ЛЕКЦІЯ 7

Розв'язування систем лінійних алгебраїчних рівнянь

Про системи лінійних алгебраїчних рівнянь

Основні визначення

Систему виду

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots & a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots & a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots & a_{mn}x_n = b_m \end{cases}$$
(1)

де
$$a_{ij}$$
 $\left(1 \leq i \leq m, 1 \leq j \leq n\right)$ - коефіцієнти при невідомих, b_1, \ldots, b_m - вільні коефіцієнти, x_1, \ldots, x_n - невідомі,

називають системою лінійних алгебраїчних рівнянь.

Матричне представлення системи лінійних рівнянь Лінійна система (1) має також матричну форму запису:

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{1n} \ dots & dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot egin{pmatrix} oldsymbol{x_1} \ oldsymbol{x_2} \ dots \ oldsymbol{x_n} \end{pmatrix} = egin{pmatrix} b_1 \ b_2 \ dots \ oldsymbol{b_m} \end{pmatrix}$$
, або $Ax = b$,

де
$$A=\left(a_{ij}\right)$$
- $m imes n$ — матриця системи,

$$x = \left(x_{1}, x_{2}, ..., x_{n} \right)^{T}$$
 – вектор-стовпець невідомих,

$$b = \left(b_{1}, b_{2}, ..., b_{m}\right)^{T}$$
 – вектор-стовпець вільних коефіцієнтів;

Векторне представлення системи лінійних рівнянь

 $\left(a_{i},x\right)$ - скалярний добуток векторів

$$a_i = \left(a_{i1}, a_{i2}, ..., a_{in}\right) \text{ Ta } x = \left(x_1, x_2, ..., x_n\right)$$

$$\left(a_i, x\right) = a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n$$

$$(a_i,x) = b_i \Rightarrow \sum_{p=1}^n a_{ip} x_p = b_i, i = 1,2,...,m,$$

або
$$\begin{cases} \left(a_1,x\right)=b_1,\\ \left(a_2,x\right)=b_2,\\ \dots\\ \left(a_m,x\right)=b_m. \end{cases}$$

де
$$x = (x_1, ...x_n)$$
 – вектор-рядок, $a_i = (a_{i1}, a_{i2}, ..., a_{in})$ – вектор-рядок. $i = 1, 2, ..., m$

Види систем лінійних алгебраїчних рівнянь Однорідна система

Визначення. Систему лінійних алгебраїчних рівнянь

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

називають **однорідною**, якщо всі $b_i,\ i=1,2,...,m$ дорівнюють нулю.

$$Ax=0$$
, де $A=\left(a_{ij}\right)$ - $m imes n$ — матриця системи, $x=\left(x_1,x_2,...,x_n\right)^T$ — вектор-стовпець невідомих.

Неоднорідна система

Визначення. Систему лінійних алгебраїчних рівнянь

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

у випадку, коли $b \neq 0$, називають **неоднорідною**.

$$Ax = b$$
,

де $A=\left(a_{ij}\right)$ - $m\times n$ — матриця системи, $x=\left(x_1,x_2,...,x_n\right)^T$ — вектор-стовпець невідомих, $b=\left(b_1,b_2,...,b_m\right)^T$ — вектор-стовпець вільних коефіцієнтів

Сумісні й несумісні системи алгебраїчних рівнянь

Визначення. Систему лінійних алгебраїчних рівнянь

$$Ax = b$$

називають **сумісною,** якщо існує вектор $x^0 = \left(x_1^0, x_2^0, ..., x_n^0\right)^T$ такий, що $Ax^0 = b$, тоді вектор x^0 називають **розв'язком системи.**

Визначення. Якщо для системи Ax = b не існує вектора $x^0 = \left(x_1^0, x_2^0, ..., x_n^0\right)^T$ такого, що $Ax^0 = b$, то систему називають несумісною.

Множина розв'язків системи алгебраїчних рівнянь

Множину розв'язків системи Ax = b характеризують в такий спосіб.

I. Порожня множина розв'язків

Якщо множина розв'язків алгебраїчних рівнянь порожня, то в цьому випадку система *несумісна*.

II. Множина містить єдиний розв'язок

Якщо множина містить єдиний розв'язок, то система сумісна і її називають визначеною.

III. Множина містить більше, ніж один розв'язок Якщо множина включає більше, ніж один розв'язок, то систему називають *невизначеною*.

Розширена матриця системи лінійних алгебраїчних рівнянь

Якщо приєднати стовпець b до матриці A, то отриману матрицю B називають розширеною матрицею системи Ax = b .

$$B = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}.$$

Умови сумісності для лінійної системи алгебраїчних рівнянь Ax = b визначають теоремою Кронекера-Капеллі.

Ранг матриці (системи)

Визначення 1. Рангом матриці A, що містить m рядків і n стовпців, називають максимальне число лінійно незалежних рядків.

Рядки називають лінійно незалежними, якщо жоден з них не можна виразити лінійно через інші.

Визначення 2. Рангом матриці A називають найвищий з порядків мінорів M_i цієї матриці, відмінних від нуля.

Ранг системи завжди дорівнює рангу матриці.

Формальне визначення рангу матриці

Нехай $A_{m \times n}$ – матриця.

Тоді **ранг матриці** A через мінор порядку r визначається так:

- 1. rang A = 0, якщо матриця A нульова;
- 2. rang A = r: $\exists M_r \neq 0$, $\forall M_{r+1} = 0$

де M_r - базисний мінор матриці A порядку r,

 M_{r+1} — мінор порядку (r+1), що оточує мінор M_r , якщо мінор M_r не є найбільшим з можливих мінорів.

Базисні рядки і стовпці

Рядки і стовпці, на перетині яких міститься базисний мінор, називають **базисними рядками й стовпцями**.

Теорема (про базисний мінор)

Нехай $r = \operatorname{rang} A$ і M_r – базисний мінор матриціA, тоді:

- 1. базисні рядки й базисні стовпці лінійно незалежні;
- 2. будь-який рядок (стовпець) матриці A є лінійною комбінацією базисних рядків (стовпців).

Приклад. Нехай дана матриця B.

$$B = \begin{pmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 4 & 0 & 5 & 1 \end{pmatrix}$$

 $B = egin{pmatrix} 2 & 3 & 1 & 2 \ 0 & 2 & -1 & 1 \ 4 & 0 & 5 & 1 \end{pmatrix}$ Знайти базисний мінор матриці. На матриці $B_{m imes n}$ існують мінори $k \leq \min \left(m, n
ight)$.

Оскільки m=3, n=4 то $k \le 3$. Почнемо з k=3

$$B = \begin{bmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 0 & 5 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 5 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 5 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 4 & 0 & 5 \end{bmatrix}$$

$$m_1 = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -1 & 1 \\ 0 & 5 & 1 \end{bmatrix} = 0 \qquad m_2 = \begin{bmatrix} 2 & 1 & 2 \\ 0 & -1 & 1 \\ 4 & 5 & 1 \end{bmatrix} = 0 \qquad m_3 = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 2 & 1 \\ 4 & 0 & 1 \end{bmatrix} = 0 \qquad m_4 = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 2 & -1 \\ 4 & 0 & 5 \end{bmatrix} = 0$$

Усі мінори третього порядку дорівнюють нулю. Продовжимо для k = 2.

$$B = \begin{bmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 4 & 0 & -1 & 1 \end{bmatrix}$$

$$m_4 = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} = 2 \cdot 2 - 3 \cdot 0 = 4$$

Перший же мінор другого порядку не дорівнює нулю.

$$r = \operatorname{rang} B = 2$$

Методи знаходження рангу матриці

1. Метод елементарних перетворень

Ранг матриці дорівнює числу ненульових рядків у матриці після приведення її до східчастої форми за допомогою елементарних перетворень над рядками матриці.

2. Метод оточуючих мінорів

- A) Знайти ненульовий мінор r-го порядку M_r .
- Б) Розглянути всі мінори (r+1)-го порядку, що оточують мінор M_r ; якщо всі вони дорівнюють нулю, то ранг матриці дорівнює r.
- В) А якщо ні, то серед оточуючих мінорів найдеться ненульовий, і вся процедура повторюється.

