[TaxID: 623]

Entry name	CLPP_ECOLI					
Primary accession number	P19245					
Secondary accession numbers	None					
Entered in Swiss-Prot in	Release 16, November 1990					
Sequence was last modified in	Release 16, November 1990					
Annotations were last modified in	Release 41, February 2003					
Name and origin of the protein						
Protein name	ATP-dependent Clp protease proteolyti subunit					
Synonyms	EC 3.4.21.92 Endopeptidase Clp Caseinolytic protease Protease Ti Heat shock protein F21.5					
Gene name	CLPP or LOPP or <u>B043</u> <u>Z0542</u> or ECS0491 or	_				
From	Escherichia coli Escherichia coli 06 Escherichia coli 0157:47	[TaxID: <u>562]</u> [TaxID: <u>217992]</u> [TaxID: <u>83334]</u>				

References

Taxonomy

[1] SEQUENCE FROM NUCLEIC ACID.

SPECIES=E.coli;

MEDLINE=90324245; PubMed=2197275; [<u>NCBI</u>, <u>ExPASy</u>, <u>EBI</u>, <u>Israel</u>, Japan]

O157:H7

Shigella flexneri

Bacteria; Proteobacteria;

Gammaproteobacteria; Enterobacteriales;

Enterobacteriaceae; Escherichia.

Maurizi M.R., Clark W.P., Katayama Y., Rudikoff S., Pumphrey J., Bowers B., Gottesman S.;

"Sequence and structure of Clp P, the proteolytic component of the

ATP-dependent Clp protease of Escherichia coli."; J. Biol. Chem. 265:12536-12545(1990).

[2] SEQUENCE FROM NUCLEIC ACID.

SPECIES=E.coli;

STRAIN=K12 / MG1655;

MEDLINE=97426617; PubMed=9278503; [<u>NCBI</u>, <u>ExPASy</u>, <u>EBI</u>, <u>Israel</u>, <u>Japan</u>]

Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y.; "The complete genome sequence of Escherichia coli K-12."; Science 277:1453-1474(1997).

[3] SEQUENCE FROM NUCLEIC ACID.

SPECIES=E.coli:

Roberts D., Allen E., Araujo R., Aparicio A., Chung E., Davis K., Duncan M., Federspiel N., Hyman R., Kalman S., Komp C., Kurdi O., Lew H., Lin D., Namath A., Oefner P., Schramm S., Davis R.W.;
Submitted (JAN-1997) to the EMBL/GenBank/DDBJ databases.

[4] SEQUENCE FROM NUCLEIC ACID.

SPECIES=E.coli;

STRAIN=06:H1 / CFT073 / ATCC 700928;

MEDLINE=22388234; PubMed=12471157; [NCBI, ExPASy, EBI, Israel, Japan]

Welch R.A., Burland V., Plunkett G. III, Redford P., Roesch P., Rasko D., Buckles E.L., Liou S.-R., Boutin A., Hackett J., Stroud D., Mayhew G.F., Rose D.J., Zhou S., Schwartz D.C., Perna N.T., Mobley H.L.T., Donnenberg M.S., Blattner F.R.;

"Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli.";

<u>Proc. Natl. Acad. Sci. U.S.A. 99:17020-17024(2002)</u>.

[5] SEQUENCE FROM NUCLEIC ACID.

SPECIES=E.coli:

STRAIN=0157:H7 / EDL933 / ATCC 700927;

MEDLINE=21074935; PubMed=11206551; [<u>NCBI, ExPASy, EBI, Israel,</u> Japan] Perna N.T., Plunkett G. III, Burland V., Mau B., Glasner J.D., Rose D.J., Mayhew G.F., Evans P.S., Gregor J., Kirkpatrick H.A., Posfai G., Hackett J., Klink S., Boutin A., Shao Y., Miller L., Grotbeck E.J., Davis N.W., Lim A., Dimalanta E.T., Potamousis K., Apodaca J., Anantharaman T.S., Lin J., Yen G., Schwartz D.C., Welch R.A., Blattner F.R.; "Genome sequence of enterohaemorrhagic Escherichia coli 0157:H7."; Nature 409:529-533(2001).

