33)

द्विघात समीकरण (QUADRATIC EQUATIONS)

आवश्यक तथ्य एवं सूत्र

- 1. ऐसा समीकरण जिसका प्रारूप $ax^2 + bx + c = 0$ जैसा हो, जहाँ a, b, c वास्तविक संख्यायें हैं तथा $a \neq 0$ एक द्विघात समीकरण कहलाता है. इसमें $D = (b^2 4ac)$ इस समीकरण का विविक्तकर (Discriminant) कहलाता है.
- 2. समीकरण $ax^2 + bx + c = 0$ के मूल यदि α तथा β हों, तो

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

द्विघात समीकण के मूलों की प्रकृति:

माना $ax^2 + bx + c = 0$, $a \neq 0$ दिया गया द्विघात समीकरण है तथा माना $D = (b^2 - 4ac)$. तब

D का मान	मूलों की प्रकृति	मूल
(i) D > 0 तथा एक पूर्णवर्गहै।		$\frac{-b\pm\sqrt{D}}{2a}$
(ii) D > 0 तथा एक पूर्णवर्ग नहीं है।	अपरिमेय तथा असमान	$\frac{-b \pm \sqrt{D}}{2a}$
(iii) D = 0	परिमेय तथा समान	प्रत्येक = $\frac{-b}{2a}$
(iv) D < 0	कोई वास्तविक मूल नहीं	

- 4. माना $ax^2 + bx + c = 0$ को मूल α तथा β हैं, तब
 - (i) $\alpha + \beta = \frac{-b}{a}$. (ii) $\alpha\beta = \frac{c}{a}$.
- 5. ऐसा समीकरण जिसके मूल α तथा β हैं, होगा $x^2 (\alpha + \beta)x + \alpha \beta = 0$.

साधित उदाहरण

$$\sqrt{x^2} + 2x = 0$$
.

$$\overline{R} = 3x^2 + 2x = 0 \implies x(3x + 2) = 0$$

$$\Rightarrow x = 0$$
 अथवा $3x + 2 = 0$

⇒
$$x = 0$$
 अथवा $x = \frac{-2}{3}$.

279
 2. For a 6 and 6 6 6 6 1 6

िल :
$$(2x-3)(3x+5) = 0 \Rightarrow 2x-3 = 0$$
 अथवा $3x+5 = 0$

$$\Rightarrow x = \frac{3}{2} \text{ अथवा } x = \frac{-5}{3}.$$

प्रश्न 3. हल कीजिए : $2x^2 - 9x + 10 = 0$.

हल :
$$2x^2 - 9x + 10 = 0 \Rightarrow 2x^2 - 5x - 4x + 10 = 0$$

 $\Rightarrow x (2x - 5) - 2 (2x - 5) = 0$
 $\Rightarrow (2x - 5) (x - 2) = 0$
 $\Rightarrow 2x - 5 = 0$ अथवा $x - 2 = 0$
 $\Rightarrow x = \frac{5}{2}$ अथवा $x = 2$.

प्रश्न 4. हल करें : $15x^2-x-28=0$.

हल : यहाँ a = 15, b = -1 तथा c = -28.

$$D = (b^2 - 4ac) = (-1)^2 - 4 \times 15 \times (-28) = (1 + 1680) = 1681.$$

$$\Rightarrow \sqrt{D} = \sqrt{1681} = 41.$$

$$\therefore \quad \alpha = \frac{-b + \sqrt{D}}{2a} = \frac{(1+41)}{(2\times15)} = \frac{42}{30} = \frac{7}{5}.$$

$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{(1-41)}{(2\times15)} = \frac{-40}{30} = \frac{-4}{3}.$$

अतः अभीष्ट मूल हैं: $\frac{7}{5}$ तथा $\frac{-4}{3}$.

प्रश्न 5. ऐसा समीकरण ज्ञात कीजिए जिसके मूल $\frac{1}{2}$ तथा $\frac{1}{3}$ हैं:

हल : माना
$$\alpha = \frac{1}{2}$$
 तथा $\beta = \frac{1}{3}$. तब,

$$(\alpha + \beta) = \left(\frac{1}{2} + \frac{1}{3}\right) = \frac{5}{6}$$
 तथा $\alpha\beta = \left(\frac{1}{2} \times \frac{1}{3}\right) = \frac{1}{6}$.

