Ejercicio 03

Para el circuito del EJERCICIO Nº 01, la fuente se conecta a una carga equilibrada en triángulo de impedancia $\underline{Z}=10-j10~\Omega=10~\sqrt{2}~|\underline{-45^\circ}~\Omega$

• Datos:
$$U_{RS} = 539 |\underline{30^{\circ}} V$$
 $U_{ST} = 539 |\underline{-90^{\circ}} V$ $U_{TR} = 539 |\underline{150^{\circ}} V$

Dibujar el circuito y explicar cómo se determinan las corrientes en las impedancias y en la línea. Obtener el valor de dichas corrientes y realizar el diagrama fasorial de tensiones y corrientes.

Apliquemos LKT de modo que se simplifique algo:

$$U_{fR} - I_{RS} * Z_{RS} - U_{fS} = U_{RS} - I_{RS} * Z_{RS} = 0$$

$$\underline{I_{RS}} = \frac{U_{RS}}{Z_{RS}} = \frac{539}{10\sqrt{2}} |30^{\circ} + 45^{\circ}| A = 38.23 |75^{\circ}| A$$

Análogamente usando U_{ST} y U_{TR} :

$$I_{ST} = 38.23 \mid \underline{-45^{\circ}} A$$
 $I_{TR} = 38.23 \mid \underline{-165^{\circ}} A$

 I_{RS} fue calculada yendo de arriba hacia abajo. I_{ST} fue calculada yendo de derecha a izquierda. I_{TR} fue calculada yendo de abajo hacia arriba. Por Ley de Nodos resulta entonces:

$$\underline{I_R} = \underline{I_{RS}} - \underline{I_{TR}} = 9.9 + j36.93 - (-36.93 - j9.9) = 46.83 + j46.83 = 66.2 | \underline{45^{\circ}} A$$

$$\underline{I_S} = \underline{I_{ST}} - \underline{I_{RS}} = 27 - j27 - (9.9 + j36.93) = 17.1 - j63.93 = 66.2 | \underline{-75^{\circ}} A$$

$$\underline{I_T} = I_{TR} - I_{ST} = -36.93 - j9.9 - (27 - j27) = -63.93 + j17.1 = 66.2 | \underline{165^{\circ}} A$$

Inciso b

Calcular la relación entre las corrientes de fase y de línea, explicar el resultado obtenido y especificar qué condiciones deben cumplirse para que la relación no pierda validez.

$$\frac{\left|I_{f}\right|}{\left|I_{L}\right|} = \frac{66.2}{38.23} = \sqrt{3} \qquad porque \frac{\left|U_{L}\right|}{\left|U_{f}\right|} = \sqrt{3} \qquad fuente \ y \ carga \ equilibrada$$

Ejercicio 04

Para el circuito del EJERCICIO Nº 01. La fuente se conecta a una carga equilibrada en estrella de impedancia $\underline{Z}=20~|30^\circ~\Omega$ utilizando 4 conductores (las 3 fases y el neutro).

Dibujar el circuito y explicar cómo se determinan las corrientes de línea en los 4 conductores. Obtener el valor de dichas corrientes y realizar el diagrama fasorial de tensiones y corrientes.

Inciso b

Explicar el resultado obtenido para la corriente de neutro. Analizando este resultado indicar cuál es la utilidad del conductor neutro en este circuito. Obtener un equivalente monofásico e indicar cuando es posible obtener uno.

$$U_{OO'} = U_{fR} - I_R * Z_R$$

$$U_{OO'} = U_{fS} - I_S * Z_S$$

$$U_{OO'} = U_{fT} - I_T * Z_T$$

$$\frac{U_{fR} * Y_R + U_{fS} * Y_S + U_{fT} * Y_T}{Y_R + Y_S + Y_T} = U_{OO'}$$

$$\frac{\left(U_{fR} + U_{fS} + U_{fT}\right) * Y}{3 Y} = U_{OO'} = 0 V$$

$$I_{R} = \frac{U_{fR} - U_{OO'}}{Z_{R}} = \frac{311 | \underline{0}^{\circ} V}{20 | \underline{30}^{\circ} \Omega} = 15.55 | \underline{-30^{\circ}} A$$

$$I_{S} = \frac{U_{fS} - U_{OO'}}{Z_{S}} = \frac{311 | \underline{-120^{\circ}} V}{20 | \underline{30^{\circ}} \Omega} = 15.55 | \underline{-150^{\circ}} A$$

$$I_{T} = \frac{U_{fT} - U_{OO'}}{Z_{T}} = \frac{311 | \underline{120^{\circ}} V}{20 | \underline{30^{\circ}} \Omega} = 15.55 | \underline{90^{\circ}} A$$

