Azzolini Riccardo 2020-05-26

Forme normali

1 Forma normale prenessa

Definizione: Una formula φ è in forma normale prenessa (FNP) se è del tipo

$$Q_1 x_1 \dots Q_n x_n \psi$$

dove $Q_i \in \{\forall, \exists\}$ e ψ non contiene quantificatori. La sottoformula ψ è detta **matrice** della formula φ .

Ad esempio:

- $\forall x \exists y (P(x,y) \to Q(c))$ è una formula chiusa in forma normale prenessa;
- $\forall x P(x,y)$ è una formula aperta (non chiusa) in forma normale prenessa;
- $P(x,y) \to \exists y Q(y)$ non è in forma normale prenessa perché il conseguente dell'implicazione contiene un quantificatore.

1.1 Trasformazione in forma normale prenessa

Utilizzando le equivalenze logiche, è possibile trasformare ogni formula del primo ordine in una formula in forma normale prenessa, preservandone la verità rispetto a tutti i modelli e gli assegnamenti.

Proposizione: Per ogni formula φ esiste una formula φ^P in forma normale prenessa tale che $\varphi \equiv \varphi^P$.

La dimostrazione può essere fatta per induzione strutturale su φ .

1.1.1 Esempio

Sia $\varphi = \forall x A(x) \to \exists y \neg B(y)$. La formula equivalente in FNP si ricava come segue:

$$\forall x A(x) \to \exists y \neg B(y) \equiv \neg \forall x A(x) \lor \exists y \neg B(y) \qquad (X \to Y \equiv \neg X \lor Y)$$

$$\equiv \exists x \neg A(x) \lor \exists y \neg B(y) \qquad (\neg \forall x \varphi \equiv \exists x \neg \varphi)$$

$$\equiv \exists x \neg A(x) \lor \exists x \neg B(x) \qquad (\exists y \varphi(y) \equiv \exists x \varphi(x) \text{ se } x \notin \text{FV}(\varphi(y)))$$

$$\equiv \exists x (\neg A(x) \lor \neg B(x)) \qquad (\exists x \varphi_1 \lor \exists x \varphi_2 \equiv \exists x (\varphi_1 \lor \varphi_2))$$

$$\equiv \exists x (A(x) \to \neg B(x)) \quad \text{FNP} \qquad (\neg X \lor Y \equiv X \to Y)$$

2 Forma di Skolem

Definizione: Una formula è in **forma di Skolem** se è in forma normale prenessa e non contiene quantificatori esistenziali, cioè se è del tipo

$$\forall x_1 \dots \forall x_n \psi$$

e ψ è una matrice (non contiene quantificatori).

Si chiama **skolemizzazione** il processo che permette di ottenere una formula φ^S in forma di Skolem a partire da una formula φ in forma normale prenessa, eliminando i quantificatori esistenziali in maniera opportuna.

A differenza della forma normale prenessa, la forma di Skolem *non* preserva la verità della formula rispetto a tutti i modelli e gli assegnamenti (cioè non si ha l'equivalenza logica tra una formula e la sua forma di Skolem), ma preserva invece solo la soddisfacibilità.

2.1 Skolemizzazione

Data una formula $Q_1x_1...Q_nx_n\psi$ in FNP, il procedimento di skolemizzazione consiste nell'applicare a essa successive trasformazioni. Ogni trasformazione elimina il primo quantificatore esistenziale che compare nella formula:

- Se $Q_1 = \exists$, si sostituisce la variabile x_1 con una costante c che non compare nella formula, e si elimina il quantificatore $\exists x_1$.
- Se $Q_i = \exists$ e, per ogni $1 \le j < i$, $Q_j = \forall$, allora la variabile x_i viene sostituita con il termine $f(x_1, \ldots, x_{i-1})$, dove f è un nuovo simbolo di funzione, e si elimina $\exists x_i$.

Osservazione: Il processo di skolemizzazione richiede la modifica dell'alfabeto su cui la formula iniziale è definita (in particolare, l'aggiunta di simboli di costanti e/o simboli di funzioni).

2.1.1 Esempio

Si consideri la formula in forma normale prenessa

$$\varphi = \exists z \forall x \exists y (A(x) \to B(z, y))$$

1. Il primo quantificatore di φ è un esistenziale: $\mathcal{Q}_1^{\varphi} = \exists$. Dunque, si introduce un nuovo simbolo di costante c, si sostituisce z con c, e si elimina $\exists z$, ottenendo così:

$$\varphi' = \forall x \exists y (A(x) \to B(c, y))$$

2. In φ' , il (primo e unico) quantificatore esistenziale, $\mathcal{Q}_2^{\varphi'} = \exists$, si trova dopo un quantificatore universale $\forall x$. Perciò, si introduce un nuovo simbolo di funzione $f^{(1)}$, si sostituisce y con f(x), e si elimina $\exists y$:

$$\varphi^S = \forall x (A(x) \to B(c, f(x)))$$

La formula φ^S appena ottenuta è in forma di Skolem, quindi il processo di skolemizzazione è concluso.

