diplomarbeit

Ingo Nitschke

17. Februar 2014

Inhaltsverzeichnis

1	Äuß	Beres Kalkül	Ę
	1.1	Einleitung	,
	1.2	Äußere Algebra	,
2	Disl	krete Mannigfaltigkeit	7
	2.1	Gittergenerierung für Oberflächen	,
		2.1.1 Mechanisches Modell und dessen Diskretisierung	8

1 Äußeres Kalkül

1.1 Einleitung

blub blub tensormachineenbild einfügen

1.2 Äußere Algebra

defsdf

T 1	1 /		7	
Inhal	ltsve	rzei	ch	nis

sadsa

2 Diskrete Mannigfaltigkeit

2.1 Gittergenerierung für Oberflächen

Zielsetzung. Die Wohlzentriertheit eines Gitters ist Pflicht, da ohne sie kein brauchbares duales Gitter (Voronoigitter) erzeugt werden kann. Diese zur Triangulierung duale Gebietsdiskretisierung wird aber benötigt um zum Beispiel ein diskreten Hodge-Stern-Operator sinnvoll zu entwickeln. Bei einem nicht wohlzentrierten Dreieck liegt der Voronoiknoten $\star \sigma^2$ nicht im Dreieck σ^2 . Das Problem dabei ist, dass sich die Werte auf $\star \sigma^2$ und σ^2 nur um einen metrischen Faktor¹ unterscheiden sollten. Diese Voraussetzung wäre aber nicht mehr haltbar, da die Gebiete, die beide Elemente einnehmen, disjunkt sind. Sie können sogar "sehr weit" von einander entfernt liegen. Dann hätte die eine Größe fast nichts mehr mit der anderen gemein und die Linearität beider wäre nicht mehr gegeben.

Wohlzentriertheit ist eine schwerwiegende Einschränkung an die Gitterstruktur. Sie verbietet unter anderem einen 1-Ring um einen Knoten aus vier oder weniger Dreickelementen. Für eine nicht planare Triangulierung mag ein 1-Ring aus vier Flächenelementen gerade noch funktionieren, da die Innenwinkelsumme der inneren Kanten weniger als 2π ist. Im planaren Fall erhalten wir aber für eine optimale² Triangulierung Winkel von $\frac{\pi}{2}$ und somit nur Wohlzentriertheit im Limes $^{\overline{3}}.$ Damit sind oft genutzte lokale und globale Verfeinenerungstrategien nicht anwendbar. So wird zum Beispiel bei der FEM-Toolbox AMDiS [WV10] die längste Kante halbiert und von dort zwei neue Kanten zu den jeweils gegenüberliegenden Knoten der beiden angrenzenden Dreiecken erstellt. Der neu entstandene Knotenpunkt hat folglich einen 1-Ring aus 4 Flächenelementen. Auch CAD-Programme liefern im Allgemeinen keine geeigneten Gitter. Ein möglicher Ausweg könnte eine Triangulierung (bzw. Neutriangulierung) mittels angepassten Delaunay oder anderen Algorithmen sein, zum Beispiel Centroidal Voronoi Tessellation (CVT) [DFG99], Optimal Delaunay Triangulations (ODT) | CX04| oder Hexagonal Delaunay Triangulation [SG09].

Im Folgenden wollen wir davon ausgehen, dass zu mindest eine Triangulation vorliegt, die die Bedingung erfüllt, dass jeder Knoten Teil von mehr als 4 Dreiecken ist. Damit möchten wir ein Oberflächengitter erzeugen, welches wohlzentriert ist. Die Struktur des Simplizialkomplexes soll dabei erhalten bleiben. Nur die Knotenpunkte werden neu arrangiert. Das setzt natürlich vorraus, dass die Oberfläche exakt, zum Beispiel explizit durch eine Immersion $X: M \to \mathbb{R}^3$ oder implizit durch das 0-Niveau einer Level-Set-Funktion [OF02], oder eine Approximation der 2-Mannigfaltigkeit höher als 1 gegeben ist.

¹hier $|\sigma^2|$ bzw. dessen Reziproke

²bzgl. der maximalen Winkel

³für planare äquidistante Gitter kann diese schwächere Restriktion dennoch sinnvoll sein, da somit bekannte Differenzenschematas entstehen können

Ansätze zur Gitterverbesserung bei der die Wohlzentriertheit im Vordergrund steht gibt es bis jetzt wenige. Denn obwohl diese Vorderung an der Triangulation für viele numerische Verfahren Vorteile bringen würde, so ist sie doch nur für den DEC zwingend. Eine Arbeit ist zum Beispiel [VHGR08], wobei auch hier das diskrete Äußere Kalkül die Motivation bildete. Hier wird eine Kostenfunktion aufgestellt deren Argument des Minimums ein wohlzentrierter Simplizialkomplex ist. Leider muss solch ein Minimum nicht existieren, weder im planaren noch auf gekrümmten Oberflächen. Wir wollen hier im Folgendem einen ähnlich Ansatz verwenden. Ausgangspunkt sind Kraftvektoren an den Knoten, die das Gitter so unter Zwang setzen, dass die daraus resultierende Bewegung der Knoten, wenn es denn möglich ist, eine wohlzentierte Triangulation formt. Das Modell ist nicht neu und wird zum Beispiel zur Simulation von biologischen Zellgewebe verwendet. Einen Überblick zu der Thematik bietet [PCF⁺09].