अभीष्ट समीकरण है :

$$x^2 - (\alpha + \beta)x + \alpha \beta = 0$$
 अर्थात $x^2 - \frac{5}{6}x + \frac{1}{6} = 0$ अर्थात $6x^2 - 5x + 1 = 0$.

प्रश्न 6. यदि समीकरण $x^2 - px + q = 0$ के मूल α तथा β हों, तो

(i)
$$(\alpha^2 + \beta^2)$$
 का मान ज्ञात कीजिए

$$(ii)$$
 $(\alpha^3 + \beta^3)$ का मान ज्ञात कीजिए

हल : स्पष्ट है कि $(\alpha + \beta) = p$ तथा $\alpha\beta = q$. तब,

(i)
$$(\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta = (p^2 - 2q)$$
.

(ii)
$$(\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta (\alpha + \beta) = (p^3 - 3pq)$$
.

प्रश्न 7. यदि समीकरण $9x^2 - kx + 81$ के मूल बराबर हों, तो k = ?

$$(a) \pm 9$$

$$(b) \pm 27$$

$$(c) \pm 18$$

$$(d) \pm 54$$

हल : $9x^2 - kx + 81$ की $ax^2 + bx + c$ से तुलना करने पर

$$a = 9, b = -k$$
 तथा $c = 81$.

$$D = (b^2 - 4ac) = [(-k)^2 - 4 \times 9 \times 81] = (k^2 - 2916).$$
मूल बराबर हैं, अत: $D = 0$

मूल बराबर हैं, अत:
$$D=0$$
.

अब
$$D = 0 \Rightarrow k^2 - 2916 = 0 \Rightarrow k^2 = (2916)$$

 $\Rightarrow k = \pm \sqrt{2916} \Rightarrow k = \pm 54.$

4 | 1681 (41

81

81

प्रश्नमाला 33

 निम्नलिखित में से कौन-सा समीकरण एक द्विधात स् 	समीकरण	₹ ?
---	--------	------------

(a)
$$x - \frac{3}{x} = x^2$$

(b)
$$x^2 + \frac{3}{r^2} = 1$$

(c)
$$2x^2 + \sqrt{3x} + 5 = 0$$

(d)
$$x^2 - 1 = 2x^2 + 4$$

2. निम्नलिखित में से कौन-सा समीकरण एक द्विघात समीकरण नहीं है?

(a)
$$x^2 - 5x + 6 = 0$$

(b)
$$4x^2 + 8 = 0$$

$$(a) x$$

 $(c) x^2 + x + 6 = 0$

$$(d) x^3 - x - 4 = 0$$

तिम्तिखित में से किस समीकरण के वास्तिवक मूल होंगे?

(a)
$$x^2 + x + 6 = 0$$

(b)
$$2x^2 - 3x + 4 = 0$$

(c)
$$3x^2 + 4x + 5 = 0$$

(d)
$$2x^2 - 7x + 5 = 0$$

द्विघात समीकरण x² + x + 1 = 0 का विविक्तकर कितना है?

$$(a) - 2$$

$$(b) - 3$$

$$(c)-1$$

5. द्विधात समीकरण $2x^2 - 3x - 12 = 0$ का विविक्तकर कितना है?

(a) 87

$$(b) - 87$$

$$(d) - 33$$

समीकरण x² - 9x + 18 = 0 के मल हैं:

(a) 3, 6

$$(b) - 3, 6$$

$$(c) 3, -6$$

$$(d) - 3, -6$$

7. समीकरण $2x^2 - 11x + 15 = 0$ को मूल हैं:

(a) $3, \frac{3}{2}$

(b)
$$5, \frac{3}{2}$$

(c)
$$-3, \frac{-5}{2}$$

8. समीकरण $x^2 - 4\sqrt{3}x + 9 = 0$ के मूल हैं:

(a) $2\sqrt{3}$, $\sqrt{3}$

(b)
$$3\sqrt{3}, \sqrt{3}$$

(c)
$$2\sqrt{3}, -\sqrt{3}$$

(d)
$$3\sqrt{3}, -\sqrt{3}$$

समीकरण ax² + x + b = 0 के मूल समान होंगे, यदि

$$(a) b^2 = 4a$$

(b)
$$b^2 < 4a$$

(c)
$$b^2 > 4a$$

$$(d) ab = \frac{1}{4}$$

10. समीकरण $3 - 7x + 6x^2 = 0$ के मूलों का गुणनफल होगा :

$$(a) - 2$$

(b)
$$\frac{1}{2}$$

$$(d) - \frac{1}{2}$$

11. यदि समीकरण $2x^2 - 8x + k = 0$ के मूल बराबर हों, तो k = ?

(a) 2

12. p के किस मान के लिए समीकरण $px^2 - 2\sqrt{5}x + 4 = 0$ के मूल वास्तविक तथा बराबर होंगे?

(a) $\frac{3}{4}$

(b)
$$\frac{5}{4}$$

(c)
$$\frac{6}{7}$$

(d)
$$\frac{7}{10}$$

13. द्विधात समीकरण $4x^2 + 4x + 1 = 0$ के मूल हैं:

(a) वास्तविक तथा असमान

(b) वास्तविक तथा समान

(c) अभिकल्पित

(d) वास्तविक धनात्मक

14. यदि समीकरण $kx^2 - 6x + 3k = 0$ के मूलों का योगफल तथा गुणनफल बराबर हों, तो k = ?

(b) 3

(c) 4

(d) इनमें से कोई नहीं

15. p के किस मान के लिए $x^2 - 4x + p = 0$ के मूल भिन्न तथा वास्तविक होंगे?

(a) p < 4

(c) p = 4

(d) इनमें से कोई नहीं

(b) p > 416, एक द्विचात समीकरण के मूलों का योगफल –2 तथा गुणनफल – 4 है. यह समीकरण है :

(a) $x^2 - 2x - 4 = 0$ (b) $x^2 - 2x + 4 = 0$

 $(c) x^2 + 2x - 4 = 0$

 $(d) x^2 + 2x + 4 = 0$

17. यदि समीकरण $3x^2 + 5x - 7 = 0$ के मूल्य α तथा β हों. तो $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = ?$

(a) $\frac{3}{2}$

(b) $\frac{5}{11}$

 $(c) = \frac{5}{2}$

(d) इनमें से कोई नहीं

18. एक द्विधात समीकरण के मूल $(2 + \sqrt{5})$ तथा $(2 - \sqrt{5})$ हैं. यह समीकरण है :

(a) $x^2 - 4x - 1 = 0$ (b) $x^2 + 4x - 1 = 0$ (c) $x^2 - 4x + 1 = 0$ (d) $x^2 + 4x + 1 = 0$

19. यदि $x^2-px+q=0$ के मूल α तथा β हों, तो $(\alpha^3+\beta^3)$ का मान कितना होगा γ

(a) $q^3 + 3pq$ (b) $q^3 - 3pq$

 $(c) p^3 + 3pq$

 $(d) p^3 - 3pa$

20. यदि $x^2 + px + q = 0$ के मूल α तथा β हों. तो $\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$ का मान क्या होगा ?

(a) $\frac{(p^2-2q)}{a}$ (b) $\frac{(p^2+2q)}{a}$ (c) $\frac{(-p^2+2q)}{a}$ (d) $\frac{(-p^2-2q)}{a}$

21. यदि $3x^2 + 8x + 2 = 0$ के मूल α तथा β हों, तो $(\alpha^3 + \beta^3) = ?$

(a) $-\frac{46}{3}$ (b) $\frac{368}{27}$

(c) $-\frac{368}{27}$ (d) इनमें से कोई नहीं

22. $a = \frac{x^2 + 1}{x^2 - 1} = \frac{5}{4} = 1$, a = 7

 $(a) \pm 3$

 $(b) \pm 9$

 $(c) \pm 1$

 $(d) \pm \frac{1}{2}$

23. यदि $\left(\frac{x}{2}\right)^2 - x = 48$ हो, तो x = ?

