Investigación de Operaciones 1/Optimización Tarea # 1

Claudia Andrea Chacón Ossa cchacon@alumnos.inf.utfsm.cl

María José Astudillo Núñez mastudil@alumnos.inf.utfsm.cl

Profesor Alvaro Luzzi Haussmann alvaro.luzzi@usm.cl

Renata Paz Mella Godoy renata.mella.12@sansano.usm.cl

Profesor Carlos Castro carlos.castro@inf.utfsm.cl

2 de septiembre de 2016

1. Modelamiento - Programación lineal

Se está planificando la urbanización de un gran terreno donde habitarán 1000 familias de la V región. Una de las etapas consiste en determinar desde donde se extraerá el agua potable. Las alternativas son las siguientes:

- 1. Obtener el agua de un pozo cuya napa se encuentra a 40 metros de profundidad
- 2. Obtener el agua de un pozo cuya napa se encuentra a 100 metros de profundidad
- 3. Obtener el agua de un estero que se encuentra ubicado en un terreno próximo

El agua obtenida del pozo de la alternativa 1 contiene impurezas y debe ser tratada, con un costo de C_1 por litro. Además el caudal máximo que se puede extraer es $Q_1[lts/s]$. El agua del pozo de la alternativa 2 es pura, pero sólo se puede extraer un caudal máximo de $Q_2[lts/s]$. Del estero se puede extraer un caudal máximo de $Q_3[lts/s]$ pero los derechos de agua le pertenecen a un ganadero vecino que cobra C_3 por cada litro ocupado.

El consumo de agua de toda la gente está bien estudiado y se puede predecir con seguridad que será el siguiente:

Horario	De 08.00 a 16.00 hrs	De 16.00 a 24.00 hrs	De 24.00 a 8.00 hrs	
Consumo de agua [lts]	D_1	D_2	D_3	

Para extraer el agua de los pozos se consume energía eléctrica, cuyo precio dependerá también del horario:

Horario	De 08.00 a 16.00 hrs	De 16.00 a 24.00 hrs	De 24.00 a 8.00 hrs	
Costo por litros (pozo 1) [\$/lts]	P_{11}	P_{12}	P_{13}	
Costo por litros (pozo 2) [\$/lts]	P_{21}	P_{22}	P_{23}	

Para almacenar el agua se cuenta con un estanque de V lts. de columen. Además el COREMA estipuló que el máximo de agua que se puede sacar al mismo tiempo (en las tres alternativas) es de 30 [lts/s]. Suponga que el estanque a las 08.00 hrs. se encuentra a la mitad de su capacidad.

Formule el modelo de programación lineal que permita determinar cuanta agua extraer de cada alternativa y en los distintos horarios para satisfacer la demanda de los pobladores a un costo mínimo.

2. Resolución de modelos

Considere el siguiente modelo de programación lineal:

F.O. Min Z =
$$3x_1 - 2x_2$$

$$x_1 + x_2 \le 10$$

$$2x_1 + x_2 \ge 4$$

$$x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

- 1. Utilice el método gráfico para encontrar soluciones al modelo. ¿Es posible encontrar el óptimo?
- 2. Resuelva el problema usando el método Simplex.
- 3. Explique cada una de las bases encontradas durante la realización del algoritmo Simplex.
- 4. ¿Existen soluciones alternativas a la solución encontrada? Explique.
- 5. Resuelva con el software LINDO. ¿Obtuvo el mismo resultado o fue distinto? Comente y explique.

3. Análisis de Sensibilidad

Se tiene el siguiente modelo:

Función Objetivo: Máx $\mathbf{Z} = 25x_1 + 15x_2 + 16x_3$

Restricciones:

$$4x_2 + 8x_3 \le 1600$$
$$10x_1 + 2x_2 = 2100$$
$$x_3 \le 300$$

 $x_2 \le 250$

Con el se obtiene el siguiente tableau final

		x_1	x_2	x_3	s_1	a_2	s_3	s_4	
Base	c_{j}	25	15	16	0	-M	0	0	b_j
$\overline{x_3}$	16	0	0	1	1/8	0	0	-1/2	75
x_1	25	1	0	0	0	1/10	0	-1/5	160
s_3	0	0	0	0	-1/8	0	1	1/2	225
x_2	15	0	1	0	0	0	0	1	250
$\overline{z_j}$		25	15	16	2	5/2	0	2	8950
c_j –	z_{j}	0	0	0	-2	-M-5/2	0	-2	

- 1. Encuentre el rango de la variable s_1
- 2. Encuentre el rango en el que se puede mover el coeficiente de la variable x_2 . Explique que pasaría si el coeficiente que acompaña a x_2 cambiara a 10.
- 3. Mencione para cada restricción si es activa o inactiva.
- 4. Realice un análisis de la variación que puede tener el lado derecho de la primera restricción. Encuentre la nueva solución si varia en +1000. Analice los casos extremos.
- 5. Qué sucederá si se agrega la restricción: $6x_1 + 3x_2 + 4x_3 \le 1900$. ¿La cumple o no? En caso de no cumplirla, explique cómo resolvería el problema.

4. Reglas de la entrega

- La tarea se realiza en grupos de 2 personas.
- El informe debe contener las respuestas a los puntos y preguntas realizadas (sin introducción ni conclusiones).

 Debe estar escrito en LaTeX (obligatoriamente).
- Debe ser entregado el día Lunes 12 de Septiembre en la Secretaría del Departamento de Informática antes de las 17:00 hrs (impreso).
- Además, el mismo día hasta las 23:55 hrs, se debe subir a la plataforma MOODLE el informe en formato digital (PDF + .Tex) y el archivo de resolución del software LINDO.
- Todo lo anterior debe estar comprimido en un archivo .tar y debe cumplir con el siguiente formato: Laboratorio1-Apellido1Apellido2.tar.gz. El archivo pdf debe tener el mismo formato.
- Por cada día habil de atraso implica un descuento de 10 % en la nota de la tarea. Toda tarea no entregada dentro de los 5 (cinco) días siguientes a la fecha de entrega tiene nota 0 (cero), tal y como sale en el programa del curso.
- Si no se cumple con los formatos solicitados, se aplicará un descuento adicional de 20 puntos. SEA ORDE-NADO/A.