FLOYD WARSHALL

FAGADAU DANIEL 845279

FLOYD WARSHALL

Dato un grafo orientato e pesato G = (V, E) con W matrice dei pesi dove \forall i, j $\mathbf{w_{i, j}} = \begin{cases} 0 & se \ i = j \\ peso \ arco \ (i, j) & se \ (i, j) \in E \\ \infty & se \ (i, j) \notin E \end{cases}$

PROBLEMA: Calcolare \forall (i, j) il peso di un cammino minimo da *i* a *j*.

SOLUZIONE: Algoritmo di FW che è un algoritmo di programmazione dinamica.

Di conseguenza dobbiamo definire i sotto problemi e le loro istanze.

Il sottoproblema k-esimo sarà definito come:

 \forall (i, j) tutti i cammini da i a j con vertici intermedi \in {1, ..., k}

ATTENZIONE: *NON* significa con *k* vertici intermedi!

Soluzione sotto problema: $D^{(k)} = (d_{i,j}^{(k)})_{i,j} \in V$

Soluzione problema originale: $D^{(n)} = (d_{i,i}^{(n)})_{i,j} \in V$

CASO BASE

$$\begin{aligned} & \mathsf{k} = \mathsf{0} \\ & \forall \left(\mathsf{i},\mathsf{j}\right) \in \mathsf{V}^2 \; \mathsf{d} = ^{(0)}_{i,j} \; \mathsf{w}_{\mathsf{i},\,\mathsf{j}} = \left\{ \begin{array}{l} \mathsf{0} & se \; i = j \\ peso \; arco \; (i,j) & se \; (i,j) \in E \\ \infty & se \; (i,j) \not \in E \end{array} \right. \end{aligned}$$

Di conseguenza, $D^{(0)} = W$.

CASO PASSO

k > 0

Assumiamo di aver già calcolato i sotto problemi più piccoli.

$$\mathsf{d}_{i,j}^{(k)} = \min\{\,\mathsf{d}_{i,j}^{(k-1)}, \;\;\; \mathsf{d}_{i,k}^{(k-1)} + \mathsf{d}_{k,j}^{(k-1)}\,\}$$

ESERCIZI VISTI

LUNGHEZZA < L

Dato un grafo G = (V, E, W) pesato, orientato e senza cappi e dato un intero L > 0, calcolare \forall (i, j) \in V² il peso di un cammino minimo da i a j di lunghezza \leq L

INPUT: G = (V, E, W) L

SOTTO PROBLEMA: definito da $k \in \{0, ..., n\}$ e da $l \in \{0, ..., L\}$

 \forall (i, j) \in V² calcolare il peso di un cammino minimo da i a j

- utilizzando vertici intermedi appartenenti a {1, ..., k}
- di lunghezza \leq l

DEFINIZIONE VARIABILI

Per ogni sotto problema avremo quindi una variabile $D^{(k,l)} = (d^{(k,l)}_{i,j})$ dove \forall (i, j) $d^{(k,l)}_{i,j}$ è il peso del cammino minimo da i a j con vertici intermedi \in {1, ..., k} di lunghezza \leq l.

CASO BASE (k, l) con k = 0

$$d_{i,j}^{(0,l)} = \begin{cases} 0 & se \ i = j \\ w_{i,j} & se \ i \neq j \land (i,j) \in E \\ \infty & altrimenti \end{cases}$$

CASO PASSO (k, l) con $k > 0 \quad \forall l \in \{1, ..., L\}$

Caso 1: k otin c cammino minimo $ightarrow d_{i,j}^{(k,l)}$ = $d_{i,j}^{(k-1,l)}$

Caso 2: $k \in \text{cammino minimo} \rightarrow \text{Da } i \text{ a } k \text{ ho un cammino} \leq l_1, \text{ da } k \text{ a } j \leq l_2, \text{ devo far in modo che il cammino che scelgo sia } l_1 + l_2 \leq l_3$

$$e_1\colon d_{i,j}^{(k,l)} = \min \, \{ \, d_{i,k}^{(k-1,l_1)} + d_{k,j}^{(k-1,l_2)} \, \} \, \text{con} \, \, \mathsf{l}_1 \in \{\mathsf{1},...,\mathsf{I}\}, \, \mathsf{l}_2 \in \{\mathsf{1},...,\mathsf{I}\} \quad \mathsf{e} \, \, \, \mathsf{l}_1 + \mathsf{l}_2 \leq \mathsf{I} \, \} \, \, \mathsf{l}_1 + \mathsf{l}_2 \leq \mathsf{l}_2 + \mathsf{l}_3 + \mathsf{l}_4 + \mathsf{l$$

Tuttavia questo vale solo per l > 1.

