Algoritmos de Ordenação

Prof. Luiz Gustavo Almeida Martins

- Ordenação é a tarefa de colocar um conjunto de dados em uma determinada ordem
 - Outras denomições: classificação e organização
 - Permite o acesso mais eficiente aos dados

- Ordenação é a tarefa de colocar um conjunto de dados em uma determinada ordem
 - Outras denomições: classificação e organização
 - Permite o acesso mais eficiente aos dados
- É importante para melhorar a eficiência de outros processos computacionais
 - **Ex:** métodos de busca e intercalação (fusão), banco de dados, etc.

- Ordenação é a tarefa de colocar um conjunto de dados em uma determinada ordem
 - Outras denomições: classificação e organização
 - Permite o acesso mais eficiente aos dados
- É importante para melhorar a eficiência de outros processos computacionais
 - Ex: métodos de busca e intercalação (fusão), banco de dados, etc.
- Os algoritmos de ordenação trabalham sobre registros
 - O campo chave é usado para controlar a ordenação
 - Muito usado na apresentação de listagens

Exemplo

Arquivo original

Nome	Idade
João	15
Daniel	60
Maria	32

Arquivo ordenado

Nome	Idade
Daniel	60
João	15
Maria	32

Exemplo

Arquivo original

Nome	Idade
João	15
Daniel	60
Maria	32

Arquivo ordenado

Nome	Idade
João	15
Maria	32
Daniel	60

- A saída de um algoritmo de ordenação deve satisfazer duas condições:
 - Ser uma permutação da entrada

- A saída de um algoritmo de ordenação deve satisfazer duas condições:
 - Ser uma permutação da entrada
 - Estar em uma ordem crescente ou decrescente

- A saída de um algoritmo de ordenação deve satisfazer duas condições:
 - Ser uma permutação da entrada
 - Estar em uma ordem crescente ou decrescente
- Exemplos:
 - ► Entrada: 6 5 7 1 2 4 3

▶ Entrada: V U X Z Y

- A saída de um algoritmo de ordenação deve satisfazer duas condições:
 - Ser uma permutação da entrada
 - Estar em uma ordem crescente ou decrescente

Exemplos:

▶ Entrada: 6 5 7 1 2 4 3

> Saída: 1 2 3 4 5 6 7 (ordem crescente)

Entrada: V U X Z Y

Saída:
U V X Y Z (ordem crescente)

- A saída de um algoritmo de ordenação deve satisfazer duas condições:
 - Ser uma permutação da entrada
 - Estar em uma ordem crescente ou decrescente

Exemplos:

► Entrada: 6 5 7 1 2 4 3

> Saída: 7 6 5 4 3 2 1 (ordem decrescente)

Entrada: V U X Z Y

Saída:
Z Y X V U (ordem decrescente)

- Quanto à origem do arquivo:
 - Ordenação interna: dados e processo na memória principal
 - Acesso direto e rápido aos dados
 - Ordenação externa: dados na memória secundária e processo na memória principal
 - Acesso sequencial ou em grandes blocos

Quanto à origem do arquivo:

- Ordenação interna: dados e processo na memória principal
 - Acesso direto e rápido aos dados
- Ordenação externa: dados na memória secundária e processo na memória principal
 - Acesso sequencial ou em grandes blocos

Quanto à estabilidade:

- Método estável: algoritmo preserva a ordem relativa original dos registros com o mesmo valor de chave
- Método não estável: não preserva a ordem em que os registros aparecem no arquivo original

Exemplo

Arquivo original

Nome	Idade
Maria	20
José	60
João	20

Nome	Idade
Maria	20
João	20
José	60

Arquivos ordenados

Nome	Idade
João	20
Maria	20
José	60

Quanto à movimentação:

- Ordenação dos registros: realiza a movimentação/cópia dos registros
- Ordenação por ponteiros: ordenação é feita sobre uma tabela auxiliar de ponteiros
 - Não movimenta os registros originais

Quanto à movimentação:

- Ordenação dos registros: realiza a movimentação/cópia dos registros
- Ordenação por ponteiros: ordenação é feita sobre uma tabela auxiliar de ponteiros
 - Não movimenta os registros originais

Quanto à complexidade:

- ightharpoonup Algoritmos simples: da ordem de $O(n^2)$
 - **Ex:** bubble sort
- Algoritmos eficientes: da ordem de O(n log n)
 - **Ex:** quick sort

- Adequação da simplicidade/tamanho do problema com o método usado
 - Relacionado com tempo de execução ou memória necessária

- Adequação da simplicidade/tamanho do problema com o método usado
 - Relacionado com tempo de execução ou memória necessária
- Análise é feita pela contagem de operações críticas:
 - Comparações entre chaves
 - Movimentação de registros ou ponteiros

- Adequação da simplicidade/tamanho do problema com o método usado
 - Relacionado com tempo de execução ou memória necessária
- Análise é feita pela contagem de operações críticas:
 - Comparações entre chaves
 - Movimentação de registros ou ponteiros
- Questão: Por que estudar os algoritmos simples?

- Adequação da simplicidade/tamanho do problema com o método usado
 - Relacionado com tempo de execução ou memória necessária
- Análise é feita pela contagem de operações críticas:
 - Comparações entre chaves
 - Movimentação de registros ou ponteiros
- Questão: Por que estudar os algoritmos simples?
 - Facilidade de implementação e entendimento
 - Ilustra com simplicidade os princípios da ordenação por comparação

- Adequação da simplicidade/tamanho do problema com o método usado
 - Relacionado com tempo de execução ou memória necessária
- Análise é feita pela contagem de operações críticas:
 - Comparações entre chaves
 - Movimentação de registros ou ponteiros
- Questão: Por que estudar os algoritmos simples?
 - Facilidade de implementação e entendimento
 - Ilustra com simplicidade os princípios da ordenação por comparação
 - Podem ser mais adequados em alguns casos
 - ▶ Ex: ordenação de conjuntos pequenos

Ordenação por "bolha" (bubble sort)

- Algoritmo de ordenação simples
- Não é recomendado para grandes volumes de dados

Ideia:

- Compara pares de elementos adjacentes (E_i e E_i)
- ▶ Se $E_i > E_j$, troca as suas posições
- Repete esse processo até o maior elemento estar no final do arranjo ou não ocorrer mais trocas

```
if (E[i] > E[i+1]) {
aux = E[i];
E[i] = E[i+1];
E[i+1] = aux;
} Código para a troca dos elementos
```

