EM THEORY & TRANSMISSION LINES (ECEN 2203)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Croup A

		Group - A	L		
1.	Answ	ver any twelve:	$12 \times 1 = 12$		
	Choose the correct alternative for the following				
	(i)	Solution of propagating wave equation (a) $f(x, y, t) = f(x)f(y)e^{j\omega t}$ (c) $\sin(\omega t)\cos(\beta z)$	(b) $e^{j(\omega t \pm \beta z)}$ (d) only (a) and (b)		
	(ii)	medium 2 (μ_2, ϵ_2) from dielectric m	c obliquely at the surface of a dielectric edium 1 (μ_1, ϵ_1) , the average angle of and θ_c respectively. The total internal $ (b) \epsilon_1 < \epsilon_2, \theta_i < \theta_c $ $ (d) \epsilon_1 > \epsilon_2, \theta_i > \theta_c $		
	(iii)	Calculate the emf of a material having fl (a) 2.5 sin t (c) -5sin t	ux density (5 sin t) in an area of 0.5 units (b) -2.5 cos t (d) 5 cos t		
	(iv)	Effective area of the antenna is (a) $\frac{\lambda^2}{4\pi}g_d$ (c) $\frac{\varepsilon}{4\pi}g_d$	(b) $\frac{\lambda^2}{4\pi}$ (d) $\frac{\lambda^2}{6\pi}g_d$		
	(v)	Brewster's phenomena is observed in (a) TE-polarised wave (c) arbitrary polarization	(b) TM-polarised wave (d) both TE and TM polarized waves		
	(vi)	The electric field component of a $E=10\cos(10^7t+kz)a_y$ V/m. It can be infer (a) The wave propagation direction along			

(b) Electric field direction along az. (c) Electric field direction along a_v.

(d) The wave propagation direction along a_x .

(vii)	For a transmission line terminated by a load, the reflection co-efficient magnitude $ \Gamma $ and the Voltage standing wave ratio S is related as (a) $S = \frac{1}{1+ \Gamma }$ (b) $S = \frac{1}{1- \Gamma }$ (c) $S = \frac{1- \Gamma }{1+ \Gamma }$ (d) $S = \frac{1+ \Gamma }{1- \Gamma }$					
(viii)	A 50Ω transmission line is terminated at a $loadZ_L = 30 + 20j$. The value of standing wave will be (a) 2.82 (b) 2.04 (c) 1.30 (d) 8.01					
(ix)	In a dielectric medium, electromagnetic wave with different wavelength experiences different velocity due to (a) diffraction (b) refraction (c) dispersion (d) all of the above					
(x)	Conditions to be satisfied for a lossless dielectric medium (a) $\sigma \simeq 0, \epsilon = \epsilon_0 \epsilon_r$, $\mu = \mu_0 \mu_r$, or $\sigma \ll \omega \epsilon$ (b) $\sigma = 0, \epsilon = \epsilon_0$, $\mu = \mu_0, \sigma$ $\sigma \ll \omega \epsilon$ (c) $\sigma \neq 0, \epsilon = \epsilon_0 \epsilon_r$, $\mu = \mu_0 \mu_r$, or $\sigma \ll \omega \epsilon$ (d) $\sigma \simeq 0, \epsilon = \epsilon_0 \epsilon_r$, $\mu = \mu_0$, or $\sigma \gg \omega \epsilon$					
Fill in the blanks with the correct word						
(xi)	The radiation resistance of an isolated half-wave dipole is					
(xii)	$1~dB_m$ gain is equivalent to watts of power.					
(xiii)	The differential form of Faraday's law is					
(xiv)	Propagation constant of a lossless transmission line					
(xv)	An antenna located in a city is a source of radio wave. How much time does the					
	transmitted wave take to reach a town 12,000 km away?					
Group – B						
(a)	Prove the relation $E = -\nabla V - \frac{\partial A}{\partial t}$ Symbols have their usual magnings					
(b)	Symbols have their usual meanings. [(CO2)(Remember/LOCQ)] In a certain region for which σ =0, μ =2 μ 0 and ϵ =10 ϵ 0, J_D = 60 sin(10 9t – βz) a_x mA/m ²					
(c)	(i) Find D and H (ii) β . [(CO2)(Analyse/IOCQ)] Define uniform plane wave. [(CO2)(Remember/LOCQ)]					
(c)	Define uniform plane wave. [(CO2)(Remember/LOCQ)] $4 + 6 + 2 = 12$					
(.)						
(a)	id induced electromotive force due to a moving loop and static magnetic field. [(CO1)(Analyse/IOCQ)]					
(b)	State Maxwell's Equations for time varying electromagnetic wave. [(CO1)(Remember/LOCQ)					
	[(CO1)(Remember/LOCQ)]					
(c)	A conducting bar (PQ) can slide freely over two conducting rails as shown in Fig. 1. Calculate the induced voltage in the bar if (i) the bar is stationary at y=8cm and $\bf B$ =4cos 10^6 t $\bf a_z$ mWb/m². (ii) the bar slides at velocity $\bf u$ =20 $\bf a_y$ m/s and $\bf B$ =4 $\bf a_z$ mWb/m². [(CO1)(Analyse/IOCQ)]					

2.

