Similarity and Dissimilarity Measures

Similarity and Dissimilarity Measures

Similarity measure

- Numerical measure of how alike two data objects are.
- s ls higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity measure

Numerical measure of how different two data objects are

distance

- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity

- 1. objects having only one simple attribute
- 2. objects with multiple attributes

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, X and Y, with respect to a single attribute.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$

various kinds of dissimilarities

- 1. distances, which are dissimilarities with certain properties
- 2. provide examples of more general kinds of dissimilarities

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and X_k and Y_k are, respectively, the k^{th} attributes (components) or data objects \mathbf{x} and \mathbf{y} .

Distances:example

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Distances

Minkowski Distance

is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and X_k and Y_k are, respectively, the kth attributes (components) or data objects X and Y.

Distances

Minkowski Distance

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors

Distances:Example

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Standardization and Correlation for Distance Measures

A generalization of Euclidean distance, the **Mahalanobis distance** when attributes are correlated, have different ranges of values

mahalanobis(x, y) =
$$(x - y)^T \Sigma^{-1}(x - y)$$

 Σ is the covariance matrix

ijth entry is the covariance of the *ith* and *jth* attributes

Distances

Distances, such as the Euclidean distance, have some well known properties.

- 1. $d(x, y) \ge 0$ for all x and y
- 2. d(x, y) = 0 only if x = y
- 3. d(x, y) = d(y, x) for all x and y.
- 4. $d(x, z) \le d(x, y) + d(y, z)$ for all points x, y, and z.

where d(x, y) is the distance (dissimilarity) between points (data objects), x and y.

Non-metric Dissimilarities

some dissimilarities do not satisfy one or more of the metric properties

Example: Non-metric Dissimilarities: Set Differences

Given two sets A and B, A - B is the set of elements of A that are not in B.

$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 3, 4\}$ $A - B = \{1\}$ $B - A = \emptyset$

$$d(A,B) = size(A - B)$$

$$d(A,B) = size(A - B) + size(B - A)$$

Similarities, have some typical properties.

- 1. s(x, y) = 1 (or maximum similarity) only if x = y.
- 2. s(x, y) = s(y, x) for all x and y. (Symmetry)

where $S(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

Similarity Between Binary Vectors

p and q, have only binary attributes Compute similarities using the following quantities

```
f_{01} = the number of attributes where p was 0 and q was 1
```

$$f_{10}$$
 = the number of attributes where p was 1 and q was 0

$$f_{00}$$
 = the number of attributes where p was 0 and q was 0

$$f_{11}$$
 = the number of attributes where p was 1 and q was 1

Simple Matching Coefficient

SMC = number of matches / number of attributes
=
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$

Jaccard Coefficient

J = number of 11 matches / number of non-zero attributes =
$$\left(f_{11}\right)/\left(f_{01}+f_{10}+f_{11}\right)$$

Example: binary similarity

$$\mathbf{x} = 1000000000$$

 $\mathbf{y} = 0000001001$

$$f_{01} = 2$$
 (the number of attributes where p was 0 and q was 1)

$$f_{10} = 1$$
 (the number of attributes where p was 1 and q was 0)

$$f_{00} = 7$$
 (the number of attributes where p was 0 and q was 0)

$$f_{11} = 0$$
 (the number of attributes where p was 1 and q was 1)

SMC =
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$

= $(0+7) / (2+1+0+7) = 0.7$

$$J = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

If
$$\mathbf{d}_1$$
 and \mathbf{d}_2 are two document vectors, then
$$\cos(~\mathbf{d_1}, \, \mathbf{d_2}~) = <\!\!\mathbf{d_1}, \!\mathbf{d_2}\!\!>\!/ ~||\mathbf{d}_1|| ~||\mathbf{d}_2|| ~,$$

 $\mathbf{d_1} = 3205000200$

Example:

$$\begin{aligned} \mathbf{d_2} &= \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{2} \\ &< \mathbf{d_1}, \ \mathbf{d2} > = \ 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ &| \ \mathbf{d_1} || = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}} = 6.481 \\ &| \ \mathbf{d_2} || = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{\mathbf{0.5}} = (6)^{\mathbf{0.5}} = 2.449 \\ &\cos(\mathbf{d_1}, \mathbf{d_2}) = 0.3150 \end{aligned}$$

Correlation

$$\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y}$$

covariance(x, y) =
$$s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 is the mean of x

$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$$
 is the mean of y

$$s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2}$$

$$s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (y_k - \overline{y})^2}$$

Scatter plots showing the similarity from -1 to 1.

Drawback of Correlation: Non-linear Relationships

- correlation is 0, no linear relationship between the attributes of the two data objects
- non-linear relationships may still exist.

Example:

$$\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$

 $\mathbf{y} = (9, 4, 1, 0, 1, 4, 9)$
 $y_i = x_i^2$
 $mean(\mathbf{x}) = 0, mean(\mathbf{y}) = 4$
 $std(\mathbf{x}) = 2.16, std(\mathbf{y}) = 3.74$

$$corr = (-3)(5) + (-2)(0) + (-1)(-3) + (0)(-4) + (1)(-3) + (2)(0) + 3(5) / (6 * 2.16 * 3.74) = 0$$

Information theory

- Information theory
- similarity measures
- handle non-linear relationships
- complicated and time intensive to compute
- Information relates to possible outcomes of an event
- information is related the probability of an outcome
- The smaller the probability of an outcome, the more information it provides
- Entropy is the commonly used measure

Entropy

- \checkmark a variable (event), X_{\bullet}
- \checkmark with *n* possible values (outcomes), $X_1, X_2, ..., X_n$
- \checkmark each outcome having probability, $p_1, p_2 ..., p_n$
- \checkmark the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Entropy is between 0 and $\log_2 n$ and is measured in bits entropy is a measure of how many bits it takes to represent an observation of X on average

Example:

For a coin with probability p of heads and probability q = 1 - p of tails

$$H=-p\log_2 p-q\log_2 q$$
 For $p=0.5$, $q=0.5$ (fair coin) $H=1$ For $p=1$ or $q=1$, $H=0$

Entropy

a number of observations (m) of some attribute, X, e.g., the hair color of students in the class, where there are n different possible values the number of observation in the ith category is m_i

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

Hair Color	Count
Black	75
Brown	15
Blond	5
Red	0
Other	5
Total	100

Maximum entropy is $log_2 5 = 2.3219$

Mutual Information

Information one variable provides about another

Formally,
$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$
, where

H(X, Y) is the joint entropy of X and Y,

$$H(X,Y) = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}$$

Where p_{ij} is the probability that the $\emph{I}^{ ext{th}}$ value of X and the $\emph{J}^{ ext{th}}$ value of Y occur together

✓ how similar the joint distribution p(X, Y) is to the factored distribution p(X)p(Y).

MI is zero iff the variables are independent

MI between X and Y as the reduction in uncertainty about X after observing Y

Mutual Information example

Student Status	Count
Undergrad	45
Grad	55
Total	100

Grade	Count
Α	35
В	50
С	15
Total	100

Student Status	Grade	Count
Undergrad	A	5
Undergrad	В	30
Undergrad	С	10
Grad	Α	30
Grad	В	20
Grad	С	5
Total		100

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624