Topología

1 Espacios topológicos

Se dice que p es el límite de una sucesión de reales a_1, \dots, a_n cuando, para todo abierto $p - \epsilon, p + \epsilon$, existe un m tal que para todo $n \ge m$ se cumple que $a_n \in (p - \epsilon, p + \epsilon)$.

Esta noción de intervalo se unifica en el concepto **bola**, y se define la familia de intervalos de un punto p, B(p). Sea X no vacío, para cada $p \in X$ existe una familia B(p). Se dice que B(p) es una **base de entornos abiertos** de p si todas las familias B(p) verifican:

- B1: si $U \subset B(p)$, entonces $p \in U$.
- B2: si $U \in B(p)$ y $V \in B(p)$, existe $W \in B(p)$ tal que $W \subset U \cap V$.
- B3: si $U \in B(p)$, para todo $q \in U$ existe $V \in B(q)$ tal que $V \subset U$.

Esta generalización de conjuntos ($p - \epsilon, p + \epsilon$ nos simplifica y permite expandir la definición de topología, independientemente de una métrica o distancia.

Se llama un **espacio métrico** (X, d) a un conjunto X con una distancia d definida en él. En un espacio métrico se llama **bola abierta** de centro p y radio r al conjunto $E(p, r) = \{t \in X \mid d(p, t) < r\}$. Las familias B(p) de todas las bolas con radios reales cumplen los puntos B1, B2 y B3, por lo que constituyen base de entornos abiertos en (X, d).

Si X es un conjunto en el que se ha definido un sistema de bases de entornos abiertos B(p), un subconjunto $A \subset X$ es un **conjunto abierto** cuando es \emptyset o cuando para cada $t \in A$ existe un subconjunto $U \in B(t)$ tal que $U \subset A$.

En \mathbb{R} la topología usual (T_u) viene dada por $B(p)=(p-\epsilon,p+\epsilon)$. En esta topología, (\mathbb{R},T_u) , cada intervalo abierto (a,b) viene dado como B(t), $t=\frac{a+b}{2}$. El intervalo [a,b) no es abierto, pues para a no existe ningún conjunto $U \in B(a)$ tal que $U \subset [a,b)$.

Dos sistemas de bases de entornos abiertos, B(p), B'(p) son **equivalentes** cuando determinan la misma topología T en X; es decir, que para cada $U \in B(p)$ existe un $U' \in B'(p)$ tal que $U \subset U'$ y que para cada $V' \in B'(p)$ exista un $V \in B(p)$ tal que $V' \subset V$.

1.1 Propiedades de una topología

Sea un conjunto *X*. La topología *T* determinada en *X* cumple:

- P1: $\emptyset \in T \text{ y } X \in T$.
- P2: Dada una familia de abiertos U_{λ} , $\lambda \in L$ de T, la unión de los elementos, $\bigcup_{\lambda} U_{\lambda}$ es un elemento de T.
- P3: Dada una familia **finita** U_i , $i = 1, \dots, n$ de elementos de T, la intersección de los elementos, $\bigcap_{i=1}^{n} U_i$ es un elemento de T.

Un **espacio topológico** (X, T) es un conjunto no vacío con una topología definida en él. Una familia de subconjuntos de X, H(p) para cada $p \in X$ [SEAN DISCRETOS O CONTINUOS], si cumple P1, P2, P3 entonces, las familias H forman una topología T en X. Si para esa topología existe una métrica d, entonces decimos que es una **topología metrizable**.

Si T, T' son dos topologías de X, y $T \subset T'$, entonces se dice que T es menos **fina** que T'. La topología más fina de todas es la **topología trivial**, dada por $\{\emptyset, X\}$, y la menos fina, o **discreta**, está dada por $\mathcal{P}(X)$, es decir, el conjunto partición de X.

En (X, T) se llama **conjunto cerrado** a un conjunto $M \subset X$ tal que X - M es abierto. Una familia de conjuntos cerrados es (X, T) verifica:

- C1: $\emptyset \in T$ y $X \in T$ son cerrados.
- C2: Dada una familia **finita** de cerrados M_{λ} , $\lambda \in L$ de T, la unión de los elementos, $\bigcup_{\lambda} M_{\lambda}$ es un cerrado.
- C3: Dada una familia M_{λ} , $\lambda \in L$ de elementos de T, la intersección de los elementos, $\bigcap_{L} U_{\lambda}$ es un elemento de T.

