$Formula\ Sheet-MATH\ 401-Final\ Exam-Spring 2022$

- 1. Sample mean: $\overline{X} = \frac{\sum X}{n}$, & Sample variance: $s^2 = \frac{\sum X^2 \frac{(\sum X)^2}{n}}{n-1}$.
- 2. Binomial: $P(X = k) = {}^{n}C_{k} \cdot p^{k} \cdot (1 p)^{n-k}, E(X) = np, V(X) = np(1-p).$
- 3. Geometric: $P(X = k) = p \cdot (1 p)^{k-1}$, $E(X) = \frac{1}{p} \& V(X) = \frac{1 p}{p^2}$.
- 4. Poisson: $P(X_{\lambda} = k) = e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$, $E(X_{\lambda}) = \lambda = V(X_{\lambda})$.
- 5. Exponential: $P(T \le t) = F(t) = 1 e^{-\lambda t}$, $E(T) = \frac{1}{\lambda} \& V(T) = \frac{1}{\lambda^2}$.
- 6. Standard normal distribution: $Z = \frac{X \mu}{\sigma}$, is a N.D. with $\mu_Z = 0 \& \sigma_Z = 1$.
- 7. Sampling & Central L. T.: "As the sample size **n** increases the shape; of the distribution of sample means from a population "normal or $n \geq 30$ " with μ and σ ; will approach a N.D. with $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$." And we use $z = \frac{\overline{X} \mu}{\sigma} \cdot \sqrt{n}$.
- 8. **Binomial** \approx **N.D.**: If a discrete binomial probability distribution satisfies both: $n.p \geq 5$ and $n.q \geq 5$, then it can be approximated by a continuous N.D. with mean $\mu = n.p$ and a standard deviation $\sigma = \sqrt{npq}$.
- 9. Confidence interval for μ : If σ is given, then
 - $\bullet \ \underline{\text{2-sided}} \colon \overline{X} z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$
 - $\bullet \ \, \underline{\text{1-sided}} \colon \mu > \overline{X} z_\alpha \cdot \frac{\sigma}{\sqrt{n}} \stackrel{\equiv}{\leftrightsquigarrow} \text{``\underline{lower}''} \ \, \& \ \, \mu < \overline{X} + z_\alpha \cdot \frac{\sigma}{\sqrt{n}} \stackrel{\equiv}{\leftrightsquigarrow} \text{``\underline{upper}''}$
- 10. Confidence interval for σ^2 :
 - $\bullet \ \underline{\text{2-sided}} \colon \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2}$
 - $\bullet \ \, \underline{\text{1-sided}} \colon \sigma^2 > \frac{(n-1)s^2}{\chi^2_\alpha} \stackrel{=}{\leftrightsquigarrow} \,\, \underline{\text{``lower''}} \ \, \& \ \, \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha}} \stackrel{=}{\leftrightsquigarrow} \,\, \underline{\text{``upper''}}$
- 11. Hypothesis Testing: p-value = $P(|Z| > |z_0|)$, where z_0 is the test value
 - (i) For **2-tailed** test: p-value = $2[1 \Phi(|z_0|)]$
 - (ii) For left-tailed: p-value = $\Phi(z_0)$. For right-tailed: p-value = $1 \Phi(z_0)$
- 12. The test power is " 1β ", where $\beta = \Phi(z_{\alpha/2} \frac{\delta\sqrt{n}}{\sigma}) \Phi(-z_{\alpha/2} \frac{\delta\sqrt{n}}{\sigma})$ for 2-tailed test. A sample size that guarantees this power is $n \approx \frac{(z_{\beta} + z_{\alpha/2})^2 \sigma^2}{\delta^2}$

For 1-tailed: $\underline{\text{if }\delta>0}, \beta=\Phi(z_{\alpha}-\frac{\delta\sqrt{n}}{\sigma}). \ \underline{\text{If }\delta<0}, \beta=\overline{1-\Phi(-z_{\alpha}-\frac{\delta\sqrt{n}}{\sigma})}.$