(a) 16

(b) 18

(c) 20

(d) 24

24. यदि $ax^2 + bx + c = 0$ के मूल एक दूसरे के व्युत्क्रम हों, तो

(a) a = b

(b) b = ac

(c) a = c

(d) ac = 1

उत्तरमाला (प्रश्नमाला 33)

1. (d)

2. (d)

3. (d)

4. (b)

5. (c)

6. (a)

7. (a)

8. (6) 16. (0)

9. (d) 17. (c) 10. (b) 18. (a)

11. (d) 19. (d) 12. (b) 20. (a)

13. (b) 21. (c)

14. (a) 22. (a) 15. (a) 23. (a)

24. (c)

दिये गये प्रश्नों के हल प्रश्नमाला 33

1. (a) $x - \frac{3}{r} = x^2 \Rightarrow x^2 - 3 = x^3$, जो एक द्विधात समीकरण नहीं है.

(b) $x^2 + \frac{3}{2} = 1 \Rightarrow x^4 + 3 = x^2$, जो एक द्विघात समीकरण नहीं है.

(c) $2x^2 + \sqrt{3x} + 5 = 0$ स्यष्टतया एक द्विधात समीकरण नहीं है.

(d) $x^2 - 1 = 2x^2 + 4 \Rightarrow 2x^2 + 4 - x^2 + 1 = 0 \Rightarrow x^2 + 5 = 0$, oil एक द्विधात समीकरण है.

स्मध् है कि x³-x-4=0 एक द्विधात समीकरण नहीं है.

3. प्रत्येक दिये समीकरण की $ax^2 + bx + c \approx 0$ से तुलना करने पर:

(a) a=1, b=1, c=6

 $D = (b^2 - 4ac) = (1 - 4 \times 1 \times 6) = (1 - 24) = -23 < 0.$

अत: $x^2 + x + 6 = 0$ के वास्तविक मूल नहीं होंगे.

(b) a=2, b=-3, c=4

$$D = (b^2 - 4ac) = (9 - 4 \times 2 \times 4) = (9 - 32) = -23 < 0.$$

$$376: 2x^2 - 3x + 4 = 0 \Rightarrow 3x = 2x = 3$$

अत: $2x^2 - 3x + 4 = 0$ को वास्तविक मूल नहीं होंगे.

(c) a=3, b=4, c=5

$$D = (b^2 - 4ac) = (16 - 4 \times 3 \times 5) = (16 - 60) = -44 < 0.$$
Std: $3x^2 + 4x + 5 = 0 \Rightarrow -2$

अत: $3x^2 + 4x + 5 = 0$ को वास्तविक मूल नहीं होंगे.

(d) a=2, o=-7, c=5

$$D = (b^2 - 4ac) = (49 - 4 \times 2 \times 5) = (49 - 40) = 9 > 0.$$

अत: $2x^2 - 7x + 5 = 0$ के वास्तविक मूल होंगे.

4. $x^2 + x + 1 = 0$ की $ax^2 + bx + c = 0$ से तुलना करने पर: a = 1, b = 1 तथा c = 1.

ं विविक्तकर,
$$D = (b^2 - 4ac) = (1 - 4 \times 1 \times 1) = (1 - 4) = -3$$
.

5. $2x^2 - 3x - 12 = 0$ की $ax^2 + bx + c = 0$ से तुलना करने पर:

$$a=2, b=-3$$
 तथा $c=-12$.

ं विविक्तकर,
$$D = (b^2 - 4ac) = (-3)^2 - 4 \times 2 \times (-12) = (9 + 96) = 105$$
.

6.
$$x^2 - 9x + 18 = 0 \Rightarrow x^2 - 6x - 3x + 18 = 0$$

$$\Rightarrow x(x-6)-3(x-6)=0$$

$$\Rightarrow$$
 $(x-6)(x-3)=0 \Rightarrow x=6$ अथवा $x=3$.

: अभीष्ट मूल 3 तथा 6 हैं.