0 1 2 3 4 5 início 3 1 6 2 8 4

	0	1	2	3	4	5			
início	3	1	6	2	8	4	E[i]	E[j]	troca?
	0	I	2	3	4	5			
	3	1	6	2	8	4	3	1	sim
	0	I	2	3	4	5	•		
	1	3	6	2	8	4	3	6	não

	0	1	2	3	4	5			
início	3	1	6	2	8	4	E[i	[] E[j]	troca?
	0	I	2	3	4	5	-		
	3	1	6	2	8	4	3	1	sim
	0	1	2	3	4	5	•		
	1	3	6	2	8	4	3	6	não
	0	1	2	3	4	5	-		
	1	3	6	2	8	4	6	2	sim

	0	1	2	3	4	5				
início	3	1	6	2	8	4		E[i]	E[j]	troca?
	0	I	2	3	4	5	•			
	3	1	6	2	8	4		3	1	sim
	0	I	2	3	4	5	•			
	1	3	6	2	8	4		3	6	não
	0	ı	2	3	4	5				
	1	3	6	2	8	4		6	2	sim
	0	ı	2	3	4	5	_			
	1	3	2	6	8	4		6	8	não

	0	I	2	3	4	5	_			
início	3	1	6	2	8	4		E[i]	E[j]	troca?
	0	- 1	2	3	4	5	-			
	3	1	6	2	8	4		3	1	sim
	0	I	2	3	4	5	•			
	1	3	6	2	8	4		3	6	não
	0	ı	2	3	4	5				
	1	3	6	2	8	4		6	2	sim
	0	ı	2	3	4	5				
	1	3	2	6	8	4		6	8	não
	0	ı	2	3	4	5				
	1	3	2	6	8	4		8	4	sim

	0	I	2	3	4	5			
início	3	1	6	2	8	4	E[i] <i>E[j]</i>	troca?
	0	I	2	3	4	5	•		
	3	1	6	2	8	4	3	1	sim
	0	I	2	3	4	5			
	1	3	6	2	8	4	3	6	não
	0	1	2	3	4	5	_		
	1	3	6	2	8	4	6	2	sim
	0	l	2	3	4	5	_		
	1	3	2	6	8	4	6	8	não
	0	ı	2	3	4	5	_		
	1	3	2	6	8	4	8	4	sim
	0	ı	2	3	4	5	_		
fim	1	3	2	6	4	8			
		-	•						

	0	I	2	3	4	5			
início	3	1	6	2	8	4	E[i]	E[j]	troca?
•	0	1	2	3	4	5	•		
	3	1	6	2	8	4	3	1	sim
	0	I	2	3	4	5	_		
	1	3	6	2	8	4	3	6	não
	0	ı	2	3	4	5			
	1	3	6	2	8	4	6	2	sim
·	0	ı	2	3	4	5	_		
	1	3	2	6	8	4	6	8	não
	0	ı	2	3	4	5			
	1	3	2	6	8	4	8	4	sim
	0	ı	2	3	4	5	_		
fim	1	3	2	6	4	8	maior elen ordenada	nento (estará na sua posição

início

0	I	2	3	4	5
3	1	6	2	8	4

início l^a iteração 2ª iteração

	0	I	2	3	4	5
início	3	1	6	2	8	4
		•				
	0	I	2	3	4	5
l ^a iteração	1	3	2	6	4	8
	0	1	2	3	4	5
2ª iteração	1	2	3	4	6	8
	0	1	2	3	4	5
3ª iteração	1	2	3	4	6	8

∄ troca (dados estão ordenados) - Fim do algoritmo

Bubble sort : implementação

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
      vetor[i+1]=aux;
```

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
      vetor[i+1]=aux;
```

n elementos

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
      vetor[i+1]=aux;
```

n elementos

(**n−1**) iterações

```
n elementos
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
                                                                   (n−1) iterações
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
                                                                (n−1) comparações
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
      vetor[i+1]=aux;
```

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
      vetor[i+1]=aux;
```

n elementos

(**n−1**) iterações

(*n*−1) comparações

$$g(n) = (n-1)^2$$

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)</pre>
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
                                              Quantas trocas são realizadas?
      vetor[i+1]=aux;
```

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
                                            Quantas trocas são realizadas?
      vetor[i+1]=aux;
                                             Melhor caso (vetor ordenado):
                                                      nenhuma troca
```

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0): i < n-1: i++)
    if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
                                         comparações(n) = (n-1)^2
      aux = vetor[i];
      vetor[i] = vetor[i+1];
                                      Melhor caso: trocas(n) = 0
      vetor[i+1]=aux;
                                   T(n) = (n-1)^2 + 0 = n^2 - 2n + 1 = O(n^2)
```

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
      aux = vetor[i];
      vetor[i] = vetor[i+1];
      vetor[i+1]=aux;
```

Iteração	Qtde. de trocas
1	n-1
2	n-2
3	n-3
4	n-4
n-1	n- $(n$ - $1) = 1$

Quantas trocas são realizadas?

Pior caso (ordem inversa): (n(n-1))/2

```
void bubblesort (int vetor[], int n){
 int i, iteracao, aux;
 /*controle do número de iterações (n-1)*/
 for (iteracao = 0; iteracao < n-1; iteracao++)
   /*repeticao interna, percorrimento do vetor (n-1)*/
   for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      /*Troca quando necessário*/
                                            comparações(n) = (n-1)^2
      aux = vetor[i];
      vetor[i] = vetor[i+1];
                                           Pior caso: trocas(n) = \frac{n(n-1)}{2}
      vetor[i+1]=aux;
                             T(n) = (n-1)^2 + \frac{n(n-1)}{2} = \frac{3n^2 - 5n + 2}{2} = O(n^2)
```

- Questões:
 - O método é estável?

Questões:

- O método é estável?
 - Sim. A ordem relativa dos elementos iguais são mantidas.

Questões:

- O método é estável?
 - Sim. A ordem relativa dos elementos iguais são mantidas.
- O algoritmo apresentado pode ser melhorado?

