Actions

A. Polymath

ABSTRACT.

1. Preliminaries

Let $\Delta \subseteq L_{xz}(\mathcal{U})$. Given any $\mathcal{X} \subseteq \mathcal{U}^x$ and $\mathcal{Z} \subseteq \mathcal{U}^z$, we define the structure $\mathcal{U}^\Delta = \langle \mathcal{X}; \mathcal{Z} \rangle$. This is a 2-sorted structure whose signature I^Δ contains relation symbols for every formula $\varphi(x;z) \in \Delta$. As there is little risk of confusion, these relations symbols are also denoted by $\varphi(x;z)$, and we identify I^Δ with a subset of L.

When \mathcal{X} and \mathcal{Z} are type definable and Δ is small, \mathcal{U}^{Δ} is a saturated structure. As compactness is not always required, these sets are arbitrary unless explicitly required.

In the first few sections we only work a subset of the quantifier-free fragment of L^{Δ} . Let $\Delta^{\mathbb{B}}(\mathbb{Z})$ be the set of Boolean combinations of the sets $\varphi(\mathfrak{X};b)$, for $\varphi(x;z)\in\Delta$ and $b\in\mathfrak{Z}$. The same symbol is also used to denote the collection of formulas defining these sets. A $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type is a collection of $\Delta^{\mathbb{B}}(\mathbb{Z})$ -formulas. A $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type-definable set is one defined by a $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type of small cardinality.

We write $S_{\Delta}(\mathfrak{Z})$ for the set of $\Delta^{B}(\mathfrak{Z})$ -types that are maximally finitely consistent (in \mathfrak{X}) – which we may conveniently identify with a sets of $\Delta(\mathfrak{Z})$ and negated $\Delta(\mathfrak{Z})$ -formulas. Note that the types in $S_{\Delta}(\mathfrak{Z})$ are required to be finitely consistent \mathfrak{X} – a piece of information that we will not display in the notation. When the types are required to be finitely consistent in some $\mathfrak{Y} \subseteq \mathfrak{X}$ we write $S_{\Delta, \mathfrak{Y}}(\mathfrak{Z})$.

When p(x) a type (i.e. any set of formulas) and $\mathcal{D} \subseteq \mathcal{X}$ we write $p(x) \vdash x \in \mathcal{D}$ if the inclusion $\psi(\mathcal{X}) \subseteq \mathcal{D}$ holds for some $\psi(x)$ that is conjunctions of formulas in p(x).

Let $G \leq \operatorname{Aut}(\mathcal{U}^{\Delta})$. We view G as a group acting on \mathcal{U}^{Δ} and write \cdot for such action. We write $g \cdot \mathcal{D}$ for the natural action of $g \in G$ on $\mathcal{D} \subseteq \mathcal{X}$. If $\Delta = \varphi(\mathcal{X}; b)$ then $g \cdot \mathcal{D} = \varphi(\mathcal{X}; g \cdot b)$. A formula is G-invariant if the set it defines is G-invariant (i.e. fixed by the action of G).

If p(x) is a $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type, we write $g \cdot p(x)$ for the set of formulas of the form $\varphi(\mathcal{X}; g \cdot b)$ for $\varphi(\mathcal{X}; b) \in p$. We say that the type $p(x) \subseteq \Delta^{\mathbb{B}}(\mathbb{Z})$ is G-invariant accordingly.

Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino.

1

2 A. POLYMATH

We say that a set $\mathcal{D} \subseteq \mathcal{X}$ is syndetic under the action of G, or G-syndetic for short, if finitely many G-translates of \mathcal{D} cover \mathcal{X} . Dually, we say that \mathcal{D} is thick under the action of G or G-thick for short, if the intersection of any finitely many G-translates of \mathcal{D} is consistent (in \mathcal{X}).

The same properties may be attributed to formulas (as these are identified with the set they define). When these properties are attributed to a type p(x), we understand that they hold for every conjunction of formulas in p(x).

