

We claim

- 5 1. A 3-heterocyclyl-substituted benzoyl derivative of the formula I

10



15

where the variables have the following meanings:

20  $R^1, R^2$  are hydrogen, nitro, halogen, cyano,  $C_1-C_6$ -alkyl,  $C_1-C_6$ -haloalkyl,  $C_1-C_6$ -alkoxy,  $C_1-C_6$ -haloalkoxy,  $C_1-C_6$ -alkylthio,  $C_1-C_6$ -haloalkylthio,  $C_1-C_6$ -alkylsulfinyl,  $C_1-C_6$ -haloalkylsulfinyl,  $C_1-C_6$ -alkylsulfonyl or  $C_1-C_6$ -haloalkylsulfonyl;

25  $R^3$  is hydrogen, halogen or  $C_1-C_6$ -alkyl;

30  $R^4, R^5$  are hydrogen, halogen, cyano, nitro,  $C_1-C_4$ -alkyl,  $C_1-C_4$ -alkoxy- $C_1-C_4$ -alkyl, di( $C_1-C_4$ -alkoxy)- $C_1-C_4$ -alkyl, di( $C_1-C_4$ -alkyl)-amino- $C_1-C_4$ -alkyl, [2,2-di( $C_1-C_4$ -alkyl)-1-hydrazino]- $C_1-C_4$ -alkyl,  $C_1-C_6$ -alkyliminooxy- $C_1-C_4$ -alkyl,  $C_1-C_4$ -alkoxycarbonyl- $C_1-C_4$ -alkyl,  $C_1-C_4$ -alkylthio- $C_1-C_4$ -alkyl,  $C_1-C_4$ -haloalkyl,  $C_1-C_4$ -cyanoalkyl,  $C_3-C_8$ -cycloalkyl,  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -alkoxy- $C_2-C_4$ -alkoxy,  $C_1-C_4$ -haloalkoxy, hydroxyl,  $C_1-C_4$ -alkylcarbonyloxy,  $C_1-C_4$ -alkylthio,  $C_1-C_4$ -haloalkylthio, di( $C_1-C_4$ -alkyl)amino, COR<sup>6</sup>, phenyl or benzyl, it being possible for the two last-mentioned

35 substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano,  $C_1-C_4$ -alkyl,  $C_1-C_4$ -haloalkyl,  $C_1-C_4$ -alkoxy or  $C_1-C_4$ -haloalkoxy;

40

45

or

## 162

5           R<sup>4</sup> and R<sup>5</sup> together form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be mono- to tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl;

or

10          R<sup>4</sup> and R<sup>5</sup> together with the corresponding carbon form a carbonyl or thiocarbonyl group;

15          R<sup>6</sup>        is hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy, C<sub>3</sub>-C<sub>6</sub>-alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-alkynyloxy or NR<sup>7</sup>R<sup>8</sup>;

20          R<sup>7</sup>        is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;

25          R<sup>8</sup>        is C<sub>1</sub>-C<sub>4</sub>-alkyl;

30          X         is O, S, NR<sup>9</sup>, CO or CR<sup>10</sup>R<sup>11</sup>;

25          Y         is O, S, NR<sup>12</sup>, CO or CR<sup>13</sup>R<sup>14</sup>;

35          R<sup>9</sup>, R<sup>12</sup>    are hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;

30          R<sup>10</sup>, R<sup>11</sup>, R<sup>13</sup>, R<sup>14</sup> are hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub>-haloalkoxycarbonyl or CONR<sup>7</sup>R<sup>8</sup>;

or

35          R<sup>4</sup> and R<sup>9</sup> or R<sup>4</sup> and R<sup>10</sup> or R<sup>5</sup> and R<sup>12</sup> or R<sup>5</sup> and R<sup>13</sup> together form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be mono- to tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl;

