

To run the xlsm macro: Enter the data for your site into the xlsm spreadsheet SUEWS_SiteInfo.xlsm and then use the macro to create the text files which will appear the same directory.

If there is a problem

- Make sure none of the text files to be generated are open.
- It is recommended to close the spreadsheet before running the actual model code.

Note that in all txt files:

- The first two rows are headers. The first row is the column number; the second row is the column name
- The names and order of the columns should not be altered from the templates, as these are checked by the model and errors will be returned if particular columns cannot be found.
- Since v2017a it is no longer necessary for the meteorological forcing data to have two rows with -9 in column 1 as their last two rows.
- "!" indicates a comment, so any text following "!" on the same line will not be read by the model.
- If data are unavailable or not required, enter the value -999 in the correct place in the input file.
- Ensure the units are correct for all input information. See *Input files* for a description of parameters.

In addition to these text files, the following files are also needed to run the model.

5.5.2 Preparation of the RunControl file

In the RunControl.nml file the site name (SS_) and directories for the model input and output are given. This means **before running** the model (even the with the example datasets) you must either

- 1. open the RunControl.nml file and edit the input and output file paths and the site name (with a *text editor*) so that they are correct for your setup, or
- 2. create the directories specified in the RunControl.nml file

From the given site identification the model identifies the input files and generates the output files. For example if you specify:

```
FileOutputPath = "C:\FolderName\SUEWSOutput\"
```

and use site code SS the model creates an output file:

```
C:\FolderName\SUEWSOutput\SSss_YYYY_TT.txt
```

Note: remember to add the last backslash in windows and slash in Linux/Mac

If the file paths are not correct the program will return an error when run and write the error to the Error messages: problems.txt file.

5.5.3 Preparation of the Meteorological forcing data

The model time-step is specified in RunControl.nml (5 min is highly recommended). If meteorological forcing data are not available at this resolution, SUEWS has the option to downscale (e.g. hourly) data to the time-step required. See details about the $SSss_YYYY_data_tt.txt$ to learn more about choices of data input. Each grid can have its own meteorological forcing file, or a single file can be used for all grids. The forcing data should be representative of the local-scale, i.e. collected (or derived) above the height of the roughness elements (buildings and trees).

5.5.4 Preparation of the InitialConditions file

Information about the surface state and meteorological conditions just before the start of the run are provided in the Initial Conditions file. At the very start of the run, each grid can have its own Initial Conditions file, or a single file can be used for all grids. For details see *Initial Conditions file*.

5.6 Run the model for your site

To run the model you can use **Command Prompt** (in the directory where the programme is located type the model name) or just double click the executable file.

Please see *Troubleshooting* if you have problems running the model.

5.7 Analyse the output

It is a good idea to perform initial checks that the model output looks reasonable.

Characteristic	Things to check
Leaf area index	Does the phenologylook appropriate? • what does the seasonal cycle of leaf area index (LAI) look like? • Are the leaves on the trees at approximately the right time of the year?
Kdown	 Is the timing of diurnal cycles correct for the incoming solar radiation? Although Kdown is a required input, it is also included in the output file. It is a good idea to check that the timing of Kdown in the output file is appropriate, as problems can indicate errors with the timestamp, incorrect time settings or problems with the disaggregation. In particular, make sure the sign of the longitude is specified correctly in SUEWS_SiteSelect.txt. Checking solar angles (zenith and azimuth) can also be a useful check that the timing is correct.
Albedo	 Is the bulk albedo correct? This is critical because a small error has an impact on all the fluxes (energy and hydrology). If you have measurements of outgoing shortwave radiation compare these with the modelled values. How do the values compare to literature values for your area?

5.8 Summary of files

The table below lists the files required to run SUEWS and the output files produced. SS is the two-letter code (specified in RunControl) representing the site name, ss is the grid identification (integer values between 0 and 2,147,483,647 (largest 4-byte integer)) and YYYY is the year. TT is the resolution of the input/output file and tt is the model time-step.

The last column indicates whether the files are needed/produced once per run (1/run), or once per day (1/day), for each year (1/year) or for each grid (1/grid):

[B] indicates files used with the CBL part of SUEWS (BLUEWS) and therefore are only needed/
→produced if this option is selected

[E] indicates files associated with ESTM storage heat flux models and therefore are only needed/
→produced if this option is selected

CHAPTER

SIX

INPUT FILES

SUEWS allows you to input a large number of parameters to describe the characteristics of your site. You should not assume that the example values provided in files or in the tables below are appropriate. Values marked with 'MD' are examples of recommended values (see the suggested references to help decide how appropriate these are for your site/model domain); values marked with 'MU' need to be set (i.e. changed from the example) for your site/model domain.

6.1 RunControl.nml

The file **RunControl.nml** is a namelist that specifies the options for the model run. It must be located in the same directory as the executable file.

A sample file of RunControl.nml looks like

```
&RunControl
CBLUse=0
SnowUse=0
SOLWEIGUse=0
NetRadiationMethod=3
EmissionsMethod=2
StorageHeatMethod=3
OHMIncQF=0
StabilityMethod=2
RoughLenHeatMethod=2
RoughLenMomMethod=2
SMDMethod=0
WaterUseMethod=0
FileCode='Saeve'
FileInputPath="./Input/"
FileOutputPath="./Output/"
MultipleMetFiles=0
MultipleInitFiles=0
MultipleESTMFiles=1
KeepTstepFilesIn=1
KeepTstepFilesOut=1
WriteOutOption=2
ResolutionFilesOut=3600
Tstep=300
ResolutionFilesIn=3600
ResolutionFilesInESTM=3600 !NEW
                        !NEW (1 = default value, so don't actually need here)
DisaggMethod=1
RainDisaggMethod=100
                        !NEW (100 = default value, so don't actually need here)
DisaggMethodESTM=1
                              (1 = default value, so don't actually need here)
```

(continues on next page)

(continued from previous page)

```
SuppressWarnings=1 !NEW
KdownZen=0
diagnose=0
/
```

Note:

- In Linux and Mac, please add an empty line after the end slash.
- The file is not case-sensitive.
- The parameters and variables can appear in any order.

The parameters and their setting instructions are provided through the links below:

- Model run options
 - CBLuse
 - SnowUse
 - SOLWEIGUse
 - NetRadiationMethod
 - AnthropHeatMethod
 - AnthropCO2Method
 - StorageHeatMethod
 - OHMIncQF
 - StabilityMethod
 - RoughLenHeatMethod
 - RoughLenMomMethod
 - SMDMethod
 - WaterUseMethod
- File related options
 - FileCode
 - FileInputPath
 - FileOutputPath
 - $\mathit{MultipleMetFiles}$
 - $-\ \mathit{MultipleInitFiles}$
 - $\ \textit{MultipleESTMFiles}$
 - KeepTstepFilesIn
 - KeepTstepFilesOut
 - WriteOutOption
 - SuppressWarnings
- Time related options
 - Tstep
 - ResolutionFilesIn
 - ResolutionFilesInESTM
 - ResolutionFilesOut
- Options related to disaggregation of input data
 - DisaggMethod
 - KdownZen
 - RainDisaggMethod
 - RainAmongN

- MultRainAmongN
- $\mathit{MultRainAmongNUpperI}$
- DisaggMethodESTM
- $\bullet \ \ netCDF \ related \ options$
 - ncMode
 - nRow
 - nCol

6.1.1 Model run options

CBLuse

Requirement Required

Description Determines whether a CBL slab model is used to calculate temperature and humidity.

Configuration

Value	Comments
0	CBL model not used. SUEWS and LUMPS use temperature and humidity provided in the meteorological forcing file.
1	CBL model is used to calculate temperature and humidity used in SUEWS and LUMPS.

SnowUse

Requirement Required

Description Determines whether the snow part of the model runs.

Configuration

Value	Comments
0	Snow calculations are not performed.
1	Snow calculations are performed.

SOLWEIGUse

Requirement Required

6.1. RunControl.nml 23

Description Determines whether a high resolution radiation model to calculate mean radiant temperate should be used (SOLWEIG). NOTE: this option will considerably slow down the model since SOLWEIG is a 2D model.

Configuration

Value	Comments
0	SOLWEIG calculations are not performed.
1	SOLWEIG calculations are performed. A grid of mean radiant temperature (Tmrt) is calculated based on high resolution digital surface models.

${\tt NetRadiationMethod}$

Requirement Required

Description Determines method for calculation of radiation fluxes.

Configuration

Value	Comments
0	Uses observed values of Q* supplied in meteorological forcing file.
1	Q* modelled with L↓ observations supplied in meteorological forcing file. Zenith angle not accounted for in albedo calculation.
2	Q* modelled with L↓ modelled using cloud cover fraction supplied in meteorological forcing file (Loridan et al. 2011 [5]). Zenith angle not accounted for in albedo calculation.
3	Q* modelled with L\u03b1 modelled using air temperature and relative humidity supplied in meteorological forcing file (Loridan et al. 2011 [5]). Zenith angle not accounted for in albedo calculation.
100	Q* modelled with L↓ observations supplied in meteorological forcing file. Zenith angle accounted for in albedo calculation. SSss_YYYY_NARPOut.txt file produced. Not recommended in this release
200	Q* modelled with L↓ modelled using cloud cover fraction supplied in meteorological forcing file (Loridan et al. 2011 [5]). Zenith angle accounted for in albedo calculation. SSss_YYYY_NARPOut.txt file produced. Not recommended in this release
300	Q* modelled with L↓ modelled using air temperature and relative humidity supplied in meteorological forcing file (Loridan et al. 2011 [5]). Zenith angle accounted for in albedo calculation. SSss_YYYY_NARPOut.txt file produced. Not recommended in this release

${\tt AnthropHeatMethod}$

Requirement Required

 $\bf Description$ Determines method for QF calculation.

Configuration

6.1. RunControl.nml 25

Value	Comments
0	Uses values provided in the meteorological forcing file
	(SSss_YYYY_data_tt.txt). If you do not want to include QF to the
	calculation of surface energy balance, you should set values in the
	meteorological forcing file to zero to prevent calculation of QF. UMEP
	provides two methods to calculate QF LQF which is simpler GQF which is
	more complete but requires more data inputs
1	Currently not recommended! Calculated according to Loridan et al. (2011)
	[5] using coefficients specified in SUEWS_AnthropogenicHeat.txt. Modelled
	values will be used even if QF is provided in the meteorological forcing file.
2	Recommended Calculated according to Järvi et al. (2011) [1] using
	coefficients specified in SUEWS_AnthropogenicHeat.txt and diurnal
	patterns specified in SUEWS_Profiles.txt. Modelled values will be used
	even if QF is provided in the meteorological forcing file.

AnthropCO2Method

Requirement Required

 $\begin{tabular}{ll} \textbf{Description} & \textbf{Determines} & \textbf{method for CO2} & \textbf{calculation}. \end{tabular}$

Configuration

Value	Comments
1	
	Not used.
2	Under development - not recommended
	in v2017b Calculate CO2 emissions from
	traffic based on QF calculation.
3	Under development - not recommended
	in v2017b Calculate CO2 emissions from
	traffic from input data provided.

${\tt StorageHeatMethod}$

 ${\bf Requirement} \ \ {\rm Required}$

Description Determines method for calculating storage heat flux ΔQS .

Configuration

Value	Comments
1	ΔQS modelled using the objective hysteresis model (OHM) [9] [10] [11]
	using parameters specified for each surface type.
2	Uses observed values of ΔQS supplied in meteorological forcing file.
3	ΔQS modelled using AnOHM. Not available in v2017b
4	ΔQS modelled using the Element Surface Temperature Method (ESTM)
	(Offerle et al. 2005 [13]). Not recommended in v2017b

${\tt OHMIncQF}$

Requirement Required

Description Determines whether the storage heat flux calculation uses Q^* or (Q^*+QF) .

Configuration

Value	Comments
0	ΔQS modelled Q^* only.
1	ΔQS modelled using Q*+QF.

StabilityMethod

 ${\bf Requirement} \ \ {\rm Required}$

Description Defines which atmospheric stability functions are used.

Configuration

Value	Comments
0	Not used.
1	Not used.
2	Recommended Momentum - unstable: Dyer (1974) [22] modified by Högstrom (1988) [23]; stable: Van Ulden and Holt- slag (1985) [24] Heat - Dyer (1974) [22] modified by Högstrom (1988) [23]
3	Momentum: Campbell and Norman (Eq 7.27, Pg97) [25] Heat - unstable: Campbell and Norman [25]; stable: Dyer (1974) [22] modified by Högstrom (1988) [23]
4	Momentum: Businger et al. (1971) [26] modified by Högstrom (1988) [23] Heat: Businger et al. (1971) [26] modified by Högstrom (1988) [23]

${\tt RoughLenHeatMethod}$

Requirement Required

 $\textbf{Description} \ \ \textbf{Determines} \ \ \textbf{method} \ \ \textbf{for calculating roughness length} \ \ \textbf{for heat}.$

${\bf Configuration}$

Value	Comments
1	Uses value of 0.1z0m.
2	Recommended Calculated according to Kawai et al. (2009) [27] .
3	Calculated according to Voogt and Grimmond (2000) [28] .
4	Calculated according to Kanda et al. (2007) [29] .

${\tt RoughLenMomMethod}$

6.1. RunControl.nml 27

Requirement Required

Description Determines how aerodynamic roughness length (z0m) and zero displacement height (zdm) are calculated.

Configuration

Value	Comments	
1	Values specified in SUEWS_SiteSelect.txt are used. Note that UMEP	
	provides tools to calculate these]. See Kent et al. (2017a) for	
	recommendations on methods. Kent et al. (2017b) have developed a	
	method to include vegetation which is also available within UMEP. Kent	
	CW, CSB Grimmond, J Barlow, D Gatey, S Kotthaus, F Lindberg, CH	
	Halios 2017a: Evaluation of urban local-scale aerodynamic parameters:	
	implications for the vertical profile of wind and source areas Boundary	
	Layer Meteorology 164,183–213 doi: 10.1007/s10546-017-0248-z Kent CW,	
	S Grimmond, D Gatey 2017b: Aerodynamic roughness parameters in cities:	
	inclusion of vegetation Journal of Wind Engineering & Industrial	
	Aerodynamics http://dx.doi.org/10.1016/j.jweia.2017.07.016	
2	z0m and zd are calculated using 'rule of thumb' (Grimmond and Oke 1999	
	[30]) using mean building and tree height specified in	
	SUEWS_SiteSelect.txt . z0m and zd are adjusted with time to account for	
	seasonal variation in porosity of deciduous trees.	
3	z0m and zd are calculated based on the MacDonald et al. (1998) [31]	
	method using mean building and tree heights, plan area fraction and frontal	
	areal index specified in SUEWS_SiteSelect.txt . z0m and zd are adjusted	
	with time to account for seasonal variation in porosity of deciduous trees.	

SMDMethod

Requirement Required

Description Determines method for calculating soil moisture deficit (SMD).

Configuration

Value	Comments	
0	Recommended SMD modelled using parameters specified in	
	SUEWS_Soil.txt .	
1	Not currently implemented - do not use! Observed SM provided in the	
	meteorological forcing file is used. Data are provided as volumetric soil	
	moisture content. Metadata must be provided in SUEWS_Soil.txt .	
2	Not currently implemented - do not use! Observed SM provided in the	
	meteorological forcing file is used. Data are provided as gravimetric soil	
	moisture content. Metadata must be provided in SUEWS_Soil.txt.	

WaterUseMethod

Requirement Required

Description Defines how external water use is calculated.

Configuration

Value	Comments
0	External water use modelled using parameters specified in SUEWS_Irrigation.txt.
	Observations of external water use provided in the meteorological forcing file are used.

6.1.2 Time related options

Tstep

Requirement Required

Description Specifies the model time step [s]. A value of 300 s (5 min) is strongly recommended. The time step cannot be less than 1 min or greater than 10 min, and must be a whole number of minutes that divide into an hour (i.e. options are 1, 2, 3, 4, 5, 6, 10 min or 60, 120, 180, 240, 300, 360, 600 s).

Configuration to fill

ResolutionFilesIn

Requirement Required

Description Specifies the resolution of the input files [s] which SUEWS will disaggregate to the model time step. 1800 s for 30 min or 3600 s for 60 min are recommended. (N.B. if ResolutionFilesIn is not provided, SUEWS assumes ResolutionFilesIn = Tstep.)

Configuration to fill

ResolutionFilesInESTM

Requirement Optional

Description Specifies the resolution of the ESTM input files [s] which SUEWS will disaggregate to the model time step.

Configuration to fill

ResolutionFilesOut

Requirement Required

Description Specifies the resolution of the output files [s]. 1800 s for 30 min or 3600 s for 60 min are recommended.

Configuration to fill

6.1.3 File related options

FileCode

Requirement Required

6.1. RunControl.nml 29

Description Two-letter site identification code (e.g. He, Sc, Kc).

Configuration to fill

FileInputPath

Requirement Required

Description Input directory.

Configuration to fill

FileOutputPath

Requirement Required

Description Output directory.

Configuration to fill

MultipleMetFiles

Requirement Required

Description Specifies whether one single meteorological forcing file is used for all grids or a separate met file is provided for each grid.

Configuration

Value	Comments
0	Single meteorological forcing file used for all grids. No grid number should
	appear in the file name.
1	Separate meteorological forcing files used for each grid. The grid number
	should appear in the file name.

MultipleInitFiles

Requirement Required

Description Specifies whether one single initial conditions file is used for all grids at the start of the run or a separate initial conditions file is provided for each grid.

Configuration

Value	Comments
0	Single initial conditions file used for all grids. No grid number should
	appear in the file name.
1	Separate initial conditions files used for each grid. The grid number should
	appear in the file name.

${\tt MultipleESTMFiles}$

Requirement Optional

Description Specifies whether one single ESTM forcing file is used for all grids or a separate file is provided for each grid.

Configuration

Value	Comments
0	Single ESTM forcing file used for all grids. No grid number should appear
	in the file name.
1	Separate ESTM forcing files used for each grid. The grid number should
	appear in the file name.

${\tt KeepTstepFilesIn}$

Requirement Optional

Description Specifies whether input meteorological forcing files at the resolution of the model time step should be saved.

Configuration

Value	Comments
0	Meteorological forcing files at model time step are not written out. This is
	the default option Recommended to reduce processing time and save disk
	space as (e.g. 5-min) files can be large.
1	Meteorological forcing files at model time step are written out.

KeepTstepFilesOut

Requirement Optional

Description Specifies whether output meteorological forcing files at the resolution of the model time step should be saved.

Configuration

Value	Comments	
0	Output files at model time are not saved. This is the default option.	
	Recommended to save disk space as (e.g. 5-min) files can be large.	
1	Output files at model time step are written out.	

WriteOutOption

Requirement Optional

Description Specifies which variables are written in the output files.

Configuration

Value	Comments	
0	All (except snow-related) output variables written. This is the default	
	option.	
1	All (including snow-related) output variables written.	
2	Writes out a minimal set of output variables (use this to save space or if	
	information about the different surfaces is not required).	

SuppressWarnings

Requirement Optional

Description Controls whether the warnings.txt file is written or not.

6.1. RunControl.nml 31

Configuration

Value	Comments	
0	The warnings.txt file is written. This is the default option.	
1	No warnings.txt file is written. May be useful for large model runs as this	
	file can grow large.	

6.1.4 Options related to disaggregation of input data

DisaggMethod

Requirement Optional

Description Specifies how meteorological variables in the input file (except rain and snow) are disaggregated to the model time step. Wind direction is not currently downscaled so non -999 values will cause an error.

Configuration

Value	Comments
1	Linear downscaling of averages for all variables, additional zenith check is used for Kdown. This is the default option.
	Linear downscaling of instanta- neous values for all variables, ad- ditional zenith check is used for Kdown.
3	WFDEI setting: average Kdown (with additional zenith check); instantaneous for Tair, RH, pres and U. (N.B. WFDEI actually provides Q not RH)

KdownZen

Requirement Optional

Description Can be used to switch off zenith checking in Kdown disaggregation. Note that the zenith calculation requires location information obtained from SUEWS_SiteSelect.txt. If a single met file is used for all grids, the zenith is calculated for the first grid and the disaggregated data is then applied for all grids.

Configuration

Value	Comments
0	No zenith angle check is applied.
1	Disaggregated Kdown is set to zero when zenith angle exceeds 90 degrees (i.e. sun below horizon) and redistributed over the day. This is the default option.

${\tt RainDisaggMethod}$

Requirement Optional

Description Specifies how rain in the meteorological forcing file are disaggregated to the model time step. If present in the original met forcing file, snow is currently disaggregated in the same way as rainfall.

Configuration

Value	Comments
100	Rainfall is evenly distributed among all subintervals in a rainy interval. This is the default option.
101	Rainfall is evenly distributed among among RainAmongN subintervals in a rainy interval – also requires RainAmongN to be set.
102	Rainfall is evenly distributed among among RainAmongN subintervals in a rainy interval for different intensity bins – also requires MultRainAmongN and MultRainAmongNUpperI to be set.

${\tt RainAmongN}$

Requirement Optional

Description Specifies the number of subintervals (of length tt) over which to distribute rainfall in each interval (of length TT). Must be an integer value. Use with RainDisaggMethod = 101.

Configuration to fill

6.1. RunControl.nml 33

MultRainAmongN

Requirement Optional

Description Specifies the number of subintervals (of length tt) over which to distribute rainfall in each interval (of length TT) for up to 5 intensity bins. Must take integer values. Use with RainDisaggMethod = 102. e.g. MultRainAmongN(1) = 5, MultRainAmongN(2) = 8, MultRainAmongN(3) = 12

Configuration to fill

${\tt MultRainAmongNUpperI}$

Requirement Optional

Description Specifies upper limit for each intensity bin to apply MultRainAmongN. Any intensities above the highest specified intensity will use the last MultRainAmongN value and write a warning to warnings.txt. Use with RainDisaggMethod = 102. e.g. MultRainAmongNUpperI(1) = 0.5, MultRainAmongNUpperI(2) = 2.0, MultRainAmongNUpperI(3) = 50.0

Configuration to fill

${\tt DisaggMethodESTM}$

Requirement Optional

Description Specifies how ESTM-related temperatures in the input file are disaggregated to the model time step.

Configuration

Value	Comments
1	Linear downscaling of averages.
2	Linear downscaling of instantaneous values.

6.1.5 netCDF related options

ncMode

Requirement Optional

Description Determine if the output files should be written in netCDF format.

Configuration

Value	Comments
0	Output files are kept as plain text files (i.e., .txt).
1	Output files will be written in netCDF format (i.e., .nc).

nRow

Requirement Optional

Description Number of rows (e.g., 36) in the output layout (only applicable when nc-Mode=1).

Configuration to fill

nCol

Requirement Optional

Description Number of columns (e.g., 47) in the output layout (only applicable when nc-Mode=1).

Configuration to fill

6.2 SUEWS_SiteInfo.xlsm

The following text files provide SUEWS with information about the study area.

6.2.1 SUEWS_AnthropogenicHeat.txt

SUEWS_AnthropogenicHeatFlux.txt provides the parameters needed to model the anthropogenic heat flux using either the method of Järvi et al. (2011) based on heating and cooling degree days (AnthropHeatMethod = 2 in 4.1 RunControl.nml) or the method of Loridan et al. (2011) based on air temperature (AnthropHeatMethod = 1 in RunControl.nml). The sub-daily variation in anthropogenic heat flux is modelled according to the daily cycles specified in SUEWS_Profiles.txt. Alternatively, if available, the anthropogenic heat flux can be provided in the met forcing file (and set AnthropHeatMethod = 0 in RunControl.nml), in which case all columns here except Code and BaseTHDD should be set to '-999'.

No.	Column Name	Use	Description
1	Code	L	Code linking to the AnthropogenicCode column in
			SUEWS_SiteSelect.txt . Value of integer is arbitrary but
			must match code specified in SUEWS_SiteSelect.txt.
2	BaseTHDD	MU	Base temperature for heating degree days [°C] e.g. Sailor and
			Vasireddy (2006) [39]
3	$\mathit{QF}_A_\mathit{Weekday}$	MU	Use with AnthropHeatChoice = 2 Example values [W m ⁻² (Cap
		0	ha-1) -1] 0.3081 Järvi et al. (2011) [1] 0.1 Järvi et al. (2014) [15]
4	$\mathit{QF}_\mathit{B}_\mathit{Weekday}$	MU	Use with AnthropHeatMethod = $2 \text{ Example values [W m}^{-2} \text{ K}^{-1} \text{ (Cap)}$
		0	ha -1) -1] 0.0099 Järvi et al. (2011) [1] 0.0099 Järvi et al. (2014)
			[15]
5	$\mathit{QF}_\mathit{C}_\mathit{Weekday}$	MU	Use with AnthropHeatMethod = $2 \text{ Example values [W m}^{-2} \text{ K}^{-1} \text{ (Cap)}$
		0	ha -1) -1] 0.0102 Järvi et al. (2011) [1] 0.0102 Järvi et al. (2014)
			[15]
6	$\mathit{QF}_\mathit{A}_\mathit{Weekend}$	MU	Use with AnthropHeatMethod = $2 \text{ Example values [W m}^{-2} \text{ (Cap ha)}$
		0	-1) -1] 0.3081 Järvi et al. (2011) [1] 0.1 Järvi et al. (2014) [15]
7	$\mathit{QF}_\mathit{B}_\mathit{Weekend}$	MU	Use with AnthropHeatMethod = 2 Example values [W m ⁻² K ⁻¹ (Cap
		0	ha -1) -1] 0.0099 Järvi et al. (2011) [1] 0.0099 Järvi et al. (2014)
			[15]
8	$\mathit{QF}_\mathit{C}_\mathit{Weekend}$	MU	Example values [W m $^{-2}$ K $^{-1}$ (Cap ha $^{-1}$) $^{-1}$] 0.0102 Järvi et al.
		0	(2011) [1] 0.0102 Järvi et al. (2014) [15]
9	AHMin	MU	Use with AnthropHeatMethod $= 1$
		0	
10	AHSlope	MU	Use with AnthropHeatMethod $= 1$
		0	
11	$\mathit{TCritic}$	MU	Use with AnthropHeatMethod $= 1$
		0	

6.2.2 SUEWS_Conductance.txt

SUEWS_Conductance.txt contains the parameters needed for the Jarvis (1976) surface conductance model used in the modelling of evaporation in SUEWS. These values should **not** be changed independently of each other. The suggested values below have been derived using datasets for Los Angeles and Vancouver (see Järvi et al. (2011) [J11]) and should be used with gsModel=1. An alternative formulation (gsModel=2) uses slightly different functional forms and different coefficients (with different units).

No.	Column Name	Use	Description
1	Code	L	Code linking to the CondCode column in SUEWS_SiteSelect.txt
			. Value of integer is arbitrary but must match code specified in
			SUEWS_SiteSelect.txt.
2	<i>G</i> 1	MD	Related to maximum surface conductance [mm s ⁻¹]
3	G2	MD	Related to Kdown dependence [W m ⁻²]
4	G3	MD	Related to VPD dependence [units depend on gsChoice in RunCon-
			trol.nml]
5	G4	MD	Related to VPD dependence [units depend on gsChoice in RunCon-
			trol.nml]
6	<i>G5</i>	MD	Related to temperature dependence [°C]
7	G6	MD	Related to soil moisture dependence [m m^-1]
8	TH	MD	Upper air temperature limit [°C]
9	TL	MD	Lower air temperature limit [°C]
10	S1	MD	Related to soil moisture dependence [-] These will change in the
			future to ensure consistency with soil behaviour
11	S2	MD	Related to soil moisture dependence [mm] These will change in the
			future to ensure consistency with soil behaviour
12	Kmax	MD	Maximum incoming shortwave radiation [W m ⁻²]
13	gsModel	MD	1 = Järvi et al. (2011) [1] 2 = Ward et al. (2016) [2] Recommended.

6.2.3 SUEWS_Irrigation.txt

SUEWS includes a simple model for external water use if observed data are not available. The model calculates daily water use from the mean daily air temperature, number of days since rain and fraction of irrigated area using automatic/manual irrigation. The sub-daily pattern of water use is modelled according to the daily cycles specified in $SUEWS_Profiles.txt$.

Alternatively, if available, the external water use can be provided in the met forcing file (and set WaterUseMethod = 1 in RunControl.nml), in which case all columns here except Code should be set to '-999'.

No.	Column Name	Use	Description
1	Code	L	Code linking to SUEWS_SiteSelect.txt for irrigation modelling (Ir-
			rigationCode). Value of integer is arbitrary but must match codes
			specified in SUEWS_SiteSelect.txt.
2	Ie_start	MU	Day when irrigation starts [DOY]
3	Ie_end	MU	Day when irrigation ends [DOY]
4	InternalWaterUse	MU	Internal water use [mm h ⁻¹]
5	Faut	MU	Fraction of irrigated area that is irrigated using automated systems
			(e.g. sprinklers).
6	Ie_a1	MD	Coefficient for automatic irrigation model [mm d -1]
7	Ie_a2	MD	Coefficient for automatic irrigation model [mm d -1 K ⁻¹]
8	Ie_a3	MD	Coefficient for automatic irrigation model [mm d -2]
9	Ie_m1	MD	Coefficient for manual irrigation model [mm d -1]
10	Ie_m2	MD	Coefficient for manual irrigation model [mm d -1 K ⁻¹]
11	Ie_m3	MD	Coefficient for manual irrigation model [mm d -2]
12	DayWat(1)	MU	Irrigation allowed on Sundays [1], if not [0]
13	DayWat(2)	MU	Irrigation allowed on Mondays [1], if not [0]
14	DayWat(3)	MU	Irrigation allowed on Tuesdays [1], if not [0]
15	DayWat(4)	MU	Irrigation allowed on Wednesdays [1], if not [0]
16	DayWat(5)	MU	Irrigation allowed on Thursdays [1], if not [0]
17	DayWat(6)	MU	Irrigation allowed on Fridays [1], if not [0]
18	DayWat(7)	MU	Irrigation allowed on Saturdays [1], if not [0]
19	DayWatPer(1)	MU	Fraction of properties using irrigation on Sundays [0-1]
20	DayWatPer(2)	MU	Fraction of properties using irrigation on Mondays [0-1]
21	DayWatPer(3)	MU	Fraction of properties using irrigation on Tuesdays [0-1]
22	DayWatPer(4)	MU	Fraction of properties using irrigation on Wednesdays [0-1]
23	DayWatPer(5)	MU	Fraction of properties using irrigation on Thursdays [0-1]
24	DayWatPer(6)	MU	Fraction of properties using irrigation on Fridays [0-1]
25	DayWatPer(7)	MU	Fraction of properties using irrigation on Saturdays [0-1]

6.2.4 SUEWS_NonVeg.txt

38

SUEWS_NonVeg.txt specifies the characteristics for the non-vegetated surface cover types (Paved, Bldgs, BSoil) by linking codes in column 1 of SUEWS_NonVeg.txt to the codes specified in SUEWS_SiteSelect.txt (Code_Paved, Code_Bldgs, Code_BSoil). Each row should correspond to a particular surface type. For suggestions on how to complete this table, see: Typical Values.

No.	Column Name	Use	Description
1	Code	L	Code linking to SUEWS_SiteSelect.txt for paved surfaces
			(Code_Paved), buildings (Code_Bldgs) and bare soil surfaces
			(Code_BSoil). Value of integer is arbitrary but must match codes
			specified in SUEWS_SiteSelect.txt.
2	AlbedoMin	MU	Effective surface albedo (middle of the day value) for wintertime
			(not including snow). View factors should be taken into account.
			Not currently used for non-vegetated surfaces – set the same as
			AlbedoMax.
3	AlbedoMax	MU	Effective surface albedo (middle of the day value) for summertime.
			View factors should be taken into account.
4	Emissivity	MU	Effective surface emissivity. View factors should be taken into ac-
			count.

Table 6.1 – continued from previous page

No.	Column Name		Description
5	StorageMin	MD	Minimum water storage capacity for upper surfaces (i.e. canopy).
	3		Min/max values are to account for seasonal variation (e.g. leaf-
			on/leaf-off differences for vegetated surfaces). Not currently used
			for non-vegetated surfaces - set the same as StorageMax. Example
			values [mm] 0.48 Paved 0.25 Bldgs 0.8 BSoil
6	Storage Max	MD	Maximum water storage capacity for upper surfaces (i.e. canopy)
			Min and max values are to account for seasonal variation (e.g. leaf-
			on/leaf-off differences for vegetated surfaces). Not currently used
			for non-vegetated surfaces - set the same as StorageMin. Example
			values [mm] 0.48 Paved 0.25 Bldgs 0.8 BSoil
7	WetThreshold	MD	Depth of water which determines whether evaporation occurs from
			a partially wet or completely wet surface. Example values [mm] 0.6
0	Chahalimih	MD	Paved 0.6 Bldgs 1. BSoil
8	StateLimit	MD	Currently only used for the water surface Options 1 Falk and Niemczynowicz (1978) [32] 2 Halldin et al.
9	Drainage Eq	MD	(1979) [33] (Rutter eqn corrected for c=0, see Calder & Wright
			(1986) [34]) Recommended [3] for BSoil 3 Falk and Niemczynowicz
			(1978) [32] Recommended [3] for Paved and Bldgs Coefficients are
			specified in the following two columns.
10	DrainageCoef1	MD	Example values DrainageEq 10 Coefficient D0 [mm h ⁻¹] 3 Recom-
			mended [3] for Paved and Bldgs 0.013 Coefficient D0 [mm h ⁻¹] 2
			Recommended [3] for BSoil
11	DrainageCoef2	MD	Example values DrainageEq 3 Coefficient b [-] 3 Recommended [3]
			for Paved and Bldgs 1.71 Coefficient b $[m m^-1]$ 2 Recommended
			[3] for BSoil
12	SoilTypeCode	L	Code for soil characteristics below this surface Provides the link
			to column 1 of SUEWS_Soil.txt , which contains the attributes
			describing sub-surface soil for this surface type. Value of integer is arbitrary but must match each energified in column 1 of
			ger is arbitrary but must match code specified in column 1 of SUEWS_Soil.txt.
13	SnowLimPatch	0	Not needed if SnowUse = 0 in RunControl.nml . Example values
10	DIVOUL VIII WOCIV		[mm] 190 Paved Järvi et al. (2014) [15] 190 Bldgs Järvi et al. (2014)
			[15] 190 BSoil Järvi et al. (2014) [15]
14	${\it SnowLimRemove}$	0	Not needed if SnowUse = 0 in RunControl.nml . Currently not
			implemented for BSoil surface Example values [mm] 40 Paved Järvi
			et al. (2014) [15] 100 Bldgs Järvi et al. (2014) [15]
15	OHMCode_SummerWet	L	Code for OHM coefficients to use for this surface during wet con-
			ditions in summer. Links to SUEWS_OHMCoefficients.txt . Value
			of integer is arbitrary but must match code specified in column 1 of
1.0	omia i a -		SUEWS_OHMCoefficients.txt.
16	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry condi-
			tions in summer. Links to SUEWS_OHMCoefficients.txt. Value of integer is arbitrary but must match god a precified in column 1 of
			of integer is arbitrary but must match code specified in column 1 of SUEWS OHMCoefficients.txt.
17	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet condi-
11	OTHTOOME_W LITTLET WEL	L	tions in winter. Links to SUEWS_OHMCoefficients.txt. Value of
			integer is arbitrary but must match code specified in column 1 of
			SUEWS_OHMCoefficients.txt.

No.	Column Name	Use	Description
18	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of
			integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.
19	OHMThresh_SW	MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied.
20	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet. Not actually used for building and paved surfaces (as impervious).
21	ESTMCode	L	For paved and building surfaces, it is possible to specify multiple codes per grid (3 for paved, 5 for buildings) using SUEWS_SiteSelect.txt . In this case, set ESTMCode here to zero.
22	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]
23	AnOHM_Kk	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]
24	$\textit{AnOHM_Ch}$	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]

Table 6.1 – continued from previous page

6.2.5 SUEWS_OHMCoefficients.txt

OHM, the Objective Hysteresis Model (Grimmond et al. 1991) [G910HM] calculates the storage heat flux as a function of net all-wave radiation and surface characteristics.

- For each surface, OHM requires three model coefficients (a1, a2, a3). The three should be selected as a set
- The SUEWS_OHMCoefficients.txt file provides these coefficients for each surface type.
- A variety of values has been derived for different materials and can be found in the literature (see: [http://urban-climate.net/umep/TypicalValues#OHM_Coefficients| Typical Values]).
- Coefficients can be changed depending on:

:# surface wetness state (wet/dry) based on the calculated surface wetness state and soil moisture.

- :# season (summer/winter) based on a 5-day running mean air temperature.
 - To use the same coefficients irrespective of wet/dry and summer/winter conditions, use the same code for all four OHM columns (OHMCode_SummerWet, OHMCode_SummerDry, OHMCode_WinterWet and OHMCode_WinterDry).

Note, **AnOHM** does not use the coefficients specified in SUEWS_OHMCoefficients.txt but instead requires three parameters to be specified for each surface type (including snow): heat capacity, thermal conductivity and bulk transfer coefficient. These are specified in SUEWS_NonVeg.txt, SUEWS_Veg.txt, SUEWS_Water.txt and SUEWS_Snow.txt. No additional files are required for AnOHM.

Note AnOHM is under development in v2017a and should not be used!

