

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl 6-(4-chlorophenyl)-4-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate

M. Sapnakumari,^a B. Narayana,^a H.S. Yathirajan,^b Jerry P. Jasinski^c* and Ray J. Butcher^d

^aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, LISA

Correspondence e-mail: jjasinski@keene.edu

Received 9 October 2013; accepted 22 November 2013

Key indicators: single-crystal X-ray study; T = 123 K; mean $\sigma(C-C) = 0.003$ Å; disorder in main residue; R factor = 0.055; wR factor = 0.148; data-to-parameter ratio = 11.9.

The asymmetric unit of the title compound, C₂₁H₁₈ClFO₃, contains two independent molecules. In one molecule (A), the 4-chlorophenyl, oxocyclohex-3-ene, carboxylate, and ethyl groups were refined as disordered over two sets of sites with a 0.684 (5):0.316 (5) ratio. The cyclohexene ring in the disordered molecule is in a slightly distorted envelope conformation for the major component (with the C atom bound to the carboxylate group being the flap atom) and in a screw-boat conformation for the minor component. In the ordered molecule (B), the cyclohexene ring is in a half-chair conformation. The dihedral angles between the mean planes of the fluoro- and chloro-substituted benzene rings are 89.9 (7) (only the major component is considered for A) and 76.4 (7) $^{\circ}$ (B). In the crystal, inversion dimers are observed along with weak C-H···O hydrogen bonds, which form chains along [100].

Related literature

For the synthesis and applications of 4,6-diaryl-2-oxo-cyclohex-3-ene-1-carboxylate derivatives, see: Ashalatha *et al.* (2009); Sreevidya *et al.* (2010); Padmavathi *et al.* (2000); Senguttuvan & Nagarajan (2010); Butcher *et al.* (2011). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see Allen *et al.* (1987). For related structures, see: Dutkiewicz *et al.* (2011*a,b,c*); Fun *et al.* (2010); Harrison *et al.* (2010); Kant *et al.* (2012).

Experimental

Crystal data

C ₂₁ H ₁₈ CIFO ₃	$\gamma = 67.342 \ (4)^{\circ}$
$M_r = 372.80$	$V = 1828.15 (14) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 4
a = 11.6611 (5) Å	Cu $K\alpha$ radiation
b = 13.1823 (5) Å	$\mu = 2.09 \text{ mm}^{-1}$
c = 13.2251 (5) Å	T = 123 K
$\alpha = 77.250 \ (3)^{\circ}$	$0.35 \times 0.23 \times 0.18 \text{ mm}$
$\beta = 87.320 \ (3)^{\circ}$	

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 7365 in Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) $T_{\min} = 0.508, T_{\max} = 1.000$

13437 measured reflections 7365 independent reflections 6861 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.055 & 177 \text{ restraints} \\ wR(F^2)=0.148 & \text{H-atom parameters constrained} \\ S=1.09 & \Delta\rho_{\max}=0.68 \text{ e Å}^{-3} \\ 7365 \text{ reflections} & \Delta\rho_{\min}=-0.40 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdots A$
C8 <i>A</i> −H8 <i>A</i> ···O1 <i>B</i>	0.95	2.55	3.478 (3)	167
$C2A - H2AA \cdots O1B$	0.99	2.44	3.288 (6)	143
$C2A - H2AB \cdot \cdot \cdot O2B^{i}$	0.99	2.56	3.432 (7)	147
$C2C-H2CA\cdots O1B$	0.99	2.32	3.278 (18)	164
$C2C-H2CB\cdots O2B^{i}$	0.99	2.42	3.40(2)	170
$C2B-H2BA\cdots O1A^{ii}$	0.99	2.49	3.315 (8)	140
$C2B-H2BA\cdots O1C^{ii}$	0.99	2.56	3.380 (18)	140
$C2B-H2BB\cdots O2C^{iii}$	0.99	2.58	3.436 (10)	145
$C8B-H8B\cdots O1A^{ii}$	0.95	2.50	3.379 (8)	154
$C8B-H8B\cdots O1C^{ii}$	0.95	2.54	3.417 (19)	154
$C9B-H9B\cdots O2A^{ii}$	0.95	2.54	3.274 (6)	134
$C14B-H14B\cdots O2A^{iii}$	0.95	2.54	3.247 (5)	131

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. MS thanks the DST for providing financial help for the research work

organic compounds

through an INSPIRE Fellowship. RJB acknowledges the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5662).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Ashalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon, 184, 1904–1919.
- Butcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). *Acta Cryst.* E**67**, o1346–o1347.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334–o335.
- Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.
- Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, 0445–0446.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). *Acta Cryst.* E**66**, 0864–0865.
- Harrison, W. T. A., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). Acta Cryst. E66, 02478.
- Kant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2917–o2918.
- Padmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). *Molecules*, 5, 1281–1286.
- Senguttuvan, S. & Nagarajan, S. (2010). Int. J. Chem. 2, 108-112.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 171–181.

Acta Cryst. (2013). E69, o1839-o1840 [doi:10.1107/S1600536813031851]

Ethyl 6-(4-chlorophenyl)-4-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate

M. Sapnakumari, B. Narayana, H.S. Yathirajan, Jerry P. Jasinski and Ray J. Butcher

1. Comment

Michael addition of ethyl acetoacetate to chalcones yield 4,6-diaryl-2-oxo-cyclohex-3-ene-1-carboxylate derivatives (Ashalatha et al., 2009; Sreevidya et al., 2010), which could be used as efficient synthons for building spiro compounds or as intermediates in the synthesis of isoxazoles, pyrazoles and quinazolins (Padmavathi et al., 2000; Senguttuvan & Nagarajan, 2010; Butcher et al., 2011). The crystal structure of some cyclohexenone derivatives, viz., methyl 4,6-bis(4fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (Fun et al., 2010), (1RS,6SR)-ethyl 4-(4-chlorophenyl)- 6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate toluene hemisolvate (Dutkiewicz et al. 2011a), (1RS,6SR)-ethyl 4,6-bis(4fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (Dutkiewicz et al. 2011b), (1RS,6SR)-ethyl 4-(2, 4-dichlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene- 1-carboxylate (Dutkiewicz et al. 2011c), ethyl 4-(2,4- dichlorophenyl)-6-(6-methoxy-2-naphthyl)-2-oxocyclohex-3-ene- 1-carboxylate (Harrison et al., 2010), ethyl 6-(4-chlorophenyl)-4-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (Kant et al., 2012) have been reported. In view of the importance of cyclohexenone derivatives, the title compound, was prepared (Fig. 4) and its crystal structure is reported. The title compound, (I), crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1 & 2). Disorder is modeled for the 4-chlorophyenyl and oxocyclohex-3-ene rings and carboxylate and ethyl groups in molecule A with an occupancy ratio of 0.684 (5): 0.316 (5) (Fig. 1). The cyclohexene ring in disordered molecule A (0.684 (5) occupancy) is in a slightly distorted envelope conformation (puckering parameters, C1A–C6A: O, θ , and $\varphi = 0.477$ (7)Å, 57.3 (14)° and 335.4 (15)°) while in disordered molecule C (0.316 (5) occupancy) it is in a screw-boat conformation (C1C-C6C: 0.579 (17)Å, 112 (2)° and 154 (2)°. In molecule B the cyclohexene ring is in a half-chair conformation (puckering parameters, C1B–C6B: Q, θ , and $\varphi = 0.477$ (2) Å, 50.6 (3))° and 356.2 (4)°), respectively, (Cremer & Pople, 1975) (Fig. 2). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the 4-fluorophenyl and 4-chlorophenyl rings is 89.9 (7)° (molecule A) and 76.4 (7)° (molecule B), respectively. In the crystal, weak C—H···O intermolecular interactions are observed (Table 1) forming chains along [100] and which contribute to packing stability (Fig. 3).

