

Кубок ЛФИ 11.s03.e03

Самые лучшие шляпы— цилиндры. Туве Янссон. Волшебная зима

Цилиндр

Траектории лучей в цилиндре

Аналогии между разными задачами физики, при наличии известного решения для одной из них, зачастую позволяют получить короткое решение другой. Например, в Третьем Эпизоде Второго Сезона Кубка ЛФИ, одиннадцатиклассникам предлагалось получить форму брахистохроны при движении материальной точки по гладкому каналу внутри однородного шара с помощью оптико-механической аналогии. В рамках данной задачи вам также предлагается воспользоваться аналогией между оптикой и механикой, но уже для анализа траектории движения луча в неоднородной оптической среде.

Основой геометрической оптики является принцип Ферма, утверждающий, что в оптической среде с показателем преломления $n\left(\vec{r}\right)$ величина оптического пути

$$\ell_{\rm o} = \int_{\Lambda}^{B} n\left(\vec{r}\right) dl$$

между точками А и В принимает экстремальное значение.

В основе поиска положений равновесия механических систем лежит принцип экстремума потенциальной энергии, утверждающий, что в положении равновесия потенциальная энергия системы принимает экстремальное значение.

Рассмотрим невесомую нить, равномерно заряженную по длине с плотностью заряда λ и находящуюся в электростатическом поле с потенциалом $\varphi(\vec{r})$. Если нить закреплена в точках A и B и её собственной энергией можно пренебречь, то из принципа экстремума потенциальной энергии следует, что величина

$$W_{p} = \lambda \int_{A}^{B} \varphi\left(\vec{r}\right) dl$$

также принимает экстремальное значение.

Пусть $\varphi(\vec{r}) = An(\vec{r}) + B$, где A — заданная, а B — произвольная постоянная величина. Тогда, если длины нити и траектории луча одинаковы — траектория луча и форма нити совпадают. Данная аналогия может быть полезна для решения следующей задачи.

Рассмотрим бесконечно длинный цилиндр радиусом R с осью z, показатель преломления которого зависит от расстояния r до оси цилиндра по закону

$$n(r) = \sqrt{2 - \frac{r^2}{R^2}}.$$

Цилиндр находится в воздухе, показатель преломления которого равен единице.

Рассмотрим тра
ектории лучей, проходящие через точку A цилиндра, находящуюся на расстояни
и $r_0=R/2$ от оси цилиндра.

Направление распространения луча в точке входа будем характеризовать углом α_0 между осью цилиндра и волновым вектором, а также углом φ_0 , определяемым следующим образом: Пусть \vec{e}_0 — единичный вектор, направленный вдоль луча в точке A. Тогда в системе координат (x, y, z) вектор \vec{e}_0 раскладывается следующим образом

$$(e_{0x}, e_{0y}, e_{0z}) = (\sin \alpha_0 \sin \varphi_0, \sin \alpha_0 \cos \varphi_0, \cos \alpha_0).$$

1. $(3,5 \ балла)$ При каком значении α_0 траектория луча представляет собой винтовую линию?

В пунктах 2 и 3 величина α_0 задана и равна $\pi/4$.

- 2. (4 балла) При произвольном значении φ_0 найдите r_{\min} и r_{\max} минимальное и максимальное расстояние от точек траектории до оси цилиндра соответственно.
- 3. (2,5 балла) При каких значениях $\varphi_0 \in [0;\pi]$ луч движется внутри цилиндра, не выходя из него через боковую поверхность?

Первая подсказка — 02.05.2022 14:00 (MCK)

Вторая подсказка — $04.05.2022\ 14:00\ (MCK)$

Окончание третьего тура — $06.05.2022\ 22:00\ (MCK)$