02_visualizations

Isabel García Valdivia 4/25/2018

PART II. Data Tables and Plots.

Constructing data tables and plots with new legal status variable (legalstat) in (cps.dta) data set to look at the data numerically and visually.

Load Libraries/Packages

```
library(vcd) #three-way crostabs
library(descr) #weighted data and cross tabs
library(xtable) #export to LaTeX
library(ggplot2) #visuals
library(ggthemes) #changing visual themes
library(gridExtra) #packages to export plots
library(cowplot) #same as above
```

Tabulations of the Data: Older Adults by Legal Status and Age

Boxplot: Older Adults by Legal Status and Age

Note: I commented-out the titles of the graphs due for my presentation, but the code is provided here. This is applicable for all the graphs.

Graphs 1-3: Display graphs of older adults (50+ years) by legal status and gender.

Graph 1: Legal Immigrants by Age and Gender

```
pop_tb1 <- as.data.frame(table(legalfor_df$age_chr, legalfor_df$female_log))</pre>
names(pop_tb1)[1] <- paste("Age") #change the label name</pre>
names(pop_tb1)[2] <- paste("Female") #change the label name</pre>
sum(pop tb1$Freq) #foreign-born and legal
#Plot Age Range with respective frequencies and label with mexican_bpl by age
g1_legalfor <- ggplot(pop_tb1, aes(x = Age, y = Freq, fill = Female)) +
  # Define each legal status in barplot distribution
  geom_bar(data = subset(pop_tb1, Female == F), stat = "identity", mapping = aes(y = (Freq/8058)*100))
  geom_bar(data = subset(pop_tb1, Female == T), stat = "identity", position = "identity", mapping = aes
  scale_fill_manual(values=c("#CC6666", "#9999CC", "#66CC99"), #Change colors
                    name="", labels=c("Men", "Women")) + #Change the names of legend labels for "fill"
  coord_flip() + # Turn to horizontal barplots
  #qqtitle('Legal Immigrants by Age and Gender (3.8 million)') +
  #theme(plot.title = element_text(hjust = 0.5)) + #Center title
  theme_classic() +
  scale_y_continuous(breaks = seq(-30, 30, 5), # Set interval for breaks for y axis
                     limits = c(-30, 30), # Define/set the limits on scales
                     labels = paste0(as.character(c(seq(30, 0, -5), seq(5, 30, 5))))) + # Label the lim
  xlab("Age (years)") +
  ylab("% Within Legal Foreign-Born")
g1 legalfor #check graph
ggsave("g1_legalimmigrants.png",
       g1_legalfor,
       dpi = 600) #save the file as .png
```

Graph 2: Undocumented Immigrants by Age and Gender

```
pop_tb2 <- as.data.frame(table(undocfor_df$age_chr, undocfor_df$female_log))
names(pop_tb2)[1] <- paste("Age")  #change the label name
names(pop_tb2)[2] <- paste("Female")  #change the label name
sum(pop_tb2$Freq)  #foreign-born and undoc

#Plot Age Range with respective frequencies and label with mexican_bpl by age
g2_undocfor <- ggplot(pop_tb2, aes(x = Age, y = Freq, fill = Female)) +
    # Define each legal status in barplot distribution
    geom_bar(data = subset(pop_tb2, Female == F), stat = "identity", mapping = aes(y = (Freq/1075)*100))</pre>
```

```
geom_bar(data = subset(pop_tb2, Female == T), stat = "identity", position = "identity", mapping = aes
  scale_fill_manual(values=c("#CC6666", "#9999CC", "#66CC99"), #Change colors
                    name="", labels=c("Men", "Women")) + #Change the names of legend labels for "fill"
  coord_flip() + # Turn to horizontal barplots
  #ggtitle('Undocumented Immigrants by Age and Gender (1.8 million)') +
  #theme(plot.title = element_text(hjust = 0.5)) + #Center title
  theme_classic() +
  scale y continuous (breaks = seq(-30, 30, 5), # Set interval for breaks for y axis
                     limits = c(-30, 30), # Define/set the limits on scales
                     labels = paste0(as.character(c(seq(30, 0, -5), seq(5, 30, 5))))) + # Label the lim
  xlab("Age (years)") +
  ylab("% Within Undocumented Foreign-Born")
g2_undocfor #check qraph
ggsave("g2_undocimmigrants.png",
       g2_undocfor,
       dpi = 600) #save the file as .png
```

