Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry

Ziheng Chen¹, Yue Song², Xiao-Jun Wu³, Gaowen Liu⁴ & Nicu Sebe¹

¹ University of Trento, ² Caltech, ³ Jiangnan University, ⁴ Cisco Systems

ICLR 2025

Motivations

Global Covariance Pooling (Wang et al., 2020)

GCP as Riemannian Multinomial Logistic Regression

Preliminaries 0

Table 1: Riemannian operators and deformed metrics of seven basic metrics on SPD manifolds.

Riemannian Metric $g_P(V, W)$	Riemannian Logarithm $\operatorname{Log}_{\mathcal{P}} Q$	Deformation $(heta eq 0)$
$\langle mlog_{*,P}(V), mlog_{*,P}(W) \rangle^{(\alpha,\beta)}$	$(mlog_{*,P})^{-1} \left[mlog(\mathit{Q}) - mlog(\mathit{P}) \right]$	$rac{1}{ heta^2}\operatorname{Pow}^*_{ heta} g^{(lpha,eta) ext{-LE}}$
$\langle P^{-1}V,WP^{-1} angle^{(lpha,eta)}$	$P^{1/2} \operatorname{mlog} \left(P^{-1/2} Q P^{-1/2} ight) P^{1/2}$	$\frac{1}{\theta^2} \operatorname{Pow}_{\theta}^* g^{(\alpha,\beta) ext{-}A}$
$\langle V, W \rangle^{(\alpha, \beta)}$	Q-P	$\frac{1}{\theta^2}\operatorname{Pow}^*_{\theta} g^{(\alpha,\beta) ext{-}E}$
$\frac{1}{\theta_1\theta_2}\langle Pow_{\theta_1*,P}(V), Pow_{\theta_2*,P}(W) \rangle$	$(Pow_{ heta*,P})^{-1}(\mathit{Q}^{ heta}-\mathit{P}^{ heta})$, with $ heta=(heta_1+ heta_2)/2$	N/A
$\sum_{i>j} \tilde{V}_{ij} \tilde{W}_{ij} + \sum_{j=1}^{n} \tilde{V}_{jj} \tilde{W}_{jj} L_{jj}^{-2}$	$(Chol^{-1})_{*,L}\left[\lfloor K floor - \lfloor L floor + \mathbb{D}(L)Dlog(\mathbb{D}(L)^{-1}\mathbb{D}(K)) ight]$	$\frac{1}{\theta^2} \operatorname{Pow}_{\theta}^* g^{LC}$
$\frac{1}{2}\langle\mathcal{L}_{P}[V],W\rangle$	$(PQ)^{1/2} + (QP)^{1/2} - 2P$	$\frac{1}{4\theta^2} \operatorname{Pow}_{2\theta}^* g^{BW}$
$\frac{1}{2}\langle \mathcal{L}_{P,M}[V],W\rangle$	$M(M^{-1}PM^{-1}Q)^{1/2} + (QM^{-1}PM^{-1})^{1/2}M - 2P$	$\frac{1}{4\theta^2} \operatorname{Pow}_{2\theta}^* g^{M-BN}$
	$ \langle mlog_{*,P}(V), mlog_{*,P}(W) \rangle^{(\alpha,\beta)} $ $ \langle P^{-1}V, WP^{-1} \rangle^{(\alpha,\beta)} $ $ \langle V, W \rangle^{(\alpha,\beta)} $ $ \frac{1}{\sigma_1\sigma_2} \langle Pow_{\theta_1*,P}(V), Pow_{\theta_2*,P}(W) \rangle $ $ \sum_{l>j} \tilde{V}_{ij} \tilde{W}_{ij} + \sum_{j=1}^n \tilde{V}_{ij} \tilde{W}_{ij} L_{ij}^{-2} $ $ \frac{1}{2} \langle \mathcal{L}_P[V], W \rangle $	$ \langle mlog_{*,P}(V), mlog_{*,P}(W) \rangle^{(\alpha,\beta)} \qquad (mlog_{*,P})^{-1} [mlog(Q) - mlog(P)] $ $ \langle P^{-1}V, WP^{-1} \rangle^{(\alpha,\beta)} \qquad P^{1/2} mlog \left(P^{-1/2} Q P^{-1/2} \right) P^{1/2} $ $ \langle V, W \rangle^{(\alpha,\beta)} \qquad Q - P $ $ \frac{1}{\partial_1 \partial_2} \langle Pow_{\theta_1*,P}(V), Pow_{\theta_2*,P}(W) \rangle \qquad (Pow_{\theta_*,P})^{-1} (Q^\theta - P^\theta), \text{ with } \theta = (\theta_1 + \theta_2)/2 $ $ \sum_{l>j} \tilde{V}_{ij} \tilde{W}_{ij} + \sum_{j=1}^n \tilde{V}_{ij} \tilde{W}_{jl} L_{jj}^{-2} \qquad (Chol^{-1})_{*,L} \left[\lfloor K \rfloor - \lfloor L \rfloor + \mathbb{D}(L) Dlog(\mathbb{D}(L)^{-1} \mathbb{D}(K)) \right] $ $ \frac{1}{2} \langle \mathcal{L}_P[M, W \rangle \qquad (PQ^{1/2} + (QP)^{1/2} - 2P) $

