Optimization and Computational Linear Algebra for Data Science Midterm solutions

October 22, 2019

Problem 1

- (a) $E_1 = \{x \in \mathbb{R}^n \mid Ax = 3x\} = \text{Ker}(A 3\text{Id}_n)$ is a subspace because a kernel of a matrix is a subspace.
- (b) $E_2 = \{x \in \mathbb{R}^n \mid Ax = y\}$ is not a subspace because it does not contain the zero vector since $A0 = 0 \neq y$.

Problem 2 Statements (a),(c),(d),(f) are equivalent to each other, and statements (b),(e),(g),(h) are equivalent to each other.

Problem 3

(a) False. The following 4×3 has rank 3:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

- (b) False. $\operatorname{rank}(\operatorname{Id}_n + \operatorname{Id}_n) = \operatorname{rank}(2\operatorname{Id}_n) = n \neq 2n = \operatorname{rank}(\operatorname{Id}_n) + \operatorname{rank}(\operatorname{Id}_n)$.
- (c) True. If for all $u \in \mathbb{R}^n$, $\langle u, x \rangle = 0$ then in particular $\langle x, x \rangle = 0$ which gives $||x||^2 = 0$ and x = 0.
- (d) False. Let A = Diag(1, 2, 3, ..., n). $v_1 = e_1$ is an eigenvector associated to $\lambda_1 = 1$ and $v_2 = e_2$ is an eigenvector associated to $\lambda_2 = 2$. However $A(v_1 + v_2) = e_1 + 2e_2 \neq 3(e_1 + e_2)$: $(e_1 + e_2)$ is not an eigenvector of A associated with the eigenvalue $\lambda_1 + \lambda_2$.

Problem 4 Let $x \in \mathbb{R}^n$. We know that $P_S x$ is orthogonal to $x - P_S x$. Hence, by Pythagorean theorem:

$$||x||^2 = ||P_S x||^2 + ||x - P_S x||^2.$$

Problem 6 M is symmetric so by the spectral theorem there exists $D = \text{Diag}(\lambda_1, \dots, \lambda_n)$, where $\lambda_1, \dots, \lambda_n \in \mathbb{R}$, and P an orthogonal matrix such that

$$M = PDP^{\mathsf{T}}.$$

 $M^{2019} = PDP^\mathsf{T}PDP^\mathsf{T} \cdots PDP^\mathsf{T} = PD^{2019}P^\mathsf{T}$, because $P^\mathsf{T}P = \mathrm{Id}_n$ (recall that P is orthogonal). We get that $PD^{2019}P^\mathsf{T} = 0$ which gives $0 = P^\mathsf{T}PD^{2019}P^\mathsf{T}P = D^{2019}$. Since $D^{2019} = \mathrm{Diag}(\lambda_1^{2019}, \dots, \lambda_n^{2019})$, we get that $\lambda_1 = \dots = \lambda_n = 0$. We conclude that $M = P0P^\mathsf{T} = 0$.

Problem 6 We will prove that $rank(A) = rank(AA^{\mathsf{T}})$ which will imply the result, since the $n \times n$ matrix AA^{T} is invertible if and only if his rank equals n.

We have $Ker(A^{\mathsf{T}}) = Ker(AA^{\mathsf{T}})$. Indeed:

- if $x \in \text{Ker}(A^{\mathsf{T}})$, then $AA^{\mathsf{T}}x = A0 = 0$. Hence $x \in \text{Ker}(AA^{\mathsf{T}})$.
- if $x \in \text{Ker}(AA^\mathsf{T})$, then $AA^\mathsf{T}x = 0$. Hence $||A^\mathsf{T}x||^2 = x^\mathsf{T}AA^\mathsf{T}x = 0$, which implies $A^\mathsf{T}x = 0$: $x \in \text{Ker}(A^\mathsf{T})$.

Applying the rank-nullity theorem twice: $\operatorname{rank}(A^{\mathsf{T}}) = n - \dim(\operatorname{Ker}(A^{\mathsf{T}})) = n - \dim(\operatorname{Ker}(AA^{\mathsf{T}})) = \operatorname{rank}(AA^{\mathsf{T}})$. We conclude that $\operatorname{rank}(A) = \operatorname{rank}(A^{\mathsf{T}}) = \operatorname{rank}(AA^{\mathsf{T}})$.

Problem 7

(a) $\operatorname{rank}(A) \leq \min(n, m) = n$. Hence by the rank-nullity theorem we get that $\dim \operatorname{Ker}(A) = m - \operatorname{rank}(A) \geq m - n > 0$. Hence, we can find a non-zero vector $u \in \operatorname{Ker}(A)$. Let $x = x^* + u \neq x^*$. We have

$$f(x) = ||Ax^* + Au - y|| = ||Ax^* - y|| = f(x^*).$$

 x^* is therefore not the unique minimizer of f.

(b) $P_{\text{Im}(A)}y$ belongs to Im(A), hence there exists $x \in \mathbb{R}^m$ such that $P_{\text{Im}(A)}y = Ax$. By contradiction, assume that $Ax^* \neq P_{\text{Im}(A)}y$. Then, by definition of $P_{\text{Im}(A)}y = Ax$,

$$||Ax - y|| < ||Ax^* - y||.$$

This contradicts the fact that x^* minimizes f. Therefore $Ax^* = P_{\text{Im}(A)}y$.

(c) Since $y - P_{\text{Im}(A)}y$ is orthogonal to Im(A), we get that for all $x \in \mathbb{R}^m$,

$$\langle Ax, y - Ax^* \rangle = 0,$$

because $Ax \in \text{Im}(A)$ and $P_{\text{Im}(A)}y = Ax^*$.

(d) We deduce that for all $x \in \mathbb{R}^m$:

$$x^{\mathsf{T}}(A^{\mathsf{T}}y - A^{\mathsf{T}}Ax^{\star}) = 0.$$

The vector $A^{\mathsf{T}}y - A^{\mathsf{T}}Ax^{\star}$ is therefore orthogonal to every vector of \mathbb{R}^m : it is equal to 0.

(e) $\operatorname{rank}(A^{\mathsf{T}}A) \leq \operatorname{rank}(A) \leq n < m$, hence the $m \times m$ matrix $A^{\mathsf{T}}A$ is not invertible.

