Chapter 1: Fields and Polynomials

Definition 1 – Field

A field \mathbb{F} is a set with two special elements " $0 \in \mathbb{F}$ " and " $1 \in \mathbb{F}$ " and two operations "+" and "·" which satisfy the following axioms.

- 1) (Commutativity) For all $x, y \in \mathbb{F}$ we have: x + y = y + x and $x \cdot y = y \cdot x$.
- 2) (Associativity) For all $x, y, z \in \mathbb{F}$ we have: (x+y)+z=x+(y+z) and $(x\cdot y)\cdot z=x\cdot (y\cdot z)$.
- 3) (Distributivity) For all $x, y, z \in \mathbb{F}$ we have: $x \cdot (y+z) = x \cdot y + x \cdot z$.
- 4) (Identities) For all $x \in \mathbb{F}$ we have: x + 0 = x and $x \cdot 1 = x$.
- 5) (Inverses) For all $x \in \mathbb{F}$ there exists $y \in \mathbb{F}$ such that x + y = 0. For all $x \in \mathbb{F} \setminus \{0\}$ there exists $z \in \mathbb{F}$ such that $x \cdot z = 1$.

 \mathbb{Q} is a field where \mathbb{Z} is not a field becasue of the absence of some multiplicative inverse.

Corollary 1 – Field

Let \mathbb{F} be a field and $a, b, c \in \mathbb{F}$.

- 1) If a + c = b + c, then a = b.
- 2) If $c \neq 0$ and $c \cdot a = c \cdot b$, then a = b.
- 3) The field elements 0, 1 are unique.
- 4) The elements y and z from Axoim 5 are unique. (From now on, we will denote the additive inverse of x by -x, and the multiplicative inverse of x by x^{-1} .)
- 5) $a \cdot 0 = 0$.
- 6) $(-a) \cdot (b) = -(a \cdot b) = (a) \cdot (-b)$.
- 7) -(-a) = a. If $a \neq 0$, then $(a^{-1})^{-1} = a$.
- 8) If $a \cdot b = 0$, then a = 0 or b = 0.

Theorem 1 – Equivalence

- 1) \sim is an equivalence relation.
- 2) $a \sim b$ if and only if a and b have the same remainder when divided by n.
- 3) There are exactly n equivalence classes for this relation: $[0], [1], \ldots, [n-1]$ one for each possible remainder for division by n.

Definition $2 - \mathbb{Z}_n$

Let $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}$ be the est of equivalence classes for this equivalence relation. We define $+, \cdot$ on \mathbb{Z}_n as follows:

$$[a] + [b] = [a + b],$$

 $[a] \cdot [b] = [a \cdot b].$

Theorem 2 – Quadratic Formula

Let $a, b, c \in \mathbb{R}$. The quadratic equation $ax^2 + bx + c = 0$ (where $a \neq 0$) has:

- 1) Solutions $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ if $b^2 4ac \ge 0$. 2) No solutions if $b^2 4ac < 0$.

Definition 3 – Complex

Let $i = \sqrt{-1}$. I.e. i is a number with the property that $i^2 = -1$.

Let $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. We call \mathbb{C} the set of complex numbers and we define addition and multiplication $+, \cdot$ in the obvious ways:

$$(x+yi) + (a+bi) = (x+a) + (y+b)i$$
$$(x+yi) \cdot (a+bi) = ax + bi + ayi + byi^2 = (ax - by) + (ay + bx)i$$

 \mathbb{C} is a field.

Given a complex number z = x + yi, we define its **conjugate** by:

$$\overline{z} = x - yi$$
.

We define the **length** (or modulus) of a complex number by:

$$|z| = \sqrt{x^2 + y^2}.$$

Note that we in the xy-plane, we obtain \overline{z} , the conjugate of z, by reflecting z in the x-axis, and the length of a complex number is just the usual distance from z to the origin in the xy-plane.

Theorem 3 – Complex

For any $z, w \in \mathbb{C}$ we have:

- 1) $\overline{z+w} = \overline{z} + \overline{w}$.
- 2) $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$.
- 3) $\frac{\overline{z}}{\frac{w}{\overline{z}}} = \frac{\overline{z}}{\overline{w}}$ (provided $w \neq 0$). 4) $\overline{\overline{z}} = z$.

- 5) $z\overline{z} = |z|^2$. 6) $z^{-1} = \frac{\overline{z}}{|z|^2}$ (provided $z \neq 0$).
- 7) |zw| = |z||w|.
- 8) $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ (provided $w \neq 0$).
- 9) |z+w| < |z|+|w| ("Triangle nequality for Complex Numbers").

