ISLR | Chapter 7 Exercises

Marshall McQuillen
9/21/2018

Conceptual

1

• A. The cubic piecewise polynomial:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)_+^3 \quad where \quad (x - \xi)_+^3 = \begin{cases} 0, & x \le \xi \\ (x - \xi)^3, & otherwise \end{cases}$$

...can be broken up and rewritten to be:

$$f(x) = \begin{cases} f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3, & x \le \xi \\ f_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3, & otherwise \end{cases}$$

In $f_1(x)$, since $(x - \xi)_+^3 = 0$ (because $x \le \xi$), the fifth term (of f(x)) zeroes out and the coefficients can be expresses as $a_1 = \beta_0$, $b_1 = \beta_1$, $c_1 = \beta_2$ and $d_1 = \beta_3$.

• **B.** Expanding the fifth term in f(x) allows for the various powers of x to be grouped together and then recondensed. a_2 , b_2 , c_2 and d_2 are expressed in terms of the cofficients below.

$$f_2(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)^3$$
(1)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)(x - \xi)(x - \xi)$$
 (2)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^2 - 2x\xi + \xi^2)(x - \xi)$$
(3)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^3 - x^2 \xi - 2x^2 \xi + 2x \xi^2 + \xi^2 x - \xi^3)$$
(4)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^3 - 3x^2 \xi + 3x \xi^2 - \xi^3)$$
 (5)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^3 - \beta_4 3x^2 \xi + \beta_4 3x \xi^2 - \beta_4 \xi^3$$
 (6)

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 x + \beta_4 3x \xi^2) + (\beta_2 x^2 - \beta_4 3x^2 \xi) + (\beta_3 x^3 + \beta_4 x^3)$$
(7)

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 + 3\beta_4 \xi^2)x + (\beta_2 - 3\beta_4 \xi)x^2 + (\beta_3 + \beta_4)x^3$$
(8)

$$f_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3 \quad where \begin{cases} a_2 = \beta_0 - \beta_4 \xi^3 \\ b_2 = \beta_1 + 3\beta_4 \xi^2 \\ c_2 = \beta_2 - 3\beta_4 \xi \\ d_2 = \beta_3 + \beta_4 \end{cases}$$
(9)

• C. Showing that f(x) is continuous at ξ is illustrated by showing that $f(\xi)_1 = f(\xi)_2$.

$$f_1(\xi) = a_1 + b_1(\xi) + c_1(\xi)^2 + d_1(\xi)^3 \tag{10}$$

$$= \beta_0 + \beta_1(\xi) + \beta_2(\xi)^2 + \beta_3(\xi)^3 \tag{11}$$

(12)

$$f_2(\xi) = a_2 + b_2(\xi) + c_2(\xi)^2 + d_2(\xi)^3 \tag{13}$$

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 + 3\beta_4 \xi^2)(\xi) + (\beta_2 - 3\beta_4 \xi)(\xi)^2 + (\beta_3 + \beta_4)(\xi)^3$$
(14)

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 \xi + 3\beta_4 \xi^3) + (\beta_2 \xi^2 - 3\beta_4 \xi^3) + (\beta_3 \xi^3 + \beta_4 \xi^3)$$
(15)

$$= \beta_0 - \beta_4 \xi^3 + \beta_1 \xi + 3\beta_4 \xi^3 + \beta_2 \xi^2 - 3\beta_4 \xi^3 + \beta_3 \xi^3 + \beta_4 \xi^3$$
(16)

$$= \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 + 3\beta_4 \xi^3 - 3\beta_4 \xi^3 + \beta_4 \xi^3 - \beta_4 \xi^3$$
(17)

$$= \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 + (3\beta_4 \xi^3 - 3\beta_4 \xi^3) + (\beta_4 \xi^3 - \beta_4 \xi^3)$$
(18)

$$f_2(\xi) = \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 \tag{19}$$

$$f_2(\xi) = \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 = f_1(\xi)$$

• **D**. In order to show that $f'_1(\xi) = f'_2(\xi)$, we must first find f'(x) with respect to x and then simplify both $f'_1(\xi)$ and $f'_2(\xi)$.

