Improving Sequence Generation by GAN

李宏毅

Hung-yi Lee

Outline

Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Conditional Sequence Generation

The generator is a typical seq2seq model.

With GAN, you can train seq2seq model in another way.

Review: Sequence-to-sequence

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Introduction

https://image.freepik.com/free-vector/variety-of-human-avatars_23-2147506285.jpg http://www.freepik.com/free-vector/variety-of-human-avatars_766615.htm

Machine obtains feedback from user

Chat-bot learns to maximize the expected reward

Maximizing Expected Reward

Maximizing Expected Reward

Maximizing Expected Reward

$$\theta^* = arg \max_{\theta} \overline{R}_{\theta}$$
 Maximizing expected reward 照理來說應該要對R 算theta之gradient找maxima

$$\begin{split} \bar{R}_{\theta} &= \sum_{h} P(h) \sum_{x} R(h,x) \ P_{\theta}(x|h) = E_{h \sim P(h)} \left[E_{x \sim P_{\theta}(x|h)} [R(h,x)] \right] \\ &= E_{h \sim P(h), x \sim P_{\theta}(x|h)} [R(h,x)] \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\text{但是這裡沒有包含theta,無法算gradient}}{R(h^i, x^i)} \\ &= \text{無法算期望值,改成sample N 筆來逼近} \\ &\text{Sample: } (h^1, x^1), (h^2, x^2), \cdots, (h^N, x^N) \end{split} \qquad \text{Where is θ?}$$

Policy Gradient

$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

提前在sampling時就先算gradient

提前在sampling時就先算gradient 因為這一步無法對theta算gradient
$$\bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i})$$

$$\nabla \bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) \nabla P_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla \log P_{\theta}(x_{i}|h_{i})$$

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \frac{\nabla P_{\theta}(x|h)}{P_{\theta}(x|h)}$$
 Sampling

$$P_{ heta}(x|n)$$
 $P_{ heta}(x|h)$ 這兩項是等價的

$$= \sum_{i} P(h) \sum_{i} R(h, x) P_{\theta}(x|h) \nabla log P_{\theta}(x|h)$$

$$\nabla log P_{\theta}(x|h)$$

$$= E_{h \sim P(h), x \sim P_{\theta}(x|h)} [R(h, x) \nabla log P_{\theta}(x|h)]$$

Policy Gradient

Gradient Ascent

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | h^{i})$$

 $R(h^i, x^i)$ is positive given hi, output xi是好的,則放大這機率

After updating θ , $P_{\theta}(x^{i}|h^{i})$ will increase

 $R(h^i, x^i)$ is negative \mathbb{Z}^2

After updating θ , $P_{\theta}(x^{i}|h^{i})$ will decrease

Policy Gradient - Implemenation

$$\theta^{t+1} \leftarrow \theta^t + \eta \nabla \bar{R}_{\theta^t}$$

$$\frac{1}{N} \sum_{i=1}^{N} R(c^i, x^i) \nabla log P_{\theta^t}(x^i | c^i)$$

$$R(c^i, x^i) \text{ is positive}$$

$$\text{Updating } \theta \text{ to increase } P_{\theta}(x^i | c^i)$$

$$R(c^i, x^i) \text{ is negative}$$

$$\text{Updating } \theta \text{ to decrease } P_{\theta}(x^i | c^i)$$

理論上R是沒有限制的,因為都是機率(和為1),因此雖然都是正的但 是有大有小,因此還是可以提高positive example

但是我們再實作上的時候希望reward function是有正有負的(同減去threshold)