Теорема Кронекера-Капеллі

Теорема. Система лінійних алгебраїчних рівнянь

$$Ax = b$$

- 1) сумісна тоді й тільки тоді, коли ранг її основної матриці $\operatorname{rang} A$ дорівнює рангу її розширеної матриці $\operatorname{rang} B$,
- 2) система має єдиний розв'язок, якщо ранг дорівнює числу невідомих,
- 3) нескінченну множину розв'язків, якщо ранг менше числа невідомих.

Наслідки

- 1. Кількість головних змінних СЛАР дорівнює рангу системи.
- 2. Сумісна СЛАР буде визначена (її розв'язок єдиний), якщо ранг системи дорівнює числу всіх її змінних.

Системи лінійних алгебраїчних рівнянь із квадратною матрицею

Нехай матриця системи Ax = b квадратна, n = m. Також матриця A невироджена, тобто $\det A \neq 0$ (ця умова забезпечує сумісність і визначеність).

Тоді єдиний розв'язок x_1, x_2, \dots, x_n може бути отриманий за

формулами Крамера:
$$x_1 = \frac{\Delta_{x_1}}{\det A}, \ \dots, x_n = \frac{\Delta_{x_n}}{\det A}, \ \ \mathsf{Де}$$

$$\Delta_{x_1} = \begin{vmatrix} b_1 & a_{12} & \cdots & a_{1n} \\ b_2 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_n & a_{n2} & \cdots & a_{nn} \end{vmatrix}, \dots, \quad \Delta_{x_n} = \begin{vmatrix} a_{11} & a_{12} & \cdots & b_1 \\ a_{12} & a_{22} & \cdots & b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{n2} & \cdots & b_n \end{vmatrix}$$

При великих n ці формули не використовуються, тому що число арифметичних операцій зростає з ростом розмірності й становить

$$O(n) = n^2 n!.$$

Однорідні системи лінійних алгебраїчних рівнянь

Нехай у системи Ax=b всі $b_i, i=1,2,...,m$ рівні 0, тоді система однорідна, тобто

$$Ax = 0$$
,

де $A = (a_{ij}), x$ — шуканий вектор.

- 1) Якщо $\det A \neq 0$, то в силу формул Крамера система Ax = 0 має єдиний розв'язок x = 0, який називають тривіальним.
- 2) Для того, щоб система Ax = 0 мала й ненульові розв'язки, необхідно, щоб $\det A = 0$. У цьому випадку сукупність усіх розв'язків системи Ax = 0 утворює векторний простір, який називають простором розв'язків.

Властивості цього простору визначають теоремами.

Теорема про лінійний розв'язок однорідних систем

Нехай $(x)_1, (x)_2, ..., (x)_k$ – розв'язок однорідної системи Ax = 0 і $c_1, c_2, ..., c_k$ – довільні константи. Тоді $x_{3OP} = c_1(x)_1 + c_2(x)_2 + ... + c_k(x)_k$ є загальним розв'язком розглянутої однорідної системи.

Теорема про структуру загального розв'язку

Hexaй r = rang A, тоді:

- якщо r = n, де n кількість невідомих однорідної системи Ax = 0, то існує тільки тривіальний розв'язок;
- якщо (r < n), то існує k = n r лінійно незалежних розв'язків даної однорідної системи $(x)_1, (x)_2, ..., (x)_{n-r}$, а загальний розв'язок має вигляд:

$$x_{3OP} = c_1(x)_1 + c_2(x)_2 + ... + c_{n-r}(x)_{n-r}$$
, де $c_1, c_2, ..., c_{n-r}$ – константи

Фундаментальна система розв'язків системи однорідних лінійних алгебраїчних рівнянь

Нехай дана деяка однорідна система $A_{m \times n} x = 0$ й існує деякий набір векторів лінійно незалежних розв'язків даної системи $(x)_1,...,(x)_i,...,(x)_k$ таких, що $(x)_i = (x_1,x_2,...,x_n)_i$. Тоді справедлива теорема про фундаментальну систему розв'язків.

Теорема про фундаментальну систему розв'язків (ФСР)

Якщо ранг матриці $r = \operatorname{rang} A$ менше кількості невідомих r < n, тоді:

- ichye Φ CP: $(x)_1,...,(x)_i,...,(x)_k$,
- ФСР складається з k = n r векторів,
- загальний однорідний розв'язок СЛАР представлений лінійною комбінацією: $x_{3OP} = c_1(x)_1 + c_2(x)_2 + ... + c_{n-r}(x)_{n-r}$

Приклад. Розв'язати систему (3 рівн. 4 невідомих):

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 0, \\ 3x_1 + 2x_2 + x_3 + 3x_4 = 0, \Rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 3 & 2 & 1 & 3 \\ 2x_1 + \frac{3}{2}x_2 + \frac{3}{2}x_3 + 2x_4 = 0. \end{cases} \Rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 3 & 2 & 1 & 3 \\ 2 & \frac{3}{2} & \frac{3}{2} & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Домножимо другий рядок на 2, а третій — на 3 і від другого рядка віднімемо третій

$$\begin{pmatrix}
1 & 1 & 2 & 1 \\
3 & 2 & 1 & 3 \\
2 & \frac{3}{2} & \frac{3}{2} & 2
\end{pmatrix}
\times 2 \Rightarrow
\begin{pmatrix}
1 & 1 & 2 & 1 \\
6 & 4 & 2 & 6 \\
6 & \frac{9}{2} & \frac{9}{2} & 6
\end{pmatrix}
- \Rightarrow
\begin{pmatrix}
1 & 1 & 2 & 1 \\
6 & 4 & 2 & 6 \\
0 & -\frac{1}{2} & -\frac{5}{2} & 0
\end{pmatrix}$$

Приклад (продовження 1)

Домножимо перший рядок на 6, віднімемо від другого рядка перший рядок, а потім поділимо другий рядок на 2.

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 6 & 4 & 2 & 6 \\ 0 & -\frac{1}{2} & -\frac{5}{2} & 0 \end{pmatrix} \times 6 \Rightarrow \begin{pmatrix} 6 & 6 & 12 & 6 \\ 6 & 4 & 2 & 6 \\ 0 & -\frac{1}{2} & -\frac{5}{2} & 0 \end{pmatrix} - \uparrow \Rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -1 & -5 & 0 \\ 0 & -\frac{1}{2} & -\frac{5}{2} & 0 \end{pmatrix} : 2$$

Домножимо другий рядок на -1/2 й додамо до третього

$$\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & -1 & -5 & 0 \\
0 & -\frac{1}{2} & -\frac{5}{2} & 0
\end{pmatrix} \times (-\frac{1}{2}) \Rightarrow \begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & \frac{1}{2} & \frac{5}{2} & 0 \\
0 & -\frac{1}{2} & -\frac{5}{2} & 0
\end{pmatrix} + \Rightarrow \begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & -1 & -5 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \times (-2)$$

Приклад (продовження 2)

Таким чином, ранг системи (ранг її основної матриці) дорівнює двом. Це означає, що існує n-r=4-2=2 лінійно незалежних розв'язків системи.

Таким чином, початкова система набуде вигляду:

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 0, \\ x_2 + 5x_3 = 0. \end{cases} \Rightarrow \begin{cases} x_1 = 3x_3 - x_4 \\ x_2 = -5x_3 \end{cases}$$

Виберемо x_1 й x_2 як <u>головні змінні</u>.

Підставимо по черзі одиниці в одну з вільних змінних: x_3 і x_4 .

Одержимо вектори фундаментальної системи:

Приклад (продовження 3)

Таким чином, загальний розв'язок розглянутої системи

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 0, \\ 3x_1 + 2x_2 + x_3 + 3x_4 = 0, \\ 2x_1 + \frac{3}{2}x_2 + \frac{3}{2}x_3 + 2x_4 = 0. \end{cases}$$
 може бути записаний так:

Загальний однорідний розв'язок: ЗОР

$$x_{3OP} = c_1 egin{pmatrix} 3 \\ -5 \\ 1 \\ 0 \end{pmatrix} + c_2 egin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 або покоординатно:

$$x_1 = 3c_1 - c_2$$
, $x_2 = -5c_1$, $x_3 = c_1$, $x_4 = c_2$.