Our terminology is taken from topological dynamics. In similars context syndetic sets are called *generic*, see eg. [Ne]. In [CK] the authors write *quasi-non-dividing* for *thick* under the action of Aut(U/A).

Notation: for $\mathcal{D} \subseteq \mathcal{X}$ and $C \subseteq G$ we write $C \cdot \mathcal{D}$ for $\{h \cdot \mathcal{D} : h \in C\}$.

In this chapter many proofs require some juggling with negations as epitomized by the following fact which is proved by spelling out the definitions

- 1 Fact The following are equivalent
 - 1. \mathcal{D} is not G-syndetic
 - 2. $\neg \mathcal{D}$ is *G*-thick.

Define the following type

```
\Sigma_G(x) = \{\vartheta(x) \in \Delta^{\mathbb{B}}(\mathbb{Z}) : \vartheta(x) \text{ is } G\text{-syndetic}\}.
```

- **2 Theorem** For every $p(x) \in S_{\Delta}(\mathbb{Z})$ the following are equivalent
 - 1. p(x) is G-invariant
 - 2. $p(x) \vdash \Sigma_G(x)$
 - 3. p(x) is G-thick.

Proof. $1\Rightarrow 2$. Let $\mathcal{D} \in \Delta^{\mathbb{B}}(\mathcal{Z})$ be a G-syndetic. Pick $C \subseteq G$ be finite such that $\mathcal{X} \subseteq \cup C \cdot \mathcal{D}$. Then p(x) is finitely consistent with $x \in \cup C \cdot \mathcal{D}$. By completeness, $p(x) \vdash x \in h \mathcal{D}$ for some $h \in C$. Finally, by invariance, $p(x) \vdash x \in \mathcal{D}$.

2⇒3. Let $\varphi(x) \in p$. As $\Sigma_G(x) \cup \{\varphi(x)\}$ is finitely consistent, it cannot be that $\neg \varphi(x)$ is *G*-syndetic. Then from Fact 1 we obtain that $\varphi(x)$ is *G*-thick.

3⇒1. Negate 1. Let $\mathcal{D} \in \Delta^{\mathbb{B}}(\mathbb{Z})$ and $g \in G$ such that $p(x) \vdash x \in \mathcal{D}$ and $p(x) \nvdash g \cdot \mathcal{D}$. By completeness $p(x) \vdash x \in (\mathcal{D} \cap \neg g \cdot \mathcal{D})$. Clearly $\mathcal{D} \cap \neg g \cdot \mathcal{D}$ is not G-thick as it is inconsistent with its g-translate.

The following theorem gives a necessary and sufficient condition for the existence of global G-invariant $\Delta^B(\mathcal{Z})$ -type. Ideally, we would like that every G-thick $\Delta^B(Z)$ -type extends to a global thick type. Unfortunately this is not true in general (it is an assumption with important consequences, see Section 4).

ACTIONS 3

A set \mathcal{D} is G-wide relative to \mathcal{Y} if every finite cover of $\mathcal{D} \cap \mathcal{Y}$ by $\Delta^{B}(\mathcal{Z})$ -sets contains a set that is G-thick relative to \mathcal{Y} . A type is G-wide if every conjunction of formulas in the type is G-wide.

In [CK] a similar property is called *quasi-non-forking*. Our use of the term *wide* is consistent with [Hr], though we apply it to a narrow context.

3 Theorem For every $\mathcal{D} \in \Delta^{\mathbb{B}}(\mathbb{Z})$ the following are equivalent

- 1. $\Sigma_G(x) \cup \{x \in \mathcal{D}\}\$ is finitely consistent
- 2. there is a *G*-thick type $p(x) \in S_{\Delta}(\mathbb{Z})$ that entails $x \in \mathcal{D}$
- 3. \mathcal{D} is G-wide.

Proof. 1 \Rightarrow 2. By Theorem 2, it suffices to pick any $p(x) \in S_{\Delta}(\mathfrak{Z})$ extending the type $\Sigma_G(x) \cup \{x \in \mathfrak{D}\}.$

 $2 \Rightarrow 1$. By Theorem 2.