[6] SEQUENCE FROM NUCLEIC ACID.

SPECIES=E.coli:

STRAIN=0157:H7 / RIMD 0509952;

MEDLINE=21156231; PubMed=11258796; [<u>NCBI</u>, <u>ExPASy</u>, <u>EBI</u>, <u>Israel</u>, <u>Japan</u>]

Hayashi T., Makino K., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C.-G., Ohtsubo E., Nakayama K., Murata T., Tanaka M., Tobe T., Iida T., Takami H., Honda T., Sasakawa C., Ogasawara N., Yasunaga T., Kuhara S., Shiba T., Hattori M., Shinagawa H.;

"Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12."; DNA Res. 8:11-22(2001).

[7] SEQUENCE FROM NUCLEIC ACID.

SPECIES=S.flexneri;

STRAIN=301 / Serotype 2a;

MEDLINE=22272406; PubMed=12384590; [<u>NCBI</u>, <u>ExPASy</u>, <u>EBI</u>, <u>Israel</u>, <u>Japan</u>]

Jin Q., Yuan Z., Xu J., Wang Y., Shen Y., Lu W., Wang J., Liu H., Yang J., Yang F., Zhang X., Zhang J., Yang G., Wu H., Qu D., Dong J., Sun L., Xue Y., Zhao A., Gao Y., Zhu J., Kan B., Ding K., Chen S., Cheng H., Yao Z., He B., Chen R., Ma D., Qiang B., Wen Y., Hou Y., Yu J.;

"Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157."; Nucleic Acids Res. 30:4432-4441(2002).

[8] IDENTIFICATION AS A HEAT SHOCK PROTEIN.

SPECIES=E.coli;

MEDLINE=91008981; PubMed=2211522; <u>[NCBI, ExPASy, EBI, Israel,</u> Japan] Kroh H.E., Simon L.D.;

"The ClpP component of Clp protease is the sigma 32-dependent heat shock protein F21.5.";

<u>J. Bacteriol. 172:6026-6034(1990)</u>.

[9] CHARACTERIZATION.

SPECIES=E.coli;

MEDLINE=94012667; PubMed=8407953; [<u>NCBI, ExPASy, EBI, Israel,</u> <u>Japan]</u>

Arribas J., Castano J.G.;

"A comparative study of the chymotrypsin-like activity of the rat liver multicatalytic proteinase and the ClpP from Escherichia coli.";

J. Biol. Chem. 268:21165-21171(1993).

[10]X-RAY CRYSTALLOGRAPHY.

SPECIES=E.coli;

MEDLINE=96428678; PubMed=8831780; [NCBI, ExPASy, EBI, Israel, Japan]

Shin D.H., Lee C.S., Chung C.H., Suh S.W.;

"Molecular symmetry of the ClpP component of the ATP-dependent Clp protease, an Escherichia coli homolog of 20 S proteasome.";

<u>J. Mol. Biol. 262:71-76(1996)</u>.

[11] X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 25-207.

SPECIES=E.coli;

MEDLINE=98050920; PubMed=9390554; [NCBI, ExPASy, EBI, Israel, Japan]

Wang J., Hartling J.A., Flanagan J.M.;

"The structure of ClpP at 2.3-A resolution suggests a model for ATP-dependent proteolysis.";

Cell 91:447-456(1997).

Comments

FUNCTION: Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as clpA or clpX.

CATALYTIC ACTIVITY: Hydrolysis of proteins to small peptides in the presence of ATP and magnesium. Alpha-casein is the usual test substrate. In the absence of ATP, only oligopeptides shorter than five residues are cleaved (such as succinyl-Leu-Tyr-|-NHMEC; and Leu-Tyr-Leu-|-Tyr-Trp, in which the cleavage of the -Tyr-|-Leu- and -Tyr-|-Trp- bond also occurs).

