Borodin-Kostochka's conjecture on $(P_5,4\text{-wheel})$ -free graphs

王枫愉

2024年3月2日

1 引言

本文中所研究的图都是有限且无重边, 无环的简单图, 未定义的概念和符号参见文献 [1]

设 G 是一个图, $u,v \in V(G)$. 图 G 的团数, 记为 $\omega(G)$, 是 G 中最大完全子图所含的顶点数.

设 k 是正整数. 将集合 $\{1,2,...,k\}$ 简记为 [k]. 图 G 的一个染色是一个映射 $c:V(G)\to C$ 使得当 $u\sim v$ 时总有 $c(u)\neq c(v)$. 图 G 的色数 $\chi(G)$ 是使得 G 有 k-染色的最小整数 k.

设 H 是一个图, 如果图 G 有一个导出子图同构于 H, 则称 G 导出 H, 若 G 不能导出 H, 则称 G 是无 H— 图,

给定一个正整数 k, 用 P_k 表示 k 个顶点的路, 并且对于 $k \geq 3$, C_k 表示 k 个顶点的圈, 对于 $k \geq 4$, 一个 k-轮是一个含有 C_k 外加一个连到 C_k 上所有点的点的图.

给定一个图,一个图 H 的 blowup 是任意的图 G,V(G) 可以被 partitoned into |V(H)| (不一定非空) 个集合 Q_v , 且每个 Q_v 诱导一个 P_3 -free 的图, 如果 $uv \in E(H)$ 那么 Q_u 就 complete to Q_v 并且如果 $uv \in E(H)$ 那么 Q_u 就 anticomplete to Q_v . A blowup is a clique-blowup 如果每个 Q_v 都是团.

引理 1. (Cranston and Rabern[2])

固定 $k \in \mathbb{Z}^+$. 让 G 是一个图并且令 $I_1,...I_t$ 为 G 的两两互不相交的独立集,如果 $G - \bigcup_{j=1}^t I_j$ is (k-t-1)-退化的. 那么就有 $\chi(G) \leq k$.

引理 2. (Cranston and Rabern[2])

每一个 the Borodin-Kostochka's Conjecture 的极小反例都有 $\delta(G) \geq \Delta G$ -1. 特别地: $\delta(G) \geq 8$ and $|d(v) - d(w)| \leq 1$ 对于所有的 $u, v \in V(G)$.

引理 3. (Cranston and Rabern[2])

让 G 是 the Borodin-Kostochka's Conjecture 的极小反例. 如果 G 含有非空的, 互不相连且互不相交的齐次点集 A 和 B 都是团且 $N(A) \subseteq N(B)$, 便有 |A| > |B|.

引理 4. (Kostochka and Catlin[2])

A complete-buoy 满足 the Borodin-Kostochka's Conjecture.

引理 5. (Cranston and Rabern[2]))

If G is vertex-critical and $\chi(G) = \Delta(G)$, 那么 G 不能含有任何非空的, d_1 -可选的, 诱导子图 H. 所以这种 G 不能包含一下的诱导子图:

 $K_3 \vee 3K_2$ 或者

 $K_4 \vee H,H$ 含有两组互不相连且互不相交的点集.

定理 1. (Kostochka[3] and Catlin[4]) .Let \mathcal{G} be a hereditary class of graphs. 如果 the Borodin-Kostochka's Conjecture 对一些 $G \in \mathcal{G}$ 是错误的,那么对于一些 $G \in \mathcal{G}$ 有着 $\Delta(G) = 9$ 也是错误的.

定理 2. 如果一个联通的无五长路和四轮的图含有五圈和一个五轮,那么 G满足 the Borodin-Kostochka's conjecture.

定理 3. 如果一个联通的无五长路和 k 轮的图含有五圈那么 G 满足 the Borodin-Kostochka's conjecture.

定理 4. 如果一个联通的无五长路和四轮的图含有七圈的补,那么 G 满足 the Borodin-Kostochka's conjecture.

定理 5. 所有无 (3K₁,4-wheel) 图满足 the Borodin-Kostochka's conjecture

证明. 让 G be a $(3K_1,4\text{-wheel})$ -free graph, 并且令 $v \in V(G)$ 为其中任意一点. 首先假设 G[N(V)] is chordal, 那么 G i 是完美图蕴含着 $\chi(G) = \omega(G)$, 矛盾. 所以 G[N(V)] 是无弦的. 而且既然 G 不含有四轮,G[N(V)] 含有诱导的 C_k 考虑到对于 $k \geq 6$, C_k 含有诱导的 $3K_1$,G[N(V)] 含有诱导的 C_5 . 所以 G 含有五轮, 这就和第三节证明的内容一致.

