Stærðfræðimynstur í tölvunarfræði

Vika 7

Kafli 5: Áfram með þrepasannanir og endurkvæmni

Endurkvæmar skilgreiningar og gerðarþrepun

- ► Endurkvæmt skilgreind föll
- Endurkvæmt skilgreind mengi og gerðir (structures)
- ► Gerðarþrepun (structural induction)
- ► Almenn þrepun (generalized induction)

Endurkvæmt skilgreind föll

- Skilgreining: Endurkvæm skilgreining (eða þrepunarskilgreining inductive definition) á falli $f: \mathbb{N} \to A$ samanstendur af tveimur skrefum:
 - ▶ **Grunnskref:** Skilgreining gildis fallsins í núlli eða nálægt núlli, þ.e. f(0), f(1), ... f(b), fyrir eitthvert b
 - ▶ **Prepunarskref:** Regla til að finna fallgildið f(n), fyrir n > b út frá fallsgildunum í 0, ..., n-1
- Fall $f: \mathbb{N} \to A$ samsvarar runu $a_0, a_1, ...,$ bar sem $a_i = f(i)$
- Við gerðum þetta áður með rakningarvensl
- Dæmi: Skilgreinum f með:
 - f(0) = 3
 - f(n+1) = 2f(n) + 3
 - Finnum f(1), f(2), f(3)
 - ► Lausn:
 - $f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9$
 - $f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21$
 - $f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45$

Endurkvæmt skilgreind föll

Dæmi: Sýnið endurkvæma skilgreiningu á

$$\sum_{k=0}^{n} a_k$$

- Lausn:
 - Grunnskrefið gæti verið

$$\sum_{k=0}^{0} a_k = a_0$$

Þrepunarskrefið gæti verið

$$\sum_{k=0}^{n+1} a_k = \left(\sum_{k=0}^{n} a_k\right) + a_{n+1}$$

Fibonacci tölur

- Skilgreinum Fibonacci tölurnar sem endurkvæmt skilgreint fall
 - ► Grunnskref:
 - f(0) = 0
 - f(1) = 1
 - Þrepunarskref:

$$f(n) = f(n-1) + f(n-2)$$

► Eða, jafngilt:

$$f(n) = \begin{cases} 0 & \text{ef } n = 0 \\ 1 & \text{ef } n = 1 \\ f(n-1) + f(n-2) & \text{ef } n > 1 \end{cases}$$

Endurkvæmar skilgreiningar á mengjum og gerðum (structures)

- ► Endurkvæmar skilgreiningar mengja samanstanda af tveimur hlutum:
 - Grunnskref skilgreinir upphaflegt safn staka
 - Þrepunarskref gefur reglurnar sem nota má til að smíða ný stök í menginu út frá þeim sem þegar er þekkt að eru í menginu
- Stundum er líka tilgreind útilokunarregla, sem segir að ekkert sé í menginu nema það sem hægt er að fá með ofangreindum skrefum
- Við munum ávallt gera ráð fyrir að slík útilokunarregla sé til staðar, jafnvel þótt hún sé ekki sérstaklega nefnd
- Við munum seinna sjá afbrigði þrepunar, **gerðarþrepun** (structural induction) sem notuð er til að sanna niðurstöður um endurkvæmt skilgreind mengi

Endurkvæmt skilgreind mengi

- ▶ Dæmi: Undirmengi S í Z
 - ▶ Grunnskref: $3 \in S$
 - ▶ Prepunarskref: Ef $x \in S$ og $y \in S$ þá er $x + y \in S$
 - ▶ Upphaflega er 3 í S, síðan 3 + 3 = 6, síðan 3 + 6 = 9, o.s.frv.
- ▶ Dæmi: Náttúrlegu tölurnar N
 - ▶ Grunnskref: $0 \in \mathbb{N}$
 - ▶ Prepunarskref: Ef $n \in \mathbb{N}$ þá er $n + 1 \in \mathbb{N}$
 - ▶ Upphaflega er 0 í \mathbb{N} , síðan 0+1=1, síðan 1+1=2, o.s.frv.

