

Trabajo Práctico 3 Diversión NP-Completa

TEORÍA DE ALGORITMOS (75.29) Curso Buchwald - Genender

Nombre	Padrón
Denise Dall'Acqua	108645
Martín Alejo Polese	106808
Nicolás Agustín Riedel	102130

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Demostración: NP					
	1.1. Que los barcos no sean adyacentes	4				
	1.2. Que las demandas de las filas y columnas se cumplan de manera exacta $\dots \dots$	4				
	1.3. Que se coloquen todos los barcos \dots	4				
	1.4. Codigo	Ę				
	1.5. Conclusion	5				
2.	Demostración: NP-Completo	5				
3.	Algoritmo de Backtracking					
	3.1. Codigo	8				
	3.2. Análisis	11				
4.	Ejemplos de ejecución	11				
5 .	Algoritmo de aproximación	14				
	5.1. Descripción del algoritmo	14				
	5.2. Análisis del algoritmo	16				
6.	Medición empírica	16				
7.	Conclusiones	17				

Consigna

Para los primeros dos puntos considerar la versión de decisión del problema de La Batalla Naval: Dado un tablero de $n \times m$ casilleros, y una lista de k barcos (donde el barco i tiene b_i de largo), una lista de restricciones para las filas (donde la restricción j corresponde a la cantidad de casilleros a ser ocupados en la fila j) y una lista de restricciones para las columnas (símil filas, pero para columnas), ies posible definir una ubicación de dichos barcos de tal forma que se cumplan con las demandas de cada fila y columna, y las restricciones de ubicación?

- Demostrar que el Problema de la Batalla Naval se encuentra en NP.
- Demostrar que el Problema de la Batalla Naval es, en efecto, un problema NP-Completo. Si se hace una reducción involucrando un problema no visto en clase, agregar una (al menos resumida) demostración que dicho problema es NP-Completo. Para esto, recomendamos ver ya sea los problemas 3-Partition o Bin-Packing, ambos en su versión unaria. Si bien sería tentador utilizar 2-Partition, esta reducción no sería correcta. En caso de querer saber más al respecto, consultarnos:-)
- Escribir un algoritmo que, por backtracking, obtenga la solución óptima al problema (valga la redundancia) en la versión de optimización: Dado un tablero de $n \times m$ casilleros, y una lista de k barcos (donde el barco i tiene b_i de largo), una lista de las demandas de las n filas y una lista de las m demandas de las columnas, dar la asignación de posiciones de los barcos de tal forma que se reduzca al mínimo la cantidad de demanda incumplida. Pueden no utilizarse todos los barcos. Si simplemente no se cumple que una columna que debería tener m0 casilleros ocupados tiene m0, entonces contará como m0 de demanda incumplida. Por el contrario, no está permitido exceder la cantidad demandada. Generar sets de datos para corroborar su correctitud, así como tomar mediciones de tiempos.
- (opcional) Escribir un modelo de programación lineal que resuelva el problema de forma óptima. Ejecutarlo para los mismos sets de datos para corroborar su correctitud. Tomar mediciones de tiempos y compararlas con las del algoritmo que implementa Backtracking.
- John Jellicoe (almirante de la Royal Navy durante la batalla de Jutlandia) nos propone el siguiente algoritmo de aproximación: Ir a la fila/columna de mayor demanda, y ubicar el barco de mayor longitud en dicha fila/columna en algún lugar válido. Si el barco de mayor longitud es más largo que dicha demanda, simplemente saltearlo y seguir con el siguiente. Volver a aplicar hasta que no queden más barcos o no haya más demandas a cumplir.
 - Este algoritmo sirve como una aproximación para resolver el problema de La Batalla Naval. Implementar dicho algoritmo, analizar su complejidad y analizar cuán buena aproximación es. Para esto, considerar lo siguiente: Sea I una instancia cualquiera del problema de La Batalla Naval, y z(I) una solución óptima para dicha instancia, y sea A(I) la solución aproximada, se define $\frac{A(I)}{z(I)} \leq r(A)$ para todas las instancias posibles. Calcular r(A) para el algoritmo dado, demostrando que la cota está bien calculada. Realizar mediciones utilizando el algoritmo exacto y la aproximación, con el objetivo de verificar dicha relación. Realizar también mediciones que contemplen volúmenes de datos ya inmanejables para el algoritmo exacto, a fin de corroborar empíricamente la cota calculada anteriormente.
- (opcional) Implementar alguna otra aproximación (o algoritmo greedy) que les parezca de interés. Comparar sus resultados con los dados por la aproximación del punto anterior. Indicar y justificar su complejidad. No es obligatorio hacer este punto para aprobar el trabajo práctico (pero sí resta puntos no hacerlo).
- Agregar cualquier conclusión que parezca relevante.

