SOLVING A NETWORK DESIGN PROBLEM USING BENDERS DECOMPOSITION

Benders Decomposition may be applied to linear and mixed integer linear problems with this structure:

$$\begin{aligned} Min_{\,x,\,y} & \quad c^\top x + f^\top y \\ s.t: & \quad Dx + Fy = d \\ & \quad x \geq 0, \\ \text{(P)} & \quad y \in Y \end{aligned}$$

where variables x are may take continuous values and variables y (the linking variables) may be continuous or discrete (Y may be a polyhedron $P \subset \mathbb{R}^p$ or $Y = P \cap \mathbb{Z}^p$).

Assume that variables y are fixed to a given value \bar{y} . Then problem (P) reduces to a linear programming problem:

$$\begin{array}{ccc} \operatorname{Min}_{x} & z_{P} = c^{\top}x \\ s.t: & Dx = d - F\bar{y} & \Leftrightarrow & \operatorname{Max}_{u} & z_{D} = (d - F\bar{y})^{\top}u \\ (\mathtt{PRIMAL}) & x \geq 0 & & (\mathtt{DUAL}) & D^{\top}u \leq c \end{array}$$

If a collection of vertexes \hat{v}^i , $i=1,2,...\mu$ and extreme rays \overrightarrow{w}^j , $j=1,2,...\nu$ of the polyhedron defining the feasible region of the dual problem (DUAL) has been generated, then the initial problem (P) can be approximated by the following problem:

$$\begin{aligned} Min_{\,z,\,y} &\quad z\\ s.t: &\quad f^\top y + (d-Fy)^\top \hat{v}^i - z \leq 0, \quad i=1,2,...,\mu\\ &\quad (d-Fy)^\top \overrightarrow{w}^j \leq 0, \qquad \qquad j=1,2,...,\nu \end{aligned}$$
 (MASTER PROBLEM) $\quad y \in Y$

After being solved, the master problem provides an approximation to the optimal value of the objective function of the original problem (P), \bar{z} , and a value \bar{y} for the link variables. This value \bar{y} for the linking variables can be used to solve the dual problem (DUAL) referred to as the subproblem, which will generate new vertexes and rays \hat{v}, \vec{w} , that will result in new constraints for the master problem and so on.

At iteration ℓ :

- 1. Solve the master problem $\rightarrow \bar{z}, \bar{y}$.
- 2. Solve the subproblem:
 - (a) The subproblem DUAL has no solution because $D^{\top}u \leq c$ is an empty polyhedron; In this case STOP because problem (P) has no solution or it is unbounded.
 - (b) Subproblem DUAL has a solution;
 - i. $z_D = \infty$. Then, if the simplex method has been used, an extreme ray \overrightarrow{w}^* has been obtained so that $(d - Fy)^{\top} \overrightarrow{w}^* > 0$. Thus, constraint $(d - Fy)^{\top} \overrightarrow{w}^* \leq 0$ needs to be added to the master problem, which will

be solved again in a new iteration.

ii. $z_D < \infty$. A vertex \hat{v}^* will be generated after solving problem DUAL using the simplex method.

A.) If
$$f^{\top}\bar{y} + (d - F\bar{y})^{\top}\hat{v}^* - \bar{z} \leq 0$$
. then STOP.
(In this case: $\bar{z} \geq f^{\top}\bar{y} + (d - F\bar{y})^{\top}\hat{v}^* \geq f^{\top}\bar{y} + (d - F\bar{y})^{\top}\hat{v}^{\ell}$, $1 \leq \ell \leq \mu$. Also, $(d - F\bar{y})^{\top}w^p \leq 0$, $1 \leq p \leq \nu$.)

Optimal solution of problem: objective function = \bar{z} , linking variables = \bar{y} , dual variables = \hat{v}^* .

As a practical stopping criterion adopt: $f^{\top}\bar{y} + (d - F\bar{y})^{\top}\hat{v}^* - \bar{z} \leq \epsilon$ or, better, using a relative gap: $f^{\top}\bar{y} + (d - F\bar{y})^{\top}\hat{v}^* - \bar{z} \leq \varepsilon\bar{z}$

B.) $f^{\top}\bar{y} + (d - F\bar{y})^{\top}\hat{v}^* - \bar{z} > 0$. Then, constraint $f^{\top}y + (d - Fy)^{\top}\hat{v}^* - z \leq 0$ needs to be added to the master problem, which will be solved again in a new iteration.

