Detecting m⁵C sites using BS-seq with IVT as negative control

Summary

m⁵C is another extensively studied RNA modification though it is much rarer in transcriptome. We calibrated m⁵C mapping and investigated the controversial results by integrating the IVT RNA library as a negative control during BS-seq. The data processes were followed the public pipeline "RNA-m5C", and then we integrated IVT sample as negative control. False positive rate and fisher's exact test were used to filter the m⁵C sites. Only sites within exon regions were treated as high confidence m⁵C sites.

Requirements

Unix/Linux based operating system (tested with CentOS release 6.10)

Perl (tested with version 5.26.2)

R (tested with version 3.5.2)

cutadapt (tested with version 1.15)

Trimmomatic (tested with version 0.36)

fastqc (tested with version 0.11.5)

hisat2 (tested with version 2.1.0)

samtools (tested with version 1.6)

RNA-m5C (https://github.com/SYSU-zhanglab/RNA-m5C)

Reference genome

GRCh37 (human)

Step-by-step instructions

The raw reads were removed adaptors and mapping to reference genome under the pipeline of RNA-m5C (https://github.com/SYSU-zhanglab/RNA-m5C). Same parameters were used in cellular mRNA and *in vitro* transcribed RNA (IVT RNA).

Steps 1-4 were under the guidance of RNA-m5C.

1. Remove adaptors and quality control

Paired-end raw reads were removed adaptors by cutadapt, the reads shorted than 15nt were discarded. fastqc was used to check the quality of clean reads.

cut adaptor under the guidance of RNA-m5C

for mRNA

cutadapt -a AGATCGGAAGAGCACACGTCT -A AGATCGGAAGAGCGTCGTGT -O 3 -m 15 -e 0.25 -q 25 -- trim-n -o mRNA_R1.cutout.fq -p mRNA_R2.cutout.fq rawdata_mRNA_R1.fq.gz rawdata_mRNA_R2.fq.gz java -jar trimmomatic-0.36.jar PE -phred33 mRNA_R1.cutout.fq mRNA_R2.cutout.fq mRNA_rev.fastq mRNA_rev.UP.fq mRNA_fwd.fastq mRNA_fwd.UP.fq HEADCROP:10 SLIDINGWINDOW:4:22 AVGQUAL:25 MINLEN:40

for IVT

cutadapt -a GATCGGAAGAGCACACGTCT -A AGATCGGAAGAGCGTCGTGT -O 3 -m 15 -e 0.25 -q 25 -- trim-n -o IVT_R1.cutout.fq -p IVT_R2.cutout.fq rawdata_IVT_R1.fq.gz rawdata_IVT_R2.fq.gz java -jar /Path_to_Trimmomatic/Trimmomatic-0.36/trimmomatic-0.36.jar PE -phred33 IVT_R1.cutout.fq IVT R2.cutout.fq IVT rev.fastq IVT rev.UP.fq IVT fwd.fastq IVT fwd.UP.fq HEADCROP:10

2. Map to reference genome using RNA-m5C pipeline

```
\#\!\# Index construction under the guidance of RNA-m5C
```

for mRNA

python/path_to_RNA-m5C/2_m5C_step-by-step_hisat2/BS_hisat2.py -F mRNA_fwd.fastq -R mRNA_rev.fastq -o mRNA_hisat2 -I /Path_to_index/HISAT2_INDEX --index-prefix HISAT2 --hisat2-path /Path_to_hisat2/hisat2-2.1.0 --del-convert --del-sam 2>> mRNA_log

 $python/path_to_RNA-m5C/3_m5C_step-by-step_bowtie2/BS_bowtie2.py -F mRNA_fwd.unmapped.fastq -R mRNA_rev.unmapped.fastq -o mRNA_bowtie2 --bowtie2-path/Path_to_bowtie2/bowtie2-2.3.3/ -I$

Homo_sapiens.GRCh37.75.all.RNA.c2t -g Homo_sapiens.GRCh37.75.genelist --del-convert --del-sam --bowtie2-param parameter_file 2>> mRNA_bowtie2_log

 $python/path_to_RNA-m5C/3_m5C_step-by-step_bowtie2/Bam_transcriptome_to_genome_v1.0.py-i\\ mRNA_bowtie2.bam-o mRNA_bowtie2_genome.bam-a/path_to_ref/Homo_sapiens.GRCh37.75.anno--dict\\ Homo_sapiens.GRCh37.75.size 2>> mRNA_bowtie2_log$

python /path_to_RNA-m5C/4_m5C_step-by-step_pileup/concat_bam.py -t 4 -i mRNA_hisat2.bam mRNA_bowtie2_genome.bam -o mRNA_merged.bam --sort --index 2>> mRNA_merge_log ## for IVT

python /path_to_RNA-m5C/2_m5C_step-by-step_hisat2/BS_hisat2.py -F IVT_fwd.fastq -R IVT_rev.fastq -o IVT_hisat2 -I /Path_to_index/HISAT2_INDEX --index-prefix HISAT2 --hisat2-path /Path_to_hisat2/hisat2-2.1.0 -- del-convert --del-sam 2>> IVT_log

python /path_to_RNA-m5C/3_m5C_step-by-step_bowtie2/BS_bowtie2.py -F IVT_fwd.unmapped.fastq -R IVT_rev.unmapped.fastq -o IVT_bowtie2 --bowtie2-path /Path_to_bowtie2/bowtie2-2.3.3/ -I

