

WLAN-Bluetooth Sip (System in Package) W2CBW0015

Preliminary Product Datasheet

Revision 1.51 July 26, 2012

Table of Contents

1	Ger	neral Description	4
2	Fea	tures	4
3	Sys	tem Description	5
	3.1	Block Diagram	
	3.2	Pad Description	5
4	Ele	ctrical Characteristics	8
5	\mathbf{WL}	AN External Host Interfaces	11
	5.1	SDIO Interface	11
	5.2	SDIO Protocol Timing Diagrams	12
6	Blu	etooth Interfaces	13
	6.1	SDIO Interface	
	6.2	PCM Interface	13
7	Ant	enna and Clock	14
	7.1	Wireless LAN	
	7.2	Bluetooth	14
8	\mathbf{WL}	AN Software Architecture	16
	8.1	Host Processor	
9	Ref	erence Schematics	17
1	0 Mai	nufacturing Notes	18
	10.1	Physical SiP Dimensions and Pad Locations	
	10.2	Physical Shield Dimensions	
	10.3	Shield Landing Pattern	20
	10.4	Tray Orientation	20
	10.5	Tape and Reel Orientation	
	10.6	Storage and Baking Instructions	
	10.7	Recommended Reflow Profile	
1	1 Disc	claimers	
	11.1	Data Sheet Status	24
1	2 Oro	dering Information	24
	12.1	Development Kit	24
1	3 Cer	tifications	25
1	4 Ref	erences	25
_	14.1	Specifications	
		Trademarks Patents and Licenses	

List of Figures:

Figure 1: Block Diagram	5
Figure 2: SDIO Protocol Timing	
Figure 3: Software Architecture	
Figure 4: Box Diagram	
Figure 5: Top View of Pads	
Figure 6: Initialization Configuration	
Figure 7: SDIO Interface	
Figure 8: Physical Dimensions and Pad Locations	
Figure 9: Physical Shield Dimensions	19
Figure 10: Shield Landing Pattern	20
Figure 11: IC Orientation on Tray	20
Figure 12: Carrier Tray Package Outline Drawing	21
Figure 13: IC Orientation on Tape and Reel	
Figure 14: Leader and Trailer	
Figure 15: Carrier Tape Package Outline Drawing	
Figure 16: Recommended Reflow Profile	
List of Tables:	
Table 1: Pad Description	
Table 2: Electrical Characteristics	
Table 3: SDIO Pin Map	11
Table 4: SDIO Timing Data	

Revision History:

Revision	Revision Date	Originator	Changes
0.1	10/24/2011	WJL	First production data-sheet version
0.11	11/07/2011	DDS Updated Pin Description, Added Reference	
			Schematics
1.41	03/16/2012	DDS	Updated text and figures to remove all references to
			UART and GSPI
1.42	03/16/2012	WJL	Removed references to GSPI and UART
1.43	03/23/2012	DDS	Updated Figure 8, by adding Top View of the SiP
1.44	05/01/2012	DDS	Updated 802.11n Receiver Sensitivity, Bluetooth
			test parameters and Added Dev-Kit info.
1.45	05/15/2012	DDS	Updated Part Ordering Information, Added shield
			dimensions and shield landing pattern
1.48	06/06/2012	DDS	Added Tray and Tape & Reel Orientation figures
1.5	06/13/2012	DDS	Updated block diagram and corrected text
1.51	07/26/2012	DDS	Updated dimensions for shield solder landing pads

1 General Description

This specification provides a general guideline on the performance and integration of W2CBW0015, a complete wireless subsystem featuring full 802.11 b/g/n WLAN as well as Class 1.0/2.0/3.0 Bluetooth capabilities in a small form factor SiP solution. The W2CBW0015 device was designed to simplify the process of adding wireless access to systems without lengthy design cycles or complex RF design. Both radios are fully tested for coexistence, internally and with other external radio technologies. A set of regulatory certifications will also be provided, simplifying the certification process for your end product and further reducing valuable time-to-market. Based on world-class silicon from Wi2Wi partner Marvell, the W2CBW0015 has been fully optimized for throughput and receive sensitivity via careful design practices. State-of-the art software development resources are available to create drivers for unique processors and operating systems if needed, or to optimize the wireless subsystem to fit your application.

Specified maximum and minimum limits presented herein are those guaranteed when the unit is integrated into Wi2Wi's W2CBW0015-Dev(1/2) Development System. These limits are to serve as representative performance characteristics of the W2CBW0015 when properly designed into a customer's product. Wi2Wi makes no warranty, implied or otherwise specified, with respect to customer's design and performance characteristics presented in this specification.

