Welcome to

Introduction to Machine Learning!

Coffee Time

Course Final Project Intro.

替代期末考试的大实验:申请报告要求

- A4纸1~2页即可,不用过于冗杂。内容必须包括:
- 项目题目
- 一、问题的背景和重要性
- •二、项目设计,包括:
 - (1) 实验的内容;
 - (2) 需要解决的核心问题;
 - (3) 计划用什么机器学习方法来解决,为什么考虑用该方法;

申请报告要求 (续)

- 三、实验数据与方法:
 - (1) 计划采用什么数据进行训练、测试?
 - (2) 数据如何采集(如果有公开的数据集,给出数据集简要介绍)?数据规模?
 - (3) 实验方法(例如训练、验证、测试数据集的划分;是否用k-fold cross validation等)?
- 四、如何评价?例如:
 - 用什么指标来评价实验效果?
 - 预期效果达到什么程度?

申请报告要求 (续)

- 五、其他需要说明的问题
 - •包括联系方式(姓名、学号、邮件、电话)

• 特别注意:

- •请不要直接使用其他课程的大作业作为本课程的大实验题目,如果发现,会取消该次大实验成绩。
- 如果大实验的内容和你参与的实验室(或SRT)项目相关,请在申请报告中中注明,并简要说说此次大实验与实验室已有项目相比做了哪些改进。

大实验室选题样例

No.	Topic
1	基于SVM 和Autoencoder 的字符识别
2	航班订票情况预测
3	基于CUDA 的卷积神经网络
4	Global Illumination with Radiance Regression Functions
5	Face Detection and Face Analysis Pipeline based on CNN
6	利用机器学习实现自动影视分割系统
7	基于深度学习的人脸表情识别
8	Online Active Learning for Structured Prediction in Large Scale Networks
9	计算机作曲
10	DOTA胜负预测
11	世界杯结果预测

选题报告申请样例

• 样例一: 基于深度学习的人脸表情识别

• 样例二: 人工音乐作曲

• 样例三: 微博上的信息传播预测

Advanced Topics in Machine Learning (I)

Topic 9: Ensemble learning (集成学习)

Min Zhang

z-m@tsinghua.edu.cn

Background

"Two heads are better than one." "三个臭皮匠,顶一个诸葛亮"

• Integrate results of multiple learning approaches to improve the performance

Ensemble learning

1. Introduction to ensemble learning

Two concepts

- Strong learner: learning algorithm with high accuracy
- Weak learner: performance on any training set is slightly better than chance prediction

error =
$$\frac{1}{2}$$
 - γ

Can we improve a weak learner to a strong learner?

Introduction to ensemble learning

- INTUITION: Combining Predictions of an ensemble is more accurate than a single classifier
- Justification: (Several reasons)
 - Easy to find quite correct "rules of thumb" however hard to find single highly accurate prediction rule.
 - If the training examples are few and the hypothesis space is large then there are several equally accurate classifiers.
 - Hypothesis space does not contain the true function, but it has several good approximations.
 - Exhaustive global search in the hypothesis space is expensive so we can combine the predictions of several locally accurate classifiers.

Ensemble learning: basic idea

- Sometimes a single classifier (e.g. decision tree, neural network, ...) won't perform well, but <u>a weighted combination</u> of them will.
- Each learner in the <u>pool</u> has its own weight
- When ask to predict the label for a new example
 - Each expert makes its own prediction
 - Then the master algorithm combine them using the weights for its own prediction (i.e. the "official" one)

2. Weighted Majority Algorithm (加权多数算法)

Weighted majority algorithm - Prediction

Assume: binary output {0,1}

Weighted majority algorithm - Training

 a_i is the ith pred. algorithm in pool A,; each alg. is arbitrary function from X to $\{0,1\}$ w_i is the weight associates with a_i

- $\forall i$, $w_i \leftarrow 1$
- For each training example (or trail) $\langle x, c(x) \rangle$
 - Set $q_0 \leftarrow q_1 \leftarrow 0$
 - For each algorithm a_i
 - If $a_i(x)=0$, then $q_0 \leftarrow q_0 + w_i$, else $q_1 \leftarrow q_1 + w_i$
 - If $q_0 > q_1$, then predict c(x)=0, else predict c(x)=1 (case for $q_0 = q_1$ is arbitrary)
 - For each $a_i \in A$
 - If $a_i(x) \neq c(x)$, then $w_i \leftarrow \beta w_i (\beta \in [0,1))$ is the penalty coefficient