$$f(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3 (20)$$

$$f'(x) = b_1 + 2c_1x + 3d_1x^2 (21)$$

Therefore, substituting the necessary coefficients in for b_1 , c_1 and d_1 in both $f'_1(\xi)$ and $f'_2(\xi)$, we get:

$$f'(x) = b_1 + 2c_1x + 3d_1x^2 \quad then \quad \begin{cases} f'_1(\xi) = \beta_1 + 2\beta_2\xi + 3\beta_3\xi^2 \\ f'_2(\xi) = (\beta_1 + 3\beta_4\xi^2) + 2(\beta_2 - 3\beta_4\xi)\xi + 3(\beta_3 + \beta_4)\xi^2 \end{cases}$$
(22)

$$f_2'(\xi) = (\beta_1 + 3\beta_4 \xi^2) + 2(\beta_2 - 3\beta_4 \xi)\xi + 3(\beta_3 + \beta_4)\xi^2$$
(23)

$$= \beta_1 + 3\beta_4 \xi^2 + 2\beta_2 \xi - 6\beta_4 \xi^2 + 3\beta_3 \xi^2 + 3\beta_4 \xi^2$$
 (24)

$$= \beta_1 + 2\beta_2\xi + 3\beta_3\xi^2 + (3\beta_4\xi^2 + 3\beta_4\xi^2 - 6\beta_4\xi^2)$$
(25)

$$= \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2 + (6\beta_4 \xi^2 - 6\beta_4 \xi^2) \tag{26}$$

$$f_2'(\xi) = \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2 \tag{27}$$

We now see that the derivative f'(x) is continuous at knot ξ , which is to say $f'_1(\xi) = f'_2(\xi)$:

$$f_2'(\xi) = \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2 = f_1'(\xi)$$

• E. In order to show that $f_1''(\xi) = f_2''(\xi)$, we must first find f''(x) with respect to x and then simplify both $f_1''(\xi)$ and $f_2''(\xi)$.

$$f(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3 (28)$$

$$f'(x) = b_1 + 2c_1x + 3d_1x^2 (29)$$

$$f''(x) = 2c_1 + 6d_1x \tag{30}$$

Therefore, substituting the necessary coefficients in for c_1 and d_1 in both $f_1''(\xi)$ and $f_2''(\xi)$, we come to:

$$f''(x) = 2c_1 + 6d_1x \quad then \quad \begin{cases} f_1''(\xi) = 2\beta_2 + 6\beta_3 \xi \\ f_2''(\xi) = 2(\beta_2 - 3\beta_4 \xi) + 6(\beta_3 + \beta_4) \xi \end{cases}$$
(31)

$$f_2''(\xi) = 2(\beta_2 - 3\beta_4 \xi) + 6(\beta_3 + \beta_4)\xi \tag{32}$$

$$= 2\beta_2 - 6\beta_4 \xi + 6\beta_3 \xi + 6\beta_4 \xi \tag{33}$$

$$= 2\beta_2 + 6\beta_3 \xi + (6\beta_4 \xi - 6\beta_4 \xi) \tag{34}$$

$$f_2''(\xi) = 2\beta_2 + 6\beta_3 \xi \tag{35}$$

We now see that the second derivative f''(x) is continuous at knot ξ , which is to say $f_1''(\xi) = f_2''(\xi)$:

$$f_2''(\xi) = 2\beta_2 + 6\beta_3 \xi = f_1''(\xi)$$

 $\mathbf{2}$

(sketches on following page)

- **A.** With $\lambda = \infty$, the second term will dominate the above equation and the RSS will be ignored. Since $g^0 = g$, this comes out to finding g(x) that minimizes the integral of g(x). Therefore, g(x) = 0.
- B. With $\lambda = \infty$ and m = 1, the second term will dominate the above equation and the RSS will be ignored. This then becomes a problem of finding a function g(x) where $\int g'(x)$ is minimized. Therefore, g(x) = c (a flat line) where c is a constant, ensuring that g'(x) = 0.
- C. With $\lambda = \infty$ and m = 2, the second term will dominate the above equation and the RSS will be ignored. This then becomes a problem of finding a function g(x) where $\int g''(x)$ is minimized.

