4-6 Wednesday – 210-GD3

Special topics in Computer Science INT3121 20

Lecturer: Nguyen Thi Ngoc Diep, Ph.D.

Email: ngocdiep@vnu.edu.vn

Slide & Code: https://github.com/chupibk/INT3121-20

Image classification with convolutional neural networks

Week	Content	Class hour	Self-study hour
1 28/8/2019		2	1
2	CNN model architectures and visualization	2	1
	Training and tuning parameters Automatic parameter learning	2	1
4	Data augmentation Data generator	2	2-6
5	Transfer learning	2	2-6
6	Multi-output image classification	2	2-6
7	Building a training dataset How to write a report	1	2-6
8, 9, 10, 11	Seminar: Bag of tricks with CNN (as mid-term tests)	1	2-6
12, 13, 14	Final project presentations	1-3	2-6
15	Class summarization	1	open

Week 2 recall

- Convolution = combining two functions
- Types of convolution kernels/filters:
 - (Traditional) Convolution
 - Too many parameters
 - Dilated or Atrous convolution
 - · Large receptive field
 - · Less parameters
 - Separable convolution
 - Even lesser parameters
 - Deconvolution or transposed convolution
 - Low resolution -> high resolution
 - Pooling -> not a convolution layer, but...

Week 2: Homework checklist

- Code Inception and ResNet models
- Confirm code of other models (LeNet, AlexNet, VGG16)
- Run for the CIFAR10 dataset
- → Done? ©

Steps in training a CNN

- Prepare data: x_train, y_train, x_val, y_val, x_test, y_test
 - x: (b, h, w, c)
 - y: (b, n)
- Define a CNN model
 - Conv + dense layers
- Compile the model
 - Define a loss function: cross entropy loss
 - Set an optimizer & its parameters
 - · Define evaluation metrics
- Train the model
 - Feed the actual data and do weight updating
 - Feed several times (# of epochs)
 - Feed a small amount at a time (batch_size)

model.compile(...)

model.fit(...)

What "model.compile()" does?

Loss function: Cross entropy

p(x): true distribution q(x): estimated distribution x: discrete variable

 $H(p,q) = -\sum_{\forall x} p(x) \log(q(x))$

Other form:

y: ground truth vector \hat{y} : estimated vector (·): vector dot product

$$L = -\mathbf{y} \cdot \log(\mathbf{\hat{y}})$$

Loss function example

```
def cross_entropy(y_true, y_pred, eps=1e-12):
      Log loss is undefined for p=0 or p=1,
          so probabilities are
          clipped to (eps, 1 - eps).
      y_true = np.clip(y_true, eps, 1. - eps)
y_pred = np.clip(y_pred, eps, 1. - eps)
      log_likelihood = -np.log(y_pred)
      loss = -(y_true * np.log(y_pred)).sum()
      return loss
cross_entropy([1, 0, 0, 0], [0.9, 0, 0, 0.1])
```

0.10536051571528555

```
cross_entropy([1, 0, 0, 0], [0.1, 0.8, 0.1, 0])
```

2.3025850930218996

Loss function for a dataset of size N

$$J = -\frac{1}{N} \left(\sum_{i=1}^{N} \mathbf{y_i} \cdot \log(\mathbf{\hat{y}_i}) \right)$$

Metrics

total	Predicted	Predicted
N=150	YES	NO
Actual:	True positive	False Negative
YES	TP = 80	FN = 25
Actual:	False Positive	True negative
NO	FP = 10	TN = 35
	l I	

$$precision = \frac{number\ of\ correct\ positive\ predictions}{number\ of\ positive\ predictions\ made}$$

$$=\frac{TP}{TP+FP}=\frac{80}{80+10}=0.89$$

$$accuracy = \frac{number\ of\ correct\ predictions}{total\ number\ of\ predictions\ made}$$

$$= \frac{TP + TN}{N} = \frac{80 + 35}{150} = 0.7$$

$$recall = \frac{number\ of\ correct\ positive\ predictions}{number\ of\ all\ positive\ samples}$$

$$= \frac{TP}{TP+FN} = \frac{80}{80+25} = 0.76$$

$$F1 = 2 * \frac{1}{\frac{1}{precision} + \frac{1}{recall}}$$

Harmonic mean between precision and recall

What is an optimizer?

Prediction

$$\hat{y} = f(x; w, b) = f(x; \theta)$$
 where $\theta = [w, b]$

w: weights

b: biases

Loss function

$$L(\theta) = -y \cdot log(\hat{y})$$

Objective:

$$min_{\theta}L(\theta)$$

How?

