Санкт-Петербургский государственный политехнический университет Петра Великого Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе

Дисциплина: Телекоммуникационные технологии Тема: Система верстки Т_ЕХ и расширения №Т_ЕХ (Шаблон для отчётов)

Выполнил студент гр. 33501/3	Д. А. Зобков (подпись)
Преподаватель	(подпись) Н. В. Богач
	"" 2016 г

Санкт-Петербург 2016 г.

Содержание

1	Цель работы	3						
2	Постановка задачи							
3								
4								
5	Выводы							
6	Сложные случаи из практики	3						
	6.1 Пример картинки	3						
	6.2 Листинг с помощью listings	4						
	6.3 Картинки с подкартинками	4						
	6.4 Длинная подпись	4						
	6.5 Русские буквы в формулах	5						
	6.6 Отрицание-подчёркивание в мат. режиме	5						
	6.7 No line here to end при использовании $\setminus \setminus$	5						
	6.8 Таблица с картинкой	5						
	6.9 Таблица с склееными и битыми ячейками	5						
	6.10 Графики с pgfplots/tikZ	6						
	6.11 Надписи на стрелках	6						
	6.12 Случай с матрицей, где проверялся знак	6						
	6.13 Скобочка	7						
	6.14 Сторона прижатия в выражениях	7						
	6.15 Графы	8						
	6.16 ИИИЛИТНЫЕ зачёркивания	8						
П	риложение А Ещё один пример листинга	10						
$\Pi_{]}$	риложение Б Ссылка вида "Приложение <буква>"):	10						

1 Цель работы

Какая-то цель

2 Постановка задачи

Какая-то задача

3 Теоретический раздел

Содержит основные соотношения между наблюдаемыми в работе явлениями

4 Ход работы

Что-то нажимаем, всё ломается

5 Выводы

Содержат пояснения моделируемых явлений

6 Сложные случаи из практики

6.1 Пример картинки

Рандомный граф (рис. 6.1).

Для насильной привязки к месту использовать опцию [H].

Рис. 6.1. Граф

6.2 Листинг с помощью listings

Ад на земле.

Описание схемы на языке VHDL приведено в листинге 1. См. Приложение А для ещё одного примера.

```
1 entity lab2 is
  port (
 SW0, SW1, SW2, SW3, SW4: in bit;
  LED0, LED1, LED2: out bit;
 LED3, LED4, LED5: out boolean);
  end lab2;
  architecture rtl of lab2 is
    signal TEMP: bit := '0';
  begin
  LED2 \le '0';
_{11} temp<=SW0 or SW1;
  LED1<=TEMP and SW2;
13 LED0<=not TEMP;
  LED3 \le not(SW3 > SW4);
15 LED4<=not (SW3=SW4);
  LED5 \leq not(SW3 \leq SW4);
17 end rtl;
```

Листинг 1. Описание схемы

6.3 Картинки с подкартинками

Данные о максимальной частоте и минимальных временных задержках представлены на рис. 6.2 (а так же рис. 6.2а и рис. 6.2б).

Рис. 6.2. Описание без оптимизации

6.4 Длинная подпись

Результат моделирования синтезированной схемы представлен на рис. 6.3.

Рис. 6.3. Результат моделирования схемы в редакторе диаграмм (Коэффициент деления частоты = 3)

А вот и пример такого случая (см. табл. 6.1).

Таблица 6.1. Результат моделирования схемы в редакторе диаграмм (Коэффициент деления частоты = 3)

∞	27	13	7	45	35
21	∞	14	20	19	12
10	14	∞	6	32	25
7	18	5	∞	38	28
32	16	23	27	∞	23
30	10	24	28	18	∞

6.5 Русские буквы в формулах

Пока только такой вариант (1).

$$\sum_{\text{Какой-то цажа}}^{\text{Какой-то кирнич}} \mathbf{K}$$
акой-то жирнич (1)