Si (X, T) es un estacio topológico y $M \subset X$, la topología $T_M = \{M \cap U\}$ de las intersecciones de M con abiertos U de (X, T) se llama **topología inducida o subordinada** de T. Así, el espacio M, T_M es un subespacio de (X, T).

2 Base de una topología

Dada una topología T en X, la **base de la topología**, B, es una familia de conjuntos tal que cualquier abierto no vacío $U \subset T$ es una unión de elementos de B. $\forall U \subset T$, $U = \cup_i B_i$

Sea X un conjunto y $F = \{A_{\lambda}\}_{{\lambda} \in L}$ una familia de subconjuntos de X. Una condución necesaria y suficiente para que F sea base de X es:

- I: $\bigcup_{\lambda} \{A_{\lambda}\} = X$
- II: Si A_{λ} , A_{μ} son dos elementos de F, y $A_{\lambda} \cap A_{\mu} \neq \emptyset$, para cualquier punto $t \in A_{\lambda} \cap A_{\mu}$ existe $A_{\nu} \in F$ tal que $t \in A_{\nu}$

2.1 1er y 2º axioma de numerabilidad

Un espacio (X, T) verifica el 1er axioma de numerabilidad si para todo $x \in X$ existe una base de entornos de x que sea numerable. Un espacio (X, T) verifica el 2° axioma de numerabilidad cuando su topología tiene una base numerable.

2.2 Topología engendrada for una familia de subconjuntos

Cualquier familia $\{A_{\lambda}\}$ de X que cumpla I es una subase de una topología de X. Si $H = \{A_{\lambda}\}$ cumple I y II, la familia B formada por las intersecciones (y uniones) finitas de H es base para alguna topología de X y se llama **topología engendrada**.

3 Entornos en un espacio topológico

Sea (X, T) un espacio topológico, y $p \in X$. $A \subset X$ es entorno de p si existe un abierto U de la topología T tal que $p \in U \subset A$. No todo entorno ha de ser abierto. Por ejemplo, [0, 1) es entorno de 1/2 (existe $U = (1/2 - 1/4, 1/2 + 1/4) \subset [0, 1)$, pero no de 0 (ningún abierto en T cumple $U \subset [0, 1)$.

Los sistemas de entornos E(p) para X cumplen:

- E1: Si $A \in E(p)$, entonces $p \in A$.
- E2: Si $A \in E(p)$, todo subconjunto $A' \subset X$ tal que $A' \supset A$ pertenece a E(p) [porque $p \in A'$].
- E3: Si A, $A' \in E(p)$, entonces $A \cap A' \in E(p)$. Esto es aplicable a un número finito de intersecciones.
- E4: Si $A \in E(p)$, A, existe $U \in E(p)$ tal que para todo $q \in U$, $A \in E(q)$.

Sea $p \in (X, T)$, y E(p) su sistema de entornos. Una subfamilia A(p) de E(p) es un sistema fundamental de entornos (abiertos o no) de p [base de entornos] si todo entorno de p contiene un elemento de A(p).

Los sistemas de bases de entornos B(p) resultan ser sistemas fundamentales de entornos. P. ej. en (\mathbb{R}, T_u) cada punto x tiene una base de entornos numerable, los intervalos abiertos de radio racional: $\{(x-r,x+r)\}_{0< r\in\mathbb{Q}}$.

Un espacio topológico métrico verifica el primer axioma de numerabilidad, pues $\{(x-r,x+r)\}_{0 < r \in \mathbb{Q}}$ es un sistema de entornos numerable.

4 Subconjuntos en un espacio topológico

Todo punto en un espacio topológico puede ser de 3 tipos distintos. Si consideramos el espacio (X, T) y $M \subset T$, entonces

- $t \in X$ es un punto **interior** a M ($t \in int(M)$) si existe algún entorno $V \subset M$.
- $t \in X$ es un punto **exterior** a M ($t \in ext(M)$) si existe un entorno V de t que no corta a M [$V \cap M = \emptyset$].
- $t \in X$ es un punto frontera $(t \in front(M))$ si para todo entorno $V, V \cap M \neq \emptyset$ y $V \cap (X M) \neq \emptyset$.