SUBUNIT: 14 CLPP SUBUNITS ASSEMBLE INTO A DISK-LIKE STRUCTURE WITH A CENTRAL CAVITY, RESEMBLING THE STRUCTURE OF EUKARYOTIC PROTEASOMES. IN THE PRESENCE OF ATP, CLPA OR CLPX SUBUNITS INTERACT WITH THE CLPP STRUCTURE TO FORM A 750 kDa COMPLEX THAT EXHIBITS ATP-DEPENDENT PROTEOLYTIC ACTIVITY.

SUBCELLULAR LOCATION: Cytoplasmic.

INDUCTION: By heat shock.

SIMILARITY: BELONGS TO PEPTIDASE FAMILY S14.

Copyright

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).

Cross-references

1	1							
	J05534; AAA23588.1;	[EMBL / GenBank / DDBJ]						
	45000150: 44 <i>0</i> 72540.1:	[CoDingSequence]						
:	AE000150; AAC/3540.1;	[EMBL / GenBank / DDBJ]						
		[CoDingSequence]						
	U82664; AAB40193.1;	[<u>EMBL</u> / <u>GenBank</u> / <u>DDBJ]</u> [<u>CoDingSequence</u>]						
EMBL	AE016756; AAN79031.1;	[EMBL / GenBank / DDBJ]						
CMDL		[CoDingSequence]						
	AE005223; AAG54787.1;	[EMBL / GenBank / DDBJ]						
		[CoDingSequence]						
	AP002551; BAB33914.1;	[EMBL / GenBank / DDBJ]						
	N 002331, BNB33314.1,	[CoDingSequence]						
	AE015070; AAN42038.1;	[EMBL / GenBank / DDBJ]						
	ALT_INIT.	[CoDingSequence]						
PIR	B36575; B36575.							
PDB	1TYF; 17-JUN-98.[<u>ExPASy</u> / <u>RCSB</u>]							
MEROPS	514.00 <u>1</u> ;							
SWISS-2DPAGE	<u>P19245</u> ; COLI.							
ECO2DBASE	F021.5; 6TH EDITION.							
EcoGene	<u>EG10158</u> ; clpP.							
EcoCyc	<u>EG10158</u> ; clpP.							
CMR	<u>P19245</u> ; B0437.							
HAMAP	MF_00444; -; 1.							
InterPro	IPRO01907; CLP_protease.							
THIEFFIO	<u>Graphical view of domain st</u>	tructure.						
Pfam	<u>PF00574</u> ; CLP_protease; 1.							
PRINTS	PROO127; CLPPROTEASEP.							
TIGRFAMS	<u>TIGR00493</u> ; clpP; 1.							
PROSITE	PS00381; CLP_PROTEASE_	_SER; 1.						
ROSITE	PS00382; CLP_PROTEASE	_HIS; 1.						
ProDom	[Domain structure / List of	seq. sharing at least 1 domain].						
BLOCKS	P19245.							
ProtoNet	<u>P19245</u> .							

ProtoMap	P19245.
PRESAGE	<u>P19245</u> .
DIP	P19245.
ModBase	P1924 <u>5</u> .

Keywords

Hydrolase; Serine protease; Heat shock; 3D-structure; Complete proteome.

Features

reatures					
Key	From	То	Length	Description	
ACT_SITE	111	111		PROBABLE.	
ACT_SITE	136	136		PROBABLE.	
TURN	29	32	4		
HELIX	33	39	7		
TURN	40	41	2		
STRAND	42	46	5		
STRAND	49	49	1		
HELIX	51	67	17 .		
STRAND	73	79	7		
STRAND	82	82	1		
HELIX	84	96	13		
STRAND	101	110	10		The second secon
TURN	111	111	1		August Market Market Strategy
HELIX	112	118	7		
TURN	119	119	1		
TURN	122	123	2		
STRAND	125	127	3		
TURN	129	130	2		
STRAND	132	135	4		
STRAND	139	141	3		
STRAND	144	145	2		
HELIX	146	171	26		
HELIX	175	182	88		
STRAND	186	189	4		

