	Breusch - Godfrey Test
	yt = fot f, X 16 + B2X2E + Ut, t=1, T
	AR(p) - errors:
	Ut = f, Ut-1++ fp Ut-p+ Et
	Est. aux regression:
	N+ = 2 + x, X, t + x, X, 2 + fint + + fp 4, -p t
	La Raux
	$BG = n \cdot k^2 \sim \chi^2$
	h = 1 - p
Adı	vantages: 1. No limitations for
	model structure
	2. Exact critical values
	Lunline bw test)
	3. Always applicable (unline h-burbin test)
	4. Possible to test AC of
	higher orders

5. Applicable to NA-form of error term M+ = E+ + M, E+-, +... + Jug Et-g E.g. MA(1). M = E+ + (P E+-1) M+-1 = (E+-1) + p E+-2 Disadvantage: 1. Asymptotic test (for large sample only)

Fighting Actocorrelation
1) Correcting Specification
2) 3 AR (1) - transform
3 (Cochrain - Ozcutt transforz)
G GLI Transform
I generalized least squares
3) MA(1) - transform
·
4) Using lagged dep. voniable
5) More complex ADL (p,q)

Ĵ can be est. from DW→2(1-g)

7 ESA J* 1 X* =7 {New =>

Treast Jt, X* New

14	erate until à converges
	Price-Winston correction:
	1st obs. is added with weight
	$(x_{+},y_{+}).\sqrt{1-p^{2}}$

$$\int_{OLS} = (\chi | \chi)^{-1} \chi' y$$

$$\Omega = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$MA(1)$$
: $M_t = \varepsilon_t + \beta \varepsilon_{x-1}$

$$\begin{array}{c}
1 & 0 & \cdots & b \\
0 & \cdots & \vdots & \vdots \\
0 & \cdots & \vdots \\
0$$

ADL:

From CO transform:

JH-PJ-1= B1(1-P) + B2(X+-PX+-1)+Et

ADL(1,1) Will non-lin. restrict.

Vy = - N2 · 92

F= h log (PSS R/RSS UR) ~ X2

Altrenative: Would test

My = - P. Bz