

Fast and Low-Cost Genomic Foundation Models via Outlier Removal

Haozheng Luo*†
Zoe Mehta†

Chenghao Qiu* Maojiang Su* Guo Ye† Jerry Yao-Chieh Hu†

[†]Northwestern University, Evanston, IL 60208 USA; [‡]Tianjin University, Tianjin 300350, China

Zhihan Zhou[†] Han Liu[†]

Summary: Outlier-Free Genomic Foundation Model

- We introduce a new **outlier-free** Genomic Foundation Model (GFM) architecture called **GERM**, featuring superior **post-quantization** and **low-rank adaptation** performance.
- GERM retains and improves the desirable properties of GFMs in quantization and low-rank adaptation
- All DNABERT fine-tuning tasks finish in only 5 minutes on a single NVIDIA GeForce RTX 2080 Ti GPU.
- Achieves average performance improvements of 37.98% in finetuning and 64.34% in quantization, with 92.14% lower average kurtosis and 82.77% lower mmaximum infinity norm $|\mathbf{x}|_{\infty}$ values.

Background: Outliers in Attention Heads & GFMs

Attention Outlier [Hu et al., 2024] identify attention outliers where certain tokens induce a "wide range" in QK^{T} , referred to as *no-op outliers*. In GFMs, tokens or activations that disproportionately influence the attention mechanism with:

- Tokens with little or no meaningful information receive disproportionately high attention weights.
- Recurring nucleotide patterns are overemphasized by Softmax.

Genomic Foundation Models Large-scale pretrained models designed for modeling and analysing genomic sequences.

- Trained on massive genomic datasets
- Classification models: e.g., DNABERT-2, Nucleotide Transformer (NT), HyenaDNA
- Generative models: e.g., Evo, GenomeOcean
- Larger GFMs, especially generative models, require substantial computational resources for deployment and fine-tuning.

GERM

GERM is a GFM architecture with an outlier-free layer that enhances post-quantization and low-rank adaptation performance.

• We propose a new GFM architecture GERM by replacing the Softmax in the attention mechanism with $Softmax_1$ to achieve the Quantization Robustness and Fast Low-rank Adaptation.

$$\operatorname{Softmax}_{1}(S)\coloneqq\frac{\exp(S)}{1+\sum_{i=1}^{L}\exp(S_{i})},$$

$$\operatorname{AACGCACTATATA}_{\text{SentencePiece}}$$

$$\operatorname{SentencePiece}_{\text{Layer}}$$

$$\left\{ \mathbf{A},\mathbf{T},\mathbf{G},\mathbf{C},\mathbf{TA},\mathbf{AC} \right\}$$

$$\operatorname{Outlier-free}_{\text{Layer}}$$

$$\operatorname{Distribution\ w/o\ outlier}$$

• The original OutEffHop method requires training from scratch; we propose a trade-off variant, **GERM-T**, to achieve sub-optimal performance with small-step continual learning.

Experimental Studies: Significant Reduce Outlier

GERM significantly reduces $\|\mathbf{x}\|_{\infty}$ compared to vanilla attention and enhances post-quantization performance.

Model	#Bits	Quantization Method	MCC (†)	Delta MCC (↓)	Avg Performance Drop (↓)	Avg. Kurtosis (↓)	Max inf norm (↓)
Official	16W/16A	-	66.11	-	-	39.68	53.61
DNABERT-2	16W/16A		59.11	7.00	-	- 270.90	61.64
	8W/8A	-	33.60 ± 0.41	32.51	43.81%		
	8W/8A		36.51 ± 0.02	45.37	38.63%		
	6W/6A	SmoothQuant	20.74 ± 0.04	45.37	66.18%		
EF	4W/4A		-1.03 ± 0.06	67.06	101.24%		
AB	8W/8A	0-41:	25.26 ± 0.02	40.85	57.60%		
Z	6W/6A	Outlier	27.84 ± 0.28	38.27	52.71%		
	8W/8A		49.92±0.05	16.19	15.76%	_	
	6W/6A	OmniQuant	48.47 ± 0.14	17.64	18.61%		
	4W/4A		$2.94{\pm}0.19$	63.17	94.78%		
	16W/16A		59.73	6.38	-	21.29	10.62
	8W/8A	-	57.30 ± 0.08	8.81	3.77 %		
	8W/8A		56.65±0.15	9.46	4.82%		
	6W/6A	SmoothQuant	56.48 ± 0.07	9.63	5.45 %		
GERM	4W/4A		20.05 ± 0.00	46.06	69.44%		
GE	8W/8A	0 11	45.87±0.08	20.24	25.23%		
	6W/6A	Outlier	40.57 ± 0.56	25.54	36.27%		
	8W/8A		55.99±0.09	10.12	5.95%		
	6W/6A	OmniQuant	55.70 ± 0.03	10.41	6.41%		
	4W/4A		49.42 ± 0.00	16.69	17.17%		
	16W/16A		59.30	6.81	-	- - 251.40 -	28.49
	8W/8A	-	38.38 ± 0.15	27.73	<u>35.27%</u>		
GERM-T	8W/8A		57.52±0.00	8.59	3.01%		
	6W/6A	SmoothQuant	30.34 ± 0.04	35.77	48.83%		
	4W/4A		$0.22 {\pm} 0.00$	65.89	99.63%		
	8W/8A	0.41	42.57±0.05	23.54	28.31%		
	6W/6A	Outlier	46.02 ± 0.06	20.06	22.34%		
	8W/8A		56.80 ± 0.12	9.31	4.21%		
	6W/6A	OmniQuant	55.41 ± 0.00	10.71	6.57%		
	4W/4A	-	3.86 ± 0.00	62.25	93.49%		