Resolución

1. Demostración: NP

Para que un problema se encuentre en NP, se debe poder encontrar un validador que valide si la solución es correcta, y lo haga en tiempo polinomial.

Nuestro problema, está dado por:

- Una lista con las demandas para cada fila
- Una lista con las demandas para cada columna
- Una lista de k barcos (donde el barco s tiene b_s de largo)

La solución, está dada por una Matriz de tamaño n * m, donde para cada casillero ij:

- Si no hay barco, entonces Matriz[i][j] = None
- Si hay un barco, entonces Matriz[i][j] = s

 \mathbf{Nota} : Siendo s el índice de dicho barco

El validador entonces verifica lo siguiente:

- Que los barcos no sean adyacentes
- Que las demandas de las filas se cumplan de manera exacta
- Que las demandas de las columnas se cumplan de manera exacta
- Que se coloquen todos los barcos

1.1. Que los barcos no sean adyacentes

Para verificar que los barcos no sean adyacentes, basta con recorrer cada casillero de la matriz n*m y en cada celda visitar las 8 celdas vecinas (un cuadrado). En cada una de las celdas vecinas que visito, veo si hay otro barco distinto, y si lo hay, la solución no es válida. Visitar las 8 celdas vecinas se hace en tiempo constante O(1). Por lo tanto, verificar que no haya barcos adyacentes tiene un costo de O(n*m)

1.2. Que las demandas de las filas y columnas se cumplan de manera exacta

Para verificar que las demandas de las filas se cumplan, basta con recorrer cada casillero de la matriz n * m y en cada casillero que haya un barco, restar 1 a la demanda de la fila y columna a la que pertenece. Finalmente, se recorre la lista con las demandas para cada fila y nos fijamos que sea todo igual a cero O(n). Lo mismo con la lista de las demandas para cada columna O(m). Esto nos da un costo total de O(n * m)

1.3. Que se coloquen todos los barcos

Para verificar que se colocaron todos los barcos, hay que recorrer cada casillero de la matriz n * m, y en el caso de que en el casillero haya un barco, se agrega a los barcos visitados. Luego se recorren todos los barcos O(k) y nos fijamos que hayan sido todos colocados. Esto nos da un costo total de O(n * m).

1.4. Codigo

```
1 from main import *
  # Devuelve true si no hay barcos adyacentes al barco dad, false en caso contrario
  def validate_adjacency(grid, row, col, ship):
      # Veo si la posicion es adyacente a un barco
      for i in range(-1, 2):
           for j in range(-1, 2):
               if row + i >= 0 and row + i < len(grid) and col + j >= 0 and col + j <
      len(grid[0]):
                   adjacent_location = grid[row + i][col + j]
9
                   if adjacent_location != None and adjacent_location != ship:
                       return False
11
      return True
12
13
_{14} # Devuelve true si la solucion es valida, false en caso contrario
15 # La solucion debe ser una matriz con el problema resuelto
  def validator(solution, row_demands, col_demands, ships):
17
18
      # Primero validamos adyacencias
       for i in range(len(row_demands)):
19
           for j in range(len(col_demands)):
20
21
               if solution[i][j] != None:
22
                   ship = solution[i][j]
                   valid = validate_adjacency(solution, i, j, ship)
23
                   if valid == False:
24
                       return False
25
26
      # Validamos que las demandas se cumplan
27
      for i in range(len(row_demands)):
28
29
           for j in range(len(col_demands)):
               if solution[i][j] != None:
30
                   row_demands[i] -= 1
31
                   col_demands[j] -= 1
32
33
      for i in range(len(row_demands)):
34
35
           if row_demands[i] != 0:
               return False
36
37
      for j in range(len (col_demands)):
38
           if col_demands[j] != 0:
39
40
               return False
41
      # Validamos que se hayan colocado todos los barcos
42
      visited_ships = set()
43
      for i in range(len(row_demands)):
44
45
           for j in range(len(col_demands)):
               if solution[i][j] != None:
                   visited_ships.add(solution[i][j])
47
48
      if len(visited_ships) != len(ships):
49
50
           return False
51
      # Si llego hasta aca, la solucion es valida
      return True
```

1.5. Conclusion

En conclusión, como pudimos validar una solución al problema en tiempo polinomial, podemos afirmar que el problema se encuentra en NP.

