### Logic Coverage Overview part 2



Computer Science

Isaac Griffith

CS 4422 and CS 5599 Department of Computer Science Idaho State University





### **Outcomes**

At the end of Today's Lecture you will be able to:

- Understand the basic concepts and notation for logic coverage
- Understand the different types of logic coverage criteria





## **Inspiration**

"The trouble with programmers is that you can never tell what a programmer is doing until it's too late." – Seymour Cray





## General Active Clause Coverage

#### General Active Clause Coverage (GACC)

For each  $p \in P$  and each major clause  $c_i \in C_p$ , choose minor clauses  $c_j, j \neq i$ , so that  $c_i$  determines p. TR has two requirements for each  $c_i$ :  $c_i$  evaluates to true and  $c_i$  evaluates to false. The values chosen for the minor clauses  $c_j$  do not need to be the same when  $c_i$  is true as when  $c_i$  is false, that is,  $c_i(c_i = true) = c_i(c_i = false)$  for all  $c_j$  OR  $c_i(c_i = true) \neq c_j(c_i = false)$  for all  $c_j$ .

- This is complicated!
- It is possible to satisfy GACC without satisfying predicate coverage
- We really want to cause predicates to be both true and false!





### **Restricted ACC**

#### Restricted Active Clause Coverage

For each  $p \in P$  and each major clause  $c_i \in C_p$ , choose minor clauses  $c_j$ ,  $j \neq i$ , so that  $c_i$  determines p. TR has two requirements for each  $c_i$ :  $c_i$  evaluates to true and  $c_i$  evaluates to false. The values chosen for the minor clauses  $c_j$  must be the same when  $c_i$  is true as when  $c_i$  is false, that is, it is required that  $c_i(c_i = true) = c_i(c_i = false)$  for all  $c_i$ .

- RACC often leads to infeasible test requirements
- There is **no logical reason** for such a restriction





## dato State Correlated Active Clause Coverage Congular Control Computer Constitution Clause Coverage Confidence Coverage Confidence Coverage Coverag

#### Correlated Active Clause Coverage (CACC)

For each p in P and each major clause  $c_i$  in  $C_p$ , choose minor clauses  $c_j$ ,  $j \neq i$ , so that  $c_i$  determines p. TR has two requirements for each  $c_i$ :  $c_i$  evaluates to true and  $c_i$  evaluates to false. The values chosen for the minor clauses  $c_j$  must cause p to be true for one value of the major clause  $c_i$  and false for the other, that is, it is required that  $p(c_i = true) \neq p(c_i = false)$ .

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage





### **CACC and RACC**

|   | а | b | С | $a \wedge (b \vee c)$ |
|---|---|---|---|-----------------------|
| 1 | Т | Т | Т | T                     |
| 2 | T | T | F | T                     |
| 3 | T | F | T | T                     |
| 4 | T | F | F | F                     |
| 5 | F | T | T | F                     |
| 6 | F | T | F | F                     |
| 7 | F | F | T | F                     |
| 8 | F | F | F | F                     |

- $P_a$ : b = true or c = true, thus a is the major clause
- CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5,
   6, 7 a total of 9 pairs
- RACC can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7) only three pairs



## **Inactive Clause Coverage**

- The active clause coverage criteria ensure that "major" clauses do affect the predicates
- Inactive clause coverage takes the opposite approach major clauses do not affect the predicates

### Inactive Clause Coverage(ICC)

For each  $p \in P$  and each major clause  $c_i$  in  $C_p$ , choose minor clauses  $c_j$ ,  $j \neq i$ , so that  $c_i$  does not determine p. TR has four requirements for each  $c_i$ : (1)  $c_i$  evaluates to true with p true, (2)  $c_i$  evaluates to false with p true, (3)  $c_i$  evaluates to true with p false, (4)  $c_i$  evaluates to false with p false.





### **General and Restricted ICC**

- Unlike ACC, the notion of correlation is not relevant
  - $c_i$  does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

### General Inactive Clause Coverage (GICC)

For each  $p \in P$  and each major clause  $c_i \in C_p$ , choose minor clauses  $c_j$ ,  $j \neq i$ , so that  $c_i$  does not determine p. The values chosen for the minor clauses  $c_j$  do not need to be the same when  $c_i$  is true as when  $c_i$  is false, that is,  $c_j(c_i = true) = c_j(c_i = false)$  for all  $c_i$  OR  $c_j(c_i = false) \neq c_j(c_i = false)$  for all  $c_j$ .