Definition 4 – Polar Form

For z=x+yi, we define its **polar form** as $z=re^{i\theta}$, where $r=|z|=\sqrt{x^2+y^2}$ and θ is the angle between z and the positive x axis (measured counterclockwise, in radians). The angle θ is called the **argument** of z, and r is called the **length** (or modulus) of z.

Theorem 4 – Polar Form

Let $z = re^{i\theta}$, $w = Re^{i\phi}$.

$$zw = rRe^{i(\theta + \phi)}$$

$$z^n = r^n e^{in\theta}$$

Definition 5 – Polynomial

A polynomial p with coefficient from \mathbb{F} is an expression

$$p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

where $c_i \in \mathbb{F}$. We call the field elements c_0, \ldots, c_n the "coefficients" of p.

The largest exponent n so that $c_n \neq 0$ is called the **degree** of p, and we typically write deg p = n. Constant polynomials are degree 0.

The set of all polynomials over \mathbb{F} is denoted by $P(\mathbb{F})$.

The set of all polynomials of degree less than or equal to n is denoted by $P_n(\mathbb{F})$.

Theorem 5 – Polynomial

Let \mathbb{F} be a field, and $f, g \in P(\mathbb{F})$ be non-zero polynomials. Then there exist unique polynomials $q, r \in P(\mathbb{F})$ so that:

- 1) f(x) = q(x)g(x) + r(x).
- 2) $\deg r < \deg g$ if $\deg g \neq 0$.
- 3) r = 0 if $\deg g = 0$.

Definition 6 – Polynomial Cont.

Let \mathbb{F} be a field and $f, g \in P(\mathbb{F})$. We say that g divides f if f(x) = q(x)g(x) for some polynomial $q \in P(\mathbb{F})$.

We say that a non-constant polynomial $p \in P(\mathbb{F})$ is "irreducible" if we **cannot** express p as a product of polynomials of smaller degree.

I.e. p is irreducible if we **cannot** write p(x) = g(x)q(x) for any polynomials $g, q \in P(\mathbb{F})$ with the property that both deg g, deg $g < \deg p$.

 $f(x) = x^2 - 2$ is irreducible over \mathbb{Q} but not over \mathbb{R} .

Theorem 6 – Polynomial Cont.

Let \mathbb{F} be a field, $p \in P(\mathbb{F})$ and deg $p \geq 1$. Then $a \in \mathbb{F}$ is a root of p if and only if x - a divides p.

Theorem 7 – Fundamental Theorem of Algebra

Every non-constant polynomial has a root over $\mathbb{C}.$

In fact, every non-constant polynomial factors completely into a product of linear terms over \mathbb{C} .

Chapter 2: Linear Systems

Definition 9 – Linear

Let \mathbb{F} be a field and $b, c_1, \ldots, c_n \in \mathbb{F}$. An equation in the variables x_1, \ldots, x_n is called **linear** if it can be expressed as $c_1x_1 + c_2x_2 + \cdots + c_nx_n = b$.

Definition 10 – System of Equations

Let \mathbb{F} be a field, and $a_{ij} \in \mathbb{F}$ (where $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$). A system of linear equations in variables $x_1, x_2, ..., x_n$ is a finite collection of linear equations in $x_1, x_2, ..., x_n$:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

:

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.$$

A system of m equations with n unknowns is called an $m \times n$ system.

Definition 11 – Solutions

A **solution** to a linear equation $c_1x_1 + c_2x_2 + \cdots + c_nx_n = b$ is a choice of field elements $s_1, s_2, \ldots, s_n \in \mathbb{F}$, so that when we substitute them for x_1, x_2, \ldots, x_n respectively, the resulting equation is true.

That is, we have $c_1s_1 + c_2s_2 + \cdots + c_ns_n = b$ (i.e. the left- and right-hand sides are equal.) A **solution to a system** is a choice of field elements s_1, s_2, \ldots, s_n which solves *every* equation of the system.

Definition 12 – Consistent

If a system of equations has at least one solution, we say it is **consistent**.

If a system of equations has no solutions, we say it is **inconsistent**.

$Definition\ 13-Matrix$

An $m \times n$ matrix over \mathbb{F} is a rectangular array of field elements consisting of m rows and n columns.

We denote the j^{th} entry in row i of matrix A, by a_{ij} , and call it the ij^{th} entry of A.

