5 Мера множеств

Пусть X — множество. Тогда 2^X — совокупность всех его подмножеств, а $S\subset 2^X$ называется системой множеств.

Положим по определению $E = \bigcup A \in SA$. Это называется единицей системы S.

Определение 5.1. Система S называется кольцом, если $\forall A, B \in S$ $A \cup B, A \setminus B \in S$, то есть кольцо замкнуто относительно конечного числа объединений и разностей. Если кольцо $S \supset E$, оно называется алгеброй.

Пусть $S \subset 2^X$. Тогда $\mathcal{R}(S)$ — наименьшее кольцо, содержащее систему S, а $\mathcal{A}(S)$ — наименьшая алгебра, содержащая S, то есть $\mathcal{R}(S)$ пересечение всех колец, содержащих S, $\mathcal{A}(S)$ — пересечение всех алгебр, содержащих S.

Утверждение 5.1. $S-\kappa$ ольцо, если и только если $\forall A, B \in S$ $A \cap B \in S$ и $A \triangle B \in S$.

Доказательство. Это доказывается с помощью таких равенств

$$A \cap B = A \setminus (A \setminus B); \quad A \triangle B = (A \setminus B) \cup (B \setminus A); \quad A \cup B = (A \triangle B) \triangle (A \cap B); \quad A \setminus B = A \triangle (A \cap B).$$

Определение 5.2. Кольцо (алгебра) S называется σ -кольцом (-алгеброй), если

$$\forall A_n \in S \quad \bigcup_{1-n}^{\infty} A_n \in S.$$

Определение 5.3. Кольцао (алгебра) S называется δ -кольцом (-алгеброй), если

$$\forall A_n \in S \quad \bigcap_{1-n}^{\infty} A_n \in S.$$

Утверждение 5.2. Условия для σ и δ алгебры совпадают.

Доказательство. Запишем формулы двойственности.

$$E \setminus \left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcap_{n=1}^{\infty} (E \setminus A_n), \quad E \setminus \left(\bigcap_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} (E \setminus A_n).$$

Утверждение, очевидно, доказано.

 $\mathcal{R}_{\sigma}(S)$ — это наименьшее σ -кольцо, содержащее S, $\mathcal{A}_{\sigma}(S)$ — это наименьшая σ -алгебра, содержащая S. Определение 5.4. Пусть (X, ρ) — метрическое пространство, τ — топология. Тогда $\mathcal{A}_{\sigma}(\tau) =: \mathcal{B}(X)$ называется борелевской σ -алгеброй метрического пространства X.

Определение 5.5. S называется полукольцом, если $\forall A, B \in S$ $A \cap B \in S$ $u A \setminus B = \bigsqcup_{i=1}^{n} C_i$, где $C_i \in S$.

Утверждение 5.3. Если S- полукольцо, то $\forall A, B_i \in S$ $A \setminus \bigcup_{i=1}^n B_i = \bigcup_{j=1}^n C_j$, где $C_j \in S$.

Доказательство. По индукции. Для n=1 верно. Пусть верно для n, докажем для n+1.

$$A \setminus \bigcup_{i=1}^{n+1} B_i = A \setminus \bigcup_{i=1}^{n} B_i \setminus B_{n+1},$$

что есть $\bigsqcup_{j=1}^m (C_j \setminus B_{n+1}) = \bigsqcup_{j=1}^m \bigsqcup_{i=1}^n C_{ij}$, где $C_{ij} \in S$, что и требовалось доказать.

Лемма 5.1. Пусть S- полукольцо. Тогда $A\in\mathcal{R}(S)$ если и только если $A=\bigsqcup_{i=1}^n A_i,$ где $A_i\in S.$

Доказательство. Положим $R = \{A = \bigsqcup_{i=1}^n A_i \mid n \in \mathbb{N}, \ A_i \in S\}$. Отметим, что $R \subset \mathcal{R}(S)$. Покажем, что R — кольцо.

$$A = \bigsqcup_{i=1}^{n} A_i, \quad B = \bigsqcup_{j=1}^{m} B_j, \quad A_i, B_j \in S.$$

 $A \setminus B = \bigsqcup_{i=1}^n (A_i \setminus B)$. В силу доказанного выше утверждения это является $\bigsqcup_{i=1}^n \bigsqcup_{j=1}^m C_{ij}C_{ij}$, где $C_{ij} \in S$. Следовательно, $A \setminus B \in R$.

 $A \cup B = A \setminus B \sqcup B \in R$. Следовательно R — кольцо. И, следовательно, $R = \mathcal{R}(S)$.

Пусть X — множество. Опять же $S \subset 2^X$. И функция $\varphi \colon S \to \mathbb{F}$, где $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

Определение 5.6. Функция φ называется аддитивной, если $\varphi(A \sqcup B) = \varphi(A) + \varphi(B) \ \ \forall \ A, B, A \sqcup B \in S.$ φ называется конечно аддитивной, если $\varphi\left(\bigsqcup_{i=1}^n A_i\right) = \sum_{i=1}^n \varphi(A_i) \ A_i, \bigsqcup_{i=1}^n A_i \in S \ \forall \ n \in \mathbb{N}.$

Определение 5.7. φ называется σ -аддитивной, если $\varphi\Big(\bigsqcup_{i=1}^\infty A_i\Big) = \sum_{i=1}^\infty \varphi(A_i) \ A_i, \bigsqcup_{i=1}^\infty A_i \in S \ \forall \ n \in \mathbb{N}.$

Так как \coprod не зависит от порядка множеств, то ряд сходится абсолютно.

Определение 5.8. Функция $m \colon S \to \mathbb{R}_+$ называется конечно-аддитивной мерой (σ -аддитивной мерой), если

- 1. S это полукольцо;
- 2. m конечно (или σ -) $a\partial \partial umu$ вна.

Определение 5.9. Мера $m_1\colon S_1\colon R_+$ называется называется продолжением меры $m\colon S\to \mathbb{R}_+,$ если $S\subset S_1$

u ограничение $m_1|_{S_1}=m$. **Теорема 5.1.** Для любой меры $m\colon S\to\mathbb{R}_+$ $\exists !\ m_1\colon S_1\to\mathbb{R}_+$ продолжение, где $S_1\in\mathcal{R}(S)$. Доказательство. Определим $m_1(A)=\sum\limits_{i=1}^n m(A_i)$, где $A=\bigsqcup\limits_{i=1}^n A_i,\ A_i\in S$. Пусть $A=\bigsqcup\limits_{i=1}^n A_i=\bigcup\limits_{j=1}^m B_j$. Тогда одновременно выполнится $A = \bigsqcup_{i=1}^n \bigsqcup_{j=1}^m (A_i \cap B_j)$ и $m_1(A) = \sum_{i=1}^n \sum_{j=1}^m m(A_i \cap B_j)$ не зависит от разложения A.

Пусть $A = \bigsqcup_{i=1}^n A_i$, $A_i \in \mathcal{R}(S)$. В свою очередь $A_i = \bigsqcup_{i=1}^{m_i} A_{ij}$, где $A_{ij} \in S$. Соответственно,

$$A = \bigsqcup_{i=1}^{n} \bigsqcup_{j=1}^{m_i} A_{ij}, \quad m_1(A) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} m(A_{ij}) = \sum_{i=1}^{n} m_1(A_i).$$

Таким образом доказана конечная аддитивность. Устремив $n \to \infty$ в предыдущих рассуждениях, докажем σ -аддитивность.

5.1 Свойства σ -аддитивной меры

Пусть $m \colon S \to \mathbb{R}_+ - \sigma$ -аддитивная мера. Тогда

Утверждение 5.4. $m(\varnothing)=m(\varnothing\sqcup\varnothing)=2m(\varnothing)\Rightarrow m(\varnothing)=0.$

Утверждение 5.5 (монотонность). Если $\bigsqcup_{i=1}^{\infty} A_i \subset A$, причём $A_i, A \in S$, то $\sum_{i=1}^{\infty} m(A_i) \leqslant m(A)$.

Доказательство. Возьмём фиксированное $n \in \mathbb{N}$. Тогда $\bigsqcup_{i=1}^n A_i \subset A$ и $A = \bigsqcup_{i=1}^n A_i \sqcup \bigsqcup_{i=1}^m B_j, \ A_i, B_j \in S$. Тогда

$$m(A) = \sum_{i=1}^{n} m(A_i) \sum_{i=1}^{n} m(B_j) \geqslant \sum_{i=1}^{n} m(A_i).$$

Устремим $n \to \infty$ и получим требуемое.

Утверждение 5.6 (полуаддитивность). Пусть $A \subset \bigcup_{i=1}^{\infty} A_i$, где $A, A_i, \bigcup_{1=i}^{\infty} A_i =: B \in S$. Тогда $m(A) \leqslant \sum_{i=1}^{\infty} m(A_i)$.

Доказательство. Берём $B_1 = A_1, \, B_k = A_k \setminus \left(\bigcup_{i=1}^{k-1} A_i\right)$, где $k = 2, 3, \dots \, B_k \in \mathcal{R}(S)$. Считаем, что m определена

для B_k , как продолжение меры. $B = \bigsqcup_{k=1}^{\infty} B_k$ и $m(B) = \sum_{k=1}^{\infty} B_k$. Так как $A \subset B$, $m(A) \leqslant m(B) \leqslant \sum_{k=1}^{\infty} B_k \leqslant \sum_{k=1}^{\infty} A_k$.

Утверждение 5.7 (непрерывность снизу). Если $A_i \uparrow A, \ A, A_i \in S, \ mo \lim_{i \to -\infty} \infty m(A_i) = m(A).$

Доказательство. Что значит стрелочка вверх: $A_1\subset A_2\subset \dots$ и $\bigcup_{i=1}^\infty A_i=A$. Пусть $A_0=\varnothing,\ B_i=A_i\setminus A_{i-1}$. Тогда

$$A = \bigsqcup_{i=1}^{\infty} B_i, \quad B_i \in \mathcal{R}(S).$$

Считаем меру m продолженной на $\mathcal{R}(S)$. Тогда $m(A) = \sum_{i=1}^{\infty} m(B_i) = \sum_{i=1}^{\infty} (A_i \setminus A_{i-1}) = \lim_{i \to \infty} m(A_i)$.

Сформулируем обратное утверждение.

Утверждение 5.8. Если конечно аддитивная мера непрерывна снизу, то она σ -аддитивна.

Доказательство. Путьс $A=\bigsqcup_{i=1}^{\infty}A_i,\ A_i,A\in S.$ Положим, $B_n=\bigsqcup_{i=1}^nA_i.$ Тогда $B_n\uparrow A$ и $m(A)=\lim_{n\to\infty}m(B_n)=$

Утверждение 5.9 (непрерывность сверху). Если $A_i \downarrow A, A_i, A \in S, mo \lim_{i \to \infty} \infty m(A_i) = m(A).$

Доказательство. $A_1 \supset A_2 \supset \dots$ и $\bigcap_{i=1}^{\infty} A_i = A$. Обозначим $B = A_1 \setminus A, \ B_i := A_1 \setminus A_i, \ i = 1, 2, \dots$ Тогда $B_i \uparrow B$ и $m(B) = \lim_{i \to \infty} m(B_i)$. $m(A_i) - m(A) = m(A_i) - \lim_{i \to \infty} m(A_i)$, следовательно, $m(A) = \lim_{i \to \infty} m(A_i)$. Утверждение 5.10. Если конечно аддитивная мера непрерывна сверху, то она σ -аддитивна. Доказательство. $A = \bigsqcup_{i=1}^{\infty} A_i, \ A, A_i \in S, \ B_n = \bigsqcup_{i=1}^n A_i, \ B_n \downarrow \varnothing$. $\lim_{n \to \infty} B_n = 0$. Тогда

$$m(A) - \lim_{n \to \infty} \sum_{i=1}^{n} m(A_i) = 0.$$

Что и требовалось доказать.

Определение 5.10. Пусть (X, ρ) — метрическое пространство, S — полукольцо в X. Мера $m \colon S \to \mathbb{R}_+$ называется регулярной, если

$$\forall \ \varepsilon > 0, \ \forall \ A \in S \ \exists \ B, C \in S \colon \overline{B} \ компактно, \ \overline{B} \subset A \subset C^0, m(C \setminus B) < \varepsilon.$$

Теорема 5.2. Каждая регулярная мера $m: S \to \mathbb{R}_+$ является σ -аддитивной.

Доказательство. Пусть $A = \bigsqcup_{i=1}^{\infty} A_i, \ A_i, A \in S. \ m(A) \geqslant \sum_{i=1}^{\infty} m(A_i).$ Существуют $B, C, B_i, C_i \in S: \overline{B}, \overline{B}_i - \text{компакты, } \overline{B} \subset A \subset C^0, \overline{B}_i \subset A_i \subset C^0_i \text{ и } m(C \setminus B) < \frac{\varepsilon}{2}, \ m(C_i \setminus B_i) < \frac{\varepsilon}{2^{i+1}}.$

 $\overline{B} \subset \bigcup_{i=1}^{\infty} C_i^0$. Из компактности следует, что $\overline{B} \subset \bigcup_{i=1}^n C_i^0$. Следовательно, $m(B) \leqslant \sum_{i=1}^n m(C_i)$.

$$m(A) \leqslant m(C) \leqslant m(B) + \frac{\varepsilon}{2} \leqslant \sum_{i=1}^{n} m(C_i) + \frac{\varepsilon}{2} \leqslant \sum_{i=1}^{n} m(B_i) + \sum_{i=1}^{n} \frac{\varepsilon}{2^{i+1}} + \frac{\varepsilon}{2} \leqslant \sum_{i=1}^{\infty} m(A_i) + \varepsilon.$$

Так как ε — произвольная постоянная, получаем требуемое.

5.2Мера Стилтьеса в \mathbb{R}

Пусть $S = \{[a,b)|a,b \in \mathbb{R}, a \leq b\}$. Это полукольцо. Пусть $\alpha(x)$ — неубывающая функция на \mathbb{R} . Определение 5.11. $m_{lpha}ig([a,b)ig)=lpha(b)-lpha(a)$. lpha называется функцией распределения, а m_{lpha} — конечно-аддитивная

Теорема 5.3. Мера m_{α} является σ -аддитивной, если и только если $\alpha(x)$ непрерывна слева.

Доказательство. Необходимость. Пусть $x_n \uparrow x$. Тогда полуинтервал $[x_n, x) \downarrow \varnothing$. Следовательно, существует предел $\lim_{n\to\infty} m_{\alpha}([x_n,x)) = 0$. Следовательно, $\alpha(x) = \lim_{n\to\infty} \alpha(x_n)$, то есть α непрерывна слева. Достаточноть. Пусть $\forall \ x \in \mathbb{R} \quad \alpha(x-0) = \alpha(x)$. Полуинтервал $[a,b-\delta) \subset [a,b) \subset (a-\delta,b) \quad \forall \ \delta > 0$.

$$m_{\alpha}([a-\delta,b)\setminus[a,b-\delta)) = m_{\alpha}([a-\delta,a)) + m_{\alpha}([b-\delta,b)) = \alpha(a) - \alpha(a-\delta) + \alpha(b) - \alpha(b-\delta) \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Мера Стилтьеса регулярна, следовательно, σ -аддитивна.

6 Измеримые множества

Далее мы через $\overline{\mathbb{R}}_+ := \mathbb{R}_+ \sqcup \{\infty\}$ будем обозначать множество неотрицательных чисел и добавленный символ бесконечности, при этом будут выполнены следующие аксиомы: $\forall a \in \mathbb{R}_+ \ a + \infty = \infty, \ a \cdot \infty = \infty \ (a \neq 0),$ $0 \cdot \infty = 0$ и $a < \infty, \infty \leq \infty$.

Какая-то из этих аксиом понадобится, только когда будем рассматривать интеграл Лебега.

Определение 6.1. $\mu \colon 2^X \to \overline{\mathbb{R}}_+$ называется внешней мерой, если

- (1) Мера пустого множества равна нулю $\mu(\varnothing) = 0$,
- (2) $\mu A \leqslant \mu B$, ecau $A \subset B$,

(3)
$$\mu A \leqslant \sum_{n=1}^{\infty} \mu(A_n)$$
, ecau $A \subset \bigcup_{n=1}^{\infty}$.

Определение 6.2. Множество $E \subset X$ называется измеримым (относительно внешней меры μ), если

$$\mu A = \mu(A \cap E) + \mu(A \setminus E) \quad \forall \ A \subset X.$$

В силу свойства 3 полуаддитивности внешней меры, достаточно доказывать только неравенство

$$\mu A \geqslant \mu(A \cap E) + \mu(A \setminus E) \quad \forall \ A \subset X,$$

чтобы показать измеримость множества.

Давайте введём ещё одно обозначение $AB := A \cap B$, $A' := X \setminus A$, $\mu_A(B) := \mu(AB)$.

Тогда легко понять, что E измеримо, если и только если $\forall A \subset X \quad \mu_A(X) = \mu_A(E) + \mu_A(E')$.

Давайте ещё через Σ будем обозначать совокупность всех измеримых множеств относительно внешней меры μ .

6.1 Некоторые свойства измеримых множеств

Утверждение 6.1. *Если* $\mu E = 0$, *mo* $E \in \Sigma$.

Доказательство. Это вытекает из того, что $\mu_A(E)=0$ из монотонности меры $\forall A$, и тоже в силу монотонности $\mu_A(X)\geqslant \mu_A(E)+\mu_A(E')$. А мы уже знаем, что этого неравенства достаточно.

Утверждение 6.2. *Если* $E_1, E_2 \in \Sigma$, *mo* $E = E_1 E_2 \in \Sigma$.

Доказательство. Для доказательства запишем следующие равенства:

$$\mu_A(X) = \mu_A(E_1) + \mu_A(E_1')$$

в силу измеримости E_1 . А в силу измеримости E_2 можем записать такое неравенство

$$\mu_A(X) = \mu_A(E_1) + \mu_A(E_1') = \mu_{AE_1}(E_2) + \mu_{AE_2}(E_2') + \mu_A(E_1') = \mu_A(E) + \underbrace{\mu_A(E_1E')}_{E_2' \subset E'} + \underbrace{\mu_A(E_1'E')}_{E_1' \subset E'} = \mu_A(E) + \mu_A(E').$$

Утверждение 6.3. *Если* $E \in \Sigma$, *mo* $E' \in \Sigma$.

Доказательство. Это вытекает из того, что второе дополнение E'' = E есть само множество. И отсюда $\mu_A(X) = \mu_A(E') + \mu_A(E'')$.

Утверждение 6.4. *Если* $E_1, E_2 \in \Sigma$, то и разность $E_1 \setminus E_2, E_1 \cup E_2 \in \Sigma$.

Доказательство. Это вытекает из таких простых равенств: $E_1 \setminus E_2 = E_1 E_2', E_1 \cup E_2 = (E_1' E_2')'.$

Таким образом система измеримых множест является алгеброй. Очевидно же из определения вытекает, что $\varnothing, X \in \Sigma.$

Утверждение 6.5. Функция $\mu_A \colon \Sigma \to \overline{\mathbb{R}}_+$ является конечно аддитивной мерой на алгебре¹

Доказательство. Пусть $E = E_1 \sqcup E_2, E_1, E_2 \in \Sigma$. Тогда в силу измеримости

$$\mu_A(E) = \mu_{AE}(E_1) + \mu_{AE}(E_1') = \mu_A(\underbrace{EE_1}_{E_1}) + \mu_A(\underbrace{EE_1'}_{E_2}) = \mu_A(E) + \mu_A(E_2)$$

Ну и основная теорема.

Теорема 6.1 (Каратеодори). Пусть $\mu \colon 2^X \to \overline{R}_+$ внешняя мера. Тогда

- (1) $\Sigma \sigma$ -алгебра;
- (2) $\mu \colon \Sigma \to \overline{\mathbb{R}}_+ \sigma$ -аддитивная мера.

Доказательство. Пусть $E=\bigsqcup_{n=1}^{\infty}E_n,\,E_n\in\Sigma.$ Обозначим $F_n=\bigsqcup_{k=1}^nE_k,\,F_n\in\Sigma.$

Для любого $A \subset X$

$$\mu_A(X) = \mu_A(F_n) + \mu_A(F'_n) \geqslant \sum_{k=1}^N \mu_A(E_k) + \mu_A(E').$$

Устремляем $n \to \infty$.

$$\sum_{k=1}^{\infty} \mu_A(E_k) + \mu_A(E') \geqslant \mu_A(E) + \mu_A(E').$$

Получаем
$$\mu(E) = \sum_{k=1}^{\infty} \mu(E_k), E \in \Sigma, \, \mu_A(X) = \sum_{k=1}^{\infty} \mu_A(E_k) + \mu_A(E').$$

 $^{^1}$ Потом мы докажем и $\sigma\text{-аддитивность}.$

Пусть $m\colon S\to\mathbb{R}_+,\ S\subset 2^X$ — полукольцо, и мера m σ -аддитивна. Будем также полагать, что она σ -конечна, то есть X представимо в виде

$$X = \bigsqcup_{n=1}^{\infty} A_n, \quad A_n \in S.$$

У нас мера конечно, поэтому этого будет достаточно.

Определение 6.3. Мера заданная на совокупности всех подмножеств $m^*: 2^X \to \overline{\mathbb{R}}_+$ называется внешней мерой Лебега, если

$$m^*(A) = \inf_{A \subset \bigcup_{i=1}^{\infty} A_n} \sum_{n=1}^{\infty} m(A_n).$$

Инфинум по всем счётным покрытиям.

Сейчас мы докажем, что внешняя мера Лебега является внешней мерой.

Доказательство. Обозначение (X, Σ, ν) — измеримое пространство где Σ — σ -алгебра измеримых множеств $\mu = m^*, \ \nu := \mu|_{\Sigma}$.

- (1) $m^*(\emptyset) = 0$ очевидно;
- (2) $m^*(A) \leq m^*(B)$, если $A \subset B$ тоже;

(3)
$$M^*(A) \leqslant \sum_{n=1}^{\infty} m^*(A_n)$$
, если $A \subset \bigcup_{k=1}^{\infty} A_n$.

Докажем третье: если $\exists n : m^*(A_n) = \infty$, то утверждение верно.

Пусть $\forall n \in \mathbb{N} \ m^*(A_n) < \infty$.

$$\forall \varepsilon > 0 \ \exists B_{nk} \in S \colon A_n \subset \bigcup_{k=1}^{\infty} B_{nk} \text{ if } \sum_{k=1}^{\infty} (B_{nk}) < m^*(A_n) + \frac{\varepsilon}{2^n}.$$

Отсюда вытекает, что A содержится в двойном объединении

$$A \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} B_{nk}, \quad m^*(A) \leqslant \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} m(B_{nk}) \leqslant \sum_{n=1}^{\infty} m^*(A_n) + \varepsilon.$$

Ещё одно свойство запишем и сделаем перерыв.

Утверждение 6.6. *Если* $A \in S$, *mo* $m^*(A) = m(A)$

Доказательство. Это вытекает из такого неравенства:

$$m^*(A) \leqslant m(A) \leqslant \sum_{n=1}^{\infty} m(A_n),$$

если $A \subset \bigcup_{n=1}^{\infty} A_n, A_n \in S.$

Теорема 6.2 (о продолжении меры). Пусть $m \colon S \to \mathbb{R}_+ - \sigma$ -аддитивная мера. Тогда

- (1) Внешняя мера $\mu := m^* \colon \Sigma \to \overline{\mathbb{R}}_+ \ \sigma$ -аддитивная;
- (2) Σ является σ -алгеброй;
- (3) $S \subset \Sigma$;
- (4) $\mu|_{S} = m$.

Доказательство. Всё, кроме свойства три, доказано в теореме Коритоадори. Докажем 3. Пусть у нас $E \in S$, $A \subset X$ —произвольно множество, $\varepsilon > 0$. Тогда

$$\exists B_n \in S \colon A \subset \bigcup_{n=1}^{\infty} \text{ if } \sum_{n=1}^{\infty} m(B_n) < \mu^*(A) + \varepsilon.$$

Ну теперь применим свойство полуаддитивности и запишем следующее равенство (воспользуемся полуаддитивностью внешней меры)

$$m^*(A) \leqslant m^*(A \cap E) + m^*(A \setminus E) \leqslant \sum_{n=1}^{\infty} \left(\underbrace{m(B_n \cap E) + m(B_n \setminus E)}_{m(B_n)} \right) = \sum_{n=1}^{\infty} \leqslant m^*(A) + \varepsilon.$$

Так как ε произвольно, тут везде знаки равенства и $E \in \Sigma$.

Следствие 6.1. Полукольцо содержится в наименьшем кольце, которое содержится в наименьшем σ -кольце, которое содержится в наименьшей σ -алгебре, содержащейся в Σ , то есть

$$S \subset \mathcal{R}(S) \subset \mathcal{R}_{\sigma}(S) \subset \mathcal{A}_{\sigma}(S) \subset \Sigma$$
.

Теорема 6.3 (о единственности продолжения меры). Пусть $m \colon S \to \mathbb{R}_+$ σ -аддитивная и σ -конечная мера. Тогда $\exists ! \ \sigma$ -аддитивная мера, которая продолжает меру m на σ -алгебру.

Доказательство. Докажем для случая $\mu(X) < \infty$ (иначе разобьём множество на измеримые). Пусть имеются два продолжения $\mu \colon \Sigma \to \overline{\mathbb{R}}_+$ и $\mu \colon \Sigma \overline{\mathbb{R}}_+$, где $\mu = m^*$. Тогда $\forall \ E \in \Sigma \ | \nu E \leqslant \mu(E)$, ведь на $S \ \mu\big|_S = \nu\big|_S = m$. Осталось заметить, что в силу аддитивности этмх мер

$$\nu(E) + \nu(E') = m(X) = \mu(E) + \mu(E')$$

Отсюда видим, что $\nu(E) = \mu(E)$.

Лемма 6.1 (об измеримой оболочке). Пусть $\mu = m^* -$ внешняя мера Лебега. Тогда $\forall \ A \subset X \ \exists \ B \in \Sigma \colon A \subset B$ $u \ \mu(A) = \mu(B)$.

Доказательство. $\forall \ n \in \mathbb{N} \ \exists \ B_{nk} \in S \colon A \subset B_n = \bigcup_{k=1}^{\infty} B_{nk} \ \text{и} \ \mu(B_n) \leqslant \sum_{k=1}^{\infty} \mu(B_{nk}) < \mu(A) + \frac{1}{n}$ по определению нижней грани, которая присутствует в определении внешней меры Лебега.

Обозначим $B:=\bigcap_{n=1}^{\infty}B_n\in\Sigma,\,A\subset B.$ Имеем

$$\mu(B) \leqslant \mu(B_n) \leqslant \mu(A) + \frac{1}{n}.$$

Ну и поскольку n произвольно, то получается равенство.

Определение 6.4. Пусть $\mu = m^*$ и $\mu(X) < \infty$. Множество $E \subset X$ называется измеримым по Лебегу, если $\mu(X) = \mu(E) + \mu(E')$.

Ясно, что если множество измеримо, то оно измеримо по Лебегу. Докажем обратное.

Доказательство. Пусть E измеримо по Лебегу. Тогда существует по лемме об измеримой оболочке

$$\exists A, B \in \Sigma : E \subset A, E' \subset B, \mu(E) = \mu(A), \mu(A') = \mu(B).$$

Отсюда вытекает, что $A \cup B = X$ и $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cup B)$ в силу аддитивности (ну надо на картинку посмотреть, ведь множества A и B измеримы). Это всё равно

$$\mu(A \cap B) = \mu(E) + \mu(E') - \mu(X) = 0.$$

Ну а множество меры нуль измеримо, то есть $A \cap B \in \Sigma$. Так как $A \setminus E \subset A \cap B$, $\mu(A \setminus E) = 0$ и разность тоже измерима. Пожтому множество E можно записать как

$$E = A \setminus (A \setminus E) \in \Sigma.$$

Значит эти определения конечной меры эквивалентны.

Теорема 6.4 (критерий измеримости Ваме—Гуссейна). Пусть $\mu = m^* \ u \ \mu(X) < \infty$. Тогда

$$E \in \Sigma \Leftrightarrow \forall \ \varepsilon > 0 \ \exists \ B \in \mathcal{R}(S) \colon \mu(E \triangle B) < \varepsilon.$$

Доказательство. Необходимость. Пусть $E \in \Sigma$ и $\varepsilon > 0$. Тогда $\exists \ A_k \in S \colon E \subset A = \bigcup_{k=1}^{\infty} A_k$ и по определению нижней грани

$$\mu(A) \leqslant \sum_{k=1}^{\infty} m(A_k) \leqslant \mu(E) + \frac{\varepsilon}{2}.$$

Существует n, для которого $\sum\limits_{k=n+1}^{\infty}m(A_k)<\frac{\varepsilon}{2}$. Положим $B_n:=\bigcup\limits_{k=1}^nA_k$. Тогда

$$\mu(E \triangle B_n) \leqslant \mu(E \setminus B_n) + \mu(B_n \setminus E) \leqslant \mu(A \setminus B_n) + \underbrace{\mu(A \setminus E)}_{B_n \subset A} \leqslant \sum_{k=n+1}^{\infty} m(A_k) + \frac{\varepsilon}{2} < \varepsilon.$$

Достаточность. Пусть $E \subset B \cup (E \triangle B)$. Из этого вытекает

$$|\mu(E) - \mu(B)| \le \mu(E \triangle B) < \varepsilon, \qquad |\mu(E') - \mu(B')| \le \mu(E' \triangle B') = \mu(E \triangle B) < \varepsilon.$$

Если это сложить, получится неравенство

$$\mu(X) = \mu(B) + \mu(B'), \qquad |\mu(E) + \mu(E') - \mu(X)| < 2\varepsilon.$$

Значит, $E \in \Sigma$.

Помните меру Стилтьеса? Сейчас определим меру Лебега—Стилтьеса

Определение 6.5. Пусть есть полукольцо интервалов $S = \{[a,b) | a,b \in \Sigma, a \leqslant b\}$, есть $\alpha(x) \uparrow$ (неубывает) и $\forall \ x \in \mathbb{R} \ \alpha(x-0) = \alpha(x)$. Положим $m_{\alpha}([a,b)) := \alpha(b) - \alpha(a)$. Это σ -аддитивная мера. Пусть $m = \mu_a^*$ и $\Sigma_{\alpha} - \sigma$ -алгебра измеримых множеств. Тогда $\mu \colon \Sigma_{\alpha} \to \overline{\mathbb{R}}_+$ называется мерой Лебега—Стилтьеса.

Если $\alpha(x) = x$, мера называется мерой Лебега.

Приведём пример неизмеримого по Лебегу множества $E\subset [0,1]$. Введём отношение эквивалентности: $\forall \ x,y\in [0,1] \ x\sim y \Leftrightarrow x-y\in \mathbb{Q}.$ Множество [0,1] разбивается на несчётное число классов эквивалентности $[0,1]=\bigsqcup_{i\in I}C_i$, где при $i\neq j$ $C_i\cap C_j=\varnothing$. Пусть $E=\left\{x_i\right\}_{i\in I}$, где $x_i\in C_i$. Пусть $\left\{e_n\right\}_{n=1}^\infty=[0,1]\cap \mathbb{Q}.$ Тогда определим сдвиг на рациональное число $E_n=E+r_n,\ n=1,2,\ldots$ Если $E\in \Sigma$, то $E_n\in \Sigma$ (это уже не обязательно подмножество [0,1]) и $\mu(E)=\mu(E_n)$. Для $n\neq m$ $E_n\cap E_m=\varnothing$. Видим, что $[0,1]\subset\bigcup_{n=1}^\infty E_n$, а с другой стороны ∞

 $\bigcup_{n=1}^{\infty} E_n \subset [-1,2]$. Можем применить неравенсто для измеримых множеств

$$1 = \mu([0,1]) \leqslant \sum_{n=1}^{\infty} \mu(E_n) \leqslant \mu([-1,2]) = 3.$$

Если $\mu(E) \neq 0$, получаем бесконечную расходящуюся сумму, а если $\mu(E) = 0$, то противоречие с первым неравенством.

7 Измеримые функции

Всюду на этой лекции тройка (X, Σ, μ) будет обозначать измеримое пространство. Мы сейчас будем использовать только следующие свойства измеримого пространства.

- (1) $\Sigma sigma$ -алгебра с единицей X;
- (2) $\mu: \Sigma \to \overline{\mathbb{R}}_+ \sigma$ -аддитивная мера;
- $(3) \ \forall \ A \subset B \colon \mu(B) = 0 \ \ A \in \Sigma.$

Пусть $E \subset X$.

Определение 7.1. Функция $f: E \to \mathbb{R}$ называется измеримой, если

$$\forall c \in \mathbb{R} \ E(f < c) := \{ x \in E | f(x) < c \} \in \Sigma.$$

Понятно, что из определения вытекает, что E будет измеримо, как счётное объединение этих множеств. Кроме того

$$E(f \leqslant c) = \bigcap_{n=1}^{\infty} E\left(f < c + \frac{1}{n}\right) \in \Sigma; \tag{1}$$

$$E(f \geqslant c) = E \setminus E(f < c) \in \Sigma; \tag{2}$$

$$E(f > c) = E \setminus E(f \leqslant c) \in \Sigma; \tag{3}$$

$$E(a \leqslant f < b) = E(f < b) \setminus E(f < a) \in \Sigma; \tag{4}$$

$$E(a < f < b) = E(f < b) \setminus E(f \leqslant a) \in \Sigma.$$
 (5)

Таким образом, все промежутки измеримы.

Лемма 7.1. $f \colon E \to \mathbb{R}$ измерима, если и только если

$$\forall B \in \mathcal{B}(\mathbb{R}) \quad f^{-1}(B) \in \Sigma.$$

Доказательство. Необходимость. Положим $S := \{A \subset \mathbb{R}\mathcal{B} | f^{-1}(A) \in \Sigma\}$. Все интервалы измеримы и лежат в S. $S-\sigma$ -алгебра, $\mathbb{R} \in S$.

$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B), \quad f^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) =$$

Таким образом $S - \sigma$ -алгебра,

Достаточность $E(f < c) = f^{-1}(-\infty, c)$ очевидна.

Покажем связь топологии и измеримости. Введём такое определение.

Определение 7.2. Пусть μ — регулярна. Функция $f \colon E \to \mathbb{R}$, где $E \in \Sigma$, обладает C-свойством, если

$$\forall \ arepsilon > 0 \ \exists \$$
компакт K , такой, что $\mu(E \setminus K) < arepsilon, \ g = f \big|_{K}$ — непрерывная функция.

Теорема 7.1 (Лузина). Пусть μ — регулярная мера (в прошлый раз давали: для которой X является метрическим пространством и ещё другие свойства есть) и все открытые множества измеримы. Тогда функция $f : E \to \mathbb{R}$ измерима \Leftrightarrow она обладает C-свойством

Доказательство. Необходимость. Фиксируем $\varepsilon > 0$. Функция у нас f измерима. Отсюда вытекает, что $E \in \Sigma$. Так как мера регулярна, то \exists такие измеримые $A_0, B_0 \in \Sigma$, такие что A_0 компактно, B_0 открыто, $A_0 \subset E \subset B_0$ и $\mu(B_0 \setminus A_0) < \frac{\varepsilon}{2}$. (Это всё из регулярности меры.)

Пусть задана система всех интервалов $\{I_n\}$ с рациональными концами на прямой $\mathbb R$. Их не более чем счётно, поэтому я их занумеровал натуральными числами. Поэтому также в силу регулярности $\exists \ A_n, B_n \in \Sigma$, такие что A_n компактно, B_n открыто, $A_n \subset f^{-1}(I_n) \subset B_n$, $\mu(B_n \setminus A_n) < \frac{\varepsilon}{2^{n+1}}$.

Определим $G:=\bigcup_{n=0}^{\infty}(B_n\setminus A_n)\in$ — открыто, значит, измеримо, то есть $G\in\Sigma$. И его мера (по σ -аддитивности) $\mu G<\varepsilon$.

Обозначим $K = E \setminus G = A_0 \setminus \bigcup_{n=1}^{\infty} (B_n \setminus A_n)$. Оно является компактным как разность компактного A_0 и открытого.

Осталось доказать, что органичение на компакт является непрерывной функцией. Пусть $g = f|_K$. Тогда прообраз интервала $f^{-1}(I_n) = f^{-1}(I_n) \cap K$. Ну и кроме того легко понять, что пересечение с этим компактом, это всё равно что $g^{-1}(I_n) = B_n \cap K$. При этом B_n открыто, значит, $g^{-1}(I_n)$ открыто в K. Значит, g непрерывна на компакте K.