GCP Revisiting

• Global Covariance Pooling (GCP):

$$X \xrightarrow{\mathsf{Cov}} \Sigma \xrightarrow{f_{\mathrm{M}}} \tilde{\Sigma} \xrightarrow{f_{\mathrm{vec}}} x \xrightarrow{f_{\mathrm{FC}}} \tilde{x} \xrightarrow{f_{\mathrm{EC}}} \hat{y},$$
 (1)

Matrix logarithm and power:

Log-EMLR: softmax
$$(\mathcal{F}(f_{\text{vec}}(\mathsf{mlog}(S)); A, b)),$$
 (2)

Pow-EMLR: softmax
$$\left(\mathcal{F}\left(f_{\text{vec}}\left(S^{\theta}\right);A,b\right)\right)$$
, (3)

Riemannian Logarithm

• Matrix logarithm as $Log_I \Rightarrow Considering$ all the logarithms.

Table 2: Log, under seven families of SPD metrics.

Metric	Log ₁ P	Metric	Log _I P
(lpha,eta)-LEM $(heta,lpha,eta)$ -AIM	mlog(P)	$(heta, lpha, eta)$ -EM $(heta_1, heta_2)$ -EM	$rac{1}{ heta_0}(extit{P}^{ heta_0}- extit{I})$
heta-LCM	$rac{1}{ heta} \left[\lfloor ilde{\mathcal{L}} floor + \lfloor ilde{\mathcal{L}} floor^ op + 2 \operatorname{Dlog}(\mathbb{D}(ilde{\mathcal{L}})) ight]$	2θ -BWM $(2\theta, P^{2\theta})$ -BWM	θ_0 ($t = t$)

Table 3: Pow-TMLR vs. Pow-EMLR under the architecture of ResNet-18.

	Image	Net-1k	Cars	
Method	Top-1 Acc (%)	Top-5 Acc (%)	Top-1 Acc (%)	Top-5 Acc (%)
Pow-TMLR	71.62	89.73	51.14	74.29
Pow-EMLR	73	90.91	80.43	94.15

Riemannian MI R

Fuclidean MI R¹

Softmax(
$$Ax$$
) $\Rightarrow p(y = k \mid x) \propto \exp(\langle a_k, x \rangle - b_k), \forall k \in \{1, \dots, C\}$
 $\Rightarrow p(y = k \mid x) \propto \exp(\operatorname{sign}(\langle a_k, x - p_k \rangle) ||a_k|| d(x, H_{a_k, p_k})),$
(4)

with
$$H_{a_k,p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\}.$$

SPD MLR (Chen et al., 2024b):

LEM-based:
$$\exp\left[\langle \log(S) - \log(P_k), A_k \rangle\right],$$
 (5)

