Introducción al aprendizaje automático

#1. Introducción al aprendizaje automático.

Regresión. Clasificación.

Programación tradicional

Aprendizaje automático

Tipos de aprendizaje

- Aprendizaje supervisado (inductivo)
 Datos de entrenamiento + salida esperada
- Aprendizaje no supervisado
 Datos de entrenamiento (sin salida esperada)
- Aprendizaje semi-supervisado
 Datos de entrenamiento + pocas salida esperadas
- Aprendizaje por refuerzo
 "Recompensas" por secuencias de acciones

Aprendizaje supervisado: entrenamiento vs. evaluación

Aprendizaje supervisado: regresión

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y está en \mathbb{R}^n \to regresión

Aprendizaje supervisado: clasificación

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y es categórica \rightarrow clasificación

Aprendizaje supervisado: clasificación

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y es categórica \rightarrow clasificación

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

...

Aprendizaje no supervisado

- Dados $x_1, x_2, ..., x_n$
- Aprender la estructura interna de los datos
 - o p.ej. clustering

Aprendizaje no supervisado

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

Aprendizaje por refuerzo

- Dada una secuencia de estados y acciones con recompensa (reward), generar una política (policy)
 - política = mapeo estados → acciones que nos dicen que hacer en un determinado estado
- Ejemplos:
 - Juegos
 - Navegación en robótica
 - Control
 - o ..

La interfaz agente-entorno

- El agente y el entorno interactúan a instantes discretos de tiempo
 - \circ t=0,1,...,K
 - \circ el agente observa el estado S_t en el paso t
 - o produce una acción a_t en el paso t
 - o obtiene una recompensa r_{t+1} en el paso t+1
 - o genera un nuevo estado s_{t+1} en el paso t+1

Sobre "aprendizaje"

- Se puede ver como la utilización directa o indirecta de la experiencia para aproximar una determinada función.
- La aproximación de dicha función corresponde a una búsqueda en un espacio de hipótesis (espacio de funciones) por aquella que mejor ajusta el conjunto de datos de entrenamiento.
- Distintos métodos de aprendizaje automático asumen distintos espacios de hipótesis o utilizan distintas estrategias de búsqueda.

Aprendizaje supervisado

Regresión

Regresión

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i, y_i)\}_{i=1}^N = \{(x_1, y_1), \cdots, (x_N, y_N)\}$$

 El problema de regresión consiste en estimar f(x) a partir de estos datos

Regresión polinomial

- En verde se ilustra la función "verdadera" (inaccesible)
- Las muestras son uniformes en x y poseen ruido en y
- Utilizaremos una <u>función de costo</u> (error cuadrático)
 que mida el error en la predicción de y mediante f(x)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sobreajuste (overfitting)

- Datos de test: otra muestra de los misma función subyacente
- El error de entrenamiento se hace cero, pero el de test crece con M

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

Bondad de ajuste vs. complejidad de modelo

- Si el modelo tiene tantos grados de libertad como los presentes en los datos de entrenamiento, puede ajustarlos perfectamente
- El objetivo en aprendizaje automático no es el ajuste perfecto, sino la generalización a conjuntos no vistos
- Podemos decir que un modelo generaliza, si puede explicar los datos empleando una complejidad acotada

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43
	*			

Prevenir el sobreajuste (I)

• Agregar más datos (más que la "complejidad" del modelo)

Prevenir el sobreajuste (II)

• Regularización: penalizar valores grandes de los coeficientes

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Prevenir el sobreajuste (II)

Regularización: penalizar valores grandes de los coeficientes

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Regresión lineal: solución de cuadrados mínimos

- Función de predicción lineal $y = f_w(x) = \langle x, w \rangle = \sum_{k=1}^{N} x_k w_k$
- Función de costo: $L(w) = \sum_{i=1}^{N} (y^i \langle x^i, w \rangle)^2$
- Ecuaciones normales

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \mathbf{X} = \begin{bmatrix} x_1^1 & \dots & x_k^1 & \dots & x_K^1 \\ \vdots & & \vdots & & \\ x_1^N & \dots & x_k^N & \dots & x_K^N \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_k \\ \vdots \\ w_K \end{bmatrix}$$

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{w}$$

$$L(\mathbf{w}) = \mathbf{e}^T \mathbf{e}$$

$$L(\mathbf{w}) = \mathbf{e}^T \mathbf{e} + \lambda \mathbf{w}^T \mathbf{w} \longrightarrow \mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Elección de hiperparámetros

Dividir el conjunto total de ejemplos en tres subconjuntos

- Entrenamiento: aprendizaje de variables del modelo
- Validación: ajuste/elección de hiperparámetros
- Test: estimación <u>final</u> de la performance del modelo entrenado (y con hiperparámetros elegidos adecuadamente

Clasificación

Clasificación binaria

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i,y_i)\}_{i=1}^N=\{(x_1,y_1),\cdots,(x_N,y_N)\}$$
 con $x_i\in\mathbb{R}^n,y_i\in\{-1,+1\}.$

• Aprender una f(x) tal que

$$f(\mathbf{x}_i) \begin{cases} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

es decir: $y_i f(x_i) > 0$ para una clasificación correcta.