Homo_sapiens.GRCh37.75.all.RNA.c2t -g Homo_sapiens.GRCh37.75.genelist --del-convert --del-sam --bowtie2-param parameter_file 2>> IVT_bowtie2_log

python/path_to_RNA-m5C/3_m5C_step-by-step_bowtie2/Bam_transcriptome_to_genome_v1.0.py -i IVT_bowtie2.bam -o IVT_bowtie2_genome.bam -a /path_to_ref /Homo_sapiens.GRCh37.75.anno --dict Homo_sapiens.GRCh37.75.size 2>> IVT_bowtie2_log

 $python/path_to_RNA-m5C/4_m5C_step-by-step_pileup/concat_bam.py-t~4-i~IVT_hisat2.bam~IVT_bowtie2_genome.bam-o~IVT_merged.bam--sort--index~2>> IVT_merge_log$

3. Pileup using RNA-m5C pipeline

for mRNA

python/path_to_RNA-m5C/4_m5C_step-by-step_pileup/pileup_genome_multiprocessing_v1.4_pysam_v0.15.0.py -P 6 -f/path_to_ref/Homo_sapiens.GRCh37.75.dna_sm.primary_assembly.fa -i mRNA_merged.bam -o mRNA.pileups.tmp 2>> mRNA_pileup_log

python /path_to_RNA-m5C/4_m5C_step-by-step_pileup/m5C_pileup_formatter.py --db /path_to_ref/Homo_sapiens.GRCh37.75.noreundance.base -i mRNA.m5C.pileups.tmp -o mRNA.m5C.pileups.formatted.txt --CR mRNA_CR.txt 2>> mRNA_pileup_log ## for IVT

python/path_to_RNA-m5C/4_m5C_step-by-step_pileup/pileup_genome_multiprocessing_v1.4_pysam_v0.15.0.py -P 6 -f /path_to_ref/Homo_sapiens.GRCh37.75.dna_sm.primary_assembly.fa -i IVT_merged.bam -o IVT.pileups.tmp 2>> IVT_pileup_log

 $python/path_to_RNA-m5C/4_m5C_step-by-step_pileup/m5C_pileup_formatter.py--db$

```
/path_to_ref/Homo_sapiens.GRCh37.75.noreundance.base -i IVT.m5C.pileups.tmp -o IVT.m5C.pileups.formatted.txt --CR IVT_CR.txt 2>> IVT_pileup_log
```

4. Call m⁵C sites using RNA-m5C pipeline

```
## Call putative m<sup>5</sup>C sites using two replicates of mRNA
python/RNA-m5C-master/5 m5C step-by step-call site/m5C caller multiple.py -i sample.txt -o
mRNA 2reps.csv -P 2 -c 10 -C 5 -r 0.05 -p 0.05 --method binomial
##cat sample.txt
##C5R2 mRNA.rep1.m5C.pileups.formatted.txt gene
                                                        20
##C5R3 mRNA.rep2.m5C.pileups.formatted.txt gene
                                                        20
python/RNA-m5C-master/5 m5C step-by step-call site/m5C intersection single r1.py -c 10 -C 5 -r 0.05 -p 0.05
-i mRNA 2reps.csv -o mRNA 2reps intersect.csv
## Call putative m<sup>5</sup>C sites using two replicates of IVT
python/RNA-m5C-master/5 m5C step-by step-call site/m5C caller multiple.py -i sample.txt -o IVT 2reps.csv -
P 2 -c 10 -C 5 -r 0.05 -p 0.05 --method binomial
##cat sample.txt
##C5R2 IVT.rep1.m5C.pileups.formatted.txt
                                                        20
                                               gene
##C5R3 IVT.rep2.m5C.pileups.formatted.txt
                                                        20
                                               gene
python/RNA-m5C-master/5 m5C step-by step-call site/m5C intersection single r1.py-c 10-C 5-r 0.05-p 0.05
-i IVT 2reps.csv -o IVT 2reps intersect.csv
```

5. Call m⁵C sites using IVT as negative control

```
# Conduct following steps for two replicates
```

parameters:

#-n mRNA pileup file from step 3

#-i IVT pileup file from step 3

#-c C-content using RNA-m5C pipeline

#-d minimal depth

perl cal_fpr_m5c.pl -i IVT.m5C.pileups.formatted.txt -n mRNA.m5C.pileups.formatted.txt -c 20 -d 1 >

 $mRNA_IVT.txt$

awk' \$12!~/NA/&&\$9>0{print}' mRNA IVT.txt> mRNA IVT fail convert.txt

Rscript fisher.r mRNA_IVT_fail_convert_fisher

6. Call high confidence m⁵C sites between two replicates

##After conducting two replicates, we extracted the recurrent sites as high confidence m⁵C sites.

parameters:

-r1 rep1 from step 5

-r2 rep2 from step 5

-c minimal number of unconverted C

-d minimal depth

-r minimal conversion failure rate

-f maximal false positive rate

-p maximal p-value in fisher exact test

 $perl\ call_m5c_highconf.pl\ -r1\ mRNA_IVT_rep1_fail_convert_fisher\ -r2\ mRNA_IVT_rep2_fail_convert_fisher\ -c\\ 5\ -d\ 10\ -r\ 0.05\ -f\ 0.2\ -p\ 0.05\ > m5c_highconf_sites$