CS 581

Advanced Artificial Intelligence

April 1, 2024

Announcements / Reminders

Please follow the Week 11 To Do List instructions (if you haven't already)

Programming Assignment #02 due on Sunday (04/07) at 11:59 PM CST

Plan for Today

- Recurrent Neural Networks
 - Basic RNNs
 - Long Term Short Term Memory (LSTM)
- Seq2seq Networks

Recurrent Neural Networks

Feedforward Neural Network

Also called (historically): multi-layer perceptron

Does NOT have memory (does not "remember" previous state/input)

NOT suitable for sequential data

Does HAVE memory

("remembers" previous state/input)

Suitable for sequential data

Recurrent Cells/Layers: Symbols

Easier to parallelize

Difficult to parallelize

Recurrent Neural Networks (RNNs)

- Recurrent neural networks apply the same operation to the input at each time step, producing an output, but also updating an internal memory state that encodes relevant history to be used in prediction
- This memory state can allow distant information to influence the prediction made for a given word/label
- Because the memory state is transferred from time step to time step, the network is intrinsically sequential – it cannot be effectively parallelized

Rolled vs. Unrolled RNN

Rolled vs. Unrolled RNN

- x_i single input/feature (can be a scalar or a **vector**)
- h_i single memory/hidden representation/state (can be a scalar or a **vector**)
- y_i single output (can be a scalar or a **vector**)

Sigmoid / Logistic Activation Function

Other Nonlinear Activation Functions

tanh (hyperbolic tangent)

ReLU
(Rectified Linear Unit)

W: Input weight matrix | U: Recurrent weight matrix | V: Output weight matrix | b_v: output bias

 x_i : size d | h_i : size p | y_i : size d | W: p x d | U: p x p | V: d x p | b_h : size p | b_y : size d

In Practice: RNN Cell/Unit

$$h_t = \sigma(W * x_t + U * h_{t-1} + b_h)$$

In Practice: RNN Cell/Unit

$$h_t = \sigma(W * x_t + U * h_{t-1} + b_h)$$

In Practice: RNN Cell/Unit | T = 1

$$h_1 = \sigma(W * x_1 + U * h_0 + b_h) = h_1 = \sigma(W * x_1 + U * 0 + b_h) = h_1 = \sigma(W * x_1 + b_h)$$

In Practice: RNN Cell/Unit | T = t

$$h_t = \sigma(W * x_t + U * h_{t-1} + b_h)$$

In Practice: Multi-Layer RNNs

In Practice: Bi-directional RNNs

Rolled RNN Unrolled (time-layered representation) RNN TIME y_{t-1} y_t y_{t+1} h_{2,t-1} h_{2,t} $h_{2,t+1}$ h_2 h_1 h_{1,t-1} h_{1,t} h_{1,t+1} X X_{t-1} $\mathbf{X_t}$ X_{t+1}

In Practice: Bi-directional RNNs

Unrolled (time-layered representation) RNN

TIME

BACKWARD Layer

FORWARD Layer

RNN: Input - Output

$$y_5 = \sigma(Vh_5 + b_y)$$

$$\sigma(Wx_5 + Uh_4 + b_h)$$

$$\sigma(Wx_4 + Uh_3 + b_h)$$

$$\sigma(Wx_2 + Uh_1 + b_h)$$

$$\sigma(Wx_1 + U\mathbf{0} + b_h)$$

Training Neural Networks: Intuition

For every training tuple $(x, y) = (feature\ vector,\ label)$

- Run forward computation to find estimate ŷ
- Run backward computation to update weights:
 - For every output node
 - Compute loss L between true y and the estimated ŷ
 - For every weight w from hidden layer to the output layer
 - Update the weight

- For every hidden node
 - Assess how much blame it deserves for the current answer
 - For every weight w from input layer to the hidden layer
 - Update the weight

Back-propagation

Feed forward

Evaluate Loss

Back-propagation

Feed a **labeled sample** through the network

How "incorrect" is the result compare to the label?

Update weights (use **Gradient Descent**)

Gradients and Learning Rate

■ The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ weighted by a learning rate η

Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x; w), y)$$

Vanishing and Exploding Gradients

As we've seen, information needs to travel a long way in an RNN to get from the error signal / loss function (y) to some inputs (xi). By the chain rule of differentiation, the gradient of the loss function will have the form

$$W \times \sigma'(z_1) \times U \times \sigma'(z_2) \times U \times \sigma'(z_3) \cdots$$

- Vanishing gradients: Elements of U are less than one, and gradients drop off to zero
- Exploding gradients: Elements of U are greater than one and gradients increase without limit

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

 A more sophisticated version of the recurrent neural network is the Long Short Term Memory (LSTM)

