1장 텐스플로 2.0으로 신경망 구현

1장 목차

_실제 예제: 필기체 숫자 인식 원핫 인코딩(OHE)	_정규화 과적합을 피하기 위한 정규화 적용
턴서플로 2.0으로 단순 신경망 정의 단순 텐서플로 2.0 신경망 실행과 베이스라인 구축 텐서플로 2.0의 단순 신경망을 은닉층으로 개선 텐서플로에서 드롭아웃으로 단순망 개선 텐서플로 2.0에서 여러 최적화기 테스트 에폭 수 증가시키기 최적화기 학습률 조절 내부 은닉층 개수 증가 밴치 계산 크기 증가 필기체 인식 실행 차트 요약	비치 정규화의 이해 비치 정규화의 이해구글 Colab 사용: CPU, GPU, TPU감정 분석초매개변수 튜닝과 AutoML출력 예측역전파에 대한 실용적 개괄정리 딥러닝 접근법을 향해
	배념적 이해를 위주로

텐서플로(TensorFlow)/케라스 (Keras)

- TensorFlow: 구글 브레인템이 개발, Deep neural networks을 위한 오픈소스 소프트웨어 프레임워크
- Keras: 거의 모든 종류의 딥러닝 모델을 간편하게 훈련시킬수 파이썬을 위한 API,
- TensorFlow2.0: Keras를 내부에 구현하여 외부 호출 없이 사용가능

```
import tensorflow as tf
W = tf.Variable(tf.ones(shape=(2,2)), name="W")
b = tf.Variable(tf.zeros(shape=(2)), name="b")
@tf.function
def model(x):
    return W * x + b
out_a = model([1,0])
print(out_a)
```

신경망(Neural Network) 개요

- 신경망 소개: 신경세포를 모방한 인공신경망을 연결한 머신러닝 모델
- 퍼셉트론: 단위 인공신경망세포, 입력층과 출력층만 있음, XOR 연산불가
- 다층퍼셉트론: 입력층과 출력층 사이에 은닉층(hidden layer), XOR 연산가능

다중퍼셉트론의 학습

- 활성화 함수(Activation Function)
 - 이 시그모이드
 - o tanh
 - ReLU
 - o ELU와 LeakyReLU
- 역전파 알고리즘(Backpropagation): 먼저계산 결과와 정답의 오차를 구해 이 오차에 관여하는 값들의 가중치를 수정하여 오차가작아지는 방향으로 일정 횟수를 반복해수정하는 방법

실제 예제: 필기체 숫자 인식

- MNIST 데이터베이스 (Modified National Institute of Standards and Technology database)는 손으로 쓴 숫자들로 이루어진 대형 데이터베이스이며, 다양한 화상 처리 시스템을 트레이닝하기 위해 일반적으로 사용
- MNIST 데이터베이스는 60,000개의 트레이닝 이미지와 10,000개의 테스트 이미지를 포함

Hands-on 1

• 단순신경망

Hands-on 2

• 단순 신경망을 은닉층으로 개선

훈련의 개선

- 손실함수(Loss function)
 - 예측값과 실제값(레이블)의 차이를 구하는 기준을 의미하는 것으로 머신러닝 모델 학습에서 필수 구성,
 - 손실함수로 인해 모델의 성능이 달라지고, 머신러닝 모델을 구현 시 손실함수 선택이 중요
- 과적합
- 정규화

훈련의 개선

- 손실함수(Loss function)
 - 예측값과 실제값(레이블)의 차이를 구하는 기준을
 의미하는 것으로 머신러닝 모델 학습에서 필수 구성.
 - 손실함수로 인해 모델의 성능이 달라지고, 머신러닝
 모델을 구현 시 손실함수 선택이 중요
- 과적합(overfitting)
 - machine learning에서 학습 데이터를 과하게 학습 (overfitting)하는 것을 뜻함
 - 학습 데이타는 실제 데이타의 부분 집합
 - 학습데이타에 대해서는 오차가 감소하지만 실제 데이타에 대해서는 오차가 증가

과적합의 방지

- 정규화 Regularization
 - weight를 조정하는데 규제(제약)를 거는 기법
 - Overfitting을 막기위해 사용함(= 과적합을 완화해 일반화 성능을 높여주기 위한 기법)
 - L1정규화: LASSO(라쏘)
 - L2정규화: Lidge(릿지)
 - 일래스틱 정규화: L1과 L2의 조합

- 배치 정규화 Batch Normalization
 - 활성화함수의 활성화값 또는 출력값을 정규화(정규분포로 만든다)하는 작업
 - 학습 속도 상승
 - 초기 파라미터 의존도 약화
 - 모델 성능 향상

Google Colab

- Colaboratory(줄여서 'Colab'이라고 함)을 통해 브라우저 내에서 Python 스크립트를 작성하고 실행
 - 구성이 필요하지 않음
 - 무료로 GPU 사용
 - ㅇ 간편한 공유
- 구글 코랩 주소: https://colab.research.google.com/