2 Features

- Extended Temperature Operation: -30°C to +85°C
- Compact design for easy integration: 9.5mm x 9.5mm x 1.4mm
- 81 Pad LGA surface mount package
- WLAN technology based on Marvell's 88W8787
- Bluetooth technology based on Marvell's 88W8787
- Single antenna design for WLAN and Bluetooth
- Operates in 2.4 GHz ISM band
- ROHS Compliant
- WLAN Specific Features
 - SDIO 1.1 Interfaces
 - o 802.11s Mesh Networking
 - o 802.11h Dynamic Frequency Selection
 - o 802.11e Quality of Service
 - o 50-Ohm antenna launch
 - Support for Linux and Android operating systems
 - o 1, 2, 5.5 and 11 Mbps data rates for 802.11b (DSSS/CCK modulation)
 - o 6, 9, 12, 18, 24, 36, 48 and 54 Mbps data rates for 802.11g (OFDM modulation)
 - o 72 Mbps, 150 Mbps data rates for 802.11n (OFDM modulation)
- Bluetooth Specific Features
 - HCI Layer Support
 - o GFSK modulation for Bluetooth version 2.1

- o Data rate up to 1 Mbps for Bluetooth version 2.1
- O Data rate up to 3 Mbps for Bluetooth EDR
- Data rate up 24 Mbps for Bluetooth AMP
- o Support for Class 1.5 Bluetooth (i.e., Class 1 up to 10dBm)

3 System Description

W2CBW0015 is a complete SiP solution that uses Marvell 88W8787 to implement 802.11 b/g/n and Bluetooth functions. It includes all the components needed to operate both radios. It preserves the characteristics from the Marvell chipset while providing optimized system level functionality and performance.

3.1 Block Diagram

Figure 1 shows the block diagram of W2CBW0015.

Figure 1: Block Diagram

3.2 Pad Description

Table 1: Pad Description

Pin	Pin Name	Type	Supply	Description
A1	BT_LED	О	VIO	LED Indicator for Bluetooth
A2	I2S_MCLK	I/O	VIO	I2S Master Clock (output)
A3	PCM_DOUT	I/O	VIO	PCM Data Output Signal
A4	RES_A4	NC	NC	Reserved Pin, No Connection Recommended
A5	GND_A5	Ground		Ground
A6	RES_A6	NC	NC	Reserved Pin, No Connection Recommended
A7	RES_A7	NC	NC	Reserved Pin, No Connection Recommended
A8	GND_A8	Ground		Ground

A9	RES_A9	NC	NC	Reserved Pin, No Connection Recommended
B1	3V_IN_B1	Power	HOST_PWR	Host Power (3.3V)
B2	3V_IN_B2	Power	HOST_PWR	Host Power (3.3V)
B3	3V_IN_B3	Power	HOST_PWR	Host Power (3.3V)
B4	PCM_DIN	I/O	VIO	PCM Data Input Signal
	1 61/1_511 (TeM_DIN 1/0	,10	I2S Audio left/right clock
В5	I2S_LRCLK	I/O	VIO	Master mode: output
20	120_2110211	1, 0	, 10	Slave mode: input
В6	GND_B6	Ground		Ground
В7	WF_LED	О	VIO	LED Indicator for Wi-Fi
В8	RES_B8	NC	NC	Reserved Pin, No Connection Recommended
				I2S Audio bit clock
B9	I2S_BCLK	I/O	VIO	Master mode: output
				Slave mode: input
C1	3V_IN_C1	Power	HOST_PWR	Host Power (3.3V)
C2	3V_IN_C2	Power	HOST_PWR	Host Power (3.3V)
C3	3V_IN_C3	Power	HOST_PWR	Host Power (3.3V)
C4	3V_IN_C4	Power	HOST_PWR	Host Power (3.3V)
C5	GND_C5	Ground		Ground
C6	PWDET_2G	I	VIO	2.4 GHz PA Power Detection Signal (analog input)
C7	RES_C7	NC	NC	Reserved Pin, No Connection Recommended
	CLK_REQ	-	VIO	Oscillator Mode (active low, output)
C8				0: disable external oscillator
				1: enable external oscillator
C9	RES_C9	NC	NC	Reserved Pin, No Connection Recommended
D1	3V_IN_D1	Power	HOST_PWR	Host Power (3.3V)
D2	3V_IN_D2	Power	HOST_PWR	Host Power (3.3V)
D3	GND_D3	Ground		Ground
D4	PCM_CLK	I/O	VIO	PCM Clock Signal Output if PCM master, Input if PCM slave
D5	GND_D5	Ground		Ground
D6	GND_D6	Ground		Ground
				Power management device
D7	W1_CNTL	О	VIO	programming interface control
D8	VIO_D8	Power	VIO	3.3V or 1.8V Power Supply
D9	I2S_DOUT	I/O	VIO	I2S Data Output Signal
E1	3V_IN_E1	Power	HOST_PWR	Host Power (3.3V)
E2	LNA_EN_2	0	VDD30	RF Control 6: Power Down Output Low
	_			SDIO 4-bit mode: Data line bit [3]
E3	SD_D3	I/O	VIO	SDIO 1-bit mode: Not used
	_			SDIO SPI mode: Chip select (active low)
T 4	DOM GVAG	1/0	1770	PCM Sync Pulse Signal
E4	PCM_SYNC	I/O	VIO	Output if PCM master, Input if PCM slave
E5	RES_E5	NC	NC	Reserved Pin, No Connection Recommended
E6	RES_E6	NC	NC	Reserved Pin, No Connection Recommended
E7	GND_E7	Ground		Ground
$\overline{}$		1	ı	