Вот мы доказали необходимость.

Достаточность. Пусть f обладает C-свойством. Тогда для каждого n существует измеримый компакт $K_n \in \Sigma$, для которого $K_n \subset E, \ \mu(E \setminus K_n) < \frac{1}{n}$, ну и ограничение $g_n\big|_{K_n}$ непрерывно.

Обозначим $F:=\bigcup_{n=1}^{\infty}(E\setminus K_n)$. Значит, функция g_n непрерывна на компакте K_n , поэтому \forall интервала $I=(a,b)\subset\mathbb{R}$ прообраз $g_n^{-1}(I)=f^{-1}(I)\cap K_n$. Существуеют такие открытые множества B_n , дающие в перечении $B_n\cap K_n=g^{-1}(I)$.

$$f^{-1}(I) \setminus F = \bigcup_{n=1}^{\infty} f^{-1}(I) \cap K_n = \bigcup_{n=1}^{\infty} B_n \cap K_n$$

Так как B_n и K_n из σ -алгебры, то это всё измеримо. И $\mu(F)=0, \mu\in\Sigma$, значит, и прообраз интегралов будет измеримым $f^{-1}(I)\in\Sigma$.

Следующая лемма нам поможет выяснить алгебраические свойства измеримых функций.

Лемма 7.2. Пусть у нас функции $f,g: E \to \mathbb{R}$ измеримы, а функция h, заданная на открытом множестве $h: D \to \mathbb{R}$ непрерывна, причём $D \subset \mathbb{R}^2$ является открытым множеством. Предположим также, что $\forall \ x \in E \ \left(f(x), g(x) \right) \in D$. Тогда можно рассмотреть сложную функцию $F(x) = h \left(f(x), g(x) \right)$, и она окажется измеримой.

Доказательство. Пусть $c \in \mathbb{R}$ рассмотрим D(h < c) — это множество открыто в R^2 в силу непрерывности h. Поэтому всякое открытое множество можно представить в виде объединения открытых прямоугольников не более чем счётного числа

$$D(h < c) = \bigcup_{n=1}^{\infty} \Pi_n, \quad \Pi_n = (a_n, b_n) \times (c_n, d_n).$$

Например, прямоугольники с рациональными вершинами.

Теперь запишем такое множество

$$E((f,g) \in \Pi_n) = E(a_n < f < b_n) \cap E(c_n < g < d_n).$$

Поэтому множество $E(F < c) = \bigcup_{n=1}^{\infty} E\big((f,g) \in \Pi_n\big) = \bigcup_{n=1}^{\infty} E(a_n < f < b_n) \cap E(c_n < g < d_n)$. Каждое из этих множеств измеримо, значит, и объединение будет тоже измеримым. Тем самым утверждение леммы доказано.

Следствие 7.1. Если $f,g \colon E \to \mathbb{R}$ измеримы, то $f+g,fg,\frac{f}{g}$ $(g \neq 0),f^p$ $(p>0,g\leqslant 0)$ измеримы.

Следствие 7.2. Пусть теперь у нас задана последовательность измеримых функций $f_n \colon E \to \mathbb{R}, \ n \in \mathbb{N}.$ Предположим, что в каждой точке $\inf_n f_n$, $\sup f_n$, $\overline{\lim}_{n\to\infty} f_n$, $\underline{\lim}_{n\to\infty} f_n$ измеримы, если принимают конечные

Доказательство. Легко проверяются такие формулы

$$E\left(\inf_{n} f_{n} < c\right) = \bigcup_{n=1}^{\infty} E(f_{n} < c); \qquad E\left(\sup_{n} f_{n} > c\right) = \bigcup_{n=1}^{\infty} E(f_{n} > c).$$

А для пределов вот такие.

$$\overline{\lim_{n\to\infty}}\,f_n=\inf_{k\geqslant 1}\left(\sup_{n\geqslant k}f_n\right);\qquad \underline{\lim_{n\to\infty}}\,f_n=\sup_{k\geqslant 1}\left(\inf_{n\geqslant k}f_n\right).$$

Таким образом все эти множества измеримы.

Следствие 7.3. Пусть $f_n \colon E \to \mathbb{R}$ измеримы $u \; \forall \; x \in E \; \exists \; f(x) = \varlimsup_{n \to \infty} f_n(x)$. Тогда предел f измерим.

$$f := \overline{\lim} f_n = \underline{\lim} f_n.$$

Введём такие обозначения. $f_n, f, g: E \to \mathbb{R}$

- (1) $f_n \to f$, если $\forall x \in E \ \exists f(x) = \lim_{n \to \infty} f_n(x)$
- (2) $f_n \nearrow f$, если $f_n \xrightarrow{} f$ и $f_1 \leqslant f_2 \leqslant \dots$
- (3) $f_n \searrow f$, если $f_n \xrightarrow[n \to \infty]{} f$ и $f_1 \geqslant f_2 \geqslant \dots$

Определение 7.3. Фикция $h \colon E \to \mathbb{R}$ называется простой, если $h(E) = \{h_1, h_2, \dots, h_n\} \subset \mathbb{R}$.

$$h(x) = \sum_{k=1}^{n} h_k \chi_{H_k}(x),$$

где $H_k := \{x \in E \big| h(x) = h_k \}, \, \chi_H(x) = \begin{cases} 1, & x \in H; \\ 0, & x \notin H. \end{cases}$

Теорема 7.2. $\forall f: E \to \mathbb{R}_+$ измеримой существует неубывающая последовательность $h_n \nearrow f$ $(n \to \infty), h_n = 0$ измеримые и простые.

Теорема 7.3. Построим по следующей формуле

$$h_n(x) := \sum_{k=1}^{2^{2n}} \frac{k-1}{2^n} \chi_{H_k^n}(x) + 2^n \chi_{H^n}(x),$$

где $H_k^n := E\left(\frac{k-1}{2^n} \leqslant f < \frac{k}{2^n}\right)$, $H^n := E(f \geqslant w^n)$, $k = 1, 2, \ldots, k^{2n}$ Покажем, что эта последовательность функций неубывающая. Ясно, что функции простые, что измеримые. Так как y нас $H_K^n = H_{2k-1}^{n+1} \sqcup H_{2k}^{n+1}$, $h_n(x) = \frac{k-1}{2^n} = \frac{2k-2}{2^{n+1}} \leqslant h_{n-1}(x)$ Кроме того $\left|f(x) - h_n(x)\right| < \frac{1}{2^n}$, если $x \in E(f < 2^n)$.

Поскольку n убегает в бесконечность. $h_n \nearrow f$. Если f ещё и ограничена, то сходимость будет ещё и равномерной.

равномернои. Определение 7.4. $f_n \to f$ почти всюду $(n. \, в.)$, если $\exists \ A \in \Sigma \colon \mu(A) = 0, \ f_n \to f$ на $E \setminus A$. Определение 7.5. $f_n \to f$ почти равномерно $(n. \, p.)$, если $\forall \ \varepsilon > 0 \ \exists \ A \in \Sigma \colon \mu(A) < \varepsilon \ u \ f_n \xrightarrow[n \to \infty]{} f$ на $E \setminus A$.

Определение 7.6. $f \sim g$ эквивалентны, если $\exists A \in \Sigma \colon \mu(A) = 0 \ u \ f(x) \equiv g(x) \ \forall \ x \in E \setminus A$.

Пределы почти всюду и почти равномерно определяются с точностью до эквивалентности. Если функция измерима, то и эквивалентная ей измерима.

Теорема 7.4 (Егорова). Пусть у нас $\mu(E) < \infty$, функции $f_n \colon E \to \mathbb{R}$ измеримы. Тогда $f_n \to f$ почти всюду на $E \Leftrightarrow f_n \to f$ почти равномерно.

Доказательство. Необходимость. Пусть у нас последовательность функций сходится почти всюду $f_n \to f$ (п. в.) на Е. Легко видеть, что доказательство из определения почти равномерной сходимости сводится к случаю

Обозначим $B_n = \bigcap^{\infty} E\left(|f_j - f| < \frac{1}{k}\right)$ для $k \geqslant 1$. Объединение таких множеств даст всё E. Таким образом,

последовательность $B_n \nearrow E$. Мы доказывали свойство непрерывности меры снизу, поэтому $\lim \mu(B_n) = \mu(E)$. Обозначим дополнение $A_n := E \setminus B_n$. Тогда в силу равенства $\lim \mu(B_n) = \mu(E)$ предел $\lim_{n \to \infty} \mu(A_n) = 0$.

Поэтому существует n_k , такой что $\mu(A_{n_k}) < \frac{\varepsilon}{2^k}$ для любого $\varepsilon > 0$.

Обозначим $A:=\bigcup\limits_{k=1}^{\infty}A_{n_k}$. Тогда $\mu(A)<\sum\limits_{k=1}^{\infty}\frac{\varepsilon}{2^k}=\varepsilon$. Дополнение $E\setminus A$ есть пересечение $E\setminus A=\bigcap\limits_{k=1}^{\infty}$. Поэтому $\forall\ j\geqslant n_k,\ \forall\ x\in E\setminus A\ \left|f_j(x)-f(x)\right|<\frac{1}{k}$. Следовательно, последовательность сходится равномерно на множестве $E\setminus A$.

Достаточность. Пусть у нас последовательность функций $f_n \to f$ (п. р.) на E. Ну по определение $\forall n \; \exists \; A_n \in \Sigma \colon \mu(A_n) < \frac{1}{n}, \; f_m \xrightarrow[m \to \infty]{} f$ на $E \setminus A_n$.

Обозначим $A:=\bigcap_{n=1}^{\infty}A_n,\ \mu A=0.\ \mathrm{II}\ \forall\ x\in E\setminus A\Rightarrow f_m(x)\to f(x).$

Определение 7.7. Пусть $f, f_n \colon E \to \mathbb{R}$ измеримы. $f_n \to f$ по мере μ на E (здесь мы должны предположить, что функция измерима... сначала), если $\lim_{n \to \infty} \mu\Big(E\big(|f_n - f| \geqslant \varepsilon\big)\Big) = 0$ для любого $\varepsilon > 0$.

Теорема 7.5. Тут два утверждения.

- (1) Пусть $f, f_n \colon E \to \mathbb{R}$ измеримы, $u \ \mu(E) < \infty$, то из $f_n \xrightarrow[n \to \infty]{} f$ (n. в.) на E следует, что $f_n \xrightarrow[n \to \infty]{} f$ по мере E.
- (2) Если $f_n \xrightarrow[n \to \infty]{} f$ по мере на E, то \exists подпоследовательность $f_{n_k} \to f$ (n. в.) на E.

Доказательство. Для доказательства первого утверждения применим теорему Егорова.

$$\varepsilon > 0 \quad \exists \ A \in \Sigma \colon \mu(A) < \varepsilon, \ f_n \Longrightarrow_{n \to \infty},$$

то есть $\exists n: \forall k \geqslant n \ \left| f_n(x) - f(x) \right| < \varepsilon$. Отсюда следует, что $\mu \Big(E \big(|f_k - f| \geqslant \varepsilon \big) \Big) \leqslant \mu(A) < \varepsilon$. Значит, предел $f_k \to f$ по мере на E.

Доказательство второго утверждения. Пусть $f_n \to f$ по мере. Существует $m_k \colon \mu\Big(E\big(|f-f_{m_k}|\geqslant \frac{1}{2^k}\big)\Big) < \frac{1}{2^k}$ (из сходимости по мере следует, что предел этой конструкции равен нулю). Обозначим $A_n := \bigcup_{k=n}^\infty E\big(|f-f_{m_k}|\geqslant \frac{1}{2^k}\big)$ и рассмотрим $A := \bigcap_{n=1}^\infty A_n$. Имеем $\mu(A_n) < \frac{1}{2^{n-1}}$, получаем $\mu(A) = 0$.

Если
$$x \in E \setminus A$$
, то $x \in E \setminus A_n$ и $|f(x) - f_{m_k}(x)| < \frac{1}{2^k}$. Следовательно, $f_{m_k} \to f$ на $E \setminus A$.

Ну и в заключение давайте примерчик один приведём. Пример Риссо. Покажем, что их сходимости по мере не следует сходимость почти всюду. Берём отрезок E=[0,1], разбиваем его на отрезки $A_n=\left[\frac{k}{2^m},\frac{k+1}{2^n}\right]$. Каждый отрезок имеет меру $\mu(A_n)=\frac{1}{2^m}$. Нумерация такая: $n=2^m+k,\,k=0,1,\ldots,2^m-1$, для того, чтобы

нумерация была по одному индексу. $f_n(x) = \chi_{A_n}(x) = \begin{cases} 1, & x \in A_n; \\ 0, & x \notin A_n. \end{cases}$ Тогда мера Лебега

$$\mu(f_n \geqslant \varepsilon) = \frac{1}{2^m} \to 0, \quad 0 < \varepsilon \leqslant 1.$$

Наша последовательность $f_n \to 0$ по мере на отрезке [0,1].

Но эта последовательность не сходится никуда. Легко видеть

$$\overline{\lim} f_n(x) = 1, \quad x \in [0,1]; \qquad \underline{\lim} f_n(x) = 0, \quad \forall \ x \in [0,1].$$

К нулю в том числе не сходится.

8 Интеграл Лебега

Значит, у нас в дальшейшем (X, Σ, μ) — измеримое пространство (на прошлой лекции я говорил, что это такое), $E \in \Sigma$, через α будем обозначать $\alpha = \left\{A_k\right\}_{k=1}^n$ — измеримое разбиение E, то есть $E = \bigsqcup_{k=1}^n A_k, A_k \in \Sigma$.

Пусть также есть $f: E \to \mathbb{R}_+$. Введём обозначения $S_{\alpha}(f) = \sum_{k=1}^n a_k \mu(A_k) - \text{сумма Дарбу}^1$, $a_k = \inf_{x \in A_k} f(x)$, $a_k = a_k(f)$.

Определение 8.1. Интегралом Лебега измеримой функции $f \colon E \to \mathbb{R}_+$ называется верхняя грань сумм Дарбу

$$\int_{E} f \, d\mu = \sup_{\alpha} = S_{\alpha}(f).$$

 $^{^1}$ Так как $0\cdot\infty=0$ по определению, все суммы Дарбу конечные.

Если значения функции имеют произвольный знак, то есть $f \colon E \to \mathbb{R}$. То $f = f_+ - f_-$, где $f_\pm(x) =$ $=\max\{\pm f(x),0\}$, то интеграл Лебега определяется, как

$$\int_E f \, d\mu := \int_E f_+ \, d\mu - \int_E f_- \, d\mu.$$

Функция называется интегрируемой по Лебегу (или суммируемой) $f\in L(E,\mu),$ если f измерима и $\int_{E} f_{\pm} d\mu < \infty.$

Верхняя грань сумм Дарбу может быть и бесконечной. Это допустимо для неотрицательной функции. А в случае знакопеременной функции может возникнуть неопределённость $\infty - \infty$.

Теперь перейдём у свойствам.

Утверждение 8.1. Пусть $f \colon E \to \mathbb{R}_+$ измерима. Тогда $\int\limits_E f \, \mu = 0 \Leftrightarrow f \sim 0$, то есть f = 0 почти всюду.

Доказательство. Необходимость. Если $\int_{\Gamma} f \, d\mu = 0$, то все суммы Дарбу $S_{\alpha}(f) = 0$. Рассмотрим $E_n = E(g \geqslant \frac{1}{n})$.

Ясно, что $E_n\nearrow E(f>0)$ и $\mu\bigl(E(f>0)\bigr)\stackrel{.}{=}\lim\mu(E)=0.$ Ведь мы можем строить разбиение так, чтобы одно из множеств было E_n .

Достаточность. $\mu(E(f>0))=0$, значит, $S_{\alpha}(f)=0$. Это из определения вытекает. **Утверждение 8.2.** Пусть $f,g\colon E\to \mathbb{R}_+$ измеримы $u\ f\leqslant g$ на E. Тогда $\int\limits_E f\ d\mu\leqslant \int\limits_g d\mu$.

Доказательство. Так как сумма Дарбу для любого разбиения удовлетворяет соответствующему неравенству $S_{\alpha}(f) \leqslant S_{\alpha}(g)$.

Утверждение 8.3. Если $f,g\in L(E,\mu)$ и $f\leqslant g$ на E, то $\int\limits_E f_+\,d\mu\leqslant \int\limits_E g_+\,d\mu$ и $\int\limits_E f_-\,d\mu\geqslant \int\limits_E g_-\,d\mu$. А если вычтем,

 $\int f \, d\mu \leqslant \int g \, d\mu.$

Лемма 8.1. Пусть $h \in L(E, \mu)$ простая, то есть принимает конечное количество значений. Тогда, как мы знаем, она записывается в виде

$$h(x) = \sum_{k=1}^{m} = h_k \chi_{H_l}(x), \qquad H_l = \{x \in X | h(x) = h_l\}.$$

Тогда $\int_E h \, d\mu = \sum_{l=1}^m h_l \mu(E \cap H_l).$

Доказательство. Достаточно доказать для случая неотрицательной функции $h \geqslant 0$. $a_k(h) \leqslant h_l$, если $B_{kl} =$ $A_k \cap H_l \neq 0$,

$$S_{\alpha}(f) = \sum_{k=1}^{n} a_k \mu(A_k) = \sum_{k=1}^{n} \sum_{l=1}^{m} a_k \mu(B_{kl}) \leqslant \sum_{k=1}^{n} \sum_{l=1}^{m} h_l \mu(B_{kl}) = \sum_{l=1}^{m} h_l \mu(E \cap H_l).$$

Но если мы возьмём разбиение $\alpha = \left\{ E \cap H_l \right\}_{l=1}^m$, будет знак равенства.

Из этой леммы вытекают следующие два следствия.

Следствие 8.1. Если $h \in L(E,\mu)$ простая, то её интеграл обладает свойством аддитивности, то есть

$$\int\limits_E h\,d\mu = \sum_{n=1}^\infty \int\limits_{E_n} h\,d\mu, \qquad E = \bigsqcup_{n=1}^\infty E_n, \quad E_n \in \Sigma.$$

Следствие 8.2. Если $f \colon E \to \mathbb{R}_+$ измерима, то $\int\limits_E f \, d\mu = \sup\limits_{0 \leqslant h \leqslant f} \int\limits_E h \, \mu$, где h-простая измеримая функция.

Доказательство. Доказательство последнего следстви. Имеем из свойства $2\int\limits_{E}h\,d\mu\leqslant\int\limits_{E}g\,d\mu.$

Следующая теорема одна из основных теорем.

Теорема 8.1 (о монотонной сходимости). Пусть $f_n : E \to \mathbb{R}$ неотрицательны и измеримы, и $f_n \nearrow f$ на E. (Интеграл от f при этом может быть бесконечным, ничего страшного.) Тогда

$$\lim_{n \to \infty} \int_{E} f_n \, d\mu = \int_{E} f \, d\mu.$$

Доказательство. Давайте обозначим этот предел через $I = \lim_{n \to \infty} \int\limits_E f_n \, d\mu$. Так как $f_n \leqslant f$ в каждой точке, то этот предел будет оцениваться $I \leqslant \int\limits_{-\infty}^{\infty} f \, d\mu$. Для доказательства нам нужно доказать обратное неравенство.

Возьмём произвольную простую функцию $h \colon 0 \leqslant h \leqslant f, \ \varepsilon \in (0,1)$ и определим следующие множества $E_n = E(\varepsilon h \leqslant f_n) \nearrow E$. Запишем следующим очевидные равенства

$$\varepsilon \int_{E_n} h \, d\mu = \int_{E_n} \varepsilon h \, d\mu \leqslant \int_{E_n} f_n \, d\mu \leqslant \int_{E} f_n \, d\mu \leqslant I.$$

Hy а теперь заметим, что $\lim_{n\to\infty}h\,d\mu=\int\limits_{\Gamma}h\,d\mu$ в силу следствия 1. Переходя к пределу получаем $\varepsilon\int\limits_{\Gamma}h\,d\mu\leqslant I.$ В силу произвольности ε

$$\int_{E} h \, d\mu \leqslant I \quad \forall \ 0 \leqslant h \leqslant f.$$

По свойству 3 имеем $G \int E f d\mu \leq I$.

Следующее важное свойство четвёртое. Свойство линейности интеграла. **Утверждение 8.4.** Пусть $f,g\in L(E,\mu)$ и $\lambda\in\mathbb{R}$. Тогда $\int\limits_E\lambda f\,d\mu=\lambda\int\limits_Ef\,d\mu$ и $\int\limits_E(f+g)\,d\mu=\int\limits_Ef\,d\mu+\int\limits_Eg\,d\mu$.

Доказательство. Первое свойство настолько очевидно, что я и доказывать не хочу. Докажем второе. Пусть пока что $f,g\leqslant 0$ и простые. Нужно вспомнить доказанную лемму и взять пересечение разбиений.

Второй случай. Пусть у нас теперь f и g неотрицательны и измеримы. В этом случае мы с вами доказывали теорему о том, что всякая неотрицательная функция является монотонным пределом неотрицательных простых функций, то есть $\exists f_n \nearrow f$ и $g_n \nearrow g$, где f_n, g_n — простые. Тогда и $f_n + g_n \nearrow f + g$. Ну а теперь применяем теорему о монотонной сходимости.

$$\int_{E} (f+g) d\mu = \lim_{n \to \infty} \int_{E} (f_n + g_n) d\mu \stackrel{1}{=} \lim_{n \to \infty} \int_{E} f_n d\mu + \lim_{n \to \infty} \int_{E} fg_n d\mu$$

ну и по теореме о монотонной сходимости получаем $=\int\limits_{E}f\,d\mu+\int\limits_{E}g\,d\mu.$

Ну и третий случай, когда $f,g\in L(E,\mu),\, f=f_+-f_-,\, g=g_+-g_-.$ Тогда $(f+g)=(f+g)_+-(f+g)_-,$ и мы получим такое равенство

$$(f+g)_+f_-+g_+=(f+g)_-+f_++g_-.$$

Это равенство можно проинтегрировать по свойству 2, собрать слагаемые обратно и получить результат. **Утверждение 8.5.** Пусть $f \in L(E,\mu)$, то $|f| \in L(E,\mu)$ и выполнены соответствующие неравенства

$$\left| \int_{E} f \, d\mu \right| \leqslant \int_{E} |f| \, d\mu.$$

Доказательство. $|f| = f_+ + f_- \in L(E,\mu)$ по доказанным свойствам. Кроме того $-|f| \leqslant f \leqslant |f|$, применяем свойство 2, получаем $-\int\limits_E |f| \leqslant \int\limits_E f \, d\mu \leqslant \int\limits_E |f| \, d\mu$.

Лемма 8.2 (Фату). Пусть $f_n \colon E \to \mathbb{R}_+$ измеримы и $f = \underline{\lim} f_n$ почти всюду на E. Тогда $\int f \, d\mu \leqslant \underline{\lim} \int f_n \, d\mu$.

Доказательство. По свойству 4 можно избавиться от требования условия почти всюду. Будем считать, что $f=\varliminf f_n$ всюду на E. Ну и введём такие функции $g_n=\inf_{n\geqslant m}f_n$ — это измеримые неотрицательные функции (мы доказывали), ну и кроме того $g_m \nearrow f$ по определению предела.

Так как $\forall \ n \geqslant n \ g_m \leqslant f_n$, то у нас $\int\limits_E g_m \ d\mu \leqslant \inf\limits_{n \geqslant m} \int\limits_E f_n \ e\mu$. Ну и теперь применяем теорему о монотонной сходимости.

$$\int_{f} d\mu = \lim_{n \to \infty} \int_{E} g_n d\mu \leqslant \lim_{m \to \infty} \inf_{n \geqslant m} \int_{E} f_n d\mu = \underline{\lim} \int_{E} f_n d\mu.$$

И лемма доказана.

Теорема 8.2 (Лебега о предельном переходе). Пусть $f_n \colon E \to \mathbb{R}$ измеримы, $f = \lim f_n$ почти всюду на множестве E, и существует функция $g \in L(E,\mu),$ $g \geqslant 0$ и $|f_n| \leqslant g^1$ на множестве E (можно и оставить здесь почти всюду). Тогда $f, f_n \in L(E,\mu)$ и $\lim_{n \to \infty} \int\limits_E f_n \, d\mu = \int\limits_E f \, d\mu$.

Доказательство. Не поскольку f измерима, то f_n тоже будет измерима. Будут выполнены такие неравенства почти всюду: $f_{n\pm}, f_{\pm} \leqslant g$ почти всюду на E. По свойству 2 интегралы будут конечны, то есть $f, f_n \in L(E, \mu)$. Кроме того $g \pm f_n \geqslant 0$ в силу того, что $|f_n| \leqslant g$ на E; $g \pm f_n \to g \pm f$, ну и нижний предел тоже сходится. Можно

 $^{^{1}}$ Эта функция g называется интегрируемой мажорантой.

применить лемму Фату

$$\int_{E} (f+g) \, d\mu \leqslant \underline{\lim} \int_{E} (g+f_n) \, d\mu, \qquad \int_{E} (g-f) \, d\mu \leqslant \underline{\lim} \int_{E} (g-f_n) \, d\mu$$

В силу аддитивности интеграла, на g погу сократить в каждом неравенстве. Останется два неравенства. Из-за минуса нижний предел сменится на верхний.

$$\overline{\lim} \int_{E} f_n \, d\mu \leqslant \int_{E} f \, d\mu \leqslant \underline{\lim} \int_{E} f_n \, d\mu.$$

И теорема доказана.

Теорема 8.3 (о σ -аддитивности интеграла Лебега). Пусть $f \in L(E,\mu), E = \bigsqcup_{n=1}^{\infty} E_n, E_n \in \Sigma.$ Тогда $\int\limits_{E} f \, d\mu =$

$$= \sum_{n=1}^{\infty} \int_{E_n} f \, d\mu.$$

Доказательство. Понятно, что $f = f_+ - f_-$, и доказательство сводится к случаю $f \geqslant 0$. Пусть сначала $E = E_1 \sqcup E_2, E_1, E_2 \in \Sigma$. Функция неотрицательна, значит можно рассуждать суммами Дарбу. Пусть α — разбиение множества E. Тогда у нас индуцируются разбиения $\alpha_1 = \alpha \cap E_1, \ \alpha_2 = \alpha \cap E_2$. Легко понять, что тогда $S_{\alpha}(f) \leqslant S_{\alpha_1}(f) + S_{\alpha_2}(f)$.

С другой стороны. Если α_1 — разбиение E_1 , α_2 — разбиение E_2 , можно построить $\alpha=\alpha_1\sqcup\alpha_2$. В этом случае у нас будет равенство $S_{\alpha}(f)=S_{\alpha_1}(f)+S_{\alpha_2}(f)$. Значит, и верхняя грань будет удовлетворять этому равенству:

$$\int_{f} d\mu = \int_{E_1} f d\mu + \int_{E_2} f d\mu.$$

Ну и теперь общий случай. Пусть $f\geqslant 0$, положим $F_n:=\bigsqcup_{k=1}^n E_k,\ f_n:=\chi_{F_n}\cdot f.$ Тогда $f_n\nearrow f$ и можно применить теорему о монотонной сходимости

$$\int_{E} f \, d\mu = \lim_{n \to \infty} \int_{E} f_n \, d\mu = \lim_{n \to \infty} \int_{F_n} f \, d\mu.$$

Раз для двух множеств верно, то и для любого конечно числа множеств будет верно и $\int\limits_{E} f \, d\mu = \lim\limits_{n \to \infty} \sum\limits_{k=1}^{n} \int\limits_{E_{n}} f \, d\mu.$

Теорема 8.4 (Неравенство Чебышёва). Пусть $f \colon E \to \mathbb{R}_+$ измерима. Тогда $\forall \ t > 0 \ \mu(E_t) \leqslant \frac{1}{t} \int\limits_E f \, d\mu$, $E_+ := E(f \geqslant t)$.

С этой теоремы началась теория вероятности. До Чебышёва теория вероятность было только интуитивной. Доказательство. Имеем по свойству 2: $\int\limits_E f \ d\mu \geqslant \int\limits_{E_t} f \ d\mu \geqslant t \mu(E_t)$.

Введём такое определение.

Определение 8.2. Пусть $f: E \to \mathbb{R}_+$ измерима. Обозначим через $\lambda_f(t) = \mu(E_t), \ t > 0, \ E_t := E(f \geqslant t). \ \lambda_f(t)$ называется функцией распределения (значений f).

Утверждение 8.6. Свойства. Докажем только последнее.

- (1) $\lambda_f(t) \downarrow$;
- (2) $\lambda_f(t-0) = \lambda_f(t);$
- (3) $\exists a: 0 < a \leq \infty, \ \lambda_f(t) = \infty \ npu \ t \in (0, a);$
- (4) Ecnu $f \in L(E, \mu)$, mo $\lambda_f(t) < \infty$ npu t > 0;
- (5) Если $\mu(E(f=t)) > 0$, то t- точка разрыва λ_f ;
- (6) $\lambda_f(t) = \overline{\overline{o}}(\frac{1}{4}), ecnu f \in L(E, \mu).$

Доказательство. $E_t \searrow \varnothing$, $\lim_{t \to \infty} \int_{E_{\perp}} f \, d\mu$. Ну а следовательно $t\mu(E_t) \leqslant \int_{E_{\perp}} f \, d\mu$.

Определение 8.3. Если $f g \in E$: \mathbb{R}_+ измеримы и $\lambda_f(t) = \lambda_g(t) \ \forall \ t > 0$, то f и g называются равноизмеримыми.

Пусть $f,g\in L(E,\mu)$. Тогда применяя теорему Фубини (которая у нас ещё будет) можно написать такие равенства

$$\int\limits_E f\,d\mu = \int\limits_0^\infty \lambda_f(t)\,dt; \qquad \int\limits_E g\,d\mu = \int\limits_0^\infty \lambda_g(t)\,dt.$$

9 Абсолютно непрерывные функции

Начнём с определения абсолютной функций множества. У нас будет дальше (X, Σ, μ) — измеримое пространство. Обозначим через $\Sigma_E = \{A \subset E | A \in \Sigma\}, E \in \Sigma$.

Определение 9.1. Функция $\varphi \colon \Sigma_E \to \mathbb{R}$ называется зарядом, если φ σ -аддитивна. Заряд называется абсолютно непрерывным $\varphi \ll \mu$ относительно меры μ , если

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \colon \forall \ A \in \Sigma_E, \ \mu(A) < \delta \Rightarrow |\varphi(A)| < \varepsilon.$$

Теорема 9.1 (об абсолютной непрерывности интеграла Лебега). Если $f \in L(E,\mu)$, то $\varphi(A) = \int_A f \, d\mu$, $A \in \Sigma_E$, является абсолютно непрерывным зарядом.

Доказательство. Что интеграл зяряд, мы доказывали в прошлой лекции. Надо доказать только абсолютную непрерывность. Представим $f = f_+ - f_-$. Тогда можно считать, что $f \geqslant 0$. Рассмотрим $E_n = E(f \leqslant n), E_n \nearrow E$. Можно воспользоваться свойством непрерывности снизу для меры.

$$\forall \ \varepsilon > 0 \ \exists \ n \in \mathbb{N} \colon \varphi(E \setminus E_n) < \frac{\varepsilon}{2}.$$

A ещё $\forall A \in \Sigma_E \quad \mu(A) < \delta = \frac{\varepsilon}{2n}, \ \varphi(A \cap E_n) = \int\limits_{A \cap E_n} f \ d\mu \leqslant n\delta = \frac{\varepsilon}{2}.$ Ну и осталось написать, что $\varphi(A) = \varphi(A \cap E_n) + \underbrace{\varphi(A \setminus E_n)}_{\leqslant \mu(E \setminus E_n)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, поскольку у нас φ монотонна (так как f неотрицательна).

Следующая теорема в нашем курсе если и будет доказана, то на последней лекции, если время останется. Кто интересуется, может прочесть в книге Колмогоров—Фомин.

Теорема 9.2 (Радона—Никодима). Если заряд $\varphi \colon \Sigma_E \to \mathbb{R}$ удовлетворяет условию

$$\forall A \in \Sigma_E : \mu(A) = 0 \Rightarrow \varphi(A) = 0.$$

E имеет σ -конечную меру.

Tогда $\exists !\ (c\ movinocmbio\ до\ эквивалентности)\ f\in L(E,\mu)\ maкая,\ что\ arphi(A)=\int\limits_A f\ d\mu\ \ orall\ A\in \Sigma_E.$

Помните, что мы называли функции эквивалентными, если они совпадают почти всюду.

Доказательство. Единственность легко доказать. Если интегралы совпадают для всех $A \in \Sigma_E$ $\int\limits_A f \, d\mu = \int\limits_A g \, d\mu,$ то пусть $\exists \ B \in \Sigma_E \colon \mu(B) > 0,$ такой, что $f(x) > g(x) \ \ \forall \ x \in B.$ Следовательно, $\int\limits_B (f-g) \, d\mu > 0.$

Следствие обычно называется свойством абсолютной непрерывности. Его можно было бы и независимо доказать, но это заняло бы определённое время. Так что просто выведем из теоремы Радона—Никодима.

Следствие 9.1 (критерий абсолютной непрерывности). $\varphi \ll \mu \Leftrightarrow \forall A \in \Sigma_E : \mu(A) = 0 \Rightarrow \varphi(A) = 0$.

Доказательство. Необходимость очевидна. Потому что если множесво меры нуль $\forall \ \varepsilon > 0 \big| \varphi(A) \big| < \varepsilon$, то $\varphi(A) = 0$. А обратное вытекает из теоремы Радона—Никодима.

9.1 Функции точки

Сначала я вам напомню определение функции ограниченной в вариациях. Определение 9.2. $F \in B \vee [a,b]$, ecnu

$$\bigvee_{a}^{b} ar(F) := \sup_{\tau} \sum_{k=1}^{n} |F(x_k) - F(x_{k-1})| < \infty, \quad \tau := \{a = x_0 < x_1 < \dots < x_n = b\}.$$

Пространство будет линейным, и в нём можно ввести норму $||F|| = |F(a)| + \bigvee_{i=1}^{b} (F_i)$.

Напомню свойства без доказательства. Это должно быть в курсе математического анализа.

Утверждение 9.1. Если
$$F \in B \vee [a,b]$$
 и $a < c < b$, то $\bigvee_{a=0}^{b} ar(F) = \bigvee_{a=0}^{c} ar(F) + \bigvee_{a=0}^{b} ar(F)$.

Утверждение 9.2. Если
$$F(c-0) = F(c)$$
. то $V(x) = \bigvee_{c=0}^{x} ar(F)$, $V(c-0) = V(c)$.

Утверждение 9.3. Разложение Жордана. Если $F \in B \vee [a,b]$, то $\exists \alpha(x) \uparrow u \beta(x) \uparrow$, такая, что

$$\alpha(a) = \beta(a) = 0, \quad F(x) = F(a) + \alpha(x) - \beta(x), \quad V(x) = \alpha(x) + \beta(x).$$

Доказательство.
$$\alpha(x) := \frac{1}{2} \{ \bigvee_a^x ar(F) + F(x) - F(a) \}, \ \beta(x) := \frac{1}{2} \{ \bigvee_a^x ar(F) - F(x) + F(a) \}.$$

Ещё одну теорему приведу без доказательства.

Теорема 9.3 (Лебега о производной монотонной функции). Если функция $f: [a,b] \to \mathbb{R}$ монотонна, $f(x) \leqslant f(y)$, если $x \leqslant y$ (или наоборот), то существует производная f'(x) почти всюду на [a,b].

9.2 Интеграл Лебега—Стилтьеса

Пусть $F \in B \vee [a,b]$ непрерывна слева. Тогда по разложению Жордана можем написать $F(x) = F(a) + \alpha(x) - \beta(x)$, где $\alpha, \beta \uparrow$. Можно построить меры Лебега—Стилтьеса $\mu_{\alpha}, \mu_{\beta}$. И мы можем тогда построить заряд Лебега—Стилтьеса

$$\varphi_F = \mu_{\alpha} - \mu_{\beta}$$
.

Заряд определён на $\Sigma_F:=\Sigma_{\alpha}\cap\Sigma_{\beta},$ пересечение σ -алгебр мер μ_{α} и $\mu_{\beta}.$ Определение теперь.

