- 1. Produce a clear and clean proof of the following statement you have discovered in class: Let a and b two positive integers. Then $ab = \gcd(a,b) \operatorname{lcm}(a,b)$.
- 2. We learned that if two integers a and b are relatively prime, then there exist integers t and u such that at + bu = 1. Prove the converse: if there are integers t and u such that at + bu = 1 then a and b are relatively prime.
- 3. Let a and b be integers with b > 0. Using division algorithm, write a = bq + r where $q, r \in \mathbb{Z}$ and $0 \le r < b$. Show that $\gcd(a,b) = \gcd(b,r)$.
- 4. Show that for all positive integers n > 2, $\phi(n)$ is an even number.
- 5. Prove that if *d* divides *n* then $\phi(d)$ divides $\phi(n)$.