目次

1	はじめに	2
2	実験の目的と原理	2
2.1	Z80	2
2.2	入出力制御	2
3	実験内容	3
3.1	実験課題 $2.{ m Z}80$ の演算命令、フラグ、条件分岐及びサブルーチン実行時の観察 \dots	3
3.2	実験課題 3. 入出力制御	3
4	実験結果	5
4.1	実験課題 $2.{ m Z}80$ の演算命令、フラグ、条件分岐及びサブルーチン実行時の観察 \dots	5
4.2	実験課題 3. 入出力制御	5
5	考察	5
5.1	考察課題 2.Z80 の演算命令、フラグ、条件分岐及びサブルーチン実行時の観察	5
5.2	考察課題 3. 入出力制御	5
6	おわりに	5
7	参考文献	5

1 はじめに

デジタル信号は 0 と 1 の信号の組み合わせでできている。各信号が 0 と 1 の 2 値であるが、現代のデジタル機器では幅広い数値を表現することができる。つまり離散的な値の組み合わせで、見掛け上連続的な幅を表現できるということになる。

ここでは、このコンピュータのシステムを演算装置 (ALU) から、Z80 コンピュータシステムや 入出力制御までを通して理解することを目的とする。

レポートはこの実験全体を2分し、以下のように各レポートで実験結果をまとめる。

- 1部: 演算装置 (ALU:Arithmetic Logic Unit)
- 2 部: Z80 コンピュータシステム、入出力制御

そして、このレポートはそのうちの第 2 部であり、Z80 の演算命令等の挙動観察実験、及び入出力制御をスイッチ入力、スピーカ制御について行った実験をまとめている。

2 実験の目的と原理

2.1 Z80

2.1.1 目的

はじめに行うのは Z80 の演算命令に対する挙動観察である。つまりあるプログラムを実行させるときに、実際コンピュータはどのようにそのメモリ、レジスタ、そしてスタックなどを理容しているのかを、デバッガーを用いて 1 命令ごとにトレースしていく。

それがこの実験の目的であり、以下、必要な主な原理を述べる。

2.1.2

2.2 入出力制御

2.2.1 目的

このマイクロプロセッサ実験の最後には入出力制御を行う。

あるプログラムが汎用化のために使用者の入力を待って、それに対して出力を返すという挙動を示すとき、そのプログラムの作成は条件分岐やそれに伴うサブルーチンの形成を必要とする。これら条件分岐などのメソッドを用いて、入出力挙動を示すシステムを考えること (今回におけるプログラムを作成すること) を入出力制御と呼ぶ。

ここではスイッチ入力による LED 出力の制御、及び周波数入力によるスピーカ出力の制御により入出力制御を学ぶ。

2.2.2

- 3 実験内容
- 3.1 実験課題 2.Z80 の演算命令、フラグ、条件分岐及びサブルーチン実行時の 観察
- 3.1.1 実験課題 2-1. テストプログラムによる動作検証
- 3.1.2 実験課題 2-2. 演算命令及びフラグの観察
- 3.1.3 実験課題 2-3. フラグ、条件分岐及びサブルーチン実行時の観察
- 3.2 実験課題 3. 入出力制御
- 3.2.1 実験課題 3-1. スイッチ入力と LED の制御 ここではスイッチ入力に対する LED の出力制御を行った。
 - 1. 表1のアセンブリのコードを作成、コンパイルの後、デバッガーでトレースする。

表 1 SW 及びスイッチ入力に対する LED 出力の制御のアセンブリコード

	ORG	7000H	;プログラム開始番地
	LD	C, 30H	;SWO-7 の I/O アドレス指定
KURIKAE:	IN	A, (C)	;SWO-7 からデータを入力
	OUT	(11H), A	; 入力データを LED に出力
	CP	55H	; 偶数スイッチのみが on か?
	JP	Z, OWARI	;Yes:終了
	JP	KURIKAE	;No:データ入力を繰り返す
OWARI:	NOP		; ブレークポイント設定位置
	END		;

3.2.2 実験課題 3-2. スピーカの制御

音の高さと長さを読み込み、それを元にスピーカーで音を発生。さらに繰り返し実行による高さ・長さそれぞれの増加も出力に反映。

- 1. 表
- 2. PC レジスタを 7000H に設定。
- 3. 8F10H 番地に音の高さの初期値を入力。
- 4. 8F12H 番地に音の高さの増分を入力。
- 5. 8F14H 番地に音の長さの初期値を入力。

- 6. 8F16H 番地に音の長さの増分を入力。
- 7. $2 \sim 5$ の入力値を適当に変更させながら、スピーカーから発生する音の高さの聞こえる周波数範囲を測定。
- 8.2~5の入力値を適当に変更させながら、

4 実験結果

- 4.1 実験課題 2.Z80 の演算命令、フラグ、条件分岐及びサブルーチン実行時の 観察
- 4.1.1 実験課題 2-1. テストプログラムによる動作検証
- 4.1.2 実験課題 2-2. 演算命令及びフラグの観察
- 4.1.3 実験課題 2-3. フラグ、条件分岐及びサブルーチン実行時の観察
- 4.2 実験課題 3. 入出力制御
- 4.2.1 実験課題 3-1. スイッチ入力と LED の制御
- 4.2.2 実験課題 3-2. スピーカの制御
- 5 考察
- 5.1 考察課題 2.Z80 の演算命令、フラグ、条件分岐及びサブルーチン実行時の 観察
- 5.1.1 考察課題 2-1. テストプログラムによる動作検証
- 5.1.2 考察課題 2-2. 演算命令及びフラグの観察
- 5.1.3 考察課題 2-3. フラグ、条件分岐及びサブルーチン実行時の観察
- 5.2 考察課題 3. 入出力制御
- 5.2.1 考察課題 3-1. スイッチ入力と LED の制御
- 5.2.2 考察課題 3-2. スピーカの制御
- 6 おわりに
- 7 参考文献