Electric motors data analysis

Group 8: Viktor Snesarevskii Edoardo Belli Guendalina Biava Ozrenka Dragić Madina Kalenova

March-April 2018

Dataset

- Measurements of torque and current from electric motors
- ► Time-series data with frequency 20KHz
- Data taken from 5 distinct motors in AC and DC modes
- Each data sample is one recorded operation
- Operations are recorded while motor is working properly, then a fault is induced and the same operations are recorded again
- ▶ In total 1066 AC samples, 924 DC samples

Data Example

Torque	Current
16.693	0.023
16.739	0.019
16.823	0.010
16.810	0.007
16.823	-0.002
16.849	-0.010
16.992	-0.018
17.108	-0.033
17.290	-0.035
17.297	-0.052

Main Goals

3 main goals:

- Motor Classification Can we identify a motor by a recorded operation?
- ► Fault Classification Can we group faults?
- ► Fault Prediction
 Can we predict the state of motor by a recorded operation?

First Steps

First problem — data is very high-dimensional ($p \approx 10^5$) Solution — do PCA first to select the most important moments

Then — data exploration For example, do faulty and working operations have the same or different mean, distribution etc

Before PCA

Loading data into frame

Problem — different lengths of data samples

Solution — cut all samples to minimal length value

PCA

PCA results go here

Data Properties

Conclusions

What we got so far

Questions?