David Eriksson

Curriculum Vitæ

Education

2014 -**Cornell University**

Present • Ph.D. in Applied Mathematics, expected May 2019

• TA award in Computer Science, Spring 2016

• Overall TA rating: 4.8/5.0

• GPA: 4.22/4.0 (current)

2012 -**Chalmers University of Technology**

2014 • M.Sc. in Engineering Mathematics and Computational Science

• Graduated top of class

• GPA: 5.0/5.0

2008 -**Chalmers University of Technology**

2011 • B.Sc. in Mathematics

· Graduated top of class

• GPA: 4.92/5.0

Research Interests

Bayesian Optimization, Numerical Linear Algebra, Machine Learning, Scientific Computing, High-Performance Computing, Numerical Analysis.

Current Research

Asynchrony in Bayesian optimization

- Designing and implementing asynchronous algorithms.
- Using elasticity in modern cloud platforms.
- · Software packages:
- pySOT (github.com/dme65/pySOT)
- SOT (github.com/dme65/SOT)

Baesian optimization with additional information

• Incorporating energy bounds, Lipschitz constants, and other information in Bayesian optimization.

Structured solvers

- Scalable Gaussian progress regression.
- Scalable radial basis function interpolation.
- · Block-Kronecker structure.

Awards

2017	A 3371 (A 1 C 1 I I I I
2017	Anna Whitlock Scholarship
	Anna Whitlock's Foundation
2016	Teaching Assistant Award in Computer Science
	Cornell University
2014	Richard & Alice Netter Fellowship
	Thanks to Scandinavia
2014	Fritz O Fernstroms Scholarship
	The Sweden-America Foundation
2011	Anna Whitlock Scholarship
	Anna Whitlock's Foundation

dme65@cornell.edu https://people.cam.cornell.edu/~dme65/ in https://www.linkedin.com/in/davideriksson89/

https://github.com/dme65/

Work Experience

The MathWorks Software Developer Global Optimization

0

May. 2017 – Aug. 2017 Natick, MA, USA

- Implemented an asynchronous surrogate optimization framework.
- Performed design review, code review, unit testing, and benchmarking.
- Gave several internal talks and software tutorials.
- Helped internal customers solve challenging optimization problems.

Fraunhofer – Chalmers Centre Mar. 2014 – July 2014 Applied Researcher Gothenburg, Sweden

Point Cloud Visualization

- Developed algorithms for visualizing point clouds with billions of points.
- Used these algorithms to design a visualization software in C++ capable of rendering 50+ FPS with unlimited detail on a standard graphics card.

Fraunhofer - Chalmers Centre Sept. 2012 - Mar. 2014 Contracted Student Gothenburg, Sweden Computational Geometry

- Constructed out-of-core algorithms for shortest distance computations between a point cloud with billions of points and a geometric object.
- Satisfied the heavy memory requirements by only keeping the relevant points in memory at a given time.
- Derived sharp criteria for when a specific subset of the point cloud can contain the point closest to the geometric object.

NASA Goddard Space Flight Center June 2013 - Sept. 2013 Data Analyst Greenbelt, MD, USA

Tropospheric Delay Ray Tracing

- Computed tropospheric delays by solving the Eikonal equation numerically through the weather model data.
- Showed a substantial improvement in baseline length and station positions.

NASA Goddard Space Flight Center June 2011 – June 2012 Greenbelt, MD, USA Data Analyst Mass Loading

- Computed mass loading displacements due to changes in water mass and ocean bottom pressure.
- Convolved a loading Green's function with the global mass loading field.
- Found significant improvements in baseline lengths and station positions.

Extracurricular Activity

2018 Colman Leadership Program Cornell University 2016 -President of the Scientific Software Club Present Cornell University cornell-ssw.github.io **Argonne Training Program on Extreme-Scale Computing (ATPESC)** Argonne National Labs

Computer Skills

C++, Python, MATLAB, C, UNIX, LATEX, Git, OpenMP, MPI.

٦	$\overline{}$			٠.		•	
-	IJη	11	h	11.	cati	Or	C
- 1		ш	.,		Cau	11	1.7

(with D. S. MacMillan)

Dec. 2017	Scalable log determinants for Gaussian process kernel learning Appears at Advances in Neural Information Processing Systems 30 (NIPS), 2017 (with K. Dong, H. Nickisch, D. Bindel, A. Wilson)	Dec. 2017	Scalable log determinants for Gaussian process kernel learning NIPS, 2017 Long Beach, CA
Mar. 2016	Fast exact shortest distance queries for massive point clouds Graphical Models	Oct. 2017	On solving Khatri-Rao systems of equations SCAN Seminar, 2017 Cornell University, NY
	Vol. 84, pages 28-37 (with E. Shellshear)	Oct. 2017	Asynchronous parallel stochastic global optimization using radial basis functions <i>INFORMS</i> , 2017
Dec. 2014	Tropospheric delay raytracing		Houston, TX
	applied in VLBI analysis Journal of Geophysical Research Vol. 119, Issue 12, pages 9156–9170 (with D. S. MacMillan and J. M. Gipson)	Mar. 2017	Global optimization with native space semi-norm bounds SIAM CSE, 2017 Atlanta, GA
Sept. 2014	Approximate distance queries for		
	path-planning in massive point clouds	June. 2016	Asynchronous surrogate optimization
	11th International Conference on Informatics in Control, Automation and Robotics (ICINCO) Vol. 2, pages 20-28, IEEE, Vienna, Austria		in Python (pySOT + POAP) Computational Methods in Water Resources, 2016 Toronto, Canada
	(with E. Shellshear)	Aug. 2013	Atmospheric ray tracing and
	,	C	its impact in VLBI analysis
July 2014	Continental hydrology loading observed by VLBI measurements Journal of Geodesy		NASA Goddard Space Flight Center, Greenbelt, MD (with D. S. MacMillan and J. M. Gipson)
	Vol. 88, Issue 7, pages 675-690 (with D. S. MacMillan)	Dec. 2012	Explaining the VLBI estimated degree-1 load variation via atmospheric, oceanic, and hydrological mass variations
Aug. 2013	Nontidal ocean loading observed by VLBI measurements 21st Meeting of the European VLBI Group for Geodesy and Astronomy		American Geophysical Union, Fall Meeting 2012 San Francisco, CA (with D. S. MacMillan)
	Vol. 1, pages 135-140, Espoo, Finland (with D. S. MacMillan)	Nov. 2011	Mass loading in VLBI analysis NASA Goddard Space Flight Center, Greenbelt, MD (with D. S. MacMillan)
Mar. 2012	Continental hydrology loading observed by VLBI measurements IVS 2012 General Meeting Proceedings pages 415-419, Madrid, Spain (with D. S. Meedwiller)		

Presentations