Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №4
З дисципліни «Методи наукових досліджень»
За темою:
«Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням ефекту взаємодії»

ВИКОНАВ: Студент II курсу ФІОТ Групи IB-91 Гутов В.В. Номер у списку - 8

ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета: Провести повний трьохфакторний експеримент. Знайти рівняння регресії адекватне об'єкту.

Завдання:

- 1. Скласти матрицю планування для повного трьохфакторного експерименту.
- Провести експеримент, повторивши N раз досліди у всіх точках факторного простору і знайти значення відгуку Y. Знайти значення Y шляхом моделювання випадкових чисел у певному діапазоні відповідно варіанту. Варіанти вибираються за номером в списку в журналі викладача.

$$\begin{split} y_{i \max} &= 200 + x_{cp \max} \\ y_{i \min} &= 200 + x_{cp \min} \end{split}$$

$$\text{ De } x_{cp \max} &= \frac{x_{1 \max} + x_{2 \max} + x_{3 \max}}{3} \;,\; x_{cp \min} &= \frac{x_{1 \min} + x_{2 \min} + x_{3 \min}}{3} \end{split}$$

- 3. Знайти коефіцієнти рівняння регресії і записати його.
- Провести 3 статистичні перевірки за критеріями Кохрена, Стьюдента, Фішера.
- Зробити висновки по адекватності регресії та значимості окремих коефіцієнтів і записати скореговане рівняння регресії.
- Написати комп'ютерну програму, яка усе це моделює.

$\mathcal{N}_{\underline{o}}$	X	1	y	Κ2	X 3		
варіанту	min	max	min	max	min	max	
108	-5	15	-15	35	15	30	

Програмний код

```
import random
from beautifultable import BeautifulTable

# Fyros Biranix
# Bapiahr 108:
# x1_min = -5, x1_max = 15,
# x2_min = -15, x2_max = 35,
# x3_min = 15, x3_max = 30
# y min = 200 + xc_min
# y_max = 200 + xc_max

def main():
    global x1_min, x1_max, x2_min, x2_max, x3_min, x3_max
    global m
    global y_matrix
    global average_y
    global n
    global b0, b1, b2, b3, b12, b13, b23, b123
    global plan_matrix, plan_matrix_normal
    m = 3
    n = 8

    x1_min = -5
    x1_max = 15
    x2_min = -15
    x2_max = 35
    x3_min = 15
    x3_max = 30

    xc_min = (x1_min + x2_min + x3_min) / 3
    xc_max = (x1_max + x2_max + x3_max) / 3
```

```
x2 min * x3 min, x1 min * x2 min * x3 min],
x2 min * x3 max, x1 min * x2 min * x3 max],
x2_max * x3_min, x1_min * x2_max * x3_min],
x2_{min} * x3_{max}, x1_{max} * x2_{min} * x3_{max},
x2_max * x3_min, x1_max * x2_max * x3_min],
x2_max * x3_max, x1_max * x2_max * x3_max]]
        result y.append(b0 + b1 * plan matrix[i][0] + b2 * plan matrix[i][1]
b23 * plan matrix[i][5] +
```

```
plan matrix[i][2] +
plan matrix[i][5] +
```

```
main()
fisher = fish()
plan_table = BeautifulTable()
headers x.extend(['X12', 'X13', 'X23', 'X123'])
headers y = ['Y{}'.format(i) for i in range(1, m+1)]
headers y.extend(['av Y', 'S^2'])
plan table.columns.header = [*headers x, *headers y]
x0 = [[1] for in range(n)]
    plan table.rows.append([*x0[i], *plan matrix[i], *y matrix[i],
average_y[i], s[i]])
norm table = BeautifulTable()
headers x = ['X\{\}'.format(i) for i in range(0, m+1)]
headers x.extend(['X12', 'X13', 'X23', 'X123'])
headers y = ['Y\{\}'.format(i) for i in range(1, m+1)]
headers y.extend(['av Y', 'S^2'])
norm_table.columns.header = [*headers x, *headers y]
x0 = [[1] for in range(n)]
    norm table.rows.append([*x0[i], *plan matrix normal[i], *y matrix[i],
average y[i], s[i]])
```

