GB13604 - Maths for Computer Science

Lecture 1 – Introduction to Proofs

Claus Aranha

caranha@cs.tsukuba.ac.jp

College of Information Science

2020-10-07

Last updated October 1, 2020

Lecture 1 – Outline

In this lecture, we introduce the concept of **mathematical proofs**:

- Section 1: What are proofs, and why we need them;
- Section 2: Basic proof methods;
- Section 3: The Well Ordering Principle (WOP); (an important proof method)
- Section 4: Logical formulas and satisfiability;

This lecture covers the textbook's chapters 1, 2 and 3.

Part 1: Introduction to Proofs.

- Introduction to Proofs
- 2 Proof Methods
- Well Ordering Principle
- 4 Logical Formulas

2020-10-07

What is a proof?

Some concepts are easy to understand, but not easy to show that they are true.

Pythagoras Theorem:

$$a^2+b^2=c^2$$

4/56

- It is easy to show this is true for any one triangle.
- But how do you show it is is true for all triangles?

The proof of the Pythagoras theorem is not obvious: there are more than 100 different proofs!

What is a proof?

One Pythagoras Proof

- Proof: by geometric construction
- Arrange four identical triangles;
- Show that internal angles are right;
- Internal square area: c²
- External square area: $(a + b)^2$
- $(a+b)^2 = c^2 + 4$ (area triangle)
- $(a+b)^2 = c^2 + 4(\frac{ab}{2})$
- $a^2 + 2ab + b^2 = c^2 + 2ab$
- $a^2 + b^2 = c^2$

5/56

Remember: There are many other possible proofs. (Beautiful proofs, short proofs, wrong proofs, etc.)

False Proofs

Infinite Chocolate!

- What is wrong with the proof above?
- Be careful! A false proof can have many correct steps, and only one impossible step.

We can use proofs to show that something is **incorrect** as well!

Claus Aranha (COINS) GB13604 2020-10-07 6/56

Proofs and Computer Science

Why are proofs important for Computer Science?

- We don't use proofs only for mathematical equations.
- We can use proofs to show that a program is correct. (or incorrect)
- Example cases:
 - Use proofs to show that the result of a program is correct for any input;
 - Use proofs to show that one type of input will cause a bug in the program;
 - Use proofs to show that a program finishes in *N* steps;

Claus Aranha (COINS) GB13604 2020-10-07 7/56

Proofs and Computer Science

Example:

- Is the program below correct or incorrect?
- Can you show by using a proof?

```
int triangle type (int a, int b, int c)
  // a, b, c are the length of the sides of a triangle
  if (a == b)
    if (b == c)
      return "all sides are equal";
   else
      return "two sides are equal";
  else if (b == c)
    return "two sides are equal";
  else
    return "all sides are different";
```

Next Part:

Proof Techniques: How do we prove something?

- Introduction to Proofs
- 2 Proof Methods
- Well Ordering Principle
- 4 Logical Formulas

What is a Proof?

- A proposition is a statement that can be True or False.
 - This room has 40 chairs.
 - Every intelligent being feels pain.
 - Please say your name.
 - $513 \times 435 = 223165$
 - Every even integer greater than 2 is the sum of two primes.
 - It is raining now.
- A proof is a method of proving the truth or falsehood of a proposition.
 - mathematical proofs normally use logical steps to show the truth of a mathematical proposition.

11/56

Claus Aranha (COINS) GB13604 2020-10-07

Proof Examples

- Pitagoras by pictures
- Getting rich with triangles
- 1 == -1

Morals of Proofs

- Make sure that you are applying the rules properly.
- Mindless calculation does not replace understanding.

Claus Aranha (COINS) GB13604 2020-10-07

Common Terms used in Proofs

- Proposition:
- Predicate:
- Axiom:
- Proof:
- Theorem:
- Lemma:
- Corollary:

Common Terms used in Proofs

- Proposition:
 - A statement that is either true or false
- Predicate:
 - A preposition that depends on variables
- Axiom:
 - A preposition that is accepted to be true
- Proof:
 - A sequence of axioms and proved statements that conclude with the proposition of interest
- Theorem:
 - An important true proposition
- Lemma:
 - A simpler proposition that is useful to prove later propositions
- Corollary:
 - A proposition that follows from a theorem in a few logical steps

Our first proof method: Modus Ponens

$$rac{P,P ext{ implies } Q}{Q}$$
 or $rac{P,P
ightarrow Q}{Q}$

What does "Modus Ponens" mean?

- If P is true.
- and if P being true requires that Q is true too.
- then Q is true.

Claus Aranha (COINS) GB13604 2020-10-07

How can we use Modus Ponens to prove something?

- We want to prove Q.
- Prove that when P is true, Q must be true
- Prove that P is true
- therefore, Q must be true.

Claus Aranha (COINS) GB13604 2020-10-07

Proof By Contradiction

A trivial proof:

$$\sqrt[3]{1332} \le 11$$

Proof By Contradiction

If an assertion implies something false

Then the assertion must be false!

Better Example: $\sqrt{2}$ is irrational

Think a little bit by yourselves first.

