PCT

WES RGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6 :

C08F 4/642, 12/08

(11) Internationale Veröffentlichungsnummer: WO 97/07141

(43) Internationales

Veröffentlichungsdatum:

27. Februar 1997 (27.02.97)

(21) Internationales Aktenzeichen:

PCT/EP96/03563

A1

(22) Internationales Anmeldedatum: 13. August 1996 (13.08.96)

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

(30) Prioritätsdaten:

195 30 406.3

18. August 1995 (18.08.95)

Veröffentlicht
DE Mit int

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
HOECHST AKTIENGESELLSCHAFT [DE/DE];
Brüningstrasse 50, D-65929 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KAMINSKY, Walter [DE/DE]; Buschweg 52, D-25421 Pinneberg (DE). LENK, Stephan [DE/DE]; Chapeaurougeweg 40, D-20535 Hamburg (DE). SCHOLZ, Volker [DE/DE]; Niemannstrasse 21, D-21073 Hamburg (DE). ROESKY, Herbert [DE/DE]; Emil-Nolde-Weg 23, D-37085 Göttingen (DE). HERZOG, Axel [DE/US]; 405 Hilgard Avenue, Los Angeles, CA 90095-1569 (US).

(54) Title: CATALYST CONSTITUENTS AND CATALYST SYSTEM WITH A HIGH DEGREE OF POLYMERISATION ACTIVITY FOR THE PRODUCTION OF POLYMERS

(54) Bezeichnung: KATALYSATORKOMPONENTE UND KATALYSATORSYSTEM MIT HOHER POLYMERISATIONSAK-TIVITÄT ZUR HERSTELLUNG VON POLYMEREN

(57) Abstract

In the present invention, catalyst systems with a high degree of polymerisation are described which contain at least one catalyst constituent of general formula (I): R_nMX_m , in which M^1 is Ti, Zr or Hf, R^a is C_5 (R^1 , R^2 , R^3 , R^4 , R^5) or C_6 (R^1 , R^2 , R^3 , R^4 , R^5 , R^6) wherein R^1 , R^2 , R^3 , R^4 , R^5 and R^6 are identical or different, and a hydrogen atom, a C_1 - C_{20} alkyl group, a C_1 - C_{10} alkoxy group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} arylalkenyl group, a C_7 - C_{40} alkylaryl group, a C_7 - C_{40} arylalkenyl group, a silyl group, a germyl group, or adjacent groups R^1 , R^2 , R^3 , R^4 , R^5 and R^6 which form with the connecting atoms thereof a ring system; R^b is one fluorine atom when m=1, at least one fluorine atom when m>1 and can be identical or different, and be at least one hydrogen atom, a C_1 - C_{20} alkyl group, a C_1 - C_{10} alkyoxy group, a C_1 - C_{10} fluoroalyl group, a C_6 - C_{20} arylary group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} arylalkenyl group, an C_7 - C_{40} arylalkenyl group, a C_7 - C_{40} arylalkenyl group, a C_7 - C_{40} arylalkenyl group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} arylalkenyl group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} arylalkenyl group, a C_7 - C_{40} aryla

(57) Zusammenfassung

In der vorliegenden Erfindung werden Katalysatorsysteme mit hoher Polymerisationsaktivität beschrieben, die mindestens eine Katalysatorkomponente der allgemeinen Formel (I) enthalten: R_nMX_m , worin M^1 = Ti, Zr oder Hf ist, R^a = C_5 (R^1 , R^2 , R^3 , R^4 , R^5) oder C_6 (R^1 , R^2 , R^3 , R^4 , R^5) ist, wobei R^1 , R^2 , R^3 , R^4 , R^5 und R^6 gleich oder verschieden und ein Wasserstoffatom, eine C_1 - C_{20} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_2 - C_{10} -Alkylgruppe, eine C_3 - C_4 -Arylalkyl-, eine C_3 - C_4 -Arylalkyl-, eine C_3 - C_4 -Arylalkenylgruppe, eine Silyl-, eine Germylgruppe bedeuten oder benachbarte Reste R^1 , R^2 , R^3 , R^4 , R^5 und R^6 mit den sie verbindenden Atomen ein Ringsystem bilden, R^b = ein Fluoratom wenn m = 1 ist, mindestens ein Fluoratom wenn m > 1 ist und sein kann gleich oder verschieden mindestens ein Wasserstoffatom, eine C_1 - C_{20} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_1 - C_1 -Alkoxygruppe, eine C_2 - C_1 -Alkylgruppe, eine C_3 - C_4 -Arylalkyl-, eine C_3 - C_4 -Arylalkylgruppe, eine C_3 - C_4 -Arylgruppe, eine C_4 - C_4 -Arylgruppe, eine C_5 - C_5 - C_5 -Arylgruppe, eine C_5 - C_5 - C_5 -Arylgruppe, eine C_5 - C_5 - C_5 -Arylgruppe, ein

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
ΑT	Österreich	GE	Georgien	NE	Niger
ΑÜ	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	ΙE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JР	Japan	RO	Rumānien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dānemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Katalysatorkomponente und Katalysatorsystem mit hoher Polymerisationsaktivität zur Herstellung von Polymeren

Die vorliegende Erfindung betrifft Katalysatorkomponenten und Katalysatorsysteme mit hoher Polymerisationsaktivität zur Herstellung von Polymeren, wobei die Polymere einen hohen Schmelzpunkt aufweisen. Die vorliegende Erfindung betrifft weiter ein wirtschaftliches und umweltschonendes Verfahren zur Herstellung von Polymeren mit einem hohen Schmelzpunkt.

Aus DE-A-4332009 ist ein Verfahren zur Herstellung von Organometallfluoriden bekannt. Dabei werden π -System-haltige Organometallfluoride durch Umsetzung eines fluorfreien Organometallhalogenids mit einem Zinnfluorid der allgemeinen Formel R₃SnF erhalten, worin R gleich oder verschieden sind und C₁-C₁₀-Alkyl-, C₆-C₁₄-Aryl-, C₂-C₁₀-Alkenyl-, C₇-C₂₀-Arylalkyl- oder C₇-C₁₅-Alkylaryl bedeuten.

Aus EP-A-210 615 sind Katalysatoren für die Polymerisation von Styrol und Verfahren zur Polymerisation von Monostyrol zu syndiotaktischem Polystyrol bekannt.

Aus Macromolecules 21 (1988), 3356 ist bekannt, daß Titanverbindungen mit einem Cyclopentadienylring besonders hohe Polymerisationsaktivität aufweisen. Die mit diesen Verbindungen als Katalysatoren erhaltenen Styrolpolymere weisen vergleichsweise niedrige Schmelzpunkte auf.

Die Aufgabe der vorliegenden Erfindung liegt darin, eine Katalysatorkomponente und ein Katalysatorsystem mit hoher Polymerisationsaktivität bereitzustellen, wobei Polymere mit hohen Schmelzpunkten erhalten werden. Eine weitere Aufgabe der vorliegenden Erfindung liegt darin, ein wirtschaftliches und

2

umweltschonendes Polymerisationsverfahren bereitzustellen.

