Février 2025 Module : Analyse Numérique

TP 2

Analyse en composante principales

Exercice 1

A) En considérant la matrice des données du premier TP.

	Modules Individus	Mul	Maths	Système	Réseau	Autre
	E 1	6	6	5	5.5	8
X =	E 2	8	8	8	8	9
	E 3	6	7	11	9.5	11
	E 4	14.5	14.5	15.5	15	8
	E 5	14	14	12	12	10
	E 6	11	10	5.5	7	13
	E 7	5.5	7	14	11.5	10
	E 8	13	12.5	8.5	9.5	12
	E 9	9	9.5	12.5	12	18

Mesurer la proximité entre les individus suivants en utilisant les données brutes ensuite les données centrées réduites :

- Individus 4 et 5
- Individus 4 et 7
- Individus 5 et 7.

Commenter les résultats.

- B) Dans ce qui suit, nous souhaitons réaliser une ACP normée de notes obtenues par les étudiants du tableau X.
 - 1) Déterminer les valeurs propres ainsi que les vecteurs propres associés.
 - Préciser la matrice utilisée pour cette tâche.
 - 2) Proposer une instruction vous permettant de vérifier si un vecteur donné v est le vecteur propre associé à une valeur propre λ d'une matrice A.
 - Appliquer aux résultats obtenus précédemment (Q1).
 - 3) Représenter graphiquement les valeurs propres. Analyser votre graphe.
 - 4) Créer un tableau constitué de 3 colonnes.
 - Dans la 1ere colonne, afficher les valeurs propres.
 - Dans la 2eme colonne, afficher les taux d'inertie expliqués par les axes factoriels.
 - Dana la 3eme colonne, afficher les taux d'inertie cumulées.

Février 2025 Module : Analyse Numérique

Définissez l'instruction vous permettant de calculer les taux cumulés et expliquez son utilité.

- 5) D'après le tableau dressé précédemment, proposer la dimension du sous espace factoriel à retenir pour la visualisation des données. Justifier votre choix.
- 6) Donner les axes factoriels choisis pour le sous espace principal d'ajustement. Justifier votre résultat. Afficher les résultats dans un tableau.
 - *Indication* Vous pouvez afficher tous les axes principaux tout en mettant en valeur seulement les axes principaux à retenir.
- 7) Déterminer les projections des individus sur les axes principaux retenus. Expliquer comment pouvons-nous les déterminer.
- 8) Afficher les résultats dans un tableau.
- 9) Représenter graphiquement les individus dans le sous espace d'ajustement (le meilleur sous espace retenu). Afficher les axes du sous espace dans la visualisation.
- 10) Analyser le graphe.
- 11) Reprenez la question de la partie A) mais tout en considérant les individus dans le nouveau sous espace.
- 12) Commenter les résultats obtenus et comparer les avec ceux obtenus dans la partie A). Que pouvez-vous déduire ?
- 13) Ecrire un programme qui vous permet de calculer le carré de la distance de chaque individu au centre du nuage dans le sous espace factoriel.