Claus Aranha (COINS) GB13604 2020-10-07 19/56

Better Example: $\sqrt{2}$ is irrational

Let's prove by contradiction:

- 1 Assume that $\sqrt{2}$ is rational
- 2 Therefore $\sqrt{2} = \frac{m}{n}$, and m and n are integers with no common prime factors $(n \neq 0)$.
- 3 Therefore $n\sqrt{2} = m$, $2n^2 = m^2$, and m^2 is even.
- 4 If m^2 is even, then m is even too. m = 2k for some integer k.
- **5** Therefore $2n^2 = (2k)^2$, $2n^2 = 4k^2$, $n^2 = 2k^2$, and n^2 is even.
- 6 If n^2 is even, then n is even too. n and m are both even (contradiction).

Claus Aranha (COINS) GB13604 2020-10-07 20/56

Proof By Cases

Prove that these two code samples are the same:

Code 1

```
If (X > 0 OR (X <= 0 AND Y > 100))
  print("Hello!")
```

Code 2

```
If (X > 0 OR Y > 100)
  print("Hello!")
```

Proof By Cases

- "Proof by Cases" breaks a complicated problem into easier, smaller sub-problems.
- It is important to make sure that the cases cover all possibilities, or the proof is not complete.

Proof By Cases: Friends and Strangers

- Six people, every two are either friends or strangers.
- Claim: There is always a set of 3 mutual friends or 3 mutual strangers.

Claus Aranha (COINS) GB13604 2020-10-07 23/56

Friends and Strangers, and Ramsey's Theorem

For any k, every large enough group of people will contain k mutual friends OR k mutual strangers.

- R(3) = 6
- R(4) = 18
- R(5) = unknown!

A bogus proof by cases: Prove $2a^2 > a$

- This proof is by case analysis.
- 2 There are two cases:
 - Case 1: a is positive
 - Case 2: a is negative
- 3 One of these cases must always hold, because an integer is either positive or negative.
- 4 Case 1: Suppose a is positive.
- **5** Since a is an integer, we must have that $a \ge 1$.
- 6 Hence, $2a^2 = 2a \times a \ge 2a \times 1 > a$.
- This implies the claim holds in Case 1.
- 8 Case 2: Suppose *a* is negative.
- **9** Since *a* is an integer, we must have that $a \le -1$.
- 10 Hence, $2a^2 \ge 2 \times (-1 \times -1) = 2 > -1 \ge a$.
- This implies the claim holds in Case 2.
- The claim therefore holds in both cases.

Claus Aranha (COINS) GB13604 2020-10-07 25/56

- Introduction to Proofs
- 2 Proof Methods
- Well Ordering Principle
- 4 Logical Formulas

The Well Ordering Principle

- It is a very obvious (but very useful) principle in Mathematics;
- It is so obvious that you have already used it without knowing;

The Well Ordering Principle

Every non-empty set of Non-negative Integer Numbers has one smallest element

The Well Ordering Principle

Obvious? yes

Trivial? no

- Every non-empty set of non-negative rational numbers has one smallest element?
- Every non-empty set of integers numbers has one smallest element?

Well Ordering Examples

- What is the smallest age of the U.Tsukuba students?
- What is the smallest number of cells in any animal?
- What is the smallest number of coins = 876 yens?

Claus Aranha (COINS) GB13604 2020-10-07

Proof $\sqrt{2}$ is irrational using well ordering

- if $\sqrt{2}$ is rational, then exist m, n so that $\sqrt{2} = \frac{m}{n}$
- We can always find m, n > 0 such as they have no common factors.
- Why always?

Proof $\sqrt{2}$ is irrational using well ordering

- Suppose that we choose the smallest m, n.
- Using the same idea as the previous proof, we show that both numbers must be divisible by two. (m' = m/2, n' = n/2)
- Now we found a number smaller than the smallest! (contradiction!)

Claus Aranha (COINS) GB13604 2020-10-07

More Proofs Using the Well Ordering Principle

- (Easy) Every integer *i* > 1 is a product of primes.
- (Medium) Every number is Postal.
 - A number n is postal if n + 8 can be composed of a sum of "threes" and "fives"

2020-10-07

33/56

• (Difficult) $1 + r + r^2 + \ldots + r^n = \frac{r^n - 1}{r - 1}$

General form for a Well Ordering proof

You want to prove that $\forall n \in \mathbb{N}, P(n)$ using WOP.

- **1** Define a set of counter examples C, $C := \{n \in \mathbb{N} | \text{ not } P(n)\}$
- 2 Assume the minimum element of C exists, m, by WOP
- 3 Find a contradiction, for example:
 - Find a contradiction c ∈ C, c < m;
 - Show that P(m) is actually True;

- Introduction to Proofs
- 2 Proof Methods
- Well Ordering Principle
- 4 Logical Formulas

Propositions and Logic

Why Mathematical Language?

- Greeks carry swords or javelins.
- Greeks carry bronze or copper swords.

Mathematical Language

- Mathematical Language helps create non-ambiguous statements.
- We will not through all Logic operators here.
- However, it is important to understand that they are based on binary or boolean logic.

