IME625: Stochastic Processes 2021-22 Sem-II

Homework-5

Let us consider a discrete-time model of traffic congestion in a highway toll plaza. There are c number of counters. Each counter takes 1 minute to serve a vehicle. For ease in modelling, let us assume that the vehicles arrive in a "discrete" manner – let A_1 vehicles arrive at the end of 1^{st} minute, A_2 vehicles arrive at the end of 2^{nd} minute, and so on, and no vehicle arrives during (0,1) minute, (1,2) minute, and so on. Consider $A_1, A_2, ...$ to be *iid* random variables. Let X_n , for n = 0,1,2,..., denote the number of vehicles in the toll plaza at the end of n-th minute, after arrivals and departures of that minute. Note that $n + 1^{\text{st}}$ minute begins with X_n vehicles. Argue that $\{X_n: n = 0,1,2,...\}$ is a Markov chain.

Consider $P(A_1 = k)$ is 0.2 for k = 0.1 and 0.3 for k = 2.3. Determine transition probability matrix of the Markov chain for c = 2, and c = 3.