$\mathbf{QNC}_1 \subset \mathbf{noisy}\mathbf{-BQP}$

Michael Benor David Ponarovsky September 18, 2024

1 Notations.

We denote by C_g the good qLDPC code [Din+22] [PK21] [LZ22b], and by C_{ft} the concatenation code presented at [AB99] (ft stands for fault tolerance). For a code C_y , we use Φ_y , E_y , D_y to denote the channel maps circuits into the circuits computed in the code space, the encoder, and the decoder, respectively. We use Φ_U to denote the 'Bell'-state storing the gate U. We say that a state $|\psi\rangle$ is at a distance d from a quantum code C if there exists an operator U that sends $|\psi\rangle$ into C such that U is spanned on Paulis with a degree of at most d. Sometimes, when the code being used is clear from the context, we will say that a block B of qubits has absorbed at most d noise if the state encoded on B is at a distance of at most d from that code.

2 The Noise Model

3 Fault Tolerance (With Resets gates) at Linear Depth.

Claim 3.1. There exists a value $p_{th} \in (0,1)$ such that if $p < p_{th}$, then any quantum circuit C with a depth of D and a width of W can be computed by a p-noisy circuit C', which allows for resets. The depth of C' is at most $\max \{O(D), O(\log(WD))\}$.

3.1 Initializing Magic for Teleportation gates and encodes ancillaries.

The Protocol:

- 1. Initialization of zeros: The qubits are divided into blocks of size |B|. Each block is encoded in C_g using $D_{ft}\Phi_{ft}[E_g]|0^{|B|}\rangle$.
- 2. Initialization of Magic for Teleportation gates: The gates in the original circuit are encoded in C_g using $D_{ft}\Phi_{ft}[E_g]|\Phi_U\rangle$.
- 3. Gate teleportation: Each gate in the original circuit is replaced by a gate teleportation.
- 4. Error reduction: After the initialization step, at each time tick, each block runs a single round of error reduction.

Claim 3.2 (From [LZ22a]). Assuming that an error $|e| = \gamma n$, i.e e is supported on less than γn bits, then a single correction round reduce e to an error e' such that $|e'| < \nu |e|$.

Claim 3.3. The gate $D_{ft}\Phi_{ft}[E_g]$ initializes states encoded in C_g subject to a 3p-noise channel.

Proof. Clearly, with high probability, $\Phi_{ft}[E_g]$ successfully encodes into $C_{ft} \circ C_g$, let's say with probability $1 - \frac{1}{poly(n)}$. Denote by E_i and D_i the encoder and decoder at the ith level of the concatenation construction. Recall that by definition, $D_i E_i = I$, or in other words, $D_i = E_i^{\dagger}$. Consider the decoder under $\mathcal N$ action: $P_2 D_1 P_2 D_2, ..., P_{i-1} D_i P_i$, by the fault-tolerance construction, a logical error at the ith stage occurs with probability p^{2^i} . Therefore, by the union bound, the probability that in one of the steps the circuit absorbs

an error that is not corrected is less than $p + p^2 + p^4 + ... < 2p$. Hence, any decoded qubit absorbs noise with probability less than 2p.

Thus, overall, we can bound the probability of a single qubit being faulty by:

$$\begin{split} \mathbf{Pr}\left[\text{fault}\right] &= \mathbf{Pr}\left[\text{fault}|\Phi_{ft}[E_g]\right] \cdot \mathbf{Pr}\left[\Phi_{ft}[E_g]\right] + \mathbf{Pr}\left[\text{fault}|\overline{\Phi_{ft}[E_g]}\right] \cdot \mathbf{Pr}\left[\overline{\Phi_{ft}[E_g]}\right] \\ &\leq \mathbf{Pr}\left[\text{fault}|\Phi_{ft}[E_g]\right] + \mathbf{Pr}\left[\overline{\Phi_{ft}[E_g]}\right] \leq 2p + \frac{1}{poly(n)} \leq 3p \end{split}$$

Remark 3.1. In our construction, we use the concatenation code to encode blocks of length $\log(n)$. Therefore, any poly(n) in the above should be replaced by $\log(n)$. However, this does not affect anything since the inequality does not depend on n.

