MARKET SEGMENTATION

Assignment 4

Assignment 4

Answer 1.a.

We initially used the variables from the dataset that describe purchase behaviour. They were

We also developed a variable called brand loyalty which was also used to describe purchase behaviour.

We used the brand wise purchase variables and the #brands variable to make brand loyalty. There were 9 brand wise purchase variables:

BrCd57,144	BrCd55	BrCd272	BrCd286	BrCd24	BrCd481	BrCd352	BrCd5	BrCd999
,								

From these BrCd999(other) could include 1 brand or 100 brands or anything in between. Since we did not know how many brands were included in BrCd(999) we used the following procedure to develop brand loyalty.

1. We counted the number of brands used by each household from the 1st 8 brand wise purchase variables.

BrCd57,144	BrCd55	BrCd272	BrCd286	BrCd24	BrCd481	BrCd352	BrCd5
38%	13%	0%	0%	0%	0%	0%	0%

From the data above we can see that this particular household used BrCd(57,144) 37% of the time and BrCd(55) 13% of the time. Thus the number of brands used by this household from the 8 different brands mentioned above is 2.

2. We then subtracted this number (2) from #brands. This gave us the number of BrCd999(other) brands used by this household.

No of brands used from 8 BrCd Variables: 2

#brands: 3

No of BrCd999(other) brands used: 3-2=1

3. We then divided the value in BrCd999(other) by No of BrCd999(other) brands used. This was done to get a rough estimate of the proportion of each brand that was used.

BrCd999(other): 49%

No of BrCd999(other) brands used: 1

Proportion of each BrCd999(other) brand used: 49/1=49%

4. We then took a standard deviation of all 9 BrCd Variables. The value given by standard deviation, if low, means that the household is less loyal. If the deviation value is high then it means that the household is more loyal.

BrCd57,144	BrCd55	BrCd272	BrCd286	BrCd24	BrCd481	BrCd352	BrCd5	BrCd999
38%	13%	0%	0%	0%	0%	0%	0%	49%

Standard Deviation: 19%

5. We then used min-max normalization to scale the brand loyalty values between 0 and 1. The closer the brand loyalty value is to 1, the less loyal a household is likely to be.

This is how we developed brand loyalty.

We normalized all the variables using Z-transform.

We then performed k-means clustering on the variables that described purchase behaviour. We used clustering to help discover distinct groups within purchase behaviour and partition that data into groups and then assign labels to those groups.

The data shown below is for the clustering model we got using the purchase behaviour variables.

Shown below is the 3-d scatter plot for k=3.

Shown below is the variable plot for k=3

k	Average intra-cluster distances
2	0.922
3	0.718
4	0.542
5	0.483

We have chosen k=3 as the number of clusters due to the following reasons:

The variable plot for k=3 clearly defined each cluster while variable plots for k=4,5 had values in attributes overlapping to some extent. Thus, even though the average intra cluster distance was lower for k=4,5 we preferred k=3 as each cluster in k=3 clearly defined the values for the purchase behaviour attributes.

Answer 1.b.

We then used k-means clustering on the variables that described basis-for-purchase.

The variables used to describe basis-for-purchase were

For selling proposition we decided to create a new variable which included the maximum value from all the selling propositions for that household. We used

We normalized all the variables using Z-transform.

The data shown below is for the clustering model we got using the basis-for-purchase variables.

Shown below is the 3-d scatter plot for k=5.

Shown below is the variable plot for basis of purchase variables

k	Average intra-cluster distances
2	0.823
3	0.759
4	0.645
5	0.503

For all values of k, we got similar variable plots, i.e. they all overlapped for certain values of some of the basis-for-purchase variables. Thus, we chose k=5, as it had the lowest average intra cluster distance. This meant that clusters for k=5 were more compact than the clusters for the other k values.

Answer 1.c.

We then combined the variables for purchase behaviour and basis for purchase and performed k-means clustering.

We normalized all the variables using Z-transform.

The data shown below is for the clustering model we got using the combined variables.

Shown below is a 3-d scatter for k=5

cluster cluster_4 cluster_0 cluster_3 cluster_2 cluster_1

Shown below is the variable plot

As you can see it is not easy to differentiate values of the variables for each cluster since they overlap.

k	Average intra-cluster distances
2	0.838
3	0.763
4	0.676
5	0.638

For all values of k, we got similar variable plots, i.e. they all overlapped for certain values of some of the variables. Thus, we chose k=5, as it had the lowest average intra cluster distance. This meant that clusters for k=5 were more compact than the clusters for the other k values.

