# 부록 C

# 1:N 데이터 송수신 방법

# (Operation Mode)

## Version 1.1

## 주식회사 **펌테크**

홈페이지:<u>http://www.firmtech.co.kr</u>

공식카페 : http://cafe.naver.com/firmtech7

문의메일 : <u>contact@firmtech.co.kr</u> 전화 : 031-719-4812

팩스: 031-719-4834

# **Revision History**

| 날짜         | 버전  | 항목                                                |
|------------|-----|---------------------------------------------------|
| 2007-09-10 | 1.0 | 초안작성                                              |
| 2008-12-15 | 1.1 | Config tool images 및 Configuration Menu images 교체 |

## 목차

| 데이터 송수신 방법(Operation Mode)        | 4          |
|-----------------------------------|------------|
| 1 OP_MODE0(1:1통신)                 | ε          |
| 2 OP_MODE1(모니터링)                  | 7          |
| 2.1 Slave 에서의 설정 및 데이터 통신 방법      | 7          |
| 2.2 Master 에서의 설정                 | 12         |
| 3 OP_MODE2(선별적 양방향 대용량 통신)        | <b>1</b> 4 |
| 3.1 Slave 에서의 설정                  | 15         |
| 3.2 Master 에서의 설정                 | 19         |
| 4. 정보확인 방법                        | 21         |
| 4.1 TTL LEVEL(FB755) 에서의 확인 방법    | 21         |
| 4.2 RS232 LEVEL(BMx001) 에서의 화인 방법 |            |

## 데이터 송수신 방법(Operation Mode)

#### Note:

N 개의 Master 를 연결 할 수 있는 제품은 FB100AS(BM1001), FB200AS(BM2001), FB755AC, FB755AS 입니다.





<그림 C-1 OPERATION MODE MENU>

기본적으로 펌테크 제품의 1:N 통신에서 1은 Slave 이며, N은 Master 가 되어서 다수의 Master 가 1 대의 Slave 에 연결하여 데이터 통신을 할 수 있습니다.

1:N 통신에서 송수신된 데이터를 처리 할 수 있는 능력을 1이라고 하였을 때 1(Slave):5(Master)통신을 한다고 가정하면 Slave 가 처리 할 수 있는 데이터는 1인데 각각의 Master 에서 데이터를 동시에 보내면 5배가 많은 데이터가 들어오기 때문에 Slave 에서는 처리하지 못하거나 panic 상태에 빠지게 됩니다.

Slave 의 원활한 데이터(Stream) 처리를 위해서 일부 Master 의 데이터(Stream) 송신 간격을 제한하거나 데이터(Stream) 송수신 방식을 제어하는 것이 OPERATION MODE 입니다.

<그림 C-1> 같이 OPERATINO MODE 는 OP\_MODE0 ~ OP\_MOE2 까지 3 가지 MODE 로 되어 있습니다. 각 OP\_MODE 별로 사용 용도가 다르기 때문에 아래의 OP\_MODE를 숙지하시고 사용하시기 바랍니다.

## 1 OP\_MODE0(1:1통신)

1:1 통신 기반이며 다른 블루투스 장치(Bluetooth PDA, USB dongle)와 흐름제어가(CTR, RTS, DTR, DSR) 호환됩니다.

## 2 OP\_MODE1(모니터링)

- 1:N 통신 방식을 지원 합니다.
- Master(N)에서 일정한 간격(시간)을 두고 들어오는 데이터(Stream) 처리에 용이한 MODE 입니다.

## 2.1 Slave 에서의 설정 및 데이터 통신 방법



```
====== MAIN MENU ======
1 => GO TO BLUETOOTH PARAMETER MENU
2 => GO TO SECURITY PARAMETER MENU
3 => GO TO SYSTEM PARAMETER MENU
4 => GO TO UART PARAMETER MENU
5 => GO TO 1:N COMMUNICATION PARAMETER MENU
  Back Spcae : Input data Cancel
[ t : Move top menu
Select(1 \sim 5) > 5
       ====== COMMUNICATION PARAMETER MENU ==
1 => OPERATION MODE
2 => NUMBER OF CONNECTION DEVICE
3 => RX BUFF SIZE
                                         OP_MODE1
                                         5
                                       : O Byte
  Back Spcae : Input data Cancel
 t : Move top menu
Select(1 \sim 3) > 
                 <그림 C-2 Slave 일 때의 OP_MODE1>
```

