Radar obstacle avoidance

Radar obstacle avoidance

Hardware connection Control principle

Main Code

Program flow chart

Experimental phenomenon

The tutorial mainly demonstrates the obstacle avoidance function of the balance car combined with the Tmini-Plus radar.

The tutorial only introduces the standard library project code

Hardware connection

Since we have configured a special connection line, you only need to install it to the corresponding interface.

Peripherals	Development Board
Tmini-Plus radar: VCC	5V
Tmini-Plus radar: TXD	PC10
Tmini-Plus radar: RXD	PC11
Tmini-Plus radar: GND	GND

Control principle

The program analyzes the radar data and determines the direction of movement of the balance car based on the distance information at the specified angle.

• Tmini-Plus radar

Product name	Tmini-Plus radar
Scanning frequency	6-12Hz
Sampling frequency	4000 times/s
Measuring radius	Black object: 12m
Minimum measuring distance	0.05m
Ranging principle	TOF ranging
Scanning angle	360°
Communication interface	Standard asynchronous serial port (UART) 1. Baud rate: 230400 2. Data bits: 8 3. Check bit: None 4. Stop bit: 1
ROS support	ROS1/ROS2
Windows support	Host computer

Radar Angle Distribution

The arrow in the center of the radar points to $0^{\circ}/360^{\circ}$, and the angle increases clockwise.

Communication Protocol

For detailed information, please refer to the "T_Mini_Plus Manual"

Main Code

The tutorial mainly explains the code for the radar obstacle avoidance function. For detailed code, please refer to the corresponding project file.

Car_Avoid

The distance data of the radar at 0°, 90°, and 270° is used to determine the obstacle position of the balance car and control the movement of the balance car.

```
void Car_Avoid(void)
{
    static u8 avoid_step = 0;//obstacle Avoidance Steps

//Each time this function is called, the value is dynamically refreshed.
float get_data_mid = Tminidis[0];
float get_data_Lmid = Tminidis[270];//Left
float get_data_Rmid = Tminidis[90];///Right

switch(avoid_step)
{
```

```
case 0:
        if(get_data_mid <avoid_dis && get_data_mid >0 )//Obstacle Avoidance
            //Car stop
            Move_X = 0, Move_Z = 0;
            delay_time_int(10);
            avoid_step = 1;
        }
        else
        {
            //Car moving forward
            Move_X = GO_speed, Move_Z = 0;
        }
        break;
        case 1: if(get_time_int()==0) avoid_step ++;break; //Time to go to next
step
        case 2:
        {
            //Trolley backward
            Move_X = -15, Move_Z = 0;
            delay_time_int(100); //1s
            avoid_step = 3;
        }
        case 3: if(get_time_int()==0) avoid_step ++;break; //Time to go to next
step
        case 4:
        {
            if(get_data_Lmid >= get_data_Rmid )
            {
                //left
                Move_X = 0, Move_Z = -450;
                delay_time_int(100);
            }
            else
            {
                //right
                Move_X = 0, Move_Z = 450;
                delay_time_int(100);
            avoid_step = 5;
        }
        case 5: if(get_time_int()==0) avoid_step=0;break; //Time to go to next
step
    }
}
```

Program flow chart

Briefly introduce the process of function implementation:

Experimental phenomenon

Software code

The Balance_Radar_Avoid.hex file generated by the project compilation is located in the OBJ folder of the Balance_Radar_Avoid project. Find the Balance_Radar_Avoid.hex file corresponding to the project and use the FlyMcu software to download the program into the development board.

Product supporting data source code path: Attachment → Source code summary → 5.Balanced_Car_Extended → 12.Balance_Radar_Avoid

Experimental phenomenon

After the program is started, press KEY1 according to the OLED prompt to start the radar obstacle avoidance function of the balance car: OLED displays start control!

Radar does not detect obstacles (obstacle distance>200mm): the car moves forward

Radar detects obstacles in front (0mm<obstacle distance<200mm): the car stops and moves backward

Judge the distance of left and right obstacles:

Left obstacle distance ≥ right obstacle distance: the car turns left and then moves forward

Left obstacle distance < right obstacle distance: the car turns right and then moves forward

The program has voltage detection. If the voltage is less than 9.6V, a low voltage alarm is triggered and the buzzer will sound.

Common situations that trigger voltage alarms:

- 1. The power switch of the development board is not turned on, and only the Type-C data cable is connected for power supply
- 2. The battery pack voltage is lower than 9.6V and needs to be charged in time