2. Demostración: NP-Completo

Vamos a demostrar que la batalla naval es NP completo. Pero, ¿Como se demuestra que un algortimo es NP completo? Tiene que cumplir dos puntos:

- Pertenencia a NP: La verificación de una solución candidata es posible en tiempo polinomial.
- NP-dificultad: Se puede realizar una reducción polinomial desde cualquier problema NP-completo hacia este problema.

Ya en la sección anterior pudimos verificar con éxito que nuestro problema es de tipo NP, ahora hay que demostrar que se puede realizar una reducción polinomial desde cualquier problema NP-Completo. Recordemos que todos los NP completos pueden ser reducidos despues a cualquier problema NP completo.

En nuestro caso, utilizaremos el problema de 2-Partition, que como fue demostrado anteriormente en clase, es un problema NP-Completo, para verificar que el problema de la batalla naval pertenece a NP-Completo. Es decir, se puede realizar la reduccion polinomial: 2Partition \leq_p PBN

Definiciones

2-Partition: Se tiene un conjunto S de enteros positivos, y dos subconjuntos S_1 y S_2 , tales que se tengan que cumplir algunos requisitos:

- Los subconjuntos son disjuntos
- La unión de los subconjuntos es el conjunto original
- = sum (S_1) + sum (S_2) = sum(S). siendo sum (S_1) = sum (S_2)

Ejemplo:
$$S = \{3, 3, 4, 4\}$$
, $S_1 = \{3, 4\}$, $S_2 = \{3, 4\}$ \rightarrow $sum(S) = 14 = sum(S_1) + sum(S_2) = 7 + 7$

Problema de la Batalla Naval: Dado un tablero de $n \times m$, una lista de k barcos (donde el barco i tiene longitud b_i), una lista de restricciones para filas (demandas de casilleros ocupados en cada fila) y otra para columnas, determinar si existe una forma válida de ubicar los barcos en el tablero cumpliendo las restricciones, **sin que los barcos sean adyacentes** (ni horizontal, ni vertical, ni diagonalmente).

Planteo del problema

Vamos a utilizar el conjunto visto anteriormente (S = 3, 3, 4, 4), o sea una instancia del problema de 2-Partition, la cual resolveremos utilizando el problema de la batalla naval.

Para ello, debemos crear un tablero de dimensiones $i \times j$, donde i son la cantidad de filas, y j la cantidad de columnas.

Dimensiones del tablero:

- Cantidad de filas (i) = sum(S) + n 1 = (T + 4 1) = 17
- Cantidad de columnas (j) = 2

Nota: Siendo n la cantidad de elementos del conjunto S, y T la sum(S) **Nota**: La cantidad de columnas proviene de la cantidad de subconjuntos (2).

Modelo del problema:

- Lista de barcos: Cada elemento $a_i \in S$ corresponde a un barco de longitud a_i . Por ejemplo, con S, los barcos serán de longitudes 3, 3, 4, 4.
- Restricciones de las columnas: Cada columna debe contener exactamente T/2 casilleros ocupados. Si T es impar, entonces la instancia de 2-Partition no tiene solución, y por ende, tampoco la instancia del problema de la Batalla Naval.

■ Restricciones de las filas: Cada fila puede contener como máximo un casillero ocupado por barco. Las n-1 filas adicionales aseguran que los barcos no serán adyacentes entre sí (ni horizontal, ni vertical, ni diagonalmente).

Ejemplo del tablero:

Los barcos de columna $1=S_1=a_1,a_2,...,a_k=3,4$ Los barcos de columna $2=S_2=a_{k+1},a_{k+2},...,a_n=3,4$

Demostración de la Reducción

(\Rightarrow) Si existe una solución para 2-Partition: Sea S_1 y S_2 la partición de S tal que sum $(S_1) = \text{sum}(S_2) = T/2$.

En el problema de la Batalla Naval:

- lacktriangle Colocamos los barcos correspondientes a los elementos de S_1 en la primera columna.
- \blacksquare Colocamos los barcos correspondientes a los elementos de S_2 en la segunda columna.
- Aseguramos que entre dos barcos haya al menos una fila vacía, cumpliendo la condición de no advacencia.

Como cada columna tiene exactamente T/2 casilleros ocupados y los barcos están distribuidos sin ser adyacentes, la instancia del problema de la Batalla Naval tiene una solución válida.

