DATA ACT REPORT

Displays the visualization(s) produced from wrangled data.

According with our dataset clean called all_data and saved as twitter_archive_master.csv this document will provide the graphs obtained and its respective interpretation.

1. First, what is the 10 most popular dog breed?

Using the code: sort_values() and value_counts(), which sort by the values along either axis from highest to lowest value. Mainly column was image_predic.

popular_dogs=all_data.image_predic.sort_values().value_counts().head(11)

NaN	268
golden_retriever	145
Labrador_retriever	97
Pembroke	82
Chihuahua	82
pug	60
toy_poodle	49
chow	40
Pomeranian	38
Samoyed	38
Chesapeake_Bay_retriever	30
Name: image_predic, dtype:	int64

As we can observe, highest number is NAN which means that we do not have that data. Nevertheless, the most popular dog was golden_retriever with 145 follows by Labrador_retriever with 97.

Importing important libraries such as **import matplotlib.pyplot as plt** I plotted the 10 most popular dogs and the code is:

```
popular_dogs.plot(kind = 'barh');
plt.title('Top 10 popular Breed of dog')
plt.xlabel('Count')
plt.ylabel('Dog breed');
```


2. What is the 10 least popular dog breed?

I did the same procedure from first point and the code was:

least_popular=all_data.image_predic.sort_values(ascending=True).value_counts().tail(10) least_popular

Australian_terrier	2
curly-coated_retriever	2
Brabancon_griffon	2
wire-haired_fox_terrier	2
Appenzeller	2
black-and-tan_coonhound	1
Scottish_deerhound	1
standard_schnauzer	1
groenendael	1
Scotch_terrier	1
Bouvier_des_Flandres	1
silky_terrier	1
clumber	1
Irish_wolfhound	1
Japanese_spaniel	1
Name: image predic, dtype:	int64

Plotting those data, we obtain:

If I compare with the first graph, I could say that the top 10 least popular dogs and I included 5 dogs more it could be insignificant since the number is smaller.

3. What are the favorite dogs? It means which has the most like.

Using the code: sort_value and getting the first 10 value. The main columns were favorites and image_predic.

favorite_dogs= all_data[['favorites','image_predic']]
favorite_dogs_popular=favorite_dogs.sort_values(by=['favorites'],ascending=False).head(10)
favorite_dogs_popular

	favorites	image_predic
1014	150231.0	chow
517	116050.0	Maltese_dog
129	112595.0	golden_retriever
1054	111130.0	soft-coated_wheaten_terrier
65	96026.0	toy_poodle
433	85385.0	NaN
162	83515.0	cocker_spaniel
111	76363.0	Norwegian_elkhound
1740	76263.0	Samoyed
520	73313.0	chow

Plotting the last table I got:

favorite_dogs_popular.plot(kind='barh',x='image_predic',y='favorites', alpha = 0.5, color='Blue');

plt.title('Top 10 with more likes')

plt.xlabel('Likes')

plt.ylabel('Dog breed');

Chow is the favorite follow by Maltese_dog. Effectively, golden_retriever has more like which match with the most popular dogs.

4. What does dog obtain more retweets?

Focus in the columns retweets and image_predic I could filter which dog has more retweets.

retweets_dogs= all_data[['retweets','image_predic']]
retweets_dogs_most=retweets_dogs.sort_values(by=['retweets'],ascending=False).head(10)
retweets_dogs_most

image_predic	retweets	
chow	74122.0	1014
soft-coated_wheaten_terrier	55233.0	1054
Maltese_dog	54040.0	517
toy_poodle	38991.0	65
NaN	36007.0	433
pug	36007.0	430
chow	33815.0	520
golden_retriever	31553.0	129
Samoyed	29965.0	1740
miniature_schnauzer	28018.0	158

Chow dog obtained 74122 retweets and the second place was soft_coated_wheaten_terrier with 55233. Last graph showed that chow is the favorite, therefore make sense that it had more retweets.

5. What does dog obtain least retweets?

To Obtain this graph I had to focus on retweets and image_predic columns.

retweets_dogs= all_data[['retweets','image_predic']]
least_retweets_dogs=retweets_dogs.sort_values(by=['retweets'],ascending=True).hea
d(10)
least_retweets_dogs

	retweets	image_predic
279	1.0	basenji
328	2.0	pug
1270	2.0	NaN
262	2.0	beagle
29	3.0	NaN
1055	6.0	collie
54	8.0	golden_retriever
63	10.0	miniature_pinscher
178	15.0	golden_retriever
1498	16.0	chow

Its graph is:

least_retweets_dogs.plot(kind='barh',x='image_predic',y='retweets', alpha = 0.5,
color='blue');

plt.title('The least dog retweets')

plt.xlabel('retweets')

plt.ylabel('Dog breed');

As it was expected, the number the retweets is lower as the least favorites dogs. This make sense because There are few numbers of favorites and as consequences affect the reweets.

6. Plot favorites (like) VS retweets

With whole graph we can plot favorite vs retweets. According with my graph I expect a graph quite linear or exponential which indicate that the number of favorites should be match the number of retweets.

Code was:

```
all_data.plot(kind='scatter',x='favorites',y='retweets', alpha = 0.5, color='b');
plt.xlabel('Likes')
plt.ylabel('Retweets')
plt.title('Retweets VS Likes');
```


As we saw the last graphs (The most dog retweets and the top 10 with more likes), the number of likes and retweets are bigger with some breeds. So, this last graph confirmed a positively correlated with Likes and retweets. Also, exist some breeds that are not favorite as consequence it has least retweets.

Conclusion

During whole analysis and visualization. I plot the most and least popular dog breeds. In addition, which dog breeds have more 'likes' and retweets. This allowed to verify which retweets vs likes are growing according with the favorites and popular breeds. Also, the least popular favorites make sense with the last graph where there are some points with 1 in like but some of them were retweets.