Class_07_Clustering_013124

Johann Tailor

Clustering

Today we will learn about machine learning and how to use the function kmeans()

Kmeans clustering

Let's see how it works:

This gives random numbers or n; Its a way to make up random data:

```
rnorm(10)

[1] -0.17846018 -0.05324777  0.34158698 -1.11060565 -1.18524918  0.71377779
[7]  0.18736280  1.16571408 -1.75202341 -0.32003669

hist( rnorm(50000))
```

Histogram of rnorm(50000)


```
\mbox{\tt\#} mean will be 0 and sd is 1. This is the deafult. \mbox{\tt\#} check the input available
```

Make a little vector with 60 total points that re centered at +3 and half that are at -3.

```
tmp <- c(rnorm(30, mean=3), rnorm(30, mean=-3))
tmp</pre>
```

```
3.0373001
                 2.2470264
                            2.4539856
                                       2.2834873
                                                   4.0784247
                                                              4.0636421
 [7]
     0.8795042
                 1.3068491
                            0.7907352
                                       4.2385510
                                                              4.4117635
                                                   3.6529406
     3.9995130
Г137
                 2.7012992
                            1.6977610
                                       4.1345080
                                                   3.8395134
                                                              2.3924632
[19]
     3.6323610
                 2.7305478
                            2.4683341
                                       3.2372524
                                                   3.0423721
                                                              3.4072697
[25]
                 4.4250433
                            5.0593068
                                       3.8543323
     2.6869980
                                                   3.2435671 -0.1920145
[31] -3.1342880 -4.2557799 -3.7782107 -3.1704535 -3.1508633 -5.2177055
[37] -1.5414362 -1.4920312 -3.7064578 -3.8424761 -1.8121204 -1.7688647
[43] -2.1805756 -4.9891784 -4.5843033 -3.1721706 -4.0764912 -5.2384689
[49] -3.8621358 -0.4035043 -3.6389355 -3.6674729 -2.4124593 -4.5744518
[55] -3.5640114 -2.1344445 -2.2579821 -2.1372122 -2.5670938 -3.3908708
```

Let's allign it so that it goes -ve to +ve and make a plot to visually see two different clusters.

```
rev.tmp <- rev(tmp)</pre>
  x <- cbind(x=tmp, y=rev.tmp)</pre>
                          У
 [1,] 3.0373001 -3.3908708
 [2,] 2.2470264 -2.5670938
 [3,] 2.4539856 -2.1372122
 [4,] 2.2834873 -2.2579821
 [5,] 4.0784247 -2.1344445
 [6,] 4.0636421 -3.5640114
 [7,] 0.8795042 -4.5744518
 [8,] 1.3068491 -2.4124593
 [9,] 0.7907352 -3.6674729
[10,] 4.2385510 -3.6389355
[11,] 3.6529406 -0.4035043
[12,] 4.4117635 -3.8621358
[13,] 3.9995130 -5.2384689
[14,] 2.7012992 -4.0764912
[15,] 1.6977610 -3.1721706
[16,] 4.1345080 -4.5843033
[17,] 3.8395134 -4.9891784
[18,] 2.3924632 -2.1805756
[19,] 3.6323610 -1.7688647
[20,] 2.7305478 -1.8121204
[21,] 2.4683341 -3.8424761
[22,] 3.2372524 -3.7064578
[23,] 3.0423721 -1.4920312
[24,] 3.4072697 -1.5414362
[25,] 2.6869980 -5.2177055
[26,] 4.4250433 -3.1508633
[27,] 5.0593068 -3.1704535
[28,] 3.8543323 -3.7782107
[29,] 3.2435671 -4.2557799
[30,] -0.1920145 -3.1342880
[31,] -3.1342880 -0.1920145
[32,] -4.2557799 3.2435671
[33,] -3.7782107 3.8543323
[34,] -3.1704535 5.0593068
```