El interior de M, int(M) es el mayor abierto contenido en M. ext(M) también es un conjunto abierto, y front(M) es siempre cerrado.

De esta clasificación pueden crearse más definiciones.

- $t \in X$ es **adherente** a M si para todo entorno V(t) es $V \cap M \neq \emptyset$. $adh(M) = \overline{M} = int(M) \cup front(M)$.
 - $t \in X$ es un punto de **acumulación** de M si todo entorno V(t) corta a M en algún punto distinto de t; es decir, $(V \{t\}) \cap M \neq \emptyset$. El conjunto de puntos de acumulación se denomina **derivado** de M, o der(M).
 - *t* ∈ *X* es **aislado** cuando existe algún entorno V(t) tal que $(V \{t\}) \cap M = \emptyset$.

En ((X, T), un conjunto M es cerrado sii contiene todos sus puntos de acumulación.

En un espacio (X, T) un subconjunto M es denso en X si adh(M) = X. Por ejemplo, \mathbb{Q} es denso en

 \mathbb{R} , porque para todo entorno de \mathbb{R} siempre hay un racional. Un subconjunto es denso sii para todo abierto no vacío $U \subset X$ se tiene que $U \cap M \neq \emptyset$.

Un espacio topológico es **separable** si tiene un subconjunto numerable y denso.

5 Sucesiones, límites de sucesiones

Una **sucesión** en un conjunto X es una aplicación $s: \mathbb{N} \to X$; $s(i) \mapsto a_i$. Cuando se tiene una aplicación $f: X \to Y$ y una sucesión $s: \mathbb{N} \to X$, definimos la sucesión $s': \mathbb{N} \to Y$ a la composición $s' = f \circ s$ de modo que s'(i) = f o $s(i) = f(a_i) \in Y$. La sucesión $s(i) = a_i$ se representa por $\{a_i\}$.

Dada una sucesión $\{a_i\}$ en X, se define $A_m = \{a_i \in s \mid i \geq m\}$. Se tiene que $A_m \neq \emptyset$ y $A_k \subset A_m \cap A'_m \iff k = max(m, m')$.

Si X es un conjunto, una **base de filtro X** es una familia $\mathcal{B} = \{A_{\lambda}\} \subset X$ que verifica que (1) $A_{\lambda} \neq \emptyset$ y (2) dados A_{λ} , A_{μ} existe $A_{\nu} \in \mathcal{B}$ tal que $A_{\nu} \subset A_{\lambda} \cap A_{\mu}$. En un espacio (X, T), una base de entornos E(p) es una base \mathcal{B} .

Dadas dos bases de filtro $\mathcal{B}, \mathcal{B}'$, se dice que \mathcal{B}' es **más fina** que \mathcal{B} cuando para todo $A \in \mathcal{B}$, existe $A' \in \mathcal{B}'$ tal que $A' \subset A$.

Si $\mathcal{B} = \{A_{\lambda}\}$, las imágenes $\{f(A_{\lambda})\}$ forman una base de filtro en Y, Y se representa por $f(\mathcal{B})$. Si $\mathcal{B}' = \{A'_{\lambda}\}$ es una base de filtro en Y y $\forall \lambda$ $A'_{\lambda} \cap f(X) \neq \emptyset$, entonces $\{f^{-1}(A'_{\lambda})\}$ forman una base de filtro en X y se representa por $f^{-1}(\mathcal{B}')$.

Si consideramos la sucesión $f : \mathbb{N} \to \mathbb{N}$, los conjuntos $\mathbb{N}_m = \{i \in N \mid i \geq m\}$ forman una base de filtro \mathcal{F} en \mathbb{N} , llamada base de filtro de Fréchet.

p es el **punto límite** de $\{a_i\}$ si dado un entorno U de p, existe m tal que $A_m \subset U$. Asimismo, p es un punto límite de \mathcal{B} en un espacio topológico (X,T) si dado un entorno U de p, existe un $A_{\lambda} \in \mathcal{B}$ tal que $A_{\lambda} \subset U$.

Un espacio topológico (X,T) verifica el **axioma de separación** T_2 cuando, dados $p,q \in X$ existen dos entornos U(p), V(q) tales que $U \cap V = \emptyset$. Este espacio se denomina también **espacio de Hausdorff**. Por ejemplo, (\mathbb{R}, T_u) es de Hausdorff, porque si se toman $p,q \in \mathbb{R}$, y d = |p-q|, entonces $U = (p-\frac{d}{2}, p+\frac{d}{2})$ y $V = (q-\frac{d}{2}, q+\frac{d}{2})$ son disjuntos.