Se l = 1 e k \in cammino minimo, $d_{i,j}^{(k,l)} = \infty$ poiché non esiste un cammino di lunghezza 1 che abbia k > 0 vertici intermedi.

Quindi nel caso 2 avremo:

$$e_2 \colon d_{i,j}^{(k,l)} = \left\{ \begin{aligned} &\min_{(l_1,l_2) \in \{0, \ \dots, \ l\}^2 \ \colon l_1 + l_2 \leq l} \{d_{i,k}^{(k-1,l_1)} + d_{k,j}^{(k-1,l_2)}\} & se \ l > 1 \\ &\infty & se \ l = 1 \end{aligned} \right.$$

Questo è ovviamente nel caso 2, noi dobbiamo prendere il migliore tra il caso 1 e il caso 2 (in questo caso il minimo).

EQUAZIONE DI RICORRENZA

$$d_{i,j}^{(k,l)} = \min\{e_1, e_2\}$$

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n, L)}$.

R ARCHI ROSSI

Dato un grafo G = (V, E, W, col) senza cappi dove col: E \rightarrow {Red, Blue} calcolare \forall (i, j) \in V² il peso di un cammino minimo da *i* a *j* con esattamente 3 archi rossi. (R = 3, n = |V|).

INPUT: G = (V, E, W, col) R

 $\textbf{SOTTOPROBLEMA}\text{: definito da }k\in\{0,...,\,n\}\ e\ r\in\{0,...,\,R\}$

 \forall (i, j) \in V² calcolare il peso di un cammino minimo da i a j con vertici intermedi \in {0, ..., k} con esattamente r archi rossi.

DEFINIZIONE VARIABILI: per ogni sottoproblema abbiamo $D^{(k,r)} = (d_{i,i}^{(k,r)})$.

 $\textbf{CASO BASE } k = 0 \ \land \ r \in \{0, ..., \ R\}$

Caso 1: r = 0

$$d_{i,j}^{0,0} = \left\{ \begin{array}{ll} 0 & \textit{se } i = j \\ w_{i,j} & \textit{se } i \neq j \land (i,j) \in E \land col(i,j) \neq \textit{Red} \\ \infty & \textit{altrimenti} \end{array} \right.$$

ATTENZIONE: varrà infinito anche se l'arco esiste ma è di colore rosso in questo caso.

Caso 2: r = 1

$$d_{i,j}^{0,1} = \left\{ egin{array}{ll} \infty & se \ i = j \ w_{i,j} & se \ i
eq j \wedge (i,j) \in E \wedge col(i,j) = Red \ \infty & altrimenti \end{array}
ight.$$

ATTENZIONE: Voglio un cammino che abbia 1 arco rosso; se *i* = *j* l'arco non c'è, di conseguenza non posso avere un cammino con 1 arco rosso.

Caso 3: r > 1

$$d_{i,j}^{(0,r)} = \infty$$

ATTENZIONE: In questo caso viene sempre infinito poiché con 0 vertici intermedi posso avere al più un arco, di conseguenza non avrò mai un cammino con r > 1 archi rossi.

