KNAPSACK PROBLEMS

Algorithms and Computer Implementations
SILVANO MARTELLO PAOLO TOTH

KNAPSACK PROBLEMS

Algorithms and Computer Implementations

Silvano Martello

and

Paolo Toth

DEIS, University of Bologna

Chichester New York Brisbane Toronto Singapore

Copyright © 1990 by John Wiley & Sons Ltd.

Baffins Lane, Chichester

West Sussex PO19 1UD, England

All rights reserved.

No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane, Oueensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04, Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data:

Martello, Silvano.

Knapsack problems : algorithms and computer implementations Silvano Martello, Paolo Toth.

p. cm. — (Wiley-Interscience series in discrete mathematics and optimization) $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1$

Includes bibliographical references.

ISBN 0 471 92420 2

- 1. Computational complexity. 2. Mathematical optimization.
- 3. Algorithms. 4. Linear programming. 5. Integer programming.
- I Toth Paolo, II Title, III Series,

OA 267.7.M37 1990

511'.8—dc20

90-12279

CIP

British Library Cataloguing in Publication Data:

Martello, Silvano

Knapsack problems : algorithms and computer implementations.

1. Linear programming. Computation

I. Title II. Toth. Paolo

519.72

ISBN 0 471 92420 2

Printed in Great Britain by Biddles Ltd, Guildford

Contents

Pretace			A1
1	1.1 1.2 1.3 1.4	oduction What are knapsack problems? Terminology Computational complexity Lower and upper bounds	1 1 2 6 9
2	0-1	Knapsack problem	13
		Introduction	13
	2.2	Relaxations and upper bounds	16
		2.2.1 Linear programming relaxation and Dantzig's bound	16 17
		2.2.2 Finding the critical item in $O(n)$ time 2.2.3 Lagrangian relaxation	19
	2.3	2.2.3 Lagrangian relaxation Improved bounds	20
	2.3	2.3.1 Bounds from additional constraints	20
		2.3.2 Bounds from Lagrangian relaxations	23
		2.3.3 Bounds from partial enumeration	24
	2.4	The greedy algorithm	27
	2.5	Branch-and-bound algorithms	29
		2.5.1 The Horowitz–Sahni algorithm	30
		2.5.2 The Martello–Toth algorithm	32
	2.6	Dynamic programming algorithms	36
		2.6.1 Elimination of dominated states	39 43
		2.6.2 The Horowitz–Sahni algorithm	43
	2.7	2.6.3 The Toth algorithm	45
	2.7	Reduction algorithms	50
	2.8	Approximate algorithms 2.8.1 Polynomial-time approximation schemes	50
		2.8.1 Polynomial-time approximation schemes 2.8.2 Fully polynomial-time approximation schemes	53
		2.8.3 Probabilistic analysis	56
	2.9	Exact algorithms for large-size problems	57
		2.9.1 The Balas–Zemel algorithm	58
		2.9.2 The Fayard-Plateau algorithm	60
		2.9.3 The Martello-Toth algorithm	61
	2.10	Computational experiments	67
		2.10.1 Exact algorithms	68
		2.10.2 Approximate algorithms	71 74
		Facets of the knapsack polytope	74
	2 12	The multiple-choice knapsack problem	- 11