#### 2.1.1 데이터 수신 방법

- OP\_MODE1 로 선택하면 <그림 C-2>와 같이 연결 할 장치의 수 와 한번에 처리하여 출력 할 BUFF SIZE 를 설정 할 수 있습니다.
- NUM OF CONNECTION : 연결 시킬 장치의 수를 선택 합니다.
- BUFF SIZE: 설정된 Byte 만큼 Slave 에 연결된 HOST 에게 Data 를 전달합니다.



<그림 C-3 OP\_MODE1 데이터처리 방식 및 처리 시간>

예를 들어 **RX BUFF SIZE** 가 **30 Byte** 로 설정 되어 있고 <그림 C-3> 와 같이 각각의 Master에서 40 Byte 를 동시에 송신 하면 수신된 순으로 30 Byte 씩 데이터가 출력 됩니다.

- <그림 C-3>과 같이 Slave 에서는 다수의 Master 에서 온 데이터를 처리하는데 Master 하나당 약 400ms의 데이터 처리 시간이 필요로 합니다. 만약 Master 5 개가 연결이 되어 있다면 400ms \* 5 = 2000ms(400ms \* 연결장치의 수) 약 2 초에 한번씩 Master에서 데이터를 송신하면 Slave 에서는 원활하게 데이터를 처리하여 출력 할 수가 있습니다.

Master 에서 위의 시간보다 짧은 시간에 데이터를 송신 하려면 충분한 테스트를 진행 하시기를 권장 드립니다.

#### Note:

데이터 송신 시간을 권장 시간보다 짧게 진행 하시면 Slave 가 제대로 데이터 수신을 하지 못할 수가 있습니다.

- 현재의 OP\_MODE1 에서는 Slave(1)에 다수의 Master(N)가 연결 되어 있기 때문에 Slave 에서 Master 에게 데이터를 송신 하려면 보내고자 하는 Master 를 선택하여 데이터를 보내야 합니다. OP\_MODE1, OP\_MODE2 에서는 CONNECTION MODE 에 상관없이 데이터를 보내고자 하는 Master 를 선택할 수 있는 AT 명령어 및 흐름제어 신호를 지원 합니다.

### 2.1.2 TTL LEVEL(FB755) 에서의 데이터 송신 방법



<그림 C-4 TTL(FB755)의 OP MODE1 에서의 Slave 가 Master 에게 송신하기 위한 타이밍>

TTL(FB755)에서의 데이터 송신 타이밍은 <그림 C-4>와 같이 STREAM CONTROL, STREAM STATUS, AT 명령어를 이용 하여 연결된 Master 에게 데이터를 송신 할 수가 있습니다. 보내는 절차를 간단하게 설명하면 아래와 같습니다.

- ① HOST → BT: STREAM CONTROL HIGH (STREAM CONTROL port 에 HIGH를 입력합니다.)
- ② BT → HOST: STREAM STATUS HIGH (정상적으로 수행 되면 HIGH 출력)
- ③ HOST → BT: ATO1→ (보내고자 하는 Master 선택)
- ④ BT → HOST: STREAM STATUS(DTR) LOW (Stream 정상적으로 연결 되면 LOW)
- ⑤ HOST → BT : STREAM CONTROL(DSR) LOW
- ⑥ HOST → BT : 데이터 전송



<그림 C-5 TTL LEVEL(FB755) 에서의 데이터 송신 진행과정>

#### 2.1.3 RS232 LEVEL(FB100AS, FB200AS) 에서의 데이터 송신 방법



<그림 C-6 RS-232(FB100AS, FB200AS)의 OP\_MODE1 에서의 Slave 가 Master 에게 송신하기 위한 타이밍>

RS232 LEVEL(FB100AS, FB200AS) 에서의 데이터 송신 타이밍은 <그림 C-6>와 같이 DSR(STREAM CONTROL), DTR(STREAM STATUS), AT 명령어를 이용 하여 연결된 Master 에게 데이터를 송신 할 수가 있습니다. 보내는 절차를 간단하게 설명 하면 아래와 같습니다.

