

22nd ANNUAL STATISTICAL ISSUE MAR 1 1940

AUTOMOTIVE INDUSTRIES

LAND — AIR — WATER

MARCH 1, 1940

Forged for Endurance

To get greatest strength, endurance and uniformity—essential qualities in anti-friction bearings—New Departure *forges* both rings and balls.

New Departure, Bristol, Connecticut.

NEW DEPARTURE

THE FORGED STEEL BEARING

REDUCED OUR OIL COSTS 10%

- J. P. Atkinson of the Hoyt Machine Company, Indianapolis, has three good reasons for giving Acme Cutting Oil this boost.

He writes: "We have been using your Acme Cutting Oil No. 110 for some time with very gratifying results. We are able to secure very fine finishes . . . We are operating our machines at high speeds and the oil seems to dissipate the heat very rapidly . . . We believe it has reduced our oil costs approximately 10%."

There are a number of reasons why Acme makes such good friends among men who know the importance of good cutting oil. A Standard Lubrication Engineer can tell you all of them. Better still, he'll pick the right grade of Acme for some job in your shop and help you make a test. Try it. Maybe you'll find it "the best oil you have ever used."

Write Standard Oil (Indiana) 910 S.
Michigan Avenue, Chicago, Illinois for
the Engineer nearest you.

Conf. 1940, Standard Oil Co. (Ind.)

STANDARD OIL COMPANY (INDIANA)

AUTOMOTIVE INDUSTRIES

AUTOMOBILE

Reg. U. S. Pat. Off.
Published Semi-Monthly

Volume 82

Number 5

JULIAN CHASE, Directing Editor
HERBERT HOSKING, Editor

P. M. HELDIT, Engineering Editor
JOS. GESCHELIN, Detroit Technical Editor
J. A. LAANSMA, Detroit News Editor
JEROME H. FARRIS, Ass't Editor
H. E. BLANK, JR., Ass't Editor
B. M. IKERT, Chicago Technical Editor

J. B. POLLOCK, Ass't Editor
MARCUS AINSWORTH, Statistician
HOWARD KOHLBRENNER, Art Editor
L. W. MOFFETT, Washington Editor
JAMES G. ELLIS, Washington Editor

22ND ANNUAL STATISTICAL ISSUE

CONTENTS

"Big Three" Dominate the Roads 3 to 2.	179
By Marcus Ainsworth	
Production Data	181-183
Taxes, Gasoline and Registration Fees	183
New Registration Data	184-186
Total Registration of Motor Vehicles	187-189
Dealer Count Data	190-191
SPECIFICATIONS	
Passenger Cars	192-193
Passenger Car Engine Trends	194
American Trucks	195-202
Outboard Motors	203
Bus Chassis	204 205
Stock, Marine and Commercial Vehicle Engines	206-215
Aircraft Engines	216-217
Diesel Engines	218-219
Automotive Exports	220
Just Among Ourselves	221
Men and Machines	222
Business in Brief	224
News of the Industry	225
Determining Damping Coefficients	252
Proposed Trade Practice Rules	256
Advertisers' Index	196-197

Copyright 1940 by Chilton Company (Inc.)

JOS. S. HILDRETH, President and Manager
Automotive Division; G. C. BUZBY, Vice-Pres.

OFFICES

Philadelphia—Chestnut & 56th Sts., Phone Sherwood 1424
New York—239 W. 39th St., Phone Pennsylvania 6-1100. Chicago—Room 916 London Guarantee & Accident Bldg., Phone Franklin 4243. Detroit—1015 Stephenson Bldg., Phone Madison 2090. Cleveland—609 Guardian Bldg., Phone Cherry 4128. Washington—1061 National Press Bldg., Phone District 6877. San Francisco—444 Market St., Room 305, Phone Garfield 6788. Los Angeles—6000 Miramonte Blvd., Phone Lafayette 5525. Long Beach, Cal.—1595 Pacific Ave., Phone Long Beach 613-238. Autoland, Philadelphia
Cable Address: Autoland, Philadelphia

Member of the Audit Bureau of Circulations
Member Associated Business Papers, Inc.

Automotive Industries—The Automobile is a consolidation of the Automobile (monthly) and the Motor Review (weekly), May, 1902; Dealer and Repairman (monthly), October, 1903, the Automobile Magazine (monthly), July, 1907, and the Horseless Age (weekly), founded in 1895, May, 1918.

Owned and Published by
CHILTON COMPANY
(Incorporated)

Executive Offices

Chestnut and 56th Streets, Philadelphia, Pa., U. S. A.

Officers and Directors

C. A. MUSSelman, President

Vice-Presidents

JOS. S. HILDRETH
EVERIT B. TERHUNE
C. S. BAUR

GEORGE H. GRIFFITHS
J. H. VAN DEVENTER

WILLIAM A. BARBER, Treasurer
JULIAN CHASE
P. M. FAHRENDORF

JOHN BLAIR MOFFETT, Secretary
THOMAS L. KANE
HARRY V. DUFFY

Automotive Industries

When writing to advertisers please mention *Automotive Industries*

AUTOMOTIVE INDUSTRIES, Vol. 82, No. 5. Published semi-monthly by Chilton Co., Chestnut & 56th Sts., Phila. Entered as Second-Class Matter October 1, 1925, at the Post Office at Philadelphia, Pa.; Under the Act of Congress of March 3, 1879. In Case of Non-Delivery Return Postage Guaranteed. Subscription price: United States, Mexico, United States Possessions, and all Latin-American countries, \$1.00 per year. Canadian and Foreign, \$2.00 per year; single copies, 25 cents, except Statistical Issue (Mar. 1, 1940), 50 cents.

THE OLIVER "70" AND CENTAUR TRACTORS ARE COOLED BY YOUNG RADIATORS

Streamlining radiators to give flowing lines to the modern tractor, yet still retain strength, efficiency and low production costs—is one of the problems of the tractor industry today.

A thorough knowledge of engineering both from research and actual field experience makes YOUNG Engineers capable of handling most satisfactorily your particular problems. Place them before us with no obligation.

Write for Literature.

YOUNG RADIATOR COMPANY RACINE, WISCONSIN, U. S. A.

ALSO MANUFACTURERS OF UNIT HEATERS—COPPER CONVECTORS—CONDENSERS—EVAPORATORS—AIR CONDITIONING UNITS—FAN BLAST COILS—EVAPORATIVE CONDENSERS—EVAPORATIVE COOLERS—OIL COOLERS—GASOLINE, GAS, DIESEL, ENGINE COOLING RADIATORS—INTERCOOLERS—HEAT EXCHANGERS—HEATING, COOLING CORES—ENGINE JACKET WATER COOLERS—HEAT TRANSFER PRODUCTS

March 1, 1940

Nationally-known Motor Manufacturers Use

Red Cut Superior LAMINATION DIES

for Speed,
Accuracy,
Long Life!

Where volume production is the rule . . . where precision must be maintained hand-in-glove with high speed, and where die durability is a carefully-considered factor . . . there you'll find RED CUT SUPERIOR a shop favorite and "front office" friend.

Meeting narrowest limits in specification, this time-honored high speed steel has the edge-holding ability, the resistance to wear and abrasion that merit its choice for your profit-making dies. Get together with the VASCO Sales Engineer for the details!

**Vanadium-Alloys
STEEL CO.**

LATROBE, PA.

"TOPS IN TOOL STEELS"

IN THIS ISSUE . . .

AUTOMOTIVE INDUSTRIES

Reg. U. S. Pat. Off.
Volume 82 March 1, 1940 Number 5

Acknowledgment

So much interest was created by our study of the average life of passenger cars as described in detail in the article, "Today's Cars Are Longer Lived," which appeared in the 1939 Statistical Issue of **AUTOMOTIVE INDUSTRIES**, Feb. 25, 1939, that it was decided to carry on this work for at least another year. In the lead article of this issue are our findings as pertaining to the number of cars in use by year of manufacture and by make. For supplying basic data for all original calculations for this article we are indebted to the Reuben H. Donnelley Corp.

Following this study of cars in use are various valuable data pertaining to production, new registrations (sales), total registrations and an exclusive Chilton count of passenger car dealer representations by makes, states and population groups. This general factual section of what happened in the automobile industry during 1939 is followed by complete specifications of passenger cars, trucks, buses, stock engines, aircraft and Diesel engines, and outboard motors.

To all the manufacturers who so willingly cooperated in furnishing the specifications of their products we give our sincere thanks and appreciation. Also mention must be made of the splendid work and assistance of John Yerger, who compiled the specification section of this book.

Special mention is also gratefully given to Mr. Paul Mattix, Acting Chief, Aeronautics-Automotive Trade Division, Bureau of Foreign and Domestic Commerce, for supplying export data, and to Mr. George Quisenberry, Editor, *The American Automobile* (Overseas Edition) for furnishing the registration statistics of foreign countries. The writer also sincerely appreciates the splendid co-operation of the motor vehicle commissioners of the various states who so willingly and carefully fill out our questionnaires regarding total registration in their states.

To those who sent us material that does not appear in this publication, sincere regrets. All of it was extremely valuable and interesting, but space limitations forbid its publication in this special issue.

PRODUCTION

Production Data

Page

181

Three pages of concentrated data that show how many cars were produced during the last year. Whether you are interested in price class or wholesale values or truck production by capacities the answer is here.

REGISTRATIONS

Registration Data

184

New registrations are the official records of sales. The figures are here from 1929 to now. Trucks by makes are tallied for the same period while an exclusive feature of this section is a tabulation of sales by dollar volume each month, going back to the first of 1936.

World Registration

184

While the major part of the automotive production is in the U. S., registrations in other countries are of unusual interest at this time. Here are the complete figures.

EXPORTS

Automotive Exports

220

The foreign market for American automobiles is a shifting factor. On this page are the figures of what exports there were, where they went and how many.

SPECIFICATIONS

1940 Specifications

192

Each year brings out changes in the design of things automotive. Each of these changes has its many ramifications that go deeper into engineering data than evident at first glance. In the specifications printed in these pages every American passenger chassis and every engine whether for land, air or water has its secrets brought out into the open.

Dealer Count Data 190

Taxes, Gas and Registration Fees 183

Passenger Car Engine Trends 194

Just Among Ourselves 221

Business in Brief 224

Men and Machines 222

News of the Industry 225

Since 1913 all issues of **AUTOMOTIVE INDUSTRIES** have been indexed in the *Industrial Arts Index*, which can be consulted in any public library.

THIS BROACHING EQUIPMENT GOES VERSATILE

• CINCINNATI Single Ram Vertical Hydro - Broach Machine. Catalog M-834 will be mailed on request.

SURFACE broaching equipment usually pursues a single-track purpose, finishing the same parts day after day, weeks on end. Not so the broaching equipment illustrated. Engineered by CINCINNATI, it does an abrupt about face, broaching four different sizes of universal joints, with only a few minutes required to change set-ups.

The machine—a CINCINNATI No. 5-54 Single Ram Vertical Hydro-Broach. Three splined locating mandrels in the fixture take care of the four parts, two of which are identical with respect to locating. When the operator finishes one part, he merely loosens six bolts, removes a taper pin, and indexes the fixture 120 degrees. It's not necessary to change tools; one set broaches all four parts.

With this setup, 248 parts an hour are finished on the inside and outside faces.

Perhaps there are family groups of parts in your own shop which could be surface broached at a saving on one CINCINNATI Hydro-Broach Machine. Why not investigate now?

THE CINCINNATI MILLING MACHINE CO. CINCINNATI GRINDERS INCORPORATED

Manufacturers of

Tool Room and Manufacturing Milling Machines
Surface Broaching Machines Centertype Grinding Machines Cutter Sharpening Machines
Centerless Grinding Machines Centerless Lapping Machines

22nd ANNUAL STATISTICAL ISSUE

AUTOMOTIVE INDUSTRIES

Published on the 1st
and 15th of the month

Vol. 82, No. 5
March 1, 1940

“Big Three” Dominate the Roads 3 to 2

FIIFTY-FIVE per cent of the passenger cars registered in the U. S. today are five years of age or less. Over 83 per cent are 10 years of age or less, with only 17 per cent of the cars remaining in operation that were built during 1929 or prior to that year.

Ford leads the field with 6,200,000 or 25.4 per cent of the total in use. Chevrolet follows closely on the heels of Ford with 6,010,000 cars or 24.6 per cent of the total. With Plymouth added, the “Big Three” cars account for approximately 61 per cent of all passenger cars that were in use as of the end of the 1939 model year.

These facts are brought out in a continuation of the original study of passenger car registrations that was presented in the 1939 Statistical Issue of AUTOMOTIVE INDUSTRIES (Feb. 25, 1939). Some revisions have been necessary in the Life Curve of Automobiles as calculated at that time and further revisions will be necessary for the next few years until the average of cars in use remains at a more constant figure. It is felt that this condition will be reached about the time that all cars built prior to 1930 are eliminated from the cars remaining in service.

In this latest survey of cars in operation, methods of study followed closely the lines mentioned in detail in the previous study, “Today’s Cars Are Longer Lived,” AUTOMOTIVE INDUSTRIES, Feb. 25, 1939. However, for the present study a considerably larger sample was obtainable. Through the cooperation of the Reuben H. Don-

nelley Corp., data were obtained which permitted a study of the rate of mortality for virtually the whole United States, the only excepted areas the States of Pennsylvania and Delaware. Because of the large sample it is felt the present study is a much more comprehensive picture of conditions as they are today. It was gratifying to observe that the case presented a year ago, on the basis of registration data for the States of Ohio, Kansas and New York, correlates closely with the results of this new study.

Rather than confine the survey to one year's findings, averages were obtained from the mortality rates of the past three years, which it is believed, gives a life curve of passenger cars that will be applicable to more than one year. These three years covered changing economic conditions in the country, which naturally materially effect the life curve of passenger cars. Nineteen thirty-seven, a boom year, was combined with 1938, which was an extremely poor year both for the automobile industry and the country as a whole,

Original Automobile Sales and Their Survivors

Each year shows the total number put into service on the right hand black bars with the surviving number on the adjacent bars as of October 31, 1939

*Statistician, AUTOMOTIVE INDUSTRIES.

Estimated Cars in Use By Makes

(As of October 31, 1939)

Make of Car	Number Surviving at End of Model Year	Per Cent of Total Surviving	Make of Car	Number Surviving at End of Model Year	Per Cent of Total Surviving	Make of Car	Number Surviving at End of Model Year	Per Cent of Total Surviving
Ford	6,213,967	25.42	Willys-Overland	441,443	1.81	Mercury	58,590	.24
Chevrolet	6,010,806	24.59	Packard	390,470	1.60	Reo	49,637	.20
Plymouth	2,667,295	10.91	De Soto	347,474	1.42	Pierce-Arrow	22,458	.09
Dodge	1,368,550	5.60	Hudson	278,624	1.14	Franklin	20,817	.08
Buick	1,287,258	5.27	Graham-G. Paige	167,574	.69	Total—These Makes	24,233,627	...
Pontiac-Oakland	1,225,820	5.02	La Salle	125,522	.51	Miscellaneous	207,296	.85
Oldsmobile	974,405	3.99	Hupmobile	110,782	.45	Total—Cars in Use	24,440,923	100.00
Chrysler-Maxwell	572,727	2.34	Cadillac	100,067	.41			
Terraplane-Essex	556,949	2.28	Lincoln and L. Zephyr	94,494	.39			
Studebaker	544,539	2.23	Durant	83,636	.34			
Nash-LaFayette	449,870	1.84	Auburn-Cord	69,833	.29			

and with 1939, which had a distinct rise in all general industrial and economic conditions.

From the revised life curve shown on the right, it has been possible to calculate the number of cars remaining in use today from among those manufactured each year. In all calculations the model year (November 1 to October 31, since 1935) was used, as it was thought that any uses these data were put to would be of more service when considered as various model years rather than calendar years.

An estimate of Cars in Use by Makes and Year of Manufacture, is shown in the table on this page. Readers should bear in mind that this presentation

Estimated Cars in Use by Year of Manufacture

(As of October 31, 1939)

	New Registrations for Model Year	Per Cent Surviving	Number Surviving by Model Years	Per Cent Surviving by Model Years	Cumula- tive Per Cent Surviving
1939	2,603,095	100.00	2,603,095	10.65	10.65
1938	1,839,285	99.6	1,831,928	7.50	18.15
1937	3,658,525	98.7	3,610,964	14.77	32.92
1936	3,312,090	97.6	3,232,600	13.23	46.15
1935	2,286,452	96.0	2,194,994	8.98	55.13
1934	1,888,557	93.3	1,762,024	7.21	62.34
1933	1,493,794	89.0	1,329,477	5.44	67.78
1932	1,096,399	82.0	899,047	3.68	71.46
1931	1,908,141	71.9	1,371,953	5.61	77.07
1930	2,625,979	58.8	1,544,076	6.32	83.39
1929	3,880,206	44.0	1,707,291	6.98	90.37
1928	3,139,579	29.2	916,757	3.75	94.12
1927	2,623,538	17.9	469,613	1.92	96.04
1926	3,228,401	11.1	358,353	1.47	97.51
1925	3,870,744	6.9	267,081	1.09	98.60
1924	3,303,646	4.4	145,360	.59	99.19
1923	3,753,945	2.8	105,110	.43	99.62
1922	2,417,104	1.8	43,508	.18	99.80
1921	1,555,468	1.2	18,666	.08	99.88
1920	2,050,238	.8	16,402	.07	99.95
1919	1,850,865	.5	9,254	.04	99.99
1918	1,123,442	.3	3,370	.01	100.00
Total Cars in Use			24,440,923	100.00	

† From November 1 to October 31, the model year.

‡ Ten months or 1935 model year.

* U. S. production less U. S. exports.

is a statistical calculation only and, as such, is subject to statistical faults. It is believed, however, that a picture is given which is as near to actual conditions as it is possible to be, and is highly suitable for any general purpose to which it might be put. While there exists a country-wide census of cars in service, with all duplications eliminated, data as to year of manufacture are extremely difficult to extract, due to the way records are kept by many states. As a result, many inaccuracies occur, which we believe are largely eliminated by this statistical study.

The table at the top of this page shows the number of survivors by makes arranged according to their numerical order.

Estimated Cars in Use by Make and Year of Manufacture

(As of October 31, 1939)

	1939†	1938†	1937†	1936†	1935‡	1934	1933	1932	1931	1930	1929 and Older Cars
Auburn-Cord			1,534	2,168	4,637	5,165	4,484	9,550	21,236	6,827	14,432
Buick	205,378	161,707	206,455	144,355	60,223	58,841	38,990	40,760	65,338	72,122	233,089
Cadillac	13,000	9,203	12,167	11,320	4,327	4,571	3,474	5,141	8,007	7,102	21,775
Chevrolet	577,986	463,908	795,789	885,982	514,113	499,067	422,299	264,745	419,485	363,904	803,528
Chrysler-Maxwell	68,875	47,559	90,389	49,832	34,422	26,172	25,522	21,334	37,855	35,814	134,953
De Soto	55,103	36,211	73,439	38,730	22,265	10,400	18,921	20,755	20,441	20,737	30,472
Dodge	191,308	102,013	268,350	233,416	140,058	84,100	76,595	23,051	38,172	37,694	173,793
Ford	456,792	343,094	799,099	750,217	686,733	494,983	276,890	212,320	380,050	620,397	1,193,392
Franklin						336	1,183	1,500	2,790	4,399	10,609
Graham-G. Paige	4,286	4,766	14,965	15,355	13,568	12,023	9,014	10,543	13,811	17,722	51,541
Hudson	55,920	40,588	12,729	21,108	16,722	18,013	2,622	7,086	13,797	17,914	72,125
Hupmobile	988	1,021	315	2,320	6,343	6,126	5,986	8,851	12,530	14,292	52,010
La Salle	21,599	14,509	29,553	11,431	9,200	4,835	3,301	3,155	4,949	6,622	16,368
Lincoln-L. Zephyr	19,276	17,000	25,234	12,469	1,342	1,923	1,880	2,607	2,492	2,561	7,710
Mercury	58,590										
Nash-LaFayette	50,033	33,422	70,896	35,975	28,714	22,034	10,104	16,591	28,304	30,039	123,958
Oldsmobile	138,238	86,795	189,775	177,376	118,935	66,874	31,413	19,785	33,781	29,700	83,733
Packard	56,245	50,701	97,849	61,423	27,840	6,113	8,082	9,067	11,688	16,651	44,811
Pierce-Arrow		24	255	819	694	1,623	1,915	2,207	3,251	3,995	7,675
Plymouth	387,452	267,553	495,466	461,676	307,328	282,286	222,204	91,779	67,794	37,809	45,948
Pontiac-Oakland	149,327	95,164	218,734	158,102	112,994	67,778	75,960	39,299	61,930	52,942	193,590
Reo	76,965	39,578	73,680	60,022	32,263	38,775	19,302	20,502	33,457	33,237	116,758
Studebaker											
Terraplane-Essex											
Willys-Overland	12,732	15,481	48,008	12,641	7,899	6,135	13,944	21,236	36,914	38,670	227,783
Total—These Makes	2,600,073	1,830,297	3,608,199	3,223,212	2,193,942	1,759,565	1,309,199	879,565	1,358,722	1,527,533	3,943,320

Model years from November 1 to October 31.

† Ten months or 1935 model years.

Export Data on page 220

Due to the unsettled conditions abroad.
Reliable figures were not available.

World Motor Vehicle Production by Countries — By Years

	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939
United States	3,555,986	2,389,738	1,370,678	1,920,057	2,753,111	3,946,934	4,454,115	4,808,974	2,489,085	3,577,058
Canada	154,192	86,261	60,816	65,852	116,852	172,877	162,159	207,463	166,086	155,316
Total	3,510,178	2,472,359	1,431,494	1,985,909	2,869,963	4,119,811	4,616,274	5,016,437	2,655,171	3,732,374
Austria	3,200	4,100	2,364	1,575	1,355	2,509	5,275	6,043	*	*
Belgium	4,700	3,200	2,225	1,400	740	753	534	2,383	1,665	
Czechoslovakia	16,840	16,980	13,580	10,000	10,000	9,978	12,141	13,813	13,000	
Denmark	230	193	148	140	182	148	250	250	308	
France	230,700	196,860	170,955	191,929	201,644	179,270	201,737	201,934	214,989	
Germany	70,044	77,225	50,417	105,832	173,014	242,934	297,512	331,894	352,368	
Hungary	841	237	121	143	222	111	465	615	790	
Italy	42,685	29,280	29,100	42,000	43,416	45,208	43,600	66,000	69,118	
Japan	371	531	675	1,808	2,845	6,800	9,632	14,430	24,100	
Poland	288	200	175	780	800	788	2,400	2,200	2,920	
Soviet Russia	7,972	20,500	26,849	49,675	72,486	97,000	138,400	199,123	210,731	
Spain	450	250	435	375	830	591				
Sweden	2,400	2,444	2,995	2,975	3,122	3,404	4,451	6,626	7,046	
Switzerland	1,000	1,070	996	480	436	460	296	700	600	
United Kingdom	234,571	233,219	244,434	280,526	347,856	416,915	466,335	507,749	447,561	
Total (Foreign)	616,292	576,289	545,469	699,638	858,928	1,006,869	1,183,028	1,353,760	1,345,197	
World Total	4,126,470	3,048,648	1,976,963	2,673,547	3,728,891	5,126,680	5,799,302	6,370,197	4,000,368	

* Included with Germany.

† The American Automobile (Overseas Edition), all other years Automotive Division, Bureau of Foreign and Domestic Commerce.

Truck Production by Capacities

(U. S. and Canada)

Truck Tonnage	1933	1934	1935	1936	1937	1938	1939*	
Number	%	Number	%	Number	%	Number	%	
1/4 ton or less	98,928	27.6	172,089	28.6	249,957	34.1	316,208	38.6
1 ton and less than 1 1/2	893	.2	2,341	.4	2,259	.3	9,686	1.1
1 1/2 ton and less than 2	228,238	63.7	376,475	62.9	420,597	57.5	423,503	52.0
2 ton and less than 2 1/2	15,866	4.4	25,995	4.3	28,950	4.0	30,637	3.7
2 1/2 ton and less than 3 1/2	7,728	2.2	11,136	1.9	10,465	1.4	12,309	1.5
3 1/2 ton and less than 5	2,859	.8	4,752	.8	3,612	.5	4,621	.5
5 ton and over	580	.2	1,219	.2	3,824	.5	5,587	.7
Special types	3,356	.9	5,390	.9	12,341	1.7	15,846	1.9
Total	358,548	100.0	599,397	100.0	732,005	100.0	818,377	100.0

* Partly estimated.

Passenger Car Production by Wholesale Price Classes

(U. S. and Canada)

	Number of Units									
	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939*
Under \$500	1,754,747	1,328,294	794,164	1,316,341	1,443,357	1,787,171	1,919,618	1,368,018	329,858	206,442
\$501-\$750	680,352	413,929	260,831	237,099	715,989	1,444,529	1,677,558	2,392,415	1,521,404	2,403,062
\$751-\$1,000	204,450	162,954	74,610	31,610	66,223	110,813	143,269	260,280	224,839	310,117
\$1,001-\$1,500	179,180	80,687	36,670	20,125	27,576	28,736	39,997	31,226	42,160	49,318
\$1,501-\$2,000	55,351	33,846	8,699	10,409	8,391	8,716	11,545	11,633	3,661	4,309
\$2,001-\$3,000	27,266	12,714	8,679	8,725	6,879	5,413	4,326	4,061	2,161	1,859
\$3,001 and over	8,841	5,759	2,532	2,052	2,151	2,428	1,584	1,302	663	423
Total	2,910,187	2,038,183	1,186,185	1,627,361	2,270,566	3,387,806	3,797,897	4,068,935	2,124,746	2,975,530
Percentage of Total										
Under \$500	60.30	65.17	66.95	80.89	63.57	52.75	50.55	33.82	15.50	6.94
\$501-\$750	23.38	20.31	22.00	14.57	31.53	42.64	44.17	58.80	71.60	80.76
\$751-\$1,000	7.02	8.00	6.29	2.00	2.82	3.27	3.77	6.40	10.60	10.43
\$1,001-\$1,500	6.16	3.96	3.09	1.24	1.21	.85	1.05	.77	2.00	1.66
\$1,501-\$2,000	1.90	1.66	.73	.64	.37	.26	.30	.28	.17	.14
\$2,001-\$3,000	.94	.62	.73	.54	.31	.16	.11	.10	.10	.06
\$3,001 and over	.30	.28	.21	.12	.09	.07	.05	.03	.03	.01
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

* Partly estimated

Monthly Motor Vehicle Production

(U. S. and Canada)

Passenger Cars

	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	January
January	212,244	364,773	242,672	142,869	101,915	112,754	117,700	235,806	308,589	324,191	168,890	292,869	January
February	301,320	431,755	293,036	187,948	98,604	93,153	193,875	287,142	234,872	310,961	151,133	253,914	February
March	386,510	546,489	348,087	241,727	106,003	103,396	291,546	377,374	357,068	423,006	186,341	312,392	March
April	384,778	571,956	393,804	300,960	128,597	156,712	303,806	407,721	436,576	452,907	190,111	286,200	April
May	404,444	541,310	382,619	282,096	165,025	188,675	290,286	322,485	401,139	443,412	168,598	249,455	May
June	381,028	469,260	298,130	215,979	166,646	213,602	272,090	306,300	388,183	429,333	147,545	257,289	June
July	357,682	439,598	230,761	187,324	101,478	196,567	231,501	283,715	379,823	372,913	112,114	155,850	July
August	422,996	452,857	190,864	158,851	79,073	196,333	190,825	186,133	212,140	317,270	61,687	62,452	August
September	374,276	375,046	182,049	111,336	66,489	161,734	129,251	59,499	92,324	120,597	69,449	165,119	September
October	351,899	328,305	117,014	59,176	37,468	107,593	86,128	220,113	194,690	306,040	192,906	258,610	October
November	223,896	176,629	104,668	49,996	49,201	43,868	50,072	347,830	351,171	308,121	335,767	295,134	November
December	211,087	96,920	128,483	99,921	87,710	52,954	113,504	353,688	441,322	259,184	340,204	385,246	December
Total	4,012,158	4,794,898	2,910,187	2,038,183	1,186,209	1,627,361	2,270,566	3,387,806	3,797,897	4,068,935	2,124,746	2,975,530	Total

Motor Trucks

	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	January
January	27,947	57,765	40,938	35,475	21,160	19,429	44,870	64,529	68,655	74,995	58,062	64,081	January
February	34,980	65,950	52,925	41,863	24,291	15,592	44,952	63,204	65,938	72,939	51,464	63,603	February
March	44,273	79,587	69,031	47,671	21,274	18,508	61,068	70,520	81,875	96,016	52,106	77,097	March
April	49,537	91,855	74,477	53,138	28,539	27,975	67,532	69,338	91,049	100,324	47,818	68,063	April
May	56,281	94,940	62,080	47,805	27,491	35,132	60,348	59,324	79,379	96,965	41,575	63,759	May
June	44,169	98,164	51,466	41,496	23,572	43,448	48,292	65,785	81,185	91,820	41,857	66,946	June
July	59,630	78,703	44,960	35,366	15,137	39,310	44,546	61,582	71,383	83,996	32,336	62,628	July
August	68,547	59,985	43,296	32,890	15,319	42,601	53,890	58,942	63,794	87,802	35,259	40,891	August
September	62,231	54,683	46,557	31,876	20,003	35,674	46,335	33,229	47,496	55,033	20,174	27,553	September
October	63,921	66,235	41,928	22,406	14,157	30,772	49,643	60,203	35,359	31,939	22,380	65,063	October
November	45,013	50,368	37,493	20,118	12,560	19,106	35,107	60,720	54,628	67,508	54,638	73,404	November
December	32,454	28,582	34,840	24,052	21,782	30,801	42,814	64,829	77,636	88,165	66,756	83,756	December
Total	588,983	826,817	599,991	434,176	245,285	358,548	599,397	732,005	818,377	947,502	530,425	756,844	Total

Passenger Cars and Trucks

	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	January
January	240,191	422,538	283,610	178,344	123,075	132,183	162,570	300,335	377,244	399,186	226,952	356,950	January
February	336,300	497,705	345,961	229,811	122,895	108,745	238,827	350,346	300,810	383,900	202,597	317,517	February
March	430,783	626,076	417,118	289,398	127,277	121,904	352,614	447,894	438,943	519,022	238,447	389,499	March
April	434,315	663,811	468,281	354,098	155,136	184,687	371,338	477,059	527,625	553,231	237,929	354,263	April
May	459,725	636,250	444,699	329,901	192,516	223,807	350,616	381,809	480,518	540,377	210,174	313,214	May
June	425,195	567,424	349,596	257,475	190,218	257,050	320,382	372,085	469,368	521,153	189,402	324,235	June
July	417,312	518,301	275,721	222,710	116,615	235,897	276,047	345,297	451,206	456,909	150,450	218,478	July
August	492,543	512,842	234,160	191,741	94,392	238,934	244,715	245,075	275,934	405,072	96,946	103,343	August
September	436,507	429,729	228,606	143,212	86,492	197,608	175,586	92,728	139,820	175,630	89,623	192,672	September
October	415,820	394,540	158,942	81,582	51,625	138,365	135,771	280,316	230,049	337,979	215,286	324,673	October
November	268,909	226,997	142,161	70,114	61,761	62,974	85,179	408,550	405,799	376,629	390,405	368,538	November
December	243,541	125,502	161,323	123,973	109,492	83,755	156,318	418,317	518,958	347,349	406,960	469,002	December
Total	4,601,141	5,621,715	3,510,178	2,472,359	1,431,494	1,985,909	2,869,963	4,119,811	4,616,274	5,016,437	2,655,171	3,732,374	Total

Figures from U. S. Census Bureau (includes overseas assemblies of motor vehicles of American make) and Dominion Bureau of Statistics.

Passenger Car Production by Cylinders

(U. S. and Canada)

	Per Cent Fours	Per Cent Sixes	Per Cent Eights	Per Cent Twelves and Sixteens	Total
1926	64.0	34.0	2.0	...	100.0
1927	49.7	47.1	3.2	...	100.0
1928	50.7	45.0	4.3	...	100.0
1929	40.7	54.3	5.0	...	100.0
1930	44.5	43.6	11.8	0.1	100.0
1931	33.3	52.0	14.5	0.2	100.0
1932	17.9	50.4	31.1	0.6	100.0
1933	3.2	61.8	34.7	0.3	100.0
1934	1.2	59.0	38.8	0.2	100.0
1935	0.5	59.5	39.4	0.2	100.0
1936	0.5	66.5	32.4	0.6	100.0
1937	1.7	63.8	33.7	0.5	100.0
1938	0.5	62.8	35.4	1.0	100.0
1939	0.6	61.9	36.7	0.5	100.0

1939 State Taxes — \$ 40 per Vehicle

STATE	State Tax per Gallon (Cents)	State Gasoline Tax Receipts		Per Cent Change	State Registration Fees		Per Cent Change	Total State Tax Receipts from Gasoline and Registration Fees		State Taxes per Motor Vehicle	
		1939	1938		1939	1938		1939	1938	1939	1938
Alabama	6	\$14,500,000	\$13,523,000	+ 7.1	\$3,300,000	\$4,314,000	-23.5	\$17,800,000	\$17,837,000	\$57.93	\$61.41
Arizona	5	5,101,000	4,243,000	+20.3	843,000	1,076,000	-21.5	5,944,000	5,319,000	45.56	41.30
Arkansas	6 1/2	10,652,000	10,004,000	+ 6.5	3,077,000	2,908,000	+ 5.9	13,729,000	12,912,000	57.03	58.32
California	3	49,385,000	47,101,000	+ 4.8	24,500,000	23,930,000	+ 2.6	73,885,000	71,031,000	28.36	28.30
Colorado	4	7,823,000	7,465,000	+ 4.9	2,438,000	2,544,000	-4.2	10,261,000	10,009,000	29.57	23.79
Connecticut	3	10,054,000	9,192,000	+ 9.0	6,758,000	6,611,000	+ 2.1	16,812,000	15,803,000	47.59	36.47
Delaware	4	2,500,000	2,069,000	+21.0	1,350,000	1,216,000	+11.1	3,850,000	3,285,000	55.39	51.28
District of Columbia	2	2,785,000	2,508,000	+11.0	1,843,000	2,145,000	-14.0	4,628,000	4,654,000	23.65	28.23
Florida	7	24,318,000	22,801,000	+ 6.6	7,000,000	6,432,000	+ 9.0	31,318,000	29,233,000	68.49	69.19
Georgia	6	21,291,000	19,633,000	+ 8.5	1,883,000	1,974,000	-4.6	23,174,000	21,607,000	48.86	49.51
Idaho	5	4,120,000	4,068,000	+ 1.0	1,375,000	2,380,000	-42.2	5,495,000	6,468,000	36.63	47.06
Illinois	3	39,001,000	36,481,000	+ 7.0	23,830,000	21,591,000	+10.3	62,831,000	58,072,000	33.78	32.43
Indiana	4	23,830,000	22,259,000	+ 7.0	9,800,000	9,635,000	+ 2.0	33,630,000	31,894,000	35.88	34.76
Iowa	3	14,173,000	13,233,000	+ 7.0	12,719,000	11,797,000	+ 8.0	26,892,000	25,030,000	35.23	33.69
Kansas	3	10,500,000	10,017,000	+ 5.0	3,900,000	3,823,000	+ 2.0	14,400,000	13,840,000	24.95	24.11
Kentucky	5	13,826,000	12,528,000	+10.4	3,771,000	4,599,000	-18.0	17,597,000	17,127,000	40.22	41.71
Louisiana	7	17,381,000	16,543,000	+ 5.1	5,369,000	4,882,000	+ 9.9	22,750,000	21,435,000	64.35	64.79
Maine	4	6,750,000	5,558,000	+21.7	3,700,000	3,582,000	+ 3.3	10,450,000	9,140,000	52.46	46.46
Maryland	4	10,638,000	9,929,000	+ 7.1	4,750,000	5,069,000	-6.2	15,388,000	14,996,000	36.36	37.97
Massachusetts	3	21,498,000	20,194,000	+ 6.8	7,086,000	6,759,000	+ 4.9	28,584,000	26,953,000	32.74	31.98
Michigan	3	29,788,000	27,724,000	+ 7.5	21,965,000	20,856,000	+ 5.2	51,753,000	48,580,000	46.12	34.48
Minnesota	4	18,646,000	19,380,000	- 3.6	9,660,000	9,377,000	+ 3.0	28,306,000	26,757,000	33.70	35.01
Mississippi	6	11,309,000	10,181,000	+11.2	4,050,000	4,001,000	+ 1.2	15,359,000	14,182,000	69.27	65.90
Missouri	2	11,700,000	11,502,000	+ 1.8	10,224,000	9,439,000	+ 8.5	21,924,000	20,941,000	24.99	25.01
Montana	5	4,809,000	4,452,000	+ 8.0	1,342,000	1,546,000	-13.2	6,151,000	5,998,000	34.11	35.00
Nebraska	5	11,000,000	11,026,000	2.6	2,600,000	2,442,000	+ 6.7	13,600,000	13,468,000	33.14	32.85
Nevada	4	1,355,000	1,201,000	+13.0	266,000	265,000	+ 8.0	1,641,000	1,486,000	40.12	38.15
New Hampshire	3	3,500,000	3,297,000	+ 6.3	3,300,000	2,711,000	+22.0	6,800,000	6,008,000	53.79	49.55
New Jersey	3	21,227,000	22,294,000	- 4.8	19,668,000	20,204,000	-2.7	40,895,000	42,498,000	40.11	42.45
New Mexico	5	4,286,000	4,066,000	+ 5.2	1,850,000	1,643,000	+12.6	6,136,000	5,709,000	50.44	47.90
New York	4	69,689,000	66,132,000	+ 5.3	47,994,000	47,124,000	+ 1.8	117,683,000	113,256,000	44.67	43.38
North Carolina	6	24,441,000	23,300,000	+ 4.9	7,377,000	7,211,000	+ 2.2	31,818,000	30,511,000	56.85	57.69
North Dakota	4	2,648,000	2,254,000	+18.0	1,534,000	1,523,000	+ 0.8	4,182,000	3,777,000	23.61	21.67
Ohio	4	50,000,000	45,982,000	+ 9.0	26,197,000	27,204,000	-3.8	76,197,000	73,186,000	40.38	39.92
Oklahoma	4	14,412,000	13,905,000	+ 3.7	6,693,000	5,779,000	+15.8	21,105,000	19,684,000	38.23	36.85
Oregon	5	10,582,000	9,846,000	+ 7.3	3,445,000	2,922,000	+18.0	14,027,000	12,768,000	37.97	35.73
Pennsylvania	4	53,000,000	51,914,000	+ 2.2	36,436,000	34,513,000	+ 5.8	89,436,000	86,427,000	42.60	43.10
Rhode Island	3	3,794,000	3,492,000	+ 8.7	2,924,000	2,778,000	+ 5.2	6,718,000	6,270,000	38.21	36.83
South Carolina	6	12,297,000	11,254,000	+ 8.3	1,836,000	1,633,000	+12.3	14,133,000	12,887,000	46.99	46.15
South Dakota	4	3,986,000	4,048,000	- 2.4	1,700,000	1,983,000	-14.0	5,656,000	6,031,000	29.89	33.38
Tennessee	7	18,740,000	18,276,000	+ 2.8	4,318,000	4,173,000	+ 3.3	23,058,000	22,449,000	56.58	56.31
Texas	4	44,183,000	42,720,000	+ 3.3	21,225,000	20,263,000	+ 4.8	65,408,000	62,983,000	40.42	41.88
Utah	4	3,736,000	3,522,000	+ 6.0	1,056,000	1,097,000	-3.6	4,792,000	4,619,000	36.07	32.14
Vermont	4	2,686,000	2,530,000	+ 6.1	2,500,000	2,385,000	+ 5.8	5,186,000	4,895,000	57.16	56.00
Virginia	5	17,829,000	16,620,000	+ 7.2	6,707,000	6,134,000	+ 9.2	24,536,000	22,754,000	54.19	52.47
Washington	5	15,918,000	15,421,000	+ 3.2	4,100,000	3,262,000	+25.9	20,016,000	18,683,000	37.89	35.69
West Virginia	5	9,875,000	9,386,000	+ 5.2	5,026,000	5,498,000	-8.5	14,901,000	14,884,000	55.52	57.21
Wisconsin	4	20,270,000	19,253,000	+ 5.1	13,170,000	13,001,000	+ 1.1	33,440,000	32,254,000	39.58	38.54
Wyoming	4	2,574,000	2,505,000	+ 2.8	622,000	601,000	+ 3.5	3,196,000	3,106,000	38.32	38.45
Total		\$808,376,000	\$766,853,000	+ 5.2	\$399,097,000	\$388,825,000	+ 2.7	\$1,207,473,000	\$1,155,678,000	\$40.00†	\$39.27†

† Average

New Vehicle

New Truck Registrations*

	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939
Autocar	2,009	1,748	1,015	1,127	1,139	1,001	1,451	2,181	1,617	2,044
Brockway	3,780 [†]	1,685 [†]	752	875	1,213	1,245	1,695	1,583	1,303	1,815
Chevrolet	118,253	99,600	60,784	99,880	157,507	167,129	204,344	183,674	119,479	169,457
Diamond T	2,888	2,483	2,250	4,139	5,440	6,454	8,750	8,118	4,393	5,412
Dodge	15,558	13,518	8,744	28,034	48,252	61,488	85,295	64,098	33,656	48,049
Federal	2,095	1,523	1,167	1,360	1,962	2,190	2,930	2,339	1,370	1,837
Ford	197,216	138,654	66,937	62,397	128,250	185,848	177,244	189,376	100,959	128,889
G. M. C.	9,004	6,919	6,359	6,602	10,449	11,442	26,980	43,522	20,152	34,908
Hudson							638	1,905	4,823	719
Indiana				957	1,252	729	862	1,705	1,371	435
International	23,703	21,073	15,752	26,658	31,555	53,471	71,958	76,174	55,636	66,048
Mack	4,943	2,945	1,425	1,652	1,830	1,515	4,226	5,513	4,406	6,670
Plymouth							660	2,420	13,709	6,652
Reo	6,427	5,166	3,187	3,042	5,035	5,101	4,227	4,254	2,929	853
Sterling	1,244	739	227	108	134	174	277	311	267	326
Stewart	2,315	1,394	867	684	736	880	1,280	1,148	390	70
Studebaker	1,518	3,495	2,430	2,407 [†]	1,697	2,100	3,279	5,129	2,000	2,110
White	4,395	2,561	2,138	1,384	3,963	3,304	5,757	5,933	3,514	4,558
Willys	4,264	3,131	1,132	233	25	2,280	2,441	1,122	1,889	1,634
All Others	11,107	7,050	4,290	4,035	3,970	2,901	3,480	3,861	3,383	3,187
Total	410,699	313,884	180,413	245,869	403,886	510,683	611,644	618,249	365,349	486,748

† Includes Indiana.

† Includes Rockne.

* Data from R. L. Polk & Co.

New Passenger Car Registrations*

	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939
Auburn	17,850	11,270	29,536	11,646	5,038	5,536	5,163	1,848	146	700	1,227
Bantam (Austin)		4,354	2,941		3,675	1,057					
Buick	172,307	122,656	90,873	49,708	43,809	63,057	87,635	160,687	205,297	166,380	218,995
Cadillac	14,936	12,078	11,136	6,269	3,903	4,899	6,692	11,766	11,231	10,639	13,090
Chevrolet	780,011	618,884	583,429	322,860	474,493	534,906	656,698	930,250	768,040	464,337	598,341
Chrysler	84,518	60,908	52,650	26,016	28,677	28,052	40,536	58,698	91,622	46,184	63,956
Continental					3,310	953					
Cord		798	1,879	1,416	335				1,174	1,149	
De Soto	C	59,614	35,267	28,430	25,311	21,260	11,447	26,952	45,088	74,424	35,259
De Vaux			4,808	1,358							51,951
Dodge	C	115,773	64,105	53,090	28,111	86,082	90,139	178,770	248,518	255,258	104,881
Durant		47,715	21,440	7,229	1,135						176,585
Ford	3	1,310,135	1,055,097	528,581	258,927	311,113	530,528	826,519	748,554	765,933	363,688
Franklin		10,704	7,482	3,881	1,829	1,329	360				
Graham		60,487	30,140	19,209	12,858	10,128	12,887	15,985	16,439	13,984	4,139
Hudson	H	62,692	30,486	19,189	8,641	2,946	19,307	21,587	20,825	90,043	40,889
Hupmobile		44,337	24,307	17,427	10,794	6,726	9,301	7,450	1,555	403	907
La Fayette											
La Salle		20,290	11,262	6,883	3,848	3,709	5,182	11,775	13,992	28,909	15,732
Lincoln		6,151	4,356	3,466	3,179	2,112	2,061	2,370	15,567	25,243	18,940
Marmon		22,323	12,369	5,687	1,365	86					
Mercury										8,835	65,884
Nash		105,146	51,036	33,386	20,233	11,353	14,315	17,739	43,070	70,571	31,814
Oakland		31,830	21,648	12,985							54,050
Oldsmobile		93,483	50,510	45,983	24,128	35,295	71,676	149,375	178,488	188,306	92,398
Packard		44,634	23,318	16,256	11,058	9,061	6,552	37,853	68,772	95,455	49,163
Pierce-Arrow		8,385	6,795	4,522	2,692	2,152	1,740	875	767	167	17
Plymouth	C	81,959	64,301	94,239	111,926	249,667	332,557	382,985	499,580	462,268	286,241
Pontiac		153,272	63,389	73,149	47,926	85,348	72,645	140,122	171,689	212,403	98,399
Reo		17,319	11,453	6,762	3,870	3,623	3,854	3,894	3,146		
Rockne				2	16,986	14,554					
Studebaker	S	82,839	56,526	46,533	25,002	21,688	41,560	39,673	67,835	70,048	41,504
Terraplane (Essex)		191,331	63,335	42,545	25,778	35,831	40,510	53,838	78,471	†	†
Willys-Whippet		162,386	51,687	42,936	22,483	15,314	6,576	10,439	12,423	51,411	13,012
Willys-Knight		37,343	14,079	8,495	3,415	353					14,734
Miscellaneous		31,846	9,532	3,548	3,732	1,159	324	1,858	5,294	1,441	799
Total		3,830,246	2,625,979	1,908,141	1,096,399	1,493,794	1,888,557	2,743,908	3,405,497	3,483,752	1,891,021
											2,653,377

By Manufacturing Groups

Chrysler Corp.	344,874	224,581	228,459	191,364	385,666	432,195	629,243	851,884	883,572	472,565	641,289
Ford Motor Co.	1,316,286	1,059,453	532,047	262,106	313,225	532,589	828,889	764,121	791,176	387,514	567,320
General Motors	1,271,129	905,427	825,437	454,739	646,556	752,375	1,052,297	1,466,852	1,414,186	847,885	1,158,871
All Others	947,917	436,518	322,198	98,190	148,347	171,398	233,479	321,640	394,818	183,057	285,887

* Data from R. L. Polk & Co.

† Terraplane included with Hudson

REGISTRATIONS

U. S. Registrations of New Cars and Trucks*

U. S. New Passenger Car Registrations

	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	
January	219,760	180,094	126,776	87,493	79,821	61,242	136,635	215,775	280,685	145,765	203,212	January
February	235,590	211,645	134,133	82,813	69,464	94,887	170,615	176,651	215,049	120,359	164,942	February
March	377,802	298,824	200,841	92,192	78,741	173,287	261,477	301,239	363,738	181,222	248,038	March
April	461,675	357,064	265,732	121,093	119,909	223,050	319,650	397,186	384,951	192,241	268,335	April
May	454,132	345,031	247,727	131,282	160,242	219,225	293,199	392,744	391,697	178,052	280,834	May
June	386,398	260,861	201,911	148,752	174,190	223,864	280,360	369,422	360,236	156,384	243,741	June
July	432,503	254,098	194,322	104,188	185,660	229,006	285,178	357,490	365,767	148,896	229,308	July
August	376,886	203,737	155,744	93,457	178,661	193,198	233,851	262,912	306,958	127,954	162,633	August
September	304,452	175,286	124,903	81,893	157,976	146,931	157,098	208,896	235,683	93,269	141,633	September
October	288,697	150,219	102,559	63,195	136,326	140,937	148,388	171,397	202,888	119,053	212,586	October
November	183,756	93,066	75,829	44,356	94,180	107,574	220,262	223,732	196,463	200,853	231,571	November
December	138,555	96,054	77,564	45,683	58,624	75,356	237,194	327,053	179,621	226,973	246,544	December
Total	3,880,206	2,625,979	1,908,141	1,096,399	1,493,794	1,888,557	2,743,908	3,404,497	3,483,752	1,891,021	2,653,377	Total

U. S. New Truck Registrations

	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	
January	29,900	30,236	24,415	14,776	11,709	22,903	34,759	43,760	47,618	31,995	37,715	January
February	32,637	31,880	23,466	14,558	9,707	24,476	34,797	40,301	41,843	27,551	34,102	February
March	46,368	42,199	30,609	16,874	9,934	33,884	41,511	52,428	60,301	37,255	45,083	March
April	56,299	47,029	36,848	17,784	17,301	38,882	46,785	64,956	67,832	35,682	46,063	April
May	52,874	43,286	33,436	18,696	20,925	39,831	47,968	62,183	65,857	32,937	45,381	May
June	45,114	33,531	28,496	17,876	23,254	34,768	48,243	56,851	58,626	30,647	40,482	June
July	57,943	39,904	30,102	14,731	30,642	37,490	51,243	63,695	61,686	33,475	44,747	July
August	52,557	33,787	27,070	15,081	28,799	40,790	50,355	59,222	60,872	34,231	43,523	August
September	46,560	33,933	25,967	14,967	31,269	37,225	41,390	54,611	54,711	26,570	32,983	September
October	49,899	34,237	24,685	15,156	28,058	40,878	37,439	41,220	40,246	19,589	37,923	October
November	33,631	22,012	15,553	10,392	18,691	28,689	36,935	30,255	27,248	23,943	41,286	November
December	23,275	18,665	13,177	9,522	15,580	24,070	39,258	42,162	31,409	31,474	37,460	December
Total	527,057	410,699	313,884	180,413	245,869	403,886	510,683	611,644	618,249	365,349	486,748	Total

Total U. S. New Passenger Car and Truck Registrations

	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	
January	249,660	210,330	151,191	102,269	91,530	84,145	171,394	259,535	328,303	177,760	240,927	January
February	268,227	243,525	157,599	97,371	79,171	119,363	205,412	216,952	256,892	147,910	199,044	February
March	424,170	341,023	231,450	109,066	68,675	207,171	302,988	353,667	424,039	218,477	293,121	March
April	537,974	404,093	302,580	138,877	137,210	261,932	366,435	462,142	452,783	227,923	314,398	April
May	507,006	388,317	281,223	149,978	181,167	259,056	341,167	454,927	457,554	210,969	326,215	May
June	431,512	294,392	230,407	166,628	197,444	258,632	328,603	426,273	418,862	187,031	284,223	June
July	490,446	294,002	224,424	118,919	216,302	266,496	336,421	421,185	427,453	182,371	274,055	July
August	429,443	237,524	182,814	108,538	207,460	233,988	284,206	322,134	367,830	162,185	226,156	August
September	351,012	209,219	150,870	96,860	189,246	184,156	198,488	263,607	290,394	119,839	174,616	September
October	338,596	184,456	127,344	78,351	164,384	181,815	185,828	212,617	243,144	138,642	250,509	October
November	217,387	115,078	91,382	54,750	112,871	136,263	257,197	253,987	223,717	224,796	272,857	November
December	161,830	114,719	90,741	55,205	74,204	99,426	276,452	369,215	211,030	258,447	284,004	December
Total	4,407,263	3,036,678	2,222,025	1,276,812	1,739,663	2,292,443	3,254,591	4,016,141	4,102,001	2,256,370	3,140,125	Total

* Figures from R. L. Polk & Co.

Fall Shows Cause Two Sales Peaks

New Motor Vehicle Registrations by States*

	Passenger Cars			Trucks			Total New Motor Vehicles			Per Cent of Total		
	1939	1938	1937	1939	1938	1937	1939	1938	1937	1939	1938	1937
Alabama	30,657	19,427	34,936	11,978	7,041	12,874	42,635	26,468	47,810	1.36	1.17	1.16
Arizona	8,191	6,738	12,562	2,478	2,051	3,659	10,689	8,789	16,221	.34	.39	.40
Arkansas	19,859	12,244	19,793	9,200	5,909	10,836	29,059	18,153	30,629	.93	.80	.75
California	187,720	148,011	246,075	25,656	23,846	36,901	213,376	171,857	282,976	6.80	7.62	6.90
Colorado	24,630	17,699	32,505	5,935	4,771	8,411	30,565	22,470	40,916	.97	1.00	1.00
Connecticut	38,859	26,283	51,268	5,466	4,422	7,767	44,325	30,705	59,035	1.41	1.36	1.44
Delaware	7,649	5,429	9,748	1,466	1,161	1,882	9,135	6,590	11,630	.29	.28	.28
District of Columbia	25,637	17,944	28,259	2,514	1,753	2,857	28,151	19,697	31,116	.90	.87	.76
Florida	42,462	26,102	43,445	9,375	6,540	10,722	51,837	32,642	54,167	1.65	1.45	1.32
Georgia	41,125	25,319	48,823	11,702	6,818	12,998	52,827	32,137	61,821	1.68	1.42	1.51
Idaho	9,890	6,883	14,139	3,346	2,613	4,454	13,236	9,496	18,593	.42	.42	.45
Illinois	193,235	133,914	250,205	25,353	18,055	30,451	218,588	151,969	280,656	6.96	6.74	6.84
Indiana	84,494	56,339	123,971	16,857	9,899	18,269	101,351	66,238	142,240	3.23	2.95	3.47
Iowa	59,666	47,489	68,196	12,245	8,940	12,449	71,911	56,429	80,645	2.29	2.50	1.97
Kansas	34,687	27,301	56,315	7,079	5,960	12,409	41,766	35,261	68,724	1.33	1.56	1.67
Kentucky	30,806	22,906	41,391	8,908	7,244	11,597	39,714	30,150	52,988	1.26	1.34	1.29
Louisiana	32,580	24,842	34,084	8,185	6,155	10,111	40,765	30,997	44,195	1.30	1.37	1.08
Maine	14,204	11,038	20,048	4,317	3,315	5,658	18,521	14,353	25,706	.59	.64	.63
Maryland	39,389	27,331	46,371	6,307	4,741	7,763	45,696	32,072	54,134	1.46	1.42	1.32
Massachusetts	92,480	63,682	115,603	12,931	9,459	16,235	105,411	73,141	131,838	3.36	3.24	3.21
Michigan	163,017	87,184	241,156	17,704	11,268	24,549	180,721	98,452	265,705	5.76	4.36	6.48
Minnesota	60,771	52,567	82,874	10,528	8,674	13,555	71,299	61,341	96,429	2.27	2.72	2.35
Mississippi	22,302	13,670	22,646	8,472	5,826	11,178	30,774	19,496	33,822	.98	.86	.82
Missouri	76,705	55,543	89,965	16,338	11,718	19,170	93,043	67,261	109,135	2.96	2.98	2.66
Montana	13,523	10,154	18,062	4,561	4,112	5,044	18,084	14,266	23,106	.58	.63	.56
Nebraska	25,715	22,319	33,640	5,449	4,664	6,202	31,164	26,983	39,842	.99	1.20	.97
Nevada	3,282	2,576	4,767	876	731	1,167	4,158	3,307	5,934	.13	.15	.14
New Hampshire	10,328	7,062	12,961	2,748	1,759	3,022	13,076	8,821	15,983	.42	.39	.39
New Jersey	96,049	70,764	122,103	12,725	11,591	18,446	108,774	82,355	140,549	3.46	3.65	3.43
New Mexico	8,315	6,393	10,781	3,732	2,911	5,039	12,047	9,304	15,870	.38	.41	.39
New York	264,287	194,049	329,951	32,109	26,656	41,922	296,396	220,705	371,873	9.44	9.78	9.07
North Carolina	46,160	33,922	55,341	12,867	9,309	15,691	59,027	43,231	71,032	1.88	1.92	1.73
North Dakota	9,805	8,620	12,060	2,740	2,483	3,193	12,545	11,083	15,253	.40	.49	.37
Ohio	167,526	105,439	250,192	22,536	15,261	28,440	180,062	120,700	278,632	6.05	5.35	6.79
Oklahoma	39,627	34,343	51,580	10,198	8,956	14,702	49,825	43,299	66,282	1.59	1.92	1.62
Oregon	25,574	18,769	35,915	5,873	4,064	7,859	31,447	22,833	43,774	1.00	1.01	1.07
Pennsylvania	196,201	140,332	233,909	28,915	21,044	39,150	225,116	161,376	333,059	7.17	7.15	8.12
Rhode Island	16,306	10,483	20,500	2,233	1,531	2,749	18,599	12,014	23,249	.59	.53	.57
South Carolina	25,100	15,748	26,959	6,431	4,305	7,257	31,531	20,053	34,216	1.00	.89	.83
South Dakota	10,589	7,911	12,728	2,752	2,033	2,659	13,341	9,914	15,387	.42	.44	.38
Tennessee	37,488	24,973	42,320	9,732	6,476	10,799	47,200	31,449	53,119	1.50	1.39	1.29
Texas	132,313	103,617	150,093	33,428	25,832	40,905	185,739	129,699	190,998	5.28	5.76	4.86
Utah	10,038	7,045	14,358	3,034	1,934	3,298	13,072	9,029	17,656	.42	.40	.43
Vermont	6,886	4,687	8,799	2,076	1,228	2,444	8,742	5,915	11,213	.28	.28	.27
Virginia	42,172	31,204	50,768	10,391	7,936	12,928	52,553	39,110	63,696	1.67	1.73	1.55
Washington	33,316	23,935	49,699	7,149	5,416	10,222	40,465	29,351	59,921	1.29	1.30	1.48
West Virginia	22,955	16,483	35,679	6,604	4,634	9,239	23,559	21,177	44,948	.94	.94	1.10
Wisconsin	61,873	48,872	97,214	10,949	8,516	16,412	72,822	57,388	113,653	2.32	2.54	2.77
Wyoming	7,174	5,136	8,968	2,232	1,708	2,627	9,436	6,844	11,595	.30	.30	.28
Total	2,653,377	1,891,021	3,433,752	436,748	385,349	618,249	3,149,125	2,256,370	4,102,001	100.00	100.00	100.00

* Data from R. L. Polk & Co.