Definition 14 – Augmented Matrix

Consider a system of equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

We defie the **augmented matrix** corresponding to the system of equations above to be:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ & & \cdots & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix},$$

Definition 15 – RREF

We say a matrix A is in **reduced row echelon form** if all of the following conditions are met:

- 1) All zero rows are at the bottom of the matrix A.
- 2) The first non-zero entry in each non-zero row is a 1. (Such entries are called "leading
- 3) The leading 1's move to the right, as we go down the rows of A.
- 4) All entries above and below a leading 1 are 0.

We will use the abbreviation "RREF" for "row-reduced echelon form", for the rest of the text.

All matrices have a unique RREF.

Theorem 11 – Gaussian Elimination

To "row reduce" a matrix perform the following steps:

- 1) If the matrix consists entire of 0's, stop. It's already row-reduced.
- 2) Find the first column with a non-zero entry and move the corresponding row to the top. (We will call the first non-zero entry a.)
- 3) Divide the row by the number a to obtain a leading one.
- 4) Subtract multiples of the row from the rows above and below, in order to make each entry above and below the leading 1 equal to 0.
- 5) Repeat 1-4 on the matrix consisting of the remaining rows.

Definition 16 – Variables

Suppose that R is a matrix in RREF. We say that x_i is a **leading variable** if column i contains a leading one. If a variable is not "leading" we call it a **non-leading variable**.

Remark 1. To solve a system:

- 1) Row reduce the augmented coefficient matrix.
- 2) If there is a row of the form $(0 \ 0 \ \cdots \ 0 \ | \ 1)$ then there are no solutions.
- 3) Otherwise, assign the non-leading variables (if any) parameters, and use the equations coming from the rows of the RREF to solve for each variable interms of the parameters.

 \triangle

Definition 17 – Homogeneous

A system of equations is called **homogeneous** if it is of the form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0.$$

In other words, it is homogeneous if the constant term (or right hand side) of **each** equation in the system is 0.

- $x_1 = 0, x_2 = 0, \dots, x_n = 0$ is **always** a solution to any homogeneous equation.
- ullet We call this solution the trivial solution.
- Any other solution is called a *non-trivial* solution.

Chapter 3: Vector Spaces

Definition 18 – Vector Operators

Given two vectors **v**, **w** we define **their sum v+w** using "tip to tail" addition (or the "parallelogram law of addition"). In the diagram in the margin, the vector $\mathbf{v} + \mathbf{w}$ is diagonal in the parallelogram spanned by v, w that shares its tail with v and w.

We can also define their **difference v-w** geometrically using the same parallelogram: v-w is the diagonal going from the tip of w to the tip of v.

Finally, given a vector v and real number $a \in \mathbb{R}$, we can scale v by a as follows:

- $0\mathbf{v} = \mathbf{0}$.
- If a > 0, then $a\mathbf{v}$ is a vector pointing in the same direction as \mathbf{v} with length scaled by a
- If $\alpha < 0$, then α vis a vector pointing in the opposite direction as v with length scaled by $|\alpha|$.

If
$$v = (x, y, z)$$
 and $w = (p, q, r)$, then $v + w = (x + p, y + q, z + r)$, $av = (ax, ay, az)$.

Definition 20 $-\mathbb{F}^n$

Let \mathbb{F} be a field. Consider the set $\mathbb{F}^n = \{(x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in \mathbb{F}\}$. We can define two operations on \mathbb{F}^n which we call "vector addition" which is a map $\mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n$, and "scaling" which is a map $\mathbb{F} \times \mathbb{F}^n \to \mathbb{F}^n$ as follows.

For $v = (x_1, x_2, \dots, x_n), w = (y_1, y_2, \dots, y_n) \in \mathbb{F}^n$, and $c \in \mathbb{F}$ we define:

$$v + w = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n)$$
 (vector addition)
 $= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$
 $cv = c(x_1, x_2, \dots, x_n)$ (scaling)
 $= (cx_1, cx_2, \dots, cx_n)$

Theorem 13 – \mathbb{F}^n

Let \mathbb{F} be a field. Set $0 = (0, 0, \dots, 0)$. For any $v, w, u \in \mathbb{F}^n$ and $a, b \in \mathbb{F}$ we have:

- 1) v + w = w + v.
- 2) v + (w + u) = (v + w) + u.
- 3) a(v + w) = av + aw.
- 4) (a + b)v = av + bv.
- 5) (ab)v = a(bv).
- 6) 1v = v.
- 7) 0+v=v.
- 8) For every $v \in V$ there exists $w \in V$ so that v + w = 0.

