

SGI ICE Dual Plane – Topology

64 racks – 2008 393 teraflops

SpecFP rate base <u>estimates</u> (eliminates cell/GPU/blue-gene/SX vec)

Spec Top500			Machine	CPU :	#Sockets I	ket TSpec	
•	1	2	Jaguar	AMD-2435	37,360	65.2	2,436,246
•	2	6	Tera-100	Intel-7560	17,296	133.4	2,307,805
•	3	5	Hopper	AMD-6176	12,784	149.8	1,800,115
•	4	1	Tianhe-1a	Intel-x5670	14,336	119.5	1,713,868
•	5	11	Pleiades	Intel-x	21,632	72.2	1,562,510
•	6	10	Cielo	AMD-6136	13,394	115.5	1,547,408
•	7	8	Kraken	AMD-2435	16,448	65.2	1,075,182
•	8	14	RedSky	Intel-x5570	10,610	90.3	958,401
•	9	17	Lomonosov	Intel-x5570	8,840	90.3	798,517
•	10	15	Ranger	AMD-2356	15,744	37.3	588,196

Tspec == number of 2-core 296mhz UltraSPAR® II

NASA (Pleiades) Rack Layout A (ICE DDR) B (ICE DDR) C (ICE DDR) 10d D (ICE DDR) K (ICE QDR) L (ICE QDR) 182 racks – 2012 1.7 petaflops * Install – 3/30/2012 Note: RK 299 and RK 300 are RLC racks. Racks 301-312 and Racks 317-328 are Intel E5 Processors O (ICE FDR) P (ICE FDR) Cool Aisle I (ICE QDR) 15M cable J (ICE QDR) M (ICE QDR) N (ICE QDR) Gpgpu racks 219 and 220 but configured as rack 219. note switches on gpgpu are in rear of rack so cable lengths needs to be adjusted to reflect this. Note: Rack 221 will cable to on 11D to rack 92. There is no 11d for Rack 222. this is a problem. If we remove rack 92 then we have issue with racks 221 &

NASA (Pleiades) Rack Layout Cool Aisle K (ICE QDR) L (ICE QDR) 64 rack deinstall 2013 * Install – 3/30/2012 Note: RK 299 and RK 300 are RLC racks. Racks 301-312 and Racks 317-328 are Intel E5 Processors O (ICE FDR) P (ICE FDR) Cool Aisle I (ICE QDR) 15M cable J (ICE QDR) M (ICE QDR) 10D N (ICE QDR) Gpgpu racks 219 and 220 but configured as rack 219. note switches on gpgpu are in rear of rack so cable lengths needs to be adjusted to reflect this. Note: Rack 221 will cable to on 11D to rack 92. There is no 11d for Rack 222, this is a problem. If we remove rack 92 then we have issue with racks 221 & 222.

Pleiades 2015 – Based on MemoryBW (ignore GPU/PHI)

