第13章 数字签名与认证协议

1 ElGamal签名方案

该方案是特别为签名的目的而设计的。1985年提出,很大程度上为Diffe-Hellman密钥交换算法的推广和变形。这个方案的改进已被美国NIST(国家标准和技术研究所)采纳作为数字签名标准。

方案: p为素数, F_p 中的离散对数问题是难处理的。取本原元α $\in F_p^*$,消息集合 $M=F_p^*$,签名集合 $A=F_p^* \times Z_{p-1}$,定义 $K=\{(p,\alpha,a,\beta)| \beta=\alpha^a (modp)\}$,值 p,α 和 β 是公开的,a是保密的。 对 $K=(p,\alpha,a,\beta)$ 和一个(秘密)随机数 $k \in Z_{p-1}^*$,我们做

对消息 $x \in M$ 进行签名: Sig_K(x,k)=(γ,δ), 其中 $\gamma = \alpha^k \text{(modp)}, \delta = (x-a \gamma)k^{-1} \text{(modp-1)}$

对**x**, $\gamma \in \mathbf{F_p}^*$ 和 $\delta \in \mathbf{Z_{p-1}}$,验证签名定义为

Ver(x, γ ,δ)=真(true) \Leftrightarrow $\beta^{\gamma}\gamma^{\delta} \equiv \alpha$ ×(modp)

对ElGamal签名方案安全性的讨论:

若Oscar在不知道a的情况下企图伪造一个给定消息x的签名: Sig_{oscar}(x,k)=(γ , δ)

(1)Oscar先选定一个δ,然后企图找γ,这样,他就必须解一个关于未知数γ的方程:

 $β^{\gamma}γ^{\delta} \equiv α x (modp)$

这个方程是一个已知无可行解法的难处理问题!

- (2)Oscar先选定一个 γ ,使其满足: $\beta^{\gamma}\gamma^{\delta} \equiv \alpha$ *(modp),于是 $\gamma^{\delta} \equiv \beta^{-\gamma} \alpha$ *(modp),这样,他就必须计算离散对数 $\log_{\gamma}(\beta^{-\gamma} \alpha^{-\gamma})$ =?,这自然是难处理的问题!
- (3)若两者 γ , δ都被 Oscar首先选定,然后企图解出一个随机消息 \mathbf{x} ,使得 $\beta^{\gamma}\gamma^{\delta} \equiv \alpha^{\mathsf{x}}$ (modp),也相当于求对数问题,所以Oscar利用这种方式也不能伪造随机消息的签名。
- (4) Oscar同时选择γ, δ和x来伪造签名问题: 假设i和j是整数,0<=i<=p-2,0<=j<=p-2,且(j,p-1)=1,先 完成下列计算:

γ=αⁱβ^j(modp) δ=-γj⁻¹(modp-1) x=-γij⁻¹(modp-1) (其中j⁻¹是用模p-1来计算的)

可以证实 (γ, δ) 是一个消息x的有效签名:

$$\beta^{\gamma} \gamma^{\delta} \equiv \beta^{\alpha^{i} \beta^{j}} (\alpha^{i} \beta^{j})^{-\alpha^{i} \beta^{j} j^{-1}} (\text{mod } p)$$

$$\equiv \beta^{\alpha^{i} \beta^{j}} \alpha^{-i j^{-1} \alpha^{i} \beta^{j}} \beta^{-\alpha^{i} \beta^{j}} (\text{mod } p)$$

$$\equiv \alpha^{-i j^{-1} \alpha^{i} \beta^{j}} (\text{mod } p)$$

$$\equiv \alpha^{-i j^{-1} \gamma} (\text{mod } p)$$

$$\equiv \alpha^{x} (\text{mod } p)$$

例子:假设p=467,α=2和β=132,它们为Bob公开的签名方案中的参数。Oscar利用这些参数伪造对一随机信息x的签名:

选择i=99和j=179,那么j⁻¹(modp-1)=151,计算出下列的x,γ, δ:

$$\gamma = \alpha^i \beta^j = 2^{99} \cdot 132^{179} \pmod{467} = 117$$

$$\delta = -117 \times 151 \pmod{466} = 41$$
$$x = 99 \times 41 \pmod{466} = 331$$

那么(117,41)是消息331的一个有效签名。验证: $132^{117} \cdot 117^{41} \equiv 303 \pmod{467}$

$$2^x = 2^{331} \equiv 303 \pmod{467}$$

因此,这个伪造的签名有效!

