Toward Efficient Inference for High-dimensional Latent Variable Models

Murali Haran

Department of Statistics, Pennsylvania State University

MCMSKI Lenzerheide, Switzerland. January 2016

Joint work with Yawen Guan

Talk Summary

- Latent variable models are very widely used.
- Markov chain Monte Carlo (MCMC) is a convenient approach for fitting such models.
- ▶ In practice: MCMC is often impractical when the latent variables become high-dimensional.
- I will discuss an approach for addressing these computational challenges for a class of spatial/nonparametric regression models: generalized linear mixed models with Gaussian process priors.
- The approach is based on latent variable reparameterization and dimension reduction.

Much of this is work in progress.

Latent Variable Models Review

- In sciences, latent variables are often physically meaningful.
 - ► E.g. unobserved immigration/carriers of disease in a disease dynamics model
- ▶ In social sciences may be a theoretical construct.
 - E.g. latent behavioral states in a psychology experiment
- ► Can add flexibility, help a model fit data better.
 - E.g. random intercepts or random slopes model in regression. Capture heterogeneity.
 - E.g. model dependence in non-Gaussian data

Spatial Count Data

Figure: U.S. infant mortality data by county. n = 3071 Ratio of deaths to births, each averaged over 2002-2004. Darker indicates higher rate.

Greenland Ice Sheet Thickness

(Bamber et al., 2001). Over 60,000 locations

Spatial Generalized Linear Mixed Models

Example model for $Z(\mathbf{s})$ for $\mathbf{s} \in D \subset \mathbb{R}^d$,

- 1. $Z(\mathbf{s}_i) \mid \beta, W(\mathbf{s}_i) \sim \text{Poisson}(\mu(\mathbf{s}_i))$, conditionally independent for i = 1, ..., n.
- 2. $\log(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$
- 3. Impose dependence: $\mathbf{W} = (W(\mathbf{s}_1), \dots, W(\mathbf{s}_n))^T$ via (a) Gaussian Markov random field on a lattice,

$$p(\mathbf{W}|\theta) \propto \theta^{(n-1)/2} \exp\left(-rac{ heta}{2}\mathbf{W}'Q\mathbf{W}
ight), heta > 0,$$

(b) Gaussian process for continuous-domain spatial data,

$$p(\mathbf{W}|\theta) \sim N(0, \Sigma(\theta)).$$

4. Priors for θ , β

Inference based on posterior, $\pi(\theta, \beta, \mathbf{W} \mid \mathbf{Z})$ Key references: Besag et al. (1991), Diggle et al. (1998). Also useful for non-Gaussian nonparametric regression.

Computational Challenges with SGLMM inference

- High-dimensionality of latent variables (W): n.
 Posterior distribution is of dimension p + k + n for p covariates, k covariance parameters, n data points.
- Strong cross-correlations make it hard to design efficient updating schemes. Too many low-dimensional updates may be slow, and result in poor mixing. High-dimensional updates may be computationally inefficient.
- Result (often): computationally expensive and slow mixing Markov chains.

Outline of Strategy

Observations:

- Reparameterization of latent variables can help "de-correlate" them, improve mixing of MCMC algorithm.
 - ▶ Not a new idea. E.g. Christensen and Roberts (2006).
- "Spatial confounding": dependence between latent variables and fixed effects (covariates) causes poor mixing.
- 3. Latent variables are merely a device for inducing dependence. May not need *n* variables for this.
 - ► #2 and #3 identified in Hughes and Haran (2013) in the context of Gaussian Markov random field models.

Goal: find reparameterization to achieve above for Gaussian process (continuous-domain) model.

Distribution of Correlations

Posterior distribution of correlations (example from Hughes and Haran, 2013).

Reparameterize Random Effects

SGLMMs:

$$g\left\{ E(Z_i|oldsymbol{eta}, W_i)
ight\} = oldsymbol{X}_ioldsymbol{eta} + W_i \ oldsymbol{W}|oldsymbol{ heta} \sim oldsymbol{N}_n(0, \Sigma(oldsymbol{ heta}))$$

Inference based on $\pi(\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{W}|\boldsymbol{Z})$