viii	Contents
------	----------

•		inded knapsack problem	91
	3.1	Introduction	81
	3.2	Transformation into a 0-1 knapsack problem	82
	3.3	Upper bounds and approximate algorithms	84
		3.3.1 Upper bounds	84
		3.3.2 Approximate algorithms	86
	3.4	Exact algorithms	87
		3.4.1 Dynamic programming	88
		3.4.2 Branch-and-bound	88
	3.5	Computational experiments	89
	3.6	A special case: the unbounded knapsack problem	91
		3.6.1 Upper bounds and approximate algorithms	92 95
		3.6.2 Exact algorithms3.6.3 An exact algorithm for large-size problems	98
		3.6.4 Computational experiments	102
1	Cub	oset-sum problem	105
٠			105
	4.1	Introduction Exact algorithms	106
	4.2	Exact algorithms 4.2.1 Dynamic programming	106
		4.2.2 A hybrid algorithm	109
		4.2.3 An algorithm for large-size problems	116
	4.3	Approximate algorithms	117
		4.3.1 Greedy algorithms	117
		4.3.2 Polynomial-time approximation schemes	120
		4.3.3 Fully polynomial-time approximation schemes	125
		4.3.4 Probabilistic analysis	126
	4.4	Computational experiments	128
		4.4.1 Exact algorithms4.4.2 Approximate algorithms	129 130
		4.4.2 Approximate argorithms	130
5		ange-making problem	137
	5.1	Introduction	137
	5.2	Lower bounds	138
	5.3	Greedy algorithms	140
	5.4	When the greedy algorithm solves classes of knapsack problems	142
	5.5	Exact algorithms	145
		5.5.1 Dynamic programming	145
	<i>5 (</i>	5.5.2 Branch-and-bound	146 149
	5.6	An exact algorithm for large-size problems	151
	5.7 5.8	Computational experiments	153
	3.8	The bounded change-making problem	155
6	0-1	Multiple knapsack problem	157
	6.1	Introduction	157
	6.2	Relaxations and upper bounds	158
		6.2.1 Surrogate relaxation	158
		6.2.2 Lagrangian relaxation	162
		6.2.3 Worst-case performance of the upper bounds	165
	6.3	Greedy algorithms	166
	6.4	Exact algorithms	167
		6.4.1 Branch-and-bound algorithms	168
		6.4.2 The "bound-and-bound" method	170

Contents ix

	6.5 6.6 6.7	6.4.3 A bound-and-bound algorithm Reduction algorithms Approximate algorithms 6.6.1 On the existence of approximation schemes 6.6.2 Polynomial-time approximation algorithms Computational experiments	17: 17: 17: 17: 17: 18:
7	Gen	neralized assignment problem	189
	7.1	Introduction	189
	7.2	Relaxations and upper bounds	192
		7.2.1 Relaxation of the capacity constraints	192
		7.2.2 Relaxation of the semi-assignment constraints	195
		7.2.3 The multiplier adjustment method	197
	7.3	7.2.4 The variable splitting method	201 204
	7.3 7.4	Exact algorithms Approximate algorithms	202
	7.5	Reduction algorithms	200
	7.6	Computational experiments	213
8	Bin-	-packing problem	221
	8.1	Introduction	221
	8.2	A brief outline of approximate algorithms	222
	8.3	Lower bounds	224
		8.3.1 Relaxations based lower bounds8.3.2 A stronger lower bound	224 228
	8.4	Reduction algorithms	233
		Exact algorithms	237
	8.6	Computational experiments	240
			2.45
A		ndix: Computer codes	247 247
		Introduction 0-1 Knapsack problem	248
	A.Z	A.2.1 Code MT1	248
		A.2.2 Code MT1R	249
		A.2.3 Code MT2	25
	A.3	Bounded and unbounded knapsack problem	252
		A.3.1 Code MTB2	252
		A.3.2 Code MTU2	254
	A.4	Subset-sum problem	256
	۸.5	A.4.1 Code MTSL	250 258
	A.S	Bounded and unbounded change-making problem A.5.1 Code MTC2	258
		A.5.2 Code MTCB	259
	A.6	0-1 Multiple knapsack problem	26
		A.6.1 Code MTM	26
		A.6.2 Code MTHM	263
	A .7	Generalized assignment problem	265
		A.7.1 Code MTG	265
	A 0	A.7.2 Code MTHG	268
	A.8	Bin-packing problem	270

x	Contents
Glossary	273
Bibliography	275
Author index	283
Subject index	287

Preface

The development of computational complexity theory has led, in the last fifteen years, to a fascinating insight into the inherent difficulty of combinatorial optimization problems, but has also produced an undesirable side effect which can be summarized by the "equation"

NP-hardness = intractability,

thereby diminishing attention to the study of exact algorithms for NP-hard problems. However, recent results on the solution of very large instances of integer linear programming problems with special structure on the one hand, and forty years of successful use of the simplex algorithm on the other, indicate the concrete possibility of solving problems exactly through worst-case exponential-time algorithms.

This book presents a state-of-art on exact and approximate algorithms for a number of important NP-hard problems in the field of integer linear programming, which we group under the term *knapsack*. The choice of the problems reflects our personal involvement in the field, through a series of investigations over the past ten years. Hence the reader will find not only the "classical" knapsack problems (*binary, bounded, unbounded, binary multiple*), but also less familiar problems (*subset-sum, change-making*) or well-known problems which are not usually classified in the knapsack area (*generalized assignment, bin-packing*). He will find no mention, instead, of other knapsack problems (fractional, multidimensional, non-linear), and only a limited treatment of the case of generalized upper bound constraints.