- (⇐) Si existe una solución para el problema de la Batalla Naval: Sea una configuración válida de los barcos en el tablero.
 - Los barcos en la primera columna representan un subconjunto S_1 de S, y los barcos en la segunda columna representan otro subconjunto S_2 .
 - Como cada columna tiene exactamente T/2 casilleros ocupados, tenemos que sum (S_1) = sum $(S_2) = T/2$.
 - \blacksquare Esto implica que S_1 y S_2 al ser dinjuntos, forman una partición válida del conjunto S, resolviendo la instancia de 2-Partition.

Conclusión:

La reducción transforma una instancia de 2-Partition en una instancia del problema de la Batalla Naval en tiempo polinomial, ya que la construcción del tablero y las restricciones toma tiempo proporcional a n, el tamaño del conjunto S.

3. Algoritmo de Backtracking

3.1. Codigo

```
# Verifica si podemos colocar un barco en un casillero
  def verify_position(grid, row, col, rows, cols, demand):
       if row < 0 or row >= len(grid) or col < 0 or col >= len(grid[0]):
           return False
       if rows[row] == 0 or cols[col] == 0:
           return False
       if demand == 0:
           return
12
13
14
       if grid[row][col] != None:
           return False
15
16
17
       for i in range(-1, 2):
           for j in range(-1, 2):
18
                if row + i >= 0 and row + i < len(grid) and col + j >= 0 and col + j <
       len(grid[0]):
                    if grid[row + i][col + j] != None:
20
                        return False
21
22
23
       return True
24
# Calcula la demanda cumplida para la grilla
  def calculate_score(grid):
26
       total = 0
27
28
       for row in grid:
29
           for cell in row:
               if cell is not None:
30
31
                    total += 2
       return total
32
33
^{34} # Calcula la demanda que se cumple si se colocasen todos los barcos a partir de un
35
  def calculate_possible_max_ships(ships, current_index):
36
       score = 0
       available_ships = ships[current_index:]
37
38
       for ship in available_ships:
39
           score += ship
40
       score *= 2
41
42
43
      return score
44
_{45} # Funcion principal. Dada una demanda de filas, columnas y barcos, maximiza la
       demanda cumplida (minimiza la
46 # demanda incumplida).
47 def ship_placement(rows, cols, ships):
       grid = [[None] * len(cols) for _ in range(len(rows))]
best_solution_grid = [[None] * len(cols) for _ in range(len(rows))]
49
       total_amount = sum(rows) + sum(cols)
50
       ships.sort(reverse=True)
51
52
       # Llamamos al algoritmo de backtracking
```



```
ship_placement_aux(rows[:], cols[:], ships, grid, best_solution_grid, 0, set()
55
56
       \# Imprimimos resultados
       print("Gained ammount: ", calculate_score(best_solution_grid))
print("Total ammount: ", total_amount)
57
58
59
       print_grid(best_solution_grid, rows, cols)
60
61 # Coloca el barco horizontalmente
62 def place_ship_horizontally(grid, row, col, ship_size, rows, cols):
       for k in range(ship_size):
63
           grid[row][col + k] = 1
64
           rows[row] -= 1
           cols[col + k] -= 1
66
68 # Coloca el barco verticalmente
669 def place_ship_vertically(grid, row, col, ship_size, rows, cols):
70
       for k in range(ship_size):
           grid[row + k][col] = 1
71
72
           rows[row + k] -= 1
           cols[col] -= 1
73
74
75 # Descoloca el barco horizontalmente
76 def unplace_ship_horizontally(grid, row, col, ship_size, rows, cols):
       for k in range(ship_size):
77
           grid[row][col + k] = None
78
           rows[row] += 1
79
           cols[col + k] += 1
80
82 # Descoloca el barco verticalmente
83 def unplace_ship_vertically(grid, row, col, ship_size, rows, cols):
       for k in range(ship_size):
           grid[row + k][col] = None
85
           rows[row + k] += 1
86
           cols[col] += 1
87
88
89 # Calcula la cantidad de espacios libres en la grilla
90 def available_places(grid):
91
       empty_places = 0
92
       for i in range(len(grid)):
93
           for j in range(len(grid[0])):
94
                if grid[i][j] == None:
95
                    empty_places += 1