40          R<sup>15</sup>        is a pyrazole of the formula II which is linked in the 4-position



where

- 10           R<sup>16</sup>       is C<sub>1</sub>-C<sub>6</sub>-alkyl;
- 15           Z        is H or SO<sub>2</sub>R<sup>17</sup>;
- 20           R<sup>17</sup>      is C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy;
- 25           R<sup>18</sup>      is hydrogen or C<sub>1</sub>-C<sub>6</sub>-alkyl;

25           where X and Y are not simultaneously sulfur;

- 30           with the exception of  
 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole,  
 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,  
 4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,  
 4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and  
 4-[2-chloro-3-(thiazoline-4,5-dion-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

40           or an agriculturally useful salt thereof.

- 40           2. A 3-heterocyclyl-substituted benzoyl derivative of the formula I where the variables have the following meanings:

- 45           R<sup>1</sup>, R<sup>2</sup>   are hydrogen, nitro, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio,

## 164

$C_1\text{-}C_6\text{-alkylsulfinyl}$ ,  $C_1\text{-}C_6\text{-haloalkylsulfinyl}$ ,  
 $C_1\text{-}C_6\text{-alkylsulfonyl}$  or  $C_1\text{-}C_6\text{-haloalkylsulfonyl}$ ;

- 5             $R^3$         is hydrogen, halogen or  $C_1\text{-}C_6\text{-alkyl}$ ;
- 10           $R^4$ ,  $R^5$       are hydrogen, halogen, cyano, nitro,  $C_1\text{-}C_4\text{-alkyl}$ ,  
 $C_1\text{-}C_4\text{-alkoxy-C}_1\text{-}C_4\text{-alkyl}$ ,  $\text{di}(C_1\text{-}C_4\text{-alkoxy})\text{-}C_1\text{-}C_4\text{-}$   
 $\text{alkyl}$ ,  $\text{di}(C_1\text{-}C_4\text{-alkyl})\text{-amino-C}_1\text{-}C_4\text{-alkyl}$ ,  
 $[2,2\text{-di}(C_1\text{-}C_4\text{-alkyl})\text{-}1\text{-hydrazino}]\text{-}C_1\text{-}C_4\text{-alkyl}$ ,  
 $C_1\text{-}C_6\text{-alkyliminooxy-C}_1\text{-}C_4\text{-alkyl}$ ,  $C_1\text{-}C_4\text{-alkoxycarbonyl-}$   
 $C_1\text{-}C_4\text{-alkyl}$ ,  $C_1\text{-}C_4\text{-alkylthio-C}_1\text{-}C_4\text{-alkyl}$ ,  
 $C_1\text{-}C_4\text{-haloalkyl}$ ,  $C_1\text{-}C_4\text{-cyanoalkyl}$ ,  $C_3\text{-}C_8\text{-cycloalkyl}$ ,  
 $C_1\text{-}C_4\text{-alkoxy}$ ,  $C_1\text{-}C_4\text{-alkoxy-C}_2\text{-}C_4\text{-alkoxy}$ ,  
 $C_1\text{-}C_4\text{-haloalkoxy}$ ,  $C_1\text{-}C_4\text{-alkylthio}$ ,  
 $C_1\text{-}C_4\text{-haloalkylthio}$ ,  $\text{di}(C_1\text{-}C_4\text{-alkyl})\text{amino}$ ,  $COR^6$ ,  
phenyl or benzyl, it being possible for the two  
last-mentioned substituents to be fully or partially  
halogenated and/or to have attached to them one to  
three of the following groups:  
nitro, cyano,  $C_1\text{-}C_4\text{-alkyl}$ ,  $C_1\text{-}C_4\text{-haloalkyl}$ ,  
 $C_1\text{-}C_4\text{-alkoxy}$  or  $C_1\text{-}C_4\text{-haloalkoxy}$ ;
- 25          or
- 30           $R^4$  and  $R^5$  together form a  $C_2\text{-}C_6\text{-alkanediyl}$  chain which can be  
mono- to tetrasubstituted by  $C_1\text{-}C_4\text{-alkyl}$  and/or  
which can be interrupted by oxygen or by a  
nitrogen which is unsubstituted or substituted by  
 $C_1\text{-}C_4\text{-alkyl}$ ;
- 35          or
- 40           $R^4$  and  $R^5$  together with the corresponding carbon form a  
carbonyl or thiocarbonyl group;
- 45           $R^6$         is  $C_1\text{-}C_4\text{-alkyl}$ ,  $C_1\text{-}C_4\text{-haloalkyl}$ ,  $C_1\text{-}C_4\text{-alkoxy}$ ,  
 $C_1\text{-}C_4\text{-alkoxy-C}_2\text{-}C_4\text{-alkoxy}$ ,  $C_1\text{-}C_4\text{-haloalkoxy}$ ,  
 $C_3\text{-}C_6\text{-alkenyloxy}$ ,  $C_3\text{-}C_6\text{-alkynyoxy}$  or  $NR^7R^8$ ;
- 47           $R^7$         is hydrogen or  $C_1\text{-}C_4\text{-alkyl}$ ;
- 48           $R^8$         is  $C_1\text{-}C_4\text{-alkyl}$ ;

