Zyhlische Gruppen

Definition 42

Eine Gruppe G heißt zyhlisch, falls ein ge G existiert, so dass $G = \langle g_3 \rangle$ (siehe Definition 15 in VLZ), dh. $G = \begin{cases} g_1 g_2, ..., g_{ord(g_1)}, falls ord(g_1) < \infty \\ g_{1} g_{2}, ..., g_{1} g_{2}, ..., g_{2} g_{2}, ... \end{cases}$

Beispiel Z ist zyhlisch, da Z= < {1.1} = < {-1.1>.

Lemma 43

Sei H=Ze eine Untergruppe. Dann existiert me Z, so dass H=mZ= nk| KeZS. Insbesondere ist Hzyhlich (deun mZ=<1mJ>).

<u>Beweis</u>

Annahme $H \neq 90S$. Sei also $x \in H$, $x \neq 0$. Falls x < 0, dann ist -x > 0 and $-x \in H$, weil -x das Inverse zu x ist. Dies zeigt dass H positive Elemente enthalt. Sei me H das kleinste positive Element in H. Sei $a \in H$. Dann finden wir $q \in Z$, $0 \le r < u$ wit $0 = q \cdot m + r$ (durch Anwenden des euch). Algor).

-> r= a-q·m EH => r=0. => a=q·m => ae <qus) EH = w+mf-+m (q-mal) => HE < fus>

Es gilt auch < fnJ> ⊆ H , weil me H => H = < fmJ2. => Hist zyllisch Satz 44

Sei G eine zylelische Gruppe. Dann gilt:

 $G = \begin{cases} \mathbb{Z} & \text{falls } |G| = \infty \\ \mathbb{Z} & \text{falls } |G| = m \end{cases}$

Beweis

Si G = 9 <9>3. Dans definieren wir einen Gruppenhomomorphismus

4: Z -> G, K -> gk

Nach Konstruhtion ist 4 Surjektiv.

=> 7/ker(4) = G.

Der Cur (4) c Z eine Untergruppe ist, ist Ker (4) = { 0.3, oder nach Lemma 43.

=> G = { Z, falls lur(4) = {0}} Z/mZ1, falls lur(4) = mZ1, m =0.

IJ.

Satz 45

- (1) Sei G eine zyhlische Gruppe und HS G eine Untergruppe. Dann ist auch It zyhlisch.
- (2) Falls f: G-> G' ein Gruppenhowomorphismus ist, und Gzyhlisch ist, so sind auch ker(f) und f(G) zyhlisch.

Burs

(1) Sei G = < 1932. Wir finden einen Gruppenhomomorphismus

4: Z -> G, i -> gi.

Dann ist $4^{-1}(H)$ eine Unkryruppe von Z, also zyhliseh: $4^{-1}(H) = \langle \{m\} \rangle = \{k : m \mid k \in \mathbb{Z}\}, m \in \mathbb{Z}.$ Dann gilt: $H = \{\{m\} \mid k \in \mathbb{Z}\}\}$

H= & Y(k·m) | KE Z] = & Y(m) k | he Z] = < Y(m)>

=> Hist zyhlisch.

(Z) Sci f: G -> G' wit G zyhlisch.

 $ker(f) \subseteq G$ ist eine untirgruppe und nach (1) zyhliseli. Si $G = \langle g | S \rangle$. Dann gilt: $f(G) = f(g^k) | ke Z S$ = f(g) | K | ke Z S $= \langle f(g) | S \rangle$

=> f(G) ist zyklisch.

П