

Kubernetes Basics Modules

1. Create a Kubernetes cluster

2. Deploy an app

3. Explore your app

4. Expose your app publicly

5. Scale up your app

6. Update your app

Multi Container Application

Volumes & Data

What is Kubernetes?

Also known as K8s, It is an open-source system for -

Automating Deployment

Management of Containerized apps

Scaling

Support different infra..

Developed by - GOOGLE

But now maintained by - Cloud Native Computing Foundation (CNCF)

What is Container Orchestration?

What is a Container?

- A way to package an application with all the necessary dependencies and configuration.
- It can be easily shared
- Makes deployment and development efficient.

Developer

Developer

Container

Container

Container

APP1

Lib, Dependencies, **Tools**

APP2

Lib, Dependencies, **Tools**

APP3

Lib, Dependencies, Tools

Docker Engine

Operating System

aws

Hardware \wedge

We have...

Architecture

When you deploy Kubernetes, you get a cluster.

Two important parts are:

- Master (Control Plane) &
- Worker nodes.

Nodes (Minions)

We need a way to manage these nodes...

Cluster

Components

What is a pod?

A single instance of a running process in a cluster.

It can run one or more containers and share the same resources.

API SERVER

Schedular

ETCD

Control Manager

assign node to newly created Pods

key-value store, having all cluster data

responsible for managing the state of the cluster

kubelet

kube-proxy

container-runtime

Worker Node

Agent, make sure containers running in pods

POD, container run in a pod

Maintains network rules for comm with pods

A tool responsible for running containers

Container Orchestration

Scalability

Load Balancing

High Availability

Rollouts & Rollback

Sample yaml Config file,,

```
apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: nginx
    ports:
    - containerPort: 80
```

Cluster Diagram

Kubernetes Cluster

- minikube start/delete
- minikube status
- minikube dashboard

- kubectl create deployment my-app --image=link
- kubectl get deployments
- kubectl get pods
- kubectl delete deployment my-app

- kubectl expose deployment my-app --type=LoadBalancer --port=80
- minikube service my-app
- kubectl get services

Kubernetes Basics Modules

1. Create a Kubernetes cluster

2. Deploy an app

3. Explore your app

4. Expose your app publicly

5. Scale up your app

6. Update your app

Multi Container Application

docker pull philippaul/node-mongo-db:01

To Run MongoDb

docker run -d -p 27017:27017 -- network my-net -- name mongo mongo

To Run our Node App

docker run --network my-net -p 3000:3000 --name myapp philippaul/node-mongo-db:01

There are two ways to run application with multiple containers -

- Run multiple containers in same pod
- Run each container in separate pod

• Run multiple containers in same pod

Run each container in separate pod

POD1

POD2

Run each container in separate pod

Steps:

- Changes in node project (dynamic host and port for database URL)
- Building image & pushing image with 03 version
- YAML config requirement explanation
- First create depl and service config for MONGO APP so we will be having service name
- Now create depl and service config for NODE APP and explain how to use env variables in config
- Now we will create configMAP file
- Run node-app deployment

Volumes & Data

Container

VOLUME

VOLUME

Persistent Volume