Загальний розв'язок неоднорідної системи лінійних рівнянь

У загальному випадку неоднорідної системи

$$Ax = b$$

загальний її розв'язок визначається згідно теореми.

Теорема про загальний розв'язок неоднорідної СЛАР

Нехай система Ax = b сумісна,

тобто rang A = rang B = r, тоді:

- якщо r = n, де n число змінних системи Ax = b, то розв'язок Ax = b існує й він єдиний;
- якщо r < n, то загальний розв'язок системи Ax = b має вигляд $(x)_{3HP} = (x)_{3OP} + (x)_{4HP}$, де $(x)_{3OP} -$ загальний

розв'язок системи Ax = 0, який називають

загальним однорідним розв'язком,

 $(x)_{YHP}$ — частковий розв'язок системи Ax = b, який називають частковим неоднорідним розв'язком.

Приклад. Розв'яжемо систему.

Домножимо третє рівняння – на 3.

$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = 1, \\ 3x_3 + x_4 = 4, \\ x_3 + 2x_4 = 3. \times 3 \end{cases} \Rightarrow \begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = 1, \\ 3x_3 + x_4 = 4, \\ 3x_3 + 6x_4 = 9. \end{cases}$$

Віднімемо третє рівняння від другого й результат запишемо на місце третього рівняння, а третє – на місце другого

$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = 1, \\ x_3 + 2x_4 = 3, \\ 5x_4 = 5. \end{cases} \Rightarrow \begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = 1, \\ x_3 + 2x_4 = 3, \\ x_4 = 1 :: 5 \end{cases}$$

Визначимо частинний розв'язок даної системи рівнянь, прийнявши за головні змінні x_2, x_3, x_4 .

Приймемо значення вільної змінної $x_1 = 1$.

Розв'язавши систему при $x_1 = 1$:

$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = 1, \\ x_3 + 2x_4 = 3, \Rightarrow \end{cases} \begin{cases} 1 + 2x_2 - 3x_3 + x_4 = 1, \\ x_3 + 2x_4 = 3, \Rightarrow \end{cases} \begin{cases} 1 + 2x_2 - 3x_3 + x_4 = 1, \\ x_4 = 1. \end{cases}$$

одержимо частковий розв'язок $(x)_{qHP} = (1,1,1,1)^T$.

Однорідна система має вигляд:

$$\begin{cases} 1 + 2x_2 - 3x_3 + x_4 = 0, \\ x_3 + 2x_4 = 0, \\ x_4 = 0. \end{cases}$$

Ранг системи (ранг її основної матриці) дорівнює трьом. Це означає, що існує n-r=4-3=1 лінійно незалежних розв'язків системи.

$$\begin{cases} 1+2x_2-3x_3+x_4=0, & \text{Розв'яжемо} & \text{дану} & \text{систем} \\ x_3+2x_4=0, & \text{підставивши як вільну змінну } x_1=1. \\ x_4=0. & \text{у результаті розв'язування одержим} \end{cases}$$

Розв'яжемо дану систему,

У результаті розв'язування одержимо

$$\left(x\right)_{1} = \left(1, -\frac{1}{2}, 0, 0\right)$$
. Отже $\left(x\right)_{3OP} = c_{1} \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 0 \\ 0 \end{pmatrix}$; $\left(x\right)_{3HP} = \left(x\right)_{3OP} + \left(x\right)_{4HP} = c_{1} \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

$$x_1 = c_1 + 1$$
, $x_2 = -\frac{c_1}{2} + 1$, $x_3 = 1$, $x_4 = 1$

Метод виключення Гауса

Метод виключення Гауса для розв'язування лінійних систем рівнянь є основою багатьох обчислювальних схем і зводиться до перетворення початкової системи до рівносильної системи з верхньотрикутною матрицею.

Опис методу для системи з двома невідомими

Розглянемо поелементну форму запису основної обчислювальної схеми методу Гауса.

Будемо розглядати роботу методу на прикладі системи двох рівнянь із двома невідомими:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = a_{13} \\ a_{21}x_1 + a_{22}x_2 = a_{23} \end{cases}$$

ВИКЛЮЧАЄМО x_1 ІЗ СИСТЕМИ (1)

- 1. Вибираємо як «головний елемент» a_{11} , якщо $a_{11} \neq 0$.
- 2. Ділимо перше рівняння системи на головний елемент:

$$a_{11}x_1 + a_{12}x_2 = a_{13}$$

де
$$\frac{b_{11}}{a_{11}} = 1$$
 ($j = 1$) $\Rightarrow b_{1j} = \frac{a_{1j}}{a_{11}}, (j > 1).$ $x_1 + b_{12}x_2 = b_{13},$ (2)

3. Виключаємо x_1 з 2-го рівняння:

Помножимо (2) на
$$a_{21}$$
: $a_{21}x_1 + a_{21}b_{12}x_2 = a_{21}b_{13}$

Віднімаємо його з 2-го рівняння: $a_{21}x_1 + a_{22}x_2 = a_{23}$

$$0x_1 + (a_{22} - a_{21}b_{12})x_2 = a_{23} - a_{21}b_{13}$$
(3)

Об'єднаємо отримані рівняння в систему з рівнянь:

$$\begin{cases} x_1 + b_{12}x_2 = b_{13} \\ (a_{22} - a_{21}b_{12})x_2 = a_{23} - a_{21}b_{13} \end{cases}$$

ОБЧИСЛЮЄМО x_{2} 3 РІВНЯННЯ (3)

$$x_2 = \frac{a_{23} - a_{21}b_{13}}{a_{22} - a_{21}b_{12}}.$$

ПІДСТАВИМО x_2 В РІВНЯННЯ (2)

$$x_1 + b_{12}x_2 = b_{13} \implies x_1 = b_{13} - b_{12} \frac{a_{23} - a_{21}b_{13}}{a_{22} - a_{21}b_{12}}$$

$$x_1 = \frac{b_{13}a_{22} - b_{12}b_{13}a_{21} - b_{12}a_{23} + b_{12}b_{13}a_{21}}{a_{22} - a_{21}b_{12}} = \frac{b_{13}a_{22} - b_{12}a_{23}}{a_{22} - a_{21}b_{12}}$$

Опис методу для системи з чотирма

Розглянемо поелементну форму запису основної обчислювальної схеми методу Гауса.

Будемо розглядати роботу методу на прикладі системи чотирьох рівнянь із чотирма невідомими:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = a_{15}, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = a_{25}, \\ a_{31}x_1 + a_{31}x_1 + a_{33}x_3 + a_{34}x_4 = a_{35}, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = a_{45}. \end{cases}$$
(1)

ВИКЛЮЧАЄМО x_1 I3 СИСТЕМИ (1)

- 1. Вибираємо як «головний елемент» a_{11} , якщо $a_{11} \neq 0$.
- 2. Ділимо перше рівняння системи на головний елемент:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = a_{15}$$

де
$$\frac{b_{11}}{a_{11}} = 1$$
 ($j = 1$) $\Rightarrow b_{1j} = \frac{a_{1j}}{a_{11}}$, ($j > 1$).
$$x_1 + b_{12}x_2 + b_{13}x_3 + b_{14}x_4 = b_{15}$$
, (2)

3. Виключаємо x_1 з 2-го рівняння:

Помножимо (2) на a_{21} :

$$a_{21}x_1 + a_{21}b_{12}x_2 + a_{21}b_{13}x_3 + a_{21}b_{14}x_4 = a_{21}b_{15}$$

Віднімаємо його з 2-го рівняння:

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = a_{25}$$

a	$x_{21}x_1 +$	$a_{22}x_2 +$	$a_{23}x_3 +$	$a_{24}x_{4}$	$= a_{25}$
a	$x_{21}x_1 +$	$a_{21}b_{12}x_2 +$	$a_{21}b_{13}x_3 +$	$a_{21}b_{14}x_4$	$=a_{21}b_{15}$
	0 +	$(a_{22} - a_{21}b_{12})x_2 +$	$(a_{23} - a_{21}b_{13})x_3 +$	$\left(a_{24} - a_{21}b_{14}\right)x_4$	7
			,		

4. Виключаємо x_1 з 3-го рівняння:

