Numerical Study of two interconnected sparse random networks of neurons

Project available:

https://github.com/NajwaMoursli/Interconnected-Mean-Fields

Najwa Moursli¹

Internship Supervisors:

 $\label{eq:problem} {\sf Pr.\ A.Destexhe^2,\ Ph.D.\ D.Depannmaecker^2,\ Ph.D.\ M.Carlu^2}$

Pr. F.VILLERS¹

 ${\sf Polytech\text{-}Sorbonne}^1,\ {\sf UNIC\text{-}CNRS}^2$

December 8, 2021

- Context

Figure 1: Organizational Chart of the research team

Figure 2: From single cells to the Connectome [1]

2 Fundamentals Concepts SCIENCES SORBONNE

- **Fundamentals Concepts**

Figure 3: Representation of a single neuron [2, 3]

Figure 4: Action Potential Mechanism [4]

2 Fundamentals Concepts Sorbonies

Cortical columns and states

Figure 5: From cortex to column [5]

Figure 6: Mapping of different states for the brain activity [1]

(3) Realisation Plan

SCIENCES SORBONNE UNIVERSITÉ

- 1 Contex
- 2 Fundamentals Concepts
- 3 Realisation Plan
- 4 Methods
- 5 Simulations
- 6 Discussions
- 7 References
- 8 Appendix

Realisation Plan

Project Outline

Relevant model

Pinpoint relevant parameters to vary and model architecture to undergo simulation

State Mapping

Delimit different states observed to construct a bifurcation map

Time varying **Parameters**

Simulate over the time of the chosen parameters and configuration model

New dynamics

Resulting in the discover of new dynamics and behaviors to interpret

- 1 Contex
- 2 Fundamentals Concepts
- 3 Realisation Plan
- 4 Methods
 - AdEx :Adaptive exponential integrate-and-fire model
 - Mean-Field model
- 5 Simulations
- 6 Discussions
- 7 References

AdEx Mathematical Formalism

AdEx characteristic equations :

$$\begin{cases}
C_m \frac{d\nu}{dt} = -g_I(\nu - E_I) + gI * Dt * e^{\frac{w - \nu_t}{D_t}} - w + l_{syn}) \\
\tau_w \frac{dw}{dt} = a(\nu - E_L) - w
\end{cases}$$
(1)

Synaptic equations:

$$\begin{cases} \frac{dG_{syn_{i,e}}}{dt} = -\frac{G_{syn_{i,e}}}{T_{syn}} \\ I_{syn} = -G_{syn_{e}} * (\nu - E_{e}) - G_{syn_{i}} * (\nu - E_{i}) \\ G_{syn_{i,e}}(t) = Q_{i,e} \sum_{i,e.pre} \mathcal{H}(t - t_{sp}^{e,i}(k)) \times e^{\frac{t - t_{sp}^{e,i}(k)}{\tau_{i,e}}} \end{cases}$$
(2)

Figure 7: Schematic of the corresponding spiking AdEx neuron network with connections between and within both populations

Figure 8: Mean-field neural mass model with synaptic feed forward and feedback connections. Each Rectangle represents a population

$$\mathbb{P}_{T}(E_{\alpha}|E_{\gamma}') = \binom{N_{\alpha}}{\nu_{\alpha}N_{\alpha}T} \times \mathbb{P}_{\alpha}(E_{\gamma}')^{(\nu_{\alpha}N_{\alpha}T)} \times (1 - \mathbb{P}_{\alpha}(E_{\gamma}'))^{N_{\alpha}(1 - \nu_{\alpha}N_{\alpha}T)}$$
(3)

$$W(\nu'|\nu) = \lim_{T \to 0} \frac{\prod_{\alpha=1,\dots,K} \mathbb{P}_T(E_\alpha|E_\gamma')}{T} \tag{4}$$

$$\mathbb{P}_{\alpha}(E'_{\gamma}) = \mathbb{P}_{\alpha}(\nu) = \nu_{\alpha}(E'_{\gamma}) \times T \le 1 \tag{5}$$

$$\Longrightarrow \partial_t \mathbb{P}_t(\nu) = \int_0^{\frac{1}{\tau}} \partial \nu' \times \mathbb{P}(\nu') \times W(\nu|\nu') - \mathbb{P}(\nu) \times W(\nu'|\nu) \tag{6}$$

