## Big Data Technologies

**Jnaneshwar Bohara** 

# Chapter 4: NoSQL

#### Structured and Unstructured Data

#### > Structured data

Structured data refers to any data that resides in a fixed field within a record or file. This includes data contained in relational databases and spreadsheets.

#### > Unstructured data

Unstructured data is all those things that can't be so readily classified and fit into a neat box: photos and graphic images, videos, streaming instrument data, webpages, PDF files, PowerPoint presentations, emails, blog entries, wikis and word processing documents.

#### Structured vs unstructured data

Structured data: information in "tables"

| Employee | Manager | Salary |
|----------|---------|--------|
| Smith    | Jones   | 50000  |
| Chang    | Smith   | 60000  |
| lvy      | Smith   | 50000  |

Typically allows numerical range and exact match (for text) queries, e.g.,

Salary < 60000 AND Manager = Smith.

#### Unstructured data

Typically refers to free text

- Allows
  - Keyword-based queries including operators
  - More sophisticated "concept" queries, e.g.,
    - find all web pages dealing with drug abuse

#### Features of "unstructured" data

- Does not reside in traditional databases and data warehouses
- May have an internal structure, but does not fit a relational data model
- Generated by both humans and machines
  - Textual and multimedia content
  - Machine-to-machine communication
- Examples include
  - Personal messaging email, instant messages, tweets, chat
  - Business documents business reports, presentations, survey responses
  - Web content web pages, blogs, wikis, audio files, photos, videos
  - Sensor output satellite imagery, geolocation data, scanner transactions

#### Semi-structured data

- In fact almost no data is "unstructured"
  - E.g., this slide has distinctly identified zones such as the *Title* and *Bullets*
- Facilitates "semi-structured" search such as
  - Title contains data AND Bullets contain search
    - ... to say nothing of linguistic structure

## Scaling Traditional Databases

- Traditional RDBMSs can be either scaled:
  - Vertically (or Up)
    - Can be achieved by hardware upgrades (e.g., faster CPU, more memory, or larger disk)
    - Limited by the amount of CPU, RAM and disk that can be configured on a single machine
  - Horizontally (or Out)
    - Can be achieved by adding more machines
    - Requires database sharding and probably replication
    - Limited by the Read-to-Write ratio and communication
       overhead
       Big Data NoSQL|JBohara

## Why Sharding Data?

 Data is typically sharded (or striped) to allow for concurrent/parallel accesses



E.g., Chunks 1, 3 and 5 can be accessed in parallel

## Why Replicating Data?

- Replicating data across servers helps in:
  - Avoiding performance bottlenecks
  - Avoiding single point of failures
  - And, hence, enhancing scalability and availability

## Why Replicating Data?

- Replicating data across servers helps in:
  - Avoiding performance bottlenecks
  - Avoiding single point of failures
  - And, hence, enhancing scalability and availability



#### But, Consistency Becomes a Challenge

#### An example:

- In an e-commerce application, the bank database has been replicated across two servers
- Maintaining consistency of replicated data is a challenge



#### The Two-Phase Commit Protocol

 The two-phase commit protocol (2PC) can be used to ensure atomicity and consistency



#### The Two-Phase Commit Protocol

 The two-phase commit protocol (2PC) can be used to ensure atomicity and consistency



#### The CAP Theorem

- The limitations of distributed databases can be described in the so called the CAP theorem
  - Consistency: every node always sees the same data at any given instance (i.e., strict consistency)
  - Availability: the system continues to operate, even if nodes in a cluster crash, or some hardware or software parts are down due to upgrades
  - Partition Tolerance: the system continues to operate in the presence of network partitions

## The CAP Theorem (Cont'd)

Let us assume two nodes on opposite sides of a network partition:



- Availability + Partition Tolerance forfeit Consistency
- Consistency + Partition Tolerance entails that one side of the partition must act as if it is unavailable, thus forfeiting Availability
- Consistency + Availability is only possible if there is no network partition, thereby forfeiting Partition Tolerance

#### **CAP Theorem**



## Large-Scale Databases

- When companies such as Google and Amazon were designing large-scale databases, 24/7 Availability was a key
  - A few minutes of downtime means lost revenue
- When horizontally scaling databases to 1000s of machines, the likelihood of a node or a network failure increases tremendously
- Therefore, in order to have strong guarantees on Availability and Partition Tolerance, they had to sacrifice "strict" Consistency (implied by the CAP theorem)

