Modelos Univariados. Econometría Financiera Finanzas y Comercio Internacional

Andrés Martínez MSc Stochastic Engineering 2019 - 2

Contenido

- 1 Modelos Estacionarios
 - Definiciones Básicas
 - Proceso General Lineal
 - Moving Average
 - Modelo Autoregressivo
- 2 Modelos no Estacionarios

Contenidos del Corte

- Modelos Estacionarios [Jonathan and Kung-Sik, 2008]
 - Modelos de promedio movil *MA*
 - Modelos Auotoregressivos AR
- Modelos no estacionarios y de Volatilidad
 - Modelos diferenciados ARIMA
 - Modelos ARCH
 - Modelos GARCH

Definition

Un proceso estocástico es una familia de variables aleatorias Y_t para $t \in I$, $I \subseteq \mathbb{R}$, definido en un espacio de probabilidad (Ω, \mathcal{F}, P) . Una serie de tiempo es discreta $I \subseteq \mathbb{Z}$.

Definition

Momentos de una serie de tiempo: Asumiendo que existen, la media $\mu(t)$ y la función de covarianza $\gamma(t,s)$ de Y_t para $t\in\mathbb{Z}$

$$\mu(t) = E(Y_t)$$

$$\gamma(t,s) = E((Y_t - \mu_t)(Y_s - \mu_s))$$

Definition

(Debil/Estrictamente) Estacionaria:

- 1 Y_t con $t \in Z$ es debilmente estacionaria si $E(Y_t^2) < \infty$, $\mu(t) = \mu \in \mathbb{R}$ y $\gamma(t+h,s+h)$ para todo $t,s,h \in \mathbb{Z}$
- 2 Y_t con $t \in Z$ es estrictamente estacionaria si $(Y_{t_1},...,Y_{t_n})=(Y_{t_{1+h}},...,Y_{t_{n+h}})$ para todo $t_1,...,t_n$ con $h \in \mathbb{Z}$ y $n \in \mathbb{N}$

Un proceso lineal Y_t , se puede representar como una combinación ponderada de términos presentes y pasados de ruido blanco.

$$Y_t = \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \dots \tag{1}$$

$$\sum_{i=1}^{\infty} \psi_i^2 < \infty \tag{2}$$

Donde ψ cae de forma exponencial, resultando en

$$\psi_j = \phi^j$$

Donde ϕ se encuentre entre 1 y -1.

$$Y_t = \epsilon_t + \phi \epsilon_{t-1} + \phi^2 \epsilon_{t-2} + \dots \tag{4}$$

$$E[Y_t] = E(\epsilon_t + \phi \epsilon_{t-1} + \phi^2 \epsilon_{t-2} + ...) = 0$$
 (5)

$$V(Y_{t}) = V(\epsilon_{t} + \phi \epsilon_{t-1} + \phi^{2} \epsilon_{t-2} + ...)$$

$$= V(\epsilon_{t}) + \phi^{2} V(\epsilon_{t-1}) + \phi^{4} V(\epsilon_{t-2}) + ...$$

$$= \sigma_{\epsilon}^{2} (1 + \phi^{2} + \phi^{4} + ...)$$

$$= \frac{\sigma_{\epsilon}^{2}}{1 - \phi^{2}}$$

$$Cov(Y_t, Y_{t-1}) = Cov(\epsilon_t + \phi \epsilon_{t-1} + \phi^2 \epsilon_{t-2} + \dots$$

$$, \epsilon_{t-1} + \phi \epsilon_{t-2} + \phi^2 \epsilon_{t-3} + \dots)$$

$$= Cov(\epsilon_{t-1}, \phi \epsilon_{t-1}) + Cov(\phi^2 \epsilon_{t-2}, \epsilon_{t-2}) + \dots$$

$$= \phi \sigma_{\epsilon}^2 + \phi^3 \sigma_{\epsilon}^2 + \phi^5 \sigma_{\epsilon}^2 + \dots$$

$$= \phi \sigma_{\epsilon}^2 (1 + \phi^2 + \phi 4 + \dots)$$

$$= \frac{\phi \sigma_{\epsilon}^2}{1 + \phi^2}$$

Autocorrelación

$$Corr(Y_t, Y_{t-1}) = \left[\frac{\phi \sigma_{\epsilon}^2}{1-\phi^2}\right] / \left[\frac{\sigma_{\epsilon}^2}{1-\phi^2}\right] = \phi$$

$$Corr(Y_t, Y_{t-1}) = \left[\frac{\phi^k \sigma_{\epsilon}^2}{1-\phi^2}\right] / \left[\frac{\sigma_{\epsilon}^2}{1-\phi^2}\right] = \phi^k$$

Variable

Moving Average MA(q)

$$Y_t = \epsilon_t - \Theta_1 \epsilon_{t-1} - \Theta_2 \epsilon_{t-2} - \dots - \Theta_q \epsilon_{t-q}$$
 (6)