Comparison

因為我們再sample的時候不一定所有data都會被找到,這樣 造成反而沒sample到的機率會下降

每一筆data都有相同weight
Maximum
Likelihood

每一筆data都是有不同weight Reinforcement Learning

Objective **Function**

$$\frac{1}{N} \sum_{i=1}^{N} log P_{\theta}(\hat{x}^{i} | c^{i})$$

$$\frac{1}{N} \sum_{i=1}^{N} R(c^{i}, x^{i}) log P_{\theta}(x^{i} | c^{i})$$

Gradient

$$\frac{1}{N} \sum_{i=1}^{N} \nabla log P_{\theta}(\hat{x}^{i} | c^{i})$$

$$\frac{1}{N} \sum_{i=1}^{N} R(c^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | c^{i})$$

machine自己產生的,因此有些x是錯的

Training Data

人標記的ground truth
$$\{(c^1, \hat{x}^1), \dots, (c^N, \hat{x}^N)\}$$

$$R(c^i, \hat{x}^i) = 1$$

 $\{(c^1, x^1), \dots, (c^N, x^N)\}$ obtained from interaction weighted by $R(c^i, x^i)$

Alpha GO style training!

用兩個bot互相聊天,但是reward不能太複雜,只能設計很簡單的 譬如說陷入infinite loop就給負的reward

Let two agents talk to each other

How old are you?

How old are you?

I am 16.

See you.

I though you were 12.

What make you think so?

Using a pre-defined evaluation function to compute R(h,x)

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

為了解reward不能太複雜的問題,引入GAN

Conditional GAN

以前的reward是人類定義的,現在改成用discriminator來給定reward

Training data:

正確的pair

Algorithm

Pairs of conditional input c and response x

- Initialize generator G (chatbot) and discriminator D
- In each iteration:
 - Sample input c and response x from training set
 - Sample input c' from training set, and generate response \tilde{x} by G(c')
 - Update D to increase D(c,x) and decrease $D(c',\tilde{x})$

learn D

• Update generator G (chatbot) such that

c Discrimi nator

update

update

learn G

Due to the sampling process, "discriminator+ generator" is not differentiable

Three Categories of Solutions 如何解這問題 (在有sampling process的net算gradient)?

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

想了一個trick讓本來不能算微分的東西變成可以算

Continuous Input for Discriminator

• [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017]

"Reinforcement Learning"

 [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William] Fedus, et al., ICLR, 2018]

Gumbel-softmax

(a)

f(x)

 $x(\theta)$

θ

Deterministic,

Forward pass

∂x ∂0

https://gabrielhuang.g itbooks.io/machinelearning/reparametriz ation-trick.html https://casmls.github.i o/general/2017/02/01 /GumbelSoftmax.html

http://blog.evjang.com/ 2016/11/tutorialcategoricalvariational.html

Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

• [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017] Discriminator如果改成不要吃sampling結果而是distribution,就可以微分了

"Reinforcement Learning"

• [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William Fedus, et al., ICLR, 2018]

What is the problem?

對Discriminator來說辨別真假太容易,只要辨別是不是one hot即可! 造成Generator只要學會產生one hot即可!

Real sentence

real data

1	0	0	0	0	
0	1	0	0	0	
0	0	1	0	0	
0	0	0	1	0	
0	0	0	0	1	

Discriminator can immediately find the difference.

Generated

fake data

Can never be 1-of-N

0.9	0.1	0.1	0	0
0.1	0.9	0.1	0	0
0	0	0.7	0.1	0
0	0	0.1	0.8	0.1
0	0	0	0.1	0.9

WGAN is helpful

constrain: D必須是1-lipsitz function,造成他是比較fuzzy的,所以比較不容易分辨one hot

Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

[Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 2017]

"Reinforcement Learning"

• [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William Fedus, et al., ICLR, 2018]

Reinforcement Learning?

- Consider the output of discriminator as reward
 - Update generator to increase discriminator = to get maximum reward
 - Using the formulation of policy gradient, replace reward R(c,x) with discriminator output D(c,x)
- Different from typical RL
 - The discriminator would update

