Fundamentos Matemáticos e Computacionais de Machine Learning

Especialização em Machine Learning e Big Data

Profa. Dra. Juliana Felix
jufelix16@uel.br

Sobre mim

- Graduação, Mestrado e Doutorado em Ciência da Computação
 - Universidade Federal de Goiás (UFG)
 - University of Manitoba (UofM), Canadá pelo Ciência sem Fronteiras
 - Tese de doutorado: Investigation of machine learning techniques to aid in the diagnosis of neurodegenerative diseases
- Atuei como professora na Universidade Federal de Goiás
 - o 2019, 2022, 2023
- Área de atuação e pesquisa
 - Machine learning, processamento de sinais e imagens, diagnóstico de doenças, visualização da informação, otimização
 - Currículo Lattes: http://lattes.cnpq.br/3610115951590691

Disciplina

Ementa

Fundamentos Matemáticos e Computacionais de Machine Learning

Modelos de Regressão Linear Simples, *StatsModels*, *Scikit-Learn*, Regressão Linear Múltipla, Regressão Logística, Estrutura de dados, Datasets, Webdata, Aplicações.

Objetivo

O **objetivo geral** desta disciplina é apresentar **fundamentos matemáticos** que vão auxiliar a compreender o funcionamento dos algoritmos de machine learning e atividades relacionadas.

Objetivos Específicos

- Apresentar uma visão geral do que é Machine Learning
- Fazer uma breve revisão de estrutura de dados do Python e NumPy
- Fazer uma breve revisão de fundamentos matemáticos, como Álgebra Linear e Geometria Analítica

Objetivos Específicos

 Apresentar alguns métodos básicos de ML e seus fundamentos matemáticos para

- Ajustes de função (regressão linear)
- Classificação (regressão logística)
- Conhecer formatos de Bases de dados
- Apresentar bibliotecas básicas para Machine Learning
- Introduzir o conceito de Web Scraping

Plano de Aulas

- (15/05) Aula 1: Apresentação da disciplina, Ambientes de programação em Python, Estruturas de Dados em Python
- (16/05) Aula 2: NumPy, Fundamentos matemáticos
- (18/05) Aula 3: Regressão, Regressão Linear Simples
- (19/05) Aula 4: Regressão Linear Múltipla, Regressão Logística
- (22/05) Aula 5: Scikit-learn, StatsModels
- (23/05) Aula 6: Datasets
- (25/05) Aula 7: Webdata, web scraping
- (26/05) Aula 8: Aplicações
- (05/06) Último dia para entrega do Trabalho Final

Método de Avaliação

A nota final (NF) será composta por:

- Atividades relacionadas às aulas (40% da nota, A_i com $1 \le i \le n$)
- Trabalho Final (60% da nota, TF)

NF =
$$(A_1 + A_2 + ... + A_n) * 0.4 + (TF * 0.6)$$

Será aprovado o aluno que atingir NF igual o superior a 6,0