2. Experimental

(2E)-3-(4-Chlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (2.60 g, 0.01 mol) and ethyl acetoacetate (1.30 g, 0.01 mol) were refluxed for 8 hrs in 30 ml absolute alcohol in presence 10% NaOH (Fig.4). The reaction mixture was cooled to room temperature and the precipitate obtained was filtered. Single crystals were grown by slow evaporation from the solvent absolute alcohol (M.P.: 412–414 K).

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH₂) 0.96Å or (CH₃). Isotropic displacement parameters for these atoms were set to 1.2

(CH, CH₂) or 1.5 (CH₃) times U_{eq} of the parent atom. Idealised Me refined as rotating groups. Disorder was modeled for the chloro (Cl1A, Cl1C) and ethyl (C20A, C20C, C21A, C12C) groups as well as the cyclohexane ring (C1A, C1C, C2A, C2C, C3A, C3C, C4A, C4C, C5A, C5C, C6A, C6C) and carboxylate groups in molecule A with an occupancy ratio of 0.684 (5): 0.316 (5).

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of molecule A in (I) showing 30% probability displacement ellipsoids. Disorder (shown as open bonds) is modeled for the 4-chlorophyenyl and oxocyclohex-3-ene rings and carboxylate and ethyl groups, with an occupancy ratio of 0.684 (5): 0.316 (5).

Figure 2The molecular structure of molecule B in (I) showing 30% probability displacement ellipsoids.

Figure 3 Partial packing plot for (I) viewed along the c axis. Dashed lines indicate weak C—H···O intermolecular interactions forming chains along [100]. H atoms not involved in these weak intermolecular interactions have been removed for clarity.

Figure 4

Synthesis scheme for (I).

Ethyl 6-(4-chlorophenyl)-4-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate

Crystal data

 $C_{21}H_{18}C1FO_3$ $M_r = 372.80$ Triclinic, $P\overline{1}$ a = 11.6611 (5) Å b = 13.1823 (5) Å c = 13.2251 (5) Å $\alpha = 77.250$ (3)° $\beta = 87.320$ (3)° $\gamma = 67.342$ (4)° V = 1828.15 (14) Å³

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer Detector resolution: 10.5081 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent,

2012) $T_{\text{min}} = 0.508, T_{\text{max}} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.148$ S = 1.097365 reflections 617 parameters 177 restraints Z = 4 F(000) = 776 $D_x = 1.354 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6709 reflections $\theta = 3.4-75.5^{\circ}$ $\mu = 2.09 \text{ mm}^{-1}$ T = 123 KPrism, colourless $0.35 \times 0.23 \times 0.18 \text{ mm}$

13437 measured reflections 7365 independent reflections 6861 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 75.7^{\circ}, \theta_{\text{min}} = 3.4^{\circ}$ $h = -14 \rightarrow 13$ $k = -16 \rightarrow 13$ $l = -16 \rightarrow 12$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_\circ^2) + (0.0631P)^2 + 1.2352P]$ where $P = (F_\circ^2 + 2F_c^2)/3$ (Δ/σ)_{max} < 0.001 $\Delta\rho$ _{max} = 0.68 e Å⁻³ $\Delta\rho$ _{min} = -0.40 e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F1A	0.40903 (18)	0.18316 (15)	0.39705 (12)	0.0598 (4)	
C7A	0.55724 (18)	0.41724 (17)	0.26781 (15)	0.0298 (4)	
C8A	0.5667 (2)	0.37490 (19)	0.37517 (16)	0.0347 (4)	
H8A	0.6072	0.4008	0.4184	0.042*	
C9A	0.5176(2)	0.2955 (2)	0.41917 (17)	0.0418 (5)	
H9A	0.5254	0.2658	0.4919	0.050*	
C10A	0.4575 (2)	0.2607(2)	0.35531 (19)	0.0409 (5)	
C11A	0.4429(2)	0.3018(2)	0.24975 (18)	0.0381 (5)	
H11A	0.3993	0.2773	0.2078	0.046*	
C12A	0.4937(2)	0.38005 (18)	0.20622 (16)	0.0336 (4)	
H12A	0.4853	0.4090	0.1333	0.040*	
C13A	0.6987 (4)	0.7320 (5)	0.2915 (6)	0.0352 (12)	0.684 (5)
C14A	0.5941 (4)	0.8237 (6)	0.3060(7)	0.0375 (10)	0.684 (5)
H14A	0.5150	0.8352	0.2786	0.045*	0.684 (5)
C15A	0.6050 (5)	0.8986 (7)	0.3605 (8)	0.0410 (14)	0.684 (5)
H15A	0.5335	0.9613	0.3704	0.049*	0.684 (5)
C16A	0.7207 (5)	0.8818 (6)	0.4005 (8)	0.0376 (13)	0.684 (5)
C17A	0.8253 (4)	0.7901 (6)	0.3860 (6)	0.0403 (10)	0.684 (5)
H17A	0.9044	0.7786	0.4134	0.048*	0.684 (5)
C18A	0.8144 (4)	0.7152 (4)	0.3315 (5)	0.0390 (11)	0.684 (5)
H18A	0.8859	0.6525	0.3216	0.047*	0.684 (5)
C13C	0.6632 (8)	0.7550 (10)	0.2832 (12)	0.0214 (16)	0.316 (5)
C14C	0.5752 (8)	0.8455 (13)	0.3173 (15)	0.0339 (19)	0.316 (5)
H14C	0.4899	0.8706	0.2971	0.041*	0.316 (5)
C15C	0.6120 (11)	0.8994 (15)	0.3810 (17)	0.038(2)	0.316 (5)
H15C	0.5519	0.9613	0.4044	0.046*	0.316 (5)
C16C	0.7368 (12)	0.8628 (15)	0.4106 (17)	0.041 (3)	0.316 (5)
C17C	0.8248 (9)	0.7722 (14)	0.3765 (16)	0.045 (3)	0.316 (5)
H17C	0.9101	0.7472	0.3967	0.054*	0.316 (5)
C18C	0.7880(8)	0.7183 (11)	0.3127 (12)	0.036(2)	0.316 (5)
H18C	0.8481	0.6565	0.2894	0.043*	0.316 (5)
O1A	0.7088 (8)	0.6061 (9)	-0.0287(5)	0.039(2)	0.684 (5)
O2A	0.8622 (4)	0.7464 (5)	0.0453 (4)	0.0443 (9)	0.684 (5)
O3A	0.6551 (4)	0.8353 (4)	0.0286 (5)	0.0460 (9)	0.684 (5)
C1A	0.6422 (4)	0.6813 (3)	0.2171 (2)	0.0323 (7)	0.684 (5)
H1A	0.5598	0.7378	0.1856	0.039*	0.684 (5)
C2A	0.6284 (5)	0.5752 (5)	0.2825 (5)	0.0254 (11)	0.684 (5)
H2AA	0.7008	0.5344	0.3323	0.030*	0.684 (5)
H2AB	0.5529	0.5985	0.3233	0.030*	0.684 (5)
C3A	0.6191 (10)	0.4952 (7)	0.2200 (6)	0.0232 (17)	0.684 (5)
C4A	0.6432 (19)	0.5094 (11)	0.1178 (8)	0.033 (3)	0.684 (5)
H4A	0.6247	0.4650	0.0786	0.040*	0.684 (5)
C5A	0.6963 (16)	0.5895 (10)	0.0651 (6)	0.031(2)	0.684 (5)
C6A	0.7355 (4)	0.6512 (3)	0.1330 (2)	0.0323 (7)	0.684 (5)
H6A	0.8164	0.5971	0.1691	0.039*	0.684 (5)
C19A	0.7606 (5)	0.7482 (7)	0.0639 (9)	0.0326 (13)	0.684 (5)
	0.6677 (5)	0.9329 (3)	-0.0439 (3)	0.0526 (10)	0.684 (5)