The goal of the book is to fully develop an algorithmic approach without losing mathematical rigour. For each problem, we start by giving a mathematical model, discussing its relaxations and deriving procedures for the computation of bounds. We then develop approximate algorithms, approximation schemes, dynamic programming techniques and branch-and-bound algorithms. We analyse the computational complexity and the worst-case performance of bounds and approximate methods. The average performance of the computer implementations of exact and approximate algorithms is finally examined through extensive computational experiments. The Fortran codes implementing the most effective methods are provided in the included diskette. The codes are portable on virtually any computer, extensively commented and—hopefully—easy to use.

For these reasons, the book should be appreciated both by academic researchers

xii Preface

and industrial practitioners. It should also be suitable for use as a supplementary text in courses emphasizing the theory and practice of algorithms, at the graduate or advanced undergraduate level. The exposition is in fact self-contained and is designed to introduce the reader to a methodology for developing the link between mathematical formulation and effective solution of a combinatorial optimization problem. The simpler algorithms introduced in the first chapters are in general extensively described, with numerous details on the techniques and data structures used, while the more complex algorithms of the following chapters are presented at a higher level, emphasizing the general philosophy of the different approaches. Many numerical examples are used to clarify the methodologies introduced. For the sake of clarity, all the algorithms are presented in the form of pseudo-Pascal procedures. We adopted a structured exposition for the polynomial and pseudo-polynomial procedures, but allowed a limited use of "go to" statements for the branch-and-bound algorithms. (Although this could, of course, have been avoided, the resulting exposition would, in our opinion, have been much less readable.)

We are indebted to many people who have helped us in preparing this book. Jan Karel Lenstra suggested the subject, and provided guidance and encouragement during the two years of preparation. Mauro Dell'Amico, Laureano Escudero and Matteo Fischetti read earlier versions of the manuscript, providing valuable suggestions and pointing out several errors. (We obviously retain the sole responsibility for the surviving errors.) Constructive comments were also made by Egon Balas, Martin Dyer, Ronald Graham, Peter Hammer, Ben Lageweg, Gilbert Laporte, Manfred Padberg, David Shmoys, Carlo Vercellis and Laurence Wolsey. The computational experiments and computer typesetting with the TeX system were carried out by our students Andrea Bianchini, Giovanna Favero, Marco Girardini, Stefano Gotra, Nicola Moretti, Paolo Pinetti and Mario Zacchei.

We acknowledge the financial support of the Ministero della Pubblica Istruzione and the Consiglio Nazionale delle Ricerche. Special thanks are due to the Computing Centre of the Faculty of Engineering of the University of Bologna and its Director, Roberto Guidorzi, for the facilities provided in the computational testing of the codes.

Bologna, Italy July 1989 SILVANO MARTELLO PAOLO TOTH 1

Introduction

1.1 WHAT ARE KNAPSACK PROBLEMS?

Suppose a hitch-hiker has to fill up his knapsack by selecting from among various possible objects those which will give him maximum comfort. This *knapsack* problem can be mathematically formulated by numbering the objects from 1 to n and introducing a vector of binary variables x_j (j = 1, ..., n) having the following meaning:

$$x_j = \begin{cases} 1 & \text{if object } j \text{ is selected;} \\ 0 & \text{otherwise.} \end{cases}$$

Then, if p_j is a measure of the comfort given by object j, w_j its size and c the size of the knapsack, our problem will be to select, from among all binary vectors x satisfying the *constraint*

$$\sum_{j=1}^n w_j x_j \le c,$$

the one which maximizes the objective function

$$\sum_{j=1}^n p_j x_j.$$

If the reader of this book does not, or no longer practises hitch-hiking, he might be more interested in the following problem. Suppose you want to invest—all or in part—a capital of c dollars and you are considering n possible investments. Let p_j be the profit you expect from investment j, and w_j the amount of dollars it requires. It is self-evident that the optimal solution of the knapsack problem above will indicate the best possible choice of investments.

At this point you may be stimulated to solve the problem. A naive approach would be to program a computer to examine all possible binary vectors x, selecting the best of those which satisfy the constraint. Unfortunately, the number of such vectors is 2^n , so even a hypothetical computer, capable of examining one billion vectors per second, would require more than 30 years for n = 60, more than 60 years for n = 61, ten centuries for n = 65, and so on. However, specialized algorithms can, in most cases, solve a problem with $n = 100\,000$ in a few seconds on a mini-computer.

