# T1 - Identificação de metal e de semicondutor a partir do comportamento térmico

Miguel Santos Costa Oliveira

17/11/2021

Faculdade de Ciências da Universidade do Porto

#### Resumo

Neste trabalho estudámos o efeito da variação da temperatura na resistividade do cobre e na corrente que percorre um díodo polarizado inversamente. Medimos o coeficiente da variação relativa de resistividade com a temperatura do cobre ( $\alpha$ ) e a largura da banda proibida do semicondutor constituinte do díodo ( $\Delta$ ). Obtivemos um crescimento linear para a resistividade do cobre e um crescimento exponencial para a corrente do díodo com o aumento da temperatura, tal como era esperado. Pelos ajustes calculámos  $\alpha_{cobre}=(4.1\pm0.1)\times10^{-3}K^{-1}(\pm3\%)$  e  $\Delta_{exp}=(0.64\pm0.02)\,eV~(\pm3\%)$ . Relativamente às referências escolhidas tivemos um erro relativo de 5% e 3% , respetivamente, identificando o semicondutor como sendo o Germânio.

## Introdução

O estudo do comportamento resistivo de materiais sempre despertou grande interesse prático, sendo a base de muita tecnologia atual. Atualmente sabe-se que este comportamento está fortemente ligado à temperatura do material. Esta dependência varia consoante as propriedades intrínsecas do material. Neste trabalho vamos estar interessados em estudar a diferença desta dependência num metal e num semicondutor.

#### Condutores

Um material diz-se condutor de corrente elétrica se a distribuição das bandas de energia dos seus eletrões ( conjunto de níveis de energia permitidos ) permitir que os mesmos consigam transitar de uma banda de valência para uma banda de condução quando sujeitos a um campo elétrico. O grupo de condutores que estaremos interessados em estudar são os metais.

De modo geral, um campo elétrico interage com o condutor gerando uma corrente de portadores de carga,  $\vec{J} = \sigma \vec{E}$ , onde  $\sigma$  é a condutividade e  $\vec{J}$  é a densidade de corrente gerada. Obtando por uma descrição clássica, o modelo de Drude[3] dá-nos:

$$\sigma = \frac{\tau N e^2}{m_e} \tag{1}$$

onde  $\tau$ , N, e,  $m_e$  são o tempo de relaxação médio entre colisões no movimento dos eletrões, o número de eletrões que participam na corrente, a carga fundamental e a massa do eletrão respetivamente.

O número de eletrões na banda de condução não varia significativamente quando existe um aumento de temperatura. No entanto, o tempo de relaxação médio entre colisões tende a diminuir. Isto pode ser justificado qualitativamente pelo facto de que a agitação térmica dos átomos constituintes do material é maior, aumentando a probabilidade destes colidirem com os eletrões em movimento. Do ponto de vista macroscópico, este facto corresponde a um aumento da resistividade ( $\rho \equiv \sigma^{-1}$ ) do material.

Este aumento pode ser modelado por uma aproximação de primeira ordem ( equação 2) em torno de uma temperatura  $T_0$ .

$$\rho(T) = \rho_0 (1 + \alpha (T - T_0)) \tag{2}$$

Onde  $\rho_0$  é resistividade para a temperatura de referência e  $\alpha$  é o coeficiente de variação relativa da resistividade com a temperatura dado por :

$$\alpha \equiv \frac{1}{\rho_0} \frac{\partial \rho}{\partial T} \tag{3}$$

Na maior parte dos metais este coeficiente é positivo.

#### Semicondutores

Um semicondutor é um material com resistividade entre os valores típicos de um condutor e de um isolador, podendo variar entre  $10^{-2}\,\Omega\,m$  e  $10^9\,\Omega\,m$ . A resistividade destes materiais pode ter uma forte dependência da temperatura e da concentração de impurezas. A dependência da temperatura deve-se ao facto de que os eletrões conseguem transitar para a banda de condução por excitação térmica. Esta excitação térmica pode ser descrita pelo fator de Boltzman  $\exp(-\frac{\Delta}{k_B T})$ , onde  $\Delta$  é a largura da banda que têm de ser ultrapassada pelos eletrões. Um modelo mais exato para a dependência do número de portadores de carga pode ser dada pela equação 4[3].

$$n = f(T)\exp(-\frac{\Delta}{k_B T}) \tag{4}$$

Onde f(T) é um polinómio de T característico do material. Para  $\Delta \gg k_B T$  temos que o termo exponencial é dominante face ao termo polinomial e por isso podemos considerar

$$n \propto \exp(-\frac{\Delta}{k_B T}) \tag{5}$$

Uma vez que  $I \propto n$ , vamos ter

$$I = A \exp(-\frac{\Delta}{k_B T}) \tag{6}$$

Onde A é uma constante de proporcionalidade apenas.

No caso particular dos díodos temos dois semicondutores. Um do tipo n (dopado com elementos que contribuem com cargas negativas para a malha), outro do tipo p (dopado com elementos que contribuem para o aumento de lacunas). Quando este está polarizado diretamente, os eletrões

conseguem fluir pela junção dos dois semicondutores. No entanto quando este está polarizado inversamente, é criada uma zona de depleção que cria um potencial que contraria o movimento das cargas, impedindo a existência de corrente.

Este impedimento pode ser superado pelo mesmo fenómeno de excitação térmica discutido, fazendo com que se verifique a relação 6. Neste caso  $\Delta$  vai ser a banda proibida ( gap de níveis de energia não permitidos ) característica do semicondutor.

#### Objetivos deste trabalho

Neste trabalho tivemos os seguintes objetivos:

- Estudar a dependência da temperatura da resistência de um metal (fio de cobre) caracterizando o valor do coeficiente de variação relativa da resistividade com a temperatura;
- Determinar o valor da banda proibida de um semicondutor através do estudo da variação da corrente que o percorre com a temperatura;
- Ganhar famialiridade com métodos de medição em AC.

## Método experimental

Na execução desta experiência seguimos o protocolo [2].

Na figura 1 vemos a montagem utilizada. Tivemos especial cuidado no posicionamento dos fios para não corrermos riscos de estragar material pelo contacto com a placa de aquecimento.

Podemos ver também na figura 1 que o termopar se encontra no meio do goblé, entre o díodo e o fio de cobre. Não deslocamos o termopar do sítio ao longo da experiência para termos uma medição da temperatura do mesmo local sempre.

Usamos um dispositivo LCR para medir o valor da resistência do fio de cobre com boa precisão. Este aparelho utiliza uma corrente  $\mathbf{AC}$  para fazer a medição do impedância do fio e assim calcular a resistência do mesmo. Estes métodos têm imensas vantagens[9], nomeadamente o facto de incorporar a técnica dos 4-contactos.