• Equivalente monofásico: como la fuente es perfecta y la carga está equilibrada, entonces nos alcanzar con representar sólo una de las fases, por ejemplo, R, para conocer el funcionamiento del circuito. Las otras dos serán sólo desplazamientos.

Ejercicio 05

Una fuente perfecta con tensiones eficaces 220V/380V y 50 Hz alimenta un grupo de cargas en estrella como se muestra en el circuito de la figura. L=15.9~mH, $R=20\Omega$, $Z_M=44~|45^\circ\Omega$

Realizar el diagrama fasorial de tensiones de la fuente explicando los pasos seguidos.

$$\omega = 2\pi * 50Hz = 314 \, rad/s$$
 $Z_R = Z_M$ $Z_S = j\omega L = j5 \, \Omega = 5 \, |90^{\circ} \, \Omega$ $Z_T = R = 20 \, \Omega$

Suponemos que la fuente también está en estrella.

Inciso b

En función del circuito y de la fuente, ¿qué se puede esperar con respecto a la tensión entre centros de estrella? Determinar esta tensión

$$\begin{split} I_R + I_S + I_T &= 0 \\ U_{OO'} &= U_{fR} - I_R * Z_R \\ U_{OO'} &= U_{fS} - I_S * Z_S \\ U_{OO'} &= U_{fT} - I_T * Z_T \\ \\ \frac{U_{fR} - U_{OO'}}{Z_R} + \frac{U_{fS} - U_{OO'}}{Z_S} + \frac{U_{fT} - U_{OO'}}{Z_T} &= 0 \\ \\ \frac{U_{fR} * Y_R + U_{fS} * Y_S + U_{fT} * Y_T}{Y_R + Y_S + Y_T} &= U_{OO'} \end{split}$$

$$U_{OO'} = \frac{7.07 \mid \underline{-45^{\circ}} A + 62.23 \mid \underline{150^{\circ}} A + 15.56 \mid \underline{120^{\circ}} A}{0.05 - j0.2 + 0.016 - j0.016 S} = \frac{5 - 53.9 - 7.8 - j5 + j31 + j13.5}{0.066 - j0.216}$$

$$U_{OO'} = \frac{69.1 \mid \underline{145.14^{\circ}} A}{0.226 \mid \underline{-73^{\circ}} S} = \frac{306 \mid \underline{-142^{\circ}} V}{0.226 \mid \underline{-73^{\circ}} S} = -241.13 - j188.39 V$$

$$I_{R} = \frac{583.5 \mid \underline{18.84^{\circ}} V}{44 \mid \underline{45^{\circ}} \Omega} = \frac{13.26 \mid \underline{-26.16^{\circ}} A}{13.26 \mid \underline{-26.16^{\circ}} A} \qquad U_{RO'} = I_{R} * Z_{R} = 583 \mid \underline{18.84^{\circ}} V$$

$$I_{S} = \frac{118 \mid \underline{-43.48^{\circ}} V}{5 \mid 90^{\circ} \Omega} = \frac{23.6 \mid \underline{-133.48^{\circ}} A}{13.26 \mid \underline{-133.48^{\circ}} A} \qquad U_{SO'} = I_{S} * Z_{S} = 118 \mid \underline{-43.5^{\circ}} V$$

Eiercicio 06

Repetir el EJERCICIO Nº 05 si se conecta el conductor de neutro. Explicar qué simplificaciones se pueden realizar como consecuencia de la nueva configuración del circuito.