The problem considered so far is representative of a variety of knapsack-type problems in which a set of entities are given, each having an associated value and size, and it is desired to select one or more disjoint subsets so that the sum of the sizes in each subset does not exceed (or equals) a given bound and the sum of the selected values is maximized.

Knapsack problems have been intensively studied, especially in the last decade, attracting both theorists and practicians. The theoretical interest arises mainly from their simple structure which, on the one hand allows exploitation of a number of combinatorial properties and, on the other, more complex optimization problems to be solved through a series of knapsack-type subproblems. From the practical point of view, these problems can model many industrial situations: capital budgeting, cargo loading, cutting stock, to mention the most classical applications. In the following chapters we shall examine the most important knapsack problems, analysing relaxations and upper bounds, describing exact and approximate algorithms and evaluating their efficiency both theoretically and through computational experiments. The Fortran codes of the principal algorithms are provided in the floppy disk accompanying the book.

1.2 TERMINOLOGY

The objects considered in the previous section will generally be called *items* and their number be indicated by n. The value and size associated with the jth item will be called *profit* and *weight*, respectively, and denoted by p_i and w_i (j = 1, ..., n).

The problems considered in Chapters 2 to 5 are *single knapsack problems*, where one *container* (or *knapsack*) must be filled with an optimal subset of items. The *capacity* of such a container will be denoted by c. Chapters 6 to 8 deal with *multiple knapsack problems*, in which more than one container is available.

It is always assumed, as is usual in the literature, that profits, weights and capacities are positive integers. The results obtained, however, can easily be extended to the case of real values and, in the majority of cases, to that of nonpositive values.

The prototype problem of the previous section,

maximize
$$\sum_{j=1}^{n} p_{j} x_{j}$$
 subject to
$$\sum_{j=1}^{n} w_{j} x_{j} \leq c,$$

$$x_{j} = 0 \text{ or } 1, \qquad j = 1, \dots, n,$$

is known as the 0-1 Knapsack Problem and will be analysed in Chapter 2. In Section 2.12 we consider the generalization arising when the item set is partitioned into

1.2 Terminology 3

subsets and the additional constraint is imposed that at most one item per subset is selected (Multiple-Choice Knapsack Problem).

The problem can be generalized by assuming that for each j (j = 1, ..., n), b_j items of profit p_j and weight w_j are available $(b_j \le c/w_j)$: thus we obtain the *Bounded Knapsack Problem*, defined by

maximize
$$\sum_{j=1}^{n} p_{j} x_{j}$$
subject to
$$\sum_{j=1}^{n} w_{j} x_{j} \leq c,$$

$$0 \leq x_{j} \leq b_{j}, \qquad j = 1, \dots, n,$$

$$x_{j} \text{ integer}, \qquad j = 1, \dots, n.$$

The problem is considered in Chapter 3. The special case in which $b_j = +\infty$ for all j (Unbounded Knapsack Problem) is treated in Section 3.6.

In Chapter 4 we examine the particular case of the 0-1 knapsack problem arising when $p_j = w_j$ (j = 1, ..., n), as frequently occurs in practical applications. The problem is to find a subset of weights whose sum is closest to, without exceeding, the capacity, i.e.

maximize
$$\sum_{j=1}^{n} w_{j}x_{j}$$
subject to
$$\sum_{j=1}^{n} w_{j}x_{j} \leq c,$$

$$x_{j} = 0 \text{ or } 1, \qquad j = 1, \dots, n,$$

generally referred to as the Subset-Sum Problem.

In Chapter 5 a very particular bounded knapsack problem is considered, arising when $p_j = 1$ (j = 1, ..., n) and, in the capacity constraint, we impose equality instead of inequality. This gives

maximize
$$\sum_{j=1}^{n} x_{j}$$
subject to
$$\sum_{j=1}^{n} w_{j}x_{j} = c,$$

$$0 \le x_{j} \le b_{j} \qquad j = 1, \dots, n,$$

$$x_{j} \text{ integer} \qquad j = 1, \dots, n,$$

usually called the *Change-Making Problem*, since it recalls the situation of a cashier having to assemble a given change c using the maximum (or minimum) number of coins. The same chapter deeply analyses the *Unbounded Change-Making Problem*, in which $b_i = +\infty$ for all j.