1939 New Car Retail Sales—\$2,260,000,000

Month	1936			1937			1938			1939		
	Units †	Dollar ‡ Volume	Average Price per Car	Units †	Dollar ‡ Volume	Average Price per Car	Units †	Dollar ‡ Volume	Average Price per Car	Units †	Dollar ‡ Volume	Average Price per Car
January	215,771	\$165,700,000	\$768	280,350	\$222,300,000	\$768	145,663	\$126,600,000	\$869	203,175	\$173,200,000	\$852
February	176,646	134,300,000	760	214,834	167,800,000	781	120,261	104,400,000	868	164,808	129,800,000	788
March	301,256	231,000,000	767	363,477	286,200,000	787	181,037	157,200,000	868	247,930	210,400,000	849
April	397,103	306,300,000	771	385,187	305,300,000	793	192,086	165,800,000	868	268,284	226,900,000	846
May	391,542	301,200,000	769	391,604	309,900,000	791	177,951	154,300,000	866	280,800	237,700,000	846
June	368,469	281,700,000	765	360,159	285,100,000	792	156,290	135,600,000	867	243,601	205,600,000	844
July	356,815	271,800,000	762	365,783	288,200,000	788	148,798	128,400,000	863	229,271	192,000,000	837
August	262,709	202,000,000	769	307,285	244,600,000	796	127,955	110,100,000	860	182,598	153,700,000	842
September	208,517	159,800,000	766	231,851	187,600,000	809	93,165	79,700,000	856	141,578	121,900,000	861
October	170,959	135,500,000	793	202,471	168,000,000	830	118,957	105,700,000	888	212,541	188,100,000	885
November	222,787	180,800,000	812	196,133	176,200,000	898	200,802	172,300,000	857	231,553	204,200,000	882
December	326,697	263,200,000	806	179,587	157,900,000	879	226,832	193,200,000	851	246,520	216,500,000	878
Total	3,399,271	\$2,633,000,000	\$775	3,478,825	\$2,799,100,000	\$805	1,889,797	\$1,634,300,000	\$864	2,652,659	\$2,260,000,000	\$852

† The difference between the number of units shown here and those for new car registrations shown elsewhere is due to the cars grouped under "Miscellaneous" of which no account is taken in these calculations.

‡ All calculations are based on Delivered Price at Factory of the five-passenger, four-door sedan in conjunction with new car registrations of each model. For 1936, list price F.O.B. factory was used but adjusted to those of other years by considering List Price as 90 per cent of Delivered Price.

Dollar Volume Parallels Sales Volume

U. S. and WORLD REGISTRATIONS

World Motor Vehicle Registration by Years

	1932	1933	1934	1935	1936	1937	1938	1939
Africa	369,814	383,227	425,573	466,603	562,892	619,867	668,778	692,974
America (less U. S. A.)	1,896,380	1,827,754	1,860,135	1,917,676	2,001,459	2,105,190	2,108,867	2,309,100
Asia	486,292	506,925	546,201	597,601	625,718	666,719	668,550	695,738
Europe	5,498,704	6,052,758	6,656,012	7,136,425	7,791,665	8,455,577	9,039,555	9,463,293
Oceania	740,016	778,856	826,711	890,669	972,059	1,052,511	1,140,100	1,200,808
Total	8,991,206	9,549,520	10,314,632	11,008,974	11,953,793	12,899,864	13,621,850	14,361,913
United States †	24,341,822	23,849,932	24,881,467	26,225,757	28,091,709	29,649,270	29,158,615	30,180,224
World Total	33,333,026	33,399,452	35,196,099	37,234,731	40,045,502	42,549,134	42,780,465	44,542,137

† AUTOMOTIVE INDUSTRIES, all others The American Automobile (Overseas Edition).

U. S. Registrations Reach New High

(As of December 31, 1939 and 1938)

	Passenger Cars*		Trucks		Buses		Total Registered Motor Vehicles		Per Cent Change	Per Cent of Total	
	1939	1938	1939	1938	1939	1938	1939	1938		1939	1938
Alabama	251,796	239,178	54,947	50,780	511	463	307,254	290,421	+6.0	1.02	.99
Arizona	105,095	105,447	24,000	22,998	350	346	130,445	128,791	+1.5	.43	.44
Arkansas	179,175	167,262	60,535	53,789	1,006	362	240,716	221,413	+9.0	.80	.76
California	2,295,292	2,339,208	(d) 309,855	170,483	(a)	(a)	2,605,147	2,509,691	+3.8	8.63	8.61
Colorado	312,847	303,377	30,636	31,447	(b)	1,093	343,483	335,917	+2.1	1.14	1.15
Connecticut	385,822	368,351	66,273	63,910	1,168	1,029	453,263	433,290	+4.6	1.50	1.49
Delaware	56,000	53,559	13,500	10,519	(a)	(a)	69,500	64,078	+8.4	.23	.22
District of Columbia	178,758	149,224	15,433	14,267	1,477	1,378	195,668	164,869	+18.7	.65	.57
Florida	379,868	350,222	76,320	71,871	1,031	928	457,219	423,021	+8.2	1.51	1.45
Georgia	336,002	357,642	85,520	76,154	2,716	2,583	474,238	436,379	+8.5	1.57	1.50
Idaho	123,000	109,616	30,000	27,809	150,000	137,425	+9.1	.50	.47
Illinois	1,626,689	1,567,775	232,888	222,582	(a)	(a)	1,859,577	1,790,357	+3.9	6.16	6.14
Indiana	810,000	793,969	126,000	122,168	1,165	1,149	937,165	917,286	+2.1	3.10	3.14
Iowa	670,080	650,133	93,139	92,884	(a)	(a)	763,219	743,017	+2.7	2.53	2.55
Kansas	477,000	476,241	100,000	97,744	577,000	573,985	+0.8	1.91	1.97
Kentucky	367,215	346,940	69,629	63,373	666	648	437,510	410,961	+6.2	1.45	1.41
Louisiana	263,942	250,671	84,475	80,167	(c) 5,101	(b)	353,518	330,838	+7.0	1.17	1.13
Maine	156,000	153,861	43,000	42,663	179	166	199,179	196,690	+1.3	.66	.67
Maryland	364,064	339,986	58,027	53,926	1,064	1,009	423,155	394,921	+7.2	1.40	1.35
Massachusetts	761,363	733,759	106,624	104,134	4,841	4,715	872,828	842,608	+3.7	2.88	2.89
Michigan	1,031,175	1,035,840	90,798	113,631	(a)	(a)	1,121,971	1,149,471	-2.0	3.72	3.94
Minnesota	721,217	705,019	118,227	115,970	256	252	839,700	821,241	+2.2	2.78	2.82
Mississippi	164,000	161,015	55,000	51,486	2,700	2,694	221,700	215,195	+3.0	.73	.74
Missouri	734,894	702,941	142,200	133,661	516	877,094	837,118	+4.9	2.91	2.87
Montana	135,839	130,188	44,480	41,138	(a)	(a)	180,319	171,326	+5.2	.60	.59
Nebraska	343,000	342,646	67,000	66,988	280	280	410,280	409,914	1.36	1.40
Nevada	32,863	30,695	8,038	7,525	204	40,901	38,424	+6.6	.14	.13
New Hampshire	101,000	97,635	25,400	23,597	(a)	(a)	126,400	121,232	+4.1	.42	.42
New Jersey	881,727	862,899	132,819	132,714	4,991	5,069	1,019,537	1,000,682	+1.9	3.38	3.43
New Mexico	93,153	92,262	28,488	26,915	(b)	(b)	121,641	119,177	+2.0	.40	.41
New York	2,309,519	2,241,548	315,818	327,474	(e) 8,948	(c) 33,942	2,634,285	2,602,964	+1.3	8.73	8.93
North Carolina	477,568	449,186	81,068	74,211	931	843	559,587	524,240	+6.8	1.85	1.80
North Dakota	142,384	141,111	34,544	33,061	139	84	177,067	174,256	+1.7	.59	.60
Ohio	1,702,761	1,655,651	184,223	177,314	(a)	(a)	1,886,984	1,832,965	+3.0	6.24	6.29
Oklahoma	453,914	438,874	95,790	92,943	(c) 2,244	(c) 2,204	551,948	534,021	+3.5	1.83	1.83
Oregon	305,943	296,837	62,749	59,829	638	655	369,330	357,321	+3.4	1.22	1.22
Pennsylvania	1,824,567	1,743,842	289,062	255,654	5,805	5,451	2,099,234	2,004,947	+4.9	6.96	6.88
Rhode Island	154,824	149,715	20,526	20,101	452	411	175,802	170,227	+3.3	.58	.58
South Carolina	256,574	237,857	44,142	41,379	(b)	(b)	300,716	279,236	+7.6	1.00	.96
South Dakota	158,821	152,040	30,262	28,494	103	98	189,206	180,632	+5.1	.63	.62
Tennessee	341,250	336,900	64,039	61,724	(c) 2,203	(b)	407,492	398,624	+2.1	1.35	1.37
Texas	1,281,566	1,186,022	335,467	316,757	832	876	1,617,865	1,503,655	+7.5	5.36	5.16
Utah	110,899	120,530	21,204	22,432	733	710	132,836	143,672	-7.5	.44	.49
Vermont	81,041	78,265	9,576	9,042	96	95	90,713	87,402	+4.0	.30	.30
Virginia	383,222	366,504	68,723	66,410	798	672	452,743	433,586	+4.3	1.50	1.49
Washington	443,475	439,232	84,150	83,204	583	912	528,208	523,348	+1.0	1.75	1.79
West Virginia	221,182	215,784	46,537	43,785	632	589	268,351	260,158	+3.2	.89	.89
Wisconsin	702,625	700,865	141,590	135,413	616	580	844,831	836,858	+1.0	2.80	2.87
Wyoming	65,339	62,901	18,030	17,589	(b)	275	83,399	80,765	+3.2	.28	.28
TOTAL	25,804,340	25,031,225	4,320,829	4,054,109	55,055	73,281	30,180,224	29,158,615	+3.4	100.00	100.00

* Includes taxicabs.

(a) Included with trucks.

(b) Included with passenger cars.

(c) Includes taxicabs.

(d) Includes 127,030 light commercial vehicles registered as passenger cars.

(e) Not comparable with 1938 as 21,744 taxicabs are included with passenger cars.

— Indicates decrease.

For State Gasoline Taxes and Registration Fees see page 183

U. S. and World

U. S. Motor Vehicle Registrations by Years

	Passenger Cars	Trucks and Buses	Total Motor Vehicles	Per Cent Increase
1895	4		4	
1896	16		16	
1897	90		90	
1898	800		800	
1899	3,200		3,200	
1900	8,000		8,000	
1901	14,800		14,800	
1902	23,000		23,000	
1903	32,920		32,920	
1904	54,590	410	55,000	
1905	77,400	600	78,000	42
1906	105,900	1,100	107,000	37
1907	140,300	1,700	142,000	33
1908	194,400	3,100	197,500	39
1909	305,950	6,050	312,000	58
1910	458,500	10,000	468,500	50
1911	619,500	20,000	639,500	36
1912	902,600	41,400	944,000	48
1913	1,194,262	63,800	1,258,062	33
1914	1,625,739	85,600	1,711,339	36
1915	2,309,666	136,000	2,445,666	43
1916	3,297,996	215,000	3,512,996	44
1917	4,657,340	326,000	4,983,340	42
1918	5,621,617	525,000	6,148,617	23
1919	6,771,074	794,372	7,565,446	23
1920	8,225,859	1,006,082	9,231,941	22
1921	9,346,195	1,118,520	10,464,715	13
1922	10,864,128	1,375,725	12,239,883	17
1923	13,479,608	1,612,569	15,092,177	23
1924	15,460,649	2,134,724	17,595,373	17
1925	17,496,420	2,440,854	19,937,274	13
1926	19,237,171	2,764,222	22,001,393	10
1927	20,219,224	2,914,019	23,133,243	5
1928	21,379,125	3,113,899	24,493,124	6
1929	23,121,589	3,379,854	26,501,443	8
1930	23,183,241	3,473,831	26,657,072	0.2
1931*	22,567,381	3,426,515	25,993,896	-2.5
1932*	21,139,092	3,202,730	24,341,822	-6.4
1933*	20,557,493	3,292,439	23,849,932	-2.0
1934*	21,535,199	3,346,268	24,681,467	4.3
1935*	22,630,715	3,595,042	26,225,757	5.2
1936*	24,161,820	3,929,889	28,091,709	7.2
1937*	25,476,786	4,172,484	29,649,270	5.6
1938*	25,031,225	4,127,390	29,158,615	-1.7
1939*	25,804,340	4,375,884	30,180,224	3.4

* AUTOMOTIVE INDUSTRIES count, all others Bureau of Public Roads.

U. S. Registrations 68% of World

	Motor Vehicles	Cars *	Trucks*	Buses*	Motorcycles*
Africa	692,974	543,740	140,099	5,750	52,293
Americas (less U. S. A.)	2,309,100	1,785,842	498,077	25,181	27,488
Asia	695,738	427,083	234,337	32,218	101,441
Europe	9,463,293	6,704,286	2,511,122	150,885	2,771,112
Oceania	1,200,808	887,409	312,799	**	95,234
Total	14,361,913	10,348,360	3,696,434	214,034	3,047,568
United States †	30,180,224	25,804,340	4,320,829	55,055	118,394
World Total, 1939	44,542,137	36,152,700	8,017,263	269,089	3,165,962
World Total, 1938	42,780,465	34,898,176	7,439,568	364,246	2,895,345

† AUTOMOTIVE INDUSTRIES count. All others The American Automobile (Overseas Edition).

** Included with trucks.

* Incomplete for all territories.

(a) Included with trucks. (b) Includes tourist trailers.

(c) Includes about 63,000 light trailers registered without charge.

REGISTRATIONS

By Special Arrangement with the
American Automobile (Overseas Edition)

The AMERICAS

	Motor Vehicles	Cars	Trucks	Buses	Motor-cycles
Alaska	4,056	2,209	1,847	†	28
Antigua	314	249	65	†	21
Argentina	292,400	208,944	83,456	†	2,000
Bahamas	1,600	1,200	400	†	45
Barbados	2,754	2,171	469	114	87
Bermuda	68	2	58	8	...
Bolivia	2,160	957	1,064	139	...
Brazil	165,131	102,452	58,075	4,604	1,630
British Guiana	1,891	1,459	432	†	228
British Honduras	250	135	115	†	2
Canada	1,420,924	1,182,560	235,632	2,732	12,265
Chile	48,499	32,915	13,803	1,781	815
Colombia	33,189	18,554	11,635	3,000	319
Costa Rica	4,002	2,379	1,140	493	345
Cuba	47,700	28,900	18,800	†	325
Dominica	83	67	26	†	14
Dominican Republic	2,650	1,750	900	†	180
Dutch Guiana	271	220	50	1	109
Ecuador	3,602	1,656	1,580	366	82
French Guiana	347	146	201	†	6
Grenada	560	406	160
Guadeloupe	2,250	1,775	405	70	90
Guatemala	4,115	2,361	1,125	629	615
Haiti	2,427	1,992	435	†	60
Honduras	1,371	665	692	14	8
Jamaica	11,792	8,929	2,715	148	297
Martinique	2,975	2,320	555	100	120
Mexico	105,470	80,000	19,020	6,450	4,000
Montserrat	112	87	25	†	4
Neth. West Indies	4,365	3,054	882	429	190
Newfoundland	5,459	4,200	1,180	79	173
Nicaragua	803	574	208	21	76
Panama	13,105	10,906	1,648	551	60
Paraguay	2,150	1,100	900	150	...
Puerto Rico	22,216	13,096	7,757	1,363	339
St. Kitts-Nevis	392	302	90	†	38
St. Lucia	158	116	42	†	21
St. Pierre-Miquelon	102	38	64	†	7
St. Vincent	291	224	67	†	24
Salvador	3,407	2,513	498	396	556
Trinidad and Tobago	8,922	5,729	3,193	†	1,000
United States	30,180,224	25,804,340	4,320,829	55,055	118,394
Uruguay	28,058	21,069	6,989
Venezuela	33,024	17,635	13,847	1,542	1,100
Virgin Islands	825	557	257	11	9
West Indies (Others)	350	275	75
**Total, 1939	2,309,100	1,785,842	498,077	*25,181	*27,488
Total, 1939	32,489,324	27,590,182	4,818,906	*80,236	*145,832
Total, 1938 (Revised)	31,374,958	26,776,845	4,489,529	*108,584	*133,811
**Total, 1938 (Revised)	2,106,867	1,652,897	425,923	*28,047	*20,432

† Included with trucks. * Not complete for all territories. ** Not including United States.

AFRICA

	Motor Vehicles	Cars	Trucks	Buses	Motor-cycles
Algeria	70,000	60,000	8,000	2,000	4,400
Angola	3,250	1,250	1,950	50	235
Basutoland	725	550	175
Bechuanaland	600	400	200
Belgian Congo	6,652	3,172	3,480	...	1,615
British East Africa	28,417	17,189	10,862	366	3,666
British Somaliland	1,133	491	380	262	12
British West Africa	16,000	7,000	9,000	...	800
Canary Islands	2,000
Egypt	33,787	29,473	2,989	1,325	2,209
French Equatorial Afr.	1,265	527	738	...	200
French West Africa	15,803	6,161	9,642	...	1,265
French Somaliland	325	15
Italian East Africa	22,940	16,419	6,460	61	965
Liberia	125	75	50
Madeira	1,230	800	290	140	20
Madagascar	7,444	5,214	2,178	52	2,802
Mauritius	2,780	2,212	430	138	225
Morocco	37,750	27,750	8,700	1,300	3,250
Myasaland	1,341	809	532	...	323
Portuguese E. Africa	6,500	3,500	3,000	...	775
Reunion Islands	1,500	1,100	400
Rhodesia	30,099	20,756	9,343	...	2,354
Seychelles	160	135	25	...	90
South West Africa	4,500	3,100	1,400	...	100
Spanish Morocco	1,060
Sudan	4,850	2,170	2,680
Swaziland	560	435	125
Tangier	673	572	90	11	32
Tripolitania	1,505	1,230	230	45	170
Tunisia	20,000	16,250	3,750	...	1,770
Union of South Africa	368,000	315,000	53,000	...	25,000
Total, 1939	692,974	*643,740	*140,099	*5,750	*52,293
Total, 1938 (Revised)	668,778	*530,119	*133,834	...	*52,635

* Incomplete for all territories. † Included with trucks.

EUROPE

	Motor Vehicles	Cars	Trucks	Buses	Motor-cycles
Azores	880	740	140	†	125
Belgium	225,445	151,917	71,488	2,040	65,200
Bulgaria	4,500	2,750	1,750	†	1,500
Denmark	164,350	118,350	44,200	1,800	30,100
Eire	67,110	56,000	10,200	910	2,700
Estonia	6,559	3,672	2,600	287	3,558
Faroe Islands	91	19	72	†	6
France	2,268,985	1,817,641	451,344
Finland	53,000	30,000	23,000	†	6,350
Germany	1,951,789	1,486,451	442,036	23,302	1,860,722
Gibraltar	1,155	925	190	40	...
Great Britain	2,608,501	2,039,921	481,871	86,709	411,593
Greece	15,500	7,000	6,000	2,500	1,500
Holland	156,150	98,000	53,800	4,350	60,000
Hungary	25,200	19,500	5,000	700	1,100
Iceland	2,075	835	1,120	120	150
Italy	475,000	350,000	115,000	10,000	100,000
Latvia	6,687	3,399	2,946	342	3,357
Lithuania	3,116	2,026	770	320	2,717
Luxemburg	10,709	7,045	3,474	190	3,379
Malta	5,259	3,800	833	626	400
Monaco	2,000	1,500	500	...	150
Northern Ireland	50,000	38,000	12,000	†	2,900
Norway	99,777	61,126	35,118	3,533	20,876
Portugal	49,320	35,800	1,810	1,710	4,950
Rumania	29,000	20,000	5,500	3,500	2,500
Spain	70,000
Spitsbergen	2	1	1
Sweden	217,500	159,600	52,700	5,200	40,000
Switzerland	4,850	72,500	20,650	1,700	26,000
U. S. S. R. (Russia)	750,000	100,000	650,000	†	...
Yugoslavia	21,873	15,768	5,009	1,006	11,279
Total, 1939	9,436,293	*6,704,286	*2,511,122	*150,885	*2,771,112
Total, 1938 (Revised)	9,093,555	*6,419,990	*2,362,482	*186,083	*2,510,877

* Not complete for all territories. † Included with trucks.

Note: Omitted in the European table above are totals for Albania, Czechoslovakia, Danzig and Poland.

ASIA

	Motor Vehicles	Cars	Trucks	Buses	Motor-cycles
Afghanistan	2,400	400	2,000	†	...
Arabia	1,120	962	136	122	23
Bahrain	467	316	71	50	18
British Malaya	45,063	32,873	8,945	2,245	3,500
Ceylon	28,044	21,102	4,307	2,635	3,000
China	44,750	23,750	13,500	7,500	...
Chosen	9,500	6,600	3,900	3,000	1,800
Cyprus	2,100	475
French Indo-China	20,000	16,000	4,000	...	750
Hongkong	5,000	4,000	1,000	...	300
India	185,000	132,500	52,500	†	11,417
Iran	11,152	3,772	7,380	...	250
Iraq	6,800	4,500	2,300	...	125
Japanese Empire	140,000	65,000	75,000	...	60,000
Macao	400	220	180
Manchukuo	15,000	5,000	10,000	...	190
Netherlands E. Indies	76,144	53,592	13,514	9,038	14,110
Palestine	13,725	8,146	4,325	1,254	1,200
Philippine Islands	52,776	32,822	15,443	4,211	573
Syria	10,859	8,716	1,661	482	777
Thailand (Siam)	12,065	6,000	5,198	867	950
Trans Jordan	501	301	167	33	16
Turkey	12,872	4,611	7,510	751	1,967
Total, 1939	695,738	*427,063	*234,337	*32,218	101,441
Total, 1938 (Revised)	666,550	*413,268	*164,397	*76,835	101,958

* Not complete for all countries. † Included in trucks.

OCEANIA

	Motor Vehicles	Cars	Trucks	Buses	Motor-cycles
Australia	854,150	610,750	243,400	...	77,000
Cook Islands	84	41	43	5	...
Fiji Islands	2,027	1,186	841	91	...
French Oceania	526	367	159	80	...
Hawaii	63,260	51,000	12,260
New Caledonia	1,118	965	151	...	174
New Zealand	278,214	222,626	55,588	...	17,749
Other Oceania	600
Papua	500	325	175	...	35
Samoa	331	149	182
Total 1939	1,200,808	*887,409	*312,799	...	*95,234
Total 1938 (Revised)	1,1				

Passenger Car Representations by Makes—By Years*

	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940
Buick	3,241	3,003	2,608	2,472	2,273	2,303	2,465	2,516	2,750	2,657	2,572
Cadillac-La Salle	722	700	654	602	563	541	649	648	803	695	710
Chevrolet	9,553	9,558	9,412	9,039	8,885	8,578	8,667	8,776	8,752	8,406	8,100
Chrysler	3,337	3,007	3,454	2,999	3,511	4,360	4,309	4,097	3,837	3,383	3,276
De Soto	1,133	1,369	1,234	1,252	1,359	1,880	3,406	2,888	2,926	2,688	2,512
Dodge	2,994	2,842	2,663	2,722	2,772	3,297	3,772	4,087	4,380	4,113	3,959
Ford	8,598	8,833	8,735	8,280	7,480	7,388	7,948	8,301	8,245	7,825	7,404
Graham	1,751	1,469	1,206	1,079	920	782	1,120	958	877	611	460
Hudson	3,488	2,863	2,270	1,761	1,842	2,641	3,023	3,263	3,390	2,681	2,436
Hupmobile	1,296	1,084	991	854	699	763	771	302	191	1,695	2,211
Lincoln-Zephyr											2,116
Mercury											1,756
Nash	2,123	1,884	1,677	1,430	1,201	1,283	1,400	1,314	1,753	1,533	1,533
Oldsmobile	1,668	1,592	1,428	1,351	1,418	1,611	2,227	2,454	2,588	2,493	2,424
Packard	766	721	682	624	540	486	843	1,128	1,283	1,098	1,031
Plymouth	7,218	7,351	6,276	7,642	9,537	11,467	11,072	11,143	10,184	9,747	
Pontiac	4,545	3,435	2,887	2,503	2,336	2,314	2,791	3,413	4,006	3,411	3,439
Studebaker	2,242	1,971	1,999	1,927	1,733	1,986	1,832	2,080	2,335	1,873	2,480
Willys-Overland	4,751	3,783	2,904	2,739	580	1,476	1,143	913
Total	52,218	55,332	52,153	47,910	45,174	49,750	56,710	57,575	60,846	58,680	57,546
Miscellaneous	10,836	7,409	7,020	5,527	4,854	3,852	3,046	1,779	2,289	366	488
Total Representations	63,054	62,741	59,173	53,437	50,028	53,602	59,756	59,354	63,135	57,046	58,034

*Chilton Trade List count as of January, 1940.

Note—The term "Passenger Car Representation" refers to retail outlets of any given make. A dealer organization often handles more than one make of passenger car.

Automotive Sales Outlets by States*

STATE	Total Registered Motor Vehicles 1939	WHOLESALE		DEALERS				REPAIR SHOPS			All Motor Vehicles Per Retail Outlet	All Truck Fleets (8 or More Trucks)		
		Number of Wholesalers	Motor Vehicles Per Wholesaler	Passenger Car Dealers	Exclusive Truck Dealers	Total Truck Dealers	Motor Vehicles Per Car and Truck Dealers	Car Dealer Service Stations	Independent Repair Shops	Total Repair Shops				
Alabama	307,254	73	4,208	345	30	228	375	819	313	250	563	642	216	
Arizona	130,445	30	4,348	150	7	83	157	830	143	151	294	317	85	
Arkansas	240,716	79	3,047	388	26	256	414	581	376	419	810	297	124	
California	2,605,147	502	5,189	1,944	145	1,254	2,089	1,247	1,771	5,163	6,934	7,448	1,655	
Colorado	343,483	71	4,837	462	43	314	505	680	446	499	945	1,037	331	
Connecticut	453,263	101	4,487	579	47	333	626	724	575	771	1,346	1,415	320	
Delaware	69,500	13	5,346	64	6	41	70	992	71	107	178	171	90	
District of Columbia	195,668	26	7,525	74	7	31	81	2,415	68	138	206	228	236	
Florida	457,219	110	4,156	464	37	278	501	912	451	514	965	1,023	446	
Georgia	474,238	92	5,154	513	27	355	540	878	470	313	783	857	553	
Idaho	150,000	26	5,769	318	20	221	338	443	309	185	494	541	41	
Illinois	1,859,577	396	4,695	2,366	146	1,494	2,512	740	2,280	2,845	5,125	5,422	342	
Indiana	937,165	196	4,781	1,211	54	694	1,265	740	1,124	1,280	2,404	2,586	787	
Iowa	763,219	160	4,770	1,473	148	1,018	1,621	470	1,382	1,321	2,703	2,971	365	
Kansas	577,000	134	4,305	986	97	676	1,083	532	951	935	1,886	2,032	267	
Kentucky	437,510	100	4,375	610	38	413	648	675	582	446	1,028	1,109	278	
Louisiana	353,518	69	5,123	344	29	228	373	947	325	294	619	679	430	
Maine	199,179	47	4,237	383	19	226	402	495	354	482	836	886	129	
Maryland	423,155	78	5,425	437	24	192	461	917	425	514	939	1,037	408	
Massachusetts	872,828	227	3,845	1,345	45	488	1,390	627	1,079	1,234	2,313	2,508	348	
Michigan	1,121,971	236	4,754	1,695	62	1,145	1,757	638	1,657	1,776	3,433	3,760	250	
Minnesota	839,700	110	7,633	1,460	58	791	1,518	553	1,365	1,610	2,975	3,269	516	
Mississippi	221,700	67	3,308	363	36	261	399	555	342	180	522	581	74	
Missouri	877,094	186	4,715	971	71	692	1,042	842	928	1,451	2,379	2,539	345	
Montana	180,319	43	4,193	376	42	295	418	431	380	277	657	710	103	
Nebraska	410,280	91	4,508	742	57	527	799	513	725	844	1,569	1,649	248	
Nevada	40,901	10	4,090	118	5	87	123	332	116	99	215	238	25	
New Hampshire	126,400	25	5,056	257	14	150	271	466	245	273	518	554	86	
New Jersey	1,019,537	177	5,760	1,045	70	524	1,115	914	1,016	1,791	2,807	3,016	338	
New Mexico	121,641	23	5,288	176	9	122	185	657	142	139	281	336	39	
New York	2,634,285	538	4,896	2,783	205	1,668	2,988	881	2,724	5,246	7,970	8,519	309	
North Carolina	559,587	106	5,279	631	24	353	655	854	644	530	1,174	1,232	324	
North Dakota	177,067	26	6,810	499	48	346	547	323	464	489	953	1,042	49	
Ohio	1,886,984	354	5,330	2,181	112	1,220	2,293	822	2,074	2,265	4,339	4,870	387	
Oklahoma	551,948	120	4,599	751	66	523	817	675	752	873	1,625	1,817	303	
Oregon	369,330	74	4,990	440	29	299	469	787	415	849	1,264	1,343	231	
Pennsylvania	2,099,234	411	5,107	3,016	182	1,876	3,198	656	3,047	3,948	6,995	7,543	2,224	
Rhode Island	175,802	31	5,671	161	7	72	168	1,046	154	235	409	458	383	
South Carolina	300,716	52	5,783	368	18	201	386	779	340	222	562	613	490	
South Dakota	189,206	33	5,733	436	39	325	475	398	412	363	775	847	60	
Tennessee	407,492	97	4,200	390	33	271	423	963	398	409	807	902	451	
Texas	1,617,865	329	4,917	1,935	194	1,368	2,129	759	1,915	2,827	4,742	5,139	314	
Utah	132,836	41	3,239	175	17	133	192	691	155	219	374	423	133	
Vermont	90,713	25	3,628	206	11	157	217	418	189	355	544	581	46	
Virginia	452,743	79	5,730	645	30	242	675	670	618	724	1,342	1,426	317	
Washington	528,208	131	4,032	694	55	466	749	705	669	1,222	1,891	2,080	253	
West Virginia	268,351	78	3,440	466	31	302	497	539	458	371	829	896	299	
Wisconsin	844,831	136	6,211	1,636	80	1,188	1,716	492	1,582	1,482	3,064	3,305	255	
Wyoming	83,399	17	4,905	186	12	148	198	421	197	141	338	357	49	
Total	30,180,224	6,176	4,886†	39,258	2,612	24,575	41,870	720†	37,618	49,091	86,709	93,764	321†	
													25,126	

† Average.

* Chilton Trade List count as of January, 1940.

Car Dealer Representations by States—By Makes*

STATES	Buick	Cadillac-La Salle	Chevrolet	Chrysler	De Soto	Dodge	Ford	Graham	Hudson-Terraplane	Lincoln-Zephyr	Mercury	Nash	Oldsmobile	Packard	Plymouth	Pontiac	Studebaker	Willys	Miscellaneous	Total
Alabama	19	5	97	26	22	32	92	17	10	14	13	7	80	21	9	7	4	4	476	
Arizona	11	7	30	9	12	19	28	2	9	7	2	14	12	4	40	13	14	4	5	242
Arkansas	23	4	111	30	19	37	96	2	13	4	9	17	6	86	29	21	2	4	513	
California	156	48	310	139	133	207	328	44	105	285	208	76	154	73	479	176	165	72	35	3,193
Colorado	30	8	94	43	21	43	100	3	34	13	43	20	25	8	107	40	36	5	678	
Connecticut	40	18	89	54	50	59	73	19	38	36	27	33	38	22	163	55	38	17	13	882
Delaware	5	4	14	3	6	6	12	4	4	4	2	5	1	15	8	8	1	1	103	
District of Columbia	2	2	9	6	8	8	16	1	6	10	5	1	5	4	22	5	3	3	123	
Florida	22	17	88	41	18	48	103	4	26	34	5	14	28	20	108	41	38	18	10	684
Georgia	24	6	140	38	23	58	137	17	16	15	12	23	11	119	30	27	9	7	712	
Idaho	20	3	64	23	23	33	57	4	34	10	20	15	21	6	79	24	27	4	469	
Illinois	194	31	455	177	158	221	415	33	144	132	68	157	145	71	556	194	158	63	17	3,389
Indiana	96	22	233	93	86	109	197	12	105	77	60	63	88	29	288	109	94	37	13	1,811
Iowa	105	13	409	121	72	134	322	10	84	82	163	49	82	21	327	122	89	19	7	2,231
Kansas	62	8	247	84	59	84	223	2	68	40	62	36	55	9	227	87	45	13	2	1,413
Kentucky	52	7	119	59	33	73	124	5	32	24	45	23	52	13	165	65	33	12	5	941
Louisiana	22	2	83	33	13	33	82	1	20	15	17	7	20	7	79	19	14	5	479	
Maine	19	9	85	28	23	32	69	8	31	1	2	25	18	8	83	40	18	7	3	509
Maryland	26	12	64	46	37	57	75	5	24	43	46	18	32	19	140	39	23	10	7	722
Massachusetts	62	41	171	92	92	117	164	25	82	30	23	69	92	46	301	123	72	25	18	1,645
Michigan	121	33	354	126	86	168	301	24	156	73	111	81	117	46	381	180	92	37	37	2,525
Minnesota	102	6	350	137	90	152	295	13	83	13	9	65	59	25	379	109	99	37	7	2,030
Mississippi	15	5	106	31	17	37	93	4	7	14	14	7	13	7	85	28	24	2	505	
Missouri	50	8	270	77	70	91	194	4	27	38	34	37	44	20	238	68	57	19	7	1,353
Montana	20	4	86	32	11	45	82	27	11	13	20	19	10	10	88	26	37	4	4	539
Nebraska	44	5	199	79	40	66	172	3	35	21	55	22	25	6	185	53	49	12	3	1,074
Nevada	11	1	22	9	6	12	27	2	8	8	5	10	6	1	27	15	11	4	4	189
New Hampshire	16	6	47	18	13	30	53	3	17	2	6	12	13	10	61	24	20	4	1	356
New Jersey	66	36	164	90	67	107	165	22	55	78	65	61	75	33	284	105	62	33	19	1,607
New Mexico	14	4	42	19	9	19	37	1	7	11	10	3	13	7	47	18	12	1	4	278
New York	177	76	437	233	196	315	444	40	187	231	191	134	208	108	744	273	176	99	47	4,316
North Carolina	50	14	145	61	28	58	149	41	19	11	9	38	15	147	71	27	7	7	897	
North Dakota	26	4	145	43	24	49	134	1	39	5	13	10	16	3	116	15	23	6	6	678
Ohio	142	35	405	178	182	211	362	46	182	91	85	117	144	66	571	188	124	68	19	3,216
Oklahoma	43	12	182	51	36	75	173	1	37	58	90	19	50	12	162	96	27	6	5	1,135
Oregon	24	8	99	33	36	45	76	9	21	44	41	25	27	7	114	41	21	10	3	684
Pennsylvania	199	67	494	291	225	298	455	55	190	219	113	187	208	111	814	268	233	90	42	4,559
Rhode Island	9	6	22	18	14	17	15	1	15	9	10	11	11	8	49	16	17	1	3	252
South Carolina	29	9	91	36	18	38	85	1	14	12	9	19	9	9	92	31	23	7	3	526
South Dakota	23	4	122	44	29	41	110	1	13	6	56	12	16	4	114	19	26	4	1	645
Tennessee	16	4	95	34	25	46	85	1	15	14	9	9	20	7	105	32	29	1	7	554
Texas	126	33	445	179	111	207	395	8	120	60	78	35	117	28	497	180	106	24	24	2,751
Utah	10	3	33	11	16	17	41	3	16	6	15	6	10	3	44	10	18	4	2	268
Vermont	12	7	40	16	11	27	39	2	13	7	13	11	13	8	54	24	14	8	319	
Virginia	38	11	145	59	34	70	150	6	28	18	7	8	32	21	163	65	23	16	5	899
Washington	39	12	126	48	49	78	130	8	42	40	43	30	57	15	175	64	46	23	10	1,035
West Virginia	30	9	95	41	32	48	81	6	28	17	6	24	28	16	121	39	31	16	7	675
Wisconsin	116	18	388	121	96	155	311	20	168	199	181	117	90	36	372	146	108	37	38	2,657
Wyoming	14	3	39	16	13	25	37	1	12	14	16	8	11	4	54	15	13	2	297	
TOTAL	2,572	710	8,100	3,276	2,512	3,959	7,404	460	2,436	2,211	2,116	1,756	2,424	100,000	1,031	913	488	58,034		

* Chilton Trade List count as of January, 1940.

Car Dealer Representation By Makes—By Population Groups*

MAKE	1,000- 0-1,000	2,500- 2,500	5,000- 5,000	10,000- 10,000	25,000- 25,000	50,000- 50,000	Over 100,000	Exclusive Dealers	Dealers Handling this Make and One or More Other Makes	Total Representation
Buick	259	470	494	462	464	153	96	174	1,286	1,286
Cadillac-La Salle	10	23	62	107	215	106	81	106	122	588
Chevrolet	2,983	2,082	1,066	688	549	186	127	419	6,729	1,371
Chrysler	613	686	520	444	455	164	98	296	3,276	3,276
De Soto	464	385	348	352	391	156	96	320	2,512	2,512
Dodge	770	835	685	561	505	173	107	323	3,959	3,959
Ford	2,418	1,971	1,001	678	533	183	137	483	4,336	3,068
Graham	38	25	33	52	91	69	44	108	292	168
Hudson-Terraplane	401	391	344	308	367	153	119	353	1,966	470
Lincoln-Zephyr	368	412	333	293	320	122	78	285	2,211	2,211
Mercury	436	479	338	254	241	93	65	210	2,116	2,116
Nash	205	210	231	264	323	149	109	265	1,410	346
Oldsmobile	221	440	480	411	399	155	97	221	1,165	1,259
Packard	36	62	111	168	277	133	81	163	567	464
Plymouth	1,847	1,906	1,553	1,357	1,351	493	301	839	9,747	9,747
Pontiac	460	756	635	541	475	174	111	287	2,320	1,119
Studebaker	337	365	378	367	440	182	104	307	1,972	508
Willys	122	121	102	104	149	85	57	173	472	441
Miscellaneous	47	35	44	39	65	52	58	148	110	378
Summary	12,035	11,654	8,758	7,450	7,610	2,981	1,966	5,580	22,747	35,287
Per Cent of Total	20.73%	20.08%	15.09%	12.84%	13.11%					

1940

AMERICAN

Line Number	CAR MAKE AND MODEL	Wheelbase (In.)	Overall Length (In.)	Tread (In.)	Tyre Size (In.)	Shipping Weight— 5 Pass., 4-Door Sedan	Lowest Delivered Price 5 Pass., 4-Door Sedan	Lowest Delivered Price 5 Pass., 4-Door Sedan	ENGINE													
									No. of Cylinders, Bore and Stroke (In.)	Taxable Hp.	Piston Displacement (Cu. In.)	Maximum Brake Hp. at Specified R.P.M.	Maximum Torque (Lb.-Ft.) at Specified R.P.M.	Comp'n Ratio (to-1)	Comp'n Pressure (Lb.)	At What R.P.M.	Weight per Cu. In. 5 Pass., 4-Door Sedan	Weight per Cu. In. 5 Pass., 4-Door Sedan	Hp. per Cu. In.	Displacement \dagger	Crankshaft \ddagger Revolutions per Mile	
1	Bantam	65	75	129 $\frac{1}{2}$	39 $\frac{1}{2}$ 42 $\frac{1}{2}$ 4.00/15	1255	\$ 399	4-2.26x3 $\frac{1}{2}$	8.2	50.1	22-3800	35-1800	7.40	No	CI	135	200	35.02	79.77	.44	37.0	4735
2	Buick-Special	40	121	203 $\frac{1}{2}$	58 $\frac{1}{2}$ 59 $\frac{1}{2}$ 6.50/16	3660	996	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	30.6	248.0	107-3400	203-2000	6.10	..	CI	112	Cra	16.77	38.87	.43	37.0	3190
3	Buick-Super	50	121	208 $\frac{1}{2}$	58 $\frac{1}{2}$ 59 $\frac{1}{2}$ 6.50/16	3790	1109	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	30.6	248.0	107-3400	203-2000	6.10	..	CI	112	Cra	17.29	40.09	.43	35.8	3190
4	Buick-Century	60	126	208 $\frac{1}{2}$	58 $\frac{1}{2}$ 59 $\frac{1}{2}$ 7.00/15	3935	1211	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	37.8	320.2	141-3600	269-2000	6.25	..	CI	114	Cra	13.85	31.45	.44	39.8	2839
5	Buick-Roadmaster	70	126	213 $\frac{1}{2}$	58 $\frac{1}{2}$ 59 $\frac{1}{2}$ 7.00/15	4045	1359	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	37.8	320.2	141-3600	269-2000	6.25	..	CI	114	Cra	14.19	32.23	.44	38.8	2839
6	Buick-Limited	60	133	219 $\frac{1}{2}$	59 $\frac{1}{2}$ 62 $\frac{1}{2}$ 7.50/16	4400	1553	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	37.8	320.2	141-3600	269-2000	6.25	..	CI	114	Cra	15.30	34.75	.44	36.3	2847
7	Buick-Limited	90	140	225 $\frac{1}{2}$	59 $\frac{1}{2}$ 62 $\frac{1}{2}$ 7.50/16	4590	1942	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	37.8	320.2	141-3600	269-2000	6.25	..	CI	114	Cra	15.89	36.09	.44	37.6	3076
8	Cadillac-V8	60S	127	216 $\frac{1}{2}$	58 61 7.00/16	4070	2090	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	39.2	346.0	135-3400	250-1700	6.25	..	CI	155	1000	13.20	33.85	.39	40.1	2748
9	Cadillac-V8	62	129	215 $\frac{1}{2}$	59 7.00/16	4030	1745	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	39.2	346.0	135-3400	250-1700	6.25	..	CI	155	1000	13.09	33.55	.39	40.5	2748
10	Cadillac-V8	72	139	227 $\frac{1}{2}$	62 $\frac{1}{2}$ 7.50/16	4670	2670	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	39.2	346.0	140-3400	270-1700	6.70	..	CI	170	1000	14.94	36.92	.40	38.0	2914
11	Cadillac-V8	75	141	228 $\frac{1}{2}$	60 $\frac{1}{2}$ 62 $\frac{1}{2}$ 7.50/16	4900	2995	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	39.2	346.0	140-3400	270-1700	6.70	..	CI	170	1000	15.60	38.57	.40	38.6	3098
12	Cadillac-V16	90	141	225 $\frac{1}{2}$	60 $\frac{1}{2}$ 62 $\frac{1}{2}$ 7.50/16	5190	5140	16-3 $\frac{1}{2}$ x3 $\frac{1}{2}$	67.6	431.0	185-3800	324-1700	7.75	..	CI	180	1000	13.20	30.75	.43	43.1	2914
13	Chevrolet-Master	85	113	192 $\frac{1}{2}$	56 $\frac{1}{2}$ 58 6.00/16	2930	740	6-3 $\frac{1}{2}$ x3 $\frac{1}{2}$	29.4	216.5	85-3400	170-1200	6.25	No	CI	15.84	40.35	.39	34.0	2780
14	Chevrolet Spec. DeL. & Mas. DeL.	113	192 $\frac{1}{2}$	57 $\frac{1}{2}$ 59 6.00/16	2990	766	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	29.4	216.5	85-3400	170-1200	6.25	No	CI	16.12	41.05	.39	36.8	3067	
15	Chrysler Windsor & Royal C-25	122 $\frac{1}{2}$	202 $\frac{1}{2}$	60 $\frac{1}{2}$ 62 $\frac{1}{2}$ 6.25/16	3175	995	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	27.3	241.5	108-3600	188-1200	6.50	7.00	CI	145	1000	15.21	34.02	.45	36.6	2870	
16	Chrysler Saratoga & N. Y. C-26	128 $\frac{1}{2}$	208 $\frac{1}{2}$	61 $\frac{1}{2}$ 7.00/15	3590	1180	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	33.8	323.5	135-3400	255-1600	6.80	7.45	CI	155	1000	12.84	30.29	.42	43.7	2848	
17	Chrysler Crown Imp. C-27	145 $\frac{1}{2}$	225 $\frac{1}{2}$	61 $\frac{1}{2}$ 7.00/15	2245	..	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	33.8	323.5	137-3400	260-1600	6.80	7.45	AI	155	100042	39.9	2828	
18	Crosley	A	80	120	40 4.25/12	950	362(1)	2-3 $\frac{1}{2}$ x $\frac{1}{2}$	7.2	38.8	15-4200	22-2400	5.50	..	CI	90	Cra	37.37	96.66	.39	..	5191
19	De Soto Custom S-7	80	120	202 $\frac{1}{2}$	57 60 $\frac{1}{2}$ 6.00/16	3086	945	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	27.3	228.1	100-3600	176-1200	6.50	7.00	CI	150	1000	15.72	35.86	.44	37.6	3055
20	Dodge DeL. & Spec. D14-17	119 $\frac{1}{2}$	198 $\frac{1}{2}$	57 60 $\frac{1}{2}$ 6.00/16	2997	855	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	25.3	217.8	87-3600	166-1200	6.50	..	CI	145	1000	16.05	40.19	.40	36.8	3055	
21	Ford V8-60	112	190 $\frac{1}{2}$	55 $\frac{1}{2}$ 58 $\frac{1}{2}$ 5.50/16	2696	685(1)	8-2.6x3.2	21.6	136.0	60-3500	94-2500	6.60	..	AI	150	2800	23.50	53.26	.44	28.1	3419	
22	Ford V8-85	112	190 $\frac{1}{2}$	55 $\frac{1}{2}$ 58 $\frac{1}{2}$ 6.00/16	2936	725(1)	8-3.0x3.75	30.0	221.0	85-3800	150-2200	6.15	..	CI	140	2400	15.54	40.42	.38	36.2	2816	
23	Graham DeL. & Cus. 108	120	..	56 $\frac{1}{2}$ 60 $\frac{1}{2}$ 6.00/16	..	995	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	25.3	217.8	92-3800	170-1600	6.65	7.10	CI	125	Cra	17.10	40.30	.43	..	3181	
24	Graham Sch. & Cus. Sch. 107	120	..	56 $\frac{1}{2}$ 60 $\frac{1}{2}$ 6.25/16	..	1130	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	25.3	217.8	120-4000	180-1200	6.65	7.10	CI	130	Cra	17.35	31.50	.54	..	3143	
25	Hudson Six & Del. Six 40	113	190 $\frac{1}{2}$	56 $\frac{1}{2}$ 59 $\frac{1}{2}$ 6.25/16	2940	763	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	21.6	175.0	92-4000	138-1400	7.00	..	CI	125	125	19.65	37.30	.53	33.5	3397	
26	Hudson-Super & C. C. 6. 41-43	118-125	(a)	56 $\frac{1}{2}$ 59 $\frac{1}{2}$ 6.25/16	3050	870	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	21.6	121.0	102-4000	168-1200	6.50	..	CI	120	125	16.74	34.80	.40	35.4	(3)	
27	Hudson-Eight & C. C. 8. 44-47	118-125	(b)	56 $\frac{1}{2}$ 59 $\frac{1}{2}$ 6.25/16	3185	952	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	28.8	254.0	128-4200	198-1600	6.50	..	CI	119	125	14.50	28.78	.50	40.9	(8)	
28	La Salle 40-50, 40-52	123	..	58 7.00/16	3790	1320	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	36.4	322.0	130-3400	234-1800	6.50	..	CI	155	1000	13.32	33.00	.40	40.3	2764	
29	Lincoln V12	136-145	60	60 7.00/15	12-3.125x4 $\frac{1}{2}$	46.8	414.0	150-3400	312-1200	6.38	..	AI	138	100036	38.5	2816	
30	Lincoln-Zephyr V12	125	209 $\frac{1}{2}$	55 $\frac{1}{2}$ 58 $\frac{1}{2}$ 7.00/16	3620	1400(1)	12-2.875x3.75	39.7	292.0	120-3500	312-1200	6.15	7.20	AI	140	10	14.10	34.33	.41	43.0	3130	
31	Mercury V8-95	116	195 $\frac{1}{2}$	55 $\frac{1}{2}$ 58 $\frac{1}{2}$ 6.00/16	3103	960(1)	8-3.187x3.75	32.5	239.0	95-3600	170-2100	6.15	..	CI	145	2200	15.07	37.92	.40	33.8	2637	
32	Nash-LaFayette	4010	117	199 $\frac{1}{2}$	56 $\frac{1}{2}$ 60 $\frac{1}{2}$ 6.00/16	3275	875	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	27.3	234.8	99-3400	179-1200	6.30	..	CI	110	Cra	16.07	38.13	.42	36.8	3054
33	Nash-Ambassador 6	4020	121	203 $\frac{1}{2}$	56 $\frac{1}{2}$ 60 $\frac{1}{2}$ 6.25/16	3380	985	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	27.3	234.8	105-3400	190-1050	6.00	No	CI	125	350	16.52	36.95	.45	35.4	3018
34	Nash-Ambassador 8	4080	125	198 $\frac{1}{2}$	57 $\frac{1}{2}$ 61 $\frac{1}{2}$ 6.00/16	3655	1195	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	31.2	260.8	115-3400	200-1200	6.00	No	CI	110	350	15.93	36.13	.44	35.2	2890
35	Oldsmobile-Six	60	116	197 $\frac{1}{2}$	58 $\frac{1}{2}$ 60 $\frac{1}{2}$ 6.00/16	3100	899	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	28.4	229.7	98-3400	180-1400	6.10	6.51	CI	146	1000	15.66	37.90	.41	37.8	3054
36	Oldsmobile Six	70	120	199 $\frac{1}{2}$	58 $\frac{1}{2}$ 60 $\frac{1}{2}$ 6.50/16	3220	963	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	28.4	229.7	97-3400	180-1400	6.10	5.61	CI	146	1000	16.19	39.15	.41	37.8	3117
37	Oldsmobile Cus. 8 Cruiser	124	210 $\frac{1}{2}$	58 $\frac{1}{2}$ 60 $\frac{1}{2}$ 7.00/15	3555	1131	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	33.8	257.1	110-3600	200-2000	6.20	5.80	CI	152	1000	15.77	38.86	.43	37.2	3130	
38	Packard-One Ten	1800	122	196 $\frac{1}{2}$	59 $\frac{1}{2}$ 60 $\frac{1}{2}$ 6.25/16	3200	975	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	44.2	245.0	100-											

PASSENGER CARS

Arrangement	VALVES				PISTONS				RINGS				CARBURETOR				REAR AXLE																	
	Valve Seat Insert (Exhaust)	Spring Pressure (Lb.)	Intake	Exhst.	Head Diam.	Seat Angle	Head Diam.	Seat Angle	Material	Weight (Oz.) Without Rings, Pin or Bushing	Pin Diameter	Pin Locked In	No. and Width Compression	No. and Width Oil	Camshaft Drive— Graukhaft Counterbalanced	Vibration Damper	No. of Main Bearings	Crankpin Diameter (In.)	Crankpin Length (In.)	Make and Size	Model	Transmission— Location of Shift Lever	Spark Plug— Make and Model	Electrical System— Make	Type	Final Drive	Torque Medium	Gear Ratio	Front Suspension	Line Number				
			Open	Closed																														
L N	44	28	28	1.12	45	1.03	45	Alt	5.12	609	R	2- ¹ / ₂	1- ¹ / ₂	1237	Own. Ge	Y	N	3	1.25	1.00	Zen.	11	61A5	SL	CH. H10	AL	AL	1/2F	SB	RS	5.25	C6	1	
L N	70 ¹	29 ¹	1.53	45	1.34	45	Ala	14.25	812	R	2- ¹ / ₂	2- ¹ / ₂	16	LB.	Ch	Y	Y	5	2.00	1.21	Str.	11	AAV-16	SC	AC. 48	DR	DR	1/2F	Hyp	TT	4.40	IC	2	
L N	70 ¹	29 ¹	1.53	45	1.34	45	Ala	14.25	812	R	2- ¹ / ₂	2- ¹ / ₂	16	LB.	Ch	Y	Y	5	2.00	1.21	Str.	11	AAV-16	SC	AC. 48	DR	DR	1/2F	Hyp	TT	4.40	IC	3	
L N	70 ¹	29 ¹	1.78	45	1.43	45	Ala	17.25	875	R	2- ¹ / ₂	2- ¹ / ₂	16	LB.	Ch	Y	Y	5	2.25	1.31	Str.	11	AAV-26	SC	AC. 48	DR	DR	1/2F	Hyp	TT	3.90	IC	4	
L N	70 ¹	29 ¹	1.78	45	1.43	45	Ala	17.25	875	R	2- ¹ / ₂	2- ¹ / ₂	16	LB.	Ch	Y	Y	5	2.25	1.31	Str.	11	AAV-26	SC	AC. 48	DR	DR	1/2F	Hyp	TT	3.90	IC	5	
L N	70 ¹	29 ¹	1.78	45	1.43	45	Ala	17.25	875	R	2- ¹ / ₂	2- ¹ / ₂	16	LB.	Ch	Y	Y	5	2.25	1.31	Str.	11	AAV-26	SC	AC. 48	DR	DR	1/2F	Hyp	TT	4.18	IC	6	
L N	70 ¹	29 ¹	1.78	45	1.43	45	Ala	17.25	875	R	2- ¹ / ₂	2- ¹ / ₂	16	LB.	Ch	Y	Y	5	2.25	1.31	Str.	11	AAV-26	SC	AC. 48	DR	DR	1/2F	Hyp	TT	4.55	IC	7	
L N	145	66	1.88	45	1.63	45	Ala	18.30	875	F	2-(g)	2- ¹ / ₂	16	Mor.	Ch	Y	Y	3	2.46	2.03	Str.	11	AAV-26	SC	AC. 104	DR	DR	1/2F	Hyp	RS	3.92	IC	8	
L N	145	66	1.88	45	1.63	45	Ala	18.30	875	F	2-(g)	2- ¹ / ₂	16	Mor.	Ch	Y	Y	3	2.46	2.03	Str.	11	AAV-26	SC	AC. 104	DR	DR	1/2F	Hyp	RS	3.92	IC	9	
L N	145	66	1.88	45	1.63	45	Ala	18.30	875	F	2-(g)	2- ¹ / ₂	16	Mor.	Ch	Y	Y	3	2.46	2.03	Str.	11	AAV-26	SC	AC. 104	DR	DR	1/2F	Hyp	RS	4.31	IC	10	
L N	145	66	1.88	45	1.63	45	Ala	18.30	875	F	2-(g)	2- ¹ / ₂	16	Mor.	Ch	Y	Y	3	2.46	2.03	Str.	11	AAV-26	SC	AC. 104	DR	DR	1/2F	Hyp	RS	4.58	IC	11	
L N	98 ¹	50	1.50	45	1.37	45	Ala	15.28	812	R	2-(g)	1- ¹ / ₂	16	Mor.	Ch	Y	Y	9	2.00	1.75	Car.	11	(k)	SC	AC. 104	DR	DR	1/2F	Hyp	RS	4.31	IC	12	
L N	127	52 ¹ ₂	1.64	30	1.46	30	CT	—	865	R	2- ¹ / ₂	124	1- ¹ / ₂	186	GD.	Ge	Y	Y	4	2.31	1.50	Car.	11	420S	SC	AC. 44	DR	DR	1/2F	Hyp	TT	3.73	C	13
L N	127	52 ¹ ₂	1.64	30	1.46	30	CT	—	865	R	2- ¹ / ₂	124	1- ¹ / ₂	186	GD.	Ge	Y	Y	4	2.31	1.50	Car.	11	420S	SC	AC. 44	DR	DR	1/2F	Hyp	TT	4.11	IC	14
L Y	111	42	1.65	45	1.53	45	At	17.50	859	F	2- ¹ / ₂	16	Mor.	Ch	Y	Y	4	2.12	1.21	Car.	11	E851	SC	AL. A7B	AL	WII	1/2F	Hyp	RS	3.90	IC	15		
L Y	133	55	1.53	45	1.34	45	At	16.30	859	F	2- ¹ / ₂	16	Mor.	Ch	Y	Y	5	2.18	1.12	Str.	11	AAV-2	SC	AL. A7B	AL	WII	1/2F	Hyp	RS	3.91	IC	16		
L Y	133	55	1.53	45	1.34	45	At	16.30	859	F	2- ¹ / ₂	16	Mor.	Ch	Y	Y	5	2.18	1.12	Str.	11	AAV-2	SC	AL. A7B	AL	WII	1/2F	Hyp	RS	4.55	IC	17		
L N	41	20	1.37	45	1.15	45	E1	16.00	624	P	2- ¹ / ₂	16	For.	Ge	Y	N	2	1.50	.781	Til.	1	DY-1A	SL	AL. A5	AL	AL	1/2F	SB	TT	5.14	C	18		
L Y	111	42	1.65	45	1.53	45	At	17.50	859	F	2- ¹ / ₂	16	Mor.	Ch	Y	Y	4	2.12	1.21	Car.	11	E8N1	SC	AL. A7B	AL	WII	1/2F	Hyp	RS	4.10	IC	19		
L Y	80	36	1.46	45	1.46	45	At	15.20	859	F	2- ¹ / ₂	16	Mor.	Ch	Y	Y	4	2.06	1.00	Str.	11	BXV-3	SC	AL. A7B	AL	WII	1/2F	Hyp	RS	4.10	IC	20		
L Y	50	28	1.29	45	1.28	45	CS	8.12	688	F	2- ¹ / ₂	16	1550	CD.	Ge	Y	Y	3	1.70	1.41	Own.	1	AAV-2	SC	CH. H10	Own	Own	1/2F	SB	RR	4.44	Ct	21	
L Y	78	38 ¹ ₂	1.53	45	1.53	45	CS	12.00	750	F	2-(h)	1- ¹ / ₂	1575	CD.	Ge	Y	Y	3	2.00	1.75	Own.	1	AAV-2	SC	CH. H10	Own	Own	1/2F	SB	RR	3.78	Ct	22	
L N	98	44	1.51	30	1.32	45	Ala	14.12	812	R	2- ¹ / ₂	16	LB.	Ch	Y	Y	4	2.06	1.31	Car.	11	420S	SC	CH. J10	DR	WII	1/2F	Hyp	RS	4.27	C	23		
L N	98	44	1.51	30	1.32	45	Ala	14.12	812	R	2- ¹ / ₂	16	LB.	Ch	Y	Y	4	2.06	1.31	Car.	11	420S	SC	CH. J10	DR	WII	1/2F	Hyp	RS	4.27	C	24		
L N	80	40	1.37	45	1.37	45	Al	10.50	750	R	2- ¹ / ₂	16	GE.	Ge	Y	Y	3	1.93	1.37	Car.	11	454S	SC	CH. JB-A	AL	Nat	1/2F	SB	RS	4.55	IC	25		
L N	80	40	1.37	45	1.37	45	Al	10.50	750	R	2- ¹ / ₂	16	GE.	Ge	Y	Y	3	1.93	1.37	Car.	11	461S	SC	CH. JB-A	AL	Nat	1/2F	SB	RS	4.11	IC	26		
L N	80	40	1.50	45	1.37	45	Al	10.50	750	F	2- ¹ / ₂	16	GE.	Ge	Y	Y	5	1.93	1.37	Car.	11	455S	SC	CH. JB-A	AL	Nat	1/2F	SB	RS	4.11	IC	27		
L N	145	66	1.88	45	1.63	45	Ala	16.88	875	F	2- ¹ / ₂	16	Mor.	Ch	Y	N	3	2.46	2.03	Car.	11	460S	SC	AC. 104	DR	DR	1/2F	Hyp	RS	3.92	IC	28		
L N	135	57	1.68	45	1.68	45	Ala	12.50	875	P	2- ¹ / ₂	16	Mor.	Ch	Y	Y	4	2.50	2.00	Str.	11	E822	SC	CH. J7	AL	WII	1/2F	SB	TT	4.58	C	29		
L N	116	54	1.53	45	1.53	45	CS	17.75	859	P	2- ¹ / ₂	16	Mor.	Ch	Y	Y	4	2.50	2.00	Str.	11	AAV-2	SC	CH. H10	Own	Own	1/2F	SB	TT	4.44	Ct	30		
L Y	78	38 ¹ ₂	1.53	45	1.53	45	CS	13.94	750	F	2- ¹ / ₂	16	CD.	Ge	Y	Y	3	2.14	1.75	Own.	1	AAV-2	SC	CH. H10	Own	Own	1/2F	SB	TT	3.54	C	31		
L N	115	70	1.65	45	1.53	45	Al	—	874	F	2- ¹ / ₂	155	W-D.	Ch	Y	Y	7	2.00	1.42	Car.	11	458S	SC	AL. B7	AL	USL	1/2F	Hyp	RS	4.10	IC	32		
L N	95 ¹	38 ¹	1.75	45	1.59	45	Al	19.25	874	F	2- ¹ / ₂	155	W-D.	Ch	Y	Y	7	2.00	1.42	Car.	11	435S	SC	AC. 45	AL	USL	1/2F	Hyp	RS	4.10	IC	33		
L N	95 ¹	38 ¹	1.65	45	1.46	45	Al	16.00	874	F	2- ¹ / ₂	154	Dia.	Ch	N	Y	9	2.00	1.23	Car.	11	465S	SC	AC. 45	AL	USL	1/2F	Hyp	RS	4.10	IC	34		
L N	95 ¹ ₂	50 ¹ ₂	1.56	30	1.42	45	Al	17.75	859	P	2- ¹ / ₂	16	Whi.</td																					

1940

TRENDS

Eight Billion Pounds of Cars Sold in 1939

(Based on New Registrations)

Passenger Car Chassis and Engines

	No. of Units Sold*	Gross Shipping Wgt. of Cars Sold (lb.)†	Gross Max. Hp. of Cars Sold‡	Average Weight (lb.)	Average Hp.
1930	2,625,979	7,320,000,000	142,800,000	2,780	54
1931	1,908,141	5,380,000,000	109,200,000	2,820	57
1932	1,096,399	3,200,000,000	75,400,000	2,920	69
1933	1,493,794	4,220,000,000	106,000,000	2,820	71
1934	1,888,557	5,560,000,000	156,000,000	2,940	83
1935	2,743,908	8,120,000,000	234,000,000	2,960	85
1936	3,404,497	10,190,000,000	291,000,000	3,000	86
1937	3,483,752	10,470,000,000	303,900,000	3,005	87
1938	1,891,021	5,743,000,000	169,200,000	3,035	89
1939	2,653,377	7,948,000,000	239,200,000	2,996	90

* Shipping weight of 5-passenger, 4-door sedan, taken as typical and used in conjunction with new registrations of each model. † Maximum horsepower taken from previous Statistical Issues and used in conjunction with new registrations of each model. * R. L. Polk & Co., registrations of new passenger cars.