165

X is O, S, NR<sup>9</sup>, CO or CR<sup>10</sup>R<sup>11</sup>;Y is O, S, NR<sup>12</sup>, CO or CR<sup>13</sup>R<sup>14</sup>;5 R<sup>9</sup>, R<sup>12</sup> are hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;R<sup>10</sup>, R<sup>11</sup>, R<sup>13</sup>, R<sup>14</sup> are hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl,  
C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub>-haloalkoxycarbonyl or  
CONR<sup>7</sup>R<sup>8</sup>;

10

or

15 R<sup>4</sup> and R<sup>9</sup> or R<sup>4</sup> and R<sup>10</sup> or R<sup>5</sup> and R<sup>12</sup> or R<sup>5</sup> and R<sup>13</sup> together  
form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be mono- to  
tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or interrupted  
by oxygen or by a nitrogen which is unsubstituted  
or substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl;

20

R<sup>15</sup> is a pyrazole of the formula II which is linked in  
the 4-position

25



30

where

R<sup>16</sup> is C<sub>1</sub>-C<sub>6</sub>-alkyl;

35

Z is H or SO<sub>2</sub>R<sup>17</sup>;

40

R<sup>17</sup> is C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, phenyl or  
phenyl which is partially or fully  
halogenated and/or has attached to it one  
to three of the following groups:  
nitro, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl,  
C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy;

45

R<sup>18</sup> is hydrogen or C<sub>1</sub>-C<sub>6</sub>-alkyl;

DRAFTS - PROVISIONAL - DRAFTS

where X and Y are not simultaneously oxygen or sulfur;

with the exception of

4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-  
benzoyl]-1-ethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-  
benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4-methyl-  
sulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonyl-  
benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and

4-[2-chloro-3-(thiazoline-4,5-dion-2-yl)-4-methylsulfonyl-  
benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

or an agriculturally useful salt thereof.

3. A 3-heterocyclyl-substituted benzoyl derivative of the  
formula I as claimed in claim 1 or 2, where R<sup>3</sup> is hydrogen.

4. A 3-heterocyclyl-substituted benzoyl derivative of the  
formula I as claimed in any of claims 1 to 3, where

R<sup>1</sup>, R<sup>2</sup> are nitro, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl,  
C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy,  
C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio,  
C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfinyl,  
C<sub>1</sub>-C<sub>6</sub>-alkylsulfonyl or C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfonyl.

5. A 3-heterocyclyl-substituted benzoyl derivative of the  
formula I as claimed in any of claims 1 to 4, where Z is  
SO<sub>2</sub>R<sup>17</sup>.

6. A 3-heterocyclyl-substituted benzoyl derivative of the  
formula I as claimed in any of claims 1 to 4, where Z is  
hydrogen.

