

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Дискретная математика

ЛЕКЦИЯ №3

Разбиение множеств. Числа Стирлинга первого и второго рода. Числа Белла

Разбиения множества

Определение: Под **разбиением** n-элементного множества A на k блоков будем понимать семейство подмножеств $\pi = \{B_1, B_2, ..., B_k\}$ множества A, которые удовлетворяют следующим условиям:

- $1. B_1 \cup B_2 \cup \cdots \cup B_k = A;$
- 2. $B_i \cap B_j = \emptyset$, $1 \le i < j \le k$;
- 3. $B_i \neq \emptyset$, $1 \le i \le k$.

Множество разбиений множества A на k блоков будем обозначать $\Pi_k(A)$. Множество разбиений множества A на произвольное число блоков будем обозначать $\Pi(A)$.

Числа Стирлинга второго рода (1/3)

<u>Определение:</u> **Число Стирлинга 2-го рода** S(n,k)есть число разбиений nэлементного множества на k блоков:

$$S(n,k) = |\Pi_k(A)|,$$
 где $|A| = n.$

<u>Пример:</u> Число S(4,2) = 7, так как множество $\{a,b,c,d\}$ можно разбить на 2 блока 7-ю различными способами:

$$\{\{a\}, \{b, c, d\}\}, \{\{b\}, \{a, c, d\}\}, \{\{c\}, \{a, b, d\}\}, \{\{d\}, \{a, b, c\}\}, \{\{a, b\}, \{c, d\}\}, \{\{a, c\}, \{b, d\}\}, \{\{a, d\}, \{b, c\}\}$$

<u>Теорема:</u> Числа Стирлинга 2-го рода можно вычислять рекуррентно по формуле

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), 0 < k < n,$$

с начальными условиями

$$S(n,n) = 1, n \ge 0,$$

 $S(n,0) = 0, n > 0,$
 $S(n,k) = 0, n < k.$

Числа Стирлинга второго рода (2/3)

Доказательство: Начальные условия следуют из определения чисел Стирлинга 2-го рода. Докажем рекуррентное соотношение.

Пусть множество $A = \{a_1, a_2, ..., a_n\}$ состоит из n > 1 элементов, $\Pi_k(A)$ - множество всех разбиений множества A на k блоков. Будем считать, что элемент a_n входит в последний блок разбиения B_k , т.е. $a_n \in B_k$. Разделим множество разбиений $\Pi_k(A)$ на два класса: $\Pi'_k(A)$, в который входят такие разбиения, в которых $|B_k| = 1$, и $\Pi''_k(A)$, содержащий разбиения, в которых $|B_k| > 1$. Мощность первого класса равна числу разбиений оставшихся элементов (кроме a_n) на k-1 блоков (не считая блок B_k), т.е. S(n-1,k-1). Все разбиения второго класса $\Pi''_k(A)$ можно получить из разбиения множества $A \setminus \{a_n\}$ на k блоков, добавляя элемент a_n в любой из k блоков. Таким образом, мощность второго класса равна kS(n-1,k).

Тогда число разбиений множества А

$$S(n,k) = |\Pi'_k(A)| + |\Pi''_k(A)| = S(n-1,k-1) + kS(n-1,k)$$
, ч.т.д.

Числа Стирлинга второго рода (3/3)

Таблица начальных значений чисел Стирлинга 2-го рода.

$\frac{k}{n}$	0	1	2	3	4	5	6	7	8
$\frac{n}{0}$	1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0
3	0	1	3	1	0	0	0	0	0
4	0	1	7	6	1	0	0	0	0
5	0	1	15	25	10	1	0	0	0
6	0	1	31	90	65	15	1	0	0
7	0	1	63	301	350	140	21	1	0
8	0	1	127	966	1701	1050	266	28	1

Числа Белла (1/2)

<u>Определение:</u> **Число Белла** B_n есть число всех разбиений n-элементного множества.

$$B_n = |\Pi(A)|$$
, где $|A| = n$, или

$$B_n = \sum_{k=0}^n S(n, k)$$

Теорема: Числа Белла можно вычислять рекуррентно по формуле

$$B_{n+1} = \sum_{k=0}^n C_n^k B_k$$

с начальным условием

$$B_0 = 1$$
.