1939 Models by Retail Price Class Groups

(Based on New Registrations of 1939 Models and Delivered Price at Factory of Five-Passenger, Four-Door Sedan)

	Average Hp.	Average Displacement	Average Compression Ratio — to 1	Average Number of Cylinders	Average R.P.M.
Chevrolet, Ford and Plymouth	83.46	211.36	6.35	6.64	3493
Others under \$1000	92.26	223.51	6.27	6.59	3519
\$1,001—\$1,500	112.05	268.04	6.41	7.42	3536
\$1,501—\$2,000	126.62	300.272	6.35	8.00	3566
\$2,001—\$3,000	134.99	334.61	6.39	8.00	3359
\$3,001 and over	170.61	451.66	6.39	12.67	3315
Total (Average of All Price Classes)	88.20	252.52	6.33	10.61	3505

Fourteen Years of Engine Trends

(Based on Number of Models Offered)

H.P. per Cu. In. of Displacement	Average Compression Ratio		Average B.M.E.P. At Maximum Hp. (Lb. per Sq. In.)		Bore, Stroke, Displacement			Piston Displ. (Cu. In.)
	1927	1928	1927	1928	Bore (Inches)	Stroke (Inches)		
1927	.256	1927	4.55	1927	74.5	1927	3.26	254.9
1928	.276	1928	4.86	1928	76.2	1928	3.27	4.58
1929	.306	1929	4.99	1929	80.6	1929	3.27	4.57
1930	.331	1930	5.15	1930	82.7	1930	3.26	4.51
1931	.344	1931	5.23	1931	84.3	1931	3.21	4.45
1932	.353	1932	5.29	1932	86.2	1932	3.26	4.41
1933	.376	1933	5.57	1933	88.5	1933	3.23	4.40
1934	.388	1934	5.72	1934	90.1	1934	3.24	4.40
1935	.398	1935	5.98	1935	90.2	1935	3.23	4.39
1936	.411	1936	6.14	1936	92.3	1936	3.39	4.32
1937	.417	1937	6.25	1937	93.1	1937	3.25	4.31
1938	.412	1938	6.32	1938	91.2	1938	3.25	4.27
1939	.415	1939	6.32	1939	92.7	1939	3.24	4.23
1940	.426	1940	6.41	1940	93.9	1940	3.25	4.17
Average Piston Speeds (Feet per Min.)	Displacement per Cylinder (Cu. In.)		Average Number of Cylinders		Average R.P.M.			Average Brake Horsepower
1927	2150	1927	39.5	1927	6.45	1927	2740	1927
1928	2210	1928	39.1	1928	6.59	1928	2860	1928
1929	2310	1929	38.9	1929	6.71	1929	3063	1929
1930	2380	1930	37.6	1930	7.04	1930	3170	1930
1931	2395	1931	36.8	1931	7.49	1931	3230	1931
1932	2390	1932	36.7	1932	7.78	1932	3250	1932
1933	2463	1933	36.0	1933	7.88	1933	3360	1933
1934	2508	1934	36.2	1934	7.97	1934	3420	1934
1935	2535	1935	36.1	1935	7.51	1935	3480	1935
1936	2498	1936	35.6	1936	7.50	1936	3487	1936
1937	2554	1937	35.8	1937	7.74	1937	3556	1937
1938	2545	1938	35.7	1938	7.60	1938	3576	1938
1939	2498	1939	35.1	1939	7.28	1939	3543	1939
1940	2490	1940	35.0	1940	7.25	1940	3580	1940

TRUCK SPECIFICATIONS

Key to References Definitions and Abbreviations

DEFINITIONS

Only Domestic Truck Models are listed in this Table.

OPTIONAL UNITS

For the express purpose of best fitting the truck to the individual job, most of the models listed can be provided with optional equipment not standard. All prices are F. O. B. factory. (Chassis list price does not include the price of the Cab unless otherwise noted.)

CHASSIS LIST PRICE

The chassis list price applies to the minimum standard wheelbase with standard tires and standard equipment. All prices are F. O. B. factory. (Chassis list price does not include the price of the Cab unless otherwise noted.)

GROSS VEHICLE WEIGHT FOR SERVICE

Gross vehicle weight specifications are based on normal operating conditions which permits the manufacturer either to increase or decrease the gross vehicle weight rating when either favorable or unfavorable operating conditions are involved. Gross vehicle weights given are based upon the Maximum Authorized Tire Size listed.

CHASSIS WEIGHT

The chassis weight listed includes the weight of the frame and running gear, plus chassis with coupler, with standard wheelbase, tires with standard equipment, with crankcase and cooling system, full, and 5 gallons of fuel in the tank. It does not include the weight of the Cab. This applies to C.O.E. as well as the conventional chassis types.

STANDARD TIRE SIZE

The standard tire size listed in this column is the Chassis List Price.

MAXIMUM AUTHORIZED TIRE SIZE

The tire size listed in this column is the maximum size recommended by the manufacturer of the chassis for the Gross Vehicle Weight. For Normal Operating Conditions, it is furnished at extra cost. If it differs from the standard size, Dual rear tires are understood except where otherwise noted.

MINIMUM STANDARD WHEELBASE

The minimum standard wheelbase is the so-called standard wheelbase on which the Chassis List Price is based.

MAXIMUM STANDARD WHEELBASE

The maximum standard wheelbase is the entire end of the standard range of wheelbases offered by the chassis manufacturer.

MAXIMUM BRAKE HP.

Maximum Brake Horsepower at Given R.P.M. is actual dynamometer reading without accessories.

GEAR RATIO RANGE

Gear Ratios in High Ratios within the range given are available at extra cost. Exceptions are noted.

TRACTORS

Unless given the designation (N)—all standard models may be assumed to be available as tractors. Exclusively Tractor models are designated (T).

KEY TO ABBREVIATIONS

MAKES—ALL

B—Bendix.	
BL—Brown-Lipe.	
Bu or Buda.	
Cat—Caterpillar.	
Ch—Clark.	
C or Chev—Chevrolet.	
Co—Covert—Continental.	
Col—Columbia.	
Cum—Cummins-Diesel.	
Fu—Fuller.	
Her—Hercules.	
Loc—Lockheed front, Own rear.	
L.W.—Located front, Wisconsin rear.	
Lys—Lycoming.	
Low—Low pressure.	
Or—Own.	
Op or Opt—Optional.	
Sal—Salsbury.	
Shu—Shuler.	
Sp—Spicer.	
T or Tim—Timken.	
TO—Timken front, Own rear.	
TWH—Timken-Wisconsin-Herrington.	
WG—Warner Gear.	
WH—Wisconsin-Herrington.	
Wes—Waukesha Hesemann.	
W or Wis—Wisconsin.	
Wag—Waggoner front, Own rear.	
W5—Westinghouse.	

FRAME—Type

L—“T” Beam.
C—Channel.
T—Channel tapered front and rear.
L—Channel reinforced with liner.
B—Channel reinforced with both liner and fishplate.
P—Channel reinforced with plate.
TL—Channel tapered front and rear.
D—Drop center.
X—X-braced.

GOVERNOR Standard

Y—Yes.
N—No.

REAR AXLE

Final Drive and Type

B—Bevel.
C—Chain.
D—Dead.
F—Full-floating.
H—Hypoid.
S—Single reduction.
W—Worm.
1/2—Semi-floating.
3/4—Three-quarter floating.

Gear Ratios

(*) Ratios other than standard at extra cost.
(**) Only one ratio.

Drive and Torque

A—Radius Rods and Torque Arm.
H—Horchkiss (springs).
R—Radius Rods.
T—Torque Arm.
U—Torque Tube.

WHEELS DRIVEN

2F—Rear unit of Rear Axle Group.
4R—Forward and rear units of Rear Axle Group.
4F—Front Axle and Forward unit of Rear Axle Group.
4FR—Front Axle and Rear unit of Rear Axle Group.
6—All wheels.

1940 Truck Specification

Chevrolet—(▲) Gross veh. weight, 8,000 lbs.,
Diamond T—Two-speed
at extra cost.

Includes all
ment availab

[†] Rear 32 x 6-8 ply rear, † with 32 x 6-10 ply rear tire.

1940 Truck Specifications

1940 Truck Specifications

200

Line Number	MAKE AND MODEL	WHEEL BASE	TIRE SIZES		ENGINE DETAILS				TRANSMISSION		MISSION		FRAME				
			D-dual rear		Standard and less authorized tire sizes				Model and Main Bearings		Model and Main Bearings		Model and Main Bearings				
			Front	Rear	Front	Rear	Front	Rear	Front	Rear	Front	Rear	Front	Rear			
1	Corbilt...	(10) F-12	2375	Opt	12500	4460	6,150	200D	8.25/20	5.4170	83.32000	4.21566	WIS F30R	14IH			
2	...	(10) F-12	23500	Opt	15000	5660	7,50	301D	8.25/20	5.7100	83.32000	4.21566	WIS F54B	14IH			
3	...	(10) F-12	23500	Opt	15000	6060	8,25	301D	8.25/20	5.7100	83.32000	4.21566	WIS F501H	14IH			
4	...	(10) F-12	23500	Opt	15000	6560	9,00	301D	8.25/20	5.7100	83.32000	4.21566	WIS F502L	14IH			
5	...	(10) F-23	5500	Opt	25000	6500	8,25	201D	9.00/22	6.4153	83.32000	4.21566	WIS F503	14IH			
6	...	(10) F-23	6500	Opt	25000	9000	9,00	201D	9.00/22	6.4153	83.32000	4.21566	WIS F504	14IH			
7	...	(10) F-23	6500	Opt	25000	10600	9,75	220D	9.75/22	6.4153	83.32000	4.21566	WIS F505	14IH			
8	F. W. D.	HH6*	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau BK	6.3434	83.32000	4.21566	WIS F506	14IH	
9	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau MKR	6.3434	83.32000	4.21566	WIS F507	14IH	
10	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau MZR	6.3434	83.32000	4.21566	WIS F508	14IH	
11	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SIRK	6.3434	83.32000	4.21566	WIS F509	14IH	
12	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F510	14IH	
13	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F511	14IH	
14	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F512	14IH	
15	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F513	14IH	
16	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F514	14IH	
17	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F515	14IH	
18	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F516	14IH	
19	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F517	14IH	
20	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F518	14IH	
21	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F519	14IH	
22	2600	132	156	13000	5460	6,150	201D	9.00/20	Wau SHK	6.3434	83.32000	4.21566	WIS F520	14IH	
23	Hug...	HH6*	4380	140	150	182	24000	8100	9,75	201S	11,25/20	Wau SHK	6.3434	83.32000	4.21566	WIS F521	14IH
24	4380	140	150	182	24000	8100	9,75	201S	11,25/20	Wau SHK	6.3434	83.32000	4.21566	WIS F522	14IH
25	4380	140	150	182	24000	8100	9,75	201S	11,25/20	Wau SHK	6.3434	83.32000	4.21566	WIS F523	14IH
26	4380	140	150	182	24000	8100	9,75	201S	11,25/20	Wau SHK	6.3434	83.32000	4.21566	WIS F524	14IH
27	4380	140	150	182	24000	8100	9,75	201S	11,25/20	Wau SHK	6.3434	83.32000	4.21566	WIS F525	14IH
28	4380	140	150	182	24000	8100	9,75	201S	11,25/20	Wau SHK	6.3434	83.32000	4.21566	WIS F526	14IH
29	Kenworth...	530	61725	134	134	24000	9180	9,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F527	14IH	
30	61725	134	134	24000	9180	9,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F528	14IH	
31	61725	134	134	24000	9180	9,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F529	14IH	
32	61725	134	134	24000	9180	9,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F530	14IH	
33	Marmon- Herr...	(c) LHD-4	1557	113	113	4500	2695	7,30/15	8,00/1558	9,00/1558	Ford V8	8-3	83.33	221.6	1.155	FO44H	14IH
34	...	(c) LHD-4	1557	113	113	6800	333	7.95	7.75/158	8,00/1558	Ford V8	8-3	83.33	221.6	1.155	FO44H	14IH
35	...	(c) LHD-4	1557	113	113	6800	333	7.95	7.75/158	8,00/1558	Ford V8	8-3	83.33	221.6	1.155	FO44H	14IH
36	...	(c) LHD-4	1557	113	113	6800	333	7.95	7.75/158	8,00/1558	Ford V8	8-3	83.33	221.6	1.155	FO44H	14IH
37	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F531	14IH	
38	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F532	14IH	
39	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F533	14IH	
40	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F534	14IH	
41	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F535	14IH	
42	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F536	14IH	
43	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F537	14IH	
44	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F538	14IH	
45	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F539	14IH	
46	...	(c) (o.e.) H6-4	1649	158	158	13200	4036	6,00/200	10,50/24D	10,50/24	Bud K425	6.4434	83.32000	4.21566	WIS F540	14IH	
47	...	181D100-4	3375	143	143	13200	5035	7.00	7.50/24D	7.50/24D	Bud K425	6.4434	83.32000	4.21566	WIS F541	14IH	
48	...	181D300-4	3915	143	143	13200	5035	7.00	7.50/24D	7.50/24D	Bud K425	6.4434	83.32000	4.21566	WIS F542	14IH	
49	...	181D300-4	3915	143	143	13200	5035	7.00	7.50/24D	7.50/24D	Bud K425	6.4434	83.32000	4.21566	WIS F543	14IH	
50	...	181D400-4	5275	148	148	13200	3914	6,00/200	9,00/240	9,00/240	Bud K425	6.4434	83.32000	4.21566	WIS F544	14IH	
51	...	181D500-4	5860	148	148	13200	3914	6,00/200	9,00/240	9,00/240	Bud K425	6.4434	83.32000	4.21566	WIS F545	14IH	
52	...	181D500-4	5860	148	148	13200	3914	6,00/200	9,00/240	9,00/240	Bud K425	6.4434	83.32000	4.21566	WIS F546	14IH	
53	...	181D500-4	7350	158	158	13200	3914	6,00/200	9,00/240	9,00/240	Bud K425	6.4434	83.32000	4.21566	WIS F547	14IH	
54	...	181D600-4	7350	158	158	13200	3914	6,00/200	9,00/240	9,00/240	Bud K425	6.4434	83.32000	4.21566	WIS F548	14IH	
55	...	181D800-4	8895	161	161	13200	4036	6,00/200	10,50/24D	10,50/24D	Bud K425	6.4434	83.32000	4.21566	WIS F549	14IH	
56	...	181D800-4	8895	161	161	13200	4036	6,00/200	10,50/24D	10,50/24D	Bud K425	6.4434	83.32000	4.21566	WIS F550	14IH	
57	...	181D800-4	8895	161	161	13200	4036	6,00/200	10,50/24D	10,50/24D	Bud K425	6.4434	83.32000	4.21566	WIS F551	14IH	
58	...	181D800-4	8895	161	161	13200	4036	6,00/200	10,50/24D	10,50/24D	Bud K425	6.4434	83.32000	4.21566	WIS F552	14IH	
59	...	181D100-4	16105	188	188	13200	4036	6,00/200	10,50/24D	10,50/24D	Bud K425	6.4434	83.32000	4.21566			

Six-Wheelers

Automotive Industries

March 1, 1940

Six-Wheelers											
Wheels Driven		Wheels Driven									
89	(2) Autocar (1)	90	U.S. 40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 358	6-4x4	3058
91	U.S. C-40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 4087	6-4x4	3087		
92	U.S. C-80622 2F	164	32000	9165	8.25/20D	0.75/20	Open 447	6-4x4	3474		
93	U.S. C-40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 501	6-4x4	3501		
94	(D) DC-40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 501	6-4x4	3501		
95	g.o.e. 40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 4088	6-4x4	3485		
96	U.S. U-40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 447	6-4x4	3474		
97	U.S. U-40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 447	6-4x4	3474		
98	U.S. U-40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 501	6-4x4	3501		
99	U.S. U-40622 2F	164	32000	9165	8.25/20D	0.75/20	Open 4088	6-4x4	3485		
100	U.S. C-80622 4R	164	32000	9165	8.25/20D	0.75/20	Open 501	6-4x4	3501		
101	U.S. C-40622 4R	164	32000	9165	8.25/20D	0.75/20	Open 501	6-4x4	3501		
102	(D) DC-40622 4R	164	32000	9165	8.25/20D	0.75/20	Open 4088	6-4x4	3485		
103	(D) DC-40622 4R	164	32000	9165	8.25/20D	0.75/20	Open 447	6-4x4	3474		
104	U.S. U-70624 4R	164	32000	9165	8.25/20D	0.75/20	Open 4088	6-4x4	3485		
105	U.S. U-70624 4R	164	32000	9165	8.25/20D	0.75/20	Open 447	6-4x4	3474		
106	U.S. U-70624 4R	164	32000	9165	8.25/20D	0.75/20	Open 4088	6-4x4	3485		
107	Cor-(10) 455BS2 2F	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
108	bitl. (10) 455BS2 2F	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
109	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
110	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
111	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
112	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
113	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
114	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
115	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
116	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
117	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
118	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
119	(10) 455BS2 4R	164	4800	580	Opt	OP	Com 603	6-4x4	3823		
120	Dart... 1000 4R	4050	161	268	24300	7540	32x6D	9.00/20	Her JXD	6-4x4	
121	...1500 4R	56200	161	268	24300	101740	34x7D	9.00/20	Her WAC3	6-4x4	
122	...252 4R	56200	161	268	24300	101740	34x7D	9.00/20	Her WAC3	6-4x4	
123	...352 4R	9850	161	268	24300	15594	9.75/20D	9.00/20	Her WAC3	6-4x4	
124	Dba.T. 614-2524H4R	3835	177	223	32000	9150	9.00/20D	0.90/20	Her CB1ND	6-4x4	
125	80W. 614-2524H4R	3835	156	223	32000	9150	9.00/20D	0.90/20	Her CBWIC3	6-4x4	
126	900W. 614-2524H4R	3835	156	223	32000	9150	9.00/20D	0.90/20	Her RXLX3	6-4x4	
127	900W. 614-2524H4R	3835	156	223	32000	9150	9.00/20D	0.90/20	Her RXLX3	6-4x4	
128	Federal... 2F	1950	162	215	21000	6450	7.00/20D	7.50/20	Her JXB/E	6-3x4	
129	...202 2F	1950	162	215	21000	7000	12.00/24D	12.00/24	Her JXB/E	6-3x4	
130	...254 2F	1950	162	215	25000	7450	5.50/20D	8.25/20	Her JXB/E	6-3x4	
131	...254 2F	1950	162	215	25000	8450	5.50/20D	9.00/20	Her JXD/P	6-4x4	
132	...294 2F	1950	162	215	25000	9400	8.25/20D	9.00/20	Her JXD/P	6-4x4	
133	...402 2F	2475	162	215	32000	11500	9.00/20D	9.00/20	Wau 60RKF	6-4x4	
134	...502 2F	5690	162	215	32000	11500	9.00/20D	9.00/20	Wau 60RKF	6-4x4	
135	...504 4R	6075	162	215	32000	12000	9.00/20D	9.00/20	Wau 60RKF	6-4x4	
136	...504 4R	6075	162	215	32000	12000	9.00/20D	9.00/20	Wau 60RKF	6-4x4	
137	...504 4R	6075	162	215	32000	12000	9.00/20D	9.00/20	Wau 60RKF	6-4x4	
138	(e.o.) 802 2F	2405	127	180	21000	6500	7.00/20D	7.00/20	Her JXD/P	6-4x4	
139	(e.o.) 852 2F	2405	127	180	21000	6500	7.00/20D	7.00/20	Her JXD/P	6-4x4	
140	(e.o.) 892 2F	3355	127	180	21000	8500	7.00/20D	7.00/20	Cat D880	6-4x4	
141	F.W.D.M.6X6	11575	184	224	4800	17200	10.50/20D	12.75/20	Wau SRKR	6-4x5/4	
142M.6X6	11575	184	224	53400	18200	13.50/20S	14.25/20	Wau RBR	6-5x5/4	
143	Hug... 98MB 4R	1800	189	189	80000	15100	12.00/24D	12.00/24	Wau GGL	6-5x5/4	
144	(D) 98MB 4R	1800	189	189	80000	15100	12.00/24D	12.00/24	Wau GGL	6-5x5/4	
145	98MB 4R	1800	189	189	80000	15100	12.00/24D	12.00/24	Wau GGL	6-5x5/4	
146	98MB 4R	1800	189	189	80000	15100	12.00/24D	12.00/24	Wau GGL	6-5x5/4	
147	(D) 98 MB 4R	1800	189	189	80000	15100	12.00/24D	12.00/24	Wau GGL	6-5x5/4	
148	(D) 998 4R	11300	175	175	75000	18400	12.75/20	12.75/20	Cat D880	6-4.5x4	
149	(D) 998 4R	11300	175	175	75000	18400	12.75/20	12.75/20	Cat D880	6-4.5x4	
150	(D) 998 4R	11300	175	175	75000	18400	12.75/20	12.75/20	Cat D880	6-4.5x4	
151	(D) 998 4R	11300	175	175	75000	18400	12.75/20	12.75/20	Cat D880	6-4.5x4	
152	International... 11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
153	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
154	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
155	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
156	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
157	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
158	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
159	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
160	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
161	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
162	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
163	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
164	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
165	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
166	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
167	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
168	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
169	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
170	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
171	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
172	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
173	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
174	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
175	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
176	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
177	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
178	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
179	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
180	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
181	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
182	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
183	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
184	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
185	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
186	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
187	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
188	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
189	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
190	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
191	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
192	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
193	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
194	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-3.4x4	
195	...11575	1475	148	191	18000	5280	6.15/20D	7.50/20	Own HD232	6-	

(*) Price includes Chassis & Cab

1940 Truck Specifications

Line Number	MAKE and MODEL	WHEEL-BASE	Chassis List Price	Chassis Weight	Normal Service Weight	Cabs & Seats Weight	TIRE SIZES	ENGINE DETAILS			TRANS-MISSION	REAR AXLE	FRONT AXLE	BRAKES	FRAME		
								Standard	Standard	Less than 1/2 of the weight of the chassis							
1	Ken.- (D) 509 4R	704-6	254	35000	10320	9,000	20D	9.75/22	Cum HB4	4-4-3 x 6	416/17	335/100	1800	7-1/2 x 11 1/2	N Fuji 5A620		
2	Worl.- (D) 510 2R	704-6	247	35000	12650	9,000	20D	8.75/22	Cum HB6	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
3	Worl.- (D) 512 2R	704-6	205	35000	10320	9,000	20D	8.75/22	Cum HB6	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
4	Worl.- (D) 522 2R	704-6	214	35000	12650	9,000	20D	10.50/22	Cum HB6	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
5	Worl.- (D) 523 4R	704-6	214	35000	12150	9,000	20D	10.50/22	Cum HB6	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
6	Worl.- (D) 524 4R	704-6	214	35000	12150	9,000	20D	10.50/24	Cum HB6	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
7	Worl.- (D) 525 4R	704-6	214	35000	12150	9,000	20D	10.50/24	Cum HB6	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
8	Worl.- (D) 527 4R	704-6	214	35000	12150	9,000	20D	10.50/24	Cum HB6	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
9	Worl.- (D) 528 4R	704-6	214	35000	12150	9,000	20D	10.50/24	Bud LO525	6-4-3 x 6	622/17	1800	7-1/2 x 11 1/2	N Fuji 5A620			
10	Worl.- (D) 546 4R	704-6	234	35000	10530	9,000	20D	9.75/22	Cum AA6	6-4-3 x 6	404/17	1800	7-3/4 x 10 1/2	N Fuji 5A430			
11	Worl.- (D) 556 4R	704-6	234	35000	10750	9,000	20D	9.75/22	Cum AA6	6-4-3 x 6	404/17	1800	7-3/4 x 10 1/2	N Fuji 5A430			
12	Marmon-Herr.	590-167	167	OD	14500	8015	7,000	20D	7.00/22	Her JXC	6-3-4 x 4	322/5	196	84-2800	R-7-3/6 WH		
13	Marmon-Herr.	590-167	167	OD	24500	9025	7,500	20D	8.25/24	Her JAX	6-4-3 x 4	335/5	224	95-2800	R-7-3/6 WH		
14	Marmon-Herr.	590-167	158	OD	24500	9025	7,500	20D	9.00/24	Her WXL3	6-4-3 x 4	335/5	224	95-2800	R-7-3/6 WH		
15	Marmon-Herr.	590-167	158	OD	24500	10320	9,000	20D	9.00/24	Her WXL3	6-4-3 x 4	335/5	224	95-2800	R-7-3/6 WH		
16	Marmon-Herr.	590-167	158	OD	24500	10320	9,000	20D	9.00/24	Her WXL3	6-4-3 x 4	335/5	224	95-2800	R-7-3/6 WH		
17	Marmon-Herr.	590-167	158	OD	19200	17300	9,750	20D	10.50/22	Her RXD	6-4-3 x 6	519/4	194	95-2800	R-7-3/6 WH		
18	Marmon-Herr.	590-167	158	OD	19200	17300	9,750	20D	10.50/22	Her RXD	6-4-3 x 6	519/4	194	95-2800	R-7-3/6 WH		
19	Marmon-Herr.	590-167	158	OD	19200	17300	9,750	20D	10.50/22	Her RXD	6-4-3 x 6	519/4	194	95-2800	R-7-3/6 WH		
20	(D) LHDSD100-6	6000	198	OD	52000	9200	10,000	20D	10.50/24	Her DJNB	6-3-4 x 6	201/14	178	100-2400	R-7-3/10 WH		
21	(D) LHDSD100-6	6000	198	OD	15000	8465	7,000	20D	7.00/20	Her DRXN	6-3-4 x 4	201/14	178	100-2400	R-7-3/10 WH		
22	(D) DHDSD100-6	6000	197	OD	25500	12800	9,000	20D	9.00/20	Her DRXN	6-3-4 x 4	201/14	178	100-2400	R-7-3/10 WH		
23	(D) DHDSD100-6	6000	197	OD	42000	15660	9,750	20D	9.75/22	Her DRXB	6-4-3 x 4	474/14	144	130-2200	R-7-3/13 WH		
24	(D) DHDSD100-6	6000	197	OD	42000	18250	9,750	20D	9.75/22	Her DHXB	6-5-3 x 6	707/14	150	170-1800	R-7-3/13 WH		
25	(D) DHDSD100-6	6000	198	OD	42000	18250	9,750	20D	10.50/24	Her DVXB	6-3-4 x 4	83/14	150	170-1800	R-7-3/13 WH		
26	(D) DHDSD100-6	6000	198	OD	24000	17300	9,750	20D	10.50/24	Her DVXB	6-3-4 x 4	83/14	150	170-1800	R-7-3/13 WH		
27	(D) DHDSD100-6	6000	198	OD	24000	17300	9,750	20D	10.50/24	Her DVXB	6-3-4 x 4	83/14	150	170-1800	R-7-3/13 WH		
28	(D) (c-e) HH-6	234	237	156	168	2180	24000	5815	6,000	20D	8.25/20	Ford V8	8-3-3 x 3	234/16	151	155-165	N Ford
29	(D) (c-e) HH-6	234	237	156	168	2180	24000	5815	6,000	20D	8.25/20	Ford V8	8-3-3 x 3	234/16	151	155-165	N Ford
30	(D) (c-e) HH-6	234	237	156	168	2180	24000	5815	6,000	20D	8.25/20	Ford V8	8-3-3 x 3	234/16	151	155-165	N Ford
31	(D) (c-e) HH-6	234	237	156	168	2180	24000	5815	6,000	20D	8.25/20	Ford V8	8-3-3 x 3	234/16	151	155-165	N Ford
32	(D) (c-e) HH-6	234	237	156	168	2180	24000	5815	6,000	20D	8.25/20	Ford V8	8-3-3 x 3	234/16	151	155-165	N Ford
33	(D) (c-e) HH-6	234	237	156	168	2180	24000	5815	6,000	20D	8.25/20	Ford V8	8-3-3 x 3	234/16	151	155-165	N Ford
34	(16) HBT128 2C	4840	181	227	32000	10625	9,000	20D	9.75/20	Wau 6MZR	6-4-4 x 4	404/5	5,3	98-2400	R-7-2 1/2 x 12 1/2		
35	(15-16) JWBS128 4R	5325	181	227	32000	10625	9,000	20D	9.75/20	Wau 6MZR	6-4-4 x 4	404/5	5,3	98-2400	R-7-2 1/2 x 12 1/2		
36	(15-16) JWBS128 4R	5165	181	227	32000	10625	9,000	20D	9.75/20	Wau 6MZR	6-4-4 x 4	404/5	5,3	98-2400	R-7-2 1/2 x 12 1/2		
37	(15-16) JWBS255SR	9090	241	4000	12775	9,000	20D	10.50/20	Wau6SRK	6-4-3 x 5	825/18	150	120-2200	R-7-3/13 WH			
38	(15-16) JWBS255SR	9090	241	4000	13775	9,000	20D	10.50/20	Wau6SRK	6-4-3 x 5	825/18	150	120-2200	R-7-3/13 WH			
39	(15-16) JWBS255SR	9090	241	4000	13775	9,000	20D	10.50/20	Wau6SRK	6-4-3 x 5	825/18	150	120-2200	R-7-3/13 WH			
40	(16) HCSC30 4R	16200	180	180	80000	5850	7,000	20D	10.50/24	Wau6SRK	6-4-3 x 5	825/18	150	120-2200	R-7-3/13 WH		
41	(16) HCSC30 4R	16200	180	180	80000	5850	7,000	20D	10.50/24	Wau6SRK	6-4-3 x 5	825/18	150	120-2200	R-7-3/13 WH		
42	(c) TRC-2X400 2F	1653	157	216	22000	6100	7,500	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
43	(c) TRC-2X400 2F	1653	157	216	22000	6100	7,500	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
44	(c) TRC-2X400 2F	1893	152	216	22000	6050	7,500	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
45	(c) TRC-2X400 2F	2109	154	216	22000	6250	7,50	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
46	(c) TRC-2X400 2F	2119	141	212	22000	6100	7,50	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
47	(c) TRC-2X400 4R	2481	141	212	22000	7100	7,50	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
48	(c) TRC-2X400 4R	2338	116	186	30000	6890	7,50	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
49	(c) TRC-2X400 4R	2695	116	186	30000	6890	7,50	20D	8.45/20	Chev	6-3-3 x 3	216/6	120	78-2200	R-7-2 1/2 x 12 1/2		
50	(c) TRC-2X400 4R	1623	155	232	22000	6150	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
51	(c) TRC-2X400 2F	1880	156	232	22000	6100	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
52	(c) TRC-2X400 2F	1813	123	232	22000	6050	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
53	(c) TRC-2X400 2F	1813	123	232	22000	6050	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
54	(c) TRC-4X36F 4R	1530	143	210	22000	6700	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
55	(c) TRC-4X36F 4R	1530	143	210	22000	6700	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
56	(c) TRC-4X36F 4R	1530	143	210	22000	6700	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
57	(c) TRC-4X36F 4R	1530	143	210	22000	6700	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
58	(c) TRC-4X36F 4R	1530	143	210	22000	6700	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		
59	(c) TRC-4X36F 4R	1530	143	210	22000	6700	7,50	20D	8.45/20	Ford	8-3-3 x 3	239/6	120	95-3600	R-7-2 1/2 x 12 1/2		

American Two-Cycle Outboard Motors

MAKE AND MODEL	Power Head	No. of Cylinders	Bore and Stroke (In.)	Piston Displacement (Cu. In.)	N.O.A. Certified Brake H.P.	R.P.M.	Weight (Lb.)	Piston Rings No. and Size	Propeller Diameter and Pitch (In.)	Starting Device	Fuel Tank Capacity (Gal.)	Gear Ratio	Ignition System Type	Carburetor Make and Size	Spark Plug Make and Model	Type of Exhaust	Cooling System
Bendix (1).....	SMD	RV-2 Port	1	2 1/8 x 1 1/2	5.00	2.25	3300	27.0	3 1/2 x 2 1/2	Cord	0.57	12-19	Magneto	Str-1/2	Ch-J10	Underwater	Air
Bendix.....	TMD	RV-2 Port	2	2 1/8 x 1 1/2	10.00	4.50	4000	41.0	3 1/2 x 2 1/2	Cord	0.95	12-19	Magneto	Str-3/4	Ch-J10	Underwater	Air
Eito (2).....	Cub	Ch-V-2 Port	1	1 1/8 x 1	1.00	.50	4000	8.5	2 1/2 x 4 1/4	Cord	0.12	12-25	Magneto	Own	Ch-H10	Underwater	Pump
Eito.....	Pal	Ch-V-2 Port	1	1 1/8 x 1 1/2	2.00	1.10	3750	14.0	2 1/2 x 6x5	Cord	0.20	13-20	Magneto	Own	Ch-H10	Underwater	Pump
Eito.....	Ace	Ch-V-2 Port	1	1 1/8 x 1 1/2	3.75	1.80	3500	21.0	2 1/2 x 7x6	Cord	0.43	13-20	Magneto	Own	Ch-C7	Underwater	Pump
Eito.....	Handitwin	Ch-V-2 Port	2	1 1/8 x 1 1/2	6.60	3.00	3500	31.5	2 1/2 x 7x6	Cord	0.43	13-20	Magneto	Own	Ch-C7	Underwater	Pump
Eito.....	Lightwin	Ch-V-2 Port	2	2 1/8 x 1 1/2	10.00	5.00	3500	40.0	2 1/2 x 7 1/2 x 8	Cord	0.50	13-20	Magneto	Own	Ch-M6	Underwater	Pump
Eito.....	Weedless Lightwin	Ch-V-2 Port	2	2 1/8 x 1 1/2	10.00	5.00	3500	48.0	2 1/2 x 7 1/2 x 8	Cord	0.50	13-20	Magneto	Own	Ch-M6	Underwater	Pump
Eito.....	Fleetwin	RV-2 Port	2	2 1/4 x 1 1/2	15.00	8.50	4000	66.0	2 1/2 x 9x8 1/4	Cord	1.12	13-19	Magneto	Own	Ch-M6	Underwater	Pump
Evirnude.....	Mate	Ch-V-2 Port	1	1 1/8 x 1	1.00	.50	4000	10.0	2 1/2 x 5 1/2 x 4 1/4	Cord	0.12	12-25	Magneto	Own	Ch-H10	Underwater	Pump
Evirnude.....	Ranger	Ch-V-2 Port	1	1 1/8 x 1 1/2	2.00	1.10	3750	16.0	2 1/2 x 6x5	Cord	0.50	13-20	Magneto	Own	Ch-H10	Underwater	Pump
Evirnude.....	Sportsman	Ch-V-2 Port	1	1 1/8 x 1 1/2	3.75	2.00	3500	23.5	2 1/2 x 7x6	Cord	0.50	13-20	Magneto	Own	Ch-H10	Underwater	Pump
Evirnude.....	Sportwin	Ch-V-2 Port	2	1 1/8 x 1 1/2	6.60	3.30	3500	33.5	2 1/2 x 7 1/2 x 6	Cord	0.75	13-20	Magneto	Own	Ch-H10	Underwater	Pump
Evirnude.....	Midget Racer	RV-2 Port	2	1 1/8 x 1 1/2	7.50	6.00	5000	37.5	2 1/2 x 6 1/2 x 8 1/2	Cord	1.25	13-20	Magneto	Own	Ch-R1	Muffler	Pump
Evirnude.....	Speeditwin	EV-2 Port	2	2 1/4 x 2 1/2	30.00	22.50	4000	110.0	2 1/2 x 10 1/2	Cord	2.50	15-21	Magneto	Own	Ch-M5	Underwater	Pump
Evirnude.....	Racing Speeditwin	RV-2 Port	2	2 1/4 x 2 1/2	30.00	22.50	4000	97.0	2 1/2 x 9x14	Cord	2.50	13-19	Battery	Own	Ch-R11S	Open Stacks	Pump
Evirnude.....	Zephyr	RV-2 Port	4	1 1/8 x 1 1/2	9.70	5.40	4000	43.0	2 1/2 x 7 1/2 x 7 1/2	Cord	0.75	13-20	Magneto	Own	Ch-J10	Underwater	Pump
Evirnude.....	Lightfour	RV-2 Port	4	1 1/8 x 1 1/2	15.00	9.70	4000	63.0	3 1/2 x 8 1/2 x 9	Cord	1.25	11-17	Magneto	Own	Ch-M5	Underwater	Pump
Evirnude.....	Sportfour	RV-2 Port	4	2x2	25.00	17.60	4000	98.0	3 1/2 x 9x14	Cord	2.75	13-19	Magneto	Own	Ch-M5	Underwater	Pump
Evirnude.....	Speedifour	RV-2 Port	4	2 1/8 x 2 1/2	50.00	33.40	4000	140.0	2 1/2 x 10 1/2 x 13	Cord	4.00	15-21	Magneto	Own	Ch-R11S	Open Stacks	Pump
Evirnude.....	Racing-460	RV-2 Port	4	2 1/4 x 2 1/2	60.00	4000	140.0	2 1/2 x 18	Cord	4.00	13-19	Battery	Own	Vac	Pre.Vac	Pump	
Johnson.....	MS-15	NV-3 Port	1	1 1/8 x 1 1/2	2.42	1.50	4000	19.0	2 1/2 x 6 1/2 x 4 1/4	Cord	0.23	13-20	Magneto	Own-1/2	Ch-J8	Underwater	Pump
Johnson.....	MD-15	NV-3 Port	1	1 1/8 x 1 1/2	2.42	1.50	4000	24.0	2 1/2 x 6 1/2 x 4 1/4	RP	0.29	13-20	Magneto	John-1/2	Ch-J8	Underwater	Pump
Johnson.....	HS-15	CRV-3 Port	2	1 1/8 x 1 1/2	4.08	2.50	4000	21.5	2 1/2 x 6 1/2 x 5 1/4	Cord	0.41	13-20	Magneto	John-1/2	Ch-J8	Underwater	Pump
Johnson.....	HA-15	CRV-3 Port	2	1 1/8 x 1 1/2	4.08	2.50	4000	26.0	2 1/2 x 6 1/2 x 5 1/4	RP	0.41	13-20	Magneto	John-1/2	Ch-J8	Underwater	Pump
Johnson.....	HD-15	CRV-3 Port	2	1 1/8 x 1 1/2	4.08	2.50	4000	28.0	2 1/2 x 6 1/2 x 5 1/4	RP	0.47	13-20	Magneto	John-1/2	Ch-J8	Underwater	Pump
Johnson.....	LT-10	CRV-3 Port	2	1 1/8 x 1 1/2	8.84	5.00	4000	33.5	3 1/2 x 8 1/2 x 7 1/2	Cord	0.66	14-25	Magneto	John-1/2	Ch-J8	Underwater	Pump
Johnson.....	AT-10	CRV-3 Port	2	1 1/8 x 1 1/2	8.84	5.00	4000	38.0	3 1/2 x 8 1/2 x 7 1/2	RP	0.66	14-25	Magneto	John-1/2	Ch-J8	Underwater	Pump
Johnson.....	DT-10	CRV-3 Port	2	1 1/8 x 1 1/2	8.84	5.00	4000	42.5	3 1/2 x 8 1/2 x 7 1/2	RP	0.81	14-25	Magneto	John-1/2	Ch-R7	Underwater	Pump
Johnson.....	KA-10	RV-2 Port	2	2 1/8 x 1 1/2	13.96	9.80	4000	64.0	3 1/2 x 9x9	Cord	1.62	14-24	Magneto	John-1/2	Ch-5M	Underwater	Pre.Vac
Johnson.....	SD-10	RV-2 Port	2	2 1/8 x 2 1/2	22.10	16.00	4000	88.0	3 1/2 x 10x10	RP	2.50	14-24	Magneto	John-1/2	Ch-R7	Underwater	Pre.Vac
Johnson.....	PO-15	RV-2 Port	2	2 1/4 x 2 1/2	29.92	22.00	4000	109.0	3 1/2 x 12x12	Cord	2.50	12-21	Magneto	Vac-1 1/2	Ch-R7	Underwater	Pre.Vac
Mercury (4) "3" DeL. Single	-2 Port	1	2x1 1/4	5.50	3.00	4250	30.0	2 1/2 x 7 1/2 x 6x5	Cord	0.63	Magneto	Til	Ch-J4	Underwater	Pump	
Mercury "6" Alternate Twin	-2 Port	2	2x1 1/4	11.00	6.00	4250	38.0	2 1/2 x 7 1/2 x 6x5	Cord	1.00	Magneto	Til	Ch-J4	Underwater	Pump	
Neptune (3).....	101	NV-2 Port	1	1 1/8 x 1 1/2	2.65	1.20	3000	17.0	2 1/2 x 6x5	Cord	0.25	13-20	Magneto	Til-1/2	Ch-J8	Underwater	Pump
Neptune.....	102	NV-3 Port	1	1 1/8 x 1 1/2	5.01	2.00	2800	30.0	3 1/2 x 7 1/2 x 5 1/4	Cord	0.50	14-21	Magneto	Til-1/2	Ch-6M	Underwater	Pump
Neptune.....	104	NV-3 Port	2	1 1/8 x 1 1/2	10.02	4.00	3000	45.0	3 1/2 x 8x7	Cord	1.00	14-21	Magneto	Til-1/2	Ch-J10	Underwater	Pump
Neptune.....	106	NV-3 Port	2	2 1/8 x 1 1/2	10.02	6.00	4000	50.0	3 1/2 x 8x7	Cord	1.00	12-21	Magneto	Til-1/2	Ch-J10	Underwater	Pump
Neptune.....	1010	NV-3 Port	2	2 1/8 x 1 1/2	15.90	9.50	4000	63.0	3 1/2 x 9x9	Cord	2.00	12-21	Magneto	Til-1/2	Ch-6M	Underwater	Pump
Neptune.....	1016	NV-3 Port	2	2 1/2 x 2	19.63	16.00	4000	95.0	3 1/2 x 10x10	Cord	2.00	12-21	Magneto	Til-1/2	Ch-6M	Underwater	Pump

ABBREVIATIONS

*—Simplex starter optional at additional cost
†—Electric starter optional at additional cost
(1)—Bendix Aviation Corp., Marine Div.

