Programa del Curso Teoría de la Probabilidad

Ciclo: 2016-1

A. Prerrequisitos

1. Teoría Básica de Medida

Clases de conjuntos.

Funciones sobre clases de conjuntos.

Teorema de extensión de medida (Teorema de Carathéodory.)

Aplicaciones Medibles.

2. Teoría Básica de la Intregral de Lebesgue

Construcción y propiedades.

Teorema de la Convergencia Monótona y Lema de Fatou.

B. Objetivo

El objetivo es que los estudiantes adquieran la capacidad de manejar los objetos y conceptos centrales de esta disciplina: variables aleatorias, independencia, momentos y ley de los grandes números, teoremas de convergencia (casi-ciertamente y en probabilidad), teoremas de convergencia de las martingalas y sus aplicaciones, convergencia de medidas, medidas de probabilidad sobre espacios producto, funciones características y el teorema central del límite.

C. Contenido

1. Independencia

Independencia de Eventos: Lema de Borel-Cantelli.

Independencia de Variables Aleatorias.

Ley 0-1 de Kolmogorov.

2. Momentos y Ley de los Grandes Números (LGN)

Momentos de una variable aleatoria: identidades de Wald y Blackwell-Girshick.

Ley débil de los grandes números.

Ley fuerte de los grandes números (versión de Etemadi.)

Velocidad de convergencia en la LGN fuerte: desigualdad de Kolmogorov.

3. Teoremas de Convergencia

Convergencia en casi todo punto y en medida.

Integrabilidad uniforme: el teorema de la convergencia dominada como consecuencia de un resultado más general; intercambiando integración y diferenciación.

4. Esperanza Condicional

Probabilidad condicional elemental.

1

Esperanza condicional y propiedades.

5. Martingalas

Procesos, filtraciones y tiempos de parada.

Martingalas, submartingalas y supermartingalas.

Integral estocástica discreta.

Desigualdad de Doob.

Teoremas de convergencia de las martingalas.

6. Convergencia de Medidas

Marco abstracto: medidas sobre espacios polaco.

Convergencia débil y vaga: teorema de Portmanteau.

Teorema de Prokhorov.

7. Medidas de Probabilidad Sobre Espacios Producto

Espacios producto.

Teorema de extensión de Kolmogorov.

8. Funciones Características y el Teorema Central del Límite

Clases de funciones separadoras.

Funciones características de algunas distribuciones.

Teorema de continuidad de Lévy.

Funciones características y momentos.

El teorema central del límite.

D. Referencias Bibliográficas

Texto guía:

1. Klenke A (2014) Probability theory: a comprehensive course, 2nd edn. Universitext. Springer, London.

Textos complementarios:

- 2. Borovkov AA (2013) Probability theory. Universitext. Springer, London.
- 3. Stroock DW (2013) Mathematics of probability. Graduate studies in mathematics, vol 149. American Mathematical Society, Providence.
- 4. Durrett R (2010) Probability: theory and examples, 4th edn. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge.

E. Anexo

A lo largo del curso, presentaremos la prueba probabilística de

- 1. la fórmula de producto de Euler que representa la función zeta de Riemann como un producto infinito,
- 2. el teorema de aproximación de Weierstraß a través de polinomios de Bernstein y
- 3. la propiedad de equipartición asintótica (AEP, por sus siglas en inglés) de la teoría de la información como consecuencia de la ley de grandes números

0