- 1. Let $P^{\perp} = I P$ denote projection on orthogonal space of X, where $P = X(X'X)^{-1}X'$,
- **2**. Approximate first *m* eigenvectors \mathbf{H}_{θ} of $P^{\perp}\Sigma(\theta)P^{\perp}$.
- 3. Replace W with $H_{\theta}\delta$, where $\delta \stackrel{approx}{\sim} N_m(\mathbf{0}, D_{\theta})$. D_{θ} is m-dim diagonal matrix. $D_{ii}=i^{th}$ eigenvalue. Reduced Model:

$$g\left\{ E(Z_i|oldsymbol{eta}, W_i, oldsymbol{ heta})
ight\} = oldsymbol{X}oldsymbol{eta} + oldsymbol{H}_ioldsymbol{\delta} \ \delta | oldsymbol{ heta} \sim oldsymbol{N}_m(oldsymbol{0}, D_{oldsymbol{ heta}})$$

4. Inference based on $\pi(\theta, \beta, \delta | \mathbf{Z})$

Spatial Confounding and Fast Mixing

- ▶ Step 1 is not necessary before dimension reduction: can apply algorithm to $\Sigma(\theta)$ instead of $P^{\perp}\Sigma(\theta)P^{\perp}$.
- ► However, 1 results in better mixing MCMC algorithm.
- (If spatial confounding issue is of interest, Step 1 addresses this as well.)

Approximate **H** using Random Projection

- Step #2 (computing eigenvectors) of high-dimensional Σ(Θ) is expensive.
- ► Random projections (Banerjee, Dunson, Tokdar, 2012) provides fast approximation of the leading *m* eigenvectors.
- 1. Low dimensional projection from $R^{n\times n}$ to $R^{n\times m}$:
 - 1.1 Simulate $\Omega_{ij} \sim N(0, \frac{1}{\sqrt{m}}), \Omega \in R^{n \times m}$
 - 1.2 Form $\Sigma\Omega$
- **2**. Use SVD to find basis Φ^T (left vectors of $\Sigma\Omega$)
- 3. Nyström method to approximate eigen-decomposition: Approximate $\Sigma \approx HD^2H^T$

Computational Benefits

Win on both counts:

- ► Reduced dimensions: δ is m vs n, e.g. m=50, n=5000. Computational complexity: $O(m^2n)$ vs $O(n^3)$.
- δ are approximately de-correlated. Improves MCMC mixing, simplifies algorithm construction.
 Block updates: (i) δ | β, θ, (ii) β | δ, θ, (iii) θ | δ, β.

Prediction Performance

- ► Simulate n = 5000 spatial count data
- ▶ Prediction on 20 x 20 grid with *m*=50.

Simulation Study

(Preliminary)

- Simulate spatial count data with: $\beta = (1, 1)^T$, and Matérn family $(\nu, \phi, \sigma^2) = (0.5, 0.2, 1)$
- Boxplots illustrating inference for β

Summary

- ► Two pronged approach: (i) reducing dimensions of posterior distribution; (ii) de-correlation of latent variables.
- Speeds up computational cost per iteration, simplifies construction of algorithm, and improves Markov chain mixing.
- Caveats:
 - 1. Matrix multiplication is still expensive.
 - 2. Approach seems impractical as *n* gets large, e.g. greater than around 20,000.
 - 3. May oversmooth when true surface is rough.

Acknowledgments and References

Support:

- ▶ NSF GEO-1240507 The Network for Sustainable Climate Risk Management (SCRiM)
- NSF-CDSE/DMS-1418090 Statistical Methods for Ice Sheet Projections

Key References:

- Hughes, J. and Haran, M. (2013), Dimension Reduction and Alleviation of Confounding for Spatial Generalized Linear Mixed Models, Journal of the Royal Statistical Society, Series B.
- Banerjee, A., Dunson, D.B., Tokdar, S.T. (2012), Efficient Gaussian process regression for large datasets, Biometrika. Projections

Reducing Dimensions/Reparameterization

- Basic idea: reparameterize the model and reduce the dimension of the random effects (W), while preserving the desirable properties of the original model.
- Particularly worth considering when random effects are not intrinsically important, i.e., they are "nuisance parameters".
- Typical in spatial generalized linear mixed models: random effects are used to pick up residual spatial dependence, adjust for unmeasured spatially-varying covariates.