(2)—Evinrude Motors
(3)—Muncie Gear Works, Inc.
(4)—Kiekhaefer Corp.
Ch—Champion Spark Plug
Ch.V—Check Valve

CRV—Combination Rotary and Valveless
John—Johnson Carburetor
NV—Valveless
Pre.Vac—Pressure Vacuum
RP—Ready Pull

RV—Rotary Valve
Str—Stromberg Carburetor
Til—Tillotson Carburetor
Vac—Vacturi Carburetor

Manufacture and Sale of Tractors, Combines and Grain Threshers, 1939 and 1938

KIND	MANUFACTURED				SOLD BY MANUFACTURERS				
	Number	Value	Number	Value	Number	Value	Number	Value	
Tractors, all types, total	1939	\$157,744,207	213,209	\$157,440,563	176,614	\$121,463,990	36,595	\$35,976,573	
Wheel type, all kinds, total	1938	199,223	151,998,349	204,907	159,614,175	163,924	119,347,188	40,983	40,266,987
Except "all purpose," total	1939	185,544	111,123,992	182,820	110,566,348	154,965	91,142,679	27,855	19,423,669
Belt horsepower: Under 25, total	1938	172,437	116,881,739	175,473	118,060,604	143,703	94,038,011	31,770	24,022,593
25-29, total	1939	26,976	20,422,572	30,593	23,629,800	10,803	8,379,845	19,790	15,289,955
30 and over, total	1939	41,377	33,591,336	40,857	33,143,342	14,751	12,245,464	26,106	29,897,878
"All purpose," total	1939	11,251	6,688,133	10,754	6,413,531	3,425	1,852,034	7,329	4,551,497
Belt horsepower: Under 30, total	1938	10,591	6,979,224	10,342	6,608,238	4,239	2,832,128	6,103	3,776,110
30 and over, total	1939	10,864	10,132,038	12,913	12,055,131	4,732	4,507,794	8,181	7,547,337
Tracklaying type, all sizes, total	1938	23,836	21,336,627	23,271	20,920,537	7,975	7,343,420	15,296	13,577,117
Belt horsepower: Under 50	1939	16,837	33,771,693	19,891	40,221,557	11,251	24,082,926	8,550	16,138,631
50 and over	1939	13,284	19,361,957	14,158	20,339,893	8,175	11,620,524	5,983	8,719,369
Garden tractors	1939	12,593	17,581,554	14,636	20,506,479	7,865	10,962,353	6,771	9,544,126
Combines (harvester-threshers), total	1939	4,424	16,190,139	5,165	19,715,078	3,386	13,120,573	1,779	6,594,505
Grain threshers, including rice and alfalfa, total	1938	9,612	1,189,026	9,499	1,189,920	8,852	1,092,312	647	97,608
1939	9,949	1,344,917	9,633	1,332,014	8,970	1,226,251	663	105,763	
1938	48,046	35,627,594	45,238	33,433,398	41,560	29,708,214	3,678	3,725,184	
1939	2,784	2,523,912	3,417	3,129,076	3,623	3,403,905	794	725,171	
1938	8,649	7,438,006	7,096	6,217,904	6,255	5,517,901	831	700,003	

American

Line Number	Bus Make and Model	GENERAL										ENGINE													
		Passenger Rating		Type (City Service, Parlor, etc.)	Standard Wheelbase (In.)	Overall Length (In.)	Tread Front and Rear (In.)		Complete Vehicle Weight (Lb.)	Standard Tire Size (In.)		Maximum Permissible Load on Tires (Lb.)		Make and Model	Location	Number of Cylinders Bore and Stroke (In.)	Rated Horsepower (A.M.A.)	Maximum Brake H.P. at Specified R.P.M.		Maximum Net Torque (Lb. Ft.) at R.P.M.	Valve Arrangement	Oiling System	Oil Pressure to—	Fuel System	
		Front	Rear				Front	Rear		Front	Rear	Front	Rear					Front	Rear						
1	A. C. F.	25-P	25	Par	195	316 ¹ / ₂ 82 ¹ / ₂ -72	12050	9.00/18	9.00/18D	6000	12000	HS	95	UFA 6-4x5	377	38.4	106-2600	268-1000	I	abcd(1)	Zen. Up	1 ¹ / ₂ 60			
2	A. C. F.	26-S	28	CS	156 ¹ / ₂ 289 ¹ / ₂ 82 ¹ / ₂ -72	10420	9.00/18	7.50/20D	6000	8800	HS	95	UFA 6-4x5	377	38.4	106-2600	268-1000	I	abcd(1)	Zen. Up	1 ¹ / ₂ 60				
3	A. C. F.	H-15-P	28	Par	188	328 ¹ / ₂ 81 ¹ / ₂ -70 ¹ / ₂	15600	9.75/20	9.75/20D	7000	14000	HS	135	UFA 6-4 ¹ / ₂ x5	477	48.6	140-2800	324-1000	I	abcd(1)	Zen. Up	1 ¹ / ₂ 85			
4	A. C. F.	26-U	26	CS	195	295 ¹ / ₂ 82 ¹ / ₂ -72	10750	9.00/10	9.00/18D	6000	12000	HS	95	UFA 6-4x5	377	38.4	106-2600	268-1000	I	abcd(1)	Zen. Up	1 ¹ / ₂ 60			
5	A. C. F.	31-S	31	CS	172 ¹ / _{2 328¹/₂ 81¹/₂ -69¹/₂}	12500	9.00/10	9.00/18D	6000	12000	HS	130	UFA 6-4 ¹ / ₂ x5	425	43.3	124-2800	290-1000	I	abcd(1)	Zen. Up	1 ¹ / ₂ 72				
6	A. C. F.	H-15-S	32	CS	188	324 81 ¹ / ₂ -70 ¹ / ₂	13100	9.00/20	9.00/20D	6500	13000	HS	135	UFA 6-4 ¹ / ₂ x5	477	48.6	140-2800	324-1000	I	abcd(1)	Zen. Up	1 ¹ / ₂ 72			
7	A. C. F.	36-S	36	CS	188	366 81 ¹ / ₂ -70 ¹ / ₂	13700	9.75/20	9.75/20D	7800	15600	HS	135	UFA 6-4 ¹ / ₂ x5	477	48.6	140-2800	324-1000	I	abcd(1)	Zen. Up	1 ¹ / ₂ 72			
8	A. C. F.	H-9-P	36	Par	245 ¹ / _{2 295¹/₂ 80¹/₂ -72}	18200	10.50/22	10.50/22D	10000	20000	HS	180	UFA 6-5x6	707	60.0	183-2200	496-1000	I	abcd(1)	Zen. Up	2 ¹ / ₂ 135				
9	A. C. F.	37-P	37	Par	254 ¹ / _{2 396 80¹/₂ -72}	18670	10.50/22	10.50/22D	10000	20000	HS	180	UFA 6-5x6	707	60.0	183-2200	496-1000	I	abcd(1)	Zen. Up	2 ¹ / ₂ 125				
10	A. C. F.	H-9-S	42	CS	245 ¹ / _{2 396¹/₂ 80¹/₂ -72}	16640	9.75/22	9.75/22D	8400	16800	HS	180	UFA 6-5x6	707	60.0	183-2200	496-1000	I	abcd(1)	Zen. Up	2 ¹ / ₂ 115				
11	A. C. F.	H-16-S	42	CS	210 ¹ / _{2 394¹/₂ 81¹/₂ -72}	16800	10.50/20	9.75/20D	9400	15600	HS	180	UFA 6-5x6	707	60.0	183-2200	496-1000	I	abcd(1)	Zen. Up	2 ¹ / ₂ 90				
12	Aerocoach	EFI	22-25	Par	201 ¹ / ₂ 336 75 -65	...	7.00/20	7.00/20D	3900	7800	Ford	99B	R 8-3 ¹ / ₂ x3 ¹ / ₂	239	32.5	95-3600	170-2100	L	acdg	CG. Do	50				
13	Aerocoach	EFT	27-29	CS	201 ¹ / ₂ 336 75 -65	...	7.00/20	7.00/20D	3900	7800	Ford	99B	R 8-3 ¹ / ₂ x3 ¹ / ₂	239	32.5	95-3600	170-2100	L	acdg	CG. Do	50				
14	Flexible	21-CP-70	21	Par	182	351 ¹ / _{2 76 -70¹/₂}	10200	7.50/20	7.50/20D	Che.	194C	R 6-3 ¹ / ₂ x3 ¹ / ₂	216	29.4	78-3200	170-(2)	I	acdf	Car. Do	1 ¹ / ₂ 40			
15	Flexible	25-CP-70	25	Par	182	351 ¹ / _{2 76 -70¹/₂}	10400	7.50/20	7.50/20D	Che.	194C	R 6-3 ¹ / ₂ x3 ¹ / ₂	216	29.4	78-3200	170-(2)	I	acdf	Car. Do	1 ¹ / ₂ 40			
16	Flexible	25-BR-140	25	Par	182	358 76 -70 ¹ / ₂	11700	8.25/20	8.25/20D	Bui.	60	R 8-3 ¹ / ₂ x4 ¹ / ₂	320	37.8	141-3600	269-2000	I	abcdf	Str. Do	1 ¹ / ₂ 40			
17	Flexible	29-BR-140	29	Par	218	395 ¹ / ₂ 76 -70 ¹ / ₂	12275	8.25/20	8.25/20D	Bui.	60	R 8-3 ¹ / ₂ x4 ¹ / ₂	320	37.8	141-3600	269-2000	I	abcdf	Str. Do	1 ¹ / ₂ 40			
18	Ford	09-B	27	CS	148 ¹ / ₂ 309 82 ¹ / ₂ -83	9500	9.00/18	7.50/20D	6000	8800	Ford	99B	R 8-3 ¹ / ₂ x3 ¹ / ₂	239	32.5	95-3600	170-1700	L	acd	Own Do	...	60			
19	Mack	L-25	25	CS	165	300 ¹ / ₂ 92 ¹ / ₂ -75 ¹ / ₂	...	7.00/20	7.00/20D	Mack.	FK	R 6-3 ¹ / ₂ x4 ¹ / ₂	290	33.8	94-3000	200-1200	L	acdfg	Str. Up	1 ¹ / ₂ 40			
20	Mack	CW	23-25	CS	165	301 81 ¹ / ₂ -74 ¹ / ₂	...	7.50/20	7.50/20D	Mack.	CU	R 6-3 ¹ / ₂ x5	354	36.0	107-2800	245-1000	L	acdeg	Str. Up	1 ¹ / ₂ 55			
21	Mack	CY	25-27	CS	182	318 81 ¹ / ₂ -74 ¹ / ₂	...	7.50/20	7.50/20D	Mack.	CU	R 6-3 ¹ / ₂ x5	356	36.0	107-2800	245-1000	L	acdeg	Str. Up	1 ¹ / ₂ 55			
22	Mack	31SB	31	SB	161	68 -65	...	7.00/20	7.00/20D	Mack.	FC	FH	6-3 ¹ / ₂ x4 ¹ / ₂	253	29.4	75-2800	166-1200	L	acdfg	Str. Up	1 ¹ / ₂ 30		
23	Mack	CQ	30-31	CS	178	353 ¹ / ₂ 78 -73	...	9.00/22	9.00/22D	Mack.	CT	R 6-4 ¹ / ₂ x5	528	48.6	129-2800	380-800	L	acdeg	Str. Up	1 ¹ / ₂ 80			
24	Mack	37SB	37	SB	195	68 ¹ / ₂ -65	...	7.50/20	7.50/20D	Mack.	FM	FH	6-3 ¹ / ₂ x4 ¹ / ₂	271	31.6	78-2800	188-1200	L	acdfg	Str. Up	1 ¹ / ₂ 30		
25	Mack	CO	36-37	CS	212	382 82 -72 ¹ / ₂	...	9.75/20	9.75/20D	Mack.	EO	R 6-4 ¹ / ₂ x5 ¹ / ₂	519	45.7	141-2100	380-1000	I	acdfg	Str. Up	1 ¹ / ₂ 80			
26	Mack	CT	35-37	CS	214	389 ¹ / ₂ 82 -73	...	9.00/22	9.00/22D	Mack.	CT	R 6-4 ¹ / ₂ x5 ¹ / ₂	525	48.6	129-2300	380-800	L	acdeg	Str. Up	1 ¹ / ₂ 80			
27	Mack	CM	40-41	CS	232	396 82 -72 ¹ / ₂	...	9.75/20	9.75/20D	Mack.	EP	R 6-4 ¹ / ₂ x5 ¹ / ₂	611	54.1	158-2000	464-1000	I	acdeg	Str. Up	2 ¹ / ₂ 80			
28	Mack	43SB	43	SB	212	68 ¹ / ₂ -69 ¹ / ₂	...	8.25/20	8.25/20D	Mack.	FK	FH	6-3 ¹ / ₂ x4 ¹ / ₂	290	33.7	85-2800	192-1000	L	acdfg	Str. Up	1 ¹ / ₂ 40		
29	Mack	43SB	43	SB	212	77 -69 ¹ / ₂	...	8.25/20	8.25/20D	Mack.	FK	FH	6-3 ¹ / ₂ x4 ¹ / ₂	290	33.7	94-3000	200-1200	L	acdfg	Str. Up	1 ¹ / ₂ 40		
30	Mack	43SB	43	SB	212	77 -69 ¹ / ₂	...	8.25/20	8.25/20D	Mack.	BG	R 6-3 ¹ / ₂ x4 ¹ / ₂	310	31.6	90-3000	210-1000	L	acdeg	Str. Up	1 ¹ / ₂ 40			
31	Mack	49SE	49	SB	231	78 ¹ / ₂ -69 ¹ / ₂	...	9.25/20	9.25/20D	Mack.	CU	FH	6-3 ¹ / ₂ x4 ¹ / ₂	354	36.0	107-2800	245-1000	I	acdeg	Str. Up	1 ¹ / ₂ 40		
32	Mack	55SB	55	SB	250	77 ¹ / ₂ -69 ¹ / ₂	...	9.00/20	9.00/20D	Mack.	CU	FH	6-3 ¹ / ₂ x4 ¹ / ₂	354	36.0	107-2800	245-1000	I	acdeg	Str. Up	1 ¹ / ₂ 40		
33	Mack	61SB	61	SB	268	77 ¹ / ₂ -69 ¹ / ₂	...	9.00/20	9.00/20D	Mack.	CU	FH	6-3 ¹ / ₂ x4 ¹ / ₂	354	36.0	107-2800	245-1000	I	acdeg	Str. Up	1 ¹ / ₂ 40		
34	Reo	384-P	25-29	Par	150	291 81 ¹ / ₂ 72 ¹ / ₂	10500	8.25/18	8.25/18D	4900	9800	Reo.	GC-310	R 6-3 ¹ / ₂ x5	310	31.5	97-2800	226-1000	L	abcd	Zen. Do	1 ¹ / ₂ 75			
35	Reo	394-T	27-29	CS	150	302 81 ¹ / ₂ 72 ¹ / ₂	9330	7.50/18	7.50/20D	4050	8100	Reo.	GC-310	R 6-3 ¹ / ₂ x5	310	31.5	97-2800	226-1000	L	abcd	Zen. Do	1 ¹ / ₂ 43			
36	Reo	385-P	29-33	CS	186	322 81 ¹ / ₂ 72 ¹ / ₂	11550	8.25/18	8.25/18D	4900	9800	Reo.	361	361	6-4 ¹ / ₂ x4 ¹ / ₂	361	40.8	105-2700	255-1000	L	abcd	Zen. Do	1 ¹ / ₂ 75		
37	Reo	395-T	31-33	CS	186	338 81 ¹ / ₂ 72 ¹ / ₂	10988	8.25/18	8.25/20D	4900	9800														

Bus Chassis

ELECTRICAL SYSTEM		GOVERNOR		TRANSMISSION		REAR AXLE		BRAKES		SPRINGS		RUNNING GEAR		Line Number													
Ignition System Make	Generator and Starter Make	Battery		Maximum Governed Speed (M.P.H.)	Integral with Engine	Clutch—Make and Type	Make	Ratio	Service	Hand	Front	Rear	Front Axle Make	Steering Gear Make													
Make	Make	Type	Voltage and Amp. Hours Capacity	Make	Make	No. of Forward Speeds	Low Speed Gear Reduction	Universal Joints Number and Make	Make and Model	Standard	Optional	Lining Area (Sq. In.)	No. of Leaves	Length and Width (In.)	Outside Diam. of Min. Turning Circle (Ft.)	Wheel—Make											
Make	Make	Make	Make	Make	Make	Make	Make	Make	Make	Standard	Optional	Make	Make	Make	Make	Line Number											
DR DR	DR	Exi	12-158	Ce	62	N	Spi. SP	Spi	4 4.57	2-Spi	Tim. 54427	4.44	I-FW	A	460	Ds	88	8	54-3	13	58½-3	Tim	Ro	65	Bd	1	
DR DR	DR	Exi	12-138	Ce	50	N	Spi. SP	Spi	3 4.01	2-Spi	Tim. 54418	5.43	I-FW	A	460	Ds	88	12	56-3	14	58½-3	Tim	Ro	58	Bd	2	
DR DR	DR	Exi	12-158	Ce	68	N	Spi. SP	Spi	4 4.76	2-Spi	Tim. 58258	5.12	I-FW	A	623	Ds	88	14	56-3½	15	60-4	Tim	Ro	60	Bd	3	
DR DR	DR	Exi	12-138	Ce	51	N	Spi. SP	Spi	3 4.01	2-Spi	Tim. 54418	5.43	I-FW	A	460	Ds	95	12	54-3	16	58½-3	Tim	Ro	65	Bd	4	
DR DR	DR	Exi	12-158	Ce	58	N	Spi. SP	Spi	3 3.80	2-Spi	Tim. 56515	5.29	4.44	I-FW	A	575	Ds	88	12	56-3	16	60-3½	Tim	Ro	62	Bd	5
DR DR	DR	Exi	12-158	Ce	55	N	Spi. SP	Spi	3 4.04	2-Spi	Tim. 58258	5.12	4.55	I-FW	A	623	Ds	88	14	56-3½	16	60-4	Tim	Ro	60	Bd	6
DR DR	DR	Exi	12-158	Ce	61	N	Spi. SP	Spi	3 3.80	2-Spi	Tim. 58282	5.57	5.12	I-FW	A	692	Ds	88	12	59-3½	13	60-4	Tim	Ro	68	Dn	7
DR DR	DR	Exi	12-158	Ce	60	N	Lg. SP	Spi	4 4.36	2-Spi	Tim. 59023	4.35	5.33	I-FW	A	795	Ds	121	12	54-3½	13	64-5	Tim	Ro	82	Bd	8
DR DR	DR	Exi	12-158	Ce	61	N	Lg. SP	Spi	4 4.36	2-Spi	Tim. 59023	4.55	5.33	I-FW	A	867	Ds	121	12	58-4	12	67-5	Tim	Ro	79	Bd	9
DR DR	DR	Exi	12-158	Ce	52	N	Lg. SP	Spi	4 3.46	2-Spi	Tim. 58023	5.12	4.55	I-FW	A	795	Ds	121	14	54-3½	12	64-5	Tim	Ro	82	Bd	10
DR DR	DR	Exi	12-158	Ce	51	N	Lg. DP	Spi	3 3.80	2-Spi	Tim. 59023	5.12	I-FW	A	824	Ds	121	13	61-4	11	64-5	Tim	Ro	72	Dn	11	
Fo Fo	LN	Exi	12-150	Su	...	N	Fo. SP	BL	4 4.92	2-Spi	Tim. 53300	5.14	I-FW	A	381	Ds	77	9	48-3	10	62-3	Tim	Ro	74	MW	12	
Fo Fo	LN	Exi	12-150	Su	...	N	Fo. SP	BL	4 4.92	2-Spi	Tim. 53300	6.60	I-FW	A	381	Ds	77	9	48-3	10	62-3	Tim	Ro	74	MW	13	
DR DR	DR	DR	12-105	Su	55	N	Che. SP	Cla	4 6.35	2-Spi	Tim. 5.66	5.14	I-FW	A	...	Ds	52-	...	54-	Tim	Ro	...	Bd	14	
DR DR	DR	DR	12-105	Su	55	N	Che. SP	Cla	4 6.35	2-Spi	Tim. 53542-TWX	5.66	5.14	I-FW	A	...	Ds	52-	...	54-	Tim	Ro	...	Bd	15
DR DR	DR	DR	12-140	Ce	60	N	Spi. SP	BL	4 4.57	2-Spi	Tim. 56411-TWX	4.44	5.28	I-FW	A	...	Ds	52-	...	54-	Tim	Ro	...	Bd	16
DR DR	DR	DR	12-140	Ce	60	N	Spi. SP	BL	4 4.57	2-Spi	Tim. 56411-TWX	5.28	4.44	I-FW	A	...	Ds	52-	...	54-	Tim	Ro	...	Bd	17
Fo Fo	Fo	E-W	12-158	Su	50	Y	Fo. SP	Fo	3 3.81	2-Fo	Ford. O8-B	5.83	6.66	I-FW	A	472	Ds	55	11	54-3	14	58-3	Own	Fo	56	Own	18
DR DR	DR	Exi	12-118	Su	40	N	BB. SP	Own	3 4.16	2-Spi	Own. RA-41	5.83	5.14	I-FW	H	371	Ds	87	11	60-3	11	60-3	Own	Own	53½	Own	19
DR DR	DR	Exi	12-158	Ce	44	Y	WL. SP	Own	3 4.16	2-Spi	Own. CW	4.45	4.08	I-FW	A	456	Ds	87	11	60-3	11	60-3	Own	Own	53½	Own	20
DR DR	DR	Exi	12-158	Ce	44	Y	WL. SP	Own	3 4.16	2-Spi	Own. CW	4.45	4.08	I-FW	A	456	Ds	87	11	60-3	11	60-3	Own	Own	55	Own	21
DR DR	DR	Exi	6-135	Su	50	N	BB. SP	BL	4 6.34	3-Spi	Tim. RA-31	5.83	4.85	I-FW	A	296	Ds	83	9	50-3	13	60-3	Tim	Ro	55	Own	22
DR DR	DR	Exi	12-158	Ce	45	Y	WL. SP	Own	3 3.79	2-Spi	Own. CT	5.86	5.43	I-FW	A	635	Ds	86	...	60-3½	10	60-4	Own	Own	63½	Own	23
DR DR	DR	Exi	6-135	Su	50	N	BB. SP	BL	4 6.34	3-Spi	Tim. RA-31	5.83	4.85	I-FW	H	329	Ds	83	9	50-3	13	60-3	Tim	Ro	66½	Own	24
DR DR	DR	Exi	12-198	Ce	48	Y	WL. SP	Own	3 4.74	2-Spi	Own. RA-42	3.70	3.08	I-FW	A	816	Ds	86	10	60-4	16	60-4	Own	Own	64	Own	25
DR DR	DR	Exi	12-158	Ce	45	Y	WL. SP	Own	3 3.79	2-Spi	Own. CT	5.86	5.43	I-FW	A	635	Ds	86	11	60-4	17	60-4	Own	Own	76½	Own	26
DR DR	DR	Exi	6-118	Ce	44	N	BB. SP	BL	4 6.34	4-Spi	Tim. RA-28	6.83	6.16	I-FW	H	370	Ds	83	10	50-3	11	60-3	Tim	Ro	71½	Own	27
DR DR	DR	Exi	6-118	Ce	44	N	BB. SP	BL	4 6.34	4-Spi	Tim. RA-28	6.83	6.16	I-FW	H	370	Ds	83	10	50-3	11	60-3½	Tim	Ro	68	Own	28
DR DR	DR	Exi	6-118	Ce	41	N	BB. SP	Fu	5 7.53	4-Spi	Tim. RA-28	6.83	6.16	I-FW	H	370	Ds	87	10	50-3	14	60-3½	Tim	Ro	68	Own	29
DR DR	DR	Exi	6-118	Ce	36	Y	WL. SP	Fu	5 7.53	4-Spi	Tim. RA-26	6.83	6.16	I-FW	H	370	Ds	87	12	50-3	14	60-3½	Tim	Ro	72	Own	31
DR DR	DR	Exi	6-118	Ce	36	Y	WL. SP	Fu	5 7.53	4-Spi	Tim. RA-26	6.83	6.16	I-FW	H	370	Ds	87	12	50-3	14	60-3½	Tim	Ro	74½	Own	32
DR DR	DR	Exi	6-118	Ce	38	Y	WL. SP	BL	4 6.12	4-Spi	Tim. RA-26	6.83	6.16	I-FW	H	370	Ds	83	12	50-3	16	60-3½	Tim	Ro	76½	Own	33
DR DR	DR	Wil	12-153	Su	...	N	Lg. SP	Own	3 3.38	2-Mec	Tim. 5.14	5.14	I-FW	A	470	Ds	88	9	58-3½	11	58-3½	Tim	Ro	57	MW	34	
DR DR	DR	Wil	12-153	Su	...	N	Lg. SP	Own	3 3.38	2-Mec	Tim. 5.14	5.14	I-FW	A	470	Ds	88	9	58-3½	11	58-3½	Tim	Ro	54½	MW	35	
DR DR	DR	Wil	12-153	Su	...	N	Lg. SP	Own	3 3.38	2-Mec	Tim. 5.14	5.14	I-FW	A	470	Ds	88	9	58-3½	11	58-3½	Tim	Ro	63	MW	36	
DR DR	DR	Exi	12-117	Su	39	N	Spi. SP	Spi	3 4.11	2-Spi	Tim. 53537	5.14	4.57	I-FW	A	384	Ds	31	11	46-3	14	60-3	Tim	Ro	57½	Bd	38
DR DR	DR	Exi	12-117	Su	38	N	Spi. SP	Spi	3 4.11	2-Spi	Tim. 54419	5.28	4.86	I-FW	A	472	Ds	31	13	46-3	14	60-3	Tim	Ro	58½	Bd	39
DR DR	DR	Exi	12-134	Su	41	N	Spi. SP	Spi	3 4.11	2-Spi	Tim. 56219	5.28	4.44	I-FW	A	576	Ds	31	13	46-3	15	60-3	Tim	Ro	55	Bd	40
DR DR	DR	Exi	12-134	Su	41	N	Spi. SP	Spi	3 4.11	2-Spi	Tim. 56218	5.70	4.44	I-FW	A	576	Ds	31	10	60-4	12	60-4	Tim	Ro	57½	Bd	41
DR DR	DR	Exi	12-134	Su	43	N	Spi. SP	Spi	3 3.97	2-Spi	Tim. 58268	5.57	4.55	I-FW	A	720	Ds	61	13	60-4	14	60-4	Tim	Ro	65½	Bd	42
DR DR	LN	E-W	12-118	Su	49	N	Whi. SP	Own	3 4.03	3-Spi	Own. 27C	5.10	4.45	I-FW	A	368	Ds	88	15	41-2½	16	54-2½	Own	Ro	56	Bd	44
AL AL	AL	E-W	12-120	Su	44	N	Whi. SP	Own	3 3.31	2-Spi	Own. 60C	6.80	5.83	I-FW	A	304	Ds	45	12	50-2½	14	62-3	Own	Ro	52	Bd	45
AL AL	AL	E-W	12-120	Su	48	N	Whi. SP	Own	4 5.00	2-Spi	Own. 37C	6.28	5.10	I-FW	A	346	Ds	45	12	50-2½	14	62-3	Own	Ro	52	Bd	46
DR DR	DR	E-W	12-158	Ce	66	Y	Whi. SP	Own	3 4.07	2-Spi	Own. 106C	5.71	6.43	I-FW	A	691	Ds	48	12	54-3½	11	60-4	Own	Ro	52½	Own	47
DR DR	DR	E-W	12-158	Ce	66	Y	Whi. SP	Own	3 4.07	2-Spi	Own. 34CE	5.22	4.88	I-FW	A	818	Ds	123	12	54-3½	12	60-4	Own	Ro	51	Own	48
DR DR	DR	E-W	12-158	Ce	66	Y	Whi. SP	Own	3 4.07	2-Spi	Own. 34CE	5.22	4.88	I-FW	A	818	Ds	123	13	54-3½	12	60-4	Own	Ro	58	Own	49
DR DR	DR	E-W	12-158																								

American Stock, Marine and

Line Number	MAKE AND MODEL	Designed for	Number of Cylinders, Bore and Stroke (in.)	Rated Hp. (A.M.A.)	Maximum Brake Hp. at Specified R.P.M.	Piston Displacement (Cu. In.)	Compression Ratio - to 1	Maximum Torque at R.P.M. (Lb. Ft.)	No. Cast in One Piece	CYLIN- DERS	VALVES												
											Liners—Type	Crankcase—Upper Half Integral with Cylinders?	Arrangement	Exhaust Head Material (S.A.E. No.)	Max. Head Diameter (In.)	Min. Port Diameter (In.)	Lift (In.)	Stem Diameter (In.)					
1	Allis-Chalmers	B-15	Tr. Ind	4-3 ¹ / ₂ x3 ¹ / ₂	16.9	22-1800	116.0	4.92	74-1100	4	W	In	—	Sil	1.43	1.31	1.20	1.03	374	374	341	341	
2	Allis-Chalmers	W-25	Tr. Ind	4-4x4	25.6	40-1800	201.0	5.00	128-1200	4	W	In	—	Sil	1.68	1.50	1.50	1.32	376	372	372	372	
3	Allis-Chalmers	U-40	Tr. Ind	4-4 ¹ / ₂ x5 ¹ / ₂	32.4	51-1400	318.0	4.74	200-1000	4	W	In	—	Sil	2.03	1.78	1.75	1.50	375	372	372	372	
4	Allis-Chalmers	E-60	Tr. Ind	4-5 ¹ / ₂ x6 ¹ / ₂	44.1	70-1200	563.0	5.24	370-750	4	W	In	—	Sil	2.21	2.21	2.00	2.00	440	417	497	497	
5	Allis-Chalmers	L-90	Tr. Ind	6-5 ¹ / ₂ x6 ¹ / ₂	66.1	117-1200	844.0	5.50	590-700	6	W	In	—	Sil	2.21	2.21	2.00	2.00	440	417	497	497	
6	Autocar	315	T	6-3 ¹ / ₂ x4 ¹ / ₂	33.7	90-2600	315.0	6.00	220-1000	6	N	Se	—	Sil	1.75	1.65	1.56	1.43	375	375	437	437	
7	Autocar	358	T	6-4x4 ¹ / ₂	38.4	100-2600	358.0	5.80	270-1000	6	N	Se	—	Sil	1.90	1.78	1.68	1.56	375	375	437	437	
8	Autocar	408	T	6-4 ¹ / ₂ x5 ¹ / ₂	39.6	110-2400	408.0	5.50	295-1000	6	N	Se	—	Sil	2.06	1.93	1.87	1.75	375	375	437	437	
9	Autocar	447	T	6-4 ¹ / ₂ x5 ¹ / ₂	43.3	116-2400	447.0	5.50	333-900	6	N	Se	—	Sil	2.06	1.93	1.87	1.75	375	375	437	437	
10	Autocar	501	T	6-4 ¹ / ₂ x4 ¹ / ₂	48.6	127-2300	501.0	5.50	375-800	6	N	Se	—	Sil	2.06	1.93	1.87	1.75	375	375	437	437	
11	Brennan	Imp. De Luxe	M	4-2x3	7.5	20-3900	45.0	7.00	31-2500	4	N	Se	—	Sil	1.00	1.00	0.87	0.87	250	250	312	312	
12	Brennan	Imp. De Luxe Special	M	4-2 ¹ / ₂ x3 ¹ / ₂	8.0	25-4000	50.0	7.40	34-3200	4	N	Se	—	Sil	1.00	1.00	0.87	0.87	250	250	312	312	
13	Brennan	20	Tr. Ind	4-2 ¹ / ₂ x3 ¹ / ₂	8.0	20-3900	50.0	7.40	34-3200	4	N	Se	—	Sil	1.00	1.00	0.87	0.87	250	250	312	312	
14	Brennan	M	M	4-4x5	25.6	40-2000	251.0	5.00	155-1000	4	N	Se	—	Sil	2.50	2.50	2.12	2.12	437	437	500	500	
15	Brennan	E-4	M	4-4x5 ¹ / ₂	32.4	50-1500	318.0	5.00	203-1000	4	N	Se	—	Sil	2.00	2.00	1.87	1.87	375	375	375	375	
16	Brennan	CE	T. Tr. Ind	4-4 ¹ / ₂ x5	32.4	50-1600	318.0	5.00	203-1000	4	N	Se	—	Sil	2.00	2.00	1.87	1.87	375	375	375	375	
17	Brennan	90	M	6-4 ¹ / ₂ x5 ¹ / ₂	38.4	100-2500	415.0	6.00	278-900	3	N	Se	—	Sil	2.12	2.12	2.00	2.00	375	375	437	437	
18	Brennan	B-7C	T. B. Ind	6-4 ¹ / ₂ x5 ¹ / ₂	38.4	85-2000	415.0	6.00	278-900	3	N	Se	—	Sil	2.12	2.12	2.00	2.00	375	375	437	437	
19	Brennan	125	M	6-4 ¹ / ₂ x5 ¹ / ₂	45.9	125-2200	500.0	6.00	350-1200	3	N	Se	—	Sil	2.12	2.12	2.00	2.00	375	375	437	437	
20	Brennan	B-10C	T. B.	6-4 ¹ / ₂ x5 ¹ / ₂	45.9	100-2000	500.0	6.00	350-1200	3	N	Se	—	Sil	2.12	2.12	2.00	2.00	375	375	437	437	
21	Brennan	150	M	6-4 ¹ / ₂ x5 ¹ / ₂	48.6	150-2000	620.3	6.00	500-1200	3	N	Se	—	Sil	2.50	2.50	2.12	2.12	437	437	500	500	
22	Brennan	150	T. B. Tr. Ind	6-4 ¹ / ₂ x5 ¹ / ₂	48.6	150-2200	620.3	6.00	500-1200	3	N	Se	—	Sil	2.50	2.50	2.12	2.12	437	437	500	500	
23	Bridgeport	F-5	M	1-3 ¹ / ₂ x4 ¹ / ₂	6-1200	49.0	—	—	1	N	Int	NS	1.43	1.43	—	—	312	312	—	—			
24	Bridgeport	F-10	M	2-3 ¹ / ₂ x4 ¹ / ₂	12-1200	99.0	—	—	2	N	Int	NS	1.43	1.43	—	—	312	312	—	—			
25	Bridgeport	F-20	M	4-2 ¹ / ₂ x4	25-2500	95.0	—	—	4	N	Int	CNS	1.12	1.12	—	—	312	312	—	—			
26	Bridgeport	F-25	M	4-3 ¹ / ₂ x3 ¹ / ₂	50-2500	134.0	—	—	4	N	Int	CNS	1.37	1.25	—	—	312	312	—	—			
27	Bridgeport	Pilot	M	4-4 ¹ / ₂ x5	55-2000	233.0	—	—	4	N	Int	NS	1.62	1.62	—	—	375	375	—	—			
28	Bridgeport	Pilot	M	6-4 ¹ / ₂ x4 ¹ / ₂	80-2000	428.0	—	—	6	N	Int	Sil	1.75	1.75	—	—	375	375	—	—			
29	Buda	HP-205	T. Tr	4-3 ¹ / ₂ x3 ¹ / ₂	23.2	51-2400	205.0	4.76	132-1200	4	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
30	Buda	HP-217	T. Tr	4-3 ¹ / ₂ x3 ¹ / ₂	23.2	55-2400	217.0	5.50	148-1000	4	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
31	Buda	4HM-217-MD	M	4-3 ¹ / ₂ x3 ¹ / ₂	56	2400	217.0	5.70	148-1000	4	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
32	Buda	4HM-217-MHD	M	4-3 ¹ / ₂ x3 ¹ / ₂	56	1800	217.0	5.70	148-1000	4	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
33	Buda	4HM-217-HD	M	4-3 ¹ / ₂ x3 ¹ / ₂	56	1200	217.0	5.70	148-1000	4	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
34	Buda	KT-281	Tr	4-4 ¹ / ₂ x5 ¹ / ₂	27.2	49-1750	281.0	4.50	173-1000	4	N	Se	—	Sil	1.87	1.87	1.62	1.62	281	312	372	372	
35	Buda	YR-425	T	4-4 ¹ / ₂ x6	36.0	57-1400	425.3	3.80	264-700	4	N	Se	—	Sil	2112	2.37	2.37	2.12	2.12	281	312	434	434
36	Buda	BTU	T. B. Tr	4-5 ¹ / ₂ x5 ¹ / ₂	40.0	61-1200	510.5	4.65	360-650	4	N	Se	—	Sil	2112	2.50	2.50	2.25	2.25	375	375	434	434
37	Buda	FR	T. B. Tr	4-5 ¹ / ₂ x5 ¹ / ₂	48.5	78-1200	618.0	4.60	405-650	4	N	Se	—	Sil	2112	2.50	2.50	2.25	2.25	375	375	434	434
38	Buda	JV-4	T. Ind	4-5 ¹ / ₂ x7 ¹ / ₂	52.9	65-1200	740.0	3.85	472-750	2	N	Se	—	Sil	2.75	2.78	2.50	2.50	375	375	497	497	
39	Buda	JK-4	Tr. Ind	4-6 ¹ / ₂ x7 ¹ / ₂	57.6	115-1200	806.0	4.70	550-700	2	N	Se	—	Sil	2112	2.93	2.93	2.50	2.50	375	375	497	497
40	Buda	JL-877	Tr. Ind	6-6 ¹ / ₂ x7 ¹ / ₂	62.5	122-1200	874.0	4.80	628-700	2	N	Se	—	Sil	2112	2.93	2.93	2.50	2.50	375	375	497	497
41	Buda	HP-26C	T. B.	6-3 ¹ / ₂ x4 ¹ / ₂	29.4	68-2800	260.0	4.75	165-1200	6	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
42	Buda	HP-28B	T. B. Tr	6-3 ¹ / ₂ x4 ¹ / ₂	33.7	77-2800	298.0	4.75	190-1100	6	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
43	Buda	HP-326	T. B. Tr	6-3 ¹ / ₂ x4 ¹ / ₂	34.8	78-2400	326.0	5.40	220-1000	6	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
44	Buda	6DHM-326-MD	M	6-3 ¹ / ₂ x4 ¹ / ₂	80-2400	326.0	5.70	220-1000	6	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372			
45	Buda	6DHM-326-MHD	M	6-3 ¹ / ₂ x4 ¹ / ₂	80	70-1800	326.0	5.70	220-1000	6	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
46	Buda	6DHM-326-HD	M	6-3 ¹ / ₂ x4 ¹ / ₂	80	46-1200	326.0	5.70	220-1000	6	N	Int	2112	1.65	1.53	1.50	1.37	344	344	372	372		
47	Buda	K-368	T. B.	6-4 ¹ / ₂ x4 ¹ / ₂	39.6	99-2800	369.0	4.73	234-1100	6	N	Int	2112	1.90	1.								

Commercial Vehicle Engines

VALVES		PISTONS				CONNECTING RODS		CRANKSHAFT				CARBU-RETOR		OVERALL DIMENSIONS (In.)													
Angle (Deg.)	Inserts Used?	Front	End	Drive	Type	Material	Length (In.)	Weight with Pins, Rings	Bushings (Oz.)	Piston Pin—Diameter and Length (In.)	Number of Rings per Piston	Material	Center to Center Length (In.)	Weight with Bushing and Cap (Oz.)	Material	Counterbalance Used?	Crank-Pin	Main Bearings	Oil Pressure To—	Spark Plug—Thread Size	Size	Width	Height	Length	Line Number		
45	N	TA	HG	CI	3.68	39	813x2.87	3	1040	6 ¹ / ₂	30	1045	N	1.93x1.22	3	2.25x1.62	2.25x1.50	abc	14 mm	Zen	7 ¹ / ₂	360	16 ¹ / ₂	31 ¹ / ₂	27	1	
45	E	TA	HG	CI	4.43	67	989x3.50	4	1040	7 ¹ / ₂	42	1045	N	2.37x1.54	3	2.43x1.62	2.50x1.75	abcde	14 mm	Zen	1 ¹ / ₂	500	24	31 ¹ / ₂	33 ¹ / ₂	2	
30	E	TA	HG	CI	5.25	92	1.31x4.06	4	1040	9 ¹ / ₂	92	1045	N	2.37x2.37	3	2.50x2.31	2.50x2.75	abde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	985	28	37 ¹ / ₂	43 ¹ / ₂	3	
45	E	TA	HG	CI	6.78	162	1.50x4.87	4	1040	13	182	1045	N	2.75x3.24	3	3.00x3.50	3.00x4.75	abcde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	1835	27	44 ¹ / ₂	55 ¹ / ₂	4	
45	E	TA	HG	CI	6.78	162	1.50x4.87	4	1040	13	182	1045	N	2.75x3.24	4	3.00x3.50	3.00x4.75	abcde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	2875	28	50	62 ¹ / ₂	5	
45	E	71360	TA	HG	AI	4.87	36	1.12x3.18	4	2340	10 ¹ / ₄	73	1050	N	2.25x1.44	7	3.00x1.87	3.00x2.62	abdef	7 ¹ / ₂ -18	Str	1 ¹ / ₂	1070	23 ¹ / ₂	34 ¹ / ₂	43 ¹ / ₂	6
45	E	71360	HG	AI	4.87	43	1.12x3.43	4	2340	10 ¹ / ₄	73	1050	N	2.25x1.44	7	3.00x1.87	3.00x2.62	abdef	7 ¹ / ₂ -18	Str	1 ¹ / ₂	1080	23 ¹ / ₂	34 ¹ / ₂	43 ¹ / ₂	6	
45	E	71360	HG	AI	5.75	47	1.12x3.43	4	2340	10 ¹ / ₄	73	1050	N	2.50x1.58	7	3.25x1.87	3.25x2.87	abdef	18 mm	Str	1 ¹ / ₂	1270	26 ¹ / ₂	38 ¹ / ₂	47 ¹ / ₂	8	
45	E	71360	HG	AI	5.75	51	1.12x3.68	4	2340	10 ¹ / ₄	83	1045	N	2.50x1.59	7	3.25x1.87	3.25x2.87	abdef	18 mm	Str	1 ¹ / ₂	1270	25 ¹ / ₂	38 ¹ / ₂	47 ¹ / ₂	9	
45	N	71360	HG	AI	5.75	51	1.12x3.93	4	2340	10 ¹ / ₄	88	1050	N	2.50x1.59	7	3.25x1.87	3.25x2.87	abdef	18 mm	Str	1 ¹ / ₂	1270	26 ¹ / ₂	38 ¹ / ₂	47 ¹ / ₂	10	
45	N	71360	HG	AI	6.62	1.87	3	1045	5 ¹ / ₂	14	1045	Y	1.31x1.25	2	2.50x1.50	2.50x1.50	abc	14 mm	Til	5 ¹ / ₂	1605	12 ¹ / ₂	17 ¹ / ₂	29	11		
45	N	71360	HG	AI	6.62	2.00	3	1045	5 ¹ / ₂	14	1045	Y	1.31x1.25	3	2.50x1.50	2.50x1.50	abc	14 mm	Zen	5 ¹ / ₂	1655	12 ¹ / ₂	17 ¹ / ₂	29	12		
45	N	71360	HG	SS	4.50	64	1.17x3.87	4	1045	11	64	1045	N	2.50x2.00	3	2.12x4.25	2.12x2.25	acer	14 mm	Str	1 ¹ / ₂	650	12 ¹ / ₂	19 ¹ / ₂	53 ¹ / ₂	14	
45	N	71360	HG	SS	5.00	72	1.17x4.00	4	1045	11	64	1045	N	2.50x2.50	3	2.50x3.50	2.50x3.50	acer	14 mm	Str	1 ¹ / ₂	950	16	18	53	15	
45	N	71360	HG	SS	5.00	80	1.17x4.00	4	1045	11	64	1045	N	2.50x2.50	3	2.50x4.25	2.50x5.00	abc	14 mm	Str	1 ¹ / ₂	600	21	29 ¹ / ₂	37 ¹ / ₂	16	
45	N	71360	HG	SS	4.50	64	1.17x3.87	4	1045	11	64	1045	N	2.50x2.00	3	2.75x1.87	2.75x2.00	abceg	14 mm	Str	1 ¹ / ₂	800	19 ¹ / ₂	24 ¹ / ₂	65	17	
45	N	71360	HG	SS	5.50	70	1.25x3.87	5	CNS	11	65	CNS	Y	2.50x2.00	3	2.75x4.50	2.75x5.00	abc	14 mm	Str	1 ¹ / ₂	900	19 ¹ / ₂	24 ¹ / ₂	65	18	
45	N	71360	HG	SS	4.50	76	1.25x4.00	4	CNS	11	65	CNS	Y	2.50x2.00	3	2.75x4.50	2.75x5.00	abc	14 mm	Str	1 ¹ / ₂	875	25 ¹ / ₂	33 ¹ / ₂	49	20	
45	N	71360	HG	SS	5.00	72	1.37x4.00	5	CNS	12	80	CNS	Y	2.62x2.87	7	2.62x2.00	2.62x3.50	abc	14 mm	Str	1 ¹ / ₂	1450	20	30	74	21	
45	N	71360	SG	CI	4.00	58	75x3.62	3	CS	9	60	CS	Y	1.37x2.00	2	1.37x2.50	1.37x2.50	plash	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	155	14	22 ¹ / ₂	21	22	
45	N	71360	SG	CI	4.00	58	75x3.62	3	CS	9	60	CS	Y	1.37x2.00	2	1.37x2.50	1.37x3.00	plash	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	320	14	24	32	24	
45	N	71360	HG	CI	3.25	41	62x2.62	3	CS	9	47	CS	N	1.50x1.75	3	2.75x1.50	2.75x1.50	abed	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	397	17	22	35	25	
45	N	71360	HG	CI	3.50	50	75x3.18	3	AS	9	50	CS	N	1.75x1.50	3	1.87x2.00	1.87x1.50	abed	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	460	20	22 ¹ / ₂	36	25	
45	N	71360	HG	CI	4.00	59	1.37x4.12	3	AS	9 ¹ / ₂	60	CNS	N	2.00x2.25	3	2.00x3.00	2.00x3.00	abed	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	950	20	28	53	27	
45	N	71360	HG	SS	3.75	42	1.12x3.22	4	CS	9 ¹ / ₂	62	42	CS	N	2.12x1.62	5	3.00x1.50	3.00x2.12	abed	18 mm	Zen	1 ¹ / ₂	1650	18	31	62	28
45	N	71360	HG	CI	3.75	42	1.12x3.22	4	CS	9 ¹ / ₂	62	42	CS	N	2.12x1.62	5	3.00x1.50	3.00x2.12	abed	18 mm	Zen	1 ¹ / ₂	590	26	29 ¹ / ₂	31 ¹ / ₂	29
45	N	71360	HG	SS	3.75	42	1.12x3.22	4	CS	9 ¹ / ₂	62	42	CS	N	2.12x1.62	5	3.00x1.50	3.00x2.12	abed	18 mm	Str	1 ¹ / ₂	770	23 ¹ / ₂	31 ¹ / ₂	43 ¹ / ₂	31
45	N	71360	HG	SS	3.75	42	1.12x3.22	4	CS	9 ¹ / ₂	62	42	CS	N	2.12x1.62	5	3.00x1.50	3.00x2.12	abed	18 mm	Str	1 ¹ / ₂	770	23 ¹ / ₂	31 ¹ / ₂	43 ¹ / ₂	32
45	N	71360	HG	CI	5.00	65	1.50x3.31	4	CS	11 ¹ / ₂	69	CS	N	2.00x2.25	3	1.87x2.87	2.12x3.44	abed	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	875	25 ¹ / ₂	33 ¹ / ₂	40 ¹	34	
45	E	JM	HG	CI	6.12	111	1.43x4.11	4	AS	13 ¹ / ₂	106	CS	N	2.50x1.87	3	2.50x3.12	2.50x4.50	abde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	1087	25 ¹ / ₂	36 ¹ / ₂	47 ¹ / ₂	35	
45	E	DC	HG	CI	6.75	42	1.37x4.37	4	AS	14 ¹ / ₂	163	CS	N	2.50x1.87	3	2.50x4.12	2.62x4.69	abde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	1430	28 ¹ / ₂	40	52 ¹ / ₂	36	
45	E	DC	HG	CI	6.75	144	1.37x4.87	4	AS	14 ¹ / ₂	163	CS	N	2.50x3.12	3	2.25x4.12	2.62x4.69	abde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	1925	30	47	58 ¹ / ₂	38	
30	E	DC	HG	CI	6.87	172	2.00x4.87	4	AS	14 ¹ / ₂	252	CS	N	3.00x3.31	3	3.00x4.75	3.00x4.75	abde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	1925	30	44	58 ¹ / ₂	39	
45	E	DC	HG	CI	6.87	172	2.00x5.12	4	AS	14 ¹ / ₂	252	CS	N	3.00x3.31	3	3.00x4.75	3.00x4.75	abde	7 ¹ / ₂ -18	Zen	1 ¹ / ₂	1925	30	40	58 ¹ / ₂	40	
45	E	DC	HG	CI	7.35	37	1.12x3.97	4	CS	9 ¹ / ₂	42	CS	N	2.12x1.62	3	2.00x1.50	2.00x2.12	abde	18 mm	Zen	1 ¹ / ₂	825	25 ¹ / ₂	33 ¹ / ₂	39	41	
45	N	DC	HG	CI	3.75	42	1.12x3.25	4	CS	9 ¹ / ₂	42	CS	N	2.12x1.62	3	3.00x1.50	3.00x2.12	abde	18 mm	Str	1 ¹ / ₂	825	25 ¹ / ₂	33 ¹ / ₂	39	42	
45	E	DC	HG	CI	3.75	42	1.12x3.25	4	CS	9 ¹ / ₂	42	CS	N	2.12x1.62	3	3.00x1.50	3.00x2.12	abde	18 mm	Str	1 ¹ / ₂	825	25 ¹ / ₂	33 ¹ / ₂	39	43	
45	E	DC	HG	CI	4.37	63	1.25x3.47	4	CS	9 ¹ / ₂	58	CS	N	2.37x1.75	7	3.00x1.75	3.00x2.50	abde	18 mm</								

American Stock, Marine and

Line Number	MAKE AND MODEL	Designed for	Number of Cylinders, Bore and Stroke (in.)	Rated Hp. (A.M.A.)	Maximum Brake Hp. at Specified R.P.M.	Piston Displacement (Cu. In.)	Compression Ratio - to 1	Maximum Torque at R.P.M. (Lb. Ft.)	No. Cast in One Piece	Cylinders	VALVES										
											Arrangement		Exhaust Head Material (S.A.E. No.)	Max. Head Diameter (In.)	Min. Port Diameter (In.)	Intake		Exhaust			
											Liners - Type	Crankcase - Upper Half Integral with Cylinders?				Intake	Exhaust	Intake	Exhaust		
1	Continental	F-6209	C.T.Tr.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	24.3	71-3100	209.5	5.75	154-1200	6	N	I	XCR	1.51	1.32	1.37	1.18	.284	.341	.339	
2	Continental	F-6218	C.T.Tr.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	25.4	73-3100	217.8	5.95	162-1200	6	N	I	XCR	1.51	1.32	1.37	1.18	.284	.341	.339	
3	Continental	A-6244	C.T.B.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	28.4	83-3200	243.6	5.40	178-1200	6	N	I	XCR	1.57	1.51	1.42	1.31	.311	.339	.338	
4	Continental	M-6271	T.B.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	31.5	85-2800	270.9	5.75	190-1200	6	N	I	XCR	1.76	1.51	1.62	1.37	.354	.404	.402	
5	Continental	M-6290	T.B.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	33.7	88-2750	289.9	5.70	205-1200	6	N	I	XCR	1.76	1.51	1.62	1.37	.354	.404	.402	
6	Continental	M-6330	T.B.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	38.4	98-2700	329.8	5.50	233-1200	6	N	I	XCR	1.76	1.51	1.62	1.37	.354	.404	.402	
7	Continental	E-600	T.B.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	32.6	78-2650	288.3	5.43	193-900	6	N	I	XCR	2.06	1.87	1.81	1.62	.361	.361	.435	
8	Continental	E-602	T.B.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	36.0	86-2600	318.4	5.48	214-1000	6	N	I	XCR	2.06	1.87	1.81	1.62	.361	.361	.432	
9	Continental	E-603	T.B.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	40.8	95-2500	360.8	5.40	253-850	6	N	I	XCR	2.06	1.87	1.81	1.62	.361	.361	.432	
10	Continental	20H	T.B.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	43.3	98-2400	383.0	5.25	265-1000	6	N	I	XCR	2.06	1.87	1.81	1.62	.361	.361	.432	
11	Continental	21R	T.B.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	45.9	118-2500	428.4	4.63	308-1200	6	N	I	AUS	2.06	1.87	1.81	1.62	.420	.435	.433	
12	Continental	22R	T.B.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	48.6	138-2400	501.0	4.50	364-1200	6	N	I	AUS	2.06	1.87	1.81	1.62	.420	.435	.433	
13	Dodge	T-105	T	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	23.4	79-3000	201.3	6.70	154-1200	6	N	I	AUS	2.06	1.87	1.81	1.62	.420	.435	.433	
14	Dodge	T-94	T	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	25.3	82-3000	217.7	6.50	166-1200	6	N	I	Sil	1.46	1.46	1.31	1.31	.312	.340	.340	
15	Dodge	T-98	T	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	27.3	92-3000	228.1	6.50	176-1200	6	N	I	Sil	1.46	1.46	1.31	1.31	.312	.340	.340	
16	Dodge	T-100	T	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	27.3	99-3000	241.5	6.50	188-1200	6	N	I	Sil	1.65	1.53	1.50	1.37	.379	.379	.340	
17	Dodge	T-104	T	6-3 $\frac{1}{2}$ x 5	33.7	100-2800	331.3	5.20	230-800	6	N	I	Tun	1.65	1.53	1.50	1.37	.379	.379	.340	
18	Elco	F-42	M	4-5 $\frac{1}{2}$	39.0	90-1600	471.0	5.00	325-1050	2	W	Se	F	2.50	2.50	2.25	2.25	.303	.350	.437	
19	Elco	F-62	M	6-5 $\frac{1}{2}$	145-1600	707.0	5.00	490-1050	2	W	Se	F	2.50	2.50	2.25	2.25	.303	.350	.437		
20	Ford	60HP	C. T	8-2.6 x 3.2	21.6	60-3500	136.0	6.60	94-2500	8	N	I	CNS	1.28	1.28251	.251	.279	
21	Ford	85HP	C. T. M. Ind	8-3.06 x 3.75	30.0	85-3800	221.0	(1)	105-1000	8	N	I	CNS	1.54	1.54292	.292	.311	
22	Ford	95HP	C. T. B.	8-3.18 x 3.75	32.5	95-3600	239.0	6.15	170-2100	8	N	I	CNS	1.54	1.54292	.292	.311	
23	Franklin	6AH-377	T.B.Tr.Ind	6-4 $\frac{1}{2}$	38.4	104-2500	377.0	4.90	250-1500	1	...	Se	I	CNS	1.75	1.43	1.62	1.31	.375	.375	.375
24	Franklin	6AH-377	T.B.Tr.Ind	6-4 $\frac{1}{2}$	38.4	104-2500	377.0	4.90	250-1500	1	...	Se	I	CNS	1.75	1.43	1.62	1.31	.375	.375	.375
25	Franklin	6AH-400	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 5	40.8	110-2500	400.0	5.00	268-1500	1	...	Se	I	CNS	1.75	1.43	1.62	1.31	.375	.375	.375
26	Franklin	6AH-400	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 5	40.8	110-2500	400.0	5.00	268-1500	1	...	Se	I	CNS	1.75	1.43	1.62	1.31	.375	.375	.375
27	Franklin	4CHO-150	T. Tr	4-3 $\frac{1}{2}$ x 3 $\frac{1}{2}$	43	3000	150.0	5.50	100-1200	1	...	Se	I	CNS	1.66	1.51	1.50	1.40	.375	.375	.375
28	G. M. C.	228	T	6-3 $\frac{1}{2}$ x 3 $\frac{1}{2}$	30.4	78-3000	228.0	6.15	178-1000	6	N	I	Sil	1.81	1.56	1.44	1.37	.333	.333	.375	
29	G. M. C.	248	T	6-3 $\frac{1}{2}$ x 3 $\frac{1}{2}$	33.1	89-3000	248.5	6.15	195-1100	6	N	I	Sil	1.81	1.56	1.44	1.37	.333	.333	.375	
30	G. M. C.	278	T	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	31.5	100-2900	278.6	6.00	223-1200	6	N	I	Sil	1.64	1.47	1.25	1.16	.289	.307	.343	
32	G. M. C.	308	T. B.	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	33.9	110-2800	308.2	6.00	240-1200	6	N	I	Sil	1.64	1.47	1.25	1.16	.289	.307	.343	
33	G. M. C.	361	T	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	40.8	122-2800	360.8	6.00	278-800	6	N	I	Sil	1.94	1.72	1.50	1.40	.406	.406	.375	
34	G. M. C.	426	T	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	43.3	145-2700	425.6	6.00	340-1100	6	N	I	Sil	1.94	1.72	1.50	1.40	.406	.406	.375	
35	G. M. C.	451	T	6-4 $\frac{1}{2}$ x 5	45.9	149-2600	450.9	6.00	368-1200	6	N	I	Sil	1.94	1.72	1.50	1.40	.406	.406	.375	
36	G. M. C.	479	B	6-4 $\frac{1}{2}$ x 4 $\frac{1}{2}$	51.3	141-2600	478.8	5.50	406-800	6	N	I	Sil	2.12	1.94	1.65	1.62	.406	.406	.437	
37	G. M. C.	529	B	6-4 $\frac{1}{2}$ x 5 $\frac{1}{2}$	51.3	159-2500	529.2	5.50	405-1200	6	N	I	Sil	2.12	1.94	1.65	1.62	.406	.406	.437	
38	G. M. C.	707	B	6-5 $\frac{1}{2}$	60.0	175-2100	706.8	4.83	540-1200	6	D	I	Sil	2.44	2.17	1.75	1.43	.413	.413	.500	
39	Gray	Light Four	M	4-2 $\frac{1}{2}$ x 3 $\frac{1}{2}$	16-1800	69.0	5.50	4	N	I	Sil	1.20	1.01	1.06	.875	.291	.292	.312	
40	Gray	Sea Scout	M	4-2 $\frac{1}{2}$ x 3 $\frac{1}{2}$	37-3000	91.0	6.50	4	N	I	Sil	1.20	1.01	1.06	.875	.291	.292	.312	
41	Gray	Four-22	M	-	45-3000	112.0	6.50	4	N	I	Sil	1.20	1.01	1.06	.875	.291	.292	.312	
42	Gray	Phantom 4-45	M	-	4-2 $\frac{1}{2}$ x 3 $\frac{1}{2}$	45-3600	91.0	7.50	4	N	I	Sil	1.20	1.01	1.06	.875	.291	.292	.312
43	Gray	Four-40	M	-	4-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	55-3000	140.0	5.50	4	N	I	Sil	1.51	1.32	1.37	1.18	.331	.331	.339
44	Gray	Four-52	M	-	4-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	57-2600	162.0	6.00	4	N	I	Sil	1.51	1.32	1.37	1.18	.331	.331	.339
45	Gray	Phantom 4-62	M	-	4-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	62-3600	140.0	7.20	4	N	I	Sil	1.51	1.32	1.37	1.18	.331	.331	.339
46	Gray	Phantom 4-75	M	-	4-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	75-3600	162.0	7.00	4	N	I	Sil	1.51	1.32	1.37	1.18	.331	.331	.339
47	Gray	Six-51	M	-	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	73-3200	200.0	6.00	6	N	I	Sil	1.51	1.32	1.37	1.18	.284	.341	.339
48	Gray	Six-71	M	-	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	84-3000	218.0	6.50	6	N	I	Sil	1.51	1.32	1.37	1.18	.284	.341	.339
49	Gray	Phantom 6-90	M	-	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	90-3600	218.0	7.00	6	N	I	Sil	1.51	1.32	1.37	1.18	.284	.341	.339
50	Gray	Phantom 6-103	M	-	6-3 $\frac{1}{2}$ x 4 $\frac{1}{2}$	103-3600	218.0	7.00	6	N	I	Sil	1.51	1.32	1.37	1.18	.284	.341	

