ADSORÇÃO EM SÓLIDOS

Prof. Harley P. Martins Filho

•Adsorção física (fisisorção)

→ Interações de Van der waals entre adsorvato e substrato. Exemplo: água em peneira molecular 4A (zeólita)

Interação íon (Na+) – dipolo (água)

 $ightarrow \Delta H_{
m ads} \approx$ -60 kJ mol⁻¹

Entalpia de adsorção tem magnitude da entalpia de condensação do adsorvato

 $\Delta H_{\text{cond}}(\text{H}_2\text{O}) = -44 \text{ kJ mol}^{-1}$

→ Adsorção é reversível

- •Adsorção química (quimisorção)
- → Ligação química entre adsorvato e substrato. Exemplo: conversor catalítico automotivo de três vias.

Bloco de redução: $2\text{NOx} \rightarrow \text{N}_2 + \text{xO}_2$ Bloco de oxidação: $\text{CO} + 1/2\text{O}_2 \rightarrow \text{CO}_2$ $\text{C}_2\text{H}_4 + 3\text{O}_2 \rightarrow 2\text{CO}_2 +$ $2\text{H}_2\text{O}$

Revestimento: Al $_2$ O $_3$ e CeO $_2$. Catalisadores ativos: Pt, Rh (redução) e Pr , Pd (oxidação). $\Delta H_{\rm ads}$ para CO em CeO $_2$ \approx -120 kJ mol $^{-1}$

Entalpia de adsorção tem magnitude de entalpias de ligação química.

- → Molécula pode se dissociar em fragmentos adsorvidos
- → Adsorção pode não ser reversível

2. Taxas de adsorção

$$\omega = \frac{\text{massa adsorvida}}{\text{massa de substrato}}$$
 \rightarrow adsorção a partir de soluções

$$\theta = \frac{\text{n° de sítios de adsorção ocupados}}{\text{n° total de sítios de adsorção}} \quad \rightarrow \text{adsorção de gases}$$

 N^{o} de sítios ocupados é proporcional à quantidade n (mol) adsorvida.

Medida de n: aplica-se uma dada pressão ao sistema e deixa-se o volume diminuir até estabilizar-se. A T e P constantes, ΔV corresponde ao volume V de gás adsorvido, que é proporcional ao número de mols adsorvidos n. Para normalizar a proporcionalidade $n \times V$, transforma-se o V medido para o correspondente nas CNTP (0° C e 1 bar).

$$\theta = \frac{V}{V_{\infty}}$$
 $V_{\infty} = \text{volume de adsorvato correspondente a cobertura total da superfície}$

3. Isotermas de adsorção

Adsorção depende de T (principalmente fisisorção) \rightarrow estudar relação $\theta \times P$ a T constante (isoterma)

3.1 Isoterma de Langmuir

Pressupostos:

- Adsorção não acontece além da cobertura total por monocamada de adsorvato
- 2. Todos os sítios de adsorção são equivalentes
- 3. Tendência à adsorção para uma molécula independe da ocupação dos sítios vizinhos

Equilíbrio dinâmico: $A_{(g)} + M_{(superfície)} \rightleftharpoons AM_{(superfície)}$

Constante de equilíbrio: $K = \frac{[AM]}{[A][M]}$

Se θ é a taxa de ocupação na situação de equilíbrio e N é o número total de sítios de adsorção,

[AM] é proporcional ao número de sítios ocupados (θN)

[A] é proporcional à pressão P

[M] é proporcional ao número de sítios ainda livres $((1 - \theta)N)$

$$\to K = \frac{\theta N}{P(1-\theta)N} \to KP - KP\theta = \theta \to KP = (1+KP)\theta$$

$$\theta = \frac{KP}{1 + KP}$$

$$\theta = \frac{V}{V_{\infty}} = \frac{KP}{1 + KP}$$

Formas aproximadas:

Em pressões baixas, $KP \ll 1$ $\rightarrow \theta \approx KP \rightarrow \text{relação linear}$

Em pressões altas, KP >> 1 $\rightarrow \theta$ tende a 1 Forma linearizada:

$$\frac{P}{V} = \frac{P}{V_{\infty}} + \frac{1}{KV_{\infty}}$$

Exemplo: Adsorção de CO em carvão a 273 K

P/Torr	100	200	300	400	500	600	700
V/cm ³ (a	10,2	18,6	25,5	31,5	36,9	41,6	46,1
1 bar)							

