Internal Memory

Structure - Top Level

CPU With Systems Bus

Computer Components: Top Level View

Semiconductor Memory

- RAM
 - Misnamed as all semiconductor memory is random access
 - —Read/Write
 - —Volatile
 - —Temporary storage
 - —Static or dynamic

Memory Cell Operation

Memory Cell

Memory Module

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analogue
 - —Level of charge determines value

Dynamic RAM Structure

Structure of MOSFET

DRAM Operation

- Address line active when bit read or written
 - Transistor switch closed (current flows)
- Write
 - Voltage to bit line
 - High for 1 low for 0
 - Then signal address line
 - Transfers charge to capacitor
- Read
 - Address line selected
 - transistor turns on
 - Charge from capacitor fed via bit line to sense amplifier
 - Compares with reference value to determine 0 or 1
 - Capacitor charge must be restored

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache
- Digital
 - —Uses flip-flops

Stating RAM Structure

Static RAM Operation

- Transistor arrangement gives stable logic state
- State 1
 - $-C_1$ high, C_2 low
 - $-T_1 T_4$ off, $T_2 T_3$ on
- State 0
 - -C₂ high, C₁ low
 - $-T_2 T_3$ off, $T_1 T_4$ on
- Address line transistors T₅ T₆ is switch
- Write apply value to B & compliment to B
- Read value is on line B

Stating RAM Structure

State 1 C_1 high, C_2 low T_1 T_4 off, T_2 T_3 on

State 0 C_1 low, C_2 high T_1 T_4 on, T_2 T_3 off

SRAM v DRAM

- Both volatile
 - —Power needed to preserve data
- Dynamic cell
 - —Simpler to build, smaller
 - —More dense
 - —Less expensive
 - —Needs refresh
 - Larger memory units
- Static
 - —Faster
 - —Cache

Read Only Memory (ROM)

- Permanent storage
 - —Nonvolatile
- Microprogramming
- Library subroutines
- Systems programs (BIOS)
- Function tables

Types of ROM

- Written during manufacture
 - —Very expensive for small runs
- Programmable (once)
 - —PROM
 - Needs special equipment to program
- Read "mostly"
 - —Erasable Programmable (EPROM)
 - Erased by UV
 - —Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - —Flash memory
 - Erase whole memory electrically

- A 8Kbit chip can be organised as 1K of 8 bits word
 - Size of Address Bus: $10 (2^{10} = 1024 = 1K)$
 - Size of Data Bus: 8
- A 8Kbit chip can also be organised as a 32 x 32 x 8bit array
- Address has two parts:
 - Row Address $(2^5 = 32)$
 - Column Address $(2^5 = 32)$

- A 16Mbit chip is organised as a 4096 x (512 x 8) bit array
- 2MByte chip having 2M location of 1 Byte each
- It helps to reduce the address pins
 - Multiplex row address and column address
 - -12 pins for address (2^{12} =4096)
 - -12 for row address ($2^{12} = 4096$)
 - -9 for column address ($2^9 = 512$)
 - Adding one bit in column address doubles the memory capacity

- A 16Mbit chip can be organised as 1M of 16 bit words
- A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on
- A 16Mbit chip can be organised as a 2048
 x 2048 x 4bit array
 - Reduces number of address pins
 - Multiplex row address and column address
 - 11 pins to address (2¹¹=2048)
 - Adding one more pin doubles range of values so x4 capacity

Dynamic RAM Structure

Refreshing

- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance

Typical 16 Mb DRAM (4M x 4)

256kByte Module Organisation

1MByte Module Organisation

Fetch Sequence (symbolic)

- t1: MAR <- (PC)
- t2: MBR <- (memory)
- PC <- (PC) +1
- t3: IR <- (MBR)
 - -(tx = time unit/clock cycle)

Memory Read(symbolic)

- t1: MAR <- (R1)
- t2: MBR <- (memory)
- t3:R2 <- (MBR)

-(tx = time unit/clock cycle)

Address of the memory location is in register R1 and data to be stored in register R2

Memory Write(symbolic)

- t1: MAR <- (R1)
- t2: MBR <- (R2)
- t3:(memory) <- (MBR)

-(tx = time unit/clock cycle)

Address of the memory location is in register R1 and data is in register R2