An important generalization of the 0-1 knapsack problem, discussed in Chapter 6, is the 0-1 Multiple Knapsack Problem, arising when m containers, of given capacities c_i (i = 1, ..., m) are available. By introducing binary variables x_{ij} , taking value 1 if item j is selected for container i, 0 otherwise, we obtain the formulation

maximize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{j} x_{ij}$$
subject to
$$\sum_{j=1}^{n} w_{j} x_{ij} \leq c_{i}, \quad i = 1, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} \leq 1, \quad j = 1, \dots, n,$$

$$x_{ij} = 0 \text{ or } 1, \quad i = 1, \dots, m, j = 1, \dots, n.$$

Now consider a 0-1 multiple knapsack problem in which the profit and weight of each item vary according to the container for which they are selected. By defining p_{ij} (resp. w_{ij}) as the profit (resp. the weight) of item j if inserted in container i, we get

maximize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} x_{ij}$$
subject to
$$\sum_{j=1}^{n} w_{ij} x_{ij} \le c_i, \qquad i = 1, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} \le 1, \qquad j = 1, \dots, n,$$

$$x_{ij} = 0 \text{ or } 1, \qquad i = 1, \dots, m, j = 1, \dots, n,$$

known as the *Generalized Assignment Problem*, which is dealt with in Chapter 7. This is not, strictly speaking, a knapsack problem, but is included in this review because knapsack subproblems play a central role in the algorithms for solving it.

1.2 Terminology 5

The problem is generally viewed as that of optimally assigning, all or in part, n jobs to m machines (n tasks to m agents, and so on), given the profit, p_{ij} , obtainable if machine i is assigned job j, the corresponding resource, w_{ij} , required, and the amount, c_i , of resource available to machine i.

In Chapter 8 we consider the well-known $Bin-Packing\ Problem$, which is not usually included in the knapsack area, but can be interpreted as a multiple subsetsum problem where all containers have the same capacity c, all items must be selected and it is desired to minimize the number of containers used. Given any upper bound m on the number of containers, and introducing m binary variables y_i , taking value 0 if container i is used, value 1 otherwise, we can state the problem as:

maximize
$$\sum_{i=1}^{m} y_i$$
subject to
$$\sum_{j=1}^{n} w_j x_{ij} \le c(1-y_i), \qquad i=1,\ldots,m,$$

$$\sum_{i=1}^{m} x_{ij} = 1, \qquad \qquad j=1,\ldots,n,$$

$$y_i = 0 \text{ or } 1, \qquad \qquad i=1,\ldots,m,$$

$$x_{ij} = 0 \text{ or } 1, \qquad \qquad i=1,\ldots,m, j=1,\ldots,n.$$

In the last decades, an impressive amount of research on knapsack problems has been published in the literature. Reviews have been presented in the following surveys:

Salkin and De Kluyver (1975) present a number of industrial applications and results in transforming integer linear programs to knapsack problems (an approach which appeared very promising at that time);

Martello and Toth (1979) consider exact algorithms for the zero-one knapsack problem and their average computational performance; the study is extended to the other linear knapsack problems and to approximate algorithms in Martello and Toth (1987);

Dudzinski and Walukiewicz (1987) analyse dual methods for solving Lagrangian and linear programming relaxations.

In addition, almost all books on integer programming contain a section on knapsack problems. Mention is made of those by Hu (1969), Garfinkel and Nemhauser (1972), Salkin (1975), Taha (1975), Papadimitriou and Steiglitz (1982), Syslo, Deo and Kowalik (1983), Schrijver (1986), Nemhauser and Wolsey (1988).

1.3 COMPUTATIONAL COMPLEXITY

We have so far introduced the following problems:

0-1 KNAPSACK; BOUNDED KNAPSACK; SUBSET-SUM; CHANGE-MAKING; 0-1 MULTIPLE KNAPSACK; GENERALIZED ASSIGNMENT; BIN-PACKING.

We will now show that all these problems are *NP-hard* (we refer the reader to Garey and Johnson (1979) for a thorough discussion on this concept). For each problem P, we either prove that its *recognition version* R(P) is NP-complete or that it is a generalization of a problem already proved to be NP-hard.