Die der vorliegenden Erfindung zugrundeliegende Aufgabe wird durch eine Katalysatorkomponente für die Polymerisation von Olefinen gelöst, die mindestens eine Verbindung der allgemeinen Formel (I) enthält:

$$R^a_n M^1 R^b_m(I)$$
,

worin

 M^1 = Ti, Zr oder Hf ist,

 $R^{a} = C_{5} (R^{1}, R^{2}, R^{3}, R, ^{4} R^{5}) \text{ oder } C_{6} (R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}) \text{ ist, wobei } \\ R^{1}, R^{2}, R^{3}, R^{4}, R^{5} \text{ und } R^{6} \text{ gleich oder verschieden und ein } \\ Wasserstoffatom, eine $C_{1}\text{-}C_{20}\text{-}Alkylgruppe, eine $C_{1}\text{-}C_{10}\text{-}Alkoxygruppe, eine $C_{1}\text{-}C_{10}\text{-}Fluoralkylgruppe, eine $C_{6}\text{-}C_{20}\text{-}Arylgruppe, eine $C_{6}\text{-}C_{10}\text{-}Aryloxygruppe, eine $C_{2}\text{-}C_{10}\text{-}Alkenylgruppe, eine $C_{6}\text{-}C_{10}\text{-}Fluorarylgruppe, eine $C_{7}\text{-}C_{40}\text{-}Arylalkylgruppe, eine $C_{7}\text{-}C_{40}\text{-}Alkylarylgruppe, eine $C_{8}\text{-}C_{40}\text{-}Arylalkenylgruppe, eine $Silyl\text{-}, eine $Germylgruppe bedeuten oder benachbarte $Reste $R^{1}, $R^{2}, $R^{3}, $R^{4}, R^{5} und R^{6} mit den sie verbindenden Atomen ein $Ringsystem bilden,}$

 $\begin{array}{lll} \mathsf{R}^{\mathsf{b}} &=& \mathsf{ein}\,\,\mathsf{Fluoratom}\,\,\mathsf{wenn}\,\,\mathsf{m} = 1\,\,\mathsf{ist},\,\mathsf{mindestens}\,\,\mathsf{ein}\,\,\mathsf{Fluoratom}\,\,\mathsf{wenn}\,\,\mathsf{m} \\ &>& 1\,\,\mathsf{ist}\,\,\mathsf{und}\,\,\mathsf{sein}\,\,\mathsf{kann}\,\,\mathsf{gleich}\,\,\mathsf{oder}\,\,\mathsf{verschieden}\,\,\mathsf{mindestens}\,\,\mathsf{ein} \\ && \mathsf{Wasserstoffatom},\,\,\mathsf{eine}\,\,\mathsf{C}_{1}\text{-}\mathsf{C}_{20}\text{-}\mathsf{Alkylgruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{1}\text{-}\mathsf{C}_{10}\text{-}\\ && \mathsf{Alkoxygruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{1}\text{-}\mathsf{C}_{10}\text{-}\mathsf{Fluoralkylgruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{6}\text{-}\mathsf{C}_{20}\text{-}\\ && \mathsf{Arylgruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{6}\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{2}\text{-}\mathsf{C}_{10}\text{-}\\ && \mathsf{Arylalkylgruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{7}\text{-}\mathsf{C}_{40}\text{-}\mathsf{Alkylarylgruppe},\,\,\mathsf{oder}\,\,\mathsf{eine}\,\,\mathsf{C}_{8}\text{-}\mathsf{C}_{40}\text{-}\\ && \mathsf{Arylalkenylgruppe}\,\,\mathsf{eine}\,\,\mathsf{OH}\text{-}\mathsf{Gruppe},\,\,\mathsf{eine}\,\,\mathsf{NR}^{7}_{\,\,2}\text{-}\,\,\mathsf{oder}\,\,\mathsf{SR}^{8}_{\,\,1}\text{-}\mathsf{Gruppe},\\ && \mathsf{wobei}\,\,\mathsf{R}^{7}\,\,\mathsf{und}\,\,\mathsf{R}^{8}\,\,\mathsf{eine}\,\,\mathsf{C}_{1}\text{-}\mathsf{C}_{20}\text{-}\mathsf{Alkylgruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{1}\text{-}\mathsf{C}_{10}\text{-}\\ && \mathsf{Alkoxygruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{6}\text{-}\mathsf{C}_{10}\text{-}\mathsf{Fluoralkylgruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{6}\text{-}\mathsf{C}_{20}\text{-}\\ && \mathsf{Arylgruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{6}\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{2}\text{-}\mathsf{C}_{10}\text{-}\\ && \mathsf{Aryloxygruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{6}\text{-}\mathsf{C}_{10}\text{-}\mathsf{C}_{10}\text{-}\\ && \mathsf{Aryloxygruppe},\,\,\mathsf{eine}\,\,\mathsf{C}_{10}\text{-}\,\,\mathsf{C}_{10}\text{-}\,$

Alkenylgruppe, eine C_6 - C_{10} -Fluorarylgruppe, eine C_7 - C_{40} -Arylalkylgruppe, eine C_7 - C_{40} -Alkylarylgruppe, oder eine C_8 - C_{40} -Arylalkenylgruppe bedeuten, eine Silylgruppe, eine Germylgruppe, ein Halogenatom bedeuten, eine -OC(O)F, eine -OC(O)CR c_3 , eine -OC(O)C $_5$ R d_4 oder eine -OC(O)C $_6$ R e_5 Gruppe ist, wobei R c , R d und R e mindestens ein Fluoratom bedeuten und R c , R d und R e sein können gleich oder verschieden mindestens ein Wasserstoffatom, eine C_1 - C_{20} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_1 - C_{10} -Fluoralkylgruppe, eine C_6 - C_{20} -Arylgruppe, eine C_6 - C_{10} -Aryloxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine C_6 - C_{10} -Fluorarylgruppe, eine C_7 - C_{40} -Arylalkenylgruppe, eine C_7 - C_{40} -Alkylarylgruppe, eine C_8 - C_{40} -Arylalkenylgruppe eine OH-Gruppe, eine NR 7_2 - oder SR 8 -Gruppe, eine Silylgruppe, eine Germylgruppe oder ein Halogenatom,

m und n ganze Zahlen sind, m+n=2 bis 4 ist und m mindestens 1 ist.

Die vorliegende Erfindung hat den Vorteil, daß mit diesen
Katalysatorkomponenten, Katalysatorsysteme mit einer hohen
Polymerisationsaktivität erhalten werden. Die Polymerisationsaktivität der
erfindungsgemäßen Katalysatoren wird in Masse des produzierten Polymers,
bezogen auf die Stoffmenge der Verbindung der 4. Gruppe des
Periodensystems und bezogen auf die Polymerisationszeit berechnet. Der
besondere Vorteil der vorliegenden Erfindung liegt darin, daß mit
Katalysatorsystemen mit hoher Polymerisationsaktivität, Polymere mit hohen
Schmelzpunkten erhalten werden. Die Erhöhung der Polymerisationsaktivität bei
bisher bekannten Katalysatorsystemen, war bisher mit dem Nachteil behaftet,
daß die Schmelzpunkte der erhaltenen Polymere stets abnahmen. Durch die
hohe Polymerisationsaktivität der Katalysatorsysteme, kann eine Polymerisation
mit geringeren Mengen an Katalysatorsystemen mit sehr guten Ergebnissen
durchgeführt werden. Dadurch wird das Polymerisationsverfahren sehr
wirtschaftlich und umweltfreundlich.

