Análise de Séries Temporais

Prof. Dr. José Augusto Fiorucci

Universidade de Brasília Departamento de Estatística

Série Temporal

- Conjunto de observações ordenadas no tempo.
 - Uma possível trajetória de um processo aleatório
 - Realização de um processo estocástico.
- Uma série temporal pode ser tanto discreta quanto contínua:
 - Discreta: o intervalo entre as observações pertence a um conjunto distreto. Exemplo: número de vendas diárias de um determinado produto;
 - Contínua: o intervalo entre as observações pertence a um conjunto contínuo. Exemplo: registro de vendas de acordo com o momento que ocorreram;

Obs: note que quando dizemos que uma série é discreta, estamos fazendo referência ao tempo entre as observações e não a escala da variável.

Série Temporal

De modo geral, uma série contínua sempre pode ser discretizada.
Neste curso, estudaremos modelos apenas para séries discretas.

• Na prática, vamos referir a série temporal como uma sequência de variáveis aleatórias x_1, x_2, \ldots, x_n observadas em tempos discretos equi-espaçados, $t = 1, 2, \ldots, n$.

Representação gráfica - Dispersão

Representação gráfica - Dispersão + Linhas

Representação gráfica - Linhas

Observações

- A principal característica de séries temporais é a existência de alguma forma de dependência entre dados observados em tempos diferentes. O que limita a utilização de modelos estatísticos convencionais desenvolvidos para dados i.i.d.
- Neste curso estudaremos como identificar este tipo de dependência e usa-la para construir modelos estatísticos. Estes modelos podem ser utilizados para endermos quais são as componentes envolvidas na séries, bem como para tentar prever valores futuros.

Processo Estocástico

 De um ponto de vista teórico, a série temporal observada é a realização de um processo estocástico.

Def.: Dado o espaço de probabilidade (Ω, \mathcal{A}, P) , um processo estocástico é uma coleção de variáveis aleatóricas no espaço amostral Ω , indexadas por um conjunto de tempos T. Podemos denotar o processo como

$$\{x(t,\omega), t \in T \ e \ \omega \in \Omega)\}$$

 Note que, entre todas as possibilidades, apenas observamos uma realização desse processo estocástico.

Algumas trajetórias possíveis do processo

Processo estocástico

Algumas trajetórias possíveis do processo

Série observada até dezembro de 2014

Objetivos da análise de séries temporais

- (a) observar o mecanismo gerador da série temporal;
- (b) fazer previsões de valores futuros da série;
 - curto prazo
 - longo prazo
- (c) descrever o comportamento da série;
 - construir gráficos, diagramas de dispersão e histogramas
 - verificar tendências, ciclos e variações sazonais
- (d) entender as componentes envolvidas;
 - tendência: comportamento principal da série
 - sazonalidade: padrão de repetição a cada um determinado período de tempo (dia, mês, ano)
 - ruído: comportamento aleatório, não relacionado as observações anteriores e nem a tendência e a sazonalidade

Componente: Sazonalidade

Um tipo de comportamento que tende a se repetir a cada um determinado período de tempo é chamado de sazonalidade.

Por exemplo, a série abaixo apresenta dados mensais do número de passageiros aéreos entre 1949 e 1960.

Ruído

Ruído Branco: Processo i.i.d com média zero e variância constante.

Algumas considerações importantes

- A série temporal observada geralmente é combinação de componentes de tendência, sazonalidade e ruído;
- Nada impede que os tipos de tendência, sazonalidade e ruído sejam alterados durante o histórico da série;
- Não raramente séries temporais apresentam mais de uma componente de sazonalidade e/ou tendência
 Exemplo: considere a série temporal horária do consumo de energia da UnB. Note que podemos supor padrões de repetições com períodos diário, semanal e anual;

Atividade 1: utilizando o software R

simule o seguinte processo deterministico:

$$X_t = 1000 + 0.1 t$$

2 simule a série cíclica com periodicidade igual a 12:

$$S_t = 20 \sin((2\pi/12)t)$$

e adicione ao processo do item anterior:

$$Y_t = X_t + S_t$$

3 simule o ruido branco $E_t \sim N(0,25)$ e adicione ao processo anterior:

$$Z_t = X_t + S_t + E_t$$

- dada uma série simulada do processo Z_t, analise o resultado da função decompose();
- você conseguiria sugerir uma forma de prever os valores futuros dessa série?

Atividade 2: utilizando o software R

simule 100 pontos do seguinte processo estocástico:

$$X_t = 5 + 0.35 \, X_{t-1} + 0.6 \, X_{t-6} + \varepsilon_t$$
 sendo $\{\varepsilon_t\}$ i.i.d $N(0,4)$ e os primeiros seis pontos iguais a $58.9, 60.0, 59.8, 59.2, 58.9, 58.7$.

admita que os primeiros 90 pontos são dados observados e os demais são dados de teste. Conhecendo o processo gerador, construa numericamente uma banda com 95% de probabilidade de conter os dados de teste.