Sea $\mathcal{B} = \{A_{\lambda}\}$ una base en un espacio de Hausdorff. Si \mathcal{B} es convergente a p, éste es el único punto límite de \mathcal{B} .

Sea $s = \{a_i\}$. $p \in X$ es un **punto de aglomeración** de s si se verifica que para todo entorno U de p y para todo A_m de la base de filtro de Fréchet de la sucesión, es $A_m \cap U \neq \emptyset$.

Si $s = \{a_i\}$ es una sucesión en (X, T), el conjunto de puntos de aglomeración de s es $\bigcap_{m \in \mathbb{N}} \{adh(A_m)\}$.

Si \mathcal{B} es una base de filtro en (X,T), p es de aglomeración cuando para todo entorno U de p y para todo $A_{\lambda} \in \mathcal{B}$, $U \cap A_{\lambda} \neq \emptyset$. El conjunto $\cap_{\lambda} \{adh(A_m)\}$ es el conjunto de puntos de aglomeración de \mathcal{B} .

6 Aplicaciones continuas. Homeomorfismos

Sea $f:(X,T)\to (Y,S)$, $y\ p\in X$. Entonces f es **continua** en p cuando para todo entorno $V\in (Y,S)$ existe un entorno $U\in (X,T)$ tal que $f(U)\subset V$. Si consideramos una base de \mathcal{B} , entonces f es continua en p si para toda base de filtro \mathcal{B} convergente a p, $f(\mathcal{B})$ converge a f(p).

Una aplicación f es continua en (X, T) si lo es para todo $p \in X$. Una condición necesaria y suficiente para que f sea continua es que para todo abierto V de (Y, S) [o de la base del espacio], $f^{-1}(V)$ sea abierto en (X, T). Análogamente, f es continua si para todo cerrado V, $f^{-1}(V)$ es cerrado en (X, T).

Sea $f:(X,T)\to (Y,S)$ y $g:(Y,S)\to (Z,T')$, si f y g son continuas, $g\circ f$ también lo es.

Una aplicación $f:(X,T)\to (Y,S)$ es un **homeomorfismo** si f es biyectiva, y tanto f como f^{-1} son continuas. Dos espacios topológicos son homeomorfos si existe un homeomorfismo entre ellos.

Se llama propiedad topológica o **invariante** topológico a aquella que si la tiene un espacio topológico, la tienen todos los que son homeomorfos a este. Ejemplos de invariantes son los axiomas de numerabilidad, poseer un denso numerable (separabilidad) o ser espacio T_2 . Por ejemplo, espacios con topologías T_u y D no son homeomorfos.

7 Topología inducida por una o varias aplicaciones

Dada una aplicación $f: X \to (Y, T')$, se llama **topología inducida** o **topología inicial** por f en X a la topología $T = \{f^{-1}(V) \mid V \in T'\}$, que es la topología menos fina de X que hace continua a f.

En la topología inducida en X por $f: X \to (Y, T')$, un conjunto $A \subset X$ es cerrado sii $A = f^{-1}(U)$, siendo U un cerrado de (Y, T'). Lo mismo se aplica si A es abierto o es un entorno.

Topología inducida por la composición. Sean X, X^* conjuntos, (X', T') un espacio topológico y las aplicaciones $h: X^* \to X$ y $f: X \to (X', T')$. Si T es la topología inducida por f en X, y T^* es la topología inducida por $f \circ h$ en X^* .

Topología inducida por varias aplicaciones. Sea X un conjunto, y $(Y_1, S_1), (Y_2, S_2), \cdots, (Y_n, S_n)$ diferentes espacios topológicos. Entonces, la topología de X más fina que haga continuas las aplicaciones f_1, \cdots, f_n es aquella que tenga por base la familia de subconjuntos de X de la forma $f_1^{-1}(U_1) \cap \cdots \cap f_n^{-1}(U_n)$, donde $U_1 \in S_1, \cdots, U_n \in S_n$.