E8	VIO_E8	Power	VIO	3.3V or 1.8V Power Supply
E9	I2S_DIN	I/O	VIO	I2S Data Input Signal
F1	SW_TX2	О	VDD30	Transmit switch control, connected to Tx/Rx/BT switch on board (if used)
F2	SW_RX2	О	VDD30	Receive switch control, connected to Tx/Rx/BT switch on board (if used)
F3	RESETn	I	VIO	Reset (active low); Minimum pulse width of 100ns needed to reset the device
F4	BT_GRANTn	О	VIO	BT_GRANTn (output) No Connect
F5	GND_F5	Ground		Ground
F6	SCLK	I/O	VIO	Serial interface clock output for EEPROM
F7	BT_FREQ	I	VIO	BT_FREQ (input) No Connect
F8	SD_D0	I/O	VIO	SDIO 4-bit mode: Data line bit [0] SDIO 1-bit mode: Data line SDIO SPI mode: Data output
F9	SD_D2	I/O	VIO	SDIO 4-bit mode: Data line bit [2] or Read Wait (optional) SDIO 1-bit mode: Not used SDIO SPI mode: Chip select (active low)
G1	SW_BT	О	VDD30	Bluetooth (BT) switch control, connected to Tx/Rx/BT switch on board (if used)
G2	ECSn	О	VDD30	EEPROM chip select output, active low for SPI EEPROM, active high for Micro wire EEPROM
G3	I2C_CLK	I/O	VIO	I2C Slave-compatible interface clock signal
G4	RES_G4	NC	NC	Reserved Pin, No Connection Recommended
G5	RES_G5	NC	NC	Reserved Pin, No Connection Recommended
G6	GND_G6	Ground		Ground
G7	BT_REQ	I	VIO	BT_REQ (input) No Connect
G8	SD_CLK	I/O	VIO	SDIO 4-bit mode: Clock input SDIO 1-bit mode: Clock input SDIO SPI mode: Clock input
G9	SD_CMD	I/O	VIO	SDIO 4-bit mode: Command/response(input/output) SDIO 1-bit mode: Command line (input/output) SDIO SPI mode: Data input
H1	GND_H1	Ground		Ground
H2	GND_H2	Ground		Ground
Н3	GND_H3	Ground		Ground
H4	3V_IN_H4	Power	HOST_PWR	Host Power (3.3V)
Н5	3V_IN_H5	Power	HOST_PWR	Host Power (3.3V)
Н6	I2C_DAT	I/O	VIO	I2C Slave-compatible interface data signal
H7	SDA	I/O	VIO	Serial interface data output for EEPROM
Н8	VIO_H8	Power	VIO	3.3V or 1.8V Power Supply
	SLEEP_CLK	I	VIO	Sleep clock; Supply 32.768 kHz clock to this pin to avoid
Н9	SEEEI _CER	_		hang-up

