

TD 3: espaces vectoriels

Les exercices marqués d'une étoile ★ sont des exercices d'approfondissement, ils ne sont pas au programme du cours.

1 Sous-espaces vectoriels

Exercice 1. Soit $H := \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } y \ge 0\}$. Vérifier que H est stable pour l'addition. Montrer que H n'est pas un \mathbb{R} -espace vectoriel.

Exercice 2. Parmi les ensembles suivants, dire lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 .

1.
$$A := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4y - z = 0\}.$$

5.
$$E := \{(x, y, z) \in \mathbb{R}^3 \mid xy + 4z = 0\}.$$

2.
$$B := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4y - z = 3\}.$$

6.
$$F := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4z = 0 \text{ et } x + y + z = 0\}.$$

3.
$$C := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + 4y^2 - z = 0\}.$$

4.
$$D := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - 3y^2 - z^2 = 0\}.$$

7.
$$G := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4z = 0 \text{ ou } x + y + z = 0\}.$$

Exercice 3. Soit *E* un espace vectoriel et soient *F* et *G* deux sous-espaces vectoriels de *E*.

- **1.** Dans cette question seulement, on prend $E = \mathbb{R}^2$, F est la droite d'équation x + y = 0 et G la droite d'équation x 2y = 0. Représenter F, G, $F \cup G$ et $F \cap G$.
- **2.** Montrer que $F \cap G$ est un sous-espace vectoriel de E.
- **3.** Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 4*. Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes. Montrer que \mathscr{P} l'ensemble des polynômes pairs (c.-à-d. tous les coefficients impairs sont nuls) est un sous-espace vectoriel de E. Montrer qu'il en va de même pour l'ensemble \mathscr{I} des polynômes impairs si l'on convient que le polynôme nul en fait partie.

Exercice 5*. Parmi les ensembles suivants, établir lesquels sont des sous-espaces vectoriels de l'espace des applications de \mathbb{R} dans \mathbb{R} .

1.
$$A := \{ f : \mathbb{R} \to \mathbb{R} \mid f(0) = 0 \}.$$

4.
$$D := \left\{ f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}) \middle| \int_0^1 f(x) \, \mathrm{d}x = 0 \right\}.$$

2.
$$B := \{ f : \mathbb{R} \to \mathbb{R} \mid f(0) = 3 \}.$$

3. $C := \{ f : \mathbb{R} \to \mathbb{R} \mid f(0) f(1) = 0 \}.$

5.
$$E := \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f' + 2f = 0 \}.$$

Exercice 6^* . Dans l'espace vectoriel E des suites réelles, déterminer si les ensembles suivants sont des sous-espaces vectoriels.

- 1. L'ensemble des suites convergentes.
- 2. L'ensemble des suites divergentes.
- 3. L'ensemble des suites croissantes.
- 4. L'ensemble des suites géométriques.
- 5. L'ensemble des suites ayant un nombre infini de termes non nuls.
- **6.** L'ensemble des suites ayant un nombre fini de termes non nuls.
- 7. L'ensemble des suites stationnaires (c.-à-d. constantes à partir d'un certain rang).

2 Familles libres, familles génératrices

Exercice 7.

- **1.** Montrer que la famille (u, v) est libre dans \mathbb{R}^2 si u := (1, 2) et v := (2, 3).
- **2.** Même question dans \mathbb{R}^3 avec u := (1,2,3) et v := (2,3,4).
- **3.** Montrer que la famille (u, v, w) est libre dans \mathbb{R}^3 si u := (1, -1, 2), v := (1, 1, 1) et w := (2, -2, 1).

Exercice 8. Soient u := (2,3), v := (-1,4), w := (5,3) des vecteurs de \mathbb{R}^2 .

- 1. Montrer que la famille (u, v, w) est liée et déterminer une relation de liaison.
- **2.** Montrer que la famille (u, v, w) est génératrice.

Exercice 9. Soient u := (1, -1, 4), v := (2, 5, -1) et w := (3, 0, -4) des vecteurs de \mathbb{R}^3 . Dire si la famille (u, v, w) est libre ou liée.

Exercice 10. Soient u := (1,2), v := (1,3) et w := (1,4) des vecteurs de \mathbb{R}^2 .

- **1.** Montrer que les vecteurs *u*, *v*, *w* sont deux-à-deux libres.
- **2.** La famille (u, v, w) est-elle libre?

Exercice 11. Dans \mathbb{R}^3 , considère les vecteurs u := (1, -2, 2) et v := (3, 3, -1).

- **1.** Justifier que les vecteurs u et v sont libres.
- **2.** Déterminer si le vecteur (-1, -7, 5) est une combinaison linéaire de u et v.
- **3.** Déterminer une condition nécessaire et suffisante sur les réels x, y, z pour que $(x, y, z) \in \text{Vect}(u, v)$.
- **4.** En déduire une équation cartésienne du plan engendré par u et v.

Exercice 12. Soit (u_1, u_2, u_3) une famille libre d'un espace vectoriel E. Déterminer si la famille (v_1, v_2, v_3) est libre, où $v_1 := u_1 + u_2$, $v_2 := u_2 + u_3$ et $v_3 := u_1 + u_2 + u_3$.