Bevorzugt sind erfindungsgemäße Katalysatoren, die einen Cyclopentadienylring als Ligand und 3 Fluoratome direkt am Metallatom M¹ gebunden aufweisen. Katalysatorsysteme mit diesen Katalysatorkomponenten zeigen eine gute Polymerisationsaktivität.

Besonders bevorzugt sind erfindungsgemäße Katalysatoren, die einen fünffach methylierten Cyclopentadienylring als Ligand und 3 Fluoratome am Metallatom M¹ aufweisen. Katalysatorsysteme mit diesen Katalysatorkomponenten zeigen eine sehr gute Polymerisationsaktivität.

Besonders bevorzugt ist Titan als Übergangsmetallatom. Mit Titan als Übergangsmetall werden überwiegend gute Polymerisationsaktivitäten erreicht.

Erfindungsgemäß ist eine Katalysatorkomponente vorgesehen, enthaltend mindestens eine Verbrückung R^9 zwischen mindestens zwei Resten R^a . R^9 ist bevorzugt

$$-0 - {{\mathsf{M}}^{10}} \atop {{\mathsf{R}}^{10}} \atop {{\mathsf{R}}$$

$$>_{BR^{10}}$$
, $>_{AIR^{10}}$, $-g_{\theta-}$,

wobei R^{10} und R^{11} gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom oder eine C_1 - C_{40} -kohlenstoffhaltige Gruppe ist, wie eine C_1 - C_{20} -Alkyl-, eine C_1 - C_{10} -Fluoralkyl-, eine C_1 - C_{10} -Alkoxy-, eine C_6 - C_{14} -Aryl-, eine C_6 - C_{10} -Fluoraryl-, eine C_6 - C_{10} -Aryloxy-, eine C_2 - C_{10} -Alkenyl-, eine C_7 - C_{40} -Arylalkyl-, eine C_7 - C_{40} -Alkylaryl-, oder eine C_8 - C_{40} -Arylalkenylgruppe oder R^{10} und R^{11} jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe bilden und x eine ganze Zahl von Null bis 18 ist, M^2 Silizium, Germanium oder Zinn ist. R^9 kann auch zwei Einheiten der Formel (I) miteinander verknüpfen.

Die folgenden Beispiele sollen die in der allgemeinen Formel I beschriebenen Organometallfluoride näher erläutern, erheben aber keinen Anspruch auf Vollständigkeit:

Ethylenbis(indenyl)zirkoniumdifluorid

Ethylenbis(4,5,6,7-tetrahydroindenyl)zirkoniumdifluorid

Ethylenbis(2-methylindenyl)zirkoniumdifluorid

Ethylenbis(2,4-dimethylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-methyl-4-phenylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-ethyl-4-phenylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdifluorid

Dimethylsilandiylbis(indenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-methyl-4-ethylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-methyl-4-isopropylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-methyl-4-methylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-ethyl-4-methylindenyl)zirkoniumdifluorid

 $Dimethyl silandiylb is (2-methyl-\alpha-acenaphth-1-indenyl) zirkonium difluorid$

Phenylmethylsilandiylbis(2-methyl-4-phenylindenyl)zirkoniumdifluorid

Phenylmethylsilandiylbis(2-methyl-indenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4,5-benzoindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4,6-diisopropylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-phenylindenyl)zirkoniumdifluorid

Ethylenbis(2-ethyl-4-phenylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdifluorid

Ethylenbis(indenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-ethylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-isopropylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-methylindenyl)zirkoniumdifluorid

Ethylenbis(2-ethyl-4-methylindenyl)zirkoniumdifluorid

Ethylenbis (2-methyl- α -acenaphth-1-indenyl) zirkonium difluorid

Bis(2-methyl-4,5-benzoindenyl)zirkoniumdifluorid

Bis(2-methyl-4,6-diisopropylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-phenylindenyl)zirkoniumdifluorid

Bis(2-ethyl-4-phenylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdifluorid

Bis(indenyl)zirkoniumdifluorid

Bis(2-methyl)-4-ethylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-isopropylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-methylindenyl)zirkoniumdifluorid

Bis(2-ethyl-4-methylindenyl)zirkoniumdifluorid

Bis(2-methyl-α-acenaphth-1-indenyl)zirkoniumdifluorid

Bis(n-Butyl-cyclopentadienyl)zirkoniumdifluorid

Bis(cyclopentadienyl)zirkoniumdifluorid

Bis(pentamethylcyclopentadienyl)zirkoniumdifluorid

Cyclopentadienylzirkoniumtrifluorid

Pentamethylcyclopentadienylzirkoniumtrifluorid

(2-Methyl-4,5-benzoindenyl)zirkoniumtrifluorid

- (2-Methyl-4,6-diisopropylindenyl)zirkoniumtrifluorid
- (2-Methyl-4-phenylindenyl)zirkoniumtrifluorid.
- (2-Ethyl-4-phenylindenyl)zirkoniumtrifluorid
- (2-Methyl-4-(1-naphthyl)indenyl)zirkoniumtrifluorid
- Indenylzirkoniumtrifluorid
- (2-Methyl-4-ethylindenyl)zirkoniumtrifluorid
- (2-Methyl-4-isopropylindenyl)zirkoniumtrifluorid
- (2-Methyl-4-methylindenyl)zirkoniumtrifluorid
- (2-Ethyl-4-methylindenyl)zirkoniumtrifluorid
- $(2-Methyl-\alpha-acenaphth-1-indenyl)$ zirkoniumtrifluorid
- (n-Butyl-cyclopentadienyl)zirkoniumtrifluorid

Isopropyliden(9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Diphenylmethylen(9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Phenylmethylmethylen(9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Dimethylsilandiyl(9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Isopropyliden(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Diphenylmethylen(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Phenylmethylmethylen(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Dimethylsilandiyl(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Isopropyliden(9-fluorenyl)(3-isopropyl-cyclopentadienyl)zirkoniumdifluorid

Diphenylmethylen(9-fluorenyl)(3-isopropyl-cyclopentadienyl)zirkoniumdifluorid

Phenylmethylmethylen(9-fluorenyl)(3-isopropyl-

cyclopentadienyl)zirkoniumdifluorid

Dimethylsilandiyl(9-fluorenyl)(3-isopropyl-cyclopentadienyl)zirkoniumdifluorid

Isopropyliden(2,7-ditert.-butyl-9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Diphenylmethylen(2,7-ditert.-butyl-9-

fluorenyl)cyclopentadienylzirkoniumdifluorid

Phenylmethylmethylen(2,7-ditert.-butyl-9-fluorenyl)cyclopenta-

dienylzirkoniumdifluorid

Dimethylsilandiyl(2,7-ditert.-butyl-9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Ethylenbis(indenyl)titandifluorid