7. A 3-heterocyclyl-substituted benzoyl derivative of the  
formula I as claimed in any of claims 1 to 4 or 6, where X is  
oxygen and Y is CR<sup>13</sup>R<sup>14</sup>.

8. A 3-heterocyclyl-substituted benzoyl derivative of the  
formula I as claimed in any of claims 1 to 4 or 6 or 7, where

- R<sup>4</sup> is halogen, nitro, C<sub>1</sub>-C<sub>4</sub>-alkyl,  
 C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl,  
 C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl-C<sub>1</sub>-C<sub>4</sub>-alkyl,  
 C<sub>1</sub>-C<sub>4</sub>-alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl,  
 C<sub>1</sub>-C<sub>4</sub>-cyanoalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy,  
 C<sub>1</sub>-C<sub>4</sub>-alkylthio, C<sub>1</sub>-C<sub>4</sub>-haloalkylthio,  
 di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, COR<sup>6</sup>, phenyl or benzyl, it  
 being possible for the two last-mentioned  
 substituents to be partially or fully halogenated  
 and/or to have attached to them one to three of  
 the following groups:  
 nitro, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl,  
 C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy;
- 15 R<sup>5</sup> is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;  
 or
- 20 R<sup>4</sup> and R<sup>5</sup> together form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be  
 mono- to tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or  
 which can be interrupted by oxygen or by a  
 nitrogen which is unsubstituted or substituted by  
 C<sub>1</sub>-C<sub>4</sub>-alkyl;
- 25 or
- 30 R<sup>5</sup> and R<sup>13</sup> together form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be  
 mono- to tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or  
 which can be interrupted by oxygen or by a  
 nitrogen which is unsubstituted or substituted by  
 C<sub>1</sub>-C<sub>4</sub>-alkyl.
- 35 9. A 3-heterocyclyl-substituted benzoyl derivative of the  
 formula I as claimed in any of claims 1 to 4 or 6 to 8, where
- 40 R<sup>4</sup> is C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl,  
 C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl or CONR<sup>7</sup>R<sup>8</sup>;
- 45 R<sup>5</sup> is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;  
 or

168

5      R<sup>4</sup> and R<sup>5</sup> together form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be mono- to tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl;

or

10     R<sup>5</sup> and R<sup>13</sup> together form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be mono- to tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl.

15     10. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 7, where R<sup>4</sup> and R<sup>5</sup> are hydrogen.

20     11. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 7 or 10, where R<sup>18</sup> is hydrogen.

25     12. 4-[2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

30     13. An agriculturally useful salt of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

35     14. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6, where

35     X    is S, NR<sup>9</sup>, CO or CR<sup>10</sup>R<sup>11</sup>;

or

40     Y    is O, S, NR<sup>12</sup> or CO.

45     15. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 14, where R<sup>18</sup> is hydrogen.

16. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 14, where

- 5        R<sup>4</sup>        is halogen, cyano, nitro, C<sub>1</sub>-C<sub>4</sub>-alkyl,  
           C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl,  
           C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl-C<sub>1</sub>-C<sub>4</sub>-alkyl,  
           C<sub>1</sub>-C<sub>4</sub>-alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl,  
           C<sub>1</sub>-C<sub>4</sub>-cyanoalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy,  
 10      C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>2</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy,  
           C<sub>1</sub>-C<sub>4</sub>-alkylthio, C<sub>1</sub>-C<sub>4</sub>-haloalkylthio,  
           di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, COR<sup>6</sup>, phenyl or benzyl, it  
           being possible for the two last-mentioned  
 15      substituents to be partially or fully halogenated  
           and/or to have attached to them one to three of  
           the following groups:  
           nitro, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl,  
           C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy;
- 20      R<sup>5</sup>        is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;  
           or
- 25      R<sup>4</sup> and R<sup>5</sup>   together form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be  
           mono- to tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or  
           which can be interrupted by oxygen or by a  
           nitrogen which is unsubstituted or substituted by  
           C<sub>1</sub>-C<sub>4</sub>-alkyl;
- 30      or
- 35      R<sup>4</sup> and R<sup>9</sup>   or R<sup>4</sup> and R<sup>10</sup> or R<sup>5</sup> and R<sup>12</sup> or R<sup>5</sup> and R<sup>13</sup> together  
           form a C<sub>2</sub>-C<sub>6</sub>-alkanediyl chain which can be mono- to  
           tetrasubstituted by C<sub>1</sub>-C<sub>4</sub>-alkyl and/or which can be  
           interrupted by oxygen or by a nitrogen which is  
           unsubstituted or substituted by C<sub>1</sub>-C<sub>4</sub>-alkyl;
- 40      R<sup>18</sup>        is C<sub>1</sub>-C<sub>6</sub>-alkyl.