Commercial Vehicle Engines—Continued

Angle (Deg.)	VALVES		PISTONS		CONNECTING RODS		CRANKSHAFT		CARBU-RETOR		OVERALL DIMENSIONS (In.)		Line Number												
	Seats		Front End Drive—Type		Material		Material		Main Bearings		Size														
	Inserts Used?	Insert Material (S.A.E. No.)	Length (In.)	Weight with Pins, Rings and Bushings (Oz.)	Piston Pin—Diameter and Length (In.)	Number of Rings per Piston	Length (In.)	Center to Center Length (In.)	Weight with Bushing and Cap (Oz.)	Material	Counterbalance Used?	Crank-Pin	Diameter and Length (In.)	Front	Rear	Oil Pressure To—	Spark Plug—Thread Size	Make	Width	Height	Length				
(h)	WA	Ch	CT	3.56	.859x2.61	4	CS	7	1.93x1.31	4	2.25x1.21	2.25x1.81	abcef	18 mm		1 1/4	506	28	27 1/4	36	1				
(h)	WA	Ch	CT	3.56	.859x2.68	4	CS	7	1.93x1.31	4	2.25x1.21	2.25x1.81	abcef	18 mm		1 1/4	512	28	27 1/4	36	2				
(h)	HS	Ch	AT	3.93	.859x2.87	4	CS	8 1/2	2.12x1.37	4	2.37x1.43	2.37x2.06	abcef	18 mm		1 1/2	548	25 1/2	29 1/2	42	3				
(h)	HS	Ch	CT	4.75	1.10x3.06	4	CS	8 1/2	2.25x1.56	7	2.62x1.56	2.62x2.18	abcef	18 mm		1 1/2	750	25 1/2	29 1/2	42	4				
(h)	HS	Ch	CT	4.75	1.10x3.18	4	CS	8 1/2	2.25x1.56	7	2.62x1.56	2.62x2.18	abcef	18 mm		1 1/2	760	25 1/2	29 1/2	42	5				
(h)	HS	Ch	CT	4.75	1.10x3.43	4	CS	9	2.25x1.56	7	2.62x1.56	2.62x2.18	abcef	18 mm		1 1/2	770	25 1/2	29 1/2	42	6				
30	HS	Ch	CT	5.31	1.25x3.09	4	CS	9	2.37x1.81	7	2.62x1.65	2.62x2.65	abcef	18 mm		1 1/2	925	25 1/2	32 1/2	44	7				
30	HS	Ch	CT	5.31	1.25x3.09	4	CS	9	2.37x1.81	7	2.62x1.65	2.62x2.65	abcef	18 mm		1 1/2	932	25 1/2	32 1/2	44	8				
30	HS	Ch	CT	5.31	1.25x3.43	5	CS	9	2.37x1.81	7	2.62x1.65	2.62x2.65	abcef	18 mm		1 1/2	938	25 1/2	32 1/2	44	9				
30	HS	Ch	CT	5.31	1.25x3.43	4	CS	9	2.37x1.81	7	2.62x1.65	2.62x2.65	abcef	18 mm		1 1/2	951	25 1/2	32 1/2	44	10				
30	HS	Ch	AT	5.31	1.25x3.43	4	CS	9 1/2	2.50x1.81	7	2.75x1.75	2.75x2.81	abcef	18 mm		1 1/2	1298	25 1/2	36 1/2	46	11				
30	HS	Ch	AT	5.31	1.25x3.68	4	CS	9 1/2	2.50x1.81	7	2.75x1.75	2.75x2.81	abcef	18 mm		1 1/2	1318	25 1/2	36 1/2	46	12				
45	EE	Ch	AT	5.31	1.50x3.71	4	CS	10 1/2	2.75x1.81	7	2.75x1.75	2.75x2.81	abcef	18 mm		2	1430	25 1/2	39 1/2	46	13				
45	EE	SA	Ch	Alt	3.68	.859x2.62	4	MS	7 1/2	1040	Y	1.93x1.00	4	2.25x1.23	2.25x1.87	abce	14 mm	Car	1 1/2	500	23 1/4	31 1/2	37	14	
45	EE	SA	Ch	Alt	3.68	.859x2.75	4	MS	8	1040	Y	2.06x1.00	4	2.50x1.23	2.50x1.87	abce	14 mm	Str	1 1/2	535	23 1/4	31 1/2	37	15	
45	EE	SA	Ch	Alt	3.87	.859x2.87	4	MS	8	1040	Y	2.12x1.21	4	2.50x1.31	2.50x1.87	abce	14 mm	Car	1 1/2	580	23 1/4	31 1/2	39	16	
45	EE	SA	Ch	Alt	3.87	.859x2.87	4	MS	7 1/2	35	1040	Y	2.12x1.21	4	2.50x1.31	2.50x1.87	abce	14 mm	Car	1 1/2	600	23 1/4	31 1/2	39	17
45	EE	SA	Ch	Alt	4.56	2.12x3.25	4	MS	10 1/2	1040	Y	2.31x1.43	7	3.00x1.87	3.00x3.04	abcef	14 mm	Str	1 1/2	1050	24 1/2	31 1/2	49	18	
45	N	HS	Al	6.12	7.13x4.17	4	1040	10 1/2	132	CNS	Y	2.37x0.00	3	2.62x3.31	2.75x2.09	abcef	14 mm	Zen	1 1/2	1450	27	37 1/2	70	19	
45	N	HS	Al	6.12	7.13x4.17	4	1040	12 1/2	132	CNS	Y	2.37x0.00	4	2.62x3.31	2.62x4.00	abcef	14 mm	Zen(2)	1 1/2	1900	27	37 1/2	87 1/2	20	
45	Bo	CNT	HG	CAS	11	.687x2.36	3	MS	6 1/2	1040	Y	1.70x1.41	3	2.10x1.50	2.10x2.00	abce	14 mm	Own	1 1/2	78	310	21	21		
45	Bo	CNT	HG	CAS	11	.750x2.84	3	MS	7	17	CAS	Y	2.00x1.75	3	2.50x1.37	2.50x1.97	abce	14 mm	Own	1 1/2	94	485	22	23	
45	Bo	CNT	HG	CAS	17	.750x2.84	3	MS	7	18	CAS	Y	2.14x1.75	3	2.50x1.37	2.50x1.97	abce	14 mm	Own	1 1/2	1247	40 1/2	27 1/2	44	24
30	HS	Ch	AT	4.37	1.25x3.12	5	AS	9 1/2	54	CS	2.37x1.75	7	2.70x2.25	2.70x2.87	abcef	18 mm	Zen	1 1/2	1087	24 1/2	37 1/2	44	25		
30	HS	Ch	AT	4.37	1.25x3.12	5	AS	9 1/2	54	CS	2.37x1.75	7	2.70x2.25	2.70x2.87	abcef	18 mm	Zen	1 1/2	1247	40 1/2	27 1/2	44	26		
30	HS	Ch	AT	4.37	1.25x3.12	5	AS	9 1/2	54	CS	2.37x1.75	7	2.70x2.25	2.70x2.87	abcef	18 mm	Zen	1 1/2	1087	24 1/2	37 1/2	44	27		
30	HS	Ch	AT	4.37	1.25x3.12	5	AS	7	54	CS	2.37x1.75	7	2.70x2.25	2.70x2.87	abcef	18 mm	Op	1 1/2	315	34	18 1/2	28			
30	HS	Ch	AT	4.20	.990x3.08	4	1040A	7	33	1050	Y	1.93x1.00	3	2.25x1.25	2.25x1.50	ace	14 mm	Zen	1 1/2	330	18 1/2	17 1/2	30	29	
30	HS	Ch	AT	4.16	.990x3.25	4	1040A	7	33	1050	Y	2.31x1.23	4	2.69x1.19	2.78x1.47	abcef	14 mm	Zen	1 1/2	375	15	18 1/2	40 1/2	30	
45	EE	WR	HG	Al	4.39	1.00x3.18	4	1040A	9 1/2	51	1050	Y	2.37x1.34	7	2.75x2.08	2.75x2.09	abcef	14 mm	Zen	1 1/2	340	17 1/2	18 1/2	31	31
45	EE	WR	HG	Al	4.39	1.00x3.36	4	1040A	9 1/2	51	1050	Y	2.37x1.34	7	2.75x2.08	2.75x2.09	abcef	14 mm	Zen	1 1/2	340	17 1/2	18 1/2	32	32
(h)	St	HG	Al	5.39	1.25x3.59	4	1040A	10 1/2	73	1050	Y	2.62x1.47	7	3.00x2.22	3.00x2.22	abcef	14 mm	Zen	1 1/2	35	47 1/2	47 1/2	33	33	
(h)	St	HG	Al	5.14	1.25x3.71	4	1040A	10 1/2	73	1050	Y	2.62x1.47	7	3.00x2.22	3.00x2.22	abcef	14 mm	Zen	1 1/2	35	47 1/2	47 1/2	34	34	
30	St	HG	Al	5.14	1.25x3.84	4	1040A	10 1/2	73	1050	Y	2.62x1.47	7	2.00x2.22	3.00x2.22	abcef	14 mm	Zen	1 1/2	35	47 1/2	47 1/2	35	35	
30	St	HG	Al	5.25	1.25x4.06	4	1040A	10 1/2	82	1050	Y	2.62x1.72	7	3.50x2.50	3.50x2.50	abcef	14 mm	Zen	1 1/2	2	66	36	36	37	
30	E	St	HG	Al	5.03	1.37x4.47	4	4140A	12 1/2	77	4140	Y	2.75x2.06	7	3.00x2.50	3.00x2.50	abcef	18 mm	Str	2	3	330	18 1/2	17 1/2	38
(h)	HG	Cl	2.87	16	.703x2.06	3	CS	5 1/2	17	1045	N	1.50x1.18	3	1.75x1.78	2.75x1.78	abcef	14 mm	Zen	3 1/2	375	15	18 1/2	40 1/2	40	
(h)	HG	Cl	2.87	21	.703x2.43	3	CS	5 1/2	17	1045	N	1.50x1.18	3	1.75x1.78	2.75x1.78	abcef	14 mm	Zen	1 1/2	410	15	18 1/2	31 1/2	41	
(h)	HG	Cl	2.87	21	.709x2.68	3	CS	5 1/2	17	1045	N	1.50x1.18	3	1.75x1.78	2.75x1.78	abcef	14 mm	Zen	1 1/2	340	17 1/2	18 1/2	32	32	
(h)	HG	Cl	2.87	16	.703x2.43	3	CS	5 1/2	17	1045	N	1.50x1.18	3	1.75x1.78	2.75x1.78	abcef	14 mm	Zen	1 1/2	340	17 1/2	18 1/2	33	33	
(h)	HG	Cl	2.87	16	.709x2.68	3	CS	5 1/2	17	1045	N	1.50x1.18	3	1.75x1.78	2.75x1.78	abcef	14 mm	Zen	1 1/2	410	15	18 1/2	31 1/2	41	
(h)	HG	Cl	2.87	16	.709x2.68	4	CS	7	32	1045	N	1.93x1.31	3	2.25x1.89	2.25x1.89	abcef	18 mm	Zen	1 1/2	415	18 1/2	23	41	47	
(h)	HG	Cl	2.87	16	.709x2.68	4	CS	7	32	1045	N	1.93x1.31	3	2.25x1.89	2.25x1.89	abcef	18 mm	Zen	1 1/2	415	18 1/2	23	41	47	
(h)	HG	Cl	2.87	16	.709x2.68	4	CS	7	32	1045	N	1.93x1.31	3	2.25x1.89	2.25x1.89	abcef	18 mm	Zen	1 1/2	415	18 1/2	23	41	47	
(h)	HG	Cl	2.87	16	.709x2.68	4	CS	7	32	1045	N	1.93x1.31	3	2.25x1.89	2.25x1.89	abcef	18 mm	Zen	1 1/2	415	18 1/2	23	41	47	
(h)	HG	Cl	2.87	16	.709x2.68	4	CS	7	32	1045	N	1.93x1.31	3	2.25x1.89	2.25x1.89	abcef	18 mm	Zen	1 1/2	415	18 1/2	23	41	47	
(h)	HG	Cl	2.87	16	.709x2.68	4	CS	7	32	1045	N	1.93x1.31	3	2.25											

American Stock, Marine and

Line Number	MAKE AND MODEL	Designed for	Number of Cylinders, Bore and Stroke (In.)	Rated Hp. (A.M.A.)	Maximum Brake Hp. at Specified R.P.M.	Piston Displacement (Cu. In.)	Compression Ratio - to 1	Maximum Torque at R.P.M. (Lb. Ft.)	No. Cast in One Piece	CYLIN- DERS	VALVES										
											Liners—Type		Crankcase—Upper Half Integral with Cylinders?		Max. Head Diameter (In.)	Min. Port Diameter (In.)	Lift (In.)	Stem Diameter (In.)			
											In	Ex	In	Ex							
1	Hercules	OXC	Tr. Ind	4-4 $\frac{1}{2}$ x 5	28.9	56-1800	283.5	4.30	185-1000	4	N	In	Ex	CNS	1.87	1.87	1.62	326	326	373	373
2	Hercules	K	T. Tr. Ind	4-4 $\frac{1}{2}$ x 5 $\frac{3}{4}$	28.9	55-1600	326.3	3.89	202-1000	4	N	In	Ex	Sil	2.25	2.25	2.00	326	326	434	434
3	Hercules	L	Tr. Tr. Ind	4-4 $\frac{1}{2}$ x 5 $\frac{3}{4}$	32.4	59-1600	365.8	3.78	226-1000	4	N	In	Ex	Sil	2.25	2.25	2.00	326	326	434	434
4	Hercules	G	T. Tr. Ind	4-4 $\frac{1}{2}$ x 5 $\frac{3}{4}$	36.1	63-1600	407.4	3.89	250-1000	4	N	In	Ex	Sil	2.25	2.25	2.00	326	326	434	434
5	Hercules	E	T. Tr. Ind	4-5 $\frac{1}{2}$ x 5 $\frac{3}{4}$	40.0	74-1600	451.4	4.00	288-1000	4	N	In	Ex	Sil	2.25	2.25	2.00	326	326	434	434
6	Hercules	TX	Ind	4-5 $\frac{1}{2}$ x 7	48.4	88-1200	665.0	3.84	425-800	4	N	In	Ex	Sil	2.90	2.90	2.50	350	375	497	497
7	Hercules	TXA	Ind	4-6 $\frac{1}{2}$	57.6	98-1200	792.0	3.84	485-800	4	N	In	Ex	Sil	2.90	2.90	2.50	350	375	497	497
8	Hercules	TXO	Ind	4-6 $\frac{1}{2}$ x 7	65.0	112-1200	894.0	3.84	588-800	4	N	In	Ex	Sil	2.90	2.90	2.50	350	375	497	497
9	Hercules	OXA-3	T. B. Tr	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	23.4	29-3000	180.0	5.50	130-1000	6	N	In	Ex	CNS	1.50	1.37	1.31	1.12	281	310	310
10	Hercules	OXA-5	T. B. Tr	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	23.4	59-3000	190.0	5.50	130-1000	6	N	In	Ex	CNS	1.50	1.37	1.31	1.12	281	310	310
11	Hercules	QXV-3	T. B. Tr	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	25.3	65-3000	205.0	5.89	143-1000	6	N	In	Ex	CNS	1.50	1.37	1.31	1.12	281	310	310
12	Hercules	QXB-5	T.B.Tr.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	25.3	65-3500	205.0	5.85	143-1000	6	N	In	Ex	CNS	1.50	1.37	1.31	1.12	281	310	310
13	Hercules	QXC-3	T. B. Tr	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	27.3	70-3500	221.0	5.85	154-1000	6	N	In	Ex	CNS	1.62	1.37	1.43	1.12	281	310	310
14	Hercules	QXC-5	T.B.Tr.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	27.3	70-3500	221.0	5.85	154-1000	6	N	In	Ex	CNS	1.62	1.37	1.43	1.12	281	310	310
15	Hercules	JXA	T.B.Tr.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	27.3	63-2800	228.0	5.16	141-1000	6	N	In	Ex	CNS	1.75	1.62	1.50	1.37	322	373	373
16	Hercules	JXB	T.B.Tr.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	31.5	68-2800	263.0	5.40	163-1000	6	N	In	Ex	CNS	1.75	1.62	1.50	1.30	322	373	373
17	Hercules	JJC	T.B.Tr.Ind	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	33.7	73-2800	282.0	5.35	175-1000	6	N	In	Ex	CNS	1.75	1.62	1.50	1.37	322	373	373
18	Hercules	JXD	T.B.Tr.Ind	6-4 $\frac{1}{2}$	38.4	84-2800	320.0	5.63	204-1000	6	N	In	Ex	CNS	1.75	1.62	1.50	1.37	322	373	373
19	Hercules	WYC	T.B.Tr.Ind	6-4 $\frac{1}{2}$	38.4	90-2400	339.0	5.00	212-1000	6	N	In	Ex	Sil	1.75	1.75	1.62	1.50	356	373	373
20	Hercules	WXC-2	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	40.3	95-2400	360.8	5.00	233-1000	6	N	In	Ex	Sil	1.75	1.75	1.62	1.50	356	373	373
21	Hercules	WXC-3	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	43.3	101-2400	383.0	5.00	262-1000	6	N	In	Ex	Sil	1.75	1.75	1.62	1.50	356	373	373
22	Hercules	WXLC	T.B.Tr.Ind	6-4 $\frac{1}{2}$	38.4	104-2800	358.0	5.42	260-950	6	N	In	Ex	Sil	1.75	1.75	1.62	1.50	356	373	373
23	Hercules	WLX-3	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	43.3	118-2800	404.0	5.30	294-950	6	N	In	Ex	Sil	1.75	1.75	1.62	1.50	356	373	373
24	Hercules	YXC	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	45.9	94-2200	428.4	4.40	281-2000	6	N	In	Ex	Sil	2.00	2.00	1.75	1.75	388	373	373
25	Hercules	YXC-2	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	48.6	98-2200	453.0	4.77	300-800	6	N	In	Ex	Sil	2.00	2.00	1.75	1.75	388	373	373
26	Hercules	YXC-3	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	51.3	104-2200	478.0	4.40	320-800	6	N	In	Ex	Sil	2.00	2.00	1.75	1.75	388	373	373
27	Hercules	RBX	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	48.6	110-2200	500.9	4.95	330-1000	6	N	In	Ex	Sil	2.00	2.00	1.75	1.75	388	373	373
28	Hercules	RXC	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 4 $\frac{1}{8}$	51.2	114-2200	529.2	4.95	350-1000	6	N	In	Ex	Sil	2.00	2.00	1.75	1.75	388	373	373
29	Hercules	RLX	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 5 $\frac{1}{2}$	51.3	135-2200	529.2	5.40	388-1000	6	N	In	Ex	Sil	2.00	2.00	1.75	1.75	388	373	373
30	Hercules	RLX	T.B.Tr.Ind	6-4 $\frac{1}{2}$ x 5 $\frac{1}{2}$	54.2	142-2200	558.0	5.40	407-1000	6	N	In	Ex	Sil	2.00	2.00	1.81	1.75	388	373	373
31	Hercules	HYB	T.B.Tr.Ind	6-5 $\frac{1}{2}$	60.0	148-2000	707.0	4.50	455-900	3	N	Se	Ex	Sil	2.43	2.31	2.12	2.00	468	468	498
32	Hercules	H7C	T.B.Tr.Ind	6-5 $\frac{1}{2}$	66.2	164-2000	779.0	4.50	505-900	3	N	Se	Ex	Sil	2.43	2.31	2.12	2.00	468	468	498
33	Hercules	HDX	T.B.Tr.Ind	6-5 $\frac{1}{2}$ x 6	72.0	180-2000	855.0	4.50	555-900	3	N	Se	Ex	Sil	2.43	2.31	2.12	2.00	468	468	498
34	Hercules	HXE	T.B.Tr.Ind	6-5 $\frac{1}{2}$ x 6	79.6	198-2000	935.0	4.50	612-900	3	N	Se	Ex	Sil	2.43	2.31	2.12	2.00	468	468	498
35	Hudson	40-C	C. T	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	21.6	92-4000	212.0	6.50	167-1200	6	N	In	Ex	Sil	1.37	1.37	1.26	1.23	343	341	339
36	Hudson	48-C	C. T	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	21.6	98-4000	212.0	6.50	163-1000	6	N	In	Ex	Sil	1.37	1.37	1.26	1.23	343	341	339
37	International	U-7	PU	4-3 $\frac{1}{2}$ x 5 $\frac{1}{2}$	22.5	34.5-1200	220.9	4.80	153-1000	4	W	Se	Ex	Sil	1.78	1.78	1.56	1.60	402	432	432
38	International	U-10	PU	4-4 $\frac{1}{2}$ x 5 $\frac{1}{2}$	28.9	45-1200	283.7	4.67	207-850	4	W	Se	Ex	Sil	1.90	1.75	1.68	1.48	441	441	432
39	International	300	PU	4-4 $\frac{1}{2}$ x 5 $\frac{1}{2}$	36.1	56.5-1050	425.3	4.74	300-750	4	W	Se	Ex	Sil	2.18	2.18	1.75	1.93	426	432	432
40	International	U-21	PU	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$	33.7	66-2000	298.2	5.72	200-1200	6	W	Se	Ex	Sil	1.87	1.75	1.62	1.50	343	372	372
41	International	PA-100	PU	6-5 $\frac{1}{2}$ x 6	60.0	110-1400	648.0	5.30	447-700	6	N	Se	Ex	Sil	2.37	2.37	2.12	2.12	437	437	437
42	Kermath	1-1C	M	2-4x4		10-900	101.0			2	N	Se	Ex	CNS	1.75	1.75	1.50	1.50			375
43	Kermath	ZX	M	4-2 $\frac{1}{2}$ x 3		25-3400	65.0	6.00	40-1700	4	N	In	Ex	Sil	1.25	1.12	1.12	1.12	375	310	310
44	Kermath	IXL	M	4-3 $\frac{1}{2}$ x 4		33-2200	134.0	5.50	97-2200	4	N	In	Ex	Sil	1.48	1.35	1.25	1.12	375	310	310
45	Kermath	IXH	M	4-3 $\frac{1}{2}$ x 4		50-3200	134.0	5.50	97-2200	4	N	In	Ex	Sil	1.48	1.35	1.25	1.12	375	310	310
46	Kermath	20	M	4-4x4		20-1000	201.0			4	N	Se	Ex	CNS	1.75	1.75	1.50	1.50	375	375	375
47	Kermath	F	M	4-4 $\frac{1}{2}$ x 5 $\frac{1}{2}$		55-1500	330.0	4.80		4	N	Se	Ex	CNS	2.25	2.25	2.00	2.00	375	375	375
48	Kermath	P-840	M	6-3 $\frac{1}{2}$ x 4 $\frac{1}{8}$		110-3600	249.0	7.00		6	N	Se	Ex	Sil							

Commercial Vehicle Engines—Continued

Angle (Deg.)	VALVES		PISTONS				CONNECTING RODS		CRANKSHAFT				CARBU-RETOR	OVERALL DIMENSIONS (In.)			Line Number									
	Seats		Front End Drive—Type		Material		Material		Crank-Pin		Main Bearings			Size	Width	Height	Length									
	Inserts Used?	Insert Material (S.A.E. No.)	Length (In.)	Weight with Pins, Rings and Bushings (Oz.)	Piston Pin—Diameter and Length (In.)	Number of Rings per Piston	Material	Center to Center Length (In.)	Weight with Bushing and Cap (Oz.)	Material	Counterbalance Used?	Diameter and Length (In.)	Front	Rear	Oil Pressure To—	Spark Plug—Thread Size	Engine Weight without Carburetor or Ignition (Lb.)									
45	E	HG	CI	4.87	73	1.37x3.75	4	1035	9 ¹ / ₂	58	1045	N	2.00x2.25	3	2.00x3.18	2.00x3.31	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	655	20 ¹ / ₂	28 ¹ / ₂	36 ¹ / ₂	1	
45	N	HG	CI	5.25	82	1.50x3.75	4	1035	10 ¹ / ₂	83	1045	N	2.50x2.62	3	3.00x3.37	3.00x3.50	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	675	21 ¹ / ₂	30 ¹ / ₂	41 ¹ / ₂	2	
45	N	HG	CI	5.25	95	1.50x4.00	4	1035	10 ¹ / ₂	83	1045	N	2.50x2.62	3	3.00x3.37	3.00x3.50	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	880	21 ¹ / ₂	30 ¹ / ₂	41 ¹ / ₂	3	
45	N	HG	CI	5.25	103	1.50x4.25	4	1035	10 ¹ / ₂	83	1045	N	2.50x2.62	3	3.00x3.37	3.00x3.50	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	885	21 ¹ / ₂	30 ¹ / ₂	41 ¹ / ₂	4	
45	N	HG	CI	5.25	106	1.50x4.50	4	1035	10 ¹ / ₂	83	1045	N	2.50x2.62	3	3.00x3.37	3.00x3.50	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	890	21 ¹ / ₂	30 ¹ / ₂	41 ¹ / ₂	5	
45	E	HG	CI	7.00	196	1.87x4.87	5	1035	13 ¹ / ₂	178	1045	N	3.00x3.00	3	3.75x4.37	3.75x4.50	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	1800	26 ¹ / ₂	38	52 ¹ / ₂	6	
45	E	HG	CI	7.00	222	1.87x5.37	5	1035	13 ¹ / ₂	178	1045	N	3.00x3.00	3	3.75x4.37	3.75x4.50	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	1815	26 ¹ / ₂	38	52 ¹ / ₂	7	
45	E	HG	CI	7.00	240	1.87x5.75	5	1035	13 ¹ / ₂	178	1045	N	3.00x3.00	3	3.75x4.37	3.75x4.50	abe	7 ¹ / ₂ 18	Op	2	1850	26 ¹ / ₂	38	52 ¹ / ₂	8	
30	N	HG	CI	3.50	53	0.875x2.67	4	1035	7	26	CS	N	2.00x1.25	7	2.50x3.1	2.50x1.93	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	480	17 ¹ / ₂	20 ¹ / ₂	33 ¹ / ₂	9	
30	N	HG	CI	3.50	53	0.875x2.79	4	1035	7	26	CS	N	2.00x1.25	7	2.50x3.1	2.50x1.93	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	480	17 ¹ / ₂	20 ¹ / ₂	33 ¹ / ₂	10	
30	N	HG	CI	3.50	53	0.875x2.79	4	1035	7	26	CS	N	2.00x1.25	7	2.50x3.1	2.50x1.93	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	480	17 ¹ / ₂	20 ¹ / ₂	33 ¹ / ₂	11	
30	N	HG	AI	3.50	24	0.875x2.90	4	1035	7	26	CS	N	2.00x1.25	7	2.50x3.1	2.50x1.93	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	481	17 ¹ / ₂	20 ¹ / ₂	30 ¹ / ₂	12	
30	N	HG	AI	3.50	24	0.875x2.90	4	1035	8	37	CS	N	2.00x1.50	7	2.50x3.1	2.50x2.12	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	483	17 ¹ / ₂	20 ¹ / ₂	33 ¹ / ₂	14	
45	N	HG	CI	4.18	48	1.00x1.35	4	1035	8	37	CS	N	2.00x1.50	7	2.50x3.1	2.50x2.12	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	560	17 ¹ / ₂	23 ¹ / ₂	37 ¹ / ₂	16	
45	N	HG	CI	4.12	56	1.00x3.37	4	1035	8	37	CS	N	2.00x1.50	7	2.50x3.1	2.50x2.12	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	565	17 ¹ / ₂	23 ¹ / ₂	37 ¹ / ₂	17	
45	N	HG	AI	4.18	40	1.00x3.51	4	1035	8	37	CS	N	2.00x1.50	7	2.50x3.1	2.50x2.12	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	570	17 ¹ / ₂	23 ¹ / ₂	37 ¹ / ₂	18	
45	N	HG	CI	4.56	64	1.12x3.56	4	3140	9 ¹ / ₂	51	1045	N	2.25x1.50	7	2.62x1.75	2.62x2.75	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	805	21	27	41 ¹ / ₂	19	
45	N	HG	CI	4.56	65	1.12x3.62	4	3140	9 ¹ / ₂	51	1045	N	2.25x1.50	7	2.62x1.75	2.62x2.75	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	810	21	27	41 ¹ / ₂	20	
45	N	HG	CI	4.56	63	1.12x3.68	4	3140	9 ¹ / ₂	51	1045	N	2.25x1.50	7	2.62x1.75	2.62x2.75	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	820	21	27	41 ¹ / ₂	21	
45	N	HG	AI	4.18	47	1.12x3.56	4	3140	8 ¹ / ₂	50	CS	Y	2.25x1.65	7	2.62x1.43	2.62x2.21	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	811	21	27	41 ¹ / ₂	22	
45	N	HG	AI	4.37	55	1.12x3.68	4	3140	8 ¹ / ₂	50	CS	Y	2.25x1.65	7	2.62x1.43	2.62x2.21	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	825	21	27	41 ¹ / ₂	23	
45	N	HG	CI	4.87	79	1.25x3.93	4	1035	9 ¹ / ₂	64	1045	N	2.50x2.37	7	3.00x3.00	3.00x3.30	abe	7 ¹ / ₂ 18	Op	2	1810	24 ¹ / ₂	40 ¹ / ₂	54 ¹ / ₂	31	
45	N	HG	CI	4.87	85	1.12x3.93	4	1035	9 ¹ / ₂	64	1045	N	2.50x1.75	7	3.00x2.00	3.00x3.00	abe	7 ¹ / ₂ 18	Op	2	1810	24 ¹ / ₂	40 ¹ / ₂	54 ¹ / ₂	32	
45	N	HG	CI	4.87	87	1.12x4.06	4	1035	9 ¹ / ₂	64	1045	N	2.50x1.75	7	3.00x2.00	3.00x3.00	abe	7 ¹ / ₂ 18	Op	2	1830	24 ¹ / ₂	40 ¹ / ₂	54 ¹ / ₂	33	
45	N	HG	AI	4.87	60	1.25x3.93	5	3140	9 ¹ / ₂	81	1045	N	2.62x2.00	7	3.00x1.93	3.00x2.93	abe	7 ¹ / ₂ 18	Op	2	1010	21	31	45 ¹ / ₂	28	
(h)	N	HG	AI	4.87	65	1.25x4.10	5	CNM	9 ¹ / ₂	99	CS	N	3.00x2.00	7	3.50x1.93	3.50x2.93	abe	7 ¹ / ₂ 18	Op	1 ¹ / ₂	1195	22 ¹ / ₂	30	44 ¹ / ₂	30	
30	E	EE	HS	AI	6.50	95	1.50x4.43	4	3140	12	143	1045	N	3.00x2.25	7	3.50x2.37	3.50x4.35	ace	7 ¹ / ₂ 18	Op	2	1810	24 ¹ / ₂	40 ¹ / ₂	54 ¹ / ₂	31
30	E	EE	HS	AI	6.67	105	1.50x4.56	4	3140	12	143	1045	N	3.00x2.25	7	3.50x2.37	3.50x4.35	ace	7 ¹ / ₂ 18	Op	2	1810	24 ¹ / ₂	40 ¹ / ₂	54 ¹ / ₂	32
30	E	EE	HS	AI	6.67	117	1.50x4.81	4	3140	12	143	1045	N	3.00x2.25	7	3.50x2.37	3.50x4.35	ace	7 ¹ / ₂ 18	Op	2	1830	24 ¹ / ₂	40 ¹ / ₂	54 ¹ / ₂	33
30	E	EE	HS	AI	7.25	127	1.50x5.06	4	3140	13	152	1045	N	3.00x2.25	7	3.50x2.37	3.50x4.35	ace	7 ¹ / ₂ 18	Op	2	1830	24 ¹ / ₂	40 ¹ / ₂	54 ¹ / ₂	34
45	N	HG	AI	3.18	8	0.750x2.44	4	DFS	8 ¹ / ₂	29	DFS	Y	1.94x1.37	3	2.34x1.62	2.41x2.37	Splash	14 mm	Car	1 ¹ / ₂	482	25	37 ¹ / ₂	55 ¹ / ₂	35	
45	N	HG	AI	3.18	8	0.750x2.44	4	DFS	8 ¹ / ₂	29	DFS	Y	1.94x1.37	3	2.34x1.62	2.41x2.37	Splash	14 mm	Car	1 ¹ / ₂	504	25	37 ¹ / ₂	55 ¹ / ₂	36	
45	N	HG	CI	4.71	63	1.29x3.37	4	AS	10	73	CNS	N	2.25x2.25	24	SAE-313	Splash	14 mm	Car	1 ¹ / ₂	1735	25 ¹ / ₂	42 ¹ / ₂	45 ¹ / ₂	39		
45	N	HG	CI	6.03	95	1.29x3.68	4	AS	11 ¹ / ₂	102	CNS	N	2.62x2.73	24	SAE-314	Splash	14 mm	Car	1 ¹ / ₂	590	21	27	51 ¹ / ₂	46		
45	N	HG	CI	6.02	122	1.48x4.12	4	AS	13	152	CNS	N	3.12x2.73	24	SAE-315	Splash	14 mm	Car	1 ¹ / ₂	830	22 ¹ / ₂	31	51 ¹ / ₂	47		
45	N	HG	AI	4.56	34	1.10x3.17	4	AS	9 ¹ / ₂	49	CS	Y	2.25x1.62	7	2.70x1.53	2.70x2.54	abce	7 ¹ / ₂ 18	Str	1 ¹ / ₂	1730	27 ¹ / ₂	44 ¹ / ₂	45 ¹ / ₂	39	
45	N</																									

American Stock, Marine and

Line Number	MAKE AND MODEL	Designed for	Number of Cylinders, Bore and Stroke (in.)	Rated H.P. (A.M.A.)	Maximum Brake H.P. at Specified R.P.M.	Piston Displacement (Cu. In.)	Compression Ratio - to 1	Maximum Torque at R.P.M. (Lb. Ft.)	No. Cast in One Piece	Cylinders	Liners - Type	Crankcase - Upper Half Integral with Cylinders?	VALVES						
													Max. Head Diameter (in.)	Min. Port Diameter (in.)	Lift (in.)	Stem Diameter (in.)			
1	M-M Twin City	RE	Tr. Ind	4-3½x4½	20.9	33-1500	185.8	5.75	120-1150	2	N	Se	HB	1.46	1.46	1.25	1.25	.354	.343
2	M-M Twin City	KEC	Tr. Ind	4-4½x5	28.9	47-1275	283.7	5.60	190-1000	4	N	Se	Sil	1.71	1.59	1.50	1.37	.488	.437
3	M-M Twin City	KED	Tr. Ind	4-4½x5	28.9	47-1275	283.7	5.60	190-1000	4	N	Se	Sil	1.71	1.59	1.50	1.37	.488	.437
4	M-M Twin City	GE	Tr. Ind	4-4½x6	34.2	59-1075	403.2	5.25	295-950	2	N	Se	Sil	1.84	2.84	3.00	3.00	.687	.687
5	M-M Twin City	TA	M. Ind	7-1½x9	84.1	119-650	1486.0	4.80	1050-300	1	N	Se	Sil	3.34	2.84	3.00	3.00	.687	.687
6	M-M Twin City	BE	M. Ind	4-7½x9	96.0	136-650	1698.0	4.40	1150-300	1	N	Se	Sil	3.50	2.84	3.00	3.00	.687	.687
7	M-M Twin City	ME	M. Ind	4-8x9	102.0	145-650	1810.0	4.70	1250-300	1	N	Se	Sil	3.50	2.84	3.00	3.00	.687	.687
8	M-M Twin City	SE	M. Ind	6-7½x9	120.0	173-650	2229.0	4.80	1450-400	1	N	Se	Sil	3.50	2.84	3.00	3.00	.687	.687
9	M-M Twin City	TE	M. Tr	6-7½x9	144.0	198-650	2547.0	4.40	1660-450	1	N	Se	Sil	3.50	2.84	3.00	3.00	.687	.687
10	M-M Twin City	NE	M. Ind	6-8x9	153.6	210-650	2714.0	4.70	1780-450	1	N	Se	Sil	3.50	2.84	3.00	3.00	.687	.687
11	Murray & Tregurtha	OC-4	M	4-6½x8	80-1000	1062.4	3.33	560-600	2	N	Se	CNS	2.46	2.46	2.25	2.25	.500	.437	
12	Murray & Tregurtha	M-4	M	4-6½x8	90-1000	1062.4	4.20	660-700	2	N	Se	CNS	2.46	2.46	2.25	2.25	.500	.437	
13	Murray & Tregurtha	K-6	M	6-6½x7½	346-1650	1426.6	5.25	1110-1525	3	N	Se	CNS	2.46	2.46	2.25	2.25	.375	.437	
14	Murray & Tregurtha	OC-6	M	6-6½x8	140-1100	1593.6	3.33	910-600	2	N	Se	CNS	2.46	2.46	2.25	2.25	.500	.437	
15	Murray & Tregurtha	M-6	M	6-6½x8	175-1100	1593.6	4.20	882-695	2	N	Se	CNS	2.46	2.46	2.25	2.25	.500	.437	
16	Murray & Tregurtha	OCX-6	M	6-7½x8	175-1100	1981.4	4.00	1030-800	2	N	Se	CNS	2.71	2.46	2.37	2.25	.531	.437	
17	Plymouth	PP-10	C. T	6-3½x4½	23.4	84-3000	201.3	6.70	154-1200	6	N	In	Sil	1.46	1.46	1.31	1.31	.312	.340
18	Regal	Y	M	1-3½x3½	2-800	29.0	7.0	1	1	Se	CI	1.12	1.12	.312	.312	.312	.312		
19	Regal	OA	M	1-4x4½	4-800	56.0	1	1	Se	CI	1.50	1.50	.312	.312	.375	.375			
20	Regal	HA	M	1-4½x5½	6-800	97.0	1	1	Se	CI	2.00	2.00	.375	.375	.375	.375			
21	Regal	EA	M	1-5½x6½	7-600	141.0	1	1	Se	CI	2.12	2.12	.375	.375	.375	.375			
22	Regal	DV	M	2-2½x2¾	5-2000	27.0	2	2	2	AS	AS	AS	AS	1.50	1.50	.312	.312		
23	Regal	XB	M	2-3½x4	15-1900	66.3	2	2	2	AS	AS	AS	AS	1.50	1.50	.312	.312		
24	Regal	NB	M	2-4x4½	8-800	112.0	1	1	Se	CI	2.18	2.18	.375	.375	.375	.375			
25	Regal	(7) GB	M	2-4½x6	16-1000	213.0	2	2	Se	CI	2.37	2.37	.437	.437	.437	.437			
26	Regal	KB	M	2-5½x7	16-600	332.0	1	1	Se	CI	2.62	2.62	.437	.437	.500	.500			
27	Regal	LB	M	2-6½x8	20-600	531.0	1	1	Se	CI	2.62	2.62	.375	.375	.375	.375			
28	Regal	SC	M	4-7½x9	50-400	1590.0	1	1	Se	CI	1.60	1.39	1.43	1.43	.281	.312			
29	Reo	228	T	6-3½x4½	27.3	78-3200	228.0	6.20	169-1100	6	In	Sil	1.71	1.62	.312	.312	.373	.373	
30	Reo	245	T, B	6-3½x4½	29.4	86-3400	245.0	6.20	174-1000	6	In	Sil	1.71	1.62	.312	.312	.373	.373	
31	Reo	288	T, B	6-3½x4½	29.4	87-3000	288.0	6.20	208-800	6	In	Sil	1.71	1.62	.312	.312	.373	.373	
32	Reo	310	T, B	6-3½x5	31.5	97-2800	310.0	6.20	226-1000	6	In	Sil	1.71	1.62	.312	.312	.373	.373	
33	Reo	361	T, B	6-4½x4½	40.8	100-2800	361.0	6.00	254-800	6	In	Tun	2.06	1.87	1.81	1.62	.359	.432	
34	Scripps	34	M	4-3½x4	30-	134.0	5.20	92-2000	4	In	Sil	1.48	1.35	1.25	1.12	.250	.310		
35	Scripps	36	M	4-3½x4	50-3200	134.0	4	4	In	Sil	1.48	1.35	1.25	1.12	.250	.310			
36	Scripps	F4	M	4-3½x5	81-3000	220.0	6.10	4	In	Sil	1.93	1.93	.406	.406	.375	.375			
37	Scripps	94-95	M	6-3½x4½	70-2000	221.0	5.85	154-1000	5	In	Sil	1.60	1.39	1.43	1.43	.281	.312		
38	Scripps	96-97	M	6-3½x4½	90-3600	221.0	5.00	221.0	6	In	Sil	1.93	1.93	.406	.406	.375	.375		
39	Scripps	F6	M	6-3½x5	120-3000	331.0	6.10	6	In	Sil	1.75	1.62	1.50	1.50	.322	.373			
40	Scripps	104-105	M	6-4x4½	83-2000	320.0	5.63	204-1000	6	In	Sil	1.75	1.62	1.50	1.50	.322	.373		
41	Scripps	106-107	M	6-4x4½	95-2600	320.0	6	6	In	Sil	1.75	1.62	1.50	1.50	.322	.373			
42	Scripps	150, 1, 2, 3	M	6-4½x5½	165-3000	447.0	6.20	2	2	Se	Sil	2.25	2.25	.375	.375	.437	.437		
43	Scripps	154, 5, 6, 7	M	6-4½x5½	155-3000	447.0	6.20	2	2	Se	Sil	2.25	2.25	.375	.375	.437	.437		
44	Scripps	160, 1, 2, 3	M	6-4½x5½	166-2400	549.0	5.20	2	2	Se	Sil	2.37	2.28	.405	.405	.437	.437		
45	Scripps	164, 5	M	6-4½x5½	125-2000	549.0	5.20	2	2	Se	Sil	2.37	2.28	.405	.405	.437	.437		
46	Scripps	170, 1, 2, 3	M	6-4½x5½	186-2400	611.0	5.20	2	2	Se	Sil	2.37	2.28	.405	.405	.437	.437		
47	Scripps	174, 5	M	6-4½x5½	146-2000	611.0	5.20	2	2	Se	Sil	2.37	2.28	.405	.405	.437	.437		
48	Scripps	200, 1, 2, 3	M	6-5x5	212-2400	677.0	6.20	2	2	Se	Sil	2.56	2.28	.405	.405	.437	.437		
49	Scripps	204, 5, 6, 7	M	6-5x5	165-2000	677.0	6.20	2	2	Se	Sil	2.56	2.28	.405	.405	.437	.437		
50	Scripps	208, 9	M	6-5x5	220-2400	677.0	5.85	2	2	Se	Sil	2.50	2.37	.406	.406	.437	.437		
51	Scripps	214, 15	M	6-5x5	185-2000	677.0	5.00	2	2	Se	Sil	2.50	2.37	.406	.406	.437	.437		
52	Scripps	V8	M	8-3½x3½	85-3400	24.0	6.16	150-2200	8	N	Se	Two-Cycle Motor	1.53	1.53	.296	.296	.312	.312	
53	Scripps	V8-Mercury	M	8-3½x3½	95-3600	239.0	6.15	170-2100	8	N	Se	Two-Cycle Motor	1.53	1.53	.292	.292	.311	.311	
54	Scripps	V12-61, 63, 65, 67, 71, 73, 77	M	12-2½x3½	110-3900	267.3	6.70	186-2000	12	N	Se	Two-Cycle Motor	1.53	1.53	.292	.292	.311	.311	
55	Scripps	300, 1, 2, 3	M	12-4½x5½	304-2400	894.0	6.20	2	2	Se	Sil	2.25	2.25	.375	.375	.437	.437		
56	Scripps	304, 5, 6, 7	M	12-4½x5½	280-2400	894.0	6.20	2	2	Se	Sil	2.25	2.25	.375	.375	.437	.437		
57	Seaman	EM-2	M	2-2½x2½	6-1800	24.5	7.30	20-1000	2	N	In	Spec	2.50	2.50	.562	.562	.531	.531	
58	Seaman	EVM-4	M	4-2½x2½	15-2600	49.0	7.30	20-2600	2	N	In	Spec	2.50	2.50	.562	.562	.531	.531	
59	Seaman	(8) EC-2	Ind	5.0	115-2500	404.6	5.30	265-1100	6	N	In	Spec	2.25	2.25	.500	.500	.562	.562	
60	Speedway	SW	M	6-4½x4½	190-1300	1092.0	4.30	780-1000	2	N	Se	CI	2.06	2.06	.375	.375	.437	.437	
61	Speedway	MP	M	6-5½x7	250-1800	1092.0	5.00	835-1315	2	N	Se	CI	2.25	2.25	.455	.455	.437	.437	
62	Speedway	MC	M	6-5½x7	260-1800	1092.0	5.00	835-1315	6	N	Se	CI	2.25	2.25	.455	.455	.437	.437	
63	Speedway	R	M	6-7½x8	300-1200	163.0	4.20	1480-800	1	N	Se	CI	2.25</td						

Commercial Vehicle Engines—Continued

VALVES		PISTONS			CONNECTING RODS			CRANKSHAFT			CARBU-RETOR			OVERALL DIMENSIONS (In.)												
Angle (Deg.)	Insert Used?	Front End Drive—Type	Material	Length (In.)	Weight with Pins, Rings and Bushings (Oz.)	Piston Pin—Diameter and Length (In.)	Number of Rings per Piston	Material	Center to Center Length (In.)	Weight with Bushing and Cap (Oz.)	Material	Counterbalance Used?	Crank-Pin	Main Bearings	Spark Plug—Thread Size	Make	Size	Width	Height	Length	Line Number					
45	E	CNM	HG	CI	4.37	54	1.00x3.00	4	1040	9	54	1045	N	2.62x1.28	24	SAE-313	SAE-314	bet	14 mm	Sch	1	650	18 $\frac{1}{2}$	36 $\frac{1}{2}$	34	1
45	E	CNM	HG	CI	5.00	80	1.25x3.87	4	1040	10	97	1045	N	2.37x2.50	3	2.50x2.50	2.62x3.50	abdeg	7 $\frac{1}{2}$ -18	Sch	1	1125	24 $\frac{1}{4}$	41 $\frac{1}{2}$	41 $\frac{1}{2}$	2
45	E	CNM	HG	CI	5.00	80	1.25x3.87	4	1040	10	97	1045	N	2.37x2.50	3	2.50x2.50	2.62x3.50	abdeg	7 $\frac{1}{2}$ -18	Sch	1	1125	24 $\frac{1}{4}$	44	41 $\frac{1}{2}$	3
45	E	CNM	HG	CI	10.00	522	2.18x6.68	4	1045	20 $\frac{1}{2}$	116	1045	N	3.50x4.37	5	3.50x5.21	3.50x6.37	abdeg	7 $\frac{1}{2}$ -18	Zen	1 $\frac{1}{4}$	1110	24 $\frac{1}{4}$	57 $\frac{1}{2}$	45	4
45	E	CNM	HG	CI	10.25	572	2.18x7.18	4	1045	20 $\frac{1}{2}$	656	3140	N	3.50x4.37	5	3.50x5.21	3.50x6.37	abdeg	7 $\frac{1}{2}$ -18	Zen	2	4600	38 $\frac{1}{2}$	68 $\frac{1}{2}$	72	5
45	E	CNM	HG	CI	10.25	598	2.18x7.18	4	1045	20 $\frac{1}{2}$	656	3140	N	3.50x4.37	5	3.50x5.21	3.50x6.37	abdeg	7 $\frac{1}{2}$ -18	Zen	2	4700	38 $\frac{1}{2}$	68 $\frac{1}{2}$	72	6
45	E	CNM	HG	CI	10.00	522	2.18x6.68	4	1045	20 $\frac{1}{2}$	624	1045	N	3.81x4.25	7	4.00x5.21	4.00x6.37	abdeg	7 $\frac{1}{2}$ -18	Zen	2	6500	37 $\frac{1}{2}$	74	97	8
45	E	CNM	HG	CI	10.25	568	2.18x7.18	4	1045	20 $\frac{1}{2}$	624	1045	N	3.81x4.25	7	4.00x5.21	4.00x6.37	abdeg	7 $\frac{1}{2}$ -18	Zen	2	6600	37 $\frac{1}{2}$	74	97	10
30	N	CNM	HG	AI	1.37x4.50	6	3135	15 $\frac{1}{2}$	180	CNS	2.56x3.16	5	2.56x3.48	2.56x4.25	abdeg	18 mm	Sho(2)	2	2950	32 $\frac{1}{2}$	54 $\frac{1}{2}$	78 $\frac{1}{2}$	11			
30	N	HG	AI	1.37x4.50	6	3135	17 $\frac{1}{2}$	212	CNS	2.56x3.16	5	2.56x3.48	2.56x4.25	abdeg	18 mm	Str	2	2400	27 $\frac{1}{2}$	51 $\frac{1}{2}$	78 $\frac{1}{2}$	12				
30	N	HG	AI	1.37x4.50	6	3135	15 $\frac{1}{2}$	180	CNS	2.56x3.16	5	2.56x3.48	2.56x4.25	abdeg	18 mm	Sho(3)	2	3800	32 $\frac{1}{2}$	54 $\frac{1}{2}$	99 $\frac{1}{2}$	13				
30	N	HG	AI	1.37x4.50	6	3135	17 $\frac{1}{2}$	212	CNS	2.56x3.16	5	2.56x3.48	2.56x4.25	abdeg	18 mm	Zen(2)	1 $\frac{1}{2}$	3050	32 $\frac{1}{2}$	49 $\frac{1}{2}$	98 $\frac{1}{2}$	14				
30	N	HG	AI	1.37x4.50	6	3135	15 $\frac{1}{2}$	180	CNS	2.56x3.16	5	2.56x3.48	2.56x4.25	abdeg	18 mm	Zen(3)	2	4050	36	52 $\frac{1}{2}$	98 $\frac{1}{2}$	15				
45	E	SA	Ch	Alt	3.68	19	0.89x2.62	4	T-1335	7 $\frac{1}{2}$	31	1040	Y	1.93x1.00	4	2.25x1.23	2.25x1.87	abce	14 mm	Car	1 $\frac{1}{2}$	476	19 $\frac{1}{2}$	29 $\frac{1}{2}$	32 $\frac{1}{2}$	17
45	E	SG	Cl	3.50	7.18x3.00	3	AS	CS	Y	1.37x1.50	2	1.37x2.62	1.37x2.25	Splash	7 $\frac{1}{2}$ -18	Splash	1	245	16	17 $\frac{1}{2}$	14 $\frac{1}{2}$	13 $\frac{1}{2}$	18			
45	E	SG	Cl	4.56	1.84x3.75	4	CS	CS	Y	1.50x2.00	2	1.62x2.48	1.62x4.12	Splash	7 $\frac{1}{2}$ -18	Zen	1	400	17	22 $\frac{1}{2}$	24 $\frac{1}{2}$	20				
45	E	HG	Cl	5.50	1.09x4.50	4	CS	CS	Y	1.75x2.50	2	1.87x2.81	1.87x5.25	Splash	7 $\frac{1}{2}$ -18	Zen	1	610	20	24 $\frac{1}{2}$	44 $\frac{1}{2}$	21				
45	E	HG	Cl	6.50	1.21x5.00	4	CS	CS	Y	2.00x1.25	2	2.00x2.00	2.00x2.00	Splash	14 mm	Zen	1	145	13	17 $\frac{1}{2}$	18 $\frac{1}{2}$	22				
45	E	HG	Cl	6.25x	6	AI											Zen	1	375	20	19 $\frac{1}{2}$	29 $\frac{1}{2}$	23			
45	E	SG	Cl	4.56	1.84x3.75	4	CS	Y	1.50x2.00	3	1.37x4.00	1.37x4.00	Splash	7 $\frac{1}{2}$ -18	Zen	1	540	16	17 $\frac{1}{2}$	42	24					
45	E	HG	Cl	5.50	1.09x4.50	4	CS	Y	1.25x2.25	3	2.25x2.48	2.25x5.00	Splash	7 $\frac{1}{2}$ -18	Str	1 $\frac{1}{2}$	900	20	24	47 $\frac{1}{2}$	25					
45	E	HG	Cl	7.00	1.21x5.25	4	CS	Y	2.37x2.81	3	2.37x4.00	2.37x4.00	Splash	7 $\frac{1}{2}$ -18	Str	1 $\frac{1}{2}$	1200	21 $\frac{1}{4}$	25 $\frac{1}{2}$	52 $\frac{1}{2}$	26					
45	E	SG	Cl	9.87	2.00x7.25	5	CS	Y	2.37x2.37	3	2.37x5.00	2.37x5.00	Splash	7 $\frac{1}{2}$ -18	Str	1 $\frac{1}{2}$	1850	23 $\frac{1}{2}$	30 $\frac{1}{2}$	63	27					
45	E	Ch	Al	4.00	23	0.98x2.90	4	1040	10 $\frac{1}{2}$	1045	Y	1.50x2.00	3	1.37x4.00	1.37x4.00	ML	7 $\frac{1}{2}$ -18			4600	28 $\frac{1}{4}$	96 $\frac{1}{2}$	37	28		
45	E	Ch	Al	4.00	26	0.98x3.02	4	1040	10 $\frac{1}{2}$	1045	Y	1.50x2.00	3	1.37x4.00	1.37x4.00	abde	14 mm	Zen	1 $\frac{1}{2}$	4100	15 $\frac{1}{2}$	21 $\frac{1}{2}$	32 $\frac{1}{2}$	34		
45	E	Ch	Al	4.00	26	0.98x3.02	4	1040	10 $\frac{1}{2}$	1045	Y	1.50x2.00	3	1.37x4.00	1.37x4.00	abde	14 mm	Zen	1 $\frac{1}{2}$	4100	15 $\frac{1}{2}$	21 $\frac{1}{2}$	32 $\frac{1}{2}$	35		
45	E	Ch	Al	4.00	26	0.98x3.02	4	1040	10 $\frac{1}{2}$	1045	Y	1.50x2.00	3	1.37x4.00	1.37x4.00	abde	14 mm	Zen	1 $\frac{1}{2}$	660	23	28 $\frac{1}{2}$	45 $\frac{1}{2}$	36		
45	E	Ch	Al	4.50	29	0.98x3.13	4	1040	9	1045	Y	1.50x2.00	3	1.37x4.00	1.37x4.00	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	37		
30	E	HG	Cl	5.31	1.25x3.43	4	1040	9	1045	Y	1.50x2.00	5	2.75x6.00	2.18x5.50	ML	7 $\frac{1}{2}$ -18	Zen	1 $\frac{1}{2}$	4100	15 $\frac{1}{2}$	21 $\frac{1}{2}$	32 $\frac{1}{2}$	34			
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	4100	15 $\frac{1}{2}$	21 $\frac{1}{2}$	32 $\frac{1}{2}$	35	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	660	23	28 $\frac{1}{2}$	45 $\frac{1}{2}$	36	
30	E	HG	Cl	5.31	1.25x3.43	4	1040	9	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33			
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y	1.50x2.00	3	2.62x2.47	2.62x2.47	abde	14 mm	Zen	1 $\frac{1}{2}$	675	21	22 $\frac{1}{2}$	41 $\frac{1}{2}$	33	
30	E	HG	Cl	5.08	29	0.75x2.81	3	3140	6 $\frac{1}{2}$	21	1045	Y														

