# **Linear Regression**

| Datasets | Mean square error       | Mean absolute error    | R square score         | R square by sklearn |
|----------|-------------------------|------------------------|------------------------|---------------------|
| Data1    | 2.07852540177<br>7327   | 1.28055597842<br>91463 | 0.95795719055<br>86357 | 0.96                |
| Data2    | 0.07643342704<br>35197  | 0.23498835289<br>02574 | 0.99040385226<br>90993 | 0.99                |
| Data3    | 0.16173044143<br>088558 | 0.29467793301<br>31036 | 0.31369732267<br>28079 | 0.31                |
| Data4    | 34.6204808292<br>4355   | 5.15550563037<br>8932  | 0.98417490589<br>43147 | 0.98                |

Data 1:





# Comparison for weight:

Weight by Numerical Method: [5.68078713 2.38406007] Weight by Gradient Descent Method: [5.68078713 2.38406007]

## Inference:

Here errors are very less which shows that our accuracy is high. R square calculated by both my modal and sklearn matches and close to 1. Which indicates that linear regression is given a best fit hyperplane.

Data 2:



# Comparison for weight:

Weight by Numerical Method: [3.68212267 0.97299745]
Weight by Gradient Descent Method: [3.68212267 0.97299745]

## Inference:

Data requires linear transformation as it was a non-linear graph and error was too much.

After that errors are very less which shows that our accuracy is high. R square calculated by both my modal and sklearn matches and close to 1. Which indicates that linear regression is given a best fit hyperplane.

Data 3:



## Comparison for weight:

Weight by Numerical Method: [1.17706208 0.09419021]
Weight by Gradient Descent Method: [1.17706208 0.09419021]

## Inference:

Here errors are too much which shows that our accuracy is too low. R square calculated by both my modal and sklearn matches but close to 0, Which indicates that linear regression can not be used for finding a best fit hyperplane.

## Data 4:

Our data has multiple features, which means there are many weights to find.

# Comparison for weight:

Weight by Numerical Method: [13.23947782 6.13243763 2.39226554 7.74681038]

Weight by Gradient Descent Method : [13.23947579 6.13243433 2.3922683 7.74681094]

#### Inference:

Here errors are very less which shows that our accuracy is high. R square calculated by both my modal and sklearn matches and close to 1. Which indicates that multivariate linear regression is given a best fit hyperplane.

### Overall conclusion:

Dataset1: Standard Linear Regression is applicable

Dataset 2 : Standard Linear Regression is applicable after applying non-linear transformation.

Dataset 3; Standard Linear Regression is not applicable.

Dataset 4 : Standard Linear Regression is applicable