H20A	0.7443	0.9414	-0.0253	0.063*	0.684 (5)
H20B	0.5957	1.0026	-0.0390	0.063*	0.684 (5)
C21A	0.6735 (5)	0.9152 (4)	-0.1535(3)	0.0620 (12)	0.684(5)
H21A	0.6818	0.9800	-0.2016	0.093*	0.684(5)
H21B	0.5972	0.9076	-0.1718	0.093*	0.684(5)
H21C	0.7454	0.8466	-0.1582	0.093*	0.684(5)
Cl1A	0.7356 (3)	0.9740(2)	0.4685 (2)	0.0659 (7)	0.684(5)
O1C	0.707 (2)	0.609(2)	-0.0248(11)	0.046 (5)	0.316 (5)
O2C	0.8488 (8)	0.7264 (10)	0.0760 (8)	0.0437 (19)	0.316 (5)
O3C	0.6643 (10)	0.8545 (9)	0.0056 (10)	0.046(2)	0.316 (5)
C1C	0.7108 (6)	0.6376 (5)	0.2355 (4)	0.0224 (11)	0.316 (5)
H1C	0.8020	0.5908	0.2446	0.027*	0.316 (5)
C2C	0.6260 (19)	0.5767 (16)	0.2845 (12)	0.045 (4)	0.316 (5)
H2CA	0.6674	0.5234	0.3496	0.054*	0.316 (5)
H2CB	0.5479	0.6332	0.3029	0.054*	0.316 (5)
C3C	0.593 (2)	0.5124 (13)	0.2163 (12)	0.017(3)	0.316 (5)
C4C	0.640 (4)	0.511 (2)	0.1206 (16)	0.027 (6)	0.316 (5)
H4C	0.6521	0.4486	0.0903	0.033*	0.316 (5)
C5C	0.672 (3)	0.604(2)	0.0641 (12)	0.026 (4)	0.316 (5)
C6C	0.6624 (6)	0.6939 (5)	0.1230 (4)	0.0215 (12)	0.316 (5)
Н6С	0.5735	0.7465	0.1224	0.026*	0.316 (5)
C19C	0.7385 (9)	0.7589 (13)	0.0677 (19)	0.030(2)	0.316 (5)
C20C	0.7380 (9)	0.9112 (7)	-0.0596 (7)	0.052 (2)	0.316 (5)
H20C	0.7982	0.8604	-0.0996	0.062*	0.316 (5)
H20D	0.7834	0.9380	-0.0171	0.062*	0.316 (5)
C21C	0.6394 (13)	1.0084 (12)	-0.1302 (11)	0.106 (6)	0.316 (5)
H21D	0.6779	1.0554	-0.1747	0.159*	0.316 (5)
H21E	0.5775	1.0537	-0.0883	0.159*	0.316 (5)
H21F	0.5987	0.9794	-0.1734	0.159*	0.316 (5)
Cl1C	0.7756 (6)	0.9386 (5)	0.4862 (5)	0.0558 (11)	0.316 (5)
Cl1B	0.71926 (7)	0.05408 (6)	1.16767 (5)	0.05522 (19)	0.510 (5)
F1B	1.15955 (14)	0.76617 (13)	0.77809 (13)	0.0508 (4)	
O1B	0.75978 (18)	0.44532 (17)	0.51477 (12)	0.0490 (4)	
O1B O2B	0.66040 (19)	0.44332 (17)	0.66133 (17)	0.0602 (5)	
	` '	` ′	* *	* *	
O3B	0.86198 (17)	0.20485 (17)	0.63467 (17)	0.0551 (5)	
C1B	0.8480 (2) 0.9315	0.33555 (18)	0.78861 (16)	0.0326 (4)	
H1B		0.2867	0.7687	0.039*	
C2B	0.86005 (19)	0.44019 (17)	0.81283 (15)	0.0298 (4)	
H2BA	0.7821	0.4843	0.8426	0.036*	
H2BB	0.9283	0.4155	0.8657	0.036*	
C3B	0.88570 (19)	0.51490 (17)	0.71829 (16)	0.0298 (4)	
C4B	0.8495 (2)	0.51634 (19)	0.62257 (16)	0.0342 (4)	
H4B	0.8645	0.5668	0.5652	0.041*	
C5B	0.7886 (2)	0.44449 (19)	0.60262 (16)	0.0348 (4)	
C6B	0.7566 (2)	0.37018 (18)	0.69533 (16)	0.0328 (4)	
H6B	0.6718	0.4144	0.7166	0.039*	
C7B	0.95342 (19)	0.58550 (17)	0.73334 (16)	0.0308 (4)	
C8B	0.9539 (2)	0.61594 (19)	0.82868 (17)	0.0354 (4)	
H8B	0.9068	0.5940	0.8835	0.042*	