2.1.1 Mechanisches Modell und dessen Diskretisierung

Ein einfacher mechanischer Ansatz, um nach gewissen Kriterien ein optimales Gitter zu entwickeln ist

$$\gamma \frac{\mathrm{d}\vec{x}_i}{\mathrm{d}t} = \vec{F}(\vec{x}_i) \tag{2.1}$$

Diese gewöhnliche Differentialgleichung erster Ordnung beschreibt eine Viskosedämpfung am Knoten σ_i^0 mit Koordinaten $\vec{x_i} \in X(M) \subset \mathbb{R}^3$ und Viskositätskoeffizient γ . Eine einfache Diskretisierung des Problems (2.1) ist das Explizite Eulerverfahren mit nachgeschalteter Projektion $\pi: \mathbb{R}^3 \to X(M)$ um die Nebenbedingung $\vec{x_i} \in X(M)$ zu erfüllen.

$$\vec{x}_i(t + \Delta t) = \pi \left(\vec{x}_i(t) + h\vec{F}_i \right)$$
(2.2)

wobei $h:=\frac{\Delta t}{\gamma}$ und $\vec{F_i}:=\vec{F}(\vec{x_i}(t))$. Der Kraftvektor $\vec{F_i}$ resultiert aus Interaktion mit den anderen Knoten. Im Overlapping-Sphere-Modell(OS) [PCF⁺09] sind das all die Knoten σ_j^0 , die einen bestimmten Abstand zu σ_i^0 haben. Für das explizite Eulerverfahren (Verfahren 1.Ordnung) werden kleine Schrittweiten h benötigt. Allerdings bringen Verfahren höherer Ordnung wahrscheinlich keine signifikant besseren Ergebnisse. Zum einen könnte eine größere Schrittweite nicht ausgenutzt werden, da es sonst passieren kann, dass sich, durch die resultierende größere Verschiebung eines Knoten, Dreiecke überlappen und somit keine zulässige Triangulierung mehr vorliegt. Zum anderen reduziert die Projektion π die Konvergenzordnung der Verfahren. So wurde zum Beispiel in den numerischen Experimenten auch das Heun-Verfahren (explizites Runge-Kutta-Verfahren der Ordnung 2) getesten ohne nenneswerten besseren Resultaten, dafür wesentlich (linear) höheren Aufwand. Implizite Verfahren haben einen zu hohen Aufwand in der Implementation, denn es ist zu bedenken, dass der Kraftvektor $\vec{F_i}$ nicht nur von den Koordinaten $\vec{x_i}$ abhängt, sondern auch von der umgebenden Struktur.

Wir wollen hier, im Gegensatz zum OS-Modell, die Gitterstruktur des Simplizialkomplexes ausnutzen, das heißt es interagieren genau die Knoten mit einander, die eine gemeinsame Kante besitzen. Somit lässt sich der Kraftvektor $\vec{F_i}$ zerlegen zu

$$\vec{F}_i = \sum_{\sigma^1 := [\sigma_i^0, \sigma_i^0] \succ \sigma_i^0} \frac{F_{\sigma^1}}{\|\vec{x}_j - \vec{x}_i\|} (\vec{x}_j - \vec{x}_i)$$
(2.3)

 F_{σ^1} ist folglich die Kraft die in Richtung der Kante σ^1 wirkt. Da die Kraft aber auch von der Geometrie der Flächenelemente abhängen soll, zerlegen wir die Kantenkräfte weiter

$$F_{\sigma^1} = \sum_{\sigma^2 \succ \sigma^1} F_{\sigma^2} \tag{2.4}$$

Als praktisches erweißt es sich außerdem die Kräfte dimensionslos zuhalten, da somit eventuell auftretende Parameter für unterschiedliche Ausgangsgitter annährend gleich gewählt werden können. Die Schrittweite h in (2.2) hängt somit annährend linear von der Gitterweite ab. Zu beachten ist hierbei, dass sich die Gitterweite, je nach Definition⁴, in jedem Eulerschritt ändern kann.

Es folgen nun 2 heuristische Ansätze für die Kraft um die Beschaffenheit des Gitters positiv zu beeinflussen.

