

A 6 Dynamische Probleme

A.6.1. Clown

Ein Clown balanciert auf der obersten Sprosse einer senkrecht stehenden Leiter. Nun verliert er scheinbar die Kontrolle und Clown und Leiter setzen sich in Bewegung.

Die Differentialgleichungen

$$(\Theta_{S1} + m_1 s_1^2 + m_2 a_1^2) \ddot{\alpha} + m_2 a_1 s_2 \ddot{\beta} \cos(\alpha - \beta) + m_2 a_1 s_2 \dot{\beta} \sin(\alpha - \beta) - (m_1 s_1 + m_2 a_1) g \sin \alpha = 0$$

$$m_2 a_1 s_2 \ddot{\alpha} \cos(\alpha - \beta) + (\Theta_{S2} + m_2 s_2^2) \ddot{\beta} - m_2 a_1 s_2 \dot{\alpha}^2 \sin(\alpha - \beta) - m_2 s_2 g \sin \beta = 0$$

beschreiben die Dynamik des Systems, wobei g die Erdbeschleunigung bezeichnet und α , β die Neigungswinkel der Leiter des Clowns gegenüber der Vertikalen angeben.

Erstellen Sie eine MATLAB-Funktion, in der die Differentialgleichungen in der Form $\dot{x} = f(t,x)$ dargestellt werden. Die Daten $a_1, s_1, s_2, m_1, \Theta s_1, m_2, \Theta s_2$ und g werden dem Funktions-File über globale Variable zur Verfügung gestellt. Die Leiter ist zu Beginn um den Winkel $\alpha_0 = 10^{\circ}$ geneigt. Unter welchen Neigungswinkel β_0 muss sich der Clown auf die Leiter stellen, damit er einigermaßen aufrecht am Boden ankommt?

Zahlenwerte: $a_1 = 3.0 \text{ m}$; $s_1 = 1.5 \text{ m}$; $a_2 = 1.8 \text{ m}$; $s_2 = 0.9 \text{ m}$; $m_1 = 10.0 \text{ kg}$; $m_2 = 80.0 \text{ kg}$; $\Theta s_1 = 7.5 \text{ kgm}^2$; $\Theta s_2 = 20.0 \text{ kgm}^2$; $g = 9.81 \text{ m/s}^2$.

Technische Hochschule Ingolstadt Fakultät für Elektrotechnik und Informatik

A.6.2. Frisbee

Eine Fahrt mit dem "Frisbee" ist eine der Attraktionen auf der Regensburger Dult. Die Passagiere sitzen auf einer Scheibe, die mit dem Winkel γ um eine Stange rotiert. Die Stange selbst pendelt mit dem Winkel α um eine horizontale Achse.

Das "Frisbee" wird als homogene Scheibe der Masse m_S und einer exzentrischen Zusatzmasse m_Z modelliert. Die Pendelbewegung wird durch das Moment

$$M_A = M_0 \cdot \sin\left(2 \cdot \pi \frac{t}{T}\right)$$

angeregt.

Die Bewegungsgleichungen lauten

$$(\Theta_{xx} + m_Z e^2 \sin^2 \gamma) \ddot{\alpha} + m_Z h e \cos \gamma \ddot{\gamma} = M_A + m_Z h e \sin \gamma \dot{\gamma}^2 - 2m_Z e^2 \sin \gamma \cos \gamma \dot{\alpha} \dot{\gamma} - (m_S + m_Z) g h \sin \alpha - m_Z g e \sin \gamma \cos \alpha$$

und

$$\Theta_{zz} \ddot{\gamma} + m_Z h e \cos \gamma \ddot{\alpha} = -m_Z e^2 \sin \gamma \cos \gamma \dot{\alpha}^2 + 2m_Z h e \sin \gamma \dot{\alpha} \dot{\gamma} - m_Z g e \cos \gamma \sin \alpha$$

Erstellen Sie eine MATLAB-Funktion, in der die Differentialgleichungen in der Form $x = \dot{f}(t, x)$ dargestellt werden.

Die Daten M_0 , T, m_S , m_Z , Θ_{xx} , Θ_{zz} , h, e, und g werden dem Funktions-File über globale Variable zur Verfügung gestellt.

Die Trägheitsmomente eines Zylinders um die z- bzw. x-/y-Achse berechnen sich zu

$$\Theta_{zz} = \frac{m \cdot r^2}{2}, \qquad \Theta_{xx} = \Theta_{yy} = \frac{m \cdot (d^2 + 3 \cdot r^2)}{12}$$

mit dem Radius r, der Masse m und der Zylinderhöhe (Scheibendicke) d.

Zahlenwerte:

$$M_0 = 10000 \text{ Nm}$$
; $T = 8 \text{ s}$; $m_S = 4000 \text{ kg}$; $m_Z = 300 \text{ kg}$; $h = 1.5 \text{ m}$; $e = r = 3.0 \text{ m}$; $g = 9.81 \text{ m/s}^2$; $\alpha_0 = 0$; $\gamma_0 = 0$; $\dot{\alpha}_0 = 0.03 \text{ s}^{-1}$; $\dot{\gamma}_0 = 0.6 \text{ s}^{-1}$; $d = 1 \text{ m}$

Stellen Sie über einem Zeitraum von 50 Sekunden dar:

in einem ersten Subplot die Pendelbewegung in α , in einem zweiten Subplot den Drehwinkel in Umdrehungen, in einem dritten Subplot $\dot{\alpha}$ und $\dot{\gamma}$ und in einem vierten Subplot die Kurvenbeschleunigung in g (Erdbeschleunigung) mit

$$v_{Umfang} = 2\pi r \dot{\gamma}$$
 $a_{zp} = (v_{Umfang})^2/r$