Im Folgenden sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X \in L^1(\Omega, \mathcal{A}, P)$. Definition 1. Sei $\mathcal{F} \subset \mathcal{A}$ eine σ -Algebra. Eine Zufallsvariable Y heißt bedingte Erwartung von X gegeben \mathcal{F} , symbolisch $E[X|\mathcal{F}] := Y$, falls gilt:

- i) Y ist \mathcal{F} -messbar.
- ii) Für jedes $A \in \mathcal{F}$ gilt $E[X \mathbbm{1}_A] = E[Y \mathbbm{1}_A]$

B7A1 Zeigen Sie, $E[X, \mathcal{F}]$ existiert und ist eindeutig (bis auf Gleichheit fast sicher). Gehen Sie dabei wie folgt vor:

- i) Eindeutigkeit: Nehmen Sie an, dass Y und Y' Definition 1 erfüllen und betrachten Sie die Menge $A:=\{Y-Y'>0\}.$
- ii) Existenz: Definieren Sie das Maß Q^+ auf (Ω, \mathcal{F}) durch $Q^+[A] := E[\mathbbm{1}_A X^+]$ und analog Q^- . Konstruieren Sie nun die bedingte Erwartung mit dem Satz von Radon–Nikodym.

B7A2 Welche der folgenden Teilmengen des Raumes der reellen Folgen

$$\mathbb{R}^{\mathbb{N}} = \mathop{\textstyle \times}_{i \in \mathbb{N}} \mathbb{R}$$

sind messbar bezüglich $\mathcal{B}^{\mathbb{N}} := \bigotimes_{i \in \mathbb{N}} \mathcal{B}(\mathbb{R})$?

(a)
$$\left\{ (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \sup_{n \in \mathbb{N}} x_n > 3 \right\}$$

(b)
$$\left\{ (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \sum_{k=1}^n x_k = 0 \text{ für mindestens ein } n \in \mathbb{N} \right\}$$

(c)
$$\{(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}} \mid (x_n)_{n\in\mathbb{N}} \text{ konvergiert gegen } 3\}$$

Generell ist eine Menge A genau dann messbar bezüglich $\bigotimes_{\in \mathbb{N}} \mathcal{B}(\mathbb{R})$, wenn $A \in \bigotimes_{\in \mathbb{N}} \mathcal{B}(\mathbb{R})$. Hierbei gilt $\bigotimes_{\in \mathbb{N}} \mathcal{B}(\mathbb{R}) = \sigma(A_J \times \Omega_{\mathbb{N} \setminus J} \mid J = \{j_1, \ldots, j_n\}, A_{j_k} \in \mathcal{B}(\mathbb{R})$).

B7A3 Sei $(\Omega_i, \mathcal{A}_i) = ([0,1], \mathcal{B}([0,1]))$ für i = 1, 2 und $(\Omega, \mathcal{A}) = (\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$ der Produktraum.

(a) Geben Sie ein Beispiel für eine Menge $A \subset \Omega$, für die für alle $\omega_i \in [0,1]$ der ω_i -Schnitt $A_{\omega_i} \in \mathcal{A}_j$ ist (für i,j=1,2 und $i \neq j$), aber $A \notin \mathcal{A}$ gilt.

Hinweis: Der ω_1 -Schnitt der Menge A ist definiert als $A_{\omega_1} = (\{\omega_1\} \times \Omega_2) \cap A = \{(\omega_1, \omega_j) \in A\}$ und der ω_2 -Schnitt analog.