		11/14			Mem BW		Mem BW	Mega			
Machine	Type	T500	Sockets	Type	Socket	Spec Socket	(PB/Sec)	Spec	Rmax	Rpeak	PctPeak
K computer	Sparc64	4	88,128	VIII fx	64.0	373.2	5,640	32.9	10,510	11,280	93.2%
Sequoia	BGQ/Power	3	98,304	BGQ-A2	42.7	144.3	4,198	14.2	17,173	20,132	85.3%
BlueWater	XK6/XK7		49,200	6276	51.2	176.0	2,519	8.7		71,378	
Mira	BGQ /Power	5	49,152	BGQ-A2	42.7	144.3	2,099	7.1	8,586	10,066	85.3%
Tianhe-2	Xeon/Xeon Phi	1	32,000	E5-2692v2	59.7	321.5	1,910	10.3	33,862	54,902	61.7%
Pleiades	SGI/Xeon Mix	11	22,896	XeonMix	54.8	283.7	1,255	6.5	3,375	3,987	84.7%
Juqueen	BGQ/Power	8	28,672	BGQ-A2	42.7	144.3	1,224	4.1	5,008	5,872	85.3%
Secret2	XC30/Xeon	13	18,832	E5-2697v2	59.7	341.0	1,124	6.4	3,143	4,881	64.4%
Vulcan	BGQ/Power	9	24,576	BGQ-A2	42.7	144.3	1,049	3.5	4,293	5,033	85.3%
Titan	XK7/Opteron/K20x	2	18,688	6274	51.2	173.0	957	3.2	17,590	27,112	64.9%
SuperMUC	iData/Xeon	14	18,432	E5-2680	51.2	244.5	944	4.5	2,897	3,185	91.0%
Pangea	SGI/Xeon	20	13,800	E5-2670	51.2	240.5	707	3.3	2,098	2,296	91.4%
Stampede	Dell/Xeon/Phi	7	12,800	E5-2680	51.2	244.5	655	3.1	5,168	8,520	60.7%
Hornet	XC40/Xeon	16	7,884	E5-2680v3	68.0	396.5	536	3.1	2,763	3,784	73.0%
Tianhe-1A	Xeon/Nvidia2050	17	14,336	X5670	32.0	132.0	459	1.9	2,566	4,701	54.6%
Secret1	CS/Xeon/K40	10	7,280	E5-2660v2	59.7	287.5	435	2.1	3,577	6,131	58.3%
HPC2	iData/Xeon/K20x	12	7,200	E5-2680v2	59.7	313.0	430	2.3	3,188	4,605	69.2%
Excalibur	XC40/Xeon	19	6,254	E5-2698v3	68.0	434.0	425	2.7	2,485	3,682	67.5%
Piz Daint	XC30/Xeon/K20x	6	5,272	E5-2670 snb	51.2	240.5	270	1.3	6,271	7,788	80.5%
Cascade	Xeon/Xeon Phi	18	1,880	E5-2670	51.2	240.5	96	0.5	2,539	3,388	74.9%
Tsubame	Nec/Xeon/K20x	15	2,816	X5670	32.0	132.0	90	0.4	2,785	5 <i>,</i> 735	48.6%

Numbers in Red are sWAG

Pleiades Environment

- 11,280 compute nodes 22,560 sockets 211,360 x86 cores
 - Westmere, Sandybridge, Ivybridge, Haswell
- 128 visualization nodes
- 192 GPU Nodes
- 192 Xeon Phi Nodes
- 10 Front End Nodes
- 4 "Bridge Nodes"
- 4 Archive Front Ends
- 8 Data Analysis Nodes
- 8 Archive Nodes
- 2 large memory nodes 2 TB + 4 TB
- + a couple hundred administration/management nodes of various types.

Load balancing with 1 MPI task/core

- SNB E5-2670 8c 2.6 GHz: STREAM Triad 75.9 GB/s/node, 4.74 GB/s/core
- IVB E5-2680v2 10c 2.8 GHz: STREAM Triad 95.7 GB/s/node,
 4.79 GB/s/core
- HSW E5-2680v3 12c 2.5 GHz: STREAM Triad 117.2 GB/s/node, 4.89 GB/s/core

Performance measurements

- SNB: 99.3% scaling efficiency from 1 to 1868 nodes
- IVB: 97.4% scaling efficiency from 1 to 5347 nodes
- HSW: 95.9% scaling efficiency from 1 to 2073 nodes

NASA Pleiades HPCG Performance

Credit - Cheng Laio - SGI

SGI Optimized HPCG Code

The SGI code is optimized using common techniques such as contiguous memory, storage format tuning, multi-color reordering and combined computations.

The code is pure MPI.

Improvements and Extensions are being planned.

Performance on Various Systems

HPCG June 2015

HPCG Rank (Jun 15)	#5	#1	#2	#3	#4	
Top500 Rank (Nov 15)	#13	#1	#4 #2		#5	
	Pleiades	Tianhe	K Computer	Titan	Mira	
Cores	186,288	3,120,000	705,024	560,640	786,432	
HPCG PF	0.131	0.580	0.461	0.322	0.167	
HPL PF	4.089	33.863	10.51	17.59	8.567	
Peak PF	4.970	54.902	11.280	27.112	10.066	
HPCG MF/Core	703.21	185.90	653.59	574.88	212.35	
HPL GF/Core	21.95	10.85	14.91	31.37	10.89	
Peak GF/Core	26.68	17.60	16.00	48.36	12.80	
HPCG %of HPL	3.20%	1.71%	4.38%	1.83%	1.95%	
HPCG %of Peak	2.64%	1.06%	4.09%	1.19%	1.66%	

No one has built a 1 PetaFlop machine yet 🕾

HPL Runtime Performance

NASA

Memory error burst or partial DIMM failure result in ~5TF performance drops or run failure on green try30.