n Bn 0 1 1 1 2 2 3 5 4 15 5 52 6 203 7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057 20 51 724 158 235 372		
1 1 2 2 3 5 4 15 5 52 6 203 7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	n	Bn
2 2 3 5 4 15 5 52 6 203 7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	0	1
3 5 4 15 5 52 6 203 7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	1	1
4 15 5 52 6 203 7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	2	2
5 52 6 203 7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	3	5
6 203 7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	4	15
7 877 8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	5	52
8 4 140 9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	6	203
9 21 147 10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	7	877
10 115 975 11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	8	4 140
11 678 570 12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	9	21 147
12 4 213 597 13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	10	115 975
13 27 644 437 14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	11	678 570
14 190 899 322 15 1 382 958 545 16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	12	4 213 597
15	13	27 644 437
16 10 480 142 147 17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057		190 899 322
17 82 864 869 804 18 682 076 806 159 19 5 832 742 205 057	15	1 382 958 545
18 682 076 806 159 19 5 832 742 205 057	16	10 480 142 147
19 5 832 742 205 057	17	82 864 869 804
	18	682 076 806 159
20 51 724 158 235 372	19	5 832 742 205 057
	20	51 724 158 235 372

Числа Белла (2/2)

Доказательство:

Пусть $A = \{a_1, a_2, ..., a_n, a_{n+1}\}$, |A| = n+1, и элемент a_{n+1} принадлежит блоку B. Тогда множество всех разбиений можно разделить на непересекающиеся подмножества $\Pi^i(A)$ такие, что |B| = i. Сформировать блок B можно C_n^{i-1} способами, i = 1, 2, ..., n, и для каждого такого блока B разбить оставшиеся n-i+1 элементов на произвольное количество блоков можно B_{n-i+1} способами. Тогда

$$B_{n+1} = \sum_{i=1}^{n+1} C_n^{i-1} B_{n-i+1} = \sum_{i=1}^{n+1} C_n^{n-i+1} B_{n-i+1} = \begin{bmatrix} \text{замена} \\ k \coloneqq n-i+1 \end{bmatrix} = \sum_{k=0}^{n} C_n^k B_k$$

что и требовалось доказать.

Числа Стирлинга первого рода (1/3)

Введем следующее обозначение многочлена:

$$[x]_n = x(x-1)(x-2)...(x-n+1).$$

В частных случаях эти многочлены имеют вид

$$[x]_0 = 1,$$

 $[x]_1 = x,$
 $[x]_2 = x(x - 1),$
 $[x]_3 = x(x - 1)(x - 2).$

Определение. Числа Стирлинга 1-го рода s(n,k) есть коэффициенты при последовательных степенях переменной x в многочлене $[x]_n$:

$$[x]_n = \sum_{k=0}^n s(n,k) x^k.$$

Числа Стирлинга первого рода (2/3)

Теорема: Числа Стирлинга 1-го рода можно вычислять рекуррентно по формуле

$$s(n,k) = s(n-1,k-1) - (n-1)s(n-1,k), 0 < k < n,$$
 с начальными условиями

$$s(n,n) = 1, n \ge 0,$$

 $s(n,0) = 0, n > 0,$
 $s(n,k) = 0, n < k.$

Доказательство: Начальные условия следуют из определения чисел Стирлинга 1-го рода. Докажем рекуррентное соотношение.

Из определения многочленов $[x]_n$ следует соотношение

$$[x]_n = (x - n + 1)[x]_{n-1}, n > 0$$
, тогда

$$\sum_{k=1}^{n} s(n,k)x^{k} = (x-n+1)\sum_{k=1}^{n-1} s(n-1,k)x^{k} = \sum_{k=1}^{n-1} s(n-1,k)x^{k+1} - (n-1)\sum_{k=1}^{n-1} s(n-1,k)x^{k} = \sum_{k=2}^{n-1} s(n-1,k)x^{k} - (n-1)\sum_{k=1}^{n-1} s(n-1,k)x^{k}$$

Числа Стирлинга первого рода (3/3)

Продолжение доказательства

$$= \sum_{k=1}^{n} s(n-1,k-1)x^{k} - s(n-1,0)x^{1} - (n-1)\left(\sum_{k=1}^{n} s(n-1,k)x^{k} - s(n-1,n)x^{n}\right)$$

$$= \sum_{k=1}^{n} (s(n-1,k-1) - (n-1)s(n-1,k))x^{k}$$

Приравнивая коэффициенты при равных степениях x, получим s(n,k) = s(n-1,k-1) - (n-1)s(n-1,k), ч.т.д.

k	0	1	2	3	4	5
n						
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	-1	1	0	0	0
3	0	2	-3	1	0	0
4	0	-6	11	-6	1	0
5	0	24	-50	35	-10	1