J2	2.4G_ANT	RF	VIO	2.4 GHz WLAN/BT Antenna
J3	GND_J3	Ground		Ground
J4	3V_IN_J4	Power	HOST_PWR	Host Power (3.3V)
J5	3V_IN_J5	Power	HOST_PWR	Host Power (3.3V)
J6	BT_STATE	I	VIO	BT_STATE (input) No Connect
J7	PDn	I	VIO	Full power down (active low) 0 for full power down 1 for normal mode
J8	GND_J8	Ground		Ground
Ј9	SD_D1	I/O	VIO	SDIO 4-bit mode: Data line bit [1] SDIO 1-bit mode: Interrupt SDIO SPI mode: Interrupt

4 Electrical Characteristics

Table 2: Electrical Characteristics

Parameter	Parameter Test Condition			MAX	UNITS		
Absolute Maximum Ratings							
Storage Temperature		-40		85	°C		
Supply Voltage		-	3.0	4.2	V		
	Recommended Opera	ating Condit	ions				
Operating Temperature		-30		85	°C		
Supply Voltage		2.7	3.0	3.3	V		
	802.11b Current C	Consumption	n .				
Initialization Current		115	135	150	mA		
Continuous Transmit Mode	@11Mbps	230	245	260	mA		
Continuous Receive Mode	@11Mbps	120	130	145	mA		
IEEE 802.11 Power Save Mode				6	mA		
Deep Sleep		1	1.3	1.5	mA		
	802.11b RF System	Specification	ons		•		
Transmit Power Output		14	15	16	dBm		
	1 Mbps, 8% PER	-	-96	-91	dBm		
Receive Sensitivity	2 Mbps, 8% PER	-	-94	-89	dBm		
Receive Sensitivity	5.5 Mbps, 8% PER	-	-91	-86	dBm		
	11 Mbps, 8% PER	-	-86	-82	dBm		
Maximum Receive Level	PER<8%	-	IEEE Compliant	-	dBm		
Transmit Frequency Offset	Low, Middle, High Channels	-	±15	-			
Spectral Mask	Max. TX Power	-	-40@fc±11MHz	-	- dBc		
Opodiai Masik	WIAA. TA TOWO	-	-60@fc±22MHz	-	abc		
Error Vector Magnitude	Max. TX Power @ 11Mbps	-	-33	-25	dB		

Carrier Suppression	Max. TX Power	-28	-25	-21	dBc
Adjacent Channel Rejection	-	48	-	dBc	
	802.11g Current C	onsumption	າ		
Initialization Current		115	135	150	mA
Continuous Transmit Mode	@54Mbps	225	240	255	mA
Continuous Receive Mode	@54Mbps	120	130	145	mA
IEEE 802.11 Power Save Mode		4	5	6	mA
Deep Sleep		1	1.3	1.5	mA
	802.11g RF System	Specificatio			
Transmit Power Output		11	12	13	dBm
	6 Mbps, 10% PER	-	-90	-86	dBm
	9 Mbps, 10% PER	-	-88	-84	dBm
	12 Mbps, 10% PER	-	-86	-82	dBm
Receive Sensitivity	18 Mbps, 10% PER	-	-84	-79	dBm
Receive Sensitivity	24 Mbps, 10% PER	-	-81	-77	dBm
	36 Mbps, 10% PER	-	-78	-74	dBm
	48 Mbps, 10% PER	-	-75	-71	dBm
	54 Mbps, 10% PER	-	-72	-68	dBm
Maximum Receive Level	PER<10%	-	IEEE Compliant	-	dBm
Transmit Frequency Offset	Low, Middle, High Channels	-	±15	-	PPM
		-	-30@fc±11MHz	-	
Spectral Mask	Max. TX Power	-	-40@fc±20MHz	-	dBc
		-	-50@fc±30MHz	-	
Error Vector Magnitude	Max. TX Power @ 54Mbps	-	-30	-25	dB
Carrier Suppression	Max. TX Power	-28	-25	-19	dBc
Adjacent Channel Rejection	Desired channel is 3dB above sensitivity, 54Mbps, PER<10%	-	15	-	dBc
	802.11n Current C		1		_
Initialization Current		115	135	150	mA
Continuous Transmit Mode	15 dBm, 20 MHz, 72.2 Mbps, MCS7	220	235	250	mA
Continuous Transmit Mode	15 dBm, 40 MHz, 150 Mbps, MCS7	230	245	260	mA
Continuous Receive Mode	15 dBm, 20 MHz, 72.2 Mbps, MCS7	200	215	230	mA
Continuous Receive Mode	15 dBm, 40 MHz, 150 Mbps, MCS7	200	215	230	mA
IEEE 802.11 Power Save Mode		4	5	6	mA
Deep Sleep		1	1.3	1.5	mA