Определение 9.3. Интеграл Лебега—Стилтьеса $\int\limits_a^b f \, d\varphi_F := \int\limits_a^b f \, d\mu_\alpha - \int\limits_a^b f \, d\mu_\beta$. Определён на полуинтервале [a,b).

И напомню определение.

Определение 9.4. Интеграл Римана—Стилтьеса $\int\limits_a^b f\,dF:=\lim\limits_{d(au)\to 0}R_{ au}(f,\xi,F),\; arrho$ е

$$R_{\tau}(f,\xi,F) := \sum_{k=1}^{n} f(\xi_k) (F(x_k) - F(x_{k-1})),$$

au — разбиение отрезка, то есть $au = \{a = x_0 < x_1 < \dots < x_n = b\},\ d(au) = \max_{1 \leq k \leq n} (x_k - x_{k-1}),\ \xi = \{\xi_k\}\ u$ $\xi_k \in [x_{k-1}k, x_k].$

Лемма 9.1. Если функция $F \in C[a,b]$, то сущетсвует интеграл Римана—Стилтьеса.

Доказательство. Достаточно рассмотреть, когда F неубывающая. Тогда интегральная сумма будет является интегралом Лебега от некоторой простой функции. $f\tau(x) = f(\xi_k)$ на $[x_{k-1}, x_k)$. Так как функция непрерывно, я могу вместо отрезка брать полуинтервал. Ещё на отрезке $f_{\tau} \Rightarrow f$. По теореме Лебега интеграл существует.

Кстати функцию F можно переопределить в счётном числе точек. От этого интеграл не изменится.

Нам эта лемма в общем-то и не понадобится.

Теорема 9.4 (о сравнении интегралов). Если функция f:[a,b] ограничена $u \exists \int_a^b d \, dF$, то $\exists \int_a^b f \, d\varphi_F \, u$ они равны.

Доказательство. Применяем разложение Жордана. Без ограничения общности считаем $F(x) = \alpha(x) \uparrow$ и $f \geqslant 0$. Рассмотрим в этом случае интегральные суммы Дарбу—Стилтьеса для заданного разбиения

$$\underline{D}_{\tau}(f,\alpha) := \sum_{k=1}^{n} \underline{a}_{k} m_{\alpha} ([x_{k-1}, x_{l}]), \quad \overline{D}_{\tau}(f,\alpha) := \sum_{k=1}^{n} \overline{a}_{k} m_{\alpha} ([x_{k-1}, x_{l}]),$$

где
$$\underline{a}_k = \inf_{[x_k, x_{k-1})]} f(x), \, \overline{a}_k = \sup_{[x_k, x_{k-1})]} f(x), \, \tau = \{a = x_0 < x_1 < \dots < x_n = b\}.$$
 Тогда

$$\underline{D}_{\tau}(f,\alpha) \leqslant \overline{D}_{\tau}(f,\alpha).$$

Осталось доказать равенство.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall \tau \colon d(\tau) < \delta \ I - \varepsilon \leqslant R_{\tau}(f, \xi, \alpha) \leqslant I + \varepsilon, \ I = \int_{a}^{b} f \, d\alpha.$$

Тогда суммы Римана будут находиться между суммами Дарбу

$$\forall \varepsilon > 0 \ I - \varepsilon \leqslant D_{\tau}(f, \alpha) \leqslant R_{\tau}(f, \xi, \alpha) \leqslant \overline{D}_{\tau}(f, \alpha) \leqslant I + \varepsilon$$

Определение 9.5. $f \in AC[a,b]$, где $f : [a,b] \to \mathbb{R}$ абсолютно непрерывна, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall \bigsqcup_{k=1}^{n} (a_k, b_k) \subset [a, b] \colon \sum_{k=1}^{n} (b_k - a_k) < \delta \Rightarrow \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon.$$

Такие функции образуют линейную пространство, где можно ввести норму $||f|| := |f(a)| + \int_a^b |f'(t)| dt$, корректность котороой мы проверим чуть позже.

Утверждение 9.4. $Ec\partial u\ f\in {
m Lip}[a,b],\ mo\ ecm b\ \exists\ C\ 0\colon \big|f(x)-f(y)\big|\leqslant C|x-y|\ \forall\ x,y\in [a,b],\ mo\ f\in AC[a,b].$ Утверждение 9.5. $Ecn u\ f\in AC[a,b],\ mo\ f\in C\vee [a,b].$

Доказательство. Берётся разбиение $\tau = \{a = x_0 < x_1 < \dots < x_n = b\}$, такое что $(x_k - x_{k-1}) = \frac{\delta}{2} = \frac{(b-a)}{n}$. Тогди вариация

$$\bigvee_{a}^{b} ar(f) = RY1n \bigvee_{x_{k-1}}^{x_{k}} ar(f) \leqslant n\varepsilon = \frac{2(b-a)}{\delta}\varepsilon.$$

Утверждение 9.6. Если $f \in AC[a,b]$, то в разложении Жордана $F(x) = F(a) + \alpha(x) - \beta(x)$ $\alpha, \beta \in AC[a,b]$. Доказательство. Нам нужно доказать, что $V(x) = \bigvee_{a}^{x} ar(f)$ абсолютно непрерывна. Нужно воспользоваться свойством вариации и записать, что

$$\sum_{k=1}^{n} |V(b_k) - V(a_k)| = \sum_{k=1}^{n} \bigvee_{a_k} ar(f) \leqslant \varepsilon.$$

Достаточно заметить, что вариация на отрезке $[a_k, b_k]$ это точная верхняя грать сумм Дарбу. Нужно вспомнить определение абсолютно непрерывных функций и всё сразу понятно станет.

Ну и последнее свойство.

Утверждение 9.7. Если $f \in AC[a,b], mo \exists ! \ g \in L[a,b]$ (единственность с точностью до эквивалентности), такая что $f(x) = f(a) + \int\limits_{a}^{x} g(t) \, dt$.

Доказательство. Разложим f по формуле Жордана $f(x) = f(a) = \alpha(x) - \beta(x)$, $\alpha, \beta \uparrow$. Затем построим меры Лебега—Стилтьеса $\mu_{\alpha}, \mu_{\beta}$ по функциям α, β . Эти меры будут абсолютно непрерывны $\mu_{\alpha}, \mu_{\varepsilon} \ll \lambda$ (λ — мера Лебега), так как α, β абсолютно непрерывны (у нас было два определения абсолютной непрерывности для разных объектов, тут используются оба).

Отсюда вытекает, что заряд $\varphi_F \ll \lambda$. Ну и по теоереме Радона—Никодима

$$f(x) - f(a) = \varphi_f([a, x)) = \int_a^x g(t) dt$$

для некоторой функции $g \in L[a,b]$. Эта функция будет единственной с точностью до эквивалентности, как и в теореме Радона—Никодима.

Лемма 9.2. Пусть $F \uparrow на [a,b]$. Тогда $\int_a^b F'(t) dt \leqslant F(b) - F(a)$. Но если $F \in \text{Lip}[a,b]$, то выполняется равенство.

По теореме Лебега производная монотонной функции интегрируема почти всюду. Равенство же может быть и не выполнено, например, если взять функцию Кантора (лесницу Кантора).

Доказательство. Давайте мы продолжим нашу функцию за отрезок $F(x) = F(b), x \in [b, b+1]$. Функция останется неубывающе. Ну и возьмём такие функции и применим теорему Лебега

$$F_n(t) = \frac{F\left(x + \frac{1}{n}\right) - F(x)}{\frac{1}{n}} \xrightarrow[n \to \infty]{} F'(t).$$

Предел есть по теореме Лебега почти всюду на [a,b]. Теперь применим теорему Фату

$$\int_{a}^{b} F'(t) dt \leqslant \underline{\lim} \int_{a}^{b} F_n(t) dt = \underline{\lim} \left(b \int_{b}^{b+\frac{1}{n}} F(t) dt - n \int_{a}^{a+\frac{1}{b}} F(t) dt \right) \leqslant F(b) - F(a).$$

Это в силу того, что функция неубывающая.

Осталось вторую часть доказать. Чтобы её доказать, нужно вспомнить определение условия Липшица. Из этого определения вытекает, что производная ограничена почти всюду $|F'(t)| \leq C$ почти всюду. Ну и тогда

вместо леммы Фату можно применить теорему Лебега о предельном переходе под знаком интеграла. **Теорема 9.5** (характеристические свойсва абсолютно непрерывных функций). $F \in AC[a,b]$, если и только если

$$\exists \ F'(t)(n.\ e.)\ na\ [a,b],\ F'\in L[a,b], F(x)=F(a)+\int\limits_{a}^{x}F'(t)\,dt \forall \ x\in [a,b].$$

Доказательство. Достаточность вытекает из абсолютной непрерывности интеграла Лебега.

Применяя свойство разложение Жордана, можно считать, что $F \uparrow$ на [a,b]. Давайте ещё считать, что F(a)=0. Тогда по свойству 4 имеем

$$F(x) = \int_{-\pi}^{x} f(t) dt, \ f \in L[a, b].$$

Поэтому для доказательства необходимости нужно доказать, что F'(t) = f(t) почти всюду на [a, b].

Введём такие функции $f_n(x)=\min\big\{f(t),n\big\}$ — срез функции на уровне $n.\ f$ определена почти всюду, её можно считать неотрицательной. Обозначим $F_n(x)=\int\limits_{-x}^{x}f_n(t)\,dt.$ Запишем разность

$$F(x) - F_n(x) = \int_a^x \left(\underbrace{f(t) - f_n(t)}_{\geq 0}\right) dt \uparrow.$$

Следовательно $F'(x) \geqslant F'_n(x)$ почти всюду на [a,b]. Производная существует почти всюду по теореме Лебега. Давайте запишем ещё следующее равенство по лемме, используя, что $F_n(x) \in \text{Lip}[a,b]$.

$$F_n(x) = \int_{-\infty}^{x} F'_n(t) dt = \int_{-\infty}^{x} f_n(t) dt,$$

 $F'_n(t) = f_n(t)$ почти всюду на [a, b].

$$F'(x) \geqslant F'_n(x) = f_n(x)$$
 п. в.

переходя к пределу, получаем $F'(x) \geqslant f(x)$ почти всюду на [a,b]. Тогда

$$\int_{a}^{b} \left(F'(t) - f(t) \right) dt \geqslant 0.$$

А по лемме этот же интеграл будет оцениваться нулём и в другую сторону

$$\int_{a}^{b} F'(t) dt \leqslant F(b) - F(a) = \int_{a}^{b} f(t) dt \leqslant 0.$$

Значит, интеграл равен нулю. А поскольку функция неотрицательна, то она равна нулю почти всюду и F'(t) = f(t) почти всюду.

10 Теорема Фубини

Сначала мы докажем предварительную теорему, а потом уже теорему Фубини. Рассмотрим S_k — полукольцо в X_k , где $k=1,\ldots,n$. И рассмотрим прямое произведение этих полуколец $S:=S_1\times\cdots\times S_n=\{A=A_1\times\cdots\times A_n\mid A_k\in S_k, k=1,\ldots,n\}$. Мы сейчас докажем, что это тоже полукольцо. Пусть у нас ещё заданы меры на каждом полукольце $m_k\colon S_k\to\mathbb{R}_+$. Тогда можно ввести понятие прямого произведения мер $m=m_1\times\cdots\times m_n$, где $m(A):=m_1(A_1)\ldots m_n(A_n)$, если $A=A_1\times\cdots\times A_n$.

Теорема 10.1. Если $m_k \colon S_k \to \mathbb{R}_+$ есть σ -аддитивные меры на полукольцах S_k при $k = 1, \ldots, n$, то $S = S_1 \times \cdots \times S_n$ является полукольцом и $m = m_1 \times \cdots \times m_n$ является σ -аддитивной мерой.

Доказательство. Приведём доказательство для n=2, далее по индукции. Пусть $S=S_1\times S_2$ — полукольцо. Берём два множества

$$A = A_1 \times A_2, \ B = B_1 \times B_2 \in S, \ A_1, B_1 \in S_1, \ A_2, B_2 \in S_2.$$

Легко проверяется, что

$$A \cap B = (A_1 \cap B_1) \times (A_2 \cap B_2).$$

¹ Будет ещё другое произведение мер, поэтому слово прямое не будем опускать.

Можно нарисовать картинку в виде двух прямоугольников.

Теперь разность представляется в виде трёх слагаемых

$$A \setminus B = ((A_1 \setminus B_1) \times (A_2 \setminus B_2)) \sqcup ((A_1 \setminus B_1) \times (A_2 \cap B_2)) \sqcup ((A_1 \cap B_1) \times (A_2 \setminus B_2)).$$

 \Im то тоже можно показать, нарисовав картинку из двух прямоугольников. Таким образом, S- полукольцо.

Осталось показать, что произведение мер является σ -аддитивной мерой. Пусть множество A представляется в виде

$$A = \bigsqcup_{l=1}^{m} B^{(l)}, \quad A = A_1 \times A_2, \ B^{(l)} = B_1^{(l)} \times B_2^{(l)}.$$

Давайте запишем такую функцию

$$f_l(x_1) := m_2(B_2^{(l)}) \cdot \chi_{B_1^{(l)}}(x_1), \quad x_1 \in A_1.$$

Из этого определения вытекает, что $A_2 = \bigcup_{l=1}^m B_2^{(l)}$, но не обязательно дизьюнктное. Отсюда вытекает такое равенство

$$m_2(A_2) = \sum_{l=1}^m f_l(x_1), \quad x_1 \in A_1.$$

Пусть μ_1 — продолжение меры m_1 . Мы сейчас будем писать интеграл и подставлять определение нашей функции.

$$m(A) := m_1(A_1) \cdot m_2(A_2) = \int_{A_1} m_2(A_2) d\mu_1 = \sum_{l=1}^m \int_{A_1} f_l(x_1) d\mu_1 = \sum_{l=1}^m m_1(B_1^{(l)}) \cdot m_2(B_2^{(l)}).$$

Для $m = \infty$ нужно лишь применить теорему о монотонной сходимости. Выкладка та же самая. Определение 10.1. Пусть у нас заданы измеримые пространства (X_k, Σ_k, μ_k) , $k = 1, \ldots, n$. Тогда мы можем построить

$$X = X_1 \times \cdots \times X_n, \ S = \Sigma_1 \times \cdots \times \Sigma_n, \ m = \mu_1 \times \cdots \times \mu_n.$$

Если построить внешнюю меру и ограничить на Σ , то $m^*|_{\Sigma} = \mu$ и тройка (X, Σ, μ) называется произведением измеримых пространств.

Это произведение обладает свойством ассоциативности. Будем обозначать это произведение не как прямое, а как тензорное

$$\mu := \mu_1 \otimes \cdots \otimes \mu_n.$$

Свойство ассоцативности тогда записывается так

$$(\mu \otimes \mu_2) \otimes \mu_3 = \mu \otimes (\mu_2 \otimes \mu_3).$$

Свойство ассоциативности вытекает из ассоциативности прямого произведения. Мы для простоты изложения далее будем рассматривать случай n=2.

Пусть (X, Σ_X, μ_X) и (Y, Σ_Y, μ_Y) — измеримые пространства. Тогда для $Z = X \times Y, \ \mu = \mu_X \otimes mu_Y, \ E \in \Sigma$ обозначим сечения

$$E_X = \{ y \in Y | (x, y) \in E \}, \quad E_Y = \{ x \in X | (x, y) \in E \}.$$

Сечение объединений будет объединением сечений, относительно пересечения и разности так же. То же самое можем сделать для функций

$$f: E \to \mathbb{R}, \quad f_x(y) = f(x, y), \quad f_y(x) = f(x, y).$$

Теорема 10.2. Если $E \in \Sigma$ σ -конечной меры, то

$$\mu(E) = \int_{V} \mu_y(E_x) d\mu_x = \int_{V} \mu_x(E_y) d\mu_y.$$

Вообще говоря, не все сечения будут измеримы, функция будет определена почти всюду. Где функция неопределена, положим её равной нулю, это не повлияет на значение интеграла. Доказательство. Доказательство будет проходить в несколько шагов.

1. $E = A \times B, A \in \Sigma_x, B \in \Sigma_y$. Тогда

$$\mu(E) = \mu_x(A) \cdot \mu_y(B) = \int_A \mu_y(B) \, d\mu_x = \int_A \mu_x(A) \, d\mu_x.$$

Это равенства симметричны, мы будем доказывать только одно из них.

$$\forall E \in \mathcal{R}(S), \quad S = \Sigma_x \times \Sigma_y.$$

 $2.~\mu(E) < \infty.$ Построим измеримую оболочку A множества E (была лемма об измеримой оболочке).

$$A = \bigcap_{k=1}^{\infty} A_k, \quad E \subset A_k, \quad A_k = \bigcup_{l=1}^{\infty} A_{kl}, \quad A_{kl} \in S, \mu(A_k \setminus E) < \frac{1}{k}.$$

Из этого вытекает, что $\mu(A \setminus E) = 0$. Введём теперь следующие множества

$$B_n := \bigcap_{k=1}^n A_k, \quad D_{nm} := \bigcap_{k=1}^n \bigcup_{l=1}^m A_{kl} \in S.$$

Так как оба $\in S$, для них уже теорема доказана. Кроме того, $B_n \searrow A$ при $n \to \infty$, а $D_{mn} \nearrow B_n$ при $m \to \infty$. Теперь осталось применить свойства непрерывности меры снизу и сверху. А так как для множеств из полукольца теорема доказана, то и для наших множеств будет доказана. Ну и $\mu(A \setminus E) = 0$. Значит, надо доказать ещё для множеств меры нуль.

Пусть $B = E \setminus A$, $\mu(B) = 0$. Берём точно так же измеримую оболочку C этого множества $C \supset B$. Для этой измеримой оболочки мы уже доказали теорему. Имеем интеграл

$$\int_{X} \mu_{y}(C_{x}) d\mu_{X} = \mu(C) = \mu(B) = 0.$$

Так как $C \supset B$, то и $C_x \supset B_x$. И таким образом, мы доказали теорему полность для множества конечной меры.

Если множества σ -конечной меры, мы представляем их в виде счётного объединения конечной меры.

Теперь то, что оставалось без доказательства: про функцию распределения. Это как пример применения этой теоремы. Пусть (X, Σ, μ) — измеримое пространство. На множестве $E \in \Sigma$ задана неотрицательная измеримая функция $f \colon E \to \mathbb{R}_+$. Рассмотрим множество-подграфик

$$G = \{(x,t) | 0 \leqslant t \leqslant f(x)\} \subset X \times \mathbb{R}_+.$$

Позже мы докажем, что подграфик измеримой функции есть измеримое множество. А сейчас запишем его меру, как интегралы по сечениям

$$\mu(G) = \int_{E} f \, d\mu = \int_{0}^{\infty} \mu(G_t) \, dt = \int_{0}^{\infty} \lambda_f(t) \, dt,$$

где G_t — функция распределения, а $\lambda_f(t) = \mu(G_t)$.

Лемма 10.1. Пусть $f: E \to \mathbb{R}_+$ измерима. Тогда её подграфик $G = \{(t,x) | 0 \le t \le f(x)\} \subset X \times \mathbb{R}_+$ является измеримым относительно произведения мер $\mu \times dt$.

Доказательство. Давайте введём множества $H_k^n = E\left(\frac{k-1}{2^n}, f, \frac{k}{2^n}\right)$ (множество точек x, для которых выполняется неравенство) и функции $h_n(x) = \sum_{k=1}^{\infty} \frac{k}{2^n} \chi_{H_k^n}(x) > f(x)$. Была у нас лемма о том, что $h_n \searrow f$.

У функции h_n подграфик измерим, а подграфик функции f будет пересечением этих подграфиков. А пересечения измеримых измеримы.

Работаем в тех же обозначениях для произведения измеримых пространств.

Теорема 10.3 (Фубини). Если $E \in \Sigma$ σ -конечной меры $u f \in L(E, \mu)$, то

$$\int_{E} f d\mu = \int_{X} \int_{E_x} f_x d\mu_y d\mu_x = \int_{Y} \int_{E_y} f_y d\mu_x d\mu_y.$$

То есть интеграл по произведению мер равен повторному интегралу.

Доказательство. Представим f в виде разности неотрицательных функций $f = f_+ - f_-$, где $f_\pm \geqslant 0$. Это даёт нам право без ограничения общности считать, что $f \geqslant 0$. Обозначим $\lambda = \mu \otimes dt = \mu_x \otimes \mu_y \otimes dt$ в силу ассоциативности. Ещё обозначим $\nu = \mu_y \otimes dt$. Тогда $\lambda = \mu_x \otimes \nu$. Мера задана на множестве $X \times Y \times \mathbb{R}_+$.

ассоциативности. Ещё обозначим $\nu = \mu_y \otimes dt$. Тогда $\lambda = \mu_x \otimes \nu$. Мера задана на множестве $X \times Y \times \mathbb{R}_+$. Рассмотрим подграфик $G = \{(x,y,t) | 0 \leqslant t \leqslant f(x,y)\} \subset X \times Y \times \mathbb{R}_+$. Мы доказали, что G измеримо относительно меры λ .

Tеперь давайте вычислять меру этого множества разными способами. Первый спобос: фиксируем (x,y)

$$\lambda(G) = \int_{E} f \, d\mu.$$

 ${\bf C}$ другой стороны можем фиксировать переменную x. Тогда будет подграфик сечения функции

$$\lambda(G) = \int_{E} f \, d\mu = \int_{X} \nu(G_x) \, d\mu_X.$$

Но сам этот подграфик мы тоже можем вычислить с помощью сечений

$$\lambda(G) = \int_{E} f \, d\mu = \int_{X} \nu(G_x) \, d\mu_X = \int_{X} \left(\int_{E_x} f_x \, d\mu_y \right) \, d\mu_x.$$

А второе равенство доказывается симметрично.

А теперь рассмотрим меру Лебега на \mathbb{R}^n . Рассмотрим n экземпляров измеримых пространств $(\mathbb{R}, \Sigma_k, \mu_k)$ Лебега в $\mathbb{R}, k = 1 \dots, n$. Тогда можем рассмотреть измеримое пространство в \mathbb{R}^n

$$(\mathbb{R}^n, \Sigma, \mu), \quad \mu = \mu_1 \otimes \cdots \otimes \mu_n.$$

Можно было по-другому определять, а именно сразу рассмотреть полукольцо. Но у нас была теорема единственности меры, значит, мы бы получили то же самое.

Пусть $\Delta = [a_1, b_1] \times \cdots \times [a_n, b_n] - n$ -мерный отрезок. Будем обозначать $R(\Delta)$ — множество функций, измеримых по Риману, а $L(\Delta)$ — множество функций, интегрируемых по Лебегу на этом отрезке. Будем рассматривать только ограниченные функции $f \colon \Delta \mathbb{R}$. Для заданной функции определим функции Бэра

$$\underline{f}(x) := \lim_{r \to 0} \inf_{x \in \Delta \cap S_r(x)} f(x), \quad \overline{f}(x) = \lim_{r \to 0} \sup_{x \in \Delta \cap S_r(x)} f(x).$$

Эти функции измеримы, поскольку множества $\Delta(\underline{f}>c)$ и $\Delta(\overline{f}< c)$ тех точек отрезка, для которых $\underline{f}>c$ и множество, где $\overline{f}< c$ открыты для любого $c\in\mathbb{R}$.

Нижняя функция будет совпадать с верхней в точке x, если и только если функция непрерывна в x. **Теорема 10.4** (Лебега о сравнении интегралов Римана и Лебега для n-мерного отрезка). Пусть функция $f: \Delta \to \mathbb{R}$ ограничена. Тогда $f \in \mathbb{R}(\Delta) \Leftrightarrow \mu(E_1) = 0$, где

$$E_f = \{x \in \Delta | \underline{f}(x) \neq \overline{(x)} \}.$$

Если
$$f \in R(\Delta, mo \ f \in L(\Delta) \ u \int_{\Delta} f(x) \ dx = \int_{\Delta} f \ d\mu.$$

Доказательство. Сначала напишем одно из необходимых и достаточных условий интегрируемости. Когда нижний интеграл Дарбу совпадает с верхним. Мы устраиваем разбиение $\tau = \left\{\Delta_l\right\}_{l=1}^n$ отрезка Δ , внутренности элементов которого не пересекаются, то есть $\mathring{\Delta}_l \cap \mathring{\Delta}_{l'} = \varnothing$ при $l \neq l'$, а $\Delta = \bigcup_{l=1}^m \Delta_l$.

$$\underline{D}_{\tau}(f) = \sum_{l=1}^{m} \underline{a}_{l} \mu(\Delta_{l}), \ \underline{a}_{l} = \inf_{\Delta_{l}} f(x), \quad \overline{D}_{\tau}(f) = \sum_{l=1}^{m} \overline{a}_{l} \mu(\Delta_{l}), \ \overline{a}_{l} = \sup_{\Delta_{l}} f(x).$$

Условие выглядит так

$$\int_{-}^{} f(x) dx = \sup_{\tau} \underline{D}(f) = \inf_{\tau} \overline{D}_{\tau}(f) = \int_{-}^{}^{} f(x) dx.$$

Пусть $\tau_k = \left\{\Delta^{(k)}{}_l\right\}_{l=1}^{m_k}$ — последовательность разбиений, удовлетворяющая условиям

- 1. Диаметр $f(\tau_k) \to 0$;
- 2. $\tau_k \supset \tau_{k+1}$;

3.
$$\int_{-}^{\infty} f(x) dx = \lim_{k \to \infty} \underline{D}_{\tau_k}(f) = \lim_{k \to \infty} \sum_{k=1}^{m_k} \underline{a}_l^{(k)} \mu(\Delta_l^{(k)}).$$

Функции $h_k(x) = \sum_{l=1}^{m_k} \underline{a}_l^{(k)} \chi_{\Delta_l^{(l)}}(x) \nearrow \underline{f}(x), \ \forall \ x \in \mathring{\Delta}_l^{(k)}, \ \forall \ k,l.$ Значит, сходится почти всюду и по одной из теорем имеем

$$\int f(x) dx = \lim_{k \to \infty} \sum_{l=1}^{m_k} \underline{a}_l^{(k)} \mu(\Delta_l^{(k)}) = \lim_{k \to \infty} \int_{\Lambda} h_k d\mu = \int_{\Lambda} \underline{f} d\mu d\mu.$$

Отсюда мы получаем равенства

$$\int_{-}^{} f(x) dx = \int_{-}^{} \underline{f} d\mu, \quad \int_{-}^{}^{} f(x) dx = \int_{-}^{}^{} \overline{f} d\mu.$$

Мы можем их объединить

$$\int\limits_{\Delta} \underbrace{(\overline{f} - \underline{f})}_{\geqslant 0} d\mu, \quad \underline{f}(x) \leqslant f(x) \leqslant \overline{f}(x).$$

Откуда мы получаем, что $f(x)-\overline{f}(x)=0$ почти всюду на $\Delta,\,f(x)=f(x)=\overline{f}(x)$ почти всюду на $\Delta.$ И

$$\int_{\Delta} f(x) \, dx = \int_{\Delta} f \, d\mu.$$

Сейчас мы построим функцию, которая не интегрируема по Лебегу. То есть никакая ей эквивалентная не интегрируема по Риману. Берём отрезок [0,1], набор $\{r_n\}=\mathbb{Q}\cap[0,1]$ и число $0<\varepsilon<1$. Положим

$$A_{\varepsilon} = \bigcup_{n=1}^{\infty} (r_n - \varepsilon_n, r_n + \varepsilon_n), \quad \varepsilon_n = \frac{\varepsilon}{2^{n+1}}.$$

Легко сверху оценить меру $\mu(A_{\varepsilon}) \leqslant \sum_{n=1}^{\infty} 2\varepsilon_n = \varepsilon$. Мера будет маленькой, но положительной. Положим

$$B_{\varepsilon} = [0, 1] \setminus A_{\varepsilon}.$$

Это замкнутое множество, которое состоит только из иррациональных чисел. Оно нигде не плотно. Ну и мера этого множества $\mu(B_{\varepsilon}) \geqslant 1 - \varepsilon$. Теперь достаточно взять функцию

$$f(x) = \chi_{B_c}(x)$$
.

И сама функция не интегрируема по Риману, и её нельзя изменить на множестве меры нуль так, чтобы она стала интегрируемой по Риману.

11 Пространство L_p

Сегодня рассмотрим пространство $L_p(E,\mu),\ 1\leqslant p\leqslant \infty$. Распространим понятия, которые были для действительной функции.

Пусть (X, Σ, mu) — измеримое пространство, а $\mathbb{F} = \begin{cases} \mathbb{R}, \\ \mathbb{C}. \end{cases}$ $E \in \Sigma$. Функция $f \colon E \colon \mathbb{F}, \ u(x) = \operatorname{Re} f(x), \ v(x) = \operatorname{Im} f(x)$, то есть f(x) = u(x) + iv(x).

Определение 11.1. f — измеримая, если u,v измеримы. $f \in L(E,\mu)$, если $u,v \in L(E,\mu)$ и $\int\limits_E f \, d\mu = \int\limits_E u \, d\mu + i \int\limits_E v \, d\mu$.

Все теоремы, где нет неравенств, верные для действительно значных функций, верны и для комплексно-значных. Некоторые свойства мы с вами докажем.

Утверждение 11.1. Если $f,g \in L(E,\mu)$ и $\lambda \in \mathbb{F}$, то f+g, $\lambda f \in L(E,\mu)$ и

$$\int\limits_{E} \left(f+g\right) d\mu = \int\limits_{E} f \, d\mu + \int\limits_{E} g \, d\mu, \ \int\limits_{E} \lambda f \, d\mu = \lambda \int\limits_{E} f \, d\mu.$$

Доказательство. Например, докажем последнее свойство. Пусть $\lambda = \alpha + i\beta$, а f = u + iv, тогда $\lambda f = (\alpha u - \beta v) + i(\alpha v + \beta u)$. По определению интеграла комплекснозначной функции и по свойству линейности

интеграла действительнозначной функции имеем

$$\int\limits_E \lambda f \, d\mu = \int\limits_E (\alpha u - \beta v) \, d\mu + i \int\limits_E (\alpha v + \beta u) \, d\mu = \left(\alpha E u - \beta \int\limits_E v \, d\mu\right) + i \left(\alpha \int\limits_E v \, d\mu + \beta \int\limits_E u \, d\mu\right) = \lambda \int\limits_E f \, d\mu.$$

Утверждение 11.2. Пусть $f \in L(E, \mu)$. Тогда $|f| \in L(E, \mu)$ и

$$\left| \int_{E} f \, d\mu \right| \leqslant \int_{E} |f| \, d\mu.$$

Доказательство. $|f| = \sqrt{u^2 + v^2}$, как обычно. Это не превосходит $|f| \leqslant |u| + |v| \in L(E, \mu)$. Осталось доказать равенство. Представим результат интегрирования в тригонометрической форме $\int\limits_E f \, d\mu = \left| \int\limits_E f \, d\mu \right| \cdot e^{i\theta}$. Тогда

$$\left| \int_E f \, d\mu \right| = e^{-i\theta} \int_E f \, d\mu = \operatorname{Re} e^{-i\theta} \int_E f \, d\mu = \operatorname{Re} \int_E e^{-i\theta} f \, d\mu = \int_E \operatorname{Re}(e^{-i\theta} f) \, d\mu \leqslant \int_E |f| \, d\mu.$$

Утверждение 11.3. Пусть $f_1 \sim g_1, \ f_2 \sim g_2$. Тогда $f_1 + f_2 \sim g_1 + g_2 \ u \ \lambda f_1 \sim \lambda g_1$.

Это свойство очевидно. А если $f \sim g$ и $f \in L(E,\mu)$, то $g \in L(E,\mu)$. Значит, $L(E,\mu)$ есть линейное пространство и множество классов эквивалентных функций есть линейное пространство.

Мы вводили обозначение $B(E) = \{f \colon E \to \mathbb{F} | f$ — ограничены на $E\}$.

Определение 11.2. $L_{\infty}(E,\mu)$ — множество классов эквивалентности ограниченных функций с нормой $\|f\|_{\infty} = \inf_{\mu(A)=0} \sup_{x\in E\setminus A} |f(x)|$. Оно называется множеством существенно ограниченных функций. А норма называется существенной верхней гранью.

Имеем $L \supset B(E)$ — подпространство, $f \sim 0$. Тогда $L_{\infty}(E,\mu) = B(E) \setminus L$. Мы будем обращаться с этими классами, как обыкновенными функциями.

Для каждого $\forall n \in \mathbb{N} \ \exists A_n \in \Sigma \colon \mu(A_n) = 0, \ \forall x \in E \backslash A_n \ \left| f(x) \right| < \|f\|_{L_\infty} + \frac{1}{n}.$ Обозначим через $A_f = \bigcup_{n=1}^\infty A_n$, $\mu A_f = 0$ и $\|f\|_{L_\infty} = \sup_{x \in E \backslash A_f} \left| f(x) \right|$. То есть нижняя грань достигается на некотором множестве меры нуль. Такое множество может быть и не одно. Оно существует, нам этого достаточно, чтобы доказать

Утверждение 11.4 (Свойства нормы). Пусть $||f||_{L_{\infty}} = 0$. Тогда $f \sim 0$. Кроме того, $||\lambda f||_{L_{\infty}} = |\lambda| \cdot ||f||_{L_{\infty}}$. И неравенство треугольника.

Доказательство. Как доказать неравенство треугольника. Запишем равенства

$$||f||_{L_{\infty}} = \sup_{x \in E \setminus A_f} |f(x)|, \quad ||g||_{L_{\infty}} = \sup_{x \in E \setminus A_g} |g(x)|.$$

Положим $A = A_f \cup A_g$. Тогда

$$\|f+g\|_{L_{\infty}}\leqslant \sup_{x\in E\backslash A}\left|f(x)+g(x)\right|\leqslant \sup_{x\in E\backslash A_{f}}\left|f(x)\right|+\sup_{x\in E\backslash A_{g}}=\|f\|_{L_{\infty}}+\|g\|_{L_{\infty}}.$$

Вот мы и доказали все свойства нормированного пространства.

Теорема 11.1. $L_{\infty}(E,\mu)$ — банахово пространство, то есть полное линейное нормированное пространство.

Доказательство. Рассмотрим последовательность Коши $\{f_n\} \subset L_{\infty}(E,\mu)$. Положим $A = \bigcup_{n,m=1}^{\infty} A_{f_n - f_m}$. При этом $\mu(A) = 0$ и $\|f_n - f_m\| = \sup_{x \in E \setminus A} |f_n(x) - f_m(x)|$. Так как $f_n \in B(E \setminus A)$ — последовательность Коши, то

по доказанному на первой же лекции $f_n \xrightarrow[n \to \infty]{E \setminus A} f \in B(E \setminus A)$. Положим f(x) = 0 на A. Тогда $f \in L_\infty(E, \mu)$ и $\|f - f_n\|_{L_\infty} \xrightarrow[n \to \infty]{} 0$.

Определение 11.3. $L_p(E,\mu), \ 1 \leqslant p < \infty$ — пространство классов эквивалентности измеримых функций $f \colon E \to \mathbb{F} \colon |f|^p \in L(E,\mu)$ с нормой

$$||f||_{L_p} = \left(\int_{-}^{} |f|^p d\mu\right)^{\frac{1}{p}}.$$

Это линейное пространство функций, суммируемых в степени р.

Заметим, что если $f,g \in L_p(E,\mu)$, то $|f+g|^p \le 2^p(|f|^p+|g|^p)$ ну и ясно, что $\lambda f \in L_p(E,\mu)$. А чтобы доказать, что это нормированное пространство, надо доказать несколько неравенств.

Утверждение 11.5 (неравенство Гёльдера). Пусть $1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1 \ u \ f, g \colon E \to \mathbb{R}_+ \ u \ измеримы. Тогда$

$$\int\limits_E fg\,d\mu \leqslant \bigg(\int\limits_E f^p\,d\mu\bigg)^{\frac{1}{p}} \bigg(\int\limits_E g^q\,d\mu\bigg)^{\frac{1}{q}}.$$

Причём эти интегралы могут принимать и бесконечные значения. Суммируемость не требуется.

Доказательство. Сначала докажем неравенство Юнга для чисел $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$, где $a,b \geqslant 0$. Рассматриваем функции $y = x^{p-1}$ и $x = y^{q-1}$. Легко видеть, что эти функции взаимно обратные. Значит, можно посчитать интеграл слева от кривой и снизу от кривой. А площадь прямоугольника будет меньше

$$ab \leqslant \int_{0}^{a} x^{p-1} dx + \int_{0}^{b} y^{q-1} dy = \frac{a^{p}}{p} + \frac{a^{q}}{q}.$$

Равенство будет только в том случае, когда $a^{p-1} = b$ или, эквивалентно $a^p = b^q$.