 $I_T = \frac{465.8 \, | 79.42^{\circ} \, V}{20.0} = \frac{23.29 \, | 79.42^{\circ} \, A}{20.0}$ $U_{TO'} = I_T * Z_T = 466 \, | 79.42^{\circ} \, V$

Fácil: sucede que $U_{OO'} = 0 V$, entonces las intensidades de línea se calculan por Ley de Ohm.

$$I_R = \frac{U_{fR}}{Z_R} = 7.07 \mid \underline{-45^{\circ}} A$$
 $I_S = \frac{U_{fS}}{Z_S} = 62.23 \mid \underline{150^{\circ}} A$ $I_T = \frac{U_{fT}}{Z_T} = 15.56 \mid \underline{120^{\circ}} A$ $I_R = 5 - j5 A$ $I_S = -53.9 + j31.1 A$ $I_T = -7.78 + j13.48 A$

Inciso b

Explicar qué sucede con las tensiones en las cargas y determinarlas. Observar y explicar la dependencia que existe entre las tensiones en las cargas y los valores de las impedancias. ¿Se puede obtener un equivalente monofásico? Justificar.

Advertencia: sigue ocurriendo que los resultados de la guía son valores eficaces. El último resultado estaría "bien" (entre comillas) pero en la guía está sumado 180°.

TEOREMA DE FORTESCUE*

"Cualquier sistema trifásico asimétrico y desequilibrado puede descomponerse en tres ternas simétricas, dos de ellas equilibradas de secuencia directa e inversa respectivamente, y una tercera homopolar"

Secuencia directa, 1 ó (+) Secuencia inversa, 2 ó (-) Secuencia homopolar ó 0

Resultante

Las componentes del sistema original en función de las componentes simétricas son:

$$\underline{U}_{R} = \underline{U}_{0R} + \underline{U}_{1R} + \underline{U}_{2R}$$

$$\underline{U}_{S} = \underline{U}_{0S} + \underline{U}_{1S} + \underline{U}_{2S}$$

$$\underline{U}_{T} = \underline{U}_{0T} + \underline{U}_{1T} + \underline{U}_{2T}$$

$$\underline{a} = e^{j\frac{2\pi}{3}} = e^{j120^{\circ}}$$

Definiendo un nuevo operador

Y si además
$$\underline{U}_0 = \underline{U}_{0R}; \ \underline{U}_1 = \underline{U}_{1R}; \ \underline{U}_2 = \underline{U}_{2R}$$

Resultando un sistema de tres ecuaciones con tres incógnitas

 U_0 ; \underline{U}_1 ; \underline{U}_2 , son las denominadas componentes llave

- Para entender: $a^0 = 1 \mid \underline{0^\circ} = 1$ $a = 1 \mid \underline{120^\circ}$ $a^2 = 1 \mid \underline{-120^\circ}$ Además resulta: $1 + a + a^2 = e^{j0^\circ} + e^{j120^\circ} + e^{-j120^\circ} = 0$ (simetría)
- Además resulta:
- Las componentes llaves son las de R: U_{0R} , U_{1R} , U_{2R} Las demás son giros de éstas.

$$\underline{U_R} + \underline{U_S} + \underline{U_T} = 3 \underline{U_0} + \underline{U_1} (1 + a^2 + a) + \underline{U_2} (1 + a + a^2) = 3 \underline{U_0}$$

Multiplicando las expresiones de $\underline{U}_s y$ de $\underline{U}_T por \underline{a} y$ por \underline{a}^2 , respectivamente, resulta

$$\underline{U}_{R} = \underline{U}_{0} + \underline{U}_{1} + \underline{U}_{2}$$

$$\underline{a} \cdot \underline{U}_{S} = \underline{a} \cdot \underline{U}_{0} + \underline{a}^{3} \cdot \underline{U}_{1} + \underline{a}^{2} \cdot \underline{U}_{2} = \underline{a} \cdot \underline{U}_{0} + \underline{U}_{1} + \underline{a}^{2} \cdot \underline{U}_{2}$$

$$con \underline{a}^{3} = 1 \ y \ \underline{a}^{4} = \underline{a}$$

$$\underline{a}^{2} \cdot \underline{U}_{T} = \underline{a}^{2} \cdot \underline{U}_{0} + \underline{a}^{3} \cdot \underline{U}_{1} + \underline{a}^{4} \cdot \underline{U}_{2} = \underline{a}^{2} \cdot \underline{U}_{0} + \underline{U}_{1} + \underline{a} \cdot \underline{U}_{2}$$

Sumando nuevamente, resulta

$$3\underline{U}_1 = \underline{U}_R + \underline{a}\underline{U}_S + \underline{a}^2\underline{U}_T \implies \underline{U}_1 = \frac{1}{3}(\underline{U}_R + \underline{a}\underline{U}_S + \underline{a}^2\underline{U}_T)$$

Ya obtuvimos las expresiones de dos componentes llave: U0 y U1.