96
97
98
       return empty_places
99 # Funcion de BT para maximizar la demanda cumplida
def ship_placement_aux(rows, cols, ships, grid, best_solution_grid,
       current_idx_ship, memo):
       # Vemos si ya nos encontramos con este mismo escenario, y de ser asi podamos
       state = (tuple(rows), tuple(cols), current_idx_ship)
       if state in memo:
104
           return
105
       memo.add(state)
106
       # Calculamos las puntuaciones (demandas cumplidas)
108
       score_grid = calculate_score(grid)
109
       score_best = calculate_score(best_solution_grid)
110
       # Si encontramos una mejor solucion, la pisamos
112
       if score_grid > score_best:
113
114
           for i in range(len(rows)):
115
               for j in range(len(cols)):
                    best_solution_grid[i][j] = grid[i][j]
116
117
118
       if (current_idx_ship >= len(ships)):
119
120
           return
121
```



```
# Poda 1 (la puntuación que podria llegar a conseguir en el mejor de los casos
       no supera la mejor conseguida)
       if score_grid <= score_best:</pre>
            available_spaces = available_places(grid)
            max_possible_score_ships = calculate_possible_max_ships(ships,
       current idx ship)
            max_possible_score = score_grid + min(max_possible_score_ships,
       available_spaces * 2)
           if max_possible_score <= score_best:</pre>
128
                return
129
       # Poda 2 (el barco no entra para ninguna fila/columna por falta de demanda)
130
       maximo = max(max(rows), max(cols))
       while (ships[current_idx_ship] > maximo) and (current_idx_ship < len(ships)):</pre>
132
            current_idx_ship += 1
134
       # Con el barco actual, iteramos por la grilla intentando colocarlo
       ship_size = ships[current_idx_ship]
136
       for i in range(len(rows)):
137
138
           if rows[i] == 0:
                continue
139
            for j in range(len(cols)):
140
141
                if cols[j] == 0:
142
                    continue
                can_place_horizontal = True
143
                can_place_vertical = True
144
                demand = 0
145
146
                # Vemos si se puede colocar horizontal
147
                if ship_size > rows[i]:
148
149
                    can_place_horizontal = False
150
                    for k in range(ship_size):
                         if (k == 0):
152
153
                             demand = rows[i]
                         if (not verify_position(grid, i, j + k, rows, cols, demand)):
154
155
                             can_place_horizontal = False
                             break
                         demand -= 1
158
                # Vemos si se puede colocar vertical
159
                if ship_size > cols[j]:
160
                    can_place_vertical = False
161
162
                else:
                    for k in range(ship_size):
163
                         if (k == 0):
164
165
                             demand = cols[j]
                         if (not verify_position(grid, i + k, j, rows, cols, demand)):
166
                             can_place_vertical = False
167
168
                             break
                         demand -= 1
169
171
                # Colocamos los barcos segun corresponda
172
173
                if (can_place_horizontal):
                    place_ship_horizontally(grid, i, j, ship_size, rows, cols)
174
                    ship_placement_aux(rows, cols, ships, grid, best_solution_grid,
       current_idx_ship + 1, memo)
                    unplace_ship_horizontally(grid, i, j, ship_size, rows, cols)
176
                if (can_place_vertical):
178
                    place_ship_vertically(grid, i, j, ship_size, rows, cols)
ship_placement_aux(rows, cols, ships, grid, best_solution_grid,
179
180
       current_idx_ship + 1, memo)
                    unplace_ship_vertically(grid, i, j, ship_size, rows, cols)
181
182
       # Caso en el que decidimos no colocar el barco
183
       ship_placement_aux(rows, cols, ships, grid, best_solution_grid,
184
       current_idx_ship + 1, memo)
```