Propiedad universal de la topología inducida (una o varias aplicaciones). Sea (X,T) un espacio topológico con la topología T inducida por las aplicación $f_i:(X,T)\to (Y_i,T_i)$. Se verifica que para todo espacio (M,S) y cualquier aplicación $g:(M,S)\to (X,T)$, g es continua sii $f_i\circ g:(M,S)\to (Y_i,T_i)$ lo es para todo i.

8 Topología relativa. Subespacio topológico

Sea (X,T) un espacio topológico, M un subconjunto de (X,T) y $j: M \longrightarrow (X,T)$; $x \mapsto j(x) = x$. La topología T_M inducida en X for j se llama **topología relativa**, o **topología subordinada** por (X,T) en

M. El espacio (M, T_M) es un subespacio topológico de (X, T).

Sea M un subconjunto del espacio (X,T). Una parte A de M es un abierto en (M,T_M) sii existe un abierto $U \in T$ tal que $A = U \cap M$. Así, $T_M = \{M \cap U\}$.

La topología inducida tiene las siguientes propiedades:

- En el subespacio (M, T_M) de (X, T) un subconjunto W es cerrado sii existe un cerrado W' de (X, T) tal que $W = M \cap W'$.
- Un conjunto $A \subset M$ es entorno de $p \in M$ para el espacio (M, T_M) sii existe un entorno $A' \subset X$ tal que $A = A' \cap M = j^{-1}(A')$.
- Propiedad universal: Para un subespacio (M, T_M) de un espacio (X, T), la aplicación $g: (X^*, S) \to (M, T_M)$ es continua sii la aplicación $j \circ g: (X^*, S) \to (X, T)$ es continua.
- Transitividad: Si (M, T_M) es un subespacio de (X, T) y M' es un subconjunto de M, se verifica que la topología subordinada en M' por (M, T_M) coincide con la subordinada por (X, T).

Sea M, T_M subespacio de (X, T). Para que todo abierto / cerrado A de (M, T_M) sea abierto / cerrado en (X, T), es condición necesaria y suficiente que M sea abierto / cerrado en (X, T).

Si $f:(X,T)\to (Y,S)$ es una aplicación continua, la restricción $f|_M$ de (M,T_M) a (X,T) es continua. Sin embargo, que $f|_M$ sea continua no implica que f sea continua.

Se llama **propiedad hereditaria** una propiedad topológica que si un espacio la tiene, la tienen todos sus subespacios. Propiedades hereditarias son la separación T_2 , o los axiomas de numerabilidad.

También es hereditario el ser un espacio metrizable. Si (X,d) es un espacio métrico, con T la topología de X correspondiente a la distancia d, la topología inducida por T en M coincide con la topología definida en M por d_M .

Un espacio es T_1 separable cuando cada conjunto unitario $\{x\}$ es cerrado.

9 Topología producto

Dados dos espacios (X_1, T_1) y (X_2, T_2) , una base para la topología producto $T_1 \times T_2$ es la familia de abiertos $B = \{U_1 \times U_2 \mid U_1 \in T_1, U_2 \in T_2\}$. Estos abiertos $U_1 \times U_2$ se llaman **abiertos elementales** de la Topología producto. Así, un abierto $A \in T_1 \times T_2$ es abierto sii es unión de abiertos de B: $A = \bigcup_{\lambda \in L} \{U_1^{\lambda} \times U_2^{\lambda}\}$.

Las propiedades de la Topología producto son las siguientes:

- Las propiedades $p_1: X_1 \times X_2 \to X_1$ y $p_2: X_1 \times X_2 \to X_2$ son aplicaciones continuas, y $X_1 \times X_2$ es la Topología menos fina de $X_1 \times X_2$ para las que son continuas.
- Propiedad universal: una aplicación $f:(Y,S) \to (X_1 \times X_2, T_1 \times T_2)$ es continua sii $p_1 \circ f$ y $p_2 \circ f$ son continuas.

Las aplicaciones $f_1 = p_1 \circ f$ y $f_2 = p_2 \circ f$ se llaman **componentes de** f. Un punto $y \in (Y, S)$ se representa como $(x_1, x_2) = f(y)$ o como $x_1 = f_1(y)$, $x_2 = f_2(y)$.

Una aplicación $f:(X,T)\to (Y,S)$ es abierta si para cada abierto $U\in T$, f(U) es abierto de S. Entonces,

en el espacio producto, p_1 , p_2 son aplicaciones abiertas.