Tivemos em atenção em fazer as medições pela ordem fixa  $T \to R_{cobre} \to I_{díodo}$ . Assim o erro, pelo facto da temperatura estar a variar enquanto estamos a registar os valores, vai ser um erro sistemático. Deste modo é mais fácilmente detetado e corrigido.

#### Material

- Digital LCR meter model Z216
- Multímetro digital Philips PM 2421
- Multímetro Metcix X54
- TES thermometer 1300
- Fonte de tensão **DC** CFUP.
- Placa de aquecimento

Utilizámos dois amperímetros em série para termos a certeza de que o multímetro digital *Philips PM* 2421 estava a funcionar corretamente. A precisão deste é muito superior à do multímetro *Metcix* X54 e as medidas foram sempre concordantes e por isso registamos apenas os valores do mais preciso.



Figura 1: Montagem Experimental: 1 - Gerador de tensão (15V); 2 - LCR; 3 - Multímetro; 4 - Goblé com óleo de silicone; 5 - Placa de aquecimento; 6 - Garra para prender os fios; 7 - Termómetro; 8 - segundo multímetro; 9 - Fio de cobre; 10 - Extremidade termopar; 11 - Díodo

#### Análise e resultados

Não tínhamos disponível um termómetro para medir a temperatura externa ao longo da experiência. O único valor que conseguimos medir foi o valor antes de começarmos o aquecimento  $T_0 = 14.9^{\circ}C$ . A experiência foi executada num dia de sol e houve uma subida de temperatura da sala no decorrer da experiência, sendo que esta teve a duração de 4h.

No início da experiência começamos o aquecimento do óleo de silicone antes de termos ligado o gerador que iria polarizar o díodo. Apenas nos apercebemos do erro por volta dos  $24^{\circ}C$ . Não conseguimos aproximarmo-nos da temperatura ambiente novamente pois o arrefecimento nesta gama de temperaturas é bastante lento. Assim não conseguimos obter valores na gama  $[14;24]^{\circ}C$  para a corrente do diodo.

Dado o tempo que tivemos disponível conseguimos fazer dois ciclos de aquecimento e arrefecimento. No primeiro aquecimento colocámos a placa de aquecimento com a menor potência de aquecimento disponível para que este seja o mais lento possível.

No segundo ciclo, devido às limitações do tempo, colocámos a placa com a segunda menor opção

de aquecimento para acelerar as medições.

Ao longo de toda a nossa análise não incluimos as barras de erro nos gráficos para não os sobrecarregar. Para além disso em todos os casos estas são duas ordens de grandeza (ou mais) menores do que a largura da gama experimental de pontos, fazendo com que não sejam significativas na análise.

Todos os dados experimentais encontram-se no anexo A.

#### Estudo da dependência da resistividade do cobre

Na figura 2 vemos todos os dados relativos à resistência do cobre. Observamos uma diferença clara entre o arrefecimento e o aquecimento.

Os valores medidos em arrefecimento parecem convergir para um comportamento comum ao passo que os valores medidos em aquecimento mantém-se afastados. Estas características são explicadas pela variação da taxa de mudança de temperatura do sistema. Não obstante o comportamento linear verifica-se e os declives são similares.



Figura 2: Dados experimentais  $R_{cobre}(T)$ 

Partindo do pressuposto de que as variações das dimensões do fio de cobre com a temperatura são desprezáveis, podemos substituir a expressão 2 pela expressão:

$$R(T) = R_0(1 + \alpha(T - T_0)) \tag{7}$$

Usando 7, podemos fazer um ajuste linear aos nossos pontos experimentais, onde  $m=R_0\alpha$  e  $b=R_0-\alpha R_0T_0$ . Apesar de não termos acesso direto ao valor de  $T_0$ , podemos estimá-lo como sendo a temperatura ambiente ( $T_0=288.05K$ ). Como temos duas expressões, podemos eliminar a dependência do valor de  $R_0$ .

$$\alpha = \frac{1}{\frac{b}{m} + T_0} \tag{8}$$

O valor de  $\alpha$  que iremos obter irá estar bastante condicionado pelo valor escolhido para  $T_0$ , o que pode ser um problema desta análise.

Separámos as análises dos vários conjuntos de pontos e com base na análise dos gráficos de resíduos excluímos as gamas cujos resíduos apresentavam tendências. Podemos ver na figura 3 esta análise.

As linhas verticais distinguem as gamas de pontos experimentais que usámos para fazer os ajustes. Podemos ver também que os resíduos finais estão uniformemente distribuidos em torno de zero e são da ordem da incerteza experimental, mostrando que as gamas escolhidas para os ajustes lineares seguem o comportamento esperado.



Figura 3: Estudo de  $R_{cobre}(T)$ : em cima  $1^{\Omega}$  ciclo (esquerda aquecimento e direita arrefecimento ) e em baixo o  $2^{\Omega}$  ciclo (esquerda aquecimento e direita arrefecimento )

Os resultados dos ajustes estão indicados nas tabela 7 no anexo B e os valores de  $\alpha$  calculados estão indicados na tabela 1. Para a incerteza de  $\alpha$  utilizamos a equação 13 deduzida no anexo C.

| $\boxed{ Gama\; T/K}$ | $\alpha / 10^{-3} K^{-1}$ | $u(\alpha) / 10^{-3} K^{-1}$ | $u_{rel}(\alpha)\%$ |
|-----------------------|---------------------------|------------------------------|---------------------|
| 1AqR - 305 - 322      | 3.88                      | 0.008                        | 2                   |
| 1AqR - 323 - 373      | 4.265                     | 0.004                        | 0.1                 |
| 1ArR - 323 - 368      | 4.051                     | 0.006                        | 0.1                 |
| 1ArR - 303 - 322      | 4.24                      | 0.01                         | 0.3                 |
| 2AqR - 333 - 376      | 4.185                     | 0.007                        | 0.2                 |
| 2ArR - 333 - 367      | 3.968                     | 0.009                        | 0.2                 |

Tabela 1: Resultados  $\alpha$ 

Os resultados dos ajustes são bastante precisos. As ordenadas nas origens têm uma dispersão considerável ( $\sigma_{brel}=22\%$ ), o que era de esperar visto o desfazamento que ocorreu entre os vários ciclos. Os declives medidos são mais concordantes ( $\sigma_{mrel}=3\%$ ). Dado que os valores de  $\alpha$  têm pouca dispersão podemos fazer a média da nossa amostra completa. Obtemos  $\alpha=(4.1\pm0.1)\times10^{-3}K^{-1}(\pm3\%)$ . Na literatura encontramos diferentes valores para o coeficiente térmico de variação da resistividade para o cobre e usamos como referência para o coeficiente para cobre puro  $\alpha_{teórico}=4.3\times10^{-3}K^{-1}$ retirado da referência [1] tabela 19.1. É importante notar que este valor depende bastante das impurezas do cobre e o fio de cobre que utilizámos não era feito de cobre puro. Comparando com o valor teórico obtemos um erro relativo de 5%. Este erro é bastante baixo podendo ser justificado com as impurezas do material.