American Stock, Marine and

Line Number	MAKE AND MODEL	Designed for	Number of Cylinders, Bore and Stroke (In.)	Rated Hp. (A.M.A.)	Maximum Brake Hp. at Specified R.P.M.	Piston Displacement (Cu. In.)	Compression Ratio - to 1	Maximum Torque at R.P.M. (Lb. Ft.)	No. Cast in One Piece	Cylinders	VALVES									
											Liners-Type	Crankcase - Upper Half Integral with Cylinders?	No. Cast in One Piece	Arrangement	Exhaust Head Material (S.A.E. No.)	Max. Head Diameter (In.)	Min. Port Diameter (In.)	Lift (In.)	Stem Diameter (In.)	
											Intake	Exhaust	Intake	Exhaust	Intake	Exhaust	Intake	Exhaust		
1	Thorobred	BC-Super-4	M	4-6x7	78-1100	791.0	4.00	465-700	2	N	Se	CAI	2.75	2.75	2.37	2.37	.375	.621	.621	
2	Thorobred	Hiawatha	M	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	82-2800	282.0	5.70	185-1100	6	N	In	Sil	1.68	1.43	1.50	1.25	.375	.375	.375	
3	Thorobred	Arrow-Super-6	M	6-4 $\frac{1}{2}$ x4 $\frac{1}{2}$	95-2500	404.0	5.60	286-800	6	N	In	Sil	1.93	1.43	1.75	1.25	.375	.375	.375	
4	Thorobred	BB-6	M	6-4 $\frac{1}{2}$ x6	80-1725	572.5	4.00	379-900	6	N	Se	Dia	2.34	2.34	2.12	2.12	.300	.434	.434	
5	Thorobred	BBS-6	M	6-5x6	101-1500	707.0	4.00	420-900	6	N	Se	Dia	2.34	2.34	2.12	2.12	.300	.434	.434	
6	Thorobred	BC-6	M	6-5x7	90-1100	825.0	4.00	451-1000	2	N	Se	CAI	2.75	2.75	2.37	2.37	.375	.621	.621	
7	Thorobred	BCS-6	M	6-5 $\frac{1}{2}$ x7	112-1100	1091.0	4.00	596-850	2	N	Se	CAI	2.75	2.75	2.37	2.37	.375	.621	.621	
8	Thorobred	BC-Super-6	M	6-6x7	124-1100	1187.5	4.00	630-875	2	N	Se	CAI	2.75	2.75	2.37	2.37	.375	.621	.621	
9	Universal	Fisherman-WM	M	1-4 $\frac{1}{2}$ x4 $\frac{1}{2}$	8-1200	67.6	4.60	1	N	In	CNS	1.87	1.87250	.250	.375	
10	Universal	Blue Jacket-AFTL	M	2-3x3 $\frac{1}{2}$	10-2000	49.5	5.75	2	N	In	CNS	1.50	1.50250	.250	.375	
11	Universal	Utility Four-EN	M	4-2 $\frac{1}{2}$ x4	25-2500	95.0	5.00	4	N	In	CNS	1.12	1.12	2.25	2.25	.437	.375	.435	
12	Universal	Flexifour-FA	M	4-3x3 $\frac{1}{2}$	40-3500	99.0	5.00	4	N	In	Sil	1.50	1.50312	.312	.375	
13	Universal	Superfour-LSG	M	4-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	50-3000	149.3	5.70	4	N	Se	CNS	1.37	1.37312	.312	.375	
14	Universal	American Six-AMS	M	6-3x3 $\frac{1}{2}$	60-3500	148.5	6.00	6	N	Se	Sil	1.50	1.50312	.312	.375	
15	Universal	Cruiser Six-HCS	M	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	90-3000	260.0	5.75	8	N	Se	Sil	1.50	1.50312	.312	.375	
16	Universal	Sea Lion Six-LHS	M	6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	110-3400	260.0	5.75	6	N	Se	Sil	1.50	1.50312	.312	.375	
17	Universal	Cruiser Eight-CCE	M	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	125-3000	347.0	5.75	8	N	Se	Sil	1.50	1.50328	.328	.375	
18	Universal	Sea Lion Eight-LCE	M	8-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	141-3400	347.0	5.75	8	N	Se	Sil	1.50	1.50328	.328	.375	
19	Vimalert	M-12	M	12-5x7	4-20-1900	1650.0	6.25	1286-1400	1	N	Se	I	2.73	2.73	2.25	2.25	.437	.375	.435	
20	Vimalert	Duplex Unit	M	Note - Unit	is composed of two Mo	del M-12	Engines	Plane	end	end	with a gear	box	between	driven	on	the pro	
21	Vimalert	V-2500-2	M	12-6 $\frac{1}{2}$ x6 $\frac{1}{2}$	1200-2350	2500.0	6.00	6	N	Se	CNS	2.20	2.21	1.95	1.96	.500	.403	.559	
22	Volcano	12-2200	Ind	1-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	12-2200	57.5	4.75	36-1400	1	N	Se	Sil	1.53	1.53	1.37	1.37	.312	.312	.312	
23	Volcano	24-2200	Ind	2-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	24-2200	115.0	4.75	72-1400	1	N	Se	Sil	1.53	1.53	1.37	1.37	.312	.312	.312	
24	Volcano	48-2200	C.T., Tr, Ind	4-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	48-2200	230.0	4.75	144-1400	1	N	Se	Sil	1.53	1.53	1.37	1.37	.312	.312	.312	
25	Waukesha	(H)150 C. Ind		2-3x2 $\frac{1}{2}$	7.2	39.0	2	N	In	Sil	1.37	1.15	1.25	1.00	.300	.312	.312		
26	Waukesha	ICK T. M, Ind		4-2 $\frac{1}{2}$ x3 $\frac{1}{2}$	10.0	18-2800	61.3	5.70	40-1800	4	N	In	Sil	1.12	.937	1.00	.937	.228	.250	.312
27	Waukesha	FCS T. Tr		4-2 $\frac{1}{2}$ x4	12.1	26-2800	94.0	4.85	67-1100	4	N	In	Sil	1.34	1.34	1.18	1.18	.281	.281	.312
28	Waukesha	FC T. Tr, Ind		4-3 $\frac{1}{2}$ x4	16.9	35-2600	133.5	5.58	92-1200	4	N	In	Sil	1.34	1.34	1.18	1.18	.281	.281	.312
29	Waukesha	XAH T. Tr, Ind		4-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	21.0	37-2200	186.0	5.10	121-900	4	N	In	Sil	1.56	1.56	1.37	1.37	.281	.281	.375
30	Waukesha	130-GS T. Tr, Ind		4-3 $\frac{1}{2}$ x5	22.5	47-1900	221.0	6.12	162-900	4	W	In	Sil	1.84	1.40	1.62	1.25	.445	.445	.434
31	Waukesha	130-GL T. Tr, Ind		4-4x5	25.6	53-1900	251.0	5.95	184-900	4	W	In	Sil	1.84	1.40	1.62	1.25	.445	.445	.434
32	Waukesha	VIM Tr		4-4 $\frac{1}{2}$ x5 $\frac{1}{2}$	29.0	53-1600	298.0	4.23	200-1000	4	W	In	Sil	2.00	1.75	1.75	1.50	.400	.400	.375
33	Waukesha	VIK Tr, Ind		4-4 $\frac{1}{2}$ x5 $\frac{1}{2}$	34.2	58-1600	334.0	4.30	224-1000	4	W	In	Sil	2.00	2.00	1.75	1.75	.400	.400	.375
34	Waukesha	VRZ T. Tr		4-4 $\frac{1}{2}$ x5 $\frac{1}{2}$	34.2	58-1600	353.0	5.63	4	W	In	Sil	1.75	1.50
35	Waukesha	CHK T. Tr, Ind		4-5 $\frac{1}{2}$ x6 $\frac{1}{2}$	42.0	79-1400	516.0	4.20	375-800	4	W	In	Sil	2.37	2.37	2.12	2.12	.437	.437	.437
36	Waukesha	HL Tr, Ind		4-6x6 $\frac{1}{2}$	57.6	91-1200	735.0	3.80	419-700	2	N	Se	Sil	2.40	2.15	2.12	1.87	.500	.500	.437
37	Waukesha	W/K Ind		4-6 $\frac{1}{2}$ x8	73.0	120-950	1145.0	4.00	762-600	2	N	Se	Sil	3.00	3.00	2.75	2.75	.500	.500	.562
38	Waukesha	WOK Ind		4-7 $\frac{1}{2}$ x8	90.0	163-950	1414.0	4.16	950-700	4	N	Se	Sil	3.25	2.75	3.00	2.50	.756	.756	.562
39	Waukesha	EBM T. B, Ind		6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	31.5	77-2800	263.0	5.70	176-1100	6	N	In	Sil	1.68	1.43	1.50	1.25	.375	.375	.375
40	Waukesha	6BK T. B, Ind		6-3 $\frac{1}{2}$ x4 $\frac{1}{2}$	33.8	82-2800	282.0	5.70	185-1100	6	N	In	Sil	1.68	1.43	1.50	1.25	.375	.375	.375
41	Waukesha	6BZ T. B, Ind		6-4x4 $\frac{1}{2}$	38.4	85-2500	320.0	5.75	210-1200	6	N	In	Sil	1.68	1.43	1.50	1.25	.375	.375	.375
42	Waukesha	6MKR T. B, Ind		6-4 $\frac{1}{2}$ x4 $\frac{1}{2}$	40.8	90-2500	381.0	5.34	270-800	6	N	In	Sil	1.93	1.43	1.75	1.25	.375	.375	.375
43	Waukesha	6MZR T. B, Ind		6-4 $\frac{1}{2}$ x4 $\frac{1}{2}$	41.0	95-2500	404.0	5.38	286-800	6	N	In	Sil	2.40	2.40	2.12	2.12	.400	.400	.437
44	Waukesha	140-GS T. B, Ind		6-4 $\frac{1}{2}$ x5 $\frac{1}{2}$	43.4	122-2200	468.0	5.78	360-1000	6	W	In	Sil	2.12	1.62	1.87	1.37	.531	.531	.434
45	Waukesha	6SRLR T. B, Ind		6-4 $\frac{1}{2}$ x5 $\frac{1}{2}$	46.0	114-2250	462.0	5.50	307-600	6	N	Se	Sil	1.90	1.65	1.56	1.37	.386	.386	.375
46	Waukesha	140-GK T. B, Ind		6-4 $\frac{1}{2}$ x5 $\frac{1}{2}$	48.6	137-2200	525.0	5.78	406-1000	6	W	In	Sil	2.12	1.62	1.87	1.37	.531	.531	.434
47	Waukesha	6SRLR T. B, Ind		6-4 $\frac{1}{2}$ x5 $\frac{1}{2}$	51.3	125-2250	517.0	5.50	368-600	6	N	Se	Sil	1.90	1.65	1.56	1.37	.386	.386	.375
48	Waukesha	145-GS T. B, Ind		6-4 $\frac{1}{2}$ x6	54.2	138-1800	638.0	5.63	506-800	6	W	In	Sil	2.12	1.62	1.87	1.37	.594	.594	.495
49	Waukesha	8CAL T. B, Ind		6-5 $\frac{1}{2}$ x5 $\frac{1}{2}$	60.0	136-2000	648.0	5.00	468-700	6	D	In	Sil	2.21	1.75	2.00	1.50	.500	.500	.437
50	Waukesha	6RBR T. B, Ind		6-5 $\frac{1}{2}$ x5 $\frac{1}{2}$	60.0	150-2000	677.0	5.35	490-800	6	N	Se	Sil	2.40	2.40	2.12	2.12	.400	.400	.437
51	Waukesha	145-GK T. B, Ind		6-5 $\frac{1}{2}$ x6	66.2	168-1800	779.0	5.63	620-800	6	W	In	Sil	2.12	1.62	1.87	1.37	.594	.594	.495
52	Waukesha	6GSK T. B, Ind		6-5 $\frac{1}{2}$ x6 $\frac{1}{2}$	72.5	155-2200	794.0	4.80	567-700	6	D	In	Sil	2.21	1.75	2.00	1.50	.500	.500	.437
53	W																			

Commercial Vehicle Engines—Continued

Angle (Deg.)	Inserts Used?	Insert Material (S.A.E. No.)	VALVES			PISTONS			CONNECTING RODS			CRANKSHAFT			CARBU-RETOR			OVERALL DIMENSIONS (In.)			Line Number					
			Seats		Type	Front	End	Drive	Material	Length (In.)	Weight with Pins, Rings	Bushings (Oz.)	Piston Pin—Diameter and Length (In.)	Number of Rings per Piston	Material	Center to Center Length (In.)	Weight with Bushing and Cap (Oz.)	Material	Counterbalance Used?	Crank-Pin	Main Bearings	Size	Engine Weight without Carburetor or Ignition (Lb.)	Width	Height	Length
			Front	End	Drive	Material	Length (In.)	Weight with Pins, Rings	Bushings (Oz.)	Piston Pin—Diameter and Length (In.)	Number of Rings per Piston	Material	Center to Center Length (In.)	Weight with Bushing and Cap (Oz.)	Material	Counterbalance Used?	Crank-Pin	Main Bearings	Front	Rear	Oil Pressure To—	Spark Plug—Thread Size	Make	Size	Engine Weight with Carburetor or Ignition (Lb.)	Width
45	N	HG	CIA	6.00	190	1.43x5.50	4	1045	13 $\frac{1}{4}$	168	1045	N	2.56x3.00	5	2.62x4.50	2.62x4.50	abede	7 $\frac{1}{2}$ -18	Str	2	1740	25 $\frac{1}{2}$	35 $\frac{1}{2}$	74	1	
45	N	HG	AI	4.37	37	1.00x3.00	4	1045	8	40	1045	N	2.00x1.50	7	2.62x2.00	2.62x1.25	abede	18 mm	Str	1 $\frac{1}{2}$	1000	22 $\frac{1}{2}$	28 $\frac{1}{2}$	53 $\frac{1}{2}$	2	
45	E	HG	CI	4.37	78	1.00x4.00	4	1045	8 $\frac{1}{2}$	48	1045	N	2.25x1.50	7	2.62x2.75	2.62x1.62	abede	14 mm	Str	1 $\frac{1}{2}$	1185	20 $\frac{1}{2}$	27 $\frac{1}{2}$	57 $\frac{1}{2}$	3	
45	N	HG	CIA	5.25	82	1.25x3.87	4	1045	11 $\frac{1}{2}$	87	1045	N	2.56x2.25	7	2.56x4.25	2.56x4.25	abede	7 $\frac{1}{2}$ -18	Str	1 $\frac{1}{2}$	1475	33 $\frac{1}{2}$	30 $\frac{1}{2}$	72 $\frac{1}{2}$	4	
45	N	HG	CI	5.25	106	1.25x4.31	4	1045	11 $\frac{1}{2}$	87	1045	N	2.56x3.00	7	2.62x4.50	2.62x4.50	abede	7 $\frac{1}{2}$ -18	Str	2	1565	24 $\frac{1}{2}$	30 $\frac{1}{2}$	72 $\frac{1}{2}$	5	
45	N	HG	CI	6.00	126	1.43x4.68	4	1045	13 $\frac{1}{4}$	168	1045	N	2.56x3.00	7	2.62x4.50	2.62x4.50	abede	7 $\frac{1}{2}$ -18	Str	2	2330	27 $\frac{1}{2}$	35 $\frac{1}{2}$	91 $\frac{1}{2}$	6	
45	N	HG	CI	6.00	150	1.43x5.25	4	1045	13 $\frac{1}{4}$	168	1045	N	2.56x3.00	7	2.62x4.50	2.62x4.50	abede	7 $\frac{1}{2}$ -18	Str	2	2360	27 $\frac{1}{2}$	35 $\frac{1}{2}$	91 $\frac{1}{2}$	7	
45	N	HG	CI	6.00	190	1.43x5.50	4	1045	13 $\frac{1}{4}$	168	1045	N	2.56x3.00	7	2.62x4.50	2.62x4.50	abede	7 $\frac{1}{2}$ -18	Str	2	2380	27 $\frac{1}{2}$	35 $\frac{1}{2}$	91 $\frac{1}{2}$	8	
45	N	HG	CI	4.65	1.00x3.75	3	Dur	8 $\frac{1}{2}$	—	CS	Y	2.00x2.00	2	2.00x2.00	2.00x2.00	Splash	7 $\frac{1}{2}$ -18	Str	5 $\frac{1}{2}$	200	15 $\frac{1}{2}$	24 $\frac{1}{2}$	17 $\frac{1}{2}$	9		
45	N	HG	AI	3.25	750	2.56x2.56	4	CS	7 $\frac{1}{2}$	—	CS	Y	1.75x1.37	2	1.75x1.87	1.75x2.00	abc	18 mm	Str	5 $\frac{1}{2}$	300	20 $\frac{1}{2}$	22 $\frac{1}{2}$	28 $\frac{1}{2}$	10	
45	N	HG	CI	3.25	625	2.44	3	CS	7 $\frac{1}{2}$	—	CS	Y	1.50x1.75	2	1.50x2.75	1.50x2.75	abc	18 mm	Zen	1	347	17 $\frac{1}{2}$	21 $\frac{1}{2}$	34 $\frac{1}{2}$	11	
45	N	HG	AI	3.25	175	0.75x2.56	4	Dur	7 $\frac{1}{2}$	18	CS	Y	1.75x1.37	3	1.75x2.50	1.75x2.50	abede	18 mm	Zen	1	400	20 $\frac{1}{2}$	22 $\frac{1}{2}$	34 $\frac{1}{2}$	12	
45	N	HG	AI	3.50	20	0.87x2.75	4	Dur	8 $\frac{1}{2}$	30	CS	Y	2.00x1.73	3	2.00x2.50	2.00x2.50	abc	18 mm	Zen	1	520	18 $\frac{1}{2}$	25 $\frac{1}{2}$	39 $\frac{1}{2}$	13	
45	N	HG	AI	3.25	175	0.75x2.56	4	Dur	7 $\frac{1}{2}$	18	CS	Y	1.75x1.37	4	1.75x2.50	1.75x2.50	abede	18 mm	Zen	1 $\frac{1}{2}$	515	24	20 $\frac{1}{2}$	37 $\frac{1}{2}$	14	
45	N	HG	AI	3.87	28	0.87x3.00	4	Dur	8 $\frac{1}{2}$	28	CS	N	2.00x1.87	7	2.00x2.56	2.00x2.56	abc	18 mm	Str	1 $\frac{1}{2}$	775	20 $\frac{1}{2}$	26 $\frac{1}{2}$	49 $\frac{1}{2}$	15	
45	N	HG	AI	3.87	28	0.87x3.00	4	CS	8 $\frac{1}{2}$	28	CS	N	2.00x1.87	9	2.00x2.56	2.00x2.56	abc	18 mm	Str	1 $\frac{1}{2}$	1050	21 $\frac{1}{2}$	26 $\frac{1}{2}$	62 $\frac{1}{2}$	17	
45	N	HG	AI	3.87	28	0.87x3.00	4	CS	8 $\frac{1}{2}$	28	CS	N	2.00x1.87	9	2.00x2.56	2.00x2.56	abc	18 mm	Str	1 $\frac{1}{2}$	1100	22 $\frac{1}{2}$	26 $\frac{1}{2}$	62 $\frac{1}{2}$	18	
30	N	CNS	Ala	800	H. P.	Weight 5400 lbs.	—	AS	12	(aa)	AS	N	2.37x2.50	7	2.62x4.62	2.62x2.00	abc	18 mm	Zen	2	1920	32 $\frac{1}{2}$	40 $\frac{1}{2}$	90 $\frac{1}{2}$	19	
45	Bo	CNS	Al	4.59	88	1.62x6.90	5	4340	12	228	4140	Y	3.50x2.87	7	4.00x3.00	4.00x3.00	abce	18 mm	Str	2 $\frac{1}{2}$	3490	49	50	101	21	
45	N	HG	AI	3.84	28	1.00x3.18	4	AS	7 $\frac{1}{2}$	29	CAS	Y	1.87x1.62	24	BT22168	BT22235	Splash	14 mm	Zen	1	160	—	—	—	22	
45	N	HG	AI	3.84	28	1.00x3.18	4	AS	7 $\frac{1}{2}$	29	CAS	Y	1.87x1.62	34	BT22168	BT22235	Splash	14 mm	Zen	1 $\frac{1}{2}$	250	—	—	—	23	
45	N	HG	AI	3.84	28	1.00x3.18	4	AS	7 $\frac{1}{2}$	29	CAS	Y	1.87x1.62	34	BT22168	BT22235	Splash	14 mm	Zen	1 $\frac{1}{2}$	340	—	—	—	24	
45	N	HG	AI	2.62	12	0.625x2.62	4	1045	4 $\frac{1}{2}$	12	1045	Y	1.50x1.00	2	1.50x1.00	2.25x2.31	abce	14 mm	Op	1 $\frac{1}{2}$	125	20 $\frac{1}{2}$	14 $\frac{1}{2}$	15 $\frac{1}{2}$	25	
45	N	HG	CI	2.34	9	0.625x2.12	3	1045	6	14	1045	N	1.55x1.25	26	ND1207	ND1207	abde	14 mm	Op	1	280	19	26 $\frac{1}{2}$	37 $\frac{1}{2}$	27	
45	N	HG	CI	3.25	26	0.87x2.25	3	1045	7 $\frac{1}{2}$	29	1045	N	1.75x1.06	3	2.12x1.18	2.12x1.43	abde	18 mm	Op	1	385	27	32 $\frac{1}{2}$	39 $\frac{1}{2}$	29	
45	E	AI	CI	3.93	45	1.12x3.03	4	1045	8 $\frac{1}{2}$	46	1045	N	2.00x1.50	3	2.00x1.87	2.00x2.00	abde	7 $\frac{1}{2}$ -18	Op	1 $\frac{1}{2}$	670	21 $\frac{1}{2}$	38 $\frac{1}{2}$	33 $\frac{1}{2}$	30	
(h)	E	AI	CI	5.12	58	1.12x3.06	4	1045	8 $\frac{1}{2}$	57	Pro	N	2.25x1.75	3	2.62x2.25	2.62x2.25	abde	18 mm	Op	1 $\frac{1}{2}$	680	21 $\frac{1}{2}$	38 $\frac{1}{2}$	33 $\frac{1}{2}$	31	
(h)	E	AI	CI	5.12	58	1.12x3.06	4	1045	8 $\frac{1}{2}$	57	Pro	N	2.25x1.75	3	2.62x2.25	2.62x2.25	abde	18 mm	Op	1 $\frac{1}{2}$	870	21 $\frac{1}{2}$	35	39	32	
(h)	E	AI	CI	4.87	76	1.31x3.87	4	1045	10 $\frac{1}{2}$	86	1045	N	2.37x2.12	3	2.37x2.75	2.37x2.75	abde	7 $\frac{1}{2}$ -18	Op	1 $\frac{1}{2}$	925	21 $\frac{1}{2}$	35	39	33	
45	E	AI	CI	5.96	96	1.31x4.06	4	1045	10 $\frac{1}{2}$	86	1045	N	2.37x2.12	3	2.37x2.75	2.37x2.75	abde	18 mm	Op	1 $\frac{1}{2}$	920	30 $\frac{1}{2}$	39 $\frac{1}{2}$	34	34	
45	N	HG	CI	5.87	132	1.50x4.48	4	1045	11 $\frac{1}{2}$	141	1045	N	2.75x2.50	3	3.00x3.00	3.00x3.56	abde	7 $\frac{1}{2}$ -18	Op	1 $\frac{1}{2}$	1600	24	42	45 $\frac{1}{2}$	35	
45	N	HG	CI	6.53	178	1.37x2.25	4	1045	13 $\frac{1}{4}$	146	1045	N	2.75x2.50	3	3.00x3.00	3.00x3.56	abde	7 $\frac{1}{2}$ -18	Op	1 $\frac{1}{2}$	1600	24	45 $\frac{1}{2}$	62	36	
30	N	HG	CI	7.50	370	1.56x6.00	4	1045	18	278	1045	N	3.25x2.75	5	3.75x3.75	3.75x5.50	abde	7 $\frac{1}{2}$ -18	Op	2	2750	34	51 $\frac{1}{2}$	59 $\frac{1}{2}$	37	
30	E	AI	CI	8.68	447	2.00x6.75	4	1045	18	278	1045	N	3.25x2.75	5	3.75x3.75	3.75x5.50	abde	7 $\frac{1}{2}$ -18	Op	2 $\frac{1}{2}$	3560	34 $\frac{1}{2}$	63 $\frac{1}{2}$	59	38	
45	E	AI	CI	4.43	34	1.00x3.25	4	1045	8	40	1045	N	2.00x1.50	7	2.62x2.15	2.62x2.00	abde	18 mm	Op	1 $\frac{1}{2}$	685	26	31	39 $\frac{1}{2}$	39	
45	E	AI	CI	4.37	37	1.00x3.50	4	1045	8	40	1045	N	2.00x1.50	7	2.62x2.15	2.62x2.00	abde	18 mm	Op	1 $\frac{1}{2}$	690	28	31	39 $\frac{1}{2}$	40	
45	E	AI	CI	4.37	46	1.00x3.85	4	1045	8 $\frac{1}{2}$	40	1045	N	2.00x1.50	7	2.62x2.15	2.62x2.00	abde	18 mm	Op	1 $\frac{1}{2}$	706	26	31	39 $\frac{1}{2}$	41	
45	E	AI	CI	4.37	48	1.00x4.00	4	1045	8 $\frac{1}{2}$	48	1045	N	2.25x1.50	7	2.6											

American Aircraft Engines

Automotive Diesel and Other Heavy Oil Engines

EXPORTS

Leading Automotive Export Markets-1939

(U. S. Factory Shipments Only—Does Not Include Canadian Exports)

Passenger Cars and Chassis			Trucks, Buses and Chassis		
Country of Destination	Value	Units	Country of Destination	Value	Units
Union of South Africa	\$12,566,402	21,723	Hong Kong	\$4,496,023	6,808
Canada	10,706,346	15,544	British India	4,196,925	11,379
Argentina	6,244,444	11,676	Canada	4,092,852	2,260
Sweden	6,140,825	10,771	China	3,687,956	4,146
Australia	4,552,516	11,683	Venezuela	3,645,396	4,565
Mexico	4,424,647	6,089	Brazil	3,437,391	6,194
Belgium	4,050,075	7,536	Union of South Africa	3,280,764	6,756
Brazil	3,905,539	6,506	Belgium	3,054,947	6,842
Colombia	2,922,980	3,679	Argentina	2,796,189	5,567
Hawaii	2,728,121	3,746	Sweden	2,575,515	5,674
Philippine Islands	2,332,827	3,215	Colombia	2,495,615	3,155
Venezuela	2,267,200	3,170	Mexico	2,357,865	3,425
British India	2,020,384	3,607	Philippine Islands	2,143,431	3,250
United Kingdom	1,619,076	2,217	Spain	1,908,020	3,726
Puerto Rico	1,491,150	1,969	Australia	1,778,102	3,553
Cuba	1,410,328	1,941	Egypt	1,425,825	2,618
Egypt	1,112,703	1,457	Chile	1,218,410	1,611
Netherlands Indies	1,009,338	1,670	Netherlands	1,211,082	1,594
Finland	982,286	1,344	French Indo-China	1,094,890	1,629
Denmark	952,190	2,037	Japan	969,136	2,427
Total	\$73,439,377	121,580	Total	\$51,866,334	87,179
Total all countries	\$89,172,300	143,909	Total all countries	\$71,422,015	116,913

Value of Leading U. S. Automotive Exports

Passenger Cars	\$89,172,300
Passenger Cars, Used	841,188
Trucks, Buses and Chassis	71,422,015
Trucks and Buses, Used	178,431
Trailers	1,087,074
Engines for Assembly	
Truck and Bus	3,433,085
Passenger Cars	2,402,817
Engines for Replacement	281,979
Parts for Assembly	43,476,038
Parts for Replacement	40,980,909
Auto Accessories	4,367,874
Pumps for Gasoline and Oil	1,216,839
Other Auto Service Equipment	4,198,935
Motorcycles	942,142
Motorcycle Parts and Accessories	287,990
Storage Batteries	2,049,367
Battery Chargers	267,801
Portable Electric Tools	1,490,856
Truck and Bus Casings	8,697,171
Auto Casings	9,521,574
Inner Tubes	1,602,098
Solid Tires	76,294
Tire Sundries and Repair Material	994,412
Aeronautical Products	117,604,168
Total	\$406,595,357
CANADIAN	
Cars	\$14,394,485
Trucks	8,156,528
Parts and Accessories	2,991,697
Tires and Tubes	8,023,335
Total	\$33,566,045
Grand Total Exports of American Manufacture	\$440,161,402

American Passenger Car Exports—1939*

COUNTRIES	Not over \$850		Over \$850 but not over \$1200		Over \$1200 but not over \$2000		Over \$2000		Total 1939 New Passenger Cars		Total 1939 Second hand Passenger Cars	
	No.	Dollars	No.	Dollars	No.	Dollars	No.	Dollars	No.	Dollars	No.	Dollars
Europe	29,252	\$16,074,706	4,968	\$2,837,416	359	\$562,583	93	\$231,349	32,672	\$19,706,054	234	\$132,096
North America	21,819	13,557,024	3,899	3,717,187	837	1,182,299	131	361,320	26,686	18,817,830	985	365,437
South America	24,867	14,250,288	2,752	2,655,174	441	606,970	48	118,853	28,108	17,631,285	154	98,715
Asia	11,379	6,790,745	1,210	1,172,047	229	334,340	49	125,168	12,867	8,422,300	85	66,492
Oceania	12,141	4,770,062	257	233,106	23	32,887	3	7,005	12,424	5,043,060	6	3,380
Africa	22,986	12,916,573	1,922	1,784,556	168	249,272	33	87,471	25,109	15,037,872	13	9,467
Total	122,444	\$68,359,398	13,008	\$12,399,486	2,057	\$2,968,351	357	\$931,166	137,866	\$84,658,401	1,477	\$675,587
Alaska	90	64,087	94	91,963	28	38,981	2	10,375	294	270,495	106	62,000
Hawaii	3,239	2,233,788	462	426,634	42	58,101	3	9,598	3,746	2,728,121	134	81,677
Puerto Rico	1,589	1,091,525	345	339,730	31	49,677	4	10,218	1,969	1,491,150	48	20,979
Virgin Islands	31	20,660	2	2,173	1	1,300			34	24,133	3	945
Grand Total	127,393	\$71,769,458	13,911	\$13,259,986	2,159	\$3,116,410	366	\$961,357	143,909	\$89,172,300	1,768	\$841,168

* Automotive-Aeronautics Division, Bureau of Foreign and Domestic Commerce

American Truck Exports—1939*

COUNTRIES	Under 1 Ton		1 Ton and not over 1 1/2 Tons		Over 1 1/2 Tons and not over 2 1/2 Tons		Over 2 1/2 Tons		Bus Chassis		Total 1939 Trucks, Buses and Chassis	
	No.	Value	No.	Value	No.	Value	No.	Value	No.	Value	No.	Value
Europe	3,798	\$1,395,448	20,948	\$9,904,457	2,739	\$2,100,527	1,175	\$1,638,764	446	\$304,960	29,106	\$15,344,176
North America	1,650	913,520	4,576	2,987,636	1,062	1,045,719	1,360	3,658,451	68	162,516	8,716	8,767,842
South America	3,240	1,494,822	18,096	11,048,907	1,601	1,677,317	587	1,145,472	78	72,256	23,602	15,438,774
Asia	3,116	1,129,973	26,313	13,255,341	5,362	4,871,790	623	1,175,829	26	22,974	35,440	20,455,907
Oceania	1,510	584,572	1,938	1,015,195	536	445,462	45	90,008	5	10,474	4,034	2,145,711
Africa	3,706	1,562,800	8,972	4,695,862	806	623,901	270	452,170	13	17,471	13,767	7,352,204
Total	17,020	\$7,081,135	80,843	\$42,907,398	12,106	\$10,764,716	4,060	\$8,160,694	636	\$590,671	114,665	\$69,504,614
Alaska	42	26,449	87	77,152	57	70,236	36	77,695	5	5,455	273	300,078
Hawaii	429	245,755	284	208,542	47	54,906	59	223,895			819	733,098
Puerto Rico	189	108,356	739	504,314	173	191,704	41	71,118			1,142	875,490
Virgin Islands	5	2,573	9	6,162							14	8,735
Grand Total	17,685	\$7,464,268	81,962	\$43,703,568	12,383	\$11,081,562	4,196	\$8,533,400	641	\$596,126	116,913	\$71,422,015

* Automotive-Aeronautics Division, Bureau of Foreign and Domestic Commerce

AUTOMOTIVE INDUSTRIES

Just among Ourselves

DURING the week of Feb. 11, business and technical organizations throughout the United States arranged dinners in honor of "Modern Pioneers," men who have contributed by invention to a higher standard of living. Of the many men whose work has meant much to the automotive industry and who were honored at regional dinners, this page pauses to talk about James F. Lincoln.

Because: During the week devoted to honoring the pioneers, the James F. Lincoln Arc Welding Foundation announced in a handsome brochure a \$200,000 program of industrial awards (458 of them) for papers devoted to social progress achieved through arc welding, and

Because: This program and the vitality which distinguishes it are a prime example of the fact that "pioneers never stand still."

Two years ago, the Foundation announced its first program of cash awards for technical papers. Devoting \$200,000 to such a project was an example of far-sighted thinking which transcended the boundaries of commercial enterprise and made the project one of benefit to the whole welding industry, certainly, and to the metal working industries in general.

A hundred and nine of the papers submitted in the first program were published by the Foundation in a fat volume titled "Arc Welding in Design, Manufacture and Construction." The papers themselves were amazing in their diversity and practicality. They summed up recent progress in arc welding technique and procedure in a way that left the road clear in only one direction—the future. They covered the industrial benefits and economies of a thousand ingenious applications of arc welding technique in a way which made it clear to the trustees of the Foundation that a new factor had emerged—the social and economic progress assisted by the use of arc welding.

The response to the first program of awards was of such magnitude that the directors of the Lincoln Electric Co. turned over to the Foundation another \$200,000 to be expended in awards for a second series of papers on arc welding progress.

After careful thought on the part of the trustees of the Foundation, it was decided that the second program should cover a 2½-year period, in order to allow adequate time for the development of structures and designs, which might be stimulated into being by the announcement of the program.

It was decided further, that the second program should emphasize the social and economic benefits to

the community of the developed ideas, as well as their commercial significance. Throughout the present program, it is the intention of the trustees to mold the thinking of the contestants in a way which will bring out, through the award program a tremendous amount of information on the economic and social benefits achieved through arc welding.

About the only restriction on the present program of awards is that those who submit papers must have been engaged, in some connection, in the actual design or construction of the project described in a paper. Otherwise, the program is broad enough to permit entry of any arc welding idea which can be demonstrated to benefit industry and the economic structure as a whole.

We particularly urge executives in plants which utilize arc welding in any way to familiarize themselves with the details of the award program, so that other members of their organizations can be encouraged to enter the contest. If you're interested, please correspond directly with the secretary, James F. Lincoln, Arc Welding Foundation, Cleveland, Ohio.

"Detroit—Dynamic City"

Arthur Pound, who wrote "The Turning Wheel" about the automobile industry and General Motors, who is a Michigander himself, and has a string of books to his credit which interpret American industry and agriculture in shirt-sleeves terms, has tried to interpret Detroit in a new book published by the Appleton-Century Co. The book is part of a series on American Cities, by various authors.

It covers the history, the tastes, and the industry of the automobile capital. It covers them sympathetically, but with a clear eye for some of the things which might be improved in the city itself.

E. H. Suydam has contributed illustrations which are a delight, and there are a lot of them.

If you are a Detroiter, or you come within Detroit's sphere of influence, you'll want a copy of the book to arrive at a better understanding of the city and its people. The book is recommended particularly to the thousands of people who visit Detroit sporadically on business, and who seldom have time to find out about the city's background. It seems to me that a copy of the book as a traveling companion on your next trip into Detroit would make you feel more in tune with the city when you arrived at Fort Street, the Central station or the airport.—

HERBERT HOSKING.

MEN and MACHINES

DOMESTIC and foreign demand for American-made machine tools continues at an unprecedented rate. The machine tool industry's operating activity, as indicated by the index prepared by the National Machine Tool Builders' Association, stood at 93.3 per cent of capacity through January, 1940. The figure equals the level attained in December, 1939, and represents a sharp upward surge, as compared with January, 1939, of more than 77 per cent.

The industry has made substantial progress in solving the problems created by the heavy demand for its products and in this regard a statement made recently by J. E. Lovely, Association president, is especially interesting.

Mr. Lovely observes, "The industry has consistently endeavored to give domestic orders preference over foreign orders, with respect to delivery dates. In spite of the insistent foreign demand, many companies are telling foreign buyers that future orders will have to wait until requirements of domestic customers have been met.

"Strenuous measures," he adds, "are being taken by the industry to increase output. New equipment has added substantially to plant facilities. In most cases it has seemed more practicable to secure the desired immediate set-up in production by increasing the productivity of existing plants, rather than attempting the building and equipping of new plants."

THREE has been, however, a considerable amount of new building. Among the larger plants erected recently are the new factory and office buildings which Pratt & Whitney now occupies at West Hartford, Conn. P&W had been at its old stand for 79 years and is justly proud of the modern structure designed especially for precision machine tool, small tool and gage manufacture by Albert Kahn, Inc. The new plant includes a one-story building almost 1000 ft. long and 550 ft. wide, a two-story office building and a two-story pattern storage building, garage and heating plant.

P&W's 23 old buildings, while satisfactory for light manufacturing, were not suitable for the increased weights of modern machines. Also, the many stories and separate buildings presented a serious problem in handling heavy castings and parts. About 10 years ago the heaviest machine manufactured by the company weighed approximately 12,000 lb. Today a machine may weigh as much as 80,000 lb. and the trend is definitely toward heavier machines.

APPARENTLY unhampered by the in-

A Keller automatic tool room machine in process of assembly in the new Pratt & Whitney plant at West Hartford, Conn.

March 1, 1940

A new 3½ in. RA-6 spindle turning out speed clutch blanks at Chevrolet's Muncie, Ind., plant.

tensified activity in production, the inventive genius of the machine tool industry continues to turn out a large number of new equipment developments and refinements. A surface analyzer designed by the Brush Development Co., Cleveland, for rapidly analyzing the topography of finished surfaces, is a particularly interesting new product.

The instrument, which was demonstrated in Detroit at the 1940 annual meeting of the Society of Automotive Engineers, furnishes an instantaneous and permanent record of surface irregularities which may be magnified as desired up to 100,000 times. Because of this magnification, satisfactory records may be made of surface irregularities smaller than 0.000001 in. These records show not only the amplitude, but also the form of the irregularities.

The Brush Model SA-1 surface analyzer consists of three principal units: 1. An analyzing head which explores the specimen surface. This head includes a piezo-electric crystal pickup actuated by a sapphire

General Foundry & Mfg. Co., manufacturer of Meehanite brake drums, reduces scrap losses with this "dog house" scrap record board." Names of molders whose scrap returns exceed predetermined percentage are placed in the dog house at the left. Those whose scrap losses remain in lower brackets compete for monthly money prize.

Work station of 2000-ton Ajax forging press used at Buick for producing hypoid axle ring gears. Operations in this three-station die start with annealed blank in left foreground. Material is SAE 1320A and SAE 4120A.

stylus. The stylus is provided with two types of motion, rotary and reciprocating; 2. A calibrating amplifier which magnifies the output of the pickup;

3. A direct inking oscillograph which makes an inked record of the magnified surface irregularities on a continuously moving strip of graph paper. The oscillograph direct inking pen is actuated by a piezo-electric crystal element.

The crystal element of the analyzing head has the property of generating a voltage proportional to the stylus deflection (amplitude). The calibrating amplifier magnifies the voltage as much as 50,000 times, sufficient to operate the crystal element of the direct inking oscillograph. The deflection of the pen of the oscillograph, since it is actuated by a crystal element, is proportional to this magnified voltage.

Because of these facts, the deflection of the pen of the oscillograph is proportional to the original deflection of the stylus of the analyzing head very much magnified by the mechanical linkages and calibrating amplifier.

AN ACCURATE, speedy abrasive cut-off machine, announced by the Delta Mfg. Co., Milwaukee, will cut such materials as steel, brass, copper, cast iron, monel metal, bakelite and all plastic materials, pipe, wire rope, Stellite, tool steel, manganese steel, fibrous material such as brake linings, tile brick, carbon, porcelain, slate hard rubber, concrete coping and sand cores. On metal it leaves the cut with a

(Turn to page 247, please)

BUSINESS IN BRIEF

[Our own view of automotive production and sales; authoritative interpretation of general conditions]

PRODUCTION of cars and trucks for the last half of February, reacting to better than expected sales reports for the first 10-day period of the month, demonstrated a strong upswing which brought weekly totals almost back to the levels reached in January when the industry established a new high production record for the month.

Preliminary checks of factory schedules for the week ending Feb. 24 indicated that car and truck production for the week would be well over 100,000 units¹, in fact close to the

106,000 and 107,000 totals reached during the higher weeks in January. With the week ending March 2, which included four working days in February, giving all indications that production also would exceed 100,000 cars and trucks, it is reasonable to anticipate that at least 80,000 of this total can be credited to February.

On this basis, February production totals will exceed the 400,000 mark by several thousand units to put the month well ahead of the comparable period a year ago when 317,517 cars and trucks were turned out. Unlike January, however, the February total will not set a new high record although it will be the highest February since 1929 when 497,705 cars and trucks came off the lines. In 1929 new models were being introduced in January and production at that time reflected the usual initial rush to stock dealers whereas February's production is based entirely on the industry's sales record four and five months after the intro-

¹ 1923 average = 100; ² Prepared by Administrative and Research Corp., New York. 1926 = 100; ³ Estimated by J. A. Laansma, Detroit News Editor, AUTOMOTIVE INDUSTRIES.

Weekly indexes of automotive general business charted

Month's Production Tops 400,000

the previous weeks with several divisions going back to five days after dropping to four at the beginning of the month. Chrysler divisions continued at approximately the rate in effect during January to account for better than 24,000 cars and trucks for the week ending Feb. 24, while Ford divisions continued on a four-day basis to produce better than 22,000 units.

Independents also reported increases with Packard and Studebaker leading this group followed by Hudson and Nash. Resumption of production by the latter, after a week of inventory, also helped to increase the industry's total.

AUTOMOTIVE MANUFACTURING ACTIVITY slowed slightly in the weeks ended Feb. 10 and 17, the unadjusted index charted herewith passing through the points 279 and 278, respectively. The adjusted index curve also continues downward, moving through 290 and 286 during the weeks ending Jan. 20 and Jan. 27, respectively.

ductory period, and output does represent a new high since introductions were pushed ahead into the late fall.

First weeks in February saw manufacturers beginning to trim their schedules from the highs established in January, but unusually favorable sales reports for the first 10-day period, and preliminary reports on the second 10 days, saw a number of makers revising their monthly quotas upward.

The week ending Feb. 24 saw GM divisions producing better than 44,000 cars and trucks, a significant increase over

NEWS OF THE INDUSTRY

Railway-Auto Plan to Be Inaugurated on May 1

New Traveler Service Calls for Expenditure of \$1,500,000 for 2000 Five-Passenger Sedans

A travel service consolidating the mobility of the automobile with the high speed of modern railroad trains will be inaugurated May 1, by 11 western railroads. The new automobile affiliate of the railroads, Railway Extension, will spend \$1,500,000 for 2000 motor cars, according to Edward M. O'Shea, president. The plan calls for the purchase of a complete new fleet of cars each year.

On Feb. 8, 1940, Hugh W. Siddall, chairman of the Trans-Continental Western Passenger Associations announced the adoption of the railway-auto plan whereby rail travelers will have available a motor car for use at

their destination. More than 150 key cities are included in the plan. It is understood that the railroads will not share in the profits of the automobile service, their only profit under the plan being from additional passenger revenues.

The participating railroads are: Burlington Lines; Chicago and Eastern Illinois; Chicago, Milwaukee, St. Paul & Pacific; Chicago and North Western; Chicago, St. Paul, Minneapolis & Omaha; Great Northern; Illinois Central; Northern Pacific; Rock Island Lines; Santa Fe System Lines; Union Pacific Railroad.

Railway Extension, Inc., is headed

by Edward M. O'Shea and R. H. Rogers of Lincoln, Neb. Main headquarters of Railway Extension, Inc., will be in Chicago, with branch offices in many western cities.

Under the train-auto plan a traveler may arrange for an automobile before leaving his home town, or after reaching the key city where he wishes to engage it. Advance reservations will, of course, assure the car being available when wanted. Railway Extension representatives will meet the passenger upon arrival of his train, where final arrangements are made.

The basis of rates for the automobiles, which includes gasoline, oil and maintenance as well as insurance protection will be as follows:

Eight cents a mile, subject to following minimum mileages:
 Per hr.—10 mi. 80c
 Per 12-hr. day—75 mi. \$6.00
 Per 24-hr. day—135 mi. \$10.80
 Per week—350 mi. \$28.00
 Per 24-hr. day after first week—50 mi.
 —\$4.00

Six and one-half cents a mi. subject to minimum of 1000 mi., \$65.00 per week

The rental will be the same whether one or five persons occupy the automobile. Where passengers do not have an identification card, a cash deposit will be required. There are no extra charges. Should the passenger buy gas, oil or repairs, upon presentation of a receipted bill he is reimbursed.

The Brass-Hat Rack

"But really, Mr. Whiffle, don't you think the statistics in AUTOMOTIVE INDUSTRIES would be more helpful to you?"

Ourselves & Government

A Check List of Federal Action Corrected to Feb. 22

FEDERAL TRADE COMMISSION

F.O.B. PRICE CASE—Trial examiner's report next development expected in the Ford case. Testimony closed in GM case with trial examiner's report, commission's brief and respondent's reply brief all filed. Expected to follow final arguments will be FTC order. In both cases, FTC alleged misleading price advertising.

VS. GENERAL MOTORS—Trial examiner's report due. Rebuttal testimony concluded Sept. 11. Case involves FTC charge that GM dealers are required to handle GM parts exclusively.

FAIR TRADE PRACTICE RULES—Proposed FTC rules made public on Feb. 19. Hearing called for March 20. (See page 256.)

VS. AUTOMOTIVE TRADE ASSOCIATIONS—Counsel for the FTC and for the respondents are negotiating, a stipulation, which if agreed upon will result in the issuance of a cease and desist order or a dismissal. Involved are the National Standard Parts Association, the Motor and Equipment Wholesale Association, both national organizations, and three mid-western regional associations which were charged in October, 1936, in an FTC complaint with allegedly forming a combination to control the market and maintain resale prices.

C. Leo Wenzel

C. Leo Wenzel, general sales manager for the Budd Wheel Co., died Feb. 12 after a two month's illness, at the Mayo Hospital, Rochester, Minn. Mr. Wenzel was forty-two years old. He was widely known in the tire and truck industries and was past president of the Tire and Rim Association.

New Fiat Truck

Interior of driver's cab of Fiat 666 truck which is equipped with a six-cylinder 565-cu. in. Diesel engine developing 105 hp. at 2000 r.p.m. The truck has a net weight of 12,220 lb., and the load-carrying capacity is 14,000 lb. The transmission has seven forward speeds and two reverse, and the final drive is through double-reduction gears (straight bevel and helical spur).

FTC Plans to Undertake Distribution Cost Study

National Advertising May Be Due for Close Scrutiny In Inquiry Which Is to Start Sometime After June 30

While Congress was seeking to set itself up as being "economy minded" in recent weeks, the energetic Federal Trade Commission successfully angled for an \$89,000 distribution cost study which will be launched sometime after June 30. Out of a total appropriation of \$2,300,000 for next fiscal year, the independent office appropriation bill earmarked the \$89,000 figure which, according to some authorities, may be used as a forerunner in an Administration attack aimed at national advertising.

Attention was focused on the advertising phases of the inquiry when this statement was made by an FTC official before the House Appropriations Committee:

"The place of advertising in distribution, especially national advertising, is a matter of great importance and general interest. Is it costing the consumer too much for the service it renders? Does it sometimes render the consumer a disservice? The proposed inquiry would seek to answer these and other similar questions."

Secret hearings before the committee also revealed that the FTC, as part of its study program for next fiscal year, plans to:

1. Collect periodic financial accounting reports from selected corporations (about 1000 companies in from 80 to 100 industries will be selected) for the purpose of providing reliable information "about operating conditions as a guide for business management." This phase of the FTC's work will cost \$61,000 and is designed to satisfy President Roosevelt's request two years ago for "information concerning the organization, business, conduct, practices and management of corporations."

2. Seek the causes for mounting costs in distribution which are said to absorb benefits which "should go to

(Turn to page 241, please)

January Rim Inspections Increased 23% Over '39

The Tire & Rim Association reports that during January, 1940, it inspected and approved a total of 2,163,914 rims, an increase of approximately 26 percent over the January, 1939, total.

New Car Registrations and Estimated Dollar Volume by Retail Price Classes*

	DECEMBER, 1939		TWELVE MONTHS, 1939			
	Units	Dollar Volume	Units	Per Cent of Total	Dollar Volume	Per Cent of Total
Chevrolet, Ford and Plymouth...	126,979	\$96,900,000	1,428,644	53.86	\$1,056,600,000	46.54
Others under \$1,000...	83,950	76,300,000	940,053	35.44	858,500,000	37.82
\$1,001 to \$1,500...	32,796	37,700,000	246,743	9.30	285,700,000	12.59
\$1,501 to \$2,000...	1,828	3,200,000	24,569	.93	38,800,000	1.71
\$2,001 to \$3,000...	946	2,300,000	11,953	.45	27,300,000	1.20
\$3,001 and over...	21	100,000	697	.02	3,100,000	.14
Total...	246,520	\$216,500,000	2,652,659	100.00	\$2,270,000,000	100.00
Miscellaneous...	24	718			
Total...	246,544	\$216,500,000	2,653,377		\$2,270,000,000	

* All calculations are based on delivered price at factory of five-passenger, four-door sedan, in conjunction with actual new car registrations of each model. The total dollar volumes are then consolidated by price classes.

Now Nearing Completion--

THE LARGEST PLANT IN THE WORLD . . . DEVOTED
EXCLUSIVELY TO THE MANUFACTURE OF MILLING MACHINES

IN response to a continuing and unprecedented demand for Milwaukee Milling Machines, the Kearney & Trecker plant is now being expanded with every modern facility to enable us to increase our production and maintain the standards which have won world-wide recognition for the advanced design and construction of Milwaukee Milling Machines.

KEARNEY & TRECKER CORPORATION, Milwaukee, Wisconsin, U.S.A.

Milwaukee **MILLING
MACHINES**

MORE THAN
41 years
OF DOING
ONE THING WELL

Business in Brief

Written by the Guaranty Trust Co., New York, Exclusively for AUTOMOTIVE INDUSTRIES

Uninterrupted recession in general business activity is indicated. The *New York Times* seasonally adjusted index for the week ended Feb. 10 stood at 98.6 per cent of the estimated normal, as compared with 101.5 for the preceding week and 89.6 a year ago. *The Journal of Commerce* unadjusted index, at 97.6 per cent of the 1927-29 average, was 3.8 points below the level a fortnight earlier.

Retail trade improved moderately in the two weeks ended Feb. 17, with sales totals ranging, according to Dun & Bradstreet estimates, from 5 to 10 per cent above the corresponding 1939 turnover. Department store sales during the week ended Feb. 10 were even with those of a year ago, according to the Federal Reserve compilation, breaking a long series of year-to-year gains.

Production of electricity by the light and power industry declined contrasonically in each week of the fortnight ended Feb. 10 but was 11.4 per cent above the comparable output last year.

Railway freight movement during the week ended Feb. 10 dropped substantially, reflecting in the greatest degree yet shown the current slowing down of industrial activity. Car loadings numbered 626,903, as compared with 657,004 the week before and 576,352 a year ago.

Bank debits to individual accounts in leading cities during the week ended Feb. 7 were one per cent above the total for the preceding week and five per cent above the comparable 1939 figure.

Average daily production of crude oil during the week ended Feb. 10 was

3,688,100 barrels, as compared with 3,498,800 barrels in the week before, and exceeded by 159,100 barrels the required output as computed by the Bureau of Mines.

Production of bituminous coal during the same period averaged 1,633,000 tons daily, as compared with 1,700,000 tons for the preceding week and 1,424,000 tons a year ago.

Business failures during the week ended Feb. 8 numbered 251, according to the Dun & Bradstreet report, as against 235 the week before and 318 a year ago.

Cotton-mill activity increased more than seasonally in the week ended Feb. 10. The *New York Times* adjusted index rose to 137.5 from 135.7 for the preceding week and 121.8 a year ago.

Engineering construction contracts awarded during the first seven weeks of this year fell 23 per cent below the corresponding 1939 total, although private contracts registered a gain of 35 per cent, according to *Engineering News-Record*. Contracts for all types of construction in 37 States during January, as reported by F. W. Dodge Corp., were 22 per cent below the total a year ago.

Professor Fisher's index of wholesale commodity prices for the week ended Feb. 17 stands at 84.3 per cent of the 1926 average, as compared with 84.7 a fortnight earlier and 86.3 for the first week of the year.

Excess reserves of the member banks of the Federal Reserve system rose \$60,000,000 during the week ended Feb. 14 to an estimated total of \$5,580,000,000, only \$10,000,000 below the all-time peak reported for Jan. 24.

Wants Engineers for Labor Mediation Jobs

Because of their training and temperament, engineers are qualified to take over the exacting duties of mediators or arbitrators in solving disputes between labor and management, the annual meeting of the American Engineering Council in Washington, D. C., was told by Otto S. Beyer, who is of the National Mediation Board. The selection of such men is difficult, Mr. Beyer said, since they must have a working knowledge of conditions in the industry concerned, yet cannot be identified with labor or management. Mr. Beyer suggested that the engineering profession give active consideration to ways and means of making available, from its members, the names of "broad-minded, intelligent socially-conscious and technically well-informed" individuals willing to undertake such tasks.

Retail Automotive Sales Up 28% in '39

Making a gain of 28 per cent, retail sales of products in the automotive group, as classified by the Bureau of the Census, rose to a value of \$4,990,000,000 in 1939 compared with \$3,900,000,000 in 1938, according to *Domestic Commerce*, published by the Department of Commerce. In the group are included motor vehicles, accessories, tires, batteries and garage supplies. Retail sales at filling stations increased 1 per cent to \$2,428,000,000 from \$2,400,000,000.

WPA Reports on Study Of Industrial Research

A WPA project report released recently shows that the number of persons engaged in industrial research—laboratories from which the bulk of new inventions and improved processes have come in recent years—has increased fourfold since 1929 with 50,000 employees at present and annual expenditures averaging between \$150,000,000 and \$200,000,000.

The report, an 81-page document with charts, tables and a statistical appendix, set forth that the greatest amount of research is being done in the relatively new, mass-production industries and mentions specifically the electric goods, rubber, petroleum, industrial chemicals and automobiles—all industries in which research activity, measured in terms of personnel employed, was said by the report to have grown most rapidly during the last two decades.

The report noted that, while the rapid growth of industrial research has been an important source of employment for an increasing number of specially trained persons, the rate of absorption by industry has not been as great as the rate at which they have been trained in schools.

AUTOMOTIVE INDUSTRIES

Summary of Automotive Production Activity

BUSES The horizons in this field continue to brighten with one of the leading manufacturers reporting an increase in operating rate of about one per cent each week since the first of the year. This particular producer now operating at about 65 per cent of capacity.

TRUCKS Prospects for this year continue to be favorable and, in general, production schedules are heavier. A number of producers seem to feel that this condition will last indefinitely inasmuch as dealer orders show no signs of slackening.

TRACTORS Makers state that sales last year were about seven per cent less than in 1938 due to lower prices which farmers received for products and the change over to new tractor lines. However, present production schedules are strong and the first two months show gratifying increases.

AUTOMOBILES Preliminary estimates indicate that production totals for February will exceed 400,000 cars and trucks by several thousand units to put the month well ahead of the comparable period a year ago.

MARINE ENGINES A fairly large volume of orders has stepped up production. Larger units still predominate, although boat shows have produced increased sales of smaller units.

AIRCRAFT ENGINES Backlogs are piling up in spite of heavy production schedules. Development work is continuing.

This summary is based on confidential information of current actual production rates from leading producers in each field covered. Staff members in Detroit, Chicago, New York and Philadelphia collect the basic information, in all cases from official factory sources.

(Copyright 1940, Chilton Co., Inc.)

RUSSWIN HINGES SWING FREELY ON TORRINGTON NEEDLE BEARINGS

Russwin Anti-friction Pivot Hinges are designed for just such jobs as carrying these heavy ornamental doors, weighing up to 1000 pounds each.

In these three types of pivot hinges, Russell & Erwin Manufacturing Co. combines Torrington Needle Bearings and ball bearings—the Needle Bearings to carry heavy radial loads in a limited space, the ball bearings to take the thrust. Note the compact designs obtained.

MINIMUM friction was the first requirement in the design of Russell & Erwin Manufacturing Company's Adjustable Ball Bearing Pivot Hinges. Because hinges involve both radial and thrust loads, the design utilizes both ball thrust and Torrington Needle Bearings—an interesting example of the adaptability of the Needle Bearing for use with other types of bearings.

"Torrington Needle Bearings were selected for the radial loads," say Russell & Erwin engineers, "because of their compactness, ease of assembly, lubricant retaining qualities, and their comparatively low cost. With them we were able to keep the knuckle diameters to an absolute minimum and to provide a truly anti-friction bearing capable of handling the heavy oscillating loads at very slow speeds, which the hinges are called upon to carry."

"We feel that Torrington Needle Bearings have assisted us materially in making a most distinct advance in pivot hinge design."

You can build better value into your own product by incorporating the

Torrington Needle Bearing—the bearing that gives anti-friction construction in small space at low cost, and needs little attention in service. The Torrington Engineering Department will be glad to cooperate with you in laying out appli-

cations for the Needle Bearing in your product. If you would like additional information on this unusual bearing, write for Catalog No. 7. For Needle Bearings to be used in heavier service, request Booklet 103X from our associate, the Bantam Bearings Corporation, South Bend, Indiana.

The Torrington Company
ESTABLISHED 1866
Torrington, Conn., U.S.A.

Makers of Ball and Needle Bearings

New York Boston Philadelphia Detroit
Cleveland Chicago London, England

**TORRINGTON
NEEDLE BEARING**

WHEN YOU INSTALL A GREENLEE

4 OR

The excellent record made by Greenlee Four-Spindle Automatics under all kinds of conditions is the result of sound engineering, extensive machine-building experience, and a combination of features in the design, which provide maximum production, continuous accuracy, quick change-over, and minimum down time. Now, with Greenlee Six-Spindle Automatics making the same kind of a record and for the same reasons, you have a wider choice in selecting a machine to suit your needs. Both types have the same strong basic design, which insures long life, dependability and high production.

★★★ GREENLEE Special-Purpose Tools

The two machines shown here are typical of the wide variety of special-purpose tools regularly built for such operations as boring, drilling, tapping, reaming and milling. Complete information supplied promptly on request.

AUTOMATIC
SCREW MACHINES
•
MULTIPLE SPINDLE
MACHINES for DRILLING
BORING, TAPPING
MILLING, REAMING and
SIMILAR OPERATIONS

6

-SPINDLE AUTOMATIC

You Get FAST PRODUCTION
CONTINUOUS ACCURACY ★ QUICK
SET-UP ★ ACCESSIBILITY ★ ★
EASE OF CONTROL

● When you install a Greenlee "Six", you get the latest in six-spindle screw machine design, because it not only incorporates the basic principles of the "Four", but includes others of especial value in six-spindle performance. You get six independent cross slides actuated by interchangeable plate cams; a main tool slide operated by intermittent gearing, not cams; collets that can be removed without indexing the head; and you get many other features, such as built-in set-up lighting and wide-open accessibility. All these features make for easier operation, quicker change-over and higher production. And they all help win the battle for lower manufacturing costs.

★ Let us send descriptive matter on Greenlee Four and Six-Spindle Screw Machines. And if you have a work piece up for consideration, let us have full information concerning it. A production estimate will be furnished promptly. No obligation, of course.

GREENLEE BROS. & CO., ROCKFORD, ILLINOIS, U. S. A.

Acme

"Young Tom"

Henry and Edsel Ford gave a cordial welcome to movie star Mickey Rooney when he visited Detroit recently. The irrepressible Mickey appears in "Young Tom Edison," the Hollywood version of the boyhood of the late Thomas E. Edison.

MEN

Six promotions in the engineering staff of Pontiac Motor Division have been announced. William H. Manning moves from the post of assistant chief engineer in charge of experimental work to assistant chief engineer in charge of design. George A. Delaney, former electrical engineer, now heads the experimental laboratories. L. Raymond Sampson, head of the technical data section, has been shifted to the electrical engineer post. William J. deBeaubien of the drafting department has been appointed engineer in charge of accessories. In recognition of the growing use of rubber in engine design, George W. Lampman, designer, has been placed on special assignment in charge of all rubber developments. Forrest H. Kane, assistant to the chief engineer, has been elevated to executive engineer and will continue to specialize in cost analysis, budget and sales contact.

H. R. MacMillan, prominent Canadian industrialist of Vancouver, B. C., was elected a director of The International Nickel Co. of Canada, Ltd., at the February monthly meeting of the board. He fills the vacancy caused by the death of James A. Richardson, of Winnipeg, Manitoba.

General Tire and Rubber Co. directors have named the following company officers for the coming year: W. O'Neil, president and general manager; W. E. Fouse, vice-president; C. J. Jahant, vice-president and factory manager; T. S. Shore, vice-president and treasurer; L. A. McQueen, vice-president, in charge of sales; S. S. Poor, vice-president, in charge of retail merchandising; H. R. Jenkins, secretary; T. S. Clark, assistant treasurer; F. W. Knowlton, assistant secretary. This increases the list of vice-presidents of the company from two to five, by the promotion of Mr. Shore, Mr. McQueen and Mr. Poor to vice-presidencies. Mr. Jenkins was promoted from assistant secretary to secretary, and Mr. Knowlton is the newly appointed assistant secretary.

