

Projet de robotique

Cahier des charges

Intelligence Artificielle L3 MIASHS

2024-2025

Projet réalisé par:

Yassmina CHERQAOUI Zoé LAGET-THOMAS Narta NEZIRAJ Basak UNAL

Sous la supervision de :

M. Damien Pellier

SOMMAIRE

1. Introduction	
Contexte	
2. Description de la demande	
Objectifs	
Produits du Projet	
Fonctions du Produit	
États d'Erreur et d'Ajustement	
3. Contraintes et Risques	
Contraintes	6
Plan de mitigation	6
4. Déroulement du projet	
Ressources	

1. Introduction

1.1 Contexte

Ce projet est entrepris dans le cadre du cours complémentaire "L'introduction à l'intelligence artificielle" enseigné par M. Damien Pellier à l'Université Grenoble Alpes au sein du parcours L3 MIASHS. Les étudiants sont chargés de concevoir et de construire le programme d'un robot EV3 LeJOS en Lego. Le robot doit naviguer dans un espace délimité et clôturé par des murs en verre, en évitant les autres robots, et en collectant des palettes. Ce défi met notre groupe en compétition avec un autre, où le vainqueur est déterminé par le nombre de palettes collectées dans le temps le plus court possible.

2. Description de la demande

2.1 Objectifs

- Développer un robot capable de reconnaître et de manipuler des palettes, et d'éviter les obstacles (mur, robot), naviguer efficacement.
- Utiliser des algorithmes d'intelligence artificielle pour optimiser la collecte des palettes en prenant en compte les actions de l'autre robot.
- Programmer le robot en Java sur la plateforme EV3 LeJOS, en intégrant capteurs et moteurs, etc.

2.2 Produits du Projet

- Un logiciel en Java utilisant la plateforme EV3 LeJOS pour contrôler les capteurs, moteurs et algorithmes d'IA.
- Un rapport documentant les méthodes, résultats et performances du robot.

2.3 Fonctions du Produit

Fonction	Description
1. Robot à l'arrêt	Le robot est en attente du signal de départ, initialisation des capteurs et des moteurs.
2. Démarrage de la Partie	Le robot avance en ligne droite tout en ouvrant les pinces pour récupérer le palet se trouvant devant lui. Une fois que le palet est détecté par le capteur Touch, il passe à l'état suivant. Transition: Le robot passe à l'état suivant : Saisir le Palet après avoir détecté le palet avec le capteur Touch.
3. Saisir le Premier Palet	Le robot ferme ses pinces pour saisir le premier palet en début de partie. Une fois le palet sécurisé dans les pinces, le robot passe à l'étape suivante. Transition: Une fois le palet saisi, le robot passe à l'état suivant : Se Décaler.
4. Se Décaler pour Éviter les Obstacles	Le robot se décale sur la droite ou la gauche, selon sa position initiale, pour éviter les palets se trouvant sur son chemin. Ensuite, il se remet dans la bonne direction pour atteindre la ligne d'en-but adverse. Transition: Le robot passe à l'état suivant : Avancer vers la Ligne Blanche.
5.Avancer vers la Ligne Blanche	Le robot avance en ligne droite jusqu'à détecter la ligne blanche avec ses capteurs. Une fois la ligne blanche détectée, le robot se prépare à déposer le palet. Transition: Une fois la ligne blanche détectée, le robot passe à l'état suivant : Déposer le Palet.
6.Déposer le Palet	Le robot relâche le palet en ouvrant les pinces, marquant ainsi la fin de cette phase de dépôt.

