Звіт

про виконання завдання з самостійної роботи

з курсу «Теорія ймовірностей та математична статистика»

тема «Дискретні випадкові величини та їх розподіли»

студентом Попов А. А. (група КС-231) в 2024-2025 навчальному році

за індивідуальним варіантом даних №17

Завдання 1. Дано закони розподілу незалежних дискретних випадкових величин X та У:

X	x_1	x_2	x_3	x_4	x_5
P	а	a	5a	a	2a

	V	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄
1	P	0,4	0,3	0,1	0,2

Розв'язання:

Знайти:

<u>a)</u>a;

За законом розподілу дискретної випадкової величини відомо, що сума імовірностей дорівнює 1, тому, знаючи це, можна скласти рівняння для знаходження *а*. Для цього додамо всі імовірності і прирівняємо до 1.

$$\sum_{i=1}^{n} p_{i} = 1.$$

$$a+a+5a+a+2a=1$$

$$10a=1a=0.1$$

В результаті отримали значення 0,1. В подальшому виконанні будемо використовувати значення в таблиці. Завдання завершено.

Відповідь: a = 0, 1.

б) закони розподілу випадкових величин 2X, X+У, XУ, X-У.

X	-3	-2	-1	0	1
P	0,1	0,1	0,5	0,1	0,2

Y	1	2	3	4
P	0,4	0,3	0,1	0,2

Для того, щоб отримати випадкову величину СХ, треба помножити дискретну випадкову величину (ДВВ) на сталу величину (С).

Випадкова величина СХ , що визначається так: можливі значення СХ дорівнюють добуткам сталої величини С на можливі значення Х; ймовірності можливих значень СХ дорівнюють ймовірностям відповідних можливих значень ДВВ Х.

Для початку помножимо можливі значення:

2X	-3*2	-2*2	-1*2	0*2	1*2
P	0,1	0,1	0,5	0,1	0,2

Відповідь: В результаті отримали таку таблицю випадкової величини 2X:

2X	-6	-4	-2	0	2
P	0,1	0,1	0,5	0,1	0,2

 $\underline{X+Y}$

Сумою випадкових величин Х та Ү називається випадкова величина

Х + Ү, що визначається так:

- можливі значення X + Y дорівнюють сумам кожного можливого значення X з кожним можливим значенням Y;
- ймовірності можливих значень X + Y для незалежних величин X та Y дорівнюють добуткам ймовірностей доданків; для залежних величин добуткам ймовірності одного доданка на умовну ймовірність іншого. Якщо деякі значення величини X + Y однакові, то їх ймовірності додаються.

Закони розподілу випадкових величин Х та У мають відповідно вигляд:

X	-3	-2	-1	0	1
P	0,1	0,1	0,5	0,1	0,2

Y	1	2	3	4	
P	0,4	0,3	0,1	0,2	

За означенням знаходимо закони розподілу випадкових величин X + Y (відповідні ймовірності можливих значень X та Y перемножуються):

X+Y	-3 +1	-3 + 2	-3 + 3	-3 + 4	-2 + 1	-2 + 2	-2 + 3	- 2 +	-1 + 1	-1 + 2
	= -2	= -1	= 0	=1	= -1	= 0	= 1	4 = 2	= 0	= 1
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15

							1 + 2 =		
= 2	= 3	= 1	= 2	= 3	= 4	= 2	2	= 3	= 4
0,05	0,1	0,04	0,03	0,01	0,02	0,08	0,06	0,02	0,04

Остаточна таблиця:

X+Y	-2	-1	0	1	1	0	1	2	0	1
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15

2	3	1	2	3	4	2	2	3	4
0,05	0,1	0,04	0,03	0,01	0,02	0,08	0,06	0,02	0,04

<u>XY</u>

Добутком випадкових величин X та Y називається випадкова величина X * Y , що визначається так:

- можливі значення X * Y дорівнюють добуткам кожного можливого значення X на кожне можливе значення Y ;
- ймовірності можливих значень добутку X*Y дорівнюють добуткам ймовірностей можливих значень співмножників. Якщо деякі значення величини X*Y однакові, то їх ймовірності додаються.