Definition 21 – Vector Space

Let \mathbb{F} be a field. A vector space V over \mathbb{F} is a non-empty set, containing a special element 0, with two operatoins $V \times V \to V$ (called vector addition) and $\mathbb{F} \times V \to V$ (called scaling) so that for all $v, w, u \in V$ and $a, b \in \mathbb{F}$:

- 1) v + w = w + v.
- 2) v + (w + u) = (v + w) + u.
- 3) a(v + w) = av + aw.
- 4) (a + b)v = av + bv.
- 5) (ab)v = a(bv).
- 6) 1v = v.
- 7) 0+v=v.
- 8) For every $v \in V$ there exists $w \in V$ so that v + w = 0.

 $P(\mathbb{F}), P_n(\mathbb{F})$ and \mathbb{F}^n are vector spaces.

Definition 22 – Matrix Cont.

Let \mathbb{F} be a field. An $m \times n$ matrix M with entries in \mathbb{F} is a rectangular array of elements of \mathbb{F} consisting of m rows and n columns.

We denote the entry in the i row and j column of a matrix m by m_{ij} .

The set of all $m \times n$ matrices with coefficients in \mathbb{F} is denoted by $\mathcal{M}_{m \times n}(\mathbb{F})$.

For example, a 2×3 matrix looks like $\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{pmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{F})$, wile a 3×2 matrix N

looks like $\begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \\ n_{31} & n_{32} \end{pmatrix} \in \mathcal{M}_{3\times 2}(\mathbb{F}).$

 $\mathcal{M}_{m\times n}(\mathbb{F})$, with pointwise addition and scaling is a vector space over \mathbb{F} ;

Corollary 2 – Vector Space

Let \mathbb{F} be a field, and V a vector space over \mathbb{F} . Then for any $v, w, u \in V$ and $a \in \mathbb{F}$ we have:

- 1) If v + w = v + u, then w = u.
- 2) If $a \neq 0$ and av = aw, then v = w.
- 3) The element $0 \in V$ is unique.
- 4) Additive inverses in V are unique. (This means that for each $v \in V$ there is only one element $w \in V$ which satisfies the condition of Axiom 8.)
- 5) (-a)v = -(av). In particular (-1)v = -v.
- 6) 0v = 0.
- 7) a0 = 0.

Definition 23 - Subspace

Let \mathbb{F} be a field and V a vector space over \mathbb{F} . We say that a subset $W \subseteq V$ is a subspace of V if W is also a vector space over |F| using the same operations defined in V.

 $P_n(\mathbb{F})$ is a subspace of $P(\mathbb{F})$.

 $P_n(\mathbb{F})$ is a subspace of $P_m(\mathbb{F})$ if $n < m \in \mathbb{N}$.

Theorem 19 – Subspace

Let V be a vector space over a field \mathbb{F} . A **non-empty** subset $W\subseteq V$ is a subspace of V if and only if

- 1) For all $v, w \in W$ we have $v + w \in W$.
- 2) For all $v \in W$ and $c \in \mathbb{F}$ we have $cv \in W$.

Definition 24 - Trivial / Non-Trivial Subspace

Let V be a vector space over a field \mathbb{F} . The subspaces $\{0\}$ and V are called the **trivial** subspaces of V. Any other subspace W of V is called a **non-trivial subspace of** V. In particular, we say that a subspace W is a non-trivial subspace of V if $W \neq \{0\}$ and $W \neq V$.

Chapter 4: Bases and Dimension

Definition 25 – Linear Combinatoin of Vectors

Let V be a vector space over \mathbb{F} , and $v_1, v_2, \dots, v_k \in V$. A vector of the form $a_1v_1 + a_2v_2 + \dots + a_kv_k \in V$ is called a linear combination of the vectors v_1, v_2, \dots, v_k .

Definition 26 – Span

Let V be a vector space over \mathbb{F} and $S \subseteq V$. We define the **span of** S, denoted span S, as follows:

- 1) If $S = \emptyset$ is empty, then span $S = \{0\}$.
- 2) Otherwise, span $S = \{a_1v_1 + a_2v_2 + \cdots + a_kv_k | a_i \in \mathbb{F}v_i \in S\}$ is the set of all possible linear combinations of vectors from S.

Theorem 20 – Span as Subspace

Let V be a vector space over \mathbb{F} and $S \subseteq V$ be **any** subset of vectors. Then the subset span $S \subseteq V$ is a subspace of V.

