Notation Issues

Trigonometric Powers

In Trigonometry, for example, $\cos^2\theta$ is traditionally used for $(\cos\theta)^2$. For example, we write

$$\cos^2\theta + \sin^2\theta = 1$$

instead of

$$(\cos\theta)^2 + (\sin\theta)^2 = 1$$

Note:

For trigonometric functions and the logarithm functions, the brackets around a single argument is sometimes dropped. For example, $\ln x$ may be used instead of $\ln(x)$. But if the argument is a complex expression then brackets are used, for example $\ln(x*y) = \ln x + \ln y$.

If in doubt, brackets are used to clarify the argument to a function.

Difficulty with Inverse Notation

In Arithmetic, $\frac{1}{x}=x^{-1}$, where $x\in\mathbb{R}$ i.e. where x is Real number. When functions are used in mathematics; the notation f^{-1} is used for the inverse of the function, f, i.e. $f^{-1}(f(x))=x$ and $f(f^{-1}(x))=x$.

A conflict arises in using notation such as $\cos^{-1}x$. While $\cos^2\theta = (\cos\theta)^2$ but $\cos^{-1}x \neq (\cos x)^{-1}$ i.e.

$$cos^{-1}x \neq \frac{1}{cos x}$$

Note: $\frac{1}{\cos x} = \sec x$.

Inverse Notation

\cos^{-1} and arccos

In Trigonometry, \cos^{-1} is the inverse function of \cos i.e.

for
$$0 \le \theta \le \pi$$
, $\cos^{-1}(\cos \theta) = \theta$.

For example,
$$\cos \frac{\pi}{3} = \frac{1}{2}$$
 : $\cos^{-1}(\cos \frac{\pi}{3}) = \cos^{-1}(\frac{1}{2}) = \frac{\pi}{3}$.
Also, $\cos(\cos^{-1}(\frac{1}{2})) = \cos \frac{\pi}{2} = \frac{1}{2}$

In some textbooks, arccos is used instead of cos^{-1} , i.e. arccos(x)is the angle, or 'arc', θ , whose cos is x i.e. $\cos \theta = x$ i.e. if $arccos(x) = \theta$ then $cos \theta = x$ where -1 < x < 1 and $0 < \theta < \pi$

for $0 < \theta < \pi$, $\arccos(\cos \theta) = \theta$ and

for
$$-1 \le x \le 1 \cos(\arccos(x)) = x$$
.

Graph Cosine

Graph of $\cos x$, $-2\pi \le x \le 2\pi$

Cont'd

Graph of $\cos x$, from $0 \le x \le \pi$ to $-1 \le x \le 1$. cos is a bijective function so its inverse \cos^{-1} exists. \cos^{-1} is a function from $-1 \le x \le 1$ to $0 \le x \le \pi$

Cont'd

sin⁻¹ and arcsin

arcsin is used for sin^{-1} i.e.

if
$$arcsin(x) = \theta$$
 then $sin \theta = x$ where $-1 \le x \le 1$ and $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ i.e.

for
$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \arcsin(\sin \theta) = \theta$$
 and

for
$$-1 \le x \le 1 \sin(\arcsin(x)) = x$$

tan^{-1} and arctan

arctan is used for tan^{-1} i.e.

for
$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \arctan(\tan \theta) = \theta$$
 and for $x \in \mathbb{R}$, $\tan(\arctan(x)) = x$

Graphs

Graph of $\sin \theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$,

Graph Sine

Graph of $\sin \theta$, $-2\pi \le \theta \le 2\pi$,

Graph Tan

Graph of tan(x), $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

Graph of tan(x), $-6 \le \theta \le 6$

