CS1231S: Discrete Structures

Tutorial #4: Relations & Equivalence Relations

(Week 6: 12 - 16 September 2022)

1. Discussion Questions

These are meant for you to discuss on Canvass. No answers will be provided.

D1. Let $A = \{0,1\}$, $B = \{a,b,c\}$ and $C = \{01,10\}$. Determine the following:

- (a) $B \times C$
- (b) $A \times B \times C$
- (c) $\emptyset \times A$
- (d) $\wp(\{\emptyset\}) \times A$

D2. Let $A = \{a, b, c, d, e\}$ and $N = \{1,2,3,4,5\}$. A relation R from A to N is shown in the arrow diagram below.

- (a) Determine R^{-1} .
- (b) Determine $R^{-1} \circ R$.

2. Tutorial Questions

1. Let $A = \{1,2,...,10\}$ and $B = \{2,4,6,8,10,12,14\}$. Define a relation R from A to B by setting $x R y \Leftrightarrow x$ is prime and $x \mid y$

for each $x \in A$ and each $y \in B$. Write down the sets R and R^{-1} in **roster notation**. Do not use ellipses (...) in your answers.

- 2. Let R be a relation on a set A. Show that the following are logically equivalent by using this strategy: (i) implies (ii), (ii) implies (iii), and (iii) implies (i).
 - (i) R is symmetric, i.e. $\forall x, y \in A \ (x R y \Rightarrow y R x)$.
 - (ii) $\forall x, y \in A (x R y \Leftrightarrow y R x).$
 - (iii) $R = R^{-1}$.

- 3. For each of the relations defined below, determine whether it is (i) reflexive, (ii) symmetric, (iii) transitive, and (iv) an equivalence relation. If a property is false for the relation, give a counterexample.
 - (a) Let $A = \{1,2,3\}$, $Q = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$, where Q is a relation on A.
 - (b) Define the relation E on \mathbb{Q} by setting, for all $x, y \in \mathbb{Q}$, $x \to y \Leftrightarrow x = y$.
 - (c) Define the relation R on \mathbb{Q} by setting, for all $x, y \in \mathbb{Q}$, $x R y \Leftrightarrow xy \geq 0$.
 - (d) Define the relation S on \mathbb{Q} by setting, for all $x, y \in \mathbb{Q}$, $x S y \Leftrightarrow xy > 0$.
 - (e) Define the relation T on \mathbb{Z} by setting, for all $x, y \in \mathbb{Z}$, $x T y \Leftrightarrow -2 \leq x y \leq 2$.
- 4. The directed graph of a binary relation R on a set $A = \{a, b, c\}$ is shown below.

Draw the directed graph for each of the following and determine if it is transitive or not. If it is not transitive, explain.

(a)
$$R \circ R$$

(b)
$$R \circ R \circ R$$

(c)
$$(R \circ R) \cup R$$

5. Consider the relation $S = \{(m, n) \in \mathbb{Z}^2 : m^3 + n^3 \text{ is even}\}$. (Recall that \mathbb{Z}^2 means $\mathbb{Z} \times \mathbb{Z}$.) Determine (a) S^{-1} , (b) $S \circ S$ and (c) $S \circ S^{-1}$.

You may use theorems involving the sum of even and odd integers without quoting them (for example: the sum of two even integers is even; the sum of an even integer and odd integer is odd; etc.).

6. Let A, B, C, D be sets and $R \subseteq A \times B, S \subseteq B \times C$, and $T \subseteq C \times D$. Prove that

$$T \circ (S \circ R) = (T \circ S) \circ R.$$

That is, composition of relations is associative.

7. (AY2020/21 Semester 1 exam guestion)

Define an equivalence relation \sim on $\mathbb{Z}^+ \times \mathbb{Z}^+$ by setting, for all $a, b, c, d \in \mathbb{Z}^+$,

$$(a,b)\sim(c,d) \Leftrightarrow ab=cd.$$

Write down the equivalence classes [(1,1)] and [(4,3)] in **roster notation**.

- 8. Define a relation \sim on $\mathbb{Z} \setminus \{0\}$ as follows: $\forall a, b \in \mathbb{Z} \setminus \{0\}$ $(a \sim b \Leftrightarrow ab > 0)$.
 - (a) Prove that ~ is an equivalence relation. You may adopt the appropriate **order axioms** and **theorems** in *Appendix A: Properties of the Real Numbers* for the integers. (Appendix A is available on Canvas > Files as well as the CS1231S webpage at https://www.comp.nus.edu.sg/~cs1231s/2 resources/lectures.html.)
 - (b) Determine all the distinct equivalence classes formed by this relation \sim .
- 9. Let \mathcal{T} be a partition of a set A. Denote by \sim the same-component relation with respect to \mathcal{T} , i.e. for all $x, y \in A$,

$$x \sim y \iff x$$
 is in the same component of $\mathbb G$ as y . $\iff x, y \in S$ for some $S \in \mathbb G$.

- (a) Prove that if $x \in S \in \mathcal{C}$, then [x] = S.
- (b) Prove that $A/\sim = \mathbb{C}$. (Recall that A/\sim denotes the set of all equivalence classes w.r.t. \sim)