Predicate Logic Proofs (all valid)

1. $\forall x (A(x) \to B(x))$ $\forall x (B(x) \to C(x))$ $\therefore \forall x (A(x) \to C(x))$ 4.	2. $\forall x (A(x) \to (B(x) \land C(x)))$ $\forall x (A(x) \to \neg C(x))$ $\therefore \neg A(a)$ 5.	3. $\forall x (A(x) \rightarrow \forall y B(x,y))$ $A(b)$ $\forall y B(b,y)$ 6.
$\forall x (B(x) \to C(x))$ $\exists y (A(y) \land B(y))$ $\therefore \exists z (A(z) \land C(z))$	$\neg \exists z \ F(z)$ $\therefore F(a) \to G(a)$	$\exists x \ A(x) \to \forall x \ (B(x) \to C(x))$ $A(c) \land B(c)$ $\therefore C(c)$
7. $\forall x (B(x) \to C(x))$ $\exists y \neg C(y)$ $\therefore \exists z \neg B(z)$	$ 8. K(a) \forall x (K(x) \rightarrow \forall y H(y)) \therefore \forall x H(x) $	9. $\forall x \exists y (A(x) \to B(y))$ $\therefore \forall x A(x) \to \exists y B(y)$
10. ∃x ∀y A(x,y) ∴ ∃x A(x,a)	11. $\forall x \ A(x) \to \exists y \ B(y)$ $\forall y \neg B(y)$ $\therefore \neg \forall z \ A(z)$	12. $\forall x (A(x) \to (\exists y (B(y) \land D(y)) \to C(x)))$ $\forall x (B(x) \to C(x))$ $\therefore \forall x (A(x) \to (B(x) \to C(x)))$
13. $\exists x \ R(x) \rightarrow \exists x \ S(x)$ $\forall y \ (T(y) \rightarrow R(y))$ ∴ $\exists x \ T(x) \rightarrow \exists z \ S(z)$	14. $\exists x \ \forall y \ (A(x,y) \to B(x,y))$ $\forall x \ \exists y \ \neg B(x,y)$ $\therefore \neg \forall x \ \forall y \ A(x,y)$	15. $\exists x (A(x) \land \forall y (B(y) \rightarrow C(x,y)))$ $\forall x \exists y (A(x) \rightarrow B(y))$ $\therefore \exists x \exists y C(x,y)$
16. $\forall x \ F(x) \lor \forall x \ \neg G(x)$ $\neg \forall x \ F(x)$ $\forall x \ (D(x) \to G(x))$ ∴ $\exists x \ \neg D(x)$	17. ¬∃x (A(x,a) ∧ ¬B(x,b)) ¬∃x (C(x,c) ∧ C(b,x)) ∀x (B(e,x) → C(x,f)) ∴¬(A(e,a) ∧ C(f,c))	18. $\exists x \ A(x) \rightarrow \forall x \ (B(x) \rightarrow C(x))$ $\exists x \ D(x) \rightarrow \exists x \ \neg C(x)$ $\exists y \ (A(y) \land D(y))$ ∴ $\exists z \ \neg B(z)$
19. $\forall x \exists y (\neg F(x) \lor G(y))$ ∴ $\forall x F(x) \rightarrow \exists y G(y))$	20. $\forall x (A(x) \rightarrow H(x))$ $\exists x A(x) \rightarrow \neg \exists y G(y)$ ∴ $\forall x (\exists y A(y) \rightarrow \neg G(x))$	21. $\exists x (A(x) \land \forall y (Q(y) \to L(x,y)))$ $\forall x (A(x) \to \forall y (I(y) \to \neg L(x,y)))$ $\therefore \forall x (Q(x) \to \neg I(x))$
22. $\exists x \ \forall y \ F(x,y)$ $\forall x \ \forall y \ (F(y,x) \to G(x,y))$ $\therefore \forall y \ \exists x \ G(y,x)$	23. $\forall x \exists y F(y,x) \rightarrow \forall x \exists y G(x,y)$ $\exists x \forall y \neg G(x,y)$ $\therefore \exists x \forall y \neg F(x,y)$	24. $\exists x (F(x) \land \forall y (G(y) \to H(x,y)))$ $\therefore \exists x (F(x) \land (G(a) \to H(x,a)))$