C9B	1.0224 (2)	0.6777 (2)	0.84368 (19)	0.0400 (5)
H9B	1.0226	0.6983	0.9081	0.048*
C10B	1.0901(2)	0.70842 (19)	0.76335 (19)	0.0387 (4)
C11B	1.0919(2)	0.68128 (19)	0.66812 (18)	0.0379 (4)
H11B	1.1387	0.7043	0.6137	0.046*
C12B	1.0233 (2)	0.61943 (18)	0.65422 (17)	0.0345 (4)
H12B	1.0239	0.5996	0.5893	0.041*
C13B	0.8118 (2)	0.26734 (18)	0.88381 (16)	0.0321 (4)
C14B	0.9047 (2)	0.1782(2)	0.94658 (17)	0.0387 (4)
H14B	0.9890	0.1612	0.9292	0.046*
C15B	0.8772(2)	0.1132 (2)	1.03424 (19)	0.0433 (5)
H15B	0.9420	0.0525	1.0767	0.052*
C16B	0.7550(2)	0.13739 (19)	1.05912 (17)	0.0378 (4)
C17B	0.6602(2)	0.2265 (2)	0.99981 (19)	0.0440 (5)
H17B	0.5761	0.2438	1.0182	0.053*
C18B	0.6900(2)	0.2909(2)	0.91231 (19)	0.0427 (5)
H18B	0.6250	0.3527	0.8710	0.051*
C19B	0.7517(2)	0.2683 (2)	0.66292 (17)	0.0375 (5)
C20B	0.8715 (4)	0.1043 (2)	0.6009(3)	0.0696 (9)
H20E	0.7871	0.1070	0.5889	0.083*
H20F	0.9145	0.1016	0.5346	0.083*
C21B	0.9387 (5)	0.0056(3)	0.6773 (4)	0.0896 (13)
H21G	0.9443	-0.0613	0.6534	0.134*
H21H	0.8954	0.0079	0.7426	0.134*
H21I	1.0226	0.0026	0.6884	0.134*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1A	0.0891 (12)	0.0722 (11)	0.0449 (8)	-0.0633 (10)	0.0047 (8)	-0.0074 (7)
C7A	0.0313 (10)	0.0315 (9)	0.0305 (10)	-0.0139(8)	0.0003 (7)	-0.0113(8)
C8A	0.0403 (11)	0.0430 (11)	0.0294 (10)	-0.0232(9)	-0.0006(8)	-0.0113(8)
C9A	0.0529 (13)	0.0518 (13)	0.0297 (10)	-0.0312(11)	0.0008 (9)	-0.0068(9)
C10A	0.0513 (13)	0.0442 (12)	0.0399 (12)	-0.0322(11)	0.0054 (10)	-0.0095(9)
C11A	0.0458 (12)	0.0422 (11)	0.0369 (11)	-0.0252 (10)	-0.0013 (9)	-0.0138(9)
C12A	0.0413 (11)	0.0364 (10)	0.0293 (10)	-0.0193 (9)	-0.0014(8)	-0.0105(8)
C13A	0.050(3)	0.041 (3)	0.028(2)	-0.029(2)	0.008(3)	-0.015(3)
C14A	0.043(2)	0.052(3)	0.032(3)	-0.0284 (19)	0.007(2)	-0.020(2)
C15A	0.054(2)	0.044(2)	0.034 (4)	-0.0249(17)	0.0059 (17)	-0.0169 (19)
C16A	0.065(3)	0.042(3)	0.023(2)	-0.0368 (17)	0.0041 (19)	-0.012(2)
C17A	0.053(2)	0.048(2)	0.034(3)	-0.0334(17)	-0.0010(19)	-0.0107(18)
C18A	0.046(2)	0.042(2)	0.038(3)	-0.0242 (18)	0.003(2)	-0.015(2)
C13C	0.022(4)	0.022(4)	0.022(3)	-0.010(3)	-0.003(3)	-0.006(3)
C14C	0.045(3)	0.040 (5)	0.029 (5)	-0.021(3)	0.016 (4)	-0.027(4)
C15C	0.060(4)	0.048 (5)	0.025 (7)	-0.033(4)	0.015(3)	-0.024(4)
C16C	0.064(4)	0.044 (6)	0.040(8)	-0.044(4)	0.011 (5)	-0.017(6)
C17C	0.049(4)	0.056 (7)	0.049(6)	-0.033(4)	-0.007(4)	-0.025(5)
C18C	0.032(3)	0.048 (4)	0.034 (5)	-0.016(3)	-0.016 (4)	-0.016(3)
O1A	0.046 (4)	0.054 (5)	0.028 (2)	-0.026(3)	0.004(2)	-0.016(3)
O2A	0.0440 (16)	0.057(2)	0.043(3)	-0.0312(13)	0.0039 (15)	-0.0099(17)

O3A	0.0471 (15)	0.038 (2)	0.056(2)	-0.0202(15)	0.0004 (15)	-0.0083(13)
C1A	0.0406 (19)	0.0360 (16)	0.0286 (14)	-0.0215 (15)	0.0030 (12)	-0.0116 (11)
C2A	0.024(2)	0.028(2)	0.0242 (19)	-0.0085 (19)	-0.0038 (18)	-0.0080(15)
C3A	0.013 (4)	0.021(2)	0.0300 (18)	0.000(3)	-0.0071 (18)	-0.0074 (15)
C4A	0.041 (9)	0.035 (5)	0.031(3)	-0.018(5)	-0.001(5)	-0.015(4)
C5A	0.033 (7)	0.036(3)	0.0280 (17)	-0.014(4)	-0.0021 (17)	-0.0123 (15)
C6A	0.0381 (19)	0.0385 (15)	0.0288 (13)	-0.0208(15)	0.0016 (11)	-0.0129 (10)
C19A	0.041(2)	0.039(2)	0.026(2)	-0.0209(18)	0.001(2)	-0.0118 (19)
C20A	0.059(3)	0.0339 (17)	0.064(2)	-0.0195(19)	-0.004(2)	-0.0062(15)
C21A	0.079(3)	0.050(2)	0.0546 (18)	-0.030(2)	-0.020(2)	0.0083 (17)
C11A	0.112(2)	0.0687 (14)	0.0535 (11)	-0.0643(14)	0.0104 (11)	-0.0329(11)
O1C	0.090 (13)	0.046 (10)	0.019 (5)	-0.043(9)	0.007(6)	-0.012(5)
O2C	0.038(3)	0.062 (5)	0.046 (6)	-0.035(3)	0.015(3)	-0.013(4)
O3C	0.063 (4)	0.046 (4)	0.044 (5)	-0.039(3)	-0.009(3)	-0.004(2)
C1C	0.016(3)	0.026(3)	0.026(2)	-0.006(2)	-0.004(2)	-0.0111 (18)
C2C	0.086 (12)	0.051 (8)	0.027 (4)	-0.053 (9)	0.015 (7)	-0.019(5)
C3C	0.003 (7)	0.018 (5)	0.024 (4)	0.003 (5)	-0.005(3)	-0.007(3)
C4C	0.028 (15)	0.038 (9)	0.024 (7)	-0.019 (11)	0.000 (9)	-0.012 (7)
C5C	0.026 (11)	0.033 (6)	0.024 (3)	-0.013 (8)	0.002 (4)	-0.012 (3)
C6C	0.013 (3)	0.028 (3)	0.024(2)	-0.006 (2)	0.0021 (18)	-0.0106 (17)
C19C	0.036 (4)	0.040 (4)	0.027 (4)	-0.023 (3)	0.012 (4)	-0.020 (3)
C20C	0.066 (6)	0.045 (4)	0.049 (4)	-0.027 (4)	0.016 (4)	-0.010 (3)
C21C	0.105 (9)	0.090 (10)	0.087 (9)	-0.028 (7)	0.000 (7)	0.040 (7)
Cl1C	0.081 (3)	0.062 (3)	0.052 (2)	-0.047 (2)	0.0040 (16)	-0.031 (2)
Cl1B	0.0809 (5)	0.0581 (4)	0.0389 (3)	-0.0437 (4)	0.0089 (3)	-0.0049(3)
F1B	0.0528 (8)	0.0499 (8)	0.0685 (10)	-0.0334 (7)	0.0044 (7)	-0.0258 (7)
O1B	0.0697 (12)	0.0654 (11)	0.0292 (7)	-0.0419 (10)	-0.0028 (7)	-0.0146 (7)
O2B	0.0589 (11)	0.0798 (14)	0.0713 (13)	-0.0472 (11)	0.0159 (10)	-0.0402 (11)
O3B	0.0458 (10)	0.0546 (11)	0.0733 (13)	-0.0136 (8)	-0.0072 (9)	-0.0396 (10)
C1B	0.0375 (10)	0.0359 (10)	0.0316 (9)	-0.0186 (8)	-0.0025 (7)	-0.0126 (7)
C2B	0.0373 (10)	0.0337 (10)	0.0271 (8)	-0.0168 (8)	-0.0020 (7)	-0.0106 (7)
C3B	0.0331 (10)	0.0306 (9)	0.0305 (9)	-0.0126 (7)	-0.0007 (7)	-0.0111 (7)
C4B	0.0421 (11)	0.0386 (11)	0.0277 (9)	-0.0209 (9)	-0.0005 (8)	-0.0084 (8)
C5B	0.0408 (11)	0.0416 (11)	0.0284 (8)	-0.0196 (9)	-0.0008 (8)	-0.0131 (8)
C6B	0.0351 (10)	0.0393 (11)	0.0284 (8)	-0.0184 (8)	0.0003 (7)	-0.0131 (8) -0.0144 (7)
C0B C7B	0.0331 (10)	0.0393 (11)	0.0311 (8)	-0.0137 (8)	-0.0016 (7)	-0.0103 (7)
C8B	0.0388 (11)	0.0392 (11)	0.0364 (10)	-0.0196 (9)	0.0016 (7)	-0.0168 (9)
C8B				` '	` '	
	0.0422 (12) 0.0378 (11)	0.0442 (12)	0.0451 (11)	-0.0214 (9) -0.0176 (9)	0.0031 (9)	-0.0240 (10)
C10B	0.0378 (11)	0.0326 (10)	0.0527 (12)	` '	-0.0018 (9)	-0.0152 (9) -0.0080 (0)
C11B		0.0350 (11)	0.0432 (10)	-0.0199 (9)	0.0019 (9)	-0.0080 (9)
C12B	0.0394 (11)	0.0358 (10)	0.0331 (9)	-0.0183 (8)	-0.0003 (8)	-0.0096 (8)
C13B	0.0397 (10)	0.0356 (9)	0.0309 (9)	-0.0217 (8)	-0.0032 (7)	-0.0127 (7)
C14B	0.0364 (10)	0.0474 (12)	0.0361 (10)	-0.0200 (9)	-0.0028 (8)	-0.0085 (8)
C15B	0.0473 (11)	0.0434 (12)	0.0374 (11)	-0.0179 (10)	-0.0046 (9)	-0.0032 (8)
C16B	0.0545 (11)	0.0403 (11)	0.0304 (10)	-0.0301 (9)	0.0026 (8)	-0.0097 (7)
C17B	0.0417 (11)	0.0523 (13)	0.0427 (11)	-0.0228 (9)	0.0045 (9)	-0.0120 (9)
C18B	0.0392 (10)	0.0426 (12)	0.0430 (11)	-0.0145 (9)	-0.0019 (9)	-0.0044 (9)
C19B	0.0482 (12)	0.0447 (12)	0.0317 (10)	-0.0264 (10)	0.0002 (9)	-0.0161 (9)
C20B	0.085 (2)	0.0450 (15)	0.077(2)	-0.0085(15)	-0.0216 (17)	-0.0350(15)