Exercice 13^{*}. Soit *E* l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que la famille (cos, sin) est libre.
- **2.** Montrer que la famille (cos, sin, f) est liée, où $f(x) := \sin(x+1)$, et donner une relation de liaison.
- **3.** Montrer que pour tout $n \in \mathbb{N}$, la famille (f_0, f_1, \dots, f_n) est libre, où $f_n(x) := \cos(nx)$.

Exercice 14*. Soit $n \in \mathbb{N}$. Dans l'espace vectoriel $\mathbb{R}[X]$, on considère des polynômes P_0, \ldots, P_n tels que deg $P_k = k$ pour tout $k \in [0, n]$. Montrer que la famille (P_0, \ldots, P_n) est libre. Indication : regarder le coefficient de plus haut degré de $\lambda_0 P_0 + \cdots + \lambda_n P_n$.

3 Bases et dimension

Exercice 15. Soit $F := \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + z = 0\}$. Vérifier que F est un sous-espace vectoriel de \mathbb{R}^3 , puis en déterminer une base.

Exercice 16. Déterminer une base des sous-espaces vectoriels de \mathbb{R}^4 suivants (on ne demande pas de montrer que ce sont des s.e.v.).

- 1. $\{(x, y, z, t) \in \mathbb{R}^4 \mid x + 2y + 3z + 4t = 0\}.$
- **2.** $\{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ et } x + y + t = 0\}.$
- **3.** $\{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0 \text{ et } x + 2y z + 3t = 0\}.$

Exercice 17. Déterminer une base du sous-espace vectoriel de \mathbb{R}^n d'équation $x_1 + \cdots + x_n = 0$.

Exercice 18. Dans chaque cas, montrer que les vecteurs (u_1, u_2, u_3) forment une base de \mathbb{R}^3 , puis déterminer les coordonnées du vecteur v := (1, -1, 0) dans cette base.

1.
$$u_1 := (1,0,0), u_2 := (0,1,0) \text{ et } u_3 := (0,0,1).$$

- **2.** $u_1 := (1,0,0), u_2 := (1,1,0)$ et $u_3 := (1,1,1)$.
- **3.** $u_1 := (1, 1, 2), u_2 := (-1, 2, 1) \text{ et } u_3 := (1, -1, -1).$

Exercice 19. Dans \mathbb{R}^4 , on considère les vecteurs $u_1 := (1,2,0,3)$ et $u_2 := (1,0,0,-1)$.

- **1.** Montrer que la famille (u_1, u_2) est libre.
- **2.** Compléter cette famille en une base de \mathbb{R}^4 .

Exercice 20. Dans \mathbb{R}^4 , soit F := Vect(u, v, w) où u := (1, 1, -1, 1), v := (0, 2, -1, 2) et w := (-2, -3, 1, -1), et soit H le sous-espace vectoriel :

$$H := \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x - y + 4z + 3t = 0\}.$$

- 1. Montrer que u, v et w sont linéairement indépendants.
- **2.** Montrer que H est un hyperplan de \mathbb{R}^4 .
- **3.** En déduire que F = H.

Exercice 21*. Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes et $F = \mathbb{R}_2[X]$ l'ensemble des polynômes de degré inférieur ou égal à 2.

- **1.** Montrer que *F* est un sous-espace vectoriel de *E*. Quel est sa dimension?
- **2.** On considère les polynômes $P_0(X) := \frac{1}{2}(X-1)(X-2)$, $P_1(X) := -X(X-2)$ et $P_2(X) := \frac{1}{2}X(X-1)$. Pour tout polynôme $P := \lambda_0 P_0 + \lambda_1 P_1 + \lambda_2 P_2$, calculer P(0), P(1) et P(2) en fonction de $\lambda_0, \lambda_1, \lambda_2$.
- **3.** Montrer que la famille (P_0, P_1, P_2) est libre.
- **4.** En déduire que (P_0, P_1, P_2) est une base de $\mathbb{R}_2[X]$.
- **5.** Déterminer les coordonnées de X^2 dans cette base.

Exercice 22*. Soit $E = \mathcal{F}(\mathbb{N}, \mathbb{R})$ l'espace vectoriel des suites réelles et soit F l'ensemble des suites $(u_n)_{n \in \mathbb{N}}$ vérifiant la relation de récurrence d'ordre 2 :

$$\forall n \in \mathbb{N}$$
, $u_{n+2} = u_{n+1} + 6u_n$.

- **1.** Montrer que *F* est un sous-espace vectoriel de *E*.
- **2.** Soient $a_n := (-2)^n$ et $b_n := 3^n$. Montrer que $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ forment une famille libre de F.
- **3.** L'objectif de cette question est de montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille génératrice de F. Soit $(u_n)_{n\in\mathbb{N}} \in F$. Pour $\lambda, \mu \in \mathbb{R}$, on considère la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par :

$$v_n := \lambda a_n + \mu b_n$$
.

