デザイン言語ワークショップ (電子工作)

第2回 2017 / 10 / 2

講師:山岡潤一

スライドURL: https://tinyurl.com/y9or6rsm

本日の流れ

- 1. フィジカルコンピューティングについて
- 2. Arduino導入
- 3. デジタル入出力、アナログ入出力 LEDとスイッチを使用
- 4. 応用編、色々なセンサやアクチュエータの紹介

ArduinoIDEの準備

Arduino IDE: プログラミングをするツール

- IDEとは統合開発環境のこと

(Integrated Development Environment)

•Arduinoの公式サイトからダウンロ ード(http://www.arduino.cc/)

■Windowsの場合マイコンが認識されない場合がある

コントロールパネル \rightarrow デバイスマネージャー \rightarrow ほかのデバイスの下にある **不明なデバイス**を右クリック \rightarrow ドライバーソフトウェアの更新 \rightarrow コンピューターを参照して~を選択 \rightarrow 「参照」をクリックして Arduinoフォルダの中の driversを選択 \rightarrow 次へ

でドライバーをインストールします。

デバイスマネージャーのポートの下に Arduino UNOが表示されていれば完了です。

Fritzingの準備

回路設計を行うソフトウェア。

http://fritzing.org/download/

フィジカルコンピューティング

コンピュータにさまざまな入出力デバイスをつないで. 実世界との物理的な やりとりを実現する方法

フィジカルコンピューティング

Arduinoとは

初心者でも簡単に扱えるマイコンボード

(micro-controller board)

電気を制御するプログラムを書き込める

PCとの通信もできる

電池をつなげば単体で動作する

プログラムはjava言語

フィジカルコンピューティング

何が出来るか

- ・タッチセンサの値に応じてLEDを光らせる
- ・リモコンでコントロール するラジコン
- ・水温をネット上にアップしていくデバイス

まずはLEDを光らせてみよう

ブレッドボード

ブレッドボード パーツやワイヤを挿して電子回路を作れる道具 内部に金具が入っていて **列単位**でつながっている

まずはLEDを光らせてみよう

電流、電圧、抵抗の関係

電流の流れは水の流れに例えられる。

水路の落差→電圧 水車→電気抵抗 1秒間に流れる水の量→電流

電圧と電流の関係

落差(電圧)が大きいほど、1秒間に流れる水の量(電流)が多くなる。

抵抗と電流の関係

水車(抵抗)が小さいほど、1秒間に流れる水の量(電流)が多くなる

抵抗

抵抗の読み方

- ·100Ω抵抗(茶黒茶金)
- ·10kΩ抵抗(茶黑橙金)

カラー抵抗値の写真早読み表 http://part.freelab.jp/s regi list.html

直列抵抗

合成抵抗 R = $100[\Omega] + 150[\Omega] = 250[\Omega]$

並列抵抗

合成抵抗 R =
$$\frac{1}{\frac{1}{100[\Omega]} + \frac{1}{150[\Omega]}}$$

= $\frac{1}{0.01 + 0.0066} = \frac{1}{0.0166}$
= $60[\Omega]$

抵抗の選び方

■Electrical -Optical Characteristics

(Ta=25℃)

Item	Symbol	Condition	Min	Тур	Max	Unit
DC Forward Voltage	$V_{\rm F}$	I _F =20mA	1.8	2.0	2.4	v
DC Reverse Current	I _R	V _R =5V	2	((<u>4</u>))	10	μА
Domi. Wavelength	λ_{D}	I _F =20mA	565	570	575	nm
Luminous Intensity	Iv	I _F =20mA	-	500	12	mcd
50% Power Angle	201/2	I _F =20mA	2	15	2	deg

電位差 3[V]

= 合成抵抗 R × 電流 0.020[A]

LED抵抗值計算

http://diy.tommy-bright.com/

スイッチとLED

タクトスイッチ

スイッチとLED

fritzina

プログラムと電子回路

プログラムで電子回路を操るとはどういうことか?