Помножимо (2) на a_{31} :

$$a_{31}x_1 + a_{31}b_{12}x_2 + a_{31}b_{13}x_3 + a_{31}b_{14}x_4 = a_{31}b_{15}$$

Віднімаємо його з 3-го рівняння:

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = a_{35}$$

$$a_{31}x_1 + a_{31}b_{12}x_2 + a_{31}b_{13}x_3 + a_{31}b_{14}x_4 = a_{31}b_{15}$$

$$0x_1 + (a_{32} - a_{31}b_{12})x_2 + (a_{33} - a_{31}b_{13})x_3 + (a_{34} - a_{31}b_{14})x_4 = a_{35} - a_{31}b_{15}$$

5. Виключаємо x_1 з 4-го рівняння:

Помножимо (2) на a_{41} :

$$a_{41}x_1+a_{41}b_{12}x_2+a_{41}b_{13}x_3+a_{41}b_{14}x_4=a_{41}b_{15}$$
Віднімаємо його з 4-го рівняння:

$$a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = a_{45}$$

$$a_{41}x_1 + a_{41}b_{12}x_2 + a_{41}b_{13}x_3 + a_{41}b_{14}x_4 = a_{41}b_{15}$$

$$0x_1 + (a_{42} - a_{41}b_{12})x_2 + (a_{43} - a_{41}b_{13})x_3 + (a_{44} - a_{41}b_{14})x_4 = a_{45} - a_{41}b_{15}$$

Об'єднаємо отримані рівняння в систему із трьох рівнянь:

$$\begin{cases} \left(a_{22} - a_{21}b_{12}\right)x_2 + \left(a_{23} - a_{21}b_{13}\right)x_3 + \left(a_{24} - a_{21}b_{14}\right)x_4 = a_{25} - a_{21}b_{15} \\ \left(a_{32} - a_{31}b_{12}\right)x_2 + \left(a_{33} - a_{31}b_{13}\right)x_3 + \left(a_{34} - a_{31}b_{14}\right)x_4 = a_{35} - a_{31}b_{15} \\ \left(a_{42} - a_{41}b_{12}\right)x_2 + \left(a_{43} - a_{41}b_{13}\right)x_3 + \left(a_{44} - a_{41}b_{14}\right)x_4 = a_{45} - a_{41}b_{15} \end{cases}$$

Виконаємо заміни:

Одержимо систему:

$$\begin{cases}
a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + a_{24}^{(1)} &= a_{25}^{(1)}, \\
a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 + a_{34}^{(1)} &= a_{35}^{(1)}, \\
a_{42}^{(1)}x_2 + a_{43}^{(1)}x_3 + a_{44}^{(1)} &= a_{45}^{(1)},
\end{cases}$$
(3)

де
$$a_{ij}^{(1)}=a_{ij}-a_{i1}b_{1j}$$
 $(i, j \geq 2).$

ВИКЛЮЧАЄМО x_2 ІЗ СИСТЕМИ (3)

1. Ділимо перше рівняння системи (3) на «головний елемент» $a_{22}^{(1)}
eq 0$:

$$a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + a_{24}^{(1)} = a_{25}^{(1)}$$

$$x_2 + b_{23}^{(1)} x_3 + b_{24}^{(1)} x_4 = b_{25}^{(1)}$$
 де $b_{22}^{(1)} = 1 \ \left(j=2\right) \Rightarrow \ b_{2j}^{(1)} = rac{a_{2j}^{(1)}}{a_{22}^{(1)}} \ \left(j>2\right).$

2. Виключаємо x_2 з 2-го рівняння:

Помножимо (4) на $a_{32}^{(1)}$: $a_{32}^{(1)}x_2 + a_{32}^{(1)}b_{23}^{(1)}x_3 + a_{32}^{(1)}b_{24}^{(1)}x_4 = a_{32}^{(1)}b_{25}^{(1)}$ Віднімаємо його з 2-го рівняння:

$$a_{32}^{(1)}x_{2} + a_{33}^{(1)}x_{3} + a_{34}^{(1)} = a_{35}^{(1)}$$

$$a_{32}^{(1)}x_{2} + a_{32}^{(1)}b_{23}^{(1)}x_{3} + a_{32}^{(1)}b_{24}^{(1)}x_{4} = a_{32}^{(1)}b_{25}^{(1)}$$

$$0x_{2} + \left(a_{33}^{(1)} - a_{32}^{(1)}b_{23}^{(1)}\right)x_{3} + \left(a_{34}^{(1)} - a_{32}^{(1)}b_{24}^{(1)}\right)x_{4} = a_{35}^{(1)} - a_{32}^{(1)}b_{25}^{(1)}$$

3. Виключаємо x_2 з 3-го рівняння:

Помножимо (4) на $a_{42}^{(1)}$: $a_{42}^{(1)}x_2+a_{42}^{(1)}b_{23}^{(1)}x_3+a_{42}^{(1)}b_{24}^{(1)}x_4=a_{42}^{(1)}b_{25}^{(1)}$ Віднімаємо його з 3-го рівняння:

$$a_{42}^{(1)}x_2 + a_{43}^{(1)}x_3 + a_{44}^{(1)} = a_{45}^{(1)}$$

$$a_{42}^{(1)}x_2 + a_{42}^{(1)}b_{23}^{(1)}x_3 + a_{42}^{(1)}b_{24}^{(1)}x_4 = a_{42}^{(1)}b_{25}^{(1)}$$

$$0x_2 + \left(a_{43}^{(1)} - a_{42}^{(1)}b_{23}^{(1)}\right)x_3 + \left(a_{44}^{(1)} - a_{42}^{(1)}b_{24}^{(1)}\right)x_4 = a_{45}^{(1)} - a_{42}^{(1)}b_{25}^{(1)}$$

Об'єднаємо отримані рівняння в систему із двох рівнянь:

$$\begin{cases} 0x_2 + \left(a_{33}^{(1)} - a_{32}^{(1)}b_{23}^{(1)}\right)x_3 + \left(a_{34}^{(1)} - a_{32}^{(1)}b_{24}^{(1)}\right)x_4 = a_{35}^{(1)} - a_{32}^{(1)}b_{25}^{(1)} \\ 0x_2 + \left(a_{43}^{(1)} - a_{42}^{(1)}b_{23}^{(1)}\right)x_3 + \left(a_{44}^{(1)} - a_{42}^{(1)}b_{24}^{(1)}\right)x_4 = a_{45}^{(1)} - a_{42}^{(1)}b_{25}^{(1)} \end{cases}$$

Виконаємо заміни:

$$\begin{pmatrix} a_{33}^{(1)} - a_{32}^{(1)}b_{23}^{(1)} \end{pmatrix} \rightarrow a_{33}^{(2)} \qquad \begin{pmatrix} a_{34}^{(1)} - a_{32}^{(1)}b_{24}^{(1)} \end{pmatrix} \rightarrow a_{34}^{(2)} \qquad \begin{pmatrix} a_{35}^{(1)} - a_{32}^{(1)}b_{25}^{(1)} \end{pmatrix} \rightarrow a_{35}^{(2)} \\ \begin{pmatrix} a_{43}^{(1)} - a_{42}^{(1)}b_{23}^{(1)} \end{pmatrix} \rightarrow a_{43}^{(2)} \qquad \begin{pmatrix} a_{44}^{(1)} - a_{42}^{(1)}b_{24}^{(1)} \end{pmatrix} \rightarrow a_{44}^{(2)} \qquad \begin{pmatrix} a_{45}^{(1)} - a_{42}^{(1)}b_{25}^{(1)} \end{pmatrix} \rightarrow a_{45}^{(2)}$$

У результаті одержимо систему рівнянь:

$$\begin{cases}
 a_{33}^{(2)}x_3 + a_{34}^{(2)}x_4 = a_{35}^{(2)}, \\
 a_{43}^{(2)}x_3 + a_{44}^{(2)}x_4 = a_{45}^{(2)},
\end{cases} (5)$$

де
$$a_{ij}^{\left(2\right)}=a_{ij}^{\left(1\right)}-a_{i2}^{\left(1\right)}b_{2j}^{\left(1\right)}$$
 $(i,j\geq3)$

