Learning Graph Search Heuristics

LoG 2022 submission

Michal Pándy, Weikang Qiu, Gabriele Corso, Petar Veličković, Rex Ying, Jure Leskovec, Pietro Lio

Motivation

• Search heurisitics: robotics, AI, biology, chemistry, ...

- Traditional methods
 - BFS: should explore many nodes
 - Heuristic function: need domain expretise and manual effort
- Learning-based methods:
 - Non-i.i.d data
 - Efficiency
 - Reinforcement learning-based heuristic perform poorly as graph sizes increase

PHIL: Path Heuristic with Imitation Learning

Preliminaries: Graph Search

- CLOSE U OPEN U REST
- Greedy best-first search
 - Exapnd node that minimizes the heuristic function in OPEN
 - Each expansion moves a node from OPEN to CLOSE, and adds the neighbors of the chosen node from REST to OPEN

Preliminaries: Imitation Learning

- MDP (Partially observed, POMDP)
 - State: newly included nodes in OPEN set, also include memory history
 - Action: choose one node in OPEN set to expand
- Behavior cloning
 - Expert's actions as labels
- Learning oracle's cost-to-go function (Q)

Train using TBTT on aggregated trajectories (step 2 snapshot)

Algorithm

Training objective

$$\mathcal{L}(\theta) = \underset{\substack{g \sim P_{\mathcal{G}}, \\ (v_s, v_g) \sim P_{v_{Sg}} \\ t \sim \mathcal{U}(0, \dots, T), \\ s, \psi \sim P_{S}}}{\mathbb{E}} \left[\frac{1}{|\mathsf{OPEN}|} \sum_{v \in \mathsf{OPEN}} \left(h^*(s, v, v_g) - h_{\theta}(\psi, v, v_g) \right)^2 \right]$$

Where

 $h_{\theta} \colon \mathbb{R}^d \times \mathcal{O} \times \mathcal{V} \times \mathcal{V} \mapsto \mathbb{R}$ — learned heuristics h^* — oracle heuristics

 ψ — state-history

Algorithm: Imitation Learning

Main idea: collect trajectories

- Set mixture policy: $\pi_{mix} \leftarrow (1 \beta_i)\pi_{\theta_i} + \beta_i\pi^*$
- Roll-in t timesteps (do not collect data)
- Roll-out trajectory τ_i , recording each timestep's state. i.e. $\tau_i \leftarrow \tau_i \cup \{(\mathcal{V}_{\text{new}}, h^*(s_{t+k}, \mathcal{V}_{\text{new}}, v_g))\}$
- Update dataset with trajectory and initial memory (τ_i, z_t)
- Training using this dataset.

Algorithm: Model Architecture

•
$$x_i \leftarrow f\left(x_i, x_g, D_{EUC}(x_i, x_g), D_{COS}(x_i, x_g)\right)$$

•
$$x_j \leftarrow f\left(x_j, x_g, D_{EUC}(x_j, x_g), D_{COS}(x_j, x_g)\right)$$

•
$$g_i \leftarrow \phi\left(x_i, \bigoplus_{j \in \mathcal{N}_i} \gamma(x_i, x_j, e_{ij})\right)$$

•
$$g'_i, z_{i,t+1} \leftarrow GRU(g_i, z_t)$$

 $s_0, z_0 \quad s_1, z_1$

•
$$z_{t+1} \leftarrow \overline{z_{i,t+1}}$$

•
$$\hat{h}_i \leftarrow \text{MLP}(g'_i, x_g)$$

Roll-out for t_{τ} steps using π_{mix} to collect τ (green)

Experiments: Search in grids

Dataset	Graph Examples	SAIL	SL	CEM	QL	h_{euc}	h_{man}	A*	MHA*	BFWS	Neural A*	PHIL
Alternating gaps		0.039	0.432	0.042	1.000	1.000	1.000	1.000	1.000	0.34	0.546	0.024
Single Bugtrap		0.158	0.214	0.057	1.000	0.184	0.192	1.000	0.286	0.099	0.394	0.077
Shifting gaps		0.104	0.464	1.000	1.000	0.506	0.589	1.000	0.804	0.206	0.563	0.027
Forest	<u>2</u> (<u>1</u> <u>1</u>	0.036	0.043	0.048	0.121	0.041	0.043	1.000	0.075	0.039	0.399	0.027
Bugtrap+Forest		0.147	0.384	0.182	1.000	0.410	0.337	1.000	3.177	0.149	0.651	0.135
Gaps+Forest		0.221	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.401	0.580	0.039
Mazes		0.103	0.238	0.479	0.399	0.185	0.171	1.000	0.279	0.095	1.000	0.069
Multiple Bugtraps		0.479	0.480	1.000	0.835	0.648	0.617	1.000	0.876	0.169	0.331	0.136

Comparing to SalL

- 58.5% reduction of explored nodes
- 5x less data

Experiments: Search in grids visualization

Reduce the redundancy of explored nodes

Experiments: Search in real-life graphs

	Dataset	$ \mathcal{D} $	$ ar{\mathcal{V}} $	$ ar{\mathcal{E}} $	SL	A*	h_{euc}	BFS	SAIL	BFWS	PHIL
	Cora (Sen et al. [49])	1	2,708	5,429	2.201	2.067	1.000	4.001	0.669	1.378	0.475
	PubMed (Sen <i>et al.</i> [49]))	1	19,717	44,338	2.157	2.983	1.000	3.853	1.196	1.000	0.745
Citation Networks	CiteSeer (Sen et al. [49]))	1	3,327	4,732	1.636	1.487	1.000	2.190	1.062	0.951	0.599
	Coauthor (cs) (Schur et al. [50])	1	18,333	81,894	1.571	1.069	1.000	2.820	1.941	1.026	0.835
	Coauthor (physics) (Schur et al. [50])	1	34,493	247,962	4.076	1.081	1.000	4.523	_	1.012	0.964
Biological Networks	OGBG-Molhiv (Hu et al. [48])	41,127	25.5	27.5	1.086	1.065	1.000	1.267	1.104	1.146	1.016
	PPI (Zitnik <i>et al.</i> [51])	24	2,372.67	34,113.16	0.772	0.831	1.000	5.618	1.746	3.941	0.658
	Proteins (Full) (Morris et al. [52])	1,113	39.06	72.82	0.995	0.997	1.000	2.645	0.891	0.966	0.831
	Enzymes (Morris et al. [52])	600	32.63	62.14	1.073	1.007	1.000	1.358	1.036	1.000 0.7 0.951 0.5 1.026 0.8 1.012 0.9 1.146 1.0 3.941 0.6 0.966 0.8 0.992 0.7 0.817 1.2	0.757
ASTs	OGBG-Code2 (Hu et al. [48])	452,741	125.2	124.2	1.196	1.013	1.000	1.267	1.029	0.817	1.219
Road Networks	OSMnx - Modena (Boeing [53])	1	29,324	38,309	2.904	3.085	1.000	3.493	1.182		0.489
Road Networks	OSMnx - New York (Boeing [53])	1	54,128	89,618	39.424	36.529	1.000	63.352	1.583	1.013	0.962

- 13.4% improvement
- Use only 0.2% data

Experiments: Planning for drone flight

Dataset	SL	A*	h_{euc}	BFS	SAIL	BFWS	PHIL	Shortest path
Room simple	1.124	76.052	1.000	291.888	0.973	1.286	0.785	0.782
Room adversarial	2.022	67.215	1.000	238.768	0.944	1.583	0.895	0.853

