# Introduction to Bandits: Algorithms and Theory

#### Jean-Yves Audibert<sup>1,2</sup> & Rémi Munos<sup>3</sup>

- 1. Université Paris-Est, LIGM, Imagine,
- 2. CNRS/École Normale Supérieure/INRIA, LIENS, Sierra
- 3. INRIA Sequential Learning team, France

ICML 2011, Bellevue (WA), USA

#### Outline

- Bandit problems and applications
- Bandits with small set of actions
  - Stochastic setting
  - Adversarial setting
- Bandits with large set of actions
  - unstructured set
  - structured set
    - linear bandits
    - Lipschitz bandits
    - tree bandits
  - Extensions

#### Bandit game

#### Parameters available to the forecaster:

the number of arms (or actions) K and the number of rounds n **Unknown to the forecaster:** the way the gain vectors

$$g_t = (g_{1,t}, \dots, g_{K,t}) \in [0,1]^K$$
 are generated

For each round t = 1, 2, ..., n

- 1. the forecaster chooses an arm  $l_t \in \{1, \dots, K\}$
- 2. the forecaster receives the gain  $g_{l_t,t}$
- 3. only  $g_{l_t,t}$  is revealed to the forecaster

**Cumulative regret goal:** maximize the cumulative gains obtained. More precisely, minimize

$$R_n = \left(\max_{i=1,\dots,K} \mathbb{E} \sum_{t=1}^n g_{i,t}\right) - \mathbb{E} \sum_{t=1}^n g_{I_t,t}$$

where  $\mathbb{E}$  comes from both a possible stochastic generation of the gain vector and a possible randomization in the choice of  $I_t$ 

#### Stochastic and adversial environments

- ▶ Stochastic environment: the gain vector  $g_t$  is sampled from an unknown product distribution  $\nu_1 \otimes \ldots \otimes \nu_K$  on  $[0,1]^K$ , that is  $g_{i,t} \sim \nu_i$ .
- ▶ Adversarial environment: the gain vector  $g_t$  is chosen by an adversary (which, at time t, knows all the past, but not  $l_t$ )

#### Numerous variants

- ▶ different environments: adversarial, "stochastic", non-stationary
- different targets: cumulative regret, simple regret, tracking the best expert
- Continuous or discrete set of actions
- extension with additional rules: varying set of arms, pay-perobservation, . . .

#### Various applications

- ► Clinical trials (Thompson, 1933)
- Ads placement on webpages
- ▶ Nash equilibria (traffic or communication networks, agent simulation, tic-tac-toe phantom, . . . )
- ► Game-playing computers (Go, urban rivals, ...)
- Packet routing, itinerary selection

#### Outline

- Bandit problems and applications
- ▶ Bandits with small set of actions
  - Stochastic setting
  - Adversarial setting
- Bandits with large set of actions
  - unstructured set
  - structured set
    - linear bandits
    - Lipschitz bandits
    - tree bandits
  - Extensions

#### Stochastic bandit game (Robbins, 1952)

Parameters available to the forecaster: K and n

Parameters unknown to the forecaster: the reward distributions

 $\nu_1,\ldots,\nu_K$  of the arms (with respective means  $\mu_1,\ldots,\mu_K$ )

For each round  $t = 1, 2, \dots, n$ 

- 1. the forecaster chooses an arm  $l_t \in \{1, ..., K\}$
- 2. the environment draws the gain vector  $g_t = (g_{1,t}, \dots, g_{K,t})$  according to  $\nu_1 \otimes \dots \otimes \nu_K$
- 3. the forecaster receives the gain  $g_{l_t,t}$

Notation: 
$$i^* = \arg\max_{i=1,...,K} \mu_i$$
  $\mu^* = \max_{i=1,...,K} \mu_i$   $\Delta_i = \mu^* - \mu_i$ ,  $T_i(n) = \sum_{t=1}^n \mathbb{1}_{I_t=i}$  Cumulative regret:  $\hat{R}_n = \sum_{t=1}^n g_{i^*,t} - \sum_{t=1}^n g_{I_t,t}$ 

Goal: minimize the expected cumulative regret

$$R_n = \mathbb{E}\hat{R}_n = n\mu^* - \mathbb{E}\sum_{t=1}^n g_{I_t,t} = n\mu^* - \mathbb{E}\sum_{i=1}^K T_i(n)\mu_i = \sum_{i=1}^K \Delta_i \mathbb{E}T_i(n)$$

#### A simple policy: $\varepsilon$ -greedy

For simplicity, all rewards are in [0,1]