8

Ethylenbis(4,5,6,7-tetrahydroindenyl)titandifluorid

Ethylenbis(2-methylindenyl)titandifluorid

Dimethylsilandiylbis(indenyl)titandifluorid

Bis(indenyl)titandifluorid

Bis(cyclopentadienyl)titandifluorid

Bis(pentamethylcyclopentadienyl)titandifluorid

Cyclopentadienyltitantrifluorid

Pentamethylcyclopentadienyltitantrifluorid

Indenyltitantrifluorid

(n-Butyl-cyclopentadienyl)titantrifluorid

Isopropyliden(9-fluorenyl)cyclopentadienyltitandifluorid

Ethylenbis(indenyl)hafniumdifluorid

Ethylenbis(4,5,6,7-tetrahydroindenyl)hafniumdifluorid

Ethylenbis(2-methylindenyl)hafniumdifluorid

Dimethylsilandiylbis(indenyl)hafniumdifluorid

Bis(indenyl)hafniumdifluorid

Bis(cyclopentadienyl)hafniumdifluorid

Bis(pentamethylcyclopentadienyl)hafniumdifluorid

Cyclopentadienylhafniumtrifluorid

Pentamethylcyclopentadienylhafniumtrifluorid

Indenylhafniumtrifluorid

(n-Butyl-cyclopentadienyl)hafniumtrifluorid

Isopropyliden(9-fluorenyl)cyclopentadienylhafniumdifluorid

Bis(cyclopentadienyl)titanfluorid)

Bis(Methylcyclopentadienyl-titanfluorid)

Bis(pentamethylcyclopentadienyl)titanfluorid

[(Me₃SiC₅H₄)Ti(F)Nt-Bu]₂

Die als Ausgangsverbindung benötigten Organometallhalogenide sind kommerziell erhältlich oder können nach literaturbekannten Verfahren hergestellt werden. Die als Ausgangsstoff benötigten Zinnfluoride können nach

literaturbekannten Methoden hergestellt werden (Ber. Dtsch. Chem. Ges. (1918), Bd. 51, 1447).

Erfindungsgemäß ist ein Katalysatorsystem vorgesehen, enthaltend mindestens eine Katalysatorkomponente und mindestens eine organische Bor- und/oder mindestens eine organische Aluminium- und/oder mindestens eine organische Zinnverbindung als Cokatalysator. Das Katalysatorsystem ist erhältlich durch Inkontaktbringen mindestens einer Katalysatorkomponente mit mindestens einer organischen Bor- und/oder mindestens einer organischen Aluminium- und/oder mindestens einer organischen Zinnverbindung. Es entsteht insbesondere als Reaktionsprodukt mindestens einer Katalysatorkomponente und mindestens einer organischen Bor- und/oder organischen Aluminium- und/oder organischen Zinnverbindungen sowie Reaktionsprodukten dieser Verbindungen mit Kondensationsmitteln, wie Wasser. Mit diesen Katalysatorsystemen werden sehr gute Polymerisationsaktivitäten erhalten. Die Cokatalysatorkomponente, die erfindungsgemäß im Katalysatorsystem enthalten sein kann, enthält mindestens eine Verbindung vom Typ eines Aluminoxans oder einer Lewis-Säure oder einer ionischen Verbindung, die durch Reaktion mit einer Katalysatorkomponente in eine kationische Verbindung überführt wird.

Als Aluminoxan wird bevorzugt eine Verbindung der allgemeinen Formel II

$$(RAIO)_n$$
 (II)

verwendet. Aluminoxane können z.B. cyclisch wie in Formel III

oder linear wie in Formel IV

oder vom Cluster-Typ wie in Formel V sein, wie sie in neuerer Literatur beschrieben werden; vgl. JACS 117 (1995), 6465-74, Organometallics 13 (1994), 2957-2969.

Die Reste R in den Formeln (II), (III), (IV) und (V) können gleich oder verschieden sein und eine C_1 - C_{20} -Kohlenwasserstoffgruppe wie eine C_1 - C_6 -Alkylgruppe, eine C_6 - C_{18} -Arylgruppe, Benzyl oder Wasserstoff bedeuten, und peine ganze Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeuten.

Bevorzugt sind die organischen Reste gleich und bedeuten Methyl, Isobutyl, n-Butyl, Phenyl oder Benzyl, besonders bevorzugt ist Methyl. Sind die organischen Reste unterschiedlich, so sind sie bevorzugt Methyl und Wasserstoff, Methyl und Isobutyl oder Methyl und n-Butyl, wobei Wasserstoff bzw. Isobutyl oder n-Butyl enthalten sind. Als Lewis-Säure werden bevorzugt mindestens eine bor- oder aluminiumorganische Verbindung eingesetzt, die C₁-C₂₀-kohlenstoffhaltige Gruppen enthalten, wie verzweigte oder unverzweigte Alkyl- oder Halogenalkylgruppen.

Erfindungsgemäß ist ein Katalysatorsystem vorgesehen, das zusätzlich einen Träger enthalten kann. Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems ist bevorzugt mindestens ein anorganisches Oxid, wie SiO2, Al₂O₃, MgO, ZrO₂, TiO₂, B₂O₃, CaO, ZnO, ThO₂, Carbonate, wie Na₂CO₃, K_2CO_3 , $CaCO_3$, $MgCO_3$, Sulfate, wie Na_2SO_4 , $Al_2(SO_4)_3$, $BaSO_4$, Nitrate, wie $\mathrm{KNO_3}$, $\mathrm{Mg}(\mathrm{NO_3})_2$, $\mathrm{Al}(\mathrm{NO_3})_3$ sowie Oxide, wie $\mathrm{Na_2O}$, $\mathrm{K_2O}$,und $\mathrm{Li_2O}$. Als Träger sind insbesondere Silica und/oder Alumina und/oder Polymerträger vorgesehen. Erfindungsgemäß sind Polymere und/oder Copolymere, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem vorgesehen. Polymere und/oder Copolymere von 1-Alkenen und Vinylaromaten, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem sind besonders vorgesehen. Syndiotaktische Polymere, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem sind ganz besonders vorgesehen. Syndiotaktisches Polystyrol, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem ist am meisten bevorzugt.

Zur Polymerisation von bevorzugt vinylaromatischen Monomeren werden erfindungsgemäß fluorhaltige Übergangsmetallverbindungen als Katalysatorkomponente, organische Bor- und/oder organische Aluminium und/oder organische Zinnverbindungen und Reaktionsprodukte derselben mit Kondensationsmitteln, wie Wasser, als Cokatalysatorkomponente sowie vinylaromatisches Monomer in beliebiger Reihenfolge eingesetzt. Es können ein oder mehrere Träger verwendet werden. Es können eines oder mehrere Lösungsmittel in beliebiger Reihenfolge dazu gegeben werden. Das Eingeben der Komponenten und die Reaktion erfolgt drucklos oder unter vermindertem oder erhöhten Druck in der Atmosphäre eines Inertgases, wie z. B. Stickstoff, Argon oder einem Gemisch dieser. Die Reaktion wird bevorzugt im Temperaturbereich von 10 bis 70 °C durchgeführt. Die Bestandteile des Katalysatorsystems werden in beliebigem molaren Verhältnis zueinander eingesetzt. Bevorzugt ist ein Verhältnis von Aluminium zu Titan von 100 bis 1000.