## **Trading-Off Consistency**

- Maintaining consistency should balance between the strictness of consistency versus availability/scalability
  - Good-enough consistency <u>depends on your application</u>

## **Trading-Off Consistency**

- Maintaining consistency should balance between the strictness of consistency versus availability/scalability
  - Good-enough consistency <u>depends on your application</u>



Easier to implement, and is efficient

Generally hard to implement, and is inefficient

## **Eventual Consistency**

- A database is termed as Eventually Consistent if:
  - All replicas will gradually become consistent in the absence of updates

## **Eventual Consistency**

- A database is termed as Eventually Consistent if:
  - All replicas will gradually become consistent in the absence of updates



# Eventual Consistency: A Main Challenge

But, what if the client accesses the data from different replicas?



Protocols like Read Your Own Writes (RYOW) can be applied!

## The BASE Properties

- The CAP theorem proves that it is impossible to guarantee strict Consistency and Availability while being able to tolerate network partitions
- This resulted in databases with relaxed ACID guarantees
- In particular, such databases apply the BASE properties:
  - Basically Available: the system guarantees Availability
  - Soft-State: the state of the system may change over time
  - <u>E</u>ventual Consistency: the system will *eventually* become consistent

#### What is NoSQL?

- Class of database management systems (DBMS)
- "Not only SQL"
  - Does not use SQL as querying language
  - Distributed, fault-tolerant architecture
  - No fixed schema (formally described structure)
  - No joins (typical in databases operated with SQL)
    - Expensive operation for combining records from two or more tables into one set
    - Joins require strong consistency and fixed schemas
      - Lack of these makes NoSQL databases more flexible
- > It's not a replacement for a RDBMS but compliments it

#### NoSQL Databases

- To this end, a new class of databases emerged, which mainly follow the BASE properties
  - These were dubbed as NoSQL databases
  - E.g., Amazon's Dynamo and Google's Bigtable

- Main characteristics of NoSQL databases include:
  - No strict schema requirements
  - No strict adherence to ACID properties
  - Consistency is traded in favor of Availability

# Types of NoSQL Databases

Here is a limited taxonomy of NoSQL databases:



#### **Document Stores**

- Documents are stored in some standard format or encoding (e.g., XML, JSON, PDF or Office Documents)
  - These are typically referred to as Binary Large Objects (BLOBs)
- Documents can be indexed
  - This allows document stores to outperform traditional file systems
- E.g., MongoDB and CouchDB (both can be queried using MapReduce)

## **Graph Databases**

Data are represented as vertices and edges



- Graph databases are powerful for graph-like queries (e.g., find the shortest path between two elements)
- E.g., Neo4j and VertexDB

## **Key-Value Stores**

- Keys are mapped to (possibly) more complex value (e.g., lists)
- Keys can be stored in a hash table and can be distributed easily
- Such stores typically support regular CRUD (create, read, update, and delete) operations
  - That is, no joins and aggregate functions
- E.g., Amazon DynamoDB and Redis

#### Columnar Databases

- Columnar databases are a hybrid of RDBMSs and Key-Value stores
  - Values are stored in groups of zero or more columns, but in Column-Order (as opposed to Row-Order)



Values are queried by matching keys

■ E.g., Hbase, Cassandra

#### NoSQL

Key-value





Graph database





Document-oriented





Column family







#### **HBase: Overview**

 HBase is a distributed columnoriented data store built on top of HDFS

- HBase is an Apache open source project whose goal is to provide storage for the Hadoop Distributed Computing
- Data is logically organized into tables, rows and columns

## HBase: Part of Hadoop's Ecosystem



#### HBase vs. HDFS

 Both are distributed systems that scale to hundreds or thousands of nodes

- <u>HDFS</u> is good for batch processing (scans over big files)
  - Not good for record lookup
  - Not good for incremental addition of small batches
  - Not good for updates

## HBase vs. HDFS (Cont'd)

- <u>HBase</u> is designed to efficiently address the above points
  - Fast record lookup
  - Support for record-level insertion
  - Support for updates (not in place)
- HBase updates are done by creating new versions of values

