§3 Prior Distributions

Outline

- 1. Basic considerations
- 2. Conjugate priors
- 3. Non-informative priors
- 4. Hierarchical priors
- 5. Summary of prior distributions

1. Basic considerations

The only requirement for the prior distribution is that it should represent the knowledge about θ before observing the current data.

Therefore, the prior distribution can

- be specified entirely subjectively
- depend on past data
- be weak or non-informative

Choosing a prior involves

- 1. Choosing the functional form of the distribution
- 2. Specifying values for the parameters of that distribution

2

The functional form chosen for $p(\theta)$ must take into account the support of θ .

- If the support of θ is $(-\infty,\infty)$, e.g. θ is the mean of a normally distributed rv, or a regression coefficient, then suitable priors $p(\theta)$ might include normal or Studentt prior distributions
- If support of θ is $(0,\infty)$, e.g. θ is a precision parameter or mean of a Poisson rv, then suitable priors $p(\theta)$ might include gamma or log-normal distributions
- If support of θ is (0,1), e.g. θ is a proportion or the success probability of a binomial rv, then suitable priors $p(\theta)$ might include beta distributions

More complex functional forms can be specified by taking *mixtures* of standard distributions, but we shall not consider mixture priors here.

2. Conjugate priors

A convenient way to choose the functional form of the prior is by use of conjugate distributions.

Definition

Let $l(\theta) = p(\mathbf{x} \mid \theta)$ be a likelihood function. A class \mathcal{P} of prior distributions $p(\theta)$ is said to form a conjugate family (for this likelihood function) if the posterior distribution $p(\theta \mid \mathbf{x})$ is also in the class \mathcal{P} for all data \mathbf{x} .

That is: the prior $p(\theta)$ and the posterior $p(\theta \mid \mathbf{x})$ belong to the same class \mathcal{P} .

Some difficulties with this definition:

- \bullet If $\mathcal P=$ all distributions, then $\mathcal P$ is always conjugate whatever the likelihood function is
- ullet If ${\mathcal P}$ consists only of *point mass* priors

$$p(\theta) = \begin{cases} 1 & \text{if } \theta = \theta_0 \\ 0 & \text{otherwise} \end{cases}$$

then $\ensuremath{\mathcal{P}}$ is always conjugate whatever the likelihood function is

In practice, we are also interested in *natural* conjugate priors: A natural conjugate prior is (i) a conjugate prior, ie the prior and the posterior belong to the same class \mathcal{P} , and (ii) the likelihood has the same functional form of θ as the distributions in \mathcal{P} .

5

Example 3.1: Binomial likelihood

The likelihood is

$$p(y \mid \theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}$$

The beta prior Beta (α, β) for θ is

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$
$$\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

So the posterior is

$$p(\theta \mid y) \propto p(y \mid \theta)p(\theta)$$

$$\propto \theta^{y}(1-\theta)^{n-y}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

$$= \theta^{(y+\alpha)-1}(1-\theta)^{(n-y+\beta)-1}$$

$$\theta \mid y \sim \text{Beta}(y+\alpha, n-y+\beta)$$

- Is this beta prior a conjugate prior of θ for the binomial likelihood?
- Is it also a natural conjugate prior of θ ?
 - The natural conjugate prior must have the same functional form of θ as the likelihood
 - Here, the likelihood is of the form of θ :

$$\theta^a(1-\theta)^b$$

6

Example 3.2: Normal, known precision

The likelihood for $Y_i \mid \theta \sim \text{Normal}(\theta, \tau^{-1})$ is

$$p(\mathbf{y} \mid \theta) \propto \exp \left[-\frac{\tau}{2} \sum_{i=1}^{n} (y_i - \theta)^2 \right]$$

The normal prior Normal (μ_0, ϕ_0^{-1}) for θ is

$$p(\theta) \propto \exp\left[-\frac{\phi_0}{2}(\theta - \mu_0)^2\right]$$

So the posterior is Normal($\mu_1, \ \phi_1^{-1}$):

$$p(\theta \mid \mathbf{y}) \propto \exp\left[-\frac{\phi_1}{2}(\theta - \mu_1)^2\right]$$

- Is this normal prior a conjugate prior of θ for the normal likelihood?
- Is it also a natural conjugate prior of θ ?