12

Erfindungsgemäß ist die Verwendung eines Katalysatorsystems zur Herstellung eines Polymers und/oder Copolymers, besonders zur Polymerisation und/oder Copolymerisation von 1-Alkenen und Vinylaromaten, ganz besonders zur Polymerisation von Styrol vorgesehen.

Die Erfindung wird anhand von Beispielen näher erläutert.

Beispiele

Beispiel 1

Ein auf 50 °C temperierter 100 ml Glasreaktor wurde unter Rühren im Argongegenstrom nacheinander mit 14,1 ml Toluol, 5 ml einer toluolischen Methylaluminoxanlösung (7,5 · 10⁻⁴ mol/5ml), 20 ml Styrol und 0,9 ml einer toluolischen Lösung von Cyclopentadienyltitantrifluorid (2,5 · 10⁻⁶ mol/0,9 ml) beschickt. Die Zugabe der Titanverbindung wurde als Startpunkt der Polymerisation genommen. Nach 10 Minuten wurden etwa 50 ml eines Gemisches von Salzsäure und Ethanol hinzugegeben. Es wurde weitere 12 Stunden gerührt. Das feste Produkt wurde abfiltriert und mit Ethanol neutral gewaschen. Das Polymer wurde im Vakuum bei Raumtemperatur getrocknet.

Vergleichsbeispiel 1

Das Vergleichsbeispiel 1 wurde entsprechend dem Beispiel 1 durchgeführt, wobei als Katalysator CpTiCl₃ verwendet wurde.

Beispiel 2

Beispiel 2 wurde entsprechend dem Beispiel 1 durchgeführt, wobei als Katalysator Cp*TiF₃ verwendet wurde.

Vergleichsbeispiel 2

Das Vergleichsbeispiel 2 wurde entsprechend dem Beispiel 1 durchgeführt, wobei als Katalysator Cp*TiCl₃ verwendet wurde.

Aus der nachstehend aufgeführten Tabelle 1 gehen die Polymerisationsaktivitäten der im Beispiel 1 und im Vergleichsbeispiel 1 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 1 und im Vergleichsbeispiel 1 erhaltenen Polymere hervor.

Tabelle 1

	Vergleichsbeispiel 1			Beispiel 1				
		CpTi(Cl ₃ a)		CpTiF ₃ ^{a)}			
T (°C) b)	10	30	50	70	10	30	50	70
t (h) ^{c)}	0,22	0,08	0,12	0,25	0,52	0,14	0,17	0,43
[Ti] ^{j)}	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25
_	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵
[Al] ^{k)}	1,88	1,88	1,88	1,88	1,88	1,88	1,88	1,88
	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²
Ausbeute	600	990	3390	2880	330	830	1270	1860
(mg) ^{d)}								
Aktiv. ^{e)}	110	480	1200	460	250	2400	3100	1700
Schmp.	260/	263	258/	243/	264	261/	257/	247/
(°C) f)	267		250	250		267	265	258
M _w ^{g)}	390	230	115	40	867	378	96	35
M _n h)	110	107	44	17	557	162	53_	17
M _w /M _n i)	3,56	2,15	2,60	2,47	1,56	2,34	1,82	2,09

Aus der nachstehenden aufgeführten Tabelle 2 gehen die Polymerisationsaktivitäten der im Beispiel 2 und Vergleichsbeispiel 2 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 2 und Vergleichsbeispiel 2 erhaltenen Polymere hervor.

Tabelle 2

Vergleichsbeispiel 2					Beis	spiel 2		
Cp*TiCl ₃ ^{a)}					Cp*TiF ₃ a)			
T (°C) b)	10	30	50	70	10	30	50	70
t (h) ^{c)}	2,80	1,03	1,00	0,77	0,52	0,35	0,22	0,23
[Ti] ^{j)}	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25
	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵
[Al] ^{k)}	1,88	1,88	1,88	1,88	1,88	1,88	1,88	1,88
	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²
Ausbeute (mg) ^{d)}	49	90	385	730	49	240	375	650
Aktiv. e)	0,7	3,5	15,4	38	38	270	690	1100
Schmp.	276	277	275	274	274	275	275	275
M _w ^{g)}	170	189	169	156	966	703	661	511
M _n h)	62	82	47	43	512	353	367	193
M_w/M_n^{i}	2,75	2,31	3,63	3,61	1,89	1,99	1,80	2,64

Beispiel 3

Ein auf 30 °C temperierter 200 ml Glasreaktor wurde unter Rühren im Argongegenstrom nacheinander mit 49 ml Toluol, 0,58 g (0,01 mol) Methylaluminoxan, 50 ml Styrol und 1 ml einer toluolischen Lösung von Methylcyclopentadienyltitantrifluorid (10⁻⁵ mol/ml) beschickt. Die Zugabe der Titanverbindung wurde als Startpunkt der Polymerisation genommen. Nach 4 Minuten wurden etwa 50 ml eines Gemisches von Salzsäure und Ethanol hinzugegeben. Es wurde weitere 12 Stunden gerührt. Das feste Produkt wurde

abfiltriert und mit Ethanol neutral gewaschen. Das Polymer wurde im Vakuum bei Raumtemperatur getrocknet.

Vergleichsbeispiel 3

Das Vergleichsbeispiel 3 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator Methylcyclopentadienyltitantrichlorid verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 3 gehen die Polymerisationsaktivitäten der im Beispiel 3 und Vergleichsbeispiel 3 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 3 und Vergleichsbeispiel 3 erhaltenen Polymere hervor.

Tabelle 3

	Vergleichsbeispiel 3	Beispiel 3
	MeCpTiCl ₂ a)	MeCpTiF ₂ a)
T (°C) b)	30	30
t (min) ^{c)}	60	4
[Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ⁻⁵
[AI] ^{k)}	0,05	0,05
Ausbeute	494	482
(mg) ^{d)}		
Aktiv. ^{e)}	99	1160
Schmp.	257	256
(°C) f)		
M _w g)	261	304
M _n h)	125	134
M _w /M _n i)	2,09	2,27

Beispiel 4 und Vergleichsbeispiel 4

Beispiel 4 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator EtMe₄CpTiF₃ verwendet wurde. Das Vergleichsbeispiel 4 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator EtMe₄CpTiCl₃ verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 4 gehen die Polymerisationsaktivitäten der im Beispiel 4 und Vergleichsbeispiel 4 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 4 und Vergleichsbeispiel 4 erhaltenen Polymere hervor.