No.	Column Name	Use	Description
1	Code	L	Code linking to the OHMCode_SummerWet, OHM-
			Code_SummerDry, OHMCode_WinterWet and OHM-
			Code_WinterDry columns in SUEWS_NonVeg.txt,
			SUEWS_Veg,txt, SUEWS_Water.txt and SUEWS_Snow.txt
			files. Value of integer is arbitrary but must match code specified in
			SUEWS_SiteSelect.txt.
2	a1	MU	Coefficient for Q* term [-]
3	a2	MU	Coefficient for dQ*/dt term [h]
4	a3	MU	Constant term [W m ⁻²]

6.2.6 SUEWS_Profiles.txt

SUEWS_Profiles.txt specifies the daily cycle of variables related to human behaviour (energy use, water use and snow clearing). Different profiles can be specified for weekdays and weekends. The profiles are provided at hourly resolution here; the model will then interpolate the hourly energy and water use profiles to the resolution of the model time step and normalize the values provided. Thus it does not matter whether columns 2-25 add up to, say 1, 24, or another number, because the model will handle this. Currently, the snow clearing profiles are not interpolated as these are effectively a switch (0 or 1).

If the anthropogenic heat flux and water use are specified in the met forcing file, the energy and water use profiles are not used.

Profiles are specified for the following

- Anthropogenic heat flux (weekday and weekend)
- Water use (weekday and weekend; manual and automatic irrigation)
- Snow removal (weekday and weekend)
- Human activity (weekday and weekend).

Note: Human activity is not used in v2017a

No.	Var	Use	Description
1	Code	L	Code linking to SUEWS_SiteSelect.txt for snow surfaces (Snow-
			Code). Value of integer is arbitrary but must match code specified
			in SUEWS_SiteSelect.txt.
2	2-25	MU	Multiplier for each hour of the day [-] for energy and water use.
			For SnowClearing, set those hours to 1 when snow removal from
			paved and roof surface is allowed (0 otherwise) if the snow removal
			limits set in the SUEWS_Non Veg.txt (SnowLimR emove column)
			are exceeded.

6.2.7 SUEWS_SiteSelect.txt

For each year and each grid, site specific surface cover information and other input parameters is provided to SUEWS by $SUEWS_SiteSelect.txt$. The model currently requires a new row for each year of the model run. All rows in this file (before the two rows of '-9') will be read by the model and run. In this file the **column order is important**. '!' can be used to indicate comments in the file. Comments are not read

by the programme so they can be used by the user to provide notes for their interpretation of the contents. This is strongly recommended.

No. Column Name Use Description MU Grid numbers do not need to be con at a particular value. Each grid mus grids must be present for all years. to in GridConnections (columns 64-currently implemented!) Year MU Year [YYYY] Years must be conting ensure the rows in SiteSelect.txt and aparticular value. Each grid mus grids must be present for all years.	st have a unique grid number. All
grids must be present for all years. to in GridConnections (columns 64- currently implemented!) Year [YYYY] Years must be conting ensure the rows in SiteSelect.txt as	
to in GridConnections (columns 64- currently implemented!) 2 Year MU Year [YYYY] Years must be conting ensure the rows in SiteSelect.txt as	These grid numbers are referred
currently implemented!) 2 Year MU Year [YYYY] Years must be contingensure the rows in SiteSelect.txt at	
2 Year Year Year Year Year Year Years must be conting ensure the rows in SiteSelect.txt at	-79) (N.B. GridConnections not
ensure the rows in SiteSelect.txt a	
	nuous. If running multiple years,
, 1	re arranged so that all grids for
	utive lines (rather than grouping
all years together for a particular g	
3 StartDLS MU Start of the day light savings [DOY	Y] See section on Day Light Sav-
ings.	
4 EndDLS MU End of the day light savings [DOY] \$	See section on Day Light Savings
5 lat MU Use coordinate system WGS84. Po	ositive values are northern hemi-
sphere (negative southern hemisph	
lations. Note, if the total modelled	
longitude could be the same for each	
diation will not be determined. If y	0
longitude differently between grids	
enough decimal places.	• •
6 lng MU Use coordinate system WGS84. Fe	For compatibility with GIS, neg-
ative values are to the west, posit	tive values are to the east (e.g.
Vancouver = -123.12; Shanghai =	121.47) Note this is a change of
sign convention between v2016a ar	nd v2017a See latitude for more
details.	
7 Timezone MU Time zone [h] for site relative to UT	/
be set according to the times give	en in the meteorological forcing
file(s).	
8 SurfaceArea MU Area of the grid [ha].	(N.D.)
9 Alt Used for both the radiation and w	<u> </u>
water flow between grids not current	
10 z MU z must be greater than the displacer	9
be representative of the local-scale roughness elements.	te, i.e. above the neight of the
11 id MD Day [DOY] Not used: set to 1 in the	his version
11 th MD Hour [H] Not used: set to 1 in the MD Hour [H] Not used: set to 0 in this	
13 imin MD Minute [M] Not used: set to 0 in the	
14 Fr_Paved MU Columns 14 to 20 must sum to 1.	, , , , , , , , , , , , , , , , , , , ,
15 Fr_Bldgs MU Surface cover fraction of buildings	[-]
16 Fr_EveTr MU Surface cover fraction of evergreen	
17 Fr_DecTr MU Surface cover fraction of deciduous	
18 Fr_Grass MU Surface cover fraction of grass [-]	[]
19 Fr_Bsoil MU Surface cover fraction of bare soil of	or unmanaged land [-]
20 Fr_Water MU Surface cover fraction of open wat	0 1,
swimming pools)	, , , , , , , , , , , , , , , , , , , ,
21 IrrFr_EveTr MU Fraction of evergreen trees that as	are irrigated [-] e.g. 50% of the
evergreen trees/shrubs are irrigated	
22 IrrFr_DecTr MU Fraction of deciduous trees that are	

Table 6.2 – continued from previous page

No.	Column Name		Description
23	IrrFr_Grass	MU	Fraction of grass that is irrigated [-]
24	H_Bldgs	MU	Mean building height [m]
25	H_EveTr	MU	Mean height of evergreen trees [m]
26	H_DecTr	MU	Mean height of deciduous trees [m]
27	20	0	Roughness length for momentum $[m]$ Value supplied here is used if RoughLenMomMethod = 1 in RunControl.nml; otherwise set to '-999' and a value will be calculated by the model (RoughLenMomMethod = 2, 3).
28	zd	0	Zero-plane displacement [m] Value supplied here is used if Rough- LenMomMethod = 1 in RunControl.nml; otherwise set to '-999' and a value will be calculated by the model (RoughLenMomMethod = 2, 3).
29	FAI_Bldgs	0	Frontal area index for buildings [-] Required if RoughLenMom-Method $= 3$ in RunControl.nml .
30	FAI_EveTr	0	Frontal area index for evergreen trees [-] Required if Rough Len-MomMethod $= 3$ in RunControl.nml .
31	$\mathit{FAI_DecTr}$	0	Frontal area index for deciduous trees [-] Required if Rough Len-MomMethod = 3 in RunControl.nml .
32	PopDensDay	0	Daytime population density (i.e. workers, tourists) [people ha -1] Population density is required if AnthropHeatMethod = 2 in Run-Control.nml. The model will use the average of daytime and night-time population densities, unless only one is provided. If daytime population density is unknown, set to -999.
33	PopDensNight	0	Night-time population density (i.e. residents) [people ha -1] Population density is required if AnthropHeatMethod = 2 in RunControl.nml . The model will use the average of daytime and night-time population densities, unless only one is provided. If night-time population density is unknown, set to -999.
34	${\it TrafficRate}$	0	Traffic rate [veh km m-2 s-1] Can be used for CO2 flux calculation. Do not use in v2017a - set to -999
35	BuildEnergyUse	0	Building energy use [W m-2] Can be used for CO2 flux calculation. Do not use in v2017a - set to -999
36	Code_Paved	L	Code for Paved surface characteristics Provides the link to column 1 of SUEWS_NonVeg.txt, which contains the attributes describing paved areas in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_NonVeg.txt. e.g. 331 means use the characteristics specified in the row of input file SUEWS_NonVeg.txt which has 331 in column 1 (Code).
37	Code_Bldgs	L	Code for Bldgs surface characteristics Provides the link to column 1 of SUEWS_NonVeg.txt, which contains the attributes describing buildings in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_NonVeg.txt.
38	Code_EveTr	L	Code for EveTr surface characteristics Provides the link to column 1 of SUEWS_Veg.txt, which contains the attributes describing evergreen trees and shrubs in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Veg.txt.

Table 6.2 – continued from previous page

No.	Column Name	Use	Description
39			Code for DecTr surface characteristics Provides the link to column
99	$Code_DecTr$	L	
			1 of SUEWS_Veg.txt, which contains the attributes describing de-
			ciduous trees and shrubs in this grid for this year. Value of in-
			teger is arbitrary but must match code specified in column 1 of
40		-	SUEWS_Veg.txt.
40	Code_Grass	L	Code for Grass surface characteristics Provides the link to column 1
			of SUEWS_Veg.txt, which contains the attributes describing grass
			surfaces in this grid for this year. Value of integer is arbitrary but
			must match code specified in column 1 of SUEWS_Veg.txt.
41	Code_Bsoil	L	Code for BSoil surface characteristics Provides the link to column
			1 of SUEWS_NonVeg.txt, which contains the attributes describing
			bare soil in this grid for this year. Value of integer is arbitrary but
			must match code specified in column 1 of SUEWS_NonVeg.txt.
42	${\it Code_Water}$	L	Code for Water surface characteristics Provides the link to column
			1 of SUEWS_Water.txt, which contains the attributes describing
			open water in this grid for this year. Value of integer is arbitrary
			but must match code specified in column 1 of SUEWS_Water.txt.
43	${\it LUMPS_DrRate}$	MD	Drainage rate of bucket for LUMPS [mm h ⁻¹] Used for LUMPS
			surface wetness control. Default recommended value of 0.25 mm
			h^{-1} from Loridan et al. (2011) [5].
44	LUMPS_Cover	MD	Limit when surface totally covered with water [mm] Used for
			LUMPS surface wetness control. Default recommended value of
			$1~\mathrm{mm}$ from Loridan et al. (2011) [5] .
45	LUMPS_MaxRes	MD	Maximum water bucket reservoir [mm] Used for LUMPS surface
			wetness control. Default recommended value of $10~\mathrm{mm}$ from Loridan
			et al. (2011) [5] .
46	NARP_Trans	MD	Atmospheric transmissivity for NARP [-] Value must in the range
			0-1. Default recommended value of 1.
47	CondCode	L	Code for surface conductance parameters Provides the link to col-
			umn 1 of SUEWS_Conductance.txt, which contains the parameters
			for the Jarvis (1976) parameterisation of surface conductance. Value
			of integer is arbitrary but must match code specified in column 1
			of SUEWS_Conductance.txt. e.g. 33 means use the characteristics
			specified in the row of input file SUEWS_Conductance.txt which
			has 33 in column 1 (Code).
48	SnowCode	L	Code for snow surface characteristics Provides the link to column
			1 of SUEWS_Snow.txt, which contains the attributes describing
			snow surfaces in this grid for this year. Value of integer is arbitrary
			but must match code specified in column 1 of SUEWS_Snow.txt.
49	SnowClearingProfWD	L	Code for snow clearing profile (weekdays) Provides the link to col-
	<i>J J</i>		umn 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but
			must match code specified in column 1 of SUEWS_Profiles.txt.
			e.g. 1 means use the characteristics specified in the row of input
			file SUEWS_Profiles.txt which has 1 in column 1 (Code).
			me colonic vinerina i (code).

Table 6.2 – continued from previous page

NI.	Caluman Nam		e 0.2 – continued from previous page
No.	Column Name		Description
50	Snow Clearing Prof WE		Code for snow clearing profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. e.g. 1 means use the characteristics specified in the row of input file
			SUEWS_Profiles.txt which has 1 in column 1 (Code). Providing the same code for SnowClearingProfWD and SnowClearingProfWE would link to the same row in SUEWS_Profiles.txt, i.e. the same profile would be used for weekdays and weekends.
51	$\it Anthropogenic Code$	L	Code for modelling anthropogenic heat flux Provides the link to column 1 of SUEWS_AnthropogenicHeat.txt, which contains the model coefficients for estimation of the anthropogenic heat flux (used if AnthropHeatChoice = 1, 2 in RunControl.nml). Value of integer is arbitrary but must match code specified in column 1 of SUEWS_AnthropogenicHeat.txt.
52	<i>EnergyUseProfWD</i>	L	Code for energy use profile (weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.
53	EnergyUseProfWE	L	Code for energy use profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.
54	${\it ActivityProfWD}$	L	Code for human activity profile (weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. Used for CO2 flux calculation - not used in v2017a
55	ActivityProfWE	L	Code for human activity profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. Used for CO2 flux calculation - not used in v2017a
56	$Irrigation {\it Code}$	L	Code for modelling irrigation Provides the link to column 1 of SUEWS_Irrigation.txt, which contains the model coefficients for estimation of the water use (used if WU_Choice = 0 in RunControl.nml). Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Irrigation.txt.
57	WaterUseProfManuWD	L	Code for water use profile (manual irrigation, weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.
58	WaterUseProfManuWE	L	Code for water use profile (manual irrigation, weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.
59	WaterUseProfAutoWD	L	Code for water use profile (automatic irrigation, weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.
60	WaterUseProfAutoWE	L	Code for water use profile (automatic irrigation, weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

Table 6.2 – continued from previous page

Na	Column Name		e 6.2 – continued from previous page
No.		Use	•
01	FlowChange	MD	Difference in input and output flows for water surface [mm h ⁻¹] Used to indicate river or stream flow through the grid. Currently not fully tested!
62	RunoffToWater	MD	Fraction of above-ground runoff flowing to water surface during
-		MU	flooding [-] Value must be in the range 0-1. Fraction of above-ground
			runoff that can flow to the water surface in the case of flooding.
63	PipeCapacity	MD	Storage capacity of pipes [mm] Runoff amounting to less than the
		MU	value specified here is assumed to be removed by pipes.
64	GridConnection1of8	MD	The next 8 pairs of columns specify the water flow between grids.
	,	MU	The first column of each pair specifies the grid that the water flows
			to (from the current grid, column 1); the second column of each
			pair specifies the fraction of water that flow to that grid. The frac-
			tion (i.e. amount) of water transferred may be estimated based on
			elevation, the length of connecting surface between grids, presence
			of walls, etc. Water cannot flow from the current grid to the same
			grid, so the grid number here must be different to the grid number
			in column 1. Water can flow to a maximum of 8 other grids. If
			there is no water flow between grids, or a single grid is run, set to
05		100	0. See section on Grid Connections
65	Fraction1of8	MD	Fraction of water that can flow to the grid specified in previous
cc	0-:10	MU	column [-]
66	GridConnection2of8	MD	Number of the grid where water can flow to
67	Encation Octo	MU	Exection of water that can flow to the smid specified in previous
07	Fraction2of8	MD MU	Fraction of water that can flow to the grid specified in previous column [-]
68	GridConnection3of8	MD	Number of the grid where water can flow to
00	ar taconnectionsojo	MU	Number of the grid where water can now to
69	Fraction3of8	MD	Fraction of water that can flow to the grid specified in previous
		MU	column [-]
70	GridConnection4of8	MD	Number of the grid where water can flow to
	1 3	MU	
71	Fraction4of8	MD	Fraction of water that can flow to the grid specified in previous
		MU	column [-]
72	GridConnection5of8	MD	Number of the grid where water can flow to
		MU	
73	Fraction5of8	MD	Fraction of water that can flow to the grid specified in previous
		MU	column [-]
74	${\it Grid Connection 6of 8}$	MD	Number of the grid where water can flow to
		MU	
75	Fraction 6 of 8	MD	Fraction of water that can flow to the grid specified in previous
B 0		MU	column [-]
76	${\it Grid Connection 7of 8}$	MD	Number of the grid where water can flow to
		MU	
77	Fraction 7 of 8	MD	Fraction of water that can flow to the grid specified in previous
70	0-110 1: 0.20	MU	column [-]
78	${\it Grid Connection 8of 8}$	MD	Number of the grid where water can flow to
70	Emantian Octo	MU	The etion of western that can flow to the smill on eight in
79	Fraction8of8	MD	Fraction of water that can flow to the grid specified in previous
		MU	column [-]

Table 6.2 – continued from previous page

No.	Column Name		Description
80	WithinGridPavedCode	L	Code that links to the fraction of water that flows
00	withingrapaveacoae	L	from Paved surfaces to surfaces in columns 2-10 of
			SUEWS WithinGridWaterDist.txt . Value of integer is
			arbitrary but must match code specified in column 1 of
			SUEWS WithinGridWaterDist.txt.
81	WithinGridBldgsCode	L	Code that links to the fraction of water that flows
01	withing tubiagscode	L	from Bldgs surfaces to surfaces in columns 2-10 of
			SUEWS WithinGridWaterDist.txt. Value of integer is ar-
			bitrary but must match code specified in column 1 of
			SUEWS WithinGridWaterDist.txt.
82	WithinGridEveTrCode	L	Code that links to the fraction of water that flows
-			from EveTr surfaces to surfaces in columns 2-10 of
			SUEWS WithinGridWaterDist.txt. Value of integer is ar-
			bitrary but must match code specified in column 1 of
			SUEWS_WithinGridWaterDist.txt.
83	WithinGridDecTrCode	L	Code that links to the fraction of water that flows
			from DecTr surfaces to surfaces in columns 2-10 of
			SUEWS_WithinGridWaterDist.txt. Value of integer is ar-
			bitrary but must match code specified in column 1 of
			SUEWS_WithinGridWaterDist.txt.
84	Within Grid Grass Code	L	Code that links to the fraction of water that flows
			from Grass surfaces to surfaces in columns 2-10 of
			SUEWS_WithinGridWaterDist.txt. Value of integer is ar-
			bitrary but must match code specified in column 1 of
0.5	11:41::	T	SUEWS_WithinGridWaterDist.txt. Code that links to the fraction of water that flows
85	${\it WithinGridBSoilCode}$	L	Code that links to the fraction of water that flows from BSoil surfaces to surfaces in columns 2-10 of
			SUEWS WithinGridWaterDist.txt. Value of integer is ar-
			bitrary but must match code specified in column 1 of
			SUEWS WithinGridWaterDist.txt.
86	WithinGridWaterCode	L	Code that links to the fraction of water that flows
			from Water surfaces to surfaces in columns 2-10 of
			SUEWS WithinGridWaterDist.txt. Value of integer is ar-
			bitrary but must match code specified in column 1 of
			$SUEWS_WithinGridWaterDist.txt.$
87	AreaWall	MU	Area of wall within grid (needed for ESTM calculation).
88	$Fr_ESTMClass_Paved1$	MU	Columns 88-90 must add up to 1
89	$Fr_ESTMClass_Paved2$	MU	Columns 88-90 must add up to 1
90	$Fr_ESTMClass_Paved3$	MU	Columns 88-90 must add up to 1
91	Code_ESTMClass_Paved1	L	Code linking to SUEWS_ESTMCoefficients.txt
92	Code_ESTMClass_Paved2	L	Code linking to SUEWS_ESTMCoefficients.txt
93	Code_ESTMClass_Paved3		Code linking to SUEWS_ESTMCoefficients.txt
94	Fr_ESTMClass_Bldgs1	MU	Columns 94-98 must add up to 1
95	Fr_ESTMClass_Bldgs2	MU	Columns 94-98 must add up to 1
96	Fr_ESTMClass_Bldgs3	MU	Columns 94-98 must add up to 1
97	Fr_ESTMClass_Bldgs4	MU	Columns 94-98 must add up to 1
98	Fr_ESTMClass_Bldgs5	MU	Columns 94-98 must add up to 1
99	Code_ESTMClass_Bldgs1	L	Code linking to SUEWS_ESTMCoefficients.txt
100	Code_ESTMClass_Bldgs2		Code linking to SUEWS_ESTMCoefficients.txt
101	${\it Code_ESTMClass_Bldgs3}$	L	Code linking to SUEWS_ESTMCoefficients.txt

Table 6.2 – continued from previous page

No.	***********		Description
102	Code_ESTMClass_Bldgs4	L	Code linking to SUEWS_ESTMCoefficients.txt
103	Code_ESTMClass_Bldgs5	L	Code linking to SUEWS_ESTMCoefficients.txt

Day Light Savings (DLS)

The dates for DLS normally vary each year and country as they are often associated with a specific set of Sunday mornings at the beginning of summer and autumn. Note it is important to remember leap years. You can check http://www.timeanddate.com/time/dst/ for your city.

Tip: If DLS does not occur give a start and end day immediately after it. Make certain the dummy dates are correct for the hemisphere

• for northern hemisphere, use: 180 181

• for southern hemisphere, use: 365 1

Example when running multiple years (in this case 2008 and 2009 in Canada):

Year	start of daylight savings	end of daylight savings
2008	170	240
2009	172	242

Grid Connections (water flow between grids)

Caution:

48

- not currently implemented
- columns 64-79 of SUEWS_SiteSelect.txt can be set to zero.

This section gives an example of water flow between grids, calculated based on the relative elevation of the grids and length of the connecting surface between adjacent grids. For the square grids in the figure, water flow is assumed to be zero between diagonally adjacent grids, as the length of connecting surface linking the grids is very small. Model grids need not be square or the same size.

The table gives example values for the grid connections part of $SUEWS_SiteSelect.txt$ for the grids shown in the figure. For each row, only water flowing out of the current grid is entered (e.g. water flows from 234 to 236 and 237, with a larger proportion of water flowing to 237 because of the greater length of connecting surface between 234 and 237 than between 234 and 236. No water is assumed to flow between 234 and 233 or 235 because there is no elevation difference between these grids. Grids 234 and 238 are at the same elevation and only connect at a point, so no water flows between them. Water enters grid 234 from grids 230, 231 and 232 as these are more elevated.

Note: Arrows indicate the water flow in to and out of grid 234, but note that only only water flowing out of each grid is entered in *SUEWS_SiteSelect.txt*

Fig. 6.1: Example grid connections showing water flow between grids.

Grid	GridConnection 10f8	Fraction1of8	GridConnection 2of8	Fraction2of8	GridConnection 3of8	Fraction3of8	GridConnection 4of8	Fraction4of8	GridConnection Sof8	Fraction5of8	GridConnection 6of8	Fraction6of8	GridConnection 7of8	Fraction7of8	GridConnection 8of8	Fraction8of8
230	233	0.90	234	0.10	0	0	0	0	0	0	0	0	0	0	0	0
231	234	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
232	234	0.20	235	0.80	0	0	0	0	0	0	0	0	0	0	0	0
233	236	1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
234	236	0.10	237	0.90	0	0	0	0	0	0	0	0	0	0	0	0
235	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
236	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
237	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
238	237	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Fig. 6.2: Example values for the grid connections part of SUEWS_SiteSelect.txt for the grids.

6.2.8 SUEWS_Snow.txt

SUEWS_Snow.txt specifies the characteristics for snow surfaces when <code>SnowUse=1</code> in <code>RunControl.nml</code>. If the snow part of the model is not run, fill this table with '-999' except for the first (Code) column and set <code>SnowUse=0</code> in <code>RunControl.nml</code>. For a detailed description of the variables, see Järvi et al. (2014) [Leena2014].

Warning: In the current release SnowUse should be set to 0.

No.	Column Name	Use	Description
1	Code	L	Code linking to SUEWS_SiteSelect.txt for snow surfaces (Snow-
			Code). Value of integer is arbitrary but must match code specified
			in SUEWS_SiteSelect.txt.
2	${\it RadMeltFactor}$	MU	Hourly radiation melt factor of snow [mm W ⁻¹ h ⁻¹]
3	TempMeltFactor	MU	Hourly temperature melt factor of snow [mm K ⁻¹ h ⁻¹] (In previous
			model version, this parameter was 0.12)
4	AlbedoMin	MU	Example values [-] 0.18 Järvi et al. (2014) [15]
5	AlbedoMax	MU	Example values [-] 0.85 Järvi et al. (2014) [15]
6	${\it Emissivity}$	MU	Effective surface emissivity. View factors should be taken into ac-
			count Example values [-] 0.99 Järvi et al. (2014) [15]
7	tau_a	MD	Time constant for snow albedo aging in cold snow [-]
8	tau_f	MD	Time constant for snow albedo aging in melting snow [-]
9	${\it PrecipiLimAlb}$	MD	Limit for hourly precipitation when the ground is fully covered with
			snow. Then snow albedo is reset to AlbedoMax [mm]
10	snowDensMin	MD	Fresh snow density [kg m ⁻³]
11	snowDensMax	MD	Maximum snow density [kg m ⁻³]
12	tau_r	MD	Time constant for snow density ageing [-]
13	CRWMin	MD	Minimum water holding capacity of snow [mm]
14	CRWMax	MD	Maximum water holding capacity of snow [mm]
15	${\it PrecipLimSnow}$	MD	Auer (1974) [38]
16	${\it OHMCode_SummerWet}$	L	Code for OHM coefficients to use for this surface during wet con-
			ditions in summer. Links to SUEWS_OHMCoefficients.txt . Value $$
			of integer is arbitrary but must match code specified in column 1 of
			SUEWS_OHMCoefficients.txt.
17	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry condi-
			tions in summer. Links to SUEWS_OHMCoefficients.txt . Value
			of integer is arbitrary but must match code specified in column 1 of
10		-	SUEWS_OHMCoefficients.txt.
18	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet condi-
			tions in winter. Links to SUEWS_OHMCoefficients.txt . Value of
			integer is arbitrary but must match code specified in column 1 of
10	OIMO - 1 - IV - 1 P	7	SUEWS_OHMCoefficients.txt.
19	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry condi-
			tions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of
			SUEWS_OHMCoefficients.txt.
			SOE WS_OHIMOemicients.txt.

Table 6.3 – continued from previous page

No.	Column Name	Use	Description
20	OHMThresh_SW	MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied. Not actually used for Snow surface as winter wet conditions always assumed.
21	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet. Not actually used for Snow surface as winter wet conditions always assumed.
22	ESTMCode	L	For paved and building surfaces, it is possible to specify multiple codes per grid (3 for paved, 5 for buildings) using SUEWS_SiteSelect.txt . In this case, set ESTM code here to zero.
23	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]
24	$AnOHM_Kk$	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]
25	AnOHM_Ch	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]

6.2.9 SUEWS_Soil.txt

SUEWS_Soil.txt specifies the characteristics of the sub-surface soil below each of the non-water surface types (Paved, Bldgs, EveTr, DecTr, Grass, BSoil). The model does not have a soi store below the water surfaces. Note that these sub-surface soil stores are different to the bare soil/unmamnaged surface cover type. Each of the non-water surface types need to link to soil characteristics specified here. If the soil characteristics are assumed to be the same for all surface types, use a single code value to link the characteristics here with the SoilTypeCode columns in SUEWS_NonVeg.txt and SUEWS_Veg.txt.

Soil moisture can either be provided using observational data in the met forcing file (smd_choice = 1 or 2 in RunControl.nml) and providing some metadata information here (OBS columns), or modelled by SUEWS (smd_choice = 0 in RunControl.nml). - Note, the option to use observational data is not operational in the current release!

No.	Column Name	Use	Description
1	Code	L	Code linking to the SoilTypeCode column in SUEWS_NonVeg.txt
			(for Paved, Bldgs and BSoil surfaces) and SUEWS_Veg.txt (for
			EveTr, DecTr and Grass surfaces). Value of integer is arbitrary but
			must match code specified in SUEWS_SiteSelect.txt.
2	SoilDepth	MD	Depth of sub-surface soil store [mm] i.e. the depth of soil beneath
			the surface
3	SoilStoreCap	MD	SoilStoreCap must not be greater than SoilDepth.
4	SatHydraulic Cond	MD	Hydraulic conductivity for saturated soil [mm s ⁻¹]
5	SoilDensity	MD	Soil density [kg m ⁻³]
6	${\it InfiltrationRate}$	0	Not currently used
7	OBS_SMDepth	0	Use only if soil moisture is observed and provided in the met forcing
			file and smd_choice = 1 or 2. Use of observed soil moisture not
			currently tested
8	OBS_SMCap	0	Use only if soil moisture is observed and provided in the met forcing
			file and smd_choice = 1 or 2. Use of observed soil moisture not
			currently tested
9	$ extit{OBS_SoilNotRocks}$	0	Use only if soil moisture is observed and provided in the met forcing
			file and smd_choice = 1 or 2. Use of observed soil moisture not
			currently tested

6.2.10 SUEWS_Veg.txt

SUEWS_Veg.txt specifies the characteristics for the vegetated surface cover types (EveTr, DecTr, Grass) by linking codes in column 1 of SUEWS_Veg.txt to the codes specified in SUEWS_SiteSelect.txt (Code_EveTr, Code_DecTr, Code_Grass). Each row should correspond to a particular surface type. For suggestions on how to complete this table, see: Typical Values.

No.	Column Name	Use	Description		
1	Code	L	Code linking to SUEWS_SiteSelect.txt for evergreen trees and		
			shrubs (Code_EveTr), deciduous trees and shrubs (Code_DecTr)		
			and grass surfaces (Code_Grass). Value of integer is arbitrary but		
			must match codes specified in SUEWS_SiteSelect.txt.		
2	AlbedoMin	MU	Effective surface albedo (middle of the day value) for wintertime		
			(not including snow), leaf-off. View factors should be taken into		
			account. Example values [-] 0.1 EveTr Oke (1987) [35] 0.18 DecTr		
			Oke (1987) [35] 0.21 Grass Oke (1987) [35]		
3	AlbedoMax	MU	Effective surface albedo (middle of the day value) for summertime,		
			full leaf-on. View factors should be taken into account. Example		
			values [-] 0.1 EveTr Oke (1987) [35] 0.18 DecTr Oke (1987) [35] 0.21		
			Grass Oke (1987) [35]		
4	Emissivity	MU	Effective surface emissivity. View factors should be taken into ac-		
			count. Example values [-] 0.98 EveTr Oke (1987) [35] 0.98 DecTr		
			Oke (1987) [35] 0.93 Grass Oke (1987) [35]		
5	StorageMin	MD	Minimum water storage capacity for upper surfaces (i.e. canopy).		
			Min/max values are to account for seasonal variation (e.g. leaf-		
			off/leaf-on differences for vegetated surfaces). Example values [mm]		
			1.3 EveTr Breuer et al. (2003) [36] 0.3 DecTr Breuer et al. (2003)		
			[36] 1.9 Grass Breuer et al. (2003) [36]		

Table 6.4 – continued from previous page

No.	Column Name Use Description				
6	Storage Max	MD	Maximum water storage capacity for upper surfaces (i.e. canopy)		
	<i>3</i>		Min/max values are to account for seasonal variation (e.g. leaf-		
			off/leaf-on differences for vegetated surfaces) Only used for DecTr		
			surfaces - set EveTr and Grass values the same as StorageMin. Ex-		
			ample values [mm] 1.3 EveTr Breuer et al. (2003) [36] 0.8 DecTr		
			Breuer et al. (2003) [36] 1.9 Grass Breuer et al. (2003) [36]		
7	WetThreshold	MD	Depth of water which determines whether evaporation occurs from		
			a partially wet or completely wet surface. Example values [mm] 1.8		
		160	EveTr 1. DecTr 2. Grass		
8	StateLimit	MD	Currently only used for the water surface		
9	DrainageEq	MD	Options 1 Falk and Niemczynowicz (1978) [32] 2 Halldin et al.		
			(1979) [33] (Rutter eqn corrected for c=0, see Calder & Wright (1986) [34]) Recommended [3] for EveTr, DecTr, Grass (unirri-		
			gated) 3 Falk and Niemczynowicz (1978) [32] Recommended [3]		
			for Grass (irrigated) Coefficients are specified in the following two		
			columns.		
10	DrainageCoef1	MD	Example values DrainageEq 10 Coefficient D0 [mm h ⁻¹] 3 Recom-		
	<i>y</i>		mended [3] for Grass (irrigated) 0.013 Coefficient D0 [mm h ⁻¹] 2		
			Recommended [3] for EveTr, DecTr, Grass (unirrigated)		
11	DrainageCoef2	MD	Example values DrainageEq 3 Coefficient b [-] 3 Recommended [3]		
			for Grass (irrigated) 1.71 Coefficient b [m m^-1] 2 Recommended		
			[3] for EveTr, DecTr, Grass (unirrigated)		
12	SoilTypeCode		Code for soil characteristics below this surface Provides the link		
			to column 1 of SUEWS_Soil.txt , which contains the attributes		
			describing sub-surface soil for this surface type. Value of integer is arbitrary but must match code specified in column 1 of		
			SUEWS_Soil.txt.		
13	${\it SnowLimPatch}$	0	Limit of snow water equivalent when the surface surface is fully		
			covered with snow. Not needed if SnowUse = 0 in RunControl.nm.		
			. Example values [mm] 190 EveTr Järvi et al. (2014) [15] 190 DecTr		
			Järvi et al. (2014) [15] 190 Grass Järvi et al. (2014) [15]		
14	BaseT	MU	See section 2.2 Järvi et al. (2011); Appendix A Järvi et al. (2014).		
			Example values [°C] 5 EveTr Järvi et al. (2011) [1] 5 DecTr Järvi		
			et al. (2011) [1] 5 Grass Järvi et al. (2011) [1]		
15	BaseTe	MU	See section 2.2 Järvi et al. (2011) [1]; Appendix A Järvi et al.		
			(2014) [15] . Example values [°C] 10 EveTr Järvi et al. (2011) [1]		
16	CDDFa:17	MITT	10 DecTr Järvi et al. (2011) [1] 10 Grass Järvi et al. (2011) [1]		
10	$\mathit{GDDFull}$	MU	This should be checked carefully for your study area using modelled LAI from the DailyState output file compared to known behaviour		
			in the study area. See section 2.2 Järvi et al. (2011) [1]; Appendix		
			A Järvi et al. (2014) [15] for more details. Example values [°C] 300		
			EveTr Järvi et al. (2011) [1] 300 DecTr Järvi et al. (2011) [1]		
			Grass Järvi et al. (2011) [1]		
17	SDDFull	MU	This should be checked carefully for your study area using modelled		
			LAI from the DailyState output file compared to known behaviour		
			in the study area. See section 2.2 Järvi et al. (2011) [1]; Appendix		
			A Järvi et al. (2014) [15] for more details. Example values [°C] -450		
			EveTr Järvi et al. (2011) [1] -450 DecTr Järvi et al. (2011) [1] -450		
			Grass Järvi et al. (2011) [1]		

Table 6.4 – continued from previous page

NIa	Column Name Use Description				
No.					
18	LAIMin	MD	leaf-off wintertime value Example values [m ⁻² m ⁻²] 4. EveTr Järvi et		
			al. (2011) [1] 1. DecTr Järvi et al. (2011) [1] 1.6 Grass Grimmond		
			and Oke (1991) [3] and references therein		
19	LAIMax	MD	full leaf-on summertime value Example values [m ⁻² m ⁻²] 5.1 EveTr		
			Breuer et al. (2003) [36] 5.5 DecTr Breuer et al. (2003) [36] 5.9		
			Grass Breuer et al. (2003) [36]		
20	PorosityMin	MD	leaf-off wintertime value Used only for DecTr (can affect roughness		
			calculation)		
21	PorosityMax	MD	full leaf-on summertime value Used only for DecTr (can affect rough-		
	, and the second		ness calculation)		
22	MaxConductance	MD	Example values [mm s ⁻¹] 7.4 EveTr Järvi et al. (2011) [1] 11.7 DecTr		
			Järvi et al. (2011) [1] 33.1 Grass (unirrigated) Järvi et al. (2011)		
			[1] 40. Grass (irrigated) Järvi et al. (2011) [1]		
23	LAIEq	MD	Options 0 Järvi et al. (2011) [1] 1 Järvi et al. (2014) [15] Coefficients		
20	LAILY	TID	are specified in the following four columns. N.B. North and South		
			-		
0.4	T 60 11D 4	MD	hemispheres are treated slightly differently.		
24	Leaf Growth Power1	MD	Example values LAIEq 0.03 Järvi et al. (2011) [1] 0 0.04 Järvi et		
25		160	al. (2014) [15] 1		
25	Leaf Growth Power 2	MD	Example values [K-1] LAIEq 0.0005 Järvi et al. (2011) [1] 0 0.001		
			Järvi et al. (2014) [15] 1		
26	LeafOffPower1	MD	Example values LAIEq 0.03 Järvi et al. (2011) [1] 0 -1.5 Järvi et al.		
			(2014) [15] 1		
27	Leaf Off Power 2	MD	Example values $[K^{-1}]$ LAIEq 0.0005 Järvi et al. (2011) [1] 0 0.0015		
			Järvi et al. (2014) [15] 1		
28	OHMCode_SummerWet	L	Code for OHM coefficients to use for this surface during wet con-		
			ditions in summer. Links to SUEWS_OHMCoefficients.txt . Value		
			of integer is arbitrary but must match code specified in column 1 of		
			SUEWS_OHMCoefficients.txt.		
29	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry condi-		
			tions in summer. Links to SUEWS_OHMCoefficients.txt. Value		
			of integer is arbitrary but must match code specified in column 1 of		
			SUEWS OHMCoefficients.txt.		
30	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet condi-		
50	SILIOOWS_WOUNDERWED	-	tions in winter. Links to SUEWS_OHMCoefficients.txt . Value of		
			integer is arbitrary but must match code specified in column 1 of		
91	OUMCodo NintantanDes	T	SUEWS_OHMCoefficients.txt.		
31	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry condi-		
			tions in winter. Links to SUEWS_OHMCoefficients.txt . Value of		
			integer is arbitrary but must match code specified in column 1 of		
0.0			SUEWS_OHMCoefficients.txt.		
32	OHMThresh_SW	MD	Temperature threshold determining whether summer/winter OHM		
			coefficients are applied [°C] If 5-day running mean air temperature is		
			greater than or equal to this threshold, OHM coefficients for sum-		
			mertime are applied; otherwise coefficients for wintertime are ap-		
			plied.		