Multiplicando las expresiones de \underline{U}_S y de \underline{U}_T por \underline{a}^2 y por \underline{a} respectivamente, sumando de nuevo y despejando \underline{U}_2 , queda

 $\underline{U}_2 = \frac{1}{3} \left(\underline{U}_R + \underline{a}^2 \cdot \underline{U}_S + \underline{a} \cdot \underline{U}_T \right)$

En resumen:

Se han obtenido las componentes llave de las tres ternas simétricas a partir de los valores de las componentes del sistema original:

$$\underline{U}_0 = \frac{1}{3} \left(\underline{U}_R + \underline{U}_S + \underline{U}_T \right)$$
 Secuencia homopolar

Componentes llave $\underline{U}_1 = \frac{1}{3} \left(\underline{U}_R + \underline{a} \cdot \underline{U}_S + \underline{a}^2 \cdot \underline{U}_T \right)$ Secuencia directa

$$\underline{U}_2 = \frac{1}{3} \left(\underline{U}_R + \underline{a}^2 \cdot \underline{U}_S + \underline{a} \cdot \underline{U}_T \right)$$
 Secuencia inversa

Todo lo visto es válido también para cualquier sistema de corrientes asimétrico y desequilibrado

Es muy útil expresar estos resultados en forma matricial, con lo cual las componentes llave resultan:

$$\begin{bmatrix} \underline{U}_0 \\ \underline{U}_1 \\ \underline{U}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{a} & \underline{a}^2 \\ 1 & \underline{a}^2 & \underline{a} \end{bmatrix} \begin{bmatrix} \underline{U}_R \\ \underline{U}_S \\ \underline{U}_T \end{bmatrix} \qquad \qquad \qquad \qquad \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{a} & \underline{a}^2 \\ 1 & \underline{a}^2 & \underline{a} \end{bmatrix} = [A]^{-1}$$

De igual forma se pueden expresar las tensiones de fase en función de las componentes llave:

$$\begin{bmatrix} \underline{U}_R \\ \underline{U}_S \\ \underline{U}_T \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{a}^2 & \underline{a} \\ 1 & \underline{a} & \underline{a}^2 \end{bmatrix} \begin{bmatrix} \underline{U}_0 \\ \underline{U}_1 \\ \underline{U}_2 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{a}^2 & \underline{a} \\ 1 & \underline{a} & \underline{a}^2 \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}$$

- Determinante de A: $\det(A) = a^4 + a + a (a^2 + a^2 + a^2) = a^4 3a^2 + 2a$ $\det(A) = a 3a^2 + 2a = 3 (a a^2) = 3 \left(e^{j120^\circ} e^{-j120^\circ} \right) = 3 * j\sqrt{3}$
- Para la matriz se divide delante por: $|\det(A)| = |j3\sqrt{3}| = 3\sqrt{3}$ ¿Qué?

¿Cómo se supone que la matriz de la derecha va a quedar algo simple?

MAL

■ Mostrar números decimales

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -0.5 - 0.866 \cdot i & -0.5 + 0.866 \cdot i \\ 1 & -0.5 + 0.866 \cdot i & -0.5 - 0.866 \cdot i \end{vmatrix} = \frac{1299i}{250}$$

Según MatrixCalc calculé bien el determinante, que #\$!@ están haciendo en las filminas ¿?

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Notas del Ejercicio 08 (Explicado en Moodle)

En el Ej 7 vimos que cualquier fuente trifásica, sea perfecta o imperfecta, puede ser representada por la superposición de una fuente trifásica de secuencia directa (RST), una de secuencia inversa (RTS) y otra de secuencia homopolar (sin "desfasaje" entre fases).

Si la carga es equilibrada, entonces ocurrirá que $U_{OO^{\prime}}=0~V$ para la fuente RST y RTS.