- -【電圧を読み取る】
 - センサで計測される物理量は電圧で表現される
- -【電圧を変える】
- LEDやモータを駆動するときの指令値も電圧で表現される
- これら2つの実行手順をプログラムによって記述する

デジタル情報の表現

- コンピュータの世界では「0」と「1」で表現される
- 電子回路の世界では「LOW (0V)」と「HIGH (5V)」で表現 される

ArduinoIDEの準備

Arduino IDE: プログラミングをするツール

- IDEとは統合開発環境のこと

(Integrated Development Environment)

•Arduinoの公式サイトからダウンロ ード(http://www.arduino.cc/)

■Windowsの場合マイコンが認識されない場合がある

コントロールパネル \rightarrow デバイスマネージャー \rightarrow ほかのデバイスの下にある **不明なデバイス**を右クリック \rightarrow ドライバーソフトウェアの更新 \rightarrow コンピューターを参照して~を選択 \rightarrow 「参照」をクリックして Arduinoフォルダの中の driversを選択 \rightarrow 次へ

でドライバーをインストールします。

デバイスマネージャーのポートの下に Arduino UNOが表示されていれば完了です。

- ・USBケーブルで ArduinoとPCを接続
- ・マイコンボード選択 Tools → Board →
 - **Arduino Uno**

・シリアルポート選択
Tools → Port →
【Macの場合】
/dev/cu.usbmodem~
【Windowsの場合】
COM~

スケッチの選択

File → Examples → 01.Basics → **Blink**

マイコンボードに書き込む

イコンのLEDが点滅します

LED点滅(通称:Lチカ、最初にやることの定番)

<u>digitalWrite</u>

digitalWrite(ピン,HIGH);

あるいは

digitalWrite(ピン,LOW)

回路図

電池がArduinoに置き換わったと 考えれば良い

つなぎ方(配線)

- ・LEDの向きに注意(LEDが壊れる)
- ・部品を指すときは 必ずUSBを抜いてから指す

Arduino ブレッドボード ジャンパワイヤ2本 LED1個 100Ω抵抗(茶黒茶金)

Arduinoのピンの説明

【2】~【13】 デジタル入出力端子

プログラムで入力電圧を読みとったり、 出力電圧を変えることが できる

【A0】~【A5】アナログ入力端子

入力電圧を1024段階読で読み取る

[5V]

5Vの電圧が常時出力されている。電源のプラス端子に相当

[GND]

グラウンドと読む(groundの略)。 電源のマイナス端子(OV)に相当。 3つあるが、**どれにつないでも同じ**。

Blinkの解説

// や /* */ で囲まれている部分は無視されます(コメントアウト)

```
// セットアップ関数 起動の1回だけ呼ばれる
void setup() {
 pinMode(13, OUTPUT); // ピンモードの設定 13番を出力するのでOUTPUT
}
```

```
// ループ関数 何度も繰り返して呼ばれる
void loop() {
  digitalWrite(13, HIGH); // 13番をHIGH(5V)にする
  delay(1000); // 1秒待つ
  digitalWrite(13, LOW); // 13番をLOW(0V)にする
  delay(1000); // 1秒待つ
}
```

変数 int 値に名前を付けてまとめることができる。まとめて値を変えたいときに便利

```
int led = 13; //ピンの番号を宣言

void setup() {
  pinMode(led, OUTPUT);
}

void loop() {
  digitalWrite(led, HIGH);
  delay(1000);
  digitalWrite(led, LOW);
  delay(1000);
}
```

Blinkプログラム解説

```
int led = 13;
void setup() {
  pinMode(led, OUTPUT);
}

void loop() {
  digitalWrite(led, HIGH); // 13番をHIGH(5V)にする
  delay(1000); // 1秒待つ
  digitalWrite(led, LOW); // 13番をLOW(0V)にする
  delay(1000); // 1秒待つ
  (~~~~)
```

delayの値を変えてみて、明滅のタイミングを変えてみよう

また(~~~)の部分にdigitalWriteとdelayを追加して複雑な明滅を作ってみる。

アナログ出力:PWM出力

LEDの明るさを自由に変える PWM (Pulse Width Modulation) <u>analogWrite</u>

原理

点灯する時間でLEDの明るさを調整する

アナログ出力:PWM出力

```
任意の明るさに変えてみよう
(アナログ出力の時はpinModeの指定はしなくていい)
int ledPin = 9;
void setup() {
void loop() {
 analogWrite(ledPin,???); // 0~255の間の数値を入れる
```