Graph 3: U.S. Born Immigrants by Age and Gender

```
pop_tb3 <- as.data.frame(table(usborn_df$age_chr, usborn_df$female_log))</pre>
names(pop_tb3)[1] <- paste("Age") #change the label name</pre>
names(pop_tb3)[2] <- paste("Female") #change the label name</pre>
sum(pop_tb3$Freq) #usborn
#Plot Age Range with respective frequencies and label with mexican_bpl by age
g3_usborn <- ggplot(pop_tb3, aes(x = Age, y = Freq, fill = Female)) +
  # Define each legal status in barplot distribution
  geom_bar(data = subset(pop_tb3, Female == F), stat = "identity", mapping = aes(y = (Freq/49323)*100))
  geom_bar(data = subset(pop_tb3, Female == T), stat = "identity", position = "identity", mapping = aes
  scale_fill_manual(values=c("#CC6666", "#9999CC", "#66CC99"), #Change colors
                    name="", labels=c("Men", "Women")) + #Change the names of legend labels for "fill"
  coord_flip() + # Turn to horizontal barplots
  #qqtitle('U.S. Born by Age and Gender (95.6 million)') +
  #theme(plot.title = element_text(hjust = 0.5)) + #Center title
  theme classic() +
  scale_y_continuous(breaks = seq(-30, 30, 5), # Set interval for breaks for y axis
                     limits = c(-30, 30), # Define/set the limits on scales
                     labels = paste0(as.character(c(seq(30, 0, -5), seq(5, 30, 5))))) + # Label the lim
  xlab("Age (years)") +
  ylab("% Within U.S. Born")
g3_usborn#check graph
ggsave("g3_usborn.png",
       g3_usborn,
       dpi = 600) #save the file as .pnq
```

Export the tables to a single .pdf file

```
#Export Graphs 1-3 titled olderadultsinUS.png
olderadultsinUS <- plot_grid(g1_legalfor, g2_undocfor, g3_usborn, align = "v", nrow = 3, rel_heights =
png(file = "olderadultsinUS.png", width = 1500, height = 1000, res = 250)
plot_grid(g1_legalfor, g2_undocfor, g3_usborn, align = "v", nrow = 3, rel_heights = c(1/2, 1/2))
dev.off() #end save</pre>
```

Graphs 4-6: Display graphs of Mexican older adults (50+ years) by legal status and gender.

Graph 4: Mexican U.S. Born Immigrants by Age and Gender

```
pop_tb4 <- as.data.frame(table(usbornmex_df$age_chr, usbornmex_df$female_log))</pre>
names(pop_tb4)[1] <- paste("Age") #change the label name</pre>
names(pop_tb4)[2] <- paste("Female") #change the label name</pre>
sum(pop_tb4$Freq) #usborn mex
#Plot Age Range with respective frequencies and label with mexican_bpl by age
g4_usbornmex <- ggplot(pop_tb4, aes(x = Age, y = Freq, fill = Female)) +
  # Define each legal status in barplot distribution
  geom_bar(data = subset(pop_tb4, Female == F), stat = "identity", mapping = aes(y = (Freq/2033)*100))
  geom_bar(data = subset(pop_tb4, Female == T), stat = "identity", position = "identity", mapping = aes
  scale_fill_manual(values=c("#CC6666", "#9999CC", "#66CC99"), #Change colors
                    name="", labels=c("Men", "Women")) + #Change the names of legend labels for "fill"
  coord_flip() + # Turn to horizontal barplots
  #ggtitle('U.S. Born Mexicans by Age and Gender (2.9 million)') +
  \#theme(plot.title = element\ text(hjust = 0.5)) + \#Center\ title
  theme_classic() +
  scale_y_continuous(breaks = seq(-30, 30, 5), # Set interval for breaks for y axis
                     limits = c(-30, 30), # Define/set the limits on scales
                     labels = paste0(as.character(c(seq(30, 0, -5), seq(5, 30, 5))))) + # Label the lim
  xlab("Age (years)") +
  ylab("% Within U.S. Born Mexicans")
g4_usbornmex #check graph
ggsave("g4_usbornmex.png",
       g4_usbornmex,
       dpi = 600) #save the file as .pnq
```

