耦合弹簧振子波动特性实验报告

无88 刘子源 2018010895

一、实验目的

- (1) 观察、测量研究振动及波动现象、特性;
- (2) 进一步理解并掌握振动与波动学有关的基本概念和原理;
- (3) 提高利用物理学原理对实验现象的分析判断能力;
- (4) 学习并掌握实验观测图像、视频资料等的数据提取分析、函数拟合等实验数据处理思路方法

二、实验原理

2.1测量单弹簧振子固有频率

图1 弹簧振子

用于测量的弹簧振子模型如上,轻质弹簧振子的劲度系数为k,质量为m,离开平衡位置的位移为u,则有:

$$mrac{d^2u}{dt^2}=-2ku$$
 $u=Acos(\omega t+\delta)$ $\omega=\sqrt{2}\omega_0, f=\sqrt{2}f_0$

则得到单个弹簧振子的固有频率 f_0 ,只需测出单弹簧振子模型50个周期时间 $T: f_0 = \frac{50}{\sqrt{2T}}$

2.2测量弹簧振子链的色散关系

实验模型如上,一共10个振子,已知角频率和频率与波数之间的函数为色散关系:

$$\omega=2\omega_0sin(rac{ka}{2})$$
 $f=2f_0sin(rac{ka}{2})$ $k=rac{2\pi}{\lambda},\lambda$ 为 纵 波 波 长

实验时需要设置多组不同的简正频率,测量其频率f和振幅 u_i ,拟合得到波数k,再用上述公式进行拟合得到色散曲线方程。

三、数据处理

3.1测量弹簧振子固有频率 f_0

测量弹簧振子振动50个周期的时间T:

	第1次测量	第2次测量	第3次测量	平均值
T/s	35.49	35.33	35.47	35.43

单个振子的固有频率为 $f_0 = \frac{50}{\sqrt{2}T} = 0.998Hz$

3.2测量弹簧振子链的色散关系

数据组数	1	2	3	4	5	6	7	8	9
振动频率f/Hz	0.279	0.559	0.828	1.078	1.307	1.507	1.677	1.816	1.976
$u_1/pixel$	19	27	48	53	52	42	40	29	10
$u_2/pixel$	34	45	63	44	16	-14	-33	-37	-19
$u_3/pixel$	48	48	35	-16	-48	-39	-13	21	26
$u_4/pixel$	57	37	-18	-57	-28	23	45	12	-32
$u_5/pixel$	62	15	-58	-32	41	33	-25	-35	32
$u_6/pixel$	63	-14	-59	31	40	-33	-26	34	-34
$u_7/pixel$	57	-38	-19	56	-29	-25	43	-12	31
$u_8/pixel$	47	-47	35	17	-49	38	-15	-22	-27
$u_9/pixel$	35	-43	62	-45	15	13	-34	38	18
$u_{10}/pixel$	18	-25	48	52	51	-42	40	-29	-11
波长 λ/a	22.200	10.946	7.328	4.702	4.392	3.769	3.138	2.750	2.196
波数 k/a^{-1}	0.283	0.574	0.857	1.336	1.431	1.667	2.002	2.285	2.861

通过Origin,利用Origin中的SINE公式 $y=y_0+Asin(pi*(x-xc)/w)$ 对 (n,u_n) 进行拟合,对应可得 $\lambda=2w, k=\frac{2\pi}{\lambda}=\frac{\pi}{w}$

再对(k, f)进行拟合,仍用上述公式,得到如下图像:

拟合得到的色散曲线公式为 $f=2.035sin(\frac{\pi}{6.592}k)$

分析: 理论公式为 $f = 2f_0 sin(\frac{ka}{2})$,

 $2.035 \approx 2f_0 = 1.996Hz$, 拟合结果在误差允许范围内。

 $\frac{\pi}{6.592}k = \frac{k}{2}*0.953 \approx \frac{k}{2}$, 拟合结果在误差允许范围内,满足要求。

3.3横波简正模型观察

相关图像见六、原始数据

 mode
 1
 2
 3
 4
 5
 6
 7
 8
 9

 驻波为正弦函数的周期数
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

横波简正模型中, 驻波形成的正弦函数周期数为mode/2

四、思考题

离散介质和连续介质中波的传输特性?

答:在离散介质中,振动模式的分布是离散的,色散关系中的各个点是离散的,也有了我们这次实验的重点——normal modes,此时的振动是一系列不同模数的振动模式的叠加。

连续介质中,波的传播是连续的,波数、频率是连续的,没有模数的概念,或者可以认为有无穷多个模数叠加。

五、总结

这是一次特殊的大物实验——线上实验。通过本次实验,我主要熟悉了软件Origin的简单使用方法,学会了用Origin进行数据的拟合和绘图,感谢老师和同学的指导和帮助!

六、原始数据

原始记录表格

仿真图像

