Ruddit: Norms of Offensiveness for English Reddit Comments

Rishav Hada¹, Sohi Sudhir¹, Pushkar Mishra², Helen Yannakoudakis³, Saif M. Mohammad⁴, Ekaterina Shutova¹

Institute of Logic, Language and Computation, University of Amsterdam Facebook AI, London

Dept. of Informatics, King's College London

National Research Council Canada

The presentation includes some examples of offensive comments.

Offensive Language

- Offensive language has a wide range.
- Humans can distinguish the degrees of offensiveness at fine levels.
- Depends on context.
- Often associated with strong emotions (Jay and Janschewitz, 2008).

- In our work,
 - We focus on the entire spectrum of supportiveness—offensiveness.
 - We aim to find the commonalities of what most people find offensive.

Why detect it automatically?

To study how people communicate offensiveness and supportiveness.

Can help in developing better Human-Computer Interaction systems.

- Offensive language on social media platforms
 - negatively impacts the mental well-being of their users.
 - makes forums not conducive for a healthy discussion.

Challenges

- What is offensive language?
 - Categories have significant overlaps with each other, creating ill-defined
 boundaries, thus introducing ambiguity.
- Past work mostly uses discrete labels.
- Offensiveness is inherently contextual (Gao and Huang, 2017).
- Annotator de-sensitization.
- Skewed class distribution.

Our Work

- Dataset:
 - 6000 English language Reddit comments
 - o fine-grained, real-valued scores
 - between -1 (maximally supportive) and 1 (maximally offensive).
- Used Comparative annotation setup (David, 1963)
 - Alleviates annotation biases present in standard rating scales.
 - Alleviates issues regarding category definitions.
 - Mitigates annotator desensitization.
- Contains conversational context for each comment.

Emotions and Offensiveness

- Offensive behaviour is often associated with strong emotions.
- Primary dimensions of emotion (Russell, 1980, 2003):
 - Valence(V): positive/pleasure negative/displeasure
 - Arousal(A): excited/active calm/passive
 - Dominance(D): powerful/have full control weak/have no control
- We up-sample comments with low-valence (highly negative) or high-arousal words
 - using the NRC VAD lexicon (Mohammad, 2018).
 - 20,000 English words with real-valued scores between 0 & 1 in V, A, D dimensions.

The Hybrid Approach for Data Sampling

The Annotation Task

Annotations were crowd-sourced on Amazon Mechanical Turk.

Steps to minimize the negative mental impact on the annotators.

We annotated 5% data ourselves as gold questions.

 Worker annotations were discarded if their accuracy on gold questions was below 70%.

Annotating with Best-Worst Scaling

- Best-Worst Scaling (Kiritchenko and Mohammad, 2016, 2017): An efficient form of comparative annotation.
- 2N 4-tuples, each comment seen in 8 different 4-tuples, no two 4-tuples had more than 2 items in common

Q. From the four comments below, choose the comment which is **least offensive** (most supportive) and the comment which is **most offensive** (least supportive).

Least Offensive	Comment	Most Offensive
0	It was a fun day!	0
0	Cool	0
0	Holy mother of God	0
0	You deserve to die!!	0

Annotating with Best-Worst Scaling

 Using these annotations we can calculate real-valued scores of association between the items and the property of interest.

Offensiveness score =

% times comment chosen as most offensive—% times comment chosen as least offensive

Annotation Reliability

Metric used: Split-Half Reliability (Cronbach, 1946)

Source: http://saifmohammad.com/WebDocs/VAD-talk.pdf

# Comments	# Annotations per Tuple	# Annotations	# Annotators	SHR Pearson	SHR Spearman
6000	6	95,255	725	0.8818 ± 0.0023	0.8612 ± 0.0029

