

Analyzing MEPS-HC Data with SAS® 9.4M6 Pradip K. Muhuri, PhD April 29, 2020

SAS® Programming Basics and Complex Survey Data Analysis

- SAS programs typically include any combination of the following:
 - DATA Step
 - PROC Step
 - Global Statements (LIBNAME, OPTIONS and TITLE Statements)
 - Macro Variables, Macros, and Marco Functions
- Base Procedures in SAS (Examples)
 - PROC FREQ, PROC MEANS, PROC SUMMARY, PROC SORT, PROC DATASETS, PROC FORMAT, PROC PRINT, and PROC PRINTTO
- Complex Survey Procedures in SAS (Examples)
 - ▶ PROC SURVEYMEANS
 - ▶ PROC SURVEYFREQ
- Output Delivery Systems (ODS)
 - Controlling PROC output
 - Saving results to a SAS data set
- Interface: SAS Windowing Environment, <u>JupyterLab</u>
- Resources for MEPS/SAS programs, code explanations, and references
 - ► (Primary): https://github.com/HHS-AHRQ/MEPS
 - (Supplementary): https://github.com/pkmedu/AnalyzeMEPS

MEPS-HC SAS Transport Files on the Web

- SAS Transport (MEPS) Files
 - best overall format
 - machine-independent (data files can be moved between computers running different operating systems).
 - can be directly imported into SAS, SPSS, BMDP, and STATA, etc.

How to create a transport file for one or more data sets

Working with MEPS-HC SAS Transport Files from the Web

- Objectives Download_Data_from_MEPS_Site_rev.sas
 - Run SAS macro to automate the
 - downloading of any number of SAS Transport files from the MEPS website
 - unzipping the files
 - converting them into SAS data sets
- Macro that wraps the following (<u>SAS Macros: Beyond the Basics</u>)
 - ► PROC HTTP for Data Downloads
 - How to Unzip/Read Data Files in SAS
 - ► CALL SYMPUTX Routine
 - XPORT Engine with PROC COPY

Here is a non-macro SAS program that handles one file at a time (AnalyzeMEPS Repo on GitHub).

- Objective
- Exercise1.sas
- Generate the following estimates
 - mean health care expenses per person
 - mean health expenses per person with an expense (overall, and by age group)
- Data and Analysis
 - ► Use the 2017 MEPS Full-Year Consolidated File
 - Create a subpopulation variable for DOMAIN analysis
 - Run PROC FREQ for data checks
 - Run PROC SURVEYMEANS for complex survey estimates

- Objective Exercise2.sas
 - Estimate the following parameters
 - mean number of purchases of opioids (i.e., Narcotic analgesics or Narcotic analgesic combos) per person with one or more purchases of opioids
 - mean total, out-of-pocket, and third-party payer expenses for purchases of opioids per person with one or more purchases of opioids
- Data and Analysis
 - Aggregate 2017 MEPS prescribed medicines data at the personlevel
 - Merge aggregated prescribed medicine data with full-year personlevel data for the same year
 - Create a subpopulation variable for DOMAIN analysis
 - Run PROC FREQ for data checks
 - Run PROC SURVEYMEANS for complex survey estimates

- Objective Exercise3.sas
 - Estimate mean out-of-pocket health care expenses for individuals who were aged 26-30 years with high income and uninsured for the whole year
- Data and Analysis
 - Combine data from 2016 and 2017 MEPS Full-Year Consolidated Files
 - Create a subpopulation variable for DOMAIN analysis
 - Create a new variable (i.e., pooled sample weight) for pooled data set (2016 and 2017 combined)
 - Run PROC FREQ and PROC MEANS for data checks
 - Run PROC SURVEYMEANS for complex survey estimates

- Objective Exercise4.sas
 - Estimate the percentage distribution of insurance status (in the second year) of individuals who were aged 26-30 with high income and uninsured for the whole (first) year
- Data and Analysis
 - Combine data from MEPS Longitudinal Files (Panels 19, 20, and 21)
 - Create a subpopulation variable for DOMAIN analysis
 - Create a new variable (i.e., pooled sample weight) for pooled data set (3 panels combined)
 - Run PROC FREQ and PROC MEANS for data checks
 - ► Run PROC SURVEYMEANS for complex survey estimates

PROC SURVEYFREQ vs. PROC SURVEYMEANS

- PROC SURVEYFREQ and PROC SURVEYMEANS with a CLASS statement produce identical results (percentage vs. proportion).
- PROC SURVEYFREQ treats the variable in the TABLES statement as categorical and estimate the percentage in each category or level.
- The CLASS statement in PROC SURVEYMEANS treats the variable in the VAR statement as categorical and estimate the proportion in each category or level.

PROC SURVEYMEANS vs. PROC MEANS

 PROC SURVEYMEANS and PROC MEANS with a WEIGHT statement produce the same results for the mean, not the confidence interval of the mean.

PROC SURVEYMEANS Output Objects

- Use ODS TRACE statements that produces the record containing at least the following items for PROC SURVEMEANS
 - Name
 - Label
 - ▶ Template
 - Path

Controlling PROC output with ODS select/exclude

See the SAS program and SAS Log here (AnalyzeMEPS

Repo on GitHub)

ODS SELECT/EXCLUDE

- SAS Procedures like PROC SURVEYMEANS produces lot of output
 - Summary
 - Statistics
 - Quantiles
 - Domain
 - DomainQuantiles
- ODS SELECT or EXCLUDE statement tells SAS
 - What output to print
 - What output not to print

SAVING PROC SURVEYMEANS Output

- Estimate descriptive statistics including Q1, Median, and Q3
- Save specific output tables to separate SAS data sets for the
 - overall population
 - DOMAIN of interest
 - multiple table names and data sets names allowed in the following statement

ODS OUTPUT <table-name>= <data-set-name>;

Comparing Domain Means with PROC SURVEYMEANS

- Pairwise comparisons of the estimate among domain levels
- Bonferroni multiple comparison adjustment for the p-values for testing differences in the analysis variable among domain levels

Sample SAS Macro – Generate Estimates from 2009 to 2019


```
%macro runit (byvar, fmt, first=, last=);
%do yr=&first %to &last;
title "MEPS, 20%sysfunc(putn(&yr,z2.))";
ods graphics off;
ods exclude statistics:
      proc surveymeans data=new.summary_person_%sysfunc(putn(&yr,z2.));
      stratum varstr;
      cluster varpsu;
      weight perwtf;
      var hd;
      domain age_18p('1');
        format &byvar &fmt;
           ods output domain=domainl_%sysfunc(putn(&yr,z2.));
      run;
%end;
%mend runit:
%runit(age_grp, ageF., first=09, last=15)
```

Questions

Any Questions?
Thanks!!!