Floating Point

15-213: Introduction to Computer Systems 3rd Lecture, Aug. 31, 2010

Instructors:

Randy Bryant & Dave O'Hallaron

Today: Floating Point

- **■** Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

5 3/4 101.11₂
2 7/8 10.111₂
63/64 1.0111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value Representation

- **1/3** 0.01010101[01]...2
- **1/5** 0.00110011[0011]...2
- **1/10** 0.000110011[0011]...2

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^sM 2^E$$

- Sign bit s determines whether number is negative or positive
- Significant M normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

s exp frac	S	
------------	---	--

Precisions

■ Single precision: 32 bits

■ Double precision: 64 bits

Extended precision: 80 bits (Intel only)

Categories of single-precision, floatingpoint values

Normalized

2. Denormalized

3a. Infinity

3b. NaN

Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as *biased* value: E = Exp Bias
 - Exp: unsigned value exp
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: *M* = 1.xxx...x₂
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
■ Value: Float F = 15213.0;

■ 15213<sub>10</sub> = 11101101101101<sub>2</sub>

= 1.1101101101101<sub>2</sub>x 2<sup>13</sup>
```

Significand

```
M = 1.101101101_2
frac= 1101101101101000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

0x466db400

0 10001100 1101101101101000000000 s exp frac

Denormalized Values

■ Condition: exp = 000...0

```
s 0 0 0 0 0 0 0 0 f
```

- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significant coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

■ Condition: exp = 111...1

- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	ехр	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	•••				
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf
	0	1110	111	7	15/8*128 = 240 largest norm

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^3-1-1=3$

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$
Just larger than largest denor	malized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
Single ≈ 3.4 x 10 ³⁸			

Special Properties of Encoding

- **FP Zero Same as Integer Zero**
 - All bits = 0

■ Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} + \mathbf{f} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times \mathbf{f} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

■ Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
■ Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

■ What are the advantages of the modes?

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- •double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- •int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- •int → float
 - Will round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = \dots;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
    x == (int)(float) x
```

•
$$x == (int)(double) x$$

•
$$f == -(-f);$$

•
$$2/3 == 2/3.0$$

•
$$d < 0.0$$
 \Rightarrow $((d*2) < 0.0)$

•
$$d > f$$
 \Rightarrow $-f > -d$

•
$$d * d >= 0.0$$

•
$$(d+f)-d == f$$

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Practice

Practice Problem 2.45

Fill in the missing information in the following table:

Fractional value	Binary representation	Decimal representation
	0.001	0.125
$\frac{3}{4}$		
$\frac{25}{16}$		
	10.1011	
	1.001	
		5.875
		3.1875

Practice Problem 2.47

Consider a 5-bit floating-point representation based on the IEEE floating-point format, with one sign bit, two exponent bits (k = 2), and two fraction bits (n = 2). The exponent bias is $2^{2-1} - 1 = 1$.

The table that follows enumerates the entire nonnegative range for this 5-bit floating-point representation. Fill in the blank table entries using the following directions:

e: The value represented by considering the exponent field to be an unsigned integer

E: The value of the exponent after biasing

 2^E : The numeric weight of the exponent

f: The value of the fraction

M: The value of the significand

 $2^E \times M$: The (unreduced) fractional value of the number

V: The reduced fractional value of the number

Decimal: The decimal representation of the number

Express the values of 2^E , f, M, $2^E \times M$, and V either as integers (when possible) or as fractions of the form $\frac{x}{y}$, where y is a power of 2. You need not fill in entries marked "—".

Bits	e	E	2^E	f	M	$2^E\times M$	V	Decimal
0 00 00								
0 00 01								
0 00 10								
0 00 11								
0 01 00								
0 01 01	1	0	1	$\frac{1}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	1.25
0 01 10								
0 01 11								
0 10 00								
0 10 01								
0 10 10								
0 10 11								
0 11 00	_	_	_	_	_	_		_
0 11 01	_	_	_	_	_	_		_
0 11 10	_	_	_	_	_	_		_
0 11 11	_	_	_	_	_	_		_

Practice

Practice Problem 2.48

As mentioned in Problem 2.6, the integer 3,510,593 has hexadecimal representation 0x00359141, while the single-precision, floating-point number 3510593.0 has hexadecimal representation 0x4A564504. Derive this floating-point representation and explain the correlation between the bits of the integer and floating-point representations.

Practice Problem 2.50

Show how the following binary fractional values would be rounded to the nearest half (1 bit to the right of the binary point), according to the round-to-even rule. In each case, show the numeric values, both before and after rounding.

- A. 10.010₂
- B. 10.011₂
- C. 10.110₂
- D. 11.001₂