PEM-based:
$$\exp\left[\frac{1}{\theta}\langle S^{\theta} - P_{k}^{\theta}, A_{k}\rangle\right],$$
 (6)

Difference: the SPD parameters

Theories: Matrix Function as GCP

Pow-EMLR:
$$softmax \left(\mathcal{F} \left(f_{vec} \left(\mathcal{S}^{\theta} \right) ; A, b \right) \right)$$
 (7)

Theorem

Under PEM with $\theta > 0$, optimizing each SPD parameter P_k in Eq. (6) by PEM-based RSGD and Euclidean parameter A_k by Euclidean SGD, the PEM-based SPD MLR is equivalent to a Euclidean MLR in the co-domain of $\phi_{\theta}(\cdot)$: $\mathcal{S}_{++}^n \to \mathcal{S}_{++}^n$, defined as

$$\phi_{\theta}(S) = \frac{1}{\theta} S^{\theta}, \theta > 0, \forall S \in \mathcal{S}_{++}^{n}.$$
(8)

 Similar results w.r.t LEM and matrix logarithm can be found in (Chen et al., 2024a, Prop. 5.1.).

Summary

Table 4: Intrinsic explanations of some classifiers for GCP. For Cho-TMLR, $\tilde{L} = \operatorname{Chol}(S^{\theta})$. For Pow-TMLR, $\theta_0 = \frac{\theta_1 + \theta_2}{2}$ for (θ_1, θ_2) -EM, $\theta_0 = \theta$ for (θ, α, β) -EM, $\theta_0 = 2\theta$ for 2θ -BWM and $(2\theta, \phi_{2\theta}(S))$ -BWM. Here, $f_s(\cdot)$ denotes the softmax, $\mathcal{F}(\cdot)$ denotes the FC layer, and $V = \frac{1}{\theta} \left[\tilde{L} \right] + \tilde{L} \int_{-1}^{\infty} + 2 \operatorname{Dlog}(\mathbb{D}(\tilde{L})) \right]$ with $S^{\theta} = \tilde{L} \tilde{L}^{\top}$ as the Cholesky decomposition.

	Log-EMLR	Pow-EMLR	ScalePow-EMLR	Pow-TMLR	Cho-TMLR
Expression	$f_{ m s}\left(\mathcal{F}\left(f_{ m vec}\left({\sf mlog}(\mathit{S}) ight) ight) ight)$	$f_{\mathrm{s}}\left(\mathcal{F}\left(f_{\mathrm{vec}}\left(\mathcal{S}^{ heta} ight) ight) ight) \ \left(heta>0 ight)$	$\left egin{array}{l} f_{ m s} \left(\mathcal{F} \left(f_{ m vec} \left(rac{1}{ heta} \mathcal{S}^{ heta} ight) ight) ight) \ \left(heta > 0 ight) \end{array} ight.$	$f_{\mathrm{s}}\left(\mathcal{F}\left(f_{\mathrm{vec}}\left(rac{1}{ heta_{0}}(S^{ heta_{0}}-I) ight) ight) ight)$	$f_{\mathrm{s}}\left(\mathcal{F}\left(f_{\mathrm{vec}}\left(\tilde{\mathit{V}}\right)\right)\right)$
Explanation	SPD MLR	SPD MLR	SPD MLR	Tangent Classifier	Tangent Classifier
Metrics	LEM	(heta,1,0)-EM	(heta,1,0)-EM	(θ, α, β) -EM, (θ_1, θ_2) -EM, 2θ -BWM, $(2\theta, \phi_{2\theta}(S))$ -BWM	heta-LCM
Used in GCP	√ (Eq. (2))	($\theta = 0.5 \text{ in Eq. (3)}$	×	х	Х
Reference	(Chen et al., 2024a, Prop. 5.1)	Thm. 1	Thm. 1	Tab. 2	Tab. 2

Experiments

Table 5: Results of iSQRT-COV on four datasets with different covariance matrix classifiers. The backbone network on ImageNet is ResNet-18, while the one on the other three FGVC datasets is ResNet-50. Power is set to be $^{1}/_{2}$ for Pow-TMLR, ScalePow-EMLR and Pow-EMLR.

