$(\vec{r}(t)\times\vec{r}(t))'=\vec{r}'(t)\times\vec{r}(t)+\vec{r}'(t)\times\vec{r}'(t)$

Session 20: Velocity and Arclementh
2015.1,9
Speed

Speed = $|\vec{v}| = |\frac{d\vec{r}}{d\vec{\epsilon}}|$

Example:

 $rdius 1 \qquad 3 seconds T \qquad 80 = \frac{\pi}{3}/s$

whort's avg velocity and average speed?

 $speed = \frac{3}{3}$ $\vec{J} = \vec{0}$

Notations

r(t) = position, plane: X(t) ty(x) = (x,y)

Ø	7	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	1	

In space: P(t) = N(t) i + y(t) i + Z(t) R
$\frac{d\vec{x}}{dt} = \vec{V}(t) = tagent vector = velocity$
In plane = = vix 3 + viy)
3= x'(t) + y'(t) = (x', y')
In space: V = X'(+) i + Y'(+) i + +(+) k = (x', y', z')
$\vec{P} = \vec{p} = unit$ tagent vector
$s = \text{ourclength}$, $speed = \frac{ds}{dt} = \vec{v} $
In plane: $f = \int (x')^2 + (y')^2$
In space: It = J(x)2+(y)2+(2+)2
$\vec{J} = \frac{d\vec{J}}{dt} \cdot \vec{T} , \vec{T} = \frac{\vec{J}}{dt}$ $\vec{J}(t) = \frac{d\vec{J}}{dt} = \frac{d\vec{J}}{dt} = \text{acceleration}$

de - | dr | - [2x] (d) | dt | dt | - [2x] (d)

\times	Y	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	/	/

from	Problems:	Vector d	erivatives	and	are length
1, Let	P(t)=	t'7+ t37			

velocity =
$$\frac{d\vec{r}(t)}{dt} = 2t\vec{i} + 3t^2\vec{j} = \langle 2t\vec{i} + 3t^2 \rangle$$

unit tangent vector: \vec{l}

$$\alpha(t) = \frac{d\vec{v}}{dt} = 2\vec{i} + 2\vec{v} + 2\vec{v} = \langle 2, 6t \rangle$$

$$S = \int_{1}^{4} \sqrt{14t^{2} + 7t^{4}} dt$$

$$\vec{r} = \langle \vec{\xi}, \vec{\xi} \rangle$$
, $\alpha(t) = \langle 0, 0 \rangle$