Задание №1

В задачах 1.1, 1.2, 1.4 интегралы необходимо вычислить точно, воспользовавшись интегральной теоремой Коши о вычетах.

Задача 1.1. Вычислить интеграл

$$\int_{-\infty}^{\infty} \frac{\cos kx}{\operatorname{ch} x} dx.$$

При каких $k \in \mathbb{C}$ интеграл хорошо определён?

На какие $k \in \mathbb{C}$ ответ можно аналитически продолжить?

Задача 1.2. Вычислить интеграл

$$\int_0^\infty \frac{\ln x \, dx}{1+x^n}, \quad n \in \mathbb{N}, \ n \geqslant 2.$$

В задачах 1.3, 1.5 необходимо найти указанное число первых членов асимптотического разложения.

Задача 1.3. Найти зависимость количества бозе-частиц $N(\mu) - N(0)$ от химического потенциала

$$N(\mu) = \int_0^\infty \frac{\sqrt{\varepsilon} d\varepsilon}{\exp(\varepsilon + \mu) - 1}, \quad \mu \to +0.$$

Т.е. найти первый нетривиальный член разложения $N(\mu) - N(0) = \#\sqrt{\mu} + \mathcal{O}(\mu), \ \mu \to +0.$

Замечание. Значение N(0), которое вам не понадобится, выражается через ζ -функцию Римана. Соответствующая формула может быть найдена в [1, §58].

Задача 1.4 (*). Вычислить интеграл

$$\int_0^\infty \frac{\ln x \, dx}{(1+x)^n}, \quad n \in \mathbb{N}, \ n \geqslant 2.$$

Задача 1.5 (*). Вычислить следующий интеграл с точностью до $\mathcal{O}\!\left(\varepsilon^2\right)$ при $\varepsilon \to +0.$

$$S(\varepsilon) = \int_{0}^{\sqrt{1-\varepsilon}} \sqrt{(1-x^2)^2 - \varepsilon^2}.$$

Т.е. найти числа в разложении $S(\varepsilon) = \#_1 + \#_2 \varepsilon^2 \ln (\#_3 \varepsilon) + \mathcal{O}(\varepsilon^2), \ \varepsilon \to +0.$

Замечание. Указанный интеграл определяет расщепление энергетических уровней в симметричном двухъямном потенциале в квазиклассическом приближении. [2, §50]

Следующая задача призвана объяснить, зачем нужно оптимальное суммирование асимптотических рядов и когда уместно сохранять экспоненциально малые поправки.

Задача 1.6 (*). При помощи повторного интегрирования по частям постройте асимптотический ряд для интеграла

$$I(k) = \int_0^{\pi} \frac{\cos kx}{1 + x^2} dx \sim \sum_{n=1}^{\infty} \frac{a_n \sin \pi k}{k^{2n-1}} + \frac{b_n \cos \pi k}{k^{2n}}, \ k \to +\infty.$$

Проделав те же операции после преобразования, покажите, что столь же законно написать

$$I(k) = \frac{\pi}{2}e^{-k} - \int_{\pi}^{\infty} \frac{\cos kx}{1+x^2} dx \sim \frac{\pi}{2}e^{-k} + \sum_{n=1}^{\infty} \frac{a_n \sin \pi k}{k^{2n-1}} + \frac{b_n \cos \pi k}{k^{2n}}, \quad k \to +\infty.$$

В каждом из двух случаев, оцените ошибку оптимально просуммированного ряда и ответьте, законно ли сохранять экспоненциально малую поправку в разложении I(k).

Список литературы

- [1] Л.Д. Ландау и Е.М. Лифшиц. Теоретическая физика. Том 5. Статистическая физика. Часть 1. ФИЗМАТЛИТ, Москва, 2013.
- [2] Л.Д. Ландау и Е.М. Лифшиц. Теоретическая физика. Том 3. Квантовая механика. Нерелятивистская теория. ФИЗМАТЛИТ, Москва, 2008.