PRINCE DR K VASUDEVAN COLLEGE OF ENGINEERING AND TECNOLOGY

Mambakkam - Medavakkam Main Rd, Ponmar, Chennai, Tamil Nadu 600127

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING.

WEB PHISHING DETECTION (ASSIGNMENT 2)

DATE : 26-09-2022

PROBLEM: PERFORM TASKS ACCORDINGLY

NAME : SIVANRAJA K

OUTPUT:

SCREENSHOTS:

1.Download the Dataset

2.Load the Dataset

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   import sklearn

Matplotlib is building the font cache; this may take a moment.

In [2]: data = pd.read_csv(r"C:\Users\ELCOT\Downloads\Churn_Modelling.csv")
```

3. Perform below Visualization

Univariate Analysis ¶

0.06 -0.05 -0.04 -8 0.03 -

In [4]: sns.histplot(data['Age'])

Out[4]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [5]: sns.boxplot(data['Age'])

C:\Users\ELCOT\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword a rg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.

warnings.warn(

Out[5]: <AxesSubplot:xlabel='Age'>

Bivariate Analysis

In [6]: sns.lineplot(data['Age'],data['Tenure'])

C:\Users\ELCOT\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[6]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [7]: sns.barplot(data['Age'],data['Tenure'])

C:\Users\ELCOT\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[7]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [8]: sns.scatterplot(data['Age'],data['Tenure'])

C:\Users\ELCOT\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[8]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

Multivariate Analysis

In [9]: sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

C:\Users\ELCOT\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword ar gs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[9]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

4.Descriptive Statistics

In [11]: data.mean()

C:\Users\ELCOT\AppData\Local\Temp\ipykernel_5452\531903386.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data means?

data.mean()

Out[11]: RowNumber 5.000500e+03 1.569094e+07 6.505288e+02 3.892180e+01 CustomerId CreditScore Age Tenure 5.012800e+00

NumOfProducts HasCrCard IsActiveMember 1.530200e+00 7.055000e-01 5.151000e-01 EstimatedSalary Exited 1.000902e+05 2.037000e-01

dtype: float64

In [12]: data.median()

C:\Users\ELCOT\AppData\Local\Temp\ipykernel_5452\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.median()

Out[12]: RowNumber CustomerId CreditScore 5.000500e+03 1.569074e+07 6.520000e+02 3.700000e+01 5.000000e+00 Balance NumOfProducts HasCrCard 9.719854e+04 1.000000e+00 1.000000e+00 IsActiveMember EstimatedSalary 1.000000e+00 1.001939e+05 Exited dtype: float64 0.000000e+00

In [13]: data.mode()

Out[13]:

	RowNumber	Customerid	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HaeCrCard	IsActiveMember	Estimated Sala
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0	1.0	24924.
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
-	***		***	***	***					***	***		
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
9998	9999	15815860	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
9999	10000	15815890	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	No.

10000 rows × 14 columns

4

5.Missing Values

```
In [14]: data.isnull().any()
Out[14]: RowNumber
                                 False
                                 False
False
           CreditScore
Geography
                                 False
                                 False
           Gender
                                 False
                                 False
           Tenure
                                 False
           Balance
NumOfProducts
                                 False
                                 False
           HasCrCard
                                 False
           IsActiveMember
           EstimatedSalary False
Exited False
           dtype: bool
In [15]: data.isnull().sum()
Out[15]: RowNumber
           CustomerId
           Surname
           CreditScore
           Geography
Gender
           Age
Tenure
           Balance
NumOfProducts
           HasCrCard
IsActiveMember
           EstimatedSalary
Exited
           dtype: int64
```

There are no missing values

6.Handling the outliners

7.Perform Encoding

8. Split into Dependent and Independent variables (X and Y)

10000 rows × 12 columns

9. Scale the Independent variables

10. Split the data into train and test