#### Estudo da banda proibida de um semicondutor

Na figura 4 vemos todos os pontos retirados da corrente que percorre o díodo ao longo dos aquecimentos e dos arrefecimentos.

Tal como na secção anterior, vemos uma diferença entre a curva de arrefecimento e a de aquecimento. No entanto, as conclusões não são tão diretas como no caso do fio de cobre. Vemos que o "lag" é compensado e todos os conjuntos de dados acabam por convergir para o mesmo comportamento para temperaturas menores.



Figura 4: Dados experimentais  $I_{diodo}(T)$ 

Para verificarmos a tendência exponecial linearizamos a expressão 6.

$$\ln(I) = \ln(A) - \frac{\Delta}{k_B T} \tag{9}$$

Pela equação 9 vemos que o estudo de  $\ln(I)(\frac{1}{T})$  dar-nos-á  $m=\frac{\Delta}{k_B}$  e  $b=\ln(A)$ . Daqui retiramos a largura da banda do semicondutor pela equação 10.

$$\Delta = mk_B \tag{10}$$

Tivemos em consideração a divisão das gamas de temperaturas utilizadas para os ajustes lineares, utilizando o mesmo critério dos gráficos de resíduos falado na secção anterior. Vemos na figura 5 que os resíduos de todos os ajustes encontram-se aleatóriamente em torno de zero mostrando que os nossos dados experimentais seguem fielmente o comportamento exponencial.

Para observarmos os ajustes mais corretamente, representamo-los nos dados originais na figura 6. Os resultados dos ajustes estão indicados na tabela 8 no anexo B. Todos os valores são razoávelmente concordantes entre gamas de pontos ( $\sigma_{rel}(m) = 7\%$  e  $\sigma_{rel}(b) = 5\%$ ) o que é ótimo.

Na tabela 2 vemos os resultados das bandas proibidas calculadas para cada gama. Utilizámos a expressão 10.



Figura 5: Estudo de  $\ln(I_{diodo})$  em função de  $\frac{1}{T}$ : em cima  $1^{\Omega}$  ciclo (esquerda aquecimento e direita arrefecimento) e em baixo o  $2^{\Omega}$  ciclo (esquerda aquecimento e direita arrefecimento)

| $Gama\ T/K$      | $\Delta / eV$ | $u(\Delta) / eV$ | $u(\Delta)\%$ |
|------------------|---------------|------------------|---------------|
| 1AqD - 303 - 336 | 0.640         | 0.002            | 0.4           |
| 1AqD - 345 - 364 | 0.543         | 0.002            | 0.4           |
| 1AqD - 370 - 383 | 0.683         | 0.002            | 0.4           |
| 1ArD - 327 - 364 | 0.620         | 0.002            | 0.4           |
| 1ArD - 303 - 327 | 0.640         | 0.002            | 0.4           |
| 2AqD - 303 - 317 | 0.651         | 0.002            | 0.4           |
| 2AqD - 317 - 344 | 0.637         | 0.002            | 0.4           |
| 2ArD - 370 - 376 | 0.565         | 0.002            | 0.4           |
| 2ArD - 333 - 370 | 0.617         | 0.002            | 0.4           |

Tabela 2: Resultados larguras bandas proibidas

Tivemos de excluir os valores obtidos para os conjuntos de pontos "1AqD - 345 - 364" e "2ArD - 370 - 376", pois afastavam-se demasiado da média da amostra ( desvio superior a 10% da média ). Após estas considerações, obtivemos  $\bar{\Delta}_{exp} = (0.64 \pm 0.02)\,eV$  ( $\pm 3\%$ ), que é um resultado bastante preciso. O semicodutor (dentro dos semicondutores mais comuns no uso de díodos ) ,cuja largura da banda proibida é mais próxima do nosso valor experimental à temperatura ambiente, é o germânio ( Ge ).



Figura 6: Estudo de  $I_{diodo}(T)$ : em cima  $1^{\Omega}$  ciclo (esquerda aquecimento e direita arrefecimento ) e em baixo o  $2^{\Omega}$  ciclo (esquerda aquecimento e direita arrefecimento )

Vamos usar o valor de referência  $\Delta_{Ge}=0.67eV$  (T=300K) retirado da referência [4] tabela 28.1. Relativamente a este valor o nosso resultado experimental têm um erro relativo de 4%, que é bastante bom.

#### Discussão

O coeficiente de expansão térmica do cobre é  $17 \times 10^{-6} K^{-1} (0-100^{\circ} C)[1]$ , implicando que para a máxima amplitude de temperatura utilizada ( $\Delta T \approx 100 K$ ) houve uma variação de  $\approx 0.17\%$  do volume do fio de cobre, justificando assim a nossa hipótese de que as dimensões do cobre estariam praticamente constantes ao longo da experiência.

A característica mais peculiar da nossa experiência foi o comportamento diferente para o aquecimento e o arrefecimento. Esta diferença advém dos pormenores da experiência e não das propriedades intrínsecas dos materiais. Tal como discutido anteriormente, julgamos que esta diferença seja proveniente das diferentes taxas de variação de temperatura. Usando a figura 2 como referência, o desfazamento nas nossas medidas de temperaturas indica-nos que não estamos realmente a medir a temperatura real do cobre ( ou díodo ).

Não deslocámos o termopar durante a experiência pois quisemos que este medisse sempre a temperatura no mesmo local. No entanto, perdemos informação sobre o gradiente de temperaturas do

óleo de silicone no decorrer da atividade. Julgamos que essa informação ajudaria a justificar o desfazamento que observamos nos dados. Assim, o ideal numa repetição da experiência seria usarmos dois termopares: um fixo para manter a medição coerente e outro que pudessemos mover. Também poderiamos colocar cada termopar fixo junto ao díodo e ao cobre para que a medida da sua temperatura seja mais realista.

Nesta atividade o equilíbrio térmico entre o meio envolvente e os elementos de interesse devia ser sempre garantido, e por isso é que a variação de temperatura deve ser o mais lenta possível. Apesar dos esforços, a potência mínima da placa de aquecimento ainda é bastante elevada e o isolamento do sistema é muito fraco, perdendo assim a possibilidade de tornar as taxas de aquecimento e arrefecimento mais lentas. A consequência disto é que o sistema está sempre num estado de quasi-equilíbrio. Esta será a principal razão pela qual observamos o lag para o comportamento esperado. O óleo de silicone e os fio de cobre ( ou díodo ) não estão em equilíbrio, o que é de esperar pois as condutividades térmicas são bastante diferentes fazendo com que o sistema no seu todo não tenha um fluxo de calor homogéneo ( especialmente para temperaturas mais altas ) e consequentemente não fique em equílibrio térmico.