Definition 27 – S spans V

Let V be a vector space over \mathbb{F} . We say that a subset $S \subseteq V$ is **a spanning set for** V (or "S **spans** V") if $V = \operatorname{span} S$.

Definition 28 – Linearly Independnet

Let V be a vector space over \mathbb{F} . We say that a set S is **linearly independent** if for any vectors $v_1, v_2, \ldots, v_k \in S$:

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = 0 \implies c_1 = 0, c_2 = 0, \dots, c_k = 0.$$

Otherwise, we say that S is **linearly dependent**.

Definition 29 – Basis

Let V be a vector space over \mathbb{F} . A subset $\beta \subseteq V$ is called a **basis** if:

- 1) β spans V
- 2) β is linearly independent.

Vector space over \mathbb{F} also has basis.

Finite spanning set for V also contains basis for V.

Let \mathbb{F} be a field.

- 1) The set $\{e_1, e_2, \ldots, e_n\}$ is a basis for \mathbb{F}^n .
- 2) The set $\{E_{ij}|1 \leq i \leq m, 1 \leq n\}$ is a basis for $\mathcal{M}_{m \times n}(\mathbb{F})$.
- 3) The set $\{1, x, x^2, x^3, \ldots\}$ is a basis for $P(\mathbb{F})$.
- 4) The set $\{1, x, x^2, x^3, \dots, x^n\}$ is a basis for $P_n(\mathbb{F})$.

(i)

Theorem 23 – Unique Expression from Basis

Let V be a vector space over \mathbb{F} and β a basis of V. Then any $\mathbf{v} \in V$ has a unique expression

$$\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{v}_i$$

where $\mathbf{v}_i \in \beta$ and $a_i \in \mathbb{F}$.

Theorem 24 – The Replacement Theorem

Suppose that $\beta = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a basis for V and $I = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k\}$ an independent subset of V. Then for any $i \in \{1,...,k\}$, we can obtain a new basis by replacing i elements of β with $\{\mathbf{w}_1,\ldots,\mathbf{w}_i\}$. So after relabelling the elements* $\mathbf{v}_i \in \beta$ we have that the set $\beta_i = \{\mathbf{w}_1, \dots, \mathbf{w}_i, \mathbf{v}_{i+1}, \dots \mathbf{v}_n\}$ is a basis for V.

Corollary 3

Suppose that V is a vector space over \mathbb{F} with a finite basis. Suppose that β is any basis of V and I is any independent set. Then $|I| \leq |B|$.

Theorem 25 – Size of Bases

Let V be a vector space over a field \mathbb{F} . If V has a finite basis, then all bases of V have the same size.

Definition 30 – Dimension

Let V be a vector space over \mathbb{F} with a finite basis. We define the **dimension of** V to be the size of a basis for V.

In this case, we say that V is finite dimensional. Otherwise, we say that V is infinite dimenisonal.

- 1) dim $\mathbb{F}^n = n$.
- 2) dim $\mathcal{M}_{m \times n}(\mathbb{F}) = mn$.
- 3) dim $P_n(\mathbb{F}) = n + 1$.
- 4) $P(\mathbb{F})$ is infinite dimensional.

Corollary 4

Let V be a finite dimensional vector space over \mathbb{F} . S any spanning set for V, I any independent set in V, and β any basis. Then

 $|I| \le |\beta| \le |S|$.

Chapter 5: Linear Transformations

Definition 31 – Linear Transformation

Let V and W be vector spaces over \mathbb{F} . A map $T:V\to W$ is called a **linear transformation** if:

$$T(v+w) = T(v) + T(w)$$
 for all $v, w \in V$
 $T(cv) = cT(v)$ for all $v \in V$ and $c \in \mathbb{F}$

T(x,y,z)=(2x-4y+z,3x-y+2x) is a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 . $T(p)=\frac{\mathrm{d}}{\mathrm{d}x}p$ is a linear transformation.

Theorem 26 – Properties of Linearity

Let V, W be vector spaces over \mathbb{F} .

- 1) If $T: V \to W$ is linear, then $T(0_v) = 0_w$.
- 2) The map $O: V \to W$ given by $O(v) = 0_w$ for all $v \in V$ is linear. This map is called the "zero map."
- 3) The map $I_V: V \to V$ given by $I_V(v) = v$ for all $v \in V$ is linear. This map is called the "identity map."

Theorem 27

Let V e a finite dimensional vector space over \mathbb{F} and $\beta = \{v_1, \dots, v_n\}$ a basis of V. A linear map $T: V \to W$ is uniquely determined by the values $T(v_1), T(v_2), \dots, T(v_n) \in W$.