Claim 3.4. With probability $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$, the total amount of noise been absorb in a block, in any time t, is less than γn .

Proof. Consider the ith block, denoted by B_i . Using the Hoeffding's inequality we have that the probability that more than $\beta|B|$ bits are flipped at time t is less than $\leq 2e^{-2|B|(\beta-p)}$. Using the union bounds over all the blocks at all the different time locations we get that with probability $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$ the noise been absorbed in a block is less than $|\beta|B$ for the whole computation.

Denote by X_t the support's size of the error over B_i at time t. Now using Claim 3.2, given that $X_{t-1} \le \gamma n$, it follows that the total amount of error absorbed by a block until time t can be bounded by:

$$X_t \le \nu \cdot (X_{t-1} + \beta |B|) \le \nu(\gamma + \beta)|B| \le \gamma |B|$$

Claim 3.5. The total depth of the circuit is $O(\log n)$.

Proof. The gate for encoding |B|-length blocks in C_g , is a Clifford and therefore can be computed in $O(\log |B|)$ depth. The encoding of the magic/bell states, done by first compute them in the logical space (un-encoded qubits) and then by using the encoder. Hence it's foult-tolerence version of both initializing ancillaries and magic states /bell states cost $O((\log |B|) \cdot \log^c(|B| \log |B|))^1$ depth [AB99]. Backing into C_g from C_{ft} by decoding the concatenation code takes exactly as the encoding namely.

Then using the bell measurements any of the logical gates takes O(1) depth and since we use perform only a single round of error correction we get that the reaming computation till the last decoding stage is a at most constant time of the original depth. Finally we pay $O(\log |B|)$ for complete decoding. Summing all, we get:

$$O(\log |B| \cdot \log^c(|B| \log |B|)) + O(\text{original depth}) + O(\log |B|)$$

= $O(\text{original depth}) + O(\log^c |B|)$

Taking the block length to be $|B| = \log((W \cdot D)^c)$ gives, by Claim 3.4, a linear² fault tolerance construction that success with probability $1 - \frac{1}{\log^{c_2}(W \cdot D)}$. Particularly, the fault tolerance version of circuits in \mathbf{QNC}_1 has logarithmic depth. Then using the construction in [Aha+96] yields a polynomial fault tolerance circuit, in the only reversible gates setting.

 $^{^1 \}text{The}$ width of the original circuit is $|B|^2$ so the number of locations is $|B|^2 \cdot \log |B|$

²Assuming W is polynomial in D

References

- [Aha+96] D. Aharonov et al. *Limitations of Noisy Reversible Computation*. 1996. arXiv: quant ph/9611028 [quant-ph]. url: https://arxiv.org/abs/quant-ph/9611028.
- [AB99] Dorit Aharonov and Michael Ben-Or. *Fault-Tolerant Quantum Computation With Constant Error Rate.* 1999. arXiv: quant-ph/9906129 [quant-ph].
- [PK21] Pavel Panteleev and Gleb Kalachev. Asymptotically Good Quantum and Locally Testable Classical LDPC Codes. 2021. DOI: 10.48550/ARXIV.2111.03654. URL: https://arxiv.org/abs/2111.03654.
- [Din+22] Irit Dinur et al. *Good Locally Testable Codes*. 2022. DOI: 10.48550/ARXIV.2207.11929. URL: https://arxiv.org/abs/2207.11929.
- [LZ22a] Anthony Leverrier and Gilles Zémor. Decoding quantum Tanner codes. 2022. arXiv: 2208. 05537 [quant-ph]. url: https://arxiv.org/abs/2208.05537.
- [LZ22b] Anthony Leverrier and Gilles Zémor. *Quantum Tanner codes.* 2022. arXiv: 2202. 13641 [quant-ph].