Image Segmentation

Loop

image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels, also known as super-pixels).

Segmentation subdivides an image into its constituent regions or objects

Segmentation algorithms for monochrome images generally are based on one of two basic categories dealing with properties of intensity values: **similarity** and **discontinuity**.

Thresholding Method

Watershed Method

Thresholde Method

The Histogram

$$g(x,y) = \begin{cases} 1 & f(x,y) > T \\ 0 & f(x,y) < T \end{cases}$$

$$g(x,y) = \begin{cases} a & f(x,y) > T_2 \\ b & T_1 < f(x,y) < T_2 \\ c & f(x,y) < T_1 \end{cases}$$

Global Thresholding

- **b.** Select an initial estimate for the global threshold *T*
- 2. Segment the image .This will produce two groups of pixels.
- 3. Compute the average (mean) intensity values m_1 and m_2 and for the pixels in two groups of pixels.
- 4. Update the threshold value: $T = 1/2(m_1 + m_2)$
- 5. Repeat Steps 2 through 4 until the difference between values of in successive iterations is smaller than a predefined parameter ΔT

Global Thresholding

Otsu's method

$$P_1 = \sum_{i=0}^k p_i$$

$$P_2 = 1 - P_1$$

$$m_1 = \frac{1}{P_1(k)} \sum_{i=0}^{k} i P_i$$

$$m_2 = \frac{1}{P_2(k)} \sum_{i=k+1}^{L-1} i P_i$$

The between-class variance, σ_B , can be defined as

$$\sigma_R^2 = P_1(m_1 - m_G)^2 + P_2(m_2 - m_G)^2$$

When change the value of k

$$\sigma_B^2(k) = \frac{\left(m_G P_1(k) - m(k)\right)^2}{P_1(k)(1 - P_1(k))}$$

Global Thresholding

- Otsu's algorithm
- 1. Compute the normalized histogram of the input image.
- 2. Compute the cumulative sums, $P_1(k)$
- 3. Compute the cumulative means, $m_1(k)$
- 4. Compute the global intensity mean, m_G
- 5. Compute the between-class variance, $\sigma_B^2(k)$.
- 6. Obtain the Otsu threshold T, as the value k of for which $\sigma_B^2(k)$ is maximum. If the maximum is not unique, obtain by averaging the values of corresponding to the various maxima detected.

Problem

Problem

Locally adaptive thresholding

- Slide a window over the image
- For each window position, decide whether to perform thresholding

apply Otsu's method

classify the entire area as foreground or background

Or another way, change sliding window to scaling Line

The threshold value is $T_{xy} = bm_{xy}$, the b is vary from

$$m(k+1) = \frac{1}{n} \sum_{i=k+2-n}^{k+1} z_i$$

Multiple Thresholds

Single threshold is rarely sufficient for the whole image, similar to one threshold

$$P_1 + P_2 + P_3 = 1$$

$$\sigma_B^2 = P_1(m_1 - m_G)^2 + P_2(m_2 - m_G)^2 + P_3(m_3 - m_G)^2$$

Morphological Watersheds

treating an image as a height field or landscape, regions where the rain would flow into the same lake

Start flooding from local minima, and label ridges

Morphological Watersheds

flood this surface from its minima

Marker-controlled watershed

Git Basic Concepts

Git Basic Concepts

Git Basic Usage

- ●创建项目
- 简易指南
- Git合并申请

How to submit your work

- make sure you can connect to github
- Sign up for Github
- search HUST_RM(not sure)
- •fork the project and send pull request

Task

Maybe

Reference

https://cn.mathworks.com/discovery/image-segmentation.html

https://en.wikipedia.org/wiki/Image_segmentation

https://en.wikipedia.org/wiki/Otsu%27s_method

https://en.wikipedia.org/wiki/Watershed (image processing)