If we work backwards conceptually, we will see that $g(x) = \beta_0 + \beta_1 x$. Since $\int g''(x)$ must be minimized, g''(x) = 0. Therefore, g'(x) = c where c is some constant. This implies that g(x) must have a constant slope, c aka β_1 . Therefore, $g(x) = \beta_0 + \beta_1 x$

• **D**. With $\lambda = \infty$ and m = 3, the second term will dominate the above equation and the RSS will be ignored. This then becomes a problem of finding a function g(x) where $\int g'''(x)$ is minimized. Therefore, $g(x) = \beta_0 + \beta_1 x + \beta_2 x^2$, g(x) will be quadratic in some sense

Once again, working backwards conceptually, if the goal is to minimize $\int g'''(x)$, then g'''(x) = 0. Therefore, g''(x) = c, where c is some constant. This implies that g'(x) must have a constant slope, c. if g'(x) has a constant slope, then $g(x) = \beta_0 + \beta_1 x + \beta_2 x^2$. Having a quadratic equation means that the slope of g(x) is changing at a fixed rate, which satisfies our condition that g'(x) = c.

• E. With $\lambda = 0$ and m = 3, the second term in the equation is completely ignored, and g(x) becomes the line that interpolates all data points.

Figure 1: "Conceptual Exercise 2" $_4$

3

-2

-1

$$f(x) = 1 + x + \begin{cases} -2(x-1)^2, & x \ge 1\\ 0, & otherwise \end{cases}$$

The intercept is at y = 1, f(x) is linear with a slope equal to 1 up to x = 1, after which it becomes quadratic.

0

Χ

1

2

4

$$f(x) = \beta_0 + \beta_1 b_1(x) + \beta_2 b_2(x) \tag{36}$$

$$f(x) = 1 + b_1(x) + 3b_2(x) \quad where \quad \begin{cases} b_1(x) = I(0 \le x \le 2) - (x - 1)I(1 \le x \le 2) \\ b_2(x) = (x - 3)I(3 \le x \le 4) + I(4 < x \le 5) \end{cases}$$
(37)

5

$$\hat{g}_1 = \left(\sum_{i=1}^n (y_i - g(x_i))^2 + \int [g^3(x)]^2 dx\right)$$
(38)

$$\hat{g}_2 = \left(\sum_{i=1}^n (y_i - g(x_i))^2 + \int [g^4(x)]^2 dx\right)$$
(39)

- **A.** As $\lambda \to \infty$, \hat{g}_2 will have a smaller training RSS. This is because \hat{g}_2 has one more degree of freedom than \hat{g}_1 ; in other words, it is allowed to be more flexible that \hat{g}_1 .
- B. As $\lambda \to \infty$, $\hat{g_1}$ will most likely have a lower test RSS, although this is less certain than part A. It will most likely have a lower test RSS because we are constraining it more, which is to say there is less of a chance that it incorporates the error term ϵ into the model itself.
- C. If $\lambda = 0$, the two equations are the same so they will have the same training and test RSS (one that interpolates all data points).

Applied

6

• A. Using 10-Fold CV of wage predicted by age for polynomial fits ranging in degree from 1 to 10, the minimus MSE is at a degree of 10. However, the RMSE only improves marginally after a third degree polynomial. Therefore, since a more complex model is only justifiable when accompanied by a significant decrease in the error rate, I will move forward with the third degree polynomial (which coincides with the results obtained from ANOVA.

```
# imports
suppressPackageStartupMessages(library(ISLR))
suppressPackageStartupMessages(library(caret))
suppressPackageStartupMessages(library(boot))
suppressPackageStartupMessages(library(ggplot2))
attach(Wage)
set.seed(5)
# 10-Fold CV of Polynomial models with degree 1 - 10
degrees <- 1:10
cv.errors \leftarrow rep(0, 10)
for (i in degrees) {
    cv.fit <- glm(wage ~ poly(age, i), data = Wage)</pre>
    cv.errors[i] <- cv.glm(Wage, cv.fit, K = 10)$delta[1]</pre>
}
# Plot of CV errors
g <- ggplot(data.frame(x=1:10, y=sqrt(cv.errors)), aes(x, y)) +
    geom_point() +
    geom_point(aes(x=which.min(cv.errors),
                   y=sqrt(cv.errors[which.min(cv.errors)])),
               color = 'firebrick1',
               shape = "0",
               size = 6) +
     geom_point(aes(x=3,
               y=sqrt(cv.errors[3])),
           color = 'royalblue1',
           shape = "0",
           size = 6) +
    scale_x_continuous(breaks = 1:10,
                     labels = as.character(c(1:10))) +
    ggtitle("Average RMSE Over 10-Fold Cross Validation") +
    xlab("Degree") +
    ylab("Average RMSE")
g
```