2 section2

首先假设结论是错的. 让 G 为极小反例. 进一步我们选择 G 是 vertexcritical. 根据定理一,我们不妨假设 $\Delta(G)=9$

我们首先 G i 是完美图, 那么 $\chi(G) = \omega(G)$ 矛盾. 既然 G 不是完美图, 强完美图定理蕴含着 G 一定含有奇孔或者反奇孔. 每个 7 长的奇孔含有一个 P_5 作为诱导子图. 每 9 长的反奇孔含有一个 4 – wheel 作为诱导子图. G 是无 $(P_5$ 4-wheel). G 一定含有一个 C_5 或者 $(C_7)^c$ 作为诱导子图

在这一节我们分三小节给出主定理的证明

让 G 为一个联通的无五长路和四轮的 atom. 假设 G 含有诱导 C_5 , 令 为 v_1 , v_2 , v_3 , v_4 , v_5 . 我们不妨假设有五个非空且互不相交的点集 A_1,A_2,A_3,A_4,A_5 并且对于每个模 5 的 i 都有: A_i is complete to A_i-1 \cup A_i+1 , 并且 anticomplete to $A_i-2\cup A_i+2$.Let $A:=A_1\cup ...\cup A_5$. 我们选择这些点集中 A 为极大的. 并且令 $v_i\in A_i$. 令 $T=\{x\in V(G)\backslash A|x\ has\ no\ neighbor\ in A\}$,

 $Z = \{x \in V(G) \setminus A | x \text{ has a neighbor in each } A_i\}$

 $Y_i = \{x \in V(G) \setminus A | x \text{ has a neighbor in each } A_j \text{ } j \in [5], j \neq i,$ and anticomplete to $A_i\}$

 $X_i = \{x \in V(G) \setminus A | x \text{ has a neighbor in each } A_j \text{ } j \in \{i, i+2, i-2\}, \text{ and anticomplete to } A_i - 1 \cup A_i + 1\} \Leftrightarrow X := X_1 \cup ... \cup X_5.$

 $T := T_1 \cup ... \cup T_5$.

 $Z := Z_1 \cup ... \cup Z_5$.

 $\exists X := Y_1 \cup ... \cup Y_5$

3 $(P_5,4\text{-wheel})$ -free graph with an induced 5-wheel

让 G 为一个联通的无五长路和四轮的 atom 并且含有一个诱导的五圈 $v_1, v_2, v_3, v_4, v_5, v_1,$ 加上一个点 z^* 和所有的 v_i 相连, 对于所有的 $i \in [5]$. 我们用和第二节一样定义的 A, X, Y, Z and T.

引理 6 (结构定理 [5]). 对于 $i \in [5]$, 有如下性质

(i): 让 K 是一个 A_i -团. 如果 Z 中存在一个点在 K 有邻点,那么它就 complete to K,并且 anticomplete to $A_i \setminus K$.

- (ii): 存在一个 $j \in [5]$ 使得 $A_i, A_i 2$ $A_i + 2$ 都是团.
- (iii):Z 是一个团.
- (iv): 存在 A_i -因, A_i *, 使得 Z is complete to A_i *, and anticomplete to A_i *\ A_i *.
 - $(v):X_i$ is anticomplete to Z.
 - (vi): X_i is anticomplete to $X_i + 2 \cup X_i 2$.
 - (vii):Y 是空集.
- (viii): 对于 $j \in i-2, i+2, X_i$ is complete to A_j *, and anticomplete to A_j * $\land A_j$ *.
 - (ix): 每个T中的点都在X中有邻点.
 - (x):Z is complete to T.
 - (xi):G[T] 是无三长路
- (xii): 如果 $A_j, A_j 2$ 和 $A_j + 2$ 是团并且至少 $X_j + 1$ 和 $X_j 1$ 有一个是 = \emptyset 那么 A_i f 对于 $i \in [5]$ 是一个团.
- (xiii) 让 Q 是 T 团并且让 K 是一个 X_i -团. 那么 Q is either complete or aniticomplete to K.

证明. 根据对称性, 我们假设 A_1,A_3 and A_4 是团., 并且我们用 D_2 去表示一个团 \in $A_2 \setminus A_2^*, D_5$ 去表示一个团 \in $A_5 \setminus A_5$.

对于任意点 $z \in Z$,我们有 $\leq d(z) = |A_2*| + |A_5*| + |A_1| + |A_3| + |A_4| + |Z-1| + |T| \leq 9$,所以 $3 \leq |A_1| + |A_3| + |A_4| \leq 7$.对于任意的 $d_5 \in D_5$, $8 \leq d$ (d_5) = $|A_1| + |A_4| + |D_5|$ -1 ≤ 9 ,then, $3 \leq |D_5| \leq 8$,根据对称性, $3 \leq |D_2| \leq 8$,所以对于任意点 $x \ v_1 \in A_1$, $d(v_1) \geq 3 + 3 + 1 + 1 + 1 = 9$,so $|A_1| = 1$,then $|A_4| = 5$,但是对于任意点 $v \in A_1$, $d(v_1) \geq 4 + 4 + 1 + 1 = 10$,和 $\Delta(G) = 9$ 矛盾.

