Deep Learning

Vazgen Mikayelyan

YSU, Krisp

October 2, 2019

Outline

Stochastic Gradient Descent

2 Introduction to Tensorflow

Let *L* be a loss function that we know:

Let L be a loss function that we know:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (f_w(x_i) - y_i)^2,$$

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (-y_i \log f_w(x_i) - (1 - y_i) \log (1 - f_w(x_i))),$$

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(-y_i^T \log f_w(x_i) \right).$$

Let L be a loss function that we know:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (f_w(x_i) - y_i)^2,$$

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (-y_i \log f_w(x_i) - (1 - y_i) \log (1 - f_w(x_i))),$$

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(-y_i^T \log f_w(x_i) \right).$$

Do you see problems in finding minimum of these functions using GD?

Note that in each case we can represent the loss function by the following form:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} L_i(w).$$

Note that in each case we can represent the loss function by the following form:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} L_i(w).$$

SGD algorithm is the following:

• Choose an initial vector of parameters w and learning rate α .

Note that in each case we can represent the loss function by the following form:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} L_i(w).$$

SGD algorithm is the following:

- Choose an initial vector of parameters w and learning rate α .
- Repeat until an approximate minimum is obtained.

Note that in each case we can represent the loss function by the following form:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} L_i(w).$$

SGD algorithm is the following:

- Choose an initial vector of parameters w and learning rate α .
- Repeat until an approximate minimum is obtained.
 - Randomly shuffle examples in the training set.

Note that in each case we can represent the loss function by the following form:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} L_i(w).$$

SGD algorithm is the following:

- Choose an initial vector of parameters w and learning rate α .
- Repeat until an approximate minimum is obtained.
 - Randomly shuffle examples in the training set.
 - For i = 1, 2, ..., n, do $w \leftarrow w \alpha \nabla L_i(w)$.

Note that in each case we can represent the loss function by the following form:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} L_i(w).$$

SGD algorithm is the following:

- Choose an initial vector of parameters w and learning rate α .
- Repeat until an approximate minimum is obtained.
 - Randomly shuffle examples in the training set.
 - For i = 1, 2, ..., n, do $w \leftarrow w \alpha \nabla L_i(w)$.

Do you see problems in this optimization method?

MBGD algorithm is the following:

• Choose an initial vector of parameters w, learning rate α and batch size B.

MBGD algorithm is the following:

- Choose an initial vector of parameters w, learning rate α and batch size B.
- Repeat until an approximate minimum is obtained.

MBGD algorithm is the following:

- Choose an initial vector of parameters w, learning rate α and batch size B.
- Repeat until an approximate minimum is obtained.
 - Randomly shuffle examples in the training set.

MBGD algorithm is the following:

- Choose an initial vector of parameters w, learning rate α and batch size B.
- Repeat until an approximate minimum is obtained.
 - Randomly shuffle examples in the training set.
 - For $i = 1, 2, ..., \lceil \frac{n}{B} \rceil$, do

$$w \leftarrow w - \alpha \nabla \frac{1}{B} \sum_{k=(i-1)\cdot B+1}^{i\cdot B} L_k(w).$$

Outline

Stochastic Gradient Descent

2 Introduction to Tensorflow

Difference Between

CPU

GPU

TPU

 Central Processing Unit is the electronic circuitry, which work as a brain of the computer that perform the basic arithmetic, logical, control and input/output operations specified by the instructions of a computer program.

- Central Processing Unit is the electronic circuitry, which work as a brain of the computer that perform the basic arithmetic, logical, control and input/output operations specified by the instructions of a computer program.
- The Graphics Processing Unit is a specialized electronic circuit designed to render 2D and 3D graphics together with a CPU. GPU also known as Graphics Card in the Gammer's culture. Now GPU are being harnessed more broadly to accelerate computational workloads in areas such as financial modeling, cutting-edge scientific research, deep learning, analytics and oil and gas exploration etc.