Чтобы доказать теперь неравенство Гёльдера, введём обозначения $A=\int\limits_E f^p\,d\mu$ и $B=\int\limits_E g^q\,d\mu$. Если одно из этих чисел равно нулю или бесконечности, то неравенство очевидно. Берём $a=\frac{f}{A^{\frac{1}{p}}}$ и $b=\frac{q}{B^{\frac{1}{q}}}$. Применяем неравенство Гёльдера и интегрируем его

$$\int\limits_E ab\,d\mu\leqslant \frac{1}{p}\int\limits_E a^p\,d\mu + \frac{1}{q}\int\limits_E b^q\,d\mu = \frac{1}{p} + \frac{1}{q} = 1.$$

Отсюда вытекает уже неравенство Гёльдера. Легко видеть, что равенство будет тогда и только тогда, когда $f^p = \lambda g^q$, где $\lambda = A/B$ почти всюду на множестве E.

Следующее неравенство

Утверждение 11.6 (неравенство Минковского). Пусть $f, g \in L_p(E, \mu), 1 \leqslant p < \infty$. Тогда $||f + g||_{L_p} \leqslant ||f||_{L_p} + ||g||_{L_p}$.

Доказательство. В случае p=1, это неравенство вытекает из элеметнарного неравенства для чисел $|f+g| \le |f| + |g|$. Нужно проинтегрировать это неравенство, получим неравенство треугольника для L_1 .

Пусть
$$p>1$$
. Положим $A=\int\limits_E|f|^p\,d\mu,\,B=\int\limits_E|g|^p\,d\mu,\,C=\int\limits_E|f+g|^p\,d\mu.$ Тогда

$$C = \int_{E} |f + g| \cdot |f + g|^{p-1} d\mu \leqslant \int_{E} |f| \cdot |f + g|^{p-1} d\mu + \int_{E} |g| \cdot |f + g|^{p-1} d\mu.$$

Найдём $q\colon \frac{1}{p}+\frac{1}{q}=1,\ (p-1)q=p.$ Тогда по неравенству Гёльдера

$$C \leqslant A^{\frac{1}{p}} \cdot C^{\frac{1}{q}} + B^{\frac{1}{p}} \cdot C^{\frac{1}{q}}, \quad C^{\frac{1}{p}} \leqslant A^{\frac{1}{p}} + B^{\frac{1}{p}}.$$

Теперь когда достигается равенство. |f+g|=|f|+|g| почти всюду на E и

$$\frac{|f|^p}{A} = \frac{|g|^p}{B} = \frac{|f+g|^p}{C}$$

почти всюду на E. Из этого вытекает, что $f=h\cdot g$, для $h\geqslant 0$ почти всюду на E. Подставляя, получаем $h=\left(\frac{A}{B}\right)^p$ почти всюду на E (если $g\neq 0$). Так что у нас получается, что $f=\lambda g$ и $\lambda=\left(\frac{A}{B}\right)^{\frac{1}{p}}$. То есть равенство достигается только тогда, когда функции линейно зависимы, причём с положительным коэффициентом. Значит, L_p является строго нормированным. Элемент приближения является единственным.

А вот это уже полезное неравенство.

Утверждение 11.7 (обобщённое неравенство Минковского). Пусть задано два измеримых пространства (X, Σ_x, μ_x) и (Y, Σ_y, μ_y) , $E \in \Sigma_x$, $F \in \Sigma_y$ и задана измеримая функция $f \colon E \times F \to \mathbb{R}_+$, а $1 \leqslant p < \infty$. Тогда

$$\left(\int\limits_E \left(\int\limits_F f_x \, d\mu_y\right)^p d\mu_x\right)^{\frac{1}{p}} \leqslant \int\limits_F \left(\int\limits_E f_y^p \, d\mu_x\right)^{\frac{1}{p}} d\mu_y.$$

Доказательство. Нам понадобится теорема Фубини. Но это неравенство не зря называется обобщённым неравенством Минковского, так как доказывается точно так же. $g(x) = \int\limits_F f_x \, d\mu_y$ существует для почти всех

 $x \in E$.

$$\int_{E} g^{p} d\mu_{x} = \int_{E} g \cdot g^{p-1} d\mu_{x} = \int_{E} g^{p-1} \left(\int_{E} f_{y} d\mu_{x} \right) d\mu_{y}.$$

Теперь применяем неравенство Гёльдера к произведению двух функций.

$$\leqslant \int_{E} \left(\int_{E} f_{y}^{p} d\mu_{x} \right)^{\frac{1}{p}} d\mu_{y} \cdot \left(\int_{E} g^{p} d\mu_{x} \right)^{\frac{1}{q}}.$$

Если поделить на скобку, получится как раз обобщённое неравенство Минковского.

Теорема 11.2. $L_p(E,\mu)$ — банахово пространство при $1 \leqslant p < \infty$.

Доказательство. Возьмём последовательность Коши $\{f_n\} \subset L_p(E,\mu)$. Тогда существует $\{m_k\} \colon m_1 < m_2 < \dots$ и $\|f_k - f_l\|_{L_p} < \frac{1}{2^n} \ \ \forall \ k, \geqslant m_n$. Такую подпоследовательность можно выбрать. И рассмотрим функцию (равенство имеет смысл в почти всех точках)

$$g(x) = |f_{m-1}(x)| + \sum_{n=1}^{\infty} |f_{m_{n+1}}(x) - f_{m_n}(x)|.$$

Если организовать частичные суммы g_n , то $g_n\nearrow g$ (значит, и в степени p тоже монотонно возрастают), так как все члены ряда неотрицательны. Кроме того $\|g_n\|_{L_p}\leqslant \|f_{m_1}\|+\sum\limits_{n=1}^\infty \frac{1}{2^n}=\|f_{m_1}\|_{L_p}+1$, то есть норма конечная. По теореме о монотонной сходимости $g\in L_p(E,\mu)$. И отсюда g конечна почти всуу на E. Значит, ряд в определении g(x) сходится почти всюду. Если снять модули, ряд будет сходиться абсолютно почти всюду

$$f(x) = f_{m_1}(x) + \sum_{n=1}^{\infty} (f_{m_{n+1}}(x) - f_{m_n}(x))$$

сходится абсолютно почи всюду. Тогда

$$f_{m_n}(x) = f_{m_1}(x) = \sum_{k=1}^{n-1} (f_{m_{k+1}}(x) - f_{m_k}(x)).$$

Из того, что $|f|^p\leqslant |g|^p\in L(E,\mu)$ следует, что $f\in L_p(E,\mu)$. Если теперь вычесть частичную сумму, получим

$$f(x) - f_{m_n}(x) = \sum_{k=n}^{\infty} (f_{m_{k+1}}(x) - f_{m_k}(x)).$$

Чтобы для бесконечной суммы неравенство можно было использовать, применяем теорему Фату

$$||f - f_{m_n}||_{L_p} \le \sum_{k=1}^{\infty} ||f_{m_{k+1}} - f_{m_k}||_{L_p} < \frac{1}{2^{n-1}}.$$

Если имеется в метрическом пространстве последовательность Коши такую, что имеет сходящуюся подпоследовательность, то она сама сходится, что можно легко показать по неравенству треугольника. Значит, мы показали, что $f_n \to f \in L_p(E,\mu)$. Значит, мы доказали полноту.

Лемма 11.1. Обозначим через $H(E,\mu)$ множество простых измеримых функций из $L_p(E,\mu)$, $1 \leqslant p \leqslant \infty$. Утверждается, что $H(E,\mu)$ всюду плотно в $L_p(E,\mu)$.

Доказательство. Раскладываем в разность неотрицательнх $f = f_+ - f_-$ и $f_\pm = \max\{\pm f, 0\}$. Мы доказывали, что $\exists \ h_n^\pm \nearrow f_\pm$, где $h_n^\pm \in H(E,\mu)$. Так как h_n^\pm интегрируемы, то и f_\pm будут интегрируемы. Обозначим

$$h = h_n^+ - h_n^-, \quad \|f - h\|_{L_p} \le \|f_+ - h_n^+\|_{L_p} + \|f_- - h_n^-\|_{L_p} \xrightarrow[n \to \infty]{} 0$$

по тереме о монотонной сходимости.

Теперь наша задача показать, что непрерывные функции всюду плотны в L_p . А для этого нужно вообще какую-то топологию ввести.

Пусть (X, ρ) — метрическое пространство, (X, Σ, μ) — измеримое пространство с регулярной мерой и все открытые множества измеримы (а значит и замкнутые и компактные).

Теорема 11.3. Множество C(X) непрерывных ограниченных функций (тех из них, что лежат в L_p) всюду плотно в $L_p(E,\mu)$ для $1 \le p < \infty$ (в отличие от леммы здесь $p < \infty$).

Доказательство. Возьмём $f\in L_p$ и $\varepsilon>0$. По лемме $\exists\ h\in H(E,\mu)$, такая, что $\|f-h\|_{L_p}<\frac{\varepsilon}{2}$. Всякая простая

функция является линейной комбинацией характеристических функций

$$h(x) = \sum_{l=1}^{m} h_l \chi_{H_l}(x), \quad \chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A. \end{cases}$$

Существует $\exists A$ — компактное и \exists открытое B_l , для которых $A_l \subset H_l \subset B_l$ и $\mu(B_l \setminus A_l) < \left(\frac{\varepsilon}{2c}\right)^p$, где $c = \sum_{l=1}^m |h_k|$. У нас же функция уже фиксирована.

Напомню $\rho(x,A) = \int\limits_{y \in A} \rho(x,y)$ есть непрерывная функция, поскольку выполняется неравенство

$$\rho(x, A) \leqslant \rho(y, A) + \rho(x, y) \Rightarrow |\rho(x, A) - \rho(y, A)| \leqslant \rho(x, y).$$

Доказательство. Доказательство этого неравенства простое $\rho(x,A) \leqslant \left| \rho(x,z) - \rho(z,y) \right| + \rho(z,y) \leqslant \rho(x,y) \quad \forall \ z \in A.$

Ну теперь давайте построим функцию $g(x)\sum_{l=1}^m h_l g_l(x), \ g_l(x) = \frac{\rho(x, X \setminus B_l)}{\rho(x, A_l) + \rho(x, X \setminus B_l)}$. При этом $0 \leqslant g_l(x) \leqslant 1$, $g_l(x) = 1$, есил $x \in A_l$, $g_c(x) = 0$, если $x \in X \setminus B_l$, то есть $x \notin B_l$. Все эти функции непрерывны:

$$\|\chi_{H_l} - g_l\|_{L_p} \leqslant \mu^{\frac{1}{p}}(B_l \setminus A_l) < \frac{\varepsilon}{2c}.$$

И по неравенству Минковского получаем

$$||h-g||_{L_p} < \frac{\varepsilon}{2}, \qquad ||f-g||_{L_p} \leqslant ||f-h||_{L_p} + ||g-h||_{L_p} < \varepsilon.$$

Закончим таким следствием

Следствие 11.1. $B L_p[0,1]$, $\epsilon \partial e 1 \leq p < \infty$ всюду плотно множество

- 1. H([0,1]) простых функций;
- 2. C[0,1];
- 3. $\widetilde{C}[0,1]$, f(0) = f(1):
- 4. S- ступенчатые функции; для некоторого разбиения $0=x_0 < x_1 < \cdots < x_n < 1$ $f(x)=\sum\limits_{k=1}^n c_k \chi_{[x_{k-1},x_k]}(x);$
- 5. P множество алгебраических многочленов, то есть $P(x) = \sum_{k=1}^{n} c_k x^k$;
- 6. $T- mригонометрических многочленов <math>T(x) = \sum_{k=-n}^{n} c_k e^{2\pi i k x};$
- 7. $C^{\infty}[0,1]$.

12 Линейные операторы

Пусть E, F обозначают нормированные пространства над полем $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Норму будем в этих пространствах обозначать одинаково $\|x\|$.

Определение 12.1. Отображение $A \colon E \to F$ называется линейным оператором, если выполнено два условия

$$A(x+y) = A(x) + A(y);$$
 $A(\lambda x) = \lambda A(x) \ \forall \ x, y \in E \ \forall \ \lambda \in \mathbb{F}.$

Норма линейного оператора определяется как

$$\|A\|=\sup_{x\in S}\big\|A(x)\big\|,\quad S:=\big\{x\in E\big|\|x\|\leqslant 1\big\}.$$

Можно ввести эквивалентное определение для нормы

$$||A|| = \sup_{x \neq 0} \frac{||A(x)||}{||x||}.$$

Определение 12.2. Оператор A называется ограниченным, если $\forall M \subset F$ ограниченного множества образ $A(M) = \{y = A(x) | x \in M\}$ является ограниченным в F.

Определение 12.3. Если M находится в некотором шаре, то есть $M \subset S_r(x)$, то M называется ограниченным.

Мы вводили сложное определение ограниченных множеств, оно здесь годится. А наше новое более простое определение не годится для произвольного метрического, только для нормированных.

Если норма оператора конечна, если и только если оператор ограничен. Мы с вами доказывали, что оператор ограничен, значит, непрерывен во всех своих точках.

Приведём пример $A\colon L_p(E,\mu)\to L_p(E,\mu)$, где $1\leqslant p\leqslant \infty$ и определяеся по формуле $A(f):=\varphi f$, где φ ограниченная измеримая функция. Этот оператор называется оператором умножения на функцию. Докажем,

$$||A|| = ||\varphi||_{L_{\infty}}.$$

Доказательство. Давайте вычислять норму.

$$||A(f)||^p = \int_E |\varphi \cdot f|^p d\mu.$$

Поскольку интеграл не зависит от изменения функции на множестве меры нуль, здесь будет такое неравенство

$$||A(f)||^p = \int_E |\varphi \cdot f|^p d\mu \leqslant ||\varphi||_{L_\infty}^p \int_E |f|^p d\mu.$$

Извлекая корень, получаем такое неравенство

$$||A|| \leqslant ||\varphi||_{L_{\infty}}.$$

Осталось доказать обратное неравенство. Пусть $f=\chi_A$. Тогда (по определению существенной верхней грани) $\exists \ A\subset E\colon \mu(A)>0$, такое, что

$$\forall x \in A \ |\varphi(x)| > ||\varphi||_{L_{\infty}} - \varepsilon.$$

Подставим эту функцию в оператор

$$||A(f)||^p = \int_E A \, d\mu |\varphi|^p > (||\varphi||_{L_\infty} - \varepsilon)^p \, \mu(A) = (||\varphi||_{L_\infty} - \varepsilon)^p \int_A |f|^p \, d\mu.$$

Поскольку $|A(f)| \ge (\|\varphi\|_{L_{\infty}} - \varepsilon) \|f\|$, мы и доказали, что $\|A\| \ge \|\varphi\|_{L_{\infty}}$.

Пусть $\mathcal{L}(E,F)=\{A\colon E\to F|A-$ линейный и ограниченный $\}$. Норма в этом пространстве есть $\|A\|=\sup_{x\in S}\|A(x)\|$. Проверим свойства нормы

Доказательство. Сложение и умножение определяются естественно: $(A+B)(x) = A(x) + B(x), \ (\lambda A)(x) = \lambda \cdot A(x).$

- 1. Если ||A|| = 0, то A(x) = 0 для всех $x \in E$. Значит, $A = \mathcal{O}$.
- $2. \ \|A+B\| = \sup_{x \in S} [\left\|A(x)+B(x)\right\| \leqslant \sup_{x \in S} \left\|A(x)\right\| + \sup_{x \in S} \left\|B(x)\right\|. \ \text{Значит, } \|A+B\| \leqslant \|A\| + \|B\|, \ \text{a} \ \|\lambda A\| = |\lambda|A.$

Теорема 12.1. Если F — банахово пространство, то $\mathcal{L}(E,F)$ — банахово пространство. Доказательство. Пусть $\{A_n\} \in \mathcal{L}(E,F)$ последовательность Коши, то есть

$$\forall \ \varepsilon > 0 \ \exists \ N \in \mathbb{N} \colon \forall \ n, m \geqslant < \|A_n - A_m\| < \varepsilon.$$

Тогда $||A_n(x) - A_m(x)|| < \varepsilon ||x|| \quad \forall \ x \in E, \ \forall \ n,m \geqslant N.$ Значит, последовательность $\{A_n(x)\} \subset F$ является последовательностью Коши в F. Значит,

$$\exists A(x) = \lim_{n \to \infty} A_n(x)$$

и это линейный оператор $A \colon E \to F$. У нас есть его сходимость в каждой точке. Покажем сходимость по норме. Устремим $m \to \infty$ в неравенстве

$$||A_n(x) - A(x)|| \le \varepsilon ||x|| \quad \forall \ x \in E, \ \forall \ n \in N.$$

Теорема 12.2 (Банаха—Штейнгауза). Пусть E — банахово пространство, и задано множество линейных операторов $\{A_i\}_{i\in I}\subset \mathcal{L}(E,F)$, и выполнено условие

$$\forall x \in E \quad \sup_{i \in I} ||A_i(x)||.$$

Тогда отсюда вытекает, что $\sup_{i \in I} ||A_i|| < \infty$.

То есть из поточечной сходимости следует сходимость по норме.

Доказательство. Все принципы равностепенной непрерывности здесь выполнены. Мы запишем условия равностепенной непрерывности в точке ноль.

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \colon \ \forall \ \|x\| < \delta, \forall \ i \in I \ \|A_i(x)\| < \varepsilon$$

в силу линейности оператора. Поделим неравенство на δ .

$$\forall \left\| \frac{x}{\delta} \right\| < 1, \ \forall \ i \in I \quad \left\| A_i \left(\frac{x}{\delta} \right) \right\| < \frac{\varepsilon}{\delta}$$

Отсюда вытекает, что $||A_i|| \leqslant \frac{\varepsilon}{\delta}$.

Следствие 12.1. Пусть E — банахово пространство. И задана последовательно линейных операторов $\{A_n\} \in \mathcal{L}(E,F)$, сходящаяся в кажедой точке, то есть $\forall \ x \in E \ A_n(x) \xrightarrow[n \to \infty]{} A(x)^1$. Тогда $\sup n \|A_n\| < \infty$.

Это теорему очень интенсивно будем применять в следующий раз. А сейчас мы докажем очень знаменитую теорему. Для начала введём некоторые понятия.

Определение 12.4. Пусть X — множество. Оно называется упорядоченным, если в нём задано отношение порядка \leqslant , то есть

- 1. $x \leqslant x$;
- 2. $x \leq y \ u \ y \leq z \Rightarrow x \leq z$;
- 3. $x \leq y \ u \ y \leq x \Rightarrow x = y$.

Определение 12.5. Множество $A \subset X$, где X упорядочено, называется цепью, если $\forall x, y \in A \ x \leqslant y$ или $y \leqslant x$. Цепь A называется ограниченной, если $\exists \ y \in X \colon \forall \ x \in A \ x \leqslant y$.

Определение 12.6. Элемент $x \in X$, где X упорядоченно, называется максимальным, если из того, что $x \leq y$, следует, что x = y.

Следующая лемма является аксиомой, хотя все её называют леммой. Для нас она будет аксиомой, но вообще она эквивалентна одной из аксиом теории множеств.

Лемма 12.1. Если всякая цепь A ограничена, то в X существует максимальный элемент.

Эту аксиому мы и будем применять для доказательства теоремы.

Пусть E — линейное пространство, $f \colon E \to \mathbb{F}$ — линейный функционал (он является линейным оператором, только действует в поле).

- 1. f(x+y) = f(x) + f(y);
- 2. $f(\lambda x) = \lambda f(x)$

 $\forall x, y \in E, \ \forall \lambda \in \mathbb{F}.$

Если E — нормированное пространство, то $||f|| = \sup |f(x)|$.

Определение 12.7. Пространство $E^* = \{f \colon E \to \mathbb{F} \mid f$ — линейный и ограниченный $\}$ называется сопряжённым. Ограниченность f значит, что $||f|| < \infty$.

Это банахово пространство.

Будем рассматривать подпространства $L \subset E$ и линейный функционал $f \colon L \to \mathbb{F}$. Введём отношение порядка $f \leqslant g$, где $f \colon L \to \mathbb{F}, \ g \colon M \to \mathbb{F}, \ \text{если}$

- 1. $L \subset M$;
- $2. \ \forall \ x \in L \ \ g(x) = f(x).$

Говорят, что g является расширением f на M.

Напомню определение полунорм.

Определение 12.8. $p: E \to \mathbb{R}_+$ называется полунормой, если

- 1. $\forall x \in E \ p(\lambda x) = |\lambda| p(x);$
- 2. $\forall x, y \in E \quad p(x+y) \leq p(x) + p(y)$.

¹ А всякая сходящаяся последовательность ограничена по норме, и можно применить терему.

 Π ара (E, p) называется полунормированным пространством.

Теорема 12.3 (Хана—Банаха). Пусть (E,p) — полунормированное пространство $u\ f\colon L\to \mathbb{F}$ — линейный функционал, $L\subset E$ (линейное подпространство) $u\ выполнено\ условие$

$$\forall x \in L \ |f(x)| \leq p(x).$$

Тогда $\exists g \colon E \to \mathbb{F}$ линейный функционал на всём E, такой, что

$$g|_{L} = f \ u \ \forall \ x \in E \ |g(x)| \leqslant p(x).$$

То есть д является продолжением f с сохранением неравенства.

Доказательство. Нам для заданного функционала f нужно построить продолжение на всё пространство, причём такое, чтобы выполнялось условие ограниченности. Сначала построим продолжение для линейной оболочки. Пусть $e_1 \not\in L$ и $L_1 := sp\{e_1, L\}$. Давайте попытаемся применить лемму Цорна или аксиому Цорна.

Вначале рассмотрим действительный случай, то есть $\mathbb{F} = \mathbb{R}$.

$$\forall x, y \in L \quad f(x+y) \leqslant p(x+y) \leqslant p(x-e_1) + p(y+e_1).$$

Для всех x и y получаем неравенство

$$f(x) - p(x - e_1) \le p(y + e_1) - f(y).$$

Слева функция от x, справа — функция y. Значит,

$$\exists c_1 \in \mathbb{R}: f(x) - p(x - e_1) \leq c_1 \leq p(y + e_1) - f(y)$$

Если для некоторого $\lambda > 0$ заменить x, y на $\frac{x}{\lambda}, \frac{y}{\lambda}$, получаем

$$\forall x \in L, \forall \lambda > 0 \quad f(x) \pm \lambda c_1 \leq p(x \pm \lambda e_2).$$

Тогда мы можем определить линейный функционал на оболочке по формуле

$$\forall x \in L, \forall \lambda \in \mathbb{R} \quad f_1(x + \lambda e_1) := f(x) + \lambda e_1.$$

Аргумент, обозначим $z = x + \lambda e_1$, принадлежит именно линейной оболочке. Выполнено два условия.

- (1) $\forall x \in L \ f_1(x) = f(x)$.
- (2) $\forall z \in L_1 \ f_1(x) \leq p(z)$, при этом p(-z) = p(z), значит, $|f_1(x)| \leq p(z)$.

Далее можем определить $L_2 = sp\{e_2, L_1\}$, где $e_2 \notin L_1$.

Если бы пространство имело счётную размерность, мы бы всё уже доказали.

Надо рассмотреть множество всех продолжений. Это множество упорядоченно и каждая цепь ограниченна функционалом на объединении всех областей определения функционалов цепи. По лемме Цорна существует максимальное продолжение на всё пространство.

Теперь перейдём от случая действительных чисел к комплексным числам. Пусть $\mathbb{F}=\mathbb{C},\ f=u+iv,$ причём u,v- линейные функционалы над полем действительных чисел. Посчитаем

$$u(ix) + iv(ix) = f(ix) = if(x) = iu(x) - v(x).$$

Следовательно, v(x) = -u(ix), и функционал записывается в виде

$$f(x) = u(x) - iu(ix).$$

Таким образом, функционал зависит только от своей действительной части. Построим функционал. $\exists \ h \colon E \to \mathbb{R}$ линейный функционал, такой, что $h\big|_L = u$ и $\forall \ x \in E \ \big| h(x) \big| \leqslant p(x)$. Определяем

$$\forall x \in E \ g(x) := h(x) - i h(ix).$$

Условие $g|_L=f$ очевидно. Докажем, что функционал линейный над полем комплексных чисел. Достаточно доказать для ix

$$q(ix) = h(ix) - ih(x) = i(h(x) - ih(x)) = iq(x).$$

То, что он аддитивный, тоже очевидно. Ведь h аддитивный. Покажем ограниченность. Расмотрим тригонометрическое представление $g(x) = e^{i\theta} |g(x)|$. В силу линейности действительное число

$$\left|g(x)\right|=e^{-i\theta}g(x)=g(e^{-i\theta}x)=h(e^{-i\theta}x)\leqslant p(e^{-i\theta}x)=p(x).$$

Саму теорему применяют редко. Важно следствие.

Следствие 12.2. Пусть E — нормированное пространство, а $L \subset E$ — линейное подпространство. И пусть задан линейный ограниченный функционал $f \colon L \to \mathbb{F}$. Тогда $\exists \ g \colon E \to \mathbb{F}$ линейный ограниченный функционал, удовлетворяющий условиям: $f\big|_L = f \ u \ \|g\| = \|f\|$, то есть существует продолжение функционала на всё пространство с сохранением его нормы.

Доказательство. Берём $p(x) = \|f\|_L \cdot \|x\|$. Это норма, но она будет и полунормой. Тогда

$$\exists g \colon E \to \mathbb{F} \colon g\big|_L = f, \ \big|g(x)\big| \leqslant \|f\|_L \cdot \|x\|\big|g(x)\big| \Rightarrow \|g\| \leqslant \|f\|.$$

Тогда, поскольку $||f||_L = \sup_{x \in S \cap L} |f(x)|$, а норма g считается, как sup по большему множеству, ||g|| = ||f||.

Теорема 12.4 (Рисса). Если функционал $\alpha \in C^*[a,b]$, то есть функционал является линейным и ограниченным, определённым на пространстве $C[a,b]^1$, то $\exists \ F \in BV[a,b]$, такая, что

1.
$$\forall f \in C[a,b] \quad \alpha(f) = \int_a^b f \, dF;$$

2. $\|\alpha\| = \operatorname{Var}(F)$.

Доказательство. Так как $C[a,b] \subset B[a,b]$, существует продолжение $\alpha \in B^*[a,b]$ по следствию из теоремы

Хана—Банаха. (Не будем вводить новую букву, пусть тоже
$$\alpha$$
.) Рассмотрим $F(t) = \alpha \left(\underbrace{\chi_{[a,t)}}_{u_t}\right)^2, t \in [a,b], F(a) = 0.$

Рассмотрим разбиение $a = x_0 < x_1 < \dots < x_n = b$. Тогда

$$\sum_{k=1}^{n} |F(x_k - F(x_{k-1}))| = \sum_{k=1}^{n} e^{-i\theta_k} (F(x_k) - F(x_{k-1})) =$$

Подставим определение функции F

$$= \sum_{k=1}^{n} e^{-i\theta_k} \left(\alpha(u_{x_k}) - \alpha(u_{x_{k-1}}) \right) = \alpha \left(\sum_{k=1}^{n} e^{-i\theta_k} \left(u_{x_k} - u_{x_{k-1}} \right) \right).$$

Заметим, что

$$\left| \sum_{k=1}^{n} e^{-i\theta_k} \left(u_{x_k} - u_{x_{k-1}} \right) \right| \leqslant 1.$$

Значит,

$$\alpha \left(\sum_{k=1}^{n} e^{-i\theta_k} \left(u_{x_k} - u_{x_{k-1}} \right) \right) \leqslant \|\alpha\|.$$

Таким образом, доказано $\operatorname{Var}_a^b(F) \leqslant \|\alpha\|$.

Возьмём $f \in C[a,b]$, для разбивения τ возьмём также $f_{\tau}(x) = \sum_{k=1}^{n} f(\xi_k) (u_{x_k} - u_{x_{k-1}})$, где $\xi_k \in [x_{k-1}, x_k]$. Так как функция непрерывна, $f_{\tau} \xrightarrow[d(\tau) \to 0]{d(\tau) \to 0} f$.

$$\alpha(f) = \lim_{d(\tau) \to 0} \alpha(f_{\tau}) = \lim_{d(\tau) \to 0} \sum_{k=1}^{n} f(\xi_{k}) (F(x_{k}) - F(x_{k-1})) = \int_{a}^{b} f \, dF.$$

Это и есть интеграл Римана—Стилтьеса. Ну а модуль оценивается

$$\left| \int_{a}^{b} f \, dF \right| \leqslant \lim_{d(\tau) \to 0} \sum_{j=1}^{n} \left| f(\xi_k) \right| \left| F(x_k) - F(x_{k-1}) \right|.$$

Значит, $\|\alpha\| \leq \operatorname{Var}_a^b(F) \leq \|f\|_C \operatorname{Var}_a^b(F)$.

Теперь сформулируют ещё одну теорему без доказательства.

Теорема 12.5 (Рисса). Если $\alpha \in L_p^*(E,\mu)$, где $1 \leqslant p < \infty$, то $\exists \ g \in L_q(E,\mu), \ \frac{1}{p} + \frac{1}{q} = 1$, такая, что

² Полуинтервал для непрерывности слева. Доказывать не буду, доказательство очень кропотливое.

1.
$$\forall f \in L_p(E, \mu) \quad \alpha(f) = \int_E fg \, d\mu;$$

2. $\|\alpha\| = \|g\|_{L_q}$.

Следствие 12.3. $L_p^*(E,\mu) = L_1(E,\mu)$ для $1 \leqslant p < \infty, \ \frac{1}{p} + \frac{1}{q} = 1.$

А для непрерывных имеем $C^*[a,b] = V_0[a,b]$, причём

- 1. $F \in BV[a, b]$;
- 2. $\forall t \in (a, b) \ F(t 0) = F(t);$
- 3. F(a) = 0.

13 Сильная и слабая сходимости линейных операторов и линейных функционалов

Пусть E, F — нормированные пространства, $\mathcal{L}(E, F)$ — пространство ограниченных операторов. Определение 13.1. Последовательность операторов $\{A_n\} \in \mathcal{L}(E, F)$ сходится сильно $A_n \to A$ к оператору A, если

$$\forall x \in E \quad \lim_{n \to \infty} A_n(x) = A(x).$$

Сходится равномерно, если $||A_n - A|| \xrightarrow[n \to \infty]{} 0$, то есть сходится по норме.

Сильная сходимость — это поточечная сходимость, а равномерная значит по норме.

Соответственно вводится понятия сильной и равномерной ограниченности.

Определение 13.2. Подмножество $M \subset \mathcal{L}(E,F)$ равномерно ограничено, если

$$\exists C > 0 \colon \forall \ A \in M \ \|A\| \leqslant C.$$

Определение 13.3. $M \subset \mathcal{L}(E,F)$ сильно ограничено, если

$$\forall x \in E \exists C_x > 0 \colon \forall A \in M \quad ||A(x)|| \leqslant C_x.$$

Давайте свойства обсудим.

Утверждение 13.1. $Ecnu\ A_n \xrightarrow[n \to \infty]{} A$ равномерно, то схоится сильно.

Доказательство. Доказательство почти очевидно.

$$||A_n - A|| \xrightarrow[n \to \infty]{} 0, \quad ||A_n(x) - A(x)|| \le ||A_n - A|| \cdot ||x|| \xrightarrow[n \to \infty]{} 0, \quad \forall \ x \in E.$$

■ Надо понимать, что сходимость здесь везде по норме. Просто в сильной сходимости сходимость по норме F. Нужно сделать следующее замечание. Если $\dim E < \infty$, то верно и обратное утверждение. Я его доказывать не буду, это можно сделать, пользуясь теоремой об эквивалентности норм в конечномерном пространстве.

Утверждение 13.2. Если $A_n \xrightarrow[n \to \infty]{} A$ сильно, то $\{A_n\}$ сильно ограничена, и выполнено вот такое неравенство

$$||A|| \leq \lim ||A_n||$$
.

Неравенство очень похоже на лемму Фату.

Доказательство. Первое свойство почти очевидно. Если сходится для каждого x, то ограничена по норме F. Отсюда и следует сильная ограниченность.

Докажем неравенство.

$$\exists \{n_k\} \colon \lim_{k \to \infty} \|A_{n_k}\| = \underline{\lim} \|A_n\|$$

по определению нижнего предела. Так как норма является непрерывной функцией, а последовательность сходится в каждой точке, имеем

$$||A(x)|| = \lim_{k \to \infty} ||A_{n_k}(x)|| \le \lim_{k \to \infty} ||A_{n_k}|| \cdot ||x|| =$$

последнее по определению нормы оператора. Отсюда получаем

$$= \lim ||A_n|| \cdot ||x|| \Rightarrow ||A|| \le \lim ||A_n||.$$

Давайте приведём один пример, когда последовательность сходится сильно, но не сходится равномерно. В конечномерном пространстве вы такой пример не приведёте. Примеров всё же много. Мы рассмотрим пространство $L_p(E,\mu), 1 \leqslant p < \infty$ и рассмотрим последовательность

$$E_1 \subset E_2 \subset \dots, \quad \bigcup_{n=1}^{\infty} E_n E, \quad 0 < \mu(E \setminus E_n) \to 0.$$

Например, можно взять E = [0,1] и $E_n = [1/n,1]$. Рассмотрим оператор

$$A_n f = \varphi \cdot f, \quad \varphi_n = \chi_{E_n} = \begin{cases} 1, & x \in E; \\ 0, & x \notin E. \end{cases}$$

Мы даже считали норму такого оператора уже.

$$||A_n f - f||^p = \int_{E \setminus E_n} |f|^p d\mu.$$

Но так как $E\setminus E_n \xrightarrow[n\to\infty]{} 0$, то по абсолютной непрерывности интеграла Лебега, сам интеграл стремится к нулю. Таким образом, $A_n \xrightarrow[n\to\infty]{} I$ ссходится сильно к тождественному оператору. Но

$$||A_n - I|| = ||\chi_{(E \setminus E_n)}||_{L_\infty} = 1.$$

Просто потому, что она будет равняться верхней грани функции на множестве. Значит, не сходится равномерно, причём вообще ни к какому оператору.

Утверждение 13.3. Пусть E — банахово пространство. Тогда $M \subset \mathcal{L}(E,F)$ сильно ограничено, если и только если M равномерно ограничено.

Доказательство. Необходимость по теореме Банаха—Штенгауза, а достаточность из неравенства

$$||A(x)|| \le \underbrace{||A||}_{\le C} \cdot ||x||.$$

Справа же стоят нормы, равномерно ограниченные.

Лемма 13.1. Пусть E- банахово пространство, $\{A_n\}\subset \mathcal{L}(E,F)$ и $A_n\to A$ сильно. Тогда оператор A тоже является ограниченным, то есть $A \in \mathcal{L}(E,F)$.

Доказательство. По теореме Банаха—Штенгауза верхняя грань $\sup \|A_n\| \leqslant C$, то есть конечна. А значит оператор будет ограничен, поскольку $A(x) = \lim_{n \to \infty} A_n(x), \ \forall \ x \in E \ \text{и} \ \|A\| = \underline{\lim} \ \|A_n\|.$ Определение 13.4. $Hycmb\ K \subset E-cucme$ ма элементов. $Hepes\ M$ обозначаем $M=\overline{\operatorname{sp}}(K)-s$ амкнутую

линейную оболочку.

$$\operatorname{sp}(K = \left\{ y = \sum_{i=1}^{n} \lambda_i x_i \middle| \lambda_i \in \mathbb{F}, \ x_i \in K \right\},$$

 $K \subset E$ называется полной, если $\overline{\operatorname{sp}}(K) = E$.

Теорема 13.1 (критерий сильной сходимости). Пусть E, F – банаховы пространства, $\{A_n\} \in \mathcal{L}(E, F)$. Тогда $A_n \xrightarrow[n \to \infty]{} A$ сильно, если и только если

- (1) $\sup \|A_n\| < \infty$;
- (2) $\exists \lim_{n \to \infty} A_n(x) = A(x), \forall x \in K, \textit{где } K \subset E \textit{некоторая полная система.}$

Доказательство. Необходимость очевидна. Первое условие вытекает из следствия теоремы Банаха—Штенгауза. А второе условие прямо из определения вытекает. Так что нужно доказать достаточность.

