RNA-seq preprocessing

Mikhail Dozmorov

Spring 2018

Computational ecosystem of sequencing

http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8

FASTA/FASTQ format

FASTA: text-based representation of nucleotide sequence

>Human mitochondrion

FASTQ: sequence and quality info

@M01127:9:000000000-A7LUJ:1:1101:14584:1820 1:N:0:3

TGAACCATCTG

@M01127:9:000000000-A7LUJ:1:1101:16774:1822 1:N:0:3

. ССТСА АСА АСА ТО АССОТО ТО ТОСТО В АССОТО В ТОСТОВ В СОСТОВНЕНИЕ В ССТОВОВЕТ В ССТОВОВЕТО В СТОВОВЕТО В СТОВО

http://zhanglab.ccmb.med.umich.edu/FASTA/

Quality of base calling

- Phred quality score is widely used to characterize the quality of base calling
- Phred quality score = $-10 * log_{10}(P)$, where P is probability that base-calling is wrong
- \bullet Phred score of 30 means there is 1/1000 chance that the base-calling is wrong
- The quality of the bases tend to drop at the end of the read, a pattern observed in sequencing-by-synthesis techniques

Quality control

- FASTQC Quality of raw and aligned sequencing data
 - Base quality per position
 - Nucleotide per position
 - GC content
 - K-mer enrichment

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, Video tutorial how to interpret, https://www.youtube.com/watch?v=bz93ReOv87Y

RNA-seq-specific quality control

- RNASeQC quality of mapped (aligned) data
- RSeQC Python-based table and graph QC reports
- MultiQC Summarization and visualization QC results for multiple samples in one report. Recognizes multiple QC tools

http://www.broadinstitute.org/cancer/cga/rna-seqc, Deluca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, Reich M, Winckler W, Getz G. (2012) RNA- SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics

http://rseqc.sourceforge.net/, Wang L, Wang S, Li W* RSeQC: quality control of RNA- seq experiments Bioinformatics (2012) 28 (16): 2184-2185. doi: 10.1093/bioinformatics/bts356

http://multiqc.info/

Adapter trimming

- Cutadapt full control over adapter trimming
- FASTX-Toolkit set of tools for low-level sequence trimming/cutting
- Trimmomatic well-documented and easy-to-use adapter trimmer using multiple algorithms. Handles single- and paired-end reads, accountss for read quality
- Flexbar: similar to Trimmomatic by functionality

https://cutadapt.readthedocs.io/en/latest/guide.html

http://hannonlab.cshl.edu/fastx_toolkit/

http://www.usadellab.org/cms/?page = trimmomatic

https://github.com/seqan/flexbar/wiki/Manual

Duplicates removal

- Duplicates may correspond to biased PCR amplification of particular fragments
- For highly expressed, short genes, duplicates are expected even if there is no amplification bias
- Removing them may reduce the dynamic range of expression estimates

Generally, do not remove duplicates from RNA-seq data

 If you ultimately want to remove duplicates, use Picard tools' MarkDuplicates command

https://broad institute.github.io/picard/command-line-overview.html #Mark Duplicates

8 / 17

Alignment

- RNA-seq aligners face an additional problem, not encountered in DNA-only alignment: many RNA-seq reads will span introns
- The average human intron length is >6,000 bp (some are >1 Mbp in length)
- ullet In a typical human RNA-seq experiment using 100-bp reads, > 35% of the reads will span multiple exons align over splice junctions
- Aligners must be splice-aware, especially when aligning longer (>50bp) reads

Three types of reads: exonic-, junction- and poly(A) end-reads.

10 / 17

Strategies for gapped alignments of RNA-seq reads

Exon-first method

- Map full, unspliced reads (reads originating from a single exon) to exons
- Divide the remaining reads into smaller pieces and map them to the genome
- An extension process extends mapped smaller pieces to find candidate splice sites to support a spliced alignment.

Strategies for gapped alignments of RNA-seq reads

Seed-and-extend methods

- Divide each RNA-seq read in small words (k-mers) of similar size
- Store a map of all k-mers in the genome in an efficient lookup data structure
- Map k-mers to the genome via the lookup structure
- Mapped k-mers are extended into larger alignments, which may include gaps flanked by splice sites.

Strategies for gapped alignments of RNA-seq reads

a Exon-first approach

b Seed-extend approach

https://www.nature.com/articles/nmeth.1613

Alignment to the reference genome is the most frequently used for transcript quantification

Alignment - Mapping RNA-seq reads to the genome

- BWA general purpose algorithms based on Burrouws-Wheeler Transform
- STAR fast and accurate aligner
- **HISAT**: (hierarchical indexing for spliced alignment of transcripts) uses two types of indexes for alignment: a global, whole-genome index and tens of thousands of small local indexes. Can detect novel splice sites, transcription initiation and termination sites. A part of the new "Tuxedo suite", including StringTie and Ballgown
- subread: a fast and accurate aligner, R and command line. The whole package includes subjunc for junction detection, and featureCounts for extracting read counts per gene from aligned SAM/BAM files

```
{\sf http://bio\text{-}bwa.sourceforge.net/}
```

https://github.com/alexdobin/STAR

http://ccb.jhu.edu/software/hisat2/index.shtml

http://subread.sourceforge.net/

 $Timeline \ and \ extensive \ comparison \ of \ aligners: \ https://www.ebi.ac.uk/~nf/hts_mappers/$

De novo assembly

- Trans-ABySS De novo assembly of RNA-Seq data
- Velvet-Oases De novo transcriptome assembler for very short reads
- SOAPdenovo-trans De novo transcriptome assembler accounting for alternative splicing and different expression level among transcripts
- Trinity RNA-Seq De novo Assembly Using Trinity set of tools

http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss

https://www.ebi.ac.uk/~zerbino/oases/

http://soap.genomics.org.cn/SOAP denovo-Trans.html

https://github.com/trinityrnaseq/trinityrnaseq/wiki

Trinity de novo assembly

- Trinity combines three independent software modules: Inchworm,
 Chrysalis, and Butterfly
- Trinity partitions the sequence data into many individual de Bruijn graphs, each representing the transcriptional complexity at a given gene or locus, and then processes each graph independently to extract full-length splicing isoforms and to tease apart transcripts derived from paralogous genes.

Grabherr, Manfred G., Brian J. Haas, Moran Yassour, Joshua Z. Levin, Dawn A. Thompson, Ido Amit, Xian Adiconis, et al. "Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome." Nature Biotechnology 29, no. 7 (May 15, 2011): 644–52. doi:10.1038/nbt.1883.

https://www.youtube.com/playlist?list = PLfFNmoa-yUIY3-BcTTXsAMMjk-jSVTgwk