 $\beta = 0$ yields Halving algorithm over A

Weighted majority (WM) algorithm: mistake bound

- Let $W_t = \text{sum of weights before trail } t \ (W_1 = n, \beta = 1/2)$
- On trail *t* such that WM makes a mistake, the total weight of algorithms with the mistake is:

$$W_t^{mis} = \sum_{a_i(x_t) \neq c(x_t)} w_i \ge W_t/2$$

- So $W_{t+1} = W_t W_t^{mis}/2 \le 3W_t/4$
- After seeing all samples (sample set S), M = total number of mistakes $W_{|S|+1} \le W_1(3/4)^M = n \ (3/4)^M$
- Let $a_{\text{opt}} \subseteq A$ be the alg. that makes fewest error on arbitrary sequence S of examples; k = number of mistakes; then the final weight of a_{opt} is $(1/2)^k$
- $(1/2)^k \le n (3/4)^M$, yielding $M \le \frac{k + \log_2 n}{-\log_2(3/4)} \le 2.4 (k + \log_2 n)$

Weighted majority (WM) algorithm: mistake bound (cont.)

• For any arbitrary sequence of samples:

$$M \le 2.4 (k + \log_2 n)$$

- Other results:
 - Bounds hold for general values of $0 \le \beta < 1$ (Pls analyze by yourself.)
 - Better bounds hold for many sophisticate algorithms, but only better by a constant value (worst case lower bound is $\Omega(k+\log n)$)
 - Get bounds for real-valued labels and predicts
 - Can track shifting concept (where best alg. can suddenly change in *S*)
 - Don't make any weight too low (compared to other weights) (i.e. don't overcommit)

3. Bagging

If we have only one weak learner,

how to improve the performance by ensemble?

Bagging: background

- Bagging = \underline{B} ootstrap \underline{agg} regat \underline{ing}
- Bootstrap: proposed by Bradley Efron in 1993
 - Professor of Statistics
 - Stanford University
 - Bootstrap, Biostatistics, Statistical methods in Astrophysics
- "I like working on applied and theoretical problems at the same time and one thing nice about statistics is that you can be useful in a wide variety of areas. So my current applications include biostatistics and also astrophysical applications. The surprising thing is that the methods used are similar in both areas. I gave a talk called Astrophysics and Biostatistics—the odd couple at Penn State that made this point."

Bagging: background

- Bagging = \underline{B} ootstrap \underline{agg} regat \underline{ing}
- Bootstrap: proposed by Bradley Efron in 1993
 - Professor of Statistics
 - Stanford University
 - Bootstrap, Biostatistics, Statistical methods in Astrophysics
- Bootstrap sampling (拔靴法/自举法采样)
 - Given a set D containing m training examples
 - Create D_i by drawn m examples uniformly at random with replacement from D (drawn with replacement, 取出放回,有放回采样)
 - ullet Expect D_i to omit some examples from D

Bagging: algorithm

- Bagging: proposed by Breiman in 1994
 - Professor Emeritus of Statistics, Berkeley
 - Member of American Academy of Science
- Bagging algorithm

Can predict continuous output

Leo Breiman

You can also use different combining strategy on your problem.

Bagging

Bagging application example

Data set: Rousseeuw and Leroy (1986), concerning ozone levels vs. temperature.

100 boostrap samples. Gray lines: first 10 predictor; red line: mean

How Many Bootstrap Samples?

Table 5.1								
Bagged Missclassification Rates (%)								
No. Bootstrap Replicates	Missclassification Rate							
10	21.8							
25	19.5							
50	19.4							
100	19.4							
GREET TO STREET THE STREET	management of the terms							

Breiman "Bagging Predictors" Berkeley Statistics Department TR#421, 1994

Bagging: Results (cont.)