- Central Processing Unit is the electronic circuitry, which work as a brain of the computer that perform the basic arithmetic, logical, control and input/output operations specified by the instructions of a computer program.
- The Graphics Processing Unit is a specialized electronic circuit designed to render 2D and 3D graphics together with a CPU. GPU also known as Graphics Card in the Gammer's culture. Now GPU are being harnessed more broadly to accelerate computational workloads in areas such as financial modeling, cutting-edge scientific research, deep learning, analytics and oil and gas exploration etc.
- Tensor Processing Unit is a custom-built integrated circuit developed specifically for machine learning and tailored for TensorFlow, Google's open-source machine learning framework. TPU's have been powering Google data centers since 2015.

Why Tensorflow?

Interest Over Time

Google Search Activity

GitHub Activity

Online Job Listings

 TensorFlow lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device in a very simple way. This way the things can be done very fast.

- TensorFlow lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device in a very simple way. This way the things can be done very fast.
- TensorFlow lets you express your computation as a data flow graph.

- TensorFlow lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device in a very simple way. This way the things can be done very fast.
- TensorFlow lets you express your computation as a data flow graph.
- TensorFlow lets you visualize the graph using the in-built tensorboard. You can inspect and debug the graph very easily.

- TensorFlow lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device in a very simple way. This way the things can be done very fast.
- TensorFlow lets you express your computation as a data flow graph.
- TensorFlow lets you visualize the graph using the in-built tensorboard. You can inspect and debug the graph very easily.
- TensorFlow gives the best performance with an ability to iterate quickly, train models faster and run more experiments.

- TensorFlow lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device in a very simple way. This way the things can be done very fast.
- TensorFlow lets you express your computation as a data flow graph.
- TensorFlow lets you visualize the graph using the in-built tensorboard. You can inspect and debug the graph very easily.
- TensorFlow gives the best performance with an ability to iterate quickly, train models faster and run more experiments.
- TensorFlow runs on nearly everything: GPUs and CPUs—including mobile and embedded platforms—and tensor processing units (TPUs), which are specialized hardware to do the tensor math on.

Basic Code Structure

• View functions as computational graphs.

Basic Code Structure

- View functions as computational graphs.
- First build a computational graph, and then use a session to execute operations in the graph.

Basic Code Structure

- View functions as computational graphs.
- First build a computational graph, and then use a session to execute operations in the graph.
- This is the basic approach, there is also a dynamic approach implemented in the recently introduced eager mode.

Computational Graphs

Computational Graphs

• Nodes are operators (ops), variables and constants.

- Nodes are operators (ops), variables and constants.
- Edges are tensors
 - 0-d is a scalar
 - 1-d is a vector
 - 2-d is a matrix
 - Etc.

- Nodes are operators (ops), variables and constants.
- Edges are tensors
 - 0-d is a scalar
 - 1-d is a vector
 - 2-d is a matrix
 - Etc.
- Constants are fixed value tensors not trainable.

- Nodes are operators (ops), variables and constants.
- Edges are tensors
 - 0-d is a scalar
 - 1-d is a vector
 - 2-d is a matrix
 - Etc.
- Constants are fixed value tensors not trainable.
- Variables are tensors initialized in a session trainable / not trainable.

- Nodes are operators (ops), variables and constants.
- Edges are tensors
 - 0-d is a scalar
 - 1-d is a vector
 - 2-d is a matrix
 - Etc.
- Constants are fixed value tensors not trainable.
- Variables are tensors initialized in a session trainable / not trainable.
- Placeholders are tensors of values that are unknown during the graph construction, but passed as input during a session.

- Nodes are operators (ops), variables and constants.
- Edges are tensors
 - 0-d is a scalar
 - 1-d is a vector
 - 2-d is a matrix
 - Etc.
- Constants are fixed value tensors not trainable.
- Variables are tensors initialized in a session trainable / not trainable.
- Placeholders are tensors of values that are unknown during the graph construction, but passed as input during a session.
- Ops are functions on tensors.

• Session is the runtime environment of a graph, where operations are executed and tensors are evaluated.