Questões:

- O método é estável?
 - Sim. A ordem relativa dos elementos iguais são mantidas.
- O algoritmo apresentado pode ser melhorado?
 - Sim. Elementos já ordenados não precisam ser novamente comparados

```
for (iteracao = n-1; interacao > 0; iteracao--)
for (i = 0; i < iteracao; i++)
...
```

Questões:

- O método é estável?
 - Sim. A ordem relativa dos elementos iguais são mantidas.
- O algoritmo apresentado pode ser melhorado?
 - Sim. Elementos já ordenados não precisam ser novamente comparados

```
for (iteracao = n-1; interacao > 0; iteracao--)
for (i = 0; i < iteracao; i++)
...
```

Se não houver trocas em uma iteração, o vetor já está ordenado e o algoritmo pode ser encerrado

```
void bubblesort2 (int vetor[], int n){
 int i, iteracao, aux, troca;
 for (iteracao = n-1; iteracao > 0; iteracao--)
    troca = 0;
    for (i=0; i < iteracao; i++)
     if (vetor[i] > vetor[i+1]) {
      aux = vetor[i];
      vetor[i] = vetor[i+1];
      vetor[i+1]=aux;
      troca = 1:
    if (troca == 0)
      break;
```

```
void bubblesort2 (int vetor[], int n){
 int i, iteracao, aux, troca;
 for (iteracao = n-1; iteracao > 0; iteracao--)
    troca = 0:
    for (i=0; i < iteracao; i++)
     if (vetor[i] > vetor[i+1]) {
      aux = vetor[i];
       vetor[i] = vetor[i+1];
       vetor[i+1]=aux;
       troca = 1;
    if (troca == 0)
      break:
```

n elementos

Melhor caso: 1 iteração Pior caso: (*n-1*) iterações

iteracao comparações (varia a cada iteração)

Melhor caso: $g(n) = n-1 = \Omega(n)$ Pior caso: $g(n) = (n^2-n)/2 = O(n^2)$

Ordenação por "seleção" (selection sort)

Um dos algoritmos mais simples de ordenação

- Selecione o menor elemento da região não ordenada
- Troque-o com o 1º elemento dessa região
- Repita esse processo até restar um único elemento na região não ordenada

Ordenação por "seleção" (selection sort)

Um dos algoritmos mais simples de ordenação

- Selecione o menor elemento da região não ordenada
- Troque-o com o 1º elemento dessa região
- Repita esse processo até restar um único elemento na região não ordenada
- Recomendado para pequenos conjuntos de dados e para arquivos com registros grandes
 - Devido ao seu comportamento na troca de registros

Ordenação por "seleção" (selection sort)

Um dos algoritmos mais simples de ordenação

- Selecione o menor elemento da região não ordenada
- Troque-o com o 1º elemento dessa região
- Repita esse processo até restar um único elemento na região não ordenada
- Recomendado para pequenos conjuntos de dados e para arquivos com registros grandes
 - Devido ao seu comportamento na troca de registros
- Não indicado para grandes conjuntos e arquivos já ordenados

Iteração

Início 8 5 4 3 6

Início 8 5 4 3 6 8 5 4 3 6 2 3 5 4 8 6 3 5 4 8 6 3 3 4 5 8 6

Início 8 5 4 3 6 8 5 4 3 6 2 3 5 4 8 6 3 5 4 8 6 3 3 4 5 8 6 3 4 5 8 6

Início 8 5 4 3 6 2 3 5 4 8 6 3 3 4 5 8 6 4 3 4 5 6 8 Menor elemento 8 5 4 3 6 3 5 4 8 6 3 4 5 8 6

Selection sort: implementação

```
void selectionsort (int vetor[], int n) {
 int i, iteracao, aux, menor;
 // Controle do número de iterações
 for (iteracao = 0; iteracao < n-1; iteracao++) {</pre>
   // Busca o menor elemento
   menor = iteracao;
   for (i=iteracao+1; i < n; i++)
     if (vetor[i] < vetor[menor])</pre>
      menor = i:
    // Troca os elementos
    if (iteracao != menor) {
      aux = vetor[iteracao];
      vetor[iteracao] = vetor[menor];
      vetor[menor] = aux;
```

Selection sort : implementação

```
void selectionsort (int vetor[], int n) {
 int i, iteracao, aux, menor;
// Controle do número de iterações
 for (iteracao = 0; iteracao < n-1; iteracao++) {
   // Busca o menor elemento
   menor = iteracao;
   for (i=iteracao+1; i < n; i++)
     if (vetor[i] < vetor[menor])</pre>
      menor = i:
    // Troca os elementos
    if (iteracao != menor) {
      aux = vetor[iteracao];
      vetor[iteracao] = vetor[menor];
      vetor[menor] = aux;
```

Propriedades:

- Ordenação NÃO estável
- $O(n^2)$ para comparações: $g(n) = (n^2-n)/2$
- \triangleright **O**(*n*) para trocas: g(n) = n
- O(1) para espaço extra

Ordenação por "inserção" (insertion sort)

Algoritmo de ordenação simples baseado na organização de cartas de baralho na mão

Ordenação por "inserção" (insertion sort)

Algoritmo de ordenação simples baseado na organização de cartas de baralho na mão

- Selecione um elemento por vez da região não ordenada
- Coloque-o na posição correta em relação aos elementos já ordenados
- Repita esse processo para todos os elementos

Ordenação por "inserção" (insertion sort)

Algoritmo de ordenação simples baseado na organização de cartas de baralho na mão

Ideia:

- Selecione um elemento por vez da região não ordenada
- Coloque-o na posição correta em relação aos elementos já ordenados
- Repita esse processo para todos os elementos

Indicado para:

- Conjuntos pequenos de dados
- Arquivos quase ordenados
 - Devido à quantidade de comparações exigidas

Analogia com as cartas de baralho:

Distribuição das cartas: Organização na mão:

Recebe a carta 10 10

Analogia com as cartas de baralho:

Distribuição das cartas: Organização na mão:

Recebe a carta 10

Recebe a carta 5 5 10

Analogia com as cartas de baralho:

	~	~
Distribuição das cartas:	Organização na	maai
1715111011110111011010101010101010101010	CHOAINZAGAO NA	11140
Bioti ibaigao aao cai tac.	Organização na	.
3	O 3	

Recebe a carta 10 10

Recebe a carta 5 5 10

Recebe a carta 4 4 5 10

Analogia com as cartas de baralho:

	4 -	-	~	•	4	
1	+ 6 .	hii/		$\Delta \Delta \Delta$	AARTACI	
			\mathbf{A}			
		NGIL	JUU	MUJ	cartas:	
		-				

Recebe a carta 10

Recebe a carta 5

Recebe a carta 4

Recebe a carta 3

Organização na mão:

10

5 10

4 5 10

3 4 5 10

Analogia com as cartas de baralho:

Distribuição das cartas:

Recebe a carta 10

Recebe a carta 5

Recebe a carta 4

Recebe a carta 3

Recebe a carta 6

Organização na mão:

10

5 10

4 5 10

3 4 5 10

3 4 5 6 10

Analogia com as cartas de baralho:

	~	~
Distribuição das cartas:	Organização na	max
17151110111CAO 0AS CANAS	CHOAIIIZAGAO HA	1114()
Distribuious aus surtus.	Organização na	11140.
3		

Recebe a carta 15 10

Recebe a carta 5 5 10

Recebe a carta 4 4 5 10

Recebe a carta 3 **3** 4 5 10

Recebe a carta 6 3 4 5 6 10

Questão: como fazer esse procedimento em um vetor dado que não há uma visão global dos elementos?

