THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1510 Calculus for Engineers (2020-2021) Supplementary Exercise 3

Limits of Functions

1. Let
$$f(x) = x + 1$$
 and $g(x) = \frac{x^2 - 1}{x - 1}$.

- (a) State the domains of f(x) and g(x).
- (b) Fill in the blanks. g(x) can be described in the following way:

$$g(x) = \begin{cases} -\frac{1}{x} & \text{if } x \neq 1, \\ \text{NOT defined if } x = -\frac{1}{x}. \end{cases}$$

- (c) Sketch the graphs of the functions f(x) and g(x).
- 2. Let f(x) = x + 1 and $g(x) = \frac{x^2 1}{x 1}$ for $x \neq 1$.

Complete the following table.

x	0.9	0.99	0.999	0.9999	1	1.0001	1.001	1.01	1.1
f(x)									
g(x)									

By observation, when x is getting closer and closer to 1, what values do f(x) and g(x) get closer and closer to? Hence, guess the value of $\lim_{x\to 1} f(x)$ and $\lim_{x\to 1} g(x)$.

3. Complete the following table. (Note: x is in radian)

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)							

By observation, guess the value of $\lim_{x\to 0} \frac{\sin x}{x}$.

4. Let f(x) be a function defined by

$$f(x) = \begin{cases} x+1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0 \end{cases}$$

(a) Complete the following table.

\boldsymbol{x}	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1
f(x)									

- (b) Find $\lim_{x\to 0^-} f(x)$, $\lim_{x\to 0^+} f(x)$ and f(0).
- (c) Does $\lim_{x\to 0} f(x)$ exist? Why?
- 5. Let $f(x) = \frac{|x-1|}{x^2-1}$ for $x \neq \pm 1$.
 - (a) Does $\lim_{x\to 1} f(x)$ exist?
 - (b) Does $\lim_{x \to -1} f(x)$ exist?

(Hint: Rewrite the function f(x) as a piecewise defined function.)

6. Let a be a real number and let f(x) be a function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 2, \\ 3x + a & \text{if } x < 2 \end{cases}$$

Given that $\lim_{x\to 2} f(x)$ exists. What is the value of a?

- 7. Let $f(x) = \frac{x^3}{|x|}$ for $x \neq 0$.
 - (a) Find $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.
 - (b) Does $\lim_{x\to 0} f(x)$ exist?
- 8. Without using L'Hôpital rule, find the following limits.

(a)
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$$

(b)
$$\lim_{x \to 2} \frac{x^3 - 4x^2 + 5x - 2}{x^2 - 4}$$

(c)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

(d)
$$\lim_{x\to 27} \frac{\sqrt[3]{x} - 3}{x - 27}$$

(e)
$$\lim_{x \to 3} \frac{x-3}{\sqrt{x+1}-2}$$

(f)
$$\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{x}$$

- (g) (Harder Problem) $\lim_{x\to 0} \frac{(1+x)^n-1}{x}$, where n is a positive integer.
- 9. By using the fact that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, find the following limits.

(a)
$$\lim_{x \to 0} \frac{\sin 2x}{5x}$$

(b)
$$\lim_{x \to 0} \frac{\sin 5x}{\sin 7x}$$

(c)
$$\lim_{x \to 0} \frac{\sin(x^2)}{5x^2}$$

(d)
$$\lim_{x\to 0} \frac{\cos ax - \cos bx}{x^2}$$
, where a and b are distinct real numbers.

10. (a) By using the fact that
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
, find $\lim_{x\to 0} \frac{\cos x - 1}{x^2}$.

(b) Using (a), find
$$\lim_{x\to 0} \frac{\cos x - 1}{x}$$
.

Limits at Infinity

11. Let
$$f(x) = \frac{x-1}{x-2}$$
.

Complete the following table.

x	10	100	1000
f(x)			

By observation, guess the value of $\lim_{x\to +\infty} f(x)$.

(Remark: You may repeat the above by putting x=-10,-100,-1000 and guess the value of $\lim_{x\to -\infty} f(x)$.)

12. The graphs of $f(x) = e^x$ (in blue) and $g(x) = \ln x$ (in red) is shown in Figure 1, while the graphs of $f(x) = e^{-x}$ (in blue) and $g(x) = \ln(1/x)$ (in red) is shown in Figure 2.

Figure 1

Figure 2

Without using L'Hôpital's rule, evaluate the limit. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.

(a)
$$\lim_{x \to -\infty} e^{1+x^6};$$

(b)
$$\lim_{x \to +\infty} \ln \left(e^{-2x} + e^{-x} + 1 \right);$$

(c)
$$\lim_{x \to +\infty} \ln \left(\frac{e^{3x} + e^x}{e^{5x} + e^{2x}} \right);$$

(d)
$$\lim_{x \to +\infty} \ln \left(\frac{e^{2x+1} + 2e^{-x}}{e^{2x} + e^{-x+2}} \right)$$
.

13. Find the following limits, if exist.

(a)
$$\lim_{x \to +\infty} 2^x$$
;

(b)
$$\lim_{x\to-\infty} 2^x$$
;

(c)
$$\lim_{x \to +\infty} 0.2^x$$
;

(d)
$$\lim_{x \to -\infty} 0.2^x$$
;

(e)
$$\lim_{x \to +\infty} \ln \left(\frac{e^x + 2e^{-x}}{e^x + e^{-x}} \right);$$

(f)
$$\lim_{x \to -\infty} \ln \left(\frac{e^x + 2e^{-x}}{e^x + e^{-x}} \right)$$
.

14. By using the fact that $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$, find the following limits.

(a)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^{2x}$$
;

(b)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x+1} \right)^x$$

(c)
$$\lim_{x \to +\infty} \left(\frac{x}{x-1} \right)^x$$

15. Without using L'Hôpital rule, find the following limits, if exist.

(a)
$$\lim_{x \to +\infty} \frac{x^2 - 3x + 2}{x^2 - 1}$$
;

(b)
$$\lim_{x \to -\infty} \frac{x^3 - 2x}{4x^3 + 2x^2}$$
;

(c)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 4}}{x + 4};$$

(d)
$$\lim_{x \to +\infty} \frac{x}{\sqrt{9x^2 + 5}};$$

(e)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{9x^2 + 5}};$$

(f)
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x-1};$$

(g)
$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x;$$

(h)
$$\lim_{x \to -\infty} \sqrt{x^2 + x} - x$$
.