802.11n RF System Specifications						
Transmit Power Output		14	15	16	dBm	
Pagaiva Sanaitivity	20 MHz, 72.2 Mbps, MCS7, 10% PER	-	-68	-64	dBm	
Receive Sensitivity	40 MHz, 150 Mbps, MCS7, 10% PER	-	-64	-60	dBm	
Maximum Receive Level	PER<10%	-	IEEE Compliant	-	dBm	
Transmit Frequency Offset	Low, Middle, High Channels	-	±15	-	PPM	
Spectral Mask	Max. TX Power	-	-30@fc±11MHz	-20	dBc	
Error Vector Magnitude	Max. TX Power @ 50Mbps	-30	-28	-26	dB	
Carrier Suppression	Max. TX Power	-29	-25	-20	dBc	
Adjacent Channel Rejection	Desired channel is 3 dB above sensitivity, 72.2 Mbps, PER<10%	-	15	-	dBc	
Adjacent Channel Rejection	Desired channel is 3 dB above sensitivity, 150 Mbps, PER<10%	-	15	-	dBc	
	Bluetooth Current Consu	imption (SDI	O BUS)			
Initialization Current		125	138	150	mA	
Continuous Transmit Mode		130	135	140	mA	
Continuous Receive Mode					mA	
Deep Sleep	Deep Sleep				mA	
Bluetooth RF System Specifications						
Transmit Power Output		9	9.4	10	dBm	
	BDR, 1 Mbps, 0.1% BER	-	-85	-70	dBm	
Receive Sensitivity	EDR, 2 Mbps, 0.1% BER	-	-92	-70	dBm	
	EDR, 3 Mbps, 0.1% BER	-	-91	-70	dBm	

^{**} Current measured at the 3.3V input to the test board, which has a voltage regulator for 3.3V to 1.8V conversion.

5 WLAN External Host Interfaces

For connection to a host processor, W2CBW0015 supports the Secure Digital Input Output (SDIO) interface.

The host processor must support SDIO (SD is not sufficient). If the selected processor does not have an integrated SDIO controller, then an external SDIO bridge can be used (e.g. SDIO-PCI Bridge for interfacing with a processor that only supports a PCI interface).

Please contact your sales representative if your processor does not support SDIO interface.

5.1 SDIO Interface

W2CBW0015 supports SDIO device interface that conforms to the industry standard SDIO Full-Speed card specification and allows a host controller using the SDIO bus protocol to access the WLAN device. The SDIO interface contains interface circuitry between an external SDIO bus and the internal shared bus.

W2CBW0015 acts as a device on the SDIO bus. The SDIO device interface main features include:

- Support for 1-bit SDIO, and 4-bit SDIO transfer modes at the full clock range of 0 to 50 MHz
- Special interrupt register for information exchange
- Allows card to interrupt host

Table 3: SDIO Pin Map

W2CBW0015W Pin	Signal Name	Туре	Description
SD_D3	DAT 3	I/O	SDIO 4-bit mode: Data line bit [3] SDIO 1-bit mode: Not used
SD_D2	DAT 2	I/O	SDIO SPI mode: Chip select (active low) SDIO 4-bit mode: Data line bit [2] or Read Wait (optional) SDIO 1-bit mode: Read Wait (optional) SDIO SPI mode: Reserved
SD_D1	DAT 1	I/O	SDIO 4-bit mode: Data line bit [1] SDIO 1-bit mode: Interrupt SDIO SPI mode: Interrupt
SD_D0	DAT 0	I/O	SDIO 4-bit mode: Data line bit [0] SDIO 1-bit mode: Data line SDIO SPI mode: Data out

SD_CMD	CMD	I/O	SDIO 4-bit mode: Command/Response SDIO 1-bit mode: Command Line SDIO SPI mode: Data in
SD_CLK	CLK	I/O	SDIO 4-bit mode: Clock SDIO 1-bit mode: Clock SDIO SPI mode: Clock