- Playing the arm with highest empirical mean does not work
- $\triangleright$   $\varepsilon$ -greedy: at time t,
  - with probability  $1-\varepsilon_t$ , play the arm with highest empirical mean
  - with probability  $\varepsilon_t$ , play a random arm
- ► Theoretical guarantee: (Auer, Cesa-Bianchi, Fischer, 2002)
  - ▶ Let  $\Delta = \min_{i:\Delta_i>0} \Delta_i$  and consider  $\varepsilon_t = \min(\frac{6K}{\Delta^2t}, 1)$
  - When  $t \ge \frac{6K}{\Delta^2}$ , the probability of choosing a suboptimal arm *i* is bounded by  $\frac{C}{\Delta^2 t}$  for some constant C > 0
  - As a consequence,  $\mathbb{E}[T_i(n)] \leq \frac{C}{\Delta^2} \log n$  and  $R_n \leq \sum_{i:\Delta_i>0} \frac{C\Delta_i}{\Delta^2} \log n$   $\longrightarrow$  logarithmic regret
- drawbacks:
  - ▶ naive exploration for K > 2: no distinction of sub-optimal arms
  - ▶ requires knowledge of △
  - outperformed by UCB policy in practice

## Optimism in face of uncertainty

- ▶ At time *t*, from past observations and some probabilistic argument, you have an upper confidence bound (UCB) on the expected rewards.
- Simple implementation:

play the arm having the largest UCB!

## Why does it make sense?

Could we stay a long time drawing a wrong arm?

#### No, since:

- ▶ The more we draw a wrong arm i the closer the UCB gets to the expected reward  $\mu_i$ ,
- $\mu_i < \mu^* < \text{UCB on } \mu^*$

# Illustration of UCB policy





# Confidence intervals vs sampling times



#### Hoeffding-based UCB (Auer, Cesa-Bianchi, Fischer, 2002)

▶ Hoeffding's inequality: Let  $X, X_1, ..., X_m$  be i.i.d. r.v. taking their values in [0,1]. For any  $\varepsilon > 0$ , with probability at least  $1 - \varepsilon$ , we have

$$\mathbb{E}X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{\log(\varepsilon^{-1})}{2m}}$$

▶ UCB1 policy: at time t, play

$$I_t \in \operatorname*{arg\,max}_{i \in \{1, \dots, K\}} \bigg\{ \hat{\mu}_{i, t-1} + \sqrt{\frac{2 \log t}{T_i (t-1)}} \hspace{0.1cm} \bigg\},$$

where 
$$\hat{\mu}_{i,t-1} = \frac{1}{T_i(t-1)} \sum_{s=1}^{T_i(t-1)} X_{i,s}$$

► Regret bound:

$$R_n \le \sum_{i \ne i^*} \min\left(\frac{10}{\Delta_i} \log n, n\Delta_i\right)$$

#### Hoeffding-based UCB (Auer, Cesa-Bianchi, Fischer, 2002)

▶ Hoeffding's inequality: Let  $X_1, \ldots, X_m$  be i.i.d. r.v. taking their values in [0,1]. For any  $\varepsilon > 0$ , with probability at least  $1 - \varepsilon$ , we have

$$\mathbb{E}X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{\log(\varepsilon^{-1})}{2m}}$$

▶ UCB1 policy: At time t, play

$$I_t \in \operatorname*{arg\,max}_{i \in \{1, \dots, K\}} \bigg\{ \hat{\mu}_{i, t-1} + \sqrt{\frac{2 \log t}{T_i(t-1)}} \hspace{0.1cm} \bigg\},$$

where 
$$\hat{\mu}_{i,t-1} = \frac{1}{T_i(t-1)} \sum_{s=1}^{T_i(t-1)} X_{i,s}$$

► UCB1 is an anytime policy (it does not need to know *n* to be implemented)

#### Hoeffding-based UCB (Auer, Cesa-Bianchi, Fischer, 2002)

▶ Hoeffding's inequality: Let  $X_1, \ldots, X_m$  be i.i.d. r.v. taking their values in [0,1]. For any  $\varepsilon > 0$ , with probability at least  $1 - \varepsilon$ , we have

$$\mathbb{E}X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{\log(\varepsilon^{-1})}{2m}}$$

