Strong coupling between photons of two light field mediated by one atom

Christoph Hamsen, Karl Nicolas Tolazzi, Tatjana Wilk and Gerhard Rempe

NATURE Physics

Published: 18 June 2018

Author

- Gerhard Rempe
- Director of Quantum dynamics division @ Max
 Planck Institute of Quantum optics
- 1st author : C. Hamsen
- Recently, in 2017, he published a paper of title "Two photon blockade in an atom-driven cavity QED system" at PRL

Experimental Scheme

 $(g_p, \kappa_a, \gamma_3)/2\pi$ = (10.1, 2.0, 2.9) MHz $(g_s, \kappa_b, \gamma_4)/2\pi$ = (9.3, 1.5, 3.0) MHz

Cavity for two mode coupling

$$\bullet \quad l = \frac{n_a \lambda_{31}}{2} = \frac{n_b \lambda_{42}}{2}$$

- Increase the cavity length in steps of $\lambda_{42}/2$ (n_b -> n_b +1)
- At cavity length 295um, probe transition is 37 MHz red-detuned to mode A, while signal transition is resonant to mode B
- This residual detuning is compensated by the dynamical Stark shift using the transverse dipole trap

 $\delta S = |S_{31}| + |S_{42}|$

Strong coupling regime

$$(g_p, \kappa_a, \gamma_3)/2\pi = (10.1, 2.0, 2.9) \text{ MHz}$$

 $(g_s, \kappa_b, \gamma_4)/2\pi$ = (9.3, 1.5, 3.0) MHz

Energy level structure

$$\hat{H} = (\Delta_p - \Delta_c + \Delta_{31})\hat{\sigma}_{11}^{\dagger}\hat{\sigma}_{11} - \Delta_c\hat{\sigma}_{33}^{\dagger}\hat{\sigma}_{33}$$

$$- (\Delta_s + \Delta_{42})\hat{\sigma}_{44}^{\dagger}\hat{\sigma}_{44}$$

$$- \Delta_p\hat{a}^{\dagger}\hat{a} - \Delta_s\hat{b}^{\dagger}\hat{b}$$

$$+ g_p \left(\hat{a}^{\dagger}\hat{\sigma}_{13} + \hat{\sigma}_{13}^{\dagger}\hat{a}\right) + g_s \left(\hat{b}^{\dagger}\hat{\sigma}_{24} + \hat{\sigma}_{24}^{\dagger}\hat{b}\right)$$

$$+ (\eta_p\hat{a}^{\dagger} + \eta_s\hat{b}^{\dagger} + \Omega_c\hat{\sigma}_{23}^{\dagger} + \text{h.c.})$$

$$\Delta_p = \omega_p - \omega_a \quad \Delta_{31} = \omega_a - \omega_{31}$$

$$\Delta_s = \omega_s - \omega_b \quad \Delta_{42} = \omega_b - \omega_{42},$$

$$\Delta_c = \omega_c - \omega_{32},$$

$$\Delta E_{\geq}(n_p, n_s) = 2\hbar (g_{+}(n_p, n_s) \pm g_{-}(n_p, n_s))$$
with $g_{\pm}(n_p, n_s) = \frac{1}{2} \sqrt{(\sqrt{n_p} g_p \pm \sqrt{n_s} g_s)^2 + \Omega_c^2}$

Mutual photon blockade

• Second-order cross-correlation $g_{sp}^{(2)}(\tau)=\langle n_s(0)n_p(\tau)\rangle/(\langle n_s\rangle\langle n_p\rangle)$

 $g_{sp}^{(2)}(0) = 1$: uncorrelated

 $g_{sp}^{(2)}(0) > 1$: correlated

 $g_{sp}^{(2)}(0) < 1$: anti-correlated

Conjunct photon transit

Optical switching

Conclusion

- Demonstration of strong coupling between two light fields via interaction with a four level atom
- Photon-photon switching and strong correlations between two light fields
- Selective excitation of a specific manifold (n,1)
- -> detection of a signal photon announces n photons in the probe mode
- Non destructive photon counting
- Instead of two modes in one cavity, crossed single mode cavities will be fine