Лабораторная работа №4

Модель гармонических колебаний

Ли Тимофей Александрович

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы Решение задачи:	6 6 10
Выводы	12

Список иллюстраций

0.1	Решение1	7
0.2	Фазовый портрет1	7
	Решение2	
0.4	Фазовый портрет2	8
0.5	Решение3	9
0.6	Фазовый портрет3	10
0.7	код1	10
0.8	код2	11
0.9	колЗ	11

Цель работы

Изучить модель гармонический колебаний, построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для трех данных случаев.

Задание

Вариант 32

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы x'' + 5.2x = 0 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы x'' + 14x' + 0.5x = 0 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $x'' + 13x' + 0.3x = 0.8\sin(9t)$ На интервале t = (0; 59) (шаг 0.05) с начальными условиями $x_0 = 0.5, y_0 = -1.5$

Выполнение лабораторной работы

Решение задачи:

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$x'' + 2jx' + w_0^2 x = 0 \ (1)$$

где x — переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.), j — параметр, характеризующий потери энергии (трение в механической системе, сопротивление в контуре), w_0 — собственная частота колебаний, t — время. Уравнение (1) есть линейное однородное дифференциальное уравнение второго порядка, и оно является примером линейной динамической системы.

1. При отсутствии потерь в системе (j=0) вместо уравнения (1) получаем уравнение консервативного осциллятора энергия колебания которого сохраняется во времени: $x'' + w_0^2 x = B$ моем варианте, уравнение выглядит следующим образом: x'' + 5.2x = 0, где $w_0^2 = 5.2$.

Решение уравнения колебания гармонического осциллятора без затуханий и без действий внешней силы (рис. @fig:001):

Рис. 0.1: Решение1

Фазовый портрет (рис. @fig:002):

Рис. 0.2: Фазовый портрет1

2. Во втором случае учитываются потери в системе, поэтому $\mathbf{j}=14$, в таком случае уравнение (1) принимает вид: x''+14x'+0.5x=0, где $w_0^2=0.5$.

Решение уравнения колебания гармонического осциллятора с затуханием и без действий внешней силы (рис. @fig:003):

Рис. 0.3: Решение2

Фазовый портрет (рис. @fig:004):

Рис. 0.4: Фазовый портрет2

3. Поскольку в третьем случае учитываются действия внешних сил, находящихся

вне системы, то уравнение (1) приравнивается к функции f(t)=0.8sin(9t). Получим: $x''+13x'+0.3x=0.8\sin(9t)$, где $j=13,\,w_0^2=0.3$.

Решение уравнения колебания гармонического осциллятора с затуханием и под действием внешней силы (рис. @fig:005):

Рис. 0.5: Решение3

Фазовый портрет (рис. @fig:006):

Рис. 0.6: Фазовый портрет3

Построение модели гармонических колебаний

Код для первого случая (рис. @fig:007)

Рис. 0.7: код1

Код для второго случая (рис. @fig:008)

Рис. 0.8: код2

Код для третьего случая (рис. @fig:009)

Рис. 0.9: код3

Выводы

В ходе лабораторной работы мы построили решения уравнений, а также фазовые портреты для трех возможных моделей гармонического осциллятора.