

ITCS498 Special Topics in Computer Science

Lecture 11 - Semantic Segmentation

Instructor: Asst. Prof. Dr. Akara Supratak

Contact: akara.sup@mahidol.edu

Agenda

- Semantic Segmentation
- Lab Exercise

Semantic Segmentation

Computer Vision Tasks

Classification

No location information

Semantic Segmentation

No object, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple objects

Semantic Segmentation

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is labeled with a semantic category.

Semantic Segmentation

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is labeled with a semantic category.

At test time, classify each pixel of a new image.

Semantic Segmentation: Labeled Dataset

 Label each pixel in the image with a category label

 No differentiate between instances, only care about the class of each pixel

Semantic Segmentation: Fully-Convolutional

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Semantic Segmentation: Fully-Convolutional

Downsampling: Strided convolution, pooling

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: ?

Input: 3 x H x W

High-res: $D_1 \times H/2 \times W/2$

High-res: $C \times H \times W$ $D_1 \times H/2 \times W/2$

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Upsampling: Unpooling

Nearest Neighbor

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Input: 2 x 2

Output: 4 x 4

"Bed of Nails"

Input: 2 x 2

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Output: 4 x 4

Upsampling: Max-Unpooling

3 x 3 **transposed** convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

3 x 3 transposed convolution, stride 2 pad 1

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Semantic Segmentation: Fully-Convolutional

Downsampling: strided convolution. pooling

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Input: $3 \times H \times W$

High-res: D₁ x H/2 x W/2

 $C \times H \times W$ High-res: D₁ x H/2 x W/2

Predictions: HxW

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Lab Exercises