所以至少有一个 A_2 , A_5 是团,我们假设 A_2 是团. 如果 A_5 有超过两个 D_5 -团,那么对于任意点 $v \in A_1 \cup A_5$ d(v) > 3+3+1+1+1 = 9,所以 A_5 只有两个 D_5 -团,且有且仅有三个点但有 $|A_1| = |A_4| = 1$,和 $|A_1| + |A_4| = 6$ 矛盾.所以我们可以假设 A_5 仅有两个 D_5 -团,如果 $|D_5| = 3$,那么 $|A_1| + |A_4| = 6$,且 $|A_3| = |A_2| = |A_5*| = 1$, if $|A_1| = 2$ and $|A_4| = 4$,那么 $X_5 = 4$ or 5,那么 v_3 d $(v_3) \ge 4+4+1+1 = 10$,矛盾,并且对于 $|A_1| = |A_4| = 3$, then $|X_5| \ge 2$ 蕴含着 $X_3 = X_2 = \emptyset$ 且 X_4 or $X_1 = 1$,t 那么对于任意点 $\in A_3$ d $\in 3+1+2+1 = 7$,和 $\delta(G) = 8$ 矛盾.

,If $|D_5| = \geq 7$,那么 $d(v_1) \geq 10$ 矛盾,,and if $|D_5| = 6$ $|A_1| = |A_4| = 1$,那么对于任意点 $v_5 \in D_5$, $d(v_5) \leq 5+1+1=7$,矛盾.If $|D_5| = 5$,那么 $|A_4| = |A_1| = 2$.那么 G i 诱导一个 $K_4 \vee H$ 所以 $|D_5| = 4$,并且 $|A_4| + |A_1| = 5$ or 6,如果 $|A_4| = 1$ 或者 $|A_1| = 1$,假设 $|A_4| = 1$,那么对于 A_1 中的点, $d \leq 5+3+1+1=10$ 矛盾,所以 $|A_4|$ 和 $|A_1| \geq 2$,那么 G 诱导 $K_4 \vee H$ 矛盾,所以 $D_5 = \emptyset$.所以 A_i 都是团,for $i \in [5]$.

情形 3.1. 首先我们不妨假设 $T=\emptyset$, 让 RX_i d 代表 X_i . 中最大的独立集, 并且让 RA_i 代表 A_i 中最大的独立集.

П

根据对称性我们选择 j=1 并且首先我们假设至少 X_2 和 X_5 中有一个是空集.. 根据结构定理 A_i 是团对于所有的 $i\in[5]$

如果存在一个 $j \in [5]$ 使得如果 $if X_i j \neq \emptyset$ 至少有一个 $X_j + 1$ $X_j - 1$. 我们不妨假设 X_3 $X_4 \neq \emptyset$ 所以,令 $I_1 = \{a_2, a_4, Rx_3\}$, $I_2 = \{a_3, a_5, Rx_4\}$. $G-(I_1 \cup I_2)$ 是 5-退化的根据点退化顺序 $(Z,A_3,A_4,A_5,A_2,A_1,X_1,X_2,X_3,X_4,X_5)$. 根据引理 IG is 8 -可染的,矛盾.

根据对称性我们选择 j=1 并且首先我们假设至少 X_2 和 X_5 中有一个是空集.. 根据结构定理 A_i 是团对于所有的 $i\in[5]$ 如果存在一个 $j\in[5]$ 使得如果 $if X_i j\neq\emptyset$ 至少有一个 X_j+1 X_j-1 . 我们不妨假设 X_3 $X_4\neq\emptyset$ 所以,令 $I_1=\{a_2,\ a_4,\ Rx_3\},\ I_2=\{a_3,\ a_5,\ Rx_4\}$. $G-(I_1\cup I_2)$ 是 5-退化的根据点退化顺序 $(Z,A_3,A_4,A_5,A_2,A_1,X_1,X_2,X_3,X_4,X_5)$. 根据引理 IG is 8-可染的,矛盾.

所以,存在一个 j 使得如果 $X_j \neq \emptyset$ 那么 $X_i + 1$ 和 $X_i - 1$ 都是空集. 如果 $X_i = \emptyset$, for all $i \in [5]$ 那么对于任何点 $a_5 \in A_5$ 8 $\leq d(a_5) = |Z| + |A_1| + |A_5| - 1 + |A_3| \leq 9$, so $|A_1| + |A_5| - 1 + |A_3| \geq + |Z| \geq 9$, 那么对于任意 $z \in Z$ $d(z) \geq 9 - 1 + 1 + 1 = 10$, 和 $\Delta(G) = 9$ 矛盾.

如果仅有一个 $X_i \neq \emptyset$,我们假设 $X_1 \neq \emptyset$. 那么对于任意 $a_5 \in A_5$ $8 \leq d(a_5) = |Z| + |A_1| + |A_5| - 1 + |A_3| \leq 9$, so $|A_1| + |A_5| - 1 + |A_3| \geq + |Z| \geq 9$, 那么对于任意 $z \in Z$ $d(z) \geq 9 - 1 + 1 + 1 = 10$, 和 $\Delta(G) = 9$ 矛盾

如果存在一个 $j \in [5]$ 使得 $X_j \cup X_i + 1 = \emptyset$, 我们不妨假设 $X_1, X_4 \neq \emptyset$, 且 $X_5 = X_3 = \emptyset$ 根据 copycat 引理 $|X_4| > |Z|$ 让 $I_1 = \{z, Rx_4\}$, $I_2 = \{a_2, a_5, Rx_1\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_1, A_4, Z, A_3, A_2, A_5, X_1, X_2, X_4)$. 根据引理 IG is 8-可染的,矛盾.

