

ALGORITMO GENÉTICO

por Kevin & Rafael

ALGORITMOS GENÉTICOS

Foi proposto e desenvolvido por John Holland na década de 1960 e 1970. John Holland, é considerado o pioneiro e o principal criador dos algoritmos genéticos.

Holland introduziu a ideia de utilizar a evolução biológica como uma inspiração para resolver problemas de otimização computacional. Desenvolvendo assim fundamentos teóricos e as técnicas práticas dos algoritmos genéticos, publicando seus trabalhos inovadores, como o livro "Adaptation in Natural and Artificial Systems" em 1975.

NOÇÃO DE SELEÇÃO NATURAL

- População
- Função de fitness
- Seleção
- Crossover
- Mutação

FUNÇÃO DE AVALIAÇÃO (FITNESS)

A função de fitness ajuda a estabelecer a aptidão de todos os indivíduos da população. Ele atribui uma pontuação de aptidão a cada indivíduo, o que determina ainda mais a probabilidade de ser escolhido para a reprodução. Quanto maior a pontuação de fitness, maiores as chances de serem escolhidas para a reprodução.

- Seleção por roleta
- Seleção por fitness
- Seleção por Torneio
- Seleção por Ranking

Operadores genéticos

Crossover

Mutação

Operadores genéticos - Crossover

Crossover Simples

Operadores genéticos - Crossover

Crossover Multiponto

Operadores genéticos - Crossover

Crossover uniforme

Operadores genéticos - Mutação

Mutação de inserção

Operadores genéticos - Mutação

Mutação de inversão

Operadores genéticos - Mutação

Mutação uniforme

Renovação

Uma substituição da população idosa pela nova população nova.

Após a substituição ter sido feita, um critério de parada é usado para fornecer a base para a rescisão. O algoritmo terminará após a solução de condicionamento físico ter sido atingida. Ele identificará essa solução como a melhor solução da população.

Complexidade

Se considerarmos "g" como o número de gerações, "n" como o tamanho da população e "m" como o tamanho do cromossomo, a complexidade para realizar essa tarefa seria proporcional a O(g * n * m). Isso significa que o tempo de execução do algoritmo aumentará de forma linear à medida que o número de gerações, o tamanho da população e o tamanho do cromossomo aumentarem.

IMPLEMENTAÇÃO - ALGORITMO GENETICO - TETRIS

