

« Automating IT Operations Using Machine Learning » Sept – Nov 2016

Ajinkya CHANDRAYAN

Data Scientist - Département Solutions Globales
INEO DIGITAL

engie

Table of content

Preprocessing Feature creation / processing Models **Features importance Final blend Tools and frameworks** Source code

Preprocessing

Label Encoding

It is used to transform non-numerical labels to numerical labels.

Language	Python
Library	sklearn.preprocessing; LabelEncoder
Variables	ini, codeClosing,libjob,consumer,ArDailyStatConsumer, VALDailyStatConsumer, VARDailyStatConsumer
Sample script	fullData['ini'] = number.fit_transform(fullData['ini'].astype('str'))

Treatment of Missing Values in variables

The data description states that the Resource Plan before January 2015 was not available, which means that the 'slot' field will have no data for the jobs before January 2015. This missing data has been treated by filling in the **mean** values.

Replacing NaN with 0

Feature Creation / Processing (1/2)

• Create Year, Month, Day, Week, Day of the week, Hour, Minute from the date variables.

Language	Python
Library	Pandas
Variables	datdeb, dateCalcul, datdealversion
Sample script	dt = pd.to_datetime(fullData.datdeb).dt fullData["datdeb_Year"] = dt.year

Create <u>Milliseconds</u> from date variables.

Language	Python
Library	Pandas, Numpy
Variables	dateCalcul, tradeDate, datcrever, Datmodver
Sample script	df1=pd.to_datetime(fullData['dateCalcul']) fullData["dateCalculMS"]= df1.astype(np.int64) // 10**9

Feature Creation / Processing (2/2)

Creating « dealtype_count » and « fin_count »

The deals dataset contains the number of deal traded each day by dealtype. The data description highlighted that the number of deals traded each day can be helpful for the model precision.

Language	Python
Library	Pandas, Numpy
Variables	dealtype, count
Sample script	deals = deals.groupby(['tradeDate','dealtype']).mean().squeeze().unstack().add_suffix('_count') df1 = deals.replace(np.nan,0, regex=True) deals['fin_count'] = deals.apply(lambda row: row['CHC_count'] + row['CPT_count']+ row['CSH_count'] + row['CSHCO_count'] + row['EXFLEX_count']+ row['EXOSCP_count'] + row['EXSCP_count'] + row['FUTCO_count'] + row['GEFWD_count'] + row['GEFWI_count'] + row['GEOPT_count'] + row['GESWA_count'] + row['GETRA_count'] + row['OCH_count'] + row['OPA_count'] + row['OPC_count'] + row['OPTMO_count'] + row['PECUR_count'] + row['STOK_count'] + row['SWA_count'] + row['SWF_count'] + row['SWT_count'] + row['TER_count'] + row['TSC_count'], axis=1)

Models (1/2)

- This challenge was an opportunity for me to experiment on some new libraries and approaches.
- In the initial phase I experimented on the H2O library with some very good results.
- The H2O library is rich and can allow training the models within the available resources.

H20 Library

Language	R Programming
Library	h2o
Approach	Ensemble learning
Algorithms	GLM, Random Forest, GBM
Highest Score	13.6542046128

_

Models (2/2)

- In the final stages of the challenge, I moved on to the xgboost library, which is quite popular amongst the kagglers and a personal favourite that almost, always ensures good result.
- I experimented xgboost library with the bag of models approach which after some rounds of parameters tuning gave the highest score.

Library XGBOOST

Language	R Programming					
Library	Xgboost					
Approach	Bag of models					
Algorithms	Gradient tree boosting					
Highest Score	12.3187479036					

Features importance

- For feature importance, I experimented on the Boruta algorithm during this challenge.
- Boruta is a feature selection algorithm. Precisely, it works as a wrapper algorithm around Random Forest.

Language		R Programming	l														
Library		Boruta															
	25.138846 27.357467 70.250920 71.197926 53.932561 55.743292 39.074359 40.142606 16.087546 12.438292 13.883126 14.118245 16.995208 17.736344 33.812611 34.597223 43.750994 43.968532 23.521509 25.338465 31.388452 30.911212 5.465505 5.663818 15.899516 16.019584 19.310960 19.732971 23.617142 23.969306	minImp maxImp 3 12.911324 16.337305 7 3.808829 32.057937 5 61.231584 76.894304 2 45.257485 59.435008 9 30.969667 45.325027 5 7.493510 45.588435 9 12.265184 14.762873 4 11.268129 18.536686 3 19.365210 42.557718 2 34.310573 56.690496 5 7.900929 30.448458 2 29.334952 35.012042 3 4.642970 6.251165 4 14.354453 12.516566 1 14.296433 22.516135 5 20.431533 25.953979 1 3.814953 12.788028	1.0 Confirmed	Importance	adowwlin — H	nchedeal —	lbjob - H-1 O H-1 O H-1 H-1 O O H-1 O O H-1 O O O O O O O O O O O O O O O O O O O	— dolqyptoo	heparam — OD onsumer —	O — picopia	cachefix — ○ ┃ ┤	onsumer — HH	scenario —	tchmode — O fileI	+	- H	+- - +

Final Blend

• The final model was trained by tuning the hyper parameters after performing different experiments and submissions.

Language	R Programming
Library	Xgboost
Approach	Bag of models
Algorithms	Gradient tree boosting
Total number of models	50
Final Calculation	Mean of all models
Parameters	shrinkage(eta), rounds, depth, gamma, min.child, colsample.bytree, subsample
Features	all

Tools and frameworks

Language Python, R Programming, SQL

Tools Jupyter Notebook, R Studio, DB Browser for SQLite

Librairies (Python) Pandas, Numpy, ScikitLearn, csv

Librairies (R Programming) dplyr,data.table,lubridate,ggplot2,sqldf,xgboost,h2o

Source Code

18/03/2016 IT/Digital Journey | Kick-off meeting