

Lista 3. Vetores – Gabarito

Exercício 1

Encontre geometricamente a soma e subtração dos vetores em cada item abaixo, dados seus representantes (faça todas as combinações possíveis para a subtração).

Exercício 2.....

A figura abaixo representa um paralelepípedo retângulo. Decida se cada uma das alternativas abaixo é verdadeira ou falsa, justificando a resposta.

- (a) $\overrightarrow{DH} = \overrightarrow{BF}$.
- (b) $\overrightarrow{\mathbf{F}} \overrightarrow{AB} = -\overrightarrow{HG}$.
- (c) $\overrightarrow{\mathbf{F}}$ \overrightarrow{AB} é paralelo a \overrightarrow{CG} .
- (d) $\underline{\mathbf{V}} \|\overrightarrow{AC}\| = \|\overrightarrow{HF}\|.$
- (e) $\overrightarrow{\mathbf{F}}$ \overrightarrow{BG} é paralelo a \overrightarrow{ED} .
- (f) F Os vetores \overrightarrow{AC} , \overrightarrow{BC} e \overrightarrow{CG} são coplanares.
- (g) $\underline{\mathbf{V}}$ Os vetores \overrightarrow{AC} , \overrightarrow{DB} e \overrightarrow{FG} são coplanares.
- (h) $\underline{\mathbf{V}}$ \overrightarrow{DC} é paralelo ao plano HEF.

Exercício 3.....

Sejam M, N e P os pontos médios dos segmentos de reta \overline{AB} , \overline{BC} e \overline{CA} , respectivamente, onde os pontos A, B e C são dados na figura abaixo. Exprima os vetores \overline{BP} , \overline{AN} e \overline{CM} em função dos vetores \overline{AB} e \overline{AC} .

Solução: Temos $\overrightarrow{BP} = -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$, $\overrightarrow{AN} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AB})$ e $\overrightarrow{CM} = -\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$.

Exercício 4.....

Seja $\triangle ABC$ um triângulo qualquer, com medianas dadas pelos segmentos de retas \overline{AD} , \overline{BE} e \overline{CF} . Prove que $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$.

Exercício 5.....

Resolva o sistema nas incógnitas vetoriais \vec{x} e \vec{y} :

$$\begin{cases} \vec{x} + \vec{y} = \vec{u}, \\ \vec{x} - \vec{y} = \vec{u} - 2\vec{v}. \end{cases}$$

Solução: Temos $\vec{x} = \frac{13}{10}\vec{u} - \frac{3}{5}\vec{v}$ e $\vec{y} = -\frac{1}{10}\vec{u} + \frac{1}{5}\vec{v}$.

Exercício 6.....

Seja OABC um tetraedro e X o baricentro do triângulo $\triangle ABC$ (isto é, o ponto de encontro das medianas). Exprima o vetor \overrightarrow{OX} em termos dos vetores \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .

Solução: Temos $\overrightarrow{OX} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}).$

Exercício 7.....

Mostre que o segmento de reta que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e que sua medida é a média das medidas das bases.

Exercício 8.....

Seja ABCDEF um hexágono regular de centro O. Mostre que

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 6\overrightarrow{AO}.$$

Exercício 9.....

São dados um triângulo $\triangle ABC$ e pontos X,Y,Z tais que tenhamos as seguintes identidades: $\overrightarrow{AX} = m\overrightarrow{XB}, \overrightarrow{BY} = n\overrightarrow{YC}$ e $\overrightarrow{CZ} = p\overrightarrow{ZA}$, onde $m,n,p \in \mathbb{R}$. Exprima os vetores $\overrightarrow{CX}, \overrightarrow{AY}$ e \overrightarrow{BZ} em função de $\overrightarrow{CA}, \overrightarrow{CB}$ e de m,n e p.

Solução: Temos $\overrightarrow{CX} = \frac{1}{m+1}\overrightarrow{CA} + \frac{m}{m+1}\overrightarrow{CB}$. Note que se m não pode ser -1, pois se fosse, teríamos $\overrightarrow{AB} = \overrightarrow{AX} + \overrightarrow{XB} = 0$, o que nos daria A = B, e não teríamos um triângulo. Os outros são análogos.

Exercício 10....

Sejam \vec{u} e \vec{v} dois vetores não-nulos como na figura abaixo. Considere o ponto $C = O + (x\vec{u} + y\vec{v})$, onde $x, y \in \mathbb{R}$.

(a) Encontre o lugar geométrico dos pontos C quando $x, y \in \mathbb{R}$ satisfazem a condição x+y=1.

Solução: A reta que passa pelo ponto $O + \vec{v}$ e é paralela ao vetor $\vec{u} - \vec{v}$.

