

SONIDO

Rodrigo F. Cádiz Septiembre 2011

Contenido

Sonido

- •¿Qué es el sonido?
- Propiedades de los sistemas vibratorios
- Tipos de sonido
- Análisis de Fourier
- Representación visual
- Escala de decibeles

Sonido

¿Qué es el sonido?

Requisitos para que haya sonido...

- Fuente en vibración (como las cuerdas vocales)
- Fuente de energía (como los pulmones)
- Un medio (para transportar la vibración, como el aire)
- Un receptor (como el oído humano)

http://www-nehc.med.navy.mil/downloads/occmed/hctoolbox/Toolbox_files/1

Onda

http://youtu.be/t5qHWK9jgno

Diapasón

http://youtu.be/cK2-6cgqgYA

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20**Sound**.ppt

Ondas de sonido

Las moléculas en el aire vibran en torno a alguna posición promedio creando zonas de compresión y rarefacción.

http://www.drake.edu/artsci/physics/1

¿Cómo se ve el sonido?

¿Qué hacen las moléculas cuando el sonido ocurre?

http://youtu.be/cK2-6cgqgYA

http://youtu.be/KbielPY7QA0

 $http://www.bcurbanecology.com/download/urban_trees_final/powerpoints/physics_of_sound2.ppt$

Propiedades de los sistemas vibratorios

Sistemas vibratorios

Algunos términos

- desplazamiento: distancia momentaria del punto de equilibrio B
- ciclo: una oscilación completa
- amplitud: máximo desplazamiento
- *frecuencia*: número de ciclos por segundo (hertz o Hz)
- período: número de segundos por ciclo
- fase: parte del ciclo que una onda ha avanzado en relación a un punto de referencia arbitrario

A simple spring-mass oscillator.

¿Cúal es la relación entre frecuencia (f) y período (T)?

Frecuencia - # of ciclos/segundo Período – tiempo de una vibración completa

Frecuencia = 1 / Período Período = 1 / Frecuencia

SINE-WAVE

The amplitude, period, and frequency of a sine wave generated by a point projected on a line from uniform circular motion at one revolution per second moving horizontally. As a concrete example, the sine wave would be the path traced by the projected vertical position of a peg on a rotating turntable that is facing us on its side and moving horizontally at a constant speed.

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20**Sound**.ppt

Amplitud

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20Sound.ppt

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20 Sound.ppt

Frecuencia

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20Sound.ppt

Fase

¿Cómo suenan los cambios en amplitud, frecuencia y fase de las ondas sinusoidales?

http://www.falstad.com/fourier/

http://www.falstad.com/mathphysics.html

Tipos de ondas sonoras

Onda simple o sinusoidal

http://youtu.be/P-Umre5Np 0

Ondas simples vs. complejas

- Hasta ahora hemos considerado sólo ondas simples (sinusoides).
- Sin embargo, la mayoría de los sonidos en el mundo real no son simples, sino ondas complejas.

Ejemplo de ondas complejas: diente de sierra

http://www.falstad.com/fourier/

tiempo

http://www.falstad.com/mathphysics.html

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20Sound.ppt

Ejemplo de ondas complejas: ondas cuadradas

Ejemplo de ondas complejas: sonidos vocales

Ondas periódicas vs aperiódicas

- Hasta ahora, todas las ondas consideradas(simples o complejas) han sido periódicas—un intervalo de una onda se repite indefinidamente.
- Muchas ondas son no repetitivas, es decir, son aperiódicas.

Ejemplo de onda aperíodica

Ondas simples vs. complejas

 Una sinusoide se puede describir exactamente especificando su amplitud, frecuencia y fase.

• ¿Se puede describir una onda compleja de la misma forma?

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20Sound.ppt

Análisis de Fourier

Joseph Fourier (1768-1830)

http://upload.wikimedia.org/wikipedia/en/a/aa/Fourier2.jpg

Análisis de Fourier

Teorema de Fourier:

Cualquier onda puede ser analizada como la suma de un conjunto de ondas sinusoidales, llamadas armónicos, cada una con una amplitud, frecuencia y fase particular.