2⇒3. Let $\mathcal{C}_1, \dots, \mathcal{C}_n$ be $\Delta^{\mathsf{B}}(\mathfrak{Z})$ -sets that cover \mathcal{D} . Pick p(x) as in 2. By completeness, $p(x) \vdash x \in \mathcal{C}_i$ for some i. Therefore, \mathcal{C}_i is G-thick.

 $3\Rightarrow 2$. Let p(x) be maximal among the $\Delta^B(\mathbb{Z})$ -types that are finitely consistent with \mathbb{D} and are G-wide. We claim that p(x) is a complete $\Delta^B(\mathbb{Z})$ -type. Suppose for a contradiction that $\vartheta(x)$, $\neg \vartheta(x) \notin p$. By maximality there is some formula $\psi(x)$, a conjunction of formulas in p(x), and some $\Delta^B(\mathbb{Z})$ -sets $\mathcal{C}_1, \dots, \mathcal{C}_n$ that cover both $\psi(\mathfrak{X}) \cap \vartheta(\mathfrak{X})$ and $\psi(\mathfrak{X}) \sim \vartheta(\mathfrak{X})$ and such that no \mathcal{C}_i is G-thick. As $\mathcal{C}_1, \dots, \mathcal{C}_n$ cover $\psi(\mathfrak{X})$ this is a contradiction. It is only left to show that p(x) is G-thick. This follows from completeness and Theorem 2.

2. Connected components

Let $G \leq \operatorname{Aut}(\mathcal{U}^{\Delta})$. Unfortunately, syndeticity is not preserved under intersection. In particular $\Sigma_G(x)$ is not a G-syndetic type, and it may even be inconsistent. Then following notion is relevant.

4 Definition

$$Q_G = \{q(x) \subseteq \Sigma_G(x) : q(x) \text{ maximally } G\text{-syndetic}\}.$$

In other words, the types in Q_G are maximal among the subtypes of $\Sigma_G(x)$ that are closed under conjunction.

It is easy to see that Q_G is closed under the action of G. We write $\operatorname{Stab}(q)$ for the stabilizer of $q(x) \subseteq \Delta^{\mathbb{B}}(\mathbb{Z})$ in G, that is, the subgroup $\{g \in G : g \cdot q(x) = q(x)\}$. We write $\operatorname{Stab}(\mathfrak{D})$ with a similar meaning. Finally we define

$$G^1$$
 = Stab(Q_G) = $\bigcap_{q \in Q_G} \text{Stab}(q)$.

It is easy to verify that $G^1 \subseteq G$.

A. POLYMATH

5 Proposition

4

$$G^1 = \{g \in G : \mathcal{D} \cap g \cdot \mathcal{D} \in \Sigma_G(x) \text{ whenever } \mathcal{D} \in \Sigma_G(x)\}.$$

Proof. \subseteq . Pick any $k \in G^1$ and $\mathcal{D} \in \Sigma_G(x)$. Let $q(x) \in Q_G$ be a type containing $x \in \mathcal{D}$. From the G^1 -invariance of q(x) we obtain that $q(x) \vdash x \in k \cdot \mathcal{D}$. Then $q(x) \vdash x \in \mathcal{D} \cap k \cdot \mathcal{D}$, hence $\mathcal{D} \cap k \cdot \mathcal{D}$ is G-syndetic.

 \supseteq . Pick any $g \notin G^1$. Then $q(x) \neq g \cdot q(x)$ for some $q(x) \in Q_G$. Let $\varphi(x) \in q$ such that $q(x) \not\vdash g \cdot \varphi(x)$. By maximality, $\psi(x) \land g \cdot \varphi(x)$ is not G-syndetic for some $\psi(x) \in q$. As q(x) is closed under conjunction, we can assume $\varphi(x) = \psi(x)$, then g does not belong to the set on the r.h.s.

