

Changement d'échelles dans les projections climatiques et leurs impacts hydrologiques: Cas des grandes plaines américaines

Mathis Deronzier



# Des changements climatiques majeurs



## Les modèles de climat-Système terre



Un grand nombre d'interactions entre: océan, atmosphère et continents



Figure: Maillage de la terre (200x200 km²)

Les principales interactions climatiques

#### Des modèles à des échelles différentes



Figure: Échelle d'un bassin versant

Changement d'échelle

Downscaling

**Upscaling** 



Figure: Maillage Terre (200x200 km²)

# Problématique et thèmes étudiés

#### **Problématique:**

 Dans quelle mesure les méthodes changement d'échelle permettent-elles de corriger les modélisations des modèles continentaux?

#### **Thèmes étudiés:**

- Les modèles hydrologiques
- Les méthodes de downscaling
- Les problématiques de l'upscaling
- La modélisation hydrologique du Little Washita

# Plan de la présentation

- I Les principaux mécanismes de la modélisation Hydrologique
- II La méthodologie utilisée pour réaliser notre étude
- III Le Downscaling
- IV La modélisation hydrologique
- V Conclusion et perspectives

#### Le bassin du Little Washita



Figure: Végétation sur le bassin versant du Little Washita

#### **Caractéristiques:**

- Surface: 611 km<sup>2</sup>
- Climat: continentale tempéré
- Altitude: 320-474m
- Pente moyenne: (3.4%)
- lieu de nombreuses études

## La modélisation Hydrologique



Figure: Différents types d'écoulement



Figure: Mécanismes de l' évapotranspiration

# La physique des modèles hydrologiques



Figure: Différents types d'écoulement

Modélisation



Équation de conservation de la masse:

$$div(\overrightarrow{U}) + \frac{\partial}{\partial t}(\theta) + q = 0, \quad (1)$$

Équation de Darcy:

$$\overrightarrow{U} = \frac{k}{\mu} (\overrightarrow{\nabla} p + \rho g \overrightarrow{\nabla} z), \quad (2)$$

Équation de Richards:

$$S_s(H)\frac{\partial H}{\partial t} = \frac{\partial \theta}{\partial t},$$
 (3)

avec  $\theta$  la saturation en eau et H la charge hydraulique.

**Figure:** Les principales équations de la pysique

## Méthode d'étude du downscaling



#### Les données NARR et IPSL

#### **Données NARR:**

Fusion de deux modèles:



Data Analysis Regional system

Petite échelle (32x32 km²)

#### **Données IPSL:**

- Système terre:



Grande échelles (200x200 km²)

## La dégradation des données NARR



# Les différentes dégradations:

- 0- Little Washita
- 1- 3x3 mailles
- 2- 5x5 mailles
- 3- 7x7 mailles
- 4- 9x9 mailles

# Les données prédites et dégradées :

- Précipitation
- Évapotranspiration potentielle

## Le downscaling des données



- $X = X_1, X_2, ..., X_n$  et  $X' = X'_1, X'_2, ..., X'_m$  les réalisations des données dégradées passées et futures
- $\rightarrow$   $Y = Y_1, Y_2, ..., Y_n$  et  $Y' = Y'_1, Y'_2, ..., Y'_m$  les réalisations des données qu'on veut prédire passées et futures
  - $\mathcal{F}_X$  et  $\mathcal{F}_Y$  les fonctions de répartitions empriques
  - On cherche G une transformation tq:  $\mathcal{F}_G(X) = \mathcal{F}_Y$

# Méthode du downscaling : quantile-quantile et CDFt (Cumulative Distribution Function transfert)



Application de la méthode pour tous les points

Hypothèse de stationnarité des lois dans le temps



Figure: Explication du downscaling

Figure: Résultat de la transformation

### Analyse des résultats du downscaling : Cramér-von Mises



**Figure**: Distance de Cramér-von Mises evapotranspiration degradations : (1x1, 3x3, 5x5, 7x7, 9x9, IPSL)



**Figure**: Distance de Cramér-von Mises précipitation degradations : (1x1, 3x3, 5x5, 7x7, 9x9, IPSL)

Cramér-von Mises: norme L2 sur les fonctions de répartition

## Analyse des résultats du downscaling: Loi conjointe



**Figure**: Tracé des précipitations à l'échelle (7x7) en fonction des précipitations à l'échelle du Little Washita (1x1)



**Figure**: Tracé des précipitations downscalées de l'échelle (7x7) en fonction des précipitations à l'échelle du Little Washita (1x1)

#### Simulation du Little Washita avec HydroGéoSphère



Figure: Modélisation complète du Little Washita



Figure: Modèle upscalé du Little Washita

Upscaling du modèle d'origine

#### Résultats des débits en fonction des précipitations



Séries downscalées des séries dégradée (9x9):

Séries dégradées (9x9):

**Figure**: distributions conjointe des débits

Figure: distributions conjointe des précipitations

### Comportement non-linéaire de la modélisation



dégradations(1x1, 3x3, 5x5, 7x7, 9x9, IPSL)

La simulation hydrique, une fonction diminuant les distance de Cramér-von Mises

dégradation(1x1, 3x3, 5x5, 7x7, 9x9, IPSL)

La simulation hydrique, une réponse quadratique des débits en fonctions des précipitations : la loi de Horton sur les écoulements.

précipitations. Réponse quadratique des débits.

# Une analyse des différences entre les données références et les données réelles



Figure: les deltas débits en fonction des deltas précipitation



**Figure**: les deltas débits en fonction des deltas précipitation réels

On observe un comportement quadratique des débits de sortie en fonctions des précipitations d'entré



## Conclusion et perspectives

#### **Conclusion:**

 Le downscaling apporte des corrections non négligeable pour la simulation des écoulements dans un bassin versant.

#### **Perspectives:**

- Étude détaillée de l'upscaling du modèle d'un bassin 3D à un modèle 2D
- Une étude complémentaire pour étudier la diminution de la distance de Cramér-von Mises
- Une étude complémentaire des débits
- Des algorithmes plus poussés de CDFt : méthode de transport optimal