▶ UCB1 policy: At time t, play

$$I_t \in \argmax_{i \in \{1, \dots, K\}} \left\{ \hat{\mu}_{i, t-1} + \sqrt{\frac{2 \log t}{T_i(t-1)}} \right\},$$

where 
$$\hat{\mu}_{i,t-1} = \frac{1}{T_i(t-1)} \sum_{s=1}^{T_i(t-1)} X_{i,s}$$

- ▶ UCB1 corresponds to  $2 \log t = \frac{\log(\varepsilon^{-1})}{2}$ , hence  $\varepsilon = 1/t^4$
- ▶ Critical confidence level  $\varepsilon = 1/t$  (Lai & Robbins, 1985; Agrawal, 1995; Burnetas & Katehakis, 1996; Audibert, Munos, Szepesvári, 2009; Honda & Takemura, 2010)

#### Better confidence bounds imply smaller regret

► Hoeffding's inequality  $\frac{1}{t}$ -confidence bound

$$\mathbb{E}X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{\log(t)}{2m}}$$

▶ Bernstein's inequality  $\frac{1}{t}$ -confidence bound

$$\mathbb{E} X \leq \frac{1}{m} \sum_{s=1}^m X_s + \sqrt{\frac{2 \log(t) \mathbb{V} \text{ar} X}{m}} + \frac{\log(t)}{3m}$$

► Empirical Bernstein's inequality  $\frac{3}{t}$ -confidence bound

$$\mathbb{E}X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{2 \log(t) \widehat{\mathbb{V} \text{ar} X}}{m}} + \frac{8 \log(t)}{3m}$$

(Audibert, Munos, Szepesvári, 2009; Maurer, 2009; Audibert, 2010)

Asymptotic confidence bound leads to catastrophy:

$$\mathbb{E} X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{\widehat{\mathbb{V}\text{ar}X}}{m}} x \quad \text{ with } x \text{ s.t. } \int_{x}^{+\infty} \frac{e^{-u^2/2}}{\sqrt{2\pi}} du = \frac{1}{t}$$

# Better confidence bounds imply smaller regret

| Hoeffding-based UCB                                                                          | empirical Bernstein-based UCB                                                                                                                            |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbb{E}X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{\log(\varepsilon^{-1})}{2m}}$ | $\mathbb{E}X \leq \frac{1}{m} \sum_{s=1}^{m} X_s + \sqrt{\frac{2\log(\varepsilon^{-1})\widehat{\mathbb{Var}X}}{m}} + \frac{8\log(\varepsilon^{-1})}{3m}$ |
| $R_n \leq \sum_{i \neq i^*} \min \left( \frac{c}{\Delta_i} \log n, n \Delta_i \right)$       | $R_n \leq \sum_{i  eq i^*} \min \left( c \left( rac{\mathbb{V} \operatorname{ar}  u_i}{\Delta_i} + 1  ight) \log n, n \Delta_i  ight)$                  |

## Tuning the exploration: simple vs difficult bandit problems

▶ UCB1( $\rho$ ) policy: At time t, play

$$I_t \in \argmax_{i \in \{1, \dots, K\}} \left\{ \hat{\mu}_{i, t-1} + \sqrt{\frac{\rho \log t}{T_i(t-1)}} \right\},$$





#### Tuning the exploration parameter: from theory to practice

- ► Theory:
  - for  $\rho$  < 0.5, UCB1( $\rho$ ) has polynomial regret
  - for  $\rho > 0.5$ , UCB1( $\rho$ ) has logarithmic regret

(Audibert, Munos, Szepesvári, 2009; Bubeck, 2010)

• Practice:  $\rho = 0.2$  seems to be the best default value for  $n < 10^8$ 





#### Deviations of UCB1 regret

► UCB1 policy: At time *t*, play

$$I_t \in rg \max_{i \in \{1, \dots, K\}} \left\{ \hat{\mu}_{i,t-1} + \sqrt{rac{2 \log t}{T_i (t-1)}} 
ight\}$$

- ▶ Inequality of the form  $\mathbb{P}(\hat{R}_n > \mathbb{E}\hat{R}_n + \gamma) \leq ce^{-c\gamma}$  does not hold!
- ▶ If the smallest reward observable from the optimal arm is smaller than the mean reward of the second optimal arm, then the regret of UCB1 satisfies: for any C>0, there exists C'>0 such that for any  $n\geq 2$

$$\mathbb{P}(\hat{R}_n > \mathbb{E}\hat{R}_n + C \log n) > \frac{1}{C'(\log n)^{C'}}$$

(Audibert, Munos, Szepesvári, 2009)