把人(reward)換成機器 (discriminator)
$$\theta^{t} \qquad \qquad D$$

$$(c^{1}, x^{1}) \qquad D(c^{1}, x^{1})$$

$$(c^{2}, x^{2}) \qquad D(c^{2}, x^{2})$$

$$\vdots$$

$$\vdots$$

$$(c^{N}, x^{N}) \qquad D(c^{N}, x^{N})$$

$$\theta^{t+1} \leftarrow \theta^t + \eta \nabla \bar{R}_{\theta^t}$$

$$\frac{1}{N} \sum_{i=1}^{N} D(c^i, x^i) \nabla log P_{\theta^t}(x^i | c^i)$$

$$D(c^i, x^i) \text{ is positive}$$

$$\text{Updating } \theta \text{ to increase } P_{\theta}(x^i | c^i)$$

$$D(c^i, x^i) \text{ is negative}$$

$$\text{Updating } \theta \text{ to decrease } P_{\theta}(x^i | c^i)$$

Reward for Every Generation Step

$$abla ar{R}_{ heta} pprox rac{1}{N} \sum_{i=1}^{N} D(c^{i}, x^{i}) \nabla log P_{ heta}(x^{i}|c^{i})$$

$$c^i$$
 = "What is your name?" $D(c^i, x^i)$ is negative x^i = "I don't know" Update θ to decrease $\log P_{\theta}(x^i|c^i)$ $\log P_{\theta}(x^i|c^i) = \log P(x_1^i|c^i) + \log P(x_2^i|c^i, x_1^i) + \log P(x_3^i|c^i, x_{1:2}^i)$

 $P("I"|c^i)$ 雖然希望這項減小,但開頭是 I 應該是好的不需要下降呀

雖然sample夠多,positive可以拉回來I的機率,但是實作上不一定sample夠多

$$c^i$$
 = "What is your name?" $D(c^i, x^i)$ is positive

$$x^i$$
 = "I am John" Update θ to increase $\log P_{\theta}(x^i|c^i)$

$$log P_{\theta}(x^{i}|c^{i}) = log P(x_{1}^{i}|c^{i}) + log P(x_{2}^{i}|c^{i}, x_{1}^{i}) + log P(x_{3}^{i}|c^{i}, x_{1:2}^{i})$$

$$P("I"|c^{i}) \longrightarrow$$

Reward for Every Generation Step

$$h^i = \text{``What is your name?''} \qquad x^i = \text{``I don't know''}$$

$$log P_{\theta} \left(x^i | h^i \right) = log P\left(x_1^i | c^i \right) + log P\left(x_2^i | c^i, x_1^i \right) + log P\left(x_3^i | c^i, x_{1:2}^i \right)$$

$$P\left(\text{``I''} | c^i \right) \qquad P\left(\text{``don't''} | c^i, \text{``I''} \right) \qquad P\left(\text{``know''} | c^i, \text{``I don't''} \right)$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \underbrace{D\left(c^i, x^i \right) \nabla log P_{\theta} \left(x^i | c^i \right)}_{i=1} \qquad \underbrace{\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \underbrace{\left(Q\left(c^i, x_{1:t}^i \right) - b \right) \nabla log P_{\theta} \left(x_t^i | c^i, x_{1:t-1}^i \right)}_{log P_{\theta} \left(x_t^i | c^i, x_{1:t-1}^i \right)}$$

Method 1. Monte Carlo (MC) Search [Yu, et al., AAAI, 2017] 運算量太大

Method 2. Discriminator For Partially Decoded Sequences

效果不如蒙地卡羅

[Li, et al., EMNLP, 2017]

Tips: RankGAN

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-Ting Sun, "Adversarial Ranking for Language Generation", NIPS 2017

Image caption generation:

Method	BLEU-2	BLEU-3	BLEU-4	Method	Human score
MLE	0.781	0.624	0.589	SeqGAN	3.44
SeqGAN	0.815	0.636	0.587	RankGAN	4.61
RankGAN	0.845	0.668	0.614	Human-writte	6.42

Experimental Results

實驗發現chatbot有1/10都在說模糊的句子譬如說i'm sorry... 對應到image就像是模糊的火車

Input	We've got to look for another route.
MLE	I'm sorry.
GAN	You're not going to be here for a while.
loout	Many and a supplier to the Heiman
Input	You can save him by talking.
<u> </u>	I don't know.

- MLE frequently generates "I'm sorry", "I don't know", etc. (corresponding to fuzzy images?)
- GAN generates longer and more complex responses (however, no strong evidence shows that they are better)

Find more comparison in the survey papers.