ВИКЛЮЧАЄМО x_3 ІЗ СИСТЕМИ (5)

1. Ділимо перше рівняння системи (5) на головний елемент $a_{33}^{\left(2\right)}
eq 0$:

$$a_{33}^{(2)}x_3 + a_{34}^{(2)}x_4 = a_{35}^{(2)}$$
 $x_3 + b_{34}^{(2)}x_4 = b_{35}^{(2)}$ (6) де $b_{33}^{(2)} = 1$ $(j=3) \Rightarrow b_{3j}^{(2)} = \frac{a_{3j}^{(2)}}{a_{33}^{(2)}} (j>3).$

2. Виключаємо x_3 з 2-го рівняння:

Помножимо (6) на $a_{43}^{(2)}$: $a_{43}^{(2)}x_3 + a_{43}^{(2)}b_{34}^{(2)}x_4 = a_{43}^{(2)}b_{35}^{(2)}$ Віднімаємо його з 2-го рівняння:

$$a_{43}^{(2)}x_3 + a_{44}^{(2)}x_4 = a_{45}^{(2)}$$

$$a_{43}^{(2)}x_3 + a_{43}^{(2)}b_{34}^{(2)}x_4 = a_{43}^{(2)}b_{35}^{(2)}$$

$$0x_3 + \left(a_{44}^{(2)} - a_{43}^{(2)}b_{34}^{(2)}\right)x_4 = a_{45}^{(2)} - a_{43}^{(2)}b_{35}^{(2)}$$

Виконаємо заміну

$$\left(a_{44}^{(2)} - a_{43}^{(2)}b_{34}^{(2)}\right) \to a_{44}^{(3)} \qquad \left(a_{45}^{(2)} - a_{43}^{(2)}b_{35}^{(2)}\right) \to a_{45}^{(3)}$$

Одержимо рівняння

$$a_{44}^{(3)}x_4 = a_{45}^{(3)} (7)$$

де

$$a_{ij}^{(3)} = a_{ij}^{(2)} - a_{i3}^{(2)} b_{3j}^{(2)} \quad (i, j \ge 4).$$

ОБЧИСЛЮЄМО x_4 3 РІВНЯННЯ (7)

$$x_4 = \frac{a_{45}^{(3)}}{a_{44}^{(3)}} = b_{45}^{(3)}.$$

Інші невідомі послідовно будемо обчислювати з рівнянь (6), (4), (2):

$$(7) x_4 = b_{45}^{(3)}$$

(6)
$$x_3 = b_{35}^{(2)} - b_{34}^{(2)} x_4,$$

(4)
$$x_2 = b_{25}^{(1)} - b_{24}^{(1)} x_4 - b_{23}^{(1)} x_3,$$

$$(2) \quad x_1 = b_{15} - b_{14}x_4 - b_{13}x_3 - b_{12}x_2.$$

ВИСНОВОК

За методом Гауса будують еквівалентну систему:

$$x_{1} + b_{12}x_{2} + b_{13}x_{3} + b_{14}x_{4} = b_{15}$$

$$x_{2} + b_{23}^{(1)}x_{3} + b_{24}^{(1)}x_{4} = b_{25}^{(1)}$$

$$x_{3} + b_{34}^{(2)}x_{4} = b_{35}^{(2)}$$

$$x_{4} = b_{45}^{(3)}$$

Система має трикутну матрицю.

Необхідною і достатньою умовою застосовності методу є не рівність нулю всіх «головних елементів».

Узагальнення методу Гауса для довільної системи

1.Процес виключення невідомої x_k із усіх рівнянь j>k називають прямим ходом методу Гауса.

Формули обчислення коефіцієнтів системи на k-му кроці мають вигляд:

$$b_{1j}^{(0)} = a_{1j}^{(0)} / a_{11}^{(0)}, \quad (j > 1)$$

$$b_{2j}^{(1)} = a_{2j}^{(1)} / a_{22}^{(1)}, \quad (j > 2) \Rightarrow b_{kj}^{(k-1)} = \frac{a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}}$$

$$b_{3j}^{(2)} = a_{3j}^{(2)} / a_{33}^{(2)} \quad (j > 3)$$

$$i = k + 1, \dots, n; \quad j = k, \dots, n + 1.$$

$$a_{ij}^{(1)} = a_{ij}^{(0)} - a_{i1}^{(0)} b_{1j}^{(0)} \quad (i, j \ge 2)$$

$$a_{ij}^{(2)} = a_{ij}^{(1)} - a_{i2}^{(1)} b_{2j}^{(1)} \quad (i, j \ge 3) \Rightarrow a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{ik}^{(k-1)} b_{kj}^{(k-1)}$$

$$a_{ij}^{(3)} = a_{ij}^{(2)} - a_{i3}^{(2)} b_{3j}^{(2)} \quad (i, j \ge 4)$$

(i – номер рядка, j – номер стовпця елемента початкової матриці).

Визначення невідомих за формулою

$$x_i = b_{i,n+1}^{(i-1)} - \sum_{j=i+1}^{n} b_{ij}^{(i-1)} x_j, \ i = n, n-1, ..., 1$$

називають зворотним ходом методу Гауса.

Приклад.

$$\begin{cases} x_1 - x_2 + x_3 = 1 \\ 3x_1 + 2x_2 - x_3 = 6 \\ 2x_1 - 3x_2 + 3x_3 = 0 \end{cases}$$

Розв'язок.

$$\begin{aligned} a_{11}^{\left(0\right)} &= 1; \ a_{12}^{\left(0\right)} &= -1; \ a_{13}^{\left(0\right)} &= 1; \ a_{14}^{\left(0\right)} &= 1; \\ a_{21}^{\left(0\right)} &= 3; \ a_{22}^{\left(0\right)} &= 2; \ a_{23}^{\left(0\right)} &= -1; \ a_{24}^{\left(0\right)} &= 6; \\ a_{31}^{\left(0\right)} &= 2; \ a_{32}^{\left(0\right)} &= -3; \ a_{33}^{\left(0\right)} &= 3; \ a_{34}^{\left(0\right)} &= 0; \end{aligned}$$

$$\begin{split} b_{12}^{(0)} &= \frac{a_{12}^{(0)}}{a_{11}^{(0)}} = \frac{-1}{1} = -1; \ b_{13}^{(0)} = \frac{a_{13}^{(0)}}{a_{11}^{(0)}} = \frac{1}{1} = 1; \ b_{14}^{(0)} = \frac{a_{14}^{(0)}}{a_{11}^{(0)}} = \frac{1}{1} = 1 \\ a_{22}^{(1)} &= a_{22}^{(0)} - a_{21}^{0} b_{12}^{(0)} = 2 - 3 \cdot \left(-1\right) = 5; \\ a_{23}^{(1)} &= a_{23}^{(0)} - a_{21}^{0} b_{13}^{(0)} = -1 - 3 \cdot \left(1\right) = -4; \\ a_{24}^{(1)} &= a_{24}^{(0)} - a_{21}^{0} b_{14}^{(0)} = 6 - 3 \cdot \left(1\right) = 3; \end{split}$$

$$a_{32}^{(1)} = a_{32}^{(0)} - a_{31}^{(0)}b_{12}^{(0)} = -3 - 2(-1) = -1$$

$$a_{33}^{(1)} = a_{33}^{(0)} - a_{31}^{(0)}b_{13}^{(0)} = 3 - 2(1) = 1$$

$$a_{34}^{(1)} = a_{34}^{(0)} - a_{31}^{(0)}b_{14}^{(0)} = 0 - 2(1) = -2$$

$$b_{23}^{(1)} = \frac{a_{23}^{(1)}}{a_{22}^{(1)}} = -\frac{4}{5}; b_{24}^{(1)} = \frac{a_{24}^{(1)}}{a_{22}^{(1)}} = \frac{3}{5}$$

$$a_{33}^{(2)} = a_{33}^{(1)} - a_{32}^{(1)}b_{23}^{(1)} = 1 + 1\left(-\frac{4}{5}\right) = \frac{1}{5}$$

$$a_{34}^{(2)} = a_{34}^{(1)} - a_{32}^{(1)} b_{24}^{(1)} = -2 + 1 \left(\frac{3}{5}\right) = -\frac{7}{5}$$

$$b_{34}^{(2)} = a_{34}^{(2)} / a_{33}^{(2)} = -\frac{7}{5} / \frac{1}{5} = -7$$

$$x_3 = b_{34}^{(2)} = -7$$

$$x_2 = b_{24}^{(1)} - \sum_{i=3}^{3} b_{23}^{(1)} x_3 = \frac{3}{5} - \left(-\frac{4}{5}\right) (-7) = \frac{3}{5} - \frac{28}{5} = -5$$

$$x_{1} = b_{14}^{(0)} - \sum_{j=2}^{3} b_{1j}^{(0)} x_{j} = b_{14}^{(0)} - \left(b_{12}^{(0)} x_{2} + b_{13}^{(0)} x_{3} \right) = 1 - \left((-1)(-5) + (1)(-7) \right) = 1 - (5 - 7) = 3$$