	Transition : Une fois le palet déposé, le robot passe à l'état suivant : Ajuster sa Position.	
7.Ajuster sa Position	Le robot effectue un balayage pour détecter la distance la plus proche par rapport au mur. Ensuite, il ajuste sa rotation pour se réaligner avec un angle droit par rapport au mur. Transition: Une fois le positionnement terminé, le robot passe à l'état suivant : Se Positionner pour le Prochain Palet.	
8. Se Positionner pour le Prochain Palet	Le robot se place face au mur derrière la ligne d'en-but adverse, effectue une rotation selon l'angle approprié pour se diriger vers le point suivant du parcours, puis avance d'une distance prédéterminée. Il s'assure ainsi qu'il est suffisamment éloigné des palets pour faciliter la détection avec le capteur ultrason. Transition: Une fois la distance parcourue, le robot passe à l'état suivant : Recherche de Palet.	
9. Recherche de Palet	Le robot effectue une rotation à 360° avec son capteur ultrason pour vérifier la présence d'un palet proche de ce point, en comparant les distances mesurées avec une distance maximale définie. Transition: -Si un palet est détecté, le robot passe à l'état suivant : Approcher du Palet. -Si aucun palet n'est détecté, le robot retourne à l'état précédent : Se Positionner pour le Prochain Palet pour se repositionner sur le prochain point du circuit.	

10. Approcher du Palet	Le robot avance vers le palet détecté en ajustant légèrement sa trajectoire et en gardant ses pinces ouvertes, prêt à saisir le palet. Il avance d'une distance légèrement supérieure à celle mesurée par le capteur ultrason pour garantir qu'il touche le palet. Transition: -Si le palet est touché, le robot passe à l'état suivant : Saisir le Palet. -Si le palet n'est pas touché, le robot passe à l'état suivant : Ajuster sa Position.
11. Ajuster sa Position	Si le palet n'a pas été touché lors de la première tentative, le robot avance légèrement pour ajuster sa position et tenter à nouveau de saisir le palet. Transition: -Si le palet est touché, il passe à l'état suivant : Saisir le Palet. -Si le palet n'est toujours pas touché, le robot passe à l'état suivant : Palet Non Touché.
12. Retenter de Saisir le Palet	Si le robot n'a pas touché le palet malgré la détection, il tente à nouveau en reculant légèrement pour réajuster sa position avant de recommencer la recherche. Transition: Le robot passe à l'état suivant : Recherche de Palet.
13-Saisir le Palet	Le robot referme ses pinces pour saisir le palet détecté. Transition : Une fois le palet saisi, le robot passe à l'état suivant : Se Réorienter vers la Ligne Blanche.

14. Se Réorienter vers la Ligne Blanche	Le robot se réoriente pour aligner sa trajectoire en direction de la ligne d'en-but adverse, afin d'y déposer	
	le palet.	
	Transition: Une fois correctement orienté, le robot	
	passe à l'état suivant : Avancer vers la Ligne Blanche.	

-États d'Erreur et d'Ajustement

État d'Erreur	Condition	Action	Transition
1.Palet non Touché	Si le robot échoue à saisir un palet après plusieurs tentatives.	Le robot recule d'une petite distance et tente à nouveau de saisir le palet ou revient à l'état de recherche pour détecter un nouveau palet.	Retour à l'état Recherche de Palet.
2. Éviter Obstacle (EviterObstacle)	Si l'obstacle est un autre palet et que le robot a déjà un palet : Le robot ne peut pas prendre ce palet.	Le robot évite le palet et ajuste sa trajectoire pour se diriger vers la ligne blanche.	Le robot continue vers Avancer vers la Ligne Blanche pour déposer le palet qu'il transporte.
	Si l'obstacle est un autre robot : Le robot attend ou change de cible.	Le robot choisit une nouvelle cible ou attend que l'autre robot bouge.	Si le robot attend : Retour à l'état précédent, comme Recherche de Palet ou Avancer vers la Ligne Blanche, une fois l'autre robot parti. Si le robot change de cible : Retour à Recherche de Palet pour

			trouver un autre palet cible.
	Si l'obstacle est un mur : Le robot ne peut pas atteindre le palet.	Le robot doit recalculer un chemin.	Retour à Recalculer le Chemin pour trouver une nouvelle trajectoire contournant l'obstacle.
2. Recalculer le Chemin	Le chemin planifié est bloqué ou impossible à suivre.	Le robot recalcule un nouveau chemin en fonction de la nouvelle disposition des obstacles.	Retour à Planification Vers le Palet ou Se Réorienter selon la situation.

