Q: À quelle fréquence	Q: Les ultrasons se	Q: Qu'appelle-t-on	Q: Coment calculer la
se trouvent les	propagent-ils dans le	célérité ?	distance entre un
ultrasons ?	vide ?		émetteur et un
			récepteur situés face à
			face ?
Q: Si l'émetteur et le	Q: Quelle est l'unité de	Q: Quelle est l'unité de	Q: Quelle est l'unité de
récepteur sont côte à	la célérité v ?	la distance d ?	la durée Δt ?
côte d'une surface			
réfléchissante à une			
distance d, comment			
calculer d ?			
Q: Quel est le principe	Q: Pourquoi la peau	Q: Dans une	Q: Quel est le principe
de l'échographie ?	est-elle préalablement	échographie, à quoi	de l'échographie
	recouverte de gel lors	correspondent les	Doppler ?
	d'une échographie ?	différents niveaux de	
		gris ?	

Q: Que nous indique

une fréquence reçue

plus petite que la

fréquence émise ?

Q: Sur quoi sont

réfléchis les ultrasons

dans le sang?

Q: Que nous indique

une fréquence reçue

plus grande que la

fréquence émise ?

Q: Que mesure une

sonde à effet Doppler ?

$d = v \times \Delta t$	La vitesse des ondes.	Non, ils ont besoin d'un milieu matériel.	Au-dessus de 20 000 Hertz.
En seconde (s).	En mètre (m).	En mètre par seconde (m/s).	$d = v \times \Delta t / 2$
Mesurer le sens et la vitesse d'écoulement du sang.	Zone noire: les liquides, zone grise: les tissus, zones blanches: les os.	Pour améliorer la transmission des ultrasons entre la peau et la sonde.	Déterminer par écho la localisation d'une interface (séparation entre deux milieux différents).
Les globules rouges, qui servent d'obstacles aux ultrasons.	Que l'obstacle refléchissant s'éloigne de la sonde.	Que l'obstacle refléchissant se rapproche de la sonde.	Une modification de fréquence Δf entre l'onde émise et l'onde reçue.