Метод Гауса-Жордана

Суть методу – приведення матриці початкової системи до **діагонального вигляду** шляхом перетворення коефіцієнтів рівнянь, що розміщені вище й нижче головного рівняння.

$$\begin{bmatrix} 1x_1 & 0 & 0 \\ 0 & 1x_2 & 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

«Головний елемент» -коефіцієнт при невідомому, індекс якого дорівнює номеру рівняння.

Умови застосування методу

- 1. «Головний елемент» не повинен дорівнювати нулю.
- 2. Найбільша точність досягається тоді, коли «головний елемент» має найбільше значення.

Як виконати умови застосування методу

Рядок з нульовим або малим «головним елементом» потрібно замінити місцями з рядком, у якому у тому ж

стовпці розташований елемент, що має найбільше значення.

Опис методу для системи з двома невідомими

Розглянемо запис основної обчислювальної схеми методу Гауса-Жордана.

Будемо розглядати роботу методу на прикладі системи двох рівнянь із двома невідомими:

$$A_1 \qquad \begin{cases} x_1 + 3x_2 = 5, \\ A_2 \qquad \begin{cases} 3x_1 - 2x_2 = 4. \end{cases}$$

Розв'язок

1. Оскільки друге рівняння містить максимальний коефіцієнт при x_1 , то міняємо перший рядок з другим.

$$A_1 \qquad \begin{cases} 3x_1 - 2x_2 = 4, \\ A_2 \qquad \begin{cases} x_1 + 3x_2 = 5. \end{cases}$$

2. Ділимо рівняння першого рядка на «головний елемент» 3.

$$B_1 \Rightarrow x_1 - \frac{2}{3}x_2 = \frac{4}{3}$$

$$B_1 \Rightarrow x_1 - \frac{2}{3}x_2 = \frac{4}{3},$$

$$A_2 \begin{cases} x_1 - \frac{2}{3}x_2 = \frac{4}{3}, \\ x_1 + 3x_2 = 5. \end{cases}$$

3. Виключаємо змінну x_1 у спосіб, аналогічний методу Гауса. $B_2 = A_2 - B_1$

$$B_{2} = 0x_{1} + \frac{11}{3}x_{2} = \frac{11}{3}$$

$$B_{1} \begin{cases} x_{1} - \frac{2}{3}x_{2} = \frac{4}{3}, \\ 0x_{1} + \frac{11}{3}x_{2} = \frac{11}{3}. \end{cases}$$

4. Ділимо друге рівняння на «головний елемент» $\frac{11}{3}$.

$$C_2 \Rightarrow 1x_2 = 1$$

$$C_2 \begin{cases} x_1 - \frac{2}{3}x_2 = \frac{4}{3}, \\ 0x_1 + x_2 = 1. \end{cases}$$

5. Виключаємо x_2 з першого рівняння: $C_1 = B_1 - C_2 \left(-\frac{2}{3} \right)$

$$C_1 \Rightarrow x_1 + 0x_2 = \frac{4}{3} + \frac{2}{3}$$

$$C_1 \begin{cases} 1x_1 + 0x_2 = 2, \\ 0x_1 + 1x_2 = 1. \end{cases}$$

Опис методу для системи з чотирма невідомими

Будемо розглядати роботу методу на прикладі конкретної системи чотирьох рівнянь із чотирма невідомими:

Розв'язок

1. Оскільки четверте рівняння містить максимальний коефіцієнт при x_1 , то міняємо перший рядок із четвертим.

2. Ділимо рівняння першого рядка на «головний елемент» 3.

$$B_1: \quad x_1 + \frac{1}{3}x_2 + \frac{2}{3}x_3 - \frac{1}{3}x_4 = \frac{7}{3}.$$

$$x_1 + 0.333x_2 + 0.666x_3 - 0.333x_4 = 2.333$$

3. Виключаємо змінну x_1 у спосіб, аналогічний методу Гауса.

4. Ділимо рівняння другого рядка на «головний елемент» -1.333.

$$C_2: x_2 + 1.25x_3 - 1x_4 = 1.75$$

5. Виключаємо x_2 .

6. Ділимо рівняння третього рядка на «головний елемент» -2.75.

$$D_3: x_3 - 1.09x_4 = -1.363$$

7. Виключаємо x_3 . Головний елемент при x_3 розміщений в третьому рівнянні.

$$C_{1} \begin{cases} 1x_{1} + 0x_{2} + 0.25x_{3} - 0x_{4} &= 1.75 \\ 0x_{1} + 1x_{2} + 1.25x_{3} - 1x_{4} &= 1.75 \\ 0x_{1} + 0x_{2} & 1x_{3} - 1.09x_{4} &= -1.363 \\ 0x_{1} + 0x_{2} + 0.5x_{3} + 0x_{4} &= -1.5 \end{cases}$$

$$D_{1} = C_{1} - D_{3} (0.25)$$

$$D_{2} = C_{2} - D_{3} (1.25)$$

$$D_{4} = C_{4} - D_{3} (0.5)$$

$$D_{5} \begin{cases} 1x_{1} + 0x_{2} + 0x_{3} + 0.272x_{4} &= 2.0909 \\ 0x_{1} + 1x_{2} + 0x_{3} + 0.363x_{4} &= 3.454 \\ 0x_{1} + 0x_{2} + 1x_{3} - 1.09x_{4} &= -1.363 \\ 0x_{1} + 0x_{2} + 0x_{3} - 0.545x_{4} &= -2.181 \end{cases}$$

8. Ділимо рівняння четвертого рядка на «головний елемент» -0.545.

$$F: x_3 - 1x_4 = 4$$

9. Виключаємо x_4 із усіх рівнянь, крім останнього

$$\begin{array}{llll} F_1 = D_1 - \left(0.272\right) F_4 & \begin{cases} 1x_1 & +0x_2 & +0x_3 & +0x_4 & =1 \\ 0x_1 & +1x_2 & +0x_3 & +0x_4 & =2 \\ 0x_1 & +1x_2 & +0x_3 & +0x_4 & =2 \\ 0x_1 & +0x_2 & +1x_3 & +0x_4 & =3 \\ 0x_1 & +0x_2 & +0x_3 & +1x_4 & =4 \\ x_1 = 1, & x_2 = 2, & x_3 = 3, & x_4 = 4 \end{array}$$

Відмінність методу Гауса-Жордана від методу Гауса Матриця рівняння має діагональний вигляд і тому немає необхідності у зворотному ході.

Метод квадратного кореня

Метод застосовується тільки для спеціальних видів СЛАР

Умови застосування методу:

- 1. Матриця системи A повинна бути невиродженою, тобто $(\det A \neq 0)$
- 2. Матриця системи A повинна бути симетричною, тобто $A = A^T$.
- 3. Матриця A повинна бути додатно визначена, тобто всі її головні мінори повинні бути додатними.

(Для того, щоб не виконувати обчислень із комплексними числами)

Матричний опис методу квадратного кореня

Теорема. Нехай дана система лінійних алгебраїчних рівнянь

$$Ax = b$$
,

яка задовольняє умови застосування методу квадратного кореня.

Тоді існує така **верхньотрикутна** матриця S, що:

$$S^TS = A$$
.

У цьому випадку початкову систему можна записати у вигляді:

$$\left(S^TS\right)x=b$$
 або $S^T\left(Sx\right)=b$.