所以我们不妨假设 X_2 和 X_5 都 $\neq \emptyset$

并且在这种情况下我们不妨假设 A_2 和 A_5 其中之一不是团否则和情形 1.1 和情形 1.2 是一样的情形. 我们不妨假设 A_2 不是团.

让 $I_1 = \{z, Rx_5, Rx_2\}$, $I_2 = \{Ra_2, Ra_5, \}$. $G - (I_1 \cup I_2)$ is 5-退化的, 根据点的退化顺序 $(A_1, Z, A_3, A_2, A_4, A_4X_1, X_2, X_3, X_4, X_5)$. 根据引理 1G is 8-可染的, 矛盾.

情形 3.2. 所以我们可以假设 $T \neq \emptyset$

首先我们假设至少有一个 X_2 and X_5 为空,根据结构定理 A_i 是团.进一步地,我们假设存在一个 $j\in[5]$ 使得 X_j X_j+2 $X_j-2\neq\emptyset$ 我们不妨假设 X_1 X_3 和 $X_4\neq\emptyset$ 让 $I_1=\{a_2,\,Rx_1,\,Rx_3\},\,I_2=\{a_5,\,a_3,\,t\}.$ $G-(I_1\cup I_2)$ is 5-退化的,根据点的退化顺序 ($Z,A_1,A_2,A_3,X_3,A_5,A_4,X_1$

对于每个 $j \in [5]$, 至少有一个 $X_i X_i + 2 X_i - 2$ is \emptyset

 X_{2}, X_{5}, X_{4}, T). 根据引理 1G is 8-可染的, 矛盾.

首先,我们假设至少有 X_2 X_5 is empty 所以,存在一个 $i \in [5]$ 使得 $X_i \neq \emptyset$ 且 $X \setminus X_i = \emptyset$ 或者 $X_i - 1$, $X_i \cup X_i + 1 \neq \emptyset$ 并且 $X \setminus X_i - 1 \cup X_i \cup X_i + 1 = \emptyset$ 首先,我们假设只有一个 $X_i \neq \emptyset$,我们不妨设 $X_1 \neq \emptyset$,根据 copycat 引理, $|X_1| > |Z|$, $|A_4| > |T|$ $|A_3| > |T|$, $|A_1| > |T|$. 故对于任意的 $z \in Z$ $d(z) \leq 9$ 蕴含着 $|T| = |Z| = |A_5| = |A_2| = 1$,并且对任意的点 $x \in T$ $x \in T$

其次,我们可以假设 X_1 和 $X_4 \neq \emptyset$,这样 T is complete to $X_1 \cup X_4$ 让 $I_1 = \{a_5, Rx_1, Rx_4\}$, $I_2 = \{a_2, a_5, t_1\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(Z, A_5, A_5, A_2, X_1, A_4, A_3, X_2, X_5, X_3, X_4, T)$. 根据引理 IG is 8-可染的,矛盾

所以我们可以假设 X_1 $X_2 \neq \emptyset$. 且 $X_5 = \emptyset$ 如果 $|X_1| = |X_2| = |Z| = 1$. 那 么 |T| = 6. 对于任意但 $z \in Z$ d(z) > 6+1+1+1+1+1 = 11, 矛盾,所以至 少有 $f|X_1| = |X_2| = |Z| = 2$. 令 $I_1 = \{a_1, a_3, Rx_2\}$, $I_2 = \{a_2, a_5, Rx_1\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序($Z, A_1, A_2, A_3, A_4, A_5, X_1, X_2, X_3, X_4, X_5, T$). 根据引理 IG is 8-可染的,矛盾.

所以我们可以假设 X_2 和 $X_5 \neq \emptyset$. 进一步我们可以假设至少有一个 A_2 and A_5 不是团, 否则实际上是同样根情形 2.1 和 2.2 一样的情况. 我们不妨假设 A_2 i 不是团.t 让 $I_1 = \{Ra_2, Ra_5, T\}$, $I_2 = \{Rx_2, Rx_5\}$. $G - (I_1 \cup I_2)$

) is 5-退化的, 根据点的退化顺序 $(A_1,Z,A_5,A_2,A_3,A_4,X_1,X_2,X_3,X_4,X_5,T)$. 根据引理 1G is 8 -可染的, 矛盾.

我们完成了这一节的证明.

4 $(P_5 \text{ k-wheel})$ -free graph

这一节的证明包含 4 个情形

引理 7 (结构定理 [5]). (i): 如果 $X_i + 1 \neq \emptyset$, 那么 X_i is anticomplete to $X_i + 2$.

(ii): 让 K 是一个 X_i -团且 K^* 是一个 X_i+2 -团. 那么 K is complete to A_i+2 或者 K^* is complete to A_i .

 $(iii):Y_i$ 是团.

- (iv) 对于 $j \in i-2, i+2$ Y_i 中点每个点都 complete to 某一个 A_i -团.
- (v) 如果 Y_i 的某个点不是 complete to $A_i 1$ (或者 $A_i + 1$), 那么它就 complete to $A_i 2 \cup A_i + 2$.
- (vi) 对于每一个 $i, X_i, Y_i + 2, Y_i 2$ 中至少有一个是空集.
- $(vii)Y_i + 1$ is anticomplete to $X_i \cup X_i + 2$.
- (viii) 如果 $X \neq \emptyset$, 那么 $Y_i + 1$ is anticomplete to $Y_i 2 \cup Y_i + 2$.