- ① HOST → BT: DSR(STREAM CONTROL) LOW (DSR port 에 LOW 입력합니다.)
- ② BT → HOST: DTR(STREAM STATUS) LOW (정상적으로 수행 되면 LOW)
- ③ HOST → BT: ATO1→ (보내고자 하는 Master 선택)
- ④ BT → HOST: DTR(STREAM STATUS) HIGH (Stream 정상적으로 연결 되면 HIGH)
- ① HOST → BT : DSR(STREAM CONTROL) HIGH
- ② HOST → BT : 데이터 전송



<그림 C-7 RS232 LEVEL(FB100AS, FB200AS) 에서의 데이터 송신 진행과정>

## 2.2 Master 에서의 설정



```
1 => GO TO BLUETOOTH PARAMETER MENU
2 => GO TO SECURITY PARAMETER MENU
3 => GO TO SYSTEM PARAMETER MENU
4 => GO TO UART PARAMETER MENU
5 => GO TO 1:N COMMUNICATION PARAMETER MENU
 Back Spcae : Input data Cancel
[ t : Move top menu
  ======== COMMUNICATION PARAMETER MENU =
1 => OPERATION MODE
2 => NUMBER OF CONNECTION DEVICE
                                OP_MODE1
3 => RX BUFF SIZE
                               : O Byte
 Back Spcae : Input data Cancel
[ t : Move top menu
Select(1 \sim 3) > 1
            <그림 C-8 Master 일 때의 OP MODE1>
```

THE C-0 Master a MIN OF MODEL

- NUM OF CONNECTION DEV : Master 에서의 연결장치의 수는 Slave 에서 원활하게 데이터를 수신 할 수 있도록 데이터를 (연결장치의 수 \* 400ms) 한번씩 데이터를 송신 합니다.
- 예를 들어 연결장치의 수가 2개면 2 \* 400ms = 800ms 에 한번씩 데이터를 송신 합니다.
- BUFF SIZE: Master 에서의 BUFF SIZE는 설정된 Byte 만큼 한번에 송신 합니다.
- 위의 NUM OF CONNECTION DEV, TX BUFF SIZE 를 설정 하면 Master 에 연결된 장치가 많은 양의 데이터를 입력해도 (연결장치의 수 \* 400ms) 에 한번씩 BUFF SIZE 만큼만 송신 합니다.

#### Note:

Master(N)는 OP\_MODE0(1:1 기반)를 사용하여도 데이터를 송수신 하실 수 있습니다. 단 Master 에서는 위의 (연결장치의수 \* 400ms) 데이터 송신 간격을 준수하셔서 데이터 통신을 하시면 문제없이 사용하실 수가 있습니다.

# 3 OP\_MODE2(선별적 양방향 대용량 통신)



<그림 C-9 OP\_MODE2 통신 방식>

- OP\_MODE2 는 1(Slave):N(Master) 연결된 상태에서 Slave 가 하나의 Master 를 선택하여 양방향 대용량 통신을 할 수 있는 MODE 입니다.

OP\_MODE1 은 Slave 가 다수의 Master 에서 오는 모든 데이터를 처리 하여 시간과 데이터 량에 제한이 있지만 OP\_MOD2 는 <그림 C-9>과 같이 Slave 에 의해서 RX, TX Stream 구간이 형성 되기 때문에 시간과 데이터 량에 제약을 받지 않습니다.

- OP\_MODE2 는 Slave 와 Master 간에 내부적으로 흐름제어를 사용하기 때문에 Slave 에 다른 블루투스(PDA, USB dongle) 장치가 연결되면, **3-2 Master 에서의 설정** 부분을 꼭 숙지하고 사용해 주시기 바랍니다. 3.1 Slave 에서의 설정

## 3.1 Slave 에서의 설정



<그림 C-10 OP\_MODE2 Slave 의 설정>

- Slave 에서 OP\_MODE2 를 선택하면 <그림 C-10> 와 같은 설정 화면이 출력됩니다.
- NUMBER OF DEVICE: 연결 될 장치의 수를 선택 합니다.

