

Cálculo I - REAVALIAÇÃO 19/12/2023 (8h50 - 10h30)

Nome:
Todas as questões devem ser justificadas através de cálculos e/ou argumentação.
Utilize resultados estudados na disciplina em todas as questões. BOA PROVA!!!
Questão 01 (5,0): Um biólogo prevê que a quantidade de indivíduos de uma certa espécie irá diminuir
segundo a lei $N(t) = N_0 \cdot 3^{-\frac{t}{4}}$, em que N_0 é a quantidade estimada de pássaros antes do início das construções, e $N(t)$ é a quantidade existente t anos depois.
a) Escreva uma expressão que forneça o tempo t necessário para que a espécie tenha N indivíduos.
b) Calcule o tempo necessário, para que a população dessa espécie se reduza a $\frac{1}{10}$ da população
existente no início da análise.

Questão 02 (5,0): Usando conceitos estudos nesta disciplina, determine aS equaçÕES daS retaS que passaM pelo ponto $(1,1)$ e que tangenciaM a parábola de equação $y = 1 - x^2$. Faça um esboço dos gráficos (parábola e retas tangentes) que representam a situação descrita.						
	, (1					

Questão 03 (6,0): Sobre a função $f(x) = 2x \cdot lnx - 2x + 2$ definida em $(0, +\infty)$, são feitas algumas
afirmações. Classifique cada uma delas como VERDADEIRA ou FALSA.
a) f é crescente no intervalo $(0, \infty)$
b) O gráfico de f é côncavo para cima em todo o seu domínio.
c) O gráfico de f tem 2 pontos críticos.

etermine a taxa segundo a qu	, seu diâmetro varia à razão de faces varia quando o diâmetro é
Pegra(s) de derivação usada(s	da função composta $f(g(x))$ e