Example big-O theorem: Let f(n) = O(g(n)) and t(n) = O(s(n)), where all functions are positive monotonically growing functions. Prove that f(n) * t(n) = O(g(n) * s(n)).

Let c1 and n1 be the constants in the big-O definition for f(n) = O(g(n)), and c2 and n2 be these constants for t(n) = O(s(n)). In other works, for any n > n1, $f(n) \le c1*g(n)$ and for any n > n2, $t(n) \le c2*s(n)$. Consider a constant $n_m = \max(n1, n2)$. For any $n > n_m$, both above inequalities hold. Therefor, since all functions are positive, for any $n > n_m$ $f(n)*t(n) \le c1*c2*g(n)*s(n)$. In other words, we found constants $c_m = c1*c2$ and $n_m = \max(n1, n2)$ such that for all $n > n_m$, $f(n)*t(n) \le c_m *g(n)*s(n)$). Then by the definition of big-O, f(n)*t(n) = O(g(n)*s(n)).