

Tarea 4

11 de octubre de 2022

 $2^{\underline{0}}$ semestre 2022 - Profesores F. Suárez - S. Bugedo - N. Alvarado

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 28 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

- a) Demuestre que $|(0, \infty)| = |(0, 1)|$.
- b) Sea \mathcal{F} el conjunto de todas las funciones $f: \mathbb{N} \to \{0,1\}$. Demuestre que \mathcal{F} es no enumerable.

Problema 2

- a) Demuestre que $\log(n!) \in O(n \log n)$.
- b) Dadas dos funciones $f_1, f_2,$ se define la función máx $\{f_1, f_2\}(n)$ según

$$\max\{f_1, f_2\}(n) = \begin{cases} f_1(n) & \text{si } f_1(n) \ge f_2(n) \\ f_2(n) & \text{si } f_1(n) < f_2(n) \end{cases}$$

Si $g_1(n) \in O(f_1(n))$ y $g_2(n) \in O(f_2(n))$, demuestre que $g_1(n) + g_2(n) \in O(\max\{f_1, f_2\}(n))$.

c) Demuestre que si $f(n) \in O(g(n))$, entonces $f(n)^n \in O(g(n)^n)$ para todo n > 0.

Soluciones

Problema 1

a) Podemos definir la función f como

$$f: (0,1) \to (0,\infty)$$
$$x \mapsto -\frac{x^2}{x-1}.$$

Si mostramos que f es una biyección, podremos concluir lo pedido. Para esto, mostraremos que es inyectiva y sobreyectiva.

Inyectiva: Sean $x, y \in (0, 1)$ tales que f(x) = f(y). Es decir

$$-\frac{x^2}{x-1} = -\frac{y^2}{y-1} \Leftrightarrow x^2y - y^2x + y^2 - x^2 = 0$$
$$\Leftrightarrow xy(x-y) - (y+x)(x-y) = 0$$
$$\Leftrightarrow (x-y)[xy - y - x] = 0$$

Esta última expresión es nula si ocurre uno de dos casos

- Si x y = 0, concluimos que x = y.
- Si xy y x = 0, esto equivale a resolver

$$y = \frac{x}{x - 1}$$

pero esta expresión no tiene solución en (0,1). En efecto, como 0 < x < 1, tenemos que x-1 < 0 y la expresión x/(x-1) es negativa. Como y es positivo, no es posible que sean iguales.

En el intervalo (0,1), la única conclusión válida es que x=y, lo que demuestra que f es inyectiva.

Sobreyectiva: Sea $y \in (0, \infty)$. Buscamos una preimagen $x \in (0, 1)$. Es decir,

$$y = -\frac{x^2}{x-1} \Leftrightarrow x^2 + xy - y = 0$$
$$\Rightarrow x = \frac{1}{2}(-y \pm \sqrt{y^2 + 4y})$$

Dado que $x \in (0,1)$, nos quedamos con la solución positiva, es decir, $x = \frac{1}{2}(-y + \sqrt{y^2 + 4y})$. Esto prueba que f es sobreyectiva.

b) Suponemos que \mathcal{F} es enumerable. Es decir, existe una lista infinita de los elementos de \mathcal{F} . Llamaremos f_i a la *i*-ésima función de dicha lista y sea $a_{ij} = f_i(j)$, para $j \in \mathbb{N}$. Esto permite visualizar la siguiente matriz de imágenes

	0	1	2	• • •
f_0	a_{00}	a_{01}	a_{02}	• • •
f_1	a_{10}	a_{11}	a_{12}	• • •
f_2	a_{20}	a_{21}	a_{22}	• • •
:	:	:	:	٠.

Luego, definimos la función f^* según

$$f^*(i) = \begin{cases} 0, & \text{si } a_{ii} = 1\\ 1, & \text{si } a_{ii} = 0 \end{cases}$$

Claramente esta función está bien definida para todo $i \in \mathbb{N}$ y su imagen está siempre en $\{0,1\}$. Por lo tanto, f^* debe ser un elemento de \mathcal{F} y debe aparecer en la lista de sus elementos. Supongamos que aparece en la posición j, es decir, $f^*(i) = f_j(i)$ para todo $i \in \mathbb{N}$. Notemos que por construcción

$$f^*(j) \neq a_{jj} = f_j(j)$$

de manera que $f^* \neq f_j$. Como la elección de j fue arbitraria, probamos que f^* no aparece en la lista. Esta contradicción prueba que \mathcal{F} no es enumerable.

Pauta (6 pts.)

- a) 1. pto por definir biyección
 - 1. pto por probar inyectividad
 - 1. pto por probar sobrevectividad
- b) 1. pto por suponer enumerabilidad y existencia de la lista
 - 1. pto por definir función f^*
 - 1. pto por concluir

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Problema 2

a) Buscamos constantes c y n_0 tales que $\log(n!) \le c \cdot n \log(n)$ para todo $n \ge n_0$. Como

$$\log(n!) = \log(1 \cdot 2 \cdot \dots \cdot n)$$

$$= \log(1) + \log(2) + \dots + \log(n)$$

$$\leq \log(n) + \log(n) + \dots + \log(n)$$

$$= n \log(n)$$

basta tomar c = 1 y $n_0 = 1$.

b) Por hipótesis, como $g_1(n) \in O(f_1(n))$ y $g_2(n) \in O(f_2(n))$, existen constantes c_1, c_2, n_1, n_2 tales que

$$g_1(n) \le c_1 f_1(n), \quad \forall n \ge n_1$$

 $g_2(n) \le c_2 f_2(n), \quad \forall n \ge n_2$

Definimos $n_0 = \max\{n_1, n_2\}$ y $c = \max\{c_1, c_2\}$. Luego, acotamos la suma según

$$g_1(n) + g_2(n) \le c_1 f_1(n) + c_2 f_2(n) \text{ (para } n \ge n_0)$$

 $\le c \cdot (f_1(n) + f_2(n))$
 $\le c \cdot \max\{f_1, f_2\}(n) \text{ (por def. de } \max\{f_1, f_2\})$

Con esto, las constantes c y n_0 demuestran lo pedido.

c) Como $f(n) \in O(g(n))$, existen constantes c y n_0 tales que

$$f(n) \le c \cdot g(n) \quad \forall n \ge n_0$$

Dada una constante m > 0,

$$f(n)^m = f(n) \cdot \cdot \cdot \cdot f(n)$$
 (*m* veces)
 $\leq (cg(n)) \cdot \cdot \cdot (cg(n))$
 $= c^m g(n)^m$

Luego, basta tomar las constantes c^m y n_0 que demuestran lo pedido.

Pauta (6 pts.)

- a) 2 ptos por determinar constantes adecuadas y argumentar.
- b) 2 ptos por determinar constantes adecuadas y argumentar.
- c) 2 ptos por determinar constantes adecuadas y argumentar.

Puntajes intermedios y soluciones alternativas a criterio del corrector.