中国石油大学(北京)

《数学分析》II-2019-2020-2 期末考试题(闭卷)

题目		111	四	五	总分
得分					

班级		
コリナレスノ		
レハ・ハソ		

姓名_____

学号_____

选择题(每题3分,共30分) 1

- (1) 下列反常积分发散的是()
 - (A) $\int_{-1}^{1} \frac{1}{\sin x} dx.$

(B) $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$.

- (C) $\int_{-\infty}^{+\infty} e^{-x^2} dx.$
- (D) $\int_{a}^{+\infty} \frac{1}{r \ln^2 x} dx.$
- (2) 双扭线 $(x^2 + y^2)^2 = x^2 y^2$ 所围成区域的面积是()
 - (A) $2\int_{0}^{\frac{\pi}{4}}\cos 2\theta d\theta$.
- (B) $4 \int_{0}^{\frac{\pi}{4}} \cos 2\theta d\theta$.
- (C) $2 \int_{0}^{\frac{\pi}{4}} \sqrt{\cos 2\theta} d\theta$.
- (D) $\frac{1}{2} \int_{-\pi}^{\pi} \cos^2 2\theta d\theta$.
- (3) 积分 $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx = ()$

 - (A)0. (B) $\frac{\pi}{4}$. (C) $\frac{\pi}{2}$. (D) π
- (4) 设二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$
 - 在(0,0)点处()

 - (A) 连续、偏导数存在. (B) 连续、偏导数不存在.

 - (C) 不连续、偏导数存在. (D) 不连续、偏导数不存在.
- (5) 设函数 $u(x,y,z) = 1 + \frac{x^2}{6} + \frac{y^2}{12} + \frac{z^2}{18}$ 单位向量 $\mathbf{n} = \frac{1}{\sqrt{3}}(\mathbf{1}, \mathbf{1}, \mathbf{1}), \quad \mathbb{M} \frac{\partial u}{\partial \mathbf{n}} \Big|_{\mathbf{n} = 0} = ()$

《数学分析》II-2019-2020-2期末试题

(A)0. (B)
$$\frac{\sqrt{2}}{2}$$
. (C) $\frac{\sqrt{3}}{3}$. (D)1.

(6) 已知
$$\frac{(x+ay)dx+ydy}{(x+y)^2}$$
为某一函数的全微分,则 $a=()$ (A)0. (B)1. (C)2. (D)3.

(7) 设有数量场
$$u = \ln \sqrt{x^2 + y^2 + z^2}$$
, 则 $\mathbf{div}(\mathbf{grad}u) = ()$
(A)0. (B) $\sqrt{x^2 + y^2 + z^2}$. (C) $\frac{1}{\sqrt{x^2 + y^2 + z^2}}$. (D) $\frac{1}{x^2 + y^2 + z^2}$.

(8) 设
$$f(x,y)$$
连续,且 $f(x,y) = xy + \iint_D f(u,v) \, du \, dv$,其中 D 是由 $y = 0, y = x^2, x = 1$ 所围成的区域,则 $f(x,y) = ()$ (A) xy . (B) $2xy$. (C) $xy + \frac{1}{8}$. (D) $xy + 1$.

(9) 设
$$S_1$$
表示上半球面 $x^2 + y^2 + z^2 = R^2, z \ge 0$ 的上侧,
$$S_2$$
表示下半球面 $x^2 + y^2 + z^2 = R^2, z \le 0$ 的下侧。 若曲面面积 $I_1 = \iint_{S_1} z \, dx \, dy, I_2 = \iint_{S_2} z \, dx \, dy,$ 则必有()

(A)
$$I_1 > I_2$$
. (B) $I_1 < I_2$. (C) $I_1 = I_2$. (D) $I_1 + I_2 = 0$.

(10) 设
$$f(x,y)$$
在区域 $x^2 + y^2 \le a^2$ 上连续,
则极限 $\lim_{a \to 0^+} \frac{1}{\pi a^2} \iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = ($)
(A)0. (B) ∞ . (C) $f(0,0)$. (D)1.

2 计算题(每题8分,共40分)

- 1. 设可微函数 $u = f(x + y + z, x^2 + y^2 + z^2)$, 求du
- 2. 求函数 $f(x,y) = x^2 xy + y^2$ 在点M(1,1)沿与Ox轴的正向组成 α 角的方向l上的方向导数。在怎样的方向上此方向导数有: (1)最大值; (2)最小值; (3)等于0.
- 3. 求由曲线 $xy = a^2, xy = 2a^2, y = x, y = 2x, x > 0, y > 0$ 所围成的图形的面积。

- 4. 求曲面 $z = \sqrt{x^2 + y^2}$ 包含在圆柱面 $x^2 + y^2 = 2x$ 内那部分的面积。
- 5. 计算三重积分 $\iint\limits_V \sqrt{x^2+y^2+z^2}\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$,其中V是由曲面 $x^2+y^2+z^2=z$ 所围成的几何体。

3 Green公式(10分)

计算 $\oint_C \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{4x^2 + y^2}$,其中C为以(1,0)点为中心,半径为 $R(R > 0, R \neq 1)$,方

向为逆时针。

4 Gauss公式(10分)

计算 $\iint_S -y \, dz \, dx + (z+1) \, dx \, dy$,其中 S 为圆柱面 $x^2 + y^2 = 4$ 被平面 x+z=2 和 z=0 所截出部分的外侧。

5 Stokes公式(10分)

计算 $\oint_C y \, \mathrm{d}x + z \, \mathrm{d}y + x \, \mathrm{d}z$,其中C为圆周 $x^2 + y^2 + z^2 = a^2, x + y + z = 0$,若从Ox轴的正向看去,这个圆周依逆时针方向。