Обозначим $L = \operatorname{sp}(K)$. Тогда из условия два вытекает $\forall \ x \in K \ \exists \lim_{n \to \infty} A_n(x) = A(x)$. Значит, L всюду плотно в E. Значит, $\forall \ \varepsilon > 0$

$$\forall x \in E \ \exists y \in L \colon ||x - y|| \leqslant \frac{\varepsilon}{4C},$$

где $C > \sup \|A_n\|$ (можно было равно написать, но с делением на ноль надо было бы быть аккуратнее). Далее

$$\exists N \in \mathbb{N} : \forall n, m \geqslant N \ \|A_n(y) - A_m(y)\| < \frac{\varepsilon}{2}.$$

И запишем неравенство треугольника

$$||A_n(x) - A_m(x)|| \le ||A_n(x) - A_n(y)|| + ||A_n(y) - A_m(y)|| + ||A_m(y) - A_m(x)||.$$

Второе слагаемое $<\frac{\varepsilon}{2}$, а для первого и третьего слагаемых нужно ещё написать такое неравенство

$$\forall n, m \ge N \ \|A_n(x) - A_n(y)\| \le \|A_n\| \cdot \|x - y\|.$$

И всё будет меньше ε . В силу полноты F A_n будет сходиться и по лемме оператор будет ограничен.

Функционалы 13.1

С операторами мы закончили. Переходим к функционалам.

Определение 13.5. $\{f_n\} \subset E^*$ слабо* сходится, если

$$\forall x \in E \ \exists \lim_{n \to \infty} f_n(x) = f(x)$$

. Сходится слабо, если сходится в каждой точке.

Множество функционалов $M \subset E^*$ называется слабо* органиченным, если

$$\forall x \in E \exists C_X > 0: \forall f \in M |f(x)| \leq C_X.$$

Далее свойства легко переносятся из того, что мы только делали для операторов. И я передоказывать не буду.

Утверждение 13.4. Если $f_n \to f$ по норме, то $f_n \to f$ сходится* слабо.

Утверждение 13.5. Если $f_n \to f$ сходится слабо*, то $\{f_n\}$ слабо* ограничено.

Утверждение 13.6. Пусть E- банахово пространство. Тогда $M\subset E^*$ слабо * ограничено, если и только если M ограничено по норме.

Ну и давайте запишем критерий.

Теорема 13.2 (критерий слабой* сходимости). Пусть E- банахово пространство. Тогда $\{f_n\}\subset E^*$ сходится слабо κ f, если и только если

(1)
$$\sup_{n} \|f_n\| < \infty$$
;

(2)
$$\exists \lim_{n \to \infty} f_n(x) = f(x) \ \forall \ x \in K$$
, где K – некоторая полная система элементов.

Пример. Пусть $(X, \rho$ — метрическое пространство. C(X) — пространство ограниченных непрерывных функций и sup-нормой. Возьмём последовательность $x_n \in X, \ x \in X \colon x \xrightarrow[n \to \infty]{} x$. Для каждой точки рассмотрим функционал Дирака

$$\delta_{x_n}(f) := f(x_n).$$

Имеем $\forall f \in C(X)$ $\delta_{x_n}(f) = f(x_n) \xrightarrow[n \to \infty]{} f(x) - \delta_x(f)$, то есть $\delta_{x_n} \xrightarrow[n \to \infty]{} \delta_x$ сходится слабо*. При этом $\|\delta_n - \delta\| = 2$ для отрезка и не стремится к нулю. Значит, последовательность не сходится по норме.

Теорема 13.3. Отображение $J \colon E \to E^{**}$, определённое по формуле $J(x) = \delta_x$, где $\delta_x(f) := f(x) \ \ \forall \ f \in E^*$ функционал Дирака из второго сопряжённого пространства (если докажем, что он ограничен). Тогда Jявляется изометричным отображением, то есть

$$\forall x \in E \quad ||J(x)|| = ||x||.$$

Считается, что пространство является подпространством своего второго сопряжённого. Введём перед доказательством определение.

Определение 13.6. *Если* $J(E) = E^{**}$, *E* называется рефлексивным.

Простанство $L_p(E,\mu)$ рефлексивно, если 1 . Это вытекает из теоремы, которую мы не доказывали,об общем виде функционалов в L_p^* . Доказательство. Пусть $S^*\subset E^*-$ единичный шар, то есть

$$S^* = \{ f \in E^* | ||f|| \le 1 \}.$$

Тогда $\forall x \in E, \forall f \in S^* \ |f(x)| \leq ||f|| \cdot ||x|| \leq ||x||$. Отсюда вытекает, что норма функционала Дирака оценивается $\|\delta_x\| \le 1$. Таким образом, так как $J(x) = \delta_x, \|J(x)\| \le \|x\|$.

Осталось доказать обратное неравенство. Для этого применим теорему Хана—Банаха. Берём линейную оболочку фиксированного элемента х и определим функционал

$$L = \sup\{x\}, \quad f(\lambda x) := \lambda ||x||, \quad ||f||_L = 1.$$

По теореме Хана—Банаха существует функционал $g \in E^*$, у которого норма ||g|| = 1 и $g(y) = f(y) \ \forall \ y \in L$. Тогда $\delta_x(g) = g(x) = ||x||$. Значит, $||\delta_x|| = ||x||$. Значит, имеет место нужное равенство.

Определение 13.7. Последовательность элементов $\{x_n\} \subset E$ нормированного пространства сходится слабо (уже без звёздочки, так как это для элементов, а не для функционалов), если

$$\forall f \in E^* \quad \exists \ \lim f(x_n) = f(x).$$

Множество $M \subset E$ слабо ограничено, если

$$\forall f \in E^* \ \exists C_f > 0 \colon \forall x \in E \ |f(x)| \leqslant C_f.$$

Одни и те же объекты можно интерпретировать как элементы и как функционалы на пространствах.

Утверждение 13.7. Если $x_n \xrightarrow[n \to \infty]{} x$ по норме, то $x \xrightarrow[n \to \infty]{} x$ слабо. **Утверждение 13.8.** Если $x_n \xrightarrow[n \to \infty]{} x$ слабо, то $\{x_n\}$ слабо ограничена $u \|x\| \leqslant \underline{\lim}_{n \to \infty} \|x_n\|$.

Утверждение 13.9. Множество $M \subset E$ слабо ограничено, если и только если ограничено по норме 1 . **Теорема 13.4** (критерий слабой сходимости). $\{x_n\} \subset E$ слабо сходится $x_n \xrightarrow[n \to \infty]{} x \in E$, если и только если выполнено два условия

- (1) Нормы равномерно ограничены, то есть $\sup ||x_n|| < \infty$;
- (2) $\forall f \in K \subset E^* \; \exists \lim_{n \to \infty} f(x_n) = f(x)$, где K некоторая полная система элементов.

Давайте ещё один примерчик. Слабая сходимость в C[a,b]. Утверждается, что последовательность функций $\{f_n\}\subset C[a,b]\ f_n\to f\in C[a,b]$ слабо, если и только если

- $(1) \sup ||f_n|| < \infty;$
- (2) $\forall x \in [a, b] \exists \lim_{n \to \infty} f_n(x) = f(x).$

Доказательство. Необходимость вытекает из критерия. Для второго условия нужно в качестве x_n взять функционалы Дирака.

А достаточность вот как. Мы знаем, что всякий $\alpha \in C^*[a,b]$ является интегралом Римана—Стилтьеса $\alpha(f)=\int\limits_{0}^{b}f\,dF.$ Интеграл Римана—Стилтьеса совпадает с интегралом Лебега—Стилтьеса, для которого есть теорема о предельном переходе.

Определение 13.8. Нормированное пространство Е называется сепарабельным, если в Е существует счётная полная система элементов $K = \{x_n\}.$

Построим метрику в сопряжённом пространстве.

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|f(x_n) - g(x_n)|}{1 + |f(x_n) - g(x_n)|}, \quad f, g \in E^*.$$
(6)

Вот такую обычно пишут в учебниках. Можно и по-другому. А какие свойства выполнены?

- (1) $\rho(f, g) = \rho(g, f);$
- (2) $\rho(f,g) \leqslant \rho(f,h) + \rho(h,g)$;
- (3) $\rho(f,g)=0 \Rightarrow f(x_n)=g(x_n) \ \forall n.$ Значит, $\forall y \in L \ f(y)=h(y)$, то есть f=g.

Доказательство. Неравенство треугольника. Берём функцию $\varphi(t) = \frac{t}{1+t}$ для $t \geqslant 0$. Очевидно

$$\varphi(a+b) \leqslant \varphi(a) + \varphi(b).$$

В определение (6) в модуле прибавляем и вычетаем $\pm h$ и раскрываем по неравенству треульника для чисел. \blacksquare То есть мы получаем метрическое пространство. Мы будем эту метрику рассматривать лишь на единичном

Лемма 13.2. Последовательность $\{f_n\} \subset S^*$ сходится слабо * $f_n \xrightarrow[n \to \infty]{} f$, если и только если $f_n \xrightarrow[n \to \infty]{} f$ в (S^*, ρ) . Иными словами, слабая сходимость равносильна сходимости по метрике.

Условие банаховости не нужно, так как функционал Дирака рассматривается на сопряжённом пространстве, а оно всегда банахово.

Доказательство. Необходимость. Зафиксируем произвольное $\varepsilon > 0$. $\exists m \in \mathbb{N} : \frac{1}{2^m} < \frac{\varepsilon}{2}$.

$$\exists N \in \mathbb{N} : \forall n \geqslant N, \forall k \in \{1, \dots, m\} \left| f_n(x_k) - f(x_k) \right| < \frac{\varepsilon}{2^m}.$$

Следовательно, в метрике знаменаль отбрасываю и 2^m тоже отбрасываю и будет неравенство.

$$\rho(f_n, f) \leqslant \sum_{k=1}^{m} |f_n(x_k) - f(x_k)| + \sum_{k=m+1}^{\infty} \frac{1}{2^k} < \varepsilon.$$

Значит, доказали необходимость.

Достаточность. Пусть $\forall n \ge N \quad \rho(f_n, f) < \varepsilon$. Тогда каждое слагаемое в сумме $< \varepsilon$, то есть

$$\frac{\left|f_n(x_k) - f(x_k)\right|}{1 + \left|f_n(x_k) - f(x_k)\right|} < 2^k \varepsilon.$$

Значит, $\left|f_n(x_k)-f(x_k)\right|<\frac{2^k\varepsilon}{1-2^k\varepsilon}.$ И $0<\varepsilon<\frac{1}{2^k}<\varepsilon.$ Ну и осталось только теорему доказать.

Теорема 13.5. Пусть E- сепарабельное пространство. Тогда шар (S^*, ρ) является слабо * компактным метрическим пространством (всякая последовательность имеет слабо сходящуюся подпоследовательность). **Доказательство.** Рассмотрим $\{f_n\}\subset S^*$. Докажем, что эта последовательность сходится на множестве $k=\{x_n\}$ —счётной и полной системе в E. Берём последовательность $\{f_n(x_1)\}_{n=1}^{\infty}$. Это ограниченная последовательность чисел. Она имеет сходящуюся подпоследовательность $\{f_n^{(1)}(x_1)\}.$

Далее берём $\left\{f_n^{(1)}(x_2)\right\}_{n=1}^{\infty}$. Это ограниченная последовательность чисел. Она имеет сходящуюся подпоследовательность $\{f_n^{(2)}(x_2)\}.$

И так далее.

Берём диагональную последовательность $f_{m_n} = f_n^{(n)} \subset \{f_n\}$. Поскольку последовательность диагональная, она будет сходиться в каждой точке $x_n \in K$. Ну всё, значит мы имеем ограниченную подпоследовательность, сходяющуся в каждой точке полной системы элементов. Очевидно, она сходится слабо $f_{m_n} \to f \in S^*$. И теорема доказана.

14 Гильбертовы пространства

Начнём с определений. Сначала определим евклидово бесконечномерное пространство. Обычно математики считают, что евклидово пространство обязательно конечномерное, но нам будет удобно определить иначе. Определение 14.1. Пусть E — линейное пространство на полем $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Для каждой пары элементов $\forall \; x,y \in \; E \; onpedereno \; ckarsphoe \; npoussedenue \; \langle x,y \rangle, \; ecru \; выполнены \; credyrowue \; csoйcmsa.$

- 1. $\forall x, y \in E \ \langle x, y \rangle = \overline{\langle y, x \rangle}$.
- 2. Этот функционал является линейным по первому аргументу

$$\forall \lambda_1, \lambda_2 \in \mathbb{F}, \ x, y \in E \ \langle \lambda_1 x_1 + \lambda_2 x_2, y \rangle = \lambda_1 \langle x_1, y \rangle + \lambda_2 \langle x_2, y \rangle.$$

3. Скалярный квадрат положительно определён как квадратичная форма, то есть $\langle x, x \rangle \geqslant 0$ и $\langle x, x \rangle = 0 \Leftrightarrow$ x = 0.

Пространство вместе со скалярным произведением называется евклидовым пространством. На нём вводится евклидова норма $||x|| = \sqrt{\langle x, y \rangle}$ и евклидова метрика $\rho(x, y) = ||x - y||$.

Давайте проверим, что нами действительно введена норма.

Следущее неравенство Коши доказал для последовательностей, а Буняковский доказал для интегралов. Иногда ещё называют неравенством Шварца.

Утверждение 14.1 (Неравенство Коши—Буняковского). $\forall x, y \in E \ |\langle x, y \rangle| \leq ||x|| \cdot ||y||$.

Доказательство. Берём $z=tx+\lambda y,\,t\in\mathbb{R},\,\lambda=\frac{\langle x,y\rangle}{|\langle x,y\rangle|},\,|\lambda|=1$ и раскрываем скалярный квадрат

$$\langle z, z \rangle = t^2 \langle x, x \rangle + 2t \operatorname{Re}\left(\overline{\lambda} \langle x, y \rangle\right) + |\lambda|^2 \langle y, y \rangle = t^2 ||x||^2 + 2t |\langle x, y \rangle| + ||y||^2 \geqslant 0.$$

 Θ то выполнено для любого t, значит, есть условие на неотрицательность дискриминанта:

$$\left| \langle x, y \rangle \right|^2 \leqslant \|x\|^2 \cdot \|y\|^2.$$

причём отсюда же вытекает, что в случае равенства $z = tx + \lambda y = 0$, то есть x и y линейно зависимы.

Утверждение 14.2. $\forall x, y \in E \ \|x + y\| \le \|x\| + \|y\|$.

Доказательство. Берём скалярный квадрат и раскрываем по свойствам скалярного произведения.

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\operatorname{Re}\langle x, y \rangle + \langle y, y \rangle \leqslant ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Это неравенство верно тогда, когда верно неравенство Коши—Буняковского. Если же $\operatorname{Re}\langle x,y\rangle=\|x\|\cdot\|y\|$, то $x=\lambda y$, где $\lambda\in\mathbb{F}$ и $\operatorname{Re}\lambda=|\lambda|\geqslant 0$.

Таким образом евклидово пространство является строго нормированным. Это нам пригодиться, когда будем говорить об элементе наилучшего приближения.

Утверждение 14.3 (Равенство параллелограмма). $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$.

Доказательство. Доказательство очень простое

$$||x \pm y||^2 = ||x||^2 \pm \text{Re}\langle x, y \rangle + ||y||^2.$$

Оказывается, это равенство является характеристическим свойством евклидова пространства.

Утверждение 14.4. Если нормированное пространство таково, что выполняется равенство параллелограмма, то пространство евклидово, то есть существует скалярное произведение, порождающее заданную норму.

Доказательство этого утверждения можно прочитать в учебнике «Колмогоров-Фомин».

B(X) не является евклидовым пространством. Пусть $X = A \sqcup B, \ f(x) = \chi_A(x), \ g(x) = \chi_B(x),$ Нормы $\|f\|_B := \sup_{x \in X} \big|f(x)\big|$. Значит

$$||f|| = ||g|| = ||f + g|| = ||f - g|| = 1.$$

И неравенство параллелограмма не выполняется.

Утверждение 14.5. *Непрерывность скалярного произведения* (x,y) *для* $x,y \in E$.

Доказательство. Достаточно доказать, что оно пепрерывно в точке x_0, y_0 . Применяем неравенство треугольника для модуля.

$$\left| \langle x, y \rangle - \langle x_0, y_0 \rangle \right| \leqslant \left| \langle x - x_0, y_0 \rangle \right| + \left| \langle x_0, y - y_0 \rangle \right| + \left| \langle x - x_0, y - y_0 \rangle \right| \leqslant$$

Если снять модули, неравенство превращается в равенство. Это так, отступление.

Теперь применяем неравенство Коши-Буняковского

$$\leq \|x - x_0\| \cdot \|y_0\| + \|x_0\| \cdot \|y - y_0\| + \|x - x_0\| \cdot \|y - y_0\|$$

Зафиксируем $\varepsilon > 0$. Возьмём $C > \max \{ \|x_0\|, \|y_0\| \}$ Берём $0 < \delta < \max \{ \frac{\varepsilon}{3C}, C \}$. Тогда для $\|x - x_0\| < \delta$ и $\|y - y_0\| < \delta$ имеем

$$\leq \|x - x_0\| \cdot \|y_0\| + \|x_0\| \cdot \|y - y_0\| + \|x - x_0\| \cdot \|y - y_0\| < \varepsilon.$$

Утверждение 14.6 (Неравенство Беппо—Леви). Пусть $L \subset E$ линейное подпространство, $x \in E \setminus L$, $d = \rho(x, L) = \inf_{y \in L} \|x - y\|$. Утверэюдается, что

$$\forall y, z \in E \ \|y - z\| \le \sqrt{\|x - y\|^2 - d^2} + \sqrt{\|x - z\|^2 - d^2}.$$

Мы это неравенство докажем, используя только свойства скалярного произведения, то есть без геометрических соображений.

Доказательство. Пусть $u = \frac{ty+z}{t+1} \in L$, $||x-u|| \geqslant d$. Рассмотрим скалярный квадрат следующего вида

$$||t(x-y)+x-z)||^2 = ||(t+1)(x-u)||^2 = (t+1)^2||x-u||^2 \ge (t+1)^2d^2.$$

Теперь сам скалярный квадрат раскроем. Я ещё кое-что сразу перенесу из правой части неравенство в левую.

$$t^{2}(\|x-y\|^{2}-d^{2})+2t(\operatorname{Re}\langle x-y,x-z\rangle-d^{2})+(\|x-z\|^{2}-d^{2})\geqslant 0.$$

Опять получили, как в доказательстве неравенства Коши—Буняковского, квадратный трёхчлен. Условие на дискриминант принимает вид

$$(\operatorname{Re}\langle x - y, x - z \rangle - d^2)^2 \le (\|x - y\|^2 - d^2)(\|x - z\|^2 - d^2).$$

Мы теперь будем использовать это неравенство.

$$\begin{aligned} \|y - z\| &= \left\| (x - z) - (x - y) \right\|^2 = \|x - z\|^2 - 2\operatorname{Re}\langle x - z, x - y \rangle + \|x - y\|^2 = \\ &= \left(\|x - z\|^2 - d^2 \right) - 2\left(\operatorname{Re}\langle x - z, x - y \rangle - d^2 \right) + \left(\|x - y\|^2 - d^2 \right) \leqslant \\ &\leqslant \left(\|x - z\|^2 - d^2 + 2\sqrt{\left(\|x - z\|^2 - d^2 \right) \left(\|x - y\|^2 - d^2 \right)} + \left(\|x - y\|^2 - d^2 \right). \end{aligned}$$

А это равносильно доказываемому неравенству.

Определение 14.2. Элементы $x,y\in E$ называются ортогональными $x\perp y,$ если $\langle x,y\rangle=0.$

 $x \perp L$, $ecnu \ \forall \ y \in L \ \langle x, y \rangle = 0$.

 $M \perp L$, ecau $\forall x \in M$, $\forall y \in L \ \langle x, y \rangle = 0$.

Лемма 14.1. Пусть $L \subset E$ линейное подпространство, $x \in E$. Тогда

$$\rho(x,L) = ||x - y||, \ y \in L \Leftrightarrow x - y \perp L.$$

Доказательство. Необходимость от противного. Пусть $\exists z \in L : \langle x - y, z \rangle \neq 0$. Рассмотрим такой элемент $u = y + \lambda z$, где $\lambda = \frac{\langle x - y, z \rangle}{\langle z, z \rangle}$. Тогда по свойствам скалярного произведения.

$$\|x-u\|^2 = \|(x-y) - \lambda z\|^2 = \|x-y\|^2 - 2\operatorname{Re}\left(\overline{\lambda}\langle x-y,z\rangle\right) + |\lambda|^2\langle z,z\rangle = \|x-y\|^2 - \underbrace{|\lambda|^2\langle z,z\rangle}_{\neq 0}.$$

Отсюда видно, что необходимость доказана.

Достаточность. Пусть $\forall \ z \in L \ \langle x-y,z \rangle = 0$. Так как z ортогонален, могу заменить $\langle x-y,x-y \rangle = \langle x-y,x-z \rangle$. Тогда

$$||x - y||^2 = \langle x - y, x - y \rangle = \langle x - y, x - z \rangle \le ||x - y|| \cdot ||x - z||.$$

Можно сократить, получим $\forall z \in L \ \|x - y\| \leqslant \|x - z\|.$

Теорема 14.1. Пусть $L = \sup\{x_1, \dots, x_n\}$, где $x_1, \dots, x_n \in E$ линейно независимы. Пусть также $x \in E \setminus L$. Утверждается, что расстояние выражается через определители

$$\rho(x,L) = \sqrt{\frac{D(x_1, \dots, x_n, x)}{D(x_1, \dots, x_n)}}, \quad D(x_1, \dots, x_n) = \det \begin{pmatrix} \langle x_1, x_1 \rangle & \dots & \langle x_n, x_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle x_1, x_n \rangle & \dots & \langle x_n, x_n \rangle \end{pmatrix}$$

Этот определитель, составленный из скалярных произведений, называется определителем Грама.

Доказательство. В строго нормированном пространстве элемент наилучшего приближения единственный, то есть $\exists ! \ y \in L : \rho(x,L) = \|x-y\| = d$. Запишем такой скалярный квадрат.

$$\langle x - y, x - y \rangle = \langle x - y, x \rangle = d^2; \quad \langle y, x \rangle = \langle x, x \rangle - d^2.$$

Отсюда если мы запишем y в виде линейной комбинации $y = \sum_{k=1}^{n} \lambda_k x_k \in L, \ \lambda_k \in \mathbb{F}, \ k = 1, \dots, n$, то получим систему уравнений

$$\begin{cases} \lambda_1 \langle x_1, x_1 \rangle + \dots + \lambda_n \langle x_n, x_1 \rangle = \langle x, x_1 \rangle; \\ \dots \\ \lambda_1 \langle x_1, x_n \rangle + \dots + \lambda_n \langle x_n, x_n \rangle = \langle x, x_n \rangle; \\ \lambda_1 \langle x_1, x_n \rangle + \dots + \lambda_n \langle x_n, x_n \rangle = \langle x, x_n \rangle - d^2; \end{cases}$$

Так как элемент единственный, система имеет единственное решение, значит, ранг расширенной матрицы системы равен рангу матрицы системы. Определитель расширенной матрицы будет равен нулю. Последний столбец можно представить в виде суммы двух столбцов. Таким образом,

$$D(x_1, \dots, x_n, x) - d^2 D(x_1, \dots, x_n) = 0.$$

Чтобы доказать, что второе слагаемое не равно нулю, нужно применить метод индукции. При n=1 верно. Дальше по индуции доказывам, что определитель Грама не равен нулю, когда элементы линейно независимы. Хотя вы можете это помнить из линейной алгебры.

14.1 Гильбертовы пространства

Определение 14.3. Полное евклидово пространство Н называется гильбертовым пространством.

Пример: $\mathcal{L}_2(E,\mu)$ является гильбертовым пространством. Можем ввести скалярное произведение по формуле

$$\forall f, g \in \mathcal{L}_2(E, \mu) \ \langle f, g \rangle := \int_E f \overline{g} \, d\mu, \quad \|f\|_{\mathcal{L}_2} = \left(\int_E |f|^2 \, d\mu \right)^{\frac{1}{2}} = \sqrt{\langle f, f \rangle}.$$

Другой пример. Частный случай \mathcal{L}_2 , а именно l_2 . Оно тоже является гильбертовым и часто его используют для примеров. Напомню, что это последовательности $x = \left\{x_n\right\}_{n=1}^{\infty}$ элементов поля $x_n \in \mathbb{F}$, для которых $\sum_{n=1}^{\infty} |x_n|^2 < \infty$. Скалярное произведение определяется как

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y}_n, \quad ||x|| = \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{\frac{1}{2}}.$$

Это частный случай \mathcal{L}_2 , а именно когда $E = \mathbb{N}$, а мера $\forall n \in \mathbb{N} \ \mu(\{n\}) = 1$, которую можно продолжить. **Теорема 14.2** (о наилучшем приближении). Пусть H — гильбертово пространство, $L \subset H$ — замкнутое подпространство. Тогда

$$\forall \ x \in H \quad \exists! \ y \in L \colon \rho(x, L) = \|x - y\|.$$

Доказательство. Главное доказать существование, единственность очевидна. Пусть $d = \rho(x, L)$. Тогда

$$\forall n \in \mathbb{N} \ \exists y_n \in L : ||x - y_n||^2 < d^2 + \frac{1}{n^2}.$$

Теперь применяем неравенство Беппо—Леви.

$$\forall n, m \in \mathbb{N} \ \|y_n - y_m\| \leqslant \sqrt{\|x - y_n\|^2 - d^2} + \sqrt{\|x - y_m\|^2 - d^2} = \frac{1}{n} + \frac{1}{m}.$$

То есть $\{y_n\}_{n=1}^{\infty}$ — последовательность Коши в H. Тогда $\exists y = \lim_{n \to \infty} \in L$ в силу замкнутости L. А так как скалярное произведение непрерывно по 14.5, а переход к пределу сохраняет нестрогие неравенства (курс мат. анализа), имеем

$$||x - y|| = \lim_{n \to \infty} ||x - y_n|| \leqslant d.$$

Ну а меньше быть не может, значит, равевняется.

Теорема 14.3 (об ортогональном разложении). Пусть H — гильбертово пространство, $L \subset H$ — замкнутое подпространство. Определим

$$L^{\perp} := \big\{ x \in H \big| \forall \ y \in L \ \langle x, y \rangle = 0 \big\}.$$

Тогда $H = L \oplus L^{\perp}$.

Мы здесь ещё утверждаем, что прямое произведение топологий совпадает с топологией на H, это мы доказывать не будем, хотя это совсем просто.

Доказательство. По теореме о наилучшем приближении

$$\forall x \in H \quad \exists! \ y \in L \colon \rho(x, L) = ||x - y||.$$

Определим ортогональную проекцию $P(x) = y \in L, P \colon H \to L$. Мы можем ещё рассмотреть элемент $z = x - y \perp L$ по доказанной лемме 14.1. Поэтому x = y + z, где $y \in L$, а $z \in L^{\perp}$.

Осталось доказать, что подпространства не пересекаются. Для этого нужно доказать единственность разложения. Пусть у нас есть два разложения $x=y_1+z_1=y_2+z_2$, Тогда $y_1-y_2=z_2-z_1\in L\cap L^\perp$. Значит, эти элементы-разности ортогональны самим себе, то есть равны нулю. Таким образом, $L\cap L^\perp=\{0\}$. Следствие 14.1. Пусть H — гильбертово пространство, $L\subset H$ — линейное подпространство. Тогда L всюду плотно в H, если и только если $L^\perp=0$.

Доказательство. Докажем необходимость. Если L всюду плотно в H, то по определению $\overline{L}=H$. Значит, всякий элемент из H является пределом последовательности элементов из L, то есть

$$\forall \ x \in H \ \exists \ x_n \in L \colon x_n \xrightarrow[n \to \infty]{} x.$$

Тогда в силу непрерывности скалярного произведения 14.5

$$\forall \ x \in H, \ \forall \ y \in L^{\perp} : y \neq 0 \quad \langle x, y \rangle = \lim_{n \to \infty} \langle x_n, \underbrace{y}_{\neq 0} \rangle = 0.$$

Поэтому отсюда вытекает, что $L^{\perp} \subset H^{\perp}$, ну а $H^{\perp} = \{0\}$. И необходимость доказана.

Достаточность. Пусть $L^{\perp} = \{0\}$. Hy a $(\overline{L})^{\perp} \subset L^{\perp} = \{0\} \Rightarrow (\overline{L})^{\perp} = \{0\}$. Значит, $H = \overline{L} \oplus (\overline{L})^{\perp} = \overline{L}$.

В необходимости достаточно евклидовости пространства, а в достаточности существенна полнота гильбертова пространства. Пример на случай, когда для евклидова пространства эта достаточность не верна. Рассмотрим $C[0,1]\subset \mathcal{L}_2[0,1]$ (здесь, конечно, берётся мера Лебега на отрезке [0,1]). E=C[0,1] евклидово, если рассматривать скалярное произведение и норму из \mathcal{L}_2 . Теперь рассмотрим множество многочленов

$$M = \left\{ P(x) = \sum_{k=1}^{n} a_k x^k \middle| P \perp \chi_{[0,1/2]} \right\}.$$

Ясно, что $M \subset C[0,1]$. И его ортогональное дополнение $M^{\perp} = 0$ в C[0,1], так как в \mathcal{L}_2 ортогональным дополнением будет прямая, натянутая на $\chi_{[0,1/2]}$. M не является всюду плотным в C[0,1], если бы являлось, то и в \mathcal{L}_2 тоже, а это не верно.

15 Ортонормированные системы

Сначала мы докажем одно следствие теоремы об ортогональном разложении. Оно опирается на ещё несколько теорем.

Теорема 15.1 (Рисса). Пусть H — гильбертово пространство, $\alpha \in H^*$. Тогда $\exists ! \ y \in H$:

1.
$$\forall x \in H \quad \alpha(x) = \langle x, y \rangle;$$

2.
$$\|\alpha\| = \|y\|$$
.

Доказательство. Обозначим через L ядро этого функционала $L=\ker(\alpha)=\left\{x\in H\big|\alpha(x)=0\right\}$. Так как функционал ограниченный, он непрерывный, $L\subset H$ замкнутое подпространство. Если $L^\perp=0$, то по теореме об ортогональном разложении $L=H\Rightarrow\alpha=0$. Тогда можно взять y=0.

Теперь предположим, что $L^{\perp} \neq 0$. Тогда $\exists z \in L^{\perp} : ||z|| = 1$ (потому что ортогональное дополнение имеет элемент неравный нулю, возьмём его и нормируем). Положим $u = \alpha(x)z - \alpha(z)x$. Очевидно, $\alpha(u) = 0$. Значит, $u \in L$. Поэтому

$$0 = \langle u, z \rangle = \alpha(x)\langle z, z, \rangle - \alpha(z)\langle x, z \rangle = \alpha(x) - \langle x, y \rangle,$$

где элемент $y = \overline{\alpha(z)}z$. Значит, мы нашли элемент y, для которого $\forall x \in H \ \alpha(x) = \langle x, y \rangle$.

Докажем его единственность. Пусть $\forall x \in H \ \langle x, y_1 \rangle = \langle x, y_2 \rangle$. Тогда $\langle x, y_1 - y_2 \rangle = 0$ и, значит, $y_1 - y_2 = 0$. Ну и теперь осталось доказать последнее условие теоремы. В силу неравенства Коши—Буняковского, имеем

$$\left|\alpha(x)\right| = \left|\langle x, y \rangle\right| \leqslant \|x\| \cdot \|y\| \Rightarrow \|\alpha\| \leqslant \|y\|, \quad x = \frac{y}{\|y\|} \Rightarrow \|\alpha\| = \|y\|.$$

Отсюда вытекает

Следствие 15.1. H^* изоморфно H.

Пример 1.
$$H=l_2,\ x=\left\{x_n\right\}_{n=1}^{\infty}, y=\left\{y_n\right\}_{n=1}^{\infty}\in l_2,\ \|x\|=\sqrt{\langle x,x},\ \langle x,y\rangle=\sum_{n=1}^{\infty}x_n\overline{y}_n.$$
 Тогда

$$\forall \alpha \in l_2^* \exists y \in l_2 : \forall x \in l_2 \quad \alpha(x) = \langle x, y \rangle, \|\alpha\| = \|y\|_{l_2}.$$

Такой же пример можно привести и для $L_2(E,\mu)$, $||f|| = \left(\int\limits_E |f|^2 d\mu\right)^{\frac{1}{2}}$, $\langle f,g \rangle = \int\limits_E f\overline{g} d\mu$ для $f,g \in L_2(E,\mu)$. Тогда

$$\forall \alpha \in L_2^*(E,\mu) \quad \exists! \ g \in L_2(E,\mu) \colon \alpha(f) = \int_E fg \, d\mu.$$

Единственность понимается специальным образом. С точностью до эквивалентности. Сопряжение от g можно было бы поставить, но ведь \bar{g} тоже лежит в $L_2(E,\mu)$.

Мы даже не будем требовать гильбертовость сейчас.

Определение 15.1. Система элементов $\{e_n\}_{n=1}^{\infty} \subset E$ евклидова пространства называется ортонормированной, если

$$\langle e_n, e_m \rangle = 0 \quad (n \neq m), \quad \langle e_n, e_n \rangle = 1.$$

Просто ортогональной, если только первое условие.

 $Cucmema \left\{e_n\right\}_{n=1}^{\infty}$ называется **тотальной**, если

$$\forall n \in \mathbb{N} \ \langle x, e_n \rangle = 0 \Rightarrow x = 0.$$

Иногда это называют полнотой системы $\left\{e_n\right\}_{n=1}^{\infty}.$

Определение 15.2. Пусть $x \in E$. Обозначим $_n = \langle x, e_n \rangle$. Эти числа c_n называются коэффициентами Фурье. Тогда каждому элементу x соответствует ряд Фурье

$$x \sim \sum_{n=1}^{\infty} c_n e_n.$$

Обозначим также $S_n = \sum_{k=1}^n c_n e_n$ — частичные суммы ряда Фурье.

Вообще говоря, этот ряд не сходится к элементу x. Для того, чтобы элемент сходился, нужно, чтобы система была полной.

Давайте несколько свойств перечислим.

Утверждение 15.1 (Неравенство Бесселя). $||x||^2 \geqslant \sum_{n=1}^{\infty} |c_n|^2$.

Доказательство. Доказывается очень просто. Вычисляя скалярный квадрат по свойствам скалярного произведения, мы получим

$$||x - S_n||^2 = \langle x - S_n, x - S_n \rangle = \langle x, x \rangle - 2 \operatorname{Re}\langle x, S_n \rangle + \langle S_n, S_n \rangle = ||x||^2 - \sum_{k=1}^n |c_n|^{\geqslant} 0.$$

Отсюда вытекает неравенство Бесселя, если перейти к пределу по $n \to \infty$ в неравенстве.

Утверждение 15.2 (Равенство Парсеваля). Равенство в неравенстве Бесселя выполняется тогда и только тогда, когда ряд Фурье сходится к элементу x, то есть

$$||x||^2 = \sum_{n=1}^{\infty} |c_n|^2 \iff ||x - S_n|| \searrow 0$$

в силу доказанного равенства.

Утверждение 15.3 (Обобщённое равенство Парсеваля). *Равенство Парсеваля выполняется, если и только если выполняется обобщённое равенство*

$$\forall x \in E \ \|x\|^2 = \sum_{n=1}^{\infty} |c_n|^2 \Leftrightarrow \forall x, y \in E \ \langle x, y \rangle = \sum_{n=1}^{\infty} c_n \overline{d}_n,$$

 $ede c_n = \langle x, y \rangle, d_n = \langle y, e_n \rangle.$

Доказательство. Берём $\lambda \in \mathbb{F}$, элемент $x + \lambda y \in E$. Раскоем равенство Парсеваля для этого элемента

$$||x + \lambda y||^2 = \sum_{n=1}^{\infty} |\langle x + \lambda y, e_n \rangle|^2 = \sum_{n=1}^{\infty} |c_n + \lambda d_n|^2 = \sum_{n=1}^{\infty} |c_n|^2 + 2\sum_{n=1}^{\infty} \operatorname{Re}(\overline{\lambda} c_n \overline{d}_n) + |\lambda|^2 \sum_{n=1}^{\infty} |d_n|^2.$$

В лекциях у нас на кафедре двоечка пропущена.