Table 6.4 – continued from previous page

No.	Column Name	Use	Description	
33	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coeffi-	
			cients are applied [-] If soil moisture (as a proportion of maximum	
			soil moisture capacity) exceeds this threshold for bare soil and vege-	
			tated surfaces, OHM coefficients for wet conditions are applied; oth-	
			erwise coefficients for dry coefficients are applied. Note that OHM	
			coefficients for wet conditions are applied if the surface is wet.	
34	ESTMCode	L	Code for ESTM coefficients to use for this surface. Links	
			to SUEWS_ESTMCoefficients.txt . Value of integer is ar-	
			bitrary but must match code specified in column 1 of	
			SUEWS_ESTMCoefficients.txt.	
35	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]	
36	$AnOHM_Kk$	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]	
37	AnOHM_Ch	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]	

6.2.11 SUEWS_Water.txt

SUEWS_Water.txt specifies the characteristics for the water surface cover type by linking codes in column 1 of SUEWS_Water.txt to the codes specified in SUEWS_SiteSelect.txt (Code_Water).

No.	Column Name	Use	Description		
1	Code	L	Code linking to SUEWS_SiteSelect.txt for water surfaces		
			(Code_Water). Value of integer is arbitrary but must match code		
			specified in SUEWS_SiteSelect.txt.		
2	AlbedoMin	MU	View factors should be taken into account. Not currently used for		
			water surface - set same as AlbedoMax.		
3	AlbedoMax	MU	Effective albedo of the water surface. View factors should be taken		
			into account. Example values [-] 0.1 Water Oke (1987) [35]		
4	${\it Emissivity}$	MU	Effective surface emissivity. View factors should be taken into ac-		
			count Example values [-] 0.95 Water Oke (1987) [35]		
5	Storage Min	MD	Minimum water storage capacity for upper surfaces (i.e. canopy).		
			Min/max values are to account for seasonal variation - not used for		
			water surfaces. Example values [mm] 0.5 Water		
6	Storage Max	MD	Maximum water storage capacity for upper surfaces (i.e. canopy)		
			Min and max values are to account for seasonal variation - not used		
			for water surfaces so set same as StorageMin.		
7	WetThreshold	MD	Depth of water which determines whether evaporation occurs from		
			a partially wet or completely wet surface. Example values [mm] 0.5		
			Water		
8	StateLimit	MU	Surface state cannot exceed this value. Set to a large value (e.g.		
			20000 mm = 20 m) if the water body is substantial (lake, river, etc)		
			or a small value (e.g. 10 mm) if water bodies are very shallow (e.g.		
			fountains). WaterDepth (column 9) must not exceed this value.		
9	WaterDepth	MU	Set to a large value (e.g. 20000 mm = 20 m) if the water body is		
			substantial (lake, river, etc) or a small value (e.g. 10 mm) if water		
			bodies are very shallow (e.g. fountains). This value must not exceed		
10			StateLimit (column 8).		
10	DrainageEq	MD	Not currently used for water surface.		
11	DrainageCoef1	MD	Not currently used for water surface		
12	DrainageCoef2	MD	Not currently used for water surface		

Table 6.5 – continued from previous page

No.	Column Name	Use	Description		
13	OHMCode_SummerWet	L	Code for OHM coefficients to use for this surface during wet con-		
			ditions in summer. Links to SUEWS_OHMCoefficients.txt . Value		
			of integer is arbitrary but must match code specified in column 1 of		
			SUEWS_OHMCoefficients.txt.		
14	OHMCode_SummerDry	L	Code for OHM coefficients to use for this surface during dry condi-		
			tions in summer. Links to SUEWS_OHMCoefficients.txt . Value		
			of integer is arbitrary but must match code specified in column 1 of		
			SUEWS_OHMCoefficients.txt.		
15	OHMCode_WinterWet	L	Code for OHM coefficients to use for this surface during wet condi-		
			tions in winter. Links to SUEWS_OHMCoefficients.txt . Value of		
			integer is arbitrary but must match code specified in column 1 of		
1.0			SUEWS_OHMCoefficients.txt.		
16	OHMCode_WinterDry	L	Code for OHM coefficients to use for this surface during dry condi-		
			tions in winter. Links to SUEWS_OHMCoefficients.txt . Value of		
			integer is arbitrary but must match code specified in column 1 of		
1.77	arnem 1 arr	100	SUEWS_OHMCoefficients.txt. Temperature threshold determining whether summer/winter OHM		
17	OHMThresh_SW	MD			
			coefficients are applied [°C] If 5-day running mean air temperature is		
			greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are ap-		
			plied.		
18	OHMThresh_WD	MD	Soil moisture threshold determining whether wet/dry OHM coeffi-		
10	UIIIIIII ESIL_WD	IID	cients are applied [-] If soil moisture (as a proportion of maximum		
			soil moisture capacity) exceeds this threshold for bare soil and vege-		
			tated surfaces, OHM coefficients for wet conditions are applied; oth-		
			erwise coefficients for dry coefficients are applied. Note that OHM		
			coefficients for wet conditions are applied if the surface is wet. Not		
			actually used for water surface (as no soil surface beneath).		
19	ESTMCode	L	Code for ESTM coefficients to use for this surface. Links		
			to SUEWS_ESTMCoefficients.txt . Value of integer is ar-		
			bitrary but must match code specified in column 1 of		
			SUEWS_ESTMCoefficients.txt.		
20	AnOHM_Cp	MU	Volumetric heat capacity for this surface to use in AnOHM [J m ⁻³]		
21	AnOHM_Kk	MU	Thermal conductivity for this surface to use in AnOHM [W m K ⁻¹]		
22	AnOHM_Ch	MU	Bulk transfer coefficient for this surface to use in AnOHM [-]		

6.2.12 SUEWS_WithinGridWaterDist.txt

SUEWS_WithinGridWaterDist.txt specifies the movement of water between surfaces within a grid/area. It allows impervious connectivity to be taken into account.

Each row corresponds to a surface type (linked by the Code in column 1 to the SUEWS_SiteSelect.txt columns: WithinGridPavedCode, WithinGridBldgsCode, ..., WithinGridWaterCode). Each column contains the fraction of water flowing from the surface type to each of the other surface types or to runoff or the sub-surface soil store.

Note:

- $\bullet\,$ The sum of each row (excluding the Code) must equal 1.
- Water cannot flow from one surface to that same surface, so the diagonal elements should be zero.

- The row corresponding to the water surface should be zero, as there is currently no flow permitted from the water surface to other surfaces by the model.
- Currently water **cannot** go to both runoff and soil store (i.e. it must go to one or the other runoff for impervious surfaces; soilstore for pervious surfaces).

In the table below, for example,

- all flow from paved surfaces goes to runoff;
- 90% of flow from buildings goes to runoff, with small amounts going to other surfaces (mostly paved surfaces as buildings are often surrounded by paved areas);
- all flow from vegetated and bare soil areas goes into the sub-surface soil store;
- the row corresponding to water contains zeros (as it is currently not used).

No.	Column Name	Use	Description
1	ToPaved	MU	Fraction of water going to Paved
2	ToBldgs	MU	Fraction of water going to Bldgs
3	ToEveTr	MU	Fraction of water going to EveTr
4	ToDecTr	MU	Fraction of water going to DecTr
5	ToGrass	MU	Fraction of water going to Grass
6	${\it ToBSoil}$	MU	Fraction of water going to BSoil
7	ToWater	MU	Fraction of water going to Water
8	ToRunoff	MU	Fraction of water going to Runoff
9	${\it ToSoilStore}$	MU	Fraction of water going to SoilStore

6.2.13 Input_Options

a1

Description Coefficient for Q^* term [-]

Configuration

Referencing Table	Requirement	Comment
SUEWS_OHMCoefficients.txt	MU	Coefficient for Q* term [-]

a2

Description Coefficient for dQ*/dt term [h]

Configuration

Referencing Table	Requirement	Comment
SUEWS_OHMCoefficients.txt	MU	Coefficient for dQ*/dt term [h]

a3

Description Constant term [W m⁻²]

Referencing Table	Requirement	Comment
SUEWS_OHMCoefficients.txt	MU	Constant term [W m ⁻²]

ActivityProfWD

Description Code for human activity profile (weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. Used for CO2 flux calculation - not used in v2017a

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for human activity profile (weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. Used for CO2 flux calculation - not used in v2017a

ActivityProfWE

Description Code for human activity profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. Used for CO2 flux calculation - not used in v2017a

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	L	Code for human activity profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. Used for CO2 flux calculation - not used in v2017a

AHMin

Description Use with AnthropHeatMethod = 1

Referencing Table	Requirement	Comment
SUEWS_AnthropogenicHeat.txt	MU O	Use with AnthropHeatMethod
		= 1

AHSlope

Description Use with AnthropHeatMethod = 1

Configuration

Referencing Table	Requirement	Comment
$SUEWS_AnthropogenicHeat.txt$	MU O	Use with AnthropHeatMethod
		= 1

AlbedoMax

Description Effective surface albedo (middle of the day value) for summertime. View factors should be taken into account. Effective surface albedo (middle of the day value) for summertime, full leaf-on. View factors should be taken into account. Example values [-] 0.1 EveTr Oke (1987) [35] 0.18 DecTr Oke (1987) [35] 0.21 Grass Oke (1987) [35] Effective albedo of the water surface. View factors should be taken into account. Example values [-] 0.1 Water Oke (1987) [35] Example values [-] 0.85 Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MU	Effective surface albedo (mid-
		dle of the day value) for sum-
		mertime. View factors should
		be taken into account.
SUEWS_Veg.txt	MU	Effective surface albedo (mid-
		dle of the day value) for sum-
		mertime, full leaf-on. View
		factors should be taken into
		account. Example values [-]
		0.1 EveTr Oke (1987) [35] 0.18
		DecTr Oke (1987) [35] 0.21
		Grass Oke (1987) [35]
SUEWS_Water.txt	MU	Effective albedo of the water
		surface. View factors should
		be taken into account. Exam-
		ple values [-] 0.1 Water Oke
		(1987) [35]
SUEWS_Snow.txt	MU	Example values [-] 0.85 Järvi
		et al. (2014) [15]

AlbedoMin

Description Effective surface albedo (middle of the day value) for wintertime (not including snow). View factors should be taken into account. Not currently used for non-vegetated surfaces – set the same as AlbedoMax. Effective surface albedo (middle of the day value) for wintertime (not including snow), leaf-off. View factors should be taken into account. Example values [-] 0.1 EveTr Oke (1987) [35] 0.18 DecTr Oke (1987) [35] 0.21 Grass Oke (1987) [35] View factors should be taken into account. Not currently used for water surface - set same as AlbedoMax. Example values [-] 0.18 Järvi et al. (2014) [15]

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MU	Effective surface albedo (middle of the day value) for wintertime (not including snow). View factors should be taken into account. Not currently used for non-vegetated surfaces – set the same as Albedo-Max.
SUEWS_Veg.txt	MU	Effective surface albedo (middle of the day value) for wintertime (not including snow), leaf-off. View factors should be taken into account. Example values [-] 0.1 EveTr Oke (1987) [35] 0.18 DecTr Oke (1987) [35] 0.21 Grass Oke (1987) [35]
SUEWS_Water.txt	MU	View factors should be taken into account. Not currently used for water surface - set same as AlbedoMax.
SUEWS_Snow.txt	MU	Example values [-] 0.18 Järvi et al. (2014) [15]

Alt

Description Used for both the radiation and water flow between grids. (N.B. water flow between grids not currently implemented.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Used for both the radia-
		tion and water flow between
		grids. (N.B. water flow be-
		tween grids not currently im-
		plemented.)

${\tt AnOHM_Ch}$

Description Bulk transfer coefficient for this surface to use in AnOHM [-] Bulk transfer coefficient for this surface to use in AnOHM [-] Bulk transfer coefficient for this surface to use in AnOHM [-]

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MU	Bulk transfer coefficient for
		this surface to use in AnOHM
		[-]
SUEWS_Veg.txt	MU	Bulk transfer coefficient for
		this surface to use in AnOHM
		[-]

Table 6.16 – continued from previous page

Referencing Table	Requirement	Comment
SUEWS_Water.txt	MU	Bulk transfer coefficient for
		this surface to use in AnOHM
		[-]
SUEWS_Snow.txt	MU	Bulk transfer coefficient for
		this surface to use in AnOHM
		[-]

AnOHM_Cp

Description Volumetric heat capacity for this surface to use in AnOHM [J m $^{-3}$] Volumetric heat capacity for this surface to use in AnOHM [J m $^{-3}$] Volumetric heat capacity for this surface to use in AnOHM [J m $^{-3}$] Volumetric heat capacity for this surface to use in AnOHM [J m $^{-3}$]

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MU	Volumetric heat capacity for
		this surface to use in AnOHM
		[J m ⁻³]
SUEWS_Veg.txt	MU	Volumetric heat capacity for
		this surface to use in AnOHM
		[J m ⁻³]
SUEWS_Water.txt	MU	Volumetric heat capacity for
		this surface to use in AnOHM
		[J m ⁻³]
SUEWS_Snow.txt	MU	Volumetric heat capacity for
		this surface to use in AnOHM
		[J m ⁻³]

${\tt AnOHM_Kk}$

Description Thermal conductivity for this surface to use in AnOHM [W m K^{-1}] Thermal conductivity for this surface to use in AnOHM [W m K^{-1}] Thermal conductivity for this surface to use in AnOHM [W m K^{-1}] Thermal conductivity for this surface to use in AnOHM [W m K^{-1}]

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MU	Thermal conductivity for this
		surface to use in AnOHM [W
		m K ⁻¹]
SUEWS_Veg.txt	MU	Thermal conductivity for this
		surface to use in AnOHM [W
		m K ⁻¹]
SUEWS_Water.txt	MU	Thermal conductivity for this
		surface to use in AnOHM [W
		m K ⁻¹]
SUEWS_Snow.txt	MU	Thermal conductivity for this
		surface to use in AnOHM [W
		m K ⁻¹]

AnthropogenicCode

Description Code for modelling anthropogenic heat flux Provides the link to column 1 of SUEWS_AnthropogenicHeat.txt, which contains the model coefficients for estimation of the anthropogenic heat flux (used if AnthropHeatChoice = 1, 2 in RunControl.nml). Value of integer is arbitrary but must match code specified in column 1 of SUEWS_AnthropogenicHeat.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for modelling anthro-
		pogenic heat flux Provides
		the link to column 1 of
		SUEWS_AnthropogenicHeat.txt,
		which contains the model co-
		efficients for estimation of
		the anthropogenic heat flux
		(used if AnthropHeatChoice
		= 1, 2 in RunControl.nml
). Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_AnthropogenicHeat.txt.

AreaWall

Description Area of wall within grid (needed for ESTM calculation).

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Area of wall within grid (needed for ESTM calculation).

BaseT

Description See section 2.2 Järvi et al. (2011); Appendix A Järvi et al. (2014). Example values [°C] 5 EveTr Järvi et al. (2011) [1] 5 DecTr Järvi et al. (2011) [1] 5 Grass Järvi et al. (2011) [1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MU	See section 2.2 Järvi et al.
		(2011); Appendix A Järvi et
		al. (2014). Example values
		[°C] 5 EveTr Järvi et al. (2011)
		[1] 5 DecTr Järvi et al. (2011)
		[1] 5 Grass Järvi et al. (2011)

BaseTe

Description See section 2.2 Järvi et al. (2011) [1]; Appendix A Järvi et al. (2014) [15].

Example values [°C] 10 EveTr Järvi et al. (2011) [1] 10 DecTr Järvi et al. (2011) [1] 10 Grass Järvi et al. (2011) [1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MU	See section 2.2 Järvi et al.
		(2011) [1] ; Appendix A Järvi
		et al. (2014) [15] . Example
		values [°C] 10 EveTr Järvi et
		al. (2011) [1] 10 DecTr Järvi
		et al. (2011) [1] 10 Grass Järvi
		et al. (2011) [1]

BaseTHDD

Description Base temperature for heating degree days [°C] e.g. Sailor and Vasireddy (2006) [39]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_AnthropogenicHeat.txt$	MU	Base temperature for heating
		degree days [°C] e.g. Sailor
		and Vasireddy (2006) [39]

BuildEnergyUse

Description Building energy use [W m-2] Can be used for CO2 flux calculation. Do not use in v2017a - set to -999

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	0	Building energy use [W m-2]
		Can be used for CO2 flux cal-
		culation. Do not use in v2017a
		- set to -999

Code

Description Code linking to SUEWS_SiteSelect.txt for paved surfaces (Code_Paved), buildings (Code_Bldgs) and bare soil surfaces (Code_BSoil). Value of integer is arbitrary but must match codes specified in SUEWS_SiteSelect.txt. Code linking to SUEWS_SiteSelect.txt for evergreen trees and shrubs (Code_EveTr), deciduous trees and shrubs (Code_DecTr) and grass surfaces (Code_Grass). Value of integer is arbitrary but must match codes specified in SUEWS_SiteSelect.txt. Code linking to SUEWS_SiteSelect.txt for water surfaces (Code_Water). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt. Code linking to SUEWS_SiteSelect.txt for snow surfaces (SnowCode). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt. Code linking to the SoilTypeCode column in SUEWS_NonVeg.txt (for Paved, Bldgs and BSoil surfaces) and SUEWS_Veg.txt (for EveTr, DecTr and Grass surfaces). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt. Code linking to the CondCode column in SUEWS_SiteSelect.txt. Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt. Code linking to the CondCode column in SUEWS_SiteSelect.txt. Value of integer is ar-

bitrary but must match code specified in <code>SUEWS_SiteSelect.txt</code>. Code linking to the AnthropogenicCode column in <code>SUEWS_SiteSelect.txt</code>. Value of integer is arbitrary but must match code specified in <code>SUEWS_SiteSelect.txt</code>. Code linking to <code>SUEWS_SiteSelect.txt</code> for irrigation modelling (IrrigationCode). Value of integer is arbitrary but must match codes specified in <code>SUEWS_SiteSelect.txt</code>. Code linking to the <code>OHMCode_SummerWet</code>, <code>OHMCode_SummerDry</code>, <code>OHMCode_WinterWet</code> and <code>OHMCode_WinterDry</code> columns in <code>SUEWS_NonVeg.txt</code>, <code>SUEWS_Veg,txt</code>, <code>SUEWS_Water.txt</code> and <code>SUEWS_SiteSelect.txt</code>. For buildings and paved surfaces, set to zero if there is more than one <code>ESTM</code> class per grid and the codes and surface fractions specified in <code>SUEWS_SiteSelect.txt</code> will be used instead.

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	L	Code linking to SUEWS_SiteSelect.txt for paved surfaces (Code_Paved), buildings (Code_Bldgs) and bare soil surfaces (Code_BSoil). Value of integer is arbitrary but must match codes specified in SUEWS_SiteSelect.txt.
SUEWS_Veg.txt	L	Code linking to SUEWS_SiteSelect.txt for evergreen trees and shrubs (Code_EveTr), deciduous trees and shrubs (Code_DecTr) and grass surfaces (Code_Grass). Value of integer is arbitrary but must match codes specified in SUEWS_SiteSelect.txt.
SUEWS_Water.txt	L	Code linking to SUEWS_SiteSelect.txt for water surfaces (Code_Water). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt.
SUEWS_Snow.txt	L	Code linking to SUEWS_SiteSelect.txt for snow surfaces (SnowCode). Value of integer is arbitrary but must match code specified in SUEWS_SiteSelect.txt.

Table 6.25 – continued from previous page

Referencing Table	Requirement	Comment		
SUEWS Soil.txt		Code linking to the		
DODWD_DOW.u.u		SoilTypeCode column in		
		SUEWS_NonVeg.txt (for		
		Paved, Bldgs and BSoil sur-		
		faces) and SUEWS_Veg.txt		
		(for EveTr, DecTr and Grass		
		surfaces). Value of inte-		
		ger is arbitrary but must		
		match code specified in		
		SUEWS_SiteSelect.txt.		
SUEWS Conductance.txt	L	Code linking to the		
SOEWS_Contauctunce.txt	L	CondCode column in		
		SUEWS SiteSelect.txt .		
		Value of integer is arbitrary		
		but must match code specified in SUEWS SiteSelect.txt.		
SUEWS AnthropogenicHeat.txt	L	Code linking to the An-		
SOEWS_AnunopogenicHeat.txt	_ L	thropogenicCode column in		
		SUEWS SiteSelect.txt. Value		
		of integer is arbitrary but		
		must match code specified in		
		SUEWS SiteSelect.txt.		
SUEWS_Irrigation.txt	L	Code linking to		
SOEWS_ITTIGUTION.UX	L	SUEWS SiteSelect.txt for		
		irrigation modelling (Ir-		
		rigationCode). Value of		
		integer is arbitrary but must		
		match codes specified in		
		SUEWS_SiteSelect.txt.		
SUEWS_OHMCoefficients.txt	L	Code linking to the OHM-		
DOLWD_OHMOOCJJicichios.t.i.t	L	Code_SummerWet, OHM-		
		Code_SummerDry, OHM-		
		Code WinterWet and OHM-		
		Code_WinterDry columns		
		in SUEWS_NonVeg.txt,		
		SUEWS_Veg,txt,		
		SUEWS_Water.txt and		
		SUEWS Snow.txt files.		
		Value of integer is arbitrary		
		but must match code specified		
		in SUEWS_SiteSelect.txt.		
SUEWS_ESTMCoefficients.txt	L	For buildings and paved sur-		
202775_DSTITEOGJICIONS.WU		faces, set to zero if there is		
		more than one ESTM class		
		per grid and the codes and		
		surface fractions specified in		
		SUEWS SiteSelect.txt will be		
		used instead.		
		abou mbucau.		

Code_Bldgs

 $\textbf{Description} \ \ \text{Code for Bldgs surface characteristics Provides the link to column} \ \ 1 \ \ \text{of}$

SUEWS_NonVeg.txt, which contains the attributes describing buildings in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_NonVeg.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L L	Code for Bldgs surface characteristics Provides the link to column 1 of SUEWS_NonVeg.txt, which contains the attributes de-
		scribing buildings in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_NonVeg.txt.

Code_Bsoil

Description Code for BSoil surface characteristics Provides the link to column 1 of SUEWS_NonVeg.txt, which contains the attributes describing bare soil in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_NonVeg.txt.

Configuration

Referencing Table	Requirement	Comment		
SUEWS_SiteSelect.txt	L	Code for BSoil surface		
		characteristics Provides		
		the link to column 1 of		
		SUEWS_NonVeg.txt, which		
		contains the attributes de-		
		scribing bare soil in this grid		
		for this year. Value of integer		
		is arbitrary but must match		
		code specified in column 1 of		
		SUEWS_NonVeg.txt.		

Code_DecTr

Description Code for DecTr surface characteristics Provides the link to column 1 of SUEWS_Veg.txt, which contains the attributes describing deciduous trees and shrubs in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Veg.txt.

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for DecTr surface char-
		acteristics Provides the link to
		column 1 of SUEWS_Veg.txt,
		which contains the attributes
		describing deciduous trees and
		shrubs in this grid for this
		year. Value of integer is
		arbitrary but must match
		code specified in column 1 of
		SUEWS_Veg.txt.

Code_ESTMClass_Bldgs1

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Requirement	Commen	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS	_ESTMCoefficients	s.txt

Code_ESTMClass_Bldgs2

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Requirement	Commen	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS_	_ESTMCoefficien	ts.txt

Code_ESTMClass_Bldgs3

 ${\bf Description} \ \ {\bf Code} \ \ {\bf linking} \ \ {\bf to} \ \ {\bf SUEWS_ESTMCoefficients.txt}$

Configuration

Referencing Table	Requirement	Commen	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS	_ESTMCoefficier	nts.txt

${\tt Code_ESTMClass_Bldgs4}$

 $\textbf{Description} \ \ \text{Code linking to SUEWS_ESTMCoefficients.txt}$

Configuration

Referencing Table	Requirement	Commen	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS	_ESTMCoefficie	nts.txt

Code_ESTMClass_Bldgs5

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Requirement	Comment	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS_	${\tt UEWS_ESTMC}$ oefficients.tx	

Code_ESTMClass_Paved1

 ${\bf Description} \ \ {\bf Code} \ \ {\bf linking} \ \ {\bf to} \ \ {\bf SUEWS_ESTMC} o efficients.txt$

Configuration

Referencing Table	Requirement	Commen	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS	$S_ESTMCoefficients.tx$	

Code_ESTMClass_Paved2

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Requirement	Commen	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS	JEWS_ESTMCoefficients.t.	

Code_ESTMClass_Paved3

Description Code linking to SUEWS_ESTMCoefficients.txt

Configuration

Referencing Table	Requirement	Commen	t	
SUEWS_SiteSelect.txt	L	Code	linking	to
		SUEWS	EWS_ESTMCoefficients.t	

Code_EveTr

Description Code for EveTr surface characteristics Provides the link to column 1 of SUEWS_Veg.txt, which contains the attributes describing evergreen trees and shrubs in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Veg.txt.

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for EveTr surface char-
		acteristics Provides the link to
		column 1 of SUEWS_Veg.txt,
		which contains the attributes
		describing evergreen trees and
		shrubs in this grid for this
		year. Value of integer is
		arbitrary but must match
		code specified in column 1 of
		SUEWS_Veg.txt.

Code_Grass

Description Code for Grass surface characteristics Provides the link to column 1 of SUEWS_Veg.txt, which contains the attributes describing grass surfaces in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Veg.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for Grass surface char-
		acteristics Provides the link to
		column 1 of SUEWS_Veg.txt,
		which contains the attributes
		describing grass surfaces in
		this grid for this year. Value
		of integer is arbitrary but must
		match code specified in column
		1 of SUEWS_Veg.txt.

Code_Paved

Description Code for Paved surface characteristics Provides the link to column 1 of SUEWS_NonVeg.txt, which contains the attributes describing paved areas in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_NonVeg.txt. e.g. 331 means use the characteristics specified in the row of input file SUEWS_NonVeg.txt which has 331 in column 1 (Code).

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for Paved surface
		characteristics Provides
		the link to column 1 of
		SUEWS_NonVeg.txt, which
		contains the attributes de-
		scribing paved areas in this
		grid for this year. Value of
		integer is arbitrary but must
		match code specified in column
		1 of SUEWS_NonVeg.txt. e.g.
		331 means use the characteris-
		tics specified in the row of in-
		put file SUEWS_NonVeg.txt
		which has 331 in column 1
		(Code).

Code_Water

Description Code for Water surface characteristics Provides the link to column 1 of SUEWS_Water.txt, which contains the attributes describing open water in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Water.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for Water surface
		characteristics Provides
		the link to column 1 of
		SUEWS_Water.txt, which
		contains the attributes de-
		scribing open water in this grid
		for this year. Value of integer
		is arbitrary but must match
		code specified in column 1 of
		SUEWS_Water.txt.

CondCode

Description Code for surface conductance parameters Provides the link to column 1 of SUEWS_Conductance.txt, which contains the parameters for the Jarvis (1976) parameterisation of surface conductance. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Conductance.txt. e.g. 33 means use the characteristics specified in the row of input file SUEWS_Conductance.txt which has 33 in column 1 (Code).

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for surface conduc-
		tance parameters Provides
		the link to column 1 of
		SUEWS_Conductance.txt,
		which contains the param-
		eters for the Jarvis (1976)
		parameterisation of surface
		conductance. Value of integer
		is arbitrary but must match
		code specified in column 1 of
		SUEWS_Conductance.txt.
		e.g. 33 means use the
		characteristics specified
		in the row of input file
		SUEWS_Conductance.txt
		which has 33 in column 1
		(Code).

$\tt CRWMax$

Description Maximum water holding capacity of snow [mm]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Snow.txt$	MD	Maximum water holding ca-
		pacity of snow [mm]

${\tt CRWMin}$

Description Minimum water holding capacity of snow [mm]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Snow.txt$	MD	Minimum water holding ca-
		pacity of snow [mm]

DayWat(1)

Description Irrigation allowed on Sundays [1], if not [0]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Sundays
		[1], if not [0]

DayWat(2)

Description Irrigation allowed on Mondays [1], if not [0]

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Mondays
		[1], if not [0]

DayWat(3)

Description Irrigation allowed on Tuesdays [1], if not [0]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Tuesdays
		[1], if not [0]

DayWat(4)

Description Irrigation allowed on Wednesdays [1], if not [0]

Configuration

	Referencing Table	Requirement	Comment
ĺ	$SUEWS_Irrigation.txt$	MU	Irrigation allowed on Wednes-
			days [1], if not [0]

DayWat(5)

Description Irrigation allowed on Thursdays [1], if not [0]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Thurs-
		days [1], if not [0]

DayWat(6)

Description Irrigation allowed on Fridays [1], if not [0]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Fridays
		[1], if not [0]

DayWat(7)

Description Irrigation allowed on Saturdays [1], if not [0]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Irrigation allowed on Satur-
		days [1], if not [0]

DayWatPer(1)

Description Fraction of properties using irrigation on Sundays [0-1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using ir-
		rigation on Sundays [0-1]

DayWatPer(2)

Description Fraction of properties using irrigation on Mondays [0-1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using ir-
		rigation on Mondays [0-1]

DayWatPer(3)

Description Fraction of properties using irrigation on Tuesdays [0-1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using ir-
		rigation on Tuesdays [0-1]

DayWatPer(4)

Description Fraction of properties using irrigation on Wednesdays [0-1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using ir-
		rigation on Wednesdays [0-1]

DayWatPer(5)

Description Fraction of properties using irrigation on Thursdays [0-1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using ir-
		rigation on Thursdays [0-1]

DayWatPer(6)

Description Fraction of properties using irrigation on Fridays [0-1]

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using ir-
		rigation on Fridays [0-1]

DayWatPer(7)

Description Fraction of properties using irrigation on Saturdays [0-1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of properties using ir-
		rigation on Saturdays [0-1]

DrainageCoef1

Description Example values DrainageEq 10 Coefficient D0 [mm h⁻¹] 3 Recommended [3] for Paved and Bldgs 0.013 Coefficient D0 [mm h⁻¹] 2 Recommended [3] for BSoil Example values DrainageEq 10 Coefficient D0 [mm h⁻¹] 3 Recommended [3] for Grass (irrigated) 0.013 Coefficient D0 [mm h⁻¹] 2 Recommended [3] for EveTr, DecTr, Grass (unirrigated) Not currently used for water surface

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Example values DrainageEq
		10 Coefficient D0 [mm h ⁻¹] 3
		Recommended [3] for Paved
		and Bldgs 0.013 Coefficient D0
		[mm h ⁻¹] 2 Recommended [3]
		for BSoil
SUEWS_Veg.txt	MD	Example values DrainageEq
		10 Coefficient D0 [mm h ⁻¹]
		3 Recommended [3] for Grass
		(irrigated) 0.013 Coefficient
		D0 [mm h ⁻¹] 2 Recommended
		[3] for EveTr, DecTr, Grass
		(unirrigated)
SUEWS_Water.txt	MD	Not currently used for water
		surface

DrainageCoef2

Description Example values DrainageEq 3 Coefficient b [-] 3 Recommended [3] for Paved and Bldgs 1.71 Coefficient b [mm⁻¹] 2 Recommended [3] for BSoil Example values DrainageEq 3 Coefficient b [-] 3 Recommended [3] for Grass (irrigated) 1.71 Coefficient b [mm⁻¹] 2 Recommended [3] for EveTr, DecTr, Grass (unirrigated) Not currently used for water surface

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Example values DrainageEq
		3 Coefficient b [-] 3 Rec-
		ommended [3] for Paved
		and Bldgs 1.71 Coefficient b
		$[m m^-1]$ 2 Recommended [3]
		for BSoil
SUEWS_Veg.txt	MD	Example values DrainageEq
		3 Coefficient b [-] 3 Rec-
		ommended [3] for Grass (ir-
		rigated) 1.71 Coefficient b
		$[m m^-1]$ 2 Recommended [3]
		for EveTr, DecTr, Grass (unir-
		rigated)
SUEWS_Water.txt	MD	Not currently used for water
		surface

DrainageEq

Description Options 1 Falk and Niemczynowicz (1978) [32] 2 Halldin et al. (1979) [33] (Rutter eqn corrected for c=0, see Calder & Wright (1986) [34]) Recommended [3] for BSoil 3 Falk and Niemczynowicz (1978) [32] Recommended [3] for Paved and Bldgs Coefficients are specified in the following two columns. Options 1 Falk and Niemczynowicz (1978) [32] 2 Halldin et al. (1979) [33] (Rutter eqn corrected for c=0, see Calder & Wright (1986) [34]) Recommended [3] for EveTr, DecTr, Grass (unirrigated) 3 Falk and Niemczynowicz (1978) [32] Recommended [3] for Grass (irrigated) Coefficients are specified in the following two columns. Not currently used for water surface.

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Options 1 Falk and Niem-
		czynowicz (1978) [32] 2 Halldin
		et al. (1979) [33] (Rutter
		eqn corrected for c=0, see
		Calder & Wright (1986) [34]
) Recommended [3] for BSoil
		3 Falk and Niemczynowicz
		(1978) [32] Recommended [3]
		for Paved and Bldgs Coeffi-
		cients are specified in the fol-
		lowing two columns.

Continued on next page

Table 6.60 – continued from previous page

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Options 1 Falk and Niem-czynowicz (1978) [32] 2 Halldin et al. (1979) [33] (Rutter eqn corrected for c=0, see Calder & Wright (1986) [34]) Recommended [3] for EveTr, DecTr, Grass (unirrigated) 3 Falk and Niem-czynowicz (1978) [32] Recommended [3] for Grass (irrigated) Coefficients are specified in the following two columns.
SUEWS_Water.txt	MD	Not currently used for water surface.

Emissivity

Description Effective surface emissivity. View factors should be taken into account. Effective surface emissivity. View factors should be taken into account. Example values [-] 0.98 EveTr Oke (1987) [35] 0.98 DecTr Oke (1987) [35] 0.93 Grass Oke (1987) [35] Effective surface emissivity. View factors should be taken into account Example values [-] 0.95 Water Oke (1987) [35] Effective surface emissivity. View factors should be taken into account Example values [-] 0.99 Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MU	Effective surface emissivity.
		View factors should be taken
		into account.
SUEWS_Veg.txt	MU	Effective surface emissivity.
		View factors should be taken
		into account. Example val-
		ues [-] 0.98 EveTr Oke (1987)
		[35] 0.98 DecTr Oke (1987) [35]
		0.93 Grass Oke (1987) [35]
SUEWS_Water.txt	MU	Effective surface emissivity.
		View factors should be taken
		into account Example values [-
] 0.95 Water Oke (1987) [35]
SUEWS_Snow.txt	MU	Effective surface emissivity.
		View factors should be taken
		into account Example values [-
] 0.99 Järvi et al. (2014) [15]

EndDLS

 $\begin{tabular}{ll} \textbf{Description} & End of the day light savings [DOY] See section on Day Light Savings . \\ \textbf{Configuration} & \\ \end{tabular}$

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	End of the day light savings [DOY] See section on Day Light Savings .

EnergyUseProfWD

Description Code for energy use profile (weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for energy use profile (weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Look the codes Value of integer is arbitrary but must match
		code specified in column 1 of SUEWS_Profiles.txt.

EnergyUseProfWE

Description Code for energy use profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for energy use profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

ESTMCode

Description For paved and building surfaces, it is possible to specify multiple codes per grid (3 for paved, 5 for buildings) using <code>SUEWS_SiteSelect.txt</code>. In this case, set ESTMCode here to zero. Code for ESTM coefficients to use for this surface. Links to <code>SUEWS_ESTMCoefficients.txt</code>. Value of integer is arbitrary but must match code specified in column 1 of <code>SUEWS_ESTMCoefficients.txt</code>. Code for ESTM coefficients to use for this surface. Links to <code>SUEWS_ESTMCoefficients.txt</code>. Value of integer is arbitrary but must match code specified in column 1 of <code>SUEWS_ESTMCoefficients.txt</code>. For paved and building surfaces, it is possible to specify multiple codes per grid (3 for paved, 5 for buildings) using <code>SUEWS_SiteSelect.txt</code>. In this case, set ESTM code here to zero.

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	L	For paved and building sur-
		faces, it is possible to specify
		multiple codes per grid (3 for
		paved, 5 for buildings) using
		SUEWS_SiteSelect.txt . In
		this case, set ESTMCode here
		to zero.
SUEWS_Veg.txt	L	Code for ESTM coefficients
		to use for this surface. Links to
		SUEWS_ESTMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_ESTMCoefficients.txt.
SUEWS_Water.txt	L	Code for ESTM coefficients
		to use for this surface. Links to
		SUEWS_ESTMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
	<u> </u>	SUEWS_ESTMCoefficients.txt
SUEWS_Snow.txt	L	For paved and building sur-
		faces, it is possible to specify
		multiple codes per grid (3 for
		paved, 5 for buildings) using
		SUEWS_SiteSelect.txt . In
		this case, set ESTM code here
		to zero.

FAI_Bldgs

 $\begin{tabular}{l} \textbf{Description} Frontal area index for buildings [-] Required if RoughLenMomMethod = 3 in RunControl.nml . \\ \end{tabular}$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	0	Frontal area index for build-
		ings [-] Required if RoughLen-
		MomMethod = 3 in RunCon-
		trol.nml .