[35,] -3.1508633 4.4250433

```
[36,] -5.2177055 2.6869980
[37,] -1.5414362 3.4072697
[38,] -1.4920312 3.0423721
[39,] -3.7064578 3.2372524
[40,] -3.8424761 2.4683341
[41,] -1.8121204 2.7305478
[42,] -1.7688647 3.6323610
[43,] -2.1805756 2.3924632
[44,] -4.9891784 3.8395134
[45,] -4.5843033 4.1345080
[46,] -3.1721706 1.6977610
[47,] -4.0764912 2.7012992
[48,] -5.2384689 3.9995130
[49,] -3.8621358 4.4117635
[50,] -0.4035043 3.6529406
[51,] -3.6389355 4.2385510
[52,] -3.6674729 0.7907352
[53,] -2.4124593 1.3068491
[54,] -4.5744518 0.8795042
[55,] -3.5640114 4.0636421
[56,] -2.1344445 4.0784247
[57,] -2.2579821 2.2834873
[58,] -2.1372122 2.4539856
[59,] -2.5670938 2.2470264
[60,] -3.3908708 3.0373001
```

plot(x)

Let's run the kmeans() feature to see how many clusters are there:

```
k <- kmeans(x, centers = 2, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 85.1613 85.1613
(between_SS / total_SS = 87.1 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

```
#the result tells a lot of data.
```

What's in this result object??

```
attributes(k)
```

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

To get in-depth data about the clusters:

k\$centers

```
x y
1 -3.190748 2.993488
2 2.993488 -3.190748
```

Q. Plot your data x showing your clustering result and the center point of each cluster.

```
k <- kmeans(x, centers = 2, nstart=20)
plot(x, col=(k$cluster))
points(k$centers, pch=15, col="green")</pre>
```


Q. Run kmeans and cluster into 3 groups and plot the results.

```
k2 <- kmeans(x, centers = 3)
k2</pre>
```

K-means clustering with 3 clusters of sizes 15, 30, 15

Cluster means:

x y 1 3.693395 -4.031089 2 -3.190748 2.993488 3 2.293581 -2.350407

Clustering vector:

Within cluster sum of squares by cluster:

[1] 14.69875 85.16130 34.58125 (between_SS / total_SS = 89.8 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

plot(x, col=k2\$cluster)

Lets look at something:

Larger number of clusters

k\$tot.withinss

[1] 170.3226

k2\$tot.withinss

[1] 134.4413

The big limitation to kmeans() is that it **imposes structure on your data** that you ask for in the first place.

Hierarchical clustering

hclust() wont work with just the data, if you put it. The data needs to come from dist() (a distance matrix).

```
d <- dist(x)
hc <- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

hc by itself doesn't give you much information so we use a new plot. Like this:

```
plot(hc)
abline(h=9, col="red")
```

Cluster Dendrogram

d hclust (*, "complete") Let's now get the cluster membership vector we need to cut the tree at a given height we choose to seperate out some clusters. The function to do this calls for cutree().

```
plot(grps)
```


You can use cluster (specify the no. of clusters) or by height (h).

Q. Plot the results of data (x) and color our hclust.

```
plot(x, col=grps)
```


Principal Component Analysis

We will start with PCA of a tiny dataset from UK gov.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334

Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

One useful plot from the lab:

```
pairs(x, col=rainbow(10), pch=16)
```


But this also doesnt give you much data

Enter PCA

The main fucntion to do PCA in "base" R is called prcomp()

It wants our foods as the column and the countries as the rows.so we transpose it using t().

```
pca <- prcomp( t(x))
summary(pca)</pre>
```

```
Importance of components:
```

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        2.921e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
attributes(pca)
```

\$names

```
[1] "sdev" "rotation" "center" "scale" "x"
```

\$class

[1] "prcomp"

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

```
plot(pca$x[,1], pca$x[,2], xlab = "PC1 67.4%", ylab = "PC229%", col=c("orange", "red", "bl
abline(h=0, col="gray", lty=2)
abline(v=0, col="gray", lty=2)
```