### Restricted Inactive Clause Coverage (RICC)

For each  $p \in P$  and each major clause  $c_i \in C_p$ , choose minor clauses  $c_j$ ,  $j \neq i$ , so that  $c_i$  does not determine p. The values chosen for the minor clauses  $c_j$  must be the same when  $c_i$  is true as when  $c_i$  is false, that is, it is required that  $c_j(c_i = true) = c_j(c_i = false)$  for all  $c_j$ .



## **Infeasibility & Subsumption**

- Consider the predicate:  $(a > b \lor b > c) \lor c > a$
- (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with graph-based criteria, infeasible test requirements have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable
- Software testing is **inexact**-engineering, not science





## **Logic Criteria Subsumption**





# Taking Clauses Determine a Predicate

- Finding values for minor clauses  $c_i$  is easy for simple predicates
- But how to find values for more complicated predicates?
- Definitional approach:
  - $p_{c=true}$  is predicate p with every occurrence of c replaced by **true**
  - $-\ p_{c=false}$  is predicate p with every occurrence of c replaced by **false**
- To find values for the minor clauses, connect  $p_{c=true}$  and  $p_{c=false}$  with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

ullet After solving,  $p_c$  describes exactly the values needed for c to determine p



## **Examples**

### $p = a \vee b$ $p_a = p_{a=true} \oplus p_{a=false}$ $= (true \lor b) \oplus (false \lor b)$ $= true \oplus b$ $= \neg b$ $p = a \vee (b \wedge c)$ $= p_{a=true} \oplus p_{a=false}$ $= (true \lor (b \land c)) \oplus (false \lor (b \land c))$ $= true \oplus (b \wedge c)$

$$\frac{p = a \wedge b}{p_a} = p_{a=true} \oplus p_{a=false} \\
= (true \wedge b) \oplus (false \wedge b) \\
= b \oplus false \\
= b$$

- " $\neg b \lor \neg c$ " means either b or c can be false
- RACC requires the same choice for both values of, CACC does not



 $= \neg (b \land c)$  $= \neg b \lor \neg c$ 



## **XOR Identity Rules**

Exclusive-OR (XOR,  $\oplus$ ) means both cannot be true.

That is,  $A \oplus B$  means "A or B is true, but not both"

- $p = A \oplus A \land b = A \land \neg b$
- $p = A \oplus A \lor b = \neg A \land b$





## **Repeated Variables**

- The definitions in this chapter yield the same tests no matter how the predicate is expressed
- $(a \lor b) \land (c \lor b) == (a \land c) \lor b$
- $(a \wedge b) \vee (b \wedge c) \vee (a \wedge c)$ 
  - Only has 8 possible tests, not 64
- Use the simplest form of the predicate, and ignore contradictory true table assignments





## A More Subtle Example

### Example

```
\frac{p = (a \land b) \lor (a \land \neg b)}{p_a = p_{a=true} \oplus p_{a=false}} 

= ((true \land b) \lor (true \land \neg b)) \oplus ((false \land b) \lor (false \land \neg b)) 

= (b \lor \neg b) \oplus false 

= true \oplus false
```

- **a** always determines the value of this predicate
- b never determines the value – b is irrelevant!

### Example

```
\frac{p = (a \land b) \lor (a \land \neg b)}{p_b = p_{b=true} \oplus p_{b=false}}

= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false))

= (a \lor false) \oplus (false \lor a)

= a \oplus a

= false
```





## Idaho State University Tabular Method for Determination Computer Computer Vision State Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

|   | a | b | С | $a \wedge (b \vee c)$ | $p_a$ | $p_b$ | $p_c$ |
|---|---|---|---|-----------------------|-------|-------|-------|
| 1 | Т | Т | Т | T                     |       |       |       |
| 2 | T | T | _ | T                     |       |       |       |
| 3 | T | F | T | T                     |       |       |       |
| 4 | T | F | F | F                     |       |       |       |
| 5 | F | T | _ | F                     |       |       |       |
| 6 | F | T | F | F                     |       |       |       |
| 7 | F | F | T | F                     |       |       |       |
| 8 | F | F | F | F                     |       |       |       |



## Idaho State Tabular Method for Determination Computer Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

|   | а | b | С | $a \wedge (b \vee c)$ | $p_a$ | $p_b$ | $p_c$ |
|---|---|---|---|-----------------------|-------|-------|-------|
| 1 | Т | Т | Т | T                     | 1     |       |       |
| 2 | T | T | F | T                     |       |       |       |
|   | T | F | T | T                     |       |       |       |
| 4 | T | F | F | F                     |       |       |       |
| 5 | F | T | T | F                     | 1     |       |       |
| 6 | F | T | F | F                     |       |       |       |
| 7 | F | F | T | F                     |       |       |       |
| 8 | F | F | F | F                     |       |       |       |

b & c are the same, a differs, and p differs ... thus TTT and FTT cause a to determine the value of p