# Anytime UCB policies has a heavy-tailed regret

For some difficult bandit problems, the regret of UCB1 satisfies: for any C > 0, there exists C' > 0 such that for any  $n \ge 2$ 

$$\mathbb{P}(\hat{R}_n > \mathbb{E}\hat{R}_n + C\log n) > \frac{1}{C'(\log n)^{C'}} \tag{*}$$

► UCB-H<sub>orizon</sub> policy: At time *t*, play

$$I_t \in \operatorname*{arg\,max}_{i \in \{1,\dots,K\}} \bigg\{ \hat{\mu}_{i,t-1} + \sqrt{\frac{2 \log n}{T_i(t-1)}} \hspace{0.1cm} \bigg\},$$

(Audibert, Munos, Szepesvári, 2009)

- ▶ UCB-H satisfies  $\mathbb{P}(\hat{R}_n > \mathbb{E}\hat{R}_n + C \log n) \leq \frac{C}{n}$  for some C > 0
- $\star$  ( $\star$ ) = unavoidable for anytime policies (Salomon, Audibert, 2011)

## Comparison of UCB1 (solid lines) and UCB-H (dotted lines)



# Comparison of UCB1( $\rho$ ) and UCB-H( $\rho$ ) in expectation



Left: Dirac(0.6) vs Bernoulli(0.5)



Right: Bernoulli(0.6) vs Dirac(0.5)

# Comparison of UCB1( $\rho$ ) and UCB-H( $\rho$ ) in deviations

▶ For n = 1000 and K = 2 arms: Bernoulli(0.6) and Dirac(0.5)



Left: smoothed probability mass function. Right: tail distribution of the regret.

## Knowing the horizon: theory and practice

- ► Theory: use UCB-H to avoid heavy tails of the regret
- ▶ Practice: Theory is right. Besides, thanks to this robustness, the expected regret of UCB-H( $\rho$ ) consistently outperforms the expected regret of UCB1( $\rho$ ). However:
  - the gain is small.
  - lacktriangle a better way to have small regret tails is to take larger ho

## Knowing $\mu^*$

► Hoeffding-based GCL\* policy: play each arm once, then play

$$I_t \in \operatorname*{argmin}_{i \in \{1, ..., K\}} T_i(t-1) (\mu^* - \hat{\mu}_{i,t-1})_+^2$$

(Salomon, Audibert, 2011)

- Underlying ideas:
  - ▶ compare *p*-values of the *K* tests:  $H_0 = \{\mu_i = \mu^*\}, i \in \{1, ..., K\}$
  - ▶ the *p*-values are estimated using Hoeffding's inequality

$$\mathbb{P}_{H_0}\left(\hat{\mu}_{i,t-1} \leq \hat{\mu}_{i,t-1}^{(obs)}\right) \lessapprox \exp\left(-2\mathcal{T}_i(t-1)\left(\mu^* - \hat{\mu}_{i,t-1}^{(obs)}\right)_+^2\right)$$

- ▶ play the arm for which we have the Greatest Confidence Level that it is the optimal arm.
- ► Advantages:
  - logarithmic expected regret
  - anytime policy
  - regret with a subexponential right-tail
  - parameter-free policy !
  - outperforms any other Hoeffding-based algorithm !

#### From Chernoff's inequality to KL-based algorithms

- Let  $\mathcal{K}(p,q)$  be the Kullback-Leibler divergence between Bernoulli distributions of respective parameter p and q
- Let  $X_1, \ldots, X_T$  be i.i.d. r.v. of mean  $\mu$ , and taking their values in [0,1]. Let  $\bar{X} = \frac{1}{T} \sum_{i=1}^{T} X_i$ . For any  $\gamma > 0$

$$\mathbb{P}(\bar{X} \leq \mu - \gamma) \leq \exp(-T \mathcal{K}(\mu - \gamma, \mu)).$$

In particular, we have

$$\mathbb{P}(\bar{X} \leq \bar{X}^{(obs)}) \leq \exp\left(-T \, \mathcal{K}(\min(\bar{X}^{(obs)}, \mu), \mu)\right).$$

▶ If  $\mu^*$  is known, using the same idea of comparing the *p*-values of the tests  $H_0 = \{\mu_i = \mu^*\}$ ,  $i \in \{1, ..., K\}$ , we get the Chernoff-based GCL\* policy: play each arm once, then play

$$I_t \in \operatorname*{argmin}_{i \in \{1, \dots, K\}} T_i(t-1) \ \mathcal{K} \big( \min(\hat{\mu}_{i,t-1}, \mu^*), \mu^* \big)$$