FAI_DecTr

78

 $\begin{array}{l} \textbf{Description} \ \ \text{Frontal area index for deciduous trees [-] Required if RoughLenMomMethod} \\ = 3 \ \text{in RunControl.nml} \ . \end{array}$

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	0	Frontal area index for decidu-
		ous trees [-] Required if Rough-
		LenMomMethod = 3 in Run-
		Control.nml.

FAI_EveTr

Description Frontal area index for evergreen trees [-] Required if RoughLenMomMethod = 3 in RunControl.nml .

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	0	Frontal area index for ev-
		ergreen trees [-] Required if
		RoughLenMomMethod $= 3$ in
		RunControl.nml.

Faut

Description Fraction of irrigated area that is irrigated using automated systems (e.g. sprinklers).

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MU	Fraction of irrigated area that
		is irrigated using automated
		systems (e.g. sprinklers).

fcld

Description Cloud fraction [tenths]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Cloud fraction [tenths]

FlowChange

Description Difference in input and output flows for water surface [mm h⁻¹] Used to indicate river or stream flow through the grid. Currently not fully tested!

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD	Difference in input and output
		flows for water surface [mm
		h ⁻¹] Used to indicate river or
		stream flow through the grid.
		Currently not fully tested!

Fraction1of8

Description Fraction of water that can flow to the grid specified in previous column [-] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fraction2of8

Description Fraction of water that can flow to the grid specified in previous column [-] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fraction3of8

Description Fraction of water that can flow to the grid specified in previous column [-] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fraction4of8

Description Fraction of water that can flow to the grid specified in previous column [-] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fraction5of8

Description Fraction of water that can flow to the grid specified in previous column [-] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fraction6of8

Description Fraction of water that can flow to the grid specified in previous column [-]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fraction7of8

Description Fraction of water that can flow to the grid specified in previous column [-] **Configuration**

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fraction8of8

Description Fraction of water that can flow to the grid specified in previous column [-] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of water that can flow
		to the grid specified in previ-
		ous column [-]

Fr_Bldgs

Description Surface cover fraction of buildings [-]

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of build-
		ings [-]

Fr_Bsoil

 ${\bf Description} \ \ {\bf Surface} \ \ {\bf cover} \ \ {\bf fraction} \ \ {\bf of} \ \ {\bf bare} \ \ {\bf soil} \ \ {\bf or} \ \ {\bf unmanaged} \ \ {\bf land} \ \ [\textbf{-}]$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MU	Surface cover fraction of bare
		soil or unmanaged land [-]

${\tt Fr_DecTr}$

Description Surface cover fraction of deciduous trees and shrubs [-]

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of decid-
		uous trees and shrubs [-]

${\tt Fr_ESTMClass_Bldgs1}$

Description Columns 94-98 must add up to 1

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MU	Columns 94-98 must add up to
		1

${\tt Fr_ESTMClass_Bldgs2}$

Description Columns 94-98 must add up to 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to
		1

${\tt Fr_ESTMClass_Bldgs3}$

Description Columns 94-98 must add up to 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to 1

Fr_ESTMClass_Bldgs4

Description Columns 94-98 must add up to 1

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MU	Columns 94-98 must add up to
		1

Fr_ESTMClass_Bldgs5

Description Columns 94-98 must add up to 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Columns 94-98 must add up to
		1

${\tt Fr_ESTMClass_Paved1}$

Description Columns 88-90 must add up to 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Columns 88-90 must add up to
		1

${\tt Fr_ESTMClass_Paved2}$

Description Columns 88-90 must add up to 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Columns 88-90 must add up to
		1

${\tt Fr_ESTMClass_Paved3}$

Description Columns 88-90 must add up to 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Columns 88-90 must add up to
		1

${\tt Fr_EveTr}$

Description Surface cover fraction of evergreen trees and shrubs [-]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MU	Surface cover fraction of ever-
		green trees and shrubs [-]

Fr_Grass

Description Surface cover fraction of grass [-]

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of grass
		[-]

Fr_Paved

Description Columns 14 to 20 must sum to 1 .

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Columns 14 to 20 must sum to
		1.

Fr_Water

Description Surface cover fraction of open water [-] (e.g. river, lakes, ponds, swimming pools)

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Surface cover fraction of open water [-] (e.g. river, lakes,
		ponds, swimming pools)

G1

Description Related to maximum surface conductance [mm s⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Related to maximum surface
		conductance [mm s ⁻¹]

G2

Description Related to Kdown dependence [W m^{-2}]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Related to Kdown dependence
		[W m ⁻²]

G3

Description Related to VPD dependence [units depend on gsChoice in RunControl.nml] **Configuration**

ĺ	Referencing Table	Requirement	Comment
	$SUEWS_Conductance.txt$	MD	Related to VPD dependence
			[units depend on gsChoice in
			RunControl.nml]

G4

Description Related to VPD dependence [units depend on gsChoice in RunControl.nml] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Related to VPD dependence
		[units depend on gsChoice in]
		RunControl.nml]

G5

Description Related to temperature dependence [°C]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Related to temperature depen-
		dence [°C]

G6

Description Related to soil moisture dependence [mm⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Related to soil moisture de-
		pendence $[m m^-1]$

$gamq_gkgm$

Description vertical gradient of specific humidity (g kg⁻¹ m⁻¹)

Configuration

Referencing Table	Requirement	Comment
$CBL_initial_data.txt$	MU	vertical gradient of specific hu-
		midity (g kg ⁻¹ m ⁻¹)

gamt_Km

 $\begin{tabular}{ll} \textbf{Description} & vertical gradient of potential temperature (K m$^{-1}$) strength of the inversion \\ \textbf{Configuration} & \end{tabular}$

Referencing Table	Requirement	Comment
CBL_initial_data.txt	MU	vertical gradient of potential
		temperature (K m ⁻¹) strength
		of the inversion

GDDFul1

Description This should be checked carefully for your study area using modelled LAI from the DailyState output file compared to known behaviour in the study area. See section 2.2 Järvi et al. (2011) [1]; Appendix A Järvi et al. (2014) [15] for more details. Example values [°C] 300 EveTr Järvi et al. (2011) [1] 300 DecTr Järvi et al. (2011) [1] 300 Grass Järvi et al. (2011) [1]

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MU	This should be checked care-
		fully for your study area using
		modelled LAI from the Dai-
		lyState output file compared
		to known behaviour in the
		study area. See section 2.2
		Järvi et al. (2011) [1] ; Ap-
		pendix A Järvi et al. (2014)
		[15] for more details. Example
		values [°C] 300 EveTr Järvi et
		al. (2011) [1] 300 DecTr Järvi
		et al. (2011) [1] 300 Grass
		Järvi et al. (2011) [1]

Grid

Description Grid numbers do not need to be consecutive and do not need to start at a particular value. Each grid must have a unique grid number. All grids must be present for all years. These grid numbers are referred to in GridConnections (columns 64-79) (N.B. GridConnections not currently implemented!)

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Grid numbers do not need to
		be consecutive and do not need
		to start at a particular value.
		Each grid must have a unique
		grid number. All grids must
		be present for all years. These
		grid numbers are referred to
		in GridConnections (columns
		64-79) (N.B. GridConnections
		not currently implemented!)

GridConnection1of8

Description The next 8 pairs of columns specify the water flow between grids. The first column of each pair specifies the grid that the water flows to (from the current grid, column 1); the second column of each pair specifies the fraction of water that flow to that grid. The fraction (i.e. amount) of water transferred may be estimated based on elevation, the length of connecting surface between grids, presence of walls, etc. Water cannot flow from the current grid to the same grid, so the grid number here must be different to the grid number in column 1. Water can flow to a maximum of 8 other grids. If there is no water flow between grids, or a single grid is run, set to 0. See section on Grid Connections

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	The next 8 pairs of columns
		specify the water flow between
		grids. The first column of each
		pair specifies the grid that the
		water flows to (from the cur-
		rent grid, column 1); the sec-
		ond column of each pair spec-
		ifies the fraction of water that
		flow to that grid. The fraction
		(i.e. amount) of water trans-
		ferred may be estimated based
		on elevation, the length of con-
		necting surface between grids,
		presence of walls, etc. Water
		cannot flow from the current
		grid to the same grid, so the
		grid number here must be dif-
		ferent to the grid number in
		column 1. Water can flow to a
		maximum of 8 other grids. If
		there is no water flow between
		grids, or a single grid is run,
		set to 0. See section on Grid
		Connections

GridConnection2of8

Description Number of the grid where water can flow to

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where wa-
		ter can flow to

GridConnection3of8

Description Number of the grid where water can flow to

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MD MU	Number of the grid where wa-
		ter can flow to

GridConnection4of8

Description Number of the grid where water can flow to

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where wa-
		ter can flow to

GridConnection5of8

Description Number of the grid where water can flow to

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where wa-
		ter can flow to

GridConnection6of8

Description Number of the grid where water can flow to

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Number of the grid where wa-
		ter can flow to

GridConnection7of8

Description Number of the grid where water can flow to

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MD MU	Number of the grid where wa-
		ter can flow to

GridConnection8of8

Description Number of the grid where water can flow to

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MD MU	Number of the grid where wa-
		ter can flow to

gsModel

 $\textbf{Description} \ \ 1 = \text{J\"{a}rvi et al. (2011) [1] 2} = \text{Ward et al. (2016) [2] Recommended}.$

Configuration

	Referencing Table	Requirement	Comment
Γ	$SUEWS_Conductance.txt$	MD	1 = Järvi et al. (2011) [1] $2 =$
			Ward et al. (2016) [2] Recom-
			mended.

H_Bldgs

88

Description Mean building height [m]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MU	Mean building height [m]

H_DecTr

Description Mean height of deciduous trees [m]

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Mean height of deciduous trees
		[m]

H_EveTr

Description Mean height of evergreen trees [m]

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Mean height of evergreen trees
		[m]

id

Description Day [DOY] Not used: set to 1 in this version. Day of year [DOY] Day of year [DOY] Day of year [DOY]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MD	Day [DOY] Not used: set to 1
		in this version.
SSss_YYYY_ESTM_Ts_data_tt.tx	t MU	Day of year [DOY]
$SSs_YYYY_data_tt.txt$	MU	Day of year [DOY]
$CBL_initial_data.txt$	MU	Day of year [DOY]

Ie_a1

Description Coefficient for automatic irrigation model [mm d -1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MD	Coefficient for automatic irri-
		gation model [mm d -1]

Ie_a2

Description Coefficient for automatic irrigation model [mm d -1 K⁻¹]

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MD	Coefficient for automatic irri-
		gation model [mm d -1 K ⁻¹]

Ie_a3

Description Coefficient for automatic irrigation model [mm d -2]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MD	Coefficient for automatic irri-
		gation model [mm d -2]

Ie_end

 $\textbf{Description} \ \ \text{Day when irrigation ends [DOY]}$

Configuration

Referencing Table	Requirement	Comment		
SUEWS_Irrigation.txt	MU	Day when	irrigation	ends
		[DOY]		

Ie_m1

Description Coefficient for manual irrigation model [mm d -1]

Configuration

	Referencing Table	Requirement	Comment
I	$SUEWS_Irrigation.txt$	MD	Coefficient for manual irriga-
			tion model [mm d -1]

Ie_m2

Description Coefficient for manual irrigation model [mm d -1 K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MD	Coefficient for manual irriga-
		tion model [mm d -1 K ⁻¹]

Ie_m3

Description Coefficient for manual irrigation model [mm d -2]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Irrigation.txt	MD	Coefficient for manual irriga-
		tion model [mm d -2]

Ie_start

Description Day when irrigation starts [DOY]

Configuration

Referencing Table	Requirement	Comm	ent		
$SUEWS_Irrigation.txt$	MU	Day	when	irrigation	starts
		[DOY]			

ih

Description Hour [H] Not used: set to 0 in this version.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD	Hour [H] Not used: set to 0 in this version.

imin

Description Minute [M] Not used: set to 0 in this version. Minute [M] Minute [M] **Configuration**

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD	Minute [M] Not used: set to 0
		in this version.
SSss_YYYYY_ESTM_Ts_data_tt.tx	t MU	Minute [M]
$SSs_YYYY_data_tt.txt$	MU	Minute [M]

InfiltrationRate

Description Not currently used

Configuration

Referencing Table	Requirement	Comment
SUEWS_Soil.txt	0	Not currently used

Internal_albedo

Description Albedo of all internal elements for building surfaces only

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Albedo of all internal elements
		for building surfaces only

Internal_CHbld

Description Bulk transfer coefficient of internal building elements [W m $^{-2}$ K $^{-1}$] (for building surfaces only and if IbldCHmod == 0 in ESTMinput.nml

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Bulk transfer coefficient of in-
		ternal building elements [W
		m ⁻² K ⁻¹] (for building surfaces
		only and if $IbldCHmod == 0$
		in ESTMinput.nml

Internal_CHroof

Description Bulk transfer coefficient of internal roof [W m^{-2} K⁻¹] (for building surfaces only and if IbldCHmod == 0 in ESTMinput.nml

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Bulk transfer coefficient of in-
		ternal roof [W m ⁻² K ⁻¹] (for
		building surfaces only and if
		IbldCHmod == 0 in ESTMin-
		put.nml

Internal_CHwall

Description Bulk transfer coefficient of internal wall [W m^{-2} K⁻¹] (for building surfaces only and if IbldCHmod == 0 in ESTMinput.nml

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Bulk transfer coefficient of in-
		ternal wall [W m ⁻² K ⁻¹] (for
		building surfaces only and if
		IbldCHmod == 0 in ESTMin-
		put.nml

Internal_emissivity

Description Emissivity of all internal elements for building surfaces only

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Emissivity of all internal el-
		ements for building surfaces
		only

Internal_k1

Description Thermal conductivity of the first layer [W m⁻¹ K⁻¹]

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Thermal conductivity of the
		first layer [W m ⁻¹ K ⁻¹]

Internal_k2

Description Thermal conductivity of the second layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		second layer [W m ⁻¹ K ⁻¹]

Internal_k3

Description Thermal conductivity of the third layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		third layer [W m ⁻¹ K ⁻¹]

Internal_k4

Description Thermal conductivity of the fourth layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		fourth layer [W m ⁻¹ K ⁻¹]

Internal_k5

Description Thermal conductivity of the fifth layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		fifth layer [W m ⁻¹ K ⁻¹]

Internal_rhoCp1

Description Volumetric heat capacity of the first layer[J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Volumetric heat capacity of
		the first layer[J m ⁻³ K ⁻¹]

Internal_rhoCp2

Description Volumetric heat capacity of the second layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the second layer [J m ⁻³ K ⁻¹]

Internal_rhoCp3

Description Volumetric heat capacity of the third layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the third layer[J m ⁻³ K ⁻¹]

Internal_rhoCp4

Description Volumetric heat capacity of the fourth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_ESTMCoefficients.txt$	0	Volumetric heat capacity of
		the fourth layer [J m ⁻³ K ⁻¹]

Internal_rhoCp5

Description Volumetric heat capacity of the fifth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the fifth layer [J m ⁻³ K ⁻¹]

Internal_thick1

Description Thickness of the first layer [m] for building surfaces only; set to -999 for all other surfaces

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Thickness of the first layer [m]
		for building surfaces only; set
		to -999 for all other surfaces

Internal_thick2

Description Thickness of the second layer [m] (if no second layer, set to -999.)

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the second layer
		[m] (if no second layer, set to -999.)

Internal_thick3

Description Thickness of the third layer [m] (if no third layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the third layer [m]
		(if no third layer, set to -999.)

${\tt Internal_thick4}$

Description Thickness of the fourth layer [m] (if no fourth layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fourth layer
		[m] (if no fourth layer, set to
		-999.)

Internal_thick5

Description Thickness of the fifth layer [m] (if no fifth layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fifth layer [m]
		(if no fifth layer, set to -999.)

InternalWaterUse

Description Internal water use [mm h⁻¹]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Irrigation.txt$	MU	Internal water use [mm h ⁻¹]

IrrFr_DecTr

Description Fraction of deciduous trees that are irrigated [-]

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Fraction of deciduous trees
		that are irrigated [-]

IrrFr_EveTr

Description Fraction of evergreen trees that are irrigated [-] e.g. 50% of the evergreen trees/shrubs are irrigated

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Fraction of evergreen trees
		that are irrigated [-] e.g. 50%
		of the evergreen trees/shrubs
		are irrigated

IrrFr_Grass

Description Fraction of grass that is irrigated [-]

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Fraction of grass that is irri-
		gated [-]

IrrigationCode

Description Code for modelling irrigation Provides the link to column 1 of SUEWS_Irrigation.txt, which contains the model coefficients for estimation of the water use (used if WU_Choice = 0 in RunControl.nml). Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Irrigation.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for modelling irrigation
		Provides the link to column
		1 of SUEWS_Irrigation.txt,
		which contains the model
		coefficients for estimation
		of the water use (used if
		WU _Choice = 0 in RunCon-
		trol.nml). Value of integer
		is arbitrary but must match
		code specified in column 1 of
		SUEWS_Irrigation.txt.

it

Description Hour [H] Hour [H]

Referencing Table	Requirement	Comment
SSss_YYYYY_ESTM_Ts_data_tt.tx	t MU	Hour [H]
$SSs_YYYY_data_tt.txt$	MU	Hour [H]

Description Year [YYYY] Year [YYYY]

Configuration

Referencing Table	Requirement	Comment
SSss_YYYYY_ESTM_Ts_data_tt.tx	t MU	Year [YYYY]
$SSss_YYYY_data_tt.txt$	MU	Year [YYYY]

kdiff

 $\textbf{Description} \ \ \text{Recommended if SOLWEIGUse} = 1$

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Recommended if SOLWEI-
		GUse = 1

kdir

Description Recommended if SOLWEIGUse = 1

Configuration

Referencing Table	Requirement	Comment
$SSss_YYYY_data_tt.txt$	0	Recommended if SOLWEI-
		GUse = 1

kdown

Description Must be > 0 W m⁻².

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	MU	Must be $> 0 \text{ W m}^{-2}$.

Kmax

Description Maximum incoming shortwave radiation [W m⁻²]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Conductance.txt$	MD	Maximum incoming shortwave
		radiation [W m ⁻²]

lai

Description Observed leaf area index $[m^{-2} m^{-2}]$

Referencing Table	Requirement	Comment
SSss_YYYY_data_tt.txt	0	Observed leaf area index [m ⁻² m ⁻²]

LAIEq

Description Options 0 Järvi et al. (2011) [1] 1 Järvi et al. (2014) [15] Coefficients are specified in the following four columns. N.B. North and South hemispheres are treated slightly differently.

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Options 0 Järvi et al. (2011)
		[1] 1 Järvi et al. (2014) [15]
		Coefficients are specified in the
		following four columns. N.B.
		North and South hemispheres
		are treated slightly differently.

LAIMax

Description full leaf-on summertime value Example values [m⁻² m⁻²] 5.1 EveTr Breuer et al. (2003) [36] 5.5 DecTr Breuer et al. (2003) [36] 5.9 Grass Breuer et al. (2003) [36]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	full leaf-on summertime value
		Example values [m ⁻² m ⁻²] 5.1
		EveTr Breuer et al. (2003)
		[36] 5.5 DecTr Breuer et al.
		(2003) [36] 5.9 Grass Breuer et
		al. (2003) [36]

LAIMin

Description leaf-off wintertime value Example values [m⁻² m⁻²] 4. EveTr Järvi et al. (2011) [1] 1. DecTr Järvi et al. (2011) [1] 1.6 Grass Grimmond and Oke (1991) [3] and references therein

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	leaf-off wintertime value Ex-
		ample values $[m^{-2} m^{-2}]$ 4.
		EveTr Järvi et al. (2011) [1]
		1. DecTr Järvi et al. (2011)
		[1] 1.6 Grass Grimmond and
		Oke (1991) [3] and references
		therein

lat

98

Description Use coordinate system WGS84. Positive values are northern hemisphere (neg-

ative southern hemisphere). Used in radiation calculations. Note, if the total modelled area is small the latitude and longitude could be the same for each grid but small differences in radiation will not be determined. If you are defining the latitude and longitude differently between grids make certain that you provide enough decimal places.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Use coordinate system
		WGS84. Positive values
		are northern hemisphere (neg-
		ative southern hemisphere).
		Used in radiation calculations.
		Note, if the total modelled
		area is small the latitude
		and longitude could be the
		same for each grid but small
		differences in radiation will
		not be determined. If you are
		defining the latitude and longi-
		tude differently between grids
		make certain that you provide
		enough decimal places.

ldown

Description Incoming longwave radiation [W m⁻²]

Configuration

Referencing Table	Requirement	Comment
SSss_YYYY_data_tt.txt	0	Incoming longwave radiation [W m ⁻²]

LeafGrowthPower1

Description Example values LAIEq 0.03 Järvi et al. (2011) [1] 0 0.04 Järvi et al. (2014) [15] 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Example values LAIEq 0.03
		Järvi et al. (2011) [1] 0 0.04
		Järvi et al. (2014) [15] 1

LeafGrowthPower2

Description Example values $[K^{-1}]$ LAIEq 0.0005 Järvi et al. (2011) [1] 0 0.001 Järvi et al. (2014) [15] 1

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Example values [K ⁻¹] LAIEq
		0.0005 Järvi et al. (2011) [1]
		0 0.001 Järvi et al. (2014) [15]
		1

LeafOffPower1

Description Example values LAIEq 0.03 Järvi et al. (2011) [1] 0 -1.5 Järvi et al. (2014) [15] 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Example values LAIEq 0.03
		Järvi et al. (2011) [1] 0 -1.5
		Järvi et al. (2014) [15] 1

LeafOffPower2

Description Example values $[K^{-1}]$ LAIEq 0.0005 Järvi et al. (2011) [1] 0 0.0015 Järvi et al. (2014) [15] 1

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Example values [K ⁻¹] LAIEq
		0.0005 Järvi et al. (2011) [1] 0
		0.0015 Järvi et al. (2014) [15]
		1

lng

Description Use coordinate system WGS84. For compatibility with GIS, negative values are to the west, positive values are to the east (e.g. Vancouver = -123.12; Shanghai = 121.47) Note this is a change of sign convention between v2016a and v2017a See latitude for more details.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Use coordinate system
		WGS84. For compatibil-
		ity with GIS, negative values
		are to the west, positive values
		are to the east (e.g. Vancouver
		= -123.12; Shanghai $= 121.47$)
		Note this is a change of sign
		convention between v2016a
		and v2017a See latitude for
		more details.

LUMPS_Cover

Description Limit when surface totally covered with water [mm] Used for LUMPS surface

wetness control. Default recommended value of 1 mm from Loridan et al. (2011) [5] .

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MD	Limit when surface totally cov-
		ered with water [mm] Used for
		LUMPS surface wetness con-
		trol. Default recommended
		value of 1 mm from Loridan et
		al. (2011) [5] .

LUMPS_DrRate

Description Drainage rate of bucket for LUMPS $[mm\ h^{-1}]$ Used for LUMPS surface wetness control. Default recommended value of 0.25 mm h^{-1} from Loridan et al. (2011) [5].

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD	Drainage rate of bucket for
		LUMPS [mm h ⁻¹] Used for
		LUMPS surface wetness con-
		trol. Default recommended
		value of 0.25 mm h ⁻¹ from
		Loridan et al. (2011) [5] .

LUMPS_MaxRes

Description Maximum water bucket reservoir [mm] Used for LUMPS surface wetness control. Default recommended value of 10 mm from Loridan et al. (2011) [5].

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD	Maximum water bucket reser-
		voir [mm] Used for LUMPS
		surface wetness control. De-
		fault recommended value of 10
		mm from Loridan et al. (2011)
		[5] .

MaxConductance

Description Example values $[mm \ s^{-1}]$ 7.4 EveTr Järvi et al. (2011) [1] 11.7 DecTr Järvi et al. (2011) [1] 33.1 Grass (unirrigated) Järvi et al. (2011) [1] 40. Grass (irrigated) Järvi et al. (2011) [1]

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Example values [mm s ⁻¹] 7.4
		EveTr Järvi et al. (2011)
		[1] 11.7 DecTr Järvi et al.
		(2011) [1] 33.1 Grass (unirri-
		gated) Järvi et al. (2011) [1]
		40. Grass (irrigated) Järvi et
		al. (2011) [1]

NARP_Trans

Description Atmospheric transmissivity for NARP [-] Value must in the range 0-1. Default recommended value of 1.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD	Atmospheric transmissivity for
		NARP [-] Value must in the
		range 0-1. Default recom-
		mended value of 1.

nroom

Description Number of rooms per floor for building surfaces only

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Number of rooms per floor for
		building surfaces only

OBS_SMCap

Description Use only if soil moisture is observed and provided in the met forcing file and smd choice = 1 or 2. Use of observed soil moisture not currently tested

Configuration

Referencing Table	Requirement	Comment
SUEWS_Soil.txt	0	Use only if soil moisture is ob-
		served and provided in the met
		forcing file and smd_choice =
		1 or 2. Use of observed soil
		moisture not currently tested

OBS_SMDepth

Description Use only if soil moisture is observed and provided in the met forcing file and smd_choice = 1 or 2. Use of observed soil moisture not currently tested

Referencing Table	Requirement	Comment
SUEWS_Soil.txt	0	Use only if soil moisture is ob-
		served and provided in the met
		forcing file and smd_choice =
		1 or 2. Use of observed soil
		moisture not currently tested

OBS_SoilNotRocks

Description Use only if soil moisture is observed and provided in the met forcing file and smd_choice = 1 or 2. Use of observed soil moisture not currently tested

Configuration

Referencing Table	Requirement	Comment
SUEWS_Soil.txt	0	Use only if soil moisture is ob-
		served and provided in the met
		forcing file and smd_choice =
		1 or 2. Use of observed soil
		moisture not currently tested

OHMCode_SummerDry

Description Code for OHM coefficients to use for this surface during dry conditions in summer. Links to SUEWS_OHMCoefficients.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during dry conditions in summer. Links to SUEWS_OHMCoefficients.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during dry conditions in summer. Links to SUEWS_OHMCoefficients.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during dry conditions in summer. Links to SUEWS_OHMCoefficients.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	L	Code for OHM coeffi-
		cients to use for this
		surface during dry condi-
		tions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.

Continued on next page

Table 6.180 - continued from previous page

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	L	Code for OHM coeffi-
		cients to use for this
		surface during dry condi-
		tions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Water.txt	L	Code for OHM coeffi-
		cients to use for this
		surface during dry condi-
		tions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Snow.txt	L	Code for OHM coeffi-
		cients to use for this
		surface during dry condi-
		tions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.

OHMCode_SummerWet

Description Code for OHM coefficients to use for this surface during wet conditions in summer. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during wet conditions in summer. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during wet conditions in summer. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during wet conditions in summer. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	L	Code for OHM coeffi-
		cients to use for this
		surface during wet condi-
		tions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Veg.txt	L	Code for OHM coeffi-
		cients to use for this
		surface during wet condi-
		tions in summer. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Water.txt	L	Code for OHM coeffi-
		cients to use for this
		surface during wet condi-
		tions in summer. Links to SUEWS OHMCoefficients.txt
		_
		. Value of integer is arbitrary but must match
		code specified in column 1 of
		SUEWS OHMCoefficients.txt.
SUEWS Snow.txt	L	Code for OHM coeffi-
502775_5100w.tat		cients to use for this
		surface during wet condi-
		tions in summer. Links to
		SUEWS OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
	L	

OHMCode_WinterDry

Description Code for OHM coefficients to use for this surface during dry conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during dry conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during dry conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during dry conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Veg.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Water.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.
SUEWS_Snow.txt	L	Code for OHM coefficients to
		use for this surface during dry
		conditions in winter. Links to
		SUEWS_OHMCoefficients.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_OHMCoefficients.txt.

OHMCode_WinterWet

Description Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt. Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt . Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt . Code for OHM coefficients to use for this surface during wet conditions in winter. Links to SUEWS_OHMCoefficients.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_OHMCoefficients.txt.

Requirement	Comment
L	Code for OHM coefficients to
	use for this surface during wet
	conditions in winter. Links to
	SUEWS_OHMCoefficients.txt
	. Value of integer is ar-
	bitrary but must match
	code specified in column 1 of
	SUEWS_OHMCoefficients.txt.
L	Code for OHM coefficients to
	use for this surface during wet
	conditions in winter. Links to
	SUEWS_OHMCoefficients.txt
	. Value of integer is ar-
	bitrary but must match
	code specified in column 1 of
_	SUEWS_OHMCoefficients.txt.
L	Code for OHM coefficients to
	use for this surface during wet
	conditions in winter. Links to
	SUEWS_OHMCoefficients.txt
	. Value of integer is ar-
	bitrary but must match
	code specified in column 1 of SUEWS OHMCoefficients.txt.
T	Code for OHM coefficients to
	use for this surface during wet
	conditions in winter. Links to
	SUEWS OHMCoefficients.txt
	. Value of integer is ar-
	bitrary but must match
	code specified in column 1 of
	SUEWS OHMCoefficients.txt.
	L

OHMThresh_SW

Description Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied. Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied. Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied. Not actually used for Snow surface as winter wet conditions always assumed.

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied;
SUEWS_Veg.txt	MD	otherwise coefficients for wintertime are applied. Temperature threshold determining whether sum-
		mer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied.
SUEWS_Water.txt	MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied.
SUEWS_Snow.txt	MD	Temperature threshold determining whether summer/winter OHM coefficients are applied [°C] If 5-day running mean air temperature is greater than or equal to this threshold, OHM coefficients for summertime are applied; otherwise coefficients for wintertime are applied. Not actually used for Snow surface as winter wet conditions always assumed.

OHMThresh_WD

Description Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet. Not actually used for building and paved surfaces (as impervious). Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum

soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet. Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet. Not actually used for water surface (as no soil surface beneath). Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet. Not actually used for Snow surface as winter wet conditions always assumed.

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet. Not actually used for building and paved surfaces (as impervious).
SUEWS_Veg.txt	MD	Soil moisture threshold determining whether wet/dry OHM coefficients are applied [-] If soil moisture (as a proportion of maximum soil moisture capacity) exceeds this threshold for bare soil and vegetated surfaces, OHM coefficients for wet conditions are applied; otherwise coefficients for dry coefficients are applied. Note that OHM coefficients for wet conditions are applied if the surface is wet.

Table 6.185 - continued from previous page

Referencing Table	Requirement	Comment
SUEWS Water.txt	MD	Soil moisture threshold deter-
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		mining whether wet/dry OHM
		coefficients are applied [-] If
		soil moisture (as a proportion
		of maximum soil moisture ca-
		pacity) exceeds this threshold
		for bare soil and vegetated sur-
		faces, OHM coefficients for wet
		conditions are applied; other-
		wise coefficients for dry coeffi-
		cients are applied. Note that
		OHM coefficients for wet con-
		ditions are applied if the sur-
		face is wet. Not actually used
		for water surface (as no soil
		surface beneath).
SUEWS_Snow.txt	MD	Soil moisture threshold deter-
		mining whether wet/dry OHM
		coefficients are applied [-] If
		soil moisture (as a proportion
		of maximum soil moisture ca-
		pacity) exceeds this threshold
		for bare soil and vegetated sur-
		faces, OHM coefficients for wet
		conditions are applied; other-
		wise coefficients for dry coeffi-
		cients are applied. Note that
		OHM coefficients for wet con-
		ditions are applied if the sur-
		face is wet. Not actually used
		for Snow surface as winter wet
		conditions always assumed.

PipeCapacity

Description Storage capacity of pipes [mm] Runoff amounting to less than the value specified here is assumed to be removed by pipes.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Storage capacity of pipes [mm]
		Runoff amounting to less than
		the value specified here is as-
		sumed to be removed by pipes.

PopDensDay

Description Daytime population density (i.e. workers, tourists) [people ha -1] Population density is required if AnthropHeatMethod = 2 in RunControl.nml . The model will use the average of daytime and night-time population densities, unless only one is provided. If daytime population density is unknown, set to -999.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	0	Daytime population density
		(i.e. workers, tourists) [people
		ha -1] Population density is re-
		quired if AnthropHeatMethod
		= 2 in RunControl.nml . The
		model will use the average of
		daytime and night-time pop-
		ulation densities, unless only
		one is provided. If day-
		time population density is un-
		known, set to -999.

PopDensNight

Description Night-time population density (i.e. residents) [people ha -1] Population density is required if AnthropHeatMethod = 2 in RunControl.nml . The model will use the average of daytime and night-time population densities, unless only one is provided. If night-time population density is unknown, set to -999.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	0	Night-time population density
		(i.e. residents) [people ha -1]
		Population density is required
		if $AnthropHeatMethod = 2$ in
		RunControl.nml . The model
		will use the average of day-
		time and night-time popula-
		tion densities, unless only one
		is provided. If night-time pop-
		ulation density is unknown, set
		to -999.

PorosityMax

Description full leaf-on summertime value Used only for DecTr (can affect roughness calculation)

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	full leaf-on summertime value
		Used only for DecTr (can affect
		roughness calculation)

PorosityMin

Description leaf-off wintertime value Used only for DecTr (can affect roughness calculation) **Configuration**

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	leaf-off wintertime value Used
		only for DecTr (can affect
		roughness calculation)

PrecipiLimAlb

Description Limit for hourly precipitation when the ground is fully covered with snow. Then snow albedo is reset to AlbedoMax [mm]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Snow.txt	MD	Limit for hourly precipitation
		when the ground is fully cov-
		ered with snow. Then snow
		albedo is reset to AlbedoMax
		[mm]

${\tt PrecipLimSnow}$

Description Auer (1974) [38]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Snow.txt	MD	Auer (1974) [38]

pres

Description Barometric pressure [kPa]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	MU	Barometric pressure [kPa]

qe

Description Latent heat flux [W m⁻²]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Latent heat flux [W m ⁻²]

qf

Description Anthropogenic heat flux [W m⁻²]

Referencing Table	Requirement	Comment
$SSss_YYYY_data_tt.txt$	0	Anthropogenic heat flux [W
		m ⁻²]

QF_A_Weekday

Description Use with AnthropHeatChoice = 2 Example values [W m⁻² (Cap ha-1) -1] 0.3081 Järvi et al. (2011) [1] 0.1 Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_AnthropogenicHeat.txt$	MU O	Use with AnthropHeatChoice
		= 2 Example values [W m ⁻²
		(Cap ha-1) -1] 0.3081 Järvi et
		al. (2011) [1] 0.1 Järvi et al.
		(2014) [15]

QF_A_Weekend

Description Use with AnthropHeatMethod = 2 Example values [W m⁻² (Cap ha -1) -1] 0.3081 Järvi et al. (2011) [1] 0.1 Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_AnthropogenicHeat.txt$	MU O	Use with AnthropHeatMethod
		= 2 Example values [W m ⁻²
		(Cap ha -1) -1] 0.3081 Järvi
		et al. (2011) [1] 0.1 Järvi et al.
		(2014) [15]

QF_B_Weekday

Description Use with AnthropHeatMethod = 2 Example values [W m $^{-2}$ K $^{-1}$ (Cap ha -1) -1] 0.0099 Järvi et al. (2011) [1] 0.0099 Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
SUEWS_AnthropogenicHeat.txt	MU O	Use with AnthropHeatMethod
		= 2 Example values [W m ⁻²
		K ⁻¹ (Cap ha -1) -1] 0.0099
		Järvi et al. (2011) [1] 0.0099
		Järvi et al. (2014) [15]

QF_B_Weekend

Description Use with AnthropHeatMethod = 2 Example values [W m $^{-2}$ K $^{-1}$ (Cap ha -1) -1] 0.0099 Järvi et al. (2011) [1] 0.0099 Järvi et al. (2014) [15]

Referencing Table	Requirement	Comment
SUEWS_AnthropogenicHeat.txt	MU O	Use with AnthropHeatMethod
		= 2 Example values [W m ⁻²]
		K ⁻¹ (Cap ha -1) -1] 0.0099
		Järvi et al. (2011) [1] 0.0099
		Järvi et al. (2014) [15]

QF_C_Weekday

Description Use with AnthropHeatMethod = 2 Example values [W m $^{-2}$ K $^{-1}$ (Cap ha -1) -1] 0.0102 Järvi et al. (2011) [1] 0.0102 Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_AnthropogenicHeat.txt$	MU O	Use with AnthropHeatMethod
		= 2 Example values [W m ⁻²
		K ⁻¹ (Cap ha -1) -1] 0.0102
		Järvi et al. (2011) [1] 0.0102
		Järvi et al. (2014) [15]

${\tt QF_C_Weekend}$

Description Example values [W m^{-2} K⁻¹ (Cap ha -1) -1] 0.0102 Järvi et al. (2011) [1] 0.0102 Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_AnthropogenicHeat.txt$	MU O	Example values [W m ⁻² K ⁻¹
		(Cap ha -1) -1] 0.0102 Järvi
		et al. (2011) [1] 0.0102 Järvi et
		al. (2014) [15]

q+_gkg

Description specific humidity at the top of CBL (g kg⁻¹)

Configuration

Referencing Table	Requirement	Comment
$CBL_initial_data.txt$	MU	specific humidity at the top of
		CBL (g kg ⁻¹)

q_gkg

Description specific humidiy in CBL (g kg⁻¹)

Configuration

Referencing Table	Requirement	Comment
CBL_initial_data.txt	MU	specific humidiy in CBL (g kg ⁻¹)

qh

Description Sensible heat flux [W m⁻²]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Sensible heat flux [W m ⁻²]

qn

Description Required if NetRadiationMethod = 1.

