Paper / Subject Code: FE214 / Basic Mechanical Engineering

FE214

Total No. of Printed Pages:02

F.E. Semester-II (Revised Course 2007-2008)

	EXAMINATION MAY/JUNE 2019
	Basic Mechanical Engineering
[Durat	ion: Three Hours] [Max.Marks: 100]
N.B	i. Attempt in all five questions. Atleast one question to be attempted from each module.
	ii. Assume missing data, if any with proper justification
	iii. Illustrate with neat sketches where appropriate.
	MODULE I
Q.1	a) What is the difference between extensive and intensive properties?
	b) What are point and path functions? Give some examples.
	c) Derive the first law of thermodynamics applied to a boiler.
	d) Air initially at 70 kPa pressure, 900K temperature and occupying a volume of $0.1 \mathrm{m}^3$ is compressed isothermally until the volume is halved and subsequently it goes further compression at constant pressure till volume is halved again. Sketch the process on P-v plot and calculate total work done and heat interaction for the two processes. Assume ideal gas behaviour for air and take $C_p = 1.005 \ \mathrm{kJ/kgK}$ and $C_v = 0.718 \ \mathrm{kJ/kgK}$.
Q.2	 a) In an air standard diesel cycle, the compression ratio is 16. The compression begins at 1.5 bar, 12 300 K. The heat added is 3 MJ/kg. Representing the cycle on P-v plane, compute the following: i) Pressure and temperature at all corner points of the cycle ii) Air standard efficiency
	iii) Net work done in a cycle per kg of air
	iv) Maximum theoretical efficiency
	v) Cut off and hence percentage cut-off
	b) An engine working on ideal Otto cycle has temperature and pressure at the beginning of compression as 25°C and 1.5 bar respectively. The peak pressure is 35 bar. If the thermal efficiency of the engine is 48% and $\gamma = 1.4$. Determine the pressure and temperature at salient points.
	MODULE II
Q.3	a) With the help of a neat sketch, explain the working of a vapour compression refrigeration system employed in a domestic refrigerator.
	 b) Describe the working of a 4 stroke SI engine with a neat diagram. c) Find the brake thermal efficiency of an engine which consumes 5 kg of fuel in 20 minutes and 06 develops a brake power 65 kW. The fuel has a heating value of 42000 kJ/kg.

Paper / Subject Code: FE214 / Basic Mechanical Engineering

			FEZ14
Q.4		Describe the lubrication system of internal combustion engine with the help of neat sketch. Define the following: i) Refrigerants ii) Dryness of fraction iii) Tonne of refrigeration	06 08
		iv) Boiler v) Condenser	
		vi) Turbine	
	c)	Explain rankine cycle with T-S diagram.	06
Q.5	a)	State the functions of a clutch. With a neat sketch, explain the working of a single plate clutch.	08
	b)	Draw the layout of a complete transmission system for the front engine rear wheel drive vehicle.	06
	c)	Write short notes on the following: i) Propeller shaft	06
		ii) Constant velocity universal joint	
Q.6		Describe the main components of an automobile.	08
	b)	What is a friction plate? Where is it located? What are the functions of the pressure plate?	04
	c)	With a neat sketch, explain hydraulic brake system of a car.	08
		MODULE IV	
Q.7	a)	Explain the following lathe operations with the help of neat sketches showing the relative motion between the work piece and tool. i) Turning ii) Taper turning	06
		iii) Knurling	
	b)	With a neat sketch, explain laser beam welding process.	06
	c)	Define extrusion process. Explain forward and backward extrusion processes.	08
Q.8	a)	Describe the basic steps involved in sand casting process with a neat sketch.	06
		What is upset forging? Explain open and closed upset forging processes with neat sketches.	08
	c)	Compare between soldering and brazing processes.	06