设语言 $L = \{a^n b^m \mid m > n \ge 0\}$, $G_1[S]$ 是该语言的无二义文法:

 $G_1[S]$:

- (1) $S \rightarrow AB$
- (2) $A \rightarrow aAb$
- (3) $A \rightarrow \varepsilon$
- (4) $B \rightarrow Bb$
- (5) $B \rightarrow b$
- 1. 试分别指出句型 aaAbbb 和 abB 的所有短语、所有直接短语,如果该句型是右句型,那么还要给出其句柄,否则填"无",请将结果填入下表中。

句型	短语	直接短语	句柄
aaAbbb	aAb, aaAbb, b, aaAbbb	aAb, b	aAb
abB	ε, ab, abB	3	无

2. 下图是相应于 $G_1[S]$ 的 LR(0) 自动机,请填写 I2 与 I3 状态的内容,并给出从 I3 转移到 I3 对应的文法符号。

3. 实际上,文法 $G_1[S]$ 不是 LR(0) 文法。试指出 $G_1[S]$ 的 LR(0) 自动机中存在哪些存在冲突的状态?并指出这些状态的冲突类别(即,移进-归约冲突或归约-归约冲突)?

 $G_1[S]$ 的 LR(0) 自动机中存在3个冲突的状态: I_0 , I_3 和 I_4 ; 均为移进-归约冲突

4. 文法 $G_1[S]$ 是 SLR(1) 文法。请尝试解释其原因?

 $FOLLOW(S)=\{ \# \}, FOLLOW(A)=\{ b \}.$

因为 FOLLOW(A) 中不含 a, 所以 I_0 和 I_3 的移进-归约冲突可解决; 又因为,FOLLOW(S) 中不含 b, 所以 I_4 的移进-归约冲突可解决

5. 下图表示 $G_1[S]$ 的 LR(0) 分析表和 SLR(1) 分析表中状态 I_3 和 I_4 两行所对应的 内容,上半部分是 LR(0) 分析表,下半部分是 SLR(1) 分析表,但表中的 ACTION 部分没有给出,试补齐之。请依据状态转移图的实际情况填写,每一项的内容可以为空(以下划线 _ 表示),也可以含有多个条目(如 s2,r6)。

	状态	ACTION		GOTO			
		а	b	#	S	A	В
LR(0) 分	3	s3,r3	r3	r3		6	
析 表	4	r1	s7,r1	r1			
SLR(1) 分	3	s3	r3			6	
析 表 ———	4		s7	r1			

6. 在针对 $G_1[S]$ 的 SLR(1) 分析过程的某个时刻,符号栈的栈顶是 A,且栈中包含 a,则此时所期待的句柄有哪些?而在另一个时刻,符号栈的栈顶是 A,但栈中不包含 a,则此刻所期待的句柄有哪些?

在针对 $G_1[S]$ 的SLR(1)分析过程的某个时刻,符号栈的栈顶是 A,且栈中包含 a,则此时所期待的句柄只有 aAb。而在另一个时刻,符号栈的栈顶是 A,但栈中不包含 a,则此刻所期待的句柄有3个: Bb、b 和 AB。