Configuration

Referencing Table	Requirement	Comment
$SSss_YYYY_data_tt.txt$	0	Required if NetRadiation-
		Method = 1.

qs

Description Storage heat flux [W m⁻²]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Storage heat flux [W m ⁻²]

RadMeltFactor

Description Hourly radiation melt factor of snow [mm W⁻¹ h⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Snow.txt	MU	Hourly radiation melt factor of
		$\operatorname{snow} \left[\operatorname{mm} \operatorname{W}^{-1} \operatorname{h}^{-1} \right]$

rain

Description Rainfall [mm]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	MU	Rainfall [mm]

RH

Description Relative Humidity [%]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	MU	Relative Humidity [%]

${\tt RunoffToWater}$

Description Fraction of above-ground runoff flowing to water surface during flooding [-] Value must be in the range 0-1. Fraction of above-ground runoff that can flow to the water surface in the case of flooding.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MD MU	Fraction of above-ground
		runoff flowing to water surface
		during flooding [-] Value must
		be in the range 0-1. Fraction
		of above-ground runoff that
		can flow to the water surface
		in the case of flooding.

S1

Description Related to soil moisture dependence [-] These will change in the future to ensure consistency with soil behaviour

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Conductance.txt$	MD	Related to soil moisture de-
		pendence [-] These will change
		in the future to ensure consis-
		tency with soil behaviour

S2

Description Related to soil moisture dependence [mm] These will change in the future to ensure consistency with soil behaviour

Configuration

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Related to soil moisture de-
		pendence [mm] These will
		change in the future to en-
		sure consistency with soil be-
		haviour

SatHydraulicCond

Description Hydraulic conductivity for saturated soil [mm s⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Soil.txt	MD	Hydraulic conductivity for sat-
		urated soil [mm s ⁻¹]

SDDFull

Description This should be checked carefully for your study area using modelled LAI from

the DailyState output file compared to known behaviour in the study area. See section 2.2 Järvi et al. (2011) [1]; Appendix A Järvi et al. (2014) [15] for more details. Example values [°C] -450 EveTr Järvi et al. (2011) [1] -450 DecTr Järvi et al. (2011) [1] -450 Grass Järvi et al. (2011) [1]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MU	This should be checked care-
		fully for your study area using
		modelled LAI from the Dai-
		lyState output file compared
		to known behaviour in the
		study area. See section 2.2
		Järvi et al. (2011) [1] ; Ap-
		pendix A Järvi et al. (2014)
		[15] for more details. Example
		values [°C] -450 EveTr Järvi et
		al. (2011) [1] -450 DecTr Järvi
		et al. (2011) [1] -450 Grass
		Järvi et al. (2011) [1]

snow

Description Required if SnowUse = 1

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Required if $SnowUse = 1$

${\tt SnowClearingProfWD}$

Description Code for snow clearing profile (weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. e.g. 1 means use the characteristics specified in the row of input file SUEWS_Profiles.txt which has 1 in column 1 (Code).

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for snow clearing pro-
		file (weekdays) Provides
		the link to column 1 of
		SUEWS_Profiles.txt. Value
		of integer is arbitrary but must
		match code specified in column
		1 of SUEWS_Profiles.txt. e.g.
		1 means use the characteristics
		specified in the row of input
		file SUEWS_Profiles.txt
		which has 1 in column 1
		(Code).

SnowClearingProfWE

Description Code for snow clearing profile (weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt. e.g. 1 means use the characteristics specified in the row of input file SUEWS_Profiles.txt which has 1 in column 1 (Code). Providing the same code for SnowClearingProfWD and SnowClearingProfWE would link to the same row in SUEWS_Profiles.txt, i.e. the same profile would be used for weekdays and weekends.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for snow clearing pro-
		file (weekends) Provides
		the link to column 1 of
		SUEWS_Profiles.txt. Value
		of integer is arbitrary but must
		match code specified in column
		1 of SUEWS_Profiles.txt. e.g.
		1 means use the characteristics
		specified in the row of input file
		SUEWS_Profiles.txt which
		has 1 in column 1 (Code).
		Providing the same code
		for SnowClearingProfWD
		and SnowClearingProfWE
		would link to the same row in
		SUEWS_Profiles.txt, i.e. the
		same profile would be used for
		weekdays and weekends.

SnowCode

Description Code for snow surface characteristics Provides the link to column 1 of SUEWS_Snow.txt, which contains the attributes describing snow surfaces in this grid for this year. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Snow.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for snow surface
		characteristics Provides
		the link to column 1 of
		SUEWS_Snow.txt, which
		contains the attributes de-
		scribing snow surfaces in this
		grid for this year. Value of
		integer is arbitrary but must
		match code specified in col-
		umn 1 of SUEWS_Snow.txt.

snowDensMax

Description Maximum snow density [kg m⁻³]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Snow.txt	MD	Maximum snow density [kg m ⁻³]

snowDensMin

Description Fresh snow density [kg m⁻³]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Snow.txt	MD	Fresh snow density [kg m ⁻³]

SnowLimPatch

Description Not needed if SnowUse = 0 in RunControl.nml . Example values [mm] 190 Paved Järvi et al. (2014) [15] 190 Bldgs Järvi et al. (2014) [15] 190 BSoil Järvi et al. (2014) [15] Limit of snow water equivalent when the surface surface is fully covered with snow. Not needed if SnowUse = 0 in RunControl.nml . Example values [mm] 190 EveTr Järvi et al. (2014) [15] 190 Grass Järvi et al. (2014) [15]

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	0	Not needed if SnowUse = 0
		in RunControl.nml . Example
		values [mm] 190 Paved Järvi et
		al. (2014) [15] 190 Bldgs Järvi
		et al. (2014) [15] 190 BSoil
		Järvi et al. (2014) [15]
SUEWS_Veg.txt	0	Limit of snow water equiva-
		lent when the surface surface
		is fully covered with snow. Not
		needed if SnowUse = 0 in Run-
		Control.nml . Example values
		[mm] 190 EveTr Järvi et al.
		(2014) [15] 190 DecTr Järvi et
		al. (2014) [15] 190 Grass Järvi
		et al. (2014) [15]

SnowLimRemove

Description Not needed if SnowUse = 0 in RunControl.nml . Currently not implemented for BSoil surface Example values [mm] 40 Paved Järvi et al. (2014) [15] 100 Bldgs Järvi et al. (2014) [15]

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	0	Not needed if $SnowUse = 0$ in
		RunControl.nml . Currently
		not implemented for BSoil sur-
		face Example values [mm] 40
		Paved Järvi et al. (2014) [15]
		100 Bldgs Järvi et al. (2014)
		[15]

SoilDensity

Description Soil density [kg m⁻³]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Soil.txt$	MD	Soil density [kg m ⁻³]

SoilDepth

Description Depth of sub-surface soil store [mm] i.e. the depth of soil beneath the surface **Configuration**

Referencing Table	Requirement	Comment
SUEWS_Soil.txt	MD	Depth of sub-surface soil store
		[mm] i.e. the depth of soil be-
		neath the surface

SoilStoreCap

Description SoilStoreCap must not be greater than SoilDepth.

Configuration

Referencing Table	Requirement	Comment
SUEWS_Soil.txt	MD	SoilStoreCap must not be
		greater than SoilDepth.

SoilTypeCode

Description Code for soil characteristics below this surface Provides the link to column 1 of SUEWS_Soil.txt , which contains the attributes describing sub-surface soil for this surface type. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Soil.txt. Code for soil characteristics below this surface Provides the link to column 1 of SUEWS_Soil.txt , which contains the attributes describing sub-surface soil for this surface type. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Soil.txt.

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	L	Code for soil characteristics below this surface Provides the link to column 1 of SUEWS_Soil.txt, which contains the attributes describing sub-surface soil for this surface type. Value of integer is arbitrary but must match code specified in column 1 of SUEWS Soil.txt.
SUEWS_Veg.txt	L	Code for soil characteristics below this surface Provides the link to column 1 of SUEWS_Soil.txt, which contains the attributes describing sub-surface soil for this surface type. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Soil.txt.

StartDLS

 ${\bf Description} \ \, {\bf Start} \ \, {\bf of} \ \, {\bf the} \ \, {\bf day} \ \, {\bf light} \ \, {\bf savings} \ \, [{\bf DOY}] \ \, {\bf See} \ \, {\bf section} \ \, {\bf on} \ \, {\bf Day} \ \, {\bf Light} \ \, {\bf Savings} \ \, . \\ \, {\bf Configuration} \ \, {\bf Configuration} \ \, {\bf on} \ \, {\bf Day} \ \, {\bf Light} \ \, {\bf Savings} \ \, . \\ \, {\bf Configuration} \ \, {\bf on} \ \, {\bf Day} \ \, {\bf Light} \ \, {\bf Savings} \ \, . \\ \, {\bf Configuration} \ \, {\bf on} \ \, {\bf Day} \$

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Start of the day light sav-
		ings [DOY] See section on Day
		Light Savings .

StateLimit

Description Currently only used for the water surface Currently only used for the water surface Surface state cannot exceed this value. Set to a large value (e.g. 20000 mm = 20 m) if the water body is substantial (lake, river, etc) or a small value (e.g. 10 mm) if water bodies are very shallow (e.g. fountains). WaterDepth (column 9) must not exceed this value.

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Currently only used for the
		water surface
SUEWS_Veg.txt	MD	Currently only used for the
		water surface

Table 6.228 - continued from previous page

Referencing Table	Requirement	Comment
SUEWS_Water.txt	MU	Surface state cannot exceed
		this value. Set to a large value
		(e.g. $20000 \text{ mm} = 20 \text{ m}$) if
		the water body is substantial
		(lake, river, etc) or a small
		value (e.g. 10 mm) if water
		bodies are very shallow (e.g.
		fountains). WaterDepth (col-
		umn 9) must not exceed this
		value.

${\tt StorageMax}$

Description Maximum water storage capacity for upper surfaces (i.e. canopy) Min and max values are to account for seasonal variation (e.g. leaf-on/leaf-off differences for vegetated surfaces). Not currently used for non-vegetated surfaces - set the same as StorageMin. Example values [mm] 0.48 Paved 0.25 Bldgs 0.8 BSoil Maximum water storage capacity for upper surfaces (i.e. canopy) Min/max values are to account for seasonal variation (e.g. leaf-off/leaf-on differences for vegetated surfaces) Only used for DecTr surfaces - set EveTr and Grass values the same as StorageMin. Example values [mm] 1.3 EveTr Breuer et al. (2003) [36] 0.8 DecTr Breuer et al. (2003) [36] 1.9 Grass Breuer et al. (2003) [36] Maximum water storage capacity for upper surfaces (i.e. canopy) Min and max values are to account for seasonal variation - not used for water surfaces so set same as StorageMin.

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Maximum water storage ca-
		pacity for upper surfaces (i.e.
		canopy) Min and max values
		are to account for seasonal
		variation (e.g. leaf-on/leaf-off
		differences for vegetated sur-
		faces). Not currently used
		for non-vegetated surfaces - set
		the same as StorageMin. Ex-
		ample values [mm] 0.48 Paved
		0.25 Bldgs 0.8 BSoil

Table 6.229 - continued from previous page

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Maximum water storage capacity for upper surfaces (i.e. canopy) Min/max values are to account for seasonal variation (e.g. leaf-off/leaf-on differences for vegetated surfaces) Only used for DecTr surfaces - set EveTr and Grass values the same as StorageMin. Example values [mm] 1.3 EveTr Breuer et al. (2003) [36] 0.8 DecTr Breuer et al. (2003) [36] 1.9 Grass Breuer et al. (2003) [36]
SUEWS_Water.txt	MD	Maximum water storage capacity for upper surfaces (i.e. canopy) Min and max values are to account for seasonal variation - not used for water surfaces so set same as StorageMin.

StorageMin

Description Minimum water storage capacity for upper surfaces (i.e. canopy). Min/max values are to account for seasonal variation (e.g. leaf-on/leaf-off differences for vegetated surfaces). Not currently used for non-vegetated surfaces - set the same as StorageMax. Example values [mm] 0.48 Paved 0.25 Bldgs 0.8 BSoil Minimum water storage capacity for upper surfaces (i.e. canopy). Min/max values are to account for seasonal variation (e.g. leaf-off/leaf-on differences for vegetated surfaces). Example values [mm] 1.3 EveTr Breuer et al. (2003) [36] 0.3 DecTr Breuer et al. (2003) [36] 1.9 Grass Breuer et al. (2003) [36] Minimum water storage capacity for upper surfaces (i.e. canopy). Min/max values are to account for seasonal variation - not used for water surfaces. Example values [mm] 0.5 Water

Configuration

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Minimum water storage ca-
		pacity for upper surfaces (i.e.
		canopy). Min/max values are
		to account for seasonal vari-
		ation (e.g. leaf-on/leaf-off
		differences for vegetated sur-
		faces). Not currently used
		for non-vegetated surfaces - set
		the same as StorageMax. Ex-
		ample values [mm] 0.48 Paved
		0.25 Bldgs 0.8 BSoil

Table 6.230 – continued from previous page

Referencing Table	Requirement	Comment
SUEWS_Veg.txt	MD	Minimum water storage ca-
		pacity for upper surfaces (i.e.
		canopy). Min/max values are
		to account for seasonal vari-
		ation (e.g. leaf-off/leaf-on
		differences for vegetated sur-
		faces). Example values [mm]
		1.3 EveTr Breuer et al. (2003)
		[36] 0.3 DecTr Breuer et al.
		(2003) [36] 1.9 Grass Breuer et
		al. (2003) [36]
SUEWS_Water.txt	MD	Minimum water storage ca-
		pacity for upper surfaces (i.e.
		canopy). Min/max values are
		to account for seasonal varia-
		tion - not used for water sur-
		faces. Example values [mm]
		0.5 Water

SurfaceArea

Description Area of the grid [ha].

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MU	Area of the grid [ha].

Surf_k1

 $\bf Description \ Thermal \ conductivity \ of the first layer \ [W \ m^{-1} \ K^{-1}]$

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Thermal conductivity of the
		first layer [W m ⁻¹ K ⁻¹]

Surf_k2

 $\bf Description$ Thermal conductivity of the second layer [W $\rm m^{\text -1}~K^{\text -1}]$

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		second layer [W m ⁻¹ K ⁻¹]

Surf_k3

Description Thermal conductivity of the third layer [W $\mathrm{m}^{\text{-}1}$ $\mathrm{K}^{\text{-}1}]$

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		third layer[W m ⁻¹ K ⁻¹]

Surf_k4

Description Thermal conductivity of the fourth layer[W m⁻¹ K⁻¹]

Configuration

	Referencing Table	Requirement	Comment
ĺ	$SUEWS_ESTMCoefficients.txt$	0	Thermal conductivity of the
			fourth layer[W m ⁻¹ K ⁻¹]

Surf_k5

Description Thermal conductivity of the fifth layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		fifth layer [W m ⁻¹ K ⁻¹]

Surf_rhoCp1

Description Volumetric heat capacity of the first layer [J m^{-3} K^{-1}]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Volumetric heat capacity of
		the first layer [J m ⁻³ K ⁻¹]

Surf_rhoCp2

Description Volumetric heat capacity of the second layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the second layer [J m ⁻³ K ⁻¹]

Surf_rhoCp3

Description Volumetric heat capacity of the third layer [J $\,\mathrm{m}^{-3}$ $\,\mathrm{K}^{-1}$]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the third layer[J m ⁻³ K ⁻¹]

$Surf_rhoCp4$

Description Volumetric heat capacity of the fourth layer [J $\,\mathrm{m}^{-3}$ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the fourth layer [J m ⁻³ K ⁻¹]

Surf_rhoCp5

Description Volumetric heat capacity of the fifth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the fifth layer [J m ⁻³ K ⁻¹]

Surf_thick1

Description Thickness of the first layer [m] for roofs (building surfaces) and ground (all other surfaces)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Thickness of the first layer [m]
		for roofs (building surfaces)
		and ground (all other surfaces)

Surf_thick2

Description Thickness of the second layer [m] (if no second layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the second layer
		[m] (if no second layer, set to -999.)
		-999.)

Surf_thick3

Description Thickness of the third layer [m] (if no third layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the third layer [m]
		(if no third layer, set to -999.)

Surf_thick4

Description Thickness of the fourth layer [m] (if no fourth layer, set to -999.)

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fourth layer
		[m] (if no fourth layer, set to -999.)

$Surf_thick5$

Description Thickness of the fifth layer [m] (if no fifth layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
$SUEWS_ESTMCoefficients.txt$	0	Thickness of the fifth layer [m]
		(if no fifth layer, set to -999.)

Tair

Description Air temperature [°C]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	MU	Air temperature [°C]

tau_a

Description Time constant for snow albedo aging in cold snow [-]

Configuration

F	Referencing Table	Requirement	Comment
7	$SUEWS_Snow.txt$	MD	Time constant for snow albedo
			aging in cold snow [-]

tau_f

Description Time constant for snow albedo aging in melting snow [-]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Snow.txt$	MD	Time constant for snow albedo
		aging in melting snow [-]

tau_r

Description Time constant for snow density ageing [-]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Snow.txt$	MD	Time constant for snow den-
		sity ageing [-]

TCritic

Description Use with AnthropHeatMethod = 1

Configuration

Referencing Table	Requirement	Comment
$SUEWS_AnthropogenicHeat.txt$	MU O	Use with AnthropHeatMethod
		= 1

${\tt TempMeltFactor}$

Description Hourly temperature melt factor of snow [mm K^{-1} h^{-1}] (In previous model version, this parameter was 0.12)

Configuration

Referencing Table	Requirement	Comment
$SUEWS_Snow.txt$	MU	Hourly temperature melt fac-
		tor of snow $[mm K^{-1} h^{-1}]$ (In
		previous model version, this
		parameter was 0.12)

TH

Description Upper air temperature limit [°C]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Upper air temperature limit [°C]

Theta+_K

Description potential temperature at the top of CBL (K)

Configuration

Referencing Table	Requirement	Comment
CBL_initial_data.txt	MU	potential temperature at the
		top of CBL (K)

${\tt Theta}_{\tt K}$

Description potential temperature in CBL (K)

Configuration

Referencing Table	Requirement	Comment
$CBL_initial_data.txt$	MU	potential temperature in CBL
		(K)

Tiair

Description Indoor air temperature $[\,^{\circ}C]$

Referencing Table	Requirement	Comment
SSss_YYYYY_ESTM_Ts_data_tt.tx	t MU	Indoor air temperature [°C]

Timezone

Description Time zone [h] for site relative to UTC (east is positive). This should be set according to the times given in the meteorological forcing file(s).

Configuration

Referencing Table	Requirement	Comment
$SUEWS_SiteSelect.txt$	MU	Time zone [h] for site relative
		to UTC (east is positive). This
		should be set according to the
		times given in the meteorolog-
		ical forcing file(s).

 TL

Description Lower air temperature limit [°C]

Configuration

Referencing Table	Requirement	Comment
SUEWS_Conductance.txt	MD	Lower air temperature limit [°C]

ToBldgs

 $\textbf{Description} \ \ \text{Fraction of water going to} \ \textit{Bldgs}$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		Bldgs

ToBSoil

 $\textbf{Description} \ \ \text{Fraction of water going to} \ \textit{BSoil} \\$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		BSoil

ToDecTr

 $\textbf{Description} \ \ \textbf{Fraction of water going to} \ \ \textit{DecTr}$

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		DecTr

ToEveTr

 $\textbf{Description} \ \ \textbf{Fraction of water going to} \ \ \textbf{\textit{EveTr}}$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		EveTr

ToGrass

 ${\bf Description} \ \ {\bf Fraction} \ \ {\bf of} \ \ {\bf water} \ {\bf going} \ {\bf to} \ \ {\bf \textit{Grass}}$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		Grass

ToPaved

 ${\bf Description}\ \ {\bf Fraction}\ \ {\bf of}\ \ {\bf water}\ \ {\bf going}\ \ {\bf to}\ \ {\it Paved}$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		Paved

ToRunoff

Description Fraction of water going to Runoff

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		Runoff

ToSoilStore

 ${\bf Description} \ \ {\bf Fraction} \ \ {\bf of} \ \ {\bf water} \ {\bf going} \ {\bf to} \ \ {\bf SoilStore}$

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		SoilStore

ToWater

Description Fraction of water going to Water

Configuration

Referencing Table	Requirement	Comment
$SUEWS_WithinGridWaterDist.txt$	MU	Fraction of water going to
		Water

TrafficRate

Description Traffic rate [veh km m-2 s-1] Can be used for CO2 flux calculation. Do not use in v2017a - set to -999

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	0	Traffic rate [veh km m-2 s-1]
		Can be used for CO2 flux cal-
		culation. Do not use in v2017a
		- set to -999

Troad

Description Ground surface temperature [$^{\circ}$ C] (used when TsurfChoice = 1 or 2) **Configuration**

Referencing Table	Requirement	Comment
SSss_YYYY_ESTM_Ts_data_tt.tx	t MU	Ground surface temperature [°C] (used when TsurfChoice = 1 or 2)

Troof

Description Roof surface temperature $[\,^{\circ}\,C]$ (used when TsurfChoice = 1 or 2) **Configuration**

Referencing Table	Requirement	Comment
SSss_YYYY_ESTM_Ts_data_tt.tx	t MU	Roof surface temperature [° C] (used when TsurfChoice = 1 or 2)

Tsurf

Description Bulk surface temperature [$^{\circ}$ C] (used when TsurfCoice = 0) **Configuration**

Referencing Table	Requirement	Comment
SSss_YYYY_ESTM_Ts_data_tt.tx	t MU	Bulk surface temperature [° C]
		(used when $TsurfCoice = 0$)

Twall

Description Wall surface temperature [°C] (used when TsurfChoice = 1)

Configuration

Referencing Table	Requirement	Comment
SSss_YYYYY_ESTM_Ts_data_tt.tx	t MU	Wall surface temperature [° C]
		(used when $TsurfChoice = 1$)

Twall_e

Description East-facing wall surface temperature [$^{\circ}$ C] (used when TsurfChoice = 2) Configuration

Referencing Table	Requirement	Comment
SSss_YYYY_ESTM_Ts_data_tt.tx	t MU	East-facing wall surface tem-
		perature [°C] (used when
		TsurfChoice = 2)

Twall_n

Description North-facing wall surface temperature $[\ ^{\circ} C]$ (used when TsurfChoice = 2) Configuration

Referencing Table	Requirement	Comment
SSss_YYYY_ESTM_Ts_data_tt.tx	t MU	North-facing wall surface tem-
		perature [$^{\circ}$ C] (used when TsurfChoice = 2)

Twall_s

Description South-facing wall surface temperature $[^{\circ}C]$ (used when TsurfChoice = 2) Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_ESTM_Ts_data_tt.$	txt MU	South-facing wall surface tem-
		perature [$^{\circ}$ C] (used when TsurfChoice = 2)

Twall_w

 $\begin{tabular}{ll} \textbf{Description} & West-facing wall surface temperature [\ ^\circ C] (used when TsurfChoice = 2) \\ \textbf{Configuration} & \\ \end{tabular}$

Referencing Table	Requirement	Comment
SSss_YYYYY_ESTM_Ts_data_tt.tx	t MU	West-facing wall surface tem-
		perature [°C] (used when
		TsurfChoice $= 2$)

U

 $\textbf{Description} \ \ \text{Height of the wind speed measurement (z) is needed in } \textit{SUEWS_SiteSelect.txt}$

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	MU	Height of the wind speed mea-
		surement (z) is needed in
		SUEWS_SiteSelect.txt .

Wall_k1

Description Thermal conductivity of the first layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Thermal conductivity of the
		first layer [W m ⁻¹ K ⁻¹]

Wall_k2

Description Thermal conductivity of the second layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		second layer [W m ⁻¹ K ⁻¹]

Wall_k3

Description Thermal conductivity of the third layer [W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		third layer [W m ⁻¹ K ⁻¹]

$Wall_k4$

Description Thermal conductivity of the fourth layer[W m⁻¹ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
$SUEWS_ESTMCoefficients.txt$	0	Thermal conductivity of the
		fourth layer[W m ⁻¹ K ⁻¹]

Wall_k5

Description Thermal conductivity of the fifth layer[W m⁻¹ K⁻¹]

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thermal conductivity of the
		fifth layer[W m ⁻¹ K ⁻¹]

Wall_rhoCp1

Description Volumetric heat capacity of the first layer [J m⁻³ K⁻¹]

Configuration

Referencing	g Table	Requirement	Comment
SUEWS_I	ESTMCoefficients.txt	MU	Volumetric heat capacity of
			the first layer [J m ⁻³ K ⁻¹]

Wall_rhoCp2

Description Volumetric heat capacity of the second layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the second layer [J m ⁻³ K ⁻¹]

Wall_rhoCp3

Description Volumetric heat capacity of the third layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the third layer [J m ⁻³ K ⁻¹]

Wall_rhoCp4

Description Volumetric heat capacity of the fourth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the fourth layer [J m ⁻³ K ⁻¹]

Wall_rhoCp5

Description Volumetric heat capacity of the fifth layer [J m⁻³ K⁻¹]

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Volumetric heat capacity of
		the fifth layer [J m ⁻³ K ⁻¹]

Wall_thick1

Description Thickness of the first layer [m] for building surfaces only; set to -999 for all other surfaces

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	MU	Thickness of the first layer [m]
		for building surfaces only; set
		to -999 for all other surfaces

Wall_thick2

Description Thickness of the second layer [m] (if no second layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the second layer
		[m] (if no second layer, set to -999.)

Wall_thick3

Description Thickness of the third layer [m] (if no third layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the third layer [m]
		(if no third layer, set to -999.)

Wall_thick4

Description Thickness of the fourth layer [m] (if no fourth layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fourth layer
		[m] (if no fourth layer, set to -999.)

Wall_thick5

Description Thickness of the fifth layer [m] (if no fifth layer, set to -999.)

Configuration

Referencing Table	Requirement	Comment
SUEWS_ESTMCoefficients.txt	0	Thickness of the fifth layer [m]
		(if no fifth layer, set to -999.)

WaterDepth

Description Set to a large value (e.g. 20000 mm = 20 m) if the water body is substantial (lake, river, etc) or a small value (e.g. 10 mm) if water bodies are very shallow (e.g. fountains). This value must not exceed StateLimit (column 8).

Referencing Table	Requirement	Comment
SUEWS_Water.txt	MU	Set to a large value (e.g. 20000
		mm = 20 m if the water body
		is substantial (lake, river, etc)
		or a small value (e.g. 10 mm)
		if water bodies are very shal-
		low (e.g. fountains). This
		value must not exceed State-
		Limit (column 8).

WaterUseProfAutoWD

Description Code for water use profile (automatic irrigation, weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile (au-
		tomatic irrigation, weekdays)
		Provides the link to column
		1 of SUEWS_Profiles.txt.
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_Profiles.txt.

WaterUseProfAutoWE

Description Code for water use profile (automatic irrigation, weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile (au-
		tomatic irrigation, weekends)
		Provides the link to column
		1 of SUEWS_Profiles.txt.
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_Profiles.txt.

WaterUseProfManuWD

Description Code for water use profile (manual irrigation, weekdays) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile
		(manual irrigation, weekdays)
		Provides the link to column
		1 of SUEWS_Profiles.txt.
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_Profiles.txt.

WaterUseProfManuWE

Description Code for water use profile (manual irrigation, weekends) Provides the link to column 1 of SUEWS_Profiles.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_Profiles.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code for water use profile
		(manual irrigation, weekends)
		Provides the link to column
		1 of SUEWS_Profiles.txt.
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_Profiles.txt.

wdir

Description Currently not implemented

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Currently not implemented

WetThreshold

Description Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface. Example values [mm] 0.6 Paved 0.6 Bldgs 1. BSoil Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface. Example values [mm] 1.8 EveTr 1. DecTr 2. Grass Depth of water which determines whether evaporation occurs from a partially wet or completely wet surface. Example values [mm] 0.5 Water

Referencing Table	Requirement	Comment
SUEWS_NonVeg.txt	MD	Depth of water which deter-
		mines whether evaporation oc-
		curs from a partially wet or
		completely wet surface. Exam-
		ple values [mm] 0.6 Paved 0.6
		Bldgs 1. BSoil
SUEWS_Veg.txt	MD	Depth of water which deter-
		mines whether evaporation oc-
		curs from a partially wet or
		completely wet surface. Exam-
		ple values [mm] 1.8 EveTr 1.
		DecTr 2. Grass
SUEWS_Water.txt	MD	Depth of water which deter-
		mines whether evaporation oc-
		curs from a partially wet or
		completely wet surface. Exam-
		ple values [mm] 0.5 Water

WithinGridBldgsCode

Description Code that links to the fraction of water that flows from Bldgs surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from Bldgs surfaces to
		surfaces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt.
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_WithinGridWaterDist.txt.

WithinGridBSoilCode

Description Code that links to the fraction of water that flows from BSoil surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from BSoil surfaces to sur-
		faces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt.
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_WithinGridWaterDist.txt.

WithinGridDecTrCode

Description Code that links to the fraction of water that flows from DecTr surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS WithinGridWaterDist.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from DecTr surfaces to
		surfaces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_WithinGridWaterDist.txt

WithinGridEveTrCode

Description Code that links to the fraction of water that flows from EveTr surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code that links to the fraction of water that flows from EveTr surfaces to
		surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.tx: Value of integer is arbi-
		trary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.tx:

WithinGridGrassCode

Description Code that links to the fraction of water that flows from Grass surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS WithinGridWaterDist.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from Grass surfaces to
		surfaces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_WithinGridWaterDist.txt

WithinGridPavedCode

Description Code that links to the fraction of water that flows from Paved surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt . Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from Paved surfaces to
		surfaces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt
		. Value of integer is ar-
		bitrary but must match
		code specified in column 1 of
		SUEWS_WithinGridWaterDist.txt

WithinGridWaterCode

Description Code that links to the fraction of water that flows from Water surfaces to surfaces in columns 2-10 of SUEWS_WithinGridWaterDist.txt. Value of integer is arbitrary but must match code specified in column 1 of SUEWS_WithinGridWaterDist.txt.

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	L	Code that links to the frac-
		tion of water that flows
		from Water surfaces to
		surfaces in columns 2-10 of
		SUEWS_WithinGridWaterDist.txt
		Value of integer is arbi-
		trary but must match code
		specified in column 1 of
		SUEWS_WithinGridWaterDist.txt

Wuh

Description External water use $[m^3]$

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	External water use [m ³]

xsmd

Description Observed soil moisture [m³ m⁻³ or kg kg⁻¹]

Configuration

Referencing Table	Requirement	Comment
$SSs_YYYY_data_tt.txt$	0	Observed soil moisture [m ³
		m ⁻³ or kg kg ⁻¹]

Year

Description Year [YYYY] Years must be continuous. If running multiple years, ensure the rows in SiteSelect.txt are arranged so that all grids for a particular year appear on consecutive lines (rather than grouping all years together for a particular grid).

Configuration

Referencing Table	Requirement	Comment
SUEWS_SiteSelect.txt	MU	Year [YYYY] Years must be
		continuous. If running multi-
		ple years, ensure the rows in
		SiteSelect.txt are arranged so
		that all grids for a particu-
		lar year appear on consecutive
		lines (rather than grouping all
		years together for a particular
		grid).

z

Description z must be greater than the displacement height. Forcing data should be representative of the local-scale, i.e. above the height of the roughness elements.

Configuration

Referencing Table	Requirement	Comment		
SUEWS_SiteSelect.txt	MU	z must be greater than the		
		displacement height. Forcing		
		data should be representative		
		of the local-scale, i.e. above		
		the height of the roughness el-		
		ements.		

z0

Description Roughness length for momentum [m] Value supplied here is used if Rough-LenMomMethod = 1 in RunControl.nml; otherwise set to '-999' and a value will be calculated by the model (RoughLenMomMethod = 2, 3).

Configuration

Referencing Table	Requirement	Comment		
SUEWS_SiteSelect.txt	0	Roughness length for momen-		
		tum [m] Value supplied here is		
		used if RoughLenMomMethod		
		= 1 in RunControl.nml; oth-		
		erwise set to '-999' and a value		
		will be calculated by the model		
		(RoughLenMomMethod = 2,		
		3).		

zd

Description Zero-plane displacement [m] Value supplied here is used if RoughLenMom-Method = 1 in RunControl.nml; otherwise set to '-999' and a value will be calculated by the model (RoughLenMomMethod = 2, 3).

Configuration

Referencing Table	Requirement	Comment		
SUEWS_SiteSelect.txt	0	Zero-plane displacement [m]		
		Value supplied here is used		
		if RoughLenMomMethod = 1		
		in RunControl.nml; otherwise		
		set to '-999' and a value will		
		be calculated by the model		
		(RoughLenMomMethod = 2,		
		3).		

zi0

Description initial convective boundary layer height (m)

Configuration

Referencing Table	Requirement	Comment		
$CBL_initial_data.txt$	MU	initial convective boundary		
		layer height (m)		

These text files are stored as worksheets in **SUEWS_SiteInfo.xlsm** and can be either edited using Excel and then generated using the macro, or edited directly (see *Data Entry*). Please note this file is subject to possible changes from version to version due to new features, modifications, etc. Please be aware of using the correct copy of this worksheet that are always shipped with the SUEWS public release.

Use	Column
MU	Parameters which must be supplied and must be specific for the site/grid being run.
MD	Parameters which must be supplied and must be specific for the site/grid being run (but default
	values may be ok if these values are not known specifically for the site).
О	Parameters that are optional, depending on the model settings in RunControl. Set any
	parameters that are not used/not known to '-999'.
L	Codes that are used to link between the input files. These codes are required but their values are
	completely arbitrary, providing that they link the input files in the correct way. The user should
	choose these codes, bearing in mind that the codes they match up with in column 1 of the
	corresponding input file must be unique within that file. Codes must be integers. Note that the
	codes must match up with column 1 of the corresponding input file, even if those parameters are
	not used (in which case set all columns except column 1 to '-999' in the corresponding input file),
	otherwise the model run will fail.

6.3 Initial Conditions file

To start the model, information about the conditions at the start of the run is required. This information is provided in initial conditions file. One file can be specified for each grid (MultipleInitFiles=1 in RunControl.nml, filename includes grid number) or, alternatively, a single file can be specified for all grids (MultipleInitFiles=0 in RunControl.nml, no grid number in the filename). After that, a new InitialConditionsSSss_YYYY.nml file will be written for each grid for the following years. It is recommended that you look at these files (written to the input directory) to check the status of various surfaces at the end or the run. This may help you get more realistic starting values if you are uncertain what they should be. Note this file will be created for each year for multiyear runs for each grid. If the run finishes before the end of the year the InitialConditions file is still written and the file name is appended with 'EndofRun'.

A sample file of InitialConditionsSSss_YYYY.nml looks like

```
&InitialConditions
LeavesOutInitially=0
SoilstorePavedState=150
SoilstoreBldgsState=150
SoilstoreEveTrstate=150
SoilstoreDecTrState=150
SoilstoreGrassState=150
SoilstoreBsoilState=150
BoInit=10
/
```

The two most important pieces of information in the initial conditions file is the soil moisture and state of vegetation at the start of the run. This is the minimal information required; other information can be provided if known, otherwise SUEWS will make an estimate of initial conditions.

The parameters and their setting instructions are provided through the links below:

Note: Variables can be in any order

- Soil moisture states
 - SoilstorePavedState
 - SoilstoreBldgsState
 - $-\ Soilstore Eve Tr State$
 - SoilstoreDecTrState

- SoilstoreGrassState
- SoilstoreBSoilState
- $\bullet \quad Vegetation \ parameters$
 - LeavesOutIntially
 - GDD_1_0
 - GDD 2 0
 - LAI in it is a lEveTr
 - LAIinitialDecTr
 - LAI initial Grass
 - albEveTr0
 - albDecTr0
 - albGrass0
 - decidCapO
 - porosity0
- Recent meteorology
 - DaysSinceRain
 - $Temp_CO$
- Above Ground State
 - PavedState
 - BldgsState
 - EveTrState
 - DecTrState
 - GrassState
 - BSoilState
 - WaterState
- Snow related parameters
 - SnowIntially
 - SnowWaterPavedState
 - SnowWaterBldqsState
 - SnowWaterEveTrState
 - $-\ {\it SnowWaterDecTrState}$
 - SnowWaterGrassState
 - ${\it SnowWaterBSoilState}$
 - SnowWaterWaterState
 - SnowPackPaved
 - SnowPackBldgs
 - SnowPackEveTr
 - SnowPackDecTr
 - SnowPackGrass
 - SnowPackBSoil
 - SnowPackWater
 - SnowFracPaved
 - SnowFracBldqs
 - SnowFracEveTr
 - SnowFracDecTr
 - SnowFracGras
 - SnowFracBSoil
 - SnowFracWater
 - SnowDensPaved
 - SnowDensBldgs

- SnowDensEveTr
- SnowDensDecTr
- SnowDensGrass
- SnowDensBSoil
- SnowDensWater

6.3.1 Soil moisture states

SoilstorePavedState

Requirement Required

Description For maximum values, see the used soil code in SUEWS Soil.txt

Configuration to fill

SoilstoreBldgsState

Requirement Required

Description For maximum values, see the used soil code in SUEWS_Soil.txt

Configuration to fill

SoilstoreEveTrState

Requirement Required

Description For maximum values, see the used soil code in SUEWS Soil.txt

Configuration to fill

SoilstoreDecTrState

Requirement Required

Description For maximum values, see the used soil code in SUEWS Soil.txt

Configuration to fill

SoilstoreGrassState

Requirement Required

Description For maximum values, see the used soil code in SUEWS_Soil.txt

Configuration to fill

SoilstoreBSoilState

Requirement Required

Description For maximum values, see the used soil code in SUEWS Soil.txt

Configuration to fill

6.3.2 Vegetation parameters

LeavesOutIntially

Requirement Optional

Description If the model run starts in winter when trees are bare, set LeavesOutIntially = 0 and the vegetation parameters will be set accordingly based on the values set in SUEWS_SiteInfo.xlsm. If the model run starts in summer when leaves are fully out, set LeavesOutIntially = 1 and the vegetation parameters will be set accordingly based on the values set in SUEWS_SiteInfo.xlsm. Not LeavesOutInitially can only be set to 0, 1 or -999 (fractional values cannot be used to indicate partial leaf-out). The value of LeavesOutInitially overrides any values provided for the individual vegetation parameters. To prevent LeavesOutInitially from setting the initial conditions, either omit it from the namelist or set to -999. If values are provided individually, they should be consistent the information provided in SUEWS_Veg.txt and the time of year. If values are provided individually, values for all required surfaces must be provided (i.e. specifying only albGrass0 but not albDecTr0 nor albEveTr0 is not permitted).