Feature table viewer

HELIX	190	196	7	
TURN	197	197	1	
STRAND	201	202	2	

Sequence information Length: 207 Molecular weight: CRC64: A7843D036C8CB3C2 [This is a 23186 Da AA checksum on the sequence 20 50 30 40 10 MSYSGERDNF APHMALVPMV IEQTSRGERS FDIYSRLLKE RVIFLTGQVE DHMANLIVAQ 70 80 90 100 110 120 MLFLEAENPE KDIYLYINSP GGVITAGMSI YDTMOFIKPD VSTICMGOAA SMGAFLLTAG 130 140 150 160 170 180 AKGKRFCLPN SRVMIHOPLG GYOGOATDIE IHAREILKVK GRMNELMALH TGOSLEQIER 190 200 P19245 in DTERDRFLSA PEAVEYGLVD SILTHRN FASTA format

<u>View entry in original Swiss-Prot format</u> <u>View entry in raw text format (no links)</u> Report form for errors/updates in this Swiss-Prot entry

BLAST submission on ExPASy/SIB or at NCBI (USA)

Sequence analysis tools: <u>ProtParam</u>, <u>ProtScale</u>, <u>Compute pI/Mw</u>, <u>PeptideMass</u>, <u>PeptideCutter</u>, <u>Dotlet</u> (Java)

ScanProsite, MotifScan

Search the <u>SWISS-MODEL</u> <u>Repository</u>


```
ID
     ECCLPPA
                 standard; DNA; PRO; 1236 BP.
XX
AC
     J05534;
XX
SV
     J05534.1
XX
     28-JUN-1990 (Rel. 24, Created)
DТ
DT
     04-MAR-2000 (Rel. 63, Last updated, Version 4)
XX
DE
     Escherichia coli ATP-dependent clp protease proteolytic component (clpP)
DΕ
     gene, complete cds.
XX
KW
     ATP-dependant protease.
XX
OS
     Escherichia coli
OC
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriaceae;
OC
     Escherichia.
XX
RN
     [1]
     1-1236
RP
RX
     MEDLINE; 90324245.
RA
     Maurizi M.R., Clark W.P., Katayama Y., Rudikoff S., Pumphrey J., Bowers B.,
RA
RT
     "Sequence and structure of ClpP, the proteolytic component of the
RT
     ATP-dependent Clp protease of Escherichia coli";
RL
     J. Biol. Chem. 265:12536-12545(1990).
XX
DR
     GOA; P19245; P19245.
DR
     GOA; P22257; P22257.
DR
     SWISS-PROT; P19245; CLPP ECOLI.
DR
     SWISS-PROT; P22257; TIG ECOLI.
XX
CC
     Draft entry and computer-readable sequence for [1] kindly submitted
CC
     by S.Gottesman, 23-APR-1990.
XX
FΗ
     Key
                      Location/Qualifiers
FΗ
FT
     source
                      1..1236
FT
                      /db xref="taxon:562"
FT
                      /organism="Escherichia coli"
FT
     CDS
                      <1..133
FT
                      /codon start=2
FT
                      /db xref="GOA:P22257"
FT
                      /db xref="SWISS-PROT:P22257"
FT
                      /note="ORF"
FT
                      /transl table=11
FT
                      /protein id="AAA23587.1"
FT
                      /translation="KNKELMDNMRNVALEEOAVEAVLAKAKVTEKETTFNELMNOOA"
FT
     misc_signal
FT
                      /note="transcription termination signal"
FT
     -35 signal
                      244..249
FT
     -10 signal
                      267..272
FT
     mRNA
                      279..>1236
FT
                      /note="clpP mRNA"
FT
     RBS
                      367..372
FT
                      /note="ribosome binding site (put.); putative"
FΤ
     CDS
                      378..1001
FT
                      /codon start=1
FT
                      /db xref="GOA:P19245"
FT
                      /db xref="SWISS-PROT:P19245"
FT
                      /note="ATP-dependent protease (clpP)"
FT
                      /transl_table=11
FT
                      /protein id="AAA23588.1"
FT
                      translation="MSYSGERDNFAPHMALVPMVIEQTSRGERSFDIYSRLLKERVIFL/
FT
                      TGQVEDHMANLIVAQMLFLEAENPEKDIYLYINSPGGVITAGMSIYDTMQFIKPDVSTI
```