The following recognition problem:

PARTITION: given *n* positive integers $w_1, ..., w_n$, is there a subset $S \subseteq N = \{1, ..., n\}$ such that $\sum_{i \in S} w_i = \sum_{i \in N \setminus S} w_i$?

is a basic NP-complete problem, originally treated in Karp (1972).

(a) SUBSET-SUM is NP-hard.

Proof. Consider R(SUBSET-SUM), i.e.: given n+2 positive integers w_1, \ldots, w_n, c and a, is there a subset $S \subseteq N = \{1, \ldots, n\}$ such that $\sum_{j \in S} w_j \leq c$ and $\sum_{j \in S} w_j \geq a$?

Any instance I of PARTITION can be *polynomially transformed* into an equivalent instance I' of R(SUBSET-SUM) by setting $c = a = \sum_{j \in N} w_j/2$ (the answer for I is "yes" if and only if the answer for I' is "yes"). \square

(b) 0-1 KNAPSACK is NP-hard.

Proof. SUBSET-SUM is the particular case of 0-1 KNAPSACK when $p_j = w_j$ for all $j \in N$. \square

(c) BOUNDED KNAPSACK is NP-hard.

Proof. 0-1 KNAPSACK is the particular case of BOUNDED KNAPSACK when $b_j = 1$ for all $j \in N$. \square

(d) CHANGE-MAKING is NP-hard.

Proof. We prove NP-hardness of the special case in which $b_j = 1$ for all j. Consider R(CHANGE-MAKING), i.e.: given n+2 positive integers w_1, \ldots, w_n, c and a, is there a subset $S \subseteq N = \{1, \ldots, n\}$ such that $\sum_{j \in S} w_j = c$ and $|S| \ge a$? Any instance I of PARTITION can be polynomially transformed into an equivalent instance I' of R(CHANGE-MAKING) by setting $c = \sum_{i \in N} w_i/2$ and a = 1. \square

Consequently, these single knapsack problems cannot be solved in a time bounded by a polynomial in n, unless $\mathcal{P} = \mathcal{NP}$. All of them, however, admit a pseudo-polynomial algorithm, i.e. an algorithm whose time (and space) complexity is bounded by a polynomial in n and c. In fact, it can easily be verified that the following dynamic programming recursions solve the corresponding problems. (More detailed descriptions can be found in the specific chapters.) Given any instance of a single knapsack problem, consider the sub-instance defined by items $1, \ldots, j$ and capacity u ($j \leq n$, $u \leq c$). Let $f_j(u)$ be the corresponding optimal solution value ($f_j(u) = -\infty$ if no feasible solution exists) and $S_j(u)$ the optimal subset of items. The optimal solution value of the problem, $f_n(c)$, can then be obtained by iteratively applying the following recursive formulae:

0-1 KNAPSACK:

$$f_1(u) = \begin{cases} 0 & \text{for } u = 0, \dots, w_1 - 1; \\ p_1 & \text{for } u = w_1, \dots, c; \end{cases}$$

$$f_j(u) = \max(f_{j-1}(u), f_{j-1}(u - w_j) + p_j) \text{ for } j = 2, \dots, n$$
and $u = 0, \dots, c$:

time complexity O(nc).

BOUNDED KNAPSACK:

$$f_1(u) = \begin{cases} lp_1 & \text{for } l = 0, \dots, b_1 - 1 \text{ and } u = lw_1, \dots, (l+1)w_1 - 1; \\ b_1p_1 & \text{for } u = b_1w_1, \dots, c; \end{cases}$$

$$f_j(u) = \max\{f_{j-1}(u - lw_j) + lp_j : 0 \le l \le b_j\} \text{ for } j = 2, \dots, n$$
and $u = 0, \dots, c;$

time complexity $O(c \sum_{j=1}^{n} b_j)$, that is, in the worst case, $O(nc^2)$.

SUBSET-SUM:

Same as 0-1 KNAPSACK, but with p_i replaced by w_i .

CHANGE-MAKING:

$$f_1(u) = \begin{cases} l & \text{for } u = lw_1, \text{ with } l = 0, \dots, b_1; \\ -\infty & \text{for all positive } u \le c \text{ such that } u \pmod{w_1} \ne 0; \end{cases}$$

$$f_j(u) = \max\{f_{j-1}(u - lw_j) + l: 0 \le l \le b_j\} \text{ for } j = 2, ..., n$$

and $u = 0, ..., c$:

time complexity $O(c \sum_{i=1}^{n} b_i)$, that is, in the worst case, $O(nc^2)$.