The previous scheme extends readily to the case in which variables y are integer. Then, the master problem becomes a mixed linear-integer programming problem with only one continuous variable.

Network Design. Description of the Assignment

Consider the problem consisting in deciding which links in a transportation or in a data communications network are necessary by balancing investment costs and reductions in exploitation costs. Assume that initially the network presentes a configuration given by G' = (N, A') and that there exists the possibility of increasing the number of network links taking the candidate links from a pre-specified set \hat{A} , so that the final network may become G = (N, A) with $A = A' \cup \hat{A}$. The question is then which links in \hat{A} are suitable to be added so that the total cost (investment+exploitation) is the minimum possible. The cost will be made up by two components:

- a) on the one hand, adding each new link $a \in \hat{A}$ presents a fix cost f_a (purchase+instalation).
- b) when in service, a link $a \in \hat{A}$ will have a cost per each unit of flow crossing that link during a given amortization period. Assume is addition, that these cost per unit depend on the starting origin (origin) of the trip.

In this way, if K denotes the set of origins in the network, the cost throughout the amortization period can be formulated as:

total cost =
$$\sum_{\ell \in K} \sum_{a \in A} c_a^{\ell} x_a^{\ell} + \sum_{a \in \hat{A}} f_a y_a$$

being $y_a = 1$ if link $a \in \hat{A}$ is added to the network and 0 otherwise.

The problem will be now formulated using matrix notation.

Let B the node-link incidence matrix of the network, x^{ℓ} the vector of flows originating at $\ell \in K$. Assume that g_{ℓ} is the total flow outgoing from origin $\ell \in K$ and that if $D(\ell)$ is the set of destinations corresponding to origin ℓ , then $g_{\ell,j}$ is the flow arriving at $j \in D(\ell)$, in such a way that:

$$g_{\ell} = \sum_{j \in D(\ell)} g_{\ell,j}$$

Let vector t^{ℓ} have so many components as nodes in the network. Component t_i^{ℓ} corresponding to

 $t_i^\ell = -g_{\ell,i}$ if $i \neq \ell$ i $t_i^\ell = g_\ell$ if node i is precisely the origin ℓ . Then x^ℓ obey to the following relationships:

$$Bx^{\ell} = t^{\ell}, \ x^{\ell} \ge 0$$

(See a complete example in the ending page).

The problem of network design can be formulated :

(1)
$$\begin{aligned} Min_{x,y} & \sum_{\ell \in K} c^{\ell \top} x^{\ell} + f^{\top} y \\ (A) & Bx^{\ell} = t^{\ell}, \ \ell \in K \\ (B) & x_a^{\ell} \leq \rho y_a, \ \ell \in K, \ a \in \hat{A} \\ (C) & x^{\ell} \geq 0 \\ & y \in \{0,1\}^{|\hat{A}|} \end{aligned}$$

and in scalar notation:

$$\begin{array}{ll} Min \ _{x,y} & \sum_{\ell \in K} \sum_{a \in A} c_a^{\ell} x_a^{\ell} + \sum_{a \in \hat{A}} f_a y_a \\ & \sum_{r \in I(i)} x_{r,i}^{\ell} - \sum_{s \in E(i)} x_{i,s}^{\ell} = t_i^{\ell}, \quad i \in N, \ \ell \in K \\ & x_a^{\ell} \leq \rho \, y_a, & a \in \hat{A}, \ \ell \in K \\ & x_a^{\ell} \geq 0, & a \in A, \ \ell \in K \\ & y_a \in \{0,1\}, & a \in \hat{A} \end{array}$$

Constant ρ must be chosen big enough so that if $y_a = 1$ then the maximum value that can be achieved by x_a^{ℓ} be smaller to ρ . Adopt $\rho > \sum_{\ell \in K} g_{\ell}$. In order to write the master problem mestre, constraints (A), (B) can be stated in matrix notation as