- Solução: comparar com os elementos já ordenados
 - Percorrer na ordem contrária (da direita para a esquerda)
 - Garante eficiência (pára sem verificar todos) e estabilidade

- Solução: comparar com os elementos já ordenados
 - Percorrer na ordem contrária (da direita para a esquerda)
 - Garante eficiência (pára sem verificar todos) e estabilidade

```
        Iteração

        Organização

        Início
        8 5 4 6 9

        5 8 4 6 9
```

- Solução: comparar com os elementos já ordenados
 - Percorrer na ordem contrária (da direita para a esquerda)
 - Garante eficiência (pára sem verificar todos) e estabilidade

- Solução: comparar com os elementos já ordenados
 - Percorrer na ordem contrária (da direita para a esquerda)
 - Garante eficiência (pára sem verificar todos) e estabilidade

- Solução: comparar com os elementos já ordenados
 - Percorrer na ordem contrária (da direita para a esquerda)
 - Garante eficiência (pára sem verificar todos) e estabilidade

- Solução: comparar com os elementos já ordenados
 - Percorrer na ordem contrária (da direita para a esquerda)
 - Garante eficiência (pára sem verificar todos) e estabilidade

Insertion sort: implementação

```
void insertionsort (int vetor[], int n) {
 int i, iteracao, elem;
 // Controle do número de iterações
 for (iteracao = 1; iteracao < n; iteracao++) {</pre>
   // Busca posicao do elemento
    elem = vetor[iteracao];
   i = iteracao-1;
    while (i \ge 0 \&\& vetor[i] > elem) {
      vetor[i+1] = vetor[i];
      j--;
    // Posiciona elemento
    vetor[i+1] = elem;
```

Insertion sort : implementação

```
void insertionsort (int vetor[], int n) {
 int i, iteracao, elem;
// Controle do número de iterações
 for (iteracao = 1; iteracao < n; iteracao++) {</pre>
   // Busca posicao do elemento
   elem = vetor[iteracao];
   i = iteracao-1;
   while (i \ge 0 \&\& vetor[i] > elem) {
      vetor[i+1] = vetor[i];
      j--;
   // Posiciona elemento
    vetor[i+1] = elem;
```

n elementos

(**n−1**) iterações

Melhor caso: 1 comparação Pior caso: (*n-1*) comparações

Melhor caso: $g(n) = n-1 = \Omega(n)$ **Pior caso:** $g(n) = (n^2-n)/2 = O(n^2)$

Algoritmo de ordenação eficiente que utiliza a estratégia "dividir para conquistar"

- Algoritmo de ordenação eficiente que utiliza a estratégia "dividir para conquistar"
- Ideia: núcleo do método está na partição de uma lista não ordenada
 - A partição rearranja os elementos de uma lista L[1...n] e devolve um índice $i \in \{1...n\}$, tal que:

$$L[1...i-1] \le L[i] \le L[i+1...n]$$

- Algoritmo de ordenação eficiente que utiliza a estratégia "dividir para conquistar"
- Ideia: núcleo do método está na partição de uma lista não ordenada
 - A partição rearranja os elementos de uma lista L[1...n] e devolve um índice $i \in \{1...n\}$, tal que:

$$L[1...i-1] \le L[i] \le L[i+1...n]$$

O elemento v = L[i] é chamado de pivô

- Vantagem: excelente desempenho
 - Forma mais rápida ordenação baseada em comparações de arranjos
 - \triangleright Se bem implementado, executa quase sempre em $\theta(n \log n)$
 - No pior caso pode executar em tempo $O(n^2)$

- Vantagem: excelente desempenho
 - Forma mais rápida ordenação baseada em comparações de arranjos
 - \triangleright Se bem implementado, executa quase sempre em $\theta(n \log n)$
 - No pior caso pode executar em tempo $O(n^2)$

Desvantagens:

- Implementação recursiva
- Não é estável
- Ineficiente para listas ordenadas ou quando pivô é mal escolhido
 - Partições extremamente desiguais

Algoritmo:

I. Iniciar com uma lista L de n itens

Algoritmo:

- I. Iniciar com uma lista L de n itens
- 2. Escolher um item pivô v, dentre os elementos de L

Algoritmo:

- Iniciar com uma lista L de n itens
- 2. Escolher um item pivô v, dentre os elementos de L
- 3. Particionar L em duas listas não ordenadas: L1 e L2
 - L1: conterá todas as chaves menores que v
 - L2: conterá todas as chaves maiores que v
 - Elementos iguais a v podem fazer parte de L1 ou L2
 - O pivô v não faz parte de nenhuma das duas listas

Algoritmo:

- I. Iniciar com uma lista L de n itens
- 2. Escolher um item pivô v, dentre os elementos de L
- 3. Particionar L em duas listas não ordenadas: L1 e L2
 - L1: conterá todas as chaves menores que v
 - L2: conterá todas as chaves maiores que v
 - Elementos iguais a v podem fazer parte de L1 ou L2
 - O pivô v não faz parte de nenhuma das duas listas

4. Ordenar:

- 1. LI recursivamente, obtendo a lista ordenada SI
- 2. L2 recursivamente, obtendo a lista ordenada S2

Algoritmo:

- I. Iniciar com uma lista L de n itens
- 2. Escolher um item pivô v, dentre os elementos de L
- 3. Particionar L em duas listas não ordenadas: LI e L2
 - L1: conterá todas as chaves menores que v
 - L2: conterá todas as chaves maiores que v
 - Elementos iguais a v podem fazer parte de L1 ou L2
 - O pivô v não faz parte de nenhuma das duas listas

4. Ordenar:

- 1. LI recursivamente, obtendo a lista ordenada SI
- 2. L2 recursivamente, obtendo a lista ordenada S2
- 5. Concatenar S1, v, S2 produzindo a lista ordenada S

- Considerando o pivô como o 1º elemento da lista
- Na fase de partição formaremos duas sub-listas: *L1* e *L2*

