5-3-2021

Participación 1.1

Martínez Coronel Brayan Yosafat

Recoverage el intervalo a
$$-2 < t < 2$$
, con $A = 1$
 $x(t) = t + 1$ en $1 < t < 0$; $1 - t$ en $0 < t < 1$; 0 en otro acco

 $a_0 = \frac{1}{4} \int_{x}^{2} x(t) dt = \frac{1}{4} \int_{0}^{1} (t+t) dt + \frac{1}{4} \int_{0}^{1} (t-t) dt$
 $\omega = \frac{2\pi}{4} = \frac{\pi}{2}$
 $= \frac{1}{4} \left[\frac{1}{2} + t \right]_{0}^{0} + \frac{1}{4} \left[t - \frac{t^2}{2} \right]_{0}^{1} = \frac{1}{4} \left[\frac{1}{2} \right] + \frac{1}{4} \left(\frac{1}{2} \right) = \frac{1}{4}$
 $a_1 = \frac{1}{2} \int_{0}^{1} (t+t) \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} (t-t) \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0}^{1} \cos \left(\frac{n n t}{2} \right) dt + \frac{1}{2} \int_{0$

$$f(t) = \frac{1}{4} + \sum_{n=1}^{100} \frac{4}{n^2 \pi^2} \left(1 - \cos\left(\frac{n\pi}{2}\right) \right)$$