P/V	9,80	10,7	11,8	12,7	13,6	14,4	15,2
(Torr/cm ³)							

Regressão linear: y = 9.0 + 0.0090x

$$0,0090 \text{ cm}^{-3} = \frac{1}{V_{\infty}} \Rightarrow V_{\infty} = 110 \text{ cm}^{3}$$

9,0 Torr cm⁻³ =
$$\frac{1}{KV_{\infty}}$$
 $\Rightarrow K = \frac{1}{9,0 \times 110} = 1,0 \cdot 10^{-3} \text{ Torr}^{-1}$

- > Adsorção com dissociação
- → **fragmentos** da molécula do gás são adsorvidos

Se uma molécula A se divide em fragmentos B iguais:

$$A + 2M \rightarrow 2BM$$
 $K = \frac{[BM]^2}{[A][M]^2}$

Se θ é a taxa de ocupação na situação de equilíbrio e N é o número total de sítios de adsorção,

[BM] é proporcional ao número de sítios ocupados (θN)

[A] é proporcional à pressão P

[M] é proporcional ao número de sítios ainda livres ((1 - θ)N)

$$\rightarrow K = \frac{(\theta N)^2}{P((1-\theta)N)^2} \rightarrow \theta = \frac{(KP)^{1/2}}{1+(KP)^{1/2}}$$

$$\mbox{Linearizando:} \quad \frac{P^{1/2}}{V} = \frac{P^{1/2}}{V_{\infty}} + \frac{1}{K^{1/2}V_{\infty}} \label{eq:linearizando:}$$

Com dissociação

Sem dissociação

> Entalpia isostérica de adsorção:

Influência da temperatura na constante de equilíbrio de um processo (eq. de van't Hoff):

$$\frac{d \ln K}{d(1/T)} = -\frac{\Delta H}{R}$$

Rearranjando isoterma de Langmuir:

$$\theta = \frac{KP}{1 + KP} \to KP = \frac{\theta}{1 - \theta} \to \ln K + \ln P = \ln \left(\frac{\theta}{1 - \theta}\right)$$

Para um valor constante de θ ,

$$\left(\frac{\partial \ln K}{\partial (1/T)}\right)_{\theta} + \left(\frac{\partial \ln p}{\partial (1/T)}\right)_{\theta} = 0 \Rightarrow \left(\frac{\partial \ln p}{\partial (1/T)}\right)_{\theta} = -\left(\frac{\partial \ln K}{\partial (1/T)}\right)_{\theta}$$

Exemplo: Adsorção de $10,0~{\rm cm^3}$ (nas CNTP) de CO em carvão em várias temperaturas

T/K	200	210	220	230	240	250
P/Torr	30,0	37,1	45,2	54,0	63,5	73,9

(1/T)×10 ³ /K ⁻¹	5,00	4,76	4,55	4,35	4,17	4,00
ln <i>P</i>	3,40	3,61	3,81	3,99	4,15	4,30

Coef. angular: -0,90×10³ K

$$\rightarrow \Delta H_{\rm ads} = -0.90 \times 10^3 \text{ K} \times 8.314 \text{ J mol}^{-1} \text{K}^{-1}$$

= -7.5 kJ mol $^{-1}$

Atkins 5a edição, exercício 28.20

Um sólido em contato com um gás a 12 kPa e 25°C adsorve 2,5 mg do gás e obedece à isoterma de Langmuir. A variação de entalpia quando 1,00 mmol do gás é desorvido é 10,2 J. Qual a pressão de equilíbrio para a adsorção de 2,5 mg do gás a 40°C?

3.2 Isoterma BET

Se camada de adsorvato pode agir por sua vez como substrato para adsorção, isoterma não tende para um valor constante de θ

Brunauer, Emmett e Teller:

$$\theta = \frac{cz}{(1-z)\{1-(1-c)z\}}$$

onde $z = P/P^*$ e $P^* =$ pressão de vapor do gás na fase líquida

$$c = \exp\{(\Delta H_{desorç\~ao} - \Delta H_{vap})/RT\}$$

 $\Delta H_{\mathrm{des.}}$: relacionado à primeira camada de adsorção

 ΔH_{vap} : relacionado às camadas subsequentes de adsorção

Rearranjando a isoterma:

$$\frac{z}{(1-z)V} = \frac{1}{cV_{mon}} + \frac{(c-1)z}{cV_{mon}}$$

 $V_{\rm mon}$ = volume de gás correspondente a cobertura total da superfície por uma monocamada.