(A'), (B'):

$$(A'), (B') \quad \begin{pmatrix} \mathcal{B} & 0 & \dots & 0 & | & -F \\ 0 & \mathcal{B} & \dots & 0 & | & -F \\ \vdots & \vdots & \ddots & \vdots & | & -F \\ 0 & 0 & \dots & \mathcal{B} & | & -F \end{pmatrix} \begin{pmatrix} \mathbf{x}^{\ell_1} \\ \mathbf{x}^{\ell_2} \\ \vdots \\ \frac{\mathbf{x}^{\ell_{|K|}}}{y} \end{pmatrix} = \begin{pmatrix} \mathcal{T}^{\ell_1} \\ \mathcal{T}^{\ell_2} \\ \vdots \\ \mathcal{T}^{\ell_{|K|}} \end{pmatrix}, \quad \mathbf{x}^{\ell} \geq 0, \ \ell \in K$$

where:

$$\mathcal{B} = \left(\begin{array}{c|c} B & 0 \\ \hline I_{\hat{A}} & I_{\hat{A}} \end{array}\right), \ \mathbf{x}^{\ell} = \left(\begin{array}{c} x^{\ell} \\ \hline \sigma^{\ell} \end{array}\right), \mathcal{T}^{\ell} = \left(\begin{array}{c} t^{\ell} \\ \hline 0 \end{array}\right), \ F = \rho \left(\begin{array}{c} 0 \\ \hline I_{\hat{A}} \end{array}\right)$$

In previous expressions $I_{\hat{A}}$ denotes the identity matrix of size $|\hat{A}|$.

Constraints (A') will be rewritten by blocks as well the corresponding dual variables:

$$\mathcal{B}\mathbf{x}^{\ell} - F\mathbf{y} = \mathcal{T}^{\ell} \mid \theta^{\ell}$$

equivalently:

$$\left(\begin{array}{c|c} B & 0 \\ \hline I_{\hat{A}} | 0 & I_{\hat{A}} \end{array} \right) \left(\begin{array}{c} x^{\ell} \\ \hline \sigma^{\ell} \end{array} \right) - \rho \left(\begin{array}{c} 0 \\ \hline I_{\hat{A}} \end{array} \right) = \left(\begin{array}{c} t^{\ell} \\ \hline 0 \end{array} \right) \; \left| \; \left(\begin{array}{c} u^{\ell} \\ \hline \tau^{\ell} \end{array} \right) (= \theta^{\ell}) \; , \; \ell \in K$$

In scalar notation:

$$\begin{array}{lll} Bx^{\ell} & = t^{\ell} & |u^{\ell}| \\ x_a^{\ell} + \sigma_a^{\ell} - \rho y_a & = 0 & |\tau_a^{\ell}| \end{array}$$

Thus, it must be taken into account that those variables intervening in formulating the Benders cuts are $\theta^{\ell} = (u^{\ell}, \tau^{\ell})$. These dual variables are the ones associated to constraints (A'), (B'). Instead, it is convenient to solve the subproblem in the following primal form, which decomposes in |K| subproblems.

$$\begin{array}{ccc} \operatorname{Min}_{x,y} & c^{\ell \; \top} x^{\ell} \\ & \operatorname{B} x^{\ell} = t^{\ell}, & |w^{\ell} \\ (\operatorname{SUBP} \; \ell) & x_{a}^{\ell} \leq \rho \, \bar{y}_{a}, & |\tau_{a}^{\ell-}, \; a \in \hat{A} \\ & x^{\ell} \geq 0, & |\tau^{\ell+} \end{array} \to \begin{array}{c} (\hat{x}^{\ell}, \hat{u}^{\ell}, \hat{\tau}^{\ell+}, \hat{\tau}^{\ell-}) \end{array}$$