3.2. Análisis

Estamos probando todas las combinaciones posibles, al iterar por todos los barcos y por cada uno, iterar por cada casillero de la matriz. En cada posición del casillero, estamos intentando meter el barco, tanto vertical como horizontalmente, y también consideramos el caso de que no se ponga dicho barco. Esto nos termina dando una complejidad exponencial en cantidad de barcos, ya que como mencionamos al principio, estamos probando todas las combinaciones posibles, por lo tanto: $O(2^n)$.

Estamos realizando dos podas:

- Si el barco por el que estoy iterando no cabe por la capacidad máxima de la fila o la columna (que tenga mayor valor entre ambos máximos), entonces el barco no se puede meter en la solución actual, por lo que se pasa al siguiente barco.
- Sumamos los barcos que nos quedan por colocar (multiplicado por 2), y eso es como mucho lo máximo que puede mejorar nuestra solución. Si no supera la mejor solución ya obtenida, no tiene sentido seguir, por lo que se poda la rama.

4. Ejemplos de ejecución

A continuación, se ilustrarán los resultados de los ejemplos provistos por la cátedra.

```
Demanda cumplida: 4
2 Demanda total: 11
3 Demanda de filas: [3, 1, 2]
4 Demanda de columnas: [3, 2, 0]
  1 - -
6
  1 - -
9
10
12 Demanda cumplida:
13 Demanda total: 18
14 Demanda de filas: [3, 3, 0, 1, 1]
Demmand de columnas: [3, 1, 0, 3, 3]
16
  1 1 - 1 -
17
        - 1
18
  1
20
21
  1 -
23
25 Demanda cumplida:
26 Demanda total: 53
27 Demanda de filas: [1, 4, 4, 4, 3, 3, 4, 4]
28 Demanda de columnas: [6, 5, 3, 0, 6, 3, 3]
29
  1 - - -
30
   1
        1
           - 1 1
31
32
   1
        1
33
   1 1
34
35
              1
36
37
38
39
40
41 Demanda cumplida: 6
42 Demanda total: 14
```



```
43 Demanda de filas: [1, 0, 1, 0, 1, 0, 0, 1, 1, 1]
Demanda de columnas: [1, 4, 3]
45
46
47
48
49
50
51
52
53
   - 1
54
   - 1 -
56
57
59 Demanda cumplida: 40
60 Demanda total: 40
Demanda de filas: [3, 2, 2, 4, 2, 1, 1, 2, 3, 0]
62 Demanda de columnas: [1, 2, 1, 3, 2, 2, 3, 1, 5, 0]
     - - 1 - 1 - - 1
64
        - 1 -
- 1 -
65
66
67 1 1 -
                 - 1 - 1
           - 1 - 1 -
                    1
69
70
71
   - 1 1 -
              1 1 - 1 -
72
73
75
77 Demanda cumplida: 46
78 Demanda total: 58
79 Demanda de filas: [3, 6, 1, 2, 3, 6, 5, 2, 0, 3, 0, 3]
80 Demanda de columnas: [3, 0, 1, 1, 3, 1, 0, 3, 3, 4, 1, 4]
81 -----
   - - - - - - 1 - 1 -
   - - 1 1 1 1 - 1 - 1
83
                         - 1 -
85
           - 1 -
   1
86
87 1
           - 1 -
                   - - 1 -
   1
88
                 - - - 1 -
89
                    - 1 -
91
92
93
94
95
96
97 Demanda cumplida: 40
98 Demanda total: 67
99 Demanda de filas: [0, 3, 4, 1, 1, 4, 5, 0, 4, 5, 4, 2, 4, 3, 2]
100 Demanda de columnas: [0, 0, 3, 4, 1, 4, 6, 5, 2, 0]
102
                 - 1 -
103
      - 1 1 -
104
                   1 -
105
                    1 -
        1
                    1
107
           1
108
                    1
109
                   - 1
- 1
   - - 1 - 1
- - - - - -
110
111
                      1
112 - -
```



```
- - - 1 -
113
    114
115
116
118
119
120 Demanda cumplida: 104
121 Demanda total: 120
Demanda de filas: [5, 0, 0, 6, 2, 1, 6, 3, 3, 1, 2, 4, 5, 5, 2, 5, 4, 0, 4, 5]
Demanda de columnas [0, 5, 5, 0, 6, 2, 2, 6, 2, 1, 3, 1, 2, 3, 1, 4, 5, 2, 1, 6]
124
                  1 1 1 1 1
125
126
127
                   1
                     1 1 1
                                1
                                    1
128
                                                                        1
           1
129
130
                                           1 1
                                                 1
                                                      1
                                                         1
132
           1
                             1
                                                                        1
133
            1
                                               1
                                                                        1
                                                                        1
134
135
        1
                   1
136
        1
                   1
                             1
                                        1
                                                              1
        1
                   1
                             1
                                        1
137
138
        1
                   1
                             1
                                        1
                                                              1
139
                                                   1
                                                                     1
140
                                                              1
141
           1
                                                              1
142
143
           1
                                                   1
144
145
146
147
148 Demanda cumplida:
                         172
149 Demanda total: 247
150 Demanda de filas: [1, 2, 5, 10, 11, 0, 11, 11, 3, 9, 9, 3, 9, 6, 1, 8, 3, 11, 6,
       71
151 Demanda de columnas: [5, 4, 5, 2, 10, 1, 0, 8, 7, 6, 0, 5, 4, 8, 4, 7, 4, 0, 8, 5,
         6, 2, 4, 9, 7]
152
    1
153
           1
154
    1
155
    1
           1
                                                          1
                                                             1
    1
           1
                                                                     1
                                                                        1
                                                                                          1
                                                                                   1
156
                      1
                                           1
                                               1
                                                      1
157
    1
           1
                                 1
                                                  1
                                                          1
                                                             1
                                    1
                                            1
                                               1
                                                   1
                                                      1
                                                          1
           1
                   1
159
160
                   1
                             1
                                    1
                                                                     1
                                                                        1
                                                                            1
161
162
                   1
                             1
                                    1
                                            1
                                               1
                                                   1
                                                      1
                                                          1
163
                   1
                             1
                                    1
                                                                     1
                                                                        1
                                                                            1
                                                                                   1
                                                                                       1
                                                                                          1
                             1
                                    1
164
                   1
                                           1
                                               1
165
                   1
                             1
                                                   1
                                                      1
                   1
                             1
166
                   1
167
168
        1
                   1
                                1
                                 1
169
                                1
170
        1
171
        1
                                1
172
173
174
176 Demanda cumplida: 202
177 Demanda total: 360
Demanda de filas: [3, 11, 11, 1, 2, 5, 4, 10, 5, 2, 12, 6, 12, 7, 0, 2, 0, 8, 10, 11, 6, 10, 0, 11, 5, 8, 6, 9, 8, 0]
```



```
Demanda de columnas: [3, 12, 1, 5, 14, 15, 6, 11, 2, 10, 12, 10, 6, 2, 7, 1, 5, 11, 5, 10, 7, 11, 4, 0, 5]
181
    1
                  1
                         1
                  1
                                                            1
                                                                      1
                                                                          1
                                   1
                                          1 1
183
                  1
185
186
188
189
        1
                  1
                             1
                                                                   1
                                                                      1
                                                                          1
                  1
                                                            1
                                                               1
191
192
                                   1
                                      1 1 1
                                                 1
                                                    1
193
194
        1
195
196
197
                                                                   1
              1
                     1 1 1
                               1
                                   1
                                          1 1
199
200
201
                     1 1
                            1
                               1
                                          1
                                             1
                                                 1
                                   1
                                       1
                                                    1
202
203
    1
           1
              1
                         1
204
205
                                   1
                                   1
207
208
                                   1
                            _
209
210
```