3.

Fig. 1

4 + 2 + 6 = 12

Group - C

- 4. (a) Find attenuation constant, phase constant and intrinsic impedance for electromagnetic plane waves in good conductors. [(CO3)(Analyse/HOCQ)]
 - (b) Express incident reflected and transmitted components of the electric field and magnetic field due to reflection and transmission of a plane wave at oblique incidence.

 [(CO3)(Remember/LOCQ)]

5 + 7 = 12

- 5. (a) Prove that the tangential wave vectors must be continuous to satisfy electric and magnetic boundary conditions at an interface between two mediums.

 [(CO3)(Analyse/HOCQ)]
 - (b) Electric field corresponding to an EM wave is given as $\vec{E} = 0.5e^{-z/3}\cos(2\pi 10^6 t 0.021\,z)~\hat{a}_x + 0.8e^{-z/3}\sin(2\pi 10^6 t 0.021\,z)~\hat{a}_y$. Identify the type of polarisation. What is the phase difference between two components of the electric field? [(CO4)(Remember/LOCQ)]
 - (c) Using suitable diagrams explain the differences between TM-polarized and TE-polarized wave. What is Brewster's angle and which polarization exhibits Brewster's phenomena? [(CO2)(Apply/IOCQ)]

5 + 4 + 3 = 12

Group - D

- 6. (a) For a transmission line placed along the z direction show that $\frac{d^2V_s}{dz^2} \gamma^2V_s = 0$, where the total voltage $V(z,t) = \text{Re}[V_s(z)e^{j\omega t}]$ and γ is complex propagation constant. Hence show that the characteristics impedance $Z_0 = \sqrt{\frac{R+j\omega L}{G+j\omega C}}$.
 - (b) A lossless transmission line has a characteristics impedance of 70Ω and a phase constant of 3 rad/m at 100 MHz. Calculate the inductance per meter and the capacitance per meter of the line. [(CO4)(Remember/LOCQ)]

8 + 4 = 12

7. (a) Prove that the condition for a distortion less transmission line should be $\frac{R}{L} = \frac{G}{C}$.

[(CO4)(Analyse/IOCQ)]

(b) A 60Ω transmission line operating at 20MHz is 10m long. If the input impedance is $90+j150~\Omega$. Calculate Z_L , Γ , s. Symbols have their usual meanings.

[(CO4)(Analyse/IOCQ)]

(c) Explain the statement – 'A lossless transmission line is also a distortion less transmission line but a distortion less transmission line is not a lossless line'.

[(CO4)(Understand/LOCQ)]

3 + 6 + 3 = 12

Group - E

8. (a) Show that the directive gain of the Hertzian dipole is

$$G_d(\theta, \phi) = 1.5 \sin^2 \theta$$

[(CO5)(Analyse/HOCQ)]

(b) Define HPBW and FNBW.

[(CO5)(Remember/LOCQ)]

(c) Find the radiation resistance of a Hertzian dipole of length $\lambda/40$ and $\lambda/80$.

[(CO5)(Analyse/IOCQ)]

6 + 3 + 3 = 12

- 9. (a) The magnetic field of certain antenna at very large distance r is given as $\mathbf{H} = j \frac{I_0 dl\beta}{4\pi r} \sin\theta \ e^{j\beta r} \hat{\boldsymbol{a}}_{\phi}$. Find the corresponding electric field. Also find the time-averaged radiated power in free space. [(CO3)(Analyse/HOCQ)]
 - (b) The radiation intensity of a certain antenna is

$$U(\theta, \phi) = \begin{cases} 2\sin\theta \sin^3 \phi, 0 \le \theta \le \pi, 0 \le \phi \le \pi \\ 0, \text{elsewhere} \end{cases}$$

Determine the directivity of the antenna.

[(CO4)(Remember/LOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	41.67	32.29	26.04

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Apply their pre-requisite knowledge of Electrostatics and Magneto statics.
- 2. Comprehend Electromagnetic wave propagation in different mediums.
- 3. Understand different electromagnetic phenomena associated with Transmission Lines.
- 4. Design of Impedance Matching Networks for two wire Transmission Lines.
- 5. Develop the ability to analyze the radiation characteristics of antenna configurations and identify respective areas of application.
- 6. Understand pattern synthesis and analysis in linear antenna array.

^{*}LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.