Acta Cryst. (2013). E69, o1839–o1840 sup-8

C21B	0.118 (3)	0.0538 (19)	0.094 (3) -0.028 (2)	-0.028 (2) -0.0130 (18)
Geometri	ic parameters (Å	, °)		
F1A—C1	10A	1.355 (3)	C1C—C2C	1.537 (6)
C7A—C		1.399 (3)	C1C—C6C	1.533 (5)
С7А—С		1.402 (3)	C2C—H2CA	0.9900
C7A—C	3A	1.490 (4)	C2C—H2CB	0.9900
C7A—C		1.491 (5)	C2C—C3C	1.513 (5)
С8А—Н	8A	0.9500	C3C—C4C	1.355 (6)
C8A—C	9A	1.387 (3)	C4C—H4C	0.9500
С9А—Н	9A	0.9500	C4C—C5C	1.456 (6)
С9А—С	10A	1.374 (3)	C5C—C6C	1.526 (6)
C10A—0	C11A	1.374 (3)	С6С—Н6С	1.0000
C11A—I	H11A	0.9500	C6C—C19C	1.518 (5)
C11A—0		1.387 (3)	C20C—H20C	0.9900
C12A—I		0.9500	C20C—H20D	0.9900
C13A—(1.3900	C20C—C21C	1.508 (7)
C13A—(C18A	1.3900	C21C—H21D	0.9800
C13A—(1.593 (4)	C21C—H21E	0.9800
C14A—I		0.9500	C21C—H21F	0.9800
C14A—(1.3900	C11B—C16B	1.744 (2)
C15A—I		0.9500	F1B—C10B	1.352 (2)
C15A—(1.3900	O1B—C5B	1.221 (3)
C16A—(1.3900	O2B—C19B	1.189 (3)
C16A—(Cl1A	1.724 (3)	O3B—C19B	1.326 (3)
C17A—I	H17A	0.9500	O3B—C20B	1.453 (3)
C17A—(1.3900	C1B—H1B	1.0000
C18A—I	H18A	0.9500	C1B—C2B	1.541 (3)
C13C—(C14C	1.3900	C1B—C6B	1.538 (3)
C13C—(1.3900	C1B—C13B	1.522 (3)
C13C—(1.684 (9)	C2B—H2BA	0.9900
C14C—I	H14C	0.9500	C2B—H2BB	0.9900
C14C—(C15C	1.3900	C2B—C3B	1.507 (3)
C15C—I		0.9500	C3B—C4B	1.347 (3)
C15C—C	C16C	1.3900	C3B—C7B	1.481 (3)
C16C—C	C17C	1.3900	C4B—H4B	0.9500
C16C—C	Cl1C	1.742 (7)	C4B—C5B	1.456 (3)
C17C—F	H17C	0.9500	C5B—C6B	1.520 (3)
C17C—C	C18C	1.3900	C6B—H6B	1.0000
C18C—F	H18C	0.9500	C6B—C19B	1.519 (3)
O1A—C	5A	1.224 (5)	C7B—C8B	1.406 (3)
O2A—C	19A	1.190 (5)	C7B—C12B	1.398 (3)
ЭЗА—С	19A	1.333 (5)	C8B—H8B	0.9500
O3A—C	20A	1.478 (5)	C8B—C9B	1.388 (3)
С1А—Н	1A	1.0000	C9B—H9B	0.9500
C1A—C	2A	1.536 (4)	C9B—C10B	1.376 (3)
C1A—C	6A	1.525 (4)	C10B—C11B	1.380 (3)
С2А—Н	2AA	0.9900	C11B—H11B	0.9500
С2А—Н		0.9900	C11B—C12B	1.385 (3)

