ĐÁP ÁN KỲ THI HỌC KỲ I 2020-2021 MÔN ĐẠI SỐ TUYẾN TÍNH VÀ CTĐS Ngày thi: 13/01/2021

Câu	Ý	Đáp án	Điểm
1		$A\mathbf{x} = \mathbf{b} \Leftrightarrow LU\mathbf{x} = \mathbf{b} \Leftrightarrow L(U\mathbf{x}) = \mathbf{b}. \text{ Dặt } \mathbf{y} = U\mathbf{x}$ Bước 1. Giải $L\mathbf{y} = \mathbf{b}$ $\begin{bmatrix} 1 & 0 & 0 & -1 \\ 2 & 1 & 0 & -1 \\ 0 & -2 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -2 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 4 \end{bmatrix}. \text{ Vậy } \mathbf{y} = \begin{bmatrix} -1 & 1 & 4 \end{bmatrix}.^T$	0.5
		Burớc 2. Giải $U\mathbf{x} = \mathbf{y}$ $\begin{bmatrix} U & \mathbf{y} \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 2 & 1 & -1 \\ 0 & -1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 2 & -4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 2 & 1 & -1 \\ 0 & -1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & -2 & 2 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & -2 & 1 & 0 & 5 & -5 \\ 0 & -1 & 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & 1 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & -3 & -3 \\ 0 & 1 & 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 & -2 & 2 \end{bmatrix}.$ Nghiệm của thương trình $A\mathbf{x} = \mathbf{b}$ là: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -x_3 + 3x_5 - 3 \\ 4x_5 + 1 \\ x_3 \\ 2x_5 + 2 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 3 \\ 4 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}; x_3, x_5 \in \mathbb{R}.$	0.5
	b	Theo phân tích đã cho thì A tương đương hàng với U , $A \sim U$. Do U có ba vị trí cơ sở nằm ở cột 1, cột 2 và cột 4, nên ta có một số kết luận như sau: • $\dim \operatorname{Col} A = \dim \operatorname{Row} A = 3$. • Các véctơ thuộc hàng 1, hàng 2 và hàng 3 (chứa các vị trí cơ sở) của U lập thành một cơ sở của $\operatorname{Row} A$, nghĩa là một cơ sở của $\operatorname{Row} A$ là $\left\{ \left(1,-2,1,2,1\right), \left(0,-1,0,1,2\right), \left(0,0,2,-4\right) \right\}$	0.5
		• Các cột cơ sở của A lập thành một cơ sở của Col A . Ta có $A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 & 2 & 1 \\ 0 & -1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 & -4 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 2 & 1 \\ 2 & -5 & 2 & 5 & 4 \\ 0 & 2 & 0 & 0 & -8 \end{bmatrix}.$ Do đó, một cơ sở của Col A là	0.5

		$ \left\{ \begin{bmatrix} 1\\2\\-5\\0 \end{bmatrix}, \begin{bmatrix} -2\\5\\2 \end{bmatrix}, \begin{bmatrix} 2\\5\\0 \end{bmatrix} \right\}. $	
2	a	Với $m=-1$, $A=\begin{bmatrix} -1 & 1 \\ 3 & 1 \end{bmatrix}$, $\det(A)=-4$. Ta cũng có $\det B=2$. Từ $AX=-2B$, lấy định thức cả hai vế: $\det(AX)=\det(-2B)$ $\Rightarrow (\det A)(\det X)=(-2)^2(\det B)$	0.5
		$\Rightarrow \det X = \frac{4 \det B}{\det A} = \frac{4 \times 2}{-4} = -2.$ Turong tự, từ $YB^T = 2A + B$, lấy định thức cả hai vế ta có $\det Y = \frac{\det \left(2A + B\right)}{\det B^T} = \frac{\det \left(2A + B\right)}{\det B}.$ Do $\det \left(2A + B\right) = \det \begin{bmatrix} 3 & 0 \\ 2 & 4 \end{bmatrix} = 12$, nên $\det Y = \frac{12}{2} = 6$.	0.5
	ь	Trong trường hợp tổng quát, ta có $\det A = m^2 + 2m - 3$. Ma trận A khả nghịch khi và chỉ khi $\det A \neq 0$, nghĩa là khi $m \neq 1$ và $m \neq -3$. Khi A khả nghịch (tức là khi $m \neq 1$ và $m \neq -3$), nghịch đảo của A là:	0.5
		$A^{-1} = \frac{1}{m^2 + 2m - 3} \begin{bmatrix} m + 2 & -1 \\ -3 & m \end{bmatrix}.$	0.5
		o ma trận đổi tọa độ từ cơ sở B sang cơ sở S là $T = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 5 \end{bmatrix}$, nên ma trận đổi tọa độ S sang S là S sang	1.0
3	Do	$\mathbf{v} = 2\mathbf{s}_2 + \mathbf{s}_3$ nên véctơ tọa độ của \mathbf{v} theo cơ sở S là $\begin{bmatrix} \mathbf{v} \end{bmatrix}_S = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}^T$. Do đó	
		$ \int_{B} = P_{B \leftarrow S} \begin{bmatrix} \mathbf{v} \end{bmatrix}_{S} = T^{-1} \begin{bmatrix} \mathbf{v} \end{bmatrix}_{S} = \begin{bmatrix} -1 & 3 & -1 \\ -3/2 & 2 & -1/2 \\ 1/2 & -1 & 1/2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 7/2 \\ -3/2 \end{bmatrix}. $	1.0
	Vé	ecto tọa độ của \mathbf{v} theo cơ sở B là $\begin{bmatrix} \mathbf{v} \end{bmatrix}_B = \begin{bmatrix} 5 & \frac{7}{2} & \frac{-3}{2} \end{bmatrix}^T$.	
4	a	Dễ thấy $S = \{\mathbf{u}, \mathbf{v}\}$ là một hệ sinh độc lập tuyến tính của W , và do đó là một cơ sở của W . Áp dụng phương pháp trực giao hóa Gram-Schmidt cho hệ này, ta đặt	1.0

