Change in grading scheme

- 1) Assignments (derivations): 10 marks
- 2) Two lab exams: 30 marks (9th March, 6th April)
- 3) Project (implementation of a journal paper):30 marks

Paper selection: 15th March

Project presentation: 21st April

4) Final written exam: 30 marks (28th April)

E9 285 Biomedical imaging-Inverse problems

Chapter 2.b (2)
Representative reconstruction methods for fluorescence microscopy

Discrete Wavelets (Multiscale Derivative Transforms)

A simple transform:

Input:

$${x(0),x(1),x(2),x(3),x(4),x(5),x(6),x(7)}$$

Output 1:

$$\begin{cases}
\underline{x(0) + x(1), x(2) + x(3), x(4) + x(5), x(6) + x(7),} \\
\underline{x(1) - x(0), x(3) - x(2), x(5) - x(4), x(7) - x(6)}
\end{cases}$$

Output 2:

$$\left\{\underbrace{x_A^{(1)}(0) + x_A^{(1)}(1), x_A^{(1)}(2) + x_A^{(1)}(3)}_{x_A^{(2)}}, \underbrace{x_A^{(1)}(1) - x_A^{(1)}(0), x_A^{(1)}(3) - x_A^{(1)}(3) - x_A^{(1)}(2)}_{x_D^{(2)}}, \left\{x_D^{(1)}\right\}\right\}$$

Output 3:

$$\left\{\underbrace{x_A^{(2)}(0), +x_A^{(2)}(1)}_{x_A^{(3)}}, \underbrace{x_A^{(2)}(1) - x_A^{(2)}(0)}_{x_D^{(3)}}, \left\{x_D^{(2)}\right\}, \left\{x_D^{(1)}\right\}\right\}$$

Upsampler and downsampler

$$x(n) \longrightarrow y(n)$$
 $y(n) = x(nM)$

$$x(n) \longrightarrow \uparrow M \longrightarrow y(n)$$

$$y(n) = \begin{cases} x(n/M), & \text{for } n/M \text{ being} \\ \text{an integer} \\ 0, & \text{Otherwise} \end{cases}$$
$$\Rightarrow y(z) = x(z^{M})$$

Noble (??) identities

Analysis filter bank

Synthesis filter bank

How does the analysis matrix look like?

The reconstruction (synthesis)

How does the analysis matrix look like?

Using other type of filters

What is the condition such that matrix equivalent of the iterated filter bank is orthogonal?

$$\langle h_i(n-2l), h_j(n-2m) \rangle = \delta(i-j)\delta(l-m)$$

Using other type of filters

What is the condition such that matrix equivalent of the iterated filter bank is orthogonal?

$$\langle h_i(n-2l), h_j(n-2m) \rangle = \delta(i-j)\delta(l-m)$$
 \downarrow
 $\langle h_0(n-2l), h_0(n-2l) \rangle = \delta(l-m) \Rightarrow H_0(z)H_0(z^{-1}) + H_0(-z)H_0(-z^{-1}) = 1$
 $h_1(n) = (-1)^n h_0(n)$

Using more other type of filters

$$\tilde{h}_0(n) = h_0(-n)$$

$$\tilde{h}_1(n) = h_1(-n)$$

$$\tilde{h}_1(n) = h_1(-n)$$

Order of approximation

If $H_1(z)$ can be factorized as

 $H_1(z) = (1 - z^{-1})^N R(z)$, then the wavelet has an order of approximation N. Then wavelet decomposition will kill polynomials of degree N-1.

<u>Daubechies family of orthogonal finite length filter</u> <u>banks</u>

D2 (Haar)	D4	D6	D8	D10
1	0.6830127	0.47046721	0.32580343	0.22641898
1	1.1830127	1.14111692	1.01094572	0.85394354
	0.3169873	0.650365	0.8922014	1.02432694
	-0.1830127	-0.19093442	-0.03957503	0.19576696
		-0.12083221	-0.26450717	-0.34265671
		0.0498175	0.0436163	-0.04560113
			0.0465036	0.10970265
			-0.01498699	-0.00882680
				-0.01779187
				4.71742793e- 3

$$x_A^{(J)}(n) = \sum_{m} h_A^{(J)}(m - 2^J n)x(m) \qquad x_D^{(j)}(n) = \sum_{m} h_D^{(j)}(m - 2^J n)x(m)$$
$$j = 1, ..., J$$

The discrete wavelets

$$h_D^{(1)}(z) = h_1(z)$$

$$h_D^{(2)}(z) = h_0(z)h_1(z^2)$$

$$h_D^{(3)}(z) = h_0(z)h_0(z^2)h_1(z^4)$$

$$h_D^{(j)}(z) = h_0(z)h_0(z^2)\cdots h_0(z^{2^{j-1}})h_1(z^{2^j})$$

$$h_D^{(J)}(z) = h_0(z)h_0(z^2)\cdots h_0(z^{2^{J-1}})h_1(z^{2^J})$$

$$h_A^{(J)}(z) = h_0(z)h_0(z^2)\cdots h_0(z^{2^J})$$

Orthogonality

$$\langle h_0(n-2l), h_0(n-2m) \rangle = \delta(l-m) \quad h_1(n) = (-1)^n h_0(n)$$

$$\downarrow \qquad \qquad \langle h_A^{(J)}(n-2^J l), h_A^{(J)}(n-2^J m) \rangle = \delta(l-m)$$

$$\langle h_D^{(j)}(n-2^j l), h_D^{(k)}(n-2^k m) \rangle = \delta(j-k)\delta(l-m)$$

$$\langle h_D^{(j)}(n-2^j l), h_A^{(J)}(n-2^J m) \rangle = 0$$

$$\downarrow \downarrow \qquad \qquad \downarrow$$

The matrix defined in the equation

$$\mathbf{X}_A^{(J)}$$
 $\mathbf{X}_{AD}^{(J-1)}$
 $\mathbf{X}_D^{(J-1)}$
 \vdots
 $\mathbf{X}_D^{(2)}$
 $\mathbf{X}_D^{(1)}$

= **Mx** is orthogonal.

The reconstruction (synthesis)

$$x_{A}^{(J)}(n)$$
 $\uparrow 2^{J}$ $\tilde{h}_{A}^{(J)}(n)$ $\tilde{x}_{A}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J-1)}(n)$ $\tilde{h}_{D}^{(J-1)}(n)$ $\tilde{h}_{D}^{(J-1)}(n)$ $\tilde{x}_{D}^{(J-1)}(n)$ $\tilde{x}_{D}^{(J-1)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$ $\tilde{x}_{D}^{(J)}(n)$

$$\tilde{x}_{A}^{(J)}(n) = \sum_{m} \tilde{h}_{A}^{(J)}(2^{J}m - n)x_{A}^{(J)}(m)$$

$$\tilde{x}_{D}^{(J)}(n) = \sum_{m} \tilde{h}_{D}^{(J)}(2^{J}m - n)x_{D}^{(J)}(m)$$

$$j = 1, ..., J$$

The discrete synthesis wavelets

$$\tilde{h}_{D}^{(j)}(n) = h_{D}^{(j)}(-n), j = 1,...,J$$

$$\tilde{h}_{A}^{(J)}(z) = h_{A}^{(J)}(-n)$$