С другой стороны можно раскрыть скалярный квадрат по свойствам скалярного произведения

$$||x + \lambda y|| = ||x||^2 + 2 \operatorname{Re}(\overline{\lambda}\langle x, y \rangle) + |\lambda|^2 ||y||^2.$$

Опять используя равенство Парсеваля, видим, что $\sum\limits_{n=1}^{\infty}|c_n|^2=\|x\|^2$, а $\|\lambda\|^2\|y\|^2=\sum\limits_{n=1}^{\infty}|d_n|^2$. Откуда

$$\operatorname{Re}\left(\overline{\lambda}\langle x, y\rangle\right) = \sum_{n=1}^{\infty} \operatorname{Re}(\overline{\lambda}c_n\overline{d}_n).$$

Теорема 15.2 (Стеклова). Ортонормированная система $\{e_n\}_{n=1}^{\infty} \subset E$ является полной, если и только если выполняется равенство Парсеваля, то есть

$$\forall x \in E \ \|x\|^2 = \sum_{n=1}^{\infty} |c_n|^2$$

Доказательство. Необходимость. Пусть $\left\{e_n\right\}_{n=1}^{\infty}$ полная система. Зафиксируем $\varepsilon>0, x\in E$. Тогда найдётся $y=\sum\limits_{k=1}^{m}\lambda_ke_k\in\operatorname{sp}\left\{e_k\right\}_{k=1}^{m}=:L_=m,$ для которого $\|x-y\|<\varepsilon.$ Так как $x-s_m\perp L_m,$ для $n\geqslant m$ имеем

$$||x - S_n|| \le ||x - S_m|| \le ||x - y|| < \varepsilon.$$

Ну а это и означает, что ряд Фурье сходится к элементу x. А по свойству 2 равенства Парсеваля, если ряд Фурье сходится, то и равенство Парсеваля верно.

Докажем достаточность. Пусть выполнено равенство Парсеваля $||x||^2 = \sum_{n=1}^{\infty} |c_n|^2$. Тогда

$$||x - S_n|| = ||x||^2 - \sum_{k=1}^n |c_k|^2 \xrightarrow[n \to \infty]{} 0.$$

Ну это и означает, что всякий x отклоняется от частичный суммы меньше чем на ε . То есть линейная оболочка всюду плотна и, следовательно, система полна.

Следствие 15.2. Ортонормированная система $\{e_n\}_{n=1}^{\infty} \subset H$ гильбертова пространства полна, если и только если $\{e_n\}_{n=1}^{\infty}$ тотальна. Иными словами, в гильбертовом пространстве полнота равносильна тотальности. Доказательство. Необходимость. Если система полна и $\forall n \in \mathbb{N}$ $c_n = 0$, то из равенства Парсеваля, следует, что норма $\|x\|^2 = \sum_{n=1}^{\infty} |c_n|^2 = 0$. Значит, x = 0. Это мы доказали тотальность.

Достаточность. Пусть $L = \operatorname{sp} \left\{ e_n \right\}_{n=1}^{\infty}$, тогда $L^{\perp} = 0$. А по следствие из теоремы об ортогональном дополнении, $\overline{L} = H$. Следовательно, система полна.

В евклидовом пространстве это неверно. Мы в конце прошлой лекции построили пример. $M \subset C[0,1] \subset L_2[0,1]$, состоящее из алгебраических многочленом. Его ортогональное дополнение в C в евклидовой норме из L_2 всюду плотно, но его ортогональное дополнение не равно нулю.

Следующая теорема у вас была уже в курсе линейной алгебры, но мы её подкорректируем.

Теорема 15.3 (Метод ортогонализации Грамма—Шмидта). Для всякой счётной системы линейно независимых элементов евклидова пространства существует линейная ортонормированная система, то есть

$$\forall \left\{ x_n \right\}_{n=1}^{\infty} \subset E \ \exists \left\{ e_n \right\}_{n=1}^{\infty} \subset E,$$

 $ede\left\{e_n\right\}_{n=1}^{\infty}$ ортонормирована, причём элементы x_n выражаются через e_n . $\left\{x_n\right\}_{n=1}^{\infty}$ полна $\Leftrightarrow \left\{e_n\right\}_{n=1}^{\infty}$ полна. Доказательство. Положим $y_1=x_1$, нормируем $e_1=\frac{y_1}{\|y_1\|}$. Берём $y_2=x_2-\langle x_2,e_1\rangle e_1\perp e_1$ и нормируем $e_2=\frac{y_2}{\|y_2\|}$. И так далее

$$y_n := x_n - \sum_{k=1}^{n-1} \langle x_n, e_k \rangle e_k \perp e_1, \dots, e_{n-1}, \quad e_n = \frac{y_n}{\|y_n\|}.$$

Получаем систему уравенений

$$\begin{cases} e_1 = a_{11}x_1; \\ e_2 = a_{21}x_1 + a22x_2; \\ \dots \\ e_n = e_{n1}x_1 + \dots + a_{nn}x_n; \\ \dots \\ \end{cases}$$

Матрица этой системы треугольная. Причём $a_{nn},$ значит, система определена.

Теорема 15.4 (Рисса—Фишера). Каждое сепарабельное гильбертово пространство H изометрически изоморфно либо пространству \mathbb{F}^n , либо пространству l_2 . Соответственно, если H над \mathbb{R} , то $\mathbb{F}^n = \mathbb{R}^n$, а l_2 над \mathbb{R} , над \mathbb{C} аналогично.

Доказательство. Так как пространство сепарабельно, по определению в нём существует счётная полная система элементов. Давайте её обозначим $\left\{x_n\right\}_{n=1}^{\infty} \subset H$. Вообще говоря, эти элементы могут быть линейно зависимы. По индукции выбрасываем те элементы, которые зависят от предыдущих. Полнота останется у системы, так как линейная оболочка не изменится. Если останется конечное число элементов, то всё ещё было доказано в курсе линейной алгебры. Пусть система бесконечна, $\dim H = \infty$.

Построим по полученной полной счётной линейно незивисимой системе счётную полную ортонормированную $\{e_n\}_{n=1}^{\infty}\subset H$. Таким образом, может для любого элемента $x\in H$ рассматривать ряд Фурье $x=\sum_{n=1}^{\infty}c_ne_n$, где $c_n=\langle x,e_n\rangle$ — коэффициенты Фурье. Определим отображение

$$F: H \to l_2, \quad F(x) = c = \left\{c_n\right\}_{n=1}^{\infty}.$$

Почему $c \in l_2$? В силу равенства Парсеваля $\|F\|^2 = \|c\|_{l_2}^2 = \sum_{n=1}^{\infty} |c_n|^2 = \|x\|^2$. Получается изометричное отображение. Осталось доказать, изоморфность, то есть, что F — это «отображение на», то есть $\operatorname{Im}(F) = l_2$.

Возьмём $c = \{c_n\}_{n=1}^{\infty} \in l_2$. Найдём элемент $x \in H$, у которого c_n будут является коэффициентами Фурье. Для этого рассмаотрим $S_n = \sum_{k=1}^n c_k e_k \in H$. Раскроем скалярный квадрат по свойствам скалярного произведения

и используем ортонормированность системы.

$$||S_n - S_m||^2 = \langle S_n - S_m, S_n - S_m \rangle = \left\langle \sum_{k=m+1}^n c_k e_k, \sum_{k=m+1}^n c_k e_k \right\rangle = \sum_{k=m+1}^n |c_k|^2 \to 0 \quad (m \to \infty)$$

Таким образом, $\left\{S_n\right\}_{n=1}^{\infty}$ — последовательность Коши в H. Значит, существует предел $\exists \lim_{n \to \infty} S_n = x \in H$. Осталось доказать, что c_n есть его коэффициенты Фурье.

$$\forall n \in \mathbb{N} \ \langle x, e_m \rangle = \lim_{n \to \infty} \langle S_n, e_m \rangle = c_m.$$

Таким образом, c_n — последовательность коэффициентов Фурье. И, следовательно, теорема доказана полностью. Мы даже получили изометрический изоморфизм.

Осталось мне привести примеры. Рассмотрим $L_2[0,1]$, мера Лебега обычна. И рассмотрим $e_n = e^{2\pi i n x} = \cos(2\pi n x) + i\sin(2\pi n x)$, $n \in \mathbb{Z}$. Покажем, что эта система является полной. Пусть $\varepsilon > 0$. Тогда по теореме о всюду плотности C[0,1] в $L_p[0,1]$

$$\forall f \in L_2[0,1] \ \exists g \in C[0,1] \colon ||f - g||_{L_2} < \frac{\varepsilon}{3}.$$

Чтобы применить теорему Вейерштрасса, нам нужна не просто непрерывная функция, но ещё и периодическая. Это довольно легко сделать.

$$\exists \varphi C[0,1] \colon \varphi(0) = \varphi(1), \ \|g - \varphi\|_{L_2} < \frac{\varepsilon}{3}.$$

Можно на отрезке $[0, \delta]$ заменить функцию на линейную $g(1) + (g(\delta) - g(1))t$. Если δ маленькая, получаемая площадь разностей $g - \varphi$ будет маленькая.

Далее по теореме Веерштрасса

$$\exists T(x) = \sum_{k=-n}^{n} c_k e_k \colon \|\varphi - T\|_{L_2} \leqslant \|\varphi - T\|_C < \frac{\varepsilon}{3}.$$

Построили такие функции, теперь применяем неравенство треугольника.

$$||f - T||_{L_2} \le ||f - g||_{L_2} + ||g - \varphi||_{L_2} + ||\varphi - T||_{L_2} < e.$$

Вот мы и доказали, что линейная оболочка системы $\{e_n\}_{n=1}^{\infty}$ всюду плотна в $L_2[0,1]$. Также $L_2[0,1]$ изометрически изоморфна l_2 . Точно так же изоморфизм строиться. Для каждой функции берём последовательность коэффициентов Фурье.

16 Пространства сходимости

Для того, чтобы нам теорию обобщённых функций рассмотреть, сегодняшняя лекция будет о некоторых специальных спространствах.

Пространства будут определяться с помощью определения того, что значит последовательность сходится. Введём понятие абстрактной сходимости.

Пусть E — линейное пространство над $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. ζ — множество всех сходящихся последовательностей. Предполагается, что задано какое-то множество последовательностей, которые мы называем сходящимися. Определение 16.1. Пара (E, ζ) называется пространством сходимости, если выполнены следующие аксиомы:

- 1. $\forall \{x_n\} \in \zeta \quad \exists! \ x = \lim x_n;$
- 2. $ecnu \exists n_0 \in \mathbb{N} : \forall n \geqslant n_0 \quad x_n = x, mo \{x_n\} \in \zeta \ u \lim x_n = x;$
- 3. $ecnu\{x_n\} \in \zeta$, $mo \ \forall \{x_{n_k}\} \in \zeta \ u \ \lim x_{n_k} = \lim x_n$;
- 4. $ecnu\{x_n\}, \{y_n\} \in \zeta, mo\{x_n + y_n\} \in \zeta \ u \ \lim(x_n + y_n) = \lim x_n + \lim y_n;$
- 5. $ecau\{x_n\} \in \zeta \ u \{\lambda_n\} \in \zeta_{\mathbb{F}}, \ mo \{\lambda_n x_n\} \in \zeta \ u \lim \lambda_n x_n = \lim \lambda_n \cdot \lim x_n.$

Эти аксиомы естественные. Они выполняются в нормированных и метрических линейных пространствах. Определение 16.2. Отображение $f \colon E \to F$ одного пространства сходимости в другое называется непрерывным (секвенциально), если

$$\forall \{x_n\} \in \zeta_E \ \{f(x_n)\} \in \zeta_F \ u \ \lim f(x_n) = f(\lim x_n).$$

Естественное определение непрерывности по последовательностям.

Ну давайте ещё одно определение дам.

Определение 16.3. Пространство сходимости (E,ζ) называется регулярным, если для всякой двойной последовательности $\{x_{nk}\}$, для которой существует предел $\exists \lim_k x_{nk} = x_n \ u \ \exists \lim_n x_n = x$, существует $\exists k_n \to \infty$ такая, что $\lim_{n \to \infty} x_{n k_n} = x$.

Лемма 16.1. Метрическое линейное пространство (E, ρ) является регулярным пространством сходимости. В частности, это верно и для нормированных.

Доказательство. Сходимость там уже задана. Нужно доказать регулярность. По условию задана двойная последовательность, у которой есть пределы по строкам и существует предел этих пределов.

Обозначим квазинорму $\|x\| = \rho(x,0)$ — расстояние от x до нуля. Хотя мне квазинорма не нужна.

Запишем наше условие:

$$\lim_{k} \rho(x_{nk}, x_n) = 0; \qquad \lim_{n} \rho(x_n, x) = 0.$$

Для фиксированного n имеем $\exists k_n \to \infty : \rho(x_{nk_n}, x_n) < \frac{1}{n}$. Следовательно, расстояние

$$\rho(x_{nk_n}, x) \leqslant \rho(x_{nk_n}, x_n) + \rho(x_n, x) \xrightarrow[n \to \infty]{} 0.$$

То есть некоторая диагональная последовательность стремится к x.

Определение 16.4. Последовательность $\{x_n\}$ называется безусловно суммируемой, если для каждой подпоследовательности сходится ряд, то есть $\forall \{x_{n_k}\}$ сходится ряд $\sum_{k=1}^{\infty} x_{n_k}$, то есть последовательность частичных сумм лежит в ζ .

Для последовательности действительных чисел—это абсолютная сходимость ряда из этих чисел. Для комплексных чисел чуть по-другому.

Определение 16.5. В пространстве сходимости (E,ζ) выполняется аксиома полноты, если

$$\forall \{x_n\} \in \zeta$$
: $\lim x_n = 0 \quad \exists \{x_{n_k}\}$ безусловно суммируемая.

Это определение вводится для того, чтобы в последствии доказать полноту сопряжённого пространства. **Лемма 16.2.** Если метрическое линейное пространство (E, ρ) полно, то в нём выполняется аксиома полноты. **Доказательство.** Нам задана последовательность, которая стремится к нулю. Здесь нам понадобися квазинорма $||x|| = \rho(x, 0)$. Раз последовательность стремится к нулю, выполняется следующее свойство

$$\lim \|x_n\| = 0.$$

Отсюда следует, что существует такая подпоследовательность $\{n_k\}$, для которой $\|x_{n_k}\| < \frac{1}{2^k}$.

Давайте докажем теперь, что ряд $\sum_{k=1}^{\infty} x_{n_k}$ сходится. В самом деле, берём частичные суммы $S_n = \sum_{k=1}^n x_{n_k}$ этого ряда и рассматриваем

$$||S_m - S_n|| = \left\| \sum_{k=n+1}^m x_{n_k} \right\| \le \sum_{k=n+1}^m ||x_{n_k}|| < \frac{1}{2^n}.$$

Значит, последовательность частичных сумм является последовательностью Коши. А так как пространство полное, то значит, существует предел $\exists S_n$. Но нам нужно доказать больше, что всякий подряд тоже сходится. Это доказывается аналогично с помощью того же самого неравенства.

Давайте теперь приведём плохой пример. $\mathcal{K}(\mathbb{R}) = C_0(\mathbb{R})$ — по-разному обозначают множество непрерывных функций $\varphi \colon \mathbb{R} \to \mathbb{R}$, определённых на всей прямой, у которых компактный носитель, то есть $\sup(\varphi) \in \mathbb{R}$.

$$\operatorname{supp}(\varphi) := \overline{\left\{ x \in \mathbb{R} \mid \varphi(x) \neq 0 \right\}}.$$

Определение 16.6. $\varphi_n \xrightarrow[n \to \infty]{} \varphi$, если

(1)
$$\varphi_n \xrightarrow{R} \varphi$$
;

(2)
$$\exists K \in \mathbb{R} : \operatorname{supp}(\varphi_n) \subset K$$
.

Мы знаем, что всякая равномерная последовательность Коши является равномерно сходящейся. Значит, в этом пространстве $\mathcal{K}(\mathbb{R})$ выполняется аксиома полноты. Но однако, это пространство не является метрическим просранством, поскольку сходимость не является регулярным. То есть не существует метрики, чтобы сходимость по метрике совпадала с данной.

$$\eta(x) = \begin{cases} 1 - |x|, & |x| \le 1; \\ 0, & |x| > 1. \end{cases}$$

И построим последовательность $\varphi_{nk}(x) = \frac{1}{k}\eta\left(\frac{x}{n}\right)$. Выполнены условия из определения сходимости, то есть $\lim_{k\to\infty} \varphi_{nk}(x) = 0$ в $\mathcal{K}(\mathbb{R})$. Но если у нас есть последовательность $\{k_n\}$, то $\varphi_{n\,k_n}$ φ_{nk} φ_{nk

Такиим образом, $\mathcal{K}(\mathbb{R})$ не является метрическим по лемме (16.1).

Этот пример характерный. Мы увидим, что пространство основных функций также не является метрическим. Определение 16.7. Пусть (E,ζ) — пространство сходимости. Через (E',ζ') будем называть сопряжённое пространство сходимости. Здесь E' — множество всех линейных непрерывных функционалов $f: E \to \mathbb{F}$, а сходимость определяется так: $f_n \to f$, если $\forall x \in E \mid \lim f_n(x) = f(x)$.

Пемма 16.3. Пусть задана двойная последовательность комплексных чисел $\{a_{mn}\} \subset \mathbb{F}$, такая, что

- (1) $\forall m \in \mathbb{N} \ \exists \lim_{n} a_{mn} = b_m,$
- (2) $\exists \varepsilon > 0, \exists m \in \mathbb{N} : |b_m| > \varepsilon,$
- (3) $\forall n \text{ ряд } \sum_{m=1}^{\infty} a_{mn} \text{ абсолютно сходится.}$

Тогда $\exists m_l \to \infty \ u \ \exists n_k \to \infty, \ для которых$

$$\left| \sum_{l=1}^{\infty} a_{m_l n_k} \right| = \infty.$$

Доказательство. Мы не будем доказывать для комплексных. Это доказательство сводится к случаю действительных чисел. Пусть $a_{mn} \in \mathbb{R}$. Существует $n_1 < n_2 < \ldots$, для которой $\forall \ n \geqslant n_k \ |a_{kn}| > \varepsilon$ по первым двум свойствам. Отсюда

$$\sum_{m=1}^{\infty} |a_{mn_k}| \geqslant \sum_{m=1}^{k} |a_{mn_k}| > k \varepsilon.$$

Действительно, поскольку n_k возрастают, вместо n_k могу брать n_m , для которого есть уже эта оценка.

$$\lim_k \sum_{m=1}^\infty |a_{mn_k}| = \infty \Rightarrow \lim_k \sum_{m=1}^\infty a_{mn_k}^+ = \infty \text{ или } \lim_k \sum_{m=1}^\infty a_{mn_k}^- = \infty.$$

где $a^{\pm} = \max\{\pm a, 0\}.$

Теорема 16.1. Если в (E,ζ) выполнена аксиома полноты, то (E',ζ') является полным.

Доказательство. От противного, пусть $f_n \to f$ и $f_n \in E'$, однако $f \notin E'$. Придём к противоречию при помощи леммы. Функционал линейный, а то, что он не из E', значит, он не является непрерывным, причём во всех точках (в силу линейности), например не является непрерывным в нуле. Это значит, что

$$\exists \ \varepsilon > 0, \ \exists \ x_m \to 0: |f(x_m)| > \varepsilon.$$

Значит, $\{x_m\}$ — безусловно суммируемая последовательность. Теперь используем лемму. Пусть $a_{mn}:=f_n(x_m)$. Легко проверить, что ряды по n безусловно сходится, ну и все остальные условия леммы будут выполнены. Поэтому существуют такие подпоследовательности $m_l \to \infty$ и $n_k \to \infty$, такие, что

$$\lim_{k \to \infty} \left| \sum_{l=1}^{\infty} a_{m_l n_k} \right| = \infty.$$

Пусть $x = \sum_{l=1}^{\infty} x_{m_l}$. Так как последовательность x_n безусловно суммируемая, то ряд сходится к элементу x. Тогда в силу того, что f_n сходится в каждой точке

$$|f(x)| = \lim_{k \to \infty} |f_{n_k}(x)| = \lim_{k \to \infty} \left| \sum_{l=1}^{\infty} f_{n_k}(x_{m_k}) \right| = \infty.$$

Вынести сумму смогли, так как $f_{n_k} \in E'$ и в частности непрерывны. Значит, у нас функционал оказался равен бесконечности.

Напомню определение полунормы.

Определение 16.8. $p: E \to \mathbb{R}_+$ полунорма, если

- (1) $\forall \lambda \in \mathbb{F}, \ \forall \ x \in E \ p(\lambda x) = |\lambda| p(x).$
- (2) $\forall x, y \in E \quad p(x+y) \leq p(x) + p(y)$.

Определение 16.9. Пусть (E, \mathcal{P}) , где E — линейное пространство, где \mathcal{P} — система полунорм. Пара называется полинормированным пространством, если из того, что $\forall \ p \in \mathcal{P}$ p(x) = 0 следует, что x = 0.

Определение 16.10. $x_n \to x$ в (E, \mathcal{P}) , если $\forall p \in \mathcal{P}$ $\lim_n p(x_n - x) = 0$, то есть

$$\forall p \in \mathcal{P}, \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geqslant N \ p(x_n - x) < \varepsilon.$$

Определение 16.11. $\{x_n\}$ — последовательность Коши в (E,\mathcal{P}) , если $\forall \ p \in \mathcal{P}$ $\lim_{m \to \infty} p(x_n - x_m) = 0$, то есть

$$\forall p \in \mathcal{P} \ \exists N \in \mathbb{N} : \forall n, m \geqslant N \ p(x_n, x_m) < \varepsilon.$$

Например, сопряжённое пространство (E', ζ') является полинормированным пространством относительно системы полунорм $p_x(f) := |f(x)|$. Очевидно, что так как модуль обладает определёнными свойствами, то это будут полунормы. А если все модули равны нулю, то и $f \equiv 0$.

Определение 16.12. Полинормированное пространство (E, \mathcal{P}) называется счётно нормированным, если система полунорм счётная, задаётся последовательность полунорм $\mathcal{P} = \{p_n\}.$

Лемма 16.4. Пусть (E, \mathcal{P}) , $\mathcal{P} = \{p_n\}$ — счётно нормированное пространство. Тогда сходимость в этом пространстве (E, \mathcal{P}) равносильна сходимости относительно метрики

$$\rho(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(x-y)}{1 + p_n(x-y)}.$$

Можно, конечно, и другую формулу придумать. Но нам достаточно её, чтобы доказать, что каждое счётно нормированное пространство является метрическим.

Доказательство. Надо доказать сначала, что это метрика. Мы с вами уже сталкивались с ней, я просто повторю.

- 1. $\rho(x,y) = \rho(y,x)$ очевидно:
- 2. $\rho(x,y)\leqslant \rho(x,z)+\rho(z,y)$, а это уже нужно доказывать. Имеем $\varphi(t)=\frac{t}{1\perp t}$ возрастает, $\varphi(t+s)\leqslant \varphi(t)+\varphi(s)$. Отсюда и вытекало у нас неравенство треугольника.
- 3. $\rho(x,y) = 0 \Rightarrow \forall n \ p_n(x-y) = 0 \Rightarrow x = y$.

Таким образом, эта формула определяет некоторую метрику. Нужно ещё проверить, что относительно этой метрики операции сложения и умножения на число непрерывны. Я не буду это проверять, это достаточно просто делается.

Значит, (E, ρ) — метрическое линейное пространство. Покажем, что сходимости равносильны.

Пусть $x_n \to x$ в (E, \mathcal{P}) . Берём $\varepsilon > 0$, тогда $\exists m : \frac{\varepsilon}{2} > \frac{1}{2^m}$. Так как $p_k(x_n - x) \to 0$, то

$$\exists n_k : \forall n \geqslant n_k \ p_k(x_n - x) < \frac{\varepsilon}{2m}.$$

Возьмём $N:=\max_{1\leq k\leq m}\{n_k\}$. Тогда

$$\rho(x_n, x) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{p_k(x_n - x)}{1 + p_k(x_n - x)} \leqslant \sum_{k=1}^{\infty} m p_k(x_n - x) + \sum_{k=m+1}^{\infty} \frac{1}{2^k} < \varepsilon.$$

Разбили сумму на две. В одной дробь больше единицы, в другой — меньше.

Теперь обратно нужно доказать. Пусть $\rho(x_n,x)\to 0$. Тогда $\frac{1}{2^k}\frac{p_k(x_n-x)}{1+p_k(x_n-x)}\to 0$, то есть

$$\forall \varepsilon > 0 \; \exists \; N \in \mathbb{N} : \forall \; n \geqslant N \quad \frac{1}{2^k} \frac{p_k(x_n - x)}{1 + p_k(x_n - x)} < \varepsilon.$$

Фиксируем число k Тогда $\forall n\geqslant N$ $p_k(x_n)<\frac{\varepsilon\,2^k}{1-\varepsilon\,2^k}.$ Поэтому последовательность у нас сходится в счётно нормированном пространстве.

■ Можно доказатель, что последовательности Коши относительно счётной системы полунорм и последовательности Коши относительно метрики.

Определение 16.13. Пусть (E, \mathcal{P}_E) и (F, \mathcal{P}_F) — полунормированные пространства. Линейное отображение $f \colon E \to F$ называется ограниченным, если

$$\forall p \in \mathcal{P}_F \ \exists p_1, \dots, p_n \in \mathcal{P}_E, \ \exists c > 0 \colon p(f(x)) \leqslant c(p_1(x) + \dots + p_n(x)).$$

Это определение согласуется с определением ограниченных операторах в нормированных пространствах. **Теорема 16.2.** Пусть (E, \mathcal{P}) — счётно нормированное пространство. Тогда линейное отображение $f: E \to F$ ограничено, если и только если f непрерывно.

Доказательство. Необходимость очевидная. Если ограничены, то есть выполнено неравенство; в нём если правая часть стремится к нулю, то и левая тоже.

Нужно доказать достаточность. Пусть отображение непрерывно. Пусть $q_n(x) = \sum_{k=1}^n p_k(x)$, где $\mathcal{P}_E = \{p_n\}$ — заданная счётная система полунорм. Если f не являетя ограниченным, то существует $p \in \mathcal{P}_F$ и последовательность $\{x_n\}$, такие, что

$$p(f(x_n)) \geqslant n \, q_n(x_n). \tag{7}$$

Пусть у нас $y_n = \frac{1}{\sqrt{n}q_n(x_n)} \cdot x_n$. Рассмотрим такие элементы. В силу неравенства (7) получаем $p(y_n) > \sqrt{n}$. То есть $p_k(y_n) \to 0$, но $f(y_n) > 0$, поскольку

$$p_k(y_n) = \frac{p_k(x_n)}{\sqrt{n}q_n(x_n)} \leqslant \frac{1}{\sqrt{n}} \to 0.$$

Нужно ещё привести примеры. Функция $\varphi \colon \mathbb{R}^m \to \mathbb{F}$ называется бесконечно дифференцируемой, если существуют все частные производные

$$\partial^{\alpha} \varphi(x) = \frac{\partial^{|\alpha|} \varphi(x)}{\partial^{\alpha_1} x_1 \dots \partial^{\alpha_m} x_m}, \qquad \alpha = (\alpha_1, \dots, \alpha_m), \ |\alpha| = \sum_{k=1}^m \alpha_k.$$

Через $C_0^\infty(X)$ — пространство бескончно дифференцируемых функций, у которых $\mathrm{supp}(\varphi) \in X$. На этом пространстве вводится счётная система полунорм

$$p_k(\varphi) = \sum_{|\alpha| \leq k} \sup_{x \in X} |\partial^{\alpha} \varphi(x)|.$$

Это будет счётно нормированное пространство. Сходимость в этом пространстве будет определяться также метрикой

$$\rho(\varphi, \psi) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{p_k(\varphi - \psi)}{1 + p_k(\varphi - \psi)}.$$

Полное счётно нормированное пространство называется пространством Фреше. Пример — пространство Фреше.

17 Обобщённые функции

Введём некоторые обозначения. $\mathbb{R}^n \ni x = (x_1, \dots, x_m), \ x \in \mathbb{R}$. Здесь есть норма $||x|| = \sqrt{\langle x, x \rangle} = \sum_{k=1}^n x_k y_k$. $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

$$C_0 \infty(X) = \{ \varphi \colon \mathbb{R}^n \to \mathbb{F} | \exists \ \partial^{\alpha} \varphi(x), \ \operatorname{supp}(\varphi) \in X \}.$$

Бесконечно дифференцируемые функции с компактным носителем. В неём водится сходимости по системе норм $p_k(\varphi) = \sum\limits_{|\alpha| \leqslant k} \sup\limits_{x \in X} \left| \partial^\alpha \varphi(x) \right|$ для $k=0,1,\ldots$ Если X является компактным, то C_0^∞ будет полным, то есть пространством Фреше.

17.1 Примеры бесконечно дифференцируемых функций

Приведём несколько примеров бесконечно дифференцируемых функций, которые нам понадобятся в дальнейшем.

1. Рассмотрим функцию

$$e(t) = \begin{cases} e^{-\frac{1}{t}}, & t > 0; \\ 0, & t \le 0. \end{cases}$$

Это бесконечно дифференцируемая функция, $e(t) \geqslant 0$, $\mathrm{supp}(e) = \mathbb{R}_+$. Дифференцируемость в нуле проверяется по правилу Лопиталя.

2.
$$\xi(x) = e(1 - ||x||^2), ||x||^2 = \sum_{k=1}^m x_k^2, \operatorname{supp}(\xi) = S,$$
 где

$$S = \left\{ x \in \mathbb{R}^m \middle| ||x|| \leqslant \right\}$$

единичный шар.

- 3. Система функций $\theta_r(x) = c_r \, \xi\left(\frac{x}{r}\right)$ для r > 0. Константу c_r выбираем так, чтобы $\int\limits_{\mathbb{R}^m} \theta_r(x) \, dx = 1$. Называется аппроксимативной единицей. Все бесконечно дифференцируемы и $\sup(\theta_r) = S_r = \left\{x \in \mathbb{R}^m | \|x\| \leqslant r\right\}$.
- 4. $\eta(x) = \int\limits_{S_2} \theta_1(x-y) \, dy$. Легко проверить, что эта функция
 - $\eta \in C_0^{\infty}(\mathbb{R}^m);$
 - $\operatorname{supp}(\eta) = S_3;$
 - $\eta(x) = 1$ на $x \in S_1$, $\eta(x) = 0$ вне S_3 . И принимает значения между нулём и единицей на разности $S_3 \setminus S_1$.

17.2 Пространство основных функций

Перейдём к определению обобщённых функций.

Определение 17.1. $\mathcal{D}(X)$ — пространство основных функций. В $\mathcal{D}(X) \subset C_0^\infty(X)$ определена сходимость $\varphi_n \to \varphi$, если

$$(1) \ \forall \ \alpha \in \mathbb{Z}_+^m \ \partial^{\alpha} \varphi_n \Longrightarrow_{\rightarrow \infty} \partial^{\alpha} \varphi \$$
на X .

(2) $\exists K \in X : \forall n \in \mathbb{N} \quad \text{supp}(\varphi_n) \subset K$.

Определение 17.2. Сопряжённое пространство $\mathcal{D}'(X)$ к пространству сходимости $\mathcal{D}(X)$ называется пространством обобщённой функции.

Как мы и определяли сопряжённое пространство — это множество всех линейных непрерывных функционалов. Непрерывность понимается относительно сходимости в $\mathcal{D}(X)$. Обобзначение $\langle f, \varphi \rangle$ для $f \in \mathcal{D}'(X)$ и $\varphi \in \mathcal{D}(X)$. Свойства.

(1) $f \in \mathcal{D}'(X)$ обязательно линейная функция, то есть

$$\forall \ \lambda_1, \lambda_2 \in \mathbb{F}, \ \forall \ \varphi_1, \varphi_2 \in \mathcal{D}(X) \quad \langle f, \lambda_1 \varphi_1 + \lambda_2 \varphi_2 \rangle = \lambda_1 \langle f, \varphi_1 \rangle + \lambda_2 \langle f, \varphi_2 \rangle.$$

- (2) f непрерывный функционал в $\mathcal{D}(X)$, то есть если $\varphi_n \to \varphi$ в $\mathcal{D}(X)$, то и $\langle f, \varphi_n \rangle \to \langle f, \varphi \rangle$.
- (3) Если $f_n \to f$, $f_n \in \mathcal{D}'(X)$, то $f \in \mathcal{D}'(X)$. То есть сходимость в D'(X) это просто поточечная сходимость: $\forall \varphi \in \mathcal{D}(X) \ \langle f_n, \varphi \rangle \to \langle f, \varphi \rangle$.

из теоремы о полноте сопряжённого пространства к пространству сходимости, которое мы доказали на прошлой лекции.

Пример 17.1. $\delta(x-a) - \delta$ -функция. Определяется по формуле

$$\forall \varphi \in \mathcal{D}(\mathbb{R}^m) \ \langle \delta(x-a), \varphi \rangle := \varphi(a).$$

Очевидно, что $\delta(x-a) \in \mathcal{D}'(\mathbb{R}^m)$.

Пример 17.2. $\mathcal{P}\frac{1}{x}$ – главное значение $\frac{1}{x}$, то есть

$$\left\langle \mathcal{P}\frac{1}{x}, \varphi \right\rangle = \lim_{\varepsilon \to 0+} \int_{\|x\| \geqslant \varepsilon} \operatorname{frac}\varphi(x) x \, dx = \int_{0}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} \, dx.$$

17.3 Действия с обобщёнными функциями

1. Функция называется локально интегрируемой, если интегрируема по Лебегу на каждом компакте. Обощначают $\mathcal{L}_{loc}(X)$. Такие $\varphi \colon \mathbb{R}^m \to \mathbb{F}$ и $\forall K \in X \ \varphi \in \mathcal{L}_1(K)$. Тогда для $f \in \mathcal{L}_{loc}(\mathbb{R})$ можно определить обобщённую функцию

$$\forall \varphi \in \mathcal{D}(X) \ \langle f, \varphi \rangle := \int_X f(x)\varphi(x) \, dx.$$

Непрерывность вытекает из теоремы Лебега о предельном переходе.

2. Если $\psi \in C^{\infty}(X)$ и $f \in \mathcal{D}'(X)$, то

$$\forall \varphi \in \mathcal{D}(X) \ \langle \psi \cdot f, \varphi \rangle := \langle f, \psi \varphi \rangle.$$

Оператор $M_{\psi} := \psi \cdot \varphi$ непрерывен в $\mathcal{D}(X)$. Значит, $\psi f \in \mathcal{D}'(X)$.

3. Пусть $\tau_a \varphi(x) := \varphi(x-a)$ и оператор растяжения $\rho_\lambda \varphi(x) := \varphi(\lambda x)$. Если $f \in \mathcal{D}'(\mathbb{R}^m,$ то определяются следующие обобщённые функции

$$\langle \tau_a f, \varphi \rangle := \langle f, \tau_a \varphi \rangle; \quad \langle \rho_{\lambda} f, \varphi \rangle := |\lambda|^{-m} \langle f, \rho_{\lambda^{-1}} \varphi \rangle, \quad \lambda \in \mathbb{R} \setminus \{0\}.$$

Линейность очевидна, а непрерывность обобщённых функций следует из непрерывности операторов.

4. Пусть у нас есть линейное преобразование $A \colon \mathbb{R}^m \to \mathbb{R}^m$ (или линейный оператор на пространстве \mathbb{R}^m), у которого определитель $\det A \neq 0$. Определим оператор замены переменных $T_A \varphi(x) = \varphi(A x)$. Тогда определяется оператор замены переменных для обобщённых функций.

$$\langle T_A f, \varphi \rangle = |\det A|^{-1} \langle f, T_{A^{-1}} \varphi \rangle.$$

Непрерывность этого функционала вытекает из непрерывность этого оператора в пространстве $\mathcal{D}(X)$. Если частные производные сходятся равномерно, то и частные производные функции-образа будут сходиться равномерно.