Якщо позначити Sx = y, то весь процес знаходження розв'язку x можна розбити на три етапи:

1. Знайти матрицю S, що задовольняє виразу:

$$S^TS = A$$
;

- 2. Знайти вектор y, відповідний до умови: $S^T y = b$;
- 3. Знайти вектор x з умови: Sx = y.

Система з двома невідомими. Етап 1. Знаходження матриці S («квадратного кореня» з A)

Приклад знаходження коефіцієнтів матриці S для матриці A розмірами 2х2:

Позначимо елементи матриці S:

$$S = \begin{pmatrix} s_{11} & s_{12} \\ 0 & s_{22} \end{pmatrix} \quad S^T = \begin{pmatrix} s_{11} \\ s_{12} & s_{22} \end{pmatrix}$$

Тоді повинно бути виконане співвідношення $A = S^T S$, або

$$\begin{pmatrix} s_{11} & 0 \\ s_{12} & s_{22} \end{pmatrix} \cdot \begin{pmatrix} s_{11} & s_{12} \\ 0 & s_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

За правилами множення матриць одержуємо систему:

$$\begin{cases} s_{11} \cdot s_{11} = a_{11}, \\ s_{11} \cdot s_{12} + 0 \cdot s_{22} = a_{12}, \\ s_{12} \cdot s_{12} + s_{22} \cdot s_{22} = a_{22}. \end{cases}$$

$$\begin{cases} s_{11} \cdot s_{11} = a_{11}, \Rightarrow s_{11}^2 = a_{11} \Rightarrow s_{11} = \sqrt{a_{11}} \\ s_{11} \cdot s_{12} = a_{12}, \Rightarrow s_{12} = a_{12} / s_{11} \\ s_{12} \cdot s_{12} + s_{22} \cdot s_{22} = a_{22}, \Rightarrow s_{12}^2 + s_{22}^2 = a_{22} \Rightarrow s_{22} = \sqrt{a_{22} - s_{12}^2} \end{cases}$$

Етап 2. Знаходження вектора y, відповідного до умови: $S^T y = b$.

Запишемо співвідношення $S^T y = b$ в поелементному вигляді:

$$\begin{pmatrix} s_{11} & 0 \\ s_{12} & s_{22} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

59

Виконавши операцію множення матриці S^T на вектор y, одержимо:

$$s_{11}y_1 = b_1,$$

 $s_{12}y_1 + s_{22}y_2 = b_2,$

Звідси послідовно знаходимо:

$$y_1 = \frac{b_1}{s_{11}}, \ y_2 = \frac{b_2 - s_{12}y_1}{s_{22}},$$

Загальні формули для знаходження y мають вигляд:

$$y_1 = \frac{b_1}{s_{11}}, \ y_i = \frac{b_i - \sum\limits_{k=1}^{i-1} s_{ki} y_k}{s_{ii}} \ \left(i > j\right)$$

Етап 3. Знаходження вектора x з умови: Sx = y.

Запишемо співвідношення Sx = y в поелементному виді:

$$\begin{pmatrix} s_{11} & s_{12} \\ 0 & s_{22} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Після виконання множення матриці на вектор:

$$s_{11}x_1 + s_{12}x_2 = y_1,$$

 $s_{22}x_2 = y_2,$

$$x_2 = \frac{y_2}{s_{22}}, \ x_1 = \frac{y_1 - s_{12}x_2}{s_{11}}$$
 ,

Загальні формули мають вигляд:

$$x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} s_{ik} x_{k}}{s_{ii}} \quad (i < n). \ x_{n} = \frac{y_{n}}{s_{nn}}.$$

Система з чотирма невідомими. Етап 1. Знаходження матриці S («квадратного кореня» з A)

Приклад знаходження коефіцієнтів матриці S для матриці A розмірами 4х4:

Позначимо елементи матриці S:

$$S = egin{pmatrix} s_{11} & s_{12} & s_{13} & s_{14} \ 0 & s_{21} & s_{22} & s_{23} \ 0 & 0 & s_{32} & s_{33} \ 0 & 0 & 0 & s_{34} \end{pmatrix}.$$

Тоді повинно бути виконане співвідношення $A = S^T S$, або

$$\begin{pmatrix} s_{11} & 0 & 0 & 0 \\ s_{12} & s_{22} & 0 & 0 \\ s_{13} & s_{23} & s_{33} & 0 \\ s_{14} & s_{24} & s_{34} & s_{44} \end{pmatrix} \begin{pmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ 0 & s_{22} & s_{23} & s_{24} \\ 0 & 0 & s_{33} & s_{34} \\ 0 & 0 & 0 & s_{44} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

За правилами множення матриць одержуємо систему:

$$\begin{cases} s_{11} \cdot s_{11} = a_{11}, \\ s_{11} \cdot s_{12} + 0 \cdot s_{22} = a_{12}, \\ s_{11} \cdot s_{13} + 0 \cdot s_{23} + 0 \cdot s_{33} = a_{13}, \\ s_{11} \cdot s_{14} + 0 \cdot s_{24} + 0 \cdot s_{34} + 0 \cdot s_{44} = a_{14}, \\ s_{12} \cdot s_{12} + s_{22} \cdot s_{22} = a_{22}, \\ s_{12} \cdot s_{13} + s_{22} \cdot s_{23} = a_{23}, \\ s_{12} \cdot s_{14} + s_{22} \cdot s_{24} = a_{24}, \\ s_{13} \cdot s_{13} + s_{23} \cdot s_{23} + s_{33} \cdot s_{33} = a_{33}, \\ s_{13} \cdot s_{14} + s_{23} \cdot s_{24} + s_{33} \cdot s_{34} = a_{34}, \\ s_{14} \cdot s_{14} + s_{24} \cdot s_{24} + s_{34} \cdot s_{34} + s_{44} \cdot s_{44} = a_{44}. \end{cases}$$

$$\begin{split} s_{11} \cdot s_{11} &= a_{11}, \Rightarrow s_{11}^2 = a_{11} \Rightarrow s_{11} = \sqrt{a_{11}} \\ s_{11} \cdot s_{12} &= a_{12}, \Rightarrow s_{12} = a_{12} / s_{11} \\ s_{11} \cdot s_{13} &= a_{13}, \Rightarrow s_{13} = a_{13} / s_{11} \\ s_{11} \cdot s_{14} &= a_{14}, \Rightarrow s_{14} = a_{14} / s_{11} \\ s_{12} \cdot s_{12} + s_{22} \cdot s_{22} &= a_{22}, \Rightarrow s_{12}^2 + s_{22}^2 = a_{22} \Rightarrow s_{22} = \sqrt{a_{22} - s_{12}^2} \\ s_{12} \cdot s_{13} + s_{22} \cdot s_{23} &= a_{23}, \Rightarrow s_{22} \cdot s_{23} = a_{23} - s_{12} \cdot s_{13} \Rightarrow s_{23} = \frac{a_{23} - s_{12} s_{13}}{s_{22}} \\ s_{12} \cdot s_{14} + s_{22} \cdot s_{24} &= a_{24}, \Rightarrow s_{22} \cdot s_{24} = a_{24} - s_{12} \cdot s_{14} \Rightarrow s_{24} = \frac{a_{24} - s_{12} s_{14}}{s_{22}} \\ s_{13} \cdot s_{13} + s_{23} \cdot s_{23} + s_{33} \cdot s_{33} &= a_{33}, \Rightarrow s_{33} = \sqrt{a_{33} - s_{13}^2 - s_{23}^2} \\ s_{13} \cdot s_{14} + s_{23} \cdot s_{24} + s_{33} \cdot s_{34} &= a_{34}, \Rightarrow s_{34} = \frac{a_{34} - s_{13} s_{14} - s_{23} s_{24}}{s_{33}} \\ s_{14} \cdot s_{14} + s_{24} \cdot s_{24} + s_{34} \cdot s_{34} + s_{44} \cdot s_{44} &= a_{44} \Rightarrow s_{44} = \sqrt{a_{44} - s_{14}^2 - s_{24}^2 - s_{34}^2} \\ s_{14} \cdot s_{14} + s_{24} \cdot s_{24} + s_{34} \cdot s_{34} + s_{44} \cdot s_{44} &= a_{44} \Rightarrow s_{44} = \sqrt{a_{44} - s_{14}^2 - s_{24}^2 - s_{34}^2} \\ s_{15} \cdot s_{14} \cdot s_{14} + s_{25} \cdot s_{25} + s_{35} \cdot s_{35} + s_{35$$

Загальні формули для знаходження елементів матриці S мають вигляд:

$$s_{ij} = rac{\sum\limits_{k=1}^{i-1} s_{ki} s_{kj}}{s_{ii}}$$
 $(i < j)$, решта над діагоналлю $s_{ij} = 0$ $(i > j)$ решта під діагоналлю

Етап 2. Знаходження вектора y, відповідного до

умови: $S^T y = b$.