<3TF lost on some memory errors or a single network transmission error in red try26.</p>

Nice to modify HPCG to give similar real time performance metrics.

Fail

Node crash on DIMM issue in last seconds.

```
r509i0n0 0:
r509i0n0 0: T/V N NB P Q Time
                                           Gflops
r509i0n0 0: -----
r509i0n0 0: WHC01L2L4 5459520 192 128 72
                                      26568.92 4.08318e+06
r509i0n0 0: HPL pdgesv() start time Thu Jun 4 23:07:09 2015
r509i0n0 0:
r509i0n0 0: HPL pdgesv() end time Fri Jun 5 06:29:58 2015
r509i0n0 0:
r509i0n0 0: -----
r509i0n0 0: ||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 77939.0629011 ..... FAILED
r509i0n0 0: ||Ax-b||_oo . . . . . . . . . . =
                                 224.874403
r509i0n0 0: ||x||_oo . . . . . . . . . . . . . . . . . =
                                 3.483180
r509i0n0 0: ||x||_1 .... = 2887333.826247
r509i0n0 0: ||b|| oo . . . . . . . . . . . . . =
                                 0.500000
```

Success

After many years of HPL, we observe that a successful run always begin late evening.

```
r509i0n0 0: T/V
                N NB P Q
                                            Gflops
                                 Time
r509i0n0 0: -----
r509i0n0 0: WHC01L2L4 5459520 192 128 72 26528.30
                                                 4.08943e+06
r509i0n0 0: HPL pdgesv() start time Fri Jun 5 20:14:31 2015
r509i0n0 0:
r509i0n0 0: HPL pdgesv() end time Sat Jun 6 03:36:40 2015
r509i0n0 0:
r509i0n0 0: -----
r509i0n0 0: ||Ax-b|| oo/(eps*(||A|| oo*||x|| oo+||b|| oo)*N)= 0.0026823 ...... PASSED
r509i0n0 0:
               1 tests with the following results:
r509i0n0 0: Finished
r509i0n0 0:
             1 tests completed and passed residual checks,
r509i0n0 0:
             0 tests completed and failed residual checks,
r509i0n0 0:
             0 tests skipped because of illegal input values.
r509i0n0 0: -----
r509i0n0 0:
r509i0n0 0: End of Tests.
Sat Jun 6 03:38:47 PDT 2015
```

HPL vs HPCG Runs

Memory DIMM errors dominate failures on HPL runs. These far exceed those seen in normal production likely due to larger memory footprint and higher CPU load (temperature). HPL then exposes these errors that were latent (dormant).

HPCG retries were mostly related to debugging a network layer/MPI issue that had been occurring in production without a reproducer – until this HPCG run. This allowed us to identify and correct the issues. Some HW/memory fallout did occur when bringing up system after two days powered off while system returns to nominal operating temperature.

Summary

HPL Strengths:

- Good for burn-in, clean-up.
- Useful in finding problems.
 - SW, Processors, memory, network, building power distribution, cooling.

HPL too time consuming, skipped runs on several major upgrades.

HPCG Strengths:

- Easy to map to system
- Configurable runtime
- Useful performance information on short (<1 hr) runs.
- Also found problems SW, HW
- More Representative of performance seen on NASA codes

Most significant issue by far: Memory DIMMS

Credits to the Team

John Baron SGI

Cheng Laio SGI

Michael Raymond SGI

Jay Lan SGI

Scott Emery SGI

Jennifer Fung SGI

Jose Rodriguez SGI

Matt Lepp SGI

Jason Inoue SGI

Rich Davila SGI

John Dugan SGI

Davin Chan CSC

Dale Talcott CSC

Jim Karella CSC

Greg Matthews CSC

Herbert Yeung CSC

Mahmoud Hanafi CSC

Mike Hartman CSC

Jeff Becker CSC

Bill Thigpen NASA

Mark Tangney NASA

Bob Ciotti NASA