### **HBase Data Model**

 HBase is based on Google's Bigtable model



# **HBase Logical View**



# HBase: Keys and Column Families





Each column family consists of one or more *Columns* 

#### Column family named "anchor"

#### Column family named "Contents"

#### Key

- Byte array
- Serves as the primary key for the table
- Indexed far fast lookup

#### Column Family

- Has a name (string)
- Contains one or more related columns

#### Column

- Belongs to one column family
- Included inside the row
  - familyName:columnNa me

| The same of the sa |               |                     |                        |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|------------------------|---------------|
| Row key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Time<br>Stamp | Column "content s:" | Column "anchor:"       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t12           | " <html></html>     |                        |               |
| "com.apac<br>he.ww<br>w"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t11           | " <html></html>     | Column named "ap       | oache.com"    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t10           |                     | "anchor:apache .com"   | "APACH<br>E"  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t15           |                     | "anchor:cnnsi.co<br>m" | "CNN"         |
| "com.cnn.w<br>ww"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t13           |                     | "anchor:my.look.       | "CNN.co<br>m" |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t6            | " <html>"</html>    |                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t5            | " <html></html>     |                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t3            | " <html>"</html>    |                        |               |

#### Version number for each row

#### Version Number

- Unique within each key
- By default → System's timestamp
- Data type is Long
- Value (Cell)
  - Byte array

| Row key                  | Time<br>Stamp | Column "content s:"   | Column "anchor:"        |               |
|--------------------------|---------------|-----------------------|-------------------------|---------------|
|                          | t12           | " <html></html>       |                         | value         |
| "com.apac<br>he.ww<br>w" | t11           | " <html></html>       |                         |               |
|                          | t10           |                       | "anchor:apache<br>.com" | "APACH<br>E"  |
|                          | t15           |                       | "anchor:cnnsi.co<br>m"  | "CNN"         |
|                          | t13           |                       | "anchor:my.look.        | "CNN.co<br>m" |
| "com.cnn.w<br>ww"        | t6            | " <html><br/>"</html> |                         |               |
|                          | t5            | " <html>"</html>      |                         |               |
|                          | t3            | " <html>"</html>      |                         |               |

#### Notes on Data Model

- HBase schema consists of several Tables
- Each table consists of a set of Column Families
  - Columns are not part of the schema
- HBase has Dynamic Columns
  - Because column names are encoded inside the cells
  - Different cells can have different columns

# Notes on Data Model (Cont'd)

- The version number can be user-supplied
  - Even does not have to be inserted in increasing order
  - Version number are unique within each key
- Table can be very sparse
  - Many cells are empty
- Keys are indexed as the primary key

Has two columns [cnnsi.com & my.look.ca]

| Row Key       | Time Stamp | ColumnFamily contents            | ColumnFamily anchor           |
|---------------|------------|----------------------------------|-------------------------------|
| "com.cnn.www" | t9         |                                  | anchor:cnnsi.com = "CNN"      |
| "com.cnn.www" | t8         |                                  | anchor:my.look.ca = "CNN.com" |
| "com.cnn.www" | t6         | contents:html = " <html>"</html> |                               |
| "com.cnn.www" | t5         | contents:html = " <html>"</html> |                               |
| "com.cnn.www" | t3         | contents:html = " <html>"</html> |                               |

# **HBase Physical Model**

- Each column family is stored in a separate file (called *HTables*)
- Key & Version numbers are replicated with each column family
- Empty cells are not stored

HBase maintains a multi-level index on values: <key, column family, column name, timestamp>

Table 5.3. ColumnFamily contents

| Row Key       | Time Stamp | ColumnFamily "contents:"         |
|---------------|------------|----------------------------------|
| "com.cnn.www" | t6         | contents:html = " <html>"</html> |
| "com.cnn.www" | t5         | contents:html = " <html>"</html> |
| "com.cnn.www" | t3         | contents:html = " <html>"</html> |

Table 5.2. ColumnFamily anchor

| Row Key       | Time Stamp | Column Family anchor          |
|---------------|------------|-------------------------------|
| "com.cnn.www" | t9         | anchor:cnnsi.com = "CNN"      |
| "com.cnn.www" | t8         | anchor:my.look.ca = "CNN.com" |