Tabelle 4

	Vergleichsbeispiel 4	Beispiel 4
	EtMe_CpTiCl ₂ a)	EtMe ₄ CpTiF ₃ a)
T (°C) b)	30	30
t (min) c)	120	10
[Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ⁻⁵
[AI] ^{k)}	0,05	0,05
Ausbeute	110	140
(mg) ^{d)}		
Aktiv. e)	11	167
Schmp.	277	270
(°C) f)		
M,, g)	193	768
M _n h)	94	395
M _w /M _n i)	2,06	1,94

Beispiel 5 und Vergleichsbeispiel 5

Beispiel 5 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator PrMe₄CpTiF₃ verwendet wurde. Das Vergleichsbeispiel 5 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator PrMe₄CpTiCl₃ verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 5 gehen die Polymerisationsaktivitäten der im Beispiel 5 und Vergleichsbeispiel 5 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 5 und Vergleichsbeispiel 5 erhaltenen Polymere hervor.

Tabelle 5

	Vergleichsbeispiel 5	Beispiel 5
	PrMe ₄ CpTiCl ₃ a)	PrMe ₄ CpTiF ₃ a)
T (°C) b)	30	30
t (min) ^{c)}	120	10
(Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ⁻⁵
· [Al] ^{k)}	0,05	0,05
Ausbeute	103	140
(mg) ^{d)}		
Aktiv. ^{e)}	10	167
Schmp.	275	. 271
(°C) f)		
M _w g)	153	636
M _n h)	75	304
M _w /M _n i)	2,05	2,09

Beispiel 6 und Vergleichsbeispiel 6

Beispiel 6 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator BuMe₄CpTiF₃ verwendet wurde. Das Vergleichsbeispiel 6 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator BuMe₄CpTiCl₃ verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 6 gehen die Polymerisationsaktivitäten der im Beispiel 6 und Vergleichsbeispiel 6 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 6 und Vergleichsbeispiel 6 erhaltenen Polymere hervor.

Tabelle 6

	Vergleichsbeispiel 6	Beispiel 6
	BuMe ₄ CpTiCl ₂ a)	BuMe ₄ CpTiF ₃ a)
T (°C) b)	30	30
t (min) c)	120	10
[Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ^{·5}
[Al] ^{k)}	0,05	0,05
Ausbeute	121	154
(mg) ^{d)}		
Aktiv. ^{e)}	12	185
Schmp.	276	273
(°C) ^{f)}		
M _w g)	201	683
M _n h)	93	309
M_w/M_n^{i}	2,16	2,21

Beispiele 7, 8 und 9

Beispiele 7, 8 und 9 wurden entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysatoren $Cp*_2TiF$, $Cp*_{TiF_2}(OCOC_6F_5)$ und $Cp*_{TiF_2}(OCOCF_3)$ verwendet wurden.

Aus der nachstehenden aufgeführten Tabelle 7 gehen die Polymerisationsaktivitäten der in Beispielen 7, 8 und 9 eingesetzten Katalysatoren und die charakteristischen Daten der erhaltenen Polymere hervor.

Tabelle 7

	Beispiel 7	Beispiel 8	Beispiel 9
	Cp* ₂ TiF ^{a)}	Cp*TiF ₂ (OCOC _p F ₅) a)	Cp*TiF ₂ (OCOCF ₂) a)
T (°C) b)	30	30	30
t (min) ^{c)}	60	8	10
[Ti] ^{j)}	5 · 10 ⁻⁵	10 ⁻⁴	10 ⁻⁴
[AI] ^{k)}	0,0	0,1	0,1
Ausbeute	174	678	381
(mg) ^{d)}			
Aktiv. ^{e)}	35	510	229
Schmp.	270	269	269
(°C) ^{f)}			
M ^w 8)	612	543	558
M _n h)	250	249	261
M _w /M _n i)	2,45	2,18	2,14

a) Cp = Cyclopentadienyl, Cp* = Pentamethylcyclopentadienyl, Me = methyl, Et = ethyl, Pr = propyl und Bu = butyl

b) Polymerisationstemperatur

- c) Polymerisationszeit
- d) Ausbeute an syndiotaktischem Polystyrol
- e) Polymerisationsaktivität des Katalysatorsystems in Ausbeute syndiotaktischen Polystyrols (sPS) in kg bezogen auf die Stoffmenge der Titanverbindung in mol und bezogen auf die Polymerisationszeit in h: (kg sPS/mol Ti · h)
- f) Schmelzpunkt(e) des Polystyrols aus der 2. Aufheizkurve des DSC (differential scanning calorimetry)
- Massenmittel der Molekularmasse des Polystyrols, dividiert durch 1000, bestimmt durch GPC (gel permeation chromatography)
- h) Zahlenmittel der Molekularmasse des Polystyrols, dividiert durch 1000, bestimmt durch GPC (gel permeation chromatography)
- Polydispersität des Polystyrols, bestimmt durch GPC (gel permeation chromatography)
- i) Konzentration der Titanverbindung in mol/l
- k) Konzentration an Methylaluminoxan in mol/l

PCT/EP96/03563

Patentansprüche

 Katalysatorkomponente für die Polymerisation von Olefinen, enthaltend mindestens eine Verbindung der allgemeinen Formel (I):