It is necessary to take parameter $\rho > \sum_{\ell \in K} g_{\ell}$. The relationship between multipliers $w^{\ell}, \tau_a^{\ell-}, \tau^{\ell+}$ for problem (SUBP ℓ) and $\theta^{\ell} = (u^{\ell}, \tau^{\ell})$ is the following one:

$$(3) w_i^{\ell} = u_i^{\ell}, i \in N$$

(3)
$$w_i^{\ell} = u_i^{\ell}, \qquad i \in N$$

$$\tau_a^{\ell} = -\tau_a^{\ell-} (\leq 0), \quad a \in \hat{A}$$

Calculation of multipliers $\tau_a^{\ell-}$

Considering the dual problem of (SUBP ℓ), its solution will verify, for link $a = (i, j) \in A$:

$$c_a^{\ell} = \hat{u}_i^{\ell} - \hat{u}_i^{\ell} + \hat{\tau}_a^{\ell+} - \hat{\tau}_a^{\ell-}$$

In order to determine multipliers τ the following must be taken into account. Given a master problem solution for given decision variables \bar{y}_a , $a \in \hat{A}$, resolving SUBP ℓ would be carried out by eliminating links $a \in \hat{A}$ for which $\bar{y}_a = 0$. Then, it is clear that:

- If $a = (i, j) \notin \hat{A}, \, \hat{\tau}_a^{\ell-} = 0.$
- If $a=(i,j)\in \hat{A}$ and, additionally $\bar{y}_a>0$, then $\tau_a^{\ell-}=0$, whereas $\tau^{\ell+}$ may be null or positive. Always, $\hat{\tau}_a^{\ell+}=c_a^{\ell}-(\hat{u}_i^{\ell}-\hat{u}_j^{\ell})$ will hold. In any case, it will be shown that $\tau_a^{\ell+}$ do not intervene at all.
- Si $a = (i, j) \in \hat{A}$ and, additionally $\bar{y}_a = 0$:
 - If $c_a^\ell (\hat{u}_i^\ell \hat{u}_j^\ell) < 0$ then: $\hat{\tau}_a^{\ell+} = 0$, $\hat{\tau}_a^{\ell-} = -c_a^\ell + (\hat{u}_i^\ell \hat{u}_j^\ell)$ (> 0). (in this case if link $a \in \hat{A}$ is added its flow would be > 0 for commodity ℓ)
 - Si $c_a^\ell (\hat{u}_i^\ell \hat{u}_j^\ell) \ge 0$ then: $\hat{\tau}_a^{\ell-} = 0$, $\hat{\tau}_a^{\ell+} = c_a^\ell (\hat{u}_i^\ell \hat{u}_j^\ell)$ (> 0). (in this case, if link $a \in \hat{A}$ is added its flow would be 0 for commodity ℓ)

Then,in case of $\bar{y}_a = 0$ the expression for $\hat{\tau}_a^{\ell}$ would be:

$$\hat{\tau}_a^{\ell-} = max\{ 0, (\hat{u}_i^{\ell} - \hat{u}_i^{\ell}) - c_a^{\ell} \}$$

Master Problem's structure:

taking into account the compact formulation in (1'), (2') and in case that the subproblem will never issue extreme directions, master problem's structure at iteration M will be:

$$\begin{array}{ll} Min_{y,z} & z \\ s.t: & z \geq f^{\top}y + \sum_{\ell \in K} (\mathcal{T}^{\ell} + Fy)^{\top} \hat{\theta}^{\ell,s}, \ s = 1, 2, 3, ...M \\ & y \in Y = \{0, 1\}^{|\hat{A}|} \end{array}$$

Thus, the only thing that remains is to state the expression of the term $(\mathcal{T}^{\ell} + Fy)^{\top} \hat{\theta}^{\ell}$: (super-index s omitted)

$$(\mathcal{T}^{\ell} + Fy)^{\top} \hat{\theta}^{\ell} = \left(\begin{pmatrix} t^{\ell} \\ 0 \end{pmatrix} + \rho \begin{pmatrix} 0 \\ y \end{pmatrix} \right)^{\top} \begin{pmatrix} \hat{u}^{\ell} \\ \hat{\tau}^{\ell} \end{pmatrix} = t^{\ell \top} \hat{u}^{\ell} - \rho \sum_{\substack{a \in \hat{A} \\ \bar{y}_a = 0}} \hat{\tau}_a^{\ell -} y_a$$

Finally, it must be remarked that when *subproblem* is solved in its primal form (PRIMAL), duality can be used so in order to evaluate $c^{\ell \top} \hat{x}^{\ell} = t^{\ell \top} \hat{u}^{\ell}$