· Exercise 9.1

L can contain a word of arbitrary length, and it cannot be recognized by a computer with only finite memory

2.
$$G = (\{S\}, \{c, >3, P, S\})$$

where $P = \{S \rightarrow \epsilon | SS | < S > \}$

where
$$Q = \{90, 91\}$$
 $\Xi = \{6, > 3\}$ $T = \{6, > 7\}$ $\#\}$.
 $90 = 90$, $Z0 = \#$, $P = \{90\}$

$$\delta(q_{\bullet}, c, \#) = \{(q_{\bullet}, c)\}$$

$$\delta(q_1,<,<)=\xi(q_1,<<)$$
3.

$$\overline{\partial} (9, x, z) = \varphi \quad \text{everywhere else}$$

H (90, €, #)

· Exercise 10.3

1. Ne= \$

first cf) = first cf*) U first (R)) U first (a)
U first (b) U first (o) U first (1)

Since first(ad) = $\{a\}$, :. first (0) = $\{0\}$ first (1) = $\{1\}$ first (a) = $\{a\}$ first (b) = $\{b\}$ first (ck)) = $\{(a,b)\}$

since first (Ad) = first (A) Up, if A & Ne

L first (F*) = first (F) U\$= first (F), F & Ne

: first (F) = first (F) U {(, 1, 0, a, b).

Since first (f) is the smallest set satisfying the above equation : first (f) = $\{C, 1, 0, a, b\}$ 2. first (T) = first (T.F) U first (F). since T & NE.

first $(T - F) = first (T) V \phi = first (T)$

Since first (f) = 80,1, a.b. (3

1- first (T) = first (T) U { 0, 1, a, b, (}

first (T) is the smallest set satisfying the equation.

first CT) = 90,1, a, b, (}

_ first (T.F) = first (T) = {0, 1, a, b, (}

-: T -> T-FIF and first (T.F) 1 first (F) = {0,1,a,b,(}.

: This breaks the rule of LL(1)

1. Gis not LL(1)

3. $F \rightarrow (R)F'|aF'|bF'|oF'|1F'$ $F' \rightarrow \varepsilon|*F'$ $T \rightarrow FT'$

T'> EI.FT'

R → FR'

R' > EI+TR'

- Exercise 11.4

M=(Q, E, T, δ, 90, B-F)

Q = 990, 91, 92, 93, 90, 95, 90, 97, 983

$$\delta(90, 0) = (91, x, R)$$

$$\delta(90, b) = (95, x.R)$$

$$S(q_1, a) = (q_1, a, R)$$

$$\delta(q_1, b) = (q_1, b, R)$$

$$\mathcal{S}(q_2, \times) = (q_2, \times, R)$$

$$\delta(q_2, a) = (q_5, x, L)$$

$$\delta(93,a) = (93,a,R)$$

$$\delta(93, b) = (93, b, R)$$

$$\delta(9s, \$) = (9b, \$, L)$$

$$S(9_6, a) = (9_6, a, L)$$

$$\delta(9, x) = (9, x, R)$$

$$\delta(4,x) = \text{stop}$$
 everywhere else

(8, 9., ab\$ab) + (x, 9., b\$ab) + (xb, 9., \$ab) + (xb\$, 92, ab) + (xb, 95, \$xb) + (x, 96, b\$xb) + (8, 96, xb\$xb) + (x, 90, b\$xb) + (xx, 93, \$xb) + (8, 96, xb\$xb) + (xx\$x, 96, b) + (xx\$x, 95, xx)
<math>+ (xx\$x, 96, xb) + (xx\$x, 96, x\$xx) + (xx\$x, 96, \$xxx)
<math>+ (xx\$x, 95, \$xxx) + (xx\$x, 96, x\$xx) + (xx\$x, 96, \$xxx)
<math>+ (xx\$x, 95, xx) + (xx\$x, 97, x) + (xx\$xx, 97, 8)
<math>+ (xx\$x, 96, x)

: ab \$ ab & L (M)