C2A—C3A	1.513 (4)	C12B—H12B	0.9500
C3A—C4A	1.354 (5)	C13B—C14B	1.384 (3)
C4A—H4A	0.9500	C13B—C18B	1.385 (3)
C4A—C5A	1.455 (5)	C14B—H14B	0.9500
C5A—C6A	1.525 (6)	C14B—C15B	1.385 (3)
C6A—H6A	1.0000	C15B—H15B	0.9500
C6A—C19A	1.519 (4)	C15B—C16B	1.376 (4)
C20A—H20A	0.9900	C16B—C17B	1.375 (4)
C20A—H20B	0.9900	C17B—H17B	0.9500
C20A—C21A	1.513 (6)	C17B—C18B	1.391 (3)
C21A—H21A	0.9800	C18B—H18B	0.9500
C21A—H21B	0.9800	C20B—H20E	0.9900
C21A—H21C	0.9800	C20B—H20F	0.9900
O1C—C5C	1.224 (6)	C20B—C21B	1.427 (5)
O2C—C19C	1.191 (6)	C21B—H21G	0.9800
O3C—C19C	1.334 (6)	C21B—H21H	0.9800
O3C—C20C	1.477 (6)	C21B—H21I	0.9800
C1C—H1C	1.0000	C21B—H211	0.9800
СІС—НІС	1.0000		
C8A—C7A—C12A	118.40 (19)	C3C—C2C—H2CB	108.5
C8A—C7A—C3A	120.5 (4)	C7A—C3C—C2C	118.0 (9)
C8A—C7A—C3C	123.7 (7)	C4C—C3C—C7A	117.5 (11)
C12A—C7A—C3A	121.0 (4)	C4C—C3C—C2C	119.9 (10)
C12A—C7A—C3C	117.2 (7)	C3C—C4C—H4C	119.9
C7A—C8A—H8A	119.6	C3C—C4C—C5C	120.2 (13)
C9A—C8A—C7A	120.72 (19)	C5C—C4C—H4C	119.9
C9A—C8A—H8A	119.6	O1C—C5C—C4C	122.1 (13)
C8A—C9A—H9A	120.7	01C—C5C—C6C	121.6 (13)
C10A—C9A—I13A C10A—C9A—C8A	118.6 (2)	C4C—C5C—C6C	
C10A—C9A—C8A C10A—C9A—H9A	* *		116.3 (11)
	120.7	C1C—C6C—H6C	109.3
F1A—C10A—C9A	119.4 (2)	C5C—C6C—C1C	109.5 (11)
F1A—C10A—C11A	117.7 (2)	C5C—C6C—H6C	109.3
C9A—C10A—C11A	122.9 (2)	C19C—C6C—C1C	111.4 (9)
C10A—C11A—H11A	121.0	C19C—C6C—C5C	107.9 (13)
C10A—C11A—C12A	118.1 (2)	C19C—C6C—H6C	109.3
C12A—C11A—H11A	121.0	O2C—C19C—O3C	125.5 (8)
C7A—C12A—H12A	119.4	O2C—C19C—C6C	124.4 (8)
C11A—C12A—C7A	121.2 (2)	O3C—C19C—C6C	110.1 (7)
C11A—C12A—H12A	119.4	O3C—C20C—H20C	111.3
C14A—C13A—C18A	120.0	O3C—C20C—H20D	111.3
C14A—C13A—C1A	101.1 (3)	O3C—C20C—C21C	102.4 (8)
C18A—C13A—C1A	138.6 (3)	H20C—C20C—H20D	109.2
C13A—C14A—H14A	120.0	C21C—C20C—H20C	111.3
C15A—C14A—C13A	120.0	C21C—C20C—H20D	111.3
C15A—C14A—H14A	120.0	C20C—C21C—H21D	109.5
C14A—C15A—H15A	120.0	C20C—C21C—H21E	109.5
C14A—C15A—C16A	120.0	C20C—C21C—H21F	109.5
C16A—C15A—H15A	120.0	H21D—C21C—H21E	109.5
C15A—C16A—C17A	120.0	H21D—C21C—H21F	109.5

C15A—C16A—C11A	120.5 (2)	H21E—C21C—H21F	109.5
C17A—C16A—C11A	119.5 (2)	C19B—O3B—C20B	117.5 (2)
C16A—C17A—H17A	120.0	C2B—C1B—H1B	107.6
C16A—C17A—C18A	120.0	C6B—C1B—H1B	107.6
C18A—C17A—H17A	120.0	C6B—C1B—T11B	110.35 (17)
C13A—C18A—H18A	120.0	C13B—C1B—H1B	10.55 (17)
C17A—C18A—C13A	120.0	C13B—C1B—C2B	111.21 (16)
C17A—C18A—C13A C17A—C18A—H18A	120.0	C13B—C1B—C2B C13B—C1B—C6B	111.21 (10)
C14C—C13C—C18C	120.0	C18—C18—C0B C1B—C2B—H2BA	109.0
C14C—C13C—C16C C14C—C13C—C1C	154.5 (6)	C1B—C2B—H2BB	109.0
	` '		109.0
C18C—C13C—C1C	84.1 (5)	H2BA—C2B—H2BB	
C13C—C14C—H14C	120.0	C3B—C2B—C1B	112.74 (16)
C13C—C14C—C15C	120.0	C3B—C2B—H2BA	109.0
C15C—C14C—H14C	120.0	C3B—C2B—H2BB	109.0
C14C—C15C—H15C	120.0	C4B—C3B—C2B	120.95 (18)
C16C—C15C—C14C	120.0	C4B—C3B—C7B	120.86 (19)
C16C—C15C—H15C	120.0	C7B—C3B—C2B	118.18 (17)
C15C—C16C—C17C	120.0	C3B—C4B—H4B	118.4
C15C—C16C—C11C	117.0 (6)	C3B—C4B—C5B	123.3 (2)
C17C—C16C—C11C	123.0 (6)	C5B—C4B—H4B	118.4
C16C—C17C—H17C	120.0	O1B—C5B—C4B	121.9 (2)
C16C—C17C—C18C	120.0	O1B—C5B—C6B	120.09 (19)
C18C—C17C—H17C	120.0	C4B—C5B—C6B	117.97 (17)
C13C—C18C—H18C	120.0	C1B—C6B—H6B	107.9
C17C—C18C—C13C	120.0	C5B—C6B—C1B	112.02 (17)
C17C—C18C—H18C	120.0	C5B—C6B—H6B	107.9
C19A—O3A—C20A	116.4 (4)	C19B—C6B—C1B	111.75 (18)
C13A—C1A—H1A	110.6	C19B—C6B—C5B	109.21 (17)
C2A—C1A—C13A	107.7 (4)	C19B—C6B—H6B	107.9
C2A—C1A—H1A	110.6	C8B—C7B—C3B	121.13 (19)
C6A—C1A—C13A	106.7 (3)	C12B—C7B—C3B	120.62 (18)
C6A—C1A—H1A	110.6	C12B—C7B—C8B	118.19 (19)
C6A—C1A—C2A	110.6 (4)	C7B—C8B—H8B	119.6
C1A—C2A—H2AA	108.7	C9B—C8B—C7B	120.7 (2)
C1A—C2A—H2AB	108.7	C9B—C8B—H8B	119.6
H2AA—C2A—H2AB	107.6	C8B—C9B—H9B	120.7
C3A—C2A—C1A	114.3 (3)	C10B—C9B—C8B	118.7 (2)
C3A—C2A—H2AA	108.7	C10B—C9B—H9B	120.7
C3A—C2A—H2AB	108.7	F1B—C10B—C9B	119.1 (2)
C7A—C3A—C2A	117.5 (5)	F1B—C10B—C11B	118.2 (2)
C4A—C3A—C7A	120.6 (6)	C9B—C10B—C11B	122.8 (2)
C4A—C3A—C2A	120.6 (4)	C10B—C11B—H11B	121.0
C3A—C4A—H4A	118.4	C10B—C11B—C12B	118.0 (2)
C3A—C4A—C5A	123.3 (7)	C12B—C11B—H11B	121.0
C5A—C4A—H4A	118.4	C7B—C12B—H12B	119.2
O1A—C5A—C4A	121.7 (7)	C11B—C12B—C7B	121.6 (2)
O1A—C5A—C4A O1A—C5A—C6A	121.7 (7)	C11B—C12B—C7B C11B—C12B—H12B	119.2
C4A—C5A—C6A			
	116.5 (6)	C14B—C13B—C1B	118.9 (2)
C1A—C6A—H6A	106.9	C14B—C13B—C18B	117.8 (2)

