Chapter 11: SIMPLE LINEAR REGRESSION AND CORRELATION

Part 1: Simple Linear Regression (SLR)
Introduction

Sections 11-1 and 11-2

Abrasion Loss vs. Hardness

Price of clock vs. Age of clock

• Regression is a method for studying the relationship between two or more quantitative variables

• Simple linear regression (SLR):

One quantitative dependent variable

- response variable
- dependent variable
- -Y

One quantitative independent variable

- explanatory variable
- predictor variable
- X

• Multiple linear regression:

One quantitative dependent variable

Many quantitative independent variables

You'll see this in STAT:3200/IE:3760
 Applied Linear Regression, if you take it.

• SLR Examples:

- predict salary from years of experience
- estimate effect of lead exposure on school testing performance
- predict force at which a metal alloy rod bends based on iron content

• Example: Health data

Variables:

Percent of Obese Individuals Percent of Active Individuals

Data from CDC. Units are regions of U.S. in 2014.

PercentObesity PercentActive

1	29.7	55.3
2	28.9	51.9
3	35.9	41.2
4	24.7	56.3
5	21.3	60.4
6	26.3	50.9

.

•

Se do Deservative

A <u>scatterplot</u> or <u>scatter diagram</u> can give us a general idea of the relationship between obesity and activity...

The points are plotted as the pairs (x_i, y_i) for $i = 1, \ldots, 25$

Inspection suggests a <u>linear relationship</u> between obesity and activity (i.e. a straight line would go through the bulk of the points, and the points would look randomly scattered around this line).

Simple Linear Regression

The model

• The basic model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- $-Y_i$ is the observed response or dependent variable for observation i
- $-x_i$ is the observed predictor, regressor, explanatory variable, independent variable, covariate
- $-\epsilon_i$ is the error term
- $-\epsilon_i$ are iid $N(0, \sigma^2)$ (iid means independently and identically distributed)

- So,
$$E[Y_i|x_i] = \beta_0 + \beta_1 x_i + 0 = \beta_0 + \beta_1 x_i$$

The conditional mean (i.e. the expected value of Y_i given x_i , or after conditioning on x_i) is " $\beta_0 + \beta_1 x_i$ " (a point on the estimated line).

- Or, as another notation, $E[Y|x] = \mu_{Y|x}$
- The random scatter around the mean (i.e. around the line) follows a $N(0, \sigma^2)$ distribution.

Example: Consider the model that regresses Oxygen purity on Hydrocarbon level in a distillation process with...

$$\beta_0 = 75 \text{ and } \beta_1 = 15$$
(Oxygen purity)
$$\beta_0 + \beta_1 \text{ (1.25)}$$

$$\beta_0 + \beta_1 \text{ (1.00)}$$

$$x = 1.00 \qquad x = 1.25 \qquad x \text{ (Hydrocarbon level)}$$

For each x_i there is a different Oxygen purity mean (which is the center of a normal distribution of Oxygen purity values).

Plugging in x_i to $(75+15x_i)$ gives you the conditional mean at x_i .

The conditional mean for x = 1:

$$E[Y|x] = 75 + 15 \cdot 1 = 90$$

The conditional mean for x = 1.25:

$$E[Y|x] = 75 + 15 \cdot 1.25 = 93.75$$

These values that randomly scatter around a conditional mean are called **errors**.

The random error of observation i is denoted as ϵ_i . The errors around a conditional mean are normally distributed, centered at 0, and have a variance of σ^2 or $\epsilon_i \sim N(0, \sigma^2)$.

Here, we assume all the conditional distributions of the errors are the same, so we're using a <u>constant variance</u> model.

$$V[Y_i|x_i] = V(\beta_0 + \beta_1 x_i + \epsilon_i) = V(\epsilon_i) = \sigma^2$$

• The model can also be written as:

$$Y_i|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$
Conditional mean

- mean of Y given x is $\beta_0 + \beta_1 x$ (known as conditional mean)
- $-\beta_0 + \beta_1 x_i$ is the **mean value** of all the Y's for the given value of x_i

The regression line itself represents all the conditional means.

All the observed points will <u>not</u> fall on the line, there is some random noise around the mean (we model this part with an error term).

Usually, we will not know β_0 , β_1 , or σ^2 so we will estimate them from the data.