Na análise da corrente do díodo a aproximação da equação 5 foi sempre válida. Para a temperatura mais alta utilizada temos  $\frac{\Delta_{Ge}}{k_BT}\approx 20$ , logo a exponencial continua a ser dominante face ao termo polinomial.

Na nossa análise da banda proibida do germânio não considerámos a dependência da temperatura, no entanto a largura desta decresce com a temperatura. Um modelo aproximado[8][7] diz-nos que a largura da banda evolui segundo a equação 11.

$$\Delta(T) \approx \Delta_{T=0K} - \frac{\alpha T^2}{T+\beta} \tag{11}$$

Onde os fatores empíricos  $\alpha$  e  $\beta$  para o germânio são  $4.561 \times 10^{-4} eV \, K^{-1}$  e 210 K [8, 6], respetivamente. Este não é o modelo mais exato[5] para a gama de temperaturas que estamos a estudar, mas chega para uma análise qualitativa.

Utilizando este modelo para o intervalo de temperaturas  $\approx [290;390]K$ , calculámos uma variação da banda proibida de -5%, incluindo assim o nosso valor experimental no final da variação. Isto pode explicar as medidas sistemáticamente inferiores ao valor teórico.

Para termos uma visão concreta do efeito da temperatura nos nossos resultados associámos a cada largura de banda calculada o ponto médio do intervalo de temperaturas de onde proveio o ajuste. Os resultados estão descritos na figura 7 e podemos verificar a tendência decrescente dos valores como seria de esperar.



Figura 7: Análise da dependência da temperatura de  $\Delta_{Ge}$ 

Esta variação teve impacto nos nossos resultados e numa próxima repetição da experiência teriamos de ter isto em conta.

Para concluir as observações, é importante argumentar que esta experiência teria tido uma análise mais aprofundada se tivessemos feito uma gravação da execução e registado os instantes de tempo das medições para conseguir acompanhar as taxas de aquecimento e arrefecimento e assim justificar de modo mais completo os erros que estas possam ter introduzido. Também seria uma maneira de obter uma maior densidade de pontos na gama disponível, pois em certas alturas da experiência a rápida variação de temperatura impede que seja possível medir mais do que 2 pontos por 1K.

### Conclusão

Em suma, verificámos com sucesso as dependências com a temperatura da resistividade do cobre e da corrente que atravessa um díodo inversamente polarizado. Obtivemos os valores experimentais para o coeficiente de variação relativa da resistividade do cobre com a temperatura,  $\alpha = (4.1 \pm 0.1) \times 10^{-3} K^{-1}(\pm 3\%)$ , e para a largura da banda do semicondutor,  $\bar{\Delta}_{exp} = (0.64 \pm 0.02) \, eV \, (\pm 3\%)$ . Ambos os valores têm uma ótima precisão e têm um erro relativo de 5% e 3%, respetivamente, mostrando alta exatidão ( valores teóricos bastante próximos do intervalo de incerteza dos valores).

Concluimos também que as nossas medições da temperatura do cobre e do díodo foram desviadas do valor real pelo facto destes não estarem em equilíbrio com o banho térmico durante o registo. Também deduzimos que a largura da banda proibida do germânio estava correlacionada com o intervalo de temperaturas na qual foi calculada, podendo ter afetado o nosso valor experimental final. Seria interessante explorar correções a estes dois problemas numa futura repetição da atividade.

## Anexo A - Dados experimentais

A incerteza de todos os valores experimentais aqui indicados é na casa do último algarismo indicado  $(\pm 1)$ , uma vez que todas as medições provém de aparelhos digitais.