(5) 其他类型的伪造签名:

Oscar依据Bob已签名的消息来做伪签名。假设 (γ, δ) 是一个消息x的有效签名,那么Oscar可以用此来伪签其它消息:

设h,i,j为整数,0<=h,i,j<=p-2且($h\gamma$ – $j\delta$, p – 1) = 1 ,计算

$$\lambda = \gamma^h \alpha^i \beta^j \pmod{p}$$

$$\mu = \delta \lambda (h\gamma - j\delta)^{-1} \pmod{p-1}$$

$$x' = \lambda (hx + i\delta)(h\gamma - j\delta)^{-1} \pmod{p-1}$$
(其中 $(h\gamma - j\delta)^{-1}$ 是模**p-1**算出)

然后可验证出
$$\beta^\lambda \lambda^\mu \equiv \alpha^{x'} \pmod{p}$$

因此, (λ,μ) 为假消息 x' 的一个有效签名 讨论两个问题:

- (1) 用EIGamal方案计算一个签名时,使用的随机数k 为什么不能泄露?
- (2) 若Bob用相同的k值来签名不同的两份消息,Oscar能否攻破这个体制?

2 数字签名标准

公布于1994年5月19日的联邦记录上,并于1994年12月1日采纳为标准DSS。DSS为EIGamal签名方案的改进。

DSS: p为512bit的素数,q为160比特的素数,且q|p-1, $\alpha \in F_p^{*}$,且 α 为模p的q次单位根。消息集合 $P=F_p^{*}$,签名集合 $A=Fq\times Fq$,定义 $K=\{(p,\alpha,a,\beta)|\beta=\alpha^a(modp)\}$,值 p,q,α 和 β 是公开的,a是保密的。

取x∈P,对K=(p,q,α,a,β)和一个(秘密)随机数k (1<=k<=q-1),定义

 $\operatorname{Sig}_{\mathsf{K}}(\mathsf{x},\mathsf{k})=(\gamma,\delta),$

其中, γ =(α ^kmodp)(modq), δ =(x+ a γ)k-¹(modq) 对x∈ F_p *和 γ , δ ∈ F_q 来说,按下述计算来验证签名的真伪:

$$e_1 = x\delta^{-1} \pmod{q}$$
 $e_2 = \gamma\delta^{-1} \pmod{q}$
 $V_{erK}(x,\gamma,\delta) = 真 \Leftrightarrow (\alpha^{e1}\beta^{e2} \pmod{p}) \pmod{q} = \gamma$
事实上, $\alpha^{e1}\beta^{e2} \equiv \alpha^{x\delta^{-1} + a\gamma\delta^{-1} \pmod{q}} \pmod{p}$
 $\equiv \alpha^{\delta^{-1}(x+a\gamma)} \equiv \alpha^k \equiv \gamma \pmod{q} \pmod{p}$

- 注: 1*.DSS的使用涉及到Smart卡的使用,要求短的签名。 DSS以一个巧妙的方法修改了ElGamal方案,使得签 名160bits消息产生一个320bit的签名,但是计算使用 了512比特的模p.
 - 2^* .要求 $\delta \neq 0 \pmod{p}$ 在整个签名算法中,如果计算了一个值 $\delta \equiv 0 \pmod{p}$,程序自动拒绝,并且产生一个新的随机值k计算新的签名,事实上, $\delta \equiv 0 \pmod{p}$ 的发生概率大约为 2^{-160} .

- 3*. DSS是一个产生签名比验证签名快得多的方案,验证签名太慢!
- 4*. Smart卡的应用!! Smart卡有有限的处理能力,但是能与计算机进行通信。人们企图设计一种让Smart 卡仅作小量运算的签名方案。该方案必须完成签名、验证签名两部分,而且方便安全。

用DSS签名的例子:

假设取q=101,p=78q+1=7879,3为 F_{7879} 的一个本原元,所以能取 α =3⁷⁸(mod7879)=170为模p的q次单位根。假设a=75,那么 β = α ^a(mod7879)=4567.现在,假设Bob想签名一个消息x=1234,且他选择了随机值k=50,可算得k⁻¹(mod101)=99,签名算出:

 $\gamma = (170^{50} (\text{mod} 7879) (\text{mod} 101) = 2518 (\text{mod} 101) = 94$

3 一次签名

任何单向函数都可用来构造一次签名方案。该签名对一个消息来说,唯一对应着一个确定的签名。这样的签 名可验证任意多次。

Lamport方案:

设k为一个正整数, $P=\{0,1\}^{k_i}$ 设f: $Y\to Z$ 是一个单向函数,签名集合 $A=Y^k$,对于1<=i<=k,j=0,1来说, $y_{ij}\in Y$ 可随机地选择。选后,可算得

$$Z_{ij} = f(y_{ij})$$
 1<=i<=k,j=0,1

密钥K由2k个y值和2k个Z值组成,y值保密而Z值公开. 消息 $x=x_1,x_2,...,x_k$ (kbit串)。 对于K=(y_{ii} , Z_{ii} |1<=i<=k,j=0,1) 定义

$$Sig_{K}(x_{1}, x_{2},..., x_{k}) = (y_{1x1}, y_{2x2},..., y_{kxk})$$
 其中, $y_{ixi}=a_{i},f(a_{i})=Z_{ixi}$

验证:

注: 1*. 待签名的消息为一个二进制 元组,每一个都单独 签名.这个特征决定了"一次签名"

2*.验证是简单的检查:签名结果的每一个元素是相应公开钥元素的原象.