プログラミング:for文

for(){ } の間は任意の回数繰り返すことができる。

```
例:
for(<u>int i = 0; i < 10; i++</u>){
    digitalWrite(13,HIGH);
}
```

<u>整数i の初期数値は0; iが10になる前まで繰り返す; iに1を足していく</u> つまりdigitalWrite(13,HIGH);を10回繰り返す

アナログ出力:PWM出力

<u>Fading</u>の解説 (delayを変えると速度が変わる)

```
fadeValueが0から255になるまで5ずつ足していく。
for(int fadeValue = 0; fadeValue <= 255; fadeValue +=5) {
  analogWrite(ledPin, fadeValue); //fadeValueの値をアナログ出力
  delay(30);
fadeValueが255から0になるまで5ずつ引いていく。
 for(int fadeValue = 255; fadeValue >= 0; fadeValue -=5) {
  analogWrite(ledPin, fadeValue);
  delay(30);
```

デジタル入力:スイッチをつける

スイッチを押すと、LEDが光るようにする digitalRead

スイッチの配線

タクトスイッチ 10kΩ抵抗(茶黒橙金) 330Ω(LED) ジャンパワイヤ3本

ここで使われる抵抗はプルダウン抵抗 信号を確実に伝える為に取り付ける スイッチを押していない間はLOW

プルダウン抵抗

スイッチ押されてない時

押されている時

プログラム:if文

```
ifは条件分岐
・もしAとBが一緒だったらCを実行
 if(A == B){
•その他
 if(A > B) もしAがBより大きかったら
if(A != B) もしAとBが違ったら
```

プログラム:if文

```
    もしAとBが一緒だったらCを実行、それ以外だったらDを実行 if( A == B){
    C
    }else{
    D
    }
```

スケッチを考えて自分で書いてみよう

2番ピンのデジタル入力値に応じて→9番のLEDを光らせる

```
void setup() {
    pinMode(2, INPUT); // 2番をインプットモードにする
    pinMode(9, OUTPUT); // 9番をアウトプットモードにする
void loop(){
    int value = digitalRead(2); // 変数valueに2番ピンのデジタル入力値を入れる
         if(?? == ??)
              ?????
         }else{
             ?????
```

ヒント

```
void setup() {
    pinMode(2, INPUT); // 2番をインプットモードにする
    pinMode(9,OUTPUT); // 9番をアウトプットモードにする
void loop(){
    int value = digitalRead(2); // 変数valueに2番ピンのデジタル入力値を入れる
    if( value == HIGH ){ // valueがHIGH(5Vだったら)
         ?????
    }else{ // それ以外だったら(valueがLOWだったら)
         ?????
```

答え

```
void setup() {
     pinMode( 2 , INPUT);
     pinMode( 9 , OUTPUT);
void loop(){
     int value = digitalRead(2);
     if( value == HIGH ){
           digitalWrite(9,HIGH);
     }else{
           digitalWrite(9,LOW);
```

解説

```
void setup() {
    pinMode(2, INPUT); // 2番をインプットモードにする
    pinMode(9, OUTPUT); // 9番をアウトプットモードにする
void loop(){
    int value = digitalRead(2); 変数valueに2番ピンのデジタル入力値を入れる
    if( value == HIGH ){ // valueがHIGH(5Vだったら)
    digitalWrite(9,HIGH); // 9番ピンに5V流す
    }else{ // それ以外だったら(valueがLOWだったら)
         digitalWrite(9,LOW); //9番ピンに0V流す
```

鉛筆で可変抵抗を作ってみよう analogRead

http://www.instructables.com/id/Paper-Resistor/?

