VLANs

Virtual Local Area Networks — VLANs

- One of the most common managed-switch feature.
- Allows the creation of many separate LAN networks on the same physical infrastructure.
- One VLAN one broadcast domain.
- A relatively simple task on a single switch
 - a complex one in a multi-switch system.

Port-based Virtual LANs

VLANs – the connection problem

With the number of switches scale problem arises

Single link to send multiple VLANs

Single link multiple VLANs solutions

- Time-based division of link bandwidth
- ISL Cisco proprietary concept of adding tags to frames
- IEEE 802.1Q standard for frame tagging

Switching matrix

output port

		1	2	3	4	5	6	7	8	9	10
Input port	1	0	1	1							
	2	1	0	1							
	3	1	1	0							
	4				0	1	1				
	5				1	0	1				
	6				1	1	0				
	7							0	1	1	1
	8							1	0	1	1
	9							1	1	0	1
	10							1	1	1	0

VLAN tagging

- IEEE 802.1Q standard
- tags are added to each transmitted frame
- tagged frames are longer by 4 bytes (2x2 bytes)
- the tag contains VLAN ID (number) allowing to identify which broadcast domain (VLAN) a frame belongs
- the maximum of 4096 VLAN IDs (12 bits numbering) can be carried in the tag

VLAN tag

Typical configuration of VLANs on switches

- Multiple distinct broadcast domains
 - following logical enterprise structure,
 - following geographical structure,
- in any case total broadcast traffic volume is significantly reduced.
- Three types of VLAN links/ports:
 - access port no tags, typical workstation port,
 - trunk port all frames tagged, typically connects two switches,
 - general/hybrid port multiple tagged VLANs and a SINGLE VLAN untagged.
- Native VLAN the only untagged VLAN on port:
 - If untagged frame arrives on port it is assigned to a Native VLAN.
 - If a frame from a Native VLAN is to be sent on (non-trunk) port it will be sent without a tag.
- Untagged traffic may be assigned to just one VLAN.

Frame tagging

- Property of a port for specified VLAN.
- Switching inside VLAN occurs on the same manner as inside a separate, physical switch.

Example VLAN configuration

Example VLAN configuration

Example port configurations

• Example configurations from real-life switches:

Trunk port configured to support VLANs 10, 20, 30, 181

interface te1/0/2
switchport mode trunk
switchport trunk allowed vlan add 10,20,30,181 tagged

Access port configured as belonging to VLAN 10

interface Gi1/0/14
switchport access vlan 10

VLAN 20 configured to span a list of ports

interface Vlan 20
no ip address
tagged TenGigabitEthernet 0/2-5,9,11-12

Q-in-Q tagging

- IEEE 802.1ad standard amendment
- Allows multiple tags to be added to Ethernet frames
- Each new tag encapsulates all previous tags and payload

Private VLANs

- Promiscuous port (P-Port) can communicate with any other port
- Isolated port (I-Port) can communicate only with P-Ports
- Community port (C-Port) can communicate with C-Ports in the same community and with P-Ports

High-availability: link aggregation

Link aggregation

- IEEE 802.3ad standard amendment
- Allows to aggregate Ethernet links into a composite one called LAG – Link Aggregation Group
- Provides resiliency to link failures
 - in case of e.g. four aggregated links up to three may fail and the link still remains accessible

Link aggregation

- Provides load balancing
 - the throughput of LAG is equal to sum of throughputs of aggregated links: 4 links of 1 Gbps may offer up to 4 Gbps,
 - preserves packet order,
 - depends on MAC address pairs of traffic flows.
- LAG is a point-to-point link the group cannot span devices.

Link Aggregation Control Protocol (LACP)

- Link parameters on both devices have to match:
 - speed and duplex,
 - VLAN configuration.
- Different physical medium links can be aggregated copper and fiber.

LACP can be used to negotiate configuration.

S1	S2	Channel Establishment			
On	On	Yes			
Active/Passive	Active	Yes			
On/Active/Passive	Not Configured	No			
On	Active	No			
Passive/On	Passive	No			

LAG – frame ordering

- LAG preserves frame order
- Frames between MAC-pairs are being sent over the same physical links

Additional switch functions

- Statistics monitoring
 - a number of standards in use, mainly Simple Network Management Protocol (SNMP).
- Port-mirroring (SPAN, Switch Port Analyzer)
 - allows configurable traffic forwarding to an analysis device.
- Test Access Point (TAP)
 - forwards L1 or L2 traffic to an analysis device.

