Exercice 1:

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue telle que $f(a)\neq f(b)$. Soit d un réel appartenant à l'intervalle ouvert d'extrémités f(a) et f(b). On veut montrer l'existence d'un réel $c\in[a,b]$ tel que f(c)=d.

Supposons par exemple f(a) > f(b)

(donc f(b) < d < f(a)).

On pose $A = \{x \in [a, b], f(x) \le d\}.$

- 1. Justifier que A est non vide et que cet ensemble admet une borne inférieure. On notera c cette borne inférieure.
- 2. Justifier que $c \in [a, b]$ et que $f(c) \leq d$.
- 3. Justifier que c > a puis comparer f(x) et d si $x \in [a, c]$ (justifier). En déduire $f(c) \ge d$.
- 4. Conclure.
- 5. Soit $t \in \mathbb{R}^*$. On pose $f_t(x) = x^3 + tx 1$.
 - (a) Justifier que l'équation $f_t(x) = 0$ admet une unique solution x sur [0,1].
 - (b) Si $g:[a,b] \to \mathbb{R}$ est continue et telle que g(a)g(b) < 0 alors g(a) et g(b) sont de signes contraires donc 0 appartient à l'intervalle ouvert d'extrémités g(a) et g(b).

Les questions 1), 2), 3) et 4) ci-dessus nous assurent alors l'existence d'un réel $c \in [a, b]$ tel que g(c) = 0.

On rappelle ci-dessous l'algorithme de dichotomie qui, étant donné un réel $\varepsilon > 0$, permet d'avoir une valeur approchée à ε près d'un réel $c \in [a,b]$ tel que g(c) = 0.

- On pose $a_0 = a$ et $b_0 = b$
- Tant que $b_n a_n > \varepsilon$, on pose $c_n = \frac{a_n + b_n}{2}$ (milieu de $[a_n, b_n]$) et : si $g(a_n)g(c_n) \leq 0$, on pose $a_{n+1} = a_n$ et $b_{n+1} = c_n$, sinon $a_{n+1} = c_n$ et $b_{n+1} = b_n$

Écrire une fonction Python prenant en entrée des réels a, b, une fonction g (telle que décrite ci-dessus), un réel $\varepsilon > 0$ et donnant en sortie une valeur approchée d'une solution $c \in [a, b]$ de g(c) = 0 à ε près (on traduira donc en langage Python l'algorithme ci-dessus).

(c) En déduire une fonction Python prenant en entrée un réel $t \in \mathbb{R}_+^*$ et donnant en sortie une approximation à 10^{-5} près du réel $x \in [0,1]$ tel que $x^3 + tx - 1 = 0$.

Exercice 2:

- 1. Soit f la fonction définie par : $f(x) = \frac{x + \sqrt{x}}{x^2 + \sqrt{x}}$. Préciser le domaine de définition de f. Cette fonction est-elle prolongeable par continuité en 0?
- 2. Préciser le domaine de définition de la fonction $g: x \longmapsto (1+x)^{\ln x}$. Peut-on prolonger cette fonction par continuité en 0? Si oui, est-elle alors dérivable en 0? (après prolongement)
- 3. Soit g la fonction définie par $g(x) = \frac{3}{x^3-1} \frac{2}{x^2-1}$. Préciser le domaine de définition de g. Cette fonction est-elle prolongeable par continuité en 1? Est-elle prolongeable par continuité en -1?

Exercice 3:

- 1. Soit $P = 2X^4 5X^3 + 5X^2 3X + 1$. Montrer que P a une racine multiple dont on déterminera la valeur et l'ordre de multiplicité.
- 2. On pose $f(x) = \frac{P(x)}{\ln(x)}$. Quel est le domaine de définition de f? Montrer que f peut se prolonger par continuité en 1. On note désormais f la fonction ainsi prolongée.

Que vaut alors f(1)? Montrer que f est dérivable en 1 et déterminer le nombre dérivé f'(1).

- 3. Déterminer une équation y = T(x) de la tangente à la courbe de f en 1.
- 4. (a) Déterminer la fonction $g: \mathbb{R}_+^* \to \mathbb{R}$ telle que : $\forall x \in]0, 1[\cup]1, +\infty[, f(x) T(x) = \frac{x-1}{\ln(x)} \times g(x).$
 - (b) Établir : $\forall x \in \mathbb{R}_+^*$, $g(x) \ge 0$. En déduire la position de la courbe de f par rapport à sa tangente au point d'abscisse 1.