5.2 SDIO Protocol Timing Diagrams

Figure 2: SDIO Protocol Timing

SDIO Protocol Timing Diagram

SDIO Protocol Timing Diagram—High Speed Mode

Note: The SDIO-SPI CS Signal timing is identical to all other SDIO inputs

Table 4: SDIO Timing Data

Symbol	Parameter	Condition	Min	Тур	Max	Units
f_{pp}	Clock Frequency	Normal	0		25	MHz
		High speed	0		50	MHz
Twl	Clock Low Time	Normal	10		-	Ns
		High speed	7			Ns
Тwн	Clock High Time	Normal	10		-	Ns
		High speed	7		-	Ns
Tisu	Input Setup Time	Normal	5		-	Ns
		High speed	6		-	
Тін	Input Hold Time	Normal	5		-	Ns
		High speed	2			
Todly	Output Delay Time		0		14	Ns
Тон	Output Hold Time	High speed	2.5			Ns

Note: Over full range of values specified in the Recommended Operating Conditions unless otherwise specified

6 Bluetooth Interfaces

For control and connection of the Bluetooth function to a host processor, the W2CBW0015 supports the SDIO. There is also a PCM interface for connection to audio PCM devices such as analog to digital and digital to analog converters.

6.1 SDIO Interface

Bluetooth is supported over the SDIO interface itself. For further details regarding the SDIO interface, please refer Section 5.1.

6.2 PCM Interface

Pulse Code Modulation (PCM) is a standard method used to digitize audio (particularly voice) patterns for transmission over digital communication channels. Through its PCM interface, W2CBW0015 has hardware support for continual transmission and reception of PCM data, thus reducing processor overhead for wireless headset applications. W2CBW0015 offers a bi-directional digital audio interface that route directly into the baseband layer of the on-chip firmware. It does not pass through the HCI protocol layer. Hardware on W2CBW0015 allows the data to be sent to and received from a SCO connection.

W2CBW0015 can operate as the PCM interface Master generating an output clock of 2048 kHz. When configured as PCM interface slave it can operate with an input clock up to 2048 kHz. W2CBW0015 is compatible with Long Frame Sync and Short Frame Sync clock formats. It supports 16-bit linear, 8-bit µ-law or A-law compounded formats at 8k samples/s.

W2CBW0015 has been tested with a Wolfson WM8978 CODEC, but its standard PCM/I2S interface is compatible with various industry standard CODECs from Motorola, OKI, Qualcomm, etc.

7 Antenna and Clock

W2CBW0015 has a single antenna interface, for WLAN and Bluetooth. This interface is 50 Ohm impedance. W2CBW0015 has an internal crystal oscillator with 38.4 MHz frequency and requires an external sleep clock; this is used in low power modes. This oscillator provides clock for both WLAN and Bluetooth.

7.1 Wireless LAN

Wi2Wi provides the end user driver needed for operating WLAN part of W2CBW0015. This driver is specific to the operating system, processor and host bus – it cannot be used for any other processors, operating systems or host buses. Since the operating system and platform matrix is quite large, it is not possible to have all the combinations off the shelf. Please contact your sales representative for driver availability for your platform.

The following is a brief description of the driver features along with the processors, operating systems and host buses.

- Key Features
 - WEP encryption (64 bit/128 bit)
 - o IEEE power save mode
 - o Deep sleep mode
 - o Infrastructure and ad-hoc mode
 - o Rate adaptation
 - WPA TKIP security
 - o WPA2
 - o Bluetooth coexistence
- Operating System Support
 - o Linux
 - Android
- Platform Support
 - o Intel x86
 - o Marvell PXA270, PXA300, PXA310, PXA320, Kirkwood
 - TI OMAP 3530
 - o i.MX51
- Host Buses
 - SDIO

In addition to the end user driver, Wi2Wi also provides engineering tools used for testing and certification.

7.2 Bluetooth

Bluetooth portion of W2CBW0015 needs a host software stack and profiles for operation. It uses a standard HCI interface – any commercial stack or profile supporting the standard interface will work with W2CBW0015.

Advanced profiles for these operating systems can be procured from commercial vendors like IVT. Wi2Wi does not provide a Bluetooth software stack.