The Timken-Detroit Axle Co. has announced the appointment of R. L. "Bob" Koeppen as West Coast field representative. Mr. Koeppen will make his headquarters in San Francisco, Calif.

J. M. Cosgrove has been made director of the development laboratory of the Standard Steel Spring Co., Coraopolis, Pa.

Appointment of Ira B. Groves, manager of the St. Louis branch, as manager of the Ford Motor Co. assembly

• • • **Unequalled SURFACE SMOOTHNESS and SPHERICITY**

The series of lapping operations performed as a matter of course in the Strom plant give Strom Steel Balls a degree of surface smoothness and sphericity that has always been unequalled in any other regular grade of ball. Only through such unique lapping practice can extreme precision be obtained.

Physical soundness, correct hardness, size accuracy, and sphericity are guaranteed unconditionally in all Strom Balls.

Other types of balls—*stainless steel, monel, brass and bronze*—are also available in all standard sizes. Write for catalog and prices.

Strom STEEL BALL CO.

1850 So. 54th Avenue, Cicero, Ill.

The largest independent and exclusive Metal Ball Manufacturer

branch at Kansas City, and promotion of **J. C. Doyle** to be manager of the St. Louis branch has been announced. Mr. Groves succeeds **W. L. Yule**, who lost his life recently in an automobile accident near Carthage, Mo. Mr. Doyle was assistant manager of the St. Louis branch.

H. H. Yeager has been appointed assistant sales manager of the Shafer Bearing Corp., Chicago, manufacturers of Shafer radial-thrust roller bearings. Mr. Yeager was for a number of years district sales manager of the Dodge Mfg. Corp., and prior to that was manager of the mill supply department of SKF Industries, Inc.

C. Lawrence Muench has been elected president of the Hood Rubber Co., Watertown, Mass., moving up from executive vice-presidency to succeed **Arthur B. Newhall**. Mr. Muench became vice-president and sales manager in 1933 and had been executive vice-president since May, 1939.

Diamond T Motor Car Co. has announced the appointment of **William G. Norris** as national sales manager of the Diamond T Pag-Age-Car Division.

The Timken Roller Bearing Co. has appointed **M. H. Kuhl** assistant manager of the Industrial Division. This position was formerly held by **S. D. Partridge**, who was recently made manager of the Industrial Division. **P. J. Reeves** has been transferred to the home office to engage in special sales work. Mr. Reeves' former position as manager of the Los Angeles office is being filled by **S. T. Salvage**, promoted from the company's sales-engineering ranks.

Richard R. Powell has been appointed special representative of the sales department of Studebaker.

E. A. Longenacker, Milwaukee industrial engineer, has been elected executive president of the Lauson Co., New Holstein, Wis., outboard motor and gasoline engine manufacturers. Other officers named at the annual meeting in January were **Henry S. Wright**, Milwaukee, president and general manager; **H. F. Edson**, New Holstein, vice-president and sales manager; **Eugene Wulff**, New Holstein, vice-president; **Harold E. Bruns**, New Holstein, secretary-treasurer. Directors include **Roland Wheeler**, **A. S. Puelicjer**, **W. Thurman Reiley** and **Stanley Evans**, Milwaukee, and **Robert Rolfs**, West Bend.

Walter F. Rockwell, vice-president of the Wisconsin Axel Corp., Oshkosh, Wis., subsidiary of the Timken-Detroit Co., Detroit, was named Oshkosh's "man-of-the-year" by the Oshkosh Junior Chamber of Commerce, which credited him with having done most to assure the city's future industrial security and progress. Mr. Rockwell

is at present associated with the Detroit headquarters, in charge of the company's plants in Detroit, Oshkosh, Milwaukee and Waukegan.

Arthur A. Maynard, has been appointed director of engineering of General Motors of Canada, Ltd., Oshawa, Ont.

Casing Shipments During 1939 Totaled 56,975,044

Automotive pneumatic casing shipments during 1939 amounted to 56,975,044 units. This is 32.1 per cent above

shipments during 1938 and represents the best year since 1929 when over 69,000,000 units were shipped according to statistics released by the Rubber Manufacturers Association, Inc.

Replacement units shipped in 1939 are estimated at 37,536,608, an increase of 22.8 per cent above 1938 and were the highest since 1931. Original equipment shipments, in 1939, estimated at 18,164,441 units, gained 57.7 per cent over 1938.

Total shipments for December are estimated at 4,740,112 units, an increase of 11.7 per cent over November, and 10.7 per cent above December a year ago.

ONLY LAPPING As Strom Does It CAN PRODUCE SUCH PRECISION

Strom Steel Balls possess a degree of surface smoothness and sphericity that has never been equalled in any other regular grade of ball. Such precision is exclusive with Strom because it can be attained only through a series of lapping operations such as are standard practice in the Strom plant.

Physical soundness, correct hardness, size accuracy and sphericity are guaranteed in all Strom Balls.

Other types of balls—*stainless steel, monel, brass and bronze*, are also available in all standard sizes. Write for complete details.

Strom STEEL BALL CO.
1850 So. 54th Avenue, Cicero, Ill.
The largest independent and exclusive Metal Ball Manufacturer

International Harvester Announces New Tractors

Three new models of Diesel-powered, crawler-type tractors have been announced by the International Harvester Co. The new units are being built at the company's tractor works in Chicago. Diesel engines, gears and several other parts, will be made at Milwaukee Works, in Milwaukee, Wis. Sizes range from the smallest unit, weighing 6800 lb. and providing 30 hp. at the drawbar, to the largest, weighing 22,000 lb. and providing more than 70 hp. at the drawbar.

The two smallest units—the TD-6

and TD-9—have five forward and one reverse speeds, and the two largest—the TD-14 and TD-18—have six forward and two reverse speeds. All four models travel 1.5 m.p.h. in first speed. Top speed for the two smaller models is about 5.3 m.p.h., while top speed for the two largest models is about 5.8 m.p.h. All of the new models are powered with 4-cylinder, 4-cycle Diesel engines except the largest tractor, which has a 6-cylinder, 4-cycle Diesel engine.

Bore of the cylinders ranges from $3\frac{1}{2}$ in. in the smallest model, to $4\frac{1}{4}$ in. in the largest unit. The stroke ranges from $5\frac{1}{4}$ in. in the smallest tractor, to $6\frac{1}{2}$ in. in the largest. Piston displace-

ment is 247.7 cu. in. for the smallest model and 691.1 cu. in. for the largest model.

Among the features of the new International Diesel crawlers are replaceable cylinder sleeves, crankshafts hardened by the electrical induction method, aluminum alloy pistons, full pressure lubrication system providing lubrication for all operating parts, multiple disc steering clutches, balanced weight of the tractor on tracks, variable speed governor and an operator's seat designed to give the operator comfort and easy visibility of all important parts of the tractor.

These are equipped with the standard International Diesel starting system, which converts the Diesel into a gasoline engine for starting, and after a quick cylinder warm-up switches to regular Diesel operation. The TD-18 is equipped with an electric starting system. Electric starting is also available on the other models.

The crankshaft of the TD-18 is mounted on seven main bearings and the three other new tractors have shafts mounted on five main bearings. All gears and bearings are protected by sealed inclosures and operate in a bath of oil.

Laminated Shim Co. Building New Plant

The Laminated Shim Co., Inc., Long Island City, N. Y., manufacturer of Laminated shims, shim stock and small stampings, has announced that work has started on a new plant located at Stamford, Conn. The new building is to be a modern, one-story manufacturing building of about 30,000 sq. ft. of floor space. Provision is being made in the structure for new general offices. It is expected that the plant will be completed early in June of this year.

Saves Time, Space, Investment

The standard Sundstrand Model 8 Automatic Stub Lathe shown above increased production 75% in machining close-grained pump bodies illustrated at upper right. This job formerly required three machines, three chuckings, three handlings. The Automatic Stub Lathe does the same work with one chucking . . . saves investment, floor space, work-handling, labor. It uses cemented carbide tools effectively, improves quality of finish, maintains much closer limits . . . and can be set up quickly for many other jobs. Investigate! See what Automatic Stub Lathes can save for you.

Sundstrand Machine Tool Co.
2527 Eleventh St., Rockford, Illinois, U. S. A.

Diagram above indicates cycle of front carriage tools on interior of pump body, beginning at right. Note combination of 3 feeds, 3 rapid traverses, dwells, and tool relief.

Many other standard cycles, features of construction, advantages, and specifications of Models 8, 10 and 12 Automatic Stub Lathes are shown in Booklet 391 . . . Write for a copy, today.

40 YEARS AGO

The Autocar Co., who are this week moving from Pittsburgh, Pa., to their new factory at Ardmore, Pa., have completed their 1900 model. The carriage weighs 635 lb. with water and gasoline for a 75 mile run, and seats two persons comfortably. The motor, of the Otto cycle type, has two cylinders, with cranks set at 180 deg. and develops $4\frac{1}{2}$ hp. by actual brake test.

Power is transmitted to the rear axle by means of a countershaft consisting of a speed drum, to which band brakes are applied, so that any speed, including a hill-climbing speed, may be obtained. The vehicle is entirely automatic, both as to fuel supply and lubrication, and is controlled by a single lever.

The frame is composed of steel tubes, with brazed joints. The front axle is

RIGIDMILLS-STUB LATHES

Tool Grinders - Drilling & Centering Machines
Hydraulic Operating Equipment - Special Machinery

flexible to compensate for the inequalities of the road. Wire wheels, with flared rims and 2½-in. pneumatics, are employed. A condenser cooling the water from the cylinders is placed under the footboard.

An innovation adopted by the Autocar Co. is to take an indicator card from every engine and to give it to the purchaser as a guarantee of the horsepower of the motor.

From *The Horseless Age*, March, 1900.

Crude Rubber Consumption In January 13.5% Over '39

According to statistics released by The Rubber Manufacturers Association, Inc., it is estimated that rubber manufacturers in the U. S. A. consumed 54,978 long tons of crude rubber during the month of January. This represents a 13.5 per cent increase over December, 1939, and a 18.9 per cent increase over January, 1939, when 46,234 long tons were consumed.

Gross imports for January, as reported by the Department of Commerce, were 72,496 long tons, representing a 1.5 per cent increase over imports for December, 1939, of 71,395 long tons (revised) and a 85.5 per cent increase over the imports for January, 1939, which amounted to 39,082 long tons.

Total domestic stocks were estimated by the Association at the end of January to be 156,830 long tons, which is an increase of 11.8 per cent over the stocks on hand at the end of December, 1939, amounting to 140,280 long tons. The stocks, however, were lower than the quantity on hand at the end of January, 1939, by 29.9 per cent.

Crude rubber afloat to United States ports on Jan. 31, was estimated to have been 90,285 long tons, which is slightly lower than the 91,095 long tons reported afloat as of the end of December, 1939.

Reclaimed rubber consumption for January was estimated at 17,596 long tons, production at 20,447 long tons, and stocks on hand Jan. 31, 1940, at 25,530 long tons.

Hydraulic Press Mfg. Co. Changes New York Office

The Hydraulic Press Mfg. Co., Mount Gilead, Ohio, has moved its New York office. The new address is 233 Broadway.

U. S. Testing Co. and E. E. Free Laboratories Merge

The United States Testing Co., Inc., has announced the merger of the personnel and facilities of the E. E. Free Laboratories with the testing company.

The complete equipment, staff and associates of the E. E. Free Laboratories will be maintained at their pres-

ent location—175 Fifth Avenue, corner of Twenty-third St., New York. E. A. Graham, formerly associated with Dr. E. E. Free, will manage the laboratories which will be known as the Engineering and Research Division of the testing company.

AC Spark Plug Expands Plant

Immediate construction of a large new spark plug plant in Flint, Mich., by the AC Spark Plug division of General Motors has been announced. The new plant will comprise 156,000 sq. ft. of floor space.

Yellow Truck Reports Net Profit for 1939

Net sales of Yellow Truck & Coach Mfg. Co. for the year ended Dec. 31, 1939, were \$58,862,137. The preliminary consolidated net profit, subject to final audit, for the year ended Dec. 31, 1939, amounted to \$3,276,474, after deducting provision for depreciation of \$913,470 for plants and equipment and provision for Federal income taxes of \$649,847. This compares with net sales of \$43,334,283 and a net profit of \$514,983 for the year ended Dec. 31, 1938.

Two Special Rigidmils Replace 15 Other Machines

Save Capital, Overhead, and More than \$2000 Monthly on Cutters

Standard Rigidmils

Substantial savings are being made on a wide variety of milling by standard Rigidmils. Two of these, No. 0 and No. 1, are illustrated and described in pamphlets shown above. Write for copies today. Ask for Bulletins 382 and 383.

Chamfering 140 teeth on steel ring gears is the job shown above. Formerly this work required 15 machines, two operators, and cutters costing \$2500 to \$3000 a month. Now, two operators run two special Sundstrand Rigidmils, turn out same volume of work much easier, in less space . . . and cutter cost averages only \$200 a month! No tricks, no mirrors, no foolin'. Ask our Engineered Production Department for details. Send samples and data on your milling problems. Our estimates will show if we can save you cash.

Sundstrand Machine Tool Co.
2527 Eleventh St., Rockford, Illinois, U. S. A.

RIGIDMILS-STUB LATHES

Tool Grinders - Drilling & Centering Machines
Hydraulic Operating Equipment - Special Machinery

Pick-Up in Steel Market Awaits Automotive Buying

**Mill Operating Rate of About 65% Up to
End of June Predicted by Ernest T. Weir**

As happens at regular intervals in the steel market, a pick-up in activity waits on a revival of buying by automobile manufacturers. Some of the steel sellers find comfort in the slowing down of the decline, but the volume of fresh orders continues inadequate for the support of the current operating

rate, and little change is looked for until the rate of automobile production and with it the need of steel move into higher ground.

Steel of all descriptions can now be obtained on short notice, and fill-in orders, coming from both automobile manufacturers and parts-makers, clear-

ly indicate reluctance to anticipate requirements more than absolutely necessary. An interesting development is that disclosed by the American Iron & Steel Institute's 1939 statistics, which show that sheet capacity is now 11,374,065, an increase of 869,712 tons over that of 1938. Sheet production last year was 7,799,577 tons, so that a considerable expansion in demand could be met without overtaxing rolling and finishing capacity. What little in the way of difficulties buyers experienced during the November rush, resulted from minor delays in the provisioning of the continuous rolling mills with primary forms of steel. It is noteworthy that the only addition to capacity was in sheets, the preponderant consumption of which is of automotive character. Only minor changes in steel bar capacity have been noted in the last few years.

A steel mill operating rate of between 60 and 70 per cent of ingot capacity between now and the end of June was forecast recently by Ernest T. Weir, president of the American Iron & Steel Institute. Mr. Weir looked for more favorable weather and a pick-up in export demand to bring some improvement in March. Mr. Weir said that he did not look for any price-cutting when orders begin to come in and that steel was being sold at present at "list prices."

Leading mine producers raised the price of copper \$5 a ton to 11½ cents a pound during the week ended Feb. 24. One of the large marketers had for some time quoted that figure, refusing to meet the price of the others when they announced a reduction from 11½ to 11¼ cents. The advance came just ten days after the placing of an order for 25,000 tons by France. It is said that the policy of that country and that of her British allies now is to make the heaviest possible purchases of strategic metals, so as to leave no supplies for neutrals who might re-export to Germany or Russia. Copper and brass products prices were immediately revised upward to the extent of the advance in the basic metal. Domestic demand has improved of late and stocks of refined metal have been sharply reduced.

The advance in the copper market caused tin prices to firm. Sellers again asked 46 cents for spot Straits, following several days of lower prices. There is much talk of tightening trading in tin, so as to eliminate continuing seepage of supplies through Russia and neutral countries to Germany. The large automotive interests, which usually buy in 25-ton lots, have not shown much interest in the market lately.—W. C. H.

BENDIX DRIVE assures owner-satisfaction

THE reputation of a motor car embraces all of that car... from tires to cigar lighter. Reliable starting, the responsibility for which necessarily rests upon battery, carburetor, gasoline, ignition system, wiring and the starter-drive, never ceases, in the owner's mind, to be an attribute of the car itself,

rather than its component parts.

All of which is by way of suggesting the desirability of specifying the thoroughly reliable Bendix Drive, which has started so many millions of engines so many billions of times that there can be no doubt of its enduring, consistent efficiency.

ECLIPSE MACHINE DIVISION
BENDIX AVIATION CORPORATION • ELMIRA, NEW YORK

Goodyear's 1939 Net Profits at \$9,838,797

The Goodyear Tire & Rubber Co.'s annual report shows a total income for 1939 of \$216,496,842. Net profits on Goodyear's 1939 operations are reported

at \$9,838,797, out of which five dollars were paid on each of 649,632 shares of outstanding preferred stock and one dollar was paid on each of 2,059,168 shares of outstanding common stock.

Curtiss Tests Military Plane

Equipped with the most powerful engine ever installed in a pursuit plane, a new military airplane designated Hawk 75 A-4 has been announced in Buffalo by the Curtiss Aeroplane Division of Curtiss-Wright Corp.

With structural design features similar to those of its predecessors in the Curtiss Hawk series, the new plane is built to be powered with the recently developed Wright Cyclone 1200-hp. engine. Other Hawk pursuits have approximately 1000-hp. The Hawk 75 A-4 now is undergoing tests at Buffalo Airport.

It was pointed out that the new engine, with the largest horsepower of any single-row radial engine, will materially increase the speed and other military-performance characteristics of the plane. Officials declined to say to whom the new ship would be offered for sale.

PUBLICATIONS

Many new listings and new prices for Bunting standardized bearings are included in general catalog No. 40 issued by the Bunting Brass & Bronze Co.*

Allis-Chalmers Mfg. Co., Milwaukee, Wis., has published a 32-page, two-color catalog which describes its model HD14 Diesel crawler tractor.*

Modern air-control instruments and their applications are discussed in a new catalog No. 4050 issued by the Bristol Co., Waterbury, Conn.*

"Light for Work" is the title of a new booklet prepared by the Acme Electric & Mfg. Co., Cuba, N. Y. In addition to describing Acme mercury vapor transformers for indoor and outdoor applications, the booklet explains the characteristics of mercury vapor lighting, the various types of lighting systems for a specific and general applications.*

The James F. Lincoln Arc Welding Foundation has prepared an illustrated brochure in which its \$200,000 Industrial Progress Award Program is completely described.*

Seventy-eight Diesel-powered machines that have operated a total of more than 1,000,000 hours to date, are illustrated and described in a 32-page booklet, designated as form 5856, prepared by the Caterpillar Tractor Co., Peoria, Ill.*

The Lumber Mutual Casualty Insurance Co., New York, has prepared a manual which deals with the correct barricading of road excavating and paving jobs. It is titled, "You Must Protect The Careless Driver."**

Results of a nationwide survey of traffic engineering departments in major cities of the United States are presented in a 63-page booklet published by the Institute of Traffic Engineers with the cooperation of the National Conservation Bureau, accident prevention division of the Association of Casualty and Surety Executives. The booklet is titled "Organization and Functions of

City Traffic Engineering Departments" and was edited by Dr. Bruce D. Greenshields. Price, 50 cents.

"Link-Belt Conveyors in American Industry," a booklet containing statistical data and ratios dealing with different applications of mechanical elevating and conveying equipment, has been published by the Link-Belt Co., Chicago.*

"The Fabrication of U. S. S. Stainless Steels" is the title of a 92-page book bound in stiff covers, just issued by United States Steel Corp. Subsidiaries. The book is divided into three comprehensive sections: part one is devoted to welding, riveting, soldering and joint design; part two is concerned with machining, cutting, forming, annealing and pickling operations; and, part three deals with surface finishing and protection. Austenitic, ferritic and martensitic stainless steels are treated separately. Laboratory

corrosion data covering a wide range of chemicals and acids are presented for four types of U. S. S. Stainless Steels. Price of the book is \$1.

A practical guide for the care and use of carbide-tipped tools is contained in a 32-page catalog which has been issued by the McKenna Metals Co., Latrobe, Pa. Known as Catalog No. 3, it contains complete descriptions, drawings and recommended uses for standard Kennametal tools and blanks for turning, boring and facing steel and other metals.*

The Ford Motor Co. has prepared a pamphlet entitled "The Ford Way of Doing Business."**

*Obtainable through editorial department, AUTOMOTIVE INDUSTRIES. Address Chestnut and 56th Sts., Philadelphia. Please give date of issue in which literature was listed.

Consider Labor Costs When Buying Steel

On most jobs, shop labor costs are the biggest single factor—and they depend to a large degree on the steel used. If bars are too hard for bending or forming—or have hard spots to break or dull tools—if some shapes are not straight—or if in the case of alloy steel the required properties are not developed by the first heat treatment—then up go costs, down go profits.

Purchasing steel that is uniform and has the properties most desirable for your particular use often pays big dividends in the form of decreased shop costs. You do not have to pay any more for this kind of steel—so why not get it?

For several years Ryerson has been building up stocks of these better, more uniform steels. Careful selection, checking, testing, and inspecting assure the uniform high quality necessary for Ryerson Certification. Try Ryerson Certified Steels on your hardest job—and check the labor costs. Many have told us that it pays.

JOSEPH T. RYERSON & SON, Inc. Plants at: Chicago, Milwaukee, St. Louis, Cincinnati, Detroit, Cleveland, Buffalo, Boston, Philadelphia, Jersey City.

RYERSON
Certified
STEELS

Chrysler Workers Awarded \$3,000,000 Compensation

Michigan Unemployment Compensation Commission's Decision Favors 27,000 Employes; Appeal Expected

Award of approximately \$3,000,000 in unemployment compensation benefits to 27,000 of the 50,000 workers in Chrysler plants who were affected by the labor dispute which tied up operations of the corporation from Oct. 6 to Nov. 29 last year marked the latest

phase in developments which will determine whether state unemployment benefits will be paid to workers affiliated with unions engaged in strikes or other work stoppages.

The award decision was announced on Feb. 21 by Charles Rubinoff, referee

for the Michigan Unemployment Compensation Commission, after a review of month-long testimony and briefs filed by all parties interested in the dispute, including the UAW-CIO, UAW-AFL, Chrysler Corp., and the Unemployment Compensation Commission. His ruling reversed a previous decision of the Michigan Unemployment Compensation which held that all of the 50,000 claimants were ineligible under the Michigan Compensation law which eliminates those "directly interested" in work stoppages resulting from labor disputes.

The referee's ruling drew a distinction between workers in three Chrysler plants, the Dodge main, forge and truck plants, in which there were labor disputes, and workers in seven other Chrysler plants in which work was halted because of a shortage of materials even though a majority of employes in these plants were members of the UAW-CIO which used the dispute as a vehicle for obtaining a new contract with the corporation.

It was expected that one or more parties interested in the decision would appeal the referee's ruling to the appeal board established by the Michigan Unemployment Compensation law which allows 15 days for the filing of appeals. Decisions of the appeal board may be carried to the courts so that it is possible that the actual payment of compensation may be subject to continued adjudication.

The earlier decision of the Compensation Commission treated all plants in the corporation as one establishment while the referee considered each of the 10 plants as separate establishments. In refusing compensation to 23,000 workers in the three plants directly engaged in the dispute, however, the referee ruled that they had effected an illegal slowdown—an act which the UAW-CIO had denied throughout the period of the dispute.

Observers of the labor situation pointed out that if the referee's decision is allowed to stand it would in effect amount to state financing of strike benefits to members of a union who could tie up production in a key plant with assurance that all members except those directly involved in the dispute could collect benefits from the state even though the entire membership was directly interested in the outcome of an eventual settlement.

(Turn to page 264, please)

Continental Uses the MAGNAFLUX method

MAGNAFLUX tells us what's beneath the surface—if there are any internal defects, it spots them instantly. It is but one of the many ways by which Continental insures to its customers the greatest of precision and reliability in the parts it is called upon to make. You can be sure that when Continental makes it, whatever the quantity, it will be done right.

SERVING THE AUTOMOTIVE INDUSTRY

Continental Motors Corporation
MUSKEGON, MICHIGAN

Despatch Oven Co. Officers Re-Elected

A. E. Grapp was re-elected president and treasurer for 1940 of the Despatch Oven Co., Minneapolis, Minn., at the stockholders annual meeting held recently. Other officers re-elected include H. L. Grapp, vice-president and general manager; G. C. Keyes, vice-president and chief engineer, and F. H. Faber, secretary and sales manager.

OFFICIAL PHOTO,
U. S. ARMY AIR CORPS

Metal sheets for aircraft and automobiles are sheared to micrometer accuracies on Cincinnati All-Steel Shears, and accurate Cincinnati Steel Press Brakes form parts that fit together easily.

Write for recommendations on your job.

THE CINCINNATI SHAPER COMPANY, CINCINNATI, OHIO

SHAPERS • SHEARS • BRAKES • PRESSES

Chrysler Workers Awarded \$3,000,000 Compensation

Michigan Unemployment Compensation Commission's Decision Favors 27,000 Employes; Appeal Expected

Award of approximately \$3,000,000 in unemployment compensation benefits to 27,000 of the 50,000 workers in Chrysler plants who were affected by the labor dispute which tied up operations of the corporation from Oct. 6 to Nov. 29 last year marked the latest

phase in developments which will determine whether state unemployment benefits will be paid to workers affiliated with unions engaged in strikes or other work stoppages.

The award decision was announced on Feb. 21 by Charles Rubinoff, referee

for the Michigan Unemployment Compensation Commission, after a review of month-long testimony and briefs filed by all parties interested in the dispute, including the UAW-CIO, UAW-AFL, Chrysler Corp., and the Unemployment Compensation Commission. His ruling reversed a previous decision of the Michigan Unemployment Compensation which held that all of the 50,000 claimants were ineligible under the Michigan Compensation law which eliminates those "directly interested" in work stoppages resulting from labor disputes.

The referee's ruling drew a distinction between workers in three Chrysler plants, the Dodge main, forge and truck plants, in which there were labor disputes, and workers in seven other Chrysler plants in which work was halted because of a shortage of materials even though a majority of employes in these plants were members of the UAW-CIO which used the dispute as a vehicle for obtaining a new contract with the corporation.

It was expected that one or more parties interested in the decision would appeal the referee's ruling to the appeal board established by the Michigan Unemployment Compensation law which allows 15 days for the filing of appeals. Decisions of the appeal board may be carried to the courts so that it is possible that the actual payment of compensation may be subject to continued adjudication.

The earlier decision of the Compensation Commission treated all plants in the corporation as one establishment while the referee considered each of the 10 plants as separate establishments. In refusing compensation to 23,000 workers in the three plants directly engaged in the dispute, however, the referee ruled that they had effected an illegal slowdown—an act which the UAW-CIO had denied throughout the period of the dispute.

Observers of the labor situation pointed out that if the referee's decision is allowed to stand it would in effect amount to state financing of strike benefits to members of a union who could tie up production in a key plant with assurance that all members except those directly involved in the dispute could collect benefits from the state even though the entire membership was directly interested in the outcome of an eventual settlement.

(Turn to page 264, please)

Continental Uses the MAGNAFLUX method

MAGNAFLUX tells us what's beneath the surface—if there are any internal defects, it spots them instantly. It is but one of the many ways by which Continental insures to its customers the greatest of precision and reliability in the parts it is called upon to make. You can be sure that when Continental makes it, whatever the quantity, it will be done right.

SERVING THE AUTOMOTIVE INDUSTRY

Continental Motors Corporation
MUSKEGON, MICHIGAN

Despatch Oven Co. Officers Re-Elected

A. E. Grapp was re-elected president and treasurer for 1940 of the Despatch Oven Co., Minneapolis, Minn., at the stockholders annual meeting held recently. Other officers re-elected include H. L. Grapp, vice-president and general manager; G. C. Keyes, vice-president and chief engineer, and F. H. Faber, secretary and sales manager.

OFFICIAL PHOTO,
U.S. ARMY AIR CORPS

Metal sheets for aircraft and automobiles are sheared to micrometer accuracies on Cincinnati All-Steel Shears, and accurate Cincinnati Steel Press Brakes form parts that fit together easily.

Write for recommendations on your job.

THE CINCINNATI SHAPER COMPANY, CINCINNATI, OHIO
SHAPERS • SHEARS • BRAKES • PRESSES

Acme

For Battle

—but for battling the elements only is this "Snowtrak" constructed by T. H. Brunius for hauling sports enthusiasts at Echo Lake, Calif. Powered with a gasoline engine, the machine travels 20 m.p.h. hauling 20 passengers. Track cleats are of wood with steel on the traction side.

CENSORED

An exclusive feature prepared by the London correspondent of AUTOMOTIVE INDUSTRIES, M. W. Bourdon.

Road deaths in Great Britain in December reached the highest total for any month since records were kept. The majority occurred during the nightly black-out. As a result, a speed limit of 20 m.p.h. after dark has been imposed in so-called built-up areas, where hitherto the legal limit has been 30 m.p.h.

The number of road deaths in December was 1155, an increase of 212 over December 1938. It brings the total for the first four months of the war to 4130, as against 2491 during the corresponding months of 1938.

* * *

In their abbreviated war-time form the official returns of British exports do not differentiate between automobiles and certain other engineering products. The Society of Motor Manufacturers has issued a statement to the effect that exports of motor vehicles of all kinds during November last showed an increase of 26 per cent over November, 1938, and that during the first three months of the war the exports to Australia, India, Burma, Portugal and Uruguay constituted a record in each case.

* * *

A Bill is in progress through Parliament to give effect to a promise of the Minister of Transport that no increase of taxation or reduction of legal speed should result from the use of a gas fuel on trucks or buses owing to the maximum weight in any classification being exceeded by the provision of pressure cylinders for coal gas or gas producer plant. Draft regulations under this Bill permit weight increases of from 1120 lb. to 1680 lb. and allow vehicles exceeding 26 ft. in length to draw a trailer for a producer plant and to run at the speed ordinarily permissible if no trailer is attached. A further concession permits the overall height of a single-deck bus to be increased from 10 ft. 6 in. to 15 ft. to enable it to carry a flexible type of container for coal gas at mains pressure.

* * *

The rationing of gasoline and fuel oil has revived a demand for coal-fired steam trucks. Advertisements offering to buy old steamers in any condition have been appearing in truck operators' journals. Among the responses have been some that set values nearly as high as the original price of the vehicles when new.

Thomastrip Promotes Product Improvement and Cost-Saving Production for Household Appliances

Appliance manufacturers demand cold rolled strip steel in the brightest, smoothest, mirror-like finish they can find. That is why many of them are large users of Thomastrip. Buffing and polishing operations prior to plating are practically eliminated. The steel is uniform in gauge, width and temper, and production moves rapidly into beautifully finished products.

Thomastrip is also supplied in a wide variety of electro coated finishes. Samples will be mailed on request.

STEELS THAT STIMULATE PROGRESS

THE THOMAS STEEL CO.
SPECIALIZED PRODUCERS OF COLD ROLLED STRIP STEEL
WARREN, OHIO

BRIGHT FINISH
UNCOATED, AND
ELECTRO COATED WITH
NICKEL, ZINC, COPPER,
BRASS, BRONZE, TIN

Ethyl Opens a Seattle Office

The Ethyl Gasoline Corp. has opened a Seattle office, establishing a separate division for the Northwest comprising the states of Washington, Oregon, Idaho, Utah, Montana, and Wyoming. Harry Kuhe, formerly assistant division manager of the Tulsa division, has been appointed manager of the new Seattle division. Fred Naylor, formerly of the Chicago division, has been appointed assistant division manager.

G.E. Opens Plastics Unit at Fort Wayne

The first of two new sales units of the General Electric plastics department was opened Feb. 12, at the Fort Wayne, Ind., plant, with Robert L. Davis of the New York office in charge.

Odis A. Porter

Odis A. Porter, 70, official timer of the 500-mile events at the Indianapolis Speedway, died Feb. 17, after a long illness. Gaylord H. (Snappy) Ford, Porter's understudy for four years, when Porter's health began to fail, succeeds him as Speedway official timer.

FTC

(Continued from page 226)

the consumer, resulting from discoveries and improvements developed in research laboratories."

3. Study the influence of Federal and state legislation on distribution through laws on selling below cost, resale price maintenance, price discrimination, commercial bribery, unfair trade practice, price fixing, price filling and interstate trade barriers.

The FTC, which last session was given funds to start an investigation into the effects of resale price maintenance since the anti-trust laws were relaxed in 1937 to permit the practice under the Miller-Tydings resale price maintenance law, sought to allay fears that an extensive investigation of national advertising was a part of its \$89,000 distribution study by issuing this statement.

"There is no purpose or intention of singling out advertising any more than any other item of the cost of distribution and no more emphasis will be placed on advertising costs in this inquiry than was done in such inquiries as agricultural income, farm implements and motor vehicles. The purpose of the inquiry is to ascertain and assemble pertinent facts concerning the whole subject of distribution in a number of industries."

Despite this statement, reports persisted that the FTC's study will not be quite the innocuous investigation which the Commission likes to represent it as being. In this connection, it is recalled that Assistant Attorney General Thurman Arnold, head of the Justice Department's anti-trust division, created

a stir in advertising circles in November, 1938, when he raised the point that extensive advertising results in "either a wasteful system of distribution on the one hand or a monopoly on the other." The Arnold suggestion that advertising should be restricted to what he called "its proper field" was made when the Justice Department announced in 1938 that the Ford Motor Co., and the Chrysler Corp. had entered into consent decrees with the government, agreeing to discontinue pushing a particular finance company in distributing their products.

"Monopoly," Mr. Arnold said at that time, "is fostered when advertising is used to put competitors at a disad-

vantage for the sole reason that they do not have resources sufficient to expend equally large sums in advertising particular products or the services of particular companies."

Aside from the complaint that "it is just one more way to spend a little money and to pry into a situation about which no great question has been raised," little opposition was heard in the Senate when the FTC's \$89,000 cost distribution study was up for consideration. There was an unsuccessful attempt to eliminate the \$89,000 item but administration lieutenants came to the aid of the FTC, which has a way with Congress, and the \$2,300,000 appropriation went through intact.

WE DEPEND ON THEM all the way through, from the drafting board to delivery. That's the way to get Drop Forgings right and save money at the same time. Things like die design, material selection, heat treat and other problems that used to worry the daylights out of us, get the right handling at Atlas."

Send Your Drop Forgings Problems to Atlas

"Old Timers" to Form National Organization

A committee representing 130 automobile old timers which sponsored a luncheon and reunion at the Hotel Lexington in New York City during automobile show week last October, has announced that the group will organize and incorporate under the membership corporation law of the State of New York. Elmer Thompson, secretary of the Automobile Club of America, has been appointed a committee of one to proceed with the details with full power to act on behalf of the committee.

Members of the board of directors will be selected from various sections of the country, as well as from the roster of officers of the new organization, all of whom will serve until the first annual meeting to be held in New York City, during the week of the automobile show in October. Those so designated will be named in the certificate of incorporation to be filed at Albany. It is expected that a national advisory committee, composed of the directors and members from different geographical centers will be created.

It is planned to build up a membership adequate to carry on a national organization of the automobile old

timers, nationwide in scope and to whom a membership card will be issued certifying as to the year of the holder's first association with automobiling.

Among some of the activities suggested, is the issuing of a quarterly bulletin; listing the names and addresses of members; news items concerning them; the activities of local groups, and a schedule of meetings contemplated to be held in New York City and elsewhere.

One of the principal aims of the new organization will be to collect historical data of the early motoring days from members and other sources, and to issue citations to members who have contributed in some accredited or important way to the development of the automobile. It has also been suggested that various automobile parts and accessories might be secured and eventually find a place in some museum. The first Klaxon horn has been contributed by its inventor Dr. Miller Reese Hutchison.

Qualification for membership requires that the individual has been associated in the motor vehicle sphere for at least twenty-five years, prior to the date of the application for membership. The annual dues have been fixed at \$5.00 by the organizing committee.

The organizing committee is maintaining headquarters at the Hotel Lexington in New York City, where the meetings and conferences are being held in connection with the plans for perfecting the national organization of old timers.

42 DRILLING MACHINES

Sold to one American Buyer in 1939!

SCORES OF OTHER PLANTS ALSO TURNING TO CLEEREMAN!

WRITE FOR NEW CATALOG

CLEEREMAN
DRILLING MACHINES and JIG BORERS

ADVERTISING

F. A. Berend, for six years advertising manager of Pontiac Motor Division, resigned his position, effective March 1, to take charge of the new West Coast offices being opened by MacManus, John & Adams, Inc. in Los Angeles. W. J. Mougey, for several years manager of Pontiac's Chicago zone, will succeed Berend as advertising manager.

W. A. P. John, president of MacManus, John & Adams, Inc., Detroit advertising agency, has announced the advancement of R. A. Brewer to the position of a vice-president of the company. Brewer is account executive for the Dow Chemical Company at Midland, Mich. and Reichhold Chemicals, Inc.

Arnold E. ("Tubby") Schwarz has left Bryant Heater Co. of Cleveland to become associated as Promotion Director with Belnap and Thompson, Inc., Chicago sales promotion agency.

Charles C. Tapscott, advertising manager of the McQuay-Norris Mfg. Co., has been elected Director of the American Highway Sign Association.

A one day Regional Conference for Industrial Advertisers will be held in

Chicago, April 19, 1940, under the sponsorship of the Indianapolis, St. Louis, Milwaukee and Chicago Chapters of the National Industrial Advertisers Association, Inc.

"Calling All Cars" is a new radio program sponsored by Ford dealers in north-central states, produced by Ray Linton, Chicago, through McCann-Erickson, Inc.

Large, human interest photographs, dramatizing unusual uses of truck tires takes the place of comedy copy in the new Goodrich Silvertown advertising. Griswold-Eshleman Co., Cleveland, is the agency.

Ned Evans of the U. S. Rubber Co. has been appointed advertising manager of the new Fisk division of the company, succeeding Henry Hurd.

N. F. "Shad" Lawler, formerly with Bendix Corp., South Bend, has joined the Detroit office of McCann-Erickson, Inc., as account executive.

Through Howard Meermans, Inc., Cleveland Tractor Co., Cleveland is expanding its tractor advertising for 1940.

Willys-Overland Motors, Inc., Toledo, has appointed Harry A. Berk, New York, as merchandising counsel.

Piper Aircraft Corp., Lockhaven, Pa., plans an advertising campaign for its \$995 airplane. Hutchins Advertising Co., Inc., Rochester, is the agency.

Firth Sterling Steel Co., McKeesport, Pa., has appointed Smith, Hoffman & Smith, Pittsburgh, its agency. Trade papers and direct mail will be used.

United States Rubber Co. has disbanded posters for other media in their 1940 campaign, according to W. L. Wardell, assistant general sales manager of the general products division. Campbell-Ewald Co., New York, is the agency.

Sterling Cable Co., Port Huron, Mich., is introducing its Steelductor, a new stainless steel automotive ignition cable. Sidener & VanRipper, Indianapolis, is the agency.

William D. Haylon has been promoted to advertising manager of the plastics division of General Electric Co., Pittsfield, Mass., succeeding Nat S. Stoddard.

John Benson, president, American Association of Advertising Agencies, received the gold medal for "distinguished services to advertising" at the annual awards dinner Feb. 15 in the Waldorf-

Astoria, New York. Mason Britton, vice-president of McGraw-Hill Publishing Co. and president of the Associated Business Papers, Inc., was one of the two winners of silver medals.

A bronze medal was awarded in the automotive field to Erwin Wasey & Co., Inc., for its campaign for the Air Transport Association. Honorable mentions were awarded to N. W. Ayer & Son, Inc., for its Ford Motor Co., and another for its Lincoln advertisements; J. Stirling Getchell, Inc., for its trans-continental & Western Air series; to Fuller & Smith & Ross, Inc., for its work with the Aluminum Co. of America; and Young & Rubicam, Inc., for ex-

cellence of copy in its Packard Motor Car Co. advertisements.

National Aeronautic Assoc. Meets at Denver, July 7-10

The National Aeronautic Association, which held its regular 1940 Annual Meeting at New Orleans, La., Jan. 10-12, will hold a second convention at Denver, Colo., July 7-10. The summer meeting will be the N.A.A.'s first annual gathering under a new plan of organization adopted at New Orleans. A Mid-West Air Show will be held at Denver on July 4-6.

A SYMBOL OF SERVICE FOR 37 YEARS

● Spicer has kept abreast of the fast-moving progress of the automotive industry since the early pioneering days. For 37 years, Spicer has led in developing efficient equipment designs, in engineering for performance, in exhaustive experimenting and testing, in building to the highest standards of precision manufacture—and proving the thoroughness of it all with better results in service. ● Spicer's long experience in working shoulder to shoulder with car and truck engineers in the solution of power transmission problems has won for it the confidence of leading manufacturers in the industry. That's why, today, you get the most reliable guarantee of efficient performance and economical service when you specify Spicer.

Spicer Manufacturing Corporation • Toledo, Ohio

BROWN-LIPE
CLUTCHES and
TRANSMISSIONS

SALISBURY
FRONT and REAR
AXLES

SPICER
UNIVERSAL
JOINTS

PARISH
FRAMES
READING, PA.

Canada's Automobile Exports Increasing

Canada's automobile exports continue to increase. In January, 1940, automobiles and parts amounted to \$3,737,064, as against \$2,687,218 in January, 1939.

Buick Erecting New Buildings at Flint

Buick division of General Motors will shortly launch the construction of two new buildings with accompanying

docks, and receiving and shipping facilities, as the initial step in a new program of plant renewal and expansion at Flint, Mich. Immediate construction will include a new plant to house manufacture of axles, with the rearrangement of plant and equipment for the production of axle gears, and a large addition to the sheet metal plant providing for expanded facilities in this department.

Razing of one factory building, to make way for the new axle plant, already is under way while destruction of a 300 foot section of the present sheet metal plant to make way for the new addition to this department has

been contracted for, according to O. W. Young, general manufacturing manager.

Besides the two new buildings, a series of three bridges will be constructed to facilitate interplant communication and shipping while an unusually long conveyor line will be built to carry finished axles from the new plant to the final assembly department.

The new axle plant will be 959 ft. long by 138 ft. wide of monitor type steel, brick and concrete construction and will provide 156,000 sq. ft. of floor space including covered docks 90 feet deep providing facilities for simultaneous loading and unloading of 14 trucks and three freight cars.

Hydraulic Packings and MECHANICAL LEATHERS

NOTHING TAKES THE PLACE OF Leather

Send Us Specifications or Samples for Prices!

EXCELSIOR LEATHER WASHER MFG. CO.
ROCKFORD, ILLINOIS

WPA Reports Expenditures For Trucks and Tractors

Expenditures for motor trucks and tractors bought for use on WPA projects, as distinguished from rented equipment, amounted to \$6,559,000 from the beginning of the program in July 1935 through September, 1939, figures just released by the Work Projects Administration disclose. During the past fiscal year these purchases totaled \$3,562,000. However, rentals for motor vehicles during the 1935-1939 period reached the grand total of \$394,171,000, of which local project sponsors paid \$196,794,000 and the Federal government \$197,377,000. This figure includes rentals of some owner-operated vehicles.

Houdaille - Hershey Declares Dividends

Houdaille - Hershey Corp. has declared the regular quarterly dividend of 62½ cents per share on its Class A No Par Value stock, payable April 1, 1940, to stockholders of record at the close of business on March 20, 1940. The company also has declared an interim dividend of 25 cents per share on its Class B No Par Value stock, payable March 14, 1940, to stockholders of record at the close of business on March 5, 1940.

Committee Urges Prompt Buying of Critical Materials

The War and Navy Department's interdepartmental committee on strategic materials, the agency concerned with the \$100,000,000 strategic and critical material purchasing program, has advised President Roosevelt that now is the time to buy. The committee set forth these points:

1. Commercial stocks in this country of many vital raw materials are now considerably below normal.
2. Prices of most of the desired items are more favorable at present than for some time past.
3. Difficulties in both supply and transportation, as well as higher prices, are likely to be encountered if the

present war continues and increases in intensity.

4. In the event of unlimited warfare on sea and in the air, possession of a reserve of these essential supplies might prove of vital importance not only in the national defense but in strengthening the policy of neutrality.

5. The materials to be purchased can at any time be converted into cash, and in the event of an emergency they will be worth much more than their cost.

Mr. Roosevelt transmitted the committee's report to Congress when he recommended that \$15,000,000, the amount suggested in his budget message, be made available immediately. Last year Congress appropriated \$10,000,000 but this amount will shortly be exhausted, the President's memorandum said.

The entire program, running over a four-year period and involving a total expenditure of \$100,000,000, thus far has resulted in contracts being awarded for chrome ore, tungsten, manganese, pig tin, optical glass and other materials considered necessary for the national defense. The suggested \$15,000,000 appropriation for next fiscal year was pared down to \$12,500,000 by the House Appropriations Committee, but of that amount only \$5,000,000 was made immediately available by the Senate.

To Publish Standards On Threaded Products

The Interdepartmental Screw Thread Committee, successor to the National Screw Thread Commission which was abolished in 1933, will soon publish revised standards covering bolts, nuts and other threaded products, bringing the former standards up to date in certain important respects.

Lyman J. Briggs, committee chairman and director of the National Bureau of Standards, reports that lack of time has prevented a further revision but that a more complete revision is under way.

Created by the Secretary of Commerce last September to safeguard the interests of the government in the purchase of wrenches, threading tools, limit gages as well as bolts, nuts and other threaded products, the committee is composed of representatives of the War, Navy and Commerce Departments and four advisory representatives from the American Society of Mechanical Engineers, Society of Automotive Engineers, American Standards Association, and the Sectional Committee on Standardization of Screw Threads.

Abolishment of the commission in 1933, Mr. Briggs reports, left the status of its standards in some doubt, although its report, now out of print, has been in demand as a practical and comprehensive work on screw thread standards.

For Transporting Chemicals

The American Cynamid & Chemical Corp. recently placed two truck tanks of the type shown here in service handling a corrosive solution. Of 2500-gal. capacity, the tanks have been lined with rubber by the B. F. Goodrich Co., Akron, Ohio, using its patented Vulcalock process of adhering rubber to metal, and the Triflex method of construction.

STEELS used in Morse Timing Chain links and pins "tell all" in this microscopic study of granular structure.

Samples of heat after heat, comprising hundreds of tons of steel consumed annually in Morse factories, undergo this analysis to insure maintenance of those high standards of quality which have made Morse Timing Chains outstanding for so many years.

MORSE CHAIN COMPANY
Ithaca, N. Y. Detroit, Mich.
Division, Borg-Warner Corporation

Ford Introduces a New 8-Hp. Model in England

The Ford Motor Co. has introduced in England a new 8 hp. model that would, but for the war, have made its first appearance in public at the London car show at Earls Court in October last. The showing of this with other Ford cars would also have been the first appearance of this make for over 20 years past at an English exhibition held under the auspices of the Society of Motor Manufacturers and Traders. Ford was "returning to the fold" after holding an annual show of

its own at the Albert Hall, London, during the same period each year as the Society's show.

The new Eight, like the model of the same rating it supersedes, has a four-cylinder L-head engine of 933 c.c. (58.6 cu. in.), the bore and stroke being 56.6 by 92.5 m.m. In general, too, the chassis is on much the same lines as the earlier type; it has a wheelbase of 90 in. and a track of 45 in., three speeds with synchromesh on second and high, transverse springs with four double-acting shock absorbers and Girling mechanical brakes. The engine develops 23.4 b.h.p. at 4000 r.p.m. and has a three-bearing cast-steel crankshaft,

aluminum pistons, pressure lubrication, non-adjustable valve tappets, down-draft carburetor and four-point mounting.

It is in the two-door saloon body where the chief differences between the old and the new models occur; the body, in fact, is of entirely new design, with a new style radiator grille and hood. It is noticeably roomy for a car of 8 hp. rating and has an exceptionally capacious rear locker for luggage and the spare wheel, with an exterior door to fold down as a platform for additional items. The old body had quite a small rear locker built flush into the rear panel and having access from the interior only.

Known as the "Anglia" model, the new Eight is offered in two styles, standard and de luxe; prices in England are £126 and £136 respectively, with a sliding roof (de luxe style only) £5 extra. The weight of the car is 1600 lb.

AN OIL FILTER FOR EVERY GAS and DIESEL ENGINE

MICHIANA
No. 15100
Duo-Flo Filter
with Replaceable
Cartridge Element

MICHIANA
No. 15400
Duo-Flo Oil Filter
with Replaceable
Cartridge Type
Element

MICHIANA H-W
No. 2500
Duo-Flo Filter
with Re-Packable
Type Element

Selected by a Host of Automotive Engineers

For years engineers of leading builders of engines, trucks, buses, tractors, construction machinery, trains and other motor-driven equipment — have selected MICHIANA Filters for their high efficiency, ease and low cost of maintenance. And engineers base their selections on thorough tests and performance.

Fleet owners, too, who keep accurate records have lowered filter maintenance and engine upkeep with MICHIANA Filters.

Regardless of the types of engines, there is a MICHIANA Filter that will serve you dependably. Write today for Pamphlets 739 and 839 . . . MICHIANA PRODUCTS CORPORATION, Route 12 M, Michigan City, Indiana.

Use This Re-Packable Element to Cut Your Filter Maintenance Costs.

You just replace the Wastex material and do not discard the container.

You can use these elements in popular makes of filters such as Purolator, W.G.B. DeLuxe and Michiana. Ask for Bul. 739.

MICHIANA
Duo-Flo
OIL FILTERS
and
Re-Packable Elements

Canadian Car Output Off Slightly in '39

Production of automobiles in Canada during last December totaled 16,978 units compared with 16,756 in the previous month, and 18,614 in December, 1938. The output included 11,491 passenger cars and 5487 trucks. The following is a tabulation of the number of units produced in December, 1939, and all of 1939, with comparisons for 1938 and 1937.

	1939	1938	1937
	Units	Units	Units
January	14,794	17,624	19,583
February	14,300	16,066	19,707
March	17,549	16,802	24,301
April	16,891	18,819	17,081
May	15,706	18,115	23,458
June	14,515	14,732	23,841
July	9,135	9,007	17,941
August	3,475	6,452	10,742
September	3,921	6,089	4,417
October	9,610	5,774	8,103
November	18,412	17,992	16,574
December	16,978	18,670	21,115
Totals 12 mon....	155,316	166,142	207,453

Canda Cloth Sales Show 20% Gain

P. B. Baldwin, general sales manager of Collins & Aikman Corp., reports that the sale of canda cloth, newest of the Collins & Aikman line, has already jumped 20 per cent above last year's sale of mohair velvet. Mr. Baldwin's figures cover the period from the introduction of canda cloth with the 1940 model cars last October, to the middle of January.

The new cloth, designed specifically for automotive use, is available on one or more models of most manufacturers. Its designers point out that it has all the advantages of a mohair velvet—long life, ease of cleansing, and rich texture—combined with the smart appearance and crisp tailoring of a flat cloth.

MEN AND MACHINES

(Continued from page 163)

polished surface. By switching to a saw blade this same unit can be used for cutting wood. The machine has a capacity up to 2 in. diameter, or material up to 2 in. by 6 in.

AN interesting solution to the problem of obtaining smooth operation of heavily loaded conveyors and kiln cars carrying parts through high temperature "furnaces," was recently worked out at the plant of the Champion Spark Plug Co., Ceramic Division, Detroit.

Two identical continuous chain driven conveyors with a total length of 275 ft. carry spark plug insulator "decorating setters" up to and away from an 1800-deg. Fahr. kiln at this plant for the firing on of type and trade marks in overglaze colored enamel. The conveyors are fitted with flat plates de-

ated the use of customary oil or grease lubrication: (1) grease or foreign matter could not be permitted where it might get on the ware, and (2) conventional lubricants would burn off, carbonize and flake as the red-hot setters were carried from the kiln to the cooling chamber.

The problem was solved through the development of a method of "dry" lubrication, using a lubricant impervious

to heat. At a point just beyond where the conveyor leaves the kiln, two automatic Norgren lubricators of the air-operated spray type were installed in such a manner as to spray "dag" colloidal graphite suspended in carbon tetrachloride directly on the lower bearing surfaces and chain links of the conveyors as the plates passed over the lubricator.

Since at this point the conveyor has a temperature of around 375-400 deg. Fahr., the carbon tetrachloride evaporates almost instantaneously, leaving a coating of dry graphite on the wear surfaces. A small amount of kerosene

Delta Mfg. Co.'s cut-off machine

signed to support special nickel-iron trays loaded with insulators.

These plates slide on horizontal guide plates on both sides of the entire length of the conveyor—from loading stations through the kiln and back through a cooling zone to final inspection, where insulators are removed and trays re-loaded.

Driven by a 2 1/2-hp. motor, the slow moving conveyors, when first installed, had a tendency to move in small jerks rather than smoothly. Complaints of headaches on the part of operators sitting facing the conveyor inspecting insulators were suspected of being traceable to this motion.

Normally, conventional lubrication of the guides might have taken care of the situation. Two factors, however, obvi-

and oil is added to the carbon tetrachloride to slow up evaporation slightly—to allow the graphite to completely cover and lubricate the bearing surfaces.

When first installed, the automatic lubricator was operated periodically during the day. Since then, it has been found that operating it for a short period once a day is adequate to maintain complete lubrication, as the colloidal graphite adheres firmly to the surface to give satisfactory twenty-four hour lubrication.

The resulting smooth operation of the conveyor was accompanied by a sharp drop in headache complaints—

and, incidentally, also reduced power consumption materially.

THE Landis Machine Co., Waynesboro, Pa., has developed a new type of carriage front which can be used on either its Landmaco or Landis standard threading machines. This carriage front is provided with a collet holding device of the type usually employed on automatic screw machines. The collet chuck is actuated by a handwheel, the handwheel being located so that it occupies approximately the same position as the handwheel of the standard carriage front.

Landis Machine Co.'s new collet chuck carriage front.

Separate collets are employed for each diameter of work. The collets can be interchanged easily; it is merely necessary to rotate the handwheel a few turns to release the collet so that another one of the desired size can be substituted.

Advantages of this collet chuck carriage front are: First, the assured production of concentric threads, for the work is rigidly held in alignment with the die head; and second, the elimination of gripper markings on the work. Further, long pieces may extend entirely through the collet—a work stop may be employed to position the work with relation to the die head—while very short pieces of work may be positioned by an adjustable work stop located within the bore of the collet.

Curtis Hydraulic Cylinders

Best for low-cost lifting anywhere...any time

Freezing weather, high heat, fumes or dust are no hazard to Curtis Hydraulic Cylinders. They do their job efficiently under adverse atmospheric conditions because of the hydraulic principle, simple, rugged design, tough materials and precision workmanship. With only one moving part, there is little opportunity for trouble or wear.

A Curtis Hydraulic Cylinder can do your lifting or lowering job more dependably, accurately and smoothly at a *lower cost* for original installation—for power consumption—and for maintenance.

Profits will be favorably affected by better material handling in your plant, just as in hundreds of others where Curtis Cylinders have replaced manual lifting or less efficient power equipment. No productive space need be sacrificed.

Control is simple and accurate—safely oil-locked at all heights. Use regular shop air lines (or electric oil pump). Capacities up to 16 tons.

Send coupon below for free booklet suggesting applications in your industry.

CURTIS

Compressors • Air & Hydraulic Cylinders
Air Hoists • I-Beam Cranes & Trolleys

CURTIS PNEUMATIC MACHINERY COMPANY
1917 Kienlen Avenue, St. Louis, Missouri
Gentlemen: Please send data on Curtis Hydraulic Cylinders, and your
28-page booklet, "How Air is Being Used in Your Industry."

Name _____

Street _____

Firm _____

State _____

City _____

A NEW alternating-current arc welder was recently placed on the market by K. O. Lee & Son Co., Aberdeen, S. D. This welder is made in three models having capacities ranging from 20 up to 150, 200, and 250 amp., respectively. All three models are regularly built to operate on 220-volt, 60-cycle current, but can be furnished for 440-volt, 60-cycle current when desired.

The smallest size is suitable for sheet-metal work which does not require electrodes over 5/32 in. diameter. The intermediate size is adapted for general purpose welding in production and repair shops, while the largest model is particularly suited for shops handling heavy welding work. This machine handles 1/16 to 1/4 in. electrodes and consumes a maximum of 7.5 kw. per hr.

A N improved hydraulic injection molding machine for plastics, designed and built by The Watson-Stillman Co., Roselle, N. J., is devised for faster operation, increased capacity and production, and economies in operation and maintenance. One of its features is the zone heat control which provides ingeniously distributed heat, giving a greater plasticizing capacity to the heating cylinder. The smooth, uniform bore of the cylinder offers no place for material to lodge and facilitates changing from one color to another.

The exceptionally large opening (24

in. max.) between die plates, with adjustment of 18 in. on the clamping end, allows for the accommodation of dies 6 in. thick and up. The toggle-clamping device affords positive clamping of dies having up to 125 sq. in. projected area.