	4	7	I	5	9	3	0
LI	I	3	0				
L2	7	5	9				

- Considerando o pivô como o 1º elemento da lista
- ▶ Na fase de partição formaremos duas sub-listas: L1 e L2

	4	7	I	5	9	3	0
LI	I	3	0				
L2	7	5	9				

- ▶ *L1* é particionada recursivamente
- Como alcançamos o caso base, as sub-listas são concatenadas

	I	3	0
LI.I	0		
L1.2	3		
SI	0	I	3

	4	7	I	5	9	3	0
SI	0	- 1	3				
L2	7	5	9				

	4	7	I	5	9	3	0
SI	0	I	3				
L2	7	5	9				

- ▶ *L2* é particionada recursivamente
- Como alcançamos o caso base, as sub-listas são concatenadas

	7	5	9
L2.1	5		
L2.2	9		
S2	5	7	9

	4	7	I	5	9	3	0
SI	0	I	3				
S2	5	7	9				

 As sub-listas retornadas em cada iteração recursiva são concatenadas até obter a lista ordenada S

	0	I	3	4	5	7	9
L							

Considere um arranjo de números ordenados:

Qual é o custo em tempo de execução do algoritmo?

Considere um arranjo de números ordenados:

|--|

- Qual é o custo em tempo de execução do algoritmo?
 - \rightarrow O(n^2)
 - Neste caso, usar o 1º elemento como pivô não é uma boa estratégia

	0	I	3	4	5	7	9
LI							
L2		3	4	5	7	9	

Quick sort: escolha do pivô

- A escolha do pivô afeta significativamente o desempenho do algoritmo
 - Fase de partição é a parte crítica
- Existem várias estratégias possíveis:
 - ▶ 1º elemento
 - Elemento do meio
 - Elemento mais próximo da média
 - Mediana
 - Entre outros

	I	2	3	4	3	2	I
LI	I	2	3	3	2	I	
L2							

	I	2	3	4	3	2	Ι
LI	l	2	3	3	2	I	
L2							

	I	2	3	3	2	I
LI.I	I	2	2			
L1.2	3					

	I	2	3	4	3	2	Ι
LI	l	2	3	3	2	I	
L2							

	I	2	3	3	2	I
LI.I	I	2	2	I		
L1.2	3					

	I	2	2	I
L1.1.1	I	I		
L1.1.2	2			

	I	2	3	4	3	2	Ι
LI	l	2	3	3	2	I	
L2							

	I	2	3	3	2	I
LI.I	I	2	2			
L1.2	3					

	I	2	2	I
L1.1.1	I	I		
L1.1.2	2			

		I	I
LI.	1.1.1	I	
LI.	1.1.2		

	1	I
L1.1.1.1	I	
L1.1.1.2		
\$1.1.1	I	I

	Ι	I
L1.1.1.1	I	
L1.1.1.2		
\$1.1.1	T	1

	I	2	2	I
\$1.1.1	I	I		
\$1.1.2	2			
\$1.1	I	I	2	2

	1	I
L1.1.1.1	I	
L1.1.1.2		
\$1.1.1	I	I

	l	2	2	I
\$1.1.1	I	I		
\$1.1.2	2			
\$1.1	I	I	2	2

	I	2	3	3	2	I
\$1.1	I		2	2		
S1.2	3					
SI	I	I	2	2	3	3

	I	2	3	3	2	Ι
\$1.1	I	I	2	2		
\$1.2	3					
SI	- 1	1	2	2	3	3

	I	2	3	4	3	2	I
SI	I	I	2	2	3	3	
S2							
S	I	I	2	2	3	3	4

Quick sort: escolha do pivô

- Para a escolha do pivô mais adequado é necessário conhecer a distribuição dos dados
 - Usa o elemento mais adequado à distribuição

Quick sort: escolha do pivô

- Para a escolha do pivô mais adequado é necessário conhecer a distribuição dos dados
 - Usa o elemento mais adequado à distribuição
- Se a distribuição não é conhecida, a escolha deve ser aleatória
 - Na média, gera uma partição na proporção 1/4 e 3/4
 - Se essa proporção ocorrer em metade das partições, o tempo de execução esperado é θ(n log n)

Quick sort: escolha do pivô

Mediana de três:

 Estratégia aleatória usada para aumentar as chances de obter o custo θ(n log n)

Quick sort: escolha do pivô

Mediana de três:

- Estratégia aleatória usada para aumentar as chances de obter o custo O(n log n)
- Ideia: escolher 3 elementos aleatórios e adotar como pivô o elemento central (mediana entre os 3)

Quick sort: escolha do pivô

Mediana de três:

- Estratégia aleatória usada para aumentar as chances de obter o custo O(n log n)
- Ideia: escolher 3 elementos aleatórios e adotar como pivô o elemento central (mediana entre os 3)
- Indicada apenas na ordenação de listas grandes
 - Para listas pequenas deve-se usar a escolha aleatória simples
 - □ O custo da estratégia não compensa

Quick sort em listas encadeadas

- Vantajoso tratar o problema como a partição em 3 listas:
 - L1 contendo chaves menores que o pivô
 - L2 contendo chaves maiores que o pivô
 - Lv contendo chaves iguais ao pivô
- Ordenação é feita apenas em L1 e L2
 - Lv não precisa ser ordenado
- A concatenação é realizada na forma: S1 → Lv → S2

	5	7	5	0	6	5	5
LI	0						
L2	7	6					
Lv	5	5	5	5			

Quick sort em arranjos (listas sequenciais)

- Algoritmo realiza ordenação in-place
 - Utiliza movimentações dentro do próprio arranjo
 - NÃO usa de memória auxiliar
- Deve-se considerar as características do problema para evitar casos de execução quadrática
 - Mesmo algoritmos de livros podem ser lentos

Quick sort em arranjos

Problema: Dado um arranjo A, ordene os itens de A[p] até A[r]

Algoritmo:

- Escolha um pivô v e substitua-o pelo último item (A[r])
- ▶ Crie 2 variáveis de controle: i = p-1 e j = r

3	8	4	0	9	7	5
Р		٧				r
3	8	5	0	9	7	4
						j

 O arranjo será ordenado para as posições maiores que i e menores que j

Quicksort em arranjos: algoritmo

Invariantes:

- Elementos à esquerda de i são menores ou iguais ao pivô
- Elementos à direita de j são maiores ou iguais ao pivô

Operações:

- Incrementar i até encontrar chave maior ou igual ao pivô
- Decrementar j até encontrar chave menor ou igual ao pivô
- ▶ Trocar itens A[i] e A[j]
- Parar quando i ≥ j
- Substituir o pivô com o elemento na posição i

