AE454/777: Dynamics and Bifurcations Tutorial 1

- 1. Consider the initial value problem $\dot{x} = -x$, x(0) = 1.
 - (a) Solve the problem analytically. What is the exact value of x(1)?
 - (b) Using the Euler method with step size $\Delta t = 1$, estimate x(1) numerically—call the result $\hat{x}(1)$. Then repeat using $\Delta t = 10^{-n}$, for n = 1, 2, 3, 4.
 - (c)Plot the error $E = |\hat{x}(1) x(1)|$ as a function of Δt . Then plot $\ln E$ vs. $\ln \Delta t$. Explain the results.
 - (d) Redo the exercise using the improved Euler method.
 - (e) Redo the exercise using the Runge-Kutta method.
- 2. Consider the following mechanical system. A bead of mass m is constrained to slide along a straight wire inclined at an angle θ with respect to the horizontal. The mass is attached to a spring of stiffness k and relaxed length L_0 , and is also acted on by gravity. We choose coordinates along the wire so that x = 0 occurs at the point closest to the support point of the spring (see figure). The equilibrium positions of the head satisfy

$$mg\sin\theta = kx\left(1 - \frac{L_0}{\sqrt{x^2 + a^2}}\right)$$

(a) Show that this equation can be written in dimensionless form as

$$1 - \frac{h}{u} = \frac{R}{\sqrt{1 + u^2}}$$

for appropriate choices of R, h, and u.

- (b) Give a graphical analysis of the dimensionless equation for the cases R < 1 and R > 1. How many equilibria can exist in each case?
- (c) Let r = R 1. Give a numerically accurate plot of the bifurcation curves in the (r, h) plane. Interpret your results physically.
- 3. The equation of an overdamped pendulum is given by $b\dot{\theta} + mgL\sin\theta = \Gamma$, where b is the viscous damping constant and Γ is a constant applied torque (see figure).
 - (a) Reduce this equation to the form of a nonuniform oscillator $\theta' = \gamma \sin \theta$ with appropriate values for t and γ .
 - (b) Sketch $\sin\theta(t)$ vs. t for different γ , including the limiting cases $\gamma\approx 1$ and $\gamma\ll 1$.

- (c) What physical quantity is proportional to $\sin \theta(t)$?
- (d) Redo the exercise for $\dot{\theta}(t)$ instead of $\sin \theta(t)$.