6.6 Отрицание-подчёркивание в мат. режиме

Просто $\overline{\text{над}}$ под

Ещё пример (в двух вариантах форматирования кода, на мой взгляд, оба отстойны):

$$y = \overline{\overline{\overline{x_3}} \overline{x_4} \overline{\overline{\overline{x_1}} \overline{x_2}} \overline{\overline{x_5}}} \ \overline{x_2} \overline{\overline{x_1}} \overline{\overline{x_4}} \overline{\overline{x_5}} \ \overline{\overline{x_3}} \overline{\overline{\overline{x_1}} \overline{x_4}} \overline{\overline{\overline{x_2}}} \overline{\overline{x_5}}$$

$$y = \overline{\overline{x_3} x_4} \overline{\overline{x_1} \overline{x_2}} \overline{\overline{x_5}} \overline{x_2} \overline{\overline{x_1} \overline{x_4} x_5} \overline{x_3} \overline{\overline{x_1}} \overline{\overline{x_4}} \overline{\overline{x_2}} \overline{\overline{x_5}}$$

6.7 No line here to end при использовании \\

Способ в формуле выше, создать минимальное пространство с помощью $\tilde{\ }$ перед $\backslash \backslash$, или использовать $\$ vspace $\{X\ pt\}$.

6.8 Таблица с картинкой

Пример в табл. 6.2.

6.9 Таблица с склееными и битыми ячейками

Пример в табл. 6.3.

Имя	Функциональный преобразователь	Логическое выражение выходов
inst	DATAD COMBOUT DATAA	$\overline{(Q' + \overline{R}) \cdot S} \to Q$
inst1	DATAB COMBOUT	$\overline{\overline{Q''}\cdot R} o \overline{Q}$

Таблица 6.2. Логические выражения для выходов RS-триггера

№	Частота, МГц	Пориод не	Энергопотребление, мВт		
		Период, не	Полное	Динамическое	
1	1	1000	64.79	0.05	
2	10	100	65.45	0.51	
3	50	20	68.38	2.53	
4	100	10	72.05	5.06	
5	150	6.667	75.71	7.59	
6	200	5	79.38	10.13	
7	250	4	83.05	12.66	

Таблица 6.3. Зависимость энергопотребления от частоты

6.10 Графики с pgfplots/tikZ

Слишком потно, надо очень хорошо знать, что делаешь, иначе можно потратить день и не добиться результата.

В документации 600 страниц, Карл!!!

6.11 Надписи на стрелках

Использует пакет mathtools.

	x_3	x_2	B			x_5	x_2	B
x_1	-1	-0.3	10.2	преобразуем и делим на 2.5	x_1	-0.4	-0.4	6
x_4	-1	-0.7	11.4		x_4	-0.4	-0.8	7.2
x_5	2.5	-0.25	-10.5		x_3	0.4	0.1	4.2
f	-1	-2.3	10.2		f	-0.4	-2.4	6

6.12 Случай с матрицей, где проверялся знак

Текущие матрицы
$$P = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}, \, C^B = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Рис. 6.4. Зависимость энергопотребления от частоты

Допустимость:
$$X^B = P^{-1}B = \begin{bmatrix} 11.4 \\ 10.2 \end{bmatrix} > 0 -$$
 допустимый

6.13 Скобочка

$$\begin{cases} \max(x_1 - 2x_2), \\ x_1 + 0.3x_2 \le 10.2, \\ -x_1 + 0.4x_2 \le 1.2, \iff \begin{cases} x_1 + 0.3x_2 + x_3 = 10.2, \\ -x_1 + 0.4x_2 + x_4 = 1.2, \\ x_1 \ge 0, \\ x_2 \ge 0; \end{cases}$$

$$\begin{cases} x_1 + 0.3x_2 + x_3 = 10.2, \\ -x_1 + 0.4x_2 + x_4 = 1.2, \\ x_1 \ge 0, \\ x_2 \ge 0; \end{cases}$$

$$\begin{cases} x_1 + 0.3x_2 + x_3 = 10.2, \\ -x_1 + 0.4x_2 + x_4 = 1.2, \\ x_1 \ge 0, \\ x_2 \ge 0; \end{cases}$$

6.14 Сторона прижатия в выражениях

Прижатие контролируется символом &.