Результати роботи програми

١	Іатри	ця пл	анув	ання:										
1	X0	-+ X1 	+- 	X2	++ X3 	X1 2		+ X2 3	-+ X12 3	-+ ? Y1 	+ Y2 	Y3 	-+ av_Y 	++ S^2
	1	-+ -5 		-15	++ 15 	 75	 -7	+	112	· + ! 22: 	+ 1 224 	-+ 202 	-+ 215. 667	++ 177.9 67
1	1	-+ -5 		-15	++ 30 		⊦ -1 50			+ 5 22 	+ 1 211 	-+ 222 	-+ 218. 0	++ 26.74
1	1	-+ -5 		35	++ 15 	 -1 75	+ -7 5	+ 52 5	-+ -26 25	22	+ 2 223 	226 	-+ 223. 667	++ 23.51 7
1	1	-+ -5 	+- 	35	++ 30 	 -1 75			-+ -52 50	2 20:	+ 1 216 	207	-+ 208. 0	165.6 37
1	1	15 1	+- 	-15	++ 15 	 -2 25			-+ -33 75	21	+ 9 220 	223	220. 667	5.185 5.185
1	1	-+ 15 	+- 	-15	++ 30 	-2 25			-67 50	7 201 	+ 1 226 	200	-+ 209. 0	279.7 49
1	1	-+ 15 	+- 	35	15 1	52 5		 52 5	-+ 787 5	7 22	+ 6 203 	208 	212. 333	192.4 09
1	1	-+ 15 	+- 	35	++ 30 	52 5	45 0		157 50	7 201 	+ 2 215 	222	213. 0	66.18 9
Н	ормоі	-+ вана і	+- матр	иця:								-+		
1	X0	 X1 	+ X2 	X3 	 X12 	+ X13 	+: 3 X2 	23 	X12 3	Y1	++ Y2	Y3 	 av_Y 	S^2
1	1	+ -1 	+ -1 	-1 -1	+ 1 	+ 1 	:	1	-1	221	224 214	202 	215.6 67	177.96 7
I	1	-1	-1	1	1	-1	-:	1	1	221	 211 	222	218.0 	26.74
	1	- -1 	1 	-1 	-1 	1 	-: 	1 	1	222	223 	226 	223.6 67	23.517
1	1	- -1 	1 1	1 	- -1 	-1 	: 	1 	-1	201	- 216 	207 	208.0	165.63 7
1	1	1 1	-1 -1	-1 	 -1 	-1 -1	:	1 	1	219	 220 	223 	220.6 67	5.185
	1	1 1	+ -1 	1 1	+ -1 	+ 1 	-: 	1	-1	201	226 1	200 	209.0	279.74 9
	1	+ 1 	+ 1 	-1 -1	+ 1 	+ -1 	-: 	1	-1	226	 203 	208 	212.3 33	192.40 9
+	1	+ 1 +	+ 1 +	-+ 1 -+	+ 1 +	+ 1 +	:	1 +	1	202	++ 215 ++	222 +	213.0 	+ 66.189 +

```
Kohren check

Gp = 0.298 < 0.7679

Studens

t0 = 97.322

t1 = 0.585

t2 = 0.358

t3 = 1.377

t4 = 0.132

t5 = 0.132

t6 = 0.321

t7 = 1.716

Fisher

The regression equation is inadequate to the original at a significance level of 0.05

The equation

y = 215.042 + -1.292 * x1 + -0.792 * x2 + -3.042 * x3 + -0.292 * x1x2 + 0.292 * x1x3 + -0.708 * x2x3 + 3.792 * x1x2x3

Process finished with exit code 0
```

Висновок

Виконуючи дану лабораторну роботу, я провів трьохфакторний експеримент. Склав матрицю планування та знайшов коефіцієнти рівняння регресії, провів статистичні перевірки.

Результати роботи програми наведені вище. Під час виконання роботи проблем не виникло.