# **Example**

| Row key | Data                                                                                            |
|---------|-------------------------------------------------------------------------------------------------|
|         | ⇒info: { 'height': '9ft', 'state': 'CA' }<br>⇒roles: { 'ASF': 'Director', 'Hadoop': 'Founder' } |
| tlipcon | info: { 'height': '5ft7, 'state': 'CA' } roles: { 'Hadoop': 'Committer'@ts=2010,                |

info Column Family

| Row key | Column key  | Timestamp     | Cell value |
|---------|-------------|---------------|------------|
| cutting | info:height | 1273516197868 | 9ft        |
| cutting | info:state  | 1043871824184 | CA         |
| tlipcon | info:height | 1273878447049 | 5ft7       |
| tlipcon | info:state  | 1273616297446 | CA         |

#### roles Column Family

Sorted on disk by Row key, Col key, descending timestamp

|   | Row key | Column key   | Timestamp     | Cell value  |
|---|---------|--------------|---------------|-------------|
|   | cutting | roles:ASF    | 1273871823022 | Director    |
|   | cutting | roles:Hadoop | 1183746289103 | Founder     |
| ł | tlipcon | roles:Hadoop | 1300062064923 | PMC         |
| l | tlipcon | roles:Hadoop | 1293388212294 | Committer   |
|   | tlipcon | roles:Hive   | 1273616297446 | Contributor |

Milliseconds since unix epoch Big Data - NoSQL|JBohara



# **HBase Regions**

- Each HTable (column family) is partitioned horizontally into *regions*
  - Regions are counterpart to HDFS blocks

Table 5.3. ColumnFamily contents



## **HBase Architecture**

# Three Major Components

- The HBaseMaster
  - One master
- The HRegionServer
  - Many region servers

The HBase client



# **HBase Components**

#### Region

- A subset of a table's rows, like horizontal range partitioning
- Automatically done

#### RegionServer (many slaves)

- Manages data regions
- Serves data for reads and writes (using a log)

#### Master

- Responsible for coordinating the slaves
- Assigns regions, detects failures
- Admin functions

# ZooKeeper

- HBase depends on ZooKeeper
- By default HBase manages the ZooKeeper instance
  - E.g., starts and stopsZooKeeper
- HMaster and HRegionServers register themselves with ZooKeeper



# Creating a Table

```
HBaseAdmin admin= new HBaseAdmin(config);
HColumnDescriptor []column;
column= new HColumnDescriptor[2];
column[0]=new
  HColumnDescriptor("columnFamily1:");
column[1]=new
  HColumnDescriptor("columnFamily2:");
HTableDescriptor desc= new HTableDescriptor(Bytes.toBytes("MyTable"));
desc.addFamily(column[0]);
desc.addFamily(column[1]);
admin.createTable(desc);
```

# Operations On Regions: Get()

- Given a key → return corresponding record
- For each value return the highest version

```
Get get = new Get(Bytes.toBytes("rowl"));
Result r = htable.get(get);
5.8.1.2. Default Get Example ne(Bytes.toBytes("cf"), Bytes.toBytes("attr")); // returns current version of value
```

Can control the number of versions you want

```
Get get = new Get(Bytes.toBytes("rowl"));
get.setMaxVersions(3); // will return last 3 versions of row
Result r = htable.get(get);
byte[] b = r.getValue(Bytes.toBytes("cf"), Bytes.toBytes("attr")); // returns current version of value
List<KeyValue> kv = r.getColumn(Bytes.toBytes("cf"), Bytes.toBytes("attr")); // returns all versions of
```

# Operations On Regions: Put()

- Insert a new record (with a new key), Or
- Insert a record for an existing key

Implicit version number (timestamp)

```
Put put = new Put(Bytes.toBytes(row));
put.add(Bytes.toBytes("cf"), Bytes.toBytes("attrl"), Bytes.toBytes( data));
htable.put(put);
```

#### **Explicit version number**

```
Put put = new Put( Bytes.toBytes(row));
long explicitTimeInMs = 555; // just an example
put.add(Bytes.toBytes("cf"), Bytes.toBytes("attrl"), explicitTimeInMs, Bytes.toBytes(data));
htable.put(put);
```

