NH3 concentration trend

Zhenqi Luo 2021.6

Progress

- validation of IASI NH3 data
 - ground-based measurements
 - airborne data sets

Analysis

- FTIR measurements
 - 9 locations
 - N_obs: 547
- MRD (Mean Relative Difference): 32.4 ± (56.3) %
- Correlation: 0.8
- Slope: 0.73

Atmos. Chem. Phys., 16, 10351–10368, 2016 www.atmos-chem-phys.net/16/10351/2016/doi:10.5194/acp-16-10351-2016 © Author(s) 2016. CC Attribution 3.0 License.

An evaluation of IASI-NH₃ with ground-based Fourier transform infrared spectroscopy measurements

Enrico Dammers¹, Mathias Palm², Martin Van Damme^{1,3}, Corinne Vigouroux⁴, Dan Smale⁵, Stephanie Conway⁶, Geoffrey C. Toon⁷, Nicholas Jones⁸, Eric Nussbaumer⁹, Thorsten Warneke², Christof Petri², Lieven Clarisse³, Cathy Clerbaux³, Christian Hermans⁴, Erik Lutsch⁶, Kim Strong⁶, James W. Hannigan⁹, Hideaki Nakajima¹⁰, Isamu Morino¹¹, Beatriz Herrera¹², Wolfgang Stremme¹², Michel Grutter¹², Martijn Schaap¹³, Roy J. Wichink Kruit¹⁴, Justus Notholt², Pierre-F. Coheur³, and Jan Willem Erisman^{1,15}

Analysis

- Surface measurements
 - 6 networks
 - Slope: low
 - Intercept: high
- Airborne observations
 - Correlation: 0.8
 - retrieval error < 100%
 - mistime < 3h

Atmos. Meas. Tech., 8, 1575-1591, 2015 www.atmos-meas-tech.net/8/1575/2015/ doi:10.5194/amt-8-1575-2015

NNDMN ground-based concentrations (µg NH,/m³)

IDAF ground-based vmr (ppbv)

Towards validation of ammonia (NH₃) measurements from the IASI satellite

M. Van Damme^{1,2}, L. Clarisse¹, E. Dammers², X. Liu³, J. B. Nowak^{4,5,*}, C. Clerbaux^{1,6}, C. R. Flechard⁷, C. Galy-Lacaux⁸, W. Xu³, J. A. Neuman^{4,5}, Y. S. Tang⁹, M. A. Sutton⁹, J. W. Erisman^{2,10}, and P. F. Coheur¹

Analysis

JGR Atmospheres

RESEARCH ARTICLE

10.1029/2020JD033475

Key Points:

- Infrared Atmospheric Sounding Interferometer NH₃ columns agree well with those derived from boundary layer, in situ measurements with no significant biases at the pixel scale
- Validation in a hotspot region shows best agreement at narrow spatiatemporal scales on the ord.

Validation of IASI Satellite Ammonia Observations at the Pixel Scale Using In Situ Vertical Profiles

Xuehui Guo¹ D, Rui Wang¹ D, Da Pan¹ D, Mark A. Zondlo¹ D, Lieven Clarisse² D, Martin Van Damme² D, Simon Whitburn² D, Pierre-François Coheur² D, Cathy Clerbaux².³ D, Bruno Franco² D, Levi M. Golston¹,4.2² D, Lars Wendt¹,5, Kang Sun¹,6,2² D, Lei Tao¹,7, David Miller¹,8,2², Tomas Mikoviny9,10,11,2² D, Markus Müller²,13,2² D, Armin Wisthaler¹, Alexandra G. Tevlin¹,15,2² D, Jennifer G. Murphy¹ D, John B. Nowak¹6,17,2² D, Joseph R. Roscioli¹6, Rainer Volkamer¹8,19,20 D, Natalie Kille¹8,19,20 D, J. Andrew Neuman¹9,2¹ D, Scott J. Eilerman²², James H. Crawford¹7 D, Tara I. Yacovitch¹6 D, John D. Barrick¹², and Amy Jo Scarino¹7 D

- Mean deviation: 0.17 E16 molecules/cm2
- Standard deviation: 1.3 E16 molecules/cm2
- Slope: 1±0.2
- Correlation: 0.57

In Situ Measurements

California (2013)

• Colorado (2014)

Plan

- Comparison of NH3 emissions with other published results
 - Top down
 - Bottom up

litreature

Global, regional and national trends of NH3, 2008-

2018

- Source
 - agricultural activities—major source (over 80% in Asia, Europe, US)
 - Livestock manure—volatilization
 - Synthetic fertilizer application——loss
 - EDGAR: 49 Tg
 - Agricultural: 86%
 - 20 % increase over 2000-2010
 - GFED:
 - Others: 4.9 Tg
- Reduction in emissions of nitrogen and sulfur oxides——increased NH3
- Satellite measurements: morning overpass IASI/Metop-A——2008-2018
 - A good correlation: in-situ vertical profiles vs IASI-NH3
- Trend method:
 - least squares regression
 - bootstrap resampling
 - global/national

(Van Damme et al., 2021)

Global, regional and national trends of NH3, 2008-

2018

- Inventory Trend:
 - EDGAR: 2008-2015
 - China: a moderately slow decline
 - GFED: 2008-2018-
 - southeastern Asia: decrease
- IASI Trend:
 - East Asia: largest increase
 - China: 83.3 ± 7.0 %——longer atmospheric lifetime
 - India:
 - IGP: high upward
 - Southeastern: decreasing
 - EU: increase in 2018
 - Western and central Africa: strong upward
 - South America: small change
 - US: positive

Questions?