17. A process for the preparation of 3-heterocyclyl-substituted benzoyl derivatives of the formula I as claimed in claim 1, which comprises acylating the pyrazole of the formula II where Z = H, where the variables R<sup>16</sup> and R<sup>18</sup> have the meanings given under claim 1,

170

5



II (where Z = H)

10

with an activated carboxylic acid IIIα or with a carboxylic acid IIIβ,

15



IIIα



IIIβ

20

25

where the variables R<sup>1</sup> to R<sup>5</sup>, X and Y have the meanings given under claim 1 and L<sup>1</sup> is a nucleophilically displaceable leaving group, subjecting the acylation product to a rearrangement reaction in the presence or absence of a catalyst to give the compounds I (where Z = H) and, if desired, to prepare 3-heterocyclyl-substituted benzoyl derivatives of the formula I where Z = SO<sub>2</sub>R<sup>17</sup>, reacting the product with a compound of the formula V,

30



35

where R<sup>17</sup> has the meaning given under claim 1 and L<sup>2</sup> is a nucleophilically displaceable leaving group.

18. A 3-heterocyclyl-substituted benzoic acid derivative of the formula III,

40

45

171

5



10

where  $R^{19}$  is hydroxyl or a radical which can be removed by hydrolysis and variables  $R^1$  to  $R^5$ ,  $X$  and  $Y$  have the meanings given under the claims 1 to 16, with the exception of methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate, methyl 2-chloro-3-(4,5-dihydrooxazol-2-yl)-4-methylsulfonylbenzoate and methyl 2,4-dichloro-3-(5-methylcarbonyloxy-4,5-dihydroisoxazol-3-yl)benzoate.

- 15 20. A 3-heterocyclyl-substituted benzoic acid derivative of the formula III as claimed in claim 18 where the variables  $R^1$  to  $R^5$ ,  $X$  and  $Y$  have the meanings given under claims 2 to 16.
- 25 20. A 3-heterocyclyl-substituted benzoic acid derivative of the formula III as claimed in either of claims 18 or 19, where

$R^{19}$  is halogen, hydroxyl or  $C_1\text{-}C_6$ -alkoxy.

- 30 21. A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl derivative of the formula I or of an agriculturally useful salt of I as claimed in any of claims 1 to 16, and auxiliaries conventionally used for the formulation of crop protection products.
- 35 22. A process for the preparation of a composition as claimed in claim 21, which comprises mixing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl derivative of the formula I or of an agriculturally useful salt of I as claimed in any of claims 1 to 16 and auxiliaries conventionally used for the formulation of crop protection products.
- 40 45 23. A method of controlling undesirable vegetation, which comprises allowing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl derivative of the

172

formula I or of an agriculturally useful salt of I as claimed in any of claims 1 to 16 to act on plants, their environment and/or on seeds.

- 5 24. The use of a 3-heterocyclyl-substituted benzoyl derivative of the formula I or an agriculturally useful salt thereof as claimed in any of claims 1 to 16 as herbicide.

10

15

20

25

30

35

40

45