例子:取单向函数 $f(x)=\alpha^x (modp)$,设p=7879(素数),3为 F_{7879} 的本原元,定义 $f(x)=3^x (mod7879)$

假设Bob想签名3比特消息,他选择了6个(秘密的)随机数:

 y_{10} =5831, y_{11} =735, y_{20} =803, y_{21} =2467, y_{30} =4285, y_{31} =6449 在f的作用下计算y的像:

 z_{10} =2009, z_{11} =3810, z_{20} =4672, z_{21} =4721, z_{30} =268, z_{31} =5732 将这些Z值公开。现在Bob打算签名消息x=(1,1,0),那么对的签名为(y_{11} , y_{21} , y_{30})=(735,2467,4285).

验证签名:

3⁷³⁵(mod7879)=3810 3²⁴⁶⁷(mod7879)=4721 3⁴²⁸⁵(mod7879)=268

因此,该签名有效。

注:该方案,仅能用于签一个消息!一次,无法伪造。

4 不可否认的签名

(Chaum 和Van Antwerprn 1989年提出)

该签名的特征是:验证签名者必须与签名者合作。 验证签名是通过询问——应答协议来完成。这个协议可防止 签名者Bob否认他以前做的签名.一个不可否认的签名方 案有三个部分组成:签名算法、验证协议、否认协议

Bob:设p=2q+1是一个素数,它满足q为素数,且 F_p 中的对数问题是难解的; $\alpha \in F_p^*$,且阶为q,取1 \leq a \leq q-1,定义 $\beta = \alpha^a (\text{mod}p)$,G表示阶为q的 F_p^* 的子群。易见 $G=<\alpha>$,(事实上G由模p的二次剩余组成).

设P=A=G,且定义K={ (p,α,a,β) | β = α ^a(modp) }, 值p,α和β是公开的,a是保密的。

对K= (p,α,a,β) 和消息x∈G, Bob签名 y=Sig_K(x)=x^a(modp)

易见y ∈G 。按如下协议完成验证:

- (1) Alice 随机选择 $e_1, e_2 \in F_q^*$.
- (2) Alice计算 $C = y^{e_1}\beta^{e_2} \pmod{p}$,且将C送给Bob.
- (3) Bob计算 $d = C^{a^{-1} \pmod{q}} \pmod{p}$,且d将送给Alice.
- (4) Alice接受y作为一个有效签名,当且仅当 $d \equiv x^{e_1}\alpha^{e_2} \pmod{p}$

对上述这个签名方案,要证明以下两点:

- 1) Alice将会接受按如上方案的有效签名
- 2) Bob几乎不可否认经Alice 验证过的自己的签名。
- 证明(1): (alice接受Bob的签名)。下面计算的所有指数都已做到模q约简:

 $d \equiv C^{a^{-1}} \pmod{p} \equiv y^{e_1 a^{-1}} \beta^{e_2 a^{-1}} \pmod{p}$ $y = x^a \pmod{p}, \beta = \alpha^a \pmod{p}$

代入上式得 $d \equiv x^{e_1} \alpha^{e_2} \pmod{p}$

刚好与协议(4)相符,故Alice接受Bob的签名。

对于(2) Bob几乎不可否认经Alice验证过的自己的签名。 相当于证明下述定理。

定理1: 若 $y \neq x^a \pmod{p}$,那么Alice以概率1/(q-1)接受y 作 为x的有效签名.

证明: Bob对x做了签名y(=x^a)给Alice后。Bob接受了Alice的一个询问 $C = y^{e_1}\beta^{e_2} \pmod{p}$,这个询问对应于q-1个有序对(e₁,e₂)。(原因是 $y,\beta \in G$, C一旦固定,有e₂=f(e₁))然而,Bob不知Alice选择了哪一对(e₁,e₂)来构造出C。

如果 $y \neq x^a \pmod{p}$,那么Bob能做的任何可能回答 $d(=C^{a^{-1 \pmod{q}}} \pmod{p}) \in G$, 刚好与q-1个可能的有序对(e_1,e_2)中的一个相对应。

由 G=< α >,所以对c,d,x,y来说,可设 C= α i,d= α j,x= α k,y= α l,这里i,j,k,l $\in F_q^*$,考虑同余式:

$$C \equiv y^{e_1} \beta^{e_2} \pmod{p}, d \equiv (y^{e_1} \beta^{e_2})^{a^{-1} \pmod{q}} \pmod{p}$$
 ⇒ $d \equiv x^{e_1} \alpha^{e_2} \pmod{p}$

