Nurses Stress Prediction Wearable Sensors

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Problem Statement

Nurses work in high-stress environments, facing long shifts, emotional strain, and heavy workloads. Prolonged stress leads to burnout, reduced care quality, and impacts their well-being. Early detection of stress is essential for improving both nurse health and patient care.

Wearable sensors offer a non-intrusive way to monitor stress indicators such as:

- Heart Rate Variability (HRV)
- Electrodermal Activity (EDA)
- Respiratory Rate

By utilizing these sensors and applying machine learning, we can predict stress in real-time, enabling timely interventions to support nurse well-being and maintain healthcare quality.

Motivation

1. Critical Role of Nurses:-

Nurses are essential in healthcare, providing critical patient care under high-pressure conditions.

2. Consequences of Unmanaged Stress:-

Prolonged stress can lead to burnout, reduced quality of patient care, increased errors, and high nurse turnover rates.

3. Improving Work Environment:-

A stress prediction model for nurses can enhance work environments, improve well-being, and ensure high-quality patient care.

Literature Review

To ensure a strong foundation for our project, we reviewed key research that explored stress prediction using wearable sensors and machine learning in healthcare settings.

Research Paper 1:

Stress Detection in Working People

Sriramprakash.S * , Prasanna Vadana. D, O. V. Ramana Murthy

Research Paper 2:

Multi-Class Stress Detection Through Heart Rate Variability:

JON ANDREAS MORTENSEN, MARTIN EFREMOV MOLLOV, AYAN CHATTERJEE, DEBASISH GHOSE, (Senior Member, IEEE), AND FRANK Y.LI

Research Paper 1

- Physiological Signals: Data is collected from 25 subjects under three stressor conditions using GSR (Galvanic Skin Response) and HRV (Heart Rate Variability).
- Feature Extraction: Key features are extracted using certain algorithms, focusing on time and frequency domain characteristics for both GSR and HRV.
- Machine Learning Models: Extracted features are used to train SVM and KNN models.
- Classification: The models classify subjects as either Normal or Stressed based on the input features.
- Random Forest Achieves the highest accuracy of 91.34%

Fig. 1. Overall Framework: Stress Detection-Feature Extraction- Classification

Research Paper 2

- **Data Collection**: HRV signals were gathered from 25 participants during tasks with stressors (email interruptions, time pressure).
- Data Preprocessing: Time-series HRV data was cleaned, normalized, and split into training (80%) and testing (20%) sets.
- **Feature Extraction**: Time-domain and frequency-domain features were extracted, and ANOVA F-test was used for feature ranking.
- Classification: A 1D CNN model was developed to classify stress into three categories: no stress, time pressure, and interruption.
- **Feature Optimization**: Top features achieved **96.5%** accuracy with reduced computational load.

J. A. Mortensen et al.: Multi-Class Stress Detection

FIGURE 1. Framework of the proposed stress status classification model: From data collection to stress level classification.

Dataset description

The Swell-KW dataset consists of data from 25 participants who were knowledge workers, collected to study the effects of stress and workload in a controlled work environment. Participants were exposed to three different conditions: low stress, time pressure stress, and interruption stress. Physiological measurements, including heart rate variability (e.g., RMSSD, SDSD), respiration, and other metrics like KURT, SKEW, and their relative variations (REL_RR), were recorded during various work tasks. The dataset also includes self-reported stress and workload assessments, making it valuable for analyzing the relationship between physiological responses and perceived mental states.

Attributes

No.	Feature	Meaning
1	MEAN_RR	Mean of RR intervals
2	MEDIAN_RR	Median of RR intervals
3	SDRR	SD of RR intervals
4	RMSSD	Root mean square of successive RR interval differences
5	SDSD	SD of successive RR interval differences
6	SDRR_RMSSD	Ratio of SDRR over RMSSD
7	HR	Heart rate
8	pNN25	Percentage of successive RR intervals that differ more than 25 ms
9	pNN50	Percentage of successive RR intervals that differ more than 50 ms
10	SD1	Measures short-term HRV in ms and correlates with baroreflex sensitivity (BRS)
34	higuci	Higuchi Fractal Dimension

Methodology

PIE CHART

Histograms

Heatmaps

Understanding Heatmap:

- Some features exhibit correlations close to 0, indicating they provide independent and useful information.
- Some features show strong positive or negative correlations, suggesting they could be combined or reduced to create a more independent and meaningful feature.

Preprocessing

- Missing Data: Handle missing sensor values.
- Normalization: Normalize physiological signals.
- Outlier Removal: Detect and remove data outliers.
- Conduct t-test: Determines the critical p-value for a two-tailed test at a 0.05 significance level and conducts t-tests.
- PCA: Reduce 34 features to 22 features.

Outlier removal

Preprocessing

Feature Combination:

- RMSSD_SDSD = (RMSSD + SDSD) / 2
- KURT_MERGED = (KURT + KURT_REL_RR) / 2
- SKEW_MERGED = (SKEW + SKEW_REL_RR) / 2
- RMSSD_SDSD_REL_RR = (RMSSD_REL_RR + SDSD_REL_RR) / 2

PCA(Principal Component Analysis):

- 'MEAN_RR', 'MEDIAN_RR', 'HR', 'SDRR', 'SD2', 'VLF', 'TP', 'LF_NU', 'HF_PCT', 'HF_NU', 'HF_LF'
- Combine these 11 features to get 3 PCA features
- Final number of features 22

Applying PCA

Feature Importance in Random Forest

Conclusion

Features	Logistic Regression	Decision Tree	Random Forest	Naive Bayes	Perceptro n	KNN	GMM
Top 20	0.6489	0.8662	0.9214	0.5689	0.518	0.9269	0.4729
Top 15	0.6119	0.8647	0.9219	0.5772	0.4804	0.9265	0.4609
Top 10	0.5939	0.8652	0.9215	0.5813	0.5597	0.9273	0.4926
Top 7	0.5771	0.8663	0.9234	0.5885	0.5058	0.9269	0.5408
Top 5	0.5788	0.8647	0.9226	0.5829	0.4434	0.9267	0.4527

Conclusion

Analysing Results

KNN Performs Best:

• KNN consistently outperforms the other models, especially with the top 10 features, achieving the highest accuracy of **0.9273**.

Training Time Analysis:

 Decision Trees and Logistic Regression may be preferable for scenarios requiring rapid model updates, while KNN excels in accuracy at the cost of slower computation.

Feature Reduction Effect:

 As features are reduced, the performance of some models (like Logistic Regression and Naive Bayes) decreases slightly, but KNN maintains high performance.

Best Feature Count for Performance:

 The best accuracy is achieved with the top 10 features for KNN and it takes almost least time or computation.

Bias-Variance Tradeoff for KNN

Key Insights:

- 1. **Optimal k Range:** Around k=10, the validation error is minimized
- Overfitting for Small k: A small value of k(<4) results in overfitting.
- 3. **Model Generalization:** Larger values of k lead to more generalization though slightly increasing the training error.

Power Features

- PCA_Component_1
- higuci
- SKEW_MERGED
- SDRR_RMSSD_REL_RR
- SD1

Timeline

Individual Contribution

- Namit Jain (2022315):- PPT creation, Programming
- Saurav Haldar (2022464):- Report Creation, Programming
- Saarthak Saxena (2022421):- Report Creation, Programming
- Satwik Garg (2022461):- PPT creation, Programming