Configuration to fill

GDD_1_0

Requirement Optional

Description Cannot be negative. If leaves are already full, then this should be the same as GDDFull in SUEWS_Veg.txt. If winter, set to 0. It is important that the vegetation characteristics are set correctly (i.e. for the start of the run in summer/winter).

Configuration to fill

GDD_2_0

Requirement Optional

Description Cannot be positive If the leaves are full but in early/mid summer then set to 0. If late summer or autumn, this should be a negative value. If leaves are off, then use the values of SDDFull in SUEWS_Veg.txt to guide your minimum value. It is important that the vegetation characteristics are set correctly (i.e. for the start of the run in summer/winter).

Configuration to fill

LAIinitialEveTr

Requirement Optional

Description Initial LAI for evergreen trees. The recommended values can be found from SUEWS Veg.txt

Configuration to fill

LAIinitialDecTr

Requirement Optional

Description Initial LAI for deciduous trees. The recommended values can be found from SUEWS_Veg.txt

Configuration to fill

LAIinitialGrass

Requirement Optional

Description Initial LAI for irrigated grass. The recommended values can be found from SUEWS_Veg.txt

Configuration to fill

albEveTr0

Description Albedo of evergreen surface on day 0 of run

Configuration to fill

albDecTr0

Requirement Optional

Description Albedo of deciduous surface on day 0 of run

Configuration to fill

albGrass0

Requirement Optional

Description Albedo of grass surface on day 0 of run

Configuration to fill

decidCap0

Requirement Optional

Description Deciduous storage capacity on day 0 of run.

Configuration to fill

porosity0

Requirement Optional

Description Porosity of deciduous vegetation on day 0 of run. This varies between 0.2 (leaf-on) and 0.6 (leaf-off).

Configuration to fill

6.3.3 Recent meteorology

DaysSinceRain

Requirement Optional

Description Important to use correct value if starting in summer season If starting when external water use is not occurring it will be reset with the first rain so can just be set to 0. If unknown, SUEWS sets to zero by default. Used to model irrigation.

Configuration to fill

Temp_C0

Requirement Optional

Description If unknown, SUEWS uses the mean temperature for the first day of the run.

Configuration to fill

6.3.4 Above Ground State

PavedState

Requirement Optional

Description If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

Configuration to fill

BldgsState

Requirement Optional

Description If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

Configuration to fill

EveTrState

Requirement Optional

Description If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

Configuration to fill

DecTrState

Requirement Optional

Description If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

Configuration to fill

GrassState

Requirement Optional

Description If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

Configuration to fill

BSoilState

Requirement Optional

Description If unknown, model assumes dry surfaces (acceptable as rainfall or irrigation will update these states quickly).

Configuration to fill

WaterState

Requirement Optional

Description For a large water body (e.g. river, sea, lake) set WaterState to a large value, e.g. 20000 mm; for small water bodies (e.g. ponds, fountains) set WaterState to smaller value, e.g. 1000 mm. This value must not exceed StateLimit specified in SUEWS_Water.txt . If unknown, model uses value of WaterDepth specified in SUEWS Water.txt .

Configuration to fill

6.3.5 Snow related parameters

SnowIntially

Description If the model run starts when there is no snow on the ground, set SnowIntially = 0 and the snow-related parameters will be set accordingly. If the model run starts when there is snow on the ground, the following snow-related parameters must be set appropriately. The value of SnowInitially overrides any values provided for the individual snow-related parameters. To prevent SnowInitially from setting the initial conditions, either omit it from the namelist or set to -999. If values are provided individually, they should be consistent the information provided in SUEWS Snow.txt .

Configuration to fill

SnowWaterPavedState

Requirement Optional

Description Initial amount of liquid water in the snow on paved surfaces.

Configuration to fill

SnowWaterBldgsState

Requirement Optional

Description Initial amount of liquid water in the snow on buildings

Configuration to fill

SnowWaterEveTrState

Requirement Optional

Description Initial amount of liquid water in the snow on evergreen trees

Configuration to fill

SnowWaterDecTrState

Requirement Optional

Description Initial amount of liquid water in the snow on deciduous trees

Configuration to fill

SnowWaterGrassState

Requirement Optional

Description Initial amount of liquid water in the snow on grass surfaces

Configuration to fill

SnowWaterBSoilState

Requirement Optional

Description Initial amount of liquid water in the snow on bare soil surfaces

Configuration to fill

SnowWaterWaterState

Requirement Optional

Description Initial amount of liquid water in the snow in water

Configuration to fill

SnowPackPaved

Description Initial snow water equivalent if the snow on paved surfaces

Configuration to fill

SnowPackBldgs

Requirement Optional

Description Initial snow water equivalent if the snow on buildings

Configuration to fill

${\tt SnowPackEveTr}$

Requirement Optional

Description Initial snow water equivalent if the snow on evergreen trees

Configuration to fill

${\tt SnowPackDecTr}$

Requirement Optional

Description Initial snow water equivalent if the snow on deciduous trees

Configuration to fill

SnowPackGrass

Requirement Optional

Description Initial snow water equivalent if the snow on grass surfaces

Configuration to fill

SnowPackBSoil

Requirement Optional

Description Initial snow water equivalent if the snow on bare soil surfaces

Configuration to fill

${\tt SnowPackWater}$

Requirement Optional

Description Initial snow water equivalent if the snow on water

Configuration to fill

SnowFracPaved

Requirement Optional

Description Initial plan area fraction of snow on paved surfaces

Configuration to fill

SnowFracBldgs

Requirement Optional

Description Initial plan area fraction of snow on buildings

Configuration to fill

${\tt SnowFracEveTr}$

Description Initial plan area fraction of snow on evergreen trees

Configuration to fill

SnowFracDecTr

Requirement Optional

Description Initial plan area fraction of snow on deciduous trees

Configuration to fill

SnowFracGras

Requirement Optional

Description Initial plan area fraction of snow on grass surfaces

Configuration to fill

SnowFracBSoil

Requirement Optional

Description Initial plan area fraction of snow on bare soil surfaces

Configuration to fill

SnowFracWater

Requirement Optional

Description Initial plan area fraction of snow on water

Configuration to fill

SnowDensPaved

Requirement Optional

Description Initial snow density on paved surfaces

Configuration to fill

SnowDensBldgs

Requirement Optional

 ${\bf Description} \ \ {\bf Initial} \ {\bf snow} \ {\bf density} \ {\bf on} \ {\bf buildings}$

Configuration to fill

${\tt SnowDensEveTr}$

Requirement Optional

Description Initial snow density on evergreen trees

Configuration to fill

SnowDensDecTr

Requirement Optional

Description Initial snow density on deciduous trees

Configuration to fill

SnowDensGrass

6.3. Initial Conditions file

Description Initial snow density on grass surfaces

Configuration to fill

SnowDensBSoil

Requirement Optional

Description Initial snow density on bare soil surfaces

Configuration to fill

SnowDensWater

Requirement Optional

Description Initial snow density on water

Configuration to fill

6.4 Meteorological Input File

SUEWS is designed to run using commonly measured meteorological variables.

- Required inputs must be continuous i.e. gap fill any missing data.
- The table below gives the required (R) and optional (O) additional input variables.
- If an optional input variable is not available or will not be used by the model, enter '-999.0' for this
 column.
- Since v2017a forcing files no longer need to end with two rows containing '-9' in the first column.
- One single meteorological file can be used for all grids (MultipleMetFiles=0 in RunControl.nml, no grid number in file name) if appropriate for the study area, or
- separate met files can be used for each grid if data are available (MultipleMetFiles=1 in RunControl.nml, filename includes grid number).
- The meteorological forcing file names should be appended with the temporal resolution in minutes (SS_YYYY_data_tt.txt, or SSss_YYYY_data_tt.txt for multiple grids).
- Separate met forcing files should be provided for each year.
- Files do not need to start/end at the start/end of the year, but they must contain a whole number of days.
- The meteorological input file should match the information given in SUEWS_SiteSelect.txt.
- If a partial year is used that specific year must be given in SUEWS_SiteSelect.txt.
- If multiple years are used, all years should be included in SUEWS SiteSelect.txt.
- If a whole year (e.g. 2011) is intended to be modelled using and hourly resolution dataset, the number of lines in the met data file should be 8760 and begin and end with:

```
iy id it imin
2011 1 1 0 ...
...
2012 1 0 0 ...
```

6.4.1 SSss_YYYY_data_tt.txt

Main meteorological data file.

No.	Use	Column	Description
		name	
1	MU	iy	Year [YYYY]
2	MU	id	Day of year [DOY]
3	MU	it	Hour [H]
4	MU	imin	Minute [M]
5	0	qn	Net all-wave radiation [W m^{-2}] Required if NetRadiationMethod = 1.
6	0	qh	Sensible heat flux [W m ⁻²]
7	0	qe	Latent heat flux [W m ⁻²]
8	0	qs	Storage heat flux [W m ⁻²]
9	0	qf	Anthropogenic heat flux [W m ⁻²]
10	MU	U	Wind speed [m s-1] Height of the wind speed measurement (z) is needed in
			$SUEWS_SiteSelect.txt.$
11	MU	RH	Relative Humidity [%]
12	MU	Tair	Air temperature [°C]
13	MU	pres	Barometric pressure [kPa]
14	MU	rain	Rainfall [mm]
15	MU	kdown	Incoming shortwave radiation [W m ⁻²] Must be > 0 W m ⁻² .
16	0	snow	Snow [mm] Required if $SnowUse = 1$
17	0	ldown	Incoming longwave radiation [W m ⁻²]
18	0	fcld	Cloud fraction [tenths]
19	0	Wuh	External water use [m ³]
20	0	xsmd	Observed soil moisture [m ³ m ⁻³] or [kg kg ⁻¹]
21	0	lai	Observed leaf area index [m ⁻² m ⁻²]
22	0	kdiff	Diffuse radiation [W m ⁻²] Recommended if $SOLWEIGUse = 1$
23	0	kdir	Direct radiation [W m ⁻²] Recommended if SOLWEIGUse = 1
24	0	wdir	Wind direction [°] Currently not implemented

6.5 CBL input files

Main references for this part of the model: Onomura et al. (2015) [Shiho2015] and Cleugh and Grimmond (2001) [CG2001].

If CBL slab model is used (CBLuse = 1 in RunControl.nml) the following files are needed.

Filename	Purpose
$CBL_initial_data.txt$	Gives initial data every morning * when CBL slab
	model starts running. * filename must match the
	InitialData_FileName in CBLInput.nml * fixed for-
	mats.
CBLInput.nml	Specifies run options, parameters and input file
	names. * Can be in any order

6.5. CBL input files 153

6.5.1 CBL_initial_data.txt

This file should give initial data every morning when CBL slab model starts running. The file name should match the InitialData_FileName in CBLInput.nml.

Definitions and example file of initial values prepared for Sacramento.

No.	Column name	Description
1	id	Day of year [DOY]
2	zi0	initial convective boundary layer height (m)
3	gamt_Km	vertical gradient of potential temperature (K m ⁻¹) strength of the inversion
4	gamq_gkgm	vertical gradient of specific humidity (g kg ⁻¹ m ⁻¹)
5	Theta+_K	potential temperature at the top of CBL (K)
6	q+_gkg	specific humidity at the top of CBL (g kg ⁻¹)
7	Theta_K	potential temperature in CBL (K)
8	q_gkg	specific humidiy in CBL (g kg ⁻¹)

• gamt_Km and gamq_gkgm written to two significant figures are required for the model performance in appropriate ranges [Shiho2015].

id	zi0	gamt_Km	gamq_gkgm	Theta+_K	q+_gkg	theta_K	q_gkg
234	188	0.0032	0.00082	290.4	9.6	288.7	8.3
235	197	0.0089	0.089	290.2	8.4	288.3	8.7

6.5.2 CBLInput.nml

sample file of CBLInput.nml looks like

```
&CBLInput
EntrainmentType=1
                        ! 1.Tennekes and Driedonks(1981), 2.McNaughton and Springgs(1986), 3.
→Rayner and Watson(1991), 4. Tennekes(1973),
QH_choice=1
                        ! 1.suews 2.lumps 3.obs
CO2_included=0
cblday(236)=1
cblday(258)=1
cblday(259)=1
cblday(260)=1
cblday(285)=1
cblday(297)=1
wsb=-0.01
InitialData_use=1
InitialDataFileName='CBLinputfiles/CBL_initial_data.txt'
sondeflag=0
FileSonde(234)='CBLinputfiles\Sonde_Sc_1991_0822_0650.txt'
FileSonde(235)='CBLinputfiles\Sonde_Sc_1991_0823_0715.txt'
FileSonde(236)='CBLinputfiles\Sonde_Sc_1991_0824_0647.txt'
FileSonde(238)='CBLinputfiles\Sonde_Sc_1991_0826_0642.txt'
FileSonde(239)='CBLinputfiles\Sonde_Sc_1991_0827_0640.txt'
FileSonde(240)='CBLinputfiles\Sonde_Sc_1991_0828_0640.txt'
```

Note: The file contents can be in any order.

The parameters and their setting instructions are provided through the links below:

- EntrainmentType
- QH Choice
- $\bullet \quad Initial Data_use$
- Sondeflag
- CBLday(id)
- CO2_included
- FileSonde(id)
- InitialDataFileName
- Wsb

CBLinput

${\tt EntrainmentType}$

Requirement Required

Description Determines entrainment scheme. See Cleugh and Grimmond 2000 [16] for details.

Configuration

Value	Comments
1	Tennekes and Driedonks (1981) - Recommended
2	McNaughton and Springs (1986)
3	Rayner and Watson (1991)
4	Tennekes (1973)

QH_Choice

Requirement Required

Description Determines QH used for CBL model.

Configuration

Value	Comments
1	QH modelled by SUEWS
2	QH modelled by LUMPS
3	Observed QH values are used from the meteorological input file

InitialData_use

Requirement Required

Description Determines initial values (see CBL_initial_data.txt)

Configuration

Value	Comments
0	All initial values are calculated. (Not available in current release.)
1	Take zi0, gamt_Km and gamq_gkgm from input data file. Theta+_K,
	q+_gkg, Theta_K and q_gkg are calculated using Temp_C, avrh and
	Pres_kPa in meteorological input file.
2	Take all initial values from input data file (see CBL_Initial_data.txt).

Sondeflag

Requirement Required

Description to fill

Configuration

Value	Comments
0	Does not read radiosonde vertical profile data - recommended
1	Reads radiosonde vertical profile data

CBLday(id)

Requirement Required

Description Set CBLday(id) = 1 If CBL model is set to run for DOY 175–177, CBLday(175) = 1, CBLday(176) = 1, CBLday(177) = 1

Configuration to fill

CO2_included

Requirement Required

Description Set to zero in current version

Configuration to fill

FileSonde(id)

Requirement Required

Description If Sondeflag=1, write the file name including the path from site directory e.g. FileSonde(id)= 'CBLinputfilesXXX.txt', XXX is an arbitrary name.

Configuration to fill

InitialDataFileName

Requirement Required

Description If InitialData_use 1, write the file name including the path from site directory e.g. InitialDataFileName='CBLinputfilesCBL_initial_data.txt'

 ${\bf Configuration}\ \ {\rm to}\ {\rm fill}$

Wsb

156

Requirement Required

Description Subsidence velocity (m $\rm s^{-1}$) in eq. 1 and 2 of Onomura et al. (2015) [17] . (-0.01 m $\rm s^{-1}$ recommended)

Configuration to fill

6.6 ESTM-related files

6.6.1 SUEWS_ESTMCoefficients.txt

Note ESTM is under development in v2017a and should not be used!

The Element Surface Temperature Method (ESTM) (Offerle et al., 2005) calculates the net storage heat flux from surface temperatures. In the method the three-dimensional urban volume is reduced to four 1-d elements (i.e. building roofs, walls, and internal mass and ground (road, vegetation, etc)). The storage heat flux is calculated from the heat conduction through the different elements. For the inside surfaces of the roof and walls, and both surfaces for the internal mass (ceilings/floors, internal walls), the surface temperature of the element is determined by setting the conductive heat transfer out of (in to) the surface equal to the radiative and convective heat losses (gains). Each element (roof, wall, internal element and ground) can have maximum five layers and each layer has three parameters tied to it: thickness (x), thermal conductivity (k), volumetric heat capacity (rhoCp).

If ESTM is used (QSchoice=4), the files $SUEWS_ESTMCoefficients.txt$, ESTMinput.nml and $SSss_YYYY_ESTM_Ts_data_tt.txt$ should be prepared.

SUEWS_ESTMCoefficients.txt contains the parameters for the layers of each of the elements (roofs, wall, ground, internal mass).

- If less than five layers are used, the parameters for unused layers should be set to -999.
- The ESTM coefficients with the prefix *Surf_* must be specified for each surface type (plus snow) but the *Wall_* and *Internal_* variables apply to the building surfaces only.
- For each grid, one set of ESTM coefficients must be specified for each surface type; for paved and building surfaces it is possible to specify up to three and five sets of coefficients per grid (e.g. to represent different building materials) using the relevant columns in SUEWS_SiteSelect.txt. For the model to use these columns in site select, the ESTMCode column in SUEWS_NonVeg.txt should be set to zero.

Note ESTM is under development in v2017a and should not be used!

The following input files are required if ESTM is used to calculate the storage heat flux.

6.6.2 ESTMinput.nml

ESTMinput.nml specifies the model settings and default values.

A sample file of **ESTMinput.nml** looks like

```
&ESTMinput
TsurfChoice= 0
evolveTibld= 0   !!!!!!F0!!!!! 0 originally
ibldCHmod = 0
LBC_soil = 13.00    !!F0!! 4, 8 or 17 degC - could be set as the annual mean air_
otemperature (12.8 degC for London)
THEAT_ON = 18.
THEAT_OFF = 22.
THEAT_FIX = 19.
//
```

Note: The file contents can be in any order.

The parameters and their setting instructions are provided through the links below:

- TsurfChoice
- evolveTibld
- IbldCHmod
- LBC_soil
- $Theat_fix$
- Theat_off
- Theat_on

ESTMinput

TsurfChoice

Requirement Required

Description Source of surface temperature data used.

Configuration

Value	Comments	
0	Tsurf in SSss_YYYY_ESTM_Ts_data_tt.txt used for all surface	
	elements.	
1	Input surface temperature are different for ground, roof and wall.	
2	Wall surface temperature is different for four directions.	

evolveTibld

Requirement Required

Description Source of internal building temperature (Tibld)

Configuration

Value	Comments
0	Tiair in SSss_YYYY_ESTM_Ts_data_tt.txt used.
1	Tibld calculated considering the effect of anthropogenic heat from HVAC
2	Tibld calculated without considering the influence of HVAC.

IbldCHmod

Requirement Required

Description Method to calculate internal convective heat exchange coefficients (CH) for internal building, wall and roof if evolveTibld is 1 or 2.

Configuration

Value	Comments	
0	CHs are read from SUEWS_ESTMcoefficients.txt.	
1	CHs are calculated based on ASHRAE (2001)	
2	CHs are calculated based on Awbi (1998).	

LBC_soil

Requirement Required

Description Soil temperature at lowest boundary condition [$^{\circ}$ C]

Configuration to fill

 ${\tt Theat_fix}$

Requirement Required

Description Ideal internal building temperature [° C]

Configuration to fill

Theat_off

Requirement Required

Description Temperature at which heat control is turned off (used when evolveTibld=1) $[^{\circ}C]$

Configuration to fill

Theat_on

Requirement Required

Description Temperature at which heat control is turned on (used when evolveTibld =1) [° C]

Configuration to fill

6.6.3 SSss_YYYY_ESTM_Ts_data_tt.txt

SSss_YYYY_ESTM_Ts_data_tt.txt contains a time-series of input surface temperature for roof, wall, ground and internal elements.

No.	Column Name	Use	Description
1	iy	MU	Year [YYYY]
2	id	MU	Day of year [DOY]
3	it	MU	Hour [H]
4	imin	MU	Minute [M]
5	Tiair	MU	Indoor air temperature [° C]
6	Tsurf	MU	Bulk surface temperature [$^{\circ}$ C] (used when TsurfCoice = 0)
7	Troof	MU	Roof surface temperature $[^{\circ}C]$ (used when TsurfChoice = 1 or 2)
8	Troad	MU	Ground surface temperature [$^{\circ}$ C] (used when TsurfChoice = 1 or 2)
9	Twall	MU	Wall surface temperature [$^{\circ}$ C] (used when TsurfChoice = 1)
10	$Twall_n$	MU	North-facing wall surface temperature [$^{\circ}$ C] (used when TsurfChoice = 2)
11	Twall_e	MU	East-facing wall surface temperature [$^{\circ}$ C] (used when TsurfChoice = 2)
12	Twall_s	MU	South-facing wall surface temperature [° C] (used when TsurfChoice = 2)
13	Twall_w	MU	West-facing wall surface temperature [$^{\circ}$ C] (used when TsurfChoice = 2)

6.7 SOLWEIG input files

If the SOLWEIG model option is used (SOLWEIGout=1), spatial data and a SOLWEIGInput.nml file need to be prepared. The Digital Surface Models (DSMs) as well as derivatives originating from DSMs, e.g. Sky View Factors (SVF) must have the same spatial resolution and extent. Since SOLWEIG is a 2D model it will considerably increase computation time and should be used with care.

Description of choices in SOLWEIGinput_file.nml file. The file can be in any order.

- SOLWEIGinput
 - Posture
 - usevegdem
 - onlyglobal
 - SOLWEIGpoi_out
 - $Tmrt_out$
 - $Lup2d_out$
 - Ldown2d_out
 - $Kup2d_out$
 - Kdown2d_out
 - GVF_out
 - SOLWEIG_ldown
 - RunForGrid
 - absK
 - absL
 - BuildingName
 - CDSMname
 - col
 - DSMname
 - DSMPath
 - heightgravity
 - OutInterval
 - row
 - SVFPath
 - SVFSuffix
 - TDSMname
 - TransMax
 - TransMin

6.7.1 SOLWEIGinput

Posture

Requirement Required

Description Determines the posture of a human for which the radiant fluxes should be considered

Configuration

Value	Comments
1	Standing (default)
2	Sitting

usevegdem

Requirement Required

Description Vegetation scheme

Configuration

Value	Comments
1	Vegetation scheme is active (Lindberg and Grimmond 2011 [19])
2	No vegetation scheme used

onlyglobal

Requirement Required

 ${\bf Description} \ \ {\bf Global} \ \ {\bf radiation}$

Configuration

Value	Comments
0	Diffuse and direct shortwave radiation taken from met forcing file.
1	Diffuse and direct shortwave radiation calculated from Reindl et al. (1990)
	[41]

${\tt SOLWEIGpoi_out}$

Requirement Required

Description Write output variables at point of interest (see below)

Configuration

Value	Comments
0	No POI output

Tmrt_out

Requirement Required

Description

•

Configuration

Value	Comments			
0	No grid output			
1	Write grid to file (saves as ERSI Ascii grid)			

Lup2d_out

Requirement Required

Description

•

Configuration

Value	Comments		
0	No grid output		
1	Write grid to file (saves as ERSI Ascii grid)		

Ldown2d_out

 ${\bf Requirement} \ \ {\rm Required}$

Description

•

Configuration

Value	Comments		
0	No grid output		
1	Write grid to file (saves as ERSI Ascii grid)		

Kup2d_out

Requirement Required

Description

•

Configuration

Value	Comments		
0	No grid output		
1	Write grid to file (saves as ERSI Ascii grid)		

${\tt Kdown2d_out}$

Requirement Required

Description

•

Configuration

Value	Comments		
0	No grid output		
1	Write grid to file (saves as ERSI Ascii grid)		

${\tt GVF_out}$

Requirement Required

Description

•

Configuration

Value	Comments		
0	No grid output		
1	Write grid to file (saves as ERSI Ascii grid)		

${\tt SOLWEIG_ldown}$

 ${\bf Requirement} \ \ {\rm Required}$

Description

•

Configuration

Value	Comments
0	Not active (use SUEWS to estimate Ldown above canyon)
1	Use SOLWEIG to estimate Ldown above canyon

RunForGrid

Requirement Required

Description Grid for which SOLWEIG should be run.

Configuration

Value	Comments	
-999	All grids (use with care)	

absK

Requirement Required

Description Recommended value: 0.70

Configuration to fill

absL

Requirement Required

Description Recommended value: 0.97

Configuration to fill

BuildingName

Requirement Required

Description Boolean matrix for locations of building pixels

Configuration to fill

${\tt CDSMname}$

Requirement Required

Description Vegetation canopy DSM

Configuration to fill

col

Requirement Required

Description Y coordinate for point of interest. Here all variables from the model will written to SOLWEIGpoiOUT.txt

Configuration to fill

DSMname

Requirement Required

Description Ground and Building DSM

Configuration to fill

DSMPath

Requirement Required

Description Path to Digital Surface Models (DSM).

Configuration to fill

heightgravity

Requirement Required

Description Recommended value for a standing man: 1.1 m

Configuration to fill

OutInterval

Requirement Required

Description Output interval. Set to 60 in current version.

Configuration to fill

row

Requirement Required

Description X coordinate for point of interest. Here all variables from the model will written to SOLWEIGpoiOUT.txt

Configuration to fill

SVFPath

Requirement Required

Description Path to SVFs matrices (See Lindberg and Grimmond (2011) [19] for details)

Configuration to fill

SVFSuffix

Requirement Required

Description Suffix used (if any)

Configuration to fill

TDSMname

Requirement Required

Description Vegetation trunk zone DSM

Configuration to fill

TransMax

Requirement Required

Description Recommended value: 0.50 (Konarska et al. 2014 [40])

Configuration to fill

TransMin

Requirement Required

 $\bf Description$ Recommended value: 0.02 (Konarska et al. 2014[40])

Configuration to fill

CHAPTER

SEVEN

OUTPUT FILES

7.1 Runtime diagnostic information

7.1.1 Error messages: problems.txt

see this Output files

If there are problems running the program serious error messages will be written to problems.txt.

- Serious problems will usually cause the program to stop after writing the error message. If this is the case, the last line of problems.txt will contain a non-zero number (the error code).
- If the program runs successfully, problems.txt file ends with:

```
Run completed.
```

SUEWS has a large number of error messages included to try to capture common errors to help the user determine what the problem is. If you encounter an error that does not provide an error message please capture the details so we can hopefully provide better error messages in future.

See *Troubleshooting* section for help solving problems. If the file paths are not correct the program will return an error when run (see *Preparing to run the model*).

7.1.2 Warning messages: warnings.txt

- If the program encounters a more minor issue it will not stop but a warning may be written to warnings.txt. It is advisable to check the warnings to ensure there is not a more serious problem.
- The warnings.txt file can be large (over several GBs) given warning messages are written out during a large scale simulation, you can use tail/head to view the ending/starting part without opening the whole file on Unix-like systems (Linux/mac OS), which may slow down your system.
- To prevent warnings.txt from being written, set **SuppressWarnings** to 1 in RunControl.nml.
- Warning messages are usually written with a grid number, timestamp and error count. If the problem occurs in the initial stages (i.e. before grid numbers and timestamps are assigned, these are printed as 00000).

7.1.3 Summary of model parameters: SS_FileChoices.txt

For each run, the model parameters specified in the input files are written out to the file $SS_FileChoices.txt$.

7.2 Model output files

7.2.1 SSss_YYYY_TT.txt

SUEWS produces the main output file (SSss_YYYY_tt.txt) with time resolution (TT min) set by **ResolutionFilesOut** in *RunControl.nml*.

Before these main data files are written out, SUEWS provides a summary of the column names, units and variables included in the file Ss_YYYY_TT_OutputFormat.txt (one file per run).

The variables included in the main output file are determined according to WriteOutOption set in RunControl.nml.

Column	Name	WriteOutOption	Description
1	Year	0,1,2	Year [YYYY]
2	DOY	0,1,2	Day of year [DOY]
3	Hour	0,1,2	Hour [H]
4	Min	0,1,2	Minute [M]
5	Dectime	0,1,2	Decimal time [-]
6	Kdown	0,1,2	Incoming shortwave radiation [W m ⁻²]
7	Kup	0,1,2	Outgoing shortwave radiation [W m ⁻²]
8	Ldown	0,1,2	Incoming longwave radiation [W m ⁻²]
9	Lup	0,1,2	Outgoing longwave radiation [W m ⁻²]
10	Tsurf	0,1,2	Bulk surface temperature [°C]
11	QN	0,1,2	Net all-wave radiation [W m ⁻²]
12	QF	0,1,2	Anthropogenic heat flux [W m ⁻²]
13	QS	0,1,2	Storage heat flux [W m ⁻²]
14	QH	0,1,2	Sensible heat flux (calculated using SUEWS) [W m ⁻²]
15	QE	0,1,2	Latent heat flux (calculated using SUEWS) [W m ⁻²]
16	QHlumps	0,1	Sensible heat flux (calculated using LUMPS) [W m ⁻²]
17	QElumps	0,1	Latent heat flux (calculated using LUMPS) [W m ⁻²]
18	QHresis	0,1	Sensible heat flux (calculated using resistance method) [W m ⁻²]
19	Rain	0,1,2	Rain [mm]
20	Irr	0,1,2	Irrigation [mm]
21	Evap	0,1,2	Evaporation [mm]
22	RO	0,1,2	Runoff [mm]
23	TotCh	0,1,2	Change in surface and soil moisture stores [mm]
24	SurfCh	0,1,2	Change in surface moisture store [mm]
25	State	0,1,2	Surface wetness state [mm]
26	NWtrState	0,1,2	Surface wetness state (for non-water surfaces) [mm]
27	Drainage	0,1,2	Drainage [mm]
28	SMD	0,1,2	Soil moisture deficit [mm]
29	FlowCh	0,1	Additional flow into water body [mm]
30	AddWater	0,1	Additional water flow received from other grids [mm]
31	ROSoil	0,1	Runoff to soil (sub-surface) [mm]
32	ROPipe	0,1	Runoff to pipes [mm]
33	ROImp	0,1	Above ground runoff over impervious surfaces [mm]
34	ROVeg	0,1	Above ground runoff over vegetated surfaces [mm]
35	ROWater	0,1	Runoff for water body [mm]
36	WUInt	0,1	Internal water use [mm]
37	WUEveTr	0,1	Water use for irrigation of evergreen trees [mm]

Table 7.1 – continued from previous page

Column	Name	WriteOutOption	Description
38	WUDecTr	0,1	Water use for irrigation of deciduous trees [mm]
39	WUGrass	0,1	Water use for irrigation of grass [mm]
40	SMDPaved	0,1	Soil moisture deficit for paved surface [mm]
41	SMDBldgs	0,1	Soil moisture deficit for building surface [mm]
42	SMDEveTr	0,1	Soil moisture deficit for evergreen surface [mm]
43	SMDDecTr	0,1	Soil moisture deficit for deciduous surface [mm]
44	SMDGrass	0,1	Soil moisture deficit for grass surface [mm]
45	SMDBSoil	0,1	Soil moisture deficit for bare soil surface [mm]
46	StPaved	0,1	Surface wetness state for paved surface [mm]
47	StBldgs	0,1	Surface wetness state for building surface [mm]
48	StEveTr	0,1	Surface wetness state for evergreen tree surface [mm]
49	StDecTr	0,1	Surface wetness state for deciduous tree surface [mm]
50	StGrass	0,1	Surface wetness state for grass surface [mm]
51	StBSoil	0,1	Surface wetness state for bare soil surface [mm]
52	StWater	0,1	Surface wetness state for water surface [mm]
53	Zenith	0,1,2	Solar zenith angle [°]
54	Azimuth	0,1,2	Solar azimuth angle [°]
55	AlbBulk	0,1,2	Bulk albedo [-]
56	Feld	0,1,2	Cloud fraction [-]
57	LAI	0,1,2	Leaf area index [m 2 m ⁻²]
58	z0m	0,1	Roughness length for momentum [m]
59	zdm	0,1	Zero-plane displacement height [m]
60	ustar	0,1,2	Friction velocity [m s ⁻¹]
61	Lob	0,1,2	Obukhov length [m]
62	ra	0,1	Aerodynamic resistance [s m ⁻¹]
63	rs	0,1	Surface resistance [s m ⁻¹]
64	Fc	0,1,2	CO2 flux [umol m ⁻² s ⁻¹] Do not use in v2017b!
65	FcPhoto	0,1	CO2 flux from photosynthesis [umol m ⁻² s ⁻¹] Do not use in v2017b!
66	FcRespi	0,1	CO2 flux from respiration [umol m ⁻² s ⁻¹] Do not use in v2017b!
67	FcMetab	0,1	CO2 flux from metabolism [umol m ⁻² s ⁻¹] Do not use in v2017b!
68	FcTraff	0,1	CO2 flux from traffic [umol m ⁻² s ⁻¹] Do not use in v2017b!
69	FcBuild	0,1	CO2 flux from buildings [umol m ⁻² s ⁻¹] Do not use in v2017b!
70	QNSnowFr	1	Net all-wave radiation for snow-free area [W m ⁻²]
71	QNSnow	1	Net all-wave radiation for snow area [W m ⁻²]
72	AlbSnow	1	Snow albedo [-]
73	QM	1	Snow-related heat exchange [W m ⁻²]
74	QMFreeze	1	Internal energy change [W m ⁻²]
75	QMRain	1	Heat released by rain on snow [W m ⁻²]
76	SWE	1	Snow water equivalent [mm]
77	MeltWater	1	Meltwater [mm]
78	MeltWStore	1	Meltwater store [mm]
79	SnowCh	1	Change in snow pack [mm]
80	SnowRPaved	1	Snow removed from paved surface [mm]
81	SnowRBldgs	1	Snow removed from building surface [mm]
82	T2	0,1,2	Air temperature at 2 m agl [°C]
83	Q2	0,1,2	Air specific humidity at 2 m agl [g kg ⁻¹]
84	U10	0,1,2	Wind speed at 10 m agl [m s ⁻¹]

7.2.2 SSss_YYYY_nn_TT.nc

UEWS can also produce the main output file in netCDF format by setting ncMode=1 (set in RunControl).

As the date and time information is incorporated in the netCDF output as separate dimension, the first five variables in the normal text output file (in .txt) are not included in the netCDF output but other variables are all kept.

N.B., considering the file size limit by the classic netCDF format, the output frequency is determined automatically by the internal SUEWS program setting to avoid the oversize problem in the netCDF files.

7.2.3 SSss_DailyState.txt

Contains information about the state of the surface and soil and vegetation parameters at a time resolution of one day. One file is written for each grid so it may contain multiple years.

Column	Name	Description
1	iy	Year [YYYY]
2	id	Day of year [DOY]
3	HDD1_h	Heating degree days [°C]
4	HDD2_c	Cooling degree days [°C]
5	HDD3_Tmean	Average daily air temperature [°C]
6	HDT4_T5d	5-day running-mean air temperature [°C]
7	P/day	Daily total precipitation [mm]
8	DaysSR	Days since rain [days]
9	GDD1_g	Growing degree days for leaf growth [°C]
10	$\mathrm{GDD2}_{-\mathrm{s}}$	Growing degree days for senescence [°C]
11	GDD3_Tmin	Daily minimum temperature [°C]
12	GDD4_Tmax	Daily maximum temperature [°C]
13	GDD5_DayLHrs	Day length [h]
14	LAI_EveTr	Leaf area index of evergreen trees [m ⁻² m ⁻²]
15	LAI_DecTr	Leaf area index of deciduous trees [m ⁻² m ⁻²]
16	LAI_Grass	Leaf area index of grass [m ⁻² m ⁻²]
17	DecidCap	Moisture storage capacity of deciduous trees [mm]
18	Porosity	Porosity of deciduous trees [-]
19	AlbEveTr	Albedo of evergreen trees [-]
20	AlbDecTr	Albedo of deciduous trees [-]
21	AlbGrass	Albedo of grass [-]
22	WU_EveTr(1)	Total water use for evergreen trees [mm]
23	WU_EveTr(2)	Automatic water use for evergreen trees [mm]
24	WU_EveTr(3)	Manual water use for evergreen trees [mm]
25	WU_DecTr(1)	Total water use for deciduous trees [mm]
26	WU_DecTr(2)	Automatic water use for deciduous trees [mm]
27	WU_DecTr(3)	Manual water use for deciduous trees [mm]
28	WU_Grass(1)	Total water use for grass [mm]
29	WU_Grass(2)	Automatic water use for grass [mm]
30	WU_Grass(3)	Manual water use for grass [mm]
31	deltaLAI	Change in leaf area index (normalised 0-1) [-]
32	LAIlumps	Leaf area index used in LUMPS (normalised 0-1) [-]
33	AlbSnow	Snow albedo [-]
34	DensSnow_Paved	Snow density - paved surface [kg m ⁻³]
35	DensSnow_Bldgs	Snow density - building surface [kg m ⁻³]

Table 7.2 – continued from previous page

Column	Name	Description
36	DensSnow_EveTr	Snow density - evergreen surface [kg m ⁻³]
37	DensSnow_DecTr	Snow density - deciduous surface [kg m ⁻³]
38	DensSnow_Grass	Snow density - grass surface [kg m ⁻³]
39	DensSnow_BSoil	Snow density - bare soil surface [kg m ⁻³]
40	DensSnow_Water	Snow density - water surface [kg m ⁻³]

7.2.4 InitialConditionsSSss_YYYY.nml

At the end of the model run (or the end of each year in the model run) a new InitialConditions file is written out (to the input folder) for each grid, see *Initial Conditions file*

7.2.5 SSss_YYYY_snow_TT.txt

SUEWS produces a separate output file for snow (when snow Use = 1 in RunControl.nml) with details for each surface type.