2.2 Soddisfacibilità

Teorema: Una formula φ è soddisfacibile se e solo se la sua forma di Skolem φ^S è soddisfacibile (si dice che φ e φ^S sono **equisoddisfacibili**).

Osservazione: Come già anticipato, in generale non è invece vero che φ e φ^S sono logicamente equivalenti.

2.2.1 Esempio: caso di sostituzione con una costante

Si considerino la formula $\varphi = \exists x P(x)$ e la sua forma di Skolem $\varphi^S = P(c)$. Se fossero logicamente equivalenti, allora sarebbe valida la formula

$$\psi = \exists x P(x) \leftrightarrow P(c)$$

Data la struttura

$$\mathcal{A} = (\mathbb{N}, I)$$
 $I(P) = \{ n \in \mathbb{N} \mid n \text{ è pari} \}$ $I(c) = 3$

si ha che $\mathcal{A} \models \exists x P(x)$ (perché esiste un numero naturale pari), mentre $\mathcal{A} \not\models P(c)$ (perché I(c) = 3 non è pari), quindi $\mathcal{A} \not\models \psi$: ciò significa che $\varphi \not\equiv \varphi^S$.

 φ e φ^S sono invece equisod disfacibili. La dimostrazione avviene considerando separatamente i due versi del "se e solo se".

- Se un modello $A_1 = (D, I_1)$ soddisfa φ , cioè $A_1 \models \exists x P(x)$, allora esiste $d \in D$ tale che $(A_1, [d/x]) \models P(x)$. Perciò, costruendo un altro modello $A_2 = (D, I_2)$ dove $I_2(c) = 2$ (mentre, su tutti gli altri simboli dell'alfabeto, I_2 si comporta allo stesso modo di I_1 , ovvero I_2 è un'estensione di I_1), si ottiene che $A_2 \models P(c)$.
- Viceversa, se si considera un modello $\mathcal{A} = (D, I)$ che soddisfa φ^S , $\mathcal{A} \models P(c)$, l'elemento del dominio $d = I(c) \in D$ deve essere tale che $d \in I(P)$, da cui segue che $(\mathcal{A}, [d/x]) \models P(x)$, e dunque $\mathcal{A} \models \exists x P(x)$.

Osservazione: Questa esempio corrisponde essenzialmente allo schema della dimostrazione del teorema precedente per il caso in cui la trasformazione agisce sul primo quantificatore.

2.2.2 Esempio: caso di sostituzione con una funzione

Sia $\varphi = \forall x \exists y M(x, y)$, e sia $\varphi^S = \forall x M(x, f(x))$ la sua forma di Skolem. Partendo da una struttura che soddisfa φ , si vuole costruire una struttura che soddisfi φ^S .

Dato ad esempio il modello

$$\mathcal{A} = (\mathbb{N}, I) \qquad I(M) = \{(n, m) \mid n < m\}$$

si ha che $\mathcal{A} \models \forall x \exists y M(x, y)$ in quanto, per ogni $n \in \mathbb{N}$, esiste $m \in \mathbb{N}$ tale che n < m.

Il punto fondamentale per costruire un modello che soddisfi φ^S è come interpretare la nuova funzione f. Si consideri il modello \mathcal{A}' , ottenuto modificando \mathcal{A} come segue:

$$A' = (\mathbb{N}, I')$$
 $I'(M) = I(M) = \{(n, m) \mid n < m\}$ $I'(f)(n) = n + 1$

Allora, $\mathcal{A}' \models \forall x M(x, f(x))$ poiché, per ogni $n \in \mathbb{N}, n < n + 1$.

Osservazione: Generalizzando questo esempio, si ottiene sostanzialmente la dimostrazione del teorema per il caso in cui il quantificatore esistenziale da eliminare non è il primo quantificatore.

3 Forma normale prenessa in CNF e DNF

Definizione: Un **letterale** nella logica dei predicati è una formula atomica o la negazione di una formula atomica. Una formula in forma normale prenessa è in CNF se la sua matrice è una congiunzione di disgiunzioni di letterali (e analogamente per la DNF).