Overview

Goal

Constrain the high mass ($\log(M_*/M_\odot) \gtrsim 11.5$) satellite fraction ($f_{\rm sat}$) in Hyper Suprime-Cam (HSC) observations.

How

- ▶ In an N-body simulation, map some halo property (e.g. $M_{\rm halo,peak}$, $V_{\rm max}@M_{\rm peak}$) to M_* , with some scatter.
- Optimize this mapping in to fit some HSC observations (e.g. SMF, clustering).
- ▶ Measure f_{sat} in the best fitting mock.

See also

Reddick 2013 did this for SDSS

Observations + Simulation data

Hyper Suprime Cam

- \sim 4500, 30 $\log(M_*/M_{\odot}) > 11.5, 12$
- **z** ~ 0.3 (check)

MDPL

- ▶ 1000 $Mpc h^{-1}$
- ▶ Snapshot at $z \sim 0.37$

Fitting choices

Halo Parameter

 $M_* = f(\mathrm{halo\,property})$. We build models with $V_{\mathrm{max}}@M_{\mathrm{peak}}$ and $M_{\mathrm{halo,peak}}$.

Functional form

We use Behroozi + halo mass dependent scatter (linear). Other options were an HOD, abundance matching.

Fitting Data

- ► The SMF
- ▶ Counts in cylinders: $\xi(r_p, r_\pi)$ in a single r (< $1 \mathrm{Mpc}$) and π (< $10 \mathrm{Mpc}$) bin. HSC doesn't have enough data for a more detailed measurement of clustering. This is a cross correlation between galaxies $\log(M_*/M_\odot) > M$ and $M 0.1 < \log(M_*/M_\odot) < M$ for a couple of M.

Bestfit Models 1: SMF

$V_{\rm max}@M_{\rm peak}$

$M_{ m halo,peak}$

Bestfit Models 2: Clustering

$V_{\rm max}@M_{\rm peak}$

$M_{ m halo,peak}$

Results 1: f_{sat}

Figure: Error bars show only the statistical error in all cases except Reddick+ 2013.

Questions

- ▶ I don't use any covariances in my best fit. This is certainly wrong though unclear how important?
- ▶ Auto vs cross correlation in the counts in cells stage?
- ▶ We assumed all have specz in the model. In HSC 5% photoz.