5. Пусть $f \in \mathcal{D}'(X)$. Частная производная порядка $\alpha \in \mathbb{Z}_+^m$ определяется по формуле

$$\langle \partial^{\alpha} f, \varphi \rangle := (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle.$$

Если $\varphi_n \to \varphi$ в $\mathcal{D}(X)$, то и $\partial^{\alpha} \varphi_n \Longrightarrow \partial^{\alpha} \varphi$ в $\mathcal{D}(X)$. Значит, $\partial^{\alpha} f \in \mathcal{D}'(X)$.

Утверждение 17.1 (Формула Лейбница). Пусть $\partial_k = \frac{\partial}{\partial x_k}$ для $k=1,\ldots,m$. Тогда

$$\partial_k(\psi \cdot f) = (\partial_k \psi)f + \psi(\partial_k f), \quad f \in \mathcal{D}'(X), \ \psi \in C_0^\infty(X).$$

Имеем по формуле Лейбница для обычных функций и определению производной для обобщённой функции.

$$\langle \partial_k(\psi f), \varphi \rangle = -\langle f, \psi(\partial_k \varphi) \rangle = \langle f, (\partial_k \psi) \varphi \rangle - \langle f, \partial_k(\psi \varphi) \rangle = \langle (\partial_k \psi) f, \varphi \rangle + \langle \psi(\partial_k f), \varphi \rangle.$$

Теорема 17.1 (о локальной структуре). Пусть у нас $X \subset \mathbb{R}^m$ ограниченное замкнутое множество¹. Тогда (здесь C(X) пространство непрерывных ограниченных)

$$\forall f \in \mathcal{D}'(X) \ \exists \alpha \in \mathbb{Z}_+^m, \ \exists g \in C(X) \colon f = \partial^{\alpha} g,$$

то есть

$$\forall \ \varphi \in \mathcal{D}(X) \ \langle f, \varphi \rangle = (-1)^{|\alpha|} \int\limits_X g(x) \partial^\alpha \varphi(x) \, dx.$$

Доказательство. Для простоты мы будем считать, что $X \subset [0,1]^m$. Кстати, это легко получить в результате применения операции замены переменных. Тогда существует

$$\exists c > 0, \ \exists k \in \mathbb{N} : \forall \varphi \in \mathcal{D}(X) \ |\langle f, \varphi \rangle| \leq c \, p_k(\varphi).$$

 $^{^{1}}$ В определении обобщённых функций, которое мы с вами дали X всегда открытое множество. В данном случае оно будет ещё и ограничено. Тогда можно представить формулой людую обобщённую функцию.

Это вытекает из того, что f непрерывен на D(X), а значит, он непрерывен и в C_0^∞ . А раз сходимость задаётся такими полунормами

$$p_k(\varphi) = \sum_{|\alpha| \le k} \sup_{x \in X} |\partial^{\alpha} \varphi(x)|.$$

Мы с вами доказали на прошлой лекции эквивалентность непрерывности и ограниченности. От туда и вытекает неравенство.

При этом $p_0(\varphi) = \sup_{x \in X} |\varphi(x)|$. По формуле Лагранжа (о среднем значении, то есть теорема Лагранжа) для $k = 1, 2, \dots, m$

$$p_0(\varphi) \leqslant p_0(\partial_k \varphi)$$

Обозначим $D = \partial_1 \dots \partial_m$. Тогда можем записать такое неравенство

$$\exists c_k > 0 \colon p_k(\varphi) \leqslant c_k p_0(D^k \varphi) \leqslant c_k \int_{[0,1]^m} \left| D^{k+1} \varphi(x) \right| dx \leqslant$$

применяем неравенство Коши—Буняковского

$$\leqslant C_k ||D^{k+1}\varphi||_{\mathcal{L}_2}.$$

За конечной суммой будет некоторая константа. Ещё мы обозначили здесь

$$D^{k}\varphi(x) := \int_{\Delta_{x}} D^{k+1}\varphi(y) \, dy; \qquad \Delta_{x} = [0, x_{1}] \times \cdots \times [0, x_{m}].$$

Из последнего неравенства вытекает, что

$$\forall \varphi \in D(x) \ \left| \langle f, \varphi \rangle \right| \leqslant c_k \left\| D^{k+1} \varphi \right\|_{\mathcal{L}_2}.$$

Рассмотрим оператор $A\colon D^{k+1}\colon D(X)\to D(X)$. Он является взаимнооднозначным, то есть биективным, так как пространства функций с компактным носителем и там нет констант (у оператора ядро равно нулю, если и только если он биективен). И определим функционал $F(\psi):=\langle f,A^{-1}\psi\rangle$, где $\psi=A\varphi$, а $\varphi\in\mathcal{D}(X)$. Из нашего неравенства вытекает, ограниченность в \mathcal{L}_2 , то есть

$$|F(\psi)| \leqslant c_k ||\psi||_{\mathcal{L}_2}$$

Можем продолжить этот функционал по тереме Хана—Банаха.

Так как \mathcal{L}_2 — гильбертово пространство, можно применить теорему Рисса для гильбертова пространства. Значит, этот функционал представляется в виде скалярного произведения. А в \mathcal{L}_2 — это интеграл

$$\exists h \in \mathcal{L}_2 \colon F(\psi) = \int_Y h(x)\psi(x) \, dx.$$

Доопределим h(x) = 0 для $x \not\in X$. Тогда при интегрировании по частям неинтегральных членов не будет.

$$\langle f, \varphi \rangle = \int\limits_{Y} h(x) D^{k+1} \varphi(x) \, dx = (-1)^{|\alpha|} \int\limits_{Y} g(x) \partial^{\alpha} \varphi(x) \, dx$$

где
$$g(x) = (-1)^{|\alpha|+m} \int_{\Delta_x} h(y) \, dy$$
, $\alpha = (k+2, \dots, k+2)$.

Ну и теорема доказана.

Что мы понимаем под равенством двух обобщённых функций?

Определение 17.3. Заданы две обобщённые функции $f, g \in \mathcal{D}'(X)$. Они равны f = g, если

$$\forall \ \varphi \in \mathcal{D}(X) \ \langle f, \varphi \rangle = \langle g, \varphi \rangle,$$

то есть если равны соответствующие линейные функционалы на определённом множестве.

Можно определеить равенство функционалов f(x) = g(x) в точке $x \in X$, если \exists окрестность $O_x \subset X$ точки x, для которой

$$\forall \langle f, \varphi \rangle = \langle g, \varphi \rangle.$$

Если перебрать все обобщённые функции совпадают в точке, нужно брать объёдинение всех окрестностей это открытое множество. Значит, обобщённые функции совпадают на открытом множестве.

Определение 17.4. Пусть $f \in \mathcal{D}'(X)$. Тогда $\mathrm{supp}(f) = \{x \in X | f(x) \neq 0\}$.

Это множество замкнуто в X (существует замкнутое множество в \mathbb{R}^n , которое при пересечение с X даёт наше).

Приведём теорему без доказательства.

Теорема 17.2 (о структуре обобщённой функции с носителем в одной точке). Если $f \in \mathcal{D}'(X)$ и $\operatorname{supp}(x) = \{a\} \subset X$, то $\exists \ k \in \mathbb{Z}_+$, существуют такие константы $c_\alpha \in \mathbb{F}$, для которых $|\alpha| \leqslant k$ и

$$f(x) = \sum_{|\alpha| \le k} c_{\alpha} \partial^{\alpha} \delta(x - a).$$

Любая такая функция есть линейная комбинация дельта-функции и её производных. До некоторого конечного порядка.

17.4 Задача существования первообразной обобщённой функции

Рассмотрим случай $\mathbb{R}^m = \mathbb{R}$. Первообразная определяется как обычно: такая функция, что обобщённая производная равна заданной.

Вначале докажем лемму.

Лемма 17.1. Если $f \in \mathcal{D}'(a,b)$ и её обобщённая производная $\partial f = 0$, то $f = c \in \mathbb{F}$ на интервале (a,b). Доказательство. Запишем условие того, что обобщённая производная равна нулю. Это означает, что для всех $\varphi \in \mathcal{D}(a,b)$ имеет место $\langle f, \varphi' \rangle = 0$. Рассмотрим два подпространства в $\mathcal{D}(a,b)$.

- $L := \{ \varphi \in \mathcal{D}(a,b) | \int_{a}^{b} \varphi \, dx = 0 \};$
- $M := \{ \varphi \in \mathcal{D}(a, b) | \exists \ \psi \in \mathcal{D}(a, b) \colon \psi' \varphi \}.$

Оказывается, что эти подпространства равны. Если $\varphi \in M$, то $\int\limits_a^b \varphi \, dx = \psi(b) - \psi(a) = 0$ и $\varphi \in L$.

Обратно. Пусть $\varphi \in L$. Тогда $\psi(x) := \int\limits_a^x \varphi(t)\,dt,\,\psi' = \varphi,\,\psi \in \mathcal{D}(a,b).$

Таким образом, L = M.

Рассмотрим теперь произвольную функцию $\eta \in \mathcal{D}(a,b)$, у которой интеграл $\int\limits_a^b \eta(t)\,dt=1$. Тогда

$$\forall \varphi \in \mathcal{D}(a,b) \quad \varphi = \psi + \eta \int_{a}^{b} \varphi(t) dt.$$

Значит, φ произвольная, а вот $\psi \in L$. Применяем этот функционал к нашем равенству $\langle f, \varphi' \rangle = 0$.

$$\langle f, \varphi \rangle = \underbrace{\langle f, \eta \rangle}_{c} \int_{a}^{b} \varphi(t) dt.$$

Тогда $\forall \varphi \in \mathcal{D}(a,b) \ \langle f, \varphi \rangle = \langle c, \varphi \rangle.$

Теорема 17.3 (о существовании первообразной). $\forall \ f \in \mathcal{D}'(a,b) \ \exists \ g \in \mathcal{D}'(a,b) \colon \partial g = f.$

Доказательство. Определим функционал на подпространстве M по формуле

$$\forall \varphi \in \mathcal{D}(a,b) \ \langle g, \varphi' \rangle = -\langle f, \varphi \rangle.$$

g определён только на производных, поэтому он определён только на подпространстве. Тогда

$$\varphi = \psi + \eta \int_{a}^{b} \varphi(t) dt, \quad \psi \in M = L.$$

Можем продолжить функционал с M на всё пространство $\mathcal{D}(a,b)$ вот по такой формуле

$$\langle g, \varphi \rangle := \langle g, \psi \rangle + \underbrace{\langle g, \eta \rangle}_{c} \int_{a}^{b} \varphi(t) dt = -\langle f, A\varphi \rangle + \langle c, \varphi \rangle.$$

При этом A задан формулой

$$A\varphi(x) = \int_{a}^{x} \left(\varphi - \eta \int_{a}^{b} \varphi(t) dt\right) dy.$$

Легко проверить, что раз оператор A непрерывен на $\mathcal{D}(a,b)$, то и оператор g будет непрерывен. И также видно, что $\partial g = f$.

18 Пространства Соболева

Вначале докажем несколько утверждений вспомогательных. Пусть $X \subset \mathbb{R}^m$ — открытое множество, поле $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Положим

$$\mathcal{E}(x) = \left\{ \varphi \colon X \to \mathbb{F} \mid \forall \ x \in X \ \forall \ \alpha \in \mathbb{Z}_+^m \ \exists \ \partial^\alpha \varphi(x) \right\} = C^\infty(X).$$

Определим сходимость на этом множестве

$$\varphi_n \to \varphi$$
 в $\mathcal{E}(x)$, если $\forall K \in X \ \partial^{\alpha} \varphi_n \xrightarrow[n \to \infty]{K} \partial^{\alpha} \varphi$.

Определение 18.1. $\mathcal{E}'(X)$ называется пространством обобщённых функций с компактным носителем. Логичность такого определения сразу не видна. На самом деле $\mathcal{E}'(X) \subset D'(X)$.

Значение функционала на функции φ будем обозначать через $\langle f, \varphi \rangle$, где $f \in \mathcal{E}'(X)$, $\varphi \in \mathcal{E}(X)$. Свойства

(1) $\forall f \in \mathcal{E}'(X)$ является линейным функционалом, то есть

$$\forall \varphi_1, \varphi_2 \in \mathcal{E}(X), \ \forall \ l_1, \lambda_2 \in \mathbb{F} \quad \langle f, \lambda_1 \varphi_1 + \lambda_2 \varphi_2 \rangle = \lambda_1 \langle f, \varphi_1 \rangle + \lambda_2 \langle f, \varphi_2 \rangle.$$

- (2) $\forall f \in \mathcal{E}'(X)$ является непрерывным, то есть если $\varphi_n \to \varphi$ в $\mathcal{E}(X)$, то $\langle f, \varphi_n \rangle \to \langle f, \varphi \rangle$.
- (3) Если все $f_n \in \mathcal{E}'(X)$ и $\forall \varphi \in \mathcal{E}(X) \ \langle f_n, \varphi \rangle \to \langle f, \varphi \rangle$, то $f \in \mathcal{E}'(X)$.

Доказательство. Докажем третье. Если выполнена аксиома полноты, то сопряжённое пространство полное. Это доказывали в прошлом семестре. Кроме того была доказана теорема, что во всяком полном метрическом пространстве аксиома полноты выполняется.

Покажем, что E(X) полное линейное метрическое пространство. Рассмотрим

$$K_l := \{ x \in X \mid ||x|| \le l, \ \rho(x, \partial X) > 1/l \}.$$

Расстояние до границы больше 1/l. Имеем $K_1\subset K_2\subset \dots$ и $\bigcup_{l=1}^\infty K_l=X$. Положим системой полунорм

$$q_l(\varphi) = \sum_{|\alpha| \leq l} \sup_{x \in K_l} |\partial^{\alpha} \varphi(x)|, \quad l = 1, 2, \dots$$

Здесь $q_1\leqslant q_2\leqslant\dots$ Тогда $\varphi_n\xrightarrow[n\to\infty]{}\varphi$ в $\mathcal{E}(X)$, если и только если $\forall\ l\in\mathbb{N}\ q_l(\varphi_n-\varphi)\xrightarrow[n\to\infty]{}0.$

Осталось заметить, что в качестве метрики нужно взять

$$\rho(\varphi,\psi) = \sum_{l=1}^{\infty} \frac{1}{2^l} \frac{q_l(\varphi - \psi)}{1 + q_l(\varphi - \psi)}.$$

Доказательство полноты сводится к известным теоремам курса математического анализа (критерий Коши). **Теорема 18.1.** $f \in \mathcal{D}'(X)$ имеет $\operatorname{supp}(f) \subseteq X$, если и только если $\exists g \in \mathcal{E}'(X)$, для которого $g|_{\mathcal{D}(X)} = f$. На самом деле такая функция будет даже единственной.

Доказательство. Необходимость. Будем использовать ту же последовательность компактов, что сегодня строили. $K_1 \subset K_2 \subset \dots \bigcup_{l=1}^{\infty} K_l = X$ (но теперь l > 0 любое действительное число). Рассмотрим

$$\eta_l(x) = \int_{\mathbb{R}^m} \theta_{\frac{1}{4l}}(x-y) \chi_{K_{\frac{4l}{3}}}(x) dx.$$

 $\theta(x)$ мы строили на прошлой лекции. Это аппроксимативная единица. В наших обозначениях выполняется

$$\eta_k(x) = \begin{cases} 1, & x \in K_l; \\ 0, & x \notin K_{2l}. \end{cases}$$

Теперь давайте доказывать. Пусть $g \in \mathcal{E}'(X)$, определённый по формуле

$$\forall \varphi \in \mathcal{E}(X) \ \langle f, \eta_l \varphi \rangle,$$

где l: supp $(f) \subset K_l$.

Определим оператор $A \colon \mathcal{E}(X) \to \mathcal{E}(X)$ по формуле $A\varphi = \eta_l \varphi$. Если докажем, что A непрерывен, то $g \in \mathcal{E}(X)$. Имеем $\operatorname{supp}(\varphi - \eta_l \varphi) \subset X \setminus K_l$.

$$\forall \ \varphi \in \mathcal{D}(X) \ \langle g, \varphi \rangle = \langle f, \varphi \rangle - \underbrace{\langle f, \varphi - \eta_l \varphi \rangle}_{=0} = \langle f, \varphi \rangle.$$

Таким образом, необходимость мы доказали.

Докажем достаточность. $g \in \mathcal{E}'(X)$, $f = g|_{\mathcal{D}(X)}$. Если $\varphi_n \to \varphi$ в $\mathcal{D}(X)$, то $\varphi_n \to \varphi$ в $\mathcal{E}(X)$. Значит, $f \in \mathcal{D}'(X)$. Осталось вспомнить теорему, что если функционал непрерывен на счётно нормированном пространстве, то он ограничен. То есть из того, что $g \in \mathcal{E}'(X)$ следует, что

$$\exists c > 0 \colon \forall \varphi \in \mathcal{E}(X) \ |\langle g, \varphi \rangle| \leqslant c \cdot q_l(\varphi).$$

Отсюда следует, что $\forall \varphi \in \mathcal{D}(X)$: $\operatorname{supp}(\varphi) \subset X \setminus K_l$ выполнено $\langle g, \varphi \rangle = 0$. А это и означает, что $\operatorname{supp}(f) \subset K_l$, ну то есть является компактным. И теорема доказана.

Определение 18.2. Пусть $\{\theta_r\}$ — аппроксимативная единица и $f \in \mathcal{L}_{loc}(X)$. Обозначим через $f_r(X)$ вот такой интеграл (этот интеграл обычно называют свёрткой двух сдвигов; можем сделать сдвиг, ведь мера Лебега инвариантна относительно сдвигов)

$$f_r(x) := \int_{\mathbb{R}^m} \theta_r(x - y) f(y) dy = \int_{\mathbb{R}^m} \theta_r(y) f(x - y) dy,$$

 $e\partial e \ \forall \ x \notin X \quad f(x) = 0.$

B этих обозначениях система $\{f_r\}_{r>0}$ называется усреднением f в смысле Соболева.

 f_r обладает следующими свойствами

- (1) $f_r \in C^{\infty}(\mathbb{R}^m)$, можем дифференцировать под знаком интеграла.
- (2) $\operatorname{supp}(f_r) \subset B_r(X)$, где $B_r(X) := \{ x \in \mathbb{R}^m \mid \rho(x, X) \leqslant r \}$.
- (3) Если $f \in \mathcal{L}_p(X)$, то $||f_r f||_{\mathcal{L}_p} \to 0$ при $r \to 0$ для $1 \leqslant p < \infty$.

Доказательство. Первые два свойства очевидны, а для третьего приведём доказательство. Мы знаем, что $\forall \ \varepsilon > 0 \ C_0(X) \subset \mathcal{L}_p(X)$ всюду плотно (нолик означает, что множество непрерывных функций с компактным носителем). Поэтому существует такая $f \in C_0(X)$, что $\|f - g\|_{\mathcal{L}_p} < \frac{\varepsilon}{3}$. Обозначим оператор сдвига $\tau_y f(x) := f(x-y)$.

Так как g непрерывна, а носитель на компакте, то она равномерно непрерывна и

$$\exists \ \delta > 0 \colon \forall \ y \colon \|y\| < \delta \ \|\tau_y g - g\|_{\mathcal{L}_p} < \frac{\varepsilon}{3}.$$

Просто можно максимум вынести из-под знака нормы. Тогда

$$\|\tau_u f - f\| \leqslant \tau_u f - \tau_u g\|_{\mathcal{L}_n} + \|\tau_u g - g\|_{\mathcal{L}_n} + \|g - f\| < \varepsilon.$$

Легко проверить равенство (у $\theta_r(y)$ интеграл равен единицы)

$$f_r(x) - f(x) = \int_{\mathbb{R}^m} \theta_r(y) (\tau_y f(x) - f(x)) dy.$$

И применяем обобщённое неравенство Миньковского (норму можно занести под знак интеграла)

$$||f_r - f||_{\mathcal{L}_p} \leqslant \int_{\mathbb{R}^n} \theta_r(y) ||\tau_y f - f||_{\mathcal{L}_p} dy \leqslant \sup_{||y|| \leqslant r} ||\tau_y f - f||_{\mathcal{L}_p}.$$

Правая часть неравенства стремится к нулю, значит, и левая стремится к нулю.

Лемма 18.1 (о плотности). Пусть $X \subset \mathbb{R}^m$ открытое множество и $1 \leqslant p < \infty$. Тогда

$$\forall f \in \mathcal{L}_p(X) \ \exists \{\varphi_n\} \subset \mathcal{D}(X)$$
:

(a)
$$\forall x \in X |\varphi_n(x)| \leq ||f||_{\mathcal{L}_{\infty}};$$

(6)
$$||f - \varphi_n||_{\mathcal{L}_p} \xrightarrow[n \to \infty]{} 0.$$

Первое свойство нам понадобится только один раз, оно несущественно. А второе свойство говорит о том, что основные функции всюду плотны в \mathcal{L}_p .

Доказательство. Пусть $\varepsilon>0$. Тогда $\exists \ K\in X\colon \int\limits_{X\backslash K} \left|f(x)\right|^p dx<\left(\frac{e}{2}\right)^p$. Это вытекает из того, что функция

интегрируема. Можно представить $X \setminus K$ в виде объединения компактов, можно интеграл считать мерой.

Давайте обозначим через g(x) функцию

$$g(x) = \begin{cases} f(x), & x \in K \\ 0, & x \notin K. \end{cases}$$

Положим $d = \rho(K, \partial X)$. Тогда носитель усреднения функции g по Соболеву $\sup(g_r) \in X, \ \forall \ 0 < r < d$. Отсюда вытекает неравенство

$$||f - g_r||_{\mathcal{L}_p} \le ||f - g||_{\mathcal{L}_p} + ||g - g_r||_{\mathcal{L}_p} < \varepsilon$$

для достаточно малых $r \in (0, \delta)$. Поэтому если теперь взять функцию $\varphi_n(x) := g_{\frac{d}{2n}}$, то мы получим, что эта последовательность из $\mathcal{D}(X)$ и удовлетворяет требуемому.

Следствие 18.1. Пусть $X \subset \mathbb{R}^m$ открытое ограниченное. Тогда

$$\forall f \in \mathcal{L}_{\infty}(X) \ \exists \{\varphi_n\} \subset \mathcal{D}(X)$$
:

- (a) $|\varphi_n(x)| \leq ||f||_{\mathcal{L}_{\infty}};$
- (б) $\varphi_n(x) \xrightarrow[n\to\infty]{} f(x)$ почти всюду на X.

Доказательство. Из леммы для p=1 получаем последовательность, сходящуюся в \mathcal{L}_p , выбираем из неё подпослежовательность, сходящуюся почти всюду.

Определение 18.3. Пусть $f \in \mathcal{L}_{loc}(X)$, где X — открытое множество. Каждой такой функции определим функционал $f \in \mathcal{D}'(X)$, такой, что

$$\forall \varphi \in \mathcal{D}(X) \ \langle f, \varphi \rangle = \int_{\mathbb{R}^m} f(x) \varphi(x) dx.$$

Такой функционал f называется регулярной обобщённой функцией.

Пространство локально интегрируемых функций можно считать счётно нормированным, если ввести такие полунормы

$$r_l(f) = \int_{K_l} |f(x)| dx, \quad l = 1, 2, ..., K_1 \subset K_2 \subset ... \quad \bigcup_{l=1}^{\infty} K_l = X.$$

Эти компакты мы берём так же, как уже сегодня строили. Для соответствующей метрики пространство будет полным и выполняется аксиома полноты.

Теорема 18.2 (о вложении). $\mathcal{L}_{loc}(X) \subset \mathcal{D}'(X)$, вложение непрерывно и взаимнооднозначно с образом (ядро является нулём).

Доказательство. Запишем следующее неравенство. Так как φ имеет компакнтый носитель, интегрирование всегда ведётся по компакту.

$$\forall \varphi \in \mathcal{D}(X) \ \left| \langle f_n - f, \varphi \rangle \right| \leqslant \int_{\mathbb{R}^m} |f_n - f| \cdot |\varphi| \, dx \leqslant \max_{x \in K} \left| \varphi(x) \right| \int_{\mathbb{R}^m} |f_n - f| \, dx$$

Из этого неравенства вытекает, то из сходимости $f_n \to f$ в $\mathcal{L}_{loc}(X)$ следует $f_n \to f$ в $\mathcal{D}'(X)$, то есть отображение непрерывно.

Нам осталось доказать, что это действительно вложание. Пусть

$$\forall \varphi \in \mathcal{D}(X) \int_X f(x)\varphi(x) dx = 0.$$

Тогда f(x) = 0 почти всюду? Возьмём

$$e(x) = \begin{cases} \frac{\left|f(x)\right|}{f(x)}, & \text{если } f(x) \neq 0; \\ 0, & \text{если } f(x) = 0. \end{cases} \quad X_l = \left\{x \in X \mid \|x\| < l\right\} \subset X.$$

Тогда $\exists \{\varphi_n\} \subset \mathcal{D}(X)$, то есть

- (a) $|\varphi_n(x)| \leq 1$,
- (б) $\varphi_n(x) \to e(x)$ почти всюду на X_l .

Тогда мы можем записать равенство

$$\int_{X_l} |f(x)| dx = \int_{X_l} f(x)e(x) dx = \lim_{n \to \infty} \int_{X_l} f(x) (e(x) - \varphi_n(x)) dx = 0.$$

Последнее равенство нулю по теореме Лебега. Значит, действительно, для всех l выполнено f(x) = 0 на X_l почти всюду. Значит и f(x) = 0 почти всюду на X.

Определение 18.4. Пусть $f \in \mathcal{L}_{loc}(X)$. Говорят, что эта функция имеет производную $\partial^{\alpha} f$ в смысле Соболева, если

$$\exists g \in \mathcal{L}_{loc}(X) \colon \forall \varphi \in \mathcal{D}(X) \quad \int_{X} g(x)\varphi(x) \, dx = (-1)^{|\alpha|} \int_{X} f(x)\partial^{\alpha}\varphi(x) \, dx.$$

Функция $\partial^{\alpha} f := g$ называется производной в смысле Соболева. Определяется с точностью до эквивалентности. Обозначим $W_p^k(X) = \{f \in \mathcal{L}_p(X) \mid \forall \ |\alpha| \leqslant k \ \exists \ \partial^{\alpha} f \in \mathcal{L}_p(X) \}$ (если писать $f \in \mathcal{L}_{loc}$, то потом всё равно нулевая производная требуется из \mathcal{L}_p , так что лучше сразу напишем). В этом множестве определим норму

$$||f||_{W_p^k} := \sum_{|\alpha| \leqslant k} ||\partial^{\alpha} f||_{\mathcal{L}_p}, \quad k \in \mathbb{Z}_+, \ \alpha \in \mathbb{Z}_+^m, \ 1 \leqslant p \leqslant \infty.$$

Теорема 18.3. $W_p^k(X)$ — банахово пространство для $k \in \mathbb{Z}_+, \ 1 \leqslant p \leqslant \infty.$

Доказательство. Пусть $\{f_n\} \subset W_p^k(X)$ является последовательностью Коши. Тогда для каждого $\alpha \colon |\alpha| \leqslant k$ у нас последовательность частных производных $\{\partial^{\alpha} f_n\}$ будет последовательностью Коши в $\mathcal{L}_p(X)$ (это легко видеть из определения нормы в $W_p^k(X)$, а $\mathcal{L}_p(X)$ полно, то есть $\partial^{\alpha} f_n \to g_{\alpha} \in \mathcal{L}_p(X)$ и $f_n \to g_0 = f$. Осталось показать, что у функции f существуют частные производные в смысле Соболева и равны именно g_{α} .

Для этого запишем одно неравенство и применим к нему неравенство Гёльдера.

$$\left| \langle f_n - f, \varphi \rangle \right| \leqslant \int\limits_X |f_n - f| \cdot |\varphi| \, dx \leqslant \|f_n - f\|_{\mathcal{L}_p} \cdot \|\varphi\|_{\mathcal{L}_q} \xrightarrow[n \to \infty]{} 0.$$

Отсюда следует, что $\forall \varphi \in \mathcal{D}(X) \ \langle f_n, \varphi \rangle \xrightarrow[n \to \infty]{} \langle f, \varphi \rangle$. Точно так же из этого же неравенства вытекает, что $\langle \partial^{\alpha} f_n, \varphi \rangle \xrightarrow[n \to \infty]{} \langle g_{\alpha}, \varphi \rangle$.

Значит

$$\forall \ \varphi \in \mathcal{D}(X) \ \langle g_{\alpha}, \varphi \rangle = \lim_{n \to \infty} \langle \partial^{\alpha} f_{n}, \varphi \rangle = \lim_{n \to \infty} (-1)^{|\alpha|} \langle f_{n}, \partial^{\alpha} \varphi \rangle = (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle$$

Значит, $\partial^{\alpha} f = g_{\alpha}$. Таким образом $f_n \to f$ в $W_p^k(X)$.

Ну ещё давайте примерчик приведём и на этом закончим. Докажем, что δ -функция не является регулярной. $\langle \delta(x-a), \varphi \rangle = \varphi(a)$. Пусть

$$\eta(x) = \begin{cases} 1, & |x| < 1; \\ 0, & |x| > 3. \end{cases}, \ \eta \in \mathcal{D}(\mathcal{E}).$$

Рассмотрим $\varphi_n(x) := \eta(n(x-a))$. Носитель находится в $|x-a| \leqslant \frac{1}{n}$. φ_n ограничена и стремится к нулю для всех $x \neq a$. Отсюда вытекает, что

$$1 = \varphi_n(a) = \left\langle \delta(x - a), \varphi_n \right\rangle = \int_{\mathbb{R}} f(x) \, \varphi_n(x) \, dx \xrightarrow[n \to \infty]{} 0.$$

Получили противоречие. Кроме того, рассмотрим

$$\theta(x-a) = \begin{cases} 1, & x > a; \\ 0, & x \leqslant a. \end{cases}$$

Тогда $\partial \theta(x-a) = \delta(x-a)$. Причём $\theta \in \mathcal{L}_{loc}(\mathbb{R})$. Её производная нерегулярна, значит $\theta(x-a)$ не имеет производной в смысле Соболева.

19 Обобщённые функции. Преобразование Фурье обобщённых функций

19.1 Пространство Шварца

Будем обозначать $x^{\beta} = x_1^{\beta_1} \dots x_m^{\beta_m}, \ x = (x_1, \dots, x_m) \in \mathbb{R}^m, \ \beta = (\beta_1, \dots, \beta_m) \in \mathbb{Z}_+^m, \ \mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}.$ Также обозначим

 $S(\mathbb{R}^m) = \Big\{ \varphi \colon \mathbb{R}^m \to \mathbb{F} \; \Big| \; \varphi \in C^\infty(\mathbb{R}^n) \text{ if } \forall \; \alpha, \beta \in \mathbb{Z}_+^m \quad \sup_{x \in \mathbb{R}^m} \left| x^\beta \partial^\alpha \varphi(x) \right| < \infty \Big\}.$

Такие функции называются быстро убывающими. Они убывают быстрее любой степени. Определим на этом пространстве сходимость

$$\varphi_n \xrightarrow[n \to \infty]{} \varphi$$
 в $S(\mathbb{R}^m) \Leftrightarrow \forall \alpha, \beta \in \mathbb{Z}_+^m \ x^{\beta} \partial^{\alpha} \varphi_n(x) \xrightarrow[n \to \infty]{} x^{\beta} \partial^{\alpha} \varphi(x)$ на \mathbb{R}^m .

Данное пространство сходимости называется пространством Шварца.

Определение 19.1. $S'(\mathbb{R}^m)$ называется пространством обобщённых функций медленного роста.

Например, берём $f(x) = e^{x^2}$, она растёт быстрее многочлена. И она определяет обобщённую функцию, так как локально интегрируема

$$\forall \varphi \in \mathcal{D}(\mathbb{R}) \ \langle f, \varphi \rangle = \int_{\mathbb{R}} f(x) \varphi(x) dx.$$

Однако эта обобщённая функция $f \notin S'(\mathbb{R})$, поскольку для $\varphi(x) = e^{-\frac{x^2}{2}} \in S(\mathbb{R})$, но её подставить нельзя под интеграл, определяющий f. Обобщённая функция f непродолжаема на $S(\mathbb{R})$. Таким образом это доказывается. Но $f \in \mathcal{D}'(\mathbb{R})$.

Из определения вытекают свойства.

Утверждение 19.1. Если $f \in S'(\mathbb{R}^m)$, то f линейный функционал, то есть

$$\forall \ \varphi_1, \varphi_2 \in S(\mathbb{R}^m), \ \forall \ \lambda_1, \lambda_2 \in \mathbb{F} \quad \langle f, \lambda_1 \varphi_1 + \lambda_2 \varphi_2 \rangle = \lambda_1 \langle f, \varphi_1 \rangle + \lambda_2 \langle f, \varphi_2 \rangle.$$

Утверждение 19.2. Если $f \in S'(\mathbb{R}^n)$, то f непрерывный функционал, то есть если $\varphi_n \xrightarrow[n \to \infty]{} \varphi$ в $S(\mathbb{R}^m)$, то $\langle f, \varphi_n \rangle \xrightarrow[n \to \infty]{} \langle f, \varphi \rangle$.

Утверждение 19.3. $S'(\mathbb{R}^m)$ полно, то есть если $f_n \in S'(\mathbb{R}^m)$ и $f_n \xrightarrow[n \to \infty]{} f$ в $S'(\mathbb{R}^m)$, то $f \in S'(\mathbb{R}^m)$ (сходимость здесь имеется в виду поточечная).

Это надо обосновать. Используем теорему о полноте сопряжённого пространства.

Доказательство. Докажем, что $S(\mathbb{R}^m)$ полное линейное метрическое пространство. Для этого найдём счётную систему полунорм, которой задаётся сходимость.

$$s_l(\varphi) := \sum_{|\alpha| \le l} \sup_{x \in \mathbb{R}^m} (1 + ||x||^2)^l |\partial^{\alpha} \varphi(x)|.$$

Здесь
$$l = 0, 1, \dots,$$
а $||x|| = \sum_{k=1}^{m} x_k^2$.

Раз пространство счётно нормированное, то можно ввести метрику, которая задаёт ту же сходимость.

Если все производные сходятся равномерно, то у функции-предела будут все производные. \blacksquare Сейчас мы докажем, что каждый функционал из $S'(\mathbb{R}^m)$ является обобщённой функцией. Мы пока только назвали. **Лемма 19.1.** $\mathcal{D}(\mathbb{R}^m) \subset S(\mathbb{R}^m)$ всюду плотно (раз на бесконечности ноль, то, конечно, убудет быстрее любой степени).

Доказательство. Рассмотрим такую функцию $\eta \in \mathcal{D}(\mathbb{R}^m)$, которая

$$\eta(x) = \begin{cases} 1, & ||x|| \leqslant 1; \\ 0, & ||x|| \geqslant 3 \end{cases}.$$

Мы такую функцию строили. И рассмотрим такие функции

$$\forall \varphi \in S(\mathbb{R}^m) \ \varphi_n(x) := \eta\left(\frac{x}{n}\right)\varphi(x), \ n \in \mathbb{N}.$$

Такие $\varphi_n \in \mathcal{D}(\mathbb{R}^m)$. Надо показать, что $\varphi_n \xrightarrow[n \to \infty]{} \varphi$ в $S(\mathbb{R}^m)$. Имеем по формуле Ньютона—Лейбница

$$\partial^{\alpha} \left(\varphi_n(x) - \varphi(x) \right) = \partial^{\alpha} \left(\left(\eta \left(\frac{n}{x} \right) - 1 \right) \varphi(x) \right) = \sum_{\gamma \leqslant \alpha} c_{\alpha \gamma} \partial^{\gamma} \left(\eta \left(\left(\frac{x}{n} \right) - 1 \right) \partial^{\alpha - \gamma} \varphi(x), \ c_{\alpha \gamma} \in \mathbb{N}.$$

Замеим, что

$$\forall \|x\| \leqslant n \ \partial^{\gamma} \left(\eta \left(\frac{x}{n} \right) - 1 \right) = 0.$$

Поскольку функция является быстро убывающей, имеем

$$\forall \ \varepsilon > 0 \ \exists \ N \in \mathbb{N} : \forall \ ||x|| \geqslant N, \ \forall \ \gamma < \alpha \ ||x^{\beta} \partial^{\alpha - \gamma} \varphi(x)| < \varepsilon.$$

Отсюда $\left| x^{\beta} \partial^{\alpha} (\varphi_n(x) - \varphi(x)) \right| < c \varepsilon$. В качестве константы надо взять

$$c := \sum_{\gamma \leqslant \alpha} c_{\alpha \gamma} \max |\partial^{\gamma} \eta(x)|.$$

Таким образом теорема доказана.