3. Contraintes et Risques

Contraintes	Description	
Temporelle (délai)	Le projet doit être achevé avant la fin décembre, imposant une gestion	
	rigoureuse du temps et des échéances.	
Imprévus techniques	Des imprévus sont attendus lors des phases de test, liés à la précision des	
	capteurs et l'efficacité des algorithmes de navigation.	
Capacité d'adaptation	Le projet nécessite une grande réactivité pour résoudre les problèmes	
	techniques et ajuster rapidement les solutions face aux défis rencontrés.	
Ressources matérielles	Le développement est limité aux composants du kit LEGO EV3, ce qui	
	implique des restrictions sur la puissance des moteurs et la portée des capteurs.	
Précision des actions	Le robot doit exécuter des tâches avec précision, dans le respect des règles* du	
	jeu, notamment dans la reconnaissance et la manipulation des palettes,	
	nécessitant des capteurs calibrés.	

Risque	Possibilité	Impact	Description	Plan de mitigation
Retard sur les délais	Moyenne	Élevé	Des imprévus techniques ou une mauvaise gestion du temps pourraient entraîner des retards.	Mise en place d'un planning détaillé avec des jalons intermédiaires. Révision hebdomadaire de l'avancement et ajustement des priorités si nécessaire.
Problèmes de précision des capteurs	Élevée	Élevé	Les capteurs peuvent manquer de précision, affectant la détection des palettes ou des obstacles.	Effectuer des tests réguliers de calibration des capteurs et ajuster les algorithmes de détection pour améliorer la fiabilité.
Défaillance des algorithmes de navigation	Moyenne	Moyen	Les algorithmes de navigation pourraient ne pas gérer correctement les obstacles ou les chemins complexes.	Itérer et tester les algorithmes en continu, intégrer des solutions de secours pour gérer les situations imprévues.
Pannes matérielles (capteurs, moteurs, etc.)	Faible	Moyen	Des pannes de capteurs ou moteurs peuvent ralentir le projet ou rendre le robot non fonctionnel.	Solliciter M. Pellier pour avoir des composants de rechange et prévoir des tests matériels réguliers pour identifier les défaillances à temps.
Manque d'adaptation face aux imprévus	Moyenne	Élevé	Des imprévus techniques peuvent survenir, nécessitant des ajustements rapides.	Prévoir du temps dans le planning pour la gestion des imprévus et renforcer la collaboration dans l'équipe pour résoudre les problèmes en groupe.

Complexité	Moyenne	Élevé	L'implémentation	Commencer par des solutions
des			d'algorithmes d'IA	simples, puis ajouter des
algorithmes			complexes pourrait ralentir le	couches d'intelligence au fur et
d'IA			développement et poser des	à mesure de l'avancement, en
			défis.	évitant les algorithmes trop
				complexes dès le départ.
Surcharge de	Moyenne	Moyen	La charge de travail pourrait	Répartition équitable des tâches
travail			dépasser les capacités de	dans l'équipe et suivi régulier
			l'équipe, entraînant une	de l'état de charge des membres
			baisse de qualité.	pour éviter les surcharges.

^{*}https://lig-membres.imag.fr/PPerso/membres/pellier/doku.php?id=teaching:ia:project_lego#le_rapport_du_proje

4. Déroulement du projet

4.1 Ressources

Humaines	Matérielles	Intellectuelles
- 4 étudiantes	-Robot Lego EV3	-Support de cours
-1 professeur encadrant	-Ordinateurs	-Ressources en ligne (Github, tutos, Lejos etc)

4.2 Planification