Given sample S of labeled data,
Breiman did the following 100
times and reported average:

Approach I:

- 1. Divide S randomly into test set T(10%) and training set D(90%)
- 2. Learn decision tree from D, let e_s be its error rate on T

Approach II:

Do 50 times: create bootstrap set D_i , learn decision tree, let e_B be the error of a majority vote of trees on T, so ensemble size = 50)

Table 1 Misso	Rates	(Perc	ent)		
Data Set	$ar{e}_S$	$ar{e}_B$		crea	
waveform	29.0	19.4		33%	-100000
heart	10.0	5.3		47%	
breast cancer	6.0	4.2		30%	
ionosphere	11.2	8.6		23%	
diabetes	23.4	18.8		20%	
glass	32.0	24.9		22%	
soybean	14.5	10.6		27%	

Breiman "Bagging Predictors" Berkeley Statistics Department TR#421, 1994

Bagging: Results (cont.)

• Same experiment, but use a nearest neighbor classifier (Euclidean distance)

Results

Data Set	$ar{e}_S$	$ar{e}_B$	Decreas	se
waveform	26.1	26.1	0%	
heart	6.3	6.3	0%	
breast cancer	4.9	4.9	0%	
ionosphere	35.7	35.7	0%	
diabetes	16.4	16.4	0%	
glass	16.4	16.4	0%	

• What happened? Why?

Bagging: special points

- Bagging helps when learner is "unstable"
 - "The vital element is the instability of the prediction method"
 - E.g. Decision tree, neural network
- Why?
 - Unstable: small change in training set cause large change in hypothesis produced
 - "If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy." (Breiman 1996)

Bagging: special points (cont.)

- Each base classifier is trained on less data
 - Only about 63.2% of the data points are in any bootstrap sample
- However the final model has seen all the data
 - On average a point will be in > 50% of the bootstrap samples

Recall

- Weighted majority algorithm
 - Same data set, different learning algorithms
 - Generate multiple models, and weighted combination
- Bagging
 - One data set, one weak learner
 - Generate multiple training samples to train multi-models, and ensemble

Is there an ensemble algorithm that takes into account the differences of the data in learning?

Boosting

4. Boosting

Boosting background

Comes from PAC-Learning Model

(PAC-learning will be introduced in the next week)

- Valiant Leslie G. proposed PAC in 1984
 - Harvard University
 - Member of America Academy of Science
 - A world leader in theoretical computer science
 - 2010 Turing Award

Boosting: basic idea

- "Learn from failures"
- Basic idea:
 - Assign a weight to each example
 - T iterations, increase weights of misclassified examples after each iteration focus more on "hard" ones

Set of weighted instances train classifier

Classifier Ct adjust weights

Boosting background

- [Kearns&Valiant'88]

 Open problem of finding a boosting algorithm
- [Schapire'89], [Freund'90]

 First polynomial-time boosting algorithms
- [Drucker, Schapire & Simard '92]
 First experiments using boosting
- [Freund & Schapire '95]
 - Introduced AdaBoost algorithm
 - Strong practical advantages over previous boosting algorithms
- Experiments using AdaBoost, continuing development of theory & algorithms (using not-so-weak learners, etc)

AdaBoost

- Initially assign an equal weight 1/N to each example;
- For t = 1, 2, ..., T Do
 - Generate a hypothesis C_t;
 - Compute the error rate E_t : $E_t = \text{sum of the weights of all misclassified samples;}$
 - $\alpha_t = \frac{1}{2} \ln \frac{1 \epsilon_t}{\epsilon_t}$
 - Update the weight of <u>each example</u>:

```
correctly classified: W_{\text{new}} = W_{\text{old}} * e^{-\alpha_t}
misclassified: W_{\text{new}} = W_{\text{old}} * e^{\alpha_t}
```

- Normalize weights (the sum of weights=1);
- Combine all C_t with the voting weight of α_t

AdaBoost.M1

Vs. AdaBoost

- Initially assign an equal weight 1/N to each example;
- For t = 1, 2, ..., T Do
 - Generate a hypothesis C_t;
 - Compute the error rate E_t :