- Some interpretation of parameters:
 - $-\beta_0$ is conditional mean when x=0
 - $-\beta_1$ is the slope, also stated as the change in mean of Y per 1 unit change in x
 - $-\sigma^2$ is the variability of responses about the conditional mean

Simple Linear Regression

Assumptions

- Key assumptions
 - linear relationship exists between Y and x
 - *we say the relationship between Y and x is linear if the means of the conditional distributions of Y|x lie on a straight line
 - independent errors(this essentially equates to independent observations in the case of SLR)
 - constant variance of errors
 - normally distributed errors

Simple Linear Regression

Estimation

We wish to use the sample data to estimate the population parameters: the slope β_1 and the intercept β_0

• Least squares estimation

To choose the 'best fitting line' using <u>least</u> squares estimation, we minimize the sum of the squared vertical distances of each point to the fitted line.

14

- We let 'hats' denote predicted values or estimates of parameters, so we have:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

where \hat{y}_i is the estimated conditional mean for x_i ,

 $\hat{\beta}_0$ is the estimator for β_0 ,

and $\hat{\beta}_1$ is the estimator for β_1

- We wish to choose $\hat{\beta}_0$ and $\hat{\beta}_1$ such that we minimize the sum of the squared vertical distances of each point to the fitted line, i.e. minimize $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- Or minimize the function g:

$$g(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^n (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

- This vertical distance of a point from the fitted line is called a **residual**. The residual for observation i is denoted e_i and

$$e_i = y_i - \hat{y}_i$$

- -So, in least squares estimation, we wish to minimize the **sum of the squared** residuals (or error sum of squares SS_E).
- To minimize $g(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} (y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$

we take the derivative of g with respect to $\hat{\beta}_0$ and $\hat{\beta}_1$, set equal to zero, and solve.

$$\frac{\partial g}{\partial \hat{\beta}_0} = -2\sum_{i=1}^n (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)) = 0$$

$$\frac{\partial g}{\partial \hat{\beta}_1} = -2\sum_{i=1}^n (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))x_i = 0$$

Simplifying the above gives:

$$n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

$$\hat{\beta}_0 \sum_{i=1}^n x_i + \hat{\beta}_1 \sum_{i=1}^n (x_i^2) = \sum_{i=1}^n y_i x_i$$

And these two equations are known as the least squares normal equations.

Solving the normal equations gets us our estimators $\hat{\beta}_0$ and $\hat{\beta}_1$...

Simple Linear Regression

Estimation

- Estimate of the slope:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}$$

- Estimate of the Y-intercept:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

the point (\bar{x}, \bar{y}) will <u>always</u> be on the least squares line

Alternative formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$ are also given in the book.

• Example: Cigarette data (Nicotine vs. Tar content)

$$n = 25$$

Least squares estimates from software:

$$\hat{\beta}_0 = 0.1309$$
 and $\hat{\beta}_1 = 0.0610$

Summary statistics:

$$\sum_{i=1}^{n} x_i = 305.4 \qquad \bar{x} = 12.216$$

$$\sum_{i=1}^{n} y_i = 21.91 \qquad \bar{y} = 0.8764$$

$$\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) = 47.01844$$

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = 770.4336$$

$$\sum_{i=1}^{n} x_i^2 = 4501.2 \quad \sum_{i=1}^{n} y_i^2 = 22.2105$$

Using the previous formulas and the summary statistics...

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{47.01844}{770.4336} = 0.061029$$

and

$$\hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$$

$$= 0.8764 - 0.061029(12.216)$$

$$= 0.130870$$

(Same estimates as software)

Simple Linear Regression Estimating σ^2

• One of the assumptions of simple linear regression is that the variance for each of the conditional distributions of Y|x is the same at all x-values (i.e. constant variance).

• In this case, it makes sense to pool all the observed error information (in the residuals) to come up with a common estimate for σ^2

Recall the model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 with $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$

– We use the **error sum of squares** (SS_E) to estimate σ^2 ...

$$\hat{\sigma^2} = \frac{SS_E}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2} = MSE$$

*
$$SS_E = \text{error sum of squares}$$

= $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

*MSE is the mean squared error

$$*E[MSE] = E[\hat{\sigma^2}] = \sigma^2$$
 (Unbiased estimator)

*
$$\hat{\sigma} = \sqrt{\hat{\sigma^2}} = \sqrt{MSE}$$

- * '2' is subtracted from n in the denominator because we've used 2 degrees of freedom for estimating the slope and intercept (i.e. there were 2 parameters estimated when modeling the conditional mean)
- * When we estimated σ^2 in a single normal population, we divide $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$ by (n-1) because we only estimated 1 mean structure parameter which was μ , now we're estimate two parameters for our mean structure, β_0 and β_1 .