Classifier	Image	Net-1k	Airc	rafts	Bi	rds	Ca	ars
Classifier	Top-1 Acc (%)	Top-5 Acc (%)						
Cho-TMLR	N/A	N/A	78.97	91.81	48.07	72.59	51.06	74.33
Pow-TMLR	71.62	89.73	69.58	88.68	52.97	77.80	51.14	74.29
ScalePow-EMLR	72.43	90.44	71.05	89.86	63.48	84.69	80.31	94.07
Pow-EMLR	73	90.91	72.07	89.83	63.29	84.66	80.43	94.15

Figure 1: The validation top-5 accuracy on the three FGVC datasets for iSQRT-COV with different classifiers using the ResNet-50 backbone.

Ablations

Table 6: Ablations of Pow-EMLR, ScalePow-EMLR, and Pow-TMLR under different settings.

(a) Ablations of different powers.

	Aircrafts		Cars	
Classifier	Top-1 Acc (%)	Top-5 Acc (%)	Top-1 Acc (%)	Top-5 Acc (%)
Pow-TMLR-0.25	65.41	86.71	41.47	66.66
ScalePow-EMLR-0.25	72.76	90.31	61.78	84.04
Pow-EMLR-0.25	71.47	90.04	62.88	84.14
Pow-TMLR-0.5	67.9	88.75	55.01	77.95
ScalePow-EMLR-0.5	74.29	91.12	62.42	84.82
Pow-EMLR-0.5	74.17	91.21	62.83	84.85
Pow-TMLR-0.7	65.92	87.49	50.68	74.12
ScalePow-EMLR-0.7	74.26	91.15	64.22	83.67
Pow-EMLR-0.7	74.17	90.49	61.41	82.39

(b) Results under the AlexNet.

Dataset	Result	Pow-TMLR	Pow-EMLR
Aircrafts	Top-1 Acc (%)	38.01	65.02
	Top-5 Acc (%)	74.4	87.79
Cars	Top-1 Acc (%)	28.57	59.13
	Top-5 Acc (%)	59.51	82.04

Table 7: Comparison of Pow-EMLR. ScalePow-EMLR and Pow-TMLR under transformer (SoT-7) backbone (Xie et al., 2021) on the ImageNet-1k dataset.

Classifier	Top-1 Acc (%)	Top-5 Acc (%)
Pow-TMLR ScalePow-EMLR	75.79 76.14	92.91 93.18
Pow-EMLR	76.11	93.05

Bhatia, R., Jain, T., and Lim, Y. (2019). On the Bures-Wasserstein distance between positive definite matrices. Expositiones Mathematicae, 37(2):165-191.

Chen, Z., Song, Y., Liu, G., Kompella, R. R., Wu, X., and Sebe, N. (2024a). Riemannian multiclass logistics regression for SPD neural networks. In CVPR.

Chen, Z., Song, Y., Xiaojun, and Sebe, N. (2024b). RMLR: Extending multinomial logistic regression into general geometries. In NeurIPS.

Han, A., Mishra, B., Jawanpuria, P., and Gao, J. (2023). Learning with symmetric positive definite matrices via generalized Bures-Wasserstein geometry. In International Conference on Geometric Science of Information, pages 405-415, Springer,

Lin, Z. (2019). Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition. SIMAX.

Thanwerdas, Y. and Pennec, X. (2022). The geometry of mixed-Euclidean metrics on symmetric positive definite matrices. Differential Geometry and its Applications. 81:101867.

Thanwerdas, Y. and Pennec, X. (2023). O (n)-invariant Riemannian metrics on SPD matrices. Linear Algebra and its Applications, 661:163-201.

Wang, Q., Xie, J., Zuo, W., Zhang, L., and Li, P. (2020). Deep CNNs meet global covariance pooling: better representation and generalization. IEEE TPAMI.

Xie, J., Zeng, R., Wang, Q., Zhou, Z., and Li, P. (2021). Sot: Delving deeper into classification head for transformer. arXiv preprint arXiv:2104.10935.