Why is conjugacy useful? Because it simplifies analysis.

- Ensures posterior follows a known parametric form of θ .
- Every new observation leads only to a change in the values of the parameters of the distribution for θ , as indicated by the sequential learning in $\S 1$; no new algebra needed.
- An objective meaning can be attached to the parameters of the prior distribution, e.g.
 - the Beta (α, β) prior mimics a binomial likelihood with $y_0 = \alpha 1$ successes in $n_0 = \alpha + \beta 2$ trials;
 - therefore, we can think of Beta (α, β) as representing information equivalent to having observed $\alpha-1$ successes in $\alpha+\beta-2$ trials of a hypothetical prior experiment.

Exponential family likelihoods

Many of the common likelihoods we come across belong to the exponential family.

A density is from the one-parameter exponential family if it has the form

$$p(y \mid \theta) = f(y)g(\theta) \exp [h(\theta)t(y)]$$
,

for some functions f(y) and t(y) of data y only and some functions $g(\theta)$ and $h(\theta)$ of parameter θ only.

Then the likelihood of n independent observations $\mathbf{y} = (y_1, \dots y_n)$ is

$$p(\mathbf{y} \mid \theta) = \prod p(y_i \mid \theta) \propto g(\theta)^n \exp\left[h(\theta) \sum t(y_i)\right] ,$$
 and we say that the likelihood function comes from

and we say that the likelihood function comes from the one-parameter exponential family.

The conjugate family $\mathcal P$ for a likelihood belonging to the exponential family is the class of distributions of the form

$$p(\theta) \propto g(\theta)^{\nu} \exp [h(\theta)\delta]$$

and the posterior distribution is then

$$p(\theta \mid \mathbf{y}) \propto g(\theta)^{n+\nu} \exp \left[h(\theta)(\sum t(y_i) + \delta)\right]$$

9

Note: θ in the likelihood and posterior associates with the data y only through the statistic $\sum t(y_i)$. We say that $\sum t(y_i)$ is a *sufficient statistic*.

How to interpret prior parameters δ and ν ?

Notice that

$$g(\theta)^{\nu} \exp [h(\theta)\delta]$$

can be viewed as the likelihood of ν independent observations $\mathbf{x}=(x_1,\ldots,x_{\nu})$ with $\sum t(x_i)=\delta$.

So, we can think of

$$p(\theta) \propto g(\theta)^{\nu} \exp [h(\theta)\delta]$$

as corresponding to the following prior information:

We have observed a hypothetical 'prior' sample of ν observations, $\mathbf{x}=(x_1,\ldots,x_{\nu})$, with sufficient statistic δ .

10

Example 3.3: Binomial family

Suppose we have a single (n = 1) binomial observation Y = y: $Y \sim \text{Bin}(m, \theta)$ (ie containing y successes out of m Bernoulli trials).

$$p(y \mid \theta) = {m \choose y} \theta^y (1 - \theta)^{m - y}$$

$$= {m \choose y} (1 - \theta)^m \exp\left[y \log\left(\frac{\theta}{1 - \theta}\right)\right]$$

$$\propto g(\theta) \exp\left[h(\theta)t(y)\right]$$

So, this belongs to the exponential family:

$$g(\theta) = (1 - \theta)^m$$
; $h(\theta) = \log\left(\frac{\theta}{1 - \theta}\right)$; $t(y) = y$.

Thus, the conjugate prior is of the form

$$p(\theta) \propto g(\theta)^{\nu} \exp\left[h(\theta)\delta\right]$$

$$= (1-\theta)^{m\nu} \exp\left[\left\{\log\left(\frac{\theta}{1-\theta}\right)\right\}\delta\right]$$

$$= (1-\theta)^{m\nu}\theta^{\delta}(1-\theta)^{-\delta}$$

$$= \theta^{\delta}(1-\theta)^{m\nu-\delta}$$

$$\theta \sim \operatorname{Beta}(\delta+1, m\nu-\delta+1)$$

This prior represents a hypothetical 'prior' sample of ν independent observations, x_1,\ldots,x_{ν} , from the $\text{Bin}(m,\theta)$ distribution, with total number of successes $\sum x_i = \delta$.

