

Prof. Dr. I. F. Sbalzarini TU Dresden, 01187 Dresden, Germany

Exercise 11

Release: 18.01.2021 Due: 25.01.2021

Question 1: Trapezoidal rule and Implicit time-stepping

Consider the Initial value problem (IVP)

$$\dot{y} = f(y), \quad y(0) = y_0$$

and the trapezoidal method

$$\tilde{y}_{j+1} = \tilde{y}_j + \frac{h}{2} (f(\tilde{y}_j) + f(\tilde{y}_{j+1})); \quad \tilde{y}_0 = y(0)$$

To calculate the value \tilde{y}_{j+1} , select the starting value of $\tilde{y}_{j+1}^0 = \tilde{y}_j + hf(\tilde{y}_j)$ for the fixed-point iteration

$$\tilde{y}_{j+1}^{k+1} = \tilde{y}_j + \frac{h}{2} \left(f(\tilde{y}_j) + f(\tilde{y}_{j+1}^k) \right), \quad k = 0, 1, 2....$$

Show that the sequence \tilde{y}_{j+1}^k converges for $k \to \infty$ to the fixed point \tilde{y}_{j+1} , if h is small enough and f(y) does not vary much in the chosen interval.

Question 2: Fixed-point and Implicit schemes

Given the differential equation of the damped harmonic oscillator

$$\ddot{x} + 0.5 x + x = 0$$

with the initial conditions x(0) = 1, $\dot{x}(0) = 0$

- a) Convert the second order differential equation to a system of first order Differential equations.
- b) Approximate x(h) using trapezoidal method for h = 0.

Question 3: Butcher tableau

Given the Butcher Tableau of the ϑ -procedure

$$\begin{array}{c|c} \vartheta & \vartheta \\ \hline & 1 \end{array}$$

- a) for which ϑ is the procedure explicit or implicit?
- b) determine the order of error of the procedure depending on the ϑ .
- c) sketch the stability area for the methods with $\vartheta = 0, \frac{1}{2}, 1$.

Question 4: Programming Task

a) Implement the 3-step Adams-Bashforth procedure

$$\tilde{x}^{n+1} = \tilde{x}^n + \frac{h}{12} \left(23f^n - 16f^{n-1} + 5f^{n-2} \right)$$

Assume that the 3 starting values x^0, x^1, x^2 are known.

b) apply your program to

$$\dot{x}_1 = bx_1 - cx_1x_2$$

$$\dot{x}_2 = -dx_2 + cx_1x_2$$

for b=1, d=10, c=1, initial conditions $x_1(0)=\frac{1}{2}, x_2(0)=1$ and $t_f=10$. The starting values are, for $h=\frac{1}{100}$,

t	$x_1(t)$	$x_2(t)$
0.0	0.500000000000000	1.0000000000000000
0.01	0.50023020652423	0.90937363770619
0.02	0.50089337004375	0.82696413439848

The above system of ODEs represents the predator-prey model, where x_1 is the prey and x_2 is the predator concentrations.

c) plot the two populations x_1, x_2 as a function of time t and also the trajectory $x_1(t), x_2(t)$ in the (x_1, x_2) plane (phase plane).

2