| $1^{\mathrm{o}} \; \mathrm{Aquecimento}$ |            |      |       |            |       |       |            |      |       |            |      |
|------------------------------------------|------------|------|-------|------------|-------|-------|------------|------|-------|------------|------|
| T/K                                      | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA  | T/K   | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA |
| 297.8                                    | 109.7      | 7.7  | 318.7 | 116.7      | 40.2  | 340.7 | 126.2      | 179  | 362.2 | 135.8      | 555  |
| 297.6                                    | 109.7      | 7.7  | 319.2 | 116.9      | 42    | 341.2 | 126.5      | 186  | 362.7 | 136        | 569  |
| 298.2                                    | 109.7      | 8.6  | 319.7 | 117.2      | 43.3  | 341.7 | 126.7      | 191  | 363.2 | 136.2      | 580  |
| 298.7                                    | 109.7      | 8.9  | 320.2 | 117.4      | 45.2  | 342.2 | 126.9      | 196  | 363.7 | 136.4      | 595  |
| 299.2                                    | 109.8      | 9.3  | 320.7 | 117.6      | 47    | 342.7 | 127.2      | 203  | 364.2 | 136.6      | 610  |
| 299.8                                    | 109.9      | 9.8  | 321.2 | 117.8      | 48.5  | 343.2 | 127.4      | 208  | 364.7 | 136.9      | 624  |
| 300.2                                    | 110        | 10.2 | 321.7 | 118        | 50.4  | 343.7 | 127.6      | 215  | 365.2 | 137        | 644  |
| 300.7                                    | 110.1      | 10.5 | 322.2 | 118.2      | 52.4  | 344.2 | 127.8      | 221  | 365.7 | 137.3      | 663  |
| 301.2                                    | 110.2      | 10.9 | 322.7 | 118.4      | 54.2  | 344.7 | 128        | 227  | 366.2 | 137.6      | 678  |
| 301.7                                    | 110.3      | 11.4 | 323.2 | 118.6      | 56    | 345.2 | 128.2      | 233  | 366.7 | 137.7      | 701  |
| 302.2                                    | 110.5      | 11.8 | 323.7 | 118.8      | 57.9  | 345.7 | 128.5      | 240  | 367.2 | 138        | 714  |
| 302.7                                    | 110.6      | 12.3 | 324.2 | 119        | 59.9  | 346.2 | 128.7      | 246  | 367.7 | 138.1      | 732  |
| 303.2                                    | 110.8      | 12.8 | 324.7 | 119.2      | 61.9  | 346.7 | 128.9      | 254  | 368.2 | 138.4      | 756  |
| 303.7                                    | 110.9      | 13.4 | 325.2 | 119.5      | 64.2  | 347.2 | 129.2      | 262  | 368.7 | 138.6      | 777  |
| 304.2                                    | 111        | 13.9 | 325.7 | 119.7      | 66.4  | 347.7 | 129.4      | 270  | 369.2 | 138.8      | 793  |
| 304.7                                    | 111.2      | 13.7 | 326.2 | 119.9      | 68.9  | 348.2 | 129.6      | 276  | 369.7 | 139        | 813  |
| 305.2                                    | 111.4      | 14.2 | 326.7 | 120.1      | 71.3  | 348.7 | 129.8      | 285  | 370.2 | 139.3      | 844  |
| 305.7                                    | 111.5      | 14.6 | 327.2 | 120.3      | 73.5  | 349.2 | 130        | 290  | 370.7 | 139.5      | 863  |
| 306.2                                    | 111.8      | 15.5 | 327.7 | 120.6      | 77.2  | 349.7 | 130.2      | 297  | 371.2 | 139.7      | 888  |
| 306.7                                    | 111.9      | 16.2 | 328.2 | 120.8      | 79.9  | 350.2 | 130.5      | 306  | 371.7 | 139.9      | 920  |
| 307.2                                    | 112.1      | 16.7 | 328.7 | 121        | 81.9  | 350.7 | 130.7      | 316  | 372.2 | 140.1      | 939  |
| 307.7                                    | 112.3      | 17.3 | 329.2 | 121.2      | 85.7  | 351.2 | 130.9      | 324  | 372.7 | 140.3      | 969  |
| 308.2                                    | 112.5      | 18   | 329.7 | 121.5      | 87.8  | 351.7 | 131.2      | 331  | 373.2 | 140.5      | 992  |
| 308.7                                    | 112.7      | 19.2 | 330.2 | 121.7      | 92    | 352.2 | 131.3      | 340  | 373.7 | 140.8      | 1030 |
| 309.2                                    | 112.9      | 19.7 | 330.7 | 122        | 96.6  | 352.7 | 131.6      | 350  | 374.2 | 140.9      | 1050 |
| 309.7                                    | 113.1      | 20.4 | 331.2 | 122.1      | 98.2  | 353.2 | 131.8      | 360  | 374.7 | 141.2      | 1080 |
| 310.2                                    | 113.3      | 21.3 | 331.7 | 122.3      | 102.4 | 353.7 | 132        | 370  | 375.2 | 141.4      | 1114 |
| 310.7                                    | 113.5      | 22.2 | 332.2 | 122.6      | 104.7 | 354.2 | 132.3      | 379  | 375.7 | 141.6      | 1152 |
| 311.2                                    | 113.7      | 23   | 332.7 | 122.8      | 107.8 | 354.7 | 132.5      | 388  | 376.2 | 141.7      | 1173 |
| 311.7                                    | 113.9      | 24   | 333.2 | 123        | 111   | 355.2 | 132.7      | 397  | 376.7 | 142        | 1214 |
| 312.2                                    | 114        | 24.5 | 334.2 | 123.4      | 119   | 355.7 | 132.9      | 407  | 377.2 | 142.1      | 1253 |
| 312.7                                    | 114.2      | 25.5 | 334.7 | 123.7      | 124.7 | 356.2 | 133.1      | 415  | 377.7 | 142.3      | 1298 |
| 313.2                                    | 114.4      | 26.5 | 335.2 | 123.9      | 128   | 356.7 | 133.3      | 425  | 378.2 | 142.4      | 1327 |
| 313.7                                    | 114.6      | 27.6 | 335.7 | 124        | 130   | 357.2 | 133.5      | 440  | 378.7 | 142.6      | 1355 |
| 314.2                                    | 114.8      | 28.7 | 336.2 | 124.3      | 135   | 357.7 | 133.8      | 447  | 379.2 | 142.8      | 1398 |
| 314.7                                    | 115        | 29.8 | 336.7 | 124.5      | 140   | 358.2 | 134        | 461  | 379.7 | 143        | 1433 |
| 315.2                                    | 115.3      | 30.9 | 337.2 | 124.7      | 144   | 358.7 | 134.2      | 466  | 380.2 | 143.2      | 1477 |
| 315.7                                    | 115.5      | 32.3 | 337.7 | 124.9      | 148   | 359.2 | 134.4      | 476  | 380.7 | 143.4      | 1516 |
| 316.2                                    | 115.7      | 33.7 | 338.2 | 125.1      | 152   | 359.7 | 134.6      | 489  | 381.2 | 143.6      | 1563 |
| 316.7                                    | 115.9      | 35.2 | 338.7 | 125.4      | 158   | 360.2 | 134.9      | 502  | 381.7 | 143.8      | 1590 |
| 317.2                                    | 116.1      | 36   | 339.2 | 125.6      | 163   | 360.7 | 135.1      | 516  | 382.2 | 144        | 1637 |
| 317.7                                    | 116.3      | 37.3 | 339.7 | 125.8      | 168   | 361.2 | 135.3      | 527  | 382.7 | 144.2      | 1680 |
| 318.2                                    | 116.5      | 38.8 | 340.2 | 126        | 174   | 361.7 | 135.5      | 541  | 383.2 | 144.4      | 1740 |