Example 3.4: Normal, known precision

$$p(\mathbf{y} \mid \theta) = \left(\frac{\tau}{2\pi}\right)^{n/2} \exp\left[-\frac{\tau}{2} \sum_{i=1}^{n} (y_i - \theta)^2\right]$$
$$\propto \exp\left[-\frac{\tau n \theta^2}{2}\right] \exp\left[\tau \theta \sum_{i} y_i\right]$$

So, this belongs to the exponential family:

$$g(\theta) = \exp\left[-\frac{\tau\theta^2}{2}\right]; \ h(\theta) = \tau\theta; \ t(y_i) = y_i.$$

Thus, the conjugate prior is of the form

$$\begin{split} p(\theta) & \propto \ g(\theta)^{\nu} \exp\left[h(\theta)\delta\right] \\ & = \left\{\exp\left[-\frac{\tau\theta^2}{2}\right]\right\}^{\nu} \exp\left[\tau\theta\delta\right] \\ & = \exp\left[-\frac{\tau\nu}{2}\left(\theta^2 - \frac{2\theta\delta}{\nu}\right)\right] \\ & \propto \ \exp\left[-\frac{\tau\nu}{2}\left(\theta - \frac{\delta}{\nu}\right)^2\right] \\ & \Rightarrow \theta \ \sim \ \operatorname{Normal}\left(\mu_0 = \frac{\delta}{\nu} \,, \ \phi_0^{-1} = (\nu\tau)^{-1}\right) \end{split}$$

We see that ν represents prior sample size; δ represents sum of y in prior sample. (So, δ/ν represents the prior sample mean μ_0 ; also see '§2 Bayesian Inference' p5 where $\kappa_0 = \nu$ is the prior sample size.)

So, in general, the parameters of conjugate priors for exponential family likelihoods have a natural interpretation as observing a 'prior' sample of size ν with the sufficient statistic of this 'prior' sample being equal to δ .

This can be used as an aid to eliciting prior parameters

- by imagining a hypothetical experiment that corresponds to your prior beliefs, or
- by 'converting' previous data into a suitable prior distribution.

Alternatives to eliciting prior parameters and to conjugate priors

- Specify particular features of your prior beliefs and find parametric distribution that approximately matches these (and has the right support), e.g.
 - mean of θ
 - variance of θ
 - mode of θ (most likely value)
 - median of θ (central value)
 - central 95% interval of θ E.g. If we think a normal prior for θ is reasonable and a plausible range for θ is [3.5,4.4], then we might set $\theta \sim \text{Normal}(\mu,\sigma^2)$ and choose μ and σ such that $\mu-1.96\sigma=3.5$ and $\mu+1.96\sigma=4.4$. This way, $P(\theta \in [3.5,4.4])=0.95$
- Allow prior distribution itself to depend on unknown parameters (hyperparameters) and assign these hyperprior distributions. This leads to a hierarchical model.
- Choose a non-informative prior, but why?

14

3. Non-informative priors

Two statisticians may use different priors reflecting their different subjective beliefs, then produce different posteriors.

Idea of non-informative priors is that:

- If the inference is based on a minimum of subjective prior belief, more likely that statisticians (and everyone else) can agree, or
- at the least, posterior from a non-informative prior provides a reference, against which posteriors using subjective, informative priors can be compared (part of sensitivity analysis).

Non-informative priors are also known as *vague*, *flat*, *diffuse* or *reference priors*.

Uniform priors

If $\theta \sim$ Uniform, then $p(\theta) \propto 1$: 1) no value of θ is more probable than any other value; 2) $p(\theta \mid y) \propto p(y \mid \theta)$.

Thus, the likelihood *dominates* the prior, ie posterior depends on the data (the likelihood) as much as possible.

