Vitamin C promotes Tooth Growth in Guinea Pigs

MOHAMMAD SHADAN

September 8, 2016

SYNOPSIS

Tests were performed on 60 different guinea pigs and response in the length of odontoblasts (cells responsible for tooth growth) were observed (URL)

- Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day)
- By one of two delivery methods : orange juice, OJ or ascorbic acid, VC (a form of vitamin C)

1. Load the ToothGrowth data and perform some basic exploratory data analysis

```
data(ToothGrowth) #Loading dataset ToothGrowth

tg <- as.data.frame(ToothGrowth)

tg$dose <- as.factor(tg$dose) #Converting "dose" to factor variable</pre>
```

Exploratory Data Analysis

Variation in Length of odontoblasts cells based on Dosage (mg/day):

- For Dosage of 0.5 and 1, Mean length is more for Orange Juice compared to Ascorbic Acid
- For Dosage of 2.0, Mean length is almost same for Orange Juice and Ascorbic Acid

Refer Code 1 and Figure 1 in APPENDIX for R Script and Plot on which the above observations are based Variation in Length of odontoblasts cells based on Delivery Method (OJ or VC):

- For Orange Juice as well as Ascorbic Acid the Mean length increases as the dosage amount is increased from 0.5 to $2~{\rm mg/day}$

Refer Code 2 and Figure 2 in APPENDIX for R Script and Plot on which the above observations are based Please note, similar results will be reflected by Hypothesis Tests also

2. Provide a basic summary of the data.

summary(tg) #Summary of ToothGrowth Dataset dose ## len supp : 4.20 OJ:30 0.5:20 1st Qu.:13.07 VC:30 :20 ## 1 Median :19.25 :20 ## ## Mean :18.81 3rd Qu.:25.27 :33.90 ## Max. #Dimension and Field Type Details str(tg) ## 'data.frame': 60 obs. of 3 variables: \$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ... \$ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 \$ dose: Factor w/ 3 levels "0.5", "1", "2": 1 1 1 1 1 1 1 1 1 1 ...

3. Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose

Assumptions:

- Variances are unequal
- Test subjects are not Paired (as tests were done on 60 different Guinea Pigs)
- Distribution is Normal

Null Hpothesis, H0: Mean of Length are same i.e. Difference of mean is Zero and thus effects of Delivery Methods(supp) or Dosage are same

Alternate Hypothesis, Ha: Mean of Length are not same i.e. Difference of mean is not Zero and thus effects of Delivery Methods(supp) or Dosage are different

Considering 95 % Confidence Interval,

if pValue > 0.05: we accept the Null Hypothesis, thus delivery methods or dosage have almost same effect on Tooth Growth

if $\mathbf{pValue} < \mathbf{0.05}$: we reject the Null Hypothesis, thus delivery methods or dosage have different effect on Tooth Growth

Firstly, comparing Tooth Growth by Dose (0.5, 1, 2 mg/day)

```
#Subsetting the data based on pair of two dose each, (0.5, 1), (0.5,2), (1,2)
dose0.51 <- subset(tg, tg$dose==c(0.5,1))
dose0.52 <- subset(tg, tg$dose==c(0.5,2))
dose12 <- subset(tg, tg$dose==c(1,2))
```

Compare effect of dose level 0.5 and 1 mg/day on Tooth Growth

```
ttest0.51 <- t.test(dose0.51$len~dose0.51$dose, conf = 0.95, paired = FALSE, var.equal = FALSE);
cat("p.value :", ttest0.51$p.value, " | Conf. Interval : ", ttest0.51$conf.int)

## p.value : 0.0002951967 | Conf. Interval : -14.43327 -5.20673</pre>
```

Since pValue < 0.05, we reject the Null Hypothesis, thus both dose levels have different effect on Tooth Growth

Compare effect of dose level 0.5 and 2 mg/day on Tooth Growth

```
ttest0.52 <- t.test(dose0.52$len~dose0.52$dose, conf = 0.95, paired = FALSE, var.equal = FALSE)
cat("p.value :", ttest0.52$p.value, " | Conf. Interval : ", ttest0.52$conf.int)
## p.value : 9.361615e-07 | Conf. Interval : -19.72833 -10.93167</pre>
```

Since pValue < 0.05, we reject the Null Hypothesis, thus both dose levels have different effect on Tooth Growth

Compare effect of dose level 1 and 2 mg/day on Tooth Growth

```
ttest12 <- t.test(dose12$len~dose12$dose, conf = 0.95, paired = FALSE, var.equal = FALSE)
cat("p.value :", ttest12$p.value, " | Conf. Interval : ", ttest12$conf.int)

## p.value : 0.001709878 | Conf. Interval : -10.89999 -2.980007</pre>
```

