

STATISTICAL PROGRAMMING FOR BUSINESS ANALYTICS

ASSIGNMENT NO. 11

Tanay Bhalerao

U47707491

MAY 1, 2015
UNIVERSITY OF SOUTH FLORIDA
Management Information Systems

Homework 11

1. Use PROC SQL to list all the observations from data set Inventory where Price is greater than 20.

```
libname tan '\\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\';
PROC SQL;
select * from tan.inventory where price GT 20;
RUN;
```

The SAS System

Model	Price
M567	\$23.50
L776	\$159.98
X999	\$29.95

2. Use PROC SQL to create a new, temporary, SAS data set (N_Sales) containing the observations from Sales where Region has a value of North. Include only the variables Name and TotalSales in the new data set.

```
PROC SQL;
create table N_sales as select Name, TotalSales from tan.sales where region
like 'North';
RUN;
```

The SAS System

Name	TotalSales
George Smith	449.5
George Smith	15597
George Smith	5129
Glenda Johnson	52.5
George Smith	15597

3. Write the necessary PROC SQL statements to accomplish the same goal as the program here:

```
data third;
  set learn.first learn.second;
run;
```

```
Proc sql;
create table third as
select * from learn.first
union
select * from learn.second
        RUN;
    4. Chapter 15: 15.2, 15.4, 15.8
15.2
DATA TEMPERATURE;
INPUT TF1-TF10;
ARRAY TC[10];
ARRAY TF[10];
DO I=1 TO 10;
TC[I] = 5/9*(TF[I] - 32);
END;
DROP I;
DATALINES;
32 212 -40 10 20 30 40 50 60 70
-10 0 10 20 30 40 50 60 70 80
RUN;
PROC PRINT DATA=TEMPERATURE NOOBS;
    TITLE "Listing of Data Set TEMPERATURE";
       RUN;
                                              Listing of Data Set TEMPERATURE
          TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10
                                                 TC1
                                                      TC2
                                                             TC3
                                                                   TC4
                                                                         TC5
                                                                                TC6
                                                                                      TC7
                                                                                            TC8
                                                                                                  TC9
                                                                                                       TC10
                                               0.0000 | 100.000 | -40.0000 | -12.2222 | -6.66667 | -1.11111 | 4.4444 | 10.0000 | 15.5556 | 21.1111 | 11
                                           80 | -23.3333 | -17.778 | -12.2222 | -6.6667 | -1.11111 | 4.44444 | 10.0000 | 15.5556 | 21.1111 | 26.6667 | 11
           -10
               0 10 20 30 40 50 60 70
```

15.4

```
DATA MIXED;
INFORMAT A1-A3 B C $5.;
INPUT X1-X3 Y Z A1-A3 B C;
ARRAY NUMV[*] X1-X3 Y Z;
ARRAY CHARV[*] A1-A3 B C;
ARRAY LOGNUM[*] LX1-LX3 LY LZ;

DO I=1 TO DIM(NUMV);
LOGNUM[I]=LOG(NUMV[I]);
END;

DO T=lbound(CHARV) TO hbound(CHARV);
IF CHARV[T] EQ '?' THEN CHARV[T] = ' ';
END;

DROP I T;
DATALINES;
10 20 30 40 50 ONE TWO THREE ? ?
```

```
11 22 33 44 55 ? LLL MMM ? VVV
;

PROC PRINT DATA=MIXED NOOBS;
   TITLE "Listing of Data Set MIXED";
RUN;
```

Listing of Data Set MIXED

A1	A2	А3	В	С	X1	X2	Х3	Υ	Z	LX1	LX2	LX3	LY	LZ
ONE	TWO	THREE			10	20	30	40	50	2.30259	2.99573	3.40120	3.68888	3.91202
	LLL	MMM		VVV	11	22	33	44	55	2.39790	3.09104	3.49651	3.78419	4.00733

15.8

```
DATA EXPER;
  INPUT TIMEO-TIME4;
DATALINES;
100 200 300 400 500
55 110 130 150 170
DATA EXPERIMENT;
SET EXPER;
ARRAY TIMES[*] TIME0-TIME4;
ARRAY MIN[*] MINO-MIN4;
DO I=1 TO DIM(MIN);
MIN[I] = ROUND((TIMES[I]/60), 0.1);
END;
DROP I TIME0-TIME4;
RUN;
PROC PRINT DATA= EXPERIMENT;
TITLE "SECOND-MINUTE CONVERSION";
      RUN;
```

