GENERAL COMMANDS		
Help (for the command)	?command	
Comment	#	
Summation, subtraction	+, -	
Multiplication, ratio	*./	
Variable assignment	= or <-	
Not equal	!=	
Sinus, cosinus	sin(argument), cos(argument)	
π	pi	
Exponentiation (power)	Λ	
Square root	sqrt(argument)	
Root of n-th degree	argument^(1/n)	
e	exp(1)	
Logarithm	log(argument, base=base of logarithm)	
Vector	c(elements divided by commas)	
Indicating i-th element of a vector	vector[i]	
Vector – sequence with the number of components equally	seq(from, to, length=number of classes)	
spread one from the other	seq() rom, to, length-number of classes)	
Vector – sequence with steps	sea(from to by-stan)	
Vector – sequence with steps Vector of replicated subvector	seq(from, to, by=step) rep(vector, times=number of replications)	
Vector of replicated subvector Vector of replicated components of subvector	rep(vector, times=number of replications)	
Sum of components in a vector	sum(vector)	
	` ′	
Number of components in vector	length(vector)	
Changing the order of vector components	rev(vector)	
Removing the components from vector	vector[-c(indices of components to remove)]	
Indicating components of vector smaller than "k"	vector[vector <k]< td=""></k]<>	
Indicating indices of vector components smaller than "k"	which(vector <k)< td=""></k)<>	
Indicating indices of minimal and maximal component	which.min(vector) which.max(vector)	
Matrix from column vectors	cbind(x1, x2,, xm)	
Matrix from row vectors	rbind(x1, x2,, xm)	
Multiplication of matrices	\(\int * \\ \)	
Determinant	det(matrix)	
Indicating (i,j)-th entry of a matrix	matrix[[i,j]]	
Indicating i-th row / j-th column of a matrix	matrix[i,] matrix[,j]	
Transposition	t(matrix)	
Diagonal of matrix	diag(matrix)	
Dimension of matrix	dim(matrix)	
Inverse of matrix	solve(matrix)	
Number of rows and columns of matrix	nrow(matrix), ncol(matrix)	
Percentage notation ("scales" package)	percent(number)	
Division of window with graphs	par(mfrow=c(n,m))	
Simple graph representing points (x,y) or data	plot(x, y) $plot(data)$	
Graph representing a function of one variable	curve(function of x, x lower bound, x upper bound)	
PACKAGE		
Package Installing	install.packages(,,name")	
Package loading	library(name)	
"FOR", "IF", FUCTIONS A		
"for"	for (variable in beginning:end){what to do}	
	Caution! Variable can be also a vector!	
"if"	if (condition) {what to do} else {what to do}	
	in (condition) (what to do) case (what to do)	
functions/procedures	name= function (arguments){	
functions/procedures		
functions/procedures	name= function (arguments){	

DESCRIPTIVE STATISTICS		
read.csv(,,name", sep=";")		
read.csv(,,name", sep=";", dec=",")		
read.csv(,,name", sep=";", dec=",") read.csv(,,name", sep=";", head=TRUE)		
data.frame($x1, x2,, xm$)		
class(data)		
names(data)		
mean(data)		
min(data), max(data)		
quantile(data)		
quantile(<i>data</i> , probs=vector of probabilities)		
var(data), $sd(data)$		
apply(<i>matrix</i> , 1, <i>function</i>)		
apply(matrix, 2, function)		
summary(data)		
discrete.histogram(data)		
discrete.instogram(aaaa)		
hist(<i>data</i> , main= <i>title</i> , xlab= <i>label of x</i>)		
paste(,,text'', name)		
paste((,,text', name)		
mean(na.omit(data))		
table(data)		
cut(data, breaks = # of classes)		
pie(table(<i>data</i>))		
pie(table(cut(<i>data</i> , breaks = # of classes)))		
boxplot(data)		
υσχρισι(αιτια)		
ND DISTRIBUTIONS		
dname		
pname		
qname		
rname		
binom		
pois		
exp		
norm		
t		
chisq		
f		
plot(x, dname(x, parameters))		
plot(x, dname(x, parameters)) curve(dname(x, parameters))		