For all the algorithms the computation of $S_j(u)$ is straightforward. Since, for each j, we only need to store $S_{j-1}(u)$ and $S_j(u)$ for all u, the space complexity is always O(nc).

For the multiple problems (0-1 MULTIPLE KNAPSACK, GENERALIZED ASSIGNMENT, BIN-PACKING) no pseudo-polynomial algorithm can exist, unless $\mathcal{P} = \mathcal{NP}$, since the problems can be proved to be *NP-hard in the strong sense*. Consider in fact the following recognition problem:

3-PARTITION: given n = 3m positive integers w_1, \ldots, w_n satisfying $\sum_{j=1}^n w_j/m = B$ integer and $B/4 < w_j < B/2$ for $j = 1, \ldots, n$, is there a partition of $N = \{1, \ldots, n\}$ into m subsets S_1, \ldots, S_m such that $\sum_{j \in S_i} w_j = B$ for $i = 1, \ldots, m$? (Notice that each S_i must contain exactly three elements from N.)

This is the first problem discovered to be NP-complete in the strong sense (Garey and Johnson, 1975).

(e) 0-1 MULTIPLE KNAPSACK is NP-hard in the strong sense.

Proof. Consider R(0-1 MULTIPLE KNAPSACK), i.e.: given 2n + m + 1 positive integers: p_1, \ldots, p_n ; w_1, \ldots, w_n ; c_1, \ldots, c_m , and a, are there m disjoint subsets S_1, \ldots, S_m of $N = \{1, \ldots, n\}$ such that $\sum_{j \in S_i} w_j \leq c_i$ for $i = 1, \ldots, m$ and $\sum_{i=1}^m \sum_{j \in S_i} p_j \geq a$? Any instance I of 3-PARTITION can be *pseudo-polynomially transformed* into an equivalent instance I' of R(0-1 MULTIPLE KNAPSACK) by setting $c_i = B$ for $i = 1, \ldots, m, p_j = 1$ for $j = 1, \ldots, n$ and a = n (which implies that $\bigcup_{i=1}^m S_i = N$ in any "yes" instance). \square

(f) GENERALIZED ASSIGNMENT is NP-hard in the strong sense.

Proof. Immediate, since 0-1 MULTIPLE KNAPSACK is the particular case of GENERALIZED ASSIGNMENT when $p_{ij} = p_j$ and $w_{ij} = w_j$ for i = 1, ..., m and j = 1, ..., n.

(g) BIN-PACKING is NP-hard in the strong sense.

Proof. Consider R(BIN-PACKING), i.e.: given n+2 positive integers w_1, \ldots, w_n ; c and a, is there a partition of $N=\{1,\ldots,n\}$ into a subsets S_1,\ldots,S_a such that $\sum_{j\in S_i}w_j\leq c$ for $i=1,\ldots,a$? Any instance I of 3-PARTITION can be pseudopolynomially transformed into an equivalent instance I' of R(BIN-PACKING) by setting c=B and a=m. \square

14 LOWER AND UPPER BOUNDS

In the previous section we have proved that none of our problems can be solved in polynomial time, unless P = NP. Hence in the following chapters we analyse:

- (a) enumerative algorithms (having, in the worst case, running times which grow exponentially with the input size) to determine optimal solutions;
- (b) approximate algorithms (with running times bounded by a polynomial in the input size) to determine feasible solutions whose value is a *lower bound* on the optimal solution value.

The average running times of such algorithms are experimentally evaluated through execution of the corresponding computer codes on different classes of randomly-generated test problems. It will be seen that the average behaviour of the enumerative algorithms is in many cases much better than the worst-case bound, allowing optimal solution of large-size problems with acceptable running times.

The *performance* of an approximate algorithm for a specific instance is measured through the ratio between the solution value found by the algorithm and the optimal solution value (notice that, for a maximization problem, this ratio is no greater than one). Besides the experimental evaluation, it is useful to provide, when possible, a theoretical measure of performance through *worst-case* analysis (see Fisher (1980) for a general introduction to this concept).