- **a.** Montrer que $(v_n)_{n\in\mathbb{N}}\in F$.
- **b.** Montrer qu'il existe des valeurs de λ et μ pour lesquelles $v_0 = u_0$ et $v_1 = u_1$.
- **c.** Pour ces valeurs de λ et μ , démontrer par récurrence double que $\nu_n = u_n$ pour tout $n \in \mathbb{N}$.
- **d.** En déduire que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille génératrice de F.
- **4.** Quel est la dimension de *F*?
- **5.** Déterminer la suite $(u_n)_{n\in\mathbb{N}} \in F$ telle que $u_0 = 0$ et $u_1 = 3$.

4 Somme de sous-espaces, supplémentaires

Exercice 23. Dans \mathbb{R}^4 , soit F le plan vectoriel dirigé par $u_1 := (2,3,0,1)$ et $u_2 := (-1,2,1,-2)$ et soit G le plan vectoriel dirigé par $v_1 := (4,-1,-2,5)$ et $v_2 := (1,0,0,0)$.

- **1.** Déterminer une base de F + G.
- 2. La somme est-elle directe?

Exercice 24. Dans \mathbb{R}^3 , soient F le plan d'équation x + y + z = 0 et G le plan d'équation x + 2y + 3z = 0.

1. Montrer que $F + G = \mathbb{R}^3$.

2. Sans déterminer $F \cap G$, justifier si F et G sont supplémentaires.

Exercice 25. Dans \mathbb{R}^4 , on considère les sous-espaces vectoriels :

$$F := \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ et } z + t = 0\}, \qquad G := \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y = 0 \text{ et } z - t = 0\}.$$

- **1.** Déterminer les dimensions de *F* et de *G*.
- **2.** Déterminer $F \cap G$.
- **3.** En déduire que $F + G = \mathbb{R}^4$.

Exercice 26*. Soit $E := \mathscr{C}^0([0,1],\mathbb{R})$ l'espace vectoriel des fonctions continues sur [0,1]. Soit F le sousespace vectoriel :

$$F := \left\{ f \in E \middle| \int_0^1 f(x) \, \mathrm{d}x = 0 \right\},$$

et soit *G* le sous-espace vectoriel des fonctions constantes.

- **1.** Vérifier que *F* et *G* sont bien des sous-espaces vectoriels de *E*.
- **2.** Montrer que F et G sont supplémentaires dans E.

Exercice 27*. Soit E un espace vectoriel de dimension finie et soient F_1 et F_2 des s.e.v. tels que $F_1 + F_2 = E$. Démontrer qu'il existe des s.e.v. $G_1 \subset F_1$ et $G_2 \subset F_2$ tels que $G_1 \oplus G_2 = E$.

Exercice 28. Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$, et soient H_1, \dots, H_p des hyperplans de E. Démontrer par récurrence sur p que :

$$\forall p \in [1, n], \quad \dim(H_1 \cap \cdots \cap H_p) \ge n - p.$$

Exercice 29. Soit *E* un espace vectoriel de dimension finie et soient *F*, *G*, *H* des s.e.v. de *E*.

- **1.** Montrer que $(F \cap G) + (F \cap H) \subset F \cap (G + H)$. A-t-on l'inclusion contraire en général?
- 2. Montrer que:

$$\dim(F+G+H) \leq \dim(F) + \dim(G) + \dim(H) - \dim(F \cap G) - \dim(F \cap H) - \dim(G \cap H) + \dim(F \cap G \cap H).$$

5 Exercices tirés d'examens

Exercice 30 (Examen 2021-2022, session 1). Soient F et G les sous-ensembles de \mathbb{R}^4 suivants :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = 0 \text{ et } y = z\}, \quad G_m = \text{Vect}((1, 1, 0, 0), (1, 0, m, 0)),$$

où $m \in \mathbb{R}$ est un paramètre.

- **1.** Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- **2.** Résoudre le système à quatre inconnues x, y, z, t: $\begin{cases} x = 0 \\ y = z. \end{cases}$
- **3.** En déduire une base de F (en justifiant).
- **4.** Donner la dimension de *F*.
- **5.** Déterminer une condition nécessaire et suffisante sur m pour que F et G_m soient supplémentaires dans \mathbb{R}^4 .

Exercice 31 (Examen 2022-2023, session 1). Soient $u_{\alpha,\beta} = (\alpha - \beta, \alpha + 2\beta, \beta)$ et v = (-2,7,3) des vecteurs de \mathbb{R}^3 , avec α et β des paramètres réels.

- 1. Écrire $u_{\alpha,\beta}$ comme une combinaison linéaire $\alpha w_1 + \beta w_2$, en précisant qui sont les vecteurs fixes w_1 et w_2 de \mathbb{R}^3 .
- **2.** La famille (w_1, w_2) est-elle libre?
- **3.** Montrer que $(u_{\alpha,\beta}, v)$ est une famille libre de vecteurs de \mathbb{R}^3 si et seulement si $3\alpha \beta = 0$.
- **4.** Montrer que la somme $Vect(v) + Vect(w_2)$ est directe. Que vaut $\dim Vect(v, w_2)$?
- **5.** Montrer que la somme $Vect(v) + Vect(w_1) + Vect(w_2)$ n'est pas directe. Que vaut sa dimension?