

Unsupervised Learning: Gaussian Mixture Models & Expectation Maximization

These slides are partially based on slides assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online.

#### **Soft Clustering**

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- Soft clustering gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).

#### Gaussian Mixture Models

Recall the Gaussian distribution:

$$P(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

- There are k components. The i'th component is called  $\omega_i$
- Component  $\omega_i$  has an associated mean vector  $\mu_i$



- There are k components. The i'th component is called  $\omega_i$
- Component  $\omega_i$  has an associated mean vector  $\mu_i$
- Each component generates data from a Gaussian with mean  $\mu_i$  and covariance matrix  $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:



- There are k components. The i'th component is called  $\omega_i$
- Component  $\omega_i$  has an associated mean vector  $\mu_i$
- Each component generates data from a Gaussian with mean  $\mu_i$ and covariance matrix  $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random. Choose component i with probability  $P(\omega_i)$ .



- There are k components. The i'th component is called  $\omega_i$
- Component  $\omega_i$  has an associated mean vector  $\mu_i$
- Each component generates data from a Gaussian with mean  $\mu_i$ and covariance matrix  $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

- 1. Pick a component at random. Choose component i with probability  $P(\omega_i)$ .
- 2. Datapoint  $\sim N(\mu_{ii} \sigma^2 \mathbf{I})$



### The General GMM assumption

- There are k components. The i'th component is called  $\omega_i$
- Component  $\omega_i$  has an associated mean vector  $\mu_i$
- Each component generates data from a Gaussian with mean  $\mu_i$  and covariance matrix  $\Sigma_i$

Assume that each datapoint is generated according to the following recipe:

- 1. Pick a component at random. Choose component i with probability  $P(\omega_i)$ .
- 2. Datapoint  $\sim N(\mu_i, \Sigma_i)$



#### Mixture Models

• Formally a Mixture Model is the weighted sum of a number of pdfs where the weights are determined by a distribution,  $\pi$ 

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) + \dots + \pi_k f_k(x)$$
where  $\sum_{i=0}^{k} \pi_i = 1$ 

$$p(x) = \sum_{i=0}^{k} \pi_i f_i(x)$$

#### Gaussian Mixture Models

• GMM: the weighted sum of a number of Gaussians where the weights are determined by a distribution,  $\pi$ 

$$p(x) = \pi_0 N(x|\mu_0, \Sigma_0) + \pi_1 N(x|\mu_1, \Sigma_1) + \dots + \pi_k N(x|\mu_k, \Sigma_k)$$
  
where  $\sum_{i=0}^k \pi_i = 1$ 

$$p(x) = \sum_{i=0}^{k} \pi_i N(x|\mu_k, \Sigma_k)$$

#### Expectation-Maximization for GMMs

Iterate until convergence:

On the *t'* th iteration let our estimates be

$$\lambda_t = \{ \mu_1(t), \mu_2(t) \dots \mu_c(t) \}$$

Just evaluate a Gaussian at  $x_k$ 

E-step: Compute "expected" classes of all datapoints for each class 
$$P(w_i|x_k,\lambda_t) = \frac{p(x_k|w_i,\lambda_t)P(w_i|\lambda_t)}{p(x_k|\lambda_t)} = \frac{p(x_k|w_i,\mu_i(t),\sigma^2\mathbf{I})p_i(t)}{\sum_{j=1}^{c} p(x_k|w_j,\mu_j(t),\sigma^2\mathbf{I})p_j(t)}$$

M-step: Estimate  $\mu$  given our data's class membership distributions

$$\mu_i(t+1) = \frac{\sum_k P(w_i|x_k, \lambda_t) x_k}{\sum_k P(w_i|x_k, \lambda_t)}$$

#### E.M. for General GMMs

 $p_i(t)$  is shorthand for estimate of  $P(\omega_i)$  on t'th iteration

Iterate. On the t th iteration let our estimates be

$$\lambda_t = \{ \mu_1(t), \mu_2(t) \dots \mu_c(t), \Sigma_1(t), \Sigma_2(t) \dots \Sigma_c(t), p_1(t), p_2(t) \dots p_c(t) \}$$

E-step: Compute "expected" clusters of all datapoints

Just evaluate a Gaussian at x<sub>k</sub>

$$P(w_i|x_k,\lambda_t) = \frac{p(x_k|w_i,\lambda_t)P(w_i|\lambda_t)}{p(x_k|\lambda_t)} = \frac{p(x_k|w_i,\mu_i(t),\Sigma_i(t))p_i(t)}{\sum_{i=1}^{c} p(x_k|w_i,\mu_i(t),\Sigma_i(t))p_i(t)}$$

M-step: Estimate  $\mu$ ,  $\Sigma$  given our data's class membership distributions

$$\mu_i(t+1) = \frac{\sum_k P(w_i|x_k, \lambda_t) x_k}{\sum_k P(w_i|x_k, \lambda_t)} \qquad \Sigma_i(t+1) = \frac{\sum_k P(w_i|x_k, \lambda_t) [x_k - \mu_i(t+1)] [x_k - \mu_i(t+1)]^T}{\sum_k P(w_i|x_k, \lambda_t)}$$

$$p_i(t+1) = \frac{\sum_{k} P(w_i | x_k, \lambda_t)}{R}$$

$$R = \text{\#records}$$

# Gaussian Mixture Example: Start



# After first iteration



# After 2nd iteration



# After 3rd iteration



# After 4th iteration



# After 5th iteration



# After 6th iteration



# After 20th iteration



# Some Bio Assay data



# GMM clustering of the assay data



## Resulting Density Estimator



### Closing Thoughts

- GMMs are a "soft" clustering algorithm, that can be learned using EM.
- If you keep iterating EM, you will converge, but only a local optimum.
- You will see EM in other contexts as well, when doing inference with graphical models is hard – like Hidden Markov Models

90/ red 8/ blue 2/ green



Coin 1 (oin 2 (oin 3 (oin 4) 
$$= 0.5$$
 p(H)=0.3 p(H)=0.7 p(H)=1  $= 0.2$   $= 0.4$   $= 0.1$   $= 0.3$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$   $= 0.4$ 

1) "Colour" theo data => E step Move the means