Strengir

- Skilgreining: Skilgreinum mengið Σ^* , kallað mengi strengja yfir stafrófið Σ , með endurkvæmri skilgreiningu:
 - ► Grunnskref: $\lambda \in \Sigma^*$ (λ táknar tóma strenginn)
 - Prepunarskref: Ef w er i $Σ^*$ og x er i Σ þá er wx i $Σ^*$
- **Dæmi:** Ef $\Sigma = \{0,1\}$ þá eru strengirnir í Σ^* bitastrengirnir λ , 0,1,00,01,10,11, o.s.frv.
- **Dæmi:** Ef $\Sigma = \{a, b\}$, sýnum að aab sé í Σ^*
- Lausn:
 - ▶ Par eð $\lambda \in \Sigma^*$ og $a \in \Sigma$ þá er $a \in \Sigma^*$
 - ▶ Par eð $a \in \Sigma^*$ og $a \in \Sigma$ þá er $aa \in \Sigma^*$
 - ▶ Par eð $aa \in \Sigma^*$ og $b \in \Sigma$ þá er $aab \in \Sigma^*$

Samskeyting strengja

- Skilgreining: Setja má saman tvo strengi með samskeytingu. Látum Σ vera stafrófið og Σ^* vera mengi strengja yfir það stafróf. Við skilgreinum samskeytingu strengja, táknuð með samskeytingaraðgerðinni \cdot , endurkvæmt á eftirfarandi hátt:
 - ► Grunnskref: Ef $w \in \Sigma^*$ þá skilgreinum við $w \cdot \lambda = w$
 - ▶ Prepunarskref: Ef $w_1 \in \Sigma^*$ og $w_2 \in \Sigma^*$ og $x \in \Sigma$ þá $w_1 \cdot (w_2 x) = (w_1 \cdot w_2)x$
- ightharpoonup Oft ritum við w_1w_2 í stað $w_1 \cdot w_2$
- ► Ef $w_1 = abra$ og $w_2 = cadabra$ þá er samskeytingin $w_1 \cdot w_2 = abracadabra$

Lengd strengs

- Dæmi: Sýnið endurkvæma skilgreiningu á lengd strengs
- Lausn: Lengd strengs má skilgreina sem fallið $l: \Sigma^* \to \mathbb{Z}$ með endurkvæmri skilgreiningu:
 - $l(\lambda) = 0$
 - ▶ l(wx) = l(w) + 1, fyrir $w \in \Sigma^*$ og $x \in \Sigma$

Eða, jafngilt:

$$l(s) = \begin{cases} 0 & \text{ef } s = \lambda \\ l(w) + 1 & \text{ef } s = wx \text{ fyrir eitthvert } w \text{ og } x \end{cases}$$

Svigar í jafnvægi

- ▶ Dæmi: Sýnum endurkvæma skilgreiningu á menginu P sem inniheldur þá strengi yfir stafrófið $\Sigma = \{(,)\}$ sem hafa sviga í jafnvægi
- **Lausn:**
 - ▶ Grunnskref: $\lambda \in P$
 - ▶ Prepunarskref: Ef $x \in P$ og $y \in P$ þá er $(x)y \in P$
- ▶ Sýnið að (()()) sé í P
- ► Hvers vegna er))(() ekki í *P*?

Vel sniðnar segðir (well-formed formulae, wff) í yrðingareikningi

- Skilgreining: Vel sniðnar segðir í yrðinareikningi hafa rökfastana 1 og 0, yrðingabreytur, p,q,r,... auk aðgerðanna \neg , \land , \lor , \rightarrow og \leftrightarrow .
- Grunnskref:
 - 1. 1 og 0 eru vel sniðnar segðir
 - 2. Ef s er yrðingabreyta þá er s vel sniðin segð
- ▶ **Prepunarskref:** Ef E og F eru vel sniðnar segðir þá eru eftirfarandi vel sniðnar segðir:
 - 1. $(\neg E)$
 - $(E \wedge F)$
 - $(E \vee F)$
 - 4. $(E \rightarrow F)$
 - 5. $(E \leftrightarrow F)$
- Dæmi:
 - ► $((p \lor q) \to (q \land 0))$ er vel sniðin segð
 - pq ∨ er ekki vel sniðin segð

