1.7 CC2530 Day-7 ADC转换

1.7 CC2530 Day-7 ADC转换

```
ADC转换基础知识
ADC转换相关寄存器

1-APCFG 模拟I/O配置寄存器

2- ADCH ADC数据高八位

3-ADCL ADC数据低八位

4-ADCCON1 ADC 控制寄存器1

5-ADCCON2 ADC 控制寄存器2(序列转换)
6-ADCCON3 ADC控制寄存器3(单次转换)
```

ADC转换基础知识

CC2530 的ADC 支持多达14 位的模拟数字转换,具有多达12 位的ENOB (有效数字位),有序列转换和单次转换2 种方式。它有16 个输入通道,包括8 路外部模拟输入通道AIN0~AIN7、4 路外部差分输入、1 路内部温度传感器电压、1 路三分之一AVDD5 电压、正参考电压和GND 接地。

它有一个参考电压发生器,可提供4 路参考电压,分别是:

- AVDD 引脚
- AIN7诵道
- AIN6 和AIN7 的差分电压
- 内部的1.25V 电压

ADC转换有四个步骤:

- 采样
- 保持
- 量化
- 编码

```
1 //ADC转换用法
  //=----以查询方式获取数据=----//
  unsigned int adc_value = 0;
5 float adc_volt = 0;
   unsigned char str[64];
7
8
  //初始化ADC
  void Init_ADC()
10 {
      APCFG |= 0x01; //选择AINO作为模拟I/O端口
11
12
13
   //获取采样值函数
  void Get_Value()
15
16
      ADCCON3 = (0x80 | 0x30 | 0x00); //AVDD5引脚 512抽取率 AINO通道
17
    //ADCCON3 = 0xB0; 功能与上面的一样
```

```
19
       if((ADCCON1 \& 0x80) == 1)
20
       {
21
           adc_value = ADCH;
                            //读取高八位
           adc_value = (adc_value << 8) | ADCL; //左移腾位置,并载入低八位
22
           adc_value = adc_value >> 5; //取十位有效位(ADCL前两位无效, 所以最少右移2
23
   位)
24
25
           //电压换算方法: (3.3/2的有效位次方-1)x采样值
           //例如取了10为有效位电压为(3.3/(1024-1)) *adc_value
26
27
28
          adc_volt = (3.3/1023) * adc_value; //换算电压
29
           sprintf((char *)str, "AINO的采样结果是: %d, 电压为:
   %.2fV\r\n",adc_value,adc_volt);
30
           //这时候就可以用串口发送函数把数据发出去了
31
32
          UR0_SendString(str);
33
       }
34
35
36
              ----以中断方式获取数据---
37
   unsigned int adc_value = 0;
38
   float adc_volt = 0;
   unsigned char str[64];
39
40
41
   //初始化ADC
42
   void Init_ADC()
43
       APCFG |= 0x01; //把PO端口设置成模拟信号功能
44
45
       ADCIE = 1; //打开ADC中断
46
       EA = 1;
                 //打开总中断
47
   }
48
   //中断服务函数
49
50
   #pragma vector = ADC_VECTOR
51
   __interrupt void Service_ADC()
52
53
       adc_value = ADCH;
                                               //读取高八位
54
       adc_value = (adc_value << 8) | ADCL;</pre>
                                               //向左移8位,给ADCL腾位置并载入低八
   位
55
56
       adc_value = adc_value >> 5;
                                              //取十位有效位
                                              //换算电压
57
       adc_volt = (3.3/1023) * adc_value;
58
59
       sprintf((char *)str,"AINO的采样结果是: %d,电压为:
   %.2fV\r\n",adc_value,adc_volt); //格式化输出
       UR0_SendString(str);
                               //发送数据
60
61
   }
62
63
   //设置ADCCON3的参数来启动中断
   //主函数
64
   void main()
65
66
67
       Init_ADC();
68
       while(1)
69
70
          ADCCON3(0x80 | 0x30 | 0x00);
71
       }
72 }
```

ADC转换相关寄存器

1-APCFG 模拟I/O配置寄存器

【58】APCFG 模拟 I/O 配置寄存器

位	位名称	复位值	操作	描述
7: 0	APCFG[7:0]	0x00	R/W	模拟外设 I/0 配置。
				用于选择 P0_7~P0_0 作为模拟 I/0 端口。
				8 路模拟量输入来自 PO 端口组的 8 个 I/O 引脚,不必通过编程
			将这些引脚变为模拟输入, 当相应的模拟输入引脚在 APCFG 寄	
				存器中被禁用时,该通道将被跳过。
				0: 模拟 I/0 禁用
				1: 模拟 I/0 使 J 用