For k-means clustering used on the different data segments mentioned above, we used a value of k between 2 and 5. This was done so that we could then segregate the data into different clusters depending on the k values.

Answer 1.d.

We got out best k-means model in 1(a), i.e. using k-means clustering to describe purchase behaviour. We thought that this was the best model as it distinctly defined each attribute in a cluster better than the other two did, namely 1(b) i.e. variables describing the basis for purchase and 1(c) i.e. a combination of the two segments above.

We then used different clustering techniques on the variables used to describe purchase behaviour.

We compared the models using Accuracy from the Decision Tree.

Technique	Description	Accuracy
K-Means	K=3, Max runs=100	94.66%
K-Medoids	K=5, Max runs=100	89.82%
Kernel k-means	K=3, kernel type=dot	94.54%
Agglomerative	Complete linkage, flattening=7	94.32%
DBSCAN	Epsilon= 1, Min Points=10, dimension=3	87.67%

K-Means Clustering:

cluster@cluster_0 @cluster_2 @cluster_1

K-Medoid Clustering:

cluster@cluster_1 @cluster_0 @cluster_3 @cluster_4 @cluster_2

Kernel K-Means Clustering:

cluster• cluster_0 • cluster_2 • cluster_1

Density Based Spatial Clustering of Applications with Noise(DBSCAN)

Agglomerative Clustering:

Parameter Changes

Density Based Spatial Clustering of Applications with Noise(DBSCAN):

Epsilon	Min Points	Average Within Cluster Distance
0.5	5	1885.33
1	5	1007.325
1	10	874.604

In DBSCAN as we increase Epsilon and Min Points, the Average Within Cluster Distance decreases.

K-Medoids Clustering:

K	Intra Cluster Distance	Inter Cluster Distance Range
2	7.326	3.802
3	6.313	2.967- 4.497
4	5.430	2.315- 4.865
5	4.903	2.013-4.865

As we increase k, the intra cluster distance decreases and the inter cluster distance range increases.

Agglomerative Clustering:

Number of Clusters	Single linkage	Complete linkage	Average linkage
3	0.98	0.417	0.895
4	0.983	0.627	0.897
5	0.987	0.741	0.935
7	0.99	0.993	0.97

As the number of clusters increases, the performance vector for single, complete and average linkage increases.

Kernel K-Means Clustering:

K	Average Within Cluster Distance			
	Dot Kernel Radial Kernel			
3	338.844	685.349		
5	562.464	559.835		
8	174.266	403.470		

As K increases the average distance within cluster for Dot Kernel and Radial Kernel decreases.

As you can see, the clusters we got from different techniques were different. We think this is because each clustering method has a different basis for computation of the clusters. Thus each clustering method will give a different outcome.

K-means uses means to find the centres for the clusters.

K-medoids uses medoids as the centres for the clusters. Also K-means is not as robust to outliers as K-medoids.

DBSCAN groups together points that are closely packed together (points with many nearby neighbours).

Kernel K-Means works in the same way as K-Means, but uses a kernel method to calculate distance instead of Euclidian distance.

In Agglomerative Clustering all observations start in their own cluster and pairs of clusters are merged as one moves up the hierarchy.

Answer 2.a

We think that the best segmentation is the one with purchase behaviour variables. When we performed clustering on this data using k-mean clustering we got distinct values for each attribute that explained their corresponding clusters.

k-means variable plot for purchase behaviour variables

Cluster 0(blue): in cluster 0 we see that households that buy a high number of brands, have a moderate number of brand runs, purchase in small volume with not very high product values and have a modest number of transactions have a low brand loyalty.

Cluster 1(green): in cluster 1 we see that households that buy fewer brands, have lower brand runs, purchase in small volume with smaller product values and have lower number of transactions have a high brand loyalty.

Cluster 2(red): in cluster 2 we see that households that buy many brands, have a high number of brand runs, purchase in high volumes with high cost products and have a high number of transactions have a medium brand loyalty.

These purchase behaviour variables help identify the group of households that should be targeted for specific campaigns.

For example, it does not make sense to send advertising to households (cluster 1) that have a large brand loyalty but buy few brands, but it might help to send them discounts and vouchers for those brands that they buy.

Targeted advertising and promotions could instead be sent to those households (cluster 2) that purchase in large volumes and are somewhat loyal as it would justify the advertising cost for the company.

For the other households (cluster 3), one could use common in-store or online discounts to predict whether their buying power and brand loyalty justifies the cost of sending advertisements and promotions.

We believe that clustering based on purchase behaviour could help companies predict which households to target. This would directly relate to an improvement in their marketing and promotional campaigns. This fact combined with the distinctness and individuality of the clusters made us choose the purchase behaviour variables as the best segmentation.

