**AJN Notes** 

## Module 3

FIR filter design

**AJN Notes** 

**AJN Notes** 

# FIR filter types

#### **AJN Notes**



| Verify that type 1 FIR filter has linear phase response Considering the sequence H(n) of length 5                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $h(n) = \{h(a), h(1), h(2), h(3), h(4)\}$                                                                                                                              |
| $H(z) = \frac{2}{z} h(n) z^{-n}$ $= \frac{4}{z} h(n) z^{-n}$ $= n = 0$                                                                                                 |
| $\frac{1}{1+h(2)z^{-1}+h(3)z^{-3}+h(4)z^{-4}}$                                                                                                                         |
| $= h(0) + h(1)z^{-1} + h(2)z^{-2} + h(3)z^{-3} + h(4)z^{-4}$ But from odd length symmetery ppt of Type I filter $h(0) = h(0)  h(0)  equivalent to h(4)  h(1)  b  h(3)$ |

**AJN Notes** 

$$= \frac{1}{Z^{2}} \left[ h(0) z^{2} + h(4) z^{2} + h(1)z + h(3)z^{2} + h(2) \right]$$

$$= \frac{1}{Z^{2}} \left[ h(0) (e^{j\omega})^{2} + h(4) + h(1) (e^{j\omega} + h(3)e^{j\omega} + h(2) \right]$$

$$= \frac{1}{(e^{j\omega})^{2}} \left[ h(0) (e^{-j2\omega} + e^{j2\omega}) + h(1) (e^{j\omega} + e^{-j\omega}) + h(2) \right]$$

$$= \frac{1}{Z^{2}} \left[ h(0) (os(2\omega) + 2h(1)(os\omega + h(2)) \right]$$

$$= \frac{1}{Z^{2}} \left[ h(0) (os(2\omega) + 2h(1)(os\omega + h(2)) \right]$$

**AJN Notes** 

| Show that FIR filter with Symmetric imputes sesponse & even length will have compulsion | 150 |
|-----------------------------------------------------------------------------------------|-----|
| sesponse & even length will have compulsion                                             | 1   |
| zero at z=-1                                                                            |     |
| consider h(n) of length M                                                               |     |
|                                                                                         |     |
| $H(z) = \frac{(m-1)}{2}h(n)z^{-n} = \frac{(m-1)}{2}h(m-1-n)z^{-n}$                      |     |
| n=0 n=0                                                                                 |     |
| Replacing han M-1-n = m                                                                 |     |
| To too waterman or Alleral Lie and I so                                                 |     |
| $H(z) = \frac{M}{2} h(m) - \frac{M-1-m}{2}$                                             |     |
| m=ø                                                                                     |     |

**AJN Notes** 

## **AJN Notes**



**AJN Notes** 

**AJN Notes** 

#### **AJN Notes**



**AJN Notes** 

**AJN Notes** 

$$Z = e^{j\omega}$$

$$Z = \cos(\omega) + j\sin(\omega)$$

$$H(-1) = (-1)H(-1)$$

$$2H(-1) = 0$$

$$H(-1) = 0$$
There is compulsory zero at  $z = -1$ 
AJN Notes

**AJN Notes** 



| 18. | Zero loca | ations in linear       | phase FIR Filters                                                |
|-----|-----------|------------------------|------------------------------------------------------------------|
|     | Types     | There is no compulsory | All types of filters can be                                      |
|     |           | 2000                   | designed                                                         |
| 1   | Type 2    | compulsory zero at     | LPF can be designed                                              |
| 1   | 220 2400  | Z=-1/1 w watt no       | TAN MAD AND                                                      |
| 1   | pe3       | Compulsory ze no at    | B.P.F can be designed. But 1.P.B.H.P and B.R. connot be designed |
| Ty  | pe4       | Compulson zero at      | H.P.F can be designed                                            |

**AJN Notes** 



**AJN Notes AJN Notes AJN Notes** 

## **AJN Notes**

| Characteristics                                                                          |
|------------------------------------------------------------------------------------------|
| pagnit to eaged the legiting on a month paget                                            |
| If M is length of filter order is N=M-L                                                  |
| zero's are always in reciprocal                                                          |
| If these zero's are complex & not on unit                                                |
| the pair of four                                                                         |
| If the complex zero's are on unit circle there they will always occur in the pair of two |

**AJN Notes** 

**AJN Notes** 



**AJN Notes** 

**AJN Notes** 

#### **AJN Notes**

$$Z_{2} = \frac{1}{Z_{1}}$$

$$Z_{3} = Z_{1}^{*} = 0.5 e^{-j.57/3}.$$

$$Z_{4} = Z_{2}^{*} = 2 e^{j.57/3}.$$
Number of zero's = Number of poles [For = 4]