Optimale Kantenlängen

Ein ideales Dreieck mit bestmöglichen Eigenschaften hat überall Innenwinkel von $\frac{\pi}{3}$. Folglich liegt ein gleichseitiges Dreieck vor. Deshalb wäre es ein guter Ansatz zu versuchen eben diese Eigenschaft bei einem Dreieckelement hervorzurufen. Wir setzen eine Kantenkraft in linearer Abhängigkeit der Länge der Kante σ^1 an.

$$F_{\sigma^1}^L := \frac{|\sigma^1|}{l^*} - k \tag{2.5}$$

mit $k \in [0,1]$. l^* ist das Mittel aller 1-Ring Radii $l^*_{(5\sigma^0)}$, das heißt

$$l^* := \frac{1}{N_{\{\sigma^0 \in K\}}} \sum_{\sigma^0 \in K} l^*_{\circlearrowleft \sigma^0} \tag{2.6}$$

$$l_{\circlearrowleft\sigma^0}^* := \frac{1}{2V_{\circlearrowleft\sigma^0}} \sum_{\sigma^1 \succ \sigma^0} |\sigma^1| \sum_{\sigma^2 \succ \sigma^1} |\sigma^2| \tag{2.7}$$

wobei $N_{\{\sigma^0 \in K\}}$ die Anzahl aller Knoten in K ist und $V_{\circlearrowleft\sigma^0}$ die Fläche des 1-Rings \circlearrowleft σ^0 . Der Grund, warum hier der Radius $l_{\circlearrowleft\sigma^0}^*$ gewichtet bezüglich der Dreieckflächen gemittelt wird, ist der, dass somit die Längen stumpfwinkliger Dreiecke weniger Beachtung bekommen. Für k=1 kann man sich das so vorsellen, dass die beiden Knoten einer Kante σ^1 sich abstoßen falls $|\sigma^1| < l^*$, sich anziehen falls $|\sigma^1| > l^*$ oder keine Kräfte wirken wenn $|\sigma^1| = l^*$ gilt (siehe Abb. 2.1). k=0 würde für eine Gitter mit Rand und freien Randknoten⁵ bedeuten, dass es immer weiter schrumpft. In unserem Fall, also Triangulierung von Oberflächen ohne Rand, zeigt sich, dass sich die Gitter vor allem dort zusammen ziehen, wo sich zum einen 1-Ringe aus 5 Dreieckelementen befinden und zum anderen wo die Krümmung der

⁴z.B. Maximum aller Umkreisradien

⁵Randknoten dürfen auch nach innen wandern

Abbildung 2.1: Kantenkräfte für an einem Knoten k=1. Die eingezeichneten Radii entsprechen $\frac{l^*}{2}$.

Abbildung 2.2: Eine Verschiebung des Knotens entlang einer Kante verändert den Winkel.

Mannigfaltigkeit klein ist. Letzteres ist allerdings keine gute Eigenschaft, da gerade dort ein feineres Gitter von nöten wäre, wo die Oberfläche eine große Krümmung aufweist. Der andere Extremfall, k=1, würde zwar ein annährend gleich grobes Gitter erzeugen, aber in Experimenten zeigte sich, dass (2.2) dadurch instabil wird. Stabilisierend wirkt sich aber das Zuaddieren des folgenden Ansatzes aus.

Optimale Winkel

Ein anderer

Fazit. dfsd

Abbildungsverzeichnis

2.1	Kantenkräfte für optimale Kantenlängen								10
2.2	Winkeländerung durch Verschiebung								10

Literaturverzeichnis

- [CX04] Long Chen and Jinchao Xu. Optimal Delaunay triangulations. *Journal of Computational Mathematics*, 22(2):299–308, 2004.
- [DFG99] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev., 41(4):637–676, December 1999.
- [OF02] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces (Applied Mathematical Sciences). Springer, 2003 edition, November 2002.
- [PCF⁺09] P Pathmanathan, J Cooper, A Fletcher, G Mirams, P Murray, J Osborne, J Pitt-Francis, A Walter, and S J Chapman. A computational study of discrete mechanical tissue models. *Physical Biology*, 6(3):036001, 2009.
- [SG09] Gerd Sußner and Gunther Greiner. Hexagonal delaunay triangulation. In *Proceedings*, 18th International Meshing Roundtable, pages 519–538. Springer, 2009.
- [VHGR08] Evan VanderZee, Anil N. Hirani, Damrong Guoy, and Edgar A. Ramos. Well-centered triangulation. *CoRR*, abs/0802.2108, 2008.
- [WV10] T. Witkowski and A. Voigt. A multi-mesh finite element method for Lagrange elements of arbitrary degree. ArXiv e-prints, May 2010.