### HBase vs. HDFS

|                           | Plain HDFS/MR                                 | HBase                                        |
|---------------------------|-----------------------------------------------|----------------------------------------------|
| Write pattern             | Append-only                                   | Random write, bulk incremental               |
| Read pattern              | Full table scan, partition table scan         | Random read, small range scan, or table scan |
| Hive (SQL)<br>performance | Very good                                     | 4-5x slower                                  |
| Structured storage        | Do-it-yourself / TSV / SequenceFile / Avro /? | Sparse column-family data model              |
| Max data size             | 30+ PB                                        | ~IPB                                         |

# HBase vs. RDBMS

|                                    | RDBMS                        | HBase                      |
|------------------------------------|------------------------------|----------------------------|
| Data layout                        | Row-oriented                 | Column-family-             |
| Transactions                       | Multi-row ACID               | Single row only            |
| Query                              | SQL                          | get/put/scan/etc *         |
| Security                           | Authentication/Authorization | Work in progress           |
| Indexes                            | On arbitrary columns         | Row-key only               |
| Max data size                      | TBs                          | ~IPB                       |
| Read/write<br>throughput<br>limits | 1000s queries/second         | Millions of queries/second |

### When to use HBase

- You need random write, random read, or both (but not neither)
- You need to do many thousands of operations per second on multiple TB of data
- Your access patterns are well-known and simple

# Cassandra - A Decentralized Structured Storage System

### What is Cassandra?

- Open-source database management system (DBMS)
- Several key features of Cassandra differentiate it from other similar systems



### Cassandra

- Originally developed at Facebook
- Follows the BigTable data model: column-oriented
- Uses the Dynamo Eventual Consistency model
- Written in Java
- Open-sourced and exists within the Apache family
- Uses Apache Thrift as it's API

# History of Cassandra



- Cassandra was created to power the Facebook Inbox Search
- Facebook open-sourced Cassandra in 2008 and became an Apache Incubator project
- In 2010, Cassandra graduated to a top-level project, regular update and releases followed

# Reasons for Choosing Cassandra

- Value availability over consistency
- Require high write-throughput
- High scalability required
- No single point of failure



### Data Model

- Table is a multi dimensional map indexed by key (row key).
- Columns are grouped into Column Families.
- 2 Types of Column Families
  - Simple
  - Super (nested Column Families)
- Each Column has
  - Name
  - Value
  - Timestamp

### Data Model



<sup>\*</sup> Figure taken from Eben Hewitt's (author of Oreilly's Cassandra book) slides.

### Cassandra's Data Model

Key-Value Model

- Cassandra is a column oriented NoSQL system
- Column families: sets of keyvalue pairs
  - column family as a table and key-value pairs as a row (using relational database analogy)
- A row is a collection of columns labeled with a name



### Cassandra Row

- the value of a row is itself a sequence of key-value pairs
- such nested key-value pairs are columns
- key = column name
- a row must contain at least 1 column





**Example of Columns** 

# Column names storing values

- key: User ID
- column names store tweet ID values
- values of all column names are set to "-" (empty byte array) as they are not used



### **Key Space**



 A Key Space is a group of column families together. It is only a logical grouping of column families and provides an isolated scope for names

### Cassandra Architecture

### Overview

- Cassandra was designed with the understanding that system/ hardware failures can and do occur
- Peer-to-peer, distributed system
- All nodes are the same
- Data partitioned among all nodes in the cluster
- Custom data replication to ensure fault tolerance
- Read/Write-anywhere design
- Google BigTable data model
  - Column Families
  - Memtables
  - SSTables
- Amazon Dynamo distributed systems technologies
  - Consistent hashing
  - Partitioning
  - Replication
  - One-hop routing



### **Transparent Elasticity**

Nodes can be added and removed from Cassandra online, with no downtime being experienced.



### **Transparent Scalability**

Addition of Cassandra nodes increases performance linearly and ability to manage TB's-PB's of data.



## High Availability

Cassandra, with its peer-to-peer architecture has no single point of failure.