情形 4.1 $(X=\emptyset 且 Y \neq \emptyset)$.

断言 **4.1.** 如果 Y_1 和 Y_3 是非空的且 $Y_2 \cup Y_5 = \emptyset$, 那么 $|A_2|$ 和 $|A_5|$ 至少有一个大于等于 2.

证明. 根据题目条件, $|A_1|+|A_2|+|A_5| \ge 9$. 首先,我们证明. $|A_1|,|A_2|,|A_5|$ 中至少有两个 ≥ 2 ,如果不是,那么 $|A_1|=7$,那么只能有 $|A_2|=|A_3|=|Y_1|=|A_5|=|A_4|=1$,对于 A_4 中的点来说,dleq1+1+1=3,矛盾. 其次,我们进一步证明, $|A_3| \ge 2$,若 $|A_3|=1$, $|A_4|=1$,那么若 $|A_2|+|Y_1|\ge 7$,

根据定理 3, $T=\emptyset$, 并且如果 Y_i 不是 anticomplete to Y_i+2 那么,G is $3K_1$ -free, 根据引理 6,G 满足 thee Borodin Kostochka's conjecture, 矛盾 所以我们不妨假设对于每个 $i \in [5]$, Y_i is anticomplete to $Y_i+2 \cup Y_i-2$ 并且如果 Y_i 和 Y_i+2 都非空,那么 Y_i Y_i+2 至少有一个 complete to A_i+1 如果有一对 Y_i Y_i+2 是非空的,我们不妨假设 Y_1 和 Y_3 是非空的. 如果 Y_1 是 complete 到 A_2 , 且 Y_3 不 complete 到 A_2 , 这样便有 $|A_2| \ge 2$ 且 A_1,A_2,A_5 是团, Y_3 complete to A_1 , 如果 A_3 和 A_4 中有一个不是团,不妨设 A_3 不是团,那么让 $I_1=\{a_3,RY_1,RY_3\}$, $I_2=\{a_1,a_3',\}$. $G-(I_1\cup I_2)$ is 5-退化的,根据点的退化顺序(A_2,A_1,A_4,A_5,A_3,Y). 根据引理 1G is 8-可染的,矛盾.如果 A_3 和 A_4 都不是团,那么让 $I_1=\{a_3,RY_1,RY_3\}$, $I_2=\{RA_2,RA_4',\}$. $G-(I_1\cup I_2)$ is 5-退化的,根据点的退化顺序(A_3,A_2,A_45,A_1,A_4,Y). 根据引理 1G is 8-可染的,矛盾.如果 A_3 是团,但 A_3 不是团,那么让 $I_1=\{RA_2,RA_4\}$, $I_2=\{RA_1,RA_3\}$. $G-(I_1\cup I_2)$ is 5-退化的,根据点的退化顺序($Y_1,A_5,Y_3,A_3,A_1,A_4,A_2$). 根据引理 1G is 8-可染的,矛盾

如果 Y_1 是 complete 到 A_2 , 且 Y_3 complete 到 A_2 , 如果有 Y_1 is not complete to A_5 首先,如果 A_1 不是团,那么让 $I_1=\{RA_1,RA_4\}$, $I_2=\{RA_5,RA_3\}$. G- $(I_1\cup I_2)$ is 5-退化的,根据点的退化顺序 (A_5,A_4,Y_3,A_2,A_1) . 根据引理 IG is 8-可染的,矛盾其次,如果 A_2 不是团,那么让 $I_1=\{RA_1,RA_4\}$, $I_2=\{RA_5,RA_2\}$. G- $(I_1\cup I_2)$ is 5-退化的,根据点的退化顺序 $(Y_1,Y_3,A_5,A_1,A_4A_3A_2)$. 根据引理 IG is 8-可染的,矛盾

如果 Y_1 is complete to A_5 Y_3 is complete to A_4 . 根据断言,不妨假设 $|A_2| \geq 2$,那么让 $I_1 = \{RA_1, RA_3,\}$, $I_2 = \{RA_1, RA_4'\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_2, Y_1, A_5, A_4, A_3, A_1, Y_3)$. 根据引理 IG is 8-可染的,矛盾如果 $Y_2 \cup Y_5 \neq \emptyset$ 那么让 $I_1 = \{RA_1, RA_3,\}$, $I_2 = \{RA_2, RA_4\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_2, Y_2, Y_1, A_5, Y_3, A_4, A_1)$. 根据引理 IG is 8-可染的,矛盾

只有一个 $Y \neq \emptyset$, 不妨设 $Y_1 \neq \emptyset$.