7. $2x^2 - 11x + 15 = 0$ की $ax^2 + bx + c = 0$ से तुलना करने पर:

$$a = 2$$
, $b = -11$ तथा $c = 15$.

$$D = (b^2 - 4ac) = [(-11)^2 - 4 \times 2 \times 15] = (121 - 120) = 1 \Rightarrow \sqrt{D} = \sqrt{1} = 1.$$

माना अभीष्ट मूल α तथा β हैं. तब,

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{(11+1)}{(2\times 2)} = \frac{12}{4} = 3$$

$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{(11-1)}{(2\times 2)} = \frac{10}{4} = \frac{5}{2}.$$

अतः अभीष्ट मूल 3 तथा ⁵ हैं.

8. $x^2 - 4\sqrt{3}x + 9 = 0$ की तुलना $ax^2 + bx + c = 0$ से करने पर:

$$a = 1, b = -4\sqrt{3}$$
 तथा $c = 9$.

$$D = (b^2 - 4ac) = [(-4\sqrt{3})^2 - 4 \times 1 \times 9] = (48 - 36) = 12.$$

अत: अभीष्ट मूल हैं उ√उ तथा √उ.

9. $ax^2 + x + b = 0$ की चुलना $Ax^2 + Bx + C = 0$ से करने पर: A = a, B = 1 तथा C = b. $\therefore D = (B^2 - 4AC) = (1^2 - 4 \times a \times b) = (1 - 4ab)$. मूल समान तभी होंगे जबिक D = 0. अब $D = 0 \Rightarrow 1 - 4ab = 0 \Rightarrow 4ab = 1 \Rightarrow ab = \frac{1}{4}$.

10. दिया गया समीकरण है $6x^2 - 7x + 3 = 0$. इसकी $ax^2 + bx + c = 0$ से तुलना करने पर a = 6, b = -7, c = 3. माना इसके मूल α तथा β हैं. तब $\alpha\beta = \frac{c}{a} = \frac{3}{6} = \frac{1}{2}$.

11. $2x^2 - 8x + k = 0$ की तुलना $ax^2 + bx + c = 0$ से करने पर a = 2, b = -8, c = k. अब $D = (b^2 - 4ac) = [(-8)^2 - 4 \times 2 \times k) = (64 - 8k)$. मूल समान तभी होंगें जबिक D = 0 हो. $\therefore D = 0 \Rightarrow 64 - 8k = 0 \Rightarrow 8k = 64 \Rightarrow k = 8$.

12. $px^2 - 2\sqrt{5}x + 4 = 0$ की तुलना $ax^2 + bx + c = 0$ से करने पर: $a = p, b = -2\sqrt{5}$ तथा c = 4. $\therefore D = (b^2 - 4ac) = [(-2\sqrt{5})^2 - 4 \times p \times 4] = (20 - 16p).$ मूल वास्तविक तथा बराबर तभी होंगे जबिक D = 0. अब, $D = 0 \Rightarrow 20 - 16p = 0 \Rightarrow 16p = 20 \Rightarrow p = \frac{20}{16} = \frac{5}{4}$.

13. 4x² + 4x + 1 = 0 की तुलना ax² + bx + c = 0 से करने पर: a = 4, b = 4 तथा c = 1. ∴ D = (b² - 4ac) = (16 - 4 × 4 × 1) = 0. अत: 4x² + 4x + 1 = 0 के मूल वास्तविक तथा समान होंगे.

14. $kx^2 - 6x + 3k = 0$ की तुलना $ax^2 + bx + c = 0$ से करने पर: a = k, b = -6 तथा c = 3k.

माना अभीष्ट मूल α तथा β हैं. तब,

$$\alpha + \beta = \frac{-b}{a} = \frac{6}{k}$$
 तथा $\alpha\beta = \frac{c}{a} = \frac{3k}{k} = 3$.
 $\therefore \frac{6}{k} = 3 \Rightarrow 3k = 6 \Rightarrow k = 2$.

15.
$$r^2 - 4x + p = 0$$
 की तुलना $ar^2 + bx + c = 0$ से करने पर:
 $a = 1, b = -4$ तथा $c = p$.

$$D = (b^2 - 4ac) = (16 - 4 \times 1 \times p) = (16 - 4p)$$
.

इसके मूल भिन्न तथा वास्तविक तभी होंगे जबकि D>0

:
$$16-4p>0 \Rightarrow 16>49 \Rightarrow 49<16 \Rightarrow p<4$$

16. माना अभीष्ट समीकरण के मूल α तथा β है.