Tabela 3: Dados experimentais  $1^{0}$ Aquecimento 13

| 1º Arrefecimento |            |      |       |            |      |       |            |      |       |            |      |
|------------------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|
| T/K              | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA |
| 379.2            | 144.3      | 1385 | 359.7 | 136.9      | 513  | 340.2 | 128.5      | 163  | 320.7 | 120        | 44.1 |
| 378.7            | 144.1      | 1353 | 359.2 | 136.7      | 499  | 339.7 | 128.3      | 158  | 320.2 | 119.8      | 42.6 |
| 378.2            | 144        | 1323 | 358.7 | 136.4      | 483  | 339.2 | 128        | 153  | 319.7 | 119.5      | 41.4 |
| 377.7            | 143.9      | 1293 | 358.2 | 136.3      | 471  | 338.7 | 127.9      | 149  | 319.2 | 119.3      | 39.6 |
| 377.2            | 143.8      | 1264 | 357.7 | 136        | 459  | 338.2 | 127.6      | 144  | 318.7 | 119.1      | 38.1 |
| 376.7            | 143.6      | 1233 | 357.2 | 135.8      | 446  | 337.7 | 127.5      | 140  | 318.2 | 118.9      | 37.1 |
| 376.2            | 143.5      | 1204 | 356.7 | 135.6      | 434  | 337.2 | 127.3      | 136  | 317.7 | 118.7      | 35.8 |
| 375.7            | 143.3      | 1176 | 356.2 | 135.4      | 421  | 336.7 | 127        | 130  | 317.2 | 118.4      | 34.2 |
| 375.2            | 143.1      | 1150 | 355.7 | 135.1      | 409  | 336.2 | 126.8      | 127  | 316.7 | 118.2      | 33.1 |
| 374.7            | 142.9      | 1120 | 355.2 | 135        | 398  | 335.7 | 126.6      | 123  | 316.2 | 118        | 32   |
| 374.2            | 142.8      | 1098 | 354.7 | 134.7      | 387  | 335.2 | 126.3      | 119  | 315.7 | 117.8      | 30.5 |
| 373.7            | 142.6      | 1071 | 354.2 | 134.5      | 375  | 334.7 | 126.1      | 115  | 315.2 | 117.5      | 29.5 |
| 373.2            | 142.4      | 1040 | 353.7 | 134.3      | 363  | 334.2 | 125.9      | 111  | 314.7 | 117.3      | 28.6 |
| 372.7            | 142.2      | 1015 | 353.2 | 134.1      | 355  | 333.7 | 125.6      | 107  | 314.2 | 117.1      | 27.6 |
| 372.2            | 142        | 995  | 352.7 | 133.9      | 345  | 333.2 | 125.4      | 104  | 313.7 | 116.9      | 26.9 |
| 371.7            | 141.8      | 966  | 352.2 | 133.6      | 336  | 332.7 | 125.3      | 101  | 313.2 | 116.6      | 25.8 |
| 371.2            | 141.6      | 944  | 351.7 | 133.4      | 326  | 332.2 | 125        | 97.9 | 312.7 | 116.5      | 24.8 |
| 370.7            | 141.4      | 920  | 351.2 | 133.2      | 317  | 331.7 | 124.8      | 94.4 | 312.2 | 116.2      | 23.7 |
| 370.2            | 141.2      | 898  | 350.7 | 133        | 308  | 331.2 | 124.6      | 92   | 311.7 | 116        | 22.8 |
| 369.7            | 141        | 874  | 350.2 | 132.8      | 299  | 330.7 | 124.4      | 88.6 | 311.2 | 115.8      | 22   |
| 369.2            | 140.8      | 850  | 349.7 | 132.6      | 290  | 330.2 | 124.2      | 85.6 | 310.7 | 115.5      | 21.3 |
| 368.7            | 140.5      | 825  | 349.2 | 132.3      | 281  | 329.7 | 124        | 82.7 | 310.2 | 115.3      | 20.4 |
| 368.2            | 140.4      | 810  | 348.7 | 132.1      | 272  | 329.2 | 123.8      | 80.7 | 309.7 | 115.1      | 19.5 |
| 367.7            | 140.2      | 785  | 348.2 | 132        | 265  | 328.7 | 123.5      | 77.6 | 309.2 | 114.9      | 18.8 |
| 367.2            | 140        | 766  | 347.7 | 131.6      | 256  | 328.2 | 123.3      | 75.3 | 308.7 | 114.6      | 18.2 |
| 366.7            | 139.8      | 746  | 347.2 | 131.5      | 251  | 327.7 | 123.1      | 73   | 308.2 | 114.4      | 17.4 |
| 366.2            | 139.6      | 730  | 346.7 | 131.3      | 243  | 327.2 | 122.9      | 70.3 | 307.7 | 114.2      | 16.9 |
| 365.7            | 139.5      | 712  | 346.2 | 131        | 236  | 326.7 | 122.6      | 67.8 | 307.2 | 114        | 16.3 |
| 365.2            | 139.2      | 691  | 345.7 | 130.8      | 228  | 326.2 | 122.4      | 65.8 | 306.7 | 113.7      | 15.5 |
| 364.7            | 139        | 671  | 345.2 | 130.6      | 222  | 325.7 | 122.2      | 63.5 | 306.2 | 113.5      | 14.7 |
| 364.2            | 138.8      | 655  | 344.7 | 130.4      | 215  | 325.2 | 122        | 61.4 | 305.7 | 113.3      | 14.2 |
| 363.7            | 138.5      | 635  | 344.2 | 130.2      | 208  | 324.7 | 121.8      | 59.3 | 305.2 | 113.1      | 13.6 |
| 363.2            | 138.4      | 621  | 343.7 | 129.9      | 200  | 324.2 | 121.5      | 57   | 304.7 | 112.8      | 13.1 |
| 362.7            | 138.1      | 604  | 343.2 | 129.8      | 196  | 323.7 | 121.4      | 55.4 | 304.2 | 112.6      | 12.5 |
| 362.2            | 138        | 588  | 342.7 | 129.5      | 190  | 323.2 | 121.1      | 53.3 | 303.7 | 112.4      | 12   |
| 361.7            | 137.8      | 572  | 342.2 | 129.3      | 184  | 322.7 | 120.9      | 51.4 | 303.2 | 112.2      | 11.8 |
| 361.2            | 137.6      | 558  | 341.7 | 129.1      | 176  | 322.2 | 120.6      | 49.3 |       |            |      |
| 360.7            | 137.3      | 540  | 341.2 | 128.9      | 173  | 321.7 | 120.4      | 47.6 |       |            |      |
| 360.2            | 137        | 527  | 340.7 | 128.7      | 168  | 321.2 | 120.3      | 46.3 |       |            |      |

