Local utility and multivariate risk aversion

Arthur Charpentier, Alfred Galichon & Marc Henry

Rennes Risk Workshop, April 2015

to appear in *Mathematics of Operations Research*

http://papers.ssrn.com/id=1982293

Choice between multivariate risky prospects

- In view of violations of expected utility, a vast literature has emerged on other functional evaluations of risky prospects, particularly Rank Dependent Preferences (RDU).
- Simultaneously, a literature developed on the characterization of attitudes to multiple non substitutable risks and multivariate risk premia within the framework of expected utility.
- Here we characterize attitude to multivariate generalizations of standard notions of increasing risk with local utility
 - Rothschild-Stiglitz mean preserving increase in risk
 - Quiggin monotone mean preserving increase in risk

Expected utility

- Decision maker ranks random vectors X with law invariant functional $\Phi(X) = \Phi(F_X)$, with F_X the cdf of X.
- Utility $x \mapsto U(x)$:

$$\Phi(F) = \int U(x)dF(x)$$

Quiggin-Yaari functional

- Distortion $x \mapsto \phi(x)$:

$$\Phi(F) = \int \phi(t)F^{-1}(t)dt = \int \underbrace{\left(\int_{-\infty}^{x} \phi(F(s))ds\right)}_{U(x,F)} dF(x)$$

Aumann & Serrano Riskiness

- Given X, the index of risk R(X) is defined to be the unique positive solution (if exists) of $\mathbb{E}[\exp(-X/R(X))] = 1$
- Index of Riskiness $x \mapsto R$:

R such that
$$\int \underbrace{\exp\left(-\frac{x}{R}\right)}_{U(x)} dF(x) = 1$$

where U is CARA.

Local utility

- Decision maker ranks random vectors X with law invariant functional $\Phi(X) = \Phi(F_X)$, with F_X the cdf of X.
- Local utility $x \mapsto U(x; F)$ is the Fréchet derivative of Φ at F:

$$\Phi(F') - \Phi(F) - \int U(x;F)[dF'(x) - dF(x)] \to 0$$

- If Φ is expected utility, local and global utilities coincide
- If Φ is the Quiggin-Yaari functional $\Phi(X) = \int \phi(t) F_X^{-1}(t) dt$, then local utility is $U(x; F) = \int_{-\infty}^x \phi(F(z)) dz$
- If Φ is the Aumann-Serrano index of riskiness, the local utility $\operatorname{cst}[1-\exp(-\alpha x)]$ is CARA

Rothschild-Stiglitz mean preserving increase in risk

One of the most commonly used stochastic orderings to compare risky prospects is the mean preserving increase in risk (MPIR or concave ordering). Let X and Y be two prospects.

Definition:

 $Y \succsim_{MPIR} X$ if $\mathbb{E}[u(X)] \ge \mathbb{E}[u(Y)]$ for all concave utility u.

Characterization:

* $Y \stackrel{\mathcal{L}}{=} X + Z$ with $\mathbb{E}[Z|X] = 0$ (where " $\stackrel{\mathcal{L}}{=}$ " denotes equality in distribution).

Local utility and MPIR

- Aversion to MPIR is equivalent to concavity of local utility (Machina 1982 for the univariate result)
- Still holds for multivariate risks:
 - Φ is MPIR averse (Schur concave) if $\Phi(Y) \leq \Phi(X)$ when Y is an MPIR of X.
 - Equivalent to concavity of $U(\mathbf{x}; F)$ in \mathbf{x} for all distributions FProof: Φ Schur concave iff Φ decreasing along all martingales X_t

$$\Phi(\boldsymbol{X}_{t+dt}) - \Phi(\boldsymbol{X}_{t}) = \mathbb{E}\left[U(\boldsymbol{X}_{t+dt}; F_{\boldsymbol{X}_{t}}) - U(\boldsymbol{X}_{t}; F_{\boldsymbol{X}_{t}})\right]
= \mathbb{E}\left[\operatorname{Tr}\left(D^{2}U(\boldsymbol{X}_{t}; F_{\boldsymbol{X}_{t}})\boldsymbol{\sigma}_{t}^{\mathsf{T}}\boldsymbol{\sigma}_{t}\right)\right] \text{ Itô}
\leq 0 \text{ iff } U(\boldsymbol{x}; F) \text{ concave}$$