More Applications

- Supervised machine translation [Wu, et al., arXiv 2017][Yang, et al., arXiv 2017]
- Supervised abstractive summarization [Liu, et al., AAAI 2018]
- Image/video caption generation [Rakshith Shetty, et al., ICCV 2017][Liang, et al., arXiv 2017]

If you are using seq2seq models, consider to improve them by GAN.

Outline of Part III

Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

正面的句子當作一種style

Text Style Transfer

負面的句子當作一種style

Direct Transformation

as close as possible

Direct Transformation

as close as possible

Discrete?

Word embedding

[Lee, et al., ICASSP, 2018]

Direct Transformation

as close as possible

 Negative sentence to positive sentence: it's a crappy day → it's a great day i wish you could be here → you could be here it's not a good idea → it's good idea i miss you → i love you i don't love you → i love you i can't do that → i can do that i feel so sad \rightarrow i happy it's a bad day → it's a good day it's a dummy day → it's a great day sorry for doing such a horrible thing → thanks for doing a great thing my doggy is sick → my doggy is my doggy my little doggy is sick → my little doggy is my little doggy

Projection to Common Space

Projection to Common Space

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Abstractive Summarization

判斷input句子是不是重要的,並且把所有重要的句子拼成摘要

 Now machine can do abstractive summary by seq2seq (write summaries in its own words)

summary 1

summary 2

summary 3

Supervised: We need lots of labelled training data.

Training Data

Review: 把文章跟摘要是為兩種domain,並且利用cycleGAN即可

Unsupervised Conditional Generation

Unsupervised Abstractive Summarization

Unsupervised Abstractive Summarization

Unsupervised Abstractive Summarization Only ne

Only need a lot of documents to train the model

This is a **seq2seq2seq auto-encoder**.

Using a sequence of words as latent representation.

Unsupervised Abstractive Summarization REINFORCE alg

REINFORCE algorithm is used. Human written summaries Real or not Let Discriminator considers Discriminator my output as real word document sequence document Readable G **Summary?** Seq2seq Seq2seq

Unsupervised Abstractive Summarization

• **Document**:澳大利亞今天與13個國家簽署了反興奮劑雙邊協議,旨在加強體育競賽之外的藥品檢查並共享研究成果

Summary:

- Human: 澳大利亞與13國簽署反興奮劑協議
- Unsupervised: 澳大利亞加強體育競賽之外的藥品檢查
- **Document**:中華民國奧林匹克委員會今天接到一九九二年 冬季奧運會邀請函,由於主席張豐緒目前正在中南美洲進 行友好訪問,因此尚未決定是否派隊赴賽

Summary:

- Human:一九九二年冬季奧運會函邀我參加
- Unsupervised: 奧委會接獲冬季奧運會邀請函

Unsupervised Abstractive Summarization

• **Document**:據此間媒體27日報道,印度尼西亞蘇門答臘島的兩個省近日來連降暴雨,洪水泛濫導致塌方,到26日為止至少已有60人喪生,100多人失蹤

Summary:

- Human:印尼水災造成60人死亡
- Unsupervised:印尼門洪水泛濫導致塌雨
- **Document**:安徽省合肥市最近為領導幹部下基層做了新規定:一律輕車簡從,不準搞迎來送往、不準搞層層陪同

• Summary:

- Human:合肥規定領導幹部下基層活動從簡
- Unsupervised:合肥領導幹部下基層做搞迎來送往規定: 一律簡

Semi-supervised Learning

Using matched data

Outline of Part III

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Unsupervised Machine Translation

[Alexis Conneau, et al., ICLR, 2018] [Guillaume Lample, et al., ICLR, 2018]

Unsupervised learning with 10M sentences

Supervised learning with 100K sentence pairs

Unsupervised Speech Recognition

Acoustic Pattern Discovery

Can we achieve unsupervised speech recognition?

