

Se pudo haber definido la dirección de un vector ${\bf v}$ en \mathbb{R}^2 de esta manera,

ya que si
$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$$
, entonces

 $\mathbf{u} = (\cos \theta, \sin \theta)$, donde θ es la dirección de \mathbf{v} .

Figura 4.22 El vector **v** forma un ángulo α con el lado positivo del eje x, β con el lado positivo del eje y y γ con el eje positivo del eje z.

Es conveniente definir la dirección de un vector \mathbf{v} en términos de algunos ángulos. Sea \mathbf{v} el vector \overrightarrow{OP} descrito en la figura 4.22. Definimos α como el ángulo entre \mathbf{v} y el eje x positivo, β el ángulo entre \mathbf{v} y el eje y positivo, y γ el ángulo entre \mathbf{v} y el eje z positivo. Los ángulos α , β y γ se denominan **ángulos directores** del vector \mathbf{v} . Entonces, de la figura 4.22,

Ángulos directores

$$\cos \alpha = \frac{x_0}{|\mathbf{v}|} \quad \cos \beta = \frac{y_0}{|\mathbf{v}|} \quad \cos \gamma = \frac{z_0}{|\mathbf{v}|}$$
 (4.3.4)

Si v es un vector unitario, entonces |v| = 1 y

$$\cos \alpha = x_0, \qquad \cos \beta = y_0, \qquad \cos \gamma = z_0 \tag{4.3.5}$$

Cosenos

Por definición, cada uno de estos tres ángulos cae en el intervalo de $[0, \pi]$. Los cosenos de estos ángulos se denominan **cosenos directores** del vector **v**. Observe, de la ecuación (4.3.4), que

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = \frac{x_{0}^{2} + y_{0}^{2} + z_{0}^{2}}{|\mathbf{v}|^{2}} = \frac{x_{0}^{2} + y_{0}^{2} + z_{0}^{2}}{x_{0}^{2} + y_{0}^{2} + z_{0}^{2}} = 1$$
(4.3.6)

Si α , β y γ son tres números cualesquiera entre cero y π tales que satisfacen la condición (4.3.6), entonces determinan de manera única un vector unitario dado por $\mathbf{u} = (\cos \alpha, \cos \beta, \cos \gamma)$.

Números directores

Observación. Si $\mathbf{v} = (a, b, c)$ y $|\mathbf{v}| \neq 1$, entonces los números a, b y c se llaman **números directores** del vector \mathbf{v} .

EJEMPLO 4.3.4 Cálculo de los cosenos directores de un vector en \mathbb{R}^3

Encuentre los cosenos directores del vector $\mathbf{v} = (4, -1, 6)$.

SOLUCIÓN La dirección de \mathbf{v} es $\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{v}}{\sqrt{53}} = \left(\frac{4}{\sqrt{53}} - \frac{1}{\sqrt{53}}, \frac{6}{\sqrt{53}}\right)$. Entonces $\cos \alpha = \frac{4}{\sqrt{53}} \approx 0.5494$, $\cos \beta = \frac{-1}{\sqrt{53}} \approx -0.1374$ y $\cos \gamma = \frac{6}{\sqrt{53}} \approx 0.8242$. Con estos valores se usan tablas o una