Rótföst tré (rooted tree)

- Skilgreining: Skilgreinum endurkvæmt mengi rótfastra trjáa, þar sem rótfast tré samanstendur af mengi hnúta (node, vertex), þar sem einn hnútur er merktur sem rót, ásamt stikum (edge) sem tengja saman hnútana
 - ightharpoonup Grunnskref: Einn hnútur r er rótfast tré, þar sem r er rótin
 - Prepunarskref: Gerum ráð fyrir að $T_1, T_2, ..., T_n$ séu sundurlæg rótföst tré með rótum $r_1, r_2, ..., r_n$. Netið (graph) sem fæst með því að bæta við einum hnúti r sem ekki er í neinu trjánna $T_1, T_2, ..., T_n$ og hafa r sem rót í nýju neti sem fæst með því að bæta við stiku frá r til sérhvers af hnútunum $r_1, r_2, ..., r_n$, er þá einnig rótfast tré.

Byggjum rótföst tré

Fullskipuð tvíundartré

- Skilgreining: Fullskipuð tvíundartré eru skilgreind endurkvæmt á eftirfarandi hátt:
 - ightharpoonup Grunnskref: Einstakur hnútur r er fullskipað tvíundartré með rót r
 - ▶ **Prepunarskref:** Ef r er hnútur og T_1 er fullskipað tvíundartré með rót r_1 og T_2 er fullskipað tvíundartré með rót r_2 þá má smíða nýtt fullskipað tvíundartré með rót r með því að setja vinstri stiku (left edge) frá r til r_1 og aðra hægri stiku (right edge) frá r til r_2

Athugið að við gerum greinarmun á vinstri stiku og hægri stiku, öfugt við venjuna í almennum trjám í netafræðinni (graph theory)

- \blacktriangleright Við segjum þá að r_1 sé **vinstra barn** (left child) r og að r_2 sé **hægra barn** (right child) r
- Við segjum einnig að T_1 sé **vinstra undirtré** (left subtree) hnútarins r og að T_2 sé **hægra undirtré** (right subtree) hnútarins r
- $lackbox{ Við segjum einnig að hnúturinn } r$ sé foreldri (parent) hnútarins r_1 og hnútarins r_2
- \blacktriangleright Við skrifum stundum $T_1 \cdot T_2$ til að tákna þá aðgerð að smíða nýtt fullskipað tvíundartré með vinstra undirtré T_1 og hægra undirtré T_2

Byggjum fullskipuð tvíundartré

Gerðarþrepun (structural induction)

- ▶ Skilgreining: Gerðarþrepun er aðferð til að sanna að öll stök í mengi S sem skilgreint er með endurkvæmri skilgreiningu uppfylli tiltekna umsögn P. Gerðarþrepunin felst í eftirfarandi skrefum:
 - ▶ **Grunnskref:** Sönnum að P(x) gildi fyrir öll stök x sem skilgreind eru í grunnskrefi skilgreiningarinnar á S
 - **Prepunarskref:** Sönnum að ef P(x) gildir fyrir sérhvert af þeim gildum x sem notuð eru sem byggingarblokkir í þrepunarskrefi skilgreiningarinnar á S þá gildi P(z) fyrir gildið z sem smíðað er í þrepunarskrefinu
- Réttmæti gerðarþrepunar má sanna með venjulegri þrepun á fjölda þeirra skrefa sem notuð eru til að smíða viðkomandi gildi