Quick sort : implementação

```
int quicksort(int a[], int p, int r) {
 int t;
 if (p < r) {
   int v = (rand()\%(r-p))+p;
   int pivo = a[v]; a[v] = a[r]; a[r] = pivo; // Opcional
   int i = p-1; int j = r;
   do {
         do { i++; } while (a[i] < pivo);
         do { j--; } while ((a[j] > pivo) && (j > p));
         if (i < j) \{t = a[i]; a[i] = a[j]; a[j] = t;\} // troca i com j
  } while (i<i);
   a[r] = a[i]; a[i] = pivo; // Opcional
   // chamadas recursivas
   quicksort(a, p, i-1); quicksort(a, i+1, r);
```

- O desempenho do algoritmo está relacionado como a divisão em subproblemas
 - Pior caso: gera-se uma partição de tamanho *n-1* e outra de tamanho 0 em todas as chamadas recursivas
 - Melhor caso: o problema é dividido ao meio, ou seja, uma partição tem tamanho floor(n/2) e outra ceil(n/2)-1
 - Caso médio: se aproxima do melhor caso

```
void quicksort(int a[], int p, int r) {
 int t;
 if (p < r) {
   int v = (rand()\%(r-p))+p; // escolhe pivo aleatoriamente
   int pivo = a[v];
   a[v] = a[r]; a[r] = pivo; // troca pivo e ultimo elemento
   int i = p-1; int j = r;
   do {
                                                                                               Processo de
    do { i++;} while (a[i] < pivo);
                                                                                               divisão do vetor
    do { j--;} while ((a[j] > pivo) && (j > p));
                                                                                               percorre todo
    if (i < j){
                                                                                               vetor \theta(n)
      t = a[i], a[i] = a[i], a[i] = t; // troca i com i
  } while (i<j);
  a[r] = a[i], a[i] = pivo;
  quicksort(a, p, i-1);
  quicksort(a, i+1, r);
```

```
void quicksort(int a[], int p, int r) {
 int t;
 if (p < r) {
   int v = (rand()\%(r-p))+p; // escolhe pivo aleatoriamente
   int pivo = a[v];
   a[v] = a[r]; a[r] = pivo; // troca pivo e ultimo elemento
   int i = p-1; int j = r;
   do {
                                                                                                      Processo de
     do { i++;} while (a[i] < pivo);
                                                                                                      divisão do vetor
     do { j--;} while ((a[j] > pivo) && (j > p));
                                                                                                      percorre todo
    if (i < j){
                                                                                                      vetor \theta(n)
      t = a[i], a[i] = a[i], a[i] = t; // troca i com i
  } while (i<j);
  \underline{a[r]} = \underline{a[i]}, \underline{a[i]} = \underline{pivo};
                                                                                                     Tempo da 1ª parte
  quicksort(a, p, i-1);
  quicksort(a, i+1, r);
```

```
void quicksort(int a[], int p, int r) {
 int t;
 if (p < r) {
   int v = (rand()\%(r-p))+p; // escolhe pivo aleatoriamente
   int pivo = a[v];
   a[v] = a[r]; a[r] = pivo; // troca pivo e ultimo elemento
   int i = p-1; int j = r;
   do {
     do { i++;} while (a[i] < pivo);
                                                                                                    Processo de
     do { j--;} while ((a[j] > pivo) && (j > p));
                                                                                                    divisão do vetor
     if (i < i)
                                                                                                    percorre todo
      t = a[i], a[i] = a[i], a[i] = t; // troca i com i
                                                                                                    vetor \theta(n)
  } while (i<j);
  \underline{a[r]} = \underline{a[i]}, \underline{a[i]} = \underline{pivo};
                                                                                                    Tempo da 1<sup>a</sup> parte
  quicksort(a, p, i-1);
  quicksort(a, i+1, r);
                                                                                                   Tempo da 2ª parte
```

```
void quicksort(int a[], int p, int r) {
                                                                                                           Pior
 int t;
                                                                                                           caso
 if (p < r) {
   int v = (rand()\%(r-p))+p; // escolhe pivo aleatoriamente
   int pivo = a[v];
   a[v] = a[r]; a[r] = pivo; // troca pivo e ultimo elemento
   int i = p-1; int j = r;
   do {
                                                                                                      Processo de
     do { i++;} while (a[i] < pivo);
                                                                                                      divisão do vetor
     do { j--;} while ((a[j] > pivo) && (j > p));
                                                                                                      percorre todo
    if (i < j){
                                                                                                      vetor \theta(n)
      t = a[i], a[i] = a[i], a[i] = t; // troca i com i
  } while (i<j);
  \underline{a[r]} = \underline{a[i]}, \underline{a[i]} = \underline{pivo};
                                                                                                   primeira parte: T(n-1)
  quicksort(a, p, i-1);
  quicksort(a, i+1, r);
                                                                                                   segunda parte: \theta
```

```
void quicksort(int a[], int p, int r) {
                                                                                                          Pior
 int t;
                                                                                                          caso
 if (p < r) {
   int v = (rand()\%(r-p))+p; // escolhe pivo aleatoriamente
   int pivo = a[v];
                                                                                              T(n) = T(n-1) + \theta(n)
   a[v] = a[r]; a[r] = pivo; // troca pivo e ultimo elemento
                                                                                                   \approx O(n^2)
   int i = p-1; int j = r;
   do {
                                                                                                     Processo de
     do { i++;} while (a[i] < pivo);
                                                                                                     divisão do vetor
     do { j--;} while ((a[j] > pivo) && (j > p));
                                                                                                    percorre todo
    if (i < j){
                                                                                                    vetor \theta(n)
      t = a[i], a[i] = a[i], a[i] = t; // troca i com i
  } while (i<j);
  \underline{a[r]} = \underline{a[i]}, \underline{a[i]} = \underline{pivo};
                                                                                                  primeira parte: T(n-1)
  quicksort(a, p, i-1);
  quicksort(a, i+1, r);
                                                                                                  segunda parte: \theta
```

```
void quicksort(int a[], int p, int r) {
                                                                                                        Melhor
 int t;
                                                                                                          caso
 if (p < r) {
   int v = (rand()\%(r-p))+p; // escolhe pivo aleatoriamente
   int pivo = a[v];
   a[v] = a[r]; a[r] = pivo; // troca pivo e ultimo elemento
   int i = p-1; int j = r;
   do {
                                                                                                    Processo de
     do { i++;} while (a[i] < pivo);
                                                                                                    divisão do vetor
     do { j--;} while ((a[j] > pivo) && (j > p));
                                                                                                    percorre todo
    if (i < j){
                                                                                                    vetor \theta(n)
      t = a[i], a[i] = a[i], a[i] = t; // troca i com i
  } while (i<j);
  \underline{a[r]} = \underline{a[i]}, \underline{a[i]} = \underline{pivo};
                                                                                                  primeira parte: T(n/2)
  quicksort(a, p, i-1);
  quicksort(a, i+1, r);
                                                                                                  segunda parte: T(n/2)
```

```
void quicksort(int a[], int p, int r) {
                                                                                                      Melhor
 int t;
                                                                                                        caso
 if (p < r) {
   int v = (rand()\%(r-p))+p; // escolhe pivo aleatoriamente
   int pivo = a[v];
                                                                                            T(n) = 2T(n/2) + \theta(n)
   a[v] = a[r]; a[r] = pivo; // troca pivo e ultimo elemento
                                                                                                  \approx O(n \log n)
   int i = p-1; int j = r;
   do {
                                                                                                   Processo de
     do { i++;} while (a[i] < pivo);
                                                                                                   divisão do vetor
     do { j--;} while ((a[j] > pivo) && (j > p));
                                                                                                   percorre todo
    if (i < i)
                                                                                                   vetor \theta(n)
      t = a[i], a[i] = a[i], a[i] = t; // troca i com i
  } while (i<j);
  \underline{a[r]} = \underline{a[i]}, \underline{a[i]} = \underline{pivo};
                                                                                                 primeira parte: T(n/2)
  quicksort(a, p, i-1);
  quicksort(a, i+1, r);
                                                                                                segunda parte: T(n/2)
```

