۱۰ نوبت دهم

فرض کنید \mathfrak{M} مدلی باشد به اندازهی موردنیاز اشباع. برای یک دنبالهی $\mathfrak{A}=(a_i)_{i\in I}$ تعریف کنید \mathfrak{M} مدلی باشد به اندازه موردنیاز اشباع. برای یک دنباله ک $\mathfrak{E}M(\mathcal{A})=\{\phi(x_1,\ldots,x_n)|n\in\mathbb{N}, \forall i_1<\ldots i_n\in I \quad \mathfrak{M}\models\phi(a_{i_1},\ldots,a_{i_n})\}.$

 \mathcal{A} تمرین ۵۰: نشان دهید $EM(\mathcal{A})$ (با متغیرهای وزر $EM(\mathcal{A})$) یک تایپ کامل است اگروتنهااگر دنبالهای بازنشناختنی باشد.

به طور مشابه $EM(\mathcal{A}/C)$ را برای یک مجموعهی پارامتر C تعریف کنید.

تمرین ۵۱: نشان دهید که برای هر دنباله ی دلخواهِ \mathcal{A} و هر مجموعه ی \mathcal{C} از پارامترها، دنباله ای بازنشناختنی روی $\mathcal{B} \models EM(\mathcal{A}/C)$ چنان موجود است که $\mathcal{B} \models EM(\mathcal{A}/C)$

تمرین ۵۲: فرض کنید $A=(a_i)_{i\in\omega}$ دنبالهای بازنشناختنی باشد روی $D\supseteq C$ و کا دلخواه باشد. $A'=(a_i)_{i\in\omega}$ دنباله نشان دهید دنباله $A'=(a_i')_{i\in I}$ چنان موجود است که

$$\operatorname{tp}(\mathcal{A}'/C) = \operatorname{tp}(\mathcal{A}/C)$$

D روی D موجود است که روی D بازنشناختنی است (به بیان دیگر، یک کپی از D روی D موجود است که روی D بازنشناختنی است).

تمرین ۵۳ (همان تمرین بالا به بیان دیگری): فرض کنید $A=(a_i)_{i\in\omega}$ دنبالهای بازنشناختنی باشد روی $D\supseteq B$ و $D\supseteq B$ دلخواه باشد. نشان دهید مجموعهای چون

$$D' \equiv_C D$$

چنان موجود است که A روی آن بازنشناختنی است.

تمرین ۵۴ (باز هم همان تمرین به زبان دیگری): فرض کنید $A=(a_i)_{i\in\omega}$ دنباله ای بازنشناختنی باشد روی A دنباله ی A روی آن بازنشناختنی است.

تمرین ۵۵: گیریم $A=(a_i)_{i\in\omega}$ دنبالهای بازنشناختنی باشد. نشان دهید که در هر اندازه ی دلخواه، دنبالهای بازنشناختنی موجود است که تایپ EM(A) را برآورده کند.

تمرین ۵۶: آیا دنبالهی بازنشناختنیِ دلخواهِ A روی خودش بازنشناختنی است؟ نشان دهید که یک کپی از A موجود است که روی A بازنشناختنی است.

 \mathcal{A} تمرین ۵۷: دو دنبالهی نامتناهی \mathcal{A} و \mathcal{B} چنان بسازید که \mathcal{A} روی \mathcal{B} بازنشناختنی باشد و \mathcal{B} روی \mathcal{A} دو دنباله و کنید که کنید که $\mathcal{A}=(a_i)_{i\in\omega}$ و $\mathcal{A}=(a_i)_{i\in\omega}$ دو دنباله فای \mathcal{A}' و \mathcal{A}' چنان موجودند که \mathcal{A}' روی \mathcal{B}' بازنشناختنی است و \mathcal{B}' روی \mathcal{A}' و داریم

$$\mathcal{A}' \models EM(\mathcal{A})$$

$$\mathcal{B}' \models EM(\mathcal{B}).$$

دنبالههای اینچنین را متقابلاًبازنشناختنی میخوانیم.