• Session is the runtime environment of a graph, where operations are executed and tensors are evaluated.

```
>>> import tensorflow as tf
>>> a = tf.constant(1)
>>> b = tf.constant(2)
>>> op1 = tf.add(a, b)
>>> print(a)
Tensor("Const:0", shape=(), dtype=int32)
>>> print(b)
Tensor("Const:0", shape=(), dtype=int32)
>>> print(op1)
Tensor("Add:0", shape=(), dtype=int32)
```

 Session is the runtime environment of a graph, where operations are executed and tensors are evaluated.

```
import tensorflow as tf
                                       >>> a = tf.constant(1)
                                       >>> b = tf.constant(2)
                                       >>> c = tf.add(a, b)
                                       >>> with tf.Session() as sess:
   import tensorflow as tf
                                                print(sess.run(a))
>>> a = tf.constant(1)
>>> b = tf.constant(2)
                                                print(sess.run(b))
>>> op1 = tf.add(a, b)
                                                print(sess.run(c))
>>> print(a)
Tensor("Const:0", shape=(), dtype=int32)
>>> print(b)
Tensor("Const 1:0", shape=(), dtype=int32)
>>> print(op1)
Tensor("Add:0", shape=(), dtype=int32)
```

 Session is the runtime environment of a graph, where operations are executed and tensors are evaluated.

```
import tensorflow as tf
                                           a = tf.constant(1)
                                       >>> b = tf.constant(2)
                                       >>> c = tf.add(a, b)
                                       >>> with tf.Session() as sess:
   import tensorflow as tf
                                                print(sess.run(a))
   a = tf.constant(1)
   b = tf.constant(2)
                                                print(sess.run(b))
>>> op1 = tf.add(a, b)
                                                print(sess.run(c))
>>> print(a)
Tensor("Const:0", shape=(), dtype=int32)
>>> print(b)
Tensor("Const 1:0", shape=(), dtype=int32)
>>> print(op1)
Tensor("Add:0", shape=(), dtype=int32)
```

• a.eval() is equivalent to session.run(a), but in general, "eval" is limited to executions of a single op and ops that returns a value.

 Session is the runtime environment of a graph, where operations are executed and tensors are evaluated.

```
import tensorflow as tf
                                          a = tf.constant(1)
                                          b = tf.constant(2)
                                      >>> c = tf.add(a, b)
                                      >>> with tf.Session() as sess:
   import tensorflow as tf
                                                print(sess.run(a))
  a = tf.constant(1)
  b = tf.constant(2)
                                                print(sess.run(b))
>>> op1 = tf.add(a, b)
                                                print(sess.run(c))
>>> print(a)
Tensor("Const:0", shape=(), dtype=int32)
>>> print(b)
Tensor("Const 1:0", shape=(), dtype=int32)
>>> print(op1)
Tensor("Add:0", shape=(), dtype=int32
```

- a.eval() is equivalent to session.run(a), but in general, "eval" is limited to executions of a single op and ops that returns a value.
- Upon op execution, only the subgraph (required for calculating its value) is evaluated

- 1. Assembling the graph
 - Create placeholders.

- 1. Assembling the graph
 - Create placeholders.
 - Create variables / neural network.

- 1. Assembling the graph
 - Create placeholders.
 - Create variables / neural network.
 - Define a loss function.

- 1. Assembling the graph
 - Create placeholders.
 - Create variables / neural network.
 - Define a loss function.
 - Define an optimizer.

- 1. Assembling the graph
 - Create placeholders.
 - Create variables / neural network.
 - Define a loss function.
 - Define an optimizer.
- 2. Training in a session
 - Start a session.

- 1. Assembling the graph
 - Create placeholders.
 - Create variables / neural network.
 - Define a loss function.
 - Define an optimizer.
- 2. Training in a session
 - Start a session.
 - Initialize variables / restore from checkpoint.

- 1. Assembling the graph
 - Create placeholders.
 - Create variables / neural network.
 - Define a loss function.
 - Define an optimizer.
- 2. Training in a session
 - Start a session.
 - Initialize variables / restore from checkpoint.
 - Run the optimizer over batches.

Tensorboard