File format of $SSss_YYYY_snow_60.txt$

Column	Name	Description
1	iy	Year [YYYY]
2	id	Day of year [DOY]
3	it	Hour [H]
4	imin	Minute [M]
5	dectime	Decimal time [-]
6	SWE_Paved	Snow water equivalent – paved surface [mm]
7	SWE_Bldgs	Snow water equivalent – building surface [mm]
8	SWE_EveTr	Snow water equivalent – evergreen surface [mm]
9	SWE_DecTr	Snow water equivalent – deciduous surface [mm]
10	SWE_Grass	Snow water equivalent – grass surface [mm]
11	SWE_BSoil	Snow water equivalent – bare soil surface [mm]
12	SWE_Water	Snow water equivalent – water surface [mm]
13	Mw_Paved	Meltwater – paved surface [mm h ⁻¹]
14	Mw_Bldgs	Meltwater – building surface [mm h ⁻¹]
15	Mw_EveTr	Meltwater – evergreen surface [mm h ⁻¹]
16	Mw_DecTr	Meltwater – deciduous surface [mm h ⁻¹]
17	Mw_Grass	Meltwater – grass surface [mm h ⁻¹ 1]
18	Mw_BSoil	Meltwater – bare soil surface [mm h ⁻¹]
19	Mw_Water	Meltwater – water surface [mm h ⁻¹]
20	Qm_Paved	Snowmelt-related heat – paved surface [W m ⁻²]
21	Qm_Bldgs	Snowmelt-related heat – building surface [W m ⁻²]
22	Qm_EveTr	Snowmelt-related heat – evergreen surface [W m ⁻²]
23	Qm_DecTr	Snowmelt-related heat – deciduous surface [W m ⁻²]
24	Qm_Grass	Snowmelt-related heat – grass surface [W m ⁻²]
25	Qm_BSoil	Snowmelt-related heat – bare soil surface [W m ⁻²]
26	Qm_Water	Snowmelt-related heat – water surface [W m ⁻²]
27	Qa_Paved	Advective heat – paved surface [W m ⁻²]
28	Qa_Bldgs	Advective heat – building surface [W m ⁻²]
29	Qa_EveTr	Advective heat – evergreen surface [W m ⁻²]

Table 7.3 – continued from previous page

Calman	N	Table 7.3 – continued from previous page
Column	Name	Description (MIX = 2)
30	Qa_DecTr	Advective heat – deciduous surface [W m ⁻²]
31	Qa_Grass	Advective heat – grass surface [W m ⁻²]
32	Qa_BSoil	Advective heat – bare soil surface [W m ⁻²]
33	Qa_Water	Advective heat – water surface [W m ⁻²]
34	QmFr_Paved	Heat related to freezing of surface store – paved surface [W m ⁻²]
35	QmFr_Bldgs	Heat related to freezing of surface store – building surface [W m ⁻²]
36	QmFr_EveTr	Heat related to freezing of surface store – evergreen surface [W m ⁻²]
37	QmFr_DecTr	Heat related to freezing of surface store – deciduous surface [W m ⁻²]
38	QmFr_Grass	Heat related to freezing of surface store – grass surface [W m ⁻²]
39	QmFr_BSoil	Heat related to freezing of surface store – bare soil surface [W m ⁻²]
40	QmFr_Water	Heat related to freezing of surface store – water [W m ⁻²]
41	fr_Paved	Fraction of snow – paved surface [-]
42	fr_Bldgs	Fraction of snow – building surface [-]
43	fr_EveTr	Fraction of snow – evergreen surface [-]
44	fr_DecTr	Fraction of snow – deciduous surface [-]
45	fr_Grass	Fraction of snow – grass surface [-]
46	Fr_BSoil	Fraction of snow – bare soil surface [-]
47	RainSn_Paved	Rain on snow – paved surface [mm]
48	RainSn_Bdgs	Rain on snow – building surface [mm]
49	RainSn EveTr	Rain on snow – evergreen surface [mm]
50	RainSn DecTr	Rain on snow – deciduous surface [mm]
51	RainSn Grass	Rain on snow – grass surface [mm]
52	RainSn_BSoil	Rain on snow – bare soil surface [mm]
53	RainSn Water	Rain on snow – water surface [mm]
54	qn PavedSnow	Net all-wave radiation – paved surface [W m ⁻²]
55	qn_BldgsSnow	Net all-wave radiation – building surface [W m ⁻²]
56	qn EveTrSnow	Net all-wave radiation – evergreen surface [W m ⁻²]
57	qn DecTrSnow	Net all-wave radiation – deciduous surface [W m ⁻²]
58	qn GrassSnow	Net all-wave radiation – grass surface [W m ⁻²]
59	qn_BSoilSnow	Net all-wave radiation – bare soil surface [W m ⁻²]
60	qn WaterSnow	Net all-wave radiation – water surface [W m ⁻²]
61	kup PavedSnow	Reflected shortwave radiation – paved surface [W m ⁻²]
62	kup_BldgsSnow	Reflected shortwave radiation – building surface [W m ⁻²]
63	kup_EveTrSnow	Reflected shortwave radiation – evergreen surface [W m ⁻²]
64	kup_DecTrSnow	Reflected shortwave radiation – deciduous surface [W m ⁻²]
65	kup GrassSnow	Reflected shortwave radiation – grass surface [W m ⁻²]
66	kup_BSoilSnow	Reflected shortwave radiation – bare soil surface [W m ⁻²]
67	kup_WaterSnow	Reflected shortwave radiation – water surface [W m ⁻²]
68	frMelt Paved	Amount of freezing melt water – paved surface [mm]
69	frMelt_Bldgs	Amount of freezing melt water – paved surface [mm] Amount of freezing melt water – building surface [mm]
70	frMelt_EveTr	Amount of freezing melt water – building surface [mm] Amount of freezing melt water – evergreen surface [mm]
71	frMelt_DecTr	Amount of freezing melt water – evergreen surface [mm] Amount of freezing melt water – deciduous surface [mm]
72	frMelt_Grass	Amount of freezing melt water – deciduous surface [mm] Amount of freezing melt water – grass surface [mm]
73	frMelt_BSoil	
		Amount of freezing melt water – bare soil surface [mm]
74	frMelt_Water	Amount of freezing melt water – water surface [mm]
75	MwStore_Paved	Melt water store – paved surface [mm]
76	MwStore_Bldgs	Melt water store – building surface [mm]
77	MwStore_EveTt	Melt water store – evergreen surface [mm]
78	MwStore_DecTr	Melt water store – deciduous surface [mm]

Table 7.3 – continued from previous page

Column	Name	Description
79	MwStore_Grass	Melt water store – grass surface [mm]
80	MwStore_BSoil	Melt water store – bare soil surface [mm]
81	MwStore_Water	Melt water store – water surface [mm]
82	DensSnow_Paved	Snow density – paved surface [kg m ⁻³]
83	DensSnow_Bldgs	Snow density – building surface [kg m ⁻³]
84	DensSnow_EveTr	Snow density – evergreen surface [kg m ⁻³]
85	DensSnow_DecTr	Snow density – deciduous surface [kg m ⁻³]
86	DensSnow_Grass	Snow density – grass surface [kg m ⁻³]
87	DensSnow_BSoil	Snow density – bare soil surface [kg m ⁻³]
88	DensSnow_Water	Snow density – water surface [kg m ⁻³]
89	Sd_Paved	Snow depth – paved surface [mm]
90	Sd_Bldgs	Snow depth – building surface [mm]
91	Sd_EveTr	Snow depth – evergreen surface [mm]
92	Sd_DecTr	Snow depth – deciduous surface [mm]
93	Sd_Grass	Snow depth – grass surface [mm]
94	Sd_BSoil	Snow depth – bare soil surface [mm]
95	Sd_Water	Snow depth – water surface [mm]
96	Tsnow_Paved	Snow surface temperature – paved surface [°C]
97	Tsnow_Bldgs	Snow surface temperature – building surface [°C]
98	Tsnow_EveTr	Snow surface temperature – evergreen surface [°C]
99	Tsnow_DecTr	Snow surface temperature – deciduous surface [°C]
100	Tsnow_Grass	Snow surface temperature – grass surface [°C]
101	Tsnow_BSoil	Snow surface temperature – bare soil surface [°C]
102	Tsnow_Water	Snow surface temperature – water surface [°C]

7.2.6 SSss_YYYY_BL.txt

Meteorological variables modelled by CBL portion of the model are output in to this file created for each day with time step (see section CBL Input).

Column	Name	Description	Units
1	iy	Year [YYYY]	
2	id	Day of year [DoY]	
3	it	Hour [H]	
4	imin	Minute [M]	
5	dectime	Decimal time [-]	
6	zi	Convectibe boundary layer height	m
7	Theta	Potential temperature in the inertial sublayer	K
8	Q	Specific humidity in the inertial sublayer	g kg ⁻¹
9	theta+	Potential temperature just above the CBL	K
10	q+	Specific humidity just above the CBL	g kg ⁻¹
11	Temp_C	Air temperature	°C
12	RH	Relative humidity	%
13	QH_use	Sensible heat flux used for calculation	W m ⁻²
14	QE_use	Latent heat flux used for calculation	W m ⁻²
15	Press_hPa	Pressure used for calculation	hPa
16	avu1	Wind speed used for calculation	m s ⁻¹
17	ustar	Friction velocity used for calculation	m s ⁻¹
18	avdens	Air density used for calculation	kg m ⁻³
19	lv_J_kg	Latent heat of vaporization used for calculation	J kg ⁻¹
20	avcp	Specific heat capacity used for calculation	J kg ⁻¹ K ⁻¹
21	gamt	Vertical gradient of potential temperature	K m ⁻¹
22	gamq	Vertical gradient of specific humidity	kg kg ⁻¹ m ⁻¹

7.2.7 SOLWEIGpoiOut.txt

Calculated variables from POI, point of interest (row, col) stated in SOLWEIGinput.nml.

 ${\bf SOLWEIG\ model\ output\ file\ format:\ SOLWEIGpoiOUT.txt}$

Column	Name	Description	Units
1	id	Day of year	
2	dectime	Decimal time	
3	azimuth	Azimuth angle of the Sun	0
4	altitude	Altitude angle of the Sun	0
5	GlobalRad	Input Kdn	$\mathrm{W}\;\mathrm{m}^{\text{-}2}$
6	DiffuseRad	Diffuse shortwave radiation	$\mathrm{W}\;\mathrm{m}^{\text{-}2}$
7	DirectRad	Direct shortwave radiation	W m ⁻²
8	Kdown2d	Incoming shortwave radiation at POI	W m ⁻²
9	Kup2d	Outgoing shortwave radiation at POI	W m ⁻²
10	Ksouth	Shortwave radiation from south at POI	W m ⁻²
11	Kwest	Shortwave radiation from west at POI	W m ⁻²
12	Knorth	Shortwave radiation from north at POI	W m ⁻²
13	Keast	Shortwave radiation from east at POI	W m ⁻²
14	Ldown2d	Incoming longwave radiation at POI	W m ⁻²
15	Lup2d	Outgoing longwave radiation at POI	W m ⁻²
16	Lsouth	Longwave radiation from south at POI	$\mathrm{W}\;\mathrm{m}^{\text{-}2}$
17	Lwest	Longwave radiation from west at POI	W m ⁻²
18	Lnorth	Longwave radiation from north at POI	W m ⁻²
19	Least	Longwave radiation from east at POI	W m ⁻²
20	Tmrt	Mean Radiant Temperature	°C
21	I0	theoretical value of maximum incoming solar radiation	W m ⁻²
22	CI	clearness index for Ldown (Lindberg et al. 2008)	
23	gvf	Ground view factor (Lindberg and Grimmond 2011)	
24	shadow	Shadow value ($0 = \text{shadow}, 1 = \text{sun}$)	
25	svf	Sky View Factor from ground and buildings	
26	svfbuveg	Sky View Factor from ground, buildings and vegetation	
27	Ta	Air temperature	°C
28	Tg	Surface temperature	$^{\circ}\mathrm{C}$

7.2.8 SSss_YYYY_ESTM_TT.txt

If the ESTM model option is run, the following output file is created. Note: First time steps of storage output could give NaN values during the initial converging phase.

ESTM output file format

Column	Name	Description	Units
1	iy	Year	
2	id	Day of year	
3	it	Hour	
4	imin	Minute	
5	dectime	Decimal time	
6	QSnet	Net storage heat flux (QSwall+QSground+QS)	$\mathrm{W}\;\mathrm{m}^{\text{-}2}$
7	QSair	Storage heat flux into air	$\mathrm{W}\;\mathrm{m}^{\text{-}2}$
8	QSwall	Storage heat flux into wall	$\mathrm{W}\;\mathrm{m}^{\text{-}2}$
9	QSroof	Storage heat flux into roof	W m ⁻²
10	QSground	Storage heat flux into ground	$\mathrm{W}\;\mathrm{m}^{\text{-}2}$
11	QSibld	Storage heat flux into internal elements in buildling	W m ⁻²
12	Twall1	Temperature in the first layer of wall (outer-most)	K

Table 7.4 – continued from previous page

Column	Name	Description	Units
13	Twall2	Temperature in the first layer of wall	K
14	Twall3	Temperature in the first layer of wall	K
15	Twall4	Temperature in the first layer of wall	K
16	Twall5	Temperature in the first layer of wall (inner-most)	K
17	Troof1	Temperature in the first layer of roof (outer-most)	K
18	Troof2	Temperature in the first layer of roof	K
19	Troof3	Temperature in the first layer of roof	K
20	Troof4	Temperature in the first layer of roof	K
21	Troof5	Temperature in the first layer of ground (inner-most)	K
22	Tground1	Temperature in the first layer of ground (outer-most)	K
23	Tground2	Temperature in the first layer of ground	K
24	Tground3	Temperature in the first layer of ground	K
25	Tground4	Temperature in the first layer of ground	K
26	Tground5	Temperature in the first layer of ground (inner-most)	K
27	Tibld1	Temperature in the first layer of internal elements	K
28	Tibld2	Temperature in the first layer of internal elements	K
29	Tibld3	Temperature in the first layer of internal elements	K
30	Tibld4	Temperature in the first layer of internal elements	K
31	Tibld5	Temperature in the first layer of internal elements	K
32	Tabld	Air temperature in buildings	K

TROUBLESHOOTING

8.1 How to create a directory?

please search the web using this phrase if you do not know how to create a folder or directory

8.2 How to unzip a file

please search the web using this phrase if you do not know how to unzip a file

8.3 A text editor

is a program to edit plain text files. If you search on the web using the phrase 'text editor' you will find numerous programs. These include for example, NotePad, EditPad, Text Pad etc

8.4 Command prompt

From Start select run –type cmd – this will open a window. Change directory to the location of where you stored your files. The following website may be helpful if you do not know what a command prompt is: http://dosprompt.info/

8.5 Day of year [DOY]

January 1st is day 1, February 1st is day 32. If you search on the web using the phrase 'day of year calendar' you will find tables that allow rapid conversions. Remember that after February 28th DOY will be different between leap years and non-leap years.

8.6 ESTM output

First time steps of storage output could give NaN values during the initial converging phase.

8.7 First things to Check if the program seems to have problems

- Check the problems.txt file.
- Check file options in RunControl.nml.
- Look in the output directory for the SS_FileChoices.txt. This allows you to check all options that were used in the run. You may want to compare it with the original version supplied with the model.
- Note there can not be missing time steps in the data. If you need help with this you may want to checkout UMEP

8.7.1 A pop-up saying "file path not found"

This means the program cannot find the file paths defined in RunControl.nml file. Possible solutions:

- Check that you have created the folder that you specified in RunControl.nml.
- Check does the output directory exist?
- $\bullet \quad \text{Check that you have a single or double quotes around the FileInputPath, FileOutputPath and FileCode}\\$

===="%sat_vap_press.f temp=0.0000 pressure dectime"==== Temperature is zero in the calculation of water vapour pressure parameterization.

- You don't need to worry if the temperature should be (is) 0°C.
- If it should not be 0°C this suggests that there is a problem with the data.

8.7.2 %T changed to fit limits

• [TL =0.1]/ [TL =39.9] You may want to change the coefficients for surface resistance. If you have data from these temperatures, we would happily determine them.

8.7.3 %Iteration loop stopped for too stable conditions.

• [zL]/[USTAR] This warning indicates that the atmospheric stability gets above 2. In these conditions MO theory is not necessarily valid. The iteration loop to calculate the Obukhov length and friction velocity is stopped so that stability does not get too high values. This is something you do not need to worry as it does not mean wrong input data.

8.7.4 "Reference to undefined variable, array element or function result"

• Parameter(s) missing from input files.

See also the error messages provided in problems.txt and warnings.txt

8.7.5 Email list

• SUEWS email list

https://www.lists.reading.ac.uk/mailman/listinfo/met-suews

• UMEP email list

https://www.lists.reading.ac.uk/mailman/listinfo/met-umep

ACKNOWLEDGEMENTS

- People who have contributed to the development of SUEWS (plus co-authors of papers):
- Current contributors:
 - Prof C.S.B. Grimmond (University of Reading; previously Indiana University, King's College London, UK); Dr Leena Järvi (University of Helsinki, Finland); Dr Helen Ward (University of Reading), Dr Fredrik Lindberg (Göteborg University, Sweden), Dr Andy Gabey (Reading), Dr Ting SUN (Reading), Dr Jie PENG (SIMS), Dr Natalie Theeuwes (Reading),
- Past Contributors:
 - Dr Brian Offerle (Indiana University), Dr Thomas Loridan (King's College London), Dr Shiho
 Onomura (Göteborg University, Sweden)
- Users who have brought things to our attention to improve this manual and the model:
 - Dr Andy Coutts (Monash University, Australia), Kerry Nice (Monash University, Australia),
 Shiho Onomura (Göteborg University, Sweden), Dr Stefan Smith (University of Reading, UK),
 Dr Helen Ward (King's College London, UK; University of Reading, UK);
 Duick Young (King's College London),
 Dr Ning Zhang (Nanjing University, China)
- Funding to support development:
 - National Science Foundation (USA, BCS-0095284, ATM-0710631), EU Framework 7 BRIDGE (211345), EUf7 emBRACE; UK Met Office; NERC ClearfLo, NERC/Belmont TRUC, Newton/Met Office CSSP-China, H2020 UrbanFluxes, EPSRC LoHCool

NOTATION

 $\lambda \mathbf{F}$ frontal area index

 $\Delta \mathbf{QS*}$ storage heat flux

BLUEWS Boundary Layer part of SUEWS

Fig. 10.1: Relation between BLUEWS and SUEWS

Bldgs Building surface

CBL Convective boundary layer

DEM Digital Elevation Model

DSM Digital surface model

DTM Digital Terrain Model

DecTr deciduous trees and shrubs

EveTr Evergreen trees and shrubs

ESTM Element Surface Temperature Method (Offerle et al.,2005 [Oaf2005])

Grass Grass surface

BSoil Unmanaged land and/or bare soil

L↓ incoming longwave radiation

LAI Leaf area index

LUMPS Local-scale Urban Meteorological Parameterization Scheme (Loridan et al. 2011 [L2011])

MU Parameters which must be supplied and must be specific for the site/grid being run.

MD Parameters which must be supplied and must be specific for the site/grid being run (but default values may be ok if these values are not known specifically for the site).

O Parameters that are optional, depending on the model settings in RunControl. Set any parameters that are not used/not known to '-999'.

L Codes that are used to link between the input files. These codes are required but their values are completely arbitrary, providing that they link the input files in the correct way. The user should choose these codes, bearing in mind that the codes they match up with in column 1 of the corresponding input file must be unique within that file. Codes must be integers. Note that the codes must match up with column 1 of the corresponding input file, even if those parameters are not used (in which case set all columns except column 1 to '-999' in the corresponding input file), otherwise the model run will fail.

NARP Net All-wave Radiation Parameterization (Offerle et al. 2003 [02003], Loridan et al. 2011 [L2011])

OHM Objective Hysteresis Model (Grimmond et al. 1991 [G910HM], Grimmond & Oke 1999a [G099QS], 2002 [G02002])

Paved Paved surface

 \mathbf{Q}^* net all-wave radiation

QE latent heat flux

QF anthropogenic heat flux

QH sensible heat flux

SOLWEIG The solar and longwave environmental irradiance geometry model (Lindberg et al. 2008 [FL2008], Lindberg and Grimmond 2011 [FL2011])

SVF Sky view factor

theta potential temperature

tt time step of data

UMEP Urban Multi-scale Environmental Predictor

Water Water surface

WATCH The WATCH project has produced a large number of data sets which should be of considerable use in regional and global studies of climate and water. see WATCH webpage

zi Convective boundary layer height

CHAPTER

ELEVEN

DEVELOPMENT, SUGGESTIONS AND SUPPORT

- 1. [http://urban-climate.net/umep/DevelopmentGuidelines#Coding_Guidelines| Coding Guidelines|
- 2. Recommendations, Errors, Help/Updates please join our email list
 - (a) www.lists.reading.ac.uk/mailman/listinfo/met-suews
 - (b) As UMEP has a number of tools to support SUEWS you may want to join that list also www.lists.reading.ac.uk/mailman/listinfo/met-umep

VERSION HISTORY

12.1 New in SUEWS Version 2018a

see Version History.

12.2 New in SUEWS Version 2017b (released 2 August 2017)

PDF Manual for v2017b

- 1. Surface-level diagnostics: T2 (air temperature at 2 m agl), Q2 (air specific humidity at 2 m agl) and U10 (wind speed at 10 m agl) added as default output.
- 2. Output in netCDF format. Please note this feature is **NOT** enabled in the public release due to the dependency of netCDF library. Assistance in enabling this feature may be requested to the development team via SUEWS mail list.
- 3. Edits to the manual.
- 4. New capabilities being developed, including two new options for calculating storage heat flux (AnOHM, ESTM) and modelling of carbon dioxide fluxes. These are currently under development and **should** not be used in v2017b.
- 5. Known issues
 - (a) BLUEWS parameters need to be checked
 - (b) Observed soil moisture can not be used as an input
 - (c) Wind direction is not currently downscaled so non -999 values will cause an error.

12.3 New in SUEWS Version 2017a (Feb 2017)

- 1. Changes to input file formats (including RunControl.nml and InitialConditions files) to facilitate setting up and running the model. Met forcing files no longer need two rows of -9 at the end to indicate the end of the file.
- 2. Changes to output file formats (now option to write out only a subset of variables, rather than all variables).
- 3. SUEWS can now disaggregate forcing files to the model time-step and aggregate output at the model time-step to lower resolution. This removes the need for the python wrapper used with previous versions.

- 4. InitialConditions format and requirements changed. A single file can now be provided for multiple grids. SUEWS will approximate most (but not all) of the required initial conditions if values are unknown. (However, if detailed information about the initial conditions is known, this can still be provided to and used by SUEWS.)
- 5. Leaf area index calculations now use parameters provided for each vegetated surface (previously only the deciduous tree LAI development parameters were applied to all vegetated surfaces).
- 6. For compatibility with GIS, the sign convention for longitude has been changed. Now negative values are to the west, positive values are to the east. Note this appears to have been incorrectly coded in previous versions (but may not necessarily have been problematic).
- 7. Storage heat flux calculation adapted for shorter (sub-hourly) model time-step: hysteresis calculation now based on running means over the previous hour.
- 8. Improved error handling, including separate files for serious errors (problems.txt) and less critical issues (warnings.txt).
- 9. Edits to the manual.
- 10. New capabilities being developed, including two new options for calculating storage heat flux (AnOHM, ESTM) and modelling of carbon dioxide fluxes. These are currently under development and **should** not be used in v2017a.

12.4 New in SUEWS Version 2016a (released 21 June 2016)

PDF Manual for v2016a

- Major changes to the input file formats to facilitate the running of multiple grids and multiple years. Surface characteristics are provided in SiteSelect.txt and other input files are cross-referenced via codes or profile types.
- 2. The surface types have been altered:
 - Previously, grass surfaces were entered separately as irrigated grass and unirrigated grass surfaces, whilst the 'unmanaged' land cover fraction was assumed by the model to behave as unirrigated grass. There is now a single surface type for grass (total for irrigated plus unirrigated) and a new bare soil surface type.
 - The proportion of irrigated vegetation must now be specified for grass, evergreen trees and deciduous trees individually.
- 3. The entire model now runs at a time step specified by the user. Note that 5 min is strongly recommended. (Previously only the water balance calculations were done at 5 min with the energy balance calculations at 60 min).
- 4. Surface conductance now depends on the soil moisture under the vegetated surfaces only (rather than the total soil moisture for the whole study area as previously).
- 5. Albedo of evergreen trees and grass surfaces can now change with leaf area index as was previously possible for deciduous trees only.
- 6. New suggestions in Troubleshooting section.
- 7. Edits to the manual.
- 8. CBL model included.
- 9. SUEWS has been incorporated into UMEP

12.5 New in SUEWS Version 2014b (released 8 October 2014)

V2014 manual These affect the run configuration if previously run with older versions of the model:

- 1. New input of three additional columns in the Meteorological input file (diffusive and direct solar radiation, and wind direction)
- 2. Change of input variables in InitialConditions.nml file. Note we now refer to CT as ET (ie. Evergreen trees rather than coniferous trees)
- 3. In GridConnectionsYYYY.txt, the site names should now be without the underscore (e.g "Sm" and not "Sm_")

Other issues:

- 1. Number of grid areas that can be modelled (for one grid, one year 120; for one grid two years 80)
- 2. Comment about Time interval of input data
- 3. Bug fix: Column headers corrected in 5 min file
- 4. Bug fix: Surface state 60 min file corrected to give the last 5 min of the hour (rather than cumulating through the hour)
- 5. Bug fix: units in the Horizontal soil water transfer
- 6. ErrorHints: More have been added to the problems.txt file.
- 7. Manual: new section on running the model appropriately
- 8. Manual: notation table updated
- 9. Possibility to add snow accumulation and melt: new paper

Järvi L, Grimmond CSB, Taka M, Nordbo A, Setälä H, and Strachan IB 2014: Development of the Surface Urban Energy and Water balance Scheme (SUEWS) for cold climate cities, Geosci. Model Dev. 7, 1691-1711, doi:10.5194/gmd-7-1691-2014.

12.6 New in SUEWS Version 2014a.1 (released 26 February 2014)

- 1. Please see the large number of changes made in the 2014a release.
- 2. This is a minor change to address installing the software.
- 3. Minor updates to the manual

12.7 New in SUEWS Version 2014a (released 21 February 2014)

- 1. Bug fix: External irrigation is calculated as combined from automatic and manual irrigation and during precipitation events the manual irrigation is reduced to 60% of the calculated values. In previous version of the model, the irrigation was in all cases taken 60% of the calculated value, but now this has been fixed.
- 2. In previous versions of the model, irrigation was only allowed on the irrigated grass surface type. Now, irrigation is also allowed on evergreen and deciduous trees/shrubs surfaces. These are not however treated as separate surfaces, but the amount of irrigation is evenly distributed to the whole surface type in the modelled area. The amount of water is calculated using same equation as for grass surface

- (equation 5 in Järvi et al. 2011), and the fraction of irrigated trees/shrubs (relative to the area of tree/shrubs surface) is set in the gis file (See Table 4.11: SSss_YYYY.gis)
- 3. In the current version of the model, the user is able to adjust the leaf-on and leaf-off lengths in the FunctionalTypes. nml file. In addition, user can choose whether to use temperature dependent functions or combination of temperature and day length (advised to be used at high-latitudes)
- 4. In the gis-file, there is a new variable Alt that is the area altitude above sea level. If not known exactly use an approximate value.
- 5. Snow removal profile has been added to the HourlyProfileSSs_YYYY.txt. Not yet used!
- 6. Model time interval has been changed from minutes to seconds. Preferred interval is 3600 seconds (1 hour)
- 7. Manual correction: input variable Soil moisture said soil moisture deficit in the manual word removed
- 8. Multiple compiled versions of SUEWS released. There are now users in Apple, Linux and Windows environments. So we will now release compiled versions for more operating systems (section 3).
- 9. There are some changes in the output file columns so please, check the respective table of each used output file.
- 10. Bug fix: with very small amount of vegetation in an area impacted Phenology for LUMPS

12.8 New in SUEWS Version 2013a

- 1. Radiation selection bug fixed
- 2. Aerodynamic resistance when very low no longer reverts to neutral (which caused a large jump) but stays low
- 3. Irrigation day of week fixed
- 4. New error messages
- 5. min file now includes a decimal time column see Section 5.4 Table 5.3

12.9 New in SUEWS Version 2012b

- 1. Error message generated if all the data are not available for the surface resistance calculations
- 2. Error message generated if wind data are below zero plane displacement height.
- 3. All error messages now written to 'Problem.txt' rather than embedded in an ErrorFile. Note some errors will be written and the program will continue others will stop the program.
- 4. Default variables removed (see below). Model will stop if any data are problematic. File should be checked to ensure that reasonable data are being used. If an error occurs when there should not be one let us know as it may mean we have made the limits too restrictive.

Contents no longer used File default Fcld=0.1 default Pres=1013 default RH=50 default T=10 default U=3 RunControl.nml

- Just delete lines from file
- Values you had were likely different from these example value shown here

12.10 New in SUEWS Version 2012a

- 1. Improved error messages when an error is encountered. Error message will generally be written to the screen and to the file 'problems.txt'
- 2. Format of all input files have changed.
- 3. New excel spreadsheet and R programme to help prepare required data files. (Not required)
- 4. Format of coef flux (OHM) input files have changed.
 - This allows for clearer identification for users of the coefficients that are actually to be used
 - This requires an additional file with coefficients. These do not need to be adjusted but new coefficients can be added. We would appreciate receiving additional coefficients so they can be included in future releases Please email Sue.
- 5. Storage heat flux (OHM) coefficients can be changed by
 - time of year (summer, winter)
 - surface wetness state
- 6. New files are written: DailyState.txt
 - Provides the status of variables that are updated on a daily or basis or a snapshot at the end of each day.
- 7. Surface Types
 - Clarification of surface types has been made. See GIS and OHM related files

12.11 New in SUEWS Version2011b

- 1. Storage heat flux (ΔQs) and anthropogenic heat flux (QF) can be set to be 0 W m⁻²
- 2. Calculation of hydraulic conductivity in soil has been improved and HydraulicConduct in SUEWSIn-put.nml is replaced with name SatHydraulicConduct
- 3. Following removed from HeaderInput.nml
 - HydraulicConduct
 - GrassFractionIrrigated
 - PavedFractionIrrigated
 - TreeFractionIrrigated

The lower three are now determined from the water use behaviour used in SUEWS

- 1. Following added to HeaderInput.nml
 - SatHydraulicConduct
 - defaultQf
 - defaultQs
- 2. If ΔQs and QF are not calculated in the model but are given as an input, the missing data is replaced with the default values.
- 3. Added to SAHP input file

 • AHDIUPRF – diurnal profile used if AnthropHeatChoice = 1 V2012a this became obsolete OHM file (SSss_YYYY.ohm)

DIFFERENCES BETWEEN SUEWS, LUMPS AND FRAISE

The largest difference between LUMPS and SUEWS is that the latter simulates the urban water balance in detail while LUMPS takes a simpler approach for the sensible and latent heat fluxes and the water balance ("water bucket"). The calculation of evaporation/latent heat in SUEWS is more biophysically based. Due to its simplicity, LUMPS requires less parameters in order to run. SUEWS gives turbulent heat fluxes calculated with both models as an output. The model can run LUMPS alone without running SUEWS (Table 4.1 – SuewsStatus).

Similarities and differences between LUMPS and SUEWS.

	LUMPS	SUEWS
Net all-wave	Input or NARP	Input or NARP
radiation (Q^*)		
Storage heat flux	Input or from OHM	Input or from OHM
(ΔQS)		
Anthropogenic	Input or calculated	Input or calculated
heat flux (QF)		
Latent heat (QE)	DeBruin and Holtslag	Penman-Monteith equation2
	(1982)	
Sensible heat flux	DeBruin and Holtslag	Residual from available energy minus QE
(QH)	(1982)	
Water balance	No water balance included	Running water balance of canopy and water balance
		of soil
Soil moisture	Not considered	Modelled
Surface wetness	Simple water bucket model	Running water balance
Irrigation	Only fraction of surface	Input or calculated with a simple model
	area that is irrigated	
Surface cover	buildings, paved,	buildings, paved, coniferous and deciduous
	vegetation	trees/shrubs, irrigated and unirrigated grass

13.1 FRAISE Flux Ratio – Active Index Surface Exchange

FRAISE provides an estimate of mean midday (± 3 h around solar noon) energy partitioning from information on the surface characteristics and estimates of the mean midday incoming radiative energy and anthropogenic heat release. Please refer to Loridan and Grimmond (2012) /LG2012/ for further details.

Topic	FRAISE	LUMPS	SUEWS
Complexity	Simplest: FRAISE		More complex: SUEWS
Software	R code	Windows exe	Windows exe (written in Fortran) -
provided:		(written in Fortran)	other versions available
Applicable	Midday (within 3 h of	hourly	5 min-hourly-annu al
period:	solar noon)		
Unique	calculates active	radiation and energy	radiation, energy and water balance
features:	surface – and fluxes	balances	(includes LUMPS)

REFERENCES

- [J11] Järvi L, Grimmond CSB & Christen A (2011) The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol. 411, 219-237.
- [W16] Ward HC, Kotthaus S, Järvi L and Grimmond CSB 2016: Surface Urban Energy and Water Balance Scheme (SUEWS): development and evaluation at two UK sites. Urban Climate. 18, 1-32 doi: 10.1016/j.uclim.2016.05.001
- [G91] Grimmond CSB & Oke TR (1991) An Evaporation-Interception Model for Urban Areas. Water Resour. Res. 27, 1739-1755.
- [O2003] Offerle B, Grimmond CSB & Oke TR (2003) Parameterization of Net All-Wave Radiation for Urban Areas. J. Appl. Meteorol. 42, 1157-1173.
- [L2011] Loridan T, CSB Grimmond, BD Offerle, DT Young, T Smith, L Järvi, F Lindberg (2011) Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): longwave radiation parameterization & seasonality related developments. Journal of Applied Meteorology & Climatology 50, 185-202, doi: 10.1175/2010JAMC2474.1
- [lucy] Allen L, F Lindberg, CSB Grimmond (2011) Global to city scale model for anthropogenic heat flux, International Journal of Climatology, 31, 1990-2005.
- [lucy2] Lindberg F, Grimmond CSB, Nithiandamdan Y, Kotthaus S, Allen L (2013) Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015, Urban Climate, 4,1-13 paper
- [I11] Iamarino M, Beevers S & Grimmond CSB (2011) High-resolution (space, time) anthropogenic heat emissions: London 1970-2025. International J. of Climatology. 32, 1754-1767.
- [G91OHM] Grimmond CSB, Cleugh HA & Oke TR (1991) An objective urban heat storage model and its comparison with other schemes. Atmos. Env. 25B, 311-174.
- [GO99QS] Grimmond CSB & Oke TR (1999a) Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteorol. 38, 922-940.
- [GO2002] Grimmond CSB & Oke TR (2002) Turbulent Heat Fluxes in Urban Areas: Observations and a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) J. Appl. Meteorol. 41, 792-810.
- [AnOHM17] Sun T, Wang ZH, Oechel W & Grimmond CSB (2017) The Analytical Objective Hysteresis Model (AnOHM v1.0): Methodology to Determine Bulk Storage Heat Flux Coefficients. Geosci. Model Dev. Discuss. doi: 10.5194/gmd-2016-300.
- [Oaf2005] Offerle B, CSB Grimmond, K Fortuniak (2005) Heat storage & anthropogenic heat flux in relation to the energy balance of a central European city center. International J. of Climatology. 25: 1405–1419 doi: 10.1002/joc.1198
- [G86] Grimmond CSB, Oke TR and Steyn DG (1986) Urban water-balance 1. A model for daily totals. Water Resour Res 22: 1397-1403.

