Régulation de Débit

On va analyser le fonctionnement d'une boucle de régulation de débit d'un liquide.

Le schéma de la boucle est donné en page suivante.

Le Processus est constitué de :

- Un hacheur (tension d'entrée U₁ ∈ [0, +10V])
- Un moteur à courant continu à aimants permanents commandé par sa tension d'induit (V)
- ullet Un réducteur mécanique de vitesse de sortie Ω
- Une pompe péristaltique (l'axe tournant entraîne 3 galets en rotation qui écrasent un tuyau, ce qui permet le déplacement du liquide)
- Un capteur qui mesure le débit de liquide en sortie de la pompe. Ce capteur donne une tension de sortie $VD \in [0, +10V]$ proportionnelle au débit de liquide évoluant entre 0,02 litre/seconde et 0,2 litre/seconde

Remarque : la tension de sortie V du hacheur est décalée de façon à ce que, pour une entrée U_1 = 0, le moteur tourne afin d'assurer un débit minimum de 0,02 l/s. Ce décalage n'est pas représenté sur le schéma de la figure 1.

Etude en boucle fermée avec correction proportionnelle

On suppose que le régulateur est un amplificateur de gain G positif et ajustable.

On suppose par ailleurs, pour toute la suite du problème, que la fonction de transfert du

processus est la suivante : $\frac{V_{\scriptscriptstyle D}}{U_{\scriptscriptstyle 1}} = \frac{K}{1+{\it T}p}$ avec : K = 2, τ = 0,5s

Pour les questions suivantes, on se place en boucle fermée :

Question	Explications	Résultat
Calculer littéralement la fonction de transfert en boucle fermée : $\frac{V_{\scriptscriptstyle D}}{E} \Big(p \Big) = f(K,G,\tau)$		
Quelles sont les valeurs de la constante de temps τ' et du gain statique G' pour la valeur choisie G = 2 On conservera cette valeur G = 2 pour les questions suivantes (correction proportionnelle).		
Sans calcul, tracer la réponse indicielle V _D pour un échelon de position sur E variant de 0 à 2Volts (conditions initiales nulles).		
Quelle est la valeur de l'erreur de position $V_{\epsilon P}$ pour E = 2 Volts ?		
Sans calcul, donner l'expression de l'erreur de vitesse pour une consigne en rampe.		

Etude en boucle fermée avec correction proportionnelle-intégrale N°1

On remplace le gain G par un régulateur de fonction de transfert : $\frac{G}{p}$

	- w	- /
Question	Explications	Résultat
Calculer la fonction de transfert en boucle fermée : $\frac{V_{\scriptscriptstyle D}}{E} \Big(p \Big) = f(K,G,\tau)$		
Quelles sont les valeurs du gain		
statique K', de la pulsation naturelle ω_0 et de l'amortissement Z en fonction de (K, G, τ). Calculer leurs valeurs numériques pour G = 0,16.		
On conservera cette valeur		
de G pour les questions		
suivantes		
(correction PI N°1)		
Rappel : fonction passe-bas d'ordre 2 standard : k		
$\frac{\overline{p^2}}{\omega_0^2} + \frac{2Z}{\omega_0}p + 1$		

Calculer les pôles de la fonction de transfert en boucle fermée $\frac{V_D}{E}(p).$ Pourquoi la boucle fermée estelle stable ?		
Question	Explications	Résultat
Utiliser les résultats de la question précédente pour mettre la fonction de transfert en boucle fermée sous la forme : $\frac{V_D}{E}(p) = \frac{K'}{\left(1+\tau_1 p\right)\left(1+\tau_2 p\right)}$ Donner les valeurs numériques de τ_1 et τ_2		
Quelle est la valeur de l'erreur de position $V_{\epsilon P}$. Comment pouvait-on prévoir ce résultat sans calcul ?		

En utilisant les résultats précédents, tracer, sans calcul, l'allure approximative de la réponse indicielle V_D (échelon de position variant de 0 à 2 Volts, conditions initiales nulles).		
Quelle est la valeur de V _D en régime permanent ?		
Calculer l'erreur de vitesse pour une rampe sur la consigne de pente 2V/s. On rappelle l'expression générale de l'erreur de vitesse : $\varepsilon_V = \frac{Pente\ de\ la\ rampe}{\lim\limits_{p\to 0}p(boucle\ ouverte)}$	Evaliantions	Décultat
Question Comment évoluent l'amortissement Z en boucle fermée et l'erreur de vitesse lorsque G augmente ?	Explications	Résultat

-Tracer les lieux de Bode
asymtotiques en boucle
ouverte pour G = 1.
-Calculer le module de la
boucle ouverte au point de
cassure.
-Positionner la courbe
asymptotique 3 dB au-dessus.
-Placer l'axe 0 dB pour G = 1
-Quelle est la marge de phase
correspondante ?
-Placer approximativement
l'axe 0dB pour G = 0,16
-En déduire l'ordre de grandeur
de la marge de phase pour G =
0,16 (une valeur grossière
suffira).

Etude en boucle fermée avec correction proportionnelle-intégrale N°2

On remplace le régulateur $\frac{G}{p}$ par un régulateur de fonction de transfert : $\frac{G(1+Tp)}{Tp}$

avec : $T = 0.5s = \tau$

Question	Explications	Résultat
Calculer littéralement la		
fonction de transfert en boucle		
fermée :		
$\frac{V_D}{E}(p) = f(K, G, \tau)$		
Question	Explications	Résultat

Sans calcul, tracer la réponse indicielle V _D pour un échelon de position sur E variant de 0 à 2Volts (conditions initiales nulles) pour : G = 2 On conservera cette valeur pour les questions suivantes.	
Quelle est la valeur de l'erreur de position $V_{\epsilon P}$ (justifier ce résultat).	
Calculer l'erreur de vitesse pour une rampe sur la consigne de pente 2V/s.	
Tracer les lieux de Bode asymtotiques en boucle ouverte(G = 2). En déduire la marge de phase.	
Conclusion : pourquoi utiliser le régulateur de fonction de transfert : $\frac{G(1+Tp)}{Tp}$ Plutôt que : $\frac{G}{p}$	