(b) Encontre o lugar geométrico dos pontos C quando $x, y \in \mathbb{R}$ satisfazem a condição $0 \le$ $x \leqslant 1 \text{ e } 0 \leqslant y \leqslant 1.$

Solução: O paralelogramo dado pelos pontos $O, O + \vec{u}, O + \vec{v} \in O + (\vec{u} + \vec{v})$.

Sejam um triângulo $\triangle ABC$ e X um ponto no segmento \overline{AB} . Mostre que

$$\overrightarrow{CX} = \frac{\|\overrightarrow{BX}\|}{\|\overrightarrow{AB}\|}\overrightarrow{CA} + \frac{\|\overrightarrow{AX}\|}{\|\overrightarrow{AB}\|}\overrightarrow{CB}.$$

Exercício 12.....

Dado um triângulo $\triangle ABC$, seja $\vec{u} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{CB}$. Seja X um ponto do segmento de reta \overline{AB} tal que o vetor \overrightarrow{CX} é paralelo ao vetor \overrightarrow{u} .

(a) Exprima \overrightarrow{CX} em termos dos vetores \overrightarrow{CA} e \overrightarrow{CB} . Dica: Use o exercício anterior.

Solução: Temos $\overrightarrow{CX} = \frac{3}{5}\overrightarrow{CA} + \frac{2}{5}\overrightarrow{CB}$.

(b) Calcule $\frac{\|\overrightarrow{AX}\|}{\|\overrightarrow{XB}\|}$.

Solução: Temos $\frac{\|\overrightarrow{AX}\|}{\|\overrightarrow{XB}\|} = \frac{2}{3}$.

Exercício 13.....

Considere novamente o um paralelepípedo retângulo como na figura abaixo:

(a) Escreva o vetor \overrightarrow{AG} como combinação linear dos vetores \overrightarrow{AE} , \overrightarrow{AD} e \overrightarrow{AB} .

Solução: Temos $\overrightarrow{AG} = \overrightarrow{AE} + \overrightarrow{AD} + \overrightarrow{AB}$.

(b) Escreva o vetor \overrightarrow{BH} como combinação linear dos vetores \overrightarrow{AE} , \overrightarrow{AD} e \overrightarrow{AB} .

Solução: Temos $\overrightarrow{BH} = \overrightarrow{AE} + \overrightarrow{AD} - \overrightarrow{AB}$.

(c) É possível escrever o vetor \overrightarrow{AG} como combinação linear dos vetores \overrightarrow{AC} , \overrightarrow{AD} e \overrightarrow{AB} ? Justifique sua resposta.

Solução: Não, pois como os vetores \overrightarrow{AC} , \overrightarrow{AD} e \overrightarrow{AB} são paralelos ao plano determinado por A, B e C, qualquer combinação deles também será paralela a este plano, o que não ocorre com o vetor AG.

3

Sejam \vec{v}_1, \vec{v}_2 e \vec{v}_3 vetores LI. Mostre que se $\alpha_i \neq 0$ para i=1,2,3 então os vetores $\alpha_1 \vec{v}_1, \alpha_2 \vec{v}_2$ e $\alpha_3 \vec{v}_3$ são LI.

Exercício 15.....

Sejam $\vec{v_1}$, $\vec{v_2}$ e $\vec{v_3}$ vetores LI e \vec{u} um vetor arbitrário. É verdade que $\vec{u} + \vec{v_1}$, $\vec{u} + \vec{v_2}$ e $\vec{u} + \vec{v_3}$ são LI?

Exercício 16.....

Sejam \vec{u} e \vec{v} vetores não nulos. Os vetores \vec{u} , \vec{v} e $2\vec{u} + 3\vec{v}$ são LI ou LD?

Solução: São LD pois $2\vec{u} + 3\vec{v}$ é uma combinação linear de \vec{u} e \vec{v} .

Exercício 17.....

Sejam \vec{u} , \vec{v} e \vec{w} vetores. Mostre que os vetores

$$\vec{u} - 2\vec{v} + \vec{w}, \ 2\vec{u} + \vec{v} + 3\vec{w}, \ \vec{u} + 8\vec{v} + 3\vec{w}$$

são LD. Mostre também que se $\{\vec{u}, \vec{v}, \vec{w}\}$ é LI então

$$\vec{u} - 2\vec{v} + \vec{w}, \ \vec{u} + \vec{v} + 3\vec{w}, \ \vec{u} + 8\vec{v} + 3\vec{w}$$

são LI.

Exercício 18..... Sejam \vec{u} , \vec{v} e \vec{w} vetores LI. Mostre que

(a) $\vec{u} + \vec{v} + \vec{w}$, $\vec{u} - \vec{v}$, $3\vec{v}$ são LI.

(b) $\vec{u} + \vec{v}$, $\vec{u} + \vec{w}$, $\vec{v} + \vec{w}$.