

TOPIC OUTLINE

Reciprocal Identities

Quotient Identities

Pythagorean Identities

Even-Odd Identities

FUNDAMENTAL IDENTITIES

RECIPROCAL AND QUOTIENT IDENTITIES

Reciprocal Identities

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

Quotient Identities

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

PYTHAGOREAN IDENTITIES

Alternative Forms

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2\theta = 1 - \cos^2\theta$$

$$\sin^2 \theta = 1 - \cos^2 \theta \qquad \qquad \cos^2 \theta = 1 - \sin^2 \theta$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\tan^2 \theta = \sec^2 \theta - 1$$
 $1 = \sec^2 \theta - \tan^2 \theta$

$$1 = \sec^2 \theta - \tan^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cot^2 \theta = \csc^2 \theta - 1$$

$$1 = \csc^2 \theta - \cot^2 \theta$$

EVEN-ODD IDENTITIES

$$\sin(-\theta) = -\sin\theta$$
 $\csc(-\theta) = -\csc\theta$

$$\csc(-\theta) = -\csc\theta$$

$$\cos(-\theta) = \cos\theta$$
 $\sec(-\theta) = \sec\theta$

$$\sec(-\theta) = \sec\theta$$

$$tan(-\theta) = -tan \theta$$
 $cot(-\theta) = -cot \theta$

$$\cot(-\theta) = -\cot\theta$$

For each expression in Column I, choose the expression from Column II that completes an identity.

I

$$1. \frac{\cos x}{\sin x} = \underline{\hspace{1cm}}$$

2.
$$\tan x =$$

3.
$$\cos(-x) =$$

4.
$$tan^2 x + 1 =$$

II

A.
$$\sin^2 x + \cos^2 x$$

B.
$$\cot x$$

C.
$$sec^2 x$$

D.
$$\frac{\sin x}{\cos x}$$

E.
$$\cos x$$

Simplify the expression

$$a. - \tan x \cos x$$

$$b. \frac{\sec x}{\csc x}$$

Simplify the expression

$$\frac{1+\cot^2\theta}{1-\csc^2\theta}$$

Write $\cos x$ in terms of $\tan x$.

Write the given expression in terms of sine and cosine, and then simplify the expression so that no quotients appear and all functions are of θ only.

$$\frac{1-\cos^2(-\theta)}{1+\tan^2(-\theta)}$$

Write each expression in terms of sine and cosine, and then simplify the expression so that no quotients appear and all functions are of θ only.

$$a. \sin^2 \theta (\csc^2 \theta - 1)$$

b. $\sec \theta \cot \theta \sin \theta$

$$c.(1-\cos\theta)(1+\sec\theta)$$

$$d.\frac{1+\tan(-\theta)}{\tan(-\theta)}$$

$$e.\frac{\sec^2\theta-1}{\csc^2\theta-1}$$

SEATWORK