Fullskipuð tvíundartré

- Skilgreining: Hæð fullskipaðs tvíundartrés er skigreint endurkvæmt á eftirfarandi hátt
 - ▶ **Grunnskref:** Hæð fullskipaðs tvíundartrés T sem einungis samanstendur af rót r er h(T) = 0
 - ▶ **Prepunarskref:** Ef T_1 og T_2 eru fullskipuð tvíundartré þá er hæð fullskipaða tvíundartrésins $T = T_1 \cdot T_2$ skilgreint sem $h(T) = 1 + \max(h(T_1), h(T_2))$
- Fjöldi hnúta, n(T), í fullskipuðu tvíundartré T uppfyllir eftirfarandi endurkvæmu skilgreiningu
 - ▶ **Grunnskref:** Fjöldi hnúta í fullskipuðu tvíundartré T sem einungis samanstendur af rót r er n(T)=1
 - **Prepunarskref:** Ef T_1 og T_2 eru fullskipuð tvíundartré þá er fjöldi hnúta í fullskipaða tvíundartrénu $T=T_1\cdot T_2$ reiknað sem $n(t)=1+n(T_1)+n(T_2)$

Gerðarþrepun á fullskipuð tvíundartré

- ▶ **Setning:** Ef T er fullskipað tvíundartré þá er $n(T) \le 2^{h(T)+1} 1$
- Sönnun: Notum gerðarþrepun
 - ▶ **Grunnskref:** Þegar T samanstendur einungis af rót fáum við n(T) = 1 og h(T) = 0, þar af leiðir að $n(T) = 1 \le 1 = 2^{0+1} 1 = 2^{h(T)+1}$
 - ▶ Prepunarskref: Gerum ráð fyrir að $n(T_1) \le 2^{h(T_1)+1} 1$ og að $n(T_2) \le 2^{h(T_2)+1} 1$ fyrir tvö fullskipuð tvíundartré T_1 og T_2 . Þá er fjöldi hnúta í trénu $T = T_1 \cdot T_2$ $n(T) = 1 + n(T_1) + n(T_2)$ (samkvæmt endurkvæmri segð fyrir n(T)) $\le 1 + \left(2^{h(T_1)+1} 1\right) + \left(2^{h(T_2)+1} 1\right)$ (samkvæmt þrepunarforsendu) $\le 2 \cdot \max\left(2^{h(T_1)+1}, 2^{h(T_2)+1}\right) 1$ (bar eð $\max\left(2^x, 2^y\right) = 2^{\max(x,y)}\right)$ $= 2 \cdot 2^{h(T)} 1$ (samkvæmt endurkvæmri skilgreiningu h(T)) $= 2^{h(T)+1} 1$

Almenn brepun (generalized induction)

- Almenn þrepun er notuð til að sanna fullyrðingar um velröðuð mengi önnur en heiltölurnar
- Íhugum til dæmis röðun á $\mathbb{N} \times \mathbb{N}$ skilgreind með $(x_1,y_1) < (x_2y_2)$ þá og því aðeins að $x_1 < x_2 \vee (x_1 = x_2 \wedge y_1 < y_2)$ gildi. Þetta er kallað lexíkógrafísk röð (lexicographical ordering), eða einfaldlega stafrófsröðun, og er náskyld stafrófröð strengja. Athugið að út frá < má síðan auðveldlega skilgreina \leq og \geq með
 - 1. $(x_1, y_1) \le (x_2 y_2) \leftrightarrow (x_1, y_1) < (x_2 y_2) \lor (x_1, y_1) = (x_2 y_2)$
 - 2. $(x_1, y_1) > (x_2y_2) \leftrightarrow (x_2, y_2) < (x_1y_1)$
 - 3. $(x_1, y_1) \ge (x_2 y_2) \leftrightarrow (x_1, y_1) > (x_2 y_2) \lor (x_1, y_1) = (x_2 y_2)$
- ▶ **Setning:** Sérhver síminnkandi runa tvennda, $(x_1, y_1) > (x_2y_2) > (x_3y_3) > \cdots$ er endanleg
- lacktriangle Við getum sannað þessa setningu með venjulegri þrepun á x_1
- Afleiðing af þessari setningu er að mengið $\mathbb{N} \times \mathbb{N}$ með samanburði \leq er velraðað, þegar við tökum einnig tillit til þess að ávallt gildir eitt af þrennu: $(x_1, y_1) = (x_2, y_2)$ eða $(x_1, y_1) < (x_2, y_2)$ eða $(x_1, y_1) > (x_2, y_2)$