 E_t = sum of the weights of all misclassified samples;

$$\beta_t = E_t / (1 - E_t)$$

$$\alpha_t = 1/2 \ln ((1 - E_t)/E_t)$$

• Update the weight of <u>each example</u>:

correctly classified:
$$W_{\text{new}} = W_{\text{old}} * \beta_t$$

misclassified:
$$W_{\text{new}} = W_{\text{old}}$$

$$W_{\text{new}} = W_{\text{old}} * e^{-\alpha_t}$$

$$W_{\text{new}} = W_{\text{old}} * e^{\alpha_t}$$

- Normalize weights (the sum of weights=1);
- Combine all C_t with the voting weight of $log[1/\beta_t]$

 α_t

Boosting

T1	T2	T3	T4	Ob
1	0	1	1	1
1	0	1	1	1
1	1	1	1	1
1	1	1	0	0
1	0	1	0	0
1	1	0	1	0
1	0	0	1	0
1	1	0	1	0

	Ada	aBoc	ost ex	kample ((1)
$\ T1$	T2	T3	T4	Ob	Weight
1	0	1	1	1	
1	0	1	1	1	
1	1	1	1	1	
1	1	1	0	0	
1	0	1	0	0	
1	1	0	1	0	
$\ 1\ $	0	0	1	0	
1	1	0	1	0	
		Siz	ze of	rej	presents the degree of the weight.

						hypothesis
T1	T2	T3	T4	Ob	Weight	if T1=1
						then Ob=0
						else Ob=1
1	0	1	1	1		<u>O</u>
1	0	1	1	1		<u>O</u>
1	1	1	1	1		<u>O</u>
1	1	1	0	0		0
1	0	1	0	0		0
1	1	0	1	0		0
1	0	0	1	0		0
1	1	0	1	0		0
		Siz	ze of	re	nresents the	degree of the weight.

Size of represents the degree of the weight.

	hypothesis							
T1	T2	Т3	T4	Ob	Weight	if T1=1 then Ob=0 else Ob=1	New Weight	
1	0	1	1	1		<u>O</u>		
1	0	1	1	1		<u>O</u>		
1	1	1	1	1		<u>O</u>		
1	1	1	0	0		0		
1	0	1	0	0		0		
1	1	0	1	0		0		
1	0	0	1	0		0		
1	1	0	1	0		0		
		Siz	ze of	re	presents the	degree of the weight		

--- -- represents the degree of the weight.

Anothe	er hyp	othesis
	/	

T1 T2 T3 T4 Ob Weight

1 0 1 1 1

1 1 1 1 1

1 1 1 0 0

1 0 1 0 0

1 1 0 1 0

1 0 0 1 0

1 1 0 1 0

Another	hypothesis
---------	------------

T1	T2	T3	T4	Ob	Weight	if <mark>T3</mark> =1 then Ob=1 else Ob=0
1	0	1	1	1	6	1
1	0	1	1	1		1
1	1	1	1	1		1
1	1	1	0	0		<u>1</u>
1	0	1	0	0		<u>1</u>
1	1	0	1	0		0
1	0	0	1	0		0
1	1	0	1	0		0

						Another hypothesis	`
$\ T1$	T2	T3	T4	Ob	Weight	if <u>T3</u> =1	New
						then Ob=1	Weight
						else Ob=0	
1	0	1	1	1		1	
1	0	1	1	1		1	
1	1	1	1	1		1	
1	1	1	0	0		<u>1</u>	
1	0	1	0	0		<u>1</u>	
1	1	0	1	0		0	
1	0	0	1	0		0	
1	1	0	1	0		0	
	1	0	1	0	—(s	0	,

Another hypothesis

T1 T2 T3 T4 Ob Weight

1 0 1 1 1

1 0 1 1 1

1 1 1 1 1

1 1 1 0 0

1 0 1 0 0

1 1 0 1 0

1 0 0 1 0

1 1 0 1 0

T1	T2	T3	T4	Ob	Weight	if <mark>T4</mark> =1 then Ob=1 else Ob=0
1	0	1	1	1		1
1	0	1	1	1		1
1	1	1	1	1		1
1	1	1	0	0		0
1	0	1	0	0		0
1	1	0	1	0		<u>1</u>
1	0	0	1	0		<u>1</u>
1	1	0	1	0		<u>1</u>