Закони розподілу випадкових величин Х та У мають відповідно вигляд:

X	-3	-2	-1	0	1
P	0,1	0,1	0,5	0,1	0,2

Y	1	2	3	4
P	0,4	0,3	0,1	0,2

За означенням знаходимо закони розподілу випадкових величин X*Y (відповідні ймовірності можливих значень X та Y перемножуються):

X * Y		-3 * 2								
	= -3	= -6	= - 9	= -12	= -2	= -4	= -6	= -8	1= -1	= -2
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15

-1 * 3	-1 * 4	0 * 1	0 * 2	0 * 3	0 * 4	1 * 1	1 * 2	1 * 3	1 * 4
= -3	= -4	= 0	= 2	= 3	= 4	=1	=2	= 3	=4
0,05	0,1	0,04	0,03	0,01	0,02	0,08	0,06	0,02	0,04

Остаточна таблиця:

X*Y	-3	-6	-9	-12	-2	-4	-6	-8	-1	-2	-3	-4	-0
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04

2	3	4	1	2	3	4
0,03	0,01	0,02	0,08	0,06	0,02	0,04

Для того, щоб відняти дві дискретні випадкові величини, за аналогією до додавання вводиться операція віднімання випадкових величин, оскільки X+Y=X+(-1)Y. Тому, щоб відняти ДВВ потрібно відняти можливі значення а імовірності помножити.

X-Y										-1 – 2
	= -4	= -5	=-6	= -7	=-3	= -4	=-5	= -6	= -2	= -3
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15

- 1 – 3 =	- 1- 4 =	0 – 1 =	0 - 2 =	0 – 3 =	0 – 4 =	1 – 1 =	1 - 2 =	1 – 3 =	1 – 4 =
-4									
0,05	0,1	0,04	0,03	0,01	0,02	0,08	0,06	0,02	0,04

Остаточна таблиця:

X-Y	-4	-5	-6	-7	-3	-4	-5	-6	-2	-3	-4	-5	-1
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04

-2		-3	-4	0	-1	-2	-4
0,03	3	0,01	0,02	0,08	0,06	0,02	0,04

Відповідь: Результати операцій над ДВВ можна побачити в остаточних варінтах таблиці під кожним з підпунктів операцій.

Завдання 2. Для дискретної випадкової величини відомий ряд розподілу. Побудувати багатокутник розподілу та графік функції розподілу цієї випадкової величини.

X	-2	-1	0	2	4
p_i	0,3(3)	0,13	0,2	0,13	0,2

Для того, щоб побудувати графік функції розподілу, спочатку потрібно знайти саму функцію розподілу.

Так як у нас випадкова величина X дискретна і має скінченну кількість можливих значень, то функція розподілу визначається як сума ймовірностей до точки x і задається такою формулу:

$$F(x) = P(X \leq x) = \sum_{x_i \leq x} P(X = x_i),$$

Тому починаємо обчислення.

При значенні $x \le -2$ F(x) = 0, тому що випадкова величина X не приймає значень менше -2.

Для −2≤х<−1

 $F(x)=P(X \le -2)=0.34$.

1. Для -1≤х<0:

 $F(x)=P(X \le -1)=0.34+0.13=0.47.$

2. **Для 0≤x<2:**

 $F(x)=P(X \le 0)=0.47+0.20=0.67.$

3. Для 2≤х<4:

 $F(x)=P(X \le 2)=0.67+0.13=0.80.$

4. Для х≥4:

F(x) = P(X<4) = 0.80 + 0.20

Тепер будуємо графік функції розподілу:

Відповідь: Результати побудови графіків можна побачити у розв'язку самого завдання.