写出关于α的指数表示:

$$\begin{cases} \alpha^{i} \equiv \alpha^{le_{1}} \cdot \alpha^{ae_{2}} \pmod{p} \\ \alpha^{j} \equiv \alpha^{ke_{1}} \cdot \alpha^{e_{2}} \pmod{p} \end{cases}$$
等价于下述方程组:

$$\begin{cases} i = le_1 + ae_2 \pmod{q} \\ j = ke_1 + e_2 \pmod{q} \end{cases}$$
既然假设
$$y \neq x^a \pmod{p}$$
 而 $y = \alpha^l$,
$$x^a = (\alpha^k)^a = \alpha^{ak}$$
, 所以 $l \neq ak$,

相当于说上述方程的系数行列式:

$$\begin{vmatrix} l & a \\ k & 1 \end{vmatrix} = l - ak \neq 0 \pmod{q}$$

知该方程组仅有唯一一组解。

即对每一个d \in G,对于q-1个可能的有序对中(e_1 , e_2),刚好有一个是正确的回答,Bob给Alice的一个回答d,将被验证的概率刚好为1/(q-1)。定理得证!

下面讨论否认协议:

- 目的: (1)Bob能使Alice相信一个无效的签名是伪造的.
 - (2) Bob签名有效,而导致Alice判决错误的概率 为小概率事件。

否认协议: (y?=xa)暂视为对的签名

- 1) Alice 随机选取 $e_1, e_2 \in F_q^*$
- 2) Alice计算 $C = y^{e_1}\beta^{e_2} \pmod{p}$ 且将送给Bob,
- 3) Bob计算 $d = C^{a^{-1} \pmod{q}} \pmod{p}$,且将他回送Alice
- 4) Alice验证 $d \neq x^{e_1}\alpha^{e_2} \pmod{p}$
- 5) Alice再随机选取 $f_1, f_2 \in F_q^*$
- 6) Alice计算 $C = y^{f_1} \beta^{f_2} (\text{mod} p)$,且将他送给Bob
- 7) Bob计算 $D = C^{a^{-1} \pmod{q}} \pmod{p}$,且将他回送给Alice
- 8) Alice验证 $D \neq x^{f_1} \alpha^{f_2} \pmod{p}$

9)Alice推出 y是伪造的

$$\Leftrightarrow (d\alpha^{-e_2})^{f_1} \equiv (D\alpha^{-f_2})^{e_1} (\text{mod } p)$$

定理2: 如果 $y\neq x^a \pmod{p}$,且Alice和Bob都遵守否认协议,那么 $(d\alpha^{-e_2})^{f_1} \equiv (D\alpha^{-f_2})^{e_1} \pmod{p}$

证明:注意,
$$d \equiv C^{a^{-1}} \pmod{p}$$
 ,而 $C \equiv y^{e_1} \beta^{e_2} \pmod{p}$ 又 $\beta = \alpha^a \pmod{p}$,从而有
$$(d\alpha^{-e_2})^{f_1} \equiv ((y^{e_1} \beta^{e_2})^{a^{-1}} \alpha^{-e_2})^{f_1} \pmod{p}$$

进一步有

$$(d\alpha^{-e_2})^{f_1} \equiv y^{e_1 a^{-1} f_1} \beta^{e_2 a^{-1} f_1} \alpha^{-e_2 f_1} (\text{mod } p)$$

$$\equiv y^{e_1 a^{-1} f_1} \alpha^{a e_2 a^{-1} f_1} \alpha^{-e_2 f_1} (\text{mod } p)$$

$$\equiv y^{e_1 a^{-1} f_1} \alpha^{e_2 f_1} \alpha^{-e_2 f_1} (\text{mod } p)$$

$$\equiv y^{e_1 a^{-1} f_1} (\text{mod } p)$$

类似地,按如上方式推出 $(D\alpha^{-f_2})^{e_1} \equiv y^{e_1a^{-1}f_1} \pmod{p}$ 证毕。

- 注:我们不能假设遵守了否认协议,他可以想方设法构造d,D,来达到否认自己签过名的目的。然而,只要Alice严格遵守协议,Bob是无法否认的。我们给出:
- 定理3,假设y=x^a(modp) 且Alice遵守否认协议,如果 $d \neq x^{e_1}\alpha^{e_2} \pmod{p}$ $D \neq x^{f_1}\alpha^{f_2} \pmod{p}$ 那么 $(d\alpha^{-e_2})^{f_1} \neq (D\alpha^{-f_2})^{e_1} \pmod{p}$ 成立的概率为1-1/(q-1)。(证明,略)。