若 A_2 不是团,那么让 $I_1 = \{RA_1, RA_5, \}$, $I_2 = \{RA_2, RA_4\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(Y_1, A_3, A_2, A_1, A_5, A_3)$. 根据引理 1G is 8

-可染的, 矛盾若 A_4 不是团, 那么让 $I_1 = \{RA_5, RA_3, \}$, $I_2 = \{RA_2, RA_4\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_4, A_3, Y_1, A_2, A_5, A_1)$. 根据引理 IG is 8-可染的,矛盾

如果只有 Y_i 和 $Y_i+1\neq\emptyset$, 不妨设 Y_1 和 $Y_2\neq\emptyset$. 如果 Y_1 is complete to $A_5\cup A_1,Y_2$ is complete to $A_1\cup A_3$

若 $A_4 \cup A_5$ 是一个团,那么让 $I_1 = \{RA_1, RA_3,\}$, $I_2 = \{RA_2, RA_4,\}$. G- $(I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_2,A_3,Y_1,Y_2,A_5,A_4,A_1)$. 根据引理 IG is 8-可染的,矛盾

若 A_5 不是团,那么让 $I_1 = \{RA_5, RA_3, \}$, $I_2 = \{RA_2, RA_4\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序($A_4, Y_1, Y_2, A_1, A_2, A_3, A_5$). 根据引理 IG is 8 -可染的,矛盾如果 Y_1 is not complete to A_5 ,那么 A_5, A_3 和 A_4 是团,那么让 $I_1 = \{RA_5, RA_2, \}$, $I_2 = \{RA_1, RA_3\}$. $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序($Y_1, Y_2, A_1, A_2, A_4, A_3, A_5$). 根据引理 IG is 8 -可染的,矛盾

情形 4.2 $(X \neq \emptyset \text{ and } Y \neq \emptyset)$.

断言 4.2. 每个 T-团至少在 $X \cup Y$ 中有 3 个邻点.

证明. 如果不是,每个 T-团至少有七个点,则我们任意挑选 complete 到这个 T-团上的 X 中任意一点 x,x 的度数 $d(x) \geq 7+1+1+1=10$. 矛盾.

对每个 $i \in [5]$, X_i Y_i 其中之一为空.

由于 Y 不是空集,我们不妨假设 Y_2 不是空集,所以 X_2 是空集,根据结构定理, $X_4 \cup X_5 = \emptyset$,又由于 X 不是空集 $X_1 \cup X_3 \neq \emptyset$,我们不妨假设 $X_1 \neq \emptyset$,所以 $Y_1 = \emptyset$,根据结构定理, $X_3 \cup X_4 = \emptyset$.

我们不妨假设 Y_2 is not completet to A_1 , 根据结构定理: A_1 , A_4 , A_5 是团,令 $I_1 = \{RA_2, RA_5 RX_1\}$,令 $I_2 = \{RA_1, RA_3, T\}$. 现在有, $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_1, X_1, A_2, A_5, A_4, A_2, Y_2, A_3, X_3, Y_5 T)$. 根据引理 I,G 是 8-可染的,矛盾.

,令 $I_1 = \{RA_2, RY_2 RX_1\}$,令 $I_2 = \{RA_1, RA_3, T\}$. 现在有, $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_1, X_1, A_4, A_3, X_1, Y_2, Y_5, A_2, A_5, X_3)$. 根据引理 $1, G \in \mathcal{B}$ -可染的,矛盾.

对每个 $i \in [5]$ 存在一个 i, 使得 $X_i, Y_i \neq \emptyset$

我们不妨假设 X_1 和 $Y_1 \neq \emptyset$,根据结构定理, $X_3 \cup X_4 \cup Y_3 \cup Y_4 = \emptyset$. 假设 $x \in X_1$ 在 $(A_3 \setminus B_3) \cup (A_4 \text{ setminus } B_4)$ 中有邻点. 根据结构定理,x is complete to Y_1 .

令 $I_1 = \{RA_2, RA_5, RX_1\}$, 令 $I_2 = \{RA_1, RA_3, T\}$. 现在有, $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序($Y_1, X_1, A_3, A_4, A_1, A_2, A_5, X_2, X_5, Y_2, Y_5, T$). 根据引理 $I, G \neq 8$ -可染的,矛盾

假设 $x \in X_1$ 在 $(A_3 \setminus B_3) \cup (A_4 \text{ setminus } B_4)$ 中有没邻点 根据结构定理我们分为两种情况,第一种情况, $A_3 \cup A_4$ 是团,如果 A_2 和 A_5 有一个是团,那么 G 是 5-退化的,如果 A_2 和 A_5 都是团,那么根据断言 $2,A_1$ 不是团令 $I_1 = \{RA_1, RA_4\}$,令 $I_2 = \{RA_2, RA_5, RX1, T\}$. 现在有, $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_1A_5, Y_1, A_3, A_4, A_2, A_5, X_2, X_5, Y_2, Y_5, T)$. 根据引理 1,G 是 8-可染的,矛盾

情形 4.3 $(X = Y = \emptyset)$. 根据 [5], $T = \emptyset$, 既然 A_i 不含 3 长路, 并且 A_i 是齐次点集我们不妨假设 A_i 是团, 通过选择每个 A_i 最大的团, 这样 G 是一个 complete buoy. 根据引理 5, G 满足 the Borodin Kostochka's conjecture, 矛盾

情形 4.4 $(X \neq \emptyset Y = \emptyset)$. 首先, 我们假设如果存在一个指标 $i \in [5], X_i$ is not anticomplete to $X_i + 2$, 根据对称性, 我们不妨设 X_1 is not anticomplete to X_3 . 我们分为三种情况来证明.