		$\mathbf{a}_{_{1}}=\mathbf{u};$	
		$\mathbf{a}_2 = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{a}_1}{\mathbf{a}_1 \cdot \mathbf{a}_1} \mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \\ 2 \end{bmatrix} - \frac{5}{10} \begin{bmatrix} 2 \\ -1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -2 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ -1/2 \\ 1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1/2 \\ 1/2 \\ 1 \end{bmatrix}.$ Để đơn giản cho việc tính toán ở bước sau, ta chọn lại $\mathbf{a}_2 = \begin{bmatrix} 0 & -1 & -5 & 2 \end{bmatrix}^T$,	
		khi đó $\left\{ oldsymbol{a}_{1},oldsymbol{a}_{2} ight\}$ là một cơ sở trực giao của W .	
		Hình chiếu trực giao của p lên W là	
	b	$\hat{\mathbf{p}} = \operatorname{proj}_{W} \mathbf{p} = \frac{\mathbf{p} \cdot \mathbf{a}_{1}}{\mathbf{a}_{1} \cdot \mathbf{a}_{1}} \mathbf{a}_{1} + \frac{\mathbf{p} \cdot \mathbf{a}_{2}}{\mathbf{a}_{2} \cdot \mathbf{a}_{2}} \mathbf{a}_{2} = \frac{9}{10} \begin{bmatrix} 2 \\ -1 \\ 1 \\ 2 \end{bmatrix} + \frac{1}{30} \begin{bmatrix} 0 \\ -1 \\ -5 \\ 2 \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 27 \\ -14 \\ 11 \\ 28 \end{bmatrix}.$	0.5
		Đặt $\mathbf{z}=\mathbf{p}-\hat{\mathbf{p}}=rac{1}{15}egin{bmatrix} -12\\-16\\4\\2 \end{bmatrix}$, khi đó $\mathbf{p}=\hat{\mathbf{p}}+\mathbf{z}$ là phân tích cần tìm.	0.5
		Ta có	
5	а	$A\mathbf{v}_{1} = \begin{bmatrix} -2 & 2 & -1 \\ -2 & 3 & -2 \\ -4 & 8 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ $A\mathbf{v}_{2} = \begin{bmatrix} -2 & 2 & -1 \\ -2 & 3 & -2 \\ -4 & 8 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ $A\mathbf{v}_{3} = \begin{bmatrix} -2 & 2 & -1 \\ -2 & 3 & -2 \\ -4 & 8 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \\ -8 \end{bmatrix} = \begin{pmatrix} -2 \\ 2 \\ 4 \end{bmatrix}$	0.5
		Do đó các vécto \mathbf{v}_1 và \mathbf{v}_2 là các vécto riêng tương ứng với giá trị riêng -1, còn \mathbf{v}_3 là vécto riêng tương ứng với giá trị riêng -2.	0.5
	b	Dễ thấy họ vécto $\left\{ \mathbf{v}_1, \mathbf{v}_2 \right\}$ độc lập tuyến tính và đều là các vécto riêng tương ứng với giá trị riêng -1. Mặt khác vécto riêng \mathbf{v}_3 tương ứng với giá trị riêng $-2 \neq -1$, nên họ $\left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\}$ gồm ba vécto riêng độc lập tuyến tính của A , do đó A chéo hóa được.	0.5

	Đặt $P=egin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}, D=\mathrm{diag}\Big(-1,-1,-2\Big)$ thì $A=PDP^{-1}$ như yêu cầu của bài toán.	0.5
	Trước hết, do khóa K là một ma trận 2×2 nên ta tách văn bản cần mã hóa thành	
	những xâu độ dài 2: INNOVATION= IN+NO+VA+TI+ON	
	Ta có	
	$\mathbf{IN} \equiv \begin{bmatrix} 8 \\ 13 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 8 \\ 13 \end{bmatrix} = \begin{bmatrix} 11 \\ 14 \end{bmatrix} \equiv \mathbf{LO}$	
6	$\mathbf{NO} \equiv \begin{bmatrix} 13 \\ 14 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 13 \\ 14 \end{bmatrix} = \begin{bmatrix} 1 \\ 15 \end{bmatrix} \equiv \mathbf{BP}$ $\mathbf{VA} \equiv \begin{bmatrix} 21 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 21 \\ 0 \end{bmatrix} = \begin{bmatrix} 11 \\ 1 \end{bmatrix} \equiv \mathbf{LB}$	1.0
	ا الله الله الله الله الله الله الله ال	
	$\mathbf{TI} \equiv \begin{bmatrix} 19 \\ 8 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 19 \\ 8 \end{bmatrix} = \begin{bmatrix} 13 \\ 7 \end{bmatrix} \equiv \mathbf{NH}$	
	$\mathbf{ON} \equiv \begin{bmatrix} 14 \\ 13 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 14 \\ 13 \end{bmatrix} = \begin{bmatrix} 3 \\ 18 \end{bmatrix} \equiv \mathbf{DS}$	
	Vậy chữ INNOVATION được mã hóa thành chữ LOBPLBNHDS.	
Tổng	; điểm	10.0