Foundations of Calculus

Ikhan Choi

November 21, 2021

Contents

I	Sequences	3
1	Convergence	4
2	Series 2.1 Convergence tests	5 5
3	Basic topology	7
II	Functions	8
4	Continuous functions	9
5	Differentiable functions	10
6	Analytic functions	11
III	Integration	12
7	Riemann integration	13
8	Henstock-Kurzweil intergation	14
9	??	15
IV	Multivariable Calculus	16
10	Frećhet derivatives	17
11	Inverse function theorem	18

12 Differential forms

Part I Sequences

Convergence

Series

2.1 Convergence tests

2.1 (Mertens' theorem). If $\sum_{k=0}^{\infty} a_k$ converges to a absolutely and $\sum_{k=0}^{\infty} b_k$ converges to b, then their Cauchy product $\sum_{k=0}^{\infty} c_k$ with $c_k := \sum_{l=0}^k a_l b_{k-l}$ converges to ab.

Proof. Let

$$A_n := \sum_{k=0}^n a_k$$
, $B_n := \sum_{k=0}^n b_k$, and $C_n := \sum_{k=0}^n c_k$

so that

$$C_n = \sum_{k=0}^n \sum_{l=0}^k a_l b_{k-l} = \sum_{l=0}^n \sum_{k=l}^n a_l b_{k-l} = \sum_{l=0}^n a_l \sum_{k=0}^{n-l} b_k = \sum_{l=0}^n a_l B_{n-l}.$$

For $\varepsilon > 0$ fix k_0 such that $k \ge k_0$ implies

$$|B_k - B|(\sum_{l=0}^{\infty} |a_l|) < \varepsilon.$$

Then, since we have

$$\begin{aligned} |C_n - AB| &= |\sum_{k=0}^n a_{n-k}(B_k - B) + (A_n - A)B| \\ &\leq \sum_{k=0}^{k_0 - 1} |a_{n-k}| |B_k - B| + \sum_{k=k_0}^n |a_{n-k}| |B_k - B| + |A_n - A| |B| \\ &\leq \max_{n - k_0 < k \le n} |a_k| (\sum_{k=0}^{k_0 - 1} |B_k - B|) + (\sum_{k=k_0}^n |a_{n-k}|) \max_{k_0 \le k \le n} |B_k - B| + |A_n - A| |B| \end{aligned}$$

and $|a_n|$ and $|A_n-A|$ tend to zero as $n\to\infty$, we get

$$\limsup_{n\to\infty}|C_n-AB|<0+\varepsilon+0.$$

- **2.2.** (a) If $a_n \to 0$, then $\frac{1}{n} \sum_{k=1}^n a_k \to 0$.
- **2.3.** (a) If $a_n \downarrow 0$, then $\sum_{k=1}^{n} (-1)^k a_n \to 0$.

Basic topology

Part II Functions

Continuous functions

Differentiable functions

Chapter 6 Analytic functions

Part III Integration

Riemann integration

Henstock-Kurzweil intergation

??

Part IV Multivariable Calculus

Chapter 10 Frechet derivatives

Inverse function theorem

Chapter 12 Differential forms