Условия Куна-Такера:

$$\begin{cases}
\nabla f(X^*) + \sum_{j=1}^{J} u_j \nabla g_j(X^*) = 0, \\
u_j g_j(X^*) = 0, \ j = 1..J, \\
u_j \le 0, \ j = 1..J;
\end{cases} \tag{2}$$

Подставим в формулу (2):

$$\begin{cases}
-62x_1 + 4x_2 + 286 + 7u_1 + 10u_2 - u_3 &= 0, \\
-68x_2 + 4x_1 + 388 + 12u_1 + 8u_2 - u_4 &= 0, \\
u_1(7x_1 + 12x_2 - 84) &= 0, \\
u_2(10x_1 + 8x_2 - 80) &= 0, \\
u_3(-x_1) &= 0, \\
u_4(-x_2) &= 0, \\
u_1 &\leq 0, \\
u_2 &\leq 0, \\
u_3 &\leq 0, \\
u_4 &\leq 0;
\end{cases}$$

6.15 Графы

Безумно неудобно, не делать так. Лучше, быстрее и выгоднее заюзать уЕd или что-нибудь в таком духе и вставить картинку. Есть способ делать удобнее с LuaTeX, но LuaTeX сам по себе ещё без релизной версии, ну его к чёрту.

Наибольший путь 1-2-4-5-6-7-8 с весом 39 представлен на рис. 6.5.

Рис. 6.5. Наибольший путь

6.16 ИИИЛИТНЫЕ зачёркивания

Пример:

$$\begin{array}{l} 2-6,6-5,1-4,4-3\Rightarrow \cancel{6}\cancel{-2},\cancel{5}\cancel{-6},\cancel{5}\cancel{-2},\cancel{4}\cancel{-1},\cancel{4}\cancel{-2},\cancel{3}\cancel{-4},\cancel{3}\cancel{-1},\cancel{4}\cancel{-3})\\ G_{2-6;6-5;1-4}=G_{2-6;6-5;1-4;4-3}\cup G_{2-6;6-5;1-4;\overline{4-3}}\\ V\left(G_{2-6;6-5;1-4;\overline{4-3}}\right)=83+5=88 \end{array}$$

Нельзя использовать зачёркивания пакета *cancel* с самого первого слова:

Ещё такие вот пногда есть. варианты

Приложение А Ещё один пример листинга

```
function [] = Main ()
       clc;
      clear all;
       close all;
      initia|X = [3; 8]; % Начальная точка
      index = [-31, -34, 4, 286, 388]; % Значения всех аргументов
      e = 0.1:
      H = [index(1)*2, index(3); index(3), index(2)*2];
      % Открытие файла вывода для записи результатов
       fileID = fopen('results.txt', 'wt');
       if (fileID == -1)
                     error('He удалось открыть файл вывода.');
                     return;
      end
      % Функция построения графика метода
_{18} function [] = PlotGraph (v)
      % Область построения
      \times 1 = 2:.1:6;
      \times 2 = 5:.1:9;
      \% \times 1 = 4:.1:12; \%\%\%\% Для второй начальной точки
_{23} | % x 2 = 3:.1:9;
       [x 1,x 2] = meshgrid(x 1,x 2);
      w = (index(1)*x_1.^2 + index(2)*x_2.^2 + index(3)*x_1.*x_2 + index(4)*x_1 + index(4)*x_2 + index(4)*x_3 + index(4)*x_4 + index(4)*x_5 + ind
                    index(5)*x 2);
       figure;
28 hold on;
       contour(x_1,x_2,w,30);
       plot(x, y, '.-k');
       contour(x_1,x_2,w,v);
xlabel('x1');
ylabel('x2');
       hold off;
       end
```

Приложение Б Ссылка вида "Приложение <буква>"):

Необходимо реализовать ссылку только по букве вместо "Приложение <буква>".