$$R^a_n M^1 R^b_m (I),$$

worin

 M^1 = Ti, Zr oder Hf ist,

 $\begin{array}{lll} \mathsf{R}^{\mathsf{a}} & = & \mathsf{C}_{\mathsf{5}} \, (\mathsf{R}^{\mathsf{1}}, \, \mathsf{R}^{\mathsf{2}}, \, \mathsf{R}^{\mathsf{3}}, \, \mathsf{R}^{\mathsf{4}} \, \mathsf{R}^{\mathsf{5}}) \, \, \mathsf{oder} \, \mathsf{C}_{\mathsf{6}} \, (\mathsf{R}^{\mathsf{1}}, \, \mathsf{R}^{\mathsf{2}}, \, \mathsf{R}^{\mathsf{3}}, \, \mathsf{R}^{\mathsf{4}}, \, \mathsf{R}^{\mathsf{5}}, \, \mathsf{R}^{\mathsf{6}}) \, \, \mathsf{ist}, \\ & \mathsf{wobei} \, \mathsf{R}^{\mathsf{1}}, \, \mathsf{R}^{\mathsf{2}}, \, \mathsf{R}^{\mathsf{3}}, \, \mathsf{R}^{\mathsf{4}}, \, \mathsf{R}^{\mathsf{5}} \, \, \mathsf{und} \, \, \mathsf{R}^{\mathsf{6}} \, \, \mathsf{gleich} \, \, \mathsf{oder} \, \, \mathsf{verschieden} \\ & \mathsf{und} \, \, \mathsf{ein} \, \, \mathsf{Wasserstoffatom}, \, \mathsf{eine} \, \, \mathsf{C}_{\mathsf{1}^{\mathsf{-C}}\mathsf{20}^{\mathsf{-}}} \mathsf{Alkylgruppe}, \, \mathsf{eine} \, \\ & \mathsf{C}_{\mathsf{1}^{\mathsf{-C}}\mathsf{10}^{\mathsf{-}}} \mathsf{Alkoxygruppe}, \, \mathsf{eine} \, \, \mathsf{C}_{\mathsf{1}^{\mathsf{-C}}\mathsf{10}^{\mathsf{-}}} \mathsf{Fluoralkylgruppe}, \, \mathsf{eine} \, \, \mathsf{C}_{\mathsf{2}^{\mathsf{-C}}} \\ & \mathsf{C}_{\mathsf{6}^{\mathsf{-C}}\mathsf{20}^{\mathsf{-}}} \mathsf{Arylgruppe}, \, \mathsf{eine} \, \, \mathsf{C}_{\mathsf{6}^{\mathsf{-C}}\mathsf{10}^{\mathsf{-}}} \mathsf{Fluorarylgruppe}, \, \mathsf{eine} \, \, \mathsf{C}_{\mathsf{2}^{\mathsf{-C}}} \\ & \mathsf{C}_{\mathsf{40}^{\mathsf{-}}} \mathsf{Arylalkylgruppe}, \, \mathsf{eine} \, \, \mathsf{C}_{\mathsf{7}^{\mathsf{-C}}\mathsf{40}^{\mathsf{-}}} \mathsf{Alkylarylgruppe}, \, \mathsf{eine} \, \, \mathsf{C}_{\mathsf{8}^{\mathsf{-C}}} \\ & \mathsf{C}_{\mathsf{40}^{\mathsf{-}}} \mathsf{Arylalkenylgruppe}, \, \mathsf{eine} \, \, \mathsf{Silyl}_{\mathsf{-}}, \, \mathsf{eine} \, \, \mathsf{Germylgruppe} \\ & \mathsf{bedeuten} \, \, \mathsf{oder} \, \, \mathsf{benachbarte} \, \, \mathsf{Reste} \, \, \mathsf{R}^{\mathsf{1}}, \, \, \mathsf{R}^{\mathsf{2}}, \, \, \mathsf{R}^{\mathsf{3}}, \, \, \mathsf{R}^{\mathsf{4}}, \, \, \mathsf{R}^{\mathsf{5}} \, \, \mathsf{und} \\ & \mathsf{R}^{\mathsf{6}} \, \, \mathsf{mit} \, \, \mathsf{den} \, \, \mathsf{sie} \, \, \mathsf{verbindenden} \, \, \, \mathsf{Atomen} \, \, \mathsf{ein} \, \, \, \, \mathsf{Ringsystem} \\ & \mathsf{bilden}, \end{array}$

 $\begin{array}{lll} {\sf R}^{\sf b} & = & {\sf ein \ Fluoratom \ wenn \ m} = 1 \ {\sf ist, mindestens \ ein \ Fluoratom \ wenn \ m} > 1 \ {\sf ist \ und \ sein \ kann \ gleich \ oder \ verschieden \ mindestens \ ein \ Wasserstoffatom, \ eine \ C_1-C_{20}- \\ & {\sf Alkylgruppe, \ eine \ C_1-C_{10}-Alkoxygruppe, \ eine \ C_1-C_{10}- \\ & {\sf Fluoralkylgruppe, \ eine \ C_6-C_{20}-Arylgruppe, \ eine \ C_6-C_{10}- \\ & {\sf Aryloxygruppe, \ eine \ C_2-C_{10}-Alkenylgruppe, \ eine \ C_6-C_{10}- \\ & {\sf Fluorarylgruppe, \ eine \ C_7-C_{40}-Arylalkylgruppe, \ eine \ C_7-C_{40}- \\ & {\sf Alkylarylgruppe, \ oder \ eine \ C_8-C_{40}-Arylalkenylgruppe \ eine \ OH-Gruppe, \ eine \ NR^7_2- \ oder \ SR^8-Gruppe, \ wobei \\ & {\sf R}^7 \ {\sf und \ R}^8 \ eine \ C_1-C_{20}-Alkylgruppe, \ eine \ C_1-C_{10}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{10}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{20}-Fluoralkylgruppe, \ eine \ C_6-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{20}-Fluoralkylgruppe, \ eine \ C_1-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{20}-Fluoralkylgruppe, \ eine \ C_1-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{20}-Fluoralkylgruppe, \ eine \ C_1-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{20}-Fluoralkylgruppe, \ eine \ C_1-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{20}- \\ & {\sf Alkoxygruppe, \ eine \ C_1-C_{$

m und n

Arylgruppe, eine C_6 - C_{10} -Aryloxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C_7 - C_{40} -Alkylarylgruppe, eine C_8 - C_{40} -Arylalkenylgruppe, eine Silylgruppe, eine Germylgruppe oder ein Halogenatom bedeuten, eine -OC(O)F, eine -OC(O)CR $^{c}_{3}$, eine -OC(O)C $_{5}$ R $^{d}_{4}$ oder eine -OC(O)C₆R^e₅ Gruppe ist, wobei R^c, R^d und R^e mindestens ein Fluoratom bedeuten und R^c, R^d und R^e sein können gleich oder verschieden mindestens ein Wasserstoffatom, eine C₁-C₂₀-Alkylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C_6 - C_{20} -Arylgruppe, eine C_6 - C_{10} -Aryloxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine C_6 - C_{10} -Fluorarylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₇-C₄₀-Alkylarylgruppe, eine C₈-C₄₀-Arylalkenylgruppe eine OH-Gruppe, eine NR⁷₂- oder SR⁸-Gruppe, eine Silylgruppe, eine Germylgruppe oder ein Halogenatom, ganze Zahlen sind, m+n=2 bis 4 ist und m mindestens 1 ist.

 Katalysatorkomponente nach Anspruch 1, enthaltend mindestens eine Verbrückung R⁹ zwischen mindestens zwei Resten R^a, R⁹ ist bevorzugt

$$> BR^{10}$$
, $> AIR^{10}$, $-Ge-$, $-O-$, $-S-$, $> SO_2$, $> HR^{10}$, $> CO$, $> PR^{10}$ oder $> R(O)R^{10}$.

wobei R^{10} und R^{11} gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom oder eine C_1 - C_{40} -kohlenstoffhaltige Gruppe ist wie eine C_1 - C_{20} -Alkyl-, eine C_1 - C_{10} -Fluoralkyl-, eine C_1 - C_{10} -Alkoxy-, eine C_6 - C_{14} -Aryl-, eine C_6 - C_{10} -Fluoraryl-, eine C_6 - C_{10} -Aryloxy-, eine C_2 - C_{10} -Alkenyl-, eine C_7 - C_{40} -Arylalkyl-, eine C_7 - C_{40} -Alkylaryl-, oder eine C_8 - C_{40} -Arylalkenylgruppe oder R^{10} und R^{11} jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe bilden und x eine ganze Zahl von Null bis 18 ist, M^2 Silizium, Germanium oder Zinn ist, R^9 kann auch zwei Einheiten der Formel (I) miteinander verknüpfen.

 Katalysatorsystem enthaltend mindestens eine Katalysatorkomponente und mindestens eine organische Bor- und/oder mindestens eine organische Aluminium- und/oder mindestens eine organische Zinnverbindung.

