Name		Grade
Surname		
Department		
Legi Nr.		
Date	04.11.2016	

1	2	3	4	5	Total
4	4	6	6	6	26

- Keep only writing material and Legi on the table.
- Keep mobile phones, tablets, smartwatches, etc. **turned off** in your bag.
- Fill in this cover sheet first.
- Turn the cover sheet only when instructed to do so.
- Then write your name and Legi Nr. on each page.
- Read the rules on the next page carefully.
- Do not write with red/green color or with pencil.
- Make sure to hand in every sheet.
- Duration: 30 min.
- Additional material: none.

Good luck!

Midterm exam

Num. CSE

D-INFK/D-MATH

HS 2016

Prof. R. Hiptmair

Rules:

- Motivation for the answers is **not** necessary. Remarks and computations have **no** influence on the total number of points.
- Wrong answers (for multiple choice problems) give negative points. The minimum number of points for each problem is 0.
- All notes outside the predefined boxes will not be considered.
- Each multiple choice box has one and only one correct answer.
- If required, write your solution in the predefined box:

your text here

• Any unclear marking will be considered an error.

1. Structured matric	ces [4 P.]		
How many real 1	numbers are required (at leas	t) to	fully determine a general:
(a) symmetric	tridiagonal matrix $\mathbf{T} \in \mathbb{R}^{n,n}$,	$n \in \mathbb{I}$	N:
			$3n-2 \bigcirc 2n \bigcirc 2n-1$
(b) matrix $M \in$	$\mathbb{R}^{m,n}$, $m,n\in\mathbb{N}$: $(M)_{ij}=0$ if		
	$\bigcirc \min \{2m + n - 2, 2n + m + n - 2, 2n + m + n - 2, 2n + m + n - n\}$	- 2 }	$\bigcirc m + n - 1 + \min\{m, n\}$ $\bigcirc \min\{m, n\} + m + n$
Scratch space (not ev	valuated):		

Which of the following C++ expressions are affected by cancellation for the given ranges of the **double** variables x and y?

(a) z = x - std :: sqrt(x*x - 1), given $x \in]1,2]$:

O affected by cancellation O not affected by cancellation

(b) z = (std :: sin(x) + y) / (x - y), given $-1 \le x, y \le 1$, $x \ne y$:

O affected by cancellation O not affected by cancellation

(c) z = std :: sqrt(1+1/x) - std :: sqrt(1-1/x), given x > 1:

O affected by cancellation O not affected by cancellation

(d) z = 1 / (std :: log(x-1) - std :: log(x+1)), given $x \in]1,2[$:

O affected by cancellation O not affected by cancellation

Scratch space (not evaluated):	

3. Singular value decomposition [6 P.]

Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ be the *economical* singular value decomposition (SVD) of the matrix $\mathbf{A} \in \mathbb{R}^{m,n}$, $m, n \in \mathbb{N}$, $m \ge n$.

- (a) Determine the dimensions of the matrices U, Σ and V in the SVD:
 - $\mathbf{U} \in \mathbb{R}^{\square}$
 - $\Sigma \in \mathbb{R}^{\square}$
 - $\mathbf{V} \in \mathbb{R}^{\square}$
- (b) Let I denote the identity matrix of appropriate size. Decide which of the following expressions are true or false:
 - $\mathbf{A} = \sum_{j=1}^{n} (\Sigma)_{j,j} (\mathbf{U})_{:,j} (\mathbf{V})_{:,j}^{\mathsf{T}}$
 - $UU^{\top} = I$
 - $\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}$

- true false
- \bigcirc true \bigcirc false
- true false

Scratch space (not evaluated):	

4. Compressed Row Storage (CRS) [6 P.]

Consider the following matrix:

$$\mathbf{A} := \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 0 & 0 & 6 \\ 1 & 0 & 1 & 0 & 7 \\ 1 & 0 & 0 & 1 & 8 \\ 1 & 1 & 1 & 1 & 9 \end{bmatrix}$$

The matrix is stored in CRS format as three vectors (see the hint on the next page):

```
std::vector<double> val;
std::vector<std::size_t> col_ind;
std::vector<std::size_t> row_ptr;
```

Only nonzero entries are stored.

(a) What is the length of these arrays (as true C++ expressions)?

(b) What is the content of these arrays (as comma-separated initializer lists, assuming C++ indexing)?

 $\mbox{Hint:}$ The following relationship "defines" the CRS format (assuming C++ indices):

$$\begin{aligned} \text{val}[\mathbf{k}] &= a_{i,j} \Leftrightarrow \begin{cases} \text{col_ind}[\mathbf{k}] = j - 1 \\ \text{row_ptr}[\mathbf{i}] \leq k < \text{row_ptr}[\mathbf{i} + 1] \end{cases} & 0 \leq k < \text{nnz}(\mathbf{A}), \\ \text{row_ptr}[\mathbf{n}] &= \text{nnz}(\mathbf{A}). \end{aligned}$$

Scratch space (not evaluated):		

5. Linear least squares problem [6 P.]

We seek to determine the positions $x_i \in \mathbb{R}$, $x_1 < x_2 < x_3 < \cdots < x_n$, of n > 2 points on a line, given the measured distances $d_{ij} = x_i - x_j$, $1 \le i < j \le n$. This leads to an overdetermined linear system of equations:

$$\mathbf{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{=:\mathbf{x}} = \begin{bmatrix} d_{12} \\ d_{13} \\ \vdots \\ d_{2n} \\ d_{23} \\ \vdots \\ d_{2n} \\ d_{34} \\ \vdots \\ d_{n-1,n} \end{bmatrix} =: \mathbf{b}$$

with a suitable matrix $\mathbf{A} \in \mathbb{R}^{\frac{1}{2}n(n-1),n}$.

(a) What is the rank r of **A**?

$$r := \operatorname{rank}(\mathbf{A}) =$$

(b) Let $\mathbf{M} \in \mathbb{R}^{k,k}$ be the coefficient matrix of the normal equations for $\mathbf{A}\mathbf{x} = \mathbf{b}$.

What is
$$k$$
?
$$k = \begin{bmatrix} k \\ k \end{bmatrix}$$

(c) What is the rank of M as an expression of the rank r of A?

(d) The entries of **M** are given by:

Scratch space (not evaluated):			