The following are the key features of a typical HCI stack:

- Bluetooth v2.1 + EDR mandatory functionality:
 - o EDR, 3 Mbps payload data rate
 - o Support 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3 and 3-DH5 packet types
 - o Support 2-EV3, 2-EV5, 3-EV3 and 3-EV5 packet types
- Bluetooth v2.1 mandatory functionality:
 - o Adaptive Frequency Hopping (AFH), including classifier
 - o Faster connection enhanced inquiry scan (immediate FHS response)
 - LMP improvements
 - o Parameter ranges
 - Support of AUX1 packet type
- Optional v2.1 + EDR functionality supported:
 - o AFH as Master and automatic channel classification
 - o Fast connect interlaced inquiry and page scan plus RSSI during inquiry
 - o Extended SCO (escort), eV3 + CRC, eV4, eV5
 - o SCO handle
 - o Synchronization
- Bluetooth Core Specification v2.1 + EDR supported features:
 - o Bluetooth components: Baseband (including LC), LM and HCI
 - o UART HCI transport layer
 - All standard radio packet types
 - o Full Bluetooth data rate, up to 723.2Kbits/s asymmetric
 - Operation with up to seven active slaves
 - o Maximum number of simultaneous active ACL connections: 7
 - o Maximum number of simultaneous active SCO connections: 3
 - o Operation with up to three SCO links, routed to one or more slaves
 - o All standard SCO voice coding, plus transparent SCO
 - O Standard operating modes: page, inquiry, page-scan and inquiry-scan
 - o All standard pairing, authentication, link key and encryption operations
 - Standard Bluetooth power-saving mechanisms:
 Hold, Sniff and Park modes, including Forced Hold
 - o Dynamic control of peers. Transmit power via LMP
 - o Master/slave switch
 - Broadcast
 - o Channel quality driven data rate
 - All standard Bluetooth Test Modes
- Bluetooth Core Specification v3.0 supported

8 WLAN Software Architecture

A simplified view of the overall WLAN software architecture is illustrated in the figure below. It is partitioned between the host processor and the WLAN firmware that resides on the Wi2Wi SiP.

Figure 3: Software Architecture

8.1 Host Processor

The TCP/IP stack, Ethernet Driver and the 802.11 extensions reside on the host processor. The Hardware Interface SDIO Driver is partitioned between the host and the firmware on the Wi-Fi.

The WLAN firmware for the Wi-Fi is downloaded through the selected host SDIO interface by the Hardware Interface Driver at power up.

Once the firmware is downloaded, the Data Path and the Control Path between the host and Wi-Fi are established, and information can flow between the two devices.

9 Reference Schematics

Figure 4: Box Diagram

Figure 5: Top View of Pads

Figure 6: Initialization Configuration

Figure 7: SDIO Interface

10 Manufacturing Notes

10.1 Physical SiP Dimensions and Pad Locations

• Physical Size: 9.5 mm x 9.5 mm x 1.36 mm LGA

• LGA Pad Size: 0.4 mm x 0.4 mm

Solder Mask Defined (SMD) Opening: 0.33 mm x 0.33 mm

Recommended PCB Pad Size: 0.4 mm x 0.4mm

Pad Pitch: 1.0 mmPad Grid Array: 9 x 9

In the Top View, 'YY' indicates Year, 'WW' indicates Work Week.

Figure 8: Physical Dimensions and Pad Locations

10.2 Physical Shield Dimensions

It is recommended that W2CBW0015 be covered with a shield for optimal performance. The recommended dimensions for the shield are shown in Figure 9. (Other shield dimensions can also be used depending on the system requirements).

Figure 9: Physical Shield Dimensions

10.3 Shield Landing Pattern

Figure 10: Shield Landing Pattern

10.4 Tray Orientation

Figure 11: IC Orientation on Tray

322.6 315.0-1°/S -3-R2.5 35.9 -1'/S 92.1 16.00(7 PLS) ATING C3.0-**→**B 14.65(20 PLS) 8-R1.17 16-R2.54 17 25.4 34.3 2.54

Figure 12: Carrier Tray Package Outline Drawing

NOTES :

- 1. (S.R. DHM/SQ.) MEANS SURFACE ELECTRIC RESISTIVITY OF THE TRAY.
- RESISTIVITY OF THE TIME.

 THE MOLDED TRAY'S MATERIAL SHALL BE RIGIN ENOUGH TO AVOID DAMAGE TO THE COMPONENTS DURING HANDLING, LODDING, BACKING, TESTING, SHIPPING AND PLACING.
- 3. TRAYS ARE STACKABLE WITHOUT INTERFERENCE AND WILL NOT STICK TOGETHER DURING UNSTACKING OPERATION.
- 4. WARPAGE IS WITHIN 0.76 mm.
- THE CELLS MARKED WITH CROSS SYMBOL ARE FOR VACUUM PICKUP AREA AND WITHOWT THRU HOLES.
- 6. TOTAL USABLE CELLS 8X21=168.
- 7. ALL DIMENSIONS ARE IN MILLIMETERS.