La serie armónica

Cuerdas

Cuerdas

http://youtu.be/MT7EpS4OX3k

Tubos

Cómo aproximar una onda cuadrada

http://www.falstad.com/fourier/

http://www.falstad.com/mathphysics.html

homepage.psy.utexas.edu/homepage/class/Psy394U/Diehl/Copy%20of%20Physics%20of%20**Sound**.ppt

Formas de onda

- Onda sinusoidal
- Diente de sierra
- Tren de pulsos
- Onda triangular
- Onda cuadrada

Síntesis de Fourier Diente de sierra (phasor~)

Síntesis de Fourier Tren de pulsos

Síntesis de Fourier Onda triangular

Síntesis de Fourier Onda cuadrada

Representación visual del sonido

Onda

Amplitud

Tiempo

Onda

Forma de onda de sonidos ambiente

Espectro

Frecuencia: 1 Hz

Amplitud: 1

Espectro

Frecuencia: 1 Hz

Amplitud: 1

Espectrograma

Frecuencia: 1 Hz

Amplitud: 1

Espectrograma

Frecuencia: 1 Hz

Amplitud: 1

Espectrograma de la voz

Frecuencia: 1 Hz

Amplitud: 1

Frecuencia: 1 Hz

Amplitud: 1

Duración: 100 ms

Frecuencia: 1 Hz

Amplitud: 1

Duración: 100 ms

Frecuencia: 1.5 Hz

Amplitud: 0.5

Frecuencia: 1 Hz

Amplitud: 1

Duración: 100 ms

Frecuencia: 1.5 Hz

Amplitud: 0.5

Frecuencia: 1 Hz

Amplitud: 1

Duración: 100 ms

Frecuencia: 1.5 Hz

Amplitud: 0.5

Frecuencia: 1 Hz

Amplitud: 1

Duración: 100 ms

Frecuencia: 1.5 Hz

Amplitud: 0.5

Frecuencia: 1-1.5 Hz

Amplitud: 1

Frecuencia: 1-1.5 Hz

Amplitud: 1

Frecuencia: 1-1.5 Hz

Amplitud: 1

Frecuencia: 0.5-2 Hz

Amplitud: 0.75

Frecuencia: 0.5-2 Hz

Amplitud: 0.75

Frecuencia: 0.5-2 Hz

Amplitud: 0.75

Tipos de Sonidos y su Representación

Espectro de una sinusoide

Espectro de un diente de sierra

Espectro de un tren de pulsos

Espectro de onda triangular

Espectro de onda cuadrada

Sonidos musicales

Onda y espectro de una flauta dulce

Onda y espectro de un violín

Onda y espectro de un corno

Onda y espectro de un clarinete

Del dominio del tiempo al dominio de la frecuencia

Escala de decibeles

Escala de decibeles

Presión de sonido e intensidad

Presión sonora (p) = fuerza por centímetro cuadrado (dynes/cm2)

Intensidad (I) = potencia por centímetro cuadrado (Watts/cm2)

$$I = kp^2$$

Presión de sonido e intensidad

Sonido audible de menor presión e intensidad

- $= 2 \times 10^{-4} \text{ dynes/cm}^2$
- $= 10^{-16} \text{ Watts/cm}^2$

Problema: entre el sonido apenas audible y el umbral del dolor, la presión varía en una razón de 1:10,000,000, y la intensidad en una razón de 1:100,000,000,000,000! Es más conveniente usar escalas basadas en logaritmos.

Presión de sonido e intensidad

Decibeles
$$(dB_{SPL,IL})$$
 = 20 log (p_1/p_0)
= 10 log (I_1/I_0)

donde p_1 es la presión sonora e I_1 es la intensidad del sonido en cuestión, y p_0 e I_0 son la presión e intensidad de un sonido apenas audible.