6 Definition

$$P_G = \{p(x) \subseteq \Sigma_G(x) : p(x) \text{ maximally finitely consistent}\}.$$

Along the same lines as above, we define

$$G^{11}$$
 = Stab(P_G) = $\bigcap_{p \in P_G}$ Stab(p).

By the following proposition, $G^1 \leq G^{11} \leq G$. We do not know if the inclusion is strict.

7 Proposition

$$G^{11} = \{g \in G : q(x) \cup g \cdot q(x) \text{ is finitely consistent for every } q(x) \in Q_G\}.$$

Proof. \subseteq . Pick any $k \in G^{11}$ and $q(x) \in Q_G$. Let $p(x) \in P_G$ be a type containing q(x). From the G^{11} -invariance of p(x) we obtain that $p(x) \vdash k \cdot q(x)$. Then $q(x) \cup k \cdot q(x)$ is finitely consistent.

⊇. Pick any $g \notin G^{11}$. Then $q(x) \cup g \cdot q(x)$ is not finitely consistent for some $q(x) \in Q_G$. Let $\varphi(x) \in q$ such that $\varphi(x) \land g \cdot \varphi(x)$ is inconsistent. But $\varphi(x) \in p$ then g does not belong to the set on the r.h.s.

8 Theorem Any finite conjunction of formulas in $\Sigma_{G^1}(x)$ is G-syndetic. In particular $\Sigma_{G^1}(x)$ is finitely consistent.

Proof. Notice that from Proposition 5 it easily follows that for every $\mathcal{D} \in \Sigma_G$ and every finite $F \subseteq G^1$ the set $\cap F \cdot \mathcal{D}$ is G-syndetic.

Let $\mathcal{D}_1, \ldots, \mathcal{D}_n \in \Sigma_{G^1}$. Assume inductively that $\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_{n-1}$ is G-syndetic. Let $F \subseteq G^1$ be such that $\cup F \cdot \mathcal{D}_n = \mathcal{X}$. Then

1.
$$\cup F \cdot [\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_n] \supseteq \cap F \cdot [\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_{n-1}] \cap \cup F \cdot \mathcal{D}_n$$

= $\cap F \cdot [\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_{n-1}].$

This last set is *G*-syndetic by the inductive hypothesis and what remarked above. The *G*-syndeticity of $\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_n$ follows.

ACTIONS 5

Unfortunately, we are unable to conclude that the intersection of G^1 -syndetic sets is G^1 -syndetic.

A similar argument shows the following.

9 Theorem $\Sigma_{G^{11}}(x)$ is finitely consistent.

Proof. Let $\mathcal{D}_1,\ldots,\mathcal{D}_n\in\Sigma_{G^{11}}$. Assume inductively that $\mathcal{D}_1\cap\cdots\cap\mathcal{D}_{n-1}\neq\varnothing$. As the \mathcal{D}_i are in particular G-syndetic, some $p(x)\in P_G$ entails this disjunction. Let $F\subseteq G^{11}$ be such that $\cup F\cdot\mathcal{D}_n=\mathcal{X}$. By G^{11} -invariance, p(x) also entails $\cap F\cdot[\mathcal{D}_1\cap\cdots\cap\mathcal{D}_{n-1}]$. Then by (1) in the above proof $\cup F\cdot[\mathcal{D}_1\cap\cdots\cap\mathcal{D}_n]\neq\varnothing$. The consistency of $\mathcal{D}_1\cap\cdots\cap\mathcal{D}_n$ follows. \square

By Theorems 3 from the above theorems it follows that G^1 -syndetic sets are G^1 -wide, similarly for G^{11} . But we can do better. First, we remark a useful consequence of normality.

10 Remark Assume $H \subseteq G$. For every $\mathcal{D} \subseteq \mathcal{X}$ and every $g \in G$

 \mathcal{D} is H-foo \Rightarrow $g \cdot \mathcal{D}$ is H-foo,

where *foo* can be replaced by *syndetic, invariant, thick, wide.* In particular, the type $\Sigma_H(x)$ is *G*-invariant.