10.5 Tape and Reel Orientation

Figure 13: IC Orientation on Tape and Reel

Figure 14: Leader and Trailer

Figure 15: Carrier Tape Package Outline Drawing

10.6 Storage and Baking Instructions

W2CBW0015 is an MSL4 grade part. After opening the bag, the parts should be:

- a. Stored as per J-STD-033 standard
- b. Mounted within 72 hours of factory conditions ($\leq 30^{\circ}$ C, 60% RH)
- c. If the parts have been exposed in transit, they should be baked per J-STD-033 standard for 24 hours at 125°C

Please follow JEDEC specifications for baking these units on Tape and Reel.

10.7 Recommended Reflow Profile

Assembly Guidelines:

- 1. Follow solder paste manufacturers recommended profile.
- 2. The profile illustrated in JESD-020 and below is for reference only.

Figure 16: Recommended Reflow Profile

Key features of the profile:

- Initial Ramp = 1-2.5°C/Sec to 175°C +/- 25°C equilibrium
- Equilibrium = 60-180 seconds
- Ramp to Maximum (Peak) temperature $(245^{\circ}\text{C}-260^{\circ}\text{C}) = 3^{\circ}\text{C/sec max}$.

11 Disclaimers

Wi2Wi, Inc. PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE MANAGING DIRECTOR OF Wi2Wi, Inc.

The definitions used herein are:

a) Life support devices or systems are devices which (1) are intended for surgical implant into the body, or (2) support or sustain life and whose failure to perform when properly used in accordance with the instructions for use provided in the labeling can reasonably be expected to result in a significant injury to the user. b) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Wi2Wi does not assume responsibility for use of any of the circuitry described; no circuit patent licenses are implied and Wi2Wi reserves the right, at any time without notice, to change the said circuitry and specifications.

11.1 Data Sheet Status

Wi2Wi, Inc. reserves the right to change the specification without prior notice in order to improve the design and supply the best possible product. Updated information and release notes will be made available on www.wi2wi.com. Please check with Wi2Wi Inc. for the most recent data before initiating or completing a design.

12 Ordering Information

The following part ordering scheme shall be followed for W2CBW0015:

Part Order Number	Description		
W2CBW0015-T	Packed and shipped in Trays		
W2CBW0015-TR	Packed and shipped on Tape and Reel		
W2CBW0015 Dev-1	Development Kit without Beagle Board		
W2CBW0015 Dev-2	Development Kit with Beagle Board		
W2CBW0015-SHLD	Surface mount shield for W2CBW0015		

12.1 Development Kit

- <u>W2CBW0015</u> <u>Dev-1</u>: W2CBW0015 (802.11 b/g/n + BT) Development Kit This Dev-Kit is designed for a quick evaluation with customer's host processor. The host machine must have a SDIO interface. This Dev-Kit also includes a 2.4 GHz RF antenna, Win-7 and Linux drivers, and user-guides for WiFi and BT tests.
- <u>W2CBW0015</u> Dev-2: W2CBW0015 (802.11 b/g/n + BT) Development Kit + Beagle board This Dev-Kit is a complete system solution (Radio + Host) for customer evaluation. The Beagle board is a Linux-only-based host with SDIO interface, and has pre-loaded Linux-

based WiFi and BT drivers for ease of evaluation. The Beagle board can be controlled by a serial console, by connecting it to a host machine using a serial cable (provided). This Dev-Kit also includes a 2.4 GHz RF antenna, Win-7 and Linux drivers, and user-guides for WiFi and BT tests.

13 Certifications

W2CBW0015 will conform to the following standards when integrated into the W2CBW0015 Dev development system.

EMC/Immunity

TBD

Product Safety

TBD

<u>Note</u>: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and radiates radio frequency energy. If not installed and used in accordance with the instructions, it may cause harmful interference to radio communications.

- a) This equipment complies with the FCC RF radiation exposure limits set forth for an uncontrolled RF environment. If used on a mobile device, this equipment must be installed and operated at a minimum distance of 20 centimeters from your body.
- b) Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

14 References

14.1 Specifications

- IEEE 802.11 b/g/n Wireless LAN Specification
- Specification of the Bluetooth System, v2.1+EDR, v3.0
- SDIO full-speed card specification

14.2 Trademarks, Patents and Licenses

• Trademarks: Bluetooth, Wi-Fi

• Licenses: 88W8787 Software from Marvell