Separabilidad lineal

linealmente separable

no linealmente separable

Clasificadores lineales

- La entrada es un vector x, de dimensionalidad n
- La salida es una etiqueta y, ∈ {-1, +1}
- Clasificador = función de predicción + función de decisión

$$g(f(x)) \to \{-1, +1\}$$

Función de predicción lineal

$$f(x) = w^{\mathrm{T}}x + w_0$$

Función de decisión

$$g(z) = sign(z)$$
$$g(f(x)) = sign(w^{T}x + w_{0})$$

Propuesto por Rosemblatt en 1958

- El objetivo es encontrar un hiperplano de separación
 - Si los datos son linealmente separables, lo encuentra

Es un algoritmo online (procesa un ejemplo a la vez)

Muchas variantes ...

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2)$...
- Una tasa de aprendizaje r (número pequeño y menor a 1)

Algoritmo:

- Inicializar $w^{(0)} \in \mathbb{R}^n$
- Para cada ejemplo (x,y,)
 - $\circ \quad \text{Predecir } y_i' = sign(w^T x_i + w_0)$
 - $\circ \quad \text{Si } y_i' \neq y_i:$ $w^{(t+1)} \leftarrow w^{(t)} + r (y_i x_i)$

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2)$...
- Una tasa de aprendizaje r (número pequeño y menor a 1)

Algoritmo:

- Inicializar $w^{(0)} \epsilon \mathbb{R}^n$
- Para cada ejemplo (x_i,y_i)
 - $\circ \quad \text{Predecir } y_i' = sign(w^T x_i + w_0)$
 - \circ Si $y_i' \neq y_i$: $w^{(t+1)} \leftarrow w^{(t)} + r(y, x)$

Nota: el término de bias se puede contemplar definiendo las entrada como $(x_i^{\mathrm{T}} 1)^{\mathrm{T}} \epsilon \mathbb{R}^{\mathrm{n+1}}$. Pregunta: ¿qué implica que w_0 =0?

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2)$...
- Una tasa de aprendizaje *r* (número pequeño y menor a 1)

Algoritmo:

- Inicializar $w^{(0)} \epsilon \mathbb{R}^n$
- Para cada ejemplo (x_i, y_i)
 - \circ Predecir $y_i' = sign(w^T x_i)$
 - $\circ \quad \text{Si } y_i' \neq y_i:$ $w^{(t+1)} \leftarrow w^{(t)} + r (y_i x_i)$

Actualiza solo cuando comete un error

Error en positivos:

$$w^{(t+1)} \leftarrow w^{(t)} + r x_i$$

Error en negativos:

$$w^{(t+1)} \leftarrow w^{(t)} - r x_i$$

Si $y_i w^T x_i \le 0 \rightarrow \text{error}$

Dinámica de actualización

Error en ejemplo **positivo**:

Dinámica de actualización

Error en ejemplo **negativo**:

El algoritmo "estándar"

Given a training set D = {(\mathbf{x}_i , y_i)}, $\mathbf{x}_i \in \Re^n$, $y_i \in \{-1,1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \Re^{\mathsf{n}}$
- 2. For epoch = 1 ... T:
 - Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i \leq 0$, update $\mathbf{w} \leftarrow \mathbf{w} + r y_i \mathbf{x}_i$
- 3. Return w

Another way of writing that there is an error

T is a hyper-parameter to the algorithm

Prediction: sgn(w^Tx)

¿Cuál es el mejor w?

Solución de **margen máximo**: el hiperplano más estable ante perturbaciones de la entrada

Generalización en clasificación

Complejidad del modelo ⇔ complejidad de la frontera de decisión

Problemas multiclase

Multi-Class Classification

Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

What is multiclass classification?