Corollary 5 – Extending by Linearity

Let V, W be vector spaces over \mathbb{F} , and $\beta = \{v_1, \dots, v_n\}$ a basis for V. Given a list of (not necessarily distinct) vectors $w_1, \dots, w_n \in W$ there is exactly one linear map $T: V \to W$ so that $W(v_i) = w_i$.

This map is defined for all $v \in V$ as follows. Writing $v = \sum_{i=1}^{n} a_i v_i$, we then set $T(v) = \sum_{i=1}^{n} a_i w_i$. This process is called "extending by linearity".

Theorem 28 – Composition of Linear Maps

Let V, W, X be vector spaces over \mathbb{F} . If $T: V \to W$ and $S: W \to X$ are linear maps, then the composition $S \circ T: V \to X$ is linear.

Theorem 29 – Null Space / Image

Let V, W be vector spaces over \mathbb{F} and $T: V \to W$ a linear transformation. The sets:

$$N(T) = \{ v \in V \mid T(v) = 0 \} \subseteq V$$

$$\operatorname{im}(T) = \{ w \in W \mid w = T(v) \text{ for some } v \in V \} \subseteq W$$

are subspaces of V, W respectively.

The subspace N(T) is called the **null space of** T.

The subspace im(T) is called the **image of** T.

Definition 32 – rank

Let V, W be vector spaces over \mathbb{F} and $T: V \to W$ linear. We define the **rank** of T by rank $T = \dim \operatorname{im}(T)$.

Theorem 30 – The Dimension Theorem

Let V, W be finite dimensional vector spaces over \mathbb{F} . If $T: V \to W$ linear, then

$$\dim V = \dim N(T) + \dim \operatorname{im}(T)$$

Definition 33 – $\mathcal{L}(V, W)$

Let V, W be vector spaces over a field \mathbb{F} . We denote by $\mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear}\}$ the set of all linear transformations from V to W.

We define addition and scaling of transformations by:

$$(T+S)(v) = T(v) + S(v)$$
 (we can add $T(v), S(v) \in W$)

$$(cT)(v) = cT(v)$$
 (we can scale the vector $T(v) \in W$ by $c \in \mathbb{F}$)

Theorem 31

Let V, W be vector spaces over a field \mathbb{F} . If $S, T \in \mathcal{L}(V, W)$, and $c \in \mathbb{F}$ then $T + S, cT \in \mathcal{L}(V, W)$.

Theorem 32

Let V, W be vector spaces over a field \mathbb{F} .

- 1) The set $\mathcal{L}(V, W)$ is a vector space over \mathbb{F} .
- 2) If dim V = n, dim W = m, then dim $\mathcal{L}(V, W) = nm$.

Definition 34 – Invertibility

Let A, B be sets and $f: A \to B$ be a function.

- 1) We say that f is injective if for all $x, y \in A, f(x) = f(y) \implies x = y$.
- 2) We say that f is surjective if im f = f(A) = B.
- 3) We say that f is bijective if it is both injective and surjective.
- 4) We say that f is **invertible**, if there exists a function $g: W \to V$ so that $g \circ f = I_A: A \to A$ and $f \circ g = I_B: B \to B$.

In this case we call the map g the **inverse** of f and denote it by f^{-1} .

Theorem 33

Let V, W be vector spaces over \mathbb{F} . If $T: V \to W$ is linear and bijective, then the inverse $T^{-1}: W \to V$ is also linear.

Definition 35 – Isomorphism

Let V, W be vector spaces over the field \mathbb{F} . We say that a linear map $T: V \to W$ is an **isomorphism** if it is bijective.

We say that V is **isomorphic to** W, and write $V \simeq W$, if there exists an isomorphism $T: V \to W$.

Theorem 34

Let V, W be vector spaces over \mathbb{F} and $T: V \to W$ be linear. Then T is injective if and only if $N(T) + \{0_v\}$.

Theorem 35

Let V, W be finite dimensional vector spaces over \mathbb{F} . Then $V \simeq W$ if and only if dim $V = \dim W$.

Theorem 36

Let V, W be finite dimensional vector spaces over the field \mathbb{F} .

If $T:V\to W$ is linear and $\dim V=\dim W$, then the following are equivalent:

- 1) T is injective.
- 2) T is surjective.
- 3) T is an isomorphism.

Theorem 37

The maps R_{θ} , proj_{L} , $\mathbb{R}_{L}: \mathbb{R}^{2} \to \mathbb{R}^{2}$ are linear.