C5A—C6A—C1A	110.4 (5)	C18B—C13B—C1B	123.3 (2)
C5A—C6A—H6A	106.9	C13B—C14B—H14B	119.3
C19A—C6A—C1A	116.2 (5)	C13B—C14B—C15B	121.4 (2)
C19A—C6A—C5A	109.0 (6)	C15B—C14B—H14B	119.3
C19A—C6A—H6A	106.9	C14B—C15B—H15B	120.4
O2A—C19A—O3A	124.9 (4)	C16B—C15B—C14B	119.3 (2)
O2A—C19A—C6A	123.7 (4)	C16B—C15B—H15B	120.4
O3A—C19A—C6A	111.4 (4)	C15B—C16B—C11B	119.63 (19)
O3A—C20A—H20A	109.8	C17B—C16B—C11B	119.30 (19)
O3A—C20A—H20B	109.8	C17B—C16B—C15B	121.1 (2)
O3A—C20A—C21A	109.5 (4)	C16B—C17B—H17B	120.7
H20A—C20A—H20B	108.2	C16B—C17B—C18B	118.7 (2)
C21A—C20A—H20A	109.8	C18B—C17B—H17B	120.7
C21A—C20A—H20B	109.8	C13B—C18B—C17B	121.7 (2)
C20A—C21A—H21A	109.5	C13B—C18B—H18B	119.1
C20A—C21A—H21B	109.5	C17B—C18B—H18B	119.1
C20A—C21A—H21C	109.5	O2B—C19B—O3B	124.3 (2)
H21A—C21A—H21B			` '
	109.5	O2B—C19B—C6B	124.5 (2)
H21A—C21A—H21C	109.5	O3B—C19B—C6B	111.16 (19)
H21B—C21A—H21C	109.5	O3B—C20B—H20E	109.6
C19C—O3C—C20C	110.8 (8)	O3B—C20B—H20F	109.6
C13C—C1C—H1C	115.3	H20E—C20B—H20F	108.1
C2C—C1C—C13C	104.3 (10)	C21B—C20B—O3B	110.5 (3)
C2C—C1C—H1C	115.3	C21B—C20B—H20E	109.6
C6C—C1C—C13C	97.9 (6)	C21B—C20B—H20F	109.6
C6C—C1C—H1C	115.3	C20B—C21B—H21G	109.5
C6C—C1C—C2C	107.0 (8)	C20B—C21B—H21H	109.5
C1C—C2C—H2CA	108.5	C20B—C21B—H21I	109.5
C1C—C2C—H2CB	108.5	H21G—C21B—H21H	109.5
H2CA—C2C—H2CB	107.5	H21G—C21B—H21I	109.5
C3C—C2C—C1C	114.9 (8)	H21H—C21B—H21I	109.5
C3C—C2C—H2CA	108.5		
F1A—C10A—C11A—C12A	-179.1(2)	C1C—C13C—C18C—C17C	-171.2(11)
C7A—C8A—C9A—C10A	-1.1(4)	C1C—C2C—C3C—C7A	156.1 (14)
C7A—C3A—C4A—C5A	176.1 (14)	C1C—C2C—C3C—C4C	1 (3)
C7A—C3C—C4C—C5C	177 (3)	C1C—C6C—C19C—O2C	41 (3)
C8A—C7A—C12A—C11A	-1.0(3)	C1C—C6C—C19C—O3C	-141.6 (17)
C8A—C7A—C3A—C2A	-33.0 (10)	C2C—C1C—C6C—C5C	-61.9 (15)
C8A—C7A—C3A—C4A	159.8 (12)	C2C—C1C—C6C—C19C	178.8 (13)
C8A—C7A—C3C—C2C	-8 (2)	C2C—C3C—C4C—C5C	-28 (5)
C8A—C7A—C3C—C4C	147 (2)	C3C—C7A—C8A—C9A	172.2 (10)
C8A—C9A—C10A—F1A	180.0 (2)	C3C—C7A—C12A—C11A	-171.9 (9)
C8A—C9A—C10A—C11A	-0.6 (4)	C3C—C7A—C3A—C2A	76 (5)
C9A—C10A—C11A—C12A	1.4 (4)	C3C—C7A—C3A—C4A	-91 (5)
C10A—C11A—C12A—C7A	-0.6 (3)	C3C—C4C—C5C—O1C	-176 (3)
C12A—C7A—C8A—C9A	1.9 (3)	C3C—C4C—C5C—C6C	6 (5)
C12A—C7A—C8A—C9A C12A—C7A—C3A—C2A	150.2 (6)	C4C—C5C—C6C—C1C	40 (3)
	* *		` '
C12A—C7A—C3A—C4A	-17.0(14)	C4C—C5C—C6C—C19C	161 (3)

