

Mathématiques

Classe: BAC

Chapitre: Fonctions logarithmes

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(\$ 35 min

6 pts

- **1°)** Soit g la fonction définie sur $]0,+\infty[$ par $g(x)=1+x-x\ln x$.
 - a) Étudier les variations de g.
 - **b)** En déduire que l'équation g(x) = 0 admet une unique solution x_0 dans $]0,+\infty[$. Vérifier que $3,5 < x_0 < 3,6$.
 - c) En déduire le signe de g.
- 2°) Soit f la fonction définie sur $]0,+\infty[$ par $f(x)=\frac{\ln x}{1+x^2}$.

On désigne par C la courbe représentative de f dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- a) Calculer f'(x) et vérifier que $f'(x) = \frac{g(x)}{x(1+x^2)^2}$.
- **b)** Dresser le tableau de variation de f.
- **c)** Vérifier que $f(\sqrt{x_0}) = \frac{1}{2x_0}$.
- **d)** Tracer la courbe \mathbb{C} . (on prendra $x_0 \approx 3.6$).
- **3°)** Soit (a_n) la suite définie sur IN^* par : $a_n = \int_1^{\frac{1}{n}} f(t) dt$.
 - a) Montrer que la suite (a_n) est croissante.
 - **b)** Monter que pour tout x de l'intervalle]0,1[, $\ln x \le f(x) \le \frac{1}{2} \ln x$.
 - **c)** En déduire que $\frac{1}{2}\left(1-\frac{1+\ln n}{n}\right) \le a_n \le 1-\frac{1+\ln n}{n}$.
- **d)** Monter alors que la suite (a_n) est convergente et que sa limite appartient à l'intervalle $\left\lfloor \frac{1}{2}, 1 \right\rfloor$

Exercice 2:

© 25 min

4 pts

Soient les intégrales suivantes : $I = \int_0^1 \frac{dx}{\sqrt{x^2 + 2}}$; $J = \int_0^1 \frac{x^2}{\sqrt{x^2 + 2}} dx$ et $K = \int_0^1 \sqrt{x^2 + 2} dx$.

- **1°)** Soit f la fonction définie sur [0,1] par : $f(x) = \ln(x + \sqrt{x^2 + 2})$.
 - a) Montrer que pour tout $x \in [0,1]$, $f'(x) = \frac{1}{\sqrt{x^2 + 2}}$.
 - **b)** En déduire que $I = \frac{\ln(\sqrt{3} + 2)}{2}$.
- **2°) a)** Vérifier que J + 2I = K.
 - **b)** Montrer que $K = \sqrt{3} J$. (On pourra faire un intégration par parties).
 - c) En déduire les valeurs de J et K.

Exercice 3:

© 25 min

6 pts

- **1°)** On considère la fonction définie sur $[1,+\infty[$ par $f(x) = \sqrt{x} \sqrt{\ln x}$ et on désigne par
- C sa courbe.

représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- a) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
- **b)** Montrer que $\lim_{x\to 1^+} \frac{f(x)-1}{x-1} = -\infty$. Interpréter graphiquement le résultat.
- **c)** Montrer que f est dérivable sur $]1,+\infty[$ et que $f'(x) = \frac{\sqrt{x \ln x} 1}{2x\sqrt{\ln x}}.$
- **2°)** Ci-dessous, on a tracé dans le repère $(0,\vec{i},\vec{j})$ les courbes :

 \mathbf{C}_1 d'équation : $y = \sqrt{x}$, \mathbf{C}_2 d'équation : $y = \sqrt{\ln x}$ et Γ d'équation : $y = \sqrt{x \ln x}$.

On considère les points M et N de même abscisse x et appartenant respectivement à C_1 et C_2 .

- a) Exprimer la distance MN en fonction de x.
- **b)** Construire le point A tel que la tangente à C en ce point est horizontale. On notera α son abscisse.
- c) Dresser le tableau de variation de f, puis construire \mathbb{C} .

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