Reparameterization for Lattice-domain Data

Recall model:

- ▶ $p(\mathbf{W}|\tau) \propto \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2}\mathbf{W}'Q\mathbf{W}\right)$

Let:

- $ightharpoonup \mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$, orthogonal projection onto $C(\mathbf{X})$
- $P^{\perp} = I P$
- ▶ Let $\mathbf{M} = \mathbf{P}^{\perp} \mathbf{A} \mathbf{P}^{\perp}$, where **A** is the adjacency matrix

Reparameterize as follows:

- ▶ $g(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + \mathbf{M}_i\delta$, where \mathbf{M}_i is the *i*th row of \mathbf{M}
- $p(\delta \mid \tau) \propto \tau^{q/2} \exp\left(-\frac{\tau}{2} \delta' \mathbf{Q}^{**} \delta\right)$, where $\mathbf{Q}^{**} = \mathbf{M}' \mathbf{Q} \mathbf{M}$.
- ▶ If we only keep the first q columns of the matrix \mathbf{M} , that is, reduce dimensions of \mathbf{M}_i to q for each i, the # random effects is reduced from n to q ($q \ll n$)

Hughes and Haran (2013)

Comments

- ▶ Intuition: projected spatial random effects orthogonal to the predictors and in the direction specified by the graph.
- ▶ Inference is now based on $\pi(\Theta, \beta, \delta \mid \mathbf{Z})$ q + p + 1-dimensional
- Dimension reduction works because of an ordering: highest to lowest (including negative) spatial dependence (Boots and Tiefelsdorf, 2000)

Interpreting the Resulting Reparameterization

► "Tailored" to **X** and *G*: eigenvectors comprise all possible patterns of clustering residual to **X** and accounting for *G*

Some selected basis vectors for the 30 \times 30 lattice.

Reducing Dimensions for Continuous-Domain Processes

- Unlike in the lattice case, there is no graph/adjacency matrix to work with.
- Alternative: use an idea from Banerjee, Dunson and Tokdar (2012): "random projections" of data into a lower-dimensional subspace
- Apply a fast algorithm to obtain reduced-dimensional random effects, replacing **W** (*n*-dimensional) with *V* (*m*-dimensional) with *m* ≪ *n*.
- Same idea: we project latent variables to obtain a reduced-dimensional posterior distribution. Easier to construct efficient MCMC algorithms.

Preliminary Results

- Prediction: reduced-dimensional approach gives similar results as regular methods
- ▶ Inference: better or worse, depending on the assumed true model. If interpreting parameters is not important, this is a non-issue. But if it is, need to think harder about spatial confounding-related issues. (Hanks et al., 2015)

(JSM 2015 poster by Yawen Guan)

Pros

- Random effects are much smaller in number.
- They are approximately "de-correlated". That is (by construction) they no longer exhibit as much dependence. Easy to construct fast mixing MCMC

Cons

- Highly specialized approach
- There may be scaling issues: as dimensions and complexity of the model increases, may still need a significant fraction of the latent variables.

Can improve inference while in other cases can induce problems

Computational Strategies

- 1. Composite likelihood-based approaches
- 2. Approximate integration approaches
- Simulation-based approaches: study how the forward (probability) model generates data for different parameter settings. Then compare the simulations to the real observations.
 - Approximate Bayesian Computing (ABC)
 - Gaussian process approximations ("emulation-calibration").
 (Jandarov, Haran, Bjornstad, Grenfell, 2014)
- 4. Reduced-dimensional approximations/reparameterizations
- 5. Some combination of the above

Composite Likelihood

Has potential to address inferential and scaling issues

Inference with latent variables u_1, \ldots, u_k , joint posterior distribution, $\pi(\theta, u_1, \ldots, u_k \mid \mathbf{Y})$

$$\propto f(\mathbf{Y} \mid u_1, \dots, u_k) f(u_1, \dots, u_k \mid \theta) p(\theta).$$

- ▶ Basic idea: replace above with $\prod_{b=1}^{B} f(\mathbf{Y}_{b}^{C} \mid u_{b}^{C}) f(u_{b}^{C} \mid \theta) p(\theta), \text{ where } \mathbf{Y}_{b}^{C} \text{ and } u_{b}^{C}, \text{ for } b=1,\ldots,B, \text{ are each subsets (blocks) of the vectors } \mathbf{Y} \text{ and } u_{1},\ldots,u_{k} \text{ respectively}$
- Evaluating this approximation can be much more computationally efficient than evaluating the joint distribution
- Separating the latent variables into blocks suggest convenient block-MCMC schemes. Many choices for composite likelihood (e.g. Caragea and Smith, 2003)

(JSM 2015 poster by Saksham Chandra)

Interpreting the Resulting Reparameterization

 Positive (negative) eigenvalues correspond to varying degrees of positive (negative) spatial dependence (Boots and Tiefelsdorf, 2000)

The standardized eigenvalues for the 30 \times 30 lattice.