## Back to unknown $\mu^*$

When  $\mu^*$  is unknown, the principle playing the arm for which we have the greatest confidence level that it is the optimal arm

is replaced by

being optimistic in face of uncertainty:

- ▶ an arm *i* is represented by the highest mean of a distribution  $\nu$  for which the hypothesis  $H_0 = \{\nu_i = \nu\}$  has a *p*-value greater than  $\frac{1}{t^{\beta}}$  (critical  $\beta = 1$ , as usual)
- ▶ the arm with the highest index (=UCB) is played

#### KL-based algorithms when $\mu^*$ is unknown

▶ Approximating the *p*-value using Sanov's theorem is tightly linked to the DMED policy, which satisfies

$$\limsup_{n \to +\infty} \frac{R_n}{\log n} \leq \frac{\Delta_i}{\inf_{\nu : \mathbb{E}_{X \sim \nu} X \geq \mu^*} \mathcal{K}(\nu_i, \nu)}$$

(Burnetas & Katehakis, 1996; Honda & Takemura, 2010)

It matches the lower bound

$$\liminf_{n\to+\infty}\frac{R_n}{\log n}\geq \frac{\Delta_i}{\inf_{\nu:\mathbb{E}_{X\sim\nu}X\geq\mu^*}\mathcal{K}(\nu_i,\nu)}$$

(Lai & Robbins, 1985; Burnetas & Katehakis, 1996)

▶ Approximating the *p*-value using non-asymptotic version of Sanov's theorem leads to the KL-UCB (Cappé & Garivier, COLT 2011) and the K-strategy (Maillard, Munos, Stoltz, COLT 2011)

#### Outline

- Bandit problems and applications
- ▶ Bandits with small set of actions
  - Stochastic setting
  - Adversarial setting
- Bandits with large set of actions
  - unstructured set
  - structured set
    - linear bandits
    - Lipschitz bandits
    - tree bandits
  - Extensions

#### Adversarial bandit

**Parameters:** the number of arms K and the number of rounds n

For each round t = 1, 2, ..., n

- 1. the forecaster chooses an arm  $I_t \in \{1, ..., K\}$ , possibly with the help of an external randomization
- 2. the adversary chooses a gain vector  $g_t = (g_{1,t}, \dots, g_{K,t}) \in [0,1]^K$
- 3. the forecaster receives and observes only the gain  $g_{l_t,t}$

Goal: Maximize the cumulative gains obtained. We consider the regret:

$$R_n = \left(\max_{i=1,\dots,K} \mathbb{E} \sum_{t=1}^n g_{i,t}\right) - \mathbb{E} \sum_{t=1}^n g_{l_t,t},$$

- ► In full information, step 3. is replaced by the forecaster receives  $g_{t,t}$  and observes the full gain vector  $g_t$
- ▶ In both settings, the forecaster should use an external randomization to have o(n) regret.

# Adversarial setting in full information: an optimal policy

- ► Cumulative reward on [1, t-1]:  $G_{i,t-1} = \sum_{s=1}^{t-1} g_{i,s}$
- ► Follow-the-leader:  $I_t \in \arg\max_{i \in \{1,...,K\}} G_{i,t-1}$  is a bad policy
- An "optimal" policy is obtained by considering

$$p_{i,t} = \mathbb{P}(I_t = i) = \frac{e^{\eta G_{i,t-1}}}{\sum_{k=1}^{K} e^{\eta G_{k,t-1}}}$$

- ► For this policy,  $R_n \le \frac{n\eta}{8} + \frac{\log K}{\eta}$
- ▶ in particular, for  $\eta = \sqrt{\frac{8 \log K}{n}}$ , we have  $R_n \leq \sqrt{\frac{n \log K}{2}}$

(Littlestone, Warmuth, 1994; Long, 1996; Bylanger, 1997; Cesa-Bianchi, 1999)