### Idaho State University Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

|   | a | b | С | $a \wedge (b \vee c)$ | $p_a$ | $p_b$ | $p_c$ |
|---|---|---|---|-----------------------|-------|-------|-------|
| 1 | Т | T | T |                       | 1     |       |       |
| 2 | T | T | F | т<br>Т                | 2     |       |       |
|   |   |   | _ | 1                     | 4     |       |       |
| 3 | T | F | T | T                     |       |       |       |
| 4 | T | F | F | F                     |       |       |       |
| 5 | F | T | T | F                     | 1     |       |       |
| 6 | F | T | F | F                     | 2     |       |       |
| 7 | F | F | T | F                     |       |       |       |
| 8 | F | F | F | F                     |       |       |       |

Again, b & c are the same, so TTF and FTF cause a to determine the value of p





## Idaho State Tabular Method for Determination Computer Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

|   | a | b | С | $a \wedge (b \vee c)$ | $p_a$ | $p_b$ | $p_c$ |
|---|---|---|---|-----------------------|-------|-------|-------|
| 1 | Т | Т | Т | T                     | 1     |       |       |
| 2 | T | T | F | T                     | 2     |       |       |
| 3 | T | F | T | T                     | 3     |       |       |
| 4 | T | F | F | F                     |       |       |       |
| 5 | F | T | T | F                     | 1     |       |       |
| 6 | F | T | F | F                     | 2     |       |       |
| 7 | F | F | T | F                     | 3     |       |       |
| 8 | F | F | F | F                     |       |       |       |

Finally, this third pair, TFT and FFT, also cause a to determine the value of p





## Idaho State Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

|   | а | b | С | $a \wedge (b \vee c)$ | $p_a$ | $p_b$ | $p_c$ |
|---|---|---|---|-----------------------|-------|-------|-------|
| 1 | T | T | T | T                     | 1     |       |       |
|   | T | T | F | T                     | 2     | 4     |       |
| 3 | T | F | T | T                     | 3     |       |       |
| 4 | T | F | F | F                     |       | 4     |       |
| 5 | F | T | T | F                     | 1     |       |       |
| 6 | F | T | F | F                     | 2     |       |       |
| 7 | F | F | T | F                     | 3     |       |       |
| 8 | F | F | F | F                     |       |       |       |

For clause b, only one pair, TTF and TFF can cause b to determine the value of p





## Idaho State University Tabular Method for Determination Computer Computer Vision State Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

|     | a | b | С | $a \wedge (b \vee c)$ | $p_a$ | $p_b$ | $p_c$ |
|-----|---|---|---|-----------------------|-------|-------|-------|
| 1   | Т | Т | T | Т                     |       |       |       |
| 2   | T | T | F | T                     |       |       |       |
| 3   | T | F | T | T                     |       |       | 5     |
| 4   | T | F | F | F                     |       |       | 5     |
| 5   | F | T | T | F                     |       |       |       |
| 6   | F | T | F | F                     |       |       |       |
| 7   | F | F | T | F                     |       |       |       |
| 8   | F | F | F | F                     |       |       |       |
| 0.5 |   |   |   |                       |       |       |       |

Likewise, for clause c, only one pair, TFT and TFF, can cause c to determine the value of p





## Idaho State University Tabular Method for Determination Computer Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

|      | a | b | С | $a \wedge (b \vee c)$ | $p_a$ | $p_b$ | $p_c$ |
|------|---|---|---|-----------------------|-------|-------|-------|
| 1    | Т | Т | T | T                     | 1     |       |       |
| 2    | T | T | F | T                     | 2     | 4     |       |
| 3    | T | F | T | T                     | 3     |       | 5     |
| 4    | T | F | F | F                     |       | 4     | 5     |
| 5    | F | T | T | F                     | 1     |       |       |
| 6    | F | T | F | F                     | 2     |       |       |
| 7    | F | F | T | F                     | 3     |       |       |
| 8    | F | F | F | F                     |       |       |       |
| O.F. |   |   |   |                       |       |       |       |

In sum, three separate pairs of rows can cause a to determine the value of p, and only one pair each for b and c





## Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
  - In fact, most predicates only have one clause!
  - With only one clause, PC is enough
  - With 2 or 3 clauses, CoC is practical
  - Advantages of ACC and ICC criteria are significant for large predicates
- Control software often has many complicated predicates, with lots of clauses
- Question ... why don't complexity metrics count the number of clauses in predicates?





# Are there any questions?

