Teorema 7 Campos conservativos Sea \mathbf{F} un campo vectorial C^1 definido en \mathbb{R}^3 , excepto posiblemente para un número finito de puntos. Las siguientes condiciones sobre \mathbf{F} son equivalentes:

- (I) Para cualquier curva cerrada simple orientada C, $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$.
- (II) Para dos curvas simples orientadas C_1 y C_2 que tienen los mismos extremos,

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}.$$

- (III) \mathbf{F} es el gradiente de alguna función f; es decir, $\mathbf{F} = \nabla f$ (y si \mathbf{F} tiene uno o más puntos singulares donde no está definido, entonces f tampoco estará definida allí).
- (IV) $\nabla \times \mathbf{F} = \mathbf{0}$.

Un campo vectorial que satisface una (y, por tanto, todas) de las condiciones (I)–(IV) se denomina *campo vectorial conservativo*. ⁶

Demostración Vamos a establecer la siguiente cadena de implicaciones, la cual demostrará el teorema:

$$(I) \Rightarrow (II) \Rightarrow (III) \Rightarrow (IV) \Rightarrow (I).$$

Primero demostraremos que la condición (I) implica la condición (II). Supongamos que \mathbf{c}_1 y \mathbf{c}_2 son parametrizaciones que representan C_1 y C_2 , con los mismos puntos extremos. Construimos la curva cerrada \mathbf{c} obtenida recorriendo primero \mathbf{c}_1 y luego $-\mathbf{c}_2$ (Figura 8.3.1), o, simbólicamente, la curva $\mathbf{c} = \mathbf{c}_1 - \mathbf{c}_2$. Suponiendo que \mathbf{c} es simple, la condición (I) da

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s} - \int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s} = 0,$$

y por tanto se satisface la condición (II). (Si ${\bf c}$ no es simple, se necesita un argumento adicional, que aquí se ha omitido).

A continuación, demostramos que la condición (II) implica la condición (III). Sea C cualquier curva simple orientada que une un punto cualquiera, como por ejemplo (0,0,0), al punto (x,y,z), y supongamos que C está representada por la parametrización \mathbf{c} [si (0,0,0) es el punto singular de \mathbf{F} , podemos elegir un punto de inicio diferente para \mathbf{c} sin que el argumento se vea afectado]. Definimos f(x,y,z) como $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$. Por la

⁶ En el plano \mathbb{R}^2 , no se permiten puntos singulares (véase el Ejercicio 16). El Teorema 7 se puede demostrar del mismo modo si **F** está definido y es de clase C^1 solo en un conjunto abierto y convexo en \mathbb{R}^2 o \mathbb{R}^3 . (Un conjunto D es convexo si P, Q ∈ D implica que el segmento que une P y Q también pertenece a D).