如果 X_4, X_5 都不为空,那么 X_1 is anticomplete to X_4 ,根据结构定理, X_1 is complete to A_4 或者 X_4 is complete to A_1 ,且 X_3 is complete to A_5 或者 X_5 is complete to A_3 ,根据对称性,我们不妨设 X_1 is complete to A_4 以及 X_3 is anticomplete to A_5 令 $I_1 = \{RA_2, RA_5 X_1\}, I_2 = \{RA_4, RA_5, RX_3, \}$.现在有, $G - (I_1 \cup I_2)$ is 5-退化的,根据点的退化顺序 $(A_5, A_4, X_4, X_1, X_5, A_1, X_3, A_2, T$).根据引理 I,G 是 S-可染的,矛盾.

如果 X_5 和 X_4 中有一个为空, 我们不妨设 X_1 is anticomplete to X_4 ,

即 X_5 为空集, 我们再分两种情况讨论, 第一种, 若 A_4 是团, 那么令 $I_1=\{Q_1,X_3A_2A_4\},I_2=\{RX_4,RA_5,RQ1',\}$. 现在有, $G-(I_1\cup I_2)$ is 5-退化的, 根据点的退化顺序 $(A_1,X_4,X_3,A_3,A_4,A_2,A_5,T)$. 根据引理 1,G 是 8-可染的, 矛盾. 如果 A_4 不是团, 那么令 $I_1=\{RX_1,A_2A_5,\},I_2=\{RA_4,X_3,\}$. 现在有, $G-(I_1\cup I_2)$ is 5-退化的, 根据点的退化顺序 $(A_1,A_3,X_4,A_4,A_2,A_5,X_1,T)$. 根据引理 1,G 是 8-可染的, 矛盾.

如果 X_1 is anticomplete to X_4 或者 $X_4=\emptyset$. 如果 T 是非空集合,那么对于 T 中的点来说, $|Q_1|+|Q_3|+|T|\geq 9$,那么对于 Q_1 中的点来说, $d\geq |A_1|+|A_3*|+|Q_1|+|Q_3|+|T|\geq 11$,和最大度小于 9 产生矛盾. 所以我们不妨假设 T 是空集,若 $X_1\cup X_3$ 是空集,那么令 $I_1=\{RX_3,\ RA_4\},I_2=\{RX_1,\ RA_5,\ RA_2',\}$. 现在有, $G-(I_1\cup I_2)$ is 5-退化的根据点的退化顺序 $(A_1,A_3,A_2,A_5,A_4,A_4,X_1,X_3)$. 根据引理 1,G 是 8-可染的,矛盾. 如果 X_1 is not a clique,根据 copycat 引理, $|X_1|\geq 3$,集,那么令 $I_1=\{RX_3,\ RA_4\ RA_2\},I_2=\{RX_1,\ RA_5,\ RA_3,\}$. 现在有, $G-(I_1\cup I_2)$ is 5-退化的根据点的退化顺序 $(A_1,A_3,A_2,A_5,A_4,A_4,X_1,X_3)$.. 根据引理 1,G 是 8-可染的,矛盾.

其次, 我们假设对于任意的 $i \in [5]$ X_i is anticomplete to $X_i + 2$.

如果只有一个 $X_i \neq \emptyset$ 我们假设 $X_1 \neq \emptyset$, 同时不妨假设 X_1 is complete toA_3 , 根据 copycat 引理, $|A_5| \geq |X_1|$, 故有 $|A_5| \geq 2$, 若 $|A_1| = 1$, 那么 $|A_5| + |A_3| \geq 8$, 而对于 A_3 中的点来说, $d \geq 8 + 1 + 1 = 10$, 矛盾,故若 $|A_1| \geq 2$, 那么令 $I_1 = \{RA_4, RA_1\}$, $I_2 = \{RX_1, RA_5, RA_2, \}$. 现在有, $G - (I_1 \cup I_2)$ is 5-退化的根据点的退化顺序 $(A_1, A_5, A_3, A_2, A_4, X_1, T)$. 根据引理 $1, G \neq 8$ -可染的.

如果存在指标 j, 使得 X_j,X_j+2,X_j-2 是非空的, 我们不妨假设 X_1,X_3 和 X_4 是非空的, 那么令 $I_1=\{RX_4,\,RA_3,\,RA_5\},I_2=\{RX_1,\,RX_3,\,RA_2,\}.$ 现在有, $G-(I_1\cup I_2)$ is 5-退化的根据点的退化顺序 $(A_1,A_5,A_2,A_3,A_4,X_1,X_3,X_4,T)$. 根据引理 1,G 是 8-可染的.