- [Leena2014] Järvi L, Grimmond CSB, Taka M, Nordbo A, Setälä H & Strachan IB (2014) Development of the Surface Urban Energy and Water balance Scheme (SUEWS) for cold climate cities, Geosci. Model Dev. 7, 1691-1711, doi:10.5194/gmd-7-1691-2014.
- [CG2001] Cleugh HA & Grimmond CSB (2001) Modelling regional scale surface energy exchanges and CBL growth in a heterogeneous, urban-rural landscape. Bound.-Layer Meteor. 98, 1-31.
- [Shiho2015] Onomura S, Grimmond CSB, Lindberg F, Holmer B & Thorsson S (2015) Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme Urban Climate,11, 1-23 doi:10.1016/j.uclim.2014.11.001
- [FL2008] Lindberg F, Holmer B & Thorsson S (2008) SOLWEIG 1.0 Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. International Journal of Biometeorology 52, 697–713.
- [FL2011] Lindberg F & Grimmond C (2011) The influence of vegetation and building morphology on shadow patterns and mean radiant temperature in urban areas: model development and evaluation. Theoretical and Applied Climatology 105:3, 311-323.
- [Ko17] Kokkonen TV, Grimmond CSB, Räty O, Ward HC, Christen A, Oke TR, Kotthaus S & Järvi L (in review) Sensitivity of Surface Urban Energy and Water Balance Scheme (SUEWS) to downscaling of reanalysis forcing data.
- [Best2014] Best MJ & Grimmond CSB (2014) Importance of initial state and atmospheric conditions for urban land surface models' performance. Urban Climate 10: 387-406. doi: 10.1016/j.uclim.2013.10.006.
- [D74] Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol. 7, 363-372.
- [H88] Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42, 55–78.
- [VUH85] Van Ulden AP & Holtslag AAM (1985) Estimation of atmospheric boundary layer parameters for boundary layer applications. J. Clim. Appl. Meteorol. 24, 1196-1207.
- [CNstab] Campbell GS & Norman JM (1998) Introduction to Environmental Biophysics. Springer Science, US.
- [B71] Businger JA, Wyngaard JC, Izumi Y & Bradley EF (1971) Flux-Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci., 28, 181–189.
- [Ka09] Kawai T, Ridwan MK & Kanda M (2009) Evaluation of the simple urban energy balance model using selected data from 1-yr flux observations at two cities. J. Appl. Meteorol. Clim. 48, 693-715.
- [VG00] Voogt JA & Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban terrain. J. Appl. Meteorol. 39, 1679-1699.
- [Ka07] Kanda M, Kanega M, Kawai T, Moriwaki R & Sugawara H (2007). Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteorol. Clim. 46, 1067-1079.
- [GO99] Grimmond CSB & Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 38, 1262-1292.
- [Mc98] MacDonald RW, Griffiths RF & Hall DJ (1998) An improved method for estimation of surface roughness of obstacle arrays. Atmos. Env. 32, 1857-1864.
- [FN78] Falk J & Niemczynowicz J, (1978) Characteristics of the above ground runoff in sewered catchments, in Urban Storm Drainage, edited by Helliwell PR, Pentech, London
- [Ha79] Halldin S, Grip H & Perttu K. (1979) Model for energy exchange of a pine forest canopy. In: Halldin S (Ed.), Comparison of Forest Water and Energy Exchange Models. International Society of Ecological Modeling

194 References

- [CW86] Calder IR and Wright IR (1986) Gamma Ray Attenuation Studies of Interception From Sitka Spruce: Some Evidence for an Additional Transport Mechanism. Water Resour. Res., 22(3), 409–417.
- [Ok87] Oke TR (1987) Boundary Layer Climates. Routledge, London, UK
- [Br03] Breuer L, Eckhardt K and Frede H-G (2003) Plant parameter values for models in temperate climates. Ecol. Model. 169, 237-293.
- [Ja76] Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. London, Ser. B., 273, 593-610.
- [Au74] Auer AH (1974) The rain versus snow threshold temperatures. Weatherwise, 27, 67.
- [SV06] Sailor DJ and Vasireddy C (2006) Correcting aggregate energy consumption data account for variability in local weather. Environ. Modell. Softw. 21, 733-738.
- [Ko14] Konarska J, Lindberg F, Larsson A, Thorsson S and Holmer B (2014) Transmissivity of solar radiation through crowns of single urban trees—application for outdoor thermal comfort modelling. Theor Appl Climatol 117:363–376.
- [Re90] Reindl DT, Beckman WA and Duffie JA (1990) Diffuse fraction correlation. Sol Energy 45:1–7.
- [LG2012] Loridan T and Grimmond CSB (2012) Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. J. of Applied Meteorology and Climatology 51,219-241 doi: 10.1175/JAMC-D-11-038.1

References 195

196 References

INDEX

Symbols	command line option, 26
ΔQS^* , 181	${\bf Anthrop Heat Method}$
λ F, 181	command line option, 25
-,	AnthropogenicCode
A	command line option, 61
a1	AreaWall
command line option, 57	command line option, 62
a2	В
command line option, 57	_
a3	BaseT
command line option, 57	command line option, 62
absK	BaseTe
command line option, 163	command line option, 62
absL	BaseTHDD
command line option, 163	command line option, 63
ActivityProfWD	Bldgs, 181 BldgsState
command line option, 58	command line option, 148
ActivityProfWE	BLUEWS, 181
command line option, 58	BSoil, 182
AHMin	BSoilState
command line option, 58	command line option, 148
AHSlope	BuildEnergyUse
command line option, 58 albDecTr0	command line option, 63
command line option, 147	BuildingName
AlbedoMax	command line option, 163
command line option, 59	
AlbedoMin	С
command line option, 59	CBL, 181
albEveTr0	CBLday(id)
command line option, 146	command line option, 156
albGrass0	CBLuse
command line option, 147	command line option, 23
Alt	CDSMname
command line option, 60	command line option, 163
AnOHM_Ch	$CO2_included$
command line option, 60	command line option, 156
AnOHM_Cp	Code
command line option, 61	command line option, 63
AnOHM_Kk	Code_Bldgs
command line option, 61	command line option, 65
AnthropCO2Method	Code Bsoil

command line option, 66 Code_DecTr	BaseTHDD, 63 BldgsState, 148
command line option, 66	BSoilState, 148
Code_ESTMClass_Bldgs1	BuildEnergyUse, 63
command line option, 67	BuildingName, 163
Code_ESTMClass_Bldgs2	CBLday(id), 156
command line option, 67	CBLuse, 23
Code_ESTMClass_Bldgs3	CDSMname, 163
command line option, 67	CO2_included, 156
Code_ESTMClass_Bldgs4	Code, 63
command line option, 67	Code_Bldgs, 65
Code ESTMClass Bldgs5	Code_Bsoil, 66
command line option, 67	Code_DecTr, 66
Code_ESTMClass_Paved1	Code_ESTMClass_Bldgs1, 67
command line option, 68	Code_ESTMClass_Bldgs1, 67
Code_ESTMClass_Paved2	Code_ESTMClass_Bldgs2, 67 Code_ESTMClass_Bldgs3, 67
command line option, 68	Code ESTMClass Bldgs4, 67
Code ESTMClass Paved3	Code ESTMClass Bldgs5, 67
-	
command line option, 68	Code_ESTMClass_Paved1, 6
Code_EveTr	Code_ESTMClass_Paved2, 6
command line option, 68	Code_ESTMClass_Paved3, 6
Code_Grass	Code_EveTr, 68
command line option, 69	Code_Grass, 69
Code_Paved	Code_Paved, 69
command line option, 69	Code_Water, 70
Code_Water	col, 163
command line option, 70	CondCode, 70
col	CRWMax, 71
command line option, 163	CRWMin, 71
command line option	DaysSinceRain, 147
a1, 57	DayWat(1), 71
a2, 57	DayWat(2), 71
a3, 57	DayWat(3), 72
absK, 163	DayWat(4), 72
absL, 163	DayWat(5), 72
ActivityProfWD, 58	DayWat(6), 72
ActivityProfWE, 58	DayWat(7), 72
AHMin, 58	DayWatPer(1), 72
AHSlope, 58	DayWatPer(2), 73
albDecTr0, 147	DayWatPer(3), 73
AlbedoMax, 59	DayWatPer(4), 73
AlbedoMin, 59	DayWatPer(5), 73
albEveTr $0, 146$	DayWatPer(6), 73
albGrass0, 147	DayWatPer(7), 74
Alt, 60	decidCap0, 147
AnOHM_Ch, 60	DecTrState, 148
AnOHM_Cp, 61	DisaggMethod, 32
AnOHM_Kk, 61	DisaggMethodESTM, 34
AnthropCO2Method, 26	DrainageCoef1, 74
AnthropHeatMethod, 25	DrainageCoef2, 74
AnthropogenicCode, 61	DrainageEq, 75
AreaWall, 62	DSMname, 163
BaseT, 62	DSMPath, 163
BaseTe, 62	Emissivity, 76

EndDLS, 76	GridConnection2of8, 87
EnergyUseProfWD, 77	GridConnection3of8, 87
EnergyUseProfWE, 77	GridConnection4of8, 87
	,
Entrainment Type, 155	GridConnection5of8, 88
ESTMCode, 77	GridConnection6of8, 88
EveTrState, 148	GridConnection7of8, 88
evolveTibld, 158	GridConnection8of8, 88
FAI_Bldgs, 78	gsModel, 88
FAI_DecTr, 78	GVF_out, 162
FAI_EveTr, 79	H_Bldgs, 88
Faut, 79	H DecTr, 89
feld, 79	H_EveTr, 89
FileCode, 29	heightgravity, 164
FileInputPath, 30	IbldCHmod, 158
FileOutputPath, 30	id, 89
FileSonde(id), 156	Ie_a1, 89
FlowChange, 79	Ie_a2, 89
Fr Bldgs, 81	Ie_a3, 90
Fr_Bsoil, 81	Ie_end, 90
Fr_DecTr, 81	
Fr_ESTMClass_Bldgs1, 82	Ie_m2, 90
Fr_ESTMClass_Bldgs2, 82	Ie_m2, 90 Ie_m3, 90
Fr ESTMClass Bldgs3, 82	Ie start, 90
,	— '
Fr_ESTMClass_Bldgs4, 82	ih, 91
Fr_ESTMClass_Bldgs5, 82	imin, 91
Fr_ESTMClass_Paved1, 82	InfiltrationRate, 91
Fr_ESTMClass_Paved2, 83	InitialData_use, 155
Fr_ESTMClass_Paved3, 83	InitialDataFileName, 156
Fr_EveTr, 83	Internal_albedo, 91
Fr_Grass, 83	Internal_CHbld, 91
Fr_Paved, 83	Internal_CHroof, 92
Fr_Water, 84	Internal_CHwall, 92
Fraction1of8, 79	Internal_emissivity, 92
Fraction2of8, 80	Internal k1, 92
Fraction3of8, 80	Internal k2, 93
Fraction4of8, 80	Internal_k3, 93
Fraction5of8, 80	Internal k4, 93
Fraction6of8, 80	— ,
Fraction7of8, 81	Intornal Es U3
FIACHOH/OIO, OI	Internal_k5, 93
	Internal_rhoCp1, 93
Fraction8of8, 81	Internal_rhoCp1, 93 Internal_rhoCp2, 93
Fraction8of8, 81 G1, 84	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94
Fraction8of8, 81 G1, 84 G2, 84	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94
Fraction8of8, 81 G1, 84 G2, 84 G3, 84	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94
Fraction8of8, 81 G1, 84 G2, 84 G3, 84	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85 G6, 85 gamq_gkgm, 85	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94 Internal_thick3, 95
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85 G6, 85 gamq_gkgm, 85 gamt_Km, 85	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94 Internal_thick3, 95 Internal_thick4, 95 Internal_thick5, 95
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85 G6, 85 gamq_gkgm, 85 gamt_Km, 85 GDD_1_0, 146	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94 Internal_thick3, 95 Internal_thick4, 95 Internal_thick5, 95 Internal_thick5, 95 InternalWaterUse, 95
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85 G6, 85 gamq_gkgm, 85 gamt_Km, 85 GDD_1_0, 146 GDD_2_0, 146	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94 Internal_thick3, 95 Internal_thick4, 95 Internal_thick5, 95 InternalWaterUse, 95 IrrFr_DecTr, 95
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85 G6, 85 gamq_gkgm, 85 gamt_Km, 85 GDD_1_0, 146 GDD_2_0, 146 GDDFull, 85	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94 Internal_thick3, 95 Internal_thick4, 95 Internal_thick5, 95 Internal_thick5, 95 InternalWaterUse, 95 IrrFr_DecTr, 95 IrrFr_EveTr, 95
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85 G6, 85 gamq_gkgm, 85 gamt_Km, 85 GDD_1_0, 146 GDD_2_0, 146 GDDFull, 85 GrassState, 148	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94 Internal_thick3, 95 Internal_thick4, 95 Internal_thick5, 95 Internal_thick5, 95 InternalWaterUse, 95 IrrFr_DecTr, 95 IrrFr_EveTr, 95 IrrFr_Grass, 96
Fraction8of8, 81 G1, 84 G2, 84 G3, 84 G4, 84 G5, 85 G6, 85 gamq_gkgm, 85 gamt_Km, 85 GDD_1_0, 146 GDD_2_0, 146 GDDFull, 85	Internal_rhoCp1, 93 Internal_rhoCp2, 93 Internal_rhoCp3, 94 Internal_rhoCp4, 94 Internal_rhoCp5, 94 Internal_thick1, 94 Internal_thick2, 94 Internal_thick3, 95 Internal_thick4, 95 Internal_thick5, 95 Internal_thick5, 95 InternalWaterUse, 95 IrrFr_DecTr, 95 IrrFr_EveTr, 95

iy, 96	OutInterval, 164
kdiff, 97	PavedState, 147
kdir, 97	PipeCapacity, 110
kdown, 97	PopDensDay, 110
Kdown2d_out, 162	PopDensNight, 111
KdownZen, 32	porosity0, 147
KeepTstepFilesIn, 31	PorosityMax, 111
KeepTstepFilesOut, 31	PorosityMin, 111
Kmax, 97	Posture, 160
Kup2d_out, 162	PrecipiLimAlb, 112
lai, 97	PrecipLimSnow, 112
LAIEq, 98	pres, 112
LAInitialDecTr, 146	q+_gkg, 114
LAInitialEveTr, 146	q_gkg, 114
LAIMer 08	qe, 112
LAIMax, 98	qf, 112
LAIMin, 98	QF_A_Weekday, 112
lat, 98	QF_A_Weekend, 113
LBC_soil, 158	QF_B_Weekday, 113
ldown, 99	QF_B_Weekend, 113
Ldown2d_out, 161	QF_C_Weekday, 114
LeafGrowthPower1, 99	QF_C_Weekend, 114
LeafGrowthPower2, 99	qh, 114
LeafOffPower1, 100	QH_Choice, 155
LeafOffPower2, 100	qn, 115
LeavesOutIntially, 145	qs, 115
lng, 100	RadMeltFactor, 115
LUMPS_Cover, 100	rain, 115
LUMPS_DrRate, 101	RainAmongN, 33
LUMPS_MaxRes, 101	RainDisaggMethod, 33
Lup2d_out, 161	ResolutionFilesIn, 29
MaxConductance, 101	$Resolution Files In ESTM,\ 29$
MultipleESTMFiles, 30	ResolutionFilesOut, 29
MultipleInitFiles, 30	RH, 115
MultipleMetFiles, 30	RoughLenHeatMethod, 27
MultRainAmongN, 33	RoughLenMomMethod, 27
MultRainAmongNUpperI, 34	row, 164
NARP_Trans, 102	RunForGrid, 163
ncMode, 34	RunoffToWater, 115
nCol, 35	S1, 116
NetRadiationMethod, 24	S2, 116
nroom, 102	SatHydraulicCond, 116
nRow, 34	SDDFull, 116
OBS_SMCap, 102	SMDMethod, 28
OBS_SMDepth, 102	snow, 117
OBS_SoilNotRocks, 103	SnowClearingProfWD, 117
OHMCode_SummerDry, 103	SnowClearingProfWE, 117
OHMCode_SummerWet, 104	
	SnowCode, 118
OHMCode_WinterDry, 105	SnowDensBldgs, 151
OHMCode_WinterWet, 106	SnowDensBSoil, 152
OHMIncQF, 26	SnowDensDecTr, 151
OHMThresh_SW, 107	SnowDensEveTr, 151
OHMThresh_WD, 108	SnowDensGrass, 151
onlyglobal, 161	snowDensMax, 118

snowDensMin, 119	Surf_rhoCp1, 125
SnowDensPaved, 151	Surf_rhoCp2, 125
SnowDensWater, 152	Surf_rhoCp3, 125
SnowFracBldgs, 150	Surf_rhoCp4, 125
SnowFracBSoil, 151	Surf_rhoCp5, 126
SnowFracDecTr, 151	Surf_thick1, 126
SnowFracEveTr, 150	Surf_thick2, 126
SnowFracGras, 151	Surf_thick3, 126
SnowFracPaved, 150	Surf_thick4, 126
SnowFracWater, 151	Surf_thick5, 127
SnowIntially, 148	SurfaceArea, 124
SnowLimPatch, 119	SVFPath, 164
SnowLimRemove, 119	SVFSuffix, 164
SnowPackBldgs, 150	Tair, 127
SnowPackBSoil, 150	tau_a, 127
SnowPackDecTr, 150	tau_f, 127
SnowPackEveTr, 150	tau_r, 127
SnowPackGrass, 150	TCritic, 127
SnowPackPaved, 149	TDSMname, 164
SnowPackWater, 150	Temp_C0, 147
SnowUse, 23	TempMeltFactor, 128
SnowWaterBldgsState, 149	TH, 128
SnowWaterBSoilState, 149	Theat_fix, 159
SnowWaterDecTrState, 149	Theat_off, 159
SnowWaterEveTrState, 149	Theat_on, 159
SnowWaterGrassState, 149	Theta+_K, 128
SnowWaterPavedState, 149	Theta_K, 128
SnowWaterWaterState, 149	Tiair, 128
SnowWaterWaterState, 149 SoilDensity, 120	Tiair, 128 Timezone, 129
SoilDensity, 120	Timezone, 129
SoilDensity, 120 SoilDepth, 120	Timezone, 129 TL, 129
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBSoilState, 145	Timezone, 129 TL, 129 Tmrt_out, 161
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilStoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_poi_out, 161	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilstoreBSoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIGpoi_out, 161 SOLWEIGUse, 23	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 161 SOLWEIGUse, 23 Sondeflag, 156	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 161 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoiltOpeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 162 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoiltorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 161 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToGrass, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 161 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StorageHeatMethod, 26	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilstoreBSoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 161 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121 StorageHeatMethod, 26 StorageMax, 122	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29 Tsurf, 131
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 162 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121 StorageHeatMethod, 26 StorageMax, 122 StorageMin, 123	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29 Tsurf, 131 TsurfChoice, 158
SoilDensity, 120 SoilDepth, 120 SoilstoreBldgsState, 145 SoilstoreBsoilState, 145 SoilstoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoiltOrePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 162 SOLWEIGuse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121 StorageHeatMethod, 26 StorageMax, 122 StorageMin, 123 SuppressWarnings, 31	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29 Tsurf, 131 TsurfChoice, 158 Twall, 131
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 162 SOLWEIGuse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121 StorageHeatMethod, 26 StorageMax, 122 StorageMin, 123 SuppressWarnings, 31 Surf_k1, 124	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToGrass, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29 Tsurf, 131 TsurfChoice, 158 Twall, 131 Twall_e, 132
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 162 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121 StorageHeatMethod, 26 StorageMax, 122 StorageMin, 123 SuppressWarnings, 31 Surf_k1, 124 Surf_k2, 124	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29 Tsurf, 131 TsurfChoice, 158 Twall, 131 Twall_e, 132 Twall_n, 132
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 162 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121 StorageHeatMethod, 26 StorageMax, 122 StorageMin, 123 SuppressWarnings, 31 Surf_k1, 124 Surf_k2, 124 Surf_k3, 124	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToGrass, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29 Tsurf, 131 TsurfChoice, 158 Twall, 131 Twall_e, 132 Twall_n, 132 Twall_s, 132
SoilDensity, 120 SoilDepth, 120 SoilStoreBldgsState, 145 SoilstoreBsoilState, 145 SoilStoreCap, 120 SoilstoreDecTrState, 145 SoilstoreEveTrState, 145 SoilstoreGrassState, 145 SoilstorePavedState, 145 SoilTypeCode, 120 SOLWEIG_ldown, 162 SOLWEIG_ldown, 162 SOLWEIGUse, 23 Sondeflag, 156 StabilityMethod, 27 StartDLS, 121 StateLimit, 121 StorageHeatMethod, 26 StorageMax, 122 StorageMin, 123 SuppressWarnings, 31 Surf_k1, 124 Surf_k2, 124	Timezone, 129 TL, 129 Tmrt_out, 161 ToBldgs, 129 ToBSoil, 129 ToDecTr, 129 ToEveTr, 130 ToGrass, 130 ToPaved, 130 ToRunoff, 130 ToSoilStore, 130 ToWater, 130 TrafficRate, 131 TransMax, 164 TransMin, 164 Troad, 131 Troof, 131 Tstep, 29 Tsurf, 131 TsurfChoice, 158 Twall, 131 Twall_e, 132 Twall_n, 132

usevegdem, 160	command line option, 71
Wall_k1, 133	DayWat(3)
Wall_k2, 133	command line option, 72
Wall_k3, 133	DayWat(4)
Wall_k4, 133	command line option, 72
Wall_k5, 133	DayWat(5)
Wall_rhoCp1, 133	command line option, 72
Wall_rhoCp2, 134	DayWat(6)
Wall_rhoCp3, 134	command line option, 72
Wall_rhoCp4, 134	DayWat(7)
Wall_rhoCp5, 134	command line option, 72
Wall_thick1, 134	DayWatPer(1)
Wall_thick2, 135	command line option, 72
Wall_thick3, 135	DayWatPer(2)
Wall_thick4, 135	command line option, 73
Wall_thick5, 135	DayWatPer(3)
WaterDepth, 135	command line option, 73
WaterState, 148 WaterUseMethod, 28	DayWatPer(4)
	command line option, 73
WaterUseProfAutoWD, 136 WaterUseProfAutoWE, 136	DayWatPer(5)
WaterUseProfManuWD, 136	command line option, 73 DayWatPer(6)
WaterUseProfManuWE, 137	command line option, 73
wdir, 137	DayWatPer(7)
WetThreshold, 137	command line option, 74
WithinGridBldgsCode, 138	decidCap0
WithinGridBSoilCode, 138	command line option, 147
WithinGridDecTrCode, 139	DecTr, 181
WithinGridEveTrCode, 139	DecTrState
WithinGridGrassCode, 139	command line option, 148
WithinGridPavedCode, 140	DEM, 181
WithinGridWaterCode, 140	DisaggMethod
WriteOutOption, 31	command line option, 32
Wsb, 156	DisaggMethodESTM
Wuh, 140	command line option, 34
xsmd, 141	DrainageCoef1
Year, 141	command line option, 74
z, 141	DrainageCoef2
z0, 141	command line option, 74
zd, 142	DrainageEq
zi0, 142	command line option, 75
CondCode	DSM, 181
command line option, 70	DSMname
CRWMax	command line option, 163
command line option, 71	DSMPath
CRWMin	command line option, 163
command line option, 71	DTM, 181
D	Е
DaysSinceRain	Emissivity
command line option, 147	command line option, 76
DayWat(1)	EndDLS
command line option, 71	command line option, 76
DayWat(2)	EnergyUseProfWD

command line option, 77	command line option, 83
EnergyUseProfWE	$Fr_ESTMClass_Paved3$
command line option, 77	command line option, 83
EntrainmentType	Fr_EveTr
command line option, 155	command line option, 83
ESTM, 181	Fr_Grass
ESTMCode	command line option, 83
command line option, 77	Fr_Paved
EveTr, 181	command line option, 83
EveTrState command line option, 148	Fr_Water
evolveTibld	command line option, 84 Fraction 1 of 8
command line option, 158	command line option, 79
command fine option, 100	Fraction2of8
F	command line option, 80
FAI Bldgs	Fraction3of8
command line option, 78	command line option, 80
FAI DecTr	Fraction4of8
command line option, 78	command line option, 80
FAI_EveTr	Fraction5of8
command line option, 79	command line option, 80
Faut	Fraction6of8
command line option, 79	command line option, 80
fcld	Fraction7of8
command line option, 79	command line option, 81
FileCode	Fraction8of8 command line option, 81
command line option, 29 FileInputPath	command time option, or
command line option, 30	G
FileOutputPath	G1
command line option, 30	command line option, 84
FileSonde(id)	G2
command line option, 156	command line option, 84
FlowChange	G3
command line option, 79	command line option, 84
Fr_Bldgs	G4
command line option, 81	command line option, 84
Fr_Bsoil	G5
command line option, 81	command line option, 85
Fr_DecTr	G6
command line option, 81 Fr_ESTMClass_Bldgs1	command line option, 85
command line option, 82	gamq_gkgm command line option, 85
Fr_ESTMClass_Bldgs2	gamt_Km
command line option, 82	command line option, 85
Fr_ESTMClass_Bldgs3	GDD_1_0
command line option, 82	command line option, 146
Fr_ESTMClass_Bldgs4	GDD_2_0
command line option, 82	command line option, 146
Fr_ESTMClass_Bldgs5	GDDFull
command line option, 82	command line option, 85
Lin LiCTMCloss Dorrod1	
Fr_ESTMClass_Paved1	Grass, 181
command line option, 82 Fr_ESTMClass_Paved2	

Grid	ih
command line option, 86	command line option, 91
GridConnection1of8	imin
command line option, 86	command line option, 91
GridConnection2of8	InfiltrationRate
command line option, 87	command line option, 91
GridConnection3of8	InitialData_use
command line option, 87	command line option, 155
GridConnection4of8	InitialDataFileName
command line option, 87	command line option, 156
GridConnection5of8	Internal_albedo
command line option, 88	command line option, 91
GridConnection6of8	Internal_CHbld
command line option, 88	command line option, 91
GridConnection7of8	Internal_CHroof
command line option, 88 GridConnection8of8	command line option, 92 Internal_CHwall
command line option, 88	command line option, 92
gsModel	Internal_emissivity
command line option, 88	command line option, 92
GVF_out	Internal k1
command line option, 162	command line option, 92
command the option, 102	Internal k2
H	command line option, 93
H_Bldgs	Internal k3
command line option, 88	command line option, 93
H DecTr	Internal_k4
command line option, 89	command line option, 93
H_EveTr	Internal_k5
command line option, 89	command line option, 93
heightgravity	Internal_rhoCp1
command line option, 164	command line option, 93
1	Internal_rhoCp2
1	command line option, 93
IbldCHmod	Internal_rhoCp3
command line option, 158	command line option, 94
id	Internal_rhoCp4
command line option, 89	command line option, 94
Ie_a1	Internal_rhoCp5
command line option, 89	command line option, 94
Ie_a2	Internal_thick1
command line option, 89	command line option, 94 Internal_thick2
Ie_a3	command line option, 94
command line option, 90	Internal_thick3
Ie_end	command line option, 95
command line option, 90 Ie m1	Internal_thick4
command line option, 90	command line option, 95
Ie_m2	Internal_thick5
command line option, 90	command line option, 95
Ie_m3	InternalWaterUse
command line option, 90	command line option, 95
Ie_start	IrrFr_DecTr
command line option, 90	command line option, 95

IrrFr_EveTr	$Ldown2d_out$
command line option, 95	command line option, 165
IrrFr_Grass	LeafGrowthPower1
command line option, 96	command line option, 99
IrrigationCode	LeafGrowthPower2
command line option, 96 it	command line option, 99 LeafOffPower1
command line option, 96 iy	command line option, 100 LeafOffPower2
command line option, 96	command line option, 100 LeavesOutIntially
	command line option, 145
kdiff	lng
command line option, 97	command line option, 100
kdir command line option, 97	LUMPS, 182 LUMPS_Cover
kdown	command line option, 100
command line option, 97	LUMPS_DrRate
Kdown2d_out	command line option, 101 LUMPS_MaxRes
command line option, 162 KdownZen	command line option, 101
command line option, 32	Lup2d_out
KeepTstepFilesIn	command line option, 161
command line option, 31	L↓, 182
KeepTstepFilesOut	•
command line option, 31	M
Kmax	MaxConductance
command line option, 97 Kup2d_out	command line option, 101 MD, 182
command line option, 162	MU, 182
command mic option, 102	MultipleESTMFiles
L	command line option, 30
L, 182	MultipleInitFiles
LAI, 182	command line option, 30
lai	MultipleMetFiles
command line option, 97	command line option, 30
LAIEq	$\operatorname{MultRainAmongN}$
command line option, 98	command line option, 33
LAIinitialDecTr	MultRainAmongNUpperI
command line option, 146	command line option, 34
LAIinitialEveTr	N
command line option, 146	• •
LAIinitialGrass	NARP, 182
command line option, 146	NARP_Trans
LAIMax command line option, 98	command line option, 102 ncMode
LAIMin	command line option, 34
command line option, 98	nCol
lat	command line option, 35
command line option, 98	NetRadiationMethod
LBC soil	command line option, 24
command line option, 158	nroom
ldown	command line option, 102
command line option, 99	nRow

command line option, 34	Q
O	$q+_gkg$
	command line option, 114
O, 182	q_gkg
OBS_SMCap	command line option, 114
command line option, 102	QE, 182
OBS_SMDepth	qe
command line option, 102	command line option, 112
OBS_SoilNotRocks	QF, 182
command line option, 103	qf
OHM, 182	command line option, 112
OHMCode_SummerDry	QF_A_Weekday
command line option, 103	command line option, 112
OHMCode_SummerWet	$QF_A_Weekend$
command line option, 104	command line option, 113
OHMCode_WinterDry	$QF_B_Weekday$
command line option, 105	command line option, 113
OHMCode_WinterWet	$QF_B_Weekend$
command line option, 106	command line option, 113
OHMIncQF	$QF_C_Weekday$
command line option, 26	command line option, 114
OHMThresh_SW	$\mathrm{QF}_{-}\mathrm{C}_{-}\mathrm{Weekend}$
command line option, 107	command line option, 114
OHMThresh_WD	QH, 182
command line option, 108	qh
onlyglobal	command line option, 114
command line option, 161	QH_Choice
OutInterval	command line option, 155
command line option, 164	qn
Р	command line option, 115
Ρ	qs
Paved, 182	command line option, 115
PavedState	Qstar, 182
command line option, 147	D
PipeCapacity	R
command line option, 110	RadMeltFactor
PopDensDay	command line option, 115
command line option, 110	rain
PopDensNight	command line option, 115
command line option, 111	RainAmongN
porosity0	command line option, 33
command line option, 147	RainDisaggMethod
PorosityMax	command line option, 33
command line option, 111	ResolutionFilesIn
PorosityMin	command line option, 29
command line option, 111	ResolutionFilesInESTM
Posture	command line option, 29
command line option, 160	ResolutionFilesOut
PrecipiLimAlb	command line option, 29
command line option, 112	RH
PrecipLimSnow	command line option, 115
command line option, 112	RoughLenHeatMethod
pres	command line option, 27
command line option, 112	RoughLenMomMethod

command line option, 27	command line option, 153
row	SnowFracPaved
command line option, 164	command line option, 150
RunForGrid	SnowFracWater
command line option, 163	command line option, 151
RunoffToWater	SnowIntially
command line option, 115	command line option, 148
C	SnowLimPatch
S	command line option, 119
S1	SnowLimRemove
command line option, 116	command line option, 119
S2	SnowPackBldgs
command line option, 116	command line option, 150
SatHydraulicCond	SnowPackBSoil
command line option, 116	command line option, 150
SDDFull	SnowPackDecTr
command line option, 116	command line option, 150
SMDMethod	SnowPackEveTr
command line option, 28	command line option, 150
snow	SnowPackGrass
command line option, 117	command line option, 150
SnowClearingProfWD	SnowPackPaved
command line option, 117	command line option, 149
SnowClearingProfWE	SnowPackWater
command line option, 117	command line option, 150
SnowCode	SnowUse
command line option, 118	command line option, 23
SnowDensBldgs	SnowWaterBldgsState
~	command line option, 149
command line option, 151 SnowDensBSoil	SnowWaterBSoilState
	command line option, 149
command line option, 152	SnowWaterDecTrState
SnowDensDecTr	command line option, 149
command line option, 151	SnowWaterEveTrState
SnowDensEveTr	command line option, 149
command line option, 151	SnowWaterGrassState
SnowDensGrass	command line option, 149
command line option, 151	SnowWaterPavedState
snowDensMax	
command line option, 118	command line option, 149
snowDensMin	SnowWaterWaterState
command line option, 119	command line option, 149
SnowDensPaved	SoilDensity
command line option, 151	command line option, 120
SnowDensWater	SoilDepth
command line option, 152	command line option, 120
SnowFracBldgs	SoilstoreBldgsState
command line option, 150	command line option, 145
SnowFracBSoil	${\bf Soilstore BSoil State}$
command line option, 151	command line option, 145
SnowFracDecTr	SoilStoreCap
command line option, 151	command line option, 120
SnowFracEveTr	SoilstoreDecTrState
command line option, 150	command line option, 145
SnowFracGras	Soilstore Eve Tr State

command line option, 145	Surf_thick3
SoilstoreGrassState command line option, 145	command line option, 126 Surf thick4
SoilstorePavedState	command line option, 126
command line option, 145	Surf_thick5
SoilTypeCode	command line option, 127 SurfaceArea
command line option, 120 SOLWEIG, 182	command line option, 124
SOLWEIG_ldown	SVF, 182
command line option, 162	$\operatorname{SVFPath}$
SOLWEIGpoi_out	command line option, 164
command line option, 161 SOLWEIGUse	SVFSuffix command line option, 164
command line option, 23	
Sondeflag	Т
command line option, 156	Tair
StabilityMethod	command line option, 127
command line option, 27 StartDLS	tau_a command line option, 127
command line option, 121	tau f
StateLimit	command line option, 127
command line option, 121	tau_r
StorageHeatMethod command line option, 26	command line option, 127 TCritic
StorageMax	command line option, 127
command line option, 122	TDSMname
StorageMin	command line option, 164
command line option, 123 SuppressWarnings	Temp_C0
command line option, 31	command line option, 147 TempMeltFactor
Surf_k1	command line option, 128
command line option, 124	TH
Surf_k2 command line option, 124	command line option, 128
Surf k3	Theat_fix command line option, 159
command line option, 124	Theat_off
Surf_k4	command line option, 159
command line option, 125 Surf k5	Theat_on command line option, 159
command line option, 125	theta, 182
Surf_rhoCp1	Theta+_K
command line option, 125	command line option, 128
Surf_rhoCp2 command line option, 125	Theta_K command line option, 128
Surf_rhoCp3	Tiair
command line option, 125	command line option, 128
Surf_rhoCp4	Timezone
command line option, 125	command line option, 129
Surf_rhoCp5 command line option, 126	TL command line option, 129
Surf_thick1	Tmrt_out
command line option, 126	command line option, 161
Surf_thick2	ToBldgs
command line option, 126	command line option, 129

ToBSoil	$Wall_k2$
command line option, 129	command line option, 133
ToDecTr	Wall_k3
command line option, 129	command line option, 133
ToEveTr	$Wall_k4$
command line option, 130	command line option, 133
ToGrass	$Wall_k5$
command line option, 130	command line option, 133
ToPaved	$Wall_rhoCp1$
command line option, 130	command line option, 13
ToRunoff	$Wall_rhoCp2$
command line option, 130	command line option, 13
ToSoilStore	$Wall_rhoCp3$
command line option, 130	command line option, 13
ToWater	Wall_rhoCp4
command line option, 130	command line option, 13
TrafficRate	Wall_rhoCp5
command line option, 131	command line option, 13
TransMax	Wall_thick1
command line option, 164	command line option, 13-
TransMin	Wall_thick2
command line option, 164	command line option, 13
Troad	Wall_thick3
command line option, 131	command line option, 13
Troof	Wall_thick4
command line option, 131	command line option, 13
Tstep	Wall_thick5
command line option, 29	command line option, 13
Tsurf	WATCH, 182
command line option, 131 TsurfChoice	Water, 182
command line option, 158	WaterDepth command line option, 13
tt, 182	WaterState WaterState
Twall	command line option, 14
command line option, 131	WaterUseMethod
Twall e	command line option, 28
command line option, 132	WaterUseProfAutoWD
Twall n	command line option, 130
command line option, 132	WaterUseProfAutoWE
Twall s	command line option, 130
command line option, 132	WaterUseProfManuWD
Twall_w	command line option, 130
command line option, 132	WaterUseProfManuWE
comment into option, 102	command line option, 13
U	wdir
U	command line option, 13
command line option, 132	WetThreshold
UMEP, 182	command line option, 13
usevegdem	WithinGridBldgsCode
command line option, 160	command line option, 13
	WithinGridBSoilCode
W	command line option, 13
Wall k1	WithinGridDecTrCode
command line option, 133	command line option, 139
r ,	= '

SUEWS Documentation, Release 2018a.alpha

W:41: C-: JE T C J-	
WithinGridEveTrCode	100
command line option,	139
WithinGridGrassCode	
command line option,	139
WithinGridPavedCode	
command line option,	140
Within Grid Water Code	
command line option,	140
WriteOutOption	
command line option,	31
Wsb	
command line option,	156
Wuh	
command line option,	140
- ,	
X	
xsmd	
command line option,	141
- '	
Y	
Year	
command line option,	141
- ,	
Z	
Z	
command line option,	141
z0	
command line option,	141
zd	111
command line option,	1/19
zi, 182	174
zi, 182 zi0	
	149
command line option,	142