

UNIDAD III: ANALISIS SINTÁCTICO ASCENDENTE PRECEDENCIA SIMPLE

ING. SANDRA RODRIGUEZ AVILA

CONTENIDO

- PRECEDENCIA SIMPLE
- > RELACIONES DE PRECEDENCIA SIMPLE
 - 1RA FORMA: Árboles Sintácticos
 - 2DA FORMA: Analizando las partes derechas de las reglas y haciendo derivaciones
 - 3RA FORMA: Conjuntos Cabecera y Cola
 - ❖ 4TA FORMA: Relaciones Binarias

PRECEDENCIA SIMPLE

- Relaciones que existen entre los símbolos de entrada o terminales y No terminales de la gramática.
- La base fundamental es la localización de una subcadena de la tira a analizar y para la cual existe una reducción al menos: PIVOTF
- PIVOTE: subárbol sintáctico situado mas hacia la izquierda. Al comienzo se parte de la sentencia y los sucesivos pivotes ya serán formas sentenciales

PRECEDENCIA SIMPLE

- Si la tira a analizar es: a b c d e f
- El pivote es "bcd" porque existe una regla A→bcd, entonces decimos que:
 - → d → e, "d posee precedencia sobre e"
 - a ←b, "a posee menor precedencia que b"
- Para los símbolos que forman el pivote:
 - b‡c "b tiene igual precedencia que c"
 - > c‡d
- Ejemplo, sea la gramática:

$$S \rightarrow aAa$$
 $A \rightarrow bB$

$$A \rightarrow bB$$

$$A \rightarrow c$$

 $B \rightarrow Acd$, las relaciones de precedencia simple son:

1RA FORMA DE CALCULAR RELACIONES DE PRECEDENCIA SIMPLE

Arboles sintácticos

a‡A A‡ a

$$a \leftarrow b b‡B B \rightarrow a$$

 $b \leftarrow A d \rightarrow a$
 $b \leftarrow b B \rightarrow c$
 $b \leftarrow A d \rightarrow c$
 $b \leftarrow c c \rightarrow c$

Ing. Sandra C. Rodríguez Avila - SISTEMAS

- Relaciones de precedencia calculadas: matriz, donde en las filas y columnas van tanto símbolos terminales como no terminales.
- Si son disjuntas las tres relaciones de precedencia de una gramática se dice es de precedencia simple

Matriz:

	S	A	В	а	b	С	d
S							
Α				‡		‡	
В				\rightarrow		\rightarrow	
а		‡					
b		←	‡		←	←	
С				\rightarrow		\rightarrow	‡
d				\rightarrow		\rightarrow	

 El pivote a ser reducido en cualquier instante debe ser la tira comprendida entre las dos relaciones ← y
 → mas próximas

TIRA A AN	IALIZAR	PIVOTE	REGLA
	c c d c d a $\rightarrow \pm \rightarrow \pm \rightarrow$	C	$A \rightarrow c$
	c d c d a ‡ ‡ →‡ →	Acd	$B \rightarrow Acd$
a b b B ←← ‡		bB	A→bB
y a b A ← ← ‡		Acd	B→Acd
a b B ← ‡ -		bB	A→bB
a A a ‡ ‡		aAa	S→aAa
S	Ing. Sa	ndra C. Rodríguez Avila - SISTEMAS	7

2DA FORMA DE CALCULAR RELACIONES DE PRECEDENCIA SIMPLE:

Analizando las partes derechas de las reglas y haciendo derivaciones

$$S \rightarrow aAa$$

$$A \rightarrow bB$$

$$A \Rightarrow bB \Rightarrow bAcd$$

$$A \Rightarrow c$$

$$a \leftarrow b$$
 $B \rightarrow a$

$$d \rightarrow a$$

$$c \rightarrow a$$

$$A \rightarrow bB$$

$$B \Rightarrow Acd \Rightarrow bBcd$$

 $A \rightarrow c$

$$B \Rightarrow Acd \Rightarrow ccd$$

$$b \leftarrow A$$

$$b \leftarrow b$$

$$b \leftarrow c$$

$$3 \rightarrow Acd$$

$$A \Rightarrow bB \Rightarrow bAcd$$

$$A \Rightarrow c$$

$$B \rightarrow c$$

$$d \rightarrow c$$

$$c \rightarrow c$$

3RA FORMA DE CALCULAR RELACIONES DE PRECEDENCIA SIMPLE:

Conjuntos Cabecera y Cola

```
S ⇒aAa
Cabecera(S)= {a}
Cabecera(A)= {b, c}
                                                       A \Rightarrow bB \qquad A \Rightarrow c
                                                       B \Rightarrow Acd \Rightarrow bBcd
Cabecera(B)= {A, b,c }
                                                       B \Rightarrow Acd \Rightarrow ccd
Cola(S) = {a}
                                                       S \Rightarrow aAa
Cola(A)= {B, c, d}
                                                       A \Rightarrow bB \Rightarrow bAcd
                                                                                                  A \Rightarrow c
Cola(B) = \{d\}
                                                       B \Rightarrow Acd
                       a← Cabecera (A)
                       Cola(A) \rightarrow a
```

4TA FORMA DE CALCULAR RELACIONES DE PRECEDENCIA SIMPLE:

RELACIONES BINARIAS

PRIMERO

PRIMERO⁺

CABECERA(A) = $\{X/(A,X) \in PRIMERO^+\}$

ULTIMO

ULTIMO+

 $COLA(A) = \{X/(A,X) \in ULTIMO^+\}$

4TA FORMA DE CALCULAR RELACIONES DE PRECEDENCIA SIMPLE:

RELACIONES BINARIAS

- Relación ±
 Observar parte derechas de las reglas
- Relación ←(←) = (±)(PRIMERO+)
- Relacion →
 (→) =(ULTIMO+)'(±)(I+ PRIMERO+)

BIBLIOGRAFIA

• SANCHIS F. J., GALAN C. *Compiladores. Teoría y Construcción.* 1986. Madrid. Editorial Paraninfo.

RECURSOS GRAFICOS

- Pixabay
- Pexels
- Icon-Icons

Ing. Sandra C. Rodríguez Avila - SISTEMAS