2- ADCH ADC数据高八位

【59】ADCH ADC 数据低位寄存器

位	位名称	复位值	操作	描述
7: 0	ADC[13:6]	000000	R	ADC 转换结果的高位部分。

3-ADCL ADC数据低八位

【60】ADCL ADC 数据低位寄存器

位	位名称	复位值	操作	描述	
7: 2	ADC[5:0]	000000	R	ADC 转换结果的低位部分。	
1: 0		00	RO	没有使用,读出来一直都是0。	

注意: ADCL数据前两位无效

4-ADCCON1 ADC 控制寄存器1

【61】ADCCON1 ADC 控制寄存器 1

位	位名称	复位值	操作	描述			
7	EOC	0	R/H0	转换结束。当 ADCH 被读取的时候被清除。如果已读取前一数			
				据之前,完成一个新的转换,EOC 位仍然为高。			
				0: 转换没有完成。 1: 转换完成。			
6	ST	0	R1/W	开始转换。读为1,直到转换完成。			
				0: 没有转换正在进行。			
				1: 如果 ADCCON1. STSEL=11,并且没有序列正在运行,就启动			
				一个序列转换。			
5: 4	STSEL[1:0]	11	R/W1	启动选择。选择该事件,将启动一个新的转换序列。			
				00: P2.0 引脚的外部触发。			
				01: 全速,不等待触发器。			
				10: 定时器 1 通道 0 比较事件。			
				11: ADCCON1. ST = 1.			
3:2	RCTRL[1:0]	00	R/W	控制 16 位随机数发生器。当写 01 时,操作完成时设置将自动			
				返回到 00。			
				00: 正常运行。			
				01: LFSR 的时钟一次。			
				10: 保留。			
				11: 停止,关闭随机数发生器。			
1:0		11	R0	没有使用,一直设为11。			

5-ADCCON2 ADC 控制寄存器2 (序列转换)

【62】ADCCON2 ADC 控制寄存器 2

位	位名称	复位值	操作	描述		
7: 6	SREF[1:0]	00	R/W	选择参考电压,用于序列转换。		
				00: 内部参考电压。		
				01: AIN7 引脚上的外部参考电压。		
				10: AVDD5 引脚。		
				11: AIN6-AIN7 差分输入外部参考电压。		
5: 4	SDIV[1:0]	00	R/W	为包含在转换序列内的通道设置抽取率。抽取率也决定完成转		
				换需要的时间和分辨率。		
				00: 64 抽取率 (7 位 ENOB)。		
				01: 128 抽取率 (9 位 ENOB)。		
				10: 256 抽取率 (10 位 ENOB)。		
				11: 512 抽取率 (12 位 ENOB)。		
3: 0	SCH[3:0]	0000	R/W	序列通道选择。		
				0000: AINO. 0001: AIN1.		
				0010: AIN2. 0011: AIN3.		
				0100: AIN4. 0101: AIN5.		

	0110:	AIN6。)111:	AIN7。
	1000:	AINO-AIN1。	001:	AIN2-AIN3。
	1010:	AIN4-AIN5。	011:	AIN6-AIN7。
	1100:	GND. 1	101:	正电压参考。
	1110:	温度传感器。 1	111:	AVDD/3。

6-ADCCON3 ADC控制寄存器3(单次转换)

【63】ADCCON3 ADC 控制寄存器 3

位	位名称	复位值	操作	描述		
7: 6	EREF[1:0]	00	R/W	选择用于单通道转换的参考电压。		
				00: 内部参考电压。		
				01: AIN7 引脚上的外部参考	电压。	
				10: AVDD5 引脚。		
				11: AIN6-AIN7 差分输入外:	部参考电压。	
5: 4	EDIV[1:0]	00	R/W	设置用于额外转换的抽取率	。抽取率也决定完成转换需要的时	
				间和分辨率。		
				00: 64 抽取率 (7 位 ENOB)	0	
				01: 128 抽取率 (9 位 ENOB))。	
				10: 256 抽取率(10 位 ENOF	3)。	
				11: 512 抽取率 (12 位 ENOB)。		
3: 0	ECH[3:0]	0000	R/W	单个通道选择。		
				选择写 ADCCON3 触发单个转换所在的通道号码。当单个转换完		
				成,该位自动清除。		
				0000: AINO. 0001: AIN1.		
				0010: AIN2.	0011: AIN3.	
				0100: AIN4.	0101: AIN5.	
				0110: AIN6.	0111: AIN7.	
				1000: AINO-AIN1.	1001: AIN2-AIN3.	
				1010: AIN4-AIN5.	1011: AIN6-AIN7.	
				1100: GND.	1101: 正电压参考。	
				1110: 温度传感器。 1111: AVDD/3。		
设计参	▶考 启动一次	CA/D 转换,	参考电压	选择 AVDD5 引脚,256 抽取率	K, AIN3.	
ADCCON3 = (0x80 0x20 0x03); //1010 0011						
	或者: ADCCON3 = 0xA3;					