Two shortcomings of MPIR in the theory of risk sharing

- Arrow-Pratt more risk averse decision makers do not necessarily pay more (than less risk averse ones) for a mean preserving decrease in risk.
 - Ross (Econometrica 1981)
- Partial insurance contracts offering mean preserving reduction in risk can be Pareto dominated.
 - Landsberger and Meilijson (Annals of OR 1994)

Bickel-Lehmann dispersion order

These shortcomings are not shared by the Bickel-Lehmann dispersion order (Bickel and Lehmann 1979). Let X and Y have cdfs F_X and F_Y and quantiles $Q_X = F_X^{-1}$ and $Q_Y = F_Y^{-1}$.

Definition:

$$Y \succsim_{Disp} X \text{ if } Q_Y(s) - Q_Y(s') \ge Q_X(s) - Q_X(s').$$

Characterization (Landsberger-Meilijson):

$$Y \stackrel{\mathcal{L}}{=} X + Z$$
 with Z and X comonotonic,

Examples:

- Normal, exponential and uniform families are dispersion ordered by the variance.
- Arrow (1970) stretches of a distribution $X \mapsto x + \alpha(X x)$, $\alpha > 1$, are more dispersed.

Local utility and attitude to mean preserving dispersion increase (Quiggin's monotone MPIR)

 $-\Phi$ is MMPIR averse if and only if

$$\mathbb{E}\left[\frac{U'(X; F_X)}{\mathbb{E}[U'(X; F_X)]} 1\{X > x\}\right] \le \mathbb{E}\left[1\{X > x\}\right]$$

- Example : Quiggin-Yaari functional

$$\Phi(X) = \int \phi(t) F_X^{-1}(t) dt$$

with local utility is

$$U(x;F) = \int_{-\infty}^{x} \phi(F_X(z))dz$$

is MMPIR averse iff density $\phi(u)$ is stochastically dominated by the uniform (called *pessimism* by Quiggin)

Risk sharing and dispersion

- More risk averse decision makers will always pay at least as much (as less risk averse agents) for a decrease in risk if and only if it is Bickel-Lehmann less dispersed.
 - Landsberger and Meilijson (Management Science 1994)
- Unless the uninsured position is Bickel-Lehmann more dispersed than the insured position, the existing contract can be improved so as to raise the expected utility of both parties, regardless of their (concave) utility functions.
 - Landsberger and Meilijson (Annals of OR 1994)

Partial insurance

Consider the following insurance contract:

	Insuree	Insurer
Before	Y	0
After	X_1	X_2

- By construction $Y = X_1 + X_2$.
- $-(X_1,X_2)$ is Pareto efficient if and only if comonotonic (Landsberger-Meilijson).
- Hence the contract is efficient iff $Y = X_1 + X_2 \succsim_{Disp} X_1$.

We generalize this result to the case of multivariate risks.

Multivariate extension of Bickel-Lehmann and Monotone MPIR

Quantiles and comonotonicity feature in the definition and the characterization of the Bickel-Lehmann dispersion ordering. They seem to rely on the ordering on the real line.

However we can revisit these notions to provide

- Multivariate notion of comonotonicity
- Multivariate quantile definition

Revisiting comonotonicity

- X and Y are comonotonic if there exists Z such that $X = T_X(Z)$ and $Y = T_Y(Z)$, T_X , T_Y increasing functions.
- Example:
 - If $X(\omega_i) = x_i$ and $Y(\omega_i) = y_i$, i = 1..., n, with $x_1 \leq ... \leq x_n$ and $y_1 \leq ... \leq y_n$, then X and Y are comonotonic.
 - By the simple rearrangement inequality,

$$\sum_{i=1,...,n} x_i y_i = \max \left\{ \sum_{i=1,...,n} x_i y_{\sigma(i)} : \sigma \text{ permutation} \right\}.$$

- General characterization : X and Y are comonotonic iff

$$\mathbb{E}[XY] = \sup \left\{ \mathbb{E}[X\tilde{Y}] : \tilde{Y} \stackrel{\mathcal{L}}{=} Y \right\}.$$

Revisiting the quantile function

The quantile function of a prospect X is the generalized inverse of the cumulative distribution function :

$$u \mapsto Q_X(u) = \inf\{x : \mathbb{P}(X \le x) \ge u\}$$

Equivalent characterizations:

- The quantile function Q_X of a prospect X is an increasing rearrangement of X,
- The quantile $Q_X(U)$ of X is the version of X which is comonotonic with the uniform random variable U on [0,1].
- $-Q_X$ is the only l.s.c. increasing function such that

$$\mathbb{E}[Q_X(U)U] = \sup{\{\mathbb{E}[\tilde{X}U]; \tilde{X} \stackrel{\mathcal{L}}{=} X\}}.$$

Multivariate μ -quantiles and μ -comonotonicity, (Galichon and Henry, JET 2012)

- The univariate quantile function of a random variable X is the only l.s.c. increasing function such that

$$\mathbb{E}[Q_X(U)U] = \sup{\{\mathbb{E}[\tilde{X}U]; \tilde{X} \stackrel{\mathcal{L}}{=} X\}.}$$

- Similarly, the μ -quantile Q_X is the essentially unique **gradient of a l.s.c.** convex function (Brenier, CPAM 1991),

$$\mathbb{E}[\langle Q_{\boldsymbol{X}}(\boldsymbol{U}), \boldsymbol{U} \rangle] = \sup{\{\mathbb{E}[\langle \tilde{\boldsymbol{X}}, \boldsymbol{U} \rangle]; \tilde{\boldsymbol{X}} \stackrel{\mathcal{L}}{=} \boldsymbol{X}\}, \text{ for some } \boldsymbol{U} \stackrel{\mathcal{L}}{=} \boldsymbol{\mu}.}$$

 $-\boldsymbol{X}$ and \boldsymbol{Y} are $\boldsymbol{\mu}$ -comonotonic if for some $\boldsymbol{U} \stackrel{\mathcal{L}}{=} \boldsymbol{\mu}$,

$$X = Q_X(U)$$
 and $Y = Q_Y(U)$,

namely if X and Y can be simultaneously rearranged relative to a reference distribution μ .

Example: Gaussian prospects

Suppose the baseline U is standard normal,

- $-\boldsymbol{X} \sim N(\boldsymbol{0}, \Sigma_{\boldsymbol{X}})$, hence $\boldsymbol{X} = \Sigma_{\boldsymbol{X}}^{1/2} O_{\boldsymbol{X}} \boldsymbol{U}$, with $O_{\boldsymbol{X}}$ orthogonal,
- $-\boldsymbol{Y} \sim N(0, \Sigma_{\boldsymbol{Y}})$, hence $\boldsymbol{Y} = \Sigma_{\boldsymbol{Y}}^{1/2} O_{\boldsymbol{Y}} \boldsymbol{U}$, with $O_{\boldsymbol{Y}}$ orthogonal,

 $\mathbb{E}[\langle \tilde{\boldsymbol{X}}, \boldsymbol{U} \rangle]$ is minimized for $\tilde{\boldsymbol{X}} = \Sigma_{\boldsymbol{X}}^{1/2} \boldsymbol{U}$, so when $O_{\boldsymbol{X}}$ is the identity. Hence the generalized quantile of \boldsymbol{X} relative to \boldsymbol{U} is

$$Q_{\boldsymbol{X}}(\boldsymbol{U}) = \Sigma_{\boldsymbol{X}}^{1/2} \boldsymbol{U}.$$

X and Y are $N(0, \mathbb{I})$ -comonotonic if $O_X = O_Y$ (they have the same orientation). The correlation is

$$\mathbb{E}[\boldsymbol{X}\boldsymbol{Y}^\mathsf{T}] = \boldsymbol{\Sigma}_{\boldsymbol{X}}^{1/2} O_{\boldsymbol{X}} O_{\boldsymbol{Y}}^\mathsf{T} \boldsymbol{\Sigma}_{\boldsymbol{Y}}^{1/2} = \boldsymbol{\Sigma}_{\boldsymbol{X}}^{1/2} \boldsymbol{\Sigma}_{\boldsymbol{Y}}^{1/2}.$$

Computation of generalized quantiles

The optimal transportation map between μ on $[0,1]^d$ and the empirical distribution relative to (X_1,\ldots,X_n) satisfies

- $\hat{Q}_{\boldsymbol{X}}(\boldsymbol{U}) \in \{\boldsymbol{X}_1, \dots, \boldsymbol{X}_n\}$
- $-\mu(\hat{Q}_{\mathbf{X}}^{-1}(\{\mathbf{X}_k\})) = 1/n, \text{ for each } k = 1, \dots, n$
- $-\hat{Q}_{\mathbf{X}}$ is the gradient of a convex function $V: \mathbb{R}^d \to \mathbb{R}$.