#### Proof of the regret bound

$$p_{i,t} = \mathbb{P}(I_t = i) = \frac{e^{\eta G_{i,t-1}}}{\sum_{k=1}^{K} e^{\eta G_{k,t-1}}}$$

$$\begin{split} & \mathbb{E} \sum_{t} g_{I_{t},t} \\ = & \mathbb{E} \sum_{t} \sum_{i} \rho_{i,t} g_{i,t} \\ = & \mathbb{E} \sum_{t} \sum_{i} \rho_{i,t} g_{i,t} \\ = & \mathbb{E} \sum_{t} \left( -\frac{1}{\eta} \log \sum_{i} \rho_{i,t} e^{\eta(g_{i,t} - \sum_{j} \rho_{j,t} g_{j,t})} + \frac{1}{\eta} \log \sum_{i} \rho_{i,t} e^{\eta g_{i,t}} \right) \\ = & \mathbb{E} \sum_{t} \left( -\frac{1}{\eta} \log \mathbb{E} e^{\eta(V_{t} - \mathbb{E}V_{t})} + \frac{1}{\eta} \log \frac{\sum_{i} e^{\eta G_{i,t}}}{\sum_{i} e^{\eta G_{i,t-1}}} \right) \qquad \mathbb{P}(V_{t} = g_{i,t}) = \rho_{i,t} \\ \geq & \mathbb{E} \left( -\sum_{t} \frac{\eta}{8} \right) + \frac{1}{\eta} \mathbb{E} \log \frac{\sum_{j} e^{\eta G_{j,n}}}{\sum_{j} e^{\eta G_{j,0}}} \qquad \text{Hoeffding's inequality} \\ \geq & -\frac{n\eta}{8} + \frac{1}{\eta} \mathbb{E} \log \frac{e^{\eta \max_{j} G_{j,n}}}{K} = -\frac{n\eta}{8} - \frac{\log K}{\eta} + \mathbb{E} \max_{j} G_{j,n} \end{split}$$

## Adapting the exponentially weighted forecaster

▶ In bandit setting,  $G_{i,t-1}$ , i = 1, ..., K are not observed

#### Trick = estimate them

▶ Precisely,  $G_{i,t-1}$  is estimated by  $\tilde{G}_{i,t-1} = \sum_{s=1}^{t-1} \tilde{g}_{i,s}$  with

$$\tilde{g}_{i,s}=1-\frac{1-g_{I_s,s}}{p_{I_s,s}}\mathbb{1}_{I_s=i}.$$

Note that 
$$\mathbb{E}_{I_s \sim p_s} \tilde{g}_{i,s} = 1 - \sum_{k=1}^K p_{k,s} \frac{1 - g_{k,s}}{p_{k,s}} \mathbb{1}_{k=i} = g_{i,s}$$

$$p_{i,t} = \mathbb{P}(I_t = i) = \frac{e^{\eta \tilde{G}_{i,t-1}}}{\sum_{k=1}^{K} e^{\eta \tilde{G}_{k,t-1}}}$$

- ► For this policy,  $R_n \le \frac{nK\eta}{2} + \frac{\log K}{\eta}$ 
  - ▶ In particular, for  $\eta = \sqrt{\frac{2 \log K}{nK}}$ , we have  $R_n \leq \sqrt{2nK \log K}$  (Auer, Cesa-Bianchi, Freund, Schapire, 1995)

#### Implicitly Normalized Forecaster (Audibert, Bubeck, 2010)

Let  $\psi: \mathbb{R}_{-}^* \to \mathbb{R}_{+}^*$  increasing, convex, twice continuously differentiable, and s.t.  $[\frac{1}{K}, 1] \subset \psi(\mathbb{R}_{-}^*)$ 

Let  $p_1$  be the uniform distribution over  $\{1, \ldots, K\}$ 

For each round  $t = 1, 2, \ldots$ ,

- $ightharpoonup I_t \sim p_t$
- ► Compute  $p_{t+1} = (p_{1,t+1}, \dots, p_{K,t+1})$  where

$$p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$$

where  $C_t$  is the unique real number s.t.  $\sum_{i=1}^{K} p_{i,t+1} = 1$ 

# Minimax policy

- $\psi(x) = \exp(\eta x)$  with  $\eta > 0$ ; this corresponds exactly to the exponentially weighted forecaster
- $\psi(x) = (-\eta x)^{-q}$  with q > 1 and  $\eta > 0$ ; this is a new policy which is minimax optimal: for q = 2 and  $\eta = \sqrt{2n}$ , we have

$$R_n \leq 2\sqrt{2nK}$$

(Audibert, Bubeck, 2010; Audibert, Bubeck, Lugosi, 2011) while for any strategy, we have

$$\sup R_n \geq \frac{1}{20} \sqrt{nK}$$

(Auer, Cesa-Bianchi, Freund, Schapire, 1995)

#### Outline

- Bandit problems and applications
- ▶ Bandits with small set of actions
  - Stochastic setting
  - Adversarial setting
- Bandits with large set of actions
  - unstructured set
  - structured set
    - linear bandits
    - Lipschitz bandits
    - tree bandits
  - Extensions