练习题 2

一、填空题

1)设 $X_1, X_2, \cdots, X_n, \cdots$ 是独立同分布的随机变量序列,且均值为 μ ,方差为 σ^2 ,那么当n 充分大 时,近似有 $\overline{X}\sim$ ______或 $\sqrt{n}\frac{\overline{X}-\mu}{\sigma}\sim$ _____。特别是,当同为正态分布时,对于任意

- 2)设 $X_1,X_2,\cdots,X_n,\cdots$ 是独立同分布的随机变量序列,且 $EX_i=\mu$, $DX_i=\sigma^2$ $(i=1,2,\cdots)$ 那么 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ 依概率收敛于______.
- 3) 设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的样本,令 $Y = (X_1 + X_2)^2 + (X_3 X_4)^2$, 当C =_______ 时 $CY \sim \chi^2(2)$ 。
- 4) 设容量 n = 10 的样本的观察值为(8, 7, 6, 9, 8, 7, 5, 9, 6),则样本均值=_____, 样本方差=
- 5) 设 $X_1, X_2, \cdots X_n$ 为来自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个简单随机样本,则样本均值 $X = \frac{1}{n} \sum_{i=1}^{n} X_{i} \mathbb{R} M$

二、选择题

1) 设 $X \sim N(\mu, \sigma^2)$ 其中 μ 已知, σ^2 未知, X_1, X_2, X_3 样本,则下列选项中不是统计量 的是

A)
$$X_1 + X_2 + X_3$$

A)
$$X_1 + X_2 + X_3$$
 B) $\max\{X_1, X_2, X_3\}$ C) $\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$ D) $X_1 - \mu$

C)
$$\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$$

2) 设 $X \sim \beta(1, p)$, X_1, X_2, \dots, X_n , 是来自X 的样本,那么下列选项中不正确的是_____

A) 当
$$n$$
 充分大时,近似有 $\overline{X} \sim N\left(p, \frac{p(1-p)}{n}\right)$

B)
$$P\{\overline{X}=k\}=C_n^k p^k (1-p)^{n-k}, k=0,1,2,\dots,n$$

C)
$$P\{\overline{X} = \frac{k}{n}\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n$$

3) 若 $X \sim t(n)$ 那么 $X^2 \sim$

A)
$$F(1,n)$$

A)
$$F(1,n)$$
 B) $F(n,1)$ C) $\chi^{2}(n)$ D) $t(n)$

C)
$$\chi^2(n)$$

D)
$$t(n)$$

4) 设 $X_1, X_2, \cdots X_n$ 为来自正态总体 $N(\mu, \sigma^2)$ 简单随机样本, \overline{X} 是样本均值,记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \quad S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2, \quad S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2,$$

$$S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$
,则服从自由度为 $n-1$ 的 t 分布的随机变量是______

A)
$$t = \frac{\overline{X} - \mu}{S_1 / \sqrt{n-1}}$$
 B) $t = \frac{\overline{X} - \mu}{S_2 / \sqrt{n-1}}$ C) $t = \frac{\overline{X} - \mu}{S_3 / \sqrt{n}}$ D) $t = \frac{\overline{X} - \mu}{S_4 / \sqrt{n}}$

5)设 $X_1,X_2,\cdots X_n$, X_{n+1},\cdots,X_{n+m} 是来自正态总体 $N(0,\sigma^2)$ 的容量为 n+m 的样本,则统计量

$$V = \frac{m\sum\limits_{i=1}^{n}X_{i}^{2}}{n\sum\limits_{i=n+1}^{n+m}X_{i}^{2}}$$
 服从的分布是_____
A) $F(m,n)$ B) $F(n-1,m-1)$ C) $F(n,m)$ D) $F(m-1,n-1)$

三、解答题

- 1)设供电网有1000 盏电灯, 夜晚每盏电灯开灯的概率均为0.7, 并且彼此开闭与否相互独立, 试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在 680 到 720 之间的概率。
- 2) 设总体 X 服从正态分布,又设 \overline{X} 与 S^2 分别为样本均值和样本方差,又设 $X_{n+1} \sim N(\mu, \sigma^2)$, 且 X_{n+1} 与 X_1, X_2, \dots, X_n 相互独立,求统计量 $\frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}$ 的分布。