5. Algoritmo de aproximación

5.1. Descripción del algoritmo

A continuación se presenta un algoritmo de aproximación para el problema de la batalla naval.

```
def find_index_of_max(list):
2
      i = 0
      max = list[0]
      for row, idx in list:
          if row > max:
              max = row
              i = idx
          i += 1
10
12
      return i
13
def verify_position(grid, row, col, rows, cols):
      if row < 0 or row >= len(grid) or col < 0 or col >= len(grid[0]):
16
17
          return False
18
     if rows[row] == 0 or cols[col] == 0:
19
          return False
21
      # Vemos si la posicion esta ocupada
22
23
      if grid[row][col] != None:
          return False
24
      # Vemos si la posicion es adyacente a una nave
25
    for i in range(-1, 2):
```



```
for j in range(-1, 2):
27
               if row + i >= 0 and row + i < len(grid) and col + j >= 0 and col + j <
       len(grid[0]):
                   if grid[row + i][col + j] != None:
29
30
                        return False
       return True
31
32
  def try_to_put_ship_horizontally_in_row(ship, grid, idx_f, rows, cols):
33
34
       row_to_put_ship = grid[idx_f]
35
       for idx_c in range(len(row_to_put_ship)):
36
37
           can_place = True
38
           for k in range(ship):
39
40
               if not verify_position(grid, idx_f, idx_c + k, rows, cols): # Veo si
      puedo poner el barco en esa celda
                   can_place = False
41
42
                   break
43
44
           if can_place:
                for k in range(ship):
45
                   grid[idx_f][idx_c + k] = ship
46
47
                   rows[idx_f] -= 1
48
                   cols[idx_c + k] -= 1
49
  def aproximation(rows, cols, ships):
50
       grid = [[None] * len(cols) for _ in range(len(rows))]
51
       ships.sort(reverse=True)
53
       for ship in ships:
54
           indice_fila_max = rows.index(max(rows))
           indice_columna_max = cols.index(max(cols))
56
57
           if rows[indice_fila_max] >= cols[indice_columna_max]:
58
59
               for j in range(len(cols)):
60
                    if verify_position(grid, indice_fila_max, j, rows, cols):
61
62
63
                        if (cols[j] >= ship) and (indice_fila_max + ship <= len(rows)):</pre>
                            can_place = True
64
                            for k in range(ship):
65
                                if not verify_position(grid, indice_fila_max, j + k,
66
      rows, cols):
67
                                     can_place = False
                                     break
68
                            if can_place:
69
70
                                 for k in range(ship):
                                     grid[indice_fila_max][j + k] = 1 # Se coloca el
71
      barco
72
                                     rows[indice_fila_max] -= 1
                                     cols[j + k] -= 1
73
74
                                break
           else:
75
                 for i in range(len(rows)):
76
77
                   if verify_position(grid, i, indice_columna_max, rows, cols):
                        if (rows[i] >= ship) and (indice_columna_max + ship <= len(cols</pre>
79
      )):
80
                            can_place = True
                            for k in range(ship):
81
                                if not verify_position(grid, i + k, indice_columna_max,
82
       rows, cols):
83
                                     can_place = False
                                     break
                            if can_place:
85
86
                                 for k in range(ship):
                                     grid[i + k][indice_columna_max] = 1 # Se coloca el
87
       barco
                                     rows[i + k] -= 1
88
                                     cols[indice_columna_max] -= 1
89
```