The solution for the "potential" V is

$$V(\boldsymbol{u}) = \max_{k} \{ \langle \boldsymbol{u}, \boldsymbol{X}_{k} \rangle - w_{k} \},$$

where $w = (w_1, \dots, w_n)'$ minimizes the convex function

$$w \mapsto \int V(\boldsymbol{u}) d\boldsymbol{\mu}(\boldsymbol{u}) + \sum_{k=1}^{n} w_k / n.$$

μ -Bickel-Lehmann dispersion order

With these multivariate extensions of quantiles and comonotonicity, we have the following multivariate extension of the Bickel-Lehmann dispersion order (Bickel and Lehmann 1979).

Definition:

(a) $Y \succsim_{\mu Disp} X$ if $Q_Y - Q_X$ is the gradient of a convex function.

Characterization:

(b) $\boldsymbol{Y} \succsim_{\mu Disp} \boldsymbol{X}$ iff $\boldsymbol{Y} \stackrel{\mathcal{L}}{=} \boldsymbol{X} + \boldsymbol{Z}$, where \boldsymbol{Z} and \boldsymbol{X} are $\boldsymbol{\mu}$ -comonotonic, The proof is based on comonotonic additivity of the $\boldsymbol{\mu}$ -quantile transform, i.e., $Q_{\boldsymbol{X}+\boldsymbol{Z}} = Q_{\boldsymbol{X}} + Q_{\boldsymbol{Z}}$ when \boldsymbol{X} and \boldsymbol{Z} are $\boldsymbol{\mu}$ -comonotonic.

Relation with existing multivariate dispersion orders

Based on univariate characterization (c), Giovagnoli and Wynn (Stat. and Prob. Letters 1995) propose the strong dispersive order.

 $-\boldsymbol{Y} \succsim_{SD} \boldsymbol{X}$ iff $\boldsymbol{Y} \stackrel{\mathcal{L}}{=} \psi(\boldsymbol{X})$, where ψ is an expansion, i.e., if

$$\|\psi(x) - \psi(x')\| \ge \|x - x'\|.$$

This is closely related to our μ -Bickel-Lehmann ordering :

- $-\boldsymbol{Y} \succsim_{SD} \boldsymbol{X}$ iff $\boldsymbol{Y} \stackrel{\mathcal{L}}{=} \boldsymbol{X} + \nabla V(\boldsymbol{X})$, where V is a convex function.
 - The latter is equivalent to $\mathbf{Y} \stackrel{\mathcal{L}}{=} \mathbf{X} + \mathbf{Z}$, where \mathbf{X} and \mathbf{Z} are c-comonotonic (Puccetti and Scarsini (JMA 2011)),
 - It also implies $Y \succsim_{\mu Disp} X$ for some μ , since X and $\nabla V(X)$ are μ_X -comonotonic (converse not true in general).

Partial insurance for multivariate risks

Consider the following insurance contract:

	Insuree	Insurer
Before	Y	0
After	$oldsymbol{X}_1$	$oldsymbol{X}_2$

- By construction $Y = X_1 + X_2$.
- (X_1, X_2) is Pareto efficient if and only if μ -comonotonic (Carlier-Dana-Galichon JET 2012).
- Hence the contract is efficient iff $Y = X_1 + X_2 \succsim_{Disp} X_1$ (from the characterization above).

Multivariate Quiggin-Yaari functional and risk attitude

- Given a baseline $U \sim \mu$, decision maker evaluates risks with the functional

$$\Phi(\boldsymbol{X}) = \mathbb{E}[Q_{\boldsymbol{X}}(\boldsymbol{U}) \cdot \phi(\boldsymbol{U})]$$

(Equivalent to monotonicity relative to stochastic dominance and comonotonic additivity of Φ - Galichon and Henry JET 2012)

- Aversion to MPIR is equivalent to $\Phi(U) = -U$
- Aversion to MMPIR is equivalent to $\Phi(X) \leq \Phi(\mathbb{E}[X])$ (obtains immediately from the comonotonicity characterization of Bickel-Lehmann dispersion)