GSI018 – SISTEMAS OPERACIONAIS

Operating Systems – William Stallings – 7th Edition Chapter 11 – Input/Output Management and Disk Scheduling

Pedro Henrique Silva Santana – 12011BSI218 – pedro.santana@ufu.br Victor Hugo Martins Alves – 12011BSI217 – victor.alves1@ufu.br

REVIEW QUESTIONS

11.1 List and briefly define three techniques for performing I/O.

Programada: O processo requisita ao módulo de I/O uma operação e permanece em "busy-waits" até que a operação de I/O requisitada seja completa; quando então continua seu processamento.

Controlada por Interrupção: após requisitar uma operação de I/O, o processo pode continuar em execução, porem o mesmo será interrompido mais adiante quando o módulo de I/O completar a operação requisitada;

Acesso Direto a Memória: Compõe-se de um módulo capaz de trocar dados entre a memória principal e o módulo de I/O.

- 11.2 What is the difference between logical I/O and device I/O?
 - O **Logical I/O** trata um dispositivo como um recurso LÓGICO, assim o responsabilizando pelo gerenciamento das funções de I/O em beneficio dos processos do usuário, possibilitando que os dispositivos de I/O sejam operados por simples comandos como: open, close, read e write. Já o **Device I/O** é responsável por converter operações e dados (caracteres bufferizados, registros, etc.) requisitados em sequências apropriadas de instruções de I/O, "channel commands" e sinais para controlador do dispositivo.
- 11.4 Why would you expect improved performance using a double buffer rather than a single buffer for I/O?

Porque o double buffering permite que duas operações procedam em paralelo; especificamente um processo pode transferir dados de ou para um buffer enquanto o SO esvazia ou enche o outro.

11.5 What delay elements are involved in a disk read or write?

Seek Time, Rotational Delay e Transfer Time.

- 11.7 Briefly define the six (0 to 5) RAID levels.
 - **RAID 0**: os dados dos sistemas e usuário são distribuídos nos discos, entretanto não utiliza redundância de informação para melhorar a performance.
 - **RAID 1**: contempla redundância na sua forma mais simples, replica integralmente os dados exigindo, assim, no mínimo o dobro da capacidade desejada para armazenamento tendo como desvantagem seu alto custo.
 - **RAID 2**: utiliza técnica de acesso paralela, assim todos os discos participam da execução (normalmente síncrona) de uma requisição de I/O.
 - **RAID 3**: emprega acesso paralelo aos dados e está organizado de forma similar ao RAID 2, exceto que requer apenas um disco para armazenar informações redundantes não importando o quão grande seja o array de discos.
 - **RAID 4**: opera com acessos independentes um do outro, assim, cada disco opera independentemente possibilitando que a separação de requisições se dê em paralelo.
 - **RAID 5**: organizado de forma similar ao RAID 4, exceto que distribui os bits de paridade entre todos os discos uma alocação típica de "round-robin".

PROBLEMS

11.3 Perform the same type of analysis as that of Table 11.2 – "Comparing Disk Scheduling Algorithms" for the following sequence of disk track requests: 27, 129, 110, 186, 147, 41, 10, 64, 120. Assume that the disk head is initially positioned over track 100 and is moving in the direction of decreasing track number.

(a) FIFO (starting at track 100)	(b) SSTF (starting at track 100)	(c) SCAN (starting at track 100, in the direction of increasing track number)	(d) C-SCAN (starting at track 100, in the direction of increasing track number)	
Number Next track of tracks accessed traversed Average seek length	Number Next track of tracks accessed traversed Average seek length	Number Next track of tracks accessed traversed Average seek length	Next Number track of tracks accessed traversed Average seek length	

FIFO		SSTF		SCAN		C-SCAN	
Next	Number	Next	Number	Next	Number	Next	Number
Track	of tracks	Track	of tracks	Track	of tracks	Track	of tracks
accessed	${\bf traversed}$	accessed	${\bf traversed}$	accessed	${\bf traversed}$	accessed	traversed
27	73	110	10	64	36	64	36
129	102	120	10	41	23	41	23
110	19	129	9	27	14	27	14
186	76	147	18	10	17	10	17
147	39	186	39	110	100	186	176
41	106	64	122	120	10	147	39
10	31	41	23	129	9	129	18
64	54	27	14	147	18	120	9
120	56	10	17	186	39	110	10
Average		Average		Average		Average	
seek	61,8	seek	29,1	seek	29,6	seek	38,0
length		length		length		length	