Let A be an approximate algorithm for a given maximization problem (all our considerations extend easily to the minimization case). For any instance I of the problem, let OPT(I) be the optimal solution value and A(I) the value found by A. Then, the worst-case performance ratio of A is defined as the largest real number r(A) such that

$$\frac{A(I)}{OPT(I)} \ge r(A)$$
 for all instances I ;

the closer r(A) is to one, the better the worst-case behaviour of A. The proof that a given value r is the worst-case performance ratio of an algorithm A consists, in general, of two phases:

(i) it is first proved that, for any instance I of the problem, inequality $A(I)/OPT(I) \ge r$ holds;

(ii) in order to ensure that r is the largest value satisfying the inequality, i.e. that r is *tight*, a specific instance I' is produced for which A(I')/OPT(I') = r holds (or a series of instances for which the above ratio tends to be arbitrarily close to r).

The performance of A can be equivalently expressed in terms of worst-case relative error, i.e. the smallest real number $\varepsilon(A)$ such that

$$\frac{OPT(I) - A(I)}{OPT(I)} \le \varepsilon(A) \qquad \text{for all instances } I,$$

(i.e. $r(A) = 1 - \varepsilon(A)$).

An approximation scheme for a maximization problem is an algorithm A which, given an instance I and an error bound $\varepsilon > 0$, returns a solution of value A(I) such that $(OPT(I) - A(I))/OPT(I) \le \varepsilon$. Let length(I) denote the input size, i.e. the number of symbols required for coding I. If, for any fixed ε , the running time of A is bounded by a polynomial in length(I), then A is a polynomial-time approximation scheme: any relative error can be obtained in a time which is polynomial in length(I) (but can be exponential in $1/\varepsilon$). If the running time of A is polynomial both in length(I) and $1/\varepsilon$, then A is a fully polynomial-time approximation scheme.

In subsequent chapters we describe the most interesting polynomial-time and fully polynomial-time approximation schemes for single knapsack problems. For the remaining (multiple) problems, no fully polynomial-time approximation scheme can exist, unless $\mathcal{P} = \mathcal{N}\mathcal{P}$, since (see Garey and Johnson (1975)) this would imply the existence of a pseudo-polynomial algorithm for their optimal solution (which is impossible, these being NP-hard problems in the strong sense). For BIN-PACKING, also the existence of a polynomial-time approximation scheme can be ruled out, unless $\mathcal{P} = \mathcal{N}\mathcal{P}$ (Johnson, Demers, Ullman, Garey and Graham, 1974). The same holds for GENERALIZED ASSIGNMENT and 0-1 MULTIPLE KNAPSACK in the minimization version (Sahni and Gonzalez, 1976). For the maximization version of these two problems no polynomial-time approximation scheme is known, although there is no proof that it cannot exist (the proof in Sahni and Gonzalez (1976) does not extend to the maximization case).

Besides experimental and worst-case analysis, an approximate algorithm can allow *probabilistic analysis*. Speaking informally this consists of specifying an average problem instance in terms of a probability distribution over the class of all instances and evaluating running time and solution value as random variables. Examples of this approach which, however, is generally possible only for very simple algorithms, are given in Sections 2.8.3 and 4.3.4 (see Karp, Lenstra, McDiarmid and Rinnooy Kan (1985) and Rinnooy Kan (1987) for a general introduction to probabilistic analysis).

For a maximization problem, the solution value determined by an approximate algorithm limits the optimal solution value from below. It is always convenient to

have methods for limiting this value from above, too. *Upper bounds* are extremely useful

- (a) in enumerative algorithms, to exclude computations which cannot lead to the optimal solution;
- (b) in approximate algorithms, to "a-posteriori" evaluate the performance obtained. Suppose algorithm A is applied to instance I, and let U(I) be any upper bound on OPT(I): it is then clear that the relative error of the approximate solution is no greater than (U(I) A(I))/U(I).

The worst-case performance ratio of an upper bounding procedure U can be defined similarly to that of an approximate algorithm, i.e. as the smallest real number $\rho(U)$ such that

$$\frac{U(I)}{OPT(I)} \le \rho(U)$$
 for all instances I .

The closer $\rho(U)$ is to one, the better the worst-case behaviour of U.

Upper bounds are usually computed by solving *relaxations* of the given problems. *Continuous*, *Lagrangian* and *surrogate* relaxations are the most frequently used. For a given problem P, the corresponding relaxed problem will be denoted with C(P), L(P,m) and S(P,m), m being an appropriate vector of *multipliers*. The optimal solution value of problem P will be denoted with z(P).