Mathematical Language / Binary Logic

Example: X XOR Y

Χ	Υ	X XOR Y
TRUE	TRUE	FALSE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

- A Truth Table is a way to understand a logic operator.
- We can use logic operators to transform ambiguous natural language sentences into clear logical propositions.
 - Greeks carry bronze or copper swords.
 - Greek carry bronze sword XOR greek carry copper sword.

Claus Aranha (COINS) GB13604 2020-10-07

Binary Logic and Truth Tables

The truth table allows us to analyze a logical formula:

- Is it always true? Is it always false?
- Is it equivalent to another logical formula?

To analyze a formula using the truth table, I need to analyse the value of each variable.

Evaluation of a Formula

Given the following variables:

How do we evaluate the following formula?

NOT(NOT(P) OR Q) AND (R OR (P XOR Q))

Comparison of Two Formulas

We can decide whether two logical formulas are equivalent if the final column of their truth table is identical.

For example, let's prove DeMorgan's Law:

NOT(P OR Q) equiv to NOT(P) AND NOT(Q)

Satisfiability and Validity

- A logic formula is satisfiable if it is true for at least one assignment.
- A logic formula is valid if it is true for all assignments.

- Satisfiable: NOT(B)
- Not Satisfiable: B AND NOT(B)
- Valid: B OR NOT(B)

Checking for Validity and Satisfiability

Checking if a logic formula is satisfiable or not is a very importan problem in CS.

But how to do it?

Alert! If you try to use a truth table, the size of the table grows with the number of variables:

- 1 variable 2 lines
- 2 variables 4 lines
- 10 variables 1024 lines
- n variables 2ⁿ lines...

Checking for Validity and Satisfiability

- Is there an efficient way to test for satisfiability? (SAT)
- The Efficient SAT problem is equivalent to the P=NP problem
- The validity problem is also related to the SAT problem.

Claus Aranha (COINS) GB13604 2020-10-07 45/56

Logic Quantifiers

For all: ∀

• Exists: ∃

What is a Predicate?

A predicate is a proposition with variables in it:

$$P(X, Y) ::= [X + 2 = Y]$$

The truth value of a predicate depends on the values of the variables:

- X = 1, Y = 3, P(X,Y) is True
- X = 2, Y = 2, P(X,Y) is False

Quantifiers

- $\forall x$ For ALL X
- ∃y There exists SOME Y

 $\forall x$ works like AND. For example:

$$\forall x, x \in \{1, 2, 3\} | P(X) \text{ equiv } P(1) \text{ AND } P(2) \text{ AND } P(3)$$

 $\exists y$ works like OR. For example:

$$\forall x, x \in \{1, 2, 3\} | P(X) \text{ equiv } P(1) \text{ OR } P(2) \text{ OR } P(3)$$

Quantifiers Example

For $x, y \in \mathbb{N}$ (x and y range over the integers).

$$Q(Y) ::= \exists x.x < y.$$

- Q(3) is True. ([x < 3] is T for x = 1)
- Q(1) is True. ([x < 1] is T for x = 0)
- Q(0) is False. ([x < 0] is not T for any $x \in \mathbb{N}$)

What about a simple example for \forall ?

Ordering Quantifiers

What is the difference when we order \exists and \forall ?

Example 1: Medicines

 $\forall d \in \text{diseases. } \exists m \in \text{medicine.}$ m cures d

Example 2: Panacea

 $\exists m \in \text{medicine.} \ \forall d \in \text{diseases.}$ m cures d

We need to be careful when writing mathematical notation!

Validity and Predicates

- Propositional Validity: A proposition is true for all truth assignments of variables.
 - Example: (P implies Q) OR (Q implies P)
- Predicate Calculus Validity: A predicate is valid when it is true for all domains.
 - Example: $\forall z.[P(z) \land Q(z)] \rightarrow [\forall x.P(x) \land \forall y.Q(y)]$

Conclusion

Important Ideas from this lecture

- Proofs are sequences propositions that establish the truth or falsehood of an statement.
- Proof Techniques are organized ways to construct a proof;
 - · Proof By Cases;
 - Contradiction;
 - Well Ordering Principle, etc;
- Predicate Logic use logical operators to show the truth or falsehood of a predicate;
 - · Concepts of Validity and Satisfiability;
- There is a close relationship between proving an statement, and proving the correctness of a computer program

Reminder: Exercise sheet at manaba

- The homework for this lecture is on manaba;
- You have to submit your homework before the next lecture;
- The lecturer will be available for questions at the lecture time, so start the exercise during the lecture time;
- You can discuss the exercise with other students, but your homework is individual

Slide Credits

These slides were made by Claus Aranha, 2020. You are welcome to copy, re-use and modify this material, following the CC-SA-NC license.

These slides are based on "Mathematics For Computer Science (Spring 2015)", by Albert Meyer and Adam Chlipala, MIT OpenCourseWare. https://ocw.mit.edu.

Individual images in some slides might have been made by other authors. Please see the following slides for information about these cases.

Image Credits I