Tabela 4: Dados experimentais  $1^{o}$  Arrefecimento

|       |            |      |       |            | 2º Aque | $\operatorname{cimento}$ |            |      |       |            |      |
|-------|------------|------|-------|------------|---------|--------------------------|------------|------|-------|------------|------|
| T/K   | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA    | T/K                      | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA |
| 303.7 | 111.9      | 13.7 | 321.7 | 117.5      | 51.6    | 341.2                    | 125.6      | 191  | 359.2 | 133.3      | 529  |
| 304.2 | 111.9      | 13   | 322.2 | 117.7      | 52.9    | 341.7                    | 125.8      | 196  | 359.7 | 133.6      | 542  |
| 304.7 | 112        | 13.6 | 322.7 | 117.9      | 55      | 342.2                    | 126        | 202  | 360.2 | 133.7      | 554  |
| 305.2 | 112.1      | 14.2 | 323.2 | 118.1      | 56.9    | 342.7                    | 126.3      | 209  | 360.7 | 134        | 577  |
| 305.7 | 112.2      | 14.9 | 323.7 | 118.3      | 58.8    | 343.2                    | 126.5      | 216  | 361.2 | 134.2      | 585  |
| 306.2 | 112.3      | 15.6 | 324.2 | 118.5      | 60.8    | 343.7                    | 126.7      | 223  | 361.7 | 134.4      | 604  |
| 306.7 | 112.4      | 16.3 | 324.7 | 118.7      | 63.8    | 344.2                    | 126.9      | 230  | 362.2 | 134.6      | 615  |
| 307.2 | 112.5      | 17   | 325.2 | 118.9      | 65.8    | 344.7                    | 127.1      | 236  | 362.7 | 134.8      | 628  |
| 307.7 | 112.7      | 17.6 | 325.7 | 119.1      | 67.7    | 345.2                    | 127.3      | 246  | 363.2 | 135        | 646  |
| 308.2 | 112.8      | 18.2 | 326.2 | 119.3      | 70.4    | 345.7                    | 127.6      | 253  | 363.7 | 135.3      | 661  |
| 308.7 | 113        | 19   | 326.7 | 119.5      | 72.6    | 346.2                    | 127.8      | 261  | 364.2 | 135.5      | 675  |
| 309.2 | 113.1      | 19.8 | 327.2 | 119.7      | 74.9    | 346.7                    | 128        | 269  | 364.7 | 135.7      | 691  |
| 309.7 | 113.3      | 20.8 | 327.7 | 119.9      | 77.7    | 347.2                    | 128.2      | 275  | 365.2 | 135.9      | 711  |
| 310.2 | 113.4      | 21.8 | 328.2 | 120.1      | 80      | 347.7                    | 128.4      | 283  | 365.7 | 136.1      | 725  |
| 310.7 | 113.5      | 22.5 | 328.7 | 120.4      | 84      | 348.2                    | 128.6      | 292  | 366.2 | 136.3      | 744  |
| 311.2 | 113.7      | 23.4 | 329.2 | 120.6      | 86      | 348.7                    | 128.8      | 302  | 366.7 | 136.5      | 762  |
| 311.7 | 113.9      | 24.4 | 329.7 | 120.8      | 90      | 349.2                    | 129        | 309  | 367.2 | 136.8      | 779  |
| 312.2 | 114.1      | 25.6 | 330.2 | 121        | 92.9    | 349.7                    | 129.3      | 319  | 367.7 | 137        | 800  |
| 312.7 | 114.2      | 26.5 | 330.7 | 121.2      | 96.6    | 350.2                    | 129.5      | 327  | 368.2 | 137.2      | 813  |
| 313.2 | 114.4      | 27.2 | 331.2 | 121.4      | 99.9    | 350.7                    | 129.7      | 339  | 368.7 | 137.4      | 830  |
| 313.7 | 114.5      | 28.2 | 331.7 | 121.6      | 103.6   | 351.2                    | 129.9      | 347  | 369.2 | 137.6      | 850  |
| 314.2 | 114.7      | 29.4 | 333.2 | 122        | 112.9   | 351.7                    | 130        | 357  | 369.7 | 137.9      | 876  |
| 314.7 | 114.9      | 30.3 | 333.7 | 122.4      | 116.9   | 352.2                    | 130.3      | 369  | 370.2 | 138.1      | 897  |
| 315.2 | 115.1      | 31.9 | 334.2 | 122.7      | 121     | 352.7                    | 130.5      | 375  | 370.7 | 138.3      | 923  |
| 315.7 | 115.2      | 32.7 | 334.7 | 123        | 127.3   | 353.2                    | 130.7      | 387  | 371.2 | 138.5      | 943  |
| 316.2 | 115.4      | 33.9 | 335.7 | 123.1      | 130.4   | 353.7                    | 130.9      | 399  | 371.7 | 138.7      | 958  |
| 316.7 | 115.6      | 35.6 | 336.2 | 123.4      | 138.9   | 354.2                    | 131.1      | 410  | 372.2 | 139        | 981  |
| 317.2 | 115.8      | 36.9 | 336.7 | 123.7      | 143     | 354.7                    | 131.4      | 420  | 372.7 | 139.1      | 1020 |
| 317.7 | 116        | 38.2 | 337.2 | 123.9      | 148     | 355.2                    | 131.6      | 429  | 373.2 | 139.4      | 1044 |
| 318.2 | 116.2      | 39.8 | 337.7 | 124        | 152     | 355.7                    | 131.8      | 443  | 373.7 | 139.6      | 1069 |
| 318.7 | 116.3      | 41.4 | 338.2 | 124.3      | 158     | 356.2                    | 132        | 458  | 374.2 | 139.7      | 1083 |
| 319.2 | 116.6      | 42.6 | 338.7 | 124.4      | 161     | 356.7                    | 132.2      | 467  | 374.7 | 140        | 1122 |
| 319.7 | 116.7      | 44   | 339.2 | 124.7      | 168     | 357.2                    | 132.4      | 477  | 375.2 | 140.2      | 1142 |
| 320.2 | 116.9      | 46.3 | 339.7 | 125        | 174     | 357.7                    | 132.6      | 487  | 375.7 | 140.5      | 1188 |
| 320.7 | 117.1      | 47.8 | 340.2 | 125.1      | 179     | 358.2                    | 132.9      | 500  | 376.2 | 140.6      | 1215 |
| 321.2 | 117.3      | 49.2 | 340.7 | 125.3      | 184     | 358.7                    | 133.1      | 515  |       |            |      |

Tabela 5: Dados experimentais  $2^{o}$  Aquecimento

|       | $2^{\mathrm{o}}$ Arrefecimento |      |       |            |      |       |            |      |       |            |      |  |
|-------|--------------------------------|------|-------|------------|------|-------|------------|------|-------|------------|------|--|
| T/K   | $R/\Omega$                     | I/nA | T/K   | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA | T/K   | $R/\Omega$ | I/nA |  |
| 376.7 | 141.5                          | 1201 | 365.7 | 138.9      | 682  | 354.7 | 134.4      | 374  | 343.7 | 129.7      | 197  |  |
| 376.2 | 141.5                          | 1150 | 365.2 | 138.7      | 666  | 354.2 | 134.2      | 364  | 343.2 | 129.5      | 195  |  |
| 375.7 | 141.5                          | 1113 | 364.7 | 138.5      | 653  | 353.7 | 134        | 354  | 342.7 | 129.3      | 185  |  |
| 375.2 | 141.5                          | 1090 | 364.2 | 138.4      | 636  | 353.2 | 133.8      | 343  | 342.2 | 129.1      | 180  |  |
| 374.7 | 141.5                          | 1066 | 363.7 | 138.2      | 619  | 352.7 | 133.5      | 333  | 341.7 | 128.9      | 174  |  |
| 374.2 | 141.4                          | 1040 | 363.2 | 138        | 603  | 352.2 | 133.4      | 324  | 341.2 | 128.6      | 169  |  |
| 373.7 | 141.3                          | 1017 | 362.7 | 137.7      | 584  | 351.7 | 133.1      | 315  | 340.7 | 128.4      | 163  |  |
| 373.2 | 141.3                          | 1000 | 362.2 | 137.5      | 570  | 351.2 | 132.9      | 305  | 340.2 | 128.2      | 158  |  |
| 372.7 | 141.2                          | 981  | 361.7 | 137.3      | 555  | 350.7 | 132.7      | 296  | 339.7 | 128        | 153  |  |
| 372.2 | 141.1                          | 959  | 361.2 | 137.1      | 541  | 350.2 | 132.5      | 288  | 339.2 | 127.8      | 148  |  |
| 371.7 | 140.9                          | 933  | 360.7 | 136.9      | 525  | 349.7 | 132.3      | 279  | 338.7 | 127.6      | 143  |  |
| 371.2 | 140.8                          | 911  | 360.2 | 136.7      | 511  | 349.2 | 132.1      | 272  | 338.2 | 127.4      | 140  |  |
| 370.7 | 140.7                          | 888  | 359.7 | 136.5      | 495  | 348.7 | 131.8      | 263  | 337.7 | 127.2      | 135  |  |
| 370.2 | 140.5                          | 870  | 359.2 | 136.3      | 484  | 348.2 | 131.7      | 257  | 337.2 | 127        | 131  |  |
| 369.7 | 140.4                          | 850  | 358.7 | 136.1      | 471  | 347.7 | 131.5      | 250  | 336.7 | 126.7      | 127  |  |
| 369.2 | 140.2                          | 829  | 358.2 | 135.9      | 457  | 347.2 | 131.2      | 242  | 336.2 | 126.6      | 123  |  |
| 368.7 | 140.1                          | 810  | 357.7 | 135.7      | 446  | 346.7 | 131        | 234  | 335.7 | 126.3      | 120  |  |
| 368.2 | 139.9                          | 785  | 357.2 | 135.5      | 434  | 346.2 | 130.9      | 228  | 335.2 | 126.1      | 116  |  |
| 367.7 | 139.7                          | 767  | 356.7 | 135.3      | 420  | 345.7 | 130.6      | 222  | 334.7 | 125.9      | 112  |  |
| 367.2 | 139.5                          | 747  | 356.2 | 135        | 409  | 345.2 | 130.4      | 215  | 334.2 | 125.7      | 110  |  |
| 366.7 | 139.3                          | 727  | 355.7 | 134.9      | 397  | 344.7 | 130.1      | 208  | 333.7 | 125.4      | 105  |  |
| 366.2 | 139.2                          | 709  | 355.2 | 134.6      | 385  | 344.2 | 130        | 201  | 333.2 | 125.3      | 102  |  |