#### 3.1.1 TTL LEVEL(FB755) 에서의 데이터 송수신 방법



<그림 C-11 TTL LEVEL(FB755) 에서 OP\_MODE2 Slave 의 데이터 송수신을 위한 타이밍>

데이터 송수신은 <그림 C-11>와 같이 STREAM CONTROR, STREAM STATUS, AT 명령어를 이용 하여 연결된 Master 에게 데이터를 송수신 할 수가 있습니다. 송수신을 하기 위한 절차를 간단하게 설명 하면 아래와 같습니다.

- ① HOST → BT: STREAM CONTROL HIGH (STREAM CONTROL port 에 HIGH 입력합니다.)
- ② BT → HOST: STREAM STATUS HIGH (정상적으로 수행 되면 HIGH)
- ③ HOST → BT: ATO1→ (보내고자 하는 Master 선택)
- ④ BT → HOST: STREAM STATUS LOW (Stream 정상적으로 연결 되면 LOW)
- ⑤ HOST → BT : STREAM CONTROL LOW
- ⑥ HOST → BT : 데이터 송수신



<그림 C-12 TTL LEVEL(FB755) 에서의 데이터 송수신 진행과정>

## 3.1.2 RS232 LEVEL(FB100AS, FB200AS) 에서의 데이터 송수신 방법



<그림 C-13 RS-232(FB100AS, FB200AS)의 OP\_MODE2 Slave 의 데이터 송수신을 위한 타이밍>

데이터 송수신은 <그림 C-13>와 같이 DSR(STREAM CONTROL), DTR(STREAM STATUS), AT 명령어를 이용하여 연결된 Master에게 데이터를 송수신 할 수가 있습니다. 송수신을 하기 위한 절차를 간단하게 설명하면 아래와 같습니다.

- ① HOST → BT: DSR(STREAM CONTROL) LOW (DSR port 에 LOW 입력합니다.)
- ② BT → HOST: DTR(STREAM STATUS) LOW (정상적으로 수행 되면 LOW)
- ③ **HOST** → **BT**: **ATO1** ↓ (보내고자 하는 Master 선택)
- ④ BT → HOST: DTR(STREAM STATUS) HIGH (Stream 정상적으로 연결 되면 HIGH)
- ⑤ HOST → BT : DSR(STREAM CONTROL) HIGH
- ⑥ HOST → BT : 데이터 전송



<그림 C-14 RS232 LEVEL(FB100AS, FB200AS) 에서의 데이터 송수신 진행과정>

## 3.2 Master 에서의 설정





<그림 C-15 OP\_MODE2 Master 의 설정>

- NUM OF CONNECTION DEV: OP\_MODE2 Master 에서는 아무 의미도 지니고 있지 않습니다.
- OP\_MODE2 의 Master 는 데이터 송수신(Stream)의 관한 권한이 없습니다. Slave 에서 일정한 흐름제어 신호를 주어야 데이터를 송수신 할 수 있습니다.
- Slave 가 흐름제어 신호를 주어서 Master 의 DTR(STREAM STATUS) HIGH(TTL LOW) 되면 데이터를 송 수신 하실 수가 있습니다.
- DTR(STREAM STATSUS) HIGH(TTL LOW) 되어 있지 않은 상태에서 Master 에게 데이터를 입력 하시게 되면 입력한 데이터가 소멸될 수도 있습니다.

- OP\_MODE2 Master 는 펌테크 제품끼리만 내부적으로 흐름제어를 하여 통신 하는 방식 이기 때문에 Slave 를 OP\_MODE2 로 사용 하시게 되면 자사의 제품을 사용하시기를 권장해 드립니다.

#### Note:

OP\_MODE2 Slave 에 자사 제품이 아닌 다른 블루투스(PDA, USB dongle) 장치를 연결 하여 사용하시게 되면, 흐름제어 신호 DSR을 확인 하셔서 DSR이 LOW(TTL HIGH) 일 때는 데이터를 송신하시면 OP\_MODE2 Slave 가 panic 이 발생 할 수도 있으니 사용하시기 전에 충분한 테스트를 진행 해주시기 바랍니다.

## 4. 정보확인 방법

OP\_MOED1 과 OP\_MODE2의 Slave 에서는 CONNECTION MODE 와 상관없이 1:N을 제어하기 위한 AT 명령어가 사용 가능 합니다.