FT FT XX					RVMIHQPLGGY(PEAVEYGLVDS)	QGQATDIEIHAR: LTHRN"	EILKVKGRM
SQ	Sequence 1236	BP: 329	A: 291 C: 3	318 G: 298 S	r: 0 other:		
22	caaaaacaaa ga					aggetgttga	60
	agctgtactg gc						120
	ccagcaggcg ta						180
	aggtggtggg ct						240
	gtgttagcgt aa	_	_			-	300
	acaggactag ct						360
	ttatccagga ga						420
	cgctggtgcc ga						480
	ctcgtctact ta						540
	acctgattgt gg						600
	tgtacattaa ct						660
	agtttatcaa gc	ctgatgtc	agcaccatct	gtatgggcca	ggcggcctcg	atgggcgctt	720
	tcttgctgac cg						780
	ttcaccaacc gt						840
	aaattctgaa ag	gttaaaggg	cgcatgaatg	aacttatggc	gcttcatacg	ggtcaatcat	900
	tagaacagat tg						960
	aatacggtct gg	stcgattcg	attctgaccc	atcgtaattg	atgccagagg	cgcaactgtg	1020
	ccgctatact ta						1080
	gcgtcgtcgt gt	gcggcaca	aagaacaaag	aagaggtttt	gacccatgac	agataaacgc	1140
	aaagatggct ca	ggcaaatt	gctgtattgc	tctttttgcg	gcaaaagcca	gcatgaagtg	1200
	cgcaagctga tt	gccggtcc	atccgtgtat	atctgc			1236
//							

<u> </u>	xPASy I	-lome page	Sifte	<u> </u>	Sea	rch Exf	ASy	<u>Conta</u>	ct us	Swiss-	<u>Prot</u>
	Hosted	by NCSC	US Mi	rror s	ites:	Canada	<u>China</u>	Korea	Taiwar	1 USA	
	Search[Swiss-Prot/∖	rEMBL		▼ :	for			Go	Clear	

NiceProt View of Swiss-Prot: Q60107

Printer-friendly view

Quick BlastP search

[General] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Note: most headings are clickable, even if they don't appear as links. They link to the <u>user manual</u> or other documents.

General information about the entry

Entry name	CLPP_YEREN
Primary accession number	Q60107
Secondary accession numbers	None
Entered in Swiss-Prot in	Release 35, November 1997
Sequence was last modified in	Release 35, November 1997
Annotations were last modified in	Release 41, February 2003

Name and origin of the protein	
Protein name	ATP-dependent Clp protease proteolytic subunit
Synonyms	EC 3.4.21.92 Endopeptidase Clp
Gene name	CLPP
From	Yersinia enterocolitica [TaxID: 630]
Taxonomy	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Yersinia.

References

[1] SEQUENCE FROM NUCLEIC ACID.

STRAIN=8081C / Serotype 0:8;

MEDLINE=98043541; PubMed=9383193; [<u>NCBI</u>, <u>ExPASy</u>, <u>EBI</u>, <u>Israel</u>, Japan]

Pederson K.J., Carlson S., Pierson D.E.;

"The ClpP protein, a subunit of the Clp protease, modulates ail gene expression in Yersinia enterocolitica.";

Mol. Microbiol. 26:99-107(1997).

Comments

FUNCTION: Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity).