Two material cylinders are available for use with this machine. The maximum weight of material injected per cycle with the 2 3/16 in. cylinder is 6 oz. at a pressure of 50,000 lb. per sq. in. With the 2 1/4 in. cylinder the maximum weight is 8 oz. at a pressure of 32,000 lb. per sq. in. The stroke of the injection plunger is 9 in.; speed of injection plunger 150 in. per min.

The machine itself is arranged for full automatic, automatic single cycle and manual control. Working pressure is 2050 lb. per sq. in.

A NEW 50-ton capacity plastic molding press has been developed by the Hannifin Mfg. Co., Chicago. It is air operated and requires about 80 lb. unit pressure to develop 50 tons. Higher air pressures can be used to increase this to 70 tons. Overall height is approximately 7 ft., and distance from floor to lower platen when open is 46 in. Distance between columns is 22 in.; clearance between platen and top strain head is 17 1/2 in. To accommodate various size dies, the strain head is adjustable for 12 in. permitting a maximum

Hannifin Mfg. Co.'s new 50-ton capacity molding press.

daylight space of 29 1/2 in. The platen stroke is 8 in. Provision is made for the application of ejector pins or a separate ejector cylinder.

A unique power stroke makes the Hannifin press particularly suited for compression molding of thermosetting

plastics. The pressure is developed through a combination lever and toggle mechanism developed specially for this kind of work. The platen advances rapidly but decelerates when the dies begin to close allowing time for the compound to soften. The rate of up-travel and the return speed are both adjustable to suit the application. Full tonnage is applied to break the mold when reversing the cylinder.

If air is not available, this same press can be furnished with a completely self-contained hydraulic power unit. Hannifin Mfg. Co. offers a similar press in a 15-ton capacity.

MAKING spot welds in semi-inaccessible locations such as automobile reveal and garnish molding where intricately shaped, thin section welding points could not stand up under continued operation, is now being done with an unusual combination of short-circuiting gun and clamping fixture. It is reported that the arrangement has more than tripled production speed over previous methods.

The fixture for either one or two man operation, designed and built by Progressive Welder Co., Detroit, has an enclosed transformer short coupled to bus-bars which also serve as nesting

JUST TO
REMIND YOU—

that we have the largest, most modern and best equipped Custom Molding Plant in the Middle West, for supplying Plastic Molded Automotive Parts by the Compression and Injection Processes. We invite your inquiries.

CHICAGO MOLDED PRODUCTS CORP.
1039 N. KOLMAR AVE. CHICAGO, ILLINOIS

dies for the work. A single hydraulically operated spot welding gun, of the short-circuiting type is used alternately by the two operators when production speeds require two man operation.

In operation, the window reveal is first secured against the bus-bar die by means of thumb clamps. The garnish molding is then placed in position over the nesting die which is so designed that when the hand clamp brings the molding under tension, the molding is forced securely against the reveal.

The gun used is of the pincher type, pressure being supplied by an hydraulic pressure booster. To permit its admis-

sion in the concave side of the garnish molding only the tip of the upper electrode is of relatively thin section. Thus, ample cooling can be afforded to prolong electrode life. The lower electrode is of the button type contacting the bus-bar. Being suspended midway between the two operating stations, the welding gun is used by one operator while the other is placing and removing the work.

THE Ross Operating Valve Co., Detroit, has developed a solenoid operated, air valve to meet manufac-

Self-contained spot welding fixture built by Progressive Welder Co.

Save like the Chicago Manufacturers who installed the above battery of four Duro Ball Bearing Drill Presses and has reported a surprising reduction in production costs. The operator moves quickly from one spindle to the next for continuous drilling and tapping. Just one set up where two were formerly required. And, what is equally important, this new equipment cost less than $\frac{1}{2}$ as much as his older and less efficient equipment.

Let us show you how you too can save by installing Duro Modern Precision tools.

DURO METAL PRODUCTS CO.
Dept. AM3, 2657 North Kildare, Chicago, Illinois

DURO PRECISION DRILL PRESS *for fast low-cost production*

MADE BY THE MANUFACTURERS OF
AMERICA'S FINEST AND MOST COMPLETE
LINE OF POWER DRIVEN MACHINERY

turers' demands for high speed operation of welding guns. Although it is claimed that this new Ross valve has operated at considerably higher speeds on experimental work, it is now regularly delivering 400 welds a minute on production jobs.

ITHE new developments in machine tools and allied equipment which have been brought to the attention of *Men & Machines* are as follows: The addition of model J-12 to the line of bending presses manufactured by the Steelweld Machinery division of the Cleveland Crane & Engineering Co., Wickliffe, Ohio. This press will handle plate up to 12 ft. by $\frac{1}{2}$ in. between housings and up to 14 ft. over total length of bed and ram. The press may be used for bending, forming, blanking, drawing, rubber-forming and multiple-punching operations . . . Kato Engineering Co., Mankato, Minn., has designed a line of direct-current motors which in addition to driving a piece of equipment also furnish 60 cycle AC current for the operation of an auxiliary function. One interesting application of the Kato special DC motor is on the Doall contour shaping machine manufactured by Continental Machines, Inc. To facilitate threading the saw through an internal sawing job, it is necessary to cut the band, insert one end of the saw through a starting hole and then butt weld the ends together. The Doall machine has a built-in butt welding device for joining the band saw ends. When the machine is supplied to customers who are in direct current areas, it is equipped with a Katolight DC main drive motor which also provides the alternating current necessary for the operation of the butt welder . . . A new radiation-type vacuum thermocouple for use wherever exceptionally high sensitivity and very rapid response are needed has been announced by the General Electric Co. This thermocouple is designed to fill a specific need created by the develop-

ment and use of controlled protective-atmosphere furnaces for processing materials at high temperature. Possible applications include temperature measurement and control in brazing, heat-treating furnaces, glass heat-treating . . . Recently perfected by Stewart-Warner Corp. engineers to prevent over-lubrication of ball and roller bearings, Alemite Lubriguards, a new line of fittings and bushings for industrial machinery, are so constructed that they signal the operator when a bearing is sufficiently lubricated. The Alemite Lubriguard fitting is installed directly into the bearing. In operation, with an Alemite hydraulic-type pressure gun applied to the Lubriguard fitting, the lubricant is forced through an inlet of the fitting, and thence into the anti-friction bearing. When a predetermined amount of back pressure is developed in the bearing, excess lubricant appears at the vent, a signal to the operator that further lubrication is advisable . . . A new vise designed for production machine work is being offered by the Larkin Air Vise Co., Portland, Conn. As its name implies, the Larkin Air Vise is pneumatically operated. It is available in five sizes ranging from four to eight inches in jaw width . . . Ahlberg Bearing Co., Chicago, has developed a line of bearing units known as CJB Simplex machine units. These are available in three capacities; for light, medium and heavy loads, with either single row, double row or self-aligning bearings.

Solenoid operated air valve built by Ross Operating Valve Co.

In the light series the bearings are mounted directly on the shaft; whereas, the medium and heavy units mount through a split adapter sleeve in a tapered bore bearing. A new type, non-drag seal has been developed, using Neoprene as the sealing material . . . A new, lightweight back-up pad for disc sanders has been developed by the Columbian Rope Co., Auburn, N. Y. Available in the nominal inch sizes of seven, eight and nine, it has a molded plastic center. Both the center and the flexing surface are made of rope fiber bonded and molded at the same time to prevent the two from separating. —H. E. B., Jr.

Clark Utility Ball-Bearing Drills

Jas. Clark, Jr., Electric Co., Louisville, Ky., manufactures $\frac{3}{8}$ -in. improved Clark utility drills, as illustrated herewith. These drills, specially designed for high-speed production work, are said to be easier to handle, in better balance, more efficient and more powerful than previous designs. Among the applications specially in view when the company developed these drills were heavy-duty production and maintenance work in automobile service stations, industrial plants, and bus and

trailer manufacturing shops.

A special feature is the double-reduction gearing, which keeps the offset between the top of the motor housing and the center of the drill a minimum. Ball bearings are used on the armature shaft, both intermediate gears, and the spindle. The spindle ball bearings take both radial and thrust loads. Gears are made of heat-treated alloy steels. The drills are equipped with a two-pole, automatic, quick-break safety switch with a conveniently-located lock. The motors are provided with air ducts and are cooled by ventilating fans. Frame, gear plate and gear head are cast of aluminum alloy.

MODERN CLEANING METHODS for all Metal Finishing Plants

Detrex Spray Machine consisting of alkali, rinses, chromic acid, Bonderite and blow-off.

One-dip Conveyorized Detrex Degreaser.

YOUR requirements for fast, flexible, and economical cleaning are assured by Detrex Engineered cleaning equipment and materials.

One complete source for:

Solvent Degreasing Machines
Stabilized Safety Solvents—Perm-A-Clor and Triad
Alkali Washing Machines
Triad Cleaners, Strippers, Spray Booth Compounds and Raw Alkalies
Industrial Ovens, Wet Spray Booth and Dip Tanks
Bonderite Installations
Dry Cleaning Equipment

Write for data or free engineering consultation.

DETROIT REX PRODUCTS COMPANY

Engineered Solvent Degreasing and Alkali Cleaning
13001 HILLVIEW AVENUE • DETROIT, MICHIGAN
Branch Offices in Principal Cities

A New Method of Determining Damping Coefficients--

IN THE determination of the vibration characteristics of high-speed crankshafts, the damping factor of the material of which the crankshaft is made is of importance, because it determines the maximum stress which can be induced by torsional vibration. Heretofore these damping factors generally have been determined in an apparatus in which the test specimen, a cylindrical torsion bar, is clamped with one end

and has the other end—supported by some kind of anti-friction bearing—provided with an inertia mass of flywheel; the torsion bar is deflected through a certain angle and then released, and a scribe secured near the circumference of the inertia mass traces a record of the dieing oscillations on a strip of paper that is moved radially with respect to the axis of oscillation, by clockwork. For a given amplitude

of oscillation a certain amount of energy is stored in the torsion bar when in the position of maximum deflection. Owing to damping effects, the amplitude decreases with each succeeding deflection. The decrease in amplitude from one deflection to the next represents a certain loss in stored energy and this, of course, is the energy absorbed by the damping forces. The ratio of the energy absorbed by the damping force during one oscillation to the energy stored in the bar at the beginning of the oscillation is the damping coefficient; it is a non-dimensional quantity and is usually expressed in per cent.

Dr. J. Geiger of the MAN firm, pioneer manufacturers of Diesel engines, in an article in *Automobiltechnische Zeitschrift* for Dec. 25, 1939, points out that this method of determining the damping factor is not in accordance with the conditions under which damping takes place when a crankshaft is vibrating torsionally at a critical speed, and he has devised a new apparatus in which these conditions are more closely simulated. It is known as the resonance method and is based on the following principle.

If an exciting force P acts on an arm secured to a torsion test bar, in the event of resonance, when the exciting force is displaced 90 deg. relative to the deflection A , the work done by the exciting force is always $PA\pi$, regardless of the nature and magnitude of the damping forces. This work must be absorbed in overcoming the damping forces during one oscillation. As may be seen from Fig. 1, the elastic energy stored in the torsion bar at maximum deflection is $CA^2/2$. Consequently, the energy absorbed by the damping effects during one oscillation, in per cent of the potential energy or elastic energy, is given by

$$U = \frac{PA\pi}{CA^2/2} = \frac{2P\pi}{CA}$$

Therefore, if we have an experimental apparatus which permits of accurately determining the exciting force P , it is an easy matter to find the damping force. Since for all materials with a straight-line elastic characteristic the value of the elastic coefficient C remains constant, it is only necessary to determine P and A —both of which naturally, must be referred to the same distance R from the axis of the torsion bar.

Experimental apparatuses of the type in which the test specimen is set oscillating and is then allowed to come to rest, are usually suspended by a wire, in order that there may be a minimum transmission of energy to the surroundings. This applies particularly to apparatus of the Föppl-Pertz type. Dr. Geiger's apparatus, on the other hand, is built on a very stiff base plate and provided with bearings of adequate rigidity, to achieve this same object, that is, to minimize the transmission of vibration energy to surrounding parts. He says experiments have shown that

MEETING NEW NEEDS

Each new year brings new problems for strip steel manufacturers. The use of strip steel for new designs and products sometimes requires almost revolutionary combinations of analyses, physical properties, tolerances, finishes, etc. Engineering skill alone is not always enough to apply steel to the intended job. The steel must first be made to fill the particular demand expected of it, and this means men with new ideas and mills equipped to carry out their plans. To the cold rolled strip steel buyer we can offer a completely modern plant, equipped to meet unusual requirements, and manned by men who do make worthwhile contributions to the industry.

THE COLD METAL PROCESS COMPANY
Youngstown, Ohio

the "radiation" of energy to the stiff base plate is negligibly small. Even in the case of large amplitudes of the torsion bar, such as 0.35 in. at 10-in. radius, the motion of the base plate is so small that it can hardly be felt with the finger-tips, even though, as is well known, human finger-tips are very sensitive and can perceive motions of the order of 0.0004 in. From experience with Diesel engines, on the other hand, it is known that even in the case of very severe vibration of the foundation, the loss of energy occasioned thereby is so small that the difference in the specific fuel consumption cannot be measured.

Fig. 2 shows Dr. Geiger's experimental apparatus. The test specimen, in the form of a cylindrical torsion bar, is rigidly clamped in a bearing at its right end, while at the opposite end it carries an inertia disk and is supported by a ball bearing. Both bearing supports, and especially that in which the bar is clamped, are of very rigid design and rigidly mounted on the base plate. At one end of the inertia disk there is mounted a shaft which carries an eccentric inertia mass and is connected to an electric motor through a very flexible rubber coupling. When the shaft is rotated, a rotating centrifugal force is set up, and this force may be resolved into a radial and a tangential component (relative to the inertia disk), each component varying in sine-wave fashion with relation to time. The radial component is taken up on the ball bearing, but the resulting friction in the ball bearing can be neglected even at high speeds without impairing the accuracy of the results seriously. The tangential component tends to turn the inertia disk around its axis and consequently to deflect the bar torsionally.

Fig. 1—Diagram of energy stored when a torsion bar of a material with a straight-line elastic characteristic is deflected.

At any given speed of rotation (read off on the tachometer) this component—the exciting force P —is completely determined by the dimensions of the eccentric and the speed. The elastic constant of the torsion bar can be determined by a single static test. Dr. Geiger's investigation had for its particular object to determine the damping characteristics of cast iron, which has been used for crankshafts to a certain extent, and he says the objection might be made that the straight-line law does not apply to cast iron, at least not when subjected to bending forces. To meet this objection he says that in his experiments with cast iron

Fig. 2—Geiger apparatus for the experimental determination of damping coefficients under conditions of resonant (constant-amplitude) vibration.

Statistics PROVE MERIT OF Hoof Governors

Standard or optional equipment on all leading 1940 Trucks . . . Specified for Largest Taxicab Order reputed ever received by one Leading Car Manufacturer . . . Choice of School Commissions, Highway Departments, Fleet Operators . . . Construction approved by U. S. Government Specifications!

THESE ARE THE FEATURES THAT MAKE HOOF AN EVER GROWING FAVORITE . . . SALES STATISTICS PROVE IT!

Besides the proven superiority of the Hoof Cantilever Spring described below—Hoof Governors have the following salient features: One-piece heavy wall Aluminum body and housing insure maximum resistance to heat; Stainless Steel parts insure maximum resistance to corrosion, friction and sticking. Three husky, self-contained, self-aligning stainless steel ball bearings at each end of the shaft and on lever arm assure

frictionless operation, smooth action and quick recovery. Diaphragm control prevents overrunning by part throttle manipulation.

These and many other plus features of Hoof Governor construction enable them to best meet the stiff demands of the modern motor . . . and best satisfy the operators who use them.

HOOF EXCLUSIVE CANTILEVER SPRING

The Cantilever Spring insures the delivery of the full power of the motor up to and at the governed speed. It is not subject to stretch or fatigue . . . maintains factory calibration . . . self-dampening—eliminates use of cams, pistons and dash pots.

HOOF PRODUCTS CO., Dept. BEA, 6543 S. Laramie Ave., CHICAGO, ILL.

Makers of the FAMOUS HOOF CANTILEVER GOVERNORS.

Fig. 3 — Damping coefficients of eight grades of cast iron and two grades of steel (two curves on right) as related to surface stress in torsional specimen.

For ANY KIND of Wire Forms

— depend upon
ACCURATE QUALITY
and SERVICE

COMPRESSION SPRINGS
•
EXTENSION SPRINGS
•
TORSION SPRINGS
•
FLAT SPRINGS
•
WIRE FORMS
•
STAMPINGS
—
CARBON STEEL
•
VANADIUM STEEL
•
STAINLESS STEEL
•
BRONZE
•
BRASS
•
MONEL METAL
•
OTHER ALLOYS

Want an up to date handbook crammed full of otherwise hard-to-find spring information for every day use? Ask us for your copy.

NO MATTER what size or kind or quantity of wire forms you need, whether they be extremely simple or intricately complicated, COME TO ACCURATE. You will find that you can rely upon Accurate to design and produce exactly what you need at a price that's right. You will learn that you can depend upon Accurate for service that is fast—and quality that never varies!

Establish Accurate as your source of supply; we think you'll find advantages that will save you time and money. Write today for any suggestions or quotations you may want.

Accurate
Springs

ACCURATE SPRING MFG. CO.
3811 W. Lake Street Chicago

in torsion, within the stress limits which are usually set in practice, he has found no serious deviation from the straight-line law. However, the elastic constant C can be determined also dynamically from the inertia mass M and the frequency Ne by means of the equation

$$Ne = \frac{30}{\pi} \sqrt{\frac{C}{M}}$$

This method is to be preferred, as it more closely simulates the conditions obtaining when a crankshaft vibrates torsionally.

From what has been said in the foregoing, it follows that the relative damping for an amplitude A of oscillation can be determined directly from the equation

$$U = \frac{P \pi}{CA/2} = \frac{2P\pi}{CA}$$

where P is the force that excites the oscillation; C , the spring constant, and A , the amplitude. Since the stress in the specimen is proportional to the amplitude of the oscillation, it is possible to determine the damping coefficient directly from the torsional stress S at the surface of the bar. With a known spring constant C , the deflection produced by a given force P when acting statically can be determined by the equation

$$A_{stat.} = \frac{PR^2}{GJ_p}$$

where P is the force causing the torsional deflection; R , the radius from the axis of the specimen at which the force is applied and the deflection measured; G , the modulus of elasticity of the material in torsion, and J_p , the polar moment of inertia of the section of the bar. It is therefore quite a simple matter to determine the build-up of the vibration, that is, the ratio of the dynamic amplitude A to the static amplitude $A_{stat.}$

In the past, in discussions on the subject of damping forces, it has been usu-

ally assumed that these forces are proportional to the frequency or the rate of oscillation, and H. Wydler in his work entitled *Drehschwingungen in Kolbenmaschinenanlagen und das Gesetz ihres Ausgleichs* (Springer, Berlin, 1924), made this assumption and on the basis thereof calculated certain damping coefficients. Dr. Geiger says, however, that in 1934 he showed that most of the damping effects on crankshafts are not proportional to the speed and that even when all of the damping influences are combined the assumption that they vary directly with the speed is decidedly at variance with the experimental results. So far as internal molecular friction is concerned, tests were made first by the Englishman Rowett and later by Otto Pöpple and some of his pupils in Germany, notably Becker and Bankwitz. These investigations covered many different materials, especially many grades of steel, and also copper and light metals, and the results in all cases showed that within the range of rate of stress reversals of 1 per min. to 3000 per min. the damping effect is independent of the frequency. It is only in the case of stress reversals at a lower rate than one per minute that there is a change, and such low frequencies, of course, are of no significance in connection with crankshafts of high-speed combustion engines. Dr. Geiger says no such investigations have been made on cast iron so far, but he felt safe in assuming that with this material also the damping coefficient is not affected by the frequency between the limits of one and 3000 stress reversals per minute.

One of the damping factors with every testing apparatus is the air friction, but he feels certain that with his apparatus, in which all the principal parts are bodies of revolution which do not stir up the air to any extent, and which, moreover, have a minimum surface area in contact with the air, this effect is wholly negligible. Investigations were made also with regard to the possible power loss to the base plate, and since even with the limiting amplitude of disk oscillation corresponding to 0.35 in. at a radius of 10 in. it was impossible to detect any motion of the bearing at the opposite end with an indicator having a sensitivity of 0.00001 in., it was concluded that this loss also was negligible.

One of the things discovered in experiments with this apparatus on cast iron torsion-bar test specimens was that when a new bar is first inserted into the machine, it has a relatively high damping coefficient. As the so-called resonance test continues, the damping coefficient decreases gradually, until after about 200,000 stress reversals it assumes a constant value.

Fig. 3 herewith shows the damping coefficients of eight different cast irons and two grades of steel in relation to the stress in the surface of the test bar. It will be seen that the damping coefficients do not vary greatly for the different grades of cast iron. It was

found that irons which had a relatively low tensile strength showed the highest damping coefficients. Except in two cases, the damping coefficients increase moderately as the stress increases. Coefficients were plotted for the stress range 2800—14,000 lb. per sq. in., which is the range of greatest interest from the standpoint of building up torsional vibrations at critical speeds. It will be seen that for a given surface stress in the specimen, the damping is from 80 to 120 per cent greater with cast iron than with steel.

The results of this investigation on the torsional damping coefficients of cast iron were summarized as follows:

For the determination of the damping coefficient under conditions of resonance, it is advisable to utilize a method in which there is resonant excitation by a harmonic force, rather than the method by which a test bar provided with an inertia disk is deflected from the position of equilibrium and then released and allowed to oscillate until it comes to rest. This applies particularly with different grades of cast iron.

The damping is materially greater when the test specimen is first subjected to the oscillating force, and it gradually approaches a constant value, which usually is attained after approx-

(Turn to page 263, please)

FINER GRINDING FINISHES AT LOWER COST

PROOF OF ADVANTAGES

A recent survey among 75 prominent users of Fostoria Filters reveals these facts—

- 80%** Profited with less spoilage
- 43%** Profited by increased production from 5% to 40%
- 40%** Profited by reduced wheel dressings from 10% to 40%
- 47%** Profited by lengthened wheel life

The one and only function of the Fostoria Filter is to keep the coolant solution CLEAN—free from foreign particles which injure grinding work. In doing this job efficiently and economically, it makes a genuine contribution to the accomplishment of FINER GRINDING FINISHES. Thousands of Fostoria Filters in thousands of plants attest to this accomplishment. Your request will bring complete information for your "better profit" consideration.

THE FOSTORIA PRESSED STEEL CORP.
FOSTORIA, OHIO

Proposed Trade Practice Rules for the Automotive Industry

The Federal Trade Commission on Feb. 19, made public proposed trade practice rules for the automobile industry for the consideration and hearing of interested or affected parties. Such rules are made available pursuant to the Commission's trade practice conference procedure and under the following public notice issued by the Commission:

“Notice of Hearing, and of Opportunity to Present Views, Suggestions or Objections

"Opportunity is hereby extended by the Federal Trade Commission to any and all persons, partnerships, corporations, associations, organizations, groups or other parties affected by or having

The following outstanding manufacturers use FLOAT-O

Buda
Buick
Cadillac-La Salle
Chrysler
De Soto
General Motors
Corp.
Diesel Engine
Division
Gen'l Motors of
Canada Ltd.
General Motors
Truck and Coach
Int'l Harv. Co.
Lycoming Motors
Morris Motors,
Ltd.
Otto Engine
Packard
Pierce-Arrow
Seagrave Corp.
Sterling Engine
Studebaker
White Motors
Willys-Overland
Wolseley Motors
Ltt.
Other prominent builders definitely
committed for 1941 models.

From the Lowest to the Highest Priced Cars in the World Use

FLOAT-O

BECAUSE IT

Supplies bearings with the "Cream" of the Oil—from the top of the Crank Case

The sludge, filings, and heavy abrasives which cause serious engine wear and inefficiency naturally precipitate to the bottom of the crank case. FLOAT-O installed at the pump intake, draws horizontally from the clean oil found at the top—it does not disturb the harmful substances found at the bottom of the crank case. With FLOAT-O only this "cream" of the oil sump is distributed to the bearings. This is true during starting and all running conditions. FLOAT-O is also a definite guarantee against ice locking.

Indorsed and approved by the leading research engineers of the industry,
FLOAT-O insures quicker starting, smoother operation, and longer life for
engines.

FOREIGN LICENSEE { BRITISH WIRE PRODUCTS LTD.
LONDON, ENGLAND

Write for Literature
**TALYOR SALES
ENGINEERING CO.**
ELKHART, INDIANA

March 1, 1940

When writing to advertisers please mention Automotive Industries

Automotive Industries

an interest in the proposed trade practice rules for the Automobile Industry to present to the Commission, orally or in writing, their views concerning such rules, including such pertinent information, suggestions or objections, if any, or such amendments or additions thereto, as they desire to submit. For this purpose they may, upon application to the Commission, obtain copies of the proposed rules. Written communications of such matters should be filed with the Commission not later than March 20, 1940. Opportunity for oral hearing and presentation will be afforded at 10 A. M., March 20, 1940, in Room 332, Federal Trade Commission Building, Constitution Avenue at Sixth Street, Washington, D. C., to any such persons, partnerships, corporations, associations, organizations, groups or other parties as may desire to appear and be heard. After giving due consideration to all matters submitted concerning the proposed rules, the Commission will proceed to their final consideration."

The proposed rules relate to the sale and distribution of the products of the industry embracing all the different types and kinds of automobiles (passenger and commercial cars, trucks, etc.), and parts, accessories and equipment therefor. The industry includes, among others, the automobile manufacturers; also, the automobile dealers and distributors throughout the country, of which there are approximately 45,000.

Proceedings before the Commission were instituted in the matter upon application of members of the industry. In the course thereof, a general trade practice conference of the entire industry was held, under the auspices of the Commission, in Detroit, Mich. The issuance of the present draft of proposed rules, and the announcement respecting hearings thereon, are further steps in the regular procedure applicable in such matters.

The purpose of the proceeding is to establish comprehensive trade practice rules for the protection of the industry and the purchasing public; to provide for the elimination and prevention of unfair methods of competition and other harmful trade practices; and to maintain, in the public interest, fair competitive conditions for the conduct of the business.

All persons, partnerships, corporations, associations, organizations, groups or other parties engaged, or otherwise concerned, in the manufacture, sale and distribution of the products of this industry, and all other interested or affected parties, including consumers, their organizations or representatives, are afforded opportunity to be heard in the premises and to present their views, suggestions or objections, if any, with respect to the proposed rules, including such amendments or additions thereto as they may desire to submit, for the consideration of the Commission.

Text of Proposed Trade Practice Rules for the Automotive Industry

(As released February 19,
For Hearing March 20, 1940)

(NOTE: THESE RULES HAVE NOT BEEN APPROVED BY THE FEDERAL TRADE COMMISSION. They are a draft of proposed rules which are made available to all interested or affected parties for their consideration and for submission of such views, suggestions or objections as they may desire to present. Due consideration thereof will be given by the Commission before proceeding to final action on the proposed rules.)

Group I

Rule 1—Deception in General:

It is an unfair trade practice to use, or cause or promote the use of, any advertisement, description, guarantee, warranty, testimonial, endorsement, depiction, illustration, radio broadcast, brand, mark or label, or any other representation or selling method, (a) which has the capacity and tendency or effect of misleading or deceiving purchasers, prospective purchasers or the consuming public with respect to the operation, performance, use, fuel or oil consumption, mileage, age, size, material, content, origin, production, year, model, type, price, grade, quality, quantity, manufacture, sale or distribution of any motor vehicle or other product of the industry or of any component of such product; or (b) which is false, misleading or deceptive in any other material respect.

Rule 2—Misrepresenting Character of Business:

It is an unfair trade practice for any person, firm or corporation to hold himself or itself out as a manufacturer's representative, wholesaler or dealer, when such is not the fact, or in any other manner to misrepresent the character, extent or type or his or its business.

Rule 3—Altering of Trademark to Deceive:

The altering of the trademark or the distinctive features of products of the industry or their containers in such manner as to mislead or deceive purchasers, prospective purchasers or the consuming public, in the sale, distribution or purchase of the products, is an unfair trade practice.

Rule 4 — Imitation of Trademarks, Trade Names, Etc.:

The imitation or simulation of the trademarks, trade names, labels or brands of competitors, with the capacity and tendency or effect of thereby misleading or deceiving purchasers, prospective purchasers or the consuming public, is an unfair trade practice.

Rule 5—Deceptive Description of Motor Vehicles:

(a) It is an unfair trade practice to represent, directly or indirectly, through pictures, displays, advertising or otherwise, that motor vehicles sold or offered

for sale are equipped with so-called "Standard Equipment" or certain other equipment, when such is not the fact.

(b) It is an unfair trade practice to represent, directly or indirectly, through pictures, displays, advertising or otherwise, that the price of motor vehicles sold or offered for sale includes so-called "Standard Equipment" only, when in fact it includes such "Standard Equipment" plus optional or extra equipment at additional cost and such information is not disclosed.

(c) It is an unfair trade practice to use any other form of representation which has the capacity and tendency or

effect of misleading or deceiving purchasers, prospective purchasers or the consuming public in respect to added equipment, accessories or items which are or are not to be included or charged for.

(NOTE—The term "Standard Equipment" as used in this rule means the items of equipment as defined respectively in the catalogs of the various manufacturers of automobiles as their so-called standard equipment.)

Rule 6—Misleading Illustrations of Motor Vehicles:

The practice of picturing, in adver-

Another economy is in store for users of B & L Cold Finished Steels!

Bal-Cut 1045 Strain Annealed is a high strength steel . . . leaded for machinability . . . that offers you a shortcut in production. For parts where physical properties of Bal-Cut 1045 Strain Annealed apply, costly heat treating operations are eliminated, and the parts are ready for use as they come from the machine.

IMPROVED PHYSICALS

—Through proper cold working followed by low temperature strain anneal, the physical properties of the bar are increased . . . with improved tensile strength, yield point and general ductility.

MINIMIZED DISTORTION

—There is reduced warpage after machining, or following simple heat treatments . . . an important advantage in making precision parts.

LOW PRODUCTION COSTS

—Bal-Cut 1045 Strain Annealed may be substituted for many types of heat treated bars, or for carbon open hearth and alloy steel parts, requiring physical properties inherent in this new steel. Ask for "Strain Annealing" pamphlet.

Cold Drawn Bars . . . Ground Shafting . . . Screw Stock . . . Lead Steel . . . Alloy Steels

BLISS & LAUGHLIN, INC.

HARVEY, ILL.

BUFFALO, N.Y.

Sales Offices in all Principal Cities

tisements, sales promotional literature or otherwise, a particular model of motor vehicle and quoting in connection therewith the price of a less expensive model, or of a less expensively equipped vehicle, or quoting any price inapplicable to such model or car pictured, in such manner as to purport that the price so quoted is applicable to the automobile or model depicted, when such is not true in fact; or to use any such depiction or other depictions, or any such price quotations, in advertisements, catalogs, sales literature or other media, in a manner which has the capacity and tendency or effect of

misleading or deceiving purchasers, prospective purchasers or the consuming public, is an unfair trade practice.

Rule 7 — Misrepresentation of Prices and Terms as "Special":

It is an unfair trade practice to deceptively advertise or represent certain prices or terms as "Special" when they are in fact regular prices or regular terms.

Rule 8—Fictitious Price Reductions:

Offering merchandise or products of the industry for sale at prices purported to be reduced from what are in

fact fictitious prices, or offering such merchandise or products for sale at any purported reduction in price when such reduction is fictitious or is otherwise misleading or deceptive, is an unfair trade practice.

Rule 9—Deceptively "Packing" Cash Delivered Price or "Packing" Finance Charges:

(a) It is an unfair trade practice for any member of the industry, either individually or in agreement, combination, conspiracy or collusion with another person, firm or corporation, to engage in the practice known as "packing the cash delivered price," whereby fictitiously inflated amounts are deceptively included in the price charged purchasers, or whereby charges are assessed or included in the price paid or to be paid by the purchaser, for fictitious items or for services not rendered.

(b) It is an unfair trade practice for any member of the industry, either individually or in agreement, combination, conspiracy or collusion with a finance company or other person, firm or corporation, to engage in the practice known as "finance charge packing" whereby fictitiously inflated amounts are deceptively included in finance charges, or whereby charges are assessed or included in the finance charges, for fictitious items or for services not rendered.

Rule 10—Misrepresentation as to Insurance Rates and Coverage, Interest Rates, Endorsements or Transfers on Installment Contracts, Etc.:

It is an unfair trade practice to make or publish or cause to be made or published, in connection with the sale or offering for sale of motor vehicles or other industry products, any false, misleading or deceptive statements or representations, through advertising or otherwise, concerning insurance rates and coverage, rates of interest or plans respecting methods of financing, finance charges, endorsements, repurchase agreements, or transfers of installment sales contracts; or concerning any other matter respecting finance charges, terms or conditions used or offered in the purchase, sale or distribution of such motor vehicles or products.

Rule 11—Deceptive Concealment in Bills of Sale:

(a) In the sale or distribution of motor vehicles to the ultimate purchasers or the consuming public, bills of sale (customers' invoices or sales slips) should be fully and nondeceptively itemized to show the several items for which charge is made or included in the price paid or to be paid by the purchaser, to the end that deceptive concealment, misunderstanding, misrepresentation, and unfair practices in reference to the transaction may be avoided and prevented. And it is an unfair trade practice to conceal or to

THE LEBLOND POSITIVE JAW FEED CLUTCH

**SIMPLE
POSITIVE
POWERFUL**

When LeBlond revolutionized apron operation by the positive jaw feed clutch—the big headache of friction feeds was cured. • This positively powerful—powerfully positive clutch spelled the end of slipping, sticking—trouble-making friction feeds. It marked the beginning of a new ease in lathe operation—new precision—new power—no more spoiled work or wrecked machines. • And just one lever controls this smooth, constant, powerful feed—both longitudinal and cross—just one lever—which also releases the apron gears when engaging the lead screw. In addition, an automatic stop provides full protection to the lathe. • Simple—Positive—Powerful—the positive jaw feed clutch is one among many features that assure outstanding performance—in Lathes by LeBlond.

- **NO GROPING FOR CONTROLS**
- **NO BINDING**
- **NO SLIPPING**

**THE R. K. LEBLOND
MACHINE TOOL CO.
Dept. A.I.-I
CINCINNATI OHIO**

fail or refuse to disclose in such bills of sale (customers' invoices or sales slips) any of the several items for which charge is made by the seller or is included in the price paid or to be paid by the purchaser, such concealment or nondisclosure having the capacity and tendency or effect of misleading or deceiving purchasers, prospective purchasers or the consuming public.

(b) In the issuance by any member of the industry of invoices, bills of sale, or other documents passing from seller to purchaser, covering the purchase, sale or exchange of motor vehicles, parts or accessories, it is an unfair trade practice to combine items, "pad" or increase charges against purchasers, or to withhold from or insert any statement or information, in said invoices, bills of sale, or other documents, by reason of which purchasers are misled or deceived in respect to the transactions represented on the face of such invoices, bills of sale, or other documents, or in respect to any part or item involved therein.

Rule 12—Substitution of Products:

The practice of using or substituting any part, accessory or product for others ordered, or the inclusion of and charging for any part, accessory or product not ordered, without the consent of the purchaser to such substitution or inclusion and charge, or with the capacity and tendency or effect of misleading or deceiving purchasers, prospective purchasers or the consuming public, is an unfair trade practice.

Rule 13—Failure or Delay in Fulfilling Warranties, Guarantees or Promises:

In the sale or distribution by any member of the industry of new or used motor vehicles or parts therefor, it is an unfair trade practice for such member to fail or refuse to promptly carry out in good faith all manufacturers' or dealers' warranties, guarantees, or other promises, express or implied, given or made to purchasers; or to fail or refuse promptly to render service or correct defects as warranted, guaranteed or promised. It is also an unfair trade practice to mislead or deceive purchasers in respect to any such guarantee, warranty or promise, whether by express or implied representation or through concealment of material facts, or by the use of deceptively involved or qualified language in said guarantees, warranties or promises; or to use any other means whereby purchasers are led to believe such guarantees, warranties or promises are more binding upon the seller or afford more protection to the purchaser than is in fact true.

Rule 14—Misrepresentation Regarding Used Motor Vehicles:

(a) It is an unfair trade practice for any member of the industry to ad-

vertise or otherwise represent, directly or indirectly, that he owns or has in his possession for sale a particular model and year of used motor vehicle, or that such vehicle is for sale at a certain price or is in a certain condition, when such is not the fact.

(b) In the sale or marketing of used motor vehicles, it is an unfair trade practice for any member of the industry, his agent or representative, to advertise, offer for sale or sell, any such motor vehicle as being the property of an individual or private owner or as having no connection with, or as not being owned or offered for sale by, any

dealer or other member of the industry, when such is not true in fact.

Rule 15—Passing Off Used or Driven Motor Vehicles as New:

It is an unfair trade practice to sell, offer for sale, advertise, describe or otherwise represent used or driven motor vehicles as new or undriven motor vehicles when such is not the fact.

Rule 16—Changing Speedometer Reading:

It is an unfair trade practice to fail

CUT-MAX SUCCEEDS WHERE OTHERS FAIL

If finish is below the rigid standard set . . . if tool regrinds are too frequent . . . if rejects pile up too rapidly . . . if speeds have to be slowed down . . .

Then it's time to look into your cutting oil. For the coolant you use may well determine between success and failure.

That CUT-MAX succeeds where others fail is a proven fact, backed by case studies made throughout industry. For example: 50% longer tool life in an automotive parts plant, with a saving of 16% in cost of oil, and 15% greater spindle speed.

Reasons why are found in the leaflet describing CUT-MAX straight cutting oils and bases. For a copy, write E. F. HOUGHTON & CO., Philadelphia, Chicago or Detroit.

to connect, or to disconnect, or to tamper with or change the mileage reading of, the speedometer of any motor vehicle, whether new, used or so-called demonstrator, with the capacity and tendency or effect of thereby misleading or deceiving purchasers, prospective purchasers or the consuming public as to the age, actual mileage, use, service or other condition of such motor vehicle.

Rule 17—Circulating Misleading Price Quotations, Etc.:

The making, publishing or circulat-

ing, by any member of the industry, of false or misleading price quotations, price lists, terms or conditions of sale, or reports as to production or sales, whether daily, weekly, monthly, annually or for other periods, with the capacity and tendency or effect of misleading or deceiving purchasers, prospective purchasers or the consuming public, is an unfair trade practice.

Rule 18—Deception to Induce Acceptance of Agreements or Arrangements:

It is an unfair trade practice for any member of the industry, directly or

through agents, representatives, or otherwise, to induce persons, firms or corporations to enter into distributor or dealer agreements or other arrangements involving the purchase and sale of automobiles, trucks, accessories, or other industry products, through misleading or deceptive statements or representations as to sales or profit possibilities or permanency of contract, or through any other type of misrepresentation.

Rule 19—Inducing Breach of Contract:

Inducing or attempting to induce the breach of existing lawful contracts between competitors and their customers or their suppliers, or between a competitor and his distributor or agent, by any false or deceptive means whatsoever, or interfering with or obstructing the performance of any such contractual duties or services by any such means, with the purpose and effect of unduly hampering, injuring or prejudicing competitors in their businesses, is an unfair trade practice.

Rule 20—Procurement of Competitor's Confidential Information by Unfair Means and Wrongful Use Thereof:

It is an unfair trade practice for any member of the industry to obtain information concerning the business of a competitor, by bribery of any employee or agent of such competitor, by false or misleading statements or representations, by the impersonation of one in authority, or by any other unfair means, and to use the information so obtained in such a manner as to injure said competitor in his business or to suppress competition or unreasonably restrain trade.

Rule 21—Defamation of Competitors or Disparagement of Their Products:

The defamation of competitors by falsely imputing to them dishonorable conduct, inability to perform contracts, questionable credit standing, or by other false representations, or the false disparagement of the grade, quality, performance or manufacture of the products of competitors or of their business methods, selling prices, values, credit terms, policies or services, is an unfair trade practice.

Rule 22—Commercial Bribery:

It is an unfair trade practice for a member of the industry, directly or indirectly, to give, or offer to give, or permit or cause to be given, money or anything of value to agents, employees or representatives of customers or prospective customers, or to agents, employees or representatives of competitors' customers or prospective customers, without the knowledge of their employers or principals, as an inducement to influence their employers or principals to purchase or contract to purchase products manufactured or

"OK" AFTER PUNISHING TESTS!

New ATWOOD (THELANDER) Clutch HAS "WHAT IT TAKES"!

Forging rapidly to the front since its introduction in 1933, this new Atwood Spring-Loaded Clutch has won the hearty acclaim of America's leading automotive engineers. Some applaud its silky-soft cushioned engagement . . . others point to its turbulent ventilating action . . . still others like its minimizing of pedal pressure and its reduction within the unit itself of friction and pivot point deflection. All are in favor of its economy, through reduction of weight, parts and direct labor costs. But you be your own judge and jury . . . send us your blueprints . . . let our skilled engineers develop a custom-built unit to test right on your own product. Do it now!

NEW "ATWOOD" CONSTANT PRESSURE LOCK-UP TYPE CLUTCH—with patented resilient factor (actually "Spring Action") that automatically builds up pressure to compensate for decrease in pressure due to wear. For heavy-duty tractors, combines, and Diesel engines. Write or wire for details.

Another ATWOOD Product
AUBURN MANUFACTURING CO. AUBURN, INDIANA
 DIVISION OF ATWOOD VACUUM MACHINE CO., ROCKFORD, ILLINOIS
 Builders of Automotive Equipment for Over 20 Years

sold by such industry member or the maker of such gift or offer, or to influence such employers or principals to refrain from dealing in the products of competitors or from dealing or contracting to deal with competitors.

Rule 23:

(a) *Forcing Purchase of Unwanted Products:* The practice of coercing the purchase of one or more products as a prerequisite to the purchase of one or more other products, where the effect may be to substantially lessen competition or tend to create a monopoly or to unreasonably restrain trade, is an unfair trade practice.

(b) *Tying Contracts or Exclusive Dealing Arrangements:* In respect of products sold for use, consumption or resale within the United States or place subject to its jurisdiction, it is an unfair trade practice for any member of the industry to make a sale or contract for the sale of any such products, or to fix a price charged therefor, or discount from, or rebate upon, such price, on the condition, agreement or understanding that the purchaser thereof shall not use or deal in the products, merchandise, supplies or other commodities of a competitor or competitors of the seller, where the effect of such sale or contract for sale, or such condition, agreement or understanding, may be to substantially lessen competition or tend to create a monopoly in any line of commerce.

Rule 24—Coercion:

(a) It is an unfair trade practice for any member of the industry to coerce another, by threats of reprisal, intimidation or other coercive methods, to dispose of sales finance contracts to a specific finance company selected by such member or to specify or accept insurance through a specific insurance company, with the effect of thereby substantially lessening competition, tending to create a monopoly or unreasonably restraining trade.

(b) It is also an unfair trade practice to use any other form of coercion, intimidation or threats for the purpose or with the effect of bringing about a substantial lessening of competition, tendency to create a monopoly or unreasonably restraint of trade.

Rule 25:

(a) *Prohibited Discriminatory Prices, or Rebates, Refunds, Discounts, Credits, Etc., Which Effect Unlawful Price Discrimination.* It is an unfair trade practice for any member of the industry engaged in commerce¹, in the course of such commerce, to grant or allow, secretly or openly, directly or indirectly, any rebate, refund, discount, credit, or other form of price differential, where such rebate, refund, discount, credit, or other form of price differential effects a discrimination in price

between different purchasers of goods of like grade and quality, where either or any of the purchases involved therein are in commerce¹, and where the effect thereof may be substantially to lessen competition or tend to create a monopoly in any line of commerce¹, or to injure, destroy, or prevent competition with any person who either grants or knowingly receives the benefit of such discrimination or with customers of either of them: *Provided, however:*

(1) That the goods involved in any such transaction are sold for use, con-

sumption, or resale within any place under the jurisdiction of the United States;

(2) That nothing herein contained shall prevent differentials which make only due allowance for differences in the cost of manufacture, sale, or delivery resulting from the differing methods or quantities in which such commodities are to such purchasers sold or delivered;

(3) That nothing herein contained shall prevent persons engaged in selling goods, wares, or merchandise in

DEMANDS FOR PRECISION HIT NEW HIGH!

• There's a big boom going on now in precision manufacture. Manufacturers have to regage to new limits to meet today's demands. Many new orders call for greater accuracy than ever before. If you want to cut into these new orders—and maintain your new precision limits—GET JOHANSSON GAGES NOW.

Unexcelled for accuracy. Limits to WITHIN $\pm .000008$ inch, $\pm .000004$ inch, $\pm .000002$ inch. Sold separately or in sets.

**Most Johansson Blocks
Available Chrome-plated**

Mail this coupon today for free catalog giving all prices, sizes and listing accessories.

JOHANSSON DIVISION

Ford Motor Company Dept. A

Dearborn, Michigan

Please send me free Catalog No. 14.

Name _____

Address _____

City _____ State _____

commerce¹ from selecting their own customers in bona fide transactions and not in restraint of trade;

(4) That nothing herein contained shall prevent price changes from time to time where made in response to changing conditions affecting either (a) the market for the goods concerned, or (b) the marketability of the goods, such as, but not limited to, actual or imminent deterioration of perishable goods, obsolescence of seasonal goods, distress sales under court process, or sales in good faith in discontinuance of business in the goods concerned.

(b) *Prohibited Brokerage and Commissions.* It is an unfair trade practice for any member of the industry engaged in commerce¹, in the course of such commerce, to pay or grant, or to receive or accept, anything of value as a commission, brokerage, or other compensation, or any allowance or discount in lieu thereof, except for services rendered in connection with the sale or purchase of goods; wares, or merchandise, either to the other party to such transaction or to an agent, representative, or other intermediary therein where such intermediary is acting in fact for or in behalf, or is subject to

the direct or indirect control, of any party to such transaction other than the person by whom such compensation is so granted or paid.

(c) *Prohibited Advertising or Promotional Allowances, Etc.* It is an unfair trade practice for any member of the industry engaged in commerce¹ to pay or contract for the payment of advertising or promotional allowances or any other thing of value to or for the benefit of a customer of such member in the course of such commerce as compensation or in consideration for any services or facilities furnished by or through such customer in connection with the processing, handling, sale, or offering for sale of any products or commodities manufactured, sold, or offered for sale by such member, unless such payment or consideration is available on proportionally equal terms to all other customers competing in the distribution of such products or commodities.

(d) *Prohibited Discriminatory Services or Facilities.* It is an unfair trade practice for any member of the industry engaged in commerce¹ to discriminate in favor of one purchaser against another purchaser or purchasers of a commodity bought for resale, with or without processing, by contracting to furnish or furnishing, or by contributing to the furnishing of, any services or facilities connected with the processing, handling, sale, or offering for sale of such commodity so purchased upon terms not accorded to all purchasers on proportionally equal terms.

(e) *Inducing or Receiving an Illegal Discrimination in Price.* It is an unfair trade practice for any member of the industry engaged in commerce¹, in the course of such commerce, knowingly to induce or receive a discrimination in price which is prohibited by the foregoing provisions of this Rule 25.

(f) *Purchases by Schools, Colleges, Universities, Public Libraries, Churches, Hospitals, and Charitable Institutions Not Operated for Profit.* The foregoing provisions of this Rule 25 relate to practices within the purview of the Robinson-Patman Antidiscrimination Act, which Act and the application hereunder of this Rule 25 are subject to the limitations expressed in the amendment to such Robinson-Pat-

PRECISION.
*Your Constant
Guarantee of
Accuracy*

DANLY MACHINE SPECIALTIES, Inc.
2130 So. 52nd Avenue, Chicago, Ill.

Danly Die Sets and Die Makers' Supplies
from the 9 Danly Branch Stocks

LONG ISLAND CITY, N. Y. 36-12 34th STREET	PHILADELPHIA, PA. 3913 N. BROAD STREET
DETROIT, MICHIGAN 1549 TEMPLE AVENUE	ROCHESTER, N. Y. 16 COMMERCIAL ST.
CLEVELAND, OHIO 1745 ROCKWELL AVENUE	MILWAUKEE, WIS. 513 EAST BUFFALO ST.
DAYTON, OHIO 990 E. MONUMENT AVE.	

•
DUCOMMUN
Metals and Supply Co.
Los Angeles—San Francisco

23,000,000 stampings have been made in this die mounted in a Danly Precision Die Set

DANLY PRECISION DIE SETS

**DANLY DIE SETS and DIE
MAKERS' SUPPLIES**

¹ As here used, the word "commerce" means trade or commerce among the several States and with foreign nations, or between the District of Columbia or any Territory of the United States and any State, Territory, or foreign nation, or between any insular possessions or other places under the jurisdiction of the United States, or between any such possession or place and any State or Territory of the United States or the District of Columbia or any foreign nation, or within the District of Columbia or any Territory or any insular possession or other place under the jurisdiction of the United States; Provided, That this shall not apply to the Philippine Islands.

man Antidiscrimination Act, which amendment was approved May 26, 1938, and reads as follows:

"Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That nothing in the Act approved June 19, 1936 (Public, Numbered 692, Seventy-fourth Congress, second session), known as the Robinson-Patman Antidiscrimination Act, shall apply to purchases of their supplies for their own use by schools, colleges, universities, public libraries, churches, hospitals, and charitable institutions not operated for profit." (52 Stat. 446; Supp. 4 U.S.C. Title 15, Sec. 13c).

Rule 26—Unlawful Conspiracies and Combinations to Fix or Control Prices, Suppress Competition, Restrain Trade or Create Monopoly:

It is an unfair trade practice for any member of the industry, directly or indirectly, to enter into, or take part in, any unlawful combination, conspiracy, agreement, understanding, concert of action or scheme between two or more members of the industry, or of any organization or group of persons or concerns, (a) to fix, depress or control the prices which any member of the industry may allow or pay for used motor vehicles, or to fix, maintain, enhance or control the prices at which any member of the industry may sell motor vehicles either new or used; or (b) to otherwise suppress competition, restrain trade, or create monopoly.

Rule 27—Aiding or Abetting Use of Unfair Trade Practices:

It is an unfair trade practice for any member of the industry to aid, abet, coerce or induce another, directly or indirectly, to use or promote the use of any unfair trade practice specified in these rules.

Group II

Rule A—Cancellation of Dealer Agreement:

The cancellation by either party to a manufacturer-dealer agreement without cause and without due and reasonable notice is condemned by the industry.

Rule B—Cost Records:

It is the judgment of the industry that each member should independently keep proper and accurate records for determining his costs.

Rule C—Arbitration:

The industry approves the practice of handling business disputes between members of the industry and their customers in a fair and reasonable manner coupled with a spirit of moderation and good will, and every effort should be made by the disputants themselves to compose their differences. If unable

to do so, they should, if possible, submit these disputes to arbitration.

Determining Damping Coefficients

(Continued from page 255)

imately 200,000 stress reversals.

Generally speaking, the damping of the different grades is the greater the poorer the quality of the cast iron from the tensile-strength standpoint, and

also the lower its modulus of elasticity in torsion.

The damping coefficients of the several grades of cast iron are greater than those of crankshaft steels by from 80 to 120 per cent, but owing to the presence of other important damping effects, to take full advantage of the higher damping coefficients of the material to reduce the stresses caused by vibration at critical speeds, it is necessary to make the whole line of shafting of cast iron and to see to it that in addition to the crankshaft there is another shaft of considerable length which is highly stressed in torsion.

more!

A COMPACT WATER-COOLED INJECTOR Interchangeable with Standard Injectors

Disassembled view. Note, water jacket entirely surrounds needle valve seat and injector tip, thus assuring maximum cooling.

Engineers and Operators: Here's The Answer to Corrosion of Precision Parts and Carbon Formations on Injector Tips . . . Especially Adaptable to Marine, Pipeline and Stationary Installations.

Now Deco makes available to you—for the first time—a compact, simple water-cooled fuel injector. Its use practically eliminates (1) carbon formation on injector tips and (2) injector failures accelerated by corrosive fuels. Enables you to run for months without shutdowns—even on low-grade fuels. Handles crude fuels. Tests in heavy-duty engines, burning heavy bunker oils, show definite fuel savings. Adopted as standard in 16 Busch-Sulzer marine engines (20½" bore, 27½" stroke, 2-cycle) powering U. S. Maritime Commission's new C-3 cargo vessels. This water-cooled injector is same size as ordinary non-cooled injectors. Changeovers are easily made . . . you simply remove non-cooled injector and replace with Deco water-cooled injector. No changes in engine cylinder head design necessary. Only Deco offers you this money-saving interchangeability. Write today for complete details.

If you have fuel injection and allied engineering problems, we invite you to consult with us. Deco research and testing laboratory contains complete facilities for stroboscopic analysis and dynamometer tests. Precision parts for automotive and airplane engines a specialty.

DIESEL EQUIPMENT CORPORATION

4401 N. RAVENSWOOD AVE., CHICAGO, ILLINOIS

Designers and Manufacturers of Fuel Injection Equipment and Precision Parts

Excise Tax Collections Increased 74% in 1939

Automobile and motorcycle excise tax collections in the calendar year 1939 rose 74 per cent to a total of \$51,063,558.59 over those of \$29,405,043.98 in 1938, according to the Bureau of Internal Revenue. Taxes on parts or accessories rose to \$8,956,583.98 from \$7,067,610.99, while taxes on trucks increased to \$7,144,897.68 from \$5,230,377.77. Taxes on tires and tubes showed a sharp increase to \$41,131,327.37 from \$26,771,719.07. Gasoline taxes rose to \$215,217,325.41 from

\$200,880,797.19. Reflecting a contrawise trend, taxes on lubricating oils declined to \$29,836,486.69 from \$30,495,339.29.

Nash Moves Parts and Service Departments

The parts and service departments of Nash Motors Division of the Nash-Kelvinator Corp., are being moved to Racine, Wis., as a result of rearrangement of the Milwaukee and Kenosha plants to provide expansion for the 1941 program to get underway this

summer. About 200 men will be employed at Racine in the parts and service departments, which will be combined into one organization. P. G. Little, now with Nash at Kenosha, Wis., and with the company 24 years, will be in direct supervision of Racine operations.

Acetylene Association Will Meet in Milwaukee April 10

Latest practices and developments in various applications of the oxy-acetylene process in American industry will be the subject under consideration at the forthcoming Annual Convention of the International Acetylene Association to be held April 10, 11 and 12 in Milwaukee, at the Hotel Schroeder. Well-known engineers and technical experts in the oxy-acetylene industry have been selected to present a series of comprehensive papers of interest to operators of welding and cutting equipment, shop foremen, plant superintendents, operating and designing engineers, and executives.

1500
RIGID JOINTS
per hour

- a completely filled hole
- no flashing
- a neat, balanced head

This is a standard "Bench Type" Rivitor tool for setting $\frac{1}{8}$ " dia. $\frac{1}{4}$ " lg. duralumin rivets in aircraft wing sections.

The **RIVITOR'S** controlled setting action accounts for this superior type of joint. The setting tool rapidly approaches the work, slacks up a little as it nears the work and then with a comparatively slow speed applies the pressure for setting the rivet, giving the metal time to flow. What goes on is actually a "coining" process.

You can see for yourself the superior characteristics of the rigid joint produced. Send along samples of your work to be "set" by the Rivitor method. No obligation. Send two or three samples, a handful of rivets and specify the type of riveted head required or send also a sample already riveted. The pieces will be "Rivitored" promptly and returned for your inspection.

this is a TOMKINS-JOHNSON product

Send samples to THE TOMKINS-JOHNSON CO., 613 N. Mechanic Street, Jackson, Michigan.

CALENDAR

Conventions and Meetings

SAE National Aeronautic Meeting, Washington	Mar. 14-15
SAE National Transportation & Maintenance Meeting, Pittsburgh, Mar. 28-29	
International Acetylene Association, Convention, Milwaukee, Wis.,	April 10-12
Chamber of Commerce of the United States, Annual Convention, Washington, D. C.	April 29-May 2
American Society of Mechanical Engineers, Spring Meeting, Worcester, Mass.	May 1-3
SAE Summer Meeting, White Sulphur Springs, W. Va.	June 9-14
American Society for Testing Materials, Annual Convention, Atlantic City, N. J.	June 24-28

Shows at Home and Abroad

National Automobile Show, Grand Central Palace, New York.....	Oct. 12-19
---	------------

Labor

(Continued from page 238)

On the General Motors front, unions and the corporation were awaiting announcement by the National Labor Relations Board of dates for plant elections which would determine which union or unions would represent workers in collective bargaining negotiations. Hearings to determine the need for elections were discontinued after the interested unions and the corporation had agreed on stipulations which would call for elections on a plant rather than a corporation wide basis.

Vigorous campaigns for worker support are expected to be conducted by both the UAW-CIO and the UAW-AFL. It has been rumored that John L. Lewis and William Green will personally take a hand in the campaigns.