Recall that when $\Sigma_H(x)$ is finitely consistent then H-syndetic sets are H-wide, see Theorem 3. As it happens, under the assumption of normality, this can be strengthened as follows.

11 Proposition Assume $H \subseteq G$ and that $\Sigma_H(x)$ is finitely consistent. Then every G-syndetic $\mathcal{D} \in \Delta^{\mathbb{B}}(\mathcal{Z})$ is H-wide. In particular all types in Q_G are G^{11} -wide.

Proof. Let $p(x) \in S_{\Delta}(\mathbb{Z})$ be finitely consistent with $\Sigma_H(x)$. As \mathcal{D} is G-syndetic, by completeness $p(x) \vdash x \in g \cdot \mathcal{D}$ for some $g \in G$. Equivalently, $g^{-1} \cdot p(x) \vdash x \in \mathcal{D}$. As p(x) is H-thick, by Remark 10 also $g^{-1} \cdot p(x)$ is H-thick. Then the proposition follows from Theorem 3.

When the context suggests it, $\Delta^B(\mathcal{Z})$ will denote the broader class that includes also formulas obtained substituting y for x and is closed under Boolean connectives. A $\Delta^B(\mathcal{Z})$ -definable equivalence relation is an equivalence relation defined by some formula $\varepsilon(x,y) \in \Delta^B(\mathcal{Z})$. We define $\Delta^B(\mathcal{Z})$ -type-definable equivalence relations similarly. Note that if $\varepsilon(x,y)$ is a $\Delta^B(\mathcal{Z})$ -definable, or type-definable, equivalence relation then $\varepsilon(x,a)$, for any $a \in \mathcal{X}$, is equivalent to a $\Delta^B(\mathcal{Z})$ -formula, respectively a $\Delta^B(\mathcal{Z})$ -type.

An equivalence relation is bounded if it has a small number of equivalence classes.

12 Definition Let Φ^0 be the collection of sets that are equivalence classes of a bounded G-invariant $\Delta^B(\mathcal{Z})$ -type-definable equivalence relation. Let Φ^{00} be the collection of sets that are equivalence classes of a bounded G-invariant $\Delta^B(\mathcal{Z})$ -type-definable equivalence relation. Define

$$G^0 = \operatorname{Stab}(\Phi^0) = \bigcap \{ \operatorname{Stab}(\mathcal{D}) : \mathcal{D} \in \Phi^0 \}$$

and

6

$$G^{00}$$
 = Stab(Φ^{00}) = $\bigcap \{ \text{Stab}(\mathcal{Y}) : \mathcal{Y} \in \Phi^{00} \}.$

13 Proposition Let \mathcal{X} be type-definable. Assume that G acts transitively on \mathcal{X} . Then $G^{11} \leq G^{00} \leq G^0$.

Proof. The inclusion $G^{00} \leq G^0$ is trivial. Let $\mathcal{Y} \in \Phi^{00}$ and $\mathcal{Y} \subseteq \mathcal{D} \in \Delta^{\mathbb{B}}(\mathcal{Z})$. Then a small number of G-translates of \mathcal{D} cover \mathcal{X} . Therefore, by compactness, \mathcal{D} is G-syndetic. Then the type defining \mathcal{Y} is G-syndetic. Then this type extends to some $p(x) \in P_G$. By G^{11} -invariance p(x) entails also $k \cdot \mathcal{Y}$ for every $k \in G^{11}$. Then k is in the stabilizer of \mathcal{Y} .

3. Strong syndeticity

Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. A set \mathcal{D} is strongly G-syndetic if for every finite $F \subseteq G$ the set $\cap F \cdot \mathcal{D}$ is G-syndetic (recall that $F \cdot \mathcal{D}$ stands for $\{h \cdot \mathcal{D} : h \in F\}$). Dually, we say that \mathcal{D} is weakly G-thick if for some finite $F \subseteq G$ the set $\cup F \cdot \mathcal{D}$ is thick. Again, the same properties may be attributed to formulas and types when every conjunction of formulas in the type has the property.