• If support of θ is (0,1), then uniform prior is $\theta \sim \text{Uniform}(0,1)$:

$$p(\theta) = \begin{cases} 1 & \text{for } 0 \le \theta \le 1 \\ 0 & \text{otherwise;} \end{cases}$$

 $p(\theta)$ is proper: $\int_0^1 p(\theta)d\theta = 1$.

• If support of θ is \mathbb{R} , then uniform prior is $\theta \sim \text{Uniform}(-\infty,\infty)$:

$$p(\theta) \propto 1$$
 for $-\infty < \theta < \infty$; $p(\theta)$ is improper: $\int_{-\infty}^{\infty} p(\theta) d\theta = \infty$.

Improper priors *may* give improper posteriors; however, sometimes an improper prior *may* still lead to a *proper* posterior (examples soon). Therefore, check posteriors derived from improper priors.

13

An alternative to using improper uniform priors is to use *locally uniform* proper priors:

- 1. when the likelihood $p(y|\theta)$ is non-negligible at some values of θ , let $p(\theta)$ not change much over these values of θ ;
- 2. when the likelihood $p(y|\theta)$ is negligible at some values of θ , let $p(\theta)$ not assume large values at these values of θ .

As such,

- the prior $p(\theta)$ will be dominated by the likelihood $p(y | \theta)$, and thus
- no risk of improper posterior $p(\theta \mid y)$.

17

Example 3.5: Normal, known precision

As seen earlier, if $Y\mid \theta \sim \text{Normal}(\theta,\tau^{-1})$ $(i=1,\dots,n)$ and $\theta \sim \text{Normal}(\mu_0,\phi_0^{-1})$, then

$$\theta \mid y \sim \text{Normal}(\mu_1, \phi_1^{-1})$$

where

$$\mu_1 = \frac{\mu_0 \phi_0 + n \bar{y} \tau}{\phi_0 + n \tau}$$

$$\phi_1 = \phi_0 + n \tau$$

(see '§2 Bayesian Inference' p4)

- For non-informative prior, we could take $\phi_0=0$. But this prior is improper although the posterior is proper.
- If we choose ϕ_0 small but > 0, then the prior is locally uniform and proper; in this case, the proper posterior for $\phi_0 = 0$ is the limit of posteriors as $\phi_0 \to 0$.
- We can often think of improper prior as mathematical device: its posterior is the limit of posteriors from a sequence of proper priors.

18

Example 3.6: Bayes' postulate

Let $Y \mid \theta \sim \text{Bin}(n, \theta)$.

Uniform prior $p(\theta)$ for θ is Beta $(1,1) \propto 1$, ie Beta $(\alpha = 1, \beta = 1) \equiv \text{Uniform}(0,1)$. The prior is proper.

Then, as seen earlier, posterior $p(\theta \mid y)$ is $Beta(y+\alpha, n-y+\beta) = Beta(y+1, n-y+1)$.

A 'natural' estimate for θ is $\frac{y}{n}$. And we know that the mode of $\text{Beta}(\alpha,\beta)$ is $\frac{\alpha-1}{\alpha+\beta-2}$, for $\alpha,\beta>1$. So, here, the mode of $p(\theta\mid y)$ is $\frac{y}{n}$.

However, the mean of $p(\theta \mid y)$ here is $\frac{y+1}{n+2}$ as the mean of Beta (α, β) is $\frac{\alpha}{\alpha+\beta}$.

Example 3.7: Haldane's prior

Let $Y \mid \theta \sim \text{Bin}(n, \theta)$.

Haldane's prior for θ is Beta(0,0), given by

$$p(\theta) \propto \theta^{-1} (1 - \theta)^{-1}$$

Then, the posterior $p(\theta \mid y)$ is $Beta(y + \alpha, n - y + \beta) = Beta(y, n - y)$

Therefore, when $\alpha=\beta=0$ for Beta (α,β) prior, we have $E[\theta\mid y]=\frac{y}{n}$, the 'natural' estimate for θ .

Furthermore, Beta (α,β) prior becomes more and more informative as α and β increase. Therefore, it could be argued that taking $\alpha=\beta=0$ corresponds to minimum possible prior information.

However, Beta(0,0) is an improper prior.