Para cada punto $a \in X_1$, el subespacio $p_1^{-1}(a) = \{a\} \times X_2$ es homeomorfo a (X_2, T_2) y viceversa.

Si una aplicación $f:(X_1\times X_2,T_1\times T_2)\to (Y,S)$ es continua, sus restricciones a subespacios $f_a:\{a\}\times X_2\to (Y,S)$ y $f_b:X_1\times \{b\}\to (Y,S)$ también son continuas. También son continuas las aplicaciones por composición $g_a:(X_2,T_2)\to (Y,S)$, $g_b:(X_1\to T_1)\to (Y,S)$. Sin embargo, aunque las aplicaciones por cada una de las variables (f_a,f_b) garanticen la continuidad, no se deduce que sea continua la aplicación en $y=f(x_1,x_2)$.

Sea $p(x_1, x_2)$ un punto del espacio producto $(X_1 \times X_2, T_1 \times T_2)$. Si $\{V_j\}$ es una base de entornos de x_1 en (X_1, T_1) y $\{W_k\}$ es una base de entornos de x_2 en (X_2, T_2) , entonces $\{V_j \times W_k\}$ constituyen una base de entornos en $(X_1 \times X_2, T_1 \times T_2)$.

Una propiedad topológica es **finito-multiplicativa** sii verifica que la poseen los espacios (X_1, T_1) , (X_2, T_2) , (X_n, T_n) entonces la posee su producto. Si la cantidad de espacios es infinito, entoces es multiplicativa. Los axiomas de numerabilidad, la separación T_2 y la metricabilidad son proiedades finito-multiplicativas.

Para dos puntos $x=(x_1,x_2), y=(y_1,y_2)$, las distancias $d(x,y)=\sqrt{d_1^2(x_1,y_1)+d_2^2(x_2,y_2)}, d'(x,y)=\max\{d_1(x_1,y_1),d_2(x_2,y_2)\}, d^*(x,y)=d_1(x_1,y_1)+d_2(x_2,y_2)$ cumplen que $d'\leq d\leq d^*\leq 2d'$, luego todas las métricas resultan equivalentes, y con ello sus bases de entornos. Por tanto, las 3 métricas determinan la misma topología métrica en $X_1\times X_2$.

10 Topología final para una o varias aplicaciones

Sea una aplicación $f:(X,T)\to Y$. La familia de conjuntos de Y tales que sus imágenes inversas son abietos de T constituyen una topología de Y. Esta topología, la **topología final**, $S=\{A\subset Y\mid f^{-1}(A)\in T\}$ es la topología más fina de Y para la que f es continua. Si S contiene algún conjunto U tal que $f^{-1}(U)\notin T$, entonces f no es continua. g

En la topología final de $f:(X,T)\to (Y,S)$ un conjunto M es cerrado sii $f^{-1}(M)$ es cerrado en (X,T). Si f no es sobreyectiva, f(X) es abierto y cerrado en la topología final de f, pues $f^{-1}(f(X))=X$, que es cerrado y abierto en (X,T) por definición. Si $g\in f(X)$ es un punto de g, tal que g0 es un entorno de g1 en g2.

La Topología final cumple la composición. Sea (X,T) y los conjuntos Y,Y^* ; y las aplicaciones $f:(X,T)\to Y,g:Y\to Y^*$. Si S es la topología final para f,S^* es la topología para g sii S^* es la topología final para $g\circ f$.

Dada una familia de aplicaciones $f_{\lambda}: (X_{\lambda}, T_{\lambda}) \to Y$ con espacios topológicos iguales o distintos, la topología final de Y es la topología más fina que hace continua toda f_{λ} . Un conjunto $A \subset Y$ es abierto en esta topología sii para todo λ , $f_{\lambda}^{-1}(A) \in T_{\lambda}$. Hay que considerar que la topología menos fina de Y es siempre la trivial: $\{\emptyset, Y\}$.

La topología final también cumple la propiedad universal. Para las aplicaciones $f_{\lambda}:(X_{\lambda},T_{\lambda})\to Y$ continuas, para el espacio topológico (Y^*,T^*) y la aplicación $g:(Y,S)\to (Y^*,T^*)$ se cumple que g es continua sii cada una de las aplicaciones $g\circ f_{\lambda}$ lo es.