Automi e Linguaggi Formali - A.A. 2016/17

Appello 19.9.17 Parte II

Esercizio 1. (a) Descrivete in italiano il funzionamento della TM M definita dalla seguente tabella di transizione:

	0	1	В
q_0	(q_1, B, R)	(q_0, B, R)	
q_1	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_2, B, L)
q_2		(q_3, B, L)	(q_5, B, R)
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_4, B, R)
q_4	(q_1, B, R)		
*95	- Pa		and the second

- (b) Scrivete tre esempi di stringhe accettate dalla TM M, e tre esempi di stringhe non accettate da M.
- $\sqrt{\text{Esercizio 2.}}$ Definite una macchina di Turing che accetta il linguaggio costituito dalle stringhe con uguale numero di 0 e 1, riportando δ sia come tabella che come grafo di transizione.
- \forall **Esercizio 3.** Indicate quali fra le seguenti istanze di PCP hanno soluzione. Ognuna è presentata sotto forma delle due liste A e B; le i-esime stringhe delle due liste sono corrispondenti per i=1, 2, etc.
 - (a) A = (10, 110, 01); B = (100, 01, 11)
 - (b) A = (11, 1010, 01); B = (101, 10, 10)
 - (c) A = (xy, x, yz, z); B = (yz, xy, zx, x)
- $\sqrt{\text{Esercizio 4.}}$ (a) Definite i due linguaggi L_e e L_{ne} . (b) Date la definizione del linguaggio universale L_u e della macchina di Turing Universale U. (c) A quale classe di linguaggi appartiene L_u (indicate la classe e datene la definizione)?
- V Esercizio 5. Dite quali tra le seguenti affermazioni è corretta:
 - (a) Un problema è NP-completo se è definito da un linguaggio L tale che: (i) L è in NP, e (ii) esiste un linguaggio L' in NP riducibile polinomialmente a L.
 - (b) Se un linguaggio L e il suo complemento sono RE, allora anche L è ricorsivo.
 - (c) L'espressione $(x \land y \land z) \lor (\neg x \land \neg y \land z)$ è in CNF.
 - (d) La trattazione dell'intrattabilità si basa sull'ipotesi (non dimostrata) che P≠NP.
 - (e) Il linguaggio Le non è RE.

Automi e Linguaggi Formali – A.A. 2016/17

Appello 19.9.17 Parte II

Esercizio 1. (a) Descrivete in italiano il funzionamento della TM *M* definita dalla seguente tabella di transizione:

	0	1	В
q_0	(q_1, B, R)	(q_0, B, R)	
q_I	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_2, B, L)
q_2		(q_3, B, L)	(q_5, B, R)
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_4, B, R)
q_4	(q_1, B, R)		
*95			

- (b) Scrivete tre esempi di stringhe accettate dalla TM M, e tre esempi di stringhe non accettate da M.
- $\sqrt{$ Esercizio 2. Definite una macchina di Turing che accetta il linguaggio costituito dalle stringhe con uguale numero di 0 e 1, riportando δ sia come tabella che come grafo di transizione.
- √ Esercizio 3. Indicate quali fra le seguenti istanze di PCP hanno soluzione. Ognuna è
 presentata sotto forma delle due liste A e B; le i-esime stringhe delle due liste sono
 corrispondenti per i=1, 2, etc.
 - (a) A = (10, 110, 01); B = (100, 01, 11)
 - (b) A = (11, 1010, 01); B = (101, 10, 10)
 - (c) A = (xy, x, yz, z); B = (yz, xy, zx, x)
- ∨ Esercizio 4. (a) Definite i due linguaggi L_e e L_{ne} . (b) Date la definizione del linguaggio universale L_u e della macchina di Turing Universale U. (c) A quale classe di linguaggi appartiene L_u (indicate la classe e datene la definizione)?
- Esercizio 5. Dite quali tra le seguenti affermazioni è corretta:
 - (a) Un problema è NP-completo se è definito da un linguaggio L tale che: (i) L è in NP, e (ii) esiste un linguaggio L' in NP riducibile polinomialmente a L.
 - (b) Se un linguaggio L e il suo complemento sono RE, allora anche L è ricorsivo.
 - (c) L'espressione $(x \land y \land z) \lor (\neg x \land \neg y \land z)$ è in CNF.
 - (d) La trattazione dell'intrattabilità si basa sull'ipotesi (non dimostrata) che P≠NP.
 - (e) Il linguaggio Le non è RE.