LSTEPS

→ analogWriteを4で割ることで1024を255段階に変換する

スケッチを考えて書いてみよう アナログピン0番の値に応じて、9番のLEDをアナログ出力で光らせる 使う命令 → analogRead(ピンの番号); void setup() { pinMode(9 , OUTPUT); void loop(){ int value = analogRead(?) / 4; // アナログ入力値を4で割り、変数valueにそれを入れる 77777

・ちなみにanalogReadは0~5∨を0~1024で返すのに対して、analogWriteは0~5∨を0~255で表す

答え

```
void setup() {
    pinMode( 9 , OUTPUT); // 9番をアウトプットモードにする
}
void loop(){
    int value = analogRead(0) / 4; //o番ピンのアナログ入力値を4で割り、変数valueにそれを入れる
    analogWrite(9,value); // 9番ピンにvalue分の電気を流す
}
```

ボリュームを回すと、LEDも合わせて明るくなる <u>analogRead</u>

ボリュームの配線

ボリューム ジャンパワイヤ3本

練習問題1

2個のLEDを使った回路を作って、プログラムで交互に点灯させなさい

(以下は回路例)

配線

LED 2個

100Ω抵抗(茶黒茶金) 2個

ジャンパワイヤ4本

練習問題2

スイッチを3回押したらLEDが光りっぱなしになるプログラムを作りなさい 【ヒント】 状態を保持する変数を作ろう 例:int count = 0;

もしスイッチが押されたら
count(こ1を足す
delay(?); // スイッチを押している間カウントしないように少し待つ

もしcountが3になったら LEDを点ける countを0にする

Fritzingの準備

回路設計を行うソフトウェア。

http://fritzing.org/download/

Fritzing

部品を配置してみよう

電源

To your property of the state of the st

単位

電気定数	記号	読み方	よく使う単位	
電圧	V	ボルト	mV, V	
電流	Α	アンペア	mA, A	
電力	W	ワット	mW, W	
抵抗	Ω	オーム	Ω, kΩ, ΜΩ	
静電容量	F	ファラッド	pF, μF	
周波数	Hz	ヘルツ	Hz, kHz, MHz	

部品のスペックを記したドキュメント

http://akizukidenshi.com/catalog/g/gl-00881/

(1) 絶対最大定格

(Ta=25℃)

項目	記 号	最大定格	単位	
順電流	IF	30	m A	
パルス順電流	I FP	100	m A	
逆電圧	VR	5	V	
許容損失	PD	120	mW	
動作温度	Topr	-30 ∼ + 85	°C	
保存温度	Tstg	-40 ∼ + 100	$^{\circ}$	
半田付け温度	Tsld	265℃ 10sec 以内		

IFP 条件: パルス幅 ≤ 10ms, デューティー比 ≤ 1/10

項	目	記号	条 件	標準	最大	単位
順電圧		VF	I F=20[mA]	(3.6)	4.0	V
逆電流		I R	$V_R = 5[V]$	-	50	μΑ
光度		Ιv	I F=20 [mA]	(18000)) 	m c d
色度座標 *	x	_	I F=20[mA]	0. 31	-	_
	у	-	I F=20[mA]	0. 32	_	_

[※] 色度座標は、CIE 1931 色度図に基づくものとします。

■ 順電圧-順電流特性

■ 周囲温度-順電圧特性

■ 順電流-相対光度特性

■ 周囲温度-相対光度特性

■ デューティー比一許容順電流特性

■ 周囲温度一許容順電流特性

今の状態だと、スイッチを押している間だけ光っている。

・クリックしたらONとOFFを切り替えるには、プログラミング的にどうするか。

sample> digital > statechangedetection

```
const int buttonPin = 2;
const int ledPin = 13;
int buttonPushCounter = 0;
int buttonState = 0;
int lastButtonState = 0;
void setup() {
 pinMode(buttonPin, INPUT);
pinMode(ledPin, OUTPUT);
 Serial.begin(9600);
void loop() {
ButtonState = digitalRead(buttonPin);
 if (buttonState != lastButtonState) {
```

```
if (buttonState == HIGH) {
   buttonPushCounter++;
   Serial.println("on");
   Serial.print("number of button
pushes: ");
Serial.println(buttonPushCounter);
           Serial.println("off");
  else {
  delay(50);
 lastButtonState = buttonState;
 if (buttonPushCounter % 4 == 0) {
  digitalWrite(ledPin, HIGH);
 } else {
  digitalWrite(ledPin, LOW);
```

次回(10/16)

セメダインの導電インクWS

用意するもの:

- ・導電インクを塗ってみたい素材やモノ (プラスチック、フィルム、布など)、
- •絵筆

課題

- 今日の感想