In topological dynamic, strong syndedic sets are called *thickly syndetic* and weak thickness is called *piecewise syndetic*. Newelski in [Ne] says *weak generic* for weakly thick. These are terminologies that defy my intuition.

14 Lemma Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. The intersection of two strongly *G*-syndetic sets is strongly *G*-syndetic.

Proof. Let \mathcal{D} and \mathcal{C} be strongly G-syndetic and let $C \subseteq G$ be an arbitrary finite set. It suffices to prove that $\mathcal{B} = \cap C \cdot (\mathcal{C} \cap \mathcal{D})$ is G-syndetic. Clearly $\mathcal{B} = \mathcal{C}' \cap \mathcal{D}'$, where $\mathcal{C}' = \cap C \cdot \mathcal{C}$ and $\mathcal{D}' = \cap C \cdot \mathcal{D}$. Note that \mathcal{C}' and \mathcal{D}' are both strongly G-syndetic. In particular $\mathcal{Y} \subseteq \cup F \cdot \mathcal{D}'$ for some finite $F \subseteq G$. Note that

As \mathcal{C}' is strongly G-syndetic, $\cap F \cdot \mathcal{C}'$ is G-syndetic. Therefore $\cup F \cdot \mathcal{B}$ is also G-syndetic. The G-syndeticity of \mathcal{B} follows.

Define the following type

ACTIONS 7

 ${}^{\mathbf{s}}\Sigma_{G,\mathcal{Y}}(x) = \{\vartheta(x) \in \Delta^{\mathbf{B}}(\mathcal{Z}) : \vartheta(x) \text{ is strongly } G\text{-syndetic relative to } \mathcal{Y}\}.$

Note that Theorem 8 shows that $\Sigma_{G^1}(x) \subseteq {}^{\mathrm{s}}\Sigma_G(x)$.

15 Corollary Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. Then ${}^{s}\Sigma_{G,\mathcal{Y}}(x)$ is finitely consistent, strongly *G*-syndetic, and *G*-invariant.

Moreover, ${}^{s}\Sigma_{G,\mathcal{Y}}(x)$ is the maximal *G*-syndetic *G*-invariant type and

$${}^{\mathrm{s}}\Sigma_{G,\mathcal{Y}}(x) = \bigcap_{q \in Q_{G,\mathcal{Y}}} q(x).$$

Where $Q_{G,\mathcal{Y}}$ is as in Definition 4 but relativized to \mathcal{Y} .

Proof. Strong G-syndeticity is an immediate consequence of Lemma 14. Finite consistency is a consequence of syndeticity. Finally, G-invariance is clear because any translate of a strongly G-syndetic formula is also strongly G-syndetic.

- **16 Corollary** Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. For every $\mathcal{D} \in \Delta^{B}(\mathcal{Z})$ the following are equivalent
 - 1. ${}^{s}\Sigma_{G,\mathcal{Y}}(x) \cup \{x \in \mathcal{D}\}\$ is finitely consistent
 - 2. \mathcal{D} is weakly G-thick.

Proof. $1\Rightarrow 2$. If ${}^s\Sigma_{G,\mathcal{Y}}(x)\cup\{x\in\mathcal{D}\}$ is finitely consistent, then $\neg\mathcal{D}$ is strongly G-syndetic. From Fact 1, we obtain that $\neg\mathcal{D}$ not being strongly G-syndetic is equivalent to \mathcal{D} being weakly G-thick.

2⇒1. Suppose ${}^{s}\Sigma_{G,\mathcal{Y}}(x) \vdash x \notin \mathcal{D}$. Then ¬ \mathcal{D} is strongly G-syndetic. From Fact 1, \mathcal{D} is not weakly G-thick.

The following theorem asserts that weak thickness is partition regular.

