

Database Design and Modelling

CS 341 Database Systems

Data Model Levels

Feature	Conceptual	Logical	Physical
Entity Names	✓	\checkmark	
Entity Relationships	✓	✓	
Attributes		✓	
Primary Keys		✓	✓
Foreign Keys		✓	✓
Table Names			✓
Column Names			✓
Column Data Types			✓

Conceptual Model Design

Logical Model Design

Physical Model Design

Chen's notation

Crow's Foot Notation

Fall 2024 6

Attributes

Relationship types

Entity Type

Entity type

• Group of objects with same properties, identified by enterprise as having an independent existence.

Entity

Entity occurrence

• Uniquely identifiable object of an entity type.

Physical existence

Staff Part

Property Supplier

Customer Product

Conceptual existence

Viewing Sale

Inspection Work experience

ER diagram of Staff and Branch entity types

Attributes

Attribute

• Property of an entity or a relationship type.

Attribute Domain

- Set of allowable values for one or more attributes.
- Not displayed in an ER model

Key Attribute Types

A key attribute type is an attribute type whose values are distinct for each individual entity

• Examples: supplier number, product number, social security number

A key attribute type can also be a combination of attribute types

 Example: combination of flight number and departure date

Attributes

Simple Attribute

• Attribute composed of a single component with an independent existence.

Composite Attribute

• Attribute composed of multiple components, each with an independent existence.

Simple versus Composite Attribute Types

A **simple or atomic** attribute type cannot be further divided into parts

Examples: supplier number, supplier status

A **composite** attribute type is an attribute type that can be decomposed into other meaningful attribute types

Examples: address, name

Attributes

Single-valued Attribute

• Attribute that holds a single value for each occurrence of an entity type.

Multi-valued Attribute

• Attribute that holds multiple values for each occurrence of an entity type.

Single-Valued versus Multi-Valued Attribute Types

A **single-valued** attribute type has only one value for a particular entity

• Examples: supplier number, supplier name

A **multi-valued** attribute type is an attribute type that can have multiple values

• Example: email address

Note: this is chen notation, the crow's foot does not distinguish this.

Attributes

Derived Attribute

 Attribute that represents a value that is derivable from value of a related attribute, or set of attributes, not necessarily in the same entity type.

Derived Attribute Type

A derived attribute type is an attribute type which can be derived from another attribute type

• Example: age

Keys

Candidate Key

 Minimal set of attributes that uniquely identifies each occurrence of an entity type.

Primary Key

• Candidate key selected to uniquely identify each occurrence of an entity type.

Composite Key

 A candidate key that consists of two or more attributes.

ER diagram of Supplier and Products entity types

Relationship type

• Set of meaningful associations among instances of one, two or more entity types.

Relationship occurrence

 Uniquely identifiable association, which includes one occurrence from each participating entity type.

Semantic net of Has relationship type

ER diagram of Branch Has Staff relationship

Degree of a Relationship

Number of participating entities in relationship.

- Two is Binary
- Three is Ternary
- Four is Quaternary

Binary relationship called <u>POwns</u>

'Private owner owns property for rent'

Ternary relationship called Registers

Quaternary relationship called *Arranges*

Recursive Relationship

 Relationship type where same entity type participates more than once in different roles.

• Relationships may be given role names to indicate purpose that each participating entity type plays in a relationship.

Strong Entity Type

 Entity type that is not existencedependent on some other entity type.

Weak Entity Type

• Entity type that is existence-dependent on some other entity type.

Weak Entity

Weak Entity Type

- A strong entity type is an entity type that has a key attribute type
- A weak entity type is an entity type that does not have a key attribute type of its own
 - related to owner entity type from which it borrows an attribute type to make up a key attribute type

- Relationship type can also have attribute types
- These attribute types can be migrated to one of the participating entity types in case of a 1:1 or 1:N relationship type

'Newspaper advertises property for rent'

- Main type of constraint on relationships is called <u>multiplicity</u>.
- **Multiplicity** number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
- Represents policies (called business rules) established by user or company.

The most common degree for relationships is binary.

Binary relationships are generally referred to as being:

- one-to-one (1:1)
- one-to-many (1:*) or (1:M)
- many-to-many (*:*) or (M:M)

Summary of multiplicity constraints

Table 11.1 A summary of ways to represent multiplicity constraints.

Alternative ways to represent multiplicity constraints	Meaning
01 11 (or just 1) 0* (or just *) 1* 510	Zero or one entity occurrence Exactly one entity occurrence Zero or many entity occurrences One or many entity occurrences Minimum of 5 up to a maximum of 10 entity occurrences
0, 3, 6–8	Zero or three or six, seven, or eight entity occurrences

Multiplicity Chen's VS Crow's Foot

Session 02

IBA

XK XK

Multiplicity of Staff Oversees PropertyForRent (1:*) relationship type

Multiplicity for Complex Relationships

• Number (or range) of possible occurrences of an entity type in an n-ary relationship when other (n-1) values are fixed.

Semantic net of ternary Registers relationship with values for Staff and Branch entities fixed

Multiplicity of ternary Registers relationship

Multiplicity of ternary Supply relationship

Assume that we have a situation

- a) Suppliers can supply products for projects.
- b) A supplier can supply a particular product for multiple projects.
- c) A *product* for a particular *project* can be supplied by multiple suppliers.
- d) A project can have a particular supplier supply multiple products.
- e) The model must also include the quantity and due date for **supplying** a particular **product** to a particular **project** by a particular **supplier**.

Multiplicity of ternary Supply relationship

Multiplicity of ternary Supply relationship

Ternary Relationship Types

- Say we have two projects: project

 1 uses a pencil and a pen, and
 project 2 uses a pen. Supplier
 Peters supplies the pencil for
 project 1 and the pen for project 2
 whereas supplier Johnson supplies
 the pen for project 1.
- From the binary relationship types, it is not clear who supplies the pen for project 1!

SUPPLY

Supplier	Product	Project
Peters	Pencil	Project 1
Peters	Pen	Project 2
Johnson	Pen	Project 1

SUPPLIES

Supplier	Project
Peters	Project 1
Peters	Project 2
Johnson	Project 1

USES

Product	Project
Pencil	Project 1
Pen	Project 1
Pen	Project 2

CAN SUPPLY

Supplier	Product
Peters	Pencil
Peters	Pen
Johnson	Pen

Structural Constraints

Multiplicity

• is made up of two types of restrictions on relationships: **cardinality and participation**.

Cardinality

• Describes maximum number of possible relationship occurrences for an entity participating in a given relationship type.

Participation

• Determines whether all or *only some entity occurrences participate* in a relationship.

Participation

Partial Participation

• a situation in which **some** entities may not participate in the relationship.

Total Participation or Existence Dependency

• a situation in which <u>all</u> entities need to participate in the relationship; the existence of an entity depends upon the existence of another.

Multiplicity as cardinality and participation constraints

ER Model (Chen's Notation)

Multiplicity Chen's VS Crow's Foot

ER Model (Crow's Foot Notation)

Comparison

Scenario 1

- Consider a student enrollment system.
- Identify major entities, their attributes
- Identify relations and multiplicity (participation + cardinality)
- Draw an ER model in
 - Chen's Notation
 - Crow's Foot Notation