G124 G74 G2G G2G	1610(14)	GEG GGG G10G 62G	70 (2)
C12A—C7A—C3C—C2C	161.9 (14)	C5C—C6C—C19C—O2C	-79 (3)
C12A—C7A—C3C—C4C	-42 (3)	C5C—C6C—C19C—O3C	98 (2)
C13A—C14A—C15A—C16A	0.0	C6C—C1C—C2C—C3C	43.2 (18)
C13A—C1A—C2A—C3A	-159.9 (6)	C19C—O3C—C20C—C21C	174.3 (19)
C13A—C1A—C6A—C5A	173.5 (7)	C20C—O3C—C19C—O2C	5 (4)
C13A—C1A—C6A—C19A	-61.8 (6)	C20C—O3C—C19C—C6C	-172.2(15)
C14A—C13A—C18A—C17A	0.0	C11C—C16C—C17C—C18C	-177.3(19)
C14A—C13A—C1A—C2A	-104.5(5)	C11B—C16B—C17B—C18B	-178.78(19)
C14A—C13A—C1A—C6A	136.7 (4)	F1B—C10B—C11B—C12B	178.2 (2)
C14A—C15A—C16A—C17A	0.0	O1B—C5B—C6B—C1B	152.6 (2)
C14A—C15A—C16A—C11A	-179.9(8)	O1B—C5B—C6B—C19B	28.2 (3)
C15A—C16A—C17A—C18A	0.0	C1B—C2B—C3B—C4B	26.2 (3)
C16A—C17A—C18A—C13A	0.0	C1B—C2B—C3B—C7B	-152.95 (18)
C18A—C13A—C14A—C15A	0.0	C1B—C6B—C19B—O2B	120.3 (3)
C18A—C13A—C1A—C2A	82.8 (8)	C1B—C6B—C19B—O3B	-60.9(2)
C18A—C13A—C1A—C6A	-35.9 (9)	C1B—C13B—C14B—C15B	180.0(2)
C13C—C14C—C15C—C16C	0.0	C1B—C13B—C18B—C17B	179.8 (2)
C13C—C1C—C2C—C3C	146.2 (15)	C2B—C1B—C6B—C5B	51.7 (2)
C13C—C1C—C6C—C5C	-169.5 (13)	C2B—C1B—C6B—C19B	174.65 (17)
C13C—C1C—C6C—C19C	71.2 (12)	C2B—C1B—C13B—C14B	-94.2(2)
C14C—C13C—C18C—C17C	0.0	C2B—C1B—C13B—C18B	84.7 (2)
C14C—C13C—C1C—C2C	-35 (2)	C2B—C3B—C4B—C5B	-2.4(3)
C14C—C13C—C1C—C6C	74 (2)	C2B—C3B—C7B—C8B	-23.3(3)
C14C—C15C—C16C—C17C	0.0	C2B—C3B—C7B—C12B	153.8 (2)
C14C—C15C—C16C—C11C	177.4 (18)	C3B—C4B—C5B—O1B	-177.9(2)
C15C—C16C—C17C—C18C	0.0	C3B—C4B—C5B—C6B	4.3 (3)
C16C—C17C—C18C—C13C	0.0	C3B—C7B—C8B—C9B	176.9 (2)
C18C—C13C—C14C—C15C	0.0	C3B—C7B—C12B—C11B	-177.1(2)
C18C—C13C—C1C—C2C	126.7 (11)	C4B—C3B—C7B—C8B	157.5 (2)
C18C—C13C—C1C—C6C	-123.5 (8)	C4B—C3B—C7B—C12B	-25.4(3)
O1A—C5A—C6A—C1A	141.5 (14)	C4B—C5B—C6B—C1B	-29.6 (3)
O1A—C5A—C6A—C19A	12.7 (18)	C4B—C5B—C6B—C19B	-154.0(2)
C1A—C13A—C14A—C15A	-174.4 (6)	C5B—C6B—C19B—O2B	-115.2 (3)
C1A—C13A—C18A—C17A	171.6 (9)	C5B—C6B—C19B—O3B	63.6 (2)
C1A—C2A—C3A—C7A	-156.4 (6)	C6B—C1B—C2B—C3B	-50.1 (2)
C1A—C2A—C3A—C4A	10.8 (15)	C6B—C1B—C13B—C14B	141.6 (2)
C1A—C6A—C19A—O2A	130.9 (11)	C6B—C1B—C13B—C18B	-39.5 (3)
C1A—C6A—C19A—O3A	-48.1 (12)	C7B—C3B—C4B—C5B	176.66 (19)
C2A—C1A—C6A—C5A	56.6 (7)	C7B—C8B—C9B—C10B	-0.1 (4)
C2A—C1A—C6A—C19A	-178.6 (5)	C8B—C7B—C12B—C11B	0.1 (3)
C2A—C3A—C4A—C5A	9 (3)	C8B—C9B—C10B—F1B	-178.4 (2)
C3A—C7A—C8A—C9A	-174.9 (5)	C8B—C9B—C10B—C11B	0.6 (4)
C3A—C7A—C12A—C11A	175.8 (5)	C9B—C10B—C11B—C12B	-0.7 (4)
C3A—C7A—C3C—C2C	-86 (5)	C10B—C11B—C12B—C7B	0.4 (3)
C3A—C7A—C3C—C4C	70 (5)	C12B—C7B—C8B—C9B	-0.2 (3)
C3A—C4A—C5A—O1A	-174.7 (17)	C13B—C1B—C2B—C3B	-175.38 (17)
C3A—C4A—C5A—C6A	5 (3)	C13B—C1B—C6B—C5B	176.38 (17)
C4A—C5A—C6A—C1A	-38.6 (16)	C13B—C1B—C6B—C19B	-60.7 (2)
C4A—C5A—C6A—C19A	-167.4 (13)	C13B—C14B—C15B—C16B	0.3 (4)
C.11 CO11 CO11 C17/11	107.1 (10)	CLUB CLUB CLUB	0.5 (1)

C5A—C6A—C19A—O2A	-103.6 (14)	C14B—C13B—C18B—C17B	-1.3(3)
C5A—C6A—C19A—O3A	77.4 (12)	C14B—C15B—C16B—C11B	178.56 (18)
C6A—C1A—C2A—C3A	-43.6 (6)	C14B—C15B—C16B—C17B	-1.5(4)
C19A—O3A—C20A—C21A	86.8 (10)	C15B—C16B—C17B—C18B	1.3 (4)
C20A—O3A—C19A—O2A	4.0 (18)	C16B—C17B—C18B—C13B	0.1 (4)
C20A—O3A—C19A—C6A	-177.1 (7)	C18B—C13B—C14B—C15B	1.0(3)
Cl1A—C16A—C17A—C18A	179.9 (8)	C19B—O3B—C20B—C21B	-107.9(4)
O1C—C5C—C6C—C1C	-139 (3)	C20B—O3B—C19B—O2B	-0.8(4)
O1C—C5C—C6C—C19C	-17 (4)	C20B—O3B—C19B—C6B	-179.6(2)
C1C—C13C—C14C—C15C	159 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
C8 <i>A</i> —H8 <i>A</i> ···O1 <i>B</i>	0.95	2.55	3.478 (3)	167
C2 <i>A</i> —H2 <i>AA</i> ···O1 <i>B</i>	0.99	2.44	3.288 (6)	143
C2 <i>A</i> —H2 <i>AB</i> ···O2 <i>B</i> ⁱ	0.99	2.56	3.432 (7)	147
C2 <i>C</i> —H2 <i>CA</i> ···O1 <i>B</i>	0.99	2.32	3.278 (18)	164
$C2C$ — $H2CB$ ··· $O2B^i$	0.99	2.42	3.40(2)	170
C2 <i>B</i> —H2 <i>BA</i> ···O1 <i>A</i> ⁱⁱ	0.99	2.49	3.315 (8)	140
C2 <i>B</i> —H2 <i>BA</i> ···O1 <i>C</i> ⁱⁱ	0.99	2.56	3.380 (18)	140
C2 <i>B</i> —H2 <i>BB</i> ···O2 <i>C</i> ⁱⁱⁱ	0.99	2.58	3.436 (10)	145
C8 <i>B</i> —H8 <i>B</i> ···O1 <i>A</i> ⁱⁱ	0.95	2.50	3.379 (8)	154
C8 <i>B</i> —H8 <i>B</i> ···O1 <i>C</i> ⁱⁱ	0.95	2.54	3.417 (19)	154
С9 <i>В</i> —Н9 <i>В</i> ···O2 <i>A</i> ^{іі}	0.95	2.54	3.274 (6)	134
C14 <i>B</i> —H14 <i>B</i> ···O2 <i>A</i> ⁱⁱⁱ	0.95	2.54	3.247 (5)	131

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+2, -y+1, -z+1.