Since pValue < 0.05, we reject the Null Hypothesis, thus both dose levels have different effect on Tooth Growth

Secondly, comparing Tooth Growth by Supp (Delivery Method, Orange Juice(OJ) and Ascorbic Acid (VC))

```
#Subsetting Data based on dosage
supp0.5 <- subset(tg, tg$dose==.5); supp1 <- subset(tg, tg$dose==1);
supp2 <- subset(tg, tg$dose==2)</pre>
```

Comparing effect of OJ and VC on Tooth Growth at Dosage of .5 mg/day

```
ttest0.5 <- t.test(supp0.5$len~supp0.5$supp, conf = 0.95, paired = FALSE, var.equal = FALSE);
cat("p.value :", ttest0.5$p.value, " | Conf. Interval : ", ttest0.5$conf.int)</pre>
```

p.value : 0.006358607 | Conf. Interval : 1.719057 8.780943

Since pValue < 0.05, we reject the Null Hypothesis, thus both delivery methods have different effect on Tooth Growth

Comparing effect of OJ and VC on Tooth Growth at Dosage of 1 mg/day

```
ttest1 <- t.test(supp1$len~supp1$supp, conf = 0.95, paired = FALSE, var.equal = FALSE);
cat("p.value :", ttest1$p.value, " | Conf. Interval : ", ttest1$conf.int)</pre>
```

```
## p.value : 0.001038376 | Conf. Interval : 2.802148 9.057852
```

Since p Value < 0.05, we reject the Null Hypothesis, thus both delivery methods have different effect on Tooth Growth

Comparing effect of OJ and VC on Tooth Growth at Dosage of 2 mg/day

```
ttest2 <- t.test(supp2$len~supp2$supp, conf = 0.95, paired = FALSE, var.equal = FALSE);
cat("p.value :", ttest2$p.value, " | Conf. Interval : ", ttest2$conf.int)</pre>
```

```
## p.value : 0.9638516 | Conf. Interval : -3.79807 3.63807
```

Since pValue > 0.05, we accept the Null Hypothesis, thus both delivery methods almost same effect on Tooth Growth

4. State your conclusions and the assumptions needed for your conclusions

Assumptions:

- Since tests were done on 60 different Guinea Pigs thus they are considered independent (not Paired)
- Variances are unequal
- Normal Distribution is considered

Conlcusion based on Exploratory Analysis and Hypothesis Test:

- Mean length of odon toblasts cells is more when delivery method is Orange Juice (OJ) compared to Ascorbic Acid (VC) when Dosage of 0.5 and $1~{\rm mg/day}$ is given
- Mean length of odon toblasts cells is almost same for Orange Juice and Ascorbic Acid when Dosage of 2.0 mg/day is given
- Given Orange Juice or Ascorbic Acid the Cell length increases as the dosage amount is increased from 0.5 to 2 mg/day

APPENDIX

Report Analysis was based on elaboration of the below points as advised in the assignment:

- * Load the ToothGrowth data and perform some basic exploratory data analyses
- * Provide a basic summary of the data
- * Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose
- * State your conclusions and the assumptions needed for your conclusions

Below are Codes and Plots used to deduce observations for Exploratory Data Analysis on Page 1:

Code 1

```
p <- ggplot(tg, aes(x=supp, y=len, col=dose))
p <- p + geom_point(aes(size=1))
p <- p + facet_grid(.~dose)
p <- p + stat_summary(fun.y=mean, geom="point", shape="+", size=9, col = "red")
p <- p + labs(title="Figure 1\n Tooth Growth grouped by Dosage \n(+ represents mean)")</pre>
```

Figure 1

Variation in Cell Length based on of Dosage (mg/day) :

- For Dosage of 0.5 and 1, Mean length is more for Orange Juice (OJ) compared to Ascorbic Acid (VC) - For Dosage of 2.0, Mean length is almost same for Orange Juice and Ascorbic Acid

Code 2

```
q <- ggplot(tg, aes(x=dose, y=len, col=supp))
q <- q + geom_point(aes(size=1))
q <- q + facet_grid(.~supp)
q <- q + stat_summary(fun.y=mean, geom="point", shape="+", size=9, col = "red")
q <- q + labs(title="Figure 2\n Tooth Growth grouped by Delivery Method \n(+ represents mean)")</pre>
```

Figure 2

Variation of Cell Length based on Delivery Method (OJ or VC) :

- For Orange Juice as well as Ascorbic Acid the Mean length increases as the dosage amount is increased from 0.5 to $2~\mathrm{mg/day}$