若存在指标 j, 使得 X_i, X_j+1 是非空的, 我们不妨假设 X_1 和 X_2 是非空的, 首先, 若 X_1 is anticomplete to A_3 或者 X_2 is anticomplete to A_5 , 我们不妨设 X_1 is anticomplete to A_3 , 那么, $|A_5| \geq 3$, 令 $I_1 = \{RX_1, RA_2, RA_5\}$, $I_2 = \{RX_x, RX_3, RA_1, \}$. 现在有, $G - (I_1 \cup I_2)$ is 5-退化的根据点的退化顺序 $(A_1, A_2, A_4, A_5, A_3, X_1, X_2, T)$. 根据引理 I, G 是 8-可染的. 故有 X_1 is complete to $X_4 \cup X_3$ 且 X_2 is complete to $X_4 \cup X_5$ 令 $I_1 = \{RX_1, RA_2, RA_5\}$, $I_2 = \{RX_2, RX_3, RA_1, \}$. 现在有, $G - (I_1 \cup I_2)$ is 5-退化的根据点的退化顺序

 $(A_1,A_2,A_4,A_5,A_3,X_1,X_2,T)$. 根据引理 1,G 是 8-可染的.

若存在指标 j,使得只有 X_j X_j + 2 是非空的,我们不妨假设只有 X_1 和 X_3 是非空的, $|A_1|$ + $|A_2|$ + $|A_3|$ ≥ 9,若 $|A_2|$ ≥ 3,那么若 $|A_1|$ ≥ 2 且 $|A_3|$ ≥ 2,那么 G 诱导一个 K_4 \cup H 矛盾,故 $|A_3|$ ≤ 2,令 I_1 = $\{RX_1,\ RA_2,\ RA_5\}$, I_2 = $\{RX_3,\ RA_4\}$. 现在有,G - $(I_1$ \cup $I_2)$ is 5-退化的根据点的退化顺序 $(A_1,A_2,A_3,A_5,X_1,X_3,T)$. 根据引理 1,G 是 8 -可染的. 若 $|A_2|$ ≤ 2,那么不妨设 $|A_1|$ ≥ 3,且若 $|A_3|$ = 1,那么 $|A_1|$ ≥ 6,且有 $|A_4|$, $|X_1|$ ≤ 2, $|A_5|$ ≤ 3,那么对于 A_3 中的点来说,d ≤ 2+1+3=6 矛盾. 故 $|A_3|$ ≥ 2,令 I_1 = $\{RX_1,\ RA_2,\ RA_5\}$, I_2 = $\{RX_3,\ RA_4\}$. 现在有,G - $(I_1$ \cup $I_2)$ is 5-退化的根据点的退化顺序 $(A_1,A_2,A_3,A_5,X_1,X_3,T)$. 根据引理 1,G 是 8 -可染的.

我们完成了这部分的证明

5 (P_5 ,4wheel)-free graph with an induced (C_7)^c

引理 8 (结构定理 [5]). 我们不妨假设 G is a blowup of H^* . 我们不妨假设 /G is a clique expansion of H^* . 根据条件,G 含有一个诱导的 $(C_7)^c$, a_1 , a_2 , a_3 , a_4 , a_5 . a_6 , a_7 , a_8 , a_9 我们不妨假设有七个非空且两两不相交的顶点 集: $V_1, V_2, V_3, V_4, V_5, V_6, V_7$,使得对于每个模 7 的 i, V_i is anticomplete to $V_i - 1 \cup V_i + 1$, and complete to $V_j \neq \{i-1,i+1\}$, V_8 is complete to $V_1 \cup V_2 \cup V_5$, and anticomple to $V_3 \cup V_4 \cup V_6 \cup V_7$ V_9 is complete to $V_2 \cup V_5 \cup V_6$,and anticomple to $V_1 \cup V_3 \cup V_4 \cup V_7$ 并且记 $V := V_1 \cup ... \cup V_9$. 我们选择这样的 A 为极大的并且记 $a_i \in V_i$.

证明. 首先,我们不妨假设 $|V_2|=|V_5|=|V_6|=1$,故有 $|V_9|=6$ or 7,同时,我们有 $\mathrm{d}(V_2)=|V_4|+|V_5|+|V_6|+|V_7|+|V_8|+|V_9|\geq 1+1+1+1+1+6=11$. 矛盾. 所以至少 $|V_2|,|V_5|,|V_7|$,中有一个 ≥ 2 . 令 $I_1=\{v_4,v_5\}$,令 $I_2=\{v_6,v_7,v_8\}$. 现在有, $G-(I_1\cup I_2)$ 是 5-退化的,有点的退化顺序 $(V_2,V_5,V_1,V_8,V_3,V_4,V_6,V_7,V_9)$. 根据引理 1,G 是 8-可染的,矛盾.

参考文献

- [1] Bondy J A, Murty U S R Graph Theory. Berlin: Springer, 2008
- [2] Cranston D W, Lafayette H, Rabern L. Coloring (P 5, gem) (P_5,gem) -free graphs with $\delta-1$ $\delta-1$ colors[J]. Journal of Graph Theory, 2022, 101(4): 633-642.
- [3] A. V. Kostochka, Degree, density, and chromatic number, Metody Diskret. Anal. 35 (1980), 45–70 (in Russian).
- [4] P. A. Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions, Ann Arbor, MI, ProQuest LLC, Ph.D. thesis, The Ohio State University, 1976.
- [5] Arnab Char, T. Karthick Coloring of (P5, 4-wheel)-free graphs.