Cold Spring Test

Easy

打开O2优化开关.

标程均使用读入优化,均没有输出优化.

(a.c/cpp/pas)

Time Limit: 1.0s

Space Limit: 512M

题目描述

生活不只有眼前的苟且, 还有有序对。

定义r(n,S)为满足下述条件的有序对(s1,s2)的对数:

 $s1 \in S, s2 \in S, s1
eq s2, oxdot s1 + s2 = n$

现你需将集合 $S=\{0...n\}$ 划分为两个集合 S_a,S_b ,使得对于任意的 $a(1\leqslant a\leqslant n)$,均有 $r(a,S_a)=r(a,S_b)$

输入格式

n

输出格式

我们认为 S_a 为包含元素1的集合,**从小到大**输出 S_a 的每一个元素,每个元素由空格隔开。

数据范围

对于30%的数据, $3 \leqslant n \leqslant 10$

对于60%的数据, $3 \leqslant n \leqslant 1000$

对于100%的数据, $3 \leqslant n \leqslant 10^5$

(b.c/cpp/pas)

Time Limit: 1.5s

Space Limit: 512M

题目描述

生活不只有眼前的苟且, 还有可重集。

定义一个三元组 $(x,y,z) \leqslant (x_2,y_2,z_2)$ 当且仅当 $x \leqslant x_2,y \leqslant y_2,z \leqslant z_2$.

可重集S初始为空。共m个操作,每个操作意义如下:

1, x, y, z: 向可重集S中加入三元组(x, y, z)

 $2,x,y,z,x_2,y_2,z_2$: 询问可重集S中有多少个三元组 (x_3,y_3,z_3) 满足 $(x,y,z)\leqslant (x_3,y_3,z_3)\leqslant (x_2,y_2,z_2)$ 输入保证 $(x,y,z)\leqslant (x_2,y_2,z_2)$.

输入格式

m

 $1, x, y, z \setminus 2, x, y, z, x_2, y_2, z_2$

...

输出格式

每行一个正整数表示询问对应的答案。

数据范围

对于30%的数据, $m \leq 1000$

对于另外20%的数据, $0 \leqslant x, y, z, x_2, y_2, z_2 \leqslant 20$

对于100%的数据, $1\leqslant m\leqslant 5*10^4, 0\leqslant x,y,z,x_2,y_2,z_2\leqslant 10^9$

(c.c/cpp/pas)

Time Limit: 1.0s

Space Limit: 512M

题目描述

生活不只有眼前的苟且, 还有模。

你获得了t个完美的方程 $x^2 - c \equiv 0 \pmod{m}$ 。

一个方程是完美的,当且仅当加是质数。

对于你获得的每一个方程,你都需要计算它的所有解(即相互不同余的所有解)。

输入格式

 \boldsymbol{t}

c, m

. . .

输出格式

每行若干个从小到大排列的数表示同余式的解。

对于你输出的每一个解a , 保证 $0 \leqslant a \leqslant m-1$,且它们互不相同

如果该方程无解,则输出"no".(没有空格与引号)

数据范围

对于30%的数据, $t\leqslant 10^3, m\leqslant 200$

对于另外20%的数据, $m \equiv 3 \pmod{4}$

对于另外20%的数据, $m \equiv 5 \pmod{8}$

对于100%的数据, $t \leq 5 \times 10^4$, $1 \leq m \leq 10^8$, $abs(c) \leq 10^8$, m 为质数。