

Scuola di Scienze Matematiche Fisiche e Naturali Corso di Laurea Triennale in Fisica e Astrofisica

Relatore:

Dott. Lucio Anderlini anderlinil@fi.infn.it

Candidato:

Matteo Barbetti matteo.barbetti@stud.unifi.it

Correlatore:

Prof. Giuseppe Latino giuseppe.latino@fi.infn.it

Studio delle risonanze di stati di *charmonium* nei decadimenti $B^+ \to p\bar{p}K^+$ e $B^+ \to p\bar{p}\gamma K^+$ con l'esperimento LHCb al CERN

Gli stati di quarkonium, formati dalla combinazione quark-antiquark $(q\bar{q})$, sono descritti nel Modello Standard. Lo spettro energetico delineato dalla cromodinamica quantistica (QCD) è caratterizzato da stati che si differenziano per massa, larghezza e numeri quantici, quali momento angolare, parità P e parità C. Il lavoro di questa tesi si è quindi focalizzato sullo studio del charmonium, cioè il sistema $c\bar{c}$, prodotto nel decadimento del mesone B^+ . I dati analizzati sono stati raccolti nel corso del 2015 e del 2016 dall'esperimento LHCb del CERN, uno spettrometro di massa in avanti dedicato alla fisica dei quark b e c.

Lo studio del canale di decadimento $B^+ \to (c\bar{c})K^+$ con $c\bar{c} \to p\bar{p}$ permette di distinguere vari stati di *charmonium*. La selezione del decadimento $B^+ \to p\bar{p}K^+$ è stata ottimizzata studiando la distribuzione della massa invariante della combinazione $p\bar{p}K^+$ a cui è seguita la sottrazione del fondo combinatorio grazia alla tecnica statistica s \mathcal{P} lot. L'analisi della distribuzione in massa invariante $p\bar{p}$ del campione selezionato mette in evidenza eccessi compatibili con gli stati η_c , J/ψ , χ_{c0} , χ_{c1} , $\eta_c(2S)$ e $\psi(2S)$. I valori di massa e larghezza ottenuti dalla parametrizzazione della distribuzione sono compatibili con le medie mondiali¹ e confermano, con un campione di dati indipendente, l'osservazione del decadimento $\eta_c(2S) \to p\bar{p}$ recentemente riportata dalla collaborazione LHCb².

Ad oggi, la produzione dello stato h_c nel decadimento di adroni-b non è mai stata osservata, nonostante ne esistano alcune indicazioni. Nel lavoro di tesi si è affrontata la ricerca del canale $B^+ \to h_c K^+$ con $h_c \to \eta_c \gamma$ e $\eta_c \to p\bar{p}$, affiancato dal canale di controllo $B^+ \to \chi_{c1} K^+$ con $\chi_{c1} \to J/\psi \gamma$ e $J/\psi \to p\bar{p}$. La parità C garantisce che le due catene di decadimento rimangano separate, permettendo di distinguere lo stato h_c da χ_{c1} che, con una differenza in massa di pochi MeV, risulterebbero altrimenti sovrapposti. La catena di decadimento $B^+ \to \chi_{c1} K^+$ con $\chi_{c1} \to J/\psi \gamma$ e $J/\psi \to p\bar{p}$ è stata messa in evidenza per prima volta ad LHCb, mentre non si è osservato segnale per il decadimento $B^+ \to h_c K^+$. Si è quindi inoltrata una richiesta ufficiale di produzione Monte Carlo indispensabile per il calcolo delle efficienze di entrambi i canali e per migliorare la strategia di selezione con l'applicazione di tecniche di analisi multivariata, in vista di un'estensione ad un campione più ampio.

¹Particle Data Group, C. Patrignani et al., Review of particle physics, Chin. Phys. **C40** (2016) 100001 ²Collaborazione LHCb, R. Aaij et al., Observation of $\eta_c(2S) \to p\bar{p}$ and search for $X(3872) \to p\bar{p}$ decays, Phys. Lett. **B769** (2017) 305, arXiv:1607.06446