CATALYTIC ACTIVITY: Hydrolysis of proteins to small peptides in the presence of ATP and magnesium. Alpha-casein is the usual test substrate. In the absence of ATP, only oligopeptides shorter than five residues are

cleaved (such as succinyl-Leu-Tyr-|-NHMEC; and Leu-Tyr-Leu-|-Tyr-Trp, in which the cleavage of the -Tyr-|-Leu- and -Tyr-|-Trp- bond also occurs).

SUBCELLULAR LOCATION: Cytoplasmic (By similarity). SIMILARITY: BELONGS TO PEPTIDASE FAMILY S14.

Copyright

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch/).

CAADI	U55059; AAC45782.1; [EMBL / GenBank / DDBJ]				
EMBL	[CoDingSequence]				
HSSP	<u>P19245</u> ; 1TYF. [<u>HSSP ENTRY</u> / <u>PDB</u>]				
MEROPS	<u>514.001</u> ;				
HAMAP	<u>MF_00444</u> ; -; 1.				
InterPro	<u>IPRO01907</u> ; CLP_protease.				
THIELELO	Graphical view of domain structure.				
Pfam	PF00574; CLP_protease; 1.				
PRINTS	PROO127; CLPPROTEASEP.				
TIGRFAMs	<u>TIGR00493</u> ; clpP; 1.				
PROSITE	PS00382; CLP_PROTEASE_HIS; 1.				
PROSTIE	PS00381; CLP_PROTEASE_SER; 1.				
ProDom	[Domain structure / List of seq. sharing at least 1 domain].				
BLOCKS	<u>Q60107</u> .				
ProtoNet	Q60107.				
ProtoMap	Q60107.				
PRESAGE	Q60107.				
DIP	Q60107.				
ModBase	Q601 <u>07</u> .				
SWISS-2DPA	GE Get region on 2D PAGE.				

Keywords

Hydrolase; Serine protease.

Features

Key From To Length Description

ACT_SITE 111 111 BY SIMILARITY.

ACT_SITE 136 136 BY SIMILARITY.

Feature table viewer

FASTA format

Sequence information

Length: 207 Molecular weight: CRC64: 865E0F6DB3DA07A1 [This is a checksum on the sequence]

MSYSGERDOF APNMALVPMV VEOTSRGERS YDIFSRLLKE RIIFLTGOVE DHMANLITAO 100 70 80 90 110 MLFLEAENPE KDIFLYINSP GGVITAGMSI YDTMOFIKPD VSTICMGOAC SMGAFLLTAG 130 140 150 160 170 AKGKRFCLPN SRVMIHQPLG GFQGQATDIE IHAKEILKVK SRMNELMAKH TGKSLEEIER 190 200 Q60107 in DTERDRFLSA DEAVEYGLVD SVFTRRD

View entry in original Swiss-Prot format
View entry in raw text format (no links)
Report form for errors/updates in this Swiss-Prot entry

BLAST

BLAST submission on ExPASy/SIB or at NCBI (USA)

Sequence analysis tools: <u>ProtParam</u>, <u>ProtScale</u>, <u>Compute pI/Mw</u>, <u>PeptideMass</u>, <u>PeptideCutter</u>, <u>Dotlet</u> (Java)

ScanProsite, MotifScan

Search the <u>SWISS-MODEL</u> <u>Repository</u>

ExPASy Home page Site Map Search ExPASy Contact us Swiss-Prot

Hosted by NCSC US Mirror sites: Canada China Korea Taiwan USA

A	ExPASy Home page	Site Map	Search	1 ExP	ASy	Conta	ct us	Swiss-	Prot
	Hosted by NCSC U	S Mirror s	ites: <u>Ca</u>	nada C	China	Korea	Taiwa	n USA	
	Search Swiss-Prot/TrE	MBL	▼ for				Go	Clear	

NiceProt View of Swiss-Prot: P19245

Printer-friendly view

Quick BlastP search

[General] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Note: most headings are clickable, even if they don't appear as links. They link to the <u>user manual</u> or other documents.

General information about the entry