Exemplo: adsorção de $\rm N_2$ em 1,0 g de rutilo (TiO $_2$) em pó a 75 K

P/Torr	1,20	14,0	45,8	87,5	127,7	164,4	204,7
V/mm ³ (nas	601	720	822	935	1046	1146	1254
CNTP)							

A 75 K,
$$P^*_{N2} = 570$$
 Torr

z×10 ³	2,11	24,6	•••
$\frac{z}{(1-z)V} \times 10^6$ (mm ⁻³)	3,52	35,0	

Regressão linear: $y = 3,40 \times 10^{-6} + 1,23 \times 10^{-3}x$

$$3,40 \times 10^{-6} \text{ mm}^{-3} = \frac{1}{cV_{mon}}$$

$$1,23 \times 10^{-3} \text{ mm}^{-3} = \frac{c-1}{cV_{mon}}$$

Resolvendo o sistema de duas equações: 1,23×10⁻³ = (c - 1)×3,40×10⁻⁶ $\rightarrow c = 363$ e $V_{\rm mon} = 810$ mm³

➤ Cálculo da área de superfície do substrato:

Dado: cada molécula de N₂ ocupa uma área de 0,16 nm²

Em 810 mm³,
$$n = PV_{\text{mon}}/RT = 1 \times 10^5 \times 810 \times 10^{-9}/8,314 \times 273,15 = 3,6 \times 10^{-5} \text{ mols}$$

$$n \times N_A = 2,2 \times 10^{19}$$
 moléculas

$$\rightarrow$$
 Área total = 2,2×10¹⁹ × 0,16 nm² = 3,52×10¹⁸ nm² = 3,52 m²

☐ Estimativa da área ocupada por molécula adsorvida

Considerando o estado líquido de uma molécula, $V_m = \frac{M}{\rho}$

Volume ocupado por uma molécula: $V_{molecula} = \frac{V_m}{N_A} = \frac{M}{\rho N_A}$

Considerando que cada molécula ocupe um cubo dentro do volume total, a aresta a deste cubo representa uma dimensão média da molécula, que pode ser usada para se calcular a área média ocupada pela molécula (a^2). Esta área média pode ser usada em situações onde as moléculas aglomerem-se como no estado líquido (monocamada adsorvida, por exemplo).

$$V_{molecula} = a^3 \rightarrow a = \left(V_{molecula}\right)^{1/3} = \left(\frac{M}{\rho N_A}\right)^{1/3} \rightarrow A_{molecula} = a^2 = \left(\frac{M}{\rho N_A}\right)^{2/3}$$

Isotermas empíricas

Observa-se em vários casos que $\Delta H_{\rm ads}$ se torna menos negativo para taxas de cobertura mais altas \rightarrow há sítios mais reativos, que são ocupados primeiro. Isotermas empíricas simples conseguem modelar tais casos.

Isoterma de Temkin: $\theta = c_1 \ln(c_2 p)$

 $\rightarrow \Delta H_{\rm ads}$ varia linearmente com θ

Isoterma de Freundlich: $\theta = Kp^{1/n}$

 $ightarrow \Delta H_{
m ads}$ varia logaritmicamente com θ

Exemplo: verificando se isoterma de Freundlich se ajusta mais aos dados de adsorção de CO sobre carvão do que isoterma de Langmuir.

Rearranjando isoterma: $\theta = \frac{V}{V_{\infty}} = Kp^{1/n} \rightarrow V = V_{\infty}Kp^{1/n}$

$$\to \ln V = \ln(KV_{\infty}) + \left(\frac{1}{n}\right) \ln p$$

Coeficientes de correlação:

Freundlich ($\ln V \times \ln p$): 0,9968 Langmuir ($p/V \times p$): 0,9979

→ Ajuste é quase idêntico para as duas isotermas.

> Adsorção de soluto de uma solução

x = massa de soluto adsorvido em equilíbrio

m =massa de adsorvente

c =concentração do soluto

Forma linearizada:

$$\log \frac{x}{m} = \log K + \frac{1}{n} \log c$$