 $\mathbb{P}(\nu') \times W(\nu|\nu')$ models the neurons flow entering in states E_{α} and $\mathbb{P}(\nu) \times W(\nu'|\nu)$, neurons flow leaving states E_{α} .

$$\begin{cases}
T_{syn} \frac{d\nu_e(k)}{dt} &= F_e(\nu_e^{input}(k), \nu_i(k)) - \nu_e(k) \\
T_{syn} \frac{d\nu_i(k)}{dt} &= F_i(\nu_e^{input}(k), \nu_i(k)) - \nu_i(k) \\
\frac{dw(k)}{dt} &= \frac{-w(k)}{\tau_w * b * \nu_e(k)} + a(\mu_\nu(\nu_e(k), \nu_i(k), w(k)) - E_I)
\end{cases}$$
(7)

Numerical Integration

- Simulations
 - Interconnected Mean-field models

5 Simulations Configuration

Figure 9: Configuration of the model : Delay

Simulations Population E1 & E2

SCIENCES

Figure 10: Bifurcation map of E1 states Figure 11: Bifurcation map of E2 states

SCIENCES SORBONNE UNIVERSITÉ

SCIENCES

MEAN FIRING RATE OF I1 (HZ)

Figure 12: Bifurcation map of I1 states Figure 13: Bifurcation map of I2 states

- Discussions
 - Results Outcomes
 - Limits and Perspectives

Results Outcomes

The outcomes of this study are the following ones

- Mean field models seem to simulate AI states very well
- High delay => Chaos to LC_{EI} for lower Q_e values

	Delay (ms)	$\mid g = \frac{Q_i}{Q_e} \mid$
E1	5	2.75
	4	2.6
	3	2.43
l1	5	2.99
	4	2.84
	3	2.7

	Delay (ms)	$g=\frac{Q_i}{Q_e}$
E2	5	2.7
	4	2.7
	3	2.56
12	5	3.05
	4	2.65
	3	2.65

- New relation

 The dominant inhibition state transition seems delay dependent when delay > 5 ms
- Unexpected behaviors : LC_{FA} and θ -resonance

Finite Size Effect

Small adaptation

Larger Scale

SpiNNaker => Mean-field

Virtual Twin Brain

Consciousness, society and interactions

- References

- J. S. Goldman, L. Kusch, B. H. Yalcinkaya, D. Depannemaecker, T.-A. E. Nghiem, V. Jirsa, and A. Destexhe, "Brain-scale emergence of slow-wave synchrony and highly responsive asynchronous states based on biologically realistic population models simulated in the virtual brain," bioRxiv, 2020.
- [2] A.-M. Oswald, B. Doiron, J. Rinzel, and A. Reyes, "Spatial profile and differential recruitment of gaba(b) modulate oscillatory activity in auditory cortex," *The Journal of neuroscience: the official journal of the Society for Neuroscience*, vol. 29, pp. 10321–34, 08 2009.
- [3] Y. Zerlaut, S. Chemla, F. Chavane, and A. Destexhe, "Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons," *Journal of Computational Neuroscience*, vol. 44, pp. 45–61, Feb. 2018.
- [4] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, vol. 15. 01 2001.
- [5] A. Rocha, "Toward a comprehensive understanding of eeg and its analyses," SSRN Electronic Journal, 01 2018.

- Fundamentals Concepts

- **Appendix**

Figure 14: Python Call modules and functions representing the building of TF template [3]

Figure 15: Firing rate distribution sampled from the spiking simulation and the MF Gaussian predictions of the population activities

Figure 16: Time traces of the Firing rates for both models with the Ortein-Ulhenbeck noise added in the MF (+ represent the MF prediction)