Almenn brepun

▶ **Dæmi:** Notum almenna þrepun til að skilgreina $a_{m,n}$ fyrir $(m,n) \in \mathbb{N} \times \mathbb{N}$ með

$$a_{m,n} = \begin{cases} 0 & \text{ef } m = n = 0 \\ a_{m-1,n} + 1 & \text{ef } n = 0 \text{ og } m > 0 \\ a_{m,n-1} + n & \text{ef } n > 0 \end{cases}$$

- Sýnið að $a_{m,n}=m+\frac{n(n+1)}{2}$ sé vel skilgreint fyrir öll $(m,n)\in\mathbb{N}\times\mathbb{N}$
- ▶ Sönnun: Notum almenna þrepun
 - ▶ **Grunnskref:** $a_{0,0} = 0 = 0 + \frac{0(0+1)}{2}$ er vel skilgreint og hefur tilgreinda gildið
 - ▶ **Prepunarskref:** Gerum ráð fyrr að fyrir öll (m',n') sem eru minni en (m,n) sé $a_{m',n'}$ vel skilgreint og $a_{m',n'}=m'+\frac{n'(n'+1)}{2}$. Þá sjáum við:
 - ▶ Ef n=0 þá gildir samkvæmt þrepunarforsendu að $a_{m,n}=a_{m-1,n}+1=m-1+\frac{n(n-1)}{2}+1=m+\frac{n(n+1)}{2}$
 - Fig. Ef n > 0 þá gildir samkvæmt þrepunarforsendu að (n-1)n

$$a_{m,n} = a_{m,n-1} + n = m + \frac{(n-1)n}{2} + n = m + \frac{n(n+1)}{2}$$

Sama í sauðakóða

```
Notkun: x := reikna(m,n);
Fyrir:
         m, n eru heiltölur, m, n \geq 0
Eftir:
         x = m + n(n+1)/2
stef reikna( m, n: heiltölur )
  ef m = 0 og n = 0 þá skila 0
  ef n=0 þá
     skila reikna(m-1,n)+1
  annars
    skila reikna(m, n-1)+n
```

Er þetta naumrétt? Hvað þýðir það?

Er þetta rammrétt? Hvað þýðir það?

Fleiri endurkvæm algrím

- Hrópmerkt
- Veldishafning
- ► Stærsti samdeilir
- ► Helmingunarleit

Hrópmerkt (factorial)

```
Notkun: x := hrópmerkt(n)
Fyrir: n er heiltala, n \ge 0
Eftir: x = n!
stef hrópmerkt( n: heiltala )
  ef n=0 þá
     skila 1
  annars
     skila n ·hrópmerkt(n-1)
```

Einföld veldishafning

```
Notkun: x := \text{veldi}(a, n)
           n er heiltala, n \ge 0, a er rauntala
Fyrir:
Eftir: x = a^n
stef veldi( a: rauntala, n: heiltala )
  ef n=0 þá
     skila 1
   annars
     skila a ·veldi(a, n-1)
```

Stærsti samdeilir (gcd)

```
Notkun: x := \gcd(a,b)
           a, b eru heiltölur, 0 \le a < b
Fyrir:
           x er stærsti samdeilir a og b
Eftir:
stef gcd( a, b: heiltala )
  ef a=0 þá
     skila b
   annars
     skila gcd(b \mod a, a)
```

Helmingunarleit (binary search)

```
Notkun:
            k := leita(i, j, x)
Fyrir:
            Runan a_1, a_2, ..., a_n er til staðar og inniheldur
             heiltölur í vaxandi röð, 1 \le i \le j \le n+1
Eftir:
            1 \le k \le n+1 og
            a_i, a_{i+1}, \dots, a_{k-1} < x \le a_k, a_{k+1}, \dots, a_{j-1}
stef leita( i, j, x: heiltölur )
    ef i = j þá skila i
   m \coloneqq \left| \frac{i+j}{2} \right|
    ef a_m < x þá
        skila leita(m+1,j,x)
    annars
        skila leita(i, m, x)
```

Íhugið kallið leita(1,n+1,x)