OUTROS ALGORITMOS

Ordenação por "mistura" (*merge sort*)

Ordenação também baseada no "dividir para conquistar"

Ideia:

- Particiona repetidamente o conjunto de dados até que cada subconjunto tenha apenas 1 elemento
- Intercala duas partições menores a fim de obter um subconjunto maior e ordenado, até restar um único conjunto

Ordenação por "mistura" (*merge sort*)

Ordenação também baseada no "dividir para conquistar"

ldeia:

- Particiona repetidamente o conjunto de dados até que cada subconjunto tenha apenas 1 elemento
- Intercala duas partições menores a fim de obter um subconjunto maior e ordenado, até restar um único conjunto

Vantagem:

Excelente desempenho: $O(n \log n)$ no melhor e pior casos

Ordenação por "mistura" (*merge sort*)

Ordenação também baseada no "dividir para conquistar"

ldeia:

- Particiona repetidamente o conjunto de dados até que cada subconjunto tenha apenas 1 elemento
- Intercala duas partições menores a fim de obter um subconjunto maior e ordenado, até restar um único conjunto

Vantagem:

Excelente desempenho: O(n log n) no melhor e pior casos

Desvantagens:

- Implementação recursiva
- Precisa de vetor auxiliar (> custo de memória)

5 2 4 7 1 3 2 6

vetor original

Merge sort : implementação

```
void mergesort (int vetor[], int ini, int fim) {
 if (inicio < fim) {</pre>
    int meio = floor((inicio+fim)/2);
    mergesort(vetor, inicio, meio);
    mergesort(vetor, meio+1, fim);
    intercala(vetor, inicio, meio, fim);
```

Merge sort : implementação

```
void mergesort (int vetor[], int ini, int fim) {
 if (inicio < fim) {</pre>
   int meio = floor((inicio+fim)/2);
   mergesort(vetor, inicio, meio);
                                                Chama a função para as 2 partições
   mergesort(vetor, meio+1, fim);
                                                       (passo recursivo)
   intercala(vetor, inicio, meio, fim);
```

Merge sort : implementação

```
void mergesort (int vetor[], int ini, int fim) {
 if (inicio < fim) {</pre>
    int meio = floor((inicio+fim)/2);
    mergesort(vetor, inicio, meio);
                                                Chama a função para as 2 partições
    mergesort(vetor, meio+1, fim);
                                                        (passo recursivo)
                                                Mescla as 2 partições a fim de
    intercala(vetor, inicio, meio, fim);
                                                    garantir a ordenação
```

Merge sort: implementação

```
void intercala (int *vetor, int ini, int meio, int fim) {
 int p1 = ini, p2 = meio+1, fim1 = 0, fim2 = 0;
 int tamanho = fim - ini + 1;
 int *vaux = (int*) malloc(tamanho*sizeof(int));
 if (vaux != NULL) {
   int i, j, k;
                                                      else {
   // Intercala em um vetor aux
                                                        if (! fim1)
   for (i=0; i < tamanho; i++)
                                                          vaux[i] = vetor[p1++];
                                                       else
     if (! fim1 && ! fim2) {
                                                          vaux[i] = vetor[p2++];
       if (vetor[p1] < vetor[p2])
          vaux[i] = vetor[p1++];
                                                    // Copia vetor aux para o original
       else
                                                    for (j=0, k=ini; j < tamanho; j++, k++)
          vaux[i] = vetor[p2++];
                                                      vetor[k] = vaux[i];
       if (p1 > meio) fim1 = 1;
       if (p2 > fim) fim2 = 1;
                                                  free(vaux);
```

Merge sort : análise do algoritmo

Qual é a complexidade assintótica do algoritmo?

Merge sort : análise do algoritmo

Qual é a complexidade assintótica do algoritmo?

Resposta depende da análise do tempo gasto:

Particionamento do arquivo (divisão)

Merge sort : análise do algoritmo

Qual é a complexidade assintótica do algoritmo?