**AJN Notes** 

**AJN Notes** 



#### **AJN Notes**

$$H(z) = (z-z_1)(z-z_2)(z-z_3)(z-z_4)$$

$$= (z-0.5e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})$$

$$= (z-0.5e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})$$

$$= (z-0.5e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3})(z-2e^{j\pi/3}$$

**AJN Notes** 

#### **AJN Notes**

$$H(z) = (z-z_1)(z-z_2)(z-z_3)(z-z_4)$$

$$= (z-0.5e^{j\pi y_3})(z-2e^{j\pi y_3})(z-2e^{$$

**AJN Notes** 

**AJN Notes** 

**AJN Notes** 



**AJN Notes** 

## **AJN Notes**



**AJN Notes** 

**AJN Notes** 

## **AJN Notes**



**AJN Notes** 

**AJN Notes** 



AJN Notes

## **AJN Notes**

| one of the zero of 3rd order FIR filt   | 2 15   |
|-----------------------------------------|--------|
| at z=0.5, the filter is symmetric. Find | the    |
| T.F and the impulse response            |        |
| N=3 -> Order                            |        |
| :. M=4 >length [Even length?            |        |
| Since it is even summe tric en it       | filter |
| From the table the pole zero plat is    |        |
|                                         |        |

**AJN Notes** 

## **AJN Notes**

| $Z_3 = \frac{1}{Z_2}$ | Because order is 3 No of ze poles = 0 |
|-----------------------|---------------------------------------|
| Z <sub>3</sub> = 2.   | (a)d sisteming data to                |
| ·, H(Z) = (Z+         | 1) (z-0.5) (z-2)                      |

**AJN Notes** 

**AJN Notes** 

$$= \frac{z^{3}-z^{2}-2z-0.5z^{2}+0.5z+0.1}{z^{3}}$$

$$= \frac{z^{3}-1.5z^{2}-0.5z+1}{z^{5}}$$

$$= \frac{z^{3}-1.5z+1}{z^{5}}$$

**AJN Notes** 

## **AJN Notes**

| Design of linear phase FIR filters |
|------------------------------------|
| Method 1 -> Fourier Series         |
| Method 2 -> windowing method       |
| Method 3 -> Frequency sampling     |

**AJN Notes** 

**AJN Notes** 

## **AJN Notes**

| FIR tilter design using tourier, method.         |
|--------------------------------------------------|
| Assumptions                                      |
| Given the desired freg response,                 |
| H, (w)                                           |
| Could to northand = (a) d [T]                    |
| (I) Calculate desired impulse red response ha(n) |
| using inverse DTFTodmon and IEM                  |
| 1) Find # h(n) By touncating ha(n) in the        |
| range -(M-1) & n & (M-19) where A is             |
| 7 (2)                                            |

**AJN Notes** 

**AJN Notes** 

#### **AJN Notes**

**AJN Notes** 

**AJN Notes** 

#### **AJN Notes**



**AJN Notes** 

**AJN Notes** 



AJN Notes

AJN Notes



**AJN Notes** 

## **AJN Notes**



**AJN Notes** 

**AJN Notes** 



**AJN Notes** 

**AJN Notes** 



AJN Notes

| -1    | -52 Sin (-52) | 0.3183         |
|-------|---------------|----------------|
| 0 = 4 | 08/77/ 2 2/2/ | 0.50 50        |
| 1     | 1 Sin(32)     | 0.3183         |
| 2     | 1 Six 250)    |                |
| 33    | 1 Sin(352)    | -0-1061        |
| 4     | 1 Sm (45t)    | 296 09,4194 91 |
| 5     | 1 Sin(5Jt)    | 0.06366.       |



**AJN Notes** 

**AJN Notes** 

**AJN Notes** 

**AJN Notes** 



**AJN Notes** 

**AJN Notes** 

| $H(z) = z^{-5} + (n)z^{-n}$ $n = -5$ $h(n) = -5$                                                    | -     |
|-----------------------------------------------------------------------------------------------------|-------|
| $= 0.0636 = -0.1061z^{-2} + 0.3183z^{-4} + 0.5z^{-3} + 0.3183z^{-6} - 0.1061z^{-8} + 0.0636z^{-10}$ | 5     |
| It is causal filter since power of z is star<br>at zero & is negative so on                         | sting |
| # h(n)=\(\int_{0.0636}\), 0, 0.1061, 0, 0.3183, 0.5                                                 |       |
| odd length, even symmetry Type 1 filter.                                                            |       |

**AJN Notes**