

Rewards Prediction-Based Credit Assignment for Reinforcement Learning With Sparse Binary Rewards ——hoho

论文试图解决什么问题?

credit assignment 问题

这是否是一个新的问题?

否

这篇文章要验证一个什么科学假设?

只要识别出哪个动作是关键动作(key-action),还有其前后的相邻关键动作(adjacent-key-actions),然后将adjacent-key-actions也赋予奖励,则采样效率和模型收敛速度也 会加快

有哪些相关研究?如何**归类?谁是这一课题在领域内值得关注的研究** 员?

hoho_todo

论文中提到的解决方案之关键是什么?

核心:搭建额外的模型来预测每一步的奖励,识别出key-action。

总体流程如下图:

FIGURE 1. Process flow of the proposed method.

具体流程:

- 1. 用off-policy方式,agent与环境交互,生成回合数据 $(s_{t-1},g,a_{t-1},r_{t-1}^o,s_t)$,g表示任务最后的目标
- 2. 使用1的数据进行奖励预测:
 - 2.1 预测模型的输入数据与标签构建:
 - 输入为: (a_t, g, s_t)
 - 标签构建:

定义一个超参p:预测奖励的时间步长度,即基于当前时间步,要预测接下来 多长的时间步 converted reward:本文以二分奖励为例(失败奖励为-1,成功奖励为0),将原来的reward为-1的转为0,原来为0的转为1

extended reward:对最后一步而言,因为要预测p步,所以最后一步之后的p步的奖励赋值为跟最后一步的奖励相同

FIGURE 4. Framework for supervised learning of rewards prediction model.

2.2 奖励的预测:

以下的每一行表示每一步对之后p步的奖励预测:

P_{t,r_e} 表示基于第t步预测的第e步的奖励

3. key-actions识别

基于以下规则进行对前后奖励计算差分(这同一列中进行):

$$\Delta P_{t,r_i} = \begin{cases} 0, & \text{if } P_{t-1,r_i} \text{ does not exist} \\ P_{t,r_i} - P_{t-1,r_i}, & \text{if } P_{t-1,r_i} \text{ exists} \end{cases}$$

因为奖励变化大的地方极有可能跟关键奖励相关(Since abrupt change of the predicted rewards according to input over timesteps is our concern)

于是得到如下统计数据:

取出差分值大的时间步(以上红框)对应的action作为候选key-actions:

Key action							
Action	a_0	a_1	a_2	a_3	a_4	a_5	a_6
Nomination frequency	0	0	2	0	1	0	0

统计候选action的频次,可选频次大的为key-action(本文选两个频次最大的actions 作为key-actions)

4. credit assignment

本文采用两种CA策略:

• CA_1: 分配key-action之前的action为adjacent-key-action

	Adjacent-ke	y-actions	Key-action				
a_t	a_0	a_1	a_2	a_3	a_4	a_5	a_6
$r_t^{\ o}$	r_f	r_f	r_f	r_f	$r_{\rm s}$	$r_{\rm s}$	$r_{\rm s}$
$r_t{'}$	R_2	R_1	R_0	r_f	$r_{\rm s}$	$r_{\rm s}$	$r_{\rm s}$
	Distrib	ution ler	ngth D				

(a) CA_1 strategy with symbols

a_{t}	a_0	a_1	a_2	a_3	a_4	a_5	a_6
$r_t^{\ o}$	-1	-1	-1	-1	0	0	0
$r_t{'}$	$-\frac{2}{3}$	$-\frac{1}{3}$	0	-1	0	0	0

(b) CA_1 strategy with numbers

FIGURE 7. Credit assignment strategy CA_1.

R_i 的计算方法:

$$R_i = r_s + \left(\frac{r_f - r_s}{D}\right)i,$$

 r_f 为原来的失败奖励值, r_s 为原来的成功的奖励值(图b为例子)

• CA_2:分配key-action和首次获得成功奖励的action之间的步骤为adjacent-key-action

(a) CA_2 strategy with symbols

(b) CA_2 strategy with numbers

FIGURE 8. Credit assignment strategy CA_2.

key-action和adjacent-key-actions都赋予成功的奖励值。

论文中的实验是如何设计的?

设计了Fetch push(机器人推箱子到目的地)和Fethc slide(机器人滑动撞击滑块到目标点)实验

用于定量评估的数据集是什么?代码有没有开源?

都无

论文中的实验及结果有没有很好地支持需要验证的科学假设?

CA_1和CA_2收敛都比普通的DDPG+HER方法快

FIGURE 10. Success rate obtained by proposed method and DDPG+HER for the Fetch push task. Results show that proposed method achieves similar performance to that of DDPG+HER over 200 epochs. Success rates of CA_1 strategy, CA_2 strategy, DDPG+HER are 100%, 98%, 98%, respectively. It is seen that CA_1 strategy converges faster as compared to others.

CA_1和CA_2最后的Q值都和普通的DDPG+HER几乎一样

FIGURE 11. Variation of mean Q value during training with DDPG+HER and proposed method (CA_1 and CA_2 strategies) for the Fetch push task. At epoch index 200, the mean Q value is approximately -2 with DDPG+HER and proposed method. It is seen that CA_1 and CA_2 strategies converge to the optimum mean Q value -2 faster, which means more efficient exploration during training.

至于成功率CA 1较高

TABLE 1. Comparison between the proposed method and DDPG+HER for the Fetch push task.

Algorithm	Push succ %
DDPG+HER CA_1 strategy CA_2 strategy	97.67% ± 1.5% 99.17% ± 0.15% 88.83% ± 7.25%

FIGURE 12. Success rate obtained by proposed method and DDPG+HER for Fetch slide task. Results show that the proposed method achieves similar performance to that of DDPG+HER over 200 epochs. Success rates of CA_2 strategy, CA_1 strategy, DDPG+HER are 62%, 60%, 57%, respectively. This success rate accounts for the Fetch slide task in near zone as well, which conceals higher success rate in far zone with the CA_2 strategy. The higher success rate in far zone is referred to Fig. 14.

这篇论文到底有什么贡献?

hoho todo

下一步呢?有什么工作可以继续深入?

hoho_todo