Resposta depende da análise do tempo gasto:

Particionamento do arquivo (divisão)

Intercalação das partições

Merge sort : análise da intercalação

Merge sort : análise da divisão

Merge sort : análise da divisão

Merge sort : análise da divisão

Merge sort : análise do algoritmo

- Complexidade assintótica:
 - Divisão é feita em O(log n)
 - Cada nível de intercalação é feita em O(n)
 - Custo total = $O(n) \times O(\log n) = O(n \log n)$

Merge sort : análise do algoritmo

 $cn \log_2 n \approx O(n \log n)$

Resumo (http://bigocheatsheet.com/)

Array Sorting Algorithms

Algorithm	Time Complexity			Space Complexity
	Best	Average	Worst	Worst
Quicksort	O(n log(n))	O(n log(n))	0(n^2)	0(log(n))
Mergesort	O(n log(n))	O(n log(n))	O(n log(n))	O(n)
Bubble Sort	0(n)	O(n^2)	O(n^2)	0(1)
Insertion Sort	O(n)	O(n^2)	0(n^2)	0(1)
Selection Sort	O(n^2)	O(n^2)	0(n^2)	0(1)

Obs: O(n) é obtida na versão modificada do *bubble sort* que verifica se não houve trocas na iteração, aplicada sobre um vetor já ordenado

Bucket sort

 Algoritmo simples para ordenação de números inteiros

Ideia:

- Cada elemento é representado por uma posição em um arranjo (vetor de recipientes)
 - As repetições de um mesmo número são acumuladas em um recipiente
- Ao final, o conteúdo de cada recipiente é lido de modo sequencial e seu índice é usado para preencher o vetor de saída (vetor ordenado)
 - Valor indica a qtde de vezes que o índice será usado

Bucket sort: implementação

```
void bucketsort (int *vetor, int n, int w){
        int *vaux = (int *) malloc((w)*sizeof(int));
        if (vaux) {
          // Preenchimento dos recipientes
           for(int i =0; i < n; i++)
                  vaux[vetor[i]]++;
          // Leitura dos recipientes em ordem
          int i = 0;
           for(int \ j = 0; \ j < w; \ j++)
              while(vaux[j] > 0) {
                  vaux[j] = vaux[j]-1;
                  vetor[i] = j;
                 i=i+1:
                                                    w é o tamanho máximo
                                                    dos números
```

Bucket sort: complexidades

- Complexidade de tempo:
 - Cada número é avaliado uma única vez
 - Custo O(n)

Bucket sort: complexidades

Complexidade de tempo:

- Cada número é avaliado uma única vez
- Custo O(n)

Complexidade de espaço:

- Viável apenas para inteiros ou números com poucas casas decimais
- Cresce com a faixa de valores considerada
- Ex: Se w é a qtde. máxima de algarismos dos números, então a complexidade é O(10^w)

Bucket sort : complexidade de espaço

- Ex: ordenação de 40 milhões de transações finaceiras
 - Se 1% das transações forem superiores a 1 milhão de reais, então é viável usar 2 algoritmos de ordenação:
 - Transações de até 1 milhão bucket sort (4 segundos)
 - Transações superiores bubble sort (2,5 minutos)

Bucket sort : complexidade de espaço

- Ex: ordenação de 40 milhões de transações finaceiras
 - Se 1% das transações forem superiores a 1 milhão de reais, então é viável usar 2 algoritmos de ordenação:
 - Transações de até 1 milhão bucket sort (4 segundos)
 - Transações superiores bubble sort (2,5 minutos)
- Balanceamento de complexidades:
 - Bucket sort: complexidade de tempo baixa e complexidade de espaço alta
 - Bubble sort: complexidade de tempo alta e complexidade de espaço baixa

Exercícios

- 1. Comparar os métodos de ordenação (exceto o *bucket sort*) em termos de tempo de execução, de número de comparações e de número de trocas.
- 2. Faça a análise empírica dos métodos de ordenação (exceto o *bucket sort*), utilizando arranjos de 100, 1000 e 10000 números inteiros entre 0 e 500. Considere 3 configurações:
 - Arranjo com elementos em ordem crescente
 - Arranjo com elementos em ordem decrescente
 - Arranjo com elementos em ordem aleatória
- 3. Faça uma implementação recursiva dos métodos de ordenção simples (bolha, seleção e inserção). Analise a complexidade dessas implementações.

Exercícios

- 5. Modifique o algoritmo do *quick sort* de modo a adotar a ordenação por inserção quando uma partição tiver tamanho abaixo de s. Por fim, determine através de uma análise empírica qual valor de s deve ser adotado para alcançar a melhor eficiência.
- Os algoritmos apresentados realizam uma ordenação destrutiva, na qual o arranjo original é perdido, sendo substituído pelo arranjo ordenado. Uma boa alternativa é a ordenação indireta, realizada através de uma tabela auxiliar que indica a posição do elemento no arranjo original. Implemente um programa que realize esse tipo de ordenação usando o método select sort.
- 7. Pesquise e implemente o método shell sort. Depois, faça uma análise comparativa com a ordenação por inserção.

Exercício 3: bubble sort recursivo

```
void bubble_rec (int vetor[], int n){
 int i, aux, troca = 0;
    for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      aux = vetor[i];
       vetor[i] = vetor[i+1];
      vetor[i+1] = aux;
      troca = 1;
    if (troca != 0)
      bubble_rec (n-1, vetor);
```

Exercício 3: bubble sort recursivo

```
void bubble_rec (int vetor[], int n){
 int i, aux, troca = 0;
    for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      aux = vetor[i];
                                                Iteração mais interna
      vetor[i] = vetor[i+1];
                                      (comparação dos pares de elementos)
      vetor[i+1] = aux;
      troca = 1;
    if (troca != 0)
      bubble_rec (n-1, vetor);
```

Exercício 3: bubble sort recursivo

```
void bubble_rec (int vetor[], int n){
 int i, aux, troca = 0;
    for (i=0; i < n-1; i++)
     if (vetor[i] > vetor[i+1]) {
      aux = vetor[i];
                                                Iteração mais interna
      vetor[i] = vetor[i+1];
                                      (comparação dos pares de elementos)
      vetor[i+1] = aux;
      troca = 1;
    if (troca != 0)
                                                   Passo recursivo
      bubble_rec (n-1, vetor);
                                        (existência de trocas na iteração)
```

Bibliografia

- Slides adaptados do material do Prof. Dr. Bruno Travençolo, do Prof. Autran Macêdo e da Profa. Dra. Denise Guliato.
- BACKES, A. Linguagem C Descomplicada: portal de vídeo-aulas para estudo de programação. Disponível em: https://programacaodescomplicada.wordpress.com/indice/ estrutura-de-dados/
- CORMEN, T.H. et al. Algoritmos: Teoria e Prática, Campus, 2002
- ZIVIANI, N. Projeto de algoritmos: com implementações
- ▶ ₱ Pascal e C (2ª ed.), Thomson, 2004

Bibliografia

- MORAES, C.R. Estruturas de Dados e Algoritmos: uma abordagem didática (2ª ed.), Futura, 2003
- FEOFILOFF, P. Quicksort. Disponível em: http://www.ime.usp.br/~pf/algoritmos/aula/quick.html
- SHEWCHUCK, J. Data Structures. Disponível em: http://www.cs.berkeley.edu/~jrs/61bs09/