- 4. Katalysatorsystem nach Anspruch 3, erhältlich durch Inkontaktbringen mindestens einer Katalysatorkomponente mit mindestens einer organischen Bor- und/oder mindestens einer organische Aluminium- und/oder mindestens einer organische Zinnverbindung.
- 5. Katalysatorsystem nach Anspruch 3 oder 4, enthaltend mindestens einen anorganischen und/oder organischen Träger.
- 6. Polymer und/oder Copolymer, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- Polymer und/oder Copolymer von 1-Alkenen und Vinylaromaten, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- 8. Syndiotaktisches Polymer, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- Syndiotaktisches Polystyrol, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- Verfahren zur Polymerisation und/oder Copolymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- Verfahren nach Anspruch 10 zur Polymerisation und/oder
 Copolymerisation von 1-Alkenen und Vinylaromaten.
- 12. Verfahren nach Anspruch 10 oder 11 zur Polymerisation von Styrol zu syndiotaktischem Polystyrol.

13. Verwendung eines Katalysatorsystems zur Herstellung eines Polymers und/oder Copolymers, besonders zur Polymerisation und/oder Copolymerisation von 1-Alkenen und Vinylaromaten, ganz besonders zur Polymerisation von Styrol.

I Application No PCT/EP 96/03563

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C08F4/642 C08F12/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category °	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE,A,43 32 009 (HOECHST AG) 30 March 1995 cited in the application	1-8,10, 13
	see the whole document	
X	EP,A,O 200 351 (MITSUI PETROCHEMICAL IND) 5 November 1986	1-8,10, 13
	see claims and page 10, lines 1 and 14	
X	EP,A,0 283 739 (CHISSO CORP ;INST PHYSICAL & CHEM RES (JP)) 28 September 1988	1-8,10, 13
	see claims and page 7, lines 14-15	
P,X	EP,A,O 705 849 (IDEMITSU KOSAN CO) 10 April 1996	1-8,10, 13
	see claims and page 3, lines 47-48 and 50	
	-/	

Control of the section of box C	Patent family members are listed in annex.
X Further documents are listed in the continuation of box C.	
* Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international	T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention X' document of particular relevance; the claimed invention
filing date If document which may throw doubts on priority claim(s) or	involve an inventive step when the document is taken alone
which is cited to establish the publication date of another citation or other special reason (as specified)	'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document.
O' document referring to an oral disclosure, use, exhibition or other means	ments, such combination being obvious to a person same in the art.
'P' document published prior to the international filing date but later than the priority date claimed	'&' document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
19 November 1996	12.12.96
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Mergoni, M

Form PCT/ISA/218 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/EP 96/03563

C.(Continuat	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	6/03563	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	···	Relevant to claim No.
x	EP,A,0 210 615 (IDEMITSU KOSAN CO) 4 February 1987 cited in the application see claims		8,9
·			
×T766 A	(continuation of second sheet) (July 1992)		

INTERNATIONAL SEARCH REPORT

ormation on patent family members

PCT/EP 96/03563

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE-A-4332009	30-03-95	NONE	
EP-A-0200351	05-11-86	JP-B- 2500262 JP-A- 61221207 JP-B- 6000821 JP-A- 62121710 CA-A- 1263498 US-A- 4704491	29-05-96 01-10-86 05-01-94 03-06-87 28-11-89 03-11-87
EP-A-0283739	28-09-88	JP-B- 6062642 JP-A- 63222177 JP-B- 6062643 JP-A- 63222178 JP-B- 6062644 JP-A- 63222179 JP-B- 7094500 JP-A- 63234005 JP-B- 7103185 JP-A- 63235309 DE-D- 3853692 DE-T- 3853692 US-A- 4874880	17-08-94 16-09-88 17-08-94 16-09-88 17-08-94 16-09-88 11-10-95 29-09-88 08-11-95 30-09-88 08-06-95 19-10-95 17-10-89
EP-A-0705849	10-04-96	CA-A- 2164968 WO-A- 9429356	22-12-94 22-12-94
EP-A-0210615	04-02-87	CA-A- 1276748 US-A- 5502133 US-A- 5189125 JP-C- 1726902 JP-B- 3007685 JP-A- 62104818	20-11-90 26-03-96 23-02-93 19-01-93 04-02-91 15-05-87

Form PCT/ISA/210 (patent family annex) (July 1992)

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C08F4/642 C08F12/08

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 6 \ C08F$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegniffe)

C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	DE,A,43 32 009 (HOECHST AG) 30.März 1995 in der Anmeldung erwähnt siehe das ganze Dokument	1-8,10, 13
X	EP,A,O 200 351 (MITSUI PETROCHEMICAL IND) 5.November 1986 siehe Ansprüche und Seite 10, Zeilen 1 und 14	1-8,10, 13
X	EP,A,O 283 739 (CHISSO CORP; INST PHYSICAL & CHEM RES (JP)) 28.September 1988 siehe Ansprüche und Seite 7, Zeilen 14-15	1-8,10, 13
P,X	EP,A,O 705 849 (IDEMITSU KOSAN CO) 10.April 1996 siehe Ansprüche und Sete 3, Zeilen 47-48 und 50/	1-8,10, 13

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie		
* Besondere Kategorien von angegebenen Veröffentlichungen :	'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatur oder dem Prioritätsdatum veröffentlicht worden ist und mit der		
"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden		
"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Theorie angegeben ist		
'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer	"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden		
anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)	'Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen		
"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist		
"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	** Veröffentlichung, die Mitglied derselben Patentfamilie ist		
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts		
19.November 1996	12.12.96		
Name und Postanschrift der Internationale Recherchenbehörde	Bevollmächtigter Bediensteter		
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Mergoni, M		

Formblett PCT/ISA/210 (Blatt 2) (Juli 1992)

2

Categorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
(EP,A,O 210 615 (IDEMITSU KOSAN CO) 4. Februar 1987 in der Anmeldung erwähnt siehe Ansprüche,	8,9

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

2

INTERNATIONALER CHERCHENBERICHT

Angaoen zu veroitenuichung..., die zur seiden Patenuamitie genoren

Interna Aktenzeichen
PCT/EP 96/03563

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE-A-4332009	30-03-95	KEINE	
EP-A-0200351	05-11-86	JP-B- 2500262 JP-A- 61221207 JP-B- 6000821 JP-A- 62121710 CA-A- 1263498 US-A- 4704491	29-05-96 01-10-86 05-01-94 03-06-87 28-11-89 03-11-87
EP-A-0283739	28-09-88	JP-B- 6062642 JP-A- 63222177 JP-B- 6062643 JP-A- 63222178 JP-B- 6062644 JP-A- 63222179 JP-B- 7094500 JP-A- 63234005 JP-B- 7103185 JP-A- 63235309 DE-D- 3853692 DE-T- 3853692 US-A- 4874880	17-08-94 16-09-88 17-08-94 16-09-88 17-08-94 16-09-88 11-10-95 29-09-88 08-11-95 30-09-88 08-06-95 19-10-95 17-10-89
EP-A-0705849	10-04-96	CA-A- 2164968 WO-A- 9429356	22-12-94 22-12-94
EP-A-0210615	04-02-87	CA-A- 1276748 US-A- 5502133 US-A- 5189125 JP-C- 1726902 JP-B- 3007685 JP-A- 62104818	20-11-90 26-03-96 23-02-93 19-01-93 04-02-91 15-05-87