17 Theorem Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. If $\mathcal{C} \cup \mathcal{B}$ is weakly G-thick then \mathcal{B} or \mathcal{C} is weakly G-thick.

Proof. As ${}^s\Sigma_{G,\mathcal{Y}}(x)$ is closed under conjunction. If $x \in \mathcal{C} \cup \mathcal{B}$ is finitely consistent with ${}^s\Sigma_{G,\mathcal{Y}}(x)$ then so is one of the two sets.

4. A tamer landscape

Under suitable assumptions some notions introduced in this chapter coalesce, and we are left with a tamer landscape.

A. POLYMATH

18 Theorem Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. The following are equivalent

- 1. H-thick $\Delta^{\mathbb{B}}(\mathbb{Z})$ -sets are H-wide
- 2. *H*-syndetic $\Delta^{B}(\mathfrak{Z})$ -sets are closed under intersection
- 3. *H*-syndetic $\Delta^{B}(\mathbb{Z})$ -sets are strongly *H*-syndetic
- 4. weakly H-thick $\Delta^{B}(\mathfrak{Z})$ -sets are H-thick.

Proof. Clearly $2 \Leftrightarrow 3 \Leftrightarrow 4$.

8

1⇒2. Let \mathcal{C} and \mathcal{D} be H-syndetic $\Delta^{\mathbb{B}}(\mathcal{Z})$ -sets. Suppose for a contradiction that $\mathcal{C} \cap \mathcal{D}$ is not H-syndetic. Then $\neg(\mathcal{C} \cap \mathcal{D})$ is H-thick. By 1 and Theorem 3 there is a H-invariant type $p(x) \in S_{\Delta}(\mathcal{Z})$ that is finitely consistent in \mathcal{Y} and such that $p(x) \vdash x \notin \mathcal{C} \cap \mathcal{D}$. By completeness either $p(x) \vdash x \notin \mathcal{C}$ or $p(x) \vdash x \notin \mathcal{D}$. This is a contradiction because by Theorem 2 $p(x) \vdash x \in \mathcal{C}$ and $p(x) \vdash x \in \mathcal{D}$.

 $4\Rightarrow$ 1. By Theorem 17

A subset $\mathcal{Y} \subseteq \mathcal{X}$ is H-stationary if there exists a unique H-invariant $p(x) \in S_{\Delta,\mathcal{Y}}(\mathcal{Z})$. When $\Sigma_{H,\mathcal{Y}}(x)$ is consistent, by 1 in Theorem 3 this is equivalent to requiring that \mathcal{D} and $\neg \mathcal{D}$ are not both wide relative to \mathcal{Y} . The conditions in Theorem 18 together with stationarity, produce further simplification.

- 19 Fact Work relative to some given $\mathcal{Y}\subseteq\mathcal{X}$. Assume the equivalent conditions in Theorem 18 hold. Suppose that the set \mathcal{Y} is H-stationary. Then the following are equivalent
 - 1. \mathcal{D} is H-syndetic
 - 2. \mathcal{D} is H-wide.

Proof. $1\Rightarrow 2$. By assumption, $\Sigma_{H, \mathcal{Y}}(x)$ is consistent. Then H-syndetic $\Delta^{\mathbb{B}}(\mathbb{Z})$ -sets are H-thick by Corollary **??**. Finally, they are H-wide by 1 in Theorem 18. (Stationarity is not required in this direction.)

 $2\Rightarrow 1$. If \mathcal{D} was not H-syndetic then $\neg \mathcal{D}$ would be H-thick and therefore, by the assumption, H-wide. This contradicts H-stationarity.

5. Notes and references

- [CK] Artem Chernikov and Itay Kaplan, *Forking and dividing in NTP*₂ *theories*, J. Symbolic Logic (2012).
- [Ne] Ludomir Newelski, *Topological dynamics of definable group actions*, J. Symbolic Logic (2009).
- [Hr] Ehud Hrushovski, *Stable group theory and approximate subgroups*, J. Amer. Math. Soc. **25** (2012), no. 1, 189–243.