Запишемо співвідношення $S^T y = b$ в поелементному вигляді:

$$egin{pmatrix} s_{11} & 0 & 0 & 0 \ s_{12} & s_{22} & 0 & 0 \ s_{13} & s_{23} & s_{33} & 0 \ s_{14} & s_{24} & s_{34} & s_{44} \end{pmatrix} \cdot egin{pmatrix} y_1 \ y_2 \ y_3 \ y_4 \end{pmatrix} = egin{pmatrix} b_1 \ b_2 \ b_3 \ b_4 \end{pmatrix}.$$

Виконавши операцію множення матриці S^T на вектор y, одержимо:

$$\begin{split} s_{11}y_1 &= b_1, \\ s_{12}y_1 + s_{22}y_2 &= b_2, \\ s_{13}y_1 + s_{23}y_2 + s_{33}y_3 &= b_3, \\ s_{14}y_1 + s_{24}y_2 + s_{34}y_3 + s_{44}y_4 &= b_4. \end{split}$$

Звідси послідовно знаходимо:

$$\begin{split} s_{11}y_1 &= b_1, \\ s_{12}y_1 + s_{22}y_2 &= b_2, \\ s_{13}y_1 + s_{23}y_2 + s_{33}y_3 &= b_3, \\ s_{14}y_1 + s_{24}y_2 + s_{34}y_3 + s_{44}y_4 &= b_4 \\ y_1 &= \frac{b_1}{s_{11}}, \ y_2 &= \frac{b_2 - s_{12}y_1}{s_{22}}, \ y_3 &= \frac{b_3 - s_{13}y_1 - s_{23}y_2}{s_{33}}, \end{split}$$

$$y_4 = \frac{b_4 - s_{14}y_1 - s_{24}y_2 - s_{34}y_3}{s_{44}}.$$

Загальні формули для знаходження y мають вигляд:

$$y_1 = \frac{b_1}{s_{11}}, \ y_i = \frac{b_i - \sum\limits_{k=1}^{i-1} s_{ki} y_k}{s_{ii}} \ \left(i > j\right)$$

Етап 3. Знаходження вектора x з умови: Sx = y.

Запишемо співвідношення Sx = y в поелементному виді:

$$\begin{bmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ 0 & s_{22} & s_{23} & s_{24} \\ 0 & 0 & s_{33} & s_{34} \\ 0 & 0 & 0 & s_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}.$$

Після виконання множення матриці на вектор:

$$\begin{aligned} s_{11}x_1 + s_{12}x_2 + s_{13}x_3 + s_{14}x_4 &= y_1, \\ s_{22}x_2 + s_{23}x_3 + s_{24}x_4 &= y_2, \\ s_{33}x_3 + s_{34}x_4 &= y_3, \\ s_{44}x_4 &= y_4. \end{aligned}$$

$$x_4=\frac{y_4}{s_{44}},\ x_3=\frac{y_3-s_{33}x_3}{s_{33}}, x_2=\frac{y_2-s_{23}x_3-s_{24}x_4}{s_{22}},$$

$$x_1=\frac{y_1-s_{12}x_2-s_{13}x_3-s_{14}x_4}{s_{11}},$$

Загальні формули мають вигляд:

$$x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} s_{ik} x_{k}}{s_{ii}} \quad (i < n). \ x_{n} = \frac{y_{n}}{s_{nn}}.$$

Метод прогонки

При моделюванні деяких задач, а також при чисельному розв'язуванні крайових задач для диференціальних рівнянь отримуємо системи з розрідженою матрицею — матриця A містить велику кількість нульових елементів.

Зокрема, становлять інтерес системи із трьохдіагональною матрицею.

Запишемо систему рівнянь у вигляді:

де

 $b_1, b_2, ..., b_n$ — елементи головної діагоналі $\left(b_i \neq 0, i = 1, 2, ..., n\right)$,

 $c_1, c_2, ..., c_{n-1}$ – елементи над головною діагоналлю, $a_2, a_3, ..., a_n$ – елементи під головною діагоналлю.

Метод прогонки складається із двох етапів:

Етап 1 – пряма прогонка,

Етап 2 – зворотна прогонка.

Пряма прогонка

Будемо представляти x_i у вигляді виразів:

$$x_i = B_i + A_i x_{i+1}, \quad i = 1, 2, ..., n-1$$

1. При
$$i=1$$
: $b_1x_1+c_1x_2=d_1$. Звідси $x_1=\frac{d_1}{b_1}-\frac{c_1}{b_1}x_2,$

Зробимо заміну
$$A_1=-rac{c_1}{b_1},\, B_1=rac{d_1}{b_1}.$$

Тоді
$$x_1 = B_1 + A_1 x_2$$
.

2. При i=2 рівняння $a_2x_1+b_2x_2+c_2x_3=d_2$,

Підставимо в дане рівняння вираз для x_1 : $x_1 = A_1 x_2 + B_1$.

$$\begin{aligned} a_2 \left(A_1 x_2 + B_1 \right) + b_2 x_2 + c_2 x_3 &= d_2, \\ a_2 A_1 x_2 + a_2 B_1 + b_2 x_2 + c_2 x_3 &= d_2, \\ x_2 \left(a_2 A_1 + b_2 \right) &= d_2 - a_2 B_1 - c_2 x_3. \end{aligned}$$

$$x_2 = B_2 + A_2 x_3 \Rightarrow x_2 = -\frac{c_2}{a_2 A_1 + b_2} x_3 + \frac{d_2 - a_2 B_1}{a_2 A_1 + b_2}$$

Зробимо заміну
$$A_2=-rac{c_2}{l_2},\;\;B_2=rac{d_2-a_2B_1}{l_2},\;l_2=a_2A_1+b_2$$

У загальному випадку рекурентні співвідношення для будь-якого номера i=2,3,...,n-1.

$$A_i = -\frac{c_i}{l_i}, \ B_i = \frac{d_i - a_i B_{i-1}}{l_i}, \ l_i = a_i A_{i-1} + b_i$$

Зворотна прогонка

Останнє рівняння системи має вигляд:

$$a_n x_{n-1} + b_n x_n = d_n$$

Виразимо з нього значення
$$x_{n-1}$$
: $x_{n-1} = \frac{d_n - b_n x_n}{a_n}$.

У той же час із
$$x_i = A_i x_{i+1} + B_i$$
, випливає, що при $i=n-1$
$$x_{n-1} = A_{n-1} x_n + B_{n-1}.$$

Прирівняємо два отриманих вирази:

$$\frac{d_n-b_nx_n}{a_n}=A_{n-1}x_n+B_{n-1},$$

$$d_n-b_nx_n=a_nA_{n-1}x_n+a_nB_{n-1},$$

$$d_n-a_nB_{n-1}=a_nA_{n-1}x_n+b_nx_n.$$

3 рівняння одержимо значення x_n :

$$x_n = \frac{d_n - a_n B_{n-1}}{b_n + a_n A_{n-1}}.$$

Далі будемо послідовно обчислювати x_i зі зменшенням індексу:

$$x_{n-1} = A_{n-1}x_n + B_{n-1}$$

$$x_{n-2} = A_{n-2}x_{n-1} + B_{n-2}$$

$$x_i = A_ix_{i+1} + B_i$$

$$x_1 = A_1x_2 + B_1$$

$$A_i = -rac{c_i}{l_i}, \ B_i = rac{d_i - a_i B_{i-1}}{l_i}, \ l_i = a_i A_{i-1} + b_i$$