- · An input can belong to one of K classes
- Training data: Input associated with class label (a number from 1 to K)
- Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called multi-label classification

Binary to multiclass

- Can we use a binary classifier to construct a multiclass classifier?
 - Decompose the prediction into multiple binary decisions

- How to decompose?
 - One-vs-all
 - All-vs-all
 - Error correcting codes

1. One-vs-all classification

Assumption: Each class individually separable from all the others

- Learning: Given a dataset $D = \{(x_i, y_i)\}$ $x \in \mathbb{R}^n$ $y \in \{1, 2, \dots, K\}$
 - Decompose into K binary classification tasks
 - For class k, construct a binary classification task as:
 - Positive examples: Elements of D with label k
 - Negative examples: All other elements of D
 - Train K binary classifiers \mathbf{w}_1 , \mathbf{w}_2 , \cdots \mathbf{w}_K using any learning algorithm we have seen

1. One-vs-all classification

Assumption: Each class individually separable from all the others

• Learning: Given a dataset
$$D = \{(x_i, y_i)\}$$

$$x \in \mathbb{R}^n$$

$$y \in \{1, 2, \dots, K\}$$

- Train K binary classifiers \mathbf{w}_1 , \mathbf{w}_2 , \cdots \mathbf{w}_K using any learning algorithm we have seen
- Prediction: "Winner Takes All" argmax_i w_i^Tx

Visualizing One-vs-all

One-vs-all may not always work

Black points are not separable with a single binary classifier

The decomposition will not work for these cases!

w_{green}^Tx > 0 for green inputs

???

2. All-vs-all classification

Sometimes called one-vs-one

- Assumption: Every pair of classes is separable
- Learning: Given a dataset $D = \{(x_i, y_i)\}, \quad y \in \{1, 2, \dots, K\}$
 - For every pair of labels (j, k), create a binary classifier with:
 - Positive examples: All examples with label j
 - Negative examples: All examples with label k
 - Train $\binom{K}{2} = \frac{K(K-1)}{2}$ classifiers to separate every pair of labels from each other

2. All-vs-all classification

Sometimes called one-vs-one

- Assumption: Every pair of classes is separable
- Learning: Given a dataset $D = \{(x_i, y_i)\}, \quad \substack{x \in \mathbb{R}^n \\ y \in \{1, 2, \dots, K\}}$
 - Train $\binom{K}{2} = \frac{K(K-1)}{2}$ classifiers to separate every pair of labels from each other
- Prediction: More complex, each label get K-1 votes
 - How to combine the votes? Many methods
 - Majority: Pick the label with maximum votes
 - · Organize a tournament between the labels

All-vs-all classification

- Every pair of labels is linearly separable here
 - When a pair of labels is considered, all others are ignored

Problems

- 1. O(K²) weight vectors to train and store
- 2. Size of training set for a pair of labels could be very small, leading to overfitting of the binary classifiers
- 3. Prediction is often ad-hoc and might be unstable

 Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?

3. Error correcting output codes (ECOC)

- · Each binary classifier provides one bit of information
- With K labels, we only need log₂K bits
 - One-vs-all uses K bits (one per classifier)
 - All-vs-all uses O(K2) bits
- Can we get by with O(log K) classifiers?
 - Yes! Encode each label as a binary string
 - Or alternatively, if we do train more than O(log K) classifiers, can we use the redundancy to improve classification accuracy?

Using log₂K classifiers

Learning:

- Represent each label by a bit string
- Train one binary classifier for each bit

	23			
abel#	Code			
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

8 classes, code-length = 3

• Prediction:

- Use the predictions from all the classifiers to create a log₂N bit string that uniquely decides the output
- What could go wrong here?
 - Even if one of the classifiers makes a mistake, final prediction is wrong!

Error correcting output coding

Answer: Use redundancy

- Assign a binary string with each label
 - Could be random
 - Length of the code word L >= log₂K is a parameter

#	Code						
0	0	0	0	0	0		
1	0	0	1	1	0		
2	0	1	0	1	1		
3	0	1	1	0	1		
4	1	0	0	1	1		
5	1	0	1	0	0		
6	1	1	0	0	0		
7	1	1	1	1	1		

8 classes, code-length = 5

- Train one binary classifier for each bit
 - Effectively, split the data into random dichotomies
 - We need only log₂K bits
 - Additional bits act as an error correcting code
- One-vs-all is a special case.
 - How?

How to predict?

Prediction

- Run all L binary classifiers on the example
- Gives us a predicted bit string of length L
- Output = label whose code word is "closest" to the prediction
- Closest defined using Hamming distance
 - · Longer code length is better, better error-correction

#	Code					
0	0	0	0	0	0	
1	0	0	1	1	0	
2	0	1	0	1	1	
3	0	1	1	0	1	
4	1	0	0	1	1	
5	1	0	1	0	0	
6	1	1	0	0	0	
7	1	1	1	1	1	

8 classes, code-length = 5

Example

- Suppose the binary classifiers here predict 11010
- The closest label to this is 6, with code word 11000

Error correcting codes: Discussion

- Assumes that columns are independent
 - Otherwise, ineffective encoding
- · Strong theoretical results that depend on code length
 - If minimal Hamming distance between two rows is d, then the prediction can correct up to (d-1)/2 errors in the binary predictions
- Code assignment could be random, or designed for the dataset/task
- One-vs-all and all-vs-all are special cases
 - All-vs-all needs a ternary code (not binary)