사용 가능한 명령어로는 Stream 구간을 형성하기 위한 "ATOn", 각종정보를 확인 할 수 있는 Information 명령어(부록 B 표 B-2 AT Command Category 참조) 등을 사용 할 수 있습니다.

하나의 Slave 에 여러 대의 Master 가 연결되어서 Data 를 송신 하기 때문에 Slave 에서 현재 연결되어 있는 Master 의 정보를 확인 하기 위해 "AT+BTINFODEV?A" 명령어를 입력 하게 되면 명령어에 대한 응답과 Master 에서 보내오는 데이터가 썩여서 나오기 때문에 정확하게 명령어에 대한 응답을 확인 할 수 없습니다. 응답 메시지와 수신되는 데이터와의 구분을 위하여 MESSAGE CONTROL(CTS), MESSAGE STATUS(RTS)를 이용하여 정확한 메시지를 수신 할 수 있습니다.

## 4.1 TTL LEVEL(FB755) 에서의 확인 방법



<그림 C-16 TTL(FB755) 에서의 명령어에 대한 응답메시지 타이밍>

<그림 C-16> 에서 MESSAGE STATUS 가 HIGH 가 되면 Master 에서 전송되는 데이터가 더 이상 출력 되지 않고, 명령어에 대한 응답만 출력됩니다. 간단하게 설명 하면 아래와 같습니다.

- ① HOST → BT: MESSAGE CONTROL HIGH (MESSAGE CONTROL port 에 HIGH 를 입력합니다.)
- ② BT → HOST: MESSAGE STATUS HIGH (Master 에서 보내는 데이터 수신 제한)

- ③ HOST → BT: AT+BTINFODEV?1↓ (확인 하고자 하는 명령어 입력)
- ④ BT → HOST: ∠0123456789012∠ (1 번째 연결되어 있는 Master 정보 출력)
- ⑦ HOST → BT: MESSAGE CONTROL LOW (정보확인 완료)
- BT → HOST : MESSAGE STATUS LOW

(명령어에 대한 응답 종료 이후에 수신되는 데이터는 Master 에서 보내는 데이터 임)

#### Note:

정보를 확인하기 위하여 MESSAGE STATUS 가 장시간 "HIGH" 이면 Master 에서 보내는 데이터의 손실이 발생할 수도 있습니다.

## 4.2 RS232 LEVEL(FB100AS, FB200AS) 에서의 확인 방법



<그림 C-17 RS232(FB100AS, FB200AS) 에서의 명령어에 대한 응답 메시지 타이밍>

<그림 C-17> 에서 RTS(MESSAGE STATUS)가 LOW 가 되면 Master 에서 전송되는 데이터가 더 이상 출력되지 않고, 명령어에 대한 응답만 출력됩니다. 간단하게 설명 하면 아래와 같습니다.

- ① **HOST** → **BT**: **CTS LOW** (CTS port 에 LOW 를 입력합니다.)
- ② BT → HOST: RTS LOW (Master 에서 보내는 데이터 수신 제한)
- ③ HOST → BT: AT+BTINFODEV?1↓ (확인 하고자 하는 명령어 입력)
- ④ BT → HOST: ∠0123456789012∠ (1 번째 연결되어 있는 Master 정보 출력)
- ⑤ HOST → BT: CTS HIGH (정보확인 완료)

#### **⑥** BT → HOST : RTS HIGH

(명령어에 대한 응답 종료 이후에 수신되는 데이터는 Master에서 보내는 데이터 임)

#### Note:

정보를 확인하기 위하여 RTS 가 장시간 "LOW" 이면 Master 에서 보내는 데이터의 손실이 발생할수도 있습니다.

1:N 통신시에 Slave 는 모든 Master 가 연결이 되면 CONNECT\_CHECK(DCD) 가 "LOW"(RS232 "HIGH") 되며, 연결된 Master 중 하나라도 연결이 해지가 되면 CONNECT\_CHECK (DCD)는 "HIGH"(RS232 "LOW") 가 되어서 현재 연결되어 있는 Master 의 연결 상태를 확인 할 수 있습니다.