Theorem 38

The maps $R_{\theta,L}, \operatorname{proj}_L, R_P : \mathbb{R}^3 \to \mathbb{R}^3$ are linear.

Chapter 6: Coordinates

Theorem 39

Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$. Define $T_A : \mathbb{F}^n \to \mathbb{F}^m$ by $T_A(x) = Ax$.

- 1) The map T_A is linear.
- 2) The map $F: \mathcal{M}_{m \times n}(\mathbb{F}) \to \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$ given by $F(A) = T_A$ is an isomorphism of vector spaces. That is, every linear map $T: \mathbb{F}^n \to \mathbb{F}^m$ is given by matrix multiplication for some matrix A.

Definition 36

Let V be a finite dimensional vector space over \mathbb{F} . An **ordered basis** for V is a basis β , together with a **fixed** order for listing its elements: $\beta = \{v_1, \dots, v_n\}$.

Theorem 40

Let V be a vector space over \mathbb{F} of dimension n, and $\beta = \{v_1, \dots, v_n\}$ a basis of V. The map $\phi_{\beta}: V \to \mathbb{F}^n$ defined above is an isomorphism of vector spaces.

We will denote by $[v]_{\beta}$ the element $\phi_{\beta}(v)$. I.e. $\phi_{\beta}(v) = [v]_{\beta}$.

We will call a choice of basis on V, together with the isomorphism $\phi_b eta: V \to \mathbb{F}^n$ a "coordinate system" on V.

Definition 37

Let V, W be finite dimensional vector spaces over \mathbb{F} . Let $\beta = \{v_1, \ldots, v_n\}$ be a basis of V and $\gamma = \{w_1, \ldots, w_m\}$ a basis of W. For $T \in \mathcal{L}(V, W)$ we define the matrix $[T]^{\gamma}_{\beta} \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$ as follows:

1) The columns of $[T]_{\beta}^{\gamma}$ are given by: $[T(v_1)]_{\gamma}, \ldots, [T(v_n)]_{\gamma}$. Alternatively: we can express $T(v_j) \in W$ using the basis γ to obtain an expression $T(v_j) = \sum_{i=1}^m A_{ij} w_i$. We then define $\left([T]_{\beta}^{\gamma}\right)_{ij} = A_{ij}$.

When $T: V \to V$ we denote by $[T]_{\beta} = [T]_b eta^{\beta}$.

Theorem 41

Let V, W be finite dimensional vector spaces over \mathbb{F} , $\beta = \{v_1, \dots, v_n\}$ a basis of V, and $\gamma = \{w_1, \dots, w_m\}$ a basis of W.

The map $\phi_{\beta}^{\gamma}: \mathcal{L}(V,W) \to \mathcal{M}_{m \times n}(\mathbb{F})$ given by $\phi_{\beta}^{\gamma}(T) = [T]_{\beta}^{\gamma}$ is an isomorphism of vector spaces.

Theorem 42

Let V, W, X be finite dimensional vector spaces over \mathbb{F} . Let $\beta = \{v_1, \ldots, v_n\}$ be a basis of V, $\gamma = \{w_1, \ldots, w_m\}$ a basis of W, and $\delta = \{x_1, \ldots, x_p\}$ a basis of X.

For all $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, X)$ we have that

$$[S \circ T]^{\delta}_{\beta} = [S]_g amma^{\delta} [T]^{\gamma}_{\beta}.$$

In other words, when using compatible coordinate systems, the composition of linear transformations corresponds to matrix multiplication.

Theorem 43

Let V, W be finite dimensional vector spaces over $\mathbb{F}, T: V \to W$ be a linear map, $\beta =$ $\{v_1,\ldots,v_n\}$ a basis of V, and $\gamma=\{w_1,\ldots,w_m\}$ a basis of W. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible.

Moreover, we have

$$[T^{-1}]^{\beta}_{\gamma} = \left([T]^{\gamma}_{\beta} \right)^{-1}$$

if T is invertible.

Theorem 44

Let V, W be finite dimensional vector spaces over a field $\mathbb{F}, \beta = \{v_1, \dots, v_n\}$ a basis of V, and $\gamma = \{w_1, \dots, w_m\}$ a basis of W. Then we have

$$[T]^{\gamma}_{\beta}[v]_{\beta} = [T(v)]_{\gamma}$$

for all $v \in V$.