- An LSTM uses gates to determine what information feeds forward from one time step of the network to the next
 - this helps to address the vanishing/exploding gradient problems and make learning more stable

forget gate: determines how much of previous cell state is incorporated into current cell state

input gate: determines how much of input is incorporated into cell state

output gate: determines how much of current cell state is incorporated into current output

f_t = forget gate output
i_t = input gate output
c'_t = candidate values
o_t = output gate value
h_t = new hidden state
c_t = new cell state

tanh and sigmoid Activation Functions

tanh
→ [-1,1] range

Sigmoid

→ [0,1] range

$$f_{t} = \sigma(W_{f} * [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} * [h_{t-1}, x_{t}] + b_{i})$$

$$c'_{t} = tanh(W_{c} * [h_{t-1}, x_{t}] + b_{c})$$

$$o_{t} = \sigma(W_{o} * [h_{t-1}, x_{t}] + b_{i})$$

$$h_{t} = o_{t} * tanh(c_{t})$$

$$c_{t} = f_{t} * c_{t-1} + i_{t} * c'_{t}$$

biases (b_f, b_i, b_c, b_i, b_y) not shown on diagrams W_f, W_i, W_c, W_i, V are neural network weight matrices

RNN/LSTM Structure Types

CNNs for Text Classification/Prediction

We noted before that some text categorization tasks (like sentiment analysis) could also benefit from using sequential information about the words in a text

I would never buy this product again. It clearly failed under high-stress testing in my home.

I would clearly buy this product again. It never failed under high-stress testing in my home.

Many to Many: Word Prediction

Many to Many: Translation

Many to One: Classification

One to Many: Image Captioning

RNN Cell/Unit

$$h_t = \sigma(W * x_t + U * h_{t-1} + b_h)$$

Gated Recurrent Unit (GRU)

source: https://www.oreilly.com/library/view/advanced-deep-learning/9781789956177/8ad9dc41-3237-483e-8f6b-7e5f653dc693.xhtml

LSTM vs. Gated Recurrent Unit

source: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Sequence to Sequence Networks (seq2seq)

Many-to-Many RNN Network

Many-to-Many RNN Network

Illinois Institute of Technology

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence (seq2seq)

RNN Encoder-Decoder

Output / target sequence

RNN Encoder-Decoder: Training

Output / target sequence

RNN Encoder-Decoder: Inference

Output / target sequence

RNN Encoder-Decoder: Data Prep

Data: <source_sequence, target_sequence> pairs

- Append <EOS> to the source_sequence
- Prepend <GO> (or <SOS>) to the target_sequence to obtain the target_input_sequence and append <EOS> to obtain target_output_sequence.
- Pad up to the max_input_length (max_target_length) within the batch using the <PAD> token.
- Encode tokens based of vocabulary (or embedding)
- Replace out of vocabulary (OOV) tokens with <UNK>. Compute the length of each input and target sequence in the batch.

source_sequence

target_output_sequence

RNN Encoder-Decoder: Training

Data: <source_sequence, target_sequence> pairs

- Append <EOS> to the source_sequence
- Prepend <GO> (or <SOS>) to the target_sequence to obtain the target_input_sequence and append <EOS> to obtain target_output_sequence.
- Pad up to the max_input_length
 (max_target_length) within the batch using the

 <PAD> token.
- Encode tokens based of vocabulary (or embedding)
- Replace out of vocabulary (OOV) tokens with <UNK>. Compute the length of each input and target sequence in the batch.

source_sequence

target_output_sequence

RNN Encoder-Decoder: Training

Data: <source_sequence, target_sequence> pairs

- Append <EOS> to the source_sequence
- Prepend <GO> (or <SOS>) to the target_sequence to obtain the target_input_sequence and append <EOS> to obtain target_output_sequence.
- Pad up to the max_input_length
 (max_target_length) within the batch using the

 PAD> token.
- Encode tokens based of vocabulary (or embedding)
- Replace out of vocabulary (OOV) tokens with <UNK>. Compute the length of each input and target sequence in the batch.

source_sequence

ERROR/LOSS: Incorrect sequence

RNN Encoder-Decoder: Inference

source_sequence

Encoder-Decoder: Translation

Encoder-Decoder:Question Answering

Encoder-Decoder: Chat Bot

Sequence to Sequence Networks (seq2seq) With Attention

RNN Encoder-Decoder: Context

Fixed Length Context

Attention Mechanism

- Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query
- Attention mechanism "amplifies" important aspects of the signal from the encoder based on the decoder query
- In seq2seq models with attention, each decoder hidden state (query) attends to all the encoder hidden states (values)

Benefits of Attention Structure

- Significantly improves performance (in many applications)
 - it's very useful to allow the decoder to focus on certain parts of the source
- Solves the bottleneck issue
 - attention allows decoder to look directly at the source (and "bypass" the bottleneck)
- Helps with vanishing gradient problem
 - provides shortcut to far away states
- provides some interpretability
 - inspecting attention distribution we can see what the decoder was focusing on

Deep RNN Enc-Dec with Attention

Deep RNN Enc-Dec with Attention

Deep RNN Enc-Dec with Attention