CONFIDENCE INTERVALS (CI) AND HYPOTHESES TESTING		
CI for μ under normality with known σ	z.test($data$, sigma.x= σ , conf.level=1- α)	
Caution! "BSDA" package required		
CI for μ – large sample	zsum.test(sample mean, (sample) stand. dev., sample	
Caution! "BSDA" package required	<i>size</i> , conf.level=1- α)	
CI for μ under normality when σ is unknown	t.test($data$, conf.level=1- α)	
CI for σ^2	sigma.test($data$, conf.level=1- α)	
Caution! "TeachingDemos" package required		
CI for probability of success (proportion) <i>p</i>	binom.test(no. of successes, sample size, conf.level=1-	
	α)	
Only CI as output	NameOfTest\$conf.int	
Hypothesis about μ under normality with known σ	z.test($data$, sigma.x= σ , alternative="two.sided",	
Caution! "BSDA" package required	mu=tested mean)	
Hypothesis about μ when the sample is large	zsum.test(sample mean, sample stand. dev., sample	
Caution! "BSDA" package required	size, alternative="greater", mu=tested mean)	
Hypothesis about μ under normality with unknown σ	t.test(data, alternative="less", mu=tested mean)	
Hypothesis about σ^2	sigma.test(data, sigma=tested sigma,	
Caution! "TeachingDemos" package required	alternative="two.sided")	
Hypothesis about probability of success (proportion) p	binom.test(no. of successes, sample size, p=tested	
	probability, alternative="two.sided")	
Only p-value as an output	NameOfTest\$p.value	

COMPARISON OF TWO POPULATIONS		
CI for difference of means under normality (equal	t.test(data1, data2, var.equal=TRUE, conf.level=	
population variances)	$1-\alpha$)	
CI for difference of means under normality (unequal	t.test(data1, data2, var.equal=FALSE, conf.level=	
population variances)	$1-\alpha$)	
CI for difference of means (large samples)	zsum.test(sample mean 1, stand. dev. 1, sample size 1,	
Caution! "BSDA" package required	sample mean 2, stand. dev. 2, sample size 2, conf.level=1-	
	α)	
CI for the ratio of variances	var.test($data1$, $data2$, conf.level=1- α)	
Caution! "PairedData" package required		
CI for the difference of proportions	prop.test(c($T1,T2$), c($n1,n2$), conf.level=1- α)	
Hypothesis about difference of means (equal	t.test(data1, data2, mu=tested difference of means,	
population variances)	var.equal=TRUE, alternative="two.sided")	
Hypothesis about difference of means (unequal	t.test(data1, data2, mu=tested difference of means,	
population variances)	var.equal=FALSE, alternative="two.sided")	
Hypothesis about difference of means (large	zsum.test(sample mean 1, stand. dev. 1, sample size 1,	
samples)	sample mean 2, stand. dev. 2, sample size 2, mu=tested	
Caution! "BSDA" package required	difference of means, alternative="two.sided")	
Hypothesis about ratio of variances	var.test(data1, data2, ratio=tested ratio of variances,	
Caution! "PairedData" package required	alternative="two.sided")	
Hypothesis about equality of proportions	prop.test($c(T1,T2)$, $c(n1,n2)$, alternative="two.sided")	

ANALYS	ANALYSIS OF VARIANCE (ANOVA)	
CAUTION! To perform A	CAUTION! To perform ANOVA data has to be arrange in a proper way!	
data.frame(measurements, methods)		
Bartlett test of homogeneity of variances	bartlett.test(measurements~treatments)	
Analysis of variance	anova(lm(measurements~treatments))	
TukeyTest HSD of homogeneous treatments	TukeyHSD(aov(measurements~treatments),ordered=TRUE)	
Drawing simultaneous confidence intervals	plot(TukeyHSD(aov(measurements~treatments),ordered=TRUE))	
REGRESSION ANALYSIS		
Covariance	cov(data1, data2)	
Correlation	cor(data1, data2)	
Point graph of bivariate relation	plot(x, y)	
Regression line	$lm(y\sim x)$	
Hypothesis about significance of regression	anova($lm(y\sim x)$) lub summary($lm(y\sim x)$)	
Point graph and regression line together	plot(x, y); abline(regression line)	
Prediction of missing values	predict(regression line, data.frame($c(x1,, xk)$))	
CHI-SQUARE TESTS		
Goodness of fit test (qualitative data)	chisq.test(observed frequencies, p=expected probabilities)	
Normality tests	pearson.test(data, adjusted=T) pearson.test(data, adjusted=F)	
Caution! "nortest" package required	lillie.test(data)	
	shapiro.test(data)	
Test of independence of two variables	chisq.test(data.frame(data1, data2))	