90 break
91
92 return grid

5.2. Análisis del algoritmo

El algoritmo de aproximación para el problema de la batalla naval tiene una complejidad de $O((n+m)\cdot b\cdot k)$, donde n es el número de filas, m es el número de columnas del tablero, b es la longitud del barco y k es la cantidad de barcos que hay. Ya que el algoritmo recorre los barcos, compara cual tiene más demanda, si la columna o la fila, que luego define si poner el barco horizontal o vertical.

Cuadro	1:	Resultados	de	demandas

Demanda Total	Demanda Aproximada - A(I)	Demanda Óptima - Z(I)	Relación $r(A)$
11	2	4	0.5000
18	12	12	1.0000
53	18	26	0.6923
40	20	40	0.5000
58	18	46	0.3913
67	18	40	0.4500
120	38	104	0.3653
247	62	172	0.3604
360	88	202	0.4356

Como podemos ver, no es el mejor algoritmo para acercarse a la solución óptima, que sería maximizar la demanda cumplida. Sin embargo, en algunos casos llega como por ejemplo en el segundo ejemplo ilustrado anteriormente, o se acerca bastante como el tercer ejemplo.

La cota a la que llegamos empiricamente, para ver la relación entre el resultado óptimo, es r(A)=0.3604.

Por lo tanto, en el peor de los casos, obtuvimos una aproximación de 3/10 a la solución óptima.

6. Medición empírica

Para comprobar empíricamente la complejidad $O(2^n)$ del algoritmo, se decidió ejecutar el mismo con distintos tamaños de entrada y medir el tiempo de ejecución. Se generaron muestras de tamaño n, las cuales varían desde 10 hasta 1000.

Para cada muestra se registró el tiempo de ejecución, obteniendo el siguiente gráfico:

A simple vista se puede observar un crecimiento exponencial. Para confirmar esto, vamos a ajustar los datos a una recta mediante cuadrados mínimos. Esto lo realizamos con Python y la función optimize.curve_fit de la biblioteca scipy.

Obtenemos que el gráfico se puede ajustar a la curva $y = 1,45e^{-2} \times 2^x$, con un error cuadrático medio de $1,485e^{-1}$. Por lo tanto, podemos verificar lo que ya vimos en la sección 3, que el orden es exponencial $\mathbf{O}(2^n)$.

7. Conclusiones

En este trabajo práctico, vimos dos versiones del problema de la batalla naval. Por un lado, tenemos un problema NP-Completo, donde intentamos colocar los barcos de forma tal que se cumplan

las demandas de todas las filas y columnas, siempre respetando las restricciones de adyacencias. Como demostramos en las secciones anteriores, el problema es de tipo NP y lo pudimos demostrar realizando una reducción polinomial de otro problema NP-Completo como es 2-Partition.

Luego vimos otra variante del problema, en la cual minimizamos la demanda incumplida utilizando un algoritmo de Backtracking.

Por último, implementamos el algoritmo que nos propone John Jellicoe, el cual no nos lleva a la solución óptima, pero nos permite aproximarnos con una cota inferior de 0,3604, lo cual es aproximádamente un $33\,\%$ de la solución óptima.