Chapter 7: Matrix Algebra (Appendix A)

Definition 38 – Matrix Multiplication

Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ and $B \in \mathcal{M}_{n \times k}(\mathbb{F})$. We define their product $AB \in \mathcal{M}_{m \times k}(\mathbb{F})$ as follows: for $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, k\}$ the ij-entry of the product AB is given by

$$(AB)_{ij} = \sum_{l=1}^{n} A_{il} B_{lj}.$$

 $AB \neq BA$.

Definition 39 – Special Matrices

For each $n, m \in \mathbb{N}$ we define the following matrices:

- 1) $O_{m,n} \in \mathcal{M}_{m \times n}(\mathbb{F})$ the matrix consisting of all 0's. In other words $(O_{m,n})_{i,j} = 0$ for all $i \in \{1, ..., m\} \text{ and } j \in \{1, ..., n\}.$
- 2) $I_n \in \mathcal{M}_{n \times n}(\mathbb{F})$ the matrix with 1's on the diagonals, and 0 in all other entries. In other words

$$(I_n)_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$O_{2,3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(

Theorem 45

Let \mathbb{F} be a field, $A, A_1, A_2 \in \mathcal{M}_{\mathbf{m} \times \mathbf{n}}(\mathbb{F}), B, B_1, B_2 \in \mathcal{M}_{n \times k}(\mathbb{F}), C \in \mathcal{M}_{k \times p}(\mathbb{F})$ and $c \in \mathbb{F}$.

- 1. A(BC) = (AB)C
- 2. $(A_1 + A_2)B = A_1B + A_2B$
- 3. $A(B_1 + B_2) = AB_1 + AB_2$
- $4. I_m A = A = AI_n$
- 5. $O_{rm}A = O_{rn}$ for any $r \in \mathbb{N}$.
- 6. $A(cB) = c(AB) = (cI_m) AB = AB (cI_k) = A (cI_n) B$.

Definition 40 – Invertibility

Let $A \in \mathcal{M}_{n \times n}(\mathbb{F})$. We say that A is **invertible** if there exists a matrix $B \in \mathcal{M}_{n \times n}(\mathbb{F})$ so that $AB = I_n = BA$.

Theorem 46

Let $A, B \in \mathscr{M}_{n \times n}(\mathbb{F})$.

- 1) If A is invertible, then the inverse of A is unique.
- 2) If A is invertible, then A^{-1} is also invertible.
- 3) If A and B are invertible, then AB is invertible.
- 4) I_n is invertible.
- 5) If $AB = I_n$, then A is invertible and $B = A^{-1}$.

Definition $41 - A^t$

Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$. We define the matrix $A^t \in \mathcal{M}_{n \times m}(\mathbb{F})$ by:

$$(A^t)_{ij} = A_{ji}.$$

In other words, to obtain A^t we "swap the rows and columns of A."

Definition 42 - Symmetric

We say that $A \in \mathcal{M}_{n \times n}(\mathbb{F})$ is **symmetric** if $A^t = A$. We denot ethe set of all symmetric matrices by $\mathbf{Sym}_n(\mathbb{F})$.

We say that $A \in \mathcal{M}_{n \times n}(\mathbb{F})$ is **skew-symmetric** if $A^t = -A$. We denote the set of all skew-symmetric matrices by $\mathbf{Sk}_n(\mathbb{F})$.

Theorem 47

Let $A, B \in \mathcal{M}_{\mathbf{m} \times \mathbf{n}}(\mathbb{F}), C \in \mathcal{M}_{n \times k}(\mathbb{F})$ and $c \in \mathbb{F}$.

- 1. $(A+B)^t = A^t + B^t$
- $2. (cA)^t = cA^t$
- $3. \left(A^t\right)^t = A$
- $4. \ (AC)^t = C^t A^t.$
- 5. In the case that m = n, we also have that if $A \in \mathcal{M}_{\mathbf{n} \times \mathbf{n}}(\mathbb{F})$ is invertible, then $A^t \in \mathcal{M}_{\mathbf{n} \times \mathbf{n}}(\mathbb{F})$ is invertible and $(A^t)^{-1} = (A^{-1})^t$.

Definition 43 – Diagonal and Triangular

We say that A is **diagonal** if $A_{ij} = 0$ for all $i \neq j$.

Let $A \in \mathcal{M}_{n \times n}(\mathbb{F})$. We say that A is **upper triangular** if $A_{ij} = 0$ for all i > j. This means that all entries below the diagonal of A must be 0.

Similarly, we say that A is **lower triangular** if $A_{ij} = 0$ for all i < j. This means that all entries above the diagonal of A must be 0.

We say that A is **strictly upper-triangular** if $A_{ij} = 0$ for all $i \geq j$.