Elementos de conectividad

VLANs

Redes de área local virtuales

- Una VLAN es una agrupación lógica de dispositivos que comparten el mismo dominio de difusión dentro de una misma red local
 - Aumenta el desempeño al reducir el tráfico de difusión en la red local
 - Aumenta la seguridad al limitar las posibilidades de comunicación entre dispositivos
 - Facilita la implementación de políticas de administración

Red local virtual

 Los usuarios son puestos en dominios de difusión con base en requerimientos organizacionales, independientemente de su localización física.

VLAN desde un punto de vista lógico

• Un enrutador o conmutador capa 3 controla los difusión y realizan la comunicación entre VLAN´s.

Criterios de membresía

VLAN por puerto

VLAN por MAC

VLAN por protocolo

VLAN por subred

VLAN autenticadas

VLAN por infraestructura

VLAN basada en servicios

IEEE 802.1p/Q

- Permite extender las VLANs entre conmutadores.
- Enlaces entre conmutadores (troncales) deben poder identificar a qué VLAN pertenece una trama determinada
- Define un formato de trama para etiquetar las tramas ("Q")
- Se extendió para poder ofrecer tres niveles de prioridad ("p")

Formato de trama IEEE 802.1p/Q

Procesamiento de tramas 802.1Q

VLANs por puerto en conmutadores Cisco

	rh_cc202#sho vlan Name	Status	Ports
1	default	active	Gi0/2
2	Alumnos	active	FaO/1, FaO/2, FaO/3, FaO/4, FaO/5, FaO/6, FaO/7, FaO/8,
			Fa0/9, Fa0/10, Fa0/11, Fa0/12,
			Fa0/13, Fa0/14, Fa0/15, Fa0/16,
			Fa0/17, Fa0/18, Fa0/19, Fa0/20,
			Fa0/21, Fa0/22, Fa0/23, Fa0/24,
			Fa0/25, Fa0/26, Fa0/27, Fa0/28,
			Fa0/29, Fa0/30, Fa0/31, Fa0/32
3	Administrativos	active	m proces in process in process
4	Academicos	active	Fa0/33, Fa0/34, Fa0/39
5	Laboratorios	active	Fa0/35, Fa0/36, Fa0/37, Fa0/38,
			Fa0/41, Fa0/42, Fa0/43, Fa0/44, Fa0/45, Fa0/46, Fa0/47, Fa0/48
6	CComputo	active	146/13, 146/10, 146/11, 146/10
7	ServŠeguros	active	
8	ServInstitucionales	active	
9_	ServPublicos	active	00 Description
10	Internet2	active	Fa0/40
100	rh-internet	active	
101	rhst	active	
102	enlaces-sw	active	

VLANs, dir MAC y # de puerto

```
3548rh_cc202>en
Password:
3548rh_cc202#
3548rh cc202#
3548rh cc202#sho mac-address-table
Dynamic Address Count:
                                         573
Secure Address Count:
Static Address (User-defined) Count:
                                         0
System Self Address Count:
                                         75
Total MAC addresses:
                                         648
Maximum MAC addresses:
                                        8192
Non-static Address Table:
Destination Address
                      Address Type
                                           Destination Port
                                    ULAN
0000.0c07.ac01
                                           GigabitEthernet0/1
                      Dynamic
0000.0c07.ac02
                      Dynamic
                                           GigabitEthernet0/1
0000.0c07.ac03
                      Dynamic
                                           GigabitEthernet0/1
0000.0c07.ac04
                      Dynamic
                                           GigabitEthernet0/1
0000.0c07.ac05
                      Dynamic
                                           GigabitEthernet0/1
0000.0c07.ac07
                      Dynamic
                                           GigabitEthernet0/1
0000.0c07.ac08
                      Dynamic
                                           GigabitEthernet0/1
                                           GigabitEthernet0/1
0000.0cff.d77a
                      Dunamic
0000.210f.50f5
                                           GigabitEthernet0/1
                      Dynamic
0000.8102.379c
                      Dynamic
                                           GigabitEthernet0/1
0000.8102.3a5f
                                     120
                      Dunamic
                                           GigabitEthernet0/1
```

Data Center Bridging Group

• 802.1Qau

 Protocolos y procedimientos para control de congestión en flujos de larga duración. El conmutador puede enviar señal de congestión potencial para que la fuente reduzca su tasa antes de perder tramas

• 802.1Qaz

 Distribuye ancho de banda entre distintas clases de tráfico de forma work conserving

• 802.1Qbb

 Control de flujo, similar al mecanismo PAUSE, pero para prioridades individuales de tráfico

Arquitecturas de conmutación de circuitos

Conmutación por división de tiempo

- Conmutador formado por multicanalizador y desmulticanalizador
- Al formar la trama saliente, se intercambia posición de la ranura en la trama: time slot interchange (TSI)
- Lee y escribe a memoria compartida en orden distinto

sesiones: (1,3) (2,1) (3,4) (4,2)

TSI - Propiedades

- Muy sencillo
- Limitante es la velocidad de la memoria compartida
- Ejemplo: 100,000 circuitos telefónicos
 - Cada uno lee y escribe cada 125 ms.
 - Accesos por segundo : 100,000 x 8000 x2
 - Cada operación alrededor de 0.5 ns => imposible con la tecnología actual

Conmutación espacial

- Cada muestra toma una trayectoria distinta en el conmutador
- Matriz de conmutación es la arquitectura más sencilla

• Los puntos de interconexión pueden activarse ó desactivarse

Matriz de conmutación: ejemplo

sesiones: (1,2) (2,4) (3,1) (4,3)

Propiedades de la matriz de conmutación

Ventajas:

- Fácil de implantar y de controlar
- En estricto sentido, es no bloqueante

Desventajas

- Puntos de interconexión = N²
- Muy ineficiente
- Vulnerable a fallas simples

Redes de conmutación

Arquitecturas de conmutación de paquetes

Generaciones de conmutadores de paquetes

Arquitecturas de almacenamiento

Motivación

- Absorber ráfagas temporales de datos
- Adaptar tasas de entrada y salida distintas

Arquitecturas

- Buffer en puertos de entrada
- Buffer en puertos de salida
- Buffer compartido
- Buffer en matriz de conmutación
- Combinación de ellos

Buffer en puertos de entrada

- Paquetes compiten por la transferencia a través de la matriz de conmutación
- Despachador debe correr N veces más rápido que la entrada
- Posible bloqueo por efecto Head of Line si las colas son FIFO
- Utilización máxima 59% si HOL

Bloqueo al frente de la cola (HOL)

 Si hay contención por el puerto de salida para el paquete que está al frente de la cola, éste bloquea a todos los demás aún si los puertos para ellos están libres

Buffer en puertos de salida

- Cola de salida debe correr más rapido que puertos de entrada (N veces en el peor caso)
 - Limita número de entradas destinadas a misma salida
- No HOL
- Múltiples colas por puerto para proveer prioridades y QoS

Buffer en memoria compartida

- Pool de buffers común administrado vía listas ligadas
- Conmutación de paquetes únicamente: menos desplazamientos de memoria
- Memoria debe correr más rápido que las entradas y salidas
- Si no hay control, una sola entrada puede consumir todo el buffer