CS 225: Switching Theory

S. Tripathy IIT Patna

Previous Class

- Number Systems
 - Different Number systems (positional)
 - Conversion
 - Representation (complement)
 - Binary Arithmetic
- Codes
 - BCD, cyclic code etc.
 - Gray code
 - Parity and Error correcting code

This Class

Parity and Error correcting code

Switching Algebra

Error-detecting Codes

p: parity bit;

Even parity used in codes.

Distance between codewords: no. of bits they differ in

Minimum distance of a code: smallest no. of bits in which any two code words differ

Minimum distance of above single errordetecting codes = 2

Decimal Digit	Even-parity BCD	2-out-of-5			
	8 4 2 1 p	0 1 2 4 7			
0	0 0 0 0 0	0 0 0 1 1			
1	0 0 0 1 1	1 1 0 0 0			
2	0 0 1 0 1	0 1 1 0 0			
3	0 0 1 1 0	0 1 1 0 0			
4	0 1 0 0 1	1 0 0 1 0			
5	0 1 0 1 0	0 1 0 1 0			
6	0 1 1 0 0	0 0 1 1 0			
7	0 1 1 1 1	1 0 0 0 1			
8	1 0 0 0 1	0 1 0 0 1			
9	1 0 0 1 0	0 0 1 0 1			

Hamming Codes: Single Error-correcting

Minimum distance for SEC or double-error detecting (DED) codes = 3 Example: {000,111} Minimum distance for SEC and DED codes = 4

No. of information bits = m

No. of parity check bits, p1, p2, ..., pk = k No. of bits in the code word = m+k

Assign a decimal value to each of the m+k bits: from 1 to MSB to m+k to LSB

Perform k parity checks on selected bits of each code word: record results as 0 or 1

• Form a binary number (called position number), c1c2...ck, with the k parity checks

Hamming Codes (Contd.)

No. of parity check bits, k, must satisfy: $2^k \ge m+k+1$

Example: if m = 4 then k = 3

Place check bits at the following locations: 1, 2, 4, ..., 2k-1

Example code word: 1100110

& Check bits: p1=1, p2=1, p3=0

& Information bits: 0, 1, 1, 0

Hamming Code Construction

Select p_1 to establish even parity in positions: 1, 3, 5, 7

Select p_2 to establish even parity in positions: 2, 3, 6, 7

Select p_3 to establish even parity in positions: 4, 5, 6, 7

Error position	Position number			
	c1	c2	c3	
0 (no error)	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

Hamming Code Construction (Contd.)

Position:	1 p ₁	2 p ₂	3 m ₁	4 p ₃	5 m ₂	6 m ₃	7 m ₄
Original BCD message:			0		1	0	0
Parity Check in positions 1,3,5,7 requires p ₁ =1	1		0		1	0	0
Parity Check in positions 2,3,6,7 requires p ₂ =0							
	1	0	0		1	0	0
Parity Check in positions 4,5,6,7 requires p ₃ =1							
	1	0	0	1	1	0	0
Coded message	1	0	0	1	1	0	0

Hamming Code Construction

Ex: If the original message is to be send is 0010

```
Q1: The message to be send is ?
0 1 0 1 0 1 0
```

Q2. If the received message is 0101011

```
Error position is: 111 (7)
```

Do it your self

If the original message is to be send is 1001

Q3.: The message to be send is ?

Q4: If the received message is (flipppting the 3rd (from right) bit)

Error position is:

Hamming Code for BCD

Position: 1 2 3 4 5 6 7 Intended message: 1 1 0 1 0 0 1 Message received: 1 1 0 1 1 0 1 4-5-6-7 parity check: 1 1 0 1 1 0 1 c_1 =1 since parity is odd 2-3-6-7 parity check: 1 0 0 1 c_2 =0 since parity is even 4-5-6-7 parity check: 1 0 1 1 c_3 =1 since parity is odd

Decimal digit	Position						
	p ₁	p ₂	m_1	p ₃	m_2	m_3	m_4
0	0	1	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1

SEC/DED Code

Add another parity bit such that all eight bits have even parity

- Two errors occur: overall parity check satisfied, but position number indicates error double error (cannot be corrected)
- Single error occurs: overall parity check not satisfied
 - Position no. is 0: error in last parity bit
 - Else, position no. indicates erroneous bit
- No error occurs: all parity checks indicate even parities

• Switching Algebra