## Facebook Inbox Search

- Cassandra developed to address this problem.
- 50+TB of user messages data in 150 node cluster on which Cassandra is tested.
- Search user index of all messages in 2 ways.
  - Term search : search by a key word
  - Interactions search: search by a user id

| Latency Stat | Search Interactions | Term Search |
|--------------|---------------------|-------------|
| Min          | 7.69 ms             | 7.78 ms     |
| Median       | 15.69 ms            | 18.27 ms    |
| Max          | 26.13 ms            | 44.41 ms    |

# Cassandra Advantages

- perfect for time-series data
- high performance
- Decentralization
- nearly linear scalability
- replication support
- no single points of failure
- MapReduce support

#### Cassandra Weaknesses

- no referential integrity
  - no concept of JOIN
- querying options for retrieving data are limited
- sorting data is a design decision
  - no GROUP BY
- no support for atomic operations
  - o if operation fails, changes can still occur
- first think about queries, then about data model

#### Cassandra: Points to Consider

- Cassandra is designed as a distributed database management system
  - o use it when you have a lot of data spread across multiple servers
- Cassandra write performance is always excellent, but read performance depends on write patterns
  - it is important to spend enough time to design proper schema around the query pattern
- having a high-level understanding of some internals is a plus
  - ensures a design of a strong application built atop Cassandra

# What is MongoDB?

- It is a NoSQL database
- It should be viewed as an alternative to relational databases
- It is a documented-oriented database
- It uses JSON format

#### The Basics

- Within a MongoDB instance you can have zero or more databases
- A database can have zero or more 'collections'.
- Collections are made up of zero or more 'documents'.
- A document is made up of one or more 'fields'.
- 'Indexes' in MongoDB function much like their RDBMS counterparts.

# MongoDB vs. RDBMS

- Collection vs. table
- Document vs. row
- Field vs. column
- Collection isn't strict about what goes in it (it's schema-less)

# Why use MongoDB

- Simple queries
- Makes sense with most web applications
- Easier and faster the integration of data
- Not well suited for large-scale business applications b/c it does not support transactions.

## Document store

| RDBMS       |               | MongoDB               |
|-------------|---------------|-----------------------|
| Database    | $\Rightarrow$ | Database              |
| Table, View | $\Rightarrow$ | Collection            |
| Row         | $\Rightarrow$ | Document (JSON, BSON) |
| Column      | $\Rightarrow$ | Field                 |
| Index       | $\Rightarrow$ | Index                 |
| Join        | $\Rightarrow$ | Embedded Document     |
| Foreign Key | $\Rightarrow$ | Reference             |
| Partition   | $\Rightarrow$ | Shard                 |

## Document store

| RDBMS       |               | MongoDB    |                                                              |
|-------------|---------------|------------|--------------------------------------------------------------|
| Database    | $\Rightarrow$ | Database   | > db.user.findOne({age:39})                                  |
| Table, View | $\Rightarrow$ | Collection | {                                                            |
| Row         | $\Rightarrow$ | Document ( | "_id" : ObjectId("5114e0bd42") <i>,</i><br>"first" : "John", |
| Column      | $\Rightarrow$ | Field      | "last" : "Doe",                                              |
| Index       | $\Rightarrow$ | Index      | "age" : 39,                                                  |
| Join        | $\Rightarrow$ | Embedded I |                                                              |
| Foreign Key | $\Rightarrow$ | Reference  | "Reading",                                                   |
| Partition   | $\Rightarrow$ | Shard      | "Mountain Biking ] "favorites": {                            |
|             |               |            | "color": "Blue",                                             |
|             |               |            | "sport": "Soccer"}                                           |
|             |               |            | }                                                            |

#### **CRUD**

- Create
  - db.collection.insert( <document> )
  - db.collection.save( <document> )
  - db.collection.update( <query>, <update>, { upsert: true } )
- Read
  - db.collection.find( <query>, , ction> )
  - db.collection.findOne( <query>, <projection> )
- Update
  - db.collection.update( <query>, <update>, <options> )
- Delete
  - db.collection.remove( <query>, <justOne> )

# CRUD example

```
> db.user.insert({
    first: "John",
    last : "Doe",
    age: 39
})
```

```
> db.user.find ()
{
    "_id" : ObjectId("51..."),
    "first" : "John",
    "last" : "Doe",
    "age" : 39
}
```

```
> db.user.remove({
    "first": /^J/
})
```

#### **Features**

- Document-Oriented storage
- Full Index Support
- Replication & High Availability
- Auto-Sharding
- Querying
- Fast In-Place Updates
- Map/Reduce

Agile

Scalable

# In Production the MongoDB company











theguardian



















The New Hork Eimes