Start from a random position of theta Iteratively update it

$$\theta = \theta + \eta \Delta \theta$$

Optimizers

- Gradient descent (GD)
- Stochastic gradient descent (SGD)
- Mini-batch gradient descent
- Momentum gradient descent
- Adaptive gradient descent (AdaGrad)
- Root mean square propagation gradient descent (RMSProp)
- Adaptive moment estimation (Adam)

Gradient descent

 $\theta new = \theta + \eta.\Delta\theta$

$$L(\theta + \eta \Delta \theta) = L(\theta) + \eta * \Delta \theta^T \nabla L(\theta) + \frac{\eta^2}{2!} * \Delta \theta^T \nabla^2 L(\theta) + \dots$$

$$-1 \le \cos(\beta) = \frac{u^T \nabla_{\theta} \mathcal{L}(\theta)}{||u|| * ||\nabla_{\theta} \mathcal{L}(\theta)||} \le 1$$

minimum when going the opposite direction to the gradient

Gradient descent update rule

- Randomly initialize w,b
- Iterate over data
 - Compute y-hat
 - Compute loss L(w,b)
 - Update

$$w_{t+1} = w_t - \eta \nabla w_t$$

$$b_{t+1} = b_t - \eta \nabla b_t$$

$$where, \nabla w_t = \frac{\partial \mathcal{L}(w, b)}{\partial w} \Big|_{at \ w = w_t, b = b_t}, \nabla b = \frac{\partial \mathcal{L}(w, b)}{\partial b} \Big|_{at \ w = w_t, b = b_t}$$

Number of updates in one epoch

- Batch gradient descent → 1
- Stochastic gradient descent → N (N = number of data samples)
- Mini-batch gradient descent → N/B (B = batch size

Gradient descent in flat vs steep area

Visualization credit: Niranjan Kumar

Momentum

Go faster if the same direction is repeated

$$egin{aligned} v_t &= \overline{\gamma * v_{t-1}} + \eta
abla w_t \ w_{t+1} &= w_t - v_t \end{aligned}$$

AdaGrad (adaptive learning rate)

- Parameter that is not zero most of the times -> small learning rate
- Parameter that is zero most of the times, when it is on → higher learning rate to boost the gradient update

$$egin{aligned} v_t &= v_{t-1} + (
abla w_t)^2 \ w_{t+1} &= w_t - rac{\eta}{\sqrt{(v_t)} + \epsilon}
abla w_t \end{aligned}$$

Non-sparse parameters will have large history value due to frequent updates \rightarrow Small learning rate

Root Mean Square Propagation (RMSProp)

Decaying the history to prevent the rapid growth of the denominator in AdaGrad

$$egin{aligned} v_t = & egin{aligned} eta * v_{t-1} + \dot(1-eta)(
abla w_t)^2 \ w_{t+1} = & w_t - rac{\eta}{\sqrt{(v_t)} + \epsilon}
abla w_t \end{aligned}$$

Adaptive moment estimation

• Combine Momentum & RMSProp

$$egin{aligned} m_t &= eta_1 * v_{t-1} + (1-eta_1)(
abla w_t) \ v_t &= eta_2 * v_{t-1} + (1-eta_2)(
abla w_t)^2 \ w_{t+1} &= w_t - rac{\eta}{\sqrt{(v_t)} + \epsilon} m_t \end{aligned}$$

- → use history to compute update
- → use history to adjust learning rate (shrink or boost)

Backpropagation

 Forward -> compute loss -> loss run backward to find gradients -> update weights


```
# set some inputs
x = -2; y = 5; z = -4

# perform the forward pass
q = x + y # q becomes 3
f = q * z # f becomes -12

# perform the backward pass (backpropagation) in reverse order:
# first backprop through f = q * z
dfdz = q # df/dz = q, so gradient on z becomes 3
dfdq = z # df/dq = z, so gradient on q becomes -4
# now backprop through q = x + y
dqdx = 1.0
dqdy = 1.0
dqdy = 1.0
dqdy = 1.0
dfdx = dfdq * dqdx # will be z = -4 #And the multiplication here is the chain rule!
dfdy = dfdq * dqdy# will be z = -4 # [], {}, {}, {}}]".format(dfdx, dfdy, dfdz)
[dfdx, dfdy, dfdz] = [-4.0, -4.0, 3]
```

f(x,y,z) = (x+y) *z

Credit: Kapathy (cs231n)

Learning hyperparameters

- Learning rate
- Momentum
- Decay
- Epsilon (fuzz factor)
- Beta_1, beta_2 -> Adam

Hyperparameter search with Hyperas

Potential use cases

- Varying dropout probabilities, sampling from a uniform distribution
- Different layer output sizes
- Different optimization algorithms to use
- Varying choices of activation functions
- Conditionally adding layers depending on a choice
- Swapping whole sets of layers

Hyperas' search algorithms

- Random Search
- Tree of Parzen Estimator (TPE)