[Liu, et al., arXiv, 2018] [Chen, et al., arXiv, 2018]

Unsupervised Speech Recognition

• Phoneme recognition

Audio: TIMIT

Text: WMT

Concluding Remarks

Conditional Sequence Generation

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Conditional Sequence Generation

- Text Style Transfer
- Unsupervised Abstractive Summarization
- Unsupervised Translation

Concluding Remarks

from A to Z

(only list those mentioned in class)

M N O P Q R
MMGAN NSGAN ? Progressive ? Rank
GAN

S T U V W X
StackGAN Triple Unroll VAEGAN WGAN XGAN
StarGAN GAN
SeqGAN

Y

Z :

Conditional Sequence Generation

- Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, Deep Reinforcement Learning for Dialogue Generation, EMNLP, 2016
- Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, Adversarial Learning for Neural Dialogue Generation, EMNLP, 2017
- Matt J. Kusner, José Miguel Hernández-Lobato, GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution, arXiv 2016
- Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, Yoshua Bengio, Maximum-Likelihood Augmented Discrete Generative Adversarial Networks, arXiv 2017
- Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, AAAI 2017

Conditional Sequence Generation

- Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, Aaron Courville, Adversarial Generation of Natural Language, arXiv, 2017
- Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, Lior Wolf, Language Generation with Recurrent Generative Adversarial Networks without Pretraining, ICML workshop, 2017
- Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie Sun, Xiaolong Wang, Zhuoran Wang, Chao Qi, Neural Response Generation via GAN with an Approximate Embedding Layer, EMNLP, 2017
- Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, Yoshua Bengio, Professor Forcing: A New Algorithm for Training Recurrent Networks, NIPS, 2016
- Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, Lawrence Carin, Adversarial Feature Matching for Text Generation, ICML, 2017
- Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, Jun Wang, Long Text Generation via Adversarial Training with Leaked Information, AAAI, 2018
- Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-Ting Sun, Adversarial Ranking for Language Generation, NIPS, 2017
- William Fedus, Ian Goodfellow, Andrew M. Dai, MaskGAN: Better Text Generation via Filling in the , ICLR, 2018

Conditional Sequence Generation

- Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, Yong Yu, Neural Text Generation: Past, Present and Beyond, arXiv, 2018
- Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, Yong Yu, Texygen: A Benchmarking Platform for Text Generation Models, arXiv, 2018
- Zhen Yang, Wei Chen, Feng Wang, Bo Xu, Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets, NAACL, 2018
- Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, Tie-Yan Liu, Adversarial Neural Machine Translation, arXiv 2017
- Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, Hongyan Li, Generative Adversarial Network for Abstractive Text Summarization, AAAI 2018
- Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hendricks, Mario Fritz, Bernt Schiele, Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training, ICCV 2017
- Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, Eric P. Xing, Recurrent Topic-Transition GAN for Visual Paragraph Generation, arXiv 2017

Text Style Transfer

- Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, Rui Yan, Style Transfer in Text: Exploration and Evaluation, AAAI, 2018
- Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola, Style Transfer from Non-Parallel Text by Cross-Alignment, NIPS 2017
- Chih-Wei Lee, Yau-Shian Wang, Tsung-Yuan Hsu, Kuan-Yu Chen, Hung-Yi Lee, Lin-shan Lee, Scalable Sentiment for Sequence-to-sequence Chatbot Response with Performance Analysis, ICASSP, 2018
- Junbo (Jake) Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, Yann LeCun, Adversarially Regularized Autoencoders, arxiv, 2017

Unsupervised Machine Translation

- Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou, Word Translation Without Parallel Data, ICRL 2018
- Guillaume Lample, Ludovic Denoyer, Marc'Aurelio Ranzato, Unsupervised Machine Translation Using Monolingual Corpora Only, ICRL 2018

Unsupervised Speech Recognition

- Da-Rong Liu, Kuan-Yu Chen, Hung-Yi Lee, Lin-shan Lee, Completely Unsupervised Phoneme Recognition by Adversarially Learning Mapping Relationships from Audio Embeddings, arXiv, 2018
- Yi-Chen Chen, Chia-Hao Shen, Sung-Feng Huang, Hung-yi Lee, Towards Unsupervised Automatic Speech Recognition Trained by Unaligned Speech and Text only, arXiv, 2018