Using basis-for-purchase variables would help define the households to target for certain promotional offers.

As you can see from the variable plot above, the households in cluster 0 (dark blue) purchase the highest volume during the promo code 6. This information could be used to provide them early access to future deals like promo code 6 deals.

We could also use a combination of the two segments above, but the clusters we obtained were not as clear as their individual clusters, thus we preferred clustering these segments individual to gain more information.

Answer 2.b

To calculate demographic distribution to the clusters, we have bucketed the Variables as:

Demographics	Transformation
SEC	No Transformation
FEH	0 - Non Veg
	1-Gujarati
MT	2-Marathi
	0- Everything Else
CLA	0- Male
SEX	1-Female
AGE	No change

	0:4 - 0
EDU	5 -1
	6:9 - 2
HS	No change
Child	No change
CS	No change
	0:10 – 1
	10:20 – 2
Affluent Index	20:30 – 3
	30:40 – 4
	40:50 – 5

We have plotted the distribution of each demographic attribute among the clusters

Based on this information, we can make conclusions about each clusters dominant demographics:

Demograph	Cluster_0	Cluster_1	Cluster_2
SEC	Majority is SEC > 3	Majority if SEC = 4	Majority is SEC <3
FEH	All FEH are there	Majority is Non- Veg	Majority are Veg
Mother Tongue	All languages are	Majority are other	Majority is Marathis
	present	languages	
EDU	Evenly distributed	Majority are EDU <4	Majority have EDU > 6
HS	HS > 6 are dominant	HS less than 3	HS between 3 and 6
Age	Evenly distributed	majority AGE = 2 or 3	Evenly distributed
Affluent Index	Evenly distributed	Al= 1,2	AI = 3,4,5

Distribution of Social Economic Condition:

Cluster	SEC1	SEC2	SEC3	SEC4
cluster_0	13%	14%	19%	20%
cluster_1	43%	39%	45%	58%
cluster_2	44%	47%	36%	22%
Grand Total	150	150	150	150

Distribution of Food Eating Habits:

Cluster	Veg	Egg/Veg	Non Veg
cluster_0	10%	12%	19%
cluster_1	43%	44%	48%
cluster_2	47%	44%	33%
Grand Total	165	34	401

Distribution of Mother Tongue:

Cluster	Others	Marathi	Gujarati
cluster_0	15%	19%	8%
cluster_1	55%	41%	46%
cluster_2	29%	40%	46%

Grand Total 19	326	83
----------------	-----	----

Education:

Cluster	Sum of EDU0	Sum of EDU1	Sum of EDU2
cluster_0	19%	15%	12%
cluster_1	56%	39%	32%
cluster_2	25%	46%	56%
Grand Total	300	189	111

Numeric Variables

Cluster	Average of HS	Average of CHILD
cluster_0	6.09	2.90
cluster_1	3.49	3.45
cluster_2	4.21	3.10

Distribution of Age:

Cluster	Sum of AGE 1	Sum of AGE 2	Sum of AGE 4	Sum of AGE 3
cluster_0	20%	9%	22%	14%
cluster_1	40%	57%	41%	47%
cluster_2	40%	34%	37%	39%
Grand Total	15	129	287	169

Distribution of Affluence Index:

Cluster	1	2	3	4	5	6	Total
cluster_0	6%	20%	19%	16%	22%	67%	99
cluster_1	74%	45%	30%	32%	33%	0%	278
cluster_2	21%	35%	51%	52%	44%	33%	223
Total	136	260	110	73	18	3	

Answer 3.

We used the Clusters assigned for each Data points as labels and built a decision tree model using the demographic attributes.

The decision tree gave an accuracy of 93% for the differentiation of clusters.

Performance Matrix:

accuracy: 93.00%	true cluster_1	true cluster_2	true cluster_0	class precision
pred. cluster_1	298	19	9	91.41%
pred. cluster_2	5	180	5	94.74%
pred. cluster_0	3	1	80	95.24%
class recall	97.39%	90.00%	85.11%	

The decision tree helps in identifying the demographic attributes which will decisively distinguish the data points to be bucketed into clusters. Further, this model could be run on any new data points to determine which cluster it would most likely fall into. Now, we can use the Marketing strategy assigned for the cluster.

A decision tree can be used to distinguish between clusters, however it must be done carefully:

- 1. We first run our clustering algorithm to get the cluster labels.
- 2. We then partition the data points into train and validation.
- 3. Build a decision tree model on the train data, use the same model on validation.
- 4. Now, we can compare the different Clustering techniques using the accuracy.