Average RMSE Over 10-Fold Cross Validation


```
# ANOVA
fit.1 <- lm(wage ~ age, data = Wage)
fit.2 <- lm(wage ~ poly(age, 2), data = Wage)
fit.3 <- lm(wage ~ poly(age, 3), data = Wage)
fit.4 <- lm(wage ~ poly(age, 4), data = Wage)
fit.5 <- lm(wage ~ poly(age, 5), data = Wage)
fit.6 <- lm(wage ~ poly(age, 6), data = Wage)
fit.7 <- lm(wage ~ poly(age, 7), data = Wage)
fit.8 <- lm(wage ~ poly(age, 8), data = Wage)
fit.9 <- lm(wage ~ poly(age, 9), data = Wage)
fit.10 <- lm(wage ~ poly(age, 10), data = Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)</pre>
```

```
## Analysis of Variance Table
##
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
##
     Res.Df
                RSS Df Sum of Sq
                                      F
                                             Pr(>F)
       2998 5022216
## 1
```

```
## 2
        2997 4793430
                            228786 143.7638 < 2.2e-16 ***
## 3
        2996 4777674
                             15756
                                      9.9005
                                             0.001669 **
                       1
## 4
        2995 4771604
                              6070
                                      3.8143
                                              0.050909
                              1283
                                      0.8059
                                              0.369398
## 5
        2994 4770322
## 6
        2993 4766389
                              3932
                                      2.4709
                                              0.116074
        2992 4763834
                              2555
                                      1.6057
                                              0.205199
##
  7
## 8
        2991 4763707
                               127
                                      0.0796
                                              0.777865
                              7004
                                              0.035994 *
## 9
        2990 4756703
                                      4.4014
## 10
        2989 4756701
                                 3
                                      0.0017
                                              0.967529
##
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Plot 3rd degree polynomial
g <- ggplot(Wage,
            aes(x = age, y = wage)) +
     geom_point(color = 'lightblue') +
     stat_smooth(method = 'lm',
                 formula = y \sim poly(x, 3),
                  size = 1,
                  color = 'red') +
     ggtitle("3rd Degree Polynomial of Wage ~ Age") +
     xlab("Age") +
     ylab("Wage")
g
```

3rd Degree Polynomial of Wage ~ Age

• B. Since the model will start to overfit as the number of cuts increases, I will limit the number of cuts to be a maximum of 10. As shown below, the minimum error is produced with 8 cuts.

```
# 10-Fold CV of step functions up to 10 cuts
set.seed(5)
cuts <- 2:10
cv.errors <- rep(0, 9)</pre>
for (i in cuts) {
    Wage$age.cut <- cut(age, i)</pre>
    cv.fit <- glm(wage ~ age.cut, data = Wage)</pre>
    cv.errors[i-1] <- cv.glm(Wage, cv.fit, K = 10)$delta[1]</pre>
}
# Plot of CV error
g <- ggplot(data.frame(x=cuts, y=sqrt(cv.errors)), aes(x, y)) +</pre>
    geom_point() +
    geom_point(aes(x=which.min(cv.errors) + 1,
                    y=sqrt(cv.errors[which.min(cv.errors)])),
                color = 'firebrick1',
                shape = "0",
                size = 6) +
    scale_x_continuous(breaks = 1:10,
                      labels = as.character(c(1:10))) +
    ggtitle("Average RMSE Over 10-Fold Cross Validation") +
    xlab("Cuts") +
    ylab("Average RMSE")
g
```

Average RMSE Over 10-Fold Cross Validation

Stepwise Fit with 8 Cuts in Age Range