Sei C die Cantor-Menge, die wir aus Analysis 1 kennen. Für diese gilt, dass sowohl C als auch $[0,1]\setminus C$ überabzählbar sind. Damit ist C nicht messbar, denn wir können C nicht als abzählbare Vereinigung von Mengen aus A_i schreiben. Sei nun $A=\{(x,x)\mid x\in C\}$. Dann gilt entweder $A_{\omega_i}=\{\omega_i\}$, falls $\omega_i\in C$, oder aber $A_{\omega_i}=\emptyset$, falls $\omega_i\notin C$. Das sind alles messbare Mengen. Auch $x\mapsto (x,x)$ ist messbar, denn auf dem Erzeuger von $A_1\otimes A_2$ sind Urbilder von $A_i\times\Omega_j$ jeweils A_i . Angenommen A wäre nun messbar, dann wäre auch dessen Urbild unter der messbaren Einbettung $x\mapsto (x,x)$ messbar. Dieses Urbild ist aber gerade C, welches, wie eingangs erwähnt, nicht messbar ist. Damit ist auch A wie gewünscht nicht messbar.

(b) Sie $D=\{(x,x)\mid x\in [0,1]\}$ die Diagonale in $\Omega,\ \lambda$ das Lebesguemaß auf Ω_1 und μ das Zählmaß au $\Omega_2,$ das heißt

$$\mu(A) = \begin{cases} |A|, & \text{falls } A \text{ endlich ist,} \\ \infty & \text{sonst.} \end{cases}$$

Zeigen Sie $D \in \mathcal{A}$ und berechnen Sie

$$\int_{\Omega_2} \int_{\Omega_1} \mathbb{1}_D(x, y) d\lambda(x) d\mu(y) \quad \text{und} \int_{\Omega_1} \int_{\Omega_2} \mathbb{1}_D(x, y) d\mu(y) d\lambda(x) .$$

Es gilt

$$\begin{split} \int_{\Omega_2} \int_{\Omega_1} \mathbbm{1}_D(x,y) \mathrm{d}\lambda(x) \mathrm{d}\mu(y) &= \int_{\Omega_2} \int_{\{y\}} \mathrm{d}\lambda(x) \mathrm{d}\mu(y) \\ &= \int_{\Omega_2} \lambda(\{y\}) \mathrm{d}\mu(y) \\ &= \int_{\Omega_2} 0 \mathrm{d}\mu(y) \\ &= 0 \,, \end{split}$$

sowie

$$\begin{split} \int_{\Omega_1} \int_{\Omega_2} \mathbbm{1}_D(x,y) \mathrm{d}\mu(y) \mathrm{d}\lambda(x) &= \int_{\Omega_1} \int_{\{x\}} \mathrm{d}\mu(y) \mathrm{d}\lambda(x) \\ &= \int_{\Omega_1} \mu(\{y\}) \mathrm{d}\lambda(x) \\ &= \int_{\Omega_1} 1 \mathrm{d}\lambda(x) \\ &= \lambda(\Omega_1) = 1 \,. \end{split}$$

(c) Ist das Ergebnis in Teil (b) ein Widerspruch zum Satz von Fubini? Nein, der kann hier gar nicht angewendet werden, weil μ auf [0,1] nicht σ -endlich ist.

B7A4 Beweisen Sie mit dem Satz von Fubini die Regel der partiellen Integration. Seien $f,g\colon [a,b]\to \mathbb{R}$ zwei Lebesgue-integrierbare Funktionen und für $x\in [a,b]$ seien

$$F(x) := \int_a^x f(y) dy$$
 und $G(x) := \int_a^x g(y) dy$.

Dann gilt

$$\int_a^b F(x)g(x)\mathrm{d}x = F(b)G(b) - \int_a^b G(x)f(x)\mathrm{d}x\,.$$

Hinweis: Wenden Sie den Satz von Fubini auf die Funktion $h:(x,y) \mapsto f(y)g(x)\mathbb{1}_E(x,y)$ an, mit $E = \{(x,y) \in [a,b]^2 : y < x\}$. Der Satz von Fubini lautet,

$$\int h \mathrm{d}(\lambda \otimes \kappa_1) = \int \Bigl(\int h(x,y) \kappa_1(x,\mathrm{d}y)\Bigr) \lambda(\mathrm{d}x)$$

Hier ist noch unklar, was das Produkt der Übergangskern ist. Satz 14.19 in [Kle20]

Literatur

[Kle20] Klenke, Achim: Wahrscheinlichkeitstheorie. Springer Spektrum, 2020 (Masterclass)