Теорема 19.1. Отображение $S'(\mathbb{R}^m) \to \mathcal{D}'(\mathbb{R}^m)$ является непрерывным вложением, то есть

$$\forall f \in S'(\mathbb{R}^m) \quad \exists ! \ g = f|_{\mathcal{D}(\mathbb{R}^m)} \in \mathcal{D}'(\mathbb{R}^m).$$

Доказательство. Это очень просто. Если $\varphi_n \xrightarrow[n \to \infty]{} \varphi$ в $\mathcal{D}(\mathbb{R}^m)$, то есть $\varphi_n \xrightarrow[n \to \infty]{} \varphi$ в $S(\mathbb{R}^m)$. Поскольку все φ_n имеют компактный носитель, то конечно все выражения типа

$$\left| x^{\beta} \partial^{\alpha} (\varphi_n(x) - \varphi(x)) \right|$$

равномерно стремятся к нулю. Значит, $g \in \mathcal{D}'(\mathbb{R}^m)$.

Пусть $f \in S'(\mathbb{R}^m)$ и $\forall \varphi \in \mathcal{D}(\mathbb{R}^m) \ \langle f, \varphi \rangle = 0$. Нам нужно доказать, что тогда он нулевой и на $S(\mathbb{R}^m)$. Тогда мы докажем, что ядро этого отображение является нулевым.

Для этого мы берём последовательность функций по лемме

$$\forall \ \varphi \in S(\mathbb{R}^m) \ \exists \ \varphi_n \in \mathcal{D}(\mathbb{R}^m) \colon \varphi_n \xrightarrow[n \to \infty]{} \varphi \text{ B } S(\mathbb{R}^m).$$

Следовательно, $\forall \ \varphi \in S(\mathbb{R}^m) \ \langle f, \varphi \rangle = \lim_{n \to \infty} \langle f, \varphi_n \rangle = 0.$

Перечислим те же действия, что определяли для обобщённых функций.

1. Пусть $f \in S'(\mathbb{R}^m)$, обозначим оператор сдвига $\tau_a \varphi(x) := \varphi(x-a)$, и определим двиг для обобщённой функции f:

$$\forall \varphi \in S(\mathbb{R}^m) \ \langle \tau_a f, \varphi \rangle := \langle f, \tau_{-a} \varphi \rangle.$$

Так как оператор τ_a непрерывный в $S(\mathbb{R}^m)$, то $\tau_a f \in S'(\mathbb{R}^m)$.

Пусть $\lambda \neq 0$, $\rho_{\lambda}\varphi(x) := \varphi(\lambda x)$. Тогда

$$\forall \varphi \in S(\mathbb{R}^m) \ \langle \rho_{\lambda} f, \varphi \rangle := |\lambda|^{-m} \langle f, \rho_{\lambda-1} \varphi \rangle.$$

2. Пусть $f \in S'(\mathbb{R}^m)$, $A \colon \mathbb{R}^m \to \mathbb{R}^m$, такой оператор, что $\det A \neq 0$. Обозначим $T_A \varphi(x) := \varphi(Ax)$. Тогда

$$\forall \varphi \in S(\mathbb{R}^m) \ \langle T_A f, \varphi \rangle = |\det A|^{-1} \langle f, T_{A^{-1}} \varphi \rangle.$$

3. И дифференцирование. Пусть $f \in S'(\mathbb{R}^m)$. Тогда

$$\forall \varphi \in S(\mathbb{R}^m) \ \langle \partial^{\alpha} f, \varphi \rangle = (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle.$$

19.2 Преобразование Фурье

Определение 19.2. Пусть $f \in \mathcal{L}_1(\mathbb{R}^m)$. Обозначим $\varkappa = \frac{1}{\sqrt{2\pi}}, \ x = (x_1, \dots, x_m), \ y = (y_1, \dots, y_m), \ \langle x, y \rangle = \sum_{k=1}^m x_k y_k$.

Тогда прямое преобразование Фурье определяется по формуле

$$\hat{f}(x) := \varkappa^m \int_{\mathbb{R}^m} f(y) e^{-i\langle x, y \rangle} \, dy.$$

Обратное преобразование Фурье (это не обратный оператор в \mathcal{L}_1)

$$\widetilde{f}(x) = \varkappa^m \int_{\mathbb{R}^m} f(y)e^{i\langle x,y\rangle} dy.$$

$$\mathcal{F}(f) := \hat{f}; \quad \mathcal{F}^{-1}(f) = \widetilde{f}.$$

Пример. $e^{-\frac{\|x\|^2}{2}} = \prod_{k=1}^m e^{-\frac{x_k^2}{2}}$. Давайте найдём преобразование Фурье. Достаточно найти для одномерной функции. Дальше перемножим.

$$\hat{\varepsilon}^{-\frac{x^2}{2}} = \varkappa \int_{\mathbb{R}} e^{-\frac{y^2}{2} - ixy} \, dy = e^{-\frac{x^2}{2}} \varkappa \int_{\mathbb{R}} e^{-\frac{(y+i\,x)^2}{2}} \, dy.$$

По теореме Коши из комплексного анализа.

$$\hat{\varepsilon}^{-\frac{x^2}{2}} = e^{-\frac{x^2}{2}} \varkappa \int_{\mathbf{p}} e^{-\frac{y^2}{2}} \, dy = e^{-\frac{x^2}{2}}.$$

И для произведения это тоже будет верно, то есть $e^{-\frac{\|x\|^2}{2}} = e^{-\frac{\|x\|^2}{2}}$. Лемма 19.2. Оператор $\mathcal{F} \colon S(\mathbb{R}^m) \to S(\mathbb{R}^m)$ непрерывный и биективный.

Доказательство. Пусть $\varphi \in S(\mathbb{R}^m)$. Тогда

$$\partial^{\alpha} \hat{\varphi}(x) = \varkappa^{m} \int_{\mathbb{R}^{m}} \varphi(y) (-i y)^{\alpha} e^{-i \langle x, y \rangle} dy.$$

А теперь наоборот. В данном случае нужно интегрировать по частям. (поправить знак крышки)

$$\partial^{\hat{\alpha}}\varphi(x) = \varkappa^m(i\,x)\int\limits_{\mathbb{R}^m} \varphi(y)\,e^{-i\,\langle x,y
angle}\,dy.$$

Совместим эти формулы, получим

$$x^{\beta}\partial^{\alpha}\hat{\varphi}(x) = (-i)^{|\alpha+\beta|}\mathcal{F}\Big(\partial^{\beta}\big(y^{\alpha}\varphi(y)\big)\Big).$$

Из этой формулы мы сделаем оценочку.

$$\sup_{\lambda \in \mathbb{R}^m} \left| x^\beta \partial^\alpha \hat{\varphi}(x) \right| \leqslant \varkappa^m \int\limits_{\mathbb{R}^m} \left| \partial^\beta \left(y^\alpha \varphi(y) \right) \right| dy \leqslant (\varkappa \pi)^m \sup_{x \in \mathbb{R}^m} \left| \left(1 + \|y\|^2 \right)^m \right| \left| \partial^\beta \left(y^\alpha \varphi(y) \right) \right|.$$

Для оценки я использую такой инеграл $\int\limits_{\mathbb{R}} \frac{dx_k}{1+x_k^2} = \pi$ для $k=1,2\ldots,$ а $|x_k|^2 \leqslant \|x\|^2$.

Отсюда получаем, что $\hat{\varphi} \in S(\mathbb{R}^m)$ и если $\varphi \xrightarrow[n \to \infty]{} \varphi$ в $S(\mathbb{R}^m)$, то $\hat{\varphi}_n \xrightarrow[n \to \infty]{} \hat{\varphi}$ в $S(\mathbb{R}^m)$. А это означает, что оператор преобразования Фурье действует из $S(\mathbb{R}^m)$ в $S(\mathbb{R}^m)$ и то, что он непрерывный.

Осталось доказать биекцию. Это — самая трудная часть доказательства. Докажем, что $\hat{\varphi} = \varphi(x)$ и $\hat{\varphi} = \varphi(x)$, то есть $\mathcal{F} \cdot \mathcal{F}^{-1} = \mathcal{F}^{-1} \mathcal{F} = I$. Докажем первую, вторая доказывается аналогично. Это такое не очень приятное занятие.

$$\widetilde{\hat{\varphi}} = \varkappa^m \int\limits_{\mathbb{R}^m} \hat{\varphi}(y) \, e^{i\langle x,y\rangle} \, dy = \varkappa^m \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^m} \hat{\varphi}(y) e^{i\langle x,y\rangle - \varepsilon^2 \frac{\|y\|^2}{2}} \, dy.$$

Поскольку $\hat{\varphi} \in S(\mathbb{R}^m)$, то $\hat{\varphi}$ убывает быстро и интеграл существует, можно оценить подынтегральное выражение,

значит, можно перейти к пределу под знаком интеграла. Далее

$$\widetilde{\hat{\varphi}} = \varkappa^{2m} \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^m} \varphi(z) \int\limits_{\mathbb{R}^m} e^{-i\langle z-x,y\rangle - \varepsilon^2 \frac{\|y\|^2}{2}} \, dy \, dz =$$

делаем замену переменных

$$=\varkappa^{2\,m}\lim_{\varepsilon\to+0}\frac{1}{\varepsilon^m}\int\limits_{\mathbb{R}^m}\varphi(z)\int\limits_{\mathbb{R}^m}e^{-i\left\langle\frac{z-x}{\varepsilon},y\right\rangle-\frac{\|y\|^2}{2}}\,dy\,dz=$$

Делаем преобразование Фурье, одна \varkappa пропадёт

$$= \varkappa^m \lim_{e \to +0} \frac{1}{\varepsilon^m} \int\limits_{\mathbb{R}^m} \varphi(z) e^{-\frac{\left\|\frac{z-x}{\varepsilon}\right\|^2}{2}} \, dz = \varkappa^m \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^m} \varphi(x+\varepsilon \, z) e^{-\frac{\|z\|^2}{2}} \, dz = \varphi(x).$$

■ Теперь можем определить преобразование Фурье для обобщённых функций медленного роста. Определение 19.3. Пусть $f \in S'(\mathbb{R}^m)$. Мы определяем функционал

$$\forall \ \varphi \in S(\mathbb{R}^m) \ \langle \widehat{f}, \varphi \rangle := \langle f, \widetilde{\varphi} \rangle; \ \langle \widetilde{f}, \varphi \rangle := \langle f, \widehat{\varphi} \rangle.$$

То есть \mathcal{F} и $\mathcal{F}^{-1}: S(\mathbb{R}^m) \to S(\mathbb{R}^m)$ непрерывные и $\hat{f}, \tilde{f} \in S'(\mathbb{R}^m)$.

Будем обозначать $\mathcal{F}(f) = \hat{f}$ и $\mathcal{F}^{-1}(f) = \widetilde{f}$ прямое и обратное преобразования Фурье в $S'(\mathbb{R}^m)$.

Теорема 19.2. $\mathcal{F}: S'(\mathbb{R}^m) \to S'(\mathbb{R}^m)$ является линейным непрерывным и биективным оператором.

Ну и соответственно \mathcal{F}^{-1} будет тоже линейным непрерывным и биективным.

Доказательство. Линейность очевидная по определени. Нужно проверить его непрерывность. Если $f_n \in S'(\mathbb{R}^m)$ и $f_n \xrightarrow[n \to \infty]{} f$ в $S'(\mathbb{R}^m)$, то $\langle f_n, \hat{\varphi} \rangle \xrightarrow[n \to \infty]{} \langle f, \hat{\varphi} \rangle$. Следовательно, $\mathcal F$ непрерывный.

Теперь проверим биектривность. Она вытекает из таких формул

$$\langle \widetilde{\hat{f}}, \varphi \rangle = \langle f, \widehat{\widetilde{\varphi}} \rangle = \langle f, \varphi \rangle; \quad \langle \widehat{\tilde{f}}, \varphi \rangle = \langle f, \widetilde{\widehat{\varphi}} \rangle = \langle f, \varphi \rangle.$$

Значит, это биективный оператор и теорема доказана.

Приведём некоторые формулы для преобразования Фурье и примерчик рассмотрим.

Утверждение 19.4. Формула сдвига (на самом деле будут две формулы). Если $f \in S'(\mathbb{R}^m)$ и $\tau_a \varphi(x) = \varphi(x-a)$, то

$$\mathcal{F}(\tau_a f) = e^{-i\langle a, x \rangle} \mathcal{F} f; \quad \tau_a(\mathcal{F} f) = \mathcal{F} \left(e^{i\langle a, y \rangle} f(y) \right).$$

Доказательство. Если $f = \varphi \in S(\mathbb{R}^n)$, эти формулы легко проверяются по определению преобразования Фурье.

Зная, что эти формулы справедливы для функций из $S(\mathbb{R}^n)$, докажем для обобщённых.

$$\left\langle \mathcal{F}(\tau_a f), \varphi \right\rangle = \left\langle f, \tau_{-a} \mathcal{F}(\varphi) \right\rangle = \left\langle f, \mathcal{F}\left(e^{-i \langle a, y \rangle} \varphi(y)\right) \right\rangle = \left\langle e^{-i \langle a, y \rangle} \mathcal{F}(f), \varphi \right\rangle.$$

Утверждение 19.5. Формула замены переменных. Пусть $f \in S'(\mathbb{R}^m)$, $A : \mathbb{R}^m \to \mathbb{R}^m : \det A \neq 0$, $\tau_A \varphi(x) = \varphi(Ax)$. Будем обозначать через A' сопряжённый оператор (с транспонированной матрицей). Тогда

$$\mathcal{F}(T_A f) = |\det A'|^{-1} T_{A^{-1}} f, \quad T_A(f) = |\det A'|^{-1} \mathcal{F}(T_{A^{-1}} f).$$

Доказывается так же. Сначала проверяется для $f = \varphi \in S(\mathbb{R}^m)$, потом из этого для обобщённых. **Утверждение 19.6.** Формула дифференцирования. Пусть $f \in S'(\mathbb{R}^m)$, $\alpha \in \mathbb{Z}_+^m$. Тогда

$$\partial^a(\mathcal{F}f) = \mathcal{F}((-iy)^\alpha f(y)), \quad \mathcal{F}(\partial^\alpha f) = (ix)^\alpha \mathcal{F}f.$$

Опять же техника уже разроботана. Используем только определение, доказываем для $f = \varphi \in S(\mathbb{R}^m)$. Потом перетаскиваем на обобщённые.

Рассмотрим пример. Посчитаем преобразование Фурье для производной от δ -функции. Пусть $f(x)=\partial^{\alpha}\delta(x-a).$

$$\langle \mathcal{F}f, \varphi \rangle = (-1)^{|\alpha|} \langle \delta(x-a), \partial^{\alpha} \mathcal{F}(\varphi) \rangle = (-1)^{|\alpha|} \partial^{\alpha} \mathcal{F}\varphi(a) =$$

запишем формулу для преобразования Фурье и производные сразу напишем

$$= (-1)^{|\alpha|} \varkappa^m \int\limits_{\mathbb{R}^m} \varphi(y) (-i\,y)^\alpha \, e^{-i\langle a,y\rangle} \, dy.$$

Значит,

$$\mathcal{F}(\partial^{\alpha}\delta(x-a)) = \varkappa^{m}(i\,y)^{\alpha}e^{-i\langle a,y\rangle}; \quad \mathcal{F}^{-1}\left(y^{\alpha}e^{-i\langle a,y\rangle}\right) = \varkappa^{-m}(-i)^{|\alpha|}\partial^{\alpha}\delta(x-a).$$

20 Преобразование Фурье в пространствах Лебега первого и второго порядков

Я напомню, что $x=(x_1,\ldots,x_m),\ y=(y_1,\ldots,y_m)\in\mathbb{R}^m,\ \langle x,y\rangle=\sum_{k=1}^mx_k\,y_k.$ Для $f\in\mathcal{L}_1(\mathbb{R}^m)$ преобразование Фурье

$$\widehat{f}(x) := \varkappa^m \int\limits_{\mathbb{R}^m} f(y) \, e^{-\langle x,y \rangle} \, dy = \mathcal{F}(f); \qquad \widetilde{f}(x) := \varkappa^m \int\limits_{\mathbb{R}^m} f(y) \, e^{\langle x,y \rangle} \, dy = \mathcal{F}^{-1}(f).$$

Обычно $\varkappa=\frac{1}{\sqrt{2\pi}}$. Тогда $\widetilde{f}(x)=\widehat{f}(-x)$. **Лемма 20.1** (Римана—Лебега). Если $f\in\mathcal{L}_1(\mathbb{R}^m)$, то

(1) $\hat{f} \in C(\mathbb{R}^m)$:

(2)
$$\|\hat{f}\|_C := \sup_{x \in \mathbb{R}^m} |\hat{f}(x)| \leq \varkappa^m \|f\|_{\mathcal{L}_1};$$

(3)
$$\lim_{\|x\| \to \infty} \hat{f}(x) = 0.$$

Здесь норма обычная $||x|| = \sqrt{\sum_{k=1}^{m} x_k^2}$.

Доказательство. Первое свойств

$$\begin{split} \left| \hat{f}(x-a) - \hat{f}(x) \right| &= \left| \tau_a \hat{f}(x) - \hat{f}(x) \right| = \varkappa^m \left| \int\limits_{\mathbb{R}^m} f(y) \left(e^{-\langle x-a,y \rangle} - e^{-i\langle x,y \rangle} \, dy \right| \leqslant \\ &\leqslant \varkappa^m \int\limits_{\mathbb{R}^m} \left| f(y) \right| \left| e^{-i\langle x,y \rangle} - 1 \right| \, dy = \varkappa^m \int\limits_{\mathbb{R}^m} \left| f(y) \right| 2 \left| \sin \frac{\langle a,y \rangle}{2} \right| \, dy \xrightarrow{a \to 0} 0. \end{split}$$

Значит, f равномерно непрерывна.

Второе

$$\|\hat{f}\|_{C} \leqslant \varkappa^{m} \int_{\mathbb{R}^{m}} |f(y)| dy = \varkappa^{m} \|f\|_{\mathcal{L}_{1}}.$$

Третье посложнее. Положим $a:=\frac{\pi x}{\langle x,x\rangle}$ для $x\neq 0$. Тогда $\hat{\tau_a f}=-\hat{f}$. Следовательно

$$\left| \hat{f}(x) \right| = \frac{1}{2} \left| \hat{f}(x) - \tau_a \hat{f}(x) \right| = \frac{\varkappa^m}{2} \left| \int_{\mathbb{R}^m} \left(f(y) - \tau_a(t) \right) e^{-i\langle x, y \rangle} \, dy \right| \leqslant \frac{\varkappa^m}{2} \|f - \tau_a f\|_{\mathcal{L}_1} \leqslant$$

Теперь применяем применяем неравенство треугольника для нормы

$$\leq \frac{\varkappa^m}{2} (\|f - g\|_{\mathcal{L}_1} + \|g - \tau_a g\|_{\mathcal{L}_1} + \|\tau_a g - \tau_a f\|_{\mathcal{L}_1}.$$

Функцию g выбираем так, чтобы $\|f-g\|_{\mathcal{L}_1}<\frac{2\,\varepsilon}{2\varkappa m}$, где $\varepsilon>0$ и $g\in C_0(\mathbb{R}^m)$ (непрерывная функция с компактным носителем). Если сдвинем, получим то же неравенство

$$\|\tau_a f - \tau_a g\|_{\mathcal{L}_1} < \frac{2\varepsilon}{3\omega m}.$$

В силу непрерывности на компактном носителе, g равномерно непрерывна. Существует $\delta > 0$: $||a|| < \delta \Rightarrow ||g - \tau_a g||_{\mathcal{L}_1} < \frac{2\varepsilon}{3\varkappa m}$ (по норме в C это верно, по норме в \mathcal{L}_1 тем более).

Тогда для $\|a\| < \varepsilon$ имеем $|\hat{f}(x)| < \varepsilon$. А $\|a\| = \frac{\pi}{\|x\|} < \delta$. Значит, $\|x\| > \frac{\pi}{\delta}$. То есть предел в есконечности равен

Докажем теперь условие Дини, но в одномерном случае. В отличие от преобразования Фурье обобщённой функции, функция может получиться не из \mathcal{L}_1 . Но можно на исходную функцию наложить ограничение.

Теорема 20.1 (условие обращения Дини). Пусть $f \in \mathcal{L}_1(\mathbb{R})$ и при некотором $\delta > 0$ и некотором x имеем $\int_{-\delta}^{\delta} \left| \frac{f(x+t) - f(x)}{t} < \right| \infty.$ Тогда утверэндается, что

$$\lim_{n \to \infty} \int_{-n}^{n} \hat{f}(y)e^{-ixy} dy = f(x).$$

Доказательство. Запишем интеграл и применим теорему Фубини

$$\varkappa \int_{-n}^{n} \hat{f}(y) e^{-ixy} dy = \frac{1}{\pi} \int_{\mathbb{R}} f(z) \left(\int_{-n}^{n} e^{-i(x-z)y} dy \right) dz = \frac{1}{\pi} \int_{\mathbb{R}} f(z) \frac{\sin n(x-z)}{(x-z)} dz.$$

Представим подынтегральную функцию через экспоненту по формуле Эйлера и используем, что $\int\limits_{\mathbb{R}} \frac{\sin nt}{t} \, dt = \pi.$

$$\frac{1}{\pi} \int_{\mathbb{R}} f(z) \frac{\sin n(x-z)}{(x-z)} \, dz - f(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(x-t) - f(x)}{t} \sin nt \, dt =$$

$$= \underbrace{\frac{1}{\pi} \int_{|t| \leqslant \delta} \frac{f(x-t) - f(x)}{t} \sin nt \, dt}_{n \to \infty} + \underbrace{\frac{1}{\pi} \int_{|t| > \delta} \frac{f(x-t)}{t} \sin nt \, dt}_{j(t) > \delta} + \underbrace{\int_{|t| > \delta n} f(x) \frac{\sin nt}{t} \, dt}_{j(t) > \delta}.$$

Утверждение 20.1 (Формула умножения). Пусть $f,g\in\mathcal{L}_1(\mathbb{R}^m)$. Тогда $\int\limits_{\mathbb{R}^m}\hat{f}(x)g(x)\,dx=\int\limits_{\mathbb{R}^n}f(x)\hat{g}(x)\,dx$.

Доказательство.
$$\int\limits_{\mathbb{R}^m} \left(\int\limits_{\mathbb{R}^m} f(y) e^{-i\langle x,y\rangle} \, dy \right) g(x) \, dx = \int\limits_{\mathbb{R}^m} f(y) \left(\int\limits_{\mathbb{R}^m} g(x) e^{-i\langle x,y\rangle} \, dx \right) dy.$$

Утверждение 20.2 (Формула обращения). Пусть $f, \hat{f} \in \mathcal{L}_1(\mathbb{R}^m)$. Тогда

$$\widetilde{\hat{f}}(x) = \widetilde{\hat{f}}(x) = f(x) \text{ n. e.} x \in \mathbb{R}^m$$

Доказательство. Имеем

$$\forall \varphi \in S(\mathbb{R}^m) \int_{\mathbb{R}^m} \widetilde{\hat{f}}(x)\varphi(x) \, dx = \int_{\mathbb{R}^m} f(x)\widehat{\varphi}(x) \, dx = \int_{\mathbb{R}^m} f(x)\varphi(x) \, dx.$$

Значит, $\widetilde{\widehat{f}}(x) - f(x) = 0$ почти всюду.

Утверждение 20.3 (Формулы дифференцирования). Пусть $f \in \mathcal{L}_1(\mathbb{R}^m)$, $x^{\alpha}f(x) \in \mathcal{L}_1(\mathbb{R}^m)$. Тогда $\partial^{\alpha}\hat{f}(x) = (-i\hat{y})^{\alpha}f(y)$.

Если
$$f \in W_1^k(\mathbb{R}^m)$$
, то $\forall \ |\alpha| \leqslant k, \ \forall \ x \in \mathbb{R}^m \ \partial^{\hat{\alpha}} f(x) = (ix)^{\alpha} \hat{f}(x).$

Раз мы уже показали, что данное преобразование совпадает с обобщённым, то всё уже доказано. Просто равенства выполнены почти всюду, но для элементов из \mathcal{L}_1 это неважно.

Утверждение 20.4. Формула свёртки. Пусть $f,g\in\mathcal{L}_1(\mathbb{R}^m)$. Тогда

$$f \star g(x) = \int_{\mathbb{R}^m} f(y)g(x-y) \, dy \in \mathcal{L}_1(\mathbb{R}^m); \quad f \star g(x) = \varkappa^{-m} \hat{f}(x) \cdot \hat{g}(x).$$

Доказательство. Рассмотрим невырожденное линейное преобразование (ведь существует обратное) $(x,y) \to (y,x-y) \colon \mathbb{R}^{2m} \to \mathbb{R}^{2m}$. Так как преобразование линейно, оно переводит измеримые в измеримые. Так как $f(x) \cdot g(y)$ измерима, то f(y)g(x-y) тоже измерима в \mathbb{R}^{2m} . Более того, $f(y)g(x-y) \in \mathcal{L}_1(\mathbb{R}^{2m})$. И выполняются неравенства

$$||f \star g||_{\mathcal{L}_1} \leqslant \int_{\mathbb{R}^m} dx \left(\int_{\mathbb{R}^m} |f(y)g(x-y)| dy \right) = ||f||_{\mathcal{L}_1} ||g||_{\mathcal{L}_1}.$$

Кроме того

$$\begin{split} \varkappa^m \int\limits_{\mathbb{R}^m} \bigg(\int\limits_{\mathbb{R}^m} f(z) g(y-z) \, dz \bigg) e^{-i\langle x,y \rangle} \, dy = \\ &= \varkappa^m \int\limits_{\mathbb{R}^m} f(z) \bigg(\int\limits_{\mathbb{R}^m} g(y-z) \, e^{-i\langle x,y-z \rangle} \, dy \bigg) e^{-i\langle x,y \rangle} \, dz = \{y \to y-z\} = \varkappa^{-m} \hat{f}(x) \hat{g}(x). \end{split}$$

20.1 Преобразование Фурье в \mathcal{L}_2

Определение 20.1. Обозначим $\Delta_n := \left\{ x \in \mathbb{R}^m \; \middle| \; \max_{1 \leqslant k \leqslant m} |x_k| < n \right\}$. Пусть $f \in \mathcal{L}_2(\mathbb{R})$. Тогда определим преобразование Фурье

 $\hat{f}(x) := \lim_{n \to \infty} \int_{\Delta_n} f(y) e^{-i\langle x, y \rangle} \, dy.$

3десь предел берётся в $\mathcal{L}_2(\mathbb{R}^m)$.

Как и в признаке Дини приходится брать предел. Обозначим $f_n(x) = f(x)\chi_{\Delta_n}(x)$. Тогда $f_n \in \mathcal{L}_1(\mathbb{R}^m)$ для каждого $n \in \mathbb{N}$. Тогда считаем по определению $\widetilde{f}(x) := \widehat{f}(-x)$.

Докажем, что предел существует и оператор сохраняет норму.

Теорема 20.2 (Планшереля). *Если* $f \in \mathcal{L}_2(\mathbb{R}^m)$, то $\exists \ \hat{f} = \lim n \to \infty f_n \ e \ \mathcal{L}_2(\mathbb{R}^m) \ u \ \|\hat{f}\|_{\mathcal{L}_2} = \|f\|_{\mathcal{L}_2}$. Доказательство. Легко проверить, что если возьмём функцию $\varphi \in S(\mathbb{R}^m)$, то

$$\|\varphi\|_{\mathcal{L}_2}^2 = \int\limits_{\mathbb{R}^m} \varphi(x) \overline{\varphi(x)} \, dx = \int\limits_{\mathbb{R}^m} \widetilde{\hat{\varphi}}(x) \overline{\varphi(x)} \, dx = \int\limits_{\mathbb{R}^m} \hat{\varphi}(x) \overline{\hat{\varphi}(x)} \, dx = \|\hat{\varphi}\|_{\mathcal{L}_2}^2.$$

Таким образом для функций из S мы доказали.

Пусть $f(x) \in \mathcal{L}_2(\mathbb{R}^m)$ и f(x) = 0 для всех $x \in \Delta_r$. Тогда $\exists \varphi_n \in \mathcal{D}(\Delta_r) \colon \|f - \varphi_n\|_{\mathcal{L}_2} \xrightarrow[n \to \infty]{} 0$. Мы это доказывали для \mathcal{L}_p . Значит, $\{\varphi_n\}$ — последовательность Коши в $\mathcal{L}_2(\mathbb{R}^m)$. Следовательно и $\{\hat{\varphi}_n\}$ — последовательность Коши в $\mathcal{L}_2(\mathbb{R}^m)$. Сходятся в \mathcal{L}_2 , значит, сходятся в \mathcal{L}_1 , а φ_n , $f \in \mathcal{L}_1(\Delta_r)$ и $\hat{\varphi}_n \xrightarrow[n \to \infty]{P} \hat{f}$. Значит, $\hat{\varphi}_n \xrightarrow[n \to \infty]{P} \hat{f}$ в $\mathcal{L}_2(\mathbb{R}^m)$. Значит,

$$||f||_{\mathcal{L}_2} = \lim_{n \to \infty} ||\varphi_n||_{\mathcal{L}_2} = \lim_{n \to \infty} ||\hat{\varphi}_n|| = ||\hat{f}||_{\mathcal{L}_2}.$$

Докажем теперь в общем случае. Пусть $f \in \mathcal{L}_2(\mathbb{R}^m)$. Тогда $f_n = f \cdot \chi_{\Delta_n} \xrightarrow[n \to \infty]{} f$ в $\mathcal{L}_2(\mathbb{R}^m)$. Значит, $\{f_n\}$ — последовательность Коши в \mathcal{L}_2 . Отсюда и преобразование Фурье тоже является последовательностью Коши в силу последнего выключного равенства. Отсюда существует предел в \mathcal{L}_2 , то есть $\exists \ \hat{f} = \lim_{n \to \infty} \hat{f}_n$ в $\mathcal{L}_2(\mathbb{R}^m)$. И осталось написать равенство норм.

Давайте сформулируем теперь свойства преобразования Фурье для функций из \mathcal{L}_2 . **Утверждение 20.5.** Формула умножения. $f, g \in \mathcal{L}_2(\mathbb{R}^m)$. Тогда

$$\int_{\mathbb{R}^m} \hat{f}(x)g(x) dx = \int_{\mathbb{R}^m} f(x)\hat{g}(x) dx.$$

Эта формула получается из теоремы Планшереля и непрерывности скалярного произведения.

Утверждение 20.6. Формула обращения. Если $f \in \mathcal{L}_2(\mathbb{R}^m)$, то $\widehat{\widehat{f}}(x) = \widehat{\widehat{f}}(x) = f(x)$ почти всюду на \mathbb{R}^m .

Доказывается так же, как и в \mathcal{L}_1 .

Утверждение 20.7. Формула свёртки. Пусть $f \in \mathcal{L}_1(\mathbb{R}^m), g \in \mathcal{L}_2(\mathbb{R}^m)$. Тогда

$$f \star g \in \mathcal{L}_2(\mathbb{R}^m)$$
, $\hat{f} \star g(x) = \varkappa^{-m} \hat{f}(x) \hat{g}(x)$ почти всюду на \mathbb{R}^m .

Доказательство. Интегрируемость в квадрате вытекает и обобщённого неравенства Миньковского

$$||f \star g||_{\mathcal{L}_2} \leq ||f||\mathcal{L}_1 \cdot ||g||_{\mathcal{L}_2}.$$

Применя теорему Плашереля, переходя к пределу, получаем формулу.

20.2 Функции Эрмита

Это вот такие функции $h_n(x) := c_n e^{\frac{x^2}{2}} \left(\left(\frac{d}{dx} \right)^n e^{-x^2} \right)$. Здесь c_n константа. Если произвести дифференцирование

$$h_n(x) = H_n(x)e^{-\frac{x^2}{2}}, \quad H_n(x) = \sum_{k=0}^n a_k x^k$$

 $H_n(x)$ называются многочленами Эрмита.

Утверждение 20.8. $\{h_n(x)\}$ ортогональны.

Доказательство. Имеем

$$\int_{\mathbb{R}} h_n(x)h_m(x) dx = c_n \int_{\mathbb{R}} H_n(x) \left(\frac{d}{dx}\right)^m e^{-x^2} dx = c_n(-1)^m \int_{\mathbb{R}} e^{-x^2} \left(\frac{d}{dx}\right)^m H_n(x) dx = 0, \ m > n.$$

Для n=m это равно $c_n^2 2^n n! \sqrt{\pi}$, так как $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$. σ Значит, для ортонормированной системы берём $c_n = \frac{1}{\sqrt{2n+1-\pi}}$.

Лемма 20.2. Пусть $a, b > 0, n \in \mathbb{Z}_+$, функция φ измерима и удовлетворяет неравенству $0 < |\varphi(x)| \leqslant be^{-a|x|}$. Тогда система функций $\varphi_n(x) = x^n \varphi(x)$ при $n \in \mathbb{Z}_+$ полна в \mathcal{L}_2 .

Доказательство. Мы из прошлого семестра знаем критерий полноты. Мы им и воспользуемся. Пусть $f \in \mathcal{L}_2(\mathbb{R})$ и $\forall n \in \mathbb{Z}_+ \ f \perp \varphi_n$, то есть

$$\forall n \in \mathbb{Z}_+ \int_{\mathbb{R}} f(x)\varphi(x) dx = 0.$$

Рассмотрим функцию комплексного переменного $F(z) = \int\limits_{\mathbb{R}} f(t) \varphi(t) e^{-itz} \, dt$, где $z = x + i \, y \in \mathbb{C}$: |y| < a. Можно дифференцировать под знаком интеграла, значит, функция получится голоморфной в $|\operatorname{Im} z| < a$. Заметим, что производные в нуле равны нулю, то есть

$$F^{(n)}(0) = \int_{\mathbb{D}} f(t)(-it)^n \varphi(t) \, dt = 0$$

в силу условия ортогональности. Значит, по теореме об аналитическом продолжении функция будет тождественным нулём в полосе $|\operatorname{Im} z| < a$. В частности, она будет равна нулю для всех $x \in \mathbb{R}$. А тогда это с точностью до константы преобразование Фурье ноль, но сущесвует обратное. И обратное обязано быть нулём почти всюду. Значит, $f(t)\varphi(t)=0$ почти всюду. Отсюда f(t)=0 почти всюду.

Теорема 20.3. Функции Эрмита $\{h_n\}$ образуют полную ортонормированную систему, такую, что $\forall n \in \mathbb{Z}_+$ $\hat{h}_n(x) = (-i)^n h_n(x)$. То есть они являются собственными функцими функциями преобразования Фурье и образуют полную ортонормированную систему.

Доказательство. $\{h_n\}$ является ортогонализацией Грама—Шмидта системы $x^n e^{-\frac{x^2}{2}}$. Осталось доказать, что функции Эрмита являются собственными.

$$\begin{split} \hat{h}_n(x) &= \varkappa \int\limits_{\mathbb{R}} h_n(y) e^{-i\,x\,y}\,dy = \varkappa c_n \int\limits_{\mathbb{R}} e^{\frac{y^2}{2} - i\,x\,y} \left(\frac{d}{dy}\right)^n e^{-y^2}\,dy = \\ &= \varkappa c_n e^{\frac{x^2}{2}} \int\limits_{\mathbb{R}} e^{\frac{(y-i\,x)^2}{2}} \left(\frac{d}{dy}\right)^n e^{-y^2}\,dy = \varkappa c_n (-1)^n e^{\frac{x^2}{2}} \int\limits_{\mathbb{R}} e^{-y^2} \left(\frac{d}{dy}\right)^n e^{\frac{(y-i\,x)^2}{2}}\,dy = \\ &= \varkappa c_n (-i)^n e^{\frac{x^2}{2}} \left(\frac{d}{dx}\right)^n \int\limits_{\mathbb{R}} e^{-\frac{y^2}{2} - i\,x\,y - \frac{x^2}{2}}\,dy = \text{Mы доказывали, что } e^{-\frac{\hat{x}^2}{2}} = e^{-\frac{x^2}{2}} \\ &= c_n (-i)^n e^{\frac{x^2}{2}} \left(\frac{d}{dx}\right)^n e^{-x} = (-i)^n h_n(x). \end{split}$$