Video Compression – HW3 (05/27/2023)

Instructions – Follow these carefully:

- 1. Please upload your work to Moodle. The zip file must have the source code and a PDF report where you explain and display the outputs for each problem.
- 2. You can use either C, Python, or Matlab to do the homework.
- 3. Please feel free to read related materials available in the official Matlab/Python documentation.
- 4. The due date is 6/10 before 11:59 pm.

In this assignment, we will use the block-based encoding approach, where the size of a block is 8x8. Only the Luma component is considered for the following questions.

(50%) Fourier Transform
Please apply the Fourier Transform to the luma component of
"foreman_qcif_0_rgb.bmp" and demonstrate its magnitudes in a 2-D image, as
shown in the example below. Note that you need to shift the origin to the center of
the image for the magnitude plot.

2. (50%) DCT

Please apply DCT to all the 8x8 luma blocks of "foreman_qcif_0_rgb.bmp" and use the quantization matrix below for quantization. After DCT and quantization, please apply inverse quantization and IDCT to decode all the blocks and show the decoded frame.

[16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99