तब.
$$\alpha + \beta = -2$$
 तथा $\alpha\beta = -4$.

अभीष्ट समीकरण है: $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ अर्थात $x^2 - (-2)x - 4 = 0$

17. दिया गया है कि
$$3x^2 + 5x - 7 = 0$$
 के मूल α तथा β है.

अतः
$$(\alpha + \beta) = \frac{-5}{3}$$
 तथा $\alpha\beta = \frac{-7}{3}$.

$$\therefore \left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = \frac{(\alpha + \beta)}{\alpha\beta} = \frac{\left(\frac{-5}{3}\right)}{\left(-\frac{7}{3}\right)} = \left(\frac{5}{3} \times \frac{3}{7}\right) = \frac{5}{7}.$$

18, माना
$$\alpha = (2 + \sqrt{5})$$
 तथा $\beta = \beta = (2 - \sqrt{5})$. तब

$$(\alpha + \beta) = (2 + \sqrt{5}) + (2 - \sqrt{5}) = 4$$
 तथा $\alpha\beta = (2 + \sqrt{5})$ $(2 - \sqrt{5}) = (4 - 5) = -1$.

$$\therefore$$
 अभीष्ट समीकरण है: $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ अथांत $x^2 - 4x - 1 = 0$.

19.
$$x^2 - px + q = 0$$
 की तुलना $ax^2 + bx + c = 0$ से करने पर:

$$\alpha + \beta = \frac{-b}{a} = p$$
, $\alpha \beta = \frac{c}{a} = q$.

$$\therefore (\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = (p^3 - 3pq).$$

20. चुकि
$$x^2 + px + q = 0$$
 को मूल α तथा $β$ हैं. अत:

$$\alpha + \beta = -p$$
 तथा $\alpha\beta = q$.

$$\therefore \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) = \frac{(\alpha^2 + \beta^2)}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{(-p)^2 - 2q}{q} = \frac{(p^2 - 2q)}{q}.$$

21.
$$3x^2 + 8x + 2 = 0$$
 की तुलना $ax^2 + bx + c = 0$ से करने पर:

$$a = 3$$
, $b = 8$ तथा $c = 2$.

$$\therefore (\alpha + \beta) = \frac{-b}{a} = \frac{-8}{3} \text{ det } \alpha\beta = \frac{c}{a} = \frac{2}{3}.$$

$$\therefore (\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta (\alpha + \beta)$$

$$(\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta (\alpha + \beta)$$

$$= \left(-\frac{8}{3}\right)^3 - 3\times\frac{2}{3}\times\frac{(-8)}{3} = \left(-\frac{512}{27} + \frac{16}{3}\right) = \left(\frac{-512}{27} + \frac{16}{3}\right) = \frac{(-512 + 144)}{27} = \frac{-368}{27}.$$

$$2, \frac{x^2+1}{x^2-1} = \frac{5}{4} \Rightarrow 5(x^2-1) = 4(x^2+1)$$

$$\Rightarrow 5x^2 - 5 = 4x^2 + 4 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3.$$

710 • नवीन अंकगणित

23.
$$\frac{x^2}{4} - x = 48 \Rightarrow x^2 - 4x - 192 = 0$$
.
इसकी $ax^2 + bx + c = 0$ से तुलना करने पर:
 $a = 1, b = -4, c = -192$.
 $\therefore D = (b^2 - 4ac) = 16 - 4 \times 1 (-192) = (16 + 768) = 784$.
 $\Rightarrow \sqrt{D} = \sqrt{784} = 28$.

$$\therefore \alpha = \frac{(-b + \sqrt{D})}{2a} = \frac{(4 + 28)}{(2 \times 1)} = \frac{32}{2} = 16.$$

24. माना
$$ax^2 + bx + c = 0$$
 के मूल α तथा $\frac{1}{\alpha}$ हैं.
तब इनका गुणनफल = $\left(\alpha \times \frac{1}{\alpha}\right) = 1$.

$$\therefore \frac{c}{a} = 1$$
 अर्थात $c = a \Rightarrow a = c$.