Outlier Efficiency of Low-Rank Adaptation

- GERM reduces 92+% in average kurtosis and 82+% in the maximum infinity norm of model's outputs in DNABERT-2.
- GERM achieves a 37.98% improvement in model fine-tuning performance.

Models	Low-Rank Adaptation Method	MCC (†)	Delta MCC different (↓)	Avg Performance Drop (↓)	Avg. kurtosis(↓)	Max inf. norm(\downarrow)
7	Full	59.11	7.00	-	270.90	61.41
DNA BERT-2	LoRA	50.91 ± 1.67	15.2	13.87%	-	219.20
	QLoRA	50.65 ± 0.13	15.46	14.31%	292.85	<u>53.91</u>
	LoftQ	50.76 ± 0.06	15.31	14.05%	299.18	54.18
	Full	59.73	6.38	-	21.29	10.62
$\mathbf{R}\mathbf{M}$	LoRA	57.27 ± 0.70	8.84	4.12%	-	19.41
GERM	QLoRA	53.16 ± 0.21	12.95	10.99%	34.29	27.27
	LoftQ	53.11 ± 0.08	13.00	11.08%	33.02	27.41
H	Full	59.30	6.81	-	251.40	28.49
GERM-T	LoRA	55.60 ± 0.28	10.51	6.23%	-	140.86
	QLoRA	51.05 ± 0.07	15.06	13.90%	<u>287.95</u>	53.92
	LoftQ	51.20 ± 0.13	14.91	<u>13.65%</u>	<u>286.16</u>	<u>53.35</u>

We also observe a significant performance improvement on the Nucleotide Transformer 2.5B model; please refer to our paper for details.

- GERM achieves a 50.83% in PTQ performance and 66.02% in Low-rank adaptation performance.
- GERM-T achieves a 36.73% in PTQ performance and 34.56% in Low-rank adaptation performance.

Experimental Studies: Efficient GFM with GERM.

GERM reduces both fine-tuning and inference time

- GERM reduces fine-tuning time by 34.85% and improves inference latency by 24.79%.
- GERM-T reduces fine-tuning time by 26.68% and improves inference latency by 24.21%.

Performance Improve on CPU-only Environment

- GERM reduces fine-tuning time by 37.32% and improves inference latency by 33.95%.
- GERM-T reduces fine-tuning time by 21.63% and improves inference latency by 30.25%.

Method	Fine-Tuning Method	MCC (†)	Time (sec.)	
			Train	Inference
DNABERT-2	LoRA	50.91	808.23	29.66
GERM	LoRA	57.27	618.68	23.10
GERM-T	LoRA	<u>55.60</u>	<u>674.40</u>	23.57
DNABERT-2	QLoRA	50.65	516.04	63.17
GERM	QLoRA	53.16	358.34	45.28
GERM-T	QLoRA	<u>51.50</u>	418.13	<u>46.91</u>

More Experiments: Influence of Continual Learning.

GERM-T shows the smallest performance drop during quantization and low-rank adaptation compared to other continual learning steps.

Method	Method	$MCC (\uparrow)$	Avg Performance Drop (\psi)	
DNABERT-2	Full	59.11	-	
GERM	Full	59.73	-	
Out20k	Full	59.21	-	
GERM-T	Full	59.30	-	
Out100k	Full	60.56	-	
DNABERT-2	LoRA	50.91	13.87%	
GERM	LoRA	56.78	4.94%	
Out20k	LoRA	54.75	7.53%	
GERM-T	LoRA	55.60	<u>6.24%</u>	
Out100k	LoRA	56.61	6.52%	
DNABERT-2	QLoRA	50.65	14.31%	
GERM	QLoRA	53.16	11.00%	
Out20k	QLoRA	50.61	14.52%	
GERM-T	QLoRA	51.05	<u>13.91%</u>	
Out100k	QLoRA	51.24	15.39%	
DNABERT-2	LoftQ	50.76	14.13%	
GERM	LoftQ	53.11	11.08%	
Out20k	LoftQ	50.94	13.97%	
GERM-T	LoftQ	51.20	<u>13.66%</u>	
Out100k	LoftQ	50.77	16.17%	