HSE and University of London Double Degree Programme in Data Science and Business Analytics

Elements of Econometrics, 2023-2024

Lecturer: Igor Kheifets. Classteacher: Ksenia Kasianova.

Class 4: Multiple linear regresion.

Problem 1

Regress $Y_i|1, X_i$.

- (i) Using matrix notations and geometric intuition answer True or False:
- (a) $\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_i = 0$,
- (b) $\frac{1}{n} \sum_{i=1}^{n} X_i \widehat{u}_i = 0$,
- (c) $\frac{1}{n} \sum_{i=1}^{n} \widehat{Y}_i \widehat{u}_i = 0,$
- (d) $\frac{1}{n} \sum_{i=1}^{n} \widehat{Y}_i = \frac{1}{n} \sum_{i=1}^{n} Y_i$,
- (e) TSS = ESS + RSS.
- (f) How the above analysis changes if you regress $Y_i|1?$ $Y_i|X_i?$
 - (ii) Define R^2 . How it is related to
- (a) the residual sum of squares,
- (b) the correlation between the actual and fitted values of the dependent variable, $r_{Y\widehat{Y}}$.
- (c) How would you measure goodness of fit, if you had to choose among RSS, R^2 and $r_{Y,\widehat{Y}}$? Why?
 - (iii) Derive regression coefficients in a simple regression model using matrix notation
- (a) on constant (naive model)
- (b) without intercept

What properties of linear regression are violated for the regression without intercept? **Problem 2**

- (a) Recall GMT in matrix notation
- (b) Derive variance of β in matrix form
- (c) Find variance-covariance matrix for a pair linear regression
- (d) Consider a formula for variance of $\hat{\beta}_i$:

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{TSS_j(1 - R_j^2)}$$

What factors lead to the inflation of s.e. of the estimator of the coefficients?