# Deep Learning - Foundations and Concepts Chapter 6. Deep Neural Networks

nonlineark@github

February 20, 2025

## Outline

Limitations of Fixed Basis Functions

- Multipayer Networks
- 3 Deep Networks

# The curse of dimensionality

In spaces of higher dimensionality, the number of combinations of values must be considered could be huge. This effect is known as combinatorial explosion:

- A polynomial regression of order M for a single input variable needs M+1 parameters. If there are D input variables, the number of parameters needed will be  $\binom{M+D}{M}$ .
- ullet The histogram based classification for 1-dimensional input needs N buckets. If the input is D-dimensional, the number of buckets needed will be  $N^D$ .

For a machine learning model, this usually means that the amount of data needed to generlize accurately grows exponentially.

# High-dimensional spaces

High-dimensional spaces can defeat one's geometrical intuitions:

- In spaces of high dimensionality, most of the volume of a hypersphere is concentrated in a thin shell near the surface.
- In spaces of high dimensionality, the probability mass of the Gaussian is concentrated in a thin shell at a specific radius (a soap bubble).

## Data manifolds

Although data may be in high-dimensional spaces, real data will generally be confined to a region of the data space having lower effective dimensionality. Effectively, neural networks learn a set of basis functions that are adpated to data manifolds.

## Data manifolds

Figure: Images of a handwritten digit that lives on a nonlinear three-dimensional manifold



#### Data manifolds

Figure: Natural images vs. randomly generated images



# Data-dependent basis functions

- Simple basis functions that are chosen independently of the problem being solved can run into significant limitations.
- Using expert knowledge to hand-craft the basis functions was superseded by data-driven approaches in which basis functions are learned from the training data.
- Methods such as radial basis functions and support vector machines have been superseded by deep neural networks, which are much better at exploiting very large data sets efficiently.

#### Parameter matrices

Consider a basic neural network model having two layers of learnable parameters:

$$a_m^{(1)} = \sum_{d=1}^{D} w_{md}^{(1)} x_d + w_{m0}^{(1)}$$

$$z_m^{(1)} = h(a_m^{(1)})$$

$$a_k^{(2)} = \sum_{d=1}^{M} w_{km}^{(2)} z_m^{(1)} + w_{k0}^{(2)}$$

where h is a differentiable, nonlinear activation function.

#### Parameter matrices

Figure: Network diagram for a two-layer neural network



## Parameter matrices

The bias parameters can be absorbed into the set of weight parameters, so the two-layer neural network can be represented as:

$$y_k(x; w) = f(\sum_{m=0}^{M} w_{km}^{(2)} h(\sum_{d=0}^{D} w_{md}^{(1)} x_d))$$
$$y(x; w) = f(W^{(2)} h(W^{(1)} x))$$

where f and h are activation functions evaluated on each vector element separately.

# Universal approximation

- For a wide range of activation functions, two-layer feed-forward networks can approximate any function defined over a continuous subset of  $\mathbb{R}^D$  to arbitrary accuracy.
- However, in a practical application, there can be huge benefits in considering networks having many more than two layers that can learn hierarchical internal representations.

# Universal approximation

Figure: Two-layer neural networks are universal approximators



#### Hidden unit activation functions

- Activation functions for the output units are determined by the kind of distribution being modelled.
- For the hidden units, the only requirement is that they need to be differentiable.
- Obviously, the identity function, sometimes used as the activation function for output units, is not a good option for hidden units.

## Hidden unit activation functions

Figure: A variety of nonlinear activation functions



# Weight-space symmetries

Consider a two-layer network with M hidden units having  $\tanh$  activation functions and full connectivity in both layers:

- Changing the sign of all the weights and the bias feeding into a particular hidden unit can be compensated by changing the sign of all the weights leading out of that hidden unit:
  - ullet  $2^M$  equivalent weight vectors.
- Interchange a particular hidden unit with a different hidden unit:
  - *M*! equivalent weight vectors.

## Deep networks

We can easily extend the two-layer network architecture to any finite number  ${\cal L}$  of layers:

$$z^{(l)} = h^{(l)}(W^{(l)}z^{(l-1)})$$
  $l = 1, \dots, L$ 

where  $h^{(l)}$  denotes the activation function associated with layer l, and  $W^{(l)}$  denotes the corresponding matrix of weight and bias parameters.

# Hierarchical representations

The deep neural network architecture encodes a particular form of inductive bias, namely the outputs are related to the input space through a hierarchical representation:

- Low-level features in early layers, e.g., edges.
- Higher-level features in subsequent layers, e.g., eyes.
- Combined in later layers to detect high-level concept, e.g., cats.

# Distributed representations

Consider a hidden layer with M hidden units:

- ullet Conceptually, each hidden unit can be thought of as representing a feature, so this hidden layer can represent M different features.
- ullet However, the network can learn a different representation, in which combinations of hidden units represent features, so this hidden layer can represent  $2^M$  different features.

# Representation learning

Consider a neural network for a two-class classification problem:

- The final layer can be viewed as a simple linear classifier.
- In the representation of the last hidden layer, the two classes must be well separated by a linear surface.
- This neural network transforms the input data into a representation that's easy for classification purposes.

This ability to discover a nonlinear transformation of the data that makes subsequent tasks easier to solve is called representation learning. The learned representation is sometimes called the embedding space.

# Transfer learning

- The process of learning parameters using one task that are then applied to one or more other tasks is called pre-training:
  - Send the new training data once through the fixed pre-trained network to obtain the training inputs in the new representation.
  - Iterative gradient-based optimization can then be applied just to the smaller network consisting of the final layers.
- Instead of using a pre-trained network as a fixed pre-processor, it is also possible to apply fine-tuning in which the whole network is adapted to the data for the new task.
- In multitask learning, a network jointly learns more than one related task at the same time. For example, spam email filter for different users.
- Meta-learning: Learn the learning algorithm itself. For example, few-shot learning, one-shot learning.

# Contrastive learning

Contrastive learning focuses on extracting meaningful representations by contrasting positive and negative pairs of instances. Given:

- x: The anchor.
- $x^+$ : Positive.
- $\{x_1^-, ..., x_N^-\}$ : Negative.
- $f_w$ : The neural network function that maps points from input space to a representation space, governed by learnable parameters w. Futher, we require  $||f_w(x)|| = 1$ .

The loss function (called InfoNCE loss) is defined by:

$$E(w) = -\log \frac{\exp(f_w(x)^T f_w(x^+))}{\exp(f_w(x)^T f_w(x^+)) + \sum_{n=1}^N \exp(f_w(x)^T f_w(x_n^-))}$$

## General network architectures

The neural network architecture does not have to be organized into a sequence of fully-connected layers. The network diagram only needs to be restricted to a feed-forward architecture. Each unit in such a network computes a function given by:

$$z_k = h(\sum_{j \in \mathcal{A}(k)} w_{kj} z_j + b_k)$$

where A(k) denotes the set of ancestors of node k, and  $b_k$  denotes the associated bias parameter.

## General network architectures

Figure: A neural network having a general feed-forward topology