Tabela 6: Dados experimentais  $2^{\Omega}$  Arrefecimento

## Anexo B - Resultados ajustes lineares

Os ajustes lineares foram todos feitos com função stats.linregress do módulo scipy do python.

| $\boxed{ Gama\; T/K}$ | $m/\Omega K^{-1}$ | $u(m)/\Omega K^{-1}$ | $b/\Omega$ | $u(b) / \Omega$ | $r^2$   | $u_{rel}(m)\%$ | $u_{rel}(b)\%$ |
|-----------------------|-------------------|----------------------|------------|-----------------|---------|----------------|----------------|
| 1AqR - 305 - 322      | 0.405             | 0.001                | -12.4      | 0.6             | 0.9992  | 0.5            | 5              |
| 1AqR - 323 - 373      | 0.4399            | 0.0002               | -23.6      | 0.1             | 0.99996 | 0.1            | 0.4            |
| 1ArR - 323 - 368      | 0.4297            | 0.0004               | -17.7      | 0.2             | 0.99991 | 0.1            | 0.9            |
| 1ArR - 303 - 322      | 0.447             | 0.001                | -23.2      | 0.3             | 0.9998  | 0.2            | 1              |
| 2AqR - 333 - 376      | 0.4300            | 0.0005               | -21.1      | 0.2             | 0.99990 | 0.1            | 0.8            |
| 2ArR - 333 - 367      | 0.4216            | 0.0007               | -15.2      | 0.2             | 0.9998  | 0.2            | 2              |

Tabela 7: Resultados ajustes resistência do cobre

| $\boxed{  Gama \; T  /  K }$ | $m/10^{3}K$ | $u(m) / 10^3 K$ | b     | u(b) | $r^2$   | $u_{rel}(m)\%$ | $u_{rel}(b)\%$ |
|------------------------------|-------------|-----------------|-------|------|---------|----------------|----------------|
| 1AqD - 303 - 336             | -7.43       | 0.02            | 27.02 | 0.05 | 0.9997  | 0.2            | 0.2            |
| 1AqD - 345 - 364             | -6.30       | 0.02            | 23.71 | 0.06 | 0.9996  | 0.3            | 0.3            |
| 1AqD - 370 - 383             | -7.93       | 0.03            | 28.15 | 0.09 | 0.9996  | 0.4            | 0.3            |
| 1ArD - 327 - 364             | -7.192      | 0.005           | 26.24 | 0.01 | 0.99997 | 0.07           | 0.05           |
| 1ArD - 303 - 327             | -7.42       | 0.01            | 26.94 | 0.04 | 0.9998  | 0.2            | 0.2            |
| 2AqD - 303 - 317             | -7.56       | 0.08            | 27.4  | 0.2  | 0.997   | 1              | 0.9            |
| 2AqD - 317 - 344             | -7.39       | 0.01            | 26.92 | 0.04 | 0.99987 | 0.2            | 0.1            |
| 2ArD - 370 - 376             | -6.6        | 0.2             | 24.5  | 0.5  | 0.993   | 3              | 2              |
| 2ArD - 333 - 370             | -7.164      | 0.006           | 26.13 | 0.02 | 0.99995 | 0.08           | 0.07           |

Tabela 8: Resultados dos ajustes corrente diodo

#### Anexo C - Cálculo de incertezas

Neste trabalho utilizámos a equação 12 para o cálculo da propagação de erro de uma grandeza f.

$$u(f(x_0, \dots, x_n)) = \sqrt{\sum_{i=0}^{n} (\frac{\partial f}{\partial x_i})^2 u(x_i)^2}$$
(12)

Utilizando a equação anterior e a expressão 8 é fácil deduzir a equação para a incerteza de  $\alpha$  ( equação 13 )

$$u(\alpha) = \alpha^2 \sqrt{u(T_0)^2 + u(b)^2 \frac{1}{m^2} + u(m)^2 \frac{b^2}{m^4}}$$
(13)

Podemos ver de 13 que a incerteza de  $\alpha$  têm uma forte dependência da incerteza da temperatura ambiente. Como o valor de  $\alpha_{cobre}$  é bastante reduzido, a incerteza relativa também deverá ser reduzida  $(u(\alpha) \propto \alpha^2 \implies u(\alpha)_{rel} \propto \alpha)$ .

#### Referências

- [1] G B Brook C.J. Smithells, E A Brandes. *Metals Reference Book*. Butterworth-Heinemann, 7th edition, 1998.
- [2] DFA@FCUP. Protocolo laboratórios de física 3 identifição de metal e de semicondutora partir do comportamento térmico. 2021.
- [3] Charles Kittel. Introduction to solid state physics, Cap 9, 10, 11. Wiley, 4th edition, 2005.
- [4] N. David Mermin Neil W. Ashcroft. Solid state physics. Harcourt, 1976.
- [5] K. P. O'Donnell and X. Chen. Temperature dependence of semiconductor band gaps. *Applied Physics Letters*, 58(25):2924–2926, 1991.
- [6] Jurgen W. Precker and Marcillio A. da Silva. Experimental estimation of the band gap in silicon and germanium from the temperature - voltage curve of diode thermometers. American Journal of Physics, 70(11):1150–1153, 2002.

- [7] Kwok K. Sze, S.M.; Ng. Physics of Semiconductor Devices. Wiley, 2006.
- [8] Y.P. Varshni. Temperature dependence of the energy gap in semiconductors. *Physica*, 34(1):149–154, 1967.
- [9] WIKA. Advantages of ac resistance thermometry bridges. 2016.