Ecuación de Primer orden del MA(1)

$$\begin{aligned} Y_t &= \epsilon_t - \Theta_1 \epsilon_{t-1} \text{ con } E[Y_t] = 0 \text{ y } V[Y_t] = \sigma_\epsilon^2 (1 + \Theta^2) \\ Cov(Y_t, Y_{t-1}) &= Cov(\epsilon_t - \Theta \epsilon_{t-1} \epsilon_{t-1} - \Theta \epsilon_{t-2}) \\ &= Cov(-\Theta \epsilon_{t-1}, \epsilon_{t-1}) \\ &= -\Theta \sigma_\epsilon^2 \end{aligned}$$

•00000

Modelo MA(1)
$$Y_t = \epsilon_t - \Theta_1 \epsilon_{t-1}$$

$$\begin{array}{lcl} E(Y_t) & = & 0 \\ \gamma_0 & = & V(Y_t) = \sigma_\epsilon^2 (1 + \Theta^2) \\ \gamma_1 & = & -\Theta \sigma_\epsilon^2 \\ \rho_1 & = & -\Theta/(1 + \Theta^2) \gamma_0 & = & \rho_k = 0 \quad \textit{para} \quad k \geq 2 \end{array}$$

000000

$$\begin{array}{rcl} \gamma_2 & = & Cov(Y_t, Y_{t-2}) \\ \gamma_2 & = & Cov(\epsilon_t - \Theta_1\epsilon_{t-1} - \Theta_2\epsilon_{t-2}, \\ & & \epsilon_{t-2} - \Theta_1\epsilon_{t-3} - \Theta_2\epsilon_{t-4}) \\ \gamma_2 & = & Cov(-\Theta_2\epsilon_{t-2}, \epsilon_{t-2}) \\ \gamma_2 & = & -\Theta_2\sigma_\epsilon^2 \\ \\ \rho_1 & = & \frac{-\Theta_1 + \Theta_1\Theta_2}{1 + \Theta_1^2 + \Theta_2^2} \\ \\ \rho_2 & = & \frac{-\Theta_2}{1 + \Theta_1^2 + \Theta_2^2} \end{array}$$

Figura: Rezagos

Segundo Orden

Proceso General MA(q)

$$Y_t = \epsilon_t - \Theta_1 \epsilon_{t-1} - \Theta_2 \epsilon_{t-2} - \dots - \Theta_q \epsilon_{t-q}$$
 (7)

$$\gamma_0 = (1 + \Theta_1^2 + \Theta_2^2 + \dots + \Theta_q^2)\sigma_{\epsilon}^2$$
 (8)

$$\rho_{k} = \frac{-\Theta_{k} + \Theta_{1}\Theta_{k+1} + \Theta_{2}\Theta_{k+2} + \dots + \Theta_{q}\Theta_{q-k}}{(1 + \Theta_{1}^{2} + \Theta_{2}^{2} + \dots + \Theta_{q}^{2})}$$
(9)

Ejemplo: Use los principios para encontrar la función de autocorrelación para el proceso estacionario definido por $Y_t = 5 + \epsilon_t - \frac{1}{2}\epsilon_{t-1} + \frac{1}{4}\epsilon_{t-2}$

Solución

Solución

$$\begin{array}{lll} \textit{Cov}(Y_{t},Y_{t-2}) & = & \textit{Cov}(\epsilon_{t}-\frac{1}{2}\epsilon_{t-1}+\frac{1}{4}\epsilon_{t-2},\epsilon_{t-2}-\frac{1}{2}\epsilon_{t-3}+\frac{1}{4}\epsilon_{t-4}) \\ \textit{Cov}(Y_{t},Y_{t-2}) & = & \textit{Cov}(\frac{1}{4}\epsilon_{t-2},\epsilon_{t-2})=\frac{1}{4}\sigma_{\epsilon}^{2} \\ \textit{Cov}(Y_{t},Y_{t-3}) & = & \textit{Cov}(-\frac{1}{2}\epsilon_{t-1},\epsilon_{t-3})+\textit{Cov}(-\frac{1}{2}\epsilon_{t-4},\frac{1}{4}\epsilon_{t-5})=0 \\ & \rho_{k} = \begin{cases} 1 & (k=0) \\ \frac{-\frac{9}{8}\sigma_{\epsilon}^{2}}{\frac{28}{16}\sigma_{\epsilon}^{2}} & (k=1) \\ -\frac{1}{4}\sigma_{\epsilon}^{2} & (k=1) \\ 0 & k>2 \end{cases} \end{array}$$

Modelo Autoregressivo Un proceso autoregressivo Y_t , se puede representar como una combinación ponderada de términos presentes y pasados de la variable observada.

$$Y_t = Y_t + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t$$
 (10)