SECOND-MINUTE CONVERSION

(Obs	MIN0	MIN1	MIN2	MIN3	MIN4
	1	1.7	3.3	5.0	6.7	8.3
	2	0.9	1.8	2.2	2.5	2.8

5. Chapter 16: 16.2 and 16.4 **16.2**

```
DATA QUES;
    INPUT ID $ REASON1-REASON4;
DATALINES;
```

```
001 3 6 13 17
002 8 3 4 .
003 20 2 . . 004 8 4 20 19
DATA QUESTION FREQ;
SET QUES;
ARRAY REASON(001:004) REASON1-REASON4;
DO I = 001 to 004;
   REASON T = REASON(I);
   OUTPUT;
 END;
 DROP REASON1-REASON4 I;
RUN;
PROC PRINT DATA=QUESTION FREQ;
TITLE "TRANSPOSE";
RUN;
PROC FREQ DATA=QUESTION_FREQ;
TITLE "FREQ";
TABLES REASON T;
      RUN;
```

TRANSPOSE

Obs	ID	REASON_T
1	001	3
2	001	6
3	001	13
4	001	17
5	002	8
6	002	3
7	002	4
8	002	-
9	003	20
10	003	2
11	003	-
12	003	-
13	004	8
14	004	4
15	004	20
16	004	19

FREQ The FREQ Procedure

REASON_T	Frequency	Percent	Cumulative Frequency	Cumulative Percent
2	1	7.69	1	7.69
3	2	15.38	3	23.08
4	2	15.38	5	38.46
6	1	7.69	6	46.15
8	2	15.38	8	61.54
13	1	7.69	9	69.23
17	1	7.69	10	76.92
19	1	7.69	11	84.62
20	2	15.38	13	100.00
	Frequ	ency Miss	sing = 3	

```
DATA THIN;
  INPUT ID $ TIME X @@;
DATALINES;
001 1 10 001 2 12 001 3 15
004 1 17
003 1 14 003 2 18 003 3 22 003 4 28
002 1 18 004 2 28
PROC PRINT DATA=THIN;
RUN;
PROC SORT DATA=THIN OUT=THINSORT ;
 BY ID ;
RUN ;
DATA WIDE1 ;
 SET THINSORT ;
 BY ID ;
 KEEP ID X1-X4;
 RETAIN X1-X4;
 ARRAY AX[4] X1 - X4 ;
 IF first.ID THEN
  DO;
   DO i = 1 to 4;
     AX[i] = .;
   END;
 END;
 AX[TIME] = X ;
 IF last.ID THEN OUTPUT ;
RUN;
PROC PRINT DATA=WIDE1 NOOBS;
TITLE "WIDE DATA";
     RUN:
          WIDE DATA
            X1 X2 X3 X4
        001
            10
                12
                   15
        002
            18
        003
            14
                18
                   22
                       28
        004
            17
                28
```

6. Chapter 17: 17.10

```
DATA NUM CHAR;
      INPUT X $ Y $ Z $ DATE : $10. NUMERAL DOB : DATE9.;
      FORMAT DOB MMDDYY10.;
DATALINES;
10 20 30 10/21/1946 123 09SEP2004
1 2 3 11/11/2004 999 01JAN1960
Data Correct;
Set Num Char;
X1 = Input(X, 8.);
Y1 = Input (Y, 8.);
Z1 = Input (Z, 8.);
Date n= Input(Date, MMDDYY10.);
Numeral n = Put(Numeral, 8.);
DOB char = Put(DOB, MMDDYY10.);
Drop X Y Z Date Numeral DOB;
Rename X1=X Y1=Y Z1=Z Date n=Date Numeral n=Numeral;
Format Date n Date9.;
run;
Proc Print Data=Correct noobs;
Title "Formatting Correct";
run;
```

Formatting Correct

X	Υ	Z	Date	Numeral	DOB_char
10	20	30	21OCT1946	123	09/09/2004
1	2	3	11NOV2004	999	01/01/1960

7. Chapter 18: 18.10, 18.12 (a) only

18.10

```
DATA WEIGHT;
INPUT SUBJ $ WEIGHT $ @@;
WEIGHT = UPCASE(WEIGHT);
IF INDEX(WEIGHT,'K') GE 1 THEN WEIGHT = INT(COMPRESS(WEIGHT, 'KGLBS.'))*2.2;
ELSE WEIGHT = INT(COMPRESS(WEIGHT, 'KGLBS.'));
DATALINES;
1 50KG 2 120 3 121LBS. 4 88KG. 5 200
6 80KG 7 250LB;
;
PROC PRINT DATA = WEIGHT;
TITLE "WEIGHT";
RUN;
```

WEIGHT

Obs	subj	weight
1	1	110
2	2	120
3	3	121
4	4	193.6
5	5	200
6	6	176
7	7	250

18.12

INDEXES

Obs	INPUTL	NUMBER
1	ABC123XYZ7823	78
2	NONE HERE	-
3	XYZ12345	12
4	12345XYZ9876	98