12

Data Analysis Q

Distribution of Scores

Sample Comments

Don't worry, she's going to be fine. I see you too are a man of culture;)	-0.75 -0.604
This is so sexy! Love it! "I live with my ex, but it's totally cool, we're just friends"	-0.562 -0.229
Not sure why Im being down voted? Why does the truth bother so many people? Oh man, that's a great idea! Nuke a few large cities in the US, this will send the economy to the sky!	-0.191 0.104
You look like a lesbian mechanic who has a shell collection. Don't forget Vaccines cause autism. And torture is awesome. We should murder the families of terrorists.	0.438 0.5
If you support trump kill yourself, painfully. Shut the f*ck up bitch. It's Bernie or Bust nobody is voting for Biden, now get the f*ck out of here you c*nt	0.604 0.958

Computational Modeling

- Task: Predict the offensiveness score of a given comment.
- Models:
 - BiLSTM with 300D GloVe word embeddings.
 - BERT (fine-tuning)
 - HateBERT (fine-tuning): a version of BERT pretrained for abusive language detection in English. HateBERT was trained on RAL-E, a large dataset of English language Reddit comments from communities banned for being offensive or hateful.
- We performed 5-fold cross-validation for each of the models.

Dataset Variations

We created variations of our dataset for a detailed analysis.

- **Ruddit:** The complete dataset.
- **Identity-agnostic:** to investigate the effect of identity terms.
 - Replaced *identity-term** in the comments with *[group]*.

Dataset Variations

- No-swearing: to investigate the effect of swear words.
 - Removed comments with swear-words from the Cursing Lexicon (Wang et al., 2014).
- Reduced-range: to study the modeling of comments in the middle region of the offensiveness scale.
 - \circ Comments from -0.5 to +0.5 offensiveness score range.

Results and Analysis

Dataset	HateBERT		BERT		BiLSTM	
	r	MSE	r	MSE	r	MSE
a. Ruddit	0.886 ± 0.003	0.025 ± 0.001	0.873 ± 0.005	0.027 ± 0.001	0.831 ± 0.005	0.035 ± 0.001
b. Identity-agnostic	0.883 ± 0.006	0.025 ± 0.001	0.869 ± 0.007	0.027 ± 0.001	0.824 ± 0.007	0.036 ± 0.001

- HateBERT outperforms other models.
- Slight drop in performance for identity-agnostic.
 - Not learning to benefit from the association of certain identity terms with specific ranges of offensiveness scores.

Results and Analysis

Dataset	HateBERT		BERT		BiLSTM	
	r	MSE	r	MSE	r	MSE
c. No-swearing	0.808 ± 0.013	0.023 ± 0.001	0.783 ± 0.012	0.027 ± 0.001	0.704 ± 0.014	0.036 ± 0.002
d. Reduced-range	0.781 ± 0.014	0.022 ± 0.001	0.757 ± 0.011	0.025 ± 0.001	0.659 ± 0.008	0.033 ± 0.001

- HateBERT outperforms other models.
- Drop in performance for no-swearing:
 - Swear words are important indicators but there are other features being learnt!
- Reduced-range: Still an **interesting** and **feasible** task
- Task not just predicting a discrete label but assigning an offensiveness score.

Find out more in the paper!

- Best-Worst Scaling procedure
- Sampling and scoring method for the dataset
- The complete annotation procedure
- Data analysis in depth
- Error analysis of the models

Conclusion

- First dataset of online comments annotated for their degree of offensiveness.
- Using BWS addresses the limitations of traditional rating scales.
- Ratings obtained are highly reliable (SHR Pearson r≈0.88)
- We show that low valence and high arousal comments have a higher correlation with the offensiveness scores.
- We present benchmark experiments to predict offensiveness scores on our dataset.

Future Work

- More context dependent annotations.
- Use of conversational context in computational modeling of offensiveness.
- Studying the interaction between offensiveness and emotions in more depth.
- Conducting functional tests on models trained on Ruddit.
 - HATECHECK: Functional Tests for Hate Speech Detection Models (Rottger et. al., 2021)

Code and Data available at:

https://github.com/hadarishav/Ruddit