Graph 5: Mexican Legal Immigrants by Age and Gender

```
pop_tb5 <- as.data.frame(table(legalmex_df$age_chr, legalmex_df$female_log))
names(pop_tb5)[1] <- paste("Age")  #change the label name
names(pop_tb5)[2] <- paste("Female")  #change the label name
sum(pop_tb5$Freq)  #usborn mex

#Plot Age Range with respective frequencies and label with mexican_bpl by age
g5_legalmex <- ggplot(pop_tb5, aes(x = Age, y = Freq, fill = Female)) +
    # Define each legal status in barplot distribution
    geom_bar(data = subset(pop_tb5, Female == F), stat = "identity", mapping = aes(y = (Freq/1955)*100))
    geom_bar(data = subset(pop_tb5, Female == T), stat = "identity", position = "identity", mapping = aes</pre>
```

Graph 6: Mexican Undocumented Immigrants by Age and Gender

```
pop_tb6 <- as.data.frame(table(undocmex_df$age_chr, undocmex_df$female_log))</pre>
names(pop_tb6)[1] <- paste("Age") #change the label name</pre>
names(pop_tb6)[2] <- paste("Female") #change the label name</pre>
sum(pop_tb6$Freq) #477 undoc
#Plot Age Range with respective frequencies and label with mexican_bpl by age
g6 undocmex <- ggplot(pop tb6, aes(x = Age, y = Freq, fill = Female)) +
  # Define each legal status in barplot distribution
  geom_bar(data = subset(pop_tb6, Female == F), stat = "identity", mapping = aes(y = (Freq/477)*100)) +
  geom_bar(data = subset(pop_tb6, Female == T), stat = "identity", position = "identity", mapping = aes
  scale_fill_manual(values=c("#CC6666", "#9999CC", "#66CC99"), #Change colors
                    name="", labels=c("Men", "Women")) + #Change the names of legend labels for "fill"
  coord_flip() + # Turn to horizontal barplots
  #ggtitle('Undocumented Mexican Immigrants by Age and Gender (700 Thousands)') +
  #theme(plot.title = element_text(hjust = 0.5)) + #Center title
  theme_classic() +
  scale_y_continuous(breaks = seq(-30, 30, 5), # Set interval for breaks for y axis
                     limits = c(-30, 30), # Define/set the limits on scales
                     labels = paste0(as.character(c(seq(30, 0, -5), seq(5, 30, 5))))) + # Label the lim
  xlab("Age (years)") +
  ylab("% Within Undocumented Mexicans")
g6_undocmex #check graph
ggsave("g6_undocmex.png",
       g6_undocmex,
       dpi = 600) #save the file as .png
```

Export the tables to a single .pdf file

```
#Export Graphs 4-6 titled olderadultsinUS.png
mexolderadultsinUS <- plot_grid(g5_legalmex, g6_undocmex, g4_usbornmex, align = "v", nrow = 3, rel_heig
png(file = "mexolderadultsinUS.png", width = 1500, height = 1000, res = 250)
```

plot_grid(g5_legalmex, g6_undocmex, g4_usbornmex, align = "v", nrow = 3, rel_heights = c(1/2, 1/2))
dev.off() #end save