Lecture 19 - Implicit Differentiation I

Ejemplo 1. Encuentre la pendiente de la recta tangente a $x^2 + y^2 = 1$ en $(\sqrt{3}/2, 1/2)$.

Hoy trabajaremos con expresiones en las que la definición de f(x) = y tiene a y de forma implícita.

Ejemplo 2. Tener a y explícito: $y = x^2 + x - 2$. Tener a y implícito: $x + 3xy + y^2 = 2$.

Ejemplo 3. La expresión $x^2 + y^2 = 1$ representa a un círculo y la variable y participa de forma implícita. Note que no es una función.

Propiedad 1. Dado que la derivada de y respecto de x es y', entonces

$$\frac{\mathrm{d}}{\mathrm{d}x}f(y) = f'(y) \cdot y'$$

Ejemplo 4. Encuentre

- 1. La pendiente de la recta tangente a $x^2+y^2=1$ en $(\sqrt{3}/2,1/2)$ utilizando diferenciación implícita.
- 2. Encuentre la ecuación de la recta tangente y normal a $x^3y^3=-8$ en (2,-1).
- 3. $\frac{\mathrm{d}y}{\mathrm{d}x}$ si $x = \cos y$.
- 4. $\frac{\mathrm{d}y}{\mathrm{d}x} \mathrm{si} \ x + \sin(2xy) = 7.$
- 5. $\frac{\mathrm{d}y}{\mathrm{d}x}$ si $2xy = x^2 + \sin y$.
- 6. $\frac{dy}{dx}$ si $x^2 2xy + 3y^2 = 2$.
- 7. $\frac{\mathrm{d}y}{\mathrm{d}x}$ si $\frac{x+y}{y} = x$.