CASO PASSO $k > 0 \land r \in \{0, ..., R\}$

Caso 1: $k \notin cammino minimo$

$$e_1: d_{i,j}^{(k,r)} = d_{i,j}^{(k-1,r)}$$

 $\textbf{Caso 2}\text{: }k\in cammino\ minimo$

$$e_2 \colon d_{i,j}^{(k,r)} = \min_{(r_1, \; r_2) \; \in \; \{0, \; \dots, \; r\}^2 \; \colon \; r_1 + r_2 = r} (d_{i,k}^{(k-1,r_1)} + d_{k,j}^{(k-1,r_2)})$$

EQUAZIONE DI RICORRENZA

$$d_{i,i}^{(k,r)} = \min\{e_1, e_2\}$$

Un ulteriore caso base potrebbe essere se r > k + 1, in quel caso sicuramente non posso avere r archi rossi, ma possiamo anche lasciare così le equazioni.

SOLUZIONE

La soluzione del problema originale sarà in $D^{(n, R)}$.

ESISTE CAMMINO CON COLORI ALTERNATI

Dato un grafo orientato G = (V, E, col) senza cappi dove col: $E \to \{Red, Blue\}$ stabilire $\forall (i, j) \in V^2$ se \exists un cammino da i a j nel quale non vi siano 2 archi consecutivi Red.

INPUT: G = (V, E, col)

SOTTOPROBLEMA: definito da $k \in \{0, ..., n\}$

DEFINIZIONE VARIABILI: Per ogni sotto problema abbiamo $D^{(k)} = (d^{(k)}_{i,j})$ dove $d^{(k)}_{i,j}$ vale TRUE sse \exists un cammino da i a j senza 2 archi rossi consecutivi con vertici intermedi $\in \{0, ..., k\}$.

Notiamo che per poter dire se possiamo unire due cammini ($nel\ caso\ in\ cui\ k\in cammino\ minimo\ ad\ esempio$) dobbiamo sapere con che archi iniziano e finiscono i vari cammini; ci $manca\ informazione$!

La soluzione è quindi introdurre un problema ausiliario leggermente modificato;

SOTTOPROBLEMA AUSILIARIO: definito da $k \in \{0, ..., n\}$ e da a, $b \in \{Red, Blue\}$

DEFINIZIONE VARIABILI: Per ogni sotto problema abbiamo $D^{(k, a, b)} = (d^{(k, a, b)}_{i,j})$ dove $d^{(k, a, b)}_{i,j}$ vale TRUE sse \exists un cammino da i a j senza 2 archi rossi consecutivi con vertici intermedi \in {0, ..., k} e con colore primo arco = a e con colore ultimo arco = b.

CASO BASE: k = 0

$$\forall (a,b) \in \{R,B\}^2 \quad : \quad d_{i,j}^{(0,\ a,\ b)} = \begin{cases} FALSE & se\ i=j \\ TRUE & se\ i \neq j \land\ (i,j) \in E \land col(i,j) = a \land col(i,j) = b \\ FALSE & altrimenti \end{cases}$$

CASO PASSO: $k > 0 \forall (a, b)$

Caso 1: k ∉ cammino minimo

$$e_1 = d_{i,j}^{(k, a, b)} = d_{i,j}^{(k-1, a, b)}$$

Caso 2: $k \in \text{cammino minimo}$

$$e_2 = d_{i,j}^{(k,\ a,\ b)} = \vee_{(c,d) \in \{R,B\}^2\ :\ (c,d) \neq \{R,R\}} \ (\ d_{i,j}^{(k-1,\ a,\ c)} \ \wedge \ d_{i,j}^{(k-1,\ d,\ b)}\)$$

EQUAZIONE DI RICORRENZA:

$$d_{i,j}^{(k, a, b)} = e_1 \vee e_2$$

SOLUZIONE PB AUX: \forall (a, b) la soluzione del PB AUX definito da (a, b) è $D^{(n, a, b)}$

SOLUZIONE PB DATO:
$$D_{i,j} = ee_{(a,b) \in \{R,B\}^2} (\ d_{i,j}^{(n,\ a,\ b)}\)$$

ATTENZIONE: Da notare come nella soluzione *non* escludiamo le coppie {*R*, *R*} come facciamo nel caso passo; in quel caso lo facciamo perché se unissimo un cammino che finisce col rosso e uno che inizia col rosso avremmo due archi rossi consecutivi, nella soluzione finale non ci importa se il cammino minimo inizi e finisca col rosso, basta che non ce ne siano di consecutivi!