						Another hypothesis	`
$\ T1$	T2	T3	T4	Ob	Weight	if <u>T4</u> =1	New
						then Ob=1	Weight
						else Ob=0	
1	0	1	1	1		1	
1	0	1	1	1		1	
1	1	1	1	1		1	
1	1	1	0	0		0	
1	0	1	0	0		0	
1	1	0	1	0		<u>1</u>	
1	0	0	1	0		<u>1</u>	
1	1	0	1	0		<u>1</u>	
_	·	·					

T1	T2	2 T.	3 T4	4 Ob		Hypothese if T3=1 then Ob=1 else Ob=0	if T4=1 then Ob=1	Simple Majority Voting
$\begin{vmatrix} -1 \\ 1 \end{vmatrix}$	0	1	1	1	0	1	1	1
1	0	1	1	1	0	1	1	1
1	1	1	1	1	0	1	1	1
1	1	1	0	0	0	1	0	0
1	0	1	0	0	0	1	0	0
1	1	0	1	0	0	0	1	0
1	0	0	1	0	0	0	1	0
1	1	0	1	0	0	0	1	0

Original Training set: Equal Weights to all training samples

-- from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

ROUND 1

ROUND 2

ROUND 3

$$\varepsilon_3$$
=0.14

$$\alpha_3$$
=0.92

AdaBoost example (2): final hypothesis

introduction to machine learning: ensemble learning

Practical Advantages of AdaBoost

- (quite) Fast
- Simple + easy to program
- Only a single parameter to tune (*T*)
- No prior knowledge
- Flexible: can be combined with any classifier (neural net, C4.5, ...)
- Provably effective (assuming weak learner)
 - Shift in mind set: goal now is merely to find hypotheses that are better than random guessing

AdaBoost caveats

- Performance depends on <u>data</u> & <u>weak learner</u>
- AdaBoost can <u>fail</u> if
 - Weak hypothesis too complex (overfitting)
 - Weak hypothesis too weak ($\alpha_t \rightarrow 0$ too quickly),
 - Underfitting
 - Low margins → overfitting
- Empirically, AdaBoost seems susceptible to noise

5. Discussions

Bagging vs. Boosting

- Training set
 - Bagging: Randomly selected samples, independent
 - Boosting: Decided by the previous one, dependent
- Prediction function
 - Bagging: no weights; easier to parallelize
 - Boosting: weights grow exponentially; sequential production

Bagging vs. Boosting (cont.)

- Performance
 - In practice, bagging almost always helps.
 - On average, boosting helps more than bagging, but it is also more common for boosting to hurt performance
 - Bagging doesn't work so well with stable models. Boosting might still help.
 - Boosting might hurt performance on noisy datasets. Bagging doesn't have this problem

Reweighting vs. Resampling

- Example weights might be harder to deal with
 - Some learning methods can't use weights on examples
 - Many common packages don't support weighs on the train
- We can resample instead:
 - Draw a bootstrap sample from the data with the probability of drawing each example is proportional to it's weight
- Reweighting usually works better but
 - resampling is easier to implement

Bagging & boosting applications

- Content filtering in the Internet
- Image recognition
- Handwritten recognition
- Speech recognition
- Text categorization
- •

A little bit more...

- Research topics
 - A uniformed theoretical framework for bagging and boosting?
 - Overfitting analyses on boosting
 - Other ensemble learning approaches?
- If you are interested in more details
 - Mistake bounds of boosting
 - Boosting and the largest margin
- XGBoost

Overview

- Introduction to ensemble learning
- Approaches
 - Weighted majority algorithm
 - Bagging
 - Boostrap sampling
 - Boosting
- Further discussion
 - Bagging vs. boosting
 - Reweighting vs. resampling

References

- L. Breiman, "Bagging predictors", Machine Learning, 24(2):123-140, 1996.
- www.boosting.org
- T.Hastie, R.Tibshirani, J.Friedman. "The Elements of Statistical Learning Data Mining, Inference, Prediction." Springer Verlag.
- R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola, editors, *Advanced Lectures on Machine Learning*, LNCS, pages 119-184. Springer, 2003. In press. Copyright by Springer Verlag.
- R.E. Schapire. <u>A brief introduction to boosting</u>. In *Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence*, 1999.
- R. E. Schapire. <u>The Boosting Approach to Machine Learning: An Overview</u>. In *MSRIWorkshop on Nonlinear Estimation and Classification*, Berkeley, CA, Mar. 2001.

The End!