Ecuación de Primer orden del AR(1)

$$Y_t = Y_{t-1}\phi_{t-1} + \epsilon_t$$

Resolviendo la varianza

$$\gamma_0 = \phi^2 \gamma_0 + \sigma_\epsilon^2 \quad o \quad \gamma_0 = rac{\sigma_\epsilon^2}{1-\phi^2} \; ext{UNIVERSIDAD DE 11}$$

El valor Esperado se obtiene multiplicando Y_{t-k} en ambos lados. Siendo el $E(\epsilon_t) = 0$.

$$Y_t = Y_{t-1}\phi_{t-1} + \epsilon_t \tag{12}$$

$$E(Y_{t-k}Y_t) = \phi E(Y_{t-k}Y_{t-1}) + E(\epsilon_t Y_{t-k})$$

$$\gamma_k = \phi \gamma_{k-1} + E(\epsilon_t Y_{t-k})$$

$$\gamma_k = \phi \gamma_{k-1}$$

Usando la varianza γ_0 se puede despejar la covarianza para cualquier nivel.

00000000

Modelos Estacionarios

$$\gamma_k = \phi^k \frac{\sigma_\epsilon^2}{1 - \phi^2} \tag{13}$$

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \phi^k \tag{14}$$

Condición de estacionariedad El modelo permanecera estacionario y estable, en la medida en que $|\phi| < 1$.

Ecuación de segundo orden del AR(2)

$$Y_t = Y_{t-1}\phi_{t-1} + Y_{t-2}\phi_{t-2} + \epsilon_t$$

Condiciones de estacionariedad:

Ecuación característica AR es un polinomio $\phi(x) = 1 - \phi_1 x - \phi_2 x^2$

Ecuación característica $1 - \phi_1 x - \phi_2 x^2 = 0$

Para cumplir con la condición, se requiere que las raices excedan en 1 en valor absoluto.

$$\frac{\phi_1 \pm \sqrt{\phi_1^2 + 4\phi_2}}{-2\phi_2}$$

Función Yule Walker y Función de Autocorrelación

Multiplicando $Y_t = Y_{t-1}\phi_{t-1} + Y_{t-2}\phi_{t-2} + \epsilon_t$ por Y_{t-k} en ambos lados se puede obtener la función Yule Walker.

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2} \tag{16}$$

Dividiendo por γ_0

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} \tag{17}$$

000000000

Modelos Estacionarios

$$\rho_1 = \frac{\phi_1}{1 - \phi_2} \tag{18}$$

$$\rho_2 = \frac{\phi_2(1 - \phi_2) + \phi_1^2}{1 - \phi_2} \tag{19}$$

Finalmente la varianza de este proceso

$$\gamma_0 = \frac{(1 - \phi_2)\sigma_{\epsilon}^2}{(1 - \phi_2)(1 - \phi_1^2 - \phi_2^2) - 2\phi_2\phi_1^2} \tag{20}$$

Modelo Autoregressivo Proceso General

$$Y_t = Y_t + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t$$
 (21)

Ecuación de Primer orden del AR(p) AR polinomial

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p \tag{22}$$

AR ecuación característica

$$0 = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p$$
 Universidad (23)

Implementando la ecuación Yule Walker se puede obtener la función de correlación para cualquier período.

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \dots + \phi_p \rho_{k-p}$$
 (24)

La varianza se calcula usando la correlación en $k \rho_k = \gamma_k/\gamma_0$.

$$\gamma_0 = \frac{\sigma_{\epsilon}^2}{1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p}$$
 (25)

000000000

Modelos Estacionarios

Ejemplo Use la formula recursiva para calcula la función de autocorrelación para un proceso AR(2) con parámetros especificados. En cada caso especifique si las raices características son reales o complejas.

a
$$\phi_1 = 0.6$$
 $\phi_2 = 0.3$

b
$$\phi_1 = -0.4$$
 $\phi_2 = 0.5$

c
$$\phi_1 = 1,2$$
 $\phi_2 = -0,7$

Solución Punto a

Solución punto b

Solución punto c

[1] 0.8571429+0.8329931i 0.8571429-0.8329931i

00000000

Modelos no Estacionarios

Modelos ARMA Combinando los dos modelos se puede obtener una predicción de Y_t usando sos valores y los errores rezagados. La forma general ARMA(p,q) de este proceso es:

$$Y_t = Y_{t-1}\phi_{t-1} + Y_{t-2}\phi_{t-2} + \dots + Y_{t-p}\phi_p + \epsilon_t - \Theta_1\epsilon_{t-1} - \Theta_2\epsilon_{t-2} - \dots - \Theta_q\epsilon_{t-q}$$

Jonathan, D. C. and Kung-Sik, C. (2008). Time series analysis with applications in r. *SpringerLink, Springer eBooks*.

